Use of machine-learning algorithms to predict urine culture results in cats

Materials and methods

Feature preprocessing

Patient data, including sex, age, color, clarity, USG, and ph, were utilized as features. Numeric features: protein, glucose, ketones, hemoprotein, bilirubin, WBC, and RBC were accounted for to target positive culture. Ignore_features (visit number; BW) were excluded from training as its values contain NaN values and strings. A positive culture was encoded using the one-hot encoding (0 and 1). Cat sex was splitted into 4 different groups.

Machine-learning model training

Two Feline UTI prediction models were trained. The ExtraTreesClassifier (ET) model was trained with all patient features excluding Sed Bac Quantity (SBQ) and Sed Bac Type (SBT). The second model, ExtraTreesClassifier (ET) trained with excluded features SBQ; SBT. The first model excluded SBQ and SBT due to limited resources to obtain data from the veterinary lab. The second model was trained to analyze AUC performance by just training the excluded data.

	predict neg (0)	predict pos (1)			predict neg (0)	predict pos (1)						
true neg (0)	962	31		true neg (0)	954	39						
true pos (1)	100	123		true pos (1)	105	118						
I	First model (Data_	limted)	Second model (SBQ_SBT)									

Figure 1. Data table illustrating population from two different models.

The ET model (Fig.1) utilized the training set data, allowing us to determine how numerical features affect the prediction performance for Feline UTI. The model trained using a repeated 10-folds for each of the 10 candidates, totaling 100 times to produce the average confusion matrix to tune the hyperparameters, using the built-in function:

Tuned_et = tune_model(et) (Python3; ipykernel).

The boundary plot (Fig. 2) visualizes how plots spread for trained set data. Through visualization, we can analyze that all trained data sets were spread out for the first model (Data_limited), and the decision boundary will be in the negative linear slope form. While the second model (SBQ, SBT) reflects skewed trained data sets on the right-hand side of the plot, it will include the decision boundary in the form of a curve hyper-plane to fit the dimension of the space.

Figure 2. Data table illustrating AUC performances between two different models.

Machine-learning model performance evaluation

The test set included [types of cats]. The hyperparameters optimized on the training set utilized during ET (with all features excluding sed features) and ET (with only sed features) model testing. Model prediction results reported sensitivity and specificity. Predictions made utilized as a binary classifier, a receiver operating characteristic (ROC) plot was generated, and the area under the curve (AUC) was calculated.

Results

During the study period, 6,732 unique cats were evaluated. Of these cats, 5,850 were tested for Feline UTI prediction: 4,634 in the training set, and 1,216 in the test set. Under the category of "Positive culture", there were a total of 4,052. Between collected data, 3,310 of the training sets were under 0 while 742 remaining data sets were set to 1; 0 meaning negative and 1 meaning positive.

The (Fig. 3) displays the summary of collected statistics for the training and test set. Numeric variables (mean, standard deviation): protein (67.129, 101.355), glucose (88.968, 265.289), ketones (0.513, 5.761), hemoprotein (136.512, 113.445), bilirubin (0.178, 0.821), WBC (11.320, 23.903), RBC (39.359, 43.832). Categorical variables resulted in the count of 4052.

The data was measured using the built-in function:

.describe() (Python3; ipykernel).

n.	uitive culture			nu.	uec		Destain	Glucose	Vatance	Bilimbia I		was	RRC														
count		310 000000	3310.000000 3	1145.000000	3310 0000000	3310 000000	3310 000000		310.000000 3	1310 000000	3310 000000	3310 000000	3310 000000	count	Positive cultur		ex Ag	9 BW	USG	742.000000	Protein	742 000000	Ketones 743 000000	742.000000	742 000000	742 000000	RBC
mean	0.0	2.839577	10.024864	4.737307	1.025450	6.321752	65.202417	91.540785	0.530211	0.202417	133.607251	5.409366	38.916918	mean		0 3.2183			1.020263			77,493261	0.438005	0.072778	149.467655	37,687332	41.331536
std	0.0	1.070754	5.215017	1.620530	0.163491	0.836666	100.236144	268.657465	5.678356	0.878950	114.023744	12.100120	43.904503	std	0	0 1.1782	34 5.35455	1.630667	0.011965	0.846743	105.847516	249.558686	6.117677	0.470550	109.971563	40.216644	43.482828
min	0.0	-9.000000	0.000000	0.000800	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	min	1	0 -9.0000	0.00000	0.450000	1.004000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.0	2.000000	5.900000	3.600000 4.500000	1.012000	6.000000	25.000000 25.000000	0.000000	0.000000	0.000000	10.000000	2.000000 3.000000	2.000000	25%		0 2.0000			1.012000		25.000000	0.000000	0.000000	0.000000	25.000000	3.000000	2.000000
75%	0.0	4.000000	14.100000	5.600000	1.033000	7.000000	75.000000	0.000000	0.000000	0.000000	250.000000	3,000000	100.000000	50% 75%		0 4.0000			1.016000		30.000000 75.000000	0.000000	0.000000	0.000000	250.000000 250.000000	20.000000	18.000000
max	0.0	4.000000	23.900000	34.000000	10.220000	9.000000	500.000000		150.000000		250.000000	100.000000	100.000000	max		0 4.0000			1.066000			1000.000000		6.000000	250.000000	100.000000	
		Fi	rst 1	nod	lel (l	Data	a_liı	mted	l) / c	ol =	= 0					F	irst	mod	lel (Dat	a_li	mte	d) /	col	= 1		
					ive cultu 3310			antity S	3310.00													Quantity					
			count				3310.0										cour	it	7-	42.0	742.	.000000	742.	.000000)		
			mean			0.0		52266		6495							mea	n		1.0	1.	849057		1.37601	1		
			std		C	0.0		30735		7299							st	d		0.0	1	.247450	1	.052016	3		
			min		C	0.0	0.0	00000	0.00	0000							mi	n		1.0	0.	.000000	0.	.00000)		
			25%		C	0.0	0.0	00000	0.00	0000							259	6		1.0	0.	.000000	0.	.00000)		
			50%		0	0.0	0.0	00000	0.00	0000							509	6		1.0	2.	.000000	2.	.00000)		
			75%		C	0.0	0.0	00000	0.00	0000							759	6		1.0	3.	000000	2	000000			
			max		(0.0	3.0	00000	4.00	0000							ma	~		1.0	2	000000	4	000000			
Positi cuts	tive sex	Se	econ	d m	ode	(SI	BQ_	SBT	C) / (col =	= 0	явс ступ	Epithelial als oells transisional	,	Positive solution	S	ecor	d m	ph Prote	el (S	BQ_	SB'	T) /	col	= 1	Epi Crystals trens	thelial Epit cells literal squa
count 331	0.0 3310.000000	2312.000000	3146.000000 33*	0.000000 2310 1025450 F	1.000000 3310.000 6.321252 65.20	0000 3310.0000 0417 91.5400	000 9919.000000 785 0.53021		310.000300 3310	0.000000 2312.0 0.000000 0.312.0	200,000 3310,000	000 3310.0000 1938 3.7360	100 3310.000000 212 1,110574	count	742.0 742.0000		701.000000 740	.000000 742.000	000 742,00001	00 742.000000	742.000000 74	2.000000 742.00	00000 742,0000	00 742.000000	742.000000 74	2.000000 742.0	00000 742.000
std	0.0 1,070764	5.216017	1820530	0.000431 0.	1836669 100.23	6544 288.6674	466 5.678354	0.878990		2.100120 0.4	034742 43.904	1903 57.4867	771 0.673626	std	0.0 1.1782	4 5.354599	1.630967	0.011965 0.846	743 105.8479	16 249.558698	6.117677	0.470550 109.9	71563 40.2198	44 0.46054	43.482929	91.823115 Q.6	58608 0.9
min 25%	0.0 -9.000000 0.0 2.000000	0.000000 5.900000	3,600000	0.000000 0 1.012000 6	1000000 25.00	0.0000 0.0000	000 0.000000 000 0.000000	00000000		0.000000 0.0 2.000000 0.0	000000 0.000 000000 2.000	000 0.0000	100 0.000000	min 25%	1.0 -9.0000	0.000000	0.450000	1012000 0.000	000 0.00000	0000000 00 0000000 00	0.000000	0.000000 0.00	00000 0.0000	00 0.00000	2.000000	0.000000 0.0	0.000 0.00
50%	0.0 2000000	12.500000	4.500000	1,018000 6.	1.000000 25.000	0.0000	0.000000	,	160,000000 8	3.000000 0.0	12,000	0.0000	1000000	50%	1.0 4.0000			1.016000 6.000	000 20.00001			0.000000 250.00	20.000	00 1.000000	18.000000	0.000000 1.0	00000 0.00
75% max	0.0 4,000000 0.0 4,000000	14.100000 23.900000		1.033500 7 0.220000 9	1000000 75.000 1000000 500.000	0.0000	000 0.000000 000 190.000000		150.000000 100		000000 100.000 100.000 100.000	000 000.0000	100 2.010000 100 3.010000	75% max	1.0 4.0000			1025000 7,000 1,086000 9,000	000 75.00001 000 500.00001	000000.000 000000.0000 00	0.000000	0.000000 250.00 6.000000 250.00	00000 100.0000 00000 100.0000	00 1.000000	100.000000 90	0.000000 2.0 9.000000 3.0	00000 1.00 00000 3.00
	Original model / col = 0											Original model / col = 1															

Figure 3. Data table describing the summary of statistics.

Machine-learning model performance

The ET model (Fig. 1) displays an AUC performance of 80.48% (first model) compared to the second ET model 79.65%. The ET first model showed slightly higher accuracy than the second model by 0.68%. The first ET model performed better on AUC, Accuracy than the second model of ET.