# 1. Monte Carlo Methods

Independent Sampler, Multivariate Normal Sampling, Monte Carlo

Sun Woo Lim

Mar 4, 2022

1/14

# Motivation and Important Note

#### Motivation

That you know the CDF/PDF of a distribution does not mean you can easily sample from that distribution. This slide deals with computational methods to generate random samples.

### No such truly "random" number generator

A deterministic computer algorithm does not allow generating truly "statistically random" sample. We just generate "pseudo-random" sample: deterministic but looking statistically random.

## Def)Identical in Distribution

Two random variables (generalized to random vectors easily) X and Y are identically distributed when  $F_X(t) = F_Y(t), \forall t \in \mathbb{R}$ 

#### Key takeaway) Does X follow F? What distribution does X follow?

- ullet Case1) I am who sample X knowing the sampling procedure
  - ightarrow X is sample from F if CDF of X is F (this statement looks trivial but is most important!)
  - o change of variable: powerful for sampling from exotic dist'n by transformation from known (how to sample) dist'n e.g) Say I can generate  $U \sim U(0,1)$ . Then, V := a + (b-a)U is a RV from U(a,b) since  $V \stackrel{d}{=} W \sim U(a,b)$ .
- $\bullet$  Case2) I have the sample X=x but do not know the sampling procedure
  - ightarrow Use nonparametric test based on Empirical distribution (not of our interest of this slide)

# Independent sample

## All starts from U(0,1)

- ✓ 1. Midsquare method (von Neumann & Metropolis (1940s)
- 1st) Start with any 4 digit  $n_0 \in \mathbb{N}$  (Usually system time: deterministic)
- 2nd) Take **middle** 4 digits of  $n_0^2$  and divide by 10000.
- 3rd) Iterating 2nd) gives independent looking uniform (0,1) sequence.
- √ 2. Linear Congruential Method

$$A, C, M, X_0$$
 be natural numbers s.t.  $a, c, X_0 < M$ .

1st) 
$$X_{i+1} = (AX_i + C) mod M$$
 gives  $X_{i+1} \in \{0, 1, ..., M-1\}$ 

2nd) 
$$R_{i+1} := X_{i+1}/M$$
 and take  $R_{i+1} \in [0, \frac{m-1}{m}]$ 

3rd) Iterating 1st) and 2nd) gives looking statistically independent and looking Unif(0,1) sequence.

| i | $Z_i$ | $U_i$  | $Z_i \times Z_i$ |
|---|-------|--------|------------------|
| 0 | 7182  | -      | 51581124         |
| 1 | 5811  | 0.5811 | 33767721         |
| 2 | 7677  | 0.7677 | 58936329         |

| i | $X_i$ $X_0=1$ | $X_i$ $X_0=2$ | $X_i$ $X_0=3$ | $X_i$ $X_0=4$ |
|---|---------------|---------------|---------------|---------------|
| 0 | 1             | 2             | 3             | 4             |
| 1 | 13            | 26            | 39            | 52            |
| 2 | 41            | 18            | 59            | 36            |
| 3 | 21            | 42            | 63            | 20            |
| 4 | 17            | 34            | 51            | 4             |

(a) Mid-square method

(b) Linear Congruential Method (A=13, C=0, M=64)

## Technique 1. Inverse Transform Sampling

## Fundamental Theory: Probability Integral Transform

Let  $U \sim Unif(0,1)$ . Let F be the CDF I want to generate sample from and assume F is differentiable. Then,

$$X := F^{-1}(U) \sim F$$

$$\mathsf{pf}) \ F_X(x) = P(X \le x) = P(F^{-1}(U) \le x) = P[F(F^{-1}(U)) \le F(x)] = P(U \le F(x)) = \int_0^{F(x)} 1 dt = F(x).$$

#### **Inverse Transformation Sampling in Continuous Case**

- 1. Generate  $U \sim Unif(0,1)$  using a method addressed in the previous slide.
- 2.  $X := F^{-1}(U)$  is a sample from F.
- $\checkmark$  To generate iid sequence of samples from F, just generate iid sequence of U(0,1) random variables.

## Example: (iid sequence of) exponential distributed random variable(s)

✓ CDF of exponential distribution:  $F_X(x) = 1 - exp(-\lambda x)I(x \ge 0)$ .

$$A = -\frac{1}{\lambda}log(1-U)$$
 is a (pseudo) random sample from  $exp(\lambda)$ .



Figure: Image from https://en.wikipedia.org/wiki/Inverse\_transform\_sampling

4 / 14

## Inverse Transform Sampling in Discrete Case: Use General Inverse Function

Def) General Inverse Function  $F_{General}^{-1}(p) := \inf\{x \in \mathbb{R} | F(x) \ge p\}$ 

## Inverse Transformation Sampling in Discrete Case

$$X = \begin{cases} x_1 & w.p \ p_1 \\ x_2 & w.p \ p_2 \\ \vdots \\ x_n & w.p \ p_n \end{cases}$$

1st. Generate  $U \sim Unif(0,1)$  using a method addressed in the previous slide.

2nd.  $X := F_{General}^{-1}(U)$  is a sample from F.

o 2nd step meaning: Find i s.t.  $\sum_{k=1}^{i-1} p_k \leq U < \sum_{k=1}^{i} p_k$  then  $x_i$  is the sampled value from F.

Examples: Discrete Uniform Distribution, Poisson Distribution, Binomial Distribution, etc

#### **Drawbacks of Inverse Transformation Sampling**

- Hardship: many cases, hard to obtain inverse function of Continuous CDF
- 2 Inefficiency: discrete R.V, takes on numerous values

### Technique 2. Basic Change of Variable

## Fundamental Theory: Change of Variable

Let X have pdf  $f_X(x)$  and Y := g(X), g: monotone, invertible function. Let  $f_X(x)$  be continuous on its support and  $g^{-1}(y)$  has continuous derivative on its support.

Then, 
$$f_Y(y) = f_X(g^{-1}(y)) |\frac{dg^{-1}(y)}{dy}| I(y \in spt(Y))$$

## Example)

- 1) Generate U(a,b) from  $V:=a+(b-a)U, U\sim Unif(0,1)$
- 2) Generate  $\exp(\lambda)$  from  $X = -\frac{1}{\lambda}log(1-U) \stackrel{d}{=} -\frac{1}{\lambda}log(U)$  using  $U \stackrel{d}{=} 1-U$  of that  $U \stackrel{d}{=} 1-U$ :  $Pr(U \le u) = Pr(1-u \le U) = 1-(1-u) = u$
- 3) Various results of addition of iid random variables: Normal, Poisson, Gamma (as sum of iid exponential), etc.
- To generate standard normal random variable, use Box-Muller method which uses change of variable technique.
- Generate iid sequence of  $N(\mu, \sigma^2)$  random variables using  $M \sim N(\mu, \sigma^2) \stackrel{d}{=} \sigma Z + \mu, Z \sim N(0, 1)$

So. identical in distribution is all I need.

◆ロト 4回ト 4 重ト 4 重ト 重 めなべ

6/14

#### Technique 3. Factoring out the joint as marginal and conditional

$$p(x_1,...,x_n) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)...p(x_n|x_1,...,x_{n-1}).$$

#### Example) Finite mixture of Gaussians

Given a finite set of pdf's  $p_1(x),...,p_H(x)$  and weights  $w_1,...,w_H$  s.t.  $\sum_{i=1}^H w_i=1$ , the pdf of mixture of H distributions is  $f_X(x)=\sum_i w_i p_i(x)$ . e.g) Height of total population, final scores of a typical class

#### Sampling from finite Gaussian mixture pdf with weights, means, variances known

$$f_X(x|w_1,...,w_H,\theta_1,...,\theta_H,\sigma_1,...,\sigma_H) = w_1f(x|\theta_1,\sigma_1^2) + ... + w_Hf(x|\theta_H,\sigma_H^2) \text{ where } f_i(x|\theta_i,\sigma_i^2) = dnorm(x,\theta_i,\sigma_i^2)$$

Our example) Height of men(1) and women(2): H=2,  $w_1=0.2, w_2=0.8$ ,  $\mu_1=180$ ,  $\mu_2=170$ ,  $\sigma_1^2=1, \sigma_2^2=4$ .

mixture\_normal\_samp = function(n, group\_probs, mean, sd)(
# n : number of samples | w.1,...,w.N |
# group\_street | woighten | w.1,...,w.N |
# man of thete\_1,..., sigma\_N | wan of each group |
# sd : sigma\_1,..., sigma\_N | wan of each group |
# - length(group\_probs) | samples = rep(NA, n) |
group\_sample = sample(1:H, prob = group\_probs, size = n, replace = T)

for(i in 1:n)(
 group\_sample[i] | sample[i] | sample[i] | rnorm(n = 1, mean = mean[group], sd = sd[group]) |
} plot(density(samples), |
main = "Density Estimate of Mixture Normal")



7 / 14

## Technique 4. Acceptance-Rejection Sampling (Rejection Sampling)

#### Conditions to use A-R method

Suppose X, having pdf f be the random variable I want to generate. Density function has to be known but directly sampling from F is hard.

Need Y having pdf g that 1) I can directly generate, 2) the support of Y covers the support of X.

#### **Acceptance Rejection Sampling**

Idea) Generate  $X \sim f(x)$  by accepting or rejecting sample Y from **proposal** pdf g(y) where  $spt(X) \subseteq spt(Y)$ .

- Get c>0 s.t.  $c\cdot g(x)>f(x), \forall x\in spt(Y)$ . Best choice for "c" is  $sup_y\frac{f(y)}{g(y)}$
- **1** X = Y if  $U \leq \frac{f(Y)}{cq(Y)}$ . Else, iterate the 2nd step until the inequality is satisfied.



Figure: Image from https://medium.com/@msuhail153/rejection-sampling-6c4510da24f8.

 \$\lambda \times \lambda \times \lambda \times \lambda \times \times

#### Proof

- ullet 1. Discrete case: WTS)  $Pr(X=i) = Pr(Y=i|Proposal\ Accepted)$ . Use def'n of conditional distribution in proof.
- 2. Continuous case: WTS:  $Pr(Y \leq y|Proposal \ Accepted) = Pr(Y \leq y|U \leq \frac{f(Y)}{cg(Y)}) = F(y)$ . Use Bayes thm in proof.

#### Key Takeaway

- $Pr(Acceptance) = \frac{1}{c}$ . #Proposal (which is a R.V!)  $\sim Geom(\frac{1}{c})$  and E(#Proposal) = c. Thus, computation is efficient if c is small as possible with the constraint: cg(x) > f(x): constrained optimization!
- ullet High acceptance probability is always good (not always true in Metropolis Hastings Algorithm addressed later!) Acceptance probability is high when the proposal density pprox sampling density ex) Sampling density: truncated standard normal distribution f(z|z>a), a: large. Proposal density: standard normal ullet Accept if Z>a, reject if not.
  - $\downarrow$  acceptance probability because the truncated normal distribution looks very different from normal distribution if  $\uparrow a$ .
- Rejected proposal does not count as the next sample. cf) MH algorithm: rejected proposal counts as the next sample

Mar 4, 2022

9/14

Example) Sampling Standard Gaussian RV by acceptance-rejection: Note) Box-Muller is more widely used.

$$p(x) = \frac{1}{\sqrt{2\pi}} exp(-x^2/2) I(x \in \mathbb{R})$$

Hard to find a distribution that 1) has support of the whole real line 2) able to sample from.

Idea) Sample the absolute value of X and then sample the sign.

Let 
$$Y := |X|$$
. Then,  $f_Y(y) = \frac{2}{\sqrt{2\pi}} exp(-y^2/2)I(0 < y < \infty)$ .

Then, take exp(1) as the proposal distribution, which has support  $\mathbb R$  and easy to sample.

$$c = sup_x \frac{f(x)}{g(x)} = \frac{1}{\sqrt{2\pi}} \cdot sup_x \frac{exp(-x^2/2)}{exp(-x)} = \sqrt{\frac{2e}{\pi}} \text{ when } x^* = 1.$$

Then, 
$$\frac{f(x)}{cg(x)} = exp(-\frac{-x^2}{2} + x - \frac{1}{2}) = exp(-\frac{(x-1)^2}{2}).$$

## Steps to obtain rnorm(n, 0, 1)

- Sample  $Z \sim exp(1) = -log(U_1)$  and  $U_2 \sim Unif(0,1)$  independently.
- ② If  $U_2 \leq exp(-\frac{(z-1)^2}{2})$ , set Y = Z. Else, keep repeating 1)
- **3** Sample  $U_3 \sim Unif(0,1)$ .  $X = ifelse(U_3 \leq \frac{1}{2}, Y, -Y)$
- Repeat 1) through 3) n number of times. All you need is 3n number of U(0,1)'s

#### **Diagnostic Questions**

- How does each of  $U_1, U_2, U_3$  work?
- Was 'only' the A-R method used in this procedure? If not, what else is used?
- How sample  $rnorm(n, \mu, \sigma)$  for general mean and standard deviation?

**イロト (個) (単) (単) (型) か**なの

Mar 4, 2022

10 / 14

# Sampling Correlated Random Vector

- Until now, learned how to get iid sequence of arbitrary distribution.
- Then, how about sampling random vector (X,Y) where  $X \sim N(0,1)$ ,  $Y \sim Gamma(2,3)$  and corr(X,Y) = -0.5?
- This generally requires copula, which is challenging.
- Instead, sampling multivariate normal random vector is easy (& widely used. e.g, Normal model in Bayesian method)
  - Multivariate Normal dist'n is defined as affine transformation (linear transformation + constant) of standard normal random vector
  - Want to generate  $X \sim N_p(\mu_p, \Sigma)$ . Since  $\Sigma$  is PSD and PD (practically),  $\exists$  unique M s.t.  $\Sigma = MM'$ .
  - Using  $Y \sim N(\mu, \Sigma) \to AY + B \sim N(A\mu + B, A\Sigma A')$ , generate MVN samples by
    - $\textcircled{1} \ \, \mathsf{Cholesky} \ \, \mathsf{Decompose} \, \, \Sigma \, \, \mathsf{as} \, \, MM' \\$
    - ② Sample  $Z \sim N(0_p, I_p)$
    - **6** return  $MZ + \mu$  that follows  $N(\mu, \Sigma)$
  - Note, this still belongs to iid sampling because when I sampled n MVN samples, between each sample (vector), it may be
    correlated but between samples, it is iid.

4□ > 4回 > 4 = > 4 = > = 900

11 / 14

# Monte Carlo Method for calculating summary statistics of a distribution

**Monte Carlo method** is a method of using computational way to generate random samples and obtain statistics : actually, whole topic in this slide!

## Obtain summary statistics of a distribution using monte carlo method

- Random sample from a distribution of interest
- Define sample statistics (mean, quantiles, median, etc): saves effort of challenging integration
  - $\#(\theta^{(s)} \leq c)/S \to \Pr(\theta \leq c|y_1,\ldots,y_n);$
  - the empirical distribution of  $\{\theta^{(1)}, \dots, \theta^{(S)}\} \to p(\theta|y_1, \dots, y_n);$
  - the median of  $\{\theta^{(1)}, \ldots, \theta^{(S)}\} \to \theta_{1/2}$ ;
  - the  $\alpha$ -percentile of  $\{\theta^{(1)}, \dots, \theta^{(S)}\} \to \theta_{\alpha}$ .

Figure: Obtaining posterior summary statistics using Monte Carlo method. Image from Hoff, P. D. (2009)

#### Difference between (parametric) Monte Carlo method and Bootstrap

Parametric monte Carlo method requires the form (at least, up to a normalizing constant in case of MCMC) of F. However, bootstrap is a resampling method used when F is not known (not an interest of this slide).

- lacktriangle A random sample from unknown F is given
- $oldsymbol{\circ}$  Generate B samples w/ replacement from the original random sample (treating the sample as population)
- Obtain arbitrary quantities from the bootstrap (re)samples.

4日 → 4団 → 4 三 → 4 三 → 9 Q ○

12 / 14

# Importance Sampling: Not a Sampling Method

Importance sampling, widely used in computational statistics, is not a method of sampling from a particular distribution.

#### Goal

For a random variable(vector)  $X \sim f(x)$ , obtain Monte Carlo integral estimate for  $\theta := E_f[T(X)]$  with low variance T(X) denotes "statistics" of X.

## Algorithm

- Choose a density g that is 1) possible to get sample from and 2)  $T(x) \cdot \frac{f(x)}{g(x)}$  is "similar" for all  $x \in \chi$
- **②** From density g, sample  $X_1,...,X_n$  and return  $\frac{1}{n}\sum_{i=1}^n T(x_i)\frac{f(x_i)}{g(x_i)}$  for large n.

#### Proof

$$\theta := E_f[T(X)] = \int_x T(x)f(x)dx = \int T(x) \cdot \frac{f(x)}{g(x)}g(x)dx = E_g[\frac{T(x)f(x)}{g(x)}].$$

- Above only indicates that  $\sum_{i=1}^{n} T(x_i) \frac{f(x_i)}{g(x_i)}$  ( $\vec{x}$  is sample from g, not f!) is a consistent estimator of  $\theta$ .
- $T(x) \cdot \frac{f(x)}{g(x)}$  being "similar" for all values of x is the key for variance reduction!

#### Usefulness of importance sampling

- ullet Obtain Monte Carlo integral without sampling from f
- Smaller variance estimator: especially required in small probability(integral) estimation
   ∴ avoid estimating θ as either 0 (most cases) or serious overestimation

## References

- $1.\ https://www.mi.fu-berlin.de/inf/groups/ag-tech/teaching/2012\_SS/L\_19540\_Modeling\_and\_Performance\_Analysis\_with\_Simulation/06.pdf$
- 2. https://en.wikipedia.org/wiki/Inverse\_transform\_sampling
- 3. https://medium.com/@msuhail153/rejection-sampling-6c4510da24f8.
- 4. http://www.columbia.edu/ks20/4703-Sigman/4703-07-Notes-ARM.pdf
- 5. Hoff, P. D. (2009). A first course in Bayesian statistical methods (Vol. 580). New York: Springer.

 Sun Woo Lim
 1. Monte Carlo Methods
 Mar 4, 2022
 14/14