

Análisis de Ventas de una Tienda Online

Objetivos:

Limpieza de datos: Limpiar y preparar los datos de ventas para el análisis.

Análisis exploratorio: Realizar un análisis exploratorio de los datos utilizando gráficos.

Clústeres: Agrupar clientes o productos en clústeres basados en sus comportamientos de compra.

Visualización: Crear visualizaciones para representar los hallazgos.

Link video explicacion https://youtu.be/dI0O-Tb3iFQ

url del data set https://www.kaggle.com/datasets/datacertlaboratoria/proyecto-3-segmentacin-de-clientes-en-ecommerce

Análisis exploratorio de datos

[]:	df.head()							
[]:		N° de factura	Fecha de factura	ID Cliente	País	Cantidad	Monto	mes
	0	548370	2021-03-30 16:14:00	15528.0	United Kingdom	123	22933.0	2021- 03
	1	575767	2021-11-11 11:11:00	17348.0	United Kingdom	163	20973.0	2021- 11
	2	C570727	2021-10-12 11:32:00	12471.0	Germany	-1	-145.0	2021- 10
	3	549106	2021-04-06 12:08:00	17045.0	United Kingdom	1	3995.0	2021- 04

United

2021-10-27

2021-

```
573112
                                        16416.0
                                                                  357 34483.0
                              15:33:00
                                                    Kingdom
                                                                                   10
In [ ]:
         #validar si los espacios son categorica y numerica, se realiza validacion para
         df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 25953 entries, 0 to 25952
       Data columns (total 6 columns):
        # Column
                             Non-Null Count Dtype
       --- -----
           N° de factura
        0
                             25953 non-null object
        1
           Fecha de factura 25953 non-null object
           ID Cliente
                          22229 non-null float64
        3 País
                              25953 non-null object
        4
           Cantidad
                              25953 non-null int64
        5
           Monto
                              25953 non-null object
       dtypes: float64(1), int64(1), object(4)
       memory usage: 1.2+ MB
        validar:
          1. datos faltantes celdas en blanco
          2. columnas irrelevantes.
          3. registros repetidos, eliminar filas repetidas
          4. valores extremos. (outliers) ejemplo edad 200 años
          5. errores tipograficos unificar tipogramia todos M o m
In [ ]:
         # Eliminar duplicados
         df = df.drop_duplicates()
         # Tratar valores nulos (dependiendo de las columnas, esto puede variar)
         df = df.dropna()
         # Convertir fechas si hay una columna de fecha
         if 'fecha venta' in df.columns:
             df['fecha_venta'] = pd.to_datetime(df['fecha_venta'])
         df.info() # Para verificar los tipos de datos
       <class 'pandas.core.frame.DataFrame'>
       Index: 22221 entries, 0 to 25951
       Data columns (total 6 columns):
        # Column
                              Non-Null Count Dtype
           -----
                              -----
          N° de factura 22221 non-null object
           Fecha de factura 22221 non-null object
        1
        2
           ID Cliente
                              22221 non-null float64
                              22221 non-null object
        3
           País
           Cantidad
                             22221 non-null int64
                              22221 non-null object
       dtypes: float64(1), int64(1), object(4)
       memory usage: 1.2+ MB
```

lo anterior, se extrae informacion de los niveles de cada columna categorica, para mirar si

son informaciones unicas

```
In [ ]:
         df.describe() #nos deja ver todas las columnas nomericas
Out[]:
                  ID Cliente
                                Cantidad
        count 22221.000000
                            22221.000000
        mean 15238.398317
                              220.822105
               1732.987098
                             1169.306198
          std
          min 12346.000000 -80995.000000
         25% 13755.000000
                               30.000000
         50% 15136.000000
                              120.000000
         75% 16746.000000
                              254.000000
         max 18287.000000 80995.000000
In [ ]:
         print(f'Tamaño del set antes de eliminar las filas repetidas: {df.shape}')
         df.drop duplicates(inplace=True) # elimina las filas duplicadas función de pan
         print(f'Tamaño del set después de eliminar las filas repetidas: {df.shape}')
       Tamaño del set antes de eliminar las filas repetidas: (22221, 6)
       Tamaño del set después de eliminar las filas repetidas: (22221, 6)
In [ ]:
         df.info() # Para verificar los tipos de datos
       <class 'pandas.core.frame.DataFrame'>
       Index: 22221 entries, 0 to 25951
       Data columns (total 6 columns):
       # Column
                            Non-Null Count Dtype
       --- -----
                             -----
       0 N° de factura
                             22221 non-null object
           Fecha de factura 22221 non-null object
       1
          ID Cliente
                             22221 non-null float64
                             22221 non-null object
        3
           País
        4
           Cantidad
                             22221 non-null int64
           Monto
                             22221 non-null object
       dtypes: float64(1), int64(1), object(4)
       memory usage: 1.2+ MB
In [ ]:
         import matplotlib.pyplot as plt
         import seaborn as sns
         # Si hay una columna de fecha, crear una columna de mes para análisis temporal
         if 'fecha venta' in df.columns:
             df['mes'] = df['fecha_venta'].dt.to_period('M')
         # Ventas mensuales
         if 'mes' in df.columns and 'cantidad' in df.columns:
             ventas_mensuales = df.groupby('mes')['cantidad'].sum()
```

```
ventas_mensuales.plot(kind='bar')
plt.title('Ventas Mensuales')
plt.xlabel('Mes')
plt.ylabel('Cantidad Vendida')
plt.show()

# Productos más vendidos
if 'producto_id' in df.columns and 'cantidad' in df.columns:
    productos_mas_vendidos = df.groupby('producto_id')['cantidad'].sum().sort_v
    productos_mas_vendidos.plot(kind='bar')
    plt.title('Productos Más Vendidos')
    plt.xlabel('ID del Producto')
    plt.ylabel('Cantidad Vendida')
    plt.show()
```

Clustering validamos con clustering a los datos para identificar patrones entre los clientes o productos

```
In [ ]:
         from sklearn.cluster import KMeans
         # Clustering de clientes
         if 'cliente_id' in df.columns and 'cantidad' in df.columns and 'precio' in df.c
             clientes = df.groupby('cliente_id').agg({
                  'cantidad': 'sum',
                 'precio': 'sum'
             }).rename(columns={'cantidad': 'frecuencia_compra', 'precio': 'monto_total'
             # Aplicar K-Means
             kmeans = KMeans(n clusters=3)
             clientes['cluster'] = kmeans.fit_predict(clientes[['frecuencia_compra', 'mo
             # Visualizar clústeres
             sns.scatterplot(x='frecuencia_compra', y='monto_total', hue='cluster', data
             plt.title('Clustering de Clientes')
             plt.xlabel('Frecuencia de Compra')
             plt.ylabel('Monto Total')
             plt.show()
In [ ]:
         # Eliminar duplicados
         df = df.drop duplicates()
         # Tratar valores nulos
         df = df.dropna()
         # Convertir fechas
         df['Fecha de factura'] = pd.to_datetime(df['Fecha de factura'], format='%m/%d/%
         # Convertir 'Monto' a numérico (eliminando las comas)
         df['Monto'] = df['Monto'].str.replace(',', '').astype(float)
         # Verificar los tipos de datos después de la limpieza
         df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 22221 entries, 0 to 25951
Data columns (total 6 columns):
     Column
#
                       Non-Null Count Dtype
     _ _ _ _ _
     N° de factura
0
                       22221 non-null object
     Fecha de factura 22221 non-null datetime64[ns]
 1
 2
     ID Cliente
                       22221 non-null float64
     País
                       22221 non-null object
     Cantidad
                       22221 non-null
                                      int64
 5
     Monto
                       22221 non-null float64
dtypes: datetime64[ns](1), float64(2), int64(1), object(2)
memory usage: 1.2+ MB
```

```
import matplotlib.pyplot as plt
import seaborn as sns

# Crear una columna de mes para análisis temporal
df['mes'] = df['Fecha de factura'].dt.to_period('M')

# Ventas mensuales
ventas_mensuales = df.groupby('mes')['Cantidad'].sum()
ventas_mensuales.plot(kind='bar')
plt.title('Ventas Mensuales')
plt.xlabel('Mes')
plt.ylabel('Cantidad Vendida')
plt.show()
```



```
# Productos mas vendidos
productos_mas_vendidos = df.groupby('N° de factura')['Cantidad'].sum().sort_val
productos_mas_vendidos.plot(kind='bar')
plt.title('Productos Más Vendidos')
plt.xlabel('ID del Producto')
plt.ylabel('Cantidad Vendida')
plt.show()
```


Basado en las visualizaciones, podemos inferir algunas tendencias de los datos de ventas. A continuación, describo las posibles tendencias que se pueden observar en los gráficos de ventas mensuales y de productos más vendidos.

Picos de ventas: Podremos identificar 3 meses específicos con ventas significativamente más altas, lo cual podría estar relacionado con eventos estacionales, promociones o lanzamientos, así mismo podemos concluir que en el último semestre a excepción de diciembre tiene una tendencia al alza

Análisis de Productos Más Vendidos En el gráfico de productos más vendidos, observamos los productos que se venden en mayores cantidades. Las tendencias que podemos inferir incluyen:

**Productos populares: ** los productos 581483 y 541431 corresponden a las dos referencias con las ventas más altas y nos permite saber que son los más populares entre los clientes. Esto nos puede ayudar a la gestión de inventarios y a la planificación de

futuras adquisiciones.

```
In [ ]:
         #diagrama de codo para identificar el valor optimo ---
         import matplotlib.pyplot as plt
         from sklearn.cluster import KMeans
         # Agrupar datos de clientes
         clientes = df.groupby('ID Cliente').agg({
              'Cantidad': 'sum',
              'Monto': 'sum'
         }).rename(columns={'Cantidad': 'frecuencia_compra', 'Monto': 'monto_total'})
         # Lista para almacenar los valores de WCSS
         wcss = []
         # Probar K-Means con diferentes números de clústeres
         for i in range(1, 11):
             kmeans = KMeans(n clusters=i, random state=42)
             kmeans.fit(clientes)
             wcss.append(kmeans.inertia )
         # Generar el diagrama de codo
         plt.figure(figsize=(10, 6))
         plt.plot(range(1, 11), wcss, marker='o', linestyle='--')
         plt.title('Método del Codo')
         plt.xlabel('Número de Clústeres')
         plt.ylabel('WCSS')
         plt.xticks(range(1, 11))
         plt.grid(True)
         plt.show()
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWar
ning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the
value of `n_init` explicitly to suppress the warning
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWar
ning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the
value of `n_init` explicitly to suppress the warning
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWar
ning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the
value of `n_init` explicitly to suppress the warning
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWar
ning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the
value of `n_init` explicitly to suppress the warning
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWar
ning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the
value of `n_init` explicitly to suppress the warning
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWar
ning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the
value of `n_init` explicitly to suppress the warning
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWar
```

```
ning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the
value of `n_init` explicitly to suppress the warning
  warnings.warn(
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWar ning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWar ning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWar ning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

Teniendo en cuenta el diagrama de codo podemos identificar que el conjunto de datos se concentra en 3 grupos

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWar ning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(


```
In [ ]:
         # Identificar los meses con las ventas más altas
         picos ventas = ventas mensuales.sort values(ascending=False).head(3)
         print("Meses con los picos de ventas más altos:")
         print(picos_ventas)
         # Filtrar datos para esos meses y analizar eventos/campañas
         picos_meses = picos_ventas.index
         for mes in picos meses:
             print(f"Análisis del mes: {mes}")
             ventas_mes = df[df['mes'] == mes]
             # Agrupar por producto para ver qué productos fueron más vendidos
             productos_mes = ventas_mes.groupby('N° de factura')['Cantidad'].sum().sort_
             print("Productos más vendidos en este mes:")
             print(productos_mes.head(10))
             # Aquí podríamos agregar análisis de campañas, promociones, etc.
             # Por ejemplo, si tenemos una columna de 'promociones' o 'eventos'
             # print(ventas mes['promociones'].value counts())
```

Meses con los picos de ventas más altos: mes

```
2021-11
                  669915
       2021-10
                  569666
                  537496
       2021-09
       Freq: M, Name: Cantidad, dtype: int64
       Análisis del mes: 2021-11
       Productos más vendidos en este mes:
       N° de factura
       578841
                 12540
       575508
                  6712
       578140
                  5760
       574328
                  4981
       574341
                  4752
       575219
                   4675
       574092
                  4074
       574294
                   3840
       578125
                   3806
       575335
                  3684
       Name: Cantidad, dtype: int64
       Análisis del mes: 2021-10
       Productos más vendidos en este mes:
       N° de factura
       572035
                 13392
       569570
                  7020
       569650
                  6895
       569815
                   6016
       571318
                   5952
       571653
                   5918
       573153
                  5205
       569572
                   5000
       573008
                  4936
                   4462
       571937
       Name: Cantidad, dtype: int64
       Análisis del mes: 2021-09
       Productos más vendidos en este mes:
       N° de factura
       567423
                  12572
       566595
                  7824
       567280
                  6932
       567381
                  6760
       565475
                   5034
       566557
                  4951
       565150
                  4871
       566494
                   4072
       567290
                   3717
                   2893
       566934
       Name: Cantidad, dtype: int64
In [ ]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         from sklearn.model selection import train test split
         from sklearn.linear_model import LinearRegression
         from sklearn.metrics import mean_squared_error, r2_score
         # Cargar el archivo CSV
         df = pd.read_csv('/ventas-por-factura.csv', parse_dates=['Fecha de factura'])
         # Verificar las primeras filas del DataFrame
         df.head()
```

```
# Verificar si la columna 'Promoción' existe y es adecuada para el análisis
if 'Promoción' not in df.columns:
    # Crear una columna 'Promoción' de ejemplo
    df['Promoción'] = np.random.randint(0, 2, size=len(df))
# Convertir 'Promoción' a variable numérica si no lo es
df['Promoción'] = df['Promoción'].astype(int)
# Crear variables independientes (X) y dependiente (y)
X = df[['Promoción']] # Puedes agregar más variables aguí si las tienes
y = df['Cantidad']
# Dividir los datos en conjuntos de entrenamiento y prueba
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random
# Crear el modelo de regresión lineal
model = LinearRegression()
model.fit(X_train, y_train)
# Predecir las ventas en el conjunto de prueba
y pred = model.predict(X test)
# Evaluar el modelo
mse = mean squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f'Error Cuadrático Medio (MSE): {mse}')
print(f'Coeficiente de Determinación (R^2): {r2}')
# Mostrar los coeficientes del modelo
print(f'Coeficientes del modelo: {model.coef }')
print(f'Intersección del modelo: {model.intercept_}')
# Visualizar los resultados
plt.scatter(X_test, y_test, color='blue', label='Datos reales')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Regresión lineal')
plt.title('Regresión Lineal: Impacto de Promociones en Ventas')
plt.xlabel('Promoción')
plt.ylabel('Cantidad Vendida')
plt.legend()
plt.show()
```

Error Cuadrático Medio (MSE): 1865791.438450734 Coeficiente de Determinación (R^2): -0.0003398896512321059 Coeficientes del modelo: [-1.24429712] Intersección del modelo: 207.50127791976882

Regresión Lineal: Impacto de Promociones en Ventas

Conclusion:

trabajos futuros

```
# Visualizar Los residuos
plt.scatter(y_test, y_test - y_pred, color='blue', label='Residuos')
plt.hlines(y=0, xmin=min(y_test), xmax=max(y_test), color='red', linewidth=2)
plt.title('Residuos de la Regresión Lineal Múltiple')
plt.xlabel('Valores Reales')
plt.ylabel('Residuos')
plt.legend()
plt.show()
```

Residuos de la Regresión Lineal Múltiple