Processamento Digital de Imagem

Operações Ponto a Ponto

Prof: Emília Alves Nogueira
Ciência da Computação
Universidade Federal de Goiás
E-mail: emiliacdc@hotmail.com

Sumário

- 1. Operações de arranjos matriciais versus matrizes
- 2. Operações pontuais
- 3. Operações aritméticas pontuais
- 4. Operações básicas com conjuntos
- 5. Operações lógicas
- 6. Outras operações

Sumário

- 1. Operações de arranjos matriciais versus matrizes
- 2. Operações pontuais
- 3. Operações aritméticas pontuais
- 4. Operações básicas com conjuntos
- 5. Operações lógicas
- 6. Outras operações

Operações de arranjos matriciais versus matrizes

Considere duas imagens 2 x 2:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad e \quad \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

• Produto do arranjo matricial dessas duas imagens:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} & a_{12}b_{12} \\ a_{21}b_{21} & a_{22}b_{22} \end{bmatrix}$$
 No octave:
A .*B

Operações de arranjos matriciais versus matrizes

Considere duas imagens 2 x 2:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \text{e} \quad \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

Produto de matrizes

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$
No octave: A * B

Sumário

- 1. Operações de arranjos matriciais versus matrizes
- 2. Operações pontuais
- 3. Operações aritméticas pontuais
- 4. Operações básicas com conjuntos
- 5. Operações lógicas
- 6. Outras operações

Operações Pontuais

- São operações nas imagens onde o processamento é realizado em cada pixel individualmente
- Podem ser
 - Aritméticas
 - Lógicas
 - Envolver uma ou mais imagens

Operações Pontuais

- Com uma imagem
 - Cada ponto na imagem de entrada gera um só ponto na imagem de saída

T[f(x,y)] ==> Operação sobre cada ponto (cada pixel) da imagem de entrada

Operações Pontuais

- Com duas ou mais imagens
 - Cada ponto das imagens de entrada é combinado para gerar um só ponto na imagem de saída

Sumário

- 1. Operações de arranjos matriciais versus matrizes
- 2. Operações pontuais
- 3. Operações aritméticas pontuais
- 4. Operações básicas com conjuntos
- 5. Operações lógicas
- 6. Outras operações

- As operações aritméticas entre imagens são operações de arranjo matricial em que as operações são realizadas entre pares de pixels correspondentes.
- As quatro operações aritméticas são expressas como:

$$s(x, y) = f(x, y) + g(x, y)$$

$$d(x, y) = f(x, y) - g(x, y)$$

$$p(x, y) = f(x, y) \times g(x, y)$$

$$v(x, y) = f(x, y) \div g(x, y)$$

 As imagens f e g devem possuir o mesmo tamanho, ou seja, o mesmo numero de linhas e colunas. Consequentemente, as imagem s, d, p e v também terão o mesmo tamanho das imagens originais.

- Podem ser divididas em
- Adição
 - Ajuste de brilho
 - Remoção de ruídos
- Subtração
 - Detecção de diferença entre duas imagens
 - Movimento
- Multiplicação
 - Calibração de brilho
 - Máscaras
- Divisão
- Normalização de brilho
 CIÊNCIAS DA
 COMPUTAÇÃO
 LIATAÍ

- Algumas dessas operações aritméticas são as transformações de intensidade:
 - Lineares:

•
$$g = c * f + b$$

- Não-lineares:
 - $g = c * log_2(f + 1)$
 - g = c * exp(f + 1)

- Exemplos: adição
 - Média de K imagens com ruído: suavização do ruído

de K imagens ruidosas. $\overline{g}(x,y) = \frac{1}{K} \sum_{i=1}^{K} g_i(x,y)$

- Exemplos: subtração
 - Diferença entre as imagens indica se houve movimento

(c)

- Exemplos: subtração
 - Subtração de imagens para realce de diferenças

Imagem de raio X (*máscara*) da parte superior da cabeça.

Amostra de uma imagem ativa obtida depois de injetar uma substância de contraste para raio X na corrente sanguínea.

Subtração
entre a
máscara e a
imagem ativa.
As áreas
diferentes são
exibidas como
detalhes
realçados.

Imagem da diferença com o contraste realçado. (Será visto depois)

 Exemplos: multiplicação e divisão de imagens para correção de sombreamento

Imagem sombreada de um filamento de tungstênio e suporte gerada por um microscópio eletrônico.

Padrão de sombreamento. Pode ser obtido capturando a imagem de um objeto de intensidade constante.

Produto da imagem **a** pelo inverso da imagem **b**.

 Exemplos: multiplicação de imagens para mascaramento ou obtenção de região de interesse (ROI)

Imagem digital de uma radiografia odontológica.

Mascara com duas regiões de interesse para isolar dentes com obturações. Branco \rightarrow 1 Preto \rightarrow 0

Produto da imagem pela mascara.

- Exemplos: divisão
 - Permite o realce das diferenças de imagens com níveis de intensidade diferentes
 - Salienta uma imagem em detrimento da outra

Sumário

- 1. Operações de arranjos matriciais versus matrizes
- 2. Operações pontuais
- 3. Operações aritméticas pontuais
- 4. Operações básicas com conjuntos
- 5. Operações lógicas
- 6. Outras operações

- Seja A e B conjuntos compostos de pares ordenados de números reais.
- Exemplo de um elemento de A: a = (a1, a2) a E A
- Exemplo de um elemento de B: b = (b1, b2) b ∈ B
 Operações com imagens binarias.

Dois conjuntos de coordenadas A e B e o conjunto universo U.

União de A e B.

Interseção de A e B.

- Seja A e B conjuntos compostos de pares ordenados de números reais.
- Exemplo de um elemento de A: a = (a1, a2) a E A
- Exemplo de um elemento de B: b = (b1, b2) b ∈ B
 Operações com imagens binarias.

Complemento de A. Elementos que não estão em A.

Diferença entre A e B. Elementos que pertencem a A mas não a B

- Operações com imagens em escala de cinza.
- Imagem: Conjunto A cujos elementos são expressos na forma:
 - $(x,y,z) x e y \rightarrow$ coordenadas espaciais $z \rightarrow$ intensidade.

- Operações com imagens em escala de cinza.
- Imagem: Conjunto A cujos elementos são expressos na forma:
 - $(x,y,z) x e y \rightarrow$ coordenadas espaciais $z \rightarrow$ intensidade.

Complemento de *A* → Conjunto de pixels de *A* cujas intensidades são subtraídas de uma constante.

$$A^c = \{(x, y, (2^k-1) - z) \mid (x, y, z) \in A\}$$

União → Conjunto formado considerando a maior intensidade entre os pares de elementos com mesma coordenada espacial.

$$A \cup B = \{ \text{ max } (a,b) \mid a \in A, b \in B \}$$

- Operações com imagens em escala de cinza.
- Imagem: Conjunto A cujos elementos são expressos na forma:
 - (x,y,z) $x \in y \rightarrow$ coordenadas espaciais $z \rightarrow$ intensidade.

Complemento de *A* → Conjunto de pixels de *A* cujas intensidades são subtraídas de uma constante.

$$A^c = \{(x, y, (2^k-1) - z) \mid (x, y, z) \in A\}$$

União → Conjunto formado considerando a maior intensidade entre os pares de elementos com mesma coordenada espacial.

$$A \cup B = \{ \max (a,b) | a \in A, b \in B \}$$

Ex: Imagem de 8 bits $\rightarrow k = 8 \rightarrow (2k - 1) = 255$

Imagem original

Ac={(x,y,255-z)}
Negativo obtido da complementação do conjunto.

União da imagem original com uma imagem de intensidade constante.

- Negativo:
- Inverte os tons da imagem
 - T[f(x,y)] = g(x,y) = W f(x,y)
 - W é o maior tom de cinza possível na imagem

Imagem de Saída

Sumário

- 1. Operações de arranjos matriciais versus matrizes
- 2. Operações pontuais
- 3. Operações aritméticas pontuais
- 4. Operações básicas com conjuntos
- 5. Operações lógicas
- 6. Outras operações

- Operações lógicas são realizadas utilizando os operadores lógicos
 - NOT(A), AND, OR, XOR, etc
- São aplicadas apenas em imagens binárias.
 - Branco (1) e Preto (0)

Operação: Complemento

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$not(A) = \sim A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$not(B) = \sim B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

• Operação: Intersecção

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

$$B = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

and(A,B) = A & B
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• Operação: União

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$B = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$or(A,B) = A \mid B \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Operação: Diferença: A - B

Exemplo no octave:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A \& \sim B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

Εe

Operação: (A) XOR (B)

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$xor(A,B) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- Além das operações lógicas e aritméticas, podem ser aplicadas às imagens ainda outras operações
 - Por exemplo: min, max, entre outras.

Sumário

- 1. Operações de arranjos matriciais versus matrizes
- 2. Operações pontuais
- 3. Operações aritméticas pontuais
- 4. Operações básicas com conjuntos
- 5. Operações lógicas
- 6. Outras operações

- Exemplos
 - Não existe um limite de operações e imagens que possam ser combinadas

B

 \mathbf{C}

D=0.5 A + 0.5 B

D = C * A + (255 - C) * B

- Exercício
 - No caso de algumas operações, é conveniente que a imagem esteja normalizada entre [0,1]

- Exercício
 - Transforme a imagem de acordo com a figura resultante:

Original

Resultado

