Jonathan Han Test 4 Part 1

The	set	is co	insiste	nt an	d thu	5
	irgume.					
	vr = T					
y ~ T	P1~8	→ ′	PVG	g→p T	(E	
1		1		1		
			to the second second second			

- 2 Part 1 3x -2> 4 3x > 6 x > 2
- a) x>2, x & Z
- b) x = 2, x = 2

Part 2

- a) Less than two of my library books are overdue.
- b) Neither of my two friends misplaced their homework assignments,
- c) Someone expected that to happen.

```
[3] Proof by PMI.
```

Let PCn) be the predicate :

Base case:

We must show that PCI) hold, See that PCI) = 4CI)-3=1 and 2(1)2-1=1. Since both equations equal to 1, our base case holds and PCI) is true.

Inductive step:

We must show that P(K) -> P(K+1), YKEZ+ is true. Assume P(K). Thus P(K) = 2K2-K. We must show that the K+1 element satisfies 2(K+1)2-(K+1), Take a look at P(k+1) = 1+5+4+ ...+ (44-3) + (4(k+1)-3) = 2K2-K+ 4K+4-3 $=2k^2+4K+4-K-3$ = 2112+4K+2+2-K-3 = 2 (K2+2K+1) - K - 1 = 2 (K+1)2 - (K+1)

See that P(K+1) holds and the K+1 element satisfies 2(K+1)2-(K+1). Thus, by the principle of mathematical induction, the original predicate is true for all n in 72t,

[4] Proof by WOP

Let P(n) be the predicate "415-1 for every nonnegative integer n". Now, suppose P(n) is false.

Let \times be a set such that $\times = \{n \in \mathbb{Z}^+ \mid 4 \nmid 5^{n} - 1\}$. See that $\times \neq \phi$ and $\times \leq \mathbb{Z}^+$.

By the well ordering principle, X must contain a least element x^* . See that $x^* \neq 1$ since 5'-1=4 and 4/4. Thus P(1) is true. This means $x^* > 1$ and $x^*-1 > 0$ and $x^*-1 \in \mathbb{Z}^+$. Thus $P(x^*-1)$ is true. This means $4/5^{x^*-1}-1$ or $5^{x^*-1}-1$ or $5^{x^*-1}-1$

Take a look at $P(x^*) = 5^* - 1$ $= 5(5^{x^*-1} - \frac{1}{5})$ $= 5(5^{x^*-1} - 1 + 1 - \frac{1}{5})$ $= 5(4k+1-\frac{1}{5})$ = 20k+5-1 = 20k+4 = 4(5k+1)

See that 5k+1 is an integer since integers have closure under addition and multiplication. By the definition of divisibility, $4/P(x^*)$. Thus, $X = \phi$ and this is a contradiction. And the original statement is true.