

### Discussion: First Consultation

• UML

• What to discuss?

• Interactions during consultation



# Lecture 11: Quantitative Model Checking



# So far we only answered Yes/No questions

- There is need for quantitative verification
  - Quantify uncertainty
    - How often does bad events happen?
  - Quantify performance
    - What's the minimum battery consumption?
- There are tools available to evaluate
  - Probability
  - Cost/reward



### **UPPAAL** Tool Family

- UPPAAL CORA
  - Cost Optimal Reachability Analysis
- UPPAAL SMC
  - Statistical Model Checking
- UPPAAL TIGA
  - Controller Synthesis



# UPPAAL CORA: Cost Optimal Reachability

Analysis

- Linearly priced timed automata (LPTA)
- Add cost/reward to each location
- Calculates the path with minimum cost

Parameters: const int E, const int T, const int L, const int e, const int I, const int d, const int type

land[1]?

c[1] = 0

c[0] >=wait[0][1] &&

land[1]?

c[1] = 0

c[1] >= wait[1][1]

land[0] ?

c[0] = 0

c[0]>=wait[0][0] &&

c[1] >= wait[1][0]

land[0] ?

c[0] = 0

• Can be used to model power consumption, etc



E earliest landing time

T target (cruise) landing time

L latest landing time

e early cost rate

l late cost rate

d late penalty





### UPPAAL SMC

- Statistical Model Checking (SMC)
  - Non-exhaustive evaluation of the model's state space
  - Through statistical simulations within certain time bound
- Statistical Timed Automata
  - Resolve non-determinism with stochastic behaviors
  - Based on Monte Carlo Simulation



#### Monte Carlo Simulation

Suppose you timed 20 athletes running the 50m dash and tallied the information into the four time intervals below.

You then count the tallies and make a frequency distribution.

Then convert the frequencies into percentages.

Finally, use the percentages to develop the random number intervals.

| Seconds   | <u>Tallies</u> | Frequency           | <u>%</u>     | RN Intervals |
|-----------|----------------|---------------------|--------------|--------------|
| 0-5.99    |                | 4                   | 20           | 01-20        |
| 6-6.99    | MM             | 10                  | 50           | 21-70        |
| 7-7.99    |                | 4                   | 20           | 71-90        |
| 8 or more | 1              | CS132: Software Eng | gineering 10 | 91-100       |



### Monte Carlo Simulation: NBA Draft

- 14 ping pong balls numbered 1 through 14 are placed in a drum.
  - $-C_{14}^4=1,001$
- Prior to the Lottery, 1,000 combinations are assigned to the Lottery teams based on their order of finish during the regular season.
  - The worst team has 250 combinations (25% chance for No.1 pick)
- 4 balls are drawn from the drum with a combination
- The team that has been assigned that combination will receive the number one pick.
- The four balls are placed back in the drum and the process is repeated to determine the number two and three picks.





## **UPPAAL SMC:** New Syntax

- Probabilistic transition
  - Resolves nondeterminism
  - i.e. ½ chance going up, ¾ chance going down



- "How eager you want to exit the state"







| 면 Edit    | Location     |        |     | $\times$ |
|-----------|--------------|--------|-----|----------|
| Location  | Comments     | Test C | ode |          |
| Name:     |              |        |     |          |
| Invariant | :            |        |     |          |
|           |              |        |     |          |
|           |              |        |     |          |
|           |              |        |     |          |
|           |              |        |     |          |
| Rate of E | exponential: |        |     |          |
| Rate of E | exponential: |        |     |          |
| Rate of E | exponential: |        |     |          |
| Rate of E |              |        |     |          |
|           | ıl           |        |     |          |
| ✓ Initia  | ıı<br>ınt    |        |     |          |
| ☑ Initia  | ıı<br>ınt    |        |     |          |



### **UPPAAL SMC: Semantics**

- The time it takes to reach END
- Uniform distribution
  - Transition out at time 2 and time 3 are equal
- Probabilistic transition
- Exponential distribution













### **UPPAAL SMC New Queries**

- Simulation
  - simulate N [<=bound] { E1,..,Ek }</pre>
- Probability Estimation
  - Pr[ bound ](<> psi)
- Hypothesis Testing
  - $Pr[bound](psi) >= p_0$
- Probability Comparison
  - Pr[bound1](psi1) >= Pr[bound2](psi2)
- Expected min/max for certain expression
  - E[ bound ; N ] (min/max: expr)





### Example: Stochastic Train-Gate

- Train with larger id is more eager to start the approach
- simulate 1 [<=300] { Train(0).Cross, Train(5).Cross, Gate.len}









Message



### Stochastic Parameters

- $\delta$ ,  $\alpha$ ,  $\beta$ : hypothesis testing
- $\varepsilon$ : uncertainty for the output
  - The smaller the range, the more simulations needed
- u0, u1: for probability comparison







## Controller Synthesis

- Synthesize a controller that satisfy the requirement
- Two player game: Controller vs. Environment

• Return the winning strategy for controller



# Toy Example



R1: No collision

R2: No driving on shoulder

R3: No hard braking



#### UPPAAL TIGA







### Naïve Solution

R1: No collision

R2: No driving on shoulder

R3: No hard braking







# Winning Strategy

• Change lane to avoid collision

```
State: ( V_dyn.main V_con.main initial._id4 > v_v=4 lane=1 dist=6 v=0
When you are in (V_dyn.t==1 && V_dyn.t==V_con.t && V_con.t==1), take transition
V_con.main->V_con._id0 { t >= 1, tau, t := 0, lane := 0 }
State: ( V_dyn.main V_con.main initial._id4 > v_v=4 lane=1 dist=2 v=0
When you are in (V_dyn.t-V_con.t==-1 && V_con.t==1), take transition V_con.main-
>V_con._id0 { t >= 1, tau, t := 0, lane := 0 }
```



## Model/Strategy Refinement





#### Reference

- Downland
  - www.uppaal.org
- Tutorials
  - On the same webpage
  - Recommended:
    - UPPAAL 4.0: Small Tutorial.
    - Uppaal SMC Tutorial