ΜΑΣ029 - Στοιχεία Γραμμικής Άλγεβρας Εαρινό εξάμηνο 2021

Ασκήσεις 4ου Κεφαλαίου

1. Είναι το
$$\lambda=2$$
 ιδιοτιμή του $\begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix}$; Γιατί;

Απάντηση: Ναι

2. Είναι το
$$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 ιδιοδιάνυσμα του $\begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix}$; Αν ναι, βρείτε την ιδιοτιμή.

Απάντηση: Όχι

3. Είναι το
$$\lambda=4$$
 ιδιοτιμή του
$$\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$$
; Αν ναι, βρείτε ένα αντίστοιχο ιδιοδιάνυσμα.

Απάντηση: Ναι, $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$

4. Βρείτε μια βάση του ιδιοχώρου που αντιστοιχεί στην δεδομένη ιδιοτιμή.

i)
$$\begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}$$
, $\lambda = 1, 5$

ii)
$$\begin{bmatrix} 4 & -2 \\ -3 & 9 \end{bmatrix}, \qquad \lambda = 10$$

iii)
$$\begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}, \qquad \lambda = 3$$

Απάντηση: i)
$$\lambda=1,\begin{bmatrix}0\\1\end{bmatrix},\ \lambda=5,\begin{bmatrix}2\\1\end{bmatrix}$$
 ii) $\begin{bmatrix}-1\\3\end{bmatrix}$ iii) $\begin{bmatrix}-2\\1\\0\end{bmatrix},\begin{bmatrix}-3\\0\\1\end{bmatrix}$

5. Να βρεθούν οι ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα.

$$\left[
\begin{array}{ccc}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}
\right]$$

Απάντηση:
$$\lambda=1$$
 με βάση ιδιοχώρου $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\lambda=2$ με βάση ιδιοχώρου $\begin{bmatrix} -1\\2\\2 \end{bmatrix}$, $\lambda=3$ με βάση ιδιοχώρου $\begin{bmatrix} -1\\1\\1 \end{bmatrix}$

1

6. Αν λ είναι ιδιοτιμή ενός αντιστρέψιμου πίνακα A, δείξτε ότι το $\frac{1}{\lambda}$ είναι ιδιοτιμή του A^{-1} .

- 7. Δείξτε ότι λ είναι ιδιοτιμή του A αν και μόνο αν λ είναι ιδιοτιμή του A^T .
- 8. Βρείτε το χαρακτηριστικό πολυώνυμο.

$$i) \begin{bmatrix} 2 & 7 \\ 7 & 2 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 3 & -2 \\ 1 & -1 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 3 & -2 \\ 1 & -1 \end{bmatrix}$$
 iii) $\begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & -1 \\ 0 & 6 & 0 \end{bmatrix}$ iv) $\begin{bmatrix} 4 & 0 & 0 \\ 5 & 3 & 2 \\ -2 & 0 & 2 \end{bmatrix}$

iv)
$$\begin{bmatrix} 4 & 0 & 0 \\ 5 & 3 & 2 \\ -2 & 0 & 2 \end{bmatrix}$$

Απάντηση: i) $\lambda^2 - 4\lambda - 45$ ii) $\lambda^2 - 2\lambda - 1$ iii) = $\lambda^3 + 4\lambda^2 - 9\lambda - 6$ iv) $-\lambda^3 + 9\lambda^2 - 26\lambda + 24$

9. Βρείτε τις ιδιοτιμές και αναφέρετε τις πολλαπλότητες τους.

$$\begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 & 0 \\ 3 & 8 & 0 & 0 & 0 \\ 0 & -7 & 2 & 1 & 0 \\ -4 & 1 & 9 & -2 & 3 \end{bmatrix}$$

Απάντηση: $\lambda = 0$ με πολλαπλότητα 1, $\lambda = 1$ με πολλαπλότητα 2, $\lambda = 3$ με πολλαπλότητα 2

Να βρεθούν οι ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα των παρακάτω πινάκων.

i)
$$\begin{bmatrix} 5 & 7 & -5 \\ 0 & 4 & -1 \\ 2 & 8 & -3 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 2 & 0 & -2 \\ 0 & 4 & 0 \\ -2 & 0 & 5 \end{bmatrix}$$

Apánthan: i)
$$\lambda=1,\begin{bmatrix}2\\1\\3\end{bmatrix}, \lambda=2,\begin{bmatrix}1\\1\\2\end{bmatrix}, \lambda=3,\begin{bmatrix}-1\\1\\1\end{bmatrix}$$
 ii) $\lambda=1,\begin{bmatrix}2\\0\\1\end{bmatrix}, \lambda=4,\begin{bmatrix}0\\1\\0\end{bmatrix}, \lambda=6,\begin{bmatrix}1\\0\\-2\end{bmatrix}$

11. Δίνεται ο πίνακας

$$A = \left[\begin{array}{rrr} 3 & -2 & -2 \\ 2 & -2 & -4 \\ -1 & 2 & 4 \end{array} \right].$$

- i) Δείξτε ότι οι ιδιοτιμές του A είναι οι $\lambda_1=1$ με $\pi(\lambda_1)=1$ και $\lambda_2=2$ με $\pi(\lambda_2)=2$.
- ii) Να βρεθούν οι $\gamma(\lambda_1)=\dim E_{\lambda_1}$ και $\gamma(\lambda_2)=\dim E_{\lambda_2}.$
- iii) Να βρεθούν τα ιδιοδιανύσματα που αντιστοιχούν στις ιδιοτιμές λ_1 και λ_2 και να οριστούν οι ιδιοχώροι E_{λ_1} και E_{λ_2} .

$$\mathbf{Apánthoh:} \text{ ii) } \gamma(1)=1, \gamma(2)=2 \text{ iii) } E_{\lambda_1}=\operatorname{Span}\{\begin{bmatrix} -1\\ -2\\ 1\end{bmatrix}\}, E_{\lambda_2}=\operatorname{Span}\{\begin{bmatrix} 2\\ 1\\ 0\end{bmatrix}, \begin{bmatrix} 2\\ 0\\ 1\end{bmatrix}\}$$

12. Έστω ότι ο πίνακας A γράφεται στην μορφή $A = PDP^{-1}$, όπου $P = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}$, και $D = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$. Υπολογίστε τον A^4 .

2

Απάντηση:
$$\begin{bmatrix} 226 & -525 \\ 90 & -209 \end{bmatrix}$$

13. Διαγωνοποιήστε τους πίνακες, αν είναι δυνατόν.

$$i) \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix},$$

ii)
$$\begin{bmatrix} 3 & -1 \\ 1 & 5 \end{bmatrix}$$

iii)
$$\begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$$

iv)
$$\begin{bmatrix} 2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2 \end{bmatrix}$$
 v)
$$\begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$

$$\mathbf{v}) \begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$

Απάντηση: i) $P = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ ii) Δεν διαγωνοποιείται iii) $P = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 1 \\ 4 & 3 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ iv) $P = \begin{bmatrix} -1 & 2 & 1 \\ -1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ v) $P = \begin{bmatrix} -2 & 0 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 0 \end{bmatrix}, D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & A \end{bmatrix}$

14. Έστω ότι ο A είναι 5×5 με δύο ιδιοτιμές. Ο ένας ιδιοχώρος έχει διάσταση 3 και ο άλλος 2. Είναι ο Aδιαγωνοποιήσιμος;

Απάντηση: Ναι

15. Έστω ότι ο A είναι 3×3 με δύο ιδιοτιμές. Κάθε ιδιοχώρος έχει διάσταση 1. Είναι ο A διαγωνοποιήσιμος;

Απάντηση: Όχι

16. Έστω ότι ο A είναι 4×4 με τρεις ιδιοτιμές. Ο ένας ιδιοχώρος έχει διάσταση 1 και ένας άλλος έχει διάσταση 2. Είναι δυνατόν ο Α να μην είναι διαγωνοποιήσιμος;

Απάντηση: Όχι

17. Προσδιορίστε τις ιδιοτιμές και μία βάση για κάθε ιδιοχώρο των παρακάτω πινάκων.

$$i) \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$$

ii)
$$\begin{bmatrix} 1 & 5 \\ -2 & 3 \end{bmatrix}$$

Απάντηση: i) $\lambda = 2 + i$, $\begin{bmatrix} -1 + i \\ 1 \end{bmatrix}$, $\lambda = 2 - i$, $\begin{bmatrix} -1 - i \\ 1 \end{bmatrix}$ ii) $\lambda = 2 + 3i$, $\begin{bmatrix} 1 - 3i \\ 2 \end{bmatrix}$, $\lambda = 2 - 3i$, $\begin{bmatrix} = 1 + 3i \\ 2 \end{bmatrix}$

18. Ο γραμμικός μετασχηματισμός ${f x}\mapsto A{f x}$ μπορεί να περιγραφεί ως η σύνθεση περιστροφής διανύσματος κατά μία γωνία ϕ και μεταβολής μήκους r (επιμήκυνση ή συρρίκνωση). Προσδιορίστε την γωνία περιστροφής ϕ και τον συντελεστή κλίμακας r.

$$i) \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$$

ii)
$$\begin{bmatrix} -\sqrt{3}/2 & 1/2 \\ -1/2 & -\sqrt{3}/2 \end{bmatrix}$$
 iii) $\begin{bmatrix} 0.1 & 0.1 \\ -0.1 & 0.1 \end{bmatrix}$

iii)
$$\begin{bmatrix} 0.1 & 0.1 \\ -0.1 & 0.1 \end{bmatrix}$$

Απάντηση: i) $\phi = \pi/6$, r = 2 ii) $\phi = -5\pi/6$, r = 1 iii) $\phi = -\pi/4$, $r = \sqrt{2}/10$

19. Βρείτε τον αντιστρέψιμο πίνακα P και τον πίνακα C της μορφής $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ έτσι ώστε ο δεδομένος πίνακας A να γράφεται στην μορφή $A = PCP^{-1}$.

3

i)
$$A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$$
 ii) $A = \begin{bmatrix} 1 & 5 \\ -2 & 3 \end{bmatrix}$

Απάντηση: i)
$$P = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$$
, $C = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$ ii) $P = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}$