- 1. 已知 5 阶方阵 A 的不变因子组如下, 求 A 的有理标准型:
- (1) $1, \lambda 2, \lambda 2, \lambda 2, (\lambda 2)^2$.
- (2) $1, \lambda, \lambda, \lambda, \lambda(\lambda 1)$.
- $(3)1, 1, 1, (\lambda 2)(\lambda 3), (\lambda 1)(\lambda 2)(\lambda 3).$
- $(4)1, 1, 1, \lambda + 1, \lambda(\lambda + 1)(\lambda + 2)^2$.
- 2. 已知 5 阶方阵 A 的初等因子组如下, 求 A 的不变因子组和极小多项式:
- (1) $\lambda + 5, \lambda + 5, \lambda + 5, \lambda + 5, \lambda + 5$.
- (2) $\lambda, \lambda 1, \lambda 2, \lambda 3, \lambda 4$.
- (3) $(\lambda + 1)^2$, $(\lambda + 1)^2$, $\lambda 1$.
- (4) $\lambda 2, \lambda 2, \lambda + 1, \lambda + 1, \lambda + 1$.

解: (1) 不变因子组: $\lambda + 5$, $\lambda + 5$, $\lambda + 5$, $\lambda + 5$. 极尔多项式: $\lambda + 5$.

- (2) 不变因子组: $1, 1, 1, 1, \lambda(\lambda 1)(\lambda 2)(\lambda 3)(\lambda 4)$. 极小多项式: $\lambda(\lambda 1)(\lambda 2)(\lambda 3)(\lambda 4)$.
 - (3) 不变因子组: $1, 1, 1, (\lambda + 1)^2, (\lambda + 1)^2(\lambda 1)$. 极小多项式: $(\lambda + 1)^2(\lambda 1)$.
 - (4) 不变因子组: $1, 1, \lambda + 1, (\lambda + 1)(\lambda 2), (\lambda + 1)(\lambda 2)$. 极小多项式: $(\lambda + 1)(\lambda 2)$.
- 3. 设方阵 \boldsymbol{A} 的极小多项式是 $m_A(\lambda)$, 数 $a \neq 0$. 求方阵 $\boldsymbol{B} = a\boldsymbol{A} + b\boldsymbol{I}$ 的极小多项式 $m_B(\lambda)$.

解: 因 $A = a^{-1}B - a^{-1}bI$,由 $m_A(A) = 0$ 得 $m_A(a^{-1}B - a^{-1}bI) = 0$. 即 $m_A(a^{-1}\lambda - a^{-1}b)$ 是 B 的零化多项式,从而 $m_B(\lambda) \mid m_A(a^{-1}\lambda - a^{-1}b)$. 特别地,有 $\deg m_B(\lambda) \leqslant \deg m_A(\lambda)$. 同 理, $m_B(aA + bI) = 0$ 从而 $\deg m_A(\lambda) \leqslant \deg m_B(\lambda)$. 因此, $m_A(a^{-1}\lambda - a^{-1}b)$ 是 B 的极小多项式.于是存在常数

$$m_B(\lambda) = c \cdot m_A \left(a^{-1} \lambda - a^{-1} b \right)$$

4. 设 φ 是数域 \mathbb{K} 上 n 维线性空间 V 上的线性变换, 其中 $V = C(\varphi, \alpha)$ 为循环空间, α 为循环向量. 设 ψ, ξ 是与 φ 乘法可交换的两个线性变换, 求证: $\psi = \xi$ 的充要条件是 $\psi(\alpha) = \xi(\alpha)$.

证明: 必要性是显然的,下证充分性. 由小白书例 7.12 可知, $\{\alpha, \varphi(\alpha), \dots, \varphi^{n-1}(\alpha)\}$ 是 V 的一组基. 注意到 $\varphi\psi = \psi\varphi, \varphi\xi = \xi\varphi$ 且 $\psi(\alpha) = \xi(\alpha)$, 故对任意的 $1 \le i \le n-1$, 有 $\psi(\varphi^i(\alpha)) = \varphi^i(\psi(\alpha)) = \varphi^i(\xi(\alpha)) = \xi(\varphi^i(\alpha))$, 即 ψ, ξ 在 V 的一组基上的取值都相同, 因此 $\psi = \xi$.

5. 设 \mathbf{A} 为 3 阶实方阵, 试求 $C(\mathbf{A}) = \{ \mathbf{B} \in M_3(\mathbb{R}) | \mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} \}$.

解. 对 \boldsymbol{A} 的极小多项式 $m(\lambda)$ 的次数进行分类讨论. (1) 若 $\deg m(\lambda) = 1$, 则 $\boldsymbol{A} = cI_3$ 为纯量矩阵, 因此 $C(\boldsymbol{A}) = M_3(\mathbb{R})$. (2) 若 $\deg m(\lambda) = 2$, 则 \boldsymbol{A} 的不变因子组为 $1, d_2(\lambda), m(\lambda)$, 其中 $\deg d_2(\lambda) = 1$ 且 $d_2(\lambda) \mid m(\lambda)$, 于是 $m(\lambda)$ 在 \mathbb{R} 上可约. (2.1) 若 $m(\lambda)$ 有两个不同的实根 a, b, 不妨设 $d_1(\lambda) = \lambda - a$, 则存在非异阵 \boldsymbol{P} , 使得 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \operatorname{diag}\{a, a, b\}$. 任取 $\boldsymbol{X} = (x_{ij}) \in C(\boldsymbol{A})$, 则由 $\boldsymbol{A}\boldsymbol{B} = \boldsymbol{B}\boldsymbol{A}$ 计算可得 $\boldsymbol{B} = \boldsymbol{P}(x_{11}\boldsymbol{E}_{11} + x_{12}\boldsymbol{E}_{12} + x_{21}\boldsymbol{E}_{21} + x_{22}\boldsymbol{E}_{22} + x_{33}\boldsymbol{E}_{33})\boldsymbol{P}^{-1}$. (2.2) 若 $m(\lambda)$ 有两个相等的实根 a, 则 $d_1(\lambda) = \lambda - a$, 且存在非异阵 \boldsymbol{P} , 使得 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \operatorname{diag}\{a, \boldsymbol{J}_2(a)\}$. 任取 $\boldsymbol{B} = (x_{ij}) \in C(\boldsymbol{A})$, 则由 $\boldsymbol{A}\boldsymbol{B} = \boldsymbol{B}\boldsymbol{A}$ 计算可得 $\boldsymbol{B} = \boldsymbol{P}(x_{11}\boldsymbol{E}_{11} + x_{13}\boldsymbol{E}_{13} + x_{21}\boldsymbol{E}_{21} + x_{22}\boldsymbol{E}_{22} + x_{33}\boldsymbol{E}_{33})$

 $x_{22}(\mathbf{E}_{22} + \mathbf{E}_{33}) + x_{23}\mathbf{E}_{23})\mathbf{P}^{-1}$. (3) 若 deg $m(\lambda) = 3$, 则 \mathbf{A} 的极小多项式等于其特征多项式, 由例 7.26 可知 $C(\mathbf{A}) = \mathbb{R}[\mathbf{A}] = \mathbb{R}\mathbf{I}_3 + \mathbb{R}\mathbf{A} + \mathbb{R}\mathbf{A}^2$.

6. 设 V 是数域 \mathbb{K} 上的 n 维线性空间, φ 是 V 上的线性变换, $f(\lambda), m(\lambda)$ 分别是 φ 的特征多项式和极小多项式. 如果存在 V 的 φ -不变子空间 V_1, V_2 , 使得

$$V = V_1 \oplus V_2$$
, $\dim V_1 < \dim V$, $\dim V_2 < \dim V$

则称 $V \in \varphi$ -可分解的, 否则称 $V \in \varphi$ -不可分解的. 证明: $V \in \varphi$ -不可分解的充分必要条件 是 $f(\lambda) = m(\lambda) = p(\lambda)^k$, 其中 $p(\lambda)$ 是 \mathbb{K} 上的首一不可约多项式, $k \geq 1$.

证明必要性: 设 φ 在K上的不变因子组为

$$1, \cdots, 1, d_1(\lambda), \cdots, d_r(\lambda).$$

由有理标准形理论知

$$V = V_1 \oplus \cdots \oplus V_r$$
,

其中 V_i 是 φ - 不变子空间,且 $\varphi|_{V_i}$ 对应于不变因子 $d_i(\lambda)$ 决定的 Frobenius 块 $(1 \le i \le r)$. 因 为 V 关于 φ 不可分解,故 r=1,从而

$$m(\lambda) = d_r(\lambda) = f(\lambda).$$

考虑特征多项式 $f(\lambda)$ 的标准因式分解

$$f(\lambda) = [p_1(\lambda)]^{k_1} [p_2(\lambda)]^{k_2} \cdots [p_s(\lambda)]^{k_s},$$

其中 $[p_i(\lambda)]^{k_i}$ $(k_i > 0, 1 \le i \le s)$ 为 K 上互异的首一不可约多项式. 由作业 7.4.10 知存在直和 分解

$$V = V_1 \oplus \cdots \oplus V_s$$

其中 $V_i = \mathrm{Ker}\left[p_i(\varphi)\right]^{k_i}$ $(1 \leqslant i \leqslant s)$ 为 φ — 不变子空间. 因为 V 关于 φ — 不可分解, 故 s=1, 从 而

$$f(\lambda) = [p_1(\lambda)]^{k_1}$$

充分性: 设V关于 φ 可分解, 我们只要证明充分条件不成立即可. 由定义知

$$V = V_1 \oplus V_2$$
,

其中 $V_i(i=1,2)$ 是 φ -不变子空间,且 $\dim V_i>0$. 若某个 V_i 关于 $\varphi|_{V_i}$ 是可分解的,那么我们可以继续分解下去,最终可以得到 $V=V_1\oplus\cdots\oplus V_r$,其中 $r\geqslant 2, V_i$ 是 φ -不变子空间, $\dim V_i>0$,并且 V_i 关于 $\varphi|_{V_i}$ ($1\leqslant i\leqslant r$)不可分解.由必要性的证明可设 $\varphi|_{V_i}$ 的不变因子组为

$$1, \cdots, 1, d_i(\lambda),$$

其中每个 $d_i(\lambda)(1 \le i \le r)$ 都是某个不可约多项式的幂. 于是 φ 的极小多项式

$$m(\lambda) = \operatorname{lcm} \{d_1(\lambda), \cdots, d_r(\lambda)\}.$$

如果 $m(\lambda) = f(\lambda) = [p(\lambda)]^k$, 则由 $d_i(\lambda) \mid m(\lambda)$ 可设

$$d_i(\lambda) = [p(\lambda)]^{k_i} \quad (1 \leqslant k_i \leqslant k).$$

由于 $m(\lambda)$ 是 $d_1(\lambda), \dots, d_r(\lambda)$ 的最小公倍式, 故存在某个 $1 \le i \le r$ 使得

$$d_i(\lambda) = [p(\lambda)]^k,$$

从而

$$f(\lambda) = d_1(\lambda) \cdots d_r(\lambda) =$$

 $[p(\lambda)]^{k_1 + \cdots + k_r} \neq [p(\lambda)]^k.$

这与假设矛盾, 故充分条件不成立

7. 设 A 是数域 \mathbb{K} 上的 n 阶矩阵, 其特征多项式等于极小多项式, 证明: 矩阵方程 XA = A'X 的解是 \mathbb{K} 上的对称阵.

证明: 设 $f(\lambda)$ 是 A 的特征多项式, 也是 A 的极小多项式, 则由有理标准型理论可知, 存在非异阵 $P \in M_n(\mathbb{K})$, 使得 $P^{-1}AP = F = C(f(x))$ 为 A 的有理标准型 (由一个友阵 C(f(x)) 构成). 由 XA = A'X 可得 (P'XP)F = F'(P'XP), 再由

(设 $Y = (y_{ij})$, 则由 YF = F'Y 经具体的计算可得 $y_{ij} = y_{i+1,j-1} (1 \le i \le n-1, 2 \le j \le n)$. 因此对任意的 $1 \le i < j \le n$, 有 $y_{ij} = y_{i+1,j-1} = \cdots = y_{j-1,i+1} = y_{ji}$, 即 Y 为对称阵.)

可得 P'XP = Y 为对称阵, 从而 $X = (P^{-1})'YP^{-1}$ 也为对称阵.

8. 设 A 是数域 \mathbb{K} 上的 n 阶矩阵, 证明存在如下分解: $A = A_0 + A_1 + A_2$, 其中 A_0 为 \mathbb{K} 上的纯量矩阵, A_1 , A_2 均为 \mathbb{K} 上的幂零矩阵.

证明. 令 $c = \operatorname{tr}(\boldsymbol{A})/n$, $\boldsymbol{A}_0 = c\boldsymbol{I}_n$, 则 $\operatorname{tr}(\boldsymbol{A} - \boldsymbol{A}_0) = \operatorname{tr}(\boldsymbol{A}) - nc = 0$, 即 $\boldsymbol{A} - \boldsymbol{A}_0$ 是迹为零的矩阵. 由小白书例 7.24 可知, 存在 \mathbb{K} 上的非异阵 \boldsymbol{P} , 使得 $\boldsymbol{P}^{-1}(\boldsymbol{A} - \boldsymbol{A}_0)\boldsymbol{P} = \boldsymbol{B}$ 是一个主对角元全为零的矩阵 (归纳法 + 有理标准型) . 设 B_1 为 B 的主对角线上方元素构成的主对角元全为零的上三角矩阵, B_2 为 B 的主对角线下方元素构成的主对角元全为零的下三角矩阵, 显然, $B = B_1 + B_2$, 且 B_1 , B_2 都是幂零矩阵. 令 $A_1 = PB_1P^{-1}$, $A_2 = PB_2P^{-1}$, 则 A_1 , A_2 都是 \mathbb{K} 上的幂零矩阵, 且满足 $A = A_0 + A_1 + A_2$.

9. 设 $A \in M_n(\mathbb{K})$ 在数域 \mathbb{K} 上的初等因子组为 $P_1(\lambda)^{e_1}, P_2(\lambda)^{e_2}, \cdots, P_k(\lambda)^{e_k}$, 其中 $P_i(\lambda)$ 是 \mathbb{K} 上互异的首一不可约多项式, $e_i \geq 1 (1 \leq i \leq k)$. 设 $C(P_i(\lambda)^{e_i})$ 为相伴于多项式 $P_i(\lambda)^{e_i}$ 的友阵, 证明: A 在 \mathbb{K} 上相似于分块对角阵

diag {
$$\boldsymbol{C}(P_1(\lambda)^{e_1}), \boldsymbol{C}(P_2(\lambda)^{e_2}), \cdots, \boldsymbol{C}(P_k(\lambda)^{e_k})$$
}

试用上述结论证明第三届全国大学生数学竞赛预赛一道试题: 设 A 是数域 \mathbb{K} 上的 n 阶方阵,证明: A 相似于 diag{B,C},其中 B 是 \mathbb{K} 上的可逆阵,C 是 \mathbb{K} 上的幂零阵,即存在 $m \in \mathbb{Z}^+$,使得 $C^m = O$.

证明:由高代教材引理 7.4.1 知 $F(P_i(\lambda)^{e_i})$ 的不变因子组为

$$1, \cdots, 1, P_i(\lambda)^{e_i}$$

因此分块对角阵 $F = \operatorname{diag} \{ F(P_1(\lambda)^{e_1}), F(P_2(\lambda)^{e_2}), \cdots, F(P_k(\lambda)^{e_k}) \}$ 经过 λ -矩阵的初等变换可化为如下对角 λ -矩阵:

diag
$$\{1, \dots, 1, P_1(\lambda)^{e_1}; 1, \dots, 1, P_2(\lambda)^{e_2}; \dots; 1, \dots, 1, P_k(\lambda)^{e_k}\}$$

由复旦高代教材引理 7.6.2 知 F 的初等因子组等于上述对角 λ -矩阵主对角元素的准素因子的集合. 注意到每个 $P_i(\lambda)^{e_i}$ 都是准素的, 因此 F 的初等因子组为 $P_1(\lambda)^{e_1}$, $P_2(\lambda)^{e_2}$, \cdots , $P_k(\lambda)^{e_k}$, 即 F 与 A 在数域 \mathbb{K} 上有相同的初等因子组. 因此由书本定理可知 A 与 F 在数域 \mathbb{K} 上相似.

数学竞赛:

设 A 在数域 ≤ 上的初等因子组为

$$P_1(\lambda)^{e_1}, P_2(\lambda)^{e_2}, \cdots, P_k(\lambda)^{e_k}; \lambda^{t_1}, \lambda^{t_2}, \cdots, \lambda^{t_r}$$

其中 $P_i(\lambda)$ 是 医 上的不可约多项式且 $P_i(0) \neq 0, e_i > 0, i = 1, 2, \dots, k; t_j > 0, j = 1, 2, \dots, r$. 注意到 $F(P_i(\lambda)^{e_i})$ 为相伴于多项式 $P_i(\lambda)^{e_i}$ 的友阵, 从而它的特征多项式恰为 $P_i(\lambda)^{e_i}$. 特别地, $\det(F(P_i(\lambda)^{e_i})) = (-1)^{n_i} P_i(0)^{e_i} \neq 0$, 其中 $n_i = \deg P_i(\lambda)^{e_i}$, 即 $F(P_i(\lambda)^{e_i})$ 是非异阵. 令

$$B = \operatorname{diag} \left\{ F\left(P_1(\lambda)^{e_1}\right), F\left(P_2(\lambda)^{e_2}\right), \cdots, F\left(P_k(\lambda)^{e_k}\right) \right\}$$

则 B 是数域 \mathbb{K} 上的非异阵. 由友阵的定义容易验证 $F(\lambda^{t_j})$ 是幂零阵. 令

$$C = \operatorname{diag}\left\{F\left(\lambda^{t_1}\right), F\left(\lambda^{t_2}\right), \cdots, F\left(\lambda^{t_r}\right)\right\}$$

则 C 是数域 \mathbb{K} 上的幂零阵. 由上述结果知 A 在数域 \mathbb{K} 上相似于

$$\left(\begin{array}{cc} B & 0 \\ 0 & C \end{array}\right),$$

故结论得证.

10. 设 \mathbf{A} , \mathbf{B} 为 $n(n \ge 2)$ 阶方阵, 满足: $\mathbf{r}(\mathbf{A}) = n - 1$, $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{O}$. 证明: $\mathbf{A} + \mathbf{B}$ 为 非异阵的充分必要条件是 \mathbf{A} 的特征值 0 的代数重数等于 1 且 \mathbf{B} 的秩等于 1.

证明:由于题目的条件和结论在同时相似变换: $A \mapsto P^{-1}AP, B \mapsto P^{-1}BP$ 下保持不变,故不妨从一开始就假设 A 为 Jordan 标准型. 因为 r(A) = n-1,故 A 关于特征值 0 的几何重数为 1,从而属于特征值 0 的 Jordan 块只有一个,记为 J_0 ;将属于其他非零特征值的 Jordan 块合在一起,记为 J_1 ,于是 $A = \operatorname{diag} \{J_0, J_1\}$. 设 $B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$ 为相应的分块,则由 AB = BA = O 可得 B_{12}, B_{21}, B_{22} 都是零矩阵,于是 $B = \operatorname{diag} \{B_{11}, O\}$ 且 $J_0B_{11} = B_{11}J_0 = O$,可得当 B_{11} 的维数 $k \geq 2$ 时, $B_{11}(2:k,:) = 0$ 以及 $B_{11}(:,1:k-1) = 0$,即,除了 b_{1k} ,其余全为 0,显然 $J_0 + B_{11}$ 为奇异阵,因此, $J_0 + B_{11}$ 为非异阵可得 k = 1 且 B_{11} 为一个非零常数,即 A + B 为非异阵的充分必要条件是 A 的特征值 0 的代数重数等于 1 且 B 的秩等于 1.