

A COMPARISON STUDY OF PROCESS COMPLEXITY IN PERMAFROST DOMINATED REGIONS

Radhakrishna Bangalore Lakshmiprasad¹, Thomas Graf¹, Fan Zhang², Xiong Xiao³ ,Ethan T Coon⁴

¹Leibniz Universität Hannover, Institute of Fluid Mechanics and Environmental Physics in Civil Engineering, Faculty of Civil Engineering and Geodetic Science, Hannover, Germany

²Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research,

Chinese Academy of Sciences (CAS), Beijing, China

³Institute of Resources Sciences, Beijing Normal University, Beijing, China

⁴Oak Ridge National Laboratory, USA

Conceptual Model - Processes

Research question

What are the main processes that needs to be

considered in Permafrost dominated regions?

Which level of process complexity is required to

estimate the active layer depth?

Methodology

Three cases – Boundary conditions

Results - Validation

Measured and simulated temperature and volumetric water content at different depths

Conclusion

- Considering only subsurface processes is not sufficient to represent permafrost dynamics.
- Rainfall plays a key role in the development of the active layer.
- Excess snowfall deposit is leading to zero-curtain effect.
- Other processes such as lateral groundwater flow and snow-drift need to be taken into account.

Conclusion

	Conditions	Case 1	Case 2	Case 3
Input	Data requirement	Excellent	Poor	Very poor
	Parameters	Good	Average	Average
Calibration	Simulation time	Excellent	Average	Very poor
	Mean NSE -			
	Temperature	Good	Good	Average
	Mean NSE -			
Validation	Moisture	Poor	Average	Very poor
Physical representation	Temperature	Average	Good	Poor
	Moisture	Very poor	Good	Very poor

Source: https://www.formpl.us/blog/point-likert-scale Researcher satisfaction

Sources

- Atchley, Adam L., et al. "Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0. 83)." *Geoscientific Model Development* 8.9 (2015): 2701-2722.
- Jan, Ahmad, Ethan T. Coon, and Scott L. Painter. "Evaluating integrated surface/subsurface permafrost thermal hydrology models in ATS (v0. 88) against observations from a polygonal tundra site." *Geoscientific Model* Development 13.5 (2020): 2259-2276.
- Kurylyk, Barret L., Kerry TB MacQuarrie, and Jeffrey M. McKenzie. "Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools." Earth-Science Reviews 138 (2014): 313-334.
- Xiao, Xiong, et al. "Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope." Vadose Zone Journal 19.1 (2020): e20022.
- Lamontagne-Hallé, Pierrick, et al. "Guidelines for cold-regions groundwater numerical modeling." Wiley Interdisciplinary Reviews: Water 7.6 (2020): e1467.
- Albers, Britt, John W. Molson, and Victor F. Bense. "Parameter sensitivity analysis of a two-dimensional cryo-hydrogeological numerical model of degrading permafrost near Umiujaq (Nunavik, Canada)." Hydrogeology Journal 28.3 (2020): 905-919.

Code availability

- ATS Advanced Terrestrial Simulator (ATS) is an open-source code for solving ecosystem-based, integrated, distributed hydrology, and available at https://github.com/amanzi/ats
- **PESTPP** White, Jeremy T., et al. Approaches to highly parameterized inversion: PEST++ Version 5, a software suite for parameter estimation, uncertainty analysis, management optimization and sensitivity analysis. No. 7-C26. US Geological Survey, 2020. The code is available at https://github.com/usqs/pestpp
- **PEST** Doherty, John. Calibration and uncertainty analysis for complex environmental models. Brisbane, Australia: Watermark Numerical Computing, 2015. The code is available at https://pesthomepage.org/downloads

Data availability

- Xiao, Xiong, et al. "Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope." Vadose Zone Journal 19.1 (2020): e20022.
- Xiao, Xiong, et al. "Changes in plot-scale runoff generation processes from the spring—summer transition period to the summer months in a permafrost-dominated catchment." Journal of Hydrology 587 (2020): 124966.
- Liu, S., Che, T., Xu, Z., Zhang, Y., Tan, J., Ren, Z. (2021). Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Yakou station, 2020). National Tibetan Plateau Data Center, DOI: 10.11888/Meteoro.tpdc.271398.
- Liu, S., Che, T., Xu, Z., Zhang, Y., Tan, J., Ren, Z. (2020). Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Yakou station, 2019). National Tibetan Plateau Data Center, DOI: 10.11888/Meteoro.tpdc.270678.
- Liu, S., Li, X., Che, T., Xu, Z., Zhang, Y., Tan, J. (2019). Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (automatic weather station of Yakou station, 2018). National Tibetan Plateau Data Center, DOI: 10.11888/Meteoro.tpdc.270769.
- Che, T., Liu, S., Li, X., Xu, Z., Zhang, Y., Tan, J. (2019). Observation of water and heat flux in alpine meadow ecosystem--automatic weather station of Yakou station (2015-2017). National Tibetan Plateau Data Center, DOI: 10.11888/Meteoro.tpdc.270279.

OSPP Award

Thank you all for listening!

Questions/Suggestions/Comments?

