Álgebra Linear (ALI0001 – CCI-192-02U)

Base e Dimensão de Espaços Vetoriais

Professor: Marnei Luis Mandler

Aula do dia 12 de abril de 2023.

Base de um Espaço Vetorial

- A ideia de base de um espaço vetorial é um dos principais conceitos da Álgebra Linear.
- Intuitivamente, uma base consiste no "alicerce" da estrutura algébrica denominada Espaço Vetorial V, no sentido de que todos os infinitos elementos de V podem ser "construídos" a partir dos elementos fixados pertencentes à base.
- Dessa forma, uma base para um Espaço Vetorial V consiste em um conjunto finito que contém a menor quantidade de elementos que são necessários para gerar todo o espaço V.
- Portanto, uma base para V deve ser formada por elementos geradores de V, de modo com que nenhum desses geradores possa ser considerado "descartável".
- Isso significa que uma base para V deve ser constituída por elementos geradores de V que sejam linearmente independentes (LI). Isso nos leva à seguinte definição:

Definição: Seja *V* um espaço vetorial. Dizemos que um conjunto finito

$$\beta = \{v_1, v_2, v_3, ..., v_n\} \subset V$$

é uma base para V se e somente se forem válidas as seguintes condições:

- i) β gera V.
- ii) β é LI.

Exercício

Exercício 1) Verifique se, com as operações usuais, os conjuntos dados abaixo são ou não bases do espaço vetorial V.

- a) Em $V = \mathbb{R}^2$, $\beta = \{(1, -2), (-3, 7)\}$.
- b) Em $V = \mathbb{R}^2$, $\beta = \{(1, -3), (-2, 6), (-1, 4)\}$.
- c) Em $V = \mathbb{R}^3$, $\beta = \{(1, -1, 4), (2, -3, -1), (-1, 0, -13)\}.$
- d) Em $V = \mathbb{R}^3$, $\beta = \{(1, 1, -2), (2, 3, -1), (1, 4, 8)\}$.
- e) Em $V = \mathbb{R}^3$, $\beta = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}.$
- f) Em $V = P_2$, $\beta = \{1 + x^2, 1 + x, 1 + x + x^2\}$.
- g) Em $V = P_2$, $\beta = \{1, x, x^2\}$.

Solução: Os itens a, b, c, e, g foram resolvidos durante a aula.

🔔 A resolução dos itens d e f, deixados como exercício, estão nas páginas seguintes.

Resolução item d

Resolução do item d do Exercício 1) Em $V = \mathbb{R}^3$, $\beta = \{(1, 1, -2), (2, 3, -1), (1, 4, 8)\}$.

 $lue{\Gamma}$ Solução: Vamos verificar se eta gera todo o \mathbb{R}^3 e é LI. Temos que:

i)
$$\beta$$
 gera o \mathbb{R}^3 ? $\mathbb{R}^3 = ger\{(1, 1, -2), (2, 3, -1), (1, 4, 8)\}$?

Seja $v=(x,y,z)\in\mathbb{R}^3$. Vamos verificar se existem escalares $a_1,a_2,a_3\in\mathbb{R}$ tais que

$$v = (x, y, z) = a_1(1, 1, -2) + a_2(2, 3, -1) + a_3(1, 4, 8).$$

Efetuando as operações, obtemos

$$(x, y, z) = (a_1 + 2a_2 + a_3, a_1 + 3a_2 + 4a_3, -2a_1 - a_2 + 8a_3)$$

que fornece o sistema linear

$$\begin{cases} a_1 + 2a_2 + a_3 = x \\ a_1 + 3a_2 + 4a_3 = y \\ -2a_1 - a_2 + 8a_3 = z \end{cases}$$

Escalonando a matriz ampliada do sistema:

$$\begin{bmatrix} 1 & 2 & 1 & | x \\ 1 & 3 & 4 & | y \\ -2 & -1 & 8 & | z \end{bmatrix}_{L_2 - L_1} \sim \begin{bmatrix} 1 & 2 & 1 & | x \\ 0 & 1 & 3 & | y - x \\ 0 & 3 & 10 & | z + 2x \end{bmatrix}_{L_3 - 3L_2} \sim \begin{bmatrix} 1 & 2 & 1 & | x \\ 0 & 1 & 3 & | y - x \\ 0 & 0 & 1 & | z + 5x - 3y \end{bmatrix}$$

Resolução item d

Com isso, o sistema é possível (SPD), com sua solução dada por

$$a_1 = 28x - 17y + 5z$$
 $a_2 = -16x + 10y - 3z$ $a_3 = 5x - 3y + z$.

 \blacksquare Dessa forma, mostramos que, para todo $v=(x,y,z)\in\mathbb{R}^3$ têm-se que

$$(x,y,z) = (28x - 17y + 5z)(1,1,-2) + (-16x + 10y - 3z)(2,3,-1) + (5x - 3y + z)(1,4,8),$$

lacksquare o que indica que eta gera qualquer vetor de \mathbb{R}^3 .

ii) β é LI?

Basta analisar a combinação nula

$$a_1(1,1,-2) + a_2(2,3,-1) + a_3(1,4,8) = (0,0,0)$$

que fornece o sistema linear

$$\begin{cases} a_1 + 2a_2 + a_3 = 0 \\ a_1 + 3a_2 + 4a_3 = 0 \\ -2a_1 - a_2 + 8a_3 = 0 \end{cases}$$

Tomando x=y=z=0 no sistema anterior, obtém-se que $a_1=0$, $a_2=0$, $a_3=0$.

lacksquareComo o sistema homogêneo admite apenas a solução trivial (é SPD), temos que eta é LI!

Portanto $\beta = \{(1, 1, -2), (2, 3, -1), (1, 4, 8)\}$ é uma base de \mathbb{R}^3 .

Resolução item f

Resolução do item f do Exercício 1) Em $V=P_2$, $\beta=\{1+x^2,1+x,1+x+x^2\}$.

 $lue{\Gamma}$ Solução: Vamos verificar se eta gera todo o \mathbb{R}^3 e é LI. Temos que:

i)
$$\beta$$
 gera P_2 ? $P_2 = ger\{1 + x^2, 1 + x, 1 + x + x^2\}$?

Seja $p(x) = a + bx + cx^2 \in P_2$. Vamos verificar se existem escalares $a_1, a_2, a_3 \in \mathbb{R}$ tais que

$$p(x) = a + bx + cx^2 = a_1(1+x^2) + a_2(1+x) + a_3(1+x+x^2).$$

Efetuando as operações, obtemos

$$a + bx + cx^2 = (a_1 + a_2 + a_3) + (a_2 + a_3)x + (a_1 + a_3)x^2$$

que fornece o sistema linear

$$\begin{cases} a_1 + a_2 + a_3 = a \\ a_2 + a_3 = b \\ a_1 + a_3 = c \end{cases}.$$

Escalonando a matriz ampliada do sistema:

$$\begin{bmatrix} 1 & 1 & 1 & | & a \\ 0 & 1 & 1 & | & b \\ 1 & 0 & 1 & | & c \end{bmatrix} L_3 - L_1 \sim \begin{bmatrix} 1 & 1 & 1 & | & a \\ 0 & 1 & 1 & | & b \\ 0 & -1 & 0 & | & c - a \end{bmatrix} L_3 + L_2 \sim \begin{bmatrix} 1 & 1 & 1 & | & a \\ 0 & 1 & 1 & | & b \\ 0 & 0 & 1 & | & c - a + b \end{bmatrix}$$

Resolução item f

Com isso, o sistema é possível (SPD), com sua solução dada por

$$a_1 = a - b$$
 $a_2 = a - c$ $a_3 = -a + b + c$.

Dessa forma, mostramos que, para todo $v = (x, y, z) \in \mathbb{R}^3$ têm-se que

$$p(x) = a + bx + cx^2 = (a - b)(1 + x^2) + (a - c)(1 + x) + (-a + b + c)(1 + x + x^2).$$

o que indica que β gera qualquer elemento de P_2 .

ii) β é LI?

Basta analisar a combinação nula

$$a_1(1+x^2) + a_2(1+x) + a_3(1+x+x^2) = 0 + 0x + 0x^2$$

que fornece o sistema linear

$$\begin{cases} a_1 + a_2 + a_3 = 0 \\ a_2 + a_3 = 0 \\ a_1 + a_3 = 0 \end{cases}.$$

Tomando a=b=c=0 no sistema anterior, obtém-se que $a_1=0, a_2=0, a_3=0$. Como o sistema homogêneo admite apenas a solução trivial (é SPD), temos que β é LI! Portanto $\beta=\{\{1+x^2,1+x,1+x+x^2\}\}$ é uma base de P_2 .

Exemplo 1) Verifique se $\beta = \{(1, -2), (-3, 2)\}$ é uma base de $V = \mathbb{R}^2$.

Solução: Devemos verificar se eta é LI e se gera todo o \mathbb{R}^2 .

i)
$$\beta$$
 é LI?

Tomando a combinação linear nula a(1,-2)+b(-3,2)=(0,0) obtemos que

$$(a-3b, -2a+2b) = (0,0) \implies \begin{cases} a-3b = 0 \\ -2a+2b = 0 \end{cases} \implies -2a = 0 \implies a = 0 \\ b = a \implies b = 0$$

Portanto, como a=b=0, temos que o sistema é SPD e β é LI!

ii)
$$\beta$$
 gera o \mathbb{R}^2 ? $\mathbb{R}^2 = ger\{(1, -2), (-3, 7)\}$?

Vamos verificar se qualquer vetor $v=(x,y)\in\mathbb{R}^2$ pode ser escrito como combinação linear dos vetores $v_1=(1,-2)$ e $v_2=(-3,2)$. Ou seja, vamos verificar se, para qualquer $v=(x,y)\in\mathbb{R}^2$ existem $a,b\in\mathbb{R}$ tais que $v=av_1+bv_2$, isto é,

$$(x,y) = a(1,-2) + b(-3,2) = (a-3b,-2a+2b).$$

Com isso, obtemos o sistema linear

$$\begin{cases} a-3b=x\\ -2a+2b=y \end{cases} \Rightarrow \begin{cases} a=x+3b\\ -2(x+3b)+2b=y \end{cases} \Rightarrow \begin{cases} a=x+3b\\ -2x-6b+2b=y \end{cases}$$

$$\begin{cases} a = x + 3b \\ -2x - 6b + 2b = y \end{cases} \Rightarrow -2x - 4b = y - 4b = 2x + y \qquad b = \frac{-2x - y}{4}$$
$$a = x + 3\left(\frac{-2x - y}{4}\right) = \frac{4x - 6x - 3y}{4} = \frac{-2x - 3y}{4}$$

Assim, qualquer $v = (x, y) \in \mathbb{R}^2$ pode ser escrito como

$$v = (x, y) = \left(\frac{-2x - 3y}{4}\right)(1, -2) + \left(\frac{-2x - y}{4}\right)(-3, 2),$$

que significa que qualquer vetor v=(x,y) de \mathbb{R}^2 pode ser obtido como combinação linear dos vetores de β e, com isso, $v=av_1+bv_2$

$$\mathbb{R}^2 = ger\{(1, -2), (-3, 2).$$

Portanto, $\beta = \{(1, -2), (-3, 2)\}$ é uma base de $V = \mathbb{R}^2$.

Por exemplo, para v = (-2, -2) temos que

$$(-2,-2) = \left(\frac{4+6}{4}\right)(1,-2) + \left(\frac{4+2}{4}\right)(-3,2) = \frac{5}{2}(1,-2) + \frac{3}{2}(-3,2).$$

A figura abaixo mostra o elemento v=(-2,-2) escrito como combinação linear dos

vetores da base β :

$$\beta = \{(1, -2), (-3, 2)\}:$$

$$v = \frac{5}{2}(1, -2) + \frac{3}{2}(-3, 2)$$
$$= \frac{5}{2}v_1 + \frac{3}{2}v_2.$$

Ainda, a figura mostra que $v_1 = (1, -2)$ e $v_2 = (-3, 2)$ não são colineares (logo, são LI).

Exemplo 2) Verifique se $\beta = \{(-5,3), (10,-6)\}$ é uma base de $V = \mathbb{R}^2$.

Solução: Vamos verificar se eta é LI e se gera todo o \mathbb{R}^2 . Temos que:

i)
$$\beta$$
 é LI?

Tomando a combinação linear nula a(-5,3) + b(10,-6) = (0,0) obtemos que (-5a + 10b, 3a - 6b) = (0,0)

Logo
$$\begin{cases} -5a + 10b = 0 \\ 3a - 6b = 0 \end{cases} \Rightarrow a = 2b \Rightarrow -10b + 10b = 0 \Rightarrow 0 = 0 \\ a = 2b \quad b \in \mathbb{R}.$$

O sistema homogêneo é possível e indeterminado (SPI). Logo $oldsymbol{eta}$ é LD!

Portanto, nem precisamos verificar se β gera \mathbb{R}^2 , pois a definição de base já não está satisfeita. Concluímos que β não é uma base de \mathbb{R}^2 .

Exemplo 3) Verifique se $\alpha = \{(1,0),(0,1)\} = \{\vec{\iota},\vec{\jmath}\}$ é uma base de $V = \mathbb{R}^2$.

Solução: Tomando a combinação linear nula:

i)
$$a(1,0) + b(0,1) = (0,0) \Rightarrow a = 0 e b = 0$$
. Logo, $\alpha \in U$.

ii) Dado $v=(x,y)\in\mathbb{R}^2$, vemos facilmente que v=(x,y)=x(1,0)+y(0,1).

 \blacksquare Portanto, α é uma base de $V=\mathbb{R}^2$.

Exemplo 4) Verifique se $\beta = \{(1,0), (0,-3), (-5,1)\}$ é uma base de $V = \mathbb{R}^2$.

igspace Solução: Devemos verificar se eta é LI e se gera todo o \mathbb{R}^2 .

i) β é LI?

Tomando a combinação linear nula a(1,0) + b(0,-3) + c(-5,1) = (0,0) obtemos que

$$(a-5c,-3b+c) = (0,0) \Rightarrow \begin{cases} a-5c=0 \\ -3b+c=0 \end{cases} \Rightarrow a=15b \\ c=3b \Rightarrow b \in \mathbb{R}.$$

Portanto, como o sistema é SPI, os vetores de eta são LD e eta não forma uma base para \mathbb{R}^2 !

Para obter uma base a partir de β , note que o elemento associado à variável livre b pode ser descartado.

Fazendo isso, obtemos que $\alpha = \{(1,0), (-5,1)\}$ é LI e que α gera o \mathbb{R}^2 , pois (x,y) = a(1,0) + b(-5,1) = (a-5b,b).

implica que

$$\begin{cases} a - 5b = x \\ b = y \end{cases} \Rightarrow \begin{cases} a = x + 5y \\ b = y \end{cases}$$
 Portanto,
$$\alpha = \{(1,0), (-5,1)\}$$

$$(x,y) = (x + 5y)(1,0) + y(-5,1).$$
 é base para \mathbb{R}^2 .

Logo

Dimensão de um Espaço Vetorial

Observações:

- ullet Os exemplos anteriores nos mostram que existe mais de uma base para um mesmo espaço vetorial V.
- De fato, qualquer conjunto formado por elementos geradores e LI é uma base para V.
- ullet No entanto, todas as bases para V devem possuir a mesma quantidade de vetores.
- A quantidade de elementos de uma base nos fornece uma ideia sobre o "tamanho" do espaço vetorial V, que chamamos de dimensão de V.
- Isso nos leva à seguinte definição:

<u>Definição</u>: Seja $\beta = \{v_1, v_2, v_3, \dots, v_n\}$ é uma base de um espaço vetorial V.

Como a base β é composta por n elementos, dizemos que V é um espaço n-dimensional e que a dimensão de V é igual a n.

Notação: Para indicar que a dimensão de V é igual a n, ou seja, que qualquer base para V é constituída por n elementos, denotamos:

$$\dim(V) = n$$

Exemplo 5) Verifique se $\beta = \{(2,0,-1), (4,0,7), (-1,1,4)\}$ é uma base de $V = \mathbb{R}^3$.

Solução: Vamos verificar se eta é LI e se gera todo o \mathbb{R}^3 . Temos que:

i)
$$\beta$$
 é LI?

Analisando a combinação linear nula dos vetores de β :

$$av_{1} + bv_{2} + cv_{3} = \vec{0} \implies a(2,0,-1) + b(4,0,7) + c(-1,1,4) = (0,0,0)$$

$$\Rightarrow (2a + 4b - c, c, -a + 7b + 4c) = (0,0,0)$$

$$\Rightarrow \begin{cases} 2a + 4b - c = 0 & a = -2b & a = 0 \\ c = 0 & \Rightarrow c = 0. \\ -a + 7b + 4c = 0 & 2b + 7b = 0 & b = 0 \end{cases}$$

 \longrightarrow Como o sistema homogêneo admite apenas a solução trivial (é SPD), temos que $oldsymbol{eta}$ é LI!

ii)
$$\beta$$
 gera o \mathbb{R}^3 ? $\mathbb{R}^3 = ger\{(2,0,-1),(4,0,7),(-1,1,4)\}$?

Seja $v=(x,y,z)\in\mathbb{R}^3$. Vamos verificar se existem escalares a,b,c tais que

$$a(2,0,-1) + b(4,0,7) + c(-1,1,4).$$

Efetuando as operações, obtemos:

$$(x, y, z) = (2a + 4b - c, c, -a + 7b + 4c),$$

📑 E obtemos o sistema

$$\begin{cases} 2a + 4b - c = x \\ c = y \end{cases} \Rightarrow \begin{cases} a + 11b + 3c = x + z \\ c = y \end{cases} \Rightarrow \begin{cases} a = x + z - 3y - 11b \\ c = y \end{cases}$$

Substituindo na terceira equação, obtemos

$$-(x+z-3y-11b)+7b+4y=z \Rightarrow -x-z+7y+18b=z \Rightarrow b=\frac{x-7y+2z}{18}.$$

E voltando na equação

$$a = x + z - 3y - 11b = x + z - 3y - 11\frac{x - 7y + 2z}{18} = \frac{7x + 23y - 4z}{18}.$$

Como o sistema é SPD, encontramos que

$$(x,y,z) = \frac{7x + 23y - 4z}{18}(2,0,-1) + \frac{x - 7y + 2z}{18}(4,0,7) + y(-1,1,4).$$

Portanto, qualquer elemento v=(x,y,z) de \mathbb{R}^3 pode ser obtido como combinação linear dos elementos de β , ou seja, β gera todo o \mathbb{R}^3 .

Concluímos que β é uma base do \mathbb{R}^3 e que dim $(\mathbb{R}^3) = 3$.

Exemplo 6) Verifique se $\alpha = \{(1,0,0), (0,1,0), (0,0,1)\} = \{\vec{\iota},\vec{\jmath},\vec{k}\}$ é uma base de $V = \mathbb{R}^3$.

Solução: Temos que:

i)
$$a(1,0,0) + b(0,1,0) + c(0,0,1) = (0,0,0) \implies a = 0, b = 0, c = 0.$$

🕶 Logo, α é Ll.

ii) Dado $v=(x,y,z)\in\mathbb{R}^3$, vemos facilmente que

$$v = (x, y, z) = x(1,0,0) + y(0,1,0) + z(0,0,1).$$

 $lue{\Gamma}$ Logo, α gera todo o \mathbb{R}^3 .

luelsim Portanto, lpha é uma base de \mathbb{R}^3 .

Observação: Note que os cálculos do Exemplo 6 foram praticamente imediatos, muito mais simples do que os cálculos do Exemplo 5. Isso ocorreu devido ao fato da base α ser muito "mais simples" do que a base β .

Na verdade, dentre todas as bases existentes para o \mathbb{R}^3 , a base α (do Exemplo 6) consiste na "melhor" base para trabalharmos em \mathbb{R}^3 , no sentido de que ela gera os cálculos mais simples/imediatos.

 \square Chamaremos essa "melhor" base de "base canônica de \mathbb{R}^3 ".

Bases Canônicas

 Todo espaço vetorial admite uma base canônica. Vamos encontrar a base canônica de alguns exemplos clássicos de espaços vetoriais:

 \sqsubseteq Exemplo 7) Qual a base canônica de \mathbb{R}^n ?

Solução: Dado um vetor
$$v = (x_1, x_2, x_3, ..., x_n) \in \mathbb{R}^n$$
, vemos facilmente que $v = x_1(1,0,0,...,0) + x_2(0,1,0,...,0) + x_3(0,0,1,...,0) + ... + x_n(0,0,0,...,1)$

lacksquare Isso significa que \mathbb{R}^n é gerado por

$$\alpha = \{(1,0,0,...,0), (0,1,0,...,0), (0,0,1,...,0), ..., (0,0,0,...,1)\}$$

 \mathbf{x} Além disso, é fácil verificar que α também é LI (faça isso como exercício).

lacksquare Portanto, lpha é a base canônica de \mathbb{R}^n .

👆 E ainda,

$$\dim(\mathbb{R}^n) = n$$
.

Exemplo 8) Qual a base canônica de P_n ?

Solução: Dado um polinômio $p(x) \in P_n$ temos que

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n.$$

Exemplos de bases canônicas

Assim, vemos que

$$p(x) = a_0 \cdot 1 + a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3 + \dots + a_n \cdot x^n$$

que significa que qualquer polinômio de P_n pode ser escrito como uma combinação linear dos polinômios do conjunto

$$\alpha = \{1, x, x^2, x^3, ..., x^n\}.$$

- ightharpoonup Com isso, o conjunto α gera todo o P_n .
- \longrightarrow Além disso, é fácil verificar que α também é LI (faça isso como exercício).
- Portanto, α é a base canônica de P_n . Ainda, como α é composta por n+1 elementos, temos que $\dim(P_n)=n+1$.

Exemplo 9) Qual a base canônica de M(3,2)?

Solução: Dada uma matriz
$$A \in M(3,2)$$
 temos que $A = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$.

Note que podemos escrever

$$A = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} + e \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} + f \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Exemplos de bases canônicas

Isso significa que qualquer matriz 3×2 pode ser escrita como uma combinação linear dos elementos do conjunto

$$\alpha = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$

Ou seja, α gera todo o espaço M(3,2).

Além disso, é fácil verificar que α também é LI (faça isso como exercício!)

Portanto, α é a base canônica de M(3,2).

 \Box E ainda, como α é composta por seis elementos, temos que

$$\dim(M(3,2)) = 6 = 3 \times 2.$$

Generalização: A base canônica de M(m,n) é dada por um conjunto com $m \times n$ matrizes, em que cada matriz possui exatamente uma única entrada igual a 1 e todas as demais iguais a zero; com a entrada igual a 1 variando em todas as $m \times n$ posições da matriz.

Portanto

$$\dim(M(m,n)) = m \times n.$$

Exemplo 10) Verifique se $\beta = \{2 - x, 1 + x^2, x - x^3\}$ é uma base de $V = P_3$.

Solução: Vamos verificar se eta é LI e se gera todo o P_3 . Temos que:

i)
$$\beta$$
 é LI?

Como $a(2-x)+b(1+x^2)+c(x-x^3)=\vec{0}$ implica que

$$(2a+b) + (-a+c)x + bx^2 - cx^3 = 0 + 0x + 0x^2 + 0x^3$$

obtemos o sistema

$$\begin{cases} 2a+b=0 \\ -a+c=0 \\ b=0 \\ c=0 \end{cases} \Rightarrow \begin{array}{c} b=-2a \\ a=c \\ b=0 \\ c=0 \end{cases} \Rightarrow \begin{array}{c} b=0 \\ b=0 \\ c=0 \end{cases}$$

 $extstyle{ ilde{\Gamma}}$ Como o sistema homogêneo admite apenas a solução trivial (é SPD), temos que eta é LI!

ii)
$$\beta$$
 gera o P_3 ? $P_3 = ger\{2 - x, 1 + x^2, x - x^3\}$?

Seja $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \in P_3$. Vamos verificar se existem escalares a, b, c tais que

$$p(x) = a(2-x) + b(1+x^2) + c(x-x^3).$$

Ou seja

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 = a(2 - x) + b(1 + x^2) + c(x - x^3)$$

= $(2a + b) + (-a + c)x + bx^2 - cx^3$.

Isto é

$$\begin{cases} 2a+b=a_0 & b=a_0-2a \\ -a+c=a_1 \\ b=a_2 \\ c=a_3 \end{cases} \Rightarrow \begin{cases} b=a_0-2a \\ a=a_3-a_1 \\ b=a_2 \\ c=a_3 \end{cases} \Rightarrow \begin{cases} a_2=a_0-2(a_3-a_1) \\ a=a_3-a_1 \\ c=a_3 \end{cases}$$

Portanto, chegamos que o sistema linear admite solução se e somente se

$$a_2 = a_0 - 2a_3 + 2a_1 \implies a_0 + 2a_1 - a_2 - 2a_3 = 0.$$

ightharpoonup Portanto, o subespaço gerado por eta é dado por

$$ger\{\beta\} = \{a_0 + a_1x + x^2 + a_3x^3 \in P_3; \ a_0 + 2a_1 - a_2 - 2a_3 = 0\}.$$

Como obtemos que

$$ger\{\beta\} \neq P_3$$
,

 \longrightarrow concluímos que eta NÃO gera todo o P_3 e, por isso, não é base de P_3 .

Outra solução: Como $\dim(P_3) = 3 + 1 = 4$, sabemos que toda base de P_3 deve ser composta por quatro polinômios. Como em β temos apenas três polinômios, β não é base!

Base e Dimensão de Subespaços Vetoriais

TEOREMA 1: Seja V um espaço vetorial. Se U é um subespaço vetorial de Ventão $\dim(U) \leq \dim(V)$.

Além disso, temos que U=V se e somente se $\dim(U)=\dim(V)$.

Justificativa: Se U é um subespaço vetorial de V, temos que $U \subset V$ e, por isso, o "tamanho" de U é no máximo igual ao "tamanho" de V, ou seja, $\dim(U) \leq \dim(V)$.

Ainda, temos que U=V se e somente se U e V tiverem o mesmo "tamanho", ou seja, se e somente se $\dim(U)=\dim(V)$.

Exemplo 11) Seja $V=\mathbb{R}^3$. Se U é um subespaço de \mathbb{R}^3 , então temos que $\dim(U) \leq \dim(\mathbb{R}^3) = 3$.

Portanto $\dim(U) \in \{0, 1, 2, 3\}$ e podemos afirmar que:

Se dim(U)=0 então $U=\{\overrightarrow{0_V}\}$. Nesse caso, a base de U é vazia: $\beta=\{\}=\phi$.

Se dim(U) = 1 então U é uma reta que passa pela origem.

Se dim(U) = 2 então Ué um plano que passa pela origem.

Se dim(U) = 3 então $U = \mathbb{R}^3$.

Exercício semelhante ao resolvido no final da aula

Exercício 2) Considerando as operações usuais, determine uma base e a dimensão para o seguinte subespaço vetorial:

$$U = \{(x, y, z) \in \mathbb{R}^3 / 7x + y - 3z = 0 \}.$$

Para obter uma base para W, precisamos obter um conjunto que gera U e que seja LI.

Começamos obtendo os geradores de U. Seja $u=(x,y,z)\in U$. Logo

$$7x + y - 3z = 0$$

📥 e podemos obter que

$$y = -7x + 3z$$

 $x,z \in \mathbb{R}$. Portanto, substituindo em u e evidenciando as variáveis livres, obtemos

$$u = (x, y, z) = (x, -7x + 3z, z) = x(1, -7, 0) + z(0, 3, 1)$$
. u é uma combinação

- Assim, U é gerado por (1, -7, 0) e (0, 3, 1).
- Além disso, esses geradores são LI, pois analisando a combinação nula

$$a(1,-7,0) + b(0,3,1) = (0,0,0)$$

 \rightarrow obtêm-se que a=0, b=0. Portanto,

$$\beta_U = \{(1, -7, 0), (0, 3, 1)\}$$

 \longrightarrow é uma base de U e dim(U) = 2.

linear dos dois elementos em vermelho, que são os geradores de
$$U$$
.