VIETNAM NATIONAL UNIVERSITY, HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY FACULTY OF COMPUTER SCIENCE AND ENGINEERING

DISCRETE STRUCTURES FOR COMPUTING (CO1007)

Assignment

Relation - Counting - Probability and Graph

Advisor: Fullname

Students: Fullname of Student 1 - Student 1 ID numbers.

Fullname of Student 2 - Student 2 ID numbers.

HO CHI MINH CITY, SEPTEMBER 2020

University of Technology, Ho Chi Minh City Faculty of Computer Science and Engineering

Contents

1	Member list & Workload				
2	Relation & Counting				
	2.1 Problem 1				
	2.1.1 Method of solving system of differential equations				
	2.1.1.a $\Delta > 0$, (Real Eigenvalues), (4) $c \ 2 \ nghim \lambda_1, \lambda_2 \dots$				
	2.1.1.b $\Delta < 0$, Complex Eigenvalues, $\lambda_{1,2} = p \pm qi \dots$				
	2.1.1.c $\Delta = 0$, Repeated Eigenvalues				
	2.2 Problem 2				
	2.3 Bonus exercises				
3	Probabilty				
	3.1 Problem 1				
	3.2 Problem 2				
	3.3 Bonus exercises				
	John Dollas Cacrelles	•			
4	Graph				
	4.1 Problem 1				
	4.2 Problem 2				
	4.3 Bonus exercises				

1 Member list & Workload

No.	Fullname	Student ID	Problems	Percentage of work
			- Exercise 1	
1	Lưu Quốc Bình	2033009	Bonus: 1, 2, 3.	30%
			- Probability: 1, 2, 3.	
			- Relation & Counting: 4, 5, 6	
2	Nguyễn Văn B	19181717	Bonus: 4, 5, 6.	20%
			- Graph: 1, 2, 3, Bonus: 1, 2, 3.	
			- Relation & Counting: 1, 2, 3	
1	Nguyễn Văn A	19181716	Bonus: 1, 2, 3.	30%
			- Probability: 1, 2, 3.	
			- Relation & Counting: 1, 2, 3	
1	Nguyễn Văn A	19181716	Bonus: 1, 2, 3.	30%
			- Probability: 1, 2, 3.	

2 Relation & Counting

2.1 Problem 1

Write on the report a very detailed introduction to the IVPs Sys. (3) and the formulae of its exact solutions for general a, b, c, and d and initial condition R0 and J0. Then complete Tab. 2 for all possible cases of eigenvalues of general 2×2 matrix A

2.1.1 Method of solving system of differential equations

Xét hệ:

$$\begin{cases}
R' = aR + bJ \\
J' = cR + dJ \\
R(0) = R_0 J(0) = J_0
\end{cases}$$
(1)

dược viết dưới dạng vector

$$\vec{x'} = A\vec{X}$$

sẽ có công thức nghiệm là

$$\vec{X} = \vec{\eta}e^{\lambda t}$$

ở lây λ and $\vec{\eta}$ là eigenvalues và eigenvectors của , ma trận A , và

$$\vec{x'} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}; \vec{X}(t) = \begin{pmatrix} R(t) \\ J(t) \end{pmatrix}; \vec{X}(0) = \begin{pmatrix} R_0 \\ J_0 \end{pmatrix}$$

Đầu tiên, chúng ta tìm eigenvalues của ma trận A.

$$det(A - \lambda I) = \begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = 0$$

triển khai và rút gọn,

$$\lambda^2 - (a+d)\lambda + ad - bc = 0$$

tính delta,

$$\Delta = [-(a+d)]^2 - 4(ad-bc)$$

dạng chung của nghiệm sẽ là

$$\vec{X}(t) = C_1 X_1 + C_2 X_2 \tag{2}$$

2.1.1.a $\Delta > 0$, (Real Eigenvalues), (4) $c \ 2 \ nghim \lambda_1, \lambda_2$

Với λ_1 , chúng ta sẽ xử lý như sau,

$$\begin{pmatrix} a - \lambda_1 & b \\ c & d - \lambda_1 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} (a - \lambda_1)\eta_1 + b\eta_2 \\ (d - \lambda_1)\eta_2 + c\eta_1 \end{pmatrix} 0 \Rightarrow \eta_1 = \frac{-b}{a - \lambda_1}\eta_2 = \frac{d - \lambda_1}{-c}\eta_2$$
 (3)

eigenvector trong trường hợp này sẽ là,

$$\eta^{(1)} = \begin{pmatrix} \frac{-b}{a - \lambda_1} \eta_2 \\ \eta_2 \end{pmatrix}, \eta_2 \in R \tag{4}$$

tương tự với λ_2

$$\eta^{(2)} = \begin{pmatrix} \frac{-b}{a - \lambda_2} \eta_2' \\ \eta_2' \end{pmatrix}, \eta_2' \in R$$

$$\Leftrightarrow \vec{X}(t) = C_1 e^{\lambda_1 t} \left(\frac{-b}{a - \lambda_1} \eta_2 \right) + C_2 e^{\lambda_2 t} \left(\frac{-b}{a - \lambda_2} \eta_2' \right)$$

Tìm các hằng số C_1, C_2 với điều kiện khởi tạo R_0, J_0

$$\begin{pmatrix} R_0 \\ J_0 \end{pmatrix} = \vec{X}(0) = C_1 e^{\lambda_1 t} \begin{pmatrix} \frac{-b}{a - \lambda_1} \eta_2 \\ \eta_2 \end{pmatrix} + C_2 e^{\lambda_2 t} \begin{pmatrix} \frac{-b}{a - \lambda_2} \eta_2' \\ \eta_2' \end{pmatrix}$$

Nhân các hệ số với nhau, ta sẽ có hệ phương trình với biến cần tìm là C_1, C_2

$$\left. \begin{array}{c} \frac{-b}{a-\lambda_1}\eta_2C_1 + \frac{-b}{a-\lambda_2}\eta_2'C_2 = R_0 \\ \eta_2C1 + \eta_2'C2 = J_0 \end{array} \right\} \Rightarrow C1,C2 \quad \text{, v\'oi } \eta_2 \in R \text{ tuỳ \'y , } \lambda_1,\lambda_2 \text{ là eigenvalues}$$

2.1.1.b $\Delta < 0$, Complex Eigenvalues, $\lambda_{1,2} = \mathbf{p} \pm qi$

Dựa vào (3), với $\lambda=p+qi$ (chọn 1 nghiệm phúc với dấu âm hoặc dương , trong trường hợp này em/tôi chọn nghiệm phức dương.), chúng ta có

$$\eta_1 = \frac{-b}{a - (p + qi)} \eta_2 = \frac{d - (p + qi)}{c} \eta_2 \tag{5}$$

eigenvector đầu tiên là,

$$\eta^{(1)} = \begin{pmatrix} \frac{d - (p + qi)}{-c} \eta_2 \end{pmatrix}, \eta_2 \in R$$

Dựa vào công thức nghiệm ở phía trên, $\vec{X_1}$ là

$$\vec{X}_1(t) = e^{(p+qi)t} \left(\frac{d - (p+qi)}{-c} \eta_2 \right), \eta_2 \in R$$

$$\vec{X}_1(t) = e^{pt} e^{qit} \left(\frac{d - (p+qi)}{-c} \eta_2 \right)$$

Áp dụng công thức Euler (https://tutorial.math.lamar.edu/Classes/DE/ComplexRoots.aspxEulerFormula),

$$\vec{X}_1(t) = e^{pt}(\cos(qt) + i\sin(qt)) \left(\frac{d - (p+qi)}{-c} \eta_2 \right)$$

Rút gọn η_2 ,

$$\vec{X}_1(t) = e^{pt} \eta_2(\cos(qt) + i\sin(qt)) \left(\frac{d - (p + qi)}{-c} \right)$$

Các bước biến đổi,

$$\vec{X}_1(t) = e^{pt} \eta_2(\cos(qt) + i\sin(qt)) \left(\frac{d - p - qi}{-c}\right)$$

$$\vec{X}_1(t) = e^{pt} \eta_2(\cos(qt) + i\sin(qt)) \left(\frac{(d-p) - qi}{-c}\right)$$

$$\vec{X_1}(t) = e^{pt} \eta_2 \left(\frac{[\cos(qt) + i\sin(qt)][(d-p) - qi]}{-c \atop (\cos(qt) + i\sin(qt))} \right)$$

$$\vec{X_1}(t) = e^{pt} \eta_2 \begin{pmatrix} \cos(qt)(d-p) + i\sin(qt)(d-p) - qi\cos(qt) - qi\sin(qt)) \\ -c \\ (\cos(qt) + i\sin(qt)) \end{pmatrix}$$

$$\vec{X_1}(t) = e^{pt} \eta_2 \begin{pmatrix} \frac{(d-p)cos(qt) + i(d-p)sin(qt) - qicos(qt) + qsin(qt))}{-c} \\ (cos(qt) + isin(qt)) \end{pmatrix}$$

$$\vec{X}_1(t) = e^{pt} \eta_2 \begin{pmatrix} \frac{[(d-p)cos(qt) + qsin(qt)] + [i(d-p)sin(qt) - qicos(qt))]}{-c} \\ (cos(qt) + isin(qt)) \end{pmatrix}$$

$$\vec{X}_1(t) = e^{pt} \eta_2 \begin{pmatrix} \frac{[(d-p)cos(qt) + qsin(qt)] + i[(d-p)sin(qt) - qcos(qt))]}{-c} \\ (cos(qt) + isin(qt)) \end{pmatrix}$$

$$\vec{X}_1(t) = e^{pt} \eta_2 \left(\frac{\left[(d-p)cos(qt) + qsin(qt) \right]}{-c} + e^{pt} \eta_2 i \left(\frac{\left[(d-p)sin(qt) - qcos(qt) \right) \right]}{-c} sin(qt) \right)$$

$$\vec{X_1}(t) = e^{pt} \left(\frac{\eta_2[(d-p)cos(qt) + qsin(qt)]}{-c} \right) + ie^{pt} \left(\frac{\eta_2[(d-p)sin(qt) - qcos(qt))]}{-c} \right)$$

$$\vec{X_1}(t) = \vec{u}(t) + i\vec{v}(t)$$

Vậy công thức nghiệm chung trong trường hợp $\Delta < 0$ sẽ là

$$\vec{X}_{1}(t) = C_{1}e^{pt} \left(\frac{\eta_{2}[(d-p)cos(qt) + qsin(qt)]}{-c} \right) + C_{2}e^{pt} \left(\frac{\eta_{2}[(d-p)sin(qt) - qcos(qt))]}{-c} \right)$$
(6)

Áp dụng điều kiện khởi tạo để tìm các hằng số C_1, C_2 .

$$\begin{pmatrix} R_0 \\ J_0 \end{pmatrix} = \vec{X}(0) = C_1 \begin{pmatrix} \frac{\eta_2(d-p)}{-c} \\ \eta_2 \end{pmatrix} + C_2 \begin{pmatrix} \frac{\eta_2(-q)}{-c} \\ 0 \end{pmatrix}$$

$$\frac{\eta_2(d-p)}{-c}C_1 + \frac{\eta_2(-q)}{-c}\eta_2C_2 = R_0 \\
\eta_2C_1 = J_0$$
 $\Rightarrow C_1, C_2$

Với η_1, η_2 tính từ (5), p là $Re(\lambda_1)$, q là $Im(\lambda_1)$.

2.1.1.c $\Delta = 0$, Repeated Eigenvalues

Mô tả vấn đề. Chúng ta mong muốn có 2 nghiệm phân biệt, không phụ thuộc nhau để tạo thành một nghiệm chung Tuy nhiên, trong trường hợp này, eigenvalues là nghiệm kép. Thep bài viết này, em tìm được cách giải quyết như sau.

Nghiệm đầu tiên, chúng ta sẽ làm tương tự như trường hợp $\Delta > 0$,

$$\vec{X}_1 = \vec{\eta}e^{\lambda t} = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} e^{\lambda t} = \begin{pmatrix} \frac{-b}{a - \lambda_1} \eta_2 \\ \eta_2 \end{pmatrix} e^{\lambda t} = \begin{pmatrix} \frac{d - \lambda_1}{-c} \eta_2 \\ \eta_2 \end{pmatrix} e^{\lambda t}, (\forall \eta_2 \in R), because(3), (4)$$
 (7)

sau khi tính được η , ta sẽ sử dụng η để tính nghiệm 2.

Nghiệm thứ hai,

$$\vec{X}_2 = te^{\lambda t}\vec{\eta} + e^{\lambda t}\vec{\rho} \tag{8}$$

với $\vec{\rho}$ sẽ thoả

$$\begin{split} (A-\lambda I)\vec{\rho} &= \vec{\eta} \\ \Leftrightarrow \begin{pmatrix} a-\lambda_1 & b \\ c & d-\lambda_1 \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} = \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} \end{split}$$

dựa vào (4), va thực hiện biến đổi tương tự, ta có

$$\Leftrightarrow \begin{pmatrix} a - \lambda_1 & b \\ c & d - \lambda_1 \end{pmatrix} \begin{pmatrix} \vec{\rho_1} \\ \vec{\rho_2} \end{pmatrix} = \begin{pmatrix} \frac{-b}{a - \lambda_1} \eta_2 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} \frac{d - \lambda_1}{-c} \eta_2 \\ \eta_2 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} (a-\lambda_1)\rho_1 + b\rho_2 \\ (d-\lambda_1)\rho_2 + c\rho_1 \end{pmatrix} = \begin{pmatrix} \frac{-b}{a-\lambda_1}\eta_2 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} \frac{d-\lambda_1}{-c}\eta_2 \\ \eta_2 \end{pmatrix}$$

Suy ra cong thức ρ_1 dựa vào $\rho_2 \in R$ tuỳ ý

$$\Rightarrow \rho_1 = \left(\frac{\frac{-b}{a - \lambda_1} \eta_2 - b\rho_2}{a - \lambda_1}\right), and \rho_2 \in R$$
(9)

hoặc

$$\rho_1 = \left(\frac{\frac{d - \lambda_1}{-c} \eta_2 - b\rho_2}{a - \lambda_1}\right), and \rho_2 \in R \tag{10}$$

hoăc

$$\rho_1 = \left(\frac{\frac{-b}{a - \lambda_1} \eta_2 - (d - \lambda_1) \rho_2}{c}\right), and \rho_2 \in R$$
(11)

hoăc

$$\rho_1 = (\frac{d - \lambda_1}{-c} \eta_2 - (d - \lambda_1) \rho_2, \quad and \rho_2 \in R$$
(12)

Công thức nghiệm \vec{X} của hệ sẽ là

$$\vec{X} = C_1 \vec{X}_1 + C_2 \vec{X}_2$$

$$\Leftrightarrow \vec{X} = C_1 \vec{\eta} e^{\lambda t} + C_2 (t e^{\lambda t} \vec{\eta} + e^{\lambda t} \vec{\rho})$$

$$\Leftrightarrow \vec{X} = C_1 \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} e^{\lambda t} + C_2 e^{\lambda t} (t \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} + \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix})$$

$$\Leftrightarrow \vec{X} = C_1 \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} e^{\lambda t} + C_2 e^{\lambda t} \begin{pmatrix} t \eta_1 + \rho_1 \\ t \eta_2 + \rho_2 \end{pmatrix}$$

Áp dụng điều kiện khởi tạo để tìm các hằng số C_1, C_2 .

$$\Leftrightarrow \begin{pmatrix} R_0 \\ J_0 \end{pmatrix} = C_1 \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} e^{\lambda t} + C_2 \begin{pmatrix} t\eta_1 + \rho_1 \\ t\eta_2 + \rho_2 \end{pmatrix}$$

$$\Rightarrow \begin{array}{c} \eta_1 C_1 + \rho_1 C_2 = R_0 \\ \eta_2 C_1 + \rho_2 C_2 = J_0 \end{array} \right\} \Rightarrow C1, C2$$

Với $_{1,2}$ tính từ (7), và ρ_1, ρ_2 được tính từ (9) hoặc (10) hoặc (11) hoặc (12).

2.2 Problem 2

...

2.3 Bonus exercises

•••

3 Probabilty

3.1 Problem 1

...

3.2 Problem 2

. . .

3.3 Bonus exercises

...

- 4 Graph
- 4.1 Problem 1

...

4.2 Problem 2

...

4.3 Bonus exercises

...

References

- [1] ...
- [2] ...