Feuille d'exercices 4 : transformations d'automates

A. Déterminisation d'automates sans ϵ -transition

Exercice 1

Quel est le langage reconnu par l'automate ci-dessous? Déterminisez cet automate.

Exercice 2

Quel est le langage reconnu par l'automate ci-dessous? Déterminisez cet automate.

Exercice 3

Pour $L = \{b, ab, ba\}$:

- 3.1. Tracez un automate non déterministe à 3 états reconnaissant le langage L^* . Déterminisez cet automate.
- 3.2. Trouver un automate déterministe minimum reconnaissant le langage L^+ .

Exercice 4

Donner un automate déterministe minimum pour l'automate ci-dessous, en prenant n=3.

B. Déterminisation d'automates avec ϵ -transitions

Exercice 5

Quel est le langage reconnu par l'automate ci-dessous? Déterminisez cet automate.

Exercice 6

dessous:

Déterminisez l'automate $A=(Q,\Sigma,\delta,q_0,F)$ avec $Q=\{q_0,q_1,q_2,q_3\},\Sigma=\{a,b\},F=\{q_3\},$ et δ donné par la table de transitions ci-

δ	a	$\mid b \mid$	ϵ
q_0	q_1	q_3	q_1,q_2
q_1	q_3	q_1	-
q_2	q_0	q_3	-
q_3	q_3	q_1	-

C. Minimisation d'automates déterministes

Exercice 7

Minimiser l'automate ci-dessous :

Exercice 8

Minimiser l'automate ci-dessous :

Exercice 9

Minimiser l'automate ci-dessous :

D. Autres questions

Exercice 10

Donner un automate et un automate déterministe minimum qui reconnaît les mots (d'ARN) sur l'alphabet $\Sigma = \{A, C, G, U\}$ qui se terminent par un des 3 codons 'STOP' : UAA, UAG, et UGA, chaque mot ne contenant qu'un seul codon 'STOP'.

Exercice 11

Montrer que les deux expressions régulières ci-dessous sont équivalentes : $r=(a+b)^*a(a+b)^*b(a+b)^*$ $s=b^*a^+b(a+b)^*$

Exercice 12

Montrer que si Σ est un alphabet fini et que si L est un ensemble finis de mots sur Σ , alors L est un langage rationnel.