Planar Configuration Spaces of Disk Arrangements and Hinged Polygons

Clinton Bowen

Cal State Northridge

December 6, 2016

Motivation: Protein Folding

Protein folding is the process in which a protein chain acquires its 3-dimensional structure.

- * Proteins in an organism fold into a specific geometric pattern (sometimes referred as its *native state*).
- * Geometric patterns can determine a protein's function and behavior.

Motivation: Hinged Dissection

- * Haberdasher Problem: Can a square and an equilateral triangle of the same area have a common dissection into four pieces?
- * Hilbert's Third Problem: given any two polyhedra of equal volume, is it always possible to cut the first into finitely many polyhedral pieces which can be reassembled to yield the second?

⁰Source: Wikipedia

Deciding Realizability of Polygonal Linkages

Problem

Decide whether a polygonal linkage whose hinge graph is a tree can be realized.

- * A polygonal linkage is an ordered pair (P, H) where P is a finite set of polygons and H is a finite set of hinges.
- * A hinge $h \in \mathcal{H}$ corresponds to two or more points on the boundary of distinct polygons in \mathcal{P} .

Polygonal Linkages

- * The figure on the top shows a realizable polygonal linkage.
- * The firgure on the bottom shows a polygonal linkage that is not realizable.

Deciding Realizability of Polygonal Linkages

Problem

Decide whether a polygonal linkage whose hinge graph is a tree can be realized with fixed orientation.

Here we have two realizations of a polygonal linkage with two different counter-clockwise order (C,B,A) and (B,C,A) respectively.

Weighted Trees and Disk Arrangements

Problem

Decide whether a given ordered tree with positive vertex weights is the contact graph of a disk arrangements with specified radii.

Weighted Trees and Disk Arrangements

- * Consider the balanced binary trees of depth $i \{T_i\}_{i=1}^{\infty}$ with unit vertex weight.
- * For *i* ≥ 8, the corresponding disk arrangement is not realizable.

Related Work

- * Bhatt and Cosmadakis showed that deciding whether a polygonal linkage whose hinge graph is a *graph* is NP-Hard.
- * Breu and Kirkpatrick showed that deciding whether a given graph with unit vertex weights is the contact graph of a disk arrangements with specified radii.

Contributions

Theorem

It is NP-Hard to decide whether a polygonal linkage whose hinge graph is a tree can be realized.

Theorem

It is NP-Hard to decide whether a polygonal linkage whose hinge graph is a tree can be realized with fixed orientation.

Theorem

It is NP-Hard to decide whether a given ordered tree with positive vertex weights is the contact graph of a disk arrangements with specified radii.

The Logic Engine

Logic Engine Realized as Hinged Polygons

* Suppose we are given an Boolean formula with *m* clauses and *n* variables in 3-CNF form, Φ, we construct the polygonal linkage similarly to the logic engine.

Contributions

Theorem

It is NP-Hard to decide whether a polygonal linkage whose hinge graph is a tree can be realized.

Theorem

It is NP-Hard to decide whether a polygonal linkage whose hinge graph is a tree can be realized with fixed orientation.

Theorem

It is NP-Hard to decide whether a given ordered tree with positive vertex weights is the contact graph of a disk arrangements with specified radii.

Planar 3SAT

* Given a Boolean formula Φ in 3-CNF such that the associated graph is planar, decide whether it is satisfiable is the 3-SAT problem.

Modified Auxiliary Construction

- * Define the associated graph A(Φ) as follows: the vertices correspond to the variables and clauses in Φ. We place an edge in the graph if variable x_i appears in clause C_i.
- * Given a Boolean formula Φ in 3-CNF such that its associated graph is planar, decide whether it is satisfiable is a 3-SAT problem.

Modified Auxiliary Construction

- * Define the associated graph A(Φ) as follows: the vertices correspond to the variables and clauses in Φ. We place an edge in the graph if variable x_i appears in clause C_i.
- * Given a Boolean formula Φ in 3-CNF such that its associated graph is planar, decide whether it is satisfiable is a 3-SAT problem.

Variable Gadget

* Variable x_i corresponds to a cycle in the associated graph $\tilde{A}(\Phi)$.

Variable Gadget

* Variable x_i corresponds to a cycle in the associated graph $\tilde{A}(\Phi)$.

Transmitter Gadget

* A transmitter gadget is constructed for each edge $\{x_i, C_j\}$ of the graph $A(\Phi)$; it consists of a sequence of junctions and corridors from a variable gadget's junction to a clause junction.

Clause Junction Gadget

* The *clause gadget* lies at a junction adjacent to three transmitter gadgets.

Modified Auxiliary Construction

* The modified auxiliary gadget channels and junctions in a hexagonal grid enclosed by six frame hexagons.

Contributions

Theorem

It is NP-Hard to decide whether a polygonal linkage whose hinge graph is a tree can be realized.

Theorem

It is NP-Hard to decide whether a polygonal linkage whose hinge graph is a tree can be realized with fixed orientation.

Theorem

It is NP-Hard to decide whether a given ordered tree with positive vertex weights is the contact graph of a disk arrangements with specified radii.

Approximation of Hexagon with a Disk Arrangement: Hausdorff Distance

* An illustrative example of d(X, Y) and d(Y, X) where X is the inner curve, and Y is the outer curve.

Approximation of Hexagon with a Disk Arrangement

Lemma

For every $\epsilon > 0$ and x > 0, there exists an ordered weighted tree T and regular hexagon h of side length x such that:

* T is realizable. Every realization σ_i of T as an ordered disk contact graph where the radii of the disks equal the vertex weights, approximates the hexagon in the sense that:

$$H(h, \sigma) \leq \epsilon$$

* The number of nodes in T and the weights are polynomial in ϵ and x, the weights $\frac{\epsilon}{10}$ and $\frac{\epsilon}{10} + \zeta$ are polynomial.

Approximation of Hexagon with a Disk Arrangement

- * A drawing of a tree *T* overlayed with a corresponding disk arrangement, each disk with unit radius.
- * The nodes of the tree are the centers of the disks.

Conclusion

Theorem

It is NP-Hard to decide whether a polygonal linkage whose hinge graph is a tree can be realized.

Theorem

It is NP-Hard to diskecide whether a polygonal linkage whose inge graph is a tree can be realized with fixed orientation.

Theorem

It is NP-Hard to decide whether a given ordered tree with positive vertex weights is the contact graph of a disk arrangements with pecified radii.

Thank You!