Elementy teorii gier

Badania operacyjne

Plan

- Przykład
- Definicja gry dwuosobowej o sumie zerowej
- Macierz gry
- Strategie zdominowane
- Mieszane rozszerzenie gry
- Strategie mieszane
- Rozwiązywanie gier macierzowych
- Zastosowania teorii gier w podejmowaniu decyzji biznesowych

Przykład 1 (strategie zdominowane)

Dwóch panów Jacek i Wojtek nudziło się nieco w barze i dla urozmaicenia sobie czasu umówili się, że zagrają w następująca grę: będą mówić liczby od 1 do 6 (Jacek 1, 3 lub 5, a Wojtek 2, 4 lub 6). Jeżeli suma będzie większa od 7, to sumę otrzymuje od Jacka Wojtek, a gdy mniejsza – odpowiednio sumę wypłaci Wojtek Jackowi. Gdy suma jest równa 7, to nikt nie wygrywa.

Analiza

	STRATEGIE WOJTKA				
ш			2	4	6
regie XXA	1		3	5	7
STRATE(3	Λ	5	7	9
S.	5		7	9	11

Wygrywa Jacek Wygrywa Wojtek – przegrywa Jacek

Gra wg Jacka

		STRATEGIE WOJTKA				
ш			2	4	6	
TEG!	1		3	5	0	
IRAI	3	Λ	5	0	-9	
ای	5		0	-9	-11	

Wygrywa Jacek Wygrywa Wojtek – przegrywa Jacek

Gra dwuosobowa o sumie zerowej

		STRATEGIE WOJTKA = GRACZA B				
Ш ∢		2	4	6		
STRATEGIE JACKA = GRACZA A	1	3	5	0		
STRATA JACI	3	5	0	-9		
S D	5	0	-9	-11		
wygrana Jacka = WYPŁATA =			MA	CIERZ GRY		
przeg	gra	ina Wojtka				

Suma wygranych obu graczy = 0

Teoria gier strategicznych

- Emil Borel (1921)
 pierwsza próba opracowania
 matematycznej teorii gier
- John von Neumann (1928) twierdzenie minimaksowe

John von Neumann, Oscar Morgenstern (1944) "Theory of Games and Economic Behavior"

Emil Borel (1871-1956)

John von Neumann (1903-1957)

Gra macierzowa

Grą dwuosobową o sumie zero nazywamy trójkę G=(S,T,W), w której S i T są odpowiednio zbiorami strategii czystych gracza A i B, a W(s, t) jest funkcją wypłat (wygraną gracza A = przegraną gracza B) przyjmującą skończone wartości liczbowe i określoną na iloczynie kartezjańskim S x T zbiorów strategii obu graczy.

Gdy zbiory S i T są skończone, macierz $\mathbf{A} = [a_{ij}]$, gdzie $a_{ij} = W(s_i, t_j)$, $s_i \in S$ $t_j \in T$, nazywamy macierzą wypłat lub macierzą gry, a grę $G = \langle S, T, \mathbf{A} \rangle$ grą macierzową.

Strategia maksyminowa

	STRATEGIE GRACZA B						
GIE		2			4		6
TEG!	1	3	_	→	5	_	\rightarrow $\begin{pmatrix} 0 \end{pmatrix}$
IRA RAC	3	5		→	0		→ -9 ↑
S D	5	0		→	-9		→ -11

Dolną wartością gry G=(S,T,W) nazywamy liczbę:

$$v_1 = \underset{s \in S}{maxmin}W(s,t)$$

Strategia s₀ odpowiadająca dolnej wartości gry nazywa się strategią maksyminową.

Jest to strategia gwarantująca graczowi A, że wygra co najmniej v₁.

Strategia minimaksowa

		STRATEGIE GRACZA B				
GIE A A		2	4	6		
regi ZA	1	3	5	0		
rad Rac	3	5	0	-9		
<u> </u>	5	0	-9	-11		

Górną wartością gry G=(S,T,W) nazywamy liczbę:

$$v_2 = \min_{t \in T} \max_{s \in S} W(s,t)$$

Strategia t₀ odpowiadająca górnej wartości gry nazywa się strategią minimaksową.

Jest to strategia gwarantująca graczowi B, że przegra co najwyżej v₂.

Strategia zdominowana

		STRATEGIE GRACZA B				
□ ∢		2	4	6		
regie Za a	1	3	5	0		
STRATI	3	5	0	-9		
ู เง <u>เ</u>	5	0	-9	-11		

Jeżeli w grze macierzowej $G=\langle S,T,A\rangle$ każdy element pewnego wiersza macierzy wypłat odpowiadającego strategii $s_k \in S$ gracza A jest mniejszy lub równy od odpowiedniego elementu innego wiersza, to strategia s_k nosi nazwę strategii zdominowanej gracza A.

Strategia zdominowana

	STRATEGIE GRACZA B				
Ш ∢		2	4	6	
regie Za A	1	3	5	0	
rad RAC	3	5	Φ	-9	
STI	5	0	-9	-11	

Jeżeli w grze macierzowej G=⟨S,T,A⟩ każdy element pewnej kolumny macierzy wypłat odpowiadającej strategii t_I ∈ T gracza B jest większy lub równy od odpowiedniego elementu innej kolumny, to strategia t_I nosi nazwę **strategii zdominowanej gracza B**.

Definicja punktu siodłowego macierzy

		STRATEGIE GRACZA B				
GIE A A		2	4	6		
ш	1	3	5	0		
STRATI	3	5	0	-9		
<u> </u>	5	0	-9	-11		

Punktem siodłowym macierzy $\mathbf{A} = [a_{ij}], (i = 1, 2, ..., m, j = 1, 2, ..., n), jeżeli taki istnieje nazywamy element <math>\mathbf{a_{rk}}$, który spełnia warunek:

$$a_{ik} \leq a_{rk} \leq a_{ri}$$
.

Macierz **A** ma punkt siodłowy wtedy i tylko wtedy, gdy: $v_1 = m_i x m_i i n a_{ij} = m_i n m_i a x a_{ij} = v_2$

Przykład 2 (gry mieszane)

Wyobraź sobie, że jesteś w bibliotece i do Twojego stolika przysiada się nieznajoma proponując następującą grę:

Na sygnał każde z nas położy na stole monetę (na przykład złotówkę). Jeżeli obie monety będą leżały orzełkiem do góry, to płacę 3 złote, a jeżeli obie będą leżały reszką do góry, to płacę złotówkę. Natomiast jeżeli będą różne wskazania, to Ty płacisz dwa złote.

Gra jest cicha, więc można zagrać w bibliotece, ale czy warto?

Wartość oczekiwana

- Gdyby gra była losowa, to łatwo obliczyć, że
 - Prawdopodobieństwo dwóch orzełków P(oo)=0,25
 - Prawdopodobieństwo dwóch reszek P(rr)=0,25
 - Prawdopodobieństwo orzełka i reszki P(or)=P(ro)=0,5
- Zatem wartość oczekiwana wygranej
 - V = 3*0,25 + 1*0,25 = 1
 - \blacksquare VN = 2*0,5 = 1
 - jest taka sama dla nieznajomej i dla czytelnika.

2016-06-12 15

Wartość oczekiwana

- Gdyby nieznajoma grała dwa razy częściej reszkę niż orzełka, a czytelnik nadal grał losowo, to
 - Prawdopodobieństwo dwóch orzełków
 P(oo) = 2/6*3/6 = 1/6
 - Prawdopodobieństwo dwóch reszek
 P(rr) = 4/6*3/6 = 1/3
 - Prawdopodobieństwo orzełka i reszki P(or) = P(ro) = (1 1/3 1/6) = 1/2
- Zatem wartość oczekiwana gry:
 - \blacksquare EV = 2*1/2 3*1/6 1*1/3 = 1/6
 - Na każde 6 rozgrywek nieznajoma wygrywa 1 zł.

Dobra strategia

Czy istnieje strategia, która w dłuższym okresie pozwoli czytelnikowi wygrać z nieznajomą?

Macierz gry

Strategie	Strategie czytelnika		
nieznajomej	$t_1 = O$	$t_2 = R$	
$s_1 = O$	-3	2	
$s_2 = R$	2	– 1	

Należy zaplanować z jakim prawdopodobieństwem grać orzełka, np. 1/3, od razu widać, że reszka będzie grana z prawdopodobieństwem 1 - 1/3 = 2/3.

Strategia mieszana

Strategią mieszaną (lub zrandomizowaną) gracza A nazywamy skokowy rozkład prawdopodobieństwa określony na zbiorze S strategii czystych tego gracza, tzn. jest to wektor $x^T = [x_1, x_2, ..., x_m]$, taki że:

$$\sum_{i=1}^{m} x_i = 1, \ x_i \ge 0 \ (i = 1, 2, ..., m)$$

Strategią mieszaną (lub zrandomizowaną) gracza B nazywamy skokowy rozkład prawdopodobieństwa określony na zbiorze T strategii czystych tego gracza, tzn. jest to wektor $y = [y_1, y_2, ..., y_n]$, taki że:

$$\sum_{j=1}^{n} y_{j} = 1, y_{j} \ge 0 \ (j = 1, 2, ..., n)$$

Mieszane rozszerzenie gry

Mieszanym rozszerzeniem gry macierzowej $G=\langle S,T,A\rangle$ nazywamy trójkę $\Gamma=\langle X,Y,\varphi(X,Y)\rangle$, w której zbiór

$$X = \{x: \sum_{i=1}^{m} x_i = 1, x_i \ge 0, (i = 1, 2, ..., m)\}$$

jest zbiorem strategii mieszanych gracza A, a zbiór

Y={y:
$$\sum_{i=1}^{n} y_i = 1$$
, $y_j \ge 0$, $(j = 1,2,..., n)$ } - gracza B.

$$\varphi(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i a_{ij} y_j = \mathbf{x}^T \mathbf{A} \mathbf{y}$$

jest wartością oczekiwaną wygranej gracza A.

Dolna i górna wartość gry Γ

Dolną wartością gry Γ nazywamy liczbę:

$$\mathbf{k}_1 = \underset{\mathbf{x} \in \mathbf{X}}{\text{maxmin}} \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{y}$$

a górną wartością gry Γ liczbę:

$$k_2 = \min_{y \in Y} \max_{x \in X} x^T A y$$

Własność:

$$V_1 \le K_1 \le K_2 \le V_2$$

Jeżeli $v_1 = v_2$, to $k_1 = k_2$.

2016-06-12 20

Punkt siodłowy

Strategie	Strategie czytelnika		
nieznajomej	O (t ₁)	R(t ₂)	
O(s ₁)	- 3	2	
$R(s_2)$	2	– 1	

Jeżeli Γ, jest mieszanym rozszerzeniem gry $G = \langle S, T, A \rangle$ i macierz **A** posiada punkt siodłowy a_{rk} ($v_1 = k_1 = k_2 = v_2$), to strategiami optymalnymi gry Γ jest para strategii czystych:

$$\{x_r = 1, x_i = 0 \text{ dla } i \neq r\}$$

oraz

$$\{y_k = 1, y_i = 0 \text{ dla } j \neq k\}$$

A wartość tej gry wynosi a_{rk}.

Tak było w przypadku gry Jacka i Wojtka

Wartość oczekiwana mieszanego rozszerzenia gry

Strategie	Strategie czytelnika		
nieznajomej	O (t ₁)	$R(t_2)$	
O(s ₁)	- 3	2	
$R(s_2)$	2	– 1	

Niech x oznacza prawdopodobieństwo, z jakim nieznajoma gra orzełka. Wtedy nieznajoma gra reszkę z prawdopodobieństwem (1 – x). Oznaczmy przez V wartość oczekiwaną wypłaty dla nieznajomej. Jeżeli chce ona osiągnąć wygraną co najmniej V, to jej strategie powinny spełniać następujący układ nierówności:

$$-3x + 2(1 - x) \ge V$$

(1) gdy czytelnik gra orzełka

$$2x - (1 - x) \ge V$$

(2) gdy czytelnik gra reszkę

Wartość oczekiwana mieszanego

rozszerzenia gry

Strategie	Strategie czytelnika		
nieznajomej	$O(t_1)$	$R(t_2)$	
O(s ₁)	- 3	2	
$R(s_2)$	2	– 1	

$$-3x + 2(1-x) \ge V \tag{1}$$

$$2x - (1 - x) \ge V \tag{2}$$

$$-3x + 2(1-x) = 2x - (1-x)$$

$$-3x + 2 - 2x = 2x - 1 + x$$

$$3 = 8x$$

$$x = 3/8$$

$$V = -3*3/8 + 2*5/8 = 1/8$$

Wartość oczekiwana mieszanego rozszerzenia gry

Strategie	Strategie czytelnika		
nieznajomej	O (t ₁)	$R(t_2)$	
O(s ₁)	-3	2	
$R(s_2)$	2	– 1	

Podobnie dla czytelnika, niech y oznacza prawdopodobieństwo, z jakim czytelnik gra orzełka, a (1 – y) prawdopodobieństwo zagrania przez niego reszki. Czytelnik chce osiągnąć przegraną co najwyżej V, więc jego strategie powinny spełniać następujący układ nierówności:

$$-3y + 2(1 - y) \le V$$
 (1)

$$2y - (1 - y) \le V$$
 (2)

2016-06-12 24

Wartość oczekiwana mieszanego

<u>rozszerzenia gry</u>

Strategie	Strategie czytelnika		
nieznajomej	O (t ₁)	$R(t_2)$	
O(s ₁)	- 3	2	
$R(s_2)$	2	– 1	

$$V = 1/8$$

$$-3y + 2(1-y) \le V$$

$$2y - (1 - y) \le V$$

(2)

(1)

$$y = 3/8$$

Wartość oczekiwana mieszanego rozszerzenia gry

Strategie	Strategie czytelnika	
nieznajomej	O (t ₁)	$R(t_2)$
O(s ₁)	-3	2
$R(s_2)$	2	– 1

$$V^* = 1/8$$

 $x^* = 3/8$
 $y^* = 3/8$

- □Rozwiązanie to oznacza, że jeżeli zarówno czytelnik, jak i nieznajoma będą na każde osiem gier trzy razy wybierać orzełka, to nieznajoma wygra 1 zł na każde osiem rozgrywek.
- □Jest to dla niej wygrana gwarantowana, czyli grając orzełka w 3 na 8 gier wygra co najmniej 1 zł na każde osiem gier.
- □Dla czytelnika jest to strategia gwarantująca, że nie przegra więcej niż 1 zł na każde 8 gier.

Strategie optymalne

Parę strategii $x^* \in X$ i $y^* \in Y$ nazywamy strategiami optymalnymi gracza A i B odpowiednio, wtedy i tylko wtedy, gdy dla każdego $x \in X$ i $y \in Y$ zachodzi:

$$x^T A y^* \le x^{*T} A y^* \le x^{*T} A y$$

a liczbę $v = x^{*T}Ay^*$ nazywamy wartością gry.

Parę strategii optymalnych nazywa się punktem siodłowym gry.

2016-06-12 27

Strategie optymalne

Warunkiem koniecznym i dostatecznym na to, aby para strategii $x^* \in X$ i $y^* \in Y$ była parą strategii optymalnych jest równość $k_1 = k_2$, czyli równość dolnej i górnej wartości gry. Wtedy wartość gry $v^* = k_1 = k_2$.

2016-06-12 28

Twierdzenie minimaksowe

Przez rozwiązanie gry będziemy rozumieć znalezienie strategii optymalnych (x*, y*) oraz wartości gry v*.

Każda gra Γ będąca mieszanym rozszerzeniem gry macierzowej $G = \langle S, T, \mathbf{A} \rangle$ ma rozwiązanie.

Uwaga: Gra wyjściowa G może, ale nie musi mieć rozwiązania.

Własności strategii optymalnych

Jeżeli istnieje więcej niż jedna strategia optymalna dla danego gracza, to każda wypukła kombinacja liniowa tych strategii jest strategią optymalną tego gracza.

$$x^* = \alpha x_1^* + (1 - \alpha) x_2^*$$

Uwaga: Zbiór strategii optymalnych danego gracza jest zbiorem wypukłym.

2016-06-12 30

Rozwiązywanie gier mieszanych

- 1. Eliminujemy z macierzy A strategie zdominowane obu graczy. Odpowiednie współrzędne wektorów x i y przyjmą wartość 0.
- 2. Badamy, czy macierz A ma punkt siodłowy. Jeżeli a_{rk} jest punktem siodłowym macierzy A, to rozwiązaniem jest para strategii czystych: (x_r,y_k).
- 3. Przypadek, gdy A ma postać 2 x n:
 - rozwiązujemy graficznie układ nierówności:

$$g_j(x) = (a_{1j} - a_{2j})x + a_{2j} \ge v, j = 1, 2, ..., n$$

znajdujemy punkt (x*, v*) i usuwamy ze zbioru T strategie,
 dla których

$$a_{1k}x^* + a_{2k}(1 - x^*) > v^*$$

 znajdujemy strategie optymalne gracza B rozwiązując problem z macierzą postaci m x 2.

Rozwiązywanie gier mieszanych

- 4. Przypadek, gdy A ma postać m x 2:
 - a. rozwiązujemy graficznie układ nierówności:

$$h_i(y) = (a_{i1} - a_{i2})y + a_{i2} \le v, i = 1, 2, ..., m$$

 znajdujemy punkt (y*, v*) i usuwamy ze zbioru T strategie, dla których

$$a_{r1}y^* + a_{r2}(1 - y^*) < v^*$$
.

2016-06-12 32

Przykład
$$g_j(x) = (a_{1j} - a_{2j})x + a_{2j} \ge v, j = 1, 2, ..., n$$

Brak punktu siodłowego

Rozważmy grę mieszaną o nast macierzy wypłat:

	t ₁	t ₂	t ₃	t ₄
S ₁	0	2	4	3
s_{2}	1	4	-5	-1
s_3	-0	1	2	1

$$x^*_3 = 0$$

$$x^*_3 = 0$$

 $y^*_2 = 0$

$$\begin{cases} g_1(x) = (0-1)x + 1 \ge v \\ g_2(x) = (4+5)x - 5 \ge v \\ g_3(x) = (3+1)x - 1 \ge v \end{cases}$$

Przykład
$$g_j(x) = (a_{1j} - a_{2j})x + a_{2j} \ge v, j = 1, 2, ..., n$$

Brak punktu siodłowego

Rozważmy grę mieszaną o nast macierzy wypłat:

	t ₁	t ₂	t ₃	t ₄
S ₁	0	2	4	3
S_2	1	4	-5	-1
s_3	0	1	2	1

$$x^*_3 = 0$$

$$x^*_3 = 0$$

 $y^*_2 = 0$

$$\begin{cases} g_1(x) = (0-1)x + 1 \ge v \\ g_2(x) = (4+5)x - 5 \ge v \\ g_3(x) = (3+1)x - 1 \ge v \end{cases}$$

Przykład

	t ₁	t ₃	t ₄
S ₁	0	4	3
s_2	1	-5	-1

$$g_1(x) = -x + 1 \ge v$$

$$g_2(x) = 9 x - 5 \ge v$$

$$g_3(x) = 4 x - 1 \ge v$$

$$x^*_1 = 0.6$$

 $x^*_2 = 0.4$
 $v^* = 0.4$

$$g_3(x) = 4 x - 1 > v^*$$

 $y^*_4 = 0$

Przykład

	t ₁	t ₃
S ₁	0	4
s_2	1	- 5

$$h_{j}(y) = (a_{i1} - a_{i2})y + a_{i2} \le v, i = 1, 2, ..., m$$

$$h_1(x) = (0-4)y + 4 = -4y + 4 \le v$$

$$h_2(x) = (1+5)y - 5 = 6y - 5 \le v$$

Rozwiązanie gry

	t ₁	t ₂	t ₃	t ₄
S ₁	0	2	4	3
S_2	1	4	-5	-1
S_3	0	1	2	1

$$x^* = [0,6; 0,4; 0]$$

 $y^* = [0,9; 0; 0,1; 0]$
 $v^* = 0,4$

Przykład – gra Morra

Każdy partner pokazuje 1, 2 lub 3 palce i jednocześnie mówi, ile palców wg jego przypuszczenia pokaże w tym czasie przeciwnik.

Jeżeli tylko jeden partner odgadnie prawidłowo sumę pokazanych palców, to otrzymuje wygraną równą tej sumie. W przeciwnym razie jest remis.

Przykład – gra Morra

		t ₁	t ₂	t ₃	T ₄	t ₅	t ₆	t ₇	t ₈	t ₉
		(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)	(3,1)	(3,2)	(3,3)
s ₁	(1,1)	0	2	2	-3	0	0	-4	0	0
s_2	(1,2)	-2	0	0	0	3	3	-4	0	0
s_3	(1,3)	-2	0	0	-3	0	0	0	4	4
S ₄	(2,1)	3	0	3	0	-4	0	0	-5	0
S ₅	(2,2)	0	-3	0	4	0	4	0	-5	0
S ₆	(2,3)	0	-3	0	0	-4	0	5	0	5
S ₇	(3,1)	4	4	0	0	0	-5	0	0	-6
S ₈	(3,2)	0	0	-4	5	5	0	0	0	-6
S ₉	(3,3)	0	0	-4	0	0	-5	6	6	0

Rozwiązanie gry

			t ₁	t ₂	t ₃	T ₄	t ₅	t ₆	t ₇	t ₈	t ₉
			(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)	(3,1)	(3,2)	(3,3)
	S ₁	(1,1)	0	2	2	-3	0	0	-4	0	0
	S_2	(1,2)	-2	0	0	0	3	3	-4	0	0
	S_3	(1,3)	-2	0	0	-3	0	0	0	4	4
	S ₄	(2,1)	3	0	3	0	-4	0	0	-5	0
	S ₅	(2,2)	0	-3	0	4	0	4	0	-5	0
	S ₆	(2,3)	0	-3	0	0	-4	0	5	0	5
	S ₇	(3,1)	4	4	0	0	0	-5	0	0	-6
	S ₈	(3,2)	0	0	-4	5	5	0	0	0	-6
	S ₉	(3,3)	0	0	-4	0	0	-5	6	6	0

 $x^* = [0 \ 0 \ 20/47 \ 0 \ 15/47 \ 0 \ 12/47 \ 0 \ 0]$

Rozwiązanie gry

		t ₁	t ₂	t ₃	T ₄	t ₅	t ₆	t ₇	t ₈	t ₉
		(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)	(3,1)	(3,2)	(3,3)
S ₁	(1,1)	0	2	2	-3	0	0	-4	0	0
S_2	(1,2)	-2	0	0	0	3	3	-4	0	0
S_3	(1,3)	-2	0	0	-3	0	0	0	4	4
S ₄	(2,1)	3	0	3	0	-4	0	0	-5	0
S ₅	(2,2)	0	-3	0	4	0	4	0	-5	0
S ₆	(2,3)	0	-3	0	0	-4	0	5	0	5
S ₇	(3,1)	4	4	0	0	0	-5	0	0	-6
S ₈	(3,2)	0	0	-4	5	5	0	0	0	-6
S ₉	(3,3)	0	0	-4	0	0	-5	6	6	0

 $x^* = [0 \ 0 \ 20/47 \ 0 \ 15/47 \ 0 \ 12/47 \ 0 \ 0]$

 $y^* = [0 \ 0 \ 20/47 \ 0 \ 15/47 \ 0 \ 12/47 \ 0 \ 0]$

 $v^* = 0$

Przykład

Rozwiązać następującą grę:

	t ₁	t ₂	t ₃	t ₄	t ₅
S ₁	1	2	3	3	6
S ₂	2	6	1	3	3
s_3	3	1	3	6	2
S ₄	3	3	6	2	1

http://levine.sscnet.ucla.edu/workshops/zerosum.htm

Przykład

$$g_j(x) = \sum_{i=1}^m a_{ij} x_i \ge v, j = 1,..., n$$

	t ₁	t ₂	t ₃	t ₄	t ₅
S ₁	1	2	3	3	6
S ₂	2	6	1	3	3
S_3	3	1	3	6	2
S ₄	3	3	6	2	1

zmaksymalizować v przy ograniczeniach

$$x_1 + 2x_2 + 3x_3 + 3x_4 \ge v$$

 $2x_1 + 6x_2 + x_3 + 3x_4 \ge v$
 $3x_1 + x_2 + 3x_3 + 6x_4 \ge v$
 $3x_1 + 3x_2 + 6x_3 + 2x_4 \ge v$
 $6x_1 + 3x_2 + 2x_3 + x_4 \ge v$
 $x_1 + x_2 + x_3 + x_4 = 1$

Rozwiązujemy metodą sympleks, np. narzędziem ExploreLP.

Sformułowanie problemu LP

Formula	Formulated Problem										
Names	x1	$\mathbf{x2}$	x3	x4	V	Rel	RHS				
Row1	1	2	3	3	-1	>	0				
Row2	2	6	1	3	-1	>	0				
Row3	3	1	3	6	-1	>	0				
Row4	3	3	6	2	-1	>	0				
Row5	6	3	2	4	-1	>	0				
Row6	1	1	1	1	0	=	1				
Obj	0	0	0	0	1	=	0				

Rozwiązanie

Current Solution									
Symbol	Variable	Status	Value						
X1	x 1	Basic	2/25	0,08					
X2	x2	Basic	7/25	0,28					
X3	x3	Basic	3/5	0,60					
X4	x4	Basic	1/25	0,04					
X5	V	Basic	64/25	2,56					
OBJ	Obj	Basic	-64/25	2, 56					

```
x^* = [0.08; 0.28; 0.60; 0.04]

v^* = 2.56
```

Rozwiązanie

$$h_i(y) = \sum_{j=1}^n a_{ij} y_j \le v, i = 1,..., m$$

	t ₁	t ₂	t ₃	t ₄	t ₅
S ₁	1	2	3	3	6
S ₂	2	6	1	3	3
s_3	3	1	3	6	2
S ₄	3	3	6	2	1

zminimalizować przy ograniczeniach

$$y_1 + 2y_2 + 3y_3 + 3y_4 + 6y_5 - v \le 0$$

 $2y_1 + 6y_2 + y_3 + 3y_4 + 3y_5 - v \le 0$
 $3y_1 + y_2 + 3y_3 + 6y_4 + 2y_5 - v \le 0$
 $3y_1 + 3y_2 + 6y_3 + 2y_4 + y_5 - v \le 0$
 $y_1 + y_2 + y_3 + y_4 + y_5 = 1$

$$x^* = [0.08; 0.28; 0.60; 0.04]$$

 $y^* = [0.6; 0.08; 0.04; 0; 0.28]$
 $v^* = 2.56$

Gry z naturą

- Przeciwnik nie podejmuje decyzji w sposób racjonalny.
- Przeciwnik nie jest zainteresowany wynikiem gry.
- Stany natury mogą występować:
 - z jednakowym prawdopodobieństwem,
 - z różnymi prawdopodobieństwami.

Kryterium Walda (pesymistyczne)

- Wybiera maksymalną wygraną przy założeniu, że natura zachowa się najbardziej niekorzystnie.
- Postępowanie:
 - Wybieramy minimalną wartość w każdym z wierszy – zakładamy, że zajdą warunki najbardziej niekorzystne dla gracza;
 - Z uzyskanych wyników wybieramy wartość największą.
 - Uzyskana wartość stanowi gwarantowaną wygraną w najgorszym wypadku.

Kryterium Walda (pesymistyczne)

Rolnik ma wybrać jeden z 3 możliwych terminów siewu (1.03, 10.03 lub 15.03). Plony z hektara w zależności od przyszłego możliwego stanu pogody A, B, C i D oraz terminu siewu podaje tablica:

Terminy siewu	Α	В	С	D	
1.03	21	15	32	16	15
10.03	28	20	10	20	10
15.03	13	27	25	15	13

Kryterium Hurwicza

- Gotowość do podjęcia ryzyka wyraża tzw. współczynnik ostrożności.
- Postępowanie:
 - Ustala się arbitralnie tzw. współczynnik ostrożności γ (0 $\leq \gamma \leq$ 1)
 - Dla każdej strategii i gracza stosujemy wzór:

$$v_i = \gamma \min_j a_{ij} + (1 - \gamma) \max_j a_{ij}$$

- Ostatecznie wybieramy strategię, dla której v_i ma największą wartość.
- Dla γ = 1 Kryterium Hurwicza jest tożsame z kryterium Walda.

Kryterium Hurwicza $\gamma = 0.4$

Rolnik ma wybrać jeden z 3 możliwych terminów siewu (1.03, 10.03 lub 15.03). Plony z hektara w zależności od przyszłego możliwego stanu pogody A, B, C i D oraz terminu siewu podaje tablica:

Terminy siewu	Α	В	С	D	
1.03	21	15	32	16	25,2
10.03	28	20	10	20	20,8
15.03	13	27	25	15	21,4

Kryterium Savage'a

- Spełnia postulat minimalizacji oczekiwanych strat wynikłych z podjęcia decyzji gorszej niż najlepsza możliwa dla danego stanu natury
- Postępowanie:
 - Wyznacza się macierz strat relatywnych: Strata jest różnicą między największą możliwą wygraną dla danego stanu natury i wygraną odpowiadającą decyzji gracza.
 - Dla każdej strategii znajduje się maksymalną stratę i wybiera się strategię odpowiadającą najmniejszej z nich.

Kryterium Savage'a

Macierz gry

Terminy siewu	Α	В	С	D
1.03	21	15	32	16
10.03	28	20	10	20
15.03	13	27	25	15

Macierz strat

Terminy siewu	А	В	С	D	
1.03	7	12	0	4	12
10.03	0	7	22	0	22
15.03	15	0	7	5	15

Kryterium Bayesa

- Uwzględnia prawdopodobieństwo wystąpienia każdego stanu natury.
- Postępowanie:
 - Ustala się wartość oczekiwaną wygranej dla każdego stanu natury.
 - Wybiera się strategię, dla której oczekiwana wartość gry jest największa.
- Najczęściej zakłada się równe prawdopodobieństwo wystąpienia wszystkich stanów.

Kryterium Bayesa –

równe prawdopodobieństwo stanów natury

Rolnik ma wybrać jeden z 3 możliwych terminów siewu (1.03, 10.03 lub 15.03). Plony z hektara w zależności od przyszłego możliwego stanu pogody A, B, C i D oraz terminu siewu podaje tablica:

Terminy siewu	Α	В	С	D	
1.03	21	15	32	16	21
10.03	28	20	10	20	19,5
15.03	13	27	25	15	20