Khoi Duong

Prof. Yang

CS483

6/29/2022

MIDTERM

1.

Based on observation, we will choose the highest order as 5.

Thus, we have the hypothesis function:

$$h(\theta) = y = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \theta_5 x^5$$

Loss function:

$$L = [h(x^{(i)}) - y^{(i)}]^2$$

Cost function:

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} [h(x^{(i)}) - y^{(i)}]^2 = \frac{1}{n} \sum_{i=1}^{n} [(\theta_0 + \theta_1 x^{(i)} + \theta_2 x^{(i)^2} + \theta_3 x^{(i)^3} + \theta_4 x^{(i)^4} + \theta_5 x^{(i)^5}) - y^{(i)}]^2$$

We have the partial derivative function for each coefficient as below:

Partial derivative with respect to θ_0 :

$$\frac{dJ}{d\theta_0} = \frac{-2}{n} \sum_{i=1}^{n} (y^{(i)} - (\theta_0 + \theta_1 x^{(i)} + \theta_2 x^{(i)^2} + \theta_3 x^{(i)^3} + \theta_4 x^{(i)^4} + \theta_5 x^{(i)^5}))$$

Partial derivative with respect to θ_1 :

$$\frac{dJ}{d\theta_1} = \frac{-2}{n} \sum_{i=1}^{n} x^{(i)} (y^{(i)} - (\theta_0 + \theta_1 x^{(i)} + \theta_2 x^{(i)^2} + \theta_3 x^{(i)^3} + \theta_4 x^{(i)^4} + \theta_5 x^{(i)^5}))$$

Partial derivative with respect to θ_2 :

$$\frac{dJ}{d\theta_2} = \frac{-2}{n} \sum_{i=1}^{n} x^{(i)^2} (y^{(i)} - (\theta_0 + \theta_1 x^{(i)} + \theta_2 x^{(i)^2} + \theta_3 x^{(i)^3} + \theta_4 x^{(i)^4} + \theta_5 x^{(i)^5}))$$

Partial derivative with respect to θ_3 :

$$\frac{dJ}{d\theta_3} = \frac{-2}{n} \sum_{i=1}^{n} x^{(i)^3} (y^{(i)} - (\theta_0 + \theta_1 x^{(i)} + \theta_2 x^{(i)^2} + \theta_3 x^{(i)^3} + \theta_4 x^{(i)^4} + \theta_5 x^{(i)^5}))$$

Partial derivative with respect to θ_4 *:*

$$\frac{dJ}{d\theta_4} = \frac{-2}{n} \sum_{i=1}^{n} x^{(i)^4} (y^{(i)} - (\theta_0 + \theta_1 x^{(i)} + \theta_2 x^{(i)^2} + \theta_3 x^{(i)^3} + \theta_4 x^{(i)^4} + \theta_5 x^{(i)^5}))$$

Partial derivative with respect to θ_5 :

$$\frac{dJ}{d\theta_5} = \frac{-2}{n} \sum_{i=1}^{n} x^{(i)^5} (y^{(i)} - (\theta_0 + \theta_1 x^{(i)} + \theta_2 x^{(i)^2} + \theta_3 x^{(i)^3} + \theta_4 x^{(i)^4} + \theta_5 x^{(i)^5}))$$

If the hypothesis function generates a high error for the testset as follows after modeling, it means that the model is overfit. There are a few ways to prevent overfitting:

- Cross-validation
- Early stopping before it becomes overfit the training data
- Train with more data
- Remove hidden features in some built-in algorithms

2.

The dataset presents binary classification with two features

Supposed that x_1 is alcohol, x_2 is malic acid feature.

Thus, we have the hypothesis function as below

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \text{ where } g(z) = \frac{e^z}{1 + e^z}$$

We have the cost function as below:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} * \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) * \log(h_{\theta}(x^{(i)}))]$$

And we also have the loss function:

$$\frac{\eth}{\eth \theta_{j}} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) * x_{j}^{(i)}$$

Let $\theta_0 = \theta_1 = \theta_2 = 0$, m = 5, and learning rate $\alpha = 0.0001$

We have the source code below:

```
import numpy as np
import matplotlib.pyplot as plt
import math
alcohol = [14.23, 13.2, 13.16, 14.37, 13.24]
malic acid = [1.71, 1.78, 2.36, 1.95, 2.59]
y = [0, 1, 1, 0, 0]
theta 0 = theta 1 = theta 2 = 0
alpha = 0.0001
i = 0
while i <= 500000:
 diff theta 0 = diff theta 1 = diff theta 2 = 0
 for m in range (5):
   diff theta 0 += (1/(1 + math.exp(-(theta 0 + theta 1*alcohol[m] +
theta 2*malic acid[m])))) - y[m]
   diff theta 1 += ((1/(1 + math.exp(-(theta 0 + theta 1*alcohol[m] +
theta 2*malic acid[m])))) - y[m]) * alcohol[m]
   diff theta 2 += ((1/(1 + math.exp(-(theta 0 + theta 1*alcohol[m] +
theta 2*malic acid[m])))) - y[m]) * malic acid[m]
 diff theta 0 = diff theta 0 * (1/5)
 diff theta 1 = diff theta 1 * (1/5)
 diff theta 2 = diff theta 2 * (1/5)
```

```
theta_0 = theta_0 - alpha * diff_theta_0
theta_1 = theta_1 - alpha * diff_theta_1
theta_2 = theta_2 - alpha * diff_theta_2
i += 1

print("diff_theta_0 = " + str(diff_theta_0) + ", " + "Theta 0 = ",
str(theta_0))
print("diff_theta_1 = " + str(diff_theta_1) + ", " + "Theta 1 = ",
str(theta_1))
print("diff_theta_2 = " + str(diff_theta_2) + ", " + "Theta 2 = ",
str(theta_2))
```

Run program & result:

Thus, the hypothesis function is:

$$h_{\theta}(x) = g(0.60619 - 0.15567x_1 + 0.50862x_2) \text{ where } g(z) = \frac{e^z}{1 + e^z} \text{ and } x_1 \text{ is alcohol feature, and}$$

$$x_2 \text{ is malic acid feature.}$$

3.

Hypothesis function: $h(\theta) = \theta_0 + \theta_1 x$

Loss function: $L = [h(x^{(i)}) - y^{(i)}]^2$

Cost function: $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$

Gradient decent algorithm:

$$\theta_0 = \theta_0 - \alpha \frac{\partial J(\theta)}{\partial \theta_0}$$

$$\theta_1 = \theta_1 - \alpha \frac{\partial J(\theta)}{\partial \theta_1}$$

We have:

$$\frac{\partial J(\theta)}{\partial \theta_0} = \frac{1}{m} \sum_{i=1}^{m} [(\theta_0 + \theta_1 x_1^{(i)}) - y^{(i)}]$$

$$\frac{\partial J(\theta)}{\partial \theta_1} = \frac{1}{m} \sum_{i=1}^{m} [(\theta_0 + \theta_1 x_1^{(i)}) - y^{(i)}] * x_1^{(i)}$$

Let $\theta_0 = \theta_1 = 0$, m = 5, and learning rate $\alpha = 0.0001$

We have the source code below:

```
import numpy as np
import matplotlib.pyplot as plt
import math
x = [1, 2, 3, 4, 5]
y = [7, 9, 12, 15, 16]
theta 0 = theta 1 = 0
alpha = 0.0001
i = 0
while i <= 500000:
  diff theta_0 = diff_theta_1 = 0
  for m in range (5):
    diff_{theta_0} += (theta_0 + theta_1*x[m] - y[m])
    diff theta 1 += (theta 0 + theta 1*x[m] - y[m])*x[m]
  diff theta 0 = diff theta 0 * (1/5)
  diff theta 1 = diff theta 1 * (1/5)
  theta_0 = theta_0 - alpha * diff_theta_0
  theta 1 = theta 1 - alpha * diff theta 1
  i += 1
```

```
print("diff_theta_0 = " + str(diff_theta_0) + ", " + "Theta 0 = ",
str(theta_0))
print("diff_theta_1 = " + str(diff_theta_1) + ", " + "Theta 1 = ",
str(theta 1))
```

Run program & result:

Thus, the linear regression is $h(\theta) = y = 2.4 + 4.6x$

4.

In the process of applying gradient descent algorithm to find max value for each coefficient in hypothesis function, appropriate learning rate α is very important because it can impact the training result and the regression function. For example, a large learning rate will decrease the accuracy of the regression function, since the "diff_theta" will be very large as it misses the minimum or maximum point. On the other hand, a very small learning rate will make the process of regression become very slow, thus it impacts on the running time while the accuracy does not increase proportionally. A balance learning rate will balance between the accuracy and the running time of the regression process.

5.

Hypothesis function: $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$

The model predicts y = 1 if

$$-1 + x_1^2 + x_2^2 \ge 0 \iff x_1^2 + x_2^2 \ge 1$$

Cost function:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)}))$$

Loss function:

$$L = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Partial derivative function for gradient descent is the same form of terms with the one used for linear regression. Thus, we have:

$$\begin{bmatrix} \frac{\partial J(\theta)}{\partial \theta_0} \\ \frac{\partial J(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_n} \end{bmatrix} = \frac{1}{m} x^T (h(x) - y)$$

Thus, the partial derivative is:

$$\frac{\partial (J(\theta))}{\partial (\theta)} = \frac{1}{m} X^{T} [h_{\theta}(x) - y]$$

6.

7.

If k = 2, we randomly choose 2 points A2 and A4.

			Cluster 1	Cluster 2	
	Pnts(x)	Pnts(y)	Dist to A2(8,4)	Dist to A4(6,4)	Cluster
A1	2	10	12	10	Cluster 2
A2	8	4	0	2	Cluster 1
А3	5	8	7	5	Cluster 2
Α4	6	4	2	0	Cluster 2
A5	1	2	9	7	Cluster 2
		A2 Mean	Pnts(x) 8 8	Pnts(y) 4 4	
Cer	nter of cluste	er 2			
			Pnts(x)	Pnts(y)	
		A1	2	10	
		A3	5	8	
		A4	6	4	
		A5	1	2	
		Mean	3.5	6	

			Cluster 1	Cluster 2	
	Pnts(x)	Pnts(y)	Dist to (8,4)	Dist to (3.5,6)	Cluster
A1	2	10	12	5.5	Cluster 2
A2	8	4	0	6.5	Cluster 1
А3	5	8	7	3.5	Cluster 2
Α4	6	4	2	4.5	Cluster 1
A 5	1	2	9	6.5	Cluster 2
Cer	nter of cluste	er 1			
			Pnts(x)	Pnts(y)	
		A2	8	4	
		A4	6	4	
		Mean	7	4	
Cer	nter of cluste	er 2			
			Pnts(x)	Pnts(y)	
		A1	2	10	
		A3	5	8	
		A5	1	2	
		Mean	2.67	6.67	

			Cluster 1	Cluster 2				
	Pnts(x)	Pnts(y)	Dist to (7,4)	Dist to (2.67,6.67)	Cluster			
A1	2	10	11	4	Cluster 2			
A2	8	4	1	8	Cluster 1			
А3	5	8	6	3.66	Cluster 2			
Α4	6	4	1	6	Cluster 1			
A 5	1	2	8	6.34	Cluster 2			
					Distance			
	cluster 1		Pnts(x)	Pnts(y)	A1	A4		
		A2	8	4	0			
		A4	6	4	4	0	Tot Sum	
				Col Sum	4	0	4	
			WCSS	2				
	cluster 2							
			Pnts(x)	Pnts(y)	A1	A3	A5	
		A1	2	10	0			
		A3	5	8	13	0		
		A5	1	2	65	52	0	Tot Sum
				Col Sum	78	52	0	130
			WCSS	65				
			К	Total WCSS				
			2	67	1			

