

UML – Unified Modeling Language

Prof^o Ms Gustavo Molina

UML -

Linguagem de Modelagem Unificada

- Principais autores do processo: Grady Booch, James Rumbaugh, Ivar Jacobson
- Chamados os 3 amigos
- Aproveitar o melhor das caracterísiticas das notações preexistentes
- Notação da UML é uma união das diversas notações prexistentes com alguns elementos removidos e outros adicionados com o objetivo de torna-la mais expressiva.

UML -

Linguagem de Modelagem Unificada

UML

- é uma linguagem visual para modelar sistemas Orientados a Objetos
- Define elementos gráficos que podem ser utilizados na modelagem de sistemas
- Através dos elementos definidos na linguagem podem-se construir diagramas para representar diferentes perspectivas de um sistema
- Cada elemento gráfico possui uma
 - Sintaxe: forma predeterminada de denehar o elemento
 - Semântica: O que significa o elemento e com que objetivo deve ser usado
- A sintaxe e a semântica são extensíveis

UML –

Linguagem de Modelagem Unificada

- UML
 - É independente de linguagens de programação e de processo de desenvolvimento
 - Definição completa:
 - www.uml.org
 - Especificação de leitura complexa voltada a pesquisadores ou desenvolvedores de ferramentas de suporte

UML -

Linguagem de Modelagem Unificada

- Visões de um sistema
 - Um sistema complexo pode ser examinado a partir de diversas perspectivas.
 - Autores da UML definem 5 visões:
 - Visão de Casos de uso: Visão externa do sistema que define a interação entre o sistema e agentes externos.
 - Visão de Projeto: Caracterísiticas estruturais e comportamentais do sistema.
 - Visão de Implementação: gerenciamento de versões construídas pelo agrupamento de módulos e subsistemas.
 - Visão de Implantação: Distribuição física do sistema.
 - Visão de Processo: Caracterísiticas de concorrência, sincronização e desempenho do sistema.

UML -

Linguagem de Modelagem Unificada

Diagramas:

- Os documentos gerados em um processo de desenvoleimento são chamados de artefatos na UML
- Os artefatos compõe as visões do sistema
- A UML define 13 diagramas
- Esta quantidade de diagramas é justificada pela necessidade de analisar o sistema por meio de diferentes perspectivas
- Cada diagrama fornece uma perspectiva parcial do sistema.

UML – Mecanismos gerais

Estereótipos Gráficos

Estereótipos Textuais

```
<<document>> <<interface>> <<entity>>
```

```
<<satisfaz>> <<realiza>>
```

- Classes
 - Representada por uma caixa com 3 compartimentos no máximo:

Nome da classe

Nome da classe

Lista de atributos

Nome da classe

Lista de operações

Nome da classe

Lista de atributos

Lista de operações

 O grau de abstração determina quando usar uma notação

- Classes
 - Exemplo:

ContaBancaria

ContaBancaria

numero saldo dataAbertura ContaBancaria

criar() bloquear() desbloquear creditar() ContaBancaria

numero saldo dataAbertura

criar()
bloquear()
desbloquear
creditar()

ContaBancaria

-numero:String

-saldo:Quantia

-dataAbertura: Date

+criar()

+bloquear()

+desbloquear (in Valor: Quantia)

+creditar(in Valor: Quantia)

- Classes
 - Os atributos correspondem à descrição dos dados armazenados pelos objetos de uma classe.
 - Cada objeto tem os seus próprios valores
 - As operações correspondem a descrição das ações que os objetos de uma classe sabem realizar.
 - Objetos de uma classe compartilham as mesmas operações

- Associações
 - Objetos podem se relacionar com outros, possibilitando a troca de mensagens entre eles.
 - O relacionamento entre objetos são representados no diagrama de classes por uma Associação.
 - Uma Associação é representada por uma linha ligando as classes.
 - Ex: Um cliente compra produtos

Cliente Pedido

- Relacionamentos
 - Associação
 - Agregação e Composição
 - Generalização e Especialização

- Associações
 - Características das associações:
 - Multiplicidade
 - Nome
 - Direção de leitura
 - Papéis
 - Tipo de participação
 - Conectividade

Multiplicidade:

 Representa as informações dos limites inferior e superior da quantidade de objetos aos quais outro objeto pode estar associado.

Nome	Simbologia	
Apenas Um	1 (ou 11)	
Zero ou Muitos	0* (ou *)	
Um ou Muitos	1*	
Zero ou Um	01	
Intervalo específico	1i1s	

Multiplicidade:

- Pode haver algum objeto da classe Cliente que está associado a vários objetos da classe Pedido (representado por * do 0..*)
- Pode haver algum objeto da classe Cliente que NÃO está associado a classe Pedido (representado por 0 do 0..*)
- Objetos da classe pedido está associado a UM e somente um objeto da classe Cliente

Cliente José tem os pedidos 1, 2 e 3 Cliente Ana tem os pedidos 4 e 5 Cliente Maria não tem pedidos O pedido 1 está associado somente a José

Multiplicidade:

- O velocista pode participar de várias corridas (*) ou não participar de nenhuma (0)
- Em uma corrida deve haver no mínimo DOIS velocistas e no máximo SEIS velocistas
- Uma lista de intervalos também pode ser especificada na multiplicidade de uma associação. Ex: [1,3,5..9,11]
- Os valores especificados em uma multiplicidade devem sempre estar em ordem crescente.

Multiplicidade:

 As associações podem ser agrupadas em 3 tipos. Estes tipos são denominados Conectividade:

Conectividade	Multiplicidade de um extremo	Multiplicidade do outro extremo
Um para Um	01 ou 1	01 ou 1
Um para Muitos	01 ou 1	* ou 1 * ou 0 *
Muitos para Muitos	* ou 1 * ou 0 *	* ou 1 * ou 0 *

- Participações
 - Necessidade ou não da existência dessa associação entre objetos.
 - Obrigatória:
 - Se o valor mínimo da multiplicidade é igual a Um
 - Opcional
 - Se o valor mínimo puder ser Zero

Para objetos da classe pedido a participação é **obrigatória**: Um objeto da classe Pedido só existe se estiver associado a classe Cliente.

- Nome da associação, direção de leitura e papéis
 - Servem para esclarecer melhor o significado de uma associação
 - Só usar quando o significado de uma associação não for clara.
 Evitar usar em associações claras ou óbvias.

 Uma organização (faz o papel de contratante) contrata indivíduos (faz o papel de contratado)

- Nome da associação, direção de leitura e papéis
 - Podemos representar mais de uma associação entre objetos

 Uma organização precisa saber quem são os empregados e quem é o gerente

- Classes Associativas
 - Classes ligadas a associações em vez de estar ligada a outras classes.
 - Necessário quando se quer manter informações sobre a associação de duas ou mais classes.
 - Pode estar ligada associação de qualquer conectividade.
 - Pode ser substituída por uma classe com associação para as outras duas classes.

- Associações reflexivas (auto-associação)
 - Associa objetos da mesma classe
 - Cada objeto tem um papel distinto na associação
 - O uso de papeis é importante neste caso

- Generalizações e Especializações
 - Usa-se vários termos: SuperClasse e SubClasse, Supertipo e SubTipo, Classe Base e Classe Herdeira.
 - Representa o conceito de Herança.
 - Não somente atributos e operações são herdados, mas as associações também.
 - Notação:

- Generalizações e Especializações
 - Classes Abstratas:
 - É usada para organizar a hierarquia de classes.
 - Não geram objetos diretamente
 - Muito utilizada nas Classes de Projetos
 - Notação: O nome é definido em Itálico

- Herança X Associação
 - O relacionamento de herança acontece entre classes
 - Os relacionamentos de Associação, Agregação / Composição e Associação ocorre entre as instâncias das classes (os objetos).
- Propriedades de relacionamentos de herança
 - Transitividade
 - Se A é uma generalização de B e B é uma generalização de C, então C herda características de B e A.
 - Assimetria
 - Se A é uma generalização de B, B não pode ser uma generalização de A
- Deve-se evitar hierarquias muito profundas, com mais de 3 níveis, pois dificulta a leitura.