ISÉN Lille 25 octobre 2012

Consignes

- Cette épreuve de 2h comporte 6 questions équipondérées (ainsi que 2 rubans de Möbius).
- L'usage de la calculatrice est vivement déconseillé.
- Rédigez clairement, explicitez vos raisonnements... et surtout amusez-vous bien!
- 1. Calculer l'aire du triangle \mathcal{T} de sommets A=(1,0,-1), B=(2,3,0) et C=(-1,1,2).
- 2. Décrire aussi précisément que possible les intersections de la surface

$$W = \{ (x, y, z) \in \mathbf{R}^3 \mid x^2 z = y^2 \},$$

appelée parapluie de Whitney, avec des plans parallèles aux plans de coordonnées.

3. Soit (a_n) la suite de nombres réels définie par

$$a_0 = 0$$
, $a_1 = 1$, puis $a_{n+2} = 3a_{n+1} - 2a_n + 2 + 6 \cdot (-1)^n$ pour $n \ge 0$.

Donner une formule explicite pour a_n .

4. Considérons la variante du problème des tours de Hanoï à 3 poteaux dans laquelle les seuls mouvements possibles sont du 1^{er} au 2^e poteau, du 2^e au 3^e et du 3^e au 1^{er}.

Établir une récurrence linéaire d'ordre 2 satisfaite par le nombre minimal de mouvements nécessaires pour déplacer une tour de n disques de tailles différentes du 1^{er} au 3^e poteau (ou du 2^e au 1^{er} , ou du 3^e au 2^e ...) et en déduire une formule explicite pour celui-ci.

- 5. Évaluer $\int_1^e \frac{e^{3t} e^t}{e^{4t} 1} dt.$
- 6. Calculer, pour tout entier $n \in \mathbb{N}$, la valeur de

$$G(n) = \lim_{R \to \infty} \underbrace{\int_0^R e^{-t} t^n dt}_{G_R(n)}.$$

[Indication : intégrer par parties pour obtenir une relation entre $G_R(n)$ et $G_R(n-1)$]