DAY 1

Goal: Gain hands-on experience with machine learning tools used in atomistic simulations, as encountered in academic research. You will work with a dataset consisting of allotropes of carbon, both crystalline and amorphous.

To start, please visit and download the GitHub repo: https://github.com/zakmachachi/Atomistic-ML-Tutorial

Part 1: Understand, explore and visualise atomistic data

1. Working with atomic structures in Python:

Task: Load the dataset using load_atoms in python. It is quite large so we will take out x number of structures to work with. Visualise these structures in python by indexing from 0 and viewing it. Cycle through different indices to see the different structure types. View the .xyz file in the text editor to understand the format properly

1. Generate Descriptors

Descriptors convert atomic structures into fixed-length numerical features for ML models. A good descriptor is rich in information enabling differentiation between atomic motifs and locality.

Examples include:

- Coordination number
- Pairwise distances
- Angular information

Tasks:

- Generate two or more types of descriptors for your systems.
- Visualise the data. E.g.: coordination number could be shown as a histogram.
- Plot the radial distribution function and angular distribution function for a high density and low density carbon structure.

Part 2: Exploring the structural space of carbon using SOAP

SOAP is many-body descriptor built on spherical harmonics and radial basis functions (which you will have seen in your quantum chemistry courses!). SOAP contains a **lot** of information since large *n* and *l* are used making it difficult to interpret due to the high dimensionality. As a result, dimensionality reduction techniques are used to help understand how we can differentiate between carbon structures and local atomic environments.

Tasks:

- Build SOAP descriptors for a single structure.
- Apply a dimensionality reduction method (PCA) to the SOAP vectors and visualise the two principal components using chemiscope.
- Colour code each environment using coordination number, and then by atomic energy.
- Next, do the same but on 100 structures of varying density. Notice the plot contains a large number of points. Think about how you can make a per structure SOAP vector and plot that.

Part 3: Supervised learning - Predicting local energies

Fit ML models to predict the total energy of structures in the dataset. Tasks:

- Train regression models using:
 - o Linear regression
 - o Kernel ridge regression
 - o (Optional) Neural networks from scikit-learn
- Compare the performance of models using different descriptors.
- Evaluate model performance with metrics such as MAE and RMSE.

Questions:

- Which descriptor and model combination gives the best results?
- What other structure-property predictions could be explored?

Part 4 (Optional): Predicting NMR Chemical Shifts in SiO₂

Now shift focus to predicting atomic-level properties rather than system-level totals.

Tasks:

- Modify your pipeline to predict chemical shifts on a per-atom basis.
- Update input and output formatting to support atomic-level targets.
- Train and evaluate your model.

Questions:

- What changes were needed to adapt the pipeline for atomic targets?
- How does performance compare to the energy prediction task?
- Would you use a different descriptor for this property?

Summary and Discussion

Group discussion prompts:

- What worked well and what didn't in your ML pipeline?
- Which descriptors were most effective and why?
- How closely did the ML results match physical intuition?
- What aspects of model performance were surprising or insightful?

Optional Bonus Tasks

For those who finish early or want to explore further:

- Use your model to make predictions on unseen or extrapolated structures.
- Generate and interpret learning curves to understand data requirements.
- Train models to predict atomic forces or stress tensors in addition to energies.
- Visualise feature importance or atomic contributions using interpretability methods.