Reinforcement Learning

Lecture 2: Markov Decision Processes (MDPs)

Instructor: Chongjie Zhang

Tsinghua University

Reinforcement

- Behavior is primarily shaped by reinforcement rather than free-will
 - Positive reinforcement is the strengthening of behavior by the occurrence of some event
 - negative reinforcement is the strengthening of behavior by the removal or avoidance of some aversive event
- Behaviors that result in praise/pleasure tend to repeat, and behaviors that result in punishment/pain tend to become extinct.

Burrhus F. Skinner 1904-1990 Harvard psychology

Reinforcement Learning (RL)

- A computational framework for behavior learning through reinforcement
 - RL is for an agent with the capacity to act
 - Each action influences the agent's future observation
 - Success is measured by a scalar reward signal
 - Goal: find a policy that maximizes expected total rewards
- Mathematical Model: Markov Decision Processes (MDP)

Markov Decision Process (MDP)

- An Finite MDP is defined by:
 - A finite set of states s ∈ S
 - A finite set of actions a ∈ A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s'| s, a)
 - Also called the model or the dynamics
 - A reward function R(s) (Sometimes R(s, a) or R(s, a, s'))
 - A start state
 - Maybe a terminal state
- A model for sequential decision making problem under uncertainty

Assumptions

- First-Order Markovian dynamics (history independence)
 - Next state only depends on current state and current action

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

= $P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$

- State-Dependent Reward
 - Reward is a deterministic function of current state
- Stationary dynamics: do not depend on time
 - $P(S_{t+1} | A_t, S_t) = P(S_{k+1} | A_k, S_k)$ for all t, k
- Full observability
 - Though we can't predict exactly which state we will reach when we execute an action, after the action is executed, we know the new state

States

- Experience is a sequence of observations, actions, rewards
 - \bullet $o_1, r_1, a_1, ..., a_{t-1}, o_t, r_t$
- Observations: the (raw) input of the agent's sensors, e.g., images, tactile signals, waveforms, etc.
- The state is a summary of experience
 - \bullet $s_t = f(o_1, r_1, a_1, ..., a_{t-1}, o_t, r_t)$
- The state can include immediate "observations," highly processed observations, and structures built up over time from sequences of observations, memories etc.
- In a fully observed environment, s_t = f(o_t)

Actions

- They are used by the agent to interact with the world.
- They can have many different temporal granularities and abstractions.
- Actions can defined to be
 - The instantaneous torques on the gripper
 - The instantaneous gripper translation, rotation, opening
 - Instantaneous forces applied to the objects
 - Short sequences of the above

Rewards

- They are scalar values provided by the environment to the agent that indicate whether goals have been achieved,
 - e.g., 1 if goal is achieved, 0 otherwise, or -1 for overtime step the goal is not achieved
- Rewards specify what the agent needs to achieve, not how to achieve it.
- The simplest and cheapest form of supervision, and surprisingly general
- Dense rewards are always preferred if available
 - e.g., distance changes to a goal.

Dynamics or The Environment Model

How the state change given the current state and action

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

- Modeling the uncertainty
- Two problems:
 - Planning: the dynamics model is known
 - Reinforcement learning: the dynamics model is unknown

Example: Atari games

- States: raw image frames
- Actions: playing joysticks (18 actions)
- Reward: score changes

Example: Go

- States: features of the game board
- Actions: place a stone or resign
- Rewards: win +1, lose -1, otherwise 0

Example: Learning to Drive

- States: speed, direction, traffic, weather,....
- Actions: steer, brake, throttle
- Rewards:
 - +1: reaching goal
 - -1: honking from surrounding driver
 - -100: collision

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
- States: the position of the agent
- Noisy actions: east, south, west, north
- Dynamics: actions not always go as planned
 - 80% of the time, the action North takes the agent North (if there is a wall, it stays)
 - 10% of the time, North takes the agent West; 10%
 East
- Rewards the agent receives each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)

What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)

Output: ????

Should the solution to an MDP from an initial state be just a sequence of actions such as (a₁, a₂, a₃,)?

Example: Grid World

Action sequence: north, north, east

What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)

Output: ????

- Should the solution to an MDP from an initial state be just a sequence of actions such as (a₁, a₂, a₃,)?
- No! In general an action sequence is not sufficient
 - Actions have stochastic effects, so the state we end up in is uncertain
 - This means that we might end up in states where the remainder of the action sequence doesn't apply or is a bad choice
 - A solution should tell us what the best action is for any possible situation/state that might arise

MDP: Non-Stationary Policy

- A solution to an MDP is a policy
 - Two types of policies: nonstationary and stationary
- Nonstationary policies are used when we are given a finite planning horizon H
 - i.e. we are told how many actions we will be allowed to take
- Nonstationary policies are functions from states and times to actions
 - π : S x T \rightarrow A, where T is the non-negative integers
 - π(s, t) tells us what action to take at state s when there are t stagesto-go (note that we are using the convention that t represents stages/decisions to go, rather than the time step)

MDP: Stationary Policy

- What if we want to continue taking actions indefinately?
 - Use stationary policies
- A Stationary policy is a mapping from states to actions
 - \blacksquare π : $S \rightarrow A$
 - \blacksquare $\pi(s)$ is action to do at state s (regardless of time)
 - specifies a continuously reactive controller
- Note that both nonstationary and stationary policies assume or have these properties:
 - full observability of the state
 - history-independence
 - deterministic action choice

What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)

Output: a policy such that ????

- We don't want to output just any policy
- We want to output a "good" policy
- One that accumulates a lot of reward

Value of a Policy

- How good is a policy π?
 - How do we measure reward "accumulated" by π ?
- Value function V: S → R associates value with each state (or each state and time for non-stationary π)
- $V_{\pi}(s)$ denotes value of policy π at state s
 - lacktriangle Depends on immediate reward, but also what you achieve subsequently by following π
 - An optimal policy is one that is no worse than any other policy at any state
- The goal for a MDP is to compute or learn an optimal policy

What is a solution to an MDP?

MDP Planning Problem:

Input: an MDP (S,A,R,T)

Output: a policy that achieves an "optimal value"

- This depends on how we define the value of a policy
- There are several choices and the solution algorithms depend on the choice
- We will consider two common choices
 - Finite-Horizon Value
 - Infinite Horizon Discounted Value

Finite-Horizon Value Functions

- We first consider maximizing expected total reward over a finite horizon
- Assumes the agent has H time steps to live (that is, it gets to take H actions)
- To act optimally, should the agent use a stationary or nonstationary policy?
 - i.e. Should the action it takes depend on absolute time?
- Put another way:
 - If you had only one week to live would you act the same way as if you had fifty years to live?

Finite Horizon Problems

- Value (utility) depends on stage-to-go
 - Hence use a nonstationary policy!
- $V_{\pi}^{k}(s)$ is k-stage-to-go value function for non-stationary π
 - expected total reward for executing π starting in s for k time steps

$$V_{\pi}^{k}(s) = E\left[\sum_{t=0}^{k} R^{t} \mid \pi, s\right]$$

$$= E\left[\sum_{t=0}^{k} R(s^{t}) \mid a^{t} = \pi(s^{t}, k-t), s^{0} = s\right]$$

$$= E\left[\sum_{t=0}^{k} R(s^{t}) \mid a^{t} = \pi(s^{t}, k-t), s^{0} = s\right]$$

- Here R_t and s_t are random variables denoting the reward received and state at time-step t when starting in s
 - These are random variables since the world is stochastic

Computational Problems

- There are two problems that we will be interested in solving
- Policy evaluation:
 - Given an MDP, a nonstationary policy π and a horizon H
 - Compute finite-horizon value function $V_{\pi}^{k}(s)$ for any k <= H
- Policy optimization:
 - Given an MDP and a horizon H
 - Compute the optimal finite-horizon policy
 - We will see this is equivalent to computing the optimal value function

Finite-Horizon Policy Evaluation

$$V^{0}(s) = R(s)$$

 $V^{1}(s4) = R(s4) + 0.7 V^{0}(s1) + 0.3 V^{0}(s4)$

Finite-Horizon Policy Evaluation

• Can use dynamic programming to compute $V_{\pi}^{k}(s)$

Vk-1

Markov property is critical for this

Vk

$$(k=0) \quad V_{\pi}^{0}(s) = R(s), \quad \forall s$$

$$(k>0) \quad V_{\pi}^{k}(s) = R(s) + \sum_{s'} T(s, \pi(s, k), s') \cdot V_{\pi}^{k-1}(s'), \quad \forall s$$

$$\text{immediate reward}$$

$$\text{expected future payoff with } k\text{-1 stages to go}$$

$$T(s, k) \quad 0.7 \quad \text{s1}$$

Computational Problems

- There are two problems that we will be interested in solving
- Policy evaluation:
 - Given an MDP, a nonstationary policy π, and a horizon H
 - Compute finite-horizon value function $V_{\pi}^{k}(s)$ for any k <= H
- Policy optimization:
 - Given an MDP and a horizon H
 - Compute the optimal finite-horizon policy
 - We will see this is equivalent to computing optimal value function
- How many finite horizon policies are there? (A) (5) / H
 - |A|^{Hn}
 - So can't just enumerate policies for efficient optimization

Policy Optimization: Bellman Backups

How can we compute the optimal V^{t+1}(s) given optimal V^t?

Value Iteration

Value Iteration

Value Iteration: Finite Horizon Case

- Markov property allows exploitation of DP principle for optimal policy construction
 - no need to enumerate |A|^{Hn} possible policies

■ Value Iteration $V^{0}(s) = R(s), \forall s$ $V^{k}(s) = R(s) + \max_{a} \sum_{s'} T(s, a, s') \cdot V^{k-1}(s')$ $\pi^{*}(s, k) = \arg\max_{s'} \sum_{s'} T(s, a, s') \cdot V^{k-1}(s')$

a

 V^k is optimal k-stage-to-go value function $\Pi^*(s,k)$ is optimal k-stage-to-go policy

Value Iteration: Complexity

- Note how DP is used
 - optimal solution to k-1 stage problem can be used without modification as part of optimal solution to k-stage problem
- What is the computational complexity?
 - H iterations
 - At each iteration, each of n states, computes expectation for m actions
 - Each expectation takes O(n) time
- Total time complexity: O(Hmn²)
 - Polynomial in number of states. Is this good?

Summary: Finite Horizon

Resulting policy is optimal

$$V_{\pi^*}^k(s) \geq V_{\pi}^k(s), \quad \forall \pi, s, k$$

- convince yourself of this (use induction on k)
- Note: optimal value function is unique.
- Is the optimal policy unique?
 - No. Many policies can have same value (there can be ties among actions during Bellman backups).

Horizon Matters

Live everyday as if it is the last day. -- Steve Jobs

[HD] Steve Jobs - 2005 Stanford Commencement Speech.mp4

58,052 views

Infinite Horizon MDPs

Infinite Horizon MDPs

- Defining value as total reward is problematic with infinite horizons
 - many or all policies have infinite expected reward
 - some MDPs are ok (e.g., zero-cost absorbing states)
- "Trick": introduce discount factor $0 \le \gamma < 1$
 - future rewards discounted by γ per time step

$$V_{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R^{t} \mid \pi, s\right]$$
 $V_{\pi}(s) \leq E\left[\sum_{t=0}^{\infty} \gamma^{t} R^{\max}\right] = \frac{1}{1-\gamma} R^{\max}$

Note:

- Notes: Discounted Infinite Horizon Fixed point

 Optimal policies guaranteed to exist (Howard, 1960) Moorem
 - i.e. there is a policy that maximizes value at each state
- Furthermore there is always an optimal stationary policy
 - Intuition: why would we change action at s at a new time when there is always forever ahead
 - We define $V*(s) = V_{\pi}(s)$ for some optimal stationary π

Policy Evaluation

- Value equation for a fixed policy
 - Immediate reward + Expected discounted future reward

$$V_{\pi}(s) = R(s) + \gamma \sum_{S} T(s, \pi(s), s') \cdot V_{\pi}(s')$$

$$\text{derive this, from original definition}$$

$$V_{\pi}(s) = E\left(\sum_{S} \lambda^{T} \int_{S} T(s, \pi(s), s') \cdot V_{\pi}(s')\right)$$

- How can we compute the value function for a policy?
 - we are given R and T
 - linear system with n variables and n constraints
 - Variables are values of states: V(s1),...,V(sn)
 - Constraints: one value equation (above) per state
 - Use linear algebra to solve for V (e.g. matrix inverse)

Policy Evaluation via Matrix Inverse

 V_{π} and R are n-dimensional column vector (one element for each state)

T is an
$$n \times n$$
 matrix s.t. $T(i, j) = T(s_i, \pi(s_i), s_j)$

$$V_{\pi} = R + \gamma T V_{\pi}$$

$$(I - \gamma T) V_{\pi} = R$$

$$\downarrow \downarrow$$

$$V_{\pi} = (I - \gamma T)^{-1} R$$

Computing an Optimal Value Function

Bellman equation for the optimal value function

$$V*(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') \cdot V*(s')$$

- Bellman proved this is always true for an optimal value function
- How can we compute the optimal value function?
 - The MAX operator makes the system non-linear, so the problem is more difficult than policy evaluation
- Notice that the optimal value function is a fixed-point of the Bellman Backup operator B (i.e. B[V*]=V*)
 - B takes a value function as input and returns a new value function

$$B[V](s) = R(\underline{s}) + \gamma \max \sum_{S'} T(s, a, s') \cdot V(s')$$

Computing the optimal policy

How do we compute the optimal policy? (or equivalently, the optimal value function?)

Approach #1: **value iteration**: repeatedly update an estimate of the optimal value function according to Bellman optimality equation

1. Initialize an estimate for the value function arbitrarily

2. Repeat, update:

it, update:
$$\hat{V}(s) \leftarrow R(s) + \gamma \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s,a) \, \hat{V}(s'), \ \forall s \in \mathcal{S}$$

Running value iteration with $\gamma = 0.9$

Original reward function

$$1 + \max\{$$
 $1 + (0.8 \times 1 + 0.1 \times 1) \times 0.9$
 $= 1.81$
 $= 1.81$
 $= 0.72$

Running value iteration with $\gamma=0.9$

0	0	0.72	1.81
0		0	-99.91
0	0	0	0

 \hat{V} at one iteration

Running value iteration with $\gamma=0.9$

0.809	1.598	2.475	3.745
0.268		0.302	-99.59
0	0.034	0.122	0.004

 \hat{V} at five iterations

Running value iteration with $\gamma = 0.9$

2.686	3.527	4.402	5.812
2.021		1.095	-98.82
1.390	0.903	0.738	0.123

 \hat{V} at 10 iterations

U(S)-3U*(S)
J*(5) = Un+(5)

destration of value iteration					
Run	ning va	lue iter	ation w	$\text{ith } \gamma = $	0.9 V(5) = R15) + Ymarsp(5/5,a)V(5)
1 (5)	5.470	6.313		8.669	T(S)=max ZD(S'[S,A) 01 5' V(S')
S)	4.802		3.347	-96.67	
•	4.161	3.654	3.222	1.526	

 \hat{V} at 1000 iterations

Running value iteration with $\gamma=0.9$

Resulting policy after 1000 iterations

Mobby

Optimal Policies

$$R(s) = -0.01$$

$$R(s) = -0.4$$

$$R(s) = -0.03$$

$$R(s) = -2.0$$