Contents

- Apply Logistic Regression on Recidivism Data %%
- END %%

Apply Logistic Regression on Recidivism Data %%

```
clear all;
clc;
close all;
```

Import train and test data. %

```
train_data = readtable('Recidivismtrainset.csv');
test_data = readtable('Recidivismtestset.csv');
```

Split Predictor Variables and Response Variable in train % and test data. %

```
x_train = train_data(:,1:end-1);
y_train = train_data(:,end);
x_test = test_data(:,1:end-1);
y_test = test_data(:,end);
```

Create a function the converts all the features in to categorical data % type, determines all unique categories and conts them. %

```
countLevels = @(x)numel(categories(categorical(x)));
numLevels = varfun(countLevels,x_train,'OutputFormat','uniform');

% Code reference: %

% Statistics and Machine Learning Toolbox™ User's Guide %

% Revision March 2021, R2021a, Chapter 18 %
```

```
%Compare then number of categories among all features. %

figure
bar(numLevels)
title('Number of Levels Among Predictors')
xlabel('Predictor variable')
ylabel('Number of levels')
h = gca;
h.XTickLabel = x_train.Properties.VariableNames;
h.XTickLabelRotation = 45;
h.TickLabelInterpreter = 'none';

% Code reference: %
% Statistics and Machine Learning Toolbox™ User's Guide %
% Revision March 2021, R2021a, Chapter 18 %
```


Fit train data into an ensemble algorithm, % fitcensemble was chosen over Treebagger because fo the advantage of % Hyperparameter optimization offered by it. %

```
rng(1);
Mdl1 = fitcensemble(train_data, 'two_year_recid');

% This is the baseline model. %
% Code reference: %
% Statistics and Machine Learning Toolbox™ User's Guide %
% Revision March 2021, R2021a, Chapter 18 %
```

Plot the baseline model. %

view(Mdl1.Trained{1}.CompactRegressionLearner, "Mode", "graph");

Predict Response for train data using the baseline Model. %

```
yfittrainm1 = predict(Mdl1,x_train);

% It is observed from workspace that the predicted values are on the form %
% 0 and 1. So, they can be directly compared with the original values of %
% the response variable. %

% Calculate error and accuracy of the Model for train data using the %
% comparision Vector. %

vtrainm1 = (yfittrainm1 == y_train.two_year_recid);
trainErrorm1 = 1- sum(vtrainm1)/size(vtrainm1,1);
trainaccuracym1 = sum(vtrainm1)/size(vtrainm1,1);
% fitcensemble has an option resubstitution loss, which compares the %
% predicted values with the original values, just as above technique. %

resubfitm1 = resubPredict(Mdl1);
resublossm1 = resubLoss(Mdl1);
```

Although from workspace it is seen that the resubstitution loss value % is same as the error calculated by earlier technique, it may be better % to compare the the resubstitution prediction as well. %

```
fitcheckm1 = (yfittrainm1 == resubfitm1);
match1 = sum(fitcheckm1)/numel(fitcheckm1)*100;

% After executing this section of code, it can be seen that there is a %
% complete match between resubstitution predict and the general predict. %
% So, further in the script resubstition fuction will be used for %
% evaluating the loss or error of a model on train set. %
```

Plot misclassification of the baseline model as a function of the % number of trained trees in the ensemble. %

```
figure
plot(loss(Mdl1,x_train,y_train,'mode','cumulative'))
xlabel('Number of trees')
ylabel('Train classification error')
```


Check and assign a variable to the method through which the baseline % model was trained. %

```
Model1_Method = Mdl1.Method

% After executing this section of code mutiple times, it was observed that
% for most of runs of this script, LogitBoost or AdaBoostM1 methods were %
% chosen most of the time by the sotware to train the model. %
```

```
'LogitBoost'
```

Bagging reduces variance when compared to boosting. So, the Bag method % will be used to trained the model. %

```
% Fit train data into second ensemble algorithm with Bag method. %
% First iteration of improvisation over the baseline model. %

rng(1);
tic
Mdl2 =fitcensemble(train_data,'two_year_recid','Method','Bag');
toc
```

Elapsed time is 0.954030 seconds.

Calculate error and accuracy of the Model for train data using the % function for resubstitution loss. %

```
trainErrorm2 = resubLoss(Mdl2);
trainaccuracym2 = 1 -trainErrorm2;
```

From workspace it can be seen that the accuracy of the second model has % improved with Bag Method. Next paramater to try to improve the model % further is the number of learning cycles. % Check the number of learning cycles in which the second model was % trained. %

```
Mdl2.ModelParameters.NLearn
```

ans =

Fit train data into third ensemble algorithm for different values of % learning cycles. % Second iteration to improve the model. %

```
% Putting different values of learning cycles into a vector. %
numNL = [50 200 500 1000 1500 2000];

% Calculate training accuracy for all the different values of learning %
% cycles by using a for loop. %

% Create a zero vector that will be filled with training accuracies of all
% the runs of the loop, after the execution of the loop. %
trainaccuracym3 = zeros(1,6);

% Create a for loop for the said purpose. %

for i=1:length(numNL);
    rng(1);
    Mdl3 = fitcensemble(train_data,'two_year_recid','Method','Bag','NumLearningCycles', i);
    trainaccuracym3(i) = 1 - resubLoss(Mdl3);
end

trainaccuracym3
```

From workspace it can be seen that the accuracies of the third model % for different values of number of learning cycles, were not better than % the accuracy achieved by the second model.%

```
% Third iteration to improve the model. %
% Fit train data into fourth ensemble algorithm, in which the %
% hyperparameters are optimized with the inbuilt argument available for %
% fitcensemble. %

rng(1);
Mdl4 = fitcensemble(train_data, 'two_year_recid', 'Method', 'Bag', 'OptimizeHyperparameters', 'auto');
```

% Code reference: %

% Statistics and Machine Learning Toolbox $^{\text{\tiny{TM}}}$ User's Guide %

% Revision March 2021, R2021a, Chapter 18 %

========									
MinLeafSiz	LearnRate	NumLearningC-	Method	BestSoFar	BestSoFar	Objective	Objective	Eval	Iter
	I	ycles		(estim.)	(observed)	runtime	l	result	
=======	0.64945	======================================	AdaBoostM1	0.32441	0.32441	9.1618	0.32441	Best	===== 1
6	0.0091503	38	GentleBoost	0.32484	0.32441	0.74973	0.32607	Accept	2
1	0.0024906	416	AdaBoostM1	0.32548	0.32441	8.1337	0.32607	Accept	3
79	0.012796	20	RUSBoost	0.32465	0.32441	0.92587	0.36206	Accept	4
7	0.041137	51	GentleBoost	0.32444	0.32441	1.3223	0.3256	Accept	5
	0.070176	24	LogitBoost	0.32444	0.32441	0.80205	0.35804	Accept	6
4	-	25	Bag	0.32252	0.32252	1.4798	0.32252	Best	7
4	-	25	Bag	0.32449	0.32252	1.797	0.32631	Accept	8
2	-	498	Bag	0.32179	0.32086	25.108	0.32086	Best	9
160	0.021216	10	AdaBoostM1	0.32169	0.32086	0.40945	0.36491	Accept	10
186	0.0022414	28	GentleBoost	0.32099	0.32086	1.0984	0.32607	Accept	11
33	-	98	Bag	0.32119	0.32086	4.2945	0.33128	Accept	12
190	-	10	Bag	0.32087	0.32086	0.56663	0.47052	Accept	13
12	-	10	Bag	0.32089	0.32086	0.58764	0.33625	Accept	14
	0.026316	10	AdaBoostM1	0.3209	0.32086	0.42594	0.3327	Accept	15
4	0.68739	10	AdaBoostM1	0.32109	0.32086	0.46095	0.32394	Accept	16
	-	10	Bag	0.32106	0.32086	0.82383	0.3256	Accept	17
15	0.0020099	10	AdaBoostM1	0.32106	0.32086	0.46064	0.32939	Accept	18
41	0.098878	37	GentleBoost	0.32088	0.32086	1.0118	0.32607	Accept	19
	0.06318	34	GentleBoost	0.32089	0.32086	1.3397	0.32726	Accept	20
 MinLeafSiz	LearnRate	NumLearningC-	Method	BestSoFar	BestSoFar	Objective	Objective	Eval	===== Iter
	I	ycles		(estim.)	(observed)	runtime		result	
	 -	10	Bag	 0.32089	 0.32086	 0.76934	 0.34004	Accept	===== 21
10	- i	227	Bag	0.321	0.32086	9.7642	0.32418	Accept	22
	0.0056627	10	AdaBoostM1	0.32101	0.32086	0.52758	0.33199	Accept	23
198	0.63232	24	LogitBoost	0.321	0.32086	0.58654	0.32205	Accept	24
26	0.0033013	24	LogitBoost	0.321	0.32086	0.80538	0.35733	Accept	25
204	0.29438	114	LogitBoost	0.31923	0.3192	2.8866	0.3192	Best	26
1	0.2975	12	LogitBoost	0.31923	0.3192	0.46434	0.34573	Accept	27
	0.010264	10	LogitBoost	0.31973	0.3192	0.43575	0.35733	Accept	28
1	0.006032	28	GentleBoost	0.31931	0.3192	0.84213	0.32607	Accept	29
	0.14638	20	RUSBoost	0.31931	0.3192	1.3946	0.32915	Accept	30

Optimization completed.

MaxObjectiveEvaluations of 30 reached.

Total function evaluations: 30

Total elapsed time: 118.0837 seconds

Total objective function evaluation time: 79.4366

Best observed feasible point:

Method	NumLearningCycles	LearnRate	MinLeafSize
	_		
LogitBoost	114	0.29438	2044

Observed objective function value = 0.3192 Estimated objective function value = 0.31931 Function evaluation time = 2.8866

Best estimated feasible point (according to models):

Method	NumLearningCycles	LearnRate	MinLeafSize
			-
LogitBoost	114	0.29438	2044

Estimated objective function value = 0.31931 Estimated function evaluation time = 2.7962

Calculate error and accuracy of the Model for train data using the % function for resubstitution loss. %

```
trainErrorm4 = resubLoss(Mdl4);
trainaccuracym4 = 1 -trainErrorm4;
```

From workspace it can be seen that the accuracy of the fourth model was also not better than the second model, in spite of optimizing the % hyperparameters. The inbuilt fucntion used to do this gives results of % hyperparameters optimization of both observed values and estimated % values. %

```
% Assign the observed values of hyperparameters optimization to a variable.

bestHyperparameters = Mdl4.HyperparameterOptimizationResults.XAtMinObjective

% After executing this section of code mutiple times, it was observed that

% for most of runs of this script, LogitBoost or AdaBoostM1 methods were %

% resulted after hyperparameters optimization. %

% Code reference: %

% Statistics and Machine Learning Toolbox™ User's Guide %

% Revision March 2021, R2021a, Chapter 18 %
```

```
Method NumLearningCycles LearnRate MinLeafSize

LogitBoost 114 0.29438 2044
```

Fourth iteration to improve the model. % Fit train data into fifth ensemble algorithm, in which Bag is continued % to be the method for the reason mentioned in the section with code for % second training model. The parameters of leaf size and number of learning cycles were assigned best the values hyperparameter optimization model. %

Calculate error and accuracy of the Model for train data using the % function for resubstitution loss. %

```
trainErrorm5 = resubLoss(Mdl5);
trainaccuracym5 = 1 -trainErrorm5;
```

After executing the section of code where the fifthe model was trained, % multiple times, it was seen that the accuracy of the fifth model was also not better than the second model for most of the runs, in spite of % using the best values observed in hyperparameters optimization. %

```
% Fifth iteration to improve the model. %
% Fit train data into fifth ensemble algorithm, in which the predictor
% selection argument is changed from the default CART, keeping rest of the
% parameters same as the second model. %

rng(1)
templm6 = templateTree("PredictorSelection",'curvature');
Mdl6 = fitcensemble(train_data,'two_year_recid','Method','Bag');
```

Calculate error and accuracy of the Model for train data using the % function for resubstitution loss. %

```
trainErrorm6 = resubLoss(Mdl6);
trainaccuracym6 = 1 -trainErrorm6;
```

From workspace it can be seen that the accuracy of the sixth model was also not better than the second model, but mostly same as the second model. %

```
% Although the fifth model gave highest accuracy in few of the runs, it is
% not consistently the best model and hence cannot be considered as the
% best model. %

% It can be concluded that the second model with just the method as bag %
% and rest of the parameters same as the baseline model can be considered %
% as the best model. %

% Cross validate the best model to understand the generalized behavior of
% the model. %

CVMd12 = crossval(Md12);
cvfitm2 = kfoldPredict(CVMd12);

% Calculate loss and accuracy of cross validated model for train data. %
cvlossm2 = kfoldLoss(CVMd12);
cvaccuracym2 = 1 - cvlossm2;
```

Plot the baseline model. %

```
view(Mdl2.Trained{1}, "Mode", "graph");
```


Calculate the Out of the bag loss for the best model. %

```
ooblossm2 = oobLoss(Md12);
```

Plot misclassification of the best model as a function of the % number of trained trees in the ensemble. %

```
figure
plot(loss(Mdl2,x_train,y_train,'mode','cumulative'))
xlabel('Number of trees')
ylabel('Train classification error')
```


Plot misclassification of the best model and cross validation loss as % a function of the number of trained trees in the ensemble. %

```
figure
plot(loss(Mdl2,x_train,y_train,'mode','cumulative'))
hold on
plot(kfoldLoss(CVMdl2,'mode','cumulative'),'r.')
```

```
hold off
xlabel('Number of trees')
ylabel('Classification error')
legend('Train','Cross-validation','Location','NE')
```


Predict Response for test data using the best Model. %

```
rng(1);
tic
yfittest = predict(Mdl2,x_test);
toc

% Calculate error and accuracy of the Model for test data using the %
% comparision Vector. %

vtest = (yfittest == y_test.two_year_recid);
testError = 1- sum(vtest)/size(vtest,1);
testaccuracy = sum(vtest)/size(vtest,1);
```

Elapsed time is 0.065944 seconds.

Plot misclassification of the best model and cross validation loss as % a function of the number of trained trees in the ensemble for test data. %

```
figure
plot(loss(Md12,x_test,y_test,'mode','cumulative'))
hold on
plot(kfoldLoss(CVMd12,'mode','cumulative'),'r.')
hold off
xlabel('Number of trees')
ylabel('Classification error')
legend('Test','Cross-validation','Location','NE')
```


Check AUC of the best model for train data. %

```
yfittrain = predict(Mdl2,x_train);
[Xtr,Ytr,Ttr,AUCtr] = perfcurve(y_train.two_year_recid,yfittrain,'1');

% Plot ROC of the model for train data. %
plot(Xtr,Ytr)
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC for Classification by Random Forest for train data | AUC = ',AUCtr)
```


Check AUC of the best model for test data. %

```
[Xte,Yte,Tte,AUCte] = perfcurve(y_test.two_year_recid,yfittest,'1');

% Plot ROC of the model for test data. %
plot(Xte,Yte)
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC for Classification by Random Forest for test data | AUC = ',AUCte)
```

ROC for Classification by Random Forest for test data | AUC = 0.67461

Plot ROC of the model for both train and test data for comparison. %

```
plot(Xtr,Ytr)
hold on
plot(Xte,Yte)
legend('Training Set ROC', 'Test Set ROC',Location='best')
xlabel('False positive rate')
ylabel('True positive rate')
title('ROC for Classification by Random Forest for train & test data')
hold off
```


Metrics for Model performance for test data. %

```
% Convert table of original and predicted values of response variable for %
% test data into a logical array, to use further. %
y_test_ar = table2array(y_test);
y_test_lg = logical(y_test_ar);
yfittest_lg = logical(yfittest);

% Plot and assign Confusion Matrix for test data. %
conchart = confusionchart(y_test_lg,yfittest_lg);
conchart.Title = 'Recidivism prediction using Random Forest'
conchart.RowSummary = 'row-normalized'
conchart.ColumnSummary = 'column-normalized'
```

```
% Assing variable to Confusion Matrix for test data. %
confmat = confusionmat(y_test_lg,yfittest_lg);
confmat;
\% Assigning variables to Components of Confusion Matrix viz., \%
% True Negative, True Positive, False Negative, and False Poistive. %
TN = confmat(1,1);
TP = confmat(2,2);
FN = confmat(2,1);
FP = confmat(1,2);
\% Calculating other Model Evaluation Metrics for test data. \%
Sensitivity = (TP/(TP + FN));
Specificity = (TN/(TN + FP));
Precision = (TP/(TP + FP));
% Formula Reference: %
% https://en.wikipedia.org/wiki/Confusion_matrix %
% Code Reference: %
\% https://uk.mathworks.com/help/stats/confusionchart.html?s_tid=doc_ta \%
conchart =
  {\tt Confusion Matrix Chart\ (Recidivism\ prediction\ using\ Rand...)\ with\ properties:}
    NormalizedValues: [2×2 double]
         ClassLabels: [2×1 logical]
  Use GET to show all properties
conchart =
```

ConfusionMatrixChart (Recidivism prediction using Rand...) with properties:

NormalizedValues: [2×2 double] ClassLabels: [2×1 logical]

Use GET to show all properties

conchart =

ConfusionMatrixChart (Recidivism prediction using Rand...) with properties:

NormalizedValues: [2×2 double] ClassLabels: [2×1 logical]

Use GET to show all properties

Recidivism prediction using Random Forest

67.6%	68.5%
32.4%	31.5%

false true

Predicted Class

Published with MATLAB® R2021a