5.4 Раширења поља

4.1 Претпоставимо супротно, тј. да постоји изоморфизам

$$f: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{3}).$$

Тада важи

$$0 = f(0) = f((\sqrt{2})^2 - 2) = f(\sqrt{2})^2 - 2f(1) = f(\sqrt{2})^2 - 2,$$

па мора бити $f(\sqrt{2}) \in \{\sqrt{2}, -\sqrt{2}\}$. Међутим, $f(\sqrt{2}) \in \mathbb{Q}(\sqrt{3})$, па да бисмо добили жељену контрадикцију довољно је доказати да поље $\mathbb{Q}(\sqrt{3})$ но садржи бројеве $\sqrt{2}$ и $-\sqrt{2}$. Ово се може урадити као у задатку 3.7.

- 4.2 Поступамо као у примеру 4.4.
- а) По овом примеру довољно је пронаћи нерастављив полином a(X) из $\mathbb{Z}_2[X]$ степена 3 тада ће $\mathbb{Z}_2[X]/\langle a(X)\rangle$ бити поље са укупно $2^3=8$ слемената.

Докажимо да је полином X^3+X+1 нерастављив. Да бисмо то урадили довољно је доказати да полином нема линеарних фактора, тј. нула у \mathbb{Z}_2 , јер сваки растављив полином степена 3 има линеаран фактор. Јасно је да 0 и 1 нису нуле овог полинома, па заиста можемо узсти $a=X^3+X+1$.

Одредимо сада елементе, као и таблице множења и сабирања за $\mathbb{Z}_2[X]/\langle a(X)\rangle$. Означимо $\eta=X+\langle a(X)\rangle$, а $1+\langle a(X)\rangle$ са 1 и $\langle a(X)\rangle$ са 0. Тада је

$$\mathbb{Z}_2[X]/\langle a(X)\rangle = \{0, 1, \eta, \eta + 1, \eta^2, \eta^2 + 1, \eta^2 + \eta, \eta^2 + \eta + 1\}.$$

Ради скраћеног записа, уводимо $\nu=\eta^2+\eta$.

Таблица сабирања дата је са (да бисмо је одредили, коефицијенте уз 1, η и η^2 рачунати по модулу 2):

+	0	1					ν	
0	0	1	η	$\eta + 1$	η^2	$\eta^2 + 1$	ν	$\nu + 1$
1	1	0				η^2	$\nu+1$	ν
η	η	$\eta + 1$	0	1	ν	$\nu + 1$	η^2	$\eta^2 + 1$
$\eta + 1$	$\frac{\eta+1}{\eta^2}$	η	1	0	$\nu + 1$	ν	$\eta^2 + 1$	η^2
η^2	η^2	$\eta^2 + 1$	ν	$\nu + 1$	0	1	η	$\eta+1$
$\eta^2 + 1$	$\eta^2 + 1$	η^2	$\nu + 1$	ν	1	0	$\eta + 1$	η
	ν	$\nu + 1$	η^2	$\eta^2 + 1$	η	$\eta + 1$	0	1
$\nu + 1$	$\nu + 1$	ν	$\eta^2 + 1$	η^2	$\eta + 1$	η	1	0

Да бисмо добили таблицу множења, уз претходно наведено, користимо

и да је $\eta^3 + \eta + 1 = X^3 + X + 1 + \langle a(X) \rangle = a(X) + \langle a(X) \rangle = 0$, тј. $\eta^3 = \eta + 1$.

б) Слично као у делу под а), довољно је пронаћи нерастављив полином $a(X) \in \mathbb{Z}_3[X]$ степена 2. Овакав полином је нпр. $a(X) = X^2 + X + 2$ (он је нерастављив, јер 0, 1 и 2 нису његове нуле).

Ако означимо $X+\langle a(X)\rangle$ са η , а $\langle a(X)\rangle$ са 0, $1+\langle a(X)\rangle$ са 1 и $2+\langle a(X)\rangle$ са 2, тада је

$$\mathbb{Z}_3[X]/\langle a(X)\rangle = \{0, 1, 2, \eta, \eta + 1, \eta + 2, 2\eta, 2\eta + 1, 2\eta + 2\}.$$

Таблицу сабирања можемо добити као у делу под а) (тако што косфицијенте уз 1 и η рачунамо по модулу 3).

Таблицу множења добијамо коришћењем једнакости $\eta^2 + \eta + 2 = 0$, тј. $\eta^2 = 2\eta + 1$.

	0	1							$2\eta + 2$
0			0	0	0	0	0	0	0
1	0	1	2	η	$\eta + 1$	$\eta + 2$	2η	$2\eta + 1$	$2\eta + 2$
2	0	2	1	2η	$2\eta + 2$	$2\eta + 1$	η	$\eta+2$	$\eta+1$
η	0	η	2η	$2\eta + 1$	1	$\eta + 1$	$\eta + 2$	$2\eta + 2$	2
$\eta + 1$	0	$\eta + 1$	$2\eta + 2$	1				η	
$\eta + 2$	0	$\eta + 2$	$2\eta + 1$	$\eta + 1$	2η	2	$2\eta + 2$	1	η
2η	0	2η	η	$\eta + 2$	2		$2\eta + 1$		1
$2\eta + 1$	0	$2\eta + 1$	$\eta + 2$	$2\eta + 2$	η			2	2η
$2\eta + 2$	0	$2\eta + 2$	$\eta + 1$	2	$2\eta + 1$	η	1	2η	$\eta + 2$

4.3 Важи $\alpha - i = \sqrt{3}$, па квадрирањем следи $\alpha^2 - 2i\alpha - 1 = 3$. Сада је $\alpha^2 - 4 = 2i\alpha$, па поновним квадрирањем следи $\alpha^4 - 8\alpha^2 + 16 = -4\alpha^2$, тј.

$$\alpha^4 - 4\alpha^2 + 16 = 0.$$

Дакле, α је нула полинома $p(X) = X^4 - 4X^2 + 16 \in \mathbb{Q}[X]$, па је α алгебарски елемент над \mathbb{Q} .

Докажимо да је p минимални полином за α над \mathbb{Q} . Да бисмо ово доказали, довољно је показати да је p нерастављив над \mathbb{Q} .

Поступимо као у примеру 4.9. Претпоставимо супротно, тј. да је p(X) = q(X)r(X) за нека два полинома $q, r \in \mathbb{Q}[X]$ степена барем 1. Нека је уз то, без умањења општости, степен полинома q не мањи од степена полинома r. Тада имамо два случаја.

1° Степен полинома r је 1. У овом случају p(X) има рационалну нулу. Међутим, кандидати за рационалну нулу полинома p(X) су ± 1 , ± 2 , ± 4 , ± 8 и ± 16 , а важи³⁹

$$p(\pm 1)=1-4+16=13,\quad p(\pm 2)=2^4-4\cdot 2^2+16=16,\quad$$
и $p(t)=t^2(t^2-4)+16\geqslant 4^2(4^2-4)+16=208$ за $t\in\{\pm 4,\pm 8,\pm 16\},$

на овај случај није могућ.

2 Степен полинома r је 2. У овом случају је и полином q степена 2, па за неке рационалне бројеве a,b,c,d важи $q(X)=X^2+aX+b$ и $r(X)=X^2+cX+d$. Дакле, важи

$$p(X) = X^4 - 4X^2 + 16 = (X^2 + aX + b)(X^2 + cX + d),$$

па изједначавањем коефицијената полинома на левој и десној страни ове једнакости добијамо следећи систем једначина

$$bd=16,$$
 [косфицијент уз 1] $ad+cb=0,$ [косфицијент уз X] $ac+b+d=-4,$ [косфицијент уз X^2] $a+c=0.$ [косфицијент уз X^3]

Решимо овај систем једначина. Из последње је c = -a, па замсном у другу једнакост добијамо ad - ab = a(d - b) = 0. Из ове једнакости је a = 0 или b = d.

Случај a=0. Тада се дати систем своди на bd=16 и b+d=-4. Из Вијстових формула следи да су b и d решења квадратне једначине $x^2+4x+16=0$. Међутим, дискриминанта ове квадратне једначине је $D=4^2-4\cdot 16=-48$, па b и d нису реални бројеви, те овај случај заиста није могућ.

Случај b = d. Тада се дати систем своди на $b^2 = 16$ и $-a^2 + 2b = -4$. Из прве једначине је b = 4 или b = -4, па заменом у другу добијамо $a^2 = 12$ или $a^2 = -4$. Ове једначине немају рационалних решења, па ни овај случај није могућ.

На овај начин доказали смо да је p(X) минимални полином елемента α над \mathbb{Q} , па важи $[\mathbb{Q}[\alpha]:\mathbb{Q}]=4$. По доказу теореме 4.3 скуп $\{1,\alpha,\alpha^2,\alpha^3\}$ је база простора $\mathbb{Q}[\alpha]$ над \mathbb{Q} и важи

$$\mathbb{Q}[\alpha] = \{a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3 \, : \, a_0, a_1, a_2, a_3 \in \mathbb{Q}\}.$$

Како је $\frac{1}{\alpha^2-2} \in \mathbb{Q}[\alpha]$, то за неке $a_0, a_1, a_2, a_3 \in \mathbb{Q}$ важи

$$\frac{1}{\alpha^2 - 2} = a_0 + a_1 \alpha + a_2 \alpha^2 + a_3 \alpha^3. \tag{*}$$

³⁹Како је полином р моничан можемо узети да су и полиноми q и г монични погледати пример 4.9).

За елемент α важи $\alpha^4 = 4\alpha^2 - 16$, па и $\alpha^5 = 4\alpha^3 - 16\alpha$ (ово добијамо множењем претходне једнакости са α). Сада, множењем једнакости (*) са $\alpha^2 - 2$, те сређивањем добијамо

$$1 = -2a_0 - 16a_2 - (2a_1 + 16a_3)\alpha + (a_0 + 2a_2)\alpha^2 + (a_1 + 2a_3)\alpha^3.$$

Како је $\{1,\alpha,\alpha^2,\alpha^3\}$ база простора $\mathbb{Q}[\alpha]$ над \mathbb{Q} , то је претходна једна-кост сквивалентна са

$$-2a_0 - 16a_2 = 1$$

$$-2a_1 - 16a_3 = 0$$

$$a_0 + 2a_2 = 0$$

$$a_1 + 2a_3 = 0.$$

Из друге и четврте једнакости је $a_1=a_3=0$, а из прве и треће $a_0=1/6$ и $a_2=-1/12$, па важи

$$\frac{1}{\alpha^2-2}=\frac{1}{6}-\frac{1}{12}\cdot\alpha^2.$$

4.4 Имамо $\alpha + \sqrt{3} = \sqrt{5}$, па после квадрирања и сређивања добијамо $2 - \alpha^2 = 2\sqrt{3}\alpha$. Сада, поновним квадрирањем (и сређивањем) добијамо

$$\alpha^4 - 16\alpha^2 + 4 = 0.$$

Дакле, α је нула полинома $p(X) = X^4 - 16X^2 + 4 \in \mathbb{Q}[X]$, па је α алгебарски слемент над \mathbb{Q} .

Као у претходном задатку и примеру 4.9 можемо доказати да је p нерастављив над $\mathbb Q$, а тимс и да је p минимални полином слемента α над $\mathbb Q$. Дакле, важи $[\mathbb Q[\alpha]:\mathbb Q]=4$.

По доказу теореме 4.3 скуп $\{1,\alpha,\alpha^2,\alpha^3\}$ је база простора $\mathbb{Q}[\alpha]$ над \mathbb{Q} и важи

$$\mathbb{Q}[\alpha] = \{a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3 : a_0, a_1, a_2, a_3 \in \mathbb{Q}\}.$$

Како је $\frac{1}{\alpha^2-2}\in\mathbb{Q}[lpha]$, за неке $a_0,a_1,a_2,a_3\in\mathbb{Q}$ важи

$$\frac{1}{\alpha^2 - 2} = a_0 + a_1 \alpha + a_2 \alpha^2 + a_3 \alpha^3. \tag{*}$$

За слемент α важи $\alpha^4=16\alpha^2-4$, па је (множењем са α) и $\alpha^5=16\alpha^3-4\alpha$. Сада, множењем једнакости (*) са α^2-2 , те сређивањем добијамо

$$1 = -2a_0 - 4a_2 - (2a_1 + 4a_3)\alpha + (a_0 + 14a_2)\alpha^2 + (a_1 + 14a_3)\alpha^3.$$

Како је $\{1,\alpha,\alpha^2,\alpha^3\}$ база простора $\mathbb{Q}[\alpha]$ над \mathbb{Q} , то важи

$$-2a_0 - 4a_2 = 1$$

$$-2a_1 - 4a_3 = 0$$

$$a_0 + 14a_2 = 0$$

$$a_1 + 14a_3 = 0$$

Из друге и четврте једнакости следи $a_1=a_3=0$, а из прве и треће $a_0=1/24$ и $a_2=-7/12$, на важи

$$\frac{1}{\alpha^2-2}=\frac{1}{24}-\frac{7}{12}\cdot\alpha^2.$$

4.5 Имамо $\alpha^2 = 2 + \sqrt{3}$, тј. $\alpha^2 - 2 = \sqrt{3}$, па после квадрирања добијамо $\alpha^4 - 4\alpha^2 + 1 = 0$. Дакле, α је нула полинома $p(X) = X^4 - 4X^2 + 1 \in \mathbb{Q}[X]$, па је α алгебарски елемент над \mathbb{Q} .

Као у претходним задатку и примеру 4.9 можемо доказати да је p нерастављив над \mathbb{Q} , а тимс и да је p минимални полином слемента α над \mathbb{Q} . Дакле, важи $[\mathbb{Q}[\alpha]:\mathbb{Q}]=4$.

Како је $\frac{1}{\alpha^2-2} \in \mathbb{Q}[\alpha]$, за неке $a_0, a_1, a_2, a_3 \in \mathbb{Q}$ важи

$$\frac{1}{\alpha^2 - 2} = a_0 + a_1 \alpha + a_2 \alpha^2 + a_3 \alpha^3. \tag{*}$$

За слемент α важи $\alpha^4 = 4\alpha^2 - 1$, па је (множењем са α) и $\alpha^5 = 4\alpha^3 - \alpha$. Сада, множењем једнакости (*) са $\alpha^2 - 2$, те сређивањем добијамо

$$1 = -2a_0 - a_2 - (2a_1 + a_3)\alpha + (a_0 + 2a_2)\alpha^2 + (a_1 + 2a_3)\alpha^3.$$

Како је $\{1,\alpha,\alpha^2,\alpha^3\}$ база простора $\mathbb{Q}[\alpha]$ над \mathbb{Q} , то важи

$$-2a_0 - a_2 = 1$$

$$-2a_1 - a_3 = 0$$

$$a_0 + 2a_2 = 0$$

$$a_1 + 2a_3 = 0.$$

 ${\bf M_3}$ другс и четврте једнакости следи $a_1=a_3=0,$ а из прве и треће $a_0=-2/3$ и $a_2=1/3,$ па важи

$$\frac{1}{\alpha^2-2}=-\frac{2}{3}+\frac{1}{3}\cdot\alpha^2.$$

4.6 Доказаћемо да $\alpha = i + \sqrt{5}$ задовољава услове задатка, тј. да важи $\mathbb{Q}(i+\sqrt{5}) = \mathbb{Q}(i,\sqrt{5})$. Као и обично, доказ ћемо извести доказом две инклузије.

(\subseteq :) Важи $i,\sqrt{5}\in\mathbb{Q}(i,\sqrt{5})$, па како је $\mathbb{Q}(i,\sqrt{5})$ поље, то је

$$i + \sqrt{5} \in \mathbb{Q}(i, \sqrt{5}).$$

Како је $\mathbb{Q}(i+\sqrt{5})$ најмање поље које садржи $i+\sqrt{5}$ и \mathbb{Q} , то је

$$\mathbb{Q}(i+\sqrt{5})\subseteq\mathbb{Q}(i,\sqrt{5}).$$

 $(\supseteq:)$ По дефиницији је $i+\sqrt{5}\in\mathbb{Q}(i+\sqrt{5}),$ па како је $\mathbb{Q}(i+\sqrt{5})$ поље, то је $\frac{1}{i+\sqrt{5}}\in\mathbb{Q}(i+\sqrt{5}).$ Одавде је

$$\frac{1}{i+\sqrt{5}}\cdot\frac{i-\sqrt{5}}{i-\sqrt{5}}=\frac{-i+\sqrt{5}}{6}\in\mathbb{Q}(i+\sqrt{5}).$$

Како је $6\in\mathbb{Q}(i+\sqrt{5})$ и $\mathbb{Q}(i+\sqrt{5})$ поље, одавде закључујемо да је

$$-i + \sqrt{5} \in \mathbb{Q}(i + \sqrt{5}).$$

Сада, из $i+\sqrt{5}, -i+\sqrt{5}\in \mathbb{Q}(i+\sqrt{5})$ следи да су $i+\sqrt{5}+(-i+\sqrt{5})=2\sqrt{5}$ као и $i+\sqrt{5}-(-i+\sqrt{5})=2i$ елементи поља $\mathbb{Q}(i+\sqrt{5}),$ па како је $1/2\in \mathbb{Q}(i+\sqrt{5}),$ то је

 $i, \sqrt{5} \in \mathbb{Q}(i+\sqrt{5}).$

Поље $\mathbb{Q}(i,\sqrt{5})$ је најмање поље које садржи i и $\sqrt{5},$ па јс

$$\mathbb{Q}(i,\sqrt{5}) \subseteq \mathbb{Q}(i+\sqrt{5}).$$

4.7 Доказаћемо да $\alpha = \sqrt{5} + \sqrt{7}$ задовољава услове задатка, тј. да важи $\mathbb{Q}(\sqrt{5} + \sqrt{7}) = \mathbb{Q}(\sqrt{5}, \sqrt{7}).$

(\subseteq :) Важи $\sqrt{5},\sqrt{7}\in\mathbb{Q}(\sqrt{5},\sqrt{7}),$ па како је $\mathbb{Q}(\sqrt{5},\sqrt{7})$ поље, то је

$$\sqrt{5} + \sqrt{7} \in \mathbb{Q}(\sqrt{5}, \sqrt{7}).$$

Како је $\mathbb{Q}(\sqrt{5}+\sqrt{7})$ најмање поље које садржи $\sqrt{5}+\sqrt{7}, \ \mathrm{to} \ \mathrm{je}$

$$\mathbb{Q}(\sqrt{5}+\sqrt{7})\subseteq\mathbb{Q}(\sqrt{5},\sqrt{7}).$$

 $(\supseteq:)$ По дефиницији је $\sqrt{5}+\sqrt{7}\in\mathbb{Q}(\sqrt{5}+\sqrt{7}),$ па како је $\mathbb{Q}(\sqrt{5}+\sqrt{7})$ поље, то је $\frac{1}{\sqrt{5}+\sqrt{7}}\in\mathbb{Q}(\sqrt{5}+\sqrt{7}).$ Одавде је

$$\frac{1}{\sqrt{5} + \sqrt{7}} \cdot \frac{\sqrt{5} - \sqrt{7}}{\sqrt{5} - \sqrt{7}} = \frac{\sqrt{7} - \sqrt{5}}{2} \in \mathbb{Q}(\sqrt{5} + \sqrt{7}).$$

Како јс $2\in\mathbb{Q}(\sqrt{5}+\sqrt{7})$, а $\mathbb{Q}(\sqrt{5}+\sqrt{7})$ је поље, одавде закључујемо да је $\sqrt{7}-\sqrt{5}\in\mathbb{Q}(\sqrt{5}+\sqrt{7})$. Сада, из $\sqrt{5}+\sqrt{7},\sqrt{7}-\sqrt{5}\in\mathbb{Q}(\sqrt{5}+\sqrt{7})$ следи да су $\sqrt{5}+\sqrt{7}+(-\sqrt{5}+\sqrt{7})=2\sqrt{7}$ и $\sqrt{5}+\sqrt{7}-(-\sqrt{5}+\sqrt{7})=2\sqrt{5}$ елементи поља $\mathbb{Q}(\sqrt{5}+\sqrt{7})$, па како је $1/2\in\mathbb{Q}(\sqrt{5}+\sqrt{7})$, то је

$$\sqrt{5}$$
, $\sqrt{7} \in \mathbb{Q}(\sqrt{5} + \sqrt{7})$.

Поље $\mathbb{Q}(\sqrt{5},\sqrt{7})$ је најмање поље које садржи $\sqrt{5}$ и $\sqrt{7}$, па је

$$\mathbb{Q}(\sqrt{5},\sqrt{7})\subseteq\mathbb{Q}(\sqrt{5}+\sqrt{7}).$$

4.8 Нека је $p(X) = X^4 + 2X^2 - 15$. Нуле полинома p су решења следеће биквадратне једначине:

$$t^4 + 2t^2 - 15 = 0.$$

Уколико уведемо смену $u=t^2$ ова једначина се своди на квадратну једначину $u^2+2u-15=0$, чија су решења $u_1=-5$ и $u_2=3$. Лакле, нуле полинома p су $\sqrt{3},-\sqrt{3},i\sqrt{5},-i\sqrt{5},$ па је $K=\mathbb{Q}(\sqrt{3},-\sqrt{3},i\sqrt{5},-i\sqrt{5})$. Приметимо да из $\sqrt{3}\in K$ следи $-\sqrt{3}\in K$ (јер је K поље), као и да из $i\sqrt{5}\in K$ следи $-i\sqrt{5}\in K$, па је $K=\mathbb{Q}(\sqrt{3},i\sqrt{5})$.

Као у задацима 4.6 и 4.7 може се доказати да је

$$\mathbb{Q}(\sqrt{3}, i\sqrt{5}) = \mathbb{Q}(\sqrt{3} + i\sqrt{5}),$$

па је довољно узети $\alpha = \sqrt{3} + i\sqrt{5}$.

4.9 Нска је $p(X) = X^4 - 12X^2 + 9$. Нулс полинома p су решења следеће биквадратне једначине:

$$t^4 - 12t^2 + 9 = 0.$$

Слично као у претходном задатку налазимо да су решења ове једначино $\sqrt{6+3\sqrt{3}}, -\sqrt{6+3\sqrt{3}}, \sqrt{6-3\sqrt{3}}, -\sqrt{6-3\sqrt{3}},$ па је

$$K = \mathbb{Q}\left(\sqrt{6+3\sqrt{3}}, -\sqrt{6+3\sqrt{3}}, \sqrt{6-3\sqrt{3}}, -\sqrt{6-3\sqrt{3}}\right).$$

Из $\sqrt{6+3\sqrt{3}}\in K$ следи $-\sqrt{6+3\sqrt{3}}\in K$, а из $\sqrt{6-3\sqrt{3}}\in K$ следи $-\sqrt{6-3\sqrt{3}}\in K$, па је $K=\mathbb{Q}\left(\sqrt{6+3\sqrt{3}},\sqrt{6-3\sqrt{3}}\right)$. Такође,

$$\frac{1}{\sqrt{6+3\sqrt{3}}} = \frac{1}{\sqrt{6+3\sqrt{3}}} \cdot \frac{\sqrt{6-3\sqrt{3}}}{\sqrt{6-3\sqrt{3}}} = \frac{\sqrt{6-3\sqrt{3}}}{3},$$

па из $\sqrt{6+3\sqrt{3}}\in K$ следи $\sqrt{6-3\sqrt{3}}\in K$, те је $K=\mathbb{Q}\left(\sqrt{6+3\sqrt{3}}\right)$. Дакле, довољно је узети $\alpha=\sqrt{6+3\sqrt{3}}$.

4.10 Нека је $p(X) = X^4 + 12X^2 - 4$. Нуле полинома p су решења следеће биквадратне једначине:

$$t^4 + 12t^2 - 4 = 0.$$

Слично као у претходном задатку налазимо да су решења ове једначине $\sqrt{-6+2\sqrt{10}}, -\sqrt{-6+2\sqrt{10}}, i\sqrt{6+2\sqrt{10}}, -i\sqrt{6+2\sqrt{10}},$ па је

$$K = \mathbb{Q}\left(\sqrt{-6 + 2\sqrt{10}}, -\sqrt{-6 + 2\sqrt{10}}, i\sqrt{6 + 2\sqrt{10}}, -i\sqrt{6 + 2\sqrt{10}}\right).$$

Како је K поље, из $\sqrt{-6+2\sqrt{10}}\in K$ следи $-\sqrt{-6+2\sqrt{10}}\in K$, а из $i\sqrt{6+2\sqrt{10}}\in K$ следи $-i\sqrt{6+2\sqrt{10}}\in K$, па је

$$K=\mathbb{Q}\left(\sqrt{-6+2\sqrt{10}},i\sqrt{6+2\sqrt{10}}
ight).$$

Означимо $u = \sqrt{-6 + 2\sqrt{10}}$ и $v = i\sqrt{6 + 2\sqrt{10}}$.

За разлику од задатака 4.6 и 4.7 у овом задатку ћемо доказати да важи

$$K = \mathbb{Q}(u, v) = \mathbb{Q}(u + 2v)$$

(погледати и коментар). Означимо $\alpha = u + 2v$.

(\subseteq :) Важи $u,v\in \mathbb{Q}(u,v)$, па како је $\mathbb{Q}(u,v)$ поље, то је $\alpha\in \mathbb{Q}(u,v)$. Како је $\mathbb{Q}(\alpha)$ најмање поље које садржи α , то је

$$\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(u,v)$$
.

(⊇:) По дефиницији је $\alpha \in \mathbb{Q}(\alpha)$, па је

$$\alpha^2 = u^2 + 4v^2 + 4uv = -6\sqrt{10} - 30 + 8i \in \mathbb{Q}(\alpha).$$

Следи $-6\sqrt{10}+8i\in\mathbb{Q}(\alpha)$, а самим тим и $-3\sqrt{10}+4i\in\mathbb{Q}(\alpha)$. Одавде је и $(-3\sqrt{10}+4i)^2=74-24i\sqrt{10}$ у $\mathbb{Q}(\alpha)$, тј. $i\sqrt{10}\in\mathbb{Q}(\alpha)$. Сада, како је $-3\sqrt{10}+4i,i\sqrt{10}\in\mathbb{Q}(\alpha)$, то је и $i\sqrt{10}(-3\sqrt{10}+4i)=-30i-4\sqrt{10}$ у $\mathbb{Q}(\alpha)$. Лакле, $15(-3\sqrt{10}+4i)+2(-30i-4\sqrt{10})=-53\sqrt{10}\in\mathbb{Q}(\alpha)$, тј. $\sqrt{10}\in\mathbb{Q}(\alpha)$. Коначно, како је $\alpha\in\mathbb{Q}(\alpha)$ и $\mathbb{Q}(\alpha)$ поље, то је

$$\frac{1}{\alpha} = \frac{1}{u+2v} \cdot \frac{u-2v}{u-2v} = \frac{u-2v}{u^2-4v^2} \in \mathbb{Q}(\alpha).$$

По претходном је $u^2 - 4v^2 = 10\sqrt{10} + 18 \in \mathbb{Q}(\alpha)$, па је $u - 2v \in \mathbb{Q}(\alpha)$. Одавде, слично као у задацима 4.6 и 4.7, закључујемо да су $u, v \in \mathbb{Q}(\alpha)$, те да је $\mathbb{Q}(u, v) \subseteq \mathbb{Q}(\alpha)$.

Коментар. Може се доказати да

$$\mathbb{Q}\left(\sqrt{-6+2\sqrt{10}},i\sqrt{6+2\sqrt{10}}\right)\neq\mathbb{Q}\left(\sqrt{-6+2\sqrt{10}}+i\sqrt{6+2\sqrt{10}}\right)$$
.

Ипак, у општем случају важи: ако су $\alpha, \beta \in \mathbb{C}$, тада постоји $c \in \mathbb{Q}$ такво да важи

$$\mathbb{Q}(\alpha,\beta)=\mathbb{Q}(\alpha+c\beta).$$