Audio processing

Mathieu Lagrange

February 8, 2019

- 1 Fundamentals in Machine Learning
- Bias / Variance Tradeoff
- 3 Dimensionality
- 4 Timbre
- 6 Harmony

- 1 Fundamentals in Machine Learning
- 2 Bias / Variance Tradeoff
- 3 Dimensionality
- 4 Timbre
- 6 Harmony

- 1 Fundamentals in Machine Learning
- 2 Bias / Variance Tradeoff
- 3 Dimensionality
- 4 Timbre
- 6 Harmony

- 1 Fundamentals in Machine Learning
- 2 Bias / Variance Tradeoff
- 3 Dimensionality
- 4 Timbre
- 6 Harmony

- 1 Fundamentals in Machine Learning
- 2 Bias / Variance Tradeoff
- 3 Dimensionality
- 4 Timbre
- **6** Harmony

- Bias / Variance Tradeoff
- 3 Dimensionality

- 4 Timbre
- **6** Harmony

Harmony

- does this item belongs to A or B? (closed set classification)
- does this item belongs to A? (closed set classification)
- ⊱ is this item very A or only a bit ? (regression)
- how my data is structured? (clustering)
- is this item very different from the usual ones? (anomaly detection)

- Reinforcement learning: the world is completely described (explicit reward)
- Supervised learning: the relation between the items and the corresponding supervisory signal is known for some items
- Unsupervised learning: Discover the structure and regularities of the items by observing them (and potentially living with them)

Types of learning

- Reinforcement learning: The machine predicts a scalar reward given once in a while (A few bits for some samples)
- Supervised learning: The machine predicts a category or a few numbers for each input (10 to 10,000 bits per sample)
- Unsupervised learning: The machine predicts any part of its input for any observed part, eg predicting future frames in videos (Millions of bits per sample)

Types of learning

Unsupervised Learning is the "Dark Matter" of Al

Harmony

Unsupervised learning is the only form of learning that can provide enough information

- ⊱ to train large neural nets with billions of parameters.
- E Reinforcement learning would take too many trials

Harmony

Supervised learning

- ⊱ Let $y \in A$ be the labels assigned to some items $x \in \mathbb{R}^d$
- \vdash n couples are available for training: $(x_i, y_i)_{i \le n}$
- \succeq they are assumed to be iid samples $(X_i, Y_i)_{i \le n}$ from non observed distributions (X,Y)
- \vdash from a given x, the system predicts an estimate \tilde{y}
- \succeq parameters of the system are optimized such that $\tilde{y_i} \approx y_i$

- We wish that the precision obtained on the training set is preserved over unseen data
- E this is called generalization capabilities

- \vdash the learning system computes $\tilde{y} = \tilde{f}(x)$
- $\succeq \tilde{f}$ is chosen among a class \mathcal{H}
- \succeq assuming that the *y* paired with *x* is unique, y = f(x)
- \succeq The system then compute an approximation \tilde{f} of f.

Harmony

Empirical risk

Fundamentals in Machine Learning

In order to qualify \tilde{f}

- \vdash a measure of the risk $r(\tilde{y}, y)$ shall be defined
- in a regression problem, the risk can be the quadratic one: $r(\tilde{\mathbf{y}},\mathbf{y})=(\tilde{\mathbf{y}},\mathbf{y})^2$
- in a classification problem, the risk can count the number of classification mistakes
- The empirical risk on the data is then

$$\tilde{R_e}(\tilde{f}) = \frac{1}{n} \sum_{i=1}^{n} r(\tilde{f}(x_i), y_i)$$

Generalization risk

Training data being iid samples $(X_i, Y_i)_{i \le n}$

The empirical risk is

$$\tilde{R}_{e}(\tilde{f}) = \frac{1}{n} \sum_{i=1}^{n} r(\tilde{f}(X_i), Y_i)$$

⊱ the generalization risk is thus

$$\tilde{R}(\tilde{f}) = \mathbb{E}[r(\tilde{f}(X), Y)]$$

we want to minimize the generalization risk, though we have only access to the empirical one.

The important questions are:

- \vdash how do we measure and major the difference between the empirical error $\tilde{R_e}(\tilde{f})$ and the generalization error $R(\tilde{f})$?
- \vdash how do we ensure that $R(\tilde{f})$ is low?

Bias / Variance Tradeoff

Given

Fundamentals in Machine Learning

- \succeq a valid minimizer $\tilde{f} = \operatorname{argmin} R(h)$
- \vdash the best approximation $f_a = \operatorname{argmin} R_e(h)$ h∈H

we have

$$R(\tilde{f}_a) \le R(\tilde{f}) \le R(\tilde{f}_a) + 2\max_{h \in \mathcal{H}} |R(h) - \tilde{R}_e(h)|$$

where

- $\vdash R(\tilde{f}_a)$ is the minimal generalization error
- $\underset{h \in \mathcal{H}}{\text{max}} |R(h) \tilde{R_e}(h)|$ is the fluctuation error between the empirical risk and average risk over the class of predictors

green line: underlying process blue dots: samples

Toy example: polynomial curve fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

- ⊱ Approximator: polynomial
- ⊱ Complexity parameter: *M*

Toy example: polynomial curve fitting

Fundamentals in Machine Learning

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Risk: quadratic loss

Toy example: polynomial curve fitting

Harmony

Toy example: polynomial curve fitting

Toy example: polynomial curve fitting

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$
Penalization

- E can be viewed as an interpolation problem
- E around known values
- ⊱ the more regular the manifold, the easier the task
- Fregularity is linked to differentiability (Fréchet, Gâteaux)

Defining regularity

- ⊱ we consider the *Lipschitz* regularity
- \succeq we say that $f: \Omega \to \mathbb{R}$ is locally Lipschitz
- \vdash if there exist $C_x > 0$ so that

$$\forall x' \in \Omega, \left| f(x) - f(x') \right| \le C_x \left\| x - x' \right\|$$

 \vdash *f* is uniformly lipschitz on Ω if for all $x \in \Omega$ there is C > 0 so that $C_x < C$.

The approximator

Let us consider a nearest neighbor classifier to approximate the manifold of interest:

$$\tilde{f}(x) = f(x_i)$$
 pour $i = \underset{i' \le n}{\operatorname{arg\,min}} ||x - x_{i'}||$

This algorithm does not allow the control of the fluctuation error (high variance), but is efficient to reduce the approximation error as it compute piecewise constant approximations around training examples.

Dimensionality

The training data

- Assuming the ideal case where the training data points are uniformly spread over $\Omega = [0, 1]^d$
- \succeq we can show that to achieve a given prediction error $C\epsilon$
- the number of traiing samples shall be

$$n \ge \frac{\epsilon^{-d} d^{d/2}}{(2\pi e)^{d/2}}$$

- \vdash which for n > 5 is totally impractical.
- E This is the curse of dimensionality.

- \succeq one second of sound is $\in \mathbb{R}^{44100}$
- \succeq one image is $\in \mathbb{R}^{10^8}$
- ⊱ one hour of video is ...
- ⊱ ??

Dimensionality reduction

- ⊱ The main assumption in ML is that there exist
- a lower dimensionality manifold over which the functions we want to approximate are
- angle 1: characterize this manifold
- E angle 2: identify invariance properties of this manifold

Data processing pipeline

Bias / Variance Tradeoff

3 Dimensionality

Fundamentals in Machine Learning

4 Timbre

6 Harmony

Definition

Timbre is

- ⊱ the character or quality of a musical sound or voice
- \succeq as distinct from its pitch
- E and intensity.

Applications

- ⊱ Speaker recognition
- ⊱ Speech recognition
- Instrument recognition
- \succeq Musical Genre recognition

Speech production

Dimensionality

Fundamentals in Machine Learning

Expressing invariance for timbre

We can seek local / global invariance or stability to feature change

- ⊱ time shift
- ⊱ amplitude change
- ⊱ pitch shift

Fundamentals in Machine Learning

Invariance to local time shift can be achieved

- by considering the magnitude spectrogram
- as the phase is discarded
- the representation is invariant to time shift smaller than the size of the analysis window

Amplitude change

We seek stability here by considering the logarithmic compression of magnitude values

- ⊱ compresses the dynamic range of values
- makes frequency estimates less sensitive to slight variations in input (power variation due to speaker mouth moving closer to mike)
- ⊱ Ecology: Human response to signal level is logarithmic

Fundamentals in Machine Learning

Stability to small pitch shift

We first seek stability to small pitch shift

- by considering a logaritmic scale of the frequencies
- Ecology: Human hear frequency scale is logarithmic
- Mathematical explanation through properties of the scalogram

Invariance to Pitch ripples

When we focus on timbre, we want to be invariant to pitch change

- ⊱ In a source / filter model
- ← the periodic source induces many peaks in the spectrum
- ⊱ we have to get rid of them

Simplified source: filter spectrum

The cepstrum

The cepstrum

The cepstrum

Genre Classification

Dimensionality

- Fundamentals in Machine Learning
- Bias / Variance Tradeoff
- B Dimensionality

Fundamentals in Machine Learning

- 4 Timbre
- **6** Harmony

For some applications we want to focus on the harmonic content

- ⊱ get rid of the instrumentation
- ⊱ be invariant to transposition

Chord examples

Musical Structure detection

Musical Structure detection

Musical Structure detection

