南方冶金学院考试试题

考试科目		_ 考试日期	
班级	学号	姓名	成绩
解答题 (每	小题6分,共计60分)		

; 晶体管的主要参数有以下六个

2、放大电路和晶体管的输出特性曲线如下图所示,已知Ucc=12V, R_C =4K,若 R_B 调至150K,且 i_B 的交流分量为 i_b =20sinwt(μA),画出 U_{ce} 波形图,这时出现什么失真。

3、某射极输出器线路如图所示,已知Ucc=12V, R_B =220K, R_E =2.7K, R_L =2K。晶体管的 β =80。求: r_{be} =?

1、二极管主要参数有以下三个

4、续上题: (1)画放大器的微变等效电路图 (2)求放大器的输入电阻*r*_i

6、找出图示电路中的交流反馈元件,并判定交流反馈类型。

7、已知某集成运放的 $输入偏置性流<math>_{IB}$ 等于 $0.8\mu A$,输入失调电流 $_{IOS}$ 等于 $0.4\mu A$,则两个差动输入管的基极偏流分别为

8、下列各电路,哪个有可能产生自激振荡★哪个不能。

9、稳压管稳压电路如图所示,交流电压经整流滤波后得出 U_0 =15伏,设 U_0 的变化范围为±10%, U_L =9伏,负载电流在 $0\sim10_{MA}$ 间可变,稳压管的 $IE=1_{MA}$, $I_{EMOX}=26_{MA}$,试确定限流电阻R的取值范围。

10、TTL与非门的开门电平Uon的意义是____。

二(10分)图示放大器中,Ucc=15v, R_1 =24K Ω , R_2 =5.1k Ω , R_3 =4K Ω , R_4 =2K Ω ,硅管的 β =150,求放大器的电压放大倍数 A_d =?

三、(10分)电路如图所示,(1)K断开时, V_0 =?。(2)K闭合时, V_0 =?

四、(10分)逻辑电路如图所程序试画出在CP,A,B信号作用下Q的波形,写出AB与Q的真值表。(设Q初始值为0)。 R1 10K

Α	В	Q_{n+1}

五、(10分)试列出如图所示计数器的状态表,从而说明它是一个几进制计数器。

N	Q ₂	Q_1	Q_0
0			
1			

2		
3		
4		
5		
6		

答案

一、基本题(6×10=60分)

1、①最大整流电流 L_{OM} 。 ②最高反向工作电压 V_{RM} 。 ③最大反向电流LRM,①电流放大系数 β ②集一基极反向饱各电流 L_{CBO} ③集一射极穿透电流ICEO ④集电极最大允许电流LCM,⑤集一射极击穿电压BVCEO ⑥集电极最大允许耗功率P

$$I_{B} \approx \frac{V_{CC}}{RB} = \frac{12}{150} = 80uA$$

得工作点♀

 $i_b = 20 \sin t (mA)$ 时 这时出现饱和失真

3、解:
$$I_B = \frac{V_{cc}}{RB + (\beta + 1)RE} = \frac{12}{220 + (80 + 1) \times 2.7} = 0.027^{MA}$$

$$I_C = \beta I_B = 80 \times 0.027 = 2.16^{MA}$$

$$I_E = (\beta + 1)I_B = 81 \times 0.027 = 2.19^{MA}$$

$$r_{be} = 200 + (\beta + 1)\frac{26(mV)}{I_E(mA)} = 300 + 81\frac{26}{81 \times 0.027}$$

$$= 1.02K\Omega$$

4、(1)略

(2)
$$r_i = R_B //[r_{De} + (\beta + 1)RE // RL]$$

= 220 //[1.02 + 81 × 2.7 // 2]
= 220 //[1.02 + 93.06] = 220 // 94.3 = 66K

5、T₂; T₁; 放电; ¹/₂U_{cc}

6、R₂两级电压并联负反馈。

 R_1 两级电压关联负反馈

 $7. 0.6_{\text{mA}}$; 1.0_{mA}

- 8、(a)可能 (b) 不可能
- 9\ $\frac{U \circ min U_L}{le + IL max} > R > \frac{V \circ max V_L}{I_E max + I_L min}$ $\frac{13.5 9}{1 + 10} > R > \frac{16.5 9}{26}$ $0.4 \alpha \Omega > R > 288 \Omega$

10、压额定负载条件下,仅输出管T5处于饱和导通(开门)时的最小输入高电平。(此值宜小,愈小,抗干扰能力愈强)

三、
$$(10分)$$

$$U_{B} = \frac{R_{2}}{R_{1} + R_{2}} V_{CC} + \frac{5.1}{24 + 5.1} = .263V$$

$$I_{E} = \frac{V_{B} - 0.6}{R_{4}} = \frac{2.63 - 0.6}{2} = 1.01^{MA}$$

$$r_{be} = 200 + (150 + 1)\frac{26}{1.01} = 4.09k$$

三、(10分)
(1) K断开:
$$A_{\mathbf{u}} = -\beta \frac{R_{\mathbf{1}}}{r_{be}} = -150 \frac{4 // 2}{4.19} = -4.7$$

 $u_{0} = -\frac{R_{\mathbf{F}}}{R1} U_{i1} + (1 + \frac{R_{\mathbf{F}}}{R1}) U_{i2}$
 $= -\frac{10}{5} \times 3 + (1 + \frac{10}{5}) \times 2 = 0$

四、(10分)

A	В	Q n+1
0	0	Qn
0	1	0
1	0	1
- ₁	1	Qn

五、(10分)

N	Q_2	Q_1	Q_0	
0	0	0	0	
1	0	1	1	
2	1	1	1	
3	1	1	它是0五进行	钊计数器
4	1	0	1	
5	0	0		
6	0	1	1	