Interro TD 1

Classe: Sujet A Nom:

Prénom:

Date:

Exercice 1 : Équation du 2nd degré à coefficients complexes (/6)

Déterminer, sous la forme x + iy avec x et y réels, les nombres complexes z solutions de l'équation suivante :

$$(1+i)z^2 - 3z + 2 - i = 0$$

Exercice 2: Similitude directe (/6)

Déterminer le point fixe et la nature de la similitude directe suivante :

$$\phi(z) = \frac{3 + i\sqrt{3}}{4}z + \frac{1 - i\sqrt{3}}{2}$$

Exercice 3: Systèmes linéaires (/8)

On considère le sous-ensemble P de \mathbb{R}^3 formé des solutions du système suivant :

$$(E) \begin{cases} x_1 + 2x_2 + x_3 - 2x_4 + 8x_5 = -6 \\ x_1 + 2x_2 + x_3 + 5x_5 = -1 \\ -2x_1 - 4x_2 - x_3 - 8x_5 = -1 \end{cases}$$

- 1) Résoudre ce système en utilisant avec précision les algorithmes de triangulation et de résolution. On précisera les étapes, les variables libres du système triangulé obtenu.
- 2) Expliciter trois solutions de (E).
- 3) Quelles sont les solutions du système linéaire homogène associé à E?

Correction:

Ex 1: On commence par calculer le discriminant $\Delta = (-3)^2 - 4 \times (1+i) \times (2-i) = -3 - 4i$. On cherche donc $\delta = x + iy \in \mathbb{C}$ tel que $\delta^2 = -3 - 4i$.

On obtient alors : $\Re(\delta^2) = x^2 - y^2 = -3$ et $\Im(\delta^2) = 2xy = -4$.

De plus, on a $|\delta^2| = |-3 - 4i|$, d'où $|\delta^2| = |\delta|^2 = x^2 + y^2 = \sqrt{(-3)^2 + (-4)^2} = \sqrt{25} = 5$.

Ces équations donnent alors le système suivant :

$$\begin{cases} x^2 + y^2 = 5 \\ x^2 - y^2 = -3 \\ xy < 0 \end{cases}$$

Ce qui donne $x^2 = \frac{5-3}{2} = 1$, d'où $x = \pm 1$ et $y^2 = \frac{5+3}{2} = 4$, d'où $y = \pm 2$. Or xy > 0, donc x et y sont de signes contraires : $\delta = 1 - 2i$ et $-\delta = -1 + 2i$.

$$z_1 = \frac{-b+\delta}{2a} = \frac{3+(1-2i)}{2(1+i)} = \frac{(2-i)(1-i)}{2} = \frac{1}{2} - \frac{3}{2}i$$
$$z_2 = \frac{-b-\delta}{2a} = \frac{3+(-1+2i)}{2(1+i)} = \frac{1+i}{1+i} = 1$$

$$\frac{3 + i\sqrt{3}}{4}z_0 + \frac{1 - i\sqrt{3}}{2} = z_0$$

ce qui donne

$$z_0 \left(1 - \left(\frac{3 + i\sqrt{3}}{4} \right) \right) = \frac{-(1 - i\sqrt{3})}{2}$$

puis

$$z_0 \left(\frac{1 - i\sqrt{3}}{4} \right) = \frac{-(1 - i\sqrt{3})}{2}$$

et finalement

$$z_0 = \frac{-2(1 - i\sqrt{3})}{1 - i\sqrt{3}} = -2$$

On calcule ensuite le module de a:

$$|a| = \left| \frac{3 + i\sqrt{3}}{4} \right| = \sqrt{\left(\frac{3}{4}\right)^2 + \left(\frac{\sqrt{3}}{4}\right)^2} = \sqrt{\frac{12}{16}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

et son argument:

$$\arg(a) = \arg(\frac{a}{|a|})$$

d'où

$$\arg(a) = \arg(\frac{3 + i\sqrt{3}}{4} \times \frac{2}{\sqrt{3}}) = \arg(\frac{\sqrt{3} + i}{2}) = \frac{\pi}{6}$$

La similitude directe ϕ est donc la composée d'une homothétie de rapport $\sqrt{3}/2$ et de centre z_0 et d'une rotation d'angle $\frac{\pi}{6}$ et de centre z_0 .

Ex 3 : On applique l'algorithme : l'ordre des variables est l'ordre naturel x_1, x_2, x_3, x_4 Le système (E) n'est pas ordonné car v(1) = 3 > v(2) = v(3) = 1. On réordonne donc les équations :

$$(E) \Leftrightarrow \begin{cases} x_1 + 2x_2 + x_3 + 5x_5 = -1 \\ -2x_1 - 4x_2 - x_3 + 8x_5 = -1 \\ 2x_3 - 2x_4 + 8x_5 = -6 \end{cases}$$

On augmente l'ordre de l'équation 2 :

$$(E) \Leftrightarrow \begin{cases} x_1 + 2x_2 + x_3 + 5x_5 = -1 \\ x_3 + 2x_5 = -3 \\ 2x_3 - 2x_4 + 8x_5 = -6 \end{cases}$$

Le système est ordonné mais n'est pas encore triangulé. Donc on augmente l'ordre de l'équation 3 :

$$(E) \Leftrightarrow \begin{cases} x_1 + 2x_2 + x_3 + 5x_5 = -1 \\ x_3 + 2x_5 = -3 \\ -2x_4 + 4x_5 = 0 \end{cases}$$

Le système est triangulé. Les variables libres sont x_2 et x_5 .

On obtient $x_4 = 2x_5$, $x_3 = -3 - 2x_5$ et $x_1 = -1 - 2x_2 - x_3 - 5x_5 = 2 - 2x_2 - 3x_5$. D'où

$$S = \{(2 - 2x_2 - 3x_5, x_2, -3 - 2x_5, 2x_5, x_5), \quad x_2, x_5 \in \mathbb{R}\}\$$

qu'on peut aussi écrire

$$S = \{(2,0,-3,0,0) + x_2(-2,1,0,0,0) + x_5(-3,0,-2,2,1), x_2, x_5 \in \mathbb{R}\}\$$

On peut vérifier que (-2,1,0,0,0) et (-3,0,-2,2,1) sont des solutions du système homogène associé à (E).

Prenons par exemple $x_2 = 1$ et $x_5 = 2$ pour obtenir une solution de (E)

$$(-6, 1, -7, 4, 2)$$

Un autre exemple de solution avec $x_2 = 0$ et $x_5 = 1$ pour obtenir (-1, 0, -5, 2, 1). Un dernier exemple avec $x_3 = 0$ et $x_4 = 0$ pour obtenir (2, 0, -3, 0, 0).

Interro TD 1

Classe: Nom:

Prénom:

Sujet B

Date:

Exercice 1 : Équation du 2nd degré à coefficients complexes (/6)

Déterminer, sous la forme x+iy avec x et y réels, les nombres complexes z solutions de l'équation suivante :

$$(1+i)z^2 + iz - 1 = 0$$

Exercice 2: Similitude directe (/6)

Déterminer le point fixe et la nature de la similitude directe suivante :

$$\phi(z) = \frac{1 - i}{2}z + \frac{-3 + i}{2}$$

Exercice 3: Systèmes linéaires (/8)

On considère le sous-ensemble P de \mathbb{R}^3 formé des solutions du système suivant :

$$(E) \begin{cases} -x_2 + 2x_3 + 13x_4 = 5 \\ x_1 - 2x_2 + 3x_3 + 17x_4 = 4 \\ -x_1 + 3x_2 - 3x_3 - 20x_4 = -1 \end{cases}$$

- 1) Résoudre ce système en utilisant avec précision les algorithmes de triangulation et de résolution. On précisera les étapes, les variables libres du système triangulé obtenu.
- 2) Expliciter trois solutions de (E).
- 3) Quelles sont les solutions du système linéaire homogène associé à E?

Correction:

Ex 1 : On commence par calculer le discriminant $\Delta = (i)^2 - 4 \times (1+i) \times (-1) = 3+4i$. On cherche donc $\delta = x+iy \in \mathbb{C}$ tel que $\delta^2 = 3+4i$.

On obtient alors : $\Re(\delta^2) = x^2 - y^2 = 3$ et $\Im(\delta^2) = 2xy = 4$.

De plus, on a $|\delta^2| = |3 + 4i|$, d'où $|\delta^2| = |\delta|^2 = x^2 + y^2 = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$.

Ces équations donnent alors le système suivant :

$$\begin{cases} x^2 + y^2 = 5 \\ x^2 - y^2 = 3 \\ xy > 0 \end{cases}$$

Ce qui donne $x^2 = \frac{5+3}{2} = 4$, d'où $x = \pm 2$ et $y^2 = \frac{5-3}{2} = 1$, d'où $y = \pm 1$.

Or xy > 0, donc x et y sont de même signe : $\delta = 2 + i$ et $-\delta = -2 - i$.

$$z_1 = \frac{-b+\delta}{2a} = \frac{-i+(2+i)}{2(1+i)} = \frac{1-i}{2}$$
$$z_2 = \frac{-b-\delta}{2a} = \frac{-i-(2+i)}{2(1+i)} = \frac{-(1+i)(1-i)}{2} = -1$$

$$\frac{1-i}{2}z_0 + \frac{-3+i}{2} = z_0$$

ce qui donne

$$z_0\left(\frac{1-i}{2}-1\right) = \frac{3-i}{2}$$

puis

$$z_0(1+i) = -3+i$$

et finalement

$$z_0 = \frac{-3+i}{1+i} = \frac{(-3+i)(1-i)}{2} = -1+2i$$

On calcule ensuite le module de a:

$$|a| = \left|\frac{1-i}{2}\right| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{-1}{2}\right)^2} = \sqrt{\frac{2}{4}} = \frac{\sqrt{2}}{2}$$

et son argument:

$$\arg(a) = \arg(\frac{a}{|a|})$$

d'où

$$\arg(a) = \arg(\frac{1-i}{2} \times \frac{2}{\sqrt{2}}) = \arg(\frac{\sqrt{2} - i\sqrt{2}}{2}) = \frac{-\pi}{4}$$

La similitude directe ϕ est donc la composée d'une homothétie de rapport $\sqrt{2}/2$ et de centre z_0 et d'une rotation d'angle $\frac{-\pi}{4}$ et de centre z_0 .

Ex 3 : On applique l'algorithme : l'ordre des variables est l'ordre naturel x_1, x_2, x_3, x_4 Le système (E) n'est pas ordonné car v(1) = 2 > v(2) = v(3) = 1. On réordonne donc les équations :

$$(E) \Leftrightarrow \begin{cases} x_1 - 2x_2 + 3x_3 + 17x_4 = 4 \\ -x_1 + 3x_2 - 3x_3 - 20x_4 = -1 \\ -x_2 + 2x_3 + 13x_4 = 5 \end{cases}$$

On augmente l'ordre de l'équation 2 :

$$(E) \Leftrightarrow \begin{cases} x_1 - 2x_2 + 3x_3 + 17x_4 = 4 \\ x_2 - 3x_4 = 3 \\ -x_2 + 2x_3 + 13x_4 = 5 \end{cases}$$

Le système est ordonné mais n'est pas encore triangulé. Donc on augmente l'ordre de l'équation 3 :

$$(E) \Leftrightarrow \begin{cases} x_1 - 2x_2 + 3x_3 + 17x_4 = 4 \\ x_2 - 3x_4 = 3 \\ 2x_3 + 10x_4 = 8 \end{cases}$$

Le système est triangulé. Une seule variable libre x_4 .

On obtient $x_3 = 4 - 5x_4$, $x_2 = 3 + 3x_4$ et $x_1 = 4 + 2x_2 - 3x_3 - 17x_4 = -2 + 4x_4$. D'où

$$S = \{(-2 + 4x_4, 3 + 3x_4, 4 - 5x_4, x_4), x_4 \in \mathbb{R}\}$$

qu'on peut aussi écrire

$$S = \{(-2, 3, 4, 0) + x_4(4, 3, -5, 1), x_4 \in \mathbb{R}\}\$$

On peut vérifier que (4, 3, -5, 1) est une solution du système homogène associé à (E).

Prenons par exemple $x_4=0$ pour obtenir une solution de (E)

$$(-2, 3, 4, 0)$$

Un autre exemple de solution avec $x_4 = 1$ pour obtenir (2, 6, -1, 1). Un dernier exemple avec $x_4 = -2$ pour obtenir (-10, -3, 14, -2). Classe: Nom: Prénom:

Interro TD 1

Sujet C

Date:

Exercice 1: Équation du 2nd degré à coefficients complexes (/6)

Déterminer, sous la forme x + iy avec x et y réels, les nombres complexes z solutions de l'équation suivante :

$$z^2 + \sqrt{2}z - \frac{\sqrt{2}}{2}i = 0$$

Exercice 2: Similitude directe (/6)

Déterminer le point fixe et la nature de la similitude directe suivante :

$$\phi(z) = (-1 - \sqrt{3}i)z + 2 - \sqrt{3} + (2 + \sqrt{3})i$$

Exercice 3: Systèmes linéaires (/8)

On considère le sous-ensemble P de \mathbb{R}^3 formé des solutions du système suivant :

$$(E) \begin{cases} x_2 - x_3 + 5x_4 - x_5 = 2 \\ x_2 - 2x_3 + 3x_5 = -1 \\ x_1 - 3x_2 + 2x_3 - x_5 = -1 \end{cases}$$

- 1) Résoudre ce système en utilisant avec précision les algorithmes de triangulation et de résolution. On précisera les étapes, les variables libres du système triangulé obtenu.
- 2) Expliciter trois solutions de (E).
- 3) Quelles sont les solutions du système linéaire homogène associé à E?

Correction:

Ex 1 : On commence par calculer le discriminant $\Delta = 2 - 4 \times 1 \times (-\frac{\sqrt{2}}{2}i) = 2 + 2i\sqrt{2}$. On cherche donc $\delta = x + iy \in \mathbb{C}$ tel que $\delta^2 = 2 + 2i\sqrt{2}$.

On obtient alors: $\Re(\delta^2) = x^2 - y^2 = 2$ et $\Im(\delta^2) = 2xy = 2\sqrt{2}$.

De plus, on a $|\delta^2| = |2 + 2i\sqrt{2}|$, d'où $|\delta^2| = |\delta|^2 = x^2 + y^2 = \sqrt{(2)^2 + (2\sqrt{2})^2} = \sqrt{4 + 4 \times 2} = \sqrt{(2)^2 + (2\sqrt{2})^2}$ $\sqrt{12} = 2\sqrt{3}$.

Ces équations donnent alors le système suivant :

$$\begin{cases} x^2 + y^2 = 2\sqrt{3} \\ x^2 - y^2 = 2 \\ xy > 0 \end{cases}$$

Ce qui donne $x^2 = \frac{2+2\sqrt{3}}{2} = 1+\sqrt{3}$, d'où $x = \pm\sqrt{1+\sqrt{3}}$ et $y^2 = \frac{2\sqrt{3}-2}{2} = \sqrt{3}-1$, d'où $y = \pm \sqrt{3} - 1$.

Or xy > 0, donc x et y sont de même signe :

$$\delta = \sqrt{1 + \sqrt{3}} + i\sqrt{\sqrt{3} - 1}$$
 et $-\delta = -\sqrt{1 + \sqrt{3}} - i\sqrt{\sqrt{3} - 1}$

$$z_1 = \frac{-b+\delta}{2a} = \frac{-\sqrt{2}+\sqrt{1+\sqrt{3}}+i\sqrt{\sqrt{3}-1}}{2} \approx 0, 12+0, 43i$$

$$z_2 = \frac{-b - \delta}{2a} = \frac{-\sqrt{2} - \sqrt{1 + \sqrt{3}} - i\sqrt{\sqrt{3} - 1}}{2} \approx -1,53 - 0,43i$$

$$(-1 - i\sqrt{3})z_0 + 2 - \sqrt{3} + (2 + \sqrt{3})i = z_0$$

ce qui donne

$$z_0\left(-2 - i\sqrt{3}\right) = -2 + \sqrt{3} - (2 + \sqrt{3})i$$

puis

$$z_0 = \frac{-2 + \sqrt{3} - (2 + \sqrt{3})i}{-2 - i\sqrt{3}} = \frac{(-2 + \sqrt{3} - (2 + \sqrt{3})i)(-2 + i\sqrt{3})}{7}$$

et finalement

$$z_0 = \frac{4 - 2\sqrt{3} + 3 + 2\sqrt{3} + i(3 - 2\sqrt{3} + 4 + 2\sqrt{3})}{7} = 1 + i$$

On calcule ensuite le module de a:

$$|a| = |-1 - i\sqrt{3}| = \sqrt{(-1)^2 + (-\sqrt{3})^2} = \sqrt{1+3} = 2$$

et son argument:

$$\arg(a) = \arg(\frac{a}{|a|})$$

d'où

$$\arg(a) = \arg(\frac{-1 - i\sqrt{3}}{2}) = \frac{-2\pi}{3}$$

La similitude directe ϕ est donc la composée d'une homothétie de rapport 2 et de centre z_0 et d'une rotation d'angle $\frac{-2\pi}{3}$ et de centre z_0 .

Ex 3 : On applique l'algorithme : l'ordre des variables est l'ordre naturel x_1, x_2, x_3, x_4, x_5 Le système (E) n'est pas ordonné car v(1) = v(2) = 2 > v(3) = 1. On réordonne donc les équations :

$$(E) \Leftrightarrow \begin{cases} x_1 - 3x_2 + 2x_3 & - x_5 = -1 \\ x_2 - x_3 + 5x_4 - x_5 = 2 \\ x_2 - 2x_3 & + 3x_5 = -1 \end{cases}$$

Le système est ordonné mais n'est pas encore triangulé car v(2) = 2 = v(3). On augmente donc l'ordre de l'équation 3 :

$$(E) \Leftrightarrow \begin{cases} x_1 - 3x_2 + 2x_3 - x_5 = -1 \\ x_2 - x_3 + 5x_4 - x_5 = 2 \\ - x_3 - 5x_4 + 4x_5 = -3 \end{cases}$$

Le système est triangulé. Les variables libres sont x_4 et x_5 .

On obtient $x_3 = 3 - 5x_4 + 4x_5$, $x_2 = 2 + x_3 - 5x_4 + x_5 = 5 - 10x_4 + 5x_5$ et finalement $x_1 = -1 + 3x_2 - 2x_3 + x_5 = 8 - 20x_4 + 8x_5$. D'où

$$S = \{ (8 - 20x_4 + 8x_5, \quad 5 - 10x_4 + 5x_5, \quad 3 - 5x_4 + 4x_5, \quad x_4, x_5), \quad x_4, x_5 \in \mathbb{R} \}$$

qu'on peut aussi écrire

$$S = \{(8, 5, 3, 0, 0) + x_4(-20, -10, -5, 1, 0) + x_5(8, 5, 4, 0, 1), \quad x_4, x_5 \in \mathbb{R}\}$$

On peut vérifier que (-20, -10, -5, 1, 0) et (8, 5, 4, 0, 1) sont des solutions du système homogène associé à (E).

Prenons par exemple $x_4 = 1$ et $x_5 = 1$ pour obtenir une solution de (E)

$$(-4,0,2,1,1)$$

Un autre exemple de solution avec $x_4 = 0$ et $x_5 = 1$ pour obtenir (16, 10, 7, 0, 1). Un dernier exemple avec $x_3 = 0$ et $x_4 = 0$ pour obtenir (8, 5, 3, 0, 0).

Interro TD 1

Classe: Sujet D Nom: Prénom:

Exercice 1: Équation du 2nd degré à coefficients complexes (/6)

Date:

Déterminer, sous la forme x + iy avec x et y réels, les nombres complexes z solutions de l'équation suivante :

$$z^2 - (3+2i)z + 5 + i = 0$$

Indications: $15^2 = 225$ et $17^2 = 289$

Exercice 2: Similitude directe (/6)

Déterminer le point fixe et la nature de la similitude directe suivante :

$$\phi(z) = (1 - \sqrt{2})(\frac{\sqrt{2} + i\sqrt{2}}{2})z + i$$

Exercice 3: Systèmes linéaires (/8)

On considère le sous-ensemble P de \mathbb{R}^3 formé des solutions du système suivant :

$$(E) \begin{cases} x_1 + 2x_2 - x_3 + 2x_4 = 1 \\ 2x_1 - x_2 + x_3 + 3x_4 = 1 \\ 3x_1 + x_2 + 5x_4 = 2 \\ x_1 - 3x_2 + 2x_3 + x_4 = 0 \end{cases}$$

- 1) Résoudre ce système en utilisant avec précision les algorithmes de triangulation et de résolution. On précisera les étapes, les variables libres du système triangulé obtenu.
- 2) Expliciter trois solutions de (E).
- 3) Quelles sont les solutions du système linéaire homogène associé à E?

Correction:

Ex 1: On commence par calculer le discriminant $\Delta = (3+2i)^2 - 4 \times 1 \times (5+i) = -15+8i$. On cherche donc $\delta = x + iy \in \mathbb{C}$ tel que $\delta^2 = -15 + 8i$.

On obtient alors: $\Re(\delta^2) = x^2 - y^2 = -15$ et $\Im(\delta^2) = 2xy = 8$.

De plus, on a $|\delta^2| = |-15 + 8i|$, d'où $|\delta^2| = |\delta|^2 = x^2 + y^2 = \sqrt{(-15)^2 + 8^2} = \sqrt{289} = 17$.

Ces équations donnent alors le système suivant :

$$\begin{cases} x^2 + y^2 = 17 \\ x^2 - y^2 = -15 \\ xy > 0 \end{cases}$$

Ce qui donne $x^2 = \frac{-15+17}{2} = 1$, d'où $x = \pm 1$ et $y^2 = \frac{17+15}{2} = 16$, d'où $y = \pm 4$.

Or xy > 0, donc x et y sont de même signe : $\delta = 1 + 4i$ et $-\delta = -1 - 4i$.

$$z_1 = \frac{-b+\delta}{2a} = \frac{(3+2i)+(1+4i)}{2} = \frac{4+6i}{2} = 2+3i$$

$$z_2 = \frac{-b - \delta}{2a} = \frac{(3+2i) - (1+4i)}{2} = \frac{2-2i}{2} = 1-i$$

$$(1 - \sqrt{2})(\frac{\sqrt{2} + i\sqrt{2}}{2})z_0 + i = z_0$$

ce qui donne

$$z_0 \left(1 - (1 - \sqrt{2}) \left(\frac{\sqrt{2} + i\sqrt{2}}{2} \right) \right) = i$$

puis

$$z_0 \left(\frac{(4 - \sqrt{2}) + i(2 - \sqrt{2})}{2} \right) = i$$

et finalement

$$z_0 = \frac{2i}{(4 - \sqrt{2}) + i(2 - \sqrt{2})} = \frac{2i(4 - \sqrt{2} - i(2 - \sqrt{2}))}{(4 - \sqrt{2})^2 + (2 - \sqrt{2})^2} = \frac{4 - 2\sqrt{2} + i(8 - 2\sqrt{2})}{24 - 12\sqrt{2}} = \frac{2 - \sqrt{2} + i(4 - \sqrt{2})}{6(2 - \sqrt{2})}$$

qu'on peut aussi arranger en

$$z_0 = \frac{1}{6} + i \frac{(4 - \sqrt{2})(2 + \sqrt{2})}{6(2^2 - 2)} = \frac{1}{6} + i \frac{6 + 2\sqrt{2}}{12}$$
$$= \frac{1}{6} + i(\frac{1}{2} + \frac{\sqrt{2}}{6}) \approx 0, 17 + 0, 74i$$

On calcule ensuite le module de a:

$$|a| = |(1 - \sqrt{2})(\frac{\sqrt{2} + i\sqrt{2}}{2})| = |1 - \sqrt{2}||\frac{\sqrt{2} + i\sqrt{2}}{2}|$$

donc

$$|a| = (-1 + \sqrt{2})\sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2} = (\sqrt{2} - 1)$$

et son argument:

$$\arg(a) = \arg(1 - \sqrt{2}) + \arg(\frac{\sqrt{2} + i\sqrt{2}}{2}) \mod 2\pi$$

d'où

$$\arg(a) = 0 + \frac{-3\pi}{4} = \frac{5\pi}{4} \mod 2\pi$$

La similitude directe ϕ est donc la composée d'une homothétie de rapport $\sqrt{2}-1$ et de centre z_0 et d'une rotation d'angle $\frac{-3\pi}{4}$ et de centre z_0 . **Ex 3 :** On applique l'algorithme : l'ordre des variables est l'ordre naturel x_1, x_2, x_3, x_4

Ex 3 : On applique l'algorithme : l'ordre des variables est l'ordre naturel x_1, x_2, x_3, x_4 Le système (E) est ordonné car v(1) = v(2) = v(3) = v(4). On augmente l'ordre des équations 2, 3 et 4 :

$$(E) \Leftrightarrow \begin{cases} x_1 + 2x_2 - x_3 + 2x_4 = 1 \\ -5x_2 + 3x_3 - x_4 = -1 \\ -5x_2 + 3x_3 - x_4 = -1 \\ -5x_2 + 3x_3 - x_4 = -1 \end{cases} \Leftrightarrow \begin{cases} x_1 + 2x_2 - x_3 + 2x_4 = 1 \\ -5x_2 + 3x_3 - x_4 = -1 \end{cases}$$

Le système est triangulé. Les variables libres sont x_3 et x_4 .

On obtient $x_2 = \frac{1}{5}(1+3x_3+x_4)$ et $x_1 = 1-2x_2+x_3-2x_4 = \frac{1}{5}(3-x_3-12x_4)$. D'où

$$S = \left\{ \left(\frac{3}{5} - \frac{1}{5}x_3 - \frac{12}{5}x_4, \quad \frac{1}{5} + \frac{3}{5}x_3 + \frac{1}{5}x_4, \quad x_3, \quad x_4 \right), \quad x_3, x_4 \in \mathbb{R} \right\}$$

qu'on peut aussi écrire

$$S = \left\{ \left(\frac{3}{5}, \frac{1}{5}, 0, 0 \right) + x_3 \left(-\frac{1}{5}, \frac{3}{5}, 1, 0 \right) + x_4 \left(-\frac{12}{5}, \frac{1}{5}, 0, 1 \right), \quad x_3, x_4 \in \mathbb{R} \right\}$$

On peut vérifier que $\left(-\frac{1}{5}, \frac{3}{5}, 1, 0\right)$ et $\left(-\frac{12}{5}, \frac{1}{5}, 0, 1\right)$ sont des solutions du système homogène associé à (E).

Prenons par exemple $x_3 = 5$ et $x_4 = 5$ pour obtenir une solution de (E)

$$(\frac{3}{5} - 1 - 12, \frac{1}{5} + 3 + 1, 5, 5) = (-\frac{62}{5}, \frac{21}{5}, 5, 5)$$

Un autre exemple de solution $x_3=1$ et $x_4=1$ pour obtenir

$$(\frac{3}{5} - \frac{1}{5} - \frac{12}{5}, \frac{1}{5} + \frac{3}{5} + \frac{1}{5}, 1, 1) = (-2, 1, 1, 1)$$

Un dernier exemple avec $x_3=0$ et $x_4=0$ pour obtenir $(\frac{3}{5},\frac{1}{5},0,0)$.