Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Навчально-науковий інститут атомної та теплової енергетики Кафедра інженерії програмного забезпечення в енергетиці

ДОМАШНЯ РОБОТА №2.2

з дисципліни «Математичне моделювання та оптимізація процесів і систем»

тема «Чисельні методи розв'язування СЛАР»

Варіант № 12

Виконала:				
Студентка 3 курсу, групи <u>ТІ-01</u>				
<u> Круть Катерина</u>				
(прізвище ім'я)				

Дата здачі <u>09.04.2023</u>

Завдання:

Знайти з точністю 0,001 розв'язок СЛАР методом Гауса-Зейделя: Для виконання завдання розробити програму на одній з мов програмування.

Варіант 12:

12	39 0 -25 18
----	----------------------

Блок-схема алгоритму:

Код програми:

```
import numpy as np
import pandas as pd
class Seidel:
  def call (self, a, b, x):
     old x = np.copy(x)
     for j in range(b.size):
        temp = b[i] - sum([a[i][i] * x[i] if i != i else 0 for i in range(b.size)])
        x[j] = temp / a[j][j]
     return x, old x - x
class Jakobi:
  def call (self, a, b, x):
     old x = np.copy(x)
     for j in range(b.size):
        temp = b[j] - sum([a[j][i] * old_x[i] if j!= i else 0 for i in range(b.size)])
        x[j] = temp / a[j][j]
     return x, old x - x
def get equation(a, b):
  sole = ""
  for i in range(b.size):
     for i in range(b.size):
        sole += f" \{ str(a[i][j]) \}" + (f"x \{ str(j) \} +" if j > 1 else "x + " if j == 1 else " +") \}
     sole = sole[:-1] + "= " + str(b[i]) + ";\n"
  return sole
def get errors(a, b, x, algorythm, iter, error ):
  errors = np.array([x])
  for i in range(iter):
     x, error = algorythm(a, b, x)
     errors = np.concatenate((errors, np.array([error])), axis=0)
     if max(abs(error)) < error:
        break
  return errors
```

```
class Sole:
  def init (self, algorythm=Seidel(), error=1e-3, iter=100):
     self.algorythm = algorythm
     self.error = error
     self.iter = iter
  def call (self, a, b):
     x = np.random.random(b.size) * 100
     errors = get errors(a, b, x, self.algorythm, self.iter, self.error)
     errors table = pd.DataFrame(errors, columns=["error x" + str(i) for i in
range(b.size)])
     return f''Equation:\n{get equation(a, b)}\n'', f''Errors:<math>\n{errors table}\n'',
f"Result:\n{str(x)}"
A = np.array([
  [12, 0, 0, 3],
  [2, 20, -3, 0],
  [0, 2, 16, -1],
  [4, -2, 0, 24]
B = np.array([18, 39, -25, 0])
result = Sole()
# result = Sole(Jakobi())
for data in result(A, B):
  print(data)
```

Результат виконання програми:

```
runfile('/Users/katiakrut/PycharmProjects/mathModeling/
Equation:
12 + 0x + 0x2 + 3x3 = 18;
2 + 20x + -3x2 + 0x3 = 39;
0 + 2x + 16x2 + -1x3 = -25;
4 + -2x + 0x2 + 24x3 = 0;
Errors:
   error x0 error x1 error x2 error x3
0 88.226276 22.184712 92.720573 26.652398
1 93.389375 5.810316 94.664098 24.427348
2 -6.106837 14.810298 -0.324578 2.251998
3 -0.562999 0.007613 0.139798 0.094468
4 -0.023617 0.023331 0.002988 0.005880
5 -0.001470 0.000595 0.000293 0.000295
6 -0.000074 0.000051 0.000012 0.000017
Result:
[ 1.53189772   1.53250637   -1.76203773   -0.12760742]
```

Перевірка збіжності:

Початкові дані:

X0	X1	X2	Х3		
2	20	-3	0	ΣC1j=	8,5
4	-2	0	24	ΣC2j=	14
0	2	16	-1	ΣC3j= ΣC4j= Max=	0,0625
12	0	0	3	ΣC4j=	4
				Max=	14

Як видно, умові збіжності — незадовільні

Змінений порядок рівнянь:

X0	X1	X2	Х3		
12	0	0	3	ΣC1j=	0,25
2	20	-3	0	ΣC2j=	0,05
0	2	16	-1	ΣC3j=	0,0625
4	-2	0	24	ΣC4j=	0,08333333
				Max=	0,25

Умові збіжності — задовільні

Онлайн калькулятор:

Решение СЛАУ методом Зейделя

Прежде чем применять метод, необходимо переставить строки исходной системы таким образом, чтобы на диагонали стояли наибольшие по модулю коэффициенты матрицы.

12	0	0	3
2	20	-3	0
0	2	16	-1
4	-2	0	24

Приведем к виду:

 $x_1=1.5 - (0.25x_4)$

 $x_2=1.95 - (0.1x_1-0.15x_3)$

 $x_3 = -1.5625 - (0.13x_2 - 0.0625x_4)$

 $x_4=0 - (0.17x_1-0.0833x_2)$

Покажем вычисления на примере нескольких итераций.

N=1

x₁=1.5 - 0*0 - 0*0 - 0*0.25=1.5

x₂=1.95 - 1.5*0.1 - 0*(-0.15) - 0*0=1.8

x₃=-1.5625 - 1.5*0 - 1.8*0.125 - 0*(-0.0625)=-1.7875

x₄=0 - 1.5*0.1667 - 1.8*(-0.0833) - (-1.7875)*0=-0.1

N=2

x₁=1.5 - 1.8*0 - (-1.7875)*0 - (-0.1)*0.25=1.525

x₂=1.95 - 1.525*0.1 - (-1.7875)*(-0.15) - (-0.1)*0=1.5294

 x_3 =-1.5625 - 1.525*0 - 1.5294*0.125 - (-0.1)*(-0.0625)=-1.7599

x₄=0 - 1.525*0.1667 - 1.5294*(-0.0833) - (-1.7599)*0=-0.1267

N=3

x₁=1.5 - 1.5294*0 - (-1.7599)*0 - (-0.1267)*0.25=1.5317

x₂=1.95 - 1.5317*0.1 - (-1.7599)*(-0.15) - (-0.1267)*0=1.5328

x₃=-1.5625 - 1.5317*0 - 1.5328*0.125 - (-0.1267)*(-0.0625)=-1.762

x₄=0 - 1.5317*0.1667 - 1.5328*(-0.0833) - (-1.762)*0=-0.1275

Висновки:

В результаті виконання завдання було запрограмовано алгоритми для розв'язку СЛАР, знайдено з точністю 0,001 розв'язок СЛАР методом Гауса-Зейделя. Було проведено перевірку збіжності та тестування запрограмованих алгоритмів методом порівняння з онлайн-калькулятором, результат тестування показав, що програма працює правильно та видає задовільні результати.