Compl t Listing of All Claims in the Application

1	1-23.	(Canc		d).
---	-------	-------	--	-------------

1	24. (Currently Amended) A method of making a light weight golf club for reducing the		
2	overall weight of the golf club while providing a swingweight similar to that of a typical		
3	steel shafted golf club, the method comprising the steps of:		
4	(a) forming a plurality of weighting plugs of different weight		
5	by combining different amounts of a dense weighting		
6	material with a moldable resin to form differently		
7	weighted combinations and curing the differently		
8	weighted combinations in a suitable mold;		
9	(b) (a) providing forming a light weight golf shaft by:		
0	(1) providing a mandrel;		
1	(2) selecting with a weighting plug selected from a the		
2	plurality of weighting plugs of different weight;		
3	(3) removably attaching the selected weighting plug to a tip		
4	end of the mandrel;		
5	(4) forming the golf shaft by rolling thin layers of prepreg		
6	composite materials onto the mandrel and weighting		
7	plug in a predetermined order;		
8	(5) hardening and curing the golf shaft by heating, the plug		
9	and golf shaft being formed into a one piece		
0	composite member; and		

21	(6) removing the golf shaft and associated plug from the					
22	mandrel,; and					
23	(c) (b) attaching a golf head to the golf shaft.					
1	25-26. (Canceled)					
1	27. (Original) The method of claim 24 wherein making the light weight golf club					
2	comprises making a light weight golf shaft with a swingweight of a typical steel golf					
3	shaft, the method further comprising:					
4	(a) forming the golf shaft of composite plastic materials of					
5	total mass less than 100g,					
6	(b) positioning a balance point of the light weight golf shaft					
7	such that the force required for a particular swing					
8	acceleration is substantially equivalent to a force					
9	required for the same swing acceleration of the typical					
10	steel golf shaft having a total mass of over 100g.					
1	28-29. (Canceled)					
1	30. (Currently Amended) The method of claim 24, the steps further comprising					
2	wherein the step of forming a plurality of weighting plugs of different weight further					
3	comprises the step of selectively varying the weight of the plug-weighting plugs by up to					
4	50% relative to a minimum plug weight.					

- 1 31. (Original) The method of claim 24, the steps further comprising the step of
- 2 selectively choosing the golf head and plug based on a selection of plugs varying in
- 3 weight by 50% relative to a minimum plug weight.
- 1 32-33. (Canceled)
- 1 34. (Currently Amended) The method of claim 33-24 wherein the dense weighting
- 2 material used in the step of forming a plurality of weighting plugs of different weight is
- 3 selected from the group of different density materials comprising: tungsten, copper, and
- 4 iron.
- 1 35-56. **(Canceled)**