Practical II – RNAseq mapping and EdgeR Isheng Jason Tsai

Introduction to NGS Data and Analysis Lecture 12

Practical outline

- 1. Call SNPs
- 2. Mapping of RNAseq reads
- 3. Analyse using EdgeR
- 4. Visualise them in artemis

5. Visualise the variations on bedtools

Install bcftools

Install bcftools http://www.htslib.org/download/

Binary available! --->

Releases

version 2.0.4

5/18/2016

Source code

Linux x86_64 binary

Mac OS X x86_64 binary

Windowns binary

Please cite:

Kim D, Langmead B and Salzberg SL.

HISAT: a fast spliced aligner with low memory requirements. Nature Methods 2015

Get vcf file

```
# Get VCF file
# Bam file is from last week
# May take a long time; so let's just call SNP for the 1st Mb of PNOK.scaff0001.C
samtools mpileup -r PNOK.scaff0001.C:1-1000000 -ugf ref.fa A42_sorted.bam | bcftools call -vmO v -o A42.vcf
```

What does VCF file look like?

Install hisat2

Install hisat2 https://ccb.jhu.edu/software/hisat2/index.shtml

Binary available! --->

Releases

version 2.0.4

5/18/2016

Source code

Linux x86_64 binary

Mac OS X x86_64 binary

Windowns binary

Please cite:

Kim D, Langmead B and Salzberg SL.

HISAT: a fast spliced aligner with low memory requirements. Nature Methods 2015

Input files

Reference file same as last week Again, fastq files:

Paired end reads in pair fastq (_1 and _2) files Two conditions: fruiting body and fungal mat Each condition with two replicates (Rep1 and Rep2) An annotation file in gtf format (ref.gtf)

```
-rw-rw-r-- 1 ijt ijt 152M Jun 1 19:33 fruitRep1_1.fq.gz
-rw-rw-r-- 1 ijt ijt 154M Jun 1 19:33 fruitRep1_2.fq.gz
-rw-rw-r-- 1 ijt ijt 152M Jun 1 19:33 fruitRep2_1.fq.gz
-rw-rw-r-- 1 ijt ijt 154M Jun 1 19:33 fruitRep2_2.fq.gz
-rw-rw-r-- 1 ijt ijt 120M Jun 1 19:33 fungalRep1_1.fq.gz
-rw-rw-r-- 1 ijt ijt 123M Jun 1 19:33 fungalRep1_2.fq.gz
-rw-rw-r-- 1 ijt ijt 119M Jun 1 19:33 fungalRep2_1.fq.gz
-rw-rw-r-- 1 ijt ijt 120M Jun 1 19:33 fungalRep2_1.fq.gz
```

Hisat2

https://ccb.jhu.edu/software/hisat2/manual.shtml

```
# You need reference file (ref.fa),
# Paired end fastqs (A42_1.fq F42_2.fq)

# Build the database for hisat2
hisat2-build ref.fa ref
```

Map reference

hisat2 -x ref -1 fruitRep1_1.fq.gz -2 fruitRep1_2.fq.gz -S fruitRep1.sam

For those with laptop/server with multiple cores (much faster)
hisat2 -p 4 -x ref -1 fruitRep1_1.fq.gz -2 fruitRep1_2.fq.gz -S fruitRep1.sam

Can you map the other three samples using the same command with slight modifications?

Name the other three samples output as fungalRep2.sam fruitRep1.sam fruitRep2.sam

Hisat2 example output

```
2651074 reads; of these:
  2651074 (100.00%) were paired; of these:
   29700 (1.12%) aligned concordantly 0 times
   2207199 (83.26%) aligned concordantly exactly 1 time
   414175 (15.62%) aligned concordantly >1 times
   29700 pairs aligned concordantly 0 times; of these:
      10446 (35.17%) aligned discordantly 1 time
    19254 pairs aligned 0 times concordantly or discordantly; of these:
      38508 mates make up the pairs; of these:
        1767 (4.59%) aligned 0 times
        1200 (3.12%) aligned exactly 1 time
        35541 (92.30%) aligned >1 times
99.97% overall alignment rate
```

Install subread package

Install subread http://subread.sourceforge.net/

Binary available! --->

Download and Installation

- Latest version 1.5.0-p3
- All the versions
- Installation instructions

featureCounts

Generate a matrix file for edgeR

featureCounts -p -s 2 -t exon -g gene_id -a ref.gtf -o counts.txt fruitRep1.sam fruitRep2.sam fungalRep1.sam fungalRep2.sam

Q: Was the standard output (text appears on screen) informative about how good the mapping is?

Install R and EdgeR package

https://www.r-project.org/

[Home]

Download

CRAN

R Project

The R Project for Statistical Computing

Getting Started

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror.

Type the following to install essential packages:

source("https://bioconductor.org/biocLite.R")

biocLite("edgeR")

biocLite("locfit")

biocLite("ggplot2")

biocLite("RColorBrewer")

EdgeR manual (a good software always keep updated)

https://bioconductor.org/packages/devel/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf

edgeR: differential expression analysis of digital gene expression data

User's Guide

Yunshun Chen, Davis McCarthy, Matthew Ritchie, Mark Robinson, Gordon K. Smyth

> First edition 17 September 2008 Last revised 20 April 2016

Our data frame df looks like this, just like excel but it's now easier to manipulate

Our data frame df looks like this, just like excel but it's now easier to manipulate Try the commands below!

EdgeR plot produced

Visualise them in artemis

- 1. For each of the four sam files
 - a. convert them into bam
 - b. sort them and index them
- 2. Load into artemis

What do the mapping look like? How is it different to genomic DNA mapping?

Visualise the number of SNPs per 10kb window

1. Install bedtools (http://bedtools.readthedocs.io/en/latest/)

Create a bed file of 10kb window bedtools makewindows -g ref.fa.fai -w 10000 > ref.fa.bed

Do a bed file intersect to check to bin the SNPs in these 10kb windows # A42.vcf made in slide 2

bedtools intersect -c -b A42.vcf -a ref.fa.bed > ref.fa.A42.bed

R script to load the bar plot

```
x <- read.table("~/Desktop/ref.fa.A42.bed",header=F)
names(x) <- c("Chr","win_start","win_end","SNPs")
head(x)</pre>
```

```
hist(x$$NPs)
hist(x$$NPs,breaks=100)
plot(x$win_start, x$$NPs,type="I", xlim=c(0,1000000))
plot(x$win_start, x$$NPs,type="I", xlim=c(0,1000000))
plot(x$win_start, x$$NPs,type="h", xlim=c(0,1000000))
plot(x$win_start, x$$NPs,type="h", xlim=c(0,1000000), xlab="bp", ylab="num. variation per 10kb window")
```

plot(x\$win_start/1000000, x\$SNPs,type="h", xlim=c(0,1),xlab="Mb",ylab="num. variation per 10kb window")

