Course Code CSA2002	INTRODUCTION TO DRONES	Course Type	LT
		Credits	2

Course Objectives

- 1. To understand the basics of Unmanned Arial Vehicles (Drones) and its various applications.
- 2. To impart the knowledge of how to fly a drone by considering the rules and regulations to the specific country
- 3. To understand the safety measures to be taken during flight

Course Outcomes

Students who complete this course will be able to

- 1. To introduce the various types of frame design used for the UAV/Drones and to accommodate the electronics over the frame to fly Drones.
- 2. To make the students understand the basic working principal behind the electronic components used and its specification to build a drone from scratch.
- 3. To enable the students to identify and understand various functional modules of the controller using a preprogrammed controller used in the UAV/Drones.

Student Outcomes (SO) | a,b,e,i

- a. An ability to apply the knowledge of mathematics, science and computing appropriate to the discipline
- b. An ability to analyse a problem, identify and define the computing requirements appropriate to its solution
- e. An ability to identify, formulate and solve engineering problems.
- i. Design and conduct experiments as well as analyze and interpret data

Modul	Module Description	Hrs	SO
e No.			
	Intro to Drones		
1	Introduction to UAVs/Drones - Drones - Working Principle and		a,b
	Design- Types of Drones –Motors – Battery – connectors – Assembling the	5	
	Drones – Frame – aerodynamics needed for flying Drone.		
	Building Drones		
2	How to Build a Drone – Preparing – APM planner – Building Fellow me	6	a,b,e
	drone – Arduino based drones – GPS tracker using ESP8266.	U	
	Drones Controllers		
3	Building mission control drones – Using Drones and delivery man –Record	6	a,b,e
	Videos – Photography Drone – Controlling Camera.	U	
	Drone Maintenance		
4	Building Prototype Drones – Gilding Drones – Racing Drones – Maintaining	6	a,b,i
	and trouble shooting of Drone.	0	
	Applications of Drones		
5	Artificial Intelligence techniques in Drones - Drone part design using 3D	5	a,e,i
	Printer, Flying Projects.	3	
	Guest Lecture on Contemporary Topics	2	
	Total Lecture:		30

Mode of Teaching and Learning:

Flipped Class Room, One Lecture to be videotaped, Digital/Computer based models to augment lecture for practice/tutorial, 2 hour lectures by industry experts on contemporary topics.

Mode of Evaluation:

The assessment and evaluation components including, Building drones, student's Drone innovative application assessment practices followed by faculty, in addition to the Continuous Assessment Tests and Term End Examination.

Text Book(s):

1. Syed Omar FarukTowaha, Building Smart Drones with ESP8266 and Arduino: Build exciting drones by leveraging the capabilities of Arduino and ESP8266, Packt Publishing, 2018.

Reference Books:

- 1. Theory, Design, and Applications of Unmanned Aerial Vehicles- by A. R. Jha Ph.D. (Author),2016
- 2. Handbook of Unmanned Aerial Vehicles- Editors: Valavanis, K., Vachtsevanos, George J. (Eds.), 2014
- 3 Jane's Unmanned Aerial Vehicles and Targets -by Kenneth Munson (Editor), 2010
- 4 Guidance of Unmanned Aerial Vehicles- by Rafael Yanushevsky (Author), 2011

Recommendation by the Board of Studies on	24.06.2020
Approval by Academic council on	29.06.2020
Compiled by	Dr S Sountharrajan