Propriedade da derivada da soma de duas funções: [f(x) + g(x)]' = f'(x) + g'(x)

Exemplo 1: Obtenha a derivada de $f(x) = x^2 + 3x$.

$$(x^2)^1 = 2 \cdot x^{2-1} = 2x$$

 $(3x)^1 = 3 \cdot 1 \cdot x^{1-1} = 3 \cdot x = 3 \cdot 1 = 3$

Rusporta:
$$f'(x) = 2x + 3$$

$$x^{m} = M \cdot x^{m-1}$$

Propriedade da derivada da diferença de duas funções: [f(x) - g(x)]' = f'(x) - g'(x)

Exemplo 2: Obtenha a derivada de $f(x) = 10x^4 - 3x^2$.

$$(10x^4)^1 = 10 \cdot 4x^{4-1} = 40x^3$$

 $(3x^2)^1 = 3 \cdot 2x^{2-1} = 6x$
Resporta: $f'(x) = 40x^3 - 6x$

$$y = x^{m}$$

$$y' = m \cdot x^{m-1}$$

Exemplo 3: Calcule a derivada de cada função:

a)
$$y = 5x^2 + 6x$$

b)
$$y = 3x^6 + 2x^2 + 10$$

c)
$$y = -x^2 + 5x + 6$$

d)
$$y = 0.5x^4 - 8x^3 - 2$$

e)
$$y = x^3 - 3x^2 - 9$$

f)
$$y = x^5 - 4x^2 + 2x$$

a)
$$y' = 5 \cdot 2x + 6 \cdot 1 \Rightarrow y' = 10x + 6$$

b)
$$y' = 3.6x^5 + 2.2x + 0 \Rightarrow y' = 18x^5 + 4x$$

c)
$$y' = -2x + 5.1 + 0 = y' = -2x + 5$$

d)
$$y' = 0.5.4x^3 - 8.3x^2 - 0 \Rightarrow y' = 2x^3 - 24x^2$$

e)
$$y' = 3x^2 - 3.2x - 0 \Rightarrow y' = 3x^2 - 6x$$

$$f) y' = 5x' - 8x + 2$$

Exemplo 4: Obtenha a derivada de $f(x) = 3x^2 - 6x + 5$ no ponto P(1,2).

$$f'(x) = 6x - 6$$

 $f'(1) = 6.1 - 6 = 0$

Exemplo 5: Obtenha a derivada de $f(x) = \frac{3}{x^2}$ no ponto P(2,1/3).

$$f(x) = 3 \cdot \frac{1}{x^{2}} = 3 \cdot \left(\frac{1}{x}\right)^{2} = 3 \cdot \left(\frac{x}{1}\right)^{-2}$$

$$f(x) = 3x^{-2}$$

$$f'(x) = 3 \cdot (-2) \cdot x^{-2-1} = -6x^{-3} = -6 \cdot \frac{1}{x^{3}}$$

$$f'(x) = -\frac{6}{x^{3}}$$

$$f'(2) = -\frac{6}{2^{3}} = -\frac{6}{8} \cdot 2^{2} = -\frac{3}{4}$$

Exemplo 6: Dada a função $f(x) = x^2 - 10x + 21$, calcule:

a)
$$f'(x) = 2x - 10$$

b)
$$f'(3) = 2.3 - 10 = 6 - 10 = -4$$

c)
$$f'(4) = 2.4 - 10 = 8 - 10 = -2$$

d)
$$f'(5) = 2.5 - 10 = 10 - 10 = 0$$

e)
$$f'(6) = 2.6 - 10 = 12 - 10 = 2$$

f)
$$f'(7) = 2.7 - 10 = 14 - 10 = 4$$

Exemplo 7: Dada a função $f(x) = x^3 - 3x + 4$, calcule:

a)
$$f'(x) = 3x^2 - 3$$

b)
$$f'(-2) = 3 \cdot (-2)^2 - 3 = 3 \cdot 4 - 3 = 12 - 3 = 9$$

c)
$$f'(-1) = 3 \cdot (-1)^2 - 3 = 3 \cdot 1 - 3 = 3 - 3 = 0$$

d)
$$f'(0) = 3 \cdot 0^2 - 3 = 0 - 3 = -3$$

e)
$$f'(1) = 3 \cdot 1^2 - 3 = 3 \cdot 1 - 3 = 3 - 3 = 0$$

f),
$$f'(2) = 3 \cdot 2^2 - 3 = 3 \cdot 4 - 3 = 12 - 3 = 9$$

DERIVADAS DE FUNÇÕES

Exemplo 8: Calcule a derivada de $y = 5x^{-1} - 3x + 10$ no ponto A(5,-4).

$$y' = 5 \cdot (-1) \cdot x^{-1-1} - 3 \cdot 1 + 0$$

$$y' = -5x^{-2} - 3$$

$$y'(5) = -5 \cdot 5^{-2} - 3 = -5 \cdot (\frac{1}{5})^{2} - 3 = -5 \cdot \frac{1}{25} - 3$$

$$y'(5) = -\frac{1}{5} - \frac{3}{1} = \frac{-1-15}{5} \implies y'(5) = -\frac{16}{5}$$

Exemplo 9: Dada a função $f(x) = x^2 - 8x + 12$, calcule o valor de x tal que f'(x) = 0.

$$f'(x) = 2x - 8$$

$$2x - 8 = 0$$

$$2x = 8$$

$$\sqrt{x} = 4$$

$$y = ax^{2} + bx + c$$

$$y' = 2ax + b = 0$$

$$2ax = -b$$

$$z = -\frac{b}{2a}$$

Exemplo 10: Dada a função $f(x) = x^3 - 3x + 4$, calcule os valores de x tais que f'(x) = 0.

NÚMERO DE EULER

Definição do Número \emph{e}

$$e ext{ \'e um n\'umero tal que } \lim_{\chi \to \infty} \left(1 + \frac{1}{\chi}\right)^{\chi} = \mathbb{C}$$

DERIVADA DA FUNÇÃO EXPONENCIAL $f(x) = e^x$

Para demonstrar a derivada desta função, vamos usar a definição de derivada:

DERIVADA DA FUNÇÃO EXPONENCIAL $f(x) = e^x$

h	e^h - 1	(e^h -1)/h		h	e^h - 1	(e^h -1)/h
---	---------	------------	--	---	---------	------------

DERIVADA DA FUNÇÃO EXPONENCIAL $f(x) = e^x$

Exemplo: Obtenha a equação da reta tangente ao gráfico da função $f(x) = e^x$ no ponto de abscissa 2.