Prof. Rocco Zaccagnino 2022/2023

Dovendo provare proprietà di oggetti definiti ricorsivamente può essere utile la **induzione strutturale**

Sia **A** = un insieme di elementi definiti ricorsivamente

P = proprietà avente come oggetto gli elementi di A

si vuole provare che

 $\forall x \in A P(x)$

A = un insieme di elementi definiti ricorsivamente

P = proprietà avente come oggetto gli elementi di A

si vuole provare che

 $\forall x \in A P(x)$

con l'induzione strutturale basta provare che:

Base: Mostrare che l'enunciato \mathbf{P} è vero per tutti gli elementi nell' insieme specificati dal passo Base della definizione ricorsiva di \mathbf{A} .

Passo ricorsivo: Mostrare che

- se l'enunciato **P** è vero per ciascuno degli elementi già in **A**, cioè gli elementi usati per costruire nuovi elementi nel *Passo Ricorsivo* della definizione di **A**, allora
- l'enunciato P è vero per questi nuovi elementi.

Esempio: Sia A l'insieme costituito dagli elementi definiti ricorsivamente come segue:

Passo base: $1 \in A$

Passo ricorsivo: se $x \in A$ allora $x + 2 \in A$

Provare che A è costituito dagli interi dispari positivi

Dim.

Sia D l'insieme di tutti gli interi dispari positivi cioè

$$D=\{y\in Z+\mid \exists k \ (k\geq o \land y=2k+1)\}$$

Dobbiamo provare che D = A

Proveremo quindi che $D \subseteq A$ e $A \subseteq D$

Esempio: Sia A l'insieme costituito dagli elementi definiti ricorsivamente come segue:

Passo base: 1 ∈ A

Passo ricorsivo: se $x \in A$ allora $x + 2 \in A$

Provare che A è costituito dagli interi dispari positivi

Dim. Proviamo prima che D⊆A

Procediamo usando l'induzione matematica P(k): $2k+1 \in A \quad \forall k \ge 0$

Base: proviamo che P(0) è vera $2*0+1=1 \in A$

Esempio: Sia A l'insieme costituito dagli elementi definiti ricorsivamente come segue:

Passo base: 1 ∈ A

Passo ricorsivo: se $x \in A$ allora $x + 2 \in A$

Provare che A è costituito dagli interi dispari positivi

Dim. Proviamo prima che $D \subseteq A$

Procediamo usando l'induzione matematica P(k): $2k+1 \in A \quad \forall k \ge 0$

Ipotesi induttiva: assumiamo che **P(k)** è vera per k≥o

Passo di induzione: proviamo che P(k+1) è vera $2*(k+1) + 1 = 2*k + 2 + 1 = (2k+1) + 2 \in A$

Esempio: Sia A l'insieme costituito dagli elementi definiti ricorsivamente come segue:

Passo base: $1 \in A$

Passo ricorsivo: se $x \in A$ allora $x + 2 \in A$

Provare che A è costituito dagli interi dispari positivi

Dim. Ora proviamo che $A \subseteq D$

Procediamo usando l'induzione strutturale

$$P(x)$$
: $x = 2k+1$ per qualche intero $k \ge 0$ $\forall x \in A$

Usiamo la definizione ricorsiva di A

Base: Da passo base della definizione ricorsiva sappiamo che $1 \in A$, poichè 1 = 2*0 + 1 => P(1) è vera => $1 \in D$

Esempio: Sia A l'insieme costituito dagli elementi definiti ricorsivamente come segue:

Passo base: $1 \in A$

Passo ricorsivo: se $x \in A$ allora $x + 2 \in A$

Provare che A è costituito dagli interi dispari positivi

Dim. Ora proviamo che $A \subseteq D$

Procediamo usando l'induzione strutturale P(x): x = 2k+1 per qualche intero $k \ge 0$ $\forall x \in A$

Passo di ricorsione: usiamo la seconda parte della def. ricorsiva di A, e sia un $x+2 \in A$

- assumiamo che P(x) è vera
- proviamo che P(x+2) è vera

x=2k+1 per qualche intero k≥o

$$X+2 = 2k+1+2 = 2(k+1)+1 \in D$$

Esempio: Sia A un insieme definito nel modo seguente:

Passo base: $3 \in A$

Passo ricorsivo: se $x \in A$ e $y \in A$ allora $x+y \in A$

Provare che A è costituito dagli interi positivi multipli di 3

Dim.

Sia M l'insieme di tutti i multipli di 3, cioè

 $M=\{ y \in Z+ \mid \exists k \ (k \in Z+ \land y=3k) \}$

Dobbiamo provare che $\mathbf{M} = \mathbf{A}$

Proveremo quindi che $M \subseteq A$ e $A \subseteq M$

Esempio: Sia A un insieme definito nel modo seguente:

Passo base: 3 ∈ A

Passo ricorsivo: se $x \in A$ e $y \in A$ allora $x+y \in A$

Provare che A è costituito da tutti gli interi multipli di 3

Dim. Proviamo prima che $M \subseteq A$

Procediamo usando l'induzione matematica P(k): $3k \in A \forall k \ge 1$

Base: proviamo che P(1) è vera

$$3*1=3 \in A$$

Esempio: Sia A un insieme definito nel modo seguente:

Passo base: 3 ∈ A

Passo ricorsivo: se $x \in A$ e $y \in A$ allora $x+y \in A$

Provare che A è costituito da tutti gli interi multipli di 3

Dim. Proviamo prima che $M \subseteq A$

Procediamo usando l'induzione matematica P(k): $3k \in A \forall k \ge 1$

Ipotesi induttiva: assumiamo che P(k) è vera

Passo di induzione: proviamo che P(k+1) è vera

$$3 * (k+1) = 3 * k + 3 \in A$$

Esempio: Sia A un insieme definito nel modo seguente:

Passo base: 3 ∈ A

Passo ricorsivo: se $x \in A$ e $y \in A$ allora $x+y \in A$

Provare che S è costituito da tutti gli interi multipli di 3

Dim. Ora proviamo che $A \subseteq M$

Procediamo per induzione strutturale P(x): x = 3k per qualche intero $k \ge 1$ $\forall x \in A$

Usiamo la definizione ricorsiva di A

Base: Dalla base della definizione ricorsiva sappiamo che 3∈A, poichè

$$3 = 3*1 => P(3) e vera$$

Esempio: Sia A un insieme definito nel modo seguente:

Passo base: $3 \in A$

Passo ricorsivo: se $x \in A$ e $y \in A$ allora $x+y \in A$

Provare che A è costituito da tutti gli interi multipli di 3

Dim. Ora proviamo che $A \subseteq M$

Passo di ricorsione: usiamo la seconda parte della definizione ricorsiva di A, e consideriamo un $x+y \in A$

- assumiamo che P(x) e P(y) è vera
- proviamo che P(x+y) è vera

x=3k e y= 3h per qualche intero k≥1 e h≥1

$$x+y = 3k + 3h = 3 (h+k) \in M$$

Def (parola):

Passo base: λ ∈ Σ *

Passo ricorsivo: Se $w \in \Sigma^*$ e $x \in \Sigma$ allora $wx \in \Sigma^*$

Def (lunghezza di una parola):

Passo base: $I(\lambda) = 0$

Passo ricorsivo: Se $w \in \Sigma^*$ e $x \in \Sigma$ allora I(wx) = I(w) + 1

Esempio: Siano u e w due stringhe appartenenti a Σ^* .

Provare che
$$I(u|w) = I(u) + I(w)$$

Dim.

Dobbiamo provare che $\forall w \in \Sigma^* P(w)$

dove

P(w): I(u w) = I(u) + I(w) per ogni $u \in \Sigma^*$

Esempio: Siano u e w due stringhe appartenenti a Σ^* .

Provare che
$$I(u|w) = I(u) + I(w)$$

Dim.

P(w): I(u w) = I(u) + I(w) per ogni $u \in \Sigma^*$

Base: dobbiamo mostrare che $P(\lambda)$ è vera

$$I(\upsilon \lambda) = I(\upsilon) = I(\upsilon) + o = I(\upsilon) + I(\lambda)$$

Passo di ricorsione: assumiamo che P(w) sia vera

proviamo che P(wx) è vera per ogni $x \in \Sigma$

$$I(u wx) = I(u w) + 1 = I(u) + I(w) + 1 = I(u) + I(wx)$$