Prime topological spaces

Shigeo Hattori

December 22, 2019

bayship.org@gmail.com

https://github.com/bayship-org/mathematics

1 Prime set of sub spaces

Blue texts indicate the words will be defined later. This article defines new words, a prime set S of sub spaces of a topological space

5

6

7

18

This article defines new words, a prime set S of sub spaces of a topological space X, and a prime topological space. These abstract shared properties among different topological spaces.

Definition 1.1 (Prime set of sub spaces). Take $\forall (X, S)$ such that: X is a topological space $and \land S$ is a set of sub spaces of X. ¹Footnote.

Then S is said prime if: Let $F_{our} := \{X\} * \{S\} * S * S$. Take $\forall (f_1, f_2) :\in F_{our}$. Hence, f_i has a form as $f_i := (X, S, s_i, t_i)$. If (X, s_1, t_1) and (X, s_2, t_2) are isomorphic then (S, s_1, t_1) and (S, s_2, t_2) are also isomorphic.

That is,

$$(X, s_1, t_1) \cong (X, s_2, t_2) \rightarrow (S, s_1, t_2) \cong (S, s_2, t_2)$$

A topological space X is a pair as $(\operatorname{Space}(X), T)$ where $\operatorname{Space}(X)$ denotes the 16 set of all points of X and T denotes a topology on $\operatorname{Space}(X)$.

Isomorphisms:

^{1&}quot;x $_{and} \land y$ " is almost equivalent to "x \land y" except that it is not promised to be commutative.

For example, take $\forall (X1, X2, X3, X4)$ as topological spaces. If there exists	20
$\exists F$ as a bijection on a set of points such that: some subset of F is a homeo-	21
morphism from $X1$ to $X3$ and \wedge some subset of F is a homeomorphism	22
from $X2$ to $X4$, then you write as $(X1, X2) \cong (X3, X4)$.	23
	24
More formally:	25
Take $\forall F$ as a bijection on a set of points.	26
Take $\forall (p1, p2)$ as points. Define *1 to be equivalent to *2.	27
1. some subset of F is a homeomorphism from $p1$ to $p2$.	28
2. $F(p1) = p2$.	29
	30
Take $\forall (P1, P2)$ as sets of points. Define *3 to be equivalent to *4.	31
3. some subset of F is a homeomorphism from $P1$ to $P2$.	32
4. $P1 \subset \text{domain}(F)$ and \land image($F[P1]$)= $P2$.	33
	34
Take $\forall x$.	35
x is said point free if: There exists no chain of set membership from x	36
down to any point. For example: "123" is point free; $(x, 1, \{2, 3, \emptyset\})$ is point	37
free if x is point free.	38
	39
Take $\forall (q1,q2)$ such that: Both of $(q1,q2)$ are point free. Define *5 to be equiv-	40
alent to *6.	41
5. some subset of F is a homeomorphism from $q1$ to $q2$.	42
6. $q1 = q2$.	43
	44
x is said a topological vertex if: x is either a point, a set of points, a topological	45
space or anything point free.	46
x is said a topological graph if: x is a graph $G := (V, E)$ with (C defined	47
as a function from the vertext set V to a set of topological vertices). In detail:	48
${\cal G}$ can be any type of graphs if graph isomorphisms are defined for the type;	49
C is called the content map on V .	50
	51

Proposition 1. Take $\forall (v1, v2, F)$ such that: $(v1, v2)$ are topological vertices $and \land$ some subset of F is a homeomorphism from $v1$ to $v2$. For the inverse function F^{-1} , some subset of F^{-1} is a homeomorphism from $v2$ to $v1$.	535455
<i>Proof.</i> Take $\forall (v1, v2, F)$ as a counterexample of the proposition. Hence $(v1, v2)$ are either points as $(1.)$, sets of points as $(2.)$, topological spaces as $(3.)$ or any pair of point free objects as $(4.)$. For all cases, as F is a bijection, F^{-1} is also a bijection.	56 57 58 59
*1. By the definition, $\neg(F^{-1}(v2)=v1)$. Though, that $F(v1)=v2$ implies that $F^{-1}(v2)=v1$.	60 61
*2. By the definition, $\neg (v2 \subset \operatorname{domain}(F^{-1}) and \land \operatorname{image}(F^{-1}[v2]) = v1$). Equivalently, $\neg (v2 \subset \operatorname{domain}(F^{-1})) or \lor \neg (\operatorname{image}(F^{-1}[v2]) = v1$). Though it contradicts to that $\operatorname{image}(F[v1]) = v2$. Footnote.	62 63 64
*3. $F[\operatorname{Space}(v1)]$ is a homeomorphism from $v1$ to $v2$ $_{and} \wedge (F[\operatorname{Space}(v1)])^{-1}$ is not a homeomorphism from $v2$ to $v1$. By the definition of homeomorphisms between topological spaces, it is a contradiction.	65 66 67 68
*4. By the definition, $v1 \neq v2$. Hence \neg (some subset of F is a homeomorphism from $v1$ to $v2$). It is a contradiction.	69 70 71
	72
	73 74
Definition 1.2 (Isomorphism between topological graphs). Take $\forall \{G_i\}_{i\in\{1,2\}}$ as a pair of topological graphs. Hence $G_i:=(V,E,C)_i$ where C_i denotes the content map on V_i . Take $\forall f$ as a graph isomorphism from V_1 to V_2 . Take $\forall F$ as a bijection on a set of points. Then F is said an isomorphism between G_1 and G_2 if *1. And if there exists some isomorphism between G_1 and G_2 then you write as *2.	75 76 77 78 79 80
1. Take $\forall v :\in V_1$, then some subset of F is a homeomorphism from $C_1(v)$ to $C_2(f(v))$.	81 82
2 $C_1 \cong C_2$	23

" $x or \lor y$ " is almost equivalent to " $x \lor y$ " except that it is not promised to be commutative.

Proposition 2. $G_1 \cong G_2 \equiv G_2 \cong G_1$.	85
<i>Proof.</i> Refer to the definition of isomorphism of toplogical graphs as MainDef. Take $\forall (G_1, G_2)$ as a counterexample. By graph theory, f^{-1} is a graph isomorphism from G_2 to G_1 . And F^{-1} is a bijection on a point of sets. Hence the antecedent of MainDef holds for $(G_2, G_1, f^{-1}, F^{-1})$ in place of (G_1, G_2, f, F) except *1. Hence *1 of MainDef fails for it.	86 87 88 89 90
1. Hence: $\exists v2:\in V_2 and \land \neg ($ some subset of F^{-1} is a homeomorphism from $C_2(v)$ to $C_1(f^{-1}(v))$).	91 92
2. $G_1 \cong G_2$ implies that: Some subset of F is a homeomorphism from $C_1(f^{-1}(v))$ to $C_2(v)$.))93 94
(*1 $_{and} \wedge$ *2) contradicts to Proposition1.	95 96
2 Prime topological space	97
To define prime topological spaces, two new notions as preliminaries are required.	98 99
2.1 To specify a variable	100
	101
Take $\forall (x,y)$ as variables. That (x is specified on y) is equivalent to that: x	102
represents exactly one case of value in the sense of that y represents exactly one	103
case of value.	10 4
For example, let y denote \mathbb{R}^2 as a topological space. Take $\forall M$ as a metric	105
table to define y. Let $x := \{z \mid z \text{ is a circle in } y \text{ with } M \}$. Then it does not	106
specify x on y because infinitely many metric table can define y . In other words,	107
M is not specified on y .	108
Meanwhile, x is specified on (y, M) . ³ Footnote	109
2.2 Subtext	110
Take $\forall e$ as a logical expression. All subtext of e is got as follows.	111

Express e as a tree g of (either binary or unary) logical operations. For	112
example, given $v = \{1, 2\}$ as e ; g can be $v = \{1, 2\}$ as a trivial example. In	113
stead take (1 $\in v$ \land ($2 \in v$ \land (v = 2 \land $v \subset \{1,2,3,4,5,6\})))$ as $g.$ It is just a	114
coincide that this g has no logical disjunction operation.	115
Next, select some vertex x of g . For example, x can be $v \subset \{1, 2, 3, 4, 5, 6\}$.	116
Though, for this case, the procedure inevitably ends here; that is, you have got	117
e itself as a subtext of $e.$ In stead take ($2 \in v \land (v = 2 \land v \subset \{1,2,3,4,5,6\}))$	118
as x .	119
Next, change the operator of x so that the new x returns exactly one term.	120
For example, the original operator " \wedge " can be changed to "right identity"; that	121
is, the new x returns the right term. Namely, the new x returns (v = 2 \wedge	122
$v \subset \{1, 2, 3, 4, 5, 6\}$).	123
In detail, if the operator is unary then it must be changed to the identity;	124
that is, the new x returns the only one term.	125
Finally the resultant expression for the modified tree is said a subtext of e .	126
For the example, the subtext of e is $(1 \in v \land (v = 2 \land v \subset \{1, 2, 3, 4, 5, 6\}))$.	127
And the relation on the set of all logical expressions by (being pair of a	128
subtext and the original expression) is defined to be ${\bf transitive.}$ That is, a	129
subtext of a subtext of e is also a subtext of e .	130
2.3 Prime topological space	131
Definition 2.1 (Prime topological space). Take $\forall X$ as a topological space.	132
	132
Definition 2.1 (Prime topological space). Take $\forall X$ as a topological space. Then X is said prime if the following main propositional function holds for X in place of X .	132 133 134
Definition 2.1 (Prime topological space). Take $\forall X$ as a topological space. Then X is said prime if the following main propositional function holds for X in place of X . Definition 2.2 (Main propositional function). Let X be the input topological	132 133 134 135
Definition 2.1 (Prime topological space). Take $\forall X$ as a topological space. Then X is said prime if the following main propositional function holds for X in place of X . Definition 2.2 (Main propositional function). Let X be the input topological space.	132 133 134 135 136
Definition 2.1 (Prime topological space). Take $\forall X$ as a topological space. Then X is said prime if the following main propositional function holds for X in place of X . Definition 2.2 (Main propositional function). Let X be the input topological space. Take $\forall (S1, S2, d2)$ such that $(*1 \ and \land \ *2)$. Then $(*3 \ or \lor (*4 \ and \land)$	132 133 134 135 136 137
Definition 2.1 (Prime topological space). Take $\forall X$ as a topological space. Then X is said prime if the following main propositional function holds for X in place of X . Definition 2.2 (Main propositional function). Let X be the input topological space.	132 133 134 135 136
Definition 2.1 (Prime topological space). Take $\forall X$ as a topological space. Then X is said prime if the following main propositional function holds for X in place of X . Definition 2.2 (Main propositional function). Let X be the input topological space. Take $\forall (S1, S2, d2)$ such that $(*1 \ and \land \ *2)$. Then $(*3 \ or \lor (*4 \ and \land)$	132 133 134 135 136 137
 Definition 2.1 (Prime topological space). Take ∀X as a topological space. Then X is said prime if the following main propositional function holds for X in place of X. Definition 2.2 (Main propositional function). Let X be the input topological space. Take ∀(S1, S2, d2) such that (*1 and *2). Then (*3 or ∀ (*4 and ↑ and ↑ *6)). 1. S1 is a prime set of sub spaces of X. 	132 133 134 135 136 137 138
Definition 2.1 (Prime topological space). Take $\forall X$ as a topological space. Then X is said prime if the following main propositional function holds for X in place of X . Definition 2.2 (Main propositional function). Let X be the input topological space. Take $\forall (S1, S2, d2)$ such that $(*1 \ and \land \ *2)$. Then $(*3 \ or \lor (*4 \ and \land \ and \land \ *6))$.	132 133 134 135 136 137 138
 Definition 2.1 (Prime topological space). Take ∀X as a topological space. Then X is said prime if the following main propositional function holds for X in place of X. Definition 2.2 (Main propositional function). Let X be the input topological space. Take ∀(S1, S2, d2) such that (*1 and ^ *2). Then (*3 or ∨ (*4 and ^ and ^ *6)). 1. S1 is a prime set of sub spaces of X. 2. d2 is a definition to specify S2 on X so that S2 ⊂ S1. 	132 133 134 135 136 137 138 139 140 141
 Definition 2.1 (Prime topological space). Take ∀X as a topological space. Then X is said prime if the following main propositional function holds for X in place of X. Definition 2.2 (Main propositional function). Let X be the input topological space. Take ∀(S1, S2, d2) such that (*1 and *2). Then (*3 or ∀ (*4 and ↑ and ↑ *6)). 1. S1 is a prime set of sub spaces of X. 	132 133 134 135 136 137 138 139 140 141
 Definition 2.1 (Prime topological space). Take ∀X as a topological space. Then X is said prime if the following main propositional function holds for X in place of X. Definition 2.2 (Main propositional function). Let X be the input topological space. Take ∀(S1, S2, d2) such that (*1 and ^ *2). Then (*3 or ∨ (*4 and ^ and ^ *6)). 1. S1 is a prime set of sub spaces of X. 2. d2 is a definition to specify S2 on X so that S2 ⊂ S1. 	132 133 134 135 136 137 138 139 140 141
 Definition 2.1 (Prime topological space). Take ∀X as a topological space. Then X is said prime if the following main propositional function holds for X in place of X. Definition 2.2 (Main propositional function). Let X be the input topological space. Take ∀(S1, S2, d2) such that (*1 and ^ *2). Then (*3 or ∨ (*4 and ^ and ^ *6)). 1. S1 is a prime set of sub spaces of X. 2. d2 is a definition to specify S2 on X so that S2 ⊂ S1. 	132 133 134 135 136 137 138 139 140 141

6. $\emptyset \neq S3 \subset S1$ and \wedge S3 is a prime set of sub spaces of X.	146
•	147
2 Caria dana	
3 Conjectures	148
3.1 Main conjecture for metric spaces	149
Conjecture 3.1 (Main conjecture). Take $\forall (X, M)$ as a metric space where X denotes the topological space and M denotes the metric table to define X . Refer the main propositional function as MainProp. If X is prime then MainProp holds for X in place of X , with changes in the text of MainProp at (*2, *5) as teh before to (*2 ₂ , *5 ₂) as the after respectively.	151 152 153 154
2. $d2$ is a definition to specify $S2$ on X so that $S2 \subset S1$.	155
2 ₂ . $d2$ is a definition to specify $S2$ on (X, M) so that $S2 \subset S1$.	156 157
5. $d3$ is a subtext of $d2$ $_{and} \land d3$ specifies $S3$ on X .	158
5 ₂ . $d3$ is a subtext of $d2$ $and \wedge d3$ specifies $S3$ on (X, M) .	159
· ·	160
3.2 Sub conjecture	161
Conjecture 3.2 (Sub conjecture). Refer to the main conjecture as MainConj. The following (*1 $_{and} \land \dots _{and} \land$ *3) holds true. Take $\forall M$ as a metric table to define a Euclidean space of 3-dimension. Let X denote the topological space defined by M .	163
1. X is a prime topological space.	166
Take $\forall k_u$ as a knot in X . $K := \{k \mid (X, k_u) \cong (X, k) \}.$	167 168 169
2. (X, M, K, K_f) is an instance of $(X, M, S1, S2)$ of ManConj. Instance: That is, the antecedent of MainConj holds for (X, M, K, K_f) in place of $(X, M, S1, S2)$.	170 171 172
3. For (X, M, K, K_f) , the item *3 of ManConj ⁴ holds. 4Hence K_f is a prime set of sub spaces of X .	173

	174
Definition of K_f :	175
$K_f := \{ k \in K \mid f(k_u) = f(k) \}.$	176
	177
Sub definitions with K as the domain:	178
• $j1(k) := \{j \mid$	179
15 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	180
• $j2(k) := \{ j \in j1(k) \mid$	181
	182
• $j3(k) := \{n \mid$	183
26.1	184
• $f(k) := \{m \mid$	185
m is the maximal number from $j3(k)$ }.	186
·	187
3.3 Factor of a logical expression	188
Currently it is hard to show that the main conjecture implies the sub conjecture	189
because to analyze subtexts of a logical expression requires computer-assisted	190
proof software.	191
By the way, readers may criticize that, the item *3 of the main conjecture	192
fails for the sub conjecture due to $(j3$ and $f)$. As an excuse for the negative	193
	194
Recall that, $j3(k)$ returns a set of natural numbers. And $f(k)$ takes the	195
maximum number from $j3(k)$. For example $j3(k_x) = \{7,8,9\}$. The inverse	196
image of $\{\{7, 8, 9\}\}$ over $j3$ is a subset of domain (f) .	197
Let me analyze the equation which defines the inverse image; $y = \{7, 8, 9\}$.	198
It is equivalent to $(7 \in y \land 8 \in y \land \max(y) = 9 \land y = 3)$ where each term of the	
logical conjunction is named as a factor of $y = \{7, 8, 9\}$ if the logical conjunction	200

equation, $y = \{7, 8, 9\}$. For example, max(y) = 9.

is not redundant. For the example above, it happens to be not redundant. And 201 to use a factor to define an inverse image is just to use a subtext of the original 202

203

⁵Hence, j is a function from k to an infinite plane.

⁶That is, the inverse image of a double point has exactly 2 distinct points of k; no matter the double point is a crossing or a tangent point.

As a conclusion, if the definition is not redundant, j3 is not a subtext of f 204 but f is a subtext of j3. Though non redundant definitions tend to be of less 205 quality in human readability. So my definitions of f and j3 are inevitably a 206 little redundant.

Definition 3.1 (Redundant logical expression). Take $\forall e$ as a logical expression. 208 Then e is said **redundant** if some its subtext is equivalent to e.