hp 48gII calculadora gráfica

guia do usuário

Aviso

REGISTRO SEU PRODUTO EM: <u>www.register.hp.com</u>

ESTE MANUAL E TODOS OS EXEMPLOS CONTIDOS AQUI SÃO FORNECIDOS "DO JEITO QUE ESTÃO" E ESTÃO SUJEITOS À MUDANÇAS SEM AVISO PRÉVIO. A COMPAINHA HEWLETT-PACKARD NÃO FAZ GARANTIA DE NENHUM TIPO COM RESPEITO A ESTE MANUAL OU OS EXEMPLOS CONTIDOS AQUI, INCLUINDO, MAS NÃO SE LIMITANDO ÀS GARANTIAS IMPLÍCITAS DE COMERCIABILIDADE, NÃO-VIOLAÇÃO E APTIDÃO PARA UM PROPÓSITO PARTICULAR.

HEWLETT-PACKARD CO. NÃO SERÁ RESPONSÁVEL POR QUAISQUER ERROS OU POR DANOS ACIDENTAIS OU CONSEQUENCIAIS RELACIONADOS COM O FORNECIMENTO, DESEMPENHO, OU USO DESTE MANUAL OU OS EXEMPLOS CONTIDOS AQUI.

© Copyright 2003 Hewlett-Packard Development Company, L.P. Reprodução, adaptação, ou tradução deste manual é proibido sem permissão prévia por escrito de Hewlett-Packard Company, exceto quando permitido pelas leis de direitos autorais.

Hewlett-Packard Company 4995 Murphy Canyon Rd, Suite 301 San Diego,CA 92123

Histórico da Tiragem

Edicão 4 Abril 2004

Prefácio

Você tem em suas mãos um computador numérico e simbólico compacto que facilitará o cálculo e a análise matemática de problemas em uma variedade de disciplinas; de matemática elementar, engenharia avançada e assuntos científicos. Embora mencionada como uma calculadora por causa de seu formato compacto similar aos dispositivos de cálculo manuais típicos, a hp 48gll deve ser vista como um computador programável/gráfico.

A hp 48gll pode ser operada em dois modos diferentes de cálculo, o modo Notação Polonesa Reversa (RPN) e o modo Algébrico (ALG) (consulte a página 1-11 do manual do usuário para obter detalhes adicionais). O modo RPN foi incorporado nas calculadoras para tornar os cálculos mais eficientes. Neste modo, os operandos em uma operação (ex. '2' e '3' na operação '2+3') são inseridos no visor da calculadora, chamado de pilha, e depois o operador (ex. '+' na operação '2+3') é inserido para completar a operação. O modo ALG, por outro lado, imita a forma que você digita suas expressões escritas. Assim, a operação '2+3', no modo ALG será inserida na calculadora pressionando as teclas '2', '+' e '3', nesta ordem. Para completar a operação usamos a tecla ENTER. Exemplos das aplicações de diferentes funções e operações nesta calculadora são ilustrados em ambos os modos neste manual.

Este manual atual contém os exemplos que ilustram o uso das funções e operações básicas da calculadora. Os capítulos neste manual são organizados por assunto, de acordo com a sua dificuldade: iniciando com a configuração dos modos da calculadora e opções de exibição e continuando com os cálculos numéricos complexos e reais, as operações com as listas, vetores e matrizes, exemplos detalhados de aplicações gráficas, uso de textos, programação básica, programação gráfica, manipulação de textos, aplicações de cálculos avançadas e multivariadas, aplicações de equações diferenciais avançadas (incluindo a transformada de Laplace e série e transformadas de Fourier) e as aplicações de probabilidade e estatísticas.

O coração da calculadora é um sistema de operação que você pode atualizar fazendo o download das novas versões a partir da homepage da

calculadora. Para as operações simbólicas a calculadora inclui um sistema algébrico de computador (CAS) poderoso, que permite selecionar diferentes modos de operação, ex. números complexos e reais ou exatos, (simbólicos) e modo aproximado (numérico). O visor pode ser ajustado para fornecer expressões similares à dos livros, que podem ser úteis para trabalhar com as matrizes, vetores, frações, adições, derivadas e integrais. Os gráficos de alta velocidade da calculadora são muito convenientes para produzir gráficos complexos em pouco tempo.

Graças à porta infravermelha (IR) e o cabo RS 232 disponíveis com a sua calculadora, você pode conectar-se com outras calculadoras e computadores. A conexão de alta velocidade através do infravermelho ou RS 232 permite a troca eficiente e rápida de programas e dados com outras calculadoras ou computadores. A calculadora fornece as la porta de cartão de memória flash para facilitar a armazenagem e troca de dados com outros usuários.

As capacidades de programação da calculadora permitem que você e outros usuários desenvolvam aplicativos eficientes para objetivos específicos. Sejam os aplicativos matemáticos avançados, soluções específicas de problemas ou armazenamento de dados, as linguagens de programação disponíveis tornam a calculadora um dispositivo de computação versátil.

Esperamos que sua calculadora torne-se uma companheira fiel para suas aplicações profissionais e escolares. Esta calculadora é, sem dúvida, topo de linha para dispositivos de cálculo manuais.

Índice

Uma nota sobre os capturadores de telas neste quia, Nota-1 Capítulo 1 - Introdução, 1-1 Operações básicas, 1-1 Baterias, 1-1 Ligar e desligar a calculadora , 1-2 Ajustar o contraste do visor, 1-2 Conteúdo do visor da calculadora, 1-2 Menus, 1-4 Menu SOFT e CHOOSE boxes, 1-4 Selecionar os menus SOFT ou CHOOSE boxes, 1-5 O menu TOOL, 1-7 Configurar a hora e a data, 1-7 Apresentação do teclado da calculadora, 1-11 Selecionar os modos da calculadora, 1-13 Modo de operação, 1-13 Formato de número e ponto ou vírgula decimal, 1-18 Medida de ângulo, 1-23 Sistema de coordenadas, 1-24 Som de beep, clique de tecla e última pilha, 1-25 Selecionar as configurações CAS, 1-26 Selecionar os modos de exibição, 1-27 Selecionar a fonte do visor, 1-27 Selecionar as propriedades da linha de edição, 1-28 Selecionar as propriedades da pilha, 1-29 Selecionar as propriedades do Editor de Equação (EQW), 1-30 Selecionar o tamanho do cabeçalho, 1-30

Capítulo 2 - Apresentando a calculadora, 2-1

Selecionar o visor do relógio, 1-31

Objetos da calculadora, 2-1

Editar as expressões no visor, 2-3

Criar as expressões aritméticas, 2-4

Editar expressões aritméticas, 2-6

Criar expressões algébricas, 2-8

Editar expressões algébricas, 2-9

Usar o Editor de Equação (EQW) para criar expressões, 2-11

Criar expressões aritméticas, 2-12

Editar expressões aritméticas, 2-17

Criar expressões algébricas, 2-20

Editar expressões algébricas, 2-22

Criar e editar somatórios, derivadas e integrais, 2-30

Organizar dados na calculadora, 2-34

Funções para manipular variáveis, 2-35

O diretório HOME, 2-36

O subdiretório CASDIR, 2-36

Digitar diretórios e nomes das variáveis, 2-39

Criar subdiretórios, 2-40

Mover através dos sub-diretórios, 2-44

Excluir subdiretórios, 2-44

Variáveis, 2-48

Criar variáveis, 2-49

Verificar o conteúdo das variáveis, 2-53

Substituir o conteúdo das variáveis, 2-56

Copiar variáveis, 2-57

Reordenar variáveis em um diretório, 2-60

Mover variáveis usando o menu FILES, 2-61

Excluir variáveis, 2-62

Funções UNDO e CMD, 2-63

Sinalizadores, 2-65

Exemplo de configuração de sinalizador: soluções gerais e valor

principal, 2-65

Outros sinalizadores de interesse, 2-67

CHOOSE boxes MENU Soft, 2-68

CHOOSE boxes selecionadas, 2-70

Capítulo 3 - Cálculos com números reais, 3-1

Verificar as configurações da calculadora, 3-1

Verificar o modo da calculadora, 3-2

Cálculos com números reais, 3-2

Alterar sinal de um número, variável ou expressão, 3-3 A função inversa, 3-3 Adição, subtração, multiplicação e divisão, 3-3 Usar parênteses, 3-4 Função de valor absoluto (módulo), 3-4 Quadrados e raízes quadradas, 3-5 Potências e raízes, 3-5 Logaritmos de base 10 e potência de 10, 3-5 Usar as potências de 10 ao inserir dados, 3-6 Logaritmos naturais e funções exponenciais, 3-6 Funções trigonométricas, 3-6 Funções trigonométricas inversas, 3-6 Diferenças entre funções e operadores, 3-7 Funções com números reais no menu MTH, 3-8 Funções hiperbólicas e suas inversas, 3-9 Funções com números reais, 3-12 Funções especiais, 3-15 Constantes da calculadora, 3-16 Operações com unidades, 3-17 O menu UNITS, 3-17 Unidades disponíveis, 3-19 Converter as unidades de base, 3-22 Anexar as unidades aos números, 3-23 Operações com unidades, 3-26 Ferramentas de manipulação de unidades, 3-28 Constantes físicas na calculadora, 3-30 Funções físicas especiais, 3-32 Função ZFACTOR, 3-33 Função FOλ, 3-34 Função SIDENS, 3-34 Função TDELTA, 3-34 Função TINC, 3-35 Definir e usar funções, 3-35 Funções definidas por mais de uma expressão, 3-37 A função IFTE 3-37

As funções IFTE combinadas, 3-38

Capítulo 4 - Cálculos com números complexos, 4-1 Definições, 4-1 Configurar a calculadora para modo COMPLEX, 4-1 Inserir números complexos, 4-2 A representação polar de um número complexo, 4-3 Operações simples com números complexos, 4-4 Alterar o sinal de um número complexo, 4-5 Inserir o número imaginário da unidade, 4-5 O menu CMPLX, 4-5 Menu CMPLX através do menu MTH, 4-6 Menu CMPLX no teclado, 4-8 Funções aplicadas a números complexos, 4-8 Funções do menu MTH, 4-9 Função DROITE: equação de uma linha reta, 4-10 Capítulo 5 - Operações algébricas e aritméticas, 5-1 Inserir objetos algébricos, 5-1 Operações simples com objetos algébricos, 5-2 Funções no menu ALG, 5-3 COLLECT, 5-4 EXPAND, 5-4 FACTOR, 5-5 **LNCOLLECT, 5-5** LIN, 5-5 PARTFRAC, 5-5 SOLVE, 5-5 SUBST, 5-5 TEXPAND, 5-5 Outras formas de substituição nas expressões algébricas, 5-6 Operações com funções transcendentais, 5-7 Expansão e fatoração usando as funções log-exp, 5-8 Expansão e fatoração usando funções trigonométricas, 5-8 Funções no menu ARITHMETIC, 5-9

LGCD, 5-9 PROPFRAC, 5-9 SIMP2, 5-9 Menu INTEGER, 5-11 Menu POLYNOMIAL, 5-11 Menu MODULO, 5-12 Aplicações do menu ARITHMETIC, 5-12 Aritmética modular, 5-12 Anéis arítméticos finitos na calculadora, 5-15 Polinômios, 5-18 Aritmética modular com polinômios, 5-19 A função CHINREM, 5-19 A função EGCD, 5-20 A função GCD, 5-20 A função HERMITE, 5-20 A função HORNER, 5-21 A variável VX, 5-21 A função LAGRANGE, 5-21 A função LCM, 5-22 A função LEGENDRE, 5-22 A função PCOEF, 5-22 A função PROOT, 5-23 A função PTAYL, 5-23 As funções QUOT e REMAINDER, 5-23 A função EPSXO e EPS variável CAS, 5-24 A função PEVAL, 5-24 A função TCHEBYCHEFF, 5-24 Frações, 5-25 A função SIMP2, 5-25 A função PROPFRAC, 5-25 A função PARTFRAC, 5-26 A função FCOEF, 5-26 A função FROOTS, 5-26 Operações passo a passo com polinômios e frações, 5-27

DIVIS, 5-9 FACTORS, 5-9

O menu CONVERT e operações algébricas, 5-28

Menu de conversão de UNIDADES, 5-28

Menu de conversão de BASE, 5-28

Menu de conversão de TRIGONOMETRICA, 5-28

Menu de conversão de MATRIZES, 5-29

Menu de conversão REESCREVER, 5-29

Capítulo 6 - Soluções para equações individuais, 6-1

A solução simbólica das equações algébricas, 6-1

Função ISOL, 6-1

Função SOLVE, 6-2

Função SOLVEVX, 6-4

Função ZEROS, 6-5

Menu numerical solver, 6-5

Equações de polinômios, 6-6

Cálculos financeiros, 6-10

Resolver as equações com uma icógnita através de NUM.SLV, 6-14

Menu SOLVE, 6-27

O submenu ROOT, 6-27

Função ROOT, 6-28

Variável EQ, 6-28

O submenu DIFFE, 6-31

O submenu POLY, 6-31

O submenu SYS, 6-32

O submenu TVM, 6-32

O submenu SOLVR, 6-32

Capítulo 7 - Resolver múltiplas equações, 7-1

Sistemas racionais de equação, 7-1

Exemplo 1 – movimento do projétil, 7-1

Exemplo 2 – Tensões em um cílindro com parede espessa, 7-2

Exemplo 3 – Sistema de equações de polinômios, 7-4

Solução para as equações simultâneas com MSLV, 7-5

Exemplo 1 – Exemplo da ajuda, 7-5

Exemplo 2 – Entrada de um lago em um canal aberto, 7-6

Usar o solucionador de equações Múltiplas (MES), 7-10

Aplicação 1 – Solução de triângulos, 7-10 Aplicação 2 – Velocidade e aceleração nas coordenadas polares, 7-19

Capítulo 8 - Operações com listas, 8-1

Definições, 8-1

Criar e armazenar listas, 8-1

Compor e decompor listas, 8-2

Operações com listas de números, 8-3

Alterar os sinais, 8-3

Adição, subtração, multiplicação e divisão, 8-3

Funções de números reais do teclado, 8-5

Funções de número real no menu MTH, 8-6

Exemplos de funções que usam dois argumentos, 8-6

Lista de números complexos, 8-7

Listas de objetos algébricos, 8-8

O menu MTH/LIST, 8-9

Manipular os elementos da lista, 8-10

Tamanho da lista, 8-10

Extrair e inserir os elementos na lista, 8-11

Posição do elemento na lista, 8-11

Funções HEAD e TAIL, 8-11

A função SEQ, 8-12

A função MAP, 8-13

Definir as funções que usam as listas, 8-13

Aplicações de listas, 8-15

Média harmônica de uma lista, 8-15

Média geométrica de uma lista, 8-16

Média ponderada, 8-17

Estatística de dados agrupados, 8-18

Capítulo 9 - Vetores, 9-1

Definições, 9-1

Inserir vetores, 9-2

Digitar vetores na pilha, 9-2

Armazenar os vetores nas variáveis, 9-3

Usar o Matrix Writer (MTRW) para inserir os vetores, 9-3 Construir um vetor com →ARRY, 9-6

Identificar, extrair e inserir os elementos dos vetores, 9-7 Operações simples com os vetores, 9-9

Alterar os sinais, 9-9

Adição e subtração, 9-10

Multiplicação e divisão por uma escalar, 9-10

Função de valor absoluto, 9-10

O menu MTH/VECTOR, 9-11

Magnitude, 9-11

Produto escalar, 9-11

Produto vetorial, 9-12

Decompor um vetor, 9-12

Construir um vetor bidimensional, 9-13

Construir um vetor tridimensional, 9-13

Alterar o sistema de coordenadas, 9-13

Aplicação das operações do vetor, 9-16

Resultante de forças, 9-17

Ângulos entre vetores, 9-17

Momento da força, 9-18

Equação de um plano no espaço, 9-18

Vetores linha, coluna e listas, 9-20

Função OBJ→, 9-21

Função →LIST, 9-21

Função →ARRY, 9-22

Função DROP, 9-22

Transformar um vetor linha em um vetor coluna, 9-22

Transformar um vetor coluna em um vetor linha, 9-23

Transformar uma lista em um vetor, 9-25

Transformar um vetor (ou matriz) em uma lista, 9-26

Capítulo 10 - Criar e manipular matrizes, 10-1

Definições, 10-1

Inserir matrizes na pilha, 10-2

Usar o Editor de Matriz, 10-2

Digitar na matriz diretamente para a pilha, 10-3

Criar matrizes com as funções da calculadora, 10-4

As funções GET e PUT, 10-6

Funções GETI e PUTI, 10-7

Função SIZE, 10-8

Função TRN, 10-8

Função CON, 10-9

Função IDN, 10-9

Função RDM, 10-10

Função RANM, 10-11

Função SUB, 10-12

Função REPL, 10-12

Função →DIAG, 10-13

Função DIAG→, 10-13

Função VANDERMONDE, 10-14

Função HILBERT, 10-15

Um programa para construir uma matriz a partir de listas, 10-15

A lista representa as colunas da matriz, 10-16

Listas representam as linhas da matriz, 10-18

Manipular as matrizes por colunas, 10-18

Função →COL, 10-19

Função COL→, 10-20

Função COL+, 10-21

Função COL-, 10-21

Função CSWP, 10-22

Manipular as matrizes por linhas, 10-22

Função →ROW, 10-23

Função ROW →, 10-24

Função ROW+, 10-25

Função ROW -, 10-25

Função RSWP, 10-26

Função RCI, 10-26

Função RCIJ, 10-27

Capítulo 11 - Operações de matriz e álgebra linear, 11-1

Operações com matrizes, 11-1

Adição e subtração, 11-2

Multiplicação, 11-2
Caracterizar uma matriz (O menu NORM da matriz), 11-6
Função ABS, 11-7
Função SNRM, 11-8
Funções RNRM e CNRM, 11-8
Função SRAD, 11-9
Função COND, 11-9
Função RANK, 11-11
Função DET, 11-12
Função TRACE, 11-14
Função TRAN, 11-14
Operações adicionais de matriz (o menu OPER da matriz), 11-14
Função AXL, 11-15
Função AXM, 11-15
Função LCXM, 11-16
Solução de sistemas lineares, 11-17
Usar o solucionador numérico para os sistemas lineares, 11-17
Solução de mínimo quadrado (função LSQ), 11-24
Solução com a matriz inversa, 11-27
Solução pela "divisão" de matrizes, 11-28
Solução de conjunto múltiplo de equações com a mesma matriz de coeficiente, 11-28
Eliminação gaussiana e de Gauss-Jordan, 11-29
Procedimento da calculadora passo a passo para resolver sistemas
lineares, 11-39
Solução para sistemas lineares usando as funções da calculadora,
11-42
Erros residuais nas soluções de sistemas lineares (função RSD), 11-45
Valores e vetores eigen, 11-46
Função PCAR, 11-46
Função EGVL, 11-47
Função EGV, 11-48
Função JORDAN, 11-49
Função MAD, 11-49
Fatorização da matriz, 11-50
Função LU, 11-51

Função LQ, 11-53 Função QR, 11-53 Formas quadráticas de matriz, 11-53 O menu QUADF, 11-54 Aplicações lineares, 11-56 Função IMAGE, 11-56 Função ISOM, 11-56 Função KER, 11-57 Função MKISOM, 11-57 Capítulo 12 - Gráficos, 12-1 As opções gráficas na calculadora, 12-1 Plotar uma expresão do formulário y = f(x), 12-2 Algumas operações úteis de PLOT para plotagens de FUNÇÃO, 12-5 Salvar um gráfico para uso podterior, 12-8 Gráficos de funções transcendentais, 12-8 Gráfico de In(X), 12-9 Gráfico da função exponencial, 12-11 A variável PPAR, 12-11 Funções inverses e seus gráficos, 12-12 Resumo da operação de plotagem FUNÇTION, 12-14 Plotagens de funções trigonométricas e hiperbólicas, 12-17 Gerar uma tabela de valores para uma função, 12-18 A variável TPAR, 12-19 Plotagens em coordenadas polares, 12-20 Plotar curvas cônicas, 12-22 Plotagens paramétricas, 12-24 Gerar uma tabela para as equações paramétricas, 12-27 Plotar a solução para equações diferenciais simples, 12-28 Plotagens verdadeiras, 12-30 Plotar histogramas, gráficos de barra e de dispersão, 12-32 Gráficos de barra, 12-32 Gráficos de dispersão, 12-34 Campos de inclinação, 12-36

Matrizes ortogonais e decomposição de valor singular, 11-51

Função SCHUR, 11-52

```
Plotagens Fast 3D, 12-38
Plotagens aramadas, 12-39
Plotagens de Contorno Ps, 12-42
Plotagens de divisão Y, 12-43
Plotagens mapa de grade, 12-45
Plotagens de superfície Pr parametrica, 12-46
   A variável VPAR, 12-47
Desenho interativo, 12-47
   DOT+ e DOT-, 12-48
   MARK, 12-49
   LINE, 12-49
   TLINE, 12-50
   BOX, 12-50
   CIRCL, 12-50
   LABEL, 12-51
   DEL, 12-51
   ERASE, 12-51
   MENU, 12-51
   SUB, 12-51
   REPL, 12-51
   PICT→, 12-52
   X,Y→, 12-52
Aplicar o zoom de aumento e redução na exibição de gráficos, 12-52
   ZFACT, ZIN, ZOUT e ZLAST, 12-52
   BOXZ, 12-53
   ZDFLT, ZAUTO, 12-53
   HZIN, HZOUT, VZIN, e VZOUT, 12-54
   CNTR, 12-54
   ZDECI, 12-54
   ZINTG, 12-54
   ZSQR, 12-54
   ZTRIG, 12-54
O menu e gráficos SYMBOLIC, 12-55
   Menu SYMB/GRAPH, 12-55
Função DRAW3DMATRIX, 12-58
```

Capítulo 13 - Aplicações de cálculo, 13-1 O menu CALC (Cálculo), 13-1 Limites de derivadas, 13-1 Limite de função, 13-2 Derivadas, 13-3 Funções DERIV e DERVX, 13-3 O menu DERIV&INTEG, 13-4 Calcular as derivadas com ∂ , 13-4 A regra de cadeia, 13-6 Derivadas das equações, 13-7 Derivadas implicitas, 13-7 Aplicações das derivadas, 13-8 Analisar os gráficos de funções, 13-8 Função DOMAIN, 13-9 Função TABVAL, 13-10 Função SIGNTAB, 13-10 Função TABVAR, 13-11 Usar as derivadas para calcular os pontos extremos, 13-12 Derivadas de ordem superior, 13-14 Anti-derivadas e integrais, 13-14 Funções INT, INTVX, RISCH, SIGMA e SIGMAVX, 13-15 Integrais definidas, 13-15 Avaliação passo a passo de derivadas e integrais, 13-17 Integrar uma equação, 13-18 Ténicas de integração, 13-19 Substituição ou alteração de variáveis, 13-19 Integração por partes e diferenciais, 13-20 Integração por frações parciais, 13-21 Integrais inadequadas, 13-21 Integração com as unidades, 13-22 Série infinita, 13-24 Série Taylor e Maclaurin, 13-24 Polinômio e restos de Taylor, 13-24 Funções TAYLR, TAYLRO e SERIES, 13-25

Capítulo 14 - Aplicações de cálculo multivariáveis, 14-1

Funções multivariadas, 14-1

Derivadas parciais, 14-1

Derivadas de ordem superior, 14-3

A regra de cadeia para derivadas parciais, 14-4

Diferencial total de uma função z = z (x,y), 14-5

Determinação extrema nas funções de duas variáveis, 14-5

Usar a função HESS para análise extrema, 14-6

Integrais múltiplas, 14-8

Jacobiana da transformação de coordenada, 14-9 Integrais duplas nas coordenadas polares, 14-9

Capítulo 15 - Aplicações de análise vetorial, 15-1

Definições, 15-1

Gradiente e derivada direcional, 15-1

Um programa para calcular o gradiente, 15-2

Usar a função HESS para obter o gradiente, 15-3

Potencial de um gradiente, 15-3

Divergência, 15-4

Laplaciana, 15-4

Rotacional, 15-5

Campos irrotacionais e função potencial, 15-5

Potencial de um vetor, 15-6

Capítulo 16 - Equações diferenciais, 16-1

Operações básicas com equações diferentes, 16-1

Inserir as equações diferenciais, 16-1

Verificar as soluções na calculadora, 16-2

Visualização do campo de inclinação das soluções, 16-3

O menu CALC/DIFF, 16-4

Solução para equações linear e não linear, 16-4

Função LDEC, 16-5

Função DESOLVE, 16-8

A variável ODETYPE, 16-8

Transformada de Laplace, 16-10

Definições, 16-11

A transformada de Laplace inversa na calculadora, 16-11

Teoremas da transformada de Laplace, 16-13 Função delta de Dirac e de etapa de Heaviside, 16-16 Aplicações da transformada de Laplace na solução de linear ODEs, lineares, 16-18

Série de Fourier, 16-28

Função FOURIER, 16-29

Série Fourier para a função quadrática, 16-30

Série Fourier para uma onda triangular, 16-36

Série Fourier para uma onda quadrada, 16-40

Aplicações da série Fourier nas equações diferenciais, 16-43

Transformadas de Fourier, 16-44

Definição da transformada de Fourier, 16-48

Propriedades da transformada de Fourier, 16-50

Transformada de Fourier rápida (FFT), 16-51

Exemplos de aplicações FFT, 16-52

Solução para equações diferenciais de segunda ordem específicas, 16-55

A equação de Cauchy ou Euler, 16-55

Equação de Legendre, 16-56

Equação Bessel, 16-57

Polinômios de Chebyshev ou Tchebycheff, 16-60

Equação de Laquerre, 16-61

Equação Weber e polinômios de Hermite, 16-62

Soluções numéricas e gráficas aos ODEs, 16-63

Solução numérica para ODE de primeira ordem, 16-63

Solução gráfica para ODE de primeira ordem, 16-65

Solução numérica para ODE de segunda ordem, 16-67

Solução gráfica para ODE de segunda ordem, 16-70

Solução numérica para ODE de primeira ordem rígida, 16-71

Solução numérica para ODEs com o menu SOLVE/DIFF, 16-73

Função RKF, 16-74

Função RRK, 16-75

Função RKFSTEP, 16-76

Função RRKSTEP, 16-77

Função RKFERR, 16-78

Função RSBERR, 16-78

Capítulo 17 - Aplicações de probabilidade, 17-1

O submenu MTH/PROBABILITY.. - parte 1, 17-1

Fatoriais, combinações e permutações, 17-1

Números aleatórios, 17-2

Distribuições de probabilidade discreta, 17-4

Distribuição binomial, 17-4

Distribuição Poisson, 17-5

Distribuição de probabilidade contínua, 17-6

A distribuição gama, 17-7

A distribuição exponencial, 17-7

A distribuição beta, 17-7

A distribuição Weibull, 17-8

As funções para as distribuições contínuas, 17-8

Distribuições contínuas para inferência estatística, 17-9

Distribuição normal pdf, 17-10

Distribuição normal cdf, 17-10

A distribuição estudante t, 17-11

A distribuição qui-quadrada, 17-12

A distribuição F, 17-13

Funções distribuição cumulative inverse, 17-14

Capítulo 18 - Aplicações estatísticas, 18-1

Característica estatísticas pré-programadas, 18-1

Inserir dados, 18-1

Calcular as estatísticas de variável individual, 18-2

Obter as distribuições de freqüência, 18-5

Ajustar os dados para uma função y = f(x), 18-10

Obter estatísticas de resumo adicional, 18-14

Cálculo de percentuais, 18-15

O menu STAT, 18-16

O submenu DATA, 18-16

O submenu ΣPAR, 18-16

O submenu 1VAR, 18-17

O submenu PLOT, 18-18

O submenu FIT, 18-19

O submenu SUMS, 18-19

Exemplo de operações de menu STAT, 18-19

Intervalos de confiança, 18-23

Estimativa dos intervalos de confiança, 18-24

Definições, 18-24

Intervalos de confiança para a média de população quando a sua variação for conhecida, 18-25

Intervalos de confiança para a média de população quando a sua variação for desconhecida, 18-25

Intervalo de confiança para um protocolo, 18-26

Distribuições de amostras de diferenças e somas de estatísticas, 18-26

Intervalos de confiança para somas e diferenças de valores médios, 18-27

Determinar os intervalos de confiança, 18-29

Intervalos de confiança para a variação, 18-35

Teste de hipótese, 18-36

Procedimento para hipótese de teste, 18-37

Erros no teste de hipótese, 18-37

Inferência referente a uma média, 18-38

Inferências referentes as duas médias, 18-41

Teste de amostra em pares, 18-42

Inferência referente a uma proporção, 18-43

Testa a diferença entre as duas proporções, 18-44

Teste da hipótese usando as características pré-programadas, 18-45

Inferência referente a uma variação, 18-49

Inferências referentes as duas variações, 18-50

Notas adicionais sobre regressão linear, 18-52

O método da menor quadrada, 18-52

Equações adicionais para regressão linear, 18-53

Previsão de erros, 18-54

Intervalos de confiança e teste de hipótese na regressa linear, 18-54

Procedimentos para estatísticas de inferência para regressão linear usando a calculadora, 18-56

Ajuste linear múltiplo, 18-58

Ajuste de polinômio, 18-61

Selecionar o melhor ajuste, 18-65

Capítulo 19 - Números em bases diferentes, 19-1

Definições, 19-1

O menu BASE, 19-1

Funções HEC, DEC, OCT e BIN, 19-2

Conversão entre os sistemas de números, 19-3

Tamanho da palavra, 19-4

Operações com os números inteiros binários, 19-5

O menu LOGIC, 19-5

O menu BIT, 19-6

O menu BYTE, 19-7

Números hexadecimais para referências de pixel, 19-7

Capítulo 20 - Personalizar os menus e teclado, 20-1

Personalizar os menus, 20-1

O menu PRG/MODES/MENU, 20-1

Números de menu (funções RCLMENU e MENU), 20-2

Menus personalizados (funções MENU e TMENU), 20-2

Especificação do menu e variável CST, 20-4

Personalizar o teclado, 20-5

O submenu PRG/MODES/KEYS, 20-6

Retornar na pilha a lista de teclas definidas pelo usuário atual, 20-6

Atribuir um objeto para uma tecla definida pelo usuário, 20-6

Operar com as teclas definidas pelo usuários, 20-7

Alterar a atribuição de uma tecla definida pelo usuário, 20-7

Atribuir teclas múltiplas definidas pelo usuário, 20-8

Capítulo 21 - Programar na linguagem do usuário RPL, 21-1

Um exemplo de programação, 21-1

Variáveis global e local e subprogramas, 21-2

Escopo de variável global, 21-4

Escopo da variável local, 21-5

O menu PRG, 21-5

Navegar através dos submenus RPN, 21-7

Funções listadas pelo submenu, 21-7

Atalhos no menu PRG, 21-9

Següência de teclas para comandos normalmente usados, 21-11

Programas para gerar listas de números, 21-13

Exemplos de programação sequencial, 21-15

Programas gerados pela definição de uma função, 21-15

Programas que simulam uma seqüência de operações de pilha, 21-17

Entrada de dados interativa nos programas, 21-20

Prompt com um texto de entrada, 21-21

Uma função com um texto de entrada, 21-22

Texto de entrada para dois ou três valores de entrada, 21-25

Entrada através de formulário de entradas, 21-28

Criar uma caixa de seleção, 21-32

Identificar os resultados nos programas, 21-34

Identificar um resultado numérico, 21-34

Decompor um resultado numérico etiquetado em um número de uma identificação, 21-34

"Desetiquetando" uma quantidade etiquetada, 21-35

Exemplos de resultado etiquetado, 21-35

Usar uma caixa de mensagem, 21-39

Operadores relacionais e lógicos, 21-45

Operadores relacionais, 21-45

Operadores lógicos, 21-46

Ramificação de programa, 21-48

Ramificação com IF, 21-49

A construção CASE, 21-53

Loops de programa, 21-55

A construção START, 21-56

A construção FOR, 21-61

A construção DO, 21-64

A construção WHILE, 21-65

Erros e detecção de erros, 21-67

DOERR, 21-67

ERRN, 21-68

ERRM, 21-68

ERRO, 21-68

LASTARG, 21-68

Submenu IFERR, 21-68

Usuário RPL que programa na modalidade algébrica, 21-69

Capítulo 22 - Programas para manipulação de gráficos, 22-1

O menu PLOT, 22-1

Tecla definida pelo usuário para o menu PLOT, 22-1

Descrição do menu PLOT, 22-2

Gerar as plotagens com o programas, 22-14

Gráficos bidimensionais, 22-15

Gráficos tridimensionais, 22-15

A variável EQ, 22-16

Exemplos de plotagens interativas usando o menu PLOT, 22-16

Exemplos de plotagens geradas por programas, 22-19

Desenhar os comandos para uso na programação, 22-21

PICT, 22-21

PDIM, 22-21

LINE, 22-22

TLINE, 22-22

BOX, 22-23

ARC, 22-23

PIX?, PIXON, e PIXOFF, 22-24

PVIEW, 22-24

 $PX \rightarrow C$, 22-24

C→PX, 22-24

Exemplos de programação usando as funções de desenho, 22-24

Coordenadas de pixel, 22-28

Animar os gráficos, 22-28

Animar uma coleção de gráficos, 22-29

Mais informações sobre a função ANIMATE, 22-32

Objetos gráficos (GROBs), 22-32

O menu GROB, 22-34

Um programa com funções de plotagem e desenho, 22-36

Programação modular, 22-38

Executar o programa, 22-39

Um programa para calcular as resistências principais, 22-41

Organizar as variáveis no subdiretório, 22-42

Um segundo exemplo de cálculos de círculo de Mohr, 22-42 Um formulário de entrada para o programa de círculo de Mohr, 22-44

Capítulo 23 - Segmentos de caractere/textos, 23-1

As funções relacionadas com a string no submenu TYPE, 23-1 Concatenação de segmento, 23-2 O menu CHARS, 23-2

A lista de caracteres, 23-4

Capítulo 24 - Objetos e sinalizadores da calculadora, 24-1

A descrição dos objetos da calculadora, 24-1

Função TYPE, 24-2

Função VTYPE, 24-2

Sinalizadores da calculadora, 24-2

Sinalizadores de sistema, 24-3

As funções para a configuração e alteração de sinalizadores, 24-3

Sinalizadores do usuário, 24-4

Capítulo 25 - Funções de dia e hora, 25-1

O menu TIME, 25-1

Configurar um alarme, 25-1 Navegar nos alarmes, 25-2 Configurar a hora e a dia , 25-2 Ferramentas TIME, 25-2

Cálculos com dias, 25-4 Cálculos com horas, 25-4 Funções de alarme, 25-4

Capítulo 26 - Gerenciar a memória, 26-1

Estrutura da memória, 26-1

O diretório HOME, 26-2

Porta de memória, 26-2

Verificar os objetos na memória, 26-2

Objetos de backup, 26-3

Backup dos objetos na porta de memória, 26-3

Backup e restaurar HOME, 26-4

Armazenar, excluir e restaurar os objetos de backup , 26-5

Usar os dados dos objetos de backup, 26-6

Usar as bibliotecas, 26-6

Instalar e anexar uma biblioteca, 26-6

Números de biblioteca, 26-7

Apagar uma biblioteca, 26-7

Criar bibliotecas, 26-7

Bateria de backup, 26-8

Apêndice

Apêndice A - Usar os formulários de entrada de dados, A-1

Apêndice B - O teclado da calculadora, B-1

Apêndice C - Configurações CAS, C-1

Apêndice D - Conjunto adicionais de caracteres, D-1

Apêndice E - A árvore de seleção no Editor de Equação, E-1

Apêndice F - O menu Aplicações (APPS), F-1

Apêndice G - Atalhos úteis, G-1

Apêndice H - Lista de catálogo de commando, H-1

Apêndice I - O menu MATHS, 1-1

Apêndice J - O menu MAIN, J-1

Apêndice K - Comandos da linha de edição, K-1

Apêndice L - Índice, L-1

Garantia limitada - GL-1

Atendimento, GL-2

Informações sobre regulamentos, GL-4

Uma nota sobre os capturadores de telas neste guia

Um capturador de tela é uma representação da visor da calculadora. Por exemplo, logo que a calculadora for ligada será apresentado o visor (os visores da calculadora são mostrados com uma borda espessa nesta seção):

As duas linhas da parte superior representam o cabeçalho do visor e a área restante é usada para o resultado da calculadora.

A maioria dos capturadores de visor neste manual foi gerada usando o emulador baseado no computador (um programa que simula a operação da calculadora em um computador) e está ausente nas linhas do cabeçalho. Em vez disso, eles mostram a área adicional do resultado no visor no local das linhas do cabeçalho, conforme mostrado abaixo:

EDIT | VIEW | RCL | STOP | PURGE|CLEAR

Esta área adicional do resultado do visor em diversos capturadores de tela deste manual não é mostrada se tentar usar este exemplo do manual na sua calculadora. Assim, neste manual você pode visualizar um capturador de tela conforme a seguir:

:SIN(2.5) .598472144104 :\5.5+LN(2.5) 2.53303982043 :2.3+5\-2.3| 13.8 a calculadora mostrará então o seguinte visor:

Observe que as linhas do cabeçalho cobrem a parte superior primeiro e as linhas pela metade do resultado no visor da calculadora. Portanto, as linhas do resultado não visíveis estão ainda disponíveis para você usa-las. Você pode acessar estas linhas na sua calculadora pressionando a tecla com a seta para cima (—), que permitirá rolar através do contéudo do visor.

Além enquanto executa as três operações listadas no capturador de visor, na ordem mostrada, elas são mostradas ocupando níveis mais altos no visor conforme mostrado a seguir:

As teclas necessárias para completar estes exercícios são as seguintes:

A próxima operação,

forçará as linhas correspondentes da operação SIN(2.5) mover-se para cima e ficar oculta pelas linhas do cabeçalho.

Muitos capturadores de tela neste manual foram também modificados para mostrar apenas a operação de interesse. Por exemplo, o capturador de tela para a operação SIN(2.5), mostrado acima, pode ser simplificado neste manual para ser apresentado como:

:SIN(2.5) .598472144104 EDIT VIEW ROL STOP PURGE(CLEAR

Estas simplificações dos capturadores de tela são direcionadas para economizar o espaço de saída neste manual.

Certifique-se das diferenças entre os capturadores de tela do manual e a exibição atual do visor e não terá problemas ao reproduzir os exercícios neste manual.

Capítulo 1 Introdução

Este Capítulo fornece informações básicas sobre a operação de sua calculadora. Os exercícios são criados para familiarizá-lo com as operações e configurações básicas antes de fazer operações mais avançadas.

Operações básicas

Os seguintes exercícios foram criados para dar uma idéia geral sobre o hardware de sua calculadora.

Baterias

A calculadora usa 3 baterias AAA(LRO3) como alimentação principal e uma bateria de lítio CR2O32 para memória de segurança.

Antes de usar a calculadora, instale as baterias de acordo com o seguinte procedimento.

Para instalar as baterias

a. **Certifique-se de que a calculadora esteja desligada.** Deslize a tampa do compartimento da bateria confome a figura abaixo.

b. Insira 3 baterias AAA(LRO3) novas no compartimento principal. Certifiquese de que cada bateria seja inserida no sentido indicado.

Para instalar as baterias de segurança

a. **Certifique-se de que a calculadora esteja desligada.** Pressione o prendedor da tampa. Empurre a tampa no sentido indicado e levante-a.

- b. Insira a bateria de lítio CR2032. Certifique-se de que o lado positivo (+) esteja voltado para cima.
- c. Substitua a bateria e pressione a placa no seu local original. Depois de instalar as baterias, pressione [ON] para ligar a calculadora.

Aviso: Quando o ícone de bateria com carga baixa for exibido, é necessário substituir as baterias logo que for possível. Entretanto, evite remover a bateria de backup e as baterias principais ao mesmo tempo para evitar perda de dados.

Ligar e desligar a calculadora

A tecla está localizada no canto esquerdo inferior do teclado. Pressione-a para ligar a sua calculadora. Para desligar a calculadora, pressione a tecla right-shift (primeira linha coluna e penúltima linha do eclado), seguido pela tecla . Observe que a tecla tem um símbolo OFF em vermelho impresso no canto direito superior como um lembrete do comando OFF.

Ajustar o contraste do visor

Você pode ajustar o contraste do visor pressionando a tecla e a tecla produz um visor mais contrastado. A combinação de tecla (manter) produz um visor menos contrastado.

Conteúdo do visor da calculadora

Ligue a calculadora novamente. O visor será mostrado conforme a seguir.

RAD XYZ CHOME3	HEX R	'8'	ALG
EDITE W	IEH RO	L STOP	PURGE CLEAR

Na parte superior do visor você encontrará duas linhas com informações que descrevem as configurações da calculadora. A primeira linha mostra os caracteres:

RAD XYZ HEX R= 'X'

Para obter detalhes sobre o significado destas especificações, consulte o capítulo 2.

A segunda linha mostra os caracteres: { HOME } indica que o diretório HOME é o diretório atual do arquivo na memória da calculadora. No capítulo 2 você aprenderá que pode salvar os dados na sua calculadora armazenando-os em arquivos ou variáveis. As variáveis são organizadas nos diretórios e subdiretórios. Eventualmente, você pode criar uma árvore de ramificação dos diretórios de arquivos, similar aqueles do disco rígido do computador. Você pode então navegar através da árvore de diretório do arquivo para selecionar qualquer diretório de seu interesse. Enquanto navega através do diretório de arquivo, a segunda linha do visor será alterada para refletir corretamente o diretório e subdiretório do arquivo.

Na parte inferior do visor você encontrará um certo número de símbolos, por exemplo,

associados com as seis *teclas do menu,* F1 até F6:

(F) (F2) (F3) (F4) (F5) (F6)

Os seis símbolos exibidos na parte inferior do visor serão alterados dependendo de qual menu está sendo exibido. Mas 🙃 será sempre associada com o primeiro símbolo exibido, 😰 com o segundo e assim por diante.

Menus

Os seis símbolos associados com as teclas F até F fazem parte de um menu de funções. Uma vez que a calculadora tem apenas seis teclas, serão apenas exibidos 6 símbolos de cada vez. Entretanto, um menu pode ter mais do que seis entradas. Cada grupo de 6 entradas é chamado de Página de menu. O menu atual, conhecido como menu TOOL (veja abaixo), tem oito entradas arranjadas em duas páginas. A página seguinte contendo as duas entradas seguintes do menu fica disponível ao pressionar a tecla NAT (menu NeXT). Esta tecla é a terceira á esquerda na terceira linha do teclado. Pressione NAT novamente para retornar ao menu TOOL principal ou pressione a tecla TOOL (terceira tecla da segunda linha do teclado).

O menu TOOL é descrito em detalhes na próxima seção. Agora, iremos ilustrar algumas propriedades úteis dos menus para usar a sua calculadora.

Menu SOFT e CHOOSE boxes

Menus ou menus SOFT associam os símbolos na parte inferior do visor com as seis teclas do menu virtual (F) até F6). Ao pressionar a tecla do menu, a função exibida no símbolo associado é ativada. Por exemplo, com o menu TOOL ativo, pressionar a tecla (F6) executa a função CLEAR que apaga (limpa) os conteúdos do visor. Para ver esta função funcionando, digite um número, por exemplo, 123 (NTE) e depois pressione a tecla

Os menus SOFT são geralmente usados para selecionar entre um número de função relacionada. Entretanto, os menus SOFT não são a única forma de acessar as coleções de funções relacionadas na calculadora. A forma alternativa será mencionada como CHOOSE box. Para ver um exemplo de uma CHOOSE box, ative o menu TOOL (pressione 7001) e depois pressione a combinação de tecla 3 (associada à tecla 3). Isto fornecerá a seguinte CHOOSE box:

Esta CHOOSE box é chamada BASE MENU e fornece uma lista de funções enumeradas de 1. HEX x a 6. B \rightarrow R. Este visor irá constituir a primeira página deste menu CHOOSE box mostrando seis funções. Você pode navegar através do menu usando as teclas com as setas , \bigcirc , localizadas no lado direito superior do teclado, logo abaixo das teclas FS e FG . Para executar qualquer função dada, ressalte primeiro o nome da função usando as teclas com as setas , \bigcirc , ou pressione o número correspondente à função na CHOOSE box. Depois que o nome da função for selecionado pressione a tecla \bigcirc). Assim, se quiser usar a função R \rightarrow B (real para binário) você pode pressionar \bigcirc \bigcirc \bigcirc .

Se quiser ir para a parte superior da página do menu atual na CHOOSE box use (). Para ir para a parte inferior da página atual use (). Para ir para o alto do menu use (). Para ir para a parte inferior do menu use ().

Selecionar os menus SOFT ou CHOOSE boxes

Você pode selecionar o formato no qual os menus serão exibidos alterando uma configuração nos sinalizadores do sistema da calculadora (*flags*), um sinalizador de sistema é uma variável da calculadora que controla uma certa operação ou modo da calculadora. Para obter mais informações sobre sinalizadores, consulte o capítulo 24. O sinalizador de sistema 117 pode ser configurado para produzir os menus SOFT ou CHOOSE boxes. Para acessar este sinalizador use:

Sua calculadora mostrará o seguinte visor, ressaltando a linha iniciada com o número 117:

Por definição, a linha será apresentada conforme mostrado acima. A linha ressaltada (CHOOSE box 117) indica que as CHOOSE boxes são as configurações do visor do menu atual. Se preferir usar as teclas do menu

SOFT pressione a tecla [] (3) seguido por [] (6). Pressione [] (6) novamente para retornar ao visor de operação da calculadora.

Se pressionar agora <u>PASE</u> em vez da CHOOSE box, apresentado anteriormente, o visor mostrará agora seis símbolos de menu como a primeira página do menu:

HEX = DEC OCT BIN R+B B+R

Para navegar através das funções deste menu pressione a tecla with para mover para a próxima página ou figures (associada com a tecla with) para mover para a página anterior. As seguintes figuras mostram as diferentes páginas do menu BASE acessado pressionando a tecla with duas vezes:

Pressionar a tecla (NXT) novamente retornará para a primeira página do menu.

Nota: Com a configuração do menu SOFT para o sinalizador do sistema 117, a combinação de tecla (P) (P) mostrará uma lista de funções no menu atual. Por exemplo, para as primeiras duas páginas do menu BASE você obterá:

Para reverter para a configuração CHOOSE boxes use:

MODE THE A T A T A THE TOTAL TOTAL

Notas:

- 1. A ferramenta TOOL, obtida pressionando 🔞, produzirá sempre um menu SOFT.
- A maioria dos exemplos neste manual é mostrado usando ambos os menus SOFT e CHOOSE boxes. Para programar aplicações (capítulos 21 e 22) use exclusivamente os menus SOFT.

3. Informações adicionais sobre os menus SOFT e CHOOSE boxes são apresentados no capítulo 2 deste manual.

O menu TOOL

As teclas virtuais de menu para o menu atualmente exibido, conhecido como menu TOOL, são associadas com as operações relacionadas à manipulação de variáveis (consulte as páginas correspondentes para obter mais informações sobre variáveis):

EDITA o conteúdo de uma variável (consulte o capítulo 2 e o (FI) Apêndice L para obter mais informações sobre edição) **[[]]** VISUALIZA o conteúdo de uma variável F2 F3 CHAMA para a tela de operações o conteúdo de uma variável 810 ARMAZENA o conteúdo de uma variável F4 विगयन APAGA uma variável (F5) 38373 LIMPA o visor ou memória. F6

Uma vez que a calculadora tem apenas seis teclas, somente 6 símbolos são exibidos de cada vez. Entretanto, um menu pode ter mais do que seis entradas. Cada grupo de 6 entradas é chamado de Página de menu. Este menu tem realmente oito entradas arranjadas em duas páginas. A página seguinte, contendo as duas entradas seguintes do menu está disponível pressionando a tecla (NXT) (menu NeXT). Esta tecla na terceira coluna da terceira linha do teclado.

Neste caso, apenas as duas primeiras teclas têm associações com os comandos. Estes comandos são:

CASCMD: CAS CoMmanD, usado para lançar um comando do CAS selecionado da lista

O mecanismo de AJUDA descreve os comandos disponíveis Pressionar a tecla MXT mostrará o menu TOOL original. Outra forma de recuperar o menu TOOL é pressionar a tecla 7001 (terceira tecla da esquerda na segunda linha do teclado).

Configurar a hora e a data

A calculadora tem um relógio de tempo real interno. Este relógio pode ser continuamente exibido no visor e ser usado como alarme, como também

executar as tarefas programadas. Esta seção mostrará não apenas como definir a hora e dia, mas também os conceitos básicos do uso das CHOOSE boxes e como inserir dados na caixa de diálogo. As caixas de diálogos da sua calculadora são similares às caixas de diálogo do computador.

Para definir a hora e a data usamos a CHOOSE box TIME como uma função alternativa para a tecla 9. Combinar o botão vermelho, , com a tecla 9 ativa a CHOOSE box TIME. Esta operação pode também ser representada como . A CHOOSE box TIME é mostrada na figura abaixo:

Como indicado acima, o menu TIME fornece quatro opções diferentes enumeradas de 1 até 4. O que nos interessa nesta altura é a opção 3. Definir hora, data... Usando a tecla de seta para baixo, , ressalte esta opção e pressione a tecla F6. O seguinte formulário de entrada (consulte o apêndice 1-A) para ajustar a hora e a data é exibido:

Definir a hora do dia

Usando as teclas de números, 1234567890, inicie ajustando a hora do dia. Suponha que alteremos a hora para 11, pressionando 11 enquanto o campo da hora no formulário de entrada SET TIME AND DATE estiver ressaltado. Isto resulta no número 11 sendo inserido na linha mais inferior do formulário de entrada:

Pressione a tecla para completar a operação. O valor de 11 é agora mostrado no campo hora e o campo de minuto é automaticamente ressaltado:

Alteremos o campo de minuto para 25, pressionando: 25 . O segundo campo é agora ressaltado. Suponha que deseje alterar o campo de segundos para 45, use: 45 ...

O campo de formato de hora é agora ressaltado. Para alterar a configuração atual do campo você pode ou pressionar a tecla 💤 (a segunda tecla da quinta linha de teclas a partir da parte inferior do teclado) ou a tecla virtual 💷 (💤).

- Se usar a tecla †, a configuração do formato de hora do campo será alterada para uma das seguintes opções:
 - o AM: indica que a hora exibida é antes do meio-dia
 - o PM: indica que a hora exibida é depois do meio-dia
 - 24-hs.: indica que o tempo exibido usa um formato com período de 24 horas, onde 18:00, por exemplo, representa 6:00 pm.

A última opção selecionada será a opção de definição para o formato da hora usando este procedimento.

• Se usar a tecla as seguintes opções estão disponíveis.

Use as teclas com as setas, (A), para selecionar entre estas três opções (AM, PM, 24 horas). Pressione a tecla (F6) para fazer a operação.

Definir a hora

Depois de definir a opção do formato de hora, o formulário de entrada SET TIME AND DATE será exibido:

Para definir a data configure primeiro o seu formato. O formato padrão é D/M/Y (dia/mês/ano). Para modificar este formato pressione a tecla de seta para baixo. Isto ressaltará o formato da data conforme mostrado abaixo:

Use a tecla (B) para ver as opções para o formato de data:

Ressalte a sua escolha usando as teclas de seta, (A), e pressione a tecla (B) para fazer a seleção.

Apresentação do teclado da calculadora

A figura abaixo mostra um diagrama do teclado da calculadora com a numeração de suas linhas e colunas.

A figura mostra 10 linhas de teclas combinadas com 3, 5 ou 6 colunas. A linha 1 tem 6 teclas, a linha 2 e 3 têm 3 teclas cada e a linha 4 até 10 têm 5 teclas cada. Existem 4 teclas de setas no lado direito do teclado no espaço ocupado pelas linhas 2 e 3.

Cada tecla tem três, quatro ou cinco funções. A função principal da tecla corresponde ao símbolo mais proeminente na tecla. Além disso, a tecla leftshift verde, tecla (8, 1), a tecla right-shift vermelha, tecla (9, 1) e a tecla ALPHA azul, tecla (7, 1), podem ser combinadas com algumas das outras teclas para ativar as funções alternativas mostradas no teclado. Por exemplo, a tecla seguir:

SYMB	Função Principal, para ativar o menu SYMBolic
← MTH MTH MTH MTH MTH MTH MTH M	Função Left-shift, para ativar o menu MTH (matemática)
CAT	Função Right-shift, para ativar a função CATalog
ALPHA (P	Função ALPHA, para inserir a letra P em maiúsculo
ALPHA (T) (P)	Função ALPHA-Left-Shift, para inserir a letra p em minúsculo
ALPHA P	Função ALPHA-Right-Shift, para inserir o símbolo P
Das seis funções associadas com a tecla apenas a primeira das quatro é mostrada no próprio teclado. Esta é a forma em que a tecla é apresentada	

no visor:

Observe que a cor e a posição dos símbolos na tecla, isto é, **SYMB**, MTH, CAT e **P**, indicam qual é a função principal (**SYMB**) e qual das outras três funções é associada com as teclas left-shift (MTH), right-shift (CAT) e

Para obter informações detalhadas sobre a operação do teclado da calculadora, consulte o apêndice B.

Selecionar os modos da calculadora

Esta seção considera que você agora, pelo menos em parte, está familiarizado com o uso de seleções e caixas de diálogos (se não estiver, consulte o Capítulo 2).

Pressione o botão (segunda coluna na segunda linha do teclado) para mostrar o seguinte formulário de entrada *CALCULATOR MODES*:

Pressione a tecla para retornar ao inicial. Exemplos diferentes de seleção de modos da calculadora são mostrados a seguir.

Modo de operação

A calculadora oferece dois modos de operação: o modo *Algebraic* e o modo *Reverse Polish Notation* (*RPN*). O modo padrão é o modo Algebraic (conforme indicado na figura acima), portanto, os usuários das calculadoras HP anteriores estão mais familiarizados com o modo RPN.

Par selecionar um modo de operação, abra primeiro o formulário de entrada CALCULATOR MODES pressionando o botão MODE. O campo Operating Mode será ressaltado. Selecione o modo de operação Algebraic ou RPN usando a tecla 💤 (segunda da esquerda na quinta linha a partir da parte inferior do teclado) ou pressionando o tecla virtual de menu (12). Se usar o último acesso, use as teclas de seta acima e abaixo, (12), para selecionar o modo e pressione a tecla virtual de menu para completar a operação.

Para ilustrar a diferença entre estes dois modos de operação calcularemos a seguinte expressão em ambos os modos:

$$\sqrt{\frac{3\cdot\left(5-\frac{1}{3\cdot3}\right)}{23^3}+e^{2.5}}$$

Para inserir esta expressão na calculadora usaremos primeiro o *Editor de Equação*, <u>Formal.</u> Identifique as seguintes teclas no teclado, além das teclas numéricas:

O Editor de Equação é um modo de exibição no qual você pode construir expressões matemáticas usando representações matemáticas incluindo frações, derivadas, integrais, raízes, etc. Para usar o Editor de Equação para escrever a expressão mostrada acima, use as seguintes teclas:

Depois de pressionar ENTER a calculadora exibe a seguinte expressão:

$$\sqrt{(3*(5-1/(3*3))/(23^3+EXP(2.5))}$$

Pressionar entermination novamente fornecerá o valor seguinte (aceita aprox., modo ligado, se solicitado, pressionando (Nota: Os valores inteiros usados acima, ex. 3,5,1, representam os valores exatos. A EXP(2.5), portanto, não pode ser expressa como um valor exato, portanto, [é necessário usar um interruptor para o modo Approx]:

Você pode também digitar a expressão diretamente no visor sem usar o Editor de Equação, conforme a seguir:

para obter o mesmo resultado.

Altere o modo de operação para RPN pressionando primeiro o botão MODE. Selecione o modo de operação RPN usando a tecla USA. Pressione a tecla Pressione a tecla para completar a operação. O visor no modo RPN é similar conforme a seguir:

Z: | : | EDIT | VIEW | RCL | STO▶ | PURGE|CLEAR

Observe que o visor mostra diversos níveis de saídas marcadas, da parte inferior à superior, como 1, 2, 3, etc. Isto é chamado de *pilha operacional* da calculadora. Os diferentes níveis são chamados de *stack levels*, ex. nível 1 da pilha, nível 2 da pilha, etc.

Basicamente, o que RPN significa que, em vez de escrever uma operação tal como 3 + 2, na calculadora usando 3 + 2 MTER, escrevemos primeiro os operandos, na ordem correta e então o operador , ex. 3 MTER 2 MTER + . Enquanto insere os operandos, eles ocupam os diferentes níveis da pilha. Inserir 3 MTER coloca o número 3 no nível 1 da pilha. Depois, inserir 2 MTER empurra o 3 para cima para ocupar o nível 2. Finalmente, pressionando + estamos informando que a calculadora aplica o operador, ou programa, + aos objetos ocupando os níveis 1 e 2. O resultado, 5, é então colocado no nível 1. 3 MTER 2 + .

Tentemos algumas das operações mais simples antes de tentar a expressão mais complicada usadas anteriormente para o modo de operação algébrica: 123/32

123/32

123/87832

4 (ENTER) 2 (7*)

 4^{2} $\sqrt[3]{27}$ $\sqrt[3]{7}$ $\sqrt[8]{8}$ $\sqrt[8]{7}$ $\sqrt[8]{8}$ $\sqrt[8]{7}$

Observe a posição do y e do x nas duas últimas operações. A base na operação exponencial é y (nível de memória 2) enquanto que o expoente é x (nível de memória 1) antes que a tecla 💉 seja pressionada. De forma similar, na operação de raiz cúbica, y (nível de memória 2) é a quantidade de sinal de raiz e x (nível 1 da pilha) é a raiz.

Tente o seguinte exercício envolvendo 3 fatores: $(5 + 3) \times 2$

5 ENTER 3 +

Calcule (5 + 3) primeiro.

2 X

Conclua o cálculo.

Tente agora a expressão proposta anteriormente:

$$\sqrt{\frac{3\cdot\left(5-\frac{1}{3\cdot3}\right)}{23^3}+e^{2.5}}$$

3 • ENTER Insira 3 no nível 1.

Insira 5 no nível 1, e o 3 se move para o nível y.

Insira 3 no nível 1, e o 5 se move para o nível 2, e o 3 para o nível 3

3 • × Coloque 3 e multiplicar, o 9 aparece no nível 1

 $1/(3\times3)$, último valor no nível. 1; 5 no nível 2; 3 no

nível 3

 $\overline{}$ 5 - 1/(3×3) , ocupa o nível 1 agora; o 3 no nível 2

 \times 3× (5 - 1/(3×3)), ocupa o nível 1 agora.

2 3 • Insira 23 no nível 1, 14.66666 se move para o nível 2

3 • y^* Insira 3, calcula 23³ no nível 1. 14.666 no nível 2.

 \div (3× (5-1/(3×3)))/23³ , para o nível 1.

2 • 5 Insira 2,5 no nível 1.

 $e^{2.5}$ vai para o nível 1, o nível 2 mostra o valor anterior

 $(3\times (5-1/(3\times3)))/23^3 + e^{2.5} = 12.18369$, para o nível 1.

 $\sqrt{((3\times(5-1/(3\times3)))/23^3}_+e^{2.5}) = 3,4905156$, no nível

Embora RPN requer um pouco mais de atenção do que o modo algébrico (ALG), existem diversas vantagens em usar RPN. Por exemplo, no modo RPN você pode ver a equação se desenrolar passo a passo. Isto é extremamente útil para detectar um possível erro de entrada. Além disso, ao obter mais conhecimento sobre este modo e aprender mais dicas poderá calcular a expressão de forma mais rápida e usar menos teclas. Considere, por exemplo o cálculo de $(4\times6-5)/(1+4\times6-5)$ no modo RPN onde pode escrever:

A expressão final é mostrada no nível 1 da pilha conforme apresentado a seguir:

Observe como a expressão é colocada no nível 1 da pilha depois de pressionar [ENTER]. Pressionar a tecla EVAL neste ponto avaliará o valor numérico desta expressão. Nota: no modo RPN, pressionar ENTER quando não existir nenhuma linha de comando executará a função DUP, que copiará os conteúdos do nível 1 para o nível 2 da pilha (envia todos os outros níveis da pilha um nível acima). Isto é bastante útil conforme mostrado no exemplo anterior.

Para selecionar os modos de operação ALG e RPN, você pode configurar/limpar o sinalizador do sistema 95 através da seguinte seqüência de teclas:

Alternadamente, você pode usar um dos seguintes atalhos:

- No modo ALG, CF(-95) seleciona modo RPN
- No modo RPN, 95 +- ENTER SF seleciona modo ALG

Para obter mais informações sobre os sinalizadores do sistema da calculadora, consulte o capítulo 2.

Formato de número e ponto ou vírgula decimal

Alterar o formato do número permite que você personalize a forma que números reais são exibidos pela calculadora. Verá que esta característica é extremamente útil nas operações com potências de dez ou para limitar o número de decimais em um resultado.

Para selecionar um formato de número, abra primeiro o formulário de entrada CALCULATOR MODES pressionando o botão MODE. Depois, use a tecla de seta para baixo, , para selecionar a opção Number format. O valor padrão é Std, ou formato Standard. No formato padrão, a calculadora mostrará os números com ponto flutuante com a precisão máxima permitida pela calculadora (12 dígitos significativos). Para aprender mais sobre números reais, consulte o capítulo 2. Para ilustrar este e outros formatos, tente os sequintes exercícios:

• Formato padrão:

Este modo é o mais usado conforme mostram os números na notação mais familiar.

Pressione a tecla (com o Formato de número definido para Std, para retornar ao visor da calculadora: Insira o número 123.4567890123456. Observe que este número tem 16 caracteres significativos. Pressione a tecla (ENTER). O número é arredondado para o máximo de 12 dígitos significativos e é exibido como segue:

: 123.456789012 123.456789012 corr wie: Rel stor Rukoselena

No formato padrão de exibição decimal, os números inteiros são mostrados sem nenhum zero decimal, qualquer que seja ele. Os números com diferentes caracteres decimais serão ajustados no visor para que apenas os números decimais necessários sejam mostrados. Outros exemplos de números no formato padrão são mostrados a seguir:

:125. 125. :25.698 25.698 :56.254879 56.254879

Formatos fixos com decimais: Pressione o botão MoDE. Depois, use a tecla de seta para baixo, ▼, para selecionar a opção Number format.
 Pressione a tecla virtual do menu (P2) e selecione a opção Fixed com a tecla de seta abaixo ▼.

OALCULATOR MODES

Operating Mode..Algebraic
Number Format...[350] 0 __FM,
Angle Measure....Radians
Coord System.....Rectangular

∠Beep __Key Click ∠Last Stack
Choose number display format
FLAGS[CHOOS] CAS | DISP [CANCL] OK

Observe que o modo Number Format é confgurado para *Fix* seguido de zero (0). Este número indica que o número de decimais sejam mostrados depois do ponto decimal no visor da calculadora. Pressione a tecla para retornar ao visor da calculadora: O número agora é mostrado como:

:123. 123. EDIT | VIEW | RCL | STOP | PURGE|CLEAR

Esta configuração forçará que todos os resultados sejam arredondados para o número inteiro mais próximo (dígito 0 exibido depois da vírgula). Portanto, o número é ainda armazenado pela calculadora com sua precisão de 12 dígitos significativos total. Conforme alterarmos o número de decimais exibidos, você verá os dígitos adicionais sendo exibidos novamente.

Formatos fixos com decimais:

Este modo é principalmente usado quando trabalhamos com precisão limitada. Por exemplo, se você estiver fazendo cálculos financeiros, usar um modo FIX 2 é conveniente enquanto pode facilmente representar as unidades monetárioas com uma precisão de 1/100.

Pressione o botão MODE. Depois, use a tecla de seta para baixo, v, para selecionar a opção *Number format*. Pressione a tecla virtual do

menu \blacksquare (F_2) e selecione a opção Fixed com a tecla de seta para baixo \checkmark .

Pressione a tecla de seta a direita, , para ressaltar o zero na frente da opção *Fix*. Pressione a tecla virtual do menu e usando as teclas de setas, selecione, por exemplo, 3 decimais.

Pressione a tecla para completar a seleção:

Pressione a tecla retornar ao visor da calculadora. O número agora é mostrado como:

: 123.457 123.457 EDIT VIEW RCL STOP PURGEICLEAR

Observe como o número é mostrado arredondado, não truncado. Assim, o número 123.4567890123456, para esta configuração, exibido como 123.457 e não como 123.456 porque o dígito após o 6 é > 5). Note que o valor será mostrado arredondado, mas internamente a calculadora continuará a operar com todas as casas decimais:

Formato científico

O formato científico é principalmente usado quando resolve problemas de física onde os números são normalmente apresentados com precisão limitada por uma potência de dez.

Para configurar este formato, pressione o botão MODE e depois use a tecla de seta depara baixo, , para selecionar a opção Number format. Pressione a tecla virtual do menu () e selecione a opção Fixed com a tecla de seta para baixo . Mantenha o número 3 na frente de Sci. Este número pode ser alterado da mesma forma que alteramos o número Fixed de decimais no exemplo acima.

OALCULÁTOR MODES

Operating Mode.Algebraic
Number Format...§SE 3 _ FM,
Angle Measure...Radians
Coord System....Rectangular

∠Beep _ Key Click ∠Last Stack
Choose number display Format
FLAGS|CHOOS| CAS | DISP|CANCL| OK

Pressione a tecla para retornar ao visor da calculadora: O número agora é mostrado como:

:1.235E2 1.235E2 EDIT | VIEW | RCL | STOP | PURGE|CLEAR

O resultado 1.235E2 é a versão de representação de potência de dez, ex. 1.235 × 10². Nesta representação chamada notação científica, o número 3 na frente do formato de número Sci (mostrado anteriormente) representa o número com dígitos significativos depois do ponto decimal. A notação científica inclui sempre um número inteiro conforme mostrado acima. Para este caso, portanto, são quatro os dígitos significativos.

Formato engenharia

O formato engenharia é muito similar ao formato científico, exceto que as potências de dez são múltiplos de três.

Para configurar este formato, pressionando o botão Mode e depois use a tecla de seta para baixo, , para selecionar a opção Number format. Pressione a tecla virtual do menu () e selecione a opção Engineering com a tecla de seta para baixo . Mantenha o número 3 na frente do Eng. (Este número pode ser alterado da mesma forma que alteramos o número Fixo de decimais em um exemplo anterior).

© CALCULATOR MODES © CALCULATOR

Pressione a tecla para retornar ao visor da calculadora: O número agora é mostrado conforme a seguir:

: 123.5E0 123.5E0 EDIT | VIEW | RCL | STO) | PURGE|CLEAR

Dado que este número tem três dígitos na parte inteira, é mostrado com quatro números significativos e uma potência de zero de dez, enquanto usa o formato engenharia. Por exemplo, o número 0.00256 será mostrado conforme a seguir:

: 123.5E0 123.5E0 : 2.560E-3 2.560E-3 : 2.560E-3

Vírgula e ponto decimais

Os pontos decimais nos números de ponto flutuante podem ser substituídos por vírgula se o usuário estiver mais familiarizado com tal notação. Para substituir os pontos decimais por vírgulas altere a opção FM no formulário de entrada CALCULATOR MODES para vírgulas, conforme a seguir (observe que alteramos Number Format para Std):

Pressione o botão Mode depois use a tecla de seta para baixo, ▼, uma vez e a tecla de seta a direita, ▶, para a opção _FM. Para selecionar vírgulas pressione a tecla VIIII (ex. a tecla 1/2). O formulário de entrada será mostrado conforme a sequir:

CALCULATOR MODES

Operating Mode.Algebraic
Number Format...Std ☑FH,
Angle Measure...Radians
Coord System....Rectangular
☑Beep _ Key Click ☑Last Stack
Use comma as Fraction mark?
FLADS ☑ CHIX CAS □ISP CANCL □X

 Pressione a tecla para retornar ao visor da calculadora: O número 123.456789012, inserido anteriormente, é agora mostrado como: : 123,456789012 123,456789012 EDIT | VIEW | RCL | STOP | PURGE|CLEMR

Medida de ângulo

As funções trigonométricas, por exemplo, exigem argumentos que representem ângulos planos. A calculadora fornece três modos *Angle Measure* diferentes para trabalhar com ângulos, conforme a seguir:

- Degrees: Existem 360 graus (360°) em uma circunferência completa ou 90 graus (90°) em um ângulo reto. Esta representação é principalmente usada em geometria básica, engenharia mecânica ou estrutural e levantamentos.
- Radians: Existem 2π radianos $(2\pi')$ em uma circunfeência completa ou $\pi/2$ radianos $(\pi/2')$ em um ângulo reto. Esta notação é principalmente usada para resolver problemas matemáticos e físicos. Este é o modo padrão da calculadora.
- Grades: Existem 400 grados (400 g) em uma circunferência completa ou 100 grados (100 g) em um ângulo reto. Esta notação é similar ao modo de grau e foi introduzido para "simplificar" a notação de graus, mas atualmente é raramente usada.

A medida do ângulo afeta as funções trigonométricas como SIN, COS, TAN e associadas.

Para alterar o modo de medida do ângulo, use os seguintes procedimentos:

Pressione o botão MODE. Depois, use a tecla de seta para baixo, , duas vezes. Selecione o modo Angle Measure usando a tecla (segunda da esquerda na quinta linha a partir da parte inferior do teclado) ou pressionando o tecla virtual do menu (F2). Se usar o último acesso, use as teclas de seta para cima/baixo, , para selecionar o modo e pressione para completar a operação. Por exemplo, na tela a seguir, o modo Radians é selecionado:

Sistema de coordenadas

A seleção de sistema de coordenadas afeta a forma em que os vetores e números complexos são exibidos e inseridos. Para aprender mais sobre os números e vetores complexos, consulte os capítulos 4 e 9, respectivamente, neste manual.

Dois ou três componentes de vetores e números complexos podem ser representados em qualquer um dos 3 sistemas de coordenadas: O cartesiano (2 dimensões) ou retangular (3 dimensões), cilíndrico (3 dimensões) ou polar (2 dimensões) e esférico (apenas 3 dimensões). No sistema cartesiano ou retangular um ponto P terá três coordenadas lineares (x,y,z) medidas da origem ao longo de cada um dos três eixos mutualmente perpendiculares (no modo 2d, z é considerado como 0). Em um sistema de coordenadas polar ou cilíndrico as coordenadas de um ponto são (r, θ ,z), onde r é uma distância medida da origem no plano xy, θ é o ângulo que a distância radial r forma com o eixo x – medido como positivo no sentido antihorário – e z é o mesmo da coordenada z em um sistema cartesiano (no modo 2 d, z é considerado como 0). Os sistemas retangular e polar são relacionados pelas seguintes quantidades:

$$x = r \cdot \cos(\theta) \qquad r = \sqrt{x^2 + y^2}$$
$$y = r \cdot \sin(\theta) \qquad \theta = \tan^{-1} \left(\frac{y}{x}\right)$$

Em um sistema de coordenadas esférico as coordenadas de um ponto são dadas por (ρ,θ,ϕ) onde ρ uma distância radial medida de um ponto de origem de um sistema cartesiano, θ é o ângulo que representa o ângulo formado pela projeção da distância linear ρ no eixo xy (similar a θ nas coordenadas pola) e ϕ é o ângulo do eixo z positivo par a distância ρ radial. Os sistemas de coordenadas retangular e esférico estão relacionados pelos seguintes valores:

$$x = \rho \cdot \sin(\phi) \cdot \cos(\theta) \qquad \rho = \sqrt{x^2 + y^2 + z^2}$$

$$y = \rho \cdot \sin(\phi) \cdot \sin(\theta) \qquad \theta = \tan^{-1} \left(\frac{y}{x}\right)$$

$$z = \rho \cdot \cos(\phi) \qquad \phi = \tan^{-1} \left(\frac{\sqrt{x^2 + y^2}}{z}\right)$$

Para alterar o sistema de coordenadas na sua calculadora, siga estes passos:

Pressione o botão MODE. Depois, use a tecla de seta para baixo, , duas vezes. Selecione o modo Angle Measure usando a tecla (segunda coluna e quinta linhalinha do teclado) ou pressionando o tecla virtual do menu (F2). Se usar o último acesso, use as teclas de seta para cima e para baixo, , para selecionar o modo e pressione para completar a operação. Por exemplo, no visor a sequir, o modo de coordenada Polar é selecionado:

Operating Mode. Algebraic
Operating Mode.
Op

Som do beep, clique de tecla e última pilha

A última linha do formulário de entrada CALCULATOR MODES inclui as opções:

Ao escolher a marca de verificação próxima de cada uma destas opções, a opção correspondente é ativada. Estas opções são descritas a seguir.

_Beep: Quando selecionado, o som de beep da calculadora é ativado. Esta operação se aplica principalmente para mensagens de erro, mas também para algumas funções do usuário como o BEEP.

Key Click: Quando selecionado, cada tecla produz um som de "clique".

_Last Stack: Mantém os conteúdos da última entrada da pilha para uso com as funções UNDO e ANS (consulte o capítulo 2).

A opção _Beep pode ser útil para avisar ao usuário sobre os erros. Você pode querer desmarcar esta opção se estiver usando sua calculadora em uma sala de aula ou biblioteca.

A opção _Key Click pode ser útil como uma forma audível de verificar se cada toque foi inserido corretamente.

A última opção *Last Stack* é muito útil para recuperar a última operação se for preciso usá-la para um novo cálculo.

Para marcar ou desmarcar qualquer uma destas três opções pressione primeiro o botão (MODE) e a seguir:

- Use a tecla de seta para baixo, ~, quatro vezes para selecionar a opção
 _Last Stack. Use a tecla
 ✓ □ (ex. A tecla) para alterar a seleção.
- Pressione a tecla de seta a esquerda para selecionar a opção _Beep.
 Use a tecla (ex. a tecla) para alterar a seleção.
 Pressione a tecla para completar a operação.

Selecionar as configurações CAS

CAS significa sistema algébrico do computador. Este é o centro matemático da calculadora onde as operações e funções matemáticas simbólicas são programadas e executadas. O CAS oferece um número de configurações que pode ser ajustado de acordo com o tipo de operação de interesse. Estas são:

- A variável independente padrão
- Modos Numeric e symbolic
- Modos Aproximado e Exato
- Modos verbose e não-verbose
- Modos passo a passo para operações
- Aumentar o formato da potência para os polinômios
- Modo Rigorous
- Simplificação das expressões irracionais

Os detalhes na seleção das configurações CAS são apresentados no apêndice C.

Selecionar os modos de exibição

O visor da calculadora pode ser personalizado com as suas preferências selecionado diferentes modos de exibição. Para ver as configurações CAS opcionais use o seguinte:

Pressione o botão MODE para ativar formulário de entrada CALCULATOR MODES. Dentro do formulário de entrada CALCULATOR MODES, pressione o tecla virtual do menu (F4) para exibir o formulário de entrada DISPLAY MODES.

- Para navegar através de diversas opções no formulário de entrada DISPLAY MODES, use as teclas de setas: (1) (1)
- Para selecionar ou alterar a seleção de qualquer uma das configurações mostradas acima, selecione o subjacente antes da opção de interesse e alterne a tecla verificação for selecionada a marca de verificação será mostrada sublinhada (ex. a opção Textbook no Stack: da linha acima). Opções desmarcadas não mostrarão as marcas de verificação no sublinhado precedento a opção de interesse (ex, a opção _Small, _Full page, e _Indent no Edit: da linha acima).
- Para selecionar a fonte para a exibição, ressalte o campo na frente da opção Font: no formulário de entrada DISPLAY MODES e use a tecla virtual do menu (F2).

Selecionar a fonte do visor

Alterar a exibição da fonte permite personalizar as funções da calculadora de acordo com as suas preferências. Usar a fonte de 6 pixels, por exemplo,

você pode exibir até 9 níveis da pilha. Siga estas instruções para selecionar sua fonte de exibição:

Pressione o botão MODE para ativar formulário de entrada CALCULATOR MODES. Dentro do formulário de entrada CALCULATOR MODES, pressione o tecla virtual do menu (F1) para exibir o formulário de entrada DISPLAY MODES. O campo Font é ressaltado e a opção Ft8_0:system 8 é selecionada. Este é o valor padrão da fonte do visor. Pressionar a tecla virtual do menu (F2), fornecerá uma lista de fontes disponíveis do sistema, conforme mostrado abaixo:

As opções disponíveis são três *System Fonts* padrões (tamanhos *8, 7* e *6*) e a opção *Browse...* A última permitirá que você navegue na memória da calculadora para as fontes adicionais que possa ter criado (consulte o Capítulo 23) ou instalado através de download na calculadora.

Pratique alterando as fontes do visor para os tamanhos 7 e 6. Pressione a tecla virtual do menu OK para ativar a seleção. Quando a seleção for feita pressione a tecla virtual para retornar ao formulário de entrada CALCULATOR MODES. Para retornar ao visor normal da calculadora nesta altura pressione a tecla virtual rovamente e veja como a exibição da pilha é alterada para acomodar a fonte diferente.

Selecionar as propriedades da linha de edição

Pressione o botão MODES para ativar formulário de entrada CALCULATOR MODES. Dentro do formulário de entrada CALCULATOR MODES, pressione o tecla virtual de menu (F4) para exibir o formulário de entrada DISPLAY MODES. Pressione a tecla de seta para baixo, , uma vez para obter a linha Edit. Esta linha mostra três propriedades que podem ser alteradas. Quando estas propriedades são selecionadas (marcadas) os seguintes efeitos são ativados.

_Small Altera o tamanho da fonte para pequeno

_Full page Permite que você coloque o cursor depois do final da

linha.

_Indent Avanço automático do cursor ao introduzir mudança

de linha

Instruções para uso da linha de edição são apresentadas no capítulo 2 deste guia.

Selecionar as propriedades da pilha

Pressione o botão MODES para ativar formulário de entrada CALCULATOR MODES. Dentro do formulário de entrada CALCULATOR MODES, pressione o tecla virtual do menu (F4) para exibir o formulário de entrada DISPLAY MODES. Pressione a tecla de seta para baixo, , duas vezes para obter a linha *Stack*. Esta linha mostra duas propriedades que podem ser alteradas. Quando estas propriedades são selecionadas (marcadas) os sequintes efeitos são ativados.

_Small Altera o tamanho da fonte para pequeno Isto maximiza o

volume de informações exibidas no visor. Observe que esta seleção substitui a seleção de fonte para a exibição da pilha.

_Textbook Exibe as expressões matemáticas na representação

matemática gráfica.

Para ilustrar estas configurações, tanto no modo RPN ou algébrico use o Editor de Equação para digitar a seguinte integral definida:

No modo algébrico, o visor a seguir mostra os resultados das teclas pressionadas quando nem _Small nem _Textbook estão selecionados:

Com apenas a opção _Small marcada o visor se parece com o mostrado abaixo:

Com a opção _*Textbook* selecionada (valor padrão), independente se a opção _*Small* for selecionada ou não, o visor mostra o seguinte resultado:

Selecionar as propriedades do Editor de Equação (EQW)

Pressione o botão MODES para ativar formulário de entrada CALCULATOR MODES. Dentro do formulário de entrada CALCULATOR MODES, pressione o tecla virtual do menu (F4) para exibir o formulário de entrada DISPLAY MODES. Pressione a tecla de seta para baixo, , três vezes, para obter a linha EQW (Editor de Equação). Esta linha mostra duas propriedades que podem ser alteradas. Quando estas propriedades são selecionadas (marcadas) os seguintes efeitos são ativados.

_Small Altera o tamanho da fonte para pequeno enquanto

usa o Editor de Equação.

_Small Stack Disp Mostra a fonte pequena na pilha para a exibição

do estilo texto.

Instruções detalhadas sobre o uso do Editor de Equação (EQW) são apresentadas em outra seção deste manual.

Para ver um exemplo da integral $\int_0^\infty e^{-X} dX$, apresentada acima, selecionar

_Small Stack Disp na linha EQW do formulário de entrada DISPLAY MODES produz a seguinte exibição:

Selecionar o tamanho do cabeçalho

Pressione o botão para ativar formulário de entrada CALCULATOR MODES. Dentro do formulário de entrada CALCULATOR MODES, pressione o tecla virtual do menu (14) para exibir o formulário de entrada DISPLAY MODES. Pressione a tecla de seta para baixo, , quatro vezes, para obter a linha Header. O valor 2 é atribuído para o campo Header por

definição. Isto significa que a parte superior do visor conterá duas linhas, uma mostrando as configurações atuais da calculadora e a segunda mostrando o subdiretório atual dentro da memória da calculadora (estas linhas foram descritas anteriormente no manual). O usuário pode selecionar alterar esta configuração para 1 ou 0 para reduzir o número de linhas do cabeçalho no visor.

Selecionar o visor do relógio

Pressione o botão MODES para ativar formulário de entrada CALCULATOR MODES. Dentro do formulário de entrada CALCULATOR MODES pressione o tecla virtual do menu (F4) para exibir o formulário de entrada DISPLAY MODES. Pressione a tecla de seta para baixo, (I), quatro vezes, para obter a linha Header. O campo Header será ressaltado. Use a tecla de seta direita (I) para selecionar o sublinhado na frente das opções Clock ou Analog. Alterne a tecla (I) até que a configuração desejada seja alcançada. Se a opção Clock estiver selecionada, a hora e o dia são mostrados no canto direito superior do visor. Se a opção Analog for também selecionada, um relógio analógico em vez do digital será mostrado no canto direito superior do visor. Se a opção Clock não for selecionada ou o cabeçalho não for exibido, ou estiver muito pequeno, a data e a hora não serão mostradas no visor.

Capítulo 2

Apresentando a calculadora

Neste capítulo apresentamos um número de operações básicas da calculadora incluindo o uso do Editor de Equação e a manipulação de objetos de dados. Estude os exemplos neste capítulo para ter uma idéia da capacidade da calculadora para aplicações futuras.

Objetos da calculadora

Qualquer número, expressão, caractere, variável, etc. que pode ser criada e manipulada na calculadora é mencionado como um objeto. Alguns dos tipos mais úteis de objetos são listados abaixo.

Real. Estes objetos representam um número, positivo ou negativo, com 12 dígitos significativos e uma variação exponencial de -499 a +499. Exemplos de números reais são: 1., -5., 56,41564 1,5E45, -555,74E-95

Quando inserir um número real, você pode usar a tecla (EX) para inserir o expoente e a tecla (+/-) para alterar o sinal do expoente ou mantissa.

Observe que o número real deve ser inserido com um ponto decimal, mesmo que o número não tenha nenhuma parte fracionária. Caso contrário, o número é considerado como um número inteiro, que é um objeto diferente para a calculadora. Os números reais comportam-se como números quando usados na operação matemática.

Inteiros. Estes objetos representam números inteiros (números sem uma parte fracionária) e não têm limites (exceto a memória da calculadora). Exemplos de números inteiros são: 1, 564654112, -413165467354646765465487. Observe que estes números não têm um ponto decimal.

Devido ao seu formato de armazenamento, os números inteiros sempre mantêm precisão total nos seus cálculos. Por exemplo, uma operação como 30/14, com números inteiros retornará 15/7 e não 2.142.... Para forçar um resultado real (ou ponto flutuante) use a função →NUM → →NUM.

Os inteiros são freqüentemente usados nas funções baseadas no CAS já que foram criados para manter a precisão total nesta operação.

Se o modo aproximado (APPROX) for selecionado no CAS (consulte o apêndice C), os números inteiros serão automaticamente convertidos para números reais. Se não estiver planejando usar o CAS, pode ser uma boa idéia mudar diretamente para o modo aproximado. Consulte o apêndice C para obter mais detalhes.

Misturar números inteiros e números reais ou trocar erradamente um número inteiro por um número real é muito comum. A calculadora detectará tal mistura de objetos e perguntará se deseja alterar para o modo aproximado.

Números complexos, são uma extensão dos números reais que incluem o número imaginário da unidade, $i^2 = -1$. Um número complexo, ex. 3 + 2i, é escrito como (3, 2) na calculadora.

Os números complexos podem ser exibidos tanto no modo Cartesiano ou Polar dependendo da configuração selecionada. Observe que os números complexos são sempre armazenados no modo Cartesiano e que apenas a exibição é afetada. Isto permite que a calculadora mantenha a precisão tanto quanto possível durante os cálculos.

A maioria das funções matemáticas funciona com números complexos. Não é necessário usar uma função especial "complexa +" para adicionar números complexos, você pode usar a mesma função + dos números reais ou números inteiros.

As operações com vetor e matriz utilizam objetos do tipo 3, **conjuntos reais**, e tipo 4, **conjuntos complexos**. Os objetos do tipo 2, **strings**, são simplesmente linhas de texto (incluídos entre aspas) produzidos com o teclado alfanumérico.

Uma **lista** é apenas uma coleção de objetos inseridos entre chaves e separados por espaço no modo RPN (a tecla de espaço é identificada como SPC) ou por vírgulas no modo algébrico. As listas, objetos do tipo 5, podem ser bastante úteis ao processar coleções de números. Por exemplo, as colunas de uma tabela podem ser inseridas como listas. Se preferir, uma tabela pode ser inserida como uma matriz ou série.

Os objetos do tipo 8 são *programas na linguagem RPL do usuário* . Estes são simplesmente conjuntos de instruções incluídos entre os símbolos << « » >>.

Associados aos programas estão os objetos dos tipos 6 e 7, **Global** e **Nomes locais** , respectivamente. Estes nomes ou <u>variáveis</u>, são usados para armazenar quaisquer tipos de objetos. O conceito de nomes globais ou locais é relacionado ao escopo ou alcance da variável em um dado programa.

Um **objeto algébrico**, ou simplesmente, um **algébrico** (objeto do tipo 9), é uma expressão algébrica válida incluída entre apóstrofos.

Inteiros binários, objetos do tipo 10, são usados em algumas aplicações científicas em computadores.

Objetos gráficos, objetos do tipo 11, armazenam os gráficos produzidos pela calculadora.

Objetos etiquetados (identificados), objetos do tipo 12, são usados no final de diversos programas para identificar resultados. Por exemplo, no objeto etiquetado: Mean: 23.2, a palavra Mean: é a tag usada para identificar o número 23.2 como a média de uma amostra, por exemplo.

Objetos de unidade, objetos do tipo 13, são valores numéricos com uma unidade física anexada.

Diretórios, objetos do tipo 15, são áreas de memória usadas para organizar suas variáveis de forma similar ao de pastas em um computador pessoal.

Bibliotecas, objetos do tipo 16, são programas localizados nas portas da memória que são acessíveis dentro de qualquer diretório (ou subdiretório) de sua calculadora. São parecidos com *funções internas*, objetos do tipo 18, e *comandos internos*, objetos do tipo 19, na forma em que são usados.

Editar as expressões no visor

Nesta seção apresentamos os exemplos de edição de expressões diretamente no visor da calculadora (histórico algébrico ou pilha RPN).

Criar as expressões aritméticas

Neste exemplo, selecionamos o modo de operação algébrico e um formato *Fix* com 3 decimais para o visor. Vamos digitar agora a expressão aritmética.

$$5.0 \cdot \frac{1.0 + \frac{1.0}{7.5}}{\sqrt{3.0} - 2.0^3}$$

Para inserir esta expressão use a seguinte combinação de teclas:

A expressão resultante é: 5.*(1.+1./7.5)/(-3.-2.^3).

Pressione [INTER] para obter a expressão no visor, conforme a seguir:

Observe que, se o CAS for configurado para EXACT (consulte apêndice C) e você inserir sua expressão usando números inteiros para os valores inteiros, o resultado é uma quantidade simbólica, ex.

Antes de produzir um resultado, você será solicitado a mudar para o modo Approximate. Aceite a alteração para obter o seguinte resultado (mostrado no modo Decimal fix com três casas decimais – consulte o capítulo 1):

Neste caso, quando a expressão for inserida diretamente na pilha logo que pressionar ENTER, a calculadora tentará calcular um valor para a expressão.

Se a expressão for inserida entre aspas, no entanto, a calculadora reproduzirá a expressão como foi inserida. No exemplo a seguir, inserimos a mesma expressão conforme acima, mas usando aspas. Para este caso definimos o modo de operação para algébrico, o modo CAS para Exact (desmarcar _Approx) e a configuração do visor para Textbook. A combinação de teclas para inserir a expressão é a seguinte:

O resultado será mostrado conforme abaixo:

Para avaliar a expressão podemos usar a função EVAL, conforme a seguir:

(EVAL) () ANS (ENTER)

Como no exemplo anterior, será solicitada a aprovação da alteração da configuração do CAS para *Approx*. Logo que isto for feito, você obterá o mesmo resultado anterior.

Uma forma alternativa de avaliar a expressão inserida anteriormente entre aspas é usando a opção 🕞 → NUM . Para recuperar a expressão da pilha existente, use a seguinte combinação de teclas: • • → NUM

Vamos inserir agora a expressão usada acima com a calculadora definida para o modo de operação RPN. Definimos também o CAS para *Exact* e o visor para *Textbook*. A combinação de teclas para inserir a expressão entre aspas é a mesma usada anteriormente, ex.

Com o resultado

Pressione (NTER) novamente para manter duas cópias da expressão disponível na pilha para avaliação. Avaliamos primeiro a expressão usando a função EVAL, e a próxima usando a função →NUM: Primeiro, avaliamos a expressão usando a função EVAL. Esta expressão é semi-simbólica no sentido de que existem componentes de ponto flutuante para o resultado, como também um √3. Depois, alternamos para os locais da pilha e avaliamos o uso da função →NUM:

Troca os níveis 1 e 2 da pilha (comando SWAP)

→ → NUM

Avalia usando a função → NUM

Este último resultado é meramente numérico, de forma que os dois resultados na pilha, embora representem a mesma expressão, parecem diferentes. Para verificar se não são diferentes, subtraímos os dois valores e avaliamos esta diferença usando a função EVAL:

Subtrai o nível 1 do nível 2

Avalia usando a função EVAL

O resultado é zero (0.).

Nota: Não misture dados de números inteiros e números reais para evitar conflitos nos cálculos. Para diversas aplicações de física e engenharia, incluindo a solução numérica de equações, aplicações estatísticas, etc., o modo APPROX (consulte o apêndice C) funciona melhor. Para as aplicações matemáticas, ex., cálculo, análise vetorial, álgebra, etc., o modo EXACT é preferível. Conheça as operações em ambos os modos e aprenda como alternar entre diferentes tipos de operações (consulte o apêndice C).

Editar expressões aritméticas

Suponha que você inseriu a seguinte expressão, entre aspas, com a calculadora no modo RPN e o CAS configurado para EXACT:

em vez da expressão em questão: $5 \cdot \frac{1 + \frac{1}{7.5}}{\sqrt{3} - 2^3}$. A expressão incorreta foi

inserida usando:

Para inserir a linha de edição use 🖜 . O visor apresenta agora a seguinte expressão:

O cursor de edição é mostrado como uma seta à esquerda cintilante sobre o primeiro caractere na linha a ser editada. Desde que a edição neste caso consiste em remover alguns caracteres e substituí-los por outros, usaremos as teclas de seta esquerda e direita, , para mover o cursor para o local apropriado para edição, e a tecla de exclusão, , para eliminar os caracteres.

A seguinte combinação de teclas completará a edição para este caso:

- Pressione a tecla com a seta para a direita, , até que o cursor fique imediatamente à direita do ponto decimal no termo 1.75
- Pressione a tecla de exclusão, , duas vezes para apagar os caracteres 1.
- Pressione a tecla com a seta para a direita,
 , uma vez, para mover o cursor para à direita de 7
- Digite um ponto decimal com •
- Pressione a tecla com a seta para a direita, igode, até que o cursor fique imediatamente à direita do ponto decimal no termo $\sqrt{5}$
- Pressione a tecla de exclusão, •, uma vez para apagar o caractere 5.
- Digite um 3 com 3

• Pressione ENTER para retornar à pilha.

A expressão editada está agora disponível na pilha.

$$\frac{5[1-\frac{1}{7.5}]}{\sqrt{3}-2^3}$$

Editar uma linha de entrada estando a calculadora no modo de operação algébrico é exatamente o mesmo que no modo RPN. Você pode repetir este exemplo no modo algébrico para verificar esta afirmação.

Criar expressões algébricas

As expressões algébricas incluem não apenas números, mas também nomes de variáveis. Como exemplo, vamos inserir a seguinte expressão algébrica:

$$\frac{2L\sqrt{1+\frac{x}{R}}}{R+y} + 2\frac{L}{b}$$

Definimos o modo de operação da calculadora para Algebraic, o CAS para *Exact* e o visor para *Textbook*. Para inserir esta expressão algébrica usamos a seguinte combinação de teclas:

Pressione ENTER para obter o seguinte resultado:

Inserir esta expressão estando a calculadora definida no modo RPN é exatamente o mesmo que este exercício no modo Algebraic.

Editar expressões algébricas

Editar a expressão algébrica com um editor linear é similar àquela da expressão aritmética (consulte o exercício acima). Suponha que desejemos alterar a expressão inserida acima para ler

$$\frac{2L\sqrt{1+\frac{x^2}{R}}}{R+x} + 2\sqrt{\frac{L}{b}}$$

Para editar a expressão algébrica usando o editor linear use 🕤 🔻 . Isto ativa o editor linear, mostrando a expressão a ser editada conforme a seguir:

O cursor de edição é mostrado como uma seta à esquerda cintilante sobre o primeiro caractere na linha a ser editada. Como em um exercício anterior de edição de linhas, usaremos as teclas com setas para direita e para esquerda, ① D, para mover o cursor para o local apropriado para edição, e a tecla de exclusão, . , para eliminar os caracteres.

A seguinte combinação de teclas completará a edição para este caso:

- Pressione a tecla com a seta para a direita, , até que o cursor figue à direita de x
- Digite y 2 para inserir a potência de 2 para o x
- Pressione a tecla com a seta para a direita, , até que o cursor fique à direita de y
- Pressione a tecla de exclusão, , uma vez, para apagar o caractere y.
- Digite APPHA $\bigcirc X$ para inserir um x.
- Pressione a tecla com a seta para a direita, , quatro vezes, para mover o cursor para a direita de *
- Digite w para inserir um símbolo de raiz quadrada.
- Digite 🕤 🕖 para inserir um conjunto de parênteses (apresentadas em pares)

- Pressione a tecla com a seta para a direita,
 , uma vez, e a tecla
 de exclusão
 , uma vez, para excluir os parênteses à direita do
 conjunto inserido acima.
- Pressione a tecla com a seta para a direita, , quatro vezes, para mover o cursor para a direita de b
- Digite 🕤 🗀 para inserir um segundo conjunto de parênteses.
- Pressione a tecla de exclusão, •, uma vez, para excluir o parêntese esquerdo do conjunto inserido acima.
- Pressione para retornar ao visor normal da calculadora.

O resultado é mostrado a sequir:

Observe que a expressão foi expandida para incluir termos tais como |R|, o valor absoluto e SQ(b·R), o quadrado de b·R. Para ver se podemos simplificar este resultado, use FACTOR(ANS(1)) no modo ALG:

Pressione para ativar a linha de edição novamente. O resultado é:

• Pressione **ENTER** novamente para retornar ao visor normal.

Para ver a expressão inteira no visor, podemos alterar a opção _Small Stack Disp no formulário de entrada DISPLAY MODES (consulte o capítulo 1). Depois de efetuar esta alteração, o visor mostrará o seguinte:

Nota: Para usar letras Gregas e outros caracteres nas expressões algébricas use o menu CHARS. Este menu é ativado pela combinação de teclas (**)

CHARS. Os detalhes são apresentados no apêndice D.

Usar o Editor de Equação (EQW) para criar expressões

O Editor de Equação é uma ferramenta poderosa que não apenas permite inserir ou visualizar uma equação, mas também alterar e trabalhar/aplicar funções em toda ou em parte da equação. O Editor de Equação (EQW), portanto, permite que você faça operações matemáticas complexas, diretamente, ou em modo passo a passo, conforme faria por escrito ao resolver, por exemplo, os problemas de cálculos.

O Editor de Equação é aberto pressionando-se a combinação de teclas (terceira coluna e quarta linha do teclado). O visor resultante é o seguinte.

EDIT CURS BIG - EVAL FACTO SIMP

Estas seis teclas do menu soft para o Editor de Equação ativam as seguintes funções:

permite que o usuário edite uma entrada na linha de edição (consulte os exemplos acima)

IIII: ressalta a expressão e adiciona um cursor gráfico

EEE: Se for selecionada (seleção exibida pelo caractere no símbolo) a fonte usada no editor é a fonte do sistema 8 (a maior fonte disponível)

Permite avaliar, simbólica ou numericamente, uma expressão ressaltada no visor do editor de equação (similar a PEVAL)

permite fatorar uma expressão ressaltada no visor do eEditor de Equação (se a fatoração for possível).

permite simplificar uma expressão ressaltada no visor do Editor de equação (tanto quanto pode ser simplificada de acordo com as regras algébricas do CAS).

Se pressionar a tecla *MT* mais duas opções de menu soft aparecerão conforme mostrado abaixo:

Estas seis teclas do menu soft para o editor de equação ativam as seguintes funções:

permite acessar a coleção dos comandos do CAS listados em ordem alfabética. Isto é útil para inserir os comandos CAS em uma expressão disponível no editor de equação.

ativa o mecanismo de ajuda CAS da calculadora para fornecer informações e exemplos dos comandos CAS.

Alguns exemplos para uso do editor de equação são mostrados abaixo.

Criar expressões aritméticas

Inserir expressões aritméticas no editor de equação é similar a inserção de uma expressão aritmética envolvida por aspas na pilha: A principal diferença é que no editor de equação as expressões produzidas são escritas no estilo "textbook" em vez do estilo entrada linear. Assim, quando um sinal de divisão (ex. ÷) é inserido no editor de equação, uma fração é gerada e o cursosr colocado no numerador. Para mover para o denominador, é necessário usar a tecla com a seta para baixo. Por exemplo, tente a seguinte combinação de teclas no visor do editor de equação: 5 ÷ 5 + 2

O cursor é mostrado como uma tecla voltada para a esquerda. O cursor indica o local atual de edição. Digitando um caractere, nome de função ou operação será apresentado o caractere ou caracteres correspondentes no local do cursor. Por exemplo, para o cursor no local indicado acima, digite agora:

Suponha que você deseje substituir o valor entre parênteses no denominador (ex., 5+1/3) por $(5+\pi^2/2)$. Primeiro, usamos a tecla delete () para excluir a expressão atual 1/3 e então substituímos esta fração por $\pi^2/2$, conforme a seguir:

Quando alcançamos este ponto o visor apresenta a seguinte expressão:

Para inserir o denominador 2 na expressão, precisamos ressaltar a expressão π^2 inteira. Fazemos isso pressionando a tecla com a seta para a direita (\bigcirc) uma vez. Nesta altura, inserimos a seguinte combinação de teclas: \bigcirc 2 A expressão agora se a<u>presenta da seguinte forma:</u>

Suponha que você deseja agora adicionar a fração 1/3 para esta expressão inteira, ex. você quer inserir a expressão:

$$\frac{5}{5+2\cdot(5+\frac{\pi^2}{2})} + \frac{1}{3}$$

Primeiro, precisamos ressaltar totalmente o primeiro termo usando as teclas da seta para a direita () ou da seta para cima (), repetidamente, até que a expressão inteira seja ressaltada, ex. sete vezes, produzindo:

NOTA: Alternativamente, da posição original do cursor (para a direita de 2 no denominador de $\pi^2/2$), podemos usar a combinação de teclas \nearrow \checkmark , interpretada como (\nearrow \checkmark).

Logo que a expressão for ressaltada conforme mostrado acima, digite + 1 ÷ 3 para adicionar a fração 1/3. Resultando em:

Mostrar a expressão em tamanho pequeno

Para mostrar a expressão com um fonte menor (que pode ser usada se a expressão for longa e intrincada), simplesmente pressione a tecla do menu soft [III] 73. O visor, neste caso, apresentará a seguinte expressão:

$$\frac{5}{5+2\cdot\left(5+\frac{\pi^2}{2}\right)} + \frac{1}{34}$$
EDIT | CURS | BIG | EVAL | FACTO | SIMP

Par recuperar o visor de fonte grande, presione a tecla do menu soft presione a tecla do menu so

Avaliar a expressão

Para avaliar a expressão (ou partes da expressão) dentro do editor de equação, ressalte a parte que deseja avaliar e pressione a tecla do menu soft

Por exemplo, para avaliar a expressão inteira neste exercício, primeiro, ressalte a expressão inteira pressionando 🕝 🛣. Em seguida, pressione a tecla do menu soft 💷 💤 . Se sua calculadora estiver configurada para o modo Exact CAS (ex. o modo _Approx CAS não está marcado), então você obterá o seguinte resultado:

Se quiser recuperar a expressão não avaliada desta vez, use a função UNDO, ex., (a primeira tecla na terceira fila da parte superior do teclado). A expressão recuperada é ressaltada conforme mostrado anteriormente:

Se desejar uma avaliação do ponto flutuante (numérico), use a função →NUM (ex. →→NUM). O resultado é mostrado a seguir:

Use a função UNDO () novamente para recuperar a expressão original:

Avaliar a sub-expressão

Suponha que você deseje avaliar apenas a expressão entre parênteses no denominador da primeira fração na expressão acima. É necessário usar as teclas com as setas para selecionar a sub-expressão. Aqui está uma forma de fazê-lo:

- Ressaltar apenas a primeira fração.
- Ressaltar o numerador da primeira fração.
- Ressaltar o denominador da primeira fração
- Ressaltar o primeiro termo no denominador da primeira fração.
- Ressaltar o segundo termo no denominador da primeira fração.
- Ressaltar o primeiro fator do segundo termo no denominador da primeira fração.
- Ressaltar a expressão nos parênteses do denominador da primeira fração.

Dado que esta é a sub-expressão que queríamos avaliar, podemos agora pressionar a tecla [1] [7] resultando em:

Uma avaliação simbólica novamente. Suponha que, nesta altura, desejamos avaliar apenas a fração lateral esquerda. Pressione a tecla com a seta voltada para cima () três vezes para selecionar esta fração, resultando em:

Então, pressione a tecla do menu virtual [27] para obter:

Tentemos agora uma avaliação numérica deste termo. Use 产 +NUM para obter:

EDIT CURS BIG . EVAL FACTO SIMP

Ressalte a fração à direita e obtenha também uma avaliação numérica deste termo, e mostre a soma destes dois valores decimais no formato de fonte menor usando:

Para ressaltar e avaliar a expressão no editor de equação usamos: 🔼 🙉 , resultando em:

Editar expressões aritméticas

Mostraremos algumas das características de edição no editor de equação como exercício. Começaremos inserindo a seguinte expressão usada nos exercícios anteriores:

E usaremos as características de edição do editor de equação para transformá-la na sequinte expressão:

$$\frac{5}{5+\frac{2}{3}\cdot\sqrt{\frac{1}{2}+LN\left(\frac{\pi^{5}}{3}\right)}}$$
EDIT | CURS | BIG | EVAL | FACTO | SIMP

Nos exercícios anteriores usamos as teclas com as setas para ressaltar as subexpressões para avaliação. Neste caso, as usaremos para ativar um cursor de edição especial. Depois que terminar de inserir a expressão original, o cursor de digitação (uma seta apontando para a esquerda) será colocado à direita de 3 no denominador da segunda fração conforme mostrado aqui:

$$\frac{5}{5+2(5+\frac{\pi^2}{2})} + \frac{1}{34}$$

EDIT | CURS | BIG | EVAL | FACTO | SIMP

Pressione a tecla com a seta para baixo () para ativar o cursor para apagar a edição. O visor agora apresenta a seguinte forma:

$$\frac{5}{5+2\cdot\left(5+\frac{\pi}{2}\right)}+\frac{1}{8}$$
EDIT CURS BIG • EVAL FACTO SIMP

Usando a tecla com a seta para a esquerda () você pode mover o cursor para a esquerda, mas parando em cada componente individual da expressão. Por exemplo, suponha que tentemos primeiro transformar a expressão $\pi^2/2$ na expressão $LN(\pi^5/3)$. Com o cursor ativo, conforme mostrado acima, pressione a tecla com a seta para a esquerda () duas vezes para ressaltar o 2 no denominador de $\pi^2/2$. Depois, pressione a tecla de exclusão () uma vez para alterar o cursor no cursor de inserção. Pressione uma vez mais para excluir o 2 e depois para inserir um 3. Nesta altura, o visor se apresentará da seguinte forma:

$$\frac{5}{5+2\sqrt{5+\frac{\pi^2}{34}}} + \frac{1}{3}$$
EDIT | CURS | BIG | EVAL | FACTO | SIMP

Depois, pressione a tecla com a seta para baixo (\bigcirc) para ativar o cursor de edição ressaltando o 3 no denominador de $\pi^2/3$. Pressione a tecla com a seta para a esquerda (\bigcirc) uma vez para ressaltar o expoente 2 na expressão $\pi^2/3$. Depois, pressione a tecla de exclusão (\bigcirc) uma vez para alterar o cursor para cursor de inserção. Pressione \bigcirc uma vez mais para excluir o 2, e depois \bigcirc inserir um 5. Pressione a tecla com a seta para cima (\bigcirc) três vezes para ressaltar a expressão $\pi^2/3$. Depois, digite \bigcirc um para aplicar a função LN para esta expressão. O visor se apresenta conforme a sequir:

5 5+2 (5+LN 3) + 1/3 5+2 (5+LN 3) + 1/3

Depois, vamos alterar o 5 dentro dos parênteses para um ½ usando esta combinação de teclas:

Em seguida, ressaltamos a expressão inteira nos parênteses e iremos inserir o símbolo da raiz quadrada usando:

Depois, converteremos o 2 na frente dos parênteses no denominado em 2/3 usando: () () () () () () ()

O visor, nesta altura, se apresentará conforme a seguir:

Em resumo, para editar uma expressão no editor de equação, é necessário usar as teclas com as setas () para ressaltar a expressão onde as funções serão aplicadas (ex. os casos da raiz quadrada e LN acima). Use a tecla com a seta para baixo () em qualquer local, repetidamente, para ativar o cursor de edição. Neste modo, use as teclas com as setas para a direita ou esquerda () para mover de um termo para outro na expressão. Ao alcançar um ponto que você precisa editar, use a tecla de exclusão () para acionar o cursor de inserção e continue com a edição da expressão.

Criar expressões algébricas

Uma expressão algébrica é similar a uma expressão aritmética, exceto pelo fato de que as letras em inglês e grego podem ser incluídas. O processo de criar uma expressão algébrica, portanto, segue a mesma idéia de criar uma expressão aritmética, exceto pelo fato do uso do teclado alfabético estar incluído.

Para ilustrar o uso do editor de equação para inserir uma equação usamos o seguinte exemplo. Suponha que desejamos inserir a expressão:

$$\frac{2}{\sqrt{3}}\lambda + e^{-\mu} \cdot LN\left(\frac{x + 2\mu \cdot \Delta y}{\theta^{1/3}}\right)$$

Use as seguintes teclas:

Isto gera o resultado

$$\frac{2}{\sqrt{3}} \cdot \lambda + e^{-\mu} \cdot LN \left(\frac{x + 2 \cdot \mu \cdot \Delta y}{\frac{1}{3 \cdot 4}} \right)$$
EDIT | CURS | BIG = EVAL | FACTO | SIMP

Neste exemplo usamos diversas letras minúsculas em inglês , ex. (APPA (X), diversas letras gregas ex. λ (APPA) e até uma combinação de letras gregas e inglesas chamadas de Δy (APPA) (APPA) (). Lembre-se de que para inserir uma letra minúscula, é necessário usar a combinação:

APPA (Seguida da letra que você deseja inserir. Além disso, você pode copiar sempre os caracteres especiais usando o menu CHARS (CHARS) se você não quiser memorizar a combinação de teclas pressionadas que a produziu. Uma lista de combinações de teclas (APPA) (P) pressionadas mais usadas foi relacionada em uma secão anterior.

a árvore de expressão

A árvore de expressão é um diagrama que mostra como o editor de equação interpreta uma expressão. Consulte apêndice E para ver um exemplo mais detalhado.

A função CURS

A função CURS (IIII) no menu do editor de equação (a tecla 12) converte o visor em um visor gráfico e produz um cursor gráfico que pode ser controlado com as teclas com as setas () para selecionar subexpressões. A sub-expressão selecionada com IIII será mostrada enquadrada no visor gráfico. Depois de selecionar uma sub-expressão você pode pressionar IVIII para mostrar a sub-expressão selecionada ressaltada no editor de equação. As figuras seguintes mostram as diferentes sub-expressões selecionadas e o visor do editor de equação correspondente depois de pressionar IVIII).

$$\frac{((y-3)\cdot x+5)\cdot \left(\frac{2}{x^2}+4\right)}{SIN(4\cdot x-2)}$$

Editar expressões algébricas

A edição das equações algébricas segue as mesmas regras da edição das equações algébricas. A saber:

- Use as teclas com as setas (♠♠♠♥) para ressaltar as expressões
- Use a tecla com a seta para baixo () para ativar o cursor de edição. Neste modo, use as teclas com as setas para esquerda ou para direita () para mover de um termo para outro na expressão.
- No ponto de edição, use a tecla de exclusão () para ativar o cursor de inserção e continuar com a edição da expressão.

Para ver o cursor de edição em ação, comecemos com a expressão algébrica que inserimos no exercício acima:

$$\frac{2}{\sqrt{3}} \cdot \lambda + e^{-\mu} \cdot LN \left(\frac{x + 2 \cdot \mu \cdot \Delta y}{\frac{1}{3} \cdot 4} \right)$$
EDIT | CURS | BIG | EVAL | FACTO | SIMP

Pressione a tecla com a seta para baixo (\bigcirc), em seu local atual para ativar o cursor de edição. O 3 no expoente de θ será ressaltado. Use a tecla com a seta para a esquerda, \bigcirc , para mover de um elemento para outro na expressão. A ordem de seleção do cursor de edição neste exemplo é a sequinte (pressione a tecla com a seta para a esquerda, \bigcirc , repetidamente):

- 1. O 1 no expoente 1/3
- 2. θ
- 3. Δy
- 4. ı
- 5. 2
- 6
- 7. μ na função exponencial
- 8. λ

9. 3 no termo $\sqrt{3}$

10. o 2 na fração $2/\sqrt{3}$

A qualquer momento podemos transformar o cursor de edição no cursor de inserção pressionando a tecla de exclusão (). Usemos estes dois cursores (o cursor de edição e o de inserção) para transformar a expressão atual na seguinte:

$$\frac{2}{|\vec{3}|} \cdot k + e^{-\frac{\mu}{3 \cdot \rho}} \cdot LN \left(\frac{x + 2 \cdot \mu \cdot |\Delta y|}{\sin(\frac{1}{3})} \right)$$
EDIT | CURS | BIG | EVAL | FACTO | SIMP

Se você acompanhou o exercício imediatamente acima, você deverá ter o cursor de edição no número 2 no primeiro fator da expressão. Siga estas teclas para editar a expressão:

Insere o fatorial de 3 na raiz quadrada (inserir o

fatorial altera o cursor para cursor de seleção)

Seleciona o μ na função exponencial \div 3 × ALPHA \rightarrow \digamma Modifica o argumento da função exponencial

► Seleciona dy

© Coloca um símbolo de raiz quadrada em ⊿y

(esta operação também altera o cursor para o cursor de seleção)

 \bullet \bullet \bullet Selectione $\theta^{1/3}$ e insira a função SIN

A expressão no visor é a seguinte:

Avaliar a sub-expressão

Uma vez que já temos a sub-expressão $SIN(\theta^{1/3})$ ressaltada, pressione a tecla do menu soft para avaliar esta sub-expressão. O resultado é:

$$\frac{2}{|3|} \times + e^{-\frac{\mu}{3!\rho}} \cdot LN \left(\frac{x + 2 \cdot \mu \cdot \Delta y}{SIN(3.0)} \right)$$
EDIT | CURS | BIG | EVAL | FACTO| SIMP

Algumas expressões algébricas não podem ser mais simplicadas. Tente a seguinte combinação de teclas: • Você verá que nada acontece, a não ser ressaltar o argumento inteiro da função LN. Isto é porque esta expressão não pode ser mais avaliada (ou simplificada) de acordo com as normas do CAS. Tente estas teclas: • PA não produzem novamente quaisquer alterações na expressão. Outra sequência de teclas • PA no entanto, altera a expressão conforme a seguir:

Mais uma aplicação das teclas (A) F4 produz mais alterações:

Esta expressão não se ajusta no visor do editor de equação. Podemos ver a expressão inteira usando uma fonte de tamanho menor. Pressione a tecla para obter:

Mesmo com a fonte de tamanho maior, é possível navegar através da expressão inteira usando o cursor de edição. Tente a seguinte sequência de teclas: B , para colocar o cursor em cima do fator 3 no primeiro termo do numerador. Depois, pressione a tecla com a seta para direita , para navegar através da expressão.

Simplificar uma expressão

Pressione a tecla para fazer com que o visor se pareça com a figura anterior (consulte acima). Agora, pressione a tecla para ver se é possível simplificar esta expressão conforme mostrado no editor de equação. O resultado é a seguinte tela:

Este visor mostra o argumento da função SIN, a saber, $\sqrt[3]{\theta}$, transformada em $e^{\frac{LN(\theta)}{3}}$ Isto talvez não pareca uma simplificação, porém subtende-se o

em $e^{\frac{1}{3}}$. Isto talvez não pareça uma simplificação, porém subtende-se que a função da raiz cúbica foi substituída pelas funções inversas exp-LN.

Fatorar uma expressão

Neste exercício tentaremos fatorar uma expressão de polinômio. Para continuar com o exercício anterior, pressione a tecla [NTER]. Depois, abra o editor de equação pressionando a tecla [P] [SQW]. Digite a equação:

resultando em:

EDIT | CURS | BIG = | EVAL | FACTO | SIMP

Selecionemos os 3 primeiros termos na expressão e tentemos fatorar esta subexpressão: PAPP b b Isto produz:

$$\frac{2}{x^2+2\cdot y\cdot x+y^2} - \alpha^2 + \beta^2$$

EDIT CURS | BIG = EVAL | FACTO | SIMP

Agora, pressione a tecla do menu soft **TITO** para obter:

$$X^2 + 2 \cdot Y \cdot X + Y^2 + - x^2 + \beta^2$$
EDIT | CURS | BIG | EVAL | FACTO | SIAP

pressione a tecla do menu soft para obter:

Pressione para recuperar a expressão original. Agora, selecionemos a expressão inteira pressionando a tecla com a seta para cima () uma vez. E pressione a tecla para obter

 $(X+Y+\sqrt{2}-\beta^2)(X+Y-\sqrt{2}-\beta^2)$ EDIT | CURS | BIG =| EVAL | FACTO| SIMP

Pressione para recuperar a expressão original.

Nota: Pressionar as teclas **111** ou **111** ou **111**, enquanto a expressão original inteira estiver selecionada, produz a seguinte simplificação da expressão:

Usar a tecla do menu CMDS

Com a expressão original de polinômio usada no exercício anterior ainda selecionada, pressione a tecla (NAT) para mostrar as teclas (ELIE). Estes dois comandos pertencem a segunda parte do menu disponível com o editor de equação. Tentemos este exemplo como uma aplicação da tecla (ELIE): Pressione a tecla do menu soft (ELIE) para obter a lista dos comandos CAS:

Depois, selecione o comando DERVX (a derivada em relação a variável X, a variável independente CAS atual) usando: (ALPHA) (D) V V . Comando DERVX será agora selecionado:

Pressione a tecla do menu soft (F6) para obter:

Depois, pressione a tecla para recuperar o menu editor de equação original e pressione a tecla () para avaliar esta derivada. O resultado é:

Usar o menu HELP

Pressione a tecla NXT para mostrar as teclas do menu virtual LEE e LEE .

Pressione a tecla LEE para obter a lista dos comandos CAS. Depois, pressione ALPHA D Para selecionar o comando DERVX.

Pressione a tecla LEE (F6) para obter informações sobre o comando DERVX:

Explicação detalhada sobre o uso do mecanismo de ajuda para o CAS é apresentada no capítulo 1. Para retornar ao editor de equação, pressione a tecla [STE] para sair do editor de equação.

Usar as funções de edição BEGIN, END, COPY, CUT e PASTE

Para facilitar a edição, seja com o editor de equação ou na pilha, a calculadora fornece cinco funções de edição BEGIN, END, COPY, CUT e PASTE, ativadas pela combinação da tecla right-shift () com as teclas (2,1), (2,2), (3,1), (3,2) e (3,3), respectivamente. Estas teclas estão

localizadas nas linhas 2 e 3 das primeiras colunas. A ação destas funções de edição é mostrada a seguir:

BEGIN: marca o começo de um segmento de caracteres para edição

END: marca o final de um segmento de caracteres para edição

COPY: copia o segmento de caracteres selecionados pelo BEGIN e END CUT: corta o segmento de caracteres selecionado pelo BEGIN e END

PASTE: cola um segmento de caracteres, anteriormente copiado ou cortado, na posicão atual do cursor

Para ver um exemplo, começemos com o editor de equação inserindo a sequinte expressão (usada em um exercício anterior):

A expressão original é a sequinte.

$$\frac{2}{\sqrt{3}} \times + e^{-\mu} \cdot LN \left(\frac{\times + 2 \cdot \times \cdot \Delta y}{\frac{1}{3 \cdot 4}} \right)$$

EDIT CURS BIG . EVAL FACTO SIMP

Queremos remover a sub-expressão $x+2\cdot\lambda\cdot\Delta y$ do argumento da função LN e movê-la para a direita de λ no primeiro termo. Aqui está uma possibilidade:

A expressão alterada é apresentada conforme a seguir:

EDIT | CURS | BIG | EVAL | FACTO | SIMP

Depois, vamos copiar a fração $2/\sqrt{3}$ do fator mais á esquerda na expressão e colocá-la no numerador do argumento para a função LN. Tente a seguinte combinação de teclas:

O visor apresentará o seguinte.

As funções BEGIN e END não são necessárias nas operações do editor de equações, desde que podemos selecionar os segmentos de caracteres usando as teclas de setas. As funções BEGIN e END são mais úteis para editar uma expressão com o editor de linha. Por exemplo, selecionemos a expressão $x+2\cdot\lambda\cdot\Delta y$, porém usando a linha de ediçãodentro do editor de equação, conforme a seguir:

A linha tela do editor olhará como esta (as citações mostradas somente se calculadora na modalidade de RPN):

Para selecionar a sub-expressão desejada, usemos:

O visor mostra a sub-expressão desejada ressaltada:

Podemos agora copiar esta expressão e colocá-la no denominador do argumento of LN, conforme a seguir: (27 vezes) ... (27 vezes)

A linha de edição será apresentada dessa forma:

Ao pressionar entre aparece a expressão no editor de equação (em formato de fonte pequena, pressione a tecla do menu soft [3] 3):

Pressione a tecla ENTER para sair do editor de equação.

Criar e editar somatórios, derivadas e integrais

Somatórios, derivadas e integrais são normalmente usados para cálculo, probabilidade e estatística. Nesta seção mostramos alguns exemplos dessas operações criadas com o editor de equação.

Somatórios

Usemos o editor de equação para inserir o seguinte somatório:

$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$

Pressione a tecla para ativar do editor de equação. Depois pressione pressione para inserir o sinal de somatório. Observe que o sinal, quando inserido no visor do editor de equação, fornece os locais de entrada para o índice do somatório e também para a quantidade do somatório. Para preencher estes locais de entrada, usaremos as sequintes teclas:

ALPHA T R D I D T D I ÷ ALPHA T K Y* 2

O visor deverá apresentar:

$$\sum_{k=1}^{\infty} \frac{1}{k^{2\P}}$$
EDIT CURS BIG - EVAL FACTO SINP

Para ver a expressão correspondente no editor de linha, pressione as teclas

Para ver a expressão correspondente no editor de linha, pressione as teclas

Para ver a expressão correspondente no editor de linha, pressione as teclas

Esta expressão mostra a forma geral de um somatório digitado diretamente na pilha ou no editor de linha:

 Σ (index = starting_value, ending_value, summation expression) Pressione (ENTER) para retornar ao editor de equação. O visor apresentará não o somatório inserido, mas seu valor simbólico, a saber,

EDIT | CURS | BIG = | EVAL | FACTO | SIMP

Para recuperar o somatório use 🕝 🕪 . Para avaliar o somatório novamente, você pode usar a tecla do menu soft 🚰 . Isto mostrá novamente que

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \, .$$

Você pode usar o editor de equação para provar que

$$\sum_{k=1}^{\infty} \frac{1}{k} = +\infty.$$

Este somatório (representa uma série infinita) é considerado como divergente. Somatórios duplos são também possíveis, por exemplo:

$$\sum_{j=1}^{n} \sum_{k=1}^{m} \frac{1}{j+k}$$

EDIT | CURS | BIG = | EVAL | FACTO | SIMP

Derivadas

Usaremos o editor de equação para inserir a seguinte derivada:

$$\frac{d}{dt}(\alpha \cdot t^2 + \beta \cdot t + \delta)$$

Pressione a tecla para ativar o editor de equação. Depois pressione pressione para inserir o sinal de derivada (parcial). Observe que o sinal, quando inserido no visor do editor de equação, fornece os locais de entrada para a expressão que está sendo diferenciada e a variável de diferenciação. Para preencher estes locais de entrada, use as seguintes teclas:

$$\begin{array}{c} \text{ALPHA} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{ALPHA} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c}$$

O visor apresentará o seguinte.

$$\frac{\delta}{\delta t} (\alpha \cdot t^2 + \beta \cdot t + \delta \cdot \phi)$$

EDIT CURS BIG - EVAL FACTO SIMP

Para ver a expressão correspondente no editor de linha, pressione as teclas

Para ver a expressão correspondente no editor de linha, pressione as teclas

Para ver a expressão correspondente no editor de linha, pressione as teclas

ðt(α*t^2+β*t+δ) +skup|skup+|+DeL||DeL+|DeL||L||INs||

Isto indica que a expressão geral para a derivada na linha de ediçãoou na pilha é: ∂variable(function of variables)

Pressione ENTER para retornar ao editor de equação. O visor apresentará não a derivada inserida, mas o seu valor simbólico, a saber,

$\alpha \cdot 2 \cdot t + \beta$

EDIT CURS BIG - EVAL FACTO SIMP

Para recuperar a expressão da derivada use Puno. Para avaliar a derivada novamente, você pode usar a tecla do menu soft 4. Isto mostra novamente que

$$\frac{d}{dt}(\alpha \cdot t^2 - \beta \cdot t + \delta) = 2\alpha \cdot t + \beta.$$

As derivadas de segunda ordem são possíveis, por exemplo:

$$\frac{9\times}{9}\left(\frac{9\times}{9}\left(\times_{3\spadesuit}\right)\right)$$

EDIT | CURS | BIG = EVAL | FACTO | SIMP

que avalia para:

3:2:x

EDIT CURS BIG - EVAL FACTO SIMP

Nota: A notação $\frac{\partial}{\partial x}(\)$ é adequada para as derivadas parciais. A

notação adequada para as derivadas totais (ex. derivadas de uma variável)

é $\frac{d}{dx}(\)$. A calculadora, no entanto, não distingue entre derivadas parciais e totais.

Integrais definidas

Usaremos o editor de equação para inserir a seguinte integral

definida: $\int_0^{\tau} t \cdot \sin(t) \cdot dt$. Pressione a tecla para ativar o editor de

equação. Depois pressione para inserir o sinal da integral.

Observe que o sinal, quando inserido no visor do editor de equação, fornece os locais de entrada para os limites da integração, o integrando, e a variável da integração. Para preencher estas locais de entrada, use as seguintes teclas:

① X SIN ALPHA 「① D ALPHA 「① D visor apresentará o seguinte:

$$\int_{0}^{\tau} t \cdot SIN(t) dt$$

EDIT CURS BIG - EVAL FACTO SIMP

Para ver a expressão correspondente no editor de linha, pressione as teclas (A) e (F) para mostrar:

Isto indica que a expressão geral para a derivada na linha de edição ou na pilha é: [(lower_limit, upper_limit,integrand,variable_of_integration)

Pressione para retornar ao editor de equação. O visor seguinte não é a integral definida que inserimos, mas o seu valor simbólico, ou seja,

SIN(τ)-τ·COS(τ)

EDIT CURS BIG - EVAL FACTO SIMP

Para recuperar a expressão da derivada use 🕝 🐠 . Para avaliar a derivada novamente, você pode usar a tecla 🖼 . Isto mostra novamente que

$$\int_0^{\tau} t \cdot \sin(t) \cdot dt = \sin(\tau) - \tau \cdot \cos(\tau)$$

As integrais duplas são também possíveis. Por exemplo,

que avalia para 36. A avaliação parcial é possível, por exemplo:

Esta integral avalia para 36.

Organizar dados na calculadora

Você pode organizar dados na sua calculadora armazenando as variáveis em uma árvore de diretório. Para compreender a memória da calculadora, observe primeiro o diretório de arquivo. Pressione a combinação de teclas (primeira coluna na segunda linha teclado) para obter o visor do gerenciador de arquivo da calculadora:

Este visor apresenta uma imagem instantânea da memória da calculadora e da árvore do diretório. O visor mostra que a calculadora possui três portas de memórias (ou partições da memória), porta 0:IRAM, porta 1:ERAM e a porta 2:FLASH . As portas da memória são usadas para armazenar aplicações de terceiros ou bibliotecas, e ainda para fazer backups. tamanho das três diferentes portas é também indicado. A quarta linha e as linhas subsequentes neste visor mostram a árvore do diretório da calculadora. O diretório superior (atualmente ressaltado) é o diretório Home e tem prédefinido em seu interior um sub-diretório chamado CASDIR. O visor File Manager possui três funções associadas às teclas do menu virtual:

E (F): Altera para selecionar o diretório Cancela a ação
Aprova a seleção

Por exemplo, para alterar o diretório para CASDIR, pressione a tecla com a seta para baixo, , e pressione (F). Esta ação fecha a janela do File Manager e retorna para o visor normal da calculadora. Você observará que a segunda linha a partir da parte superior do visor começa agora com os caracteres { HOME CASDIR } indicando que o diretório atual é o CASDIR dentro do diretório HOME.

Funções para manipular variáveis

Este visor inclui 20 comandos associados às teclas do menu soft que podem ser usados para criar, editar e manipular variáveis. As primeiras seis funções são as seguintes:

	Para editar uma variável ressaltada
10030	Para copiar uma variável ressaltada
	Para mover uma variável ressaltada

Para retornar o conteúdo de uma variável ressaltada
Para avaliar (executar) uma variável ressaltada

Para ver a árvore do diretório onde a variável está contida

Se você pressionar a tecla (NXT), o próximo conjunto de funções fica disponível:

Para excluir ou apagar uma variável

Para renomear uma variável
Para criar uma nova variável

Para ordenar um conjunto de variáveis no diretório
Para enviar uma variável para outra calculadora ou

computador

Para receber uma variável de uma outra calculadora ou

computador

Se você pressionar a tecla [NXT], o terceiro conjunto de funções fica disponível:

Para retornar para a pilha temporariamente

Para ver o conteúdo de uma variável

Para editar o conteúdo de uma variável binária (similar a

Para mostrar o diretório contendo a variável no cabeçalho

Fornece uma lista de nomes e descrição de variáveis

Seleciona as variáveis de acordo com um critério de seleção Se você pressionar a tecla (NXT), o último conjunto de funções fica disponível:

Para enviar a variável com o protocolo XModem

Para alterar o diretório

Para se mover entre os diferentes comandos do menu soft, você pode usar não apena a tecla NEXT (NXT), como também a tecla PREV ().

O usuário é convidado a tentar usar estas funções sozinho. Suas aplicações são objetivas.

O diretório HOME

O diretório HOME, conforme indicado anteriormente, é o diretório base para a operação da memória para a calculadora. Para ir ao diretório HOME, pressione a função UPDIR () - repita conforme necessário – até que a spec (HOME) seja mostrada na segunda linha do cabeçalho do visor. Como alternativa você pode usar (manter) , pressione se estiver no modo algébrico. Para este exemplo, o diretório HOME contém apenas o CASDIR. Pressionando serão mostradas as variáveis nas teclas do menu virtual:

Subdiretórios

Para armazenar seus dados em uma árvore diretório bem organizada crie subdiretórios sob o diretório HOME e mais subdiretórios dentro de subdiretórios, na hierarquia de diretórios, de forma similar às pastas dos computadores modernos. Os subdiretórios receberão nomes que podem refletir o conteúdo de cada subdiretório ou qualquer nome arbitrário que você pensar.

O subdiretório CASDIR

O subdiretório CASDIR contém um número de variáveis necessárias para a operação adequada do CAS (sistema algébrico do computador , consulte o

apêndice C). Para ver o conteúdo do diretório, podemos usar a combinação de teclas: 숙 🕮 que abre o *Gerenciador de arquivo* novamente:

O visor mostra uma tabela descrevendo as variáveis contidas no diretório CASDIR. Estas são variáveis pré-definidas na memória da calculadora que define certos parâmetros para a operação CAS (consulte pêndice C). A tabela acima contém 4 colunas:

- A primeira coluna indica o tipo de variável (ex. 'EQ' significa uma variável tipo equação, |R indica uma variável de valor real, {} significa uma lista, nam significa 'um nome global' e o símbolo representa uma variável gráfica.
- A segunda coluna representa o nome das variáveis, ex. PRIMIT, CASINFO, MODULO, REALASSUME, PERIOD, VX e EPS.
- A coluna número 3 mostra outra especificação para o tipo de variável, ex. ALG significa uma expressão algébrica, GROB significa objetos gráficos, INTG significa uma variável numérica inteira, LIST significa uma lista de dados, GNAME significa um nome global e REAL significa a variável numérica real (ou ponto flutuante).
- A quarta e última coluna representa o tamanho, em bytes, das variáveis truncadas, sem os decimais (ex. meio byte). Assim, por exemplo, a variável PERIOD tem 12,5 bytes, enquanto a variável REALASSUME tem 27,5 bytes (1 byte = 8 bits, 1 bit é a menor unidade da memória nos computadores e calculadoras).

Variáveis CASDIR na pilha

Pressionando a tecla ovisor anterior e retorna para o visor normal da calculadora. Por padrão, retornamos ao menu TOOL:

EDIT VIEW STACK RCL PURGECLEAR

Podemos ver as variáveis contidas no diretório atual, CASDIR, pressionando a tecla (primeira tecla na segunda linha a partir da parte superior do teclado). Isto produz a seguinte tela:

PRINI|CASIN|NODUL|REALA|PERIO| VX

Pressionando a tecla (NXT) apresentará mais uma variável armazenada neste diretório:

- Para ver o conteúdo das variáveis EPS, por exemplo, usemos → □2.
 Isto mostra que o valor de EPS é = 000000001
- Para ver o valor de uma variável numérica, é necessário pressionar apenas a tecla do menu soft para a variável. Por exemplo, pressionando seguido por (ENTE), mostra o mesmo valor da variável na pilha, se a calculadora estiver configurada para Algebraic. Se a calculadora estiver configurada para o modo RPN, é necessário apenas pressionar a tecla do menu soft para (ENTE).
- Para ver o nome todo de uma variável, pressione o apóstrofe primeiro

 e depois a tecla do menu, correspondente a variável. Por exemplo, para a variável listada na pilha como PERIO, usamos:

 PERIOD : Este procedimento se aplica a ambos os modos de operação Algebraic e RPN.

Variáveis em CASDIR

As variáveis padrões contidas no diretório CASDIR são as sequintes:

PRIMIT A última primitiva (anti-derivada) calculada, não um

padrão variável, mas um criado por um exercício

anterior

CASINFO um gráfico que fornece a informação CAS MÓDULO Módulo para aritmética modular (padrão = 13) REALASSUME Lista de nomes de variáveis assumidas como valores

reais

PERIODPeríodo para funções trigonométricas (padrão = 2π)VXNome de variável independente padrão (padrão = X)EPSValor de pequeno incremento (épsilon), (padrão = 10^{-10})Estas variáveis são usadas para a operação de CAS.

Digitar diretórios e nomes das variáveis

Para nomear subdiretórios, e algumas vezes variáveis, você terá que digitar os segmentos de letras de uma vez, podendo ou não serem combinados com números. Em vez de pressionar as combinações de teclas (ALPHA), (ALPHA) — ou (ALPHA) — para digitar cada letra, você pode manter pressionada a tecla (ALPHA) e inserir as diversas letras. Você pode travar também o teclado alfabético temporariamente e inserir um nome inteiro antes de destrava-lo novamente. As seguintes combinações de teclas travarão o teclado alfabético:

ALPHA ALPHA trava o teclado alfabético para letras maiúsculas. Quando travado desta forma, pressionando a tecla 🕤 antes de uma tecla da letra produz uma letra minúscula, enquanto pressionando a tecla 🔁 antes de uma tecla da letra produz um caractere especial. Se o teclado alfabético já está travado em maísculas, para travá-lo em minúsculas, digite 🕤 ALPHA

ALPHA (ALPHA) frava o teclado alfabético em letras minúscula. Quando travado desta forma, pressionando frantes de uma tecla da letra produz uma letra maiúscula. Para destravar minúsculas, pressione frances.

Para destravar o teclado bloqueado para maiúsculas, pressione ALPHA

Tentemos alguns exercícios digitando diretórios/nomes de variáveis na pilha. Supondo que a calculadora esteja no modo Algebraic de operação (embora as instruções funcionem também no modo RPN), tente a seguinte seqüência de teclas. Com estes comandos começaremos a digitar as palavras 'MATH', 'Math', e 'MatH.'

O visor da calculadora mostrará o seguinte (o lado esquerdo é o modo algébrico e o lado direito é o modo RPN):

Nota: Se o sinalizador do sistema 60 for configurado, você pode bloquear o teclado alfabético pressionando apenas (ALPHA). Consulte o capítulo 1 para obter mais detalhes sobre sinalizadores de sistema.

Criar subdiretórios

Subdiretórios podem ser criados usando o ambiente FILES ou o comando CRDIR. As duas abordagens para criar subdiretórios são apresentadas a seguir.

Usar o menu FILES

Independente do modo de operação da calculadora (algebraic ou RPN), podemos criar uma árvore de diretório, baseada no diretório HOME, usando as funções ativadas no menu FILES. Pressione para ativar o menu FILES. Se o diretório HOME ainda não estiver ressaltado no visor, ex.

use as teclas com as setas para cima e para baixo() para ressaltá-lo. Em seguida, pressione a tecla do menu soft () . O visor se apresentará assim:

mostrando que apenas um objeto existe atualmente no diretório HOME, a saber, o sub-diretório CASDIR. Criemos outro subdiretório chamado MANS (para MANualS) onde armazenamos variáveis desenvolvidas como exercícios neste manual. Para criar este subdiretório digite primeiro: NXT ISSU (F3). Isto produzirá a seguinte forma de entrada:

O campo de entrada *Object*, o primeiro campo de entrada no formulário, é ressaltado por padrão. Este campo de entrada pode manter o conteúdo de uma nova variável que está sendo criada. Dado que não temos neste ponto nenhum conteúdo para o novo subdiretório, simplesmente pulamos este campo de entrada pressionando a tecla com a seta para baixo, v. uma vez. O campo de entrada *Name* é agora ressaltado.

Neste local inserimos o nome do novo subdiretório (ou variável, de acordo com o caso), conforme a seguir: ALPHA ALPHA M A N S ENTER

O cursor se move para o campo de seleção _*Directory*. Pressione a tecla [VIIII (13)] para especificar que você está criando um diretório e pressione para sair do formulário de entrada. As variáveis relacionadas para o diretório HOME serão mostradas no visor conforme a seguir:

O visor indica que existe um novo diretório (MANS) dentro do diretório HOME.

Depois, criaremos um sub-diretório chamado INTRO (para INTROdução), dentro de MANS, para manter as variaveis criadas como exercício para as seções subseqüentes deste capítulo. Pressione a tecla para retornar ao visor normal da calculadora (o menu TOOLS será mostrado). Depois, pressione para mostrar o conteúdo do diretório HOME nas etiquetas da tecla do menu soft. O visor pode não parecer como este (se você criou outras variáveis no diretório HOME elas serão mostradas nas etiquetas das teclas do menu soft também):

2: 1: Mans (Caso)

Para mover para o diretório MANS, pressione a tecla correspondente do menu (F) neste caso) e (ENTER) se estiver no modo algébrico. A árvore do diretório será mostrada na segunda linha do visor como (HOME MAHS). Entretanto, não haverá etiquetas associadas às teclas do menu soft, como mostrado abaixo, porque não existem variáveis definidas dentro deste diretório.

Criemos o sub-diretório INTRO usando:

Pressione a tecla ON, seguida da tecla WAR para ver o conteúdo do diretório MANS conforme a seguir:

2: 1: Introl

Pressione a tecla para mover para o sub-diretório INTRO. Isto mostrará um sub-diretório vazio. Posteriormente, faremos alguns exercícios para criar variáveis.

Usar o comando CRDIR

O comando CRDIR pode ser usado para criar diretórios. Este comando está disponível através da tecla do catálogo de comando (a tecla P AT, segunda tecla na quarta linha de teclas na parte superior do teclado), através dos menus de programas (a tecla P A , a mesma tecla P CAT) ou simplesmente digitando-o.

- Através dos menus de programação

Pressione 📹 🚾 . Isto produzirá o seguinte menu de seleção para a programação:

Use a tecla com a seta para baixo () para selecionar a opção 2. *MEMORY...* ou apenas pressione 2. Depois, pressione Isto produzirá o seguinte menu de seleção:

Use a tecla com a seta para baixo () para selecionar a opção 5. DIRECTORY... ou apenas pressionar 5. Depois, pressione . Isto produzirá o seguinte menu de seleção:

Comando CRDIR no modo Algebraic

Depois que selecionar CRDIR através de um dos meios mostrados acima, o comando estará disponível na sua pilha conforme a seguir:

Neste ponto, é necessário digitar um nome de diretório, digamos chap 1:

O nome do novo diretório será mostrado nas teclas do menu, ex.

Comando CRDIR no modo RPN

Para usar CRDIR no modo RPN, é necessário ter o nome do diretório já disponível na pilha antes de acessar o comando. Por exemplo:

ALPHA (ALPHA) (C) (H) (A) (P) 2 (ALPHA) ENTER

Pressione a tecla virtual do menu para ativar o comando e criar o subdiretório:

Mover através dos sub-diretórios

Para mover para baixo a árvore do diretório, é necessário pressionar a tecla virtual correspondente ao subdiretório que você deseja ir. A lista de variáveis em um subdiretório pode ser produzida pressionando a tecla (VARiáveis). Para se mover para cima na árvore do diretório, use a função UPDIR, ex, insira (1) UPDIR.

Como alternativa, você pode usar o menu FILES, ex. pressione . Use as teclas com as setas para cima e para baixo () para selecionar o subdiretório que você deseja ir e depois pressione (Change DIRectory) ou a tecla virtual A. Isto mostrará o conteúdo do subdiretório para o qual você se moveu nas etiquetas das teclas do menu virtual.

Excluir subdiretórios

Para excluir um subdiretório use um dos seguintes procedimentos:

Usar o menu FILES

Pressione a tecla 숙 🏗 para ativar o menu FILES. Selecione o diretório que contém o subdiretório que deseja excluir e pressione 🖽 se for necessário. Isto fechará o menu FILES e exibirá o conteúdo do diretório que você selecionou. Neste caso é necessário pressionar 🜇. Pressione a

tecla ma para listar o conteúdo do diretório no visor. Selecione o subdiretório (ou variável) que deseja excluir. Pressione (NXT) (Um visor similar ao seguinte será apresentado:

O segmento 'S2' neste formulário é o nome do subdiretório que está sendo excluído. As teclas do menu virtual fornecem as seguintes opções:

(F) Continue a excluir o subdiretório (ou variável)

(F2) Continue a excluir todos os subdiretórios (ou variáveis)

Mão exclua o subdiretório (ou variável) da lista

(F6) Não exclua o subdiretório (ou variável)

Depois de selecionar um destes quatro comandos, você retornará para o visor listando o conteúdo do subdiretório. O comando (1222), contudo, mostrará uma mensagem de erro:

e você deverá pressionar 2001, antes de retornar a listagem de variável.

Usar o comando PGDIR

O comando PGDIR pode ser usado para excluir diretórios. Como o comando CRDIR, o comando PGDIR está disponível através de 🕝 🕰 ou através da tecla 🔄 🎮 ou pode apenas ser digitado.

- Através da tecla de catálogo
 Pressione () CAT (ALPHA) (ALPHA) (P) (G). Isto deve ressaltar o comando PGDIR.
 Pressione a tecla virtual do menu () para ativar o comando:
- Através dos menus de programação
 Pressione . Isto produzirá o seguinte menu de seleção para a programação:

Use a tecla com a seta para baixo () para selecionar a opção 2. MEMORY... Depois, pressione . Isto produzirá o seguinte menu de seleção:

Use a tecla com a seta para baixo () para selecionar a opção 5. DIRECTORY. Depois pressione III Isto resultará no seguinte menu de seleção:

Use a tecla com a seta para baixo (▼) para selecionar a opção 6. *PGDIR, e* pressione ■□■.

Comando PGDIR no modo Algebraic

Após selecionar PGDIR através de uma das maneiras mostrados acima, o comando estará disponível na sua pilha conforme a seguir:

Neste momento será necessário digitar o nome de um diretório existente, digamos *S4* :

Como resultado, o subdiretório 🖭 é excluído:

Em vez de digitar o nome do diretório, você pode pressionar apenas a tecla virtual correspondente na lista de comando PGDIR (), ex.

Pressione , para obter:

Depois, pressione para inserir 'S3' como o argumento para PGDIR.

Pressione ENTER para excluir o subdiretório:

Comando PGDIR no modo RPN

Para usar PGDIR no modo RPN, é necessário ter o nome do diretório, entre aspas, já disponível na pilha antes de acessar o comando. Por exemplo:

- (ALPHA) (S) (2) (ENTER)

Em seguida acesse o comando PGDIR através dos meios descritos acima, ex., através da tecla $\overrightarrow{\ \ }$ $\overrightarrow{\ \ }$

Pressione a tecla virtual do menu para ativar o comando e excluir o subdiretório:

Usar o comando PURGE do menu TOOL

O menu TOOL está disponível pressionando a tecla \overline{roo} (modos Algebraic e RPN mostrados):

EDIT | VIEW |STACK| RCL |PURGE|CLEAR

1: EDIT | VIEW |STACK| RCL |PURGE|CLEAR

O comando PURGE está disponível pressionando a tecla [13] (F5). Nos exemplos seguintes desejamos excluir o subdiretório S1:

Modo Algébrico: Insira IIIII (MAR) ENTER

Modo RPN: Insira (MAR) () MATE (ENTER) (TOOL) MATE (MAR)

Variáveis

Variáveis são como arquivos em um disco rígido de computador. Uma variável pode armazenar um objeto (valores numéricos, expressões algébricas, listas, vetores, matrizes, programas, etc). Mesmo os subdiretórios podem ser acessados através de uma variável (de fato, na calculadora, um subdiretório é também um tipo de objeto da calculadora).

As variáveis são reconhecidas pelos seus nomes, que podem ser qualquer combinação de caracteres alfabéticos ou numéricos, iniciando com uma letra. Aguns caracteres não alfabéticos, tais como a seta (\rightarrow) podem ser usados em um nome de variável, se combinados com um caractere alfabético. Assim, ' \rightarrow A' é um nome válido de variável, mas ' \rightarrow ' não é. Exemplos válidos de nomes de variáveis são: 'A', 'B', 'a', 'b', ' α ', ' β ', 'A1', 'AB12', ' \rightarrow A12', 'Vel','Z0','z1', etc.

Uma variável não pode ter o mesmo nome de uma função da calculadora. Você não pode ter uma variável SIN por exemplo, já que existe um comando SIN na calculadora. Os nomes reservados das variáveis da calculadora são os seguintes: ALRMDAT, CST, EQ, EXPR, IERR, IOPAR, MAXR, MINR, PICT, PPAR, PRTPAR, VPAR, ZPAR, der_, e, i, n1,n2, ..., s1, s2, ..., Σ DAT, Σ PAR, π , ∞

As variáveis podem ser organizadas em subdiretórios.

Criar variáveis

Para criar uma variável, podemos usar o menu FILES ao longo das linhas dos exemplos mostrados acima para criar um subdiretório. Por exemplo, dentro do subdiretório (HOME MANS INTRO), criado em um exemplo anterior, queremos armazenar as sequintes variáveis com os valores mostrados:

Nome	Conteúdo	Tipo
Α	12.5	real
α	-0.25	real
A12	3×10^{5}	real
Q	'r/(m+r)'	algébrico
R	[3,2,1]	vetor
z 1	3+5i	complexo
pl	$<< \rightarrow r '\pi^*r^2' >>$	programa

Usar o menu FILES

Usaremos o menu FILES para inserir a variável A. Supomos estar no subdiretório (HOME MANS INTRO). Para acessar este subdiretório, usamos o seguinte: () FLES e selecione o subdiretório INTRO conforme mostrado neste visor:

Pressione za inserir o diretório. Você obterá uma relação de arquivos sem nenhuma entrada (o subdiretório INTRO está vazio nesta altura)

Pressione a tecla para ir para o próximo conjunto de teclas virtuais e pressione a tecla sizi. Isto produzirá o seguinte formulário de entrada NEW VARIABLE:

Para inserir a variável A (veja a tabela acima) inserimos primeiro seu conteúdo, ou seja, o número 12.5 e depois seu nome, A, conforme a seguir:

Alpha (Alpha) (Alpha)

Pressione [12], novamente para criar a variável. A nova variável é mostrada na seguinte relação de variáveis:

A relação indica uma variável real (|R), cujo nome é A e que ocupa 10.5 bytes de memória. Para ver o conteúdo da variável neste visor, pressione

 Pressione a tecla do menu soft (F) para ver o conteúdo no formato gráfico.

- Pressione zara para retornar para a relação de variáveis.
- Pressione novamente para retornar para o visor normal. A variável
 A deve ser agora mostrada nas etiquetas da teclas virtuais:

Usar o comando STO▶

Uma forma simples de criar uma variável é usar o comando STO (ex. a tecla (570)). Fornecemos os exemplos em ambos os modos Algebric e RPN, criando o resíduo das variáveis sugeridas acima, a saber:

Nome	Conteúdo	Tipo
α	-0.25	real
A12	3×10^{5}	real
Q	'r/(m+r)'	algébrico
R	[3,2,1]	vetor
z1	3+5i	complexo
рl	$<< \rightarrow r '\pi^*r^2' >>$	programa

Modo algébrico

Use as seguintes teclas para armazenar o valor de -0.25 na variável α : 0 • 2 5 +- STOP (ALPHA) \rightarrow \triangle . Nesta altura, o visor apresentará o seguinte:

-0.25**⊳**α

Esta expressão significa que o valor −0.25 está sendo armazenado em α (o símbolo ▶ sugere a operação). Pressione ENTER para criar a variável. A variável é agora mostrada nos símbolos das teclas do menu virtual :

A seguir estão as teclas necessárias para inserir as variáveis restantes:

O visor, nesta altura, apresentará o seguinte formato:

Você verá seis das sete variáveis listadas na parte inferior do visor: p1, z1, R, Q, A12, α .

Modo RPN

Use as seguintes teclas para armazenar o valor de -0.25 na variável α : 0 • 2 5 + NTER ALPHA \rightarrow A INTER. O visor apresentará o seguinte formato:

Esta expressão significa que o valor -0.25 está pronto para ser armazenado em α . Pressione \mathfrak{F} para criar a variável. A variável é agora mostrada nas etgiuetas das teclas do menu virtual :

Para inserir o valor 3×10^5 em A12, podemos usar uma versão menor do procedimento: 3 EX 5 · ALPHA (A 1 2 ENTER STO)

Aqui está uma forma de inserir o conteúdo de Q.

Q: $APHA \hookrightarrow R \div \hookrightarrow I$ $ALPHA \hookrightarrow M + ALPHA \hookrightarrow R \blacktriangleright \bullet \bullet$ ALPHA Q ENTER STOP

Para inserir o valor de R, podemos usar uma versão ainda menor do procedimento:

R: (1) 3 SPC 2 SPC 1 P ALPHA R ENTER STOP

Observe que para separar os elementos de um vetor no modo RPN podemos usar a tecla de espaço (SPC), em vez de vírgula

() usada acima no modo Algébrico.

z1: $3+5\times 6$ in ALPHA 2 I STOP (se necessário aceite a alteração para o modo Complex).

 O visor, neste momento apresentará o seguinte:

Você verá seis das sete variáveis listadas na parte inferior do visor: p1, z1, R, Q, A12, α .

Verificar o conteúdo das variáveis

Como um exercício de observação dos conteúdos das variáveis, usaremos as sete variáveis inseridas no exercício acima. Mostramos como usar o menu FILES para ver o conteúdo de uma variável em um exercício anterior quando criamos a variável A. Nesta seção mostraremos uma forma simples de analisar o conteúdo de uma variável.

Pressionar a etiqueta da tecla do menu soft para a variável

Este procedimento mostrará o conteúdo de uma variável enquanto a variável contiver um valor numérico ou algébrico ou um conjunto. Por exemplo, para as variáveis listadas acima, pressione as seguintes teclas para ver o conteúdo das variáveis.

Modo algébrico

Digite estas teclas: WE WER WINTER WINTER WINTER WINTER. O visor, neste momento, apresenta-se da sequinte forma:

Em seguida digite estas teclas: **IIII** ENTER **IIII** ENTER . O visor é apresentado da sequinte forma:

Pressionando-se a tecla virtual correspondente a p1 ativará uma mensagem de erro (tente (NXT) (EVTER):

Nota: Ao pressionarmos **TIM** estamos tentando ativar (executar) o programa *p1*. Entretanto, este programa solicita uma entrada numérica. Tente o seguinte exercício: (N) 5 (NTE). O resultado é:

O programa tem a seguinte estrutura: « \rightarrow r $^{\prime}\pi^{*}r^{^{2}}$ »

Os símbolos « » indicam um programa na linguagem RPL do usuário (a linguagem original do programa das calculadoras HP 28/48, disponível na série HP 49G). Os caracteres \rightarrow r indicam que uma entrada de dados, mencionada como r, deve ser fornecida para o programa. A ação do programa é obter o valor de r e avaliar o algébrico ' π *r 2 '. No exemplo mostrado acima, r obteve o valor de r0 e assim o valor de r1 e avaliar o algébrico ' π *r 2 1. No exemplo mostrado acima, r2 obteve o valor de r3 e assim o valor de r4 e avaliar o algébrico ' π *r 2 9. No exemplo mostrado acima, r6 obteve o valor de r6 e assim o valor de r7 e avaliar o algébrico ' π 8 retornado. Este programa, em conseqüência, calcula a área de um círculo dado seu raio r6.

Modo RPN

No modo RPN, é necessário apenas pressionar a etiqueta de tecla virtual correspondente para obter o conteúdo da variável numérica ou algébrica. Para o caso sob estudo, podemos tentar observar as variáveis z1, R, Q, A12, α, e A, criadas acima, conforme a seguir:

Para ver o conteúdo de A, use: NXT WILL.

Para executar o programa p1 com r = 5, use: NXT 5

Observe que para executar o programa no modo RPN, você deve apenas inserir a entrada (5) e pressionar a tecla correspondente no menu virtual. (No modo algébrico, é necessário colocar os parênteses para inserir o argumento).

Usar a tecla right-shift seguida das etiquetas das teclas do menu virtual Esta abordagem para visualizar o conteúdo de uma variável funciona da mesma forma em ambos os modos Algébrico e RPN. Tente os seguintes exemplos em cada um dos modos:

Observe que desta vez o conteúdo do programa *p1* é listado no visor. Para ver as variáveis restantes neste diretório, use:

Listar o conteúdo de todas as variáveis no visor

Use a combinação de teclas para listar o conteúdo de todas as variáveis no visor. Por exemplo:

Pressione on para retornar ao visor normal da calculadora.

Substituir o conteúdo das variáveis

Substituir o conteúdo de uma variável pode ser visto como armazenar um valor diferente no nesmo nome da variável. Assim, os exemplos mostrados acima para criar as variáveis podem ser usados para ilustrar a substituição

seguir:

de um conteúdo da variável.
Usar o comando STO ► Usando como ilustração as seis variáveis, p1, z1, R, Q, A12, a e A, criadas anteriormente, continuaremos a alterar o conteúdo de uma variável A12 (atualmente uma variável numérica) com a expressão algébrica 'β/2', usando o comando STO ►. Primeiro, use o modo de operação algébrico: AUPHA P B ÷ 2
Usando o modo de operação RPN: ALPHA P B ÷ 2 ENTER • ILITE ENTER STOP ou de forma simplificada, ALPHA P B ÷ 2 • ILITE STOP
Usar a tecla left-shift seguida da tecla do menu virtual da variável (RPN) Esta é uma forma muito simples de alterar o conteúdo de uma variável, mas funciona apenas no modo RPN. O procedimento consiste em digitar o novo conteúdo da variável e inseri-lo na pilha, pressionando depois a tecla left-shift seguida da tecla do menu virtual da variável. Por exemplo, em RPN, se quisermos alterar o conteúdo da variável z 1 para 'a+b·i', use: ALPHA
Uma forma equivalente de fazer isto no modo algébrico é apresentada a

ALPHA () (A) + ALPHA () (B) X () (ENTER STO) (ENTER ENTER

Para verificar o novo conteúdo de z1, use:

Usar a variável ANS(1) (modo Algébrico)

No modo Algebraic é possível usar a variável ANS(1) para substituir o conteúdo de uma variável. Por exemplo, o procedimento para alterar o conteúdo de z1 para 'a+bi' é o seguinte:

TANS STOP TOTAL ENTER. Para verificar o novo conteúdo de z1, use:

Copiar variáveis

Os exercícios seguintes mostram as formas diferentes de copiar as variáveis de um subdiretório para outro.

Usar o menu FILES

Para copiar uma variável de um diretório para outro você pode usar o menu FILES. Por exemplo, dentro do subdiretório {HOME MANS INTRO}, temos as variáveis p1, z1, R, Q, A12, α e A. Suponha que desejemos copiar a variável A e colocar uma copia no subdiretório {HOME MANS}. Além disso, copiaremos a variável R e colocaremos uma cópia no diretório HOME. Aqui está uma forma de fazê-lo: Pressione 🎮 🕮, para produzir a seguinte lista de variáveis.

Use a tecla com a seta para baixo para selecionar a variável A (a última na lista), depois pressione 222. A calculadora responderá com um visor denominado PICK DESTINATION:

Use a tecla com a seta para cima para selecionar o subdiretório MANS e pressione Se você pressionar agora o visor mostrará o conteúdo do subdiretório MANS (observe que a variável A é mostrada nesta lista, como solicitado):

Меносу: 243914	Select:	0
DR A	REAL	10
D10180	DIR	1.1
EDIT COPY MOVE	RCL EVAL	TREE

Pressione N MINTE (modo algébrico) ou N MINTE (modo RPN) para retornar ao diretório INTRO. Pressione MANS INTRO). Use a tecla com a seta abaixo () para selecionar a variável R, depois pressione MANS e pressione Se você pressionar agora MANS e diretório MANS e diretório do diretório do diretório do diretório HOME, incluindo uma cópia da variável R:

Usar o histórico no modo algébrico

Aqui está uma forma de usar o histórico (pilha) para copiar uma variável de um diretório paa outro com a calculadora configurada para o modo Algébrico. Suponha que estamos dentro do subdiretório {HOME MANS INTRO} e desejamos copiar os conteúdos da variável z 1 para o subdiretório {HOME MANS}. Use o seguinte procedimento: PETTO ISTO ISTO ISTO ISTO INTRO ISTO INTRO ISTO INTRO ISTO INTRO INTRO ISTO INTRO ISTO INTRO ISTO INTRO ISTO INTRO INTRO ISTO INTRO ISTO INTRO ISTO INTRO ISTO INTRO INTRO ISTO INTRO ISTO INTRO INTRO

Dépois, use a tecla de exclusão três vezes para remover as últimas três linhas no visor: • • • . Neste ponto, a pilha está pronta para executar o comando ANS(1)•z1. Pressione FIFE para executar este comando. Depois, use para verificar o conteúdo da variável.

Usar a pilha no modo RPN

Para demonstrar o uso da pilha no modo RPN para copiar uma variável de um subdiretório para outro, presumimos que você esteja dentro do subdiretório {HOME MANS INTRO} e que copiaremos o conteúdo da variável z1 no diretório HOME. Use o seguinte procedimento:

Este procedimento lista o conteúdo e o nome da variável na pilha. O visor da calculadora será apresentado desta forma:

2: a+i·b 1: 'z1' p1 | z1 | R | Q | A12 | α

Agora, use para mover para o diretório HOME e pressione para concluir a operação. Use para verificar o conteúdo da variável.

Copiar duas ou mais variáveis usando a pilha no modo Algébrico

A seguir um exercício para demonstrar como copiar duas ou mais variáveis usando a pilha quando a calculadora estiver no modo algébrico. Suponha, mais uma vez, que estamos dentro do subdiretório {HOME MANS INTRO} e desejamos copiar as variáveis R e Q para o subdiretório {HOME MANS}. As teclas necessárias para concluir esta operação são mostradas a seguir:

Para verificar o conteúdo das variáveis, use 🗇 🏻 e 🕞 🗮 Este procedimento pode ser generalizado para copiar três ou mais variável.

Copiar duas ou mais variáveis usando a pilha no modo RPN

A seguir um exercício para demonstrar como copiar duas ou mais variáveis usando a pilha quando a calculadora estiver no modo algébrico. Suponha que estamos dentro do subdiretório {HOME MANS INTRO} e desejamos copiar as variáveis R e Q para o subdiretório {HOME MANS}. As teclas necessárias para concluir esta operação são mostradas a seguir:

Para verificar o conteúdo das variáveis, use 🔁 🖽 e 🔁 🖽 🗓 .

Este procedimento pode ser generalizado para copiar três ou mais variáveis.

Reordenar variáveis em um diretório

Nesta seção ilustramos o uso do comando ORDER para reordenar as variáveis em um diretório. Vamos supor que começamos dentro do subdiretório {HOME MANS} contendo as variáveis, A12, R, Q, z1, A, e o subdiretório *INTRO*, conforme mostrado abaixo. (Copia A12 de INTRO à MANS).

A12 R & 21 A INTRO

Modo algébrico

Neste caso, temos a calculadora configurada para o modo Algébrico. Suponha que desejemos alterar a ordem das variáveis para *INTRO*, *A*, *z*1, *Q*, *R*, *A*12. Proceda conforme a seguir para ativar a função ORDER:

O visor mostrará a seguinte linha de entrada de dados:

A seguir, listaremos a nova ordem das variáveis usando seus nomes digitados entre aspas:

O visor agora mostra a nova ordem das variáveis:

Modo RPN

No modo RPN, a lista de variáveis reordenadas é relacionada na pilha antes de aplicar o comando ORDER. Suponha que começemos da mesma situação acima, mas no modo RPN, ex.

a lista reordenada é criada usando:

Então, insira o comando ORDER, como feito anteriormente, ex.

Seleciona MEMORY do menu de programação

Seleciona DIRECTORY do menu MEMORY

Seleciona ORDER do menu DIRECTORY

O resultado é apresentado no seguinte visor:

Mover variáveis usando o menu FILES

Para mover uma variável de um diretório para outro você pode usar o menu FILES. Por exemplo, dentro do subdiretório {HOME MANS INTRO}, temos as variáveis p1, z1, R, Q, A12, α e A. Suponha que desejemos mover a variável A12 para o subdiretório {HOME MANS}. Aqui está uma forma de fazê-lo: Pressione , para mostrar uma lista de variáveis . Use a tecla com a seta para baixo para selecionar a variável A12, depois pressione A calculadora responderá com um visor chamado PICK DESTINATION: Use a tecla com a seta para cima para selecionar o subdiretório MANS e pressione O visor mostrará agora o conteúdo do subdiretório {HOME MANS INTRO}:

Observe que a variável A12 não está mais aqui. Se você pressionar agora o visor mostrará o conteúdo do subdiretório MANS, incluindo a variável A12:

Nota: Você pode usar a pilha para mover uma variável combinando copiar e excluir uma variável. Os procedimentos para excluir as variáveis são demostrados na próxima seção.

Excluir variáveis

As variáveis podem ser excluídas usando a função PURGE. Esta função pode ser acessada diretamente usando o menu TOOLS ((TOOL)) ou usando o menu FILES (TILES (TILES

Usar o comando FILES

O comando FILES pode ser usado para excluir uma variável de cada vez. Para excluir uma variável de um determinado diretório você pode usar o menu FILES. Por exemplo, dentro do subdiretório {HOME MANS INTRO}, temos as variáveonha que excluamos a variável A. Apresentamos a seguir como fazer a exclusão: Pressione para para produzir a lista de variáveis. Use a tecla com seta para baixo para selecionar a variável A (a última na lista), depois pressione para selecionar a variável A (a última na conteúdo do subdiretório INTRO sem a variável A.

Usar a função PURGE na pilha no modo algébrico

Começamos novamente no subdiretório {HOME MANS INTRO} contendo agora apenas as variáveis p1, z1, Q, R e α . Usaremos o comando PURGE para excluir a variável p1. Pressione (700) [2013] (4R) [2014] (4R) [2015] (4R) [2015]

Você pode usar o camando PURGE para apagar mais de uma variável colocando seus nomes em uma lista no argumento de PURGE. Por exemplo,

se agora queremos excluir as variáveis R e Q, simultaneamente, podemos tentar o seguinte exercício. Pressione: TOOL INITIAL TO INIT	
Para terminar de excluir as variáveis, pressione (ENTE). O visor mostrará agora as variáveis restantes: PURGE('P1') PURGE(('R' 'Q')) NOVAL NOVAL	
Usar a função PURGE na pilha no modo RPN Começamos novamente no subdiretório {HOME MANS INTRO} contendo agora apenas as variáveis p1, z1, Q, R e a. Usaremos o comando PURGE para excluir a variável p1. Pressione	
Funções UNDO e CMD As funções UNDO e CMD são úteis para recuperar os comandos recentes o para reverter uma operação se for cometido um erro; Estas funções são associadas à tecla HIST: UNDO resulta da sequência de teclas (**) UNDO, enquanto CMD resulta da sequência de teclas (**) UNDO (**). Para ilustrar o uso de UNDO, tente o seguinte exercício no modo algébrico (ALG): (**) (**) (**) (**) (**) (**) (**) (*	

nesta altura irá desfazer a operação mais recente (20/3), trazendo os termos originais de volta à pilha:

2: 20 1: 3 ASCUVICHINISIEVCLO| DIVZ | EGCO |FACTO

Para ilustrar o uso de CMD, vamos inserir as seguintes entradas no modo ALG. Pressione (ENTER) depois de cada entrada de dados.

: TAN(5.2) : SIN(3.1) : J25 : 3J27 MBCUNICKINGCYCLO DIVE | EGGO | FACTO

Depois, use a função CMD () para mostrar os quatro comandos mais recentes inseridos pelo usuário, ex.

5 (ENTER) 2 (ENTER) 3 ÷ × (SIN)
(SIN) 5 × 2 (ENTER).

Pressionando 🗇 🚾 , produzimos a seguinte caixa de seleção:

Como podemos ver, os números 3, 2 e 5, usados no primeiro cálculo acima, são listados na caixa de seleção, como também a expressão algébrica 'SIN(5x2)', mas não a função SIN inserida anteriormente á expressão algébrica.

Sinalizadores

Um sinalizador é um valor Booleano que pode ser ativado ou desativado (verdadeiro ou falso), que especifica uma dada configuração da calculadora ou uma opção em um programa. Os sinalizadores na calculadora são identificados por números. Existem 256 sinalizadores, numerados de -128 a 128. Sinalizadores positivos são chamados de sinalizadores de usuários e estão disponíveis para programação pelo usuário. Os sinalizadores representados pelos números negativos são chamados de sinalizadores de sistema e afetam a forma que a calculadora opera.

Para ver a configuração atual do sinalizador de sistema pressione o botão e depois a tecla virtual (ex. F1). Você obterá um visor denominado SYSTEM FLAGS listando os números dos sinalizadores e as configurações correspondentes.

SYSTEM FLAGS

OI General Solutions

OZ Constant + symb

O3 Function + symb

14 Pagment at end

19 +VZ + vector

20 Underflow + 0

21 Overflow + 58E439

CANCL OR

(**Nota**: Neste visor, como somente os sinalizadores de sistema estão presentes, apenas o valor absoluto do número do sinalizador é exibido). Um sinalizador pode ser considerado *ativado* se você ver a marca de seleção (✓) na frente do número do sinalizador. Caso contrário, o sinalizador não está *ativado*. Para alterar o status de um sinalizador de sistema pressione a tecla virtual 🕶 enquanto o sinalizador que voce deseja alterar é ressaltado, ou use a tecla 📆 . Você pode usar as teclas de setas para cima e para baixo (🌊 🐨) para se deslocar ao redor da lista de sinalizadores do sistema.

Embora existam 128 sinalizadores de sistema, nem todos são usados e alguns são usados apenas para controle interno do sistema. Os sinalizadores do sistema não acessíveis para o usuário não são visíveis neste visor. Uma lista completa de sinalizadores é apresentada no capítulo 24.

Exemplo de configuração de sinalizador : soluções gerais e valor principal

Por exemplo, o valor padrão para o sinalizador de sistema 01 é *General solutions*. Isto significa que, se uma equação tem soluções múltiplas, todas as

soluções serão retornadas pela calculadora, mais provavelmente em uma lista. Ao pressionar a tecla virtual você pdoe alterar o sinalizador do sistema 01 para *Valor principal*. Esta configuração forçará a calculadora a fornecer um valor individual conhecido como o valor principal da solução.

Para visualizar esta operação, configure primeiro o sinalizador do sistema 01 (ex. selecione Valor principal). Pressione duas vezes para retornar ao visor normal da calculadora. Tentaremos encontrar a solução da equação quadrática, digamos, t²+5t+6 = 0, com o comando QUAD.

Modo algébrico

Use a seguinte sequência de teclas: (Use as teclas com as setas para cima e para baixo, (I), para selecionar o comando QUAD), pressione :

QUAD() 21 R Q «

Para inserir a equação como o primeiro argumento da função QUAD, use as sequintes teclas:

O resultado é:

Agora, altere a configuração do sinalizador 1 para *General solutions*:

MODE TOTAL VILLE WITH WITH WITH . Tente a solução novamente:
A solução agora inclui dois valores:

Modo RPN

Primeiro configure o sinalizador do sistema 01 (ex., *Valor principal*). Pressione dus vezes para retornar para o visor normal da calculadora. A seguir, digite a equação quadrática conforme a seguir:

(mantendo uma segunda cópia na pilha RPN)

Use a seguinte sequência de teclas para inserir o comando QUAD:

(use as teclas com as setas para cima e para baixo,)

para selecionar o comando QUAD), pressione)

(use as teclas com as setas para cima e para baixo,)

para selecionar o comando QUAD), pressione)

(use as teclas com as setas para cima e para baixo,)

para selecionar o comando QUAD), pressione)

Agora, altere a configuração do sinalizador 01 para *General solutions*:

MODE INTERIOR VALUE IN LA LAPHA (Q) (use as teclas com as setas, (A) V , para selecionar o comando QUAD) , pressione III . O visor mostra agora as duas soluções:

Outros sinalizadores de interesse

Mostre novamente a configuração do sinalizador atual pressionando o botão MODE e depois a tecla MIDE . Certifique-se que limpar o sinalizador de sistema 01 foi configurado do exercício anterior. Use as teclas de setas () para se deslocar ao redor da lista de sinalizadores do sistema Alguns sinalizadores de interesse e seus valores preferenciais para o objetivo dos exercícios deste manual são:

02 Constant \rightarrow symb: Valores constantes (ex. π) são mantidos como

símbolos

03 Function → symb: Funções não são automaticamente avaliadas, em

vez disso são carregadas como expressões

simbólicas.

27 ' $X+Y*i' \rightarrow (X,Y)$: Números complexos são representados como pares

ordenados

60 [α][α] locks: A sequência ALPHA ALPHA trava o teclado alfabético Pressione Table duas vezes para retornar ao visor normal da calculadora.

CHOOSE boxes e MENU Soft

Em alguns exercícios apresentados neste capítulo vimos listas de menu de comando exibidas no visor. Estas listas de menu são conhecidas como *CHOOSE boxes*. Por exemplo, para usar o comando ORDER para reordenar variáveis em um diretório, usamos:

Mostrar a lista de menu PROG e selecionar

Mostrar a lista de menu MEMORY e selecionar DIRECTORY

Mostrar a lista de menu DIRECTORY e selecionar ORDER

ativa o comando ORDER

Existe uma forma alternativa para acessar estes menus como as teclas *soft MENU*, configurando o sinalizador 117. Para configurar este sinalizador tente o seguinte:

MODE TITLE (A) (A) (A) (A) (A)

O visor mostra o sinalizador 117 não configurado (CHOOSE boxes), conforme mostrado aqui:

SYSTEM FLAGS

117 CHOOSE boxes

119 Rigorous on
120 Silent Hode off
123 Alloh Shitch Mode
125 Accur. Sign-Sturm
126 cref H/ last col

128 Vars are reals

CHRCL OR

Pressione a tecla do menu soft 🗸 🖽 para definir o sinalizador 117 para soft MENU. O visor refletirá esta alteração:

Pressione duas vezes para retornar ao visor normal da calculadora.

Agura, tentemos encontrar o comando ORDER usando teclas similares àquelas usadas acima, ex. começamos com 🥱 .

Observe que em vez de uma lista de menu, obtemos as etiquetas do menu virtual com as diferentes opções no menu PROG, ex.

STACK HEN BRCH TEST TYPE LIST

Pressione para selecionar o menu virtual MEMORY (IIII). O visor mostra agora:

PURGE MEN BYTES|NENOB DIR ARITH

Pressione (F5) para selecionar o menu virtual DIRECTORY ((1111))

PURGE RCL | STO | PATH |CRDIR|PGDIR

O comando ORDER não é mostrado neste visor. Para encontrá-lo usamos a tecla NXT:

Para ativar o comando ORDER pressionamos a tecla virtual [3] (12323). Embora não seja aplicado a um exemplo específico, o presente exercício mostra as duas opções para os menus na calculadora (CHOOSE boxes e soft MENUs).

CHOOSE boxes selecionadas

Alguns menus produzirão apenas CHOOSE boxes, ex.

• O APPS (APPlicationS Menu), ativado com a tecla (APPS), a primeira tecla na segunda linha do teclado:

• CAT (menu CATalog), ativado com a tecla 🕝 🛺 , a segunda tecla na segunda linha do teclado:

• O menu HELP, ativado com TOOL NXT IIII

O menu CMDS (CoMmanDS), ativado dentro do editor de equação,
 ex. P EQW NXT ETTE

Capítulo 3 Cálculos com números reais

Este Capítulo demonstra o uso da calculadora para as operações e funções relacionadas com os números reais. Estas operações são úteis para a maioria dos cálculos na física e engenharia. O usuário deve conhecer o teclado para identificar as funções disponíveis (ex. SIN, COS, TAN, etc.). Além disso, pressupõe-se que o leitor saiba como ajustar o sistema operacional da calculadora, ex. selecionar o modo de operação (Capítulo 1) usar os menus e caixas de seleção e fazer operações com variáveis (Capítulo 2).

Verificar as configurações da calculadora

Para verificar a calculadora atual e as configurações CAS, é necessário verificar apenas a parte superior do visor da calculadora na operação normal. Por exemplo, você pode ver a seguinte configuração: RAD XYZ DEC **R** = 'X'

Isto significa RADianos para as medidas angulares, XYZ para as coordenadas retangulares (cartesianas), base numérica DECimal, números Reais preferidos = significa resultados "exatos" e 'X' é o valor da variável independente padrão.

Outra listagem possível de opções pode ser DEG R∠Z HEX C ~ 't'

Isto significa DEGrees como medida angular, R∠Z para as coordenadas polares, base numérica HEXagesimal, números Complexos, ~ significa os resultados "aproximados" e 't' a variável independente padrão.

Em geral, esta parte do visor contém sete elementos. Cada elemento é identificado abaixo dos números de 1 a 7. Os valores possíveis para cada elemento são mostrados entre parênteses depois da descrição do elemento. A explicação de cada um destes valores é também mostrada:

Especificação da medida angular (DEG, RAD, GRD)
 DEG: graus, 360 graus em um círculo completo

RAD: radianos, 2π radianos em um círculo completo GRD: grados, 400 grados em um círculo completo

2. Especificação do sistema de coordenadas (XYZ, R∠Z, R∠∠). O símbolo ∠ significa uma coordenada angular.

XYZ: Cartesiano ou retangular (x,y,z)

R \angle Z: Coordenadas polares e cilíndricas (r, θ ,z)

 $R\angle\angle$: Coordenadas esféricas (ρ, θ, ϕ)

3. Especificação de base numérica (HEX, DEC, OCT, BIN)

HEX: Números decimais (base 16)

DEC: Números decimais (base 10)

OCT: Números octais (base 8)

BIN: Números binários (base 2)

4. Especificação de modo real ou complexo (R, C)

R: números reais

C: números complexos

- 5. Especificação de modo aproximado ou exato (=, ~)
 - = modo exato (simbólico)
 - ~ modo aproximado (numérico)
- 6. Variável independente CAS padrão (ex. 'X', 't', etc.)

Verificar o modo da calculadora

Quando estiver no modo RPN os diferentes níveis de pilha são listados no lado esquerdo visor. Quando o modo ALGEBRAIC for selecionado não existem níveis de pilha enumerados e a palavra ALG é listada na parte superior do visor no lado direito. A diferença entre estes modos de operação foi descrita em detalhe no Capítulo 1.

Cálculos com números reais

Para fazer cálculos com números reais é preferível definir o CAS para modo Real (em oposição a Complex). Em alguns casos, o resultado complexo pode ser mostrado e a calculadora solicitará a alteração do modo para Complex. Exact é o modo padrão para a maioria das operações. Portanto, talvez queira começar a fazer seus cálculos com este modo. Qualquer alteração necessária do modo Approx para concluir uma operação será solicitada pela

calculadora. Não existe seleção preferida para a medida do ângulo ou para a especificação de base do número. Os cálculos do número real serão demonstrados nos modos Algebraic (ALG) e Reverse Polish Notation (RPN).

Alterar sinal de um número, variável ou expressão

Use a tecla +--. No modo ALG, você pode pressionar +-- antes de inserir o número, ex. +-- 2 • 5 ENTER. Resultado = -2,5. No modo RPN, talvez seja necessário inserir pelo menos o primeiro número e depois usar a tecla +--, ex. 2 • 5 +--. Resultado = -2,5. Se usar a função +-- enquanto não existir linha de comando, a calculadora aplicará a função NEG (inversa do sinal) para o objeto no primeiro nível da pilha.

A função inversa

Use a tecla $\sqrt[n]{s}$. No modo ALG, pressione $\sqrt[n]{s}$ primeiro, seguido do número ou expressão algébrica, ex. $\sqrt[n]{s}$ 2. Resultado = $\sqrt[n]{2}$ o 0,5. No modo RPN, insira o número primeiro e depois use a tecla, ex. $\sqrt[n]{s}$ Resultado = $\sqrt[n]{4}$ o 0,25.

Adição, subtração, multiplicação e divisão

Use a tecla correta da operação, a saber, + - × ÷. No modo ALG, pressione um operando, depois um operador e novamente um operando seguido por [NTER] para obter um resultado. Exemplos:

As primeiras três operações acima são apresentadas na seguinte tela:

No modo RPN, insira os operandos um depois do outro, separados por um ENTER, depois pressione a tecla do operador. Exemplos:

De forma alternativa, no modo RPN, você pode separar os operandos com um espaço ($^{\text{SPC}}$) antes de pressionar a tecla do operador. Exemplos: $\begin{array}{cccccccccccccccccccccccccccccccccccc$
Usar parênteses Os parênteses podem ser usados para operações de grupo como também incluir argumentos de funções. Os parênteses estão disponíveis através da combinação da tecla (). Os parênteses são sempre inseridos em pares. Por exemplo, para calcular (5+3.2)/(7-2.2):
No modo ALG: (1)
No modo RPN, você não precisa dos parênteses, o cálculo é feito diretamente na pilha: 5 ENTER 3 • 2 ENTER + 7 ENTER 2 • 2 ENTER - ÷
No modo RPN, digitar a expressão entre os argumentos permitirá que você insira a expressão como no modo algébrico:
Para ambos os modos ALG e RPN, usando o Editor de Equação:
A expressão pode ser avaliada dentro do Editor de Equação usando:
Função de valor absoluto (módulo) A função de valor absoluto, ABS, está disponível através da combinação de teclas (1) ABS . Ao calcular na pilha no modo ALG, insira a função antes do argumento, ex. (1) ABS (1) 2 (NTER)
No modo RPN, insira o número primeiro, depois a função, ex.

Quadrados e raízes quadradas
A função da raiz, SQ, está disponível através da combinação de teclas:
🕤 🚈 . Ao calcular na pilha no modo ALG, insira a função antes do
argumento, ex. $(1)x^2$ +- 2 • 3 ENTER
No modo RPN, insira o número primeiro, depois a função, ex.
2 · 3 +- (¬ x²
A função da raiz quadrada √ está disponível através da tecla R. Ao calcular
na pilha no modo ALG, insira a função antes do argumento, ex,
No modo RPN, insira o número primeiro, depois a função, ex.
Potências e raízes
A função de potência, ^, está disponível usando a tecla 💌 . Ao calcular na
pilha no modo ALG, insira a base (y) seguida pela tecla 🕜 e depois do
expoente (x) , ex. $5 \cdot 2$ \xrightarrow{x} $1 \cdot 2$ 5
No modo RPN, insira o número primeiro e depois a função, ex.
5 • 2 ENTER • 2 5 ENTER ×
A função da raiz, XROOT(<i>y,x</i>), está disponível através da combinação de
teclas 🕝 🤟 . Ao calcular na pilha o modo ALG, insira a função XROOT
seguidos pelos argumentos (y,x) , separados por vírgulas, ex.
No modo RPN, insira o argumento y primeiro, depois x e finalmente a
chamada da função, ex. 2 7 ENTER 3 ENTER P 47
Logaritmos de base 10 e potência de 10
Os logaritmos de base 10 são calculados pela combinação de teclas
(função LOG) enquanto na função inversa (ALOG ou anti-logaritimo)
é calculada usando 🗇 💇 . No modo ALG, a função é inserida antes do
argumento:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
No modo RPN, o argumento é inserido antes da função
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

função inversa, a função exponencial (função EXP) é calculada usando e^{ω} . No modo ALG, a função é inserida antes do argumento:

No modo RPN, o argumento é inserido antes da função

2 • 4 5 ENTER → LN 2 • 3 + L ENTER ← e^x

→ LN 2 • 4 5 ENTER

• e^x +- 2 • 3 ENTER

Funções trigonométricas

Três funções trigonométricas estão disponíveis prontamente no teclado: seno ((SNV)), coseno ((COS)) e tangente ((TAN)). Os argumentos destas funções são os ângulos, portanto, eles podem ser inseridos em qualquer sistema de medida angular (graus, radianos, grados). Por exemplo, com a opção DEG selecionada, podemos calcular as seguintes funções trigonométricas:

No modo ALG:

SIN 3 0 ENTER

COS 4 5 ENTER

TAN 1 3 5 ENTER

No modo RPN:

Funções trigonométricas inversas

As funções trigonométricas disponíveis no teclado são o arcoseno (ASIN), arco-coseno (ACOS) e arco-tangente (ATAN), disponíveis através das

combinações de teclas , , , , , , , , , , , , ,
No modo RPN: O • 2 5 ENTER ← ASIN O • 8 5 ENTER ← ACOS I • 3 5 ENTER ← ATAN
Todas as funções descritas acima, a saber, ABS, SQ, √, ^, XROOT, LOG, ALOG, LN, EXP, SIN, COS, TAN, ASIN, ACOS, ATAN, podem ser combinadas com as operações fundamentais (+ - × ÷) para formar expressões mais complexas. O Editor de Equação, cujas operações são descritas no Capítulo 2, é ideal para a construção de tais expressões, independente do modo de operação da calculadora.
Diferenças entre funções e operadores As funções como ABS, SQ, √, LOG, ALOG, LN, EXP, SIN, COS, TAN, ASIN, ACOS, ATAN exigem um único argumento. Assim, sua aplicação no modo ALG é simples, ex. ABS(x). Algumas das funções como XROOT exigem dois argumentos, ex. XROOT(x,y). Esta função tem uma seqüência de teclas equivalente 🏲 💯.
Os operadores, por outro lado, são colocados depois de um único argumento ou entre dois argumentos. O operador fatorial (!), por exemplo, é colocado depois de um número, ex. 5 (ADPHA) P 2 (ENTE). Como este operador exige um único argumento, ele é mencionado como um operador monádico (unário). Os operadores que exigem dois argumentos, tais como + - × ÷ r, são operadores binários, ex. 3 × 5 ou 4 r 2.

Funções com números reais no menu MTH

O menu MTH (MaTHematics) inclui um número de funções matemáticas mais aplicadas para números reais. Para acessar o menu MTH, use a combinação de teclas Com a configuração padrão de CHOOSE boxes para o sinalizador do sistema 117 (consulte o capítulo 2), o menu MTH mostra a sequinte lista de menu:

Como existe um grande número de funções matemáticas disponíveis na calculadora, o menu MTH é selecionado pelo tipo de objeto que a função se aplica. Por exemplo, as opções 1. VECTOR.., 2. MATRIX. e 3. LIST.. se aplicam a estes tipos de dados (ex. vetores, matrizes e listas) e serão discutidas com mais detalhes nos capítulos subsequentes. Opções 4. HYPERBOLIC.. e 5. REAL.. aplicam-se aos números reais e serão discutidas com mais detalhes aqui. Opção 6. BASE.. é usada para a conversão de números em bases diferentes e será também discutida em separado neste capítulo. Opção 7. PROBABILITY.. é usada para as aplicações em probabilidade e será discutida em um capítulo futuro. Opção 8. FFT.. (Transformada Fourier rápida) é uma aplicação de processamento de sinal e será discutida em um outro capítulo. Opção 9. COMPLEX.. contém as funções apropriadas para números complexos, que serão discutidos no próximo capítulo. Opção 10. CONSTANTS fornece acesso às constantes na calculadora. Esta opção será apresentada mais tarde nesta seção. Finalmente, a opção 11. SPECIAL FUNCTIONS.. inclui funções para matemáticas avançadas que serão discutidas nesta seção também.

Em geral, para aplicar qualquer uma destas funções você precisa observar o número e a ordem dos argumentos necessários e ter em mente que no modo ALG você deve selecionar primeiro a função e depois o argumento, enquanto no modo RPN, você deve inserir o argumento na pilha primeiro e depois selecionar a função.

Usar os menus da calculadora:

- 1. Dado que a operação das funções MTH (e de muitos outros menus da calculadora) é muito similar, descreveremos em detalhe o uso do menu 4. HYPERBOLIC.. nesta seção com a intenção de descrever a operação geral dos menus da calculadora. Preste bastante atenção ao processo para selecionar diferentes opções.
- 2. Para selecionar rapidamente as opções enumeradas na lista de menu (ou CHOOSE box), simplesmente pressione o número da opção no teclado. Por exemplo, para selecionar a opção 4. HYPERBOLIC.. no menu MTH, pressione apenas 4.

Funções hiperbólicas e suas inversas

Selecionar Opção 4. HYPERBOLIC.. , no menu MTH e pressionar , exibe o menu da função hiperbólica:

As funções hiperbólicas são:

Seno hiperbólico, SINH e seu inverso, ASINH ou sinh⁻¹ Coseno hiperbólico, COSH e seu inverso, ACOSH ou cosh⁻¹ Tangente hiperbólica, TANH e sua inversa, ATANH ou tanh⁻¹

Este menu contém também as funções:

$$EXPM(x) = exp(x) - 1,$$

$$LNP1(x) = ln(x+1).$$

Finalmente, a opção 9. MATH, leva o usuário de volta para o menu MTH.

Por exemplo, no modo ALG a seqüência de teclas para calcular, digamos, tanh(2.5), é a seguinte:

Selecione o menu MTH

Selecione o menu 4. HYPERBOLIC..

Selecione a função 5. TANH

Avalie tanh(2,5)

O visor mostra o resultado principal:

No modo RPN, as teclas para fazer este cálculo são as seguintes:

Insira o argumento na pilha
Selecione o menu MTH
Selecione o menu 4. HYPERBOLIC..

Selecione a função 5. TANH

O resultado é:

A operação mostrada acima presume que você esteja usando a configuração padrão para o sinalizador de sistema 117 (CHOOSE boxes). Se alterou a configuração deste sinalizador (consulte o capítulo 2) para SOFT menu, o menu MTH será mostrado como segue (lado esquerdo no modo ALG, lado direito no modo RPN):

Nota: Pressionar retornará para o primeiro conjunto de opções MTH. Além disso, a combinação retornará todas as funções do menu no visor, ex.

PROB FET CMPLX CONST SPECIAL FUNCTIONS

Assim, para selecionar, por exemplo, o menu de funções hiperbólicas, com este formato de menu pressione za para exibir:

SINH ASINH COSH ACOSH TANH ATANH

Nota: Para ver as opções adicionais nestes menus, pressione a tecla *NXT* ou a seqüência de teclas *PREV* .

Por exemplo, para calcular tanh(2,5), no modo ALG, quando usar SOFT menus nas CHOOSE boxes, siga este procedimento:

Selecione o menu MTH

Selecione o menu HYPERBOLIC..

Selecione a função TANH

2 • 5 ENTER Avalie tanh(2,5)

No modo RPN, o mesmo valor é calculado usando:

Insira o argumento na pilha

Selecione o menu MTH

Selecione o menu HYPERBOLIC..

Selecione a função TANH

Como um exercício de aplicações das funções hiperbólicas, verifique os valores seguintes:

SINH (2.5) = 6.05020.. ASINH(2.0) = 1.4436... ACOSH (2.5) = 6.13228.. ACOSH (2.0) = 1.3169... ACOSH (2.0) = 0.2027... ATANH(0.2) = 0.2027... ATANH(0.2) = 0.69314...

Novamente, o procedimento geral mostrado nesta seção pode ser aplicado para selecionar as operações em qualquer menu da calculadora.

Funções com números reais

Selecionar as opções 5. REAL.. no menu MTH com o sinalizador do sistema 117 configurado para as CHOOSE boxes, gera a seguinte lista do menu:

Finalmente, a opção 19. MATH leva o usuário de volta para o menu MTH. As funções restantes são agrupadas em seis grupos diferentes descritos abaixo.

Se o sinalizador do sistema 1 17 for configurado para menus SOFT, o menu de funções REAL será similar a este (modo usado ALG, a mesma tecla estará disponível no modo RPN):

A última opção, IIII, leva o usuário de volta ao menu MTH.

Funções de percentual

Estas funções são usadas para calcular os percentuais e valores relacionados como segue:

% (y,x) : calcula o percentual x de y

%CH(y,x) : calcula 100(y-x)/x, p. ex.: a alteração do porcentual, a

diferença entre dois números.

%T(y,x) : calcula 100 x/y, p. ex.: o porcentual total, a parte em

que um número (x) é de outro (y).

Estas funções exigem dois argumentos. Ilustramos o cálculo de %T(15,45), ex. cálculo 15% de 45. Assumimos que a calculadora é configurada para o modo ALG e que o sinalizador do sistema 117 é configurado para CHOOSE boxes. O procedimento é como seque:

← MTH	Selecione o menu MTH	
5	Selecione o menu 5. REAL	
3 103	Selecione a função 5. %T	
15	Insira o argumento	
· ·	9. 1 1 1 1	os
	argumentos	
4 5	Insira um segundo argumento	
ENTER	Calcule a função	

O resultado é mostrado a seguir:

No modo RPN, lembre-se de que este argumento y está localizado no segundo nível da pilha, enquanto que o argumento x está localizado no primeiro nível. Isto significa, que você deve inserir x primeiro e depois y, exatamente como no modo ALG. Assim, o cálculo de %T(15,45), no modo RPN e com o sinalizador do sistema 117 configurado para CHOOSE boxes, procedemos da sequinte forma:

Insira primeiro o argumento
Insira um segundo argumento
Selecione o menu MTH
Selecione o menu 5. REAL
Selecione a função <i>5. %T</i>

Nota: Os exercícios nesta seção ilustram o uso geral das funções da calculadora que têm 2 argumentos: A operação das funções que têm 3 ou mais argumentos pode ser generalizada destes exemplos.

Como um exercício de aplicações das funções percentuais, verifique os valores seguintes: %(5,20) = 1, %CH(22,25) = 13.6363..., %T(500,20) = 4

Mínimo e máximo

Use estas funções para determinar o valor mínimo e máximo de dois argumentos.

```
MIN(x,y) : valor mínimo de x e y
MAX(x,y) : valor máximo de x e y
Como exercício, verifique que MIN(-2,2) = -2, MAX(-2,2) = 2
```

Módulo

MOD: y mód. x = resto de y/x, ex. se x e y são números inteiros, y/x = d + r/x, onde d = quociente, r = resto. Neste caso, r = y mód. x.

Observe que MOD não é a uma função, mas um operador, ex. no modo ALG, MOD deve ser usado como y MOD × e não como MOD(y; ×).

Assim, a operação de MOD é similar a esta de +, -, ×, ÷.

Como um exercício, verifique se 15 MOD 4 = 15 mod 4 = resíduo de 15/4 = 3

Valor absoluto, sinal, mantissa, expoente, inteiro e partes fracionais

ABS(x): calcula o valor absoluto, |x|

SIGN(x): determina o sinal de x, ex. -1, 0 ou 1.

MANT(x): determina a mantissa de um número baseado no log₁₀.

XPON(x): determina a potência de 10 no número

IP(x) : determina a parte inteira de um número real

FP(x) : determina a parte fracional de um número real

Como um exercício, verifique que ABS(-3) = |-3| = 3, SIGN(-5) = -1, MANT(2540) = 2.540, XPON(2540) = 3, IP(2.35) = 2, FP(2.35) = 0.35.

Funções de arredondamento, truncamento, mínimo e máximo

RND(x,y) : arredonda y para casas decimais x

TRNC(x,y): truncar y para casas decimais x

FLOOR(x) : o número inteiro mais próximo menor ou iqual a x

CEIL(x): o número inteiro mais próximo maior ou igual a x

Como exercício, verifique que RND(1.4567,2) = 1,46, TRNC(1.4567,2) = 1,45, FLOOR(2,3) = 2, CEIL(2,3) = 3

Funções radianas para graus e graus para radianos

 $D\rightarrow R$ (x) : converte os graus em radianos $R\rightarrow D$ (x) : converte os radianos em graus

Como exercício, verifique que $D \rightarrow R(45) = 0.78539$ (ex. $45^{\circ} = 0.78539^{\text{rad}}$), $R \rightarrow D(1,5) = 85,943669$.. (ex. $1,5^{\text{rad}} = 85,943669$...).

Funções especiais

Opção 11. Special functions... no menu MTH inclui as funções seguintes:

GAMA: A função gama $\Gamma(\alpha)$

PSI: n-ézima derivada da função gama Psi: Função Digama, derivada de In(Gama)

<u>A função gama</u> é definida por $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$. Esta função é utilizada na matemática aplicada, ciência e engenharia, bem como na probabilidade e estatística.

Fatorial de um número

O fatorial de um número inteiro positivo n é definido como $n!=n\cdot(n-1)\cdot(n-2)\dots 3\cdot 2\cdot 1$, com 0!=1. A função fatorial está disponível na calculadora usando $\text{ALPHA} \rightarrow 2$. Em ambos os modos ALG e RPN, insira o número primeiro, seguido pela sequência $\text{ALPHA} \rightarrow 2$. Exemplo:

A função gama, definida acima, tem a propriedade que

$$\Gamma(\alpha) = (\alpha - 1) \Gamma(\alpha - 1)$$
, for $\alpha > 1$.

Portanto, pode ser relacionada ao fatorial de um número, ex..

 $\Gamma(\alpha) = (\alpha - 1)!,$

quando α for um número inteiro positivo. Podemos também usar a função Fatorial para calcular a função gama e vice-versa. Por exemplo, $\Gamma(5) = 4!$ ou 4 ALPHA \rightarrow 2 ENTER. A função Fatorial está disponível no menu MTH, até o menu 7. PROBABILITY..

A função PSI , $\Psi(x,y)$, representa a derivada y-th da função Digama, ex.

$$\Psi(n,x) = \frac{d^n}{dx^n} \psi(x)$$
, onde $\psi(x)$ é conhecida como a função Digama ou

função Psi. Para esta função, y deve ser um número inteiro positivo.

A função Psi, $\psi(x)$, ou função Digama é definida como $\psi(x) = \ln[\Gamma(x)]$.

Exemplos destas funções especiais são mostrados aqui usando ambos os modos ALG e RPN. Como um exercício, verifique se GAMMA(2,3) = 1,166711..., PSI(1.5,3) = 1,40909.. e Psi(1,5) = 3.64899739..E-2.

Estes cálculos são mostrados na sequinte tela:

:GAMMA(2.3) 1.1667119052 :PSI(1.5,3) 1.409091034 :Psi(1.5) 3.64899739786E-2

Constantes da calculadora

A seguir apresentamos as constantes matemáticas usadas pela sua calculadora:

- e: a base de logaritmos naturais
- i: a unidade imaginária, $i^{i2} = -1$.
- π . a proporção entre o comprimento do círculo e o seu diâmetro.
- MINR: o número real mínimo disponível para a calculadora.
- MAXR: o número real máximo disponível para a calculadora.

Para ter acesso a estas constantes, selecione a opção 11. CONSTANTS.. no menu MTH,

As constantes são listadas a seguir:

Selecionar qualquer uma destas entradas colocará o valor selecionado, se for um símbolo (ex. e, i, π , MINR ou MAXR) ou um valor (2.71.., (0,1), 3.14.., 1E-499, 9.99..E499) na pilha.

Observe que e está disponível no teclado como exp(1), ex. e^{x} p^{x} p^{x} , no modo ALG ou p^{x} e^{x} no modo RPN. Além disso, p^{x} disponível diretamente do teclado como p^{x} . Finalmente, p^{x} está disponível usando p^{x} .

Operações com unidades

Os números na calculadora podem ter unidades associadas a eles. Assim, é possível calcular os resultados envolvendo um sistema consistente de unidades e produzir um resultado com a combinação apropriada de unidades.

O menu UNITS

O menu unidades é lançado pela combinação de teclas (associadas com a tecla (a

A opção 1. Tools.. contém funções usadas para operar com as unidades (discutidas mais tarde). As opções 3. Length.. através de 17. Viscosity.. contém menus com um número de unidades para cada uma das quantidades descritas. Por exemplo, selecionar a opção 8. Force.. mostra os seguintes menus de unidade:

O usuário reconhecerá a maioria destas unidades (alguns ex. dina, não são usados freqüentemente hoje em dia) de suas aulas de física: N = Newtons, dyn = dinas, gf = gramas-força (para distinguir de massa-grama ou apenas grama, uma unidade de massa), kip = quilo-libra (1000 libras), lbf = libra-força (para distinguir da massa-libra), pdl = libra.

Para anexar um objeto de unidade a um número, o número deve ser seguido do sinal de sublinhado. Assim a força de 5 N será inserida como 5_N. Para operações abrangentes com unidades, o menu SOFT fornece uma forma mais conveniente de anexar as unidades. Altere o sinalizador do sistema 117 para menus SOFT (consulte o capítulo 1) e use a combinação de teclas próxima para obter os seguintes menus. Pressione xT para mover para a próxima página do menu.

Pressionar a tecla virtual correta abrirá o submenu das unidades para esta seleção em particular. Por exemplo, para o submenu (2011), as seguintes unidades estão disponíveis:

Pressionar a tecla virtual TITE o levará de volta para o menu UNITS.

Lembre-se de que você pode sempre listar todos os símbolos dos menus no visor usando (**), ex. para o conjunto (**) de unidades os seguintes símbolos serão listados:

Nota: Use a tecla MXT ou a sequência de teclas T para navegar através dos menus.

Unidades disponíveis

A seguinte lista de unidades está disponível no menu UNITS. O símbolo de unidade é mostrado primeiro seguido pelo nome da unidade entre parênteses.

COMPRIMENTO

m (metro), cm (centímetro), mm (milímetro), yd (jarda), ft (pé), in (polegada), Mpc (mega parsec), pc (parsec), lyr (ano-luz), au (unidade astronômica), km (quilômetro), mi (milha internacional), nmi (milha náutica), miUS (milha americana), chain (cadeia), rd (vara), fath (braça), ftUS (survey foot), Mil (Mil), μ (micron), Å (Angstrom), fermi (fermi)

<u>ÁREA</u>

m^2 (metro quadrado), cm^2 (centímetro quadrado), b (barn), yd^2 (jarda quadrada), ft^2 (pés quadrados), in^2 (polegada quadrada), km^2

(quilômetro quadrado), ha (hectare), a (are), mi^2 (milha quadrada), miUS^2 (milha quadrada americana), acre (acre)

VOLUME

m^3 (métrico cúbico), st (stere), cm^3 (centímetro cúbico), yd^3 (jarda cúbica), ft^3 (pés cúbico), in^3 (polegada cúbica), l (litro), galUK (galão inglês), galC (galão canadense), gal (galão americano), qt (quart), pt (pint), ml (milímetro), cu (US cup), ozfl (onça americana), ozUK (onça inglesa), tbsp (colher de sopa), tsp (colher de chá), bbl (barril), bu (hectolitro), pk (peck), fbm (pé cúbico)

<u>TEMPO</u>

yr (ano), d (dia), h (hora), min (minuto), s (segundo), Hz (hertz)

VELOCIDADE

m/s (metro por segundo), cm/s (centímetro por segundo), ft/s (pés por segundo), kph (quilômetro por hora), mph (milha por hora), knot (milha náutica por hora), c (velocidade da luz), ga (aceleração da gravidade)

<u>MASSA</u>

kg (quilograma), g (grama), Lb (libra-peso), oz (onça), slug (slug), lbt (libra troy), ton (ton curta), tonUK (ton longa), t (ton métrica), ozt (polegada troy), ct (carat), grain (grão), u (massa atômica unificada), mol (mole)

FORCA

N (newton), dyn (dine), gf (grama-força), kip (-quilograma-força), lbf (libra-força), pdl (libra-massa)

ENERGIA

J (joule), erg (erg), Kcal (quilocaloria), Cal (caloria), Btu (btu internacional), ftxlbf (libra-pé), therm (termal EEC), MeV (mega eletro-volt), eV (eletro-volt)

POTÊNCIA

W (watt), hp (cavalo-vapor),

PRESSÃO

Pa (pascal), atm (atmosfera), bar (bar), psi (libras por polegada quadrada), torr (torr), mmHg (milímetros de mercúrio), inHg (polegadas de mercúrio), inH20 (polegadas de água),

<u>TEMPERATURA</u>

°C (grau Celsius), °F (grau Fahrenheit), K (Kelvin), °R (grau Rankine),

CORRENTE ELÉTRICA (medidas elétricas)

V (volt), A (ampère), C (coulomb), Ω (ohm), F (farad), W (watt), Fdy (faraday), H (henry), mho (mho), S (siemens), T (tesla), Wb (weber)

<u>ÂNGULO (medidas angulares planar e sólida)</u>

° (grau sexagesimal), r (radiano), grad (grados), arcmin (minuto de arco), arcs (segundo de arco), sr (esterradiano)

LUZ (medidas de iluminação)

fc (footcandle), flam (footlambert), lx (lux), ph (foto), sb (stilb), lm (lúmem), cd (candela), lam (lambert)

<u>RADIAÇÃO</u>

Gy (gray), rad (rad), rem (rem), Sv (sievert), Bq (becquerel), Ci (curie), R (roentgen)

VISCOSIDADE

P (poise), St (stokes)

Unidades não listadas

Unidades não listadas no menu Units, mas disponíveis na calculadora incluem: gmol (gram-mole), Ibmol (pound-mole), rpm (revoluções por minuto), dB (decibéis). Estas unidades são ativadas usando o menu 117,02 no modo ALG ou menu 117,02 mm no modo RPN. O menu é mostrado no visor abaixo (use as teclas para mostrar os símbolos no visor):

Estas unidades são também acessíveis através do catálogo, por exemplo:

gmol: (AT (ALPHA) (G) | lbmol: (AT (ALPHA) (T) (L) | rpm: (ALPHA) (T) (R) | dB: (ALPHA) (T) (D)

Converter as unidades de base

Para converter qualquer uma destas unidades para as unidades padrões no sistema SI, use a <u>função UBASE</u>. Por exemplo, para saber qual é o valor de *1 poise* (unidade de viscosidade) nas unidades SI, proceda da seguinte forma:

No modo ALG, o sinalizador de sistema 117 é configurado para CHOOSE boxes:

Selecione o menu UNITS UNITS UNITS Selecione o menu TOOLS Selecione a função UBASE Inserir 1 e sublinhe Selecione o menu UNITS UNITS UNITS Selecione a opção VISCOSITY Selecione o menu UNITS Converta as unidades **ENTER**

O resultado é apresentado no seguinte visor (ex. 1 poise = 0, 1 kg/($m \cdot s$)):

No modo RPN, o sinalizador de sistema 117 é configurado para CHOOSE boxes:

Inserir 1 (não sublinhe)

Selecione o menu UNITS
Selecione a opção VISCOSITY
Selecione a unidade P (poise)
Selecione o menu UNITS
Selecione o menu UNITS
Selecione o menu TOOLS
Selecione a função UBASE

No modo ALG, o sinalizador de sistema 117 é configurado para menus SOFT:

Selecione o menu UNITS
Selecione o menu TOOLS
Selecione a função UBASE

Insira 1 e sublinhe

Selecione o menu UNITS

Selecione a opção VISCOSITY

Selecione a unidade P (poise)

ENTER Converta as unidades

No modo RPN, o sinalizador de sistema 117 é configurado para menus SOFT:

Insira 1 (não sublinhe)

Selecione o menu UNITS

Selecione a opção VISCOSITY

Selecione a unidade P (poise)

Selecione o menu UNITS

Selecione o menu UNITS

Selecione o menu TOOLS

Selecione a função UBASE

Anexar as unidades aos números

Para anexar o objeto da unidade ao número, o número deve ser seguido por um sublinhado (, tecla(8,5)). Assim a força de 5 N será inserida como 5_N.

Aqui está a sequência de etapas para inserir este número no modo ALG, o sinalizador do sistema 117 é configurado para CHOOSE boxes:

Insira um número e sublinhe
Selecione o menu UNITS
Selecione as unidades de força (8. Force..)
Selecione Newtons (N)
Insira a quantidade com as unidades na pilha

O visor será apresentado como segue:

Nota: Se esquecer de sublinhar o resultado será a expressão 5*N, onde N representa aqui um nome possível de variável e não Newtons.

Para inserir esta mesma quantidade com a calculadora no modo RPN use as seguintes teclas:

Insira o número (não sublinhe)

Acesse o menu UNITS

Selecione as unidades de força (8. Force..)

Selecione Newtons (N)

Observe que o sublinhado é inserido automaticamente quando o modo RPN estiver ativo. O resultado é apresentado no seguinte visor:

Como indicado anteriormente, se o sinalizador de sistema 117 for configurado para menus *SOFT*, então o menu UNITS será mostrado como símbolos para as teclas virtuais. Esta configuração é muito conveniente para as operações extensivas com as unidades.

As seqüências de teclas para inserir as unidades ao selecionar a opção *SOFT* menu em ambos os modos RPN e ALG, são ilustradas a seguir. Por exemplo, no modo ALG, para inserir a quantidade 5_N use:

Insira um número e sublinhe
Acesse o menu UNITS

NXT II ZU 30 Z	Selecione as unidades de força
	Selecione Newtons (<i>N</i>)
ENTER	Insira a quantidade com as unidades na
	pilha

A mesma quantidade inserida no modo RPN usa as seguintes teclas:

5	Insira um número (não sublinhe)
UNITS UNITS	Acesse o menu UNITS
NXT WINITE	Selecione as unidades de força
	Selecione Newtons (N)

Nota: Vcê pode inserir uma quantidade com as unidades digitando o sublinhado e as unidades com a tecla (ALPHA), ex. 5 (7) (ALPHA) (N) produzirá a seguinte entrada de dados: 5 (1)

Prefixos das unidades

Você pode inserir os prefixos para as unidades de acordo com a seguinte tabela de prefixos do sistema SI.

A abreviação do prefixo é mostrada primeiro, seguido por seu nome e expoente x no fator 10^x correspondente para cada prefixo:

Prefixo	Nome	х	Prefixo	Nome	х
Y	yotta	+24	d	deci	-1
Z	zetta	+21	С	centi	-2
Е	exa	+18	m	milli	-3
P	peta	+15	μ	micro	-6
T	tera	+12	n	nano	-9
G	giga	+9	р	pico	-12
M	mega	+6	f	femto	-15
k,K	kilo	+3	а	atto	-18
h,H	hecto	+2	Z	zepto	-21
D(*)	deka	+1	У	yocto	-24

(*) No sistema SI, este prefixo é *da* em vez de *D*. Use D para deka na calculadora.

Para inserir estes prefixos digite apenas o prefixo usando a tecla (APPA). Por exemplo, para inserir 123 pm (1 picômetro), use:

```
123 P—ALPHA (T) P ALPHA (T) M
```

Use UBASE para converter o resultado da unidade padrão (1 m) em:

```
: 123·1_pm
123_pm
: UBASE(ANS(1))
. 00000000123_m
convalusasa uwa uraca eunaa uwaa
```

Operações com unidades

Quando a quantidade e as unidades forem inseridas na pilha, é possível usálas nas operações similares para os números simples, exceto que não poderão ser usadas como argumentos de funções (digamos, SQ ou SIN). Portanto, tentar calcular LN(10_m) produzirá uma mensagem de erro: *Error*: *Tipo de argumento inválido*

Aqui estão alguns exemplos de cálculos usando o modo de operação ALG. Observe que, ao multiplicar ou dividir as quantidades com as unidades, é necessário incluir cada quantidade com as unidades entre parênteses. Assim, para inserir, por exemplo, o produto $12,5 \text{m} \times 5,2$ jd, digite-o para ler $(12,5\text{m})^*(5,2\text{jd})$ [NTER]:

que mostra como 65_(m·jd). Para converter as unidades do sistema SI use a função UBASE:

Nota: Lembre-se de que a variável ANS(1) está disponível através da combinação de tecla (4) ANS (associada com a tecla (MTER)).

Para calcular a divisão, digamos, 3250 mi / 50 h, insira-a como (3250_mi)/(50_h) $_{\text{ENTE}}$:

que transformada para as unidades SI com a função UBASE, produz:

Adição e subtração podem ser executadas, no modo ALG, sem usar os parênteses, ex. 5 m + 3200 mm, pode ser apenas inserida como 5_m + 3200_mm [MTB]:

Expressões mais complicadas exigem o uso de parênteses, ex.

 $(12_mm)*(1_cm^2)/(2_s)$ ENTER:

Os cálculos de pilha no modo RPN não exigem que você inclua os termos diferentes nos parênteses, ex.

$$12_m$$
 [NTER] $1,5_jd$ [ENTER] \times 3250_mi [ENTER] 50_h [ENTER] \div

Estas operações produzem o seguinte resultado:

Além disso, tente as seguintes operações:

$$5_m \ \hbox{\tiny \it ENTER} \ 3200_mm \ \hbox{\tiny \it ENTER} \ + \\ 12_mm \ \hbox{\tiny \it ENTER} \ 1_cm^2 \ \hbox{\tiny \it ENTER} \ \times \ 2_s \ \hbox{\tiny \it ENTER} \ \div \\$$

Estas duas últimas operações produzem o seguinte resultado:

Nota: As unidades não são permitidas nas expressões inseridas no Editor de Equação.

Ferramentas de manipulação de unidades

O menu de UNITS contém um submenu TOOLS que fornece as seguintes funções:

CONVERT(x,y): converte objeto de unidade x para unidades de

objeto y

UBASE(x): converte objeto de unidade x para unidades SI

UVAL(x): extrai o valor de objeto da unidade x
UFACT(x,y): fatoa uma unidade x do objeto unidade y
→UNIT(x,y): combina o valor de x com as unidades de y

A função UBASE foi discutida em detalhes em uma seção anterior neste Capítulo. Para acessar qualquer uma destas funções siga os exemplos fornecidos anteriormente para a UBASE. Observe que, enquanto a função UVAL exige apenas um argumento, as funções CONVERT, UFACT e →UNIT exigem dois argumentos.

Tente um dos seguintes exercícios nas suas configurações favoritas da calculadora. O resultado mostrado abaixo foi desenvolvido no modo ALG com o sinalizador de sistema 117 configurado para menu *SOFT*:

Exemplos de CONVERT

Estes exemplos produzem o mesmo resultado, ex. para converter 33 watts para btu

Estas operações são mostradas no visor como:

Exemplos de UVAL:

$$\begin{array}{c} \text{UVAL}(25_\text{ft/s}) & \text{ENTER} \\ \text{UVAL}(0.021_\text{cm}^3) & \text{ENTER} \\ \text{: UVAL}\Big[25\cdot1_\frac{\text{ft}}{\text{s}}\Big] & 25. \\ \text{: UVAL}\Big[.021_\text{cm}^3\Big] & .021 \\ \end{array}$$

Exemplos de UFACT

Exemplos de →UNIT

```
→UNIT(11.3,1_mph) (ENTE)

: →UNIT(25,1·1_m)
25_m
10.3 (11.3,12·1·1_mph)
11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3 (11.3
```

Constantes físicas na calculadora

Juntamente com o tratamento das unidades, discutimos o uso de constantes físicas que estão disponíveis na memória da calculadora. As constantes físicas estão contidas em *constants library* ativadas com o comando CONLIB. Para lançar este comando você pode simplesmente digitá-lo na pilha:

ou você pode selecionar o comando CONLIB do catálogo de comando, como segue: Primeiro, lance o catálogo usando: () CAT (ALPHA) () . Depois, use as teclas de setas () para selecionar CONLIB. Finalmente, pressione a tecla () () Pressione () , se for necessário.

O visor da biblioteca de constantes é similar à figura abaixo (use a tecla de seta para baixo para navegar através da biblioteca):

As teclas correspondentes para o visor CONSTANTS LIBRARY incluem as seguintes funções:

SI quando selecionado, os valores das constantes são mostrados em unidades SI

ENGL quando selecionado, os valores das constantes são mostrados em unidades inglesas (*)

UNIT quando selecionado, as constantes são mostradas como unidades anexadas (*)

VALUE quando selecionado, as constantes são mostradas sem unidades

→STK copia valores (com ou sem as unidades) para a pilha

QUIT sai da biblioteca de constantes

(*) É ativado apenas se a função VALUE estiver ativa.

Esta é a forma em que a parte superior do visor CONSTANTS LIBRARY é apresentado quando a opção VALUE é selecionada (unidades no sistema SI):

Pra ver os valores das constantes no sistema inglês (ou imperial), pressione a opção IIII:

Se selecionamos a opção UNITS (pressione **IIIIII**) apenas os valores são mostrados (as unidades inglesas são selecionadas neste caso):

Para copiar os valores de Vm para a pilha, selecione o nome da variável, pressione ! De e depois De e depois Para a calculadora configurada para ALG, o visor será apresentado desta forma:

O visor mostra o que é chamado de um *valor etiquetado*, Vmª 359. 0394. Aqui, Vm, é a *etiqueta* deste resultado. Qualquer operação aritmética com este número ignorará a etiqueta. Tente, por exemplo:

As seguintes teclas são usadas na mesma operação do modo RPN (depois que o valor de Vm for extraído da biblioteca de constantes):

Funções físicas especiais

O menu 117, ativado no modo ALG ou menu 117 MENU [MER] no modo RPN, produz o seguinte menu (os símbolos são listados no visor usando (**)** (**):

As funções incluem:

ZFACTOR: função de fator Z de compressão de gás

FANNING: O fator do atrito de fanning para fluxo de fluido DARCY: Fator do atrito de Darcy-Weisbach para fluxo do fluido

FOλ: Função de potência da emissão do corpo negro

SIDENS: Densidade intrínseca de silicone TDELTA: Função delta de temperatura

Na segunda página deste menu (pressione *NT*) encontraremos os seguintes itens:

Nesta página existe uma função (TINC) e um número de unidades descritos em uma seção anterior sobre unidades (veja acima). A função de interesse é:

TINC: comando de incremento de temperatura

De todas as funções disponíveis neste MENU (menu UTILITY), a saber, ZFACTOR, FANNING, DARCY, FOλ, SIDENS, TDELTA e TINC, as funções FANNING e DARCY são descritas no capítulo 6 sob o título contexto da solução de equações de fluxo. As funções restantes são descritas a seguir.

Função ZFACTOR

A função ZFACTOR calcula o fator de correção de compressibilidade do gás para o comportamente não ideal do gás de hidrocarboneto. A função é chamada usando ZFACTOR(x_T , y_P), onde x_T é a temperatura reduzida, i.e. a proporção da temperatura real para a temperatura pseudo- crítica e y_P é a pressão reduzida, ex. a proporção da pressão real para a pressão pseudo-

crítica. O valor de x_T deve ficar entre 1,05 e 3,0, enquanto o valor de y_P deve ficar entre 0 e 30. A seguir um exemplo no modo ALG:

: ZFACTOR(2.5,12.5) 1.25980762398 EFACT|FMONT|OMEST| FOR | STOEN|TICELET

Função FOλ

A função F0 λ (T, λ) calcula a fração (sem dimensão) da energia de emissão total do corpo negro (black body) em temperatura T entre os comprimentos de ondas 0 e λ . Se não anexar nenhuma unidade ao T e λ , fica implícito que T está em K e λ em m. A seguir um exemplo no modo ALG:

: F0x(452.,.00001) .567343728392 zracijrannijoarcy fox sidenjioelt

Função SIDENS

A função SIDENS(T) calcula a densidade intrínseca do silicone (em unidades de 1/cm³) como uma função da temperatura T (T em K), para T entre 0 and 1685 K. Por exemplo,

SIDENS(450.) 6.07995618238E13 EFACT|FAMMIONACY| FOR SIDEN|TOELT

Função TDELTA

A função TDELTA (T_0,T_f) produz o incremento de temperatura T_f-T_0 . O resultado é devolvido com as mesmas unidades de T_0 , se houver. Caso contrário, a função retorna apenas a diferença em números. Por exemplo,

:TDELTA(25_°F,52_°C) -100.6_°F =FACT|FANDIOARCY| FOR |SIGN|TOELT

O objetivo desta função é facilitar o cálculo das diferenças de temperatura dada em unidades diferentes. Caso contrário, a função calcula apenas uma subtração, ex.

```
: TDELTA(250.,520.)
-270.
EFACT|FANNIOARCY| FOX |SIGEN|TOELT
```

Função TINC

A função TINC($T_0,\Delta T$) calcula T_0+DT . A operação desta função é similar a função TDELTA em relação ao resultado nas unidades de T_0 . Caso contrário, a função devolve uma simples adição de valores, ex.

Definir e usar funções

Os usuários podem definir suas próprias funções usando o comando DEF disponível através da sequência de teclas (associadas com a tecla). A função deve ser inserida no seguinte formato:

Function_name(arguments) = expression_containing_arguments

Por exemplo, podemos definir uma função simples $H(x) = \ln(x+1) + \exp(-x)$. Suponha que você precisa avaliar esta função para um número de valores discretos e, portanto, você deseja pressionar um único botão e obter o resultado desejado sem ter que digitar a expressão no lado direito para cada valor separado. No exemplo seguinte, presumimos que você definiu sua calculadora para o modo ALG. Insira a seguinte seqüência de teclas:

O visor será similar a este:

Pressione a tecla Pressione Pressi

Assim a variável H contém um programa definido por:

$$<< \rightarrow x$$
 'LN(x+1) + EXP(x)' >>

Este é um programa simples na linguagem de programação padrão da HP série 48 G e também incorporado a série HP 49 G. Esta linguagem de programação é chamada UserRPL. O programa mostrado acima é relativamente simples e consiste de duas partes, contidas entre os recipientes do programa << >> :

Entrada de dados: → x → x
 Processo: 'LN(x+1) + EXP(x) '

Isto deve ser interpretado como: insira um valor que é temporariamente atribuído ao nome x (mencionado como uma varável local), avalie a expressão entre aspas que contém esta variável local e mostre a expressão avaliada.

No modo RPN, para ativar a função insira o argumento primeiro e depois pressione a tecla virtual correspondente ao nome da variável . Por exemplo, você pode tentar: 2 [NTER] . Os outros exemplos mostrados acima podem ser inseridos usando: 1 • 2 [NTER] . .

As funções podem ter mais de 2 argumentos. Por exemplo, o visor abaixo mostra a definição desta função $K(\alpha,\beta)=\alpha+\beta$, e sua avaliação com os argumentos $K(\sqrt{2},\pi)$ e K(1.2,2.3):

O conteúdo da variável K é: $<< \rightarrow \alpha \beta '\alpha + \beta' >>$.

Funções definidas por mais de uma expressão

Nesta seção discutiremos o tratamento de funções que são definidas por duas ou mais expressões. Um exemplo de tais funções seria

$$f(x) = \begin{cases} 2 \cdot x - 1, & x < 0 \\ x^2 - 1, & x > 0 \end{cases}$$

A calculadora fornece a função IFTE (Se-Então-Ou) para descrever tais funções.

A função IFTE

A função IFTE é escrita como IFTE(condição, operação_se_verdadeira, operação_se_falsa)

Se a condição for verdadeira então a operação_se_verdadeira é feita ou então o é a operação_se_falsa. Por exemplo, podemos escrever 'f(x) = IFTE(x>0, x^2-1, 2*x-1)' para descrever a função listada acima. A função IFTE é acessível a partir do catálogo de funções () CAT). O símbolo '>' (maior do que) está disponível como (associada com a tecla). Para definir esta função no modo ALG use o comando:

$$DEF(f(x) = IFTE(x>0, x^2-1, 2*x-1))$$

então, pressione \mathbb{E}^{NTER} . No modo RPN, digite a definição da função entre as apóstrofes: ' $f(x) = IFTE(x>0, x^2-1, 2*x-1)$ '

depois pressione 🗇 💯 .

Pressione para recuperar seu menu de variáveis. A função deve estar disponível no seu menu de teclas virtuais. Pressione para ver o programa resultante:

$$<< \rightarrow x$$
 'IFTE(x>0, x^2-1, 2*x-1)' >>

Para avaliar a função no modo ALG, digite o nome da função, f, seguido pelo número onde deseja avaliá-la, ex., f(2), depois pressione No modo RPN, insira um número e pressione Verifique, por exemplo, que f(2) = 3, enquanto f(-2) = -5.

As funções IFTE combinadas

Programar uma função mais complicada como

$$g(x) = \begin{cases} -x, & x < -2\\ x+1, & -2 \le x < 0\\ x-1, & 0 \le x < 2\\ x^2, & x \ge 2 \end{cases}$$

você pode combinar diversos níveis de função IFTE, i.e., $g(x) = IFTE(x<-2, -x, IFTE(x<0, x+1, IFTE(x<2, x-1, x^2)))'$,

Defina esta função por qualquer um dos meios apresentados acima e verifique se g(-3) = 3, g(-1) = 0, g(1) = 0, g(3) = 9.

Capítulo 4 Cálculos com números complexos

Este capítulo mostra os exemplos de cálculos e aplicações das funções para os números complexos.

Definições

Um número complexo z é escrito como z = x + iy, onde x e y são números reais e i é a unidade imaginária definida por $i^2 = -1$. O número complexo x+iy tem uma parte real, x = Re(z), e uma parte imaginária, y = Im(z). Podemos imaginar um número complexo como um ponto P(x,y) no plano x-y com o eixo x mencionado como eixos reais e o eixo y como os eixos imaginários. Assim, um número complexo representando na forma x+iy é considerado como sua representação cartesiana. Uma representação cartesiana alternativa é o par ordenado z = (x,y). Um número complexo pode ser também representado nas coordenadas polares (representação polar) como $z = re^{i\theta} = r \cdot cos\theta + i r \cdot sin\theta$, onde $r = |z| = \sqrt{x^2 + y^2}$ é a magnitude do número complexo z, e $\theta = Arg(z) = arctan(y/x)$ é o argumento do número complexo z. A relação entre a representação cartesiana e polar dos números complexos é dada pela fómula de Euler. $e^{i\theta} = \cos \theta + i \sin \theta$. O conjugado complexo de um número complexo $\overline{z} = x - iy = re^{-i\theta}$, é $z = x - i\theta$ $iy = re^{-i\theta}$. O conjugado complexo de i pode ser visto como a reflexão de z sobre o eixo real (x). De forma similar, o negativo de z, $-z = -x-iy = -re^{i\theta}$ pode ser visto como a reflexão de z sobre a origem.

Configurar a calculadora para modo COMPLEX

O modo COMPLEX será selecionado se o visor CAS MODES mostrar a opção *Complex* marcada, ex.

Pressione duas vezes para retornar a pilha.

Inserir números complexos

Os números complexos na calculadora podem ser inseridos nas duas representações cartesianas, a saber, x+iy ou (x,y). Os resultados na calculadora serão mostrados no formato de pares ordenados, ex. (x,y). Por exemplo, com a calculadora no modo ALG, o número complexo (3,5,-1,2), é inserido como:

Um número complexo pode também ser inserido na forma *x+iy*. Por exemplo, no modo ALG, *3.5-1.2i* é inserido como:

3 • 5 — 1 • 2 × ← i ENTER

O seguinte visor aparece depois de inserir estes números complexos:

(Observe que a tecla de alteração de sinal é inserida depois que o número 1,2 for inserido, na ordem inversa como no exercício modo ALG) e

· 3 · 5 - / · 2 × P / ENTER

(observe que é necessário inserir uma apóstrofe antes de digitar o número 3,5-1,2i no modo RPN). O visor RPN resultante será:

2: (3.5,-1.2) 1: 3.5-1.2:1 Observe que a última entrada mostra um número complexo na forma *x+iy*. Isto acontece porque o número foi inserido entre as apóstrofes representando uma expressão algébrica. Para avaliar este número use a tecla EVAL (EVAL).

S: 2: (3.5,-1.2) 1: (3.5,-1.2) EDIT VIEW RCL STOP PURGE|CLERR

Logo que a expressão algébrica for avaliada, você recupera o número complexo (3,5,1,2).

A representação polar de um número complexo

O resultado mostrado acima representa uma representação cartesiana (retangular) do número complexo 3,5-1,2i. Uma representação polar é possível se alterarmos o sistema de coordenadas para cilíndrico ou polar, usando a função CYLIN. Você pode encontrar esta função no catálogo (P CAT). Alterar para polar mostra o resultado:

2: 1: (3.7,4.330297354829) BOIL VIEW STACK ROL PURGEOLEAR

Para este resultado a medida angular é configurada para radianos (você pode alterar sempre os radianos usando a função RAD). O resultado mostrado acima representa a magnitude 3,7 e um ângulo 0,33029.... O símbolo do ângulo (∠) é mostrado na frente da medida do ângulo.

Uma vez que o sistema da calculadora é definido para retangular (ou cartesiano), a calculadora converte automaticamente o número inserido para

as coordenadas cartesianas, ex., $x = r \cos \theta$, $y = r \sin \theta$, resultando, neste caso, em (0,3678...,5,18...).

Por outro lado, se o sistema de coordenada for definido para coordenadas cilíndricas (use CYLIN), inserir um número complexo (x,y), onde x e y são números reais, produzirá uma representação polar. Por exemplo, nas coordenadas cilíndricas, insira o número (3.,2.). A figura abaixo mostra a pilha RPN antes e depois de inserir este número:

Operações simples com números complexos

Os números complexos podem ser combinados usando as quatro operações fundamentais ($+-\times\div$). O resultado segue as normas da álgebra com uma ressalva que $i^2=-1$. As operações com números complexos são similares àquelas com números reais. Por exemplo, com a calculadora no modo ALG e o CAS configurado para *Complex*, tentaremos a seguinte soma: (3+5i)+(6-3i):

Observe que as partes reais (3+6) e imaginárias (5-3) são combinadas juntamente e o resultado dado como um par ordenado com a parte real 9 e imaginária 2. Tente as seguintes operações sozinho:

$$(5-2i) - (3+4i) = (2,-6)$$

 $(3-i) \cdot (2-4i) = (2,-14);$
 $(5-2i)/(3+4i) = (0,28,-1,04)$
 $1/(3+4i) = (0,12,-0,16);$

Notas

O produto de dois números é representado por: $(x_1+iy_1)(x_2+iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$.

A divisão de dois números complexos é conseguida pela multiplicação de ambos os numerador e denominador pelo conjugado complexo do denominador, ex.

$$\frac{x_1 + iy_1}{x_2 + iy_2} = \frac{x_1 + iy_1}{x_2 + iy_2} \cdot \frac{x_2 - iy_2}{x_2 - iy_2} = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + i \cdot \frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}$$

Assim, a função inversa INV (ativada com a tecla 🐚) é definida como

$$\frac{1}{x+iy} = \frac{1}{x+iy} \cdot \frac{x-iy}{x-iy} = \frac{x}{x^2+y^2} + i \cdot \frac{y}{x^2+y^2}$$

Alterar o sinal de um número complexo

Alterar o sinal de um número complexo pode ser conseguido usando a tecla (+/-), ex. -(5-3i) = -5 + 3i

Inserir o número imaginário da unidade

Para inserir o tipo do número imaginário da unidade: 🕤 📜

Observe que o número *i* é inserido como um par ordenado (0, 1) se o CAS for configurado para o modo APPROX. No modo EXACT, o número imaginário da unidade é inserido como *i*.

Outras operações

As operações tais como magnitude, argumento, partes reais ou imaginárias e o conjugado complexo estão disponíveis nos menus CMPLX detalhados posteriormente.

O menu CMPLX

Existem dois menus CMPLX (números CoMPLeXos) disponíveis nesta calculadora. Um está disponível através do menu MTH (introduzido no capítulo 3) e outro diretamente no teclado (). Os dois menus CMPLX são apresentados a seguir.

Menu CMPLX através do menu MTH

Presumindo que o sinalizador do sistema 117 esteja configurado para **CHOOSE boxes** (consulte o capítulo 2), o submenu CMPLX dentro do menu MTH é acessado usando:

MTH 9 MTH 9 LAMBER . A seguinte seqüência de telas ilustra estas etapas:

O primeiro menu (opções de 1 a 6) mostra as seguintes funções:

RE(z) : Parte real de um número complexo

IM(z) : Parte imaginária de um número complexo

 $C \rightarrow R(z)$: Toma um número complexo (x,y) e separa-o em suas partes real e

imaginária

 $R \rightarrow C(x,y)$: Forma o número complexo (x,y) dos números reais x e y

ABS(z) : Calcula a magnitude de um número complexo ou o valor absoluto

de um número real.

ARG(z) : Calcula o argumento de um número complexo.

As opções restantes (opções de 7 a 10) são as seguintes:

SIGN(z): Calcula um número complexo da magnitude da unidade como

z/|z|.

NEG : Altera o sinal de z

CONJ(z) : Produz o conjugado complexo de z

Exemplos das aplicações destas funções são mostrados a seguir. Lembre-se de que no modo ALG, a função deve preceder o argumento, enquanto que no modo RPN você insere o argumento primeiro e depois seleciona a função. Alem disso, lembre-se de que você pode obter estas funções como menus virtuais alterando as configurações do sinalizador do sistema 117 (consulte o capítulo 3).

O primeiro visor mostra as funções RE, IM e C→R. Observe que a última função devolve uma lista {3. 5.} representando os componentes real e imaginário do número complexo:

:RE(3.-2.·i) 3. :IM(3.-2.·i) -2. :C→R(3.+5.·i) (3.5.)

A seguinte tela mostra as funções R→C, ABS e ARG. Observe que a função ABS é traduzida para |3.+5.·i|, a notação do valor absoluto. Além disso, o resultado da função ARG, que representa um ângulo, será dado na unidade de medida do ângulo atualmente selecionada. Neste exemplo, ARG(3.+5.·i) = 1,0303... é dado em radianos.

(3.5.)

R+C(5.,2.)

(5.,2.)

(5.,2.)

5.83095189485

ARG(3.+5.·i)

1.03037682652

RE IN C+R R+C ASS ARG

Na próxima tela apresentamos os exemplos de funções SIGN, NEG (que é mostrado como sinal negativo -) e CONJ.

1.03037682652 :SIGN(-2.+3.i) (-.554700196225,.83205* :-(-2.+3.i) :CONJ(-2.+3.i) (-2.,-3.) sign mag cons

Menu CMPLX no teclado

O segundo menu CMPLX é acessível usando a opção right-shift associada com a tecla , ex. Com o sinalizador do sistema 117 configurado para CHOOSE boxes, o menu CMPLX do teclado é mostrado conforme os seguintes visores:

O menu resultante inclui algumas das funções já apresentadas na seção anterior, a saber, ARG, ABS, CONJ, IM, NEG, RE e SIGN. Inclui também a função *i* que serve ao mesmo propósito da combinação de teclas (1) . i.e. inserir o número imaginário da unidade *i* na expressão.

O menu CMPLX baseado no teclado é uma alternativa para o menu MTH-CMPLX baseando em MTH que contém as funções básicas do número complexo. Tente os exemplos mostrados anteriormente usando o menu CMPLX baseado no teclado para praticar.

Funções aplicadas a números complexos

Muitas das funções baseadas no teclado definidas no capítulo 3 para os números reais, ex. SQ, ,LN, e*, LOG, 10*, SIN, COS, TAN, ASIN, ACOS, ATAN, podem ser aplicadas aos números complexos. O resultado é outro número complexo, conforme ilustrado nos seguintes exemplos. Para aplicar estas funções use o mesmo procedimento como apresentado para os números reais (consulte o capítulo 3).


```
:SIN(4.-3.·i)
(-7.61923172032,6.5481
:COS(-5.+7.·i)
(155.536808519,-525.79
:TAN(8.+3.·i)
(-1.43408158162E-3,1.0
```

```
:ASIN(7.+8.·i)
(.71663915401,3.057141)
:ACOS(8.+3.·i)
(.361040042712,-2.8357)
:ATAN(-1.+2.·i)
(-1.33897252229,.40235)
```

Nota: Ao usar as funções trigonométricas os números complexos os argumentos não são mais ângulos. Portanto, a medida angular selecionada para a calculadora não tem validade nestas funções com argumentos complexos. Para compreender como as funções trigonométricas e outras funções são definidas para os números complexos, consulte um livro sobre variáveis complexas.

Funções do menu MTH

As funções hiperbólicas e suas inversas, como também Gama, PSI e Psi (funções especiais) foram apresentadas e aplicadas a números reais no capítulo 3. Estas funções podem também ser aplicadas a números complexos seguindo o procedimento apresentado no capítulo 3. Alguns exemplos são mostrados a seguir:

```
: ASINH(7.-9..i)
(3.12644592412,-.90788
: ACOSH(3..i)
(1.81844645923,1.57079
: ATANH(1.-6..i)
(2.63401289145E-2,-1.4)
```

A tela seguinte mostra que estas funções EXPM e LNP1 não se aplicam aos números complexos. Entretanto, as funções GAMMA, PSI e Psi aceitam os números complexos:

```
:EXPM(4.-5.·i)
:EXPM(4.-5.·i)
"Bad Argument Type"
:LNP1(-9.·i)
"Bad Argument Type"
```

```
:GAMMA(4.+5..i)
(.149655327961,.314603
:PSI(1.-i,3.)
(-1.52287444895,.31728
:Psi(5.+9.i)
(2.30854964207,1.10681)
```

Função DROITE: equação de uma linha reta

A função DROITE toma como argumento dois números complexos, por exemplo, x_1+iy_1 e x_2+iy_2 e retorna para a equação da reta, a saber, y=a+bx que contém os pontos (x_1,y_1) e (x_2,y_2) . Por exemplo, o segmento de reta entre os pontos A(5,-3) e B(6,2) pode ser encontrada conforme a seguir (exemplo no modo algébrico):

A função DROITE é encontrada no catálogo de comandos ().

Usa EVAL(ANS(1)) simplifica o resultado para:

Capítulo 5

Operações algébricas e aritméticas

Um objeto algébrico é qualquer número, nome de variável ou expressão algébrica que pode ser influenciado, manipulado e combinado de acordo com as normas da álgebra. Exemplos de objetos algébricos são apresentados a seguir:

Um número : 12,3, 15,2_m, 'π', 'e', 'i'
 Um nome de variável : 'a', 'ux', 'width', etc.

Uma expressão : 'p*D^2/4','f*(L/D)*(V^2/(2*g))',
 Uma equação : 'Q=(Cu/n)*A(y)*R(y)^(2/3)*So^0.5'

Inserir objetos algébricos

Os objetos algébricos podem ser criados digitando o objeto entre aspas simples no nível 1 da pilha ou usando o Editor de Equação \overrightarrow{P} . Por exemplo, para inserir o objeto algébrico ' $\pi^*D^2/4$ ' diretamente no nível 1 da pilha use: \cancel{T} \cancel{X} \cancel{X}

Um objeto algébrico pode também ser construído no Editor de Equação e depois enviado para a pilha. A operação do Editor de Equação foi descrita no capítulo 2. Como um exercício, construa o seguinte objeto algébrico no editor de equação:

Depois de construir o objeto, pressione para exibí-lo na pilha (modos ALG e RPN mostrados abaixo):

Operações simples com objetos algébricos

Os objetos algébricos podem ser adicionados, subtraídos, multiplicados e divididos (exceto pelo zero), elevados à potência, usado como argumentos por uma variedade de funções padrões (exponencial, logarítmica, trigonométrica, hiperbólica, etc), como faria com qualquer número real ou complexo. Para demonstrar as operações básicas com os objetos algébricos, criemos um par de objetos, digamos ' π^*R^2 ' e ' $g^*t^2/4$ ' e armazene-os em variáveis A1 e A2 (consulte o capítulo 2 para aprender como criar variáveis e armazenar valores neles. Aqui apresentamos as teclas para armazenar as variáveis A1 no modo ALG: π

Depois de armazenar a variável A2 e pressionar a tecla a tela mostrará as variáveis como seque:

No modo ALG, as seguinte teclas mostrarão um número de operações com os algébricas contidas nas variáveis **EZE** (pressione para recuperar o menu da variável):

Os mesmos resultados são obtidos no modo RPN ao usar as seguintes teclas:

Funções no menu ALG

O menu ALG (algébrico) está disponível usando a seqüência de teclas

(associadas com a tecla). Com o sinalizador do sistema 117
configurado para CHOOSE box, o menu ALG mostra as seguintes funções:

Em vez de listar a descrição de cada função neste manual, o usuário é solicitado a buscar a descrição usando o mecanismo de ajuda da calculadora: TOOL NAT THE ENTER . Para localizar uma função particular, digite a primeira letra desta função. Por exemplo, para a função COLLECT, digitamos (ALPHA) (C), depois usamos as teclas de setas, (A) V, para localizar COLLECT dentro da janela de ajuda.

Para concluir a operação pressione . Aqui está o visor de ajuda para a função COLLECT:

Observamos que em baixo no visor a linha mostra: EXPAND FACTOR sugerindo ligações com outras entradas do mecanismo de ajuda, as funções EXPAND e FACTOR. Para mover diretamente para estas entradas, pressione a tecla virtual para EXPAND e para FACTOR. Pressionar por exemplo, mostra a seguinte informação para EXPAND:

O mecanismo de ajuda fornece não apenas a informação em cada comando, como também um exemplo de sua aplicação. Este exemplo pode ser copiado na pilha pressionando a tecla [12]. Por exemplo, para a entrada EXPAND mostrada acima, pressione a tecla do menu [12] para obter o seguinte exemplo copiado para a pilha (pressione [NTER] para executar o comando):

Assim deixamos que o usuário explore as aplicações das funções no menu ALG (ou ALGB). Esta é a lista de comandos:

O mecanismo de ajuda mostrará a seguinte informação nos comandos:

FACTOR:
FACTOR:
Factorizes an integer
or a polynomial
FACTOR(X*2-2)
(X+12)(X-12)

See: EXPAND COLLECT

SOLVE: SUBST:

EXPAND:
EXPAND:
Expands and simplifies
an algebraic expr.
EXPAND((X+2)*(X-2))
X^2-4
See: COLLECT SIMPLIFY

LNCOLLECT:

LNCOLLECT:

Collects logarithms

LNCOLLECT(LN(X)+LN(Y))

LN(X*Y)

See: TEXPAND

EXIT ECHO SEEL SEEZ SEEZ MAIN

PARTFRAC:
PARTFRAC:
Performs partial fraction decomposition on
a fraction
PARTFRAC(2X^2/(X^2-1))
2+1/(X-1)-1/(X+1)
See: PROPFRAC

SUBST:
Substitutes a value
for a variable in an
expression
SUBST(A^2+1,A=2)
2^2+1
See:
EXIT ECHO SEEL SEES HAIM

TEXPAND:
TEXPAND:
Expands transcendental
functions
TEXPAND(EXP(X+Y))
EXP(X)*EXP(Y)
See: LIN TLIN

Nota: Lembre-se que, para usar estas ou quaisquer outras funções no modo RPN, é necessário inserir o argumento primeiro e depois a função. Por exemplo, TEXPAND, no modo RPN será definido como:

Nesta altura, selecione a função TEXPAND do menu ALG (ou diretamente do catálogo (), para concluir a operação.

Outras formas de substituição nas expressões algébricas

As funções SUBST, mostradas acima, são usadas para substituir uma variável na expressão. Uma outra forma de substituição pode ser conseguida usando (x) (associada com a tecla I). Por exemplo, no modo ALG, a seguinte entrada de dados substituirá o valor x=2 na expressão $x+x^2$. A figura a esquerda mostra a forma de inserir a expresão (o valor substiuido, x=2, deve ser incluido em parênteses) antes de pressionar (x). Depois que a tecla (x) for pressionada o resultado é mostrado na figura a direita:

No modo RPN, isto pode ser conseguido inserindo a primeira expressão onde a substituição será feita (x+x²), seguido pela lista (consulte o capítulo 8) a variável de substituição, um espaço e o valor a ser substituido, i.e. {x 2}. A etapa final é pressionar a combinação de teclas:

As teclas necessárias são as seguintes:

No modo ALG, a substituição de mais de uma variável é possível conforme ilustrado no exemplo seguinte (mostrado antes e depois de pressionar EMTER)

No modo RPN, é também possível substituir mais de uma variável de cada vez, conforme ilustrado no exemplo abaixo. Lembre-se de que o modo RPN usa uma lista de nomes de variáveis e valores para a substituição.

Uma abordagem diferente para a substituição consiste em definir as expressões de substituição nas variáveis da calculadora e colocar os seus nomes na expressão original. Por exemplo, no modo ALG armazene as seguintes variáveis:

Então, insira a expressão A+B:

A última expressão inserida é automaticamente avaliada depois de pressionar a tecla (ENTER) produzindo o resultado mostrado acima.

Operações com funções transcendentais

Expansão e fatoração usando as funções log-exp

A combinação (produz o seguinte menu:

A informação e o exemplo nestes comandos estão disponíveis na ajuda da calculadora. Alguns dos comandos listados no menu EXP&LN, ex. LIN, LNCOLLECT e TEXPAND estão também contidos no menu ALG apresentado anteriormente. As funções LNP1 e EXPM foram introduzidas no menu HYPERBOLIC, sob o menu MTH (consulte o capítulo 2). A única função restante é EXPLN. Sua descrição é mostrada no lado esquerdo, o exemplo da ajuda é mostrado a direita:

Expansão e fatoração usando funções trigonométricas

O menu TRIG, ativado usando 🔁 TRIG, mostra as seguintes funções:

Estas funções permitem simplificar as expressões substituindo algumas categorias de funções trigonométricas por outras. Por exemplo, a função ACOS2S permite substituir a função *arccosine* (acos(x)) por sua expressão em termos de *arcsine* (asin(x)).

A descrição destes comandos e exemplos de suas aplicações estão disponíveis na ajuda da calculadora ((TOQ) (NXT) [[1]][1]]). O usuário é convidado a explorar esta ajuda para encontrar as informações sobre os comandos do menu TRIG.

Observe que o primeiro comando no menu TRIG é o menu HYPERBOLIC, cujas funções foram apresentadas no capítulo 2.

Funções no menu ARITHMETIC

O menu ARITHMETIC contém um número de submenus para as aplicações específicas na teoria numérica (inteiros, polinômios, etc.), como também um

número de funções que se aplicam às operações aritméticas. O menu ARITHMETIC é ativado através da combinação de teclas ARITHMETIC é ativado através da combinação de teclas ARITH (associada com a tecla 1). Com o sinalizador do sistema 117 configurado para CHOOSE boxes, ARITH, o resultado é o seguinte menu:

Desta lista de menu, as opções de 5 a 9 (DIVIS, FACTORS, LGCD, PROPFRAC, SIMP2) correspondem às funções comuns que se aplicam aos números inteiros ou polinômios. As opções restantes (1. INTEGER, 2. POLYNOMIAL, 3. MODULO e 4. PERMUTATION) são na verdade submenus de funções que se aplicam aos objetos matemáticos específicos. Esta distinção entre os submenus (opções 1 a 4) e as funções simples (opções de 5 a 9) é esclarecida quando o sinalizador de sistema 117 for configurado para menus SOFT. Ativar o menu ARITHMETIC (ARITH) nestas circusntâncias produz:

A seguir, apresentamos as entradas da ajuda para as funções das opções 5 a 9 no menu ARITHMETIC:

FACTORS:
Returns irreductible
factors of an integer
or a polynomial
FACTORS(X^2-1)
(X+1 1. X-1 1.)
See: FACTOR

FACTORS:

LGCD (maior denominador comum):

PROPFRAC (fração correta)

```
GCD:
GCD of a list of
objects
LGCD((125,75,35))
5
See: GCD
EXIT ECHO SEES SEES HAIN
```

```
PROPERAC:
Splits a fraction into
an integer part and a
fraction part
PROPERAC(43/12)
See: PARTERAC
EXIT ECHO SEET SEET HAM
```

```
SIMP2:
SIMP2:
Simplifies 2 objects
by dividing them by
their GCD
SIMP2(X^3-1,X^2-1)
(X^2+X+1,X+1)
See:
EXIT ECHO SEET SEEZ SEEZ HAIN
```

As funções associadas com os submenus ARITHMETIC: INTEGER, POLYNOMIAL, MODULO e PERMUTATION, são as seguintes:

Menu INTEGER

EULER Número inteiros < n, co-primo com n IABCUV Resolve au + bv = c, com a,b,c = inteiros

IBERNOULLI n-ézimo número Bernoulli

ICHINREM Residual chinês para números inteiros
IDIV2 Divisão euclidiana de dois números inteiros
IEGCD Retorna u,v, tal que au + bv = gcd(a,b)

IQUOT Quociente euclidiano de dois números inteiros IREMAINDER Residual euclidiano de dois números inteiros

ISPRIME? Testa se um número inteiro é primo

NEXTPRIME Próximo primo para um número inteiro dado

PA2B2 Número primo como norma quadrada de um número

complexo

PREVPRIME Primo anterior para um número inteiro dado

Menu POLYNOMIAL

ABCUV Equação de polinômio Bézout (au+bv=c)
CHINREM Residual chines para os polinômios
CYCLOTOMIC polinômio ciclotômica nézimo

DIV2 Divisão euclidiana de dois polinômios EGDC Retorna u,v, de au+bv=gcd(a,b)

FACTOR Fatora um número inteiro ou polinômio

FCOEF Gera as raízes, dadas a fração e a multiplicidade FROOTS Retorna as raízes e a multiplicidade, dada uma fração GCD Maior divisor comum de 2 números ou polinômios

HERMITE Polinômio Hermite de grau n-ézimo HORNER Avaliação Horner de um polinômio LAGRANGE Interpolação de polinômio Lagrange

LCM Menor divisor comum de 2 números ou polinômios

LEGENDRE Polinômio Legendre de grau nh

PARTFRAC Decomposição em fração parcial de uma dada fração

PCOEF (entrada do mecanismo de ajuda ausente)

PTAYL Retorna Q(x-a) em Q(x-a) = P(x), polinômio de Taylor

QUOT Quociente euclidiano de dois polinômios

RESULTANT Determinante da matriz Sylvester de 2 polinômios

REMAINDER Restante Euclideano de 2 polinômios STURM Seqüência de Sturm para o polinômio

STURMAB Sinal do limite inferior e número de zeros entre limites

Menu MODULO

ADDTMOD Adiciona dois módulos de expressões ao módulo atual.

DIVMOD Divide 2 módulos de polinômios pelo módulo atual

A divisão euclidiana de 2 polinômios com coeficientes

modulares

EXPANDMOD Expande/simplifica os módulos de polinômios atuais

pelo módulo atual

FACTORMOD Fatora os módulos polinômio pelo módulo atual GCDMOD GCD de 2 módulos de polinômio pelo módulo atual INVMOD inversa de módulos de número inteiro pelo módulo

atual

MOD (nenhuma entrada de dados disponível no mecanismo

de ajuda)

MODSTO Altera a configuração do módulo para o valor

especificado

MULTMOD A multiplicação de 2 módulos de polinômios pelo

módulo atual

POWMOD Eleva o polinômio para a potência do módulo atual SUBTMOD Subtração de 2 módulos de polinômios pelo módulo

atual

Aplicações do menu ARITHMETIC

Esta seção apresenta parte do background necessário para a aplicação das funções do menu ARITHMETIC. As definições sobre polinômios, frações de polinômios e aritmética modular são apresentadas a seguir. Os exemplos apresentados abaixo são apresentados independentemente da configuração da calculadora (ALG ou RPN)

Aritmética modular

Considere um sistema de contagem de números inteiros que gira em círculo e é iniciado novamente, tal como as horas em um relógio. Tal sistema de contagem é chamado de *anel*. Uma vez que o número de inteiros usado em um anel é finito, a aritmética neste anel é chamada de *aritmética finita*. Deixe que nosso sistema de números inteiros finitos consistam de números 0, 1, 2, 3, ..., n-1, n. Podemos fazer referência a este sistema de contagem como *aritmética modular de módulos n*. No caso das horas do relógio, o módulo é 12. (Se trabalhar com a aritmética modular usando as horas em um relógio, teremos que usar os números inteiros 0, 1, 2, 3, ..., 10, 11, em vez de 1, 2, 3,..., 11, 12).

Operações na aritmética modular

A adição na aritmética modular dos módulos n, que é um número inteiro positivo, segue a regra de que se j e k são quaisquer números inteiros não negativos, ambos menores do que n, se $j+k\geq n$, então j+k é definido como j+k-n. Por exemplo, no caso do relógio, ex. para n=12, 6+9 "=" 3. Para distinguir esta 'igualdade' das igualdades aritméticas infinitas, o símbolo \equiv é usado no lugar do sinal igual e a relação entre os números é chamada de congruência em vez de uma igualdade. Assim, para o exemplo anterior escreveríamos $6+9\equiv 3 \pmod{12}$ e leríamos esta expressão como "seis mais nove é congruente com três, módulos doze". Se os números representam as

horas deste a meia-noite, por exemplo, a cogruência $6+9 \equiv 3 \pmod{12}$, pode ser interpretada como dizer que "seis horas depois da nona hora depois da meia-noite será três horas da tarde." Outras somas que podem ser definidas na aritmética de módulo 12 são: $2+5 \equiv 7 \pmod{12}$; $2+10 \equiv 0 \pmod{12}$; $7+5 \equiv 0 \pmod{12}$; etc.

A regra para a subtração será tal que se j-k<0, então j-k é definida como j-k+n. Portanto, $8-10\equiv 2 \pmod{12}$, é lido como "oito menos dez é congruente com dois, módulos doze." Outros exemplos de subtração na aritmética dos módulos 12 seria $10-5\equiv 5\pmod{12}$; $6-9\equiv 9\pmod{12}$; $5-8\equiv 9\pmod{12}$; $5-10\equiv 7\pmod{12}$; etc.

A multiplicação segue a regra de que se $j \cdot k > n$, para $j \cdot k = m \cdot n + r$, onde m e r são números inteiros não negativos, ambos menores do que n, então $j \cdot k \equiv r$ (mod n). O resultado de multiplicar j vezes k na aritmética do módulo n é, na seqüência, o resíduo do número inteiro de $j \cdot k / n$ na aritmética infinita, se $j \cdot k > n$. Por exemplo, na aritmética do módulo 12 temos $7 \cdot 3 = 21 = 12 + 9$, (ou $7 \cdot 3/12 = 21/12 = 1 + 9/12$, ex. o resíduo do número inteiro de 21/12 é 9). Nós podemos escrever $7 \cdot 3 \equiv 9 \pmod{12}$ e ler o último resultado como "sete vezes três é congruente com nove, módulo doze".

A operação de *divisão* pode ser definida em termos de multiplicação como segue, $r/k \equiv j \pmod{n}$, se, $j \cdot k \equiv r \pmod{n}$. Isto significa que r deve ser o resíduo de $j \cdot k/n$. Por exemplo, $9/7 \equiv 3 \pmod{12}$, porque $7 \cdot 3 \equiv 9 \pmod{12}$. Algumas divisões não são permitidas na aritmética modular. Por exemplo, na aritmética de módulo 12 você não pode definir $5/6 \pmod{12}$ porque a tabela de multiplicação de 6 não mostra o resultado 5 na artimética de módulo 12. Esta tabela de multiplicação é mostrada abaixo:

6*0 (mod 12)	0	6*6 (mod 12) 0
6*1 (mod 12)	6	6*7 (mod 12) 6
6*2 (mod 12)	0	6*8 (mod 12) 0
6*3 (mod 12)	6	6*9 (mod 12) 6
6*4 (mod 12)	0	6*10 (mod 12) 0
6*5 (mod 12)	6	6*11 (mod 12) 6

A definição formal de um anel aritmético finito

A expressão $a \equiv b \pmod{n}$ é interpretada como "<u>a é congruente a b, módulo</u> \underline{n} ," e se mantém se (b-a) for um múltiplo de n. Com esta definição as regras de aritmética simplificam para o seguinte:

```
Se a \equiv b \pmod{n} and c \equiv d \pmod{n}, então a+c \equiv b+d \pmod{n}, a-c \equiv b \cdot d \pmod{n}, a \times c \equiv b \times d \pmod{n}.
```

Para a divisão siga as regras apresentadas anteriormente. Por exemplo, 17 ≡ 5 (mod 6) e 21 ≡ 3 (mod 6). Usando estas regras, podemos escrever:

```
17 + 21 \equiv 5 + 3 \pmod{6} = > 38 \equiv 8 \pmod{6} = > 38 \equiv 2 \pmod{6}

17 - 21 \equiv 5 - 3 \pmod{6} = > -4 \equiv 2 \pmod{6}

17 \times 21 \equiv 5 \times 3 \pmod{6} = > 357 \equiv 15 \pmod{6} = > 357 \equiv 3 \pmod{6}
```

Observe que, sempre que um resultado no lado direito do símbolo da "congruência" produz um resultado que é maior que o módulo (neste caso, n = 6), você pode subtrair sempre um múltiplo do módulo deste resultado e simplificá-lo para um número menor do que o módulo. Assim, os resultados no primeiro caso $8 \pmod{6}$ é simplificado para $2 \pmod{6}$, e o resultado do terceiro caso, $15 \pmod{6}$ é simplificado para $3 \pmod{6}$. Confuso ? Bem, não se deixar que a calculadora se encarregue das operações. Assim, leia a seguinte seção para compreender como os anéis aritméticos finitos são operados na sua calculadora.

Anéis arítméticos finitos na calculadora

Até agora definimos nossa operação aritmética finita para que os resultados sejam sempre positivos. O sistema aritmético modular na calculadora é configurado para que o anel do módulo n inclua os números -n/2+1, ...,-1, 0, 1,...,n/2-1, n/2, se n for par e -(n-1)/2, -(n-3)/2,...,-1,0,1,...,(n-3)/2, (n-1)/2, se n for impar. Por exemplo, para n=8 (par), o anel aritmético finito

na calculadora inclui os números: (-3,-2,-1,0,1,3,4), enquanto para n = 7 (impar), o anel artimético finito da calculadora é dado por (-3,-2,-1,0,1,2,3).

Aritmética modular na calculadora

Para lançar o menu artimético modular na calculadora selecione o submenu MODULO dentro do menu ARITHMETIC (). O menu disponível inclui as funções: ADDTMOD, DIVMOD, DIV2MOD, EXPANDMOD, FACTORMOD, GCDMOD, INVMOD, MOD, MODSTO, MULTMOD, POWMOD e SUBTMOD. Descrições rápidas destas funções foram fornecidas em uma seção anterior. A seguir apresentamos algumas aplicações destas funções.

Configurar os módulos (ou MODULO)

A calculadora contém uma variável chamada MODULO que é colocada no diretório {HOME CASDIR} e armazenará a magnitude do módulo usado na aritmética modular.

O valor padrão do MODULO é 13. Para alterar o valor de MODULO, você armazena o novo valor diretamente na variável MODULO no subdiretório {HOME CASDIR} De forma alternativa, você pode armazenar um novo valor de MODULO usando a função MODSTO.

Operações aritméticas modular com números

Para adicionar, subtrair, multiplicar, dividir e elevar a potência usando a aritmética modular você pode usar as funções ADDTMOD, SUBTMOD, MULTMOD, DIV2MOD e DIVMOD (para a divisão) e POWMOD. No modo RPN é necessário inserir os dois números a serem operados, separados por uma entrada [ENTER] ou [SPC] e depois pressionar a função aritmética modular correspondente. Por exemplo, para usar o módulo de 12, tente as seguintes operações:

Exemplos ADDTMOD

$$6+5 \equiv -1 \pmod{12}$$
 $6+6 \equiv 0 \pmod{12}$ $6+7 \equiv 1 \pmod{12}$ $11+5 \equiv 4 \pmod{12}$ $8+10 \equiv -6 \pmod{12}$

Exemplos SUBTMOD

$$5 - 7 \equiv -2 \pmod{12}$$
 $8 - 4 \equiv 4 \pmod{12}$ $5 - 10 \equiv -5 \pmod{12}$ $11 - 8 \equiv 3 \pmod{12}$ $8 - 12 \equiv -4 \pmod{12}$

Exemplos MULTMOD

$$6.8 \equiv 0 \pmod{12}$$
 $9.8 \equiv 0 \pmod{12}$ $3.2 \equiv 6 \pmod{12}$ $5.6 \equiv 6 \pmod{12}$ $11.3 \equiv -3 \pmod{12}$

Exemplos DIVMOD

$$12/3 \equiv 4 \pmod{12}$$
 $12/8 \pmod{12}$ não existe $25/5 \equiv 5 \pmod{12}$ $64/13 \equiv 4 \pmod{12}$ $66/6 \equiv -1 \pmod{12}$

Exemplos DIV2MOD

 $2/3 \pmod{12}$ não existe $26/12 \pmod{12}$ não existe $125/17 \pmod{12} \equiv 1$ com resíduo = $0 \pmod{12} \equiv -4 \pmod{12}$ com resíduo = $0 \pmod{12}$ com resíduo = $0 \pmod{12}$

Nota: DIVMOD fornece o quociente da divisão modular j/k (mod n), enquanto DIMV2MOD fornece não apenas o quociente mas também o resíduo da divisão modular j/k (mod n).

Exemplos POWMOD

$$2^3 \equiv -4 \pmod{12}$$
 $3^5 \equiv 3 \pmod{12}$ $5^{10} \equiv 1 \pmod{12}$ $11^8 \equiv 1 \pmod{12}$ $6^2 \equiv 0 \pmod{12}$ $9^9 \equiv -3 \pmod{12}$

Nos exemplos das operações de aritmética modular mostrados acima, usamos os números que não necessariamente pertencem ao anel, ex. números tais como 66, 125, 17, etc. A calculadora converterá estes números para os números do anel antes de operá-los. Você pode converter também qualquer número em um número de anel usando a função EXPANDMOD. Por exemplo,

$$EXPANDMOD(125) \equiv 5 \pmod{12}$$

EXPANDMOD(17)
$$\equiv 5 \pmod{12}$$

EXPANDMOD(6) $\equiv 6 \pmod{12}$

A inversa modular de um número

Digamos que um número k pertença a um anel aritmético finito do módulo n, então a inversa modular de k, ex., 1/k (mod n), é um número j, tal que $j \cdot k \equiv 1$ (mod n). A inversa modular de um número pode ser obtida usando a função INVMOD no submenu MODULO do menu ARITHMETIC. Por exemplo, na aritmética do módulo 12:

```
1/6 \pmod{12} não existe 1/5 \equiv 5 \pmod{12} 1/7 \equiv -5 \pmod{12} 1/3 \pmod{12} não existe 1/11 \equiv -1 \pmod{12}
```

O operador MOD

O operador MOD é usado para obter o número de anel de um dado módulo correspondente ao número inteiro dado. Esta operação é escrita como m mod n=p, e é lida como "m módulo n é igual a p". Por exemplo, para calcular 15 mod 8, insira:

O resultado é 7, ex. 15 mod 8 = 7. Tente os seguintes exercícios: 18 mod 11 = 7 23 mod 2 = 1 40 mod 13 = 1 23 mod 17 = 6 34 mod 6 = 4

Uma aplicação prática da função MOD para a programação é determinar quando um número inteiro é impar ou par, desde que mod n = 0, se n for par e mod n = 0, se n for impar. Pode também ser usada para determinar quando um número inteiro m for um múltiplo de outro número inteiro n, se este for o caso de m mod n = 0.

Nota: Consulte o mecanismo de ajuda na calculadora para obter descrição e os exemplos de outra aritmética modular. Muitas destas funções são

aplicáveis para os polinômios. Para obter informações sobre aritmética modular com os polinômios, consulte um livro sobre teoria de números.

Polinômios

Os polinômios são expressões algébricas consistindo de um ou mais termos com potência decrescente de uma dada variável. Por exemplo, 'X^3+2*X^2-3*X+2' é um polinômio de terceira ordem em X, ao passo que 'SIN(X)^2-2' é um polinômio de segunda ordem em SIN(X). Uma lista de funções relacionadas com polinômios no menu ARITHMETIC foi apresentada anteriormente. Algumas definições gerais sobre polinômios são fornecidas a seguir. Nestas definições A(X), B(X), C(X), P(X), Q(X), U(X), V(X), etc., são polinômios.

- Fração polinomial: uma fração cujos numerador e denominador são polinômios, digamos, C(X) = A(X)/B(X)
- Raízes ou zeros de um polinômio: valores de X para o qual P(X) = 0
- Pólos de uma fração: raízes do denominador
- Multiplicidade de raízes ou pólos: o número de vezes em que uma raiz é mostrada, ex. P(X) = (X+1)²(X-3) tem raízes {-1, 3} com as multiplicidades {2,1}
- Polinômio ciclotômico (P_n(X)): um polinômio de ordem EULER(n) cujas raízes são as raízes primitivas n-th da unidade, ex. P₂(X) = X+1, P₄(X) = X²+1
- Equação polinomial Bézout: A(X) U(X) + B(X)V(X) = C(X)
 Exemplos específicos de aplicações de polinômios são fornecidos a seguir.

Aritmética modular com polinômios

Da mesma forma que definimos um anel artimético finito em uma seção anterior, podemos definir um anel aritmético finito para os polinômios com um polinômio dado como módulo. Por exemplo, podemos escrever um certo polinômio P(X) como $P(X) = X \pmod{X^2}$ ou outro polinômio $Q(X) = X + 1 \pmod{X-2}$.

Um polinômio, P(X) pertence a um anel aritmético finito de módulo e polinômio M(X), se existir um terceiro polinômio Q(X), tal que (P(X) - Q(X)) seja múltiplo de M(X). Nós então escreveremos: $P(X) \equiv Q(X) \pmod{M(X)}$. A

última expressão é interpretada como "P(X) é congruente a Q(X), módulo M(X)".

A função CHINREM

CHINREM significa CHINese REMainder. A operação codificada neste comando resolve um sistema de duas congruências usando o Teorema chinês do resto. Este comando pode ser usado com polinômios, como também com numeros inteiros (função ICHINREM). A entrada consiste de dois vetores [expressão_1, módulo_1] e [expressão_2, módulo_2]. O resultado é um vetor contendo [expressão_3, módulo_3], onde o módulo_3 está relacionado ao produto (módulo_1)-(módulo_2).

Exemplo: CHINREM(['X+1', 'X^2-1'],['X+1','X^2']) = ['X+1',-(X^4-X^2)]

Enunciado do teorema chinês do resto para números inteiros

Se m_1 , m_2 ,..., m_r são números naturais cada par dos quais são primos entre si e a_1 , a_2 , ..., a_r são quaisquer números inteiros, então existe um número inteiro x que satisfaz simultaneamente as congruências: $x \equiv a_1 \pmod{m_1}$, $x \equiv a_2 \pmod{m_2}$, ..., $x \equiv a_r \pmod{m_r}$. Além disso, se x = a for qualquer solução então todas as outras soluções são congruentes para um módulo igual ao produto $m_1 \cdot m_2 \cdot ... m_r$.

A função EGCD

EGCD significa Máximo Divisor Comum. Dados dois polinômio, A(X) e B(X), função EGCD produz os polinômios C(X), U(X) e V(X), para que C(X) = U(X)*A(X) + V(X)*B(X). Por exemplo, para A(X) = X^2+1 , B(X) = X^2-1 , EGCD(A(X),B(X)) = $\{2, 1, -1\}$. Ex. $2 = 1*(X^2+1')-1*(X^2-1)$. Além disso, EGCD('X^3-2*X+5','X') = $\{5, '-(X^2-2)', 1\}$ Ex. $5 = -(X^2-2)*X + 1*(X^3-2*X+5)$.

A função GCD

A função GCD (maior denominador comum) pode ser usada para obter o maior denominador comum de dois polinômios ou de duas listas de polinômios do mesmo tamanho. Os dois polinômios ou listas de polinômios serão colocados nos níveis 2 e 1 da pilha antes de usar GCD. Os resultados serão um polinômio ou uma lista representando o maior denominador comum

dos dois polinômios ou de cada lista de polinômios. Exemplos, no modo RPN, a seguir (a calculadora configurada para o modo Exact):

A função HERMITE

A função HERMITE [HERMI] usa um argumento como número de inteiros, k, e retorna para o polinômio Hermite de grau k. Um polinômio Hermite, $He_k(x)$ é definido como

$$He_0 = 1$$
, $He_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} (e^{-x^2/2})$, $n = 1, 2, ...$

Uma forma alternativa de polinômios Hermite é

$$H_0^* = 1$$
, $H_n^*(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$, $n = 1, 2, ...$

onde a derivada $d^n/dx^n=n$ -th em relação a x. Esta é a definição usada na calculadora.

Exemplos: Os polinômios Hermite de ordens 3 e 5 são dados por:

HERMITE(3) = $'8*X^3-12*X'$, HERMITE(5) = $'32*x^5-160*X^3+120*X'$.

A função HORNER

е

A função HORNER produz a divisão Horner ou sintética de um polinômio P(X) pelo fator (X-a). A entrada para a função são o polinômio P(X) e o número a. A função retorna o polinômio para um quociente Q(X) que resulta da divisão de P(X) por (X-a), os valores de a e de P(a), nesta ordem. Em outras palavras, P(X) = Q(X)(X-a)+P(a). Por exemplo, HORNER('X^3+2*X^2-3*X+1',2) = $\{'X^2+4*X+5', 2, 11\}$. Podemos então escrever $X^3+2X^2-3X+1=(X^2+4X+5)(X-2)+11$. Um outro exemplo: HORNER('X^6-1',-5)= $\{'X^5-5*X^4+25*X^3-125*X^2+625*X-3125',-5, 15624\}$ i.e., $X^6-1=(X^5-5*X^4+25X^3-125X^2+625X-3125)(X+5)+15624$.

A variável VX

Uma variável chamada VX existe no diretório da calculadora {HOME CASDIR} que aceita, como padrão, o valor de 'X'. Este é o nome da variável independente preferida para as aplicações algébricas e de cálculo. Evite usar a variável VX nos seus programas ou equações para não ficar confuso com a VX do CAS'. Se for necessário mencionar o componente x da velocidade, por exemplo, você pode usar vx ou Vx. Para obter informações adicionais sobre a variável CAS, consulte o apêndice C.

A função LAGRANGE

A função LAGRANGE exige como entrada uma matriz com duas linhas e n colunas. A matriz armazena os pontos dos dados da forma $[[x_1, x_2, ..., x_n] [y_1, y_2, ..., y_n]]$. A aplicação da função LAGRANGE produz o polinômio expandido de

$$p_{n-1}(x) = \sum_{j=1}^{n} \frac{\prod_{k=1, k \neq j}^{n} (x - x_k)}{\prod_{k=1, k \neq j}^{n} (x_j - x_k)} \cdot y_j.$$

Por exemplo, para n = 2, escrevemos:

$$p_1(x) = \frac{x - x_2}{x_1 - x_2} \cdot y_1 + \frac{x - x_1}{x_2 - x_1} \cdot y_2 = \frac{(y_1 - y_2) \cdot x + (y_2 \cdot x_1 - y_1 \cdot x_2)}{x_1 - x_2}$$

Verifique este resultado com a sua calculadora: LAGRANGE([[x1,x2],[y1,y2]]) = '((y1-y2)*X+(y2*x1-y1*x2))/(x1-x2)'.

Outros exemplos: LAGRANGE([[1, 2, 3][2, 8, 15]]) = $(X^2+9*X-6)/2'$ LAGRANGE([[0.5,1.5,2.5,3.5,4.5][12.2,13.5,19.2,27.3,32.5]]) = $(-1.375*X^4 + -.766666666667*X^3 + -.74375*X^2 = 1.991666666667*X-12.92265625)'$.

Nota: As matrizes são introduzidas no capítulo 10.

A função LCM

A função LCM (menor múltiplo comum) obtém o menor múltiplo comum de dois polinômios ou de listas de polinômios do mesmo tamanho. Exemplos:

$$LCM('2*X^2+4*X+2', 'X^2-1') = '(2*X^2+4*X+2)*(X-1)'.$$

 $LCM('X^3-1', 'X^2+2*X') = '(X^3-1)*(X^2+2*X)'$

A função LEGENDRE

Um polinômio Legendre de ordem n é uma função polinomial que resolve a

equação diferencial
$$(1-x^2) \cdot \frac{d^2y}{dx^2} - 2 \cdot x \cdot \frac{dy}{dx} + n \cdot (n+1) \cdot y = 0$$

Para obter o polinômio Legendre de ordem n use LEGENDRE(n), ex.

LEGENDRE(3) =
$$(5*X^3-3*X)/2'$$

LEGENDRE(5) = $(63*X^5-70*X^3+15*X)/8'$

A função PCOEF

Dado um conjunto que contém as raízes de um polinômio, a função PCOEF gera uma série de combinações contendo os coeficientes do polinômio correspondente. Os coeficientes correspondem à ordem decrescente da variável independente. Por exemplo: PCOEF([-2,-1,0,1,1,2]) = [1. -1. -5. 5. 4. -4. 0.], que representa o polinômio X⁶-X⁵-5X⁴+5X³+4X²-4X.

A função PROOT

Dado um conjunto com os coeficientes de um polinômio, na ordem decrescente, a função PROOT fornece as raízes do polinômio. Exemplo, de $X^2+5X-6=0$, PROOT([1 -5 6]) = [2. 3.].

A função PTAYL

Dado um polinômio P(X) e um número *a*, a função PTAYL é usada para obter uma expressão Q(X-*a*) = P(X), ex. para desenvolver um polinômios em potências de (X- *a*). Isto é também conhecido como polinômio de Taylor, onde o nome da função, Polynomial & TAYLor é criado.

Por exemplo, $PTAYL('X^3-2*X+2',2) = 'X^3+6*X^2+10*X+6'$.

Na verdade, você deve interpretar este resultado como $(X-2)^3+6*(X-2)^2+10*(X-2)+6'$.

Verifiquemos usando a substituição: 'X = x - 2'. Recuperamos o polinômio original, mas em termos de x minúsculo, em vez de x maiúsculo.

As funções QUOT e REMAINDER

As funções QUOT e REMAINDER fornecem, respectivamente, o coeficiente Q(X) e o resto R(X), resultante da divisão de dois polinômios, $P_1(X)$ e $P_2(X)$. Em outras palavras,s elas fornecem os valores de Q(X) e R(X) de $P_1(X)/P_2(X)$ = Q(X) + R(X)/ $P_2(X)$. Por exemplo,

QUOT(
$$X^3-2*X+2$$
, $X-1$) = X^2+X-1
REMAINDER($X^3-2*X+2$, $X-1$) = 1.

Assim nós podemos escrever: $(X^3-2X+2)/(X-1) = X^2+X-1 + 1/(X-1)$.

Nota: você pode obter o último resultado usando PROPFRAC: $PROPFRAC('(X^3-2*X+2)/(X-1)') = 'X^2+X-1 + 1/(X-1)'.$

A função EPSXO e EPS variável CAS

A variável ε (épsilon) é tipicamente usado nos livros de matermática para representar um número muito pequeno. O CAS da calculadora cria uma variável EPS, com o valor padrão $0.000000001 = 10^{-10}$, quando você usa a função EPSXO. Você pode alterar este valor, quando criado, se preferir um valor diferente para EPS. A função EPSXO, quando aplicada em um polinômio, substituirá todos os coeficientes cujo valor absoluto for menor do que EPS com um zero. A função EPSXO não está disponível no menu ARITHMETIC e deve ser acessada através do catálogo de funções (N). Exemplo:

$$EPSXO('X^3-1.2E-12*X^2+1.2E-6*X+6.2E-11) = (X^3-0*X^2+.0000012*X+0').$$

Com (EVAL): $(X^3+.0000012*X')$.

A função PEVAL

As funções PEVAL (Avaliação do polinômio) podem ser usadas para avaliar um polinômio $p(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_2 \cdot x^2 + a_1 \cdot x + a_0$, dado um conjunto de coeficientes $[a_n, a_{n-1}, \ldots a_2, a_1, a_0]$ e um valor de x_0 . O resultado é a avaliação $p(x_0)$. A função PEVAL não está disponível no menu ARITHMETIC e deve ser acessada através do catálogo de funções (,N). Exemplo:

$$PEVAL([1,5,6,1],5) = 281.$$

A função TCHEBYCHEFF

A função TCHEBYCHEFF(n) gera o polinômio Tchebycheff (ou Chebyshev) de primeiro tipo, ordem n, definida como $T_n(X) = cos(n \cdot arccos(X))$. Se o número inteiro n for negativo (n < 0), a função TCHEBYCHEFF(n) gera o polinômio de Tchebycheff do segundo tipo, ordem n, definido como $T_n(X) = sin(n \cdot arccos(X))/sin(arccos(X))$. Exemplos:

TCHEBYCHEFF(3) =
$$4*X^3-3*X$$

TCHEBYCHEFF(-3) = $4*X^2-1$

Frações

As frações podem ser expandidas e fatoradas usando as funções EXPAND e FACTOR, do menu ALG (,×). Por exemplo:

```
\begin{split} & \mathsf{EXPAND}('(1+\mathsf{X})^3/((\mathsf{X}\text{-}1)(\mathsf{X}+3))') = '(\mathsf{X}^3+3*\mathsf{X}^2+3*\mathsf{X}+1)/(\mathsf{X}^2+2*\mathsf{X}\text{-}3)' \\ & \mathsf{EXPAND}('(\mathsf{X}^2*(\mathsf{X}+\mathsf{Y})/(2*\mathsf{X}\text{-}\mathsf{X}^2)^2') = \ '(\mathsf{X}+\mathsf{Y})/(\mathsf{X}^2-4*\mathsf{X}+4)' \\ & \mathsf{EXPAND}('\mathsf{X}^*(\mathsf{X}+\mathsf{Y})/(\mathsf{X}^2-1)') = \ '(\mathsf{X}^2+\mathsf{Y}^*\mathsf{X})/(\mathsf{X}^2-1)' \\ & \mathsf{EXPAND}('4+2*(\mathsf{X}\text{-}1)+3/((\mathsf{X}\text{-}2)*(\mathsf{X}\text{+}3))\text{-}5/\mathsf{X}^22') = \\ & \ '(2*\mathsf{X}^5+4*\mathsf{X}^4-10*\mathsf{X}^3-14*\mathsf{X}^2-5*\mathsf{X})/(\mathsf{X}^4+\mathsf{X}^3-6*\mathsf{X}^2)' \end{split}
```

FACTOR('(
$$3*X^3-2*X^2$$
)/($X^2-5*X+6$)') = ' $X^2*(3*X-2)$ /((X^2)*(X^3)' FACTOR('(X^3-9*X)/($X^2-5*X+6$)') = ' $X^2*(X+3)$ /(X^2)' FACTOR('(X^2-1)/(X^3*Y-Y)') = '(X^2+1)/((X^2+X+1)*Y)'

A função SIMP2

As funções SIMP2 e PROPFRAC são usadas para simplificar uma fração e produzir uma fração própria, respectivamente. A função SIMP2 considera

como argumentos dois números ou polinômios, representando o numerador e o denominador de uma fração racional e retorna o numerador e denominador simplificados. Por exemplo: SIMP2('X^3-1','X^2-4*X+3') = { 'X^2+X+1','X-3'}.

A função PROPFRAC

A função PROPFRAC converte uma fração racional em uma fração "própria" i.e. uma parte inteira adicionada a uma parte fracional, se tal decomposição for possível. Por exemplo:

PROPFRAC(
$$(5/4') = (1+1/4')$$

PROPFRAC($((x^2+1)/x^2') = (1+1/x^2')$

A função PARTFRAC

A função PARTFRAC decompõe uma fração racional em frações parciais que produzem a fração original. Por exemplo:

PARTFRAC('(
$$2*X^6-14*X^5+29*X^4-37*X^3+41*X^2-16*X+5$$
)/($X^5-7*X^4+11*X^3-7*X^2+10*X$)') = $(2*X+(1/2/(X-2)+5/(X-5)+1/2/X+X/(X^2+1))$ '

Esta técnica é útil para calcular integrais (consulte o capítulo sobre cálculo) de frações racionais.

Se o modo Complex estiver ativo, o resultado será:

$$^{2}X+(1/2/(X+i)+1/2/(X-2)+5/(X-5)+1/2/X+1/2/(X-i))^{\prime}$$

A função FCOEF

A função FCOEF é usada para obter uma fração racional, dada as raízes e pólos da fração.

Nota: Se uma fração racional for F(X) = N(X)/D(X), as raízes da fração resultam da solução da equação N(X) = 0, enquanto que os pólos resultam da solução da equação D(X) = 0.

A entrada para a função é um vetor que lista as raízes seguidas pela multiplicidade (ex. quantas vezes uma dada raiz é repetida) e os pólos seguidos pela sua multiplicidade representados como um número negativo. Por exemplo, se queremos criar uma fração de 2 raízes com multiplicidade de 1, 0 com multiplicidade de 3 e -5 com multiplicidade de 2 e os pólos de 1 com multiplicidade de 2 e -3 com multiplicidade de 5, usemos:

 $FCOEF([2 \ 1 \ 0 \ 3 \ -5 \ 2 \ 1 \ -2 \ -3 \ -5]) = ((X-5)^2*X^3*(X-2)/(X-3)^5*(X-1)^2$

Se pressionar EVAL obterá:

'(X^6+8*X^5+5*X^4-50*X^3)/(X^7+13*X^6+61*X^5+105*X^4-45*X^3-297*X^2-81*X+243)'

A função FROOTS

A função FROOTS obtém as raízes e pólos de uma fração. Como exemplo, aplicar a função FROOTS ao resultado produzido acima, resultará em: [1 – 2. –3 –5. 0 3. 2 1. –5 2.]. O resultado mostra os pólos seguidos pela sua multiplicidade como um número negativo e as raízes seguidas pela sua multiplicidade como um número positivo. Neste caso, os pólos são (1, -3) com multiplicidades (2,5) respectivamente, e as raízes são (0, 2, -5) com multiplicidades (3, 1, 2), respectivamente.

Outro exemplo é: FROOTS('($X^2-5*X+6$)/(X^5-X^2)')= [0 -2.1 -1.3 1.2 1.], ex. pólos = 0 (2), 1(1) e raízes = 3(1), 2(1). Se você selecionou o modo Complex, então os resultados seriam: [0 -2. 1 -1. '-((1+i* $\sqrt{3}$)/2' -1. '-((1-i* $\sqrt{3}$)/2' -1.].

Operações passo a passo com polinômios e frações

Ao configurar os modos CAS para passo a passo a calculadora mostrará as simplificações de frações ou operações com polinômios da forma passo a passo. Isto é muito útil para visualizar os passos de uma divisão sintética. O exemplo de divisão

$$\frac{X^3 - 5X^2 + 3X - 2}{X - 2}$$

é mostrado em detalhe no apêndice C. O seguinte exemplo mostra uma divisão sintética major:

$$\frac{X^9-1}{X^2-1}$$

```
DIV2(X^9-1, X^2-1)

| Macule | Macule | Div | Macule | Ma
```

O menu CONVERT e operações algébricas

O menu CONVERT é ativado usando a tecla <u>(a tecla 6)</u>. Este menu sumariza todos os menus de conversão na calculadora. A lista destes menus é mostrada a seguir:

As funções disponíveis em cada um dos submenus são mostradas a seguir.

Menu de conversão de UNIDADES (opção 1)

Este menu é o mesmo do menu UNITS obtido usando <u>DUNTS</u>. As aplicações deste menu são apresentadas em detalhe no capítulo 3.

Menu de conversão de BASE (opção 2)

Este menu é o mesmo do menu UNITS obtido usando 😝 <u>BASE</u> . As aplicações deste menu são apresentadas em detalhes no capítulo 19.

Menu de conversão de TRIGONOMÉTRICA (opção 3)

Este menu é o mesmo do menu TRIG obtido usando 🕝 TRIG . As aplicações deste menu são discutidas em detalhes no capítulo 3.

Menu de conversão de MATRIZES (opção 5)

Este menu contém as sequintes funções:

Estas funções são discutidas em detalhes no capítulo 10.

Menu de conversão REESCREVER (opção 4)

Este menu contém as seguintes funções:

As funções l→R e R→I são usadas para converter um número de inteiro (I) para real (R) ou vice-versa. Os números inteiros são mostrados sem o ponto decimal seguido de espaço, enquanto que os números reais que representam os inteiros terão um ponto decimal seguido de espaço, ex.

A função \rightarrow NUM tem o mesmo efeito que a combinação de teclas $\xrightarrow{}$ \rightarrow NUM (associada a tecla $\xrightarrow{\mathbb{E} \cap \mathbb{E}}$). A função \rightarrow NUM converte um resultado simbólico em seu valor de ponto flutuante. Função \rightarrow Q converte um valor de ponto flutuante em uma fração. Função \rightarrow Q π converte um valor do ponto flutuante em uma fração de π , se uma fração de π puder ser encontrada para o número; caso contrário, converte o número em uma fração. Exemplos destas três funções são mostrados a sequir.

Sem serem funções do menu REWRITE, as funções DISTRIB, EXPLN, EXP2POW, FDISTRIB, LIN, LNCOLLECT, POWEREXPAND e SIMPLIFY se aplicam às expressões algébricas. Muitas destas funções são apresentadas

neste capítulo. Portanto, para completar apresentamos aqui as entradas para a ajuda destas funções.

DISTRIB EXPLN EXPLN:

EXPLN:

Rewrites transcendent.

functions in terms of

EXP and LN

EXPLN(COS(X))

(EXP(i*X)+1/EXP(i*X))...

See: SINCOS EXP2HYP DISTRIB: Step/step distribution of * and / over +and -DISTRIB((X+Y)*(Z+1)) X*(Z+1)+Y*(Z+1) See: FDISTRIB EXIT ECHO SEEL SEEZ SEES HAIN EXIT ECHO SEE1 SEE2 SEE3 MAIN EXP2POW **FDISTRIB** EXP2POW:

Rewrite exp(a*Ln(b))
as ba

EXP2POW(EXP(X*LN(Y)))

Y^: FDISTRIB: Full distribution of * and / over + and -FDISTRIB((X+Y)*(Z+1)) Z*X+1*X+Z*Y+1*Y See: DISTRIB EXIT ECHO SEE1 SEE2 SEE3 MAIN EXIT ECHO SEE1 SEE2 SEE3 MAIN LIN **LNCOLLECT** ENCOLLECT: ENCOLLECT: Collects logarithms LNCOLLECT(LN(X)+LN(Y)) LN(X*Y) CIN: Linearization of exponentials LIN(EXP(X)^2) EXP(2*X) See: TEXPAND TLIN See: TEXPAND EXIT ECHO SEEL SEEZ SEES MAIN EXIT ECHO SEE1 SEEZ SEE3 MAIN **POWEREXPAND** SIMPLIFY SIMPLIFY: Attempts to simplify an expression SIMPLIFY(SIN(3X)/SIN(X)) POWEXPAND: Step/step expansion of Powers Powers (X+Y)^2) (X+Y)*(X+Y) 4*COS(X)^2-1 See: EXPAND COLLECT EXIT ECHO SEEI SEEZ SEEZ MAIN See: EXIT ECHO SEE1 SEE2 SEE3 MAIN

Capítulo 6

Soluções para equações individuais

Neste capítulo caracterizamos estas funções que a calculadora fornece para a solução de equações individuais da forma f(X) = 0. Associados com a tecla 7 existem dois menus de funções para solução de equações, o Symbolic SoLVer () e o NUMerical SoLVer (). A seguir, apresentamos algumas das funções contidas nestes menus. Altere o modo CAS para Complex para estes exercícios (consulte o capítulo 2).

A solução simbólica das equações algébricas

Aqui descrevemos algumas das funções do menu Symbolic Solver. Ative o menu usando a combinação de teclas. Com o sinalizador do sistema 117 configurado para CHOOSE boxes, a seguinte lista estará disponível:

As funções DESOLVE e LDEC são usadas para a solução de equações diferenciais, objeto de outro capítulo e, portanto não serão apresentadas aqui. De forma similar, a função LINSOLVE é relacionada com a solução de equações lineares múltiplas e será apresentada em um outro capítulo. As funções ISOL e SOLVE podem ser usadas para solução de qualquer icógnita na equação de polinômios. A função SOLVEVX resolve a equação de polinômio onde a icógnita é o VX da variável CAS padrão (tipicamente configurado para 'X'). Finalmente, a função ZEROS fornece os zeros, ou raízes, de um polinômio. As entradas para todas as funções no menu S.SLV, exceto ISOL, estão disponíveis através do mecanismo de ajuda CAS ((TOOL) (NAT) [1333]).

Função ISOL

A função ISOL (equação e variável) produzirá soluções para *Equação* isolando a *variável*. Por exemplo, com a calculadora configurada para o modo ALG, para resolver para *t* na equação at³-bt = 0 podemos usar o seguinte:

Ao usar o modo RPN, a solução é conseguida inserindo a equação na pilha, seguida da variável, antes de inserir a função ISOL. Logo antes da execução de ISOL, a pilha RPN deve ser similar à figura a esquerda. Depois de aplicar ISOL, o resultado é mostrado na figura a direita:

O primeiro argumento no ISOL pode ser uma expressão, conforme mostrado acima ou uma equação. Por exemplo, no modo ALG, tente:

Nota: Para digitar o sinal de igual (=) na equação, use (=) = (associado com a tecla (=)).

O mesmo problema pode ser resolvido no modo RPN conforme ilustrado abaixo (as figuras mostram a pilha RPN antes e depois da aplicação da função ISOL):

Função SOLVE

a função SOLVE tem a mesma sintaxe da função ISOL, exceto que SOLVE pode ser também usado para resolver um conjunto de equações de polinômios. A entrada da ajuda para a função SOLVE, com a solução para a equação $X^4 - 1 = 3$, é mostrada a seguir:

SOLVE:
Solves a (or a set of)
polynomial equation
SOLVE(X^4-1=3,X)
(X=J2 X=-J2)
See: LINSOLVE SOLVEVX

Os seguintes exemplos mostram o uso da função SOLVE nos modos ALG e RPN:

: SOLVE(⁴ – 5 β = 125 , β') : SOLVE(⁴ – 5 β = 6 , β') β=-1 β=2 β=- 1 + 1 , √11 / 2 β=-3313 8317 + 401 / 001 + 101 / 101

A tela mostrada acima exibe duas soluções. Na primeira, β^4 - 5β = 125, SOLVE não produz nenhuma solução $\{\,\}$. Na segunda, β^4 - 5β = 6, SOLVE produz quatro soluções mostradas na última linha do resultado. A última solução não é visível porque o resultado ocupa mais caracteres do que a largura do visor da calculadora. Portanto, você pode ver ainda todas as soluções usando a tecla de seta para baixo $(\ \ \ \ \ \ \ \)$, que lança a linha de edição (esta operação pode ser usada para acessar qualquer linha de resultado que é maior do que o visor da calculadora):

: SOLVE(β^4 – 5β = 6 , β^1) β = -1 β = 2 β = - $\frac{1+i\sqrt{11}}{2}$ β = - β β = -1 , β = 2 , β = - β =

Os visores RPN correspondentes a estes dois exemplos antes e depois da aplicação da função SOLVE são mostrados a seguir:

Ao usar a tecla de seta para baixo (👽) neste modo ativará a linha de edição:

Função SOLVEVX

A função SOLVEVX resolve uma equação para a variável CAS padrão contida no nome da variável reservada VX. Por definição, esta variável é configurada para 'X'. Exemplos, usando o modo ALG com VX = 'X', são mostrados abaixo:

No primeiro caso SOLVEVX não pode encontrar uma solução. No segundo caso, SOLVEVX encontrou uma só solução, X = 2.

As sequintes telas mostram a pilha RPN para resolver os dois exemplos mostrados acima (antes e depois da aplicação de SOLVEVX):

A equação usada como argumento para a função SOLVEVX deve ser reduzida para uma expressão racional. Por exemplo, a seguinte equação não será processada por SOLVEVX:

Função ZEROS

A função ZEROS encontra as soluções de uma equação de polinômios, sem mostrar sua multiplicidade. A função exige ter como entrada a expressão para a equação e o nome da variável para a solução. Exemplos no modo ALG são mostrados a sequir:

Para usar a função ZEROS no modo RPN, entre primeiro a expressão do polinômio, depois a variável para resolver e então a função ZEROS. As seguintes telas mostram a pilha RPN antes e depois da aplicação de ZEROS para os dois exemplos acima:

As funções Symbolic Solver apresentadas acima produzem soluções para as equações racionais (principalmente, equações polinomiais). Se a equação a ser resolvida tem todos os coeficientes numéricos, uma solução numérica é possível através do uso dos recursos do Numerical Solver da calculadora.

Menu numerical solver

A calculadora fornece um ambiente muito poderoso para a solução de equações algébricas ou transcedentais. Para acessar este ambiente iniciamos o solucionador numérico (NUM.SLV) usando (NUM.SLV). Isto produz um menu de seleção que inclui as seguintes opções:

Item 2. Solve diff eq.. será apresentado em um capítulo posterior sobre equações diferenciais. Item 4. Solve lin sys.. será apresentado em um capítulo posterior sobre matrizes. Item 6. MSLV (Solcucionador de equações múltiplas) será apresentado no próximo capítulo. A seguir, apresentamos as aplicações dos itens 3. Solve poly.., 5. Solve finance, e 1. Solve equation.., nesta ordem. Apêndice 1-A, no final do capítulo 1 contém as instruções sobre como usar os formulários de entrada com exemplos para as aplicações no solucionador numérico.

Notas:

- Sempre que encontrar um valor nas aplicações NUM.SLV, o valor encontrado será colocado na pilha. Isto é útil se for necessário manter este valor disponível para outras operações.
- 2. Deve haver uma ou mais variáveis criadas sempre que ativar algumas das aplicações no menu NUM.SLV.

Equações de polinômios

Usar a opção Solve poly... no ambiente SOLVE da calculadora você pode:

- (1) encontrar as soluções para uma equação de polinômio.
- (2) obter os coeficientes do polinômio tendo um número de raízes dadas
- (3) obter uma expressão algébrica para o polinômio como uma função de X.

Encontrar as soluções para uma equação de polinômio

Uma equação de polinômio é uma equação da forma: $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$. O teorema fundamental da álgebra indica que existem n soluções para qualquer equação de polinômio de ordem n. Algumas das soluções podem ser números complexos. Como exemplo, resolva a equação: $3s^4 + 2s^3 - s + 1 = 0$.

Queremos colocar os coeficientes da equação em um vetor: $[a_n,a_{n-1},a_1 \ a_0]$. Para este exemplo, usemos o vetor [3,2,0,-1,1]. Para resolver esta equação de polinômio usando a calculadora tente o seguinte:

NUM.SLV V WILLIAM	Selecione Solve poly
	Insira o vetor de coeficiente:
	Resolva a equação

O visor mostrará a resolução como seque:

Pressione ENTER para retornar à pilha. A pilha mostrará os seguintes resultados no modo ALG (o mesmo resultado será mostrado no modo RPN):

```
Roots:[(.432194094623,)
```

Para ver todas as soluções pressione a tecla de seta para baixo (🔻) para deslocar a linha de edição:

```
Roots:[(.432194094623,)
!Roots:
[(.432194094623,-.389...
```

Todas as soluções são números complexos: (0.432,-0.389), (0.432,0.389), (-0.766, 0.632), (-0.766, -0.632).

Nota: Observe que os números complexos na calculadora são representados como pares ordenados com o primeiro número no par sendo a parte real e o segundo número a parte imaginária. Por exemplo, o número (0,432,-0,389), um número complexo, será escrito normalmente como 0,432 – 0,389i, onde i é a unidade imaginária, i.e. $i^2 = -1$.

Nota: O <u>teorema fundamental de álgebra</u> indica que existem *n* soluções para qualquer equação de polinômio de ordem *n*. Existe um outro teorema da álgebra que indica que se uma das soluções para a equação de polinômio com coeficientes reais é um número complexo, então o conjugado deste número é também uma solução. Em outras palavras, as soluções para uma equação de polinômio com os coeficientes reais são apresentadas em pares. Isto significa que as equações de polinômios com os coeficientes reais de número impar tem pelo menos uma solução real.

Gerar coeficientes polinomiais dadas as raízes do polinômio

Suponha que deseje gerar o polinômio cujas raízes são os números [1, 5, -2, 4]. Para usar a calculadora para este objetivo, siga estes passos:

Selecione Solve poly...

Insira o vetor das raízes Resolva para os coeficientes

Pressione [ENTER] para retornar a pilha e os coeficientes serão apresentados.

Pressione para lançar o editor linear para ver todos os coeficientes.

Nota: Se quiser obter um polinômio com os coeficientes reais, porém com raízes complexas, é necessário incluir as raízes complexas em pares de números conjugados. Para ilustrar o ponto, gere um polinômio com raízes [1 (1,2) (1,-2)]. Verifique se o polinômio resultante tem apenas coeficientes reais. Alem disso, tente gerar um polinômio com raízes [1 (1,2) (-1,2)] e verifque se o polinômio resultante terá coeficientes complexos.

Gerar uma expressão algébrica para o polinômio

Você pode usar a calculadora para gerar uma expressão algébrica para um polinômio dados os coeficientes ou raízes do polinômio. A expressão resultante será dada em termos da variável X do CAS padrão. (Os exemplos abaixo mostram como você pode substituir X por qualquer variável usando a função |.)

Para gerar a expressão algébrica usando os coeficientes, tente o seguinte exemplo. Presuma que os coeficientes do polinômio sejam [1,5,-2,4]. Use as seguintes teclas:

Selecione Solve poly...
Insira o vetor de coeficientes

Gere a expressão simbólica Retorne para a pilha.

A expressão gerada desta forma é mostrada na pilha como: 'X^3+5*X^2+-2*X+4'.

Para gerar a expressão algébrica usando as raízes, tente o seguinte exemplo. Presuma que as raízes do polinômio sejam [1,3,-2,1]. Use as seguintes teclas:

Selecione Solve poly... Insira o vetor das raízes

Gere a expressão simbólica Retorne para a pilha.

A expressão assim gerada é mostrada na pilha como: '(X-1)*(X-3)*(X+2)*(X-1)'. Para expandir os produtos, você pode usar o comando EXPAND. A expressão resultante é: 'X^4+-3*X^3+-3*X^2+11*X-6'.

Uma abordagem diferente para obter uma expressão para o polinômio é gerar os coeficientes primeiro e depois gerar a expressão algébrica com os coeficientes ressaltados. Por exemplo, para este caso:

Selecione Solve poly... Insira o vetor das raízes

Resolva os coeficientes Gere a expressão simbólica Retorne para a pilha.

A expressão assim gerada é mostrada na pilha como: 'X^4+-3*X^3+ - 3*X^2+11*X+-6*X^0'. Os coeficientes são listados no nível 2 da pilha.

Cálculos financeiros

Os cálculos no item 5. Solve finance.. no Numerical Solver (NUM.SLV) são usados para cálculos do valor do dinheiro no tempo de interesse nas disciplinas de engenharia econômica e outras aplicações financeiras. Esta aplicação pode também ser iniciada usando a combinação de teclas financeiras (associada a tecla g). Antes de discutir em detalhes a operação deste ambiente de solução, apresentamos algumas definições necessárias para compreender as operações financeiras na calculadora.

Definições

Freqüentemente, para desenvolver projetos, é necessário pedir emprestado dinheiro de uma instituição financeira ou de fundos públicos. O total do dinheiro emprestado é mencionado como o Valor Atual (PV). Este dinheiro será pago em um período n (tipicamente multiplos ou sub-multiplos de um mês) sujeito a uma taxa anual de juros de l%YR. O número de períodos por ano (P/YR) é um número inteiro de períodos no qual o ano será dividido para pagar o empréstimo concedido. Valores típicos de P/YR são 12 (um pagamento por mês), 24 (pagamentos duas vezes ao mês) ou 52 (pagamentos semanais). O pagamento (PMT) é o valor que o mutuário deve pagar para o mutuante no início ou no final de cada um dos n períodos do empréstimo. O valor futuro do dinheiro (FV) é o valor que o total emprestado terá no final dos n períodos. Os pagamentos ocorrem tipicamente no final de cada período, para que o mutuário comece a pagar ao final do primeiro período, e paga o mesmo valor fixo no final do segundo, terceiro, etc. períodos, até no final dos n períodos.

Exemplo 1 – Calcular o pagamento de um empréstimo

Se um empréstimo de \$2 milhões é feito a uma taxa de juros anual de 6.5% a ser pago em 60 pagamentos mensais, qual deve ser o pagamento mensal? Para que o débito seja totalmente pago em 60 meses, os valores futuros do empréstimo devem ser zero. Então para usar o recurso de cálculo financeiro da calculadora usaremos os seguintes valores: n = 60, l % YR = 6,5, PV = 2000000, FV = 0, P/YR = 12. Para inserir os dados e resolver o pagamento, PMT, use:

← FINANCE

Inicie o formulário de entrada do cálculo financeiro

60 III Insira n = 60 6.5 III Insira l%YR = 6.5 %

200000 III Insira PV = \$ 2.000.000

Salte PMT, dado que a resolveremos
Insira FV = 0, a opção End é ressaltada

Ressalte PMT e resolva-a

O visor de solução é apresentado a seguir:

O visor agora mostra o valor de PMT como –39,132.30, i.e. o mutuário deve pagar ao mutuante R\$ 39.132,30 no final de cada mês nos próximos 60 meses para quitar o valor total. A razão pela qual o valor de PMT passou a ser negativo é porque a calculadora está procurando o valor do ponto de vista do mutuário. O mutuáro tem + R\$ 2.000.000,00 nó período t = 0, então começa a pagar, ex. adiciona -R\$ 39132.30 na época t = 1, 2, ..., 60. Em t = 60, o valor líquido nas mãos do mutuário é zero. Agora, se tomar o valor R\$ 39.132,30 e multiplicá-lo por 60 pagamentos, o total do empréstimo pago pelo mutuário é R\$ 2.347.937,79. Assim, o mutuante recebe um lucro de R\$ 347.937,79 nos 5 anos de uso do dinheiro para o financiamento do projeto do mutuário.

Exemplo 2 – Calcular a amortização de um empréstimo

A mesma solução para o problema no exemplo 1 pode ser encontrada pressionando que significa AMORTIZAÇÃO. Esta opção é usada para calcular quanto do empréstimo foi amortizado no final de um certo número de pagamentos. Suponha que usemos 24 períodos na primeira linha do visor de amortização, ex. 2 4 2 5 Depois pressione 0 Obterá o seguinte resultado:

Esta tela é interpretada como indicando que depois de 24 meses da quitação do débto, o mutuário pagou R\$ 723.211,43 a mais em relação ao valor principal emprestado e \$ 215.963,68 de juros. O mutuário tem que pagar um saldo de R\$1.276.788,57 nos próximos 36 meses.

Verifique o que acontece se substituir 60 em *Pagamentos*: entrada no visor da amortização , depois pressione **IIII** O visor deverá ser similar a este:

Isto significa que no final de 60 meses os R\$ 2.000.000,00 do valor principal foi pago, juntamente com R\$ 347.937,79 de juros, com o saldo devido pelo mutuante ao mutuário de R\$ 0,000316. Naturalmente, o saldo deveria ser zero. O valor mostrado no visor acima é simplesmente erro de arredondamento resultante da solução numérica.

Pressione ov ou ENTER duas vezes para retornar ao visor normal da calculadora.

Exemplo 3 – Calcular o pagamento com pagamentos no início do período

Vamos resolver o mesmo problema do exemplo 1 e 2, mas usando a opção de que o pagamento ocorra no início do período. Use:

← FINANCE Inicie o formulário de entrada do cálculo financeiro 60 **M** Insira n = 606.5 MW Insira 1%YR = 6.5%20000000 **IXXII** Insira PV = \$2.000.000Salte PMT, dado que a resolveremos \bigcirc 0 1031 Insira FV = 0, a opção End é ressaltada Altere a opção de pagamento para Begin Ressalte PMT e resolva-a

O visor agora mostra o valor de PMT como -38.921,47, ex. o mutuário deve pagar ao mutuante R\$ 38.921,48 no <u>início</u> de cada mês nos próximos 60 meses para quitar o valor total. Observe que o valor que o mutuário paga mensalmente, se for no início de cada período, é levemente menor do que o pago no final de cada período de pagamento. A razão para esta diferença é que o mutuante obtém o ganho dos juros dos pagamentos do início do período, assim aliviando a sua carga.

Notas:

- O ambinete financeiro da calculadora permite que você resolva quaisquer dos termos involvidos, i.e. n, I%YR, PV, FV, P/Y, dado os termos restantes no cálculo do empréstimo. Ressalte apenas o valor que você quer resolver e pressione O resultado será mostrado no campo ressaltado.
- 2. Os valores calculados no ambiente financeiro da calculadora são copiados para a pilha com suas etiquetas correspondentes (etiquetas de identificação).

Excluir as variáveis

Ao usar o ambiente financeiro da calculadora pela primeira vez dentro do diretório HOME ou qualquer subdiretório, serão geradas as variáveis za para armazenar os termos correspondentes nos cálculos. Você pode ver o conteúdo destas variáveis usando:

Você pode armazenar estas variáveis para uso futuro ou usar a função PURGE para apagá-las de seu diretório. <u>Para apagar todas as variáveis de uma vez,</u> se estiver usando o modo ALG tente o seguinte:

TOOL [31373 VAR () }	Insira PURGE e prepare a lista de variáveis
	Insira o nome da variável N
▶ →	Insira uma virgula
	Insira o nome da variável 1%YR
▶ →	Insira uma virgula
	Insira o nome da variável PV
	Insira uma virgula

As telas a seguir mostram o comando PURGE para excluir todas as variáveis no diretório e o resultado depois de executar o comando.

No modo RPN o mesmo valor é executado usando:

(VAR) (+) {}	Prepare uma lista de variáveis a ser excluida
	Insira o nome da variável N
	Insira o nome da variável 1%YR
	Insira o nome da variável PV
	Insira o nome da variável PMT
#348#	Insira o nome da variável PYR
	Insira o nome da variável FV
ENTER	Insira a lista de variáveis na pilha
ETEILE (100T)	Exclua as variáveis da lista

Antes que o comando PURGE seja inserido a pilha RPN será apresentada conforme a seguir:

Resolver as equações com uma icógnita através de NUM.SLV

O menu NUM.SLV da calculadora fornece o item 1. Solve equation.. que resolve diferentes tipos de equações com uma só variável, incluindo as equações algébricas não lineares e transcendentais. Por exemplo, vamos resolver a equação: e^x - $sin(\pi x/3) = 0$.

Insira apenas a expressão como um objeto algébrico e armazene-a na variável EQ. As teclas utilizadas no modo ALG são as seguintes:

Função STEQ

A função STEQ, disponível no catálogo de comandos, 🔁 🛂 , armazenará seu argumento na variável EQ, ex. no modo ALG:

No modo RPN, insira a equação entre as apóstrofes e o STEQ de comando ativo. Assim, a função STEQ pode ser usada como um atalho para armazenar uma expressão na variável EQ.

Pressione para ver a nova variável EQ criada:

Depois, insira o ambiente SOLVE e selecione Solve equation..., usando:

Numsiv Will. O visor correspondente será mostrado como:

A equação que armazenamos na EQ variável já está carregada no campo Eq no formulário de entrada SOLVE EQUATION. Além disso, o campo marcado com x é fornecido. Para resolver a equação, tudo que é preciso

fazer é ressaltar o campo na frente de X: usando 👽 e pressionando 🔯 🗷 A solução mostrada é X: 4.5006E-2:

Isto, contudo, não é a única solução possível para esta equação. Para obter uma solução negativa, por exemplo, insira um número negativo no campo X: antes de resolver a equação. Tente 3 + A solução agora é X: -3.045.

Procedimentos de solução para Equation Solve...

O solucionador numérico para as equações de uma incógnita funciona como segue:

- Isto permite que o usuário digite ou uma equação para obter a solução.
- Cria um formulário de entrada com campos correspondentes para todas as variáveis envolvidas na equação armazenada na variável
- É necessário que o usuário insira os valores para todas as variáveis, exceto uma.
- O usuário então ressalta o campo correspondente à incógnita para o qual resolve a equação e pressiona
- O usuário pode forçar uma solução fornecendo uma estimativa inicial para a solução no campo apropriado de entrada antes de resolver a equação.

A calculadora usa um algoritmo de busca para identificar um intervalo onde a função muda de sinal, o que indica a existência de uma raiz ou solução. Utiliza então um método numérico para convergir para a solução.

A solução que a calculadora busca é determinada pelo valor presente inicial no campo de entrada da incógnita. Se nenhum valor estiver presente, a calculadora usa um valor padrão de zero. Assim, você pode buscar por mais de uma solução para uma equação alterando o valor inicial no campo

de entrada da incógnita. Exemplos de outras soluções de equações são mostrados a seguir.

Exemplo 1 – Lei de Hooke para tensão e deformação

A equação a ser utilizada é a lei de Hooke para deformação normal na direção x de uma partícula sólida sujeita ao estado de tensão dada por

$$\begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix}$$

A equação é
$$e_{\text{xx}} = \frac{1}{E} [\sigma_{\text{xx}} - n \cdot (\sigma_{\text{yy}} + \sigma_{\text{zz}})] + \alpha \cdot \Delta T$$
, aqui e_{xx} é a

deformação da unidade na direção x, σ_{xx} , σ_{yy} , e σ_{zz} , são as tensões normais na partícula nas direções de x-, y- e eixos z, E é o módulo de Young ou o módulo da elasticidade do material n é a razão de Poisson do material, α é o coeficiente da expansão termal do material e ΔT é o aumento da temperatura.

Suponha que você receba os seguintes dados: σ_{xx} = 2500 psi, σ_{yy} =1200 psi e σ_{zz} = 500 psi, E = 1200000 psi, n = 0.15, α = 0.00001/°F, Δ T = 60 °F. Para calcular a deformação e_{xx} use o seguinte:

Nesta altura siga as instruções do capítulo 2 sobre como usar o Editor de Equação para construir uma equação. A equação para inserir no campo *Eq* deve se parecer com essa (observe que usamos apenas um sub-índice para nos referirmos às variáveis, ex. e_{xx} é traduzido como *ex*, etc. – isto é feito para diminuir o tempo de digitação):

Use os seguintes atalhos para os caracteres especiais:

 σ : ALPHA ightarrow σ : ALPHA ightarrow A: ALPHA ightarrow C

e observe que as letras minúsculas são inseridas usando (APPA) antes da tecla da letra, assim, x é digitada como (APPA) (X).

Pressione para retornar ao solucionador de equação. Insira os valores propostos acima nos campos correspondentes para que o visor do solucionador seja apresentado como a segue:

Com o ex: campo ressaltado pressione para resolver para ex:

Suponha que você agora queira determinar o módulo de Young que produzirá uma deformação de $e_{xx} = 0,005$ sob o mesmo estado de tensão,

Observe que os resultados dos cálculos feitos dentro do ambiente do solucionador numérico foram copiados para a pilha:

Alem disso, você verá nos símbolos das teclas do seu soft menu variáveis correspodentes às variáveis da equação armazenada no EQ (pressione para ver todas as variáveis no seu diretório), i.e. variáveis ex, ΔT , α , σz , σy , σx , σx e E.

Exemplo 2 – Energia específica em fluxo de um canal aberto

A energia específica em um canal aberto é definida como a energia por unidade de peso medida em relação ao fundo do canal. Permite E = energia específica, y = profundidade do canal, V = velocidade do fluxo, g = aceleração da gravidade, depois escrevemos

$$E = y + \frac{V^2}{2g}.$$

a velocidade do fluxo, por sua vez, é dada por V = Q/A, onde Q = descarga de água, <math>A =área da seção transversal. A área depende da seção transversal usada, por exemplo, para uma seção transversal trapezoidal, conforme mostrado na figura abaixo, $A = (b+m\cdot y) \cdot y$, onde b =largura do fundo e m =inclinação lateral da seção cruzada.

Podemos digitar na equação para E como mostrado acima e usar as variáveis auxiliares para A e V, para que o formulário de entrada resultante tenha os campos para as variáveis fundamentais y, Q, g, m e b, como segue:

- Primeiro, crie um subdiretório chamado SPEN (energia específica) e trabalhe dentro deste subdiretório.
- Depois, defina as seguintes variáveis:

Ative o solucionador numérico para resolver as equações:
 Deserve que o formulário de entrada contém as entradas para as variáveis y, Q, b, m e g:
 SOLVE EQUATION

Tente os seguintes dados de entrada: E = 10 ft, Q = 10 cfs (pés cúbicos por segundo), b = 2.5 ft, m = 1.0, g = 32.2 ft/s²:

Solucione para y

O resultado é 0.149836.., ex. y = 0.149836.

 É sabido, entretanto, que existem realmente duas soluções disponíveis para y na equação de energia específica. A solução que acabamos de encontrar é correspondente a solução numérica com um valor inicial de 0 (o valor padrão para y, ex. sempre que a solução for vazia, o valor inicial é zero). Para encontrar outra solução, precisamos inserir um valor maior de y, digamos 15, ressalte o campo de entrada y e resolva para y novamente:

O resultado é agora 9,99990, ex. y = 9.99990 ft.

Este exemplo ilustra o uso de variáveis auxiliares para escrever as equações complicadas. Quando NUM.SLV for ativada, as substituições implicadas pelas variáveis auxiliares são implementadas e o visor de entrada para a equação fornece campos de entrada para as variáveis primitivas ou fundamentais resultantes das substituições. O exemplo ilustra também uma equação que tem mais de uma solução e como escolher a estimativa inicial para a solução pode produzir estas soluções diferentes.

No próximo exemplo usaremos a função DARCY para encontrar os fatores de fricção nas tubulações. Assim, definimos a função no seguinte quadro.

Função especial para o fluxo no tubo: DARCY (ε/D,Re)

A equação Darcy-Weisbach é usada para calcular a perda de energia (por unidade de peso), h_f , em um fluxo tubular com um tubo de diâmetro D, de rugosidade absoluta ϵ , e comprimento L, quando a velocidade do fluxo no

tubo for V. A equação é escrita como
$$h_f = f \cdot \frac{L}{D} \cdot \frac{V^2}{2g}$$
. A quantidade de f

é conhecida como o fator de fricção do fluxo e é considerada como uma função de rugosidade relativa do tubo, ϵ/D e um número de (sem dimensão) Reynolds, Re. O número de Reynolds é definido como Re = $\rho VD/\mu = VD/\nu$, onde ρ e μ são a densidade e viscosidade dinâmica do fluido, respecitivamente, e $\nu = \mu/\rho$ é a viscosidade cinemática do fluido.

A calculadora fornece uma função chamada DARCY que usa como entrada a rugosidade relativa ε/D e o número de Reynolds, nesta ordem, para calcular

o fator de fricção f. A função DARCY pode ser encontrada no catálogo de comandos:

Por exemplo, para $\epsilon/D = 0.0001$, Re = 1000000, você pode encontrar o fator de fricção usando: DARCY (0.0001,1000000). No seguinte visor, a função \rightarrow NUM () foi usada para obter um valor numérico da função:

O resultado é f = DARCY (0.0001, 1000000) = 0.01341...

A função FANNING(ε/D,Re)

Nas aplicações aerodinâmicas usamos um fator de atrito diferente chamado de fator de atrito de Fanning. O fator de atrito de Fanning, f_F , é definido como 4 vezes o fator de atrito Darcy-Weisbach, f. A calculadora fornece uma função chamada FANNING que usa a mesma entrada de DARCY, ex., ϵ/D e Re, fornecendo o fator de atrito de FANNING. Verifique que FANNING (0.0001,1000000) = 0.0033603589181s.

Exemplo 3 – Fluxo em um tubo

Você pode criar um subdiretório separado (PIPES) para tentar este exemplo. A equação principal que governa o fluxo em um tubo é, naturalmente, a equação de Darcy-Weisbach. Assim, digite a seguinte equação em EQ:

Além disso, insira as seguintes variáveis (f, A, V, Re)

Neste caso armazenamos a equação principal (equação Darcy-Weisbach) no EQ e substituimos diversas de suas variáveis por outras expressões através da definição das variáveis f, A, V e Re. Para ver a equação combinada, use EVAL(EQ). Neste exemplo alteramos a configuração do visor para que possamos ver a equação inteira:

Assim, a equação que estamos resolvendo, depois de combinar as varáveis diferentes no diretório, é:

$$h_f = \frac{8Q^2L}{\pi^2 gD^5} \cdot DARCY \left(\frac{\varepsilon}{D}, \frac{\frac{QD}{\pi D^2 / 4}}{Nu} \right)$$

A equação combinada tem variáveis primitivas: h_{fr} , Q, L, g, D, ε e Nu. Ative o solucionador numérico (\nearrow NUMSLY \longrightarrow Dara ver as variáveis primitivas listadas no formulário de entrada SOLVE EQUATION:

Suponha que usemos os valores hf = 2 m, ϵ = 0.00001 m, Q = 0.05 m³/s, Nu = 0.000001 m²/s, L = 20 m e g = 9.806 m/s², encontre o diâmetro D. Insira os valores de entrada e resolva D, A solução é: 0.12, ex. D = 0.12 m.

Se a equação for consistente na sua dimensão, você pode adicionar unidades para os valores de entrada, conforme mostrado na figura abaixo. Portanto, você deve adicionar estas unidades para a estimativa inicial na solução. Assim, no exemplo abaixo, colocamos 0_m no D: campo antes de resolver o problema. A solução e mostrada no visor a direita:

Pressione para retornar ao visor normal da calculadora. A solução para D será listada na pilha.

Exemplo 4 – Gravidade universal

A lei da gravidade universal de Newton indica que a magnitude da força de atração entre dois corpos de massas m_1 e m_2 separadas pela distância r é dada pela equação $F = G \cdot \frac{M_1 \cdot M_2}{r^2}$.

Aqui G é a constante gravitacional universal, cujo valor pode ser obtido através do uso da função CONST na calculadora usando:

Podemos resolver qualquer termo na equação (exceto G) inserindo a equação como:

F=CONST(G)
$$\left(\frac{M1 \cdot M2}{r^{24}}\right)$$

Esta equação é então armazenada no EQ:

Ativar o solucionador numérico para esta equação resulta em um formulário de entrada que contém os campos de entrada para F, G, m1, m2 e r.

Vamos resolver usando as unidades com os seguintes valores para as variáveis conhecidas m $1=1.0\times10^6\,\mathrm{kg},\ m2=1.0\times10^{12}\,\mathrm{kg},\ r=1.0\times10^{11}\,\mathrm{m}.$ Além disso, insira um valor de 0_N no campo F para assegurar a solução correta usando as unidades na calculadora:

Resolva F e pressione para retornar ao visor normal da calculadora. A solução é F: $6.67259E-15_N$ ou F = 6.67259×10^{-15} N.

Nota: Ao usar as unidades no solucionador numérico certifique-se de que todas as vairáveis tenham as unidades corretas, que as unidades sejam compatíveis e que a equação seja dimensionada homogeneamente.

Formas diferentes para inserir equações no EQ

Nete ponto você pode digitar uma nova equação pressionando [1]. Receberá então um conjunto de apóstrofes para que possa digitar a expressão entre elas:

Nesta altura a equação está pronta para a solução.

De forma alternativa, você pode ativar o Editor de Equação depois de pressionar IIII na sua equação. Pressione INTER para retornar ao visor do solucionador numérico.

Outra forma de inserir uma equação na variável EQ é selecionar uma outra que já existe no seu diretório que será inserida no EQ. Isto significa que sua

equação teria que ser armazenada em um nome de variável anteriormente para ativar o solucionador numérico. Por exemplo, suponha que inserimos as seguintes equações nas variáveis EQ1 e EQ2:

Agora ative o solucionador numérico (e ressalte o campo EQ. Pressione a tecla Use as teclas de setas () para selecionar a variável EQ1:

Pressione de selecionar EQ1 para carregar na variável EQ no solucionador. A nova equação está pronta para ser resolvida.

Menu SOLVE

O menu SOLVE permite acesso a algumas das funções do solucionador numérico através das teclas do menu virtual. Para acessar no modo RPN: 74 MENU ou no modo ALG: MENU(74). De forma alternativa, você pode usar (manter) para ativar o menu SOLVE. Os submenus fornecidos pelo menu SOLVE são os seguintes:

O submenu ROOT

O submenu ROOT inclui as seguintes funções e submenus:

Função ROOT

A função ROOT é usada par resolver uma equação para uma variável dada com um valor de estimativa inicial. No modo RPN a equação ficará no nível 3 da pilha, enquanto que o nome da variável ficará localizado no nível 2 e a estimativa inicial no nível 1. A seguinte figura mostra a pilha RPN antes e depois de ativar a função

No modo ALG você pode usar ROOT('TAN(θ)= θ' ,' θ' ,5) para ativar a função ROOT:

Variável EQ

A tecla virtual reste submenu é usada como referência para a variável EQ. Pressionar a tecla é equivalente a usar a função RCEQ (ReCall EQ).

O submenu SOLVR

O submenu SOLVR ativa o solucionador do menu virtual para a equação atualmente armazenada no EQ. Alguns exemplos são mostrados a seguir:

Exemplo 1 – Resolver a equação $t^2-5t = -4$

Por exemplo, se armazenar a equação 't^2-5*t=-4' no EQ e pressionar [10], ativará o seguinte menu:

2: 1: t @XBRB

Este resultado indica que você pode resolver um valor de t para a equação listada na parte superior do visor: Se tentar, por exemplo, [t], obterá o resultado t: 1., depois de piscar rapidamente a mensagem "Solving for t." Existe uma segunda raiz para esta equação que pode ser encontrada alterando o valor de t antes de resolvê-la novamente. Faça o seguinte: 10 [t], então pressione [t]. O resultado é agora t: 4.0000000003.

Para verificar este resultado, pressione a tecla chamada [1322], que avalia a expressão no EQ para o seu valor atual. Os resultados neste caso são:

0: 4: t:1. 3: t:4.000000000003 2: Left:(-4.) 1: Right:(-4) t]⊞####

Para sair do ambiente SOLVR, pressione MR. O acesso para o menu SOLVE é perdido neste ponto, então é necessário ativá-lo novamente conforme indicado anteriormente para continuar com os exercícios abaixo.

Exemplo 2 – Resolver a equação $Q = at^2 + bt$

É possível armazenar no EQ uma equação que envolve mais de uma varável, digamos, 'Q = at^2 + bt'. Neste caso, depois de ativar o menu SOLVE e pressionar (2012), obterá o sequinte visor:

Dentro deste ambiente SOLVR você pode fornecer os valores para qualquer uma das variáveis listadas inserindo o valor na pilha e pressionando as teclas correspondentes no menu virtual. Por exemplo, digamos que você insira os valores Q = 14, a = 2 e b = 3. Você usaria: 14 [Q], 2[a], 3[b].

A medida que valores numéricos são atribuídos às variáveis Q, a e b, as atribuições são listadas no canto superior esquerdo do visor. Nesta altura podemos resolver t usando [t]. O resultado é t: 2. Pressionar mostra os resultados:

4: 8: t:2. 2: Left:14 1: Right:14.

Exemplo 3 – Resolver duas equações simultâneas, uma de cada vez. Você pode também resolver mais de uma equação resolvendo uma equação de cada vez e repetindo o processo até que uma solução seja encontrada. Por exemplo, se inserir a seguinte lista de equações na variável EQ: { 'a*X+b*Y = c', 'k*X*Y=s'}, A sequência de tecla [177] [177], dentro do menu SOLVE, produzirá o seguinte visor:

A primeira equação, a saber, a*X + b*Y = c, será listada na parte superior do visor. Você pode inserir os valores para as variáveis a, b e c, digamos: 2 [a] 5 [b] 19 [c]. Além disso, podemos resolver apenas uma equação de cada vez, inserindo um valor estimado para Y, digamos, 0 [Y] e resolver para X, usando [X]. Isto gera o valor X: 9.4999.... Para verificar o valor da equação nesta altura, pressione 3.4999.... Os resultados são: Esquerda: 19, direita: 19. Para resolver a próxima equação, pressione 3.4999.... O visor mostra as teclas do menu virtual como:

4: 3: X:9.50000000000 2: Left:19. 1: Right:19

digamos que inserimos os valores k=2, s=12. Então resolva para Y e pressione \blacksquare Os resultados são agora, Y:

7: 6: X:9.500000000002 5: Left:19. 4: Right:19 3: Y:.631578947368 2: Left:12. Right:12

Nós então continuamos o movimento da primeira para a segunda equação, para trás e para frente, resolvendo a primeira equação para X e a segunda para Y, até que os valores de X e Y possam convergir para a solução. Para mover de equação para equação use Para resolver X e Y use [X] e [Y], respectivamente. A seguinte seqüência de soluções é produzida:

7: X:7.92105263162 7: Y:.799208608695 6: Y:.757475083056 6: X:7.50197847825 5: X:7.60631229237 5: Y:.799789017976 4: Y:.788818519325 4: X:7.50052745505 8: X:7.5279537017 8: Y:.799943742082 2: Y:.797029343928 2: X:7.5001406448 1: X:7.5074266402 1: Y:.79984998167

Depois de resolver as duas equações, uma de cada vez, observamos que, até o terceiro decimal, X é convergente a um valor de 7,500, enquanto que Y é convergente a um valor o 0,799.

Usar as unidades com o submenu SOLVR.

Existem algumas regras sobre o uso das unidades com o submenu SOLVR.

- Inserir uma conjetura com as unidades para uma variável dada, introduzirá o uso destas unidades na solução.
- Se uma nova conjetura for dada sem as unidades, são usadas aquelas previamente salvas para esta variável em particular.
- Para remover as unidades insira um número sem elas na lista como a nova conjetura, ex. uso do formato { número }.
- Uma lista de números pode ser dada como uma conjetura para uma variável. Neste caso, as unidades tomam as unidades usadas que pertencem ao último número da lista. Por exemplo, inserir { 1.41_ft 1_cm 1_m } indica que os metros (m) serão usados para esta variável.
- A expressão usada na solução deve ter as unidades consistentes ou um erro resultará ao tentar resolver um valor.

O submenu DIFFE

O submenu DIFFE fornece um número de funções para a solução numérica de equações diferenciais. As funções disponíveis são as seguintes:

Estas aplicações são apresentadas em detalhes no capítulo 16.

O submenu POLY

O submenu POLY realiza as operações com polinômios. As funções incluidas são as seguintes:

Função PROOT

Esta função é usada para encontrar as raízes de um polinômio dado um vetor que contém os coeficientes do polinômio em ordem decrescente das potências da variável independente. Em outras palavras, se o polinômio for $a_nx^n+a_{n-1}x^{n-1}+\ldots+a_2x^2+a_1x+a_0$, o vetor de coeficientes deve ser inserido como $[a_n, a_{n-1}, \ldots, a_2, a_1, a_0]$. Por exemplo, as raízes do polinômio de coeficientes [1, -5, 6] são [2, 3].

Função PCOEF

Esta função produz os coeficientes $[a_n, a_{n-1}, \ldots, a_2, a_1, a_0]$ de um polinômio $a_nx^n + a_{n-1}x^{n-1} + \ldots + a_2x^2 + a_1x + a_0$, dado um vetor de suas raízes $[r_1, r_2, \ldots, r_n]$. Por exemplo, um vetor cujas raízes são dadas por [-1, 2, 2, 1, 0], produzirá os seguintes coeficientes: [1, -4, 3, 4, -4, 0]. O polinômio é $x^5 - 4x^4 + 3x^3 + 4x^2 - 4x$.

Função PEVAL

Esta função avalia um polinômio, dado um vetor de seus coeficientes, $[a_n, a_{n-1}, \ldots, a_2, a_1, a_0]$ e um valor x_0 , ex. PEVAL calcula $a_nx_0^n + a_{n-1}x_0^{n-1} + \ldots + a_2x_0^2 + a_1x_0 + a_0$. Por exemplo, para os coeficientes [2, 3, -1, 2] e um valor de 2, PEVAL retorna o valor 28.

O submenu SYS

O submenu SYS contém uma lista de funções usadas para resolver os sistemas lineares. As funções listadas do submenu são:

Estas funções são apresentadas em detalhes no capítulo 11.

O submenu TVM

O submenu TVM contém as funções para calcular o Valor monetário no tempo. Existe uma forma alternativa para resolver os problemas FINANCE (consulte o capítulo 6). As funções disponíveis são mostradas a seguir:

O submenu SOLVR

O submenu SOLVR no submenu TVM ativará o solucionador para resolver os problemas TVM. Por exemplo, pressionar [10], nesta altura, ativará o sequinte visor:

Como exercício, tente usar os valores n=10, I%YR=5.6, PV=10000 e FV=0 e insira f [PMT] para encontrar PMT = -1021.08.... Pressionar f produz o seguinte visor:

12. payments/year BEGIN mode 5: 4: 8: 2: 1: PMT:(-1021.08086483:

Pressionar para sair do ambiente SOLVR. Encontre seu caminho de volta para o submenu TVM dentro do submenu SOLVE para tentar outras funções disponíveis.

Funções TVMROOT

Esta função exige como argumento o nome de uma das variáveis no problema TVM. Esta função retorna a solução para aquela variável, dado que as outras variáveis existam e tenham valores armazenados previamente. Por exemplo, tendo resolvido um problema TVM acima, podemos resolver, digamos, 'N', como segue: ['] APPA NETER LITTE. O resultado é 10.

Função AMORT

Esta função toma um valor que representa um período de pagamento (entre 0 e n) e retorna o principal, juro e saldo para os valores atualmente armazenados nas variáveis TVM. Por exemplo, com os dados usados anteriormente, se ativarmos a função AMORT para um valor de 10, obtemos:

Função BEG

Se for selecionada, os cálculos TMV usam pagamentos no início de cada período. Se for desmarcada, os cálculos TMV usam os pagamentos no final de cada período.

Capítulo 7

Resolver múltiplas equações

Muitos dos problemas de ciência e engenharia exigem a solução simultânea de mais de uma equação. A calculadora fornece diversos procedimentos para resolver equações múltiplas como apresentado abaixo. Observe que nenhuma discussão sobre resolver sistemas de equações lineares é apresentada neste Capítulo. Soluções de sistemas lineares serão discutidos em detalhes em Capítulos subseqüentes sobre matrizes e álgebra linear.

Sistemas racionais de equação

As equações que podem ser reescritas como polinômios ou expressões algébricas racionais são resolvidas diretamente pela calculadora usando a função SOLVE. É necessário fornecer a lista de equações como elementos de um vetor. A lista de variáveis para resolver deve também ser fornecida como um vetor. Certifique-se de que o CAS seja configurado para o modo Exact antes de tentar uma solução usando este procedimento. Além disso, quanto mais complicadas as expressões, mais tempo leva o CAS para resolver um sistema particular de equações. Exemplos desta aplicação são mostrados a seguir:

Exemplo 1 – movimento do projétil

Use a função SOLVE com os seguintes argumentos de vetores, o primeiro sendo a lista de equações: [' $x = x0 + v0*COS(\theta 0)*t'$ ' $y = y0+v0*SIN(\theta 0)*t-g*t^2/2'$] ENTE e o segundo tendo as variáveis para resolver e, digamos t e y0, ex. ['t' 'y0'].

A solução neste caso será fornecida usando o modo RPN. A única razão sendo que podemos construir a solução passo a passo. A solução no modo ALG é muito similar. Primeiro, armazenamos o primeiro vetor (equações) nas variáveis A2 e o vetor das variáveis na variável A1. O seguinte visor mostra a pilha RPN antes de salvar as variáveis.

Nesta altura, precisamos apenas pressionar 570 duas vezes para armazenar estas variáveis.

Para resolver, altere primeiro o modo CAS para Exact e depois liste o conteúdo de A2 e A1 nesta ordem:

Use o comando SOLVE nesta altura (do menu S.SLV: () Depois de aproximadamente 40 segundos, talvez mais, você obtém como resultado uma lista:

Pressione [FIAL] para remover o vetor da lista, depois use o comando OBJ->, para obter as equações listadas separamente na pilha.

Nota: Este método funcionou muito bem neste exemplo porque as incógnitas t e y0 eram termos algébricos nas equações. Este método não funcionaria para resolver $\theta0$, uma vez que $\theta0$ pertence a um termo transcendental.

Exemplo 2 – Tensões em um cílindro com parede espessa

Considere um cilindro com parede espessa para o raio interno e externo a e b, respectivamente, sujeito à pressão interior P_i e exterior P_o . A qualquer

distância do raio r do eixo do cilindro as tensões normais nas direções radiais e transversais σ_{rr} e $\sigma_{\theta\theta}$, respectivamente, são dadas por

$$\sigma_{\theta\theta} = \frac{a^2 \cdot P_i - b^2 \cdot P_o}{b^2 - a^2} + \frac{a^2 \cdot b^2 \cdot (P_i - P_o)}{r^2 \cdot (b^2 - a^2)},$$

$$a^2 \cdot P_i - b^2 \cdot P_o - a^2 \cdot b^2 \cdot (P_i - P_o)$$

 $\sigma_{rr} = \frac{a^2 \cdot P_i - b^2 \cdot P_o}{b^2 - a^2} - \frac{a^2 \cdot b^2 \cdot (P_i - P_o)}{r^2 \cdot (b^2 - a^2)}.$

Observe que os lados direitos das duas equações diferem apenas no sinal entre os dois termos. Portanto, para escrever estas duas equações na calculadora, sugiro que digite o primeiro termo e armazene-o em uma variável T1, depois o segundo termo e armazene-o em T2. Escrever o conteúdo depois será uma questão de ativar novamente os conteúdos de T1 e T2 na pilha e adicioná-los e subtraí-los. A seguir descrevemo como fazê-lo com o Editor de Equação:

Insira e armazene o termo T1:

Insira e armazene o termo T2:

$$\frac{a^{2} \cdot b^{2} \cdot (Pi - Po)}{r^{2} \cdot \left(b^{2} - a^{2}\right)}$$

$$\frac{a^{2} \cdot b^{2} \cdot (Pi - Po)}{r^{2} \cdot \left(b^{2} - a^{2}\right)}$$
1:

EDIT | CURS | BIG | EVAL | FACTO | SIMP

Observe que estamos usando o modo RPN neste exemplo, portanto, o procedimento no modo ALG deve ser muito similar. Crie a equação para $\sigma_{\theta\theta}$:

Crie a equação para σ_{rr} : WR III IFII — ALPHA P (3 ALPHA (7 R ENTER

Agora, suponha que desejemos resolver P_i e P_o , dado a, b, r, σ_m e $\sigma_{\theta\theta}$. Inserimos um vetor com as incógnitas:

$$\begin{bmatrix}
\sigma \theta = \frac{a^2 \cdot P_1 - b^2 \cdot P_0}{b^2 - a^2} + \frac{a^2 \cdot b^2 \cdot (P_1 - P_0)}{r^2 \cdot (b^2 - a^2)}, \\
1: & \text{CP1 Pol}
\end{bmatrix}$$

Para resolver P_i e P_o , use o comando SOLVE do menu S.SLV (\P ssiv), pode levar um minuto para que a calculadora produza o resultado:

Observe que o resultado inclui um vetor [] contido dentro da lista {}. Para remover o símbolo da lista, use FVAL. Finalmente, para decompor o vetor, use a função OBJ→. O resultado é:

Estes dois exemplos constituem os sistemas de equações lineares que podem ser manipuladas igualmente bem com a função LINSOLVE (consulte o Capítulo 11). O seguinte exemplo mostra a função SOLVE aplicada a um sistema de equações de polinômios.

Exemplo 3 – Sistema de equações de polinômios

O seguinte visor mostra a solução do sistema X²+XY=10, X²-Y²=-5 usando a função SOLVE:

Solução para as equações simultâneas com MSLV

A função MSLV está disponível como a última opção no menu 🔁 NUMSLV :

A entrada da ajuda para a função MSLV é mostrada a seguir:

```
MSLV:
Non-polynomial multi-
variate solver
MSLV('[SIN(X)+Y,X+SIN(
Y)=1]','[X,Y]',[0,0])
[1.82384112611 -.9681...
See: SOLVE
```

Exemplo 1 – Exemplo da ajuda

Similar a todas as entradas de função na ajuda existe um exemplo anexado a entrada MSLV como mostrado abaixo. Observe que a função MSLV exige três argumentos:

- 1. Um vetor contendo as equações, ex. '[SIN(X)+Y,X+SIN(Y)=1]'
- 2. Um vetor contendo as variáveis para serem resolvidas ex. '[X,Y]'
- 3. Um vetor contendo os valores iniciais para a solução, ex. os valores iniciais de X e de Y são zero para este exemplo.

No modo ALG pressione para copiar o exemplo na pilha e depois para executar o exemplo. Para ver todos os elementos na solução que deseja ative a linha de edição pressionando a tecla com a seta para baixo ():

No modo RPN, a solução para este exemplo é produzida usando:

Ativar a função MSLV cria a seguinte tela.

Você deve ter observado que, enquanto produz a solução, o visor mostra a informação intermediária no canto superior esquerdo. Já que a solução fornecida por MSLV é numérica a informação no canto superior esquerdo mostra os resultados do processo iterativo usado para obter uma solução. A solução final é $X=1.8238,\ Y=-0.9681.$

Exemplo 2 – Entrada de um lago em um canal aberto

Este problema em particular sobre fluxo aberto de canal exige a solução simultânea de duas equações, a saber, a equação de energia:

$$H_o = y + rac{V^2}{2g}$$
 e a equação de Manning: $Q = rac{Cu}{n} \cdot rac{A^{5/3}}{P^{2/3}} \cdot \sqrt{S_o}$. Nestas

equações, H_o representa a energia principal (m ou pés) disponível na entrada de um canal, y é a profundidade do fluxo (m ou ft), V = Q/A é a velocidade do fluxo (m/s ou pés/s), Q é a descarga numérica (m³/s ou pés³/s), A é a área de seção transversal (m² ou pés²), C_u é o coeficiente que depende do sistema de unidades ($C_u = 1.0$ para o SI, $C_u = 1.486$ para o sistema inglês de unidades), n é o coeficiente de Manning, uma medida da rugosidade da superfície do canal (ex. para concreto n = 0.012), P é o perímetro úmido da seção transversal (m ou pés), S_o é a inclinação do leito do canal expresso como fração decimal. Para um canal trapezoidal, conforme mostrado abaixo, a área é dada por A = (b + my)y enquanto que o perímetro é

dado por $P = b + 2y\sqrt{1 + m^2}$, onde b é a largura do fundo (m ou pés) e m é a inclinação lateral (1V:mH) da seção transversal.

Tipicamente, é necessário resolver as equações de energia e de Manning simultaneamente para y e Q. Logo que estas equações forem escritas em termos de variáveis primitivas b, m, y, g, S_o , n, Cu, Q, e H_o , recebemos um sistema de equações da forma $f_1(y,Q)=0$, $f_2(y,Q)=0$. Podemos construir estas duas equações conforme a seguir:

Supondo que iremos usar o modo ALG e modalidades exatas na calculadora, embora definir as equações e resolvê-las com MSLV é muito similar no modo RPN. Crie um subdiretório, digamos CHANL (para canal aberto) e dentro do subdiretório defina as sequintes variáveis:

Para ver as equações originais, EQ1 e EQ2 em termos de variáveis primitivas listadas acima, podemos usar a função EVAL aplicada a cada uma das equações, ex. [FVAL] [FVAL]

Podemos ver que estas equações são realmente dadas em termos de variáveis primiticas b, m, y, g, S_o, n, Cu, Q e H_o.

Para resolver y e Q precisamos dar valores às outras variáveis. Suponha que usemos $H_0 = 5$ ft, b = 1.5 ft, m = 1, n = 0.012, $S_0 = 0.00001$, g = 32.2 e Cu = 1.486. Antes de poder usar MSLV para a solução, é necessário inserir estes valores nos nomes correspondentes das variáveis. Isto pode ser feito conforme a seguir:

Estamos agora prontos para resolver a equação. Primeiro, precisamos colocar duas equações juntas em um vetor. Podemos fazer isto armazenando efetivamente o vetor em uma variável que chamaremos de EQS (EQuationS):

Como valores iniciais para as variáveis y e Q usaremos y = 5 (igual ao valor de H_o, que é o valor máximo que y pode ter) e Q = 10 (isto é uma estimativa). Para obter a solução selecionamos a função MSLV do menu NUM.SLV, ex.

Antes de pressionar 🕅 o visor será conforme a seguir:

Pressione [EVTER] para resolver o sistema de equações. Você pode, se sua medida angular não estiver configurada em radianos, obter a seguinte solicitação:

Pressione e permita que a solução continue. Uma etapa da solução intermediária é apresentada conforme a seguir:

O vetor na parte superior representa o valor de [y,Q] enquanto a solução progride e o valor .358822986286 representa o critério para a convergência do método numérico usado na solução. Se o sistema for bem colocado, este valor diminuirá até que alcance o valor próximo a zero. Nesta altura uma solução numérica já deverá ter sido encontrada. O visor, depois que MSLV encontrar uma solução, será apresentado conforme a segui:

O resultado é uma lista de três vetores. O primeiro vetor na lista será a equação resolvida. O segundo vetor é a lista de icógnitas. O terceiro vetor

representa a solução. Para ver estes vetores pressione a tecla com a seta para baixo ver para ativar a linha de edição. O resultado será mostrado conforme a seguir:

A solução sugerida é [4.9936.., 20.661...]. Isto significa, y = 4,99 pés e Q = 20,661 pés³/s. Você pode usar as teclas com as setas ()) para ver a solução em detalhe.

Usar o solucionador de equações múltiplas (MES)

O solucionador de equações múltiplas é um ambiente onde você pode resolver um sistema de equações múltiplas resolvendo para a incógnita de uma equação de cada vez. Não é realmente um solucionador para soluções simultâneas, em vez disso é um solucionador de um número de equações relacionadas uma a uma. Para ilustrar o uso de MES para resolver as equações múltiplas apresentamos uma aplicação relacionada com a trigonometria na próxima seção. Os exemplos abaixo são desenvolvidos no modo RPN:

Aplicação 1 – Solução de triângulos

Nesta seção usamos uma aplicação importante nas funções trigonométricas: calcular as dimensões de um triângulo. A solução é implementada na calculadora usando o Solucionador de equações múltiplas ou MES. Considere o triângulo ABC mostrado na figura abaixo.

A soma dos ângulos interiores de qualquer triângulo é sempre 180°, ex. $\alpha + \beta + \gamma = 180$ °. A lei do seno indica que:

$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}.$$

A lei do coseno indica que:

$$a^{2} = b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos \alpha,$$

$$b^{2} = a^{2} + c^{2} - 2 \cdot a \cdot c \cdot \cos \beta,$$

$$c^{2} = a^{2} + b^{2} - 2 \cdot a \cdot b \cdot \cos \gamma.$$

Para resolver qualquer triângulo, é necessário conhecer pelo menos três das seguintes seis variáveis: a, b, c, α , β , γ . Então, você pode usar as equações das leis do seno, do coseno e da soma dos ângulos internos de um triângulo, para resolver as outras três variáveis.

Se os três lados são conhecidos, a área do triângulo pode ser calculada com a fórmula de Heron $A = \sqrt{s \cdot (s-a) \cdot (s-b) \cdot (s-c)}$, onde s é conhecido como o semi-perímetro do triângulo, ex. $s = \frac{a+b+c}{2}$.

Solução do triângulo usando o solucionador de equações múltiplas (MES)

O Solucionador de equações múltiplas (MES) é um recurso que pode ser usado para resolver duas ou mais equações agrupadas. É importante ressaltar, entretanto, que o MES não resolver as equações simultaneamente. Em vez disso, toma as variáveis conhecidas e depois busca em uma lista de equações até que encontra uma que pode ser resolvida por uma das variáveis desconhecidas. Então, busca por outra equação que pode ser resolvida para as próximas incógnitas e assim por diante, até que todas as incógnitas possam ser resolvidas.

Criar um diretório de trabalho

Usaremos o MES para resolver os triângulos criando uma lista de equações correspondentes às leis de seno e coseno, a lei da soma dos ângulos internos e a fórmula de Heron para esta área. Primeiro, crie um subdiretório dentro

de HOME que chamaremos de TRIANG e vá para este diretório. Consulte o capítulo 2 para obter instruções sobre como criar um novo subdiretório.

Inserir a lista de equações

```
\label{eq:sinvalue} \begin{split} \text{'SIN}(\alpha)/\alpha &= \text{SIN}(\beta)/b'\\ \text{'SIN}(\alpha)/\alpha &= \text{SIN}(\gamma)/c'\\ \text{'SIN}(\beta)/b &= \text{SIN}(\gamma)/c'\\ \text{'c^2} &= \text{a^2+b^2-2*a*b*COS}(\gamma)'\\ \text{'b^2} &= \text{a^2+c^2-2*a*c*COS}(\beta)'\\ \text{'a^2} &= \text{b^2+c^2-2*b*c*COS}(\alpha)'\\ \text{'a^+\beta+\gamma} &= 180'\\ \text{'s} &= (\text{a+b+c})/2'\\ \text{'A} &= \sqrt{(\text{s*(s-a)*(s-b)*(s-c)})'} \end{split}
```

Então, insira o número 9 e crie uma lista de equações usando: Função →LIST (use o catálogo de comando → △). Armazene esta lista na variável EQ.

A variável EQ contém a lista de equações que serão digitalizadas pelo MES ao tentar resolver as incógnitas.

Inserir um título de janela

A seguir, criaremos uma variável de seguimento a ser chamado de TITLE para conter o segmento "Solução do triângulo" como segue:

ALPHA ALPHA T (T) (T) (E) ENTER

Insira o nome da variável 'TITLE' Armazene em 'TITLE'

Criar uma lista de variáveis

A seguir, crie uma lista de nomes de variáveis na pilha como segue:

$$\{ abc\alpha\beta\gamma As \}$$

e armazene-a na variável LVARI (Lista de VARIáveis). A lista de variáveis representa a ordem na qual as variáveis serão listadas quando o MES for iniciado. É necessário incluir todas as variáveis das equações ou não funcionará com a função MITM (veja abaixo). Aqui está a seqüência das teclas usada para preparar e armazenar esta lista:

Preparar para executar MES

A próxima etapa é ativar o MES e tentar uma solução como amostra. Antes de fazer isso queremos configurar as unidades angulares para DEGrees (graus), se já não estiver configurada digite (APPA) (DEGENTE).

A seguir queremos manter na pilha o conteúdo de TITLE e LVARI usando:

Usaremos as sequintes funções MES

- MINIT: MES Inicialização: inicializa as variáveis nas equações armazenadas no EQ.
- MITM: Item do menu MES': Tira um título do nível 2 e a lista de variáveis do nível 1 da pilha e coloca o título em cima da janela MES e a lista de variáveis como teclas virtuais na ordem indicada pela lista. No exercício atual, já tiramos um título ("Solução de triângulo") e uma lista de variáveis ({ a b c α β γ A s }) nos níveis 2 e 1 da pilha, respectivamente, prontos para ativar MITM.
- MSOLVR: MES SOLVER; ativa o Solucionador de equações múltiplas (MES) e espera pela entrada de dados pelo usuário.

Executar o MES interativamente

Par resolver os ângulos use:

Para iniciar o MES com as variáveis LVARI e TITLE listadas na pilha, ative o comando MINIT, depois MITM e finalmente MSOLVR (encontre estas funções no catálogo (P) (AT).

O MES é ativado com a seguinte lista de variáveis disponíveis (pressione
para ver a próxima lista de variáveis):
Pressione NAT para ver a terceira lista de variáveis. Será mostrado:
Pressione (NXT) novamente para recuperar o primeiro menu de variáveis.
Tentaremos uma solução simples para o caso I, usando $a = 5$, $b = 3$, $c = 5$.
Use as seguintes entradas:
[a] a:5 é listado na parte superior esquerda do visor.
3 [b] b:3 é listado na parte superior esquerda do visor.
5 [c] c:5 é listada na parte superior esquerda do visor.

 \P [α] A calculadora relata Solving para α e mostra o resultado de α : 72.5423968763.

Nota: Se obtiver um valor maior do que 180, tente o seguinte:

[α] Reinicialize a para um valor menor.

[α] A calculadora relata Solving for α

A seguir, calculamos os outros dois valores:

É necessário ter valores dos três ângulos listados nos níveis na pilha 3 até 1. Pressione + duas vezes para verificar se realmente somam 180°.

Nota: Quando uma solução for encontrada, a calculadora relata as condições para a solução ou como Zero ou como Sign Reversal. Outras mensagens podem ocorrer se a calculadora tiver dificuldades para encontrar uma solução.

Pressionar resolverá todas as variáveis temporariamente mostrando os resultados intermediários. Pressione para ver as soluções:

Quando for feito, pressione on para retornar ao ambiente MES. Pressione para sair do ambinente MES e retornar ao visor normal da calculadora.

Organizar as variáveis no subdiretório

Seu menu de variáveis conterá agora as variáveis (pressione MXT) para ver o segundo conjunto de variáveis):

As variáveis correspondentes a todas as variáveis nas equações no EQ foram criadas. Existe também uma nova variável chamada *Mpar* (parâmetros MES), que contém informação em relação à configuração do MES para este

conjunto particular de equações. Se usar para ver o conteúdo da variável *Mpar*. Obterá a seguinte mensagem crítica: Library Data (dados da biblioteca). O significado disto é que os parâmetros MES são codificados em um arquivo binário que não pode ser acessado pelo usuário.

A seguir, queremos colocá-los nas etiquetas de menu em uma ordem diferente daquela listada acima, seguindo estas etapas:

1. Crie uma lista contendo { EQ Mpar LVARI TITLE } usando:

(1) FIGURE WHEN THE ENTER

- 2. Coloque o conteúdo de LVARI na pilha usando:
- 3. Junte as duas listas pressionando +.

Use a função ORDER (use o catálogo de comandos <u>— CAT</u>) para ordenar as variáveis conforme mostrado na lista no nível 1 da pilha.

4. Pressione para recuperar sua lista de variáveis. Deve ser similar a esta:

5. Pressione NXT novamente para recuperar o primeiro menu de variáveis.

Programar a solução de triângulo MES usando RPL do usuário

Para facilitar a ativação de MES para soluções futuras, criaremos um programa que carregará o MES com uma tecla individual. O programa será similar a este: << DEG MINIT TITLE LVARI MITM MSOLVR >> e pode ser digitado usando:

Abre o símbolo do programa

ALPHA (ALPHA)

Bloqueia o teclado numérico

Digite DEG (unidades angulares configuradas para DEGrees)

M (1 M (1 T) SPC) Digite MINIT

Desbloqueia o teclado alfanumérico
Lista o nome TITLE no programa
Lista o nome LVARI no programa
Bloqueia o teclado numérico

MITM SPC Digite MITM_
MIQUE MSOLVR

ENTER Insira o programa na pilha

Armazene o programa na variável chamada TRISOL, SOLução de TRIângulo, usando: APHA APHA TRISO (LENTER STO)

Pressione (MR), se for necessário, para recuperar sua lista de variáveis. Um símbolo (MR) deve estar disponível no seu menu.

Executar o programa – exemplos de soluções

Para executar o programa, pressione a tecla **IIIIII**. Terá agora o menu MES correspondente a solução do triângulo. Tentemos os exemplos de três casos listados anteriormente para a solução de triângulo.

Exemplo 1 – Hipotenusa

Use a = 3, b = 4, c = 5. Aqui está a sequência da solução:

3 [a] 4 [b] 5 [c] Para inserir os dados

 (Φ) [α]
 O resultado é α: 36.8698976458

 (Φ) [β]
 O resultado é β: 53.1301023541.

rightharpoonup O resultado é γ : 90.

Para mover para o próximo menu de

variáveis.

[+][A] O resultado é A: 6.

Para mover para o próximo menu de

variáveis.

Exemplo 2 – Qualquer tipo de triângulo

Use a=3, b=4, c=6. O procedimento de solução usado aqui consiste de resolver todas as variáveis de uma vez e depois ativar as soluções para a pilha:

Para limpar os dados e reiniciar MES

3 [a] **4** [b] **6** [c] Para inserir os dados

Para mover para o próximo menu de

variáveis.

Resolve para todas as incógnitas.

Mostra a solução.

A solução é:

Na parte inferior do visor você encontrará as teclas do menu virtual:

VALU- EQNS PRINT EXIT

O ponto quadrado em [2711] indica que os valores das variáveis, em vez das equações das quais são resolvidas, são mostrados no visor. Para ver as equações usadas na solução de cada variável pressione a tecla do menu virtual [2712]. O visor será similar a este:

A tecla (usada para imprimir o visor na impressora, se estiver disponível. (usada para o ambiente MES para uma nova solução, se for necessário. Para retornar ao visor normal da calculadora pressione (usa).

A seguinte tabela de soluções de triângulos mostra as entradas de dados em negrito e a solução em itálico: tente executar o programa com estas entradas para verificar as soluções. Lembre-se de pressionar (MR) (1120) no final de cada solução par limpar as variáveis e começar a solução MES novamente. Caso contrário você pode carregar informações da solução anterior e causar problemas com seus cálculos atuais.

а	Ь	c	$\alpha(^{o})$	β(°)	γ(°)	A
2.5	6.9837	7.2	20.299	75	84.771	8.6933
7.2	8.5	14.26	22.616	27	130.38	23.309
21.92	17.5	13.2	90	52.97	37.03	115.5
41.92	23	29.6	75	32	73	328.81
10.27	3.26	10.5	77	18	85	16.66
17	25	32	31.79	50.78	97.44	210.71

Adicionar um botão INFO ao seu diretório

Um botão de informação pode ser útil em seu diretório para ajudar a lembrar-se da operação das funções no diretório. Neste diretório, tudo que precisamos lembrar é de pressionar para iniciar uma solução de triângulo. Você pode querer digitar o seguinte programa: <<"Pressione [TRISO] para iniciar." MSGBOX >> e armazene-o em uma variável chamada INFO. Como resultado, a primeira variável no seu diretório será o botão

Aplicação 2 – Velocidade e aceleração nas coordenadas polares

Movimento bidimensional de partícula nas coordenadas polares envolve freqüentemente a determinação do raio e componentes transversais da velocidade e aceleração de uma dada partícula r, r' = dr/dt, r" = d²r/dt², θ , θ' = d θ /dt e θ'' = d² θ /dt². As seguintes equações são usadas:

$$v_r = \dot{r}$$
 $a_r = \ddot{r} - r\dot{\theta}^2$
 $v_\theta = r\dot{\theta}$ $a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta}$

Crie um subdiretório chamado POLC (Coordenadas POLares), que usaremos para calcular as velocidades e acelerações nas coordenadas polares. Dentro do diretório insira as seguintes variáveis:

Programa ou valor	Armazene na variável:
<< PEQ STEQ MINIT NAME LIST MITM MSOLVR >>	SOLVEP
"vel. & acc. coord. polar"	NAME
$\{ r rD rDD \theta D \theta DD vr v\theta v ar a\theta a \}$	LIST
$\{ vr = rD' v\theta = r^*\theta D' v = \sqrt{(vr^2 + v\theta^2)'}$	
$'ar = rDD - r^*\theta D^2' 'a\theta = r^*\theta DD + 2^*rD^*\theta D'$	
$'a = \sqrt{(ar^2 + a\theta^2)'}$	PEQ

Seque uma explicação das variáveis:

SOLVEP = um programa que ativa o solucionador de equações múltiplas para o conjunto particular de equações armazenadas nas variáveis **PEQ.**

NAME = uma variável armazena o nome do solucionador de equação da variável, a saber, "vel. & acc. coord. polar".

- LIST = uma lista de variável usada nos cálculos, colocada na ordem que queremos mostrá-las no ambiente do solucionador de equações múltiplas.
- PEQ = lista de equações a serem resolvidas, correspondente aos componentes radiais e transversais da velocidade (vr, vθ) e aceleração (ar, aθ) nas coordenadas polares, como também as equações para calcular a magnitude da velocidade y (v) e a aceleração (a) quando os componentes polares forem conhecidos.
- **r**, **rD**, **rDD** = r (coordenada do raio), r-dot (primeira derivada de r), r-double dot (segunda derivada de r).
- θ **D,** θ **DD** = θ -dot (primeira derivada de θ), θ -double dot (segunda derivada de θ).

Suponha que receba as seguintes informações: r = 2.5, rD = 0.5, rDD = -1.5, $\theta D = 2.3$, $\theta DD = -6.5$, e será solicitado a encontrar vr, $v\theta$, ar, a θ , v e a.

Inicie o solucionador de equações múltiplas pressionando . A calculadora produz um visor marcado, "vel. & acc. polar coord.", similar ao que se segue:

Para inserir os valores das variáveis conhecidas, apenas digite o valor e pressione o botão correspondente à variável a ser inserida. Use as seguintes teclas: $2.5 [r] 0.5 [rD] 1.5 + [rDD] 2.3 [\theta D] 6.5 + [\theta DD]$.

Observe que depois de inserir um valor em particular a calculadora exibe a variável e seu valor no canto esquerdo superior do visor. Inserimos agora as

variáveis conhecidas. Para calcular as incógnitas podemos proceder de duas formas:

- a). Resolver as variáveis individuais, por exemplo, [¬] vr] dado vr: 0.500. Pressione [νθ] para obter νθ: 5.750 e assim por diante. Os resultados restantes são v: 5.77169819031; ar: -14.725; aθ: -13.95; a: 20.2836911089.; ou
- b). Resolva todas as variáveis de uma vez pressionando (A calculadora piscará as soluções conforme forem encontradas. Quando a calculadora for interrompida você pode pressionar para listar todos os resultados. Para este caso temos:

Pressionar a tecla **EXE** permitirá que você conheça as equações usadas para resolver cada um destes valores no visor:

Para usar um novo conjunto de valores pressione (NXT) (NXT), ou (VAR) (NXT).

Tentemos outro exemplo usando r=2.5, vr=rD=-0.5, rDD=1.5, v=3.0, a=25.0. Encontre θD , θDD , $v\theta$, ar $e=a\theta$. Você deve obter os seguintes resultados:

Capítulo 8

Operações com listas

As listas são um tipo de objeto da calculadora que podem ser úteis para o processamento de dados e para a programação. Este capítulo apresenta exemplos de operações com listas.

Definições

Uma lista, dentro do contexto da calculadora, é uma série de objetos incluídos entre chaves e separados por espaços (⑤), no modo RPN, ou vírgulas no (⑥) em ambos os modos. Os objetos que podem ser incluídos em uma lista são números, letras, segmentos de caracteres, nomes de variáveis e/ou operadores. As listas são úteis para manipular conjuntos de dados e algumas aplicações de programação. Alguns exemplos de listas são:

$$\{t1\}, \{"BETA" h2 4\}, \{11.52.0\}, \{aaaa\}, \{\{123\}, \{321\}, \{123\}\}\}$$

Nos exemplos mostrados abaixo ficaremos limitados às listas numéricas.

Criar e armazenar listas

Para criar uma lista no modo ALG, insira primeiro a tecla de chaves (associada à tecla), depois digite ou insira os elementos da lista, separando-os por vírgulas (). A seguinte combinação de teclas irá inserir a lista {1 2 3 4} e a armazenará como variáveis L1.

O visor mostrará o seguinte:

A figura à esquerda mostra o visor antes de pressionarmos [NTE], enquanto aquela à direita mostra o visor depois de armazenar a lista em L1. Observe que antes de pressionar [NTE] a lista mostra as vírgulas separando os

elementos. No entanto, depois de pressionar (ENTER), as vírgulas são substituidas por espaços.

Para inserir a mesma lista no modo RPN use as seguintes teclas:

A figura abaixo mostra a pilha RPN antes de pressionar a tecla 570):

Compor e decompor listas

Compor e decompor listas faz sentido apenas no modo RPN. Nesse modo de operação, decompor uma lista é conseguido usando a função OBJ→. Com esta função, uma lista na pilha RPN é decomposta em seus elementos, com o nível 1 da pilha: mostra o número de elementos na lista. Os próximos dois visores mostram a pilha com uma pequena lista antes e depois da aplicação da função OBJ→:

Observe que, depois de aplicar OBJ >>, os elementos da lista ocupam dos níveis 4: até 2:, enquanto o nível 1: mostra o número de elementos na lista.

Para compor uma lista no modo RPN, coloque os elementos da lista na pilha, insira o tamanho da lista e aplique a função →LIST (selecione do catálogo de função, conforme a seguir: → △ → , depois use as teclas com as setas (△ ▼) para localizar a função →LIST). As imagens seguintes no visor mostram os elementos de uma lista de tamanho 4 antes e depois da aplicação da função →LIST:

Nota: Função OBJ→ aplicada à lista no modo ALG apenas reproduz a lista, adicionando a ela o tamanho da lista:

Operações com listas de números

Para demonstrar as operações com listas de números, criaremos algumas outras listas, além da lista L1 criada acima: L2={-3,2,1,5}, L3={-6,5,3,1,0,3,-4}, L4={3,-2,1,5,3,2,1}. No modo ALG o visor se apresentará assim depois de inserir as listas L2, L3, L4:

No modo RPN, o seguinte visor mostra as três listas e seus nomes prontas para serem armazenadas. Para armazenar as listas neste caso, é necessário pressionar (570) três vezes.

Alterar os sinais

A tecla de alteração de sinal (+-), quando aplicada à lista de números, alterará o sinal de todos os elementos na lista. Por exemplo:

Adição, subtração, multiplicação e divisão

A multiplicação e divisão de uma lista por um único número são distribuídas através da lista, por exemplo:

A subtração de um único número de uma lista irá subtrair o mesmo número de cada elemento na lista, por exemplo:

A adição de um único número em uma lista produz uma lista aumentada pelo número e não uma adição desse único número para cada elemento na lista. Por exemplo:

A subtração, multiplicação e a divisão de listas de números do mesmo tamanho produzem uma lista do mesmo tamanho com operações de termo a termo. Exemplos:

A divisão L4/L3 produzirá uma entrada infinita porque um dos elementos na L3 é zero:

$$\begin{array}{c} : \frac{\mathsf{L4}}{\mathsf{L3}} \\ \left\{ \frac{-1}{2} \, \frac{-2}{5} \, \frac{1}{3} \, 5 \, \infty \, \frac{2}{3} \, \frac{-1}{4} \right\} \\ & \left\{ \frac{-1}{2} \, \frac{-2}{5} \, \frac{1}{3} \, 5 \, \infty \, \frac{2}{3} \, \frac{-1}{4} \right\} \end{aligned}$$

Se as listas envolvidas na operação tiverem tamanhos diferentes, é apresentada uma mensagem de erro (Erro: Dimensão Inválida).

O sinal de mais (+), quando aplicado às listas, age como um operador de concatenação colocando juntas as duas listas em vez de adicionar termo por termo. Por exemplo:

Para produzir adição termo a termo de duas listas do mesmo tamanho, é necessário usar o operador ADD. Este operador pode ser localizado usando o catálogo de funções (O visor abaixo mostra uma aplicação de ADD para adicionar listas L1 e L2, termo a termo:

:L1 ADD L2 (-2449) L2 L3 L4 L1 TRIAN MESI

Funções de números reais do teclado

As funções de número real do teclado (ABS, e^x , LN, 10^x , LOG, SIN, x^2 , $\sqrt{}$, COS, TAN, ASIN, ACOS, ATAN, y^x) podem ser usadas nas listas. Aqui estão alguns exemplos:

Funções de número real no menu MTH

As funções de interesse no menu MTH incluem a partir do menu HYPERBOLIC: SINH, ASINH, COSH, ACOSH, TANH, ATANH e do menu REAL: %, %CH, %T, MIN, MAX, MOD, SIGN, MANT, XPON, IP, FP, RND, TRNC, FLOOR, CEIL, D→R, R→D. Algumas das funções que recebem um único argumento são ilustradas abaixo aplicadas às listas de números reais:

SINH, ASINH

:SINH(L1) (SINH(1) SINH(2) SINH((3) SI
:ASINH(<u>L2</u>)	
K295673047563.19	
SINH ASINH COSH ACOSH TANH	ATADA

TANH, ATANH

IP, FP

$D \rightarrow R, R \rightarrow D$

```
:D→R((30 60 90))
(.523598775598 1.04719)
:R→D({π π π/5)
(30.60.0000000002 90.0)
RNO | TRNO |FLOOR CEIL | D→R | R→O
```

COSH, ACOSH

```
: COSH(L2)
(COSH(3) COSH(2) COSH(1) C+
: ACOSH(L1)
(B ACOSH(2) ACOSH(3) ACOS+
SIN: (ASIN) COSH (ACOSH) TANH (ATANH
```

SIGN, MANT, XPON

31014, 140 (141, 70)	J. 1			
:SIGN(LI)	71	1	1	1 \
:MANT(100:L2)				
(3. :XPON(L1·100)	2.	1.	5	.)
{2.	2.	2.	2	.)
ABS SIGN MANT XPOR	il I	P	1	

FLOOR, CEIL

```
:FLOOR((1.22.3-1.5))
(1.2.-2.)
:CEIL((1.22.3-1.5))
(2.3.-1.)
```

Exemplos de funções que usam dois argumentos

O visor abaixo mostra as aplicações da função % para a lista de argumentos. A função % exige dois argumentos. Os dois primeiros exemplos mostram casos nos quais apenas um de dois argumentos é uma lista.

:
$$\%((10|20|30),1)$$

: $\%(5,(10|20|30))$
: $\%(5,(10|20|30))$
 $\left\{5,\frac{1}{10}|5,\frac{1}{5}|5,\frac{3}{10}\right\}$
: $\%(10|20|30)$

Os resultados são listas com a função % distribuída de acordo com o argumento da lista. Por exemplo,

$$%({10, 20, 30}, 1) = {%(10, 1), %(20, 1), %(30, 1)},$$

enquanto

$$%(5,\{10,20,30\}) = \{\%(5,10),\%(5,20),\%(5,30)\}$$

No seguinte exemplo, ambos os argumentos da função % são listas do mesmo tamanho. Neste caso, uma distribuição termo a termo dos argumentos é realizada, ex.

$$%({10,20,30},{1,2,3}) = {%(10,1),%(20,2),%(30,3)}$$

:
$$\chi(\langle 10|20|30\rangle,\langle 1|2|3\rangle)$$
 $\begin{cases} 10\cdot \frac{1}{100} & 20\cdot \frac{1}{50} & 30\cdot \frac{3}{100} \\ 2 & |201|21 & |421|421 & |400| \end{cases}$

Esta descrição da função % para argumentos de lista mostra o padrão geral de avaliação de qualquer função com dois argumentos quando um ou ambos argumentos são listas. Exemplos de aplicações da função RND são mostrados a seguir:

:RND
$$\left\{\frac{1}{3}, \frac{1}{6}, \frac{1}{3}\right\}$$
,2
 $\left\{\frac{1}{3}, \frac{1}{6}, \frac{1}{3}\right\}$
:RND $\left(\frac{1}{3}, \frac{2}{3}, \frac{3}{4}\right)$
 $\left\{\frac{1}{3}, \frac{3}{3}, \frac{3}{3}, \frac{3}{3}\right\}$

Lista de números complexos

O seguinte exercício mostra como criar uma lista de números complexos, dadas duas listas do mesmo tamanho, uma representando as partes reais e a outra as partes imaginárias dos números complexos. Use L1 ADD i*L2. A tela mostra também que a lista de números complexos resultante é armazenada na variável L5:

As funções tais como LN, EXP, SQ, etc., podem também ser aplicadas à uma lista de números complexos, ex.

O exemplo seguinte mostra as aplicações das funções RE(parte real), IM(parte imaginária), ABS(magnitude) e ARG(argumento) de números complexos. Os resultados são as listas de números reais:

Listas de objetos algébricos

A seguir estão exemplos das listas de objetos algébricos com a função SIN aplicada a elas:

O menu MTH/LIST

O menu MTH fornece um número de funções referentes exclusivamente as listas. Com o sinalizador 117 configurado para CHOOSE boxes:

A seguir, com o sinalizador de sistema 117 configurado para os menus SOFT:

O menu contém as seguintes funções:

 Δ LIST : Calcula o incremento entre os elementos consecutivos na lista

ΣLIST : Calcula o somatório dos elementos na lista
 ΠLIST : Calcula o produto dos elementos na lista
 SORT : Classifica os elementos na ordem crescente

REVLIST : Reverte a ordem da lista

ADD : Operador para adição termo a termo de duas listas do mesmo

tamanho

(exemplos deste operador foram mostrados acima).

Exemplos das aplicações destas funções no modo ALG são mostrados a seguir.


```
:L3

:SORT(L3)

{-6-401335}

*LIST(BLIST(HILST) SORT (REVLIT) ADD
```


SORT e REVLIST podem ser combinados para classificar uma lista em ordem decrescente:

Manipular os elementos da lista

O menu PRG (programação) inclui um submenu LIST com um número de funções para manipular os elementos de uma lista. Com o sinalizador 117 configurado para CHOOSE boxes:

Item 1. ELEMENTS.. contém as seguintes funções que podem ser usadas para manipular os elementos nas listas:

Tamanho da lista

A função SIZE, do submenu PRG/LIST/ELEMENTS pode ser usada para obter o tamanho da lista (também conhecido como comprimento), ex.,

Extrair e inserir os elementos na lista

Para extrair os elementos de uma lista usamos a função GET, disponível no submenu PRG/LIST/ELEMENTS. Os argumentos da função GET são a lista e o número do elemento que você quer extrair. Para inserir um elemento em uma lista usamos a função PUT (disponível também no submenu PRG/LIST/ELEMENTS). Os argumentos da função PUT são a lista, a posição que se deseja substituir e o valor a ser substituído. Exemplos de aplicações das funções GET e PUT são mostrados no visor sequinte:

As funções GETI e PUTI, também disponíveis no submenu PRG/ ELEMENTS/, podem também ser usadas para extrair e colocar elementos em uma lista. Estas duas funções, no entanto, são principalmente úteis na programação. A função GETI usa os mesmos argumentos de GET e retorna a lista, o local do elemento mais um e o elemento no local solicitado. A função PUTI usa os mesmos argumentos de GET e retorna a lista e o seu tamanho.

Posição do elemento na lista

Para determinar a posição de um elemento na lista use a função POS caso tenha a lista e o elemento de interesse como argumentos. Por exemplo,

Funções HEAD e TAIL

A função HEAD extrai o primeiro elemento na lista. A função TAIL remove o primeiro elemento de uma lista retornando a lista restante. Alguns exemplos são mostrados a seguir:

A função SEQ

Item 2. PROCEDURES.. o menu PRG/LIST contém as seguintes funções que podem ser usadas para operação nas listas.

As funções REVLIST e SORT foram apresentadas anteriormente como parte do menu MTH/LIST. As funções DOLIST, DOSUBS, NSUB, ENDSUB e STREAM são projetadas como funções de programação para operar as listas no modo RPN. A função SEQ é util para produzir uma lista de valores dada uma expressão particular, e é descrita aqui com mais detalhes.

A função SEQ usa como argumentos uma expressão em termos de um índice, do nome do índice, e de valores de incremento, início e fim, retornando uma lista consistindo da avaliação da expressão para todos os valores possíveis do índice. A forma geral da função é SEQ(expressão, índice, início, fim e incremento).

No exemplo seguinte, no modo ALG, identificamos expression = n^2 , index = n, start = 1, end = 4 e increment = 1:

A lista produzida corresponde aos valores {1², 2², 3², 4²}. No modo RPN você pode listar os argu<u>mentos diferentes da função como segue:</u>

antes de aplicar a função SEQ.

A função MAP

A função MAP, disponível através do catálogo de comandos (, usa como argumentos uma lista de números e uma função f(X) ou um programa de formulário << arr >>, e produz uma lista consistindo da aplicação da função f ou do programa para a lista de números. Por exemplo, a seguinte chamada para a função MAP se aplica à função SIN(X) para a lista {1,2,3}:

: MAP((1 2 3),SIN(X)) (SIN(1) SIN(2) SIN(3)) CASCA) HELP

A seguinte chamada para a função MAP usa um programa em vez de uma função como segundo argumento:

I MAP((0,1,2),« → × '× ^2-1' ») (-1 0 3)

Definir as funções que usam as listas

No capítulo 3 apresentamos o uso da função DEFINE () para criar funções de números reais com um ou mais argumentos. Uma função definida com DEF pode também ser usada com os argumentos da lista, exceto que, qualquer função que incorpore uma adição deve usar o operador ADD em vez do sinal mais (+). Por exemplo, definindo a função F(X,Y) = (X-5)*(Y-2), mostrada aqui no modo ALG:

DEFINE('F(X,Y)=(X-5.)(Y-) NOVAL

podemos usar as listas (ex. variáveis L1 e L2, definidas anteriormente neste capítulo) para avaliar a função, resultando em:

:DEFINE('F(X,Y)=(X-5.)(Y-) NOVAL :F(L1,L2) (20. 0. 2. -3.)

Dado que a afirmação da função não inclui adições, a aplicação da função à lista de argumentos é direta. No entanto, se definirmos a função como $G(X,Y)=(X+3)^*Y$, a tentativa para avaliar esta função com os argumentos da lista (L1, L2) irá fracassar:

Para solucionar este problema podemos editar o conteúdo da variável , que podemos listar na pilha usando ..., ...,

para substituir o sinal de mais (+) por ADD:

Ao avaliarmos G(L1,L2) produziremos agora o seguinte resultado:

Como alternativa você pode definir a função com ADD em vez do sinal de mais (+) do início, ex. DEFINE('G(X,Y)=(X ADD X):

Você pode também definir a função como G(X,Y) = (X-3)*Y.

Aplicações de listas

Esta seção mostrará algumas aplicações das listas para cálculos estatísticos de uma amostra. Por amostra entendemos uma lista de valores, digamos, $\{s_1, s_2, ..., s_n\}$. Suponha que a amostra seja a lista

e que a armazenamos em uma variável chamada S (o visor abaixo mostra esta operação no modo ALG, entretanto, o procedimento no modo RPN é muito parecido. Lembre-se que no modo RPN que você coloca os argumentos das funções na pilha antes de ativar a função):

Média harmônica de uma lista

Esta é uma amostra pequena onde podemos contar no visor o número de elementos (n=10). Para uma lista maior, podemos usar a função SIZE para obter este número, ex.

Suponha que desejamos calcular a média harmônica da amostra, definida como

$$s_h = \frac{1}{\frac{1}{n} \sum_{k=1}^{n} \frac{1}{s_n}} = \frac{1}{\frac{1}{n} \left(\frac{1}{s_1} + \frac{1}{s_2} + \dots + \frac{1}{s_n}\right)}.$$

Para calcular este valor podemos seguir este procedimento:

1. Aplicar a função INV () para a lista S:

```
:(1.5.3.1.2.1.3.4.)
(1.5.3.1.2.1.3.4.2)
:SIZE(S)
10.
:INV(S)
(1.2.33333333333331.)
```

2. Aplicar a função ΣLIST() para a lista resultante em 1.

```
(1.5.3.1.2.1.3.4.2)
:SIZE(S)
:SIV(S)
:INV(S)
(1.2.33333333333331.)
:ZLIST(ANS(1.))
6.116666666666
```

3. Dividir o resultado acima por n = 10:

```
CANTO OF N = 10.

(1. .2.333333333333 1.)

: ZLIST(ANS(1.))

6.116666666666

.ANS(1.)

.61166666666666
```

4. Aplicar a função INV() para o último resultado:

Assim, a média harmônica da lista S é $s_h = 1.6348...$

Média geométrica de uma lista

A média geométrica de uma amostra é definida como

$$x_g = \sqrt[n]{\prod_{k=1}^n x_k} = \sqrt[n]{x_1 \cdot x_2 \cdots x_n}$$

Para encontrar a média geométrica da lista armazenada em S, podemos usar o seguinte procedimento:

Aplique a função ΠLIST() a lista S:

2. Aplique a função XROOT(x,y), ex. teclas para o resultado

Assim, a média geométrica da lista $S \in S_q = 1.003203...$

Média ponderada

Suponha que os dados na lista S, definidos acima, a saber:

$$S = \langle 1, 5, 3, 1, 2, 1, 3, 4, 2, 1 \rangle$$

sejam afetados pelos pesos

$$W' = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

Se definirmos a lista de pesos como $W = \{w_1, w_2, ..., w_n\}$, observamos que o elemento k na lista W acima pode ser definido por $w_k = k$. Assim podemos usar a função SEQ para gerar esta lista e depois armazená-la na variável w como seque:

Dada a lista de dados $\{s_1, s_2, ..., s_n\}$ e a lista de pesos $\{w_1, w_2, ..., w_n\}$, a média ponderada dos dados em S é definida como

$$S_w = \frac{\sum_{k=1}^n w_k \cdot S_k}{\sum_{k=1}^n w_k}.$$

Para calcular a média ponderada dos dados da lista S com os pesos na lista W, usamos os seguintes passos:

1. Multiplique as listas S e W:

2. Use a função ΣLIST neste resultado para calcular o numerador de s_w:

3. Use a função <code>\SLIST</code> novamente para calcular o denominador de s_w:

4. Use a expressão ANS(2)/ANS(1) para calcular a média ponderada:

```
:2LIST(HNS(I.))
:2LIST(W)
:55.
:ANS(2.)
:ANS(1.)
:2.2
```

Assim, a média ponderada da lista S com os pesos da lista W é s_w= 2.2.

Nota: ANS(1) refere-se ao resultado mais recente (55), enquanto ANS(2) refere-se ao resultado anterior até o último resultado (121).

Estatística de dados agrupados

Dados agrupados são normalmente apresentados em uma tabela mostrando a freqüência (w) de dados em classes ou caixas de dados. Cada classe é

representada por uma marca de classe (s) normalmente o ponto médio da classe. Um exemplo de dados agrupados é mostrado a seguir:

	Marca de	Contagem de
	classe	freqüência
Limite de classe		·
	\mathbf{s}_{k}	\mathbf{w}_{k}
0 - 2	1	5
2 - 4	3	12
4 - 6	5	18
6 - 8	7	1
8 -10	9	3

Os dados de marca de classe podem ser armazenados na variável S, enquanto a contagem da freqüência pode ser armazenada na variável W, como segue:

Dada a lista de marcas de classe $S = \{s_1, s_2, ..., s_n\}$ e a lista de contagem de frequência $W = \{w_1, w_2, ..., w_n\}$, a média ponderada dos dados em S com pesos W representa o valor médio dos dados agrupados, que chamamos de \bar{s} , nesse contexto:

$$\bar{S} = \frac{\sum_{k=1}^{n} w_k \cdot S_k}{\sum_{k=1}^{n} w_k} = \frac{\sum_{k=1}^{n} w_k \cdot S_k}{N},$$

onde $N = \sum_{k=1}^{n} w_k$ representa a contagem total da frequência.

O valor médio para os dados nas listas S e W, portanto, pode ser calculado usando o procedimento definido acima para a média ponderada, ex.

. ΣLIST(W·S) ΣLIST(W) 55 13 : →NUM(ANS(1)) 4.23076923077

Armazenamos este valor em uma variável chamada XBAR:

2L1ST(W) - 55 13 :→NUM(ANS(1)) 4.23076923077 :ANS(1)▶XBAR 4.23076923077

A variância destes dados agrupados é definida como:

$$V = \frac{\sum_{k=1}^{n} w_k \cdot (s_k - \overline{s})^2}{\sum_{k=1}^{n} w_k} = \frac{\sum_{k=1}^{n} w_k \cdot (s_k - \overline{s})^2}{N}$$

Para calcular este último resultado podemos usar o seguinte:

O desvio padrão dos dados agrupados é a raiz quadrada da variância:

Capítulo 9

Vetores

Este capítulo fornece exemplos de entrada e operação com vetores, tanto vetores matemáticos de muitos elementos, como também vetores físicos de 2 e 3 componentes.

Definições

Do ponto de vista matemático, um vetor é um conjunto de 2 ou mais elementos arranjados em uma linha ou coluna. Os vetores serão mencionados como *vetores linha* ou *coluna*. Exemplos são mostrados a seguir:

$$v = \begin{bmatrix} -1\\3\\6 \end{bmatrix}, \quad u = [1, -3, 5, 2]$$

Os eventos físicos tem dois ou três componentes e podem ser usados para representar as quantidades físicas tais como posições, velocidade, aceleração, força, momento, momento linear e angular, velocidade e aceleração angular, etc. Fazendo referência ao sistema de coordenada cartesiana (x,y,z), existem os vetores de unidade i, j, k associados com cada direção de coordenada, tal como um vetor físico A pode ser escrito em termos de seus componentes A_x , A_y , A_z , como $\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$. As notações alternativas para este vetor são: $\mathbf{A} = [A_x, A_y, A_z]$, $\mathbf{A} = (A_x, A_y, A_z)$ ou $\mathbf{A} = \langle A_x, A_y, A_z \rangle$. Uma versão dimensional deste vetor será escrita como $\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j}$, $\mathbf{A} = [A_x, A_y]$, $\mathbf{A} = (A_x, A_y)$ ou $\mathbf{A} = \langle A_x, A_y \rangle$. Uma vez que os vetores da calculadora são escritos entre colchetes [], escolheremos a notação $\mathbf{A} = [A_x, A_y, A_z]$ ou $\mathbf{A} = [A_x, A_y, A_z]$, para nos referirmos aos dois ou três vetores tridimensionais de agora em diante. A magnitude de um vetor ${\bf A}$ é definida como $|{\bf A}|=\sqrt{A_x^2+A_y^2+A_z^2}$. Um vetor unitário na direção do vetor \mathbf{A} é definido como $\mathbf{e}_{A} = \mathbf{A}/|\mathbf{A}|$. Os vetores podem ser multiplicados por uma escalar, ex. $k\mathbf{A} = [kA_x, kA_y, kA_z]$. Fisicamente, o vetor kA é paralelo ao vetor A, se k>0, ou anti-paralelo ao vetor A se k<0. O negativo de um vetor é definido como $-\mathbf{A} = (-1)\mathbf{A} = [-A_x, -A_y, -A_z]$. A

divisão por uma escalar pode ser interpretada como uma multiplicação, ex. $\mathbf{A}/k = (1/k)\cdot\mathbf{A}$. A adição e subtração de vetores são definidas como $\mathbf{A}\pm\mathbf{B} = [A_x\pm B_x,\ A_y\pm B_y,\ A_z\pm B_y]$, onde \mathbf{B} é o vetor $\mathbf{B}=[B_x,\ B_y,\ B_z]$. Existem duas definições de produtos de vetores físicos, um escalar ou produto interno (o produto ponto) e um produto externo (o produto vetorial). O produto ponto produz um valor escalar definido como $\mathbf{A}\bullet\mathbf{B}=|\mathbf{A}|\ |\mathbf{B}|\cos(\theta)$, onde θ é o ângulo entre os dois vetores. O produto vetorial produz um vetor $\mathbf{A}\times\mathbf{B}$ cuja magnitude é $|\mathbf{A}\times\mathbf{B}|=|\mathbf{A}|\ |\mathbf{B}|\sin(\theta)$ e sua direção é dada pela chamada regra da mão direita (consulte os textos sobre matemática, física ou mecânica para ver esta operação ilustrada graficamente). Em termos de componentes cartesianos, $\mathbf{A}\bullet\mathbf{B}=A_xB_x+A_yB_y+A_zB_z$ e $\mathbf{A}\times\mathbf{B}=[A_yB_z-A_zB_y,A_zB_y-A_zB_y,A_zB_x-A_xB_y,A_xB_y-A_yB_x]$. O ângulo entre os dois vetores pode ser encontrado pela definição do produto escalar como $\cos(\theta)=\mathbf{A}\bullet\mathbf{B}/|\mathbf{A}|\ |\mathbf{B}|=\mathbf{e}_A\bullet\mathbf{e}_B$. Assim, se dois vetores \mathbf{A} e \mathbf{B} são perpendiculares ($\theta=90^0=\pi/2^{\mathrm{rad}}$), $\mathbf{A}\bullet\mathbf{B}=0$.

Inserir vetores

Na calculadora, os vetores são apresentados por uma seqüência de números inseridos entre parênteses e tipicamente inseridos como vetores de fila. Os parênteses são criados na calculadora pela combinação de teclas 🥱 " associadas com a tecla x. A seguir estão os exemplos de vetores na calculadora:

Digitar vetores na pilha

Com a calculadora no modo ALG, o vetor pode ser digitado na pilha abrindo um conjunto de colchetes () e digitando os componentes ou elementos do vetor separados por vírgulas (). O visor abaixo mostra a entrada de vetor numérico seguido de vetor algébrico. A figura a esquerda mostra o vetor algébrico antes de pressionar . A figura a direita mostra o visor da calculadora depois da inserção do vetor algébrico.

No modo RPN, você pode inserir um vetor na pilha abrindo um conjunto de parêntesis e digitando os componentes do vetor ou elementos separados por vírgula () ou espaços (). Observe que após pressionar (), em ambos os modos, a calculadora mostra os elementos dos vetores separados por espaços.

Armazenar os vetores nas variáveis

Os vetores podem ser armazenados nas variáveis. O visor abaixo mostra os vetores

 $\mathbf{u}_2 = \begin{bmatrix} 1 \\ \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} -3 \\ \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 3 \\ \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ \end{bmatrix}$, $\mathbf{v$

Usar o Matrix Writer (MTRW) para inserir os vetores

Os vetores podem também ser inseridos usando o Matrix Writer (terceira coluna na quarta linha do teclado). Este comando gera uma espécie de folha de cálculo correspondente à linha de colunas de uma matriz (detalhes sobre como usar um Matrix Writer para inserir as matrizes serão apresentados no capítulo subsequente). Para um vetor nós estamos interessados em preencher apenas os elementos na primeira linha.

-Por definição, a célula na primeira linha e primeira coluna são selecionadas. Na parte inferior da folha de cálculo você encontrará as seguintes teclas virtuais de menu:

A tecla 🖽 é usada para editar os conteúdos de uma célula selecionada no Matrix Writer.

A tecla [15], quando selecionada, produzirá um vetor, em oposição a matriz de uma linha e diversas colunas.

Vetores e matrizes

Para ver esta tecla em ação tente o seguinte exercício:

- (1) Ative o Matrix Writer (☐ MTRW). Com ■■ e selecionados insira 3 NTER 5 NTER 2 NTER NTER. Isto produz [3. 5. 2.]. (No modo RPN, você pode usar a seguinte seqüência de teclas para produzir algum resultado: 3 SPC 5 SPC 2 NTER NTER).
- (2) Com desmarcado e → selecionado insira

 3 SPC 5 SPC 2 ENTER ENTER. Isto produz [[3. 5. 2.]].

Embora estes dois resultados possam diferir apenas no número de parênteses usados, para a calculadora eles representam os diferentes objetos matemáticos. O primeiro é um vetor com três elementos e o segundo uma matriz com uma linha e três colunas. Existem diferenças na forma que as operações matemáticas acontecem em um vetor opondo-se a matriz. Portanto, no momento, mantenha a tecla selecionada usando o Matrix Writer.

A tecla 🖅 é usada para diminuir a largura das colunas na folha de cálculo. Pressione a tecla duas vezes para ver a largura da coluna diminuir no Matrix Writer.

A tecla ➡, quando selecionada, passa automaticamente para a próxima célula para a direita da célula atual quando você pressionar . Esta opção é selecionada por definição.

Mover para a direita e para baixo no Matrix Writer

Ative o Matrix Writer e insira 3 ENTER 5 ENTER 2 ENTER COm a tecla selecionada (padrão). Depois, insira a mesma seqüência de números com a tecla selecionada para ver a diferença. No primeiro caso você inseriu um vetor de três elementos. No segundo caso você inseriu uma matriz com três vetores e uma coluna.

Ativar o Matrix Writer usando (e pressione NXT) para verificar o segundo menu da tecla virtual no fundo do visor. Ele mostrará as teclas:

+RON -RON +COL -COL →STK GOTO

A tecla adicionará uma linha cheia de zeros no local da célula selecionada da folha de cálculo.

A tecla **EXII** excluirá a linha correspondente à célula selecionada da folha de cálculo.

A tecla adicionará uma coluna cheia de zeros no local da célula selecionada da folha de cálculo.

A tecla excluirá a coluna correspondente para a célula selecionada da folha de cálculo.

A tecla colocará os conteúdos da célula selecionada na pilha. A tecla colocará pressionada, solicitará que o usuário indique o número de linha e coluna onde ele deseja colocar o cursor.

Pressionar NXT novamente produz o último menu que contém apenas um função III (exclui).

A função (ESS) excluirá os conteúdos da célula selecionada e os substitui com um zero.

Para ver estas teclas ativadas tente o seguinte exercício:

- (1) Ative o Matrix Writer usando ← MTRW. Certifique-se de que as teclas ■ sejam selecionadas.
- (2) Insira o seguinte:

I ENTER 2 ENTER 3 ENTER
NXT TOTO 2 ON 1 ON OR
2 ENTER 1 ENTER 5 ENTER
4 ENTER 5 ENTER 6 ENTER
7 (ENTER) 8 (ENTER) 9 (ENTER)

- (3) Mova o cursor duas posições acima usando (本) (本). Depois pressione 國辺. A segunda linha desaparecerá.
- (4) Pressione [17]. Uma linha de três zeros aparece na segunda fila.
- (5) Pressione . A primeira coluna desaparecerá.
- (6) Pressione . Uma coluna com dois zeros aparece na primeira fila.
- (7) Pressione (3,3).
- (8) Pressione → III. Isto substituirá o conteúdo da célula (3,3) na pilha, embora você possa vê-lo ainda.
- (9) Pressione [ENTER]. Isto deve colocar um zero no local (3,3), portanto, esta função não parece funcionar corretamente.

Resumo do uso do Matrix Writer para inserir os vetores

Exemplo: MTRW C	ALPHA (T) (X) (Y ^x) 2 (ENTER) 2 (ENTER)	5 +/- ENTER ENTER
Produz:	['x^2' 2 –5]	

Construir um vetor com →ARRY

No modo RPN:

- Insira os n elementos do conjunto na ordem que você deseja que apareçam no conjunto (quando ler da esquerda para a direita) na pilha RPN.
- (2) Insira *n* como a última entrada.
- (3) Use a função →ARRY.

O seguinte visor mostra a pilha RPN antes e depois de aplicar a função →ARRY:

No modo RPN a função $[\rightarrow ARRY]$ toma os objetos dos níveis n+1, n, n-1 da pilha, ..., para os níveis 3 e 2 e converte-os em um vetor de n elementos. O objeto originalmente no nível da pilha n+1 torna-se o primeiro elemento e o objeto no nível n torna-se o segundo elemento e assim por diante.

Nota: Função →ARRY encontra-se também disponível no menu PRG/TYPE

Identificar, extrair e inserir os elementos dos vetores

Se for armazenar um vetor no nome da variável, digamos A, você pode identificar o vetor usando A(i), onde i é um número interior menor ou igual ao tamanho do vetor. Por exemplo, criar o seguinte conjunto e armazená-lo na variável A: [-1, -2, -3, -4, -5]:

Para <u>ativar</u> o terceiro elemento de A, por exemplo, você pode digitar na A(3) da calculadora. No modo ALG, digite simplesmente A(3). No modo RPN, digite 'A(3)' [NTE] [EVAL].

Você pode <u>operar com os elementos dos conjuntos</u> escrevendo e avaliando as expressões algébricas tais como:

Expressões mais complicadas envolvendo os elementos de A podem também ser escritas. Por exemplo, usar o Editor de Equação (), podemos escrever o seguinte resumo dos elementos de A:

Ressaltar a expressão inteira e usar a tecla will obtemos o resultado: -15.

Nota: O vetor A pode ser também mencionado como uma *variável indexada* porque o nome A representa não apenas, mas diversos valores identificados por um sub-índice.

Para <u>substituir um elemento em um conjunto</u> use a função PUT (você pode encontrá-lo no catálogo de função <u>restante</u> ou no submenu PRG/LIST/ELEMENTS – o último foi introduzido no Capítulo 8). No modo ALG, é necessário usar a função PUT com os seguintes argumentos:

PUT(conjunto, local a ser substituido, novo valor). Por exemplo, para altera o conteúdo de A(3) para 4.5, use:

No modo RPN, você pode <u>alterar o valor de um elemento</u> de A armazenando um novo valor neste elemento em particular. Por exemplo, se queremos alterar o conteúdo de A(3) para ler 4.5 em vez de seu valor atual de -3., use:

Para verificar se a alteração acontece use: 🕝 🍱 . O resultado agora é: [-1 -2 4.5 -4 -5].

Nota: Esta abordagem para alterar o valor de um elemento de conjunto não é permitida no modo ALG, se tentar armazenar 4.5 na A(3) neste modo você obtem a seguinte mensagem de erro: Invalid Syntax.

<u>Para encontrar o tamanho de um vetor você pode usar a função SIZE, disponível através do catálogo de comando (N) ou através do submenu PRG/LIST/ELEMENTS.</u> Alguns exemplos baseados nos conjuntos ou vetores armazenados anteriormente são mostrados abaixo:

Operações simples com os vetores

Para ilustrar as operações simples com os vetores use A, u2, u3, v2, e v3, armazenados em um exercício anterior.

Alterar os sinais

Para alterar os sinais de um vetor use a tecla +/-, ex.

Adição e subtração

Adição e subtração de vetores exigem que os dois operandos de vetores tenham o mesmo tamanho:

Tentar adicionar ou subtrair os vetores de diferentes comprimentos produz uma mensagem de erro (Invalid Dimension), ex. v2+v3, u2+u3, A+v3, etc.

Multiplicação e divisão por uma escalar

A multiplicação e divisão por um escalar é bastante simples:

Função de valor absoluto

A função de valor absoluto (ABS) quando aplicada a um vetor, produz a magnitude do vetor. Para um vetor A = [A₁,A₂,...,A_n], a magnitude é definida como $\mid A \mid = \sqrt{A_x^2 + A_y^2 + \cdots + A_z^2}$. No modo ALG inserimos o nome da função seguido por um argumento de vetor. Por exemplo: ABS ([1,-2,6]), ABS (A), ABS (u3), será mostrado no visor conforme a seguir:

O menu MTH/VECTOR

O menu MTH () contém um menu de funções específico para os objetos de vetores:

O menu VECTOR contém as seguintes funções (sinalizador do sistema 117 configurado para CHOOSE boxes):

Magnitude

A magnitude de um vetor, conforme discutido anteriormente, pode ser encontrada com a função ABS. Esta função encontra-se também disponível a partir do teclado (). Exemplos de aplicação da função ABS foram mostrados acima.

Produto escalar

A função DOT é usada para calcular o produto escalar de dois vetores do mesmo tamanho. Alguns exemplos de aplicação da função DOT, usando os vetores A, u2, u3, v2 e v3, armazenados anteriormente, conforme mostrado no modo ALG. Tentar de calcular o produto escalar de dois vetores de diferentes tamanhos produz uma mensagem de erro:

```
: DOT(A,A) 55
: DOT(u2,v2) 1
: DOT(v3,u3) -17
A 03 02 03 02
```

```
:DOT(u2,u3)

"Invalid Dimension"
:DOT(A,v3)

"Invalid Dimension"
:DOT(v2,u3)

"Invalid Dimension"
```

Produto vetorial

A função CROSS é usada para calcular o produto vetorial de dois vetores 2-D, 3-D ou de um vetor 2-D e um 3-D. Para calcular um produto vetorial, um vetor 2-D da forma $[A_x, A_y]$, é tratado como o vetor 3-D $[A_x, A_y, 0]$. Exemplos no modo ALG são mostrados a seguir para os dois vetores 2-D e dois 3-D. Observe que o produto vetorial de dois vetores 2-D produzirão um vetor apenas na direção z, ex. um vetor da forma $[0, 0, C_z]$:

Exemplos de produtos vetoriais de um vetor 3-D com um 2-D ou vice versas são apresentados a seguir:

Tentar calcular um produto vetorial de vetores de outro tamanho além de 2 ou 3, produz uma mensagem de erro (Invalid Dimension), ex. CROSS(v3.A), etc.

Decompor um vetor

A função $V \rightarrow$ é usada para decompor um vetor em seus elementos ou componentes. Se for usado no modo ALG, $V \rightarrow$ forneceremos os elementos do vetor na lista, ex.

No modo RPN, as aplicações da função V→ listarão os componentes de um vetor na pilha, ex. V→(A) produzirá o seguinte resultado na pilha RPN (vetor A é listado no nível ó da pilha).

Construir um vetor bidimensional

A função →V2 é usada no modo RPN para construir um vetor com os valores nos níveis 1 da pilha: e 2: O seguinte visor mostra a pilha antes e depois de aplicar a função →V2:

Construir um vetor tridimensional

Função →V3 é usada no modo RPN para construir um vetor com os valores nos níveis da pilha1: 2: e 3:. O seguinte visor mostra a pilha antes e depois de aplicar a função →V2:

Alterar o sistema de coordenadas

As funções RECT, CYLIN e SPHERE são usadas para alterar o sistema de coordenada atual para retangular (cartesiano), cilíndrico (polar) ou esféricas; O sistema atual é mostrado ressaltado na CHOOSE box correspondente (sinalizador de sistema 117 não configurado) ou selecionado na etiqueta do menu SOFT (sinalizador do sistema 117 configurado). Na seguinte figura o

RECT sistema de coordenadas retangular é mostrado selecionado nestas duas formas:

Quando o sistema de coordenadas retangular ou cartesiano for selecionado, a linha superior do visor mostrará um campo XYZ e qualquer vetor 2-D ou 3-D inserido na calculadora é reproduzido como os componentes (x,y,z) do vetor. Assim, para inserir o vetor A = 3**i**+2**j**-5**k**, usamos [3,2,-5] e o vetor é mostrado como:

Se em vez de inserir os componentes cartesianos de um vetor inserimos os componentes cilíndricos (polar) é necessário fornecer a magnitude, r, da projeção do vetor no plano x-y, um ângulo θ (na medida angular atual) representando a inclinação de r em relação ao eixo x positivo e um componente z do vetor. O ângulo θ deve ser inserido precedido pelo caractere do ângulo (\angle), gerado usando (ALPHA) \ref{polary} 6. Por exemplo, suponha que tenhamos um vetor com r = 5, θ = 25° (DEG deve ser selecionado como a medida angular) e z = 2.3, podemos inserir este vetor da seguinte forma:

5 P APHA P 6 2 5 P 2 0 3

Antes de pressionar (NTER) a tela parecerá como a do lado esquerdo da seguinte figura. Depois de pressionar (NTER) a tela parecerá como a do lado direito da figura (Para este exemplo o formato numérico foi alterado para Fixo, com três decimais).

Observe que o vetor é exibido nas coordenadas cartesianas, com os componentes $x = r \cos(\theta)$, $y = r \sin(\theta)$, z = z, mesmo que inserido nas coordenadas polares. Isto acontece porque o visor do vetor será definido

para o sistema atual de coordenada. Para este caso, temos x = 4.532, y = 2.112 e z = 2.300.

A figura abaixo mostra a transformação do vetor das coordenadas esféricas e cartesianas, com $x = \rho \sin(\phi) \cos(\theta)$, $y = \rho \sin(\phi) \cos(\theta)$, $z = \rho \cos(\phi)$. Para este caso, temos x = 3.204, y = 1.494, and z = 3.536.

Se o sistema CYLINdrical for selecionado, a linha superior do visor mostrará um campo $R \angle Z$ e um vetor inserido como coordenadas cilíndricas será mostrado em sua forma de coordenadas cilíndricas (ou polar) (r, θ, z) . Para ver isto funcionando, altere o sistema de coordenadas para CYLINdrical e observe como o vetor exibido no último visor muda para sua forma de coordenadas cilíndricas (polar). O segundo componente é mostrado com o caractere angular na frente para enfatizar sua natureza angular.

Z: 1: [3.536 ∡25.000 3.536► RECT CYLIOSPHER

A conversão das coordenadas cartesianas para cilíndricas é tal que $r = (x^2+y^2)^{1/2}$, $\theta = \tan^{-1}(y/x)$ e z = z. Para este caso mostrado acima a transformação foi tal que (x,y,z) = (3.204, 2.112, 2.300) produziu $(r,\theta,z) = (3.536,25^\circ,3.536)$.

Neste ponto, altere a medida angular para Radianos. Se inserirmos agora um vetor de números inteiros na forma cartesiana, mesmo se o sistema de coordenada CYLINdrical estiver funcionando, ele será mostrado em coordenadas cartesianas, ex.

Á: 3: 2: [3.536 ∡25.000 3.536) 1: [2 3 5] 8:CT [CYLIC SPHER] Isto acontece porque os números inteiros são criados para uso com o CAS e, portanto, os componentes deste vetor são mantidos na forma cartesiana. Para forçar a conversão para coordenadas polares insira os componentes do vetor como números reais (i.e. adicione um ponto decimal), ex. [2., 3., 5.].

2: 1: [3.606 ∡0.983 5.000] RECT [CYLID|SPHER] | MTH

Com o sistema de coordenadas cilíndricas selecionado, se inserirmos um vetor nas coordenadas esféricas ele será transformado automaticamente para seu equivalente cilíndrico (polar) (r, θ ,z) com r = ρ sin ϕ , θ = θ , z = ρ cos ϕ . Por exemplo, a figura a seguir mostra o vetor inserido nas coordenadas esféricas e transformadas em coordenadas polares. Para este caso, ρ = 5, θ = 25° e ϕ = 45°, enquanto a transformação mostra que r = 3.563 e z = 3.536 (altere para DEG):

3: 2: [3.536 425.000 3.536) 1: [2.35] [5,425,445 | 1: [3.536 425.000 3.536] 1: [3.536 425.000 3.536] 1: [3.536 425.000 3.536] 1: [3.536 425.000 3.536]

A seguir, vamos alterar o sistema de coordendas para coordenadas esféricas usando a função SPHERE do submenu VECTOR no menu MTH. Quando este sistema de coordenadas for selecionado, o visor mostrará o formato $R \angle \angle$ na linha superior. A última tela mudará para mostrar o seguinte:

Observe que os vetores que foram escritos nas coordenadas polares cilíndricas foram agora alterados para o sistema de coordenadas esféricas. A transformação é tal que $\rho = (r^2 + z^2)^{1/2}$, $\theta = \theta$ e $\phi = \tan^{-1}(r/z)$. Portanto, o vetor que foi originalmente configurado para as coordenadas cartesianas permanece nesta forma.

Aplicação das operações do vetor

Esta seção contém alguns exemplos das operações com vetores que você pode encontrar nas aplicações físicas ou mecânicas.

Resultante de forças

Supona que uma partícula é sujeita as seguintes forças (em N): $\mathbf{F}_1 = 3\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$, $\mathbf{F}_2 = -2\mathbf{i} + 3\mathbf{j} - 5\mathbf{k}$ e $\mathbf{F}_3 = 2\mathbf{i} - 3\mathbf{k}$. Para determinar a resultante, ex. a soma, de todas estas forças, você pode usar a seguinte abordagem no modo ALG:

Assim, a resultante é R = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 = (3 \mathbf{i} +8 \mathbf{j} -6 \mathbf{k})N. No modo RPN use: [3,5,2] [ENTER [-2,3,-5] [ENTER [2,0,3] [ENTER]+ +

Ângulos entre vetores

O ângulo entre dois vetores **A**, **B**, podem ser encontrados como $\theta = \cos^{-1}(\mathbf{A} \cdot \mathbf{B} / |\mathbf{A}| |\mathbf{B}|)$

Suponha que você queira encontrar o ângulo entre os vetores **A** = 3**i**-5**j**+6**k**, **B** = 2**i**+**j**-3**k**, você pode tentar a seguinte operação (medida angular configurada para graus) no modo ALG:

- 1 Insira os vetores [3,-5,6], pressione [NTER], [2,1,-3] e [NTER].
- 2 DOT(ANS(1),ANS(2)) calcula o produto escalar
- 3 ABS(ANS(3))*ABS((ANS(2)) calcula o produto de magnitudes
- 4 ANS(2)/ANS(1) calcula o $cos(\theta)$
- 5 ACOS(ANS(1)), seguido por, \rightarrow NUM(ANS(1)), calcula θ

As etapas são mostradas nas seguintes telas (modo ALG, naturalmente):

Assim, o resultado é θ = 122.891°. No modo RPN usa o seguinte:

[3,-5,6] NTB [2,1,-3] NTB DOT [3,-5,6] NTB ABS [2,1,-3] NTB ABS
$$\times$$
 ACOS \rightarrow NUM

Momento da força

O momento exercido pela força ${\bf F}$ sobre um ponto O é definido como o produto transversal ${\bf M}={\bf r}\times{\bf F}$, onde ${\bf r}$, também conhecida como o braço da força, é a posição no vetor baseada em O e apontando na direção do ponto de aplicação da força. Suponha que a força ${\bf F}=(2{\bf i}+5{\bf j}\cdot6{\bf k})$ N tem um braço ${\bf r}=(3{\bf i}\cdot5{\bf j}+4{\bf k})$ m. Para determinar o momento exercido pela força com este braço, usamos a função CROSS conforme mostrado a seguir:

Assim, $\mathbf{M} = (10\mathbf{i} + 26\mathbf{j} + 25\mathbf{k}) \text{ m·N}$. Sabemos que a magnitude de \mathbf{M} é tal que $|\mathbf{M}| = |\mathbf{r}| |\mathbf{F}| \sin(\theta)$, onde θ é o ângulo entre \mathbf{r} e \mathbf{F} . Podemos encontrar este ângulo como, $\theta = \sin^{-1}(|\mathbf{M}| / |\mathbf{r}| |\mathbf{F}|)$ pelas seguintes operações: 1 - ABS(ANS(1))/(ABS(ANS(2))*ABS(ANS(3)) calcula $\sin(\theta)$ 2 - ASIN(ANS(1)), seguido por \rightarrow NUM(ANS(1)) calcula θ Estas operações são mostradas no modo ALG nos seguintes visores:

Assim o ângulo entre os vetores \mathbf{r} e \mathbf{F} é θ = 41.038°. No modo RPN, nós podemos usar: 3, -5, 41 [NTER] [2, 5, -6] [NTER] CROSS ABS [3, -5, 4] [NTER] ABS [2, 5, -6] [NTER] ABS \times \div ASIN \rightarrow NUM

Equação de um plano no espaço

Dado um ponto no espaço $P_0(x_0,y_0,z_0)$ e um vetor $\mathbf{N}=N_x\mathbf{i}+N_y\mathbf{j}+N_z\mathbf{k}$ normal para um plano que contém o ponto P_0 , o problema é encontrar a equação do plano. Nós podemos formar um vetor que inicia no ponto P_0 e editar no ponto P(x,y,z), um ponto genérico no plano. Assim, este vetor $\mathbf{r}=P_0P=(x-x_0)\mathbf{i}+(y-y_0)\mathbf{j}+(z-z_0)\mathbf{k}$, é perpendicular ao vetor normal \mathbf{N} , desde que \mathbf{r} é contido totalmente no plano. Aprendemos que para dois vetores normais \mathbf{N} e \mathbf{r} , $\mathbf{N} \bullet \mathbf{r} = 0$. Assim, podemos usar este resultado para determinar a equação do plano.

Para ilustrar o uso desta abordagem, considere o ponto $P_0(2,3,-1)$ e o vetor normal $\mathbf{N}=4\mathbf{i}+6\mathbf{j}+2\mathbf{k}$, nós podemos inserir o vetor \mathbf{N} e ponto P_0 como dois vetores, conforme mostrado abaixo. Inserimos também o vetor [x,y,z]:

A seguir, calculamos o vetor $P_0P = \mathbf{r}$ como ANS(1) – ANS(2), i.e.,

```
[462]

[23-1]

[23-1]

[xyz]

[xyz]

ANS(1)-ANS(2)

[x-2y-3z--1]

ASS DOT (CROSS) (4-4)
```

Finalmente, tomamos o produto ponto de ANS(1) e ANS(4) e o tornamos igual a zero para completar a operação **N•r** =0:

Podemos agora usar a função EXPAND (no menu ALG) para expandir esta expressão:

Assim, a equação do plano através do ponto $P_0(2,3,-1)$ e com um vetor normal $\mathbf{N} = 4\mathbf{i} + 6\mathbf{j} + 2\mathbf{k}$ é 4x + 6y + 2z - 24 = 0. No modo RPN, use:

[2,3,-1] MRR ['x','y','z'] MRR [-] [4,6,2] DOT EXPAND

Vetores linha, coluna e listas

Os vetores apresentados neste capitulo são todos vetores de linha. Em alguns exemplos, é necessário criar um vetor coluna (ex. usar as funções estatísticas pré-definidas na calculadora). A forma mais simples de inserir um vetor coluna é incluindo cada elemento de vetor dentro de parênteses, todos contidos dentro um conjunto externo de parênteses. Por exemplo, insira:

Isto é representado como o seguinte vetor coluna:

Nesta seção mostraremos as formas de transformar: um vetor coluna em vetor linha, um vetor linha em vetor coluna, uma linha em vetor e um vetor (ou matriz) em uma linha.

A seguir introduzimos a operação das funções OBJ→, →LIST, →ARRY e DROP com alguns exemplos.

Função OBJ→

Esta função decompõe um objeto em seus componentes. Se o argumento for uma lista, a função OBJ → listará os elementos na pilha, com o número de elementos no nível 1 da pilha, por exemplo: (1,2,3) ENTER

Quando a função OBJ→ for aplicada em um vetor, os elementos do vetor serão listados na pilha com o número de elementos no nível 1: incuido em chaves (uma lista). O seguinte exemplo ilustra esta aplicação: ⟨1,2,3⟩

Se aplicarmos agora a função OBJ→ novamente, a lista no nível 1 da pilha:, {3.}, será decomposta conforme a seguir:

Função →LIST

Função →ARRY

Esta função é usada para criar um vetor ou uma matriz. Nesta seção, a usaremos para construir um vetor ou vetor coluna (ex. uma matriz de n linhas e 1 coluna). Para construir um vetor regular inserimos os elementos do vetor na pilha e no nível 1 da pilha: inserimos o tamanho do vetor como uma listas, ex. Torre 2 were 3 were 4 were 1 wer

Para construir um vetor coluna de n elementos, insira os elementos do vetor na pilha e no nível 1 da pilha insira a lista {n 1}. Por exemplo, I NTEN 2 NTEN 3 NTEN 4 NTEN 4 NTEN 1 NTEN

Função DROP

Esta função tem o mesmo efeito da tecla de exclusão ().

Transformar um vetor linha em um vetor coluna

Ilustraremos a transformação com o vetor [1,2,3]. Insira este vetor na pilha RPN para seguir o exercício. Para transformar o vetor linha em um vetor coluna é necessário continuar com as seguintes operações na pilha RPN:

Uma nova variável, . ficará disponível nas etiquetas do menu virtual depois de pressionar .:

2: 1: RXC | L5 | L2 | L3 | L4 | L1

Pressione ightharpoonup para ver o programa contido na variável RXC: << OBJ \rightarrow 1 + \rightarrow ARRY >>

Esta variável, Apple agora ser usada para transformar diretamente um vetor linha em um vetor coluna. No modo RPN, inserimos um vetor linha e depois pressionamos Apple. Tente, por exemplo: [1,2,3] Apple ALG para transformar um vetor linha em vetor coluna. Assim, altere o modo da sua calculadora para ALG e tente o seguinte procedimento: [1,2,3] Apple ALG e tente o seguinte procedimento: [1,2,3]

Transformar um vetor coluna em um vetor linha

Para ilustrar esta transformação, inseriremos o vetor coluna [[1], [2], [3]] no modo RPN. Depois, siga o próximo exercício para transformar um vetor linha em um vetor coluna:

- 1 Use a função OBJ→ <u>para decompor o vetor coluna</u>
 4: 1
 8: 2
 1
 2: (3. 1.)
- 2 Use a função OBJ→ para decompor a lista no nível 1 da pilha:

Pressione → para ver o programa contido na variável CXR:

Esta variável, pode agora ser usada para transformar diretamente um vetor linha em um vetor coluna. No modo RPN, inserimos um vetor coluna e depois pressionamos. Tente, por exemplo: [[1],[2],[3]]

Depois de definir esta variável ..., podemos usá-la no modo ALG para transformar um vetor linha em vetor coluna. Assim, altere o modo da sua calculadora para ALG e tente o seguinte procedimento:

[[1], [2], [3]] ENTER VAR WAR () () () () ANS

resultando em:

Transformar uma lista em um vetor

Para ilustrar esta transformação, inseriremos a lista (1,2,3) no modo RPN. Depois, siga o próximo exercício para transformar uma lista em um vetor:

Estas três etapas podem ser colocadas juntas no programa UserRPL e inseridas conforme a seguir (no modo RPN)

Uma nova variável,, ficará disponível nas etiquetas do menu virtual depois de pressionar (MR):

Pressione para ver o programa contido na variável LXV: << OBJ \rightarrow 1 \rightarrow LIST \rightarrow ARRY >>

Depois de definir a variável *** podemos usá-la no modo ALG para transformar uma lista em vetor. Assim, altere o modo da sua calculadora para ALG e tente o seguinte procedimento: (1,2,3) *** The second of the sec

Transformar um vetor (ou matriz) em uma lista

Para transformar um vetor em uma lista, a calculadora fornece a função ALX. Você pode encontrar esta função no catálogo de comandos conforme a seguir:

Como exemplo, aplique a função AXL ao vetor [1,2,3] no modo RPN usando:[1,2,3] [NTE] FIXL. O seguinte visor mostra a aplicação da função AXL ao mesmo vetor usado no modo ALG.

Capítulo 10

Criar e manipular matrizes

Este capítulo mostra um número de exemplos direcionados para criar matrizes na calculadora e demonstrar a manipulação de elementos de matrizes.

Definições

Uma <u>matriz</u> é simplesmente um conjunto retangular de objetos (ex. números, expressões algébricas) com um número de linhas e colunas. Uma matriz $\bf A$ com n linhas e m colunas terá, em consequência, n×m elementos. Um elemento genérico da matriz é representada pela variável indexada a_{ij} , correspondente a linha i e coluna j. Com esta notação podemos escrever a matriz $\bf A$ como $\bf A$ = $[a_{ij}]_{n\times m}$. A matriz completa é mostrada a seguir:

$$\mathbf{A} = [a_{ij}]_{n \times m} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}.$$

Uma matriz é quadrada se m=n. A <u>transposta</u> de uma matriz é construída pela troca de linhas por colunas e vice versa. Assim, a transposta da matriz \mathbf{A} é $\mathbf{A}^T = [(\mathbf{a}^T)_{ij}]_{m \times n} = [\mathbf{a}_{ij}]_{m \times n}$. A <u>diagonal principal</u> da matriz quadrada é a coleção de elementos \mathbf{a}_{ii} . Uma <u>matriz Identidade</u> $\mathbf{I}_{n \times n}$, é a matriz quadrada cujos elementos diagonais principais são todos iguais a $\mathbf{1}$, e todos os elementos fora da diagonal são iguais a zero. Por exemplo, uma matriz identidade 3×3 é escrita como

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Uma matriz Identidade pode ser escrita como $\mathbf{I}_{n\times n}=[\delta_{ij}]$, onde δ_{ij} é uma função conhecida como <u>delta de Kronecker</u> e definida como

$$\delta_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}.$$

Inserir matrizes na pilha

Nesta seção apresentamos dois métodos diferentes de inserir matrizes na pilha da calculadora: (1) usando o Editor de Matrizes e (2) digitando a matriz diretamente na pilha.

Usar o Editor de Matriz

Como no caso dos vetores, discutido no capítulo 9, as matrizes podem ser inseridas usando o Editor de Matriz. Por exemplo, para inserir a matriz

$$\begin{bmatrix} -2.5 & 4.2 & 2.0 \\ 0.3 & 1.9 & 2.8 \\ 2 & -0.1 & 0.5 \end{bmatrix},$$

primeiro, ative o Editor de Matriz usando ← MTRW . Verifique se a opção □ → está selecionada. Em seguida use as seguintes teclas:

Agora o visor do Editor de Matriz apresenta-se da seguinte forma:

Pressione [NTER] novamente para colocar a matriz na pilha. A pilha no modo ALG é mostrada a seguir, antes e depois de pressionar, novamente

Se você selecionou a opção textbook no visor (usando MODE) desmarcando <u>Varentbook</u>), a matriz apresentará a seguinte forma. Caso contrário, o visor mostrará:

O visor no modo RPN será similar aos apresentados a seguir.

Nota: Os detalhes sobre o uso do Editor de Matriz foram apresentados no capítulo 9.

Digitar na matriz diretamente para a pilha

O mesmo resultado acima pode ser alcançado inserindo o seguinte diretamente na pilha:

Assim, para inserir uma matriz diretamente na pilha abra um conjunto de colchetes () e envolva cada linha da matriz com um conjunto adicional de colchetes (). Vírgulas () devem separar os elementos de cada linha, assim como os colchetes entre as linhas. (**Nota**: No modo RPN você pode omitir os colchetes internos depois que o primeiro conjunto for inserido assim em vez de digitar, por exemplo [[1 2 3] [4 5 6] [7 8 9]], digite [[1 2 3] 4 5 6 7 8 9].)

Para exercícios futuros, salvemos esta matriz sob o nome A. No modo ALG use (STO) (ALPHA) A. No modo RPN, use (ALPHA) A. STO).

Criar matrizes com as funções da calculadora

Algumas matrizes podem ser inseridas usando as funções da calculadora disponíveis nos submenus MTH/MATRIX/MAKE dentro do menu MTH

ou no menu MATRICES/CREATE disponível através de 🥎 MATRICES :

O submenu MTH/MATRIX/MAKE (chamemos de menu MAKE) contém as seguintes funções:

enquanto o submenu MATRICES/CREATE (chamemos de menu CREATE) contém as seguintes funções:

Como podemos ver, da exploração destes menus (MAKE e CREATE), eles possuem as mesmas funções GET, GETI, PUT, PUTI, SUB, REPL, RDM, RANM, HILBERT, VANDERMONDE, IDN, CON, →DIAG e DIAG→. O menu CREATE inclui os submenus COLUMN e ROW que estão também disponíveis no menu MTH/MATRIX. O menu MAKE inclui as funções SIZE que o menu CREATE não inclui. Basicamente, no entanto, ambos os menus, MAKE e CREATE, fornecem ao usuário o mesmo conjunto de funções. Nos exemplos a seguir, mostraremos como acessar as funções através do uso da matriz do menu MAKE. Ao final desta seção apresentamos uma tabela com as teclas necessárias para obter as mesmas funções com o menu CREATE quando o sinalizador do sistema 117 for configurado para menus SOFT.

Se você tiver configurado este sinalizador de sistema (sinalizador 117) para o menu SOFT, o menu MAKE estará disponível através da sequência de teclas:

As funções disponíveis serão mostradas como etiquetas do teclado do menu virtual como segue (pressione (NAT) para ir para o próximo conjunto de funções):

Com o sinalizador do sistema 117 configurado para menus SOFT, as funções do menu CREATE, ativadas pelo (MATRICES (SETE), serão mostradas como segue:

Nas próximas seções apresentaremos as aplicações das funções de matriz no menu MAKE e CREATE.

As funções GET e PUT

As funções GET, GETI, PUT e PUTI, operam com matrizes de forma similar à das listas ou vetores, ex. você precisa fornecer o local do elemento que deseja para GET (OBTER) ou PUT (INSERIR). Entretanto, enquanto nas listas e vetores apenas um índice é necessário para identificar um elemento, nas matrizes precisamos de uma lista de dois índices {linha, coluna} para identificar os elementos da matriz. Exemplos do uso de GET e PUT se seguem.

Usemos a matriz que armazenamos acima na variável A para demonstrar o uso das funções GET e PUT. Por exemplo, para extrair o elemento a_{23} da matriz A no modo ALG proceda conforme a seguir:

Observe que alcançamos o mesmo resultado digitando apenas A(2,3) e pressionando EMER. No modo RPN este exercício é realizado inserindo EMER 3 EMER GET ou usando A(2,3) EMER.

Suponha que desejamos colocar o valor ' π ' no elemento a_{31} da matriz. Podemos usar a função PUT para este objetivo, ex.

No modo RPN você pode usar: (3,1) (NTE) (5, 1) (NTE) (7, 1) (2,3) (NTE) (50). Para ver o conteúdo da variável A depois desta operação, use (11).

Funções GETI e PUTI

As funções PUTI e GETI são usadas nos programas UserRPL pelo fato de que elas mantêm o controle de um índice para aplicações repetidas das funções PUT e GET. A lista de índices nas matrizes varia primeira por coluna. Para ilustrar seu uso propomos o seguinte exercício no modo RPN: [2,2][ENTE] GETI. Os visores mostram a pilha RPN antes e depois da aplicação da função GETI:

Observe que o visor está preparado para uma aplicação subsequente de GETI ou GET, aumentando o índice da coluna de referência original em 1, (ex. de {2,2} para {2,3}), enquanto mostra o valor extraído, ou seja, A(2,2) = 1.9, no nível 1 da pilha.

Agora, suponha que você deseja inserir o valor 2 no elemento {3 1} usando PUTI. Ainda no modo RPN, tente a seguinte combinação de teclas: • (3 1) [NTER] 2 [NTER] FUTI. Os visores mostrando a pilha RPN antes e depois da aplicação da função PUTI são mostrados abaixo:

Neste caso, o 2 foi substituido na posição {3 1}, ex. agora A(3,1) = 2 e a lista de índice foi aumentada em 1 (na primeira coluna), ex., de {3,1} para {3,2}. A matriz está no nível 2 e a lista de índices de incremento está no nível 1.

Função SIZE

A função SIZE fornece uma lista que mostra o número de linhas e colunas da matriz no nível 1 da pilha. O visor a seguir mostra algumas aplicações da função SIZE no modo ALG:

No modo RPN, estes exercícios são feitos usando III SIZE e [[1,2],[3,4]] [NTEN SIZE .

Função TRN

A função TRN é usada para a transconjugação de uma matriz, ex. a transposição (TRAN) seguida pelo seu conjugado complexo (CONJ). Por exemplo, o visor a seguir mostra a matriz original na variável A e sua transposição, mostrada no visor em fonte pequena (consulte o capítulo 1):

Se o argumento for uma matriz real, TRN produz apenas a transposição da matriz real. Tente, por exemplo, TRN(A) e compare com TRAN(A).

No modo RPN a transconjugação da matriz A é calculado usando TRN.

Função CON

A função usa como argumento uma lista de dois elementos, correspondente ao número de linhas e colunas da matriz a ser gerada, e um valor constante. A função CON gera uma matriz com elementos constantes. Por exemplo, no modo ALG, o seguinte comando cria uma matriz 4×3 cujos elementos são todos iguais a –1.5:

No modo RPN isto é alcançado usando ($4\,{}_{\sharp}\,\exists\,$) (ENTER) () 5 +- (ENTER) CON .

Função IDN

A função IDN (IdeNtity matrix) cria uma matriz identidade dado o seu tamanho. Lembre-se que uma matriz identidade deve uma matriz quadrada, desse modo, apenas um valor é necessário para descrevê-la completamente. Por exemplo, para criar uma matriz identidade 4×4 no modo ALG use:

Você pode usar também uma matriz quadrada existente como argumento da função IDN, ex.

A matriz identidade resultante terá as mesmas dimensões da matriz argumento. Observe que uma tentativa de usar uma matriz retangular (ex. não quadrada) como o argumento de IDN produzirá um erro.

No modo RPN, os dois exercícios mostrados acima são criados usando:

(4) [NTER] IDN and [IDN] IDN.

Função RDM

A função RDM (ReDiMensioning) é usada para reescrever vetores e matrizes como matrizes e vetores. A entrada para a função consiste do vetor ou matriz original seguido pela lista de um número individual, se estiver sendo convertido para um vetor, ou de dois números se estiver sendo convertido para uma matriz. No caso anterior o número representa a dimensão do vetor, no último caso, o número de linhas e colunas da matriz. Os seguintes exemplos ilustram o uso da função RDM:

Redimensionar um vetor em uma matriz

O exemplo seguinte mostra como redimensionar um vetor de 6 elementos em uma matriz de 2 linhas e 3 colunas no modo ALG:

No modo RPN, podemos usar [1,2,3,4,5,6] [INTER {2,3} [INT

Redimensionar uma matriz em uma outra matriz

No modo ALG, podemos agora usar a matriz criada acima e redimensioná-la em uma matriz de 3 linhas e 2 colunas:

No modo RPN, podemos apenas usar (3,2) ENTER RDM.

Redimensionar uma matriz em um vetor

Para redimensionar uma matriz em um vetor, usamos como argumentos a matriz seguida por uma lista que contém o número de elementos da matriz. Por exemplo, para converter a matriz do exemplo anterior em um vetor de comprimento 6 no modo ALG, use:

: RDM(ANS(1),(3 2))

[1 2]
[3 4]
[5 6]

: RDM(ANS(1),(6))
[1 2 3 4 5 6]

CON | ION | TRN | RON | RANK | SIZE

Se usar o modo RPN, suponha que a matriz esteja na pilha e use (6) ENTER
RDM.

Nota: A função RDM fornece uma forma mais direta e eficiente de transformar listas em conjuntos e vice versa, do que aquela fornecida no final do capítulo 9.

Função RANM

A função RANM (RANdom Matrix) gerará uma matriz com elementos de números inteiros aleatórios a partir de uma lista com o número de linhas e colunas (ex. as dimensões da matriz). Por exemplo, no modo ALG, duas matrizes diferentes 2×3 com elementos aleatórios são produzidas usando o mesmo comando, ou seja, RANM((2,3)):

No modo RPN, use {2,3} ENTER RAMM.

Obviamente, os resultados obtidos na sua calculadora certamente serão diferentes daqueles mostrados acima. Os números aleatórios gerados são números inteiros uniformemente distribuidos na faixa [-10,10], ex. cada um destes 21 números tem a mesma probabilidade de ser selecionado. A função RANM é útil para gerar matrizes de qualquer tamanho para ilustrar as operações com matrizes ou a aplicação de funções com matrizes

Função SUB

A função SUB extrai uma sub-matriz de uma matriz existente, desde que você indique a posição inicial e final da sub-matriz. Por exemplo, se queremos extrair os elementos a_{12} , a_{13} , a_{22} , e a_{23} do último resultado como uma sub-matriz 2×2 no modo ALG, devemos usar:

No modo RPN, supondo que a matriz original 2×3 já esteja na pilha, use $\{1,2\}$ ENTER $\{2,3\}$ ENTER SUB.

Função REPL

A função REPL substitui ou insere uma sub-matriz em uma matriz maior. A entrada para esta função é a matriz onde a substituição acontecerá, o local onde a substituição começa e a matriz a ser inserida. Por exemplo, mantendo a matriz que herdamos do exemplo anterior, insira a matriz: [[1,2,3],[4,5,6],[7,8,9]]. No modo ALG, o seguinte visor à esquerda mostra a nova matriz antes de pressionar [MTB]. O visor à direita

mostra a aplicação da função RPL para substituir a matriz em ANS(2), a matriz 2×2 na matriz 3×3 atualmente localizada em ANS(1), iniciando na posição (2,2):

Se estiver usando o modo RPN, supondo que a matriz 2×2 estava originalmente na pilha, procedemos como segue:

[[1,2,3],[4,5,6],[7,8,9]] \bigcirc (esta última tecla troca o conteúdo dos níveis 1 e 2 da pilha) (1,2) \bigcirc (outra troca de níveis 1 e 2) REPL.

Função →DIAG

A função →DIAG toma a matriz diagonal ou quadrada principal de dimensões n×n e cria um vetor de dimensão n que contenha os elementos dos principais elementos da diagonal principal. Por exemplo, para a matriz resultante do exercício anterior, podemos extrair sua diagonal principal usando:

No modo RPN com a matriz 3×3 na pilha, precisamos apenas ativar a função →DIAG para obter o mesmo resultado acima.

Função DIAG→

Função DIAG→ tome um vetor e uma lista de dimensões de matrizes {linhas, colunas} e crie uma matriz diagonal com a diagonal principal substituída pelos elementos de vetor corretos. Por exemplo, o comando

$$DIAG \rightarrow ([1,-1,2,3],(3,3))$$

produz uma matriz diagonal com os primeiros 3 elementos do argumento do vetor:

No modo RPN podemos usar [1,-1,2,3] ENTER (3,3) ENTER DIAG \rightarrow para obter o mesmo resultado acima.

Outro exemplo da aplicação da função DIAG→ a função segue, no modo ALG:

No modo RPN, use [1,2,3,4,5] ENTER $\{3,2\}$ ENTER DIAG \rightarrow .

Neste caso, uma matriz 3×2 foi criada usando como elementos diagonais principais tantos elementos quanto possível do vetor [1,2,3,4,5]. A diagonal principal, para uma matriz retangular, inicia na posição (1,1) e se desloca para a posição (2,2), (3,3), etc. até que o número de linhas ou colunas fique exaurido. Neste caso, o número de colunas (2) ficou exaurido antes do número de linhas (3), assim a diagonal principal incluiu apenas os elementos das posições (1,1) e (2,2). Desse modo, apenas os dois primeiros elementos do vetor foram necessários para formar a diagonal principal.

Função VANDERMONDE

A função VANDERMONDE gera a matriz Vandermonde de dimensão n baseada em uma determinada lista de dados de entrada. A dimensão n é, naturalmente, o comprimento da lista. Se a lista de entrada consistir dos objetos $\{x_1, \, x_2, \dots \, x_n\}$, então, uma matriz Vandermonde na calculadora é a matriz constituída dos seguintes elementos:

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{bmatrix}$$

Por exemplo, o seguinte comando no modo ALG para a lista {1,2,3,4}:

No modo RPN insira (1,2,3,4) ENTER VANDERMONDE.

Função HILBERT

A função HILBERT cria a matriz Hilbert correspondendo a uma dimensão n. Por definição, a matriz Hilbert $n \times n$ é $\boldsymbol{H}_n = [h_{jk}]_{n \times n}$, para que

$$h_{jk} = \frac{1}{j+k-1}$$

A matriz Hillbert tem aplicações no ajuste de curvas numéricas pelo método de quadrados lineares.

Um programa para construir uma matriz a partir de listas

Nesta seção forneceremos alguns programas UserRPL para construir uma matriz a partir de listas de objetos. As listas podem representar as colunas da matriz (programa (programa o linhas da matriz (programa o linhas da ma

configurado para menus SOFT. Esta seção foi criada para que você pratique o acesso às funções de programação da calculadora. Os programas estão listados abaixo mostrando, no lado esquerdo, as teclas necessárias para inserir as etapas do programa e, no lado direito, os caracteres inseridos no visor conforme você usa esta combinação de teclas. Primeiro, apresentamos os passos necessários para produzir o programa CRMC.

A lista representa as colunas da matriz

O programa permite que você elabore uma matriz $p \times n$ (ex. linhas p, colunas n) de n listas de p elementos. Para criar o programa insira as seguintes teclas:

Sequência de teclas:	<u>Produz:</u>
→ <u>«</u> »	«
PRG FILES FOLIS	DUP
SPC ALPHA (N	\rightarrow n
→ «»	<<
	1 SWAF
PRG TITEL TOTAL	FOR
ALPHA ()	i
← PRG IIII III→	OBJ→
→33333	\rightarrow ARRY
PRG THE THE	IF
ALPHA SPC	i
ALPHA (N	n
PRG IIII	<
PRG TITE TITE	THEN
ALPHA (T) (SPC) (+	j 1 +
PRG NXT NXT	ROLL
PRG TITE TITE	END
PRG TATELLE TO THE TOTAL	NEXT
PRG TITE TO THE TOTAL PROPERTY OF THE PROPERTY	IF
ALPHA (T) (N) (SPC) [n 1
PRG IIII	>
	THEN
[] SPC	1
ALPHA) (T) (N) (SPC) [—	n 1 -
PRG TRUE TOTAL TOTAL	FOR
ALPHA SPC	i
	•

ALPHA (T) (SPC) (+)	j 1 +
PRG PRG NXT NXT	ROLL
PRG TATE TO THE TOTAL TO	NEXT
	END
ALPHA (N) SPC	n
	COL→
(ENTER)	O programa é exibido no nível 1

Para salvar o programa:

Nota: Se você salvar este programa no seu diretório HOME ele estará disponível de qualquer subdiretório que usar.

Para ver o conteúdo do programa use (MR) (P) (EEE). A lista de programa é a seguinte.

```
« DÜP → n « 1 SWAP FOR j OBJ → → ARRY IF j n < THEN j 1 + ROLL END NEXT IF n 1 > THEN 1 n 1 - FOR j j 1 + ROLL NEXT END n COL → » »
```

Para usar este programa, no modo RPN, insira as n listas na ordem que deseja, assim como as colunas da matriz, insira o valor de n e pressione ESSE. Como exemplo, tente o sequinte exercício:

```
\{1,2,3,4\} (ENTER) \{1,4,9,16\} (ENTER) \{1,8,27,64\} (ENTER) 3 (ENTER) WHILE
```

O visor abaixo mostra a pilha RPN antes e depois de executar o programa

Para usar o programa no modo ALG, pressione seguido por um conjunto de parênteses (). Dentro dos parênteses digite as listas de dados representando as colunas da matriz, separadas por colunas e finalmente uma vírgula e o número de colunas. O comando deve ter o sequinte formato:

O visor ALG exibindo a execução de programa CRMC é mostrado a seguir:

Listas representam as linhas da matriz

O programa anterior pode ser facilmente alterado para criar uma matriz quando as listas de entradas tornam-se as linhas da matriz resultante. A única alteração a ser feita é a mudança de COL→ para ROW→ na lista de programas. Para fazer esta alteração use:

Lista o programa CRMC na pilha Move para o final do programa Exclui COL Digite ROW, insira o programa

Para armazenar o programa use: APHA APHA CRM R APHA STO

(1,2,3,4) (NTER) (1,4,9,16) (NTER) (1,8,27,64) (NTER) 3 (NTER) DELLEY O visor abaixo mostra a pilha RPN antes e depois de executar o programa DELEY:

Estes programas podem ser úteis em aplicações estatísticas, especificamente para criar a matriz estatística ΣDAT . Exemplos de uso destes programas serão mostrados nos capítulos seguintes.

Manipular as matrizes por colunas

A calculadora fornece um menu com as funções para manipular matrizes operando nas suas colunas. Este menu está disponível através da seqüência MTH/MATRIX/COL..: () mth) mostrada na figura abaixo com o sinalizador de sistema 117 configurado para CHOOSE boxes:

Quando o sinalizador do sistem 117 for configurado para menus SOFT, o menu COL está acessível através — MTH COLOR OU de ou de OMATRICES CALLES CONTROL OU DE MARRICES CALLES CALLES CONTROL OU DE MARRICES CALLES CA

A operação destas funções é apresentada abaixo.

Função →COL

A função →COL usa como argumento uma matriz e a decompõe em vetores correspondentes às suas colunas. Uma aplicação da função →COL no modo ALG é mostrada abaixo. A matriz usada foi armazenada anteriormente na variável A. A matriz é mostrada na figura à esquerda. A figura à direita mostra a matriz decomposta em colunas. Para ver o resultado completo, use a linha de edição (ativado pressionando-se ▼).

No modo RPN, você precisa listar a matriz na pilha e ativar a função →COL, ex. ■: →COL. A figura abaixo mostra a pilha RPN antes e depois da aplicação da função →COL.

Neste resultado, a primeira coluna ocupa o nível mais elevado da pilha depois da decomposição e o nível 1da pilha é ocupado pelo número de colunas da matriz original. A matriz não sobrevive a decomposição, ex. não está mais disponível na pilha.

Função COL→

A função COL→ tem efeito oposto ao da função →COL, ex. dado n vetores do mesmo comprimento e o número n, função COL→ constrói uma matriz colocando os vetores de entrada como colunas da matriz resultante. Aqui está um exemplo no modo ALG. O comando usado foi:

No modo RPN, coloque os n vetores nos níveis da pilha n+1, n, n-1,...,2 e o número n no nível 1 da pilha. Com esta configuração, a função COL→ coloca os vetores como colunas na matriz resultante. A figura abaixo mostra a pilha RPN antes e depois de usar a função COL→.

Função COL+

A função COL+ usa como argumento uma matriz, um vetor com o mesmo comprimento do número de linhas da matriz e um número inteiro n representando o local de uma coluna. A função COL+ insere o vetor na coluna n da matriz. Por exemplo, no modo ALG, podemos inserir a segunda coluna na matriz A com o vetor [-1,-2,-3], ex.

No modo RPN insira a matriz primeiro, depois o vetor e o número da coluna, antes de aplicar a função COL+. A figura abaixo mostra a pilha RPN antes e depois de aplicar a função COL+.

Função COL-

A função COL- usa como argumento uma matriz e um número inteiro representando a posição de uma coluna na matriz. A função retorna a matriz original menos uma coluna, como também a coluna extraída mostrada como um vetor. Aqui está um exemplo no modo ALG usando a matriz armazenada em A:

No modo RPN, coloque a matriz na pilha primeiro, depois insira o número representando o local da coluna antes de aplicar a função COL-. A figura a seguir mostra a pilha RPN antes e depois de aplicar a função COL-.

Função CSWP

A função CSWP (Column SWaP) usa como argumentos dois índices, digamos, i e j, (representando duas colunas distintas na matriz) e uma matriz, e produz uma nova matriz com as colunas i e j trocadas. O exemplo a seguir, no modo ALG, mostra uma aplicação desta função. Usamos a matriz armazenada na variável A para o exemplo. Esta matriz é listada primeiro.

No modo RPN, a função CSWP permite que você troque as colunas de uma matriz listada no nível 3 da pilha, cujos índices estão listados nos níveis 1 e 2 da pilha. Por exemplo, a figura seguinte mostra a pilha RPN antes e depois de aplicar a função CSWP à matriz A para trocar as colunas 2 e 3:

Como podemos ver, as colunas que orginalmente ocupam as posições 2 e 3 foram trocadas. A troca de colunas e de linhas (veja abaixo) é normalmente usada quando da resolução de sistemas de equações lineares com matrizes. Os detalhes destas operações serão dados em um capítulo subsequente.

Manipular as matrizes por linhas

A calculadora fornece um menu com funções para manipular as matrizes operando em suas colunas. Este menu está disponível através da seqüência MTH/MATRIX/ROW..: (mmth) mostrado na figura abaixo com o sinalizador do sistema 117 configurado para CHOOSE boxes boxes:

Quando o sinalizador de sistema 117 for configurado para menus SOFT, o menu ROW fica acessível através with with the sound of the conjunto de funções:

A operação destas funções é apresentada abaixo.

Função →ROW

A função →ROW usa como argumento uma matriz e a decompõe em vetores correspondentes às suas linhas. Uma aplicação da função →ROW no modo ALG é mostrada abaixo. A matriz usada foi armazenada anteriormente na variável A. A matriz é mostrada na figura à esquerda. A figura á direita mostra a matriz decomposta em linhas. Para ver o resultado completo, use a linha de edição (ativado pressionando-se ▼).

No modo RPN, você precisará listar a matriz na pilha, e a função de ativação →ROW, ex., ∭ →ROW. A figura abaixo mostra a pilha RPN antes e depois da aplicação da função →ROW.

Neste resultado, a primeira linha ocupa o nível mais elevado da pilha depois da decomposição, e o nível 1 é ocupado pelo número de linhas da matriz original. A matriz não sobrevive à decomposição, ex. não está mais disponível na pilha.

Função ROW→

A função ROW→ tem o efeito oposto ao da função →ROW, ex. dado n vetores do mesmo comprimento e o número n, função ROW→ constrói uma matriz colocando os vetores de entrada como linhas da matriz resultante. Aqui está um exemplo no modo ALG. O comando usado foi:

No modo RPN, coloque os n vetores nos níveis n+1, n, n-1,...,2 da pilha e o número n no nível 1da pilha. Com esta configuração, função ROW→ coloca os vetores como linhas na matriz resultante. A figura abaixo mostra a pilha RPN antes e depois de usar a função ROW→.

Função ROW+

A função ROW+ usa como argumento uma matriz, um vetor com o mesmo comprimento do número de linhas da matriz e um número inteiro n representando o local de uma linha. A função ROW+ insere o vetor na linha n da matriz. Por exemplo, no modo ALG, podemos inserir a segunda linha na matriz A com o vetor [-1,-2,-3], ex.

No modo RPN, insira a matriz primeiro, depois o vetor e o número da linha antes de aplicar a função ROW+. A figura abaixo mostra a pilha RPN antes e depois de aplicar a função ROW+:

Função ROW-

A função ROW- usa como argumento uma matriz e um número inteiro representando a posição de uma linha na matriz. A função retorna a matriz original menos uma linha, como também a coluna extraída mostrada como um vetor. Aqui está um exemplo no modo ALG usando a matriz armazenada em A:

No modo RPN, coloque a matriz na pilha primeiro, depois insira o número representando o local da linha antes de aplicar a ROW-. A figura abaixo mostra a pilha RPN antes e depois de aplicar a função ROW-.

Função RSWP

A função RSWP (Row SWaP) usa como argumentos dois índices, digamos, i e j, (representando duas linhas distintas em uma matriz) e uma matriz, e produz uma nova matriz com as linhas i e j trocadas. O exemplo seguinte, no modo ALG, mostra uma aplicação desta função. Usamos a matriz armazenada na variável A para o exemplo. Esta matriz é listada primeiro.

No modo RPN, a função CSWP permite que você troque as linhas de uma matriz listada no nível 3 da pilha, cujos índices são listados nos níveis 1 e 2 da pilha. Por exemplo, a figura seguinte mostra a pilha RPN antes e depois de aplicar a função CSWP à matriz A para trocar as linhas 2 e 3:

Como podemos ver as colunas que originalmente ocupavam as posições 2 e 3 foram trocadas.

Função RCI

Função RCI significa multiplicar Row I por um valor da Constante e substituir a linha resultante no mesmo local. O seguinte exemplo, escrito no modo ALG, usa a matriz armazenada em A e multiplica o valor da constante 5 na linha de número 3, substituindo a linha por este produto.

Este mesmo exercício feito no modo RPN é mostrado na próxima figura. A figura à esquerda mostra a configuração da matriz, o fator e o número da linha nos níveis 3, 2 e 1 da pilha. A figura à direita mostra a matriz resultante depois que a função RCI foi ativada.

Funções RCIJ

A função RCIJ significa "use a linha I e a multiplique por uma constante C e depois adicione esta linha multiplicada à linha J, substituindo a linha J com a soma resultante" Este tipo de operação de linha é muito comum no processo de eliminação de Gaussian ou Gauss-Jordam (mais detalhes sobre este procedimento serão apresentados em um capítulo subsequente). Os argumentos da função são: (1) a matriz, (2) o valor da constante, (3) a linha a ser multiplicada pela constante em (2), e (4) a linha a ser substituída pela soma resultante conforme descrito acima. Por exemplo, usando a matriz armazenada na variável A, vamos agora multiplicar a coluna 3 vezes 1,5 e adicioná-la à coluna 2. O sequinte exemplo é feito no modo ALG:

No modo RPN,insira a matriz primeiro, seguida do valor da constante, depois pela linha a ser multiplicada pelo valor da constante e finalmente insira a linha que será substituída. A seguinte figura mostra a pilha RPN antes e depois de aplicar a função RCIJ sob as mesmas condições do exemplo ALG mostrado acima:

Capítulo 11

Operações de matriz e álgebra linear

Neste capítulo 10 introduzimos o conceito de uma matriz e apresentamos um número de funções para inserir, criar ou manipular as matrizes. Neste capítulo apresentamos os exemplos das operações com matriz e aplicações para os problemas de álgebra linear.

Operações com matrizes

As matrizes, como outros objetos matemáticos, podem ser adicionados ou subtraídos. Elas podem ser multiplicadas por um escalar ou entre si. Uma operação importante para as aplicações de álgebra linear é o inverso da matriz. Mais detalhes destas operações são apresentados a seguir.

Para ilustrar as operações criaremos um número de matrizes que armazenaremos nas variáveis. O nome genérico das matrizes serão Aij e Bij, onde i representa o número de linhas e j o número de colunas. As matrizes usadas são geradas usando a função RANM (matrizes aleatórias). Se tentar este exercício na sua calculadora obterá as matrizes diferentes do que as listas aqui, a menos que armazene-as na sua calculadora exatamente conforme mostrado abaixo. Aqui estão as matrizes A22, B22, A23, B23, A32, B32, A33 e B33 criadas no modo ALG:

No modo RPN, as etapas são as seguintes:

```
(2,2) ENTER RANM 'A22' STOP (2,2) ENTER RANM 'B22' STOP (2,3) ENTER RANM 'B23' STOP (2,3) ENTER RANM 'B23' STOP (3,2) ENTER RANM 'B32' STOP (3,2) ENTER RANM 'B32' STOP (3,3) ENTER RANM 'B33' STOP (3,3) ENTER RANM 'B33' STOP
```

Adição e subtração

Considere um par de matrizes $\mathbf{A} = [a_{ij}]_{m \times n}$ e $\mathbf{B} = [b_{ij}]_{m \times n}$. A adição e subtração destas duas matrizes é apenas possível se tiverem o mesmo número de linhas e colunas. A matriz resultante, $\mathbf{C} = \mathbf{A} \pm \mathbf{B} = [c_{ij}]_{m \times n}$ tem dois elementos $c_{ij} = a_{ij} \pm b_{ij}$. Alguns exemplos são mostrados abaixo usando as matrizes armazenadas acima (modo ALG). Alguns exemplos no modo ALG são mostrados abaixo usando as matrizes armazenadas acima (ex, \blacksquare +

No modo RPN, as etapas são as seguintes:

A 22	ENTER	B22ENTER $+$	H 22 ENTER E	22 ENTER —
A 23	ENTER	B23(ENTER) +	H23 ENTER E	323(ENTER) (—
A 32	(ENTER)	B32(ENTER)(+)	A32 (ENTER) E	ENTER —

Traduzir os exemplos ALG para RPN é simples, conforme ilustrado aqui. Os exemplos restantes das operações de matrizes serão feitos apenas no modo ALG.

Multiplicação

Existem diferentes operações de multiplicação que envolve as matrizes. Estas operações são descritas a seguir.

Multiplicação por escalar

Multiplicação da matriz $\mathbf{A} = [a_{ij}]_{m \times n}$ por uma escalar k resulta na matriz $\mathbf{C} = k\mathbf{A} = [c_{ij}]_{m \times n} = [ka_{ij}]_{m \times n}$. Em particular, o negativo de uma matriz é definida pela operação $-\mathbf{A} = (-1)\mathbf{A} = [-a_{ij}]_{m \times n}$. Alguns exemplos de multiplicação de uma matriz por uma escalar são mostrados abaixo.

Combinar adição e subtração com multiplicação por uma escalar podemos formar as combinação lineares das mesmas dimensões, ex.

Na combinação linear de matrizes, podemos multiplicar uma matriz por um número imaginário para obter uma matriz de números complexos, ex.

Multiplicação de vetor-matriz

A multiplicação de vetor-matriz é possível apenas se o número de colunas da matriz for igual ao comprimento do vetor. Esta operação segue as regras da multiplicação de matriz conforme mostrados na próxima seção. Um par de exemplos da multiplicação vetor-matriz é apresentada a seguir:

A multiplicação vetor-matriz, por outro lado, não é definida. Esta multiplicação pode ser feita como um caso especial de multiplicação de matriz conforme definido a seguir.

Multplicação da matriz

A multiplicação de matriz é definida por $\mathbf{C}_{m\times n} = \mathbf{A}_{m\times p} \cdot \mathbf{B}_{p\times n}$, onde $\mathbf{A} = [a_{ij}]_{m\times p}$, $\mathbf{B} = [b_{ij}]_{p\times n}$, e $\mathbf{C} = [c_{ij}]_{m\times n}$. Observe que a multiplicação de matriz é apenas possível se o número de colunas no primeiro operando for igual ao número de linhas do segundo operando. O termo geral no produto c_{ij} , é definido como

$$c_{ij} = \sum_{k=1}^{p} a_{ik} \cdot b_{kj}$$
, for $i = 1, 2, ..., m$; $j = 1, 2, ..., n$.

Isto é o mesmo que dizer que o elemento é linha i e a coluna j do produto, **C**, resulta da multiplicar termo a termo a linha i de **A** com a coluna j de **B** e adicionar os produtos juntos. A multiplicação da matriz não é comutativa, ex. em geral, **A·B** ≠ **B·A**. Alem disso, uma das multiplicações talvez não exista. O seguinte visor mostra os resultados das multiplicações das matrizes que armazenamos anteriormente:

A multiplicação matriz-vetor introduzida na seção anterior pode ser vista como o produto de uma matriz m×n com uma matriz n×1 (ex. um vetor coluna) resultando em uma matriz m×1 (ex. outro vetor). Para verificar esta afirmação, consulte os exemplos apresentados na seção anterior. Assim, os vetores definidos no capítulo 9 são basicamente os vetores colunas para a multiplicação da matriz.

O produto de um vetor com uma matriz é possível se o vetor for um vetor linha, ex. matriz 1×m, que multiplicada com uma matriz m×n produz uma matriz 1xn (outro vetor linha). Para a calculadora identificar um vetor linha, é necessário suar parênteses duplos para inseri-lo, ex.

Multiplicação termo a termo

A multiplicação termo a termo de duas matrizes das mesmas dimensões é possível através do uso da função HADAMARD. O resultado, é naturalmente, outra matriz das mesmas dimensões. Esta função está disponível através do catálogo Function () ou através do submenu MATRICES/OPERATIONS (). As aplicações da função HADAMARD são apresentadas a seguir:

A matriz identidade

No capítulo 9 introduzimos a matriz identidade como a matriz $\mathbf{I} = [\delta_{ij}]_{n \times n}$ onde δ_{ij} é a função delta de Kronecker. Matrizes identidade podem ser obtida usando a função IDN descrita no capítulo 9. A matriz identidade tem a propriedade que $\mathbf{A} \cdot \mathbf{I} = \mathbf{I} \cdot \mathbf{A} = \mathbf{A}$. Para verificar esta propriedade apresentamos os seguintes exemplos usando as matrizes armazenadas anteriormente:

A matriz inversa

A inversa da matriz quadrada **A** é a matriz **A**-¹ tal que **A**-**A**-¹ = **A**-¹-**A** = **I**, onde **I** é a matriz identidade das mesmas dimensões como **A**. A inversa da matriz é obtida na calculadora usando a função inversa, INV (ex. a tecla ¬x). Exemplos da inversa de algumas das matrizes armazenadas anteriormente são apresentados a seguir:

Para verificar as propriedades da matriz inversa, apresentamos as seguintes multiplicações:

Caracterizar uma matriz (O menu NORM da matriz)

O menu NORM (NORMALIZE) da matriz é acessado através da seqüência de teclas (sinalizador do sistema 117 configurado para CHOOSE boxes):

O submenu contém as sequintes funções:

Estas operações são descritas a seguir. Por causa de diversas funções usamos os conceitos de teoria de matriz, tal com valores singular, posição, etc., incluiremos descrições curtas destes conceitos misturados com a descrição das funções.

Função ABS

A função ABS calcula o que conhecemos como a norma Frobenius de uma matriz. Para uma matriz $\mathbf{A} = [a_{ij}]_{m \times n}$ a norma Frobenius da matriz pe definida como

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m a_{ij}^2}$$

Se a matriz sob consideração for um vetor linha ou um vetor coluna, então a norma Frobenius, $||\mathbf{A}||_{\text{F}}$, é simplesmente a magnitude do vetor. A função ABS é acessível diretamente no teclado como \bigcirc ABS.

Tente os seguintes exercícios no modo ALG (usando as matrizes armazenadas anteriormente para as operações da matriz):

A função SNRM

A função SNRM calcula a NoRM espectral da matriz, que é definida como o maior valor singular da matriz, conhecido também como a norma Euclidean da matriz. Por exemplo,

:SNRM(A22) :SNRM(A32) :SNRM(A32) :SNRM(A33) 14.1867419471 A | X | B33 | A33 | B32 | A32

Decomposição do valor singular

Para compreender a operação da função SNRM é necessário introduzir o conceito de decomposição de matriz. Basicamente, a decomposição da matriz envolve a determinação de duas ou mais matrizes que, quando multiplicadas em certa ordem, (e, talvez, com alguma inversão de matriz ou de transposição) produz a matriz original. A decomposição singular do valor (SVD) é tal que uma matriz retangular \mathbf{A}_{mxn} é escrita como $\mathbf{A}_{\text{mxn}} = \mathbf{U}_{\text{mxm}} \cdot \mathbf{S}_{\text{mxn}} \cdot \mathbf{V}^{\mathsf{T}}_{\text{nxn}}$

Onde \mathbf{U} e V são as matrizes ortogonais e \mathbf{S} é a matriz diagonal. Os elementos diagonais de \mathbf{S} são chamados de <u>valores singular</u> de A e são normalmente ordenados que $s_i \geq s_{i+1}$, para i=1,2,..., n-1. As colunas $[\mathbf{u}_i]$ de \mathbf{U} e $[\mathbf{v}_i]$ of \mathbf{V} são os vetores singulares correspondentes. (<u>Matrizes ortogonais</u> são tais que $\mathbf{U} \cdot \mathbf{U}^T = \mathbf{I}$. Uma <u>matriz diagonal</u> tem elementos não zero apenas em sua diagonal principal).

A posição de uma matriz pode ser determinada de seu SVD contando o número de valores não singulares. Exemplos de SVD serão apresentados em uma seção subsequente.

Funções RNRM e CNRM

A função RNRM retorna a NoRM de uma linha de uma matriz, enquanto que a função CNRM retorna NoRM de uma coluna de uma matriz. Exemplos,

: RNRM(A22)	0
: CNRM(A22)	g
RNRM(A33)	21
ABS SNRM RNRM CNRM S	RAD COND

• CHDM(OOO)	21
CNRM(A33)	20
RNRM(A23)	19
: CNRM(A23)	17
	10
ABS SNRM RNRM CNRM :	SKAD COND

Regras de linha e de coluna de uma matriz

A norma de linha de uma matriz é calculada tomando as somas dos valores absolutos de todos os elementos em cada linha e depois selecionar o máximo destas somas. A norma de coluna de uma matriz é calculada tomando as somas dos valores absolutos de todos os elementos em cada coluna e depois selecionar o máximo destas somas.

Função SRAD

A função SRAD determina o raio (RADius) do espectro de uma matriz, definida como o maior de todos os valores absolutos de seus autovalores. Por exemplo,

Definição de valores eigen (autovalores) e vetores eigen de uma matriz

Os valores eigen de uma matriz quadrada resulta de uma equação de matriz $\mathbf{A} \cdot \mathbf{x} = \lambda \cdot \mathbf{x}$. Os valores de λ que satisfazem a equação são conhecidos como valores eigen da matriz \mathbf{A} . Os valores de x que resultam da equação para cada valor de l são conhecidos como vetores eigen da matriz. Maiores detalhes sobre calcular os valores eigen e vetores eigen são apresentados neste capítulo.

Função COND

Função COND determina o número de condição de uma matriz. Exemplos,

```
:COND(A22) 4.
:COND(B33) 9.88617886179
:COND(A33) 6.78714859438
```

Número de condições de uma matriz

O número de condição de uma matriz não singular quadrada é definido como o produto da regra da matriz vezes a regra de sua inversa, ex., cond(\mathbf{A}) = $||\mathbf{A}|| \times ||\mathbf{A}^{\text{-1}}||$. Escolheremos como regra da matriz, $||\mathbf{A}||$, o máximo de usa regra de linha (RNRM) e regra de coluna (CNRM), enquanto a regra da inversa, $||\mathbf{A}^{\text{-1}}||$, será selecionada como o mínimo de suas regras de linha e de coluna. Assim, $||\mathbf{A}|| = \max(\text{RNRM}(\mathbf{A}), \text{CNRM}(\mathbf{A}))$ e $||\mathbf{A}^{\text{-1}}||$ = $\min(\text{RNRM}(\mathbf{A}^{\text{-1}}), \text{CNRM}(\mathbf{A}^{\text{-1}}))$.

O número de condição de uma matriz singular é infinito. O número de condição de uma matriz não singular é a medida de quão próximo a matriz é de ser singular. Quanto maior o valor do número de condição, mais próximo é da singularidade. (Uma matriz singular não tem seu inverso).

Tente o seguinte exercício para o número de condição de matriz na matriz A33. O número de condição é COND(A33), regras de normas e de coluna para A33 são mostradas a esquerda. Os números correspondentes para a matriz inversa, INV (A33) são mostrados a direita:

Desde que RNRM(A33) > CNRM(A33), então tomamos | |A33| | = RNRM(A33) = 21. Além disso, desde que CNRM(INV(A33)) < RNRM(INV(A33)), então tomamos | |INV(A33)| = CNRM(INV(A33)) = 0.261044... Assim, o número de condição é também calculado como CNRM(A33)*CNRM(INV(A33)) = COND(A33) = 6.7871485...

Função RANK

A função RANK determina a posição de uma matriz quadrada. Tente os seguintes exemplos:

A posição de uma matriz

A posição de uma matriz quadrada é o número máximo de linhas ou colunas independentes linearmente que a matriz contém. Suponha que escreva uma matriz quadrada $\mathbf{A}_{\mathsf{n}\times\mathsf{n}}$ como = $[\mathbf{c}_1\ \mathbf{c}_2\ ...\ \mathbf{c}_{\mathsf{n}}]$, onde $\mathbf{c}_{\mathsf{i}}\ (\mathsf{i}=1,\ 2,\ ...,\ \mathsf{n})$ são vetores representando as colunas da matriz \mathbf{A} , então, , se qualquer uma dessas colunas, digmos, \mathbf{c}_{k} , podem ser escritas como $\mathbf{c}_{\mathsf{k}} = \sum_{j \neq k, j \in \{1,2,...,n\}} \!\! d_j \cdot \mathbf{c}_j$,

onde os valores d_i seção constantes, digamos que \mathbf{c}_k é <u>linearmente</u> <u>dependente</u> sobre as colunas incluídas no resumo. (Observe que os valores de i inclui apenas o valor no conjunto $\{1, 2, ..., n\}$, em qualquer combinação, enquanto for $i\neq k$.) Se a expressão mostrada acima não pode ser escrita para qualquer um dos vetores coluna digamos que todas as colunas são <u>independente linearmente</u>. Uma definição similar para a independência linear de linhas pode ser desenvolvida ao escrever a matriz como uma coluna de vetores linha. Assim, se encontramos esta posição(\mathbf{A}) = n, então a matriz tem uma inversa e pe uma <u>matriz não singular</u>. Se, por outro lado, posição(\mathbf{A}) < n, então a matriz é <u>singular</u> e nenhuma inversa existe.

Por exemplo, tente encontrar a posição para a matriz:

Descobrirá que a posição é 2. Que é por causa da segunda linha [2,4,6] é igual a primeira linha [1,2,3] multiplicada por 2, assim, a linha dois é liearnmente dependente da linha 1 e o número máximo de linhas independentes linearmente é 2. Você pode verificar que o número máximo de colunas linearmente independente é 3. A posição sendo o número máximo de linhas ou colunas independente linearmente torna-se 2 para este caso.

Função DET

A função DET calcula a determinante de uma matriz quadrada. Por exemplo,

A determinante de uma matriz

As determinantes de uma matriz 2x2 e/ou 3x3 s são representadas pelo mesmo arranjo de elementos de matrizes, mas incluídas entre as linhas verticais, ex.

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \qquad \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Uma determinante 2×2 é calculada multiplicando os elementos na sua diagonal adicionando estes elementos acompanhados pelo sinal positivo e negativo indicado no diagrama mostrado abaixo.

A determinante é 2×2, portanto,

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Uma determinante 3×3 é calculada *aumentando* a determinante, uma operação que consiste em copiar as primeiras duas colunas da determinante e colocá-las a direita da coluna 3, como mostrado no diagrama abaixo. O diagrama mostra também os elementos que serão multiplicados com o sinal correspondente para cada produto, de forma similar conforme feito anteriormente para uma determinante 2×2 . Depois da multiplicação os resultados são adicionadas juntos para obter o determinante.

Para as matrizes quadradas de determinantes de ordem superior podem ser calculadas para usar a determinante de ordem menor chamadas de cofatores. A idéia geral é "expandir" uma determinante de uma matriz n×n (também mencionada como uma determinante n×n) em um soma de cofatores, que são determinantes (n-1)×(n-1), multiplicadas pelos elementos de uma única fila ou coluna com sinais positivos e negativos. Esta "expansão" é então carregada para o próximo nível (inferior), com os cofatores de ordem (n-2)×(n-2) e assim por diante, até que são deixadas apenas com uma soma grande de determinantes 2×2. Os determinantes 2×2 são então calculados através do método mostrado acima.

O método de calcular uma determinante pela expansão do cofator é muito ineficiente no sentido de que envolve um número de operações que cresce muíto rápido enquanto o tamanho da determinante aumenta. Um método

mais eficiente e preferido em aplicações numéricas é usar um resultado da eliminação Gaussiana. O método de eliminação gaussiana é usado para resolver sistemas de equações lineares. Os detalhes deste método são apresentados em uma parte posterior deste capítulo.

Para consultar a determinante de uma matriz **A**, escrevemos det(**A**). Uma matriz singular tem uma determinante igual a zero.

Função TRACE

Função TRACE calcular o traço da matriz quadrada, definida como a soma dos elementos em sua diagonal principal ou

Exemplos:

Função TRAN

A função TRAN retornar a transposta de uma real ou transposta conjugada de uma matriz complexa. TRAN é equivalente a TRN. A operação da função TRN foi apresentada no capítulo 10.

Operações adicionais de matriz (o menu OPER da matriz)

O menu OPER (OPERATIONS) da matriz é acessado através da seqüência de teclas (sinalizador do sistema 117 configurado para CHOOSE boxes):

O submenu OPERATIONS inclui as seguintes funções:

As funções ABS, CNRM, COND, DET, RANK, RNRM, SNRM, TRACE e TRAN são também encontradas no menu MTH/MATRIX/NORM (o objeto da seção anterior). A função SIZE foi apresentada no capítulo 10. A função HADAMARD foi apresentada no contexto da multiplicação da matriz. As funções LSQ, MAD e RSD são relacionadas a solução de sistemas de equações lineares e serão apresentadas em uma seção subsequente neste capítulo. Nesta seção discutiremos apenas as funções AXL e AXM.

Função AXL

A função AXL converte um conjunto (matriz) em uma lista e vice versa. Por exemplo,

Nota a última operação é similar a esta do programa CRMR apresentado no capítulo 10.

Função AXM

A função AXM converte um conjunto contendo um número inteiro ou elementos de fração em seu correspondente decimal ou forma apropriada. Por exemplo,

Função LCXM

A função LCXM pode ser usada para gerar matrizes tal como o elemento aij é uma função de i e j. A entrada para esta função consiste de dois números inteiros de linhas e colunas da matriz a ser gerada e um programa que toma i e j como entrada. Os números n, m, e o programa ocupam os níveis 3, 2, e 1 da pilha, respectivamente. Função LCXM é encontrada no catálogo de comando () CAT.

Por exemplo, para gerar uma matriz 2´3 cujos elementos são dados por $a_{ij} = (i+j)^2$, primeiro armazene o seguinte programa em variável P1 no modo RPN. Esta é a forma que a pilha RPN parece antes de pressionar \mathfrak{F}^{0} .

A implementação da função LCXM para este caso exige que você insira:

A figura a seguir mostra a pilha RPN antes e depois de aplicar a função LCXM-:

No modo ALG, este exemplo pode ser obtido usando:

O programa P1 deve ainda ser criado e armazenado no modo RPN.

Solução de sistemas lineares

Um sistema de equações lineares n nas variáveis m pode ser escrito como

Este sistema de equações lineares pode ser escritos como uma equação de matriz, $\mathbf{A}_{n \times m} \cdot \mathbf{x}_{m \times 1} = \mathbf{b}_{n \times 1}$, se definimos amatriz e vetores seguintes:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}_{n \times m}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}_{m \times 1}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}_{n \times 1}$$

Usar o solucionador numérico para os sistemas lineares

Existem diversas formas de resolver um sistema de equações lineares com a calculadora. Uma possibilidade é através do solucionador numérico De visor do solucionador numérico mostrado abaixo (esquerda), selecione a opção 4. Solve lin sys..., e pressione 2. O seguinte formulário de entrada será fornecido (direita):

Para resolver o sistema linear $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, insira a matriz \mathbf{A} , no formato[[a_{11} , a_{12} , ...], ... [....]] no campo A:. Além disso, insira o vetor \mathbf{b} no campo B:. Quando o campo X: for ressaltado, pressione [SOLVE]. Se uma solução estiver disponível, o vetor de solução \mathbf{x} será mostrado no campo X:. A

solução é também copiada para o nível 1 da pilha. Alguns exemplos são mostrados a seguir.

Um sistema quadrado

O sistema de equações lineares

$$2x_1 + 3x_2 - 5x_3 = 13,$$

 $x_1 - 3x_2 + 8x_3 = -13,$
 $2x_1 - 2x_2 + 4x_3 = -6,$

podem ser escritos como a equação da matriz $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, se

$$A = \begin{bmatrix} 2 & 3 & -5 \\ 1 & -3 & 8 \\ 2 & -2 & 4 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad e \quad b = \begin{bmatrix} 13 \\ -13 \\ -6 \end{bmatrix}.$$

Este sistema tem o mesmo número de equações como desconhecido e será mencionado como um sistema quadrado. Em geral, deve haver uma solução única para o sistema. A solução será o ponto de interseção dos três planos no sistema de coordenada (x_1, x_2, x_3) representada pelas equações.

Para inserir a matriz **A** você pode ativar o editor de matriz enquanto o campo A esta selecionado. O seguinte visor mostra o editor de matriz usado para inserir a matriz **A**, com também a entrada para o solucionador numérico depois de inserir a matriz **A** (pressione matriz matriz):

Pressione para selecionar o campo B: O vetor b pode ser inserido como um vetor de linha com um único conjunto se parênteses, ex. [13,-13,-6]

Depois de inserir a matriz A e o vetor b e com o o campo X ressaltado, nós podemos pressionar para tentar uma solução para este sistema de equações:

Uma solução foi encontrada conforme mostrado a seguir.

Para ver a solução na pilha pressione \mathbb{E}^{NTER} . A solução é $\mathbf{x} = [1,2,-1]$.

Para verificar se a solução é correta, insira a matriz A e multiplique por este vetor de solução (exemplo no modo algébrico):

Sistema subdeterminado

O sistema de equações lineares

$$2x_1 + 3x_2 - 5x_3 = -10,$$

 $x_1 - 3x_2 + 8x_3 = 85,$

podem ser escritos como a equação da matriz $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, se

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & -5 \\ 1 & -3 & 8 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad e \quad \mathbf{b} = \begin{bmatrix} -10 \\ 85 \end{bmatrix}.$$

Este sistema tem mais incógnitas do que equações e, portanto não é exclusivamente determinada. Podemos visualizar o significado desta afirmação percebendo que cada uma das equações lineares representam um plano no sistema de coordenada cartesiana tridimensional (x₁, x₂, x₃). A solução para o sistema de equações mostradas acima será a interseção de dois planos no espaço. Sabemos que a interseção de dois planos é uma linha estreita e não apenas um ponto individual. Portanto, existem mais de um ponto que satisfaz o sistema. Desta forma, o sistema não é exclusivamente determinado.

Para ver o detalhe do vetor de solução, se necessário, pressione o botão **1331**. Isto ativará o Editor de Matriz. Dentro do ambiente, use as teclas com as setas a direita e esquerda para mover sobre os vetores, ex.

Assim, a solução é $\mathbf{x} = [15.373, 2.4626, 9.6268].$

Para retornar ao ambiente do solucionador numérico, pressione ENTER.

O procedimento que descrevemos a seguir pode ser usado para copiar a matriz A e o vetor de solução X na pilha. Para verificar se a solução está correta tente o seguinte:

- Pressione 🛕 🛕 para ressaltar o campo A.
- Pressione NXT LITE ENTER para copiar a matriz A na pilha.
- Pressione para retornar ao ambiente do solucionador numérico.
- Pressione 🔻 🕶 💷 ENTER para copiar o vetor de solução X na pilha.
- Pressione para retornar ao ambiente do solucionador numérico.
- Pressione [NTER] para retornar a pilha.

No modo ALG a pilha será apresentada conforme a seguir:

Armazenemos o último resultado em uma variável X e a matriz na variável A, conforme a seguir:

Pressione From APHA (X) ENTER para armazenar o vetor de solução na variável X Pressione para limpar os três níveis da pilha

Pressione STOP ALPHA (A ENTER para armazenar a matriz na variável A

Tente também isto, **IIIII** × [15, 10/3, 10] *ENTE* → →NUM *ENTE*, ex.

Este resultado indica que **x** = [15,10/3,10] é também uma solução para o sistema, confirmando nossa observação de que o sistema com mais incógnitas do que equações não é exclusivamente determinada (subdeterminada).

Como a calculadora apresenta a solução **x** = [15.37... 2.46... 9.62...] mostrada anteriormente? Realmente, a calculadora minimize a distância do ponto que constituirá a solução para cada um dos planos representados pela equação no sistema linear. A calculadora usa um *método do menor* quadrado, ex. minimiza a soma dos quadrados destas distâncias ou erros.

Sistema subdeterminado

O sistema de equações lineares

$$x_1 + 3x_2 = 15,$$

 $2x_1 - 5x_2 = 5,$
 $-x_1 + x_2 = 22,$

podem ser escritos como a equação da matriz $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, se

$$A = \begin{bmatrix} 1 & 3 \\ 2 & -5 \\ -1 & 1 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad e \quad b = \begin{bmatrix} 15 \\ 5 \\ 22 \end{bmatrix}.$$

Este sistema tem mais equações do que incógnitas (um sistema subdeterminado). O sistema não tem uma única solução. Cada uma das equações lineares no sistema apresentado acima representa uma linha reta em um sistema de coordenada cartesiana bidimensional (x₁, x₂). A menos duas ou três equações no sistema representa a mesma equação, as três linhas terão mais do que um ponto de interseção. Por esta razão, a solução não é única. Alguns algoritmos numéricos podem ser usados para forçar uma solução para o sistema minimizando a distância do ponto de solução presuntiva. Esta é a abordagem seguida pelo solucionador numérico da HP 49G.

Usemos o solucionador numérico para tentar uma solução para este sistema de equações:

NMSU V V III. Insira a matriz A e o vetor b conforme ilustrado no exemplo anterior e pressione IIII quando o campo X for ressaltado:

Para ver o detalhe do vetor de solução, se necessário, pressione o botão **IIIII**. Isto ativará o eEitor de Matriz. Dentro deste ambiente, use as teclas com as setas para mover sobre os vetores, ex.

Pressione en para retornar ao ambiente do solucionador numérico. Para verificar se a solução está correta tente o seguinte:

- Pressione para ressaltar o campo A.
- Pressione NXT III ENTER para copiar a matriz A na pilha.

- Pressione para retornar ao ambiente do solucionador numérico.
- Pressione 🔻 🕶 💷 ENTER para copiar o vetor de solução X na pilha.
- Pressione para retornar ao ambiente do solucionador numérico.
- Pressione ENTER para retornar a pilha.

No modo ALG, a pilha será apresentada conforme a seguir:

Armazenemos o último resultado em uma variável X e a matriz na variável A, conforme a seguir:

Pressione STOP ALPHA (X) ENTEN para armazenar o vetor de solução na variável X
Pressione Top para limpar os três níveis da pilha
Pressione STOP ALPHA (A) ENTEN para armazenar a matriz na variável A

Solução de mínimo quadrado (função LSQ)

A função LSQ retorna a solução mínimo quadrado de um sistema linear Ax = b, de acordo com o seguinte critério:

 Se A for uma matriz quadrada e A for não singular (ex. sua matriz inversa existe ou sua determinante for não zero), LSQ retorna para a solução exata para o sistema linear.

- Se A for menor do que uma posição de linha inteira (sistema subdeterminado de equações), LSQ retorna a solução com o comprimento euclidiano mínimo de um número infinito de soluções.
- Se A for menor do que uma posição de coluna inteira (sistema subdeterminado de equações), LSQ retorna a "solução" com o valor residual mínimo e = A·x b. O sistema de equação pode não ter uma solução, portanto, o valor retornado não é a solução real para o sistema, apenas um com o menor residual.

A função LSQ toma como um vetor de entrada **b** e matriz **A**, nesta ordem. Função LSQ pode ser encontrada no catálogo de função (). A seguir, usamos a função LSQ para repetir as soluções encontradas anteriormente com o solucionador numérico:

Sistema de quadrada

Considere o sistema

$$2x_1 + 3x_2 - 5x_3 = 13$$
,
 $x_1 - 3x_2 + 8x_3 = -13$,
 $2x_1 - 2x_2 + 4x_3 = -6$,

com

$$A = \begin{bmatrix} 2 & 3 & -5 \\ 1 & -3 & 8 \\ 2 & -2 & 4 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad e \quad b = \begin{bmatrix} 13 \\ -13 \\ -6 \end{bmatrix}.$$

A solução usando LSQ é mostrada a sequir:

Sistema subdeterminado

Considere o sistema

$$2x_1 + 3x_2 - 5x_3 = -10,$$

 $x_1 - 3x_2 + 8x_3 = 85,$

com

$$A = \begin{bmatrix} 2 & 3 & -5 \\ 1 & -3 & 8 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad e \quad b = \begin{bmatrix} -10 \\ 85 \end{bmatrix}.$$

A solução usando LSQ é mostrada a seguir:

Sistema superdeterminado

Considere o sistema

$$x_1 + 3x_2 = 15,$$

 $2x_1 - 5x_2 = 5,$
 $-x_1 + x_2 = 22,$

com

$$A = \begin{bmatrix} 1 & 3 \\ 2 & -5 \\ -1 & 1 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad e \quad b = \begin{bmatrix} 15 \\ 5 \\ 22 \end{bmatrix}.$$

A solução usando LSQ é mostrada a seguir:

Compare estas três soluções com aquelas calculadas com o solucionador numérico.

Solução com a matriz inversa

A solução para o sistema $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, onde \mathbf{A} é uma matriz quadrada é $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$. Isto resulta da multiplicação da primeira equação por \mathbf{A}^{-1} , ex. $\mathbf{A}^{-1} \cdot \mathbf{A} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$. Por definição, $\mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I}$, assim escrevemos $\mathbf{I} \cdot \mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$. Também, $\mathbf{I} \cdot \mathbf{x} = \mathbf{x}$, assim, temos, $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$.

Para o exemplo usado anteriormente, a saber,

$$2x_1 + 3x_2 - 5x_3 = 13,$$

 $x_1 - 3x_2 + 8x_3 = -13,$
 $2x_1 - 2x_2 + 4x_3 = -6,$

encontramos a solução na calculadora a seguir:

que é o mesmo resultado encontrado anteriormente.

Solução pela "divisão" de matrizes

Enquanto a operação da divisão não for definida para matrizes, podemos usar a tecla \Rightarrow da calculadora para "dividir" o vetor **b** pela matriz **A** para resolver **x** na equação de matriz **A**·**x** = **b**. Esta é uma extensão arbitrária da operação da divisão algébrica para matrizes, ex. De **A**·**x** = **b**, ousaremos escrever **x** = **b**/**A** (os matemáticos se encolheriam se vissem isso!) Isto naturalmente é interpretado como (1/**A**)·**b** = **A**·¹·**b**, que é o mesmo que usar a inversa de **A** como na seção anterior. O procedimento para o caso de "dividir" **b** por **A** é ilustrado abaixo para o caso

$$2x_1 + 3x_2 - 5x_3 = 13$$
,
 $x_1 - 3x_2 + 8x_3 = -13$,
 $2x_1 - 2x_2 + 4x_3 = -6$,

Estes cálculos são mostrados nos seguintes visores:

A mesma solução é encontrada acima com a matriz inversa.

Solução de conjunto múltiplo de equações com a mesma matriz de coeficiente

Suponha que deseje resolver os sequintes três conjuntos de equações:

$$X + 2Y + 3Z = 14$$
, $2X + 4Y + 6Z = 9$, $2X + 4Y + 6Z = -2$, $3X - 2Y + Z = 2$, $3X - 2Y + Z = -5$, $3X - 2Y + Z = 2$, $4X + 2Y - Z = 19$, $4X + 2Y - Z = 12$.

Podemos escrever os três sistemas de equações como uma única equação de matriz: $\mathbf{A} \cdot \mathbf{X} = \mathbf{B}$, onde

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & -1 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} X_{(1)} & X_{(2)} & X_{(3)} \\ Y_{(1)} & Y_{(2)} & Y_{(3)} \\ Z_{(1)} & Z_{(2)} & Z_{(3)} \end{bmatrix},$$

$$\mathbf{B} = \begin{bmatrix} 14 & 9 & -2 \\ 2 & -5 & 2 \\ 5 & 19 & 12 \end{bmatrix}.$$

Os sub-índices nos nomes das variáveis X, Y e Z, determinam qual o sistema de equação eles se referem. Para resolver este sistema expandido usamos o seguinte procedimento no modo RPN,

$$\begin{array}{c} \hbox{\tt [[14,9,-2],[2,-5,2],[5,19,12]]} \\ \hbox{\tt [[1,2,3],[3,-2,1],[4,2,-1]]} \\ \hbox{ $\underline{\it ENTR}$} \\ \end{array}$$

O resultado deste operação é:

$$\mathbf{X} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 5 & 1 \\ 3 & -1 & -2 \end{bmatrix}.$$

Eliminação gaussiana e de Gauss-Jordan

A eliminação gaussiana é um procedimento pelo qual a matriz quadrada dos coeficientes pertencem a um sistema de equações lineares nas incógnitas n é reduzida a uma matriz triangular superior (forma echelon) através de uma série de operações de linha. Este procedimento é conhecido como eliminação progressiva. A redução da matriz do coeficiente para uma forma triangular superior permite para a solução de todas as incógnitas n, utilizando apenas uma equação de cada vez, em um procedimento conhecido como substituição retroativa.

Exemplo de eliminação gaussiana usando as equações:

Para ilustrar o procedimento de eliminação gaussiana usaremos o seguinte sistema de 3 equações nas 3 incógnitas:

$$2X + 4Y + 6Z = 14$$
,
 $3X - 2Y + Z = -3$,
 $4X + 2Y - Z = -4$.

Podemos armazenar estas equações na calculadora em variáveis E1, E2 e E3, respectivamente, conforme mostrado abaixo. Para fazer o backup foi criada e armazenada uma lista de três equações em variáveis EQS. Desta forma, se for cometido um erro, as equações ainda estarão disponíveis para o usuário.

Para iniciar o processo da eliminação progressiva dividimos a primeira equação (E1) pela 2 e armazenemo-la em E1 e mostramos as três equações novamente para produzir:

A seguir, substituiremos a segunda equação E2 por (equação 2 – 3×equação 1, ex. E1-3×E2) e a terceira por (equação 3 – 4×equação 1) para obter

A seguir, dividiremos a segunda equação por -8 para obter

A seguir, substituiremos a terceira equação, E3, com (equação 3 + 6×equação 2, ex. E2+6×E3) para obter

Observe que quando fazemos uma combinação linear de equações da calculadora alteramos o resultado para uma expressão no lado esquerdo do sinal de igual, ex., uma expressão = 0. Assim, o último conjunto de equações é interpretado como o conjunto equivalente de equações:

$$X + 2Y + 3Z = 7$$
,
 $Y + Z = 3$,
 $-7Z = -14$.

O processo de substituição regressiva na eliminação gaussiana consiste em encontrar os valores das incógnitas, começando da última equação e trabalhando de forma ascendente. Assim, resolvemos Z primeiro:

A seguir, substituímos Z=2 na equação 2 (E2) e resolvemos E2 para Y:

A seguir, substituímos Z=2 e Y = 1 em E1 e resolvemos E1 para X:

A solução é então X = -1, Y = 1, Z = 2.

Exemplo de eliminação gaussiana usando as matrizes

O sistema de equações usadas no exemplo acima pode ser escrito como uma equação matriz $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ se usamos:

$$\mathbf{A} = \begin{pmatrix} 2 & 4 & 6 \\ 3 & -2 & 1 \\ 4 & 2 & -1 \end{pmatrix}, \quad \mathbf{x} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 14 \\ -3 \\ -4 \end{bmatrix}.$$

Para obter uma solução para o sistema de equação matriz usando a eliminação gaussiana, criamos primeiro o que é conhecido como <u>matriz</u> aumentada correspondente a **A**, ex.

$$\mathbf{A}_{aug} = \begin{pmatrix} 2 & 4 & 6 & 14 \\ 3 & -2 & 1 & -3 \\ 4 & 2 & -1 & -4 \end{pmatrix}$$

A matriz \mathbf{A}_{aug} é a mesma da original A com uma nova linha correspondente aos elementos do vetor \mathbf{b} , adicionada (ex. aumentado) a direita da coluna mais a direita de \mathbf{A} .

Quando a matriz aumentada for colocada junta, podemos fazer operações de linha para reduzir a matriz original A na matriz triangular superior. Neste este exercício usaremos o modo RPN (MODE) 1/2 (MO

Salve a matriz aumentada na variável AAUG: \square ALPHA (ALPHA) (ALPHA) (STOP)

Com uma cópia da matriz aumentada na pilha, pressione para ativar o menu de operação ROW. A seguir, faça as seguintes operações de linha na sua matriz aumentada.

Multiplique a linha 1 por ½: 2 ½ / I

Multiplique a linha 1 por -4 adicionando-a a linha 3 e substituindo-a: 4 +- spc 1 spc 3 1111

Multiplique a linha 2 por -1/8: 8 + $\sqrt{2}$ 2 Multiplique a linha 2 por 6 adicionando-a a linha 3 e substituindo-a: 6 SPC 2 SPC 3 MI

Se estiver fazendo estas operações manualmente é necessário escrever o seguinte:

$$\mathbf{A}_{aug} = \begin{pmatrix} 2 & 4 & 6 & 14 \\ 3 & -2 & 1 & -3 \\ 4 & 2 & -1 & -4 \end{pmatrix} \cong \begin{pmatrix} 1 & 2 & 3 & 7 \\ 3 & -2 & 1 & -3 \\ 4 & 2 & -1 & -4 \end{pmatrix}$$

$$\mathbf{A}_{aug} \cong \begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & -8 & -8 & -24 \\ 0 & -6 & -13 & -32 \end{pmatrix} \cong \begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & 1 & 1 & 3 \\ 0 & -6 & -13 & -32 \end{pmatrix}$$

$$\mathbf{A}_{aug} \cong \begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & -7 & -14 \end{pmatrix}$$

O símbolo ≅ (" é equivalente a") indica que o seguinte é equivalente a matriz anterior com algumas operações de linha (ou coluna) envolvidas.

A matriz resultante é triangular superior e equivalente ao conjunto de equações.

$$X + 2Y + 3Z = 7$$
,
 $Y + Z = 3$,
 $-7Z = -14$.

que pode agora ser resolvida, uma equação de cada vez, por substituição regressiva, conforme o exemplo anterior.

Eliminação Gaussian-Jordan usando matrizes

A Eliminação Gauss-Jordan consiste na continuação das operações de linha na matriz triangular superior resultando do processo de eliminação progressiva até que a matriz identidade resulta no local da matriz original **A**. Por exemplo, para o caso apresentado, podemos continuar com as operações de linha conforme a seguir:

Multiplique a linha 3 por -1/7: 7 +/- $\sqrt{3}$ 3 Multiplique a linha 3 por -1 adicionando-a a linha 2 e substituindo-a: $1 +/- \sqrt{5}$ 3 SPC 2 MEDI

Multiplique a linha 3 por -3 adicionando-a a linha 1 e substituindo-a:

Multiplique a linha 2 por -2 adicionando-a a linha 1 e substituindo-a: 2^{+} 5^{pc} 2^{-} 5^{pc} 1^{-} 1^{pc}

Escrever este processo manualmente resultará nas seguintes etapas:

$$\mathbf{A}_{aug} = \begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & -7 & -14 \end{pmatrix} \cong \begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix} \cong \begin{pmatrix} 1 & 2 & 3 & 7 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

$$A_{aug} \cong \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix} \cong \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}.$$

Pivô

Se observar com cuidados nas operações de linha nos exemplos mostrados acima, verá que muitas destas operações dividem uma linha pelo seu elemento correspondente na diagonal principal. Este elemento é chamado de elemento pivô, ou simplesmente um <u>pivô</u>. Em muitas situações é possível

que o elemento pivô se torne o zero, neste caso não podemos dividir a linha por seu pivô. Além disso, para melhorar a solução numérica de um sistema de equações usando a eliminação gaussiana ou Gauss-Jordan, recomenda-se que o pivô será o elemento com o maior valor absoluto em uma dada coluna. Em tais casos, trocamos as linhas antes de fazer as operações de linha. Esta troca de linhas é chamada de <u>pivô parcial</u>. Para seguir esta recomendação é freqüentemente necessário trocar as linhas na matriz aumentada enquanto executa a eliminação gaussiana ou Gauss-Jordan.

Enquanto executa o pivotal no procedimento de eliminação da matriz, você pode melhorar a solução numérica ainda mais selecionando como o pivô o elemento com o maior valor absoluto na coluna e linha de interesse. Esta operação pode exigir a troca não apenas de linhas, como também de colunas em algumas operações de pivotais. Quando as trocas de uma linha e coluna são permitidas no pivotal, o procedimento é conhecido como *pivotal total*.

Ao trocar as linhas e colunas em pivotal parcial e total, é necessário manter controle das trocas porque a ordem das incógnitas na solução é alterada por estas trocas. Uma forma de manter controle das trocas de colunas em modo pivotal parcial e total é criar uma <u>matriz de permutação</u> $\mathbf{P} = \mathbf{I}_{n\times n}$, no início do procedimento. Qualquer troca de linha ou coluna na matriz aumentada \mathbf{A}_{aug} é também registrada como uma troca de linha ou coluna, respectivamente, na matriz de permutação. Quando a solução é alcançada, então, multiplicamos a matriz de permutação pelo vetor da incógnita \mathbf{x} para obter a ordem de incógnita na solução. Em outras palavras, a solução final é dada por $\mathbf{P} \cdot \mathbf{x} = \mathbf{b}'$, onde \mathbf{b}' é a coluna da matriz aumentada depois que a solução for encontrada.

Exemplo da eliminação Gauss-Jordam com pivotal total

Ilustremos a pivotal total com um exemplo. Resolva o seguinte sistema de equações usando o pivotal total e o procedimento de eliminação Jordan:

$$X + 2Y + 3Z = 2$$
,
 $2X + 3Z = -1$,
 $8X + 16Y - Z = 41$.

As matrizes aumentada e de permutação são descritas conforme a seguir:

$$\mathbf{A}_{aug} = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 0 & 3 & -1 \\ 8 & 16 & -1 & 41 \end{bmatrix}, \quad \mathbf{P} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

A seguir, obtenha o menu ROW disponível pressionando:

MATRICES

MATRICES

Agora estamos pronto para iniciar a eliminação Gauss-Jordan com pivotal total. Será necessário manter controle da matriz de permutação manualmente, portanto escreva no seu notebook a matriz **P** mostrada acima.

Primeiro, verificaremos o pivô a_{11} . Verificamos que o elemento com o maior valor absoluto na primeira linha e primeira coluna é o valor de $a_{31} = 8$. Dado que queremos que este número seja o pívô, então trocamos as linhas 1 e 3 usando:

[SPC] 3 NAT [EEE]. As matrizes aumentada e de permutação são descritas a seguir:

$$\begin{bmatrix}
8 & 16 & -1 & 41 \\
2 & 0 & 3 & -1 \\
1 & 2 & 3 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
16 & 8 & -1 & 41 \\
0 & 2 & 3 & -1 \\
2 & 1 & 3 & 2
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}$$

Agora nós temos o maior valor possível na posição (1,1), ex. fizemos o pivotal total em (1,1). A seguir, dividimos pelo pivô:

16 1/NXT 1 A matriz de permutação não muda, mas a matriz aumentada é agora:

$$\begin{bmatrix} 1 & 1/2 & -1/16 & 41/16 \\ 0 & 2 & 3 & -1 \\ 2 & 1 & 3 & 2 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

A próxima etapa é eliminar 2 da posição (3,2) usando:

2 +/- SPC / SPC 3

Depois de preencher com zeros os elementos da coluna 1 abaixo do pivô, verificamo-lo na posição (2,2). Descobrimos que o número 3 na posição (2,3) serão um pivô melhor e assim alteramos as colunas 2 e 3 usando: 2 SPC 3 → CAT WITH

Verificar o pivô na posição (2,2), descobrimos que o valor de 25/8, na posição (3,2), é maior do que 3. Assim, trocamos as linhas 2 e 3 usando:

Estamos agora prontos para dividir a linha 2 pelo pivô 25/8, usando

A seguir, eliminamos o 3 da posição (3,2) usando:

Depois de preencher com zeros a posição abaixo do pivô, verificamo-lo na posição (3,3). O valor atual de 2 é maior do que ½ ou 0, assim mantemo-lo inalterado. Dividimos a terceira linha inteira por 2 para converter o pivô para 1, usando:

A seguir, eliminamos ½ na posição (1,3) usando:

A seguir, eliminamos o -1/16 da posição (1,2) usando:

Temos agora uma matriz identidade na parte da matriz aumentada correspondente a matriz de coeficiente original A, assim podemos obter a solução enquanto contabiliza as trocas da linha e coluna codificadas na matriz de permutação **P**. Identificamos o vetor da incógnita **x**, o vetor independente modificado **b**' e a matriz de permutação **P** como:

$$\mathbf{x} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}, \quad \mathbf{b'} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

A solução é dada por **P**·**x**=**b**′ ou

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}.$$

Que resulta em

$$\begin{bmatrix} Y \\ Z \\ X \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}.$$

Procedimento da calculadora passo a passo para resolver sistemas lineares

O exemplo que acabamos de mencionar é, naturalmente, o procedimento passo a passo feito pelo usuário para pivotal total da solução de eliminação Gauss-Jordan dos sistemas de equação linear. Você pode ver o procedimento passo a passo usado pela calculadora para resolver um sistema de equações sem a intervenção do usuário configurando a opção passo a passo no CAS da calculadora, conforme descrito a sequir:

Então, para este exemplo em particular no modo RPN use:

$$[2,-1,41]$$
 ENTER $[[1,2,3],[2,0,3],[8,16,-1]]$ ENTER (\div)

A calculadora mostra uma matriz aumentada que consistem da matriz do coeficiente **A** e a matriz identidade **I**, enquanto ao mesmo tempo mostra o seguinte procedimento para calcular:

L2 = L2-2·L1 significa "substituir a linha 2 (L2) com a operação L2 - 2·L1. Se tivermos feito esta operação manualmente, teríamos correspondido a: 2 *** SPC / SPC

$$L3=L3-8-L1$$
, $L1 = 2-L1-1-L2$, $L1=25-L1-3-L3$, $L2 = 25-L2-3-L3$

e finalmente uma mensagem indicando "Resultado de redução" mostrando:

Ao pressionar \square , a calculadora retorna para o resultado final [1 2 –1].

Calcular a matriz inversa passo a passo

O cálculo de uma matriz inversa pode ser considerado como calcula a solução do sistema aumentado [A | I]. Por exemplo, para a matriz A usada no exemplo anterior, escreveríamos esta matriz de aumento como

$$\mathbf{A}_{aug(I)} = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 3 & -2 & 1 & 0 & 1 & 0 \\ 4 & 2 & -1 & 0 & 0 & 1 \end{bmatrix}.$$

Para ver as etapas imediatas no cálculo e inversa, insira apenas a matriz **A** de acima e pressione ()x, enquanto mantém a opção passo a passo ativa na CAS da calculadora. Use o seguinte:

$$[[1,2,3],[3,-2,1],[4,2,-1]]$$
 ENTER \sqrt{x}

Depois de ir através de diferentes etapas, a solução retornada é:

o que a calculadora mostrou não foi exatamente uma eliminação Gauss-Jordan com pivotal total, mas uma forma de calcular a inversa de uma matriz fazendo a eliminação Gauss-Jordan sem pivotal. Este procedimento para calcular a inverse é baseado na matriz aumentada (\mathbf{A}_{aua})_{n×n} = [$\mathbf{A}_{n\times n}$ | $\mathbf{I}_{n\times n}$].

A calculadora mostrou suas etapas até o ponto no qual a metade a esquerda da matriz aumentada foi convertida a matriz diagonal. A partir deste ponto, a etapa final é dividir cada linha pelo pivô diagonal correspondente principal. Em outras palavras, a calculadora transformou $(\mathbf{A}_{\text{aua}})_{n\times n} = [\mathbf{A}_{n\times n} \mid \mathbf{I}_{n\times n}]$ em $[\mathbf{I} \mid \mathbf{A}^{-1}]$.

Matrizes inversas e determinantes

Observe que todos os elementos na matriz inversa calculados acima são divididos pelo valor 56 ou um de seus fatores (28, 7, 8, 4 ou 1). Se calcular a determinante da matriz **A**, você obterá $det(\mathbf{A}) = 56$.

Podemos escrever, $\mathbf{A}^{-1} = \mathbf{C}/det(\mathbf{A})$, onde \mathbf{C} é a matriz

$$\mathbf{C} = \begin{bmatrix} 0 & 8 & 8 \\ 7 & -13 & 8 \\ 14 & 6 & -8 \end{bmatrix}.$$

O resultado $(\mathbf{A}^{-1})_{n\times n} = \mathbf{C}_{n\times n} / det(\mathbf{A}_{n\times n})$, é um resultado geral que se aplica a qualquer matriz não singular \mathbf{A} . Uma forma geral para os elementos de C pode ser escrita baseando-se no algoritmo Gauss-Jordan.

Baseado na equação $\mathbf{A}^{-1} = \mathbf{C}/\det(\mathbf{A})$, desenhada acima, a matriz inversa, \mathbf{A}^{-1} , não é definida se $\det(\mathbf{A}) = 0$. Assim, a condição $\det(\mathbf{A}) = 0$ define também uma matriz singular.

Solução para sistemas lineares usando as funções da calculadora

a forma mais simples para resolver um sistema de equações lineares $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, na calculadora é inserir \mathbf{b} , insira \mathbf{A} e depois use a função da divisão /. Se o sistema de equações lineares for superdeterminado ou subdeterminado, uma "solução" pode ser produzida usando a função LSQ (Least-SQuares), conforme mostrado anteriormente. A calculadora oferece outras possibilidades para resolver os sistemas lineares usando as funções incluídas no menu MATRICES' LINEAR SYSTEMS.. acessíveis através da

MATRICES (configure o sinalizador do sistema 117 para CHOOSE boxes):

As funções incluidas são LINSOLVE, REF, rref, RREF e SYST2MAT.

Função LINSOLVE

A função LINSOLVE toma como argumentos um conjunto de equações e um vetor que contém os nomes das incógnitas e produz a solução para o sistema linear. Os seguintes visores mostram a entrada do mecanismo de ajuda (consulte o capítulo 1) para a função LINSOLVE e o exemplo correspondente listado na entrada. O visor do lado esquerdo mostra o resultado usandoao linha de edição (pressione para ativar):

Aqui está um exemplo no modo ALG. Insira o seguinte: LINSOLVE([X-2*Y+Z=-8,2*X+Y-2*Z=6,5*X-2*Y+Z=-12], [X,Y,Z])

para produzir a solução: [X=-1,Y=2,Z=-3].

A função LINSOLVE funciona com as expressões simbólicas. As funções REF, rref e RREF funcionam com a matriz aumentada na abordagem de eliminação Gaussian.

Funções REF, rref e RREF

A forma triangular superior onde a matriz aumentada é reduzida durante a parte da eliminação progressiva de um procedimento de eliminação Gaussian é conhecida como uma forma "echelon". Função REF (reduz para a forma Echelon) produz tal matriz dada a matriz aumentada no nível 1 da pilha.

Considere a matriz aumentada,

$$\mathbf{A}_{aug} = \begin{bmatrix} 1 & -2 & 1 & 0 \\ 2 & 1 & -2 & -3 \\ 5 & -2 & 1 & 12 \end{bmatrix}.$$

Representa um sistema linear de equações, $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, onde

$$A = [[1, -2, 1], [2, 1, -2], [5, -2, 1]],$$

е

$$\mathbf{b} = [[0], [-3], [12]].$$

Insira a matriz aumentada e salve-a na variável AAUG, no modo ALG:

$$[[1,-2,1,0],[2,1,-2,-3][5,-2,1,12] \triangleright AAUG$$

A aplicação do procedimento da função REF:

O resultado é a matriz triangular superior (forma echelon) dos coeficientes resultantes da etapa de eliminação progressiva no procedimento de eliminação Gaussian.

A matriz diagonal que resulta da eliminação Gauss-Jordan é chamada de forma echelon de redução de linha. <u>A função RREF</u> (Forma echelon de redução de linha) Os resultados desta chamada de função é produzir a forma echelon de redução de linha para que a matriz dos coeficientes seja reduzida para uma matriz identidade. A coluna extra na matriz aumentada conterá a solução para o sistema de equações.

Como um exemplo, mostramos o resultado da aplicação da função RREF a matriz AAUG no modo ALG:

O resultado é a matriz aumentada final resultante da eliminação Gauss-Jordan sem pivotal.

A forma echelon de redução de linha para uma matriz aumentada pode ser obtida usando a <u>função rref</u>. Esta função produz uma lista de pivôs e uma matriz equivalente na forma echelon de redução de linha para que a matriz de coeficientes seja reduzida para uma matriz diagonal.

Por exemplo, para a matriz AAUG, a função rref produz o seguinte resultado:

O Segundo visor acima é obtido ativando o linha de edição (pressione). O resultado mostra os pivôs de 3, 1, 4, 1, 5 e 2, e uma matriz diagonal reduzida.

Função SYST2MAT

Esta função converte um sistema de equações lineares em seu equivalente de matriz aumentada. O seguinte exemplo está disponível no mecanismo de ajuda da calculadora:

O resultado é a matriz aumentada correspondente ao sistema de equações:

$$X+Y=0$$
$$X-Y=2$$

Erros residuais nas soluções de sistemas lineares (função RSD)

A função RSD calcula os resíduos ou erros na solução da equação da matriz A·x=b, representa um sistema de equações lineares n em incógnitas.

Podemos resolver este sistema conforme resolvemos a equação da matriz: f(x) = b -A·x = 0. Suponha que, através do método numérico, produzimos como a primeira aproximação a solução x(0). Avaliar f(x(0)) = b - A·x(0) = e ≠ 0. Assim, e é um vetor de resíduos de função para o vetor x = x (0).

Para usar a função RSD você precisa dos termos $\bf b$, $\bf A$ e $\bf x$ (0) como argumentos. O vetor retornado é $\bf e$ = $\bf b$ · $\bf A$ · $\bf x$ (0). Por exemplo, usar $\bf A$ = [2, -1][0, 2], $\bf x$ (0) = [1, 8, 2, 7] e $\bf b$ = [1, 6], podemos encontrar o vetor de residuais conforme a seguir:

O resultado é $\mathbf{e} = \mathbf{b} \cdot \mathbf{A} \cdot \mathbf{x}(0) = [0.10.6]$

Nota: Se o vetor $\Delta \mathbf{x} = \mathbf{x} - \mathbf{x}$ (0) representar a correção nos valores de \mathbf{x} (0), podemos escrever uma nova equação de matriz para $\Delta \mathbf{x}$, a saber $\mathbf{A} \cdot \Delta \mathbf{x}$

= **e**. Resolver $\Delta \mathbf{x}$ podemos encontrar a solução atual do sistema original como $\mathbf{x} = \mathbf{x}(0) + \Delta \mathbf{x}$.

Valores e vetores eigen

Dado uma matriz quadrada $\bf A$, podemos escrever a equação eigen $\bf A\cdot x=\lambda \cdot x$, onde os valores de λ que satisfaz a equação são conhecidos como valores <u>eigen (autovalores) da matriz $\bf A$ </u>. Para cada valor de λ , podemos encontrar, da mesma equação, os valores de $\bf x$ que satisfazem a equação de valor eigen. Estes valores de $\bf x$ são conhecidos como <u>vetores eigen da matriz $\bf A$ </u>. A equação de valores eigen pode ser escrita também como $(\bf A - \lambda \cdot I) \bf x = 0$.

Esta solução terá uma solução não trivial apenas se a matriz $(\mathbf{A} - \lambda \cdot \mathbf{I})$ for singular, ex. se $\det(\mathbf{A} - \lambda \cdot \mathbf{I}) = 0$.

A última seqüência gera uma equação algébrica envolvendo um polinômio de ordem n para uma matriz quadrada $\mathbf{A}_{n \times n}$. A equação resultante é conhecida como o <u>polinômio de característica</u> da matriz \mathbf{A} . Resolver o polinômio de característica produz os valores eigen da matriz.

A calculadora fornece um número de funções que fornecem a informação em relação aos valores e vetores eigen de uma matriz quadrada. Algumas destas funções estão localizadas sob o menu MATRICES/EIGEN ativadas através de matrices.

Função PCAR

A função PCAR gera o polinômio de característica de uma matriz quadrada usando o conteúdo da variável VX (variável CAS reservada tipicamente a 'X') como a incógnita no polinômio. Por exemplo, insira a seguinte matriz no

modo ALG e encontre a equação de característica usando PCAR: [[1,5,-3],[2,-1,4],[3,5,2]]

Use a variável λ para representar os valores eigen, este polinômio de característica deve ser interpretado como λ ³-2 λ ²-22 λ +21=0.

Função EGVL

A função EGVL (valores eigen) produz os valores eigen de uma matriz quadrada. Por exemplo, os valores eigen da matriz mostradas acima são calculados no modo ALG usando a função EGVL:

Os valores eigen $\lambda = [-\sqrt{10}, \sqrt{10}]$.

Nota: Em alguns casos, talvez não possa encontrar uma solução 'exata' para o polinômio de característica e obterá uma lista vazia como resultado quando usar a função EGVL. Se isto acontecer, alterar o modo de cálculo para Approx no CAS e repita o cálculo.

Por exemplo, no modo exato, o seguinte exercício produz uma lista vazia como a solução:

Altere o modo para Approx e repita a entrada para obter os seguintes valores eigen: [(1.38,2.22), (1.38,-2.22), (-1.76,0)].

Função EGV

A função EGV (valores e vetores eigen) produz os valores eigen de uma matriz quadrada. Os vetores eigen são retornados como as colunas de uma matriz, enquanto que os valores eigen correspondentes são os componentes de um fator.

Por exemplo, no modo ALG, os vetores e valores eigen da matriz listados abaixo são encontrados aplicando a função EGV:

```
-1.00 5.00 3.00

1.00 3.00 4.00

[2.00 -1.00 1.00]

-1.00 5.00 3.00

1.00 3.00 4.00]

EGY(ANS(1.00))
```

```
-1.00 5.00 3.00

1.00 3.00 4.00

:EGV(ANS(1.00))

(1.00 1.00 -0.03

0.79 -0.51 1.00 [0.+

-0.91 0.65 0.84]
```

O resultado mostra os valores eigen como as colunas da matriz na lista de resultado. Para ver os valores eigen podemos usar: GET(ANS(1),2), ex obtém o segundo elemento na lista no resultado anterior. Os valores eigen são:

Em resumo,

$$\lambda_1 = 0.29, \ \mathbf{x}_1 = [\ 1.00, 0.79, -0.91]^T, \\ \lambda_2 = 3.16, \ \mathbf{x}_2 = [\ 1.00, -0.51, \ 0.65]^T, \\ \lambda_3 = 7.54, \ \mathbf{x}_1 = [-0.03, \ 1.00, \ 0.84]^T.$$

Nota: Uma matriz simétrica produz todos os valores eigen e seus vetores eigen são mutualmente perperndiculares. Para o exemplo apresentado, você pode verificar que $\mathbf{x}_1 \cdot \mathbf{x}_2 = 0$, $\mathbf{x}_1 \cdot \mathbf{x}_3 = 0$ e $\mathbf{x}_2 \cdot \mathbf{x}_3 = 0$.

Função JORDAN

A função JORDAN produz a diagonalização ou decomposição de ciclo Jordan de uma matriz. No modo RPN, de uma matriz quadrada **A**, a função JORDAN produz quatro resultados, a saber:

- O polinômio mínimo da matriz **A** (4° nível de pilha)
- O polinômio de característica da matriz A (3° nível de pilha)
- Uma lista com vetores eigen correspondente a cada valor eigen da matriz A (2° nível de pilha)
- Um vetor com os vetores eigen da matriz A (1° nível de pilha)

Por exemplo, tente este exercício no modo RPN:

O resultado é o seguinte:

- 4: 'X^3+-6*x^2+2*X+8'
- 3: 'X^3+-6*x^2+2*X+8'
- 2: {}
- 1: {}

O mesmo exercício no modo ALG é similar ao seguinte visor:

Função MAD

Esta função, embora não disponível no menu EIGEN, fornece também a informação relacionada com os valores eigen de uma matriz. A função MAD

está disponível através do submenu MATRICES OPERATIONS (MATRICES) e produz a matriz adjunta de uma matriz.

No modo RPN, a função MAD gera um número de propriedades de uma matriz quadrada, a saber:

- a determinante (nível 4 da pilha)
- A forma inversa (nível 3 da pilha),
- no nível 2 da pilha, os coeficientes da matriz do polinômio p(x) definida por (x·I-A) ·p(x)=m(x)·I,
- o polinômio de característica da matriz (nível 1 de pilha)

Observe a equação $(\mathbf{x} \cdot \mathbf{I} \cdot \mathbf{A}) \cdot p(\mathbf{x}) = m(\mathbf{x}) \cdot \mathbf{I}$ é similar na forma para a equação do valor eigen $\mathbf{A} \cdot \mathbf{x} = \lambda \cdot \mathbf{x}$.

Por exemplo, no modo RPN, tente:

O resultado é:

4: -8.

3: [[0.13 -0.25 -0.38][-0.25 0.50 -0.25][-0.38 -0.25 -0.88]]

 $2: \{ [[1\ 0\ 0][0\ 1\ 0][0\ 0\ 1]]\ [[\ -2\ 1\ -2][1\ -4\ -1][-2\ -1\ -6]\ [[\ -1\ 2\ 3][2\ -4\ 2][3\ 2\ 7]] \}$

1: 'X^3+-6*x^2+2*X+8'

O mesmo exercício no modo ALG será similar a este:

Fatorização da matriz

A fatorização ou decomposição da matriz consiste em obter as matrizes que quando multiplicadas resulta em uma dada matriz. Apresentamos a decomposição da matriz através do uso de funções contidas no menu FACT da matriz. Este menu é acessado através de 🔄 MATRICES .

As funções contidas neste menu são: LQ, LU, QR, SCHUR, SVD, SVL.

Função LU

A função LU toma como entrada uma matriz quadrada **A** e retorna uma matriz triangular inferior **L**, uma matriz triangular superior **U** e uma matriz de permutação **P**, nos níveis 3, 2 e 1 da pilha, respectivamente. Os resultados **L**, **U** e **P** satisfazem a equação **P·A** = **L·U**. Quando chamar a função LU, a calculadora faz uma decomposição Crout LU de **A** usando um pivotal parcial. Por exemplo, no modo RPN: EE-1,2,53E3,1,-23E7,6,533 LU Produz:

```
3:[[7 0 0][-1 2.86 0][3 -1.57 -1]
2: [[1 0.86 0.71][0 1 2][0 0 1]]
1: [[0 0 1][1 0 0][0 1 0]]
```

No modo ALG mesmo exercício será mostrado conforme a seguir:

Matrizes ortogonais e decomposição de valor singular

Uma matriz quadrada é considerada ortogonal se suas colunas representam os vetores de unidades que são mutuamente ortogonais. Assim se permitimos que a matriz $\mathbf{U} = [\mathbf{v}_1 \ \mathbf{v}_2 \ ... \ \mathbf{v}_n]$ onde o \mathbf{v}_i , i=1,2,...,n, são vetores de colunas e se $\mathbf{v}_i \cdot \mathbf{v}_j = \delta_{ij}$, onde δ_{ij} for a função delta de Kronecker, então \mathbf{U} será uma matriz ortogonal. Estas condições significam que $\mathbf{U} \cdot \mathbf{U}^T = \mathbf{I}$.

A decomposição singular do valor (SVD) de uma matriz retangular $\mathbf{A}_{m\times n}$ consiste em determinar as matrizes \mathbf{U} , \mathbf{S} e \mathbf{V} , tal que $\mathbf{A}_{m\times n} = \mathbf{U}_{m\times m} \cdot \mathbf{S}_{m\times n} \cdot \mathbf{V}^{\mathsf{T}}$ onde \mathbf{U} e \mathbf{V} são as matrizes ortogonais e \mathbf{S} é a matriz diagonal. Os elementos diagonais de \mathbf{S} são chamados de <u>valores singulares</u> de \mathbf{A} e são normalmente ordenados que $\mathbf{s}_i \geq \mathbf{s}_{i+1}$, para i=1,2,...,n-1. As colunas $[\mathbf{u}_i]$ de \mathbf{U} e $[\mathbf{v}_i]$ de \mathbf{V} são os vetores singulares correspondentes.

Função SVD

No modo RPN a função SVD (decomposição singular do valor) toma como uma entrada uma matriz $\mathbf{A}_{n\times m}$, e retorna as matrizes $\mathbf{U}_{n\times n}$, $\mathbf{V}_{m\times m}$, e um vetor \mathbf{s} nos níveis 3, 2 e 1 da pilha, respectivamente. A dimensão do vetor \mathbf{s} é igual ao mínimo dos valores n e m. As matrizes \mathbf{U} e \mathbf{V} são conforme definidas anteriormente para a decomposição singular do valor, enquanto que o vetor omposition \mathbf{s} representa a diagonal principal da matriz \mathbf{S} usada anteriormente.

Por exemplo, no modo RPN: [[5,4,-1],[2,-3,5],[7,2,8]] SVD

```
3: [[-0.27 0.81 -0.53][-0.37 -0.59 -0.72][-0.89 3.09E-3 0.46]]
2: [[ -0.68 -0.14 -0.72][ 0.42 0.73 -0.54][-0.60 0.67 0.44]]
1: [ 12.15 6.88 1.42]
```

Função SVL

A função SVL (valores singulares) retornam os valores singulars de uma matriz $\mathbf{A}_{n\times m}$ como um vetor \mathbf{s} cuja dimensão é igual ao mínimo dos valores n e m. Por exemplo, no modo RPN, [[5,4,-1],[2,-3,5],[7,2,8]] SVL produz [12.15 6.88 1.42].

Função SCHUR

No modo RPN, a função SCHUR produz a decomposição Schur de uma matriz quadrada **A** retornando as matrizes **Q** e **T** nos níveis 2 e 1 da pilha, respectivamente, tal que **A** = **Q·T·Q**^T, onde **Q** é uma matriz ortogonal e **T** é uma matriz triangular. Por exemplo, no modo RPN, [[2,3,-1][5,4,-2][7,5,4]] SCHUR

resulta em:

2: [[0.66 -0.29 -0.70][-0.73 -0.01 -0.68][-0.19 -0.96 0.21]]

1: [[-1.03 1.02 3.86][0 5.52 8.23][0 -1.82 5.52]]

Função LQ

A função LQ produz a *fatorização LQ* de uma matriz $\mathbf{A}_{n\times m}$ reotornando uma matriz trapezoidal inferior $\mathbf{L}_{n\times m}$, uma matriz ortogonal $\mathbf{Q}_{m\times m}$ e uma matriz de permutação $\mathbf{P}_{n\times n}$ nos níveis 3, 2 e 1 da pilha. As matrizes \mathbf{A} , \mathbf{L} , \mathbf{Q} e \mathbf{P} são relacionadas por $\mathbf{P}\cdot\mathbf{A}=\mathbf{L}\cdot\mathbf{Q}$. (Uma matriz trapezoida de uma matriz $n\times m$ é equivaloente de uma matriz triangular de uma matriz $n\times n$). Por exemplo, \mathbf{L} $\mathbf{$

Produz

3: [[-5.48 0 0][-1.10 -2.79 0][-1.83 1.43 0.78]] 2: [[-0.91 0.37 -0.18] [-0.36 -0.50 0.79] [-0.20 -0.78 -0.59]] 1: [[0 0 1][0 1 0][1 0 0]]

Função QR

1: [[1 0 0][0 0 1][0 1 0]]

Na função RPN, QR produz *Fatorização QR* de uma matriz $\mathbf{A}_{n\times m}$ retornando uma matriz ortogonal $\mathbf{Q}_{n\times n}$, uma matriz trapezoidal superior $\mathbf{R}_{n\times m}$ e uma matriz de permutação $\mathbf{P}_{m\times m}$ nos níveis 3, 2 e 1 da pilha. As matrizes \mathbf{A} , \mathbf{P} , \mathbf{Q} e \mathbf{R} são relacionadas por $\mathbf{A} \cdot \mathbf{P} = \mathbf{Q} \cdot \mathbf{R}$. Por exemplo, [[1, -2, 1] [2, 1, -2] [5, -2, 1]] QR produz 3: [[-0.18 0.39 0.90][-0.37 -0.88 0.30][-0.91 0.28 -0.30]] 2: [[-5.48 -0.37 1.83][0 2.42 -2.20][0 0 -0.90]]

Nota: Exemplos e definições para todas as funções neste menu estão disponíveis através do mecanismo de ajuda na calculadora. Tente estes exercícios no modo ALG para ver os resultados.

Formas quadráticas de matriz

Uma <u>forma quadrática</u> da matriz quadrada \mathbf{A} é uma expressão de polinômio originada de $\mathbf{x} \cdot \mathbf{A} \cdot \mathbf{x}^{\mathsf{T}}$. Por exemplo, se usarmos $\mathbf{A} = [[2,1,-1][5,4,2][3,5,-1]]$ e $\mathbf{x} = [\mathsf{X} \ \mathsf{Y} \ \mathsf{Z}]^{\mathsf{T}}$, a forma quadrática correspondente é calculada como

$$\mathbf{x} \cdot \mathbf{A} \cdot \mathbf{x}^{T} = \begin{bmatrix} X & Y & Z \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & -1 \\ 5 & 4 & 2 \\ 3 & 5 & -1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
$$= \begin{bmatrix} X & Y & Z \end{bmatrix} \cdot \begin{bmatrix} 2X + Y - Z \\ 5X + 4Y + 2Z \\ 3X + 5Y - Z \end{bmatrix}$$

Finalmente,

 $\mathbf{x} \cdot \mathbf{A} \cdot \mathbf{x}^{\mathsf{T}} = 2X^2 + 4Y^2 - Z^2 + 6XY + 2XZ + 7ZY$

O menu QUADF

A calculadora HP 49G série fornece o menu QUADF para as operações relacionadas com as formas QUADráticas. O menu QUADF é acessado através de 🕤 MATRICES .

Este menu inclui as funções AXQ, CHOLESKY, GAUSS, QXA e SYLVESTER.

Função AXQ

No modo RPN, a função AXQ produz a forma quadrática correspondente a matriz $\mathbf{A}_{n\times n}$ no nível 2 da pilha usando as variáveis n no vetor colocado no nível 1 da pilha. As funções retornam a forma quadrática no nível 1 da pilha e o vetor das variáveis no nível 1 da pilha. Por exemplo,

retorna

2: '2*X^2+(6*Y+2*Z)*X+4*Y^2+7*Z*y-Z^2'

1: ['X' 'Y' 'Z']

Função QXA

A função QXA toma como argumentos uma forma quadrática no nível 2 da pilha e um vetor de variáveis no nível 1 da pilha retornando a matriz quadrada **A** da qual a forma quadrática é derivada no nível 2 na pilha e a lista de variáveis no nível 1 da pilha. Por exemplo,

retorna

2: [[1 2 -8][2 1 0][-8 0 -1]] 1: ['X' 'Y' 'Z']

A representação diagonal de uma forma quadrática

Dada uma matriz quadrada simétrica \mathbf{A} , é possível "diagonalizar" a matriz \mathbf{A} encontrando uma matriz ortogonal \mathbf{P} tal que $\mathbf{P}^T \cdot \mathbf{A} \cdot \mathbf{P} = \mathbf{D}$, onde \mathbf{D} é uma matriz diagonal. Se $\mathbf{Q} = \mathbf{x} \cdot \mathbf{A} \cdot \mathbf{x}^T$ for uma forma quadrática baseada em \mathbf{A} , é possível escrever a forma quadrática \mathbf{Q} para que apenas contenha os termos quadrados de uma variável \mathbf{y} , tal que $\mathbf{x} = \mathbf{P} \cdot \mathbf{y}$ usando $\mathbf{Q} = \mathbf{x} \cdot \mathbf{A} \cdot \mathbf{x}^T = (\mathbf{P} \cdot \mathbf{y}) \cdot \mathbf{A} \cdot (\mathbf{P} \cdot \mathbf{y})^T = \mathbf{y} \cdot (\mathbf{P}^T \cdot \mathbf{A} \cdot \mathbf{P}) \cdot \mathbf{y}^T = \mathbf{y} \cdot \mathbf{D} \cdot \mathbf{y}^T$

Função SYLVESTER

A função SYLVESTER toma como argumento uma matriz quadrada simétrica $\bf A$ e retorna um vetor contendo os termos originais de uma matriz diagonal $\bf D$ e uma matriz $\bf P$, para que $\bf P^T \cdot \bf A \cdot P = \bf D$. Por exemplo,

produz

2: [1/2 2/7 -23/7] 1: [[2 1 –1][0 7/2 5/2][0 0 1]]

Função GAUSS

Função GAUSS retorna a representação diagonal de uma forma quadrática $Q = \mathbf{x} \cdot \mathbf{A} \cdot \mathbf{x}^T$ tomando como argumentos a forma quadrática no nível 2 da pilha e o vetor das variáveis no nível 1 da pilha. O resultado desta função é o seguinte:

- Um conjunto de coeficientes representando os termos diagonais de D (nível 4 da pilha)
- Uma matriz **P** tal que $\mathbf{A} = \mathbf{P}^{\mathsf{T}} \cdot \mathbf{D} \cdot \mathbf{P}$ (nível 3 da pilha)

- A forma quadrática diagonalizada (nível 2 da pilha)
- A lista de variáveis (nível 1 da pilha)

Por exemplo,

retorna

4: [1 -0.333 20.333]

3: [[1 2 -8][0 -3 16][0 0 1]]

2: '61/3*Z^2+ -1/3*(16*Z+-3*Y)^2+(-8*z+2*Y+X)^2'

1: ['X' 'Y' 'Z']

Aplicações lineares

O menu LINEAR APPLICATIONS está disponível através de 🤄 MATRICES

A informação sobre as funções listadas neste menu é apresentada abaixo usando o próprio mecanismo de ajuda da calculadora. As figuras mostram a entrada do mecanismo de ajuda e os exemplos anexados.

Função IMAGE

Função ISOM

```
ISOM:
Finds elements of a
2-d or 3-d linear
isometry
ISOM([[0,-1],[1,0]])
(π/2 1)
See: MKISOM
```


Função KER

Função MKISOM

```
MKISOM:
Make an isometry given
its elements
MKISOM(π,1)
[[-1,0],[0,-1]]
See: ISOM
```


Capítulo 12 Gráficos

Neste capítulo introduzimos algumas das capacidades dos gráficos da calculadora. Apresentamos os gráficos de funções nas coordenadas cartesianas e polares, plotagens paramétricas, gráficos de cônicas, plotagens de barra, scatterplots (gráfico de coordenadas) e plotagens de funções.

As opções gráficas na calculadora

Para acessar a lista de formatos de gráficos disponíveis na calculadora, usamos a seqüência de teclas (1) 20130 (F4). Observe que se estiver usando o modo RPN estas duas teclas devem ser pressionadas <u>simultaneamente</u> para ativar quaisquer das funções gráficas. Depois de ativar a função 2D/3D, a calculadora produzirá a janela PLOT SETUP, que inclui o campo TYPE conforme ilustrados abaixo.

Logo em frente do campo TYPE você verá provavelmente a opção Function ressaltada. Isto é o tipo padrão do gráfico para a calculadora. Para ver a lista de tipos de gráficos disponíveis, pressione a tecla virtual . Isto produzirá um menu com as seguintes opções (use as teclas com as setas para acima e para baixo para ver todas as opções):

Estas opções são descritas rapidamente a seguir.

Function : para as equações da forma y = f(x) no lugar das coordenadas

cartesianas

Polar : para equações da forma $r = f(\theta)$ em coordenadas polares no

plano

Parametric:: para equações de plotagem da forma x = x(t), y = y(t) no plano

Diff Eq : para plotagem da solução numérica de uma equação

diferencial linear

Conic : para equações cônicas de plotagem (círculos, elipses,

hipérboles e parábolas)

Truth : para desigualdades de plotagem no plano

Histogram : para histogramas de frequência de plotagem (aplicações

estatísticas)

Bar : para mapas de barra simples de plotagem

Scatter : para plotagem de difusão de plotagens de conjuntos de dados

discretos (aplicações estatísticas)

Slopefield: para traços de plotagem de inclinações de uma função f(x,y) =

0.

Fast3D : para superfícies curvadas de plotagem no espaço

Wireframe : para superfícies curvadas de plotagem no espaço mostrando as

grades

Ps-Contour : para plotagens de contornos de superfícies

Y- Slice : para plotagem de visao dividida de uma função f(x,y).

Gridmap : para plotagem de traços das partes real e imaginária de uma

função complexa.

Pr-Surface: para superfícies paramétricas dadas x = x(u,v), y = y(u,v), z = v(u,v)

z(u,v).

Plotar uma expresão y = f(x) (Function)

Nesta seção apresentamos um exemplo de plotagem de uma função da forma y=f(x). Para fazer a plotagem exclua primeiro a variável x, se estiver definida no diretório atual (x será a variável independente da característica PLOT da calculadora e portanto ela não será pré-definida). Crie um

subdiretório chamado 'TPLOT' (para a plotagem de teste) ou outro nome significativo para fazer o seguinte exercício. Como exemplo vamos plotar a função.

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2})$$

Primeiro entre no ambiente PLOT SETUP pressionando (1) 20/30.
 Certifique-se de que a opção Function seja selecionada como TYPE e que 'X' é selecionado como uma variável independente (INDEP).
 Pressione (NXT) (1) para retornar ao visor normal da calculadora.
 A janela PLOT SET UP deve ser similar a esta:

- **Nota**: Veja que uma nova variável, chamada PPAR, mostra sua etiqueta de tecla do menu virtual. Isto significa Parâmetro de plotagem. Para ver seu conteúdo, pressione publicação detalhada do conteúdo de PPAR é fornecida posteriormente neste capítulo. Pressione para retirar esta linha da pilha.
- Entre no ambiente PLOT pressionando (1) Y= (pressione-as simultaneamente se estiver no modo RPN). Pressione (1) para entrar no Editor de Equação. Será solicitado a preencher o lado direito de uma equação Y1(x) = 1. Digite a função a ser plotada para que o Editor de Equação mostre o seguinte:

Pressione ENTE para retornar a janela PLOT SETUP. A expressão 'Y1(X)= EXP(-X^2/2)/√(2*π)' será ressaltada. Pressione NXT
 ■ para retornar ao visor normal da calculadora.

Nota: Duas novas variáveis mostram as etiquetas da tecla do menu virtual, a saber, EQ e Y1. Para ver o conteúdo do programa EQ use : O conteúdo de EQ é simplificar o nome da função 'Y1(X)'. A varíavel EQ é usada pela calculadora para armazenar a equação ou equações para plotagem.

Para ver o conteúdo de Y1 pressione (P) (X) definida como o programa:

$$<< \rightarrow X$$
 'EXP $(-X^2/2) / \sqrt{(2*\pi)}$ ' >>.

Pressione •, duas vezes para retirar o contéudo da pilha.

• Entre no ambiente PLOT WINDOW inserindo (pressione-as simultaneamente se estiver no modo RPN). Use uma faixa de –4 a 4 para H-VIEW, depois pressione para gerar V-VIEW automaticamente. O visor PLOT WINDOW é similar conforme a seguir:

- Plotar o gráfico: (espere até que a calculadora termine os fazer os gráficos)
- Par recuperar o primeiro menu de gráficos: NXT NXT IIIII

Para traçar a curva: WHAM. Use então as teclas com as setas () para mover ao redor da curva. As coordenadas dos pontos que você está traçando serão mostradas no fundo do visor. Verifique isto para x = 1.05, y = 0.231. Além disso, verifique para x = -1.48, y = 0.134. Aqui está uma imagem do gráfico no modo traçar:

• Para recuperar o menu e retornar ao ambiente PLOT WINDOW, pressione (NXT) (N

Algumas operações úteis de PLOT para plotagens de FUNÇÃO

Para discutir estas opções PLOT, modificaremos a função para forçá-la a obter algumas raízes reais (dado que a curva atual é totalmente contida acima do eixo x, não tem nenhuma raiz real). Pressione para listar o conteúdo da função Y1 na pilha: $<< \rightarrow$ X 'EXP(-X^2/2)/ $\sqrt{(2*\pi)}$ ' >>. Para editar esta expressão use:

Ative a linha de edição Move o cursor para o final da linha Modifica a expressão Retorna ao visor da calculadora

A seguir, armazene a expressão na variável y usando (se estiver no modo RPN ou (sto) (sto)

A função plotada é agora
$$f(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}) - 0.1$$

Insira o ambiente PLOT WINDOW inserindo (pressione-as simultaneamente se estiver no modo RPN). Mantenha a faixa de -4 a 4

para H-VIEW, depois pressione 👽 💷 para gerar V-VIEW. Para plotar o gráfico pressione 🝱 🖼

- Logo que o gráfico estiver plotado, pressione ima para acessar o menu function. Com este menu você pdoe obter a informação adicional sobre plotagem tais como interseção com o eixo x, raízes, inclinações da linha da tangente, área sob a curva, etc.

- Se mover o cursor em direção ao lado direito da curva, pressionando a tecla de seta a direita () e pressione o resultado agora é ROOT: 1.6635... A calculadora indicada antes de mostrar a raiz, encontrada através de REVERSO DE SINAL. Pressione para recuperar o menu.
- Pressionar Fair fornecerá a interseção da curva com o eixo x, que é essencialmente a raiz. Coloque o cursor exatamente na raiz e pressione Fair. Obterá a mesma mensagem anterior, a saber, SIGN REVERSAL, antes de obter o resultado I-SECT: 1.6635.... A função Fair determina a interseção de qualquer uma das curvas para o local do cursor. Neste caso, onde apenas uma curva, a saber, Y1(X), é envolvida, a interseção buscada é esta da f(x) com o eixo x, portanto é necessário colocar o cursor a direita da raiz para produzir o mesmo resultado. Pressione RXT novamente para recuperar o primeiro menu de variável.
- Coloque o cursor na curva em qualquer lugar e pressione para obter o valor da inclinação neste ponto. Por exemplo, na raiz negativa, SLOPE: 0,16670.... Pressione

- Outros botões disponíveis no primeiro menu são IIII para calcular a área sob a curva e para sombrear uma área sob a curva. Pressione NXT para ver mais opções. O segundo menu inclui um botão chamado IIII que pisca por alguns segundos a equação plotada. Pressione IIII. De forma alternativa, você pode pressionar o botão IIII (equação NEXt) para ver o nome da função Y1(x). Pressione NXT para recuperar o menu.
- Coloque o cursor em qualquer ponto dado da trajetória e pressione TANL para obter a equação da linha tangente para a curva neste ponto. A equação será mostrada no canto esquerdo mais inferior do visor. Pressione (NT) para recuperar o menu.
- Se pressionar III a calculadora plotará a função derivada, f'(x) = df/dx, como também a função original, f(x). Observe que as duas curvas são interceptadas nos dois pontos. Mova o cursor próximo do ponto de interseção esquerda e pressione IIII IIII para obter I-SECT: (-0,6834...0,21585). Pressione NXT para recuperar o menu.
- Para deixar o ambiente FCN, pressione (ou NXT) (OU NXT) (DIED (INT) (IN
- Pressione para retornar ao ambiente PLOT WINDOW. Pressione NXT para retornar ao visor normal da calculadora.

Nota: a pilha mostrará todas as operações gráficas feitas e corretamente identificadas.

- Pressione para verificar o conteúdo de EQ. Observará que contém uma lista em vez de uma expressão individual. A lista tem

como elementos uma expressão para a própria derivada de Y1(X) e Y1(X). Originalmente, EQ continha apenas Y1(x). Depois de pressionar IIII no ambiente IIII, a calculadora automaticamente adicionou a derivada de Y1(x) para a lista de equações no EQ.

Salvar um gráfico para uso posterior

Se quiser salvar seu gráfico para uma variável, ative o ambiente PICTURE pressionando . Depois, pressione (IXXI) (

No nível 1 da pilha verá um objeto de gráficos descrito como Graphic 131 × 64. Isto pode ser armazenado em um nome de variável, digamos, PIC1.

Para exibir sua figura novamente, ative o conteúdo da variável PIC1 para a pilha. O visor mostrará a linha: Graphic 131 × 64. Para ver o gráfico, insira o ambiente PICTURE pressionando •• .

Exclua a figura atual III NXT IIIII.

Mova o cursor para o canto esquerda superior do visor usando as teclas \bigcirc e \bigcirc .

Para exibir a figura atualmente no nível da pilha pressione NXT REPL.

Para retornar a função normal da calculadora, pressione [200].

Nota: Para salvar o espaço de impressão, não incluiremos mais gráficos produzidos seguindo as instruções neste capítulo. O usuário é convidado a produzir estes gráficos sozinhos.

Gráficos de funções transcendentais

Nesta seção usamos algumas das características gráficas da calculadora para mostrar o comportamento típico do log natural das funções log,

exponencial, trigonométrico e hiperbólico. Não verá qualquer gráfico neste capítulo, uma vez que quero vê-los na sua calculadora.

Gráfico de In(X)

Pressione, simultaneamente se estiver no modo RPN, a tecla left-shift e a tecla the 2030 (F4) para produzir a janela PLOT SETUP. O campo marcado Type será ressaltado. Se a opção Function não já estiver selecionada pressione a tecla chamada para completar a seleção. Verifique se o campo marcado Indep: contém a variável 'X'. se não for verdade, pressione a tecla de seta para baixo duas vezes até que o campo Indep seja ressaltado, pressione a tecla chamada re modifique o valor da variável independente para ler 'X'. Pressione quando estiver feito. Pressione para retornar ao visor normal da calculadora.

A seguir, <u>redimensionaremos a janela de plotagem</u>. Pressione simultaneamente se estiver no modo RPN, a tecla left-shift → e a tecla /= (F) para produzir a janela PLOT-FUNCTION. Se existe qualquer equação ressaltada nesta janela, pressione para limpar a janela totalmente. Quando a janela PLOT-FUNCTION estiver vazia você obterá uma mensagem de solicitação que lê: No Equ., Press ADD. Pressione a tecla chamada ISSUM. Isto ativa o Editor de Equação com a expressão Y1(X)= . Digite LN(X). Pressione Plot-FUNCTION. Pressione Data para retornar a janela PLOT-FUNCTION. Pressione

Depois, pressione simultaneamente se estiver no modo RPN, as teclas left-shift e www (12) para produzir a janela PLOT WINDOW - FUNCTION.

Provavelmente, o visor mostrará as faixas horizontal e vertical (H-View) e vertical (V-View) como: H-View: -6.5 6.5, V-View: -3.1 3.2

 produzir o gráfico de In(X). Pressione **EXEL** para desenhar a função de logaritmo natural.

Para adicionar o gráfico pressione pressione para remover as etiquetas do menu e obter um visão total do gráfico. Pressione para recuperar o primeiro menu gráfico atual. Pressione para recuperar o primeiro menu gráfico original.

Para determinar as coordenadas de pontos na curva pressione (o cursor move para a parte superior da curva no ponto localizado próximo do centro da faixa horizontal). A seguir, pressione (X,Y) para ver as coordenadas do local do cursor atual. Estas coordenadas serão mostradas no fundo do visor. Use as teclas com as setas para mover o cursor ao longo da curva. Enquanto move o cursor ao longo da curva as coordenadas são exibidas no fundo do visor. Verifique isso quando Y:1,00E0, X:2,72E0. Este é o ponto (e,1), dado que ln(e)=1. Pressione (NXT) para recuperar o menu de gráficos.

A seguir, encontraremos a interseção da curva com o eixo x pressionando LIII. A calculadora retorna o valor Root: 1, confirmando que ln(1) = 0. Pressione NXT NXT LIIII para retornar a PLOT WINDOW – FUNCTION. Pressione Root: 0 para retornar ao visor normal da calculadora. Observará que a raiz encontrada no ambiente do gráfico foi copiado para a pilha da calculadora.

Nota: Ao pressionar sua lista de variáveis mostrarão novas variáveis marcadas sua e sua lista de variáveis mostrarão novas variáveis marcadas sua e sua e sua e sua e para verificar o conteúdo da variável. Obterá o programa << \riangle X 'LN(X)' >> , que reconhecerá como o prgrama que pode resultado da definição da função 'Y1(X) = LN(X)' usando sua listo é basicamente o que acontece quando você sua adiciona uma função na janela PLOT - FUNCTION (a janela que aparece ao pressionar simultaneamente se estiver no modo RPN), ex. a função é definida e adicionada na sua lista de variável.

A seguir, pressione para verificar o conteúdo da variável. Um valor de 10.275 é colocado na pilha. Este valor é determinado pela nossa

seleção para a faixa do visor horizontal. Selecionamos uma faixa entre -1 e 10 para X. Para produzir o gráfico, a calculadora gera os valores entre os limites da faixa usando um incremento de constante e armazenando os valores gerados, um de cada vez na variável equanto o gráfico for desenhado. Para a faixa horizontal (-1,10), o incremento usado parece ser 0.275. Quando o valor de X torna-se maior do que o valor máximo na faixa (neste caso, quando X = 10.275), o desenho do gráfico é interrompido. O último valor de X para o gráfico sob consideração é mantido na variável X. Exclua X e Y1 antes de continuar.

Gráfico da função exponencial

Primeiro, carregue a função exp(X) pressionando simultaneamente, se estiver no modo RPN, a tecla left-shift \bigcirc e a tecla $\stackrel{Y=}{}$ ($\stackrel{EEX}{}$) para acessar a janela PLOT-FUNCTION. Pressione para remover a função LN(X), se não excluir Y1 conforme sugerido na nota anterior. Pressione digite $\stackrel{e^{X}}{}$ ($\stackrel{APHA}{}$ ($\stackrel{EMED}{}$) para inseri EXP(X) e retornar a janela PLOT-FUNCTION. Pressione $\stackrel{EXP}{}$ para retornar ao visor normal da calculadora.

Para adicionar etiquetas ao gráfico pressione IIII NAT IIIII. Pressione IIII para remover as etiquetas do menu e obter um visão total do gráfico. Pressione NAT NAT IIIII para retornar a PLOT WINDOW – FUNCTION. Pressione ENTER para retornar ao visor normal da calculadora.

A variável PPAR

Pressione para recuperar o menu de variáveis, se for necessário. No seu menu de variável, é necessário ter uma variável marcada PPAR. Pressione para obter o conteúdo desta variável na pilha. Pressione a tecla de seta para baixo para ativar o editor de pilha e use as teclas de

seta para baixo para ver o conteúdo total de PPAR. O visor mostrará os sequintes valores:

PPAR significa *Plot PARameters* e seu conteúdo inclui dois pares ordenados de números reais, (-8.,-1.10797263281) e (2.,7.38905609893),

que representam as coordenadas dos cantos esquerdo inferior e direito superior da plotagem, respectivamente. A seguir, PPAR lista o nome da variável independente, X, seguido pelo número que especifica o incremento da variável independente na geração na plotagem. O valor mostrado aqui é o valor padrão zero (0.), que especifica os incrementos em X correspondentes a 1 pixel no visor do gráfico. O próximo elemento no PPAR é uma lista que contém primeiro as coordenadas do ponto de interseção dos eixos de plotagem, ex. (0.,0.), seguindo por uma lista que especifica a notação de marca de seleção nos eixos x e y respectivamente {# 10d # 10d}. A seguir, PPAR lista o tipo de plotagem que está sendo criada, ex. FUNCTION e finalmente a etiqueta do eixo y, ex.Y.

Funções inverses e seus gráficos

Permita que y = f(x), se encontrarmos y = g(x), tal que, g(f(x)) = x, então digamos que g(x) é a <u>função inversa</u> de f(x). Tipicamente, a notação g(x) = f(x) é usada para denotar uma função inversa. Usando estas regras, podemos escrever: se y = f(x), então $x = f^{-1}(y)$. Também, $f(f^{-1}(x)) = x$ e $f^{-1}(f(x)) = x$.

Como indicado anteriormente, as funções ln(x) e exp(x) são inversas entre si, ex. ln(exp(x)) = x e exp(ln(x)) = x. Isto pode ser verificado na calculadora digitando e avaliando as seguintes expressões no Editor de Equação: LN(EXP(X)) e EXP(LN(X)). Ambas devem ser avaliadas por X.

Quando uma função f(x) e sua inversa $f^{-1}(x)$ são plotadas simultaneamente no mesmo conjunto de eixos, seus gráficos são reflexões entre si sobre a linha y = x. Verifiquemos este fato com a calculadora para as funções LN(X) e EXP(X) sequindo este procedimento:

Pressione simultaneamente se estiver no modo RPN, 🕤 🚈 . A função Y1(X) = EXP(X) está disponível na janela PLOT - FUNCTION do exercício anterior. Pressione 🖽 e digite a função Y2(X) = LN(X). Além disso, carregue a função Y3(X) = X. Pressione 📈 para retornar ao visor normal da calculadora.

Pressione simultaneamente se estiver no modo RPN, , e altere a faixa H-View para ler: H-View: -8 8

Pressione μ para gerar a faixa vertical. Pressione μ para produzir o gráfico de $y = \ln(x)$, $y = \exp(x)$ e y = x, simultaneamente se estiver no modo RPN.

Observará que apenas o gráfico de y = exp(x) é claramente visível. Algo de errado aconteceu com a seleção da faixa vertical. O que acontece é que, ao pressinonar na tela PLOT FUNCTION – WINDOW, a calculadora produz a faixa correspondente a primeira função na lista de funções que será plotada. Que, neste caso, será Y1(X) = EXP(X). Inseriremos a faixa vertical para exibir as outras duas funções na mesma plotagem.

Pressione para retornar para o ambiente PLOT FUNCTION – WINDOW. Altere as faixas vertical e horizontal para ler: H-View: -8 8, V-View: -4 4

Selecionar estas faixas asseguramos que a escala do gráfico é mantida 1 vertical e 1 horizontal. Pressione IIII e obterá as plotagens das

funções naturais do logarítmo natural, exponencial e y = x. Será evidente do gráfico que LN(X) e EXP(X) são reflexos entre si sobre a linha y = X. Pressione para retornar a PLOT WINDOW – FUNCTION. Pressione para retornar ao visor normal da calculadora.

Resumo da operação de plotagem FUNCTION

Nesta seção apesentamos as informações em relação aos visores PLOT SETUP, PLOT-FUNCTION e PLOT WINDOW acessíveis através da tecla teftshift combinadas com as teclas $\frac{F}{1}$ até $\frac{F}{2}$. Baseado nos exemplos apresentados acima, o procedimento a seguir produz uma plotagem de FUNCTION (ex. que plota uma ou mais funções da forma Y = F(X)), é o seguinte:

(†) 20/30, simultaneamente se estiver no modo RPN: Acesse a janela PLOT SETUP. Se necessário, altere TYPE para FUNCTION e insira o nome da variável independente.

Configurações:

- A marca em _Simult significa que se você tem uma ou mais plotagens no mesmo gráfico, eles serão plotados simultaneamente ao produzir o gráfico.
- A marca em _Connect significa que a curva será uma curva contínua em vez de um conjunto de pontos individuais.
- Uma marca em _Pixels significa que as marcas indicadas pelo H-Tick
 e V-Tick será separadas por estes diversos pixels.
- O valor padrão para ambos por H-Tick e V-Tick é 10.

Opções de menu da tecla virtual:

- Use para editar as funções de valores no campo selecionado.
- Use para selecionar o tipo de plotagem para usar quando o campo Type for ressaltado. Para os exercícios atuais, queremos este campo configurado para FUNCTION.

Nota: as teclas do menu **IIII** e **IIIII** não estão disponíveis ao mesmo tempo. Um ou outro será selecionado dependendo qual campo de entrada for ressaltado.

- Pressione a tecla do menu virtual AXES para marcar ou desmarcar a plotagem de eixos no gráfico. Se a opção 'eixos de plotagem' é marcada, um ponto quadrado aparecerá na etiqueta da tecla: Ausência de ponto quadrado indica que os eixos não serão plotadas no gráfico.
- Use Titel para apagar qualquer gráfico que existe atualmente na janela do visor gráfico.
- Use TTT para produzir o gráfico de acordo com o contéudo atual de PPAR para as equações listadas na janela PLOT-FUNCTION.
- Pressione NXT para acessar um segundo conjunto de teclas neste visor.
- Use Tea para reajustar qualquer campo selecionado para seu valor padrão.
- Use para cancelar quaisquer alterações para a janela PLOT SETUP e retornar ao visor normal da calculadora.
- Pressione para salvar as opções na janela PLOT SETUP e retornar ao visor normal da calculadora.

(neste caso serão chamado de janela PLOT –FUNCTION).

Opções de menu da tecla virtual:

- Use para editar a equação ressaltada.
- Use **TITU** para adicionar novas equações para a plotagem.

Nota: ou **III** ativará o Editor de Equação EQW para escrever novas equações ou editar equações antigas.

- Use gara remover a equação ressaltada.
- Use para adicionar uma equação que já está definida no seu menu de variáveis, mas não listadas na janela PLOT FUNCTION.
- Use Ties para apagar qualquer gráfico que existe atualmente na janela do visor gráfico.
- Use para produzir o gráfico de acordo com o contéudo atual de PPAR para as equações listadas na janela PLOT-FUNCTION.
- Pressione NXT para visualizar a segunda lista do menu:
- Use TITE e TOTAL para mover a equação selecionada uma posição acima ou abaixo, respectivamente.

- Use ISSI se deseja limpar todas as equações atualmente ativas na janela PLOT FUNCTION. A calculadora verificará se você quer ou não limpar todas as funções antes de apagar todas elas. Selecione YES e pressione ISSI para continuar com todas as funções. Selecione NO e pressione ISSI para desativar a opção CLEAR.
- Pressione quando terminar e retorne ao visor normal da calculadora.

simultaneamente se estiver no modo RPN: Acesse a janela PLOT WINDOW.

Configurações:

- Insira os limites inferior e superior para as faixas de visões horizontal (H-View) e vertical (V-View) na janela de plotagem ou
- Insira os limites superior e inferior para a visão horizontal (H-View) e
 pressione equanto o cursor estiver em um dos campos V-View gere
 a faixa de visão vertica (V-View) automaticamente ou
- Insira os limites superior e inferior para a visão vertical (V-View) e pressione aquanto o cursor estiver em um dos campos H-View para gerar a faixa de visão horizontal (H-View) automaticamente.
- A calculadora usará a faixa da visão horizontal (H-View) para gerar os valores dos dados para o gráfico a menos que você altere as opções Indep Low, (Indep) High e (Indep) Step. Estes valores determinam respectivamente os valores mínimo, máximo e de aumentos da variável independente usada na plotagem. Se a opção Default for listada nos campos Indep Low, (Indep) High e (Indep) Step, a calculadora usará os valores mínimos e máximos determinados pela H-View.
- A marca em _Pixels significa que os valores de aumentos independentes da variável (Step:) são dados em pixel em vez de em coordenadas de plotagem.

Opções de menu da tecla virtual:

- Use III para editar qualquer entrada na janela.
- Use conforme explicado em <u>Configurações</u> acima.

- Use The para apagar qualquer gráfico que existe atualmente na janela do visor gráfico.
- Use TTT para produzir o gráfico de acordo com o contéudo atual de PPAR para as equações listadas na janela PLOT-FUNCTION.
- Pressione NXT para visualizar a segunda lista do menu.
- Use para reajustar o campo selecionado (ex. onde o cursor for colocado) para seu valor padrão.
- Use para acessar a pilha da calculadora para fazer cálculos necessários para obter um valor de uma das opções nesta janela.
 Quando a pilha da calculadora estiver disponível, poderá também acessar as opções de teclas
- Use se quiser cancelar o cálculo atual e retornar para o visor PLOT WINDOW. ou
- Use se quiser aceitar os resultados de seu cálculo atual e retornar para o visor PLOT WINDOW.
- Use ** para obter informações sobre o tipo de objetos que podem ser usados no campo da opção selecionada.
- Use para cancelar quaisquer alterações para a janela PLOT WINDOW e retornar ao visor normal da calculadora.
- Pressione para aceitas as alterações para o visor PLOT WINDOW e retornar ao visor normal da calculadora.

simultaneamente se estiver no modo RPN: Plotar ó gráfico baseado nas configurações armazenadas na variável PPAR e as funções atuais definidas no visor PLOT – FUNCTION. Se um gráfico, diferente daquele que estiver plotando, já existe no visor de exibição do gráfico, a nova plotagem será sobreposta na plotagem existente. Este talvez não seja o resultado que deseja, portanto, recomendo usar as teclas do menu (ESTE) disponíveis nos visores PLOT SETUP, PLOT-FUNCTION ou PLOT WINDOW.

Plotagens de funções trigonométricas e hiperbólicas

Os procedimentos usados acima para plotar LN(X) e EXP(X), separadamente ou simultaneamente, podem ser usados para plotar qualquer função da forma y = f(x). É deixado como um exercício para o leitor produzir as plotagens das funções trigonométricas e hiperbólicas e suas inversas. A tabela abaixo sugere os valores a serem usados nas faixas vertical e horizontal em cada

caso. Você pode incluir a função Y=X quando plotar simultaneamente uma função e sua inversas para verificar sua 'reflexão' sobre a linha Y=X.

	Faixa H-View:		Faixa V-View:	
Função	Mínimo	Máximo	Mínimo	Máximo
SIN(X)	-3.15	3.15	AUTO	
ASIN(X)	-1.2	1.2	AUTO	
SIN & ASIN	-3.2	3.2	-1.6	1.6
COS(X)	-3.15	3.15	AUTO	
ACOS(X)	-1.2	1.2	AUTO	
COS & ACOS	-3.2	3.2	-1.6	1.6
TAN(X)	-3.15	3.15	-10	10
ATAN(X)	-10	10	-1.8	1.8
tan & atan	-2	-2	-2	-2
SINH(X)	-2	2	AUTO	
ASINH(X)	-5	5	AUTO	
SINH & ASINH	-5	5	-5	5
COSH(X)	-2	2	AUTO	
ACOSH(X)	-1	5	AUTO	
COS & ACOS	-5	5	-1	5
TANH(X)	-5	5	AUTO	
ATANH(X)	-1.2	1.2	AUTO	
tan & atan	-5	5	-2.5	2.5

Gerar uma tabela de valores para uma função

As combinações \bigcirc TBLSET (F5) e \bigcirc TABLE (F6), pressionadas simultaneamente se estiver no modo RPN, permite que o usuário produza uma tabela de valores de funções. Por exemplo, produziremos uma tabela de função Y(X) = X/(X+10), na faixa -5 < X < 5 seguindo estas instruções:

Geraremos valores desta função f(x), definidos acima para valores de x de -5 a 5, com aumentos de 0,5. Primeiro, precisamos assegurar que o tipo de gráfico está configurado para **FUNCTION** no visor PLOT SETUP (pressione-os simultaneamente se estiver no modo RPN). O

- Depois pressione para ressaltar o campo na frente da opção EQ e digite a expressão da função: 'X/(X+10)'
- Para aceitar as alterações feitas no visor PLOT SETUP pressione MT
 Você retornará ao visor normal da calculadora.
- A próxima etapa é acessar o visor Table Setup usando a combinação de teclas (ex. tecla virtual 5) simultaneamente se estiver no modo RPN. Isto produzirá um visor onde você pode selecionar o valor de início (Start) e os aumentos (Step). Insira o seguinte: 5 +- 12 (ex. fator de zoom = 0.5). Alterne a tecla □ 1 (ex. fator de zoom = 0.5). Alterne a tecla □ 2 (ex. fator de zoom = 0.5). Isto o retornará ao visor normal da calculadora.

A variável TPAR

Depois de terminar de configurar a tabela, sua calculadora criará uma variável chamada TPAR (parâmetros de tabela) que armazena informações relevantes para a tabela que será gerada. Para ver o conteúdo desta variável pressione 🔁 🎞 .

• Para ver a tabela, pressione (ex. tecla do menu) – simultaneamente se estiver no modo RPN. Isto produzirá uma tabela de valores de x = -5, -4,5, ..., e os valores correspondentes de f(x), listados como Y1 por definição. Você pode usar as teclas com as setas para mover-se ao redor na tabela. Observará que não tivemos que indicar um valor final para a variável independente x. Assim, a tabela continua além do valor máximo para x sugerido anteriomente chamado de y x = 5.

Alguas opções disponíveis enquanto a tabela estiver visível são [200], [201] e

• A 🕮 quando selecionada mostra a definição da variável independente.

- A tecla altera apenas a fonte na tabela de pequena para grande e vice versa. Tente isto.
- A tecla [200], quando pressionada, produz um menu com as opções: In, Out, Decimal, Integer e Trig. Tente os seguintes exercícios:
 - Com a opção In ressaltada, pressione 23. A tabela é expandida para que o aumento de x seja agora 0.25 em vez de 0.5. O que a calculadora faz é apenas multiplicar o aumento original 0.5 pelo fator de zoom 0.5 para produzir o novo aumento de 0.25. Assim a opção zoom in é útil quando você quer mais resolução para os valores de x na sua tabela.

 - Para recuperar o aumento x anterior pressione **TITI a** para selecionar a opção *Un-zoom*. O aumento x é aumentado para 0.25.
 - Para recuperar o aumento x original de 0.5 você pode fazer um *n-zoom* novamente ou usar *option zoom out* pressionando [201] [201].
 - A opção Decimal em produz aumentos x de 0.10.
 - A opção inteira em
 produz aumentos x de 1.
 - A opção Trig in produz aumentos relacionados com as frações de π , sendo então úteis quando plota tabelas de funcões trigonométricas.
 - Para retornar ao visor normal da calculadora pressione ENTER.

Plotagens em coordenadas polares

Antes de tudo, você pdoe excluir as variáveis usadas nos exemplos anteriores, (ex. X, EQ, Y1, PPAR) usando a função PURGE ((TOQ) (LILIED)). Ao fazer isso, todos os parâmetros relacionados com os gráficos serão excluidos.

Pressione (PR) para verificar se as variáveis foram realmente excluidas.

Tentaremos plotar a função $f(\theta) = 2(1-\sin(\theta))$, conforme a seguir:

- Primeiro, certifique-se de que a medida do ângulo da sua calculadora seja configurada para radianos.
- Pressione (1) 20/30 simultaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.

• Pressione 👽 e digite:

- o cursor está agora no campo Indep. Pressione \square para alterar a variável independente para θ .
- Pressione (NXT) Para retornar aa o visor normal da calculadora.
- Pressione simultaneamente se estiver no modo RPN para acessar a janela PLOT (neste caso será chamado de janela PLOT – POLAR).

Nota: A H-VIEW e V-VIEW determinam apenas as escalas da janela do visor e suas faixas não são relacionadas a faixa de valores da variável independente neste caso.

- Altere o valor Indep Low para 0 e High value para 6.28 ($\approx 2\pi$) usando:
- Pressione IIII para plotar a função de coordenadas naturais. O resultado é uma curva com formato de coração. Esta curva é conhecida como um cardioide (cardios em grego).

- Pressione para recuperar o menu. Pressione para recuperar o menu. Pressione para recuperar o primeiro menu de gráficos original.
- Pressione NXT para retornar ao ambiente PLOT WINDOW. Pressione NXT para retornar ao visor normal da calculadora.

Neste exercício inserimos a equação a ser plotada diretamente na janela to PLOT SETUP. Podemos também inserir as equações para plotagem usando a janela, ex. inserir as equações para plotagem usando a janela PLOT, ex. simultamenamente se estiver no modo RPN usando 숙 🚈 . Por exemplo, quando você pressiona 숙 🚈 depois de terminar o exercício anterior, obterá a equação ' $2*(1-SIN(\theta))$ ' ressaltada. Digamos que queremos plotar também a função $2*(1-COS(\theta))'$ juntamente com a equação anterior.

- Pressione e digite 2 × 5 / / / COS ALPHA P T ENTER para inserir a nova equação.
- Pressione TTT DTT para ver as duas novas equações plotadas na mesma figura. O resultado são as duas cardioides de interseção. ressione para retornar ao visor normal da calculadora.

Plotar curvas cônicas

A forma mais geral de curva cônica no plano x-y é: Ax²+By²+Cxy+Dx+Ey+F = 0. Reconhecemos também como equações cônicas dadas na forma caônica para as figuras seguintes:

círculo:

 $(x-x_o)^2+(y-y_o)^2=r^2$ $(x-x_o)^2/\alpha^2+(y-y_o)^2/b^2=1$ elípse:

 $(y-b)^2 = K(x-a) \text{ or } (x-a)^2 = K(y-b)$ parábola:

 $(x-x_0)^2/\alpha^2 + (y-y_0)^2/b^2 = 1$ or xy = K, • hipérbole:

onde x_o , y_o , a, b e K são constantes.

O nome curvas cônicas é devido a estas figuras (círculo,s elípses, parábolas ou hipérboles) e resultam da insterseção de um plano com um cone. Por exemplo, um círculo é a interseção de um cone com um plano perpendicular para o eixo principal do cone.

A calculadora tem a capacidade de plotar uma ou mais curvas cônicas selecionando Conic como a função TYPE no ambiente PLOT. Certifique-se de excluir as variáveis PPAR e EQ antes de continuar. Por exemplo, vamos armazenar a lista de equações:

$$\{ (X-1)^2 + (Y-2)^2 = 3', (X^2/4 + Y^2/3 = 1') \}$$

na variável EQ.

Estas equações reconhecemos como aquelas de um círculo centrado em (1,2) com o raio $\sqrt{3}$ e de uma elípse centrada em (0,0) com os comprimentos semieixos a = 2 e $b = \sqrt{3}$.

- Insira o ambiente PLOT pressionabdo (1) 2030 simultaneamente se estiver no modo RPN e selecione Conic como o TYPE. A lista de equações serão listadas no campo EQ.
- Certifique de que a variável independente (Indep) seja configurada para 'X' e a variável dependente (Depnd) para 'Y'.
- Pressione (NXT) para retornar ao visor normal da calculadora.
- Insira o ambiente PLOT WINDOW pressionando (pressione-as simultaneamente se estiver no modo RPN).
- Altere Indep Low: e High: os campos usando NAT INVILLEM enquanto cada um destes campos é ressaltado. Selecione a opção Reset value depois de pressionar INVILLEM Pressione Pressione Pressione Pressione Pressione Pressione Pressione NAT para retornar ao menu principal.
- Plotar o gráfico: EXE DXII.

Nota: As faixas H-View e V-View foram selecionadas para mostrar a interseção das duas curvas. Não existe regra geral para selecionar estas faixas, exceto aquela baseada no que conhecemos sobre as curvas. Por exemplo, para as equações mostradas acima, sabemos que o círculo se extenderá de -3+1=-2 to 3+1=4 na x e de -3+2=-1 para 3+2=5 na y. Além disso, a elípse que é centrada na origem (0,0), se extenderá de -2 até 2 na x, e de $-\sqrt{3}$ para $\sqrt{3}$ na y.

Observe que para o círculo e a elípse a região correspondente aos extremos da esquerda e direita das curvas não são plotadas. Este é o caso com todos os círculos ou elípses plotadas usando Conic como o tipo TYPE.

- Para ver os símbolos: IIII (NXT) IIIII IIIII
- Para recuperar o menu: NXT NXT IIII
- Para estimar as coordenadas do ponto de interseção, pressione a tecla do menu ((1992)) e mova o cursor tão próximo quanto possível destes pontos usando as teclas de seta. As coordenadas do cursor são mostradas no visor. Por exemplo, o ponto esquerdo de interseção é próximo de (-0,692 e 1,67) enquanto a interseção direita é próxima de (1,89 e 0,5).

- Para recuperar o menu e retornar ao ambiente PLOT, pressione
 NXT IIIII.
- Para retornar ao visor normal da calculadora pressione MXT WWW.

Plotagens paramétricas

As plotagens paramétricas no plano são estas plotagens cujas coordenadas são geradas através do sistema de equações x=x(t) e y=y(t), onde t é conhecido como o parâmetro. Um exemplo de tal gráfico é a trajetória de um projétil, $x(t)=x_0+v_0$ ·COS θ_0 ·t, $y(t)=y_0+v_0$ ·sin θ_0 ·t $-\frac{1}{2}\cdot g$ ·t². Para plotar

as equações como estas que envolve os valores da constante x_0 , y_0 , v_0 , e θ_0 , é necessário armazenar os valores destes parâmetros nas variáveis. Para desenvolver este exemplo, crie um subdiretório chamado 'PROJM' para Movimento de projétil e dentro deste subdiretório armazene as variáveis seguintes: X0=0, Y0=10, V0=10, V0=10

$$X(t) = X0 + V0*COS(\theta 0)*t$$

 $Y(t) = Y0 + V0*SIN(\theta 0)*t - 0.5*g*t^2$

que adicionará as variáveis 🚟 e 🚟 as etiquetas da tecla do menu virtual.

Para produzir o próprio gráfico, siga estas etapas:

- Pressione (1) 20/30 simuiltaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Altere TYPE para Parametric pressionando WWW TYPE parametric pressionando WW TYPE
- Pressione e digite 'X(t) + i*Y(t)' para definir a plotagem paramétrica similar a esta da variável complexa. (As partes real e imaginária da variável complexa correspondem às coordenadas x e y da curva).
- O cursor está agora no campo Indep. Pressione APPA (T) PRESSIONE para alterar a variável independente para t.
- Pressione NXT para retornar ao visor normal da calculadora.
- Pressione simultaneamente se estiver no modo RPN para acessar a janela PLOT (neste caso será chamado de janela PLOT-PARAMETRIC).
 Em vez de alterar as visões horizontal e vertical primeiro, conforme feito com os outros tipos de plotagem, definiremos os valores inferior e superior da variável independentes primeiro conforme a seguir:
- Selecione o campo Indep Low pressionando 🔻 🔻 . Altere este valor para 🕖 🚾 . Depois, altere o valor de High para 2 . Insira 🕖 . Imperior para o valor Step (ex. etapa = 0.1).

Nota: Através destas configurações estamos indicando que o parâmetro t tomará os valores de t = 0, 0.1, 0.2, ..., etc., até alcançar o valor de 2.0.

 Pressione Isto gerará os valores automáticos das faixas H-View e V-View baseados nos valores da variável independente t e as definições de X(t) e Y(t) usadas. O resultado será:

- Pressione TITE TITT para desenhar a plotagem paramétrica.
- Pressione **TITI** Para ver o gráfico com as etiquetas. Os parâmetros da janela são tais que você apenas vê metade das etiquetas no eixo x.

- Pressione NXT para recuperar o menu. Pressione NXT para recuperar o menu de gráficos original.
- Pressione (AMI) para determinar as coordenadas de qualquer ponto no gráfico. Use e mova o cursosr ao redor da curva. No fundo do visor verá o valor do parâmetro t e as coordenadas do cursor como (X,Y).
- Pressione NAT Para retornar para o ambiente PLOT WINDOW. Depois, pressione N ou NAT para retornar ao visor normal da calculadora.

A revisão de suas etiquetas das teclas mostra que você agora tem as seguintes variáveis: t, EQ, PPAR, Y, X, g, θ 0, V0, Y0, X0. Variáveis t, EQ e PPAR são geradas pela calculadora para armazenar os valores do parâmetro t da equação a ser plotada EQ (que contém 'X(t) + I*Y(t)') e os parâmetros. As outras variáveis contêm os valores das constantes usadas nas definições de X(t) e Y(t).

Gerar uma tabela para as equações paramétricas

Em um exemplo anterior geramos uma tabela de valores (X,Y) para uma expressão da forma Y=f(X), ex. um tipo <u>Função</u> de gráfico. Nesta seção, apresentamos o procedimento para gerar uma tabela correspondente para uma plotagem paramétrica. Para este objetivo, tiraremos vantagem das equações paramétricas definidas no exemplo acima.

- Primeiro, acessemos a janela TABLE SETUP pressionando TRUST simultaneamente se estiver no modo RPN. Para a variável independente altere o Starting value para 0.0 e o Step value para 0.1. Pressione
- Gere a atabela pressionando simultaneamente se estiver no modo RPN, A tabela resultante tem três colunas representando o parâmetro t e as coordenadas dos pontos correspondentes. Para esta tabela as coordenadas são marcadas X1 e Y1.

- Use as teclas de seta ① D 🖎 👽 para mover ao redor da tabela.
- Pressione ov para retornar ao visor normal da calculadora.

Este procedimento para criar uma tabela correspondente para o tipo atual de plotagem pode ser aplicado a outros tipos de plotagem.

Plotar a solução para equações diferenciais simples

A plotagem de uma equação diferencial simples pode ser obtida selecionado $Diff\ Eq\ no\ campo\ TYPE\ do\ ambiente\ PLOT\ SETUP\ conforme\ a\ seguir: suponha que queremos plotar <math>x(t)$ da equação diferencial $dx/dt=exp(-t^2)$ com as condições iniciais: x=0 em t=0. A calculadora permite a plotagem da solução de equações diferentes da forma Y'(T)=F(T,Y). Para nosso caso, deixamos $Y \rightarrow x$ e $T \rightarrow t$ portanto $F(T,Y) \rightarrow f(t,x)=exp(-t^2)$.

Antes de plotar a solução, x(t), para t = 0 a 5, exclua as variáveis EQ e PPAR.

- Pressione 🕣 20/30 simuiltaneamente se estiver no modo RPN para acessar paa a janela PLOT SETUP.
- Altere TYPE para Diff Eq.
- O cursor está agora no campo H-Var. Deve mostrar H-Var:0 e também V-Var:1. Este é o código usado pela calculadora para identificar as variáveis a serem plotadas. H-Var:0 significa a variável independente (a ser selecionada posteriormente) será plotada no eixo horizontal. Além disso, V-Var:1 significa a variável dependente (nome padrão "Y') será plotada no eixo vertical.
- Pressione ▼. O cursor está agora no campo Indep. Pressione

 P APHA ← 1 PRESIONE para alterar a variável independente para t.
- Pressione MXT TIME para retornar ao visor normal da calculadora.

- Pressione simultaneamente se estiver no modo RPN para acessar a janela PLOT (neste caso será chamada de janela PLOT WINDOW – DIFF EQ).
- Altere os parâmetros H-VIEW e V-VIEW para ler: H-View: -1 5,
 V-View: -1 1.5
- Altere o valor Init para 0 e Final value para 5 usando: 0
- Values Step e Tol representam a etapa na variável independente e a tolerância para a convergência a ser usada pela solução numérica. Deixemos estes valores com as suas configurações padrões (se a palavra default não for mostrada na etapa: campo, use XXT IMMI para reiniciar este valor para seu valor padrão. Pressione XXT para retornar ao menu principal). Pressione 🔻.
- O valor Init-Soln representa o valor inicial da solução para iniciar o resultado numérico. Para o caso presente, temos as condições iniciais x(0) = 0, assim, é necessário alterar este valor para 0,0 usando 0
- Pressione TITE DATE para plotar a solução para a equação diferencial.
- Pressione TITE IIII para ver o gráfico com as etiquetas.

- Pressione NXT para recuperar o menu. Pressione NXT para recuperar o menu de gráficos original.
- Quando observamos o gráfico sendo plotado, observará que o gráfico não é muito regular. Isto acontece porque o plotador está usando uma escala de tempo que é muito grande. Para tornar o gráfico mais regular use a escada de 0,1. Tente as seguintes teclas:

(horizontal) e 1 (vertical). Estas são as definições para os eixos conforme dado no visor PLOT WINDOW (veja acima), ex. H-VAR (t): 0 e V-VAR(x): 1.

- Pressione NXT NXT TEET para recuperar o menu e retornar ao ambiente PICT.
- Pressione para retornar para o ambiente PLOT WINDOW.
 Pressione para retornar ao visor normal da calculadora.

Outros detalhes sobre como usar as soluções gráficas de equações diferenciais são apresentados no capítulo 16.

Plotagens verdadeiras

Plotagens verdadeiras são usadas em plotagens bidimensionais de regiões que atendem uma certa condição matemática que pode ser ou verdadeira ou falsa. Por exemplo, suponha que queira plotar a regição para $X^2/36 + Y^2/9 < 1$,

faça o seguinte:

- Pressione (1) 20/30 simuiltaneamente se estiver no modo RPN para acessar paa a janela PLOT SETUP.
- Altere TYPE para Truth.
- Pressione digite '(X^2/36+Y^2/9 < 1)', '(X^2/16+Y^2/9 > 1)' para definir as condições a serem plotadas.
- O cursor está agora no campo Indep. Deixe isso como 'X' se já tiver configurado para esta variável ou altere-o para 'X' se for necessário.

Nota: se as faixas da janela não forem configuradas para os valores padrões, a forma mais rápida de reajustá-los é usando (NAT) [323] (selecione Reset all) [323] (NAT).

- Pressione TITE IIII para desenhar a plotagem Truth. Dado que a calculadora gera amostras do domínio total de plotagem, ponto a ponto, pode levar alguns minutos para produzir uma plotagem completa. A plotagem atual deve produzir uma elípse sombreada de semi-eixos 6 e 3 (em x e y, respectivamente) centrados na origem.
- Pressione TITE NAT TITELLE para ver o gráfico com as etiquetas. Os parâmetros da janela são tais que você apenas vê metade das etiquetas no eixo x. Pressione NAT para recuperar o menu. Pressione NAT TITELLE para recuperar o menu de gráficos original.
- Pressione (ﷺ) para determinar as coordenadas de qualquer ponto no gráfico. Use as teclas de seta para mover o cursor em volta da regição plotada. No fundo do visor você verá o valor das coordenadas do cursor como (X,Y).
- Pressione NXT Para retornar ao ambiente PLOT WINDOW. Depois, pressione ON OU NXT para retornar ao visor normal da calculadora.

Você tem mais de uma condição plotada ao mesmo tempo se multiplicar as condições. Por exemplo, para plotar o gráfico dos pontos para o qual $X^2/36 + Y^2/9 < 1$ e $X^2/16 + Y^2/9 > 1$, use o seguinte:

- Pressione (1) 20/30 simultaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Pressione digite '(X^2/36+Y^2/9 < 1)· (X^2/16+Y^2/9 > 1)' para definir as condições a serem plotadas.
- Pressione para desenhar a plotagem verdadeira. Novamente, é importante esperar enquanto a calculadora produz o gráfico. Se

quiser interromper a plotagem, pressione w uma vez. Depois pressione w uma vez.

Plotar histogramas, gráficos de barra e de dispersão

Histogramas, gráficos de barra e gráficos de dispersão são usados para plotar dados discretos armazenados na variável reservada ΣDAT . Esta variável é usada não apenas para estes tipos de plotagens, como também para todos os tipos de aplicações estatísticas conforme mostrado no capítulo 18. Realmente, o uso de plotagens de histogramas é adiada até que chegar este capítulo para a plotagem de um histograma que exige fazer um agrupamento de dados e a análise da freqüência antes da plotagem atual. Nesta seção mostraremos como carregar os dados na variável ΣDAT e como plotar os gráficos de barra e de dispersão.

Usaremos os seguintes dados para plotar os gráficos de barra e de dispersão:

Х	У	Z
3.1	2.1	1.1
3.6	3.2	2.2
4.2	4.5	3.3
4.5	5.6	4.4
4.9	3.8	5.5
5.2	2.2	6.6

Gráficos de barra

Primeiro, certifique-se de que o CAS de sua calculadora esteja no modos Exact. A seguir, insira os dados mostrados acima como uma matriz, ex.

$$[[3.1,2.1,1.1],[3.6,3.2,2.2],[4.2,4.5,3.3],$$
 $[4.5,5.6,4.4],[4.9,3.8,5.5],[5.2,2.2,6.6]$

para armzená-lo no ΣDAT , use a função $STO\Sigma$ (disponível no catálogo de função, P AT). Pressione VAR para recuperar seu menu de variáveis. A

tecla marcada ΣDAT está disponível na sua pilha. A figura abaixo mostra a armazenagem desta matriz no modo ALG:

Para produzir o gráfico:

- Pressione <u>12030</u> simultaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Altere TYPE para Bar.
- Uma matriz será mostrada no campo ΣDAT . Esta é a matriz que armazenamos anteriormente no ΣDAT .
- Ressalte a Co1: campo. Este campo permite que você escolha a coluna de ΣDAT que está sendo plotada. O valor padrão é 1. Mantenha-a para plotar a coluna 1 em ΣDAT.
- Pressione MXT para retornar ao visor normal da calculadora.
- Pressione simultaneamente se estiver no modo RPN para acessar a janela PLOT WINDOW.
- Altere V-View para ler, V-View: 0 5.
- Pressione Time para desenhar o gráfico de barra.

• Pressione para retornar ao ambiente PLOT WINDOW. Depois, pressione ou ou visor normal da calculadora.

O número de barras a ser plotadas determina a largura da barra. H- e V-VIEW são configurados para 10, por padrão. Alteramos V-VIEW para acomodar melhor o valor máximo na coluna 1 de ΣDAT . Os gráficos de barra são úteis ao plotar dados categóricos (ex. não numérico).

Suponha que você queira plotar os dados na coluna 2 da matriz ΣDAT:

- Pressione (1) 20/30 simuiltaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Pressione v para ressaltar o campo Col: e digite 2 seguido por MXT WILL.
- Pressione 숙 🚧 simultaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Altere V-View para ler, V-View: 0 6
- Pressione **EXECUTE**.

• Pressione para retornar ao visor PLOT WINDOW e depois retorne ao visor normal da calculadora.

Gráficos de dispersão

Usaremos a mesma matriz ΣDAT para produzir os gráficos de dispersão. Primeiro, plotaremos os valores de y e x, depois estes de y e z, conforme a seguir:

- Pressione 숙 2030 simuiltaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Altere TYPE para Scatter.
- 1. Pressione para ressaltar o campo **Cols**: Insira para selecionar a coluna 1 como X e column 2 como Y no gráfico de dispersão Y- e -X.
- Pressione NXT para retornar ao visor normal da calculadora.

- Pressione simultaneamente se estiver no modo RPN para acessar a janela PLOT WINDOW.
- Altere a janela de plotagem padrão para ler: H-View: 0 6, V-View: 0 6.
- Pressione Pres

- Pressione NXT NXT IIII para deixar o ambiente EDIT.
- Pressione para retornar ao ambiente PLOT WINDOW. Depois, pressione ou ou para retornar ao visor normal da calculadora.

Para plotar y e z, use:

- Pressione (1) 20/30 simuiltaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Pressione NXT para retornar ao visor normal da calculadora.
- Pressione simultaneamente se estiver no modo RPN para acessar a janela PLOT WINDOWS.
- Altere as faixas da janela de plotagem para ler: H-View: 0 7, V-View: 0 7.
- Pressione Pressione para desenha o gráfico de barra. Pressione para visualizar a plotagem livre pelo menu e com as etiquetas de identificação.

- Pressione NXT NXT III para deixar o ambiente EDIT.
- Pressione para retornar ao ambiente PLOT WINDOW. Depois, pressione ou ou para retornar ao visor normal da calculadora.

Campos de inclinação

Os campos de inclinação são usados para visualizar as soluções para uma equação diferencial da forma y' = f(x,y). Basicamente, o que é apresentado na plotagem são segmentos tangenciais para as curvas de solução, desde que y' = dy/dx, avaliados em qualquer ponto (x,y), representa a inclinação da linha tangente no ponto (x,y).

Por exemplo, para visualizar a solução para a equação diferencial y' = f(x,y) = x+y, use o seguinte:

- Pressione (1) 20/30 simuiltaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Altere TYPE para slopefield.
- Pressione ▼ e digite 'X+Y' ■□□■.
- Certifique-se de que 'X' seja selecionado como Indep: e 'Y' como Depnd:.
- Pressione para retornar ao visor normal da calculadora.
- Pressione simultaneamente se estiver no modo RPN para acessar a janela PLOT WINDOW.
- Mantenha as faixas da janela de plotagem para ler: X-Left:-5, X-Right:5, Y-Near:-5, Y-Far: 5
- Pressione Pre

- Pressione NXT NXT III para deixar o ambiente EDIT.
- Pressione para retornar ao ambiente PLOT WINDOW. Depois, pressione ou ou visor normal da calculadora.

Se puder reproduzir o gráfico campo de declive por escrito, você pdoe traçar as linhas manualmente que são tangentes aos segmentos de linha mostrados no gráfico. Estas linhas constituem linhas de y(x,y) = constante para a solução de <math>y' = f(x,y). Assim, os campos de declive são ferramentas úteis paa visualizar particularmente as equações difíceis de serem resolvidas.

Tente também um gráfico de campo de inclinação para a função $y' = f(x,y) = -(y/x)^2$, usando:

- Pressione (1) 20/30 simultaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Altere TYPE para Slopefield.
- Pressione ▼ e digite '- (Y/X)^2'
- Pressione **Pressione** para desenhar o gráfico campo de inclinação. Pressione **Pressione** para visualizar a plotagem livre pelo menu e com as etiquetas de identificação.

- Pressione NXT NXT IIII para sair o ambiente EDIT.
- Pressione para retornar ao ambiente PLOT WINDOW. Depois, pressione ou ou para retornar ao visor normal da calculadora.

Plotagens 'Fast 3D'

Plotagens Fast 3D são usadas para visualizar superfícies tridimensionais representadas por equações da forma z = f(x,y). Por exemplo, se quiser visualizar $z = f(x,y) = x^2 + y^2$ podemos usar o seguinte:

- Pressione (1) 2013D simuiltaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Altere TYPE to Fast3D.
- Pressione v e digite 'X^2+Y^2'
- Certifique-se de que 'X' seja selecionado como Indep: e 'Y' como Depnd:.
- Pressione MXT para retornar ao visor normal da calculadora.
- Pressione simultaneamente se estiver no modo RPN para acessar a janela PLOT WINDOW.
- Mantenha as faixas da janela de plotagem padrão para ler: X-Left:-1, X-Right:1, Y-Near:-1, Y-Far: 1, Z-Low: -1, Z-High: 1, Step Indep: 10, Depnd: 8

Nota: A etapa Indep: e Depnd: os valores representam o número de linhas de grade usadas na plotagem. Quanto maior estes números mais lento o gráfico é produzido, embora o tempo utilizado para a geração de gráfico seja relativamente rápido. No presente manteremos os valores padrões de 10 e 8 para data de etapa.

Pressione Pre

- Pressione para retornar ao ambiente PLOT WINDOW.
- Altere para ler: Step Indep: 20 Depnd: 16
- Pressione TITE UIII para ver a plotagem de superfície. Visualizações das amostras:

- Pressione para retornar ao ambiente PLOT WINDOW.
- Pressione on ou war para retornar ao visor normal da calculadora.

Tente também uma plotagem para a superfície $z = f(x,y) = \sin(x^2+y^2)$

- Pressione <u>12030</u> simultaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Pressione v e digite 'SIN(X^2+Y^2)'
- Pressione Table Data para extrair plotar.
- Quando feito, Pressione EXXII.
- Pressione para retornar a PLOT WINDOW.
- Pressione ON, ou NXT QUE, para retornar à exposição normal da calculadora.

Plotagens aramadas

Plotagens aramadas são plotagens de superfícies tridimensionais descritas por z = f(x,y). Diferente de de plotagens 3D rápidas, as plotagens aramadas são plotagens estáticas. O usuário pode escolher o ponto de visão para a plotagem, ex. o ponto do qual a superfície é vista. Por exemplo, para produzir uma plotagem aramada para a superfície z = x + 2y - 3, use o seguinte:

• Pressione (1) 20/30 simuiltaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.

- Altere TYPE to Wireframe.
- Pressione ▼ e digite 'X+2*Y-3' ■□□■.
- Certifique-se de que 'X' seja selecionado como Indep: e 'Y' como Depnd: variáveis.
- Pressione NXT Para retornar ao visor normal da calculadora.
- Pressione simultaneamente se estiver no modo RPN para acessar a janela PLOT WINDOW.
- Mantenha as faixas da janela de plotagem padrão para ler: X-Left:-1, X-Right:1, Y-Near:-1, Y-Far: 1, Z-Low: -1, Z-High: 1, XE:0,YE:-3, ZE:0, Etapa Indep: 10 Depnd: 8

As coordenadas XE, YE, ZE significa "coordenadas de posição," ex. as coordenadas de onde um observador vê a plotagem. Os valores mostrados são os valores padrões. Etapa Indep: e Depnd: os valores representam o número de linhas de grade usada na plotagem. Quando maior estes números, mais lento será a produção do gráfico. No presente manteremos os valores padrões de 10 e 8 para os dados de etapa.

- Pressione **Pressione** para desenhar a superfície tridimensional. O resultado é uma imagem aramada da superfície.
- Pressione (NXT) (NXT)

- Pressione NXT NXT III para retornar ao ambiente PLOT WINDOW.
- Altere os dados das coordenadas de posição para ler: XE:0 YE:-3
- Pressione TTT para ver a plotagem de superfície.

• Pressione (NXT) (1311) para ver o gráfico com as etiquetas e faixas.

Esta versão do gráfico ocupa mais área no visor do que a anterior. Podemos alterar o ponto de visão novamente para ver outra versão do gráfico.

- Pressione NXT NXT III para retornar ao ambiente PLOT WINDOW.
- Altere os dados de etapa para ler: XE:3 YE:3 ZE:3
- Pressione Pressione para ver a plotagem de superfície. Desta vez o centro da plotagem está localizada em direção ao lado direito do visor.

- Pressione para retornar ao ambiente PLOT WINDOW.
- Pressione ov ou NXT 222, para retornar para o visor normal da calculadora.

Tente também uma Plotagens aramadas para a superfície $z = f(x,y) = x^2+y^2$

- Pressione 4 2030, simultaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Pressione v e digite 'X^2+Y^2'
- Pressione para desenhar a plotagem de campo do declive.
 Pressione para visualizar a plotagem livre do menu e com os símbolos de identificação.

- Pressione NXT NXT Para sair o ambiente EDIT.
- Pressione para retornar ao ambiente PLOT WINDOW. Depois, pressione ov ou wisor normal da calculadora.

Plotagens de Contorno Ps

Plotagens de contorno Ps são plotagens de contorno de superfície tridimensionais descritas por z=f(x,y). Os contornos produzidos são projeções de superfícies de nível z= constante no plano the x-y. Por exemplo, para produzir a plotagem de contorno Ps para a superfície $z=x^2+y^2$, use o seguinte:

- Pressione (1) 20/30 simultaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Altere TYPE para Ps-Contour.
- Pressione v e digite 'X^2+Y^2'
- Certifique-se de que 'X' seja selecionado como Indep: e 'Y' como Depnd: variáveis.
- Pressione (NXT) para retornar ao visor normal da calculadora.
- Pressione (1) WN, simultaneamente se estiver no modo RPN, para acessar a janela PLOT WINDOW.
- Mantenha as faixas da janela de plotagem padrão para ler: X-Left:-2, X-Right:2, Y-Near:-1 Y-Far: Step Indep: 10 Depnd: 8
- Pressione IIIII para desenhar a plotagem. Esta operação levará algum tempo, seja paciente. O resultado é uma plotagem de contorno da superfície. Observe que o contorno não é necessariamente contínuo e não apresentará uma boa imagem das superfícies dos níveis da função.
- Pressione **TITI** para ver o gráfico com as etiquetas e faixas.

- Pressione NXT NXT IIII para retornar ao ambiente PLOT WINDOW.
- Pressione on ou with para retornar para o visor normal da calculadora.

Tente também uma plotagem de Contorno Ps para a superfície $z = f(x,y) = \sin x \cos y$

- Pressione 4 2030, simultaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Pressione ▼ e digite 'SIN(X)* COS(Y)' ■□□■.
- Pressione para desenhar a plotagem de campo do declive.
 Pressione para visualizar a plotagem livre do menu e com os símbolos de identificação.

- Pressione NXT NXT Dara sair o ambiente EDIT.
- Pressione para retornar ao ambiente PLOT WINDOW. Depois, pressione ou war para retornar ao visor normal da calculadora.

Plotagens de divisão Y

Ploagens de divisão Y são plotagens animadas de z-vs.-y para valores diferentes de x da função z = f(x,y). Por exemplo, para produzir a plotagem de divisão Ps para a superfície $z = x^3$ -xy 3 use o seguinte:

- Pressione simultaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Altere TYPE para Y-Slice.
- Pressione v e digite 'X^3+X*Y^3'
- Certifique-se de que 'X' seja selecionado como Indep: e 'Y' como Depnd:.
- Pressione NXT Tara para retornar ao visor normal da calculadora.
- Pressione , simultaneamente se estiver no modo RPN, para acessar a janela PLOT WINDOW.
- Mantenha as faixas da janela de plotagem padrão para ler: X-Left:-1, X-Right:1, Y-Near:-1, Y-Far: 1, Z-Low:-1, Z-High:1, Step Indep: 10 Depnd: 8
- Pressione IIIII para desenhar a superfície tridimensional. Verá que a calculadora produz uma série de curvas no visor que desaparecerá imediatamente. Quando a calculadora termina de produzir todas as curvas de divisão y, então irá automaticamente animar as curvas diferentes. Uma das curvas é mostrada abaixo.

- Pressione on para interromper a animação. Pressione retornar ao ambiente PLOT WINDOW.
- Pressione on ou NXT WIII, para retornar para o visor normal da calculadora.

Tente também uma Plotagens de Contorno Ps para a superfície $z = f(x,y) = (x+y) \sin y$

- Pressione (1) 20/30, simultaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Pressione ▼ e digite '(X+Y)*SIN(Y)' ■□□■.
- Pressione TITE UTIL para produzir a animação da divisão Y.
- Pressione ON para interromper a animação.
- Pressione para retornar ao ambiente PLOT WINDOW. Depois, pressione ov ou wisor normal da calculadora.

Plotagens mapa de grade

As plotagens mapa de grade produz uma grade de curvas ortogonais que descreve uma função de uma variável complexa da forma w = f(z) = f(x+iy), onde z = x+iy é uma variável complexa. As funções plotadas correspondem a parte real e imaginária de $w = \Phi(x,y) + i\Psi(x,y)$, ex. elas representam as curvas $\Phi(x,y) = \text{constante} \in \Psi(x,y) = \text{constante}$. Por exemplo, para produzir a plotagem de do mapa de grade para a função $w = \sin(z)$, use o seguinte:

- Pressione (1) 20/30 simuiltaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Altere TYPE para Gridmap.
- Pressione v e digite 'SIN(X+I*Y)'
- Certifique-se de que 'X' seja selecionado como Indep: e 'Y' como Depnd: variáveis.
- Pressione para retornar ao visor normal da calculadora.
- Pressione , simultaneamente se estiver no modo RPN, para acessar a janela PLOT WINDOW.
- Mantenha as faixas da janela de plotagem padrão para ler: X-Left:-1, X-Right:1, Y-Near:-1 Y-Far: 1, XXLeft:-1 XXRight:1, YYNear:-1, yyFar: Step Indep: 10 Depnd: 8
- Pressione IIIII para desenha a plotagem verdadeira. O resultado é uma grade de funções correspondentes as partes real e imaginária da função complexa.
- Pressione **TITI** NXT **ITIT** para ver o gráfico com as etiquetas e faixas.

- Pressione NXT NXT III para retornar ao ambiente PLOT WINDOW.
- Pressione on ou NXT 222, para retornar para o visor normal da calculadora.

Outras funções de uma variável complexa que vale a pena tentar para os mapas gridmap são:

```
(1) SIN((X,Y))
                  ex. F(z) = \sin(z)
                                         (2)(X,Y)^2
                                                               ex. F(z) = z^{2}
(3) EXP((X,Y))
                  ex. F(z) = e^{z}
                                         (4) SINH((X,Y))
                                                               ex. F(z) = \sinh(z)
(5) TAN((X,Y)) ex. F(z) = tan(z)
                                         (6) ATAN((X,Y))
                                                               ex. F(z) = tan^{-1}(z)
(7)(X,Y)^3
                  ex. F(z) = z^{3}
                                         (8) 1/(X,Y)
                                                               ex. F(z) = 1/z
                  ex. F(z) = z^{1/2}
(9) √ (X,Y)
```

Plotagens de superfície paramétrica

Plotagens de superfície Pr (superfície paramétrica) são usadas para plotar a superfície tridimensional cujas coordenadas (x,y,z) são descritas por x = x(X,Y), y = y(X,Y), z=z(X,Y), onde $X \in Y$ são parâmetros independentes.

Nota: As equações x = x(X,Y), y = y(X,Y), z=z(X,Y) representam uma descrição paramétrica de uma superfície. X e Y são os parâmetros independentes. A maioria dos livros usam (u,v) como os parâmetros em vez de (X,Y). Assim, a descrição paramétrica de uma superfície é dada como x = x(u,v), y = y(u,v), z=z(u,v).

Por exemplo, para produzir uma plotagem de superfície Pr para a superfície $x = x(X,Y) = X \sin Y$, $y = y(X,Y) = x \cos Y$, z=z(X,Y)=X, use o seguinte:

- Pressione (1) 2013D simuiltaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Altere TYPE para Pr-Surface.
- Pressione ▼ e digite '{X*SIN(Y), X*COS(Y), X}' ■□□■.
- Certifique-se de que 'X' seja selecionado como Indep: e 'Y' como Depnd: variáveis.
- Pressione NXT para retornar ao visor normal da calculadora.
- Pressione , simultaneamente se estiver no modo RPN, para acessar a janela PLOT WINDOW.
- Mantenha as faixas da janela de plotagem padrão para ler: X-Left:-1, X-Right:1, Y-Near:-1, Y-Far: 1, Z-Low: -1, Z-High:1, XE: 0, YE:-3, zE:0, Step Indep: 10 Depnd: 8
- Pressione Titel para desenhar a superfície tridimensional.

• Pressione TITE (NAT) Para ver o gráfico com as etiquetas.

- Pressione NXT NXT Para para retornar para o ambiente PLOT WINDOW.
- Pressione on ou war para retornar para o visor normal da calculadora.

A variável VPAR

A variável VPAR (Parâmetro de volume) contém a informação em relação ao "volume" usado para produzir um gráfico tridimensional. Portanto, você o verá produzido sempre que criar uma plotagem tridimensional tal como Fast3D, Wireframe ou Pr-Surface.

Desenho interativo

Sempre que produzirmos um gráfico bidimensional, encontramos no visor do gráfico uma tecla do menu virtual marcada [11]. Pressionar [11] produz um menu que inclui as seguintes opções (pressione [NT] para ver as funções adicionais):

Através dos exemplos acima, você terá a oportunidade de tentar as funções LABEL, MENU, PICT→ e REPL. Muitas das funções restantes, tais como DOT+, DOT-, LINE, BOX, CIRCL, MARK, DEL, etc., podem ser usadas para desenhar pontos, linhas, círculos, etc. no visor do gráfico, conforme descrito abaixo. Para ver como usar estas funções tentaremos os seguintes exercícios:

Primeiro, obtemos o visor dos gráficos correspondentes as seguintes instruções:

- Pressione (1) 20/30 simultaneamente se estiver no modo RPN para acessar a janela PLOT SETUP.
- Altere TYPE para Function, se for necessário
- Altere EQ para 'X'
- Certifique-se de que Indep: seja configurado para 'X' também
- Pressione MXT para retornar ao visor normal da calculadora.
- Pressione simultaneamente se estiver no modo RPN para acessar a janela PLOT (neste caso será chamado de janela PLOT POLAR).
- Pressione THE WIII para plotar a função.
- Pressione NXT NXT (ou REV)para recuperar o menu EDIT.

A seguir, ilustramos o uso de diferentes funções de desenho no visor de gráficos resultante. Eles exigem o uso do cursor e as teclas com as setas () para mover o cursor ao redor do visor de gráficos.

DOT+ e DOT-

Quando DOT+ for selecionado, os pixels serão ativados sempre que o cursor se move deixando para trás um traço da posição do cursor. Quando DOT-for selecionado, o efeito oposto ocorrer, ex. você move o cursor e os pixels serão excluídos.

Por exemplo, use as teclas para mover o cursor em qualquer direção no meio do primeiro quadrante do plano x-y, então pressione campo será selecionado (Presione e mantenha a tecla para ver a linha horizontal traçada. Agora pressione para selecionar esta opção (Pressione e mantenha a tecla para ver a linha que você acabou de traçar sendo excluida. Pressione quando tiver feito para desmarcar esta opção.

MARK

Este comando permite que o usuário configure um ponto de marca que pode ser usado para diversos objetivos, tais como:

- Iniciar a linha com o comando LINE ou TLINE
- Canto para o comando BOX
- Centro para o comando CIRCLE

Usar apenas o comando MARK deixa um x no local da marca (Pressione NAT) IIIII para vê-lo em ação).

LINE

Observe que o cursor no final desta linha está ativo indicando que a calculadora está pronta para plotar uma linha iniciando neste ponto. Pressione para mover o cursor para baixo, mais um cm e pressione rovamente. Agora você deve ter um ângulo reto tracedo pelos segmentos horizontal e vertical. O cursor ainda está ativo. Para desativá-lo, sem movêlo totalmente, pressione . O cursor retorna para sua forma normal (uma cruz) e a função LINE não está mais ativa.

TLINE

BOX

Este comando é usado para desenhar uma caixa no gráfico. Mova o cursor para uma área limpa do gráfico e pressione . Isto ressaltará o cursor. Mova o cursor com as teclas de setas para um ponto distante e na direção diagonal da sua posição atual. Pressione . Um retângulo é desenhado cujos pontos diagonais se juntam às posições final e inicial do cursor. A posição inicial da caixa ainda está marcada com x. Mova o cursor para outra posição e pressionar . Gerará uma nova caixa contendo o ponto inicial. Para desativar BOX mova o cursor para o ponto original onde BOX foi ativada e pressione .

CIRCL

Este comando produz um círculo. Marcar o centro do círculo com o comando MARK mova então o cursor para um ponto que será parte da área do círculo e pressione [133]. Par desativar CIRCL, reotorne o cursor para a posição MARK e pressione [133].

Tente este comando movendo o cursor para uma parte limpa do gráfico e pressione [172]. Mova o cursor para outro ponto e depois pressione [172]. Será desenhado um círculo que passa na MARK e passa através do último ponto.

LABEL

Pressinar Tilli coloca as etiquetas nos eixos x e y da plotagem atual. Esta característica foi usada extensivamente através deste capítulo.

DEL

Este comando é usado para remover as partes do gráfico entre as duas posições MARK. Mova o cursor para um ponto no gráfico e pressione Mova o cursor para outro ponto e depois pressione Depois pressione A seção do gráfico enquadrada entre as duas marcas será excluída.

ERASE

A função ERASE limpa a janela inteira do gráfico. Este comando está disponível no menu PLOT, como também nas janelas de plotagem acessíveis através das teclas do menu virtual.

MENU

Pressionar removerá as etiquetas do menu da tecla virtual para mostrar o gráfico livre delas. Paara recuperar as etiquetas pressione MT.

SUB

Use este comando para extrair um subconjunto de objeto de gráfico. O objeto extraído é colocado automaticamente na pilha. Selecione o subconjunto que você quer extrair colocando um MARK no ponto do gráfico movendo o cursor para o canto diagonal do retângulo incuindo o sugconjunto dos gráficos e pressione 3. Estas características podem ser usadas para mover as partes de um objeto de gráfico ao seu redor.

REPL

Este comando coloca o conteúdo de um objeto de gráfico atualmente no nível 1 da pilha no local do cursor da janela do gráfico. O canto esquerdo superior do objeto do gráfico a ser inserido será colocado na posição do cursor. Assim, se quiser um gráfico da pilha para preencher completamente a janela do gráfico, certifique-se de que o cursor seja colocado no canto esquerdo superior do visor.

PICT→

Este comando coloca uma cópia do gráfico atualmente na sua janela na pilha como um objeto de gráfico. O objeto de gráfico colocado na pilha pode ser salvo no nome da variável para a armazenamento ou outro tipo de manipulação.

$X,Y \rightarrow$

Este comando copia as coordenadas da posição atual do cursor, nas coordenadas do usuário na pilha.

Aplicar o zoom de aumento e redução na exibição de gráficos

Sempre que produzir um gráfico FUNCTION bidimensional interativamente, a primeira tecla do menu, marcada (permite que você acesse as funções que podem ser usadas para aplicar o zoom na exibição de gráficos. O menu ZOOM inclui as seguintes funções (pressione (NXT) para mover para o próximo menu):

Apresentamos cada uma das funções seguintes. É necessário produzir um gráfico conforme indicado no capítulo 12 ou com um dos programas listados anteriormente.

ZFACT, ZIN, ZOUT e ZLAST

Pressinar produz um visor de entrada que permite que você altere os fatores X e Y atuais. Os fatores X e Y relacionam as faixas de unidade

vertical e horizontal definidas pelo usário às suas faixas pixels correspondentes. Altere o H-Factor para ler 8. e pressione de le então o V-Factor para ler 2. e pressione Marque a opção Pecenter on cursor e pressione

De volta na exibição do gráfico, pressione 1. O gráfico é redesenhado com os novos fatores de escala vertical e horizontal centrados no local onde o cursor foi colocado enquanto matém o tamanho l PICT original (ex. o número original de pixels em ambas as direções). Para usar as teclas com as setas, role horizontal ou verticalmente tanto quanto for possível do gráfico ampliado.

Para diminuir, sujeito aos fatores H e V configurados com o ZFACT, pressione
Qualificación de la properción de la properció

você pode retornar sempres para a última janela do zoom usando ETE.

BOXZ

Aumentar e diminuir um dado gráfico pode ser feito usando a tecla BOXZ. Com BOXZ você selecionar o setor retangular (a "caixa") que você quer aplicar o zoom. Mova o cursor para um dos cantos da caixa (usando as teclas com as setas) e pressione setas. Usar as teclas com as setas novamente, move o cursor para o canto oposto da caixa de zoom desejada. O cursor traçará a caixa de zoom no visor. Quando a caixa de zoom desejada for selecionada, pressione selecionou para preencher o visor total.

Se pressionar agora a calculadora calculator diminuirá a caixa atual usando os fatores H e V que talvez não recuperem a visão do gráfico onde iniciou a operação da caixa de zoom.

ZDFLT, ZAUTO

Pressionar desenhará novamente a plotagem atual usando as faixas x e y, ex. -6.5 a 6.5 em x e -3.1 a 3.1 em y. O comando de productivo lado, cria a janela de zoom usando a faixa da variável (x) independente, porém ajustadno a faixa da variável (y) dependente para se ajustar a curva

(conforme quando você usa a função a na forma de entrada PLOT WINDOW (simultaneamente no modo RPN).

HZIN, HZOUT, VZIN e VZOUT

Estas funções aumentam e diminuem o visor dos gráficos na direção horizontal e vertical de acordo com os fatores H e V atuais.

CNTR

Centra a janela do gráfico com zoom no local atual do cursor. Os fatores de zoom usados são os fatores H e V atuais.

ZDECI

Zoom o gráfico para arredondar os limites do valor do intervalo x para um valor decimal.

ZINTG

Zoom o gráfico para que as unidades de pixel tornem-se as unidades definidas pelo usuário. Por exemplo, a janel PICT mínima tem 131 pixels. Ao usar ZINTG com o cursor no centro do visor a janela é ampliada para que o eixo x se extenda de –64.5 a 65.5.

ZSQR

Aumente o gráfico para que a escala de plotagem seja mantida em 1:1 ajustando a escala x, mantendo a escala y fixa, se a janela for maior e mais alta. Isto força um zoom proporcional

ZTRIG

Zoom o gráfico para que a escala x incorpore uma faixa de aproximadamente -3π a $+3\pi$, a faixa preferida para as funções trigonométricas.

Nota: Nenhuma destas funções são programáveis. Elas são apenas usadas de forma interativa. Não confunda o comando **EXIXI** no menu ZOOM com a

função ZFACTOR, que é usada para aplicações químicas e dinâmicas do gás (consulte o capítulo 3).

O menu e gráficos SYMBOLIC

o menu SYMBOLIC é ativado pressionando a tecla SYMB (quarta tecla a equerda na quarta linha da parte superior do teclado). Este menu fornece uma lista de menus relacionadas ao sistema algébrico do computador (Computer Algebraic System) ou CAS conforme descrita a seguir:

Todos exceto um destes menus estão disponíveis diretamente no teclado pressionado a combinação de tecla apropriada conforme a seguir. O capítulo do manual do usuário onde os menus são descritos é também listado:

ALGEBRA	\rightarrow _ALG (a tecla \bigcirc 4)	Cap. 5
ARITHMETIC	(a tecla 🕖)	Cap. 5
CALCULUS	\bigcirc (a tecla \bigcirc)	Cap. 13
SOLVER	(a tecla 7)	Сар. 6
TRIGONOMETRIC	\rightarrow TRIG (a tecla 8)	Cap. 5
EXP&LN	(a tecla 8)	Cap. 5

Menu SYMB/GRAPH

O submenu GRAPH dentro do menu SYMB inclui as seguintes funções:

DEFINE: a mesma sequência de teclas 🕤 🖭 (a tecla 2)

GROBADD: cola os dois objetos gráficos (GROBs) (consulte o capítulo 22)

PLOT(function): plota uma função, similar a 숙 20/30

PLOTADD(função): adiciona esta função a lista de funções para plotagem, similar a (7) 2030

Funções Plotagens..: a mesma de 🔄 20/30

SIGNTAB(função): a tabela de sinal de uma dada função mostra os intervalos da variação positiva e negativa, pontos zero e assimptotas infinitas.

TABVAL: tabela de valores para uma função TABVAR: tabela de variação de uma função

Exemplos das aplicações destas funções são mostrados abaixo.

PLOT(X^2-1) é similar a 숙 2030 com EQ: X^2 -1. Usar 🖼 💷 produz a plotagem:

PLOTADD(X^2-X) é similar a 숙 2030 mas adicionar esta função a EQ: X^2 -1. Usar 🚟 🎟 produz a plotagem:

TABVAL(X^2-1,{1, 3}) produz uma lista de valores {mín. máx.} da função no intervalo {1,3}, enquanto SIGNTAB(X^2-1) mostra o sinal da função no intervalo $(-\infty,+)$, com f(x) > 0 em $(-\infty,-1)$, f(x) <0, in (-1,1) e f(x) > 0 em $(1,+\infty)$.

TABVAR(LN(X)/X) produz a seguinte tabela de variação:

Uma interpretação detalhada da tabela de variação é mais fácil de seguir no modo RPN:

O resultado é um formato gráfico, mostrando a função original, F(X), a derivada F'(X) logo depois da derivação e da simplificação e finalmente uma tabela de variação. A tabela consite de duas linas marcadas no lado direito. Assim a linha superior representa o valor de X e a segunda os valores de F. Pontos de interrogação indica incerteza ou indefinição. Por exemplo, para X<0, LN(X) não é definida assim as linhas X mostram um ponto de interrogação no intervalo. Direito no zero (0+0) F é infinito para X = e, F = 1/e. F aumenta antes de alcançar este valor, conforme indicado pela seta para cima e diminui depos que este valor (X=e) ficar levemente maior do que zero (+:0) como X vai para infinito. Uma plotagem do gráfico é mostrada abaixo para ilustrar estas observações:

Função DRAW3DMATRIX

Esta função toma como argumento uma matriz $n \times m$, \mathbf{Z} , $= [z_{ij}]$ e os valores mínimos e máximos para a plotagem. Se você quiser selecionar os valores de v_{min} e v_{max} para conter os valores listados em \mathbf{Z} . A chamada geral para a função é DRAW3DMATRIX(\mathbf{Z} , v_{min} , v_{max}). Para ilustrar o uso desta função geramos primeiro uma matriz 6×5 using RANM($\{6,5\}$) e depois ative a função DRAW3DMATRIX, conforme mostrado abaixo:

A plotagem está no estilo da FAST3D. Visões diferentes de plotagem são mostradas a seguir:

Capítulo 13

Aplicações de cálculo

Neste capítulo discutiremos os aplicativos das funções da calculadora para as operações relacionadas com o cálculo, ex. limites, derivadas, integrais, série de potência, etc.

O menu CALC (Cálculo)

Muitas das diversas funções apresentadas neste capítulo são encontradas no menu CALC, disponível através da seqüência de tecla (associadas com a tecla). O menu CALC mostra as seguintes entradas:

a primeira das quatro opções neste menu são atualmente sub-menus que se aplicam a (1) derivadas e integrais, (2) limite e série de potência, (3) equações diferenciais e (4) gráficos. As funções nas entradas (1) e (2) serão apresentadas neste capítulo. As equações diferenciais, o objecto do item (3) são apresentadas no capítulo 16. As funções gráficas, o objeto do item (4), foram apresentados no final do capítulo 12. Finalmente, as entradas 5. DERVX e 6.INTVX são as funções para obter uma derivada e uma integral infinita para uma função da variável CAS padrão (geralmente 'X'). As funções DERVX e INTVX são discutidas em detalhes posteriormente.

Limites de derivadas

Os cálculos diferenciais lidam com derivadas ou taxas de mudança, de funções e suas aplicações na análise matemática. A derivada de uma função é definida como um limite da diferença de uma função como o aumento na variável independente tendendo a zero. Os limites são usados também para verificar a continuidade das funções.

Limite de função

A calculadora fornece a função *lim* para calcular os limites das funções. Esta função usa como entrada uma expressão representando uma função e o valor onde o limite deve ser calculado. A função *lim* está disponível através do catálogo de comando (CAL ALPHA () Ou através da opção 2. LIMITS & SERIES... do menu CALC (veja acima).

Nota: As funções disponíveis no menu LIMITS & SERIES são mostradas a seguir:

A função DIVPC é usada para dividir dois polinômios produzindo uma expansão em série. As funções DIVPC, SERIES, TAYLORO e TAYLOR são usadas na expansão em série das funções e discutidas com mais detalhes neste capítulo.

A função \lim é inserida no modo ALG como $\lim f(x)$, x=a para calcular o limite $\lim_{x\to a} f(x)$. No modo RPN insira a função primeiro, depois

a expressão 'x=a' e finalmente a função lim. Exemplos no modo ALG são mostrados a seguir, incluindo alguns limites para infinito. As teclas para o primeiro exemplo são as seguintes (usar o modo Algebraic e o sinalizador do sistema 117 configurado para CHOOSE boxes):

O símbolo infinito é associado com a tecla 0, ex. 9.

Derivadas

A derivada de uma função f(x) em x = a é definida como o limite

$$\frac{df}{dx} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alguns exemplos de derivadas usando este limite são mostradas nos seguintes visores:

Funções DERIV e DERVX

A função DERIV é usada para obter derivadas em termos de qualquer variável independente, enquanto a função DERVX obtém as derivadas em relação ao VX da variável padrão CAS (tipicamente 'X'). Enquanto a função DERVX está diretamente disponível no menu CALC, ambas as funções estão disponíveis no submenu DERIV.&INTEG dentro do menu CALCL ().

A função DERIV requer uma função, digamos f(t) e uma variável independente, digamos t, enquanto a função DERVX requer apenas uma função de VX. Exemplos são mostrados a seguir no modo ALG. Lembre-se de que no modo RPN os argumentos devem ser inseridos antes que a função seja aplicada.

O menu DERIV&INTEG

As funções listadas do submenu são:

Destas funções DERIV e DERVX são usadas para derivadas. As outras funções incluem as funções relacionadas com as antiderivadas e integrais (IBP, INTVX, PREVAL, RISCH, SIGMA e SIGMAVX), para a série (FOURIER) e a análise do vetor (CURL, DIV, HESS, LAPL). A seguir, discutiremos as funções DERIV e DERVX e as restantes são apresentadas posteriormente nos capítulos subseqüentes.

Calcular as derivadas com ∂

O símbolo está disponível como (a tecla). Este símbolo pode ser usado para inserir uma derivada na pilha ou no Editor de Equação (consulte o capítulo 2). Se usar o símbolo para escrever uma derivada na pilha, seiga imeditamente com a variável independente, depois por um par de parênteses incluindo a função diferenciada. Assim, para calcular a derivada d(sin(r),r) use no modo ALG:

No modo RPN, esta expressão deve ser incluída em argumentos antes de inseri-las na pilha. O resultado no modo ALG é:

No Editor de Equação, ao pressionar 🗗 ____ a calculadora fornece a seguinte expressão:

O cursor de inserção (*) será localizado a direita do denominador esperando que o usuário insira uma variável independente, digamos, s:

ALPHA (*) (§) . Então, pressione a tecla com a seta a direita (()) para mover para o alocador de espaço entre os parênteses:

A seguir, insira a função a ser diferenciada, digamos, s*ln(s):

Para avaliar a derivada no Editor de Equação, pressione a tecla com a seta acima , quatro vezes, para selecionar a expressão inteira e depois pressione [22]. A derivada será avaliada no Editor de Equação como:

Nota: O símbolo ∂ é usado formalmente na matemática para indicar a derivada parcial, ex. a derivada da função com mais de uma variável. Portanto, a calculadora não distingue entre as derivadas ordinária e parcial usando o mesmo símbolo para ambos. O usuário deve manter esta distinção em mente ao interpretar os resultados da calculadora para o papel.

A regra de cadeia

A regra de cadeia para as derivadas se aplicam as derivadas de funções de composição. Uma expressão geral para a regra de cadeia é $d\{f[g(x)]\}/dx = (df/dg)\cdot (dg/dx)$. Se usar a calculadora esta fórmula é apresentada como:

Os termos d1 na frente de g(x) e f(g(x)) na expressão acima são abreviações que a calculadora usa para indicar uma primeira derivada quando a variável dindependente, neste caso x, é claramente definida. Assim, o último resultado é interpretado como na fórmula para a regra em cadeia mostrada acima. Aqui está outro exemplo de uma aplicação de regra de cadeia:

Derivadas das equações

Você pode usar a calculadora para calcular as derivadas de equações, ex. expressões nas quais as derivadas existirão em ambos os lados do sinal de igual. Alguns exemplos são mostrados a seguir:

Observe que nas expressões onde o sinal da derivada (¿) ou função DERIV foi usada, o sinal de igual é preservado na equação, mas não nos caso onde a função DERVX foi usada. Nestes casos, a equação foi rescrita com todos seus termos movidos para o lado esquerdo do sinal de igual. Além disso, o sinal de igual foi removido, mas é compreensível que a expressão resultante seja igual a zero

Derivadas implicitas

As derivadas implícitas são possíveis nas expressões tais como:

$$\frac{\partial}{\partial t} \left(\times(t)^2 = \left(1 + \times(t)\right)^2 \right)$$

Aplicações das derivadas

As derivadas podem ser usadas para analisar os gráficos de funções e para otimizar as funções de uma variável (ex. encontrar o máximo e mínimo). Algumas aplicações de derivadas são mostradas a seguir.

Analisar os gráficos de funções

No capítulo 11 apresentamos algumas funções que estão disponíveis nos visores dos gráficos para analisar os gráficos de funções da forma y = f(x). Estas funções incluem (X,Y) e TRACE para determinar os pontos no gráfico, como também as funções no ZOOM e menu FCN. As funções no menu ZOOM permitem que os usuários apliquem o zoom no gráfico para analisálo com mais detalhes. Estas funções são descritas em detalhes no capítulo 12. Dentro destas funções do menu FCN, podems usar as funções SLOPE, EXTR, F' e TANL para determinar a inclinação de uma tangente para o gráfico, a extrema (mínima e máxima) da função para plotar a derivada e para encontrar a equação da linha da tangente.

Tente o sequinte exemplo para a função y = tan(x).

- Pressione (1) 20/30 simultaneamente se estiver no modo RPN para acessar para a janela PLOT SETUP.
- Pressione ▼ e digite na equação 'TAN(X)'.
- Certifique-se de que a variável independente é configurada para 'X'.
- Pressione (NXT) Para retornar ao visor normal da calculadora.
- Pressione simultaneamente para acessar a janela PLOT
- Altere a faixa H-VIEW para –2 a 2 e a faixa V-VIEW para –5 a 5.
- Pressione TITE UNIT para plotar a função de coordenadas naturais.

A plotagem resultante é similar conforme a seguir:

- Observe que existem linhas verticais que representam as assimptotas.
 Estas não são partes do gráfico, mas mostram pontos onde TAN(X) vai para ± ∞ em certos valores de X.
- Pressione (32) e mova o cursor para o ponto X: 1.08E0, Y: 1.86E0. A seguir, pressione (NXT) (2012). O resultado é Slope: 4.45010547846.
- Pressione NAT NATION. Esta operação produz a equação da linha tangente e plota seus gráficos na mesma figura. O resultado é mostrado na figura abaixo:

• Pressione NAT IIII ON para retornar ao visor normal da calculadora. Observe que a inclinação e a linha da tangente que você solicitou são listadas na pilha.

Função DOMAIN

A função DOMAIN disponível através do catálogo de comando (), fornece o domínio de definição de uma função como uma lista de números e especificações. Por exemplo,

indica que entre $-\infty$ e 0, a função LN(X) não é definida (?), enquanto que de 0 a $+\infty$ a função é definida (+). Por outro lado,

indica que a função não é definidad entre $-\infty$ e -1 nem entre 1 e $+\infty$. O domínio desta função é então -1 < X < 1.

Função TABVAL

Esta função é acessada através do catálogo de comando ou do submenu GRAPH no menu CALC. A função TABVAL toma como argumentos uma função da variável CAS, f(X) e uma lista de dois números representando um domínio de interesse para a função f(X). A função TABVAL retorna os valores de entrada mais a faixa da função correspondente para o domínio usado como entrada. Por exemplo,

TABVAL
$$\left(\frac{1}{\sqrt{2}+1}, (-1.5)\right)$$
 $\left(\frac{1}{\sqrt{2}+1}, (-1.5), (-$

Este resutado indica que a faixa da função $f(X) = \frac{1}{\sqrt{X^2 + 1}}$

correspondente ao domínio D = { -1,5 } é R =
$$\left\{\frac{\sqrt{2}}{2}, \frac{\sqrt{26}}{26}\right\}$$
.

Função SIGNTAB

A função SIGNTAB disponível através do catálogo de comando (,), fornece a informação sobre o sinal de uma função através de seu domínio. Por exemplo, para a função TAN(X),

: SIGNTAB(TAN(X))
$$\left\{-\infty? - \frac{\pi}{2} - 0 + \frac{\pi}{2}? + \infty\right\}$$

SIGNTAB indica que é TAN(X) negativo entre $-\pi/2$ e 0 e positivo entre 0 e $\pi/2$. Para este caso, SIGNTAB não fornece a informação (?) nos intervalos entre $-\infty$ e $-\pi/2$ nem entre $+\pi/2$ e ∞ . Assim, SIGNTAB, para este caso, fornece apenas a informação no domínio próprio de TAN(X), a saber, $-\pi/2$ < X < $+\pi/2$.

Um segundo exemplo de função SIGNTAB é mostrado abaixo:

Para este caso, a função é negativa para X<-1 e positiva para X>-1.

Função TABVAR

Esta função é acessada através do catálogo de comando ou do submenu GRAPH no menu CALC. Usa como entrada a função f(VX), onde VX é a variável CAS padrão. A função retorna o sequinte no modo RPN:

- Nível 3: a função f(VX)
- Duas listas, a primeira indica que a variação da função (ex. onde aumenta ou diminui) em termos da variável independente VX, a segunda indica a variação da função em termos da variável dependente.
- Um objeto de gráfico mostra como a tabela de variação foi computada.

Exemplo: Analise a função $Y = X^3-4X^2-11X+30$ usando a função TABVAR. Use a função nas teclas no modo RPN:

Isto é o que a calculadora mostra no nível 1 da pilha:

Este é o objeto do gráfico. Para ver o resultado na sua totalidade pressione

. A tabela de variável da função é mostrada conforme a seguir:

Pressione on para retornar ao visor normal da calculadora. Pressione para retirar este último resultado da pilha.

Duas listas correspondentes as linhas superior e inferior da matriz gráfica mostrada anteriormente ocupa agora o nível 1. Estas listas podem ser úteis para programação. Pressione para retirar este último resultado da pilha.

A interpretação da tabela de variação mostrada acima é conforme a seguir: A função F(X) aumenta para X no intervalo ($-\infty$, -1), atingindo uma igualdade máxima para 36 em X = -1. Então, F(X) diminui até X = 11/3, atingindo um mínimo de -400/27. Depois que F(X) aumenta até atingir $+\infty$. Também, em X = $\pm\infty$, F(X) = $\pm\infty$.

Usar as derivadas para calcular os pontos extremos

Os "pontos extremos" ou vírgula é uma designação geral para os valores máximos e mínimos de uma função em um dado intervalo. Desde que a derivada de uma função em um dado ponto representa a inclinação de uma tangente de linha para a curvar neste ponto, então os valores de x para o

qual f'(x) = 0 representa os pontos onde o gráfico das funções atingem um máximo ou mínimo. Além disso, o valor da segunda derivada da função, f''(x), nestes pontos determinam o ponto é uma *relativa ou local máximo* [f''(x)<0] ou *mínimo* [f''(x)>0]. Estas idéias são ilustradas na figura abaixo.

Nesta figura nos limitamos a determinar os pontos extremos da função y = f(x) no intervalo x [a,b]. Dentro deste intervalo encontramos dois pontos, $x = x_m$ e $x = x_M$, onde f'(x)=0. O ponto $x = x_m$, onde f''(x)>0, representa um mínimo local enquanto o ponto $x = x_M$, onde f''(x)<0 representa um máximo local. Do gráfico de y = f(x) segue que o máximo absoluto no intervalo [a,b] ocorre em x = a, enquanto o mínimo absoluto ocorre em x = b.

Por exemplo, para determinar onde os pontos críticos da função 'X^3-4*X^2-11*X+30' ocorrem, podemos usar as entradas seguintes no modo ALG:

$$\begin{array}{c} \times 3 - 4 \cdot \chi^2 - 11 \cdot \chi + 30 \\$$

Encontramos dois pontos críticos, um em x = 11/3 e o outro em x = -1. Para avaliar a segunda derivada em cada ponto use:

O último visor mostra que f''(11/3) = 14, assim, x = 11/3 é mínimo relativo. Para x = -1, temos o seguinte:

Este resultado indica que f''(-1) = -14, assim, x = -1 é um máximo relativo. Avaliar a função nestes pontos para verificar que realmente f(-1) > f(11/3).

Derivadas de ordem superior

As derivadas de ordem superior podem ser calculadas aplicando uma função derivada diversas vezes, ex.

$$: \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} (x \cdot SIN(x)) \right)$$

$$: \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(x \cdot SIN(x) \right) \right) \right)$$

$$: \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(x \cdot SIN(x) \right) \right) \right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(x \cdot SIN(x) \right) \right) \right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(x \cdot SIN(x) \right) \right) \right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \left(x \cdot SIN(x) \right) \right)$$

Anti-derivadas e integrais

Uma anti-derivada de uma função f(x) é uma função F(x) tal que f(x) = dF/dx. Por exemplo, dado que $d(x^3)/dx = 3x^2$, uma anti-derivada de $f(x) = 3x^2$ é $F(x) = x^3 + C$, onde C é uma constante. Uma forma de representar uma anti-

derivada é como uma <u>integral indefinida</u>, ex. $\int f(x)dx = F(x) + C$, se e apenas se, f(x) = dF/dx e C = constante.

Funções INT, INTVX, RISCH, SIGMA e SIGMAVX

A calculadora fornece as funções INT, INTVX, RISCH, SIGMA e SIGMAVX para calcular as funções anti-derivadas. As funções INT, RISCH e SIGMA funcionam com as funções de qualquer variável, enquanto que as funções INTVX e SIGMAVX utilizam as funções da variável CAS VX (tipicamente 'x'). As funções INT e RISCH requerem, portanto, não apenas a expressão para a função que está sendo integrada, como também o nome da variável independente. A função INT requer também um valor de x onde a antiderivada será analisada. As funções INTVX e SIGMAVX requerem apenas a expressão da função para integrar em termos de VX. Alguns exemplos são mostrados a seguir no modo ALG.

Observe que as funções SIGMAVX e SIGMA são desenhados para integrandos que envolvem algum tipo de função inteira como a função fatorial (!) mostrada acima. Seu resultado é a tão chamada derivada discreta, ex. definida para apenas os números inteiros.

Integrais definidas

Na integral definida de uma função, a antiderivada resultante é avaliada no limite superior e inferior de um intervalo (a,b) e os valores avaliados subtraídos. Simbolicamente, $\int_a^b f(x) dx = F(b) - F(a)$, onde f(x) = dF/dx.

A função PREVAL(f(x), a,b,) da CAS pode simplificar tal cálculo, o que é feito retornando o valor de f(b)-f(a) com x sendo a variável CAS VX.

Para calcular as integrais definidas a calculadora fornece também o símbolo da integral como a combinação de (associadas com a tecla (associadas (associadas (associadas com a tecla (associadas (asso

$$\int_{4}^{2} d \cdot \int_{2}^{5} (s^{2} - 1) ds$$
EDIT | CURS | BIG = | EVAL | FACTO | SIMP

Neste ponto você pode pressionar [EVTER] para retornar a integral para a pilha, que mostrará a seguinte entrada (no modo ALG mostrado):

Este é o formato geral para a definição da integral quando digitado diretamente na pilha, ex. ∫ (limite inferior, integrande, variável da integração)

Pressionar ENTER neste ponto avaliará a integral na pilha:

A integral pode ser avaliada também no Editor de Equação selecionando a expressão inteira e usando a tecla **EXIII**.

Avaliação passo a passo de derivadas e integrais

Com a opção passo a passo nas janelas CAS MODES selecionadas (consulte o capítulo 1), a avaliação das derivadas e integrais serão mostradas passo a passo. Por exemplo, aqui está a avaliação de uma derivada no Editor de Equação.

Observe que a aplicação da regra em cadeia na primeira etapa deixando a derivada da função sob a integral explicitamente no numerador. Na segunda etapa a fração resultante é racionalizada (eliminando a raiz quadrada do denominador) e simplificada. A versão final é mostrada na terceita etapa. Cada etapa é mostrada pressionando a tecla até que atinja o ponto onde outra aplicação da função EVAL não produza mais alterações na expressão.

O seguinte exemplo mostra a avaliação de uma integral definida no Editor de Equação, passo a passo:

Observe que o processo passo a passo fornece a informação nas etapas intermediárias seguida pelo CAS para resolver esta integral. Primeiro, o CAS identifica uma integral de raiz quadrada, a seguir, a fração racional e uma segunda expressão racional para apresentar com o resultado final. Observe que estas etapas têm bastante sentido para a calculadora, embora informação insuficiente seja fornecida para o usuário nas etapas individuais.

Integrar uma equação

Integrar uma equação é simples, a calculadora integra apenas ambos os lados da equação simultaneamente, ex.

Ténicas de integração

Diversas técnicas de integração podem ser implementadas na calculadora, conforme mostrado nos seguintes exemplos.

Substituição ou alteração de variáveis

Suponha que queremos calcular a integral $\int_0^2 \frac{x}{\sqrt{1-x^2}} dx$. Se usar o cálculo

passo a passo no Editor de Equação, esta é a sequência das substituições das variáveis:

As últimas quarto etapas mostram a progressão da solução: uma raiz quadrada seguida pela fração, uma segunda fração e o resultado final. Este resultado pode ser simplicado usando a função 🖾 para ler:

Integração por partes e diferenciais

A diferencial de uma função y = f(x), é definida por dy = f'(x) dx, onde f'(x) is a derivada de f(x). As diferenciais são usadas para representar pequenos aumentos nas variáveis. O diferencial de um produto de duas funções, y = u(x)v(x), é dado por dy = u(x)dv(x) +du(x)v(x), ou simplesmente, d(uv) = udv - vdu. Assim, a integral de udv = d(uv) - vdu, é escrita como $\int\!u dv = \int\!d(uv) - \int\!v du$. Dado que por definição de uma diferencial, fdy = y, escrevemos a expressão anterior como

$$\int \!\! u dv = uv - \int \!\! v du \; .$$

Esta formulação, conhecida como integração por partes, pode ser usada para encontrar uma integral se dv for facilmente integrável. Por exmplo, a integral $\int xe^x dx$ pode ser resolvida pela integração por partes se usamos u = x, $dv = e^x dx$, dado que, $v = e^x$. Com du = dx, a integral torna-se $\int xe^x dx = \int u dv$ = $uv - \int v du = xe^x - \int e^x dx = xe^x - e^x$.

A calculadora fornece a função IBP sob o menu CALC/DERIV&INTG que toma como argumento a função original para integrar, a saber, u(X)*v'(X), e a função v(X) e retorna u(X)*v(X) e -v(X)*u'(X). Em outras palavras, a função IBP retornar dois termos do lado direito na integração por equações de partes. Para o exemplo usado acima, podemos escrever no modo ALG:

Assim, podemos usar a função IBP para fornecer os componentes de uma integração por partes. A próxima etapa será feita separadamente.

É importante mencionar que a integral pode ser calculadora diretamente usando, por exemplo,

: INTVX[X:e^X] (X-1):e^X ISP [INTVX] LAPL [PREVA[RISCH]SIGH

Integração por frações parciais

Função PARTFRAC, apresentada no capítulo 5 fornece a decomposição de uma fração em frações parciais. Esta técnica é útil para reduzir a fração complicada em uma soma de frações simples que podem ser então integrada termo a termo. Por exemplo, para integrar

$$\int \frac{X^{5} + 5}{X^{4} + 2X^{3} + X} dX$$

decompomos a fração em suas frações de componentes, conforme a seguir:

A integração direta produz o mesmo resultado com algumas alterações dos termos (modo Rigorous configurado no CAS – consulte o Capítulo 2):

$$\begin{array}{l} \text{FINTVX}(\text{ANS}(1)) \\ \frac{1}{2} \cdot 8^2 - 2 \cdot 8 + -\frac{5}{8} - 10 \cdot \text{LN}(181) + -\frac{4}{8+1} + 13 \cdot \text{LN}(181) \\ \text{FINTVX} \left(\frac{8^5 + 5}{8^4 + 2 \cdot 8^3 + 8^2} \right) \\ \frac{1}{2} \cdot 8^2 - 2 \cdot 8 + 13 \cdot \text{LN}(18 + 11) + -(10 \cdot \text{LN}(181)) - \frac{5}{8} \cdot \\ \text{FSKIP}(\text{SKIP} + 40 + 10 + 10 + 10 + 11) \end{array}$$

Integrais inadequadas

Estas são as integrais com os limites infinitos de integração. Geralmente, , uma integral imprópria é lida primeiro calculando a integral como um limite para infinito, ex.

$$\int_{1}^{\infty} \frac{dx}{x^{2}} = \lim_{\varepsilon \to \infty} \int_{1}^{\varepsilon} \frac{dx}{x^{2}}.$$

Usando a calculadora procedemos conforme a seguir:

De forma alternativa, você pode avaliar a integral para infinito de início, ex.

Integração com as unidades

Como uma integral pode ser calculada com as unidades incorporadas nos limites da integração, como no exemplo mostrado abaixo que usa no modo ALG com o CAS configurado para o modo Approx. A figura do lado esquerdo mostra a integral digitada na linha de edição antes de pressionar ENTER. A figura do lado direito mostra o resultado depois de pressionar ENTER.

Se inserir a integral com o CAS configurado para o modo Exact, será solicitado a alterar para o modo Approx, portanto, os limites das integrais serão mostrados em um formato diferente conforme mostrado aqui:

Estes limites representam 1×1 _mm e 0×1 _mm, que é o mesmo de 1_mm e 0 mm, conforme anteriormente. Observe os diferentes formatos na saída.

Algumas notas no uso das unidades nos limites das integrações:

1 – As unidades do limite inferior da integração serão as usadas no resultado final conforme ilustrado nos dois exemplos abaixo:

2 – As unidades limites superiores devem ser consistente com unidades de limites inferiores. Caso contrário, a calculadora retorna apenas a integral não avaliada. Por exemplo,

3 – O integrando pode também ter unidades. Por exemplo:

4 – Se ambos os limites de integração tem unidades, as unidades resultantes são combinadas de acordo com as regras de integração. Por exemplo,

Série infinita

Uma série infinita tem uma forma $\sum_{n=0,1}^{\infty} h(n)(x-a)^n$. A série infinita começa

tipicamente com os índices n = 0 ou n = 1. Cada termo nas séries tem um coeficiente h(n) que depende do índice n.

Série Taylor e Maclaurin

Uma função f(x) pode ser expandida em série infinita em volta de um ponto $x=x_0$ usando uma série Taylor, a saber,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_o)}{n!} \cdot (x - x_o)^n ,$$

onde $f^{(n)}(x)$ representa a derivada n de f(x) em relação a x, $f^{(0)}(x) = f(x)$.

Se o valor $x_0 = 0$, a série é mencionada como uma série Maclaurin.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n$$

Polinômio e restos de Taylor

Na prática, não podemos avaliar todos os termos em uma série infinita, em vez disso, aproximados as séries por um polinômio de ordem k, $P_k(x)$ e estimamos a ordem de um resto, $R_k(x)$, tal que

$$f(x) = \sum_{n=0}^{k} \frac{f^{(n)}(x_o)}{n!} \cdot (x - x_o)^n + \sum_{n=k+1}^{\infty} \frac{f^{(n)}(x_o)}{n!} \cdot (x - x_o)^n,$$

ex.

$$f(x) = P_k(x) + R_k(x).$$

O polinômio $P_k(x)$ é mencionado como polinômio de Taylor. A ordem de restos é estimada em temos de uma pequena quantidade $h=x-x_0$, ex. avaliar o polinômio no valor de x muito próximo a x_0 . O resto é dado por

$$R_k(x) = \frac{f^{(k+1)}(\xi)}{k!} \cdot h^{k+1},$$

onde ξ é um número próximo $x=x_0$. Dado que ξ é tipicamente uma incógnita, em vez de estimar o resto, fornecemos uma estimativa da ordem de restos na para h, ex. , digamos que $R_k(x)$ tem um erros da ordem h^{n+1} ou $R \approx O(h^{k+1})$. Se h for um número pequeno, digamos, h<<1, então h^{k+1} será geralmente muito pequeno, ex. $h^{k+1}<< h^k<< ...<< h << 1$. Assim, para x próximo de x_0 , quanto maior o número de elementos no polinômio de Taylor, menor a ordem do resto.

Funções TAYLR, TAYLORO e SERIES

As funções TAYLR, TAYLORO e SERIES são usadas para gerar os polinômios Taylor, como também a série Taylor com resíduos. Estas funções estão disponíveis no menu CALC/LIMITS&SERIES descrito anteriormente neste capítulo.

A função TAYLORO executa a expansão em série Maclaurin, ex. sobre X = 0, de uma expressão na variável independente padrão, VX (tipicamente 'X'). A expansão usa uma potência relativa de quarta ordem, ex. A diferença entre a potência mais alta e a mais baixa na expansão é 4. Por exemplo,

: TAYLORØ
$$\left(e^{X}\right)$$

 $\frac{1}{24}$: $x^4 + \frac{1}{6}$: $x^3 + \frac{1}{2}$: $x^2 + x + 1$

A função TAYLR produz uma expansão de série Taylor de uma função de qualquer variável x sobre um ponto x = a para a ordem k especificada pelo usuário. Assim, a função tem o formato TAYLR(f(x-a),x,k). Por exemplo,

A função SERIES produz um polinômio Taylor usando como argumentos a função f(x) to a ser expandida, um nome de variável único (para a série Maclaurin) ou uma expressão da forma 'variável = valor' indicando o ponto de expansão de uma série Taylor e a ordem da série a ser produzida. A função SERIES retorna dois itens de saída da lista com quatro intens e uma expressão para h = x - a, se o segundo argumento na chamada de função for 'x=a', ex. uma expressão para o incremento h. A lista devolve como como o primeiro objeto de saída inclui os seguintes termos:

- 1 Limite bi-direcional da função de expansão, ex. $\lim_{x \to a} f(x)$
- 2 Um valor equivalente de função próximo x = a
- 3 Expressão para o polinômio Taylor
- 4 Ordem do resíduo ou restante

Por causa do volume grande de resultado esta função é fácil de manipular no modo RPN. Por exemplo:

Deixe cair o conteúdo do nível 1 da pilha pressionado • e depois insira EVAL, para decompor a lista. Os resultados são conforme a seguir:

Na figura do lado direito acima, usamos a linha de edição para visualizar a expansão em série em detalhe.

Capítulo 14

Aplicações de cálculo multivariáveis

Os cálculos multivariadas referem-se às funções de duas ou mais variáveis. Neste capítulo discutimos os conceitos básicos do cálculo multivariado incluindo as derivadas parciais e integrais múltiplas.

Funções multivariadas

Uma função de duas ou mais variáveis pode ser definida na calculadora usando a função DEFINE ($\bigcirc \ \)$. Para ilustrar o conceito de derivada parcial definimos um par de funções multivariadas $f(x,y)=x\cos(y)$ e $g(x,y,z)=(x^2+y^2)^{1/2}\sin(z)$, conforme a seguir:

Podemos avaliar as funções como avaliamos qualquer outra função da calculadora, ex.

Os gráficos das funções bidimensionais são possíveis usando as plotagens Fast3D, Wireframe, Ps-Contour, Y-Slice, Gridmap e Pr-Surface, conforme descritoo no capítulo 12.

Derivadas parciais

Considere a função de duas variáveis z = f(x,y), a derivada parcial da função em relação a x é definida pelo limite

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

De forma similar,

$$\frac{\partial f}{\partial v} = \lim_{k \to 0} \frac{f(x, y+k) - f(x, y)}{k}.$$

Usaremos as funções multivariadas definidas anteriormente para calcular as derivadas parciais usando estas definições. Aqui estão as derivadas de f(x,y) em relação a x e y, respectivamente:

Observe que a definição de derivada parcial em relação a x, por exemplo, requer que mantenhamos y fixada tirando o limite como h > 0. Isto sugere uma forma de rapidamente calcular derivadas parciais de funções multivariadas: use as regras de derivadas ordinárias em relação a variável de interesse, enquanto considera todas as outras variáveis como constante. Assim, por exemplo,

$$\frac{\partial}{\partial x}(x\cos(y)) = \cos(y), \frac{\partial}{\partial y}(x\cos(y)) = -x\sin(y),$$

que são os mesmos resultados conforme encontrado com os limites calculados anteriormente. Considere outro exemplo,

$$\frac{\partial}{\partial x} (yx^2 + y^2) = 2yx + 0 = 2xy$$

Nesta expressão tratamos y como uma constante e tomemos as derivadas da expressão em relação a x.

De forma similar, você pode usar as funções da derivada na calculadora, ex. DERVX, DERIV, ∂ (descritas em detalhes no capítulo 13) para calcular as

derivadas parciais. Lembre-se que a função DERVX usa a variável CAS padrão VX (tipicamente, 'X'), com DERVX você pode calcular apenas as derivadas em relação a X. Alguns exemplos de derivadas parciais de primeira ordem são mostrados a seguir:

Derivadas de ordem superior

As seguintes derivadas de segunda ordem podem ser definidas

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right),$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right), \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

As últimas duas expressões representam derivadas cruzadas, os sinais de derivadas parciais no denominador mostram a ordem de derivação. No lado esquerdo, a derivação acontece primeiro em relação a x e depois com y e no lado direito, o oposto de verdadeiro. É importante indicar que, se uma função for contínua e diferente, então

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}.$$

derivadas de terceira, quarta e superior são definidas de forma similar.

Para calcular as derivadas de ordem superior na calculadora, repita apenas a função da derivada diversas vezes conforme necessário. Alguns exemplos são mostrados a sequir:

A regra de cadeia para derivadas parciais

Considere a função z = f(x,y), tal que x = x(t), y = y(t). A função z representa atualmente uma função composta de t se a escrevemos como z = f[x(t),y(t)]. A regra da cadeia para a derivada dz/dt para este caso é escrita como

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial v} \cdot \frac{\partial y}{\partial v}$$

Para ver a expressão que a calculadora produziu para esta versão da regra da cadeia use:

O resultado é dado por d1y(t)·d2z(x(t),y(t))+d1x(t)·d1z(x(y),y(t)). O termo d1y(t) deve ser interpretado como "a derivada de y(t) em relação a 1° variável independente, ex. t" ou d1y(t) = dy/dt. De forma similar, d1x(t) = dx/dt. Por outro lado, d1z(x(t),y(t)) significa "a primeira derivada de z(x,y) em relação a primeira variável independente, ex. x" ou d1z(x(t),y(t)) = $\partial z/\partial x$. De forma similar, d2z(x(t),y(t)) = $\partial z/\partial y$. Assim, a expressão acima é interpretada como:

$$dz/dt = (dy/dt) \cdot (\partial z/\partial y) + (dx/dt) \cdot (\partial z/\partial x).$$

Diferencial total de uma função z = z(x,y)

Da última equação, se multiplicarmos por dt, obtemos o diferencial total da função z=z(x,y), ex. $dz=(\partial z/\partial x)\cdot dx+(\partial z/\partial y)\cdot dy$.

Uma versão diferencial da regra de cadeia aplica-se ao caso no qual z = f(x,y), x = x(u,v), y = y(u,v), para que z = f[x(u,v), y(u,v)]. As seguintes fórmulas representam a regra de cadeia para esta situação:

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}, \qquad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}$$

Determinação extrema nas funções de duas variáveis

Para que a função z=f(x,y) tenha um ponto extremo em (x_o,y_o) , suas derivadas $\partial f/\partial x$ e $\partial f/\partial y$ devem ser nulas neste ponto. Estas são as condições necessárias. As condições suficientes para a função ter um extreme no ponto (x_o,y_o) são $\partial f/\partial x=0$, $\partial f/\partial y=0$ e $\Delta=(\partial^2 f/\partial x^2)\cdot(\partial^2 f/\partial y^2)\cdot[\partial^2 f/\partial x\partial y]^2>0$. O ponto (x_o,y_o) é o máximo relativo se $\partial^2 f/\partial x^2<0$ ou um mínimo relativo $\partial^2 f/\partial x^2>0$. O valor Δ é mencionado como discriminante.

Se $\Delta = (\partial^2 f/\partial x^2) \cdot (\partial^2 f/\partial y^2) \cdot [\partial^2 f/\partial x \partial y]^2 < 0$, temos uma condição conhecida com um *ponto de sela*, onde a função obteria um máximo em x se mantivermos y constante enquanto ao mesmo tempo, obteríamos um mínimo de se fossemos manter x constante ou vice versa.

Exemplo 1 – Para determinar os pontos extremos (se houver) da função $f(X,Y) = X^3-3X-Y^2+5$. Primeiro, definimos a função f(X,Y) e suas derivadas $f(X,Y) = \partial f/\partial X$, $f(X,Y) = \partial f/\partial Y$. Então, resolvermos as equações f(X,Y) = 0 e f(X,Y) = 0, simultaneamente:

Encotraremos os pontos críticos em (X,Y)=(1,0) e (X,Y)=(-1,0). Para calcular o discriminante, calculamos as segundas derivadas, $fXX(X,Y)=\partial^2 f/\partial X^2$, $fXY(X,Y)=\partial^2 f/\partial X/\partial Y$ e $fYY(X,Y)=\partial^2 f/\partial Y^2$.

O último resultado indica que o discriminante é Δ = -12X, assim, para (X,Y) = (1,0), Δ <0 (ponto de sela) e para (X,Y) = (-1,0), Δ >0 e $\partial^2 f/\partial X^2$ <0 (máxima relativa). A figura abaixo, produzida na calculadora e editada no computador ilustra a existência destes dois pontos:

Usar a função HESS para análise extrema

A função HESS pode ser usada para análise extrema de uma função de duas variáveis conforme mostrada a seguir. A função HESS, em geral, toma como entrada uma função das variáveis independentes n $\phi(x_1, x_2, ..., x_n)$ e um vetor das funções [' x_1 ' ' x_2 '...' x_n ']. A função HESS retorna a <u>Matriz de Hessian</u> da

função ϕ , definida como a matriz $\mathbf{H}=[h_{ij}]=[\partial^2\phi/\partial x_i\partial x_j]$, o gradiente da função em relação as variáveis n, $\mathbf{grad}\ f=[\ \partial\phi/\partial x_1,\partial\phi/\partial x_2\ ,\ \dots\ \partial\phi/\partial x_n]$ e a lista de variáveis $['x_1'\ 'x_2'\dots'x_n']$.

Aplicações da função HESS são fáceis para visualizar no modo RPN. Considere como um exemplo a função $\phi(X,Y,Z) = X^2 + XY + XZ$, aplicaremos a função HESS para a função ϕ no seguinte exemplo. A figura a seguir mostra a pilha RPN antes e depois de aplicar a função HESS:

Quando aplicado a função de duas variáveis, o gradiente no nível 2, quando for igual a zero, representa as equações para os pontos críticos, ex. $\partial \phi / \partial x_i = 0$, enquanto a matriz no nível 3 representa as segundas derivadas. Assim, os resultados da função HESS podem ser usados para análise extrema nas funções de duas variáveis. Por exemplo, para a função $f(X,Y) = X^3-3X-Y^2+5$, proceda conforme a seguir no modo RPN:

As variáveis s1 e s2, neste ponto, contém os vetores ['X=-1','Y=0] e ['X=1','Y=0], respectivamente. A Matriz de Hessian está no nível 1 neste ponto.

A matriz resultante **A** tem a_{11} elementos $a_{11} = \partial^2 \phi / \partial X^2 = -6$., $a_{22} = \partial^2 \phi / \partial X^2 = -2$. e $a_{12} = a_{21} = \partial^2 \phi / \partial X \partial Y = 0$. O discriminant para este ponto crítico

s1(-1,0) is $\Delta = (\partial^2 f/\partial x^2) \cdot (\partial^2 f/\partial y^2) \cdot [\partial^2 f/\partial x \partial y]^2 = (-6.)(-2.) = 12.0 > 0$. Dado que $\partial^2 \phi/\partial X^2 < 0$, ponto s1 representa uma máxima relativa.

A seguir, substituímos o segundo ponto, s2, por H:

(VAR) ■ SUBST → NUM

Substituía s2 por H

A matriz resultante tem os elementos $a_{11} = \partial^2 \phi / \partial X^2 = 6$., $a_{22} = \partial^2 \phi / \partial X^2 = -2$. e $a_{12} = a_{21} = \partial^2 \phi / \partial X \partial Y = 0$. O discriminante para este ponto crítico s2(1,0) is $\Delta = (\partial^2 f / \partial x^2) \cdot (\partial^2 f / \partial y^2) \cdot [\partial^2 f / \partial x \partial y]^2 = (6.)(-2.) = -12.0 < 0$, indica um ponto de selagem.

Integrais múltiplas

Uma interpretação física da integral ordinária de uma função $\int_a^b f(x)dx$, é

a área sob a curva f(x) e abscissa x = a e x = b. A generalização para as tridimensionais de uma integral ordinária é uma integral dupla de uma função f(x,y) sob a região R no plano x-y representando o volume do corpo sólido contido sob a superfície f(x,y) acima da região R. A região R pode ser descrita como $R = \{a < x < b, f(x) < y < g(x)\}$ ou como $R = \{c < y < d, r(y) < x < s(y)\}$. Assim, a integral dupla pode ser escrita como

$$\iint\limits_R \phi(x,y) dA = \int_a^b \int_{f(x)}^{g(x)} \phi(x,y) dy dx = \int_c^d \int_{r(y)}^{s(y)} \phi(x,y) dy dx$$

Jacobiana da transformação de coordenada

Considere a transformação da coordenada x = x(u,v), y = y(u,v). A Jacobiana da transformação é definida como

$$|J| = \det(J) = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}.$$

ao calcular uma integral usando tal transformação, a expressão usada é $\iint_R \phi(x,y) dy dx = \iint_{R'} \phi[x(u,v),y(u,v)] \, | \, J \, | \, du dv$, onde R' é a região R expressa em coordenadas (u,v).

Integrais duplas nas coordenadas polares

Para transformar das coordenadas polares para a cartesiana usamos $x(r,\theta) = r \cos \theta = y(r,\theta) = r \sin \theta$. Assim, a jacobiana da transformação é

$$|J| = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos(\theta) & -r \cdot \sin(\theta) \\ \sin(\theta) & r \cdot \cos(\theta) \end{vmatrix} = r$$

Com este resultado, a integral nas coordenadas polares são escritas como

$$\iint_{R'} \phi(r,\theta) dA = \int_{\alpha}^{\beta} \int_{f(\theta)}^{g(\theta)} \phi(r,\theta) r dr d\theta$$

onde a região R' nas coordenadas polares é R' = $\{\alpha < \theta < \beta, f(\theta) < r < g(\theta)\}$.

As integrais duplas nas coordenadas polares podem ser inseridas na calculadora, assegurando que a jacobiana | J | = r é inclusa no integrando. A seguir apresentamos um exemplo de uma integral dupla calculada em coordenadas polares mostradas passo a passo:

Capítulo 15

Aplicações de análise vetorial

Neste capítulo apresentamos um número de funções do menu CALC que aplicar para a análise dos campos escalares e vetoriais. O menu CALC foi apresentado em detalhes no capítulo 13. Em particular, no menu DERIV&INTEG identificamos um número de funções que tem aplicações nas análises vetoriais, a saber, CURL, DIV, HESS, LAPL. Para o exercício neste capítulo, altere sua medida angular para radianos.

Definições

Uma função definida na região de espaço tais como $\phi(x,y,z)$ é mostrando como um campo escalar, exemplos são as temperaturas, densidade e voltagem próximo de uma descarga. Se a função for definida por um vetor, ex. $\mathbf{F}(x,y,z) = f(x,y,z)\mathbf{i}+g(x,y,z)\mathbf{j}+h(x,y,z)\mathbf{k}$ é mencionado como um campo vetorial

A seguinte operação, mencionada como o operador 'del' ou 'nabla', é um operador baseado no vetor que pode ser uma função vetorial ou escalar:

$$\nabla \left[\right] = i \cdot \frac{\partial}{\partial x} \left[\right] + j \cdot \frac{\partial}{\partial y} \left[\right] + k \cdot \frac{\partial}{\partial z} \left[\right]$$

Quando este operador for aplicado a uma função escalar podemos obter o gradiente da função e quando aplicado a uma função vetorial podemos obter a divergência e a rotacional desta função. Uma combinação de gradiente e divergência produz a Laplaciana de uma função escalar. Estas operações são apresentadas a seguir.

Gradiente e derivada direcional

O gradiente de uma função escalar $\phi(x,y,z)$ é uma função vetorial definida por

$$grad\phi = \nabla \phi = i \cdot \frac{\partial \phi}{\partial x} + j \cdot \frac{\partial \phi}{\partial y} + k \cdot \frac{\partial \phi}{\partial z}$$

O produto escalar do gradiente de uma função com um vetor de unidade dado representa a taxa de alteração da função juntamente com este vetor em particular. Esta taxa de alteração é chamada de derivada direcional da função, $D_{\upsilon}\phi(x,y,z)=\textbf{u}\bullet\nabla\phi.$

Em qualquer ponto em particular, a taxa máxima de alteração da função ocorre na direção do gradiente, ex. juntamente com o vetor de unidade $\mathbf{u} = \nabla \phi / |\nabla \phi|$.

O valor desta derivada direcional é igaul a magnitude da gradiente em qualquer ponto $D_{max}\phi(x,y,z)=\nabla\phi\bullet\nabla\phi/|\nabla\phi|=|\nabla\phi|$

A equação $\phi(x,y,z)=0$ representa uma superfície no espaço. Acontece que o gradiente da função em qualquer ponto na superfície é normal. Assim, a equação de uma tangente plana para a curva neste ponto pode ser encontrada usando uma técnica apresentada no capítulo 9.

A forma mais simples de obter o gradiente é usando a função DERIV disponível no menu CALC, ex.

Um programa para calcular o gradiente

O seguinte programa, que você armazenou na variável GRADIENT, use a função DERIV para calcular o gradiente de uma função escalar de X,Y,Z. Os cálculos para outras variáveis base não funcionarão. Se você trabalhou freqüentemente no sistema (X,Y,Z), esta função facilita os cálculos:

$$<<$$
 X Y Z 3 \rightarrow ARRY DERIV $>>$

Digite o programa enquanto estiver no modo RPN. Depois de alternar para o modo ALG você pode ativar a função GRADIENT como no exemplo seguinte:

Usar a função HESS para obter o gradiente

A função HESS pode ser usada para obter o gradiente de uma função, conforme mostrado a seguir. Como indicado no capítulo 14, a função HESS toma como entrada uma função de variáveis independentes n $\phi(x_1,\,x_2,\,...,x_n)$ e um vetor das funções $['x_1{}'\ 'x_2{}'...'x_n{}'].$ A função HESS retorna a Matriz de Hessian da função φ , definida como a matriz $\boldsymbol{H}=[h_{ij}]=[\partial^2\varphi/\partial x_i\partial x_j],$ o gradiente da função em relação as variáveis n, $\boldsymbol{grad}\ f=[\partial\varphi/\partial x_1,\partial\varphi/\partial x_2,\,...\,\partial\varphi/\partial x_n]$ e a lista de variáveis $['x_1{}'\ 'x_2{}'...'x_n{}'].$ Considere como um exemplo a função $\varphi(X,Y,Z)=X^2+XY+XZ,$ aplicaremos a função HESS para este campo escalar no seguinte exemplo:

Assim, o gradiente é [2X+Y+Z, X, X]. Alternativamente, é possível usar DERIV conforme a seguir: DERIV(X^2+X*Y+X*Z,[X,Y,Z]) para obter o mesmo resultado.

Potencial de um gradiente

Dado o campo do vetor, $\mathbf{F}(x,y,z) = f(x,y,z)\mathbf{i} + g(x,y,z)\mathbf{j} + h(x,y,z)\mathbf{k}$, se existe uma função $\phi(x,y,z)$, tal que $\mathbf{f} = \partial \phi/\partial x$, $\mathbf{g} = \partial \phi/\partial y$ e $\mathbf{h} = \partial \phi/\partial z$, então $\phi(x,y,z)$ é mencionada como a <u>função potencial</u> para o campo do vetor \mathbf{F} . então $\mathbf{F} = \operatorname{grad} \phi = \nabla \phi$.

A calculadora fornece a função POTENTIAL, disponível através do catálogo de comando (\nearrow __CAT), para calcular a função potencial de um campo de vetor, se existir. Por exemplo, se $\mathbf{F}(x,y,z) = \mathbf{x}\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, aplica a função POTENTIAL encontramos:

Dado que a função SQ(x) representa x^2 , estes resultados indica que a função potencial para o campo do vetor $\mathbf{F}(x,y,z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \in \phi(x,y,z) = (x^2+y^2+z^2)/2$.

Observe que as condições para a existência de $\phi(x,y,z)$, a saber, $f=\partial\phi/\partial x$, $g=\partial\phi/\partial y$ e $h=\partial\phi/\partial z$, são equivalente as condições: $\partial f/\partial y=\partial g/\partial x$, $\partial f/\partial z=\partial h/\partial x$, and $\partial g/\partial z=\partial h/\partial y$. Estas condições fornecem uma forma de determinar se o campo do vetor tem uma função potencial associada. Se uma das condições $\partial f/\partial y=\partial g/\partial x$, $\partial f/\partial z=\partial h/\partial x$, $\partial g/\partial z=\partial h/\partial y$, fracassar, uma função potencial $\phi(x,y,z)$ não existe. Em tal caso, a função POTENTIAL retornar uma mensagem de erro. Por exemplo, o campo do vetor $\mathbf{F}(x,y,z)=(x+y)\mathbf{i}+(x-y+z)\mathbf{j}+xz\mathbf{k}$, não tem uma função potencial associada com ele, dado que, $\partial f/\partial z\neq\partial h/\partial x$. A resposta da calculadora neste caso é mostrada a seguir:

Divergência

A divergência de uma função de vetor $\mathbf{F}(x,y,z) = f(x,y,z)\mathbf{i} + g(x,y,z)\mathbf{j} + h(x,y,z)\mathbf{k}$, é definida tomando um "produto escalar" do operador del com a função, ex.

$$divF = \nabla \bullet F = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial h}{\partial z}$$

A função DIV pode ser usada para calcular a divergência de um campo de vetor. Por exemplo, para **F**(X,Y,Z) = [XY,X²+Y²+Z²,YZ], a divergência é calculada, no modo ALG, conforme a seguir

Laplaciana

A divergência do gradiente de uma função escalar produz um operador chamado de operador laplaciano. Assim, a laplaciana de uma função escalar $\phi(x,y,z)$ é dada por

$$\nabla^2 \phi = \nabla \bullet \nabla \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial x^2}$$

A equação diferencial parcial $\nabla^2 \phi = 0$ é conhecida como a equação de Laplace.

A função LAPL pode ser usada para calcular a laplaciana de uma função escalar. Por exemplo, para calcular a laplaciana da função $\phi(X,Y,Z) = (X^2+Y^2)\cos(Z)$, use:

Rotacional

O rotacional de um campo de vetor $\mathbf{F}(x,y,z) = f(x,y,z)\mathbf{i} + g(x,y,z)\mathbf{j} + h(x,y,z)\mathbf{k}$, é definido por um "produto-cruzado" do operador del com o campo de vetor, ex. .

$$curl\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} [] & \frac{\partial}{\partial y} [] & \frac{\partial}{\partial z} [] \\ f(x, y, z) & g(x, y, z) & h(x, y, z) \end{vmatrix}$$

$$= \mathbf{i} \left(\frac{\partial h}{\partial y} - \frac{\partial g}{\partial z} \right) + \mathbf{j} \left(\frac{\partial f}{\partial z} - \frac{\partial h}{\partial x} \right) + \mathbf{k} \left(\frac{\partial h}{\partial y} - \frac{\partial g}{\partial z} \right)$$

O rotacional do campo do vetor pode ser calculado com a função CURL. Por exemplo, para $\mathbf{F}(X,Y,Z) = [XY,X^2+Y^2+Z^2,YZ]$ o rotacional é calculada, conforme a seguir

Campos irrotacionais e função potencial

Em uma seção anterior neste capítulo introduzimos a função POTENTIAL para calcular a função potencial $\phi(x,y,z)$ para um campo de vetor, $\mathbf{F}(x,y,z)$ =

 $f(x,y,z)\mathbf{i}+g(x,y,z)\mathbf{j}+h(x,y,z)\mathbf{k}$, tal que $\mathbf{F}=\mathrm{grad}\ \phi=\nabla\phi$. Indicamos também que as condições para a existência de ϕ , foram: $\partial f/\partial y=\partial g/\partial x$, $\partial f/\partial z=\partial h/\partial x$, e $\partial g/\partial z=\partial h/\partial y$. Estas condições são equivalentes a expressão do vetor

curl
$$\mathbf{F} = \nabla \times \mathbf{F} = 0$$
.

Um campo de vetor $\mathbf{F}(x,y,z)$, com rotacional zero, é mostrado como um campo <u>irrotacional</u>. Assim, concluimos que uma função potencial $\phi(x,y,z)$ existe sempre para um campo irrotacional $\mathbf{F}(x,y,z)$.

Como exemplo, em um exemplo anterior encontramos uma função potencial para o campo do vetor $\mathbf{F}(x,y,z) = (x+y)\mathbf{i} + (x-y+z)\mathbf{j} + xz\mathbf{k}$ e obtivemos de volta uma mensagem de erro da função POTENTIAL. Para verificar que este é o campo rotacional (ex. $\nabla \times \mathbf{F} \neq 0$), usamos a função CURL neste campo:

Por outro ladon o campo do vetor $\mathbf{F}(x,y,z) = \mathbf{x}\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, é realmente irracional conforme mostrado abaixo:

Potencial de um vetor

Dado um campo de vetor $\mathbf{F}(x,y,z) = f(x,y,z)\mathbf{i}+g(x,y,z)\mathbf{j}+h(x,y,z)\mathbf{k}$, se existe uma função de vetor $\Phi(x,y,z) = \phi(x,y,z)\mathbf{i}+\psi(x,y,z)\mathbf{j}+\eta(x,y,z)\mathbf{k}$, tal que $\mathbf{F}=$ rotacional $\Phi=\nabla\times\Phi$, então a função $\Phi(x,y,z)$ é mencionada como um potencial de vetor de $\mathbf{F}(x,y,z)$.

A calculadora fornece a função VPOTENTIAL, disponível através do catálogo de comando (\rightarrow __CAT), para calcular o potencial do vetor, $\Phi(x,y,z)$, dado o campo do vetor, $\mathbf{F}(x,y,z) = f(x,y,z)\mathbf{i} + g(x,y,z)\mathbf{j} + h(x,y,z)\mathbf{k}$. Por exemplo, dado o campo do vetor, $\mathbf{F}(x,y,z) = -(y\mathbf{i}+z\mathbf{j}+x\mathbf{k})$, a função VPOTENTIAL produz

VPOTENTIAL(-[
$$y z x$$
],[$x y$]
 $\left[0 - \left(\frac{1}{2} \cdot x^2\right) - \left(\frac{1}{2} \cdot y^2\right) + z \cdot x\right]$

ex.
$$\Phi(x,y,z) = -x^2/2\mathbf{i} + (-y^2/2+zx)\mathbf{k}$$

Deve ser indicado que existe mais de uma função de potencial de vetor possível Φ para um dado campo de vetor $\boldsymbol{F}.$ Por exemplo, o seguinte visor mostra que o rotacional da função do vetor $\Phi_1=[X^2+Y^2+Z^2,XYZ,X+Y+Z]$ é o vetor $\boldsymbol{F}=\nabla\times\Phi_2=[1\text{-}XY,2Z\text{-}1,ZY\text{-}2Y].$ A aplicação da função VPOTENTIAL produz a função do potencial do vetor $\Phi_2=[0,ZYX\text{-}2YX,Y\text{-}(2ZX\text{-}X)],$ que é diferente de $\Phi_1.$ O último comando no visor mostra que realmente $\boldsymbol{F}=\nabla\times\Phi_2.$ Assim, a função potencial do vetor não é exclusivamente determinada.

Os componentes de um dado campo de vetor, $\mathbf{F}(x,y,z) = f(x,y,z)\mathbf{i} + g(x,y,z)\mathbf{j} + h(x,y,z)\mathbf{k}$ e estes da função potencial do vetor, $\Phi(x,y,z) = \phi(x,y,z)\mathbf{i} + \psi(x,y,z)\mathbf{j} + \eta(x,y,z)\mathbf{k}$, são relacionadas por $f = \partial \eta/\partial y - \partial \psi/\partial x$, $g = \partial \phi/\partial z - \partial \eta/\partial x$ e $h = \partial \psi/\partial x - \partial \phi/\partial y$.

Uma condição para a função $\Phi(x,y,z)$ existir é que a div $\mathbf{F} = \nabla \bullet \mathbf{F} = 0$, ex. $\partial f/\partial x + \partial g/\partial y + \partial f/\partial z = 0$. Assim, se esta condição não for satisfeita, a função potencial do vetor $\Phi(x,y,z)$ não existe. Por exemplo, dado $\mathbf{F} = [X+Y,X-Y,Z^2]$, a função VPOTENTIAL retornar uma mensagem de erro, dado que a função F não atende a condição $\nabla \bullet \mathbf{F} = 0$:

A condição $\nabla \bullet \mathbf{F} \neq 0$ é verificada no visor seguinte:

Capítulo 16 Equações diferenciais

Neste capítulo apresentamos os exemplos de solução das equações diferenciais ordinárias (ODE) usando as funções da calculadora. A equação diferencial é uma equação que envolve as derivadas da variável independente. Na maioria dos casos, procuramos a função independente que satisfaz a equação diferencial.

Operações básicas com equações diferentes

Nesta seção apresentamos alguns usos da calculadora para inserir, verificar e visualizar a solução de ODEs.

Inserir as equações diferenciais

O segredo para usar as equações diferenciais na calculadora é digitar as derivadas da equação. A forma mais fácil para inserir uma equação diferencial é digitá-la no Editor de Equação. Por exemplo, para digitar o seguinte ODE:

 $(x-1)\cdot (dy(x)/dx)^2 + 2\cdot x\cdot y(x) = e^x \sin x$, use:

A derivada dy/dx é representada por $\partial x (y(x))$ ou por d1y(x). Para obter solução ou cálculo, é necessário especificar y(x) na expressão, ex. a variável dependente deve incluir sua(s) variável(eis) independente(s) em qualquer derivada na equação.

Você pode digitar uma equação diretamente na pilha usando o símbolo ∂ nas derivadas. Por exemplo, para digitar o seguinte ODE envolvendo as derivadas de segunda ordem: $d^2u(x)/dx^2 + 3u(x)\cdot(du(x)/dx) + u(x)^2 = 1/x$, diretamente no visor use:

O resultado é $'\partial_x (\partial_x (u(x))) + 3*u(x)*\partial_x (u(x)) + u^2 = 1/x'$. Este formato mostra no visor quando a opção _Textbook na configuração do visor (MODE TEXT) não for selecionada. Pressione \checkmark para ver a equação no Editor de Equação.

Como notação alternativa pra as derivadas digitadas diretamente na pilha use 'd1' para a derivada em relação a primeira variável independente, 'd2' para a derivada em relação a segunda variável independente, etc. Uma derivada de segunda ordem, ex. d^2x/dt^2 , onde x=x(t), seria escrita como 'd1d1x(t)', enquanto $(dx/dt)^2$ seria escrita 'd1x(t)^2'. Assim, o PDE $\partial^2y/\partial t^2-g(x,y)\cdot(\partial^2y/\partial x^2)^2=r(x,y)$, seria escrito usando esta notação como 'd2d2y(x,t)-g(x,y)*d1d1y(x,t)^2=r(x,y)'.

A notação usando 'd' e a ordem da variável independente é a notação preferida pela calculadora quando as derivadas estão envolvidas no cálculo. Por exemplo, usar a função DERIV no modo ALG , conforme mostrado a seguir DERIV('x*f(x,t)+g(t,y) = h(x,y,t)',t), produz a seguinte expressão: 'x*d2f(x,t)+d1g(t,y)=d3h(x,y,t)'. Interpretada no papel, esta expressão representa a equação diferencial $x\cdot(\partial f/\partial t)+\partial g/\partial t=\partial h/\partial t$.

Dado que a ordem da variável t é diferente em f(x,t), g(t,y) e h(x,y,t), as derivadas em relação a t tem diferentes índices, ex. d2f(x,t), d1g(t,y) e d3h(x,y,t). Todas representam as derivadas em relação a mesma variável.

As expressões para as derivadas usando a notação da índice de variável de ordem não são interpretadas em notação de derivada no Editor de Equação, como pode verificar ao pressionar venquanto o último resultado no nível 1 da pilha. Portanto, ambas funcionam de acordo em relação a notação usada.

Verificar as soluções na calculadora

Para verificar se a função satisfaz uma certa equação usando a calculadora, use a função SUBST (Consulte o capítulo 5) para substituir a solução na forma

'y = f(x)' ou 'y = f(x,t)', etc. na equação diferencial. Talvez deseje simplificar o resultado usando a função EVAL para verificar a solução. Por exemplo, para verificar se u = A sin ω_o t é a solução da equação $d^2u/dt^2 + \omega_o^2 \cdot u = 0$, use o seguinte:

No modo ALG:

SUBST('
$$\partial t(\partial t(u(t))) + \omega O^2*u(t) = O'$$
, ' $u(t) = A*SIN (\omega O*t)'$ EVAL(ANS(1)) ENTER

No modo RPN:

$$\begin{tabular}{ll} \begin{tabular}{ll} \be$$

O resultado é

'0=0'.

Para este exemplo, você pode usar: $\partial t(\partial t(u(t))) + \omega 0^2 u(t) = 0'$ para inserir a equação diiferencial.

Visualização do campo de inclinação das soluções

As plotagens dos campos de inclinação são introduzidas no capítulo 12 para visualizar as soluções para uma equação diferencial da forma dy/dx = f(x,y). A plotagem do campo de inclinação mostra um número de segmentos tangenciais para as curvas de solução y = f(x). A inclinação dos segumentos em qualquer ponto (x,y) é dada por dy/dx = f(x,y), avaliada em qualquer ponto (x,y), representa a inclinação da linha da tangente no ponto (x,y).

Exemplo 1 – Traçe a solução para a equação diferencial $y' = f(x,y) = \sin x \cos y$, usando uma plotagem do campo de inclinação (Slopefield). Para resolver este problema, siga as instruções no capítulo 12 para plotagens de campo de inclinação.

Se puder reproduzir o gráfico campo de declive por escrito, você pode traçar as linhas manualmente que são tangentes aos segmentos de linha mostrados no gráfico. Estas linhas constituem linhas de y(x,y) = constante para a

solução de y' = f(x,y). Assim, os campos de inclinação são ferramentas úteis para visualizar particularmente as equações difíceis de serem resolvidas.

Em resumo, os campos de inclinação são ajudas gráficas para esboçar as curvas y = g(x) que correspondente as soluções da equação diferencial dy/dx = f(x,y).

O menu CALC/DIFF

A DIFFERENTIAL EQNS.. submenu dentro do menu CALC () fornece as funções para a solução de equações diferenciais. O menu é listado abaixo com o sinalizador do sistema 117 configurado para as CHOOSE boxes:

Estas funções são rapidamente descritas a seguir. Elas serão descritas com mais detalhes em partes posteriores deste capítulo.

DESOLVE : A equação diferencial SOLVEr fornece uma solução caso seja

possível

ILAP : Transformada de LAPlace inversa, $L^{-1}[F(s)] = f(t)$

LAP : Transformada de LAPlace, L[f(t)]=F(s)

LDEC : resolve as equações diferencias lineares com coeficientes

constantes incluindo os sistemas de equações diferenciais com

coeficientes constantes

Solução para equações linear e não linear

Uma equação na qual a variável dependente e todas as suas derivadas pertinentes são de primeiro grau é mencionada como uma <u>equação</u> <u>diferencial linear</u>. Caso contrário, a equação é considerada como <u>não-linear</u>. Exemplos de equações diferencias não lineares são: $d^2x/dt^2 + \beta \cdot (dx/dt) + \omega_o \cdot x = A \sin \omega_f t e \frac{\partial C}{\partial t} + u \cdot (\frac{\partial C}{\partial x}) = D \cdot (\frac{\partial^2 C}{\partial x^2}).$

Uma equação cujo lado direito (não envolve a função ou suas derivadas) for igual a zero é chamada de equação homogênea. Caso contrário, é chamada não homogênea. A solução para a equação homogênea é conhecida como uma solução geral. Uma solução em particular é um que satisfaz a equação não homogênea.

Função LDEC

е

A calculadora fornece a função LDEC (Comando de equação diferencial linear) para encontrar a solução geral para um ODE linear de qualquer ordem com os coeficientes constantes, se for homogêneo ou não. Esta função exige que você providencie duas peças de entrada:

- o lado direito de ODE
- a equação característica de ODE

Ambos estas entradas devem ser dadas em termos de variável independente padrão para o CAS da calculadora (tipicamente X). O resultado da função é a solução geral de ODE. A função LDEC está disponível no menu CALC/DIFF. Os exemplos são usados no modo RPN, mas é simples interpretá-los no modo ALG.

Exemplo 1 – Par resolver o ODE homogêneo
$$d^3y/dx^3-4\cdot(d^2y/dx^2)-11\cdot(dy/dx)+30\cdot y=0$$
, Insira: $0 \in \mathbb{R}$ 'X^3-4*X^2-11*X+30' $\in \mathbb{R}$ LDEC. A solução é:

$$-\frac{6 \cdot \text{cCO} - \left(\text{cC1} + \text{cC2}\right)}{24} \cdot e^{5 \cdot X} + \frac{10 \cdot \text{cCO} - \left(7 \cdot \text{cC1} - \text{cC2}\right)}{40} \cdot e^{-\left(3 \cdot X\right)} + \frac{15 \cdot \text{cCO} + 2 \cdot \text{cC1} - \text{cC2}}{15} \cdot e^{2 \cdot X}$$

onde cC0, cC1 e cC2 são constantes de integração. Enquanto este resultado parece muito complicado, ele pode ser simplificado se tomarmos

$$K1 = (10 \text{ cC}0 - (7 + cC1 - cC2))/40, K2 = -(6 \text{ cC}0 - (cC1 + cC2))/24,$$

$$K3 = (15 \text{ cC}0 + (2 \text{ cC}1 - cC2))/15.$$

A solução então é

$$y = K_1 \cdot e^{-3x} + K_2 \cdot e^{5x} + K_3 \cdot e^{2x}$$
.

A razão para a qual o resultado é fornecido pelo LDEC mostra tal combinação complicada de constantes é porque, internamente, para produzir a solução, LDEC utiliza a transformada de Laplace (apresentada neste capítulo), que transforma a solução de um ODE na solução algébrica. A combinação de constanstes resulta da fatoração de termos exponenciais depois que a solução da transformada de Laplace for obtida.

Exemplo 2 – Usando a função LDEC, resolve o ODE não homogêneo: $d^3y/dx^3-4\cdot(d^2y/dx^2)-11\cdot(dy/dx)+30\cdot y=x^2$.

Insira:

A solução, mostrada parcialmente aqui no editor da equação, é:

$$-\frac{750 \cdot \text{cCO} - \left(125 \cdot \text{cC1} + 125 \cdot \text{cC2} + 2\right)}{3000} \cdot e^{5 \cdot X} + \frac{270 \cdot \text{cCO} - \left(189 \cdot \text{cC1} - \left(27 \cdot \text{cC2} - 2\right)\right)}{1080} \cdot e^{5 \cdot X} + \frac{450 \cdot X^2 + 230 \cdot X + 241}{13500} \cdot e^{5 \cdot X} + \frac{100 \cdot X^2 + 230 \cdot X + 241}{13500} \cdot e^{5 \cdot X} + \frac{100 \cdot X^2 + 230 \cdot X + 241}{13500} \cdot e^{5 \cdot X} + \frac{100 \cdot X^2 + 241}{13500} \cdot e^{5 \cdot X} + \frac{100 \cdot X^2 + 241}{13500} \cdot e^{5 \cdot X} + \frac{100 \cdot X^2 + 241}{13500} \cdot e^{5 \cdot X} + \frac{100 \cdot X^2 + 241}{13500} \cdot e^{5 \cdot X} + \frac{100 \cdot X^2 + 241}{13500} \cdot e^{5 \cdot X} + \frac{100 \cdot X^2 + 241}{13500} \cdot e^{5 \cdot X} + \frac{100 \cdot X^2 + 241}{13500} \cdot e^{5 \cdot X} + \frac{100 \cdot X^2 + 241}{13500} \cdot e^{5 \cdot X} + \frac{100 \cdot X^2 + 241}{1000} \cdot e^{5 \cdot X} + \frac{100 \cdot X^2 + 241}$$

Substituir a combinação das constantes com os termos exponenciais com valores mais simples, tais como, resulta na expressão $y = K_1 \cdot e^{-3x} + K_2 \cdot e^{5x} + K_3 \cdot e^{2x} + (450 \cdot x^2 + 330 \cdot x + 241)/13500$.

Reconhecemos os primeiros termos como a solução geral da equação homogêneaus (consulte o exemplo 1 acima). Se y_h representa a solução da equação homogênea, ex. $y_h = K_1 \cdot e^{-3x} + K_2 \cdot e^{5x} + K_3 \cdot e^{2x}$. Você pode provar os termos restantes na solução mostrada acima, ex, $y_p = (450 \cdot x^2 + 330 \cdot x + 241)/13500$, constitui uma solução particular para o ODE.

Nota: Este resultado é geral para a ODEs linear não homogênea, ex. dado a solução da equação homogênea, $y_h(x)$, a solução da equação não homogênea correspondente, y(x), pode ser escrita como

$$y(x) = y_b(x) + y_p(x),$$

onde $y_p(x)$ é uma solução particular para o ODE.

Para verificar se $y_p = (450 \cdot x^2 + 330 \cdot x + 241)/13500$ é realmente uma solução particular de ODE, use o seguinte:

Permite que a calculadora produza um resultado em dez segundos. $'X^2 = X^2'$.

<u>Exemplo 3</u> – Resolver um sistema de equações diferenciais não lineares com os coeficientes constantes.

Considere o sistema de equações diferenciais lieares:

$$x_1'(t) + 2x_2'(t) = 0,$$

 $2x_1'(t) + x_2'(t) = 0.$

Na forma algébrica, isto é escrito como: $\mathbf{A} \cdot \mathbf{x}'(t) = 0$, onde $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. O

sistema pode ser resolvido usando a função LDEC com os argumentos [0,0] e a matriz A, conforme mostrado no seguinte visor usando o modo ALG:

A solução é dada como um vetor contendo as funções $[x_1(t), x_2(t)]$. Pressionar \checkmark ativará o Editor de Matriz permitindo que o usuário veja os dois compoentes do vetor. Para ver todos os detalhes de cada componente, pressione a tecla \checkmark Verifique se os componentes são:

Função DESOLVE

A calculadora fornece a função DESOLVE (Equação diferencial SOLVEr) para resolver certos tipos de equações diferenciais. A função exige como entrada a equação diferencial e a função desconhecida e retorna a solução para a equação se estiver disponível. Você pode fornecer também um vetor contendo a equação diferencial e as condições iniciais, em vez de apenas uma equação diferencial, como entrada para DESOLVE. A função DESOLVE está disponível no menu CALC/DIFF. Exemplos de aplicações DESOLVE são mostrados usando o modo RPN.

Exemplo 1 – Resolve a primeira ordem ODE:

$$dy/dx + x^2 \cdot y(x) = 5.$$

Na calculadora use:

$$'d1y(x)+x^2*y(x)=5'$$
 ENTER $'y(x)'$ ENTER DESOLVE

A solução é {'y = $(INT(5*EXP(xt^3/3),xt,x)+cC0)*1/EXP(x^3/3)$ }'}, ex.,

$$y(x) = \exp(-x^3/3) \cdot \left(\int 5 \cdot \exp(x^3/3) \cdot dx + cC_0 \right)$$

A variável ODETYPE

Você observará nos símbolos da tecla virtual uma nova variável chamada (ODETYPE). Esta variável é produzida com a chamada para a função DESOL e mantém um segmento mostrando um tipo de ODE usado como entrada para DESOLVE. Pressione para obter o texto "1st order linear".

Exemplo 2 – Resolve a primeira ordem ODE:

$$d^2y/dx^2 + x (dy/dx) = \exp(x)$$
.

Na calculadora use:

$$'d1d1y(x)+x*d1y(x) = EXP(x)'$$
 (ENTER) $'y(x)'$ (ENTER) DESOLVE

O resultado é uma expressão que tem duas integrações implícitas, a saber,

ou esta equação em particular, portanto vemos que o lado esquerdo desta equação representa d/dx(x dy/dx), assim, o ODE é agora escrito:

$$d/dx(x dy/dx) = exp x$$

е

$$x dy/dx = exp x + C$$
.

Assim nós podemos escrever:

$$dy/dx = (C + exp x)/x = C/x + e^x/x.$$

Na calculadora, você pode tentar integrar:

$$'d1y(x) = (C + EXP(x))/x'$$
 ENTER $'y(x)'$ ENTER DESOLVE

O resultado é $\{ 'y(x) = INT((EXP(xt)+C)/xt,xt,x)+C0' \}, ex.,$

$$y(x) = \int \cdot \frac{e^x + C}{x} dx + C_0$$

Para fazer a integração manualmente podemos apenas obtê-la como:

$$y(x) = \int \frac{e^x}{x} dx + C \cdot \ln x + C_0$$

uma vez que que a integral de $\exp(x)/x$ não está disponível na forma fechada.

Exemplo 3 – Resolver uma equação com condições iniciais. Resolve

$$d^2y/dt^2 + 5y = 2 \cos(t/2)$$
,

com as condições iniciais

$$y(0) = 1.2, y'(0) = -0.5.$$

Na calculadora use:

$$['dldly(t)+5*y(t) = 2*COS(t/2)' 'y(0) = 6/5' 'dly(0) = -1/2']$$
 ENTER $'y(t)'$ ENTER DESOLVE

Observe que as condições iniciais foram alteradas para as suas expressões *Exatas*, 'y(0) = 6/5', em vez de 'y(0)=1.2' e 'd1y(0) = -1/2', em vez de, 'd1y(0) = -0.5'. Alterar para estas expressões exatas facilita a solução.

Nota: Para obter as expressões fracionais para os valore decimais, use a função →Q (consulte o capítulo 5).

A solução é:

Pressione **EVAL EVAL** para simplificar o resultado para

$$'y(t) = -((19*\sqrt{5*SIN}(\sqrt{5*t})-(148*COS(\sqrt{5*t})+80*COS(t/2)))/190)'.$$

Pressione War para obter o texto "Linear w/ cst coeff" para o tipo de ODE neste caso.

Transformada de Laplace

a transformação de Laplace de uma função f(t) produz uma função F(s) no domínio da imagem que pode ser utilizado para encontrar a solução de uma equação diferencial linear envolvendo f(t) através dos métodos algébricos. As etapas envolvidas neste aplicativo são três:

- Uso da transformação de Laplace converte a ODE linear envolvendo f(t) na equação algébrica.
- 2. O desconhecido F(s) é resolvido para o domínio da imagem através da manipulação algébrica.
- Uma transformação Laplace inversa é usada para converter a função de imagem encontrada na etapa 2 na solução para a equação diferencial f(t).

Definições

A transformada de Laplace para a função f(t) é a função F(s) definida como

$$L\{f(t)\} = F(s) = \int_0^\infty f(t) \cdot e^{-st} dt.$$

A variável da imagem s pode ser e é geralmente, um número complexo.

Muitas aplicações práticas da transformada de Laplace envolvem uma função original f(t) onde t representa a hora, ex. sistemas de controle nos circuitos elétricos ou hidráulicos. Na maioria dos calos uma e interessada na resposta do sistema depois de t>0, assim, a definição da transformada de Laplace , dada acima, envolve uma integração para valores de t maior do que zero.

A transformada de <u>Laplace</u> mapeia a função F(s) na função original f(t) no domínio de tempo, ex. $L^{-1}\{F(s)\}=f(t)$.

A <u>convolução integral</u> ou <u>de produto</u> de duas funções f(t) and g(t), onde g é deslocado no temo, é definida como

$$(f * g)(t) = \int_0^t f(u) \cdot g(t - u) \cdot du$$

A transformada de Laplace inversa na calculadora

A calculadora fornece as funções LAP e ILAP para calcular a transformada de Laplace inversa, respectivamente, de uma função f(VX), onde VX é a variável independente padrão CAS (tipicamente X). A calculadora retorna a transformada ou transformada inversa como uma função de X. As funções LAP e ILAP estão disponíveis no menu CALC/DIFF. Os exemplos são usados

no modo RPN, mas é simples interpretá-los no modo ALG. Para este exemplo, configure o modo CAS para Real e Exact.

Exemplo 1 – Você pode obter a definição da transformada de Laplace usando o seguinte: 'f(X)' | LAP no modo RPN ou LAP(F(X)) no modo ALG. A calculadora retorna o resultado (RPN, esquerda; ALG, direita):

Compare estas expressões com aquela dada anteriormente na definição da transformada de Laplace, ex.

$$L\{f(t)\} = F(s) = \int_0^\infty f(t) \cdot e^{-st} dt,$$

você perceberá que a variável padrão CAS X no Editor de Equação substitui a variável nesta definição. Portanto, ao usar a função LAP você obtém uma função de X, que é a transformada de Laplace de f(X).

Exemplo 2 — Determina a transformada de Laplace de $f(t) = e^{2t} \cdot \sin(t)$. Use: 'EXP(2*X)*SIN(X)' ENTER LAP A calculadora retorna o resultado: 1/(SQ(X-2)+1). Pressione EVAL para obter $1/(X^2-4X+5)$.

Ao interpretar este resultado por escrito você deve escrever

$$F(s) = L\{e^{2t} \cdot \sin t\} = \frac{1}{s^2 - 4 \cdot s + 5}$$

<u>Exemplo 3</u> – Determina a transformada de Laplace inversa $F(s) = \sin(s)$. Use: 'SIN(X)' [ENTER] ILAP. A calculadora Ao interpretar este resultado por escrito você deve escrever o resultado: 'ILAP(SIN(X))', significa que não existe a expressão forma fechada f(t), tal que $f(t) = L^{-1}\{\sin(s)\}$.

Exemplo 4 – Determina a transformada de Laplace inversa F(s) = $1/s^3$. Use: $^1/X^3'$ ENTER ILAP EVAL. A calculadora retorna o resultado: $^1/X^2$, que é interpretada como L $^1/X^3$ = $^1/X^3$

<u>Exemplo 5</u> – Determina a transformada de Laplace da função f(t) = cos ($a \cdot t + b$). Use: 'COS($a \cdot X + b$)' ENTER LAP . A calculadora retorna o resultado:

$$\frac{84}{58(8)+58(a)}\cdot \cos(b)-\sin(b)\cdot \frac{a}{58(8)+58(a)}$$

Pressione FVAL para obter $-(a \sin(b) - X \cos(b))/(X^2+a^2)$. A transformada é interpretada conforme a seguir: L $\{\cos(a \cdot t + b)\} = (s \cdot \cos b - a \cdot \sin b)/(s^2+a^2)$.

Teoremas da transformada de Laplace

Para ajudá-lo a determinar a transformada de Laplace das funções você pode usar um número de teoremas, alguns dos quais são listados abaixo. alguns exemplo das aplicações do teorema são também inclusos.

<u>Teorema da diferenciação para a primeira derivada</u>. Deixe f_o ser a condição inicial para f(t), ex. f(0) = f_o, então

$$L{df/dt} = s \cdot F(s) - f_o$$
.

Exemplo 1 — A velocidade de uma partícula em movimento v(t) é definida como v(t) = dr/dt, onde r = r(t) é a posição da partícula. Permita $r_o = r(0)$ e $R(s) = L\{r(t)\}$, então, a transformada da velocidade pode ser escrita como $V(s) = L\{v(t)\}=L\{dr/dt\}=s\cdot R(s)-r_o$.

• <u>Teorema da diferenciação para a segunda derivada</u>. Permita $f_o = f(0)$ e $(df/dt)_o = df/dt|_{t=0}$, então $L\{d^2f/dt^2\} = s^2 \cdot F(s) \cdot s \cdot f_o - (df/dt)_o$.

Exemplo 2 – Como continuação do exemplo 1, a aceleração a(t) é definida como a(t) = d^2r/dt^2 . Se a velocidade inicial for $v_o = v(0) = dr/dt|_{t=0}$, então a transformada de Laplace da aceleração pode ser escrita como:

$$A(s) = L\{a(t)\} = L\{d^2r/dt^2\} = s^2 \cdot R(s) - s \cdot r_o - v_o$$
.

• <u>Teorema da diferenciação para a derivada n</u>. Let $f^{(k)}_{o} = d^{k}f/dx^{k}|_{t=0}$, e $f_{o} = f(0)$, então

$$L\{d^{n}f/dt^{n}\} = s^{n} \cdot F(s) - s^{n-1} \cdot f_{o} - ... - s \cdot f^{(n-2)}_{o} - f^{(n-1)}_{o}$$

- Teorema da linearidade. $L\{af(t)+bg(t)\} = a \cdot L\{f(t)\} + b \cdot L\{g(t)\}.$
- <u>Teorema da diferenciação para a função da imagem</u>. Deixe $F(s) = L\{f(t)\}$ então $d^nF/ds^n = L\{(-t)^n \cdot f(t)\}$.

Exemplo 3 – Permita $f(t) = e^{-at}$, usar a calculadora com 'EXP(-a*X)' (ENTE) LAP, você obtém '1/(X+a)' ou F(s) = 1/(s+a). A terceira derivada desta expressão pode ser calculada usando:

$$'X'$$
 (ENTER) $ightharpoonup \partial$ $'X'$ (ENTER) $ightharpoonup \partial$ $'X'$ (ENTER) $ightharpoonup \partial$ (EVAL)

O resultado é

'-6/(X^4+4*a*X^3+6*a^2*X^2+4*a^3*X+a^4)' ou
$$d^3F/ds^3 = -6/(s^4+4\cdot a\cdot s^3+6\cdot a^2\cdot s^2+4\cdot a^3\cdot s+a^4).$$

Agora, use '(-X)^3*EXP(-a*X)' ENTER LAP EVAL . O resultado é exatamente o mesmo.

• <u>Teorema de integração</u>. Permita F(s) = L{f(t)} então

$$L\left\{\int_0^t f(u)du\right\} = \frac{1}{s} \cdot F(s).$$

• <u>Teorema de convolução</u>. Permite $F(s) = L\{f(t)\}\ e\ G(s) = L\{g(t)\}\$, então

$$L\left\{\int_0^t f(u)g(t-u)du\right\} = L\left\{(f * g)(t)\right\} =$$

$$L\{f(t)\}\cdot L\{g(t)\} = F(s)\cdot G(s)$$

<u>Exemplo 4</u> — Usar o teorema de convolução encontra a transformada de Lapalce de (f*g)(t), if f(t) = sin(t) e g(t) = exp(t). Para encontrar F(s) = L{f(t)} e G(s) = L{g(t)}, então 'SIN(X)' ENTER LAP(EVAL) Resulta '1/(X^2+1)', ex. F(s) = $1/(s^2+1)$.

Além disso, 'EXP(X)' ENTER LAP. Resulta '1/(X-1)', ex., G(s) = 1/(s-1). Assim, L{(f*g)(t)} = F(s)·G(s) = $1/(s^2+1)\cdot 1/(s-1) = 1/((s-1)(s^2+1)) = 1/(s^3-s^2+s-1)$.

 <u>Teorema de deslocamento para um deslocamento a direita</u>. Permita F(s) = L{f(t)}, então

- $L\{f(t-\alpha)\}=e^{-\alpha s}\cdot L\{f(t)\}=e^{-\alpha s}\cdot F(s)$.

Teorema de deslocamento para um deslocamento a esquerda. Permita F(s)
 = L{f(t)}, e α >0, então

$$L\{f(t+a)\} = e^{as} \cdot \left(F(s) - \int_0^a f(t) \cdot e^{-st} \cdot dt\right).$$

- <u>Teorema de similaridade</u>. Permite $F(s) = L\{f(t)\}$, e a>0, então $L\{f(a \cdot t)\} = (1/a) \cdot F(s/a)$.
- <u>Teorema de amortecimento</u>. Deixe $F(s) = L\{f(t)\}\ então\ L\{e^{-bt}\cdot f(t)\} = F(s+b)$.
- <u>Teorema da divisão</u>. Permita F(s) = L{f(t)} então

$$L\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(u)du.$$

Transformada de Laplace de uma função periódica de T:

$$L\{f(t)\} = \frac{1}{1 - e^{-sT}} \cdot \int_0^T f(t) \cdot e^{-st} \cdot dt.$$

• <u>Teorema de limite para o valor inicial</u>: Permita F(s) = L{f(t)} então

$$f_0 = \lim_{t \to 0} f(t) = \lim_{s \to \infty} [s \cdot F(s)].$$

• <u>Teorema de limite para o valor final</u>: Permita F(s) = L{f(t)} então

$$f_{\infty} = \lim_{t \to \infty} f(t) = \lim_{s \to 0} [s \cdot F(s)].$$

Função delta de Dirac e de etapa de Heaviside

Na análise de sistemas de controle é comum usar um tipo de funções que representam certas ocorrências físicas, tais como ativação súbita de uma troca (função de etapa de Heaviside, H(t)) ou um pico súbito, instantâneo em uma entrada para o sistema (função delta de Dirac, $\delta(t)$). Estes pertencem a classe de funções conhecidas como funções generalizadas ou simbólicas [ex. consulte Friedman, B., 1956, Principles and Techniques of Applied Mathematics, Dover Publications Inc., New York (1990 reimpressão)].

a definição formal da <u>função delta de Dirac</u>, $\delta(x)$, is $\delta(x) = 0$, para $x \neq 0$, e

$$\int_{-\infty}^{\infty} \delta(x) dx = 1.0.$$

Além disso, se f(x) for uma função contínua, então

$$\int_{-\infty}^{\infty} f(x)\delta(x-x_0)dx = f(x_0).$$

Uma interpretação para integral acima, pararafraseada de Friedman (1990), é que a função δ "seleciona" o valor da função f(x) em $x=x_0$. O delta de Dirac é tipicamente representado por uma seta para cima no ponto x=x0, indicando a função que tem um valor não zero apenas neste valor particular de x_0 .

Função de etapa de Heaviside, H(x), é definida como

$$H(x) = \begin{cases} 1, & x > 0 \\ 0, & x < 0 \end{cases}$$

Além disso, para a função contínua f(x),

$$\int_{-\infty}^{\infty} f(x)H(x-x_0)dx = \int_{x_0}^{\infty} f(x)dx.$$

A função delta de Dirac e a da etapa de Heaviside são relacionadas por $dH/dx = \delta(x)$. Estas idéias são ilustradas na figura abaixo.

Você pode provar que da qual segue que $L{H(t)} = 1/s,$ $L{U_{\circ} \cdot H(t)} = U_{\circ}/s,$

onde U_{\circ} é uma constante. Além disso, $L^{-1}\{1/s\}=H(t)$,

 $L^{-1}\{ U_{\circ} / s \} = U_{\circ} \cdot H(t).$

Além disso, usando o teorema de deslocamento para um deslocamento a direita, $L\{f(t-a)\}=e^{-as}\cdot L\{f(t)\}=e^{-as}\cdot F(s)$, podemos escrever $L\{H(t-k)\}=e^{-ks}\cdot L\{H(t)\}=e^{-ks}\cdot L\{H(t)\}=e^{-ks}\cdot$

Outro resultado importante conhecido como o segundo teorema dedeslocamento para um deslocamento a direita é que $L^{-1}\{e^{-as}\cdot F(s)\}=f(t-a)\cdot H(t-a)$, com $F(s)=L\{f(t)\}$.

Você pode obter a função delta de Dirac a calculadora usando: ILAP

O resultado é

'Delta(X)'.

Este resultado é apenas simbólico, ex. você não pode encontrar o valor numérico para, digamos, 'Delta(5)'.

Este resultado pode ser definido na transformada de Laplace para a função delta de Dirac porque de L $^{-1}$ {1.0}= δ (t), seque que L{ δ (t)} = 1.0

Além disso, usando o teorema de deslocamento para um deslocamento a direita, $L\{f(t-a)\}=e^{-as}\cdot L\{f(t)\}=e^{-as}\cdot L\{f(t)\}=e^$

Aplicações da transformada de Laplace na solução de ODEs lineares

No início da seção sobre as transformadas de Laplace indicamos que você poderia usar estas transformadas para converter uma ODE linear no domínio de tempo em uma equação algébrica no domínio de imagem. A equação resutante é então resolvida para uma função F(s) através dos métodos algébricos e a solução para a ODE é encontrada usando a transformada de Laplace inversa em F(s).

Os teoremas sobre derivadas de uma função, ex.

$$L\{df/dt\} = s \cdot F(s) \cdot f_{o}$$

$$L\{d^2f/dt^2\} = s^2 \cdot F(s) - s \cdot f_o - (df/dt)_{o}$$

e em geral,

$$L\{d^{n}f/dt^{n}\} = s^{n} \cdot F(s) - s^{n-1} \cdot f_{0} - \dots - s \cdot f^{(n-2)} - f^{(n-1)}$$

são particularmente úteis na transformada em ODE na equação algébrica.

Exemplo 1 – Resolve a equação de primeira ordem,

$$dh/dt + k \cdot h(t) = \alpha \cdot e^{-t}$$

Usando a transformada de Laplace, podemos escrever:

$$L\{dh/dt + k \cdot h(t)\} = L\{\alpha \cdot e^{-t}\},$$

$$L\{dh/dt\} + k \cdot L\{h(t)\} = a \cdot L\{e^{-t}\}.$$

Nota: 'EXP(-X)' ENTER LAP, produces '1/(X+1)', ex., $L\{e^{-t}\}=1/(s+1)$.

Com $H(s) = L\{h(t)\}\ e\ L\{dh/dt\} = s \cdot H(s) - h_o$, onde $h_o = h(0)$, a equação transformada é $s \cdot H(s) \cdot h_o + k \cdot H(s) = a/(s+1)$.

Use a calculadora para resolver H(s), escrevendo:

$$'X*H-hO+k*H=a/(X+1)'$$
 [INTER] $'H'$ ISOL

O resultado é $H=((X+1)*h0+a)/(X^2+(k+1)*X+k)'$.

Para encontrar a solução de ODE, h(t), é necessário usar a transformada de Laplace inversa, conforme a seguir:

O resultado é $(k-1)\cdot ho-a)\cdot e^X$. Substituindo X com t nesta expressão e simplificando, resulta na $h(t) = a/(k-1)\cdot e^+((k-1)\cdot h_o-a)/(k-1)\cdot e^{kt}$. Verifique qual a solução para ODE seria se fosse usar a função LDEC:

O resultado é: $\frac{\underline{\mathsf{a}\cdot\mathsf{e}^{k\cdot\mathsf{X}}} + ((k-1)\cdot\mathsf{c}\mathsf{C}\mathfrak{Q} - \underline{\mathsf{a}})\cdot\mathsf{e}^{\mathsf{X}}}{(k-1)\cdot\mathsf{e}^{\mathsf{X}}\cdot\mathsf{e}^{k\cdot\mathsf{X}}},$ ex.

$$h(t) = \alpha/(k-1) \cdot e^{-t} + ((k-1) \cdot cC_o - \alpha)/(k-1) \cdot e^{-kt}$$

Assim, cC0 nos resultados de LDEC representa a condição inicial h(0).

Nota: Ao usar a função LDEC para resolver uma ODE linear da ordem n em f(X), o resultado será dado em termos de constantes n cC0, cC1, cC2, ..., cC(n-1), representando as condições iniciais f(0), f'(0), f''(0), ..., $f^{(n-1)}(0)$.

Exemplo 2 – Use a transformada de Laplace para resolver a equação linear,

$$d^2y/dt^2+2y = \sin 3t$$
.

Usando a transformada de Laplace, podemos escrever:

$$L\{d^2y/dt^2+2y\} = L\{\sin 3t\},\$$

$$L{d^2y/dt^2} + 2 \cdot L{y(t)} = L{\sin 3t}.$$

Nota: 'SIN(3*X)' ENTER LAPEVAL produz '3/(X^2+9)', ex., L{ $\sin 3t$ }=3/(s^2+9).

Com Y(s) = L{y(t)} e L{ d^2y/dt^2 } = $s^2 \cdot Y(s) \cdot s \cdot y_o - y_1$, onde $y_o = h(0)$ e $y_1 = h'(0)$, a equação transformada é

$$s^2 \cdot Y(s) - s \cdot y_0 - y_1 + 2 \cdot Y(s) = 3/(s^2 + 9).$$

Use a calculadora para resolver Y(s), escrevendo:

$$(X^2*Y-X*y0-y1+2*Y=3/(X^2+9))'$$
 ENTER (Y') ISOL

O resultado é

$$Y = ((X^2+9)^*y1 + (y0^*X^3+9^*y0^*X+3))/(X^4+11^*X^2+18)^*.$$

Para encontrar a solução da ODE, y(t), é necessário usar a transformada de Laplace inversa, conforme a seguir:

 $OBJ \rightarrow \bigcirc$ ILAP(EVAL)

isole o lado direito da última expressão Obtenha a transformada de Laplace inversa

O resultado é

$$\frac{(7\sqrt{2}\cdot 91+3\sqrt{2}\cdot 951N(\sqrt{2}\cdot 8)+14\cdot 90\cdot 905(\sqrt{2}\cdot 8)-2\cdot 81N(3\cdot 8)}{14}$$

ex.

$$y(t) = -(1/7) \sin 3x + y_0 \cos \sqrt{2}x + (\sqrt{2} (7y_1 + 3)/14) \sin \sqrt{2}x$$
.

Verifique qual a solução para ODE seria se fosse usar a função LDEC:

O resultado é:

ex. como anteriormente com cC0 = y0 e cC1 = y1.

Nota: Usando os dois exemplos mostrados aqui, podemos confirmar o que indicamos anteriormente, ex. que a função ILAP usa a transformada de Laplace inversa para resolver ODEs linear dado o lado direito da equação e a equação de característica do ODE homogêneo correspodente.

Exemplo 3 – Considere a equação

$$d^2y/dt^2+y=\delta(t-3),$$

onde $\delta(t)$ é a função delta de Dirac.

Usando a transformada de Laplace, podemos escrever:

$$L\{d^2y/dt^2+y\} = L\{\delta(t-3)\},\$$

$$L{d^2y/dt^2} + L{y(t)} = L{\delta(t-3)}.$$

Com 'Delta (t-3)' [ENTER LAP , a calculadora produz EXP(-3*X), ex., L{ δ (t-3)} = e^{-3s} . Com Y(s) = L{y(t)} e L{ d^2y/dt^2 } = $s^2 \cdot Y(s) \cdot s \cdot y_o - y_1$, onde $y_o = h(0)$ e $y_1 = h'(0)$, a equação transformada é $s^2 \cdot Y(s) - s \cdot y_o - y_1 + Y(s) = e^{-3s}$. Use a calculadora para resolver Y(s), escrevendo:

$$'X^2*Y-X*y0-y1+Y=EXP(-3*X)'$$
 ENTER $'Y'$ ISOL

O resultado é
$$Y=(X*y0+(y1+EXP(-(3*X))))/(X^2+1)'$$
.

Para encontrar a solução de ODE, y(t), é necessário usar a transformada de Laplace inversa, conforme a seguir:

 $OBJ \rightarrow \bullet \bullet$ ILAP (EVAL)

isole o lado direito da última expressão Obtenha a transformada de Laplace inversa

O resultado é 'y1*SIN(X)+y0*COS(X)+SIN(X-3)*Heaviside(X-3)'

Notas:

[1]. Com uma forma alternativa para obter a transformada de Laplace inversa da expressão '(X*y0+(y1+EXP(-(3*X))))/(X^2+1)' é separando a expressão em frações parciais, ex.

$$y_0*X/(X^2+1) + y_1/(X^2+1) + EXP(-3*X)/(X^2+1)'$$

e usa o teorema de linearidade da transformada de Laplace inversa

$$L^{-1}\{\alpha \cdot F(s) + b \cdot G(s)\} = \alpha \cdot L^{-1}\{F(s)\} \, + \, b \cdot L^{-1}\{G(s)\}$$

para escrever,

$$L^{-1}{y_{\circ} \cdot s/(s^2+1)+y_1/(s^2+1)} + e^{-3s}/(s^2+1))} =$$

$$y_{o} \cdot L^{-1}\{s/(s^2+1)\} + y_{1} \cdot L^{-1}\{1/(s^2+1)\} + L^{-1}\{e^{-3s}/(s^2+1))\},$$

Então, usamos a calculadora para obter o seguinte:

 $'X/(X^2+1)'$ ENTER ILAP Resulta 'COS(X)', ex. L $^{-1}\{s/(s^2+1)\}=\cos t$. $'1/(X^2+1)'$ ENTER ILAP Resulta 'SIN(X)', ex. L $^{-1}\{1/(s^2+1)\}=\sin t$.

 $(EXP(-3*X)/(X^2+1)')$ [ENTER] ILAP Resulta SIN(X-3)*Heaviside(X-3)'.

[2]. O último resultado, ex. a transformada de Laplace inversa da expressão. '(EXP(-3*X)/(X^2+1))', pode também ser calculada usando o segundo teorema de deslocamento para um deslocamento a direita

$$L^{-1}\{e^{-\alpha s} \cdot F(s)\}=f(t-\alpha)\cdot H(t-\alpha),$$

se pudermos encontrar uma transformada de Laplace inversa para $1/(s^2+1)$. Com a calculadora, tente ' $1/(X^2+1)$ ' [NTER] ILAP. O resultado é 'SIN(X)'. Assim, L $^{-1}\{e^{-3s}/(s^2+1)\}=\sin(t-3)\cdot H(t-3)$.

Verifique qual seria a solução para ODE se fosse usar a função LDEC:

O resultado é:

$$'SIN(X-3)*Heaviside(X-3) + cC1*SIN(X) + cC0*COS(X)+'.$$

observe que a variável X nesta expressão representa realmente a variável t na ODE original e que está variável \$t nesta expressão é uma variável fictícia.

Assim, a interpretação da solução no papel pode ser feita como:

$$y(t) = Co \cdot \cos t + C_1 \cdot \sin t + \sin(t-3) \cdot H(t-3)$$

Ao comparar este resultado com o anterior para y(t), podemos concluir que $cC_o = y_o$, $cC_1 = y_1$.

Definir e usar a função etapa de Heaviside na calculadora

O exemplo anterior forneceu alguma experiência com o uso da função delta de Dirac como entrada para um sistema (ex. no lado direito de ODE

descrevendo o sistema). Neste exemplo, queremos usar a função de etapa de Heaviside, H(t). Na calculadora podemos definir esta função como:

$$'H(X) = IFTE(X>0, 1, 0)'$$
 [ENTER] \leftarrow DEF

Esta definição criará a variável IIII na tecla do menu da calculadora.

Exemplo 1 - Para ver uma plotagem de H(t-2), por exemplo, use um tipo FUNCTION na plotagem (consulte o capítulo 12):

- Pressione 숙 2030 simultaneamente se estiver no modo RPN para acessar para a janela PLOT SETUP.
- > Altere TYPE para Function, se for necessário
- ➤ Altere EQ para 'H(X-2)'.
- Certifique-se de que Indep está configurado para 'X'.
- Pressione MXT MIXIM para retornar ao visor normal da calculadora.
- Pressione 🕤 🚧 simultaneamente para acessar a janela PLOT
- ➤ Altere a faixa H-VIEW para 0 a 20 e a faixa V-VIEW para –2 a 2.
- Pressione IIIII mara plotar a função.

Uso da função H(X) com LDEC, LAP ou ILAP, não é permitido na calculadora. Deverá usar os resultados principais fornecidos anteriormente ao trabalhar com a função de etapa de Heaviside, ex. $L\{H(t)\} = 1/s$, $L^{-1}\{1/s\}=H(t)$, $L\{H(t+k)\}=e^{-ks}\cdot L\{H(t)\}=e^{-ks}\cdot (1/s)=\cdot (1/s)\cdot e^{-ks}$ e $L^{-1}\{e^{-as}\cdot F(s)\}=f(t+a)\cdot H(t+a)$.

Exemplo 2 – A função H(t-t_o) quando multiplicada para uma função f(t), ex. $H(t-t_o)f(t)$, tem o efeito de trocar para a função f(t) at $t=t_o$. Por exmplo, a solução obtida no exemplo 3 acima foi y(t) = y_o cos $t+y_1$ sin $t+\sin(t-3)\cdot H(t-3)$. Suponha que usemos as condições iniciais $y_o=0.5$ e $y_1=-0.25$. Vamos plotar esta função para ver como se parece:

- Pressione (1) 20130, simultaneamente se estiver no modo RPN, para acessar para a janela PLOT SETUP.
- Altere TYPE para Function, se for necessário
- Altere EQ to '0.5*COS(X)-0.25*SIN(X)+SIN(X-3)*H(X-3)'.
- Certifique-se de que Indep está configurado para 'X'.

- Pressione IIIII mara plotar a função.
- > Pressione **III** NXT **IIII** para ver a plotagem.

O gráfico resultante será similar a este:

Observe que o sinal começa com uma amplitude relativamente pequena, mas subitamente, em t=3, alternar para um sinal oscilatório com uma amplitude maior. A diferença entre o comportament do sinal antes e depois t=3 é "alternar na" solução particular $y_p(t)=\sin(t-3)\cdot H(t-3)$. O comportamento do sinal antes t=3 representa a contribuição da solução homogênea, $y_h(t)=y_o$ cos $t+y_1$ sin t.

A solução de uma equação com sinal dirigido dado por uma função de etapa de Heaviside é mostrado abaixo.

<u>Exemplo 3</u> – Determina a solução da equação, $d^2y/dt^2+y=H(t-3)$, onde H(t) e a função de etapa de Heaviside. Usando a transformada de Laplace, podemos escrever: $L\{d^2y/dt^2+y\}=L\{H(t-3)\}$, $L\{d^2y/dt^2\}+L\{y(t)\}=L\{H(t-3)\}$. O último temos nesta expressão é: $L\{H(t-3)\}=(1/s)\cdot e^{-3s}$. Com $Y(s)=L\{y(t)\}$ e $L\{d^2y/dt^2\}=s^2\cdot Y(s)-s\cdot y_o-y_1$, onde $y_o=h(0)$ e $y_1=h'(0)$, a equação transformada é, $s^2\cdot Y(s)-s\cdot y_o-y_1+Y(s)=(1/s)\cdot e^{-3s}$. Altere o modo CAS para Exact, se for necessário. Use a calculadora para resolver Y(s), escrevendo:

$$'X^2*Y-X*y0-y1+Y=(1/X)*EXP(-3*X)'$$
 [STER 'Y' ISOL

O resultado é $Y=(X^2*y0+X*y1+EXP(-3*X))/(X^3+X)'$.

Para encontrar a solução de ODE, y(t), é necessário usar a transformada de Laplace inversa, conforme a seguir:

OBJ→ **●** isole o lado direito da última expressão

ILAP

Obtenha a transformada de Laplace inversa

O resultado é $y_1*SIN(X-1)+y_0*COS(X-1)-(COS(X-3)-1)*Heaviside(X-3)'$.

Assim, escrevermos conforme a seguir:

$$y(t) = y_0 \cos t + y_1 \sin t + H(t-3) \cdot (1+\sin(t-3)).$$

Verifique qual a solução para ODE seria se fosse usar a função LDEC:

O resultado é:

$$SIN(X) \cdot \int_{0}^{+\infty} \frac{IFTE(ttt-3>0,1,0)}{e^{X/ttt}} dttt +cc1 \cdot SIN(X) + cc0 \cdot cos(X)$$

Observe que a variável X nesta expressão representa realmente a variável t no original ODE e que a variável tt nesta expressão é uma variável fictícia. Assim, a interpretação da solução escrita pode ser feita como:

$$y(t) = Co \cdot \cos t + C_1 \cdot \sin t + \sin t \cdot \int_0^\infty H(u - 3) \cdot e^{-ut} \cdot du.$$

Exemplo 4 – Plote a solução do exempo 3 usando os mesmos valores de y_o e y_1 usados no gráfico do exemplo 1, acima. Agora nós plotamos a função

$$y(t) = 0.5 \cos t - 0.25 \sin t + (1+\sin(t-3))\cdot H(t-3)$$
.

Na faixa 0 < t < 20 trocamos a faixa vertical para (-1,3), o gráfico deve parecer com isso:

Novamente, há um novo componente para o movmento trocado a t=3, sendo a solução particular y_p(t) = [1+sin(t-3)]·H(t-3), que muda a natureza da solução para t>3.

A função da etapa de Heaviside pode ser combinada com uma função constante e com as funções lineares para gerar e ver pulsos finitos quadrados, triangulares e tooth, conforme a seguir:

Pulso quadrado de tamanho U_o no intervalo a < t < b:

$$f(t) = Uo[H(t-a)-H(t-b)].$$

 Pulso triangular com um valor máximo Uo, aumentando de a < t < b, diminuindo de b < t < c:

$$f(t) = U_{\circ} \cdot ((t-\alpha)/(b-\alpha) \cdot [H(t-\alpha)-H(t-b)] + (1-(t-b)/(b-c))[H(t-b)-H(t-c)]).$$

 Pulso tooth aumentando para um valor máximo Uo for a < t < b, caindo subtamente para zero em t = b:

$$f(t) = U_o \cdot (t-a)/(b-a) \cdot [H(t-a)-H(t-b)].$$

 Pulso tooth aumentando subitamente para um máximo de Uo at t = a, depois diminuir linearmente para zero para a < t < b:

$$f(t) = U_o \cdot [1-(t-a)/(b-1)] \cdot [H(t-a)-H(t-b)].$$

Exemplos de plotagens geradas pelas funções para Uo = 1, a = 2, b = 3, c = 4, x-range = (0,5), e a faixa y = (-1, 1.5) são mostradas nas figuras abaixo:

Série de Fourier

A série de Fourier são séries envolvendo as funções seno e coseno tipicamente usadas nas funções periódicas de expansão. Uma função f(x) é considerada <u>periódica</u>, do período T, se f(x+T) = f(t). Por exemplo, por causa de $\sin(x+2\pi) = \sin x$ e $\cos(x+2\pi) = \cos x$, as funções $\sin e$ cos são funções periódicas 2π . Se duas funções f(x) e g(x) são periódicas de período T, então sua combinação linear $h(x) = a \cdot f(x) + b \cdot g(x)$ é também de período T. A função periódica T f(t) pode ser expandida em uma série de funções seno e conseno conhecidas como a série Fourier dado por

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cdot \cos \frac{2n\pi}{T} t + b_n \cdot \sin \frac{2n\pi}{T} t \right)$$

onde os coeficientes a_n e b_n são dados por

$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(t) \cdot dt, \quad a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cdot \cos \frac{2n\pi}{T} t \cdot dt,$$

$$b_n = \int_{-T/2}^{T/2} f(t) \cdot \sin \frac{2n\pi}{T} t \cdot dt.$$

Os seguintes exercícios estão no modo ALG com o modo CAS configurado para Exact. (quando produz um gráfico, o modo CAS será reajustado para Approx. Certifique-se de configurá-lo de volta para Exact depois de produzir o gráfico). Suponha, por exemplo, que a função $f(t) = t^2 + t$ é periódica com o período T = 2. Para determinar os coeficientes a_0 , a_1 , e b_1 para a série Fourier correspondente, procedemos conforme a seguir: Primeiro, defina a função $f(t) = t^2 + t$:

A seguir, usemos o Editor de Equação para calcular os coeficientes:

Assim, o primeiro dos três termos da função é:

$$f(t) \approx 1/3 - (4/\pi^2) \cdot \cos(\pi \cdot t) + (2/\pi) \cdot \sin(\pi \cdot t)$$
.

Uma comparação geográfica da função original com a expansão de Fourier usando os três termos mostra que o ajuste é aceitável para t < 1 ou nas proximidades. Mas, então, novamente, estipulamos que T/2 = 1. Portanto, o ajuste é válido apenas entre -1 < t < 1.

Função FOURIER

Uma forma alternativa de definir uma série de Fourier é usando números complexos conforme a seguir:

$$f(t) = \sum_{n=-\infty}^{+\infty} c_n \cdot \exp(\frac{2in\pi t}{T}),$$

onde

$$c_n = \frac{1}{T} \int_0^T f(t) \cdot \exp(\frac{2 \cdot i \cdot n \cdot \pi}{T} \cdot t) \cdot dt, \quad n = -\infty, ..., -2, -1, 0, 1, 2, ...\infty.$$

A função FOURIER fornece o coeficiente c_n de forma complexa da série Fourier dada à função f(t) e o valor de n. A função FOURIER requer que você armazene o valor do período (T) de uma função T periódica na variável PERIOD do CAS antes de chamar a função. A função FOURIER está disponível no submenu DERIV dentro do menu CALC ().

Série Fourier para a função quadrática

Determina os coeficientes c_0 , c_1 , e c_2 para a função $f(t) = t^2 + t$, com o período T = 2. (Nota: Dado que a integral usada pela função FOURIER é calculada no intervalo [0,T], enquanto aquela definida anteriormente foi calculada no intervalo [-T/2,T/2], é necessário deslocar a função no eixo t, subtraindo T/2 de t, ex., usaremos $g(t) = f(t-1) = (t-1)^2 + (t-1)$.)

Usando a calculadora no modo ALG, primeiro definimos as funções f(t) e g(t):

Retorna ao subdiretório onde você definiu as funções f e g e calcula os coeficientes (Aceite a alteração para o modo Complex quando solicitado).

Assim,
$$c_0 = 1/3$$
, $c_1 = (\pi \cdot i + 2)/\pi^2$, $c_2 = (\pi \cdot i + 1)/(2\pi^2)$.

A série Fourier com os três elementos será escrita como

$$g(t) \approx \text{Re}[(1/3) + (\pi \cdot i + 2)/\pi^2 \cdot \exp(i \cdot \pi \cdot t) + (\pi \cdot i + 1)/(2\pi^2) \cdot \exp(2 \cdot i \cdot \pi \cdot t)].$$

Uma plotagem da função deslocada g(t) e a série Fourier ajustando o seguinte:

O ajuste é algo aceitável para 0 < t < 2, embora não tão bom quanto no exemplo anterior.

Um expressão geral para c_n

A função FOURIER pode fornece uma expressão geral para o coeficiente c_n da expansão da série Fourier complexa. Por exemplo, usar a mesma função g(t) conforme anteriormente, o termo geral c_n é dado por (figuras mostradas com fontes de tamanhos normal e pequeno):

A expressão geral passa a ser:

$$c_n = \frac{(n\pi + 2i) \cdot e^{2in\pi} + 2i^2 n^2 \pi^2 + 3n\pi - 2i}{2n^3 \pi^3 \cdot e^{2in\pi}}$$

Podemos simplificar esta expressão mais ainda usando a fórmula de Euler para números complexos, a saber, $e^{2in\pi} = \cos(2n\pi) + i \cdot \sin(2n\pi) = 1 + i \cdot 0 = 1$, since $\cos(2n\pi) = 1$, $e\sin(2n\pi) = 0$, par inteiros n.

Usando a calculadora você pode simplificar a expressão no Editor de Equação (\rightarrow $\cancel{\text{EOW}}$) substituindo $e^{2in\pi}=1$. a figura mostra a expressão depois da simplificação:

O resultado é

$$c_n = (i \cdot n \cdot \pi + 2) / (n^2 \cdot \pi^2).$$

Colocar junto a série de Fourier complexa

ao determinar a expressão geral para c_n , podemos colocar juntos uma série Fourier finita usando a função somatória (Σ) na calculadora conforme a seguir:

• Primeiro, defina uma função c(n) representando o termo geral c_n na série Fourier complexa.

 A seguir, defina a série Fourier complexa finita, F(X,k), onde X é a variável independente e k determina o número de termos a ser usado. Provavelmente gostaríamos de escrever esta série Fourier complexa finita como

$$F(X,k) = \sum_{n=-k}^{k} c(n) \cdot \exp(\frac{2 \cdot i \cdot \pi \cdot n}{T} \cdot X)$$

Portanto, por causa da função c(n) não é definida por n=0, seria moelhor rescrever a expressão como

$$F(X,k,c0) = c0 +$$

$$\sum_{n=1}^{k} \left[c(n) \cdot \exp\left(\frac{2 \cdot i \cdot \pi \cdot n}{T} \cdot X\right) + c(-n) \cdot \exp\left(-\frac{2 \cdot i \cdot \pi \cdot n}{T} \cdot X\right) \right],$$

Ou, na linha de entrada da calculadora:

$$\begin{split} \text{DEFINE}(\text{'}F(X,k,c0) = c0 + & \Sigma(n\!=\!1,k,c(n)^*\text{EXP}(2^*i^*\pi^*n^*X/T) + \\ & c(\!-\!n)^*\text{EXP}(\!-\!(2^*i^*\pi^*n^*X/T))'), \end{split}$$

onde T é o período, T=2. O seguinte visor mostra a definição da função F e armazenagem de T=2:

A função \parallel pode ser usada para gerar a expressão pra a série Fourier complexa para um valor finito de k. Por exemplo, para k=2, $c_0=1/3$ e usando t como a variável independente, podemos avaliar F(t,2,1/3) para obter:

Este resultado mostra apenas o primeiro termo (c0) e parte do primeiro termo exponencial nas séries. O formato do visor decimal foi alterado para Fix com 3 decimais para mostrar os coeficientes na expansão e no expoente. Conforme esperado, os coeficientes são números complexos.

A função F, assim definida, é boa para obter os valores da série Fourier finita. Por exemplo, um valor único da série, ex. F(0.5,2,1/3), pode ser obtido usando (Modo CAS configurado para Exact, passo a passo e Complex):

Aceite alteração para o modo Approx se solicitado. O resultado é o valor -0.40467.... O valor atual da função g(0.5) é g(0.5) = -0.25. Os seguintes cálculos mostram quão bem a série Fourier aproxima este valor como o número de componentes na série, dado por k, aumenta:

$$F(0.5, 1, 1/3) = (-0.303286439037, 0).$$

 $F(0.5, 2, 1/3) = (-0.404607622676, 0).$

```
F (0.5, 3, 1/3) = (-0.192401031886,0).
F (0.5, 4, 1/3) = (-0.167070735979,0).
F (0.5, 5, 1/3) = (-0.294394690453,0).
F (0.5, 6, 1/3) = (-0.305652599743,0).
```

Para comparar os resultados das séries com estas da função original, carregue estas funções no formulário de entrada PLOT – FUNCTION (, simultaneamente usando o modo RPN):

Altere os limites da janela de plotagem () conforme a seguir:

Pressione as teclas Table para produzir a plotagem:

Observe que a séries, com 5 termos, "agrega" o gráfico da função muito proximo no intervalo 0 a 2 (ex. através do período T = 2). Percebe também uma periodicidade no gráfico de série. Esta periodicidade é fácil de visualizar expandindo a faixa x da plotagem para (-0.5,4):

Série de Fourier para uma onda triangular

Considere a função

$$g(x) = \begin{cases} x, & \text{if } 0 < x < 1 \\ 2 - x, & \text{if } 1 < x < 2 \end{cases}$$

que é periódica com o período T = 2. Esta função pode ser definida na calculadora no modo ALG pela expressão

$$DEFINE('g(X) = IFTE(X<1,X,2-X)')$$

Se iniciar este exemplo depois de terminar o exemplo 1 você deve ter um valor de 2 armazenado na variável PERIOD do CAS. Verifique o valor desta variável e armazene um 2 se for necessário. O coeficiente c_0 para a série Fourier é calculado conforme a seguir:

A calculadora solicitará uma troca pra o modo Approx por causa da integração da função IFTE() incluida na integral. Aceitar a torca para Approx produz $c_0 = 0.5$. Se quisermos obter uma expressão genérica para o coeficiente c_n use:

A calculadora retorna uma integral que não pode ser avaliada numericamente porque depende do parâmetro n. O coeficiente pode ainda ser calculador digitando sua definição na calculadora, ex.

$$\frac{1}{2} \cdot \int_{0}^{1} X \cdot EXP\left(-\frac{i \cdot 2 \cdot n \cdot \pi \cdot X}{T}\right) \cdot dX + \frac{1}{2} \cdot \int_{1}^{2} (2 - X) \cdot EXP\left(-\frac{i \cdot 2 \cdot n \cdot \pi \cdot X}{T}\right) \cdot dX$$

onde T = 2 é o período. O valor de T pode ser armazenado usando:

Digita a primeira integral acima no Editor de Equação, selecionando a expressão inteira e usa produzira o seguinte:

Reative o $e^{in\pi}=\cos(n\pi)+i\cdot\sin(n\pi)=(-1)^n$. Para fazer esta substituição no resultado acima temos:

$$-\frac{\left(-1\right)^{\mathsf{D}}-i\cdot\mathsf{D}\cdot\mathsf{T}-1}{2\cdot\mathsf{D}^{2}\cdot\mathsf{T}^{2}\cdot\left(-1\right)^{\mathsf{D}}}$$

Pressione $\[mathred]$ para copiar este resultado no visor. Então, reative o Editor de Equação para calculaor a segunda integral definindo o coeficiente c_n , a saber,

Novamente, substiuir $e^{in\pi} = (-1)^n$, e usar $e^{2in\pi} = 1$, obtemos:

Pressione $\[mathred]$ para copiar este resultado no visor. Agora, adicione ANS(1) e ANS(2) para obter a expressão inteira para c_n :

Pressionar 👽 colocará este resultado no Editor de Equação, onde podemos simplificar ([2512]) para ler:

Novamente, substituir $e^{in\pi} = (-1)^n$ resulta em

Este resultando é usado para definir a função c(n) conforme a seguir:

DEFINE('c(n) = - (((-1)^n-1)/(n^2*
$$\pi$$
^2*(-1)^n)')

ex.

A seguir, definimos a função F(X,k,c0) para calcular a série de Fourier (se completou o exemplo 1 já armazenou esta função):

DEFINE('F(X,k,c0) = c0+
$$\Sigma$$
(n=1,k,c(n)*EXP(2*i* π *n*X/T)+
c(-n)*EXP(-(2*i* π *n*X/T))'),

Para comparar a função original e a série Fourier podems produzir a plotagem simultânea de ambas as funções. Os detalhes são similares a estes do exemplo 1, exceto que aqui usamos uma faixa de x de 0 a 2 e para y de 0 a 1 e ajustamos as equações para plotagem conforme mostrado aqui:

O gráfico resultante é mostrado abaixo para k = 5 (o número de elementos na série é 2k+1, ex. 11 neste caso):

Da plotagem é muito dificil distinguir a função original da aproximação da serie Fourier. Usando k=2 ou 5 temos na série, não mostra um ajuste tão bom:

A série Fourier pode ser usada para gerar uma onda triangular periódica (ou onda tooth) alternado a faixa do eixo x, por exemplo, de -2 a 4. O gráfico mostrado abaixo usa k=5:

Série Fourier para uma onda quadrada

Uma onda quadrada pode ser gerada usando a função

$$g(x) = \begin{cases} 0, & \text{if } 0 < x < 1 \\ 1, & \text{if } 1 < x < 3 \\ 0, & \text{if } 3 < x < 4 \end{cases}$$

Neste caso, o período T, é 4. Certifique-se de alterar o valor da variável para 4 (use: 4 STOP) MINIMITED A função g(X) pode ser definida na calculadora usando

$$DEFINE('g(X) = IFTE((X>1) AND (X<3), 1, 0)')$$

A função plotada conforme a seguir (escala horizontal: 0 a 4, escala vertical:0 a 1.2):

Usando um procedimento similar a este da forma triangular no exemplo 2 acima, você pode descobrir que

$$c_0 = \frac{1}{T} \cdot \left(\int_1^3 1 \cdot dX \right) = 0.5$$
,

е

Podemos simplificar esta expressão usando $e^{in\pi/2}=i^n$ e $e^{3in\pi/2}=(-i)^n$ para obter:

A simplificação do lado direito de c(n) acima é mais fácil se for feita por escrito (ex. manualmente). Então, redija a expressão para c(n) conforme mostrado na figura a esquerda acima para definir a função c(n). A série Fourier é calculada com F(X,k,c0), como nos exemplos 1 e 2 acima com c0 = 0.5. Por exemplo for k = 5, ex. com 11 componentes, a aproximação é mostrada abaixo:

Uma melhor aproximação é obtida usando k = 10, ex.

Para k=20, o ajuste é sempre melhor, mas leva mais tempo para produzir o gráfico:

Aplicações da série Fourier nas equações diferenciais

Suponha que desejamos usar a onda quadrática periódica definida no exemplo anteriore como excitação de um sistem de suspensão da massa não amortecida: $d^2y/dX^2 + 0.25y = 0$.

Podemos gerar a força de excitação obtendo uma aproximação com k = 10 da série de Fourier usando SW(X) = F(X, 10, 0.5):

Podemos usar este resultado como a priemeira entrada para a função LDEC quando usado para obter uma solução para o sistema $d^2y/dX^2 + 0.25y = SW(X)$, onde SW(X) significa Função de onda quadrada de X. O segundo item de entrada será a equação característica correspodnente ao ODE corespondente acima, ex. ' $X^2+0.25$ '.

Com estas duas entradas a função LDEC produz o seguinte resultado (formato decimal alterado para Fix com 3 decimais).

Pressionar permite que você veja a expressão inteira no Editor de Equação. Explorar a equação no Editor de Equação revela a existência de duas constantes da integração, cC0 e cC1. Estes valores seriam calculados usando as condições iniciais. Suponha que usemos os valores cC0 = 0,5 e cC1 = -0,5, podemos substituir estes valores na solução acima usando a função SUBST (consulte o capítulo 5). Para este caso, use

SUBST(ANS(1),cC0=0.5) $\[mathred]$ seguido por SUBST(ANS(1),cC1=-0.5) $\[mathred]$ De volta ao visor normal da calculadora, podemos ver:

```
(4.019E-9:cC0+(0.000,-3:
:SUBST(ANS(1.000),cC0=0:
(4.019E-9:0.500+(0.000,
:SUBST(ANS(1.000),cC1=-)
(4.019E-9:0.500+(0.000,
:
```

O último resultado pode ser definido como uma função, FW(X), conforme a seguir (cortando e colando o último resultado no comando):

Podemos agora plotar a parte real desta função. Altere o modo decimal para Standard e use o seguinte:

A solução é mostrada abaixo:

Transformadas de Fourier

Antes de apresentar este conceito da transformada de Fourier, discutiremos a definição geral de uma transformada integral. Em geral, uma <u>transformada</u>

integral é uma transformação relacionada com uma função f(t) para uma nova função F(s) por uma integração da forma $F(s) = \int_a^b \kappa(s,t) \cdot f(t) \cdot dt$.

A função κ(s,t) é mostrada como o <u>centro da transformação</u>.

O uso de uma transformada integral permite que resolvamos uma função <u>dados</u> os <u>espectros do componente</u>. Para compreender o conceito de um espectro, considere a série Fourier

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cdot \cos \omega_n x + b_n \cdot \sin \omega_n x),$$

representando uma função periódica com período T. Esta série de Fourier pode ser reescrita como

$$f(x) = a_0 + \sum_{n=1}^{\infty} A_n \cdot \cos(\varpi_n x + \phi_n),$$

onde

$$A_n = \sqrt{a_n^2 + b_n^2}, \quad \phi_n = \tan^{-1} \left(\frac{b_n}{a_n}\right),$$

para n = 1, 2, ...

A ampliude A_n Será mencionada como o espectro da função e será uma medida da magnitude do componente de f(x) com a frquência $f_n = n/T$. A frequência básica e fundamente na série Fourier é $f_0 = 1/T$, assim todas as outrtas frequências são múltiplas desta frequência básica, ex. $f_n = n \cdot f_0$. Além disso, define uma frequência angular, $\omega_n = 2n\pi/T = 2\pi \cdot f_n = 2\pi \cdot n \cdot f_0 = n \cdot \omega_0$, onde ω_0 é a frquência angular fundamental ou básica da série Fourier.

Usar a notaçõa da frquência angular, a expansão da série Fourier é escrita como

$$f(x) = a_0 + \sum_{n=1}^{\infty} A_n \cdot \cos(\omega_n x + \phi_n).$$

$$= a_0 + \sum_{n=1}^{\infty} (a_n \cdot \cos \omega_n x + b_n \cdot \sin \omega_n x)$$

Uma plotagem dos valores A_n vs. ω_n é a representação típica de um espectro discreto para uma função. O espectro discreto mostrará que a função tem componentes em frquências angulares ω_n que são múltiplos de inteiros da frequência angular fundamental ω_0 .

Suponha que enfrentemos a necessidade de expandir uma função não periódica nos componentes seno e coseno. Uma função não periódica pode ser vista como tendo um período infinitamente grande. Assim, para um valor muito grande de T, a frequência angular fundamente $\omega_0 = 2\pi/T$, torna-se uma quantidade muito pequena, digamos $\Delta\omega$. Além disso, as frquências angulares correspondentes a $\omega_n = n \cdot \omega_0 = n \cdot \Delta\omega$, (n = 1, 2, ..., ∞), toma agora os valores mais próximos entre si, sugerindo a necessidade de espectro contínuo de valores.

A função não periódica pode ser escrita, portanto, como

$$f(x) = \int_0^\infty [C(\omega) \cdot \cos(\omega \cdot x) + S(\omega) \cdot \sin(\omega \cdot x)] d\omega,$$

onde

$$C(\omega) = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} f(x) \cdot \cos(\omega \cdot x) \cdot dx,$$

е

$$S(\omega) = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} f(x) \cdot \sin(\omega \cdot x) \cdot dx.$$

O espectro contínuo é dado por

$$A(\omega) = \sqrt{\left[C(\omega)\right]^2 + \left[S(\omega)\right]^2}$$

A função $C(\omega)$, $S(\omega)$, e $A(\omega)$ são funções contínuas de uma variável ω , que torna-se a variável da transformada para a transformada de Fourier definida acima.

Exexmplo 1 – Determina os coeficientes $C(\omega)$, $S(\omega)$, e o espectro contínuo $A(\omega)$, para a função $f(x) = \exp(-x)$, para x > 0 e f(x) = 0, x < 0.

Na calculadora, configure e avalie as seguintes integrais para calcular $C(\omega)$ e $S(\omega)$, respectivamente:

$$\frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{0}^{\omega} e^{-x} \cdot COS(\omega \cdot x) \, dx \bullet$$

EDIT | CURS | BIG = EVAL | FACTO | SIMP

Os resultados são respectivamente:

$$\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-x} \cdot COS(\omega \cdot x) dx \cdot \Phi = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-x} \cdot SIN(\omega \cdot x) dx \cdot \Phi$$

EDIT CURS BIG - EVAL FACTO SIMP

$$\frac{\omega}{\left(2\cdot\omega^2+2\right)\cdot\pi}$$

O espectro contínuo, $A(\omega)$ é calculado como:

$$H(\omega) = \frac{1}{2\sqrt{\omega^2 + 1/\pi}}$$
EDIT | CURS | BIG | EVAL | FACTO | SIMP

Define esta expressão como uma função usando a função DEFINE (). Então, plote o espectro contínuo, na escala $0 < \omega < 10$, como:

Definição da transformada de Fourier

Tipos diferentes da transformada de Fourier podem ser definidos. A seguir apresentamos as definições do seno, coseno e transformada de Fourier e suas inversas:

Transformada de Fourier seno

$$Fs\{f(t)\} = F(\omega) = \frac{2}{\pi} \cdot \int_0^{\infty} f(t) \cdot \sin(\omega \cdot t) \cdot dt$$

Transformada seno inversa

$$F_s^{-1}{F(\omega)} = f(t) = \int_0^\infty F(\omega) \cdot \sin(\omega \cdot t) \cdot dt$$

Transformada de Forier coseno

$$F_c\{f(t)\} = F(\omega) = \frac{2}{\pi} \cdot \int_0^\infty f(t) \cdot \cos(\omega \cdot t) \cdot dt$$

Transformada coseno inversa

$$F_c^{-1} \{F(\omega)\} = f(t) = \int_0^\infty F(\omega) \cdot \cos(\omega \cdot t) \cdot dt$$

Transformada de Fourier (propria)

$$F\{f(t)\} = F(\omega) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{\infty} f(t) \cdot e^{-i\omega t} \cdot dt$$

Transformada de Fourier inversa (propria)

$$F^{-1}{F(\omega)} = f(t) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{\infty} F(\omega) \cdot e^{-i\omega t} \cdot dt$$

Exemplo 1 — Determina a transformada de Fourier da função $f(t) = \exp(-t)$, para t > 0 e f(t) = 0 para t < 0.

O espectro contínuo, $F(\omega)$ é calculado com a integral:

$$\frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-(1+i\omega)t} dt = \lim_{\varepsilon \to \infty} \frac{1}{\sqrt{2\pi}} \int_0^\varepsilon e^{-(1+i\omega)t} dt$$
$$= \lim_{\varepsilon \to \infty} \frac{1}{\sqrt{2\pi}} \left[\frac{1 - \exp(-(1+i\omega)t)}{1 + i\omega} \right] = \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{1 + i\omega}.$$

Este resultdo pode ser racionalizado pela multiplicação do numerado ou denominador pela conjugada do denominador, a saber, 1-iω. O resultado é:

$$F(\omega) = \frac{1}{2\pi} \cdot \frac{1}{1+i\omega} = \frac{1}{2\pi} \cdot \left(\frac{1}{1+i\omega}\right) \cdot \left(\frac{1-i\omega}{1-i\omega}\right)$$
$$= \frac{1}{2\pi} \left(\frac{1}{1+\omega^2} - i \cdot \frac{\omega}{1+\omega^2}\right)$$

que é a função complexa.

As partes real e imaginária da função pode ser plotada conforme mostrado abaixo

Notas:

O valor absoluto da transformada de Fourier, $|F(\omega)|$, é o espectro da frequência da função original f(t). Para o exemplo mostrado acima, $|F(\omega)| = 1/[2\pi(1+\omega^2)]^{1/2}$. A plotagem de $|F(\omega)|$ e de ω foi mostrada anteriormente.

Algumas funções, tais como os valores constantes, sin(x), exp(x), x², etc., não tem a transformada de Fourier. As funções que vão para o zero suficientemente rápido como x vai para o infinito tem a transformada de Fourier.

Propriedades da transformada de Fourier

Linearidade: Se a e b são constantes e as funções f e g, então $F\{a \cdot f + b \cdot g\} = a F\{f\} + b F\{g\}$.

A transformação das derivadas parciais. Deixe u=u(x,t). Se a transformada de Fourier transforma a variável x, então

$$\begin{split} F\{\partial u/\partial x\} &= i\omega \ F\{u\}, \ F\{\partial^2 u/\partial x^2\} = -\omega^2 \ F\{u\}, \\ F\{\partial u/\partial t\} &= \partial F\{u\}/\partial t, \ F\{\partial^2 u/\partial t^2\} = \partial^2 F\{u\}/\partial t^2 \end{split}$$

convolução: Para as aplicações da transformada de Fourier, a operação da convolução é definida como

$$(f * g)(x) = \frac{1}{\sqrt{2\pi}} \cdot \int f(x - \xi) \cdot g(\xi) \cdot d\xi.$$

As seguintes propriedades mantêm a convolução:

$$F\{f^*g\} = F\{f\} \cdot F\{g\}.$$

Transformada de Fourier rápida (FFT)

A transformada de Fourier rápida é um algoritmo de computador onde podemos calcular de forma muito eficiente uma transformada de Fourier discreta (DFT). Este algoritmo tem aplicações na análise de tipos diferentes de sinais dependente de tempo, de medidas de turbulência para sinais de comunicação.

A transformada de Fourier discreta de uma sequência de valores de dados $\{x_i\}$, j=0,1,2,...,n-1, é uma nova sequência finita $\{X_k\}$, definida como

$$X_k = \frac{1}{n} \sum_{j=0}^{n-1} x_j \cdot \exp(-i \cdot 2\pi k j / n), \qquad k = 0,1,2,...,n-1$$

O cálculo direto da sequência X_k envolve n^2 produtos, que envolveriam um tempo enorme do computador (ou calculadora) particularmente para valores grandes de n. transformada de Fourier rápida reduz o número de operações para a ordem de $n \cdot log_2 n$. Por exemplo, para n=100, a FFT exige aproximadamente 664 operações, enquanto o cálculo direto exigiria 10,000 operações. Assim, o número de operações usando o FFT é reduzido pelo fator de $10000/664 \approx 15$.

O FFT opera na sequência $\{x_i\}$ particionando-o em um número de sequências mais curtas. O DFT das sequências mais curtas é calculada e mais tarde combinadas juntas de forma altamente eficiente. Para obter mais detalhes sobre o algoritimo, consulte, por exemplo, Newland, D.E., 1993, "An Introduction to Random Vibrations, Spectral & Wavelet Analysis – Third Edition," Longman Scientific and Technical, New York (capítulo 12).

A única exigência para a aplicação do FFT é que o número n seja a potência de 2, ex. selecione seus dados para conter 2, 4, 8, 16, 32, 62, etc., pontos.

Exemplos de aplicações FFT

A aplicação FFT envolve normalmente os dados discretos de um sinal depedente de tempo. A calculadora pode ser alimentada pelos dados, digamos de um computador ou um logger de dados para o processamento. Ou pode gerar seus próprios dados pela programação de uma função e adicionar alguns números aleatórios.

Exemplo 1 – Define a função $f(x) = 2 \sin(3x) + 5 \cos(5x) + 0.5*RAND$, onde RAND é o gerador de número aleatório uniforme fornecido pela calculadora. Gera 128 pontos de dados usando os valores de x no intervalor (0,12.8). Armazena estes valores em um cojunto e executa um FFT no conjunto.

Primeiro, definimos a função f(x) como um programa RPN:

$$<< \rightarrow x '2*SIN(3*x) + 5*COS(5*x)' EVAL RAND 5 * + \rightarrow NUM >>$$

e armazena este programa na variável **122.** A seguir, digite o seguinte programa para gerar valores de dados 2^m entre a e b. O programa tomará os valores de m, a, e b:

$$<<\rightarrow$$
 m a b $<<$ '2^m' EVAL \rightarrow n $<<$ '(b-a)/(n+1)' EVAL \rightarrow Dx $<<$ 1 n FOR j 'a+(j-1)*Dx' EVAL f NEXT n \rightarrow ARRY $>>$ $>>$ >>

Armazene este programa sob o nome GDATA (dados gerados). Então, execute o programa para os valores, m=5, a=0, b=100. No modo RPN use:

A figura abaixo é uma plotagem de caixa de dados produzidos. Para obter os gráfico, copie primeiro o conjunto que acabou de criar e depois o transforme em um vetor coluna usando: OBJ \rightarrow D + \rightarrow ARRY (Funções OBJ \rightarrow e \rightarrow ARRY estão disponíveis no catálogo de comando, P A (Funções OBJ \rightarrow e o conjunto na variável DAT usando a função D (também disponível através de P A). Selecione Bar em TYPE para gráficos, altere

a janela de visão para H-VIEW: 0 32, V-VIEW: -10 10 e BarWidth para 1. Pressione (a) para retornar ao visor normal da calculadora.

Para fazer a FFT no conjunto no nível 1 da pilha use a função FFT disponível no menu MTH/FFT no conjunto DAT: ☐☐☐ FFT. O FFT retorna o conjunto de números complexos que são conjuntos de coeficientes X_k de DFT. A magnitude dos coeficientes X_k representa um espectro dos dados originais. Para obter a magnitude dos coeficientes você pode transformar o conjunto em uma lista e depois aplicar a função ABS para a lista. Isto é conseguido usando: OBJ→ EFAL → LIST ← ABS

Finalmente, você pode converter a lista de volta para um vetor coluna a ser armazenado no ΣDAT , conforme a seguir: OBJ \rightarrow \bigcirc \bigcirc DIST \rightarrow ARRY STO Σ

Para plotar o espectro, siga as instruções para produzir uma plotagem de barra dada anteriormente. A faixa vertical precisa ser alterada para –1 to 80. O espectro das freqüências é o seguinte:

O espectro mostra dois componentes grandes para as duas freqüências (estes são os componentes sinusoidais, sin (3x) e cos(5x)) e um número de componentes menores para outras freqüências.

<u>Exemplo 2</u> – Para produzir o sinal dado o espectro, modificamos o programa GDATA para incluir um valor absoluto para que leia:

 $<<\rightarrow$ m a b << '2^m' EVAL \rightarrow n << '(b-a)/(n+1)' EVAL \rightarrow Dx << 1 n FOR j 'a+(j-1)*Dx' EVAL f ABS NEXT n \rightarrow ARRY >> >> >>

Armezene esta versão do programa sob GSPEC (espectro gerado). Execute o programa com m = 6, a = 0, b = 100. No modo RPN, use:

6 SPC 0 SPC 1 0 0 INSTE

Pressione [ENTER] ao terminar para manter uma cópia adicional do conjunto do espectro. Converte vetor linha no vetor coluna e armazene-o no ΣDAT. Seguindo o procedimento para gerar a plotagem de barra, o espectro gerado para este exemplo é mostrado conforme a seguir. A faixa horizontal neste caso é 0 a 64, enquanto a faixa vertical é –1 a 10:

Para reproduzir o sinal cujo espectro é mostrado, use a função IFFT. Dado que deixamos uma cópia do espectro na pilha (um vetor linha), tudo que precisa fazer é encontrar a função IFFT no menu MTH/FFT ou através do catálogo de comando, — AT. Como alternativa você pode apenas digitar o nome da função, ex. digite APPA APPA (I. F. T. ENTER). O sinal é mostrado como um conjunto (vetor linha) com os números complexos. Estamos interessados apenas na parte real dos elementos. Para extrair a parte real dos números complexos, use a função RE do menu CMPLX (consulte o capítulo 4), ex. digite APPA APPA R. ENTER. O que resulta em outro vetor linha. Converte-o em um vetor coluna, armazene-o no SDAT e plote um gráfico de barra para mostrar o sinal. O sinal para este exemplo é mostrado abaixo, usando a faixa horizontal de 0 a 64 e uma faixa vertical de -1 a 1:

Exceto pelo pico grande em t=0, o sinal é mais ruído. Uma escala vertical menor (-0.5 a 0.5) mostra o sinal conforme a seguir:

Solução para equações diferenciais de segunda ordem específicas

Nesta seção apresentamos e resolvemos tipos específicos de equações difernciais ordináiras cujas soluções são definidas em termosde algumas funções clássicas, ex. funções de Bessel, polinômios de Hermite, etc. Os exemplos são apresentados no mode RPN.

A equação de Cauchy ou Euler

Uma equação da forma $x^2 \cdot (d^2y/dx^2) + a \cdot x \cdot (dy/dx) + b \cdot y = 0$, onde a e b são constantes reais, é conhecida como a equação de Cauchy ou Euler. Uma solução para a equação de Cauchy pode ser encontrada assumindo que $y(x) = x^n$.

Digite a equação como: $'x^2^*d1d1y(x)+a^*x^*d1y(x)+b^*y(x)=0'$ Então, digite e substituia a solução sugerida: $'y(x)=x^n'$ ENTER

O resultado é: $'x^2*(n^*(x^n-1-1)^*(n-1)))+a^*x^*(n^*x^n-1)+b^*x^n=0$, que simplifica a $'n^*(n-1)^*x^n+a^*n^*x^n+b^*x^n=0'$. Dividindo por x^n , resulta em uma equação algébrica auxiliar: $'n^*(n-1)+a^*n+b=0'$, or

$$n^2 + (a-1) \cdot n + b = 0$$
.

- Se a equação tem duas raízes diferentes, digamos n₁ e n₂, então a solução geral desta equação é y(x) = K₁·x n₁ + K₂·x n₂.
- Se b = $(1-a)^2/4$, então a equação tem uma raiz quadrada $n_1 = n_2 = n = (1-a)/2$, e a solução volta a ser $y(x) = (K_1 + K_2 \cdot \ln x)x^n$.

Equação de Legendre

Uma equação da forma (1-x²)·(d²y/dx²)·2·x· (dy/dx)+n· (n+1)·y = 0, onde n é um número real, é conhecida como a equação diferencial de Legendre. Qualquer solução para esta equação é conhecida como a função de Legendre. Quando n for um número não negativo, as soluções são chamadas de polinômios de Legendre. O polinômio de Legendre da ordem n é dado por

$$P_n(x) = \sum_{m=0}^{M} (-1)^m \cdot \frac{(2n-2m)!}{2^n \cdot m! \cdot (n-m)! \cdot (n-2m)!} \cdot x^{n-2m}$$

$$=\frac{(2n)!}{2^n\cdot (n!)^2}\cdot x^n-\frac{(2n-2)!}{2^n\cdot 1!\cdot (n-1)!(n-2)!}\cdot x^{n-2}+\ldots-\ldots$$

onde M = n/2 ou (n-1)/2, qualquer que seja é um inteiro.

O polinômio de Legendre é programado na calculadora e pode ser reativado usando a função LEGENDRE dada a ordem do polinômio n. A função LEGENDRE pode ser obtidada do catálogo do comando (() CAT) ou através do menu ARITHMETIC/POLYNOMIAL (consulte o capítulo 5). Os primeiros seis polinômios de Legendre são obtidos conforme a seguir:

 $\begin{array}{lll} \text{O} & \text{LEGENDRE, resulta: 1,} & \text{ex. } P_0(x) = 1.0. \\ 1 & \text{LEGENDRE, resulta: 'X',} & \text{ex. } P_1(x) = x. \\ 2 & \text{LEGENDRE, resulta: '}(3*X^2-1)/2', & \text{ex. } P_2(x) = (3x^2-1)/2. \\ 3 & \text{LEGENDRE, resulta: '}(5*X^3-3*X)/2', & \text{ex. } P_3(x) = (5x^3-3x)/2. \end{array}$

4 LEGENDRE, resulta: '(35*X^4-30*X^2+3)/8',

ex.
$$P_4(x) = (35x^4 - 30x^2 + 3)/8.$$
 5 LEGENDRE, resulta: '(63*X^5-70*X^3+15*X)/8', ex.
$$P_5(x) = (63x^5 - 70x^3 + 15x)/8.$$

A ODE $(1-x^2)\cdot(d^2y/dx^2)\cdot 2\cdot x\cdot (dy/dx)+[n\cdot (n+1)-m^2/(1-x^2)]\cdot y=0$, tem quatro soluções para a função $y(x)=P_n{}^m(x)=(1-x^2)^{m/2}\cdot (d^mPn/dx^m)$. Esta função é mencionada como uma <u>função associada a Legendre</u>.

Equação Bessel

A equação diferencial ordinária $x^2 \cdot (d^2y/dx^2) + x \cdot (dy/dx) + (x^2 \cdot v^2) \cdot y = 0$, onde o parâmetro v é o número real não negativo, é conhecido como a equação diferencial Bessel. Soluções para a equação de Bessel são dadas em termos funções de Bessel do primeiro tipo de ordem v:

$$J_{\nu}(x) = x^{\nu} \cdot \sum_{m=0}^{\infty} \frac{(-1)^m \cdot x^{2m}}{2^{2m+\nu} \cdot m! \cdot \Gamma(\nu+m+1)},$$

onde v não é um número inteiro e a função Gamma $\Gamma(\alpha)$ definida no capítulo 3.

se v = n, um inteiro, as <u>funções Bessel do primeiro tipo para n = inteiros</u> que são definidos por

$$J_n(x) = x^n \cdot \sum_{m=0}^{\infty} \frac{(-1)^m \cdot x^{2m}}{2^{2m+n} \cdot m! (n+m)!}.$$

Independente se usarmos ou não n (não inteiro) ou n (inteiro) na calculadora, podemos definir as funções Bessel de primeiro tipo usando as seguintes séries finitas:

EDIT CURS BIG EVAL FACTO SIMP

Assim, temos controle sobre a ordem da função, n e do número de elementos nas série k. Logo que digitar esta função você pode usar a função DEFINE para definir a função J(x,n,k). Isto criará a variável mas teclas do menu virtual. Por exemplo, para avaliar J₃(0.1) usando 5 termos na série, calcule J(0.1,3,5), ex. no modo RPN: . I SPC 3 SPC 5 MEM. O resultado é 2.08203157E-5.

Se quisermos obter uma expresão para $J_0(x)$ com, digamos, 5 termos na série, use J(x,0,5). O resultado é

Para os valores não inteiros v, a solução para a equação de Bessel é dado por

$$y(x) = K_1 \cdot J_{\nu}(x) + K_2 \cdot J_{\nu}(x).$$

Para valores inteiros as funções Jn(x) e J-n(x) são dependente linearmente, uma vez que

$$J_n(x) = (-1)^n \cdot J_{-n}(x),$$

Portanto, nós não podemos usá-las para obter uma função geral para a equação. Em vez disso, introduzimos as <u>funções de Bessel do segundo tipo</u> definida como

$$Y_{\nu}(x) = [J_{\nu}(x) \cos \nu \pi - J_{-\nu}(x)]/\sin \nu \pi,$$

para não inteiro v e para inteiro n, com n > 0, por

$$Y_{n}(x) = \frac{2}{\pi} \cdot J_{n}(x) \cdot (\ln \frac{x}{2} + \gamma) + \frac{x^{n}}{\pi} \cdot \sum_{m=0}^{\infty} \frac{(-1)^{m-1} \cdot (h_{m} + h_{m+n})}{2^{2m+n} \cdot m! \cdot (m+n)!} \cdot x^{2m}$$
$$-\frac{x^{-n}}{\pi} \cdot \sum_{m=0}^{n-1} \frac{(n-m-1)!}{2^{2m-n} \cdot m!} \cdot x^{2m}$$

onde γ é a *constante Euler*, definida por

$$\gamma = \lim_{r \to \infty} \left[1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{r} - \ln r \right] \approx 0.57721566490...,$$

e h_m representa a série harmômica

$$h_m = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{m}$$

Para o caso n = 0, a função Bessel do segundo tipo é definida como

$$Y_0(x) = \frac{2}{\pi} \cdot \left[J_0(x) \cdot (\ln \frac{x}{2} + \gamma) + \sum_{m=0}^{\infty} \frac{(-1)^{m-1} \cdot h_m}{2^{2m} \cdot (m!)^2} \cdot x^{2m} \right].$$

Com estas definições, uma solução geral da equação de Bessel para todos os valores de ν é dado por

$$y(x) = K_1 \cdot J_v(x) + K_2 \cdot Y_v(x).$$

Em alguns exemplos, é necessário fornecer soluções complexs para as equações de Bessel definindo as <u>funções de Bessel do terceiro tipo da ordem</u> <u>v</u> como

$$H_n^{(1)}(x) = J_v(x) + i \cdot Y_v(x)$$
, $e H_n^{(2)}(x) = J_v(x) - i \cdot Y_v(x)$,

Estas funções são também conhecidas como a <u>primeira e segunda funções de</u> Hankel de ordem v.

Em algumas aplicações é importante usar a tão chamada <u>funções de Bessel</u> <u>modificada do primeiro tipo da ordem v</u> definida como as $I_v(x) = i^v \cdot J_v(i \cdot x)$, onde i é o número imaginário da unidade. Estas funções são as soluções para a equação diferencial $x^2 \cdot (d^2y/dx^2) + x \cdot (dy/dx) \cdot (x^2 + v^2) \cdot y = 0$.

As funções de Bessel modificada do segundo tipo,

$$K_{\nu}(x) = (\pi/2) \cdot [I_{\nu}(x) - I_{\nu}(x)] / \sin \nu \pi$$

são também soluções deste ODE.

Você pode implementar as funções que representam as funções de Bessel na calculadora de forma similar a esta usada para definir as funções do primeiro tipo, mas manter em mente que a série infinita na calculadora precisar ser interpretada em série infinita.

Polinômios de Chebyshev ou Tchebycheff

As funções $T_n(x) = cos(n \cdot cos^{-1} x)$ e $U_n(x) = sin[(n+1) cos^{-1} x]/(1-x^2)^{1/2}$, n = 0, 1, ... são chamadas polinômios de <u>Chebyshev ou Tchebycheff do primeiro e segundo tipos</u>, respectivamente. Os polinômios Tn(x) são soluções da equação diferencial $(1-x^2)\cdot(d^2y/dx^2) - x\cdot(dy/dx) + n^2\cdot y = 0$.

Na calculadora a função TCHEBYCHEFF gera o polinômio de Chebyshev ou Tchebycheff do primeiro tipo de ordem n, dado um valor de n > 0. Se o número inteiro n for negativo (n < 0), a função TCHEBYCHEFF gera um polinômio Tchebycheff do segundo tipo de ordem n cuja definição é

$$U_n(x) = \sin(n \cdot \arccos(x)) / \sin(\arccos(x))$$
.

Você pode acessar a função TCHEBYCHEFF através do catálogo de comando ().

Os primeiros quatro polinômios de Chebyshev ou Tchebycheff de primeiro tipo são obtidos conforme a seguir:

```
0 TCHEBYCHEFF, resulta: 1,
                                                               T_0(x) = 1.0.
                                                      ex.
-0 TCHEBYCHEFF, resulta: 1,
                                                               U_0(x) = 1.0.
                                                      ex.
1 TCHEBYCHEFF, resulta: 'X'
                                                               \mathsf{T}_1(\mathsf{x})=\mathsf{x}.
                                                      ex.
-1 TCHEBYCHEFF, resulta: 1,
                                                               U_1(x) = 1.0.
                                                      ex.
2 TCHEBYCHEFF, resulta: '2*X^2-1',
                                                               T_2(x) = 2x^2 - 1.
                                                      ex.
-2 TCHEBYCHEFF, resulta: '2*X',
                                                               U_2(x) = 2x.
                                                      ex.
3 TCHEBYCHEFF, resulta: '4*X^3-3*X',
                                                               T_3(x) = 4x^3-3x.
                                                      ex.
-3 TCHEBYCHEFF, resulta: '4*X^2-1',
                                                               U_3(x) = 4x^2-1.
                                                      ex.
```

Equação de Laguerre

A equação de Laguerre é ODE linear de segunda ordem da forma $x\cdot(d^2y/dx^2)+(1-x)\cdot(dy/dx)+n\cdot y=0$. Os polinômios de Laguerre, definidos como

$$L_0(x) = 1$$
, $L_n(x) = \frac{e^x}{n!} \cdot \frac{d^n(x^n \cdot e^{-x})}{dx^n}$, $n = 1, 2, ...$

são soluções para a equação de Laguerre. Os polinômios de Laguerre podem ser também calculados com:

$$L_{n}(x) = \sum_{m=0}^{n} \frac{(-1)^{m}}{m!} \cdot \binom{n}{m} \cdot x^{m}.$$

$$= 1 - n \cdot x + \frac{n(n-1)}{4} \cdot x^{2} - \dots + \dots + \frac{(-1)^{n}}{n!} \cdot x^{n}$$

O termo

$$\binom{n}{m} = \frac{n!}{m!(n-m)!} = C(n,m)$$

e o coeficiente m-th da expansão binomial (x+y)ⁿ. Representa também o número de combinações de n elementos tomados m de cada vez. Esta função está disponível na calculadora como função COMB no menu MTH/PROB (consulte também o capítulo 17).

Você pode definir a função seguinte para calcular os polinômios de Laguerre:

$$L(x,n) = \sum_{m=0}^{n} \frac{(-1)^m}{m!} \cdot COMB(n,m)$$

Para gerar os primeiros quatro polinômios de Laguerre use L(x,0), L(x,1), L(x,2), L(x,3). Os resultados são:

$$\begin{array}{lll} L_0(x) = & . \\ L_1(x) = 1 \text{-}x. \\ L_2(x) = 1 \text{-}2x \text{+}5x^2. \\ L_3(x) = 1 \text{-}3x \text{+}1.5x^2 \text{-}0.16666...x}^3. \end{array}$$

Equação Weber e polinômios de Hermite

A equação de Weber é definida como $d^2y/dx^2+(n+1/2-x^2/4)y=0$, para n=0,1,2,... Uma solução particular desta equação é dada pelo y(x) da função = $\exp(-x^2/4)H^*(x/\sqrt{2})$, onde a função $H^*(x)$ é o polinômio de Hermite:

$$H_0^* = 1$$
, $H_n^*(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$, $n = 1, 2, ...$

Na calculadora, a função HERMITE, disponível através do menu ARITHMETIC/POLYNOMIAL.

A função HERMITE faz exame como o argumento de um número do inteiro, n, e retorna o polynomial de Hermite do grau n. Para o exemplo, os primeiros quatro polinômios de Hermite são obtidos usando-se:

```
\begin{array}{lll} \text{O HERMITE, resultado: 1,} & \text{ex., $H_0^* = 1$.} \\ \text{1 HERMITE, resultado: '2*X',} & \text{ex., $H_1^* = 2x$.} \\ \text{2 HERMITE, resultado: '4*X^2-2',} & \text{ex., $H_2^* = 4x^2-2$.} \\ \text{3 HERMITE, resultado: '8*X^3-12*X',} & \text{ex., $H_3^* = 8x^3-12x$.} \end{array}
```

Soluções numéricas e gráficas aos ODEs

As equações diferenciais que não podem ser resolvidas analíticamente podem ser resolvidas numerica ou graficamente conforme ilustrado a seguir.

Solução numérica para ODE de primeira ordem

Através do uso do solucionador numérico (), você pode acessar uma forma de entrada que permite resolver as equações diferenciais ordinárias lineares de primeira ordem. O uso destas características é apresentado usando o seguinte exemplo. O método usado na solução é um algoritmo de Runge-Kutta de quarta-ordem preprogramado na calculadora.

Exemplo 1 – supona que desejamos resolver a equação diferencial, $dv/dt = -1.5 v^{1/2}$, com v = 4 at t = 0. Somos solicitados a encontrar v para t = 2.

Primeiro, crie a expressão definindo a derivada e armazene-a na variável EQ. A figura a esquerda mostra o comando no modo ALG enquanto a figura a direita mostra a pilha RPN antes de pressionar (570).

Depois, insira o ambiente NUMERICAL SOLVER e selecione o solucionador da equação diferencial: . Insira os seguintes parâmetros:

Para resolver pressione: (espere) (esp

A solução apresentada como uma tabela de valores

Suponha que desejamos produzir uma tabela de valores de v, para t=0.00, 0.25, ..., 2.00, procederemos conforme a seguir:

Primeiro, prepare uma tabela para escrever seus resultados. Escreva em sua tabela os resultados passo a passo:

t	V
0.00	0.00
0.25	
2.00	

A seguir, dentro do ambiente SOLVE, altere o valor final para a variável independente para 0,25, use :

△ .25 (espere)

(Resolve v em t = 0.25, v = 3.285....)

. 5 100 (espere) 100 (espere)

(Altera o valor inicial de t para 0.25 e o valor final de t para 0.5, resolve novamente para v(0.5) = 2.640....)

.75 (espere)

(Altera o valor inicial de t para 0.5 e o valor final de t para 0.75, resolve novamente para v(0.75) = 2.066...)

1 W • (espere)

(Altera o valor inicial de t para 0.75 e o valor final de t para 1, resolve novamente para v(1) = 1.562...)

Repita para t = 1.25, 1.50, 1.75, 2.00. Pressione de visualizar o último resultado em Tresonar ao visor normal da calculadora pressione on ou NAT Tresonar ao visor normal da calculadora pressione on ou litimo resultado no nível 1.

A plotagem resultante é similar conforme a seguir (arredondado ao terceiro decimal):

t	V
0.00	4.000
0.25	3.285
0.50	2.640
0.75	2.066
1.00	1.562
1.25	1.129
1.50	0.766
1.75	0.473
2.00	0.250

Solução gráfica para ODE de primeira ordem

Quando não puder obter uma solução de forma fechada para a integral, podemos sempre plotar a integral selecionando Diff Eq no campo TYPE do ambiente PLOT conforme a seguir: suponha que desejamos plotar a posição x(t) para a função de velocidade $v(t) = \exp(t^2)$, com x = 0 at t = 0. Sabemos que não existe expressão de forma fechada para a integral, portanto, sabemos que a definição de v(t) é $dx/dt = \exp(t^2)$.

A calculadora permite a plotagem da solução de equações diferentes da forma Y'(T) = F(T,Y). Para nosso caso, deixamos Y = x e T = t, portanto, $F(T,Y) = f(t, x) = \exp(-t^2)$. Vamos plotar a solução, x(t), para t = 0 a 5 usando a seguinte sequência de tecla:

- (simultaneamente, se estiver no modo RPN) para inserir o ambiente PLOT
- Selecione o campo na frente de TYPE usando as teclas . Depois, pressione e selecione Diff Eq usando as teclas . Pressione .
- Altere o campo F: para 'EXP(- t^2)'
- Certifique-se de que os parâmetros seguintes são configurados para: H-VAR: 0, V-VAR: 1
- Altere a variável independente para t.
- Aceite as alterações para PLOT SETUP: NXT WITH
- (simultaneamente se estiver no modo RPN). Para inserir o ambiente PLOT WINDOW
- Altere a janela vertical e horizontal para as seguintes configurações: H-VIEW: -1
 5; V-VIEW: -1
 1.5
- Além disso, use os seguintes valores para os parâmetros restantes: Init: 0, Final: 5, Step: Default, Tol: 0.0001, Init-Soln: 0
- Para plotar o gráfico use:

 THE UTILITY

Quando observamos o gráfico sendo plotado, verá que o gráfico não é muito regular. Isto acontece porque o plotador está usando uma escala de tempo muito grande. Para refinar o gráfico e torná-lo mais regular, use a etapa de 0,1. Pressione en e altere para Etapa: valor para 0.1 e depois use en empo para ser feita, mas sua forma fica definitivamente mais regular do que antes. Tente o seguinte:

Observe que as etiquetas para os eixos são mostradas como 0 (horizontal para t) e 1 (vertical para x). Estas são as definições para os eixos conforme dado na janela PLOT SETUP () 2030) ex, H-VAR: 0 e V-VAR: 1. Para ver a solução gráfica em detalhe use o seguinte:

Para recuperar o menu e retornar ao ambiente PICT.

Pressione para determinar as coordenadas de qualquer ponto no gráfico.

Use as teclas • para mover o cursor na área de plotagem. No fundo do visor verá as coordenadas do cursor como (X,Y), ex. a calculadora usa X e Y como os nomes padrões para os eixos vertical e horizontal, respectivamente. Para recuperar o menu e retornar ao ambiente PLOT WINDOW, pressione NAT Finalmente, pressione NAT para retornar a exibição normal.

Solução numérica para ODE de segunda ordem

A integração de segunda ordem de ODE pode ser feita definido a solução como um vetor. Como exemplo, suponha que um sistema de suspensão de massa está sujeito a força de oscilação proporcional a sua velocidade. A equação diferencial resultante é:

$$\frac{d^2x}{dt^2} = -18.75 \cdot x - 1.962 \cdot \frac{dx}{dt}$$

ou
$$x'' = -18.75 \times -1.962 \times '$$

objeto as condições iniciais, v = x' = 6, x = 0, at t = 0. Queremos encontrar x, x' at t = 2.

Rescreva a ODE como: $\mathbf{w}' = \mathbf{A}\mathbf{w}$, onde $\mathbf{w} = [\mathbf{x} \ \mathbf{x}']^T$, É **A** é a matriz 2×2 mostrada a seguir:

$$\begin{bmatrix} x \\ x' \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ -18.75 & -1.962 \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \end{bmatrix}$$

As condições iniciais são agora escritas como $\mathbf{w} = [0 \ 6]^T$, para t = 0. (Observe: O símbolo $[\]^T$ significa que a transposta do vetor ou matriz). Para resolver este problema, primeiro crie e armazene a matriz \mathbf{A} , ex. no modo ALG.

Então, ative o solucionador da equação de diferenciação numérica usando:

Para resolover a equação diferencial com o tempo de início t = 0 e o tempo final t = 2, a forma de entrada para o solucionador da equação diferencial deve ser similar a (observe que Init: valor para Soln: é um vetor [0, 6]):

Pressione (espere) para resolver para w(t=2). A solução lê [.16716... -.6271...], ex. x(2) = 0.16716 e x'(2) = v(2) = -0.6271. Pressione para retornar ao ambiente SOLVE.

A solução apresentada como uma tabela de valores

No exemplo anterior estivemos apenas interessado em encontrar os valores da posição e velocidade em um dado tempo t. Se quisermos produzir uma tabela de valores de x e x', para t = 0.00, 0.25, ..., 2.00, procederemos

conforme a seguir: Primeiro, prepare uma tabela para escrever seus resultados.

t	Х	Х
0.00	0.00	6.00
0.25		
2.00		

A seguir, dentro do ambiente SOLVE, altere o valor final para a variável independente para 0.25, use :

▲ .25 **1 (espere)**

Resolva para w em t = 0.25, $w = [0.968 \ 1.368]$.

Altera o valor inicial de t para 0.25 e o valor final de t para 0.5, resolve novamente para $w(0.5) = [0.748 \cdot 2.616]$.

1011 1011 (a) .75 1011 (b) 10111 (espere) 10111

Altera o valor inicial de t para 0.5 e o valor final de t para 0.75, resolve novamente para w(0.75) = [0.0147 - 2,859]

Altera o valor inicial de t para 0.75 e o valor final de t para 1, resolve novamente para w(1) = [-0.469 - 0.607]

Repita para for t = 1.25, 1.50, 1.75, 2.00. Pressione de depois de visualizar o ultimo resultado no Para retornar ao visor normal da calculadora, pressione ou ou NXT . As soluções diferentes serão apresentadas na pilha com o último resultado no nível 1.

A plotagem resultante é similar conforme a seguir:

t	x	x'	t	x	x'
0.00	0.000	6.000	1.25	-0.354	1.281
0.25	0.968	1.368	1.50	0.141	1.362
0.50	0.748	-2.616	1.75	0.227	0.268
0.75	-0.015	-2.859	2.00	0.167	-0.627
1.00	-0.469	-0.607			

Solução gráfica para ODE de segunda ordem

Inicie ativando o solucionador numérico de equação diferencial, Remail O visor SOLVE é similar a este;

Observe que a condição inicial para a solução (Soln: w Init:[0., ...] inclui o vetor [0, 6]. Pressione (NXT) (MXT) (MXT)

A seguir, pressione (simultaneamente, se estiver no modo RPN) para inserir o ambiente PLOT. Selecione o campo na frente de TYPE usando as teclas (). Depois, pressione (EDDE) e selecione Diff Eq usando as teclas (). Pressione (). Altere o restante do visor PLOT SETUP para ser similar este:

Observe que a opção V-Var: é configurada para 1, indicando o primeiro elemento na solução do vetor a saber, x', a ser plotada contra a varável independente t. Aceite as alterações para PLOT SETUP pressionando wy wy.

Pressione , simultaneamente se estiver no modo RPN para acessar a janela PLOT WINDOW. Altere esta forma de entrada similar esta:

Para plotar x' e t gráfica use: [1332] . A plotagem de x' e. t é similar a:

Para plotar a segunda curva podemos usar o formulário de entrada PLOT SETUP novamente. Para alcançar este formulário do gráfico acima use: INT (NAT) (simultaneamente se estiver no modo RPN). Altere o valor de V-Var: campo para 2 e pressione (NÃT) (NÃT) (NÃT) (SIA) O perderia o gráfico produzido acima). Use: INT (NÃT) (SIA) Para ver as etiquetas do eixo e a faixa. Observe que a etiqueta do eixo é o número 0 (indicando a variável independente), enquanto a etiqueta do eixo y é o número 2 (indicando a variável, ex. a última variável plotada). O gráfico combinado é similar a este:

Pressione NXT NXT III ON para retornar ao visor normal da calculadora.

Solução numérica para ODE de primeira ordem rígida

Consisere a ODE: dy/dt = -100y+100t+101, objeto a condição inicial y(0) = 1.

Solução exata

Esta equação pode ser escrita como dy/dt + 100 y = 100 t + 101 e resolvida usando um fator de integração, IF(t) = exp(100t), conforme a seguir:

O resultado é

(t+1)*EXP(100*t)'.

A seguir, adicionamos uma constante de integração, usando: 'C'

Depois dividimos pelo FI(x) usando: 'EXP(100*t)' (ENTER) ÷.

O resultado é: '((t+1)*EXP(100*t)+C)/EXP(100*t)', ex. y(t) = 1+ t +C· e^{100t} . Uso da condição inicial y(0) = 1, resulta em 1 = 1 + 0 + C· e^{0} , ou C = 0, a solução particular sendo y(t) = 1+t.

Solução numérica

Aqui estamos tentanto obter o valor de y(2) dado y(0) = 1. Com o campo Soln: Final selecionado, pressione Você pode verificar que não haverá solução depois de 2 minutos. Pressione Pressione Pressione Pressione Notation para cancelar o cálculo.

Este é um exemplo de uma <u>equação diferencial ordinária rígida</u>. Uma ODE rígida é cuja solução geral que contém os componentes que variam amplamente em taxas diferentes dentro de algum aumento na variável independente. Neste caso particular, a solução geral $y(t) = 1 + t + C \cdot e^{100t}$,

contém os componentes 't' e 'C·e^{100t}', que variam em diferentes taxas, exceto para os casos C=0 or C \approx 0 (ex, para C = 1, t =0,1, C·e^{100t} =22026).

O solucionador numérico ODE da calculadora permite a solução de ODE rígida selecionando a opção _Stiff no visor SOLVE Y' (T) = F(T,Y). Com esta opção selecionada, é necessário fornece os valores de $\partial f/\partial y$ e $\partial f/\partial t$. Para o caso sob consideração $\partial f/\partial y$ =-100 e $\partial f/\partial t$ = 100.

Insira estes valores nos campos correspondentes do visor SOLVE Y' (T) = F(T,Y):

Ao fazer, mova o cursor para o campo Final e pressione TITE. Pressione para ver a solução: 2.999999999, ex. 3,0.

Nota: a opção Stiff está também disponível para soluções gráficas de equações diferentes.

Solução numérica para ODEs com o menu SOLVE/DIFF

O menu virtual SOLVE é activado usando 74 MENU no modo RPN. Este menu é apresentado em detalhes no capítulo 6. Um dos submenus, DIFF, contém as funções para a solução numérica das equações diferenciais ordinárias para usar na programação. Estas funções são descritas a seguir usando o modo RPN e o sinalizador do sistema 117 configurado para menu SOFT.

As funções fornecidas pelo menu SOLVE/DIFF são as seguintes:

Função RKF

Esta função é usada para calcular a solução para um problema de valor inicial para uma equação diferencial de primeira ordem usando o esquema de solução da 4^{th} - 5^{th} ordem de Runge-Kutta-Fehlbert. Suponha que a equação diferencial resolvida é dada por dy/dx = f(x,y), com y = 0 at x = 0 e que você permite um critério de convergência e para a solução. Você pode especificar também um aumento na variável independente, Δx , para ser usado pela função. Para executar esta função prepararemos sua pilha conforme a seguir:

O valor no primeiro nível da pilha é o valor da variável independente onde você quer encontrar sua solução, ex. você que encontrar, $y_{\text{final}} = f_s(x_{\text{final}})$, onde $f_s(x)$ representa a solução para a equação diferencial. O segundo nível da pilha pode conter apenas o valor de ϵ , e a etapa Δx será tomada como um pequeno valor padrão. Depois de executar a função Δx a pilha mostrará as linhas:

RKF solution		Actual solution	
Χ	У	Х	У
0	0	X _{init}	Y init
X _{final}	y final	$\chi_{init} + \chi_{final}$	y _{init} + y _{final}

Os seguintes visores mostram a pilha RPN antes e depois de aplicar a função RKF para a equação diferencial dy/dx = xy, ε = 0.001, Δx = 0.1.

Depois de aplicar a função RKF a variável was contém o valor 4.3880...

Função RRK

Esta função é similar a função RKF, exceto que RRK (métodos Rosenbrock e Runge-Kutta) requer na lista de entrada do nível 3 da pilha operacional não apenas os nomes das variáveis dependentes e independentes e a função definindo a equação diferencial, mas também as expressões para a primeira e segunda derivada da expressão. Assim, a pilha de entrada par esta função será similar a esta:

2:
$$\{'x', 'y', 'f(x,y)' \ '\partial f/\partial x' '\partial f/vy'\}$$

1: $\{\epsilon \ \Delta x\}$

O valor da solução, y_{final}, estará disponível na variável **1**

Esta função pode ser usada para resolver as tão chamadas equações diferencias "rígidas".

Os seguintes visores mostram a pilha RPN antes e depois da aplicação da função RRK:

O valor armazenado na variável y é 3.0000000004.

Função RKFSTEP

Esta função usa uma lista de entrada similar a função RKF, como também a tolerância para a solução e uma possível etapa Δx , e retornar a mesma lista de entrada seguido pela tolerância e uma estimativa da próxima etapa na variável idependente. Esta função retorna a lista de entrada, a tolerância e a próxima etapa na variável independente que satisfaz esta tolerância. Assim, a pilha de entrada é similar a esta:

Depois de executar esta função a pilha mostrará as linhas:

Assim, esta função é usada para determinar o tamanho apropriado de uma etapa no tempo para satisfazer a tolerância necessária.

Seguinte visor mostra a pilha RPN antes e depois de aplicar a função RKFSTEP:

Estes resultados indicam que $(\Delta x)_{next} = 0.34049...$

Função RRKSTEP

Esta função usa uma lista de entrada similar a esta da função RRK, como também da tolerância para a solução, uma etapa possível Δx , e um número (LAST) especificando o último método usado na solução (1, se RKF foi usado ou 2, se RRK foi usado). A função RRKSTEP retorna a mesma lista de entrada seguido pela tolerância, uma estimativa da próxima etapa na variável independente e o método atual (CURRENT) usado para chegar na próxima etapa. Assim, a pilha de entrada é similar a esta:

4:	{'x', 'y', 'f(x,y)'}
3:	8
2:	Δ>
1:	LAST

Depois de executar esta função, a pilha mostrará as linhas:

Assim, esta função é usada para determinar o tamanho apropriado de uma etapa do tempo $((\Delta x)_{next})$ para atender a tolerância necessária e o método usado para chegar ao resultado (CURRENT).

Os seguintes visores mostram a pilha RPN antes e depois da aplicação da função RRKSTEP:

Estes resultados indicam que $(\Delta x)_{next} = 0.00558...$ e que o método RKF (CURRENT = 1) deve ser usado.

Função RKFERR

Esta função retorna a estimativa de erro absoluto para uma dada etapa quando resolve um problema conforme descrição da função RKF. Assim, a pilha de entrada é similar a esta:

Depois de executar esta função, a pilha mostrará as linhas:

Assim, esta função é usada para deteminar o aumento na solução, Δy , como também do erro absoluto.

Seguinte visor mostra a pilha RPN antes e depois de aplicar a função RKFERR:

Estes resultado mostram que $\Delta y = 0.827...$ e o erro = -1.89...×10⁻⁶.

Função RSBERR

Esta função executa de forma similar a RKERR, mas com os elementos de entrada listados para a função RRK. Assim, a pilha de entrada para esta função será similar a esta:

2: {'x', 'y', 'f(x,y)' '
$$\partial$$
f/ ∂ x' ' ∂ f/vy' }
1: Δ x

Depois de executar esta função, a pilha mostrará as linhas:

4:
$$\{'x', 'y', 'f(x,y)' '\partial f/\partial x' '\partial f/vy'\}$$
: 3:

O seguinte visor mostra a pilha RPN antes e depois da aplicação da função RSBERR:

Estes resultados indicam que $\Delta y = 4.1514...$ e o erro = 2.762..., para Dx = 0.1. Verifique que, se Dx é reduzido para 0.01, $\Delta y = -0.00307...$ e o erro = 0.000547.

Nota: Enquanto executa os comandos no menu DIFF os valores x e y serão produzidos e armazenados como variáveis na sua calculadora. Os resultados fornecidos pelas funções nesta seção dependerão dos valores atuais de x e y. Portanto, alguns resultados ilustrados acima podem diferir do que você obteve na sua calculadora.

Capítulo 17

Aplicações de probabilidade

Neste capítulo fornecemos exemplos de aplicações das funções da calculadora para distribuições das probabilidades.

O submenu MTH/PROBABILITY.. - parte 1

Nesta seção discutimos as funções COMB, PERM,! (fatorial), RAND e RDZ.

Fatoriais, combinações e permutações

A fatorial de um número n é definida como: $n! = n \cdot (n-1) \cdot (n-2) \dots 3 \cdot 2 \cdot 1$. Por definição, 0! = 1. Os fatoriais são usados no cálculo de número de permutações ou combinações de objetos. Por exemplo, o número de permutações de objetos r de um conjunto de objetos distintos n é

$$_{n}P_{r} = n(n-1)(n-1)...(n-r+1) = n!/(n-r)!$$

Também, o número de combinações de n objetos tomados como r de cada vez é

$$\binom{n}{r} = \frac{n(n-1)(n-2)...(n-r+1)}{r!} = \frac{n!}{r!(n-r)!}$$

Par simplificar a notação, use P(n,r) para permutações e C(n,r) para combinações. Podemos calcular as combinações, permutações e fatorias com as funções COMB, PERM e ! do submenu MTH/PROBABILITY... A operação destas funções é apresentada a sequir:

- COMB(n,r): Combinações de itens n tomados de r em qualquer tempo
- PERM(n,r): Permutações de itens n tomados de r em qualquer tempo
- n!: Fatorial de um número positivo. Para um não-inteiro, x! retorna Γ(x+1), onde Γ(x) é a função Gama (consulte o capítulo 3). O símbolo fatorial (!) pode ser inserido também como a combinação de tecla ΔΙΡΙΑ [?] 2.

Exemplos das aplicações destas funções são mostrados a seguir.

Números aleatórios

A calculadora fornece um gerador de número aleatório que retorna um número real aleatório entre 0 e 1. O gerador é capaz de produzir seqüências de números aleatórios. Portanto, depois de diversas vezes (um grande número realmente), a seqüência tende a se repetir. Por esta razão, o gerador de número aleatório é mais provável de ser mencionada como um geral de número pseudo-aleatório. Para gerar um número aleatório com a sua calculadora use a função RAND do submenu MTH/PROBABILITY. O seguinte visor mostra um número de números aleatórios produzidos usando RAND. Os números na figura no lado esquerdo são produzidos com a função RAND sem um argumento. Se colocar uma lista de argumento na

função RAND, você obtém a lista de números mais um número aleatório anexado a ela conforme ilustrado na figura do lado direito.

:RAND .529199358633 :RAND 4.35821814444E-2 :RAND .294922982088

	.294922982088
:RAND(5.)	3896424448E-2)
:RAND(25	i.)
(2.5.	, 786870433805)
, RAND(1.,2	'.,3.) .07030798137
pi. 2. 5. 4	

Geradores de número aleatório, em geral, operam tomando um valor chamado de "seed" do gerado e fazendo algum algoritmo matemático nesta "seed" que gera um novo número (pseudo) aleatório. Se quiser gerar uma sequência de número e ser capaz de repetir a mesma sequência posteriormente, você pode alterar a "seed" do gerador usando a função RDZ(n), onde n é a "seed," antes de gerar a seqüência. Geradores de número aleatório iniciando com um número "seed" que é transformado no primeiro número aleatório da série. O numero atual então serve como a "seed" para o próximo número e assim por diante. "re-seeding" a sequência com o mesmo número você pode reproduzr a mesma sequência mais de uma vez. Por exemplo, tente o sequinte:

RDZ(0.25) ENTER Use 0.25 como a "semente." RAND() ENTER Primeiro número aleatório = 0.75285... Segundo número aleatório = 0.51109... RAND() ENTER Segundo número aleatório = 0.085429... RAND() ENTER Reinicia a sequência RDZ(0.25) ENTER Use 0.25 como a "semente." RAND() ENTER Primeiro número aleatório = 0.75285... Segundo número aleatório = 0.51109... RAND() (ENTER) RAND() ENTER Segundo número aleatório = 0.085429...

Para gerar uma seqüência de números aleatórios use a função SEQ. Por exemplo, para gerar uma lista de 5 números aleatórios você pode usar no modo ALG: SEQ(RAND(), j, 1, 5, 1). No modo RPN use o seguinte programa:

 $\ll \rightarrow n \ll 1 \text{ n FOR j RND NEXT n } \rightarrow \text{LIST } \gg \gg 1 \text{ n FOR j RND NEXT n}$

Armazene na variável RLST (LiST aleatório) e use 5 12 para produzir uma lista de 5 números aleatórios.

A função RNDM(n,m) pode ser usada para gerar uma matriz de n linhas e m colunas cujos elementos são números inteioros aleatórios entre -1 e 1(consulte o capítulo 10).

Distribuições de probabilidade discreta

Uma variável aleatória é considerada discreta quando pode apenas ser um número finito de valores. Por exemplo, o número de dias chuvosos em um local dado pode ser considerado uma variável aleatória discreta porque a contamos apenas com números inteiros. Deixe X representar uma variável aleatória discreta, sua função massa de probabilidade (pmf) é representada por f(x) = P[X=x], ex. a probabilidade que a variável aleatória X toma o valor x.

A função distribuição de massa deve satisfazer as condições que

$$f(x) > 0$$
, para todos x,

е

$$\sum_{x} f(x) = 1.0$$

A função distribuição cumulativa (cdf) é definida como

$$F(x) = P[X \le x] = \sum_{k \le x} f(k)$$

A seguir, definiremos um número de funções para calcular as distribuições de probabilidade discreta. Sugerimos que você crie um subdiretório, digamos HOME\STATS\DFUN (funções discretas) onde definiremos a função massa de probabilidade e a função distribuição cumulativa para as distribuições binomial e de Poisson.

Distribuição binomial

A função massa de probabilidade da distribuição binomial é dada por

$$f(n, p, x) = \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x}, \quad x = 0, 1, 2, ..., n$$

onde $\binom{n}{x}$ = C(n,x) é a combinação de elementos n tomados de x em um momento. Os valores n e p são os parâmetros da distribuição. O valor n representa o númetro de repetições de um experimento ou a observação que pode ter dois resultados, ex. sucesso e fracasso. Se a vairável X aleatória representa o número de sucessos nas repetições n, então p representa a probabilidade de obter um sucesso em uma dada repetição. A função distribuição cumulativa para a distribuição binominal é dada por

$$F(n, p, x) = \sum_{k=0}^{x} f(n, p, x), \quad x = 0,1,2,...,n$$

Distribuição Poisson

A função massa de probabilidade da distribuição binomial é dada por

$$f(\lambda, x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}, \quad x = 0,1,2,...,\infty.$$

Nesta expressão, se a variável aleatória X representa o número de ocorrências de um evento ou uma observação por unidade de tempo, comprimento, área, volume, etc então o parâmetro l representa o número total de ocorrências por unidade tempo, comprimento, área, volume, etc. A função distribuição cumulativa para a distribuição de Poisson é dado

$$F(\lambda, x) = \sum_{k=0}^{x} f(\lambda, x), \quad x = 0, 1, 2, \dots, \infty$$

A seguir, use a função DEFINE () para definir as seguintes funções de massa de probabilidade (pmf) e as funções de distribuição cumulativa (cdf):

DEFINE(pmfb(n,p,x) = COMB(n,x)*p
x
(1-p) $^(n-x)$)

DEFINE(cdfb(n,p,x) = Σ (k=0,x,pmfb(n,p,k))) DEFINE(pmfp(λ ,x) = EXP($-\lambda$)* λ ^x/x!) DEFINE(cdfp(λ ,x) = Σ (k=0,x,pmfp(λ ,x)))

Os nomes da função significa:

pmfb: função massa de probabilidade para a distribuição binomial

• cdfb: função distribuição cumulativa para a distribuição binominal

 pmfp: função massa de probabilidade para a distribuição de Poisson

 cdfp: função distribuição cumulativa para a distribuição De Poisson

Exemplos das aplicações destas funções são mostrados a seguir:

Distribuição de probabilidade contínua

A distribuição da probabilidade para uma variável aleatórioa contínua, X, é caracterizada por uma função f(x) conhecida como a função densidade de probabilidade (pdf). O pdf tem as seguintes propriedades: f(x) > 0, para todos x e

$$P[X < x] = F(x) = \int_{-\infty}^{x} f(\xi) d\xi.$$
$$\int_{-\infty}^{+\infty} f(x) dx = 1.$$

As probabilidades são calculadas usando a função distribuição cumulativa (cdf), F(x), definida por $P[X < x] = F(x) = \int_{-\infty}^{x} f(\xi) d\xi$, onde P[X<x]

"significa a probabilidade que a variável aleatória X é menor do que o valor x".

Nesta seção descrevemos as distribuições de probabilidade contínuas incluind a gama, exponencial, beta e distrobuições de Weibull. Estas distribuições são descritas em quaisquer livros de estatísticas. Algumas destas funções usam a <u>função gama</u> definida anteriormente, é calculada na calculadora usando a função fatorial $\Gamma(x) = (x-1)!$, para qualquer número real x.

A distribuição gama

A função distribuição da probabilidade (pdf) para a distribuição gama é dada por

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \cdot x^{\alpha - 1} \cdot \exp(-\frac{x}{\beta}), \text{ for } \quad x > 0, \alpha > 0, \beta > 0;$$

a função distribuição correspondente (cumulativa) (cdf) seria dada pela integral que não tem solução de forma fechada.

A distribuição exponencial

A distribuição eponencial é a distribuição gama com a = 1. Seu pdf é dado por

$$f(x) = \frac{1}{\beta} \cdot \exp(-\frac{x}{\beta}), \text{ for } x > 0, \beta > 0,$$

enquanto sua cdf é dado por $F(x) = 1 - \exp(-x/\beta)$ para x>0, $\beta>0$.

A distribuição beta

A pdf para a distribuição gama é dada por

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \cdot \Gamma(\beta)} \cdot x^{\alpha - 1} \cdot (1 - x)^{\beta - 1}, for \quad 0 < x < 1, \alpha > 0, \beta > 0$$

Como no caso da distribuição gama, a correspondente cdf para a distribuição beta é também dada por uma integral sem nenhuma solução de forma fechada.

A distribuição Weibull

A pdf para a distribuição Weibull é dada por

$$f(x) = \alpha \cdot \beta \cdot x^{\beta - 1} \cdot \exp(-\alpha \cdot x^{\beta}), \quad \text{for } x > 0, \alpha > 0, \beta > 0$$

Enquanto a cdf correspondente é dado por

$$F(x) = 1 - \exp(-\alpha \cdot x^{\beta}), \quad \text{for } x > 0, \alpha > 0, \beta > 0$$

As funções para as distribuições contínuas

Para definir a coleção de funções corespondentes a gama, beta e distribuições Weibull crie primeiro um subdiretório chamado CFUN (funções contínuas) e defina as seguintes funções (altere para modo Approx):

```
Gamma pdf:
                             'gpdf(x) = x^{(\alpha-1)} \times EXP(-x/\beta) / (\beta^{\alpha} \times GAMMA(\alpha))'
Gamma cdf:
                             'qcdf(x) = \int (0, x, qpdf(t), t)'
                            '\betapdf(x) = GAMMA(\alpha+\beta) *x^(\alpha-1) *(1-x)^
Beta pdf:
                               (\beta-1) / (GAMMA(\alpha)*GAMMA(\beta))'
Beta cdf:
                            \beta cdf(x) = \int (0, x, \beta pdf(t), t)'
                            'epdf(x) = EXP(-x/\beta)/\beta'
Exponential pdf:
Exponential cdf:
                            'ecdf(x) = 1 - EXP(-x/\beta)'
Weibull pdf:
                             'Wpdf(x) = \alpha * \beta * x^{(\beta-1)} * EXP(-\alpha * x^{\beta})'
Weibull cdf:
                            'Wcdf(x) = 1 - EXP(-\alpha \times \alpha^{\beta})'
```

Use a função DEFINE para definir todas estas funções. A seguir, os valores de α e β , ex. \mathcal{I} STOP ALPHA \overrightarrow{P} A ENTER 2 STOP ALPHA \overrightarrow{P} B ENTER

Finalmente, para a cdf para Gamma e Beta cdf, é necessário editar as definições do programa para adicionar →NUM para os programas produzidos pela função DEFINE. Por exemplo, a cdf Gamma, ex. a função gcdf, deve ser alterada para ler: « → x '→NUM(∫ (0,x,gpdf(t),t))' » e armazene de volta na EQII. Repita o procedimento para βcdf.

Diferente das funções discretas definidas anteriormente, as funções contínuas definidas nesta seção não incluem seus parâmetros (α e/ou β) nas suas

definições. Entretanto, você não precisa inseri-las no visor para calcular as funções. Portanto, é necessário definir anteriormente armazenando os valores correspondentes nas variáveis α e β . Um vez que todas as funções e valores α e β foram armazenados, você pode ordenar as etiquetas do menu usando a função ORDER. Para ativar a função proceda da seguinte forma:

Seguindo este comando as etiquetas do menu serão mostrados conforme a seguir (Pressione (NXT) para mover para a segunda página. Pressione (NXT) novamente para mover para a primeira página):

Alguns exemplos da aplicação destas funções para valores de $\alpha = 2$, $\beta = 3$, são mostrados abaixo. Observe a variável IERR mostrada no segundo visor. Estes resultados de uma integração numérica para a função gcdf.

Distribuições contínuas para inferência estatística

Nesta seção discutimos as quatro distribuições de probabilidade contínua que são normalmente usadas para problemas relacionados para inferência estatística. A distribuição normal, a distribuição t do estudante, a distribuição Qui-quadrado (χ^2) e a distribuição F. As funções fornecidas pela calculadora para avaliar as probabilidades para estas distribuições estão

contidas no menu MTH/PROBABILITY introduzido anteriormente neste capítulo. As funções são NDIST, UTPN, UTPT, UTPC e UTPF. Suas aplicações são descritas nas seguintes seções. Para ver estas funções ative o menu MTH: e selecione a opção PROBABILITY:

Distribuição normal pdf

A expressão para a distribuição normal pdf é:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right],$$

onde μ é a média e σ^2 é a variação da distribuição. Para calcualar o valor de $f(\mu,\sigma^2,x)$ para a distribuição normal, use a função NDIST com os seguintes argumentos: a média, μ , a variação, σ^2 , e o valor x, ex. NDIST(μ,σ^2,x). Por exemplo, verifique a distribuição normal, f(1.0,0.5,2.0)=0.20755374.

Distribuição normal cdf

A calculadora tem uma função UTPN que calcula a distribuição de limite superior normal, ex. UTPN(x) = P(X>x) = 1 - P(X<x). Para obter o valor da distribuição normal de limite superior UTPN, é necessário inserir os seguintes valores: a média, μ , a variação, σ^2 , e o valor x , ex. UTPN((μ , σ^2 ,x)

Por exemplo, verifique a distribuição normal com $\mu=1.0,~\sigma^2=0.5,$ UTPN(0.75) = 0.638163. Use UTPN(1.0,0.5,0.75) = 0.638163.

Diferentes cálculos de probabilidade para as distribuições normais [X é $N(\mu, \sigma^2)$] pode ser definida usando a função UTPN, conforme a seguir:

•
$$P(X<\alpha) = 1 - UTPN(\mu, \sigma^2, \alpha)$$

- $P(\alpha < X < b) = P(X < b) P(X < a) = 1 UTPN(\mu, \sigma^2, b) (1 UTPN(\mu, \sigma^2, a))$ = $UTPN(\mu, \sigma^2, a) - UTPN(\mu, \sigma^2, b)$
- $P(X>c) = UTPN(\mu, \sigma^2, c)$

Exemplos: Usar μ = 1.5 e σ^2 = 0.5, encontre: $P(X<1.0) = 1 \cdot P(X>1.0) = 1 \cdot UTPN(1.5, 0.5, 1.0) = 0.239750.$ P(X>2.0) = UTPN(1.5, 0.5, 2.0) = 0.239750. $P(1.0<X<2.0) = F(1.0) \cdot F(2.0) = UTPN(1.5,0.5,1.0) \cdot UTPN(1.5,0.5,2.0) = 0.7602499 \cdot 0.2397500 = 0.524998.$

A distribuição estudante t

Distribuição estudante t ou simplesmente t, tem um parâmetro v, conhecido como os graus de liberdade da distribuição. A função distribuição de probabilidade (pdf) é dada por

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2}) \cdot \sqrt{\pi \nu}} \cdot (1 + \frac{t^2}{\nu})^{-\frac{\nu+1}{2}}, -\infty < t < \infty$$

onde $\Gamma(\alpha) = (\alpha-1)!$ é a função GAMMA definidad pelo capítulo 3.

A calculadora fornece para os valores da função da distribuição limite superior (cumulativa) para a distribuição t-, função UTPT, dado o parâmetro v e o valor de t, ex. UTPT(v,t). A Definição desta função é então,

$$UTPT(v,t) = \int_{t}^{\infty} f(t)dt = 1 - \int_{-\infty}^{t} f(t)dt = 1 - P(T \le t)$$

Por exemplo, UTPT(5,2.5) = 2.7245...E-2. Outros cálculos de probabilidade para a distribuição t pode ser definidos usando a função UTPT, conforme a seguir:

• $P(X < \alpha) = 1 - UTPC(v, \alpha)$

- $P(\alpha < T < b) = P(T < b) P(T < \alpha) = 1 UTPT(v,b) (1 UTPT(v,\alpha)) = UTPT(v,\alpha) UTPT(v,b)$
- P(T>c) = UTPT(v,c)

Exemplos: Dado v = 12, determina:

P(T<0.5) = 1-UTPT(12,0.5) = 0.68694.. P(-0.5<T<0.5) = UTPT(12,-0.5)-UTPT(12,0.5) = 0.3738...P(T>-1.2) = UTPT(12,-1.2) = 0.8733...

A distribuição qui-quadrado

A distribuição qui-quadrado (χ^2) tem um parâmetro ν conhecido como graus de liberdade. A função distribuição de probabilidade (pdf) é dada por

$$f(x) = \frac{1}{2^{\frac{\nu}{2}} \cdot \Gamma(\frac{\nu}{2})} \cdot x^{\frac{\nu}{2} - 1} \cdot e^{-\frac{x}{2}}, \nu > 0, x > 0$$

A calculadora fornece os valores da função de distribuição de limite superior (acumulativo) para a distribuição χ^2 - usando [UTPC] dado o valor de x e o parâmetro v. A definição desta função é, portanto,

$$UTPC(v, x) = \int_{t}^{\infty} f(x)dx = 1 - \int_{-\infty}^{t} f(x)dx = 1 - P(X \le x)$$

Para usar esta função, é necessário os graus de liberdade, v, e o valor da qui-quadrada variável, x, ex. UTPC(v,x). Por exemplo, UTPC(5, 2.5) = 0.776495...

Diferentes cálculos de probabilidade para as distribuições qui-quadrada pode ser definida usando a função UTPC, conforme a seguir:

- $P(X < \alpha) = 1 UTPC(v, \alpha)$
- P(a < X < b) = P(X < b) P(X < a) = 1 UTPC(v,b) (1 UTPC(v,a)) = UTPC(v,a) UTPC(v,b)
- P(X>c) = UTPC(v,c)

Exemplos: Dado v = 6, determina: P(X<5.32) = 1 -UTPC(6,5.32) = 0.4965.. P(1.2<X<10.5) = UTPC(6,1.2) -UTPC(6,10.5) = 0.8717... P(X>20) = UTPC(6,20) = 2.769..E-3

A distribuição F

A distribuição F tem dois parâmetros vN = graus em números de liberdade e vD = grau do denominador de liberdade. a distribuição da probabilidade função (pdf) é dado por

$$f(x) = \frac{\Gamma(\frac{vN + vD}{2}) \cdot (\frac{vN}{vD})^{\frac{vN}{2}} \cdot F^{\frac{vN}{2} - 1}}{\Gamma(\frac{vN}{2}) \cdot \Gamma(\frac{vD}{2}) \cdot (1 - \frac{vN \cdot F}{vD})^{(\frac{vN + vD}{2})}}$$

A calculadora fornece os valores da função de distribuição de limite superior (acumulativo) para a distribuição F, função UTPF, dado os parâmetros vN e vD e o valor de F. A definição desta função é, portanto,

$$UTPF(vN, vD, F) = \int_{t}^{\infty} f(F)dF = 1 - \int_{-\infty}^{t} f(F)dF = 1 - P(\mathfrak{I} \le F)$$

Por exemplo, para calcular UTPF(10,5, 2.5) = 0.161834...

Diferentes cálculos de probabilidade para as distribuições qui-quadrada pode ser definida usando a função UTPF, conforme a seguir:

- $P(F < \alpha) = 1 UTPF(vN, vD, \alpha)$
- P(a < F < b) = P(F < b) P(F < a) = 1 UTPF(vN, vD,b) (1 UTPF(vN, vD,a))= UTPF(vN, vD,a) - UTPF(vN, vD,b)
- P(F>c) = UTPF(vN, vD,a)

Exemplo: Dado vN = 10, vD = 5, encontre:

$$P(F<2) = 1-UTPF(10,5,2) = 0.7700...$$

 $P(5
 $P(F>5) = UTPF(10,5,5) = 4.4808..E-2$$

Funções distribuição cumulativa inversa

Para a variável aleatória contínua X com função densidade cumulativa (cdf) F(x) = P(X < x) = p, para calcular a função distribuição cumulativa inversa, é necessário encontrar o valor de x, tal que $x = F^1(p)$. Este valor é relativamente simples para encontrar para caso de <u>distrbuição de Weibull e exponencial</u>, dado que seus cdf têm uma expressão de forma fechada:

- Exponencial, $F(x) = 1 \exp(-x/\beta)$
- Weibull, $F(x) = 1-exp(-\alpha x^{\beta})$

(Antes de continuar, certifique-se de excluir as variáveis α e β). Para encontrar a cdf inversa para estas distribuições, é necessário resover apenas x destas expressões, ex.

Para as <u>distribuições beta e gama</u> as expressões para resover serão mais complicadas devido a presença das integrais, ex.

• Gamma,
$$p = \int_0^x \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \cdot z^{\alpha-1} \cdot \exp(-\frac{z}{\beta}) dz$$

• Beta,
$$p = \int_0^x \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \cdot \Gamma(\beta)} \cdot z^{\alpha - 1} \cdot (1 - z)^{\beta - 1} dz$$

A solução numérica com o solucionador numérico não será confiável por causa dos sinais integrais envolvidas na expressão. Portanto, é possível

encontrar uma solução gráfica. Os detalhes sobre como encontrar a raiz de um gráfico são apresentadas no capítulo 12. Para assegurar os resultados numéticos, altere a configuração do CAS para Approx. A função para plotar a distribuição de gama é

$$Y(X) = \int (0, X, z^{\alpha}(\alpha - 1) \exp(-z/\beta) / (\beta^{\alpha} \alpha * GAMMA(\alpha)), z) - p$$

Para a distribuição Beta, a função para plotar é

$$Y(X) = \int (0,X,z^{(\alpha-1)}*(1-z)^{(\beta-1)}*GAMMA(\alpha+\beta)/(GAMMA(\alpha)*GAMMA(\beta)),z)-p$$

Para produzir a plotagem, é necessário armazenar os valores de α , β e p antes de tentar a plotagem. Por exemplo, para $\alpha=2$, $\beta=3$ e p = 0.3, a plotagem de Y(X) para a distriuição gama é a abaixo. (Observe que, por causa da natureza complicada da função Y(X), levará algum tempo antes que o gráfico seja produzido. Seja paciente).

Existem duas raízes desta função encontrada usando a função dentro do ambiente de plotagem. Por causa da integral na equação, a raiz é aproximada e não será mostrada no visor de plotagem. Obterá apenas a mensagem "constante?" Mostrada no visor Portanto, se pressionar entre ponto, a raiz aproximada será listada no visor. Duas raízes são mostradas na figura a direita abaixo.

De forma alternartiva, você pode usar a função [[391]] para estimar as raizes traçando a curva próximo de seu ponto de interseção com o eixo x. Duas estimativas são mostradas abaixo:

Estas estimativas sugerem soluções x = -1.9 e x = 3.3. Você pode verificar estas "soluções" inserindo a função Y1(X) para X = -1.9 e X = 3.3, ex.

Para as <u>distribuições estudante t, qui-quadrada (χ^2) e F, que são representadas pelas funções UTPN, UTPT, UPTC e UTPF na calculadora, a rotacional inversa pode ser encontrada resolvendo uma das seguintes equações:</u>

- Normal, $p = 1 UTPN(\mu, \sigma 2, x)$
- Estudante t, p = 1 UTPT(v,t)
- Qui-quadrado, p = 1 UTPC(v,x)
- Distribuição F: p = 1 UTPF(vN, vD, F)

Observe que o segundo parâmetro na função UTPN é $\sigma 2$, não σ^2 , representando a variação da distribuição. Além disso, o símbolo v (a letra grega ni em minúscula) não está disponível na calculadora. Você pode usar, como exemplo, γ (gama) em vez de v. A letra γ está disponível no conjunto de caracteres (\nearrow CHARS).

Por exemplo, para obter o valor de x para a distribuição normal com $\mu = 10$, $\sigma^2 = 2$, com p = 0.25, armazene a equação 'p=1-UTPN(μ , σ 2, ×)' na

variável EQ (figura no lado esquerdo abaixo). Então, ative o solucionador numético para obter o formulário de entrada na figura do lado direito:

A próxima etapa é inserir os valores de μ , σ^2 e p, e resolver x:

Este formulário de entrada pode ser usado para resolver quaisquer dos quatro valores envolvidos na equação para a distribuição normal.

Para facilitar a solução de equações envolvendo as funções UTPN, UTPT, UTPC e UTPF, você pode criar um subdiretorio UTPEQ onde armazenará as equações listadas acima:

Assim, neste ponto, você terá a quarta equação disponível para a solução. É necessário carregar apenas uma das equações no campo EQ no solucionador numérico e proceder com a solução para uma das variáveis. Exemplos de UTPT, UTPC e UPTF são mostrados abaixo:

Oserve que em todos os exemplos mostrados acima, estamos funcionado com $p=P(X{<}x).$ Em diversos problemas de inferências estatísticas tentaremos realmente encontrar o valor de x para o qual $P(X{>}x)=\alpha.$ Além disso, para a distribuição normal, provavelmente estaremos trabalhando com a distribuição normal padrão no qual μ =0, and σ^2 = 1. A variável normal padrão é tipicamente chamada de Z para que o problema a resolver seja $P(Z{>}z)=\alpha.$ Para estes casos de problemas de inferência estatística, podemos armazenar as seguintes equações:

Com estas quatro equações, sempre que ativar o solucionador numérico terá que fazer as seguintes escolhas:

Os exemplos de solução de equações EQNA, EQTA, EQCA e EQFA são mostrados a seguir:

Capítulo 18

Aplicações estatísticas

Neste capítulo introduziremos as aplicações estatísticas da calculadora incluindo as estatísticas de uma distribuição de frequência de dados, regressão simples, intervalos de confidência e teste de hipótese.

Característica estatísticas pré-programadas

A calculadora fornece as características estatísticas pré-programadas acessíveis usando a combinação de tecla <u>stat</u> (a mesma tecla como a tecla de número <u>5</u>). As aplicações estatísticas disponíveis na calculadora são:

Estas aplicações são apresentadas em detalhes neste capítulo. Primeiro vamos demonstrar como inserir os dados para a análise estatística.

Inserir dados

Para a análise de um único conjunto de dados (um amostra) podemos usar os números de aplicações 1, 2 e 4 da lista acima. Todas as aplicações exigem que os dados estejam disponíveis como colunas da matriz ΣDAT . Isto pode ser feito inserindo os dados nas colunas usando o Editor de Matrizes, \P MTRW .

Esta operação pode levar tempo para números grandes de pontos de dados. Em vez disso, você talvez queira inserir os dados como uma lista (consulte o capítulo 8) e converta a lista em um vetor de coluna usando o programa CRMC (consulte o Capítulo 10) De forma alternativa, você pode inserir o seguinte programa para converter uma lista em um vetor de coluna. Digite o programa enquanto estiver no modo RPN:

« OBJ→ 1 2 →LIST →ARRY »

Armazene o programa em uma variável chamada LXC. Depois de armazenar este programa no modo RPN você pode usá-lo também no modo ALG.

Para armazenar um vetor de coluna em uma variável ΣDAT use a função STO Σ disponível no catálogo (\nearrow _CAT), ex. STO Σ (ANS(1)) no modo ALG.

<u>Exemplo 1</u> – Usar o programa LXC, definido acima, cria um vetor de coluna usando os dados seguintes: 2.1 1.2 3.1 4.5 2.3 1.1 2.3 1.5 1.6 2.2 1.2 2.5.

No modo RPG, digite nos dados na lista:

Use a função STO Σ para armazenar os dados no ΣDAT .

Calcular as estatísticas de variável individual

Assumindo que um conjunto de dados individuais foi configurado como um vetor de coluna na variável ΣDAT. Para acessar os diferentes programas STAT, pressione Postat. Pressione para selecionar 1. Single-var.. Um formulário de entrada chamado SINGLE-VARIABLE STATISTICS estará disponível com os dados atualmente na sua variável ΣDAT Isitada no fomulário como um vetor. Dado que tem apenas uma coluna, o campo Colic deve ter o valor 1 na frente dele. O campo Type determina se você está trabalhando com uma amostra ou uma população, a configuração padrão é a Amostra. Mova o cursor para a linha horizontal precedendo os campos Mean, Std Dev, Variance, Total, Maximum, Minimum, pressionando as teclas do menu para selecionar estas medidas que você quer como saída deste programa. Quando estiver pronto, pressione Os valores selecionados serão listados, marcados corretamente no visor de sua calculadora.

<u>Exemplo 1</u> – Para os dados armazenados no exemplo anterior, os resultados das estatísticas variáveis individuais são os seguintes:

Significa: 2.133, Der. pad.: 0.964, Variação: 0.929 Total: 25.6, Máximo: 4.5, Mínimo: 1.1

Definições

As definições usadas para estas quantidades são as sequintes:

Suponha que tenha um número de pontos de dados x_1, x_2, x_3, \ldots , representando diferentes medidas da mesma variável discreta ou contínua x. O conjunto de todos os valores possíveis da quantidade x é mencionado como a <u>população</u> de x. Uma <u>população finita</u> será apenas um número fixo de elementos x_i . Se a quantidade x representa a medida de uma quantidade continua e dado que, em teoria, tal quantidade pode tomar um número de valores finitos, a população de x neste caso é <u>infinito</u>. Se selecionar um subconjunto de uma população representada pelos valores de dados n $\{x_1, x_2, \ldots, x_n\}$, digamos que você selecionou uma <u>amostra</u> de valores de x.

As amostras são caracterizadas por um número de medidas ou <u>estatísticas</u>. Existem <u>medidas de tendência central</u>, tais como média, mediana e modo e <u>medidas de disseminação</u>, tal como a faixa, variação e desvio padrão.

Medidas de tendência central

A <u>média (ou média aritmética)</u> da amostra, \bar{x} , é definida como o valor médio dos elementos de amostra,

$$\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i.$$

O valor marcado Total obtido acima representa a somatória dos valores de x ou $\Sigma x_i = n \cdot \overline{x}$ é o valor fornecido pela calculadora sob o cabeçalho Mean (média). Outros meios usados em certas aplicações são a <u>média geométrica</u>, x_a , ou a <u>média harmônica</u>, x_h , definida como:

$$x_g = \sqrt[n]{x_1 \cdot x_2 \cdots x_n}, \qquad \frac{1}{x_h} = \sum_{i=1}^n \frac{1}{x_i}.$$

Os exemplos do cálculo destas medidas, usando as listas estão disponíveis no capítulo 8.

A <u>mediana</u> é o valor que divide o conjunto de dados no meio quando os elementos são colocados em ordem crescente. Se tiver um número ímpar, n, de elementos médios desta amostra é o valor localizado na posição (n+1)/2. Se tiver um elemento par, n, de elementos, a mediana é a média dos elementos localizados nas posições n/2 e (n+1)/2. Embora as características estatísticas pré-programadas da calculadora não incluam o cálculo da mediana, é muito fácil de escrever um programa para calcular tal quantidade trabalhando com as listas. Por exemplo, se quiser usar os dados no ΣDAT para encontrar a mediana, digite o seguinte programa no modo RPN (consulte o capítulo 21 para obter mais informações sobre programa na linguagem RPL do usuário RPL).:

 $\stackrel{\times}{\rightarrow}$ nC $\stackrel{\times}{\sim}$ RCL $\stackrel{\Sigma}{\sim}$ DUP SIZE 2 GET IF 1 > THEN nC COL− SWAP DROP OBJ \rightarrow 1 + \rightarrow ARRY END OBJ \rightarrow OBJ \rightarrow DROP DROP DUP \rightarrow n $\stackrel{\times}{\sim}$ LIST SORT IF 'n MOD 2 == 0' THEN DUP 'n/2' EVAL GET SWAP '(n+1)/2' EVAL GET + 2 / ELSE '(n+1)/2' EVAL GET END "Median" \rightarrow TAG $\stackrel{\times}{\sim}$ $\stackrel{\times}{\sim}$

Armazene este programa sob o nome MED. Um exemplo de aplicação deste programa é mostrado a seguir.

Exemplo 2 – Para executar o programa, é necessário primeiro preparar sua matriz ΣDAT . Depois, insira o número da coluna no ΣDAT cuja mediana que você quer encontrar e pressione Para os dados atuais no ΣDAT (inserido em um exemplo anterior), use o programa MED para mostrar esta Median: 2.15.

O <u>modo</u> de uma amostra é melhor determinado a partir de histogramas, então, deixemos sua definição para uma seção posterior.

Medidas de disseminação

A <u>variação</u> (Var) da amostra é definida como $s_x^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \overline{x})^2$.

O <u>desvio padrão</u> (St Dev) da amostra é apenas a raiz quadrada da variação, ex., s_x.

A <u>faixa</u> da amostra é a diferença entre os valores máximo e mínimo da amostra. Dado que a calculadora através das funções estatísticas préprogramadas fornece os valores máximo e mínimo da amostra, você pode facilmente calcular a faixa.

Coeficiente de variação

O coeficiente de variação de uma amostra combina a média, uma medida de tendência central com o desvio padrão, uma medida de disseminação e é definida como um percentual por: $V_x = (s_x/\bar{x})100$.

Amostra e população

As funções pré-programadas para as estatísticas de varáveis individuais usadas acima podem ser aplicadas para uma população finita selecionando Type: Population no visor SINGLE-VARIABLE STATISTICS. A diferença principal nos valores da variação e desvio padrão que são calculados usando n no denominador da variação, em vez de (n-1).

Exemplo 3 - Se fosse repetir o exercício no Exemplo 1 desta seção, usando Population em vez de Sample como o tipo Type, obterá os mesmos valores para a média total máxima e mínima. A variação e desvio padrão será dado por: Variação: 0.852, Std Dev: 0.923.

Obter as distribuições de frequência

A aplicação **2. Frequencies..** no menu STAT pode ser usada para obter as distribuições de freqüências para um conjunto de dados. Os dados devem estar presentes na forma de um vetor de coluna armazenado na variável ΣDAT. Para iniciar, pressione <u>STAT</u> • O formulário de entrada resultante contém os sequintes campos:

COI: A matriz contendo os dados de interesse. a coluna de Σ DAT que está sob escrutínio. **X-Min**: O limite mínimo de classe (padrão = -6.5).

Contagem bloco: O número de classe (padrão = 13).

Largura do bloco: a largura uniforme de cada classe (padrão = 1).

Definições

Para compreender o significado destes parâmetros apresentamos as seguintes <u>definições</u>: Apresentado um conjunto de valores de dados n: {x₁, x₂, ..., x_n} listados sem nenhuma ordem em particular, é freqüentemente necessário agrupar estes dados em uma série de <u>classes</u>, contando a <u>freqüência</u> ou número de valores correspondentes para cada classe. (Nota: as calculadoras referem-se às classes como blocos).

Suponha que as classes ou blocos sejam selecionados dividindo o intervalo (x_{bot}, x_{lop}) , em k = classe de contagem de bloco selecionando um número de <u>limites de classes</u>, ex. $\{xB_1, xB_2, ..., xB_{k+1}\}$, para que o número de classe 1 seja limitado por xB_1 - xB_2 , número de classe 2 por xB_2 - xB_3 , e assim por diante. A última classe, número de classe k será limitado por k0 k1.

O valor de x correspondente ao meio de cada classe é conhecido como a marca de classe e é definido como $xM_i = (xB_i + xB_{i+1})/2$, para i = 1, 2, ..., k.

Se as classe fossem escolhidas tal que o <u>tamanho da classe</u> fosse a mesma, então podemos definir o tamanho da classe como o valor Largura do bloco = $\Delta x = (x_{max} - x_{min}) / k$,

e os limites da classe podem ser calculados como $xB_i = x_{bot} + (i - 1) * \Delta x$.

Qualquer ponto de dados , x_i , $j=1,\,2,\,...$, n, pertence a classe i , se $xB_i \leq x_i$ $< xB_{i+1}$

A aplicação **2. Frequencies..** no menu STAT desempenhará esta contagem de freqüência e manterá controle destes valores que podem ficar abaixo dos limites máximo e mínimo da classe (ex. os delimitadores).

<u>Exemplo 1</u> - Para ilustrar melhor a obtenção de distribuições de freqüências, queremos gerar um conjunto de dados grandes definidos, digamos 200 pontos, usando o seguinte:

- Primeiro, alimente o gerado de número aleatório usando: RDZ(25) no modo ALG ou 25 (MTB) RDZ no modo RPN (consulte o capítulo 17).
- Gere a lista de 200 números usando RDLIST(200) no modo ALG ou 200 [NTER] INTERIO no modo RPN.
- Use o programa LXC (consulte acima) para converter a lista assim gerada na coluna do vetor.
- Armazene o vetor da coluna no ΣDAT, usando as funções STOΣ.
- A seguir, obtenha a informação variável individual usando:
 STAT MUSIMI. Use Sample para o tipo de conjunto de dados e selecione todas as opções como resultado: Os resultados são:

Mean: 51.0406, Std Dev: 29.5893..., Variance: 875.529... Total: 10208.12, Maximum: 99.35, Minimum: 0.13

Esta informação indica que nassas faixas de valores próximos a zero a valores próximos a 100. Trabalhando com números inteiros, podemos selecionar a faixa de variação dos dados como (0,100). Para produzir uma distribuição de freqüência usaremos o intervalo (10,90) dividindo-o em 8 blocos de largura 10 cada.

- Selecionar o programa 2. Frequencies.. usando STAT STAT

Usando o modo RPN, os resultados são mostrados no nível da pilha 2 e um vetor de final de dois componentes no nível 1 da pilha. O vetor no nível 1 da pilha é o número de delimitadores de intervalo onde a contagem de

frequência foi feita. Para este caso, I obtenha os valores [25.22.] indicando que existem, no vetor ΣDAT , 25 valores menores do que 10 e 22 maiores do que 90.

 Pressione para colocar o vetor de delimitadores da pilha O resultado restante é a contagem da freqüência de dados. Isto pode ser interpretado em uma tabela conforme mostrado acima.

A tabela foi preparada da informação que fornecemos para gerar a distribuição de frequência, embora a única coluna devolvida pela calculadora seja a coluna de frequência (f_i). Os números e limites de classe, são fáceis de calcular para as classe de tamanho uniforme (ou blocos) e a marca de classe é exatamente a média dos limites de classes para cada classe. Finalmente, a frequência cumulativa, é obtida adicionando para cada valor na última coluna, exceto a primeira, a freqüência na próxima linha e substituindo o resultado na última coluna da próxima linha. Assim, para a segunda classe, a freqüência cumulativa é 18+15 = 33, enquanto para a classe número 3, a freqüência cumulativa é 33 + 16 = 49 e assim por diante. A freqüência cumulativa representa a freqüência destes números que são menores do que ou igual a limite superior de qualquer classe dado.

N° de classe	Limi. classe		Classe de	Freqüência	Frequência Cumulativa
ciusse			marca		Cultiviativa
i	XB_{i}	XB _{i+1}	Xm_i	f _i	
< XB ₁	delimit faixa			25	
	ador	inferior			
1	10	20	15	18	18
2	20	30	25	14	32
3	30	40	35	17	49
4	40	50	45	17	66
5	50	60	55	22	88
6	60	70	65	22	110
7	70	80	75	24	134
k = 8	80	90	85	19	153
>XB _k	delimit faixa			22	
	adores	superior			

Dado o vetor de freqüências geradas pela calculadora, você pode obter um vetor de freqüência cumulativa usando o seguinte programa no modo RPN:

« DUP SIZE 1 GET → freq k « {k 1} 0 CON → cfreq « 'freq(1,1)' EVAL 'cfreq(1,1)' STO 2 k FOR j 'cfreq(j-1,1) +freq(j,1)' EVAL 'cfreq (j,1)' STO NEXT cfreq » » »

Salve-o sob o nome CFREQ. Use este programa para gerar a lista de freqüência cumulativa (pressioe com as frequências do vetor coluna na pilha) O resultado para este exemplo, é o vetor de coluna representando a última coluna da tabela acima.

Histogramas

Um <u>histograma</u> é uma plotagem de barra mostrando a freqüência como a altura das barras enquanto os limites da classe mostram a base das barras. Se tiver seus próprios dados brutos (ex. os dados originais antes que a contagem de freqüência seja feita) na variável ΣDAT , você pode selecionar $\mathtt{Histogram}$ com o seu tipo de gráfico e fornece a informação em relação ao valor inicial de x, o número e a largura do bloco para gerar a histograma. De forma alternativa, você pode gerar o vetor da coluna com a contagem de frequência conforme feita no exemplo acima, armazenar este vetor no ΣDAT e selecionar $\mathtt{Barplot}$ como seu tipo de gráfico. Neste exemplo, mostramos como usar o primeiro metido para gerar um histograma.

Exemplo 1 – Usando os 200 pontos dos dados gerados no exemplo acima (armazenada como um vetor de coluna no ΣDAT), gere uma plotagem de histograma dos dados usando X-Min = 10, Bin Count = 16 e Bin Width = 5.

- Pressione (simultaneamente se estiver no modo RPN) para acessar a janela PLOT SETUP. Dentro deste visor altere Type: para Histogram e verifique se a opção Col: 1 é selecionada. Depois pressione
- A seguir, pressione (simultaneamente, se estiver no modo RPN) para inserir no visor PLOT WINDOW HISTOGRAM. Dentro deste visor altere a informação para H-View: 10 90, V-View: 0 15, Bar Width: 5.

• Pressione Tital para gerar o seguinte histograma:

• Pressione para retornar ao visor anterior. Altere V-view e Bar Width novamente e agora leia V-View: 0 30, Bar Width: 10. Um novo histograma baseado no mesmo conjunto de dados, agora é similar a:

Uma plotagem de contagem de frequência, f_i, vs. Marcas de classse, xM_i, é conhecida como o polígono da frequência. Uma plotagem da frequência culumativa e os limites superior é conhecimdo como a ogiva de frequência cumulativa. Você pode produzir os gráficos de difusão que simulam estas duas plotagens inserindo os dado corretos nas columas 1 e 2 da nova matriz ΣDAT e alterando Type: para SCATTER na janela PLOT SETUP.

Ajustar os dados para uma função y = f(x)

O programa **3. Fit data..**, disponível como opção número 3 no menu STAT, pode ser usada para ajustar as funções lineares, logarítmicas, exponenciais e de potência para conjuntos de dados (x,y) armazenados nas colunas da matriz DAT. Para esta aplicação, é necessário ter pelo menos duas colunas na sua variável DAT.

<u>Exemplo 1</u> – para ajustar uma relação linear para os dados mostrados na tabela abaixo:

Х	0	1	2	3	4	5
У	0.5	2.3	3.6	6.7	7.2	11

- Primeiro, insira as duas colunas de dados na variável ΣDAT usando o Editor de Matriz.

 Para obter o ajuste dos dados pressione . O formulário de saída deste programa, mostrado abaixo de nosso conjunto de dados particular, consiste das seguintes três linhas no modo RPN:

3: '0.195238095238 + 2.00857242857*X'

2: Correlation: 0.983781424465

1: Covariance: 7.03

Nível 3 mostra o formulário da equação. Neste caso, y = 0.06924 + 0.00383 x. Nível 2 mostra o coeficiente de correlação da amostra e nível 1 mostra a covariação de x-y.

Definições

Para a amostra de pontos de dados (x,y), definimos a covariação de amostra como

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

O coeficiente de correlação da amostra para x,y é definida como

$$r_{xy} = \frac{s_{xy}}{s_x \cdot s_y}$$

Onde s_x , s_y são os desvios padrões de x e y, respectivamente, ex.

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$
 $s_y^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$

Os valores s_{xy} e r_{xy} são a "Covariação" e "Correlação", respectivamente, obtidos usando a característica de "ajuste de dados" da calculadora.

Relações linearizadas

Muitas relações curvilineares são "linearizadas" para uma forma linear. Por exemplo, os modelos diferentes para ajuste de dados fornecidos pela calculadora podem ser linearizados conforme descrito na tabela acima.

			Indep.	Depend.	
Type of	Actual	Linearized	variable	Variável	Covar.
Fitting	Model	Model	ξ	η	$s_{\xi\eta}$
Linear	y = a + bx	[same]	Х	У	S _{xy}
Log.	$y = a + b \ln(x)$	[same]	ln(x)	У	S _{In(x),y}
Exp.	y = a e ^{bx}	ln(y) = ln(a) + bx	Х	ln(y)	S _{x,ln(y)}
Power	y = a x ^b	ln(y) = ln(a) + b ln(x)	ln(x)	ln(y)	$S_{ln(x),ln(y)}$

A covariação de amostra de ξ,η é dado por

$$s_{\xi\eta} = \frac{1}{n-1} \sum_{i} (\xi_i - \overline{\xi}_i) (\eta_i - \overline{\eta}_i)$$

Além disso, definimos as variações de amostras de ξ e η , respectivamente como

$$s_{\xi}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\xi_{i} - \overline{\xi})^{2}$$
 $s_{\eta}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\eta_{i} - \overline{\eta})^{2}$

O coeficiente de correlação de amostra $\mathbf{r}_{\xi\eta}$ is $r_{\xi\eta}=rac{s_{\,\,\xi\eta}}{s_{\,\xi}\cdot s_{\,\,\eta}}$

A forma geral da equação de regressão é $\eta = A + B\xi$.

Melhor ajuste de dados

A calculadora pode determinar qual de sua relação linearizada pode oferecer o melhor ajuste para um conjunto de (x,y) pontos de dados. Ilustramos o uso desta característica com um exemplo. Suponha que queira encontrar qual das funções de ajuste dos dados fornece o melhor ajuste do seguinte dado:

Х	0.2	0.5	1	1.5	2	4	5	10
у	3.16	2.73	2.12	1.65	1.29	0.47	0.29	0.01

Primeiro, insira os dados como uma matriz, ou usando o Editor de Matriz e inserindo os dados ou inserindo duas listas de dados correspondentes a x ou y e usando o programa CRMT (consulte o capítulo 10). A seguir, salve esta matriz na matriz estatística ΣDAT, usando a função STOΣ.

Finalmente ative aplicação de ajuste dos dados usando:

→ STAT ▼ ▼ IMIZIMI . O visor mostra o ΣDAT atual já alocado. Altere seu visor de configuração para os seguintes parâmetros se necessário:

Pressione para obter:

1: '3.99504833324*EXP(-.579206831203*X)'

2: Correlation: -0.996624999526 3: Covariance: -6.23350666124 O melhor ajuste dos dados é y = $3.995 e^{-0.58 \cdot x}$.

Obter estatísticas de resumo adicional

A aplicação **4. Summary stats..** no menu STAT pode ser útil em alguns cálculos para estatísticas de amostra. Para começar, pressione <u>stat</u> novamente, mova para a quarta opção usando a tecla de seta para baixo e presisone <u>o</u> o formulário de entrada resultante contém os seguintes campos:

ΣDAT:: a matriz contendo os dados de interesse.

X-Col, Y-Col: estas opções se aplicam apenas quando você tem mais do

que duas colunas na matriz ΣDAT. Por definição, a coluna x

é a coluna 1 e a coluna y é a coluna 2.

Σ**X** Σ**Y...**: estatíticas de somatória que você pode escolher como

resultado deste programa verificando o campo apropriado

usando [√CHK] quando este campo for selecionado.

Muitos destas estatísticas de somatória são usadas para calcular as estatísticas de duas variáveis (x,y) que podem ser relacionadas por uma função y = f(x). Portanto, este programa pode ser considerado como um companheiro para o programa **3. Fit data...**

Exemplo 1 – para o dado x-y atuamente no ΣDAT , obtenha todas as estatísticas de somatória.

- Para acessar a opção **summary stats...**, use:
- Selecione os números da coluna correspondente ao dado x- e y-, ex. X-Col: 1 e Y-Col: 2.
- Usando a tecla
 IVIIII selecione todas as opções para as saídas, ex, _ΣX, ΣΥ, etc.
- Pressione para obter os seguintes resultados:

 ΣX : 24.2, ΣY : 11.72, ΣX 2: 148.54, ΣY 2: 26.6246, $\Sigma X Y$: 12.602, $N \Sigma$:8

Nota: Existem duas outras aplicações sob o menu STAT, a saber, **5. Hypth. tests..** e **6. Conf. Interval..** Estas duas aplicações serão discutidas mais tarde neste capítulo.

Cálculo de percentuais

Percentuais são medidas que dividem um conjunto de dados em 100 partes. O procedimento básico para calcular o percentual $100 \cdot p$ -th (0 na amostra de tamanho n é conforme a seguir:

- 1. Ordenar as observações n do menor para o maior.
- 2. Determina o produto n·p
 - A. Se n·p não é o número inteiro, arredondado para o próximo número e encontra o valor ordenado correspondente.
 - B. Se n·p está no número inteiro, digamos k, calcule a média das observações ordenadas k-th e (k-1) .

Nota: Regra de arredondamento número inteiro para número não inteiro x.yz..., se $y \ge 5$, arredondado para x+1; se y < 5, arredondado para x.

Este algoritmo pode ser implementado no seguinte programa digitado no modo RPN (consulte o capítulo 21 para a informação de programação):

« SORT DUP SIZE → p X n « n p * → k « IF k CEIL k FLOOR - NOT THEN X k GET X k 1 + GET + 2 / ELSE k 0 RND X SWAP GET END » »

que armazenaremos na variável %TILE. Este programa requer como entrada um valor p dentre 0 e 1, representando os 100p percentuais e uma lista de valores. O programa retorna os 100p percentuais da lista.

Exemplo 1 – Determina o percentual 37% da lista { 2 1 0 1 3 5 1 2 3 6 7 9}. No modo RPN, inserir 0.27 $\[MTE]$ { 2 1 0 1 3 5 1 2 3 6 7 9} $\[MTE]$ $\[MTE]$

O menu STAT

Todas as funções estatísticas pré-programadas descritas acima são acessíveis através do menu STAT. O menu STAT pode ser acessado usando no modo RPN o comando: 96 MENU

Você pode criar seu próprios programa, digamos (mais para ativar o menu STAT diretamente. O conteúdo deste programa são simples: « 96 MENU ».

O submenu STAT contém as seguintes funções:

Pressionar a tecla correspondente a quaisquer destes menus fornece acesso as funções diferentes conforme descrito abaixo. .

O submenu DATA

O submenu DATA contém as funções usadas para manipular a matriz de estatística $\Sigma DATA$:

A operação destas funções é conforme a sequir:

 Σ + : adiciona a linha no nível 1 para o fundo da matriz Σ DATA.

 Σ - : remove a última linha na matriz $\Sigma DATA$ e coloca-a no nível 1 da pilha. A matriz $\Sigma DATA$ modificada se mantém na memória.

 $\mathsf{CL}\Sigma$: apaga a matriz $\Sigma\mathsf{DATA}$ atual.

ΣDAT: coloca o conteúdo da matriz atual ΣDATA no nivel 1 da pilha.

O submenu **SPAR**

O submenu ΣPAR contém as funções usadas para modificar nos parâmetros estatísticos.

Os parâmetros mostrados no visor são:

Xcol: indica a coluna de ΣDATA representando x (Padrão: 1) Ycol: indica a coluna de ΣDATA representando x (Padrão: 2)

intercepta: mostra a interceptação do ajuste dos dados mais recentes

(Padrão: 0)

Slope: mostra a inclinação do ajuste dos dados mais recentes (Padrão: 0)

Model: mostra o modelo de ajuste de dados atuais (Default: LINFIT)

As funções listadas nas teclas do menu são feitas conforme a seguir:

XCOL: inserido como n (altera Xcol para n. YCOL inserido como n (altera Ycol para n.).

 Σ PAR: mostra os parâmetros estatísticos.

RESET: reinicie os campos para os valores padrões

INFO: mostra os parâmetros estatísticos.

o submenu MODL dentro de Σ PAR

Este submenu contém as funções que permitem que você altere o modelo de ajuste de dados para LINFIT, LOGFIT, EXPFIT, PWRFIT ou BESTFIT pressionando o botão apropriado.

O submenu 1VAR

O submenu 1VAR contém as funções que são usadas para calcular as estatísticas e colunas na matriz $\Sigma DATA$.

As funções disponíveis são as seguintes:

TOT: mostra a soma de cada coluna na matriz ΣDATA.

MEAN: mostra a média de cada coluna na matriz ΣDATA.

SDEV: mostra o desvio padrão de cada coluna na matriz ΣDATA. MAXΣ: mostra o valor máximo de cada coluna na matriz ΣDATA.

MIN Σ : mostra a média de cada coluna na matriz Σ DATA.

BINS: usada como x_s , Δx , n [BINS], fornece a distribuição de freqüência para os dados em coluna Xcol na matriz $\Sigma DATA$ com os blocos de freqüência definidos como $[x_s, x_s + \Delta x]$, $[x_s, x_s + 2\Delta x]$,..., $[x_s, x_s + n\Delta x]$.

VAR: mostra a variação de cada coluna na matriz ΣDATA.

PSDEV: mostra o desvio padrão da população (baseado em n em vez de (n-1)) de cada coluna na matriz ΣDATA.

PVAR: mostra a variação da população de cada coluna na matriz ΣDATA.

MIN Σ : mostra a média de cada coluna na matriz Σ DATA.

O submenu PLOT

O submenu PLOT contém as funções que são usadas para produzir plotagens com os dados na matriz ΣDATA.

As funções incluidas são:

BARPL: produz uma plotagem de barra na coluna Xcol da matriz Σ DATA.

HISTP: produz histograma de dados na coluna Xcol na matriz ΣDATA, usando a largura padrão correspondente a 13 blocos a menos que o tamanho seja alterado usando a função BINS no submenu 1VAR (consulte acima).

SCATR: produz um diagrama de dispersão dos dados na coluna Ycol da ΣDATA matriz e dados na coluna Xcol da matriz ΣDATA. As equações ajustadas serão armazenadas na variável EQ.

O submenu FIT

O submenu FIT contém as funções usados para ajustar as equações para os dados na coluna Xcol e Ycol da matriz ΣDATA.

As funções disponíveis neste submenu são:

ΣLINE: fornece a equação correspondente ao ajuste mais recente.

LR: fornece a interceptação e inclinação do ajuste mais recente.

PREDX: usada como y [] , dado y encontra x para o ajuste y = f(x).

PREDY: usado como x [] , dado x encontra y para o ajuste y = f(x).

CORR: fornece o coeficiente de correlação ao ajuste mais recente.

COV: fornece a co-variação de amostra para o ajuste mais recente

PCOV: fornece a co-variação da população para o ajuste mais recente

O submenu SUMS

O submenu SUMS contém as funções usadas para obter as estatísticas dos dados nas colunas Xcol e Ycol da matriz DDATA.

 ΣX : fornece a soma dos valores na coluna Xcol. ΣY : fornece a soma dos valores na coluna Ycol.

 ΣX^2 : fornece a soma dos quadradas dos valores coluna Xcol. ΣY^2 : fornece a soma dos quadradas dos valores coluna Ycol.

 ΣX^*Y : fornece a soma de $x\cdot y$, ex., os produtos de dados nas colunas Xcol e Ycol.

 $N\Sigma$: fornece o número de colunas na matriz $\Sigma DATA$.

Exemplo de operações de menu STAT

Permite que ΣDATA seja a matriz mostrada na próxima página.

- Digite o nível 1 da pilha da matriz usando o Editor de Matriz.
- Para armazenar a matriz na ΣDATA use: () () () ()
- Calcule a estatísticas de de cada coluna:

iwii	produz [38.5 87.5 82799.8]
	produz [5.5. 12.5 11828.54]
	produz [3.39 6.78 21097.01]

produz [10 21.5 55066]
produz [1.1 3.7 7.8]
produz [11.52 46.08 445084146.33]
produz [3.142... 6.284... 19532.04...]
produz [9.87... 39.49... 381500696.85...]

Data:

 Gera o diagrama de dispersão de dados nas colunas 1 e 2 e ajsua uma linha reta:

am am mai

reajusta os parâmetros estatísticos

produz diagramas de dispersão desenha um ajuste de dados como uma linha reta

retorna para o visor principal

• Determina a equação de ajuste e algumas de suas estatísticas:

	produz '1.5+2*X'
	<pre>produz Intercept: 1.5, Slope: 2</pre>
3 1233033	produz 0.75
1 133333	produz 3.50
	produz 1.0
WEXXX	produz 23.04
NXT ZXXV	produz 19.74

Obtém as estatísticas de resumo para os dados nas colunas 1 e 2:
 III

 IIII

 IIIII

 IIII

 IIIII

 IIII

 IIII

 IIII

 IIII

 IIII

 IIII

 IIIII

 IIII

 IIII

 IIII

 IIII

 IIII

 IIII

 IIIII

 IIII

 IIII

 IIII

 IIII

 IIII

 IIII

 IIII

EX	produz 38.5
2 /	produz 87.5
	produz 280.87
	produz 1370.23
E337	produz 619.49
1 (1+3)	produz 7

 Dados de ajustes usando as colunas 1 (x) e 3 (y) usando um ajuste logaritimico:

selecione Ycol = 3 e selecione Model = Logfit

7: 6: Xcol: 1. Ycol: 3. Intercept: 1.5 Slope: 2. Model: LOGFIT XCOL YCOL ROOL EPAR RESET INFO

NXT **EM EM EM**

produz o diagrama de dispersão de y e x mostra a linha para ajuste do log

Obviamente, o ajuste do log não é uma boa escolha.

Retorna ao visor normal

• Seleciona o melhor ajuste usando:

STATE STATE NOOF BESTE

mostra EXPFIT como o melhor ajuste para estes dados.

7: 6: Xcol: 1. Ycol: 3. Intercept: 2.654532182 Slope: .992727785591 Model: EXPFIT XCOL (YCOL (MOD) EMAN (RESET) INFO

NXT **EITH FILL**

produces '2.6545*EXP(0.9927*X)' produz 0.99995... (boa correlação) produz 6.8139

2300 **2330** 5.2 **2330**

produz 463.37 produz o diagrama de dispersão de y e x

NXT ETT ETT ETTE

mostra a linha para ajuste do log

Para obter seu menu de variável use: VAR).

Intervalos de confiança

Inferência estatística é o processo de tirar conclusões sobre a população baseada na informação de dados de amostra. Para que os dados de amostra tenham significados, a amostra deve ser aletória, ex. a seleção de uma amostra em particular deve ter a mesma probabilidade de qualquer outra amostra possível de uma população dada. A seguir apresentamos os termos relevantes para o conceito de amostra aleatória:

- População: coleção de todas as observações concebíveis de um processo ou atributo de um componente.
- Amostra: subconjunto de uma população.
- Amostra aleatória: uma representação da amostra da população.
- Variável aleatória: função de valor real definida em um espaço da amostra. Pode ser discreta ou contínua.

Se a população segue uma certa distribuição de probabilidade que depende do parâmetro θ , uma amostra aleatória de observações $(X_1, X_2, X_3, \ldots, X_n)$, de tamanho n, pode ser usada para estimar θ .

- Distribuição da amostra: a distribuição da probabilidade conjunta de X₁,X₂,X₃,..., X_n.
- Uma estatística: qualquer função de observações que é quantificável e não contém quaisquer parâmetros desconhecidos. Uma estatística é uma variável aleatória que fornece um meio de estimativa.
- Estimativa ponto: quando um único valor de parâmetro θ for fornecido.
- Intervalo de confiança: um intervalo numérico que contém o parâmetro θ em um dado nível de probabilidade.

- Estimador: regra ou método de estimativa do parâmetro θ .
- Estimativa: valor que o estimador define para a aplicação em particular.

Exemplo 1 – Deixemos que X represente a momento (horas) necessário por um processo de fabricação específico a ser completado. Dado o seguinte exemplo de valores de X: 2.2 - 2.5 - 2.1 - 2.3 - 2.2. A população de onde este exemplo é tirado é a coleção de todos os valores possíveis do tempo de processamento, portanto, é uma população infinita. Suponha que o parâmetro da população que estamos tentando estiver é o valor médio, μ . Usaremos como um estimador o valor médio da amostra, \overline{X} , definida por

(uma regra):
$$\overline{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$$
.

Para a amostra sob consideração, a estimativa de μ é a estatística de amostra $\bar{x}=(2.2+2.5+2.1+2.3+2.2)/5=2.36$. Este valor individual de \bar{X} , a saber, $\bar{x}=2.36$, constitui uma estimativa de ponto do parâmetro da população μ .

Estimativa dos intervalos de confiança

O próximo nível da inferência da estimativa do ponto é o estimativa de intervalo, ex. em vez de obter um valor único de um estimador fornecemos duas estatísticas a e b, que define um intervalo contendo o parâmetro θ com um certo nível de probabilidade. Os pontos finais do intervalo são conhecidos como limites de confiança e o intervalo (a,b) é conhecido como o intervalo de confiança.

Definições

Deixe (C_l, C_u) ser um intervalo de confiança contendo um parâmetro desconhecido θ .

- Nível de confiança ou coeficiente de confiança é a quantidade (1-α), onde 0 < α < 1, tam que P[C_I < θ < C_u] = 1 α, onde P[] representa a probabilidade (consulte o capítulo 17). A expressão anterior define os tão chamados limites de confiança laterais.
- Um intervalo de confiança lateral é definido por $Pr[C_1 < \theta] = 1 \alpha$.

- Um intervalo de confiança lateral superior é definido por $\Pr[\theta < C_u] = 1 \alpha$.
- O parâmetro α é conhecido como o nível de significado. Valores típicos de α são 0.01, 0.05, 0.1, correspondente aos níveis de confiança de 0.99, 0.95 e 0.90, respectivamente.

Intervalos de confiança para a média de população quando a sua variação for conhecida

Deixemos \overline{X} ser a média de uma amostra aleatória de tamanho n, retirada de uma população infinita com desvio padrão conhecido σ . O 100(1- α) % [ex. 99%, 95%, 90%, etc.], o intervalo bilateral central para a média da população μ é (\overline{X} – $z_{\alpha/2}$ · σ / \sqrt{n} , \overline{X} + $z_{\alpha/2}$ · σ / \sqrt{n}), onde $z_{\alpha/2}$ é a variação padrão normal que excede uma probabilidade de α /2. O erro padrão da média da amostra, \overline{X} , é · σ / \sqrt{n} .

Os limites de confiança lateral superior e inferior $100(1-\alpha)$ % para a média de população μ são, respectivamente, $X+z_{\alpha}\cdot\sigma/\sqrt{n}$ e $\overline{X}-z_{\alpha}\cdot\sigma/\sqrt{n}$. Assim, um intervalo de confiança lateral inferior é definido como $(-\infty, X+z_{\alpha}\cdot\sigma/\sqrt{n})$ e o intervalo de confiança lateral superior como $(X-z_{\alpha}\cdot\sigma/\sqrt{n},+\infty)$. Observe que nestes dois últimos intervalos usamos o valor de z_{α} , em vez de $z_{\alpha/2}$.

Em geral, o valor z_k na distribuição normal padrão é definido como esta valor de z cuja probabilidade de excesso é k, ex. $Pr[Z>z_k] = k$, ou $Pr[Z<z_k] = 1 - k$. A distribuição normal foi descrita no capítulo 17.

Intervalos de confiança para a média de população quando a sua variação for desconhecida

Deixe X e S, respectivamente, será média e o desvio padrão de amostra aleatória de tamanho n, retirada de uma população infinita que segue a distribuição normal com desvio padrão desconhecido σ . O intervalo de confiança bilateral $100\cdot(1-\alpha)$ % [ex. 99%, 95%, 90%, etc.] central para a media de população μ , é ($\overline{X}-t_{n\cdot 1,\,\alpha/2}\cdot S$ /\n n, $\overline{X}+t_{n\cdot 1,\,\alpha/2}\cdot S$ /\n n, onde $t_{n\cdot 1,\,\alpha/2}$ é variação estudante t com $\nu=$ n-1 graus de liberdade e probabilidade $\alpha/2$ de excesso.

Os limites de confiança inferior e superior laterais $100\cdot(1-\alpha)$ % para a média de população μ são, respectivamente,

$$X + t_{n-1} \alpha/2 \cdot S/\sqrt{n}$$
 e $\overline{X} - t_{n-1} \alpha/2 \cdot S/\sqrt{n}$.

Amostras pequenas e grandes

O comportamento da distribuição do estudante t é tal que para n>30, a distribuição é indistinta da distribuição normal padrão. Assim, para amostras maiores do que 30 elementos, quando a variação da população for desconhecida, você pode usar o mesmo intervalo de confiança quando a variação da população for conhecida, mas substituindo σ com S. Amostras onde n>30 são tipicamente mencionadas como amostras grandes, caso contrário elas serão consideradas amostras pequenas.

Intervalo de confiança para um protocolo

Uma variável aleatória discreta X segue a distribuição Bernoulli se X pode tomar apenas dois valores, X=0 (falha) e X=1 (sucesso). Deixe $X\sim$ Bernoulli (p), onde p é a probabilidade de sucesso, então o valor médio ou expectativa de X é E[X]=p e suas variação é Var[X]=p(1-p).

Se um experimento envolvendo X for representado n vezes e resultados bem sucedidos de k são gravados, então uma estimativa de p é dada por p'= k/n, enquanto o erro padrão de p' for $\sigma_{p'} = \sqrt{(p \cdot (1-p)/n)}$. Na prática, a estimativa de amostra para p, ex. p' substitui p na fórmula de erro padrão.

Para amostras de tamanho grande, n>30 e n·p > 5 e n·(1-p)>5, a distribuição de amostra é muito próxima do normal. Portanto, o intervalo de confiança bilateral central $100(1-\alpha)$ % para a média de população p é $(p'+z_{\alpha/2}\cdot\sigma_{p'},\ p'+z_{\alpha/2}\cdot\sigma_{p'})$. Para uma amostra pequena (n<30), o intervalo pode ser estimado como $(p'\cdot t_{n\cdot 1,\alpha/2}\cdot\sigma_{p'},p'+t_{n\cdot 1,\alpha/2}\cdot\sigma_{p'})$.

Distribuições de amostras de diferenças e somas de estatísticas

Deixemos que S_1 e S_2 sejam estatísticas independentes de duas populações baseadas em amostras e tamanhos n_1 e n_2 , respectivamente. Além disso, as médias respectivas e erros padrões das distribuições de amostras destas estatísticas sejam μ_{S1} e μ_{S2} , e σ_{S1} e σ_{S2} , respectivamente. A diferença entre as

estatísticas de duas populações, S_1 - S_2 , tem uma distribuição de amostra com a média $\mu_{S1-S2}=\mu_{S1}$ - μ_{S2} , e o erro padrão $\sigma_{S1-S2}=(\sigma_{S1}^2+\sigma_{S2}^2)^{1/2}$. Além disso, a soma de estatísticas T_1+T_2 tem uma média $\mu_{S1+S2}=\mu_{S1}+\mu_{S2}$, e erro padrão $\sigma_{S1+S2}=(\sigma_{S1}^2+\sigma_{S2}^2)^{1/2}$.

Os estimadores para a média e desvio padrão da diferença e soma das estatísticas S_1 e S_2 são dadas por:

$$\hat{\mu}_{S_1 \pm S_2} = \overline{X}_1 \pm \overline{X}_2, \qquad \hat{\sigma}_{S_1 \pm S_2} = \sqrt{\frac{\sigma_{S1}^2}{n_1} + \frac{\sigma_{S2}^2}{n_2}}$$

Nestas expressões, \overline{X}_1 e \overline{X}_2 estão os valores das estatísticas S_1 e S_2 das amostras de duas populações e $\sigma_{S1}{}^2$ $\sigma_{S2}{}^2$ são as variações das populações das estatísticas S_1 e S_2 de onde as amostras são tiradas.

Intervalos de confiança para somas e diferenças de valores médios

Nas variações da população σ_1^2 e σ_2^2 são conhecidos os intervalos de confiança para a diferença e soma dos valores médios das populações ex. ., $\mu_1\pm\mu_2$, são dados por:

$$\left((\overline{X}_1 \pm X_2) - z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, (\overline{X}_1 \pm X_2) + z_{\alpha/2} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right)$$

Para amostras grandes, ex. $n_1>30$ e $n_2>30$ e variações da população desconhecidas, mas iguais ${\sigma_1}^2={\sigma_2}^2$, os intervalos de confiança para a diferença e soma dos valores médios das populações , ex. , ${\mu_1}{\pm}{\mu_2}$, são dados por:

$$\left((\overline{X}_1 \pm X_2) - z_{\alpha/2} \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}, (\overline{X}_1 \pm X_2) + z_{\alpha/2} \cdot \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}\right).$$

Se um dos exemplo for pequeno, ex. $n_1 < 30$ ou $n_2 < 30$ e as variações da população desconhecidas, mas iguais ${\sigma_1}^2 = {\sigma_2}^2$, podemos obter uma estimativa "pooled" da variação de ${\mu_1}{\pm}{\mu_2}$, as ${s_p}^2 = [(n_1{\text{-}}1){\cdot}{s_1}^2 + (n_2{\text{-}}1){\cdot}{s_2}^2]/(n_1{+}n_2{\text{-}}2)$.

Neste caso, os intervalos de confiança centrados para a soma e diferença dos valores médios das populações, ex. $\mu_1\pm\mu_2$, são dados por:

$$\left((\overline{X}_1 \pm X_2) - t_{\nu,\alpha/2} \cdot s_p^2, (\overline{X}_1 \pm X_2) + t_{\nu,\alpha/2} \cdot s_p^2 \right)$$

onde $v = n_1 + n_2 - 2$ é o número de graus de liberdade na distribuição estudante t.

Nas últimas duas opções especificamos que as variações da população, embora desconhecida, deve ser igual. Este será o caso onde as duas amostras são tiradas da mesma população ou de duas populações que suspeitamos ter a mesma variação da população. Portanto, se tivermos razão em acreditar que duas variações de população desconhecidas são diferentes, podemos usar o intervalo de confiança sequinte

$$\left((\overline{X}_{1} \pm X_{2}) - t_{\nu,\alpha/2} \cdot s_{\overline{X}_{1} \pm \overline{X}_{2}}^{2}, (\overline{X}_{1} \pm X_{2}) + t_{\nu,\alpha/2} \cdot s_{\overline{X}_{1} \pm \overline{X}_{2}}^{2} \right)$$

onde o desvio padrão estimado para a soma ou diferença é

$$s_{\overline{X}_1 \pm \overline{X}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

e n, os graus de liberdade da variação t , são calculados usando o valor de de número inteiro mais próximo de

$$v = \frac{\left[\left(S_1^2 / n_1 \right) + \left(S_2^2 / n_2 \right) \right]^2}{\left[\left(S_1^2 / n_1 \right) / (n_1 - 1) \right] + \left[\left(S_2^2 / n_2 \right) / (n_2 - 1) \right]}$$

Determinar os intervalos de confiança

Estas opções devem ser interpretadas conforme a seguir:

- Z-INT: 1 μ.: Intervalo de confiança da amostra individual para a população. Significa que , μ, com a variação conhecida da população ou para amostras grandes com variação desconhecida da população.
- Z-INT: μ1-μ2.: Intervalo de confiança para a diferença da população. Significa, μ₁- μ₂, com as variações conhecidas da população ou para amostras grandes com variações desconhecidas da população.
- Z-INT: 1 p.: Intervalo de confiança da amostra individual para a proporção, p, para grandes amostras com variação desconhecida de população.
- Z-INT: p1- p2.: Intervalo de confiança para a diferença de duas proporções, p₁-p₂, para amostras grandes com variações desconhecidas de população.
- T-INT: 1 μ.: Intervalo de confiança da amostra individual para a população média, μ, para pequenas amostras com variação desconhecida de população.
- T-INT: μ1-μ2.: Intervalo de confiança para a diferença da população média, μ1- μ2, para as amostras pequenas com variações desconhecidas da população.

Exemplo 1 — Determina o intervalo de confiança centrado para a média de uma população se uma amostra de 60 elementos indica que o valor médio da amostra é $\bar{x}=23.2$ e seu desvio padrão é s = 5.2. Use $\alpha=0.05$. O nívelo de confiança é $C=1-\alpha=0.95$.

Selecione caso 1 do menu conhecido acima pressionando [10]. Insira os valores necessários no formulário de entrada conforme mostrado:

Pressione para obter o visor explicando o significado do intervalo de confiança em termos de números aleatórios gerados por uma calculadora. Para rolar o visor resultante use a tecla de seta para baixo . Pressione quando terminar de usar o visor de ajuda. Isto o levará de volta ao visor mostrado acima.

Para calcular o intervalo de confiança, pressione . O resultado mostrado na calculadora é:

O resultado indica que um intervalo de confiança 95% foi calculado. O valor crítico z mostrado no visor acima corresponde aos valores $\pm z_{\alpha/2}$ na fórmula do intervalo de confiança ($\overline{X}-z_{\alpha/2}\cdot\sigma/\sqrt{n}$, $\overline{X}+z_{\alpha/2}\cdot\sigma/\sqrt{n}$). Os valores μ Mín. e μ Máx. São os limites superiores e inferiores deste intervalo, ex. μ Min = $\overline{X}-z_{\alpha/2}\cdot\sigma/\sqrt{n}$, e μ Max = $\overline{X}+z_{\alpha/2}\cdot\sigma/\sqrt{n}$.

Pressione para ver um visor gráfico da informação do intervalo de confiança:

O gráfico mostra a distribuição normal padrão pdf (função de densidade gráfica), o local dos pontos críticos $\pm z_{\alpha/2}$, o valor médio (23.2) e os limites correspondentes do intervalo (21.88424 e 24.51576). Pressione para voltar para o visor de resultado anterior e/ou pressione para sair do ambiente de intervalo de confiança. Os resultados serão listados no visor da calculadora.

Exemplo 2 – Os dados de duas amostras (amostras 1 e 2) indicam que $\bar{x}_1 = 57.8$ e $\bar{x}_2 = 60.0$. Os tamanhos das amostras são $n_1 = 45$ e $n_2 = 75$. Se for conhecido que os desvios padrões da população são $\sigma_1 = 3.2$ e $\sigma_2 = 4.5$, determine o intervalo de confiança 90% para a diferença das médias de população, ex, μ_1 - μ_2 .

Pressione \nearrow _STAT \wedge _ para acessar a característica de intervalo de confiança na calculadora. Pressione \checkmark _ para selecionar a opção 2. Z-INT: μ 1 – μ 2.. Insira os seguintes valores:

Quando estiver pronto, pressione **IIIIII**. Os resultados, como texto e gráfico, são mostrados abaixo:

A variável $\Delta\mu$ representa $\mu 1 - \mu 2$.

Exemplo 3 – Uma pesquisa de opinião pública indica que na amostra de 150 pessoas 60 são a favor do aumento de impostos de propriedades para financiar alguns projetos públicos. Determine o intervalo de confiança de 99% para a proporção da população que seria a favor de aumentos de impostos.

Pressione para acessar a característica de intervalo de confiança na calculadora. Pressione para selecionar a opção 3. Z-INT: μ 1 – μ 2.. Insira os seguintes valores:

Quando estiver pronto, pressione . Os resultados, como texto e gráfico, são mostrados abaixo:

<u>Exemplo 4</u> – Determina um intervalo de confiança de 90% para a diferença entre as duas proporções se a amostra 1 mostra 20 sucessos de 120 testes e amostra 2 mostra 15 sucessos fora de 100 testes.

Pressione para acessar a característica de intervalo de confiança na calculadora. Pressione para selecionar a opção 4. Z-INT: p1- p2.: Insira os seguintes valores:

Quando estiver pronto, pressione . Os resultados, como texto e gráfico, são mostrados abaixo:

<u>Exemplo 5</u> — Determine um intervalo de confiança 95% para a média da população se uma amostra de 50 elementos de 15.5 e um desvio padrão de 5. O desvio padrão da população é desconhecido.

Pressione para acessar a característica de intervalo de confiança na calculadora. Pressione para selecionar a opção 5. T-INT: μ. Insira os seguintes valores:

Quando estiver pronto, pressione . Os resultados, como texto e gráfico, são mostrados abaixo:

A figura mostra o pdf do estudante t para v = 50 - 1 = 49 graus de liberdade.

Exemplo 6 - Determine o intervalo de confiança 99% para a média de diferença de duas populações com os dados de amostra: $\bar{x}_1 = 157.8$, $\bar{x}_2 = 160.0$, $n_1 = 50$, $n_2 = 55$. Os desvios padrões da população são $s_1 = 13.2$, $s_2 = 24.5$.

Pressione para acessar a característica de intervalo de confiança na calculadora. Pressione para selecionar a opção 6. T-INT: $\mu 1 - \mu 2$: Insira os seguintes valores:

Depois pressione . Os resultados, como texto e gráfico, são mostrados abaixo:

Estes resultados assumem que os valores s_1 e s_2 são os desvios padrões da população. Se estes valores representam realmente os desvios padrões de amostra, é necessário selecionar os mesmos valores de anterior, mas usando a opção pooled selecionada. Os resultados agora são:

Intervalos de confiança para a variação

Para desenvolver uma fórmula para o intervalo de confiança para a variação, primeiro introduza a <u>distribuição de amostra da variação</u>: Considere uma amostra aleatória $X_1, X_2 ..., X_n$ das variáveis distribuídas normalmente e independentes com média μ , variação σ^2 , e média de amostra \bar{X} . A estatística

$$\hat{S}^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_{i} - \overline{X})^{2},$$

é uma estimativa da variação σ^2 .

A quantidade $(n-1)\cdot\frac{\hat{S}^2}{\sigma^2}=\sum_{i=1}^n(X_i-\overline{X})^2$, tem uma distribuição $\chi_{\text{n-1}}^2$ (qui-

quadrado) com graus de liberdade de ν = n-1. O intervalo de confiança bilateral (1- α)·100 % é encontrado de

$$\Pr[\chi^2_{n-1,1}, \alpha/2} < (n-1)\cdot S^2/\sigma^2 < \chi^2_{n-1,\alpha/2}] = 1 - \alpha.$$

O intervalo de confiança para a variação da população σ^2 é então,

[(n-1)·S²/
$$\chi^2_{n-1,\alpha/2}$$
; (n-1)·S²/ $\chi^2_{n-1,1-\alpha/2}$].

onde $\chi^2_{\text{n-1},\alpha/2}$ e $\chi^2_{\text{n-1},1-\alpha/2}$ são os valores que uma variável χ^2 , com graus de liberdade ν = n-1, excede com as probabilidades $\alpha/2$ e 1- $\alpha/2$, respectivamente.

O limite de confiança superior lateral para σ^2 é definido como (n-1)·S²/ $\chi^2_{\text{n-1},1-\alpha}$.

Exemplo 1 – Determina o intervalo de confiança 95% para variação da população σ^2 baseada nos resultados de uma amostra de tamanho n = 25 que indica que a variação da amostra é s² = 12.5.

No capítulo 17 usamos o solucionador numérico para resolver a equação α = UTPC(γ ,x). Neste programa, γ representa os graus de liberdade (n-1) e α

representa a probabilidade do excesso de um certo valor de x (χ^2), ex. $\Pr[\chi^2 > \chi_{\alpha}^2] = \alpha$.

Para o presente exemplo, α = 0.05, γ = 24 e α = 0.025. Resolver a equação apresentada acima resulta em $\chi^2_{n-1,\alpha/2}$ = $\chi^2_{24,0.025}$ = 39.3640770266.

Por outro lado, o valor $\chi^2_{\text{n-1},\alpha/2}=\chi^2_{24,0.975}$ é calculado usando os valores $\gamma=24$ e $\alpha=0.975$. O resultado é $\chi^2_{\text{n-1},1-\alpha/2}=\chi^2_{24,0.975}=12.4011502175$.

Os limites superior e inferior do intervalo serão (Use o modo ALG para estes cálculos) :

$$(n-1) \cdot S^2 / \chi^2_{n-1,\alpha/2} = (25-1) \cdot 12.5 / 39.3640770266 = 7.62116179676$$

$$(n-1) \cdot S^2 / \chi^2_{n-1,1-\alpha/2} = (25-1) \cdot 12.5 / 12.4011502175 = 24.1913044144$$

Assim, o intervalo de confiança 95% para este exemplo é:

$$7.62116179676 < \sigma^2 < 24.1913044144$$
.

Teste de hipótese

Uma hipótese é uma declaração feita sobre uma população (por exemplo, em relação a seu significado). Aceitação da hipótese é baseada em tese estatístico em amostra tirada da população. A ação conseqüente e a tomada de decisão são chamadas de teste de hipótese.

O processo de teste de hipótese consiste de coletar amostra aleatória da população e fazer hipótese estatística sobre a população. Se as observações não suportam o modelo ou teoria postulada, a hipótese é rejeitada. Portanto, se as observações estão de acordo, então a hipótese não é rejeitada, mas não necessariamente aceita. Associada com a decisão está o nível de significado α .

Procedimento para hipótese de teste

O procedimento para teste de hipótese envolve as seguintes seis etapas:

- Declare uma hipótese nula, H₀. Esta é uma hipótese a ser testada. Por exemplo, H₀: μ₁-μ₂ = 0, ex. assumimos hipoteticamente que os valores médio da população 1 e de 2 são os mesmos. Se H₀ for verdadeiro, qualquer diferença observada em médias é atribuída aos erros em amostras aleatórias.
- Declare uma hipótese alternativa, H₁. Para o exemplo sob consideração, poderia ser H₁: μ₁-μ₂ ≠ 0 [Nota: isto é o que queremos realmente testar.]
- 3. Determine ou especifique uma estatística de teste, T. No exemplo sob consideração, T será baseado na diferença de médias observadas, \bar{X}_1 \bar{X}_2 .
- 4. Use a distribuição conhecida (ou assumida) da estatística de teste, T.
- 5. Defina a região de rejeição (a região crítica, R) para a estatística de teste baseada em um nível significativo pré-atribuido α .
- 6. Use os dados observados para determinar se o valor do computado das estatísticas de teste está dentro ou fora da região crítica. Se a estatística de teste estiver dentro da região crítica, então dizemos que a quantidade que estamos testando é significativa no nível percentual de 100α.

Notas:

- 1. Para o exemplo sob consideração a hipótese alternativa H_1 : μ_1 - $\mu_2 \neq 0$ produz o que chamamos de teste de definição duplia. se a hipótese alternativa for H_1 : μ_1 - $\mu_2 > 0$ or H_1 : μ_1 - $\mu_2 < 0$, então temos um teste de definição individual.
- 2. A probabilidade de rejeição da hipótese nula é igal ao nível de significado, ex. $\Pr[T \in R \mid H_0] = \alpha$. A notação $\Pr[A \mid B]$ representa a probabilidade condicional de enveto A dado que este evento B ocorra.

Erros no teste de hipótese

No teste de hipótese usamos os erros de termos de Tipo I e Tipo II para definir os casos nos quais a hipótese verdadeira é rejeitada ou uma hipótese falsa é aceita (não rejeitada), respectivamente. Deixemos T = valor de estatística de teste, R = região de rejeição, A = região de aceitação, assim,

 $R \cap A = \emptyset$, e $R \cup A = \Omega$, onde $\Omega = o$ espaço de parâmetro para T, e $\emptyset = o$ conjunto vazio. As probabilidades de cometer um erro do Tipo I ou II são conforme a seguir:

```
Rejeitar uma hipótese verdadeira,  Pr[Type \ I \ erro] = Pr[T \in R \ | \ H_0] = \alpha  Não rejeitar uma hipótese falsa,  Pr[Type \ II \ error] = Pr[T \in A \ | \ H_1] = \beta
```

Agora consideremos os caso nos quais tomamos as decisões certas:

```
Não rejeitar uma hipótese verdadeira, \Pr[\text{Not}(\text{Type I error})] = \Pr[\text{T} \in \text{A} \mid \text{H}_0] = 1 - \alpha

Rejeitar uma hipótese falsa, \Pr[\text{Not}(\text{Type II error})] = \Pr[\text{T} \in \text{R} \mid \text{H}_1] = 1 - \beta
```

O complemento de β é chamado de potênci do teste de hipótese nula H_0 e a alternativa H_1 . A potência de um teste é usada, por exemplo, para determinar um tamanho de amostra mínimo para restringir os erros.

Selecionar os valores de α e β

Um valor típico de nível de significativo (ou probabilidade de erro de Tipo I) é $\alpha=0.05$, (ex. A rejeição incorreta uma vez em cada 20 vezes na média). Se as conseqüências de um erro de Tipo I for mais séria, escolha os valores menores de α , digamos 0.01 ou até 0.001.

O valor de β , ex. A probabilidade de cometer um erro de Tipo II depende de α , o tamanho da amostra n e sobre o valor verdadeiro do parâmetro testado. Assim, o valor de β é determinado depois que o teste da hipótese for feita. é comum desenhar gráficos mostrando β ou a potência do teste (1- β), como a função do valor verdadeiro do parâmetro testado. Estes gráficos são chamados de curvas de características de operação ou curvas de função de potência, respectivamente.

Inferência referente a uma média

Hipótese bilateral

O problema consiste de testar a hipótese numa H_o : $\mu = \mu_0$, contra a hipótese alternativa, H_1 : $\mu \neq \mu_o$ no nível de confiança (1- α)100%, ou nível de significativa α , usando uma amostra de tamanho n com uma média \bar{x} e um desvio padrão s. Este teste é mencionado como teste bilateral ou de definição dupla. O procedimento para o teste é conforme a seguir:

Primeiro, calculamos a estatística apropriada para o teste (t_o ou z_o) conforme a seguir:

- Se n < 30 e o desvio padrão da população, σ , for conhecido use a estatística z: $z_o = \frac{\overline{x} \mu_o}{\sigma / \sqrt{n}}$
- Se n > 30 e σ for conhecido, use z_o conforme acima. Se σ não for conhecido, substitua s por σ em z_o , ex. use

$$z_o = \frac{\overline{x} - \mu_o}{s / \sqrt{n}}$$

• Se n < 30, e s for desconhecido, use a estatística t $t_o = \frac{\overline{x} - \mu_o}{s/\sqrt{n}}$, com v = n - 1 graus de liberdade.

Depois, calcule o valor de P (uma probabilidade) associada com z_{\circ} ou t_{\circ} , e compare-o a α para decidir se rejeita ou não a hipótese nula. O valor P para o teste bilateral é definido como

P-value =
$$P(|z| > |z_o|)$$
 ou P-value = $P(|t| > |t_o|)$.

O critério para usar o teste de hipótese é:

- Rejeitar H_o se valor $P < \alpha$
- Não rejeitar H_o se valor $P < \alpha$

O valor de P para o teste bilateral pode ser calculado usando as funções de probabilidade na calculadora conforme a seguir:

- Se usar z, Valor $P = 2 \cdot UTPN(0, 1, |z_o|)$
- Se usar t, Valor $P = 2 \cdot UTPT(v, |t_o|)$

Exemplo 1 – Teste a hipótese nula H_o : $\mu=22.5$ ($=\mu_o$), contra a hipótese alternativa, H_1 : $\mu \neq 22.5$, no nível da confiança de 95% ex. $\alpha=0.05$, usando uma amostra de tamanho n = 25 com uma média x=22.0 e um desvio padrão x=25.5. Assumimos que não sabemos o valor do desvio padrão da população, portanto, calculamos a estatística t conforme a seguir:

$$t_o = \frac{\overline{x} - \mu_o}{s / \sqrt{n}} = \frac{22.0 - 22.5}{3.5 / \sqrt{25}} = -0.7142$$

O valor P correspondente para n = 25 - 1 = 24 graus de liberdagem é

P-value =
$$2 \cdot UTPT(24, -0.7142) = 2 \cdot 0.7590 = 1.5169$$
,

dado que 1.5169 > 0.05, ex. P-value > α , nós não podemos rejeitar a hipótese nula H_o : μ = 22.0.

Hipótese lateral

O problema consiste em testar a hipótese em uma H_o : $\mu = \mu_0$, contra a hipótese alternativa, H_1 : $\mu > \mu_o$ ou H_1 : $\mu < \mu_o$ no nível de confiança (1- α)100%, ou nível de significativa α , usando uma amostra de tamanho n com uma média \bar{x} e um desvio padrão s. Este teste é mencionado como teste bilateral ou definição dupla. O procedimento para fazer um teste lateral inicia como um teste de definição dupla calculando a estatística apropriada para o teste (t_o ou t_o) como indicado acima.

Depois, calcule o valor de P (uma probabilidade) associada com z_{\circ} ou t_{\circ} , e compare-o a α para decidir se rejeita ou não a hipótese nula. O valor P para o teste bilateral é definido como

Valor
$$P = P(z > |z_0|)$$
, ou Valor $P = P(t > |t_0|)$.

O critério para usar o teste de hipótese é:

- Rejeitar H_o se valor $P < \alpha$
- Não rejeitar H_o se valor $P < \alpha$

Observe que o critério é exatamente o mesmo do teste bilateral. A diferença principal é a forma que o valor P é calculado. O valor de P para o teste bilateral pode ser calculado usando as funções de probabilidade na calculadora conforme a seguir:

If usar z, Valor P = UTPN(0,1,z_o)
 If usar t, Valor P = UTPT(v,t_o)

Exemplo 2 – Teste a hipótese nula H_o : $\mu=22.0$ ($=\mu_o$) contra a hipótese alternativa, H_1 : $\mu>22.5$ no nível da confiança de 95% ex. $\alpha=0.05$, usando uma amostra de tamanho n = 25 com uma média $\bar{x}=22.0$ e um desvio padrão s=3.5. Novamente, assumimos que não sabemos o valor do desvio padrão da população, então o valor da estatística t é o mesmo do caso do teste bilateral mostrado acima, ex. $t_o=-0.7142$, e o valor P, para v=25-1=24 graus de liberdade

Valor
$$P = UTPT(24, |-0.7142|) = UTPT(24, 0.7124) = 0.2409,$$

dado que 0.2409 > 0.05, ex. Valor P > α , nós não podemos rejeitar a hipótese nula $H_{\rm o}$: μ = 22.0.

Inferências referentes às duas médias

A hipótese a ser testado é H_o : μ_1 - $\mu_2 = \delta$, no nível de confiança (1- α)100%, ou do nível de significado α , usando duas amostras de tamanho, n_1 e n_2 , valores médios \bar{x}_1 e \bar{x}_2 , e desvios padrões s_1 e s_2 . Se os desvios padrões da população correspondente as amostras, σ_1 e σ_2 , são conhecidas ou se $n_1 > 30$ e $n_2 > 30$ (amostras grandes), a estatística de teste a ser usada é

$$z_{o} = \frac{(\bar{x}_{1} - \bar{x}_{2}) - \delta}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

Se $n_1 < 30$ ou $n_2 < 30$ (aproximadamente uma pequena amostra), use a seguinte estatística de teste:

$$t = \frac{(\overline{x}_1 - \overline{x}_2) - \delta}{\sqrt{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}} \sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}}$$

Hipótese bilateral

Se a hipótese alternativa for uma hipótese bilateral, ex., H_1 : μ_1 - $\mu_2 \neq \delta$, O valor P para este teste é calculado como

- Se usar z, Valor $P = 2 \cdot UTPN(0, 1, |z_o|)$
- Se usar t, $Valor P = 2 \cdot UTPT(v, |t_o|)$

com os graus de liberdade para a distribuição t dado por $v=n_1+n_2-2$. Os critérios de teste são

- Rejeitar H_o se valor $P < \alpha$
- Não rejeita H_o se valor $P < \alpha$

<u>Hipótese lateral</u>

Se a hipótese alternativa for uma hipótese bilateral, ex., H_1 : μ_1 - $\mu_2 > 0$ ou H_1 : μ_1 - $\mu_2 < \delta$,, O valor P para este teste é calculado como:

- Se usar z, Valor $P = UTPN(0,1, |z_o|)$
- Se usar t, Valor $P = UTPT(v, |t_o|)$

O critério para usar o teste de hipótese é:

- Rejeitar H_o se valor $P < \alpha$
- Não rejeita H_o se valor P > α

Teste de amostra em pares

Quando tratamos de duas amostras de tamanho n com pontos de dados em pares, em vez de testar a hipótese nula, H_o : μ_1 - $\mu_2 = \delta$, usar os valore médios e desvios padrões de duas amostras, é necessário tratar o problema como uma amostra individual de diferença de valores em pares. Em outras palavras,

gere uma nova variável aleatória $X=X_1\cdot X_2$, e teste H_\circ : $\mu=\delta$, onde μ representa a média da população para X. Portanto, é necessário obter x e s para a amostra de valores de x. O teste deve então preceder como um teste de amostra usando os métodos descritos anteriormente.

Inferência referente a uma proporção

Suponha que desejamos testar uma hipótese nula, H_0 : $p = p_0$, onde p representa a probabilidade de obter um resultado bem sucedido em uma dada repetição de um teste de Bernoulli. Para testar a hipótese, fizemos n repetições do experimento e descobrimos que os resultados bem sucedidos k foram gravados. Assim, uma estimativa de p é dada por p' = k/n.

A variação para a amostra será avaliada como $s_p^2 = p'(1-p')/n = k \cdot (n-k)/n^3$.

Assuma que a marca Z, Z = $(p-p_0)/s_p$, segue a distribuição normal padrão, ex, Z ~ N(0,1). O valor particular da estatística para teste é $z_0 = (p'-p_0)/s_p$.

Em vez de usar o valor P como o critério para aceitar ou a hipótese, usaremos a comparação entre o valor crítico de z0 e o valor de z correspondente ao α ou $\alpha/2$.

Teste de definição dupla

Se estiver usando um este de definição dupla encontraremos o valor de z $_{\alpha/2}$, de

$$Pr[Z > z_{\alpha/2}] = 1 \cdot \Phi(z_{\alpha/2}) = \alpha/2$$
, ou $\Phi(z_{\alpha/2}) = 1 \cdot \alpha/2$,

onde $\Phi(z)$ é a função de distribuição cumulativa (CDF) da distribuição normal padrão (consulte o capítulo 17).

Rejeita a hipótese nula, H_0 , se $z_0 > z_{\alpha/2}$, ou se $z_0 < -z_{\alpha/2}$.

Em outras palavra, se a região de rejeição é R = $\{|z_0| > z_{\alpha/2}\}$, enquanto a região de aceitação é A = $\{|z_0| < z_{\alpha/2}\}$.

Teste de definição individual

Se estiver usando um teste de definição individual encontraremos o valor de S, de

$$Pr[Z > z_{\alpha}] = 1 - \Phi(z_{\alpha}) = \alpha$$
, ou $\Phi(z_{\alpha}) = 1 - \alpha$,

Rejeita a hipótese nula, H_0 , se $z_0 > z_\alpha$, e H_1 : $p > p_0$, ou se $z_0 < -z_\alpha$, e H_1 : $p < p_0$.

Testa a diferença entre as duas proporções

Suponha que desejamos testar uma hipótese nula, H_0 : p_1 - p_2 = p_0 , onde p representa a probabilidade de obter um resultado de sucesso em uma dada repetição de um teste de Bernoulli para duas populações 1 e 2. Para testa a hipótese, fazemos n_1 repetições da população 1 e descobrimos que k_1 os resultados bem sucedidos são gravados. Além disso, encontramos resultados bem sucedidos de k_2 de testes n_2 na amostra 2. Assim, as estimativas de p_1 e p_2 são dadas respectivamente por $p_1' = k_1/n_1$, e $p_2' = k_2/n_2$.

As variações para as amostras serão estimadas, respectivamente, como

$$s_1^2 = p_1'(1-p_1')/n_1 = k_1 \cdot (n_1-k_1)/n_1^3$$
, $e_1 s_2^2 = p_2'(1-p_2')/n_2 = k_2 \cdot (n_2-k_2)/n_2^3$.

E a variação da diferença de proporções é estimada em: ${\rm s_p}^2={\rm s_1}^2+{\rm s_2}^2$.

Assuma que a marca Z, Z = $(p_1-p_2-p_0)/s_p$, segue a distribuição normal padrão, ex, Z ~ N(0,1). O valor particular da estatística para teste é $z_0 = (p_1'-p_2'-p_0)/s_p$.

Teste de definição dupla

Se estiver usando um teste de definição dupla encontraremos o valor de z $_{\alpha/2}$, de

$$Pr[Z > z_{\alpha/2}] = 1 - \Phi(z_{\alpha/2}) = \alpha/2$$
, ou $\Phi(z_{\alpha/2}) = 1 - \alpha/2$,

onde $\Phi(z)$ é a função de distribuição cumulativa (CDF) da distribuição normal padrão.

Rejeite a hipótese nula, H_0 , se $z_0 > z_{\alpha/2}$, ou se $z_0 < -z_{\alpha/2}$.

Em outras palavras a região de rejeição é R = { $|z_0| > z_{\alpha/2}$ } enquanto a região de aceitação é A = { $|z_0| < z_{\alpha/2}$ }.

Teste de definição individual

Se estiver usando um teste de definição individual encontraremos o valor de $\mathbf{z}_{\text{a}}\!,$ de

$$Pr[Z > z_{\alpha}] = 1 \cdot \Phi(z_{\alpha}) = \alpha$$
, ou $\Phi(z_{\alpha}) = 1 \cdot \alpha$,

Rejeita a hipótese nula, H_0 , se $z_0>z_\alpha$, e H_1 : $p_1-p_2>p_0$, ou se $z_0<-z_\alpha$, e H_1 : $p_1-p_2< p_0$.

Teste da hipótese usando as características pré-programadas

A calculadora fornece os procedimentos de teste de hipótese na aplicação 5. Hypoth. tests. pode ser acessada usando 🔁 STAT (A) INTIMA.

Similar ao cálculo de intervalos de confiança, discutido anteriormente, este programa oferece as seguintes 6 opções.

Estas opções são interpretadas como nas aplicações de intervalo de confiança.

- Teste-Z: 1 μ.: Teste de hipótese individual para a população significa, μ, com a variação conhecida da população ou para amostras grandes com variação desconhecida da população.
- Teste-Z: μ1-μ2.: Intervalo de confiança para a diferença da população significa, μ1- μ2, com as variações conhecidas da população ou para amostras grandes com variações desconhecidas da população.

- 3. Teste-Z: 1 p.: Teste de hipótese individual para a proporção, p, para grandes amostras com variação desconhecida de população.
- Teste-Z: p1- p2.: Tese de hipótese para a diferença de duas proporções, p₁-p₂, para amostras grandes com variações desconhecidas de população.
- Teste-T: 1 μ.: Intervalo de confiança da amostra individual para a população média, μ, para pequenas amostras com variação desconhecida de população.
- 6. Teste-T: $\mu 1 \mu 2$.: Intervalo de confiança para a diferença da população média, μ_1 μ_2 , para as amostras pequenas com variações desconhecidas da população.

Tente os seguintes exercícios:

Exemplo 1 – Para μ_0 = 150, σ = 10, \bar{x} = 158, n = 50, para α = 0.05, teste a hipóteses H_0 : $\mu = \mu_0$, contra a hipótese alternativa, H_1 : $\mu \neq \mu_0$.

Pressione para acessar a característica de intervalos de confiança na calculadora. Pressione para selecionar a opção 1. Teste-Z: 1 µ.:

Você então será solicitado a selecionar uma hipótese alternativa: Selecione μ ≠ 150. Depois, pressione . O resultado é:

Então, rejeitamos H_0 : $\mu=150$, contra H_1 : $\mu\neq150$. O teste do valor z é $z_0=5.656854$. O valor P é 1.54×10^8 . Os valores críticos de $\pm z_{\alpha/2}=\pm1.959964$, correspondente a faixa crítica \bar{x} de {147.2 152.8}.

Esta informação pode ser observada graficamente pressionando a tecla

<u>Exemplo 2</u> – Para $\mu_0=150$, $\bar{x}=158$, s=10, n=50, para $\alpha=0.05$, teste a hipóteses H_0 : $\mu=\mu_0$, contra a hipótese alternativa, H_1 : $\mu>\mu_0$. O desvio padrão da população, σ , não é conhecido.

Pressione para acessar a característica de intervalos de confiança na calculadora. Pressione para selecionar a opção 5. Teste-Z: 1 µ.:

Rejetiamos a hipótese nula, H_0 : $\mu=150$ contra a hipótese alternativa, H_1 : $\mu>150$. O teste t valor é $t_0=5.656854$ com um valor P=0.00000393525. O valor crítico de t é $t_{\alpha}=1.676551$, correspondente ao crítico x=152.371.

Pressione Pressione para ver os resultados graficamente conforme a seguir:

Exemplo 3 – Os dados de duas amostras mostram que $x_1 = 158$, $x_1 = 160$, $s_1 = 10$, $s_2 = 4.5$, $s_1 = 10$, $s_2 = 4.5$, $s_2 = 4.5$, $s_3 = 10$, $s_4 = 10$, $s_5 = 10$, $s_5 = 10$, $s_6 = 10$, $s_7 = 10$

Pressione Pressione para acessar a característica de intervalo de confiança na calculadora. Pressione para selecionar a opção 5. Teste-Z: μ1-μ2.: Insira os seguintes dados e pressione

Assim, aceitamos (mais acuradamente, não a rejeitamos) a hipótese: H_0 : $\mu_1 - \mu_2 = 0$, or H_0 : $\mu_1 = \mu_2$ contra a hipótese alternativa, H_1 : $\mu_1 - \mu_2 < 0$, ou H_1 :

 $\mu_1=\mu_2$. O valor t do teste é $t_0=-1.341776$, com o valor P=0.09130961 e o t crítico é $-t_\alpha=-1.659782$. Os resultados gráficos são:

Estes três exemplos devem ser suficientes para compreender a operação da característica pré-programada de tese da hipótese na calculadora.

Inferência referente a uma variação

A hipótese nula a ser testado é H_o : $\sigma^2 = \sigma_o^2$ no nível de confiança (1- α)100% ou o nível de confiança α , usando uma amostra de tamanho n e variação s^2 . As estatísticas do teste devem ser usadas como estatística de teste quiquadrado definida como

$$\chi_o^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

Dependendo das hipóteses alternativas escolhidas, o valor P é calculado conforme a seguir:

• H_1 : $\sigma^2 < \sigma_o^2$, P-value = $P(\chi^2 < \chi_o^2) = 1$ -UTPC(v, χ_o^2) • H_1 : $\sigma^2 > \sigma_o^2$, P-value = $P(\chi^2 > \chi_o^2) = UTPC(v, \chi_o^2)$ • H_1 : $\sigma^2 \neq \sigma_o^2$, Valor $P = 2 \cdot min[P(\chi^2 < \chi_o^2), P(\chi^2 > \chi_o^2)] = 2 \cdot min[1-UTPC(v, \chi_o^2), UTPC(v, \chi_o^2)]$

onde a função min[x,y] produz o valor mínimo de x ou y (de forma similar, $\max[x,y]$ produz o valor máximo de x ou y). UTPC(v,x) representa as probabilidades de definição superior para v = n - 1 graus de liberdade.

O critério de teste são os mesmos como nos testes de hipótese de médias, a saber,

- Rejeita H_0 se valor $P < \alpha$
- Não rejeita H_o se valor $P > \alpha$

Observe que este procedimento é válido apenas se a população de onde a amostra foi tirada é uma população normal.

Exemplo 1 – Considere o caso onde σ_o^2 = 25, α =0.05, n = 25, e s² = 20, e a mostra foi tirada de uma população normal. Para testar a hipótese, H_o : $\sigma^2 = \sigma_o^2$, contra H_1 : $\sigma^2 < \sigma_o^2$, calculamos primeiro

$$\chi_o^2 = \frac{(n-1)s^2}{\sigma_o^2} = \frac{(25-1)\cdot 20}{25} = 189.2$$

Com v = n - 1 = 25 - 1 = 24 graus de liberdade, calculamos o valor P como,

Valor P =
$$P(\chi^2 < 19.2) = 1$$
-UTPC(24,19.2) = 0.2587...

Dado que 0,2587 > 0.05, ex. valor P > α , nós não podemos rejeitar a hipótese nula H_{\circ} : $\sigma^2 = 25 (= \sigma_{\circ}^2)$.

Inferências referentes as duas variações

A hipótese nula a ser testada é H_o : $\sigma^2 = \sigma_o^2$ no nível de confiança (1- α)100% ou o nível significativo α , usando duas amostras de tamanhos n_1 e n_2 , e variação s_1^2 e s_2^2 . As estatísticas de teste devem ser usadas como estatística F definidas como

$$F_o = \frac{s_N^2}{s_D^2}$$

onde s_N^2 e s_D^2 representa o numerador e o denominador da estatística, respectivamente. A seleção do numerador e denominador depende da hipótese que está sendo testada, conforme mostrado abaixo. A distribuição correspondente F tem um grau de liberdade, $v_N = n_{N^-}1$ e $v_D = n_{D^-}1$, onde n_N e n_D , são os tamanhos de amostras correspondentes as variações s_N^2 e s_D^2 respectivamente.

A seguinte tabela mostra como selecionar o numerador e denominador para F_{\circ} dependendo da hipótese alternativa escolhida:

Hipótesee	Teste	Graus

alternativas liberdade estatístico

de

$$\begin{array}{lll} \hline H_1: \ \sigma_1^{\ 2} < \sigma_2^{\ 2} \ \ (lateral) & F_o = s_2^{\ 2}/s_1^{\ 2} & \nu_N = n_2\text{--}1, \ \nu_D = n_1\text{--}1 \\ H_1: \ \sigma_1^{\ 2} > \sigma_2^{\ 2} \ \ (lateral) & F_o = s_1^{\ 2}/s_2^{\ 2} & \nu_N = n_1\text{--}1, \ \nu_D = n_2\text{--}1 \\ H_1: \ \sigma_1^{\ 2} \neq \sigma_2^{\ 2} \ \ (bilateral) & F_o = s_M^{\ 2}/s_m^{\ 2} & \nu_N = n_M\text{--}1, \nu_D = n_m\text{--}1 \\ s_M^{\ 2} = max(s_1^{\ 2}, s_2^{\ 2}), \ s_m^{\ 2} = min(s_1^{\ 2}, s_2^{\ 2}) \end{array}$$

(*) n_M é o valor correspondente de n para s_M , e n_m é o valor de n correspondente de s_m .

O valor P é calculador em todos os caso como: Valor P = $P(F>F_o)$ = $UTPF(v_N, v_D, F_o)$

Os critérios de teste são:

- Rejeitar H_o se valor $P < \alpha$
- Não rejeitar H_0 se valor $P > \alpha$

<u>Exemplo 1</u> – Considere duas amostras tiradas das populações normais tais como $n_1=21$, $n_2=31$, $s_1{}^2=0.36$ e $s_2{}^2=0.25$. Para testar a hipótese nula H_o : $\sigma_1{}^2=\sigma_2{}^2$, no nível significativo $\alpha=0.05$, contra a hipótese alternativa H_1 : $\sigma_1{}^2\neq\sigma_2{}^2$. Para a hipótese bilateral, é necessário identificar s_M e s_m , conforme a seguir:

$$s_M^2 = max(s_1^2, s_2^2) = max(0.36, 0.25) = 0.36 = s_1^2$$

 $s_m^2 = min(s_1^2, s_2^2) = max(0.36, 0.25) = 0.25 = s_2^2$

Além disso,

$$n_{M} = n_{1} = 21,$$

$$n_{m} = n_{2} = 31,$$

$$v_{N} = n_{M} \cdot 1 = 21 \cdot 1 = 20,$$

$$v_{D} = n_{m} \cdot 1 = 31 \cdot 1 = 30.$$

Portanto, as estatísticas de teste F é $F_o = s_M^2/s_m^2 = 0.36/0.25 = 1.44$

O valor P é P-value = $P(F>F_o)$ = P(F>1.44) = $UTPF(\nu_N, \nu_D, F_o)$ = UTPF(20,30,1.44) = 0.1788...

Dado que 0.1788... > 0.05, ex. valor $P > \alpha$, nós não podemos rejeitar a hipótese nula que H_o : $\sigma_1^2 = \sigma_2^2$.

Notas adicionais sobre regressão linear

Nesta seção elaboramos as idéias de regressão linear apresentadas anteriormente no capítulo e apresentamos um procedimento para o teste de hipótese de parâmetros de regressão.

O método da menor quadrada

Deixe x = independente, variável não aleatória e Y = dependente, variável aleatória. A <u>curva de regressão</u> de Y em x é definida como a relação entre x e a média de distribuição correspondente de Y's.

Assuma que a curva de regressão de Y em $\,$ x é linear, ex. a distribuição média de Y's é dada por A+Bx. Y difere da média $(A+B\cdot x)$ pelo valor $\,$ ϵ , assim $Y=A+B\cdot x+\epsilon$, onde ϵ é a variável aleatória.

Para verificar visualmente se os dados seguem uma tendência linear desenhe uma diagrama de dispersão ou plotagem de dispersão.

Suponha que temos observações n em pares (x_i, y_i) ; prevemos que y através de $\hat{y} = a + b \cdot x$, onde a e b são constantes.

Defina o <u>erro de previsão</u> como, $e_i = y_i - ^y_i = y_i - (a + b \cdot x_i)$.

O método de menor quadrada requer a escolha de a, b para que possamos minimizar a soma de erros quadrados (SSE)

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} [y_i - (a + bx_i)]^2$$

as condições

$$\frac{\partial}{\partial a}(SSE) = 0$$
 $\frac{\partial}{\partial b}(SSE) = 0$

Obtemos as tão chamadas equações:

$$\sum_{i=1}^{n} y_i = a \cdot n + b \cdot \sum_{i=1}^{n} x_i$$

$$\sum_{i=1}^{n} x_{i} \cdot y_{i} = a \cdot \sum_{i=1}^{n} x_{i} + b \cdot \sum_{i=1}^{n} x_{i}^{2}$$

Este é o sistema de equações lineares com a e b como as incógnitas que podem ser resolvidas usando as características de equação linear da calculadora. Não existe, entretanto nenhuma necessidade de se preocupar com estes cálculos porque você pode usar a opção **3. Fit Data ...** no menu star conforme apresentado anteriormente.

Notas:

- a,b são os estimadores sem erros sistemáticos de A, B.
- O teorema de Gauss-Markov da probabilidade indica que entre todos os estimadores sem erros sistemáticos para A e B os estimadores de menor quadrada (a,b) são os mais eficientes.

Equações adicionais para regressão linear

As estatísticas de resumo tais como Σx , Σx^2 , etc. podem ser usadas para definir as quantidades seguintes:

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = (n-1) \cdot s_x^2 = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)$$

$$S_y = \sum_{i=1}^{n} (y_i - \overline{y})^2 = (n-1) \cdot s_y^2 = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y_i \right)^2$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})^2 = (n-1) \cdot s_{xy} = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right)$$

De onde segue que os desvios padrões de x e y e a covariação de x,y são dadas, respectivamente por

$$s_x = \sqrt{\frac{S_{xx}}{n-1}}$$
, $s_y = \sqrt{\frac{S_{yy}}{n-1}}$ e $s_{xy} = \frac{S_{yx}}{n-1}$

Além disso, o coeficiente de correlação de amostra é $r_{xy} = \frac{S_{xy}}{\sqrt{S_{xx} \cdot S_{yy}}}$.

em termos de \bar{x} , \bar{y} , S_{xx} , S_{yy} , e S_{xy} , a solução para as equações normais:

$$a = \overline{y} - b\overline{x}$$
, $b = \frac{S_{xy}}{S_{xx}} = \frac{s_{xy}}{s_x^2}$

Previsão de erros

A curva de regressão de Y em x é definida como Y = $A + B \cdot x + \epsilon$. Se timvermos configurado os pontos de dados n (x_i , y_i), então podemos escrever $Y_i = A + B \cdot x_i + \epsilon_l$, (i = 1, 2, ..., n), onde $Y_i =$ independente, variáveis aleatórias distribuidas normalmente com média ($A + B \cdot x_i$) e a variação comum σ^2 ; $\epsilon_i =$ variáveis aleatórias distibuidas normalmente e independentes com zero médio e variação comum σ^2 .

Deixe que y_i = valor real de dado, \hat{y}_i = a + b· x_i = previsão menor quadrada de dados. Então, o erro de previsão é: $e_i = y_i - \hat{y}_i = y_i - (a + b \cdot x_i)$.

Uma estimativa de σ^2 é o tão chamado erro padrão de estimativa,

$$s_e^2 = \frac{1}{n-2} \sum_{i=1}^n [y_i - (a+bx_i)]^2 = \frac{S_{yy} - (S_{xy})^2 / S_{xx}}{n-2} = \frac{n-1}{n-2} \cdot s_y^2 \cdot (1-r_{xy}^2)$$

Intervalos de confiança e teste de hipótese na regressa linear

Aqui são apresentados alguns conceitos relacionados com a inferência estatística para regressão linear.

Os limites de confiança para coeficientes de regressão:

Para a inclinação (B): $b - (t_{n\cdot 2,\alpha/2}) \cdot s_e / \sqrt{S_{xx}} < B < b + (t_{n\cdot 2,\alpha/2}) \cdot s_e / \sqrt{S_{xx}}$ Para a interceptação (A): $a - (t_{n\cdot 2,\alpha/2}) \cdot s_e \cdot [(1/n) + \overline{x}^2/S_{xx}]^{1/2} < A < a + (t_{n\cdot 2,\alpha/2}) \cdot s_e \cdot [(1/n) + \overline{x}^2/S_{xx}]^{1/2}$,

a – (t $_{n\cdot 2,\alpha/2}$)·s $_{e}$ ·[(1/n)+ x^2/S_{xx}]^{1/2} < A < a + (t $_{n\cdot 2,\alpha/2}$)·s $_{e}$ ·[(1/n)+ x^2/S_{xx}]^{1/2}, onde t segue a distribuição estudante t com v = n - 2, graus de liberdade e n representa o número de pontos na amostra.

• Teste de hipótese na inclinação, B:

Hipótese nula, H_0 : $B=B_0$, testado contra a hipótese alternativa, H_1 : $B\neq B_0$. A estatística de teste é $t_0=(b-B_0)/(s_e/\sqrt{S_{xx}})$, onde t segue a distribuição t estudante com v=n-2, graus de liberdade e n representa o número de pontos na amostra. O teste é feito a partir do teste de hipótese de valor médio, ex. dado o nível de significado, α , determina o valor crítico de t, $t_{\alpha/2}$, então, rejeita H_0 se $t_0 > t_{\alpha/2}$ ou se $t_0 < -t_{\alpha/2}$.

Se testar o valor B_0 = 0, e for sugerido que você não rejeita a hipótese nula, H_0 : B=0, então, a validade de uma regressão linear está em dúvida. Em outras palavras, os dados de amostra não suportam uma asserssão que $B \neq 0$. Portanto, é um teste de significado do modelo de regressão.

Teste de hipótese na intercepção, A:

Hipótese nula, H_0 : $A = A_0$, testada contra a hipótese alternativa, H_1 : $A \ne A_0$. A estatística de teste é $t_0 = (a - A_0) / [(1/n) + \bar{x}^2 / S_{xx}]^{1/2}$, onde t segue a distribuição t estudante com v = n - 2, graus de liberdade e n representa o número de pontos na amostra. O teste é feito a partir do teste de hipótese de valor médio, ex. dado o nível de significado, α , determina o valor crítico de t, $t_{\alpha/2}$, então, rejeita t, H_0 se $t_0 > t_{\alpha/2}$ ou se $t_0 < -t_{\alpha/2}$.

- Intervalo de confiança para o valor médio de Y em x = x_0 , ex., $\alpha + \beta x_0$: $\alpha + b \cdot x (t_{n-2,\alpha/2}) \cdot s_e \cdot [(1/n) + (x_0 \bar{x})^2 / S_{xx}]^{1/2} < \alpha + \beta x_0 < \alpha + b \cdot x + (t_{n-2,\alpha/2}) \cdot s_e \cdot [(1/n) + (x_0 \bar{x})^2 / S_{xx}]^{1/2}$.
- Limites de previsão: Intervalo de confiança para o valor previsto $Y_0 = Y(x_0)$: $a+b\cdot x-(t_{n-2,\alpha/2})\cdot s_e\cdot [1+(1/n)+(x_0-\bar{x})^2/S_{xx}]^{1/2} < Y_0 < a+b\cdot x+(t_{n-2,\alpha/2})\cdot s_e\cdot [1+(1/n)+(x_0-\bar{x})^2/S_{xx}]^{1/2}.$

Procedimentos para estatísticas de inferência para regressão linear usando a calculadora

- 1) Insira (x,y) como colunas de dados na matriz estatística ΣDAT .
- 2) Produz um diagrama de dispersão para as colunas apropriadas de ΣDAT e usa H- e V-VIEWS para verifivar a tendência linear.
- 3) Use \rightarrow s_{xy} (covariação) e r_{xy} (correlação).
- 4) Use \longrightarrow <u>STAT</u> \bigcirc **MISS.**, para obter \overline{x} , \overline{y} , s_x , s_y .
- 5) Calcule

$$S_{xx} = (n-1) \cdot s_x^2, \quad s_e^2 = \frac{n-1}{n-2} \cdot s_y^2 \cdot (1 - r_{xy}^2)$$

- 6) Para ambos intervalos de confiança ou testes de definção dupla, obtenha $t_{\alpha/2}$, com (1- α)100% de confiança da distribuição t com ν = n -2.
- 7) Para os testes de definição dupla ou individual, encontre o valor de t usando a equação apropriada para ou A ou B. Rejeite a hipótese nula se o valor de $\mathbb{P} < \alpha$.
- 8) Para intervalos de confiança use as fórmulas apropriadas conforme acima.

<u>Exemplo 1</u> - Para os seguintes dados (x,y), determine o intervalo de confiança de 95% para a inclinação B e a interceção A

x	2.0	2.5	3.0	3.5	4.0
у	5.5	7.2	9.4	10.0	12.2

Insira os dados (x,y) nas colunas 1 e 2 de ΣDAT, respectivamente. Um diagrama de dispersão de dados mostra uma boa tendência linear:

Use a opção Fit Data.. no menu 🕝 STAT para obter:

3: '-.86 + 3.24*X'
2: Correlation: 0.989720229749

1: Covariance: 2.025

Estes resultados são interprestados como um = -0.86, b = 3.24, r_{xy} = 0.989720229749 e s_{xy} = 2.025. O coeficiente de correlação é bem próximo de 1.0 para confirmar a tendência linear observa no gráfico.

Da opção Single-var... do menu \rightarrow STAT encontramos: $\bar{x}=3$, $s_x=0.790569415042$, $\bar{y}=8.86$, $s_y=2.58804945857$.

A seguir, com n = 5, calcule

$$S_{xx} = (n-1) \cdot s_x^2 = (5-1) \cdot 0.790569415042^2 = 2.5$$

$$s_e^2 = \frac{n-1}{n-2} \cdot s_y^2 \cdot (1 - r_{xy}^2) = \frac{5-1}{5-2} \cdot 2.5880...^2 \cdot (1 - 0.9897...^2) = 0.1826...$$

Os intervalos de confiança para a inclinação (B) e a interseção (A):

- Primeiro, obtemos t $_{n\cdot 2,\alpha/2}=t_{3\cdot 0.025}=3.18244630528$ (consulte o capítulo 17 para que um programa resolva $t_{v,o}$):
- A seguir, calculamos os termos

$$(t_{n-2,\alpha/2}) \cdot s_e / \sqrt{S_{xx}} = 3.182... \cdot (0.1826.../2.5)^{1/2} = 0.8602...$$

$$(t_{n-2,\alpha/2}) \cdot s_e \cdot [(1/n) + \overline{x}^2/S_{xx}]^{1/2} = 3.1824... \cdot \sqrt{0.1826...} [(1/5) + 3^2/2.5]^{1/2} = 2.65$$

 Finalmente, para a inclinação B, o intervalo de coincidência de 95% é (-0.86-0.860242, -0.86+0.860242) = (-1.72, -0.00024217)

Para a interseção A, o intervalo de confiança de 95% é (3.24-2.6514, 3.24+2.6514) = (0.58855,5.8914).

Exemplo 2 – suponha que o dado y usado no exemplo 1 representa o alongamento (em centenas de polegada) de um fio de metal quando sujeito a força x (em dezenas de libras). O fenômeno físico é tal que esperamos que a interseção A seja zero. Para verificar se este deve ser o caso, testemos a hipótese nula, H_0 : A=0, contra a hipótese alternativa, H_1 : $A\neq 0$, no nível de significado $\alpha=0.05$.

A estatística de teste é $t_0=(\alpha\text{-}0)/[(1/n)+\overline{x}^2/S_{xx}]^{1/2}=(\text{-}0.86)/\ [(1/5)+3^2/2.5]^{\frac{1}{2}}=\text{-}0.44117.$ O valor crítico de t, para v=n-2=3 e $\alpha/2=0.025$, pode ser calculador usando o solucionador numérico para a equação $\alpha=UTPT(\gamma,t)$ desenvolvido no capítulo 17. Neste programa, γ representa os graus de liberdade (n-2), e α representa a probabilidade de exceder um certo valor de t, ex. $Pr[\ t>t_{\alpha}]=1-\alpha$. Para o presente exemplo, o valor do nível de significado é $\alpha=0.05$, g=3 e $t_{n\cdot2,\alpha/2}=t_{3,0.025}$. Além disso, Also, para $\gamma=3$ e $\alpha=0.025$, $t_{n\cdot2,\alpha/2}=t_{3,0.025}=3.18244630528$. Dado que $t_0>-t_{n\cdot2,\alpha/2}$, nós não podemos rejeitar a hipótese nula, H_0 : A=0, contra a hipótese alternativa, H_1 : $A\neq 0$, no nível de significado $\alpha=0.05$.

Este resultado sugere que tomar A = 0 para sua regressão linear deve ser aceitável. Depois de tudo, o valor encontrado para a foi -0.86, que é relativamente próximo de zero.

Exemplo 3 – Teste de significado para a regressão linear. Teste de hipótese nula para a inclinação H_0 : B=0, contra a hipótese alternativa, H_1 : $B\neq 0$, no nível de significado $\alpha=0.05$, para o ajuste linear de exemplo 1.

A estatística de teste é t_0 = $(b \cdot B_0)/(s_e/\sqrt{S_{xx}})$ = $(3.24 \cdot 0)/(\sqrt{0.18266666667/2.5})$ = 18.95. O valor crítico de t, para v = n - 2 = 3 e $\alpha/2 = 0.025$, foi obtido no exemplo 2, como $t_{n\cdot 2,\alpha/2} = t_{3,0.025} = 3.18244630528$. Dado que, $t_0 > t_{\alpha/2}$, devemos rejeitar a hipótese nula H_1 : $B \neq 0$, no nível de significado $\alpha = 0.05$, para o ajuste linear de Exemplo 1.

Ajuste linear múltiplo

Considere um conjunto de dados do formulário

X 1	X ₂	X_3	•••	X _n	у
x_{11}	x_{21}	x_{31}		X_{n1}	y 1
x_{12}	x ₂₂	x_{32}	•••	x_{n2}	\mathbf{y}_2
x_{13}	x_{32}	x_{33}	•••	x_{n3}	y 3
•		•		•	
•			•	•	•
$X_{1,m-1}$	X _{2,m-1}	X _{3,m-1}	•••	X _{n,m-1}	y_{m-1}
$X_{1,m}$	X _{2,m}	X _{3,m}	•••	X _{n,m}	\mathbf{y}_{m}

Suponha que busquemos por um ajuste de dados do formulário $y = b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + b_3 \cdot x_3 + \ldots + b_n \cdot x_n$. Você pode obter uma aproximação menor quadrada para os valores dos coeficientes $\mathbf{b} = [b_0 \ b_1 \ b_2 \ b_3 \ldots b_n]$, colocando junto a matriz \mathbf{X} :

$$\begin{bmatrix} 1 & x_{11} & x_{21} & x_{31} & \dots & x_{n1} \\ 1 & x_{12} & x_{22} & x_{32} & \dots & x_{n2} \\ 1 & x_{13} & x_{32} & x_{33} & \dots & x_{n3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1,m} & x_{2,m} & x_{3,m} & \dots & x_{n,m} \end{bmatrix}$$

Então, o vetor de coeficientes é obtido de $\mathbf{b} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$, onde \mathbf{y} é o vetor $\mathbf{y} = [y_1 y_2 \dots y_m]^T$.

Por exemplo, use os seguintes dados para obter o ajuste linear múltiplo

$$y = b_0 + b_1 \cdot x_1 + b_2 \cdot x_2 + b_3 \cdot x_3$$

\mathbf{x}_1	x_2	x_3	У
1.20	3.10	2.00	5.70
2.50	3.10	2.50	8.20
3.50	4.50	2.50	5.00
4.00	4.50	3.00	8.20
6.00	5.00	3.50	9.50

Com a calculadora no modo RPN você pode fazer da seguinte forma:

Primeiro, dentro de seu diretório HOME, crie um subdiretório chamado MPFIT (Ajuste de dados de polinômios lineares) e insira o subdiretório MPFIT. Dentro do subdiretório, digite este programa:

e armazene-e na variável chamada MTREG (Regressão múltipla).

A seguir insira as matrizes **X** e **b** na pilha:

$$[[1,1.2,3.1,2][1,2.5,3.1,2.5][1,3.5,4.5,2.5][1,4,4.5,3][1,6,5,3.5]]$$

ENTER ENTER (mantenha uma cópia extra)

Press MR LILLE. O resultado é:

$$[-2.1649...,-0.7144...,-1.7850...,7.0941...],$$
 ex.,
$$y=-2.1649-0.7144\cdot x_1-1.7850\times 10^{-2}\cdot x_2+7.0941\cdot x_3\;.$$

Você deve ter na sua pilha da calculadora o valor da matriz X e o vetor b, os valores ajustados de y são obtidos de y = **X·b**, assiim apenas pressione x para obter: [5.63.., 8.25.., 5.03.., 8.23.., 9.45..].

Compare estes valores ajustados com os dados originais conforme mostrados na tabela abaixo:

\mathbf{x}_1	x_2	x_3	У	y-fitted
1.20	3.10	2.00	5.70	5.63
2.50	3.10	2.50	8.20	8.25

3.50	4.50	2.50	5.00	5.03	
4.00	4.50	3.00	8.20	8.23	
6.00	5.00	3.50	9.50	9.45	

Ajuste de polinômio

Considere que dados x-y configurados $\{(x_1,y_1), (x_2,y_2), ..., (x_n,y_n)\}.$, suponha que desejamos ajustar um polinômio ou ordem p para este conjunto de dados. Suponha que estamos procurando por um ajuste do formulário $y = b_0 + b_1 \cdot x + b_2 \cdot x^2 + b_3 \cdot x^3 + ... + b_p \cdot x^p$. Você pode obter uma aproximação da menor quadrada para os valores dos coeficientes $\mathbf{b} = [b_0 \ b_1 \ b_2 \ b_3 ... \ b_p]$, colocando junto a matriz \mathbf{X} :

1 1 1	x ₁ x ₂ x ₃	$x_1^2 \\ x_2^2 \\ x_3^2$	x_2^3	 x_1^{p-1} x_2^{p-1} x_3^{p-1}	y ₂ ^p	
	•	•	•	•	•	
1	X _n	x _n ²	x_n^3	 X _n p-1	Уп ^р	

Então, o vetor de coeficientes é obtido de $\mathbf{b} = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$, onde \mathbf{y} é o vetor $\mathbf{y} = [y_1 y_2 \dots y_n]^T$.

No capítulo 10, definimos a matriz de Vandermonde correspondente ao vetor $\mathbf{x} = [\mathbf{x}_1 \ \mathbf{x}_2 \ ... \ \mathbf{x}_m]$. A matriz de Vandermonde é similar a matriz \mathbf{X} de interesse para o ajuste do polinômio, mas tendo apenas n, em vez de (p+1) colunas.

Podemos tirar vantagem da função VANDERMONDE para criar a matriz **X** se observamos as seguintes regras:

Se
$$p = n-1$$
, $X = V_n$.

Se p < n-1, então remova as colunas p+2, ..., n-1, n de \mathbf{V}_n para a forma \mathbf{X} . Se p > n-1, então remova as n+1, ..., p-1, p+1, to \mathbf{V}_n para a matriz \mathbf{X} .

Na etapa 3 da lista, temos que ter certeza que a coluna i (i=n+1, n+2, ..., p+1) é o vetor $[x_1^i x_2^i ... x_n^i]$. Se usarmos uma lista de dados x em vez de

um vetor, ex., $\mathbf{x} = \{ x_1 \ x_2 \dots x_n \}$, nós podemos facilmente calcular $\{ x_1^i \ x_2^i \dots x_n^i \}$. Então, nós podemos transformar esta lisat em um vetor e usar o menu COL para adicionar essas colunas a matriz \mathbf{V}_n até que \mathbf{X} esteja completo.

Depois que **X** estiver pronto, e tendo o vetor **y** disponível, o cálculo do coeficiente vetor **b** é o mesmo que em um ajuste linear múltiplo (a aplicação de matriz anterior). Então, nós podemos escrever um programa para calcular o ajuste polinomial que pode ter vantagem em relação ao programa já desnvolvido para ajustes lineares múltiplos. Nós precsiamos adicionar esse programa nso passos 1 até 3 listado acima.

O algoritimopara o programa, então, pode ser escrito como se seque:

Entre vetores **x** e **y**, de mesmas dimensões, como listas (nota: como a função VANDERMONDE usa uma lista como entrada, é mais conveniente entrar os dados (x,y) como uma lista.) Além disso, insira o valor de p.

- Determine n = tamanho de vetor x.
- Use a função VANDERMONDE para gerar a matriz Vandermonde
 V_n para a lista x inserida.
- Se p = n-1, então

$$\mathbf{X} = \mathbf{V}_{n'}$$

Além se p < n-1

Remove as colunas p+2, ..., n de \mathbf{V}_n para a forma \mathbf{X} (Use um loop FOR e COL-)

Além disso

Adiona as colunas n+1, ..., p+1 para \mathbf{V}_n para a forma \mathbf{X} (PARA loop, calcule \mathbf{x}^i , converte o vetor, use COL+)

- Converte **y** para o vetor
- Calcule **b** usando o programa MTREG (consulte o exemplo sobre ajuste linear múltiplo acima)

Aqui está a <u>interpretação do algoritmo</u> para um programa na linguagem_ RPL do usuário. (Consulte o capítulo 21 para obter informações adicionais sobre programação):

```
Abre o programa
                                   Insera as listas x e y e p (níveis 3,2,1)
 → x y p
                                   Abre o subprograma 1
 \times SIZE \rightarrow n
                                   Determine o tamanho da lista x
                                   Abre o subprograma 2
                                  Coloque x na pilha, obtém \boldsymbol{V}_{\scriptscriptstyle n}
   x VANDERMONDE
                                   Este IF implementa a etapa 3 no algoritmo
   IF 'p<n-1' ENTÃO
                                   Coloque n na pilha
                                   Calcule p+1
     p2 +
                                   Inicia loop j = n-1, n-2, ..., p+1, etapa = -1
     PARA i
                                   Remova a coluna, coloque da pilha
        j COL-DROP
    ETAPA -1
                                   Feche o loop FOR-STEP
   OU
     SE 'p>n-1' ENTÃO
      n 1 +
                                  Calcule n+1
      p1+
                                   Calcule p+1
                                  \label{eq:local_problem} \mbox{Inicie um loop com } j = n, \, n{+}1, \, ..., \, p{+}1.
      PARA i
          x j ^
                                   Calcule x<sup>i</sup>, como uma lista
          OBJ→ →ARRY
                                   Converte lista para o conjunto
                                   Adiciona a coluna para a matriz
          j COL+
      DEPOIS
                                   Feche o loop FOR-NEXT
    END
                                   Termina a segunda cláusula IF
 END
                                  Termina a primeira cláusula IF Seu
                                   resultado é X
                                  Converte a lista y para um conjunto
 y OBJ \rightarrow ARRY
 MTREG
                                   X e y usado pelo programa MTREG
 →NUM
                                   Converte para o formato decimal
 ×
                                   Fecha o subprograma 2
 >
                                   Fecha o subprograma 1
»
                                   Fecha o programa principal
```

Salve-o em uma variável chamada POLY (ajuste de polinômio).

Como um $\underline{exemplo}$, use os seguintes dados para obter o ajuste de polinômio com p = 2, 3, 4, 5, 6.

х	у
2.30	179.72
3.20	562.30
4.50	1969.11
1.65	65.87
9.32	31220.89
1.18	32.81
6.24	6731.48
3.45	737.41
9.89	39248.46
1.22	33.45

Uma vez que usaremos os mesmos dados x-y para ajuste de polinômios de ordens diferentes, seria aconselhável salvar as listas de valores de dados x e y em variáveis xx e yy, respectivamente. Desta forma, não teremos que digitá-los tudo novamente em cada aplicação do programa POLY. Assim, faça o seguinte:

```
{ 2.3 3.2 4.5 1.65 9.32 1.18 6.24 3.45 9.89 1.22 } [MTEP 'xx' [179.72 562.30 1969.11 65.87 31220.89 32.81 6731.48 737.41 39248.46 33.45] [MTEP 'yy' [STOP]
```

```
Para ajustar os dados para polinômios, use o sequinte:
```

Selecionar o melhor ajuste

Como pode ver dos resultados acima, você pode ajustar qualquer polinômio para um conjunto de dados. A questão é: qual o melhor ajuste para os dados? Para ajudar a decidir qual o melhor ajuste, podemos usar diversos critérios:

- O coeficiente de correlação, r. Este valor se restringe a faixa -1 < r
 1. Quanto mais próximo r for para +1 ou -1, melhor o ajuste de dados.
- A soma de erros quadrados, SSE. Esta é a quantidade que deve ser minimizada pela abordagem da menor quadrada.
- Uma plotagem de residuais. Esta é uma plotagem do erro correspondente para cada um dos pontos originais de dados. Se estes erros são completamente aleatórios, as plotagens residuais não devem mostrar uma tendência particular.

Antes de tentar programar estes critério, apresentamos algumas definições:

Dado os vetores **x** e **y** de dados a serem ajustados a equação de polinômio, formamos a matriz **X** e a usamos para calcular um vetor de coeficientes de polinômios **b**. Podemos calcular um vetor de *dados ajustados*, **y**', usando **y**' = **X**·**b**.

Um vetor de erro é calculado por $\mathbf{e} = \mathbf{y} - \mathbf{y}'$.

A soma dos *erros quadrados* é igual a quadrada da magnitude de vetor de erro, ex. SSE = $|\mathbf{e}|^2 = \mathbf{e} \cdot \mathbf{e} = \sum (\mathbf{y}_i \cdot \mathbf{y}'_i)^2$.

Para calcular o coeficiente de correlação, é necessário calcular primeiro o que é conhecido como a soma dos totais quadrados, SST, definida como SST = $\Sigma (y_i - y_j)^2$, onde $y \in V$ o valor médio dos valores y, ex. $y = (\Sigma y_i)/n$.

Em termos de SSE e SST, o coeficiente de correlação é definido por

$$r = [1-(SSE/SST)]^{1/2}$$
.

Aqui está o novo programa incluindo o cálculo de SSE e r (novamente, consulte a última página deste capítulo para ver como produzir a variável e os nomes do comando no programa):

```
Abre o programa
                                Insira as listas x e y e o número p
→ x y p
                                Abra o subprograma 1
\times SIZE \rightarrow n
                                Determine o tamanho da lista x
                                Abre o subprograma 2
                                Coloque x na pilha, obtém \boldsymbol{V}_{\scriptscriptstyle n}
  x VANDERMONDE
  IF 'p<n-1' ENTÃO
                                Este SE implementa a etapa 3 no algoritmo
                                Coloque n na pilha
   p2 +
                                Calcule p+1
                                Inicia loop, j = n-1 para p+1, etapa = -1
   PARA i
                                Remova a coluna, coloque da pilha
      i COL- DROP
  ETAPA -1
                                Feche o loop FOR-STEP
 OU
   SE 'p>n-1' ENTÃO
                                Calcule n+1
     n1 +
     p1 +
                                Calcule p+1
     PARA j
                                Inicie um loop com j = n, n+1, ..., p+1.
                                Calcule xi, como uma lista
       x j ^
       OBJ \rightarrow ARRY
                                Converte lista para o conjunto
       i COL+
                                Adiciona a coluna para a matriz
     DEPOIS
                                Feche o loop FOR-NEXT
  FINAL
                                Termina a segunda cláusula IF
FINAL
                                Termina a primeira cláusula IF Produz X
y OBJ \rightarrow ARRY
                                Converte a lista y para um conjunto
                                Insira a matriz e conjunto como X e y
\rightarrow X yv
≪.
                                Abre o subprograma 3
   X yv MTREG
                                X e y usado pelo programa MTREG
                                Se necessário, converta o ponto flutuante
  →NUM
  \rightarrow b
                                Vetor resultante passado como b
                                Abre o subprograma 4
                                Coloque b e yv na pilha
    b yv
    X b *
                                Calcule X.b
```

Calcul $\mathbf{e} = \mathbf{y} \cdot \mathbf{X} \cdot \mathbf{b}$ ABS SQ DUP Calcule SSE, faça uma cópia y ΣLIST n / Calcule y n 1 →LIST SWAP CON Crie o vetor de valores n de \bar{y} ABS SQ Calcule SST Calcule SSE/SST Calcule $r = [1-SSE/SST]^{1/2}$ NEG 1 + $\sqrt{ }$ Tag resulta como "r" "r" →TAG **SWAP** Troca os níveis da pilha 1 e 2 "SSE" →TAG Tag resulta como SSE Fecha o subprograma 4 Fecha o subprograma 3 > » Fecha o subprograma 2 > Fecha o subprograma 1 > Fecha o programa principal

Salve este programa sob o nome POLYR para enfatizar o cálculo do coeficiente de correlação r.

Usar o programa POLYR para valores de p entre 2 e 6 produz a seguinte tabela de valores do coeficiente de correlação, r, e a soma dos erros da quadrada, SSE:

p	r	SSE
2	0.9971908	10731140.01
3	0.9999768	88619.36
4	0.9999999	7.48
5	0.9999999	8.92
6	0.9999998	432.61

Enquanto o coeficiente de correlação estiver muito próximo a 1.0 para todos os valores de p, os valores de SSE variam amplamente. O menor valor de SSE correspondente a p=4. Assim, você pode selecionar os ajustes de dados preferidos para os dados x-y original como:

$$y = 20.97 - 2.61x - 1.52x^2 + 6.05x^3 + 3.51x^4$$
.

Capítulo 19

Números em bases diferentes

Neste capítulo apresentamos os exemplos dos cálculos de número em diferentes bases.

Definições

O sistema de número para cada aritmética do dia a dia é conhecido como o sistema decimal porque usa 10 (Latin, deca) dígitos, a saber 0-9, para escrever qualquer número real. Os computadores, por outro lado use um sistema que é baseado em dois estados possíveis ou sistema binário . Estes dois estados são representados por 0 e 1, ON e OFF ou alta ou baixa voltagem. Os computadores usam também os sistemas baseados em oito dígitos (0-7) ou sistema octal e dezesseis dígitos (0-9, A-F) ou hexadecimal. Como no sistema decimal, a posição relativa de dígitos determina seu valor. Em geral, um número n na base b pode ser escrito como uma série de dígitos "decimais" m. O valor do número, convertido para nosso sistema decimal, é calculado usando $n = a_1 \cdot b n^{-1} + a_2 \cdot b^{n-2} + ... + a_n b^0 + c_1 \cdot b^{-1} + c_2 \cdot b^{-2} + ... + c_m \cdot b^{-m}$. Por exemplo, $(15.234)_{10} = 1 \cdot 10^1 + 5 \cdot 10^0 + 2 \cdot 10^{-1} + 3 \cdot 10^{-2} + 4 \cdot 10^{-3}$ e $(101.111)_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3}$

O menu BASE

Enquanto a calculadora é operada usando o sistema decimal, você pode produzir os cálculos usando os sistemas binário, octal ou hexadecimal. Muitas das funções para manipular os sistemas numéricos do sistema decimal estão disponíveis no menu BASE, acessível através (3). Com o sinalizador do sistema 117 configurado para CHOOSE boxes, o menu BASE mostra as seguintes entradas:

Com o sinalizador do sistema 117 configurado para menus SOFT, o menu BASE mostra o seguinte:

Com este formato, é evidente que as entradas LOGIC, BIT e BYTE dentro do menu BASE são os próprios submenus. Estes menus são discutidos posteriormente neste capítulo.

Funções HEC, DEC, OCT e BIN

Os números em sistemas não decimais são escritos precedidos pelo símbolo # na calculadora. O símbolo # está disponível como — (a tecla 3). Para selecionar o sistema de número (base atual) será usado para os números precedidos por #, selecione uma das seguintes funções no primeiro menu BASE, ex. HEX(adecimal), DEC(imal), OCT(al) ou BIN(ário). Por exemplo, se ** for seleciono, qualquer número escrito na calculadora que começa com # será um número hexadecimal. Assim, você pode escrever os números tais como #53, #A5B, etc. neste sistema. Como diferentes sistemas são selecionados, os números serão automaticamente convertidos para a nova base.

Os seguintes exemplos mostram os mesmos três números escritos com o símbolo # para as diferentes bases atuais:

Enquanto o sistema decimal (DEC) tem 10 dígitos (0,1,2,3,4,5,6,7,8,9), o hexadecimal (HEX) tem 16 dígitos (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F), o octal (OCT) 8 dígitos (0,1,2,3,4,5,6,7) e o binário (BIN) tem apenas 2 dígitos (0,1).

Conversão entre os sistemas de números

Qualquer que seja o sistema de númeo selecionado, é mencionado como o <u>sistema binário</u> paa usar as funções R→B and B→R. Por exemplo, se for selecionado, a função B→R converterá qualquer número hexadecimal (precedido de #) em um número decimal, enquanto a função R→B funciona na direção oposta. Tente os seguintes exercícios, HEX é a base atual:

Os seguintes exemplos mostram as conversões quando a base for o sistema octal:

Apresentamos as transformações usando o sistema binário como a base atual:

```
: B→R(# 110110001b)
433.
: B→R(# 110110110110b)
3510.
: B→R(# 1110001110001b)
7281.
```

```
:R→B(42) # 101010b
:R→B(524) # 1000001100b
:R→B(841) # 1101001001b
# 1101001001b
```

Observe que cada vez que inserir um número iniciando com #, você obtém como entrada o número que inseriu precedido por # e seguido pela letra h, o ou b (hexadecimal, octal ou binário). O tipo e letra usada como sufixo depende de qual sistema de base não decimal foi selecionado, ex. HEX, OCT ou BIN.

Para ver o que acontece se seleccionar a configuração [13], tente as sequintes conversões:

:R→B(147)	-	
:R→B(785)	#	147d
		785d
HEX DEC - OCT BIN	R+B	B→R

O único efeito de selecionar o sistema DECimal é que os números decimais, quando iniciado com o símbolo #, são escritos com o sufixo d.

Tamanho da palavra

O tamanho da palavra é o número de bits em um objeto binário. Por Definição, o tamanho da palavra é 64 bits. A função RCWS (Ativa tamanho da palavra) mostra o tamanho atual da palavra. A função STWS (Configurada para tamanho de palavra) permite que o usuário reajuste o tamanho da palavra para qualquer número entre 0 e 64.

Alterar o tamanho da palavra afetará a forma que as operações de números inteiros binários são feitas. Por exemplo, se um número inteiro binário exceder o tamanho atual, os bits mais importantes serão descartados antes que qualquer operação possa ser feita em tal número.

Operações com os números inteiros binários

As operações de adição, subtração, alteração de sinal, multiplicação e divisão são definidas para os números inteiros binários. Alguns exemplos, de adição e subtração, são mostrados abaixo para bases atuais diferentes:

```
#A02h + #12Ah = #B2Ch

#2562d + #298d = #2860d

#5002o + #452o = #5454o

#101000000010b + #100101010b = #101100101100b

#A02h - #12Ah = #8D8h

#2562d - #298d = #2264d

#5002o - #452o = #4330o

#101000000010b - #100101010b = #100011011000b
```

O menu LOGIC

O menu LOGIC , disponível através da BASE () fornece as seguintes funções:

As funções AND, OR, XOR (OR exclusiva), e NOT são funções lógicas. a entrada para estas funções são dois valores ou expressões (uma no caso de NOT) que pode ser expressa como resultados lógicos binários, ex. 0 ou 1. As comparações de números através dos operadores de comparação =, ≠, >, <, ≤, e ≥, são afirmações lógicas que podem ser ou verdadeiro (1) ou falso (0). Alguns exemplos de afirmações lógicas são mostrados a seguir:

As funções AND, OR, XOR e NOT podem ser aplicadas as afirmações de comparação sob as regras sequintes:

```
1 AND 1 = 1  1 AND 0 = 0  0 AND 1 = 0  0 AND 0 = 0

1 OR 1 = 1  1 OR 0 = 1  0 OR 1 = 1  0 OR 0 = 0

1 XOR 1 = 0  1 XOR 0 = 1  0 XOR 1 = 1  0 XOR 0 = 0

NOT(1) = 0  NOT(0) = 1
```

Estas funções podem ser usadas para construir afirmações lógicas para programação. Neste capítulo, elas serão usadas para fornecer o resultado das operações bit-a-bit juntamente com as linhas das regras fornecidas acima. Nos seguintes exemplos, o sistema de número base é indicado em parênteses:

O menu BIT

O menu BIT , disponível através da BASE (() fornece as seguintes funções:

As funções RL, SL, ASR, SR, RR, contidas no menu BIT são usadas para manipular os bits em um número inteiro binário. A definição destas funções é mostrada abaixo:

RL: Gire a esquerda um bit, ex. #1100b \rightarrow #1001b

SL: Desloque a esquerda um bit, ex. #1101b \rightarrow #11010b

ASR: Desloque a direita aritimética um bit, ex. #1100010b → #110001b

SR: Desloque a direita um bit, ex. #11011b →#1101b

RR: Gire a direita um bit, ex. #1101b \rightarrow #1110b

O menu BYTE

O menu BYTE, disponível através da BASE () fornece as seguintes funcões:

As funções RLB, SLB, SRB, RRB, contidas no menu BIT são usadas para manipular os bits em um número inteiro binário. As definições destas funções são mostradas abaixo:

RLB: Gire a esquerda um byte, ex. #1100b \rightarrow #1001b

SLB: Desloque a esquerda um byte, ex. #1101b \rightarrow #11010b

SRB: Desloque a direita um byte, ex. #11011b →#1101b

RRB: Gire a direita um byte, ex. #1101b \rightarrow #1110b

Números hexadecimais para referências de pixel

Alguns exemplos são mostrados a seguir:

Página 19-8

Capítulo 20

Personalizar os menus e teclado

Através do uso de diversos menus da calculadora você passou a conhecer as operações de menus para uma variedade de aplicações. Além disso, você passou a conhecer também diversas funções disponíveis usando o teclado, através da função principal ou combinando-as com as teclas left-shift (), right-shift () ou ALPHA (ALPHA). Neste capítulo fornecemos os exemplos de menus personalizados e teclas que talvez considere úteis nas suas próprias aplicações.

Personalizar os menus

Um menu personalizado é um menu criado pelo usuário. As especificações para o menu são armazenadas nas variáveis reservadas CST. Assim, criar um menu que você deve colocar junto desta variável com as características que quer exibir no seu menu e as ações necessárias pelas teclas do menu virtual. Para mostrar os menus personalizados, é necessário configurar o sinalizador do sistema 117 para o menu SOFT. Certifique-se de fazer isso antes de continuar (consulte o capítulo 2 para as instruções sobre configuração dos sinalizadores do sistema).

O menu PRG/MODES/MENU

As funções disponíveis são:

MENU: Ativa um menu dado seu número

TMENU: Use em vez de MENU para criar um menu temporário sem

sobrescrever o conteúdo de CST

RCLMENU: Retorna o número de menu do menu atual

Números de menu (funções RCLMENU e MENU)

Cada menu pré-definido tem um número anexado. Por exemplo, suponha que você ative o menu MTH (). Então, ao usar o catálogo de função () encontra a função RCLMENU ativando-a. No modo ALG pressione apenas (depois RCLMENU() é mostrado no visor. O resultado é o número 3.01. Assim, você pode ativar o menu MTH usando MENU(3.01), no ALG ou 3.01 MENU, no RPN.

A maioria dos menus pode ser ativada sem conhecer seus números usando o teclado. Existem, portanto, alguns menus não acessíveis através do teclado. Por exemplo, o menu virtual STATS é apenas acessível usando a função MENU. Seu número é 96.01. Use MENU(96.01) no modo ALG ou 96.01 MENU no modo RPN para obter o menu virtual STAT.

Nota: O número 96.01 neste exemplo significa a primeira página (01) do menu 96.

Menus personalizados (funções MENU e TMENU)

Suponha que seja necessário ativar quatro funções para uma aplicação em particular. Digamos, que é necessário acessar rapidamente as funções EXP, LN, GAMMA e ! (ALPHA P) 2) e você quer colocá-los em um menu virtual que quer manter ativo por um determinado tempo. Você poderia fazer isso criando um menu temporário com a função TMENU ou um menu mais permanente com a função MENU. A diferença principal é que a função MENU cria variável CST, enquanto TMENU não. Com a variável CST criada permanentemente no seu subdiretório você pode sempre reativar o menu usando as especificações em CST pressionando substituir o menu temporário com outro.

Por exemplo, no modo RPN um menu é criado usando: $\{ \text{EXP LN GAMMA } ! \} \text{ \tiny \textit{ENTER}} \text{ TMENU } \text{\tiny \textit{ENTER}}$

ΟU

{EXP LN GAMMA !} ENTER MENU ENTER

para produzir o seguinte menu:

Para ativar qualquer uma destas funções você precisa apenas inserir o argumento da função (um número) e depois pressionar a tecla do menu virtual correspondente.

No modo ALG, a lista será inserida como argumento da função TMENU ou MENU é mais complicada:

A razão para isto é que, no modo RPN, os nomes dos comandos são ambos etiquetas e comandos de menus: No modo ALG, os nomes dos comandos não produzirão nenhuma ação dado que as funções ALG devem ser seguidas por parênteses e argumentos. Na lista mostrada acima (para o modo ALG), dentro de cada sub-lista que você tem uma etiqueta para a tecla ex. "exp", seguindo pela forma que a função será inserida na pilha para que o argumento para a função possa ser digitado no prompt, ex. "EXP(". Não é necessário se preocupar sobre fechar os parênteses porque a calculadora os completará antes de executar a função. A implementação da funçãoTMENU no modo ALG com a lista de argumento mostrada acima é conforme a seguir. Primeiro, inserimos a lista e depois produzimos o menu temporário (consulte as etiquetas da tecla) usando a função TMENU(ANS(1)). Mostramos também, no lado esquerdo, o resultado de pressionar a tecla ze. o prompt EXP(. Depois de digitar 8 NTER) o resultado da operação é mostrado no lado direto:

Uma versão mais simples do menu pode ser definida usando MENU({"EXP(","LN(","GAMMA(","!{"})).

Menu RPN aumentado

A lista apresentada acima para o modo ALG pode ser alterada para usar o modo RPN. A lista alterada será similar a esta:

$${\text{"exp", EXP}, {\text{"In", LN}, {\text{Gamma", GAMMA}, {\text{"!",!}}}}$$

Você pode tentar usar esta lista com TMENU ou MENU no modo RPN para verificar se obtém o mesmo menu conforme anteriormente no modo ALG.

Especificação do menu e variável CST

Dos dois exercícios mostrados acima, verificamos que a lista de especificação do menu geral inclui um número de sub-listas igual ao número de itens a serem exibidos no seu menu padrão. Cada sub-lista contém uma etiqueta para a tecla do menu seguida pela função, expressão, etiqueta ou outro objeto que constitui o efeito da tecla do menu quando ativada. É necessário cuidado em especificar a lista de menu no modo ALG e RPN. No modo RPN, a ação chave do menu pode ser apenas o comando da calculadora (ex. EXP, LN, etc., conforme mostrado acima), enquanto no modo ALG tem um segmento com o prompt do comando cujo argumento precisa ser fornecido pelo usuário antes de pressionar [ENTER] e completar o comando. Os exemplos acima ilustram a diferença.

A forma geral da lista do argumento para os comandos TMENU ou MENU no modo ALG é

```
{"label1", "função1(", "ls1(", "rs1("), {"label2", "função2(", "ls2(", "rs2("),...)
```

Enquanto estiver no modo RPN, a lista do argumento tem este formato

Nestas especificações, a função 1, função 2, etc., representa a operação principal da tecla, enquanto, ls1, ls2, ..., etc., representa a operação left-shift

da tecla. De forma similar, rs1, rs2, ..., etc., representa a operação right-shift da tecla. Esta lista será armazenada na variável CST se o comando MENU for usado. Você pode ter uma variável CST diferente em cada sub-diretório e pode substituir sempre o conteúdo atual de CST com estas outras variáveis armazenando a lista corretamente formatada para produzir outro menu padrão.

Nota: Você pode usar um GROB 21x8 (consulte o capítulo 22) para produzir um ícone nas teclas do menu virtual. Por exemplo, no modo RPN, tente:

 $\{\{GROB\ 21\ 8\ 00000EF908FFF900FFF9B3FFF9A2FFF9A3FFF9A0FFF388FF\ "hp" \}\}$

ENTER MENU

Isto colocará o logo da hp na tecla 🖪 . Pressionar 🖪 coloca o texto 'hp' na linha de comando.

Personalizar o teclado

Cada tecla no teclado pode ser identificada por dois números representando suas linhas e colunas. Por exemplo, a tecla VAR (VAR) está localizada na linha 3 da coluna 1 e será mencionada como a tecla 31. Agora, dado que cada tecla tem até dez funções associadas com ela, cada função é especificada por dígitos decimais entre 0 e 1, de acordo com as seguintes especificações:

.0 ou 1, tecla acesso direto	0.01 ou 0.11, não aplicável
.2, tecla combinada com 🕤	.21, tecla simultânea com 🕤
.3, tecla combinada com →	.31, tecla simultânea com 🕝
.4, tecla combinada com (ALPHA)	.41, tecla combinada com ALPHA
.5, tecla combinada com ALPHA (.51, (ALPHA) tecla simultânea com 숙
.6, tecla combinada com ALPHA →,	.61, ÆPHA tecla simultânea com →

Assim, a função VAR será mencionada como a tecla 31.0 ou 31.1, enquanto que a função UPDIR será a tecla 31.2, a função COPY será a tecla 31.3, J maiúsculo é a tecla 31.4 e o j minúsculo é a tecla 31.5. (A tecla 31.6 não é

definida). Em geral, uma tecla será descrita pelo arranjo XY,Z, onde X = número de linha, Y = número de coluna, Z = acesso.

Podemos combinar uma dada tecla com a tecla USER (left-shift associada com a tecla (left-shift) ou (signa) para criar uma ação chave personalizada. A princípio, o teclado inteiro pode ser redefinido para fazer um número de operações personalizadas.

O submenu PRG/MODES/KEYS

produz o seguinte menu virtual KEYS:

As funções disponíveis são:

ASN: Atribui um objeto a uma tecla especificada por XY.Z STOKEYS: Armazena uma lista de tecla definida pelo usuário RCLKEYS: Retorna na pilha a lista atual de tecla definida pelo usuário DELKEYS: Apaga uma ou mais teclas na lista de tecla definida pelo usuário atual, os argumentos são ou O para apagar todas as teclas

Retornar na pilha a lista de teclas definidas pelo usuário atual

Use o comando RCLKEYS para ver a lista atual de tecla definida pelo usuário. Antes de quaisquer atribuições de teclas definidas pelo usuário, o resultado deve uma lista que contém a letra S, ex. {S}.

definidas pelo usuário ou XY.Z, para apagar a tecla XY.Z.

Atribuir um objeto para uma tecla definida pelo usuário

Suponha que queira acessar o menu PLOT introduzido com a calculadora HP série 48G, porém atualmente não diretamente disponível via teclado. O número para este menu é 81.01. Você pode ser este menu ativo usando

Modo ALG: MENU(81,01).
Modo RPN: 81.01 (NTER MENU (NTER)

Se quiser ativar rapidamente este menu do teclado, você pode atribuir este menu para a tecla GRAPH () cujo número de referência é 13.0, ex. primeira linha, terceira coluna, função principal. Para atribuir um objeto para uma tecla use a função ASN, conforme a seguir:

Modo ALG: ASN(<(MENU(81.01)>>,13.0)
Modo RPN: << 18.01 MENU >> (NTER) 13.0 (NTER) ASN

Outro menu útil é o menu SOLVE original (descrito no final do capítulo 6 neste guia), que pode ser ativada usando (manter) .

Operar com as teclas definidas pelo usuário

Para operar esta tecla definida pelo usuário, insira antes de pressionar a tecla observe que depois de pressionar o visor mostra a especificação 1USR na segunda linha do visor. Para pressionar para este exemplo, será ativado o menu PLOT conforme a seguir:

PTYPE PPAR | EQ |ERASE DRAX | DRAW

Se tiver mais de uma tecla definida pelo usuário e quiser operar mais de uma de cada vez, você pode bloquear o teclado no modo USER inserindo antes de pressionar as teclas definidas pelo usuário. Com o teclado bloqueado no modo USER, a especificação USE será mostrada na segunda linha do visor. Para desbloquear o teclado pressione novamente.

Alterar a atribuição de uma tecla definida pelo usuário

Para remover a atribuição feita acima, use a função DELKEYS, conforme a sequir:

Modo ALG: DELKEYS(13.0)

Modo RPN: 13.0 ENTER DELKEYS ENTER

Atribuir teclas múltiplas definidas pelo usuário

A forma mais simples para atribuir diversas teclas definidas pelo usuário é fornecer uma lista de especificações de teclas e comandos. Por exemplo, suponha que atribuímos as três funções trigonométricas (SIN, COS, TAN) e as três funções hiperbólicas (SINH, COSH, TANH) para teclas (F) até (F6), respectivamente, como as teclas definidas pelo usuário. No modo RPN:

```
\langle SIN, 11.0, COS, 12.0, TAN, 13.0, SINH, 14.0, COSH, 15.0, TANH, 16.0 \rangle RTDKEYS RTB
```

```
No modo ALG use:
```

```
STOKEYS(("SIN('",11.0, "COS(", 12.0, "TAN(", 13.0, "SINH(", 14.0, "COSH(", 15.0, "TANH(", 16.0)) [MTB]
```

Opere estas teclas usando, por exemplo, no modo RPN:

Par retirar a atribuição das teclas definidas pelo usuário use:

Modo ALG: DELKEYS(0) Modo RPN: 0 DELKEYS

Verifique se as definições de teclas pelo usuário foram removidas usando a função RCLKEYS.

Capítulo 21

Programar na linguagem do usuário RPL

A linguagem do usuário RPL é a linguagem de programação mais comum usada para programar a calculadora. Os componentes do programa pode ser colocado juntos na linha de edição incluindo-os entre os conteúdos do programa « » na ordem apropriada. Uma vez que usuários de calculadora possuem mais experiência de programação no modo RPN, <u>a maioria dos exemplos neste capítulo será apresentada no modo RPN</u>. Além disso, para facilitar a entrada de comandos de programação, sugerimos que você configure seu sinalizador de sistema 117 para menus SOFT. O programa funciona igualmente no modo ALG uma vez e foi depurado e testado no modo RPN. Se preferir trabalhar no modo ALG, aprenda apenas como fazer a programação no modo RPN e depois reajustar o modo de operação para ALG para executar os programas. Para verificar um exemplo simples da programação RPL do usuário, consulte a última página deste capítulo.

Um exemplo de programação

Através dos capítulos anteriores neste manual apresentamos um número de programas que podem ser usados para uma variedade de aplicações (ex. programas CRMC e CRMT, usados para criar uma matriz de um número de listas, apresentadas no capitulo 10). Nesta seção apresentamos um programa simples para introduzir os conceitos relacionados com a programação na calculadora. O programa que escreveremos será usado para definir a função $f(x) = \sinh(x)/(1+x^2)$, que aceita as listas como argumentos (ex. pode ser uma lista de números, conforme descrito no capítulo 8). No capítulo 8 indicamos que o sinal de mais age como um operador de concatenação para as listas e não para produzir uma soma termo a termo. Em vez disso, é necessário usar um operador ADD para alcançar uma soma termo a termo de listas. Assim, para definir a função mostrada acima usaremos o seguinte programa:

%'x' STO x SINH 1 x SQ ADD / 'x' PURGE >>

Para entrar no programa siga estas instruções:

Sequência de teclas: Produz: Interpretada como:

Para salvar o programa use: ['] ALPHA () G (STO)

Variáveis global e local e subprogramas

O programa ., definido acima pode ser exibido como

```
« 'x' STO x SINH 1 x SQ ADD / 'x' PURGE »
```

usando (→) **!!!!!**.

Observe que o programa usa o nome da variável x para armazenar o valor colocado no nível 1 da pilha através das etapas de programação 'x' STO. A variável x, enquanto o programa estiver sendo executado, é armazenado no seu menu de variável como qualquer outra variável que armazenou anteriormente. Depois de calcular a função, o programa exclui (apaga) a variável x então não será mostrada no seu menu de variável depois de terminar de rodar o programa. Se não excluirmos a variável x dentro do

programa, seu valor estaria disponível depois da execução do programa. Por esta razão, a variável x, como usada neste programa, é chamada de <u>uma variável global</u>. Uma implicação do uso de x como uma variável global é que, se tivermos definido previamente uma variável com o nome x, seu valor seria substituído pelo valor que o programa usa e então completamente removido de seu menu de variável depois da execução do programa.

A partir do ponto de vista da programação, uma <u>variável global</u> é uma variável que é acessível para o usuário depois da execução do programa. Se for possível usar uma variável local dentro do programa que é apenas definido para este programa e não estará disponível para uso depois da sua execução. O programa anterior pode ser alterado para:

$$\ll \rightarrow \times \ll \times SINH 1 \times SQ ADD / \gg \gg$$

O símbolo com a seta (\rightarrow) é obtido combinando a tecla right-shift \nearrow com a tecla \bigcirc , ex. \nearrow . Além disso, observe que existe um conjunto adicional de símbolos de programação ($\stackrel{\cdot}{x}$) indicando a existência de um <u>sub-programa</u>, a saber $\stackrel{\cdot}{x}$ x SINH 1 x SQ ADD / $\stackrel{\cdot}{x}$, dentro do programa principal. O programa principal inicia com a combinação \rightarrow x, que significa atribuir o valor no nível 1 da pilha para uma <u>variável local x</u>. Então, o fluxo da programação, continua dentro do subprograma colocando x na pilha, avaliando SINH(x), colocando 1 na pilha, colocando x na pilha, elevando x ao quadrado, adicionando 1 no x e dividindo o nível 2 da pilha (SINH(x)) pelo nível 1 da pilha ($1+x^2$). O controle do programa é passado de volta para o programa principal, mas não existem mais comandos entre o primeiro conjunto de símbolos da programação de fechamento ($\stackrel{\cdot}{x}$) e o segundo e então o programa é fechado. O último valor na pilha, ex. $SINH(x)/(1+x^2)$, é retornado como a saída do programa.

A variável x na última versão do programa nunca ocupa um lugar entre as variáveis no seu menu de variável. É operada dentro da memória da calculadora sem afetar qualquer variável similarmente chamada no seu menu de variável. Por esta razão, a varirável x neste caso é mencionada como a variável local ao programa, ex. <u>variável local</u>.

Nota: Para alterar o programa , coloque o seu nome na pilha () depois use . Use as teclas de setas () para mover ao redor do programa. Use o retrocesso/tecla de exclusão, , para excluir quaisquer caracteres indesejáveis. Para adicionar os conteúdos dos programas (ex., **), use , uma vez que estes símbolos vêm em pares deverá inseri-los no início e final do subprograma e excluir um de seus componentes com a tecla de exclusão para produzir o programa necessário, a saber:

```
\ll \rightarrow \times \ll \times SINH 1 \times SQ ADD / \gg \gg
```

Quando terminar de editar o programa pressione [NTER]. O programa alterado é armazenado de volta em variável [NTER].

Escopo de variável global

Qualquer variável que definir no diretório HOME ou qualquer diretório ou subdiretório será considerado uma variável global do ponto de vista do desenvolvimento do programa. Portanto, o escopo de tal variável, ex. o local na árvore do diretório onde a variável é acessível, dependerá do local da variável dentro da árvore (consulte o capítulo 2).

A regra para <u>determinar um escopo de variável</u> é o seguinte: a variável global é acessível para o diretório onde é definido e para qualquer diretório anexado a este diretório, a menos que uma variável com o mesmo nome exista no subdiretório sob avaliação. As conseqüências desta regra são o seguinte:

- Uma variável global definida no diretório HOME será acessível dentro de HOME, a menos que seja redefinido dentro de um diretório ou subdiretório.
- Se você redefinir a variável dentro de um diretório ou subdiretório, esta definição assume qualquer outra definição nos diretórios acima do atual.
- Ao executar um programa que menciona uma dada variável global, o programa usará o valor da variável global no diretório onde o programa é ativado. Se nenhuma variável com este nome existem no diretório ativado, o programa buscará nos diretórios acima do atual, até o

diretório HOME e usa o valor correspondente para o nome da variável sob consideração no diretório mais próximo do atual.

Um programa definido em um dado diretório pode ser acessado a partir deste diretório ou de qualquer subdiretório.

Todas essas regras podem parecer confusas para um novo usuário. Elas podem ser simplificadas para as seguintes sugestões: *Crie diretórios e subdiretórios com os nomes significativos para organizar seus dados e certifique-se de que tem todas as variáveis globais que precisa dentro do subdiretório adequado.*

Escopo da variável local

As variáveis locais estão ativas apenas dentro de um programa ou subprograma. Portando, seu escopo é limitado ao programa ou subprograma onde elas são definidas. Um exemplo de uma variável local é o índice em um loop FOR (descrito neste capítulo), por exemplo $\mbox{$^{\times}$} \rightarrow \mbox{$^{\times}$} \times \mbox{$^{\times}$} \rightarrow \mbox{$^{\times}$} \times \mbox{$^$

O menu PRG

Nesta seção apresentamos o conteúdo do menu PRG (programação) com o sinalizador de sistema 117 da calculadora configurado para menus SOFT. Com este sinalizador configurado para os submenus e comandos o menu PRG será mostrado como símbolos do menu virtual. Isto facilita inserir os comandos do programa na linha de edição onde está colocando junto um programa.

Para acessar o menu PRG use a combinação de teclas <u>ME</u>. Dentro do menu PRG identificamos os seguintes submenus (pressione <u>NET</u> para mover para a próxima coleção no menu PRG):

Aqui está uma rápida descrição do conteúdo destes submenus e seus submenus:

STACK: Funções para manipular os elementos da pilha RPN

MEM: Funções relacionadas com a manipulação de memória DIR: Funções relacionadas para manipular diretórios

ARITH: Funções para manipular os índices armazenados nas variáveis

BRCH: Coleção de submenus com ramificação de programas e funções loop

IF: IF-THEN-ELSE-END construções para testes
 CASE: CASE-THEN-END construções para testes
 START: START-NEXT-STEP construções para testes
 FOR: FOR-NEXT-STEP construções para loops
 DO: DO-UNTIL-END construções paraloops

WHILE: WHILE-REPEAT-END construções paraloops
TEST: Comparação de operadores, operadores lógicos, funções de teste de

sinalizadores

TYPE: Funções para converter os tipos de objetos, dividir objetos, etc.

LIST: Funções relacionadas com a manipulação de lista
ELEM: Funções para manipular os elementos de uma lista
PROC: Funções para aplicar os procedimentos para as listas
GROB: Funções para a manipulação de objetos gráficos (GROBs)
PICT: Funções para desenhar imagens no ambiente dos gráficos
CHARS: Funções para manipulação de texto e caracteres
MODES: Funções para alterar os modos da calculadora

FMT: Para alterar os formatos de números, para vírgulas

ANGLE:Para alterar a medida do ângulo e sistemas de coordenadas FLAG: Configura e desconfigura os sinalizadores e verifica seus status

KEYS: Define e ativa as teclas definidas pelo usuário (capítulo 20) MENU: Define e ativa as teclas de menus personalizados (capítulo 20)

MISC: Alteração de diversos modos (som de beep, relógio, etc)

IN: Funções para entrada de dados do programaOUT: Funções para a saída de dados do programa

TIME: Funções relacionadas com o tempo

ALRM: Manipulação de alarme

ERROR: Funções para tratamento de erros

IFERR: IF-THEN-ELSE-END construções para tratamento de erros

RUN: Funções para executar e depurar os programas

Navegar através dos submenus RPN

Funções listadas pelo submenu

A seguir apresentamos uma lista de funções dentro dos submenus PRG listados pelo submenu.

CTA CI/	AAFAA /DID	DDCII /IF	DDCII /\A	/ TVDF
STACK:	MEM/DIR	BRCH/IF	BRCH/W	IYPE
			HILE	
DUP	PURGE	IF	WHILE	OBJ→
SWAP	RCL	THEN	REPEAT	\rightarrow ARRY
DROP	STO	ELSE	END:	→LIST
OVER	PATH	END:		→STR
ROT	CRDIR		TEST	→ TAG
UNROT	PGDIR	BRCH/CASE	==	→UNIT
ROLL	VARS	CASE	≠	$C \rightarrow R$
ROLLD	TVARS	THEN	<	$R \rightarrow C$
PICK	ORDER	END:	>	NUM
UNPICK			\leq	CHR
PICK3	MEM/ARITH	BRCH/START	>	DTAG
DEPTH	STO+	START	AND	EQ→
DUP2	STO-	NEXT	OR	TYPE
DUPN	STOx	STEP	XOR	VTYPE
DROP2	STO/		NOT	
DROPN	INCR	BRCH/FOR	SAME	LIST
DUPDU	DECR	PARA	TYPE	OBJ→
NIP	SINV	NEXT	SF	→LIST
NDUPN	SNEG	STEP	CF	SUB
	SCONJ		FS?	REPL

Λ	WEW		BRCH/DO	FC\$
F	URGE	BRCH	DO	FS?C
٨	MEM	IFT	UNTIL	FC?C
E	BYTES	SEEO	END:	LININ
1	NEWOB			
1	ARCHI			
F	RESTO			

LIST/ELEM	GROB	CHARS	MODES/FLAG	MODES/MISC
GET	→GROB	SUB	SF	BEEP.
GETI	BLANK	REPL	CF	CLK
PUT	GOR	POS	FS?	SYM
PUTI	GXOR	SIZE	FC [?]	STK
SIZE	SUB	NUM	FS?C	ARG
POS	REPL	CHR	FS?C	CMD
HEAD	→LCD	OBJ→	FC\$C	INFO
TAIL	LCD→	→STR	STOF	
	SIZE	HEAD	RCLF	IN
LIST/PROC	ANIMATE	TAIL	RESET	INFORM
DOLIST		SREPL		NOVAL
DOSUB	PICT		MODES/KEYS	CHOOSE
NSUB	PICT	MODES/FMT	ASN	INPUT
ENDSUB	PDIM	STD	STOKEYS	KEY
STREAM	LINHA	FIX	RECLKEYS	WAIT
REVLIST	TLINE	SCI	DELKEYS	PROMPT
SORT	BOX	ENG		
SEQ	ARC	FM,	MODES/MENU OUT	
	PIXON	ML	MENU	PVIEW
	PIXOF		CST	TEXT
	NX5	MODES/ANGLE	TMENU	CLLCD
	PVIEW	DEG	RCLMENU	DISP
	$PX \rightarrow C$	RAD		FREEZE
	$C \rightarrow PX$	GRAD		MSGBOX
		RECT		BEEP.
		CYLIN		

SPHERE

TEMPO	ERROR	RUN
DATE	DOERR	DBUG
→DATE	ERRN	SST
TIME	ERRM	SST↓
→ TIME	ERRO	NEXT
TICKS	LASTARG	HALT
		KILL
TIME/ALRM	ERROR/IFERR	OFF
ACK	IFERR	
ACKALARM	THEN	
STOALARM	ELSE	
RCLALARM	END	
DELALARM		
FINDALARM		

Atalhos no menu PRG

Muitas das funções listadas acima para o menu PRG estão disponíveis através de outros meios:

- Os operadores de comparação (≠, ≤, <, ≥, >) estão disponíveis no teclado.
- Muitas das funções e configurações no submenu MODES podem ser ativadas usando as funções de entrada fornecidas pela tecla MODE.
- As funções do submenu TIME podem ser acessadas através da combinação de teclas .
- As funções STO e RCL (submenu MEM/DIR) estão disponíveis no teclado através das teclas (570) e (4) RCL .
- As funções RCL e PURGE (no submenu MEM/DIR) estão disponíveis através do menu TOOL (7001).
- Dentro do submenu BRCH, pressionar a tecla left-shift (←) ou right-shift (→) antes de pressionar quaisquer uma das teclas de submenu, criará construções relacionadas a tecla escolhida do

submenu. Isto funciona apenas com a calculadora no modo RPN. Exemplos são mostrados a seguir:

Observe que o prompt (�) inserido está disponível depois da palavra chave de cada construção para que você possa continuar digitando no local certo.

Seqüência de teclas para comandos normalmente usados

A seguir apresentamos as seqüências de teclas para acessar os comandos normalmente usados para a programação numérica dentro do menu PRG. Os comandos são primeiro listados pelo menu:

PURGE ORDER PRG III III IIII IIII IIII IIII IIII III	
IF THEN ELSE END THEN THEN THEN THEN THEN THEN THEN THEN	
CASE SPECIAL COMPANY	
THEN THEN	
START	
FOR	

```
PRG #330H # 000 # 000
     DO
     UNTIL
               ← PRG ERCH DO END
     END
(1) PRG #3301 | 111013 | 111013
     WHILE
               (1) PRG BEET WILLIAM BEETER
     REPEAT
               END
← PRG IIII II ≠
     ==
               PRG NXT NXT
     AND
               PRG NXT NXT
     OR
     XOR
               PRG NXT NXT
     NOT
               PRG NXT NXT
     SAME
               PRG NXT BILLS
     SF
               PRG NXT NXT NXT
     CF
               PRG NXT NXT NXT
     FS ?
               PRG NXT NXT NXT
     FC5
               PRG NXT NXT NXT NXT
     FS<sub>2</sub>C
               PRG NXT NXT NXT
               PRG NXT NXT NXT
     FC<sup>2</sup>C
OBJ \rightarrow
               ← PRG 1003 →
               \rightarrowARRY
     →LIST
               ← PRG PRG → TITE
               ← PRG 1111111 → 3113
     \rightarrowSTR
               ← PRG IIIII I → IIII
     →TAG
               PRG NXT NXT
     NUM
               PRG NXT NXT
     CHR
               PRG NXT NXT
     TYPE
GET
     GETI
               PRG FIGHT STORY
```

```
(5) PRG TEST TO THE STATE OF TH
                                            PUT
                                            PUTI
                                                                                                                                     SIZE
                                            HEAD
                                                                                                                                    PRG NXT NXT
                                            TAIL
REVLIST
                                                                                                                                     ( PRG | 1 121 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 1220 | 
                                                                                                                                    SORT
                                            SEQ
                                                                                                                                     PRG TITELL SECOND (NXT) SECOND
DEG
                                                                                                                                     RAD
CST
                                                                                                                                     PRG NXT IIII IIII IIII
                                                                                                                                    PRG (NXT)
                                            MENU
                                            BEEP
                                                                                                                                     PRG (NXT) IIII IIII IIII
INFORM
                                                                                                                                     PRG__ (NXT) IIII IIIIII
                                            INPUT
                                                                                                                                    PRG__(NXT)
                                                                                                                                    PRG NXT WITH CERTED
                                            MSGBOX
                                            PVIEW
                                                                                                                                     PRG (NXT)
DBUG
                                                                                                                                     PRG NXT NXT WITH WIST
                                            SST
                                                                                                                                    PRG NXT NXT WITH SETTING
                                            SST↓
                                                                                                                                     ( ) PRG (NXT) (NXT)
                                            HALT
                                                                                                                                     KILL
                                                                                                                                     PRG NXT NXT WITH WITH
```

Programas para gerar listas de números

Observe que as funções no menu PRG não são apenas as funções que podem ser usadas na programação. De fato, a maioria das funções na

calculadora pode ser incluída em um programa. Assim, você pode usar, por exemplo, as funções do menu MTH. Especificamente, você pode usar as funções para as operações da lista tais como SORT, ΣLIST, etc., disponíveis através do menu MTH/LIST.

Como exercícios de programação adicional e tentar as seqüências de teclas listadas acima apresentamos aqui três programas para criar ou manipular as listas. Os nomes dos programas e listagens são apresentadas a sequir:

LISC:

 $\times \rightarrow$ n x \times 1 n FOR j x NEXT n \rightarrow LIST $\times \times$

CRLST:

 $\mbox{\ensuremath{\,^\vee}} \to \mbox{\ensuremath{\,^\vee}} \to \mbox{\ensuremat$

CLIST:

% REVLIST DUP DUP SIZE 'n' STO Σ LIST SWAP TAIL DUP SIZE 1 - 1 SWAP FOR j DUP Σ LIST SWAP TAIL NEXT 1 GET n \rightarrow LIST REVLIST 'n' PURGE %

A <u>operação destes programas é conforme a sequir</u>:

- (1) LISC: cria uma lista de n elementos iguais a constante c.

 Operação: insira n, c e pressione Exemplo: 5 ENTER 6.5 ENTER LISTE cria a lista: {6.5 6.5 6.5 6.5 6.5}
- (2) CRLST: cria uma lista de números de n_1 a n_2 com aumentos Δn , ex. $\{n_1, n_1 + \Delta n, n_1 + 2 \cdot \Delta n, \dots n_1 + N \cdot \Delta n\}$, onde $N = floor((n_2 n_1)/\Delta n) + 1$. Operação: insira n_1, n_2 , Δn e pressione Exemplo: .5 ENTER 3.5 ENTER .5 ENTER EXEMPLO PRODUZ: $\{0.5 \ 1 \ 1.5 \ 2 \ 2.5 \ 3 \ 3.5\}$
- (3) CLIST: cria uma lista com somas acumulativas de elementos, ex. se a lista original for {x₁ x₂ x₃ ... x_N}, então CLIST cria a lista:

$$\{x_1, x_1 + x_2, x_1 + x_2 + x_3, ..., \sum_{i=1}^{N} x_i\}$$

Operação: coloque a lista original no nível 1, pressione Exemplo: {1 2 3 4 5} Francis produz {1 3 6 10 15}.

Exemplos de programação sequencial

Em geral, um programa é qualquer seqüência das instruções da calculadora incluída entre os conteúdos do programa ∈ e ≫. Os subprogramas podem ser inseridos como parte de um programa. Os exemplos apresentados anteriormente neste manual (ex. no capítulo 3 e 8) podem ser classificados basicamente de duas formas: (a) programas gerados definindo uma função e (b) programas que simulam a sequência de operações de pilha. Estes dois tipos de programas são descritos a seguir. A forma geral destes programas é entrada→processo→resultado, nos referimos a eles como <u>programas</u> sequenciais.

Programas gerados pela definição de uma função

Estes são programas gerados usando a função DEFINE () com um argumento da forma:

```
'function_name(x_1, x_2, ...) = expressão contendo as variáveis x_1, x_2, ...
```

O programa é armazenao na variável chamada function_name. Quando o programa é reativado para a pilha usando (p) **IIII DE COMBINE D

```
\times \rightarrow x_1, x_2, \dots 'expressão contendo as variáveis x_1, x_2, \dots'\times.
```

Para avaliar a função para um conjunto de variáveis de entrada $x_1, x_2, ...,$ no modo RPN, insira as variáveis na pilha na ordem apropriada (ex. x_1 primeiro, seguido por x_2 , então x_3 , etc.) e pressione a tecla do menu virtual $x_1, x_2, ...$. A calculadora retornará o valor da função function_name($x_1, x_2, ...$).

Exemplo: Equação de Manning para canal retangular amplo.

Como exemplo, considere a seguinte equação que calcular a descarga da unidade (largura da descarga por unidade), q, em um canal retangular aberto amplo usando a equação de Manning:

$$q = \frac{C_u}{n} y_0^{5/3} \sqrt{S_0}$$

onde C_u é a constante que depende do sistema de unidades usado $[C_u = 1.0$ para unidades do sistema internacional (S.I.), e $C_u = 1.486$ para unidades do sistema inglês (E.S.)], n é o coeficiente de resistência de Manning que depende do tipo de lineação de canal e outros fatores, y_0 é a profundidade de fluxo e S_0 é a inclinação do leito do canal dado como a fração sem dimensão.

Nota: Os valores do coeficiente de Manning, n, estão disponíveis nas tabelas como os números sem dimensão, tipicamente entre 0.001 a 0.5. O valor de Cu é também usado sem as dimensões. Portanto, é necessário ter cuidado para assegurar que o valor de y0 tem as mesmas unidades adequadas, ex. m em S.I. e pés em E.S. O resultado para q é retornado nas unidades corretas do sistema correspondente em uso, ex. m²/s em S.I. e pés²/s em E.S. Equação de Manning é, portanto, não dimensionalmente consistente.

Suponha que desejamos criar uma função q(Cu, n, y0, S0) para calcular a descarga da unidade q para este caso. Use a expressão

'q(Cu,n,y0,S0)=Cu/n*y0^(5./3.)*
$$\sqrt{S0}$$
',

Como oargumento da função DEFINE. Observe que o expoente 5./3. na equação representa uma razão dos números reais devido aos pontos decimais. Pressione (MR), se for necessário, para recuperar a lista de variáveis. Nesta ponto existirá uma variável chamada (La nas suas etiquetas de tecla do menu. Para ver o conteúdo de q use (Cu, n, y0, S0) é mostrado como:

$$\ll \rightarrow \text{Cu n y0 S0 'Cu/n*y0^(5./3.)*}\sqrt{\text{S0'}} \approx .$$

Isto deve ser interpretado como "insira Cu, n, y0, S0, nesta ordem, depois calcule a expressão entre as aspas". Por exemplo, para calcular q para Cu = 1.0, n = 0.012, y0 = 2 m e S0 = 0.0001, use, no modo RPN:

1 ENTER 0.012 ENTER 2 ENTER 0.0001 ENTER

O resultado é 2.6456684 (ou q = 2.6456684 m²/s).

Você pode separar também os dados de entrada com espaços em uma única linha da pilha em vez de usar [NTEN].

Programas que simulam uma seqüência de operações de pilha

Neste caso, os temros envolvidos na sequência de operações estão dentro da pilha. O programa é digitado primeiro abrindo as aspas do programa com P. S. A seguir, a seqüência de operações é inserida. Quando todas as operações forem digitadas, pressione FITE para completar o programa. Se isto for um programa de uso único, você pode neste ponto, pressionar FIVAL para executar o programa usando os dados de entrada disponíveis. Se for definido como um programa permanente, é necessário armazená-lo em um nome de variável.

A melhor forma de descrever este tipo de programas é com um exemplo:

Exemplo: Carga dinâmica para um canal retangular.

Suponhamos que desejamos calcular a carga dinâmica, h_v , em um canal retangular de comprimento b, com uma profundidade de fluxo y, que carrega uma descarga Q. A energia específica é calculada como $h_v = Q^2/(2g(by)^2)$, onde g ié a aceleração da gravidade y (g=9.806 m/s 2 em unidades S.I. ou g=32.2 pés/s 2 em unidades E.S.). Se formos calcular h_v para Q=23 cfs (pés cúbicos por segundo = pés $^3/s$), b=3 pés e y=2 pés, usaríamos: $h_v=23^2/(2\cdot32.2\cdot(3\cdot2)^2)$. Usar no modo RPN da calculadora, interativamente, podemos calcular esta quantidade como:

Resulta em 0.228174 ou $h_v = 0.228174$.

Para colocar este cálculo junto como um programa é necessário ter os dados de entrada (Q, g, b, y) na pilha na ordem em que serão usados no cálculo.

Em termos de variáveis Q, g, b e y, o cálculo que acabamos de fazer é escrito como (não digite o sequinte):

$$y \in b \times f x^2 g \times 2 \times Q f x^2 \Rightarrow 0$$

Como pode ver, y é usado primeiro e depois usamos b, g e Q nesta ordem. Portanto, para calcular é necessário inserir as variáveis na ordem inversas ex. (não digite o seguinte):

Para os valores específicos sob consideração usamos:

$$23$$
 ENTER 32.2 ENTER 3 ENTER 2 ENTER

O próprio programa conterá apenas estas teclas (ou comandos) que resultam da remoção dos valores de entrada do cálculo interativo mostrado anteriormente, ex. remover Q, g, b e y de (não digite o sequinte):

y ENTER
$$b \times f x^2$$
 $g \times 2 \times Q f x^2$ \Rightarrow

e mantenha apenas as operações mostradas abaixo (não digite o seguinte):

ENTER
$$\times$$
 $+$ \times 2 \times $+$ x^2 $+$ \div

Nota: Ao inserir o programa não use a tecla), em vez disso, use a seqüência de teclas:

Diferente do uso interativo da calculadora feito anteriormente, precisamos fazer algumas trocas de níveis 1 e 2 da pilha dentro do programa. Para escrever o programa, usamos então:

<u> </u>	Abra os símbolos de programa
X	Multiplique y com b
<u> </u>	Quadrado (b·y)
X	Multiplique (b·y) ² vezes g
2 ×	Insira 2 e multiplique-o com g· (b·y) ²
PRG BITTON BUTTON	Troque Q com 2·g· (b·y) ²
<u> </u>	Quadrado de Q
PRG BITTER BITTER	Troque 2·g· (b·y)² por Q²
÷	Divida Q^2 por $2 \cdot g \cdot (b \cdot y)^2$
ENTER	Insira o programa

O programa resultante será apresentado conforme a sequir:

Nota: SQ é a função que resulta da sequência de tecla (x^2)

Faça uma cópia extra do programa e salve-o na variável chamada hv:

Uma nova variável deve estar disponível no seu menu de tecla. (Pressione para ver sua lista de variável). O programa deixado na pilha pode ser avaliado usando a função EVAL. O resultado deve ser 0.228174..., conforme anteriormente. Além disso, o programa está disponível para uso futuro na variável Por exemplo, para Q = 0.5 m³/s, g = 9.806 m/s², b = 1.5 m e y = 0.5 m, use:

Nota: SPC é usado aqui como uma alternativa para ENTER da entrada de dados.

O resultado agora é 2.26618623518E-2, ex. hv = $2.26618623518 \times 10^{-2}$ m.

Nota: Dado que a equação programada em **dimensionalmente** consistente, podemos usar as unidades na entrada.

Entrada de dados interativa nos programas

No programa seqüencial mostrado na seção anterior, nem sempre fica claro para o usuário a ordem nas quais as variáveis devem ser colocadas na pilha antes de executar o programa. Para o caso do programa escrito como

$$\ll \rightarrow Cu \text{ n y0 S0 'Cu/n*y0^(5/3)*}\sqrt{s0'} \gg$$
,

```
* * SQ * 2 * SWAP SQ SWAP / *
```

não fornece um dica da ordem na qual os dados devem ser inseridos, a menos que, naturalmente, você tenha bastante experiência com a linguagem RPN ou a RPL do usuário.

Uma forma de verificar o resultado do programa como uma fórmula é inserir as variáveis simbólicas em vez dos resultados numéricos na pilha e permitir que o programa opere nestas variáveis. Para que esta abordagem seja efetiva no CAS da calculadora (sistema algébrico da calculadora) é necessário configurar para os modos simbólico e exato. Isto é feito usando mode as e assegurando que as marcas de verificação nas opções _Numeric e _Approx seja removidas. Pressione 2 para retornar ao visor normal da calculadora. Pressione para exibir seu menu de variáveis.

Usaremos esta abordagem para verificar qual fórmula resulta do uso do programa conforme a seguir: Sabemos que existem quatro entradas para o programa, assim, usamos as variáveis simbólicas S4, S3, S2 e S1 para indicar os níveis da pilha na entrada:

A seguir, pressione . A fórmula resultante será similar a esta:

'SQ(S4)/(S3*SQ(S2*S1)*2)',

Se seu visor não for configurado para estilo textbook, ou assim,

$$\frac{SQ(S4)}{S3 \cdot SQ(S2 \cdot S1) \cdot 2}$$

se o estilo impresso for seleccionado. Dado que sabemos que a função SQ() significa x^2 , interpretamos o último resultado como

$$\frac{S4^2}{2\cdot S3\cdot (S2\cdot S1)^2},$$

que indica a posição dos níveis diferentes de entrada na pilha da fórmula. Comparando este resultado com a fórmula original que programamos, ex.

$$h_{v} = \frac{Q^2}{2g(by)^2},$$

descobrimos que devemos inserir y no nível 1 da pilha (S1), b no nível 2 da pilha (S2), g no nível 3 da pilha (S3) e Q no nível 4 da pilha (S4).

Prompt com um texto de entrada

Estas duas abordagens para identificar a ordem dos dados de entrada não são muito eficientes. Você pode, portanto, ajudar o usuário a identificar as variáveis que serão usadas dando o nome das variáveis. Destes diversos métodos fornecidos pela linguagem RPL do usuário, o mais simples é usar um texto de entrada e a função INPUT (NXT PAGE (

O seguinte programa solicita ao usuário o valor de uma variável a e coloca a entrada no nível 1 da pilha:

Este programa inclui o símbolo :: (tag) e ← (retorna), disponível através da combinação de teclas ← : e → ← , ambas associadas com a tecla • . O símbolo da tag (::) é usado para marcar os textos para a

entrada e saída. O símbolo de retorno (↔) é similar ao [ENTER] em um computador. Os textos entre as aspas (" ") são digitados diretamente no teclado alfanumérico.

salve o programa na variável chamada INPTa (de INPuT a).

Tente executar o programa pressionando a tecla do menu **ELIZIO**.

O resultado é uma pilha solicitando o usuário a definir o valor de a e colocando o cursor bem em frente do prompt :a: Insira um valor para a, digamos 35, depois pressione [ENTE]. O resultado é o etiquetado de entrada :a:35 no nível 1 da pilha.

Uma função com um texto de entrada

Se fosse usar esta parte de um código para calcular a função, $f(a) = 2*a^2+3$, você poderia alterar o programa conforme a seguir:

$$%$$
 "Enter a:" {"←!a:" {2 0} V }
INPUT OBJ \rightarrow a $%$ '2*a^2+3' $%$

Salve este novo programa sob o nome 'FUNCa' (FUNÇão de a):

Execute o programa pressionando Quando solicitado a inserir o valor de a insira, por exemplo, 2 e pressione (ENTER). O resultado é apenas o algébrico $2a^2+3$, que é um resultado incorreto. A calculadora fornece as funções para depurar os programas para identificar os erros lógicos durante a execução do programa conforme mostrado a seguir.

Depurar o programa

Para descobrir porque ele não funcionou, usamos a função DBUG na calculadora conforme a sequir:

Copia o nome do programa para o nível 1

da pilha

Iniciar o depurador

Depuração passo a passo resulta: "Insira a:"

Resulta: {" ← a:" {2 0} V}

Resulta: usuário é solicitado a inserir o valor

de a

2 ENTER Insira um valor de 2 para a. Resulta:

"**-**:a:2"

Resulta: a:2

Resulta: pilha vazia, executando → a
Resulta: pilha vazia, inserindo o

subprograma «

Resulta: '2*a^2+3'

Resulta: '2*a^2+3', deixando o

subprograma »

Resulta: '2*a^2+3', deixando o programa

principal »

Depois de pressionar (a tecla do menu virtual não produz mais do que o resultado, dado que verificamos o programa inteiro, passo a passo. Esta execução através do depurador não fornece qualquer informação sobre porque o programa não calcula o valor de $2a^2+3$ para a=2. Para ver qual é o valor de um subprograma, é necessário executar o depurador novamente e avaliar a dentro do subprograma. Tente o seguinte:

Recupera o menu de variável

Copia o nome do programa para o nível 1

da pilha

Iniciar o depurador

Depuração passo a passo resulta: "Insira a":

Resulta: {" ←a:" {2 0} V}

Resulta: usuário é solicitado a inserir o valor

de a

2 ₪ Insira um valor de 2 para a. Resulta:"+a:2"

Resulta: a:2

Resulta: pilha vazia, executando → a
Resulta: pilha vazia, inserindo o

subprograma «

Neste ponto estamos dentro do subprograma « '2*a^2+3' » que usa a variável local a. Para ver o valor de a use:

ALPHA (A) (EVAL)

Isto mostra realmente que a variável local a = 2

Nota: No modo de depuração, cada vez que pressionarmos a parte superior do visor mostra a etapa do programa que está sendo executado. Uma função de tecla sestá também disponível sob o submenu de dentro do menu PRG. Isto pode ser usado para executar qualquer subprograma chamado dentro do programa principal. Exemplos da aplicação de serão mostrados posteriormente.

Fixar o programa

A única explicação possível para a falha do programa em produzir um resultado numérico parece ser a falta do comando →NUM depois da expressão algébrica '2*a^2+3'. Editemos o programa adicionando a função →NUM ausente. O programa depois de edição deve ler conforme a seguir:

« "Enter a: " {"
$$\leftarrow$$
!a: " {2 0} V } INPUT OBJ → → a « '2*a^2+3' → NUM » »

Armazene-o na variável FUNCa e execute o programa novamente com a = 2. Desta vez, o resultado é 11, ex., $2*2^2+3=11$.

Texto de entrada para dois ou três valores de entrada

Nesta seção criaremos um subdiretório, dentro do diretório HOME para arquivar exemplos de textos de entrada para um, dois e três valores de dados de entrada. Estes serão textos de entrada genéricos que podem ser incorporados em qualquer programa futuro, tomando o cuidado de alterar os nomes das variáveis de acordo com as necessidades de cada programa.

Vamos iniciar criando um subdiretório chamado PTRICKS (Programa TRICKS) para arquivar os exemplos de programação que podemos utilizar mais tarde para criar exercícios de programação mais complexos. Para criar o subdiretório, mova-se para o diretório HOME. Dentro do diretório HOME, use as seguintes teclas para criar o subdiretório PTRICKS:

Insira o nome do diretório 'PTRICKS' Crie um diretório Recupere a listagem de variáveis

Um programa pode ter mais do que 3 valores de dados de entrada. Ao usar os textos de entrada queremos limitar o número de valores de dados de entrada para 5 de cada vez pela simples razão que, em geral, temos visível apenas 7 dos níveis da pilha. Se usarmos o nível 7 da pilha para dar um título ao texto de entrada e deixamos o nível 6 da pilha vazia para facilitar a leitura no visor, temos apenas os níveis 1 e 5 da pilha para definir as variáveis de entrada.

Programa de texto de entrada para dois valores de entrada

O programa de texto de entrada para dois valores de entrada, digamos a e b, é similar conforme a seguir:

```
& "Enter a and b: " {"\leftarrow!a:\leftarrow!b: " {2 0} V } INPUT OBJ→ &
```

Este programa pode ser facilmente criado alterando o conteúdo de INPTa. Armazene este programa na variável INPT2.

Aplicação: avaliar a função de duas variáveis

Considere a lei de gás ideal, pV = nRT, onde p = pressão do gás (Pa), V = volume do gás (m^3), n = número de moles (gmol), R = constante de gás universal = $8.31451_J/(gmol*K)$ e T = temperatura absoluta (K).

Podemos definir a pressão p como uma função de duas variáveis, V e T, como p(V,T) = nRT/V para uma massa dada de gás dado que n permanecerá constante também. Assuma que n = 0.2 gmol, então a função para o programa é

$$p(V,T) = 8.31451 \cdot 0.2 \cdot \frac{T}{V} = (1.662902 - \frac{J}{K}) \cdot \frac{T}{V}$$

Podemos definir a função digitando o seguinte programa

$$* \rightarrow V T '(1.662902 J/K) * (T/V)' *$$

e armazene-a na variável

$$\overset{\text{```}}{\text{Enter V}}$$
 and T: "{" $\overset{\text{``}}{\text{--}}$:V: $\overset{\text{``}}{\text{--}}$:T: "{2 0} V}
INPUT OBJ \rightarrow → V T '(1.662902 J/K)*(T/V)' $\overset{\text{``}}{\text{--}}$

Armazene o novo programa de volta na variável **TIM**. Pressione para executar o programa. Insira os valores de V = 0.01_m^3 e T = 300_K no texto de entrada, depois pressione **ENTEN**. O resultado é 49887.06_J/m^3. As unidades de J/m^3 são equivalentes a Pascals (Pa), a unidade de pressão preferida no sistema S.I.

Nota: dado que incluímos deliberadamente as unidades na definição da função, os valores de entrada devem ter unidades na entrada para produzir o resultado correto.

Programa de texto de entrada para três valores de entrada

O programa de texto de entrada para três valores de entrada, digamos a e b e c é similar conforme a seguir:

Este programa pode ser facilmente criado alterando o conteúdo de INPT2 para torná-lo parecido conforme imediatamente acima. O programa resultante pode ser então armazenado em uma variável chamada INPT3. Com este programa completamos a coleção de textos de entrada que nos permitirá inserir um dois ou três valores de dados. Mantenha estes programas como referência e copie e altere-os para preencher os requisitos de novos programas que escrever.

Aplicação: avaliar a função de três variáveis

Suponha que desejamos programar a lei de gás ideal incluindo o número de moles, n como variáveis adicionais, ex. desejamos definir a função.

$$p(V,T,n) = (8.31451 - \frac{J}{K}) \frac{n \cdot T}{V},$$

e alterá-la para incluir o texto de entrada das três variáveis. O procedimento para inserir junto esta função é muito similar a este usado anteriormente na definição da função p(V,T). O programa resultante será similar a este:

Insira os valores de $V = 0.01_m^3$, $T = 300_K$ e $n = 0.8_m$ ol. Antes de pressionar $\overline{\text{EMTER}}$, a pilha será apresentada conforme a seguir:

Pressione ENTER para obter o resultado 199548.24_J/m^3 ou 199548.24_Pa = 199.55 kPa.

Entrada através de formulário de entrada

A função INFORM () pode ser usada para criar um formulário de entrada detalhados para um programa. A função INFORM requer cinco argumentos, na ordem:

- 1. Um título: um texto descrevendo formão formulário de entrada
- Definições de campo: um lista com uma ou mais definições de campos {s₁ s₂ ... s_n}, onde cada definição de campo, s_i, pode ter um dos dois formatos:
 - a. Uma simples etiqueta de campo: um texto
 - b. Uma lista de especificações da forma {"campo" "helpInfo" type₀ type₁ ... type_n}. O "campo" é uma etiqueta de campo. O "helpInfo" é um texto descrevendo o campo em detalhes e o tipo é uma sequência de tipos de variáveis permitidas para o campo (consulte o capítulo 24 para os tipos de objeto).
- 3. Informação sobre o formato de campo: um número individual *col* ou uma {*col tabs*}. Nesta especificação, *col* é o número de colunas na caixa de entrada e *tabs* (opcional) especifica o tamanho entre as etiquetas e os campos. A lista pode ser uma lista vazia. Os valores padrão são *col* = 1 e *tabs* = 3.
- 4. Lista de valores apagados: uma lista que contém os valores para reajustar os diferentes campos se a opção (1994) for selecionada enquanto usa formão formulário de entrada.
- 5. Lista de valores iniciais: uma lista que contém os valores iniciais dos campos.

Depois que a função INFORM for ativada você obterá como resultado ou um zero, no caso da opção **EXITEL** ser executada, ou uma lista com os valores inseridos nos campos na ordem especificada e o número 1, ex. na pilha RPN:

Assim, se o valor no nível 1da pilha for zero, nenhuma entrada foi inserida, enquanto se o valor for 1, os valores de entrada estão disponíveis no nível 2 da pilha.

Exemplo 1 – Como exemplo, considere o seguinte programa, INFP1 (INput Form Program 1) para calcular a descarga Q em um canal aberto através da fórmula Chezy: $Q = C \cdot (R \cdot S)^{1/2}$, onde C é o coeficiente Chezy, uma função da da rugosidade da superfície do canal (valores típicos 80-150), R é o raio hidráulico do canal (um comprimento) e S é a inclinação do leito do canal (números sem dimensão, tipicamente 0.01 a 0.000001). O seguinte programa define uma forma de entrada através da função INFORM:

```
% " CHEZY'S EQN" { "C:" "Chezy's coefficient" 0} { "R:"
"Hydraulic radius" 0 } { "S:" "Channel bed slope" 0} } { 120 1 .0001} { 110 1.5 .00001 } INFORM **
```

Neste programa podemos identificar os 5 componentes da entrada conforme a seguir:

- 1. Título: " CHEZY'S EQN"
- 2. Definições de campo: existem três delas, com etiquetas "C:", "R:", "S:", textos de informação "Coeficiente Chezy", "Raio hidráulico", "Inclinação do leito do canal" e aceitar apenas o tipo de dado 0 (números reais) para todos os três campos:

```
{ "C:" "Chezy's coefficient" 0} { "R:" "Hydraulic
radius" 0 } { "S:" "Channel bed slope" 0} }
```

- 3. Informação sobre o formato de campo: { } (uma lista vazia, assim, os valores padrões usados)
- 4. Lista de valores reajustados: { 120 1 .0001}
- 5. Lista de valores iniciais: { 110 1.5 .00001}

Armazene este programa na variável INFP1. Pressione **IIIIII** para executar o programa. O formulário de entrada com os valores iniciais carregados é apresentado conforme a seguir:

Para ver o efeito do reajuste destes valores use (selecione Reset all para reajustar os valores de campo):

Agora, insira os valore diferentes para estes tres campos, digamos, C = 95, R = 2.5 e S = 0.003, pressionando de inserir cada um destes valores. Depois destas substituições o formulário de entrada será similar seguirão seguinte:

Agora, para inserir estes valores no programa, pressione movamente. Isto ativa a função INFORM produzindo os seguintes resultados na pilha:

```
8:
2: (95.2.5.003)
1: 1.
INFPI p |FUNCa|INPTA|
```

Assim, demonstramos o uso da função INFORM. Para ver como usar estes valores de entrada em um cálculo altere o programa conforme a seguir:

```
« "CHEZY'S EQN" { { "C:" "Chezy's coefficient" 0} { "R:" "Hydraulic radius" 0 } { "S:" "Channel bed slope" 0} } { 120\ 1\ .0001} { 110\ 1.5\ .00001} INFORM IF THEN OBJ \rightarrow DROP \rightarrow C R S 'C*(R*S)' \rightarrowNUM "Q" \rightarrowTAG ELSE "Operation cancelled" MSGBOX END »
```

As etapas do programa mostradas acima depois do comando INFORM inclui a ramificação da decisão usando a construção IF-THEN-ELSE-END (descrita em detalhe em algum lugar no capitulo). O controle do programa pode ser enviado para uma das possibilidades dependendo do valor no nível 1 da pilha. Se este valor for passado para os comandos:

```
OBJ \rightarrow DROP \rightarrow C R S 'C*\sqrt{(R*S)'} \rightarrowNUM "O" \rightarrowTAG
```

Estes comandos calcularão os valores de Q e colocam uma tag (ou etiqueta) nela. Por outro lado, se o valor no nível 1 da pilha for 0 (que acontece quando [13]][13]] for executado enquanto usa a caixa de entrada), o controle do programa é passado para os comandos:

```
"Operation cancelled" MSGBOX
```

Estes comandos produzirão uma caixa de mensagem indicando que a operação foi cancelada.

Nota: A função MSGBOX pertence a coleção de funções de saida sob o submenu PRG/OUT. Os comandos IF, THEN, ELSE, END estão disponíveis sob os submenu PRG/BRCH/IF. As funções OBJ→, →TAG estão disponíves sob o menu PRG/TYPE. A função DROP está disponível sob o submenu PRG/STACK. As funções → e →NUM estão disponíveis no teclado.

Exemplo 2 – Para ilustrar o uso do item 3 (informação sobre o formato de campo) nos argumentos da função INFORM, altere a lista vazia usada no programa INFP1 para { 2 1 }, significando 2 colunas, e apenas um espaço entre etiquetas e valores. Armazene este novo programa na variável INFP2:

Executar o programa TITE produz o seguinte formulário de entrada:

<u>Exemplo 3</u> – Altere a lista de informação do formato de campo para { 3 0 } e salve o programa alterado na variável INFP3. Execute este programa para ver o novo formulário de entrada:

Criar uma caixa de seleção

A função CHOOSE (MT MI DEDEM) permite que o usuário crie uma caixa de seleção em um programa. Esta função exige três argumentos:

- 1. Um título (um texto de caractere descrevendo a caixa de seleção)
- 2. Uma lista de definições de seleção {c₁ c₂ ... c_n}. Uma definição de seleção c_i pode ter qualquer um dos dois formatos:
 - a. Um objeto, ex. um número, algébrico, etc. que será exibido na caixa de seleção e será também o resultado da seleção.

- b. Uma lista {objeto_exibido resultado_objeto} para que o objeto_exibido esteja listado na caixa de seleção e o resultado_objeto seja selecionado como o resultado se esta seleção for feita.
- Um número indicando a posição na lista de definição de seleção da seleção padrão. Se este número for 0, nenhuma seleção padrão é ressaltada.

Ativar a função CHOOSE retornará um zero, se uma ação **TITE** for usada, e se uma seleção for feita retorna a seleção feita (ex. v) e o número 1, ex., na pilha RPN:

2:	V
1:	1

Exemplo 1 – A equação de Manning para calcular a velocidade em um fluxo de canal aberto inclui um coeficiente, C_{u} , que depende do sistema de unidades usadas. Se usar S.I. (sistema internacional), $C_{\text{u}} = 1.0$, enquanto usa o E.S. (sistema inglês), $C_{\text{u}} = 1.486$. O seguinte programa usa uma caixa de seleção para permitir que o usuário selecione o valor de C_{u} através do sistema de unidades. Salve-o na variável CHP1 (Programa Choose 1):

```
« "Units coefficient" { { "S.I. units" 1}
    { "E.S. units" 1.486} } 1 CHOOSE »
```

Para executar este programa (pressione [1]]. Mostra a seguinte caixa de seleção:

Dependendo de se você seleciona unidades de S.I. ou unidades de E.S., a função CHOOSE lugares um valor de 1 ou um valor de 1,486 no nível 2 e um 1 da pilha no nível 1. Se cancelar a caixa de seleção, CHOOSE retorna para zero (0).

Os valores retornados pela função CHOOSE podem ser operados pelos outros comandos do programa conforme mostrado no programa alterado CHP2:

```
« "Units coefficient" { { "S.I. units" 1} { "E.S. units" 1.486} } 1 CHOOSE IF THEN "Cu" \rightarrowTAG ELSE "Operation cancelled" MSGBOX END »
```

Os comandos depois da função CHOOSE neste novo programa indica uma decisão baseada no valor do nível 1 da pilha através da construção IF-THEN-ELSE-END. Se o valor no nível 1 da pilha for 1, os comandos "Cu" >TAG produzirão um resultado etiquetado no visor. Se o valor no nível 1 da pilha for zero, os comandos "Operation cancelled" MSGBOX mostrarão uma caixa de mensagem indicando que a operação foi cancelada.

Identificar os resultados nos programas

A forma mais simples de identificar a saída numérica do programa é "identificar" os seus resultados. Uma identificação é apenas um texto anexado a um número ou a qualquer objeto. O texto será o nome associado com o objeto. Por exemplo, anteriormente, quando depuramos os programas INPTa (ou INPT1) e INPT2, obtivemos como resultados saídas numéricos etiquetadas, tais como :a:35.

Identificar um resultado numérico

Decompor um resultado numérico etiquetado em um número e uma identificação

Para decompor um resultado identificado em seu valor numérico e suas tags, use apenas a função OBJ → (何 魔 IIIII IIII IIII IIII IIII). O resultado da decomposição em um número identificado com →OBJ será o valor numérico

no nível 2 da pilha e a tag no nível 1 da pilha. Se estiver interessado em usar o apenas o valor numérico, então apague a tag usando a tecla .

Por exemplo, para decompor a quantidade identificada B:5 (consulte acima), produzirá:

"Desetiquetando" uma quantidade etiquetada

"Desetiquetar" significa extrair o objeto da quantidade etiquetada. Esta função é acessada através da combinação de teclas: (1) PG (NXT) (

Nota: Para as operações matemáticas com as quantidades etiquetadas, a calculadora "desetiqueta" a quantidade automaticamente antes da operação. Por exemplo, a figura do lado esquerdo mostra duas quantidades etiquetadas antes e depois de pressionar a tecla \times no modo RPN:

Exemplos de resultado etiquetado

Exemplo 1 – resultado etiquetado da função FUNCa

Modifiquemos a função FUNCa, definida anteriormente para produzir um resultado etiquetado. Use para reativar o conteúdo de FUNCa para a pilha. O programa original da função lê

```
% "Enter a: " {" \leftarrow a: " {2 0} V } INPUT OBJ \rightarrow a % '2*a^2+3' \rightarrow NUM % % Modifique-o para:
```

```
« "Enter a: " {" \leftrightarrow a: " {2 0} V } INPUT OBJ \rightarrow a « '2*a^2+3' \rightarrowNUM "F" \rightarrowTAG » »
```

Armazene o programa de volta em FUNCa usando \bigcirc A seguir, execute o programa pressionando \bigcirc Insira o valor de 2 ao ser solicitado e pressione \bigcirc O resultado é agora o valor etiquetado \bigcirc :11.

Exemplo 2 – resultado e entrada etiquetada da função FUNCa Neste exemplo modificamos o programa FUNCa para que o resultado inclua não apenas a função avaliada, como também uma cópia da entrada com

Use para reativar o conteúdo de FUNCa para a pilha:

```
« "Enter a: " {"\leftarrow:a: " {2 0} V } INPUT OBJ\rightarrow a « '2*a^2+3' \rightarrowNUM "F" \rightarrowTAG » »
```

Modifique-o para:

uma taa.

```
« "Enter a: " {"\leftrightarrowa: " {2 0} V } INPUT OBJ\rightarrow a « '2*a^2+3' EVAL "F" \rightarrowTAG a SWAP » »
```

Nota: Dado que usamos um texto de entrada para obter o valor do dado da entrada, a variável a armazenada é um valor etiquetado (:a:2, no exemplo acima). Portanto, não precisamos identificá-lo no resultado. Tudo que precisamos fazer é colocar um a antes da função SWAP no subprograma acima e a entrada etiquetada é colocada na pilha. É necessário ressaltar que, ao fazer o cálculo da função, a tag da entrada de dados etiquetada a é descartada automaticamente e apenas seu valor numérico é usado no cálculo.

Para ver a operação da função FUNCa, passo a passo, você pode usar a função DBUG conforme a seguir:

Copia o nome do programa para o nível 1 · ENTER da pilha PRG NXT NXT WITH WITH Inicia o depurador Depuração passo a passo resulta: "Insira a:" Resulta: {" +a {2 0} V} Resulta: usuário é solicitado a inserir o valor Insira um valor de 2 para a. Resulta: (2)(ENTER) "←a:2" Resulta: a:2 Resulta: pilha vazia, executando → a Resulta: pilha vazia, inserindo subprograma « Resulta: '2*a^2+3' Resulta: pilha vazia, calculando Resulta: 11., Resulta: "F" 日本 Resulta: F 11. Resulta: a:2 Resulta: troca de nível 1 e 2 deixa o subprograma » deixa o programa principal »

Exemplo 3 – resultado e entrada identificada da função p(V,T)

Neste exemplo modificamos o programa ma para identificar os valores de entrada e resultados. Use para reativar do programa para a pilha.

```
* "Enter V, T, and n:" {" \leftarrow :V:\leftarrow :T:\leftarrow :n:" {2 0} V } INPUT OBJ\rightarrow →V T n '(8.31451 J/(K*mol))*(n*T/V)' *
```

Modifique-o para:

```
% "Enter V, T and n: " {" \leftarrow :V: \leftarrow :T: \leftarrow :n:" {2 0} V } INPUT OBJ \rightarrow V T n % V T n '(8.31451 J/(K*mol)) * (n*T/V)' EVAL "p" \rightarrowTAG % %
```

```
\rightarrow V T N V T n
```

que requer seis valores de entrada enquanto apenas três estão disponíveis. O resultado seria a geração de uma mensagem de erro e a interrupção da execução do programa.

Para apagar qualquer caractere ao editar o programa, coloque o cursor a direita do caractere a ser apagado e use a tecla de retrocesso .

Armazene o programa de volta na variável p usando (A seguir, execute o programa pressionando (Insira os valores de V = 0.01_m^3, T = 300_K e n = 0.8_mol quando for solicitado. Antes de pressionar (INTE) para entrada a pilha será apresentada confome a seguir:

Depois da execução do programa, a pilha será apresentada conforme a seguir:

Em resumo: O ponto comum nos três exemplos mostrados é o uso de tags para identificar as variáveis de entrada e saida. Se usarmos um texto de entrada para obter nossos valores de entrada, estes já são identificados e podem ser facilmente reativados na pilha para saída. Uso do comando →TAG permite identificar o resultado de um programa.

Usar uma caixa de mensagem

Uma caixa de mensagem é uma forma irreal de apresentar o resultado de um programa. O comando da caixa de mensagem na calculadora é obtido usando (NAT) (NA

O resultado é a seguinte caixa de mensagem:

Pressione para cancelar a caixa de mensagem.

Você pode usar a caixa de mensagem para o resultado de um programa usando uma saída identificada convertida em um texto, como o texto da saída MSGBOX. Para converter qualquer resultado identificado ou qualquer

valor algébrico ou não identificado, para um texto, use a função \rightarrow STR disponível em \bigcirc PSG \bigcirc PSG

Usar uma caixa de mensagem para a saída de um programa

A função ., do último exemplo pode ser alterada para:

```
% "Enter V, T and n: " {" \leftarrow :V: \leftarrow :T: \leftarrow :n: " {2 0} V } INPUT OBJ \rightarrow V T n % V T n '(8.31451_J/(K*mol))*(n*T/V)' EVAL "p" \rightarrowTAG \rightarrowSTR MSGBOX % %
```

Armazene o programa de volta na variável p usando \P Execute o programa pressionando \P . Insira os valores de $V = 0.01_m^3$, $T = 300_K$ e n = 0.8 mol quando for solicitado.

Conforme a versão anterior de ********, antes de pressionar ******** para a entrada a pilha será similar a:

```
Enter V, T, and n:
:V:0.01_m^3
:T:300_K
:n:0.8_mol
```

Na primeira saída do programa está uma caixa de mensagem contendo o texto:

Pressione para cancelar a saída da caixa de mensagem. O visor será similar a este:

Incluindo entrada e saída na caixa de mensagem

Nós podemos alterar o programa para que o resultado e a entrada sejam incluídos em uma caixa de mensagem. Em relação ao programa o programa modificado será similar a:

```
* "Enter V, T and n: " {"\leftarrow :V:\leftarrow :T:\leftarrow :n: " {2 0} V } INPUT OBJ\rightarrow V T n * V \rightarrowSTR "\leftarrow " + T \rightarrowSTR "\leftarrow " + n \rightarrowSTR "\leftarrow " + '(8.31451_J/(K*mol)) * (n*T/V)' EVAL "p" \rightarrowTAG \rightarrowSTR + HSGBOX * *
```

Observe que é necessário adicionar as seguintes partes do código depois de cada um dos nomes das variáveis, V, T e n, dentro do subprograma:

Para obter esta parte do código na primeira vez que usar:

Uma vez que as funções para o menu TYPE se mantém disponível nas teclas do menu, a segunda e terceira ocorrência da parte do código (→STR "← " +) dentro do subprograma (ex. depois das variáveis T e n, respectivamente), tudo que precisa usar é:

Verá que depois de digitar a sequência de teclas → um nova linha é gerada na tela.

A última modificação que deve ser incluida é digitar o sinal de mais três vezes depois de ativar a função no próprio final do subprograma.

Nota: O sinal de mais (+) neste programa é usado para *concatenar* os textos. *A concatenação* é apenas a operação de agrupar textos.

Para ver o programa operando:

- Armazene o programa de volta na variável p usando
- Execute o programa pressionando
- Insira os valores de V = 0.01_m^3, T = 300_K e n = 0.8_mol quando for solicitado.

Conforme a versão anterior de [p], antes de pressionar [ENTER] para a entrada a pilha será similar a

```
Enter V, T, and n:
:V:0.01_m^3
:T:300_K
:n:0.8_mol
```

Na primeira saída do programa está uma caixa de mensagem contendo o texto:

```
Ent :V: '.01_m^3'

:T: '300_K'

:n: '.8_mol'

:V: 199548.24_J/m^

:n: 3'
```

Pressione para cancelar a saída da caixa de mensagem.

Incorporar as unidades dentro de um programa

Como pode verificar em todos os exemplos para as diferentes versões do programa apresentados neste capítulo, anexar as unidades aos valores de entrada pode ser um processo demorado. Você pode ter um próprio programa anexando estas unidades aos valores de entrada e saída. ilustraremos estas opções alterando ainda uma vez o programa conforme a seguir.

Reative o conteúdo do programa ma na pilha usando ma e modifiqueos para parecer conforme a seguir:

Nota: Separei o programa arbitrariamente em diversas linhas para fazer uma fácil leitura. Isto não é necessariamente a forma que o programa é mostrado na pilha da calculadora. A seqüência de comandos está correta. Além disso, observe que o caractere ← não é mostrado na pilha, em vez disso produzir uma nova linha.

```
« "Enter V,T,n [S.I.]: " {" → :V: → :T: → :n: " {2 0} V }

INPUT OBJ → →V T n

« V '1_m^3' * T '1_K' * n '1_mol' * →V T n

« V "V" →TAG →STR " → " + T "T" →TAG →STR " → " + n

"n" →TAG →STR " → " +

'(8.31451_J/(K*mol)) * (n*T/V) ' EVAL "p" →TAG →STR + + +

MSGBOX * * * * *)
```

Esta nova versão do programa inclui um nível adicional de subprogramas (ex. um terceiro nível de símbolos de programas « « » e algumas etapas usando as listas, ex.

V '1 m^3' * { } + T '1 K' * + n '1 mol' * + EVAL
$$\rightarrow$$
 V T n

A interpretação desta parte de código é a seguinte. (Usamos valores de texto de entrada de :V:0.01, :T:300 e :n:0.8):

- 1. V : O valor de V, como uma entrada identificada (ex. V:0.01) é colocada na pilha.
- 2. '1_m^3'
 : As unidades S.I. correspondentes a V são então colocadas no nível 1 da pilha, a entrada identificada pra V é movida para o nível 2 da pilha.
- 3. *

 Multiplicando o conteúdo de níveis 1 e 2 de pilha, geramos um número com as unidades (ex. 0.01_m^3), mas a tag está ausente.

4. T '1 K' * : Calcular o valor de T incluindo as unidades S.I.

5. n '1 mol' * : Calcular o valor de n inclui as unidades

 6. → V T n
 : Os valores de V, T e n, localizados respectivamente nos níveis 3, 2 e 1 da pilha são passados para o próximo nível de subprogramação.

Para ver a versão do programa em ação faça o seguinte:

- Armazene o programa de volta na variável p usando [←][p].
- Execute o programa pressionando [p].
- Insira os valores de V = 0.01, T = 300 e n = 0.8, quando solicitado (nas unidades exigidas agora).

Antes de pressionar ENTER a entrada será similar a:

```
Enter V,T,n [S.I.]:
:V:0.01
:T:300
:n:0.8
```

Pressione ENTER para executar o programa. A saída é uma caixa de mensagem contendo o texto:

Pressione para cancelar a saída da caixa de mensagem.

Saída da caixa de mensagem sem unidades

modifiquemos o programa ma novamente para eliminar o uso de unidades nele. O programa sem unidade será similar a este:

```
« "Enter V,T,n [S.I.]: " {" → :V: → :T: → :n: " {2 0} V }

INPUT OBJ → → V T n

« V DTAG T DTAG n DTAG → V T n

« "V=" V →STR + " → " + "T=" T →STR + " → " + "n=" n →STR +
" → " +

(8.31451*n*T/V' EVAL →STR "p=" SWAP + + + + MSGBOX ** ** **)
```

E quando executar com os dados de entrada V = 0.01, T = 300 e n = 0.8, produz a saída da caixa de mensagem:

Pressione para cancelar a caixa de mensagem.

Operadores relacionais e lógicos

Até agora trabalhamos principalmente com os programas seqüenciais. A linguagem RPL do usuário fornece comandos que permitem ramificar e repetir o fluxo do programa. Muitas destas decisões são baseadas sobre a afirmação lógica verdadeira ou não. Nesta seção apresentamos alguns dos elementos usados para construir tais afirmações lógicas, a saber, operadores relacional e lógico.

Operadores relacionais

Os operadores relacionais são estes operadores usados para comparar a posição relativa de dois objetos. Por exemplo, ao lidar apenas com números reais, os operadores relacionais são usados para fazer uma afirmação em relação a posição de dois ou mais números reais. Dependendo dos números atuais usados, tal afirmação pode ser verdadeira (representado pelo valor

numérico 1. na calculadora) ou falso (representado pelo valor numérico 0. na calculadora).

Os operadores relacionais disponíveis para a programar a calculadora são:

Operador	Significado	Exemplo
==	"é igual a"	'x==2'
≠	"não é igual a"	'3 ≠ 2'
<	"é menor que"	'm <n'< td=""></n'<>
>	"é maior que"	'10>a'
≥	"é maior ou igual a"	$'p \ge q'$
≤	"é menor ou igual a"	'7≤12'

Dois números, variáveis ou algébricos conectados por um operador relacional formam uma expressão lógica que pode retornar o valor de verdadeira (1.), falsa (0.) ou apenas não ser avaliado. Para determinar se uma afirmação lógica é verdadeira ou não, coloque-a no nível 1 da pilha e pressione EVAL (EVAL). Exemplos:

No próximo exemplo assumimos que a variável m não é iniciada (não foi dado um valor numérico):

O fato que o resultado da avaliação da afirmação é o mesmo da afirmação original indica que não possa ser avaliada exclusivamente.

Operadores lógicos

Os operadores lógicos são partículas lógicas usadas para agrupar ou modificar afirmações lógicas simples. Os operadores lógicos disponíveis na calculadora podem ser facilmente acessados através da seqüência de tecla:

Os operadores lógicos disponíveis são: AND, OR, XOR (ou exclusivo), NOT e SAME. Os operadores produzirão os resultados que são verdadeiros ou falsos dependendo do valor verdadeiro das afirmações lógicas afetadas. O operador NOT (negação) se aplica a afirmações lógicas individuais. Todas as outras se aplicam a duas afirmações lógicas.

Tabular todas as combinações possíveis de uma ou mais afirmações juntas com o valor resultante da aplicação de um certo operador lógico produz o que é chamado de <u>tabela verdadeira do operador.</u> O seguinte são tabelas verdadeiras de cada um dos operadores lógicos padrões disponíveis na calculadora:

р	NOT p
1	0
0	1

р	q	p AND q
1	1	1
1	0	0
0	1	0
0	0	0

р	q	p OR q
1	1	1
1	0	1
0	1	1
0	0	0

p	q	p XOR q
1	1	0
1	0	1

0	1	1
0	0	0

A calculadora inclui também o operador lógico SAME. Este é um operador lógico não padrão usado para determinar se dois objetivos são idêncticos. Se forem idênticos, um valor de 1 (verdadeiro) é devolvido, se não, um valor de 0 (falso) é devolvido. Por exemplo, o seguinte exercício no modo RPN devolve um valor de 0:

Observe que o uso de SAME implica uma interpretação muito restrita da palavra "idêntica". Por esta razão, SQ(2) não é idêntica a 4, embora ambos avaliam numericamente, para 4.

Ramificação de programa

Ramificação de um fluxo de programa implica que o programa toma a decisão entre dois ou mais caminhos de fluxo possíveis. A linguagem RPL de usuário fornece um número de comandos que pode ser usado para ramificação. Os menus contendo estes comandos são acessados através da seqüência de teclas:

Este menu mostra os submenus para a construção do programa

A construção do programa IF...THEN...ELSE...END e CASE...THEN...END serão mencionadas como construções de ramificação de programas. As construções restantes, a saber, START, FOR, DO e WHILE são apropriadas para controlar o processo repetitivo dentro de um programa e será mencionado como as construções loop de programa. Os últimos tipos de construções de programa são apresentados com maiores detalhes em uma seção posterior.

Ramificação com IF

Nesta seção apresentamos exemplos usando as construções IF...THEN...END e IF...THEN...ELSE...END.

A construção IF...THEN...END

IF...THEN...END é a forma mais simples de construções de programa IF. O formato geral desta construção é:

IF teste lógico THEN execução do programa END.

A operação desta construção é conforme a seguir:

- 1. Avalie teste_lógico.
- 2. Se teste_lógico for verdadeiro, execute program _statements e continue com o fluxo do programa depois do comando END.
- 3. Se teste_lógico for falso, pula execução_do_programa e continua com o fluxo do programa depois do comando END.

Para digitar neste formato IF, THEN, ELSE e END use:

As funções **1131 1333 1333** estão disponíveis no menu digitado pelo usuário. De forma alternativa, para produzir uma construção IF...THEN...END diretamente na pilha use:

Isto criará a seguinte entrada na pilha:

Com o cursor \leftarrow na frente ddo comando IF solicitando o usuário a afirmação lógica que ativará a construção IF quando o programa for executado.

Exemplo: Digite o seguinte programa:

```
\times \to \times \times IF 'x<3' THEN 'x^2' EVAL END "Done" MSGBOX \times \times
```

e salve-o sob o nome 'f1'. Pressione we verifique a variável setá realmente disponível no seu menu de variável. Verifique os seguintes resultados:

0 **III** Resulta: 0 1,2 **III** Resulta: 1.44

3.5 Resulta: nenhuma ação 10 Resulta: nenhuma ação

Estes resultados confirmam a operação correta da construção IF...THEN...END. O programa, conforme escrito, calcula a função $f_1(x) = x^2$, se x < 3 (não o resultado).

A construção IF...THEN...ELSE...END

A construção IF...THEN...ELSE...END permite dois caminhos de fluxo de programas alternativos baseados no valor verdadeiro do logical_statement. O formato geral desta construção é:

```
IF teste_lógico THEN execução_do_programa_se_verdadeiro ELSE execução do programa se falso END.
```

A operação desta construção é conforme a seguir:

- 1. Avalie teste lógico.
- Se teste_lógico for verdadeiro, execute execução_do_programa_se_verdadeiro e continue com o fluxo do programa depois da afirmação END.
- 3. Se teste_lógico for verdadeira, execute execução_do_programa_se_verdadeiro e continue com o fluxo do programa depois da afirmação END.

Para produzir uma construção IF...THEN...ELSE...END diretamente na pilha use:

Isto criará a seguinte entrada na pilha:

Exemplo: Digite o seguinte programa:

 $\ll \rightarrow \times \ll$ IF 'x<3' THEN 'x^2' ELSE '1-x' END EVAL "Done" MSGBOX » »

e salve-o sob o nome 'f2'. Pressione we verifique se a variável está realmente disponível no seu menu de variável. Verifique os seguintes resultados:

0 Resulta: 0 1.2 I

1.2 Resulta: 1.44

3.5 **Resulta:** -2.5

10 **IIIIIIII** Resulta: -9

Estes resultados confirmam a operação correta da construção IF...THEN...ELSE...END. O programa, conforme escrito, calcula a função

$$f_2(x) = \begin{cases} x^2, se \ x < 3 \\ 1 - x, elsewhere \end{cases}$$

Nota: Para este objetivo em particular, uma alternativa válida seria usar uma função IFTE da forma: ' $f2(x) = IFTE(x<3,x^2,1-x)$ '

As construções IF...THEN...ELSE...END encaixadas

Na maioria das linguagens de programação onde a construção IF...THEN...ELSE...END está disponível o formato geral usado para a apresentação do programa é o seguinte:

Ao criar o programa da calculadora que inclui as construções IF, você pode começar a escrever manualmente um pseudocódigo para as construções conforme mostrado acima. Por exemplo, para o programa :, você pode escrever

```
IF x < 3 THEN x^2 ELSE 1-x END
```

Enquanto esta simples construção funciona muito bem quando sua função tem apenas duas ramificações, é necessário encaixar as construções IF...THEN...ELSE...END para usar as funções com duas ou três ramificações. Por exemplo, considere a função

Here a função
$$f_3(x) = \begin{cases} x^2, se \ x < 3 \\ 1-x, se \ 3 \le x < 5 \\ sin(x), se \ 5 \le x < 3\pi \\ \exp(x), se \ 3\pi \le x < 15 \\ -2, elsewhere \end{cases}$$

Aqui está uma forma provável de avaliar esta função usando as construções IF... THEN ... ELSE ... END:

```
 \begin{array}{c} \text{IF } x{<}3 \text{ THEN} \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ \text{ELSE} \\ \qquad \\ \text{IF } x{<}5 \text{ THEN} \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ \text{Sin}(x) \\ \qquad \qquad \qquad \qquad \qquad \qquad \\ \text{ELSE} \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ \text{IF } x{<}5 \text{ THEN} \\ \qquad \qquad \qquad \qquad \qquad \qquad \\ \text{exp}(x) \\ \end{array}
```

ELSE

-2

END

END

END

END

Uma construção IF completa como esta é chamada um conjunto de construções <u>aninhadas</u> IF ... THEN ... ELSE ... END.

Uma forna provável de avaliar f3(x), baseada na construção IF aninhada mostrada acima é escrever o programa:

```
\times \to x \times IF 'x<3' THEN 'x^2' ELSE IF 'x<5' THEN '1-x' ELSE IF 'x<3*\pi' THEN 'SIN(x)' ELSE IF 'x<15' THEN 'EXP(x)' ELSE -2 END END END EVAL \gg \gg
```

Armazene o programa na variável **EXIII** e tente as seguintes avaliações:

```
1.5 Resulta: 2.25, ex. 3.0.
2.5 Resulta: 6.25, ex. 3.0.
4.2 Resulta: -3.2, ex. 1.
5.6 Resulta: -0.631266... (ex. sin(x), com x nos radianos)
12 Resulta: 162754.791419 (ex. exp(x))
23 Resulta: -2. (ex. -2)
```

A construção CASE

A construção CASE pode ser usada para codificar diversos caminhos de fluxo de programa como no caso das construções IF apresentadas anteriormente. O formato geral desta construção é conforme a seguir:

```
CASE
Teste_Lógico1 THEN execução_do_programa1 END
Teste_Lógico2 THEN execução_do_programa2 END
.
.
```

Teste_Lógico_n THEN execução_do_programa_n END execução_do_programa_{default} (opcional) END

Ao avaliar esta construção, o programa testa cada teste_lógico até que encontra um que seja verdadeiro. Este programa executa o execução_do_programa correspondente e passa o fluxo de programa para a afirmação seguinte a afirmação END.

As afirmações CASE, THEN e END estão disponíveis para definição seletiva usando 🥱 🚾 🌃 🌃 .

Se estiver no menu BRCH, ex. () você pode usar os seguintes atalhos para digitar na sua construção CASE (O local do cursor é indicado pelo símbolo ():

Exemplo – programa f₃(x) usando a afirmação CASE A função é definida pelas 5 expressões:

$$f_3(x) = \begin{cases} x^2, se \ x < 3 \\ 1 - x, se \ 3 \le x < 5 \\ sin(x), se \ 5 \le x < 3\pi \\ exp(x), se \ 3\pi \le x < 15 \\ -2, elsewhere \end{cases}$$

Usar a afirmação CASE na linguagem RPL do usuário podemos codificar esta função como:

```
\times \to x \times CASE 'x<3' THEN 'x^2' END 'x<5' THEN '1-x' END 'x<3*\pi' THEN 'SIN(x)' END 'x<15' THEN 'EXP(x)' END -2 END EVAL \gg \gg_{\rm N}
```

Armazene o programa em uma variável chamada . Depois tente os seguintes exercícios:

1.5	Result: 2.25, ex. x ² .
2.5	Result: 6.25 , ex. x^2 .
4.2	Result: -3.2, ex. 1-x.
5.6	Result: -0.631266 (ex. sin(x), com x nos
	radianos)
12	Result: 162754.791419 (ex. exp(x))
23	Result: -2. (ex2)

Como pode ver, f3c produz exatamente os mesmos resultados que f3. A única diferença nos programas são as construções de ramificação usadas. No caso da função f₃(x), que exige cinco expressões para sua definição, a construção de CASE pode ser mais fácil de codificar do que o número de construções IF ... THEN ... ELSE ... END aninhadas.

Loops de programa

Os loops de programa são construções que permitem ao programa a execução de um número de afirmações repetidamente. Por exemplo, suponha que deseje calcular a somatória do quadrado dos números inteiros de 0 a n, ex.

$$S = \sum_{k=0}^{n} k^2$$

Para calcular esta somatória tudo que tem a fazer é usar a tecla → ∑ dentro do Editor de Equação e carregar os limites e expressões para a somatória (exemplos de somatórias são apresentados nos caítulos 2 e 13). Portanto, para ilustrar o uso de loops de programa, calcularemos esta somatória com nossos próprios códigos RPL. Existem quatro comandos

diferentes que podem ser usados para codificar um loop de programa em RPL do usuário, estes são START, FOR, DO e WHILE. Os comandos START e FOR usam um índice ou contador para determinar quantas vezes o loop é executado. Os comandos DO e WHILE baseiam-se na afirmação lógica para decidir quando terminar uma execução de loop. A operação dos comandos de loop são descritas em detalhes nas seguintes seções.

A construção START

A construção START usa dois valores de um índice para executar um número de afirmações repetidamente. Estes são duas versões da construção START: START...NEXT e START ... STEP. A versão START...NEXT é usada quando o incremento do índice é igual a 1 e a versão START...STEP é usada quando o incremento de índice é determinado pelo usuário.

Os comandos envolvidos na construção START estão disponíveis através de:

Dentro de cada menu BRCH (as seguintes teclas estão disponíveis para gerar as construções START (o símbolo indica a posição do cursor):

← START ← NEXT: START ← NEXT

• P IIII : Inicia a construção START...STEP: START ← STEP

A construção START...NEXT

O formulário geral desta afirmação é:

valor início valor final START execução do programa NEXT

Dado que o aumento para este caso é 1, na ordem para fechar o loop, é necessário assegurar que valor_início < valor_final. Caso contrário produzirá o que é chamado de um loop infinito (nunca termina).

Exemplo – calcular a somatória de S definida acima

A construção START...NEXT contém um índice cujo valor é inacessível para o usuário. Dado que o cálculo da soma do próprio índice (k, neste caso) é necessário, devemos criar nosso próprio índice, k, que incrementará o loop cada vez que for executado. Uma possível implementação para o cálculo de S é o programa:

```
« 0. DUP \rightarrown S k « 0. n START k SQ S + 1. 'k' STO+ 'S' STO NEXT S "S" TAG » »
```

Digite o programa e salve-o na variável chamada **EEE...**.

Aqui está uma rápida explicação de como o programa funciona:

- Este programa requer um número inteiro como entrada. Assim antes de executar, este número (n) deve está no nível 1 da pilha. O programa é então executado.
- 2. Um zero é inserido movendo n no nível 2 da pilha.
- 3. O comando DUP, que pode ser digitad como (APPA) (D) (D) (P) (APPA), copia o conteúdo do nível 1 da pilha, move todos os níveis da pilha para cima e coloca a cópia que acabamos de fazer no nível 1 da pilha. Assim, depois que DUP for executado, n fica no nível 3 da pilha e os zeros preenchem os níveis 1 e 2 da pilha.
- 4. Uma parte do código → n S k armazena os valores de n, 0 e 0, respectivamente nas variáveis locais n, S, k. Dizemos que as variáveis n, S e k foram <u>iniciadas</u> (S e k para zero, n para qualquer valor que o usuário escolher n).
- 5. Uma parte do código 0. n START identifica um loop START cujo índice tomará os valores de 0, 1, 2, ..., n
- 6. A soma S é incrementada por k² na parte do código: k SQ S +
- 7. O índice k é incrementado por 1 na parte do código: 1. k +
- 8. Neste ponto, os valores atualizados de S e k estão disponíveis nos níveis 2 e 1 da pilha, respectivamente. A a parte do código 'k' STO armazena o valor do nível 1 da pilha na variável k. O valor atualizado de S ocupa agora o nível 1 da pilha.

- 9. A parte do código 'S' STO armazena o valor do nível 1 da pilha na variável local k. A pilha está agora vazia.
- 10. A partícula NEXT aumenta o índice em um e envia o controle para o início do loop (etapa 6).
- 11. O loop é repetido até que o seu índice alcance o valor máximo, n.
- 12. A última parte do programa ativa o último valor de S (a soma), identificaa e coloca-a no nível 1 da pilha para ser vista pelo usuário como o saída do programa.

Para ver o programa funcionando passo a passo, é necessário usar o depurador conforme a seguir (use n = 2). SL1 significa o nível 1 da pilha:

VAR 2 ['] ENTER	Coloque um 2 no nível 2 e o
	nome do programa, 'S1', no nível 1
PRG NXT NXT WAIT WITE	Inicie o depurador. SL1 = 2.
	SL1 = 0., SL2 = 2.
	SL1 = 0., $SL2 = 0.$, $SL3 = 2.$ (DUP)
	Pilha vazia (-> n S k)
	Pilha vazia (« - inicia subprograma)
	SL1 = 0., (inicia o valor do índice de loop)
	SL1 = 2.(n), $SL2 = 0$. (fecha o valor do
	índice do loop)
	Pilha vazia (START — inicia o loop)
	,
- número de execução do loop	1 para k = 0
	SL1 = 0. (k)
BETI↓I	$SL1 = 0. (SQ(k) = k^2)$
	SLT = U. ($SQ(K) = K$)
	SL1 = 0. ($SQ(k) = k$) $SL1 = 0$.(S), $SL2 = 0$. (k^2)
EET ↑	, , , ,
	$SL1 = O.(S), SL2 = O.(k^2)$
	$SL1 = O.(S), SL2 = O. (k^2)$ $SL1 = O. (S + k^2)$
	$SL1 = 0.(S)$, $SL2 = 0. (k^2)$ $SL1 = 0. (S + k^2)$ $SL1 = 1.$, $SL2 = 0. (S + k^2)$
	$SL1 = 0.(S)$, $SL2 = 0. (k^2)$ $SL1 = 0. (S + k^2)$ $SL1 = 1.$, $SL2 = 0. (S + k^2)$ $SL1 = 0.(k)$, $SL2 = 1.$, $SL3 = 0. (S + k^2)$ $SL1 = 1.(k+1)$, $SL2 = 0. (S + k^2)$
E 21 ↑ E 21 ↑ E 21 ↑ E 21 ↑	$SL1 = O.(S), SL2 = O. (k^2)$ $SL1 = O. (S + k^2)$ $SL1 = 1., SL2 = O. (S + k^2)$ $SL1 = O.(k), SL2 = 1., SL3 = O. (S + k^2)$ $SL1 = 1.(k+1), SL2 = O. (S + k^2)$ $SL1 = 'k', SL2 = 1., SL3 = O. (S + k^2)$
EEII↑ EEII↑ EEII↑	$SL1 = 0.(S)$, $SL2 = 0. (k^2)$ $SL1 = 0. (S + k^2)$ $SL1 = 1.$, $SL2 = 0. (S + k^2)$ $SL1 = 0.(k)$, $SL2 = 1.$, $SL3 = 0. (S + k^2)$ $SL1 = 1.(k+1)$, $SL2 = 0. (S + k^2)$ $SL1 = 'k'$, $SL2 = 1.$, $SL3 = 0. (S + k^2)$ $SL1 = 0. (S + k^2)$ [Armazena o valor de $SL2$
EEII↑ EEII↑ EEII↑	$SL1 = O.(S), SL2 = O. (k^2)$ $SL1 = O. (S + k^2)$ $SL1 = 1., SL2 = O. (S + k^2)$ $SL1 = O.(k), SL2 = 1., SL3 = O. (S + k^2)$ $SL1 = 1.(k+1), SL2 = O. (S + k^2)$ $SL1 = 'k', SL2 = 1., SL3 = O. (S + k^2)$

```
Pilha vazia [Armazena o valor de SL2 = 0,
                              em SL1 = 'S'
Pilha vazia (NEXT – fecha o loop)
-- número de execução do loop 2 para k = 1
SL1 = 1. (k)
SL1 = 1. (SQ(k) = k^2)
SL1 = 0.(S), SL2 = 1. (k<sup>2</sup>)
SL1 = 1. (S + k^2)
SL1 = 1., SL2 = 1. (S + k^2)
SL1 = 1.(k), SL2 = 1., SL3 = 1. (S + k^2)
SL1 = 2.(k+1), SL2 = 1. (S + k^2)
                              SL1 = 'k', SL2 = 2., SL3 = 1. (S + k^2)
EE∏↓I
                              SL1 = 1. (S + k^2) [Armazena o valor de SL2 = 2
                              em SL1 = 'k'
EE∏↓I
                              SL1 = 'S', SL2 = 1. (S + k^2)
Pilha vazia [Armazena o valor de SL2 = 1
                              em SL1 = 'S'
Pilha vazia (NEXT – fecha o loop)
-- número de execução do loop 3 para k = 2
SL1 = 2. (k)
SL1 = 4. (SQ(k) = k^2)
SL1 = 1.(S), SL2 = 4. (k^2)
                              SL1 = 5. (S + k^2)
SL1 = 1., SL2 = 5. (S + k^2)
SL1 = 2.(k), SL2 = 1., SL3 = 5. (S + k<sup>2</sup>)
SL1 = 3.(k+1), SL2 = 5. (S + k^2)
                              SL1 = 'k', SL2 = 3., SL3 = 5. (S + k^2)
SL1 = 5. (S + k^2) [Armazena o valor de SL2
                              = 3, em SL1 = 'k']
SL1 = 'S', SL2 = 5. (S + k^2)
\Box
                              Pilha vazia [Armazena o valor de SL2 = 0
                              em SL1 = 'S'
Pilha vazia (NEXT – fecha o loop)
```

 para n = 2, o índice loop é exaurido e o controle é passado para a afirmação sequinte NEXT

SL1 = 5. (S é reativado para a

pilha)

SL1 = "S", SL2 = 5 ("S" é colcado na

pilha)

SL1 = S:5 (identificar valor de saída)

SL1 = S:5 (deixa o subprograma »)

SL1 = S:5 (deixa o subprograma »)

A listagem passo a passo está completa. O resultado da execução do programa **EST** com n = 2, is S:5.

Verifique também os seguintes resultados: WAR

3		Resulta: S:14	4	Resulta: S:30
5	83	Resulta: S:55	8	Resulta: S:204
10	89	Resulta: S:385	20	Resulta: S:2870
30		Resulta: S:9455	100	Resulta: S: 33835

A construção START...STEP

O formulário geral desta afirmação é:

```
\verb|valor_inicio| valor_final START execução_do_programa incremento NEXT|
```

Valor_inicio, valor_final e incremento do índice do loop podem ser quantidades negativas ou positivas. Para incremento > 0, a execução ocorre quando o índice for menor ou igual a valor_final. Para incremento < 0, a execução ocorrer quando o índice for maior ou igual a valor final.

Exemplo – gerar uma lista de valores

Suponha que você deseje gerar uma lista de valores de x de x=0.5 a x=6.5 com aumentos de 0.5. Você pode escrever o seguinte programa:

```
« \rightarrow xs xe dx « xs DUP xe START DUP dx + dx STEP DROP xe xs - dx / ABS 1 + \rightarrowLIST » »
```

e armazene-o na variável

Neste programa , xs = o valor inicial do loop, xe = valor final do loop, dx = valor de aumento para loop. O programa coloca os valores de xs, xs+dx, $xs+2\cdot dx$, $xs+3\cdot dx$, ... na pilha. Depois calcula o número de elementos gerados usando a parte do código: xe xs - dx / ABS 1. +

Finalmente, o programa coloca junto uma lista com os elementos colocados na pilha.

- Verifique se a chamada do programa 0.5 (NTER 2.5 (NTER 0.5 (NTER 1.1) produz a lista {0.5 1. 1.5 2. 2.5}.
- Para a operação passo a passo use o programa DBUG para uma lista curta, por exemplo:

Use ∰ para entrar no programa e ver a operação detalhada de cada comando.

A construção FOR

Como no caso do comando START, o comando FOR tem duas variações: a construção FOR...NEXT, para os aumentos do índice do loop de 1 e para a construção FOR...STEP, para os aumentos do índice pelo usuário. Diferente do comando START, o comando FOR requer realmente que seja dado um nome para o índice do loop (ex. j, k, n). Não é necessário se preocupar com o aumento do próprio índice, como foi feito nos exemplos usando START. O valor correspondente para o índice estará disponível para os cálculos.

Os comandos envolvidos na construção FOR estão disponíveis através de:

- ⑤ Imicia a construção FOR...NEXT: FOR ← NEXT
- → 🕮: Inicia a construção FOR...NEXT: FOR ← STEP

A construção FOR...NEXT

O formulário geral desta afirmação é:

valor_início valor_final FOR índice_do_loop
execução_do_programa NEXT

Para evitar um loop infinito, certifique-se de que valor_início < valor final.

Exemplo – calcule a somatória S usando uma construção FOR...NEXT O seguinte programa calcula a somatória

$$S = \sum_{k=0}^{n} k^2$$

Usar um loop FOR...NEXT:

 $\mbox{$<$}$ 0 \rightarrow n S $\mbox{$<$}$ 0 n FOR k k SQ S + 'S' STO NEXT S "S" TAG $\mbox{$>$}$ $\mbox{$>$}$

Armazene este programa na variável **EE**. Verifique os seguintes exercícios:

3 Resulta: S:14 4 Resulta: S:30 5 Resulta: S:55 8 Resulta: S:204

 10
 Resulta: S:385
 20
 Resulta: S:2870

 30
 Resulta: S:9455
 100
 Resulta: S:338350

Deve ter observado que o programa é muito mais simples do que aquele que foi armazenado em Não existe a necessidade de inicializar k ou aumentar k dentro do programa. O próprio programa assume a produção de tais incrementos.

A construção FOR...STEP

O formulário geral desta afirmação é:

```
valor_início valor_final FOR índice_do_loop
execução_do_programa incremento STEP
```

Valor_início, valor_final e incremento do índice_do_loop podem ser quantidades negativas ou positivas. Para incremento > 0, a execução ocorre quando o índice for menor ou igual a valor_final. Para incremento < 0, a execução ocorre quando o índice for maior ou igual a valor_final. As afirmações do programa são executadas pelos menos uma vez (ex. 1 0 START 1 1 STEP retorna 1)

<u>Exemplo</u> – gera uma lista de números usando a construção FOR...STEP Digite no programa:

```
« \rightarrow xs xe dx « xe xs - dx / ABS 1. + \rightarrow n « xs xe FOR x x dx STEP n \rightarrowLIST » »
```

e armazene-o na variável ETEE.

- Verifique se na execução do programa 0.5 (NTE) 2.5 (NTE) 0.5 (NTE) DIEST produz a lista {0.5 1. 1.5 2. 2.5}.
- Para ver a operação passo a passo use o programa DBUG para uma lista curta, por exemplo:

MAR 1 SPC 1.5 SPC 0.5 ENTER Insira os parâmetros 1 1.5 0.5

['] IT IT ET ENTER

Insira o nome do programa no nível

() PRG (NXT) (NXT) | IIII | IIII | IIII

Inicie o depurador.

Use para entrar no programa e ver a operação detalhada de cada comando.

A construção DO

A estrutura geral deste comando é:

DO execução_do_programa UNTIL teste_lógico END O comando DO inicia um loop indefinido executando o retorno execução_do_programa até que teste_lógico seja FALSO (0). O teste_lógico deve conter o valor de índice cujo valor é alterado em execução do programa.

Exemplo 1 – Este programa produz um contador no canto esquerdo superior do visor e adiciona 1 em um loop indefinido até que uma tecla (pressione qualquer tecla) interrompa o contador: « 0 DO DUP 1 DISP 1 + UNTIL KEY END DROP »

Comando KEY avalia para TRUE quando um tecla é acionada.

<u>Exemplo 2</u> – calcula a soma de S usando uma construção DO...UNTIL...END O seguinte programa calcula a somatória

$$S = \sum_{k=0}^{n} k^2$$

Usar um loop DO...UNTIL...END:

« 0. \rightarrow n S « DO n SQ S + 'S' STO n 1 - 'n' STO UNTIL 'n<0' END S "S" TAG » »

Armazene este programa na variável **EEE.** Verifique os seguintes exercícios:

(VAR)

 10
 Resulta: S:385
 20
 Resulta: S:2870

 30
 Resulta: S:9455
 100
 Resulta: S:338350

<u>Exemplo 3</u> – gera uma lista usando uma construção DO...UNTIL...END Digite o seguinte programa:

```
« \rightarrow xs xe dx « xe xs - dx / ABS 1. + xs \rightarrow n x « xs DO 'x+dx' EVAL DUP 'x' STO UNTIL 'x\geqxe' END n \rightarrowLIST » » »
```

e armazene-o na variáve EEE.

- Verifique se na execução do programa 0.5 [ENTER 2.5 [ENTER 0.5 [ENTER]]] produz a lista {0.5 1. 1.5 2. 2.5}.
- Para ver a operação passo a passo use o programa DBUG para uma lista curta, por exemplo:

Insira os parâmetros 1 1.5 0.5

['] INSIRA OS PARÂMETROS I 1.5 0.5

Insira os parâmetros 1 1.5 0.5

Insira o nome do programa no nível

1

Inicie o depurador.

Use ∰ para entrar no programa e ver a operação detalhada de cada comando.

A construção WHILE

A estrutura geral deste comando é:

WHILE teste lógico REPEAT execução do programa END

A afirmação WHILE repetirá execução_do_programa enquanto teste_lógico for verdadeiro (não zero). Caso contrário, o controle de programa é passado para a afirmação logo depois de END. O execução_do_programa deve incluir um índice de loop que fica alterado ante que teste lógico seja verificado no início da próxima repetição.

Diferente do comando DO, se a primeira avaliação de teste_lógico for falsa, o loop nunca é executado.

Exemplo 1 – calcule a soma de S usando uma construção WHILE...REPEAT...END
O seguinte programa calcula a soma

$$S = \sum_{k=0}^{n} k^2$$

Usando um loop WHILE...REPEAT...END:

```
« 0. \rightarrow n S « WHILE 'n\geq0' REPEAT n SQ S + 'S' STO n 1 - 'n' STO END S "S" TAG » »
```

Armazene este programa na variável **EXII**. Verifique os seguintes exercícios:

3	38	Resulta: S:14	4	### P##	Resulta: S:30
5		Resulta: S:55	8		Resulta: S:204
10		Resulta: S:385	20		Resulta: S:2870
30	83	Resulta: S:9455	100	87	Resulta: S:338350

<u>Exemplo 2</u> – gera uma lista usando uma construção WHILE...REPEAT...END Digite no seguinte programa:

```
« \rightarrow xs xe dx « xe xs - dx / ABS 1. + xs \rightarrow n x « xs WHILE 'x<xe' REPEAT 'x+dx' EVAL DUP 'x' STO END n \rightarrowLIST » »
```

e armazene-o na variáve

- Verifique se na execução do programa 0.5 (NTER) 2.5 (NTER) 0.5 (NTER) produz a lista {0.5 1. 1.5 2. 2.5}.
- Para ver a operação passo a passo use o programa DBUG para uma lista curta, por exemplo:

VAR 1 SPC 1.5 SPC 0.5 ENTER	Insira os parâmetros 1 1.5 0.5
['] ITHELL ENTER	Insira o nome do programa no níve
	1
PRG NXT NXT #3111 #137	Inicie o depurador.

Use [51] para entrar no programa e ver a operação detalhada de cada comando.

Erros e detecção de erros

As funções do submenu PRG/ERROR fornecem formas de manipular erros na calculadora e detectar os erros dos programas. O submenu PRG/ERROR, disponível através de 🥱 🏧 🚾 🚾 🚾 ontém as seguintes funções e submenus:

Z: | : | Doerr| Erro | Erro | Erro | Lasta| | Iferr

DOERR

Esta função executa um erro definido pelo usuário, fazendo com que a calculadora comporte-se como se um erro em particular tenha ocorrido. A função pode tomar como argumento ou um número inteior, um número de inteiros binário, uma mensagem de erro, ou o número zero (0). Por exemplo, no modo RPN, inserir 5 (ANTER) (1011), produz a seguinte mensagem de erro: Error: Memory Clear

Se inserir #11h [NTER] ITIEI produz a seguinte mensagem: Error: Undefined FPTR Name

Se inserir "TRY AGAIN" [NTER] produz a seguinte mensagem: TRY AGAIN

Finalmente, O ENTER WITH, produz a mensagem: Interrupted

ERRN

Esta função retorna um número representando o mais recente erro. Popr exemplo, se tentar O NOTALLA, obterá o número #305h. Este é o número inteiro binário representando o erro: Infinite Result

ERRM

Esta função retorna um texto representando a mensagem de erro do erro mais recente. Para o exemplo, Approx na modalidade, se você tentar

O (1x) (N) (1331), você começa a seguinte corda: "Infinite Result"

ERRO

LASTARG

Esta função retorna as cópias dos argumentos do comando ou função executada mais recentemente. Por exemplo, no modo RPN se usar:

3 ÷ 2 [NTER], e depois usar a função LASTARG ([IIIIIIII]), obterá s valores 3 e 2 listados na pilha. Outro exemplo, no modo RPN é o seguinte:

5 [NN [NTER]]. Usar LASTARG depois destas entradas produz um 5.

Submenu IFERR

O menu TTT fornece as seguintes funções:

Estes são os componentes da construção IFERR ... THEN ... ELSE ... END. Ambas as construções lógicas são usadas para detectar erros durante a execução do programa. Dentro do submenu (1998), colocará os componentes da estrutura IFERR na pilha, pronta para que o usuário preencha os termos perdidos, ex.

O formulário geral das construções de detecção de erro é mostrado a seguir:

IFERR cláusula detecção THEN cláusula erro END

IF cláusula detecção THEN cláusula erro ELSE cláusula normal END

A operação destas construções lógicas é similar a esta das construções IF ... THEN ... END e da IF ... THEN ... ELSE ... END. Se um erro for detectado durante a execução da cláusula_detecção, então a cláusula_erro é executada. Caso contrário, a cláusula_normal é executada.

Como exemplo, considere o seguinte programa (E333) que toma como entrada duas matrizes A e b e verifica se existe um erro na cláusula de detecção: A b / (modo RPN, ex. A/b). Se ocorrer um erro, o programa ativa então a função LSQ (menor quadrado, consulte o capítulo 11) para resolver o sistema de equações:

Tente com os argumentos A = [[2, 3, 5] , [1, 2, 1]] e b = [[5] , [6]]. Um simples divisão destes dois argumentos produz um erro: /Error: Dimensões inválidas.

Portanto, com a construção de detecção de erro do programa, EEE, com os mesmos argumentos produz: [0.262295..., 0.442622...].

Usuário RPL que programa na modalidade algébrica

Enquanto todos os programas apresentados anteriormente são produzidos e executados no modo RPN, você pode digitar sempre um programa em User-RPL no modo algébrico usando a função RPL>. Esta função está disponível através do catálogo de comando. Como um exemplo, tente criar o seguinte

programa no modo algébrico e armazene-o na variável P2:

$$\times \rightarrow X \cdot 2.5-3*X^2' \times$$

Ative primeiro a função RPL> do catálogo de comando (). Todas as funções ativadas no modo ALG têm um par de parênteses anexado ao seu nome. A função RPL> não é exceção, exceto que os parênteses devem ser removidos antes de digitar um programa no visor. Use as teclas de seta () e de exclusão () para eliminar os parênteses da afirmação RPL>(). Neste ponto você estará pronto para digitar o programa RPL. As seguintes figuras mostram o comando RPL> com o programa antes de depois de pressionar a tecla [NTE).

Para armazenar o programa use o comando STO conforme a seguir:

Uma avaliação do programa P2 para o argumento X = 5 é mostrado na próxima tela:

Você pode usar os programas escritos no modo algébrico, sem usar a função RPL>, entretanto algumas das construções RPL produzirão uma mensagem de erro ao pressionar [ENTER], por exemplo:

Se usar RPL>, não haverá problema ao carregar este programa no modo algébrico:

Capítulo 22

Programas para manipulação de gráficos

Este capítulo inclui um número de exemplos mostrando como usar as funções da calculadora para manipular os gráficos interativamente ou através do uso de programa. Como no capítulo 21 recomendamos usar o modelo RPN e configurar o sinalizador do sistema 117 para as etiquetas de menu SOFT. **

Instroduzimos uma variedade de aplicações gráficas da calculadora no capítulo 12. Os exemplos do capítulo 12 representam a produção interativa de gráficos usando os formulários de entrada pré-programados da calculadora. É também possível usar os gráficos em seus programas, por exemplo, para complementar os resultados numéricos com os gráficos. Para executar tais tarefas, introduzimos primeiro a função no menu PLOT.

O menu PLOT

Os comandos para configurar e produzir as plotagens estão disponíveis através do menu PLOT. Você pode acessar o menu PLOT usando:

O menu produzido permite ao usuário o acesso a uma variedade de funções gr[aficas. Para aplicação nos exemplos subseqüentes, deixe permita que o usuário defina a tecla (GRAPH) para fornecer acesso a este menu conforme descrito abaixo.

Tecla definida pelo usuário para o menu PLOT

Insira as seguintes teclas para determinar se tem qualquer tecla definida pelo usuário já armazenada na sua calculadora.

A menos que tenha algumas teclas definidas pelo usuário, será obtido em retorno uma lista contendo um S, ex. {S}. Isto indica que o teclado padrão é a única definição de tecla na sua calculadora.

Para a tecla definida pelo usuário, é necessário adicionar a esta lista um comando ou programa seguindo por uma referência para a tecla (consulte os detalhes no capítulo 20). Digite a lista

(S << 81.01 MENU >> 13.0) na pilha e use a função STOKEYS (MENU >> 13.0) para a tecla definida pelo usuário B como o acesso ao menu PLOT. Verifique se tal lista foi armazenada na calculadora usando MENUTIDIA NATIONAL MARIE NATI

Nota: Não trabalharemos em nenhum exercício enquanto apresentamos o menu PLOT, suas funções ou submenus. Esta seção será mais um tour através do conteúdo do PLOT enquanto relatam o tipo diferente de gráficos disponíveis na calculadora.

Para ativar uma tecla definida pelo usuário, é necessário pressionar (na mesma tecla (ALPHA)) antes de pressionar a tecla ou combinação de tecla de interesse. Para ativar o menu PLOT, com a definição de tecla usada acima, pressione: (T) USER (F3). Você obterá o seguinte menu (pressione (NXT) para mover para o segundo menu)

Descrição do menu PLOT

O seguinte diagrama mostra os menus no PLOT. O número de que acompanha os diferentes e menus e funções no diagrama são usadas como referência na descrição subsequente destes objetos.

A tecla do menu marcada 3D, STAT, FLAG, PTYPE e PPAR produz menus adicionais que serão apresentados em detalhes posteriormente. Neste ponto, descrevemos as funções diretamente acessíveis através das teclas para o número do menu 81.02. Estas são:

LABEL (10)

Esta função LABEL é usada para marcar os eixos em uma plotagem incluindo os nomes das variáveis e os valores mínimos e máximos dos eixos. Estes nomes de variáveis são selecionados da informação contida na variável PPAR.

AUTO (11)

A função AUTO (AUTOescala) calcula a faixa de exibição para o eixo x e y para ambas as plotagens bidimensionais de acordo com o tipo de plotagem definida em PPAR. Para qualquer um dos gráficos tridimensionais a função AUTO não produz ação. Para as plotagens bidimensionais, as seguintes ações são feitos por AUTO:

- FUNCTION: baseado na faixa de plotagem de x, ela cria uma amostra da função no EQ e determina os valores mínimos e máximos de y.
- CONIC: define a escala do eixo y igual para a escala do eixo x
- POLAR: baseado nos valores da variável independente (tipicalmente θ), ela cria uma amostra da função EQ e determina os valores mínimos e máximos de ambos x e y.
- PARAMETRIC: Produz um resultado similar ao POLAR baseado nos valores do parâmetro definindo às equações para x e y.
- TRUTH: não produz ação.
- BAR: a faixa do eixo x é configurada de 0 para n+1 onde n é o número de elementos no ΣDAT. A faixa de valores de y é baseada no conteúdo de ΣDAT. Os valores mínimo e máximo de y são determinados para que o eixo x seja sempre incluido no gráfico.
- HISTOGRAM: similar a BAR.
- SCATTER: define a faixa dos eixos x e y baseado no conteúdo das variáveis independente e dependente de ΣDAT.

INFO (12)

A função INFO é apenas interativa (ex. não pode ser programada). Quando a tecla do menu correspondente for pressionada ela fornece a informação sobre os parâmetros de plotagem atuais.

EQ (3)

O nome da variável EQ é reservado pela calculadora para armazenar a equação atual em plotagens ou solução para as equações (Consulte o capítulo 2...). A tecla do menu marcada EQ neste menu pode ser usada como seria se tivesse seu menu de variável, ex. se pressionar [EQ] listará o conteúdo atual desta variável.

ERASE (4)

A função ERASE apaga o conteudo atual da janela do gráfico. Na programação, pode ser usada para assegurar que a janela do gráfico esta limpa ante de plotar um novo gráfico.

DRAX (5)

A função DRAX desenha os eixos na plotagem atual, se algum deles estiver visível.

DRAW (6)

A função DRAW desenha a plotagem definida no PPAR.

O menu PTYPE sob PLOT (1)

O menu PTYPE lista o nome de duas plotagens bideimensionais préprogramadas na calculadora. O menu contém as seguintes teclas de menu:

Estas teclas correspondem aos tipos de plotagens Function, Conic, Polar, Parametric, Truth e Diff Eq, apresentadas anteriormente. Pressionar um destas teclas enquanto digita um programa, ativará a função correspondente no programa. Pressione para retornar ao menu PLOT.

O menu PPAR (2)

O menu PPAR lista diferentes opções para a variável PPAR conforme dado pelas seguintes etiquetas de teclas do menu. Pressione (NXT) para mover para os próximos menus:

Nota: os comandos de SCALE mostrados aqui representam realmente SCALE, SCALEW, SCALEH, nesta ordem.

O seguinte diagrama ilustra as funções disponíveis no menu PPAR. As letras anexadas a cada função no diagrama são usadas somente para referência na descrição das funções mostradas abaixo.

INFO (n) and PPAR (m)

Se pressionar () ou inserir () () enquanto estiver neste menu, obterá uma lista das configurações PPAR atuais, por exemplo:

Esta informação indica que X é a variável independente (Indep), Y é a variável dependente (Depnd), a faixa do eixo x vai de -6.5 a 6.5 (Xrng), a faixa do eixo y vai de -3.1 a 3.2 (Yrng). A última parte da informação no visor, o valor de RES (RESolução) determina o intervalo da variável independente para gerar a plotagem.

As etiquetas da tecla do menu incluidas no menu PPAR(2) representam os comandos que podem ser usados nos programas. Estes comandos incluem: INDEP (a)

O comando INDEP especifica a variável independente e sua faixa de plotagem. Estas especificações são armazenadas como o terceiro parâmetro na variável PPAR. O valor padrão é 'X'. O valor que pode ser atribuído as especificações das variáveis independentes são:

- O nome da variável ex. 'Vel'
- O nome da variável em uma lista, ex. { Vel }
- O nome da variável e uma faixa em uma lista, ex. { Vel 0 20 }
- Uma faixa sem um nome de variável, ex. { 0 20 }
- Dois valores representando uma faixa, ex. 0 20

Em um programa, qualquer uma destas especificações serão seguidas pelo comando INDEP.

DEPND (b)

O comando DEPND especifiva o nome da variável dependente. Para o caso de plotagens TRUTH especifica também a faixa de plotagem; O padrão é Y. O tipo de especificações para a variável DEPND é o mesmo para a variável INDEP.

XRNG (c) e YRNG (d)

O comando XRNG especifica a faixa de plotagem para o eixo x enquanto o comando YRNG especifica a faixa de plotagem para o eixo y. A entrada para qualquer um destes comandos são os dois números que representam os valores mínimos e máximos de x ou y. Os valores das faixas dois eixos x e y são armazenados em pares ordenados (x_{min}, y_{min}) e (x_{max}, y_{max}) nos dois primeiros elementos da variável PPAR. Os valores padrões para x_{min} e x_{max}

são -6.5 e 6.5, respectivamente. Os valores padrões para x_{min} e x_{max} são - 3.1 e 3.2, respectivamente.

RES (e)

O comando RES (resolução) especifica o intervalo entre os valores da variável independente ao produzir uma plotagem específica. A resolução pode ser expressa em termos de unidades de usuário como um número real ou em termos de pixels como um inteiro binário (números começando com #, ex. #10). A resolução é armazenada como o quarto item na variável PPAR.

CENTR (q)

O comando CENTR toma como argumento um par ordenado (x,y) ou um valor de x, e ajusta os dois primeiros elementos na variável PPAR, ex. (x_{min}, y_{min}) e (x_{max}, y_{max}) , para que o centro da plotagem seja (x,y) ou (x,0), respectivamente.

SCALE (h)

O comando SCALE determina a escala de plotagem representada pelo número de unidades de usuário por marca selecionada. A escala padrão é 1 unidade de usuário por marca de seleção. Quando o comando SCALE for usado, toma como argumento dois números, x_{scale} e y_{scale} , representando as novas escalas horizontal e vertical. O efeito do comando SCALE é ajustar os paramêtros $(x_{\text{min}}, y_{\text{min}})$ e $(x_{\text{max}}, y_{\text{max}})$ no PPAR para acomodar a escala desejada. O centro da plotagem é preservada.

SCALEW (i)

Dado um fator x_{factor} , o comando SCALEW multiplica a escala horizontal pelo fator. W na SCALEW significa largura (width). A execução de SCALEW altera os valores de x_{min} e x_{max} no PPAR.

SCALEH (j)

Dado um fator y_{factor} , o comando SCALEH multiplica a escala vertical pelo fator. H na SCALEH significa altura (height). A execução de SCALEW altera os valores de y_{min} e y_{max} no PPAR.

Nota: Alterações introduzidas usando SCALE, SCALEW ou SCALEH, podem ser usadas para aumentar ou diminuir uma plotagem.

ATICK (I)

O comando ATICK (marca TICK no eixo) é usada para configurar as anotações de marca de seleção para o eixos. O valor de entrada para o comando ATICK pode ser um dos seguintes:

- Um valor real x: configura ambas anotações de seleção do eixo x e y para as unidades x
- Uma lista de dois valores reais { x y }: configura as anotações de seleção nos eixos x e y para as unidades x e y, respectivamente.
- Um número inteiro binário A #n: configura ambas anotações de seleção do eixo x e y para os pixels #n

Uma lista de dois núemeros inteiros binários {#n #m}: configura as anotações de seleção nos eixos x e y para as unidades #n e #m, respectivamente.

AXES (k)

O valor de entrada para o comando dos eixos consiste de um par ordenada ou uma lista (x,y) ou uma lista {(x,y) atick "marca de eixo x" "marca de eixo y"}. O parâmetro atick significa a especificação das anotações de marca de seleção conforme descrito acima no comando ATICK. Os pares ordenados representam o centro da plotagem. Se apenas o par ordenado for dado como entrada para os AXES, apenas a origem do eixo é alterada. O argumento para o comando AXES, se um par ordenado ou uma lista de valores, é armazenado como o parâmetro no PPAR.

Para retornar ao menu PLOT, pressione IIII.

Pressione NXT para alcançar o segundo menu da configuração de menu PLOT.

RESET (f)

Este botão reajustará os parâmetros de plotagem para os valores padrão.

O menu 3D dentro da PLOT (7)

O menu 3D contém dois submenus, PTYPE e VPAR, e uma variável, EQ. Já conhecemos o significado de EQ, portanto, nos concetraremos no conteúdo dos menus PTYPE e VPAR. O diagrama abaixo mostra a ramificação do menu 3D.

O menu PTYPE dentro de 3D (IV)

O menu PTYPE sob 3D contém as seguintes funções:

Estas funções correspondentes as opções gráficas Slopefield, Wireframe, Y-Slice, Ps-Contour, Gridmap e Pr-Surface apresentadas anteriormente neste capítulo. Pressionar uma destas teclas enquanto digita um programa, ativará a função correspondente no programa. Pressione para retornar ao menu 3D.

O menu VPAR dentro de 3D (V)

A variável VPAR significa Parâmetros de volume, referindo-se ao paralelepípedo no espaço onde o gráfico tridimensional de interesse é construido. Ao pressionar [VPAR] no menu 3D você obterá as seguintes funções. Pressione (NXT) para mover para o próximo menu.

```
Xvol: -1. 1. Xeye: 0.
Yvol: -1. 1. Yeye: -3.
Zvol: -1. 1. Zeye: 0.
Xrng: -1. 1. Xstep: 10.
Yrng: -1. 1. Ystep: 8.
```

A seguir, descrevemos o significado destas funções:

INFO (S) and VPAR (W)

Ao pressionar (S) você obterá a informação mostrada no visor esquerdo acima. As faixas em *Xvol*, *Yvol* e *Zvol* descrevem a extensão do paralelepípedo no espaço onde o gráfico será gerado. *Xrng* e *Yrng* descrevem a faixa de valores de x e y, respectivamente, como as variáveis independentes no plano x-y que será usdo para gerar funções da forma z = f(x,y).

Pressione (XY) e (Y) para obter a informação no visor direito acima. Estes são os valores do local do ponto de vista para o gráfico tridimensional (Xeye, Yeye, Zeye), e do número de etapas em x e y para gerar uma grade para as plotagens de superfície.

XVOL (N), YVOL (O) e ZVOL (P)

Estas funções tomam como entrada um valor máximo e mínimo e são usadas para especificar a extensão do paralelepípedo onde o gráfico será gerado (a visão em paralelepipedo). Estes valores são armazenados na variável VPAR. Os valores padrões para as faixas XVOL, YVOL e ZVOL são –1 a 1.

XXRNG (Q) e YYRNG (R)

Estas funções tomam como entrada um valor mínimo e máximo e são usadas para especificar as faixas e variáveis x e y para gerar as funções z = f(x,y). O valor padrão de faixas XXRNG e YYRNG serão os mesmos de XVOL e YVOL.

EYEPT (T)

A função EYEPT toma como valores reais de entrada x, y, e z representam o local do ponto de visão do gráfico tridimensional. O ponto de visão é um ponto no espaço onde o gráfico tridimensional é observado. Alterar o ponto de visão produzirá visões diferentes do gráfico. A figura abaixo ilustra a

idéia do ponto de visão em relação ao espaço atual do gráfico e sua projeção no plano do visor.

NUMX(U) and NUMY (V)

As funções NUMX e NUMY são usadas para especificar o número de pontos ou etapas ao longo de cada direção para ser usado na geração da grade base onde obter os valores de z = f(x,y).

VPAR (W)

Isto é apenas uma referência para a variável VPAR.

RESET (X)

Reajusta os parâmetros no visor para os valores padrão.

Pressione MXT para retornar ao menu 3D.

Pressione para retornar ao menu PLOT.

O menu STAT dentro de PLOT

O menu STAT fornece para plotagens relacionadas com as análises estatísticas. Dentro deste menu encontramos os seguintes menus:

O diagrma abaixo perntence a ramificação do menu STAT dentro do PLOT. Os números e letras acompanhando cada função ou menu são usados para a referência nas descrições que seguem a figura.

O menu PTYPE dentro de STAT (I)

O menu PTYPE fornece as seguintes funções:

Estas teclas correspondentes aos tipos de plotagens *Bar (A), Histogram (B), e Scatter(C)*, apresentados anteriormente. Pressionar um destas teclas enquanto digita um programa, ativará a função correspondente no programa. Pressione **TIII** para retornar ao menu STAT.

O menu DATA dentro de STAT (II)

O menu DATA fornece as seguintes funções:

As funções listadas neste menu são usadas para manipular a matriz estatística ΣDAT. As funções Σ+ (D) e Σ- (E), adicionam ou removem as linhas com os dados da matriz ΣDAT. CLΣ (F) limpa a matriz ΣDAT (G) e a tecla do menu ΣDAT é apenas como uma referência para as aplicações interativas. Maiores detalhes sobre o uso destas funções são apresentados em um capítulo sobre as aplicações estatísticas. Pressione para retornar ao menu STAT.

O menu SPAR dentro de STAT (III)

O menu SPAR fornece as funções sequintes:

INFO (M) and Σ PAR (K)

A tecla INFO no Σ PAR fornece a informação mostrada no visor acima. A informação listada no visor é contida na variável Σ PAR. Os valores mostrados são os valores padrõres para as colunas x e y interceptação e inclinação de um modelo de ajuste de dados e digire o modelo a ser ajustado aos dados na Σ DAT.

XCOL (H)

O comando XCOL é usada para indicar qual a colunas de Σ DAT, sem houver mais do que uma, será a coluna x ou coluna variável independente.

YCOL (I)

O comando YCOL é usado para indicar qual a coluna de Σ DAT, se houver mais de uma, será a coluna y ou coluna da variável dependente.

MODL (J)

O comando MODL refere-se ao modelo a ser selecionado para ajustar os dados no Σ DAT, se um ajuste de dado for implementado. Para ver qual opção está disponível, pressione Ξ Você verá o seguinte menu:

Estas funções correspondem aos Ajustes Linear, Logaritmo, Exponencial, Potência ou o Melhor Ajuste. Ajuste de dados é descrito em mais detalhes em um capítulo posterior. Pressione zpara retornar ao menu ΣPAR.

$\Sigma PAR(K)$

 Σ PAR é apenas uma referência para a variável Σ PAR de uso interativo.

RESET (L)

Esta função reajusta o conteúdo de ΣPAR para seus valores padrões.

Pressione war para retornar ao ambiente STAT menu. Pressione [PLOT] para retornar ao menu principal PLOT.

O menu FLAG dentro do PLOT

O menu FLAG é atualmente interativo para selecionar qualquer uma das opções seguinte:

- AXES: quando selecionado, os eixos são mostrados se estiverem visíveis dentro da área ou volume de plotagem.
- CNCT: quando selecionado a plotagem é produzida para que os pontos individuais sejam conectados.
- SIMU: quando selecionado e se mais de um gráfico for plotado no mesmo conjunto de eixos, plote todos os gráficos simultaneamente.

Pressione para retornar ao menu PLOT.

Gerar as plotagens com o programas

Dependendo se estamos tratando com um gráfico bidimensional definido pela função, por dado de ΣDAT ou por uma função tridimensional, é necessário configurar as variáveis PPAR, ΣPAR e /ou VPAR antes de gerar uma plotagem em um programa. Os comandos mostrados na seção anterior ajudam a configurar tais variáveis.

A seguir descrevemos o formato geral para as variáveis necessárias para produzir os tipos diferentes de plotagens disponíveis na calculadora.

Gráficos bidimensionais

Os gráficos bidimensionais gerados por funções, a saber, Function, Conic, Parametric, Polar, Truth e Differential Equation, use PPAR com o formato:

```
{ (x_{min}, y_{min}) (x_{max}, y_{max}) indep res axes ptype depend }
```

Os gráficos bidimensionais gerados dos dados na matriz estatísticas ΣDAT , a saber, Bar, Histogram e Scatter, use a variável ΣPAR com o formato:

```
{x-column y-column slope intercept model}
```

enquanto ao mesmo tempo usa PPAR com o formato mostrado acima.

O significado de diferentes parâmetros no PPAR e Σ PAR foram apresentados na secão anterior.

Gráficos tridimensionais

Os gráficos tridimensionais disponíveis, a saber, as opções *Slopefield, Wireframe, Y-Slice, Ps-Contour, Gridmap* e *Pr-Surface*, usam a variável VPAR com o formato seguinte:

```
\{x_{\text{left}}, x_{\text{right}}, y_{\text{near}}, y_{\text{far}}, z_{\text{low}}, z_{\text{high}}, x_{\text{min}}, x_{\text{max}}, y_{\text{min}}, y_{\text{max}}, x_{\text{eye}}, y_{\text{eye}}, z_{\text{eye}}, x_{\text{step}}, y_{\text{step}}\}
```

Estes pares de valores de x, y e z, representa o seguinte:

- Dimensões da visão em paralelepípedo (x_{left} , x_{right} , y_{near} , y_{far} , z_{low} , z_{high})
- Faixa de x e y independente das variáveis $(x_{min}, x_{max}, y_{min}, y_{max})$
- Local do ponto de visão (x_{eye}, y_{eye}, z_{eye})
- Números de etapas nas direções x e y (x_{step}, y_{step})

Gráficos tridimensionais exigem também a variável PPAR com os parâmetros mostrados aqui,

A variável EQ

Todas as plotagens, exceto estas baseadas no ΣDAT, requerem a definição da função ou funções a serem plotadas armazenando as expressões ou referências para estas funções na variável EQ.

Em resumo, para produzir uma plotagem em um programa, é necessário carregar EQ, se for necessário. Então carregar PPAR, PPAR e ΣPAR ou PPAR e VPAR. Finalmente, use o nome do tipo de plotagem adequado: FUNCTION, CONIC, POLAR, PARAMETRIC, TRUTH, DIFFEQ, BAR, HISTOGRAM, SCATTER, SLOPE, WIREFRAME, YSLICE, PCONTOUR, GRIDMAP ou PARSURFACE para produzir sua plotagem.

Exemplos de plotagens interativas usando o menu PLOT

Para compreender melhor a forma em que um programa funciona com os comandos e variáveis PLOT, tente os sequintes exemplos de plotagens interativas usar o menu PLOT.

Exemplo 1 – Uma plotagem de função:

← USER F3 Obter um menu PLOT (*) Seleciona FUNCTION como o tipo de plotagem '√r' (ENTER) ←¬ **III** Armazena a função '√r' no EQ Mostra os parâmetros de plotagem (ALPHA) ← (R) (ENTER) [1111131] Define 'r' como a variável independente Define 's' como a variável (ALPHA) (←) (S) (ENTER) (U313111) dependente 1 (+/-) (SPC) 10 WATE Define (-1, 10) como a faixa x 1 (+/-)(SPC) 5 WAW (NXT) Define (-1, 5) como a faixa y { (0,0) {.4 .2} "Rs" "Sr"} Lista de definição de eixos **13838** Define o centro do eixo, seleções, etiquetas NXT III Retorna para o menu PLOT BANKS DANK (NXT) LINESU Apaga a tela, desenha os eixos, etiquetas Desenha a função e mostra a (NXT)

imagem

NXT NXT IIII

13838

NXT III

NXT UNI

DEELIN (TXN) WIED ERIED

Remova as etiquetas do menu Retorna ao visor normal da calculadora

(*) Menu PLOT disponível através da tecla definida pelo usuário (B) conforme mostrado anteriormente neste capítulo.

Exemplo 2 – <u>Uma plotagem paramétrica (Uso RAD como ângulos)</u>:

Obtém um menu PLOT

Selecionar PARAMETRIC como o

tipo de plotagem

EQ

Mostra os parâmetros de plotagem
{t 0 6.29} ENTER IIIII Define 't' como a variável indep.

ALPHA (Y ENTER IIIII DEfine 'Y' como a variável

dependente

2. 2 */- \$PC 2. 2 \$\text{BADD}\$ Define (-2.2, 2.2) como a faixa x 1. 1 */- \$PC 1. 1 \$\text{BADD}\$ (NXT) Define (-1.1, 1.1) como a faixa y Lista de definição de eixos

Elsia de delimição de cixos

Define o centro do eixo, seleções,

etiquetas

Retorna para o menu PLOT Apaga a imagem, desenha os

eixos, etiquetas

Desenhe a função e mostre a

imagem

Termina a plotagem

Exemplo 3 – Uma plotagem de função:

Obter um menu PLOT

Selecionar POLAR como o tipo de

plotagem

'1+SIN(θ)' ENTER (†) ESTE Armazena a função complexa r =

 $f(\theta)$ no EQ

[(θ 0 6.29) ENTER [[(Π)] [Mostra os parâmetros de plotagem Define $'\theta'$ como a variável indep.
(ALPHA) (Y) (ENTER) [1] [1]	Define 'Y' como a variável dependente
3 (+/-) (SPC) 3 HATE	Define (-3,3) como a faixa x
0.5 +1- SPC 2.5 MIII NXT	Define (-0.5,2.5) como a faixa y
{ (0,0) {.5 .5} "x" "y"} ENTER	Lista de definição de eixos
	Define o centro do eixo, seleções, etiquetas
NXT IZOT	Retorna para o menu PLOT
TXN KIRU ESTRE	Apaga a imagem, desenha os
	eixos, etiquetas
NXT IIII	Desenhe a função e mostre a imagem
IIII (NXT)	Remova as etiquetas do menu
(NXT) (NXT) ETT ETTE	Retorna ao visor normal da calculadora

Destes exemplos vemos um padrão para a geração interativa de um gráfico de duas dimensões através do menu PLOT:

- 1 Selecione PTYPE.
- 2 Armazene a função para plotar na variável EQ (usando o formato correto, ex. 'X(t)+iY(t)' para PARAMETRIC).
- 3 Insira o nome (e a faixa, se for necessário) das variáveis dependente e independente
- 4 Insira as especificações dos eixos como uma lista {centro seleção etiquetas x e y}
- 5 Use ERASE, DRAX, LABEL, DRAW para produzir um gráfico totalmente marcado com os eixos

Esta mesma abordagem pode ser usada para produzir as plotagens com um programa, exceto que é necessário adicionar o comando PICTURE depois da função DRAW ser ativada para apresentar o visor dos gráficos para a pilha.

Exemplos de plotagens geradas por programas

Nesta seção mostramos como implementar com programas a geração dos últimos três exemplos. Ativar o menu PLOT antes de começar a digitar o programa para facilitar a inserção de comandos gráficos () SER B consulte acima).

Exemplo 1 – <u>Uma plotagem de função</u>: Insira o seguinte programa:

«	Inicie o programa
{PPAR EQ} PURGE	Exclua o PPAR e EQ atuais
`√r' STEQ	Armazena a função '√r' no EQ
'r' INDEP	Configura a variável independente
	para 'r'
's' DEPND	Configura a variável dependente
	para 's'
FUNCTION	Seleciona FUNCTION como o tipo
	de plotagem
{ (0.,0.) {.4 .2}	
"Rs" "Sr" } AXES	Configura a informação do eixo
-1. 5. XRNG	Configure a faixa x
-1. 5. YRNG	Configura a faixa y
ERASE DRAW DRAX LABEL	Apaga e desenha, eixos e etiquetas
PICTURE *	Reativa o visor de gráficos para a pilha

Armazena o programa na variável PLOT1. Para executá-lo pressione (MR), se for necessário, e depois [2001].

Exemplo 2 – <u>Uma plotagem p</u>	<u>paramétrica</u> Insira o seguinte programa:
«	lnicie o programa
RAD {PPAR EQ} PURGE	Altere para radianos, exclua as var.
'SIN(t)+i*SIN(2*t)' ST	TEQ Armazene 'X(t)+iY(t)' no EQ
{ t 0. 6.29} INDEP	Configura a variável indep. para 'r'
	com a faixa desejada
Y' DEPND	Configura a variável dependente
	para 'Y'

PARAMETRIC	Selecione PARAMETRIC como o tipo de plotagem
{ (0.,0.) {.5 .5} "X(t)"	Cf:
"Y(t)" } AXES	Configura a informação do eixo
-2.2 2.2 XRNG	Configure a faixa x
-1.1 1.1 YRNG	Configura a faixa y
ERASE DRAW DRAX LABEL	Apague e desenhe, eixos e
	etiquetas
PICTURE	Reativa os visores dos gráficos para
	a pilha
»	Fecha o programa
Armazena o programa na variável PLO	DT2. Para executá-lo pressione 🚧,
se for necessário, e depois 🎞 🖺 .	
5	
	Insira o seguinte programa:
«	Inicie o programa
RAD {PPAR EQ} PURGE	Altere para radianos, exclua as
variáveis.	
$^1+\sin(\theta)$ ' STEQ	Armazena 'f(θ)' no EQ
$\{\theta \text{ 0. 6.29}\}\ \text{INDEP}$	Configura a variável indep. para 'θ'
	com a faixa desejada
Y' DEPND	Configura a variável dependente
	para 'Y'
POLAR	Selecionar POLAR como o tipo de
((0 0) (5 5)	plotagem
{ (0.,0.) {.5 .5}	C (: (~ 1 .
"x" "y"} AXES	Configura a informação do eixo
-3. 3. XRNG	Configure a faixa x
5 2.5 YRNG	Configura a faixa y
ERASE DRAW DRAX LABEL	Apague e desenhe, eixos e
	etiquetas
PICTURE	Reativa os visores dos gráficos para
	a pilha Termina o programa

Armazena o programa na variável PLOT3. Para executá-lo pressione (MR), se for necessário, e depois pressione (ELLIPE).

Estes exercícios ilustram o uso do comando PLOT nos programas. Eles apenas fazem uma demonstração superficial das aplicações do programa de plotagens. Gostaria de convidar o leitor a fazer seus próprios exercícios sobre plotagens de programação.

Desenhar os comandos para uso na programação

Você pode desenhar as figuras nas janelas do gráfico diretamente de um programa usando os comandos similares aqueles do menu PICT disponíveis em <u>mas</u> <u>nas funções disponíveis neste menu são as seguintes.</u>
Pressione <u>nas para mover para o próximo menu:</u>

Obviamente, os comandos LINE, TLINE e BOX executam as mesmas operações das contrapartes interativas com a entrada apropriada. Estas e outras funções no menu PICT referem-se as janelas do gráfico cujas as faixas x e y são determinadas na variável PPAR, como demonstrado acima para os diferentes tipos de gráficos. As funções no comando PICT são descritas a seguir:

PICT

Estas teclas referem-se a variável chamada PICT que armazena o conteúdo atual da janela dos gráficos. Este nome de variável não pode ser colocado dentro de aspas e pode apenas armazenar objetos gráficos. Desta forma, PICT não é similar a nenhuma variável da calculadora.

PDIM

A função PDIM toma como entrada um dos dois pares ordenados (x_{min}, y_{min}) (x_{max}, y_{max}) ou dois números inteiros binários #w e #h. O efeito de PDIM é substituir o conteúdo atual de PICT com o visor vazio. Quando o argumento for (x_{min}, y_{min}) (x_{max}, y_{max}) , estes valores tornam-se a faixa das coordenadas definida pelo usuário no PPAR. Quando o argumento for #w e #h, as faixas

das coordenadas definidas pelo usuário no PPAR se mantém inalteradas, porém o tamanho dos gráficos são alterados para #h × #v pixels.

PICT e o visor dos gráficos

PICT, a área de armazenagem para o gráfico atual pode ser vista como um gráfico bidimensional com um tamanho mínimo de 131 pixels de largura por 64 pixels de altura. A largura máxima de PICT é 2048 pixels sem restrição na altura máxima. Um pixel é cada um dos pontos no visor da calculadora que pode ser ligado (escuro) ou desligado (claro) para produzir o texto ou gráficos. O visor gráfico da calculadora tem 131 pixels por 64 pixels, ex. o tamanho mínimo para PICT. Se seu PICT for maior do que o visor, então o gráfico PICT pode ser visto como um domínio bidimensional que pode ser rolado através do visor da calculadora, conforme ilustrado no diagrama mostrado a seguir.

LINE

Este comando toma como entrada dois pares ordenados (x_1,y_1) (x_2,y_2) ou dois pares de coordenadas de pixel $\{\#n_1 \#m_1\}$ $\{\#n_2 \#m_2\}$. Desenha a linha entre estas coordenadas.

TLINE

Este comando (Alterna LINHA) toma como entrada dois pares ordenados (x_1,y_1) (x_2,y_2) ou dois pares de coordenadas de pixels $\{\#n_1 \#m_1\}$ $\{\#n_2 \#m_2\}$. Desenha a linha entre estas coordenadas, alternando o estado (ligando ou desligando) os pixels que estão no caminho da linha e vice versa.

BOX

Este comando toma como entrada dois pares ordenados (x_1,y_1) (x_2, y_2) ou dois pares de coordenadas de pixels $\{\#n_1 \#m_1\}$ $\{\#n_2 \#m_2\}$. Desenha a caixa cujas diagonais são representadas pelos dois pares de coordenadas na entrada.

ARC

Este comando é usado para desenhar um arco. ARC toma como entrada os seguintes objetos:

- As coordendas do centro do arco como (x,y) nas coordenadas do usuário ou {#n, #m} em pixels.
- Raio de um arco como r (coordenadas do usuário) ou #k (pixels).
- ângulos inicial θ_1 e final θ_2 .

PIX?, PIXON e PIXOFF

Estas funções tomam como entrada as coordenadas do ponto nas coordenadas do usuário, (x,y), ou em pixels {#n, #m}.

- PIX? Verifica se o pixel no local (x,y) ou {#n, #m} está ligado.
- PIXOFF desliga o pixel no local (x,y) ou {#n, #m}.
- PIXON liga o pixel no local (x,y) ou {#n, #m}.

PVIEW

Este comando toma como entrada as coordenadas de um ponto como coordenadas do usuário (x,y) ou pixels {#n, #m} e coloca o conteúdo de PICT com o canto esquerdo superior no local do ponto especificado. Você pode usar também uma lista vazia como argumento quando a imagem for centrada no visor. PVIEW não ativa o cursor dos gráficos ou o menu da imagem. Para ativar qualquer uma das características use PICTURE.

$PX \rightarrow C$

A função PX→C converte as coordenadas de pixel {#n #m} para as coordenadas da unidade de usuário (x,y).

$C \rightarrow PX$

A função C→PX converte as coordenadas de unidade do usuário (x,y) para coordenadas de pixel {#n #m}.

Exemplos de programação usando as funções de desenho

Nesta seção usamos os comandos descritos acima para produzir os gráficos com os programas. A listagem de programa é fornecida no disquete anexado ou CDROM.

Exemplo 1 – Um programa que usa os comandos de desenho O seguinte programa produz um desenho no visor dos gráficos. (Este programa não tem outro objetivo exceto mostrar como usar os comandos da calculadora para produzir os desenhos no visor).

«	Inicie o programa
DEG	Selecione grau para as medidas
0. 100. XRNG	angulares
	Configure a faixa x
0. 50. YRNG	Configura a faixa y
ERASE	Apaga a imagem
(5., 2.5) (95., 47.5) BOX	Caixa de desenho de (5,5) para (95,95)
(50., 50.) 10. 0. 360. ARC	Desenha um centro de círculo (50,50), r =10.
(50 50) 12 190 190 ABC	Desenha um centro de círculo
(50., 50.) 12. –180. 180. ARC	
1.0.500:	(50,50), r = 12.
1 8 FOR j	Desenha 8 linhas dentro do círculo
(50., 50.) DUP	As linhas são centradas como
	(50,50)
'12*COS(45*(j-1))' →NUM	Calcule x, outra extreminda em 50 + x
'12*SIN(45*(j-1))' →NUM	Calcule y, outra extremidade em 50
	+ y
$R \rightarrow C$	Converte x y para (x,y), núm.
	complexo
+	Adiciona (50,50) para (x,y)
LINE	Desenha uma linha
NEXT	Final FOR loop
{ } PVIEW	Mostra a imagem
»	-

Exemplo 2 – Um programa para plotar uma seção cruzada natural de rio Esta aplicação pode ser útil para determinar a área e perímetros úmidos das seções cruzadas naturais de rio. Geralmente, a seção cruzada natural de rio é analisada em uma série de pontos, representando as coordenadas x e y em relação ao conjunto arbitrário de eixos de coordenadas. Estes pontos podem ser plotados e um desenho da seção cruzada produzida para uma dada elevação de superfície da água. A figura abaixo ilustra os termos apresentados neste parágrafo.

O programa, disponível no disquete ou CD ROM que acompanha a sua calculadora, usa quatro subprogramas FRAME, DXBED, GTIFS e INTRP. O programa principal chamado XSECT, toma como entrada uma matriz de valores de x e y e a elevação da superfície da água Y (consulte a figura abaixo), nesta ordem. O programa produz um gráfico da seção cruzada que indica os dados de entrada com pontos no gráfico e mostra a superfície livre na seção cruzada.

Foi sugerido que você crie um subdiretório separado para armazenar os programas. Você pode chamar o subdiretório RIVER, dado que estamos lidando com seções cruzadas de canal aberto irregular, típicos de rios.

Para ver o programa XSECT em ação, use os seguintes conjuntos de dados. Inserí-los como matrizes de duas colunas, a primeira coluna sendo x e a segunda um y. Armazene as matrizes nas variáveis com os nomes tais como XYD1 (conjunto de dados X-Y 1) e XYD2 (conjunto de dados X-Y 2). Para executar o local de programa um dos conjuntos de dados configurados na pilha, ex. A calculadora mostrará um desenho da seção cruzada com a superfície da água correspondente. Para sair do visor do gráfico, pressione .

Tente os seguintes exemplos:

Seja paciente ao executar o programa XSECT. Devido ao número relativamente grande de funções gráficas usadas, a não contagem de iterações pode levar algum tempo para produzir o gráfico (aproximadamente 1).

Conjunto de dados 1		de dados 2	
×	Υ	Х	у
0.4	6.3	0.7	4.8
1.0	4.9	1.0	3.0
2.0	4.3	1.5	2.0
3.4	3.0	2.2	0.9
4.0	1.2	3.5	0.4
5.8	2.0	4.5	1.0
7.2	3.8	5.0	2.0
7.8	5.3	6.0	2.5
9.0	7.2	7.1	2.0
		8.0	0.7
		9.0	0.0
		10.0	1.5
		10.5	3.4
		11.0	5.0

Nota: O porgrama FRAME, conforme originalmente programado (consulte o disquete ou CD ROM), não mantém a escala adequada do gráfico. Se quiser manter a escala correta, substitua FRAME com o programa seguinte:

% STOΣ MINΣ MAXΣ 2 COL→ DUP →COL DROP - AXL ABS AXL 20 / DUP NEG SWAP 2 COL→ + →ROW DROP SWAP → yR xR % 131 DUP R→B SWAP yR OBJ→ DROP - xR OBJ→ DROP - / * FLOOR R→B PDIM yR OBJ→ DROP YRNG xR OBJ→ DROP XRNG ERASE %

Este programa mantém o tamanho da variável PICT em 131 pixels – o tamanho mínimo de pixel para o eixo horizontal – e ajusta o número de pixels nos eixos verticais para que uma escala 1:1 seja mantida entre os eixos vertical e horizontal.

Coordenadas de pixel

A figura abaixo mostra as coordenadas gráficas para o visor típico (mínimo) de 131×64 pixels. As coordenadas de pixels são medidas do canto esquerdo superior do visor {# 0h # 0h}, que corresponde as coordenadas definidas pelo usuário (x_{min} , y_{max}). As coordenadas máximas em termos de pixels correspondem ao canto direito inferior do visor {# 82h #3Fh}, que nas coordenadas definidas pelo usuário é o ponto (x_{max} , y_{min}). As coordenadas de outros dois cantos ambos em pixel como também nas coordenadas definidas pelo usuário são mostradas na figura.

Animar os gráficos

Aqui apresentamos uma forma de produzir animação usando o tipo de plotagem Y-Slice. Suponha que você queira animar a onda progressiva, $f(X,Y) = 2.5 \sin(X-Y)$. Podemos tratar o X como o tempo na animação produzindo plotagens de f(X,Y) e Y para valores diferentes de X. Para produzir este gráfico use o sequinte:

- Selecione divisão Y-Slice TYPE. '2.5*SIN(X-Y)' para EQ. 'X' para INDEP. Pressione (NXT) (XXT)
- Simultaneamente (no modo RPN). Use os seguintes valores:

 Pressione IIII IIII. Espere até que a calculadora gere todos os gráficos necessários. Quando estiver pronta, mostrará uma onda sinusoidal progressiva no seu visor.

Animar uma coleção de gráficos

A calculadora fornece a função ANIMATE para animar um número de gráficos que foram colocados na pilha. Você pode gerar um gráfico no visor de gráficos usando os comandos nos menus PLOT e PICT. Para colocar o gráfico gerado na pilha, use PICT RCL. Quando tiver n gráficos nos níveis n até 1 da pilha, você pode usar apenas o comando n ANIMATE para produzir uma animação dos gráficos colocados na pilha.

Exemplo 1 – Animar uma ondulação na superfície da água Como exemplo, digite no seguinte programa que gera 11 graficos mostrando um círculo inserido no meio do visor dos gráficos e cujo raio aumenta por um valor constante em cada gráfico subsequente.

«	Iniciar o programa
RAD	Define as unidades do
	ângulo para radiano
131 R→B 64 R→B PDIM	Configura PICT para
	131×64 pixels
0 100 XRNG 0 100 YRNG	Configura faixas x e y para
	0-100
1 11 FOR j	Inicia loop com $j = 1 11$
ERASE	Apaga PICT atual
(50., 50.) '5*(j-1)' →NUM	Centros dos círculos (50,50)

 $0 \ '2*\pi' \rightarrow NUM \ ARC$ Desenha o centro do círculo r = 5(j-1) PICT RCL Coloca PICT atual na pilha NEXT Fecha o loop FOR-NEXT Anima

Termina o programa

»

Armazene este programa em uma variável chamada PANIM (animação de plotagem). Para executar este programa pressione (se necessário) (se necessário) (leva mais de um minuto para a calculadora gerar os gráficos e continuar com a animação. Portanto, seja realmente paciente aqui. Verá que o símbolo da ampulheta no visor para o que parece um longo tempo antes que a animação, similar às ondas produzidas pela pedra caindo na superfície de um corpo de água parada, apareça no visor. Para interomper a animação, pressione (ov).

Os 11 gráficos gerados pelos programas estão ainda disponíveis na pilha. Se quiser reiniciar a animação, use apenas: 11 ANIMATE. (A função ANIMATE está disponível usando ANIMATE. (A função ANIMATE. (A

Suponha que deseje manter as figuras que compõem esta animação em uma variável. Crie uma lista destas figuras, vamos chamá-las de WLIST usando:

Pressione para recuperar sua lista de variáveis. A variável deve agora ser listada nas suas teclas de menu virtual. Para reanimar esta lista de variáveis você pode usar o seguinte programa:

« Inicie o programa

WLIST Coloque a lista WLIST na pilha

OBJ→ Decompõe a lista, nível 1 da pilha = 11

ANIMATE Inicie a animação * Feche o programa Salve este programa em uma variável chamada RANIM (ReANIMar). Para executá-lo pressione IIIIII.

O seguinte programa animará os gráficos na WLIST para frente e para trás:

Inicie o programa

WLIST DUP Coloque a lista WLIST na pilha, faça uma

cópia extra

REVLIST + Ordem reversa, concatena as 2 listas $OBJ \rightarrow$ Decomponha a lista, nível 1 da pilha = 22

ANIMATE Inicie a animação Fecha o programa

Salve este programa em uma variável chamada RANI2 (ReANImar versão 2). Para executá-lo pressione TITE. A animação simula agora uma onda na superfície da água parada que reflete nas paredes de um tanque circular de volta em direção ao centro. Pressione ov para interromper a animação.

Exemplo 2 – Animar a plotagem de diferentes funções de potência Suponha que desejemos animar a plotagem das funções $f(x) = x^n$, n = 0, 1, 2,3, 4, no mesmo conjunto de eixos. Você pode usar o seguinte programa:

Inicie o programa

RAD Defina as unidades do ângulo para

radiano

131 R→B 64 R→B PDIM Configure PICT para 131×64 pixels

0 2 XRNG 0 20 YRNG Configure as faixas x e y

0 4 FOR i Inicie o loop com $j = 0, 1, \ldots, 4$

Armazene 'X^j' na variável EQ 'X^i' STEQ

Apague PICT atual **ERASE**

DRAX LABEL DRAW Desenhe eixos, etiquetas e funções

PICT RCL Coloca PICT atual na pilha **NEXT** Feche o loop FOR-NEXT

5 ANIMATE Anime

Armazene este programa em uma variável chamada PWAN (animação de plotagem). Para executar este programa pressione (se necessário) (se necessário) Verá que a calculadora desenha cada função de potência individual antes de iniciar a animação onde cinco funções serão plotadas rapidamente um depois do outro. Para interromper a animação, pressione (N).

Mais informações sobre a função ANIMATE

A função ANIMATE conforme usada nos exemplos anteriores nos dois exemplos anteriores usou como entrada os gráficos a serem animados e seus números. Você pode usar as informações para produzir a animação, tal como o intervalo de tempo entre os gráficos e o número de repetições. O formato geral da função ANIMATE em tais caso é a sequinte:

n-graphs { n {#X #Y} delay rep } ANIMATE n representa o número de gráficos, {#X #Y} significa para as coordenadas de pixel do canto esquerdo inferior da área a ser plotada (consulte a figura abaixo), delay é o número de segundos permitido entre os gráficos consecutivos na animação e rep é o número de repetições da animação.

Objetos gráficos (GROBs)

A palavra GROB significa objetos gráficos e é usada no ambiente da calculadora para representar uma descrição pixel a pixel de uma imagem que foi produzida no visor da calculadora. Portanto, quando uma imagem for convertida em GROB, torna-se uma sequência de dígitos binários (dígitos binário = bits), ex. 0's e 1's. Pa ilustrar GROBs e a conversão de imagens para GROBS considere o seguinte exercício.

Quando produzimos um gráfico na calculadora, o gráfico torna-se o conteúdo de uma variável especial chamada PICT. Assim, para ver o último conteúdo de PICT, você pode usar: PICT RCL (RC

A exibição mostra no nível 1 da pilha a linha Graphic 131×64 (se usar o tamanho padrão de visor) seguindo pelo desenho da parte superior do gráfico. Por exemplo,

Se pressionar ventão o gráfico contido no nível 1 é mostrado na exibição gráfica da calculadora. Pressione para retornar ao visor normal da calculadora.

O gráfico no nível 1 não está ainda no formato GROB, embora seja, por definição, um objeto de gráficos. Para converter um gráfico na pilha em um GROB use: 3 NE Agora temos a seguinte informação no nível 1:

A primeira parte da descrição é similar ao que tivemos originalmente, a saber, Graphic 131×64, mas agora é expresso como Graphic 13128 × 8. Portanto, a exibição gráfica é agora substituida por uma sequência de zeros e representa os pixels do gráfico de original. Assim, o gráfico original foi agora convertido para sua representação equivalente em bits.

Você também pode converter as equações no GROBs. Por exemplo, usar o tipo de escritor de equação na equação 'X^2+3' no nível 1 da pilha e depois pressionar

| JENTER ← ME NATIONALE. Você terá agora no nível 1 o GROB descrita como:

Como objeto gráfico desta equação pode agora ser colocada nas exibições gráficas. Para recuperar as exibições dos gráficos pressioen . Depois, mova o cursor para um setor vazio e pressione . A equação 'X^2-5' é colocada no gráfico, por exemplo:

Assim, GROBs podem ser usados para documentar os gráficos colocando as equações ou texto nas exibiões gráficas.

O menu GROB

→GROB

Das funções que já usamos SUB, REPL, (do menu graphics EDIT), ANIMATE [ANIMA] e →GROB. ([PRG] é simplesmente uma forma de retornar ao menu de programa). Ao usar →GROB nos dois exemplos anteriores deve ter percebido que usei um 3 enquanto convertia o gráfico no GROB e usei um 1 quando convertia a equação no GROB. Este parâmetro da função →GROB indica o tamanho do objeto que está sendo convertido no GROB como 0 ou 1 − para uma fonte pequena, 2 − média e 3 − grande. As outras funções no menu GROB são descritas a seguir.

BLANK

A função BLANK, com argumentos #n e #m, cria objetos gráficos em branco de largura e altura especificadas pelos valores #n e #m, respectivamente. Isto é similar a função PDIM no menu GRAPH.

GOR

A função GOR (Gráficos OR) toma como entrada $grob_2$ (um objetivo GROB), um conjunto de coordendas e $grob_1$, e produz a superposição de $grob_1$ em $grob_2$ (ou PICT) iniciando nas coordenadas especificadas. As coordenadas podem ser especificadas como coordedas definidas pelo usuário (x,y) ou

pixels {#n #m}. GOR usa a função OR para determinar o status de cada pixel (ex. Ligado ou desligado) na região de sobreposição entre $grob_1$ e $grob_2$.

GXOR

A função GXOR (XOR gráficos) executam a mesma operação de GOR, mas usa XOR para determinar o status final de pixels na área de sobreposição entre os objetos gráficos $grob_1$ e $grob_2$.

Nota: Em ambos GOR e GXOR, quanto *grob2* for substituido por PICT, estas funções não produzem nenhuma saída. Para ver o resultado, é necessário reativar PICT para a pilha usando PICT RCL ou PICTURE.

→LCD

Toma um GROB especificado e exibe-o no visor da calculadora iniciando no canto esquerdo superior.

LCD→

Copia o conteúdo da pilha e visor de menu em um GROB de 131 x 64 pixels.

SIZE

A função SIZE, quando aplicada para um GROB, mostra o tamanho de GROBs na forma de dois números. O primeiro número, mostrado no nível 2 da pilha, representa a largura dos objetos gráficos e o segundo, no nível 1 da pilha, mostra sua altura.

Um exemplo de um programa usando GROB

O seguinte programa produz o gráfico da função seno incluindo um quadro – desenhado com a função BOX – e um GROB para marcar o gráfico. Aqui está a lista de programa:

FUNCTION Selecione tipo FUNCTION para

gráficos

'SIN(X)' STEQ Armazene a função seno no EQ ERASE DRAX DRAX LABEL DRAW

Limpe, desenhe eixos, etiquetas,

gráfico

(-6.28,-2.) (6.28,2.) BOX Desenhe um quadro em volta do

grafico

PICT RCL Coloque o contéudo de PICT na

pilha

"SINE FUNCTION" Coloque a etiqueta do gráfico na

pilha

1 →GROB Converta o segmento em um GROB

pequeno

(-6., 1.5) SWAP Coordene para colocar a etiqueta

GROB

GOR Combine PICT com a etiqueta

GROB

PICT STO Salve GROB combinado no PICT

{ } PVIEW Traga PICT para a pilha Fecha o programa

Salve o programa sob o nome GRPR (programa GROB). Pressione TITI para executar o programa. O resultado será similar a este:

Um programa com funções de plotagem e desenho

Nesta seção desenvolvemos um programa para produzir desenhar e marcar o Círculo de Mohr para uma dada condição de resistência bidimensional. A figura do lado esquerdo mostra o estado dado de resistência bidimensional com σ_{xx} e σ_{yy} sendo a resistência normal e τ_{xy} = τ_{yx} sendo a resistência ao cisalhamento. A figura do lado direito mostra o estado de resistência quando

o elemento é girado pelo ângulo ϕ . Neste caso, as resistências normais são σ'_{xx} e σ'_{yy} , enquanto as resistências ao cisalhamento são τ'_{xy} e τ'_{yx} .

A relação entre o estado original de resistências (σ_{xx} , σ_{yy} , τ_{xy} , τ_{yx}) e o estado de resistência quando os eixos são girados no sentido anti-horário por f (σ'_{xx} , σ'_{yy} , τ'_{xy} , τ'_{yx}), pode ser representada graficamente pela construção mostrada na figura acima.

Para construir o círculo de Mohr podemos usar um sistema de coordenada cartesiana com o eixo x correspondente as resistências normais (σ) e o eixo y correspondente as resistências ao cisalhamento (τ). Localize os pontos A(σ_{xx} , τ_{xy}) e B(σ_{yy} , τ_{xy}), e desenhe o segmento AB. O ponto C onde o segmento AB atravessa os eixos σ_n serão o centro do círculo. observe que as coordenadas do ponto C são (½-(σ_{yy} + σ_{xy}), 0). Ao construir o círculo manualmente, você pode usar um compasso para traçar o círculo desde que saiba o local do centro C e de dois pontos A e B.

Permita que o segmento AC represente o eixo x no estado original de resistência. Se quiser determinar o estado de resistência para um conjunto de eixos x'-y', girados no sentido anti-horário por um ângulo ϕ em relação conjunto original de eixos x-y, desenhe o segmento A'B', centrado em C e girado no sentido horário por um ângulo 2ϕ em relação ao segmento AB. Para coordenadas de ponto A' serão dados os valores (σ'_{xx} , τ'_{xy}), enquanto estas de B' serão dados os valores (σ'_{yy} , τ'_{xy}).

A condição de resistência para o qual a resistência ao cisalhamento, τ'_{xy} , é zero, indicada pelo segmento D'E', produz a tão chamada *resistências* principais, σ^{P}_{xx} (no ponto D') e σ^{P}_{yy} (no ponto E'). Para obter as resistências principais, é necessário girar o sistema de coordenadax'-y' por um ângulo ϕ_{n} , sentido anti-horário em relação ao sistema x-y. 'No círculo Mohr, o ângulo entre os segmentos AC e D'C mede $2\phi_{n}$.

A condição de resistência para o qual a resistência ao cisalhamento, τ'_{xy} , é um máximo, é dada pelo segmento F'G'. Sob tais condições ambos as resistências normais, $\sigma'_{xx} = \sigma'_{yy}$, são iguais. O ângulo correspondente para esta rotação é ϕ_s . O ângulo entre os segmentos AC e F'C na figura representa $2\phi_s$.

Programação modular

Para desenvolver o programa que plotará o círculo de Mohr dado o estado de resistência, usaremos a programação modular. Basicamente, esta abordagem consiste na decomposição do programa em um número de

subprogramas que são criados como variáveis separdas na calculadora. Estes subprogramas são ligados pelo programa principal que chamaremos de *MOHRCIRCL*. Criamos primeiro um subdiretório chamado de MOHRC dentro do diretório HOME e entramos dentro deste diretório para digitar os programas.

A próxima etapa é criar o programa principal e os subprogramas dentro do subdiretório.

O programa principal MOHRCIRCL usa os seguintes subprogramas:

- INDAT : Solicita a entrada de σx, σy, τxy do usuário, produz uma lista σL = {σx, σy, τxy} como resultado.
- CC&r: Usa σL como entrada, produz σc = ½(σx+σy), r = raio do círculo de Mohr, φn = ângulo de resistências principais, como resultado.
- DAXES: Usa σc e r como resultado, determina as faixas dos eixos para a construção do círculo de Mohr
- PCIRC : Usa σc, r e φn como entrada, desenha o círculo de Mohr produzindo uma plotagem PARAMÉTRICA
- DDIAM: UsA σL como entrada, desenha o segmento AB (consulte o círculo de Mohr na figura acima), juntando os pontos de dados de entrada no círculo de Mohr
- σLBL : Usa σL como entrada, coloca as etiquetas para identificar os pontos A A e B com as etiquetas "σx" e "σy".
- σAXS : Coloca as etiquetas " σ " e " τ " nos eixos x e y, respectivamente.
- PTTL : Coloca o título "Círculo de Mohr" na figura.

Executar o programa

Se digitou os programas na ordem mostrada acima, terá no seu subdiretório MOHRC as seguintes variáveis: PTTL, σAXS, PLPNT, σLBL, PPTS, DDIAM. Pressionar (NXT) encontrará também: PCIRC, DAXES, ATN2, CC&r, INDAT,

	Ative o programa principal MOHRCIRCL
25 🔻	Insira $\sigma x = 25$

Insira
$$\sigma y = 75$$

Insira
$$\tau xy = 50$$
 e termine a entrada de dados.

Neste ponto o programa MOHRCIRCL inicia a ativação dos subprogramas para produzir a figura. Tenha paciencia. O Círculo de Mohr resultante será similar a esta figura a esquerda.

Uma vez que esta imagem de PICT é ativada através da função PVIEW, não podemos obter qualquer informação da plotagem além da própria figura. Para obter informação adicional sobre o Círculo de Mohr, feche o programa pessionando (a) e depois pressione (1) para recuperar o contéudo de PICT no ambiente. O Círculo de Mohr é agora similar a imagem a direita (consulte acima).

Pressione a tecla de seta a direita () para incrementar o valor de ϕ e consulte o valor correspondente de (σ'_{xx} , τ'_{xy}). Por exemplo, para $\phi=45^\circ$, temos os valores (σ'_{xx} , τ'_{xy}) = (1.00E2, 2.50E1) = (100, 25). O valor de σ'_{yy} será encontrado no ângulo de 90° adiante, ex. onde $\phi=45+90=135^\circ$. Pressione a tecla \bullet até que alcance o valor de ϕ , encontramos (σ'_{yy} , τ'_{xy}) = (-1.00E-10,-2.5E1) = (0, 25).

Para encontrar os valores normais pressione \bigcirc até que o cursor retorne a interseção do círculo com a seção positiva do eixo σ . Os valores encontrados neste ponto são $\phi=59^\circ$ e $(\sigma'_{xx},\ \tau'_{xy})=(1.06E2,-1.40E0)=(106,\ -1.40)$. Agora, esperamos que o valor de $\tau'_{xy}=0$ no local dos eixos principais. O que acontece é que, dado que limitamos a resolução na variável independente para ser $\Delta\phi=1^\circ$, perdemos o ponto atual onde as resistências ao cisalhamento tornam-se zero. Se pressionar \bigcirc novamente, descobrirá que os valores de são $\phi=58^\circ$ e $(\sigma'_{xx},\ \tau'_{xy})=(1.06E2,5.51E-1)=(106,0.551)$. O que esta informação diz é que em algum lugar entre $\phi=58^\circ$ e $\phi=59^\circ$, a resistência ao cisalhamento, τ'_{xy} , torna-se zero.

Para encontrar o valor atual de ϕ n, pressione $\bigcirc N$ e depois digite a lista correspondente aos valores { $\sigma x \sigma y \tau xy$ }, para este caso, será { 25 75 50 } [ENTER]

Pressione então \blacksquare O último resultado no saída, 58.2825255885° é o valor atual de ϕ n.

Um programa para calcular as resistências principais

O procedimento acima para calcular ϕ n pode ser programado conforme a seguir:

Programa PRNST:

rrograma rkryor.	
«	Inicia o programa PRNST (resistências principais)
INDAT	Insira os dados como no programa MOHRCIRC
CC&r	Calcule σ c, r e fn, como no MOHRCIRC
"φn" →TAG	texto de Ângulo e identifica resistências
3 ROLLD	Move o ângulo identificado para o nível 3
R→C DUP	Converte σc e r para (σc, r), duplicar
C→R + "σPx" →TAG	Calcula a resistência principal σPx, indentifica-a
SWAP C→R - "σPy" →TAG	Troca, calcula a resistência σPy, identifica-a.
»	Fecha o programa PRNST

Para executar o programa use:

Inicia o programa PRNST

Insira $\sigma x = 25$ Insira $\sigma y = 75$

Insira $\tau xy = 50$ e termine de inserir os

dados.

O resultado é:

Organizar as variáveis no subdiretório

Executar o programa MOHRCIRCL pela a primeira vez produziu um par de novas variáveis, PPAR e EQ. Estas são Plot PARameter e EQuation, variáveis necessárias para plotar o círculo. Sugiro que reordenamos as variáveis no subdiretório para que os programas (1912) e 1912 sejam agora as duas primeiras variáveis nas etiquetas da tecla do menu virtual. Isto pode ser feito criando a lista { MOHRCIRCL PRNST } usando:

E depois ordenar a lista usando:

Depois de ativar a função ORDER pressione WR. Verá agora que os programas MOHRCIRCL e PRNST são as primeiras duas variáveis, conforme esperamos.

Um segundo exemplo de cálculos de círculo de Mohr

Determine as resistências principais para o estado de resistência definido por $\sigma_{xx} = 12.5$ kPa, $\sigma_{yy} = -6.25$ kPa e $\tau_{xy} = -5.0$ kPa. Desenhe o círculo de Mohr e determine a partir da figura os valores de σ'_{xx} , σ'_{yy} , and τ'_{xy} se o ângulo $\phi = 35^{\circ}$.

Para determinar as resistências principais use o programa [23][21], conforme a seguir:

VAR IIIIII

Inicie o programa PRNST

Insira $\sigma x = 12.5$ Insira $\sigma y = -6.25$

Insira $\tau xy = -5$ e termine de inserir os dados.

O resultado é:

Para desenhar o círculo de Mohr use o programa conforme a seguir:

Inicie o programa PRNST

Insira $\sigma x = 12.5$ Insira $\sigma y = -6.25$

5 +/- ENTER

Insira $\tau xy = -5$ e termine de inserir os dados.

O resultado é:

Para encontrar os valores das resistências correspondente a rotação de 35° no ângulo da partícula resistente, usamos:

ON limpe o visor, mostre PICT no visor do gráfico Para mover o cursor sobre o círculo mostrando ϕ e (x,y)

A seguir, pressione \bigcirc até que leia $\phi = 35$. As coordenadas correspondentes são (1.63E0, -1.05E1), ex. no ϕ = 35°, σ'_{xx} = 1.63 kPa e $\sigma'_{yy} = -10.5 \text{kPa}.$

Um formulário de entrada para o programa de círculo de Mohr

Uma forma interessante de colocar os dados de entrada é substituir o subprograma INDAT com o seguinte programa que ativa um formulário de entrada:

```
* "MOHR'S CIRCLE" { { "\sigma x:" "Normal stress in x" 0 } { "\sigma y:" "Normal stress in y" 0 } { "\tau xy:" "Shear stress" 0} } { } { 1 1 1 } { 1 1 1 } INFORM DROP *
```

Com esta substituição de programa, executando **EXECUTA** produzirá um formulário de entrada conforme a seguir:

Pressione para continuar a execução do programa. O resultado é apresentado no seguinte visor:

Dado que o programa INDAT é usado também para o programa [23][21] (resistências principais), executar este programa em particular usará agora um formulário de entrada, por exemplo,

O resultado depois de pressionar $\blacksquare \hspace{-0.8em}\blacksquare \hspace{-0.8em}\blacksquare \hspace{-0.8em}$ é o seguinte:

Capítulo 23

Segmentos de caractere/textos

Segmentos de caracteres são objetos da calculadora incluídos entre aspas duplas. Eles são tratados como texto pela calculadora. Por exemplo, o segmento "SINE FUNCTION", pode ser transformado em um GROB (objeto gráfico), para marcar um gráfico ou pode ser usado como resultado em um programa. Conjuntos de caracteres digitados pelo usuário como entrada para um programa são tratados como textos. Além disso, os objetos no resultado de programa são também textos.

As funções relacionadas com a string no submenu TYPE

Entre as funções no menu TYPE que são úteis para manipular os textos temos:

OBJ→: converte o texto para o objeto que representa

→STR: Converte um objeto para sua representação de texto

→TAG: Etiqueta um objeto

DTAG : remove a identificação de uma quantidade etiquetada (de-tags) CHR : Cria um segmento de um caractere correspondente a um número

usado como argumento

NUM: Retorna o código para o primeiro caractere de um segmento

Exemplos das aplicações destas funções são mostrados a seguir:

Concatenação de segmento

Os segmentos podem ser concatenados (agrupados) usando o sinal de mais +, por exemplo:

Os segmentos de concatenação é uma forma prática para criar resultados em programas. Por exemplo, concatenar "YOU ARE " AGE + " YEAR OLD" cria o segmento "YOU ARE 25 YEAR OLD", onde 25 é armazenado na variável chamada AGE.

O menu CHARS

O submenu CHARS é acessível através do menu PRG (programação) ex. \bigcirc $\stackrel{\text{\tiny PRG}}{}$.

As funções do submenu CHARS são as seguintes:

A operação NUM, CHR, OBJ→ e →STR foi apresentada anteriormente neste capítulo. Temos também visto as funções SUB e REPL em relação aos gráficos anteriormente neste capítulo. As funções SUB, REPL, POS, SIZE, HEAD e TAIL tem efeitos similares das listas, a saber:

SIZE : números de caracteres de um texto (incluindo espaços) POS : Posição da primeira ocorrência de um caractere dado em

determinado texto

HEAD : extrai o primeiro caractere de um texto TAIL : remove o primeiro caractere de um texto

SUB : extrai o sub-segmento dadas as posições inicial e final

REPL : substitui caracteres em um texto com um sub-segmento em uma dada

posição

SREPL: substitui um sub-segmento por outro em um segmento

Par ver todos estes efeitos em ação tente os seguintes exercícios: Armazene o segmento "MY NAME IS CYRILLE" na variável \$1. Usaremos este segmento para mostrar os exemplos das funções no menu CHARS:

A lista de caracteres

A coleção inteira de caracteres disponível na calculadora é acessível através da seqüência de tecla (Quando você ressalta qualquer caractere, digamos o caractere (verá que a esquerda do fundo do visor é mostrada a seqüência da tecla que obtém tal caractere (pero para este caso) e o código numérico correspondente ao caractere (10 neste caso).

Os caracteres que não são definidos aparecem como um quadrado escuro na lista de caractere (*) e mostra (None) no fundo do visor, mesmo que um código numérico exista para todos eles. Os caracteres numéricos mostram o número correspondente no fundo do visor.

As letras mostram o código α (ex., (ALPHA)) seguido pela letra correspondente, por exemplo, ao ressaltar M, você verá αM exibido no lado esquerdo inferior do visor, indicando o uso de (ALPHA) (M). Por outro lado, m mostra a combinação de tecla $\alpha \leftarrow M$ ou (ALPHA) (M) (M)

Os caracteres gregos, tais como σ , mostrarão o código $\alpha \mapsto S$ ou $\text{ALPHA} \mapsto \mathcal{S}$. alguns caracteres, como ρ , não tem uma seqüência de tecla associada com elas. Portanto, a única forma de obter tais caracteres é através da lista de caracteres ressaltando o caractere desejado e pressionando \blacksquare

Use para copiar um caractere para a pilha e retornar imediatamente ao visor normal da calculadora. Use para copiar uma série de caracteres a pilha. Para retornar ao visor normal da calculadora use (N).

Consulte o apêndice D para obter mais detalhes sobre o uso de caracteres especiais. Além disso, o apêndice G mostra os atalhos produzindo os caracteres especiais.

Capítulo 24

Objetos e sinalizadores da calculadora

Os números, listas, vetores, matrizes, algébricos, etc. são objetos da calculadora. Eles são classificados de acordo com a sua natureza em 30 tipos diferentes, que são descritos abaixo. Os sinalizadores são variáveis que podem ser usadas para controlar as propriedades da calculadora. Os sinalizadores foram introduzidos no capítulo 2.

A descrição dos objetos da calculadora

A calculadora reconhece os seguintes tipos de objetos:

Número	Tipo	Exemplo
0	Número real	-1.23E-5
1	Números complexos	(-1.2,2.3)
2	texto	"Hello, world '
3	Matriz real	[[1 2][3 4]]
4	Matriz complexa	[[(1 2) (3 4)] [(5 6) (7 8)]]
5	Lista	(31'PI')
6	Nome global	X
7	Nome local	y
8	Programa	<< → a 'a^2' >>
9	Objeto algébrico	'a^2+b^2'
10	Binário Inteiro	# A2F1E h
11	Objeto gráfico	Graphic 131×64
12	Objeto etiquetado	R: 43.5
13	Objetos com unidade	3_m^2/s
14	Nome XLIB	XLIB 342 8
15	Diretório	DIR I END
16	Biblioteca	Library 1230".
17	Objeto de backup	Backup MYDIR
18	Função interna	COS
19	Comando interno	CLEAR

Número	Тіро	Exemplo
21	Número real extendido	Long Real
22	Número complexo extendido	Long Complex
23	Matriz <i>linkada</i>	Linked Array
24	Objeto de caractere	Character
25	Objeto de código	Code
26	Dados da biblioteca	Library Data.
27	Objeto externo	External
28	Inteiro	3423142
29	Objeto externo	External
30	Objeto externo	External

Função TYPE

Esta função, disponível no submenu PRG/TYPE () ou através do catálogo de comando, é usada para determinar o tipo de um objeto. O argumento da função é o objeto de interesse. A função retorna o número referente ao tipo de objeto como indicado acima.

Função VTYPE

Esta função opera de forma similar a função TYPE, mas aplica-se a um nome de variável, retornando ao tipo de objeto armazenado na variável.

Sinalizadores da calculadora

Um sinalizador é uma variável que pode ser ativada ou desativada. O status de um sinalizador afeta o comportamento da calculadora, se o sinalizador for um sinalizador de sistema, ou de um programa, se for um sinalizador do usuário. Eles são descritos com mais detalhes a seguir.

Sinalizadores de sistema

Os sinalizadores de sistema são acessíveis usando MODE INTEGE. Pressione as teclas com a seta para ver uma lista de todos os sinalizadores do sistema com seu número e uma breve descrição. Os primeiros dois visores com os sinalizadores do sistema são mostrados a seguir:

Você reconhecerá estes sinalizadores porque alguns são ativados ou desativados no menu MODES(ex. sinalizador 95 para modo Algebric, 103 para modo Complex, etc.). Através do Manual do Usuário, enfatizamos as diferenças entre as CHOOSE boxes e menus SOFT, que são selecionados ativando ou desativando o sinalizador do sistema 117. Outro exemplo de configuração do sinalizador do sistema é que os sinalizadores 60 e 61 relacionados com a biblioteca constante (CONLIB, consulte o capítulo 3). Estes sinalizadores operam do seguinte modo:

- sinalizador do usuário 60: limpo (padrão):unidades SI, ativado: unidades ENGL
- sinalizador do usuário 61: limpo (padrão):unidades do usuário, ativado: apenas valor

As funções para a configuração e alteração de sinalizadores

Estas funções podem ser usadas para ativar, desativar, verificar o status dos sinalizadores do sistema ou sinalizadores do usuário. Quando usado como sinalizadores de sistema , os mesmos são mencionadas com os números inteiros negativos. Assim, o sinalizador do sistema 117 será mencionado como sinalizador -117. Por outro lado, os sinalizadores de usuário serão mencionados como números inteiros positivos. É importante entender que os sinalizadores do usuário tem aplicações apenas na programação e ajudar a controlar o fluxo do programa.

As funções para manipular os sinalizadores da calculadora estão disponíveis no menu PRG/MODES/FLAG. O menu PRG está ativado com (1) PRG . Os seguintes visores (com o sistema de sinalizador 117 configurado para CHOOSE boxes) mostram a seqüência de visores para obter o menu FLAG:

As funções contidas dentro do menu FLAG são as sequintes:

A operação destas funções é conforme a seguir:

- SF Ativar um sinalizador
- CF Desativar (ou apagar) um sinalizador
- FS? Retorna 1 se o sinalizador estiver ativado, 0 se não estiver
- FC? Retorna 1 se o sinalizador estiver desativado (apagado), 0 se o
 - sinalizador estiver ativado
- FS?C Testa o sinalizador conforme FS e depois o desativa
- FC?C Testa o sinalizador conforme FC e depois o desativa
- STOF Armazena novas configurações de sinalizadores do sistema
- RCLF Retorna na pilha as configurações existentes dos sinalizadores
- RESET Reajusta os valores de campo atuais (pode ser usado para reajustar
 - um sinalizador)

Sinalizadores do usuário

Para fazer programas, os sinalizadores de 1 a 256 estão disponíveis para o usuário. Eles não têm significados para a operação da calculadora.

Capítulo 25

Funções de dia e hora

Neste capítulo demonstramos algumas das funções e cálculos usando as horas e dias.

O menu TIME

O menu TIME, disponível através da sequência de teclas ((a tecla 9) fornece as seguintes funções que são descritas a seguir:

Configurar um alarme

Opção 2. Set alarm.. fornece um formulário de entrada para permitir que o usuário configue um alarme. O formulário de entrada é apresentado na seguinte figura:

O campo de entrada mensagem: permite que você insira o texto de caractere indentificando o alarme. O campo hora permite que você insira a hora para ativar o alarme. O campo dia: é usado para configurar o dia para o alarme (ou para a primeira vez da ativação, se a repetição for necessária). Por exemplo, você pode configurar o seguinte alarme: a figura do lado direito mostra o alarme sem nenhuma repetição. A figura do lado direito mostra as opções para a repetição depois de pressionar Depois de pressionar o alarme será ativado.

Navegar nos alarmes

Opção 1. Browse alarms... no menu TIME permite que você verifique seus alarmes atuais. Por exemplo, depois de inserir o alarme usado no exemplo acima, esta opção mostrará o seguinte visor:

Este visor fornece quatro etiquetas de teclas do menu virtual:

EDIT : Para editar o alarme selecionado, fornece um formulário de

entrada de configuração de alarme

NEW: Para programar um novo alarme

PURG : Para excluir um alarme OK : Retorna ao visor normal

Configurar a hora e a dia

Opção 3. Set time, date... fornece o seguinte formuário de entrada que permite que o usuário configure a hora e dia atuais. Os detalhes foram fornecidos no capítulo 1.

Ferramentas TIME

Opção 4. Tools... fornece um número de funções úteis para a operação do relógio e os cálculos com as horas e dias. A seguinte figura mostra as funções disponíveis sob ferramentas TIME:

A aplicação destas funções é apresentada abaixo.

DATE: Coloca o dia atual na pilha

→DATE: Configura o dia do sistema para o valor especificado
 TIME: Coloca a hora aual no formato de 24 hs HH.MMSS
 →TIME: Configura a hora do sistema para o valor especificado

Configura a hora do sistema para o valor especificado no formato 24-hrs HH.MM.SS

TICKS: Fornece a hora do sistema como números inteiros binários em

unidades de tiques do relógio sendo 1 tique = 1/8192 seg.

ALRM.: Submenu com as funções de manipulação do alarme

(descritas posteriormente)

DATE+: Adiciona ou subtrai um número de dias para uma dia

DDAYS(x,y): retorna o número de dias entre as dias x e y
→HMS: Converte a hora de decimais para HH.MMSS
HMS→: Converte a hora de HH.MMSS para decimal

HMS+: Efetua soma no formato HH.MMSS HMS-: Efetua subtração no formato HH.MMSS TSTR(hora, dia): converte dia e hora em formato de texto

CLKADJ(x): Adiciona x tiques para a hora do sistema (1 tique = 1/8192

seg.)

Funções →DATE, →TIME, CLKADJ são usadas para ajustar o dia e a hora. Não existem exemplos fornecidos aqui para estas funções.

Aqui estão os exemplos de funções DATE, TIME e TSTR:

Cálculos com dias

Para cálculo com dias, use as funções DATE+, DDAYS. Aqui está um exemplo de aplicação destas fuñções juntamente com um exemplo de funções TICKS:

Cálculos com horas

As funções →HMS, HMS→, HMS+ e HMS- são usadas para manipular os valores no formato HH.MMSS. Este é o mesmo formato usado para calcular com as medidas angulares em graus, minutos e segundos. Assim, estas operações são úteis não apenas para o cálculo da hora, como também de cálculos angulares. Exemplos são fornecidos a seguir:

Funções de alarme

O submenu TIME/Tools.../ALRM... fornece as seguintes funções:

A operação destas funções é apresentada a seguir:

ACK: Reconhece o alarme antigo

ACKALL: Reconhece todos os alarme antigos

STOALARM(x): Armazena alarme (x) na lista de alarme do sistema

RCLALARM(x): Retorna na pilha o alarme especificado (x) da lista de alarme

do sistema

DELALARM(x): Exclui o alarme x da lista de alarme do sistema FINDALARM(x): Retorna ao primeiro alarme vencido depois da hora

espeficada

O argumento x na função STOALARM é uma lista contendo uma referência de dias(mm.ddyyy), hora do dia em formato de 24 hr (hh.mm), um segmento contendo o texto do alarme e o número de repetições do alarme. Por exemplo, STOALARM ((6.092003, 18.25, "Test", 0). O argumento x em todas as outras funções de alarme é um número inteiro positivo indicando o número do alarme a ser ativado, excluído ou encontrado.

Dado que manipular os alarmes pode ser facilmente feito com o menu TIME (consulte acima), as funções relacionadas com o alarme nesta seção serão provavelmente mais usadas para fazer um programa.

Capítulo 26

Gerenciar a memória

No capítulo 2 do manual do usuário introduzimos os conceitos e operações básicas para criar e gerenciar as variáveis e diretórios. Neste capítulo discutimos o gerenciamento da memória da calculadora em termos de partição e técnicas para proteger os dados.

Estrutura da memória

A calculadora contém um total de 80 KB usados para operações e armazenagens de dados (memória do usuário). Para ver a forma na qual a memória do usuário é particionada, use a função FILES (" ¡). Um resultado possível é mostrado abaixo:

Esta tela indica a existência de uma porta de memória (porta 0) que inclui o diretório HOME (consulte o capítulo 2 no guia de usuário).

A porta 0 e o diretório HOME compartilham a mesma área da memória, então quanto mais dados armazenados no diretório HOME, por exemplo, menos memória estará disponível para a armazenagem na Porta 0. Conforme mencionado acima, o tamanho total de memória da porta 0/área de memória do diretório HOME é de 80 KB.

Porta 0 e o diretório HOME constitui o segmento RAM da calculadora (memória de acesso aleatório). A RAM requer fornecimento de alimentação contínuo das baterias da calculadora para ser operada. Para evitar a perda do conteúdo da memória RAM, incluímos a bateria de backup CR2032. Consulte os detalhes adicionais no final deste capítulo.

O diretório HOME

Ao usar a calculadora você pode criar as variáveis para armazenar resultados intermediários e finais. Algumas operações de calculadora tais como operações gráficas e estatísticas criam suas próprias variáveis para armazenar os dados. Estas variáveis serão contidas dentro do diretório HOME ou em um de seus diretórios. Os detalhes sobre a manipulação de variáveis e diretórios são apresentados no capítulo 2 do manual do usuário.

Porta de memória

Diferente do diretório HOME, a porta de memória não pode ser subdividida em diretórios e pode apenas conter objetos de backup ou bibliotecas (Libraries). Estes tipos de objetos são descritos abaixo.

Verificar os objetos na memória

Para ver os objetos armazenados na memória você pode usar a função FILES ("). O visor mostra o diretório HOME com um diretório, a saber, CASDIR.

Diretórios adicionais podem ser vistos movendo o cursor para baixo na árvore do diretório. Ou pode mover o cursor para cima para selecionar uma porta de memória. Quando um dado diretório, subdiretório ou porta for selecionada, pressione @ X para ver o conteúdo do objeto selecionado. Outra forma de acessar a porta de memória é usar o menu LIB (, á , associado com a tecla 2).

Se qualquer biblioteca estiver ativa na sua calculadora, ela será exibida neste visor. Ao pressionar a porta 0 as teclas do menu virtual abrem a porta de memória. Informações adicionais sobre bibliotecas são apresentadas a seguir.

Objetos de backup

Os objetos de backup são usados para copiar os dados de seu diretório home na porta da memória. O objetivo de fazer backup de objetos na porta da memória é preservar o conteúdo dos objetos para uso posterior. Os objetos de backup têm as seguintes características:

- Objetos de backup podem apenas existir na porta de memória (ex. você não pode fazer backup de um objeto no diretório HOME, embora você possa fazer tantas cópias quanto quiser).
- Você não pode alterar o conteúdo de um objeto de backup (você pode entretanto copiá-los para um diretório no diretório HOME e alterá-los lá e depois fazer novamente o backup com as alterações).
- Você pode armazenar ou um objeto individual ou o diretório inteiro como um objeto de backup inteiro. Você não pode, entretanto, criar um objeto de backup a partir de um número de objetos selecionados em um diretório.

Ao criar um objeto de backup na porta de memória, a calculadora obtém um valor verificação de redundância cíclica (CRC) ou soma da verificação baseado nos dados binários contidos no objeto. Este valor é armazenado com o objeto de backup e é usado pela calculadora para monitorar a integridade do objeto de backup. Ao restaurar um objeto de backup no diretório HOME, a calculadora obtém novamente o valor CRC e o compara ao valor original. Se for observada qualquer discrepância, a calculadora avisa ao usuário que os dados restaurados podem estar corrompidos.

Backup dos objetos na porta de memória

A operação de backup de um objeto da memória do usuário em uma das portas da memória é similar a operação de copiar uma variável de um subdiretório a outro (consulte os detalhes no capítulo 2 do manual do usuário). Você pode, por exemplo, usar File Manager (pres) para copiar e excluir os objetos de backup como o faria com os objetos normais da calculadora. Além disso, existem comandos específicos para manipular os objetos, conforme descrito a seguir.

Backup e restaurar HOME

Você pode fazer o backup do conteúdo do diretório HOME atual em um único objeto de backup. Este objeto conterá todas as variáveis, atribuições de teclas e alarmes atualmente definidos no diretório HOME. Você pode restaurar também o conteúdo do seu diretório HOME de um backup previamente armazenado na porta de memória. As instruções para estas operações são apresentadas a seguir.

Backup do diretório HOME

Para fazer o backup do diretório HOME usando um modo algébrico, insira o comando:

ARCHIVE(:Número_da_portaNúmero_da_porta: Nome_Backup)

Para fazer o backup do diretório HOME no modo RPN, use o comando:

: Número_da_portaNúmero_da_porta : Nome_Backup [ENTER] ARCHIVE

Restaurar o diretório HOME

Para restaurar o diretório home no modo algébrico use o comando:

RESTORE(: Número_da_portaNúmero_da_porta : Nome_Backup)

Por exemplo, para restaurar o diretório HOME do objeto de backup HOME1, use: RESTORE(#0#HOME1)

No modo RPN:

: Número da portaNúmero da porta : Nome Backup [ENTER] RESTORE

Nota: Ao restaurar um backup do diretório HOME ocorrem duas coisas:

- O diretório de backup sobrescreve o diretório HOME atual. Assim, qualquer dado do diretório HOME não salvo como backup será perdido.
- A calculadora é reiniciada. O conteúdo do historio ou pilha são perdidos.

Armazenar, excluir e restaurar os objetos de backup

Para criar o objeto de backup use uma das sequintes abordagens:

- Use o File Manager (plus) para copiar o objeto para a porta.
 Usando esta abordagem, o objeto de backup terá o mesmo nome do objeto original.
- Use o comando STO para copiar o objeto para uma porta. Por exemplo, no modo algébrico, para fazer o backup da variável A em um objeto chamado AA na porta 0, use a sequência de teclas:

STON (T): O NALPHA (A LAPHA (A

 Use o comando ARCHIVE para criar um backup do diretório HOME (consulte acima).

Para excluir o objeto de backup de uma porta:

- Use o File Manager () para excluir o objeto como o faria no diretório HOME (consulte o capítulo 2 no manual do usuário).
- Use o comando PURGE conforme a sequir:

No modo algébrico use: PURGE(: Número da portaNúmero

da porta : Nome Backup)

No modo RPN use: :Número_da_portaNúmero_da_porta:

Nome Backup PURGE

Para restaurar o objeto de backup:

- Use o File Manager () para copiar o objeto de backup da porta de memória para o diretório HOME.
- Quando um objeto de backup é restaurado, a calculadora faz uma verificação de integridade no objeto restaurado calculando seu valor CRC. Qualquer discrepância entre os valores CRC calculados e

armazenados gera uma mensagem de erro indicando um dado corrompido.

Usar os dados dos objetos de backup

Embora você não possa alterar diretamente o conteúdo dos objetos de backup, é possível usar estes conteúdos nas operações da calculadora. Por exemplo, você pode executar os programas armazenados como objetos de backup ou usar os dados de objetos de backup para executar os programas. Para executar os programas de objetos de backup você pode usar o File Manager (pres) para copiar o conteúdo de objeto de backup para o visor. De forma alternativa, você pode usar a função EVAL para retornar ao programa armazenado em um objeto de backup ou função RCL para recuperar os dados do objeto de backup conforme a seguir:

- No modo algébrico:
 - Para avaliar um objeto de backup insira:
 EVAL(argument(s), : Número_da_portaNúmero_da_porta : Nome Backup)
 - Para ativar o objeto para o comando de linha insira:
 RCL(: Número_da_portaNúmero_da_porta: Nome_Backup)
- No modo RPN:
 - Para avaliar um objeto de backup insira:
 Argument(s) (ENTER): Número_da_portaNúmero_da_porta:
 Nome Backup EVAL
 - Para ativar o objeto para o comando de linha insira:
 : Número_da_portaNúmero_da_porta : Nome_Backup RCL

Usar as bibliotecas

As bibliotecas são programas em linguagens binária criadas pelo usuário que podem ser carregadas na calculadora e colocadas a disposição para uso de dentro de qualquer subdiretório do diretório HOME. As bibliotecas podem ser instaladas na calculadora como uma variável regular e depois instaladas e anexadas ao diretório HOME.

Instalar e anexar uma biblioteca

Para instalar uma biblioteca, coloque-a na pilha (use a tecla ightharpoonup e o menu da variável ou função RCL) e armazene-a na porta 0. Por exemplo, para instalar uma variável de biblioteca em uma porta use:

- No modo algébrico: STO(Variável da biblioteca, número da porta)
- No modo RPN: Variável_da_biblioteca ENTER número_da_porta 5700

Depois de instalar o conteúdo da biblioteca na porta de memória é necessário anexar a biblioteca no diretório HOME. Isto pode ser feito reiniciando a calculadora (desligando e ligando a calculadora) ou pressionando simultaneamente (ON) (F). Nesta altura, a biblioteca estará disponível para ser usada. Para ver o menu de ativação da biblioteca use o menu LIB ((P)) (D). O nome da biblioteca será listado neste menu.

Números de biblioteca

Se usar o menu LIB () e pressionar a tecla do menu virtual correspondente a porta 0, verá os números da biblioteca listados nas etiquetas do teclado. Cada biblioteca tem um número de quatro dígitos associados. Estes números são atribuídos pelo criador da biblioteca e são usados para apagar a biblioteca.

Apagar uma biblioteca

Pata apagar uma biblioteca de uma porta, use:

- No modo algébrico: PURGE(: Número da porta: número da biblioteca
- No modo RPN:Número_da_porta número_da_biblioteca PURGE

Onde número da biblioteca é o número da biblioteca descrito acima.

Criar bibliotecas

É possível escrever uma biblioteca nas linguagens Assembler e System RPL ou usar uma biblioteca de criação da matriz, tal como LBMKR. O último programa está disponível online (consulte por exemplo, http://www.hpcalc.org). Os detalhes para programar a calculadora na linguagem Assembler ou em SYSRPL estão além do conteúdo deste documento. O usuário está convidado a obter informações adicionais sobre o assunto online.

Bateria de backup

Uma bateria de backup CR2032 está inclusa na calculadora para fornecer backup de alimentação para a memória ao trocar as baterias principais. Recomenda-se que substitua esta bateria a cada 5 anos. Uma mensagem de visor indicará quando esta bateria precisa ser substituída. O digrama abaixo mostra o local da bateria de backup no compartimento superior na traseira da calculadora.

Apêndice A

Usar os formulários de entrada de dados

Este exemplo de configuração da hora e dia ilustra o uso de formulários de entradas de dados na calculadora. Algumas regras gerais:

- Use as teclas com as setas (•) para mover de um campo para o próximo no formulário de entrada.
- Use qualquer uma das teclas para visualizar as opções disponíveis para qualquer campo dado no formulário de entrada.
- Use as teclas com as setas () para selecionar a opção desejada para um campo dado e pressione a tecla () para fazer a seleção.
- Pressione a tecla para fechar um formulário de entrada e retornar a visor da pilha. Você pode também pressionar a tecla ou para fechar o formulário de entrada.

Exemplo – Usar os formulários no menu NUM.SLV

Antes de discutir estes itens em detalhe apresentaremos algumas das características dos formulários usando os formulários de entrada de dados para aplicação de cálculo financeiro no solucionador numérico. Lance o solucionador numérico usando () (associado com a tecla). Isto produzirá uma caixa de verificação que inclui as sequintes opções:

Para iniciar com os cálculos financeiros use a tecla com a seta para baixo () para selecionar o item 5. Solve finance. Pressione 2, para executar

o aplicativo. O visor resultante é um formulário de entrada de dados com campos de entrada para um número de variáveis (n, 1%YR, PV, PMT, FV).

Neste caso em particular podemos oferecer valores para todas exceto uma das variáveis, digamos, n=10, l%YR=8.5, PV=10000, FV=1000 e resolver uma variável PMT (o significado destas variáveis é apresentado mais tarde). Tente o seguintes:

10 101311	Insira n = 10
8.5	Insira I%YR = 8.5
10000	Insira PV = 10000
▼ 1000 ■ 33 ■	Insira FV = 1000
	Selecione e resolva para PMT

O visor resultante é:

Neste formulário de entrada verá os seguintes símbolos da tecla:

Pressione para editar o campo ressaltado

Menu Amortização – opção específica para esta aplicação

Pressione para resolver o campo ressaltado

Pressionar NXT apresentará os seguintes símbolos da tecla:

Reinicia os campos para os valores padrões
Pressione para acessar a pilha para os cálculos
Pressione para determinar o tipo de objeto no campo ressaltado
Cancela a operação
Aceita a entrada de dados

Se pressionar será solicitado a selecionar entre as duas opções:

Se selecionar *Reset value* apenas o valor ressaltado será restaurado para o valor padrão. Se, em vez disso, você selecionar *Rest all*, todos os campos serão restaurados para seus valores padrões (tipicamente, 0). Agora você pode aceitar sua escolha (pressione) ou cancele a operação (pressione Pressione para acessar a pilha. O visor resultante é o seguinte.

Agora você obteve acesso à pilha e o valor ressaltado por últimos no formulário de entrada que foi fornecido. Suponha que você deseja dividir este valor, o seguinte visor aparecerá no modo ALG depois de inserir

1136.22/2:

(No modo RPN, teremos usado 1136,22 (ME) 2 (ME) ÷).

Pressione para inserir este novo valor. O formulário de entrada parecerá agora desta forma:

Pressione para ver o tipo de dados no campo PMT (o campo ressaltado). Obterá a seguinte especificação:

Isto indicar que o valor no campo PMT deve ser um número real. Pressione par retornar ao formulário de entrada e depois L para recuperar o primeiro menu. A seguir pressione a tecla (ENTER) ou (ON) para retornar a pilha. Os seguintes valores serão exibidos:

O resultado acima é o valor que foi resolvido para PMT na primeira parte do exercício. O segundo valor é o cálculo que fizemos para redefinir o valor de PMT.

Apêndice B O teclado da calculadora

A figura abaixo mostra um diagrama do teclado da calculadora com a numeração de suas linhas e colunas.

A figura mostra 10 linhas de teclas combinadas com 3, 5 ou 6 colunas. A linha 1 tem 6 teclas, a linha 2 e 3 tem 3 teclas cada e a linha 4 até 10 tem 5 teclas cada. Existem 4 teclas com seta localizadas no lado direito do teclado no espaço ocupado pelas linhas 2 e 3. Cada tecla tem três, quatro ou cinco funções. As funções principais da tecla são mostradas na figura abaixo.

Para operar estas funções de teclas pressione apenas a tecla correspondente. Verifiquemos as teclas pela linha e coluna onde estão localizadas no desenho acima, assim, *a tecla (10,1)* é a tecla *ON*.

Funções principais de tecla no teclado da calculadora

Funções principais de teclado

As teclas 🙃 até 🙃 são associadas com as opções que aparecem no fundo do visor da calculadora. Assim, estas teclas ativarão uma variedade de funções que são alteradas de acordo com o menu ativo.

- As teclas com as setas, , são usadas para mover um caractere de cada vez na direção da tecla pressionada (ex. acima, abaixo, esquerda ou direita).
- A função APPS ativa o menu de aplicações.
- A função MODE ativa o menu de modos da calculadora.
- A função TOOL ativa um menu de ferramentas úteis para manipular variáveis e obter ajuda na calculadora.
- A função VAR mostra as variáveis armazenadas no diretório atual. A função STO é usada para armazenar os conteúdos nas variáveis.
- A função NXT é usada para ver as opções adicionais de menu ou variáveis em um diretório.
- A função HIST permite acessar o histórico de modo algébrico, ex. a coleção de entradas recentes do comando neste modo.
- A tecla EVAL é usada para avaliar as expressões algébricas e numéricas. A tecla de apóstrofe ['] é usada para inserir um conjunto de apóstrofes para as expressões algébricas.
- O SYMB ativa o menu de operações simbólicas.
- A tecla de exclusão 🔹 é usada para excluir caracteres em uma linhal.
- A tecla y^x calcula a potência x de y.
- A tecla \sqrt{x} calcular a raiz guadrada de um número x.
- As teclas SIN, COS e TAN calculam o seno, coseno e tangente respectivamente de um número.
- A tecla *EEX* é usada para inserir a potência de dez (ex. 5×10³, é inserida como 5 EX 3, que é mostrada como 5E3).
- A tecla +/- altera o sinal de uma entrada, A tecla X insere o caractere X (maiúscula).
- A tecla 1/x calcula o inverso de um número, As teclas +, -, x e ÷, são usadas para as operações aritméticas fundamentas (adição, subtração, multiplicação e divisão, respectivamente).
- A tecla ALPHA é combinada com outras teclas para inserir os caracteres alfabéticos.
- As teclas *left-shift* right-shift são combinadas com outras teclas para ativar os menus, inserir os caracteres ou calcular as funções conforme descrito.
- As teclas numéricas (0 a 9) são usadas para inserir os dígitos do sistema numérico decimal.

- Existe uma tecla ponto decimal (.) e uma tecla de espaço (SPC).
- A tecla ENTER é usada para inserir um número, expressão ou função no visor ou pilha e
- A tecla ON é usada para ligar a calculadora.

Funções alternadas de tecla

A tecla left-shift verde, key (8, 1), a tecla right-shift vermelha, key (9, 1) e a tecla ALPHA amarela, key (7, 1) podem ser combinadas com algumas das outras teclas para ativar as funções alternadas mostradas no teclado. Por exemplo, a tecla (STMB), key (4,4), tem as seis funções associadas descritas a seguir:

SYMB	Função Principal, para ativar o menu SYMBolic
← MTH MTH MTH MTH MTH MTH MTH M	Função Left-shift, para ativar o menu MTH (matemática)
CAT	Função Right-shift, para ativar a função CATalog
ALPHA P	Função ALPHA, para inserir a letra P em maiúsculo
ALPHA P	Função ALPHA-Left-Shift, para inserir a letra P em minúsculo
ALPHA P	Função ALPHA-Right-Shift, para inserir o símbolo P

Das seis funções associadas com a tecla apenas a primeira das quatro são mostradas no próprio teclado. Esta é a forma em que a tecla é apresentada no visor:

Observe que a cor e a posição dos símbolos na tecla, isto é, **SYMB**, *MTH*, *CAT* e **P**, indicam qual é a função principal (**SYMB**) e qual das outras três funções é associada com as teclas left-shift (*MTH*), right-shift (*CAT*) e

Os diagramas mostram a função ou caractere resultante da combinação das teclas da calculadora com left-shift , right-shift , ALPHA , ALPHA-left-shift #### , são apresentadas a sequir.

Nestes diagramas, o caractere ou função resultante para cada combinação de tecla é mostrado no fundo branco. Se as teclas left-shift, right-shift ou ALPHA forem ativadas, elas são mostradas em um fundo com sombra. As teclas que não são ativas são mostradas no fundo preto.

Funções Left-shift

O seguinte desenho mostra as funções, caracteres ou menus associados com as diferentes teclas da calculadora quando a tecla left-shift 🕣 for ativada.

- As seis funções de left-shift associadas com as teclas (F) até (F) são associadas com a configuração e produção de gráficos e tabelas. Ao usar estas funções no modo de operação Algébrico da calculadora, pressione a tecla left_shift (T) primeiro e depois qualquer uma das teclas na linha 1. Ao usar estas funções no modo RPN da calculadora, é necessário pressionar a tecla left-shift (T) simultaneamente com a tecla na linha 1 de sua escolha. A função Y= é usada para inserir as funções do formulário y=f(x) para plotagem, a função WIN é usada para definir parâmetros da janela de plotagem, a função GRAPH é usada para produzir um gráfico, a função 2D/3D é usada para selecionar o tipo de gráfico a ser produzido, a função TBLSET é usada para definir parâmetros para uma tabela de valores de uma função, a função TABLE é usada para gerar uma tabela de valores de uma função.
- A função FILE ativa o navegador de arquivo na memória da calculadora.
- A função *CUSTOM* ativa as opções de menu, a tecla i é usada para inserir o número i imaginário na pilha ($i^2 = -1$).
- A função UPDIR move o local da memória um nível acima na árvore do arquivo da calculadora.
- A função RCL é usada para restaurar os valores das variáveis.
- A função PREV mostra a definição anterior das seis opções de menu associados as tecla.
- A função de CMD mostra os comandos os mais recentes, a função de PRG ativa os menus de programação, a função de MTRW ativa o escritor da matriz

Funções left-shift 🕤 do teclado da calculadora

- A função CMD mostra os comandos mais recentes.
- A função PRG ativa os menus de programas.
- A função MTRW ativa o Editor de Matriz.
- A função MTH ativa o menu da função matemática.
- A tecla DEL é usada para excluir as variáveis.
- A tecla e^x calcular a função exponencial de x.
- A tecla x^2 calcula o quadrado de x (isto é mencionado como a função SQ).

- As funções ASIN, ACOS e ATAN calculam as funções arcoseno, arcocoseno e arco-tangente, respectivamente.
- A função 10^x calcula o anti-logaritmo de x.
- As teclas ≠, ≤ e ≥ são usadas para comparar os números reais.
- A função ABS calcular o valor absoluto de um número real ou a magnitude de um número complexo ou de um vetor.
- A função USER ativa o teclado definido pelo usuário.
- A função S.SLV ativa o menu do solucionador simbólico.
- A função EXP&LN ativa o menu para as expressões de substituição em termos de exponenciais e funções de logaritmos naturais.
- A função FINANCE ativa um menu para cálculos financeiros.
- A função CALC ativa um menu para as funções de cálculo.
- A função MATRICES ativa um menu para criar e manipular matrizes.
- A função CONVERT ativa um menu para a conversão das unidades e outras expressões.
- A função ARITH ativa um menu de funções aritméticas.
- A tecla DEF é usada para definir uma função simples como uma variável na memória da calculadora.
- A tecla CONT é usada para continuar a operação de cálculo.
- A tecla ANS reconvoca o último resultado quando a calculadora estiver no modo de operação Algébrico.
- As teclas [], () e {} s\(\tilde{a}\) o usadas para inserir colchetes, par\(\tilde{e}\) nteses ou chaves
- A tecla # é usada para inserir números com base.
- A tecla infinito ∞ é usada para inserir o símbolo de infinito em uma expressão.
- A tecla π é usada para inserir o valor ou símbolo para π (a razão do comprimento de uma circunferência para seu diâmetro).
- As teclas com setas, quando combinadas com a tecla left-shift, move o cursor para o primeiro caractere na direção da tecla pressionada.

Funções right-shift 🕝 do teclado da calculadora

Funções Right-shift

O seguinte desenho mostra as funções, caracteres ou menus associados com as diferentes teclas da calculadora quando a tecla right-shift proposition for ativada:

- As funções BEGIN, END, COPY, CUT e PASTE são usadas para editar os objetos.
- A tecla UNDO é usada para desfazer a última operação da calculadora.
- A função CHARS ativa o menu de caracteres.

- A função EQW é usada para iniciar o Editor de Equação.
- A função CAT é usada mostrar o catálogo de comandos.
- A função CLEAR limpa a pilha operacional.
- A função LN calcula o logaritmo natural.
- A função $\sqrt[x]{y}$ calcular a raiz x de y.
- A função Σ é usada para inserir as somatórias (ou o sigma da letra grega).
- A função ∂ é usada para calcular as derivadas.
- A função ∫ é usada para calcular as integrais.
- A função LOG calcula o logaritmo de base 10.
- A função ARG calcula o argumento de um número complexo.
- A função ENTRY é usada para alterar o modo de entrada na edição.
- A função NUM.SLV lança o menu NUMerical SOLver.
- A função TRIG ativa o menu de funções trigonométricas.
- A função TIME ativa o menu de tempo.
- A função ALG ativa o menu algébrico.
- A função STAT ativa o menu de operações estatísticas.
- A função UNITS ativa o menu para unidades de medida.
- A função CMPLX ativa o menu de funções de números complexos.
- A função LIB ativa as funções de bibliotecas.
- A função BASE ativa o menu de conversão de base numérica.
- A tecla OFF desliga a calculadora, a tecla →NUM produz um valor numérico (ou ponto flutuante) de uma expressão.
- A tecla " " insere um conjunto de quotas duplas usada para segmentos de texto.
- A tecla __ insere um sublinhado.
- A tecla << >> insere o símbolo para um programa.
- A tecla → insere uma seta representando uma entrada em um programa.
- A tecla L'insere um caractere de retorno (quebra de linha) em programas ou segmentos de texto.
- A tecla de vírgula (,) insere uma vírgula.
- As teclas com setas, quando combinadas com a tecla retrocesso-direito, move o cursor para o primeiro caractere na direção da tecla pressionada.

Caracteres ALFA

O seguinte desenho mostra os caracteres associados com as diferentes teclas da calculadora quando ALPHA (ALPHA) for ativado. Observe que a função (ALPHA) é usada para inserir as letras em maiúscula do alfabeto inglês (A a Z). Os números, símbolos matemáticos, (-, +), pontos decimais (.) e o espaço (SPC) são as mesmas das funções principais destas teclas. A função (ALPHA) produz um asterisco (*) quando combinada com a tecla vezes, ex. (ALPHA) ×.

Funções Alfa (ALPHA) do teclado da calculadora

Caracteres left-shift alfa

O seguinte desenho mostra os caracteres associados com as diferentes teclas da calculadora quando ALPHA (ALPHA) for combinado com a tecla left-shift (). Observe que a função (ALPHA) () é usada para inserir as letras em minúscula do alfabeto inglês (A a Z). Os números, símbolos matemáticos, (-, +, x), pontos decimais (.) e o espaço (SPC) são as mesmas das funções principais destas teclas. Para as teclas ENTER e CONT funcionam também com as suas funções principais quando a combinação (ALPHA) () for usada.

Funções Alfa ALPHA 🕤 do teclado da calculadora

Caracteres right-shift alfa

O seguinte desenho mostra os caracteres associados com as diferentes teclas da calculadora quando ALPHA (ALPHA) for combinado com a tecla rightshift (P).

Funções Alfa ALPHA → do teclado da calculadora

Observe que a combinação (ALPHA) \rightarrow é usada para inserir um número de caracteres especiais na pilha da calculadora. As entradas das teclas CLEAR, OFF, \rightarrow , \leftarrow , vírgula (,) e as teclas OFF funcionam também com as suas funções

principais mesmo quando a combinação (ALPHA) ightharpoonup for usada. Os caracteres especiais gerados pela combinação (ALPHA) ightharpoonup incluem as letras gregas ($\alpha, \beta, \Delta, \delta, \epsilon, \rho, \mu, \lambda, \sigma, \theta, \tau, \omega$ e Π), outros caracteres gerados pela combinação (ALPHA) ightharpoonup são | , ', ^, =, <, >, /, ", \, __, ~, !, ?, <<>> « » e @.

Apêndice C Configurações CAS

CAS significa sistema algébrico do computado. Este é o centro matemático da calculadora onde as operações e funções matemáticas simbólicas e funções são programadas. O CAS oferece um número de configurações que podem ser ajustados de acordo com o tipo de operação de interesse. Para ver as configurações CAS opcionais use o seguinte:

 Pressione o botão MODE para ativar formulário de entrada CALCULATOR MODES.

No fundo da folha de cálculo encontrará as seguintes teclas virtuais: opções:

Fornece os menus para manipular os sinalizadores da
calculadora (*)
Permite que o usuário escolha as opções nos diferentes

campos no formulário

Fornece um formulário de entrada para alterar as configurações CAS.

Fornece um formulário de entrada para alterar as configurações do visor.

Fecha este formulário de entrada e retorna para o visor normal.

Use esta tecla para aceitar as configurações.

(*) Os sinalizadores são variáveis na calculadora, mencionados pelos números, que podem ser "ativados" e "desativados" para alterar certas opções de operação da calculadora.

Pressionar a tecla NXT mostra as opções restantes no formulário de entrada CALCULATOR MODES:

Permite que o usuário reinicie uma opção ressaltada
Fecha este formulário de entrada e retorna para o

visor normal.

Usa esta tecla para aceitar as configurações.

 Para recuperar o menu original na caixa de entrada CALCULATOR MODES, pressione a tecla MIT. O importante neste ponto é alterar as configurações CAS. Isto é feito pressionando a tecla IIIII. Os valores padrões da configuração CAS são mostrados abaixo:

- Para navegar através de diversas opções no formulário de entrada CAS MODES, use as teclas de setas: (1) (2) (2).
- Para selecionar ou alterar a seleção de qualquer uma das configurações mostradas acima, selecione o subjacente antes da a opção de interesse e acione a tecla até que a configuração correta seja alcançada. Quando uma opção for selecionada, a marca de verificação será mostrada no sublinhado (ex. as opções Rigorous e Simp Non-Rational acima). As opções desmarcadas não mostrarão nenhuma marca de verificação sublinhada precedente das opções de interesse (ex. as opções _Numeric, _Approx, _Complex, _Verbose, _Step/Step, _Incr Pow acima).

retornar ao visor normal da calculadora nesta altura, pressione a tecla novamente.

Selecionar a variável independente

Muitas das funções fornecidas pelo CAS usam uma variável independente pré-determinada. Por definição, tal variável é a letra X (maiúscula) conforme mostrado na caixa de entrada CAS MODES acima. Portanto, o usuário pode alterar esta variável para qualquer outra letra ou combinação de letras e números (um nome de variável deve começar como uma letra) editando o campo *Indep var* na caixa de entrada CAS MODES.

Uma variável chamada VX existe no diretório da calculadora {HOME CASDIR} que aceita, como padrão, o valor de 'X'. Este é o nome da variável independente para as aplicações algébricas e de cálculo. Por esta razão, a maioria dos exemplos neste capítulo usa X como a variável desconhecida. Se usar outros nomes de variáveis independentes, por exemplo, com a função HORNER, o CAS não funcionará corretamente.

A variável VX é um habitante permanente do diretório {HOME CASDIR}. Estas são as variáveis CAS no {HOME CASDIR}, ex., REALASSUME ([23222]), MÓDULO ([20222]), CASINFO ([23222]), etc.

Você pode alterar o valor de VX armazenado um novo nome algébrico nele, ex., 'x', 'y', 'm', etc. De preferência, mantenha 'X' como sua variável VX para os exemplos neste manual.

Além disso, evite usar a variável VX nos seus programas ou equações, para não confundir com a VX do CAS. Se for necessário mencionar o componente x da velocidade, por exemplo, você pode usar vx ou Vx.

Selecionar os módulos

A opção *Modulo* da caixa de entrada CAS MODES representa um número (valor padrão = 13) usado na aritmética modular. Outros detalhes sobre aritmética modular são apresentados em outra seção.

Modo CAS Numeric e Symbolic

Quando o modo CAS *Numeric* for selecionado, certas constantes na calculadora são exibidas no seu valor de ponto de flutuação total. Por definição, a opção *_Numeric* foi desmarcada, significando que estas constantes pré-definidas serão exibidas como seu símbolo, em vez de seus valores, no visor da calculadora.

O seguinte visor mostra os valores da constante π (a razão do comprimento da circunferência para seu diâmetro) no formato simbólico seguido pelo formato numérico ou ponto de flutuação. Este exemplo corresponde ao modo de operação algébrico.

: π π : π 3.14159265359 εριτ | ντεκ | και | ετον | ρυκοε|αιεκκ

O mesmo exemplo corresponde ao modo de operação RPN, é mostrado a seguir:

Modo CAS Aproximado e Exato

Quando _Approx for selecionado, as operações simbólicas, (ex. Integrais definidas, raízes quadradas, etc.), serão calculadas numericamente. Quando _Approx for desmarcado (modo Exact é ativo), as operações simbólicas serão calculadas como expressões algébricas de formato fechado, sempre que possível.

O seguinte visor mostra um par de expressões inseridas com um modo exato ativo no modo de operação algébrico:

No modo Algebraic, o objeto inserido pelo usuário no lado esquerdo do visor, seguido imediatamente por um resultado no lado direito do visor. Os resultados mostrados acima mostram que as expressões simbólicas para ln(2), ex., o logaritmo natural de $2 \ e^{\sqrt{5}}$, ex., a raiz quadrada de 5. Se a opção _Numeric CAS for selecionada, os resultados correspondentes para estas operações são conforme a seguir:

As teclas necessárias para inserir estes valores no modo Algebraic são as seguintes:

Os mesmos cálculos podem ser produzidos no modo RPN. Níveis 3: e 4: da pilha mostram o caso de configuração Exact CAS (ex. opção _Numeric CAS é desmarcada), enquanto os níveis 1: e 2: da pilha mostram o caso no qual a opção Numeric CAS é marcada.

As teclas necessárias são: 2 → W 5 V

Um atalho de teclado para alternar entre o modo APPROX e EXACT é manter a tecla de retrocesso a esquerda e pressionar a tecla ENTER simultaneamente, ex. (manter) (MTB).

Números reais e inteiros

As operações CAS utilizam os números para mater a precisão total nos cálculos. Os números reais armazenados no formulário de uma mantissa e um expoente e tem precisão limitada. No modo APPROX, portanto, sempre

que inserir um número inteiro, ele é automaticamente transformado em um número real, conforme ilustrado a seguir:

Sempre que a calculadora listar um valor inteiro seguindo por um ponto decimal, indica que o número inteiro foi convertido para uma representação real. Isto indicará que o número foi inserido enquanto o CAS foi definido para o modo APPROX.

Recomenda-se que você selecione o modo EXACT como o modo CAS padrão e altere o modo para APPROX se solicitado pela calculadora ao fazer uma operação.

Para obter informações adicionais sobre números inteiro e real, como também outros objetos de calculadora, consulte o capítulo 2.

Modos CAS Real e Complexo

Um número complexo é um número em formato a+bi, onde i, definido por $i^2=-1$ é o número imaginário da unidade (os engenheiros elétricos preferem usar o símbolo j) e a e b são números reais. Por exemplo, o número 2+3i é um número complexo. Informações adicionais sobre operações com números complexos são apresentadas no capítulo 4 deste manual.

Se a opção _Complex CAS for selecionada, se uma operação resulta em um número complexo, então o resultado será mostrado na forma a+bi ou na forma de uma par ordenado (a,b). Por outro lado, a opção _Complex CAS é desconfigurada (ex. a opção Real CAS está ativada) e os resultados da operação em um número complexo, você será solicitado a alternar para o modo Complex. Se rejeitar, a calculadora retornará um erro.

Observe que, no modo COMPLEX o CAS pode fazer uma ampla gama de operações a mais do que no modo REAL, mas será consideravelmente

também mais lenta. Assim, recomendamos que você selecione o modo REAL como o modo padrão e altere o modo para COMPLEX se solicitado pela calculadora ao fazer uma operação.

O seguinte exemplo mostra o calculo do valor $\sqrt{5^2-8^2}$ usando o modo de operação Algebraic, primeiro com a opção Real CAS selecionada. Neste caso, você será perguntado se deseja alterar o modo para Complex:

Se pressionar a tecla OK (), então a opção _Complex é forçada e o resultado é o seguinte:

As teclas usadas acima são as seguintes:

Quando solicitado a mudar para o modo COMPLEX, use: 🙃 . Se decidir não aceitar a alteração para o modo COMPLEX, você obterá a seguinte mensagem de erro:

Modo CAS verbose e não verbose

Quando a opção _Verbose CAS for selecionada, certos cálculos são fornecidos com as linhas de comentários no visor principal. Se a opção _Verbose CAS não for selecionada, então estas aplicações de cálculos não mostrarão as linhas de comentários. As linhas de comentários aparecerão momentaneamente nas linhas do topo do visor enquanto a operação estiver sendo calculada.

Modo CAS etapa por etapa

Quando a opção CAS _Step/step for selecionada, certas operações serão mostradas passo a passo no visor. Se a opção _Step/step CAS não for marcada, então as etapas imediatas serão mostradas.

Por exemplo, depois de selecionar a opção Step/step, os seguintes visores mostram a divisão etapa por etapa de dois polinômios, a saber, (X³-5X²+3X-2)/(X-2). Isto é conseguido usando a função DIV2, conforme mostrado abaixo Pressione [NTER] para mostrar a primeira etapa:

O visor informa que a calculadora está operando uma divisão de polinômios A/B, para que A = BQ + R, onde Q = quociente e R = resíduo. Para o caso sob consideração, A = X^3-5X^2+3X-2 e B = X-2. Estes polinômios são representados no visor pelas listas de seus coeficientes. Por exemplo, a expressão A: $\{1,-5,3,-2\}$ representa o polinômio A = X^3-5X^2+3X-2 , B: $\{1,-2\}$ representa o polinômio B = X-2, Q: $\{1\}$ representa o polinômio Q = X e R: $\{-3,3,-2\}$ representa o polinômio R = $-3X^2+3X-2$.

Agora, pressione, por exemplo, a tecla $\boxed{\text{ENTE}}$. Continue a pressionar a tecla $\boxed{\text{ENTE}}$ para produzir as etapas adicionais:

```
Division A=BQ+R
A: (1,-5,3,-2)
B: (1,-2)
Q: (1,-3,-3)
R: (-8)
Press a key to go on
```

Assim, as etapas intermediárias mostradas representam os coeficientes do quociente e resíduos da divisão sintética etapa por etapa com seria feita manualmente, ex.

$$\frac{X^3 - 5X^2 + 3X - 2}{X - 2} = X^2 + \frac{-3X^2 + 3X - 2}{X - 2} =$$

$$X^{2} - 3X + \frac{-3X - 2}{X - 2} = X^{2} - 3X - 3X - \frac{8}{X - 2}.$$

Modo CAS - Aumento de potência

Quando a opção _Incr pow CAS for marcada, os polinômios serão listados para que os termos sejam potências aumentando nas variável independente. Quando a opção _Incr pow CAS não for marcada (valor padrão), os polinômios serão listados para que os termos sejam potências diminuindo na variável independente. Um exemplo é mostrado próximo ao modo Algebraic:

No primeiro caso, o polinômio (X+3)⁵ é expandido em ordem de aumento de potência de X, enquanto no segundo caso, o polinômio mostra ordem de diminuição de potência de X. As teclas em ambos os caso são as seguintes:

No primeiro caso a opção *_lncr pow* foi selecionada, enquanto na segunda não foi selecionada. No primeiro exemplo, na notação RPN, é mostrado abaixo:

A mesma seqüência de teclas foi usada para produzir cada um dos resultados:

Configuração CAS rigorosa

Quando a opção _Rigorous CAS for selecionada, a expressão algébrica |X|, ex. O valor absoluto, não é simplificado para X. Se a opção _Rigorous CAS não for selecionada, a expressão algébrica |X| é simplificada para X.

O CAS pode resolver uma grande variedade de problemas se o modo rigoroso não for marcado. Portanto, o resultado ou o domínio no qual o resultado é aplicável, pode ser mais limitado.

Configuração CAS - Simplificar não racional

Quando a opção _Simp Non-Rational CAS for marcada, as expressões irracionais serão automaticamente simplificadas. Por outro lado, se a opção _Simp Non-Rational CAS não for marcada, as expressões irracionais não serão automaticamente simplificadas.

Usar o mecanismo de AJUDA CAS

Ligue a calculadora e pressione a tecla \overline{mod} para ativar o menu TOOL. Depois, a tecla \overline{mod} seguido de \overline{mod} (se a tecla no canto mais inferior do teclado), para ativar a AJUDA. O visor será conforme a seguir:

Agora, verá uma lista de todos os comandos em ordem alfabética. Você pode usar a tecla com a seta para baixo, , para navegar através da lista. Para mover para cima na lista use a tecla com a seta para cima, . As teclas com as setas estão localizadas no lado direito do teclado entre a primeira e quarta linha de teclas.

Suponha que você queira encontrar as informações sobre o comando ATAN2S (função ArcTANgent-to-Sine), pressione a tecla com a seta para baixo, , até que o comando ATAN2S seja ressaltado na lista:

Observe que, neste caso, as teclas 🕫 e 🕫 são as únicas com os comandos associados, a saber:

CANCeL a facilidade HELP

OK para ativar a ajuda para o comando selecionado.

Se pressionar a tecla (5), a AJUDA é cancelada e a calculadora retorna para o visor normal.

Para ver o efeito do uso de man na AJUDA, vamos repetir as etapas acima da seleção do comando ATAN2S na lista de comandos CAS:

Depois, pressione a tecla para obter as informações sobre o comando ATAN2S.

A ajuda indica que o comando ou função, ATAN2S substitui o valor de *atan(x)*, o arco-tangente de um valor *x*, pelo seu equivalente em termos da função *asin* (arcoseno), ex.

A quarta e quinta linhas no visor fornecem um exemplo de aplicação da função ATAN2S. Linha quatro, a saber, ATAN2S(ATAN(X)), é a instrução de operação a ser feita, enquanto a linha cinco, a saber, ASIN($X/\sqrt{(X^2+1)}$), é o padrão.

A linha de fundo no visor, começando com a partícula See: é a linha de referência listando os comandos CAS relacionados ao comando ATAN2S.

Observe que existem seis comandos associados com as teclas neste caso (você pode verificar que existem apenas seis comandos porque pressionar não produz os itens do menu). Os comandos das teclas são descritos a seguir:

33941	FI	SAI da ajuda
	F2	Copia o comando de exemplo para a pilha e sai
33 31 	F3	Consulta o primeiro link (se houver) na lista de referência.
	F4	Consulta o segundo link (se houver) da lista de referência.
	F5	Consulta o terceiro link (se houver) da lista de referência.
	F6	Retorna para a lista de comando MAIN na ajuda

Neste caso queremos ECOAR o exemplo na pilha pressionado $\fbox{\cite{120}}$. O visor resultante é mostrado a seguir:

Existem agora quatro linhas do visor ocupadas com o resultado. As primeiras duas linhas do topo correspondem ao primeiro exercício com a AJUDA na qual cancelamos a solicitação para ajuda. A terceira linha do topo mostra a chamada mais recente para a AJUDA, enquanto a última linha

mostra o ECHO do comando de exemplo. Para ativar o comando, pressione a tecla [NTE]. O resultado é:

Observe que, as novas linhas dos resultados são produzidas, o visor (ou pilha) pressiona as linhas existentes para cima e preenche o fundo do visor com mais resultados.

A AJUDA, descrita nesta seção, será muito útil para mencionar a definição de diversos comandos CAS disponíveis na calculadora. Cada entrada na ajuda CAS, sempre que apropriado, terá um exemplo de aplicação do comando, como também referências conforme mostrado neste exemplo.

Para navegar rapidamente para um comando em particular na lista de ajuda sem ter que usar as teclas com setas todo o tempo, podemos usar um atalho consistindo de digitar a primeira letra no nome do comando. Suponha que desejemos encontrar a informação no comando IBP (integração por partes), dado que a lista de ajuda esteja disponível, use a tecla (primeira tecla na quarta linha do teclado) seguindo pela tecla para a letra i (a mesma da tecla (pour linha do teclado) seguindo pela tecla para a letra i (a mesma da tecla (pour linicia com um i, a saber, IBASIS. Depois, você pode usar a tecla com a seta para baixo , duas vezes, para encontrar o comando IBP. Pressionar a tecla (para lista principal de comando ou para sair da ajuda.

Referências para os comandos não CAS

A ajuda contém entradas para todos os comandos desenvolvidos para o CAS (Sistema Algébrico do Computador). Existe um grande número de outras funções e comandos que foram desenvolvidos originalmente para as calculadoras de série HP 48G que não estão inclusas na ajuda. Referências corretas para estes comandos estão no *Manual de Usuário HP 48G* (n° da

parte HP 00048-90126) e o *Manual de Referência Avançado da HP 48G* (n° da parte HP 00048-90136) ambos publicados pela Hewlett-Packard Company, Corvallis, Oregon, em 1993.

Termos e condições do usuário final do CAS

Uso do programa CAS exige que o usuário tenha um conhecimento adequado de matemática. Não existe acordo para o programa CAS, de acordo com o permitido pela lei aplicável. Exceto quando afirmado ao contrário por escrito no mantenedor dos direitos autorais fornece o programa CAS "Como é" sem garantia de qualquer tipo, ou expressa ou implícita, incluindo, mas não limitando as garantias implícitas de comercialização e adequação para um objetivo em particular. O risco total em relação à qualidade e desempenho do programa CAS é seu. Caso o programa CAS apresente defeito, a despesa será de sua responsabilidade para o reparo, serviço ou correção necessária.

Em nenhuma circunstância exigida pela lei aplicável qualquer mantenedor de direitos autorais será responsável pelos danos, incluindo quaisquer danos geral, acidental ou conseqüente causados pelo uso ou incapacidade para O programa CAS (incluindo, mas não limitado a perda de dado ou dados sendo usados de forma inacurada ou perdas sustentadas por você ou terceiros ou uma falha do programa CAS em operar com quais quer outros programas) mesmo se tal mantenedor ou terceiro seja notificado sobre a possibilidade de tais danos. Se exigido pela lei aplicável o valor máximo pago por danos de acordo com o mantenedor de direitos autorais não excede o valor de royalties pago por Hewlett-Packard para o mantenedor do programa.

Apêndice D Conjunto adicionais de caracteres

Enquanto você pode usar qualquer letra inglesa maiúscula e minúscula do teclado, existem 255 caracteres disponíveis na calculadora. Incluindo os caracteres especiais θ , λ , etc., que podem ser usados nas expressões algébricas. Para acessar estes caracteres usamos a combinação de teclas \rightarrow CHARS (associadas com a tecla EVAL). Resultado é o seguinte visor:

Usar as teclas com setas, () , podemos navegar através da coleção de caracteres. Por exemplo, mover para baixo no visor produz mais caractere na exibição:

Mover para baixo, vemos estes caracteres:

Haverá um caractere ressaltado todas as vezes. A linha inferior no visor mostrará o atalho para o caractere ressaltado, como também o código de caractere ASCII (ex. consulte o visor acima: o atalho é $\alpha \leftarrow D\alpha \rightarrow 9$, ex.

(ALPHA) (¬) (D) (ALPHA) (¬) (P) e o código é 240). O visor exibe também três funções associadas com as teclas, f4, f5 e f6. Estas funções são:

Abre a visor de gráfico onde o usuário pode alterar o caractere ressaltado. Usar esta opção cuidadosamente, já que alterará o caractere até a próxima reinicialização da calculadora. (Imagine o efeito de alterar o formato do caractere 1 para parecer como um 2!).

: Copia o caractere ressaltado para a linha de comando ou Editor de Equação (EQW) e sai do visor de conjunto de caractere (ex. ecoa um único caractere para a pilha).

: copia o caractere ressaltado para a linha de comando ou Editor de Equação (EQW), mas o cursor permanece no visor de conjunto de caractere para permitir que o usuário selecione os caracteres adicionais (ex. ecoa um segmento de caracteres para a pilha). Para sair do visor de conjunto de caractere pressione

Por exemplo, suponha que você deve digitar a expressão: $\lambda^2 + 2\mu + 5$

Aqui é sugerido uma abordagem usando uma pilha no modo Algebraic ou RPN:

A seguir, listamos algumas das combinações de teclas (ALPHA) P mais comuns:

Letras gregas

α	(alfa)	$(ALPHA) \rightarrow (A)$
β	(beta)	(ALPHA) (>) (B)
δ	(delta)	ALPHA (>) (D)
3	(epsilon)	ALPHA P
θ	(theta)	ALPHA P
λ	(lâmbda)	$(ALPHA) \rightarrow (N)$
μ	(mu)	$(ALPHA) \rightarrow (M)$
ρ	(rho)	ALPHA P
σ	(sigma)	ALPHA > S
τ	(tau)	ALPHA P
ω	(ômega)	ALPHA P
Δ	(delta maiúscula)	ALPHA P
П	(pi maiúscula)	$(ALPHA) \rightarrow (P)$

Outros caracteres

~	(til)	$ALPHA$ \rightarrow I
!	(fatorização)	$(ALPHA) \rightarrow 2$
Ś	(interrogação)	$(ALPHA) \rightarrow 3$
\	(barra a esquerda)	$(ALPHA) \rightarrow 5$
4	(símbolo de ângulo)	$(ALPHA) \rightarrow 6$
@	(arroba)	ALPHA () ENTER

Alguns caracteres normalmente usados que não tem atalhos de teclado simples são: \bar{x} (x barra), γ (gama), η (eta), Ω (ômega maiúsculo). Estes caracteres devem ser "ecoados" do visor CHARS: \overrightarrow{P} CHARS.

Apêndice E

A árvore de seleção no Editor de Equação

A árvore de expressão é um diagrama que mostra como o Editor de Equação interpreta uma expressão. A forma da árvore da expressão é determinada por um número de regras conhecidas como a hierarquia da operação. As normas são conforme a seguir:

- As operações em parênteses são executadas primeiro, dos parênteses do interior para o exterior e da esquerda para a direita na expressão.
- 2. Argumentos de funções são executados a seguir, da esquerda para a direita.
- 3. As funções são executadas a seguir, da esquerda para a direita.
- 4. Potências de números são executadas a seguir, da esquerda para a direita
- 5. Multiplicações são executadas a seguir, da esquerda para a direita.
- 6. Adições são executadas a seguir, da esquerda para a direita.

A execução da esquerda para a direita significa que se duas operações da mesma hierarquia, digamos duas multiplicações, existem em uma expressão, a primeira multiplicação para a esquerda será executada antes da segunda e assim por diante.

Considere, por exemplo, a expressão mostrada abaixo no Editor de Equação:

$$\frac{((y-3)\cdot x+5)\cdot \left(x^2+4\right)}{\text{SIN}(4\cdot x-2•)}$$
EDIT CURS BIG EVAL FACTO SINF

O cursor de inserção (♠) nesta altura está localizado para a direita de 2 no argumento da função SIN no denominador. Pressione a tecla com a seta para baixo ❤ para disparar o cursor de edição claro (□) em volta de 2 no denominador. Depois, pressione a tecla com a seta ◆, continuamente, até

que o cursor de edição esteja em volta do y no primeiro fator no denominador. Depois, pressione a tecla com a seta para cima para ativar o cursor de seleção (■) em volta do y. Pressionado a tecla com a seta para cima, ♠, continuamente, podemos seguir a árvore de expressão que usará o y para a conclusão da expressão. Aqui está a seqüência das operações ressaltadas pela tecla com a seta superior ♠:

Observamos que a aplicação das regras de operação da hierarquia nesta seleção. Primeiro o y (Etapa A1). Depois, y-3 (Etapa A2, parênteses). Depois, (y-3) (Etapa A3, multiplicação). Depois, (y-3)x+5 (Etapa A4, parênteses). Depois, ((y-3)x+5)(x²+4) (Etapa A5, multiplicação) e finalmente, ((y-3)x+5)(x²+4)/SIN(4x-2) (Etapa A6, divisão). É importante ressaltar que a multiplicação na Etapa A5 inclui o primeiro termo, ((y-3)x+5) com um segundo termo (x²+4), que já é calculado. Para ver as etapas no cálculo deste segundo termo, pressione a seta com a seta para baixo, 🔻, continuamente, até que o cursor de edição seja disparado em volta do y,

novamente. Depois, pressione a tecla com a seta à direita até que o cursor fique em cima do x no segundo termo no numerador. Depois, pressione a tecla com a seta acima para selecionar este x. As etapas na avaliação da expressão, começando deste ponto, são mostradas abaixo:

Podemos também seguir a avaliação da expressão começando de 4 no argumento da função SIN no denominador. Pressione a tecla com a seta para baixo, ▼, continuamente até que o cursor de edição seja disparado em volta do y, novamente. Depois, pressionar a tecla com a seta para a direita até que o cursor fique em cima de 4 no denominador. Depois, pressione a tecla com a seta acima para selecionar com a tecla ▲. As etapas na avaliação da expressão, começando deste ponto, são mostradas abaixo:

A árvore da expressão para a expressão apresentada acima é mostrada a seguir:

As etapas na avaliação dos três termos (A1 até A6, B1 até B5 e C1 até C5) são mostrados a seguir ao círculo contendo os números, variáveis ou operadores. Página E-5

Apêndice F

O menu aplicações (APPS)

O menu aplicações (APPS) está disponível através da tecla (APPS) (primeira tecla na segunda linha do teclado). A tecla (APPS) mostra as seguintes aplicações:

As diferentes aplicações são descritas a seguir.

Funções Plotagens.

Selecionar a opção 1. Plot functions.. no APPS produzirá a seguinte lista de menu de opções relacionadas com gráficos:

As seis opções mostradas são equivalente a seqüência de teclas listas das abaixo:

Estas aplicações são apresentadas em detalhes no capítulo 12.

Funções I/O..

Selecionar a opção 2.1/O *Plot functions..* no APPS produzirá a seguinte lista de menu de funções de entrada/saída:

Estas diferentes aplicações são descritas a seguir.

Envia para a HP 49.. Envia os dados para outra calculadora
Obtenha da HP 49 Receba dados de outra calculadora
Imprime o display Envia o visor para a impressão
Imprime.. Imprime o objeto selecionado da calculadora

Transfere.. Transfere os dados para outro dispositivo
Inicia o servidor.. Calculadora definida como um servidor para a

comunicação com os computadores

Biblioteca de constantes..

Selecionar a opção 3. Constants lib.. no menu APPS abre a aplicação Constant Library (biblioteca de constantes) que fornece valores de constantes físicas padrões:

A Biblioteca de constantes é discutida em detalhe no capítulo 3.

Solucionador numérico..

Selecionar a opção 3. Constants lib.. no menu APPS produz o menu de solucionador numérico:

Esta operação é equivalente para a seqüência de teclas (**) NUM.SLV . O menu de solucionador numérico é apresentado em detalhes no capítulo 6 e 7.

Hora e dia..

Selecionar a opção 5.Time & date.. no menu APPS produz o menu de hora e dia:

Esta operação é equivalente para a seqüência de teclas 产 🎹 . O menu de hora e dia é apresentado em detalhes no capítulo 26.

Editor de Equação

Selecionar a opção *6.Equation writer..* no menu APPS abre o Editor de Equação:

Esta operação é equivalente a seqüência de teclas 📻 🕬 . O Editor de Equação é introduzido em detalhes no capítulo 2. Exemplos do uso do Editor de Equação estão disponíveis neste manual.

Gerenciado de arquivo..

Selecionar a opção 7.File manager.. no menu APPS lança o aplicativo de gerenciador de arquivo:

Esta operação é equivalente à seqüência de teclas 🕣 🏨 .O gerenciado de arquivo é introduzido no capítulo 2.

Matrix Writer

Selecionar a opção 8. Matrix Writer.. no menu APPS abre o Matrix Writer:

Esta operação é equivalente à seqüência de teclas 🕣 🚾 .O Matrix Writer é introduzido no capítulo 10.

Editor de texto...

Selecionar a opção *9.Text editor..* no menu APPS lança o aplicativo de editor de texto:

O editor de texto pode ser iniciando em diversos casos pressionado a tecla coma a seta para baixo . Se um objeto no visor for algébrico, pressionar provavelmente iniciará o Editor de Equação. O editor de texto é introduzido no capítulo 2 e é apresentado em detalhes no apêndice L.

Menu Matemática

Selecionar a opção 10. menu Math.. no menu APPS produz o menu de MTH (matemática) :

Esta operação é equivalente a seqüência de tecla — MTH . O menu MTH é introduzido no capítulo 3 (números reais). Outras funções do menu MTH são apresentadas no capítulo 4 (números complexos), 8 (listas), 9 (vetores), 10 (criação de matriz), 11 (operação com matriz), 16 (transformada de Fourier rápidas), 17 (aplicações de probabilidade) e 19 (números em bases diferentes).

Menu CAS..

Selecionar a opção 11. menu CAS.. no menu APPS produz o menu CAS simbólico :

Esta operação é também disponível ao pressionar a tecla (STMB). O menu CAS simbólico é introduzido no capítulo 5 (operações algébrica e aritmética). Outras funções do menu CAS são apresentadas no capítulo 4 (números complexos), 6 (soluções de equações), 10 (criação de matriz), 11 (operação com matriz), 13 (cálculos), 14 (cálculos multivariados) e 15 (análise vetorial).

Apêndice G Atalhos úteis

Apresentando aqui um número de atalhos do teclado normalmente usados na calculadora:

- Ajusta o contraste do visor: (manter) + ou (manter) -
- Alterne entre RPN e ALG modalidades: MODE +/- MITTER ou MODE +/- ENTER .
- Configura/limpa o sinalizador do sistema 95 (modos de operação ALG e RPN)

- No modo ALG, CF(-95) seleciona modo RPN
- No modo RPN,

 95 (+1-) (ENTER) SF seleciona modo ALG

Um atalho de teclado para alternar entre o modo APPROX e EXACT é manter a tecla de left-shift e pressionar a teclar ENTER simultaneamente, ex. (**) (manter) (MTER).

 Configura/limpa o sinalizador de sistema 105 (modo EXACT e APPROX CAS)

- No modo ALG, SF(-105) seleciona modo APPROX CAS CF(-105) seleciona modo EXACT CAS
- No modo RPN,

 SF105 +- ENTER seleciona modo APPROX CAS

 CF105 +- ENTER seleciona modo EXACT CAS

•	Configura/limp boxes e SOFT)		de sistema 117 (menus CHOOSE
	, ,	leciona modo S	OFT CHOOSE BOXES	· ·
		RPN, SF seleciono CF seleciono		
•	Altera a medid o Para g o Para ro	rau: (ALPHA) (AL	PHA (D) (E) (G) (ENTER) PHA (R) (A) (D) (ENTER)	
•	Símbol	eciais: o do ângulo (∠) o fatorial (!): o de grau (°):	: ALPHA () 6 ALPHA () 2 ALPHA () (mant	ter)6
•	BloqueDesbloBloque	queia o teclado ia o teclado alfo	o alfa: a (maiúscula): Æ alfa (maiúscula): a (minúscula): Æ alfa (minúscula):	: (ALPHA) PHA) (ALPHA) (ALPHA)
•	Letras gregas: Alfa (α): DELTA (Δ): Epsilon (ϵ): Mu (μ): PI (Π): Theta (θ): Ômega (ω):	ALPHA () () () ALPHA () () ()	Beta (β): Delta (d): Rho (ρ): Lambda (λ): Sigma (σ): Tau (t):	ALPHA P B ALPHA P D ALPHA P N ALPHA P S ALPHA P U

•		ção de teste de sistema (mo unda e terceira teclas):	anter , libere-a depois de inserir	
	0		einício "a frio" – a memória inteira e apagada	
	0	ON (manter) F2 : Cance		
	0	, , , , , , , , , , , , , , , , , , , ,	cio "quente" – memória preservada	
	o (manter) [4]: Inicia o autoteste interativo			
	0			
	o (manter) (spc): Fechamento deep-sleep – contador desligado			
	0		ta o esvaziamento do visor	
	0		ela o próximo alarme de repetição	
•	Menus não acessíveis através do teclado: No RPN, insira menu_número, digite MENU. No modo ALG, digite MENU(menu_número). Menu_número é um dos seguintes:			
		Menu STAT: 96		
	0	Menu PLOT: 81		
	0	Menu SOLVE: 74 ou us	o → (manter) 7	
	0	Menu UTILITY: 113	e (mariier)	
	O	Wicho Other 1. 110		
•	Outos	menus:		
	0	Menu MATHS: ALPHA (ALPHA)	MATHSENTER	
	0		MAINENTER	
	Ü	77.01.0 77.0 11.1.		
•	Outros	atalhos do teclado:		
	0	→ (manter) 7 :	Menu SOLVE (menu 74)	
	0		Menu PRG/MODES (capítulo 21)	
	0	(manter) 🔻 :	Inicia o editor de texto (apêndice L)	
	0	(manter) UPDIR :	HOME(), ir para o diretório HOME	
	0	• • • • • • • • • • • • • • • • • • • •	Recuperar o último menu ativo	
	0	(manter) 🔻 :	Lista os conteúdos de variáveis ou	
			entradas de menus	
	0	(manter) CHARS :	Menu PRG/CHAR (capítulo 21)	

Apêndice H Listagens de mecanismo de ajuda CAS

O mecanismo de ajuda CAS está acessível através da combinação de teclas:

TOOL (NAT) [133] [ENTER]. Os primeiros visores de ajuda são mostrados abaixo:

Os comandos são listados em ordem alfabética. Usando as teclas com as setas verticais () é possível navegar através da lista do mecanismo de ajuda. Algumas sugestões úteis sobre navegação são mostradas a seguir:

- Você pode manter a tecla com a seta e observar as apresentações e depois liberar a tecla. É provável que o comando de seu interesse não seja selecionado (pode ultrapassá-lo). Contudo, use as teclas verticais v , uma de cada vez para localizar o comando que deseja e depois pressione .
- Se, ao manter a tecla pressionada ultrapassar o comando, pressione para retroceder para este comando. Selecione usando as teclas verticais puma de cada vez.
- Você pode digitar a primeira letra do comando e depois usar a tecla com a seta para localizá-lo em particular. Por exemplo, se estiver procurando o comando DERIV. Depois de ativar o mecanismo de ajuda (NOT NATELLE ENTR) digite APPA (D. Isto selecionará o primeiro dos comandos que inicia com D, ex. DEGREE. Para encontrar DERIV pressione duas vezes. Para ativar o comando, pressione
- Você pode digitar duas ou mais letras do comando bloqueando o teclado alfabético. Isto o levará ao comando de seu interesse ou para o similar. Depois, é necessário desbloquear o teclado alfa e usar as teclas com as setas para localizar o comando, se for

necessário. Pressione para ativar o comando. Por exemplo, para localizar o comando PROPFRAC, você pode usar a seguinte seqüência de teclas:

Consulte o apêndice C para obter mais informações sobre o CAS (Sistema algébrico do computador). O apêndice C inclui outros exemplos de programas do mecanismo de ajuda do CAS.

Apêndice I Lista de catálogo de comando

Esta é uma lista de todos os comandos no catálogo de comando (). CAT). Estes comandos que pertencem ao CAS (sistema algébrico do computador) são listados no apêndice H. As entradas do dispositivo de ajuda CAS estão disponíveis para um comando dado se a tecla () mostra quando você ressalta este comando em particular. Pressione esta tecla para obter a entrada de dispositivo de ajuda CAS para o comando. Os primeiros visores do catálogo são mostrados abaixo:

Os comandos da biblioteca instalada pelo usuário aparecem também na lista de catálogo de comando, usando a fonte itálica. Se a biblioteca incluir um item de ajuda, então a tecla do menu virtual [133] é mostrado quando você ressalta estes comandos criados pelo usuário.

Apêndice J O menu MATHS

O menu MATHS, acessível através do comando MATHS (disponível no catálogo __CAT), contém os seguintes submenus:

O submenu CMPLX

O submenu CMPLX contém as funções referentes às operações com os números complexos:

Estas funções são descritas no capítulo 4.

O submenu CONSTANTS

O submenu CONSTANTS fornece acesso para as constantes matemáticas da calculadora. Estas funções são descritas no capítulo 3.

O submenu HYPERBOLIC

O submenu HYPERBOLIC contém as funções hiperbólicas e suas inversas. Estas funções são descritas no capítulo 3.

O submenu INTEGER

O submenu INTEGER fornece as funções para a manipulação de números inteiros e alguns polinômios. Estas funções são descritas no capítulo 5.

O submenu MODULAR

O submenu MODULAR fornece as funções para a aritmética modular com os números e polinômios. Estas funções são descritas no capítulo 5.

O submenu POLYNOMIAL

O submenu POLYNOMIAL inclui as funções para a geração e manipulação de polinômios. Estas funções são descritas no capítulo 5.

O submenu TESTS

O submenu TESTS inclui os operadores (e.g., ==, <, etc.), operadores lógicos (ex. AND, OR, etc.), a função IFTE e os comandos ASSUME e UNASSUME.

Os operadores relacionais e lógicos são apresentados no capítulo 21 no contexto de programação de calculadora na linguagem RPL do usuário. A função IFTE é introduzida no capítulo 3. As funções ASSUME e UNASSUME são apresentadas a seguir, usando suas entradas de mecanismo de ajuda CAS (consulte o apêndice C).

NÃO ASSUME

Apêndice K O menu MAIN

O menu MAIN está disponível no catálogo de comando. Este menu inclui os sequintes submenus:

Para o comando CASCFG

Esta é a primeira entrada no menu MAIN e este comando configura o CAS. Para a informação de configuração CAS, consulte o apêndice C.

O submenu ALGB

O submenu ALGB inclui os seguintes comandos:

O submenu DIFF

O submenu DIFF contém as seguintes funções:

Estas funções estão também disponíveis através do submenu CALC/DIFF (iniciar com (). Estas funções estão descritas nos capítulos 13, 14 e 15, exceto para a função TRUNC, que é descrita depois de usar sua entrada do mecanismo de ajuda CAS:

O submenu MATHS

O menu MATHS é descrito em detalhe no apêndice J.

O submenu TRIGO

O submenu TRIGO contém as seguintes funções:

Estas funções estão também disponíveis no menu TRIG (). Uma descrição destas funções é apresentada no capítulo 5.

O submenu SOLVER

O submenu SOLVER inclui as seguintes funções:

Estas funções estão também disponíveis através do submenu CALC/SOLVE (iniciar com (4) CALC). As funções estão descritas no capítulo 6, 11 e 16.

O submenu CMPLX

O menu CMPLX inclui as seguintes funções:

O menu CMPLX está também disponível no teclado (). Algumas das funções no CMPLX estão também disponíveis no menu COMPLEX (iniciar com). Estas funções numéricas complexas são apresentadas no capítulo 4.

O submenu ARIT

O submenu ARIT inclui os seguintes submenus:

Os submenus INTEGER, MODULAR e POLYNOMIAL são apresentados em detalhe no apêndice J.

O submenu EXP&LN

Este menu está também acessível através do teclado usando (5) EXPREIN. As funções neste menu são apresentadas no capítulo 5.

O submenu MATR

O submenu MATR contém as sequintes funções:

Estas funções estão também disponíveis através do menu MATRICES no teclado (As funções são descritas no capítulo 10 e 11.

O submenu REWRITE

O submenu REWRITE contém as sequintes funções:

Estas funções estão também disponíveis através do submenu CONVERT/REWRITE (iniciar com <u>CONVERT</u>). As funções estão apresentadas no capítulo 5, exceto para as funções XNUM e XQ, que são descritas a seguir usando as entradas correspondentes no mecanismo de ajuda CAS (<u>TOOL NAT IIIII</u>):

XNUM

Apêndice L

Comandos da linha de edição

Ao disparar a linha de edição usando 🕤 🔻 na pilha RPN ou no modo ALG, as seguintes funções são fornecidas (pressione 🚾 para consultar as funções residuais):

As funções são rapidamente descritas conforme a seguir:

←SKIP: Salta os caracteres até o início da palavra.
SKIP→: Salta os caracteres até o final da palavra.
←DEL: Exclui os caracteres até o início da palavra.
DEL→: Exclui os caracteres até o final da palavra.

DEL L: Exclui os caracteres da linha.

INS: Quando selecionado insere os caractéres no local do cursor. Se

não for selecionado, o cursor substitui os caracteres (sobrescreve)

em vez de inserir os caracteres.

EDIT: edita a seleção.

→BEG: Move para o início da palavra.

→END: Marca o final da seleção.

INFO: Fornece a informação sobre a linha de edição de comando, ex.

Os itens mostrados neste visor são auto explicativos. Por exemplo, posições X e Y significa que a posição em uma linha (X) e o número de linha (Y). Stk Size significa o número de objetos no histórico de modo ALG ou na pilha RPN. Mem(KB) significa o espaço de memória livre. Clip Size é o número de caracteres na área de transferência. Clip Size é o número de caracteres na seleção COPY atual.

EXEC: Executa o comando selecionado. HALT: Interrompe a execução de comando.

A linha de edição fornece também os seguintes submenus:

SEARCH: Busca os caracteres ou palavras na linha de comando. Inclui as seguintes funções:

GOTO: Move para o local desejado na linha de comando. Inclui as sequintes funções:

Estilo: Estilos de texto que podem ser usados na linha de comando:

O submenu SEARCH

As funções do submenu são SEARCH:

Find: Use esta função para encontrar um segmento na linha de comando. O formulário de entrada com este comando é mostrado a seguir:

Replace: Use este comando para encontrar e substituir um segmento. O formulário de entrada fornecido para este comando é:

Find next..: Encontra o próximo padrão de busca conforme definido

no Encontrar

Replace Selection: substitui a seleção com o padrão de substituição definido

com Substituir comando.

Replace/Find Next: Substitui um padrão e busca por outra ocorrência.

O padrão é definido em Substituir.

Replace All: Substitui todas as ocorrências de um certo padrão. Este

comando solicita a confirmação do usuário antes de

substituir o padrão.

Replace All: Substitui todas as ocorrências de um certo padrão sem

verificar com o usuário.

O submenu GOTO

As funções do submenu GOTO são as seguintes:

Goto Line: para mover para uma linha específica. O formulário de entrada fornecido com este comando é:

Goto Position: Move para a posição desejada na linha de comando. O formulário de entrada fornecido para este comando é:

Labels: Move para o símbolo desejado na linha de comando.

O submenu Style

O submenu Style inclui os seguintes estilos:

BOL: Negrito
ITALI: Itálicos
UNDE: Sublinhado
INV: Inverso

O comando FONT permite que o usuário selecione a fonte para o editor de comando.

Exemplos de estilos diferentes são mostrados abaixo:

: "BOLD" : "BOLD" : "ITALICS" : "UNDERLINE" : "UNDERLINE" "UNDERLINE" : BOUNDERLINE"

: "BOLD" : "INVERSE" : "MNWERSE" : "MNWERSE" | MNWERSE"

Apêndice M Índice

Alteração de variáveis, 13-19 Alterar os sinais, 8-3 A árvore de seleção no Editor de Ambiente de plotagem, 17-15 Equação, E-1 AMORT, 6-33 A construção CASE, 21-53 Amortização, 6-11 A distribuição beta, 17-7 Amostra e população, 18-5 A distribuição exponencial, 17-7 Análise vetorial, F-6 A distribuição gama, 17-7 Anel aritmético finito, 5-15 A distribuição qui-quadrada, Ângulo entre vetores, 9-17 17-12 Animação, 22-28 A distribuição Weibull, 17-8 Animar os gráficos, 22-28 A equação de Cauchy ou Euler, Animar, 22-28 16-55 Anti-derivadas, 13-14 A função massa de probabilidade, Apagar, 12-17 17-4 Aplicações da transformada de A variável VPAR, 12-47 Laplace na solução de ODEs A variável VX, 5-22 linear, 16-18 ABCUV, 5-11 Aplicações lineares, 11-56 ABS, 3-4,4-6,11-7 Aplicar o zoom de aumento e ACK, 25-4 redução na exibição de gráficos, ACKALL, 25-4 12-52 ACOS, 3-6 ARC, 22-23 ACOSH, 3-9 ÅREA, 3-19 ADD, 8-9,12-22 ARG, 4-6 ADDTMOD, 5-12,5-16 Aritmética modular, 5-13 AJUDA, 1-7 Arquivos, 1-3 Ajustar o contraste do visor, 1-2 Arvore de seleção no Editor de Ajuste de dados, 18-12 Equação, E-1 Ajuste de polinômio, 18-61 As funções hiperbólicas, 4-9 Ajuste linear múltiplo, 18-58 **ASIN**, 3-6 Alarmes, 25-2 **ASINH**, 3-9 Algebra linear, 11-1 ASN, 20-6 ALOG, 3-5

ASR, 19-7	CHOOSE boxes, 1-4
Assim, GROBs, 22-33	Calculadora, G-1
ASSUME, J-3	Calcular com horas, 25-4
Atalhos no menu PRG, 21-9	Cálculos com dias, 25-4
Atalhos, G-1	Cálculos financeiros, 6-10
ATAN, 3-6	Cálculos multivariáveis, 14-1
ATANH, 3-9	Cálculos, 13-1
ATICK, 22-8	Campos de inclinação são, 16-3
Atualmente sub-menus, 13-1	Campos de inclinação, 12-36
Modo CAS - Aumento de potência,	Campos escalares e vetoriais,
C-9	15-1
AUTO, 22-3	Campos escalares, 15-1
Autoteste contínuo, G-3	Campos irracionais, 15-5
Autoteste interativo, G-3	Campos, 6-18
Avaliação passo a passo, 13-17	Cancela o próximo alarme de
AXES, 22-8,22-14	repetição, G-3
AXL, 9-26	Caracteres ALFA, B-10
AXM, 11-15	Caracteres especiais, G-2
AXQ, 11-54	Funções Left-shift, B-5
	Caracteres right-shift alfa, B-12
D	CAS MODES, C-3
В	CASDIR, 2-35 16-30
B→R, 19-3	CASINFO, 2-37
Baterias, 1-1	(CDF) da distribuição normal,
BEG, 6-33	18-43
BIN, 3-2	Inverso, B-3
Bloqueia/desbloqueia o teclado	CEIL, 3-14
ALFA, G-2	CENTR, 22-7
BOL, L-4	CHDIR, 2-34
BOX, 12-50	CHINREM, 5-11, 5-20
BOXZ, 12-53	CHOOSE, 21-33
Buscar, 5-4	CHOOSE boxes, 1-4
	CHR, 23-1
C	CYCLOTOMIC, 5-11
C→PX, 19-7	CIRCL, 12-48
C→R, 4-6	Classes, 18-6
C→N, 4-0	

Classificados, 21-15 Conjunto adicionais de caracteres, CLKADJ, 25-3 D-1 CMD, 2-64 CONLIB, 3-30 Constante Euler, 16-59 CMDS, 2-26 CNCT, 22-14 Constantes da calculadora, 3-16 CNTR, 12-54 Constantes físicas, 3-30 Coeficiente de correlação de Construção, 3-7 amostra, 18-13 Construção DO, 21-64 Coeficiente de correlação, 18-11 Construção START...NEXT, 21-56 Coeficiente de variação, 18-5 Construção START...STEP, 21-56 COL-, 10-21 Construir um vetor bidimensional, COL+, 10-21 9-13 COL→, 10-20 Construir um vetor, 9-13 Cola, 2-28 CONVERT, 3-28 COLLECT, 5-5 Convolução, 16-50 Colocado, 1-15 Coordenadas de pixel, 22-24 Comando MAIN/CASCFG, K-1 COPIAR, 2-28, 2-35 Comandos da linha de edição, L-1 COS, 3-7 Comandos não CAS, C-13 Coseno e transformada de Fourier, COMB, 17-2 16-48 COSH, 3-9 Combinações, 17-1 Covariação de amostra, 18-12 Tamanho, 2-37,5-20 CON, 10-9 Covariação, 18-11 Concatenação de segmento, 23-2 CRDIR, 2-40 COND, 11-10 Criar subdiretórios, 2-40 Condição de uma matriz, 11-9 Crout LU, 11-51 Configuração, 10-27 CST, 20-1 Configuração CAS rigorosa, C-10 CSWP, 10-22 Configuração CAS, C-10 CURS, 2-21 Configuração, 1-6 Curvas cônicas, 12-22 Conjunto adicionais de caracteres, CUT, 2-27 D-1 CYLIN, 4-3 Configurar a hora e o dia, 1-7 Configurar a hora e o dia, 25-2 D CONJ, 4-6 D-->R, 3-15 Da matriz, 11-29

Da plotagem além da própria,

22-40

Dados agrupados, 8-18

DARCY, 3-33 DATE+, 25-3 DBUG, 21-36 DDAYS, 25-3

De saídas marcadas 1-15

DEC, 19-2

Decompor listas, 8-2 Decompor um vetor, 9-12 Decomposição, 11-51

Decomposição de valor singular,

11-51

Decomposição de ciclo Jordan de

uma matriz, 11-49 Decomposição, 11-50

DEFINE, 3-35

Definição da função, 3-37

DEFN, 12-19 DEG, 3-1 DEL L, L-1 DEL, 12-48 DEL→, L-1 DELALARM, 25-5 DELKEYS, 20-6

Delta de Kronecker, 10-1

Depende, 18-23 DEPND, 22-6

Depurar os programas, 21-23

DERIV, 13-3

Derivada direcional, 15-1 Derivadas com ∂, 13-4 Derivadas de equações, 13-7 Derivadas de ordem superior,

13-14

Derivadas implícitas, 13-7

Derivadas para calcular os pontos

extremos, 13-12

Derivadas parciais de ordem

superior, 13-14

Derivadas parciais, 14-1 Derivadas, 13-1, 13-3 Derivadas, 13-15,13-17

DERVX, 13-3

Desenhar a função, 12-10 Desenhar os comandos para uso na programação, 22-21 Desenhar os comandos, 22-21 DESENHAR, 12-31, 22-21

Desenho interativo, 12-47 Desfazer, 2-64 Desligado, G-3 DESOLVE, 16-8

Desvio padrão, 18-3

DET, 11-12

Determinantes, 11-12 11-41

DIA, 25-3 DIAG->, 10-13

Diagonal principal, 10-1 Diferenciais, 13-20

Diferencial total de uma função,

14-5

Digite no programa, 21-63

DISTRIB, 5-30

Distribuição binomial, 17-4 Distribuição de freqüência, 18-7 Distribuição de probabilidade

contínua, 17-6

Distribuição estudante t, 17-11

Distribuição F, 17-9

Distribuição normal padrão,	Matrix Writer, 10-2
17-18,	Editor de texto, F-5
Distribuição normal pdf, 17-10	EGCD, 5-20
Distribuição normal, 17-9	EGDC, 5-12
Distribuição Poisson, 17-5	EGV, 11-48
Distribuições contínuas para	EGVL, 11-47
inferência estatística, 17-9	Eliminação de Gauss-Jordan,
Distribuições de probabilidade	11-29
contínua, 17-6	Eliminação gaussiana, 11-29
Distribuições de probabilidade	Eliminar o uso de unidades, 21-45
relacionados para inferência	EM BRANCO, 22-34
DIV, 15-4	ENDSUB, 8-12
DIV2, 5-12	ENGL, 3-31
DIV2MOD, 5-12, 5-16	Enquanto, 21-65
Divergência , 15-4	Entrada de dados interativa nos
DIVIS, 5-10	programas, 21-20
Divisão sintética, 5-28,	Entrada Programar entrada
DIVMOD, 5-12, 5-16	interativa, 22-16
Do solucionador numérico, 6-19,	ENTRADA, 21-22 ,
6-26	ENVIAR, 2-35
DOERR, 21-67	EPS, 2-37
DOLIST, 8-12	EPSXO, 5-24
DOMÍNIO, 13-9	EQ, 6-28
DOSUBS, 8-12	Equação Bessel, 16-57
DOT, 9-11	Equação de Laguerre, 16-61
DOT+, 12-48	Equação de Laplace, 15-5
DOT-, 12-48	Equação de Legendre, 16-56
DRAW3DMATRIX, 12-58	Equação de Manning, 21-15
DRAX, 22-36	Equação de Weber, 16-62
DROITE, 4-10	Equações de polinômios, 6-6
DROP, 9-20	Equações diferenciais de segunda,
DTAG, 23-1	16-55
	Equações diferenciais não lineares,
E	16-7
E, 19-3	Equações diferenciais ordinárias,
EDITAR 2-30	16-1

Equações diferenciais, 16-1 Estatísticas de dados agrupados, Equações diferenciais, linear, 16-4 8-18 Equações diferenciais, não linear, Estatísticas de resumo, 18-14 16-4 Estatísticas variáveis individuais, Equações diferenciais, série 18-3 Fourier, 16-42, Estatísticas, 18-1 Equações diferenciais, soluções Estilos, L-4 gráficas, 16-73 Estrutura da memória, 26-1 Equações diferenciais, soluções EULER, 5-11 numéricas, 16-63 EVAL, 2-5 Equações diferenciais, 16-43 Excluir subdiretórios, 2-45 Equações diferenciasi, campos de EXEC, L-2 inclinação, 16-3 Executa o esvaziamento do visor, Equações, sistemas lineares, G-3 11-17 Exemplos de plotagens interativas Editar, 2-9 usando o menu PLOT, 22-16 Grade, 12-38, 12-40 Exibição do gráfico, 12-17 Grasnde, 2-14 EXP, 3-6 EXP2POW, 5-30 Ajuda, 2-12 EXPANDE, 5-12 Avaliar, 2-5 CMDS, 2-26 EXPANDMOD, 5-12 Cursosr, 2-12, EXPLN, 5-8, 5-30 Derivadas, 2-30 EXPM, 3-9 Fator, 2-16 Extrema, 13-8 Integrais, 2-30 EYEPT, 22-10 Simplificar, 2-10 ERRO, 21-68 F ERRM, 21-68 F0λ, 3-33 ERRN, 21-68 FACTORMOD, 5-12 Erro de previsão como, 18-51 Fator, 22-7 Erros no teste de hipótese, 18-37 Fatores, 1-16 Escopo de variável global, 21-4 Fatorização de matriz, 11-50 Editor de Equação (EQW), 2-11 Fatorização, 11-50 Editor de Matriz, 10-2, FCOEF, 5-12 Esféricas, 9-15 FDISTRIB, 5-30 Estatística, 17-9 Fechamento deep-sleep, G-3

Ferramentas de manipulação de Função LU, 11-51 Função potencial, 15-4 15-6 unidades, 3-28 Ferramentas TIME, 25-2 Função principal da tecla, 1-12 Função left-shift do teclado, B-6 FFT, 16-51 Final, 2-28 Função right-shift, 1-12 FINDALARM, 21-9 Função TRACE, 11-14 Fluxo, 7-6 Função TRAN, 11-14 Fómula de Euler, 4-1 Função TRN, 10-8 Fonte do visor, 1-27 Função VANDERMONDE, 10-14 Formas quadráticas de matriz, Função VTYPE, 24-2 11-53 Funções alternadas de tecla, B-4 Formas QUADráticas, 11-54 Funções Bessel, 16-57 Formato científico, 1-20 Funções de alarme, 25-4 Formato engenharia, 1-21 Funções de dia e hora, 25-1 Formatos fixos, 1-19 Funções de distribuição cumulativa, Formato numérico, 9-14 Formato padrão, 1-18 Funções de plotagem e desenho, Formatos de gráficos, 12-1 Formulário de entrada Funções de right-shift do teclado, CALCULATOR MODES, C-2 B-8 Formulários de entrada de dados, Funções right-shift, B-8 Funções definidas por mais de A-1 Formulário de entrada, 21-28 uma expressão, 3-37 Formulários no menu NUM.SLV, Funções gráficas, 22-27 A-1 Funções I/O.., F-2 Fourier, 3-8 Funções multivariadas, 14-1 FP, 3-14 Funções principais da teclado, B-2 Frações, 5-25 Funções TVMROOT, 6-33 Freqüência cumulativa, 18-8 FROOTS, 5-12, 5-27 G Função de etapa de Heaviside, GAMA, 3-15 16-16 Gauss, 11-54 Função de potência da emissão, GCD, 5-12 3-33 GCDMOD, 5-12 Função delta de Dirac, 16-16 Geral de curva cônica, 12-22 Função Left-shift, 1-12

Gerar uma tabela de valores para	HORNER, 5-12, 5-21
uma função, 12-18	H-VIEW, 12-21
GET, 10-6	HZIN, 12-54
GETI, 8-11	HZOUT, 12-54
GOR, 22-34	
Goto Line, L-4	
Gradiente, 15-1	ı
Gráfico de ln(X), 12-9	i, 3-16
Gráficos bidimensionais, 22-15	I→R, 5-30
Gráficos de dispersão, 12-32	IABCUV, 5-11
Gráficos de funções	IBERNOULLI, 5-11
transcendentais, 12-8	ICHINREM, 5-11
Gráficos original, 12-26	ldentificação, 21-34
Gráficos, 12-1	ldentificar, extrair e inserir os
Grande, 12-20	elementos dos vetores, 9-7
Graus, 1-23	IDIV2, 5-11
GRD, 3-1	IDN, 10-9
GROB, 22-30	IEGCD, 5-11
GROBADD, 12-56	IFTE, 3-37
GXOR, 22-35	ILAP, 16-11
CACIN, 22 00	IM, 4-6
	Imagem, 12-5
Н	Inclinação neste ponto, 12-6
HADAMARD, 11-5	INDEP, 22-6,
HALT, L-2	Inferências referentes as duas
HEAD, 8-11	variações, 18-50
HERMITE, 5-12, 5-21	INFO, 22-4
HESS, 15-1	Iniciar, 7-14
HEX, 3-1, 19-2	INS , L-1
HILBERT, 10-15	Inserir os vetores, 9-3
Histogramas de frequência, 12-2	Inserir um título de janela, 7-12
Histogramas, 12-32	INT, 13-15
HMS-, 25-3	Integração por frações parciais
HMS+, 25-3	13-21
HMS→, 25-3	Integração por partes, 13-20
HOME, 2-36	Integrais definidas, 13-15
Hora e dia, F-3	

integrais duplas nas coordenadas	L
polares, 14-10	Lagrange, 5-12, 5-22
Integrais duplas, 14-9	LAP, 16-11
Integrais inadequadas, 13-21	LAPL, 15-5
Integrais múltiplas, 14-8	Laplaciana, 15-5
Integrais, 13-14	LCM, 5-12, 5-23,
Integrais, 13-16	
linterativas usando o menu PLOT,	LCXM, 11-16
22-16	LDEC, 16-4
Intervalos de confiança e teste de	LEGENDRE, 5-12, 5-23
hipótese na regressa linear, 18-54	Letras gregas, D-3, G-2
Intervalos de confiança para a	LGCD, 5-10
variação, 18-35	Ligado, 1-14
Intervalos de confiança, 18-23	Lim, 13-2
INTVX, 13-15	Limites de classe, 18-6
INV, 4-5, L-4	Limites, 13-1
Inversa modular, 5-18	LIN, 5-5
INVMOD, 5-12	Linguagem RPL do usuário, 21-21
IP, 3-14	Linha de edição de comando, L-1
IREMAINDER, 5-11	Linha de, L-3
I-SECT, 12-7	Linha, 10-24
ISOL, 6-1	LINSOLVE, 11-42
ISOM, 11-56	LIST, 2-35
	Lista de caractere, 23-4
ISPRIME?, 5-11	Lista de catálogo de comando, I-1
ITALI, L-4	Listagens de mecanismo de ajuda
	CAS, H-1
J	Listas, 8-1
Jacobiana, 14-9	LN, 3-6
Janela de plotagem, 12-9	INCOLLECT, 5-5
JORDAN, 11-49	LNP1, 3-9
JORDAN, 11-49	detecção de erro do programa,
	21-69
K	LOG, 3-5
KER, 11-57	LQ, 11-51
,	LSQ, 11-25
	LVARI, 7-13
	•

Medidas elétricas, 3-21 Médio, 18-37, M Menu ALG, 5-3 MAD, 11-49 Menu ALRM, 25-3 Mais próximo, 1-19 Menu APPS, F-2 MANT, 3-14 Menu ARITHMETIC, 5-9 MAP, 8-13 Menu BASE, 19-1 MARCA, 12-49 Menu BIT, 19-7 Marcar, 21-21 Menu BYTE, 19-7 Marcas de classe, 8-19 Menu CALC/DIFF, 16-4 Marcas, 21-20 Menu CAS, F-6 MARK, 12-48 Menu CHARS, 23-3 MATRIX, 10-4 Menu CONVERT, 5-29 Matriz aumentada, 11-32 Menu de funções de Matriz de permutação, 11-35, entrada/saída, F-2 11-53 Menu DERIV&INTEG, 13-4 Matriz diagonal, 10-13 Menu e gráficos SYMBOLIC, Matriz Hessian, 14-7 12-55 Matriz identidade, 10-1, 11-6 Menu FLAG dentro do PLOT, Matriz inversa, 11-6 22-14 Matriz triangular inferior, 11-51 Menu GOTO, L-3 Matriz triangular superior, 11-51 Menu LIST, 8-10 Matriz, 10-2 Menu LOGIC, 19-5 Matrizes ortogonais, 11-8 Menu MAIN, G-3, K-1 Matrizes, 11-41 Menu MAIN/ALGB, K-1 MAX, 8-6, Menu MAIN/ARIT, K-3 Máximo, 5-20, 18-3, 12-18 Menu MAIN/CMPLX, K-3 MAXR, 3-17, Menu MAIN/DIFF, K-2 Mecanismo de ajuda CAS, C-10 Menu MAIN/EXP&LN, K-4 Média geométrica, 8-16, 18-3 Menu MAIN/MATHS (menu Média harmônica, 8-15 MATHS), J-1 Média ponderada, 8-17 Menu MAIN/MATR, K-4 Medida do ângulo, 1-23, G-2 Menu MAIN/REWRITE, K-4 Medidas de disseminação, 18-3 Menu MAIN/SOLVER, K-3 Medidas de iluminação, 3-21 Menu MAIN/TRIGO, K-2 Medidas de tendência central, Menu Math.., F-5 18-3

Menu MATHS, G-3, J-1 MENU, 18-16 Menu MATHS/INTEGER, J-2 Menus CMPLX, 4-5 Menu MATHS/CMPLX, J-1 Menus não acessíveis através do Menu MATHS/CONSTANTS, J-1 teclado:20-2 Menu MATHS/HYPERBOLIC, J-2 Menus personalizados, 20-1 Menu MATHS/MODULAR, J-2 Menus, 20-2 Menu MATHS/POLYNOMIAL, J-3 Método de menor quadrada, Menu MATHS/TESTS, J-3 18-52 MIN, 18-18 Menu MATRIX/MAKE, 10-4, Menu MTH, 3-8 Mínimo, 13-14/12-18 Menu MTH/PROBABILITY, 17-1 MINIT, 7-13 MINR, 2-49,2-48 Menu MTH/VECTOR, 9-11 Menu NORM, 11-6 MITM, 7-13 Menu OPER, 11-15 MKISOM, 11-57 Menu PLOT (menu 81), G-3 MOD, 8-6 Menu PLOT, 22-17 Modelo de ajuste, 22-13 Menu PRG, 21-5 MODL, 22-13 Menu PRG/MODES/KEYS, 20-6 Modo algébrico, 1-13 Menu PRG/MODES/MENU, 20-1 Modo Aproximado e Exato, C-4 Menu REWRITE, 5-30 Modo CAS etapa por etapa, C-8 Menu SEARCH, L-2 L-3 Modo COMPLEX, 4-1 Menu SOFT, 1-4 Modo de coordenada Polar 1-25 Menu SOLVE (menu 74), G-3 Modo de operação, 1-13 Menu SOLVE, 6-27 Modo Numeric e symbolic CAS, Menu SOLVE/DIFF, 16-73 C-4 Menu STAT, 18-15, G-3 Modo REAL, C-6 Menu SYMBOLIC, 12-55 Modo RPN, 1-13 Menu TOOL, 1-7 Modo CAS verbose e não verbose, Menu TOOL: AJUDA, 1-7 C-8 Modo, 20-7 Menu TOOL: CASCMD, 1-7 Menu TOOL: EDITA, 1-7 Modos CAS Real e Complexo, C-6 Menu TOOL: LIMPA, 1-7 Modos da calculadora, 1-13 Menu TOOL: RCL, 1-7 Modos de exibição, 1-27 Menu TOOL: VISUALIZA, 1-7 MODSTO, 5-16 Menu UTILITY (menu 113), G-3 MODULO, 5-18 Menu VECTOR, 9-11 Módulos, 5-12

Momento da força, 9-18 Números decimais, 19-4 Mostra os parâmetros de lotagem, Números inteiros, 2-1, J-2 22-17 Números reais e inteiros, C-5 MSGBOX, 21-31 Números reais, 2-1, C-6 MSLV, 7-5 NUMX, 22-11 MSOLVR, 7-13 NUMY, 22-11 MTRW, B-6 Multiplicação da matriz, 11-2 0 Multiplicação de vetor-matriz, O menu CALC/DIFF, 16-4 11-3 O menu DATA dentro de STAT, Multiplicação matriz-vetor, 11-4 22-12 MULTMOD, 5-16 O menu e gráficos SYMBOLIC, 12-55 Ν O menu GROB, 22-34 Nas variações, 18-27 O menu STAT dentro PLOT, 22-11 NDIST, 17-10 O menu TIME, 25-1 NEG, 22-27 O menu TRIG, 5-9 NEXTPRIME, 5-11 O menu VPAR dentro de 3D (V), Norma Frobenius, 11-7 Normalmente, 11-8 O programa de texto de entrada, 21-27 NOT, 19-5 Notas adicionais sobre regressão O submenu ROOT, 6-27 linear, 18-52 O submenu TVM, 6-32 NOVO, 2-41 OBJ-->, 9-20 NSUB, 21-8 Objetos algébrico, 5-1 Objetos gráfico, 22-32 NUM, 21-24 Objetos, 2-1, 24-1 NUM.SLV, A-1 OCT, 19-3 Numérico, C-4 Número da coluna, 10-21 Octal, 19-1 Número de condição, 11-10 ODE rígida, 16-72 Número hexadecimal, 19-2 ODETYPE, 16-8 Número nas bases, 19-1 Operação de teste de sistema, Números aleatórios, 17-2 G-3 Números binários, 3-2 Operações com unidades, 3-17 Números complexos, 2-2, 4-1 Operações da matriz, 11-14

Números de menu, 20-2

Operações de PLOTAGEM, 12-14

Operador de concatenação, 21-1 Plano no espaço, 9-18 Operadores lógicos, 21-46 PLOTADD, 12-56 Operadores relacionais, 21-45 Plotagem da função, 16-31 Operadores, 21-45 PLOTAGEM, 12-54 OR, 19-5 Plotagens Fast 3D, 12-38 Ordem, 22-31 Plotagens aramadas, 12-41 Organizar dados, 2-34 Plotagens com o programas, O subdiretórios, 2-36 22-14 OUT, 21-6 Plotagens da FUNÇÃO, 12-14 Plotagens de barra, 12-1 Outros caracteres, B-13 Plotagens de contorno Ps, 12-42 Plotagens de divisão Y, 12-44 P Plotagens de superfície em Pr, PA2B2, 5-11 12-46 Para a calculadora, 3-32 Plotagens de superfície Pr, 12-46 Para construir, 6-17 Plotagens geradas por programas, Parte imaginária, 4-1 22-19 Parte real, 4-1 Plotagens mapa de grade, 12-45 PARTFRAC, 5-12 Plotagens paramétricas, 12-1 Passo a passo de derivadas, Plotagens verdadeiras, 12-30 13-17 Polares, 12-20 PCAR, 11-46 Polinômio ciclotômico, 5-19 PCOEF, 5-12, 5-23 Polinômio de Taylor, 13-24 PDIM, 21-8 Polinômio Tchebycheff, 16-60 Percentuais, 18-15 Polinômios de Chebyshev , 16-60 PERÍODO, GL-2 Polinômios de Hermite, 16-62 PERM, 17-2 Polinômios, 5-19 Permutações, 17-1 Ponto de selagem, 14-5 PEVAL, 5-25 Ponto decimal, 1-19 PGDIR, 2-45 Pontos extremos, 13-12 IP (X):, 3-14 População finita, 18-3 PICT, 12-7 População, 18-2 Pivot parcial, 11-35 POS, 8-11 Pivotal total, 11-35, 11-39 Potencial de um gradiente, 15-3 PIX?, 22-24 POTENCIAL, 15-6 PIXOFF, 22-24 POWEREXPAND, 5-31

PIXON, 22-24

POWMOD, 5-13 PTAYL, 5-12, 5-23 PPAR, 12-3, 12-11 PTYPE, 22-3 Prefixos das unidades, 3-25 PUT, 8-11 PREVAL, 13-16 PUTI, 10-7 PREVPRIME, 5-11 PVIEW, 22-24 Primeira ordem, 14-3 PX-->C, 19-7 Primeiro menu de gráficos, 12-21 **PRIMIT**, 2-37 Q Probabilidade, 17-1, 17-6 QR, 11-53 Produção de gráficos B-5 QUAD, 11-54 Produto escalar, 9-11 QUADF, 11-54 Produto vetorial, 9-2 QUOCIENTE, 5-12 Programa de texto de entrada, QUOTA, B-9 21-27 QXA, 11-55 Programa está uma caixa de mensagem, 21-39 Programa GROB, 22-36 R Programa usando uma saída R-->B, 19-3 21-39 R-->C, 4-6 Programação de calculadora, J-3 R-->D, 3-15 Programação modular, 22-38 R-->I, 5-30 Programação sequencial, 21-15 RAD, 3-1 Programação usando as funções Radiação, 3-21 de desenho, 22-24, Radianos, 1-23 Programação, 21-1 Raiz quadrada, 3-5 Programar na linguagem , 21-1 RAIZ, 6-28 Programar sequencia 21-15 Ramificação de programa, 21-48 Programas, 22-14 RAND, 17-2 PROOT, 5-23 RANM, 10-11 PROPFRAC, 5-10, 5-24 RCI, 10-26 Propriedades da pilha, 1-29 RCIJ, 10-27 Propriedades da linha de edição, RCLALARM, 25-5 1-28 RCLKEYS, 20-6 Propriedades do Editor de RCLMENU, 20-2 Equação, 1-30 RCWS, 19-4 Psi, 3-15 RDM, 10-10

RDZ, 17-1 RND, 3-14 RNRM, 11-9 RE, 4-6 REALASSUME, 2-37 Rotação, 22-43 **RECT**, 4-3 Rotacional, 15-5 RECV, 2-35 ROW+, 10-25 REF, rref, RREF, 11-43 ROW->, 10-24 Referências de pixel, 19-7 RR, 19-7 Regra de cadeia, 13-6 RRB, 19-7 Regras de cadeia de derivadas RRK, 16-75 parcial, 14-1 RSBERR, 16-78 REINICIAR, 22-30 RSD, 11-45 Reinício "a frio", G-3 RSWP, 10-26 Reinício "quente", G-3 Reinício, G-3 S Relações linearizadas, 18-12 Saída do programa, 21-34 **RENAM**, 2-35 Sair, 2-30 REPL, 10-12 Salvar um gráfico, 12-8 Representação cartesiana, 4-1 SCALE, 22-7 Representação diagonal de uma SCALEH, 22-7 forma quadrática, 11-55 SCALEW, 22-7 Representação polar, 4-3 Segmentos de caractere, 23-1 RES, 22-7 Segmentos, 23-1 RESIDUAL, 5-11, 11-25 Seleção, 21-33 RESOLVER, 6-1 Selecionar a variável RESOLVER, 6-2, 7-1 independente, C-3, Resultante de forças, 9-17 SELECIONAR, 2-34 RESULTANTE, 5-1 SEQ, 8-12 Resumo da operação deplotagem Seqüência de tecla, 1-17 FUNÇTION, 12-14 Série (FOURIER) e aanálise do, REVLIST, 8-9 13-4 RISCH, 13-15 Série Fourier complexa, 16-32 RKF, 16-74 Série Fourier para a função RKFERR, 16-78 quadrática, 16-30 RKFST, 16-76 Série Fourier para uma onda RL, 19-7 quadrada, 16-40 RLB, 19-7

Série Fourier para uma onda Sistemas de equações, 11-15 triangular, 16-36 SIZE, 8-10, 10-8 Série Fourier, 16-28 SKIP-->, L-1 SL, 19-7 Série Maclaurin, 13-24 Série Taylor, 13-24 SLB, 19-7 Série, 13-24 SNRM, 11-8 Series finitas, 16-57 Solução de mínimo quadrado, Séries Maclaurin, 13-25 11-24 Solução de ODE rígida, 16-73 SI, 3-31 SIDENS, 3-33 Solução de ODEs, 16-1 SIGMA, 13-15 Solução de sistemas lineares, SIGMAVX, 13-15 11-17 SIGN, 3-14 Solução de triângulos, 7-10 SIGN, 4-6 Solução gráfica para ODE de SIGNTAB, 12-56, 13-10 segunda ordem, 16-70 Simbólico, C-4 Solução numérica para ODEs com Símbolo do ângulo (\angle), G-2 o menu SOLVE/DIFF, 16-73 Símbolo fatorial (!), G-2 Solucionador numérico, F-3 SOLVEVX, 6-4 SIMP2, 5-10, 5-26 Simplificar a configuração CAS na Som de beep, 1-25 Soma de erros quadrados (SSE), racional, C10, Simplificar uma expressão, 2-24 18-52 SIMPLIFICAR, 5-25 Soma dos totais quadrados, SST, SIN, 3-7 18-65 Sinalizador de sistema 105 (modo SOMBRA, B-5 EXACT e APPROX CAS), G-1, SQ, 3-5 Sinalizador de sistema 117 (menus SR, 19-7 CHOOSE boxes SOFT), G-2, SRAD, 11-9 Sinalizador do sistema 95 (modos SRB, 19-7 de operação ALG e RPN), G-1, SREPL, 23-3 Sinalizadores do sistema, 24-3 SST, 21-37 Sinalizadores, 1-5, 24-3 STEQ, 6-15 SINH, 3-9 STO, 2-51 Sistema binário, 19-3 STOALARM, 25-5 Sistema de coordenada, 1-24 STOKEYS, 20-6 Sistema, G-3 STURM, 5-12

STURMAB, 5-12 Temperatura, 3-21 STWS, 19-4 Teorema fundamental de álgebra, SUB, 10-12 6-7 Teoremas da transformada de Sub-expressão, 2-16 Submenu DIFFE, 6-31 Laplace, 16-13 Submenu IFERR, 21-68 Tese de hipótese na calculadora, Submenu LIST, 8-10 18-49 Submenu SOLVR, 6-28 Teste de hipótese de regressão SUBST, 5-6 linear, 18-54 Teste de hipótese, 18-36 Substitui a seleção, L-3 Substituição de programa, 22-44 Testes de hipótese, 18-49 Substituir, L-3 TEXPAND, 5-6 SUBTMOD, 5-13, 5-16 TICKS, 25-3 Suficientemente rápido, 16-50 TINC, 3-33 SVD, 11-51 Tipo, 24-1 SVL, 11-51 TLINE, 12-50, 22-22 SYLVESTER, 11-54 TMENU, 20-1 SYST2MAT, 11-42, TPAR, 12-19 Transformada de Fourier rápida (FFT), 16-51 Τ Transformada de Laplace inversa, Tabela, 12-18, 12-27 16-4, 16-11 TABVAL, 12-56, 13-10 Transformada de Laplace na TABVAR, 12-56, 13-11 solução de linear ODEs, 16-18 TAIL, 8-11 Transformada de Laplace, 16-10 Tamanho da palavra, 19-4 Transformadas de Fourier, 16-44 Tamanho do cabeçalho, 1-30 Transformar das coordenadas, TAN, 3-7 14-9 TANH, 3-9 Transposição de matriz, 10-8 TAYLR, 13-25 Transposição, 10-8 TAYLRO, 13-25 Tridimensional, 9-13 TCHEBYCHEFF, 5-25, 16-61 TRN, 10-8 TDELTA, 3-33 TRNC, 3-14 Teclado, 1-10, B-1 TSTR(hora, dia), 25-3 Teclas definidas pelo usuário, TSTR, 25-3 Tudo, 21-36, 21-55

Técnicas de integração, 13-19

	Variáveis locais, 21-5
	Variáveis, 26-1
U	Variável global definida, 21-4
UBASE, 3-23	Variável independente CAS, 2-26
UFACT, 3-28	Verificar as soluções na
Última pilha, 1-25	calculadora, 16-2
unassign, K-1	Vetor da coluna, 18-9
UNASSUME, J-3	Vetores Eigen, 11-9, 11-46
UNDE, L-4	Vetores linha, 9-20
Unidade de pressão, 21-26	Vetores, 9-1
Unidade, 3-18	VETORIAL, 9-2
Unidades de base, 3-22	Vírgula decimal, 1-18
Unidades de força, 3-24	VISCOSIDADE, 3-21
Unidades de massa, 3-18	VISUALIZAR , 12-15,12-17
Unidades disponíveis, 3-19	VPAR, 22-10
Unidades disponíveis, 3-19	VPOTENTIAL, 15-6
Unidades do ângulo, 22-29	V-VIEW, 12-21
Unidades não listadas, 3-21	VX, 2-39
Usadas em plotagens, 12-30	VZIN, 12-54
Usar os formulários de entrada de	· = · · · / · · = · ·
dados, A-1	
Usar uma caixa de mensagem,	X
21-39	X,Y→, 12-52
Use o File Manager, 26-5	XCOL, 22-13
UTPC, 17-12	XNUM, K-5
UTPF, 17-13	XOR, 19-6
UTPN, 17-10	XPON, 3-14
UTPT, 17-11	XQ, K-5
UVAL, 3-28	XRNG, 22-6
	XROOT, 3-5
V	XSEND, 2-36
V	XVOL, 22-10
V->, 9-12	XXRNG, 22-10
Valor, 3-32	XYZ, 3-1
Valores Eigen, 11-9, 11-46	
Vandermonde, 18-61	V
Variáveis globais, 21-5	Υ

YCOL, 22-13 YRNG, 22-6 YVOL, 22-10 YYRNG, 22-10

Z

ZAUTO, 12-53 ZDECI, 12-54 ZDFLT, 12-53 ZEROS, 6-4 ZFACT, 12-52 ZFACTOR, 3-33 ZIN, 12-52 ZINTG, 12-54 ZLAST, 12-52 ZOOM, 12-20 ZOUT, 12-52 ZSQR, 12-54 ZTRIG, 12-54 ZVOL, 22-10

Outros caracteres

%, 3-12 %CH, 3-12 %T, 3-12 Σ , 2-30, 16-32 ΣDATA, 18-19 ΣLIST, 8-9 ΣLIST, 8-9 ΣLIST, 8-9 Σ PAR, 22-14 →ARRY, 9-6, 9-21 →BEG, L-1 →COL, 10-19 →DATE, 25-3 →DIAG, 10-13 →END, L-1 →GROB, 22-34 →HMS, 25-3 →LCD, 22-35 →LIST, 9-20 →ROW, 10-23 →STK, 3-31 →STR, 23-1 →TAG, 21-32 →TAG, 23-1 →TIME, 25-3 →UNIT, 3-28 →V2, 9-13

→V3, 9-13

Garantia Limitada

calculadora gráfica hp 48gII; Duração da garantia: 12 meses

- 1. A HP garante ao usuário que a máquina, os acessórios e os equipamentos da HP estarão livre de defeitos de materiais ou mão-de-obra após a data da compra, durante o período acima especificado. Se a HP for notificada da ocorrência de tais defeitos durante o período de garantia, a HP irá, por opção sua, consertar ou substituir produtos que estejam comprovadamente com defeito. A substituição dos produtos pode ser feita com produtos novos ou no estado de novos.
- 2. A HP garante que o software HP não apresentará falhas na execução de suas instruções de programação após a data da compra, durante o período acima especificado, devido a defeitos no material ou de mão-de-obra, quando instalado e usado de forma apropriada. Se a HP for notificada de tais defeitos durante o período da garantia, a HP substituirá a mídia do programa que não executar suas instruções de programação devido a esses defeitos.
- 3. A HP não garante que a operação dos seus produtos será ininterrupta e livre de erros. se a HP não puder, dentro de um tempo razoável, consertar ou substituir qualquer produto de acordo com as condições da garantia, você terá direito ao reembolso do valor da compra depois da pronta devolução do produto com o comprovante da compra.
- **4.** Os produtos da HP podem conter peças recondicionadas equivalentes a novas em desempenho ou que possam ter estado sujeitas a uso acidental.
- 5. A garantia não se aplica aos defeitos resultantes da (a) manutenção ou calibração incorretas, (b) software, interface, peças ou equipamentos não fornecidos pela HP, (c) alteração não-autorizada ou uso incorreto, (d) operação fora das especificações ambientais divulgadas para o produto ou (e) preparação ou manutenção imprópria do local.
- 6. A HP NÃO OFERECE NENHUMA OUTRA GARANTIA OU CONDIÇÃO EXPLÍCITA, VERBAL OU ESCRITA. DE ACORDO COM O PERMITIDO PELA LEI LOCAL, QUALQUER GARANTIA OU CONDIÇÃO IMPLÍCITA DE COMERCIALIZAÇÃO, QUALIDADE

SATISFATÓRIA OU ADEQUAÇÃO A UM OBJETIVO PARTICULAR, ESTARÁ LIMITADA AO PERÍODO DE GARANTIA DETERMINADO ACIMA. Alguns países, estados ou províncias não permitem limitação da duração de uma garantia implícita, então a limitação ou exclusão acima talvez não se aplique a seu caso. Esta garantia lhe assegura direitos legais específicos e talvez você tenha outros direitos que variam de país para país, de estado para estado ou de província para província.

- 7. DENTRO DO PERMITIDO PELA LEI LOCAL, OS RECURSOS NESTA GARANTIA SÃO ÚNICOS E EXCLUSIVOS SEUS. EXCETO COMO INDICADO ACIMA, EM NENHUM MOMENTO A HP OU SEUS REPRESENTANTES SERÃO RESPONSÁVEIS POR PERDA DE DADOS OU POR OUTRO DANO DIRETO, ESPECIAL, ACIDENTAL, CONSEQÜENCIAL (INCLUINDO PREJUÍZO OU PERDA DE DADOS) OU OUTROS, SEJAM BASEADOS EM CONTRATO, ATO ILÍCITO OU OUTROS. Alguns países, estados ou províncias não permitem a exclusão ou limitação de danos acidentais ou conseqüenciais, então a limitação ou exclusão acima talvez não se aplique a seu caso.
- **8.** As únicas garantias dadas aos produtos e serviços HP são aquelas estabelecidas e declaradas na garantia expressa que acompanha estes produtos e serviços. A HP não deverá ser responsabilizada por erros ou omissões técnicas ou editoriais aqui contidas.

PARA AQUISIÇÕES POR CONSUMIDORES NA AUSTRÁLIA E NOVA ZELÂNDIA: OS TERMOS DE GARANTIA CONTIDOS NESTA DECLARAÇÃO, EXCETO QUANDO PERMITIDO POR LEI, NÃO EXCLUEM, RESTRINGEM OU ALTERAM E ACOMPANHARÃO OS DIREITOS ESTATUTÁRIOS MANDATÁRIOS APLICÁVEIS À VENDA DESTE PRODUTO.

Serviço de atendimento ao cliente

Europa

País:	Telefones:	
Áustria	+43-1-3602771203	
Bélgica	+32-2-7126219	
Dinamarca	+45-8-2332844	

Países da Europa	
Oriental	+420-5-41422523
Finlândia	+358-9640009
França	+33-1-49939006
Alemanha	+49-69-95307103
Grécia	+420-5-41422523
Holanda	+31-2-06545301
Itália	+39-02-75419782
Noruega	+47-63849309
Portugal	+351-229570200
Espanha	+34-915-642095
Suécia	+46-851992065
Suíça	+41-1-4395358 (Alemão)
	+41-22-8278780 (Francês)
	+39-02-75419782 (Italiano)
Turquia	+420-5-41422523
Reino Unido	+44-207-4580161
República Tcheca	+420-5-41422523
África do Sul	+27-11-2376200
Luxemburgo	+32-2-7126219
Outros países	
europeus	+420-5-41422523
País:	Telefones:
Austrália	+61-3-9841-5211
Cingapura	+61-3-9841-5211

Ásia do Pacífico

América Latina

País:	Telefones:
Argentina	0-810-555-5520
Brasil	São Paulo 3747-7799; ROTC:
	0-800-157751
México	Cidade do México 5258-
	9922; ROTC
	01-800-472-6684

Venezuela	0800-4746-8368
Chile	800-360999
Colômbia	9-800-114726
Peru	0-800-10111
América Central e	
Caribe	1-800-711-2884
Guatemala	1-800-999-5105
Porto Rico	1-877-232-0589
Costa Rica	0-800-011-0524

América do Norte

País:	Telefones:
EUA	1800-HP INVENT
Canadá	(905) 206-4663 or 800- HP
	INVENT

ROTC = Restante do país

Acesse http://www.hp.com para obter os útimos serviços e informações de suporte.

Informações sobre regulamentação

Esta seção contém informações que mostram como a calculadora gráfica hp 48gII está de acordo com as regulamentações de certas regiões. Qualquer modificação na calculadora, a qual não seja expressamente aprovada pela Hewlett-Packard, poderá anular a autorização para operar a 48gII nestas regiões.

USA

This calculator generates, uses, and can radiate radio frequency energy and may interfere with radio and television reception. The calculator complies with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.

However, there is no guarantee that interference will not occur in a particular installation. In the unlikely event that there is interference to radio or television reception(which can be determined by turning the calculator off and on), the

user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Relocate the calculator, with respect to the receiver.

Connections to Peripheral Devices

To maintain compliance with FCC rules and regulations, use only the cable accessories provided.

Canada

This Class B digital apparatus complies with Canadian ICES-003. Cet appareil numerique de la classe B est conforme a la norme NMB-003 du Canada.

Japan

この装置は、情報処理装置等電波障害自主規制協議会(VCCI)の基準に基づく第二情報技術装置です。この装置は、家庭環境で使用することを目的としていますが、この装置がラジオやテレビジョン受信機に近接して使用されると、受信障害を引き起こすことがあります。

取扱説明書に従って正しい取り扱いをしてください。

Descarte de Lixo Elétrico na Comunidade Européia

Este símbolo encontrado no produto ou na embalagem indica que o produto não deve ser descartado no lixo doméstico comum. É responsabilidade do cliente descartar o material usado (lixo elétrico), encaminhando-o para um ponto de coleta para reciclagem. A coleta e a reciclagem seletivas desse tipo de lixo ajudarão a conservar as reservas naturais;

sendo assim, a reciclagem será feita de uma forma segura, protegendo o ambiente e a saúde das pessoas. Para obter mais informações sobre locais que reciclam esse tipo de material, entre em contato com o escritório da HP em sua cidade, com o serviço de coleta de lixo ou com a loja em que o produto foi adquirido.