Отчёт по лабораторной работе №4

Модель гармонических колебаний

Тасыбаева Наталья Сергеевна

Содержание

1		5	
	1.0.1 Тасыбаева Наталья Сергеевна	5	
	1.0.1 Тасыбаева Наталья Сергеевна	5	
	1.0.3 Студ. билет 1032201735	5	
2	Цель работы	6	
3	Теоретическое введение	7	
4	Задание	8	
	4.1 Вариант №6	8	
	4.2 Формулировка задания	8	
5	Выполнение лабораторной работы	9	
6	Выводы	15	
Сп	писок используемой литературы		

Список иллюстраций

5.1	График зависимости от времени для первого уравнения	10
5.2	Фазовый график для первого уравнения	10
5.3	График Julia первый	13
5.4	График Julia второй	14
5.5	График Julia третий	14

Список таблиц

1 Подготовила

- 1.0.1 Тасыбаева Наталья Сергеевна
- 1.0.2 Группа НПИбд-02-20
- 1.0.3 Студ. билет 1032201735

2 Цель работы

Изучить методы математического моделирования на основе модели линейного гармонического осциллятора.

3 Теоретическое введение

Движение грузика на пружинке, маятника, заряда в электрическом контуре, а также эволюция во времени многих систем в физике, химии, биологии и других науках при определенных предположениях можно описать одним и тем же дифференциальным уравнением, которое в теории колебаний выступает в качестве основной модели. Эта модель называется линейным гармоническим осциллятором.

4 Задание

4.1 Вариант №6

```
1032201735 \mod 70 = 5
5 + 1 = 6
```

С помощью этих вычислений я выявила, что мой вариант - это вариант №6.

4.2 Формулировка задания

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силь x'' + 8*x = 0
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы x'' + 4*x' + 3*x = 0
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силь $x'' + 3*x' + 6*x = \sin(0.5*t)$

На интервале t=[0;45] (шаг 0.05) с начальными условиями $x_0=-1$ и $y_0=0$

5 Выполнение лабораторной работы

1. Я начала работу с опенмоделики, так как там значительно проще писать код и он быстрее работает. [1] Для первого случая я написала следующий код:

```
model lab4_OM
Real x;
Real y;
Real a = 8;
Real t = time;
initial equation
x = -1;
y = 0;
equation
der(x) = y;
der(y) = -a*x;
end lab4_OM;
```

В симуляции я сперва получила стандартный график зависимости X и Y от времени (рис. 5.1), и так же фазовый график зависимоти X от Y (рис. 5.2).

Рис. 5.1: График зависимости от времени для первого уравнения

Рис. 5.2: Фазовый график для первого уравнения

Далее я написала код для второго случая:

```
model lab4_OM
Real x;
Real y;
Real a = 3;
Real b = 4;
Real t = time;
initial equation
x = -1;
y = 0;
equation
der(x) = y;
der(y) = -a*x - b*y;
end lab4_OM;
```

В результате я так же получила два графика: зависимость от времени (рис. ??) и фазовый график (рис. ??).

Для третьего уравнения я написала следующий код

```
model lab4_OM
Real x;
Real y;
Real a = 6;
Real b = 3;
Real t = time;
initial equation
x = -1;
y = 0;
equation
der(x) = y;
der(y) = -a*x - b*y + sin(0.5*t);
end lab4_OM;
```

В результате работы программы я получила так же два графика: зависимость от времени (рис. ??) и фазовый график (рис. ??).

2. Далее я написала код на языке Julia. Код программы для всех трёх уравнений будет идентичен, за исключением того, что нужно будет изменить значения параметров omega_square и gamma, а так же в уравнение для третьей программы добавить синус. Далее представлена версия кода для третьей программы.

```
using Plots
using DifferentialEquations
println("super")
omega_square = 6
gamma = 3
t_min = 0
t_max = 45
T = (t_min, t_max)
x0 = -1
y0 = 0
u0 = [x0, y0]
function Function(du,u,p,t)
    du[1] = u[2]
    du[2] = -omega\_square*u[1] - gamma*u[2] + sin(0.5*t)
end
prob = ODEProblem(Function, u0, T)
sol = solve(prob, saveat = 0.05, abstol = 1e-8, reltol = 1e-8)
X = []
Y = []
for u in sol.u
    x, y = u
    push!(X, x)
    push!(Y, y)
end
```

```
Time = sol.t
```

```
plt = plot(dpi = 150, layout = (1,2), plot_title = "Модель гармонических колебани plot!(plt[1], Time, [X, Y], color=[ :red :blue], xlabel= "Время", label = ["x(t)" plot!(plt[2], X, Y, color = [:black], xlabel="x(t)", ylabel="y(t)", label="Фазовь savefig(plt, "lab4_3.png")
```

В результате работы программы создались следующие графики:

• График зависимости X и Y от времени и фазовый график для первого уравнения (рис. 5.3)

Рис. 5.3: График Julia первый

• График зависимости X и Y от времени и фазовый график для второго уравнения (рис. 5.5)

Рис. 5.4: График Julia второй

• График зависимости X и Y от времени и фазовый график для третьего уравнения (рис. ??)

Рис. 5.5: График Julia третий

6 Выводы

Рассмотрели модель гармонических колебаний, провели анализ и вывод дифференциальных уравнений, а так жк построили графики зависимости наших переменных от времени и фазовые графики зависимостей.

Список используемой литературы

1. Теоретическая справка "Pабота с OpenModelica" [Электронный ресурс]. 2023. URL: https://habr.com/ru/post/209112/.