Organizační úvod

Úvod

Poznámka (Motivace)

Hledání řešení diferenciálních rovnic. (Např. nahradíme rovnici definicí operátoru a hledáme, kde je operátor identita. Tedy neřešíme rovnice, ale prostory, na kterých máme funkce.)

Definice 0.1

$$\mathbb{K} = \mathbb{C} \vee \mathbb{K} = \mathbb{R}.$$

1 Banachovy a Hilbertovy prostory

Definice 1.1 (Normovaný lineární prostor)

Nechť X je vektorový prostor nad \mathbb{K} . Funkci $||\cdot||:X\to [0,\infty)$ nazveme normou na X, pokud

$$\begin{aligned} ||x|| &= 0 \Leftrightarrow x = \mathbf{o}, \\ ||x + y|| &\leq ||x|| + ||y||, \\ ||\alpha \cdot x|| &= |\alpha| \cdot ||x||. \end{aligned}$$

Tvrzení 1.1

Necht $(X, ||\cdot||)$ je normovaný lineární prostor nad \mathbb{K} .

Funkce $\rho(x,y) = ||x-y||$ je translačně invariantní metrika na X.

Norma je 1-lipschitzovská (a tedy spojitá) funkce na x.

 $Zobrazeni + : X \times X \to X \ a \cdot : \mathbb{K} \times X \to X \ jsou \ spojitá.$

 $D\mathring{u}kaz$

První část byla na MA3. Druhá: Zvol $x, y \in X$. Pak z trojúhelníkové nerovnosti máme $||y|| \le ||x|| + ||x-y||$, $||x|| \le ||y|| + ||x-y||$, tudíž (podle toho, zda je v absolutní hodnotě kladná nebo záporná hodnota, tak z první/druhé rovnice) $|||x|| - ||y||| \le ||x-y||$.

Třetí část: Připomenutí: Součin metrických prostorů s maximovou metrikou je metrický prostor. Důkaz tohoto i třetí části je pak jednoduché cvičení.

Definice 1.2 (Uzavřená a otevřená koule)

$$B_X(x,r) := \{ y \in X \mid ||x - y|| \le r \}.$$

$$U_X(x,r) := \{ y \in X \mid ||x - y|| < r \}.$$

$$S_X(x,r) := \{ y \in X \mid ||x - y|| = r \}.$$

$$B_X := B_X (\mathbf{0}, 1)$$
.

$$U_X := U_X(\mathbf{o}, 1)$$
.

$$S_X := S_X (\mathbf{0}, 1)$$
.

Definice 1.3 (Banachův prostor)

Banachův prostor je normovaný lineární prostor, který je úplný v metrice dané normou.

Dále se opakovaly metrické prostory. Úplnost, kompaktnost a Bairova věta.

Tvrzení 1.2

Nechť X je normovaný lineární prostor a Y jeho podprostor. Potom

- a) Je-li Y Banachův, pak je Y uzavřený v X.
- b) Pokud je naopak X Banachův, pak Y je Banachův právě tehdy, když je uzavřený.

Důkaz

Je-li (P, ρ) úplný, pak $M \subseteq P$ je úplný $\Leftrightarrow M$ je uzavřený. To dává speciálně b).

 (P,ϱ) je MP, pak $M\subseteq P$ je úplný $\Longrightarrow M$ uzavřený. To dává speciálně a).

Například

 $(\mathbb{K}, ||\cdot||_p), L_p(\Omega, \mathcal{A}, \mu, \mathbb{K})$, kde funkce je $\Omega \to \mathbb{K}$ a norma je definována jako p-tá odmocnina z integrálu funkce na p. $l_p(l)$ resp. $l_p(l, \mathbb{K})$ je diskrétní verze předchozího (tj. se sumou). $\mathbb{C}(K)$, kde K je hausdorfův a kompaktní TP.

c jsou všechny posloupnosti se supremovou normou, c_0 jsou všechny posloupnosti konvergující k 0 se supremovou normou. c_{00} sestává z těch posloupností, kde je jen konečně mnoho nenulových prvků (norma je maximová), je to lineární prostor, ale není Banachův. $c_0(I)$ je zobecnění z $c_0(\mathbb{N})$ na libovolnou diskrétní množinu I, tj. obsahuje "posloupnosti", kde pro každé ε je pouze konečně mnoho členů větších než ε (pak $(c_0(I), ||\cdot||_{\infty})$ je Banachův).

 $\mathcal{L}^1([0,1],||\cdot||_{\mathcal{L}^1})$ (prostor hladkých funkcí na intervalu [0,1]), kde $||f||_{\mathcal{L}^1}=||f||_{\infty}+$

 $||f'||_{\infty}$. $\mathcal{M}(K) = \{\mu : Borel(K) \to \mathbb{K} | \mu \text{ regulární míra} \},$ $||\mu|| := \sup \left\{ \sum_{i=1}^{\infty} |\mu(B_i)|, \bigcup B_i = K, B_i \text{ Borelovská} \right\}.$

Definice 1.4 (Ekvivalentní normy)

Nechť X je vektorový prostor a $||\cdot||_1$, $||\cdot||_2$ jsou normy na X. Řekneme, že normy $||\cdot||_1$ a $||\cdot||_2$ jsou ekvivalentní, pokud existují A, B > 0 takové, že pro každé $x \in X$ platí $A||x||_2 \le ||x||_1 \le B||x||_2$.

Věta 1.3

Na konečněrozměrném vektorovém prostoru jsou všechny normy ekvivalentní.

Důkaz

Později.

Lemma 1.4

Nechť X je vektorový prostor, $||\cdot||_1$ a $||\cdot||_2$ jsou normy na X, $B_1 = B_{X,||\cdot||_1}$, $B_2 = B_{X,||\cdot||_2}$ a a,b>0. Pak $a||x||_2 \le ||x||_1 \le b||x||_2$ pro každé $x \in X$, právě když $aB_1 \subset B_2 \subset bB_1$. Speciálně $||\cdot||_1 = ||\cdot||_2$ právě tehdy, když $B_1 = B_2$.

Důkaz

 \Longrightarrow : Zvol $x\in aB_1,$ pak $||\frac{x}{a}||_1\leq 1\implies x\in B_2.$ Opačně: Zvol $x\in B_2,$ pak $||x||_2\leq 1\implies x\in B_1.$

 \Leftarrow : Pokud x=0, pak jsou nerovnosti jasné. Zvol $x\neq 0$. Pak $\frac{x}{||x||_1}\in B_1$. Pak $\frac{ax}{||x||_1}\in B_1\subseteq B_2\implies a||x||_2\leq ||x||_1$. Analogicky pro druhý směr.

Tvrzení 1.5

Nechť X je vektorový prostor a $||\cdot||_1$ a $||\cdot||_2$ jsou normy na X a B_1 a B_2 jako minule. Následující tvrzení jsou ekvivalentní:

- 1. Normy $||\cdot||_1$ a $||\cdot||_2$ jsou ekvivalentní.
- 2. Existují a, b > 0 taková, že $aB_1 \subset B_2 \subset bB_1$.
- 3. Zobrazení id: $(X, ||\cdot||_1) \to (X, ||\cdot||_2)$ je homeomorfismus.
- 4. Otevřené množiny v $(X, ||\cdot||_1) X$ splývají s otevřenými množinami $(X, ||\cdot||_2)$.
- 5. $||x_n x||_1 \to 0$, právě $když ||x_n x||_2 \to 0$ pro $\{x_n\} \subset X$, $x \in X$.

 $1\Leftrightarrow 2$ plyne z předchozího lemmatu. $3\Leftrightarrow 4\Leftrightarrow 5$ je lehké a platí ve všech MP. $1\implies 5$ jasné.

 $5 \implies 1$: Sporem posloupností jdoucí k 1. TODO (Netuším, co by sem mělo přijít...)

Definice 1.5 (Konvexní množina)

Nechť X je vektorový prostor. Řekneme, že množina $M \subset X$ je konvexní, pokud pro každé $x,y \in M$ a $\lambda \in [0,1]$ platí, že $\lambda x + (1-\lambda)y \in M$.

Poznámka (Fakt)

Koule v normovaném lineárním prostoru jsou konvexní množiny. (A naopak každá konvexní množina může být koulí v nějaké normě.)

Definice 1.6 (Konvexní obal)

Nechť X je vektorový prostor a $M \subset X$. Konvexním obalem M nazveme množinu conv $M = \bigcap \{C \supset M | C \subset X \text{ je konvexní}\}.$

Tvrzení 1.6

Nechť X je vektorový prostor a $M \subset X$. Pak

$$\operatorname{conv} M = \left\{ \sum_{i=1}^{n} \lambda_i x_i | x_i \in M, \lambda_i \ge 0, \sum \lambda = 1, n \in \mathbb{N} \right\}.$$

 $D\mathring{u}kaz$

⊆: Stačí dokázat, že množina vpravo je konvexní. Přímočaré.

 \supseteq : Stačí dokázat, že každý prvek vlevo je v konvexním obalu. Indukcí podle n, přímočaré. \Box

Definice 1.7

Nechť X je vektorový prostor. Řekneme, že množina $M\subset X$ je symetrická, pokud -M=M.

Poznámka (Fakt)

Nechť M je symetrická konvexní podmnožina normovaného lineárního prostoru X, která obsahuje U(x,r) respektive B(x,r) pro nějaké $x\in X$ a $r\geq 0$. Pak $U(0,r)\subset M$, resp. $B(0,r)\subset M$.

Jednoduchý.

Definice 1.8

Nechť X je normovaný lineární prostor a $M\subset X$. Pak definujeme uzavřený lineární obal M jako

$$\overline{\operatorname{span}}M = \bigcap \{Y \supset M | Y \text{ uzavřený podprostor } X\}$$

a uzavřený konvexní obal jako $\overline{\text{conv}}M = \bigcap \{C \supset M | C \subset X \text{ je uzavřená konvexní} \}.$

Poznámka (Fakt)

Nechť X je normovaný lineární prostor, Y je podprostor X a $C\subset X$ je konvexní. Pak \overline{Y} je podprostor X a \overline{C} je konvexní množina.

Poznámka (Fakt)

Nechť X je normovaný lineární prostor a $M\subset X$. Pak $\overline{\operatorname{span}}M=\overline{\operatorname{span}}M$ a $\overline{\operatorname{conv}}M=\overline{\operatorname{conv}}M$.

Věta 1.7

Nechť X je normovaný lineární prostor, $Y \subset X$ uzavřený podprostor a $Z \subset X$ konečněrozměrný podprostor. Pak $\operatorname{span}(Y \cup Z)$ je uzavřený.

 $D\mathring{u}kaz$

Stačí dokázat pro dim Z=1 (pak indukcí). At $Z=\mathrm{span}(e),\ e\notin Y$. Ověřme, že $\mathrm{span}(Y\cup\{e\})=\{y+ke|k\in\mathbb{K}\}$ je uzavřený: At $x_n=y_n+t_ne\to x\in X$. Chceme $x\in\mathrm{span}\,Y$.

1. krok: (t_n) je omezená. (Kdyby ne, pak má limitu ∞ a $||\frac{y_{n_k}}{t_{n_k}} + e|| = \frac{1}{|t_{n_k}|}||x_{n_k}|| \to 0$, tedy $\frac{y_{n_k}}{t_{n_k}} \to -e \notin Y$, tedy Y není uzavřená. 4)

Tedy existuje posloupnost (n_k) , že $t_{n_k} \to t \in \mathbb{K}$. Pak ale $y_{n_k} = x_{n_k} - t_{n_k} e \to x - t e \in Y$. Tedy $\exists z \in Y : x - t e = z$, tj. $x = z + t e \in \text{span}(Y \cup \{e\})$.

Dusledek

Nechť X je normovaný lineární prostor. Každý konečněrozměrný podprostor X je uzavřený v X.

Definice 1.9 (Konvergence řady v normovaných lineárních prostorech)

Necht $\{x_n\} \subset X$. Řekneme, že řada $\sum_{n=1}^{\infty} x_n$ konverguje k $x \in X$, pokud $x = \lim_{N \to \infty} \sum_{n=1}^{N} x_n$. Řada je konvergentní, pokud existuje takové x. Řada je absolutně konvergentní, pokud $\sum_{n=1}^{\infty} ||x_n|| < +\infty$.

Poznámka (Fakt)

Nechť X je normovaný lineární prostor a $\sum_{n=1}^{\infty} x_n$ je konvergentní řada v X. Pak

$$\left| \left| \sum_{n=1}^{\infty} x_n \right| \right| \le \sum_{n=1}^{\infty} ||x_n||.$$

Věta 1.8 (Test úplnosti)

Nechť X je normovaný lineární prostor. Pak X je Banachův, právě když každá absolutně konvergentní řada je konvergentní.

Důkaz

 \Longrightarrow : At X je Borelovský, $\sum_{n=1}^{\infty} x_n$ je AK řada. $s_N = \sum_{n=1}^N x_n$. Chceme (s_n) je cauchy: Buď $\varepsilon > 0$. At $n_0 \in \mathbb{N}$ je takové, že $\sum_{n=N}^M ||x_n|| < \varepsilon$, $n_0 \leq N < M$. Pak ale pro $n_0 \leq N < M$ je

$$||s_N - s_M|| = ||\sum_{n=N+1}^M x_n|| \le \sum_{N+1}^M ||x_N|| < \varepsilon.$$

Tedy (s_n) je konvergentní.

 \Leftarrow : At (x_n) je cauchyovská. Indukcí najdeme podposloupnost, že $||x_{n_k} - x_{n_{k+1}}|| < 2^{-k}$, $k \in \mathbb{N}$. Pak

$$z = \sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k}) = \lim_{k \to \infty} (x_{n_{k+1}} - x_{n_1})$$

$$\implies \lim_{k \to \infty} x_{n_k} = \lim_{k \to \infty} (x_{n_k} - x_{n_1} + x_{n+1}) = \lim(x_{n_k} - x_{n_1}) + \lim x_{n_1} = z + x_{n_1}.$$

Celkem $\exists (n_k) \nearrow$, že $\lim(x_{n_k})$ existuje. Značme $x = \lim_{k \to \infty} x_{n_k}$. Chceme $\lim_{n \to \infty} x_n = x$. V metrickém prostoru konverguje Cauchyovská posloupnost právě tehdy, pokud existuje její konvergentní podposloupnost.

Definice 1.10 (Zobecněná řada)

Nechť X je normovaný lineární prostor, Γ je množina a $\{x_\gamma\}_{\gamma\in\Gamma}$ je kolekce prvků prostoru X. Symbol $\sum_{\gamma\in\Gamma}x_\gamma$ nazveme zobecněnou řadou.

Dále $\mathcal{F}(\Gamma)$ značí systém všech konečných podmnožin Γ . Řekneme, že zobecněná řada … konverguje (též konverguje bezpodmínečně) k $x \in X$, pokud platí

$$\forall \varepsilon > 0 \ \exists F \in \mathcal{F}(\Gamma) \ \forall F' \in \mathcal{F}(\Gamma), F' \supseteq F : ||x - \sum_{\gamma \in F'} x_{\gamma}|| < \varepsilon.$$

Existuje-li $x \in X$, říkáme, že je zobecněná řada … (bezpodmínečně) konvergentní a x nazýváme jejím součtem. Konverguje-li zobecněná řada reálných čísel $\sum_{\gamma \in \Gamma} ||x_{\gamma}||$, pak se

Definice 1.11 (Bolzanova-Cauchyova podmínka)

Řekneme, že zobecněná řada $\sum_{\gamma \in \Gamma} x_{\gamma}$ v normovaném lineárním prostoru splňuje BC podmínku, pokud

$$\forall \varepsilon > 0 \ \exists F \in \mathcal{F}(\Gamma) \ \forall F' \in \mathcal{F}(\Gamma), F' \cap F = \emptyset : \left| \left| \sum_{\gamma \in F'} x_{\gamma} \right| \right| < \varepsilon.$$

Věta 1.9 (Nutná podmínka konvergence)

Nechť $\sum_{\gamma \in \Gamma} x_{\gamma}$ je konvergentní zobecněná řada v normovaném lineárním prostoru X. Pak je její součet určen jednoznačně a $(||x_{\gamma}||)_{\gamma \in \Gamma} \in c_0(\Gamma)$.

Důkaz (Jednoznačnost)

At
$$\sum_{\gamma \in \Gamma} x_{\gamma} = x \neq y = \sum_{\gamma \in \Gamma} x_{\gamma} = \sum_{\gamma \in \Gamma} x_{\gamma}$$
. Pak $\forall \varepsilon > 0$:

$$\exists F_x \in \mathcal{F}(\Gamma) \ \forall F \supseteq F_x : ||x - \sum_{\gamma \in \Gamma} x_{\gamma}|| < \frac{\varepsilon}{2},$$

$$\exists F_y \in \mathcal{F}(\Gamma) \ \forall F \supseteq F_y : ||x - \sum_{\gamma \in \Gamma} x_\gamma|| < \frac{\varepsilon}{2}.$$

Pak pro
$$\varepsilon = ||x - y|| \le ||x - \sum_{F_x \cup F_y} x_\gamma|| + ||\sum_{F_x \cup F_y} x_\gamma - y|| < \varepsilon.$$

 $D\mathring{u}kaz$ (Limita)

Chceme $(||x_{\gamma}||) \in c_0(\Gamma)$: At $\varepsilon > 0$ libovolné. Najdeme

$$F \in \mathcal{F}(\Gamma) \ \forall F' \supset F : ||x - \sum_{\gamma \in F'} x_{\gamma}|| < \frac{\varepsilon}{2}.$$

Pak pro $\gamma_0 \notin F$ máme

$$||x_{\gamma_0}|| = ||\sum_{\gamma \in F \cup \{\gamma_0\}} x_{\gamma} - x + x - \sum_{\gamma \in F} x_{\gamma}|| \le ||\dots|| + ||\dots|| < \varepsilon.$$

Tedy $\{\gamma \in \Gamma | ||x_{\gamma}|| > \varepsilon\} \subseteq F \in \mathcal{F}(\Gamma) \implies (||x_{\gamma}||) \in c_0(\Gamma)$. (Je tam pouze konečný počet prvků větších než ε .)

Věta 1.10

Nechť X je Banachův prostor.

- 1. Zobecněná řada vX je konvergentní právě tehdy, když splňuje Bolzanovu-Cauchyovu podmínku.
- 2. Každá absolutně konvergentní zobecněná řada v X je konvergentní.

3. Je-li zobecněná řada $\sum_{\gamma \in \Gamma} x_{\gamma} \ v \ X$ konvergentní a $\Lambda \subset \Gamma$, pak je i zobecněná řada $\sum_{\gamma \in \Lambda} x_{\gamma}$ konvergentní.

Důkaz (1.)

 \implies : At $\sum_{\gamma \in \Gamma} x_{\gamma}$ je konvergentní. Zvol $\varepsilon > 0$. Zvolíme

$$F \in \mathcal{F}(\Gamma) \ \forall F' \supseteq F : ||\sum_{\gamma \in \Gamma} x_{\gamma} - \sum_{\gamma \in F'} x_{\gamma}|| < \frac{\varepsilon}{2}.$$

Pak pro $\tilde{F} \in \mathcal{F}(\Gamma)$, že $\tilde{F} \cap F = \emptyset$ máme:

$$||\sum_{\gamma \in \tilde{F}} x_{\gamma}|| = ||\sum_{\gamma \in F \cup \tilde{F}} x_{\gamma} - \sum_{\gamma \in \Gamma} x_{\gamma} + \sum_{\gamma \in \Gamma} x_{\gamma} - \sum_{\gamma \in F} x_{\gamma}|| \le ||\dots|| + ||\dots|| < \varepsilon.$$

 \Leftarrow : At $\sum_{\gamma \in \Gamma} x_{\gamma}$ splňuje B-C podmínku. Pak najdeme posloupnost $(F_n)_{n=1}^{\infty} \in \mathcal{F}(\Gamma)^{\mathbb{N}}$, že

$$F_1 \subset F_2 \subset \ldots \land \forall F' \mathcal{F}(\Gamma), F' \cap F_n = \emptyset : ||\sum_{\gamma \in F'} x_{\gamma}|| < \frac{1}{n}.$$

Označ $y_n=\sum_{\gamma\in F_n}x_\gamma.$ 1. krok: (y_n) je cauchy
ovská. (Dokáže se snadno.) 2. krok: Tedy existuje $y\in X$:
 $\lim y_n=y.$ Chceme $y=\sum_{\gamma\in\Gamma}x_\gamma:$ Af $\varepsilon>0.$

$$\forall F' \supset F: ||y - \sum_{\gamma \in F'} x_{\gamma}|| \le ||y_{n_0} - \sum_{\gamma \in F'} x_{\gamma}|| + ||y_{n_0} - y|| = \sum_{\gamma \in F' \setminus F_{n_0}} x_{\gamma} \le \frac{1}{n_0} + ||y_{n_0} - y|| < \varepsilon.$$

Důkaz (2.)

Víme, že $\sum_{\gamma \in \Gamma} ||x_\gamma||$ je konvergentní. Dle tvrzení níže tedy

$$\sum_{\gamma \in \Gamma} ||x_{\gamma}|| = S = \sup \left\{ \sum_{\gamma \in \Gamma} |||x_{\gamma}||| \ F \in \mathcal{F}(\Gamma) \right\}.$$

Ověříme, že $\sum x_{\gamma}$ splní B-C podmínku: At $\varepsilon > 0$. At $F \in \mathcal{F}(\Gamma)$ tak, že $S - \varepsilon < \sum_{\gamma \in F} ||x_{\gamma}||$. Pak $\forall F' \in \mathcal{F}(\Gamma)$, že $F' \cap F = \emptyset$:

$$||\sum_{\gamma \in F'} x_\gamma|| \leq \sum_{\gamma \in F'} ||x_\gamma|| = \sum_{\gamma \in F' \cup F} ||x_\gamma|| - \sum_{\gamma \in F} ||x_\gamma|| < \varepsilon.$$

Důkaz (3.)

Snadný důsledek 1., protože B-C podmínka se zjevně dědí na podm
nožiny. $\hfill\Box$

Tvrzení 1.11

Nechť $\sum_{\gamma \in \Gamma} a_{\gamma}$ je zobecněná řada nezáporných čísel. Pak tato řada konverguje, právě když $\sup \left\{ \sum_{\gamma \in F} a_{\gamma} : F \in \mathcal{F}(\Gamma) \right\} < +\infty$. A navíc platí $\sum_{\gamma \in \Gamma} a_{\gamma} = \sup \left\{ \sum_{\gamma \in F} a_{\gamma} : F \in \mathcal{F}(\Gamma) \right\}$.

 $D\mathring{u}kaz$

 \implies : At $\sum_{\gamma \in \Gamma} a_{\gamma}$ konverguje. Pak zvolíme $F \in \mathcal{F}(\Gamma) \ \forall F' \supset F : || \sum_{\gamma \in \Gamma} a_{\gamma} - \sum_{\gamma \in F} a_{\gamma}|| < 1$. Pak $\forall H \in \mathcal{F}(\Gamma) : \sum_{\gamma \in H} a_{\gamma} \leq \sum_{\gamma \in H \cup F} a_{\gamma} \leq \sum_{\gamma \in \Gamma} a_{\gamma} + 1$. Tedy $\sup \ldots \leq \sum_{\gamma \in \Gamma} a_{p} + 1 < \infty$.

 \Leftarrow : At $S:=\sup\ldots<\infty$. Chceme $\sum_{\gamma\in\Gamma}a_{\gamma}=S$. At $\varepsilon>0$. At $H\in\mathcal{F}(\Gamma)$ (z definice suprema) taková, že $S-\varepsilon<\sum_{\gamma\in H}a_{\gamma}$. Pak pro $F'\supset H$ máme

$$|S - \sum_{\gamma \in F'} a_{\gamma}| = S - \sum_{\gamma \in F'} a_{\gamma} < S - \sum_{\gamma \in H} a_{\gamma} < \varepsilon.$$

 \Box Tedy $\sum a_{\gamma} = S$.

Tvrzení 1.12

Nechť X je normovaný lineární prostor a $\{x_n\} \subset X$. Pak zobecněná řada $\sum_{n \in \mathbb{N}} x_n$ je absolutně konvergentní, právě když řada $\sum_{n=1}^{\infty} x_n$ je absolutně konvergentní.

 $D\mathring{u}kaz$

 \Longrightarrow : At $\sum_{n=1}^{\infty} ||x_n|| =: S < \infty$. Pak

$$\sup_{F \in \mathbb{F}(\mathbb{N})} \sum_{n \in F} ||x_n|| \le \sup_{N \in \mathbb{N}} \sum_{n=1}^N ||x_n|| = \sum_{n=1}^\infty ||x_n|| = S < \infty,$$

neboť každá konečná množina v přirozených číslech má maximum (a odebráním kladných prvků sumu zmenšíme).

 $\Leftarrow:$ A
t $\sum_{n\in\mathbb{N}}||x_n||$ je konvergentní, pak dle předchozího tvrzení

$$S:=\sup_{F\in\mathcal{F}(\mathbb{N})}\sum_{n\in F}||x_n||<\infty.$$

Tedy

$$\sum_{n=1}^{\infty} ||x_n|| = \sup_{N \in \mathbb{N}} \sum_{n \in [N]} ||x_n|| \le S < \infty.$$

m V'eta~1.13

Nechť $\{x_n\}$ je posloupnost v Banachově (pro normovaný lineární prostor je důkaz složitější) prostoru X. Pak následující tvrzení jsou konvergentní:

- 1. $\sum_{n\in\mathbb{N}} x_n$ konverguje (říkáme $\sum_{n=1}^{\infty} x_n$ konverguje bezpodmínečně).
- 2. $\sum_{n=1}^{\infty} x_{\pi(n)}$ konverguje pro každou permutaci $\pi: \mathbb{N} \to \mathbb{N}$ ke stejnému součtu.
- 3. $\sum_{n=1}^{\infty} x_{\pi(n)}$ konverguje pro každou permutaci $\pi: \mathbb{N} \to \mathbb{N}$.

 $1 \implies 2: \text{At } \varepsilon > 0 \text{ a } \pi \in \mathbb{S}(\mathbb{N}). \text{ At } F \in \mathcal{F}(\mathbb{N}) \text{ splňuje, že } \forall F' \supseteq F: ||\sum_{n \in F'} x_n - x|| < \varepsilon, \\ \text{kde } x = \sum_{n \in \mathbb{N}} x_n. \text{ Zvolme } n_0 \in \mathbb{N}: F \subseteq \{\pi(1), \dots, \pi(n_0)\}. \text{ Pak } \forall n \ge n_0: ||\sum_{i=1}^n x_{\pi(i)} - x|| < \varepsilon. \text{ Tedy } \sum_{n=1}^{\infty} x_{\pi(n)} = x.$

 $2 \Longrightarrow 3$: okamžitě. $3 \Longrightarrow 1$: Pro spor předpokládejme, že $\sum_{n=1}^{\infty} x_{\pi(n)}$ konverguje pro každou $\pi \in \mathbb{S}(\mathbb{N})$, ale $\sum_{n \in \mathbb{N}} x_n$ nesplňuje B-C podmínku. Zvolme $\varepsilon > 0$ svědčící o tom, že B-C podmínka není splněna. Pak existuje $(F_n)_{n=1}^{\infty} \in \mathcal{F}(\mathbb{N})^{\mathbb{N}}$, že $F_n \cap F_m = \emptyset \ \forall n \neq m$, $\max F_n < \min F_{n+1}, n \in \mathbb{N}$ a $||\sum_{i \in F_n} x_i||$.

Zvolme $\pi \in \mathbb{S}(\mathbb{N})$ splňující, že existuje $(n_k) \nearrow a (p_k)_{k=1}^{\infty} \in \mathbb{N}^{\mathbb{N}}$, že

$$\pi\left(\left\{n_k, n_k + 1, \dots, n_k + p_k\right\}\right) = F_k, \quad \forall k \in \mathbb{N}.$$

Tedy $\forall k \in \mathbb{N}: ||\sum_{i=n_k}^{n_k+p_k} x_{\pi(i)}|| = ||\sum_{i \in F_k} x_i|| \ge \varepsilon$. To však znamená, že $\sum_{i=1}^{\infty} x_{\pi(i)}$ nesplňuje B-C podmínku, tedy není konvergentní. \checkmark

Věta 1.14

Každá absolutně konvergentní řada v Banachově prostoru je bezpodmínečně konvergentní.

DůkazJasný z minulé věty.

Navíc v \mathbb{R} platí ekvivalence.

Věta 1.15

Pokud dim $X = +\infty$, pak $\exists (x_n) : \sum_{n=1}^{\infty} ||x_n||$ konverguje, ale $\sum_{n \in \mathbb{N}} x_n$ není konvergentní.

2 Lineární operátory a funkcionály

Poznámka (Opakovali jsme)

Lineární zobrazení (viz lingebra), dále:

Věta 2.1

Nechť X,Y jsou normované lineární prostory a $T:X\to Y$ je lineární zobrazení. Pak následující tvrzení jsou ekvivalentní:

- 1. T je spojité.
- 2. T je spojité v jednom bodě.
- 3. T je spojité v 0.
- 4. $\exists C \geq 0 \ tak, \ \check{z}e \ ||T(x)|| \leq C||x|| \ \forall x \in X.$
- 5. T je Lipschitzovské.
- 6. T je stejnoměrně spojité.
- 7. T(A) je omezená pro každou omezenou $A \subset X$.
- 8. $T(B_X)$ je omezená.
- 9. $T(U(0,\delta))$ je omezená pro nějaké $\delta > 0$.

Prostor $\mathcal{L}(X,Y)$ s normou $||T|| = \sup_{x \in B_x} ||T(x)||$ je normovaný lineární prostor.

Lemma 2.2

Nechť X, Y jsou normované lineární prostory a $T \in \mathcal{L}(X, Y)$.

- $||T(x)|| \le ||T|| \cdot ||x||$ pro každé $x \in X$.
- $||T|| = \sup_{x \in S_X} ||T(x)|| = \sup_{x \in X \setminus \{\mathbf{o}\}} \frac{||T(x)||}{||x||} = \sup_{x \in U_X} ||T(x)||.$
- $||T|| = \inf\{C \ge 0 \mid ||T(x)|| \le C||x|| \ \forall x \in X\}.$

Pro $x \in X \setminus \{\mathbf{o}\}$ platí $||T(x)|| = ||T(\frac{x}{||x||})|| \cdot ||x|| \le ||T|| \cdot ||x||$.

 $S_X \subseteq B_X$, tedy $||T|| \ge \sup_{x \in S_X} ||T(x)||$. $\forall x \in X \setminus \{\mathbf{o}\}$:

$$\frac{||T(x)||}{||x||} = ||T(\frac{x}{||x||})|| \le \sup_{y \in S_X} ||T(y)||,$$

 $\begin{array}{l} \operatorname{tedy} \, \sup_{x \in S_X} ||T(x)|| \geq \sup_{x \in X \setminus \{\mathbf{o}\}} \frac{||T(x)||}{||x||} =: S_3. \text{ Pro } x \in U_X \setminus \{\mathbf{o}\} \text{ platí } ||T(x)|| \leq \frac{||T(x)||}{||x||} \leq S_3, \text{ tedy } \sup_{x \in U_X} ||T(x)|| \leq S_3. \text{ Konečně, pro } x \in B_x: ||T(x)|| \leftarrow ||T\left(\left(1 - \frac{1}{n}\right)x\right)|| \leq \sup_{x \in U_X} =: S_4, \text{ tedy } ||T_x|| = \lim_{n \to \infty} ||T\left(1 - \frac{1}{n}\right)x|| \leq S_4 \implies \sup_{x \in B(x)} ||T(x)|| \leq S_4. \end{array}$

Dle prvního bodu máme nerovnost "≥". Pro "≤" zvolme $\varepsilon > 0$ … at $\tilde{c} > 0$ je takové, že $\tilde{c} < \inf\{\ldots\} + \varepsilon$. Pak $||T|| = \sup_{x \in B_x} \frac{||T_x||}{||x||} \le \inf\{\ldots\}$.

Definice 2.1

Nechť X je normovaný lineární prostor nad \mathbb{K} . Prostor $\mathcal{L}(X,\mathbb{K})$ značíme X^* a nazýváme jej duálním prostorem k prostoru X.

Poznámka (Fakt)

Nechť X,Y jsou normované lineární prostory a $\{T_n\}\subset \mathcal{L}(X,Y)$ je posloupnost operátorů konvergující k $T\in \mathcal{L}(X,Y)$ v prostoru $\mathcal{L}(X,Y)$. Pak $\{T_n\}$ konverguje k T bodově, tj. pro každé $x\in X$ platí $T_n(x)\to T(x)$ v prostoru Y.

 $D\mathring{u}kaz$

TODO?

Poznámka (Fakt)

Necht X, Y, Z jsou normované lineární prostory, $S \in \mathcal{L}(X, Y)$ a $T \in \mathcal{L}(Y, Z)$. Pak $||T \circ S|| \le ||T|| \cdot ||S||$.

 $D\mathring{u}kaz$

TODO??? (Navíc je jednoduchý.)

Věta 2.3

Nechť X je normovaný lineární prostor a Y je Banachův. Pak $\mathcal{L}(X,Y)$ je Banachův prostor.

 $D\mathring{u}kaz$

TODO

Věta 2.4 Je-li X normovaný lineární prostor, je prostor X^* úplný. D^ukaz Speciální případ předchozí věty.

Definice 2.2 (Izomorfismus, izomorfismus do, izometrie, izometrie do, izomorfní a izometrické prostory, izomorfně vnořený a izometricky vnořený prostor)

Nechť X,Y jsou normované lineární prostory a $T \in \mathcal{L}(X,Y)$. Říkáme, že T je

- izomorfismus X na Y (nebo jen izomorfismus), pokud T je bijekce X na Y a inverzní operátor T^{-1} je spojitý;
- izomorfismus X do Y (nebo jen izomorfismus do), pokud T je izomorfismus X na $\operatorname{Rng} T;$
- izometrie X na Y (nebo jen izometrie), pokud T je na a ||T(x) T(y)|| = ||x y|| pro všechna $x, y \in X$;
- izometrie X do Y (nebo jen izometrie do), pokud ||T(x) T(y)|| = ||x y|| pro všechna $x, y \in X$.

Dále říkáme, že prostory X a Y jsou izomorfní respektive izometrické, pokud existuje lineární izomorfismus resp. izometrie X na Y.

O prostoru X řekneme, že je izomorfně resp. izometricky vnořen do Y, pokud existuje lineární izomorfismus respektive izometrie X do Y.

Poznámka

Lineární zobrazení T je izometrie do, právě tehdy, když $\forall z : ||Tz|| = ||z||$.

Tvrzení 2.5

Nechť X, Y jsou normované lineární prostory.

- 1. $T \in \mathcal{L}(X,Y)$ je izomorfismus do právě tehdy, když existují konstanty $C_1, C_2 > 0$ takové, že $C_1||x|| \le ||T(x)|| \le C_2||x||$ pro každé $x \in X$.
- 2. Je-li X izomorfní s Y a X je Banachův, pak je i Y Banachův.
- 3. Je-li X Banachův a $T \in \mathcal{L}(X,Y)$ je izomorfismus do, pak $\operatorname{Rng} T$ je uzavřený v Y.

Poznámka (Fakt)

Necht X, Y, Z jsou normované lineární prostory a $T \in \mathcal{L}(X, Y), S \in \mathcal{L}(Y, Z)$.

Jsou-li S, T izomorfismy do, pak $S \circ T$ je izomorfismus do.

Jsou-li S, T izometrie do, pak $S \circ T$ je izometrie do.

Věta 2.6

Nechť X, \hat{X} a Y jsou normované lineární prostory, X je hustý v \hat{X} a Y je úplný. Nechť dále $T \in \mathcal{L}(X,Y)$. Pak existuje právě jeden operátor $\hat{T} \in \mathcal{L}(\hat{X},Y)$ rozšiřující T, tj. $\hat{T}|_{X} = T$. Navíc platí $||\hat{T}|| = ||T||$.

Důkaz TODO

3 Konečně rozměrné prostory

Lemma 3.1 (O skoro kolmici)

Nechť X je normovaný lineární prostor. Je-li Y vlastní uzavřený podprostor X, pak pro každé $\varepsilon > 0$ existuje $x \in S_X$ takové, že $\operatorname{dist}(x,Y) > 1 - \varepsilon$.

Důkaz TODO

Věta 3.2

Necht X je normovaný lineární prostor nad K. Pak následující tvrzení jsou ekvivalentní:

- 1. $\dim X < \infty$.
- 2. Existuje $n \in \mathbb{N}$ takové, že X je izomorfní s $(\mathbb{K}^n, ||\cdot||_2)$.
- 3. B_X je kompaktní.
- 4. Každé lineární zobrazení z X do nějakého normovaného lineárního prostoru je spojité.
- 5. Každá lineární forma na X je spojitá.
- 6. Každé dvě normy na X jsou ekvivalentní.

Důkaz TODO

4 Operace s normovanými lineárními prostory, projekce a doplňky

Definice 4.1

Nechť $(X, ||\cdot||_X)$ a $(Y, ||\cdot||_Y)$ jsou normované lineární prostory a $1 \le p \le \infty$. Pak prostorem $X \oplus_p Y$ rozumíme normovaný lineární prostor $(X \times Y, ||\cdot||_p)$, kde norma $||\cdot||_p$ je daná vzorcem

 $||(x,y)||_p = \begin{cases} (||x||_X^p + ||y||_Y^p)^{\frac{1}{p}}, & \text{pro } p < \infty, \\ \max\{||x||_X, ||y||_Y\}, & \text{pro } p = \infty. \end{cases}$

Poznámka (Kvocient)

Nechť X je vektorový prostor nad \mathbb{K} a Y jeho podprostor. Definujeme relaci ekvivalence \sim na X jako $x \sim y \Leftrightarrow x - y \in Y$.

Pro $x \in X$ pak definujeme [x] jako třídu ekvivalence obsahující x.

Na množině $X/Y=\{[x]|x\in X\}$ definujeme operace [x]+[y]=[x+y] a $\alpha[x]=[\alpha x]$.

Definice 4.2 (Kvocient)

Nechť X je vektorový prostor a Y jeho podprostor. Pak vektorový prostor X/Y nazýváme faktoprostorem prostoru X podle Y nebo též kvocientem X podle Y. Dále definujeme tzv. kanonecké kvocientové zobrazení $q:X\to X/Y$ předpisem q(x)=[x].

Definice 4.3 (Norma na kvocientu)

Buď X normovaný lineární prostor a Y jeho uzavřený podprostor. Pak $(X/Y,||\cdot||_{X/Y})$ je normovaný lineární prostor s normou

$$||[x]||_{X/Y} = \inf_{y \in [x]} ||y|| = \inf_{y \in Y} ||x + y|| = \inf_{y \in Y} ||x - y|| = \operatorname{dist}(x + Y, 0) = \operatorname{dist}(x, Y).$$

Tato norma se nazývá kanonická kvocientová norma.

Důkaz (Je to norma) Triviální.

Tvrzení 4.1

Nechť X je normovaný lineární prostor a Y jeho uzavřený podprostor. Pak kanonické kvocientové zobrazení $q: X \to X/Y$ je spojitý lineární operátor, který je na a splňuje $q(U_x) = U_{X/Y}$. Je-li Y vlastní, pak ||q|| = 1.

Důkaz Zřejmý.

Věta 4.2

Nechť X je Banachův prostor a Y jeho uzavřený podprostor. Pak X/Y je též Banachův prostor.

□ Důkaz

Přes test úplnosti (X je Banachův, právě když každá abs. konvergentní řada je konvergentní). At $\{[x]_n|n\in\mathbb{N}\}$ splňuje $\sum_{n=1}^{\infty}[x]_n<\infty$. Chceme $\sum_n[x]_n$ konverguje. At $\{y_n|n\in\mathbb{N}\}\subseteq Y$ jsou takové, že $\sum_{n=1}^{\infty}||x_n+y_n||<\infty$. Pak $\sum(x_n+y_n)$ je konvergentní (podle testu úplnosti) a je prvkem X, tedy $q(\sum_{n=1}^{\infty}(x_n+y_n))=\sum_{n=1}^{\infty}q(x_n+y_n)=\sum_{n=1}^{\infty}[x_n]$. Tudíž $\sum_{n=1}^{\infty}[x_n]$ je v prostoru q(X)=X/Y konverguje.

Poznámka (Zajímavosti)

 l_{∞}/c_0 je docela zajímavý prostor (Rosemider? + Brech? 2012: Je nerozhodnutelné, zda l_{∞}/c_0 je izometricky univerzální Banachův prostor hustoty $|\mathbb{R}|$. Dokonce je nerozhodnutelné, zda takový prostor existuje.) $(l_{\infty}/c_0 \equiv \mathcal{C}(\beta \mathbb{N} \setminus \mathbb{N}))$

Definice 4.4 (Direktní součet)

Nechť X je vektorový prostor a A,B jsou jeho podprostory. Říkáme, že X je direktním (též algebraickým) součtem A a B (značíme $X=A\oplus B$) pokud $A\cap B=\{\mathbf{o}\}$ a $X=A+B=\mathrm{span}\,\{A\cup B\}$.

Definice 4.5 (Projekce)

Necht X je vektorový prostor. Lineární zobrazení $P:X\to X$ se nazývá (lineární) projekce, pokud $P^2:=P\circ P=P$.

Tvrzení 4.3 (Fakt)

Nechť X je vektorový prostor.

- Je-li $P: X \to X$ lineární projekce, pak $P \upharpoonright_{\operatorname{Rng} P} = \operatorname{id}_{\operatorname{Rng} P}$.
- Je-li Y podprostor X a $P: X \to Y$ lineární zobrazení splňující $P \upharpoonright_Y = \operatorname{id}_Y$, pak P je projekce X na Y.

 $D\mathring{u}kaz$ Triviální.

Tvrzení 4.4

Nechť X je vektorový prostor. Jsou-li P_A a P_B projekce příslušné rozkladu $X = A \oplus B$, pak $P_A + P_B = \operatorname{id}_X$, $\operatorname{Rng} P_A = A$, $\operatorname{ker} P_A = B$, $\operatorname{Rng} P_B = B$ a $\operatorname{Ker} P_B = A$.

Důkaz

Jednoduchý.

Na druhou stranu, je-li P lineární projekce v X, pak X = $A \oplus B$, kde $A = \operatorname{Rng} P$, $B = \operatorname{Ker} P$ a $P = P_A$.

 $D\mathring{u}kaz$

Jednoduchý.

Věta 4.5

Nechť X je vektorový prostor a Y jeho podprostor.

- Prostor Y má algebraický doplněk v X.
- Je-li A algebraický doplněk Y v X, je A algebraicky izomorfní s X/Y, speciálně $\dim(A) = \dim(X/Y)$.

 $D\mathring{u}kaz$

Díky Zornovu lemmatu existuje algebraická báze $B \subset Y$ prostoru Y. Stejně tak existuje $B' \supset B$ báze X. Potom $Z = \operatorname{span}(B' \setminus B)$ je algebraický doplněk Y v X, neboli $X = Y \oplus X$.

Ať $X=Y\oplus A$. Pak chceme $q\restriction_A:A\to X/Y$ je lineární izomorfismus: Víme q je lineární, q je prosté (ať $x\in A, q(x)=0$, pak $x\in Y$, tedy $x\in A\cap Y=\{\mathbf{o}\}$, takže $x=\mathbf{o}$) a q je na (Ať $x=y+a\in X$, pak q(x)=q(a), tedy $q(x)\in q|_A(A)$).

Definice 4.6 (Kodimenze)

Je-li X vektorový prostor a Y jeho podprostor, pak kodimenzí (značíme codim Y) Y rozumíme dimenzi libovolného algebraického doplňku Y (což je rovno dimenzi X/Y).

Definice 4.7

Je-li X normovaný lineární prostor a $X=A\oplus B$, pak říkáme, že X je topologickým součtem A a B, pokud jsou příslušné projekce P_A a P_B spojité. Tento fakt značíme $X=A\oplus_t B$. Je-li A podprostor X, pak každý podprostor $B\subset X$ splňující $A\oplus_t B=X$ se nazývá topologický

Věta 4.6

Nechť X je normovaný lineární prostor a Y, Z jsou jeho podprostory splňující $X = Y \oplus Z$. Pak $X = Y \oplus_t Z$, právě když zobrazení $T : X \to Y \oplus_1 Z$, $T(x) = (P_Y(x), P_Z(x))$ je izomorfismus.

 $D\mathring{u}kaz$

 \implies : $\forall x \in X$: $||T(x)|| = ||P_Y x|| + ||P_Z x|| \le 2 \max(||P_Y||, ||P_Z||) ||x|| \le ||(P_Y + P_Z)x|| = ||x||$. Tedy T je izomorfismus.

 $\Leftarrow: \forall x \in X : ||P_y x|| \le ||P_y x|| + ||P_z x|| = ||T x|| \le ||T|| \cdot ||x||, \text{ tedy } ||P_y|| \le ||T||. \quad \Box$

Věta 4.7

Nechť X je Banachův prostor a $Y,Z\subset X$ jeho podprostory splňující $X=Y\oplus Z$. Pak $X=Y\oplus_t Z$, právě když Y a Z jsou uzavřené.

 $D\mathring{u}kaz$

Zatím bez důkazu.

Věta 4.8

Nechť X, Y jsou normované lineární prostory. Pak

- Y je isomorfní komplementovanému podprostoru X, právě když existují lineární operátory $S: X \to Y$ a $T: Y \to X$ splňující $S \circ T = \mathrm{id}_Y$.
- Y je isometrické 1-komplementovanému podprostoru X, právě když existují lineární operátory $S: X \to Y$ a $T: Y \to X$ splňující $S \circ T = \operatorname{id}_Y$ a $\max \{||S||, ||T||\} \le 1$.

 \Leftarrow : Polož $p:=T\circ S:X\to X$. Pak p je zřejmě lineární a $||p||\leq ||T||\cdot ||S||$, navíc $p^2=(T\circ S)\circ (T\circ S)=p$, tedy p je projekce. Zároveň p(X)=T(S(X)), jelikož $S\circ T$ je identita, tak S je na a $p(X)=T(Y)=\mathrm{Rng}\, T$. Zbývá si uvědomit, že T je izomorfismus (izometrie, pokud $||S||, ||T||\leq 1$): Máme

$$\forall x \in X : ||Sx|| = ||STSx|| \le ||S|| \cdot ||TSx||,$$

tedy (protože S je na):

$$\forall y \in Y: ||y|| \frac{1}{||S||} \le ||Ty||,$$

tudíž T je izomorfismus.

$$\Longrightarrow: \text{At }P:X\to X \text{ je projekce, }L:P(X)\to Y \text{ izomorfismus na. Položíme }S:=L\circ P,$$

$$T:=L^{-1}, \text{ pak }S\circ T=L\circ P\circ L^{-1}=L\circ L^{-1}=\text{id.}$$

Poznámka (Zajímavosti pro všechny (nezkouší se)) Ví se (dim $X = +\infty$, X Banach)

- X lze komplementovaně vnořit do $l_p \implies X \cong l_p, p \in [1, \infty].$
- X lze komplementovaně vnořit do $c_0 \implies X \cong l_0$.
- Existuje nespočetně neizomorfních podprostorů L_p , $p \in (1, \infty)$.

Neví se:

- X lze komplementovaně vnořit do $L_1 \implies X \in \{l_1, L_1\}.$
- X lze komplementovaně vnořit do $\mathcal{C}([0,1]) \implies X \cong \mathcal{C}(k?)$.

Ví se:

• $X \cong l_2 \Leftrightarrow (\forall Z, \dim Z = +\infty, ZBanach, Z \hookrightarrow l_2 \implies Z \cong l_2).$

Neví se, zda platí izometrická varianta předchozího.

5 Hilbertovy prostory

Lemma 5.1

 A^{\perp} je uzavřený podprostor.

Důkaz

Pro $y \in X$ at $f_y(x) = \langle x, y \rangle$. Pak f_y je lineární a spojité (z Cauchy-Swartze). $A^{\perp} =$ $\bigcap_{y\in A} f_y^{-1}(0).$

Definice 5.1

Prostor se skalárním součinem $(X, <\cdot, \cdot>)$ se nazývá Hilbertův prostor, pokud je úplný v metrice indukované skalárním součinem, tj. pokud $(X, ||\cdot||)$ je Banachův prostor, kde $||x|| = \sqrt{\langle x, x \rangle}.$

- Například $l_2 \dots < x, y > := \sum_{n=1}^{\infty} x_n \overline{y_n}$.
 - $L_2([0,1]) \dots < f, g > := \int_0^1 f(x) \overline{g(x)} dx$.

Tvrzení 5.2

 $Necht(X, <\cdot, \cdot>)$ je prostor se skalárním součinem nad \mathbb{K} . Pak funkce $<\cdot, \cdot>: X\times X\to \mathbb{K}$ je lipschitzovská na omezených množinách (a tedy spojitá).

 $D\mathring{u}kaz$

Přímočarý s použitím Cauchy-Swartze.

Tvrzení 5.3 (Polarizační vzorec)

Nechť X je prostor se skalárním součinem. Pak pro všechna $x, y \in X$ platí

$$\langle x, y \rangle = \frac{1}{4}(||x+y||^2 - ||x-y||^2)$$

v reálném případě, resp.

$$\langle x, y \rangle = \frac{1}{4}(||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2)$$

v komplexním.

Důkaz (Reálný případ, v \mathbb{C} analogicky)

$$\begin{aligned} 4 < x, y > &= 2 < x, y > -2 < x, -y > = ||x+y||^2 - ||x||^2 - ||y||^2 - ||x-y||^2 + ||x||^2 + ||-y||^2 = \\ &= ||x+y||^2 - ||x-y||^2. \end{aligned}$$

Důsledek

Necht X,Y jsou prostory se skalárním součinem a $T:X\to Y$ je lineární izometrie do. Pak T zachovává skalární součin, tj. < T(x), T(y) > = < x, y >pro každé $x,y\in X.$

 $D\mathring{u}kaz$

Izometrie zachovává pravé strany v polarizačním vzorci.

Věta 5.4

 $(X, ||\cdot||)$ je NLP. Pak $||x|| = \sqrt{\langle x, x \rangle}$ pro skalární součin $\langle \cdot, \cdot \rangle \Leftrightarrow plati$:

$$\forall x, y \in X : ||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Důkaz (Reálný případ, komplexní analogicky)

 \implies z Polarizačního vzorce. Pro \Leftarrow položme $\langle x,y\rangle:=\frac{1}{4}\left(||x+y||^2-||x-y||^2\right), x,y\in X.$ Následně ověříme podmínky (kromě linearity (speciálně aditivity) je ověření triviální). Aditivita: Chceme

$$LS = \forall x, y, z \in X : \langle x + y, z \rangle + \langle x - y, z \rangle = 2 \langle x, z \rangle = PS.$$

$$LS = \frac{1}{4} \left(\frac{||x + y + z||^2}{-||x + y - z||^2} + \frac{||x - y + z||^2}{-||x - y - z||^2} \right)^{z \text{ předpokladu}} = 1$$

$$=\frac{1}{4}\left(\underline{2\left(||x+z||^2+||y||^2\right)}-2\left(||x-y||^2+\ ||y||^2\right)\right)=\frac{1}{2}\left(||x+\ z||^2-||x-z||^2\right)=PS.$$

Tuto rovnost aplikujeme na x=y: $\langle 2x,z\rangle=2\,\langle x,z\rangle,$ a na $\tilde{x}=\frac{1}{2}(x+y),\,\tilde{y}=\frac{1}{2}(x-y)$:

$$\langle x, z \rangle + \langle y, z \rangle = 2 \left\langle \frac{1}{2} (x+y), z \right\rangle = \langle x+y, z \rangle.$$

Věta 5.5 (Frigyes Riesz, 1934)

Nechť C je uzavřená neprázdná konvexní množina v Hilbertově prostoru H. Pak pro každé $x \in H$ existuje právě jedno $y \in C$ tak, že $||x - y|| = \operatorname{dist}(x, C)$.

Důkaz

Zvolme $(y_n)_{n=1}^{\infty}$ posloupnost v C, že $\lim_{n\to\infty} ||y_n-x||=d(x,C)$. Chceme, že $(y_n)_{n=1}^{\infty}$ je cauchyovská. Tedy, protože C je uzavřená, existuje $y\in C:y_n\to y$. Pak ale d(x,c)=||x-y||.

Zbývá jednoznačnost: At $y,z\in C$ taková, že $||x-y||=||x-z||=\mathrm{dist}(x,C).$ Pak $||y-z||^2\leq 0,$ tedyy=z.

Věta 5.6 (Frigyes Riesz, 1934)

Nechť X je prostor se skalárním součinem, Y jeho podprostor a $x \in X$. Pak $y \in Y$ splňuje $||x-y|| = \operatorname{dist}(x,Y)$ právě tehdy, když $x-y \in Y^{\perp}$.

 $D\mathring{u}kaz$

Jednoduchý.

Věta 5.7 (Frigyes Riesz, 1934)

Nechť Y je uzavřený podprostor Hilbertova prostoru H. Pak $H = Y \oplus_t Y^{\perp}$ a projekce $P_y : H \to Y$ příslušná rozkladu $H = Y \oplus Y^{\perp}$ má následující vlastnosti:

- $||P_Y(x) x|| = \operatorname{dist}(x, Y) \le ||x|| \text{ pro } ka\check{z}d\acute{e} \ x \in H,$
- $||P_Y|| \le 1$.

 $Y \cap Y^{\perp} = \{\mathbf{o}\}: \text{ At } x \in Y \cap Y^{\perp}. \text{ Pak } \langle x, x \rangle = 0 \implies x = 0.$

 $H=Y+Y^\perp$: Zvol $x\in H.$ Dle vět výše existuje právě jedno $y\in Y:x-y\in Y^\perp.$ Pak $x=y+x-y\in Y+Y^\perp.$

Tedy, $H = Y \oplus Y^{\perp}$, a zároveň z důkazu víme, že

 $P_Y(x) =$ "jediný prvek $y \in Y$, že $x - y \in Y^{\perp}$ " = "j. p. $y \in Y$, že ||x - y|| = d(x, Y)".

Tedy $||P_Y(x) - x|| = d(x, y) \le ||x||$. Zbývá $||P_y|| \le 1$: $||P_y x||^2 = \text{TODO}$.

Věta 5.8

Nechť H je Hilbertův prostor a $\{x_n\}_{n=1}^{\infty} \subset H$ je podposloupnost navzájem ortogonálních prvků. Pak řada $\sum_{n=1}^{\infty} x_n$ konverguje bezpodmínečně, právě když konverguje.

 \implies už víme. \Leftrightarrow : Víme $\sum_{n=1}^{\infty} x_n$ splňuje B-C podmínku. Tedy pro $\varepsilon > 0 \ \exists n_0 \in \mathbb{N}$:

$$\forall m > n \ge n_0 : || \sum_{k=n+1}^m x_k || < \varepsilon.$$

Polož $F = \{1, \dots, n_0\}$. Zvol $F' \in \mathcal{F}(\mathbb{N}) : F' \cap F = \emptyset$. Pak

$$||\sum_{k \in F'} x_k||^2 \stackrel{\text{Pyt. věta}}{=} = \sum_{k \in F'} ||x_k||^2 \le \sum_{k \in \min F'}^{\max F'} ||x_k||^2 = ||\sum_{m}^{m} x_k||^2 < \varepsilon.$$

Definice 5.2 (Ortogonální, ortonormální, maximální ortonormální, úplný ortonormální, ortonormální báze)

Je-li X prostor se skalárním součinem a $A \subset X$, řekneme, že množina A je

- ortogonální, pokud $x \perp y$ pro všechna $x, y \in A, x \neq y$.
- ortonormální, pokud A je ortogonální a $A \subset S_X$.
- maximální ortonormální, pokud A je ortonormální a neexistuje ortonormální množina obsahující A různá od A.
- úplný ortonormální, pokud A je ortonormální a $\overline{\text{span}}A = X$.
- ortonormální báze, pokud $A = \{e_{\gamma} | \gamma \in \Gamma\}$ je ortonormální množina a každé $x \in X$ lze vyjádřit jako $x = \sum_{\gamma \in \Gamma} x_{\gamma} e_{\gamma}$ pro nějaké skaláry x_{γ} .

Tvrzení 5.9 (Fakt)

Je-li A ortonormáľní množina v prostoru se skalárním součinem, pak $||x-y||=\sqrt{2}$ pro každé dva prvky $x,y\in A,\ x\neq y.$

Důkaz

$$||x - y||^2 = ||x||^2 + ||y||^2.$$

Poznámka

Tedy, pokud X je separabilní se skalárním součinem \implies každý ON-systém je spočetný.

$m V\check{e}ta~5.10$

Každý prostor se skalárním součinem obsahuje maximální ortonormální systém.

 $\mathcal{P} = \{A \subset X | A \text{ je ON-systém}\}$ s uspořádáním inkluzí. Zvol $\mathcal{O} \subset \mathcal{P}$ lineárně uspořádané, pak $\bigcup \mathcal{O} \in \mathcal{P}$ je horní závora $\mathcal{O} \implies (z \text{ Zornova lemmatu}) \ \exists A \in \mathcal{P} \text{ maximální. To je hledaný maximální ON-systém.}$

Věta 5.11 (Besselova nerovnost)

Je-li $\{e_{\gamma}\}_{\gamma \in \Gamma}$ ortonormální soustava v prostoru X se skalárním součinem, platí

$$\sum_{\gamma \in \Gamma} |\langle x, e_{\gamma} \rangle|^2 \le ||x||^2$$

 $pro každé x \in X.$

 $D\mathring{u}kaz$

At $F \in \mathcal{F}(\Gamma)$, $x_F := \sum_{\gamma \in F} \langle x, e_\gamma \rangle e_\gamma$. Pak $||x||^2 = ||x - x_F||^2 + ||x_F||^2$ podle Pythagorovy věty $(x - x_F \perp x_F : \forall i \in F : \langle x - x_F, e_i \rangle = \langle x, e_i \rangle - \langle x_F, e_i \rangle = \langle x, e_i \rangle - \langle \langle x, e_i \rangle e_i, e_i \rangle = 0)$. Tj. $||x||^2 \ge ||x_F||^2 = \sum_{\gamma \in F} |\langle x, e_\gamma \rangle|^2$. Tedy máme omezení pro všechny konečné součty, tudíž celý součet bude omezen stejně (celý součet je supremum z konečných podle tvrzení někde výše).

Věta 5.12

Nechť H je Hilbertův prostor a $\{e_{\gamma}\}_{{\gamma}\in\Gamma}$ je ortonormální systém v H. Pak následující tvrzení jsou ekvivalentní:

- 1. $||x||^2 = \sum_{\gamma \in \Gamma} |\langle x, e_{\gamma} \rangle|^2$ pro každé $x \in H$ (tzv. Parsevalova rovnost).
- 2. $x = \sum_{\gamma \in \Gamma} \langle x, e_{\gamma} \rangle e_{\gamma} \text{ pro } ka\check{z}d\acute{e} \ x \in H.$
- 3. $\{e_{\gamma}\}$ je ortonormální báze.
- 4. $H = \overline{\operatorname{span}} \{ e_{\gamma} | \gamma \in \Gamma \}.$
- 5. $\{e_{\gamma}\}$ je maximální ortonormální systém.

 $1\implies 2$: Nechť $\varepsilon>0$. Zvolíme $F\in\mathcal{F}(\Gamma)$: $||x||^2-\varepsilon<\sum_{\gamma\in F}|\left\langle x,e_{\gamma}\right\rangle|^2$. Zvolíme $F'\supset F,$ $F'\in\mathcal{F}(\Gamma)$. Pak

$$||x - \sum_{\gamma \in F'} \langle x, e_{\gamma} \rangle e_{\gamma}||^{2 \cos + \operatorname{Pythagorova}} \stackrel{\text{věta}}{=} ||x||^{2} + \sum_{\gamma \in F'} |\langle x, e_{\gamma} \rangle|^{2} - 2\Re \left\langle x, \sum_{\gamma \in F' \langle x, e_{\gamma} \rangle e_{\gamma}} \right\rangle =$$

$$= \ldots + \ldots - 2\Re \sum_{\gamma \in F'} \overline{\langle x, e_{\gamma} \rangle} \langle x, e_{\gamma} \rangle = ||x||^{2} - \sum_{\gamma \in F'} |\langle x, e_{\gamma} \rangle| < \varepsilon.$$

 $2 \implies 3: \text{Triviální.} \ 3 \implies 4: \text{Triviální.} \ 4 \implies 1: \text{Necht} \ x \in H \text{ a } F \in \mathcal{F}(\Gamma), \text{ že existuje} \\ \sum_{\gamma \in F} a_{\gamma} e_{\gamma} \text{ splňující } ||x - \sum_{\gamma \in F} a_{\gamma} e_{\gamma}|| < \varepsilon. \text{ Položme } y := \text{span}(e_{\gamma}, \gamma \in F), \text{ pak } d(x,y) \leq \\ ||x - \sum_{\gamma \in F} a_{\gamma} e_{\gamma}|| < \varepsilon. \text{ (Jelikož } d(x,y) = ||x - \sum_{\gamma \in F} \langle x, e_{\gamma} \rangle e_{\gamma}||, \text{ nebot z lemmatu někde} \\ \text{výše stačí ověřit } y \perp x - \sum_{\gamma \in F} \langle x, e_{\gamma} \rangle e_{\gamma}, \text{ tj. stačí } \forall i \in F : \left\langle x - \sum_{\gamma \in F} \langle x, e_{\gamma} \rangle e_{\gamma}, e_{i} \right\rangle = 0, \\ \text{což je jednoduché.)}$

Tedy $||x|| \leq \varepsilon + ||\sum_{\gamma \in F(x,e_{\gamma})e_{\gamma}}||$ (z Besselovy nerovnosti víme, že suma konverguje a navíc víme, že v 1 platí \geq , tj. stačí dokázat \leq)

$$||x||^2 \leq \left(\varepsilon + ||\sum_{\gamma \in F\langle x, e_\gamma \rangle e_\gamma}||\right)^2 = \varepsilon^2 + 2\varepsilon ||x|| + \sum_{\gamma \in F} ||\langle x, e_\gamma \rangle| e\gamma|| \leq \varepsilon^2 + 2\varepsilon ||x|| + \sum_{\gamma \in \Gamma} |\langle x, e_\gamma \rangle|^2.$$

 $2 \implies 5$: Af $x \in \{e_{\gamma} | \gamma \in \Gamma\}^{\perp}$ (chceme, že x = 0). Z 2. víme, že $x = \sum_{\gamma \in \Gamma} \langle x, e_{\gamma} \rangle e_{\gamma} = \sum_{\gamma \in \Gamma} \langle x, e_{\gamma} \rangle e_{\gamma}$

 $5 \implies 4$: At $Y = \overline{\text{span}}(e_{\gamma}, \gamma \in \Gamma)$. Pak $H = Y \oplus_t Y^{\perp}$ (zde se používá úplnost jako předpoklad věty, ze které toto plyne). $H = Y \oplus_t \{e_{\gamma} | \gamma \in \Gamma\}^{\perp} \stackrel{5}{=} Y \oplus_t \{\mathbf{o}\}$.

Poznámka

Bez úplnosti jsou ekvivalentní 1, 2, 3 a 4 a vyplývá z nich 5.

Věta 5.13 (Ernst Sigismund Fisher (1907), Frigyes Riesz (1907))

Je-li $\{e_{\gamma}\}_{\gamma \in \Gamma}$ ortonormální báze Hilbertova prostoru H, je zobrazení $T: H \to l_2(\Gamma)$, $T(x) = \{\langle x, e_{\gamma} \rangle\}_{\gamma \in \Gamma}$ izometrie H a $l_2(\Gamma)$. Tedy každý Hilbertův prostor je izometrický $l_2(\Gamma)$ provhodnou množinu Γ .

Důkaz (Ze skript)

Zjevně T je lineární. Z Parsevalovy rovnosti plyne, že $||x||^2 = \sum_{\gamma \in \Gamma} |\langle x, e_y \rangle|^2$ pro každé $x \in H$, a tedy T je izometrie do $l_2(\Gamma)$. $\{T(e_\gamma)\}_{\gamma \in \Gamma}$ je množina kanonických bázových vektorů v $l_2(\Gamma)$. Díky linearitě tedy Rng T obsahuje všechny vektory v $l_2(\Gamma)$, které mají jen konečně mnoho nenulových souřadnic. Tyto vektory tvoří hustou podmnožinu v $l_2(\Gamma)$. Podle tvrzení ze začátku předměty je Rng uzavřený, tudíž je roven celému $l_2(\Gamma)$.

Věta 5.14 (Vyjádření ortogonální projekce)

Nechť H je Hilbertův prostor a Y jeho uzavřený podprostor. Nechť $(e_j)_{j\in J}$ je nějaká ortonormální báze prostoru Y. Pak projekci na Y podél Y^{\perp} (tzv. ortogonální projekci) lze vyjádřit vzorcem

$$Px = \sum_{j \in J} \langle x, e_j \rangle e_j, \qquad x \in H.$$

Důkaz TODO?

Věta 5.15 (Heinrich Löwig (1934), F. Riesz (1934))

Nechť H je Hilbertův prostor. Pro každé $y \in H$ označme $f_y \in H^*$ funkcionál definovaný jako $f_y(x) = \langle x, y \rangle$ pro $x \in H$. Pak zobrazení $l : H \to H^*$, $l(y) = f_y$ je sdruženě lineární $(I(\alpha y) = \overline{\alpha}I(y))$ izometrie H na H^* .

Důkaz

 $\forall y \in H \text{ máme: } f_y \text{ je lineární, } \forall x \in H \text{: } f_y(x) \leq ||x|| \cdot ||y|| \text{, tedy } f_y \text{ je spojité a } ||f_y|| \leq ||y||, \\ f_y\left(\frac{y}{||y||}\right) = \left\langle\frac{y}{||y||}, y\right\rangle = ||y|| \implies ||f_y|| = ||y||, y \in H. \implies I \text{ je izometrie, sdruženě lineární. Zbývá "na". To se dokáže z následujícího lemmatu:}$

Zvol $f \in H^*$, pak $H = \operatorname{Ker} f \oplus (\operatorname{Ker} f)^{\perp}$. Tedy existuje $z \in (\operatorname{Ker} f)^{\perp}$ splňující $H = \operatorname{Ker} f \oplus_t \operatorname{span} \{z\}$. Položme y := f(z)z. Pak I(y) = f, jelikož:

$$\forall x \in H : I(y)(x) = \langle x, y \rangle = \langle x_{\text{Ker } f} + \alpha_x z, y \rangle = \langle \alpha_x z, y \rangle = \alpha_x \left\langle z, \overline{f(z)}z \right\rangle = f(\alpha_x z) = f(x).$$

Lemma 5.16

Nechť X je vektorový prostor, f je lineární forma na X a $x \in X \setminus \operatorname{Ker} f$. Pak $X = \operatorname{Ker} f \oplus \operatorname{span} \{x\}$. Tedy codim $\operatorname{Ker} f = 1$.

 $D\mathring{u}kaz$

 $\operatorname{Ker} f \cap \operatorname{span} \{x\} = \{\mathbf{o}\}: \operatorname{At} \alpha \in \mathbb{K}, \operatorname{pak pokud} \alpha x \in \operatorname{Ker} f, \operatorname{pak} \alpha f(x) = f(\alpha x) = 0, \operatorname{tedy} \alpha = \mathbf{o}.$

At
$$y \in X$$
. Pak $y = \left(y - \frac{f(y)}{f(x)}x\right) + \frac{f(y)}{f(x)}x$.

Definice 5.3

Necht X je komplexní normovaný lineární prostor. Symbolem X_R označme prostor X uvažovaný jako reálný. Tj. X_R je tatáž množina jako X uvažovaná s operací sčítání jako v X, s násobením reálným číslem jako v X a stejně definovanou normou.

Věta 5.17 (Reálná verze komplexního normovaného lineárního prostoru)

Nechť X je komplexní normovaný lineární prostor. Pak platí

- 1. X_R je reálný normovaný lineární prostor. (Zřejmé.)
- 2. X_R je úplný, právě když X je úplný. (Norma je pořád tatáž.)
- 3. $\varphi: X \to \mathbb{C}$ je lineární, právě když $\Re \varphi: X_R \to \mathbb{R}$ je lineární a $\Im \varphi(x) = -\Re \varphi(ix)$ pro každé $x \in X$.
- 4. Je-li $\varphi \in X^*$, pak funkcionál $\psi(x) = \Re \varphi(x)$, $x \in X_R$, patří do $(X_R)^*$ a platí $||\psi|| = ||\varphi||$.
- 5. Je-li $\psi \in (X_R)^*$, pak existuje právě jeden funkcionál $\varphi \in X^*$ takový, že $\psi(x) = \Re \varphi(x)$ pro $x \in X_R$. Je dán vzorcem $\varphi(x) = \psi(x) i\psi(ix)$ a splňuje $||\psi|| = ||\varphi||$.

6. Prostory $(X_R)^*$ a $(X^*)_R$ jsou izometrické.

Důkaz TODO.

Definice 5.4

Nechť X je reálný normovaný lineární prostor. Na $X \times X$ definujeme:

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \qquad x_1, x_2, y_1, y_2 \in X,$$

$$(\alpha_1 + i\alpha_2) \cdot (x_1, x_2) = (\alpha_1 x_1 - \alpha_2 x_2, \alpha_1 x_2 + \alpha_2 x_1), \qquad \alpha_1, \alpha_2 \in \mathbb{R}, x_1, x_2 \in X,$$

$$||(x_1, x_2)||_{X_C} = \sup \{||(\cos \alpha) x_1 + (\sin \alpha) x_2||_X \mid \alpha \in [0, 2\pi)\}, \qquad x_1, x_2 \in X.$$

Symbolem $(X_C, ||\cdot||)$ značíme komplexní normovaný lineární prostor $(X\times X, +, \cdot, ||\cdot||_{X_C})$.

Věta 5.18 (Komplexifikace)

Je-li X reálný normovaný lineární prostor, pak je $(X_C, ||\cdot||)$ komplexní normovaný lineární prostor. Je-li navíc X Banachův, pak je X_C Banachův.

 $D\mathring{u}kaz$

Linearitu nebudeme dokazovat (definice je zvolena tak, aby to vycházelo, lehké cvičení). Norma je taktéž jednoduchá, nejtěžší je dokázat, že lze vytýkat konstanty.

 X_C je Banachův plyne z toho, že $X \oplus_{\infty} X$ je Banach a norma $||\cdot||_{X_C}$ je ekvivalentní (konstanty 1 a 2) maximové normě, která je v definici součinu metrických prostorů a součin úplných metrických prostorů je úplný.

Definice 5.5 (Sublineární funkcionál, pseudonorma)

Nechť X je vektorový prostor nad \mathbb{K} . Funkce $p:X\to\mathbb{R}$ se nazývá sublineární funkcionál, pokud platí

- $p(x+y) \le p(x) + p(y)$ pro každé $x, y \in X$,
- p(tx) = tp(x) pro každé $x \in X$ a $t \in [0, +\infty)$.

Funkce $p: X \rightarrow [0, +\infty)$ se nazývá pseudonorma, pokud platí

- $p(x+y) \le p(x) + p(y)$ pro každé $x, y \in X$,
- $p(\alpha x) = |\alpha| p(x)$ pro každé $x \in X$ a $\alpha \in \mathbb{K}$.

Věta 5.19 (Hans Hahn (1927), Stefan Banach (1929))

Nechť X je vektorový prostor a Y je podprostor.

- Je-li X reálný, p je sublineární funkcionál na X a f je lineární forma na Y splňující $f(x) \leq p(x)$ pro každé $x \in Y$, pak existuje lineární forma F na X taková, že $F|_Y = f$ a $F(x) \leq p(x)$ pro každé $x \in X$.
- Je-li p pseudonorma na X a t je linearní forma na Y splňující $|f(x)| \leq p(x)$ pro každé $x \in Y$, pak existuje lineární forma F na X taková, že $F|_Y = f$ a $|F(x)| \leq p(x)$, $x \in X$.

Důkaz (1. bod)

1. krok: rozšíříme f o jednu dimenzi, tj. na $Z = Y \oplus \operatorname{span}(x)$, kde $x \notin Y$. Položme $F(y+tx) := f(y) + t\alpha$, $y \in Y$, $t \in \mathbb{R}$, kde $\alpha \in \mathbb{R}$ je vhodně zvolená: Linearita f vyplývá z definice, tedy stačí $f(y) + t\alpha \leq p(y+t\alpha)$, $y \in Y$, $t \in R \Leftrightarrow$

$$\Leftrightarrow \forall t > 0 : \alpha \le \frac{1}{t} (p(y + tx) - f(y)) \land \forall t < 0 : \alpha \ge \frac{1}{2} (p(y + tx) - f(y)), y \in Y \Leftrightarrow A = 0$$

$$\Leftrightarrow \forall t > 0 : \alpha \le p(\frac{y}{t} + x) - f(\frac{y}{t}) \land \forall t < 0 : \alpha \ge f(\frac{-y}{t}) - p(\frac{-y}{t} - x), y \in Y \Leftrightarrow$$

$$\Leftrightarrow \forall y \in Y : \alpha \in [f(y) - p(y - x), p(y + x) - f(y)] \Leftrightarrow$$

$$\Leftrightarrow \forall y, z \in Y : f(y) - p(y - x) \le p(z + x) - f(z),$$

tedy máme $f(y)+f(z)=f(y+z)\leq p(y+z)\leq p(y-x)+p(z+x)$. Tedy α můžeme volit libovolně z intervalu [$\sup_y f(y)-p(y-x)$, $\inf_y p(y+x)-f(y)$].

2. krok: přidáme všechny dimenze (transfinitní) indukcí. (Tato věta je dokonce ekvivalentní axiomu výběru, takže předpokládáme, že axiom výběru platí.)

Důkaz (2. bod)

- 1. krok: Pro $\mathbb{K}=\mathbb{R}$ aplikujeme první bod: Víme, že existuje $F:X\to\mathbb{R}$ lineární, že $F|_Y=f$. Pak ale $F(x)\leq p(x),\,x\in X \land -F(x)=F(-x)\leq p(-x)=p(x),x\in X$ $\Longrightarrow |F(x)\leq p(x),x\in X|$.
- 2. krok: Pro $\mathbb{K} = \mathbb{C}$: Polož $g = \Re f$. Pak podle 1. části $\exists G : X_R \to \mathbb{R}$ lineární, že $G|_Y = g \land |G(x)| \leq p(x), x \in X$. Pak máme $f(x) = g(x) ig(ix), x \in X$ a položíme $F(x) := G(x) iG(ix), x \in X$. Pak $f|_Y = f$, F je lineární a pro $x \in X$ máme:

Zvolme $|\lambda|=1, \ \lambda\in\mathbb{C}: |F(x)|=\lambda F(x), \ \mathrm{pak}\ |F(x)|=F(\lambda x)=G(\lambda x)-iG(i\lambda x)=G(\lambda x)\leq P(\lambda x)\leq p(x).$

Věta 5.20 (Hahnova-Banachova)

Nechť X je normovaný lineární prostor, Y je podprostor X a $f \in Y^*$. Pak existuje $F \in X^*$ takové, že $F|_Y = f$ a ||F|| = ||f||.

 $D\mathring{u}kaz$

Aplikujeme předchozí větu na $p(x) := ||f|| \cdot ||x||, x \in X$. Pak $|f(x)| \leq ||f|| \cdot ||x|| = p(x)$, $x \in Y \implies \exists F : X \to \mathbb{K}$ lineární, $F|_y = f$, $|F| \leq p$. Pak $|F(x)| \leq p(x) = ||f|| \cdot ||x||$, $x \in X$, tedy $||F|| \leq ||f||$ (opačná nerovnost triviální).

Důsledek

Nechť X je netriviální normovaný lineární prostor. Pro každé $x \in X$ existuje $f \in S_{X^*}$ takové, že f(x) = ||x||. Odtud plyne, že jsou-li $x, y \in X$ různé body, pak existuje $f \in X^*$ takový, že $f(x) \neq f(y)$ (říkáme, že X^* odděluje body X).

 $D\mathring{u}kaz$

Zvol $x \in X$. BÚNO $x \neq \mathbf{o}$. Polož $Y = \text{span}(x), g: Y \to \mathbb{K}$ definujeme předpisem $g(tx) := t||x||, \forall t \in \mathbb{K}$. Pak g je zřejmě lineární a ||g|| = 1, protože

$$|q(tx)| = |t| \cdot ||x|| = ||tx||, \forall t \in \mathbb{K}.$$

Podle H-B $\exists f \in X^* : f|_Y = g, ||f|| = ||y|| = 1. \text{ Pak } f(x) = ||x||.$

Ad "speciálně": Zvol x+y. Najdi $f \in S_{X^*}: f(x-y)=||x-y||$, pak $f(x) \neq f(t)$, protože $||x-y|| \neq 0$.

Důsledek

Je-li X normovaný lineární prostor a $x \in X$, pak $||x|| = \max_{t \in B_{X^*}} |f(x)|$.

 $D\mathring{u}kaz$

Triviální.

Důsledek (Oddělování bodu a podprosotru)

Nechť X je normovnaný lineární prostor, Y je uzavřený podprostor X a $x \notin Y$. Pak existuje $f \in S_{X^*}$ tak, že $f|_Y = 0$ a f(x) = dist(x, Y) > 0.

 $D\mathring{u}kaz$

Zvolme $Z := Y \oplus \operatorname{span}(x) \subset X$. $f(y + \alpha x) := \alpha \operatorname{dist}(x, Y), y \in Y, \alpha \in \mathbb{K}$. Pak $f : Z \to \mathbb{K}$ je lineární. ||f|| = 1: $|f(y + \alpha x)| = |\alpha| \operatorname{dist}(x, Y) \le |\alpha| \cdot ||x + \frac{y}{\alpha}|| = ||\alpha x + y||, y \in Y$, $\alpha \in \mathbb{K}$. Zvolme $(y_n)_{n=1}^{\infty}$ v Y, že $d(x, Y) = \lim_{n \to \infty} ||x - y_n||$. Pak $\frac{|f(y_n + x)|}{||y_n + x||} = \frac{d(x, Y)}{||y_n + x||} \to 1$.

Nyní z H-B věty rozšíříme na celé $Y: \exists F \in X^X: F|_z = f \land ||F|| = 1.$

Věta 5.21 (Oddělování konvexních množín)

Nechť X je normovaný lineární prostor a $A, B \subset X$ jsou disjuktní konvexní množiny. Pak platí následující tvrzení

- Je-li A otevřená, pak existuje $f \in X^*$ takový, že $\Re f(x) < \inf_B \Re f$ pro každé $x \in A$.
- Je-li A uzavřená a B kompaktní, pak existuje $f \in X^*$ takový, že $\sup_A \Re f < \inf_B \Re f$.

Poznámka

Ekvivalentní H-B větě.

 $D\mathring{u}kaz$

BÚNO X je nad \mathbb{R} . BÚNO $A \neq \emptyset \neq B$. První bod: Zvolíme $a \in A, b \in B$. Polož w = b - a a C = w + A - B. Pak $w \notin C$, $\mathbf{o} \in C$, C je konvexní (A i B jsou konvexní, takže i jejich posunutý rozdíl je konvexní) a otevřená (A je otevřená, posunutý rozdíl otevřené a libovolné je otevřená). Položme $p_c(x) := \inf\{t > 0 | x \in tC\}$ (lehce se ověří, že p_c , tzv. Minkowského funkcionál, je sublineární). $p_c(x) < +\infty$ (protože C obsahuje nulu a z otevřenosti i kouli kolem ní a každé x se vejde do dostatečně nafouklé koule). $p_c \leq 1$ na C a $p_c(w) \geq 1$.

Položme $Y := \operatorname{span}(w), \ g(\alpha w) := \alpha, \ \alpha \in \mathbb{R}, \ g : Y \to \mathbb{R} \ (\operatorname{pak} \ g \leq p_c).$ Z H-B tedy plyne:

$$\exists G: X \to \mathbb{R}$$
 lineární $, G|_Y = g, G \le p_c.$

Pak $G \in X^*$ protože $G \le p_c \le 1$ na C, ale to obsahuje kouli, takže je G omezené na nějaké kouli \implies je spojité.

Konečně $\forall x \in A \ \forall y \in B : G(x) = G(y) + G(x - y + w) - G(w) \le G(y) + 1 - 1 = G(y)$. Rovnost nemůže nastat, protože A je otevřené.

Důsledek (H-B věty)

X je NLP, $Y\subset X$ podprostor. Buď $\dim Y<\infty$ nebo codim $Y<\infty.$ Pak $Y\stackrel{C}{\hookrightarrow} X.$ (Tj. $\exists P:X\to Y$ spojitý, že $P|_Y=\mathrm{id}_Y.)$

 $\dim Y < \infty$: At $\{e_1, \dots, e_n\}$ je báze Y, $\{f_1, \dots, f_n\}$ je duální báze Y. Pak f_1, \dots, f_n : $Y \to \mathbb{K}$ jsou spojité (Y má konečnou dimenzi). Z H-B $\exists F_1, \dots, F_n : X \to \mathbb{K}$ spojité, $||F_i|| = ||f_i||$, $F_i \supset f_i$. Definujme $P: X \to Y$ předpisem $P(x) := \sum_{i=1}^n F_i(x)e_i \in Y$. P je lineární,

$$||Px|| \le \sum_{i=1}^{n} ||F_i(x)|| \cdot ||e_i|| \le \sum_{i=1}^{n} ||F_i|| \cdot ||x|| \cdot ||e_i|| \le \left(n \cdot \max_{i \in [n]} ||F_i|| \cdot ||e_i||\right) \cdot ||x||.$$

P je tedy spojité. Zbývá ověřit $P_y = \mathrm{id}_n$. $\forall y \in Y$:

$$P(y) = P(\sum_{i=1}^{n} f_i(y)e_i) = \sum_{i=1}^{n} f_i(Y)P(e_i) = \sum_{i=1}^{n} f_i(y)\sum_{j=1}^{n} F_j(e_i)e_j = \sum_{i=1}^{n} f_i(y)e_i = y.$$

 $\operatorname{codim} Y < \infty$: $(\operatorname{codim} Y = \operatorname{dim}(X/Y))$ at $\{q(e_1), \dots, q(e_n)\}$ je báze X/Y $(q: x \mapsto [x])$ a $\{f_1, \dots, f_n\}$ duální funkcionály. Ty jsou spojité. Polož $F_i = f_i \circ q$ $(i \in [n])$, což je složení dvou spojitých funkcionálů, tedy spojitý funkcionál. Definujeme $P: X \to \operatorname{span}(e_1, \dots, e_n)$, $P(x) := \sum_{i=1}^n F_i(x)e_i, \ x \in X$. "P je lineární" je jasné, stejně tak spojitost P (podobně jako v první části).

 $P|_{\operatorname{span}(e_1,\ldots,e_n)} = \operatorname{id}:$

$$\forall i \in [n] : P(e_i) = \sum_{j=1}^n F_j(e_i)e_j = \sum_{j=1}^n f_j(q(e_j))e_j = e_i.$$

Tedy P je spojitá lineární projekce a navíc Ker P=Y: $Px=0 \Leftrightarrow F_i(x)=0 \forall i \in [n] \Leftrightarrow f_i(q(x))=0, \Leftrightarrow q(x)=0$. Máme $X=\operatorname{Rng} P \oplus_t \operatorname{Ker} P$. Položíme $Q=\operatorname{id} -P$, pak $\operatorname{Rng} Q=\operatorname{Ker} P=Y, Q$ spojitá projekce.

Definice 5.6

Nechť X,Y jsou normované lineární prostory a $T \in \mathcal{L}(x,Y)$. Operátor $T^*: Y^* \to X^*$ definovaný předpisem $T^*f(x) = f(Tx)$ pro $f \in Y^*$ a $x \in X$ se nazývá duální (nebo též adjungovaný) operátor k T.

Operátor $(T^*)^*$ značíme T^{**} .

${ m V\'eta}~5.22$

Nechť X, Y, Z jsou normované lineární prostory.

- 1. Je-li $T \in \mathcal{L}(X,Y)$, je $T^*f \in X^*$ pro každé $f \in Y^*$. Dále $T^* \in \mathcal{L}(Y^*,X^*)$ a $||T^*|| = ||T||$.
- 2. Zobrazení $T \mapsto T^*$ je lineární izometrie z $\mathcal{L}(X,Y)$ do $\mathcal{L}(Y^*,X^*)$.
- 3. $T \in \mathcal{L}(X,Y)$ a $S \in \mathcal{L}(Y,Z)$. Pak $(S \circ T)^* = T^* \circ S^*$. Dále $\mathrm{id}_X^* = \mathrm{id}_{X^*}$.

1. Spojitost T^*f je zřejmá z definice (složení dvou lineárních funkcí), stejně tak linearita T. Dále

$$\forall y^* \in B_{Y^*} : ||T^*y^*|| = \sup_{x \in B_X} |T^*y^*(x)| = \sup_{x \in B_X} |y^*(Tx)| \le \sup_{x \in B_X} ||Tx|| = ||T||,$$

tedy $||T^*|| \le ||T||$ a T je spojité. Zbývá $||T|| \le ||T^*||$. (Dokazujeme opačnou nerovnost k té výše.) Zvolme $x \in B_X$. Najdi (z jednoho z důsledků H-B) $y^* \in S_{Y^*}$. $||T_x|| = |y^*(Tx)|$. Pak

$$||Tx|| = |y^*(Tx)| = |T^*y^*(x)| < ||T^*|| \cdot ||y^*|| \cdot ||x|| < ||T^*||.$$

Tj. $||T|| \le ||T^*||$.

- 2. Linearita zobrazení plyne z předpisu a izometrie pak plyne z prvního bodu.
- $3. \ \forall z^* \in Z^* \ \forall x \in X:$

$$((S \circ T)^*z^*)(x) = z^*(S(T(x))) = S^*z^*(Tx) = (T^*S^*z^*)(x).$$

A to platí pro všechna x a z^* , tedy funkcionály na ně aplikované musí být tytéž. Identita je triviální z definice.

Věta 5.23

Nechť H_1, H_2 jsou Hilbertovy prostory a $T \in \mathcal{L}(H_1, H_2)$. Pak existuje jednoznačně určený operátor $T^* \in \mathcal{L}(H_2, H_1)$ takový, že pro každé $y \in H_2$ a $x \in H_1$ platí

$$\langle Tx, y \rangle_{H_2} = \langle x, T^{\bigstar}y \rangle_{H_1}.$$

Dále platí, že $T^* = I_1^{-1} \circ T^* \circ I_2$, kde $I_j : H_j \to H_j^*$, j = 1, 2 jsou příslušné sdružené lineární izometrie z věty výše (89 ve skriptech). $(I_i : y \mapsto \langle \cdot, y \rangle \in H_1^*$.)

 $D\mathring{u}kaz$

Zvol $x \in H_1$, $y \in H_2$. Uvažuj $g \in (H_1)^*$ definované předpisem $\langle Tx, y \rangle_{H_1}$. Dle věty 89 ve skriptech, $\exists! z \in H_1 : g(x) = \langle x, z \rangle$, $x \in H_1$. Tedy rovnost z věty platí $\Leftrightarrow T^*y = z$. Celkem $\exists! T^* : H_2 \to H_1$, pro které platí rovnost ze znění.

Zbývá: $T^* = I_1^{-1} \circ T^* \circ I_2$ (pak operátor T^* je lineární a spojitý). Stačí jen, že $I_1^{-1} \circ T^* \circ I_2$ splňuje rovnost ze zadání, protože existuje právě jeden takový operátor. Z definice I_i a přelévání písmenek (definice sdruženého operátoru) tedy:

$$\forall x \in H_1 \ \forall y \in H_2 : \left\langle x, \left(I_1^{-1} \circ T^* \circ I_2 \right) (y) \right\rangle_{H_1} =$$
$$\left(I_1 \left(I_1^{-1} \circ T^* \circ I_2 \right) \right) (x) = \left(T^* \circ I_2 \right) (x) = \left(I_2 y \right) (Tx) = \left\langle Tx, y \right\rangle.$$

Definice 5.7 (Hilbertovsky adjungovaný operátor)

Operátor T^* z předcházející věty nazýváme hilbertovsky adjungovaným operátorem k T.

Věta 5.24

Necht H_1, H_2, H_3 jsou Hilbertovy prostory.

- 1. Je-li $T \in \mathcal{L}(H_1, H_2)$, je $T^{\bigstar \bigstar} = (T^{\bigstar})^{\bigstar} = T$.
- 2. Zobrazení $T \mapsto T^*$ je sdruženě lineární izometrie $\mathcal{L}(H_1, H_2)$ na $\mathcal{L}(H_2, H_1)$.
- 3. Nechť $T \in \mathcal{L}(H_1, H_2)$ a $S \in \mathcal{L}(H_2, H_1)$. Pak $(S \circ T)^{\bigstar} = T^{\bigstar} \circ S^{\bigstar}$. Dále $(\mathrm{id}_{H_1})^{\bigstar} = \mathrm{id}_{H_1}$.

 $D\mathring{u}kaz$

1. Máme

$$\forall x \in H_1 \ \forall y \in H_2 : \left\langle T^{\bigstar \bigstar} x, y \right\rangle_{H_2} = \left\langle x, T^{\bigstar} y \right\rangle_{H_1} = \left\langle Tx, y \right\rangle_{H_2}.$$

Tedy pro každé x, y jsou tyto operátory stejné, tedy $T^{**} = T$.

2. Sdružená linearita: Zachování "+" plyne ze vzorce, "zachování" "·":

$$\forall x, y \ \forall \alpha \in \mathbb{K} : \langle x, T^{\bigstar} \alpha y \rangle = \langle Tx, \alpha y \rangle = \overline{\alpha} \langle Tx, y \rangle = \overline{\alpha} \langle x, T^{\bigstar} y \rangle$$

Izometrie plyne z toho, že T^* je složení izometrií. To že je na plyne z 1.

$$3.\forall x, y: \langle x, (S \circ T)^{\bigstar} y \rangle = \langle S(Tx), y \rangle - \langle Tx, S^{\bigstar} y \rangle = \langle x, T^{\bigstar} S^{\bigstar} y \rangle.$$

Definice 5.8 (Sdružený exponent)

Necht $p \in \mathbb{R}$, $p \ge 1$, nebo $p = \infty$. Číslo $q \in \mathbb{R}$, $q \ge 1$, nebo $q = \infty$ nazýváme sdruženým exponentem k p, pokud platí $\frac{1}{p} + \frac{1}{q} = 1$.

Věta 5.25 (Reprezentace duálů ke klasickým prostorům)

Nechť $I \neq \emptyset$.

1. Prostor $c_0(I)^*$ je lineárně izometrický s prostorem $l_1(I)$ pomocí zobrazení $I: l_1(I) \rightarrow c_0(I)^*$, $I(y) = f_y$, kde

$$f_y(x) = \sum_{i \in I} x_i y_i.$$

2. Je-li $1 \leq p < \infty$ a q je sdružený exponent k p, pak prostor $l_p(I)^*$ je lineárně izometrický

s prostorem $l_q(I)$ pomocí zobrazení $I: l_q(I) \rightarrow l_p(I)^*, \ I(y) = f_y, \ kde$

$$f_y(x) = \sum_{i \in I} x_i y_i.$$

3. Je-li (Ω, S, μ) libovolný prostor s mírou $1 a q je sdružený exponent k p, pak prostor <math>L_p(\mu)^*$ je lineárně izometrický s prostorem $L_q(\mu)$ pomocí zobrazení $I: L_q(\mu) \to L_p(\mu)^*$, $I(g) = \varphi_g$, kde

$$\varphi_g(f) = \int_{\Omega} f \cdot g d\mu.$$

4. Je-li (Ω, S, μ) prostor se σ -konečnou mírou, pak prostor $L_1(\mu)^*$ je lineárně izometrický s prostorem $L_{\infty}(\mu)$ pomocí zobrazení $I: L_{\infty}(\mu) \to L_1(\mu)^*$, $I(g) = \varphi_g$, kde

$$\varphi_g(f) = \int_{\Omega} f \cdot g d\mu.$$

 $D\mathring{u}kaz$ (1.) $||I|| \le 1$:

 $\forall y \in l_1(I) \ \forall x \in c_0(I) \ \forall F \in \mathcal{F}(I) : |\sum_{i \in F} y_i x_i| \le \sum_{i \in F} |y_i x_i| \le ||x||_{\infty} \cdot \sum_{i \in F} |y_i| \le ||x||_{\infty} \cdot ||y||_1$

$$\implies |I(y)(x)| \le ||x||_{\infty} \cdot ||y||_{1},$$

takže opravdu $I(y) \in c_0(I)^*$ a navíc $||I(y)|| \le ||y||_1$, tedy I je lineární, dobře definované, $||I|| \le 1$.

Izometrie: Zvol $y \in l_1(I)$, zvol $F \in \mathcal{F}(I)$. Polož $x_F := \sum_{i \in F, y(i) \neq 0} \frac{|y(i)|}{y(i)} e_i \in B_{c_0(I)}$. Pak

$$||I(Y)|| \ge |I(y)(x_F)| = |\sum_{i \in F, y(i) \ne 0} y(i) \cdot \frac{|y(i)|}{y(i)}| = \sum_{i \in F} |y(i)|.$$

Tedy, protože $||y||_1 = \sup_{F \in \mathcal{F}(I)} \sum_{i \in F} y(i)$, dostáváme $||I(y)|| \ge ||y||$.

Zbývá už jen "na": Zvol $f \in c_0(I)^*$. Polož $y(i) := f(e_i), i \in I$. Pak $y \in l_1(I)$: Zvol $F \in \mathcal{F}(I)$. Pak

$$\sum_{i \in F} |y(i)| = \sum_{i \in F, y(i) \neq 0} y(i) \cdot \frac{|y(i)|}{y(i)} = \sum_{i \in F, y(i) \neq 0} f(e_i) \cdot \frac{|y(i)|}{y(i)} = f\left(\sum_{i \in F, y(i) \neq 0} \frac{|y(i)|}{y(i)} \cdot e_i\right) \le ||f||.$$

Tudíž $y \in l_1(I)$ (a $||y||_1 \le ||f||$).

Chceme I(y) = f: Máme $\forall i \in I : I(y)(e_i) = y(i) = f(e_i)$. Tedy I(y) = f na e_i , takže z linearity a spojitosti na $\overline{\text{span}}(e_i, i \in I) = c_0(I)$.

Důkaz (2.)

Případ p = 1: $||I|| \le 1$ se dokáže jako v důkazu 1:

$$\forall y \in l_{\infty}(I) \ \forall x \in l_{1}(I) \ \forall F \in \mathcal{F}(I) : \sum_{i \in F} |y_{i}x_{i}| \leq ||y||_{\infty} \cdot ||x||_{1}.$$

I izometrie: Af $y \in l_{\infty}(I)$, pak

$$\forall i \in I: ||I(y)|| \ge |I(y)(e_i)| = |y(i)| \implies ||I(y)|| \ge \sup_i |y(i)| = ||y||_{\infty}.$$

Ije na: A
t $f\in l_1(I)^*.$ Polož $y(i):=f(e_i),\,i\in I.$ Pak
 $y\in l_\infty(I)$:

$$\forall i \in I : |y(i)| = |f(e_i)| \le ||f|| \implies ||y||_{\infty} \le ||f||.$$

I(y) = f je totožné jako v důkazu 1.

2. Případ p > 1: $||I|| \le 1$ se dokáže podobně jen se použije Hölder:

$$\forall y \in l_q(I) \ \forall x \in l_p(I) \ \forall F \in \mathcal{F}(I) : \sum_{i \in F} |y_i x_i| \le ||y||_q \cdot ||x||_p.$$

I izometrie: At $y \in l_q(I)$. Polož $x_F = \frac{\sum_{i \in F, y(i) \neq 0} \frac{|y(i)|}{y(i)} e_i}{||---||---||_p} \in S_{l_p(I)}$ (BÚNO $\exists i \in F : y(i) \neq 0$).

$$x_F = \left(\sum |y(i)|^{p(q-1)}\right)^{-\frac{1}{p}} \cdot \sum_{i \in F, y(i) \neq 0} \frac{|y(i)|^q}{y(i)} e_i$$

a zároveň

$$||I(y)|| \ge I(y)(x_F) = \left(\sum |y(i)|^{p(q-1)}\right)^{-\frac{1}{p}} \cdot \sum_{i \in F} |y(i)|^q = ||y(i)||_q.$$

I je na: Af $f \in l_p(I)^*$. Polož $y(i) := f(e_i), i \in I$. Pak $y \in l_q(I)$: Zvol $F \in \mathcal{F}(I)$. Pak polož $x_F = \sum_{i \in F, y(i) \neq 0} \frac{|y(i)|^q}{y(i)} e_i$.

$$\sum_{i \in F} |y(i)|^q = \sum_{i \in F} f(e_i) x_F(i) = f(\sum_{i \in F} x_F(i) \cdot e_i) \le ||f|| \cdot ||x_F||_p = ||f|| \left(\sum_{i \in F} |y(i)|^q\right)^{\frac{1}{p}}$$

. Celkem

$$\inf_{F \in \mathcal{F}(i)} \left(\sum_{i \in F} |y(i)|^q \right)^{1 - \frac{1}{p}} \le ||f||,$$

tedy $y \in l_q(I)$ a $||y||_q \le ||f||$.

Důkaz (3, 4)

1. krok μ konečná: I je spojitý, lineární a $||I|| \le 1$: p = 1:

$$|I(f)(g)| \le \int_{\Omega} |fg| d\mu \le ||f||_{\infty} \int_{\Omega} |g| d\mu = ||f||_{\infty} \cdot ||g||_{1}.$$

Tedy I je dobře definované, lineární a $||I|| \le 1$. p > 1:

$$|I(f)(g)| \le \int_{\Omega} |fg| d\mu \le ||f||_q \cdot ||g||_p.$$

Tedy I je dobře definované, lineární a $||I|| \le 1$.

I je izometrie: p > 1: At $f \in L_q(\Omega)$, BÚNO $f \neq 0$. Zvol

$$g(x) := \frac{\frac{|f(x)|^q}{f(x)} \chi_{\{x|f(x) \neq 0\}}}{||--||--||} \in S_{L_p(\mu)} = \left(\int_{\Omega} |f(x)|^{p(q-1)} dx \right)^{\frac{1}{p}} \cdot \frac{|f(x)|^q}{f(x)} \chi_{\{x|f(x) \neq 0\}},$$

$$||f|| \ge ||I(f)|| \ge I(f)(g) = \left(\int_{\Omega} |f(x)|^q d\mu(x)\right)^{-\frac{1}{p}} \cdot \int_{\Omega} |f(x)|^q d\mu(x) = ||f||_q.$$

Tedy ||I(f)|| = ||f|| a I je izometrie.

p=1: At $f\in L_{\infty}(r),$ BÚNO $f\neq 0.$ Zvol $||f||_{\infty}>\ \varepsilon>0$ je libovolné, at

$$A = \{x | f(x) > ||f||_{\infty} - \varepsilon\}.$$

Pak $\mu(A)>0$. Ať $\mu(A)<\infty$ (v případě σ -konečné míry můžeme A aproximovat). Polož $g(x):=\frac{|f(x)|}{|f(x)|}\frac{\chi_A}{\mu(A)}\in B_{L_{1,\mu}}$. Pak

$$||f|| \ge ||I(f)|| \ge I(f)(g) = \int_{\Omega} |f(x)| \chi_A(x) \cdot \frac{1}{\mu(A)} d\mu(x) > \frac{||f||_{\infty} - \varepsilon}{\mu(A)} \int_A 1 d\mu(x) = ||f||_{\infty} - \varepsilon.$$

I je na: Ať $x^* \in (L_p)^*$. Položme $\nu(A) := x^*(\chi_A), A \in \mathcal{A}$. Pak ν je K-hodnotová míra: $\nu(\emptyset) = x^*(0) = 0$. Ať $(A_j)_{j=1}^{\infty}$ posloupnost množin z \mathcal{A} , po 2 disjunktní. Pak

$$||\chi_{\bigcup_{j=1}^{\infty} A_j} - \chi_{\bigcup_{j=1}^{n} A_j}||_p = \mu(TODO)$$

Tedy

$$\nu(\bigcup_{j=1}^{\infty} A_j) = x^*(\chi_{\bigcup_{j=1}^{\infty} A_j}) = \lim_{n \to \infty} x^*(\chi_{\bigcup_{j=1}^{\infty} A_j}) = \lim_{n \to \infty} x^*(\chi_{A_1}) + \dots + x^*(\chi_{A_n}) = \lim_{n \to \infty} x^*(\chi_{A_1}) + \dots + x^*(\chi_{A_1}) + \dots + x^*(\chi_{A_1}) = \dots + x^*(\chi_{A_1}) + \dots + x^*(\chi_{A_1}) + \dots + x^*(\chi_$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \nu(A_i) = \sum_{i=1}^{\infty} \nu(A_i).$$

 $D\mathring{u}kaz$ (Pokračování 3, 4) Zároveň $\nu << \mu$:

$$\mu(A) = 0 \implies \chi_A = 0$$
 skoro všude $\implies x^*(\chi_A) = 0$.

Tedy z R-M věty $\exists g \in L_1(\mu)$: $\nu(A) = \int_A g d\mu$, $A \in \mathcal{A}$. Pak $x^*(s) = \int_\Omega g \cdot s d\mu$, pro s jednoduchou funkci. Tedy pro $f \in (L_p(\mu))$ najdu $s_k \to f$, $|s_k| \leq 4f$, s_k jednoduché. Pak ale $s_k \stackrel{L_p}{\to} f$ (z Lebesgueovy věty, jelikož 5f je integrovatelná majoranta). Tedy

$$x^*(f) = \lim_k x^*(s_k) = \lim_k \int_{\Omega} g \cdot s_k d\mu = \int_{\Omega} g \cdot f d\mu.$$

Poslední věc, co zbývá je $g\in L_q(\mu)$: p=1: Chceme $|g(x)|\leq ||x^*||$ skoro všude. Pokud ne, pak $A=\{x||g(x)|>||x^*||\}$ má kladnou míru. At $A_+=\{x||g(x)>||x^*||\}$ má kladnou míru. Pak

$$||x^*||\mu(A_+) \le |\int_{A_+} g d\mu| = |x^*(\chi_{A_+})| \le ||x^*||\mu(A_+).4.$$

Podobně pro $A_- := \{x|g(x) < -||x^*||\}. p > 1$ vynecháme.

Další kroky byly vynechány.

Věta 5.26

Nechť X,Y jsou normované lineární prostory a $1 \le p \le \infty$. Nechť q je sdružený exponent k p. Pak zobrazení $I: X^* \oplus_q Y^* \to (X \oplus_p Y)^*$ dané předpisem

$$I(f,g)(x,y) = f(x) + g(y)$$

je lineární izometrie $X^* \oplus_q Y^*$ na $(X \oplus_p Y)^*$.

I(f,g)lineární pro $(f,g)\in X^*\oplus_q Y^*$ lehké. Zvol $(f,g)\in X^*\oplus_q Y^*$. Pak

$$||I(f,g)|| = \sup_{(x,y)\in B_{X\oplus_p Y}} |f(x) + g(y)| \le \sup_{(x,y)\in B_{X\oplus_p Y}} (||f|| \cdot ||x|| + ||g|| \cdot ||y||) =$$

$$= \sup_{(\alpha,\beta)\in B_{(\mathbb{K}^2,||\cdot||_p)}} \tilde{I}(||f||,||g||)(\alpha,\beta) = ||\tilde{I}(||f||,||g||)|| = ||(||f||,||g||)||_q = \sqrt[q]{||f||^q + ||g||^q} = ||f||_{(\alpha,\beta)\in B_{(\mathbb{K}^2,||\cdot||_p)})} \tilde{I}(||f||,||g||)(\alpha,\beta) = ||\tilde{I}(||f||,||g||)||_q = ||f||_{(\alpha,\beta)\in B_{(\mathbb{K}^2,||\cdot||_p)})} \tilde{I}(||f||,||g||)(\alpha,\beta) = ||\tilde{I}(||f||,||g||)||_q = ||f||_{(\alpha,\beta)\in B_{(\mathbb{K}^2,||\cdot||_p)})} \tilde{I}(||f||,||g||)(\alpha,\beta) = ||\tilde{I}(||f||,||g||)||_q = ||f||_{(\alpha,\beta)\in B_{(\mathbb{K}^2,||\cdot||_p)})} \tilde{I}(||f||,||g||)(\alpha,\beta) = ||f||_{(\alpha,\beta)\in B_{(\mathbb{K}^2,||\cdot||_p)})$$

$$= ||(f,g)||_{X^* \oplus_g Y^*}.$$

Tedy $||I|| \leq 1$.

Ije izometrie: At $(f,g)\in X^*\oplus_q Y^*,$ BÚNO $(f,g)\neq 0.$ Zvol $\varepsilon>0$ libovolné. At $\eta>0$ je "dost malé": Zvolme

$$x \in B_x : |f(x)| > ||f|| - \eta, |\alpha| = 1, |f(x)| = \alpha f(x),$$

$$y \in B_y : |f(y)| > ||f|| - \eta, |\beta| = 1, |f(x)| = \beta f(y).$$

Položme

$$u = \frac{(||f||^{q-1}\alpha x, ||g||^{q-1}\beta y)}{(||f||^q + ||g||^q)^{\frac{1}{p}}} = \frac{\dots}{C}.$$

$$||u|| = \left(\frac{1}{C}||f||^{p(q-1)}||\alpha x||^p + ||g||^{p(q-1)||\beta y||^p}\right)^{\frac{1}{p}} \le \frac{1}{C}(||f||^q + ||g||^q)^{\frac{1}{p}} = 1,$$

tedy $u \in B_{\dots}$. Pak ale

$$||I(f,g)|| \ge I(f,g)(u) = \frac{1}{c}(||f||^{q-1}f(\alpha x) + ||g||^{q-1}g(\beta y)) \ge$$

$$\geq \frac{1}{C}(||f||^{q-1}(||f||-\eta)+||g||^{q-1}(||g||-\eta)) \to \frac{1}{C} \cdot (||f||^q+||g||^q)=||(f,g)||.$$

I je na: At $\varphi \in (X \oplus_p Y)^*$. Polož $f(x) := \varphi(x,0), x \in X$ a $g(x) := \varphi(0,y), y \in Y$. Pak $f \in X^*, g \in Y^*$ a $I(f,g) = \varphi$.

Definice 5.9

Nechť K je kompaktní prostor. Řekneme, že lineární funkcionál Λ na C(K) je nezáporný, jestliže $\Lambda(f) \geq 0$ pro každou nezápornou funkci $f \in C(K)$.

Věta 5.27 (O reprezentaci nezáporných lineárních funkcionálů na C(K))

Nechť K je kompaktní prostor a Λ je nezáporný lineární funkcionál na C(K). Pak existuje jednoznačně určená regulární borelovská nezáporná míra μ na K splňující $\Lambda(f) = \int_K f d\mu$ pro každé $f \in C(K)$.

Věta 5.28 (Rieszova věta o reprezentaci $C(K)^*$)

Je-li K kompaktní prostor, pak prostor $C(K)^*$ je lineárně izometrický s prostorem M(K) všech regulárních borelovských komplexních (resp. znaménkových) měr na K pomocí zobrazení $I: M(K) \to C(K)^*$, $I(\mu)_k = \varphi_k$, kde

$$\varphi_{\mu}(f) = \int_{K} f d\mu.$$

 $D\mathring{u}kaz$

Bez důkazu.

6 Anihilátory, dualita kvocientů a podprostorů

Definice 6.1 (Horní a dolní anihilátor)

Je-li X normovaný lineární prostor a $A\subset X$, pak definujeme tzv. anihilátor množiny A jako

$$A^{\perp} = \{ f \in X^* | f(x) = 0 \ \forall x \in A \}.$$

Poznámka

Vlastně je to zobecnění kolmého prostoru (v Hilbertových prostorech je to "totéž").

Pro množinu $B\subset X^*$ pak definujeme tzv. zpětný anihilátor jako

$$B_{\perp} = \{ x \in X | f(x) = 0 \ \forall f \in B \}.$$

Lemma 6.1

Nechť X je normovaný lineární prostor a $A\subset X,\ B\subset X^*$. Pak

- A[⊥] je uzavřený podprostor X*,
- B_{\perp} je uzavřený podprostor,
- $(A^{\perp})_{\perp} = \overline{\operatorname{span}}A$,
- $(B_{\perp})^{\perp} \supset \overline{\operatorname{span}}B$.

První dva body triviální cvičení. Další dva body jsou lehké.

Věta 6.2

Nechť X je normovaný lineární prostor a Y jeho podprostor.

1. Nechť Y je uzavřený. Zobrazení $I: Y^{\perp} \to (X/Y)^*$ dané předpisem

$$I(f)(\hat{x}) = f(x)$$

je lineární izometrie Y^{\perp} na $(X\ /Y)^*.$

2. Zobrazení $I: X^*/Y^{\perp} \to Y^*$ dané předpisem

$$I(\hat{f}) = f|_{Y}$$

je lineární izometrie X^*/Y^{\perp} na Y^* .

 $D\mathring{u}kaz$

1. a) I(f) je dobře definované: A
ť $\hat{x}=\hat{y},$ pak $x-y\in Y$ a $f\in Y^{\perp}$ (tj. f(x-y)=0), ted
yf(x)=f(y).

b) Zároveň $||I(f)|| = \sup_{\hat{x}U_{X/Y}} |I(f)(\hat{x})| = \sup_{x \in U_x} |I(f)(\hat{x})| = \sup_{x \in U_x} |f(x)| = ||f||$, tedy I je spojité a izometrie (linearita je triviální).

c) At $\varphi \in (X/Y)^*$. Pak $\varphi \circ q \in X^*$ a $I(\varphi \circ q) = \varphi \land \varphi \circ q \in Y^{\perp}$: $\forall y \in Y : \varphi(q(y)) = \varphi(\hat{0}) = 0$. Tedy $\varphi \circ q \in Y^{\perp}$. $\forall \hat{x} \in X/Y : I(\varphi \circ q)(\hat{x}) = (\varphi \circ q)(x) = \varphi(\hat{x})$, tedy $I(\varphi \circ q) = \varphi$.

2. a) $I(\hat{f})$ je dobře definované: At $\hat{f} = \hat{g}$, pak $f - g \in Y^{\perp}$, tedy $f|_{Y} = g|_{Y}$.

b) Izřejmě lineární. Zároveň $||I(\hat{f})||=\sup_{y\in B_y}||f(y)||=||f|_Y||\leq\inf_{h\in\hat{f}}||h||=||\hat{f}||.$

c) I je izometrie: At $\hat{f} \in X^*/Y^{\perp}$. Zvol $g \in X^* : g|_Y = f|_Y \wedge ||g|| = ||f|_Y||$ z H-B věty. Pak $\hat{g} = \hat{f}$ a $||I(\hat{f})|| = ||I(\hat{g})|| = ||g|_Y|| = ||g|| \ge \inf_{h \in \hat{f}} ||h|| = ||f|_Y||$.

d) I je na: At $\varphi \in Y^*$. Z H-B věty existuje $f \in X^*$: $f|_Y = \varphi$. Pak $I(\hat{f}) = f|_Y = \varphi$. \square

Věta 6.3

Jsou-li X, Y normované lineární prostory a $T \in \mathcal{L}(X, Y)$, pak platí

1. Ker $T^* = (\operatorname{Rng} T)^{\perp}$,

2. Ker $T = (\operatorname{Rng} T^*)_{\perp}$,

3. $\overline{\operatorname{Rng} T} = (\operatorname{Ker} T^*)_{\perp},$

4. T* je prostý, právě když Rng T je hustý.

Důkaz

- 1. $y^* \in \operatorname{Ker} T^* \Leftrightarrow T^* y^* = 0 \Leftrightarrow y^* \circ T = 0 \Leftrightarrow y^*|_{\operatorname{Rng} T} = 0$.
- $2. \ x \in \operatorname{Ker} T \Leftrightarrow Tx = 0 \Leftrightarrow \forall y^* \in Y^* : y^*(Tx) = 0 \Leftrightarrow \forall y^* \in Y^* : \ T^*y^*(x) = 0 \Leftrightarrow x \in (\operatorname{Rng} T^*)_{\perp}.$
 - 3. $\overline{\operatorname{Rng} T} = ((\operatorname{Rng} T)^{\perp})_{\perp} = (\operatorname{Ker} T^*)_{\perp}.$
- 4. T^* prostý \Leftrightarrow Ker $T = \{\mathbf{o}\}$, ale $\{\mathbf{o}\} \perp = Y$, tedy dle 3. $\overline{\text{Rng } R} = Y$. Naopak sporem: At $\exists x \in Y/\overline{\text{Rng } T}$. Potom dle H-B věty $\exists f \in Y^* : f(x) \neq 0 \land f|_{\text{Rng } T} = 0$. Pak ale

$$T^*f(x_0) = f(Tx_0) = 0, \forall x_0 \in X \implies T^*f = 0 \implies f \in \operatorname{Ker} T^*.$$

Definice 6.2 (Druhý duál, evaluační funkcionál)

Nechť X je normovaný lineární prostor. Symbolem X^{**} značíme $(X^*)^*$, tj. duál k prostoru X^* . Tento prostor nazýváme druhým duálem.

Je-li $x \in X$, pak definujeme tzv. evaluační funkcionál $\varepsilon_x \in X^{**}$ předpisem $\varepsilon_x(f) = f(x)$ pro každé $f \in X^*$. Zobrazení $\varepsilon : X \to X^{**}$ dané předpisem $\varepsilon(x) = \varepsilon_x$ se nazývá kanonické vnoření X do X^{**} .

Tvrzení 6.4

Nechť X je normovaný lineární prostor. Pak kanonické vnoření $\varepsilon: X \to X^{**}$ je lineární izometrie do. Je-li tedy navíc X Banachův, pak $\varepsilon(X)$ je uzavřený podprostor X^{**} .

 $D\mathring{u}kaz$

Linearita zřejmá. Izometrie

$$||\varepsilon_x|| = \sup_{x^* \in B_{X^*}} |\varepsilon_*(x^*)| = \sup_{x^* \in B_{X^*}} |x^*(x)| = ||x||.$$

Tvrzení 6.5 (J. P. Schauder, 1930)

Nechť X, Y jsou normované lineární prostory, $\varepsilon_X: X \to X^{**}$ a $\varepsilon_Y: Y \to Y^{**}$ jsou kanonická vnoření do druhých duálů a $T \in \mathcal{L}(X,Y)$. Pak

$$T^{**} \circ \varepsilon_X = \varepsilon_Y \circ T.$$

Důkaz TODO?

Věta 6.6

Pro každý normovaný lineární prostor X existuje jeho zúplnění, tj. Banachův prostor takový, že X je jeho hustý podprostor. Pro každý prostor se skalárním součinem X existuje jeho zúplnění, tj. Hilbertův prostor takový, že X je jeho hustý podprostor.

Tato rozšíření jsou určena jednoznačně až na izometrii, tj. jsou-li X_1 , X_2 dvě zúplnění X, pak existuje lineární izometrie X_1 na X_2 , která je na X identitou.

Důkaz

Položme $\hat{X} = \overline{\varepsilon(X)} \subseteq X^{**}$. Z toho plyne existence.

Pokud X má skalární součin, pak platí rovnoběžníkové pravidlo. To platí i v \hat{X} , tedy \hat{X} je Hilbertův.

Ať $I_1: X \to X_1$ je izometrie, $\overline{I_1(X)} = X_1$, $I_2: X \to X_2$ je izometrie, $\overline{I_2(X)} = X_2$. Pak $I_1 \circ I_2^{-1}|_{I_2(X)}: I_2(X) \to X_1$ je spojitý lineární operátor, tedy $\exists ! S_1: X_2 \to X_1$ spojitý lineární, že $S_1 \supset I_1 \circ I_2^{-1}|_{I_2(X)}$. Obdobně existuje $S_2: X_1 \to X_2$. Pak se snadno ověří, že $(S_2 \circ S_1)|_{I_2(x)} = \operatorname{id}|_{I_2(x)}$, tedy $S_2 \circ S_1 = \operatorname{id}$. Analogicky $S_1 \circ S_2 = \operatorname{id}$.

Následně se ukáže, že S_1 je izometrie: Zvol $x \in X_2$, ať pro $(x_n)_{n=1}^{\infty}$, posloupnost v X, je $I_2(x_n) \to x$. Pak

$$||S_1x|| = \lim_{n \to \infty} ||S_1(I_2(x_n))|| = \lim_{n \to \infty} ||I_1(x_n)|| = \lim_{n \to \infty} ||x_n|| = ||x||.$$

Analogicky S_2 je izometrie, tedy X_1 , X_2 jsou izometrické.

Věta 6.7

Nechf X, Y jsou Banachovy prostory a $T \in \mathcal{L}(X,Y)$.

- 1. T je izomorfismus na, právě když T^* je izomorfismus na. V tomto případě navíc platí $(T^*)^{-1} = (T^{-1})^*$.
- 2. T je izometrie na, právě když T* je izometrie na.

Speciálně, jsou-li X a Y lineárně izometrické, pak jsou také X^* a Y^* lineárně izometrické.

 $D\mathring{u}kaz \implies (1.)$:

$$\forall y^* \in Y^* : ((T^{-1})^*T^*(y^*))(y) = T^*y^*(T^{-1}y) = y^*(TT^{-1}y) = y^*(y).$$

Analogicky $T^* \circ (T^{-1})^* = \operatorname{id} x^*$.

 \Leftarrow (1.): Dle první části: T^* je izomorfismus $\implies T^{**}$ je izomorfismus $\implies \varepsilon_Y \circ T$ je izomorfismus $\implies T$ je izomorfismus.

 \implies (2.): Dle 1. stačí: T^* je izometrie:

$$\forall y^* \in Y^* : ||T^*y^*|| = \sup_{x \in B_X} |y^*(Tx)| = \sup_{y \in B_y} |y^*(y)| = ||y^*||.$$

Opačná implikace analogicky jako v 1.

Definice 6.3 (Reflexivní prostor)

Banachův prostor X se nazývá reflexivní, pokud $X^{**}=\varepsilon(X).$

Pozor

Existují i prostory, pro které je X izometrické X^{**} , ale ne pomocí ε .

Věta 6.8

Necht X, Y jsou Banachovy prostory.

- Je-li X izomorfní s reflexivním prostorem, pak je i X reflexivní.
- Je-li Y uzavřený podprostor X, X reflexivní \implies Y reflexivní.
- Prostor X je reflexivní právě tehdy, když jeho duál X* je reflexivní.
- Je-li X reflexivní a Y jeho uzavřený podprostor, pak je X/Y reflexivní.

1. Zvol $y^{**}\in Y^{**}.$ A
t $T:Y\to X$ je izomorfismus. Pak $T^{**}y^{**}\in X^{**}\Longrightarrow\ \exists x\in X:$
 $\varepsilon_X(x)=T^{**}y^{**}.$ Polož $y=T^{-1}x\in Y.$ Následně dokážeme, že
 $\varepsilon_Y(y)=y^{**}:$

$$\forall y^* \in Y^* : \varepsilon_Y(y)(y^*) = y^*(y) = y^*(T^{-1}x) = (T^{-1})^*y^*(x) = T^{**}y^{**}((T^{-1})^*y^*) =$$
$$= y^{**}(T^*(T^{-1})^*y^*) = y^{**}(y^*).$$

2. Zvol $y^{**} \in Y^{**}$ a uvažujme

$$F(X^*) = y^{**}(x^*|_Y), x^* \in X^*.$$

Pak $F \in X^{**}$ (lehké ověřit) $\Longrightarrow \exists x \in X : F = \varepsilon_X(x). \ x \in Y$, jelikož: At ne, pak (dle H-B) $\exists f \in X^* : 0 \neq f(x) \land f|_Y \equiv 0$. Pak $F(f) = y^{**}(0) = 0$, 4.

Teď už jen ověříme, že $\varepsilon_Y(x)=y^{**}$: Zvol $y^*\in Y^*$. Dle H-B existuje $x^*\in X^*$, že $x^*|_Y=y^*$. Pak

$$y^{**}(y^*) = y^{**}(x|_Y) = F(x^*) = x^*(x) = \varepsilon_Y(x)(x^*)$$

3. \Longrightarrow : Zvol $x^{***} \in X^{***}$. Uvažuj $x^* = x^{***} \circ \varepsilon_X \in X^*$. Pak

$$\forall x \in X : x^{***}(\varepsilon_X(x)) = x^*(x) = \varepsilon_X(x)(x^*) = \varepsilon_{X^*}(x^*)(\varepsilon_X(x))$$

$$\implies x^{***} = \varepsilon_{X^*}(x^*), \text{ na } \varepsilon_X(x) = x^{**}.$$

At $\varphi \in (X/Y)^{**}$, pak

$$I^*(\varphi) = (Y^{\perp})^* \implies \exists F \in X^{**} : I^*(\varphi) \subset F \implies \exists x \in X : F = \varepsilon_X(x).$$

Potom už jen chceme $\varepsilon_{X/Y}(q(x)) = \varphi$:

$$\forall f \in Y^{\perp} : \varepsilon_{X/Y}(q(x))(I(f)) = I(f)(q(x)) = f(x) = F(f) = (I^{*}(\varphi))(f) = \varphi(If) \implies \varepsilon_{X/Y}(q(x)) = \varphi.$$

Věta 6.9

Banachův prostor X je reflexivní, právě když pro každé $x^* \in X^*$ existuje $x \in B_X$ splňující $||x^*|| = x^*(x)$.

 $D\mathring{u}kaz$

Bez důkazu.

7 Slabá konvergence

Definice 7.1 (Slabá konvergence, s. konvergence s hvězdičkou)

Nechť X je normovaný lineární prostor.

- Řekneme, že posloupnost $\{x_n\}$ v prostoru X slabě konverguje k $x \in X$ (značíme $x_n \stackrel{w}{\to} x$) pokud pro každé $x^* \in X^*$ platí $x^*(x_n) \to x^*(x)$.
- Řekneme, že posloupnost $\{x_n^*\}$ v prostoru X^* slabě s hvězdičkou konverguje k $x^* \in X^*$ (značíme $x_n^* \stackrel{w^*}{\to} x^*$) pokud pro každé $x \in X$ platí $x_n^*(x) \to x^*(x)$.

Lemma 7.1

Nechť X je normovaný lineární prostor, $\{x_n\}$ posloupnost v X a $\{x_n^*\}$ posloupnost v X^* .

- 1. Existuje nejvýše jedno $x \in X$ splňující $x_n \stackrel{w}{\to} w$.
- 2. Existuje nejvýše jedno $x^* \in X^*$ splňující $x_n^* \stackrel{w^*}{\to} x^*$.
- 3. Pokud $x \in X$ a $x_n \to x$, pak $x_n \stackrel{w}{\to} x$.
- 4. Pokud $x^* \in X^*$ a $x_n^* \xrightarrow{w} x^*$, pak $x_n^* \xrightarrow{w^*} x^*$.

 $D\mathring{u}kaz$

1.–4. triviální.

Věta 7.2

Nechť X je separabilní normovaný lineární prostor a $\{x_n^*\}$ omezená posloupnost v X^* . Pak $\{x_n^*\}$ má w^* -konvergentní podposloupnost.

 $D\mathring{u}kaz$

Ať $\{x_n|n\in\mathbb{N}\}\subseteq B_x$ hustá v B_x . 1. krok: Najdeme $(x_{n_k}^*)$, že $x_{n_k}^*(x_n)$ je konvergentní pro $n\in\mathbb{N}$: Ať $A_1\subset\mathbb{N}$ nekonečná. K $((x_k^*)(x_1))_{k\in A_1}$ je konvergentní. Totéž pro A_2 a x_2 , A_3 a x_3 , ... Potom vybereme prvky na diagonále.

2. krok: Pak $x_{n_k}^*(x)$ konverguje pro $x \in B_x$: $\varepsilon > 0$ dáno. At $n \in \mathbb{N}$, že $||x_n - x|| < \varepsilon$.

$$k_0 \in \mathbb{N} \forall k, l \geq k_0 : |x_{n_k}^*(x_n) - x_{n_k}^*(x_n)| < \varepsilon.$$

Pak

$$\forall k, l \ge k_0 : |x_{n_k}^*(x) - x_{n_k}^*(x)| \le |x_{n_k}^*(x - x_n)| + |x_{n_k}^*(x_n) - x_{n_l}^*(x_n)| + |x_{n_l}^*(x_n) - x_{n_l}^*(x)| < \varepsilon(||x_{n_k}^*|| + 1 + ||x_{n_l}^*||).$$

3. kror: Tedy z linearity $x_{n_k}^*(x)$ konverguje pro $x \in X$: Polož $x^*(x) = \lim_{k \to \infty} x_{n_k}^*(x)$. Pak $x* \in X^*$

Věta 7.3

Banachův prostor X je reflexivní, právě když každá omezená posloupnost $\{x_n\}$ v X má slabě konvergentní podposloupnost.

 $D\mathring{u}kaz$

 \Leftarrow nebude (teď je těžký, bude ve funkcionální analýze). \Longrightarrow plyne z následující věty: X^* separabilní $\Longrightarrow X$ separabilní. Polož $Y = \overline{\operatorname{span}}(x_n) \subset X$, pak Y je separabilní a reflexivní $\Longrightarrow Y^*$ je (reflexivní +) separabilní, dle následující věty. $\Longrightarrow \exists (x_{n_k}), w^*$ -konvergentní podposloupnost v $Y^{**} \equiv \varepsilon(Y) \Longrightarrow \exists y \in Y : \varepsilon(x_{n_k}) \stackrel{w^*}{\to} \varepsilon(y) \Leftrightarrow x_{n_k} \stackrel{w}{\to} y$.

Věta 7.4

Nechť X je normovaný lineární prostor a X* je separabilní. Pak X je separabilní.

Důkaz

Zvol $\{x_n^*|n\in\mathbb{N}\}\subset S_{X^*}$ hustou podmnožinu (existuje ze separability). Pro $n\in\mathbb{N}$ najdi $x_n\in B_x: x_n^*(x_n)>\frac{1}{2}$. Pak $\overline{\operatorname{span}}\{x_n|n\in\mathbb{N}\}=X$ (a tím bude hotovo, protože $\overline{\operatorname{span}}(x_n)=\overline{\operatorname{span}}_*(x_n)$): At ne, pak existuje $f\in S_{X^*}: f|_{\overline{\operatorname{span}}}=0, f\neq 0$. Zvol $n\in\mathbb{N}$, že $||x_n^*-f||<\frac{1}{4}$. Pak

$$0 = |f(x_n)| \ge |x_n^*(x_n)| - |(x_n^* - f)(x_n)| > \frac{1}{2} - \frac{1}{4} > 0.$$

8 Omezené operátory v Banachových prostorech

Definice 8.1 (Kompaktní operátor, konečněrozměrný operátor)

Necht X,Y jsou normované lineární prostory a $T:X\to Y$ je lineární zobrazení. Pak T se nazývá kompaktní operátor, pokud pro každou omezenou $A\subset X$ je množina T(A) relativně kompaktní (tj. její uzávěr je kompaktní) v Y.

Množinu všech kompaktních lineárních operátorů z X do Y značíme $\mathcal{K}(X,Y)$.

Lineární operátor T se nazývá konečněrozměrný, pokud $\operatorname{Rng} T$ má konečnou dimenzi.

 $\mathcal{F}(X,Y)$ značí množinu všech konečněrozměrných spojitých lineárních operátorů z X do Y.

Poznámka

X je MP, $A \subset X$. Pak

- A je relativně kompaktní \Leftrightarrow z každé posloupnosti v A lze vybrat konvergentní posloupnost v X.
- Pokud X je úplný, pak A je relativně kompaktní $\Leftrightarrow A$ je totálně omezená.

Tvrzení 8.1

Nechť X, Y jsou normované lineární prostory. Každý kompaktní lineární operátor z X do Y je automaticky spojitý. Dále, je-li $T:X\to Y$ lineární, pak následující tvrzení jsou ekvivalentní:

- 1. T je kompaktní.
- 2. $T(B_X)$ je relativně kompaktní.
- 3. Je-li $\{x_n\}$ omezená posloupnost v(X), pak posloupnost $\{T(x_n)\}$ má konvergentní podposloupnost.

$D\mathring{u}kaz$

1. \Longrightarrow 2: triviální. 2. \Longrightarrow 3: At (x_n) je posloupnost v B(O,r) (kde r>0). Pak $(\frac{x_n}{r})$ je posloupnost v $B_x \Longrightarrow$ dle 2. $\exists (n_k)$, že $T(\frac{x_{n_k}}{r})$ je konvergentní, tedy $T(x_{n_k})$ je konvergentní.

3. \Longrightarrow 1.: At $A \subset X$ omezená, at (y_n) je posloupnost v T(a). Pak $\exists x_n \in A : Tx_n = y_n$, $n \in \mathbb{N}$. $\Longrightarrow \exists (n_k) : T_{x_{n_k}}$ je konvergentní v Y.

Věta 8.2

 $Necht\ X,\ Y\ jsou\ Banachovy\ prostory.$

- 1. Operátor $T \in \mathcal{L}(X,Y)$ je konečněrozměrný právě tehdy, když existují $f_1, \ldots, f_n \in X^*$ a $y_1, \ldots, y_n \in Y$ takové, že $T(x) = \sum_{i=1}^n f_i(x) y_i$ pro každé $x \in X$.
- 2. $\mathcal{K}(X,Y)$ je podprostor $\mathcal{L}(X,Y)$ a $\mathcal{F}(X,Y)$ podprostor $\mathcal{K}(X,Y)$.
- 3. K(X,Y) je uzavřený podprostor $\mathcal{L}(x,Y)$.
- 4. Složíme-li kompaktní lineární operátor se spojitým lineárním operátorem (zleva či zprava), dostaneme opět kompaktní operátor.

$D\mathring{u}kaz$

- 1. \Leftarrow : Jasné protože pak Rng $T \subset \text{span}\{y_1,\ldots,y_n\}$. \Longrightarrow : At y_1,\ldots,y_n je báze Rng T. Uvažujme $g_i \in (\text{Rng }T)^*$, $g_i(y_j) = \delta_{ij}$. Polož $f_i = g_i \circ T \in X^*$, $i \in [n]$. Pak $T(x) = \sum_{i=1}^n g_i(Tx)y_i = \sum_{i=1}^n f_i(x)y_i$.
- 2. At $S,T \in \mathcal{K}(X,Y)$. Pak $(S+T)(B_x) = S(B_X) + T(B_X) \subseteq \overline{S(B_X)} + \overline{T(B_X)}$, což jsou kompaktní prostory. Protože součet kompaktů je kompakt (a uzavřený podprostor kompaktu také), $\overline{(S+T)(B_x)}$ je kompaktní. Násobení triviálně.
- $T\in\mathcal{F}(x,y)\implies \operatorname{Rng} T$ je konečnědimenzionální, tedy uzavřená $\Longrightarrow \overline{T(B_x)}\subseteq \operatorname{Rng} T\cong \mathbb{K}^n.$

Věta 8.3 (J. P. Schauder, 1930)

Nechť X je normovaný lineární prostor, Y je Banachův prostor a $T \in \mathcal{L}(X,Y)$. Pak T^* je kompaktní, právě když T je kompaktní.

Důkaz

TODO

9 Úplnost v Banachových prostorech

Věta 9.1 (Princip stejnoměrné omezenosti)

Nechť X je Banachův prostor, Y je normovaný lineární prostor a $A \subset \mathcal{L}(X,Y)$. Pak

$$\sup \left\{ ||T|| \ | \ T \in A \right\} < +\infty \Leftrightarrow \forall x \in X : \sup \left\{ ||T(x)|| \ | \ T \in A \right\} < +\infty.$$

Důkaz TODO

TODO __

Důsledek

Nechť X je Banachův prostor, Y je normovaný lineární prostor a $\{T_n\}$ je posloupnost v $\mathcal{L}(X,Y)$ taková, že pro $\forall x \in X \ \exists T(x) = \lim_{n \to \infty} T_n(x)$. Pak $T \in \mathcal{L}(X,Y)$ a $||T|| \leq$

Tvrzení 9.2

Nechť X je Banachův prostor, $\{x_n^*\}$ je posloupnost v X^* , $x^* \in X^*$ a $D \subset X$ splňuje $\overline{\operatorname{span}}D = X$. Pak $x_n^* \stackrel{w^*}{\to} x^*$, právě když $\{x_n^*\}$ je omezená a $x_n^*(d) \to x^*(d)$ pro každé $d \in D$.

Důkaz TODO

Tvrzení 9.3

Nechť X je Banachův prostor, $\{x_n\}$ je posloupnost v X, $x \in X$ a $D \subset X^*$ splňuje $\overline{\operatorname{span}}D = X^*$. Pak $x_n \stackrel{w}{\to} x$, právě když $\{x_n\}$ je omezená a $d(x_n) \to d(x^*)$ pro každé $d \in D$.

Důkaz TODO

Definice 9.1 (Otevřené zobrazení)

Zobrazení $f:X\to Y$ mezi metrickými prostory X,Y se nazývá otevřené, pokud f(G) je otevřená množina v Y pro každou otevřenou množinu $G\subset X$.

Věta 9.4 (O otevřeném zobrazení (Juliusz Pawel Schauder 1930))

Nechť X,Y jsou Banachovy prostory a $T \in \mathcal{L}(X,Y)$ je na. Pak T je otevřené zobrazení.

Důkaz Později.

Lemma 9.5 (J. P. Schauder, 1930)

Nechť X je Banachův prostor, Y je normovaný lineární prostor a $T \in \mathcal{L}(X,Y)$. Jestliže r, s > 0 jsou taková, že $U(0,s) \subset \overline{T(\mathcal{U}(0,r))}$, pak dokonce $U(0,s) \subset T(\mathcal{U}(0,r))$

Zvol $z \in \mathcal{U}_Y$, $\delta > 0$, že $||z|| < 1 - \delta$. Chceme $y = \frac{z}{1-\delta} \in T(\frac{1}{1-\delta}\mathcal{U}_x)$. Minule (TODO!!!) jsme dělali $\exists (y_n)_{n=0}^{\infty}$, že $y_0 = 0$, $||y - y_n|| < \delta^n$, $n \in \mathbb{N} \cup \{0\}$ a $y_n - y_{n-1} \in T(\delta^{n-1}\mathcal{U}_x)$.

Zvolme $x_n \in \delta^{n-1} \mathcal{U}_x$, že $Tx_n = y_n - y_{n+1}$, $n \in \mathbb{N}$. Pak

$$\sum_{n=1}^{\infty} ||x_n|| < \sum_{n=0}^{\infty} \delta^n = \frac{1}{1-\delta} < \infty \xrightarrow{X \text{ je Banachův}}$$

$$\implies \exists x = \sum_{n=1}^{\infty} x_n, ||x|| < \frac{1}{1-\delta} \implies x \in \frac{1}{1-\delta} \mathcal{U}_x.$$

Zároveň $Tx = \sum_{n=1}^{\infty} T_{x_n} = \sum_{n=1}^{\infty} y_n - y_{n-1} = \lim_{n \to \infty} y_n - 0 = y.$

Důkaz (Věty o otevřeném zobrazení)

Úvod: stačí $\exists \delta > 0 : \mathcal{U}(0, \delta) \subset T(\mathcal{U}_x)$: Zvol $G \subset X$ otevřená, $x \in G$. Pak $y = Tx \in T(G)$. G otevřená $\Longrightarrow \exists R > 0 : \mathcal{U}(x, R) \subset G$. Pak $\mathcal{U}(y, \delta R) = y + R\mathcal{U}(0, \delta) \subset y + RT(\mathcal{U}(0, 1)) = T(\mathcal{U}(x, R)) \subseteq T(G)$.

Stat:

Y úplný \Longrightarrow z Banachovy věty $\exists n_0: \operatorname{int}(\overline{T(n_0\mathcal{U}_x)}) \neq \emptyset \Longrightarrow \overline{n_0\mathcal{U}_x}$ (symetrická, konvexní, uzavřená) obsahuje kouli \Longrightarrow $\exists \delta > 0: \mathcal{U}(0,\delta) \subseteq \overline{T(n_0\mathcal{U}_x)}$. Z předchozího lemmatu $\mathcal{U}(0,\delta) \subseteq T(n_0\mathcal{U}_x) = nT(\mathcal{U}_x)$.

Závěr:
$$\mathcal{U}(0, \frac{\delta}{n_0}) \subset T(U_x)$$
.

Důsledek (S. Banach, 1929)

Nechť X,Y jsou Banachovy prostory a $T\in\mathcal{L}(X,Y)$. Pak T je izomorfismus X na Y, právě když T je prostý a na.

 $D\mathring{u}kaz$

" \Longrightarrow " jasné. " \Leftarrow ": T^{-1} je spojitý plyne z předchozí věty $((T^{-1})^{-1}(O) = T(O)$ je otevřené podle předchozí věty (O otevřená)).

Důsledek

Nechť X, Y jsou Banachovy prostory a $T \in \mathcal{L}(X, Y)$ je na. Pak platí

- Existuje c>0 takové, že pro každé $y\in Y$ existuje $x\in T^{-1}(y)$ splňující $||x||\leq c||y||.$
- Zobrazení $\hat{T}: X/\operatorname{Ker} T \to Y$ dané předpisem $\hat{T}(\hat{x}) = T(x)$ je lineární izomorfismus na. Tedy prostor Y je izomorfní s $X/\operatorname{Ker} T$.

První bod: Dle předchozí věty $\exists R > 0 : \mathcal{B}(0,R) \subset T(\mathcal{U}_x)$. Zvolíme $y \in Y \setminus \{0\}$. Pak $\exists x \in \mathcal{U}_x : Tx = \frac{y}{||y||} \cdot R \wedge ||\frac{x||y||}{R}|| \leq \frac{1}{R}||y||$. (Položíme $c = \frac{1}{R}$.)

Druhý bod: 1. krok: Je dobře definovaný: $\hat{x} = \hat{y} \Leftrightarrow x - y \in \text{Ker } T \Leftrightarrow Tx = Ty$. 2. krok \hat{T} je lineární a spojité: lineární triviálně, spojité z normy:

$$\forall \hat{x} \in \mathcal{U}_{X/\text{Ker }T} : ||\hat{T}(\hat{h})|| \le ||T|| \cdot ||x|| \le ||T|| \cdot ||\hat{x}|| \implies ||\hat{T}|| \le ||T||.$$

3. krok: \hat{T} je na
, protože T je na a navíc \hat{T} je prosté, nebo
t $\hat{T}\hat{x}=0\Leftrightarrow Tx=0\Leftrightarrow x\in \operatorname{Ker} T.$

Definice 9.2 (Graf)

Je-li $f:X\to Y$ zobrazení množiny X do množiny Y, pak množinu

$$\operatorname{graf} f = \{(x, y) \in X \times Y | y = f(x)\}\$$

nazýváme grafem zobrazení f. Říkáme, že zobrazení $f:X\to Y$, kde X,Y jsou metrické prostory, má uzavřený graf, pokud množina graf f je uzavřená v $X\times Y$.

Věta 9.6 (O uzavřeném grafu (S. Banach, 1932))

 $Necht\,X,\,Y\,$ jsou Banachovy prostory a $T:X\to Y\,$ je lineární zobrazení. Pak $T\,$ je spojité, právě když má uzavřený graf.

 $D\mathring{u}kaz$

" \Longrightarrow " trivální, platí vždy. " \Leftarrow ": $G := \{(x, Tx) | x \in X\} \subset X \oplus_{\infty} Y$ je uzavřený (tedy Banachův). At P_x , P_y jsou kanonické projekce (jsou spojité: $||P_x(x,y)|| = ||x||_x \le ||(x,y)||_{\infty}$).

Uvažujme $S: X \to G$, Sx = (x, Tx), to je lineární a prosté. Ale nevíme, zda je S spojité. To dokážeme tak, že dokážeme spojitost S^{-1} a to, že je to izomorfismus. Z toho pak plyne spojitost S i T. $S^{-1} = P_x|_G$ je spojité, prosté a na, tudíž je izomorfismus z věty výše. Tedy S je spojité. Tedy je spojité $T = P_y \circ S$.

Věta 9.7 (Z dřívějška, zopakovaná, důkaz je nový)

Nechť X je Banachův prostor a $Y, Z \subset X$ jeho podprostory splňující $X = Y \oplus Z$. Pak $X = Y \oplus_t Z$, právě když Y a Z jsou uzavřené.

 $\begin{array}{c} D\mathring{u}kaz\\ "P_y \text{ spojit\'a} \implies Y,Z \text{ uzavřen\'e}": \text{ lehk\'e}, \text{ protože } P_Z = \text{id} - P_y \text{ spojit\'a a } Y = \text{Ker } P_z = P_z^{-1}(0) \text{ je uzavřen\'a a } Z = \text{Ker } P_y = P_z^{-1}(0) \text{ je uzavřen\'a}. \\ \\ \text{Naopak at } Y,Z \text{ jsou uzavřen\'e}, \text{ pak chceme } P_y \text{ m\'a uzavřen\'y graf (pak aplikujeme předchozí větu): At } (y_n,P(x_n)) \to (x,Z) \in Y \oplus_{\infty} Z \cong X. \text{ Pak } x_n \to x, \ P_y(x_n) \to z. \text{ Tedy } x_n - P_y(x_n) \to x - z \implies x - z \in Z. \text{ Tudíž } x = z + x - z \implies P_y x = z. \text{ Tudíž } (x,z) = (x,P_y x) \in \text{graf } P_y \\ \\ \square \\ \end{array}$

10 Spektrální teorie (zejména) kompaktních operátorů

Tvrzení 10.1

Nechť X je Banachův prostor a $T \in \mathcal{L}(X)$. Pak T je invertibilní, právě když T je bijekce.

 $D\mathring{u}kaz$

 \Rightarrow " $TS = id \implies T$ je na, $ST = id \implies T$ je prosté.

"⇐": Plyne z důsledku výše.

Tvrzení 10.2

Nechť X je Banachův prosotr.

• Pokud $T \in \mathcal{L}(X)$ a ||T|| < 1, pak $\mathrm{id}_X - T$ je invertibilní a platí $(\mathrm{id}_X - T)^{-1} = \sum_{n=0}^{\infty} T^n$.

• Pokud je T invertovatelný a $||S-T|| < \frac{1}{||T||-1}$, pak S je invertovatelný a $S^{-1} = T^{-1} \sum_{n=0}^{\infty} (\operatorname{id} -ST^{-1})^n$. Speciálně, množina všech invertibilních operátorů v $\mathcal{L}(X)$ je otevřená.

1. bod: máme $\sum_{n=0}^{\infty} ||T^n|| \leq \sum_{n=0}^{\infty} ||T||^n = \frac{1}{1-||T||} \implies \sum_{n=0}^{\infty} T^n \in \mathcal{L}(X)$. Zároveň

$$\forall x \in X : \left((\mathrm{id} - T) \circ \sum_{n=0}^{\infty} T^n \right) (x) = \lim_{N \to \infty} \sum_{n=0}^{\infty} (T^n - T^{n+1})(x) = \lim_{n \to \infty} (x - T^{n+1}(x)) = x.$$

Analogicky $\sum_{n=0}^{\infty} T^n \circ (id - T) = id_X$.

2. bod: Idea: $\frac{1}{S} = \frac{1}{S - T + T} = \frac{1}{T(T^{-1}(S - T) + id)}$.

Důkaz: Platí

$$S = S - T + T = T(T^{-1}(S - T) + id) = T(id - T^{-1}(T - S))$$

T má inverz, člen za mínus má normu menší 1, tedy id mínus on má inverz dle 1. bodu, tedy S^{-1} existuje a

$$S^{-1} = \left(\sum_{n=0}^{\infty} (T^{-1}(T-S))^n\right) \circ T^{-1} = \left(\sum_{n=0}^{\infty} (\operatorname{id} - T^{-1}S)^n\right) \circ T^{-1} = T^{-1} \circ \left(\sum_{n=0}^{\infty} (\operatorname{id} - ST^{-1})^n\right).$$

Definice 10.1 (Vlastní číslo, vlastní prostor, vlastní vektory, bodové spektrum, spektrum operátoru)

Nechť X je normovaný lineární prostor nad \mathbb{K} a $T \in \mathcal{L}(X)$. Číslo $\lambda \in \mathbb{K}$ nazýváme vlastním číslem operátoru T, pokud $\operatorname{Ker}(\lambda I - T) \neq \{0\}$, tj. pokud $T(x) = \lambda x$ pro nějaké $x \in X$, $x \neq 0$. Prostor $\operatorname{Ker}(\lambda I - T)$ pak nazýváme vlastním prostorem příslušným číslu λ . Nenulové prvky vlastního prostoru příslušného číslu λ se nazývají vlastní vektory příslušné číslu λ . Množina všech vlastních čísel operátoru T se nazývá bodové spektrum operátoru T a značí se $\sigma_p(T)$.

Spektrum operátoru T je množina všech čísel $\lambda \in \mathbb{K}$, pro která operátor $\lambda I - T$ není invertibilní. Spektrum operátoru T značíme $\sigma(T)$.

Věta 10.3

Nechť X je Banachův nad \mathbb{K} a $T \in \mathcal{L}(x)$. Pak $\sigma(T)$ je kompaktní podmnožina \mathbb{K} splňující $\sigma(T) \subset B_x(0,||T||)$. Je-li X komplexní, pak $\sigma(T)$ je neprázdné.

 $D\mathring{u}kaz$

$$,\!\!\!/\sigma(T)\subset B(0,||T||)\text{``: Pokud }|\lambda|>||T||,\,\mathrm{pak}\;(\lambda I-T)=\lambda(I-\frac{I}{\lambda})\implies(\lambda I-T)^{-1}\;\mathrm{existuje}.$$

" $\sigma(T)$ uzavřená": $\mathbb{K} \setminus \sigma(T)$ je otevřená podle tvrzení výše bod 2.

Důkaz druhé části vynechán (těžký a je potřeba Komplexka).

Věta 10.4

Nechť X je Banachův prostor a $T \in \mathcal{L}(X)$. Pak $\sigma(T^*) = \sigma(T)$. Navíc, pokud je X Hilbertův, pak $\sigma(T^*) = \overline{\sigma(T)}$.

 $D\mathring{u}kaz$

L

Plyne z toho, že S^{-1} existuje $\Leftrightarrow (S^*)^{-1}$ existuje a

$$(\lambda I - T)^* = \lambda I - T^*, \qquad (\lambda I - T)^* = \lambda I - T^*.$$

Věta 10.5

Nechť X je Banachův prostor a $T \in \mathcal{K}(X)$.

- 1. Jestliže $\operatorname{Rng}(T)$ je uzavřený, pak $\operatorname{dim} \operatorname{Rng}(T) < \infty$.
- 2. Jestliže dim $X = \infty$, pak $0 \in \sigma(T)$
- 3. Jestliže $\lambda \in \mathbb{K} \setminus \{0\}$, pak dim $\operatorname{Ker}(\lambda I T) < \infty$ a $\operatorname{Rng}(\lambda I T)$ je uzavřený.

Banach

- 1. Máme $T: X \to \overline{\operatorname{Rng} T}$ je na. Z věty o otevřeném zobrazení $\overline{T(B_X)}_{\operatorname{relativně kompaktní}} \supseteq \mathcal{U}(\mathbf{o}, r) \cap \operatorname{Rng} T \implies B(\mathbf{o}, r) \cap \operatorname{Rng} T$ je kompaktní $\Longrightarrow \dim \operatorname{Rng} T < \infty$ (je v něm kompaktní koule, tak musí být kompaktní).
- $2. \ 0 \notin \sigma(T) \implies \exists T^{-1} \implies \mathrm{id} = T \circ T^{-1} \in \mathcal{K}(x)$. Tedy B_X je kompakt, a tudíž $\dim X < \infty$.
- 3. První krok "dim Ker $(\lambda I-T)<\infty$ ": BÚNO $\lambda I-T$ není prostý. Na Ker $(\lambda I-T)$ máme $T=\lambda I$. Uvažujme $T|_{\mathrm{Ker}(\lambda I-T)}$, to je kompaktní operátor.

$$\implies \overline{T(\operatorname{Ker}(\lambda I - T) \cap B_x)} = \overline{\lambda(\operatorname{Ker}(\lambda I - T) \cap B_x)} = \lambda(\operatorname{Ker}(\lambda I - T) \cap B_x)$$

 $\implies \operatorname{Ker}(\lambda I - T)$ je konečnědimenzionální.

Druhý krok: Tedy $\exists Z \subset X$ uzavřený, že $X = \operatorname{Ker}(\lambda I - T) \oplus_t Z$. Polož $S = (\lambda I - T)|_Z$. Pak S je prostý (tam kde není prosté, tak jsme v druhé souřadnici), $\operatorname{Rng} S = \operatorname{Rng}(\lambda I - T)$ ("⊆" zřejmě, "⊇":

$$\forall x \in X : (\lambda I - T)x = (\lambda I - T)(\underbrace{y}_{\text{Ker}(\lambda I - T)} + \underbrace{z}_{Z}) = Sz$$

). Zbývá "S je izomorfismus" (pak Rng S je uzavřený): Ať ne, pak $\exists (x_n)_{n=1}^{\infty}$ v \mathcal{S}_Z , že $||Sx_n|| \to 0$. Protože T je kompaktní, existuje $(n_k) \nearrow$ a $x \in X : T(x_{n_k}) \to x \in X$. Pak ale $\lambda x_{n_k} = (\lambda I - T)(x_{n_k}) + T(x_{n_k}) \to X$. Tedy $S(x_{n_k}) \to S(\frac{x}{\lambda}) \implies x = 0$, ale $||\lambda x_{n_k}|| = |\lambda| \to ||x|| = 0$, nebo $S(x_{n_k}) \to 0$.

Věta 10.6 (Fredholmova alternativa)

Nechť X je Banachův prostor nad \mathbb{K} , $T \in \mathcal{K}(X)$ a $\lambda \in \mathbb{K} \setminus \{0\}$. Pak operátor $\lambda I - T$ je na, právě když je prostý.

 $D\mathring{u}kaz$

" \Longrightarrow ": Pro spor předpokládejme, že S je prosté, ale není na. Polož $S = \lambda I - T$, $X_0 := X$, $X_{n+1} := S(X_n)$. Pak $X_{n+1} \subsetneq X_m$ (dokáže se indukcí) a X_n je uzavřený (dle předchozí věty bodu 3. Rng S je uzavřený, tedy $S: X \to \operatorname{Rng} S$ je prostý a na, tj. S je izomorfismus).

Z lemmatu o skoro kolmici najdeme $(x_n)_{n=1}^{\infty}$ posloupnost ve sféře, že $d(x_n, X_{n+1}) \ge \frac{1}{2}$, $n \in \mathbb{N}$. Pak pro m < n:

$$T(x_n) - T(x_m) = \overbrace{\lambda x_n}^{X_n} - \overbrace{\lambda x_m}^{X_{n+1}} - \overbrace{Sx_n}^{\in X_{n+1}} + \overbrace{Sx_m}^{\in X_{n+1}}.$$

Polož ? = $\lambda x_n - Sx_n + Sx_n \in X_{m+1}$. Pak

$$||T(x_n) - T(x_m)|| = |\lambda| \cdot ||x_m - \frac{?}{\lambda}|| \ge |\lambda| d(x_m, X_{m+1}) \ge \frac{|\lambda|}{2} > 0.5$$

"
 ":
$$\lambda I - T$$
 je na \Longrightarrow (z nějaké předchozí věty) ($\lambda I - T$)* = $\lambda I - T$ * je prostý
 $\Longrightarrow \lambda I - T$ * je na $\Longrightarrow \operatorname{Ker}(\lambda I - T) = (X^*)_{\perp} = \{0\} \Longrightarrow \lambda I - T$ je prostý. \square

Dusledek

Nechť X je Banachův prostor a $T \in \mathcal{K}(X)$. Pak $\sigma(T) \subset \{0\} \cup \sigma_p(T)$.

Lemma 10.7

Nechť X je normovaný lineární prostor a $T \in \mathcal{L}(X)$. Jsou-li $\lambda_1, \ldots, \lambda_n$ různá vlastní čísla operátoru T a $x_1, \ldots, x_n \in X$ vlastní vektory příslušné číslům $\lambda_1, \ldots, \lambda_n$, pak jsou tyto vektory lineárně nezávislé.

 $D\mathring{u}kaz$

n=1 jasné, " $n \implies n+1$ ": At $x_1, \ldots, x_{n+1} \in X$ jsou vlastní vektory příslušné vlastním číslům $\lambda_1, \ldots, \lambda_{n+1} \in \mathbb{K}$. At $\sum_{i=1}^{n+1} \alpha_i x_i = 0$. Pak $0 = T(\sum_i \alpha_i x_i) - \lambda_{n+1}(\sum_i \alpha_i x_i) = \sum_i \alpha_i (\lambda_i - \lambda_{n+1}) x_i = \sum_{i=1}^n \alpha_i (\lambda_i - \lambda_{n+1}) x_i \implies \alpha_i = 0, i \le n \implies \alpha_{n+1} = 0$.

Věta 10.8

Nechť X je normovaný lineární prostor nad \mathbb{K} a $T \in \mathcal{K}(X)$. Pak pro každé r > 0 je množina $\sigma(T) \cap \{\lambda \in \mathbb{K} | |\lambda| > r\}$ konečná.

Pro spor ať ne. Tj. $\exists r > 0 \ \exists (\lambda_n)_{n=1}^{\infty}$ po dvou různých λ_n , $|\lambda_n| > R$, $\lambda_n \in \sigma(T)$. Ať x_n je vlastní vektor příslušný λ_n . Položme X_n span $\{x_1, \ldots, x_n\}$. Pak dle předchozího lemmatu $X_1 \subsetneq X_2 \subsetneq X_3 \subsetneq \ldots$

Z lemmatu o skoro kolmici najdeme $(z_n)_{n=2}^{\infty}$, že $z_n \in S_{X_n} \wedge d(z_n, X_{n-1}) \geq \frac{1}{2}$. At $z_n = \sum_{i=1}^n \alpha_i x_i$, pak $T(z_n) = \sum_i \alpha_i \lambda_i x_i$, $\lambda_n z_n - T(z_n) = \sum_i d_i (\lambda_i - \lambda_n) x_i = \sum_i^{n-1} \ldots \in X_{n-1}$. Tedy

$$\forall m > n : ||T(z_m) - T(z_n)|| = ||\lambda_m z_m - (\underbrace{\lambda_m z_m - T(z_m)}_{\in X_{m-1}} + T(z_n))|| = ||T(z_m) - T(z_m)|| = ||T(z_m) - T(z_m)$$

$$= |\lambda_m| \cdot ||z_m - \frac{\dots}{\lambda_m}|| \ge \frac{R}{2} > 0.$$

Tedy jsme nalezli $\frac{R}{2}$ separovanou množinu, tedy T není kompaktní. 4.

Důsledek

Nechť X je nekonečněrozměrný Banachův prostor a $T \in \mathcal{K}(X)$. Potom $\sigma(T) = \{0\} \cup \{\lambda_n\}$, kde $\{\lambda_n\}$ je posloupnost, která je buď konečná, nebo nekonečná a konvergující k 0, a je tvořena nenulovými vlastními čísly operátoru T, přičemž každé z nich má konečněrozměrný vlastní podprostor.

Věta 10.9 (Druhá Fredholmova věta)

Necht X je Banachův prostor nad \mathbb{K} , $T \in \mathcal{K}(X)$ a $\lambda \in \mathbb{K} \setminus \{0\}$. Pak

$$\operatorname{Rng}(\lambda I_X - T) = (\operatorname{Ker}(\lambda I_{X^*} - T^*))_{\perp},$$

$$\operatorname{Rng}(\lambda I_{X^*} - T^*) = (\operatorname{Ker}(\lambda I_X - T))^{\perp}.$$

 $D\mathring{u}kaz$

Bez důkazu

Věta 10.10 (Třetí Fredholmova věta)

Nechť X je Banachův prostor, $T \in \mathcal{K}(X)$ a $\lambda \in \mathbb{K} \setminus \{0\}$. Pak

$$\dim \operatorname{Ker}(\lambda I_X - T) = \operatorname{codim} \operatorname{Rng}(\lambda I_X - T) = \dim \operatorname{Ker}(\lambda I_{X^*} - T^*) =$$

$$= \operatorname{codim} \operatorname{Rng}(\lambda I_{X^*} - T^*) < \infty.$$

 $D\mathring{u}kaz$

Bez důkazu

Definice 10.2 (Numerický range operátoru)

Nechť H je Hilbertův prostor a $T \in \mathcal{L}(H)$. Množina $N_T = \{\langle Tx, x \rangle | x \in S_H \}$ se nazývá numerický range operátoru T.

Tvrzení 10.11

Nechť H je Hilbertův prostor a $T \in \mathcal{L}(H)$.

- 1. $N_{\alpha I+\beta T}=\alpha+\beta N_T$ pro libovolná $\alpha,\beta\in\mathbb{K}$.
- 2. $\sigma_p(T) \subset N_T \subset B_{\mathbb{K}}(0,||T||)$.
- 3. $\sigma(T) \subset \overline{N_T}$.

 $D\mathring{u}kaz$

- 1. $\forall x \in S_H L \langle (\alpha I + \beta T) x, x \rangle = \alpha \langle x, x \rangle + \beta \langle Tx, x \rangle = 1 + \beta \langle Tx, x \rangle.$
 - 2. $\sigma_P(T) \subseteq N_T$: At TODO $\implies \exists x_0 \in S_H : \lambda x_0 = Tx$.

$$=\langle Tx_0, x_0\rangle = \langle \lambda x_0, x_0\rangle = \lambda$$

- 3. Ať $\lambda \in \sigma(T) \setminus \sigma_z(T)$. 1. případ: Ať $\lambda I T$ je isomorfismus do (a ne na), pak $\operatorname{Rng}(\lambda I T) \subsetneq H$ je uzavřený podprostor $\Longrightarrow \exists x \in S_H \cap (\operatorname{Rng}(\lambda I T))^{\perp}$, speciálně $0 = \langle \lambda x Tx, x \rangle = \lambda \langle Tx, x \rangle \Longrightarrow \lambda \in N_T$.
- 2. případ: $\lambda I-T$ není izomorfismus, pak $\lambda I-T$ není sdola omezený, ted $\exists (x_n)$ v S_H , že $(\lambda I-T)(x_n)\to 0$, pak

$$|\lambda - \langle Tx_n, x_n \rangle| = |\langle \lambda x_n - Tx_n, x_n \rangle|$$

Definice 10.3 (Samoadjungovaný operátor)

Nechť H je Hilbertův prostor a $T \in \mathcal{L}(H)$. Řekneme, že T je samoadjungovaný, pokud $T = T^{\bigstar}$.

Věta 10.12

Nechť H je netriviální Hilbertův prostor a $T \in \mathcal{L}(H)$. Pak T je samoadjungovaný, právě $když\langle Tx,y\rangle = \langle x,Ty\rangle$ pro každé $x,y\in H$. Pro T samoadjungovaný platí následující tvrzení:

- $\langle Tx, x \rangle \in \mathbb{R}, \forall x \in H.$
- $N_T \subset \mathbb{R}$ a označíme-li $m_T = \inf N_T$, $M_T = \sup N_T$, pak $||T|| = \max \{|m_T|, |M_T|\}$ a $\{m_T, M_T\} \subset \sigma(T) \subset [m_T, M_T]$, a tedy číslo ||T|| nebo -||T|| leží v σ_T .

 $D\mathring{u}kaz$

První bod: Víme $\forall x \in H : \langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$. Tedy $\langle Tx, x \rangle \in \mathbb{R}$.

Druhý bod: Položme $M = \sup\{|x||\lambda \in N_T\}$. Chceme ||T|| = M. " \geq ": $\forall x \in S_H$: $|\langle Tx, x \rangle| \leq ||T||$, " \leq ": Pro $x, y \in H$ polož $S(x, y) := \langle Tx, y \rangle$. Pak platí

$$\Re S(x,y) = \frac{1}{4} \left(S(x + y, x + y) - S(x - y, x - y) \right)$$

Neboť (pravou stranu tupě rozepíšeme dostaneme to, co na levé:)

$$LS = \frac{1}{2}(S(x,y) + \overline{S(x,y)}) = \frac{1}{2}(\langle Tx, y \rangle + \langle Ty, x \rangle).$$

Zvol $x \in S_H$, chceme " $||Tx|| \le M$ ": BÚNO $Tx \ne 0$. Položme $y = \frac{Tx}{||Tx||} \in S_H$. Pak $||Tx|| = \langle Tx, y \rangle = S(x, y) = |\Re S(x, y)| \le \frac{1}{4}(|S(x + y, x + y)| + |S(x - y, x - y)|) \le \frac{1}{4}M(||x + y||^2 + ||x - y||^2) = \frac{1}{2}M(||x||^2 + ||y||^2) = M$.

Tedy $||T|| = \sup\{|\lambda||\lambda \in N_T\} = \max\{m_T, M_T\}$ (Jelikož $A \subseteq \mathbb{R}$ je omezená $\Longrightarrow \sup\{|\lambda|| \lambda \in A\} = \max\{|\inf A|, TODO\}$).

A tedy $\sigma(T) \subseteq \overline{N_T} \subseteq [m_T, M_T]$. Zbývá " $\{m_T, M_T\} \subseteq \sigma(T)$ ": Polož $R = T - m_T I$. Pak $R = R^*$, $N_R = N_T - m_T$, tedy $M_R = M_T - m_T \ge 0 = m_R \implies ||R|| = M_R$. Zvol $(x_n)_{n=1}^{\infty}$ z S_H , že $\langle Rx_n, x_n \rangle \to ||R|| = M_R$. Chceme "||R||I - R není izomorfismus": Máme $||(||R||)x_n - Rx_n||^2 = ||R||^2||x_n||^2 + ||Rx_n||^2 + 2\Re \langle -Rx_n, ||R||x_n \rangle \le 2(||R||^2 - ||R||\Re \langle Rx_n, x_n \rangle) = 2||R|| \cdot (||R|| - \langle Rx_n, x_n \rangle) \to 0$. Tedy ||R||I - R není zdola omezený.

Tedy $M_R = ||R|| \in \sigma(R)$. Pak $M_T \in \sigma(T)$ (neboť máme $M_T I - T = (m_T + M_R)I - (m_T I + R) = M_R I - R$ nemá inverz).

Zbývá " $m_T \in \sigma(T)$ ": Máme $N_T = -N_T$, tedy $m_T = \inf N_T = -(\sup(-N_T)) = -M_{-T}$. $-M_{-T}$ je ve spektru (dle již dokázané části), tedy máme $m_T I - T = (-M_{-T} I - T) = -(M_{-T} I - (-T))$ nemá inverz, tedy $m_T \in \sigma(T)$.

Definice 10.4 (Invariantní zobrazení)

Nechť A je množina a $f:A\to A$ je zobrazení. Množina $B\subset A$ se nazývá invariantní vůči f, pokud $f(B)\subset B$, tj. $f|_B:B\to B$.

Lemma 10.13

Nechť H je Hilbertův prostor a označme

$$SA(H) = \{ T \in \mathcal{L}(H) | T = T^* \}.$$

Pak pro $T \in SA(H)$ platí následující tvrzení:

1. $\lambda \in \sigma_p(T)$ právě tehdy, když $\sigma_p(T^*)$. Vlastní prostor T příslušný vlastnímu číslu λ je

shodný s vlastním prostorem T^{\star} příslušným vlastnímu číslu $\overline{\lambda}$.

- 2. Pokud λ_1, λ_2 jsou různá vlastní čísla T, pak $\operatorname{Ker}(\lambda_1 I T) \perp \operatorname{Ker}(\lambda_2 I T)$.
- 3. Pokud $\sigma(T) = \{0\}$, pak T = 0.
- 4. $Y \in H$ uzavřený podprostor invariantní vůči T a $T^* \implies T|_Y$ je samoadjungovaný.

Důkaz

- 1. Pro $T = T^*$ je $\sigma(T) \subseteq \mathbb{R}$ a tedy to je trivialita.
- 2. At $x_1 \in \text{Ker}(\lambda_1 I T)$, $x_2 \in \text{Ker}(\lambda_2 I T)$, pak $\lambda_1 \langle x_1, x_2 \rangle = \langle Tx_1, x_2 \rangle = \langle x_1, Tx_2 \rangle = \overline{\lambda_2} \langle x_1, x_2 \rangle$. Tedy $\langle x_1, x_2 \rangle = 0$.

- 3. Plyne ihned z předchozí věty 2. bod.
- 4. $\forall x, y \in Y \text{ máme } \langle Tx, y \rangle = \langle x, Ty \rangle$.

Věta 10.14 (Spektrální rozklad samoadjungovaného kompaktního operátoru (D. Hilbert (1904), Erhard Schmidt (1907)))

Nechť H je netriviální Hilbertův prostor a $T \in \mathcal{K}(H)$ je samoadjungovaný. Pak existuje ortonormální báze B prostoru H tvořená vlastními vektory T. Vektorů z B příslušných nenulovým vlastním číslům T je spočetně mnoho, a seřadíme-li je libovolně do prosté posloupnosti $\{e_n\}_{n=1}^N$, $N \in \mathbb{N} \cup \{\infty\}$, pak $\{e_n\}$ je ortonormální báze $\overline{\operatorname{Rng} T}$ a pro každé $x \in X$ je

$$Tx = \sum_{n=1}^{N} \lambda_n \langle x, e_n \rangle e_n,$$

 $kde \lambda_n$ je vlastní číslo příslušné vlastnímu vektoru e_n .

Důkaz (Jen za pomoci minulého lemmatu)

At B je sjednocením ON bází vlastních podprostorů. Označíme $Y = \overline{\text{span}}B$. Chceme ${}_{n}Y^{\perp} = \{0\}^{n}: 1$. krok: Y je invariantní vůči T a T^{\bigstar} . At $e_{n} \in B$, pak $T(e_{n}) = \lambda_{n}e_{n} \in Y$, $T^{\bigstar}(e_{n}) = \overline{\lambda_{n}}e_{n} \in Y \implies T(\overline{\text{span}}(e_{n})) \subseteq Y$.

2. krok: Y^{\perp} je invariantní vůči T a T^{\bigstar} . At $Z \in Y^{\perp}$, pak

$$\forall y \in Y : \langle Tz, y \rangle = \langle z, T^*y \rangle = 0, \qquad \langle T^*z, y \rangle = \langle z, Ty \rangle = 0.$$

Dle 1. bodu minulého lemmatu $T|_{Y^{\perp}}$ je samoadjungovaný a kompaktní. Navíc $\sigma_P(T|_{Y^{\perp}}) = \emptyset \implies T|_{Y^{\perp}} = 0.$

3. krok:
$$Y^{\perp} \subseteq \operatorname{Ker} T \subseteq Y \implies Y^{\perp} = Y^{\perp} \cap Y = \{0\}.$$

11 Konvoluce funkcí a Fourierova transformace

Definice 11.1

Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d a $f,g:\mathbb{R}^d\to\mathbb{K}$. Konvoluce funkce f s funkcí g je funkce f*g definovaná jako

$$(f * g)(x) = \int_{\mathbb{R}^d} f(y)g(x - y)d\mu(y)$$

pro taková $x \in \mathbb{R}^d$, pro která integrál konverguje.

Věta 11.1

Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d a $f, g, h : \mathbb{R}^d \to \mathbb{K}$.

- 1. Operace * je komutativní (funkce $f * g \ a \ g * f \ mají stejný definiční obor a jsou si na něm rovny).$
- 2. Operace * je distributivní vzhledem ke sčítání ((f+g)*h=f*h+g*h na definičních oborech pravých stran).

Důkaz

1.
$$(f * g)(x) = C \int f(y)g(x - y)dy = C \int f(x - z)g(z)dz = (g * f)(x)$$
.

2.
$$(f * (g+h))(x) = C \int f(y)(g+h)(x-y)d\lambda^d(y) =$$

$$= C\left(\int_{\mathbb{R}^d} f(y)g(x-y)d\lambda^d(y) + \int_{\mathbb{R}^d} f(y)h(x-y)d\lambda^d(y)\right) = (f*g)(x) + (f*h)(x)$$

$$(f+g)*h = h*(f+h) = h*f+h*g = f*h+g*h.$$

Lemma 11.2

Necht μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d a $f, g \in L_1(\mu)$. Položíme-li F(x, y) = f(y)g(x-y) pro $x, y \in \mathbb{R}^d$, pak $L_1(\mu \times \mu)$ a $||F||_1 = ||f||_1 \cdot ||g||_1$.

 $D\mathring{u}kaz$

$$\int \int |F(x,y)| d(\mu \times \mu)(x,y) = \int |f(y)| \int |g(x-y)| dxdy = \int |f(y)| \cdot ||g||_1 dy =$$

$$= ||f(y)||_1 \cdot ||g||_1.$$

Definice 11.2 (Posun)

Nechť $f: \mathbb{R}^d \to \mathbb{K}$ a $y \in \mathbb{R}^d$. Pak definujeme posun funkce f do bodu y jako funkci $\tau_y f: \mathbb{R}^d \to \mathbb{K}$ danou předpisem $\tau_y f(x) = f(x-y)$ pro $x \in \mathbb{R}^d$.

Věta 11.3

Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d a $f \in L_p(\mu)$, $1 \leq p < \infty$. Pak zobrazení $\tau : \mathbb{R}^d \to L_p(u)$ dané předpisem $\tau(x) = \tau_x f$ je stejnoměrně spojité.

Důkaz

$$\tau_x f \in L_p : \int |\tau_x f(y)|^p dy = \int |f(x-y)|^p dy = \int |f(z)|^p dz \implies ||\tau_x f||_p = ||f||_p.$$

Zvol $\varepsilon > 0$, $f \in L_p$. At $g \in \mathcal{L}_C(\mathbb{R}^d)$, že $||f - g||_p < \frac{\varepsilon}{3}$. At B = B(0, r), že $\overline{g \neq 0} \subseteq B(0, r - 1)$ (pro nějaké r > 1). Protože g je stejnoměrně spojitá na B,

$$\exists \sigma \in (0,1) \ \forall x, y \in \mathbb{R}^d : ||x - y|| < \delta \implies |g(x) - g(y)| < \varepsilon'.$$

Af $x, y \in \mathbb{R}^d$, $||x - y|| < \delta$. Pak

$$||\tau_x f - \tau y f||_p \le ||\tau_y (f - g)|| + ||\tau_y g - \tau_x g|| + ||\tau_x (g - f)|| \le \frac{\varepsilon}{3} + ||\tau_y f - \tau_x g|| + \frac{\varepsilon}{3}.$$

$$||\tau_x g - \tau_y g||_p^p = \int |g(t-x) - g(t-y)|^p dt = \int |g(z) - g(z+x-y)|^p dz =$$

(Jelikož pokud $g(z) \neq 0,$ pak $z+x-y \in B(0,r-1+1) = B.$ Obdobné pro $g(z+\ x-y).)$

$$= \int_{B} g(z) - g(z + x - y)|^{p} dz \le (\varepsilon')^{p} \cdot \mu(B) \le \frac{\varepsilon}{3},$$

pokud ε' zvolíme jako $\sqrt[p]{\frac{\varepsilon}{3\mu(B)}}$.

Věta 11.4

Nechť mu je kladným násobkem Lebesgueovy míry na \mathbb{R}^d a $f, g : \mathbb{R}^d \to \mathbb{K}$.

- 1. Je-li $f \in L_p(\mu)$ a $g \in L_q(\mu)$, kde $1 \le p, q \le \infty$ jsou sdružené exponenty, pak funkce f * g je definována v každém bodě \mathbb{R}^n , je stejnoměrně spojitá a omezená a platí $||f * g||_{\infty} \le ||f||_p ||g||_q$.
- 2. Je-li $f \in L_1^{loc}(\mu)$ s jestliže $g \in L_{\infty}(\mu)$ má kompaktní nosič, pak funkce f * g je definována v každém bodě \mathbb{R}^d , je spojitá a platí supp $f * g \subset \text{supp } f + \text{supp } g.^a$
- 3. Jsou-li f, d měřitelné, $D \subset \mathbb{R}^d$ měřitelná a f * g je definována alespoň na D, pak f * g je měřitelná na D.

4. Jsou-li $f, g \in L_1(\mu)$, pak f * g je definovaná μ -skoro všude na \mathbb{R}^d , $f * g \in L_1(\mu)$ a platí $||f * g||_1 \leq ||f||1 \cdot ||g||_1$.

1. $\forall x \in \mathbb{R}^d : |f * g(x)| \le \int |f(y)g(x-y)| dy \le ||f||_p \cdot ||g||_q$ z Höldera, pokud $p \ne 1, \infty$, $\le ||g||_{\infty} \int |f(y)| dy = ||g||_{\infty} ||f||_1$, pokud p = 1 a analogicky, pokud $p = \infty$.

Tedy f * g je definována všude a $||f + g||_{\infty} \le ||f||_p \cdot ||g||_q$. Zbývá "f * g je stejnoměrně spojitá": máme $(h(t) := g(-t), \tau$ jsou správně posuny) pro $p \ne 1$:

$$|(f * g)(x) - (f * g)(y)| = \left| \int_{\mathbb{R}^d} f(z)(g(x-z) - g(y-z))dz \right| \le$$

$$\leq \int_{\mathbb{R}^d} |f(z)(h(z-x) - h(z-y))| dz \leq ||f||_p \cdot ||\tau_x h - \tau_y h||_q.$$

Dle předchozí věty je f*g stejnoměrně spojitá $(p \neq 1)$. Pro p=1 můžeme použít komutativitu a prohodit p a q.

2. Máme

$$|(f*g)(x)| \leq \int |f(y)g(x-y)| dy = \int_{y \in x-K} |f(y)| \cdot |g(x-y)| dy \leq ||g||_{\infty} \int_{y \in x-K} |f(y)| dy < \infty$$

 $\implies f * g$ je definovaná všude.

Supporty: At $x \notin \overline{\{f \neq 0\}} + \overline{\{g \neq 0\}}$ pak $(f*g)(x) = \int f(y)g(x-y)dy = \int_{f\neq 0} f(y)g(x-y)dy = \underbrace{\int_{f\neq 0} f(y)g(x-y)dy}_{\{f \neq 0\}} = 0$. Tedy $\underbrace{\{f * g \neq 0\}}_{\{f \neq 0\}} + \underbrace{\{g \neq 0\}}_{\{g \neq 0\}}$, tudíž (vpravo je kompakt) $\underbrace{\{f * g \neq 0\}}_{\{g \neq 0\}} \subset \underbrace{\{f \neq 0\}}_{\{g \neq 0\}}$

Spojitost: At x dáno, $y \in B(x,1)$. Pak $(h(z) = (\xi_{B(x,1)-K}f)(-z), \tau$ jsou správné posuny)

$$|(f * g)(x) - (f * g)(y)| = \left| \int_{K} g(z)(f(x - z) - f(y - z))dz \right| =$$

$$= \left| \int_{K} g(z)(\tau_{x}h(z) - \tau_{y}(h(z)))dz \right| \le ||g||_{\infty} \cdot ||\tau_{x}h - \tau_{y}h||_{1}.$$

To je stejnoměrně spojitý a z toho již plyne spojitost (f * g) (v bodě x).

3. Vynechán. 4. (nemusí být ke zkoušce): F(x,y) = f(y)g(x-y). Dle lemmatu výše je $F \in L_1(\mu \times \mu), ||F|| = ||f|| \cdot ||g||$.

$$\infty > \int_{\mathbb{R}^d} F = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(y)g(x-y)dydx \implies |(f*g)(x)| < \infty \text{ skoro všude.}$$

Dále
$$||f * g||_1 \le \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |F(x, y)| dy dx = ||f|| \cdot ||g||.$$

$$L_1^{loc} \equiv \forall x \in \mathbb{R}^d \ \exists B(x,r) : \int_{B(x,r)} (f) < \infty$$

$$\Leftrightarrow \forall K \subset \mathcal{R}^d \text{ kompaktn} : \int_K |f| < \infty.$$

Definice 11.3 (Multiindex)

Nechť $d \in \mathbb{N}$. Pak $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{N}_0^d$ nazýváme multiindexem délky d. Řádem multiindexu α nazýváme číslo $\sum_{i=1}^d \alpha_j$ a značíme jej $|\alpha|$.

Je-li α multiindex délky d, pak symbolem D^{α} označíme parciální derivaci řádu $|\alpha|$ danou multiindexem α , tj.

$$D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}.$$

Symbol D^{α} se též nazývá diferenciální operátor.

Definice 11.4 (Prostor testovacích funkcí)

Nechť $A \subset \mathbb{R}^d$. Množina

$$D(A,\mathbb{K}) = \left\{ \varphi \in C^{\infty}(\mathbb{R}^d,\mathbb{K}) | \text{ supp } \varphi \text{ je kompaktní podmnožina } A \right\}$$

se nazývá prostor testovacích funkcí na A.

Věta 11.5

Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d a $f,g:\mathbb{R}^d\to\mathbb{K}$. Je-li $f\in L_1^{loc}(\mu)$ a $g\in D(\mathbb{R}^d)$, pak $f*g\in C^\infty(\mathbb{R}^d)$ a $D^\alpha(f*g)=f*D^\alpha g$ pro každý multiindex α délky d.

 $D\mathring{u}kaz$

1. Víme $f*D^{\alpha}g$ je spojitá pro každé α dle předchozí věty bod 2. Tedy stačí $D^{\alpha}(f*g) = f*D^{\alpha}g$. To dokážeme indukcí podle $|\alpha| = k$: Pro k = 1 zafixujme $x \in \mathbb{R}^d$, $j \in [d]$. $\varphi(t) = \int_{\mathbb{R}^d} f(y)g(x + te_j - y)dy$. Pak $\varphi'(0) = \frac{\partial (f*g)}{\partial x_j}(x)$.

Chceme prohodit integrál a derivaci:

$$\left|\frac{\partial}{\partial t}F(t,y)\right| = \left|y \mapsto f(y)\frac{\partial g}{\partial x_j}(x + te_j - y)\right| \le$$

(to je nenula jen na kompaktu K)

$$\leq |\xi_K f| \cdot |\frac{\partial g}{\partial x_i}| \in L_1.$$

Ověřili jsme předpoklady o integrálu závislém na parametru, tedy

$$\varphi'(0) = \int f(y) \frac{\partial g}{\partial x_i}(x - y) dy = \left(f * \frac{\partial g}{\partial x_i}\right)(x).$$

At
$$D^{\alpha} = \frac{\partial}{\partial x_j} D^{\alpha - e_j}$$
. Pak

$$D^{\alpha}(f * g) = \frac{\partial}{\partial x_j}(f * D^{\alpha - e_j}g) = f * \frac{\partial}{\partial x_j}D^{\alpha - e_j}g = f * D^{\alpha}.$$

Definice 11.5 (Regularizační jádro)

Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d . Funkci $g: \mathbb{R}^d \to \mathbb{R}$ budeme nazývat regularizačním jádrem (vzhledem k μ), pokud g je nezáporná, $g \in L_1(\mu)$ a $||g||_1 = 1$.

Věta 11.6

Nechť μ je kladným násobkem Lebesqueovy míry na \mathbb{R}^d , g je regularizační jádro na \mathbb{R}^d a $f: \mathbb{R}^d \to \mathbb{K}$. Položme $g_n(x) = n^d g(nx)$ pro $x \in \mathbb{R}^d$ a $n \in \mathbb{N}$.

- 1. Pokud je f stejnoměrně spojitá a omezená na \mathbb{R}^d , potom $f * g_n \to f$ stejnoměrně na \mathbb{R}^d .
- 2. Pokud $f \in L_p(\mu)$ a $1 \le p < \infty$, potom $f * g_n \overline{L_p} \to f$.

Poznámka

$$\int g_n(x)dx = \int g(y)dy = 1$$

podle věty o substituci.

 $D\mathring{u}kaz$

1. $f \in L_{\infty} \implies f * g_n$ definována všude (podle předchozí poznámky a tvrzení výše). Zafixujeme $\varepsilon > 0$.

Zvolme R>0, že $\int_{B(0,R)}g>1-\frac{\varepsilon}{4||f||_{\infty}}$. Dále $\delta>0$, že $|x-x'|<\delta\implies|f(x)-f(x')|<\frac{\varepsilon}{2}$. n zvolíme tak, že $\frac{R}{n}<\delta$.

$$\forall x \in \mathbb{R}^d | (f * g_n)(x) - f(x)| = \left| \int_{\mathbb{R}^d} g_n(y) f(x - y) dy - f(x) \int_{\mathbb{R}^d} g_n(y) dy \right| \le$$

$$\leq \int_{\mathbb{R}^d} g_n(y) | f(x - y) - f(x)| dy =$$

$$= \int_{B(0, \frac{R}{n})} g_n(y) \underbrace{| f(x - y) - f(x)|}_{\frac{\varepsilon}{2}} dy + \int_{\mathbb{R}^d \setminus B(0, \frac{R}{n})} \dots dy \le$$

$$\leq \frac{\varepsilon}{2} \int_{B(0, \frac{R}{n})} n^d g(ny) dy + 2||f||_{\infty} \int_{\mathbb{R}^d \setminus B(0, \frac{R}{n})} n^d g(ny) dy =$$

$$\frac{\varepsilon}{2} \int_{B(0, R)} g(z) dz + 2||f||_{\infty} \int_{\mathbb{R}^d \setminus B(0, \frac{R}{2})} g(z) dz < \varepsilon.$$

2. Důkaz vynecháme.

Dusledek

Nechť μ je kladným násobkem Lebesgueovy míry na \mathbb{R}^d , $\Omega \subset \mathbb{R}^d$ otevřená a $1 \leq p < \infty$. Pak množina $D(\Omega)$ je hustá v prostoru $L_p(\Omega, \mu)$ (ve smyslu restrikce na Ω).

Definice 11.6

Necht $f \in L_1(\mu_d)$. Pak Fourierovou transformací funkce f rozumíme funkci $\hat{f}: \mathbb{R}^d \to \mathbb{K}$ definovanou jako

$$\hat{f}(t) = \int_{\mathbb{R}^d} f(x)e^{i\langle t, x \rangle} d\mu_d(x) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} f(x)e^{-i\langle t, x \rangle} d\lambda_d(x), \qquad t \in \mathbb{R}^d.$$

Definice 11.7

Prostorem $C_b(\mathbb{R}^d) = C_b(\mathbb{R}^d, \mathbb{K})$ rozumíme normovaný lineární prostor všech omezených spojitých funkcí na \mathbb{R}^d s normou $||f||_{\infty} = \sup_{x \in \mathbb{R}^d} |f(x)|$.

Definice 11.8

Prostorem $C_0(\mathbb{R}^d) = C_0(\mathbb{R}^d, \mathbb{K})$ rozumíme prostor spojitých funkcí na \mathbb{R}^d takových, že

pro každé $\varepsilon > 0$ je množina $\left\{ x \in \mathbb{R}^d | |f(x)| \ge \varepsilon \right\}$ omezená. Na $C_0(\mathbb{R}^d)$ uvažujeme normu $||f||_{\infty} = \sup_{x \in \mathbb{R}^d} |f(x)|$.

Poznámka

 C_b i C_0 jsou Banachovy.

Lemma 11.7 (Georg Friedrich Bernhard Riemann (1835), H. Lebesgue (1903))

 $At f \in L_1(\mu_d)$. Pak

$$\lim_{||t|| \to \infty} \int f(x)e^{-i\langle t, x \rangle} d\mu_d(x) = 0$$

 Γ Důkaz

$$\forall t \in \mathbb{R}^d \setminus \{\mathbf{o}\} : \left| \int_{\mathbb{R}^d} f(x) e^{-i\langle t, x \rangle} d\mu_d(x) \right| = \int_{\mathbb{R}^d} -f(x) e^{-i\langle t, x + \pi \frac{t}{||t||^2} \rangle} =$$

$$= \int_{\mathbb{R}^d} -f\left(u - \pi \frac{t}{||t||^2}\right) e^{-i\langle t, u \rangle} du.$$

Sečtením polovin obou stran rovnice dostaneme

$$\frac{1}{2} \left| \int_{\mathbb{R}^d} \left(f(x) - f\left(x - \pi \frac{t}{||t||^2} \right) \right) e^{-i\langle t, x \rangle} dx \right| \le \frac{1}{2} \int_{\mathbb{R}^d} \left| f(x) - f\left(x - \pi \frac{t}{||t||^2} \right) \right| dx =
= \frac{1}{2} ||\tau_0 f - \tau_P \pi \frac{t}{||t||^2} f||_1 \to 0.$$