From Model to FPGA: Software-Hardware Co-Design for Efficient Neural Network Acceleration

Yu Wang^{1,2}, Song Yao², Song Han^{2,3}

¹ Tsinghua University, ² DeePhi Technology, ³ Stanford University

Acknowledgement:
Xilinx University Program,
Students in my group,
Dongliang Xie and DeePhi Engineering Team

Discovering the philosophy behind deep learning

Computing Hot Chips: A Symposium on High Performance Chips

Conference Sponsor IEEE Technical Committee on Microprocessors and Microcomputers. In cooperation with ACM SIGARCH

	h	rcl	а	e:	S	ρ	
--	---	-----	---	----	---	---	--

Mon 8/22	Session	Title	Presenter	Affiliation
8:30 AM	Breakfast			
9:30 AM	Welcome	Introductory Remarks		
9:45 AM	GPUs & HPCs	The new GPU architecture and its initial implementation	Jem Davies	ARM
		Ultra-Performance Pascal GPU and NVLink Interconnect	Denis Foley	NVIDIA
		ARMv8-A Next Generation Vector Architecture for HPC	Nigel Stephens	ARM
11:15 AM	Break			
11:45 AM	Mobile	NVIDIA Tegra-Next System-on-Chip	Andi Skende	NVIDIA
		Helio X20: The First Tri-Cluster Deca-Core Mobile Application Processor SoC with CorePilot 3 Technology for High-Performance and Power-Efficiency	David Lee	Mediatek
		Samsung's Exynos-M1 CPU	Brad Burgess	Samsung
1:15 PM	Lunch			
2:30 PM	Keynote 1	Augmented Reality	Ilan Spillinger, CVP	Microsoft

Abstract: The Microsoft HoloLens is an untethered holographic computer that transforms ways we communicate, create, and explore. It creates high-definition, 3D holograms using advanced nano-optics and micro displays. These become part of the real world through on-board processing of data from an array of sensors continuously sampling the user's environment. HoloLens combines all of the processing and components in a form factor that enables interaction with the real and the virtual in a most natural way.

natural way	<i>'</i> .			
3:30 PM	Low Power SoC	Design and Development of a an Ultra-Low Power x86 MCU Class SoCs	Peter Barry	Intel
		A Sub-GHz Wireless SoC for Batteryless IoT Applications	David Wentzloff	Psikick
4:30 PM	Break			
5:00 PM	Vision & Imaging	From Model to FPGA: Software-Hardware Co- Design for Efficient Neural Network Acceleration	Song Yao	Deephi and Tsinghua University
		The path to Embedded Vision and AI using a low power Vision DSP	Amos Rohe	Ceva
		High Performance DSP for Vision, Imaging and Neural Networks	Greg Efland	Cadence

Platinum:

Paper Published

- NIPS 2015
 - 世界机器学习领域最顶级会议
- FPGA 2016
 - · FPGA领域最顶级会议
 - 世界每年仅录用约20篇论文
- ICLR 2016 Best Paper
 - 世界深度学习领域最顶级会议
- ISCA 2016
 - 世界计算机体系结构领域最顶级会议
 - 每年仅录用约50篇论文
- Hot Chips 2016
 - 世界半导体工业界最顶级会议
 - 每年仅录用约24篇论文

Overview

- Background
- Platform Selection
- Overall Flow
- Model Compression: Useful in Real-World Networks
- Activation Quantization: 8 Bits Are Enough
- Aristotle: Architecture for CNN Acceleration
- Descartes: Architecture for Sparse LSTM Acceleration
- Conclusion and Collaboration Needed

Deep Learning: Rising Tide in Al

Object Detection: Much higher precision compared with traditional CV algorithms

Deep Learning: Rising Tide in Al

Autonomous Driving: Coming

Deep Learning: Rising Tide in Al

AlphaGo

4

1920 CPU + 280 GPU

Lee Sedol

1

Human Brain

Trend in Neural Network Design

CNN for Object Recognition

Source: Ross Girshick, "Fast R-CNN"

Source: Ross Girshick et al., "R-CNN"

RNN-LSTM for Speech Recognition

Source: Hasim Sak et al.," Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition"

Frameworks for different neural networks have not been unified

Trend in Neural Network Design

CNN: Smaller, slimmer, and deeper

- Smaller: One convolution kernel has fewer computations
- Slimmer: fewer channels, fewer computations, less parallelism

A CNN accelerator should perform better with small Conv kernels and low parallelism

Trend in Neural Network Design

- RNN-LSTM: Larger and deeper
 - Max dimension: $128 \rightarrow 256 \rightarrow 512 \rightarrow 1024 \rightarrow 2048 \rightarrow 4096$
 - Number of LSTM layers: $1 \rightarrow 3 \rightarrow 5$

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Source: Lei Jia et al., Baidu

- Larger model size, higher bandwidth requirement
- An RNN-LSTM accelerator should overcome the bandwidth problem

New Platform Expected for Deep Learning

Drone

Client

Requirements

Real-time object recognition

Limitation
Battery capacity

Video Surveilliance

Edge

Requirements

Real-time video analysis

Limitation

High maintenance cost

Speech Recognition Cloud

Requirements
Low latency

Limitation

High maintenance/cooling cost

Low-power high-performance platform for deep learning is urgently needed

Platform Selection

FPGA is good for inference applications

- CPU: Not enough energy efficiency
- GPU: Extremely efficient in training, not enough efficiency in inference (batch size = 1)
- DSP: Not enough performance with high cache miss rate
- ASIC has high NRE: No clear huge market yet
- ASIC has long time-to-market but neural networks are in evolution

FPGA

- Acceptable power and performance
- Supports customized architecture
- High on-chip memory bandwidth
- Relatively short time to market
- High reliability

FPGA-based deep learning accelerators meet most products' requirements

Platform Selection

Software-Hardware Co-Design is Necessary

- Great redundancy in neural networks
 - VGG16 network can be compressed from 550MB to 11.3MB
 - FPGA has limited BRAM and DDR bandwidth
- Different neural network has different computation pattern
 - CNN: Frequent data reuse, dense
 - DNN/RNN/LSTM: No data reuse, sparse
 - Different architectures must adapt to different neural network
- Neural networks are in evolution
 - Architecture must adapts to new algorithms

Limitations of FPGA platform

- Limited BRAM size
- Limited DDR bandwidth

DeePhi Tech

Discovering the philosophy behind deep learning computing

Inst.
Fixed-Point Neural Network Model

Algorithm
Development

Automatic Compilation

Efficient Hardware Acceleration

One Key Deployment

Algorithm engineers can simply run the compiler tool to implement FPGA accelerator

Traditional FPGA-based Acceleration Faced Two Major Problem

- Long development period
 - Hand coded: 2 3 months
 - OpenCL and HLS: 1 month
- Insufficient performance and energy efficiency

DeePhi's workflow solves the two problems in FPGA acceleration

- Compiler + Architecture instead of OpenCL
 - Algorithm designer need to know nothing about hardware
 - Generates instructions instead of RTL code
 - Compilation in 1 minute
- Much higher performance and energy efficiency
 - Hand-coded IP core and efficient architecture design

Model Compression: Useful in Real-World Netoworks

Deep Compression: Useful for RNN-LSTM and FC layers in CNN

Source: Song Han et al., Stanford University

Different gate in LSTM has different sensitivity

- < 10% sparsity for real-world FC layers in CNN
- ~ 15% sparsity for real-world LSTMs
- 4 bit weight quantization with no accuracy loss

Deep Compression is useful in real-world neural networks and can save a great deal of computations and BW demands

Activation Quantization: 8 Bits Are Enough

Image classification on ILSVRC 2012

		FP32	FIXED-16		16 FIXED-8	
		ORIGINAL	RAW	RE-TRAIN	RAW	RE-TRAIN
VCC16	Top-1	65.77%	65.78%	67.84%	65.58%	67.72%
VGG16	Top-5	86.64%	86.65%	88.19%	86.38%	88.06%
	Top-1	68.60%	68.70%	68.70%	62.75%	62.75%
GoogLeNet	Top-5	88.65%	88.45%	88.45%	85.70%	85.70%
CausaraNat	Top-1	58.69%	58.69%	58.69%	57.27%	57.27%
SqueezeNet	Top-5	81.37%	81.35%	81.36%	80.32%	80.35%

- Object detection on PASCAL VOC 2007
 - R-FCN: < 2% mAP loss without re-training using 8-bit quantization
 - YOLO: < 1% mAP loss without re-training using 8-bit quantization

Activation Quantization: 8 Bits Are Enough

Image classification: Results comparison

Goog	LeNet	SqueezeNet		VG	G16
FP32	FIXED-8	FP32	FIXED-8	FP32	FIXED-8
Shetland Sheepdog	Shetland Sheepdog	Shetland Sheepdog	Shetland Sheepdog	Shetland Sheepdog	Shetland Sheepdog
Collie	Collie	Collie	Collie	Collie	Collie
Borzoi	Borzoi	Border collie	Papillon	Borzoi	Borzoi
Afghan hound	Pomeranian	Afghan hound	Border collie	Afghan hound	Papillon
Pomeranian	Afghan hound	Papillon	Pomeranian	Papillon	Australian terrier

Most differences are in low-priority guesses

Object detection: Results comparison

SqueezeNet + R-FCN

Similar proposal results with lower confidence

From Model to Instructions

Aristotle: Architecture for CNN Acceleration

- Based on Zynq 7000 Series FPGA
- Optimized for 3x3 Conv kernels
- Supports different Conv stride sizes
- Scalable design (1PE, 2PE, 4PE, 12PE) on Zynq 7010/7020/7030/7045
- Supports mainstream deep learning object framework: R-FCN, YOLO, and etc

Descartes: Architecture for Sparse LSTM Acceleration

Designed for LSTM: Supports any matrix size and layer number

- Supports any sparsity
- Considers scheduling and non-linear functions in LSTM
- Scalable design (16/32/64 PEs for each thread)
- Two modes: Batch (high throughput) / No Batch (low latency)

Evaluation: Platform and Benchmark for CNN

Platform Comparison

- Nvidia Tegra K1 SoC
 - ARM Cortex-A15 CPU
 - Kepler GPU 192 Cores
 - Ubuntu 14.04
 - Caffe with CuDNN

- Xilinx Zynq 7000 Series
- ARM Cortex-A9 CPU (Dual Core)
- 85k/125k/350k logic cells (7020/30/45)
- 220/400/900 DSP (7020/30/45)
- 4.9/9.3/19.1Mb BRAM (7020/30/45)

Benchmark

VGG16
Image classification

30.68 GOp 13 Conv layers

YOLO Tiny
General object detection

5.54 Gop, 9 Conv layers

Customized Network Face alignment

104.6 Mop, 9 Conv layers

Evaluation: Resource Utilization with Aristotle Architecture

Zynq 7020

Zynq 7030

Zynq 7045

	LUT	FF	BRAM	DSP
Total	53200	106400	140	220
Used	27761	26600	75	220
Ratio	52%	22%	54%	100%

2 Processing elements
Peak performance: 86.4GOPS@150MHz

	LUT	FF	BRAM	DSP
Total	78600	157200	265	400
Used	43118	34097	203	400
Ratio	55%	22%	77%	100%

4 Processing elements
Peak performance: 172.8GOPS@150MHz

	LUT	FF	BRAM	DSP
Total	218600	437200	545	900
Used	139385	85172	390.5	900
Ratio	64%	19%	72%	100%

12 Processing elements
Peak performance: 518.4GOPS@150MHz

Evaluation: Performance of Aristotle Architecture

Runtime and performance*1 on TK1 and Zynq 7020

- Aristotle on Zynq 7020 performs better when network is small
- Aristotle on Zynq 7020 has limited peak performance
- 1.78x higher performance on Zynq 7030 compared with Zynq 7020
- 4.94x higher performance on Zynq 7045 compared with Zynq 7020
- Zynq 7020 consumes 20% 30% power of TK1 and costs less of TK1

Evaluation: Platform and Benchmark for LSTM

Platform Comparison

Nvidia K40 GPU

- 2880 CUDA Cores
- 810MHz / 875MHz
- 12GB GDDR5

Kintex Ultrascale Series

- 4.75/9.49MB BRAM (KU060/115)
- 2760/5520 DSP (KU060/115)
- Benchmark: Real-world LSTM for Speech Recognition
 - Max matrix size: 4096*1536
 - Consider scheduling of multiple matrixes
 - Consider non-linear functions
 - 100 frames per second

Evaluation: Performance and Resource Utilization of Descartes Architecture

Performance Comparison

Platform	GPU K40*1	FPGA KU060	FPGA KU115
Dense or Sparse	Dense	Sparse (10% sparsity)	
Frequency	810/875 MHz	300 MHz	
Precision	FP32	FIXED-4 to FIXED-16	
Threads to be Supported	Not limited	2 (Separate) / 32 (Batch)	
Peak Performance	4.29 TFOPS	4.8 TOPS*3	9.6 TOPS*4
Real Power	235W	30 – 35W	45 – 50W

Resource Utilization

KU060

	LUT	FF	BRAM	DSP
Total	331680	663360	1080	2760
Used	298875	446655	1011	1505
Ratio	90%	67%	94%	55%

• KU115

	LUT	FF	BRAM	DSP
Total	663360	1326720	2160	5520
Used	563403	848990	1155	2529
Ratio	85%	64%	54%	46%

^{*1} Results on K40 GPU were provided by DeePhi's partners

^{*2} Generally, real performance is 85%-90% of peak performance with Descartes architecture

^{*3 480}GOPS for dense LSTM

^{*4 960} GOPS for dense LSTM

Conclusion

- Tsinghua + DeePhi: Making deep learning deployment simple and efficient
 - Automatic compilation tool
 - Deep compression
 - Activation quantization
 - Compiler
 - Aristotle: Architecture for CNN acceleration
 - Descartes: Architecture for sparse LSTM acceleration
 - Supporting detection, tracking, object/speech recognition, translation, and etc.

100 x Evaluation boards will be shipped in Nov 2016 Apply for test at partner@deephi.tech

Thank You!

Yu Wang
Tsinghua University + Deephi Tech
https://nicsefc.ee.tsinghua.edu.cn

yu-wang@tsinghua.edu.cn