Search for light neutral bosons in the TREK/E36 experiment at J-PARC

Dongwi H. Dongwi (Bishov) Online Collaboration Meeting

Hampton University, Hampton VA 23668

June 08, 2020

*This work has been supported by DOE awards DE-SC0003884 and DE-SC0013941

The TREK/E36 Experiment at J-PARC: An Overview

- $lue{1}$ Introduction
 - Verification Of The e36g4MC
- 2 Analysis
 - CsI(Tl) Calibration

- Generator
- 3 Upper Limit Extraction
 - A' Search
- 4 Closing
 - Summary

Neutral Boson Search In Stopped K⁺ Decays

 K^+ decays ~ 10¹⁰

Signal 1: $K^+ \rightarrow \pi^+ A'$, $A' \rightarrow e^+ e^-$

Background: BR($K^+ \rightarrow \pi^+ e^+ e^-$) ~ 2.9 x 10⁻⁷ ~ 2,900 ev.

Signal 2: $K^+ \rightarrow \mu^+ \nu A'$, $A' \rightarrow e^+e^-$

Background: BR($K^+ \to \mu^+ \nu^- e^+ e^- \to 2.5 \times 10^{-5} \sim 250,000 \text{ ev.}$

Add. background from $K^+ \to \mu^+ \nu \pi^0 \to \mu^+ \nu e^+ e^- (\gamma)$

 π^0 decays

1) 3x10⁸ 2) 2x10⁹

 π^{0} production: $K^{+} \rightarrow \mu^{+} \nu \pi^{0} (3.3\%)$ $K^{+} \rightarrow \pi^{+} \pi^{0} (21.1\%)$

Signal 3: $\pi^0 \rightarrow VA', A' \rightarrow e^+e^-$

Background: BR($\pi^0 \rightarrow \gamma \ e^+ \ e^-$) ~ 1.2% ~ 0.3 (2.3) x10⁷ ev.

- Can light neutral bosons explain both dark matter and particle physics anomalies (muon magnetic moment, ⁸Be decay & proton radius)?
- Search for light neutral bosons in channels involving a muon (Signal: 2)

- Consistency check: propagation and magnetic field evaluation
- Simulated data: tracks propagated and reconstructed with Kalman Filter (KF)
- Established that KF tracking/propagation fully consistent with G4

TOSCA generated field (P. Monaghan)

- Energy loss/material budget comparison
- Charged particle momentum at C4
- Applied offset (2.5 MeV) due to incorrect field map
- No detector resolution in the simulation

- Energy loss/material budget comparison
- Charged particle momentum at C4
- Applied offset (2.5 MeV) due to incorrect field map
- Energy corrected momentum distribution
- Applied smearing of 2.86 MeV (energy corrected) and 6.01 MeV (C4)
- Smearing value was obtained by fitting a Gaussian to data

Momentum at C4

BlueJeans 06.08.2020

CsI(Tl) Analysis

- PIN photodiodes: readout the scintillation light of the CsI(Tl) crystals
- PIN diodes and pre-amplifier was assembled in an Al container

- Output signal from pre-amplifier was fed into shaping amplifier with 1 μs shaping time
- VF48 flash ADCs used to record shaping amplifier outputs

J. A. Macdonald (Nucl. Instrum. Meth., A506 2003)

μ rising factor

$$F(t) = \frac{A}{1 - \frac{e^{-(t-\tau_0)/\lambda}}{1 - \frac{e^$$

- λ is slow shape constant
- τ₀ is rise time
- τ₁ decay constant
- τ2 local decay constant

H. Ito (Nucl. Instrum. Meth., A901 2018)

Pulse Fitting In Action: Pulse Height Distribution

K_{u2} selection criteria

- Require single crystal per event
- First pulse time coincides with the K⁺ decay
- Require a second peak

Pulse Fitting In Action: Energy Calibration From $K_{\mu 2}$

Energy loss from Central Detector (CD E_{loss})

Pulse Fitting In Action: Energy Calibration From $K_{\mu 2}$

- $C_i = \frac{dE_{CsI}}{(A-P)}$, i = 1, ..., 768
- A is the waveform amplitude and P is the baseline
- $\bullet \ T_{\mu} = dE_{CsI} + CDE_{loss}$
- Correction for energy loss from CD system

Cooker Framework Event Viewer


```
© Terminal

File Edit View Search Terminal Help

piPecking total Cluster Energy: 0.228424

Angular1 checking (centriod) (1.6597, 4.40859)

Angular2 checking (centriod) (0.719948, 3.46884)

Checking pi0 InvMass: 0.123707

Checking cos(theta): 0.32072

Checking vertex opening -0.900161

Cluster multiplicity: 2

Number of clusters is: 1

Number of single clusters is: 1
```

CsI cluster analysis

CsI Cluster Analysis Cont...

Cluster criterion: $K^+ \to \pi^+ \pi^0$

- ullet High hardware trigger due to high rate
- Several clustering patterns need to be considered
- $N_{crys} \ge 2$ and $N_{crys} = 1$ (single crystal clusters)
- Currently single crystal clusters are considered as well
- Analysis is performed for $\pi^0 \to \gamma \gamma$, while allowing for a maximum of 3 cluster
- In case of 3 clusters, sum over combinations in search for which clusters have

.90
$$\leq M_{inv}(\pi^0) \leq .140 \; {\rm GeV}/c^2$$

CsI $K_{\pi 2}$ Cluster Analysis

• $E_{total}(2\gamma)$: total energy of 2γ clusters

• $\cos(\theta_{\gamma\gamma})$: opening angle of 2γ clusters

Generator Channels

K⁺ Channels

Label	Branch	Ratio
0	$K^+ \rightarrow e^+ \nu$	1.582×10^{-5}
1	$K^+ \rightarrow \mu^+ \nu$	6.355×10^{-1}
2	$K^+ \rightarrow e^+ \pi^0 \nu$	5.07×10^{-2}
3	$K^+ \rightarrow \mu^+ \pi^0 \nu$	3.352×10^{-2}
4	$K^+ \rightarrow e^+ \pi^0 \pi^0 \nu$	2.55×10^{-5}
5	$K^+ \rightarrow \pi^+\pi^-e^+\nu$	4.247×10^{-5}
6	$K^+ \rightarrow \pi^+\pi^-\mu^+\nu$	1.4×10^{-5}
7	$K^+ \rightarrow \pi^+ \pi^0$	2.067×10^{-1}
8	$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	1.760×10^{-2}
9	$K^+ \rightarrow \pi^+\pi^+\pi^-$	5.583×10^{-2}
10	$K^+ \rightarrow \mu^+ \nu \gamma$	6.2×10^{-3}
11	$K^+ \rightarrow e^+ \nu \gamma$	9.4×10^{-6}
12	$K^+ \rightarrow \mu^+ \pi^0 \nu \gamma$	1.25×10^{-5}
13	$K^+ \rightarrow \pi^+ \pi^+ \pi^- \gamma$	1.04×10^{-4}
14	$K^{+} \rightarrow \mu^{+} \nu A^{'}$	$\epsilon^2 \times ratio\ of\ channel\ 16$
15	$K^+ \rightarrow \pi^+ A^{'}$	$\epsilon^2 \times ratio\ of\ channel\ 17$
16	$K^+ \rightarrow \mu^+ e^+ e^- \nu$	2.5×10^{-5}
17	$K^+ \rightarrow \pi^+ e^+ e^-$	3×10^{-7}

π^0 Channels

Label	Branch	Ratio
0	$\pi^0 \rightarrow \gamma \gamma$	9.8823×10^{-1}
1	$\pi^0 \rightarrow e^+e^-\gamma$	1.174×10^{-2}
2	$\pi^{0} \rightarrow \gamma A^{'}$	$\epsilon^2 \times ratio\ of\ channel\ 2$

ROOT based generator

- Interactive: utilizes Messenger Classes
- Allows for selection of decay modes and branching ratios

A' Mass $\mathfrak{m}_{A'}$ Distribution

- A' masses generated on interval 20 110 MeV
- m_{A'} reconstructed from e⁺e⁻ clusters in the CsI

- lacktriangle Mean $\mathfrak{m}_{A'}$ obtained by fitting Gaussian
- \bullet Mass window of $\sigma(\mathfrak{m}_{A'})$ was obtained from fit

A' Mass $\mathfrak{m}_{A'}$ Distribution

A' Invariant Mass Spectrum

- A' masses generated on interval 20 110 MeV
- m_{A'} reconstructed from e⁺e⁻ clusters in the CsI

- lacktriangle Mean $\mathfrak{m}_{A'}$ obtained by fitting Gaussian
- Mass window of $\sigma(\mathfrak{m}_{A'})$ was obtained from fit

Number Of Stopped K⁺

- Charged particle momentum as evaluated at K⁺ stopped vertex within the target volume
- Number of tracked muons N_{µ2} obtained from good target events (events with target vertices)
- Acceptance of μ⁺, A_μ was calculated from e36g4MC
- Muon momentum selection was based on energy corrected tracks at C4 because target tracks are produced with monochromatic momentum
- Select 1 σ cut around mean P_{μ} , from $K_{\mu 2}$ decays

$$N_{K} = \frac{N_{\mu 2}}{Br(\mu 2)PS(\mu)A_{\mu}LT(\mu)}$$

 $Br(\mu 2)$ is the $K_{\mu 2}$ branching ratio, $PS(\mu)$ is the μ prescale factor, A_{μ} is the muon acceptance and $LT(\mu)$ is the lifetime fraction

BlueJeans 06.08.2020

Invariant mass spectrum

- Invariant mass spectrum under the 3 cut conditions
- The blue histogram contains all events

- Green histogram has pronounced bump around the π^0 mass
- Interested in the red histogram for the A' search

Upper Limit

- Require 3 charged particles, one of which is tracked, corresponding to 3 TOF1 hits
- $Br(A') \cdot \varepsilon_s < \frac{2\sqrt{N_{\mu\nu\epsilon\epsilon}}}{N_K A_{A'} \cdot LT}$
- A_A, is acceptance ratio of the A' with a given mass, determined from e36g4MC
- Nuvee: Integrated number of events in a given A' search window

- ες: A' signal loss factor
- The search window δ(m_A,) is determined fitting a Gaussian around peak of the reconstructed A' mass ma,
- Integrating the number of events in a given search window yields the number of background events Nuvee

K_{u2} Contamination Reduction

Charged Particle Momentum: Energy Loss Corrected

- Signal Loss $S_L = \frac{S_{cut}}{S_{tot}}$
- Scut is integrated signal that survives cut
- Stot is total integrated signal

Invariant Mass Spectrum M_{ee} After $K_{\mu 2}$ Cut

Background Suppressed Upper Limits

Summary

Summary and Future Work

- Universe is littered with anomalies that must be explained (exciting times!)
- e36g4MC has been developed from ground-up
- K⁺ decay generator has been implemented into the e36g4MC
- \bullet Energy calibration for CsI(Tl) using both $K_{\mu 2}$ and $K_{\pi 2}$
- CsI cluster finder developed within Cooker analysis framework
- Event viewer implemented
- We have generated various masses for A' and analysis is currently underway
- Signal search for light bosons currently underway

Backup

Energy of $\gamma 1$ and $\gamma 2$

Theta Vs Phi

Dongwi (Hampton U)

24 / 25

Angular Correlations: $\theta_{\gamma 1}$ vs. $\theta_{\gamma 2}$

