

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA **DIRECCIÓN DE EDUCACIÓN SUPERIOR**

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS COAHUILA

ESCUELA SUPERIOR DE CÓMPUTO, UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS TLAXCALA

PROGRAMA ACADÉMICO: Ingeniería en Inteligencia Artificial

UNIDAD DE APRENDIZAJE: Teoría de la Computación SEMESTRE: V

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

	ntos y aplicaciones de es y lenguaje y máquina			e la C	omputación a partir de	e la teoría de autón	natas,	
CONTENIDOS:	I. Autómatas fir II. Lenguajes y III. Autómatas de IV. Máquina de	expresion e Pila	es re	gulare	s			
	Métodos de enseña				Estrategias de apren	dizaje		
	a) Inductivo			Х	a) Estudio de casos			
ORIENTACIÓN	b) Deductivo				b) Aprendizaje basado en problemas			
DIDÁCTICA:	c) Analógico			Х	c) Aprendizaje orient	ado proyectos	Х	
	d)				d)			
	e)				e)			
	Diagnóstica			Х	Saberes Previamente	Adquiridos	Х	
	Solución de casos			Х	Organizadores gráfic	os	Х	
	Problemas resueltos				Exposiciones		Х	
EVALUACIÓN Y ACREDITACIÓN:	Reporte de proyectos			Х				
ACKEDITACION.	Reportes de indagación				Otras evidencias a evaluar:			
	Reportes de prácticas			Х	Conclusiones de discusiones dirigidas			
	Evaluaciones escrit	as						
	Autor(es)	Año	Título		o del documento	Editorial / ISB	N	
	Hopcroft, J.; Ullman, J. y Motwani, R*	2007			De Autómatas, s y Computación	Pearson Educaci 9788478290888	ón /	
	Anderson, J.	2006		omata olicatio	Theory with Modern ns	Press / 978052161	University 521613248	
BIBLIOGRAFÍA BÁSICA:	Sipser, M.	2012		oduction mputat	on to the Theory of ion	Thomson South Western 971133187813		
	Linz P.	2006	An Introduction to Formal Languages and Automata			Jones & B Learning 9780763737986	artlett /	
	Giro J.	2016		nguajes ómatas	s formales y teoría de s	Alfaomega 9789871609819	/	

^{*} Bibliografía Clásica

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA DE ESTUDIOS

UNIDAD DE APRENDIZAJE: Teoría de la Computación HOJA 2 DE 9

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS COAHUILA

ESCUELA SUPERIOR DE CÓMPUTO, UNIDAD PROFESIONAL INTERDISCIPLINARIA

EN INGENIERÍA CAMPUS TLAXCALA

PROGRAMA ACADÉMICO: Ingeniería en Inteligencia Artificial

SEMESTRE: V ÁREA DE FORMACIÓN: MODALIDAD:
Profesional Escolarizada

TIPO DE UNIDAD DE APRENDIZAJE:

Teórico / Práctica

VIGENTE A PARTIR DE: CRÉDITOS

Enero 2022 **TEPIC:** 7.5 **SATCA:** 6.3

INTENCIÓN EDUCATIVA

La unidad de aprendizaje contribuye al perfil de egreso **de** la Ingeniería en Inteligencia Artificial con el desarrollo de habilidades para, Asimismo, fomenta el pensamiento crítico, la resolución de problemas, el pensamiento lateral, y las habilidades de análisis.

Esta unidad de aprendizaje tiene como antecedentes, Algoritmos y estructuras de datos, Paradigmas de Programación y Análisis y diseño de sistemas; y como consecuentes Cómputo paralelo.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Aplica los fundamentos y aplicaciones de la Teoría de la Computación a partir de la teoría de autómatas, expresiones regulares y lenguaje y máquina de Turing.

TIEMPOS ASIGNADOS

HORAS TEORÍA/SEMANA: 3.0

HORAS PRÁCTICA/SEMANA: 1.5

HORAS TEORÍA/SEMESTRE: 54.0

HORAS PRÁCTICA/SEMESTRE:

27.0

HORAS APRENDIZAJE AUTÓNOMO: 24.0

HORAS TOTALES/SEMESTRE:

81.0

UNIDAD DE APRENDIZAJE DISEÑADA POR:

Comisión de Diseño del Programa Académico.

APROBADO POR:

Comisión de Programas Académicos del H. Consejo General Consultivo del IPN.

22/10/2020

AUTORIZADO Y VALIDADO POR:

Ing. Juan Manuel Velázquez Peto

Director de Educación Superior

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Teoría de la Computación HOJA 3 DE 9

UNIDAD TEMÁTICA I Autómatas finitos	CONTENIDO	HORA DOC	HR S	
Automatas mitos		T	P	AA
UNIDAD DE COMPETENCIA	1.1 Contextualización a la teoría de autómatas	1.5		1.0
Aplica autómatas finitos	1.1.1 Alfabetos			
deterministas y no deterministas	1.1.2 Cadenas de Caracteres			
a partir de las características del	1.1.3 Lenguajes			
problema, el manejo de				
alfabetos, el procesamiento de	1.2 Autómatas finitos	3.0	1.5	1.0
cadenas y notaciones.	1.2.1 Reglas básicas			
	1.2.2 Autómatas de sistema completo			
	1.3 Autómatas finitos deterministas (AFD)	3.0	1.5	1.0
	1.3.1 Procesamiento de cadenas AFD	3.0	1.5	1.0
	1.3.2 Notaciones			
	1.3.3 Extensión a cadenas de la función transición			
	1.3.4 Lenguaje de un AFD			
	1.0.4 Longuajo de un Ai D			
	1.4 Autómatas finitos no deterministas (AFND)	3.0	3.0	1.5
	considerar una integración con epsilon			
	1.4.1 Contextualización			
	1.4.2 Función de Transición extendida			
	1.4.3 Equivalencias entre AFD y AFND			
	1.5 Autómatas finitos con transiciones – ε	3.0	1.5	1.5
	1.5.1 Uso de las transiciones – £	0.0	1.0	1.0
	1.5.2 Notación para un AFN– 8			
	1.5.3 Clausulas épsilon			
	1.5.4 Transiciones y lenguajes extendidos para los			
	AFN- E			
	1.5.5 Expresiones regulares a AFN- & (Algoritmo de			
	Thompson)			
	Subtotal	13.5	7.5	6.0

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Teoría de la Computación HOJA 4 DE 9

UNIDAD TEMÁTICA II	CONTENIDO	HORA	HR	
Lenguajes y expresiones		DOC		S
regulares		Τ	Р	AA
UNIDAD DE COMPETENCIA	2.2 Expresiones regulares	1.5	1.5	1.0
Aplica expresiones regulares a				
partir de las características del				
problema, el manejo de	2.2.3 Precedencia de operadores			
alfabetos, el proceso de				
construcción de expresiones		4.5	3.0	1.0
regulares, el álgebra de				
expresiones regulares además	2.3.2 Expresiones regulares a AFD			
de los principios de un lenguaje.				
	2.4 Aplicación de las Expresiones regulares	1.5	1.5	1.5
	2.4.1 Análisis léxico			
	2.4.2 Búsqueda de Patrones en Textos			
	2.5 Álgebra de expresiones regulares	1.5		1.5
	2.5.1 Asociatividad y conmutatividad			
	2.5.2 Elemento identidad y elemento nulo			
	2.5.3 Leyes distributivas			
	2.5.4 Leyes de idempotencia			
	2.5.5 Leyes relativas a clausura			
	2.6 Propiedades de los lenguajes naturales	4.5		1.0
	2.6.1 Demostración de lenguajes no regulares			
	2.6.2 Propiedades de clausura de lenguajes			
	regulares			
	2.6.3 Propiedades de decisión de lenguajes			
	naturales			
	2.6.4 Equivalencia y minimización de autómatas			
	, ,			
	Subtotal	13.5	6.0	6.0

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Teoría de la Computación HOJA 5 DE 9

UNIDAD TEMÁTICA III	CONTENIDO		HORAS CON		
Autómatas de Pila		T	ENTE P	S AA	
UNIDAD DE COMPETENCIA	3.1. Contextualización a los autómatas de Pila	1.5	Р	1.0	
Aplica autómatas de pila a partir de las características del problema, el criterio de aceptación del autómata, y la aplicación de gramáticas.	3.1.1. Contextualización a los automatas de Fila 3.1.1.Definición formal del autómata de Pila 3.1.2.Notación gráfica del autómata de pila 3.1.3.Descripciones instantáneas de un autómata de pila	1.5		1.0	
	3.2. Lenguajes de un autómata de pila3.2.1.Aceptación por estado final3.2.2.Aceptación por pila vacía3.2.3.De pila vacía a estado final3.2.4.De estado final a pila vacía	3.0	3.0	1.0	
	3.3. Equivalencias entre autómatas de pila3.3.1.Gramáticas a autómatas de Pila3.3.2.autómatas de Pila a gramáticas	3.0	1.5	1.0	
	3.4. Autómata de Pila determinista	1.5	1.5	1.0	
	3.5. Contextualización	1.5		1.0	
	3.6. Autómatas de pila deterministas y lenguajes independientes del contexto	1.5	1.5	1.0	
	3.7. Autómatas a pila deterministas y gramáticas	1.5		1.0	
	Subtotal	13.5	7.5	7.0	

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Teoría de la Computación HOJA 6 DE 9

UNIDAD TEMÁTICA IV Máquina de Turing	CONTENIDO	HORA	HR S	
Maqaiila ao Falling		T	Р	AA
UNIDAD DE COMPETENCIA	4.1. Problemas no computables	1.5		1.0
Construye una máquina de	40 Leavis to 1. Total	0.0		4.0
Turing a partir de las características del problema, su	4.2. La máquina de Turing 4.2.1.Notación de la Máquina de Turing (MT)	3.0		1.0
notación, las técnicas de	4.2.2. Descripciones instantáneas de la Máquina de			
programación, así como de las	Turing			
extensiones de la misma	4.2.3.Diagramas de transición			
	4.2.4.Lenguaje de una máquina de Turing			
	4.2.5.Máquina de Turing y Parada			
	 4.3. Técnicas de programación para la máquina de Turing 4.3.1.Almacenamiento en el estado 4.3.2.Pistas múltiples 4.3.3.Subrutinas 	3.0	3.0	1.0
	4.4. Extensiones de la máquina de Turing básica	3.0		1.0
	4.4.1.Máquina de Turing de varias cintas			
	4.4.2.Equivalencias entre las MT de una y múltiples cintas			
	4.4.3.Tiempo de ejecución de múltiples cintas a una			
	4.4.4.Máquinas de Turing no deterministas			
	4.5. Máquinas de Turing restringidas 4.5.1.Máquina de Turing con cintas semi – infinitas 4.5.2.Máquina de Turing con múltiples pilas 4.5.3.Máquinas contadoras y su potencia	3.0	3.0	1.0
	Subtotal	13.5	6.0	5.0

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Teoría de la Computación HOJA 7 DE 9

ESTRATEGIAS DE APRENDIZAJE

Estrategia de Aprendizaje Orientado en Proyectos.

El estudiante desarrollará las siguientes actividades:

- 1. Indagación documental de diferentes temas del programa con lo que elaborarán un mapa conceptual o mental.
- Se realizarán discusiones dirigidas de lo que obtendrán conclusiones.
- 3. Análisis de casos específicos de los temas vistos
- 4. Realización de prácticas.
- 5. Realización de Proyectos que cubran las diferentes unidades

EVALUACIÓN DE LOS APRENDIZAES

Evaluación diagnóstica.

Portafolio de evidencias:

- 1. Mapas mentales/conceptual
- 2. Conclusiones de discusiones dirigidas
- 3. Solución de casos
- 4. Reporte de prácticas
- 5. Reporte de proyecto y proyecto funcionando

RELACIÓN DE PRÁCTICAS PRÁCTIC UNIDADES LUGAR DE NOMBRE DE LA PRÁCTICA **TEMÁTICAS** REALIZACIÓN A No. Autómatas finitos Laboratorio de 1 Cómputo 2 Autómatas finitos deterministas Autómatas finitos no deterministas 3 П Equivalencias entre Autómatas 4 5 Autómatas finitos con transiciones – E 6 Expresiones regulares 7 Autómatas finitos y las expresiones regulares П Aplicaciones de las expresiones regulares 8 П 9 Autómatas de Pila Ш Equivalencias en Autómatas de Pila Ш 10 11 Autómatas de Pila Ш 12 Autómatas de pila deterministas y lenguajes independientes Ш del contexto Máquina de Turing IV 13 Las Máquinas de Turing restringidas IV 14 **TOTAL DE HORAS: 27.0**

https://regex101.com/

2020, de: https://automatonsimulator.com/

Foundation. Recuperado el

http://www.gnu.org/software/grep/

Dickerson, K. (2020). Automaton Simulator. Recuperado el 5 de Octubre del

Free Software Foundation. (2020). Grep- GNU Project - Free Software

Octubre

5 de

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Teoría de la Computación HOJA 8 DE 9

			Bibliografía								
Tipo	Autor(es)	Año	Título del documento				SBN		Li br o	A n t ol o gí a	Ot ro s
В	Hopcroft, J.; Ullman, J. y Motwani, R*	2007	Teoría De Autómatas, Lenguajes y Computación	Pear 9788				on /	Х		
В	Anderson, J.	2006	Automata Theory with Modern Applications	Cam Pres 9780	s		48	/	Х		
В	Sipser, M.	2012	Introduction to the Theory of Computation Thomson South- Western / 971133187813		Х						
В	Linz P.	2006	An Introduction to Formal Languages and Automata	Jones & Bartlett Learning / 9780763737986		Х					
С	Giro J.	2016	Lenguajes formales y teoría de autómatas	Alfaomega / 9789871609819		Х					
			Recursos digitales								
Autor, año, título y Dirección Electrónica			T e xt o	Si m ul a d or	I m a g e n	T ut or ia I	Vi d e o	Pr e s e nt a ci ó n	D ic ci o n a ri o	Ot ro	
Debian. (2020). grep(1) — manpages-es-extra — Debian buster — Debian Manpages. Recuperado el 5 de Octubre del 2020, de: https://manpages.debian.org/buster/manpages-es-extra/grep.1.es.html										х	
Dib, F. (2020). Online regex tester and debugger: PHP, PCRE, Python, Golang and JavaScript. Recuperado el 5 de Octubre del 2020, de:										Х	

Χ

Χ

X

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE: Teoría de la Computación HOJA: 9 DE 9

PERFIL DOCENTE: Ingeniería en Sistemas Computacionales, Computación o áreas afines preferentemente con grado de Maestría y/o Doctorado en áreas afines al desarrollo de sistemas computacionales

EXPERIENCIA PROFESIONAL	CONOCIMIENTOS	HABILIDADES DIDÁCTICAS	ACTITUDES			
Preferentemente haber	En paradigmas de	Discursivas	Respeto hacia los			
laborado dos años en la	programación, sobre	Investigativas	otros			
industria del software y	complejidad	Metodológicas	Paciencia al explicar			
desarrollo de sistemas	computacional y	Conducción del grupo	Facilidad para			
computacionales.	algoritmos.	Planificación de la	analizar problemas			
Al menos dos años de	En prácticas de	enseñanza	Facilidad para			
docencia a nivel superior.	programación	Manejo de estrategias	proponer sistemas de			
	Modelo Educativo	didácticas centradas en el	información			
	Institucional (MEI).	aprendizaje	Ética profesional			
		Evaluativas	Compromiso social e			
		Manejo de las TIC	Institucional			
			Responsabilidad			

ELABORÓ	REVISÓ	AUTORIZÓ
		Ing. Carlos Alberto Paredes Treviño
		Director UPIIC
M. en C. Francisco Javier Cerda Martínez	M. en C Iván Giovanny Mosso García	M. en C. Andrés Ortigoza Campos Director ESCOM
Profesor Coordinador	Subdirección Académica	