Contents

1	Clas	sses		3
	1.1	real - 1	real numbers and its functions	3
		1.1.1	RealField – field of real numbers	5
			1.1.1.1 getCharacteristic – get characteristic	6
			1.1.1.2 issubring – subring test	6
			1.1.1.3 issuperring – superring test	6
		1.1.2	Real – a Real number	7
			1.1.2.1 getRing – get ring object	8
		1.1.3	Constant – real number with error correction	9
			1.1.3.1 inverse – inverse value	10
			1.1.3.2 toRational – convert to Rational	10
		1.1.4	ExponentialPowerSeries – exponential power series	11
			1.1.4.1 terms – generator of terms of series	12
		1.1.5	AbsoluteError – absolute error	13
		1.1.6	RelativeError – relative error	14
		1.1.7	exp(function) – exponential value	15
		1.1.8	sqrt(function) – square root	15
		1.1.9	log(function) – logarithm	15
		1.1.10	$\log 1 \text{piter}(\text{function}) - \text{iterator of } \log (1+x) $	15
		1.1.11	piGaussLegendre(function) – pi by Gauss-Legendre	15
		1.1.12	eContinuedFraction(function) – Napier's Constant by con-	
			tinued fraction expansion	15
		1.1.13	floor(function) – floor the number	16
		1.1.14	ceil(function) – ceil the number	16
		1.1.15	tranc(function) – round-off the number	16
		1.1.16	$\sin(\text{function}) - \sin e \text{ function}$	16
		1.1.17	$\cos(\text{function}) - \cos\text{ine function}$	16
		1.1.18	tan(function) – tangent function	16
		1.1.19	sinh(function) – hyperbolic sine function	17
		1.1.20	cosh(function) – hyperbolic cosine function	17
		1.1.21	tanh(function) – hyperbolic tangent function	17
		1.1.22	asin(function) – arc sine function	17
		1.1.23	acos(function) – arc cosine function	17
		1.1.24	atan(function) – arc tangent function	17

1.1.25	atan2(function) – arc tangent function	18
1.1.26	hypot(function) – Euclidean distance function	18
1.1.27	pow(function) – power function	18
1.1.28	degrees(function) – convert angle to degree	18
1.1.29	radians(function) – convert angle to radian	18
1.1.30	fabs(function) – absolute value	18
1.1.31	fmod(function) – modulo function over real	19
1.1.32	frexp(function) – expression with base and binary exponent	19
1.1.33	ldexp(function) – construct number from base and binary	
	exponent	19
1.1.34	EulerTransform(function) – iterator yields terms of Euler	
	transform	10

Chapter 1

Classes

1.1 real – real numbers and its functions

The module real provides arbitrary precision real numbers and their utilities. The functions provided are corresponding to the math standard module.

- Classes
 - RealField
 - Real
 - †Constant
 - †ExponentialPowerSeries
 - †AbsoluteError
 - †RelativeError
- Functions
 - $-\exp$
 - sqrt
 - log
 - log1piter
 - piGaussLegendre
 - eContinuedFraction
 - floor
 - ceil
 - tranc
 - sin
 - cos

- tan
- sinh
- cosh
- tanh
- asin
- acos
- atan
- atan2
- hypot
- pow
- degrees
- radians
- fabs
- fmod
- frexp
- ldexp
- EulerTransform

This module also provides following constants:

e :

e is the base of the natural logarithm function, also called Napier's constant.

pi:

pi is the circular constant, also denoted by π .

Log 2:

Log2 is the natural logarithm of 2.

†defaultError:

defaultError is the instance of RelativeError.

theRealField:

 ${\tt the Real Field} \ {\rm is} \ {\rm the \ instance \ of} \ {\tt Real Field}.$

1.1.1 RealField – field of real numbers

The class is for the field of real numbers. The class has the single instance the Real Field.

This class is a subclass of **Field**.

Initialize (Constructor)

$ext{RealField}() ightarrow extit{RealField}$

Create an instance of RealField. You may not want to create an instance, since there is already **theRealField**.

Attribute

 ${f zero}$:

It expresses the additive unit 0. (read only)

one:

It expresses the multiplicative unit 1. (read only)

Operations

operator	explanation
x in R	membership test; return whether an element is in or not.
repr(R)	return representation string.
str(R)	return string.

${\bf 1.1.1.1} \quad {\bf get Characteristic} - {\bf get} \ {\bf characteristic}$

```
\mathtt{getCharacteristic}(\mathtt{self}) \to \mathit{integer}
```

Return the characteristic, zero.

1.1.1.2 is subring – subring test

$$issubring(self, aRing: Ring) \rightarrow bool$$

Report whether another ring contains the real field as subring.

${\bf 1.1.1.3}\quad {\bf is superring-superring\ test}$

```
issuperring(self, aRing: \frac{Ring}{}) 	o bool
```

Report whether the real field contains another ring as subring.

1.1.2 Real – a Real number

Real is a class of real number. This class is only for consistency for other **Ring** object.

This class is a subclass of **CommutativeRingElement**.

All implemented operators in this class are delegated to Float type.

Initialize (Constructor)

 ${\tt Real}({\tt value:}\ number)
ightarrow {\tt Real}$

Construct a Real object.

value must be int, long, Float or Rational.

1.1.2.1 getRing – get ring object

 $\mathtt{getRing}(\mathtt{self}) o extit{RealField}$

Return the real field instance.

1.1.3 Constant – real number with error correction

Constant provides constant-like behavior for Float calculation context. It caches the constant value and re-computes for more precision by request.

Almost every operators are delegated to the cached value.

Initialize (Constructor)

```
	ext{Constant}(	ext{getValue: } numbers, 	ext{ err: } Error = 	ext{defaultError}) \ 	o Constant
```

Construct Constant from Float and error. getValue must be Float, and err must be **AbsoluteError** or **RelativeError**.

Operations

operator	explanation
S(err)	Return the value at least as accurate as the given error err.

Examples

```
>>> pi = Constant(piGaussLegendre)
>>> print pi
3.14159265358979
>>> pi + 1
4.14159265358979
>>> pi(RelativeError(0,1,2**100)) # for 100 bit precision
3.1415926535897932384626433832795
```

1.1.3.1 inverse – inverse value

$$inverse(self) \rightarrow \mathit{Constant}$$

Return the inverse of the number.

1.1.3.2 toRational – convert to Rational

${ m toRational(self)} ightarrow {\it Rational}$

Return a rational number approximating the number.

1.1.4 ExponentialPowerSeries – exponential power series

Exponential Power Series is a class for exponential power series, whose n-th term has form $\frac{a_n x^n}{n!}$.

Initialize (Constructor)

 $\textbf{ExponentialPowerSeries(iterator:} \ \textit{iterator}) \rightarrow \textit{ExponentialPowerSeries}$

Construct an exponential power series with coefficient generated by the given iterator, which can be an infinite iterator.

Operations

operator	explanation
S(x,maxerror)	Return the value of the series with x assigned. The maximum error maxerror
	must be given as a RelativeError or AbsoluteError instance.

Examples

```
>>> expo = ExponentialPowerSeries(itertools.cycle([1]))
>>> expo(.5, defaultError)
Rational(5434422938503507, 3296144130048000)
```

${\bf 1.1.4.1} \quad terms-generator\ of\ terms\ of\ series$

 $terms(\texttt{self}, \texttt{ x: } \textit{numbers }) \rightarrow \textit{ExponentialPowerSeries}$

Generator of terms of series with assigned x value. ${\tt x}$ must be int, long or Float.

${\bf 1.1.5}\quad {\bf Absolute Error-absolute\ error}$

 $\label{lem:absolute} Absolute \mbox{Error is the class of absolute error of real numbers.} \\ this class is deprecated.$

1.1.6 RelativeError – relative error

 $\label{lem:AbsoluteError} Absolute Error \ is \ the \ class \ of \ relative \ error \ of \ real \ numbers.$ this class is deprecated.

1.1.7 exp(function) – exponential value

 $\exp(x: number, err: Error = \frac{\text{defaultError}}{number}) \rightarrow number$

Return exponential of x.

err must be AbsoluteError or RelativeError.

$1.1.8 \quad \text{sqrt(function)} - \text{square root}$

sqrt(x: number, err: Error=defaultError) → number

Return square root of x.

err must be AbsoluteError or RelativeError.

$1.1.9 \log(\text{function}) - \log(\text{arithm})$

 $\log(x: number, base: number=None, err: Error=defaultError) \rightarrow number$

Return logarithm of a positive number x.

If an additional argument base is given, it returns logarithm of x to the base.

err must be AbsoluteError or RelativeError.

1.1.10 log1piter(function) - iterator of log(1+x)

 $log1piter(xx: number) \rightarrow iterator$

Return iterator for $\log(1+x)$.

1.1.11 piGaussLegendre(function) – pi by Gauss-Legendre

 $piGaussLegendre(err: Error = defaultError) \rightarrow number$

Return pi by Gauss-Legendre algorithm.

err must be AbsoluteError or RelativeError.

1.1.12 eContinuedFraction(function) – Napier's Constant by continued fraction expansion

eContinuedFraction(err: Error = defaultError) $\rightarrow number$

Return the base of natural logarithm e by continued fraction expansion. err must be **AbsoluteError** or **RelativeError**.

1.1.13 floor(function) - floor the number

 $floor(x: number) \rightarrow integer$

Return the biggest integer not more than x.

1.1.14 ceil(function) – ceil the number

 $ceil(x: number) \rightarrow integer$

Return the smallest integer not less than x.

1.1.15 tranc(function) - round-off the number

 $tranc(x: number) \rightarrow integer$

Return the number of rounded off x.

1.1.16 $\sin(\text{function}) - \sin \text{e} \text{ function}$

 $sin(x: number, err: Error = \frac{defaultError}{defaultError}) \rightarrow number$

Return the sine of x.

err must be AbsoluteError or RelativeError.

1.1.17 $\cos(\text{function}) - \cos(\text{function})$

 $cos(x: number, err: Error = defaultError) \rightarrow number$

Return the cosine of x.

err must be AbsoluteError or RelativeError.

1.1.18 tan(function) – tangent function

 $tan(x: number, err: Error = defaultError) \rightarrow number$

Return the tangent of x.

err must be AbsoluteError or RelativeError.

1.1.19 sinh(function) – hyperbolic sine function

 $sinh(x: number, err: Error = \frac{defaultError}{defaultError}) \rightarrow number$

Return the hyperbolic sine of x.

err must be AbsoluteError or RelativeError.

1.1.20 cosh(function) – hyperbolic cosine function

 $cosh(x: number, err: Error = \frac{defaultError}{defaultError}) \rightarrow number$

Return the hyperbolic cosine of x.

err must be AbsoluteError or RelativeError.

1.1.21 tanh(function) – hyperbolic tangent function

 $tanh(x: number, err: Error = \frac{defaultError}{defaultError}) \rightarrow number$

Return the hyperbolic tangent of x.

err must be AbsoluteError or RelativeError.

1.1.22 asin(function) – arc sine function

 $asin(x: number, err: Error = defaultError) \rightarrow number$

Return the arc sine of x.

err must be AbsoluteError or RelativeError.

1.1.23 acos(function) – arc cosine function

 $acos(x: number, err: Error = defaultError) \rightarrow number$

Return the arc cosine of x.

err must be AbsoluteError or RelativeError.

1.1.24 atan(function) – arc tangent function

 $atan(x: number, err: Error = defaultError) \rightarrow number$

Return the arc tangent of x.

err must be AbsoluteError or RelativeError.

1.1.25 atan2(function) - arc tangent function

```
atan2(y: number, x: number, err: Error = defaultError) \rightarrow number
```

Return the arc tangent of y/x.

Unlike atan(y/x), the signs of both x and y are considered. †It is unrecommended to obtain the value of pi with atan2(0,1). err must be AbsoluteError or RelativeError.

1.1.26 hypot(function) - Euclidean distance function

Return $\sqrt{x^2 + y^2}$.

err must be AbsoluteError or RelativeError.

1.1.27 pow(function) – power function

```
pow(x: number, y: number, err: Error = defaultError)
\rightarrow number
```

Return yth power of x.

err must be AbsoluteError or RelativeError.

1.1.28 degrees(function) – convert angle to degree

```
degrees(rad: number, err: Error = defaultError) \rightarrow number
```

Converts angle rad from radians to degrees. err must be **AbsoluteError** or **RelativeError**.

1.1.29 radians(function) – convert angle to radian

```
radians(deg: number, err: Error = defaultError) \rightarrow number
```

Converts angle deg from degrees to radians. err must be **AbsoluteError** or **RelativeError**.

1.1.30 fabs(function) – absolute value

```
fabs(x: number) \rightarrow number
```

Return absolute value of x

1.1.31 fmod(function) – modulo function over real

 $fmod(x: number, y: number) \rightarrow number$

Return x - ny, where n is the quotient of x / y, rounded towards zero to an integer.

1.1.32 frexp(function) – expression with base and binary exponent

 $frexp(x: number) \rightarrow (m,e)$

Return a tuple (m,e), where $x=m\times 2^e,\ 1/2\leq {\tt abs}({\tt m})<1$ and e is an integer.

†This function is provided as the counter-part of math.frexp, but it might not be useful.

1.1.33 ldexp(function) – construct number from base and binary exponent

 $ldexp(x: number, i: number) \rightarrow number$

Return $x \times 2^i$.

1.1.34 EulerTransform(function) – iterator yields terms of Euler transform

 $EulerTransform(iterator: iterator) \rightarrow iterator$

Return an iterator which yields terms of Euler transform of the given iterator.