Elementi di Teoria della Computazione

Classe: Resto_2 - Prof.ssa Marcella Anselmo

Tutorato 18/07/2022 ore 11:00-13:00

Ottava Esercitazione

a cura della dott.ssa Manuela Flores

Appello 05/07/2022: linguaggi regolari

- 1. Scrivere se le seguenti affermazioni sono vere o false, giustificando la risposta.
 - (a) $X = \{a^k b a b a^k \mid k \le 5\}$ è regolare.
 - (b) $Y = \{a^i b^j \mid i < j\}$ è regolare.
 - (c) Ogni sottoinsieme proprio di un linguaggio regolare è regolare.

Linguaggi regolari vs. non regolari

Consideriamo il linguaggio $L_n = \{a^k b^k \mid k \le n\}, \forall n \ge 0$. **E' regolare o no?**

L'NFA costruito riconosce L_n , quindi L_n è regolare!

Appello 05/07/2022: linguaggi regolari

- 1. Scrivere se le seguenti affermazioni sono vere o false, giustificando la risposta.
 - (a) $X = \{a^k b a b a^k \mid k \le 5\}$ è regolare.
 - (b) $Y = \{a^i b^j \mid i < j\}$ è regolare.
 - (c) Ogni sottoinsieme proprio di un linguaggio regolare è regolare.

(a)

Appello 05/07/2022: linguaggi regolari

- 1. Scrivere se le seguenti affermazioni sono vere o false, giustificando la risposta.
 - (a) $X = \{a^k b a b a^k \mid k \le 5\}$ è regolare.
 - (b) $Y = \{a^i b^j \mid i < j\}$ è regolare.
 - (c) Ogni sottoinsieme proprio di un linguaggio regolare è regolare.

(b)

Pumping lemma: dimostrare la non regolarità (esempio)

Dimostriamo che $L = \{a^n b^n \mid n \ge 0\}$ non è regolare!

Dimostrazione.

Supponiamo per assurdo che L sia regolare. Allora vale il pumping lemma. Sia p la lunghezza del pumping.

Consideriamo la stringa $s = a^p b^p$.

Ovviamente $s \in L$ e |s| = 2p (soddisfa le ipotesi $|s| \ge p$).

Consideriamo **TUTTE** le possibili fattorizzazioni di $s = a^p b^p$ in 3 stringhe x, y, z con le proprietà delle condizioni: $|xy| \le p$ e $|y| \ge 1$.

Pumping lemma: dimostrare la non regolarità (esempio)

Dimostriamo che $L = \{a^n b^n \mid n \ge 0\}$ non è regolare!

Dimostrazione.

. . .

Consideriamo **TUTTE** le possibili fattorizzazioni di $s = a^p b^p$ in 3 stringhe x, y, z con le proprietà delle condizioni: $|xy| \le p$ e $|y| \ge 1$.

Quindi
$$y = a^m$$
, per $1 \le m \le p$. Per $i = 2$, $xy^2z = a^{p+m}b^p \notin L$.

Appello 05/07/2022: linguaggi regolari

1. Scrivere se le seguenti affermazioni sono vere o false, giustificando la risposta.

- (a) $X = \{a^k b a b a^k \mid k \le 5\}$ è regolare.
- (b) $Y = \{a^i b^j \mid i < j\}$ è regolare.
- (c) Ogni sottoinsieme proprio di un linguaggio regolare è regolare.

(c)

Appello 05/07/2022: da NFA a DFA

 Trasformare il seguente NFA nel DFA equivalente utilizzando la costruzione presentata nella dimostrazione del Teorema sull'equivalenza NFA-DFA. Riportare con precisione la descrizione della funzione di transizione e produrre il diagramma di stato (limitandosi agli stati raggiungibili dallo stato iniziale del DFA). Fornire una espressione regolare che descrive il linguaggio accettato dall'automa.

Subset construction: da NFA a DFA

Costruzione.

Sia $\mathbb{N} = (Q_N, \Sigma, \delta_N, q_N, F_N)$ un NFA, costruiamo il DFA $\mathbb{M} = (Q_M, \Sigma, \delta_M, q_M, F_M)$ come:

- 1. $Q_M = P(Q_N)$, insieme potenza di Q_N ; osserviamo che $|P(Q_N)| = 2^{|Q_N|}$.
 - Q_M contiene tutti i "possibili stati" in cui può terminare una transizione di \mathbb{M} , cioè tutte le combinazioni possibili di stati di Q_N .
- 2. $q_M = E(q_N)$, lo stato iniziale di $\mathbb M$ non è solo q_N ma anche tutti gli stati raggiungibili da q_N utilizzando solo ϵ -transizioni, quindi $E(q_N)$.
- 3. $F_M = \{ R \in Q_M \mid R \cap F_N \neq \emptyset \}$
- 4. $\forall R \in Q_M, \forall a \in \Sigma$:

$$\delta_M(R, a) = E(\cup_{r \in R} \delta_N(r, a)) = \cup_{r \in R} E(\delta_N(r, a))$$

NFA: computazione (HUM, 2.5.3-2.5.4)

Come per i DFA, siamo interessati a definire le computazioni di δ in termini di stringhe.

Innanzitutto, definiamo l'insieme degli stati raggiungibili da uno stato usando solo ϵ -transizioni.

Sia $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$ un **NFA** e $q \in Q$. La ϵ -chiusura E(q) di q è il sottinsieme di Q definito ricorsivamente come segue:

passo base: $q \in E(q)$

passo ricorsivo: $\forall p \in E(q), \ \delta(p, \epsilon) \subseteq E(q)$

Sia $R \subseteq Q$. La ϵ -chiusura E(R) di R è:

$$E(R) = \cup_{q \in R} E(q)$$

Subset construction: da NFA a DFA (esempio)

Consideriamo il seguente NFA $\mathbb{N} = (Q_N, \Sigma, \delta_N, 0, F_N)$

Costruiamo innanzitutto le ϵ -chiusure: $E(0) = \{0\}$, $E(1) = \{1\}$, $E(2) = \{2, 1\}$, $E(3) = \{3, 0\}$, e $E(4) = \{4, 2, 1\}$.

Subset construction: da NFA a DFA (esempio)

Costruiamo le transizioni per ogni stato:

- $\delta_M(\{0\}, a) = E(\delta_N(0, a)) = E(\{1, 3\}) = E(\{1\}) \cup E(\{3\}) = \{0, 1, 3\}$
- $\delta_M(\{0\}, b) = E(\delta_N(0, b)) = E(\emptyset) = \emptyset$

Subset construction: da NFA a DFA (esempio)

Costruiamo le transizioni per ogni stato:

- $\delta_M(\{0,1,3\},a) = E(\delta_N(0,a) \cup \delta_N(1,a) \cup \delta_N(3,a)) = E(\{1,3\} \cup \{2\} \cup \emptyset) = \{0,1,2,3\}$
- $\delta_M(\{0,1,3\},b) = E(\delta_N(0,b) \cup \delta_N(1,b) \cup \delta_N(3,b)) = E(\emptyset \cup \{4\} \cup \{4\}) = E(\{4\}) = \{1,2,4\}$

Subset construction: da NFA a DFA (esempio)

Costruiamo le transizioni per ogni stato:

- $\delta_M(\{1,2,4\},a) = E(\{2\} \cup \emptyset \cup \emptyset) = \{1,2\}$
- $\delta_M(\{1,2,4\},b) = E(\{4\} \cup \emptyset \cup \emptyset) = \{1,2,4\}$
- $\delta_M(\{0,1,2,3\},a) = E(\{1,3\} \cup \{2\} \cup \emptyset \cup \emptyset) = \{1,3,0,2\}$
- $\delta_M(\{0,1,2,3\},b) = E(\emptyset \cup \{4\} \cup \emptyset \cup \{4\}) = \{1,2,4\}$
- $\delta_M(\{1,2\},a) = E(\{2\} \cup \emptyset) = \{1,2\}$
- $\delta_M(\{1,2\},b) = E(\{4\} \cup \emptyset) = \{1,2,4\}$

Subset construction: da NFA a DFA (esempio)

Consideriamo solo le parti raggiungibili dallo stato iniziale del DFA.

Appello 05/07/2022: da NFA a DFA

2. Trasformare il seguente NFA nel DFA equivalente utilizzando la costruzione presentata nella dimostrazione del Teorema sull'equivalenza NFA-DFA. Riportare con precisione la descrizione della funzione di transizione e produrre il diagramma di stato (limitandosi agli stati raggiungibili dallo stato iniziale del DFA). Fornire una espressione regolare che descrive il linguaggio accettato dall'automa.

Appello 05/07/2022: Computazione di MdT

Esercizio 3 (5 punti)

Si consideri la seguente Macchina di Turing, $\mathbf{M} = (\mathbf{Q}, \Sigma, \Gamma, \delta, \mathbf{q}_0, \mathbf{q}_{accept}, \mathbf{q}_{reject})$, dove $Q = \{q_0, q_1, q_2, q_{accept}, q_{reject}\}, \Sigma = \{a, b\}, \Gamma = \{a, b, _\}$ e la funzione δ è definita come segue

$$\begin{split} \delta \left(q_{0}, \, a \right) &= \left(q_{\text{accept}}, \, a, \, R \right), & \delta \left(q_{0}, \, b \right) &= \left(q_{1}, \, a, \, R \right), & \delta \left(q_{0}, \, _ \right) &= \left(q_{\text{reject}}, \, _, \, R \right), \\ \delta \left(q_{1}, \, a \right) &= \left(q_{2}, \, b, \, L \right), & \delta \left(q_{1}, \, b \right) &= \left(q_{2}, \, b, \, L \right), & \delta \left(q_{1}, \, _ \right) &= \left(q_{\text{accept}}, \, _, \, R \right), \\ \delta \left(q_{2}, \, a \right) &= \left(q_{1}, \, a, \, R \right), & \delta \left(q_{2}, \, b \right) &= \left(q_{\text{reject}}, \, _, \, R \right), & \delta \left(q_{2}, \, _ \right) &= \left(q_{\text{reject}}, \, _, \, R \right). \end{split}$$

- a) Indicare (se esistono)
 - una stringa $\mathbf{w_a}$ di Σ^* che sia accettata da M con la relativa computazione
 - una stringa $\mathbf{w_r}$ di Σ^* che sia **rifiutata** da M con la relativa **computazione**
 - una stringa w_c di Σ* su cui M cicla
- b) Descrivere il linguaggio L(M) riconosciuto da M.
- c) Il linguaggio L(M) è anche deciso da M? Motivare pienamente la risposta.

Lezione 16 pag. 36

Computazione di una MdT

Siano C, C' configurazioni. $C \to^* C'$ se esistono configurazioni C_1, \ldots, C_k , $k \ge 1$ tali che

- **1** $C_1 = C$,
- 2 $C_i \rightarrow C_{i+1}$, per $i \in \{1, \ldots, k-1\}$, (ogni C_i produce C_{i+1})
- 3 $C_k = C'$.

Diremo che $C \to^* C'$ è una **computazione** (di lunghezza k-1).

Quando k = 1?

Lezione 16 pag. 37

Configurazioni

Una configurazione C si dice:

- iniziale su input w se $C = q_0 w$, con $w \in \Sigma^*$
- di accettazione se $C = u q_{accept} v$
- di rifiuto se $C = u q_{reject} v$

Poiché non esistono transizioni da q_{accept} e da q_{reject} , allora le configurazioni di accettazione e di rifiuto sono dette configurazioni di arresto.

Lezione 16 pag. 35

Esempio

$$\delta(q_0,0) = (q_0,0,R), \quad \delta(q_0,1) = (q_0,1,R),$$
 $\delta(q_0,\sqcup) = (q_1,\sqcup,L),$
 $\delta(q_1,1) = (q_2,1,L), \quad \delta(q_2,0) = (q_3,0,L),$
 $\delta(q_3,1) = (q_{accept},1,L)$

$$\begin{array}{l} q_011 \rightarrow 1q_01 \rightarrow 11q_0 \rightarrow 1q_11 \rightarrow q_211 \rightarrow q_{reject}11 \\ \\ q_0101 \rightarrow 1q_001 \rightarrow 10q_01 \rightarrow 101q_0 \rightarrow 10q_11 \rightarrow 1q_201 \rightarrow q_3101 \rightarrow q_{accept}101 \end{array}$$

Appello 05/07/2022: Computazione di MdT

Esercizio 3 (5 punti)

Si consideri la seguente Macchina di Turing, $\mathbf{M} = (\mathbf{Q}, \Sigma, \Gamma, \delta, \mathbf{q_0}, \mathbf{q_{accept}}, \mathbf{q_{reject}})$, dove $\mathbf{Q} = \{\ q_0,\ q_1,\ q_2,\ q_{accept},\ q_{reject}\ \},\ \Sigma = \{\ a,\ b\},\ \Gamma = \{\ a,\ b,\ _\}\ e$ la funzione δ è definita come segue

$$\begin{split} \delta \left(q_{0}, \, a \right) &= \left(q_{\text{accept}}, \, a, \, R \right), & \delta \left(q_{0}, \, b \right) &= \left(q_{1}, \, a, \, R \right), & \delta \left(q_{0}, \, _ \right) &= \left(q_{\text{reject}}, \, _, \, R \right), \\ \delta \left(q_{1}, \, a \right) &= \left(q_{2}, \, b, \, L \right), & \delta \left(q_{1}, \, b \right) &= \left(q_{2}, \, b, \, L \right), & \delta \left(q_{1}, \, _ \right) &= \left(q_{\text{accept}}, \, _, \, R \right), \\ \delta \left(q_{2}, \, a \right) &= \left(q_{1}, \, a, \, R \right), & \delta \left(q_{2}, \, _ \right) &= \left(q_{\text{reject}}, \, _, \, R \right), & \delta \left(q_{2}, \, _ \right) &= \left(q_{\text{reject}}, \, _, \, R \right). \end{split}$$

- a) Indicare (se esistono)
 - una stringa w_a di Σ^* che sia accettata da M con la relativa computazione
 - una stringa \mathbf{w}_r di Σ^* che sia **rifiutata** da M con la relativa **computazione**
 - una stringa w_c di Σ* su cui M cicla
- b) Descrivere il linguaggio L(M) riconosciuto da M.
- c) Il linguaggio L(M) è anche deciso da M? Motivare pienamente la risposta.

Appello 05/07/2022: EQ_TM e ¬EQ_TM

Esercizio 4 (3 punti)

- a) Definire il linguaggio EQтм.
- b) Provare che il complemento di EQTM non è Turing-riconoscibile.
 Enunciare con precisione eventuali risultati noti che vengono utilizzati, senza necessariamente dimostrarli.

EQ_{TM} è indecidibile

$$E_{TM} = \{ \langle M \rangle \mid M \text{ è una } MdT \text{ e } L(M) = \emptyset \}$$

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ sono MdT e } L(M_1) = L(M_2) \}$

$$E_{TM} \leq_m EQ_{TM}$$

Sia M_1 una macchina di Turing tale che $L(M_1) = \emptyset$. $f: \langle M \rangle \to \langle M, M_1 \rangle$ è una riduzione di E_{TM} a EQ_{TM} . Perchè?

Riduzione da A_{TM} a EQ_{TM}

Perchè?

$$A_{TM} \leq_m EQ_{TM}$$

```
Idea: Data \langle M, w \rangle, considerare le MdT M_1 e M_2 tali che Per ogni input x:
M_1 \text{ accetta } x,
M_2 \text{ simula } M \text{ su } w. \text{ Se } M \text{ accetta } w, M_2 \text{ accetta } x.
f: \langle M, w \rangle \to \langle M_1, M_2 \rangle \text{ è riduzione da } A_{TM} \text{ a } EQ_{TM}.
```

$$L(M_1) = \Sigma^*$$
; $L(M_2) = \begin{cases} \Sigma^* & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{se } \langle M, w \rangle \notin A_{TM} \end{cases}$

Riduzione da A_{TM} al complemento di EQ_{TM}

 $f: \langle M, w \rangle \to \langle M_1, M_2 \rangle$ è riduzione che prova $A_{TM} \leq_m EQ_{TM}$.

$$L(M_1) = \Sigma^*; \ L(M_2) = \begin{cases} \Sigma^* & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{se } \langle M, w \rangle \notin A_{TM} \end{cases}$$

Possiamo modificare f per dimostrare che $A_{TM} \leq_m \overline{EQ_{TM}}$?

Lasciamo la stessa M_2 e cambiamo M_1 in M_3 .

$$g:\langle M,w\rangle \to \langle M_3,M_2\rangle$$

$$g: \langle M, w \rangle \to \langle M_3, M_2 \rangle$$

$$\mathbf{L}(\mathbf{M_3}) = \emptyset; \ L(M_2) = \begin{cases} \Sigma^* & \text{se } \langle M, w \rangle \in A_{TM} \\ \emptyset & \text{se } \langle M, w \rangle \notin A_{TM} \end{cases}$$

Teoremi

Teorema

 $A \leq_m B$ se e solo se $\overline{A} \leq_m \overline{B}$.

Dimostrazione

Per ipotesi $A \leq_m B$, quindi esiste una riduzione di A a B.

Poiché f è una riduzione, f è calcolabile e inoltre

$$\forall w \in \Sigma^* \quad w \in A \Leftrightarrow f(w) \in B$$

Proviamo che f è anche una riduzione da \overline{A} a \overline{B} .

Una proprietà dei linguaggi decidibili

Definizione

Diciamo che un linguaggio L è co-Turing riconoscibile se \overline{L} è Turing riconoscibile.

Teorema

Un linguaggio L è decidibile se e solo se L è Turing riconoscibile e co-Turing riconoscibile.

Linguaggi riconoscibili e co-Turing riconoscibili

Teorema

EQ_{TM} non è nè Turing riconoscibile nè co-Turing riconoscibile.

Dimostrazione.

Supponiamo per assurdo che EQ_{TM} sia Turing riconoscibile.

$$A_{TM} \leq_m \overline{EQ_{TM}} \Rightarrow \overline{A_{TM}} \leq_m EQ_{TM}$$

Quindi $\overline{A_{TM}}$ sarebbe Turing riconoscibile: assurdo.

Supponiamo per assurdo che EQ_{TM} sia co-Turing riconoscibile, cioè che $\overline{EQ_{TM}}$ sia Turing riconoscibile.

$$A_{TM} \leq_m EQ_{TM} \Rightarrow \overline{A_{TM}} \leq_m \overline{EQ_{TM}}$$

Quindi $\overline{A_{TM}}$ sarebbe Turing riconoscibile: assurdo.

Esercizio 5 (7 punti)

Sia G = (V, E) un grafo non orientato e sia $I \subseteq V$. Diciamo che I è un **insieme indipendente** in G se nessuna coppia di nodi in I è connessa da un arco. Formalmente, per ogni $u, v \in I$ si ha $(u,v) \notin E$. Il problema di decisione **INDEPENDENT-SET** è il seguente: Dato un grafo non orientato G = (V, E) e un intero positivo K, esiste un insieme indipendente I in G di cardinalità K?

- a) Definire il **linguaggio** INDSET associato.
- b) Mostrare che INDSET appartiene a NP.
- c) Definire il linguaggio CLIQUE.
- d) Dimostrare che CLIQUE \leq_p INDSET, fornendo una opportuna funzione di riduzione.
- e) Cosa possiamo **dedurre** per INDSET dalle affermazioni b) e d)?

Esercizio 5 (7 punti)

Sia G = (V, E) un grafo non orientato e sia $I \subseteq V$. Diciamo che I è un **insieme indipendente** in G se nessuna coppia di nodi in I è connessa da un arco. Formalmente, per ogni $u, v \in I$ si ha $(u,v) \notin E$. Il problema di decisione **INDEPENDENT-SET** è il seguente: Dato un grafo non orientato G = (V, E) e un intero positivo K, esiste un insieme indipendente I in G di cardinalità K?

- a) Definire il linguaggio INDSET associato.
- b) Mostrare che INDSET appartiene a NP.
- c) Definire il linguaggio CLIQUE.
- d) Dimostrare che CLIQUE \leq_p INDSET, fornendo una opportuna funzione di riduzione.
- e) Cosa possiamo dedurre per INDSET dalle affermazioni b) e d)?

a)

Esercizio 5 (7 punti)

Sia G = (V, E) un grafo non orientato e sia $I \subseteq V$. Diciamo che I è un **insieme indipendente** in G se nessuna coppia di nodi in I è connessa da un arco. Formalmente, per ogni $u, v \in I$ si ha $(u,v) \notin E$. Il problema di decisione **INDEPENDENT-SET** è il seguente: Dato un grafo non orientato G = (V, E) e un intero positivo K, esiste un insieme indipendente I in G di cardinalità K?

- a) Definire il linguaggio INDSET associato.
- b) Mostrare che INDSET appartiene a NP.
- c) Definire il linguaggio CLIQUE.
- d) Dimostrare che CLIQUE \leq_p INDSET, fornendo una opportuna funzione di riduzione.
- e) Cosa possiamo dedurre per INDSET dalle affermazioni b) e d)?

b)

Esempi di linguaggi in NP

Teorema $CLIQUE \in NP$

Dimostrazione.

Un algoritmo V che verifica CLIQUE in tempo polinomiale: $V = \text{``Sull'input'} \langle \langle G, k \rangle, c \rangle$:

- ① Verifica se c è un insieme di k nodi di G, altrimenti rifiuta.
- Verifica se per ogni coppia di nodi in c, esiste un arco in G che li connette, accetta in caso affermativo; altrimenti rifiuta."

$$\exists c : \langle \langle G, k \rangle, c \rangle \in L(V) \Leftrightarrow \langle G, k \rangle \in CLIQUE$$

Prova alternativa: utilizzare le macchine di Turing non deterministiche.

3SAT e CLIQUE

Teorema

$$3SAT \leq_P CLIQUE$$

 $3SAT = \{\langle \phi \rangle \mid \phi \text{ è una formula 3CNF soddisfacibile} \}$ Una formula 3CNF è un AND di clausole e tutte le clausole hanno tre letterali.

c)

$$CLIQUE = \{\langle G, k \rangle \mid G \text{ è un grafo non orientato in cui esiste una } k\text{-clique}\}$$

Ricorda:

Una clique (o cricca) in un grafo non orientato G è un sottografo G' di G in cui ogni coppia di vertici è connessa da un arco.
Una k-clique è una clique che contiene k vertici.

Esercizio 5 (7 punti)

Sia G = (V, E) un grafo non orientato e sia $I \subseteq V$. Diciamo che I è un **insieme indipendente** in G se nessuna coppia di nodi in I è connessa da un arco. Formalmente, per ogni $u, v \in I$ si ha $(u,v) \notin E$. Il problema di decisione **INDEPENDENT-SET** è il seguente: Dato un grafo non orientato G = (V, E) e un intero positivo K, esiste un insieme indipendente I in G di cardinalità K?

- a) Definire il **linguaggio** INDSET associato.
- b) Mostrare che INDSET appartiene a NP.
- c) Definire il linguaggio CLIQUE.
- d) Dimostrare che CLIQUE \leq_p INDSET, fornendo una opportuna funzione di riduzione.
- e) Cosa possiamo dedurre per INDSET dalle affermazioni b) e d)?

d)

Riduzioni in tempo polinomiale

Definizione

Siano A, B linguaggi sull'alfabeto Σ .

Una riduzione in tempo polinomiale f di A in B è

- una funzione $f: \Sigma^* \to \Sigma^*$
- calcolabile in tempo polinomiale
- tale che per ogni $w \in \Sigma^*$

$$w \in A \Leftrightarrow f(w) \in B$$

Definizione

Un linguaggio $A \subseteq \Sigma^*$ è riducibile in tempo polinomiale a un linguaggio $B \subseteq \Sigma^*$, e scriveremo $A \leq_p B$, se esiste una riduzione di tempo polinomiale di A in B.

CLIQUE è NP-completo

e) Teorema

CLIQUE è NP-completo.

Dimostrazione.

- Sappiamo che CLIQUE ∈ NP.
- Inoltre, 3SAT è NP-completo e 3SAT $\leq_P CLIQUE$
- Quindi *CLIQUE* è *NP*-completo.

Provare la NP – completezza

e) Teorema

Se B è NP-completo e $B \le_{D} C$, con $C \in NP$, allora C è NP-completo.

Una possibile strategia per provare che un linguaggio C è NP-completo:

- 1. Mostrare che $C \in NP$
- 2. Scegliere un linguaggio B che sia NP-completo
- 3. Definire una riduzione di tempo polinomiale di B in C.

Fine dei tutorati

(per questo A.A.)

buono studio...
e in bocca al lupo
per le vostre prossime prove ©

