Ensemble Pipeline Tutorial

A comprehensive machine learning pipeline for ensemble modeling with ONNX export capabilities and optimization features.

Overview

This pipeline provides a robust framework for training, evaluating, and deploying ensemble machine learning models. It includes features for:

- Model training and evaluation with cost-sensitive optimization
- Hyperparameter tuning using Bayesian optimization
- ONNX model export for deployment
- Interactive configuration through Streamlit UI
- Comprehensive model evaluation and visualization

Installation

1. Clone the repository:

```
git clone https://github.com/QuinnMazaris/ensamble_pipelineV2.git
cd ensemble_pipelineV2
```

- 2. Set up Python environment:
 - Python Version: Python 3.12 is recommended for best compatibility
 - Windows Users: If using Python < 3.12, you must enable long path support
 - Create and activate virtual environment:

```
# Windows
python -m venv venv
.\venv\Scripts\activate

# Linux/Mac
python -m venv venv
source venv/bin/activate
```

3. Install dependencies:

```
pip install -r requirements.txt
```

Usage

Running the Pipeline

1. Start the Streamlit interface:

```
# Or if looking to host locally
streamlit run app/app.py --server.address 0.0.0.0 --server.port 8501
```

The Streamlit interface will be available at:

- http://localhost:8501 (local access)
- http://<your-ip-address>:8501 (network access)
- 2. Configure settings through the UI or config.py:
 - Adjust cost weights
 - Enable/disable k-fold cross-validation
 - Configure feature filtering
 - Set optimization parameters
 - Choose export format
- 3. Run the pipeline through the UI or run.py.

Model Evaluation

The pipeline provides comprehensive evaluation metrics and visualizations to assess model performance:

1. Performance Metrics:

- o Precision:
 - Ratio of true positives to all predicted positives (TP/(TP+FP))
 - Measures how many of the predicted defects are actual defects
 - Higher precision means fewer false alarms
- Recall:
 - Ratio of true positives to all actual positives (TP/(TP+FN))
 - Measures how many of the actual defects are caught
 - Higher recall means fewer missed defects
- Accuracy:
 - Overall correctness (TP+TN)/(TP+TN+FP+FN)
 - General measure of model performance
 - Can be misleading with imbalanced data
- Cost-weighted Performance:
 - Combines precision and recall using cost weights (C_FP and C_FN)
 - C_FP (False Positive Cost): Cost of false alarms (default = 1)
 - C_FN (False Negative Cost): Cost of missed defects (default = 30)
 - Total Cost = $(FP \times C_FP) + (FN \times C_FN)$

■ Final cost is calculated from the test set's confusion matrix, where FP and FN are the actual counts of false positives and false negatives

Confusion Matrix:

- Shows detailed breakdown of predictions:
 - True Negatives (TN): Correctly identified good parts
 - False Positives (FP): False alarms (good parts marked as defects)
 - False Negatives (FN): Missed defects
 - True Positives (TP): Correctly identified defects

ROC Curve:

- Available in Streamlit UI's Model Analysis tab
- Interactive Plotly visualization
- Plots True Positive Rate (Recall) vs False Positive Rate
- Shows trade-off between sensitivity and specificity
- Area Under Curve (AUC) indicates overall model performance
- PR Curve (Precision-Recall):
 - Available in Streamlit UI's Model Analysis tab
 - Interactive Plotly visualization
 - Plots Precision vs Recall
 - Better suited for imbalanced data than ROC
 - Shows trade-off between precision and recall at different thresholds

2. Visualization:

Threshold Sweep Plots:

- Shows how metrics change across different decision thresholds
- Identifies optimal thresholds for:
 - Cost minimization (using C_FP and C_FN)
 - Accuracy maximization
- Helps balance false positives and false negatives

Model Comparison Plots:

- Side-by-side comparison of all models
- Shows performance at:
 - Cost-optimal threshold
 - Accuracy-optimal threshold
- Includes key metrics for each model

Class Balance Visualization:

- Shows distribution of classes in dataset
- Displays effect of SMOTE resampling
- Helps understand class imbalance

Project Structure

```
ensemble_pipelineV2/

— app/  # Streamlit application

| — app.py  # Main Streamlit application

| — sidebar.py  # Configuration sidebar

| — tabs.py  # Interactive model configuration
```


Code Architecture

Directory Organization

The project follows a modular architecture with clear separation of concerns:

1. Frontend (app/ directory):

- o Built with Streamlit for interactive web interface
- o app.py: Main application entry point and tab management
- sidebar.py: Configuration UI and settings management
- tabs.py: Individual tab implementations for different features
- o utils.py: Frontend-specific utilities and helper functions
- __init__.py: Package initialization

2. Backend (helpers/directory):

- Core ML pipeline functionality
- o data.py: Data loading, preprocessing, and feature engineering
- modeling.py: Model training, optimization, and evaluation
- metrics.py: Performance metrics and evaluation functions
- model_export.py: Model export to ONNX and pickle formats
- plotting.py: Visualization and plotting utilities
- reporting.py: Results analysis and reporting
- utils.py: General utility functions
- export_metrics_for_streamlit.py: Metrics export for frontend display
- __init__.py: Package initialization and exports

3. Configuration (config.py):

Central configuration file

- Model definitions and hyperparameters
- Pipeline settings and parameters
- o File paths and directory structure

4. Data and Output:

- data/: Input data directory
- o output/: Generated files (models, plots, predictions)
 - models/: Trained model files
 - plots/: Generated visualizations
 - predictions/: Model predictions and results -streamlit_data/: Model predictions and results for front end

Frontend-Backend Interaction

The application uses a Python-based architecture where Streamlit serves as both frontend and backend:

1. Frontend (Streamlit UI):

- Provides interactive web interface
- Manages user input and configuration
- Displays results and visualizations
- Organized into tabs:
 - Overview: Project summary and status
 - Data Management: Dataset handling
 - Preprocessing Config: Feature engineering settings
 - Model Zoo: Model selection and configuration
 - Model Analysis: Performance metrics and analysis
 - Plots Gallery: Visualization dashboard
 - Downloads: Export model files and results

2. Backend (Python Pipeline):

- Executes ML pipeline operations
- Handles data processing and model training
- o Manages model optimization and evaluation
- Exports models and results
- Key components:
 - Data Pipeline: Loading → Preprocessing → Feature Engineering
 - Model Pipeline: Training → Optimization → Evaluation
 - Export Pipeline: Model Conversion → File Export

3. Data Flow:

```
User Input (Streamlit UI)

↓
Configuration (config.py)

↓
Backend Processing (helpers/)
```

```
↓
Results & Models (output/)
↓
Display (Streamlit UI)
```

4. Configuration Management:

- Settings stored in config.py
- UI updates config through sidebar.py
- Backend reads config for pipeline execution
- Changes can be saved permanently to config file

5. Model Management:

- Models defined in config.py
- Training handled by helpers/modeling.py
- Export managed by helpers/model_export.py
- UI configuration through Model Zoo tab

Key Features

1. Modular Design:

- Separate frontend and backend components
- Reusable helper functions
- Clear separation of concerns
- Easy to extend and modify

2. Interactive Configuration:

- Real-time parameter adjustment
- o Immediate feedback on changes
- Persistent configuration storage
- Flexible model customization

3. Comprehensive Pipeline:

- End-to-end ML workflow
- Automated data processing
- Model optimization and evaluation
- Results visualization and export

4. Extensible Architecture:

- Easy to add new models
- Customizable preprocessing steps
- Flexible export options
- o Configurable evaluation metrics

Configuration

The pipeline is highly configurable through config.py and the Streamlit UI. Each setting controls specific aspects of the model training and optimization process:

Model Settings

1. Cost Weights:

- C FP (False Positive Cost): Default = 1
- C_FN (False Negative Cost): Default = 30
- These weights are used in the cost-sensitive evaluation of models
- Higher C_FN prioritizes reducing false negatives (missed defects)
- Used in threshold optimization to find the optimal decision boundary
- Implementation: helpers/metrics.py calculates weighted costs for model evaluation

2. Cross-Validation:

- USE_KFOLD: Enable/disable k-fold cross-validation
- N_SPLITS: Number of folds (default = 5)
- When enabled:
 - Data is split into N_SPLITS stratified folds
 - Models are trained and evaluated on each fold
 - Results are averaged across folds for final metrics
 - Helps assess model stability and generalization
- When disabled:
 - Uses a single 80/20 train-test split
 - Faster training but less robust evaluation
- Implementation: helpers/modeling.py handles both split types

3. Feature Filtering:

- FilterData: Enable/disable feature filtering
- When enabled, applies two filtering steps:
 - 1. **Variance Filter** (VARIANCE_THRESH = 0.01):
 - Removes features with variance below threshold
 - Eliminates near-constant features
 - Implementation: helpers/data.py → apply_variance_filter()
 - 2. **Correlation Filter** (CORRELATION_THRESH = 0.95):
 - Removes highly correlated features
 - Keeps one feature from each correlated group
 - Implementation: helpers/data.py → apply_correlation_filter()
- o Both filters are applied sequentially during data preprocessing

Optimization Settings

1. Hyperparameter Optimization:

- OPTIMIZE_HYPERPARAMS: Enable/disable Bayesian optimization
- HYPERPARAM ITER: Number of optimization trials (default = 50)
- Uses Optuna for Bayesian optimization:

- Efficiently searches the hyperparameter space
- Optimizes based on cross-validation performance
- Supports early stopping for faster optimization
- Parameter spaces defined in config.py:

```
HYPERPARAM_SPACE = {
    'XGBoost': {
        'max_depth': [3,4,5,6],
        'learning_rate': [0.01,0.05,0.1],
        'subsample': [0.6,0.8,1.0],
        'colsample_bytree': [0.6,0.8,1.0],
        'n_estimators': [100,200,400],
        'gamma': [0,0.1,0.2],
    },
    'RandomForest': {
        'n_estimators': [100,200,300],
        'max_depth': [None,5,10],
        'min_samples_split': [2,5,10],
        'min_samples_leaf': [1,2,5],
    }
}
```

- If the user chooses to not use this feature, they are able to adjust the parameters manually via the UI or in config.py
- Implementation: helpers/modeling.py → optimize hyperparams()

2. Final Model Optimization:

- OPTIMIZE_FINAL_MODEL: Enable/disable production model training
- When enabled:
 - If OPTIMIZE HYPERPARAMS is also enabled:
 - 1. Performs hyperparameter optimization on the full dataset
 - 2. Uses HYPERPARAM_ITER trials (default = 50) to find best parameters
 - 3. Trains final model with optimized parameters
 - If OPTIMIZE_HYPERPARAMS is disabled:
 - 1. Uses default model parameters from config.py
 - 2. No hyperparameter optimization is performed
 - 3. Trains final model with default parameters
 - In both cases:
 - 1. Trains on the entire dataset
 - 2. Performs cost-sensitive threshold optimization
 - 3. Saves the production-ready model
- o When disabled:
 - Skips final model training completely
 - No production model is created or saved
 - Only cross-validation or single-split models are generated
- Implementation: helpers/modeling.py → FinalModelCreateAndAnalyize()

3. Class Imbalance Handling:

- USE_SMOTE: Enable/disable SMOTE (Synthetic Minority Over-sampling Technique)
- SMOTE RATIO: Ratio of minority to majority class (default = 0.5)
- When enabled:
 - Generates synthetic samples for the minority class
 - Helps prevent model bias towards majority class
 - Applied only to training data, not validation/test
- o Implementation: run.py applies SMOTE during data preparation
- Note: XGBoost models also use scale pos weight for additional imbalance handling

Model Export Settings

1. ONNX Export:

- EXPORT_ONNX: Enable/disable ONNX model export
- ONNX_OPSET_VERSION: ONNX operator set version (default = 12)
- When enabled:
 - Converts models to ONNX format for deployment
 - Preserves feature names and model metadata
 - Supports deployment in production environments
- When disabled:
 - Falls back to pickle format
 - Still maintains all model functionality
- Implementation: helpers/model_export.py → export_model()

Additional Settings

1. Data Splitting:

- TEST SIZE: Proportion of data for testing (default = 0.2)
- RANDOM_STATE: Random seed for reproducibility (default = 42)

2. Output Control:

- SAVE_MODEL: Save trained models
- SAVE_PLOTS: Generate and save visualizations
- SAVE_PREDICTIONS: Save model predictions
- SUMMARY: Print detailed progress information

Settings can be modified through the Streamlit UI or directly in config.py. Changes made in the UI can be saved permanently to config.py using the "Save & Reload Config" button in the sidebar.

Model Export and Deployment

ONNX Export

The pipeline automatically handles model conversion to ONNX format:

1. Export Process:

- Models are converted using skl2onnx
- Feature names are preserved for input mapping
- o Opset version 12 is used by default
- Automatic fallback to pickle if ONNX unavailable

2. ONNX to Halcon:

- ONNX models can be imported into Halcon
- Input/output tensor names are preserved
- Model metadata includes feature names and thresholds

Export Settings

- Enable ONNX export in the UI or config.py
- Adjust opset version if needed (9-15 supported)
- Models are saved in output/models/