Clustering and outlier detection

WFFK 7

Outline

Unsupervised Learning

Clustering analysis (measurement and techniques)

Outlier and anomaly detection

Unsupervised Learning

No label to learn

(main) Key objectives:

- 1. Clustering analysis (detect aggregations/centralization behavior in data)
- 2. Outlier detection (detect abnormality behavior in data)

Clustering analysis is everywhere

Gain insights on product, provide data-driven decision making

scovered Custome	r	Departments						
Prototypes	% of Customers	Fresh Meat	Packaged Foods	Dairy	Fish & Seafood	Gourmet	Fresh Produce	Bakery
Basic Shoppers	39%	3%	75%	2%	6%	196	10%	3%
Meat Lovers	15%	59%	15%	4%	5%	3%	9%	5%
Produce Lovers	8%	9%	21%	5%	6%	2%	4996	7%
Gourmet Lovers	3%	196	12%	D%	3%	73%	6%	4%
Variety Shoppers	35%	14%	39%	8%	12%	6%	19%	2%

Clustering

Definition on "cluster"

- Connectivity
- Centroid
- Distribution
- Density

Definition on "distance/similarity"

- Minkowski distance
- Cosine similarity
- Set related similarity

Major approach

- Statistical
- Matrix factorization
- Machine learning

Clustering

Different ways to define clusters

Connectivity based

Centroid based

Distribution based

Density based

K-mean algorithm

```
given N points, on didimension space, with k clusters,

X1, X2, ... XN t1, t2, ... tk

1 initialize t1, ... tk randomly (or use kmeantt)

2 loop until t1, ... tk converge:

2-a: assign X -> t corresponding distance.

2-b: applate t -> tnew based on X's mean for each t;
```

Hierarchical clustering algorithm

Hierarchical clustering algorithm

```
O compute distance matrix for X1, ... XN.
     repeat until get 1 cluster:
            2-a. merge the closest two dusters
            2-b: update distance motors for the change
   X_1, X_2, X_3, X_4 d=1, X_1=0, X_2=1, X_3=4, X_4=6.
1) distane matrix,
   X<sub>1</sub> (0 1 4 6 )
X<sub>1</sub> (1 0 3 5 )
X<sub>2</sub> (4 3 0 2 )
X<sub>3</sub> (6 5 2 0)
                                            use minimum distance between clusters.
```

```
(2) Cycle1: mage X_0, X_1 (2) X_0 + X_1 (0 3 5) update matrix (3 0 2) X_1 (5 2 0)
   Cycle-3 maye X_0+X_1, X_2+X_3 @ \Rightarrow (0) Done! update metarx \bigcirc \bigcirc
time complexity. O \Rightarrow O(N^2 * d) (ignored for now)
                    3 cycle N-1 times. for cycle i, remaily motor is N-i
                       to find the min distance (closest merge) search.
                           (N-i)(N-i+1) ~ O((N-i+1)2)
                       update => O(N-i+1)
                       = [(N-i+1)2+0(N-i+1)] = O(N3)
    naive implementation => 0 (N3)
```

DBSCAN algorithm

Density-based spatial clustering of applications with noise (DBSCAN)

Three type of points:

- 1. core
- 2. reachable (edge)
- 3. outlier

DBSCAN algorithm

Circle size = 1.5, min points = 3

Cycle 1. P1 is picked, np = 2 < 3; P1 => outlier

Cycle 2. P4 is picked, np = 1 < 3; P4 => outlier

Cycle 3. P2 is picked, np = 3 >= 3; P2 => core (assign cluster-A)

- For all points P2 is connected with,
- Cycle 3-1. P1 is picked, np = 2 < 3; P1 => edge (cluster - A)
- Cycle 3-2. P3 is picked, np = 2 < 3; P3 => edge (cluster - A)

11/1/2016 10

Is DBSCAN fully deterministic?

Think about how the scenario:

Circle radius = 0.75, min point = 4

Q. how to make it fully deterministic?

Outlier detection is also widely used

Fraud detection, data processing, etc.

Novelty & outlier detection

Two types

Novelty detection: training data contain NO outliers

Outlier detection: training data contain outlier

One-class SVM approach