COMPACT SUBGROUPS OF $GL_n(\overline{\mathbf{Q}}_n)$

KEITH CONRAD

Theorem 1. For any compact subgroup K of $GL_n(\mathbf{Q}_n)$, there is a finite extension F/\mathbb{Q}_p such that $K \subset \mathrm{GL}_n(F)$.

Proof. The argument we will give is due to W. Sinnott. Let $G = GL_n(\mathbf{Q}_p)$ and $\overline{\mathbf{Z}}_p$ be the integers of $\overline{\mathbf{Q}}_p$. For $r \geq 1$, the subgroup

$$G_r = I_n + p^r \mathcal{M}_n(\overline{\mathbf{Z}}_p)$$

is open in G, so the intersection $K_r = K \cap G_r$ is an open subgroup of K. Any open subgroup of a compact group is closed with finite index, so K_r is compact and $[K:K_r]$ is finite. If some K_r is contained in $\mathrm{GL}_n(F)$ for some finite extension F of \mathbf{Q}_p , then K itself lies in $\mathrm{GL}_n(F')$ where F' is the field generated over F by the matrix entries from the finitely many (say, left) coset representatives for K/K_r in K. The entries of any matrix in K are all algebraic over \mathbf{Q}_p , so F' is a finite extension field of F. This means $[F': \mathbf{Q}_p]$ is finite and $K \subset \mathrm{GL}_n(F')$, so we'd be done.

Assume, to the contrary, that no K_r is contained in any $GL_n(F)$ where F/\mathbf{Q}_p is finite. We will recursively find positive integers $d_1 < d_2 < \cdots$ and matrices $g_i \in K_{d_i}$ for each $i \geq 1$ such that

- (1) for any $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$, if $\sigma(g_i) \neq g_i$ then $\sigma(g_i) \not\equiv g_i \mod p^{d_{i+1}}$, where the modulus here is really $p^{d_{i+1}}M_n(\overline{\mathbf{Z}}_p)$,
- (2) the field generated over \mathbf{Q}_p by the entries in g_i has degree at least iover \mathbf{Q}_p .

To start, choose $d_1 \geq 1$ and $g_1 \in K_{d_1}$ arbitrarily. The second condition is obvious for i = 1. Since g_1 has only finitely many Galois conjugates, we can choose $d_2 > d_1$ to make the first condition true for i = 1. Next, suppose g_1, \ldots, g_j and d_1, \ldots, d_{j+1} have been chosen to satisfy the above two conditions for i = 1, ..., j. Then we can choose $g_{j+1} \in K_{d_{j+1}}$ to satisfy the second condition, and since g_{j+1} has only finitely many Galois conjugates we can choose $d_{j+2} > d_{j+1}$ to satisfy the first condition for i = j + 1.

We want to work with the infinite product $h := g_1g_2\cdots$. To check it converges and to approximate it using partial products, we switch our focus to the subgroups G_{d_i} , which shrink to the identity in a controlled way through the powers of p defining them. Since $g_i \in G_{d_i} \subset K$, $d_i \to \infty$, and K is closed, the product $h := g_1g_2\cdots$ converges in K. We are going to look at automorphisms $\sigma \in \operatorname{Gal}(\mathbf{Q}_p/\mathbf{Q}_p)$ which fix h. For any such σ ,

$$\sigma(g_1)\sigma(g_2)\cdots=g_1g_2\cdots.$$

Suppose $\sigma(g_i) \neq g_i$ for some i. Let ℓ be the least such integer (it depends on σ). Then $\sigma(g_i) = g_i$ for all $i < \ell$, which means

$$\sigma(g_{\ell})\sigma(g_{\ell+1})\cdots=g_{\ell}g_{\ell+1}\cdots$$

For all $i > \ell$, $g_i \in G_{d_i} \subset G_{d_{\ell+1}}$ and $\sigma(g_i) \in G_{d_i} \subset G_{d_{\ell+1}}$, so reducing this equation modulo $p^{d_{\ell+1}} \mathcal{M}_n(\overline{\mathbf{Z}}_p)$ implies $\sigma(g_\ell) \equiv g_\ell \mod p^{d_{\ell+1}}$. Then the first condition above implies $\sigma(g_\ell) = g_\ell$, which is a contradiction. Therefore $\sigma(g_i) = g_i$ for all i. In other words, the subgroup of $\operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ fixing h fixes every entry of every g_i , and the second condition above implies the subgroup fixing h has a fixed field which is an infinite extension of \mathbf{Q}_p . However, all the entries of h lie in a finite extension of \mathbf{Q}_p , so the subgroup of $\operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ fixing h has a fixed field which is a finite extension of \mathbf{Q}_p . We have reached a contradiction.

Remark 2. Replacing $\overline{\mathbf{Q}}_p$ by its completion \mathbf{C}_p , it is *false* that a general compact subgroup of $\mathrm{GL}_n(\mathbf{C}_p)$ is in $\mathrm{GL}_n(F)$ for some finite extension F/\mathbf{Q}_p . For example, inside $\mathrm{GL}_1(\mathbf{C}_p) = \mathbf{C}_p^{\times}$ we can pick $x \notin \overline{\mathbf{Q}}_p$ where $|x-1|_p < 1$ and take $K = x^{\mathbf{Z}_p}$.

The proof of Theorem 1 is similar in spirit to one of the proofs [1, pp. 182–183], [2, p. 71] that $\overline{\mathbf{Q}}_p$ is not complete: consider an infinite series $\sum_{i\geq 0} c_i p^i$ where the c_i 's are in $\overline{\mathbf{Q}}_p$, $|c_i|_p = 1$, and $[\mathbf{Q}_p(c_i):\mathbf{Q}_p] \to \infty$. By a suitable choice of c_i 's, if that infinite series converges in $\overline{\mathbf{Q}}_p$ then a contradiction can be reached by comparing the series with a p-adic expansion of the limit. Turning things around, we can use the ideas in the proof of Theorem 1 to prove something about compact subgroups of the additive group $\overline{\mathbf{Q}}_p$.

Corollary 3. Any compact subgroup of $\overline{\mathbf{Q}}_p$ is inside a finite extension of \mathbf{Q}_p .

Proof. Repeat the proof of Theorem 1 for additive groups, e.g., when K is a compact subgroup of $\overline{\mathbf{Q}}_p$ the intersections $K_r = K \cap p^r \overline{\mathbf{Z}}_p$ are compact subgroups of $\overline{\mathbf{Q}}_p$ with finite index in K and it suffices to show some K_r is in a finite extension of \mathbf{Q}_p . Or, more quickly, embed $\overline{\mathbf{Q}}_p$ into $\mathrm{GL}_2(\overline{\mathbf{Q}}_p)$ as the matrices $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ so we can just appeal to Theorem 1 when n = 2.

References

- [1] F. Q. Gouvea, "p-adic Numbers: An Introduction," 2nd ed., Springer–Verlag, New York, 1997.
- [2] N. M. Koblitz, "p-adic Numbers, p-adic Analysis, and Zeta-functions," 2nd ed., Springer-Verlag, New York, 1984.