SCHNEIDER PLC to PLC communications with RAK7431 and LoRaWAN

System Arquitecture

Sender PLC configuration

We configure the sender PLC as a Modbus RTU slave device with address 1 and register %MW0 to hold the status of the digital inputs of sender PLC.

We update the digital input state on every scan

So we have such data available thru Modbus RTU

Modbus test

Let's see the Modbus response from PLC with the PC and qModMaster tool

Let's read from Modbus slave 1 (PLC) and address %MW0 (0) wich value is 10 for instance.

RAK7431 configuration

Let's monitor the RAK7431 with RAK serial tool, wether there is a poll task scheduled Yes, there is one

We have to change this since we want to point to Modbus address 01 and message type 03 as we have seen on $Modbus\ Test$

Let's remove it AT+RMPOLL=1

Now we add a new POLL task to measure Voltage And this will be the right poll task according to the previous chapter AT+ADDPOLL=1:01030000001840A

And we receive the response from PLC register %MW0 that in this case is 6
Bit 1 and Bit 2 to ON state so this is 6

But we receive a long payload, Since we are in non transparent mode.

Let's change to transparent mode to reduce payload

Chirpstack console

This is the view on Chirpstack console.

Now we see that we have the value of %MW0 on bytes 3 and 4

Node-RED

Node-RED is running on the same RAK 2245 gateway Raspberry Pi. Just install Node-RED after burning the Gateway operating system SD with the image from RAK Wireless web page.

Let's decode this with Node-RED

With this Flow

Take into account that payload is base 64 encoded

Now we decode such buffer

With bytes 3 and 4 to get a 16bit integer

You can find the code here

https://github.com/xavierflorensa/Schneider-PLC-to-PLC-comms-with-RAK-wireless

And here is te video

https://www.youtube.com/watch?v=Zf8wNpf23Z8&ab_channel=XavierFlorensaBerenguer

And inject to the receiver PLC thru Modbus TCP on PLC register %MW1

Now let's take a look at the receiver PLC, where you only have to set an IP address, allocate a global memory register for instance on %MW1 and create a program t osee the PLC digital outpus as an image of the sender PLC inputs.

So it Works!

Now let's decrease the sending period since we are transmitting each 24 seconds

AT+POLLPERIOD

Let's change to 10 seconds

Now it is transmitting each 14 seconds

Let's try to find the lower period

Let's try with 5 seconds

We are transmitting each 8 seconds

Let's try to go Lower

We are transmitting each 6 seconds

Let's find the mínimum value POLL period 1 second

We are transmitting each 4-5 seconds

Not bad!