

QUANTUM DISCOVERY

Digital quantum computing

PASQAL www.pasqal.com office@pasqal.com 7 rue Léonard de Vinci 91300 Massy France

Digital versus analog processing

Implementation of digital and analog computing with neutral atoms

Figure 6: Digital- vs analog processing. (a) In digital processing, a succession of gates is applied to the qubits to implement a quantum algorithm. Each gate is performed by addressing the qubits individually with laser beams. (b) In analog processing the qubits evolve under a tailored Hamiltonian \mathcal{H} , for instance by illuminating the whole register with a laser beam. The wavefunction $|\psi\rangle$ of the system follows the Schrödinger equation.

General single-qubit unitary

The most general form of a single-qubit unitary writes:

$$U(\gamma, \theta, \phi) = \begin{bmatrix} \cos \frac{\theta}{2} & -ie^{i\phi} \sin \frac{\theta}{2} \\ -ie^{i\gamma} \sin \frac{\theta}{2} & e^{i(\gamma+\phi)} \cos \frac{\theta}{2} \end{bmatrix}$$

- $\theta \in [0,\pi]$: amplitude parameter
- $\phi \in [0,2\pi]$: phase parameter
- $\gamma \in [0,2\pi]$: phase parameter

Pauli operators

The simplest single-qubit gates are the Pauli operators: X, Y and Z. Their action is to perform a half rotation of the Bloch sphere around the x, y and z axes:

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = U\left(\frac{\pi}{2}, \pi, \frac{\pi}{2}\right) \qquad |\pm\rangle \equiv \frac{|0\rangle \pm |1\rangle}{\sqrt{2}} \qquad \begin{cases} X|+\rangle = |+\rangle \\ X|-\rangle = -|-\rangle \end{cases}$$

$$|\pm\rangle \equiv \frac{|0\rangle \pm |1\rangle}{\sqrt{2}}$$

$$\begin{cases} X|+\rangle = |+\rangle \\ X|-\rangle = -|-\rangle \end{cases}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = U(\pi, \pi, 0)$$

$$|\pm i\rangle \equiv \frac{|0\rangle \pm i|1\rangle}{\sqrt{2}} \qquad \begin{cases} Y|+i\rangle = |+i\rangle \\ Y|-i\rangle = -|-i\rangle \end{cases}$$

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = U\bigg(0, 0, \pi\bigg)$$

$$\begin{cases} Z|0\rangle = |0\rangle \\ Z|1\rangle = -|1\rangle \end{cases}$$

Rotation operators

The Pauli operators give rise to three useful classes of unitary operators when they are exponentiated, the rotations operators about the x, y and z axes of the Bloch sphere:

$$R_P(\theta) = e^{-i\theta P} = \cos\frac{\theta}{2}I - i\sin\frac{\theta}{2}P$$

$$R_X(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} = U\bigg(0, \theta, 0\bigg)$$

$$R_Y(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} = U\left(\frac{\pi}{2}, \theta, -\frac{\pi}{2}\right)$$

$$R_Z(\theta) = \begin{bmatrix} e^{-i\theta/2} & 0\\ 0 & e^{i\theta/2} \end{bmatrix} = U(0, 0, \theta)$$

Rotation operators

Any single-qubit unitary can be decomposed as a serie of rotation gates:

$$U(\gamma, \theta, \phi) = R_z(\gamma)R_x(\theta)R_z(\phi)$$

Clifford operators

The Clifford gates are the elements of the Clifford group, a set of mathematical transformations which effect permutations of the Pauli operators:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = U \left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = U\left(0, 0, \frac{\pi}{2}\right)$$

$$HZH = X$$

$$HYH = -Y$$

$$HXH = Z$$

$$SXS^{\dagger} = Y$$

 $SYS^{\dagger} = -X$
 $SZS^{\dagger} = Z$

Clifford operators

The Clifford gates are the elements of the Clifford group, a set of mathematical transformations which effect permutations of the Pauli operators:

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = U \left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = U\left(0, 0, \frac{\pi}{2}\right)$$

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\frac{\pi}{4}} \end{bmatrix} = U\left(0, 0, \frac{\pi}{4}\right)$$

$$HZH = X$$
$$HYH = -Y$$

$$HXH = Z$$

$$SXS^{\dagger} = Y$$

$$SYS^{\dagger} = -X$$

$$SZS^{\dagger} = Z$$

Physical implementation

At a single-qubit level, an atomic transition is described by the drive Hamiltonian:

$$H^D(t) = \frac{\hbar}{2} \, \mathbf{\Omega} \cdot \boldsymbol{\sigma}$$

- Pauli vector: $\sigma = (X, Y, Z)^T$
- Rotation vector:

$$\mathbf{\Omega}(t) = (\Omega(t)\cos(\phi), -\Omega(t)\sin(\phi), -\delta(t))^T$$

• Angular velocity: $\Omega_{eff} = |\Omega| = \sqrt{\Omega^2 + \delta^2}$

Physical implementation

At a single-qubit level, an atomic transition is described by the drive Hamiltonian:

$$H^D(t) = \frac{\hbar}{2} \, \mathbf{\Omega} \cdot \boldsymbol{\sigma}$$

The unitary operator associated with this evolution is:

$$U(\mathbf{\Omega}, \tau) = \exp\left[-\frac{i}{2} \int_0^{\tau} \mathbf{\Omega} \cdot \sigma \, dt\right]$$

It describes a rotation around the timedependent axis $\Omega(t)$.

Physical implementation

For a resonant pulse, we get a rotation angle:

$$\theta = \int_0^\tau \Omega(t) \, dt$$

around the fixed axis:

$$\hat{\mathbf{n}}(\phi) = (\cos(\phi), -\sin(\phi), 0)^T$$

situated on the equator of the Bloch sphere.

Physical implementation

If $\hat{\mathbf{n}}=(n_x,n_y,n_z)^T$ is a real unit vector in three dimensions, then rotating around this vector of angle $\hat{\theta}$ actually corresponds to implementing the rotation matrix:

$$R_{\hat{\mathbf{n}}(\phi)}(\theta) \equiv \exp\left(-i\theta\,\hat{\mathbf{n}}\cdot\sigma/2\right) = \cos\frac{\theta}{2}\,I - i\sin\frac{\theta}{2}\,\hat{\mathbf{n}}\cdot\sigma$$

Thus, if $\hat{\mathbf{n}}(\phi) = (\cos(\phi), -\sin(\phi), 0)^T$ - i.e resonant pulse:

$$R_{\hat{\mathbf{n}}(\phi)}(\theta) = e^{-i\frac{\theta}{2}(\cos(\phi)X - \sin(\phi)Y)}$$
$$= e^{i\frac{\phi}{2}Z}e^{-i\frac{\theta}{2}X}e^{-i\frac{\phi}{2}Z}$$
$$R_{\hat{\mathbf{n}}(\phi)}(\theta) = R_z(-\phi)R_x(\theta)R_z(\phi)$$

Physical implementation

Finally, any single qubit unitary can be constructed by implementing an additional phase shift right after a resonant pulse:

Controlled operations

Suppose U is a single-qubit operation with matrix representation:

$$U = \begin{pmatrix} u_{00} & u_{01} \\ u_{10} & u_{11} \end{pmatrix}$$

A controlled version of U is:

$$C_U = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & u_{00} & u_{01} \\ 0 & 0 & u_{10} & u_{11} \end{pmatrix}$$

i.e. we apply U on the target qubit (here the rightmost qubit) only if the control qubit (here the leftmost qubit) is in state one. The state of the control qubit is left unchanged.

Controlled operations

A critical operator in quantum computing is the C-NOT gate:

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$|c,t\rangle \longrightarrow |c,c\oplus t\rangle$$

It's used to entangle qubits.

Controlled operations

Example application (CNOT gate):

$$\begin{vmatrix}
|0\rangle & -H \\
|000\rangle + |111\rangle \\
\sqrt{2}$$

- Step 1 (H-gate on q1): $|000\rangle \longrightarrow \frac{|0\rangle + |1\rangle}{\sqrt{2}}|00\rangle = \frac{|000\rangle + |100\rangle}{\sqrt{2}}$
- Step 2 (CNOT-gate q1 \rightarrow q2): $\frac{|000\rangle + |100\rangle}{\sqrt{2}} \longrightarrow \frac{|000\rangle + |110\rangle}{\sqrt{2}}$
- Step 3 (CNOT-gate q2 \rightarrow q3): $\frac{|000\rangle + |110\rangle}{\sqrt{2}} \rightarrow \frac{|000\rangle + |111\rangle}{\sqrt{2}}$

Controlled operations

The CZ gate flips the phase of a target qubit conditionally to the state of a control qubit:

$$CZ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Controlled operations with neutral atoms

CZ implementation protocol, where three consecutive pulses address the ground-rydberg transition:

Full (dashed) red lines illustrates if a given pulse is effective (not effective).

Controlled operations with neutral atoms

Effect of the pulse sequence in the computational basis:

More precisely, the pulse sequence implements a CZ gate up to a global phase factor:

$$\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = e^{i\pi} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} = e^{i\pi} CZ$$

Controlled operations with neutral atoms

Combining a CZ gate with two Hadamard gates recreates a C-NOT gate:

SWAP operation

The SWAP gate exchanges the states of two qubits:

$$SWAP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$|a,b\rangle \longrightarrow |b,a\rangle$$

Conclusion

- → Digital quantum computer are universal quantum computers
- → In digital processing, a succession of gates is applied to implement an algorithm
- → In neutral atom devices, single-qubit gates are implemented through Raman transition with resonant pulses (and virtual phase shift)
- → While two-qubit gates are implemented through Rydberg transitions so to make qubits interact
- → In neutral atom devices, the native two-qubit gate is the CZ gate

