

Slides prepared by: Dr. Sibarama Panigrahi

MOTIVATION

MOTIVATION

MOTIVATION

Object Tracking

Pose Estimation

Object Detection

Action Recognition

Autonomous Navigation

• • • / •

3D Reconstruction

Crowd Understanding

Urban Scene Understanding

Indoor Scene Understanding

Multi-agent Collaboration

Depth/Multi-View

User Input

Human Training

Aerial Surveying

Image

Physics

Segmentation/Bounding Box

Camera Localization

Biological Motivation for CNN

CONVOLUTIONAL NEURAL NETWORKS

- Popularly called as CNN or Convnets.
- https://en.wikipedia.org/wiki/David_H._Hubel#Research
- https://www.youtube.com/watch?v=v20-E_2bT2c
- **Hubel and Wiesel** received the Nobel Prize.

KEY FINDINGS

- Some neurons in the visual cortex fires when lines at specific angle is presented.
- There is a special region called primary visual cortex that detects edges.
- There are some more complex neurons that detect motion, depth, color, shapes, complex edges like faces.

Functional specialization

Match each visual area to its corresponding function:

Motion / Edges
Stereo
Color
Texture segregation
Segmentation, grouping
Recognition
Face recognition
Attention
Working memory/mental imagery
Etc.

We detect edges by applying Convolution operator on the i/p image.

Gray Scale Image (6X6)

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
255	255	255	255	255	255
255	255	255	255	255	255
255	255	255	255	255	255

0	0	0	0
-1020	-1020	-1020	-1020
-1020	-1020	-1020	-1020
0	0	0	0

A

$$0*1 + 0*2 + 0*1 + 0*0 + 0*0 + 0*0 + 0*0 + -1*0 + -2*0 + -1*0 + 0$$

0	0	0	0
-1020	-1020	-1020	-1020
-1020	-1020	-1020	-1020
0	0	0	0

Normalization

255	255	255	255
0	0	0	0
0	0	0	0
255	255	255	255

- Convolution is a generalization of a dot product.
- We can achieve it through the operation of a neuron in the neural network.

$$V_k = W_{k1} * x_1 + W_{k2} * x_2 + W_{k3} * x_3 + ... + W_{kn} * x_n$$

- Sobel Kernel
 - Horizontal can detect Horizontal Edge
 - Vertical can detect Vertical Edge
- Kernels can be of any size Typically a square matrix.

Formulation [edit]

The operator uses two 3×3 kernels which are convolved with the original image to calculate approximations of the derivatives – one for horizontal changes, and one for vertical. If we define **A** as the source image, and \mathbf{G}_x and \mathbf{G}_y are two images which at each point contain the horizontal and vertical derivative approximations respectively, the computations are as follows:^[2]

$$\mathbf{G}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix} * \mathbf{A} \quad ext{and} \quad \mathbf{G}_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix} * \mathbf{A}$$

where * here denotes the 2-dimensional signal processing convolution operation.

Since the Sobel kernels can be decomposed as the products of an averaging and a differentiation kernel, they compute the gradient with smoothing. For example, $G_{\mathbf{x}}$ can be written as

$$\begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} [+1 & 0 & -1]$$

The x-coordinate is defined here as increasing in the "right"-direction, and the y-coordinate is defined as increasing in the "down"-direction. At each point in the image, the resulting gradient approximations can be combined to give the gradient magnitude, using:

$$\mathbf{G} = \sqrt{{\mathbf{G}_x}^2 + {\mathbf{G}_y}^2}$$

Using this information, we can also calculate the gradient's direction:

MOTIVATION FOR PADDING

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
255	255	255	255	255	255
255	255	255	255	255	255
255	255	255	255	255	255

	1	2	1
*	0	0	0
	-1	-2	-1

0	0	0	0
-1020	-1020	-1020	-1020
-1020	-1020	-1020	-1020
0	0	0	0

- By Performing Convolution operation using 3 X 3 matrix on an input image of 6X6, We have got a 4X4 result.
- By Performing Convolution operation using K X K matrix (filter) on an input image of N X N, We have got a N-K+1 X N-K+1 result.
- This results in reduction in Dimension.
- How not to reduce the dimension of the original Image.

PADDING

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
255	255	255	255	255	255
255	255	255	255	255	255
255	255	255	255	255	255

0	0	0	0
-1020	-1020	-1020	-1020
-1020	-1020	-1020	-1020
0	0	0	0

0	0	0	0	0	0
0	0	0	0	0	0
0	- 1020	- 1020	- 1020	- 1020	0
0	- 1020	- 1020	- 1020	- 1020	0
0	0	0	0	0	0
0	0	0	0	0	0

- This can be achieved by padding 1 row and 1 column of zeros around the resultant matrix. This is called padding by 1.

PADDING

- If you add Zero in padding it is called Zero Padding. (Extensively Used because of Simplicity)
- You can do same value padding.
- Padding m results in n+2m size

0	0	0	0	0	0
0	0	0	0	0	0
0	- 1020	- 1020	- 1020	- 1020	0
0	- 1020	- 1020	- 1020	- 1020	0
0	0	0	0	0	0
0	0	0	0	0	0

0	0	0	0	0	0
0	0	0	0	0	0
1020	- 1020	- 1020	- 1020	- 1020	1020
1020	- 1020	- 1020	- 1020	- 1020	1020
0	0	0	0	0	0
0	0	0	0	0	0

STRIDE

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
255	255	255	255	255	255
255	255	255	255	255	255
255	255	255	255	255	255

0	0	0	0
-1020	-1020	-1020	-1020
-1020	-1020	-1020	-1020
0	0	0	0

A

K

R

Stride 1= Shift by 1 column/row

2/3/2025

Convolutional Neural Network

STRIDE

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
255	255	255	255	255	255
255	255	255	255	255	255
255	255	255	255	255	255

0	0	0	0
-1020	-1020	-1020	-1020
-1020	-1020	-1020	-1020
0	0	0	0

A

K

R

Stride 2= Shift by 2 column/row

Convolutional Neural Network

STRIDE

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
255	255	255	255	255	255
255	255	255	255	255	255
255	255	255	255	255	255

0	0	0	0
-1020	-1020	-1020	-1020
-1020	-1020	-1020	-1020
0	0	0	0

K

 $n \times n$

Stride=s and Kernel= kX k
$$\left(\left\lfloor \frac{n-k}{s} \right\rfloor + 1\right) X \left(\left\lfloor \frac{n-k}{s} \right\rfloor + 1\right)$$

CONVOLUTION IN AN RGB IMAGE

CONVOLUTION IN AN RGB IMAGE

Convolutional Neural Network

CONVOLUTION IN AN RGB IMAGE

0	0	0	0	0	0	***
0	156	155	156	158	158	***
0	153	154	157	159	159	***
0	149	151	155	158	159	***
0	146	146	149	153	158	***
0	145	143	143	148	158	
	***	***			***	***

0	0	0	0	0	0	***
0	167	166	167	169	169	***
0	164	165	168	170	170	***
0	160	162	166	169	170	
0	156	156	159	163	168	***
0	155	153	153	158	168	-
				***	***	

0	0	0	0	0	0	
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	
	***	***				

Input Channel #1 (Red)

Input Channel #2 (Green)

		_	
Input	Channel	#3	Blue)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #1

Kernel Channel #2

-14

Kernel Channel #3

Bias = 1

Output

Output				
-25	466	466	475	***
295	787	798		***
***				***

CONVOLUTION LAYER IN CNN

- Biologically Inspired
- Multiple Edge Detectors: Multiple Kernels
- In MLP, we learn the weights
- In CNN, We learn the kernel matrices

CONVOLUTION LAYER IN CNN

WHY MULTIPLE LAYERS?

- Hierarchy of representations with increasing level of abstraction
- Each stage is a kind of trainable feature transform
- **Image recognition**: Pixel \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object
- **IDENTIFY** Text: Character \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story
- **Speech**: Sample \rightarrow spectral band \rightarrow sound $\rightarrow ... \rightarrow$ phone \rightarrow phoneme \rightarrow word

• Location Invariant: Changing the location will not change the object.

• Scale Invariant: Subsampling Image will not change the Image

bird

• Rotation Invariant: Rotating an image will not change the Object.

• Pooling is a concept that makes the CNN models invariant to Location, Scale and Rotation.

2/3/2025 Max Pooling

POOLING

- E.g. Max Pooling
 - Let's have a 4X4 image with kernel size 2X2 and Stride 2
- Popular method

HOW DERIVATIVE OF POOLING WORKS IN CNN

Derivatives of Pooling

Pooling layer subsamples statistics to obtain summary statistics with any aggregate function (or filter) g whose input is vector, and output is scalar. Subsampling is an operation like convolution, however g is applied to disjoint (non-overlapping) regions.

Definition: subsample (or downsample)

Let m be the size of pooling region, x be the input, and y be the output of the pooling layer. subsample(f, g)[n] denotes the n-th element of subsample(f, g).

$$y = \operatorname{subsample}(x, g)[n] = g\left(x_{(n-1)m+1:nm}\right)$$

$$y = \operatorname{subsample}(x, g) = [y_n]$$

$$mean pooling$$

$$g(x) = \begin{cases} \sum_{k=1}^{m} x_k & \frac{\partial g}{\partial x} = \frac{1}{m} \\ \max(x), & \frac{\partial g}{\partial x_i} = \begin{cases} 1 \text{ if } x_i = \max(x) \\ 0 \text{ otherwise} \end{cases}$$

$$\|x\|_p = \left(\sum_{k=1}^{m} |x_k|^p\right)^{1/p}, & \frac{\partial g}{\partial x_i} = \left(\sum_{k=1}^{m} |x_k|^p\right)^{1/p-1} |x_i|^{p-1} \end{cases}$$

$$L^p \text{ pooling}$$
or any other differentiable $\mathbf{R}^m \to \mathbf{R}$ functions

CONVNETS

CONVNETS

cat dog

POPULAR CNN MODELS

- LeNet
- AlexNet
- VGGNet
 - **-**VGG16
 - **-**VGG19
- ResNets
- GoogLeNet

LENET

• https://d2l.ai/chapter_convolutional-neural-networks/lenet.html

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11), 2278-2324.

LENET

https://d21.ai/chapter_convolutional-neural-networks/lenet.html

ALEXNET

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Takes, Neural 2, 6 December 1: 1007-1105.

Lake Tahoe, Nevada, 3-6 December. 1: 1097-1105.

VGGNET- VGG16

All Convolution (3X3 Kernel, Stride=1, Padding='Same') All MaxPool (2X2, Stride=2)

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. *arXiv* preprint *arXiv*:1409.1556.

VGGNET- VGG16

VGG-16

Reference

https://github.com/keras-team/keras-
applications/blob/master/keras-applications/vgg16.py

RESIDUAL NETWORKS: RESNETS

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778).

RESIDUAL NETWORKS: RESNETS

Figure 2. Residual learning: a building block.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778).

RESIDUAL NETWORKS: RESNETS

RESNETS-50

https://github.com/keras-team/kerasapplications/blob/master/keras_applications/resnet50.py

INCEPTION MODULE MOTIVATION

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 2818-2826).

INCEPTION MODULE MOTIVATION

Input: 28x28x192

Filter: Conv 5x5x192, same, 32

Output: 28x28x32

Total number of calculations = (28 * 28 * 32) * (5 * 5 * 192) = 120 Million !!

INCEPTION MODULE MOTIVATION

Using 1x1 Convolution to reduce computation cost

A 1x1 convolution is added before the 5x5 cvonvolution -= Also called a bottleneck layer

Total number of calculations = [(28 * 28 * 16) * (1 * 1 * 192)] + [(28 * 28 * 32) * (5 * 5 * 16)] = 12.4 Million !! (earlier the cost was 120 Million)

GOOGLENET

48

LeNet-5, AlexNet, VGG-19, GoogLeNet for MNIST Dataset

http://euler.stat.yale.edu/~tba3/stat665/lectures/lec18/notebook18.html

2/3/2025 Transfer Learning

TRANSFER LEARNING

Transfer learning (TL) is a research problem in machine learning (ML) that focuses on storing knowledge gained while solving one problem and applying it to a different but related problem.

-Wikipedia

TRANSFER LEARNING

https://blog.keras.io/building-powerful-imageclassification-models-using-very-littledata.html

VGGNet Trained using IMAGENET

TRANSFER LEARNING(CASE-0)

- Pre-Trained CNN Models
 - Use the Pre-trained CNN to predict the new dataset

TRANSFER LEARNING(CASE-1)

- Pre-Trained CNN Models + ML Classifiers
 - Remove the last Dense Connected Layer
 - Take Bottleneck features and use it on a Shallow ML Classifiers
 - Here Pre-Trained CNN is used for Feature Engineering

TRANSFER LEARNING (CASE-2)

- Fine Tuning the last two layers of CNN
 - Take the Original Dataset and Pretrained CNN Models
 - Freeze the early layers (Don't Change)
 - Fine tune the last two layers using the new dataset

While fine tuning ensure small learning rate

TRANSFER LEARNING (CASE-3)

- Fine Tuning the Complete model taking the pretrained model as initial model
 - Take the Original Dataset and Pretrained CNN Models
 - Fine tune the complete model using the new dataset

While fine tuning ensure small learning rate

TRANSFER LEARNING (CASE-4)

• Dump everything & Retrain from Scratch

Not widely used

HOW TO CHOOSE THE TYPE OF TRANSFER LEARNING

Based on:

- Size of the Dataset
- Characteristic of the new dataset to the Imagenet Dataset

https://cs231n.github.io/transfer-learning/

HOW TO CHOOSE THE TYPE OF TRANSFER LEARNING

- Case:1
 - If Size(Dataset)=Small and Similar to (IMAGENET)
 - Use Case-1 of Transfer Learning
- Case:2
 - If Size(Dataset)=Large and Similar to (IMAGENET)
 - Use Case-3 of Transfer Learning
- Case:3
 - If Size(Dataset)=Medium and Similar to (IMAGENET)
 - Use Case-2 of Transfer Learning
- Case:4
 - If Size(Dataset)=Small and DisSimilar to (IMAGENET)
 - Use Initial Layers and dump middle layers and use flatten and train a Shallow ML model.
- Case:5
 - If Size(Dataset)=Large and DisSimilar to (IMAGENET)
 - Initialize the Model using pretrained CNN and tune the whole model.

EARLY FUSION (OR FEATURE LEVEL FUSION)

LATE FUSION (OR DECISION LEVEL FUSION)

INTERMEDIATE FUSION

61

For Your Valuable Time.

2/3/2025