C12. Seja $f: E \rightarrow F$ e sejam $A \subset E$ e $B \subset E$.

Prove que:

a) se $A \subset B$, então $f(A) \subset f(B)$

b)
$$f(A \cup B) = f(A) \cup f(B)$$

- c) $f(A \cap B) \subset f(A) \cap f(B)$
- d) $A \subseteq f^{-1}(f(A)) \in f(f^{-1}(B)) \subset B$
- e) f é bijetora se, e somente se, $f(A^C) = (f(A))^C$ para todo $A \subseteq E$ Lembrete: Se $L \subseteq Y$, o símbolo L^C representa o complemento de L em relação a Y.
- **C13.** Prove que, se uma função $f: \mathbb{R} \to \mathbb{R}$ é inversível e seu gráfico é uma curva simétrica em relação à reta y = x, então $f = f^{-1}$. Dê exemplos de funções f tais que $f = f^{-1}$.
- **C14.** Prove que f:]-1, $1[\to \mathbb{R}$ definida pela lei $f(x) = \frac{x}{1-|x|}$ é bijetora, ou seja,]-1, $1[\in \mathbb{R}$ são conjuntos equipotentes.
- **C15.** Sejam $f: E \to F$ e $g: F \to G$. Supondo g bijetora, prove que f é injetora se, e somente se, $g \circ f$ é injetora.

C16. Seja $f: E \to F$ e sejam $A \subset F \in \mathcal{B} \subset F$. Prove que:

a)
$$A \subset B \Rightarrow f^{-1}(A) \subset f^{-1}(B)$$

b)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

c)
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

d)
$$f^{-1}(A^{C}) = (f^{-1}(A))^{C}$$

- e) f é sobrejetora se, e somente se, $f^{-1}(A) \neq \emptyset$ para todo $A \subseteq F$
- **C17.** Seja $E = \{a, b\}$, com $a \neq b$. Calcule:
 - a) o número de relações sobre E;
 - p) o número de relações de equivalência sobre E;
 - o número de relações de ordem sobre E;
 - d) o número de aplicações de E em E;
 - e) o número de bijeções de E em E.

III-3 OPERAÇÕES — LEIS DE COMPOSIÇÃO INTERNAS

13. EXEMPLOS PRELIMINARES

1°.) Consideremos a aplicação $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ tal que f(x, y) = x + y, ou seja, f associa a cada par (x, y) de números naturais a sua soma x + y. A aplicação f é conhecida como *operação de adição sobre* \mathbb{N} .

- 2°.) Pensemos na aplicação $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ tal que $g(x, y) = x \cdot y$. Ela associa a cada par (x, y) de números reais o seu produto $x \cdot y$. A aplicação g é conhecida como operação de multiplicação sobre \mathbb{R} .
- 3°.) Consideremos a aplicação $h: \mathcal{P}(E) \times \mathcal{P}(E) \to \mathcal{P}(E)$, em que $\mathcal{P}(E)$ indica o conjunto das partes de E, tal que $h(X,Y) = X \cap Y$, ou seja, h associa a cada par de conjuntos (X,Y) a sua interseção $X \cap Y$. Essa aplicação é conhecida pelo nome *operação de interseção sobre* $\mathcal{P}(E)$.

14. CONCEITUAÇÃO

Definição 37: Sendo E um conjunto não vazio, toda a aplicação $f: E \times E \rightarrow E$ recebe o nome *operação sobre* E (ou em E) ou *lei de composição interna sobre* E (ou em E).

Nas considerações de caráter geral que faremos a seguir neste parágrafo, uma operação f sobre E associa a cada par (x, y) de $E \times E$ um elemento de E que será simbolizado por x * y (lê-se "x estrela y"). Assim x * y é uma forma de indicar f(x, y). Diremos também que E é um conjunto munido da operação *.

O elemento x*y é chamado composto de x e y pela operação *. Os elementos x e y do composto x*y são chamados termos do composto x*y. Os termos x e y do composto x*y são chamados, respectivamente, primeiro e segundo termos ou, então, termo da esquerda e termo da direita.

Outras notações poderão ser usadas para indicar uma operação sobre E.

a) Notação aditiva

Nesse caso, o símbolo da operação é +, a operação é chamada *adição*, o composto x + y é chamado *soma*, e os termos x e y são as *parcelas*.

b) Notação multiplicativa

Nesse caso, o símbolo da operação é \cdot ou a simples justaposição, a operação é chamada *multiplicação*, o composto $x \cdot y$ ou xy é chamado *produto*, e os termos x e y são os fatores.

- c) Outros símbolos utilizados para operações genéricas são: \triangle , \top , \bot , \times , \otimes , \oplus , etc. Mais exemplos 25:
- 1°) A aplicação $f: \mathbb{N}^* \times \mathbb{N}^* \to \mathbb{N}^*$ tal que $f(x, y) = x^y$ é operação de *potencia-ção* sobre \mathbb{N}^* .

Nota

Quaisquer que sejam os naturais não nulos x e y, o símbolo x^y representa um natural não nulo; portanto, f está bem definida.

Podemos notar que essa operação não pode ser estendida a \mathbb{Z}^* , porque, por exemplo, a imagem do par (2, -1) seria $2^{-1} \notin \mathbb{Z}^*$.

2°.) A aplicação $f: \mathbb{Q}^* \times \mathbb{Q}^* \to \mathbb{Q}^*$ tal que $f(x, y) = \frac{x}{y}$ é a operação de *divisão* sobre \mathbb{Q}^* .

A operação de divisão pode ser estendida também a \mathbb{R}^* e \mathbb{C}^* .

Deixamos como exercício ao leitor encontrar exemplos que mostrem que a divisão não é uma operação em \mathbb{N}^* ou em \mathbb{Z}^* .

3°.) A aplicação $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ tal que f(x, y) = x - y é a operação de subtracão sobre \mathbb{Z} .

A operação de subtração pode ser estendida a \mathbb{Q} , \mathbb{R} e \mathbb{C} .

- 4°.) A aplicação $f: E \times E \to E$, em que $E = M_{m \times n}$ (\mathbb{R}) representa o conjunto das matrizes do tipo $m \times n$ com elementos reais, tal que f(x,y) = x + y é a operação de *adição* sobre $M_{m \times n}$ (\mathbb{R}).
- 5°.) A aplicação $f: E \times E \to E$, em que $E = M_n$ (\mathbb{R}) representa o conjunto das matrizes quadradas de ordem n com elementos reais, tal que $f(x, y) = x \cdot y$ é a operação de *multiplicação* sobre M_n (\mathbb{R}).
- 6°) A aplicação φ : $E \times E \to E$, em que $E = \mathbb{R}^{\mathbb{R}}$ representa o conjunto das funções de \mathbb{R} em \mathbb{R} , tal que $\varphi(f, g) = f \circ g$ é a operação de *composição* sobre $\mathbb{R}^{\mathbb{R}}$.

15. PROPRIEDADES DAS OPERAÇÕES

Seja * uma lei de composição interna em *E.* Vejamos algumas propriedades que * pode apresentar.

15.1 Propriedade associativa

Definição 38: Dizemos que * goza da propriedade associativa se

$$x*(y*z) = (x*y)*z,$$

quaisquer que sejam x, y, $z \in E$.

Exemplos 26:

1°) As adições em \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} são operações que gozam da propriedade associativa. (Costuma-se dizer que "são operações associativas".)

$$(x + y) + z = x + (y + z), \quad \forall x, y, z$$

2°.) As multiplicações em \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} são operações associativas

$$(x \cdot y) \cdot z = x \cdot (y \cdot z), \quad \forall x, y, z$$

3°.) A adição em $M_{m \times n}$ (\mathbb{R}), conjunto das matrizes do tipo $m \times n$ com elementos reais, é operação associativa.

$$(X + Y) + Z = X + (Y + Z), \forall X, Y, Z$$

4°.) A multiplicação em M_n ($\mathbb R$) é operação associativa.

$$(X Y) Z = X (YZ), \quad \forall X, Y, Z$$

5°.) A composição de funções de $\mathbb R$ em $\mathbb R$ é operação associativa.

$$(f \circ g) \circ h = f \circ (g \circ h), \quad \forall f, g, h$$

Contra-exemplos 7:

1°.) A potenciação em №* não é operação associativa, pois:

$$2*(3*4) = 2^{(3^4)} = 2^{81}$$

 $(2*3)*4 = (2^3)^4 = 2^{12}$

2°) A divisão em R* não é operação associativa, pois:

$$24*(4*2) = 24:(4:2) = 24:2 = 12$$

$$(24*4)*2 = (24:4):2 = 6:2 = 3$$

Observação

O fato de uma operação ser associativa possibilita indicar o composto de mais de dois elementos sem necessidade de usar os parênteses, uma vez que qualquer associação entre os elementos presentes conduz ao mesmo resultado. Por exemplo:

$$2 + 4 + 6 + 7 = (2 + 4) + (6 + 7) = 2 + (4 + 6) + 7 = 2 + (4 + 6 + 7) = 19$$

Se uma operação não é associativa, temos a obrigação de usar parênteses para indicar como deve ser calculado um composto de três ou mais elementos, pois, caso contrário, deixamos o composto sem significado. Por exemplo, em \mathbb{R}^* , 48 : 6 : 2 : 4 não tem significado, pois:

$$(48:6):(2:4)=8:\frac{1}{2}=16$$

$$((48:6):2):4=(8:2):4=4:4=1$$

$$48:((6:2):4)=48:(3:4)=48:\frac{3}{4}=64$$

15.2 Propriedade comutativa

Definição 39: Dizemos que * goza da propriedade comutativa se

$$x*y=y*x,$$

quaisquer que sejam $x, y \in E$.

Exemplos 27:

1°) As adições em \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} são operações que gozam da propriedade comutativa. (Costuma-se dizer que "são operações comutativas".)

$$x + y = y + x$$
, $\forall x, y$

2°.) As multiplicações em \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} são operações comutativas.

$$x \cdot y = y \cdot x$$
, $\forall x, y$

3°.) A adição em $M_{m \times n}$ (\mathbb{R}) é operação comutativa.

$$X + Y = Y + X$$
, $\forall X, Y$

Contra-exemplos 8:

- 1°) A potenciação em \mathbb{N}^* não é comutativa, pois, por exemplo, $2^3=8$ e $3^2=9$.
- 2°) A divisão em \mathbb{R}^* não é comutativa, pois, por exemplo, $3:6=\frac{1}{2}$ e 6:3=2.

- 3°.) A subtração em $\mathbb Z$ não é comutativa, pois, por exemplo, 3-7=-4 e 7-3=4.
- 4°.) A multiplicação em M_2 ($\mathbb R$) não é comutativa, pois, por exemplo:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

e

$$\begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 23 & 34 \\ 31 & 46 \end{pmatrix}$$

5°.) A composição de funções em $\mathbb{R}^{\mathbb{R}}$ não é comutativa, pois, por exemplo, se f(x) = 3x e $g(x) = x^2 + 1$, temos:

$$(f \circ g)(x) = f(g(x)) = 3(x^2 + 1) = 3x^2 + 3$$

e

$$(g \circ f)(x) = g(f(x)) = (3x)^2 + 1 = 9x^2 + 1$$

Exercícios

105. Em cada caso a seguir, verifique se a operação * sobre E é associativa.

a)
$$E = \mathbb{R}$$
 e $x * y = \frac{x + y}{2}$

b)
$$E = \mathbb{R}$$
 e $x * y = x$

c)
$$E = \mathbb{R}_+ \ e \ x * y = \sqrt{x^2 + y^2}$$

d)
$$E = \mathbb{R}$$
 e $x * y = \sqrt[3]{x^3 + y^3}$

e)
$$E = \mathbb{R}^*$$
 e $x * y = \frac{x}{y}$

f)
$$E = \mathbb{R}_+ e \quad x * y = \frac{x + y}{1 + xy}$$

g)
$$E = \mathbb{Z}$$
 e $x * y = xy + 2x$

h)
$$E = \mathbb{Q}$$
 e $x * y = x + xy$

i)
$$E = \mathbb{R}$$
 e $x * y = x + y - 2x^2y^2$

j)
$$E = \mathbb{R}$$
 e $x * y = x^2 + y^2 + 2xy$

- **106.** Em cada caso a seguir está definida uma operação sobre $\mathbb{Z} \times \mathbb{Z}$. Verifique se ela é associativa:
 - a) (a, b) * (c, d) = (ac, 0)

b)
$$(a, b) \triangle (c, d) = (a + c, b + d)$$

c)
$$(a, b) \perp (c, d) = (ac, ad + bc)$$

d)
$$(a, b) \cap (c, d) = (a + c, bd)$$

e)
$$(a, b) \times (c, d) = (ac - bd, ad + bc)$$

107. Consideremos a operação * em ℝ definida pela regra:

$$x*y = ax + by + cxy$$

em que a, b, c são números reais dados.

Determine as condições sobre a, b, c de modo que * seja associativa.

- 108. Examine novamente as operações do exercício 105 e verifique quais são comutativas.
- **109.** Examine novamente as operações do exercício 106 e verifique quais são comutativas.
- **110.** Retome a operação definida no exercício 107 e estabeleça as condições sobre *a, b, c* de modo que * seja comutativa.

15.3 Elemento neutro

Definição 40: Se existe $e \in E$ tal que e * x = x para todo $x \in E$, dizemos que $e \notin U$ e é um elemento neutro à esquerda para *.

Se existe $e \in E$ tal que x * e = x para todo $x \in E$, dizemos que e é um elemento neutro à direita para *.

Se e é elemento neutro à direita e à esquerda para a operação *, dizemos simplesmente que e é elemento neutro para essa operação.

Exemplo 28:

- 1°:) O elemento neutro das adições em \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} é o número 0, pois 0+x=x=x+0 para qualquer número x.
- 2°) O elemento neutro das multiplicações em \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ou \mathbb{C} é o número 1, pois $1 \cdot x = x = x \cdot 1$ para qualquer número x.
- 3°) O elemento neutro da adição em $M_{m \times n}(\mathbb{R})$ é $0_{m \times n}$ (matriz nula do tipo $m \times n$), pois $0_{m \times n} + X = X = X + 0_{m \times n}$, qualquer que seja $X \in M_{m \times n}(\mathbb{R})$.
- 4°) O elemento neutro da multiplicação em $M_n(\mathbb{R})$ é I_n (matriz identidade do tipo $n \times n$), pois $I_n X = X = X I_n$, qualquer que seja $X \in M_n(\mathbb{R})$.
- 5°) O elemento neutro da composição em $\mathbb{R}^{\mathbb{R}}$ é a função $i_{\mathbb{R}}$ (função idêntica em \mathbb{R}), pois $i_{\mathbb{R}} \circ f = f \circ i_{\mathbb{R}}$, qualquer que seja $f \in \mathbb{R}^{\mathbb{R}}$.

Contra-exemplos 9:

- 1°.) A subtração em \mathbb{Z} admite 0 como elemento neutro à direita pois x-0=x para todo $x\in\mathbb{Z}$, mas não admite neutro à esquerda, pois não existe e (fixo) tal que e-x=x para todo $x\in\mathbb{Z}$.
- 2°.) A divisão em \mathbb{R}^* admite 1 como elemento neutro à direita, pois x:1=x para todo $x \in \mathbb{R}^*$, mas não admite neutro à esquerda, pois não existe e (fixo) tal que e:x=x para todo $x \in \mathbb{R}^*$.
- 3°.) Todos os elementos de $\mathbb R$ são elementos neutros à esquerda da operação definida por x*y=y sobre esse conjunto. De fato, se $e\in\mathbb R$, então e*y=y, qualquer que seja $y\in\mathbb R$. Mas nenhum número real é elemento neutro à direita para essa operação. De fato, se $e\in\mathbb R$ e a é um número real diferente de e, então a*e=e.

Proposição 10: Se a operação * sobre £ tem um elemento neutro e, então ele é único.

Demonstração: Suponhamos que e e e' sejam elementos neutros da operação *. Como e é elemento neutro e $e' \in E$, então e * e' = e'. Por raciocínio análogo, chega-se à conclusão de que e * e' = e.

De onde,
$$e' = e$$
. #

Exercícios

- 111. Examine novamente as operações do exercício 105 e determine quais têm elemento neutro.
- 112. Examine novamente as operações do exercício 106 e determine quais têm elemento neutro.
- **113.** Determine todos os elementos neutros à esquerda para a operação de multiplicação em $E = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} | \ a,b \in \mathbb{R} \right\}$.
- **114.** Estabeleça as condições sobre m, $n \in \mathbb{Z}$ de modo que a operação * sobre \mathbb{Z} dada pela lei x*y = mx + ny:
 - a) seja associativa;
 - b) seja comutativa;
 - c) admita elemento neutro.
- **115.** Examine novamente a operação definida no exercício 107 e estabeleça as condições sobre *a*, *b*, *c* de modo que a operação tenha elemento neutro.

15.4 Elementos simetrizáveis

Definição 41: Seja * uma operação sobre E que tem elemento neutro e. Dizemos que $x \in E$ é um *elemento simetrizável* para essa operação se existir $x' \in E$ tal que

$$x'*x=e=x*x'$$

O elemento x' é chamado simétrico de x para a operação *.

Quando a operação é uma adição, o simétrico de x também é chamado oposto $de \times e$ indicado por -x.

Quando a operação é uma multiplicação, o simétrico de x também é chamado inverso de x e indicado por x^{-1} .

Exemplos 29 e contra-exemplos 10:

1°) 3 é um elemento simetrizável para a adição em \mathbb{Z} , e seu simétrico (ou oposto) é -3, pois:

$$(-3) + 3 = 0 = 3 + (-3)$$

2°) 3 é um elemento simetrizável para a multiplicação em \mathbb{Q} , e seu simétrico (ou inverso) é $\frac{1}{3}$, pois:

$$\frac{1}{3} \cdot 3 = 1 = 3 \cdot \frac{1}{3}$$

0 não é simetrizável para a mesma operação, pois não há elemento $x' \in \mathbb{Q}$ tal que:

$$x' \cdot 0 = 1 = 0 \cdot x'$$

3°) Existem apenas dois elementos simetrizáveis para a multiplicação em \mathbb{Z} : o 1 e o -1, que são iguais aos seus respectivos inversos.

Já o 3 *não* é simetrizável para a multiplicação em \mathbb{Z} , uma vez que não existe $x' \in \mathbb{Z}$ tal que $x' \cdot 3 = 1 = 3 \cdot x'$.

4°.) $\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$ é simetrizável para a adição em $M_2(\mathbb{R})$, e seu simétrico é $\begin{pmatrix} -1 & -2 \\ -3 & -6 \end{pmatrix}$, pois:

 $\begin{pmatrix} -1 & -2 \\ -3 & -6 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} + \begin{pmatrix} -1 & -2 \\ -3 & -6 \end{pmatrix}$

5°.) $\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$ não é simetrizável para a multiplicação em M_2 (\mathbb{R}), pois, supondo que sua inversa pudesse ser $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, teríamos:

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} a+3b & 2a+6b \\ c+3d & 2c+3d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \begin{cases} a+3b-1 \\ 2a+6b=0 \\ c+3d=0 \end{cases}$ e esse sistema não tem solução.

6°.) $\begin{pmatrix}1&2\\3&5\end{pmatrix}$ é simetrizável para a multiplicação em $M_2(\mathbb{R})$, e seu inverso é $\begin{pmatrix}-5&2\\3&-1\end{pmatrix}$, pois:

$$\begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$$

7°.) A função de \mathbb{R} em \mathbb{R} dada pela lei f(x) = 3x - 1 é bijetora e, conseqüentemente, é inversível. Sua inversa é $f^{-1}(x) = \frac{x+1}{3}$. Temos:

$$f^{-1} \circ f = i_{\mathbb{R}} = f \circ f^{-1}$$
 (lembre-se de que $i_{\mathbb{R}}$ é o neutro)

portanto, f é um elemento de $\mathbb{R}^{\mathbb{R}}$, simetrizável para a composição de funções.

Já qualquer função de $\mathbb R$ em $\mathbb R$ que não seja bijetora não é inversível e, portanto, não é elemento de $\mathbb R^\mathbb R$ simetrizável para a mesma operação.

Proposição 11: Seja * uma operação sobre E que é associativa e tem elemento neutro e.

- a) Se um elemento $x \in E$ é simetrizável, então o simétrico de x é único.
- b) Se $x \in E$ é simetrizável, então seu simétrico x' também é e (x')' = x.
- c) Se $x, y \in E$ são simetrizávels, então x * y é simetrizável e (x * y)' = y' * x'.

Demonstração:

a) Suponhamos que x' e x'' sejam simétricos de x. Temos:

$$x' = e * x' = (x'' * x) * x' = x'' * (x * x') = x'' * e = x''$$

b) Sendo x' o simétrico de x, temos:

$$x'*x = e = x*x'$$

e, pela definição 41, x é o simétrico de x', ou seja, x = (x')'.

- c) Para provarmos que y'*x' é o simétrico de x*y, devemos mostrar que:
- (1) (y'*x')*(x*y) = e
- (2) (x*y)*(y'*x') = e

De fato, temos:

(1)
$$(y'*x')*(x*y) = [(y'*x')*x]*y = [y'*(x'*x)]*y = (y'*e)*y = y'*y = e$$

(2) Analogamente. #

Por indução, pode-se generalizar a propriedade c): se $a_1, a_2, ..., a_n$ são elementos de E, então $(a_1*a_2*...*a_n)'=a'_n*a'_{n-1}*...a'_2*a'_1$.

Notação: conjunto dos simetrizáveis

Se * é uma operação sobre E com elemento neutro e, indica-se por $U_*(E)$ o conjunto dos elementos simetrizáveis de E para a operação *.

$$U_*(E) = \{x \in E \mid \exists x' \in E : x' * x = e = x * x'\}$$

Exemplos 30:

$$U_+(\mathbb{N})=\{0\}$$

$$U_{+}(\mathbb{Z}) = \mathbb{Z}$$

$$U_*(\mathbb{Z}) = \{1, -1\}$$

$$U_{\cdot}(\mathbb{R}) = \mathbb{R}^*$$

$$U_{+}(M_{n}(\mathbb{R})) = M_{n}(\mathbb{R})$$

$$U_{*}(M_{n}(\mathbb{R})) = \{X \in M_{n}(\mathbb{R}) \mid \det X \neq 0\}$$

$$U_0(\mathbb{R}^\mathbb{R}) = \{ f \in \mathbb{R}^\mathbb{R} \mid f \text{ \'e bijetora} \}$$

Podemos notar que $U_*(E) \neq \emptyset$, pois necessariamente $e \in U_*(E)$, uma vez que e * e = e.

- **116.** Examine novamente as operações do exercício 105 que têm elemento neutro para determinar os elementos simetrizáveis.
- **117.** Examine novamente as operações do exercício 106 que têm elemento neutro para determinar os elementos simetrizáveis.
- **118.** Sendo * a operação sobre \mathbb{Z}^3 dada por (a,b,c)*(d,e,f)=(ad,be,cf), determine seu elemento neutro e o conjunto dos elementos simetrizáveis de \mathbb{Z}^3 para *.
- 119. Sejam E e F dois conjuntos em que estão definidas as operações * e △, respectivamente, as quais são associativas e têm neutros. Sobre o conjunto E × F, consideremos uma operação assim definida:

$$(a,b) \circ (c,d) = (a*c,b\triangle d)$$

- a) Mostre que o é associativa e possui elemento neutro.
- b) Determine os elementos inversíveis de $E \times F$ para essa operação.

15.5 Elementos regulares

Definição 42: Seja * uma operação sobre *E*. Dizemos que um elemento $a \in E$ é regular (ou simplificável ou que cumpre a lei do cancelamento) à esquerda em relação à operação * se, para quaisquer $x, y \in E$ tais que a * x = a * y, vale x = y.

Dizemos que um elemento $a \in E$ é regular (ou simplificável) à direita relativamente à operação * se, para quaisquer $x, y \in E$ tais que x*a = y*a, vale x = y.

Se $a \in E$ é um elemento regular à esquerda e à direita para a operação *, dizemos simplesmente que a é *regular* para essa operação.

Exemplos 31 e contra-exemplos 11:

1º) 3 é regular para a adição em ℕ, pois:

$$3 + x = 3 + y \Rightarrow x = y$$

quaisquer que sejam $x, y \in \mathbb{N}$.

2°) 3 é regular para a multiplicação em Z, pois:

$$3 \cdot x = 3 \cdot y \Rightarrow x = y$$

quaisquer que sejam $x, y \in \mathbb{Z}$.

3°) 0 não é regular para a multiplicação em ℤ, pois:

$$0 \cdot 2 = 0 \cdot 3 = 2 \neq 3$$

4°.) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ é regular para a adição em $M_2(\mathbb{R})$, pois:

$$\operatorname{se}\begin{pmatrix}1&2\\3&4\end{pmatrix}+\begin{pmatrix}a&b\\c&d\end{pmatrix}=\begin{pmatrix}1&2\\3&4\end{pmatrix}+\begin{pmatrix}a'&b'\\c'&d'\end{pmatrix},\operatorname{então}\begin{pmatrix}1+a&2+b\\3+c&4+d\end{pmatrix}=\begin{pmatrix}1+a'&2+b'\\3+c'&4+d'\end{pmatrix}$$

e, daí,
$$(a = a', b = b', c = c' e d = d')$$
. De onde $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$.

5°.) $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ não é regular para a multiplicação em $M_2(\mathbb{R})$, pois:

$$\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 4 & 6 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix} e \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \neq \begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$$

Proposição 12: Se a operação * sobre E é associativa, tem elemento neutro e e um elemento $a \in E$ é simetrizável, então a é regular.

Demonstração: Sejam x e y elementos quaisquer de E tais que a*x = a*y e x*a = y*a.

Da primeira dessas hipóteses, segue que a'*(a*x) = a'*(a*y). Daí, considerando-se a associatividade, (a'*a)*x = (a'*a)*y, ou seja, e*x = e*y. De onde, x = y.

Analogamente se prova que, se x * a = y * a, então x = y. Portanto, a é regular. #

Notação: conjunto dos regulares

Sendo * uma operação sobre E, indica-se com $R_*(E)$ o conjunto dos elementos regulares de E para a operação *.

Exemplos 32:

$$R_+(\mathbb{N}) = \mathbb{N}$$

$$R_{*}(\mathbb{Z}) = \mathbb{Z}^{*}$$

$$R_+(M_2(\mathbb{R}))=M_2(\mathbb{R})$$

Podemos notar que, se * tem elemento neutro e, então $e \in R_*(E)$ e, portanto, $R_*(E) \neq \emptyset$.

Podemos notar também que, se * é associativa e tem elemento neutro e, então $U_*(E) \subset R_*(E)$, conforme mostrou a proposição 12.

Exercícios

- **120.** Determine o conjunto dos elementos regulares para cada operação definida no exercício 105.
- 121. Determine os elementos regulares de Z x Z para cada operação definida no exercício 106.
- 122. Mostre que nenhum elemento de $\mathbb R$ é regular para a operação * assim definida:

$$x*y = x^2 + y^2 - xy$$

- **123.** Determine os elementos regulares de \mathbb{R} relativamente à operação * assim definida: x * y = 5x + 3y 7xy.
- **124.** Mostre que se * é uma operação associativa sobre E, então $R(E) = \emptyset$ ou $\mathbb{R}_*(E)$ é subconjunto de E fechado para a operação *.

15.6 Propriedade distributiva

Definição 43: Sejam * e \triangle duas operações sobre E. Dizemos que \triangle é distributiva à esquerda relativamente a * se:

$$x \triangle (y * z) = (x \triangle y) * (x \triangle z)$$

quaisquer que sejam $x, y, z \in E$.

Dizemos que \triangle é distributiva à direita relativamente a * se:

$$(y * z) \triangle x = (y \triangle x) * (z \triangle x)$$

quaisquer que sejam $x, y, z \in E$.

Quando \triangle é distributiva à esquerda e à direita de *, dizemos simplesmente que \triangle é distributiva relativamente a *.

Exemplos 33:

1°.) A multiplicação em $\mathbb Z$ é distributiva em relação à adição em $\mathbb Z$, pois:

$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

quaisquer que sejam $x, y, z \in \mathbb{Z}$.

2°.) A multiplicação em $M_n(\mathbb{R})$ é distributiva em relação à adição em $M_n(\mathbb{R})$, pois:

$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$

$$(Y + Z) \cdot X = (Y \cdot X) + (Z \cdot X)$$

quaisquer que sejam $X, Y, Z \in M_n(\mathbb{R})$.

3°) Em №*, a potenciação é distributiva à direita em relação à multiplicação, pois:

$$(x\cdot y)^z=x^z\!\cdot y^z$$

quaisquer que sejam $x, y, z \in \mathbb{N}^*$.

Entretanto, a potenciação em \mathbb{N}^* não é distributiva à esquerda em relação à multiplicação, pois, por exemplo:

$$2^{3\cdot 4} \neq 2^3\cdot 2^4$$

16. PARTE FECHADA PARA UMA OPERAÇÃO

Definição 44: Sejam * uma operação sobre E e A um subconjunto não vazio de E. Dizemos que A é uma parte fechada de E para a operação * se, e somente se, para quaisquer $x, y \in A$ verificar-se $x * y \in A$.

Exemplos 34:

1°) O conjunto $\mathbb N$ é uma parte fechada para a adição e a multiplicação em $\mathbb Z$, pois:

$$\mathbb{N} \neq \emptyset, \mathbb{N} \subset \mathbb{Z}$$

e
 $x \in \mathbb{N} \text{ e } y \in \mathbb{N} \Rightarrow x + y \in \mathbb{N}$

 $x \in \mathbb{N} \text{ e } y \in \mathbb{N} \Rightarrow x \cdot y \in \mathbb{N}$

quaisquer que sejam $x, y \in \mathbb{N}$.

2°.) O conjunto $\mathbb Q$ é uma parte fechada para a adição e a multiplicação em $\mathbb R$, pois:

$$Q \neq \emptyset, Q \subset \mathbb{R}$$

e
 $x \in \mathbb{Q} \text{ e } y \in \mathbb{Q} \Rightarrow x + y \in \mathbb{Q}$
 $x \in \mathbb{Q} \text{ e } y \in \mathbb{Q} \Rightarrow x \cdot y \in \mathbb{Q}$

quaisquer que sejam $x, y \in \mathbb{Q}$.

3°.) O conjunto \mathbb{R}_+ é uma parte fechada de \mathbb{R} para a operação de multiplicação em \mathbb{R} , pois:

$$\mathbb{R}_+ \neq \emptyset$$
, $\mathbb{R}_+ \subset \mathbb{R}$ e $(x \in \mathbb{R}_+ \text{ e } y \in \mathbb{R}_+) \Rightarrow x \cdot y \in \mathbb{R}_+$ quaisquer que sejam $x, y \in \mathbb{R}_+$.

4°.) O conjunto $D_2(\mathbb{R})$ das matrizes diagonais do tipo 2 × 2 é uma parte fechada de $M_2(\mathbb{R})$ para a adição e a multiplicação em $M_2(\mathbb{R})$, pois:

$$\begin{pmatrix} a & 0 \\ 0 & a' \end{pmatrix} + \begin{pmatrix} b & 0 \\ 0 & b' \end{pmatrix} = \begin{pmatrix} a+b & 0 \\ 0 & a'+b' \end{pmatrix} \in D_2(\mathbb{R})$$
$$\begin{pmatrix} a & 0 \\ 0 & a' \end{pmatrix} \cdot \begin{pmatrix} b & 0 \\ 0 & b' \end{pmatrix} = \begin{pmatrix} ab & 0 \\ 0 & a'b' \end{pmatrix} \in D_2(\mathbb{R})$$

quaisquer que sejam $a, a', b, b' \in \mathbb{R}$.

5°) O conjunto A das funções bijetoras de \mathbb{R} em \mathbb{R} é um subconjunto fechado para a composição de funções em $\mathbb{R}^{\mathbb{R}}$, pois:

$$f \in A \in g \in A \Rightarrow f \circ g \in A$$

quaisquer que sejam $f, g \in A$.

Contra-exemplos 12:

1°) O conjunto \mathbb{Z}_{-} é uma parte fechada para a adição em \mathbb{R} , mas *não* é parte fechada para a multiplicação, pois, por exemplo:

$$-2 \in \mathbb{Z}_{-r}$$
, $-3 \in \mathbb{Z}$ e $(-2)(-3) \notin \mathbb{Z}_{-r}$

2°.) O conjunto $\mathbb{R} - \mathbb{Q}$ (dos números irracionais) *não* é parte fechada para a adição em \mathbb{R} e para a multiplicação em \mathbb{R} , pois, por exemplo:

$$\sqrt{2} \in \mathbb{R} - \mathbb{Q}, -\sqrt{2} \in \mathbb{R} - \mathbb{Q} e\left(\sqrt{2}\right) + \left(-\sqrt{2}\right) \notin \mathbb{R} - \mathbb{Q}$$
$$e\left(\sqrt{2}\right)\left(-\sqrt{2}\right) \notin \mathbb{R} - \mathbb{Q}$$

3°.) O conjunto $GL_2(\mathbb{R})$ das matrizes inversíveis $n\tilde{a}o$ é fechado para a adição em $M_2(\mathbb{R})$, pois, por exemplo:

$$\begin{pmatrix}1&0\\0&1\end{pmatrix}\in GL_2(\mathbb{R}), \begin{pmatrix}-1&0\\0&-1\end{pmatrix}\in GL_2(\mathbb{R})\ e\begin{pmatrix}1&0\\0&1\end{pmatrix}+\begin{pmatrix}-1&0\\0&-1\end{pmatrix}\not\in GL_2(\mathbb{R})$$

Exercícios

125. Em $\mathbb{Z} \times \mathbb{Z}$ estão definidas duas operações * e \triangle da sequinte forma:

$$(a, b)*(c, d) = (a + c, b + d)$$

 $(a, b) \triangle (c, d) = (ac, ad + bc)$

Verifique se △ é distributiva em relação a *.

126. Determine $m \in \mathbb{R}$ de modo que a operação \triangle seja distributiva em relação à operação *, sendo \triangle e * definidas em \mathbb{R} por:

$$x \triangle y = my$$

 $x*y = x + y + xy$

- **127.** Decida: quais dos conjuntos abaixo são partes fechadas de **Z** para a operação de adição usual?
 - a) Z...
 - b) $P = \{x \in \mathbb{Z} \mid x \in \text{par}\}$
 - c) $I = \{x \in \mathbb{Z} \mid x \in \text{impar}\}$
 - d) $J = \{x \in \mathbb{Z} \mid x \in \text{primo}\}$
 - e) $K = \{x \in \mathbb{Z} \mid \mathsf{mdc}(x, 10) = 1\}$
 - f) $L = \{x \in \mathbb{Z} \mid x = 3q + 1, q \in \mathbb{Z}\}$
- 128. Repita o exercício anterior substituindo a adição pela multiplicação usual.
- **129.** Mostre que $A = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$ é parte fechada de $M_2(\mathbb{R})$ para a operação de adição.
- **130.** Mostre que $A = \left\{ \begin{pmatrix} \cos a & \sin a \\ -\sin a & \cos a \end{pmatrix} \mid a \in \mathbb{R} \right\}$ é subconjunto de $M_2(\mathbb{R})$ fechado para a multiplicação.
- **131.** Mostre que $A = \{z \in \mathbb{C} \mid z = \cos \theta + i \cdot \sin \theta\}$ é subconjunto de \mathbb{C} fechado para a multiplicação.

17. TÁBUA DE UMA OPERAÇÃO

Como se constrói

Seja $E = \{a_1, a_2, ..., a_n\}$, com n > 1, um conjunto com n elementos. Toda operação sobre E é uma aplicação $f: \mathbb{E} \times \mathbb{E} \to \mathbb{E}$ que associa a cada par (a_i, a_j) o elemento $a_i * a_j = a_{ij}$.

Podemos representar o elemento a_{ij} , correspondente ao par (a_i, a_j) , numa tabela de dupla entrada construída como segue.

1°.) Marcamos na linha fundamental e na coluna fundamental os elementos do conjunto E. Chamamos de i-ésima linha aquela que começa com a_i e de j-ésima coluna a que é encabeçada por a_i .

2º) Dado um elemento a_i na coluna fundamental e um elemento a_j na linha fundamental, na interseção da i-ésima linha com a j-ésima coluna, marcamos o composto a_{ii} .

Exemplos 35:

1°) Tábua da multiplicação em $E = \{-1, 0, 1\}$.

•	-1	0	1
-1	1	0	-1
0	0	0	0
1	-1	0	1

2°.) Tábuas das operações de reunião e de interseção sobre $E = \{A, B, C, D\}$, em que A, B, C, D são conjuntos tais que $A \subset B \subset C \subset D$.

C	Α	В	C	D
Α	Α	В	C	D
В	В	В	С	D
С	С	C	C	D
D	D	D	D	D

\cap	Α	В	С	D
Α	Α	Α	Α	Α
В	Α	В	В	В
С	Α	В	С	C
D	Α	В	С	D

3°) Tábua operação * sobre $E = \{1, 3, 5, 15\}$ tal que x * y = mdc(x, y).

*	1	3	5	15
1	1	1	1	1
3	1	3	1	3
5	1	1	5	5
15	1	3	5	15

4°) Tábua da operação de composição sobre $E = \{f_1, f_2, f_3\}$, em que f_1, f_2, f_3 são funções assim descritas:

$$f_1 = \{(a, a), (b, b), (c, c)\}$$

$$f_2 = \big\{ (a,b), (b,c), (c,a) \big\}$$

$$f_3 = \{(a, c), (b, a), (c, b)\}$$

0	f_1	f ₂	f_3
f_1	f_1	f_2	f_3
f_2	f ₂	f_3	f_1
f_3	f_3	f_1	f_2

Exercícios

132. Em cada caso a seguir está definida uma operação * sobre E. Faça a tábua da operação.

a)
$$E = \{1, 2, 3, 6\}$$
 e $x * y = mdc(x, y)$

b)
$$E = \{1, 3, 9, 27\} e x * y = mmc(x, y)$$

c)
$$E = \left\{1, \sqrt{2}, \frac{3}{2}\right\} e^{x * y} = \min(x, y)$$

d)
$$E = \left\{3\sqrt{2}, \pi, \frac{7}{2}\right\} e x * y = \max(x, y)$$

e)
$$E = \{1, i, -1, -i\}$$
 e $x * y = x \cdot y$

133. Em cada caso a seguir está definida uma operação * sobre $E = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Construa a tábua da operação.

a)
$$x * y = x \cup y$$

b)
$$x*y = x \cap y$$

c)
$$x*y = (x \cup y) - (x \cap y)$$

- **134.** Construa as tábuas das operações * e \triangle sobre $E = \{0,1,2,3\}$ assim definidas:
 - a) $x*y = \text{resto da divisão em } \mathbb{Z} \text{ de } x + y \text{ por 4}$
 - b) $x \triangle y = \text{resto da divisão em } \mathbb{Z} \text{ de } x \cdot y \text{ por 4}$
- **135.** Construa as tábuas das operações \oplus e \odot sobre $E = \{0,1,2,3,4\}$ assim definidas:
 - a) $x \oplus y = \text{resto da divisão em } \mathbb{Z} \text{ de } x + y \text{ por 5}$
 - b) $x \odot y = \text{resto da divisão em } \mathbb{Z} \text{ de } x \cdot y \text{ por 5}$
- **136.** Construa a tábua da operação de reunião sobre a família de conjuntos $\Re = \{A, B, C, D, E\}$ sabendo que $A \cup B = A, C \cup D = B, D \cup E = D$ e $E \cup C = C$.
- **137.** Descreva pelas tábuas todas as operações sobre o conjunto $E = \{a, b\}$.
- **138.** A partir da tábua ao lado, da operação \triangle sobre $E = \{1, 2, 3, 4\}$, calcule os seguintes compostos:

a) (3
$$\triangle$$
 4) \triangle 2

e) [(4
$$\triangle$$
 3) \triangle 3] \triangle 4

Δ	1	2	3	4
1	1	1	1	1
2	1	2	3	4_
3	1	3	4	2
4	1	4	2	3_

139. Complete a tábua da operação 🔾 (composição) definida sobre o conjunto de funções reais $E = \{f_1, f_2, f_3, f_4\}$, em que:

$$f_1(x) = \frac{1}{x}$$

$$f_2(x) = -x$$

$$f_3(x) = -\frac{1}{x}$$

$$f_4(x)=x$$

0	f_1	f_2	f_3	f ₄
f_1				
f ₂				''
f_3				
f_4				

Depois responda:

- a) Qual é o elemento neutro?
- b) Que elementos têm simétrico?
- c) Quais são os valores dos compostos f_1^2, f_2^{-1}, f_3^3 e $f_1^2 \cap f_2^{-1} \cap f_3^3$?
- 140. Construa a tábua da operação de composição sobre o conjunto de funções $E = \{f_1, f_2, f_3, f_4\}$, sabendo que essas funções são de \mathbb{R}^2 em \mathbb{R}^2 , dadas por:

$$f_1(x, y) = (x, y)$$
 $f_3(x, y) = (x, -y)$

$$f_3(x,y)=(x,-y)$$

$$f_2(x,y)=(-x,y)$$

$$f_2(x, y) = (-x, y)$$
 $f_4(x, y) = (-x, -y)$

- **141.** Seja $E = \{0, 1\}$. Seja E^E o conjunto das aplicações de E em E. Construa a tábua da operação de composição em E^E.
- **142.** Construa a tábua da operação de composição de funções em $E = \{f_1, f_2, f_3, f_4\}$, em que:

$$f_1 = \{(a, a), (b, b), (c, c), (d, d)\} = \begin{pmatrix} a & b & c & d \\ a & b & c & d \end{pmatrix}$$

$$f_2 = \{(a, b), (b, c), (c, d), (d, a)\} = \begin{pmatrix} a & b & c & d \\ b & c & d & a \end{pmatrix}$$

$$f_3 = \{(a, c), (b, d), (c, a), (d, b)\} = \begin{pmatrix} a & b & c & d \\ c & d & a & b \end{pmatrix}$$

$$f_4 = \{(a, d), (b, a), (c, b), (d, c)\} = \begin{pmatrix} a & b & c & d \\ d & a & b & c \end{pmatrix}$$

Em seguida, calcule:

a)
$$f_2 \circ f_3 \circ f_4$$

b) f_3^2

d)
$$(f_3 \circ f_4)^-$$

b)
$$f_3^2$$

e)
$$f_2^-$$

c)
$$(f_2 \circ f_4)^3$$

f)
$$f_2^{-1} \circ f_3^{-1}$$

Observação: A notação $\begin{pmatrix} a & b & c & d \\ c & d & a & b \end{pmatrix}$, por exemplo, indica que a imagem de a é c, de b é d, de c é a e de d é b.

143. Construa a tábua da operação de composição de funções em $E = \{f_1, f_2, f_3, f_4, f_5, f_6\}$, em que:

$$f_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad f_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad f_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$f_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad f_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad f_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Sugestão: Observe no exercício 142 o significado dessa notação matricial.

Como checar propriedades

Vejamos agora como se pode checar uma a uma as propriedades de uma operação * sobre $E = \{a_1, a_2, \dots, a_n\}$ quando * é dada por meio de uma tábua.

a) Propriedade associativa

É aquela cuja verificação exige maior trabalho. A verificação pode ser feita de dois modos:

1º modo: Calculam-se todos os compostos do tipo $a_i*(a_j*a_k)$, com $i,j,k\in\{1,2,...,n\}$; calculam-se todos os compostos do tipo $(a_i*a_j)*a_k$, com $i,j,k\in\{1,2,...,n\}$; comparam-se os compostos que têm os mesmos i,j e k. Como podemos notar, esse método requer o cálculo de $2n^3$ compostos.

2º modo: Encontra-se um conjunto F dotado de uma operação \triangle que se sabe ser associativa de tal forma que exista uma aplicação $f: E \rightarrow F$ com as seguintes propriedades:

- a) f é bijetora;
- b) $f(x*y) = f(x) \triangle f(y)$ para todos $x, y \in E$.

Se isso ocorrer, a lei * também é associativa, pois, para quaisquer $x, y, z \in E$, temos:

$$f((x*y)*z) = f(x*y) \triangle f(z) = (f(x) \triangle f(y)) \triangle f(z) =$$

$$= f(x) \triangle (f(y) \triangle f(z)) = f(x) \triangle f(y*z) = f(x*(y*z))$$

e, como $f \in bijetora, vem: (x*y)*z = x*(y*z)$

Você, estudante, poderá ter uma compreensão maior desse assunto quando estudar os isomorfismos (ver capítulo IV, seção IV.2).

b) Propriedade comutativa

Sabemos que uma operação * é comutativa se $a_i*a_j=a_j*a_i$, ou seja, $a_{ij}=a_{ji}$ para quaisquer $i,j\in\{1,2,3,...,n\}$.

Chamando de diagonal principal da tábua da operação * o conjunto formado pelos compostos $a_{11}, a_{22}, a_{33}, \ldots, a_{nn}$, podemos notar que os compostos a_{ij} e a_{ji} ocupam posições simétricas relativamente à diagonal principal. Assim, uma operação * é comutativa desde que sua tábua seja simétrica em relação à diagonal principal, isto é, compostos colocados simetricamente em relação à diagonal são iguais dois a dois.

Observe os quatro exemplos da página 125. Neies, as operações são comutativas.

Observe agora a tabela abaixo. É um exemplo de operação não comutativa. Note, por exemplo, que b*c = a e c*b = b.

*	а	b	С
а	ь	a	c
ь	а	ь	а
с	а	b	b

c) Elemento neutro

Sabemos que um elemento e é neutro para a operação * quando:

(i)
$$e*a_i = a_i, \forall a_i \in E$$

(II)
$$a_i * e = a_i \in \forall a_i \in E$$

Da condição (I) decorre que a linha de e é igual à linha fundamental. Da condição (II) decorre que a coluna de e é igual à coluna fundamental.

Assim, uma operação * tem neutro desde que exista um elemento cuja linha e coluna são respectivamente iguais à linha e coluna fundamentais.

Observe novamente os exemplos da página 125. Todos apresentam elemento neutro. Confira os neutros:

1°) 1; 2°) A e D, respectivamente; 3°) 15; 4°) f₁.

Um exemplo de operação sem neutro é dado pela tábua abaixo. Notemos que a é neutro só à esquerda (a linha de a é igual à fundamental).

	a	b	c
а	а	ь	c
ь	с	а	ь
c	ь	а	С

d) Elementos simetrizáveis

Sabemos que um elemento $a_i \in E$ é simetrizável para a operação * que tem neutro e quando existe um $a_i \in E$ tal que:

(I)
$$a_i * a_i = e$$

e

(II)
$$a_i * a_i = e$$

Da condição (I) decorre que a linha de a_i na tábua deve apresentar ao menos um composto igual a e.

Da condição (II) decorre que a coluna de a_i deve apresentar ao menos um composto igual a e.

Como $a_{ij} = a_{ji} = e$, decorre que o neutro deve figurar em posições simétricas relativamente à diagonal principal.

	a_1	a ₂	 ai	 a_{j}	 a_n
a_1					
a ₂					
σ_i				e.	
a_{j}			е *		
**1					
a_n					

Assim, um elemento a_i é simetrizável quando o neutro figura ao menos uma vez na linha i e na coluna i da tábua, ocupando posições simétricas em relação à diagonal principal.

Exemplos 36:

1°) Neutro: e

Elementos simetrizáveis: e, a, b, c

	e	а	b	c
e	e	а	b	c
а	а	ь	c	e
ь	ь	С	е	а
с	C	e	а	b

2°) Neutro: e

Elementos simetrizáveis: e, c, b

	а	ь	c	d	e
а	а	а	а	а	а
ь	а	d	e	С	ь
с	a	e	ь	đ	C
d	а	d	d	đ	d
e	а	b	C	d	e

e) Elementos regulares

Sabemos que um elemento $a \in E$ é regular em relação à operação * quando:

(i)
$$a * a_i \neq a * a_j$$
, sempre que $a_i \neq a_j$

(II)
$$a_i * a \neq a_j * a$$
, sempre que $a_i \neq a_j$.

Isso significa que *a* é regular quando, composto com elementos distintos de *E*, tanto à esquerda deles como à direita, produz resultados distintos.

Assim, um elemento a é regular quando na linha e na coluna de a não há elementos iguais.

Exemplos 37:

e

Os elementos regulares são e, a, d.

Note que na linha e coluna de b ocorrem repetições. Nas de c, também.

	e	а	ь	c	d
e	e	а	ь	C	d
а	а	ь	с	d	e
ь	b	c	ь	c	а
С	c	d	С	а	b
d	d	e	а	b	С

- 144. A partir das tábuas construídas no exercício 132, responda:
 - a) Que operações são comutativas?
 - b) Que operações apresentam elemento neutro?
 - c) Quais são os elementos simetrizáveis?
 - d) Quais são os elementos regulares?
- **145.** A tábua abaixo descreve a operação *não associativa* \triangle sobre o conjunto $E = \{a, b, c, d\}$. Calcule de cinco formas diferentes o composto $a \triangle b \triangle c \triangle d$, ou seja:
 - a) $(a \triangle b) \triangle (c \triangle d)$
 - b) $[a \triangle (b \triangle c)] \triangle d$
 - c) $[(a \triangle b) \triangle c] \triangle d$
 - d) $a \triangle [(b \triangle c) \triangle d]$
 - e) $a \triangle [b \triangle (c \triangle d)]$

Δ	а	b	с	d
а	ь	ь	c	d
ь	С	d	d	а
С	d	d	а	b
d	а	ь	ь	с

146. Construa a tábua da operação de interseção sobre a família de conjuntos $\mathcal{F} = \{A, B, C, D\}$, sabendo que:

$$A \cap B = B, B \cap C = C \in C \cap D = D$$

Em seguida, estabeleça:

- a) qual é o elemento neutro;
- b) que elementos são simetrizáveis;
- c) que elementos são regulares.
- 147. A partir de cada tábua abaixo, decida:
 - i) A operação é comutativa?
 - ii) Existe elemento neutro?
 - a) ь đ C ď \boldsymbol{a} C b а b d b Ç а ď C а b ď ь C
 - d b) ď b c а đ b b а cь ¢ d ¢ а ď

- iii) Que elementos são simetrizáveis?
- iv) Que elementos são regulares?
- c) а b C ď eh g f h b C d а а $b \mid b \mid$ đ а е f d b h е C C а h f d ь g đ e а C f d h b e g а c е f f h ь ď ¢ e а \boldsymbol{q} f d b g h e C а g ď ь а

148. Complete a tábua da operação * sobre o conjunto $E = \{a, b, c, d\}$, sabendo que:

- (I) b é o elemento neutro
- (il) o simétrico de a é a
- (III) o simétrico de $c \in d$
- (IV) a*c=d
- (V) todos os elementos de *E* são regulares

*	а	ь	С	d
a				
ь				
С				
d				

149. Construa a tábua de uma operação * sobre $E = \{e, a, b, c\}$ de modo a satisfazer às seguintes condições:

- (l) * seja comutativa
- (II) e seja o elemento neutro
- (III) $x * a = a, \forall x$
- (IV) $R_*(E) = E \{a\}$

150. Construa a tábua de uma operação * sobre o conjunto $E = \{a, b, c, d\}$ de modo que satisfaça às condições seguintes:

- (I) seja comutativa
- (II) a seja o elemento neutro
- (III) $U_*(E) = E$
- (IV) $R_*(E) = E$
- (V) b*c = a

151. Complete a tábua da operação * sobre o conjunto $E = \{a, b, c, d, e\}$, sabendo que:

- (I) e * x = x = x * e, $\forall x$
- (II) a*x = a = x*a, $\forall x$
- (III) $x * x = e, \forall x \neq a$
- (IV) b*d=c
- (V) b, c, d são regulares

*	а	b	c	d	e
а					
ь					
c	•				
d					
е					

152. Seja * a operação sobre $E = \{1, 2, 3, 4, 6, 12\}$ dada pela lei x * y = mmc(x, y). Determine os subconjuntos de E que têm três elementos e são fechados em relação a essa operação.

- **153.** Seja $E = \mathcal{P}\{a, b, c\}$. Qual é a condição sobre X e Y, sendo $X \in E$ e $Y \in E$, para que $\{X, Y\}$ seja fechado em relação à operação de interseção sobre E?
- **154.** Dê um exemplo de operação não associativa nem comutativa, mas que tem elemento neutro.
- **155.** Dê um exemplo de operação sobre *E* (finito) em que todo elemento de *E* é regular, existe elemento neutro e só ele é simetrizável.
- **156.** Dê um exemplo de operação em que o composto de dois elementos simetrizáveis não é simetrizável.
- **157.** Dê um exemplo de operação sobre *E* (finito) em que existe elemento neutro e todos os elementos de *E*, com exceção do neutro, têm dois simétricos.

Exercícios complementares

- **C18.** a) Prove que o número de operações, duas a duas distintas, sobre um conjunto finito e não vazio com n elementos é $n^{(n)^2}$.
 - b) Prove que o número de operações comutativas, duas a duas distintas, sobre um conjunto finito e não vazio com n elementos é $\left(\frac{n^2+n}{2}\right)$ expoente de n.
- **C19.** Seja E um conjunto munido de uma operação * que apresenta um elemento neutro e. Prove que * é associativa e comutativa se, e somente se, a*(b*c) = (a*c)*b, quaiquer que sejam $a,b,c \in E$.
- **C20.** Uma operação * sobre um conjunto E é dita totalmente não associativa se $(a*b)*c \neq a*(b*c)$

quaisquer que sejam $a, b, c \in E$.

- a) Mostre que tal operação não é comutativa.
- b) Mostre que a operação de potenciação ($x*y=x^y$) sobre $E=\{3,4,...\}$ é totalmente não associativa.
- **C21.** Seja * uma operação sobre E que é associativa e tem neutro. Sendo A um subconjunto não vazio de E, indiquemos com C(A) o conjunto dos elementos $x \in E$ tais que a*x = x*a para todo $a \in A$. Prove que:
 - a) C(A) é fechado para a operação *.
 - b) Se $B \subset A$, então $C(B) \supset C(A)$.
 - c) C(C(C(A))) = C(A)

18. OPERAÇÕES EM Z_m

Vamos definir aqui as operações de adição e multiplicação num conjunto \mathbb{Z}_m (m>1) de classes de restos. Em seguida mostraremos algumas propriedades dessas operações.

Definição 45: Dadas duas classes $\bar{a}, \bar{b} \in \mathbb{Z}_m$, chama-se soma $\bar{a} + \bar{b}$ a classe $\bar{a} + \bar{b}$.

Definição 46: Dadas duas classes $\bar{a}, \bar{b} \in \mathbb{Z}_m$, chama-se produto $\bar{a} \cdot \bar{b}$ a classe $\bar{a} \cdot \bar{b}$.

Observação

Se $\overline{a} = \overline{a'} \in \mathbb{Z}_m$ e $\overline{b} = \overline{b'} \in \mathbb{Z}_m$, então $a \equiv a' \pmod{m}$ e $b \equiv b' \pmod{m}$; portanto, $a + b \equiv a' + b' \pmod{m}$ e $a \cdot b \equiv a' \cdot b' \pmod{m}$ e, conseqüentemente, $\overline{a + b} = \overline{a' + b'}$ e $\overline{a \cdot b} = \overline{a' \cdot b'}$. Isso mostra que a soma e o produto de classes, conforme as definições 45 e 46, não dependem dos representantes das classes. Dessa forma fica garantido que $\overline{a + b}$ é única e $\overline{a \cdot b}$ também é única, ou seja, as aplicações $(\overline{a}, \overline{b}) \mapsto \overline{a + b}$ e $(\overline{a}, \overline{b}) \mapsto \overline{a \cdot b}$ são operações sobre \mathbb{Z}_m , denominadas adição e multiplicação, respectivamente.

Propriedades da adição

1) Associativa

Para quaisquer $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_m$, temos:

$$\overline{a} + (\overline{b} + \overline{c}) = \overline{a} + \overline{b} + \overline{c} = \overline{a} + (\overline{b} + \overline{c}) = \overline{a} + \overline{b} + \overline{c} = (\overline{a} + \overline{b}) + \overline{c}$$

2) Comutativa

Para quaisquer $\bar{a}, \bar{b} \in \mathbb{Z}_m$ temos:

$$\bar{a} + \bar{b} = \overline{a + b} = \overline{b + a} = \bar{b} + \bar{a}$$

3) Elemento neutro

Para qualquer $\bar{a} \in \mathbb{Z}_m$, temos:

$$\overline{a} + \overline{0} = \overline{a + 0} = \overline{a}$$

Portanto, $\overline{0}$ é o neutro da adição em \mathbb{Z}_m .

4) Elementos simetrizáveis

Dado $\bar{a} \in \mathbb{Z}_m$, procuremos seu simétrico \overline{a} .

Devemos ter $\overline{a} + \overline{a'} = \overline{a + a'} = \overline{0}$ e, portanto, $a + a' \equiv 0 \pmod{m}$ ou $a' \equiv -a \pmod{m}$. De onde, $\overline{a'} = \overline{m - a}$.

Isso mostra que todo elemento $\bar{a} \in \mathbb{Z}_m$ é simetrizável para a adição e seu simétrico é $\overline{m-a}$.

Propriedades da multiplicação

Analogamente, pode-se provar a associativa e a comutativa.

Para qualquer $\bar{a} \in \mathbb{Z}_m$, temos:

$$\overline{a} \cdot \overline{1} = \overline{a \cdot 1} = \overline{a}$$

Portanto, $\overline{1}$ é o neutro da multiplicação em \mathbb{Z}_m .

Provaremos que $\bar{a} \in \mathbb{Z}_m$ é simetrizável para a multiplicação se, e somente se, mdc(a, m) = 1.

- (\rightarrow) Seja $\overline{a} \in \mathbb{Z}_m$ um elemento inversível. Existe, então, $\overline{a'} \in \mathbb{Z}_m$ tal que $\overline{a} \cdot \overline{a'} = \overline{a \cdot a'} = \overline{1}$. Daí, $aa' \equiv 1 \pmod{m}$ ou aa' 1 = mq, para algum $q \in \mathbb{Z}$. A proposição 2, do capítulo II, garante então que mdc(a, m) = 1.
- (\leftarrow) Se mdc(a, m) = 1, então, devido à mencionada proposição, existem $x_0, y_0 \in \mathbb{Z}$ tais que $ax_0 + my_0 = 1$. Dessa igualdade segue que $ax_0 1 = m(-y_0)$ e, portanto, que $ax_0 \equiv 1 \pmod{m}$. De onde, $\overline{ax_0} = \overline{1}$ ou $\overline{a} \cdot \overline{x_0} = \overline{1}$, igualdade que mostra que \overline{a} é inversível e $\overline{x_0}$ é seu inverso.