Congratulations! You passed!

Next Item

1. In this quiz, you will practice changing from the standard basis to a basis consisting of orthogonal vectors.

1/1 point

Given vectors
$$\mathbf{v}=egin{bmatrix} 5 \\ -1 \end{bmatrix}$$
 , $\mathbf{b_1}=egin{bmatrix} 1 \\ 1 \end{bmatrix}$ and

$$\mathbf{b_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 all written in the standard basis,

what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

$$\mathbf{v_b} = egin{bmatrix} 3 \ 2 \end{bmatrix}$$

$$\mathbf{v_b} = egin{bmatrix} 2 \ 3 \end{bmatrix}$$

Correct

The vector \mathbf{v} is projected onto the two vectors $\mathbf{b_1}$ and $\mathbf{b_2}$.

$$\mathbf{v_b} = egin{bmatrix} -3^{-1} \\ 2 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} -3\\2 \end{bmatrix}$$
 $\mathbf{v_b} = \begin{bmatrix} 3\\-2 \end{bmatrix}$

1/1 point

$$2.$$
 Given vectors $\mathbf{v}=\begin{bmatrix}10\\-5\end{bmatrix}$, $\mathbf{b_1}=\begin{bmatrix}3\\4\end{bmatrix}$ and

$$\mathbf{b_2} = egin{bmatrix} 4 \\ -3 \end{bmatrix}$$
 all written in the standard basis,

what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 11/5 \\ 2/5 \end{bmatrix}$$

Correct

The vector \mathbf{v} is projected onto the two vectors $\mathbf{b_1}$ and $\mathbf{b_2}$.

$$\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 11/5 \end{bmatrix}$$

1/1

Given vectors $\mathbf{v}=egin{bmatrix}2\\2\end{bmatrix}$, $\mathbf{b_1}=egin{bmatrix}-3\\1\end{bmatrix}$ and

 $\mathbf{b_2} = egin{bmatrix} 1 \\ 3 \end{bmatrix}$ all written in the standard basis, what point

is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 4/5 \end{bmatrix}$$

Correct

The vector \mathbf{v} is projected onto the two vectors $\mathbf{b_1}$ and $\mathbf{b_2}$.

$$\mathbf{v_b} = egin{bmatrix} 5/4 \ -5/2 \end{bmatrix}$$

$$\mathbf{v_b} = egin{bmatrix} -2/5 \ 5/4 \end{bmatrix}$$

$$\mathbf{v_b} = egin{bmatrix} 2/5 \ -4/5 \end{bmatrix}$$

4.

1/1 point

Given vectors
$$\mathbf{v}=egin{bmatrix}1\\1\\1\end{bmatrix}$$
 , $\mathbf{b_1}=egin{bmatrix}2\\1\\0\end{bmatrix}$, $\begin{bmatrix}1\\1\end{bmatrix}$

$$\mathbf{b_2}=egin{bmatrix}1\\-2\\-1\end{bmatrix}$$
 and $\mathbf{b_3}=egin{bmatrix}-1\\2\\-5\end{bmatrix}$ all written in the

standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$? You are given that $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$ are all pairwise orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$$

Correct

The vector \mathbf{v} is projected onto the vectors $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$.

$$\mathbf{v_b} = egin{bmatrix} -3/5 \ -1/3 \ 2/15 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$

$$\mathbf{v_b} = egin{bmatrix} -3/5 \ -1/3 \ -2/15 \end{bmatrix}$$

5.

1/1 point

Given vectors
$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{b_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{b_3} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix}$ and $\mathbf{b_4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \end{bmatrix}$ all

written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$ and $\mathbf{b_4}$? You are given that $\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$ and $\mathbf{b_4}$ are all pairwise orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{v_b} = egin{bmatrix} 1 \ 0 \ 1 \ 1 \end{bmatrix}$$

Correct

The vector v is projected onto the vectors b_1, b_2, b_3 and b_4 .

$$\mathbf{v_b} = egin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{v_b} = egin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

