CS6780 Summary and Conclusions

CS6780 – Advanced Machine Learning Spring 2019

Thorsten Joachims
Cornell University

Theme: Prediction and Action

- Building intelligent systems vs. analyzing existing systems
 - Prediction
 - Intelligent action
 - Guarantees on prediction/action quality
 - Causality

Theme: Bias vs. Variance

- Fundamental trade-off in learning
 - Training error vs. prediction error
 - Model capacity
 - Statistical learning theory
 - Empirical risk minimization

Theme: Massive Overparameterization

- The success story of machine learning
 - Regularized linear models
 - Kernels
 - Deep networks
 - → Number of parameters >> number of examples

Theme: Theoretical Underpinning

- Theory for understanding sake
 - Identify the mechanisms at play in ML
 - Understand model complexity
 - Understand common themes between algorithms

Secondary Syllabus

- Practice "soft skills" needed to be a successful researcher
 - Pitch ideas
 - Present your work
 - Write convincing papers
 - Work in groups
 - Give constructive feedback to others
 - Use feedback constructively

Batch Learning Approaches

- Empirical Risk Minimization (ERM)
 - Fixed at training time: class of decision rules h: X → Y, loss, x and y
 - Strategy: minimize training loss
- Conditional Probability Models
 - Fixed at training time: class of models for P(Y|X), x and y
 - Strategy: max conditional likelihood or MAP (or Bayes)
- Generative Models
 - Fixed at training time: class models for P(Y,X)
 - Strategy: max likelihood or MAP (or Bayes)

Not covered: Bayesian ML perspective → ORIE 6741, Andrew Wilson

Batch Learning for Classification

- ERM
 - Decision Trees
 - Perceptron
 - Linear SVMs
 - Kernel SVMs
 - Neural Networks
- Conditional Probability
 - Logistic Regression
 - Conditional Random Fields
 - Ridge Regression
- Generative
 - Multinomial Naïve Bayes
 - Multivariate Naïve Bayes
 - Linear Discriminant

- Other Methods
 - Logical rule learning
 - Gaussian Processes
 - RBF Networks
 - Boosting
 - Bagging
 - Parametric (Graphical)
 Models

- *-Regression
- *-Multiclass

→ Methods + Theory + Algorithms + Practice

Batch Learning for Struct Prediction

- ERM
 - Structural SVMs
- Conditional Probability
 - Conditional Random Fields
- Generative
 - Hidden Markov Model

- Other Methods
 - Maximum MarginMarkov Networks
 - Markov Random Fields
 - Bayesian Networks
 - Statistical Relational Learning
 - Markov Logic Networks
 - Encoder/DecoderNetworks

NLP classes

→ Claire Cardie

Online Learning

- Expert Setting
 - Halving Algorithm
 - Weighted Majority
 - Exponentiated Gradient
- Bandit Setting
 - EXP3
 - UCB1

- Other Methods
 - Hedge
 - Follow the Leader
 - Zooming
 - Partial Monitoring
 - Contextual Bandits
 - Dueling Bandits
 - Coactive Learning

CS6783 Machine Learning Theory

→ Karthik Sridharan

Unsupervised Learning

- Clustering
 - K-Means
 - Mixture of Gaussians and EM-Algorithm
- Other Methods
 - Spectral Clustering
 - Multi-Dimensional Scaling
 - Latent Dirichlet Allocation
 - Semantic Embeddings
 - Deep Auto-Encoders
- Other Tasks
 - Outlier Detection
 - Novelty Detection
 - Dimensionality Reduction
 - Non-Linear Manifold Detection
- → CS4786 Machine Learning for Data Science
- → CS4850 Math Found for the Information Age
- → INFO 6150 Advanced Topic Models

ML in Computer Visions

Covered

 Convolutional Neural
 Networks (LeNet)

Other

More Deep Learning

Even more Deep Learning

CS6670 Computer Vision

→ Bharath Hariharan

CS4670 Intro Computer Vision

- → Serge Belongie
- → Bharath Hariharan

Learning to Act

- Covered
 - Off-policy policy learning
 - Atomic actions
 - Combinatorial actions

Other

- Sequential decisions
- Markov DecisionProcesses
- Reinforcement learning
- On policy vs. off policy
- Policy gradient

ML and Causality

Covered

- Potential outcomes model
- Treatment effect estimation

Other

- Observational setting
- Instrumental variables
- Continuous treatments
- Longitudinal treatments
- Causal discovery
- Parameter inference
- Causal networks
- Structural equation models

ML and Fairness

Covered

- Other
 - Fairness
 - Accountability
 - Transparency
 - Criteria and policy
 - Algorithms and guarantees
 - Classification
 - Ranking

INFO4270: Ethics and Policy in DS

→ Solon Barocas

Other Machine Learning Courses at Cornell

- INFO 3300 Data-Driven Web Pages
- CS 4700 Introduction to Artificial Intelligence
- CS 4780/5780 Machine Learning for Intelligent Systems
- CS 4786/5786 Machine Learning for Data Science
- CS 4787 Principles of Large-Scale Machine Learning
- OR 4740 Statistical Data Mining
- CS 6780 Advanced Machine Learning
- CS 6783 Machine Learning Theory
- CS 6784 Advanced Topics in Machine Learning
- CS 6787 Advanced Machine Learning Systems
- ORIE 6740 Statistical Learning Theory for Data Mining
- ORIE 6741 Bayesian Machine Learning
- ORIE 6750 Optimal learning
- ORIE 6780 Bayesian Statistics and Data Analysis
- INFO 6150 Advanced Topic Models
- MATH 7740 Statistical Learning Theory
- CS 7790 AI Seminar
- CS 7792 Special Topics in Machine Learning