CAROL: **C**ertifiably **Ro**bust Reinforcement **L**earning through Model-Based Abstract Interpretation

<u>Chenxi Yang</u>¹, Greg Anderson², Swarat Chaudhuri¹

The University of Texas at Austin, ²Reed College

Background: RL in Safety-Critical Tasks

 Reinforcement learning (RL) is an established approach for various tasks, including safety-critical ones.

Article | Published: 22 March 2023

Dense reinforcement learning for safety validation of autonomous vehicles

Shuo Feng, Haowei Sun, Xintao Yan, Haojie Zhu, Zhengxia Zou, Shengyin Shen & Henry X. Liu

Nature 615, 620-627 (2023) Cite this article

- State-of-the-art RL methods use neural networks as policy representations.

Background: RL with Neural Network Policies is Vulnerable

Neural networks are vulnerable.

x
"panda"

57.7% confidence

 $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

[1] Goodfellow et, al. Explaining and Harnessing Adversarial Examples. ICLR 2015.

Background: RL with Neural Network Policies is Vulnerable

Problems are more severe in RL as mistakes can cascade.

A hopper moves forward

Under attacks

Background: Certified Defenses

Certified Neural Networks in Supervised Learning

DiffAI (Mirman et al. 18), k-ReLU (Singh et al. 19), RNN Verification (Ryou et al. 21)

Defenses are still heuristic in RL

SA (Zhang et al. 20),
PA-AD (Sun et al. 22),
RADIAL (Oikarinen et al. 21)

Heuristic defenses are defeated by **counter** attacks.

Can we train a **certifiable** RL policy against **arbitrary** attacks?

Challenges

 How to represent and quantify worst-case attacks?

Challenges

 How to represent and quantify worst-case attacks?

 How to reason over the black-box environment?

Challenges

How to represent and quantify worst-case attacks?

We use abstract interpretation, covering all the attacks.

 How to reason over the black-box environment?

Abstract Interpretation^[1]: A well-established method to effectively compute bounds over functions.

It can be used to certify neural networks^[2].

Challenges

 How to represent and quantify worst-case attacks?

We use abstract interpretation, covering all the attacks.

 How to reason over the black-box environment?

- [1] Cousot et, al. Abstract Interpretation. POPL 1977.
- [2] Mirman et, al. Differentiable Abstract Interpretation for Provably Robust Neural Networks. ICML 2018.

Challenges

 How to represent and quantify worst-case attacks?

We use abstract interpretation, covering all the attacks.

 How to reason over the black-box environment?

Learn a white-box transition representation of the environment with the policy.

Step 1: Train a NN represented model (verifiable) for the black-box environment during normal training.

Step 1: Train a NN represented model (verifiable) for the black-box environment during normal training.

Step 2: Train the **policy** over the NN model of the real environment.

Step 1: Train a NN represented **model** (verifiable) for the black-box environment during normal training.

Step 2: Train the **policy** over the NN model of the real environment.

Step 3: A **symbolic** RL algorithm: **RL**[#]: with the learnt symbolic reward **R**[#].

Step 1: Train a NN represented model (verifiable) for the black-box environment during normal training.

Step 2: Train the **policy** over the NN model of the real environment.

Step 3: A **symbolic** RL algorithm: **RL**[#]: with the learnt symbolic reward **R**[#].

Step 4: In each iteration: we use the accumulative reward lower bound to guide the training: $\hat{R}^{\#}$ = LowerBound[RL*(A*, O*,

Theoretical Bound of Reward

With probability 1 - δ , the reward (R) under the worst attack is bounded by,

$$R \geq {\hat R}^\# - rac{1}{\sqrt{\delta}} \sqrt{rac{Var[R^\#]}{N}} - \left(1 - (1 - \delta_E)^T
ight)C.$$

Theoretical Bound of Reward

With probability 1 - δ , the reward (R) under the worst attack is bounded by,

$$R \geq {\hat R}^\# - rac{1}{\sqrt{\delta}} \sqrt{rac{Var[R^\#]}{N}} - \left(1 - (1 - \delta_E)^T
ight) C.$$

- 1. The bound grows as the δ shrinks.
 - ⇒ We pay the price of a looser bound as we consider higher confidence levels.
- 2. The bound depends on $Var[R^\#]$ and N in an intuitive way.
 - ⇒ Higher variance makes it harder to measure the true reward, more samples make the bound tighter.
- 3. As δ_E increases, the last term grows.
 - ⇒ A less accurate environment model leads to a looser bound.
- 4. The bound grows with T.
 - ⇒ Over longer time horizons, our reward measurement gets less accurate.

Reward Bound under Worst-case Attack

Time Horizon (T)

CAROL

Reward Bound under Worst-case Attack

RL without Defense

Time Horizon (T)

Summary: CAROL

Thank you!

CAROL: Certifiable Robust Reinforcement Learning with Long-Horizon Reward Bound

Key Idea: Abstract Interpretation for **Verification** in the Learning Loop **White-Box** Environment Representation Learning

Future: More Accurate and Scalable Certified RL

Code: https://github.com/chenxi-yang/carol