1166 - Old Sorting

Given an array containing a permutation of 1 to n, you have to find the minimum number of swaps to sort the array in ascending order. A swap means, you can exchange any two elements of the array.

For example, let n = 4, and the array be $4\ 2\ 3\ 1$, then you can sort it in ascending order in just $1\$ swaps (by swapping $4\$ and 1).

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case contains two lines, the first line contains an integer n ($1 \le n \le 100$). The next line contains n integers separated by spaces. You may assume that the array will always contain a permutation of 1 to n.

Output

For each case, print the case number and the minimum number of swaps required to sort the array in ascending order.

Sample Input	Output for Sample Input
3	Case 1: 1
4	Case 2: 2
4 2 3 1	Case 3: 0
4	
4 3 2 1	
4	
1 2 3 4	