

01. Introduction

- There are more than 100 million songs currently available on the internet.
- Classifying songs based on different attributes has become difficult over time.
- Every song have some similarity index with other songs and thus can be grouped together.
- Our end goal here is to create a recommendation system, which groups different songs based on their features, and suggest songs which belongs to the same group as user's preference.

02. Problem Statement

- Design a model which can recommend songs based on certain attributes and features.
- Create an unsupervised learning model to classify the song dataset into various different clusters.
- Create a precise recommendation model including multiple features of songs. This would be necessary to devise an accurate solution for the problem.

03. Existing body of work

- There are many approaches to design recommendation system. But they do not take into account user's preferences.
- H. Chen presented a collaborative recommendation system^[4] wherein he grouped music samples which were similar to each other and also match with user's preferences.
- Many system computes the mean of the songs preferred by the user and then recommend songs based on these values.

04. Approach

- The dataset is very diverse and there is no such feature which can be taken as a target variable.
- For this type of dataset, the best approach is to use unsupervised learning.
- In unsupervised learning, we use clustering algorithms as our end goal is to recommend songs, which can be achieved by classifying the dataset into different clusters.
- The key algorithm for our project is k-means clustering, which is an unsupervised learning algorithm that solves the clustering problem.

Trend of audio features over decades

Correlation between features:

Correlation matrix of all the audio features of the song

Elbow Method:

Performing elbow method to obtain the optimum value of K to perform k-means clustering

K-means Clustering:

Performing the K-means clustering and then applying PCA to reduce the feature space to 2-3 components for visualization.

Cluster 1 Cluster 2

06. Role of group members

Group Member	Dataset Understanding	Understanding k-means	Preprocessing dataset	Elbow Method	k-means clustering	Principal Component Analysis
Namit Shah	✓	✓		•		1
Martand Javia	✓	✓		•	•	
Suhanee Patel	1	1	✓			1
Devarsh Patel	✓	✓	✓		1	

07. Future Work

- After clustering the dataset, we will build a recommendation system where the user will enter one or more songs that he/she prefers and the system will recommend similar songs based on the clusters formed earlier.
- Add an additional feature named 'popularity' either from Spotify API, or by defining a model for predicting it.

08. References

- 1. Spotify 1.2M+ Songs | Kaggle
- 2. <u>K Means Clustering | K Means Clustering Algorithm in Python</u>

 (analyticsvidhya.com)
- 3. <u>Understanding K-Means, K-Means++ and, K-Medoids Clustering</u>
 <u>Algorithms | by Satyam Kumar | Towards Data Science</u>
- 4. H. C. Chen, A. L. P. Chen. "A music recommendation system based on music data grouping and user interests," Proc. of CIKM, pp. 231–238, 2001.

Thank You!

