5. cvičení – Posloupnosti a limita posloupnosti (opakování ze SŠ)

Pro opakování použijte např.: http://msr.vsb.cz/posloupnosti-a-rady/vlastnosti-posloupnosti

5.1 Základní pojmy

Definice 5.1

Posloupnosti reálných čísel (dále jen posloupnosti) budeme nazývat funkci, jejímž definičním oborem je množina všech přirozených čísel N.

Funkční hodnoty posloupnosti se nazývají členy posloupnosti. Funkční hodnota posloupnosti f v bodě n se nazývá n-tý člen posloupnosti a značí se místo f(n) zpravidla f_n .

Zadání posloupnosti

- a) vzorcem pro n-tý člen a_n , např. $a_n = 2n 1$,
- b) **rekurentně** zadáním prvního členu posloupnosti nebo několika prvních členů posloupnosti a vzorcem, podle něhož lze určit další členy podle předchozích členů. Např.: $a_1=1$, $a_2=2$, $a_{n+1}=a_n-a_{n-1}+1$, $n\geq 3$.

Grafem posloupnosti je množina izolovaných bodů.

Příklad 5.1

Určete prvních pět členů následujících posloupností a znázorněte graficky jejich průběh.

a)
$$a_n = (-1)^{n-1}$$

$$a_1 = (-1)^{1-1} = (-1)^0 = 1$$

$$a_3 = (-1)^{2-1} = (-1)^1 = -1$$

$$Q_3 = (-1)^{3-1} = (-1)^2 = 1$$

$$a_{4} = (-1)^{4-1} = (-1)^{3} = -1$$

b)
$$a_1 = a_2 = 1, a_n = a_{n-1} + a_{n-2}, n \ge 3$$

$$Q_1 = 1$$

$$q_2 = 1$$

$$Q_3 = Q_2 + Q_1 = 2$$

$$Q_4 = Q_3 + Q_4 = 3$$

Některé vlastnosti posloupností

Posloupnost (a_n) se nazývá

- shora ohraničená, právě když existuje $c \in \mathbb{R}$ takové, že pro všechna $n \in \mathbb{N}$ platí: $a_n \leq c$,
- zdola ohraničená, právě když existuje $c \in \mathbb{R}$ takové, že pro všechna $n \in \mathbb{N}$ platí: $a_n \ge c$,
- ohraničená, právě když existuje $c \in \mathbb{R}^+$ takové, že pro všechna $n \in \mathbb{N}$ platí: $|a_n| \le c$,
- rostoucí, právě když pro všechna $n \in \mathbb{N}$ platí: $a_n < a_{n+1}$,
- klesající, právě když pro všechna n ∈ N platí: a_n > a_{n+1},
- nerostoucí, právě když pro všechna $n \in \mathbb{N}$ platí: $a_n \geq a_{n+1}$
- neklesající, právě když pro všechna $n \in \mathbb{N}$ platí: $a_n \leq a_{n+1}$.

5.2 Aritmetická posloupnost

Definice 5.2

Nechť (a_n) je posloupnost. Existuje-li $d \in \mathbb{R}$ takové, že pro všechna $n \in \mathbb{N}$ platí

$$a_{n+1} = a_n + d,$$

říkáme, že (a_n) je aritmetická posloupnost a číslo d se nazývá diference.

Pro každou aritmetickou posloupnost (a_n) platí:

- a) n-tý člen posloupnosti lze vyjádřit vzorcem $a_n = a_1 + (n-1)d$,
- b) pro libovolné dva členy posloupnosti a_r , a_s platí $a_s = a_r + (s r)d$,
- c) pro součet s_n prvních n členů posloupnosti platí $s_n = \frac{n}{2}(a_1 + a_n)$.

5.3 Geometrická posloupnost

Definice 5.3

Nechť (a_n) je posloupnost. Existuje-li $q \in \mathbb{R}$ takové, že pro všechna $n \in \mathbb{N}$ platí

$$a_{n+1} = a_n \cdot q,$$

říkáme, že (a_n) je geometrická posloupnost a číslo q se nazývá kvocient.

Pro každou geometrickou posloupnost (a_n) platí:

- a) n-tý člen posloupnosti lze vyjádřit vzorcem $a_n = a_1 \cdot q^{n-1}$,
- b) pro libovolné dva členy posloupnosti a_r, a_s platí $a_s = a_r \cdot q^{s-r}$,
- c) pro součet s_n prvních n členů posloupnosti platí $s_n = a_1 \frac{q^{n}-1}{q-1}$ pro $q \ne 1$. Je-li q = 1, pak $s_n = na_1$.

5.4 Limita posloupnosti

Definice 5.4

Řekneme, že posloupnost (a_n) má limitu $a \in \mathbb{R}$, jestliže ke každému kladnému reálnému číslu ε existuje přirozené číslo n_0 takové, že pro všechna přirozená čísla n větší nebo rovna n_0 platí $|a_n-a|<\varepsilon$. Píšeme $\lim_{n\to\infty}a_n=a$.

 $\text{Symbolicky zaps\'ano:} \lim_{n \to \infty} a_n = a \iff (\forall \varepsilon \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \geq n_0 \colon |a_n - a| < \varepsilon)$

Dokažte z definice, že $\lim_{n\to\infty}\frac{1}{n}=0$.

 $\lim_{n\to\infty}a_n=a \iff (\forall \varepsilon\in\mathbb{R}^+\ \exists n_0\in\mathbb{N}\ \forall n\in\mathbb{N}, n\geq n_0\colon |a_n-a|<\varepsilon)$

HEER! INSEN: MZMo: 1 m-0/4

 $\left|\frac{1}{m}-0\right| \leq \varepsilon$ $\left|\frac{1}{m}\right| \leq \varepsilon = \pi \quad m > \frac{1}{\varepsilon} = \pi \quad m_0 = \lceil \frac{1}{\varepsilon} \rceil$

horm'els' cast &sls & j. j.
nejmens' cele' eislo, kken' je rets nez &

Definice 5.5

Řekneme, že posloupnost (a_n) má limitu plus nekonečno, jestliže ke každému reálnému číslu k existuje přirozené číslo n_0 takové, že pro všechna přirozená čísla n větší nebo rovna n_0 platí $a_n>k$. Píšeme $\lim_{n\to\infty}a_n=\infty$.

Symbolicky zapsáno: $\lim_{n \to \infty} a_n = \infty \iff (\forall k \in \mathbb{R} \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \geq n_0 : a_n > k)$

Příklad 5.3

Dokažte z definice, že $\lim_{n\to\infty} n = \infty$.

The R I moe N the N, m = Mo : M > k $m_0 = \Gamma k + 1$

Definice 5.6

Řekneme, že posloupnost (a_n) má limitu mínus nekonečno, jestliže ke každému reálnému číslu l existuje přirozené číslo n_0 takové, že pro všechna přirozená čísla n větší nebo rovna n_0 platí $a_n < l$. Píšeme $\lim_{n \to \infty} a_n = -\infty$.

Symbolicky zapsáno: $\lim_{n \to \infty} a_n = -\infty \iff (\forall l \in \mathbb{R} \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \geq n_0 : a_n < l)$

Věta 5.1

Každá posloupnost má nejvýše jednu limitu.

Definice 5.7

Posloupnost (a_n) se nazývá

- a) konvergentní, jestliže má vlastní limitu (tj. $\lim_{n \to \infty} a_n = a, a \in \mathbb{R}$),
- b) divergentní, jestliže má nevlastní limitu (tj. $\lim_{n \to \infty} a_n = \pm \infty$) nebo limita neexistuje.

Věta 5.2

Každá konvergentní posloupnost je ohraničena.

Definice 5.8

Nechť je dána posloupnost (a_n) a rostoucí posloupnost přirozených čísel (k_n) . Posloupnost (b_n) , pro jejíž členy platí $b_n=a_{k_n}$, se nazývá **posloupnosti vybranou** z posloupnosti (a_n) .

Věta 5.3

Nechť posloupnost (a_n) má limitu $a \in \mathbb{R}^*$. Pak každá z ní vybraná posloupnost má tutéž limitu.

Definice 5.9

Limitu posloupnosti $a_n = \left(1 + \frac{1}{n}\right)^n$ nazýváme Eulerovo číslo a označujeme e.

Věta 5.4

- a) Nechť (a_n) je neklesající shora ohraničená posloupnost. Pak existuje konečná $\lim_{n \to \infty} a_n$ a rovná se supremu oboru hodnot této posloupnosti, tj. $\lim_{n\to\infty}a_n=\sup\{a_n,n\in\mathbb{N}\}.$
- b) Nechť (a_n) je nerostoucí zdola ohraničená posloupnost. Pak existuje konečná $\lim_{n \to \infty} a_n$ a rovná se infimu oboru hodnot této posloupnosti, tj. $\lim_{n\to\infty} a_n = \inf\{a_n, n\in\mathbb{N}\}.$
- c) Nechť (a_n) je neklesající posloupnost, která není shora ohraničená. Pak $\lim_{n\to\infty}a_n=\infty$.
- d) Nechť (a_n) je nerostoucí posloupnost, která není zdola ohraničená. Pak $\lim_{n\to\infty} a_n = -\infty$.

Příklad 5.4

Dokažte, že
$$\lim_{n\to\infty} 2^n = \infty$$
.

1 $\lim_{n\to\infty} 2^n = \infty$.

Dokažte, že
$$\lim_{n\to\infty} \left(1+\frac{1}{5n}\right)^{5n} = e$$
.

• $\{5m\}_{m=1}^{2}\}_{n=1}^{2}$ je roskova' posloup no st přirozevýl

=) • $\{(1+\frac{1}{5m}\}_{m=1}^{2}\}_{n=1}^{2}$ je roskova' posloup no st $\{(1+\frac{1}{m})_{m=1}^{2}\}_{m=1}^{2}$

| $\{(1+\frac{1}{5m})_{m=1}^{2}\}_{m=1}^{2}$
| $\{(1+\frac{1}{m})_{m=1}^{2}\}_{m=1}^{2}$

5.5 Výpočet limit

Věta 5.5

Nechť $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} b_n = b$, $a,b \in \mathbb{R}^*$. Pak platí:

- a) $\lim_{n\to\infty} (a_n + b_n) = a + b,$
- b) $\lim_{n\to\infty}(a_n-b_n)=a-b,$
- c) $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$,
- d) $\lim_{n\to\infty}\left(\frac{a_n}{b_n}\right)=\frac{a}{b}$, je-li $b_n\neq 0$ pro všechna $n\in\mathbb{N}$,
- e) $\lim_{n\to\infty} |a_n| = |a|$,

má-li příslušná pravá strana rovnosti smysl.

Základní limity

[1]
$$\lim_{n\to\infty} c = c \quad (c \in \mathbb{R}),$$

$$[2] \lim_{n\to\infty}\frac{1}{n}=0,$$

$$[3] \lim_{n\to\infty} n = \infty,$$

$$[4] \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e,$$

$$[5] \lim_{n\to\infty} \sqrt[n]{n} = 1,$$

$$[6] \lim_{n\to\infty} q^n = \begin{cases} \infty & pro \ q > 1, \\ 1 & pro \ q = 1, \\ 0 & pro \ q \in (-1; 1), \\ neexistuje & pro \ q \le -1. \end{cases}$$

Vypočtěte limity posloupnosti.

a)
$$\lim_{n\to\infty} (n^2 + 5n - 1) = \lim_{n\to\infty} m + \lim_{n\to\infty} 5m - \lim_{n\to\infty} 1 = \infty + \infty - 1 = \infty$$
 $\infty \infty \infty 1$

b)
$$\lim_{n\to\infty} (n^2 - 5n - 1) = \lim_{n\to\infty} \left[m^2 \left(1 - \frac{5}{m} - \frac{1}{m^2} \right) \right] = 00. (1 - 0 - 0) = 0$$
 $0 - \infty - 1$
 $0 - \infty$
 $0 - \infty$
 $0 - \infty$

c)
$$\lim_{n\to\infty} (-n^2 + 5n) = \lim_{n\to\infty} \left[-m^2 \left(1 - \frac{5}{m} \right) \right] = -\infty \cdot (1 - 0) = -\infty$$

midef nyras

5. cvičení - Výpočet limit

d)
$$\lim_{n\to\infty} \frac{-5n^2+8n-1}{1+2n+3n^2} = \lim_{m\to\infty} \frac{m^2(-5+\frac{8}{m}-\frac{1}{m^2})}{p^2(\frac{1}{m^2}+\frac{2}{m}+3)} = \frac{-5+0-0}{1+0+3} = \frac{5}{3}$$

Myfyka'w Nejvyss' mochium r čikskli / jwe no ik ke li

e)
$$\lim_{n \to \infty} \frac{-5n^2 + 8n - 1}{1 + 2n} = \lim_{m \to \infty} \frac{m^2 \left(-5 + \frac{g}{m} - \frac{1}{m^2} \right)}{m \left(\frac{1}{m} + 2 \right)} = \frac{\infty \cdot \left(-5 + 0 - 0 \right)}{0 + 2} = \frac{-\infty}{n + 2}$$

f)
$$\lim_{n\to\infty} \frac{8n-1}{1+2n+3n^2} = \lim_{m\to\infty} \frac{a(8-\frac{1}{m})}{m^2(\frac{1}{m^2}+\frac{2}{m}+3)} = \frac{8-0}{oo(0+0+3)} = 0$$

Priklad 5.7

Vypočtěte limity posloupnosti.

a)
$$\lim_{n\to\infty} (\sqrt{9n^2 - 4} - 2n) = \lim_{n\to\infty} \left(\frac{1}{m^2} \left(\frac{4}{m^2} \right) - \frac{2}{m^2} \right) = \lim_{n\to\infty} \left[\frac{1}{m^2} \left(\frac{4}{m^2} - \frac{4}{m^2} \right) - \frac{2}{m^2} \right] = \lim_{n\to\infty} \left[\frac{1}{m^2} \left(\frac{4}{m^2} - \frac{4}{m^2} \right) - \frac{2}{m^2} \right] = 0$$

$$= 00 \cdot (3 - 2) = 0$$

b)
$$\lim_{n\to\infty} (\sqrt{9n^2-4}-3n) = \lim_{n\to\infty} \sqrt{[1]^2 (19-\frac{4}{m^2}-3)}$$

 $\lim_{n\to\infty} (\sqrt{9n^2-4}-3n) = \lim_{n\to\infty} \sqrt{[1]^2 (19-\frac{4}{m^2}-3)} = \lim_{n\to\infty} \frac{(9n^2-4)-9n^2}{(9n^2-4)^2+3n} = \lim_{n\to\infty} \frac{(9n^2-4)-9n^2}{(9$

c)
$$\lim_{n\to\infty} \frac{1}{\sqrt{n^2+n}-\sqrt{n^2+2}} = \frac{1}{20-20}$$

medy. Myra 2

$$\frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} = \lim_{m \to \infty} \frac{[m^{2}+m] + [m^{2}+2]}{[m^{2}+m] + [m^{2}+2]} =$$

d)
$$\lim_{n\to\infty} \frac{\sqrt[3]{n^2+1-16n}}{\sqrt[3]{n^4+18n}} = \lim_{m\to\infty} \frac{\sqrt[3]{m}\sqrt[3]{\frac{1}{m}+\frac{1}{m^3}} - 16}{\sqrt[3]{m^4}(1+\frac{18}{m^3})} = \lim_{m\to\infty} \frac{\sqrt[3]{m}\sqrt[3]{m^4}}{\sqrt[3]{m^4}(1+\frac{18}{m^3})} = \lim_{m\to\infty} \frac{\sqrt[3]{m}\sqrt[3]{m}}{\sqrt[3]{m^4}} = \lim_{m\to\infty} \frac{\sqrt[3]{m}\sqrt[3]{m}}{\sqrt[3]{m}\sqrt[3]{m}} = \lim_{m\to\infty} \frac{\sqrt[3]{m}\sqrt[3]{m}}{\sqrt[3]{m}} = \lim_{m\to\infty} \frac$$

e)
$$\lim_{n \to \infty} \frac{\sqrt[3]{2n^5 + 3n + 1} + \sqrt{5n^2 + 3n}}{\sqrt{2n^3 + 4n + 1} - \sqrt[3]{5n^5 + 1}} = \lim_{m \to \infty} \frac{\sqrt[3]{n^5} \cdot \sqrt[3]{2 + \frac{3}{m^2} + \frac{1}{m^3}} + \sqrt[3]{n^5} \cdot \sqrt[3]{5 + \frac{3}{m^5}}}{\sqrt[3]{n^5} \cdot \sqrt[3]{n^5} + \sqrt[3]{n^5} \cdot \sqrt[3]{n^5} + \sqrt[3]{n^5} \cdot \sqrt[3]{n^5} \cdot \sqrt[3]{n^5} + \sqrt[3]{n^5} \cdot \sqrt[3]{$$

Vypočtěte limity posloupnosti.

a)
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{3n} = \lim_{m\to\infty} \left[\left(4+\frac{1}{m}\right)^m\right]^3 = \lim_{m\to\infty} \left(1+\frac{1}{m}\right)^m = \lim_{m$$

b)
$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^{n+5} = \lim_{n\to\infty} \left[\left(1 + \frac{1}{m}\right)^m \left(1 + \frac{1}{m}\right)^{5} \right] = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^m \lim_{n\to\infty} \left(1 + \frac{1}{m}\right)^{5} = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^{n+5} = \lim_{n\to\infty} \left(1$$

c)
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{3n+4} = \lim_{n\to\infty} \left[\left(1+\frac{1}{m}\right)^n\right]^3 \cdot \left(1+\frac{1}{m}\right)^4 = e^{\frac{3}{2}} \cdot 1^4 = e^{\frac{3}{2}}$$

d)
$$\lim_{n\to\infty} \left(1+\frac{1}{5n}\right)^n = \lim_{m\to\infty} \left(1+\frac{1}{5m}\right)^{\frac{5m}{5!}} = \lim_{m\to\infty} \left[\left(1+\frac{1}{5m}\right)^{\frac{5m}{5!}}\right]^{\frac{1}{5}} = \lim_{m\to\infty} \left[\left(1+\frac{1}{5m}\right)^{\frac{5m}{5!}}\right]^{\frac{5m}{5}} = \lim_{m\to\infty} \left[\left(1+\frac{1}{5$$

e)
$$\lim_{n\to\infty} \left(1 + \frac{1}{5n}\right)^{3n+2} = \lim_{n\to\infty} \left[\left(1 + \frac{1}{5n}\right)^{3n} \cdot \left(1 + \frac{1}{5n}\right)^{2}\right] = \lim_{n\to\infty} \left(1 + \frac{1}{5n}\right) \cdot \frac{3m \cdot 5}{5} = \lim_{n\to\infty} \left[\left(1 + \frac{1}{5n}\right)^{5n}\right]^{73/5} = \lim_{n\to\infty} \left[\left(1$$

f)
$$\lim_{n\to\infty} \left(1 + \frac{1}{5n+2}\right)^{3n+2} = \lim_{m\to\infty} \left[1 + \frac{1}{5m+2}\right]^{3n} = \lim_{m\to\infty} \left[1 + \frac{1}{5m+2}\right]^{3n+2} = \lim_{m\to\infty} \left[1 + \frac{1}{5m+2}\right]^{3n+5} = \lim_{m\to\infty} \left[1 + \frac{1}{5m+2}\right]^{5n} = \lim_{m\to\infty} \left[1 + \frac{1}{5m+2}\right]^{5n+2} = \lim_{m\to\infty} \left[1 + \frac{1}{5m+2}\right]^{5n+2} = \lim_{m\to\infty} \left[1 + \frac{1}{5m+2}\right]^{5n+2} = \lim_{m\to\infty} \left[1 + \frac{1}{5m+2}\right]^{3n+2} = \lim_{m\to\infty} \left[1 + \frac{1}{5m+2}\right]^{3$$

Vypočtěte
$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$$
.

POZOR! $\{(1-\frac{1}{m})^m\}_{m=1}^{\infty}$ wew ashave posloup nost to $\{(1+\frac{1}{m})^m\}_{m=1}^{\infty}$ propose $\{-m\}_{m=1}^{\infty}$ new ashave poslou $\{-m\}_{m=1}^{\infty}$ new $\{-1-1\}_{m=1}^{\infty}$

$$\lim_{m\to\infty} (1-\frac{1}{m})^m = \lim_{m\to\infty} (\frac{m-1}{m})^m = \lim_{m\to\infty} (\frac{1}{m-1})^m = \lim_{m\to\infty} (\frac{1}{m-1})^m = \lim_{m\to\infty} (1+\frac{1}{m-1})^m = \lim_{m\to\infty} (1+\frac{1}{m-1})^m$$

Nechť jsou dány posloupnosti (a_n) , (b_n) a nechť existuje $n_0 \in \mathbb{N}$ takové, že pro každé $n \in \mathbb{N}$, $n \ge n_0$ je $a_n \leq b_n$. Jestliže dále

- $\lim_{n\to\infty} a_n = a, \lim_{n\to\infty} b_n = b, a, b \in \mathbb{R}^*, pak \ a \le b.$
- $\lim_{n\to\infty}a_n=\infty,\ pak\ \lim_{n\to\infty}b_n=\infty.$
- $\lim_{n\to\infty}b_n=-\infty,\ pak\ \lim_{n\to\infty}a_n=-\infty.$

Vypočtěte lim n!.

•
$$m < m$$
! $= \infty$ | $m < m$! $= \infty$ | $m < m < m$ $= \infty$ | $m < m < m < m$ $= \infty$ | $m < m$ $= \infty$ | m $= \infty$ | $m < m$ $= \infty$ | m $= \infty$ | m $= \infty$ | m $= \infty$ |

Věta 5.7 (o limitě sevřené posloupnosti)

Nechť jsou dány posloupnosti (a_n) , (b_n) , (c_n) a nechť existuje $n_0 \in \mathbb{N}$ takové, že pro každé $n \in \mathbb{N}$, $n \ge n$ n_0 je $a_n \le c_n \le b_n$. Jestliže $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = L$, $L \in \mathbb{R}^*$, $pak \lim_{n \to \infty} c_n = L$.

Příklad 5.11

Vypočtěte limity posloupnosti.

a)
$$\lim_{n\to\infty} \frac{(-1)^n}{n^3+4n+5}$$

$$\frac{-1}{m^{3}+4m+5} = \frac{(-1)^{m}}{m^{3}+4m+5} = \frac{1}{m^{3}+4m+5} = \frac{1$$

"
$$\lim_{m\to\infty} \frac{(-1)}{m^3 + 4m + 5} = \frac{-1}{\infty} = 0$$
, $\lim_{m\to\infty} \frac{1}{m^3 + 4m + 5} = \frac{1}{\infty} = 0$ The sets 5.7

b)
$$\lim_{n\to\infty}\frac{1}{n}\cos\frac{n^2+1}{2n-1}$$
.

$$\begin{array}{ll}
 & -1 \leq \cos \frac{m^{2}+1}{\partial u-1} \leq \frac{1}{m} \\
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

$$\begin{array}{ll}
 & \lim_{n \to \infty} \left(\frac{-1}{m} \right) = 0, & \lim_{n \to \infty} \frac{1}{m} = 0
\end{array}$$

Věta 5.8

Nechť $\lim_{n\to\infty}a_n=0$ a posloupnost (b_n) je ohraničená. Pak $\lim_{n\to\infty}a_nb_n=0$.

Příklad 5.12

Vypočtěte
$$\lim_{n\to\infty} \frac{\sin(n^2+1)}{n}$$
.

$$0.1 \leq 8\pi i \left(m^2+1\right) \leq 1 \Rightarrow \left(8\pi i i \left(m^2+1\right)\right)_{m=1}^{200} \text{ poshauicius posha}$$

$$\lim_{m\to\infty}\frac{1}{m}=0$$

$$= \lim_{m \to \infty} \frac{8im \left(m^2 + 1\right)}{m} = 0$$

Martina Litschmannová, Petra Vondráková

5. cvičení - Výpočet limit

Vypočtěte limity posloupnosti.
a)
$$\lim_{n\to\infty} \sqrt[2n]{n} = \lim_{n\to\infty} \sqrt[2n]{m} = \lim_{n\to\infty} \sqrt[2n]{m} = 1$$

b)
$$\lim_{n\to\infty} \sqrt[n]{n^7} = \lim_{m\to\infty} \left(\frac{m\sqrt{m}}{m}\right)^{\frac{7}{2}} = \left(\lim_{m\to\infty} \frac{m\sqrt{m}}{m}\right)^{\frac{7}{2}} = 1^{\frac{7}{2}} = 1$$

$$\lim_{|x| \to \infty} \lim_{m \to \infty} \frac{m}{3^{2m}} = \lim_{m \to \infty} \frac{3^{\frac{1}{2}}}{m^{\frac{1}{2}}} = 13$$

d)
$$\lim_{n\to\infty} \sqrt[n]{2^n+3^n}$$
.

$$\sqrt[m]{3^n} \leq \sqrt[m]{3^n+3^n} \leq \sqrt[m]{3^n+3^n}$$

$$\lim_{m\to\infty} \frac{m\sqrt{3^m}}{\sqrt{3^m}} = \lim_{m\to\infty} \frac{3^{\frac{m}{m}}}{\sqrt{3^m}} = \frac{3}{2}$$

$$\lim_{n\to\infty} \sqrt{373^n} = \lim_{n\to\infty} \sqrt{3.3^n} = \lim_{n\to\infty} \sqrt{3}. \sqrt{3^n} = \lim_{n\to\infty} \sqrt{3^n}$$

$$= \lim_{m\to\infty} \sqrt[m]{2^m + 3^m} = \frac{3}{3}$$

$$\lim_{m\to\infty} \sqrt[m]{2^m + 3^m} = \frac{3}{5.7}$$

Vypočtěte limity posloupnosti.

a)
$$\lim_{n\to\infty} \left(\frac{3n}{3n-1}\right)^{3n}$$

$$\frac{3m : (3m-1)}{-(3m-1)} = 1 + \frac{1}{3m-1} \\
-\frac{(3m-1)}{1} \\
\lim_{n \to \infty} \left(\frac{3m}{3n-1}\right)^{3m} = \lim_{n \to \infty} \left(1 + \frac{1}{3m-1}\right)^{3m-1+1} = \lim_{n \to \infty} \left(1 + \frac{1}{3m-1}\right)^{n} \cdot \left(1 + \frac{1}{3m-1}\right)^{n}$$

b)
$$\lim_{n\to\infty} \left(\frac{2n}{n-1}\right)^{2n} = \lim_{m\to\infty} \int_{0}^{2n} \lim_{n\to\infty} \left(\frac{m-1+1}{m-1}\right) dm = \lim_{m\to\infty} \int_{0}^{2n} \lim_{n\to\infty} \left(\frac{1+\frac{1}{m-1}}{m-1}\right) = \lim_{m\to\infty} \int_{0}^{2n} \lim_{n\to\infty} \left(\frac{1+\frac{1}{m-1}}{m-1}\right) = \lim_{n\to\infty} \int_{0}^{2n} \lim_{n\to\infty} \left(\frac{1+\frac{1}{m-1}}{m-1}\right) = \lim_{n\to\infty} \int_{0}^{2n} \lim_{n\to\infty} \left(\frac{1+\frac{1}{m-1}}{m-1}\right) = \lim_{n\to\infty} \left(\frac{1+\frac$$

$$= \lim_{m \to \infty} 2^{2m} \int_{-m \to \infty}^{n} (1 + \frac{1}{m-1})^{m+1} dx^{2}$$

$$= \lim_{m \to \infty} 2^{2m} \int_{-m \to \infty}^{n} (1 + \frac{1}{m-1})^{m-1} (1 + \frac{1}{m-1})^{1} dx^{2}$$

$$= \lim_{m \to \infty} 2^{2m} \int_{-m \to \infty}^{n} (1 + \frac{1}{m-1})^{m-1} (1 + \frac{1}{m-1})^{1} dx^{2}$$

$$= \lim_{m \to \infty} 2^{2m} \int_{-m \to \infty}^{n} (1 + \frac{1}{m-1})^{m-1} (1 + \frac{1}{m-1})^{1} dx^{2}$$

c)
$$\lim_{n\to\infty} \left(\frac{2n}{3n-1}\right)^n$$
 $\lim_{n\to\infty} \left(3m-1\right) = \frac{2}{3} + \frac{4/3}{3m-1} = \frac{2}{3} \left(1 + \frac{1}{3m-1}\right)$
 $\frac{2}{3}$

$$\frac{(\partial u - \frac{2}{3})}{2/3}$$

$$\lim_{n \to \infty} \left(\frac{3n}{3n-1} \right)^{n} = \lim_{n \to \infty} \left(\frac{2}{3} \left(1 + \frac{3n^{1}}{3n-1} \right) \right)^{n} = \lim_{n \to \infty} \left(\frac{2}{3} \right)^{n}, \lim_{n \to \infty} \left(1 + \frac{1}{3n-1} \right)^{n-3} = \lim_{n \to \infty} \left(\frac{2}{3} \right)^{n}, \lim_{n \to \infty} \left(1 + \frac{1}{3n-1} \right)^{3n} = \lim_{n \to \infty} \left(\frac{2}{3} \right)^{n}, \lim_{n \to \infty} \left(1 + \frac{1}{3n-1} \right)^{3n-1} = \lim_{n \to \infty} \left(\frac{2}{3} \right)^{n}, \lim_{n \to \infty} \left(1 + \frac{1}{3n-1} \right)^{3n-1} = \lim_{n \to \infty} \left(\frac{2}{3} \right)^{n}, \lim_{n \to \infty} \left(1 + \frac{1}{3n-1} \right)^{3n-1} = \lim_{n \to \infty} \left(\frac{2}{3} \right)^{n}, \lim_{n \to \infty} \left(1 + \frac{1}{3n-1} \right)^{3n-1} = \lim_{n \to \infty} \left(\frac{2}{3} \right)^{n}, \lim_{n \to \infty} \left(1 + \frac{1}{3n-1} \right)^{3n-1} = \lim_{n \to \infty} \left(\frac{2}{3} \right)^{n}, \lim_{n \to \infty} \left(\frac{2}{3} \right)^{n}, \lim_{n \to \infty} \left(\frac{1}{3} + \frac{1}{3n-1} \right)^{3n-1} = \lim_{n \to \infty} \left(\frac{2}{3} \right)^{n}, \lim_{n \to \infty}$$

