ALTeGraD Data Challenge

Molecule Retrieval with Natural Language Queries

Team: Baku incorporated

Heni Soula

Omar Bensaid

Souheib Ben Mabrouk

Context (1/2)

Challenge Goal:

Develop a model capable of accurately retrieving specific molecules through text queries

ALTeGraD-2023 Data Challenge

Molecule Retrieval with Natural Language Queries

Context (2/2)

Evaluation metric: Mean Reciprocal Rank

Given the rank at which the first relevant item is retrieved, the reciprocal of this rank is calculated, and the average is taken across all queries.

$$MRR = \frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{rank_i}$$

Table of contents

- I. Related work
- II. Models
- III. Results & Discussions
- IV. Conclusion & Perspective

I. Related Work

DistilBERT

- Distilled version of **BERT** model
- Efficient and compact transformer-based language representation model
- Reduced **computational complexity** and **memory** requirements

This model was used in the baseline architecture upon which we built our final model.

SciBERT

- **Specialized** pre-trained language model based on the BERT architecture
- Trained on a vast and diverse corpus of scientific publications, totaling 1.14 million papers
- Training data covers domains like biomedicine (82%) and computer science (12%), making SciBERT adept at processing molecular properties

Graph Convolutional Networks

Graph Attention Networks

II. Models

Baseline model

- Employed **DistilBERT** as the text
 encoder and **GCN** as the graph encoder
- Trained for **5 epochs**
- Minimized the contrastive loss between the representations
- Reaches an MRR score of 0.348

GAT Encoder

- The substitution of the GCN encoder with a GAT encoder.
- Motivated by the capacity of GATs in **capturing complex relationships** within graph-structured data by applying **self-attention** mechanism on the nodes.
- Chosen GATv2 encoder which used a dynamic graph attention mechanism and is more expressive than GAT.
- Trained for **50 epochs** to minimize the **contrastive loss** between the representations.
- Improved the baseline model and achieved an MRR score of 0.5086.

Model	MRR
Baseline	0.348
GAT	0.5086

SciBERT Encoder

- Replaced the DistilBERT text encoder with an **uncased sci vocab SciBERT** encoder.
- Pertained on a data containing 82% biomedicine papers -> well-suited for processing texts describing molecular properties
- Trained for **100 epochs** to minimize the contrastive loss between the representations.
- Reaches an MRR score of 0.72

Model	MRR
Baseline	0.348
GAT	0.5086
GAT and SciBERT	0.72

Higher Dimensional Embeddings

- Used a richer embedding space of dimension 1024
- Appended a Multi-Layer Perceptron
 (MLP) at the end of each encoder
- Achieved an MRR score of 0.798

Model	MRR
Baseline	0.348
GAT	0.5086
GAT and SciBERT	0.72
High-Dim	0.798

Information-Noise-Contrastive Estimation

 Optimizes the negative log probability of classifying the positive sample correctly.

$$\mathcal{L}_{\text{INCE}} = -\mathbb{E}\left[\log \frac{f(\mathbf{x}, \mathbf{c})}{\sum_{\mathbf{x}' \in X} f(\mathbf{x}', \mathbf{c})}\right]$$

- At each step we **incorporated** the embeddings of the **previous batches** as **negative samples**.
- Memory length = 2 × batch_size to avoid converging to an uninformative local minimum
- Enhanced the MRR score to 0.87.

Model	MRR
Baseline	0.348
High-Dim	0.798
INCE Loss	0.87

Algorithm 2 Custom Contrastive Loss

Input: v_1 : Text embeddings, v_2 : Graph embeddings, m: Memory size

Initialize: memory buffers m_{text} and m_{graph} to None; loss functions: cross-entropy ce and InfoNCE ince

Function ResetMemory():

Reset m_{text} and m_{graph} to None

Function Forward(v_1, v_2):

Calculate InfoNCE loss on v_1 and v_2 with m_{graph} as negatives Calculate InfoNCE loss on v_2 and v_1 with m_{text} as negatives

Combine losses:

 $result = InfoNCE(v_1, v_2, m_{graph}) + InfoNCE(v_2, v_1, m_{text})$

Update memory:

If m > 0:

If m_{text} is None:

Set m_{text} to v_1 and m_{graph} to v_2

Else:

Append v_1 to m_{text} and v_2 to m_{graph}

Keep only last m elements in m_{text} and m_{graph} if

exceeded

return result

Text2Mol

- Implemented **Text2Mol** framework using the architecture from Edwards et al. 2021.
- Uses cross-modal attention mechanism connecting text and graph embeddings.
- Potential information leakage from the graph embeddings which was mitigated through negative sampling.
- The model was interesting to explore however we didn't use it for the final results due to:
 - weak performance of MRR score 0.03
 - the need to compute the text embedding associated with each individual graph.

The Text2Mol architecture for the cross-modal attention extension and association rules

Ensemble model

- Noticed that our model weren't overfitting so there is a possibility they can act as "strong learners".
- Implemented naive stacking methods such as the arithmetic and geometric mean of the outputs of different models.
- Improved the result greatly breaking the 0.9 barrier for the
 MRR score 0.92

_		
	Model	MRR
	Baseline	0.348
	High-Dim	0.798
	INCE Loss	0.87
	Ensemble Model	0.9216

Stacking Ensemble

Fine tuning

For the final training run we:

- 1. Started from the **best model** obtained so far.
- 2. **Merged** validation set with the training set to train on the entire dataset.
- 3. Linear extension of the **memory depth** at intervals of 10 fine-tuning periods, ranging from **2 to 10** times the batch size.
- 4. Monitoring the performance of the model through **sampled 5000 observations**.
- 5. Selecting the model with the highest **MRR** score on the sampled validation set: 0.9223

III. Results & Discussions

III. Results & Discussions:

Model	MRR
Baseline	0.348
GAT	0.5086
GAT and SciBERT	0.72
High-Dim	0.798
INCE Loss	0.87
Text2Mol	0.03
Ensemble Model	0.9216
Fine Tuned	0.9223

III. Results & Discussions:

- The model didn't overfit :
 - 1. The model isn't expressive enough
 - 2. The data is uniformly distributed across training, validation and test

III. Results & Discussions:

- Training took approximately 12 hours.
- The training time was pretty much the same for all models.
- The **bottleneck** was the data loader

IV. Conclusion & Perspective

IV. Conclusion & Perspective:

- The best model was the fine-tuned Scibert + GAT with the modified InfoNCE.
- Exploring more pooling methods for Text and Graphs.
- Results seem to be too promising which might necessitate validating them over other datasets.

References (1/2)

- Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. (2020). "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter." *arXiv:1910.01108 [cs.CL]
- Iz Beltagy, Kyle Lo, and Arman Cohan. (2019). "SciBERT: A Pretrained Language Model for Scientific Text." *arXiv:1903.10676 [cs.CL]
- Shaked Brody, Uri Alon, and Eran Yahav. (2022). "How Attentive are Graph Attention Networks?" *arXiv:2105.14491 [cs.LG]
- Thomas N. Kipf and Max Welling. (2017). "Semi-Supervised Classification with Graph Convolutional Networks." *arXiv:1609.02907 [cs.LG]
- Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. (2018). "Graph Attention Networks." *arXiv:1710.10903 [stat.ML]*

References (2/2)

- Carl Edwards, ChengXiang Zhai, and Heng Ji. (2021). "Text2Mol: Cross-Modal Molecule Retrieval with Natural Language Queries." In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing [doi 10.18653]
- https://tjmachinelearning.com/lectures/2122/advanced/Graph Neural Networ ks.pdf
- https://machinelearningmastery.com/tour-of-ensemble-learning-algorithms/