## **ECS171 HW1 Report**

Jiahui Li: 915544392

### Instruction to Run the Code

I split the code file for one file per question (problem1.py, problem2.py,etc) and put some shared code, eg.read the data, in one file (basicfunction.py).

The following report shows the results, plots and tables for each problem. Since problem3 is to write a solver, it has nothing to report except the code, this report doesn't have the answer for problem3.

#### **Problem 1**

The thresholds are 18.73 and 26.93.

low: mpg <= 18.73, sample size = 131.

medium: 18.73 < mpg <= 26.93, sample size = 130.

high: mpg > 26.93, sample size = 131.

## problem 2





From the plot, we can find that the most informative pair-wise feature combination is horsepower and weight since it is relatively easy to distinguish the three mpg category by checking if horsepower and weight are over or below some thresholds.

# problem 4

The mse of the training and the testing with linear regression on each single variable are showed in the table.

The name of each column means this: eg. "train\_0th" means the mse of 0th order on training set.

|              | train_0th | test_0th   | train_1st | test_1st  | train_2nd | test_2nd  | train_3rd | test_3rd   |
|--------------|-----------|------------|-----------|-----------|-----------|-----------|-----------|------------|
| cylinders    | 34.0549   | 116.623308 | 8.595830  | 55.707917 | 8.578095  | 55.469676 | 7.434722  | 51.851011  |
| displacement | 34.0549   | 116.623308 | 7.479179  | 52.419933 | 6.000853  | 48.676818 | 6.000330  | 48.675018  |
| horsepower   | 34.0549   | 116.623308 | 11.511310 | 56.582734 | 8.906969  | 46.934573 | 8.847085  | 47.458707  |
| weight       | 34.0549   | 116.623308 | 6.266344  | 50.477596 | 4.870518  | 48.335228 | 4.788272  | 48.673278  |
| acceleration | 34.0549   | 116.623308 | 24.838396 | 96.831856 | 24.202522 | 95.563763 | 23.636051 | 99.362201  |
| modelyear    | 34.0549   | 116.623308 | 32.771386 | 66.237911 | 32.475902 | 52.314284 | 32.368586 | 641.357355 |
| origin       | 34.0549   | 116.623308 | 18.693183 | 83.108650 | 17.008752 | 85.573273 | 17.008752 | 85.573273  |



The above plot is regression line for the testing set. From the mse table and the plot, we can see the best polynomial order in the test set is 2nd order since except origin, 2nd order of all the variables is better then 0th and 1st. And, for some variables, the 3rd order become worse, especially modelyear. The most informative feature for mpg consumption is horsepower since when it is 2nd order and 3rd order, it has the least mse, and although for 1st order, it has second least mse, but just a little bit larger than the least.

### problem 5

The mse of the training and the testing with linear regression on all 7 variables are showed in the table.

Each row show different order: eg. "0th" means 0th order polynomial.

|                     | train     | test       |
|---------------------|-----------|------------|
| 0th                 | 34.054900 | 116.623308 |
| 1st                 | 5.099396  | 30.521729  |
| <b>2nd</b> 3.177745 |           | 42.319377  |

### problem 6

The precision for training and the testing with logistic regression are showed in the table.

I calculate the precision for different category separately. For each, precision is TP/(TP + FP).

|        | train    | test     |
|--------|----------|----------|
| low    | 0.905660 | 0.731707 |
| medium | 0.813333 | 0.433962 |
| high   | 0.842105 | 1.000000 |

### problem 7

For better predicting the new data, I train the models with whole dataset (392 data).

From the second-order, multi-variate polynomial regression, we can predict the MPG value is 20.71(round to 2 decimal place), so we expect the MPG rating is medium since the medium threshold is (18.73,26.93].

From logistic regression, we can predict the MPG category it belongs is **low**.

### problem 8

Since it's a car driven by the horse, so I don't think it should use mobile oil to move. There is no a concept like MPG for it, that means no model can be used to predict the MPG of it.