Sorting

David Croft

Introduction

Stable sort

Selection sort

algorithm

Quicksort
Divide & Conquer

Divide & Corique

O...:-

Recap

Sorting algorithms

David Croft

Coventry University david.croft@coventry.ac.uk

March 3, 2017

Overview

Introduction

Bubblesort Stable sort In-place

Selection sor

algorithm

Divide & Conqui

Comparin

Ouiz

1 Introduction

2 Bubblesort

Stable sort

In-place

3 Selection sort

4 Other algorithms

5 Quicksort

Divide & Conquer

6 Comparing

7 Quiz

8 Recap

Bubblesort Stable sort In-place

Selection sort

Other algorithms

Quicksort
Divide & Conque

Companii

Quiz

кесар

Sorting is one of the classic problems for learning algorithms.

- Requirement for everything.
- Obvious applications like sorting text, statistics (median calculations).
- Less obvious, sorting objects in games for FOV (Field Of View) calculations.
- Route planning.

Stable sort In-place

Selection sort

Other algorithms

Divide & Conqui

Comparing

Ouiz

Racar

Lots of different algorithms, different ways to achieve the same thing.

- Going to be looking at several common/well known algorithms.
 - Bubblesort.
 - Selection sort.
 - Quick sort.
- Comparing and contrasting, advantages and disadvantages.

Bubblesort Stable sort

Selection sort

Other algorithms

Divide & Conque

Compa

Quiz

кесар

Very simple sort.

- Compares each item to the next in the sequence.
 - Swap items if in wrong order.

Pass 1

Bubblesort Stable sort In-place

Selection sor

Other algorithm:

Divide & Conque

Compa

Quiz

Recap

Iterating over the sequence once isn't typically enough.

■ Keep iterating over the sequence until elements are sorted.

В

Introductio
Bubblesort
Stable sort

Selection so

Quicksort
Divide & Conque
Comparing

Quiz

Recap

Bubble sort is what's known as a stable in-place sort.

Stable meaning that equivalent elements do not change their relative orders.

- Not important if e.g. sorting people by height.
- Important if e.g. you are sorting people by height and then sorting them by surname.
 - People with the same surname would still be in height order.
 - Can have performance benefits.

With unstable sorting algorithm the relative orders of equivalent elements can be changed.

Bubblesort Stable sort In-place

Other

Quicksort

Divide & Conqu

Compa

Quiz

кесар

In-place meaning that it only needs a small amount of additional memory in order to work.

- More memory efficient than the alternative.
 - Can be slower though.
- Can be important if...
 - ...dealing with large amounts of data.
 - ...have limited resources (i.e. embedded systems).
- Bubble sort only needs a few extra variables to swap the elements and to step through the sequence.

Bubblesort Stable sort In-place

Selection sort

Other algorithms

Divide & Conque

Comparii

Quiz

≺есар

One of the simplest sorting algorithms.

- Explained here to introduce you to sorting concepts.
 - In-place, stable.
- Is rubbish.
 - Horrible performance, average is $O(n^2)$.
 - But best case is only O(n).

Introduction
Bubblesort
Stable sort
In-place

Other

algorithms

. Comparing

Ouiz

кесар

The time taken to sort a sequence depends on:

■ The starting order of the sequence.

For example, Bubblesorting a 100 elements:

- Best case, already sorted.
 - Iterate over sequence once.
 - 100 comparisons.
- Worst case, in reverse order.
 - Iterate over sequence 100 times.
 - 10,000 comparisons.
- Average case, random order.
 - Somewhere in between.

So sorting algorithms have 3 O() values.

Introduction Bubblesort

Selection sort

Other algorithms

Divide & Conque

Comparing

Qui

recap

- Divides sequence into sorted and unsorted regions.
- Stable/Unstable, depends on implementation.
- In place.
- 1 Iterate over sequence.
- For each element search the remaining elements on its right for the smallest value.
- **3** Swap smallest element with current element.

Bubblesort
Stable sort
In-place

Selection sort

algorithr

Quicksor

Comparin

Oui

Recap

- Iterate over sequence.
- For each element search the remaining elements on its right for the smallest value.
- 3 Swap smallest element with current element.

Bubblesort is $O(n^2)$ worst and average case . Selection sort is $O(n^2)$ worst and average case.

- Selection sort is generally faster than bubble.
 - But have same *O*() complexity.
 - What?
- \circ O() notation describes how an algorithm will grow.
- Not good at absolute performances.
- Selection sort typically does fewer comparisons and swaps than bubblesort.
 - Therefore typically faster.
- Best case bubblesort is O(n), selection is $O(n^2)$.
 - So is occasionally faster.

Sorting Algorithms

Introduction
Bubblesort
Stable sort

Selection sort

Other algorithms

Divide & Conque

Comparing

Quiz

Recap

Many sorting algorithms

- Different trade-offs, performances.
- Some are just jokes.

1	Bead
---	------

- Bogo
- 3 Bubble
- 4 Circle
- 5 Cocktail
- 6 Comb
- Counting
- 8 Cycle

- g Gnome
- о Неар
- 11 Insert
- 12 Merge
- 13 Pancake
- 14 Patience
- Permutation
- 16 Quick

- 17 Radix
- 18 Selection
- 19 Shell
- 20 Sleep
- 21 Stooge
- 22 Strand
- 23 Tree

Bubblesort Stable sort In-place

Selection sor

algorith

Quicksort
Divide & Conque

Carrana and a

Quiz

tecap

Neither bubble or selection sort are very good.

- Simple algorithms but slow.
- Not (typically) used in real code.

One of the fastest sorting algorithms.

- Used in real life.
- Recursively breaks the sequence in half.
 - Divide & Conquer.

Quicksort

- Select a value from the sequence, this is the pivot.
- 2 Put all values < pivot in one group.
- \supseteq Put all values \geq pivot in another group.
- Treat each group as a new sequence and repeat from step 1.

Bubblesort

Selection sort

Other

Quicksort
Divide & Conque

Divide & Conque

Quiz

Pocan

- 1 Select a value from the sequence, this is the pivot.
- Put all values < pivot in one group.</p>
- $\mathbf{3}$ Put all values \geq pivot in another group.
- 4 Treat each group as a new sequence and repeat from step 1.

Introduction Bubblesort Stable sort

Selection so

algorithm

Quicksort
Divide & Conqu

Comparing

Quiz

кесар

Quicksort is...

- ...sometimes in-place.
 - Depends on implementation.
- ...sometimes stable.
 - Depends on implementation.

Some issues with the original algorithms (1959).

- Choosing the pivot.
 - First element.
 - Middle element.
 - Average of first, middle and last.
- Repeated elements.
 - Fat partition.

Bubblesort Stable sort In-place

Selection sort

Other algorithms

Divide & Conquer

Comparing

Quiz

Recap

Quicksort is a divide and conquer algorithm.

- Too hard to sort the whole sequence?
- Divide the problem.
 - Still too hard?
 - Divide the problem.
 - Still too hard?
 - Divide the problem.
 - Etc, etc, etc.

Naturally suited for parallelism.

■ Each sub problem can be processed separately.

Comparing algorithms

I

Introduction Bubblesort

Selection sort

Other algorithms

Comparing

Companing

Recap

Have seen there are many ways to sort.

- Best sorting algorithm depends on multiple factors.
- Good in one situation is bad in another.
- Stability? In place?
- What are you sorting?
 - Linked lists?
 - Sequential memory (arrays)?
- Where are you sorting?
 - RAM?
 - EEPROM? cheap to read, expensive to write.
- \bigcirc Size of n.
 - Insertion sort with small n.
- Consistent performance.
 - Selection sort.

David Croft

Introduction

inti oddectioi

Stable sort

Selection sort

Other

4.80.14....

Divide & Con

Comparing

Pocan

Introduction
Bubblesort
Stable sort
In-place

Selection sor

Other algorithms
Ouicksort

Comparing

Quiz

Recap

Bubblesort performs best (has O(n) performance) when

- The sequence is already in order.
- The sequence is in a random order.
- The sequence is in reverse order.
- The sequence contains a few distinct values that are repeated.

Sorting

David Croft

Introduction
Bubblesort
Stable sort

Selection sort

Other algorithms

Divide & Conque

Comparing

Quiz

Pocan

Divide & Conquer algorithms work by _____

- Dividing the problem in half.
- Breaking problems down into smaller easier problems.
- Simplifying the code so that they run faster.
- Invading Czechoslovakia.

Bubblesort

Stable sort

Selection sort

Other algorithms

Comparir

Quiz

Recap

Which of the following algorithms are NOT divide & conquer?

- Bubblesort.
- Bubblesort and selection sort.
- Selection sort.
- Quicksort.

Introduction
Bubblesort
Stable sort
In-place

Selection sort

algorithms

Comparin

Quiz

Quiz

Recap

Which algorithm uses a pivot value to repeatedly halve the sequence?

- Bubblesort.
- Selection sort.
- Quicksort.
- All of the above.

David Croft

Introduction

Stable sort In-place

Selection sort

Other algorithms

Divide & Conqui

Divide & Conque

Quiz

The worst sorting algorithm is _

- Bubblesort.
- Bogo sort.
- Sleep sort.
- Selection sort.

Everyone

- Sorting algorithms are key to understanding many important concepts.
 - I.e. Binary Search Trees.
- Key to writing efficent code.
- Key to understanding memory/processor trade offs.
- Useful in teaching algoritmic thinking.
 - Algorithm design.
 - Comparing and contrasting different algorithms.
 - Divide and Conquer concepts.
- Employability skill, popular questions for programming interviews.

Bubblesort Stable sort In-place

Selection sort

algorithms

Campanina

Comparing

Qui

Recap

- Many sorting algorithms.
- Bubblesort.
- Selection sort.
- Quicksort
- Advantages/disadvantages.
 - In place.
 - Stable.
 - Divide and Conquer.
- Performance
 - O()
 - Sequence type.
 - Read/writes.
 - Size of *n*.

Sorting

