Конспект Лекций

Теоретическая механика

Литература

- 1. Еленев С.А., Новиков В.Г., Шевелева Г.И. Динамика: Учебное пособие. М.: Изд-во МГТУ "Станкин", 2010.
- 2. Еленев С.А., Новиков В.Г., Шевелева Г.И. Кинематика: 2009.
- 3. Мещерский И.В. Задачи по теоретической механике. Учебное пособие для вузов. М.: "Лань", 2006.
- 4. Яблонский А.А., Никифорова В.М. **Курс** теоретической механики. Учебник для вузов. М.: "Интеграл-Пресс", 2006.
- 5. Сборник заданий для курсовых работ по теоретической механике. Под ред. А.А.Яблонского. Учебное пособие для технических вузов. М.: "Интеграл-пресс", 2006.
- 6. Тарг С.М. **Краткий курс** теоретической механики. Учебник для вузов. М.: "Высшая школа", 2007.
- 7. Е.Н.Лычкин, Харыбина И.Н. Уравнения Лагранжа II рода: метод. указ. к выполнению самостоятельной работы. М.: Изд-во МГТУ «СТАНКИН», 2014.
- 8. Е.Н.Лычкин. Гироскопы Фуко I и II рода: метод. указ. к выполнению лаб. работы М.: Изд-во МГТУ «СТАНКИН», 2013. 11 с.

VIII. Кинематика твёрдого тела.

§8.1. Теорема о проекциях скоростей.

Виды движения твёрдого тела.

- 1. Поступательное.
- 2. Вращение вокруг неподвижной оси.
- 3. Плоскопараллельное.
- 4. Сферическое.
- 5. Общий случай движения.

Теорема о проекциях скоростей двух точек твёрдого тела.

Теорема: проекции скоростей двух точек твёрдого тела на прямую, соединяющую эти точки, равны между собой. $\overline{v_{\lambda}}$

$$v_A \cos \alpha = v_B \cos \beta \qquad (8.1)$$

§8.2. Поступательное движение твердого тела.

Твердое тело совершает *поступательное движение*, если любая прямая, проведенная в теле, остается параллельной своему первоначальному поло-

жению во все время движения.

При поступательном движении твердого тела все его точки имеют одинаковые траектории и векторно-равные в каждый момент времени скорости и ускорения.

$$ar{r}_{\!\!\!A} = ar{r}_{\!\!\!\!A}(t)$$
 Закон (уравнение) поступательного движения ТТ

$$\overline{v}_B = \overline{v}_A.$$
 $\overline{a}_B = \overline{a}_A.$

$$\overline{a}_B = \overline{a}_A$$
.

IX. Вращение твёрдого тела вокруг неподвижной оси.

§9.1. Уравнения вращательного движения.

Вращательным называют такое движение твердого тела, при котором две точки тела остаются неподвижными во все время движения.

Прямую, проходящую через эти точки, называют *осью вращения*.

$$\varphi = \varphi(t)$$
 - закон (уравнение) вращательного движения ТТ (9.1)

 $\phi > 0$, если при взгляде с конца оси z этот угол отсчитывается от плоскости Q_0 против часовой стрелки. Угол ϕ измеряют в радианах.

§9.2. Угловая скорость и угловое ускорение тела.

$$\omega = \frac{d\varphi}{dt}$$
 - мгновенная угловая скорость вращения.

Вектор
$$\overline{\omega} = \frac{d\varphi}{dt}\overline{k}$$

- 1. Направлен по оси вращения;
- 2. Модуль вектора = ω ;
- 3. Направлен так, чтобы с его конца видеть вращение против часовой стрелки

 $\overline{\omega}$ – скользящий вектор.

§9.2. Угловая скорость и угловое ускорение тела. Продолжение.

$$\varepsilon = \frac{d\omega}{dt} \left[\frac{1}{c^2} \right] -$$

 $\varepsilon = \frac{d\omega}{dt} \left| \frac{1}{c^2} \right|$ - мгновенное угловое ускорение вращения.

Если $\varepsilon u \omega$ одного знака, то вращение ускоренное, ω растёт по модулю, и они направлены в одну сторону, иначе - замедленное.

Если ω = const, то вращение *равномерное*, ε = 0.

$$\bar{\varepsilon} = \frac{d\overline{\omega}}{dt}.$$

Beктор $\bar{\varepsilon}$ сонаправлен с $\bar{\omega}$, если вращение ускоренное.

§9.3. Скорость и ускорение точек тела.

 $v = \omega R$ Вектор \overline{v} направлен \perp радиусу в сторону $\overline{\omega}$, если смотреть из неподвижной точки.

 $a^{\tau} = \varepsilon R$ Вектор \vec{a}^{τ} направлен \perp радиусу в сторону $\vec{\varepsilon}$, если смотреть из неподвижной точки.

 $a^{n} = \omega^{2} R$ Вектор \bar{a}^{n} направлен к неподвижной точке.

§9.4. Скорость и ускорение точек (векторные формулы).

$$Ecnu \left| \overrightarrow{AB} \right| = const$$
, то формула Эйлера \Rightarrow

$$\frac{d\overrightarrow{AB}}{dt} = \overrightarrow{\omega} \times \overrightarrow{AB} \quad (9.7)$$

$$\vec{v} = \vec{\omega} \times \vec{r} \qquad (9.8)$$

$$\vec{a} = \vec{\varepsilon} \times \vec{r} + \vec{\omega} \times \vec{v} \qquad (9.9)$$

$$\vec{a}^{\tau} = \vec{\varepsilon} \times \vec{r}$$

$$\vec{a}^{\tau} = \vec{\varepsilon} \times \vec{r}$$
 (9.10) $a^{\tau} = \varepsilon r \sin \gamma = \varepsilon R$

$$\vec{a}^n = \vec{\omega} \times \vec{v}$$

$$\vec{a}^n = \vec{\omega} \times \vec{v} \qquad (9.11) \qquad a^n = \omega v \sin 90^\circ = \omega^2 R$$

XII. Плоскопараллельное движение твёрдого тела.

§12.1. Уравнения ППД ТТ.

Плоскопараллельным (или плоским) движением твердого тела называют такое движение, при котором все точки тела описывают плоские траектории, лежащие в плоскостях, параллельных некоторой неподвижной

ПЛОСКОСТИ. **AB** \bot $N \Rightarrow$ **AB**достаточно зад
ого отрезка. Аналоги ω чение ППИ ТТ ω плоской фигуры (сечения S).

$$x_A = x_A(t)$$
, уравнения плос-копараллельного движения твёр-дого тела

Положение фигуры **S** в плоскости xOy опред-ся положением отрезка AB этой фигуры, оно — коорд-ми x, y точки A и углом φ наклона AB к оси х. Угол φ >0, если поворот оси х до AB - против часовой стрелки.

§12.2. Разложение ППД на поступательное

и вращательное

Плоскопараллельное движение ТТ можно представить как совокупность двух движений: *поступательного* с выбранным полюсом и *вращательного* вокруг этого полюса.

$I \rightarrow II$	По-	Поступа-тельное	Вращение вокруг полюса	Угол пово- рота
1.	A_{I}	$ \begin{array}{c} A_1 \rightarrow A_2, \\ B_1 \rightarrow B_1 \end{array} $	$\begin{array}{c} A_2 \rightarrow A_2, \\ B_1 \rightarrow B_2 \end{array}$	$arphi_{l}$
2.	B_1	$\begin{vmatrix} A_1 \rightarrow A_1', \\ B_1 \rightarrow B_2 \end{vmatrix}$	$A_{1} \rightarrow A_{2}, B_{2} \rightarrow B_{2}$	$arphi_2$

 $\varphi_1 = \varphi_2 \Rightarrow$ угол поворота не зависит от выбора полюса

$$x_A = x_A(t),$$

$$y_A = y_A(t),$$

Описывают поступательную часть движения

$$\varphi = \varphi(t)$$

Описывает вращательную часть движения

§12.2. Разложение ППД на поступательное и вращательное

 χ

$$\omega = \frac{d\varphi}{dt};$$

 $\overline{\omega}$ \bot плоскости фигуры и направлен так, чтобы с его конца видеть её вращение против часовой стрелки.

$$\varepsilon = \frac{d\omega}{dt};$$
 $\overline{\varepsilon} = \frac{d\overline{\omega}}{dt}$ Направлен по $\overline{\omega}$, если $\omega \cdot \varepsilon > 0$.

§12.3. Определение скоростей точек при ППД ТТ.

1. Определение скорости по двучленной векторной формуле.

$$\vec{r}_B = \vec{r}_A + \overrightarrow{AB}$$
 \Rightarrow $\frac{d\vec{r}_B}{dt} = \frac{d\vec{r}_A}{dt} + \frac{dAB}{dt}$ $\vec{v}_B = \vec{v}_A + \vec{v}_{BA}$, где $\vec{v}_{BA} = \frac{d(AB)}{dt}$ (12.2)

 \overrightarrow{V}_A - это та скорость, которую приобретает точка В при поступательном движении фигуры вместе с полюсом A, а \overrightarrow{V}_{BA} - это скорость, которую получает точка В при вращении фигуры вокруг полюса A

$$\vec{v}_{BA} = \frac{d(AB)}{dt} = \vec{\omega} \times \overrightarrow{AB}$$

$$\Rightarrow \vec{v}_{B} = \vec{v}_{A} + \vec{\omega} \times \overrightarrow{AB} \qquad (12.3)$$

 $v_{BA} = \omega \cdot AB$, направлен $\bot AB$ в сторону ω, если смотреть из полюса \underline{A} .

§12.3. Определение скоростей. Продолжение 1.

Пример.

Дано: OA = AB = 20 см; $\omega_{OA} = 5$ с⁻¹; $\varphi = \beta = \pi/3$.

Найти: v_B , ω_{AB} .

1. Тело OA — вращательное движение $\Rightarrow v_A = \omega \cdot OA = 100$ см/с, $\perp OA$ в сторону ω_{OA} , если смотреть из точки O.

2. Тело
$$AB - \Pi\PiД \Rightarrow \vec{v}_B = \vec{v}_A + \vec{v}_{BA}$$
, $v_{BA} = \omega_{AB} \cdot AB$;

 $\overrightarrow{V}_{BA} \perp AB$ в сторону ω_{AB} , если смотреть из полюса A.

Чтобы найти ω_{AB} , найдём v_{BA} , для чего спроецируем уравнение на \bot к \overrightarrow{v}_{B} , т.е. на вертикальную ось (у).

$$0 = v_A \cos \varphi - v_{BA} \cos \beta \Rightarrow v_{BA} = v_A$$
. $\omega_{AB} = v_{BA}/AB = 100/20 = 5 \text{ c}^{-1}$.

Т.к. $v_B>0$ и $\omega_{AB}>0$, то выбранные направления \vec{v}_B и ω_{AB} были верными.

 $\omega_{\scriptscriptstyle \mathsf{AB}}$

 v_{BA}

§12.3. Определение скоростей. Продолжение 2.

2. Определение скорости по теореме о проекциях скоростей.

Пример.

Спроецируем скорости точек A и B на AB:

$$v_B \cos \beta = v_A \cos \alpha \Rightarrow v_B = v_A \sqrt{3} = 100\sqrt{3} \text{ cm}.$$

§12.3. Определение скоростей. Продолжение 3.

2. Определение скорости с помощью мгновенного центра скоростей.

При непоступательном движении плоской фигуры в ее плоскости существует единственная точка, скорость которой в данное мгновение равна нулю.

Она называется мгновенным центром скоростей (МЦС).

Пусть задана скорость \vec{v}_A некоторой точки А плоской фигуры и угловая скорость $\pmb{\omega}$ вращения этой фигуры. Повернем вектор \vec{v}_A вокруг точки А на 90° в направлении $\pmb{\omega}$ и получим луч АК.

Укажем на расстоянии $h = v_A/\omega$ точку C_V . Найдём её скорость по двучленной векторной формуле.

$$\vec{v}_{C_V} = \vec{v}_A + \vec{v}_{C_V A}$$
, где $v_{C_V A} = \omega \cdot A C_V = \omega \cdot v_A / \omega = v_A$.

$$\vec{v}_A \uparrow \downarrow \vec{v}_{C_{\nu}A} \Longrightarrow \vec{v}_{C_{\nu}} = 0.$$

В итоге мы сводим ППД плоской фигуры к её вращательному движению вокруг МЦС в данный момент времени.

$$v_{C_v} = 0$$
, но $a_{C_v} \neq 0$, т.к. v_{C_v} изменяется во времени.

§12.3. Определение скоростей. Продолжение 4.

3. Способы нахождения МЦС.

1. Дана скорость точки A и линия действия вектора скорости точки B. МЦС лежит в точке пересечения перпендикуляров, проведенных к \vec{v}_A и \vec{v}_B в точках A и B.

$$\omega = \frac{v_A}{AC_V}, \quad v_B = \omega \cdot BC_V$$

2. Дана скорость \vec{v}_A некоторой точки A и угловая скорость $\boldsymbol{\omega}$ вращения плоской фигуры. МЦС лежит на \perp к \vec{v}_A на расстоянии $AC_V = v_A / \omega$.

$$\omega = \frac{v_A}{AB + BC_V} = \frac{v_B}{BC_V} = \frac{v_A - v_B}{AB}.$$

4. $\vec{v}_A \uparrow \downarrow \vec{v}_B$ и $\vec{v}_A \perp AB$.

$$\omega = \frac{v_A}{AB + BC_V} = \frac{v_B}{BC_V} = \frac{v_A + v_B}{AB}.$$

§12.3. Определение скоростей. Продолжение 5.

5. $\vec{v}_A \uparrow \uparrow \vec{v}_B$ и \vec{v}_A не \bot AB.

МЦС не существует, и фигура совершает мгновенно поступательное движение ($\omega = 0$). Скорости всех точек одинаковы, а ускорения не одинаковы (в отличие от поступательного движения).

Из условия задачи.

скорости точек касания этих тел равны друг другу. Т.к. рельс не двигается, то и нижняя точка колеса сто-ит, т.е. её скорость = $0 \Rightarrow$ эта точка есть МЦС колеса в данный момент времени. Тогда

$$\omega = \frac{v_C}{CC_V} = \frac{v_C}{R}$$
, направлена в сторону \vec{v}_C , если

смотреть из неподвижной точки $C_{\rm V}$.

$$v_B = \omega \cdot BC_V = \frac{v_C}{R} \cdot 2R = 2v_C, \ \vec{v}_B \perp C_V B$$
 в сторону ω .

§12.3. Определение скоростей. Продолжение 6.

Пример 1.

Дано: ОА = AB = 20 см; $\omega_{OA} = 5 \text{ c}^{-1}$; $\varphi = \beta = \pi/3$.

Найти: v_B , ω_{AB} .

1. Тело OA — вращательное движение $\Rightarrow v_A = \omega_{OA}$ OA = 100 см/с, $\perp OA$ в сторону ω_{OA} , если смотреть из точки O.

2. Тело $AB - \Pi\Pi Д \Rightarrow$ строим МЦС на пересечении перпендикуляров к скоростям точек A и B (точка C_V).

$$AC_V = AB = OA$$
, $BC_V = 2 \cdot BD = 2 \cdot AB \cdot cos(\alpha) = OA \sqrt{3}$.

$$\omega_{AB} = \frac{v_A}{AC_V} = \frac{\omega_{OA} \cdot AO}{AO} = \omega_{OA},$$

 $\omega_{\!\scriptscriptstyle AB}$ в сторону $\vec{v}_{\scriptscriptstyle A}$, если смотреть из точки C_{V} .

$$v_B = \omega_{AB} \cdot BC_V = \omega_{OA} \cdot OA\sqrt{3} = v_A\sqrt{3}.$$

 $\vec{v}_B \perp \mathrm{BC}_{\mathrm{V}}$ в сторону ω_{AB} , если смотреть из точки C_V .

§12.4. Определение ускорений точек при ППД ТТ.

Трёхленная векторная формула.

$$\vec{a}_{B} = \frac{d\vec{v}_{B}}{dt} = \frac{d}{dt}(\vec{v}_{A} + \vec{v}_{BA}) = \frac{d}{dt}(\vec{v}_{A} + \vec{\omega}_{AB} \times \overrightarrow{AB}) =$$

$$= \frac{d\vec{v}_{A}}{dt} + \frac{d\vec{\omega}_{AB}}{dt} \times \overrightarrow{AB} + \vec{\omega}_{AB} \times \frac{d(\overrightarrow{AB})}{dt}$$

$$\frac{d\vec{v}_{A}}{dt} = \vec{a}_{A}, \frac{d\vec{\omega}_{AB}}{dt} = \vec{\varepsilon}_{AB}, \frac{d(\overrightarrow{AB})}{dt} = \vec{v}_{BA}$$

$$\vec{a}_{B} = \vec{a}_{A} + \vec{\varepsilon}_{AB} \times \overrightarrow{AB} + \vec{\omega}_{AB} \times \vec{v}_{BA}$$

$$\vec{a}_{B} = \vec{a}_{A} + \vec{a}_{BA}^{ep} + \vec{a}_{BA}^{u} \qquad (12.3)$$

 \vec{a}_A - это то ускорение, которое приобретает точка В при поступательном движении фигуры вместе с полюсом A.

 \vec{a}_{BA}^{ep} - это то тангенциальное ускорение, которое получает точка В при вращении фигуры вокруг полюса А. $a_{BA}^{ep} = \varepsilon_{AB} \cdot AB$.

 a_{BA}^{η} - это то нормальное ускорение, которое получает точка В при вращении фигуры вокруг полюса А. $a_{BA}^{\eta} = \omega_{AB}^2 \cdot AB$.

§12.3. Определение ускорений. Продолжение 1.

Пример 2.

Дано: OA=AB=OB=20 см; ω_{OA} =const=5 с⁻¹; $\varphi = \beta = \pi/3$. Найти: a_B , ε_{AB} . $(\alpha = \beta/2 = \pi/6)$

1. Тело OA — вращательное движение \Rightarrow

$$\vec{a}_A = \vec{a}_A^{\tau} + \vec{a}_A^n; \ a_A^{\tau} = \varepsilon_{OA} \cdot OA = \frac{d\omega_{OA}}{dt} \cdot OA = 0.$$
 $a_A^n = \omega_{OA}^2 \cdot OA = 5^2 \cdot 0, 2 = 5 \frac{M}{c^2}, \text{к точке } \textbf{0}.$

2. Тело $AB - \Pi\Pi Д \Rightarrow \vec{a}_B = \vec{a}_B^{\tau} + \vec{a}_B^{\pi} = \vec{a}_A + \vec{a}_{BA}^{ep} + \vec{a}_{BA}^{u};$ (12.3)

$$a_{BA}^{u} = \omega_{AB}^{2} \cdot AB = 5^{2} \cdot 0, 2 = 5^{2} M/c^{2}$$
, к полюсу A .

 $a_{BA}^{ep} = \varepsilon_{AB} \cdot AB; \quad \vec{a}_{BA}^{\text{вр}} \perp AB$ в сторону ε_{AB} , если смотреть из полюса A.

Чтобы найти a_B , спроецируем уравнение (12.3) на \perp к $\vec{a}_{\scriptscriptstyle RA}^{\scriptscriptstyle \mathrm{BP}}$, т.е. на BA.

$$a_B \cos \beta = -a_A \cos \beta + a_{BA}^{\text{II}} \Rightarrow a_B = \frac{1}{\cos \beta} (a_{BA}^{\text{II}} - a_A \cos \beta) = 2(5 - \frac{5}{2}) = 5\frac{M}{c^2}.$$

Чтобы найти $\vec{a}_{BA}^{\text{вр}}$, спроецируем уравнение на \bot к a_B , т.е. на ось y.

$$0 = -a_A \cos \alpha + a_{BA}^{BP} \cos \beta + a_{BA}^{II} \cos \alpha \Rightarrow a_{BA}^{BP} = \frac{\cos \alpha}{\cos \beta} (a_A - a_{BA}^{II}) = 0 \Rightarrow \varepsilon_{AB} = 0.$$

§12.4. Определение ускорений точек при ППД

Пример 3.

Дано: v_C , a_C , R. Найти: a_B , a_B^{τ}

1.
$$\omega = \frac{\vec{v}_C}{R}$$
 в сторону \vec{v}_C , $\varepsilon = \frac{d\omega}{dt} = \frac{dv_C}{dt} \cdot \frac{1}{R} = \frac{a_C}{R}$

$$2. \, \vec{a}_B = \vec{a}_C + \vec{a}_{BC}^{ep} + \vec{a}_{BC}^{u},$$
 где в сторону \vec{a}_C .

в сторону
$$\vec{a}_C$$

$$a_{BC}^{ep} = \varepsilon \cdot BC = \frac{a_C}{R} \cdot R = a_C$$
, в сторону ε ,

$$a_{BC}^{u} = \omega^2 \cdot BC = \frac{v_C^2}{R^2} \cdot R = \frac{v_C^2}{R}$$
, к полюсу C .

$$a_{Bx} = a_C + a_{BC}^{ep} = a_C + a_C = 2a_C.$$

$$a_{By} = 0 + 0 - a_{BC}^{u} = -\frac{v_C^2}{R}.$$

$$\vec{a}_{B}^{\tau} = \vec{a}_{Bx}, \vec{a}_{B}^{n} = \vec{a}_{By}$$
 (из рисунка)

$$\bullet$$
 Общая формула для точек на диаметре: $a_M^{\tau} = \varepsilon \cdot MC_V$. (12.4)

