Bölüm 3

Fark Denklemleri

Örnek sistemin ZOH yöntemi ile elde edilen ve Denklem 2.13 ile verilen sistem için

$$G_{ZOH}(z) = \frac{1 - e^{-1}}{z - e^{-1}}$$

$$= \frac{(1 - e^{-1})z^{-1}}{1 - e^{-1}z^{-1}}$$

$$\frac{y(z)}{u(z)} = \frac{(1 - e^{-1})z^{-1}}{1 - e^{-1}z^{-1}}$$

$$y(z)(1 - e^{-1}z^{-1}) = \frac{(1 - e^{-1})z^{-1}u(z)}{1 - e^{-1}z^{-1}}$$

$$y(z) - y(z - 1)e^{-1} = (1 - e^{-1})u(z - 1)$$

$$y(z) = y(z - 1)e^{-1} + (1 - e^{-1})u(z - 1)$$

$$y(z) = 0.3679y(z - 1) + 0.6321u(z - 1)$$

elde edilir. Z tanım bölgesinde tanımlı transfer fonksiyonundan fark denklemine geçişe örnektir. Fark denklemleri programlama dilleri ile kolaylıkla gerçeklenebilmektedir. Benzer şekilde FOH yöntemi ile elde edilen ve Denklem 2.22 ile verilen ifade için

$$G_{FOH}(z) = \frac{1}{z}$$

$$\frac{y(z)}{u(z)} = z^{-1}$$

$$y(z) = u(z - 1)$$
(3.2)

elde edilir. Yay-Kütle-Damper sistemi için dinamikleri ifade eden denklem

$$m\ddot{x}(t) + b\dot{x}(t) + kx(t) = u(t) \tag{3.3}$$

olarak verilmiştir. Bu diferansiyel denklem S tanım bölgesine dönüştürülürse

$$ms^{2}X(s) + bsX(s) + kX(s) = U(s)$$

$$(ms^{2} + bs + k)X(s) = U(s)$$

$$\frac{X(s)}{U(s)} = \frac{1}{ms^{2} + bs + k}$$
(3.4)

elde edilir. Denklem 3.3 ile verilen sistem için

$$m\frac{\Delta^{2}x}{(\Delta t)^{2}} + b\frac{\Delta x}{\Delta t} + kx(kT) = u(kT)$$

$$m\frac{\Delta(x(kT) - x((k-1)T))}{kT - (k-1)T} + b\frac{x(kT) - x((k-1)T)}{kT - (k-1)T} + kx(kT) = u(kT)$$

$$m\frac{\Delta x(kT) - \Delta x((k-1)T)}{T^{2}} + b\frac{x(kT) - x((k-1)T)}{T} + kx(kT) = u(kT)$$

$$m\frac{x(kT) - 2x((k-1)T) + x((k-2)T)}{T^{2}} + b\frac{x(kT) - x((k-1)T)}{T} + kx(kT) = u(kT)$$

$$m\frac{x(kT) - 2x((k-1)T) + x((k-2)T)}{T^{2}} + b\frac{x(kT) - x((k-1)T)}{T} + kx(kT) = u(kT)$$

$$m\frac{x(kT) - 2x((k-1)T) + x((k-2)T)}{T^{2}} + b\frac{x(kT) - x((k-1)T)}{T} + kx(kT) = u(kT)$$

$$(m + bT + kT^{2})x(kT) = (2m + bT)x((k-1)T) - mx((k-2)T) + T^{2}u(kT)$$

$$x(kT) = \frac{2m + bT}{m + bT + kT^{2}}x((k-1)T) - \frac{m}{m + bT + kT^{2}}x((k-2)T) + \frac{T^{2}}{m + bT + kT^{2}}u(kT)$$

$$(3.5)$$

Örnek olması için $m=1\,kg,\,b=1\,Ns/m,\,k=1\,Nm$ ve T=0.1 olmak üzere fark denklemi

$$x(kT) = 1.8919x((k-1)T) - 0.9009x((k-2)T) + 0.009009u(kT)$$
(3.6)

olarak elde edilir. Transfer fonksiyonundan yola çıkarak $\zeta = b\sqrt{m}/(2m\sqrt{k})$, $w_n = \sqrt{k}/\sqrt{m}$ ve $\phi = \cos^{-1}(\zeta)$ olmak üzere

$$G(z) = \mathcal{Z} \left\{ \frac{1 - e^{-0.1s}}{s(s^2 + s + 1)} \right\}$$

$$= \frac{z - 1}{z} \mathcal{Z} \left\{ \frac{1}{s(s^2 + s + 1)} \right\}$$

$$= \frac{z - 1}{z} \left(\frac{z}{z - 1} - \frac{1}{\sqrt{1 - \zeta^2}} \frac{\sqrt{1 - \zeta^2} z^2 + z e^{-\zeta w_n T} \sin(w_n \sqrt{1 - \zeta^2} T - \phi)}{z^2 - 2z e^{-\zeta w_n T} \cos(w_n \sqrt{1 - \zeta^2} T) + e^{-2\zeta w_n T}} \right)$$

$$= \frac{0.004833 z^3 - 0.0001585 z^2 - 0.004675 z}{z^4 - 2.895 z^3 + 2.8 z^2 - 0.9048 z}$$

$$= \frac{0.004833 z + 0.004675}{z^2 - 1.895 z + 0.9048}$$

$$(3.7)$$

elde edilir.

1. Yay-kütle-damper sisteminin çıkış işaretini fark denklemlerini kullanarak elde ediniz.

```
m=1
b=1
k=1
T = 0.1
fac1 = (2*m+b*T)/(m+b*T+k*T**2)
fac2 = -m/(m+b*T+k*T**2)
fac3 = T**2/(m+b*T+k*T**2)
tvec = np.arange(0,10+1,T)
xt = np.zeros(tvec.shape)
ut = np.ones(tvec.shape)
for i in range(0, len(tvec)):
   if i==0:
      xt[i] = fac1*0 + fac2*0 + fac3*0
   elif i==1:
      xt[i] = fac1*xt[i-1] + fac2*0 + fac3*ut[i-1]
   else:
      xt[i]=fac1*xt[i-1]+fac2*xt[i-2]+fac3*ut[i-1]
plt.grid('minor')
plt.xlabel("Zaman(s)")
plt.ylabel("x(t)")
plt.title("Yay-kutle-damper sistem yaniti")
```

```
 \begin{split} & Gz = control.tf(1,np.array([m,b,k])) \\ & tc, \ yc = control.step\_response(Gz) \\ & plt.plot(tc,yc,\ensuremath{^{\prime}}{k'}) \\ & plt.stem(tvec,xt,\ensuremath{^{\prime}}{b'}) \\ & plt.show() \end{split}
```


Şekil 3.1: Yay-kütle-damper sisteminin çıkış işareti

2. Yay-kütle-damper sisteminin çıkış işaretini ayrık transfer fonksiyonu kullanarak elde ediniz.

```
m=1
b=1
k=1

plt.grid('minor')
plt.xlabel("Zaman(s)")
plt.ylabel("x(t)")
plt.title("Yay-kutle-damper sistem yaniti")

Gz=control.tf(1,np.array([m,b,k]))
tc, yc=control.step_response(Gz)

Gz1=control.c2d(control.tf(1,np.array([m,b,k])),0.1)
tc1, yc1=control.step_response(Gz1)

Gz2=control.c2d(control.tf(1,np.array([m,b,k])),0.5)
tc2, yc2=control.step_response(Gz2)
```

```
plt.plot(tc,yc,'k')
plt.stem(tc1,yc1,'r')
plt.stem(tc2,yc2,'b')
plt.show()
```


Şekil 3.2: Yay-kütle-damper sisteminin çıkış işareti