

Digital Signal Processing

Ms. Ashwini

Department of Electronics and Communication.

Digital Signal Processing

Properties of DFT

Ms. Ashwini

Department of Electronics and Communication.

Properties of DFT

Numericals

$$\int \chi(n) \longrightarrow \chi(k)$$

$$\chi_{1}(n) = [10000]11] => \chi(n-5)_{8} >> \chi(K) = \frac{-j5\pi k/4}{=\chi_{1}(k)}$$

$$\chi_{\chi}(n) = [00] | 11100] \Rightarrow \chi(n-2)_{8} \rightarrow \chi(K) e^{-j\pi K/2} = \chi(k)$$

$$= 1 \frac{\chi_{\chi}(K)}{2} + \frac{\chi_{\chi}(K)}{2} = \frac{$$

Properties of DFT

Numericals

I
$$\lambda(n) \stackrel{D}{\longrightarrow} \chi(k) = [0, 1+j, 1, 1-j] \Longrightarrow 4$$

a) $\chi_1(n) = \chi(n) e^{j\lambda n/2} \Longrightarrow pff \left[\chi(n) e^{j\lambda x n/2}\right] = \chi[k-1]_{4}$
 $\begin{bmatrix} 1-j, 0, 1+j, 1 \end{bmatrix}$

b) $\chi_2(n) = \begin{bmatrix} \cos \frac{\pi}{2} & \chi(n) \end{bmatrix}$
 $\lim_{n \to \infty} \frac{1}{n} \int_{-\infty}^{\infty} \chi(n) + \frac{1}{n} \int_{-\infty}^{\infty} \chi(n) \int_{-\infty}^{\infty} \chi(n)$

Properties of DFT

Numericals

c)
$$x_3(n) = x(n-1)_4 \longrightarrow x_{1K} J e^{j\sqrt{K}KJ/4}$$

 $x_3(K) = Lo.\tilde{c}^0$, $(1+j)e^{j\sqrt{2}}$, $I = \tilde{c}^{j\sqrt{2}}$, $(1-j)e^{-j6\tilde{a}/4}J$
 $= [0,1-j,-1,1+j]$

d)
$$\lambda_{H}(n) = \chi(-n)_{H}$$

$$DFT[\chi(-n)_{H}] = \chi[N-K] = \chi[-K]_{H} = [0,1-j,1,1+j]$$

e)
$$x_{5}(n) = (0,0,1,0) \bigoplus_{i} x(n)$$

DFT $\left[\delta(n-2) \bigoplus_{i} x(n) \right] = DFT \left[x(n-2)_{i} \right] = \left[\frac{j^{27} k^{2} j_{4}}{4} \right]$
 $= (0,-1-j,1,-1+j)$

THANK YOU

Ms. Ashwini

Department of Electronics and Communication

ashwinib@pes.edu

+91 80 6666 3333 Ext 741