

IRLML6402PbF-1

V _{DS}	-20	V
R _{DS(on) max}	0.065	
(@V _{GS} = -4.5V)		
Q _{g (typical)}	8.0	nC
I _D	-3.7 A	
$(@T_A = 25^{\circ}C)$	-3.7	A

Features

Industry-standard pinout SOT-23 Package
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1, Industrial qualification

Benefits

Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability

		Standard Pa	ck		
Base Part Number	Package Type	Form	Quantity	Orderable Part Number	
IRLML6402TRPbF-1	Micro3™ (SOT-23)	Tape and Reel	3000	IRLML6402TRPbF-1	

Absolute Maximum Ratings

	Parameter	Max.	Units	
V_{DS}	Drain- Source Voltage	-20	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-3.7		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-2.2	Α	
I _{DM}	Pulsed Drain Current ①	-22		
P _D @T _A = 25°C	Power Dissipation	1.3	W	
P _D @T _A = 70°C Power Dissipation		0.8	VV	
	Linear Derating Factor	0.01	W/°C	
E _{AS}	Single Pulse Avalanche Energy®	11	mJ	
V _{GS}	Gate-to-Source Voltage	± 12	V	
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	75	100	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.009		V/°C	Reference to 25°C, I _D = -1mA ②
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.050	0.065	Ω	V _{GS} = -4.5V, I _D = -3.7A ②
' 'DS(on)	State Brain to Godice On Hediciano		0.080	0.135	12	V _{GS} = -2.5V, I _D = -3.1A ②
V _{GS(th)}	Gate Threshold Voltage	-0.40	-0.55	-1.2	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9 _{fs}	Forward Transconductance	6.0			S	V _{DS} = -10V, I _D = -3.7A ②
l	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -20V, V_{GS} = 0V$
I _{DSS}	Diali-to-Source Leakage Current			-25	μA	$V_{DS} = -20V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
IGSS	Gate-to-Source Reverse Leakage			100	IIA I	V _{GS} = 12V
Q _g	Total Gate Charge		8.0	12		$I_D = -3.7A$
Q _{gs}	Gate-to-Source Charge		1.2	1.8	nC	$V_{DS} = -10V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		2.8	4.2		V _{GS} = -5.0V ②
t _{d(on)}	Turn-On Delay Time		350			$V_{DD} = -10V$
t _r	Rise Time		48		ns	$I_D = -3.7A$
t _{d(off)}	Turn-Off Delay Time		588		115	$R_G = 89\Omega$
tf	Fall Time		381			$R_D = 2.7\Omega$
C _{iss}	Input Capacitance		633			$V_{GS} = 0V$
Coss	Output Capacitance		145		pF	$V_{DS} = -10V$
C _{rss}	Reverse Transfer Capacitance		110			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			-1.3		MOSFET symbol		
	(Body Diode)			-1.3	Α	showing the		
I _{SM}	Pulsed Source Current			-22] ^	integral reverse		
	(Body Diode) ①			22				p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.2	٧	$T_J = 25^{\circ}C$, $I_S = -1.0A$, $V_{GS} = 0V$ ②		
t _{rr}	Reverse Recovery Time		29	43	ns	$T_J = 25^{\circ}C, I_F = -1.0A$		
Q _{rr}	Reverse RecoveryCharge		11	17	nC	di/dt = -100A/µs ②		

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ③ Surface mounted on 1" square single layer 1oz. copper FR4 board, steady state.
- $\label{eq:starting} \begin{array}{l} \text{ (4)} \quad \text{Starting T}_J = 25^{\circ}\text{C}, \ L = 1.65\text{mH} \\ \text{R}_G = 25\Omega, \ I_{AS} = \text{-}3.7\text{A}. \end{array}$

^{**} For recommended footprint and soldering techniques refer to application note #AN-994.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Avalanche Energy Vs. Drain Current

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

RDS (on) , Drain-to-Source On Resistance (Ω) 0.20 VGS = -2.5V0.16 0.12 0.08 VGS = -4.5V 0.04 0.00 0 5 10 15 20 25 30 -I_D , Drain Current (A)

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Micro3 (SOT-23) (Lead-Free) Package Outline

Dimensions are shown in millimeters (inches)

Micro3 (SOT-23 / TO-236AB) Part Marking Information

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YE	AR	Υ	WORK WEEK	W	
2011	2001	1	01	Α	
2012	2002	2	02	В	
2013	2003	3	03	С	
2014	2004	4	04	D	
2015	2005	5			
2016	2006	6			
2017	2007	7			
2018	2008	8	1	1	
2019	2009	9	7	1	
2020	2010	0	24	X	
			25	Υ	
			26	7	

W = (27-52) IF PRECEDED BY A LETTER

YE	AR	Υ	WORK WEEK	W
2011	2001	Α	27	Α
2012	2002	В	28	В
2013	2003	С	29	С
2014	2004	D	30	D
2015	2005	E		
2016	2006	F		
2017	2007	G		
2018	2008	Н	1	1
2019	2009	J	7	•
2020	2010	K	50	X
			51	Υ
			52	Z

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Micro3™(SOT-23/TO-263AB) Tape & Reel Information

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification information[†]

Qualification information	dalinoation information				
Qualification level	Industrial (per JEDEC JES D47F ^{††} guidelines)				
Moisture Sensitivity Level	Micro3™ (SOT-23)	MSL1 (per JEDEC J-STD-020D ^{††})			
RoHS compliant	Yes				

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/