MOMENTUM, IMPULSE, AND COLLISIONS I

PHYS1112

Lecture 6

Intended Learning Outcomes

- After this lecture you will learn:
 - 1) impulse as an indication of the effect of a force which is in effect for a short time.
 - 2) the relation between impulse and momentum change the impulse momentum theorem.
 - 3) conservation of momentum.
 - 4) elastic, inelastic, and completely elastic collisions.

Define momentum

$$\vec{p}=m\vec{v}$$

SI unit: kg·m/s

Newton's second law in terms of momentum:

$$\sum \vec{F} = m \frac{d\vec{v}}{dt} = \frac{d\vec{p}}{dt} = C$$

P

Suppose net force $\sum \vec{F}$ is constant \rightarrow ???

Define impulse

$$\vec{J} = \sum \vec{F} (t_2 - t_1) = \sum \vec{F} \Delta t,$$

SI unit: N·s

Most useful if the force is in effect for a short time, i.e., when Δt is small

From Newton's second law

$$\sum \vec{F} (t_2 - t_1) = \vec{p}_2 - \vec{p}_1$$

i.e.,
$$\vec{J} = \vec{p}_2 - \vec{p}_1$$

Impulse-momentum theorem:

The change in momentum of a particle during a time interval equals the impulse of the net force acting on the particle during that interval

But in general, $\sum \vec{F}$ is not constant!

You are testing a new car using crash test dummies. Consider two ways to slow the car from 90 km/h (56 mi/h) to a complete stop:

- (i) You let the car slam into a wall, bringing it to a sudden stop.
- (ii) You let the car plow into a giant tub of gelatin so that it comes to a gradual halt.

In which case is there a greater *impulse* of the net force on the car?

- A. In case (i).
- B. In case (ii).
- C. The impulse is the same in both cases.
 - D. The answer depends on how rigid the front of the car is.
 - E. The answer depends on how rigid the front of the car is and on the mass of the car.

A8.2

You are testing a new car using crash test dummies. Consider two ways to slow the car from 90 km/h (56 mi/h) to a complete stop:

- (i) You let the car slam into a wall, bringing it to a sudden stop.
- (ii) You let the car plow into a giant tub of gelatin so that it comes to a gradual halt.

In which case is there a greater *impulse* of the net force on the car?

- A. In case (i).
- B. In case (ii).

- C. The impulse is the same in both cases.
- D. The answer depends on how rigid the front of the car is.
- E. The answer depends on how rigid the front of the car is and on the mass of the car.

Define average net force \vec{F}_{av} as the constant force that gives the same impulse

$$\vec{J} = \int_{t_1}^{t_2} \sum \vec{F} \, dt = \vec{F}_{av}(t_2 - t_1)$$

$$\Rightarrow \qquad \overrightarrow{F}_{av} = \frac{1}{(t_2 - t_1)} \int_{t_1}^{t_2} \sum_{\overrightarrow{F}} \overrightarrow{dt}$$

Geometric interpretation: $\mathbf{\hat{F}}_{av}$ is a constant force that has the same area under it as the variable force

dimention analysis

moon value theorem in definite integral

The area under the curve of net force versus time equals the impulse of the net force:

Example: Catching a ball

Case 1: 0.50 kg ball moving at 4.0 m/s, p = 2.0 N·s, K = 4.0 J Case 2: 0.10 kg ball moving at 20 m/s, p = 2.0 N·s, K = 20 J

Which one is easier to catch?

Suppose your hand exerts the same force in both cases:

Both stop within the same time interval (: same impulse)

But case 2 stops at 5 times the distance (:K is 5 times larger) $W = \Delta K$

Fil = ak

Example

A ball hits a wall and bounced back. Assume the ball is in contact with the wall for 0.010 s

Impulse
$$J = m(\overline{v_{2x}} - \overline{v_{1x}})$$

= $(0.40 \text{ kg})(20 - (-30) \text{ m/s}) = 20 \text{ N} \cdot \text{s}$

J is a vector, be careful about the direction

average force
$$F_{av} = \frac{J}{\Delta t} = \frac{20 \text{ N} \cdot \text{s}}{0.010 \text{ s}} = 2000 \text{ N}$$

Demonstration: velocity amplification – impulse can be transmitted from one object to another: impulse due to the normal reaction of the ground on the larger ball is transmitted to the smaller one.

Question

- Arrange the following cases in decreasing order of the magnitude of the average net force. In each case a 1000 kg automobile is along a straight east-west road.
 - a) (It is initially moving east at 25 m/s and comes to a stop in b) 10 s. $7 = \frac{m \times v}{\sqrt{st}}$ b) It is initially moving east at 25 m/s and comes to a stop in
 - NOOD
 - It is initially at rest, and a 2000 N net force toward the east is applied to it for 10 s.
 - It is initially moving east at 25 m/s, and a 2000 N net force toward the west is applied to it for 10 s.
 - It is initially moving east at 25 m/s. Over a 30 s period, it reverses direction and ends up moving west at 25 m/s.

Some terminologies:

A **system** means a collection of bodies, e.g. the 2 astronauts form a system.

Internal forces are forces which individual bodies in the same system exert on others, e.g., the push between the astronauts.

⚠ Internal forces always exist as action and reaction pairs.

External forces are forces exerted on one or more bodies of the system by another object outside it, e.g., gravitational (if any) pull on the astronauts.

A system with no <u>external</u> forces is called an **isolated system**.

Consider a 2 body system,

Net force on
$$A$$
, $\vec{F}_A = \frac{d\vec{p}_A}{dt}$, $\vec{F}_B = \frac{d\vec{p}_B}{dt}$

If it is an isolated system, $\overrightarrow{m{F}}_A$ and $\overrightarrow{m{F}}_B$ are action and reaction pair

$$\vec{F}_A = -\vec{F}_B$$
 \Rightarrow $\frac{d\vec{p}_A}{dt} + \frac{d\vec{p}_B}{dt} = 0$

Define **total momentum** of the system $\vec{P} = \vec{p}_A + \vec{p}_B \Rightarrow \frac{d\vec{P}}{dt} = 0$,

 \vec{P} is constant or conserved

Question

• A spring-loaded toy sits at rest on a horizontal, frictionless surface. When the spring releases, the toy breaks into three equal mass pieces, A, B, and C, which slide along the surface. A moves off in the negative x direction, while B moves off in the negative y direction.

- a) What are the signs of the velocity components of C along the x and y directions?
- b) Which of the three pieces is moving the fastest?

Under no <u>net</u> external force, momentum always conserved, but not mechanical energy.

In an elastic collision, the KE is the same before and after the collision. (No change in PE during the impact.)

In an inelastic collision, the KE before the collision is larger.

In a **completely inelastic collision**, the bodies stick together

after collision.

Example The ballistic pendulum – one way to measure the speed of a bullet

Correct solution:

Conservation of momentum:

$$m_B v_1 = (m_B + m_W) v_2 \Rightarrow v_2 = \frac{m_B v_1}{m_B + m_W}$$
Conservation of energy after collision:

$$\frac{1}{2}(m_B + m_W)v_2^2 = (m_B + m_W)gy$$

$$\Rightarrow \frac{1}{2}\left(\frac{m_B v_1}{m_B + m_W}\right)^2 = gy$$

$$\Rightarrow v_1 = \frac{m_B + m_W}{m_B}\sqrt{2gy}$$

Put in realistic numbers,

$$m_B =$$
 5.00 g, $m_W =$ 2.00 kg, $y =$ 3.00 cm, then $v_1 =$ 307 m/s

KE before impact is $\frac{1}{2}(0.00500 \text{ kg})(307 \text{ m/s})^2 = 236 \text{ J}$

KE after impact is $(0.00500 + 2.00 \text{ kg})(9.80 \text{ m/s}^2)(0.0300 \text{ m}) = 0.590 \text{ J}$

Most of the original KE is lost! What happens to this amount of energy?

Example An automobile collision

A 1000-kg car traveling north collides with a 2000-kg truck traveling east. Just before the collision, the speed of the car is 15 m/s and that of the truck is 10 m/s. The two vehicles move away from the impact point as one. Find the velocity just after the collision.

Truck 10 m/s

2000 kg

M=3000 kg

After

Looo kg

Car

Before

By conservation of momentum:

$$(m_C + m_T)V_{\chi} = m_T v_{T\chi} + m_C v_{C\chi}$$

$$\Rightarrow V_{\chi} = \frac{m_T v_{T\chi}}{(m_C + m_T)} = 6.7 \text{ m/s}$$

$$(m_C + m_T)V_y = m_T v_{Ty} + m_C v_{Cy}$$

$$\Rightarrow V_y = \frac{m_C v_{Cy}}{(m_C + m_T)} = 5.0 \text{ m/s}$$

:
$$V = \sqrt{V_x^2 + V_y^2} = 8.3 \text{ m/s}$$

$$\tan \theta = \frac{v_y}{v_x} = 0.75 \Rightarrow \theta = 37^{\circ}$$

Are there external forces acting on the vehicles?

Yes!

Then how to justify using conservation of momentum?

Weight and normal reaction: cancel each other, does not contribute to the net external force.

Friction: contribute to the net external force, but can we neglect it? The friction f between the vehicles and the road has finite magnitude. Suppose the collision is ideal and takes time $\Delta t \to 0$, then the impulse is $f\Delta t \to 0$. Hence friction can be neglected.

In general, any external forces with bounded magnitude can be neglected in ideal collisions.

Of course no collision is ideal in the real word. From the given speeds, it is reasonable to assume that the collision takes a time $\Delta t \sim 0.1$ s. Suppose $\mu_k = 0.5$. Then the frictions are of the order $\mu_k mg \sim (0.5)(2000 \text{ kg})(10 \text{ m/s}^2) = 10^4 \text{ N}$. The impulses are of the order $\sim 10^4 \text{ N} \times 0.1 \text{ s} = 10^3 \text{ N} \cdot \text{ s}$. The initial momenta of the vehicles are of the order of $2 \times 10^4 \text{ N} \cdot \text{ s}$. Therefore momentum is conserved approximately and we can simplify the question by neglecting friction.

Question

- For each situation, state whether the collision is elastic, inelastic, or completely inelastic.
 - a) You drop a ball from your hand. It collides with the floor and bounces back up so that it just reaches your hand.
 - b) You drop a different ball from your hand and let it collide with the ground. This ball bounces back up to half the height from which it was dropped.
 - c) You drop a ball of clay from your hand. When it collides with the ground, it stops.

Two objects with different masses collide with and *stick* to each other. Compared to *before* the collision, the system of two objects *after* the collision has

- A. the same amount of total momentum and the same total kinetic energy.
- B. the same amount of total momentum but less total kinetic energy.
- C. less total momentum but the same amount of total kinetic energy.
- D. less total momentum and less total kinetic energy.
- E. Not enough information is given to decide.

Two objects with different masses collide with and *stick* to each other. Compared to *before* the collision, the system of two objects *after* the collision has

A. the same amount of total momentum and the same total kinetic energy.

- B. the same amount of total momentum but less total kinetic energy.
- C. less total momentum but the same amount of total kinetic energy.
- D. less total momentum and less total kinetic energy.
- E. Not enough information is given to decide.

Q8.7

Block A has mass 1.00 kg and block B has mass 3.00 kg. The blocks collide and stick together on a level, frictionless surface. After the collision, the kinetic energy (KE) of block A is

A. one-ninth the KE of block B.

B. one-third the KE of block B.

C. three times the KE of block B.

D. nine times the KE of block B.

E. the same as the KE of block B.

A8.7

Block A has mass 1.00 kg and block B has mass 3.00 kg. The blocks collide and stick together on a level, frictionless surface. After the collision, the kinetic energy (KE) of block A is

A. one-ninth the KE of block B.

B. one-third the KE of block B.

C. three times the KE of block B.

D. nine times the KE of block B.

E. the same as the KE of block B.

Block A on the left has mass 1.00 kg. Block B on the right has mass 3.00 kg. The blocks are forced together, compressing the spring. Then the system is released from rest on a level, frictionless surface. After the blocks are released, how does K_A (the kinetic energy of block A) compare to K_B (the kinetic energy of block B)?

A.
$$K_A = K_B/9$$

B.
$$K_A = K_B/3$$

C.
$$K_A = K_B$$

D.
$$K_A = 3K_B$$

E.
$$K_A = 9K_B$$

Block A on the left has mass 1.00 kg. Block B on the right has mass 3.00 kg. The blocks are forced together, compressing the spring. Then the system is released from rest on a level, frictionless surface. After the blocks are released, how does K_A (the kinetic energy of block A) compare to K_B (the kinetic energy of block B)?

A.
$$K_A = K_B/9$$

B.
$$K_A = K_B/3$$

C.
$$K_A = K_B$$

E.
$$K_A = 9K_B$$

An open cart is rolling to the left on a horizontal surface. A package slides down a chute and lands in the cart. Which quantity or quantities have the same value just *before* and just *after* the package lands in the cart?

A the horizontal component of total momentum

B. the vertical component of total momentum

C. the total kinetic energy

D. two of A, B, and C

E. all of A, B, and C

A8.10

An open cart is rolling to the left on a horizontal surface. A package slides down a chute and lands in the cart. Which quantity or quantities have the same value just *before* and just *after* the package lands in the cart?

A. the horizontal component of total momentum

B. the vertical component of total momentum

C. the total kinetic energy

D. two of A, B, and C

E. all of A, B, and C

(000 R