Convolutional Neural Networks For Semantic Segmentation

Course 3, Module 5, Lesson 2

Learning Objectives

- Learn how to use convolutional neural networks to perform the semantic segmentation task
- Learn the different layers required for the good performance of semantic segmentation models

The Semantic Segmentation Problem

- Road
- Sidewalk
- Pole
- Traffic Light
- Traffic Signs
- Vegetation
- Terrain
- Sky
- Car
- Background

ConvNets For Semantic Segmentation

ConvNets For Semantic Segmentation

The Feature Extractor

1 G G

	Image	Conv1	Conv2	Conv3	Conv4
Width	M	M/2	M/4	M/8	M/16_
Height	N	N/2	N/4	N/8	N/16
Depth	3	64	128	256	512

Shrink!

Upsampling the Output

Upsampling Layer

Upsampling Multiplier S

$$W_{out} = S \times W_{in}$$

 $H_{out} = S \times H_{in}$
 $D_{out} = D_{in}$

Upsampling The Output

Loundary

Upsampling The Output
Object Cen than 16 pixels in width or height fully
disappears.

Learning Same Resolution Feature Maps

The Feature Decoder

	Feature Map	Deconv1	Deconv2	Deconv3	Deconv4
Width	M/16	M/8	M/4	M/2	M
Height	N/16	N/8	N/4	N/2	N
Depth	512	512	256	128	64

Learning Same Resolution Feature Maps

Output Representation

Classification Loss

$$L_{cls} = \frac{1}{N_{total}} \sum_{i} CrossEntropy(s_i^*, s_i)$$

- N_{total} is the number of pixels in all images of our minibatch $g_{-1}b_{i}$ in the output of the neural network
- s_i^* is the ground truth classification

ConvNets For Semantic Segmentation

Summary

- Convolutional Neural Networks can be used to solve the semantic segmentation problem
- In a feature extractor and a feature decoder are required to provide the final output of semantic segmentation models
- Next: Semantic Segmentation For Autonomous Driving