

Academic Year 2023-2024 (ODD Semester)

USN: FRYZZA IOO 7

Department of Artificial Intelligence and Machine Learning

Course Code: AI234AI

Sem: III Semester

Duration: 90 Minutes

Date: March 2024

Maximum Marks: 50

$\begin{array}{c} \text{CIE-III} \\ \text{Foundation of Cyber-Physical Systems} \end{array}$

SL	. No	Questions	M	BT	CO
1	a)	Discuss the primary design consideration of Traditional Sensor networks and Wireless Sensor Networks (WSN).	5	2	1
	b)	Illustrate OODA Architecture with an example.	5	3	3
2	a)	Summarise the Sensor Performance Metrics.	5	2	2
	b)	Illustrate the IP based sensor Networks.	5	3	3
3	a)	Discuss Ubiquitous Sensor Networks.	5	2	3
	b)	What is an Actuator? Discuss the Characteristics of Actuators.	5	2	2
4	a)	Describe Typical Underwater Sensor System Architecture in detail.	5	2	3
	b)	Summarize the different types of Actuators.	5	2	2
5	a)	With an example discuss the different types of sensors in CPS.	10	2	2

Cours	se Outcome								
CO1	Understand and apply the knowledge of engineering specialization to address the complex								
	engineering problems								
CO2	Analyze the various Cyber-Physical components used in solving the real-world problem								
CO3	Design solution for complex engineering problem using Cyber Physical Systems								
CO4	Communicate effectively and collaborate in group to carryout Cyber Physical System activities								
CO5	Demonstrate design skills to solve inter-disciplinary problems using modern tools effectively by								
	exhibiting teamwork through oral presentation and written reports.								

M-Marks, BT-Blooms Taxonomy Levels, CO-Course Outcomes

Manka	Particulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
Marks Distribution	Max Marks	5	20	20	-	-	40	10	-	, -	-