Part II – Algebraic Geometry (Rough)

Based on lectures by Prof. I. Grojnowski Notes taken by Bhavik Mehta

Lent 2017

Contents

1	Dictionary between algebra and geometry	2
	1.1 Basic notions	2
	1.2 Nullstellensatz	6
2	Projective space	11
3	Smooth points, dimension, Noether normalisation	1 4

Introduction

Consider $E = \{(x, y) \in \mathbb{C}^2 \mid y^2 = x^3 - x\}$. Let's first draw this when $(x, y) \in \mathbb{R}^2$. If $y \in \mathbb{R}$, $y^2 \ge 0$, so if $x \in \mathbb{R}$, $x^3 - x = x(x^2 - 1) \ge 0$ so $x \ge 1$ or $-1 \le x \le 0$.

Now consider $(x,y) \in \mathbb{C}$. In general, this is tricky. Here, define $p: E \to \mathbb{C}$ given by $(x,y) \mapsto x$ most of the time $(x \notin \{0,1,-1\}), p^{-1}(x)$ is two points. This doesn't help us visualise.

$$\Gamma = \{ (x, y) \in \mathbb{C}^2 \mid y \in \mathbb{R}, x \in [-1, 0] \cup [1, \infty) \}$$

Claim: $E \setminus \Gamma$ is disconnected and has two pieces. Proof: Exercise.

So, $E \setminus \Gamma$ is two copies of glued together. To glue, turn one of the pieces over (this ruins the representation as a double cover, but is the right gluing). Think of (the picture below) by adding a point at ∞ , so it lives on the Riemann surface.

Take another copy, flip it over and glue back. (this section is in the process of tidying)

1 Dictionary between algebra and geometry

1.1 Basic notions

Definition (Affine space). **Affine** *n*-space is $\mathbb{A}^n = \mathbb{A}^n(k) := k^n$ for k a field.

Notation. Write $k[\mathbb{A}^n] = k[x_1, \dots, x_n]$ for the polynomials in n variables.

Any $f \in k[\mathbb{A}^n]$ defines a function $f : \mathbb{A}^n = k^n \to k$ given by $(\lambda_1, \dots, \lambda_n) \mapsto f(\lambda_1, \dots, \lambda_n)$ by evaluation.

Let $S \subseteq k[x_1, \ldots, x_n]$ be any subset of polynomials.

Definition (Affine variety).

$$Z(S) = \{ \lambda = (\lambda_1, \dots, \lambda_n) \in k^n \mid f(\lambda_1, \dots, \lambda_n) = 0 \text{ for all } f \in S \}$$

is called the **affine variety defined by** S, the simultaneous zeros of all functions in S. Z(S) is called an affine subvariety of \mathbb{A}^n .

Example.

(i) $\mathbb{A}^n = Z(0)$.

(ii) On \mathbb{A}^1 , $Z(x) = \{0\}$, $Z(x-7) = \{7\}$. If $f(x) = (x-\lambda_1)\dots(x-\lambda_n)$, $Z(f(x)) = \{\lambda_1,\dots,\lambda_n\}$. Affine subvarieties of \mathbb{A}^1 are: \mathbb{A}^1 and finite subsets of \mathbb{A}^1 .

(iii) On \mathbb{A}^2 , $E=Z(y^2-x^3+x)$ we (will) have sketched when $k=\mathbb{C}$ and $k=\mathbb{R}$ in the introduction.

(iv) For $k = \mathbb{R}$, we have

$$Z(x,y) = \{(0,0)\}$$
 $Z(xy)$ $Z(y)$ $Z(y(y-1), x(y-1))$

Remark. If $f \in k[\mathbb{A}^n]$ then Z(f) is called a hypersurface.

Observe that if J is the ideal generated by S

$$J = \left\{ \sum a_i f_i \mid a_i \in k[x_1, \dots, x_n], f_i \in S \right\}$$

then Z(J) = Z(S). Hence,

Theorem. If Z(S) is an affine subvariety of \mathbb{A}^n , there is a finite set f_1, \ldots, f_r of polynomials with $Z(S) = Z(f_1, \ldots, f_r)$.

Proof. $J = \langle f_1, \dots, f_r \rangle$ for some f_1, \dots, f_r by Hilbert basis theorem.

Lemma.

- (i) if $I \subseteq J$, $Z(J) \subseteq Z(I)$
- (ii) $Z(0) = \mathbb{A}^n$, $Z(k[x_1, \dots, x_n]) = \emptyset$.
- (iii) $Z(\bigcup J_i) = Z(\sum J_i) = \bigcap Z(J_i)$ for any possibly infinite family of ideals
- (iv) $Z(I \cap J) = Z(I) \cup Z(J)$ if I, J ideals

Proof. (i), (ii), (iii) are clear.

(iv): \supseteq holds by (i). Conversely, if $x \notin Z(I)$ then $\exists f_1 \in I$ such that $f_1(x) \neq 0$. So if $x \notin Z(J)$ also, $\exists f_2 \in J$ with $f_2(x) \neq 0$ also. Hence $f_1 f_2(x) = f_1(x) f_2(x) \neq 0$, so $x \notin Z(f_1 f_2)$. But $f_1 f_2 \in I \cap J$, as I, J ideals so $x \notin Z(I \cap J)$.

Definition (Zariski topology). Looking at these results, Z(I) form closed subsets of a topology on \mathbb{A}^n , called the **Zariski topology**.

Definition. If $Z \subset \mathbb{A}^n$ is any subset, set

$$I(Z) := \{ f \in k[\mathbb{A}^n] \mid f(p) = 0, \forall p \in Z \}.$$

Observe that I(Z) is an ideal: if $g \in k[\mathbb{A}^n]$, f(p) = 0 then (gf)(p) = 0.

Lemma.

- (i) $Z \subseteq Z' \implies I(Z') \subseteq I(Z)$
- (ii) for any $Y \subseteq \mathbb{A}^n$, $Y \subseteq Z(I(Y))$,
- (iii) if V = Z(J) is a subvariety of \mathbb{A}^n , then V = Z(I(V)).
- (iv) if $J \triangleleft k[\mathbb{A}^n] = k[x_1, \dots, x_n]$ an ideal, then $J \subseteq I(Z(J))$.

Proof. (i), (ii), (iv) are clear. For (iii), first show \supseteq . $I(V) = I(Z(J)) \supseteq J$ by (iv) so $Z(I(V)) \subseteq Z(J) = V$ by (i). \subseteq follows by (iv).

Hence (ii) and (iii) show that Z(I(Y)) is the smallest affine subvariety of \mathbb{A}^n containing Y, i.e. it is the closure of Y in the Zariski topology.

Example. Take $\mathbb{Z} \subseteq \mathbb{C} = \mathbb{A}^1$, $k = \mathbb{C}$. If a polynomial in one variable vanishes at every integer, it is 0, so $I(\mathbb{Z}) = 0$ and hence the closure of \mathbb{Z} in the Zariski topology is \mathbb{C} .

Note if $k = \mathbb{C}$, $f \in \mathbb{C}[x_1, \dots, x_n]$, then f is continuous in the usual topology, so

$$Z(J) = \bigcap_{f \in J} Z(f) = \bigcap_{f \in J} f^{-1}(\{0\})$$

is a closed set in the usual topology, i.e. Zariski closed \Rightarrow closed in the usual topology. So, the Zariski topology is coarser than the usual topology.

We now have maps

But this is not a bijection. For instance,

$$Z(x) = Z(x^2) = Z(x^3) = \dots = \{0\} \subset \mathbb{A}^1.$$

More generally, $Z(f_1^{a_1}, \ldots, f_r^{a_r}) = Z(f_1, f_2, \ldots, f_r)$, but it turns out this kind of thing is the only problem. This is called Hilbert's 'Nullstellensatz', and we will see it soon.

Definition (Reducible). An affine variety Y is **reducible** if there are affine varieties $Y_1, Y_2, Y_1 \neq Y$ with $Y = Y_1 \cup Y_2$, and **irreducible** otherwise. It is called **disconnected** if $Y_1 \cap Y_2 = \emptyset$.

So $Z(xy) = Z(x) \cup Z(y)$, reducible. $Z(y(y-1), x(y-1)) = Z(x, y) \cup Z(y-1)$ reducible and disconnected.

Proposition. Any affine variety is a finite union of irreducible affine varieties.

Remark. This is very different from usual manifolds.

Proof. If not, Y is not irreducible, so $Y = Y_1 \cup Y_1'$ and one of Y_1, Y_1' , (say Y_1) is not the finite union of irreducible affine varieties, so

$$Y_1 = Y_2 \cup Y_2', \dots$$

and so we get an infinite chain of affine varities $Y\supsetneq Y_1\supsetneq Y_2\supsetneq \cdots$. But each $Y_i=Z(I_i)$ for some ideal I_l . Let $W=\bigcap Y_l=Z(\sum I_i)=Z(I)$. $I=\sum I_i$ is an ideal. As the ideal I is finitely generated $I=\langle f_1,\ldots,f_r\rangle$ for some f_i . $f_i\in I_{a_i}$ for some a_1,\ldots,a_r so $I=I_{a_1}+\cdots+I_{a_r},\,W=Y_{i_1}\cap\cdots\cap Y_{i_r}$ contradicting $Y_N\subsetneq Y_{a_1}\cap\cdots\cap Y_{a_r}$ if N>r. \square

Exercise. If Y is a subvariety of \mathbb{A}^N , then we can write $Y = Y_1 \cup \cdots \cup Y_r$ with Y_i irreducible, and r minimal, uniquely up to reordering. Call the Y_i the irreducible components of Y.

Proposition. Y is irreducible $\iff I(Y)$ is a prime ideal in $k[\mathbb{A}^n] = k[x_1, \dots, x_n]$.

Example.

- (i) (xy) is not a prime ideal.
- (ii) Exercise: Let R be a UFD, $f \in R$, $f \neq 0$, f irreducible \iff (f) a prime ideal.
- (iii) Exercise: $k[x_1, ..., x_n]$ is a UFD. Hence $Z(y^2 x^3 + x)$ is irreducible, $Z(y x^2)$ is irreducible.

Proof. If $Y = Y_1 \cup Y_2$ is reducible, $\exists p \in Y_1 \setminus Y_2$ so $\exists f \in I(Y_2)$ such that $f(p) \neq 0$ and similarly, $\exists q \in Y_2 \setminus Y_1$ so $\exists g \in I(Y_1)$ such that $g(q) \neq 0$. Then $fg \in I(Y_1) \cap I(Y_2) = I(Y)$. But $f \notin I(Y)$, $g \notin I(Y)$ so not prime.

Conversely, if I(Y) is not prime $\exists f_1 f_2 \in k[\mathbb{A}^n]$ such that $f_1, f_2 \notin I(Y)$ but $f_1 f_2 \in I(Y)$. Let $Y_i = Y \cap Z(f_i) = \{ p \in Y \mid f_i(p) = 0 \}$. $Y_1 \cup Y_2 = Y$, as $p \in Y \implies f_1 f_2(p) = 0 \implies f_1(p) = 0$ or $f_2(p) = 0$. $Y_i \neq Y$ as $f_i \notin I(Y)$ (i.e. $\exists p_l \in Y$ such that $f_i(p_i) \neq 0$ so $p_i \notin Y_i$).

Lemma. X irreducible affine subvariety of \mathbb{A}^n , $\mathcal{U} \subseteq X$ open and non-empty $\Longrightarrow \overline{\mathcal{U}} = X$. Proof. Let $Y = X - \mathcal{U}$, closed. Then $\overline{\mathcal{U}} \cup Y = X$, and $\mathcal{U} \neq \emptyset \implies Y \neq X$. But X is

Application: Cayley-Hamilton Theorem $A \in \operatorname{Mat}_n(k)$, an $n \times n$ matrix, with

irreducible, so $\overline{\mathcal{U}} = X$.

$$char_A(x) = det(xI - A) \in k[x]$$

the characteristic polynomial. This gives a function $\operatorname{char}_A: \operatorname{Mat}_n(k) \to \operatorname{Mat}_n(k) \to \operatorname{Cayley-Hamilton}$ theorem says that $\forall A \in \operatorname{Mat}_n(k)$, $\operatorname{char}_A(A) = 0$. Notice this is an equality of matrices, so it is n^2 equations.

Proof. Let $X = \mathbb{A}^{n^2} = \operatorname{Mat}_n(k)$, affine space, hence irreducible algebraic variety. Consider $CH = \{ A \in \operatorname{Mat}_n(k) \mid \operatorname{char}_A(A) = 0 \}$. Claim: this is a Zariski closed subvariety of \mathbb{A}^{n^2} , cut out by n^2 equations, $\operatorname{char}_A(A)_y = 0$. We must check that these equations are polynomials in the matrix coefficients of A.

Consider $\operatorname{char}_A(x) \in k[\mathbb{A}^{n^2+1}] = \det(xI - A)$, a polynomial in x and in the matrix coefficients of A.

$$\operatorname{char}_{\begin{pmatrix} a & b//c & d \end{pmatrix}}(x) = \det \begin{pmatrix} x-a & -b \\ -c & x-d \end{pmatrix} = x^2 - (a+d)x + (ad-bc)$$

The ijth coefficient of A^r is also a polynomial (of deg r) in the matrix coefficients of A, eg

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} a^2 + bc & \dots \\ \vdots & \ddots \end{pmatrix}$$

hence $\operatorname{char}_A(A)_y = 0$ is a poly in the matrix coefficients of A, proving the claim.

Now, it is enough to prove the theorem when $k = \overline{k}$, as $\operatorname{Mat}_n(k) \subseteq \operatorname{Mat}_n(\overline{k})$. Next, notice that $\operatorname{char}_A(x) = \operatorname{char}_{gAg^{-1}}(x)$, for $g \in \operatorname{GL}_n$. and $\operatorname{char}_A(gBg^{-1}) = g\operatorname{char}_A(B)g^{-1}$ for $g \in \operatorname{GL}_n$. Hence $\operatorname{char}_A(A) = 0 \iff \operatorname{char}_{gAg^{-1}}(gAg^{-1}) = 0$, so $A \in CH \iff gAg^{-1} \in CH$. Now, let $\mathcal{U} = \{A \in \operatorname{Mat}_n(k) \mid A \text{ has distinct eigenvalues } \}$. As $k = \overline{k}$, $A \in \mathcal{U} \implies \exists g \in \operatorname{GL}_n$ with

$$gAg^{-1} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

and it is clear that $gAg^{-1} \in CH$. As $k = \overline{k}$, #k is infinite, so \mathcal{U} is non-empty so

$$\varnothing \neq \mathcal{U} \subseteq CH \subseteq \mathbb{A}^{n^2} = X$$

hence if we show that \mathcal{U} is Zariski open in X then $\mathcal{U} = X$, as X is irreducible. But CH is closed, so $\mathcal{U} \subseteq CH$, so CH = X.

Finally, we must show \mathcal{U} is Zariski open. Observe $A \in \mathcal{U} \iff \operatorname{char}_A(x) \in k[x]$ has distinct roots. Now recall from Galois theory, if f(x) is a polynomial, \exists poly D(f) in the coefficients of the poly f such that f has distinct roots $\iff D(f) \neq 0$.

So $A \in \mathcal{U} \iff D(\operatorname{char}_A(x)) \neq 0$ is a polynomial in matrix coefficients of A.

1.2 Nullstellensatz

Suppose $Y \subseteq \mathbb{A}^n$ is a subvariety, let $I(Y) = \{ f \in k[x_1, \dots, x_n] \mid f(Y) = 0 \}$. Recall we have maps

where the composite is constructed by restricting a function from $\mathbb{A}^n \to k$ to $Y \to k$. Also note that the top map is injective if $\#k = \infty$.

Definition (Polynomial functions on subvariety). Let $k[Y] = k[x_1, ..., x_n]/I(Y)$ by the **polynomial functions on** Y, also called **regular functions**.

We just observed that $k[Y] \to \{\text{all functions from } Y \to k\}$ is injective if $\#k = \infty$. We've seen Y irreducible $\iff I(Y)$ is prime $\iff k[Y]$ is an integral domain. Now let $p \in Y$. We have a map $k[Y] \to k$, given by $f \mapsto f(p)$. This is an algebra homomorphism, so the kernel

$$m_p = \{ f \in k[Y] \mid f(p) = 0 \}$$

is an ideal. (The homomorphism is surjective as constants go to constants). This is a maximal ideal, as R/M a field $\iff M$ is a maximal ideal in R and we have $k[Y]/m_n = k$.

A natural question to ask now is whether or not there are any other maximal ideals in k[Y]? In particular, what are the possible surjetive algebra homomorphisms

$$k[x_1,\ldots,x_n] \twoheadrightarrow L, \quad k \subseteq L,L \text{ field.}$$

For example, suppose $Y = Z(x^2 + 1)$ and $k = \mathbb{R}$. Then $k[Y] = \frac{\mathbb{R}[x]}{x^2 + 1}$ is not of the above form, since it is \mathbb{C} instead of \mathbb{R} .

Claim: This is the only issue. If $k = \overline{k}$, there are no other algebra homomorphisms $k[Y] \to k$ other than evaluating at points $p \in Y$, and if $k \neq \overline{k}$ you just get for L algebraic extensions of k, as in the above example.

Theorem (Nullstellensatz, v1). Let $m \subseteq k[x_1, \ldots, x_n]$ be a maximal ideal, and $A = k[x_1, \ldots, x_n]/m$. Then A is finite dimensional over k.

Remark. A is finite dimensional over $k \iff \text{every } a \in A$ is algebraic over k. (Proof: \Rightarrow clear, as $1, a, a^2, \ldots$ can't all be linearly independent over $k \iff \text{eimage of } x_1, \ldots, x_n \text{ in } A$ each satisfy an algebraic relation over k and they generate A).

Corollary. If k is algebraically closed, then $k \hookrightarrow A$ is an iso, ie $A \cong k$, that is, every maximal ideal is of the form $M = (x_1 - p_1, \dots, x_n - p_n)$ for $p \in k^n$.

Proof. M a maximal ideal \Longrightarrow A a field, but if $k \subseteq \overline{k}$ that means $k = \overline{k}$ algebraic over k. Now let a_i be the image of x_i in A, and M is as stated. So if $k = \overline{k}$, solutions of equations $I \longleftrightarrow \max$ ideal $M \subseteq k[Y] \longleftrightarrow \text{alg homomorphisms } k[Y] \to k$ and if $k \ne \overline{k}$, then they are 'galois orbits of solutions over bigger fields'.

We can interpret this in the case $k \neq \overline{k}$ as saying: to study solutions of algebraic equations over K, i.e. simultaneous zero of an ideal I, it is necessary to study their solutions over fields bigger than k, such as \overline{k} .

Proof. When k is uncountable: If the result is not true, $\exists t \in L \setminus k$ with t transcendental over k. In particular, $k(t) \subseteq L$. SO $\frac{1}{t-\lambda} \in L, \forall \lambda \in k$. But L has countable dimension over k (let V_d be the k-vector space which is the image of $\{f \in k[x_1, \ldots, x_n] \mid \deg f \leq d\}$, V_d is finite dimensional, $\bigcup V_d = L$). Now consider $\frac{1}{t-\lambda}, \ldots, \frac{1}{t-\lambda_r}$ for $\lambda_1, \ldots, \lambda_r \in k$ distinct. If these are linearly dependent over k, i.e. $\exists a_i \in k$ with $\sum \frac{a_i}{t-\lambda_i} = 0$, then clearing denominators gives a poly relation in t, contradicting t is transcendental. So they are linearly independent, but there are uncountably many $\lambda \in k$, a contradiction.

Corollary. If $k = \overline{k}$, take $I \leq k[x_1, \ldots, x_n]$ an ideal. Then $Z(I) \neq \emptyset \iff I \neq k[x_1, \ldots, x_n]$. More generally, $I \leq k[Y]$, $Z(I) \neq \emptyset \iff I \neq k[Y]$.

Note if $k \neq \overline{k}$, this is obviously false.

Proof. For $I \leq k[Y] = k[x_1, \dots, x_n]/I(Y)$, replace I by its inverse image in $k[x_1, \dots, x_n]$ to see it suffices to prove the specific case instead of the general case.

If $I \neq k[x_1, \ldots, x_n]$, then $I \subseteq m \subsetneq k[x_1, \ldots, x_n]$ for m a maximal ideal. I is contained in some maximal ideal. But Nullstellensatz gives $Z(m) = \{p\}$ for some $p \in k^n$. So $Z(I) \supseteq Z(m) = \{p\} \neq 0$.

Remark. This means, any ideal of equations which aren't all the equations have a simultaneous solutions. This is equivalent to the Nullstellensatz.

Definition (Radical ideal). Take R a ring, $J \triangleleft R$ an ideal. The **radical** is

$$\sqrt{J} \coloneqq \{\, f \in R \mid \exists n \geq 1, f^n \in J \,\} \supseteq J$$

Lemma. \sqrt{J} is an ideal.

Proof. If $\gamma \in R$, $f \in \sqrt{J}$, then $(\gamma f)^n = \gamma^n f^n \in J$ if $f^n \in J$. If $f, g \in \sqrt{J}$ with $f^n \in J$, $g^m \in J$ for some n, m then $(f+g)^{n+m} = \sum_{i=1}^{n+m} \binom{n+m}{i} f^i g^{n+m-i}$. Either $i \geq n$ so $f^i \in J$ or $n+m-i \geq m$ then $g^{n+m-i} \in J$, so $f+g \in J$.

Example. (1) $\sqrt{(x^n)} = (x)$ in k[x].

- (2) if J is a prime ideal, $\sqrt{J} = J$.
- (3) if $f \in k[x_1, ..., x_n]$ is irreducible, then (f) is prime as $k[x_1, ..., x_n]$ is a UFD, so $\sqrt{(f)} = (f)$.

Observe $Z(\sqrt{J}) = Z(J)$.

Theorem (Nullstellensatz, v2). If $k = \overline{k}$, $I(Z(J)) = \sqrt{J}$.

Proof. Let $f \in I(Z(J))$, i.e. $f(p) = 0 \forall p \in Z(J)$. We must show that $\exists n$ such that $f^n \in J$. Consider $k[x_1, \ldots, x_n, t]/tf - 1 := k[x_1, \ldots, x_n, \frac{1}{f}]$. Let i be the ideal of this, generated by the image of J. Claim: $Z(I) = \varnothing$. Proof: If not, let $p \in Z(I)$. As $J \subseteq I$, we have $p \in Z(J)$ and so f(p) = 0. But $p = (p_1, \ldots, p_n, p_t)$ with $p_t \cdot f(p_1, \ldots, p_n) = 1$, so $f(p) \neq 0$, contradiction. But now the corollary to Nullstellensatz version 1 gives $I = k[x_1, \ldots, x_n, \frac{1}{f}]$. So, $1 \in I$. But I is generated by J, so this says $1 = \sum_1^N \gamma_i/f^i$ for some $\lambda_i \in J$, $\gamma_N \neq 0$ for some N. Clear denominators and we get

$$f^N = \sum \tilde{\gamma_i}, \tilde{\gamma_i} \in J, i.e.f^N \in J.$$

Remark. This proof uses $k[x_1, \ldots, x_n, t]/tf - 1 \leftarrow k[\mathbb{A}^{n+1}]$. This is k[Y], where $Y = Z(tf - 1) \subseteq \mathbb{A}^{n+1}$ and $Z(tf - 1) = \{ (p, t_0) \mid f(p)t_0 = 1 \}$. Clearly $Y \stackrel{\sim}{\to} \{ p \in \mathbb{A}^n \mid f(p) \neq 0 \} = \mathbb{A}^n \setminus Z(f)$.

We will return to this, but first lets deduce some consequences of Nullstellensatz version 2.

Corollary. If $k = \overline{k}$, $Z(I) = Z(J) \iff I(Z(I)) = I(Z(J)) \iff \sqrt{I} = \sqrt{J}$. So we have a bijection

The intrinsic definition of affine varieties is a consequence (doesn't depend on the embedding of $X \hookrightarrow \mathbb{A}^n$).

Definition (Nilpotent). In a ring R, an element $y \in R$ is **nilpotent** if $y^n = 0$ for some n > 0.

Example. In $k[x]/x^7$, x is nilpotent.

Exercise. Let $J \leq k[x_1, \ldots, x_n]$ be an ideal, $R = k[x_1, \ldots, x_n]/J$. Then $J = \sqrt{J} \iff R$ has no non-zero nilpotent elements.

Corollary. Let $X \subseteq \mathbb{A}^n$ be a Zariski closed subvariety. Then k[X] is a finitely generated k-algebra with no non-zero nilpotent elements. As it is finitely generated, there is $k[x_1, \ldots, x_n] \stackrel{\alpha}{\to} k[X]$ a surjective algebra homomorphism and no non-zero nilpotents \iff ker α is a radical ideal.

Definition (Affine variety, v2). An affine variety over a field k is a finitely generated k-algebra with no non-zero nilpotents.

Observe:

- (i) if $k = \overline{k}$, this coincides with our previous definition.
- (ii) if $k \neq \overline{k}$, we get new examples, now $\mathbb{R}[x,y]/x^2 + y^2 + 1$ is an affine algebraic variety over \mathbb{R} even though $Z(x^2 + y^2 + 1) = \emptyset$. Note Nullstellensatz says $\mathbb{R}[x,y]/x^2 + y^2 + 1$ still has lots of maximal ideals but they correspond to $\mathrm{Gal}(\mathbb{C}/\mathbb{R})$ orbits of complex solutions, i.e. complex conjugate pairs.

Rough 8 Updated online

(iii) this definition does not explicitly refer to a choice of embedding $X \hookrightarrow \mathbb{A}^n$ (the data of a choice of algebra generators for k[X]).

What is missing? We still have to define what a map of algebraic varieties is.

Definition (Morphism). A **morphism** of algebraic varieties $X \to Y$ is a k-algebra homomorphism $f^*: k[Y] \to k[X]$. Write Mor(X, Y) for the set of morphisms, and write f for the morphism associated to f^* .

Let us unpack this definition. Write

$$k[X] = k[x_1, \dots, x_n]/\langle s_1, \dots, s_l \rangle$$
 $k[Y] = k[y_1, \dots, y_m]/\langle r_1, \dots, r_k \rangle$

and write $\overline{y_1}, \ldots, \overline{y_m}$ for the images of y_i in k[Y]. An algebra homomorphism $f^*: k[Y] \to k[X]$ takes $\overline{y_i} \mapsto f^*(\overline{y_i})$. Choose a poly $\Phi_i = \Phi_i(x_1, \ldots, x_n) \in k[x_1, \ldots, x_n]$ which mod the ideal $\langle s_1, \ldots, s_l \rangle$ equals $f^*(\overline{y_i})$. This defines an algebra homomorphism

$$k[y_1, \dots, y_m] \longrightarrow k[x_1, \dots, x_n]$$

 $y_l \mapsto \Phi_i(x_1, \dots, x_n).$

Now the condition that this determines an algebra homomorphism $k[Y] \to k[X]$ is the condition that $r_i(\Phi_1, \dots \Phi_m) = 0$ in $k[X] \ \forall i$ i.e. the ideal $\langle r_1, \dots, r_l \rangle$ get sent to zero in k[X]. That is, f^* is the data of polynomials Φ_1, \dots, Φ_m in $k[x_1, \dots x_n]$ such that $r_i(\Phi_1, \dots \Phi_m) = 0$ (and the choice of such polynomials is well defined, up to adding any element of $\langle s_1, \dots, s_i \rangle$). Moreover, f^* determines a map of sets $X \to Y$, denoted $f: X \to Y$, $x \mapsto (\Phi_1(x), \dots, \Phi_m(x))$. So, a morphism of algebraic varieties $f: X \to Y$ is, roughly speaking, a map of sets $X = (X_1, \dots, X_n) \in X \longrightarrow f(x) = (\Phi_1(x), \dots, \Phi_m(x)) \in Y$ (where $X \subseteq \mathbb{A}^n$ and $Y \subseteq \mathbb{A}^m$) given by polynomials $\Phi_1, \dots, \Phi_m \in k[\mathbb{A}^n]$. The condition that $(\Phi_1(x), \dots, \Phi_m(x)) \in Y$ is the condition $r_i(\Phi_1, \dots, \Phi_m) = 0$. But, we gave this definition in a way which didn't require choosing $X \hookrightarrow \mathbb{A}^n$ etc.

Definition (Isomorphic). X is **isomorphic** to Y if $\exists \alpha^* : k[Y] \to k[X], \ \beta^* : k[X] \to k[Y]$ such that $\alpha^*\beta^*$ and $\beta^*\alpha^*$ are identity.

- **Example.** (i) $t \mapsto (t^2, t^3)$ is a morphism $\mathbb{A}^1 \to \mathbb{A}^2$. More generally, $\operatorname{Mor}(\mathbb{A}^1, \mathbb{A}^n) = k$ -algebra homomorphims $k[x_1, \dots, x_n] \to k[t]$ is just a tuple of polys $(\phi_1(t), \dots, \phi_n(t)) \in k[t]^n$.
- (ii) Take $\operatorname{Mor}(X, \mathbb{A}^1) \ni \varphi^*$, then $\varphi^* k[t] \to k[X]$ an algebra homomorphism. k[t] is the free k-algebra on 1 generator t. That is, to specify an algebra homomorphism $k[t] \to R$ (for any ring R), it is enough to say where t gets mapped to, and conversely any element of R determines such a homomorphism. So $\operatorname{Mor}(X, \mathbb{A}^1) = k[X]$.
- (iii) $X=\mathbb{A}^1,\ Y=\{(x,y)\mid x^2=y^3\}=Z(x^2-y^3).$ Consider $t\mapsto (t^3,t^2).$ This is a morphism $(t^3)^2=(t^2)^3.$ Exercise: Is this an isomorphism? Is $Y\cong\mathbb{A}^1$?
- (iv) Take char $k \neq 2$. Is there a morphism $\mathbb{A}^1 \to \{(x,y) \mid y^2 = x^3 x\}$ (which isn't a trival map). Do there exist polynomials $a = a(t), b = b(t) \in k[t]$, not both constant such that $b^2 = a^3 a$.

If $k = \overline{k}$, we can also reconstruct f as follows

Proposition. Let X be an affine algebraic variety, and $f \in k[X]$. Then set

$$Y = \{ (p,t) \in X \times \mathbb{A}^1 \mid tf(p) = 1 \}$$

. This is an affine algebraic variety, and the map $Y \hookrightarrow X$ with $(p,t) \mapsto p$ is a morphism of affine algebraic varieties.

Proof. It is $k[X] \to k[Y] =: k[X][t]/tf - 1$. Exercise: k[Y] has no non-zero nilpotents. \square

This means you should think of $Y \xrightarrow{\sim} X \setminus Z(f) \hookrightarrow X$. That is, you should think of this as saying the Zariski open $X \setminus Z(f)$ is also an affine algebraic variety and the inclusion map $Y \hookrightarrow X$ is a morphism of algebraic varieties.

Warning. Take $\{(x,y) \in \mathbb{A}^2 \mid (x,y) \neq (0,0)\}$. This is Zariski open in \mathbb{A}^2 as $\{(0,0)\}$ is a closed set. But, this is not an affine algebraic variety.

Rough 10 Updated online

$\mathbf{2}$ Projective space

We will define it first as a set, then as an algebraic variety (but not an affine one). Take Va vector space over k, dim V = n + 1 for $n \ge 0$.

$$\mathbb{P}V = \mathbb{P}^n = \{ \text{set of lines through 0 in } V \}$$
$$= (V \setminus \{0\})/k^{\times}$$

That is, if $v \in V$, $v \neq 0$ then $kv = \{ \lambda v \mid \lambda \in k \}$ is a line through 0, and conversely if $l \in \mathbb{P}V$ is a line, l = kv for any $v \in l \setminus 0$. Choose a basis e_0, \ldots, e_n of V, write $V \stackrel{\sim}{\leftarrow} k^{n+1}$, $\sum x_i e_i \leftarrow (x_0, \dots, x_n)$. If $(x_0, \dots, x_n) \neq (0, \dots, 0)$, write $[x_0, \dots, x_n]$ for the corresponding point in \mathbb{P}^n so $[\lambda x_0 : \ldots : \lambda x_n] = [x_0 : \ldots : x_n]$. Claim: $\mathbb{P}^n = \mathbb{A}^n \coprod \mathbb{P}^{n-1}$. Proof: Consider $[x_0:\ldots:x_n] \in \mathbb{P}^n$. Either $x_n = 0$ or $x_n \neq 0$. If $x_n = 0, p = [x_0:\ldots:x_{n-1}:0]$, and p = p' = 0 $[x'_0:\ldots:x'_n]$ if and only if $x'_n=0$ and $\lambda(x_0,\ldots,x_{n-1})=(x'_0,\ldots,x'_{n-1})$ for some $\lambda\in k^{\infty}$, i.e. $p=p'\in\mathbb{P}^{n-1}$. If $x_n\neq 0$, then we can rescale $(x_0,\ldots,x_n)=x_n\cdot(\frac{x_0}{x_n},\ldots,\frac{x_{n-1}}{x_n},1)$, so get $\{p \in \mathbb{P}^n \mid x_n \neq 0\} \cong \mathbb{A}^n$. sending $[X_0 : \ldots : X_n] \to (\frac{X_0}{X_n}, \ldots, \frac{X_{n-1}}{X_n})$.

Example. $\mathbb{P}^1 = \mathbb{A}^1 \coprod \{\infty\}$ Also, $\mathbb{P}^2 = \mathbb{A}^2 \coprod \mathbb{P}^1 = \mathbb{A}^2 \coprod \mathbb{A}^1 \coprod \mathbb{A}^0$. If $k = \mathbb{F}^q$, the number of points in \mathbb{P}^n is $1 + q + ... + q^n = \frac{q^{n+1} - 1}{g - 1}$.

To phrase the above claim without coordinates, choose $H \leq V$ a vector subspace of codimension 1, and $w_0 \in V \setminus H$. Then we have maps $\mathbb{P}H \hookrightarrow \mathbb{P}V \longleftrightarrow H$ where the first map is $kv \mapsto kv$ and the second has $k(w_0 + h) \leftarrow h$. This gives $\mathbb{P}V \setminus \mathbb{P}H \stackrel{\sim}{\leftarrow} H$, in particular $\mathbb{P}V\setminus\mathbb{P}H\cong\mathbb{A}^n$. So decomposition $\mathbb{P}V=\mathbb{P}H\coprod$ a space isomorphic to \mathbb{A}^n depends only on the choice of a hyperplane H but the isomorphism $\mathbb{A}^n \to \mathbb{P}V \setminus \mathbb{P}H$ depends on choice of $w_0 \in V \setminus H$. Exercise: How does changing w_0 to w'_0 change the isomorphism?

So, $P^2 \leftarrow U_0 \coprod U_1 \coprod U_2$. We have $U_i \cap U_j = \{ [x_0 : \cdots : x_n] \mid x_i \neq 0, x_j \neq 0 \} \cong \mathbb{A}^{n+1} \times \mathbb{A}^{n+1}$ $(\mathbb{A}^1 \setminus \{0\})$. The congruence here follows by embedding $U_i \cap U_j \hookrightarrow U_i$, and the image is points where $x_j/x_i \neq 0$. In particular, we have $U_i \stackrel{\sim}{\to} \mathbb{A}^n$, with $x \mapsto (\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i})$, where $1 = x_i/x_i$ is omitted. So, this lets us see projective space as covered by open sets (analogous to charts on a manifold).

Definition. $X \subseteq \mathbb{P}^n$ is Zariski closed if $X \cap U_i$ is Zariski closed in $U_i = \mathbb{A}^n$ for each $i=0,\ldots,n.$

Recall $E_0 = \{(x,y) \in A^2 \mid y^2 = x^3 - x\}$. Sit this inside $P^2 = [X:Y:Z]$ via $\mathbb{A}^2 \xrightarrow{\sim} U_2 = \{Z \neq 0\} \subseteq \mathbb{P}^2$. That is, $[X:Y:Z] \mapsto (x/z,y/z)$. So, $x = \frac{X}{Z}$ and $y = \frac{Y}{Z}$. The equation $y^2 = x^3 - x$ becomes $Y^2/Z^2 = X^3/Z^3 - X/Z$, and $Z \neq 0$ so the equation is $Y^2Z = X^3 - XZ^2$ (for $Z \neq 0$). Hence, $E_0 = \{[X:Y:Z] \mid Y^2Z = X^3 - XZ^2, Z \neq 0\} \in \mathbb{P}^2$. On the chart $Z \neq 0$, we have the original equation $y^2 = x^3 - x$. On $Y \neq 0$, take $x = \frac{X}{Y}$, z = Z/Y, i.e. set Y = 1, get $z = x^3 - xz^2$ for $z \neq 0$. For the chart $X \neq 0$, take y = Y/X, z = Z/X get $y^2z = 1 - z^2$ and $z \neq 0$. So now take the closure of E^0 in \mathbb{P}^2 , which means in the condition $x \neq 0$. What if any extremplate have we added? On the chart $Y \neq 0$

ignore the condition $z \neq 0$. What, if any, extra points have we added? On the chart $Y \neq 0$, if Z=0 get $x^3=0$ the unique extra point [0:1:0] On the chart $X\neq 0$, if Z=0 get 1=0, no solutions, so no extra points are added. So, the closure of E^0 is $E_0 \coprod *$, just as we wanted.

More generally, if we have $I \leq k[x_1, \ldots, x_n]$ an ideal, $Z = Z(I) \subseteq \mathbb{A}^n$, we can ask what the closure of Z is in \mathbb{P}^n using $\mathbb{A}^n \to \mathbb{P}^n$ given by $(x_1, \dots, x_n) \mapsto [1 : x_1 : \dots : x_n]$.

Definition. $f \in k[x_0, \ldots, x_n]$ is **homogeneous** of degree d (for $d \ge 0$) if

$$f = \sum a_{i_0,\dots,i_n} x_0^{i_0} \cdots x_n^{i_n}$$

If k is infinite, this is equivalent to $f(\lambda x) = \lambda^d f(x) \ \forall \lambda \in k^{\times}$.

As we saw in the example, given $f \in k[x_1, \ldots, x_n]$ make f homogeneous: If $\deg f = d$, define $\tilde{f}(x_0, \ldots, x_n) = x_0^d f(x_1/x_0, \ldots, x_n/x_0)$ and then $\tilde{f}(1, x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$ and $\tilde{f}(\lambda x_0, \ldots, \lambda x_n) = \lambda^d \tilde{f}(x_0, \ldots, x_n) \ \forall \lambda \in k^{\infty}$ homogeneous of degree d. For example, if $f = y^2 - x^3 + x$, $\tilde{f} = z^3((y/z)^2 - (x/z)^3 + (x/z))$ as in our example. Define $\tilde{0} = 0$. Observe (i) if $f \neq 0$, then $x_0 \nmid \tilde{f}$, and conversely (ii) if $x_0 \nmid g$, $g \in k[x_0, \ldots, x_n]$ which is homogeneous of degree d, then $\tilde{g}(1, x_1, \ldots, x_n) = g$.

Definition. If $I \leq k[x_1, \ldots, x_n]$ an ideal, define $\tilde{I} = \langle \tilde{f} | f \in I \rangle$ the ideal generated by the \tilde{f} .

Warning. If $I = \langle f_1, \dots, f_r \rangle$ it need not be the case that $\tilde{I} = \langle \tilde{f}_1, \dots, \tilde{f}_r \rangle$

Example. (i) Take $I = \langle x - y^2, y \rangle$. Note this is $\langle x, y \rangle$ and so the zero set is $\{0\}$. Now, $\langle x - y^2, \tilde{y} \rangle = \langle xz - y^2, y \rangle = \langle xz, y \rangle$ but $\tilde{I} = \langle \tilde{x}, \tilde{y} \rangle = \langle x, y \rangle$. (ii) Can you find an example of I where $\tilde{I} \neq \langle \tilde{f}_1, \dots, \tilde{f}_r \rangle$ for any choice of $\langle f_1, \dots, f_r \rangle = I$ which has r minimal.

Notice that every polynomial $f \in k[x_0, ..., x_n]$ can be written uniquely as $f = f_{(0)} + f_{(1)} + ...$ where $f_{(i)}$ is homogeneous of degree i.

Definition. An ideal I is homogeneous if whenever $f \in I$, then $f_{(d)} \in I$ for all d.

Example. $I = \langle xy + x^2, y^3, x^2 \rangle$ is homogeneous (follows from following lemma) while $\langle xy + y^3 \rangle$ is not.

Lemma.

- (i) $I \leq k[x_0, ..., x_n]$ is homogeneous \iff I is generated by a finite set of homogeneous polynomials.
- (ii) Suppose k is infinite. $\tilde{Z} = Z(I)$ is Zariski clsoed and invariant under multiplication by k^{\times} i.e. $p \in \tilde{Z} \iff \lambda p \in \tilde{Z}, \quad \forall \lambda \in k^{\times}$ if and only if $I = I(\tilde{Z})$ is a homogeneous ideal.

Proof. (i) \Rightarrow . I is generated by some polynomials g_1, \ldots, g_n . If I is homogeneous, then the homogeneous parts $g_{i(j)}$ are in I, and they generate I.

- \Leftarrow . If $I = \langle g_1, \dots, g_n \rangle$, g_i homogeneous of degree d_i . Let $h \in I$, so $h = \sum f_i g_i$. We have to show that $h = \sum h_{(d)}$ has each piece $h_{(d)} \in I$. But write $f_i = \sum f_{i,(k)}$, each $f_{i,(k)}$ homogeneous of degree k. Then regroup the sum $\sum f_{i,(k)} g_k$ as $h_{(d)} = \sum_{i: \deg(g_i) = d-k} f_{i,(k)} g_i \in I$.
- (ii) \Leftarrow . If $I = \langle g_1, \dots, g_n \text{ with } g_i \text{ homogeneous of degree } d$, then $g_i(\lambda p) = \lambda^{d_i} g_i(p) = 0$ if $g_i(p) = 0$, so \tilde{Z} is invariant under k^{\times} .
- \Rightarrow . The group k^{\times} acts on $k[x_0, \ldots, x_n]$ as algebra automorphisms $\lambda * x_i = \lambda x_i$, with $(\lambda * f)(x_0, \ldots, x_n) = f(\lambda x_0, \ldots, \lambda x_n)$ and Z(I) is k^{\times} stable $\iff I$ is preserved by this action. That is, $f \in I \implies \lambda * f \in I$. So, let $f \in I$, $f = f_{(0)} + f_{(1)} + \cdots$ with deg $f_{(i)} = i$. We must show $f_{(i)} \in I$. But $\lambda * f = f_{(0)} + \lambda f_{(1)} + \lambda^2 f_{(2)} + \cdots$ so if we pick $\lambda_0 = 1$,

 $\lambda_1, \ldots, \lambda_n \in k^{\times}$.

$$f = \lambda_0 * f = f_{(0)} + f_{(1)} + f_{(2)} + \dots + f_{(n)}$$
$$\lambda_1 * f = f_{(0)} + \lambda_1 f_{(1)} + \lambda_1^2 f_{(2)} + \dots + \lambda_1^n f_{(n)}$$
$$\vdots \lambda_n * f = f_{(0)} + \lambda_n f_{(1)} + \lambda_n^2 f_{(2)} + \dots + \lambda_n^n f_{(n)}$$

That is,

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & \lambda_1 & \dots & \lambda_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_n & \dots & \lambda_n^n \end{pmatrix} \begin{pmatrix} f_{(0)} \\ f_{(1)} \\ \vdots \\ f_{(n)} \end{pmatrix} = \begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} * f$$

So if we choose $\lambda_i \neq \lambda_j$ for all $i \neq j$ (possible as #k infinite), the determinant is

$$\pm \prod_{i < j} (\lambda_i - \lambda_j) \neq 0$$

so we can invert the matrix and write $f_{(d)}$ as a linear combination of $\lambda_0 * f, \dots, \lambda_n * f$ all of which are in I. Hence I is a homogeneous ideal.

Recall $V = \mathbb{A}^{n+1}$, $H \leq \mathbb{A}^{n+1}$ a hyperplane, e.g. $H = \{x_0 = 0\}$, pick $p_0 \in V \setminus H$.

$$\mathbb{A}^n = \mathbb{P}V \setminus \mathbb{P}H \hookrightarrow \mathbb{P}^n = \mathbb{P}V$$

 $Z=Z(I)\subseteq \mathbb{A}^n\leadsto \tilde{I}$ a homogeneous ideal in n+1 variables, which generated the closure of Z inside \mathbb{P}^n . In particular, the homogeneous ideal can be seen as defining a closed subvariety \tilde{Z} of \mathbb{A}^{n+1} such that $p\in \tilde{Z}$, then $\lambda p\in \tilde{Z}\ \forall \lambda\in k^{\times}$. This corresponds to a closed subvariety of \mathbb{P}^n where $l\in \text{subvariety}\iff l=kp=\langle p\rangle$ for $p\in \tilde{Z},\ p\neq 0$. If $k=\overline{k}$, Nullstellensatz says this subvariety $\subseteq \mathbb{P}^n$ is non-empty.

$$\iff \tilde{Z} \supseteq \{(0)\} \iff \text{homogeneous ideal } I \lneq \langle x_0, \dots, x_n \rangle$$

i.e. Zariski closed subvarieties of $\mathbb{P}^n \leftrightarrow$ homogeneous ideals in x_0, \ldots, x_n different from $\langle x_0, \ldots, x_n \rangle$.

Exercise. Show that (***) defines a bijection

Definition. A projective variety is a closed subvariety of \mathbb{P}^n , some n

An affine variety is
$$k[X] = k[x_1, ..., x_n]/I$$
, $I = \sqrt{I}$.

Definition. A quasi-affine variety is an open subvariety of an affine variety A quasi-projective variety is an open subvariety of a projective variety.

Exercise. If $\mathcal{U} \subseteq X$ an open subset of a variety X, \exists structure of a variety on \mathcal{U} makes the embedding a morphism of varieties.

3 Smooth points, dimension, Noether normalisation

Let $X \subseteq \mathbb{A}^n$ be an affine variety, $p \in X$. Write X = Z(I), $I = \langle f_1, \dots, f_r \rangle$. We would like to think about the tangent space to X at p, a vector space. Our tentative definition is

$$T_p X = \{ v \in \mathbb{A}^n \mid \sum v_i \frac{\partial f_j}{\partial x_i}(p) = 0, j = 1, \dots, r \}$$
$$= \{ v \in \mathbb{A}^n \mid \sum v_i \frac{\partial f}{\partial x_i}(p) = 0, \forall f \in I \}$$

For example, take $I = \langle y^2 - x^3 \rangle$. Then

$$T_{(p_1,p_2)}X = \{(v_1,v_2) \mid v_1(-3p_1^2) + v_2(2p_2) = 0, -3p_1^2v_1 + 2p_2v_2 = 0\}$$

So if $(p_1, p_2) \neq (0, 0)$ then $T_{(p_1, p_2)}X$ is a line, and if $(p_1, p_2) = (0, 0)$ then $T_{(p_1, p_2)}X = \mathbb{A}^2$.

Remark. You can think of T_pX as sitting at $p \in X$, by translating $v \mapsto v + p$. So,

$$\simeq \{ v \in \mathbb{A}^n \mid \sum_i (v_i - p_i) \frac{\partial f}{\partial x_i}(p) = 0, \forall f \in I \}$$

We can think of this as a linear approximation to the variety, $f(x) = f(p) + \sum_{i=1}^{\infty} (x_i - p_i) \frac{\partial f}{\partial x_i} +$ higher order terms.

Lemma.

$$\{ p \in X \mid \dim T_p X \ge d \}$$

is a Zariski closed subvariety of X, for all $d \geq 0$.

Proof.

$$T_p X = \ker \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_r}{\partial x_1} & \cdots & \frac{\partial f_r}{\partial x_n} \end{bmatrix}$$

and recall $\dim(\ker A) + r(A) = 0$. So, $\dim \ker \ge d \iff n - \operatorname{rank} \ge d \iff \operatorname{rank} \le n - d$. But the rank of a matrix is greater than $a \iff \operatorname{exists}$ some $a \times a$ submatrix with non-zero determinant. So, $\operatorname{rank}(\frac{\partial f_j}{\partial x_i}) \le d \iff \operatorname{all}(n-d+1) \times (n-d+1)$ subminors have zero determinant which is a collection of polynomial equations. That is, $I\{p \in X \mid \dim T_p X \ge d\} = \langle f_1, \dots, f_r, \text{ determinants of all subminors} \rangle$.

The problem with the definition from earlier was that it depends on an embedding, and we want a definition of T_pX which doesn't depend on embedding $X \hookrightarrow \mathbb{A}^n$.

Definition. Take A an algebra over k, and $\phi: A \to k$ a homomorphism. (For example, take $A = k[X], \ \phi = \operatorname{ev}_p: f \mapsto f(p)$.) A **derivation** 'centered at ϕ ' is a k-linear map $D: A \to k$ such that

$$D(fg) = Df\phi(g) + \phi(f)Dg \qquad \qquad \text{(Leibniz rule)}$$

Write $Der(A, \phi)$ for the set of such derivations, a vector space over k.

Example. Take $A = k[x_1, \ldots, x_n], p \in \mathbb{A}^n$. If $(v_1, \ldots, v_n) \in \mathbb{A}^n$, then $D(f) = \sum v_i \frac{\partial f}{\partial x_i}(p)$ is a derivation centered at ev_p. Moreover, it is the unique derivation with $D(x_i) = v_i$.

Exercise. Show it is unique.

Conversely, given $D \in \text{Der}(k[x_1, \dots, x_n], \text{ev}_p)$, get $v_i = D(x_i)$ so $\text{Der}(k[x_1, \dots, x_n], \text{ev}_p) = T_p \mathbb{A}^n$. More generally,

Lemma. Let $A = k[x_1, \ldots, x_n]/\langle f_1, \ldots, f_r \rangle = k[X]$ and take $p \in X$.

$$\operatorname{Der}(A, \operatorname{ev}_p) = \{ D = \sum v_i \frac{\partial}{\partial x_i} \mid_p | D\langle f_1, \dots, f_r \rangle = 0 \text{ in } k[X] \}$$

Proof. Can be seen as above. Alternatively, $\operatorname{Der}(k[X],\operatorname{ev}_p)$ determines $\tilde{D}\in\operatorname{Der}(k[x_1,\ldots,x_n],\operatorname{ev}_p)$ and then the condition \tilde{D} descends to a map $k[X]\to k$ is the condition $D\langle f_1,\ldots,f_r\rangle=0$. \square

This gives us a better definition of tangent space:

Definition (Intrinsic definition of tangent space).

$$T_n X = \operatorname{Der}(k[X], \operatorname{ev}_n).$$

We can almost immediately conclude that this gives a definition for any algebraic variety.

Exercise. Let $V = X \setminus Z(f)$, $f \in k[X]$ be a Zariski open affine subvariety of X, i.e.

$$k[V] = k[X][\frac{1}{f}].$$

Show $T_pX \cong T_pX$ a canoncial isomorphism, i.e. that $\operatorname{Der}(k[X][\frac{1}{t}],\operatorname{ev}_p) \xrightarrow{\sim} \operatorname{Der}(k[X],\operatorname{ev}_p)$.

So now $T_pX=T_pU$, for U any Zariski open subvariety: the tangent space is Zariski local.

Example. Take $X = \mathbb{P}^n$, $p = [p_0 : p_1 : \cdots : p_n]$. If $p_0 \neq 0$, $p = [1 : \frac{p_1}{p_0} : \cdots : \frac{p_n}{p_0}] = \iota(\bar{p})$, the embedding of some $\bar{p} \in \mathbb{A}^n \hookrightarrow \mathbb{P}^n$. THen

$$T_n \mathbb{P}^n = T_{\bar{n}} \mathbb{A}^n = \mathbb{A}^n$$

Definition. Let X be irreducible. Then the **dimension** of X:

$$\dim X := \min \{ \dim T_p X \mid p \in X \}$$

Example. dim $A^n = n = \dim \mathbb{P}^n$, dim $\{(x, y) | y^2 = x^3\} = 1$.

If X is not irreducible, the dimension is not such a great concept.

Definition. If X is arbitrary, dim $X := \max \dim X_i | X_i$ a component of X.

Definition. If X is irreducible, $p \in X$ is **smooth** if $\dim T_pX = \dim X$, and singular otherwise and we've shown singular points in X form a Zariski closed subvariety, whose complement is non-empty.

Lemma. Let $f \in k[x_1, \ldots, x_n]$ be prime. Then dim Z(f) = n-1. Call this a 'hypersurface'.

Proof. $T_pZ(f)$ has dimension n or n-1, and $T_pZ(f)=\mathbb{A}^n\iff \forall i\,\frac{\partial f}{\partial x_i}=0$. So $T_pZ(f)$ has dimension n for all $p\in Z(f)\implies \frac{\partial f}{\partial x_i}\in I(Z(f)) \quad \forall i=1,\ldots,n$. But $I(Z(f))=\sqrt{f}$, by Nullstellensatz, so =(f) as f is prime. So, $\frac{\partial f}{\partial x_i}=f.g$ for some g. But $\deg x_i\frac{\partial f}{\partial x_i}<\deg_{x_i}f\implies g=0$. So $\dim Z(f)=0\implies \frac{\partial f}{\partial x_i}=0 \quad \forall i$. There are now two cases,

- (i) if char k = 0, this implies f = 0.
- (ii) if char k=p, this implies $f\in k[x_1^p,\dots,x_n^p]$ as $\frac{\partial (x^p)}{\partial x}=px^{p-1}=0.$

Claim: $\exists g \in k[x_1, \dots, x_n]$ such that $g(x)^p = f(x)$. Proof: If $f = \sum a_{\lambda} x^{\lambda p}$, $g = \sum a_{\lambda}^{1/p} x^{\lambda}$ (for $a_{\lambda} \in k$) which requires can take pth roots of things in k, which is allowed if $k = \bar{k}$. But this contradicts f is prime!