On Termination Criteria of Evolutionary Algorithms

Brijnesh J. Jain, Technical University Berlin, Department of Computer Science, Artificial Intelligence Group Hartmut Pohlheim, Joachim Wegener, DaimlerChrysler AG, Research and Technology, FT3/SM, Berlin

1 Introduction

- Termination criteria decide on the end of an evolutionary search process (EA).
- Performance of an EA also depends on the determination of the appropriate point in time to terminate the search.

Problem:

What is the appropriate point in time to terminate the search?

Goal:

Reliable and performant termination criteria(s)

2 Termination

Termination condition should avoid needless computations and prevent premature termination

If TermCond then terminate EA else proceed EA

- Needless computations (efficiency of an EA is exhausted):
 - → EA is degenerated to a random search
 - → no significant improvement of the best objective value can be expected
- Premature Termination
 - → EA terminates before the search process runs out

3 Definition of Termination Criteria

Direct Termination Criteria

Maximal Generations / Time (T₁)

• a maximal number of generations / evaluations of objective function or a maximal time budget (absolute time, CPU time) is consumed

Hitting a Bound (T₂)

• best objective value f^* reaches or surpasses a bound f_{lim} TermCond₂= $f_{lim} \ge f^*$

Derived Termination Criteria

Running Mean (T₃)

• difference between the current best objective value f_t^* and the average of the best objective value of the last t_{last} generations is equal or less than a given threshold ε

Standard deviation (T₄)

• standard deviation of all objective values of the current generation is equal or less than ϵ

Best-Worst (T₅)

• difference between the best and the worst objective value of the current generation is equal or less than ϵ

Phi (T₆)

• quotient of the best objective value f_t^* and the mean of all objective values of the current generation is equal or less than a given threshold ε

Kappa (T₇)

- quotient of the sum of all normalized distances d_{ij} between all individuals of the current generation and κ_{max} is equal or less than ϵ
- T_7 valuates the spatial spreading of individuals of the current generation in the search space (normalized Euclidean distances d_{ij}/d , d:length of diagonal of search space)

Cluster-Based Termination Criterion

ClusTerm (T₈)

combines information of:

- objective values and
- distribution of individuals in the search space

Procedure:

- Cluster analysis of the fittest individuals
- Determination of total amount N_t of individuals in clusters
- Terminate the search, when the change of the average of N_t is equal or less than ε

Implementation:

- agglomerative cluster method
 - single linkage method
 - up to a maximal distance stage
- problem-specific distance measure (here Euclidean)

Total amount N_t of fittest individuals in clusters during an optimization run

Average of N_t averaging over the last t_{last} generations(same run as above)

4 Evaluation and Guidelines

Definition of evaluation criteria

- Reliability: guarantees termination within finite time
- Performance: no premature termination and no needless computation

Evaluation of termination criteria

Reliability:

- T1 and T3 are reliable (by definition)
- T8 is mostly reliable (terminated in all experiments, [2] for a conditional proof
- T2, T4-T7 are not reliable (terminate only under special circumstances)

Performance:

- assumes reliability, thus only T1, T3 and T8 were examined
- T1: completely independent of the search ==> in general T1 inefficient
- T3: efficiency depends on parameter t_{last} ==> robust setting of t_{last} possible (i.e., t_{last} = 15)
- T8: efficiency depends on choice of parameter ε ==> robust setting of ε possible (i.e., ε = 0.1)

Guidelines for the application of termination criteria

- •Use at least one of the always reliable termination criteria T₁ and T₃
- Use the other $(T_2, T_4 T_8)$ in disjunction with one of the reliable criteria T_1 and T_3
- \bullet Employ T_8 and T_3 to prevent needless computations in an inefficient state of the EA
- If lower bound or optimum is known employ T₂ (combined with T₁ for reliability)
- T₄ T₇ can only be used with adaptive operators, the employment with discrete valued objective functions is not recommended

5 Summary

- Concise overview of a number of prominent termination criteria
- Definition of a new cluster-based termination criteria ClusTerm T₈
 - combines information about objective values and distribution of individuals in the search space
 - first step to the development of intelligent termination criteria
- Systematic test of criteria using a set of discrete objective functions
- Guidelines for the practical employment of termination criteria
- Application to real-world problems proved successful
 - results of experiments verified by examples of Evolutionary Testing [5]
 - reliable automatic termination of multiple unattended optimization runs
- Example implementation:
 - "GEATbx: Genetic and Evolutionary Algorithm Toolbox for Matlab" http://www.geatbx.com/

References

- [1] Anderberg, M.: Cluster Analysis for Applications. New York: Academic Press, 1973.
- [2] Jain, B. J.: Clusterbasierte Abbruchkriterien für den Evolutionären Test. Diploma thesis, Technical University Berlin, Department of Computer Science, Berlin, 2000.
- [3] Pohlheim, H.: Evolutionäre Algorithmen Verfahren. Operatoren, Hinweise aus der Praxis. Berlin, Heidelberg, Germany: Springer-Verlag, 1999. http://www.pohlheim.com/eavoh/index.html
- Verlag, 1999. http://www.ponineim.com/eavon/index.ntml
 [4] Steinhausen, D. and Langer, K.: Clusteranalyse. Berlin, Heidelberg: de Gruyter, 1997.
- [4] Steinnausen, D. and Langer, K.: Cutsteranatyse. Berlin, Heldelberg: de Gruyter, 1997.
 [5] Wegener, J., and Grochtmann, M.: Verifying Timing Constraints of Real-Time Systems by Means of Evolutionary Testing. Real-Time Systems, 15, pp. 275-298, 1998.
- [6] Vössner, S.: Convergence Measure for Genetic Algorithms. Technical Report SOL 97-5, System Optimization Laboratory, Department of Engineering, Economic Systems and Operations Research, Stanford University, 1996.