A New Riemann Zeta Series From Primes To Riemann

Tariq Rashid

August 27, 2021

Previously ...

ullet visual hint the Riemann Zeta function was artificially cut off at $\sigma=1$

Series & Functions

• Taylor series expansion of $f(x) = (1-x)^{-1}$ developed around x = 0.

$$S_0 = 1 + x + x^2 + x^3 + \dots$$

- S_0 is only valid for |x| < 1
- f(x) is defined for all x except x = 1.
- Discrepancy?

Series & Functions

- That series S₀ is just one representation of the function, valid for some of that function's domain, specifically |x| < 1.
- We can find a different representation of f(x) valid outside |x| < 1.
- For example, S_3 is a Taylor series developed around x=3, and is valid for 1 < x < 5.

$$S_3 = -\frac{1}{2} + \frac{1}{4}(x-3) - \frac{1}{8}(x-3)^2 + \frac{1}{16}(x-3)^3 - \dots$$

Series & Functions

- So S_0 and S_3 both represent $f(x) = (1-x)^{-1}$ but over different parts of its domain.
- Distinction between a function, and series which represent it in different parts of its domain.

Question

- Perhaps the series $\sum 1/n^s$ only gives us a partial view of a much richer function that encodes information about the primes.
- Could that function be represented by a different series over a different domain?

A New Series

• An alternating version of the zeta function is called the **eta** function $\eta(s)$.

$$\eta(s) = \sum \frac{(-1)^{n+1}}{n^s} = 1 - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \frac{1}{5^s} - \dots$$

- This is a Dirichlet series which converges for $\sigma > 0$.
- If we could express $\zeta(s)$ in terms of $\eta(s)$, we would have a new series for the Riemann Zeta function that extends to the left of $\sigma=1$, as far as $\sigma>0$.

A New Series

• Let's write out the familiar series for $\zeta(s)$.

$$\zeta(s) = \sum \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \dots$$

• Looking at the difference $\zeta(s) - \eta(s)$, we can see a pattern to exploit.

$$\zeta(s) - \eta(s) = \frac{2}{2^s} + \frac{2}{4^s} + \frac{2}{6^s} + \dots$$
$$= \frac{2}{2^s} \left(1 + \frac{1}{2^s} + \frac{1}{3^s} + \dots \right)$$
$$= 2^{1-s} \zeta(s)$$

A New Series

• Isolating $\zeta(s)$ gives us a new series that is valid in the larger domain $\sigma>0$

$$\zeta(s) = \frac{1}{1 - 2^{1 - s}} \sum \frac{(-1)^{n+1}}{n^s}$$

• The denominator $(1-2^{1-s})$ is zero at s=1+0i, and provides $\zeta(s)$ with its divergence at that point.

Visualising The New Series

• Surface does continue smoothly to the left of $\sigma=1$... and looks like it should continue $\sigma<0$.

Visualising The New Series

Zeros

- All the zeros seem to be on the line s = 1/2 + it.
- What does it mean that the Riemann Zeta function has zeros in the complex domain?
- What is the significance of them appearing to be along the line s=1/2+it?