NB-IoT通訊協定及應用系統 種子教師培訓課程

實習二:NB-IoT傳輸模組實習

黃能富特聘教授 國立清華大學資訊工程系

E-mail: nfhuang@cs.nthu.edu.tw

© All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of Professor Nen-Fu Huang (E-mail: nfhuang@cs.nthu.edu.tw).

教材

- 請清點今天會使用之教材
 - Micro-USB線 ———

- NB-IoT 天線
- NB-IoT Sim卡
- NB-IoT模組開發板

● 完成實驗後請將各項教材繳回給助教!!

NB-IoT介紹大綱

- NB-IoT 介紹
- NB-IoT 模組介紹
- TCP/UDP
- NB-IoT 實驗架構

- 物聯網的無線通信技術主要分為兩類:
 - 1. 短距離通信技術。EX: Zigbee、WiFi、藍牙、Z-wave
 - 2. **廣域網通信技術**,即**LPWAN** (low-power Wide-Area Network)。也分為兩類:
 - I. 工作於未授權頻譜的LoRa、SigFox等技術。
 - II. 工作於授權頻譜下,3GPP支持的2/3/4G蜂窩通信技術,比如EC-GSM、LTE Cat-m、NB-IoT等。

● 各無線通信技術之範圍與傳輸速率比較

- NB-IoT (Narrow Band Internet of Things),即窄帶物聯網。
- NB-IoT使用License頻段,可採取帶內、保護帶或獨立載 波等三種部署方式,與現有網絡共存。
- 具有高覆蓋,高連結,低功耗,低成本等優勢。

- NB-IoT 的優勢
- Super coverage
 - NB-IoT室內覆蓋能力強。
 - 不僅可以滿足農村這樣的廣覆蓋需求,對於廠區、地下車庫、井蓋這類對深度覆蓋有要求的應用同樣適用。
- Massive connection
 - 在同一基站的情況下,NB-IoT可以比現有無線技術提供50-100倍的接入數。一個扇區能夠支持10萬個連接,支持低延時敏感度、超低的設備成本、低設備功耗和優化的網絡架構。

- NB-IoT 的優勢
- Low Power
 - 低功耗特性是物聯網應用一項重要指標,特別對於一些不能經常 更換電池的設備和場合,如安置於高山荒野偏遠地區中的各類傳 感監測設備,它們不可能像智慧型手機一天一充電,長達幾年的 電池使用壽命是最本質的需求。

Low Cost

- 與LoRa相比,NB-IoT無需重新建網,射頻和天線基本上都是復用的。
- 低速率、低功耗、低帶寬同樣給NB-IoT晶片以及模組帶來低成本 優勢。

- NB-IoT的應用
 - Connected scooters/Bikes
 - Smart Parking
 - Smart Streetlights
 - Remote Healthcare
 - Environment Monitoring
 - Asset Tracking
 - Smart Security Control
 - Smart Vending Machines

NB-IoT介紹大綱

- NB-IoT 介紹
- NB-IoT 模組介紹
- TCP/UDP
- NB-IoT 實驗架構

- 操作環境
 - 3.3V 單電源供電
 - 操作溫度範圍: -35°C 75°C
- 特性
 - ■可快速整合至感應器
 - 提供AT指令集配置
 - 18.7mm x 16.0mm, 2.1mm 針腳封裝
 - 介面: UART
 - 高靈敏度: -129 dBm
 - 支援頻道: LTE Bands 5, 8

*請注意V2.1和V2.2板子腳位略有不同

V2.1 (正面須用杜邦線連接下表腳位)

*請注意V2.1和V2.2板子腳位略有不同

V2.2 (正面可用跳線連接下表腳位)

NB-IoT 通訊模組的 AT Commands

	用途	UE Return
AT+QBAND?	確認設置頻段信息	+QBAND: 5,8 OK
AT+CGSN=1	查詢設備IMEI號	+CGSN: 123456789012347 OK
Note: IMEI如有錯誤,自動模式下先設置AT+CFUN=0關閉MT功能後寫入		
AT+CFUN?	確認MT的功能	+CFUN: 1 OK
Note: 如果開啟自動聯網功能,重啟後默認CFUN=1		

NB-IoT 通訊模組的 AT Commands

	用途	UE Return
AT+CIMI	查詢USIM卡IMSI號	460001357924680 OK
Note: 如查不到IMSI號,請確認卡片是否開通與是否插好		
AT+CSQ	確認信號強度	+CSQ: 21,99 OK
Note,但共工党资产收货工一层贴设在估工处体於1F的 OOdDest		

Note: 保持正常通信狀態下,信號強度值不能低於15即-80dBm左右

信號強度值為99時說明沒有信號。

數值	信號強度
0	-113dBm or less
1	-111dBm
230	-10953dBm
31	-51dBm or greater
99	Not known or Not detectable

NB-IoT 通訊模組的 AT Commands

	用途	UE Return
AT+CGATT?	查詢是否有連 上網路	+CGATT: 1 OK
Note: 如果反為+CGATT:0說明未上網成功,有30s的延時,可一直查詢。過了30s後仍未成功,則判定為失敗		
AT+CEREG?	查詢當前網路 註冊狀態	+CEREG: 1,1 OK
Note: 第一個參數1表示是否能註冊網路,第二個參數1代表成功註冊網路		
AT+CSCON?	查詢連接狀態	+CSCON: 0,1 OK
Note:第一個參數0表示關閉非請求結果碼,第二個參數1表示為連接狀態		

大綱

- NB-IoT 介紹
- NB-IoT 模組介紹
- TCP/UDP
- NB-IoT 實驗架構

TCP/UDP

- 在 TCP/IP 協定中傳送層主要有兩個協定: TCP 與 UDP
- TCP (Transmission Control Protocol)
- TCP 提供的是一個連線導向(Connection Oriented)的可 靠傳輸,可使用連線要求、連線終止、以及流量控制等 的管理程序。

TCP/UDP

- 在 TCP/IP 協定中傳送層主要有兩個協定: TCP 與 UDP
- UDP (User Datagram Protocol)
- UDP 是非連線型(Connectionless)的非可靠傳輸協定, 只提供資料的不可靠傳遞,一旦將資料傳送出去,就不 保留資料備份,且也可能發生到達順序不一致的問題。

發送方

T1 時間 -- UDP A T2 時間 -- UDP B T3 時間 -- UDP C

接收方

T4 時間 -- UDP C T5 時間 --

T6 時間 -- UDP A

(Loss UDP B)

大綱

- NB-IoT 介紹
- NB-IoT 模組介紹
- TCP/UDP
- NB-IoT 實驗架構

NB-IoT 通訊模組實驗架構

NB-IoT 基地台 (電信公司) 電信公司雲端平台或 Internet **UDP NB-IoT UDP** TX / RX edu.nthu-smartfarming.kits.tw:15354 **USB-UART UDP Server** AT-CMD Data (text(電腦畫面輸入 text 資料傳送給 UDP server, UDP server 將資料回傳到電腦畫面

實驗目標

● 目標一:透過 COM Port 下 AT-CMD

目標二:透過 AT-CMD 讓使模組傳送及接收資料

- 連接 NB-IoT 模組與電腦
- 先安裝驅動CH340:
 https://sparks.gogo.co.nz/ch340.html
- 確認模組狀態
 - Com port setting hint: Baud rate: 115200 / NL & CR
 - 1. 安裝UART通訊軟體 (Arduino IDE 即可,注意序列埠)
 - 2. 打開序列埠監控視窗,設定board rate(115200),
 NL&CR(Newline & Carriage Return)
 - 3. 長按4553開機鍵PWK(約2秒)
 - 4. 確認通訊成功:輸入"AT",須回復"OK"
 - 5. 確認設置頻段 (8需要開啟)
 - 6. 啟動NB-IoT模組
 - 7. 查詢 IMEI / IMSI 號碼 (確認SIM卡正常)

- AT 指令格式通則
 - 查詢指令可支持的參數: AT+<cmd>=?
 - 查詢指令目前的參數: AT+<cmd>?
 - 設置指令的參數:AT+<cmd>=<p1>[,<p2>[,<p3>[...]]]

·指令中非必要的話,請勿加入空格

AT command 說明文件: BC20 AT command BC20 TCP IP

指令	用途
QSCLK	設置/查詢休眠模式
QBAND	設置/查詢頻段
CFUN	設置/查詢 MT啟用狀態
CGSN	查詢設備 IMEI
CIMI	查詢 SIM卡卡號 (IMSI)

* **MT** = Mobile Terminal

* 紅色指令: 只能在啟動之後使用

Ex.

指令	用途
AT+QSCLK=0	關閉設備休眠 Disable deep sleep
AT+QBAND=1,8	設定1個頻段:8 Set one band: 8
AT+CFUN=1	啟動NB模組 Enable Module
AT+CGSN=1	查詢設備 IMEI Inquire IMEI
AT+CIMI	查詢 SIM卡卡號(IMSI) Inquire IMSI * 若無法查詢,請告知助教

目標一

實驗目標

● 目標一:透過 COM Port 下 AT-CMD

● 目標二:透過 AT-CMD 使模組傳送及接收資料

- 透過 AT-CMD 傳送與接收資料
 - 1. 啟動 NB模組
 - 2. 設定傳輸 IPV4 / IPV6 位址
 - 3. 附著(加入)NB網路
 - 4. 建立 UDP Socket.
 - 5. 傳送 UDP資料
 - 6. 接收 UDP資料

指令	用途
CFUN	設置/查詢MT啟用狀態
CGDCONT	設置/查詢傳輸類型
CGATT	設置/查詢MT附著狀態
QICFG	設置傳送與接收格式

^{*} CGDCONT須在附著網路之前設置

Ex.

指令	用途
AT+CFUN=1	啟動NB模組 Enable Module
AT+CGATT=0	去附著網路 Detach to network
AT+CGDCONT=1,"IPV4V6"	設定IPV4 / IPV6
AT+CGATT=1	附著至NB網路 Attach to NB-IoT
AT+QICFG="dataformat",1,1	設定傳送與接收格式為HEX Set sending and receiving format to HEX

^{*} 若AT+CGDCONT無法設置,請先將AT+CGATT=0 Set AT+CGATT=0 before AT+CGDCONT

指令	用途
AT+CMEE=1	開啟進階錯誤回報 (* 建議)
AT+CEREG=5	開啟註冊狀態回報
AT+CSCON=1	開啟基站連線狀態回報

指令	用途
AT+QIOPEN=1,0,"UDP"," <addr domainname="">",<dstport>,0,0,0</dstport></addr>	建立Socket指令格式 Create Socket

Addr → edu.nthu-smart-farming.kits.tw (UDP 位置)

DstPort → 15354 (UDP Port) *此UDP server 僅限實驗當天開啟

指令	用途
AT+QISENDEX=0, <length>,<d ata=""></d></length>	傳送UDP資料的指令格式 Send data to UDP

length → 資料長度 (<u>IN BYTES</u>)
data → 資料內容 (<u>HEX STRING</u>)

AT+QISENDEX=0,3,313233

上面指令會將 "313233" (HEX)傳送至edu.nthu-smart-farming.kits.tw

*根據實際情形

+CSCON和+QIURC可能不會出現,

為避免資料漏失,可在傳輸後都輸入接收指令

指令	用途
AT+QIRD=0, <len></len>	接收UDP資料的指令格式 Receive data from UDP

Len → 指定讀取長度 (in bytes)

* 亦可直接設定最大長度512

接收到返還資料

目標二

- 1. 將16進位數字透過NB-IoT + UDP傳送至指定位置
- 2. 接收返還的資料
- 1. Send the hex number to edu.nthu-smart-farming.kits.tw
- 2. Receive the data from the UDP server

The End