CS6320, Spring 2018 Dr. Mithun Balakrishna Homework 2

Due Wednesday, February 21st, 2018 11:59pm

B. Problems:

1. Regular Expression (20 points)

Write a single regular expression for identifying social security numbers in text. The social security numbers consists of:

- 9 digits
- must be preceded by one or more spaces or beginning of line
- must be followed by one or more spaces or end of line In addition there are certain restrictions:
- first three digits cannot be all zeros
- last four digits cannot be all zeros
- nine digits can all be next to each other or there can be a hyphen between: o

third and fourth digit, and \circ

fifth and sixth digit

The following are well formed social security numbers: 123456789, 001-00-7089. The following are ill-formed social security numbers: 000-23-4567, 123-45-0000, 001-007089, 00100-7089.

There is no valid social security number on the following line: 12345678910 is a big number, 345-678-910 is a lotto number and 3333333334 is a 10 digit number.

 $ANS.: \\ |b((?!000)|d\{3\}-|d\{2\}-(?!0000)|d\{4\})|b|\\ |b((?!000)|d\{3\}|d\{2\}(?!0000)|d\{4\})|b|$

2. Bigram Probabilities (40 points):

An automatic speech recognition system has provided a written sentence as the possible interpretation to a speech input.

Compute the probability of a written sentence using the bigram language model trained on *HW2_F17_NLP6320-NLPCorpusTreebank2Parts-CorpusA.txt* (provided as Addendum to this homework on eLearning).

Note: Please use whitespace (i.e. space, tab, and newline) to tokenize the corpus into words/tokens that are required for the bigram model. Do NOT perform any type of word/token normalization (i.e. stem, lemmatize, lowercase, etc.). Creation and matching of bigrams should be exact and case-sensitive. Do NOT split the corpus into sentences. Please consider the entire corpus as a single string for tokenization and computation of bigrams.

Compute the sentence probability under the three following scenarios:

- i. Use the bigram model without smoothing.
- ii. Use the bigram model with add-one smoothing

iii. Use the bigram model with Good-Turing discounting.

Your computer program should do the following:

- 1. Compute the bigram counts on the given corpus (HW2_F17_NLP6320NLPCorpusTreebank2Parts-CorpusA.txt).
- 2. For a given input written sentence:
 - a. For each of the three scenarios, construct a table with the bigram counts for the sentence.
 - b. For each of the three scenarios, construct a table with the bigram probabilities for the sentence.
 - c. For each of the three scenarios, compute the total probability for the sentence.

ANS:

Please see the attached zip file named problem2 Some Screenshots on the OUTPUT:

BIGRAM WITHOUT SMOOTHING

ii. ADD ONE SMOOTHING

iii. GOOD-TURING DISCOUNTING

3. Transformation Based POS Tagging (40 points)

For this question, you have been given a POS-tagged training file, HW2_F17_NLP6320_POSTaggedTrainingSet.txt (provided as Addendum to this homework on eLearning), that has been tagged with POS tags from the Penn Treebank POS tagset (Figure 1).

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	440	left quote	or "
POS	possessive ending	's	,,	right quote	, or ,,
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	. ! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off			

Figure 1. Penn Treebank POS tagset

Use the POS tagged file to perform:

- a. Transformation-based POS Tagging: Implement Brill's transformation-based POS tagging algorithm using ONLY the previous word's tag to create transformation rules.
- b. Naïve Bayesian Classification (Bigram) based POS Tagging:

$$\hat{t}_1^n = \underset{t_1^n}{\operatorname{argmax}} P(t_1^n | w_1^n) \approx \underset{t_1^n}{\operatorname{argmax}} \prod_{i=1}^n P(w_i | t_i) P(t_i | t_{i-1})$$

c. Apply model (a) and (b) on the sentence below, and show the difference in error rates.

Sentence: The president wants to control the board 's control

Manual POS Tagged Sentence: *The_*DT *president_*NN *wants_*VBZ *to_*TO *control_*VB *the_*DT *board_*NN 's_POS *control_*NN

ANS: Please see Problem3.zip Screenshot of OUTPUT-

Brills Rules

Dillis Kules						
Brills_Rules.txt - N	lotepad			-	. 🗆	×
File Edit Format	View Help					
PREVIOUS WORD	FROM	то	SCORE			^
MD	VBP	VB	54			
MD	NN	VB	45			
VBZ	VBD	VBN	38			
PRP	VBN	VBD	35			
PRP	VB	VBP	32			
NNP	VBN	VBD	31			
PRP	POS	VBZ	31			
NNS	VB	VBP	30			
TO	VBP	VB	28			
TO	NN	VB	27			
VB	VBD	VBN	22			
VBD	VBD	VBN	17			
VBP	VBD	VBN	17			
DT	VB	NN	17			
VBN	VBZ	NNS	12			
						~
<						> .:

Brills output

Naïve Byes Tags

Naïve bayes Output

```
naive-bayes-output.txt - Notepad
File Edit Format View Help
Word
           Naive Bayes Tag
             DT
president
                     VBZ
wants
                     TO
to
control
                     NN
                      DT
board
                      POS
                      NN
control
Naive Bayes Tag Error Rate: 0.1111111111111111
```

Command Line output:

```
GENERATING RULES......

Please wait it will takes 5 min to generate rules!!!

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 5

Rule 6

Rule 7
```