



Compartment and Graph-based Models

Sara Grundel Jan Heiland

1st July, 2020

MathCoRe Seminar

Partners:



# Motivation

- Goal: Avoid outbreaks in nusery homes or hospitals.
- Constraint: Tests are expensive and unpleasant.
- Research question: What is a good testing strategie?
  - What is a good model?
  - How to quantify the costs of testing or not testing?

Joint project with Prof. Achim Kaasch<sup>1</sup> from the OVGU Medical Faculty.

<sup>1</sup>http://www.immb.ovgu.de/



1. Compartment Models and Stability Analysis

2. The SEIQRT Model and MPC

3. Graph-based Modelling and Simulation



1. Compartment Models and Stability Analysis

The SEIQRT Model and MPC

3. Graph-based Modelling and Simulation



# Compartment model SIR



$$N = S + I + R$$

$$S' = -\frac{\alpha}{N} IS$$

$$I' = \frac{\alpha}{N} IS - \gamma I$$

$$R' = \gamma I$$

 $\alpha$ : infection rate  $\gamma$ : recovery rate

### Some basic analysis:

- Conservation of mass: S' + I' + R' = 0.
- Positivity: S(0), I(0),  $R(0) \ge 0$ , then S(t), I(t),  $R(t) \ge 0$ .
- Set S(0) + I(0) + R(0) = 1, then S, I, R represent fractions of the population.



# Compartment model

In the spirit of the Susceptible-Infected-Recovered approach  $^{[1]}$  and the SIDARTHE model  $^{[2]}$ 



#### Legend

- α infection rate
- time between infection and becoming contagious
- arepsilon testing frequency of people  $\eta$  probability of developing
- η probability of developing symptoms
- testing of symptomatic with time delay of 1 day
- $\lambda$  probability of being healed
- $\xi$  recovery rate
  - death rate

W. O. Kermack, A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772):700-721, 1927

<sup>[2]</sup> G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. D. Filippo, A. D. Matteo, M. Colaneri. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine, 2020



### SIDHARTE model as ODE

$$\dot{S}(t) = -S(t)(\alpha I(t) + \beta D(t) + \gamma A(t) + \delta R(t))$$

$$\dot{I}(t) = S(t)(\alpha I(t) + \beta D(t) + \gamma A(t) + \delta R(t)) - (\varepsilon + \zeta + \lambda)I(t)$$

$$\dot{D}(t) = \varepsilon I(t) - (\eta + \rho)D(t)$$

$$\dot{A}(t) = \zeta I(t) - (\theta + \mu + \kappa)A(t)$$

$$\dot{R}(t) = \eta D(t) + \theta A(t) - (\nu + \xi)R(t)$$

$$\dot{T}(t) = \mu A(t) + \nu R(t) - (\sigma + \tau)T(t)$$

$$\dot{H}(t) = \lambda I(t) + \rho D(t) + \kappa A(t) + \xi R(t) + \sigma T(t)$$

$$\dot{E}(t) = \tau T(t)$$

#### Basic analysis:

- S' + I' + D' + A' + R' + T' + H' + E' = 0.
- Positivity, if starting value is positive.
- Consider the states (S, x, H, E), with x collecting all infected.
  - Can show: System has equilibria  $(\bar{S}, 0, \bar{H}, \bar{E})$ .
  - Can ask: Is some  $(\bar{S}, 0, \bar{H}, \bar{E})$  a stable equilibrium.

$$\dot{S}(t) = -S(t)(\alpha I(t) + \beta D(t) + \gamma A(t) + \delta R(t))$$

$$\dot{I}(t) = S(t)(\alpha I(t) + \beta D(t) + \gamma A(t) + \delta R(t)) - (\varepsilon + \zeta + \lambda)I(t)$$

$$\dot{D}(t) = \varepsilon I(t) - (\eta + \rho)D(t)$$

$$\dot{A}(t) = \zeta I(t) - (\theta + \mu + \kappa)A(t)$$

$$\dot{R}(t) = \eta D(t) + \theta A(t) - (\nu + \xi)R(t)$$

$$\dot{T}(t) = \mu A(t) + \nu R(t) - (\sigma + \tau)T(t)$$

$$\dot{H}(t) = \lambda I(t) + \rho D(t) + \kappa A(t) + \xi R(t) + \sigma T(t)$$

$$\dot{E}(t) = \tau T(t)$$

Consider the states (S, x, H, E), with x collecting all infected.

- Nonlinear only in S(t)Cx(t), with  $C = \begin{bmatrix} \alpha & \beta & \gamma & \delta & 0 \end{bmatrix}$ .
- $\blacksquare$  (H, E) do not contribute to the dynamics.



# Rewrite as Feedback Loop

With a matrix  $F \in \mathbb{R}^{5,5}$  and  $B \in \mathbb{R}^{5,1}$ , we rewrite the system as

$$\dot{x}(t) = Fx(t) + Bu(t)$$

$$\dot{S}(t) = -S(t)Cx(t)$$

$$0 = u(t) - S(t)Cx(t).$$

which is a linear system with a nonlinear feedback loop.





## **Linear Stability Analysis**

Linearize about the steady state  $\bar{S}$  and substitute  $u(t) = \bar{S}Cx(t)$ :

$$\begin{bmatrix} \dot{S}(t) \\ \dot{x}(t) \end{bmatrix} = \begin{bmatrix} 0 & -\bar{S}C \\ 0 & F + B\bar{S}C \end{bmatrix} \begin{bmatrix} S(t) \\ x(t) \end{bmatrix}$$

This system is stable in S and asymptotically stable in x

■ if, and only if

$$F + B\bar{S}C$$
 is Hurwitz,

i.e. all eigenvalues of  $F+B\bar{S}C$  have a negative real part, which, for the SIDHARTE model is the case<sup>2</sup>

if, and only if,

$$\bar{S} < S^*$$
,

with  $S^* =: \frac{1}{R_0}$  being the reciprocal of the *basic reproduction factor*.

<sup>&</sup>lt;sup>2</sup>Giordano et al. (2020)

# Interpretation of the Stability

Stability 
$$\leftrightarrow$$
  $\bar{S} < \frac{1}{R_0} \leftrightarrow R_0 \bar{S} < 1$ 

- Given a current stable steady state  $\bar{S}$ , a (small) number of infections x(t) will simply fade out exponentially.
  - The fraction  $\bar{S}$  of unaffected people does not change significantly.
- The reproduction factor  $R_0$  is a function of the model, not of the states.
  - If  $\bar{S}=1$ , then  $R_0<1$  is needed.
  - If  $\bar{S} < 1$ , then  $R_0 > 1$  can be OK.
- lacksquare Starting in an unstable state  $ar{S}$ , a pandemics will last at least until  $S(t)<rac{1}{R_0}$ .
  - With  $R_0 = 3$ , this means at least until  $S(t) = \frac{1}{3}$  or until 67% of the population has been affected.



### **Example Computations**

### Also check of sensitivity

350 people = 300 residents + 50 staff, - 1 staff is infected 5 contacts,  $\alpha = 0.15$ 

### Test every 7th day









### **Example Computations**

### Also check of sensitivity

350 people = 300 residents + 50 staff, - 1 staff is infected 5 contacts,  $\alpha = 0.15$ 

### Test every 3rd day









### **Example Computations**

### Also check of sensitivity

350 people = 300 residents + 50 staff,  $\alpha$  1 staff is infected 5 contacts,  $\alpha$  = 0.3

### Test every 3rd day









### **Our Current Research Direction**

- Applicability to small populations like a nursery home.
  - Consider models with time-delays to account for latencies directly.
- Sensitivity analysis of fitted models
  - Improve the confidence.
  - Find parameters for optimization.



1. Compartment Models and Stability Analysis

2. The SEIQRT Model and MPC

3. Graph-based Modelling and Simulation



# The SEIQRT Model

Another extension to the classic SIR model<sup>3</sup>

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\,S(t) = -\beta(t)S(t)I(t) + \mu N - \mu S(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\,E(t) = \beta(t)S(t)I(t) - (\gamma + \mu)E(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\,I(t) = \gamma E(t) - (\eta + \mu + u(t) + \tau)I(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\,Q(t) = u(t)I(t) - (\tilde{\eta} + \mu + \tau)Q(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\,R(t) = \eta I(t) - \mu R(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\,R_Q(t) = \tilde{\eta}\,Q(t) - \mu R_Q(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}\,t}\,T(t) = \tau I(t) + \tau Q(t) - \mu T(t)$$

<sup>&</sup>lt;sup>3</sup>Kurt Chudej



# The SEIQRT Model

Another extension to the classic SIR model<sup>3</sup>

$$\frac{\mathrm{d}}{\mathrm{d}t} S(t) = -\beta(t)S(t)I(t) + \mu N - \mu S(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} E(t) = \beta(t)S(t)I(t) - (\gamma + \mu)E(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} I(t) = \gamma E(t) - (\eta + \mu + u(t) + \tau)I(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} Q(t) = u(t)I(t) - (\tilde{\eta} + \mu + \tau)Q(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} R(t) = \eta I(t) - \mu R(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} R_Q(t) = \tilde{\eta} Q(t) - \mu R_Q(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} T(t) = \tau I(t) + \tau Q(t) - \mu T(t)$$

The research question is how to use the controls we have to achieve what we want!

- quarantine *u*
- lacksquare social distancing eta
- division of the society by age

<sup>&</sup>lt;sup>3</sup>Kurt Chudej



# SEIQRT model as a flow chart

Blue lines represent linear dynamics, and red lines represent quadratic dynamics.



Figure: Schematic representation of the SEIQRT model.



# SEIQRT model age compartments I

More Compartments

$$\frac{d}{dt} S_{Y}(t) = -\beta_{YY}(t)S_{Y}(t)I_{Y}(t) - \beta_{YO}(t)S_{Y}(t)I_{O}(t) + \mu N - \mu S_{Y}(t)$$

$$\frac{d}{dt} S_{O}(t) = -\beta_{OY}(t)S_{O}(t)I_{Y}(t) - \beta_{OO}(t)S_{O}(t)I_{O}(t) - \mu S_{O}(t)$$

$$\frac{d}{dt} E_{Y}(t) = \beta_{YY}(t)S_{Y}(t)I_{Y}(t) + \beta_{YO}(t)S_{Y}(t)I_{O}(t) - (\gamma_{Y} + \mu)E_{Y}(t)$$

$$\frac{d}{dt} E_{O}(t) = \beta_{OY}(t)S_{O}(t)I_{Y}(t) + \beta_{OO}(t)S_{O}(t)I_{O}(t) - (\gamma_{O} + \mu)E_{O}(t)$$

$$\frac{d}{dt} I_{Y}(t) = \gamma_{Y}E_{Y}(t) - (\eta_{Y} + \mu + u_{Y}(t) + \tau_{Y})I_{Y}(t)$$

$$\frac{d}{dt} I_{O}(t) = \gamma_{O}E_{O}(t) - (\eta_{O} + \mu + u_{O}(t) + \tau_{O})I_{O}(t)$$



# **SEIQRT** model age compartments II

#### More Compartments

$$\frac{\mathrm{d}}{\mathrm{d}t} Q_{Y}(t) = u_{Y}(t)I_{Y}(t) - (\tilde{\eta}_{Y} + \mu + \tau_{Y})Q_{Y}(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} Q_{O}(t) = u_{O}(t)I_{O}(t) - (\tilde{\eta}_{O} + \mu + \tau_{O})Q_{O}(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} R_{Y}(t) = \eta_{Y}I_{Y}(t) - \mu R_{Y}(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} R_{O}(t) = \eta_{O}I_{O}(t) - \mu R_{O}(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} R_{Y}^{Q}(t) = \tilde{\eta}_{Y}Q_{Y}(t) - \mu R_{Y}^{Q}(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} R_{O}^{Q}(t) = \tilde{\eta}_{O}Q_{O}(t) - \mu R_{O}^{Q}(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} T(t) = \tau_{Y}I_{Y}(t) + \tau_{O}I_{O}(t) + \tau_{Y}Q_{Y}(t) + \tau_{O}Q_{O}(t) - \mu T(t)$$



# **Objective Functions**

Priorities: 1) minimize people in quarantine, 2) do not exceed ICU capacity for old people  $(\bar{I}_O)$ , and 3) minimize social distancing  $(\beta^0 \sim \text{no social distancing})$ . We assume that  $\beta_{OY} = \beta_{YO}$ , i.e., old people infect young people as much as young people infect old people.

$$J_{1}(u,\beta) = \int_{t_{k}}^{t_{k}^{f}} Q_{Y}(t) + Q_{O}(t) dt$$

$$J_{2}(u,\beta) = \int_{t_{k}}^{t_{k}^{f}} \max\{0, I_{O}(t) - 0.9\bar{I}_{O}\}^{2} dt$$

$$J_{3}(\beta) = \int_{t_{k}}^{t_{k}^{f}} \max\{0, \beta_{YY}(t) - \beta^{0}\}^{2} dt$$

$$J_{4}(\beta) = \int_{t_{k}}^{t_{k}^{f}} \max\{0, \beta_{YO}(t) - \beta^{0}\}^{2} dt$$

$$J_{5}(\beta) = \int_{t_{k}}^{t_{k}^{f}} \max\{0, \beta_{OO}(t) - \beta^{0}\}^{2} dt$$

### Model predictive control

We compute the model predictive control strategy by repeatedly solving the optimal control problem

$$\min_{u,\beta} \quad \mathcal{J}(u,\beta) = \nu_1 J_1(u,\beta) + \nu_2 J_2(u,\beta) \\
+ \nu_3 J_3(\beta) + \nu_4 J_4(\beta) + \nu_5 J_5(\beta) \\
\text{s.t.} \quad \dot{x}(t) = f(x(t), u(t), \beta(t)), \quad x(t_k) = x_k^0, \\
(u(t), \beta(t)) \in [0, 1] \times [\beta, \overline{\beta}]^3 \quad \forall t \in [t_k, t_k^f],$$



Short horizon – predict 7 days into the future.





Short horizon – predict 14 days into the future.





Short horizon – predict 21 days into the future.





Longer horizon – predict 28 days into the future.





Longer horizon – predict 35 days into the future.





Longer horizon – predict 42 days into the future.





Longer horizon – predict 49 days into the future.





Longer horizon – predict 56 days into the future.





1. Compartment Models and Stability Analysis

2. The SEIQRT Model and MPC

3. Graph-based Modelling and Simulation



# The Graph Modell

The basis is a weighted graph, where each node represents a person and an edge a probability of meeting each other

- Forward in time simulation by spreading through the graph
- As in the model above we distinguish nodes that represent old and young people
- from E to I is a matter of time in this model
- quarantine measures can be implemented here as well easily by marking the node quarantine and removing the egdes or changing the edge weights
- same is true for recovery and death rates



- 100 Nodes: 20 Old and 80 Young
- Edges on the graph are random in this example
- 3 different transfer probabilies  $w_{OO}$ ,  $w_{YY}$ ,  $w_{YO}$
- an infected person becomes infectious after 6 days and no longer infectious after 20
- two simulations
  - all w the same
  - w<sub>OY</sub> much smaller



# **Toy Example Simulation Results**





# A specific Problem and a more specific graph

#### An elderly care facility

- 300 residents
- random edges between residents
- with random transfer probabilities between 0 and 0.25.



- 30 care taker and 20 other employees
- one care taker for 10 residents with a transfer probability of 0.15
- other caretaker have a transfer probability of 0.05





#### **Parameters**

- Infection probability per day from outside 0.003 (only from outside)
- test frequency: every 4,5,6 days
- test show positive result: after 4 days
- infectious after 6 days





# 3 realizations for testing every 4 days





# 3 realizations for testing every 5 days





# 3 realizations for testing every 6 days





# Overlay of 10 realizations









Prof. Worthmann, Philipp Sauerteig, Prof. Hotz



TECHNISCHE UNIVERSITÄT CHEMNITZ

Prof. Helmberg. Prof. Streif, Willam Esterhuizen, Bartoz Filipecki



Bundesministerium und Forschung

GEFÖRDERT VOM



Sara Grundel, Tobias Ritschel