Quality Management of Software and Systems (WS19/20) Problem Set 2

Problem 1: SPC

1.1) The execution time of a time-critical routine is measured to see if it varies only statistically or if there are systematic influences. Develop the X-chart, including control and warning levels at +/- 3s and +/- 2s, respectively. Assume the cause for outliers is found and fixed. Repeat the analysis until no outliers occur:

no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
time	7,6	8,0	8,1	8,2	7,2	17,1	8,2	7,7	6,7	8,1	7,3	8,4	14,9	6,9
(ms)														

Solution:

 $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{}$

· Estimation for the standard deviation

 $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$

Standard deviation

· Sample average value

 $\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$

Iteration 1:

n = 14

 $\bar{x} = 8.8857$

S = 3.0882

 $\bar{x} + 2s = 15.0620$

 $\bar{x} - 2s = 2.7094$

 $\bar{x} + 3s = 18.1502$

 $\bar{x} - 3s = -0.3788 = 0$

* UCL: Upper Control Limit

* LCL: Lower Control Limit

Iteration 2:

n = 13

 \bar{x} = 8.2536

S = 2.0679

 $\bar{x} + 2s = 12.3896$

 $\bar{x} - 2s = 4.1181$

UCL: $\bar{x} + 3s = 14.4574$

LCL: $\bar{x} - 3s = 2.0503$

Iteration 3:

n = 12 $\bar{x} = 7.7$ S = 0.5608

 $\bar{x} + 2s = 8.8217$ $\bar{x} - 2s = 6.5783$

 $\bar{x} + 3s = 9.3825$ $\bar{x} - 3s = 6.0175$

Remove the two outliers

1.2) During the production of steel rods, 25 samples of **size four** are extracted from the production. Calculate the mean values and the range of each sample, as well as the overall mean value and range. Use this data to calculate the warning and control levels and indicate which measures are between warning and control levels and which are outside control levels.

Hints: The standard deviation can be calculated using $\sigma = \frac{\bar{R}}{d_n \sqrt{n}}$ with; n the size of each sample and d_n a constant found in the following table:

n	2	3	4	5	6	7	8	9	10	11	12
d_n	1,128	1,69	2,059	2,326	2,534	2,704	2,847	2,97	3,078	3,173	3,258

Sample	Ro	d Lengtl	ı (in mm	1)	Sample	Ro	d Lengtl	ı (in mm	1)
1	144	146	154	146	14	144	160	150	149
2	151	150	134	153	15	150	146	148	157
3	145	139	143	152	16	147	144	148	149
4	154	146	152	148	17	155	150	153	148
5	157	153	155	157	18	157	148	149	153
6	157	150	145	147	19	153	155	149	151
7	149	144	137	155	20	155	142	150	150
8	151	157	159	155	21	146	156	148	160
9	158	150	149	156	22	159	161	156	160
10	145	148	152	154	23	143	156	151	151
11	151	150	154	153	24	151	152	157	149
12	155	145	152	148	25	154	140	157	151
13	152	146	152	142					

Solution:

n = 4

 d_n of n = 4 = 2.059

i.e. Range, R for sample 1: 154-144=10

 \bar{X} = 150.65

 $\bar{R} = 10.32$

 $\sigma = \frac{10.32}{2.059\sqrt{4}} = 2.5061$

 $\bar{x} + 2s = 155.6621$

 $\bar{x} - 2s = 145.1318$

 $\bar{x} + 3s = 158.1682$

 $\bar{x} - 3s = 143.1318$

Simple	Rod len	gth			mean/sample	R/sample
1	144	146	154	146	147.5	10
2	151	150	134	153	147	19
3	145	139	143	152	144.75	13
4	154	146	152	148	150	8
5	157	153	155	157	155.5	4
6	157	150	145	147	149.75	12
7	149	144	137	155	146.25	18
8	151	157	159	155	155.5	8
9	158	150	149	156	153.25	9
10	145	148	152	154	149.75	9
11	151	150	154	153	152	4
12	155	145	152	148	150	10
13	152	146	152	142	148	10
14	144	160	150	149	150.75	16
15	150	146	148	157	150.25	11
16	147	144	148	149	147	5
17	155	150	153	148	151.5	7
18	157	148	149	153	151.75	9
19	153	155	149	151	152	6
20	155	142	150	150	149.25	13
21	146	156	148	160	152.5	14
22	159	161	156	160	159	5
23	143	156	151	151	150.25	13
24	151	152	157	149	152.25	8
25	154	140	157	151	150.5	17

1.3) Calculate the warning and control levels analogue to exercise a) for the following data. You can use the same formula and table to calculate the standard deviation as in exercise b). Additionally, try to give a statement to the measured values and the underlying process.

Sample	Measures (in dB)					Sample	Measures (in dB)				
1	11.1	9.4	11.2	10.4	10.1	11	10.6	9.9	10.7	10.2	11.4
2	9.6	10.8	10.1	10.8	11.0	12	10.8	10.2	10.5	8.4	9.9
3	9.7	10.0	10.0	9.8	10.4	13	10.7	10.7	10.8	8.6	11.4
4	10.7	8.4	10.2	9.4	11.0	14	11.3	11.4	10.4	10.6	11.1
5	12.4	10.0	10.7	10.1	11.3	15	11.4	11.2	11.4	10.1	11.6
6	10.1	10.2	10.2	11.2	10.1	16	10.1	10.1	9.7	9.8	10.5
7	11	11.5	11.8	11.0	11.3	17	10.7	12.8	11.2	11.2	11.3
8	11.2	10.0	10.9	10.5	10.9	18	11.9	11.9	11.6	12.4	11.4
9	10.6	10.4	10.5	10.5	10.9	19	10.8	12.1	11.8	9.4	11.6
10	8.3	10.2	9.8	9.5	9.8	20	12.4	11.1	10.8	11.0	11.9

Solution:

 $\bar{X} = 10.658$

 $\bar{R} = 1.59$

 $\sigma = 0.3057$

 $\bar{x} + 2s = 11.2694$

 $\bar{x} - 2s = 10.0466$

 $\bar{x} + 3s = 11.5751$

 $\bar{x} - 3s = 9.7409$

Sample		Mea	sures (in		mean / sample	R / sample	
1	11.1	9.4	11.2	10.4	10.1	10.44	1.8
2	9.6	10.8	10.1	10.8	11.0	10.46	1.4
3	9.7	10.0	10.0	9.8	10.4	9.98	0.7
4	10.7	8.4	10.2	9.4	11.0	9.94	2.6
5	12.4	10.0	10.7	10.1	11.3	10.9	2.4
6	10.1	10.2	10.2	11.2	10.1	10.36	1.1
7	11	11.5	11.8	11.0	11.3	11.32	0.8
8	11.2	10.0	10.9	10.5	10.9	10.7	1.2
9	10.6	10.4	10.5	10.5	10.9	10.58	0.5
10	8.3	10.2	9.8	9.5	9.8	9.52	1.9
11	10.6	9.9	10.7	10.2	11.4	10.56	1.5
12	10.8	10.2	10.5	8.4	9.9	9.96	2.4
13	10.7	10.7	10.8	8.6	11.4	10.44	2.8
14	11.3	11.4	10.4	10.6	11.1	10.96	1
15	11.4	11.2	11.4	10.1	11.6	11.14	1.5
16	10.1	10.1	9.7	9.8	10.5	10.04	0.8
17	10.7	12.8	11.2	11.2	11.3	11.44	2.1
18	11.9	11.9	11.6	12.4	11.4	11.84	1
19	10.8	12.1	11.8	9.4	11.6	11.14	2.7
20	12.4	11.1	10.8	11.0	11.9	11.44	1.6

^{*} Nearly every second point as an outliner. Here the assumption could be made, that the measured points are not statistical distributed like a normal distribution

^{*} It seems like the process is out of control

Problem 2: Cause and Effect Diagram

2.1 *Copyking*, a copier manufacturer, is currently writing the manual for their latest product. The last chapter should deal with malfunctions. Develop a Cause-and-Effect Diagram for the problem: no or wrong copies!

Solution:

Develop a Cause-and-Effect diagram for the following problems:

2.2 Car cannot belaunched.

Theory: Cause-and-Effect-Diagram
(Fishbone Chart, Ishikawa-Diagram) Example

- Procedure
 - Define problem (effect) and attach it to the head of the "fishbone"
 - Attach the major causes to the "sidewise fishbones" (often used: the 6 m: man, machine, method, material, milieu, measuring)
 - Attach minor causes to the branches of the "sidewise fishbones" (brainstorming: identification with the aid of the questions: what, why, how, who, when, where)

Solution:

*** Note: Man, milieu, material, machine, method and measurement are not all, can be more. These are industrial practice and can be categorize in general.

Problem 3: Pareto Analysis

3.1)

Let's assume a library with some problems: The library has a rusting fire sprinkling system, causing 70688 € per failure. Additionally, the air conditioning is defect, causing a 78959 € per failure. The roof, where the rain comes through, causes only 7390 €, as only part of the books is destroyed. At the reception, the new operating system "Astala" crashes regularly, causing 838 € per crash, as an external technician is needed. Last but not least, thieves frequently visit the library, because it is known that the alarm system is not operating. A book has an average value of 79 €. The following frequencies have been reported for the individual failures:

Fire sprinkling system	1	
Air conditioning	1	
Roof	4	
Astala	142	
Theft	112	
Sum	260	

Problems	Cost/Failure	Failures	Costs overall	Distribution	Priority
Fire sprinkling system	70688	1	70688	23.02%	3
Air conditioning	78959	1	78959	25.72%	2
Roof	7390	4	29560	9.63%	4
Astala	838	142	118996	38.75%	1
Theft	79	112	8848	2.88%	5
Sum		260	307051		

3.2)

Peter has a little time management problem. He has only 18 days left until he leaves for holidays. Until then, he has to finish his master's degree. Therefore, he needs 7 hforthelecture "Quality Management", 44 h for the lecture "Java is not only coffee", "Dynamic programming" needs 41h, and "Data Mining for Beginners" needs 31h. Unfortunately, his master thesis also needs completion. He analyzes his day and discovers that he sleeps 7 h per day and stays 5 hat university. The remaining time can be spent to the aforementioned tasks. Additionally, the examination office told him the allotment for the final mark:

Thesis	4%
Quality Management	5%
Java is not only coffee	10%
Dynamic Programming	12%
Data Mining for beginners	5%

WhichtopicshouldPeterhandlefirst?

Days Left	18					
Hours per day to be allocated	12					
Hours left total	216					
Lecture	Hours	Marks	Marks allotment	Marks/Hour	Marks/Hour	Priority
	needed	allotment	normalized		normalized	
Thesis	93	4%	11.11% (4%/36%)	0.12%	2.99%	5
Quality management	7	5%	13.89%	1.98%	49.65%	1
Java is not only coffee	44	10%	27.78%	0.63%	15.80%	3
Dynamic programming	41	12%	33.33%	0.81%	20.35%	2
Data mining for beginner	31	5%	13.89%	0.45%	11.21%	4
Sum		36%	100%	4.00%	100.00%	

3.3) manufacturer sells alarm clocks. During the final control failures occur, requiring a costly network. Analyze the causes using a Pareto-Analysis.

Failure	Costs	Quantity
Missing Power Cable	7€	7
Broken lever	35 €	2
Defect display	60€	5
Loose screws	3€	23
Wrong manual	5€	18
Scratches	20€	13
Everything else	15	7

Problem	Costs	Quality	Total costs	Costs normalized	Priority
Missing Power Cable	7	7	49	5.20%	7
Broken lever	35	2	70	7.42%	5
Defect display	60	5	300	31.81%	1
Loose screws	3	23	69	7.32%	6
Wrong manual	5	18	90	9.54%	4
Scratches	20	13	260	27.57%	2
Everything else	15	7	105	11.13%	3
			943		

3.4) A bicycle vendor receives pre-assembled bikes from his distributor. Unfortunately, most bikes require additional work, before they could be sold. Which problem should the distributor address first?

Problem	Time needed	Quantity
Light defect	0,5 h	35
Loose spokes	0,3 h	9
Spikes not correctly mounted	0,3 h	7
No canvas (flat tube after pumping)	0,5 h	5
Fork stem to short	3,0 h	3
Screws askew	0,3 h	3
Brake cable too short (can't turn handle bar completely)	0,6 h	10
Creaks in the bottom bracket	1,0 h	49
Suspension loses oil	0,6 h	20
Paintwork damage	0,5 h	2

Problem	Time	Quantity	Total time	Total time normalized	Priority
Lights	0.5	35	17.5	17.04%	2
Spokes	0.3	9	2.7	2.63%	6
Spikes	0.3	7	2.1	2.04%	8
Flat tires	0.5	5	2.5	2.43%	7
Forks	3	3	9	8.76%	4
Screws	0.3	3	0.9	0.88%	10
Brakes	0.6	10	6	5.84%	5
Creaking	1	49	49	47.71%	1
Suspensions	0.6	20	12	11.68%	3
Paint	0.5	2	1	0.97%	9
			102.7	100.00%	

