

Universidad del Istmo de Guatemala Facultad de Ingenieria Ing. en Sistemas Informatica 1

Prof. Ernesto Rodriguez - erodriguez@unis.edu.gt

Hoja de trabajo #3

Samantha Rodas Chaluleu Adalí Garrán Jiménez 13 de Agosto, 2019

Ejercicio #1

Utilizando la definicion de suma (\oplus) para los numeros naturales unarios, llevar a cabo la suma entre tres [s(s(s(0)))] y cuatro [s(s(s(s(0))))].

	$s(s(s(0))) \oplus s(s(s(s(0))))$
a=s(x) x=s(s(0)) b=s(s(s(s(0))))	$s[s(s(0)) \oplus b]$
a=s(x) x=s(0) b=s(s(s(s(0))))	$s[s(s(0)\oplus b)]$
a=s(x) x=0 b=s(s(s(s(0))))	$s[s(s(0\oplus b))]$
0+b=b	s[(s(s(b))] $[s(s(s(s(s(s(s(0)))))))]$
	= 7

Ejercicio #2

Definir inductivamente una función para multiplicar (\otimes) numeros naturales unarios.

$$a \otimes b := \begin{cases} 0 & \text{si } a = o \\ 0 & \text{si } b = o \\ a & \text{si } b = 1 \\ b & \text{si } a = 1 \\ b \oplus (x \otimes b) & \text{si } a = \sigma(x) \end{cases}$$

Ejercicio #3

Verifique que su definición de multiplicación es correcta multiplicando los siguientes valores:

• $\sigma(\sigma(\sigma(0))) \otimes 0$ $\sigma(\sigma(\sigma(0))) \otimes 0$ $a = \sigma(\sigma(\sigma(0)))$ $a \otimes 0 = 0$ • $\sigma(\sigma(\sigma(0))) \otimes \sigma(0)$ $\sigma(\sigma(\sigma(0))) \otimes \sigma(0)$ $a = \sigma(x)$ $x = \sigma(\sigma(0))$ $b = \sigma(0)$ $b \oplus (x \otimes b)$ $= b \oplus (\sigma(\sigma(0)) \otimes b)$ $a = \sigma(x)$ $x = \sigma(0)$ $= b \oplus b \oplus (\sigma(0) \otimes b)$ $a = \sigma(x)$ x=0 $= b \oplus b \oplus b \oplus (0 \otimes b)$ $0 \otimes b=0$ $= b \oplus b \oplus b \oplus (0)$ $=b\oplus b\oplus b$ $= \sigma(0) \oplus \sigma(0) \oplus \sigma(0)$ $=\sigma(\sigma(\sigma(0)))$ =3• $\sigma(\sigma(\sigma(0))) \otimes \sigma(\sigma(0))$ $\sigma(\sigma(\sigma(0))) \otimes \sigma(\sigma(0))$ $a = \sigma(x)$ $x = \sigma(\sigma(0))$ $b = \sigma \sigma((0))$

 $b \oplus (x \otimes b)$

$$= b \oplus (\sigma(\sigma(0)) \otimes b)$$

$$= \sigma(x)$$

$$x = \sigma(0)$$

$$= b \oplus b \oplus (\sigma(0) \otimes b)$$

$$= b \oplus b \oplus b \oplus (0 \otimes b)$$

$$= b \oplus b \oplus b \oplus (0)$$

$$= b \oplus b \oplus b \oplus (0)$$

$$= b \oplus b \oplus b$$

$$= \sigma(\sigma(0)) \oplus \sigma(\sigma(0)) \oplus \sigma(\sigma(0))$$

$$= \sigma(\sigma(\sigma(\sigma(\sigma(\sigma(0))))))$$

$$= 6$$

Ejercicio #4

Demostrar utilizando inducción:

•
$$a \oplus \sigma(\sigma(0)) = \sigma(\sigma(a))$$

Caso Base: $a=0$

$$0 + \sigma(\sigma(0)) = \sigma(\sigma(0))$$
$$\sigma(\sigma(0)) = \sigma(\sigma(0))$$

Caso Inductivo: $a=\sigma(x)$

Hipótesis Inductiva: $\mathbf{x} + \sigma(\sigma(0)) = \sigma(\sigma(x))$

$$\sigma(x) \oplus \sigma(\sigma(0)) = \sigma(\sigma(\sigma(x)))$$

$$\sigma(x \oplus \sigma(\sigma(0))) = \sigma(\sigma(\sigma(x)))$$

$$\sigma(\sigma(\sigma(0)) \oplus x) = \sigma(\sigma(\sigma(x)))$$

$$\sigma(\sigma(\sigma(0) \oplus x)) = \sigma(\sigma(\sigma(x)))$$

$$\sigma(\sigma(\sigma(0 \oplus x))) = \sigma(\sigma(\sigma(x)))$$

$$\sigma(\sigma(\sigma(x))) = \sigma(\sigma(\sigma(x)))$$

•
$$a \otimes b = b \otimes a$$

Caso Base: $a=0$

$$0 \otimes b = b \otimes 0$$
$$0 = 0$$

Caso Inductivo: $a=\sigma(x)$

Hipótesis Inductiva: $x \otimes b = b \otimes x$

$$\sigma(x) \otimes b = b \otimes \sigma(x)$$

$$b = \sigma(i)$$

$$b \oplus (x \otimes b) = b \otimes \sigma(x)$$

$$\sigma(i) \oplus (x \otimes \sigma(i)) = \sigma(i) \otimes \sigma(x)$$

$$\sigma(i) \oplus (x \otimes \sigma(i)) = \sigma(x) \oplus (i \otimes \sigma(x))$$

$$\sigma(i \oplus (x \otimes \sigma(i))) = \sigma(x \oplus (i \otimes \sigma(x)))$$

$$\sigma(i \oplus (x \otimes b)) = \sigma(x \oplus (i \otimes a))$$

Por Hipótesis inductiva:

$$x \otimes b = b \otimes x$$

$$i \otimes a = a \otimes i$$

$$\sigma(i \oplus (b \otimes x)) = \sigma(x \oplus (a \otimes i))$$
$$\sigma(i \oplus (\sigma(i) \otimes x)) = \sigma(x \oplus (\sigma(x) \otimes i))$$
$$\sigma(i \oplus x \oplus (i \otimes x)) = \sigma(x \oplus i \oplus (x \otimes i))$$

Demostrar que $i \oplus x = x \oplus i$

para $i = \sigma(j)$

Hipótesis inductiva: $j \oplus x = x \oplus j$

$$\sigma(j) \oplus x = x \oplus \sigma(j)$$

$$\sigma(j \oplus x) = x \oplus \sigma(j)$$

$$\sigma(x \oplus j) = x \oplus \sigma(j)$$

$$\sigma(x) \oplus j = x \oplus \sigma(j)$$

Demostrar para el sucesor:

Hipótesis inductiva: $\sigma(x) \oplus j = x \oplus \sigma(j)$

$$\sigma(\sigma(x)) \oplus j = \sigma(x) \oplus \sigma(j)$$

$$\sigma(\sigma(x) \oplus j) = \sigma(x \oplus \sigma(j))$$

Por Hipótesis inductiva:

$$\sigma(\sigma(x) \oplus j) = \sigma(\sigma(x) \oplus j)$$

Por lo tanto $i \oplus x = x \oplus i$

$$\sigma(x \oplus i \oplus (i \otimes x)) = \sigma(x \oplus i \oplus (x \otimes i))$$

Por Hipótesis inductiva:

$$x \otimes i = i \otimes x$$

$$\sigma(x \oplus i \oplus (x \otimes i)) = \sigma(x \oplus i \oplus (x \otimes i))$$

$$k=x \oplus i \oplus (x \otimes i)$$

$$\sigma(k) = \sigma(k)$$

• $a \otimes (b \otimes c) = (a \otimes b) \otimes c$

Caso Base: a=0

$$0 \otimes (b \otimes c) = (0 \otimes b) \otimes c$$
$$0 \otimes (b \otimes c) = 0 \otimes c$$
$$0 = 0$$

Caso Inductivo: $a=\sigma(x)$

Hipótesis Inductiva: $x \otimes (b \otimes c) = (x \otimes b) \otimes c$

$$\sigma(x) \otimes (b \otimes c) = (\sigma(x) \otimes b) \otimes c$$
$$(b \otimes c) \oplus (x \otimes (b \otimes c)) = (\sigma(x) \otimes b) \otimes c$$
$$(b \otimes c) \oplus (x \otimes (b \otimes c)) = (b \oplus (x \otimes b)) \otimes c$$

Distribuir la multiplicación $b \oplus (x \otimes b) \otimes c$ (ver siguiente demostración $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$):

$$(b \otimes c) \oplus (x \otimes (b \otimes c)) = (b \otimes c) \oplus ((x \otimes b) \otimes c)$$

Aplicar propedad conmutativa de la suma, explicada en la demostración anterior

$$(b \otimes c) \oplus [(x \otimes (b \otimes c)) = ((x \otimes b) \otimes c)] \oplus (b \otimes c)$$

Asumiendo que $[(x \otimes (b \otimes c)) = ((x \otimes b) \otimes c)]$ es verdadero (Hipótesis Inductiva):

$$(b \otimes c) = (b \otimes c)$$

• $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

Caso Base: a=0

$$(0 \oplus b) \otimes c = (0 \otimes c) \oplus (b \otimes c)$$
$$(b) \otimes c = (0) \oplus (b \otimes c)$$
$$b \otimes c = b \otimes c$$

Caso Inductivo: $a=\sigma(x)$

Hipótesis Inductiva: $(x \oplus b) \otimes c = (x \otimes c) \oplus (b \otimes c)$

$$(\sigma(x) \oplus b) \otimes c = (\sigma(x) \otimes c) \oplus (b \otimes c)$$

$$\sigma(x \oplus b) \otimes c = (\sigma(x) \otimes c) \oplus (b \otimes c)$$

$$c \oplus ((x \oplus b) \otimes c) = (\sigma(x) \otimes c) \oplus (b \otimes c)$$

$$c \oplus ((x \oplus b) \otimes c) = (c \oplus (x \otimes c)) \oplus (b \otimes c)$$

Aplicar propedad conmutativa de la suma, explicada dos demostraciones atrás

$$c \oplus [(x \oplus b) \otimes c) = (x \otimes c)) \oplus (b \otimes c)] \oplus c$$

Asumiendo que $[(x \oplus b) \otimes c) = (x \otimes c) \oplus (b \otimes c)$ es verdadero (Hipótesis Inductiva):

$$c = c$$