2K位, 4K位, 8K位, 16K位, 32K位和64K位串行PC总线EEPROM

1. 描述

24C02/04/08/16/32/64是电可擦除PROM,分别采用 256/512/1024/2048/4096/8192×8-bit 的组织结构以及两线串行接口。电压可允许低至1.8V,待机电流和工作电流分别为1μA和 1mA。24C02/04/08/16/32/64具有页写能力,每页分别为 8/16/16/32/32字节。24C02/04/08/16/32/64具有8-pin PDIP 和8-pin SOP 两种封装形式。

2. 特点

- 宽范围的工作电压1.8V~5.5V
- 低电压技术
 - 1mA典型工作电流
 - 1µA 典型待机电流
- 存储器组织结构
 - 24C02, 256 X 8 (2K bits)
 - 24C04, 512 X 8 (4K bits)
 - 24C08, 1024 X 8 (8K bits)
 - 24C16, 2048 X 8 (16K bits)
 - 24C32, 4096 X 8 (32K bits)
 - 24C64, 8192 X 8 (64K bits)
- 2线串行接口,完全兼容I²C总线
- (I²C时钟频率为1 MHz (5V), 400 kHz (1.8V, 2.5V, 2.7V)
- 施密特触发输入噪声抑制
- 硬件数据写保护
- 内部写周期 (最大5 ms)
- 可按字节写
- 页写:8字节页 (24C02),16字节页(24C04/08/16),32字节页(24C32/64)
- 可按字节,随机和序列读
- 自动递增地址
- ESD保护大于2.5kV
- 高可靠性
 - 擦写寿命: 100万次
 - 数据保持时间: 100年
- 8-pin DIP和8-pin SOP封装
- 无铅工艺,符合RoHS标准

3. 应用领域

- 智能仪器仪表
- 工业控制
- 家用电器

- 计算机 笔记本电脑
- 汽车电子
- 通信设备

4. 订购信息

工作温度范围	封装		订购型号	标准包装数
	SOP8L		24C02D	100片/管
	DIP8L		24C02P	50片/管
	SOP8L		24C04D	100片/管
	DI8L		24C04P	50片/管
	SOP8L	无铅 : 无铅 :	24C08D	100片/管
-40℃~+85℃	DI8L		24C08P	50片/管
-40 C~+85 C	SOP8L		24C16D	100片/管
	DIP8L		24C16P	50片/管
	SOP8L		24C32D	100片/管
	DIP8L		24C32P	50片/管
	SOP8L		24 C64 D	100片/管
	DIP8L		24C64P	50片/管

Jan. 2008

Rev 1.0

引脚排列

C02

C04

C08

C16

8 Vcc

7 **|** WP

6 SCL

5 SDA

8 🗖 Vcc

7 🗖 WP

6 SCL

5 SDA

8 Vcc

7 🖢 WP

6 🗖 SCL

5 SDA

8 Vcc

7 🗖 WP

6 SCL

5 SDA

8 Vcc

7 🖢 WP

6 SCL

5 SDA

7 🗖 WP

6 🗖 SCL

5 SDA

A0 1 1 0

A2 🗖 3

NC 10

A1 🗖 2

A2 🗖 3

NC 10

NC T 2

A2 🗖 3

NC 10

NC 2

NC ☐ 3

A0 10

3

A1 🗖 2

A2 🗖

GND 🗖 4

A0 10

C64

(顶视图)

A1 🗖 2

A2 🗖 3

GND □

GND 🗖

GND 🗖

GND 🗖

GND 🗖

A1 🗖 2

5. 框图

图1 框图

6. 最大额定参数

(超出最大额定参数可能会导致器件损坏)

参数	符号	值	単位
直流供电电压	Vcc	-0.3 ~ +6.5	V
直流输入电压	Vin	-0.3 ~ Vcc +0.3	V
直流输出电压	Vоит	-0.3 ~ Vcc +0.3	V
存储温度	Тѕтѕ	-65 ~ + 150	°C
ESD电压 (人体模型)	Vesd	2500	V
ESD电压 (机器模型)	V ESD	200	V

7. 推荐工作条件

(应在推荐工作条件下实现功能)

参数	符号	最小值	最大值	单位
直流供电电压	Vcc	1.8	5.5	V
工作温度	TA	-40	+85	°C

Jan. 2008

8. 引脚电容

(条件: TA = 25°C, f = 1.0 MHz, Vcc = +1.8V)

参数	符号	测试条件	最小值	最大值	单位
输入/输出电容(SDA)	C 1/0	V _{I/O} = 0V		8	pF
输入电容(A0, A1, A2, SCL)	CIN	V _{IN} = 0V		6	pF

9. 直流电气特性

(条件: $T_A = 0$ °C $\sim +70$ °C, $V_{CC} = +1.8V \sim +5.5V$, 除非另有注释)

•							
参数	符号	测试条件		最小值	典型值	最大值	单位
供电电流	Icc		100kHz读		0.4	1.0	mA
N. G. Ghir	ICC	Vcc =5V	100kHz写		2.0	3.0	mA
待机电流	IsB	Vin = Vcc 或 GND				1.0	μΑ
输入漏电流	lы	VIN = VCC	或 GND			3.0	μΑ
输出漏电流	ILO	Vouт = Vcc 或 GND			0.05	3.0	μΑ
输入低电平电压	VIL			-0.6		Vcc×0.3	>
输入高电平电压	VIH			Vcc×0.7		Vcc+0.5	V
	V _{OL3}	Vcc =5.0\	/, IoL = 3.0 mA			0.4	V
输出低电平电压	V _{OL2}	Vcc =3.0V, loL = 2.1 mA				0.4	V
	Vol1	Vcc =1.8\	/, IoL = 0.15 mA			0.2	V

10. 交流电气特性

(条件: $T_A = 0$ °C $\sim +70$ °C, $V_{CC} = +1.8V \sim +5.5V$, $C_L = 100$ pF,除非另有注释)

(,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		•		,		
参数	符号	测试条件	最小值	典型值	最大值	单位
时钟频率, SCL	f scl	Vcc =1.8V			400	kHz
时频率, SUL	ISCL	Vcc =5V			1000	КПZ
时钟低电平宽度	tLOW	Vcc =1.8V	1.2			110
	LLOW	Vcc =5V	0.6			μs
时钟高电平宽度	t HIGH	Vcc =1.8V	0.6			μs
	tillon	Vcc =5V	0.4			μο
噪声消除时间	1	Vcc =1.8V			50	20
紫 严	tı	Vcc =5V			40	ns
时钟下降沿到数据	taa	Vcc =1.8V	0.05		0.9	μs
有效输出间隔时间		Vcc =5V	0.05		0.55	μО
总线释放时间	t BUF	Vcc =1.8V	1.2			116
	LBUF	Vcc =5V	0.5			μs

Jan. 2008

10. 交流电气特性 (续)

参数	符号	测试条件	最小值	典型值	最大值	单位	
起始条件保持时间	thd.sta	Vcc =1.8V	0.6			μs	
	tnb.sta	Vcc =5V	0.25			μδ	
起始条件建立时间	tsu.sta	Vcc =1.8V	0.6			μs	
C/4/11/2=11/11	t 30.31A	Vcc =5V	0.25			į.	
数据输入保持时间	thd.dat		0			μs	
数据输入建立时间	t su.dat		100			ns	
输入上升时间	tR				300	ns	
 输入下降时间	t⊧	Vcc =1.8V			300	ns	
100/7 1 144 1 143		Vcc =5V			100	113	
停止条件建立时间	t su.sto	Vcc =1.8V	0.6			μs	
门正亦门廷丕明问	100.010	Vcc =5V	0.25			μО	
数据输出保持时间	tон		50			ns	
写周期	t wr				5	ms	

图2 总线时序

注1. 写周期时间tw 是指从一个写序列的有效停止条件开始至内部写周期结束的时间。

图3 写周期时序

Jan. 2008

11. 引脚说明

引脚号	引脚名称	功能说明
1	A0	地址输入。A2、A1和A0是器件地址输入引脚。
2	A1	24C02/32/64使用A2、A1和A0输入引脚作为硬件地址,总线上可同时级联8个24C02/32/64器件(详见器件寻址)。 24C04使用A2和A1输入引脚作为硬件地址,总线上可同时级联4个
3	A2	24C04器件,A0为空脚,可接地。 24C08使用A2输入引脚作为硬件地址,总线上可同时级联2个24C08器件,A0和A1为空脚,可接地。 24C16未使用器件地址引脚,总线上最多只可连接一个16K器件,A2、A1和A0为空脚,可接地。
5	SDA	串行地址和数据输入/输出。SDA是双向串行数据传输引脚,漏极开路,需外接上拉电阻到Vcc(典型值10kΩ)。
6	SCL	串行时钟输入。SCL同步数据传输,上升沿数据写入,下降沿数据读出。
7	WP	写保护。WP引脚提供硬件数据保护。当WP接地时,允许数据正常读写操作; 当WP接Vcc时,写保护,只读。
4	GND	地
8	Vcc	正电源

12. 存储结构

器件	总容量(位)	总页数	字节/页	字地址长度
24C02	2K	32	8	8位
24C04	4K	32	16	9位
24C08	8K	64	16	10位
24C16	16K	128	16	11位
24C32	32K	128	32	12位
24C64	64K	256	32	13位

13. 详细操作说明

24CXX支持I²C总线传输协议。I²C是一种双向、两线串行通讯接口,分别是串行数据线SDA和串行时钟线SCL。两根线都必须通过一个上拉电阻接到电源。典型的总线配置如图4所示

图4 典型两线总线配置

总线上发送数据的器件被称作发送器,接收数据的器件被称作接收器。控制信息交换的器件被称作主器件,受主器件控制的器件则被称作从器件。主器件产生串行时钟SCL,控制总线的访问状态、产生START和STOP条件。24CXX在I²C总线中作为从器件工作。

只有当总线处于空闲状态时才可以启动数据传输。每次数据传输均开始于START条件,结束于STOP条件,二者之间的数据字节数是没有限制的,由总线上的主器件决定。信息以字节(8位)为单位传输,第9位时由接收器产生应答。

起始和停止条件

数据和时钟线都为高则称总线处在空闲状态。当SCL为高电平时SDA的下降沿(高到低叫做起始条件(START,简写为S),SDA的上升沿(低到高)则叫做停止条件(STOP,简写为P)。参见图5。

图5 起始条件和停止条件的定义

13. 详细操作说明(续)

位传输

每个时钟脉冲传送一位数据。SCL为高时SDA必须保持稳定,因为此时SDA的改变被认为是控制信号。位传输参见图6。

图6位传输

应答

总线上的接收器每接收到一个字节就产生一个应答,主器件必须产生一个对应的额外的时钟脉冲,见图7。

图7 I2C总线的应答

接收器拉低SDA线表示应答,并在应答脉冲期间保持稳定的低电平。当主器件作接收器时,必须发出数据传输结束的信号给发送器,即它在最后一个字节之后的应答脉冲期间不会产生应答信号(不拉低SDA)。这种情况下,发送器必须释放SDA线为高以便主器件产生停止条件。

13. 详细操作说明(续)

器件寻址

起始条件使能芯片读写操作后,EEPROM都要求有8位的器件地址信息(见图8)。 器件地址信息由"1"、"0"序列组成,前4位如图中所示,对于所有串行EEPROM都是一样的。 对于24C02/32/64,随后3位A2、A1和A0为器件地址位,必须与硬件输入引脚保持一致。 对于24C04,随后2位A2和A1为器件地址位,另1位为页地址位。A2和A1必须与硬件输

对于24C04,随后2位A2和A1为器件地址位,另1位为页地址位。A2和A1必须与硬件输入引脚保持一致,而A0是空脚。

对于24C08,随后1位A2为器件地址位,另2位为页地址位。A2必须与硬件输入引脚保持一致,而A1和A0是空脚。

对于24C16,无器件地址位,3位都为页地址位,而A2、A1和A0是空脚。

器件地址信息的LSB为读/写操作选择位,高为读操作,低为写操作。

若比较器件地址一致,EEPROM将输出应答"0"。如果不一致,则返回到待机状态。

图8器件地址

器件操作

待机模式

EEPROM具有低功耗待机的特点,条件为: (1) 电源上电; (2) 接收停止条件及完成任何内部操作后。

存储复位

当协议中产生中断、掉电或系统复位后,I²C总线可通过以下步骤复位:

- (1) 产生9个时钟周期。
- (2) 当SCL为高时,SDA也为高。
- (3) 产生一个起始条件。

写操作

1. 字节写

写操作要求在接收器件地址和ACK应答后,接收8位的字地址。接收到这个地址后EEPROM应答"0",然后是一个8位数据。在接收8位数据后,EEPROM应答"0",接着必须由主器件发送停止条件来终止写序列。

此时EEPROM进入内部写周期twR,数据写入非易失性存储器中,在此期间所有输入都无效。直到写周期完成,EEPROM才会有应答(见图9)。

图9字节写

www.dzstic.com

13. 详细操作说明(续)

2. 页写

24C02器件接**8**字节/页执行页写, 24C04/08/16器件按16字节/页执行页写, 24C32/64器件按**32**字节/页执行页写。

页写初始化与字节写相同,只是主器件不会在第一个数据后发送停止条件,而是在EEPROM的ACK以后,接着发送7个(24C02)或15个(24C04/08/16)或31个(24C32/64)数据。 EEPROM收到每个数据后都应答"0"。最后仍需由主器件发送停止条件,终止写序列(见图10)。

接收到每个数据后,字地址的低3位(24C02)或4位(24C04/08/16)或5位(24C32/64)内部自动加1,高位地址位不变,维持在当前页内。当内部产生的字地址达到该页边界地址时,随后的数据将写入该页的页首。如果超过8个(24C02)或16个(24C04/08/16)或32个(24C32/64)数据传送给了EEPROM,字地址将回转到该页的首字节,先前的字节将会被覆盖。

3. 应答查询

一旦内部写周期启动,EEPROM输入无效,此时即可启动应答查询:发送起始条件和器件地址(读/写位为期望的操作)。只有内部写周期完成,EEPROM才应答"0"。之后可继续读/写操作。

应答查询流程见图11。

图11 应答查询流程

读操作

读操作与写操作初始化相同,只是器件地址中的读/写选择位应为"1"。有三种不同的读操作方 式: 当前地址读,随机读和顺序读。

1. 当前地址读

内部地址计数器保存着上次访问时最后一个地址加1的值。只要芯片有电,该地址就一直保存。 当读到最后页的最后字节,地址会回转到0:当写到某页尾的最后一个字节,地址会回转到该页的 首字节。

接收器件地址(读/写选择位为"1")、EEPROM应答ACK后,当前地址的数据就随时钟送出。 主器件无需应答"0", 但需发送停止条件(见图12)。

2. 随机读

随机读需先写一个目标字地址,一旦EEPROM接收器件地址和字地址并应答了ACK,主 器件就产生一个重复的起始条件。

然后,主器件发送器件地址(读/写选择位为"1"),EEPROM应答ACK,并随时钟送出数 据。主器件无需应答"0",但需发送停止条件(见图13)。

图13 随机读

3. 顺序读

顺序读可以通过"当前地址读"或"随机读"启动。主器件接收到一个数据后,应答ACK。只要 EEPROM接收到ACK,将自动增加字地址并继续随时钟发送后面的数据。若达到存储器地址末 尾, 地址自动回转到0, 仍可继续顺序读取数据。

主器件不应答"0",而发送停止条件,即可结束顺序读操作(见图14)。

Jan. 2008

10

www.dzstic.com

14. 典型应用

图15 EEPROM的级联

15. 封装尺寸

SOP8L

符号	尺寸(mm)		符号	尺寸(mm)		
117 5	最小值	最大值	刊与	最小值	最大值	
Α	4.95	5.15	C3	0.05	0.20	
A1	0.37	0.47	C4	0.20(典型值)		
A2	1.27(典型值)		D	1.05(典型值)		
A3	0.41(典型值)		D1	0.40	0.60	
В	5.80	6.20	R1	0.07(典型值)		
B1	3.80	4.00	R2	0.07(典型值)	
B2	5.0(身	典型值)	θ1	17°(典型值)		
С	1.30	1.50	θ2	13°(典型值)		
C1	0.55	0.65	θ3	4°(典型值)		
C2	0.55	0.65	θ 4	12°(典型值)		

Jan. 2008

DIP8L

符号	尺寸(mm)		符号	尺寸(mm)		
何与	最小值	最大值	11) 5	最小值	最大值	
Α	9.30	9.50	C2	0.5(典型值)		
A1	1.524(典型值)		C3	3.3(典型值)		
A2	0.39 0.53		C4	1.57(典型值)		
A3	2.54(典型值)		D	8.20	8.80	
A4	0.66(∮	典型值)	D1	0.20	0.35	
A5	0.99(典型值)	D2	7.62	7.87	
В	6.3	6.5	θ1	8°(典型值)		
С	7.20(典型值)		θ2	8°(典型值)		
C1	3.30	3.50	θ3	5°(典型值)		

Jan. 2008