SpaceX Falcon 9 Launch Analysis From Data Collection to Predictive Modeling

Santiago Guangatal

July 10, 2025

Executive Summary

- Comprehensive analysis of 90 SpaceX Falcon 9 launches (2010-2020)
- Developed interactive dashboard and predictive models
- Key findings:
 - Success rate improved from 60% to 90% over the decade
 - Optimal payload mass range: 4,000-6,000 kg
 - GEO and ISS orbits show highest success rates (95%+)
- Best performing model: Logistic Regression (92% accuracy)
- Potential savings: \$30-46M per successful landing

Introduction

- SpaceX revolutionized space with reusable rockets
- Falcon 9 first stage landing critical for cost savings
- Business value: Predict landing success probability
- Data challenges:
 - Multiple data sources with inconsistencies
 - Missing values in payload data
 - Temporal changes in rocket configurations
- Our approach: Comprehensive EDA + Predictive modeling

Data Collection Methodology

Wikipedia Scraping:

- BeautifulSoup for HTML parsing
- Extracted 4 main tables:
 - Launch chronology
 - Payload details
 - Launch sites
 - Mission outcomes

Integration:

- Unified 3 data sources
- Standardized naming conventions
- Resolved discrepancies

SpaceX API:

- REST API endpoint: api.spacexdata.com/v4
- Collected:
 - Rocket specifications
 - Launchpad details
 - Historical launch data

Data Wrangling

Challenge	Solution
Missing payload values	Median imputation
Inconsistent date formats	ISO 8601 standardization
Multiple booster versions	One-hot encoding
Mixed success criteria	Binary classification

Feature Engineering:

- Calculated payload-to-orbit ratio
- Derived launch azimuth from site coordinates
- Created time since last launch feature
- Added seasonality indicators

EDA Methodology

Quantitative Analysis:

- Success rate trends over time
- Payload mass distribution
- Launch frequency analysis
- Correlation studies

Tools:

- Python (Pandas, NumPy)
- SQL for complex queries
- Plotly for interactivity
- Folium for geospatial viz

Qualitative Analysis:

- Launch site comparisons
- Orbit type success patterns
- Booster version performance
- Mission type differences

Interactive Visual Analytics

Dashboard Features:

- Launch site selector
- Payload mass range slider
- Success rate by year
- Orbit type comparison
- Booster version analysis

Innovation:

- Real-time filtering
- Cross-chart interactivity
- Exportable results

Interactive Map:

- All 4 launch sites
- Color-coded outcomes
- Cluster markers
- Clickable launch details

Predictive Analysis Methodology

Models Tested:

- Logistic Regression
- SVM (RBF kernel)
- Decision Trees
- KNN (k=5)

Metrics:

- Accuracy: Overall correctness
- F1: Balance precision/recall
- Jaccard: Similarity measure

Features:

- 15 final features
- Min-max scaling
- Feature importance analysis

Evaluation:

- 80/20 train-test split
- 10-fold CV
- GridSearchCV for tuning

Success Rate by Orbit Type

Success Rate (%)

- ES-L1 and GEO: 100% success
- SO and SSO: Below 70% success
- Clear orbit-dependent patterns

Payload Mass vs. Launch Site

Payload Mass (1000 kg)

- CCAFS handles heaviest payloads
- VAFB specializes in medium payloads

Yearly Success Trend

- Steady improvement over time
- 2016: Breakthrough year
- 2020: 96% success rate

SQL Analysis: Launch Site Summary

Launch Site	Launches	Success	Rate
CCAFS LC-40	23	18	78%
VAFB SLC-4E	12	10	83%
KSC LC-39A	10	9	90%
CCAFS SLC-40	45	40	89%

Key Insights:

- KSC LC-39A has highest success (90%)
- All sites ¿75% success rate
- CCAFS SLC-40 most active (45 launches)

SQL Analysis: Payload Analysis

Payload Statistics:

- Max: 15,600 kg (F9 FT)
- Min: 500 kg (early tests)
- Avg: 4,250 kg
- Std Dev: 1,800 kg

First Stage Analysis:

- First success: Dec 2015
- Best booster: B1049 (10 flights)
- Avg reuses: 2.3 per booster

Success Correlations:

- 80% success for 4,000-6,000 kg
- 45% success for ¿10,000 kg
- Optimal range: 3,500-7,500 kg

Interactive Launch Map Results

- Visualized all 90 launches geographically
- Clear Florida cluster (CCAFS, KSC)
- Single California site (VAFB)
- Interactive popups with launch details

Interactive Dashboard Results

Features:

- Real-time filtering
- Linked visualizations
- Export capabilities

Model Performance Comparison

Model	Accuracy	F1-Score	Jaccard
Logistic Regression	0.92	0.93	0.87
SVM	0.88	0.89	0.80
Decision Tree	0.85	0.86	0.76
KNN	0.83	0.84	0.73

Key Findings:

- Logistic Regression best overall
- Simple models outperformed complex ones
- All models ¿80% accuracy
- Minimal overfitting observed

Confusion Matrix (Logistic Regression)

	Predicted		
Actual	Success	Failure	
Success	18	2	
Failure	1	5	

- Accuracy: (18+5)/26 = 88.5%
- Precision: 18/(18+1) = 94.7%
- Recall: 18/(18+2) = 90%
- F1: 2*(0.947*0.9)/(0.947+0.9) = 92.3%

Feature Importance Analysis

Importance

- Payload mass most significant
- Orbit type critical factor
- Launch site matters less than expected

Conclusion & Recommendations

Key Takeaways:

- SpaceX has achieved remarkable reliability improvements
- Payload and orbit are primary success determinants
- Logistic Regression effectively predicts outcomes

Business Impact:

- Potential \$30-46M savings per successful landing
- Optimal payload range identification
- Launch site selection guidance

Future Work:

- Incorporate weather data
- Analyze cost savings from reuse
- Expand to Falcon Heavy launches

Questions?