

Feature Selection: Filters

- > Given *n* original features, how do you select size of subset
 - User can preselect a size p(< n) not usually as effective
 - Usually try to find the smallest size where adding more features does not yield improvement
- > Filters work independent of any learning algorithm
- > Filters seek a subset of features which maximize some type of between class separability or other merit score
- > Can score each feature independently and keep best subset
 - e.g., 1st order correlation with output, fast, less optimal

Feature Selection: Filters

- > Can score subsets of features together
 - Exponential number of subsets requires a more efficient, sub-optimal search approach
 - How to score features is independent of the ML model to be trained on and is an important research area
 - Decision Tree or another ML model pre-process

Feature Selection: Wrappers

- > Optimizes for a specific learning algorithm
- > The feature subset selection algorithm is a "wrapper" around the learning algorithm
 - 1. Pick a feature subset and pass it to learning algorithm
 - 2. Create training/test set based on the feature subset
 - 3. Train the learning algorithm with the training set
 - 4. Find accuracy (objective) with validation set
 - 5. Repeat for all feature subsets and pick the feature subset which gives the highest predictive accuracy
- > Basic approach is simple
- > Variations are based on how to select the feature subsets, since there are an exponential number of subsets

Feature Selection: Wrappers

- > Exhaustive Search Exhausting
- > Forward Search $O(n^2 \cdot learning/testing time)$ Greedy
 - 1. Score each feature by itself and add the best feature to the initially empty set FS (FS will be our final Feature Set)
 - 2. Try each subset consisting of the current FS plus one remaining feature and add the best feature to FS
 - 3. Continue until stop getting significant improvement (over a window)

5

Feature Selection: Wrappers

- > Backward Search $O(n^2 \cdot learning/testing time)$ Greedy
 - 1. Score the initial complete *FS*
 - 2. Try each subset consisting of the current FS minus one feature in FS and drop the feature from FS causing least decrease in accuracy
 - 3. Continue until dropping any feature causes a significant decreases in accuracy
- > Branch and Bound and other heuristic approaches available

PCA – Principal Components Analysis

- > PCA is one of the most common feature reduction techniques
- > A linear method for dimensionality reduction
- > Allows us to combine much of the information contained in *n* features into *p* features where *p* < *n*
- > PCA is *unsupervised* in that it does not consider the output class/value of an instance There are other algorithms which do (e.g. Linear Discriminant Analysis)
- > PCA works well in many cases where data features have mostly linear correlations
- > Non-linear dimensionality reduction is also a successful area and can give better results for data with significant non-linear correlations between the data features

PCA Overview

- > Seek new set of bases which correspond to the highest variance in the data
- > Transform *n*-dimensional *normalized* data to a new *n*-dimensional basis
 - The new dimension with the most variance is the first principal component
 - The next is the second principal component, etc.
 - Note z_1 combines/fuses significant information from both x_1 and x_2
- > Can drop dimensions for which there is little variance

Variance and Covariance

- > Variance is a measure of data spread in one feature/dimension
 - − *n* features, *m* instances in data set
 - Note n in variance/covariance equations is number of instances in the data set, apologies
- > Covariance measures how two dimensions (features) vary with respect to each other
- > Normalize data features so they have similar magnitudes else covariance may not be as informative

$$\operatorname{var}(X) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(X_i - \overline{X})}{(n-1)}$$
$$\operatorname{cov}(X, Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{(n-1)}$$

Covariance and the Covariance Matrix

- > Considering the sign (rather than exact value) of covariance:
 - Positive value means that as one feature increases or decreases the other does also (positively correlated)
 - Negative value means that as one feature increases the other decreases and vice versa (negatively correlated)
 - A value close to zero means the features are independent
 - If highly covariant, are both features necessary?
- > Covariance matrix is an $n \times n$ matrix containing the covariance values for all pairs of features in a data set with n features (dimensions)
- > The diagonal contains the covariance of a feature with itself which is the variance (i.e. the square of the standard deviation)
- > The matrix is symmetric

> First step is to center the original data around 0 by subtracting the mean in each dimension — normalize first if needed

Data	X	у	x'	y'
	2.5	2.4	0.68	0.49
	0.5	0.7	-1.32	-1.21
	2.2	2.9	0.38	0.99
	1.9	2.2	0.08	0.29
	3.1	3.0	1.28	1.09
	2.3	2.7	0.48	0.79
	2.0	1.6	0.18	-0.31
	1.0	1.1	-0.82	-0.81
	1.5	1.6	-0.32	-0.31
	1.2	0.9	-0.62	-1.01
Mean	1.82	1.91	0	0

- > Second: Calculate the covariance matrix of the centered data
- > Only 2 × 2 for this case

Data	х	у	x'	y'
	2.5	2.4	0.68	0.49
	0.5	0.7	-1.32	-1.21
	2.2	2.9	0.38	0.99
	1.9	2.2	0.08	0.29
	3.1	3.0	1.28	1.09
	2.3	2.7	0.48	0.79
	2.0	1.6	0.18	-0.31
	1.0	1.1	-0.82	-0.81
	1.5	1.6	-0.32	-0.31
	1.2	0.9	-0.62	-1.01
Mean	1.82	1.91	0	0

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{(n-1)}$$

Covariance	Matrix
0.60177778	0.60422222
	0.71655556

- > Third: Calculate the unit eigenvectors and eigenvalues of the covariance matrix (remember your linear algebra)
 - Covariance matrix is always square $n \times n$ and positive semi-definite, thus n non-negative eigenvalues will exist
 - All eigenvectors (principal components) are orthogonal to each other and form the new set of bases/dimensions for the data (columns)
 - The magnitude of each eigenvalue corresponds to the variance along each new dimension – Just what we wanted!
 - We can sort the principal components according to their eigenvalues
 - Just keep those dimensions with the largest eigenvalues

Principal Component	Eigenvalues	Eigenvectors
1	1.26610816	-0.67284685, -0.7397818
2	0.05222517	-0.7397818, 0.67284685

- > Below are the two eigenvectors overlaying the centered data
- > Which eigenvector has the largest eigenvalue?
- > Fourth Step: Just keep the p eigenvectors with the largest eigenvalues
 - Do lose some information, but if we just drop dimensions with small eigenvalues then we lose only a little information, hopefully noise
 - We can then have p input features rather than n
 - The p features contain the most pertinent combined information from all n original features
 - How many dimensions p should we keep?

- > Last Step: Transform the n features to the p (< n) chosen bases (Eigenvectors)
- > Transform data (*m* instances) with a matrix multiply $T = A \times B$
 - -A is a $p \times n$ matrix with the p principal components in the rows, component one on top
 - -B is a $n \times m$ matrix containing the transposed centered original data set
 - $-T^{T}$ is a $m \times p$ matrix containing the transformed data set
- > Now we have the new transformed data set with *p* features
- > Keep matrix A to transform future centered data instances
- > Below is the transform of both dimensions. Would if we just kept the 1st component for this case?

PCA Summary

- > PCA is a linear transformation, so if the features have highly non-linear correlations, the transformed data will be less useful
 - Nonlinear dimensionality reduction techniques can sometimes handle these situations better (e.g. LLE, Isomap, Manifold-Sculpting)
 - PCA is good at removing redundant linearly correlated features
- > With high dimensional data the eigenvector is a hyper-plane
- > Interesting note: The 1st principal component is the multiple regression plane that delta rule will always discover
- > Caution: Not a "cure all" and can lose important info in some cases
 - How would you know if it is effective?
 - Just compare accuracies of original vs transformed data set

Overview

- > Feature engineering overview
- > Common approaches to featurizing with text
- > Feature selection
- > Iterating and improving (and dealing with mistakes)

Goals of Feature Engineering

- > Convert 'context' -> input to learning algorithm.
- > Expose the structure of the concept to the learning algorithm.
- > Work well with the structure of the model the algorithm will create.
- > Balance number of features, complexity of concept, complexity of model, amount of data.

Sample from SMS Spam

- > SMS Message (arbitrary text) -> 5-dimensional array of binary features
 - 1 if message is longer than 40 chars, 0 otherwise
 - 1 if message contains a digit, 0 otherwise
 - 1 if message contains word 'call', 0 otherwise
 - 1 if message contains word 'to', 0 otherwise
 - 1 if message contains word 'your', 0 otherwise

"SIX chances to win CASH! From 100 to 20,000 pounds txt> CSH11 and send to 87575. Cost 150p/day, 6days, 16+ TsandCs apply Reply HL 4 info"

Long?	HasDigit?	ContainsWord(Call)	ContainsWord(to)	ContainsWord(your)

Basic Feature Types

Categorical Features

Binary Features

Numeric Features

- > ContainsWord(call)?
- FirstWordPOS -> { Verb, Noun, Other }

CountOfWord(call)

- > IsLongSMSMessage?
- MessageLength ->
 { Short, Medium, Long, VeryLong }
- MessageLength

- > Contains(*#)?
- TokenType ->
 { Number, URL, Word, Phone#, Unknown }
- FirstNumberInMessage

- > ContainsPunctuation?
- _____
- WritingGradeLevel

- GrammarAnalysis ->
 - { Fragment, SimpleSentence, ComplexSentence }

Converting Between Feature Types

Numeric Feature => Binary Feature

Length of text + $[40] \Rightarrow \{0, 1\}$ Single threshold

Numeric Feature => Categorical Feature

Length of text + [20, 40] => { short or medium or long } — Set of thresholds

Categorical Feature => Binary Features

 $\{$ short or medium or long $\}$ => [1, 0, 0] or [0, 1, 0] or [0, 0, 1]

Binary Feature => Numeric Feature

 $\{ 0, 1 \} \Rightarrow \{ 0, 1 \}$

Sources of Data for Features

- > System State
 - App in foreground?
 - Roaming?
 - Sensor readings
- > Content Analysis
 - Stuff we've been talking about
 - Stuff we're going to talk about next
- > User Information
 - Industry
 - Demographics

- > Interaction History
 - User's 'report as junk' rate
 - # previous interactions with sender
 - # messages sent/received
- > Metadata
 - Properties of phone #s referenced
 - Properties of the sender
 - Run other models on the content
 - Grammar
 - Language
 - ...

Feature Engineering for Text

> Tokenizing > TF-IDF

> Bag of Words > Embeddings

> N-grams > NLP

Tokenizing

Breaking text into words

```
"Nah, I don't think he goes to usf" ->
     ['Nah,' 'I', 'don't', 'think', 'he', 'goes', 'to', 'usf']
```

Dealing with punctuation

```
"Nah," ->
     [ 'Nah,' ] or [ 'Nah', ',' ] or [ 'Nah' ]
"don't" ->
[ 'don't' ] or [ 'don', "', 't' ] or [ 'don', 't' ] or [ 'do', 'n't' ]
```

Normalizing

```
"Nah," ->
      [ 'Nah,' ] or [ 'nah,' ]
"1452" ->
     [ '1452' ] or [ <number> ]
```

Some tips for deciding

- If you have lots of data / optimization...
 - Keep as much information as possible
 - Let the learning algorithm figure out what is important and what isn't
- If you don't have much data / optimization...
 - Reduce the number of features you maintain
 - Normalize away irrelevant things
- Focus on things relevant to the concept...

 - Explore data / use your intuitionOverfitting / underfitting ← much more later

Bag of Words: Example

test1: Some features for a text example.

word x_2 of x_3 text x_4 m1: A word of text. is m2: A word is a token. x_5 m3: Tokens and features. token x_6 m4: Few features of text. tokens x_7 and x_8 features

	m1	m2	m3	m4		
<i>x</i> ₁	1	1	0	0		
x_2	1	1	0	0		
<i>x</i> ₃	1	0	0	1		
<i>x</i> ₄	1	0	0	1		
<i>x</i> ₅	0	1	0	0		
<i>x</i> ₆	0	1	0	0		
<i>x</i> ₇	0	0	1	0		
<i>x</i> ₈	0	0	1	0		
<i>x</i> ₉	0	0	1	1		
<i>x</i> ₁₀	0	0	0	1		

	\
	test1
x_1	1
x_2	0
x_3	0
x_4	1
<i>x</i> ₅	0
<i>x</i> ₆	0
<i>x</i> ₇	0
<i>x</i> ₈	0
<i>x</i> ₉	1
<i>x</i> ₁₀	0

Out of vocabulary

Selected Features

few

 x_9

 x_{10}

a

Training X

Test X

Use bag of words when you have a lot of data, can use many features

N-Grams: Tokens

- > Instead of using single tokens as features, use series of N tokens
- > "down the bank" vs "from the bank"

Message 1: "Nah I don't think he goes to usf" Message 2: "Text FA to 87121 to receive entry"

Message 2:

Nah I	I don't	don't think	think he	he goes	goes to	to usf	 Text FA	FA to	87121 to	To receive	receive entry
0	0	0	0	0	0	0	 1	1	1	1	1

Use when you have a LOT of data, can use MANY features

N-Grams: Characters

> Instead of using series of tokens, use series of characters

Message 1: "Nah I don't think he goes to usf"
Message 2: "Text FA to 87121 to receive entry"

Message 2:

Na	ah	h <space></space>	<space></space>	I <space></space>	<space></space>	do	 <space></space>	en	nt	tr	ry
0	0	0	0	0	0	0	 1	1	1	1	1

Helps with out of dictionary words & spelling errors Fixed number of features for given N (but can be very large)

Embeddings -- Word2Vec and FastText

- > Word -> Coordinate in N dimension
- > Regions of space contain similar concepts
- > Creating Features Options:
 - Average vector across words
 - Count in specific regions
- > Commonly used with neural networks

Replaces words with their 'meanings' – sparse -> dense representation

Normalization (Numeric => Better Numeric)

Std: 1 Std: 29.5188

Helps make model's job easier

- No need to learn what is 'big' or 'small' for the feature
- · Some model types benefit more than

To use in practice:

- Estimate mean/stdev on training data
- Apply normalization using those parameters to validation /train

Feature Selection

- > Which features to use?
- > How many features to use?

Approaches:

- Frequency
- Mutual Information
- Accuracy

Feature Selection: Frequency

Take top N most common features in the training set

Feature	Count
to	1745
you	1526
1	1369
а	1337
the	1007
and	758
in	400

Feature Selection: Mutual Information

Take N that contain most information about target on the training set

Feature Selection: Accuracy (wrapper)

Take N that improve accuracy most on hold out data

Greedy search, adding or removing features

From baseline, try adding (removing) each candidate

Build a model

Evaluate on hold out data

Add (remove) the best

Repeat till you get to N

Remove	Accuracy
<none></none>	88.2%
claim	82.1%
FREE	86.5%
or	87.8%
to	89.8%

Important note about feature selection

- > Do not use validation (or test) data when doing feature selection
- > Use train data only to select features
- > Then apply the selected features to the validation (or test) data

Simple Feature Engineering Pattern: Pseudocode

Understanding Mistakes

- > Noise in the data
 - Encodings
 - Bugs
 - Missing values
 - Corruption
- > Noise in the labels

Ham: As per your request 'Melle Melle (Oru Minnaminunginte Nurungu Vettam)' has been set as your callertune for all Callers. Press *9 to copy your friends Callertune

Spam: I'll meet you at the resturant between 10 & 10:30 – can't wait!

- > Model being wrong...
 - Reason?

Exploring Mistakes

> Examine N random false positive and N random false negatives

Reason	Count
Label Noise	2
Slang	5
Non-English	5

- > Examine N worst false positives and N worst false negatives
 - Model predicts very near 1, but true answer is 0
 - Model predicts very near 0, but true answer is 1

Approach to Feature Engineering

- > Start with 'standard' for your domain; 1 parameter per ~10 samples
- > Try all the important variations on hold out data
 - Tokenizing
 - Bag of words
 - N-grams
 - **—** ...
- > Use some form of feature selection to find the best, evaluate
- > Look at your mistakes...
- > Use your intuition about your domain and adapt standard approaches or invent new features...
- > Iterate
- > When you want to know how well you did, evaluate on test data

Feature Engineering in Other Domains

Computer Vision:

- > Gradients
- > Histograms
- > Convolutions

Internet:

- > IP Parts
- > Domains
- > Relationships
- > Reputation

Time Series:

- > Window aggregated statistics
- > Frequency domain transformations

Neural Networks:

> A whole bunch of other things we'll talk about later...

Summary of Feature Engineering

- > Feature engineering converts raw context into inputs for machine learning
- > Goals are:
 - Match structure of concept to structure of model representation
 - Balance number of feature, amount of data, complexity of concept, power of model
- > Every domain has a library of proven feature engineering approaches
- > Text's include: normalization, tokenizing, n-grams, TF-IDF, embeddings, & NLP
- > Feature selection removes less useful features and can greatly increase accuracy