(i) $\left(\frac{\partial u}{\partial x}\right)_y$ = The partial derivative of u w.r.t. x keeping y constant.

 \therefore We need a relation expressing u as a function of x and y.

From (1),
$$\left(\frac{\partial u}{\partial x}\right)_{y} = l$$

 $\left(\frac{\partial x}{\partial u}\right)_v$ = The partial derivative of x w.r.t. u keeping v constant

We need a relation expressing x as a function of u and v.

Eliminating y between (1) and (2) by multiplying (1) by l, (2) by m and adding the products, we have

$$lu + mv = (l^2 + m^2)x$$
 or $x = \frac{lu + mv}{l^2 + m^2}$

$$\left(\frac{\partial x}{\partial u}\right)_v = \frac{l}{l^2 + m^2}$$

Hence,
$$\left(\frac{\partial u}{\partial x}\right)_{y} \left(\frac{\partial x}{\partial u}\right)_{v} = \frac{l^{2}}{l^{2} + m^{2}}$$

(ii) $\left(\frac{\partial y}{\partial v}\right)_x$ = The partial derivative of y w.r.t. v keeping x constant.

 \therefore We need a relation expressing y as a function of v and x.

From (2),
$$y = \frac{mx - v}{l} \qquad \qquad \therefore \quad \left(\frac{\partial y}{\partial v}\right)_{x} = -\frac{1}{l}$$

Also $\left(\frac{\partial v}{\partial y}\right)_u$ = Partial derivative of v w.r.t. y keeping u constant

 \therefore We need a relation expressing v as a function of y and u.

Eliminating x between (1) and (2), we have $v = \frac{mu - (l^2 + m^2)y}{l}$

$$\left(\frac{\partial v}{\partial y}\right)_{t} = -\frac{l^2 + m^2}{l}$$

Hence
$$\left(\frac{\partial y}{\partial v}\right)_x \left(\frac{\partial v}{\partial y}\right)_u = \left(-\frac{1}{l}\right) \left(-\frac{l^2 + m^2}{l}\right) = \frac{l^2 + m^2}{l^2}$$

TEST YOUR KNOWLEDGE

1. Find the first order partial derivatives of the following functions:

(i) $u = y^x$

(iii)
$$u = x^2 \sin \frac{y}{x}$$
 (ii) $u = \log (x^2 + y^2)$
If $u = x^2 + y^2 + z^2$, prove that $xu_x + yu_y + zu_z = 2u$.

3. If
$$z = \log (x^2 + xy + y^2)$$
, prove that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2$.

4. If $u = x^2y + y^2z + z^2x$, prove that $u_x + u_y + u_z = (x + y + z)^2$.

4. If
$$u = \frac{y}{z} + \frac{z}{x} + \frac{x}{y}$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.

6. If
$$f(x, y) = x^3y - xy^3$$
, find $\left[\frac{1}{\frac{\partial f}{\partial x}} + \frac{1}{\frac{\partial f}{\partial y}}\right]_{\substack{x = 1 \\ y = 2}}$

(i) If $u = \log (\tan x + \tan y)$, prove that $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} = 2$ 7.

(ii) If $u(x, y, z) = \log(\tan x + \tan y + \tan z)$, show that $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2$.

(iii) Find first and second order derivatives from the relation $\log z = x + y + z$.

8. If
$$f(x, y, z) = \begin{vmatrix} x^2 & y^2 & z^2 \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix}$$
, prove that $f_x + f_y + f_z = 0$.

9. Verify that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ for the following functions:

(i)
$$u = ax^2 + 2hxy + by^2$$
 (ii) $u = \tan^{-1}\left(\frac{x}{y}\right)$

$$(ii) u = \tan^{-1}\left(\frac{x}{y}\right)$$

$$(iii) \ u = \log\left(\frac{x^2 + y^2}{xy}\right)$$

(iv)
$$u = e^{ax} \sin by$$

(v)
$$u = \log (x \sin y + y \sin x)$$
.

10. If
$$z = \log (e^x + e^y)$$
, show that $r \cdot t - s^2 = 0$; where $r = \frac{\partial^2 z}{\partial x^2}$, $t = \frac{\partial^2 z}{\partial y^2}$, $s = \frac{\partial^2 z}{\partial x \partial y}$

11. If
$$u = \tan^{-1} \frac{xy}{\sqrt{1 + x^2 + y^2}}$$
, show that $\frac{\partial^2 u}{\partial x \partial y} = (1 + x^2 + y^2)^{-3/2}$.

12. If
$$u = e^{xyz}$$
, prove that $\frac{\partial^3 u}{\partial x \partial y \partial z} = (1 + 3xyz + x^2y^2z^2)e^{xyz}$.

13. If
$$u = \log(x^2 + y^2) + \tan^{-1}\frac{y}{x}$$
, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

14. If
$$u = \tan^{-1}\left(\frac{2xy}{x^2 - y^2}\right)$$
, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

Verify that $f_{xy} = f_{yx}$ when f is equal to

$$(i) \sin^{-1}\left(\frac{y}{x}\right)$$

(ii)
$$\log x \tan^{-1} (x^2 + y^2)$$
.

Find the value of n so that the equation $V = r^n (3 \cos^2 \theta - 1)$ satisfies the relation

$$\frac{\partial}{\partial r} \left(r^2 \frac{\partial \mathbf{V}}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \mathbf{V}}{\partial \theta} \right) = 0.$$

17. If
$$z = \tan (y + ax) - (y - ax)^{3/2}$$
, show that $\frac{\partial^2 z}{\partial x^2} = a^2 \frac{\partial^2 z}{\partial y^2}$

18. If
$$V = (x^2 + y^2 + z^2)^{-1/2}$$
, prove that $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$

If $V = r^m$ where $r^2 = x^2 + y^2 + z^2$, show that $V_{xx} + V_{yy} + V_{zz} = m(m+1) r^{m-2}$

20. If
$$u = \log (x^2 + y^2 + z^2)$$
, prove that $x \frac{\partial^2 u}{\partial y \partial z} = y \frac{\partial^2 u}{\partial z \partial x} = z \frac{\partial^2 u}{\partial x \partial y}$

21. If
$$u = \log \sqrt{x^2 + y^2 + z^2}$$
, prove that $(x^2 + y^2 + z^2) \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = 1$.

22. If
$$u = x^2 \tan^{-1} \frac{y}{x} - y^2 \tan^{-1} \frac{x}{y}$$
, find the value of $\frac{\partial^2 u}{\partial x \partial y}$

23. If
$$x^2 + y^2 + z^2 = \frac{1}{u^2}$$
, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.

24. If
$$u = \sqrt{x^2 + y^2 + z^2}$$
, show that

(i)
$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 = 1$$

(ii)
$$\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial v^2} + \frac{\partial^2 u}{\partial z^2} = \frac{2}{u}$$

25. If
$$u = e^{x-\alpha t} \cos(x - at)$$
, show that $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$.

26. If
$$v = \frac{1}{\sqrt{t}} e^{\frac{-x^2}{4a^2t}}$$
, prove that $\frac{\partial v}{\partial t} = a^2 \frac{\partial^2 v}{\partial x^2}$.

27. If
$$u = (1 - 2xy + y^2)^{-1/2}$$
, prove that $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = y^2 u^3$.

28. If
$$u = e^x(x \cos y - y \sin y)$$
, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

29. If
$$x = r \cos \theta$$
, $y = r \sin \theta$, prove that

(i)
$$\frac{\partial^2 r}{\partial x^2} \cdot \frac{\partial^2 r}{\partial y^2} = \left(\frac{\partial^2 r}{\partial x \partial y}\right)^2$$

$$(ii) \left(\frac{\partial r}{\partial x}\right)^2 + \left(\frac{\partial r}{\partial y}\right)^2 = 1$$

$$(iii) \ \frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} = \frac{1}{r} \left[\left(\frac{\partial r}{\partial x} \right)^2 + \left(\frac{\partial r}{\partial y} \right)^2 \right].$$

30. If
$$x^2 = au + bv$$
, $y^2 = au - bv$, prove that $\left(\frac{\partial u}{\partial x}\right)_v \cdot \left(\frac{\partial x}{\partial u}\right)_v = \frac{1}{2} = \left(\frac{\partial v}{\partial y}\right)_v \cdot \left(\frac{\partial y}{\partial v}\right)_v$.

31. Show that
$$\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$$
, where $z = xf(x+y) + yg(x+y)$.

32. If
$$u = f(ax^2 + 2hxy + by^2)$$
, $v = \phi(ax^2 + 2hxy + by^2)$, prove that $\frac{\partial}{\partial y} \left(u \frac{\partial v}{\partial x} \right) = \frac{\partial}{\partial x} \left(u \frac{\partial v}{\partial y} \right)$.

Hint. Given
$$u = f(z)$$
, $v = \phi(z)$, where $z = ax^2 + 2hxy + by^2$.

We have to prove that

$$\frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial x} + u \frac{\partial^2 v}{\partial y \partial x} = \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial y} + u \frac{\partial^2 v}{\partial x \partial y} \quad \text{or} \quad \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial y} \qquad \left(\because \quad \frac{\partial^2 v}{\partial y \partial x} = \frac{\partial^2 v}{\partial x \partial y} \right)$$

$$\frac{\partial u}{\partial x} : \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} : \frac{\partial v}{\partial y}$$

If
$$u = \log (x^3 + y^3 - x^2y - xy^2)$$
, show that $\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = -4(x+y)^{-2}$.

[Hint.
$$u = \log \{x^2(x-y) - y^2(x-y)\} = \log (x-y)(x^2-y^2) = \log (x-y)^2(x+y)$$

= $2 \log (x-y) + \log (x+y)$]

(a) If u = f(r) where $r^2 = x^2 + y^2$, prove that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$$

(b) If
$$V = f(r)$$
 and $r^2 = x^2 + y^2 + z^2$, prove that $V_{xx} + V_{yy} + V_{zz} = f''(r) + \frac{2}{r}f'(r)$.

35. If
$$z = f(x + ay) + \phi(x - ay)$$
, prove that $\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$

36. Find
$$p$$
 and q , if $x = \sqrt{a} (\sin u + \cos v)$, $y = \sqrt{a} (\cos u - \sin v)$, $z = 1 + \sin (u - v)$

where p and q mean $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ respectively

Hint.
$$x^2 + y^2 = 2az$$
, $z = \frac{x^2 + y^2}{2a}$

37. The equation
$$\frac{\partial u}{\partial t} = \mu \frac{\partial^2 u}{\partial r^2}$$
 refers to the conduction of heat along a bar without radiation.

Show that if $u = Ae^{-gx} \sin (nt - gx)$, where A, g, n are positive constants then $g = \sqrt{\frac{n}{2\pi}}$.

Answers

1. (i)
$$y^x \log y$$
, xy^{x-1}

(ii)
$$\frac{2x}{x^2+y^2}$$
, $\frac{2y}{x^2+y^2}$

(iii)
$$2x \sin \frac{y}{x} - y \cos \frac{y}{x}$$
, $x \cos \frac{y}{x}$

(iii)
$$2x \sin \frac{y}{x} - y \cos \frac{y}{x}$$
, $x \cos \frac{y}{x}$ (iv) $\frac{-x}{x^2 + y^2} + \frac{1}{y} \tan^{-1} \frac{y}{x}$, $\frac{x^2}{y(x^2 + y^2)} - \frac{x}{y^2} \tan^{-1} \frac{y}{x}$

6.
$$-\frac{13}{22}$$

7. (iii)
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = \frac{z}{1-z}$$
; $\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y^2} = \frac{z}{(1-z)^3}$

22.
$$\frac{x^2-y^2}{x^2+y^2}$$

36.
$$p = \frac{x}{a}, q = \frac{y}{a}$$

HOMOGENEOUS FUNCTIONS

A function f(x, y) is said to be homogeneous of degree (or order) n in the variables xind y if it can be expressed in the form $x^n \phi\left(\frac{y}{x}\right)$ or $y^n \phi\left(\frac{x}{y}\right)$.

An alternative test for a function f(x, y) to be homogeneous of degree (or order) n is

$$f(tx, ty) = t^n f(x, y).$$