Le Produit Scalaire dans un repère orthonormé et calculs d'angles dans des solides

1. Définition

Dans l'espace, le produit scalaire de deux vecteurs \vec{u} et \vec{v} est défini par :

$$ec{u} \cdot ec{v} = \|ec{u}\| \cdot \|ec{v}\| \cdot \cos(heta)$$

où θ est l'angle entre \vec{u} et \vec{v} , $\|\vec{u}\|$ et $\|\vec{v}\|$ sont les normes des vecteurs \vec{u} et \vec{v} .

2. Cas particuliers

• Vecteurs orthogonaux :

Si $heta=90^\circ$, alors $\cos(90^\circ)=0$, donc :

$$\vec{u} \cdot \vec{v} = 0$$

• Vecteurs de même sens :

Si $heta=0^\circ$, alors $\cos(0^\circ)=1$, donc :

$$ec{u} \cdot ec{v} = \|ec{u}\| \cdot \|ec{v}\|$$

• Vecteurs de sens opposés :

Si $heta=180^\circ$, alors $\cos(180^\circ)=-1$, donc :

$$ec{u} \cdot ec{v} = - \|ec{u}\| \cdot \|ec{v}\|$$

3. Formule dans un repère orthonormé

Dans un repère orthonormé, si $ec{u}=(x_1,y_1,z_1)$ et $ec{v}=(x_2,y_2,z_2)$, alors :

$$ec{u}\cdotec{v}=x_1\cdot x_2+y_1\cdot y_2+z_1\cdot z_2$$

Justification : Il suffit d'en revenir à l'interprétation de l'écriture en composantes des vecteurs \vec{u} et \vec{v} dans un repère orthonormé :

4. Exemple d'application

Soit $ec{u}=(2,1,3)$ et $ec{v}=(4,-1,2).$ Calculons le produit scalaire :

$$ec{u} \cdot ec{v} = 2 \cdot 4 + 1 \cdot (-1) + 3 \cdot 2 = 8 - 1 + 6 = 13$$

$$\|\vec{u}\| = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{4 + 1 + 9} = \sqrt{14}$$

La norme de \vec{v} est :

$$\| ec{v} \| = \sqrt{4^2 + (-1)^2 + 2^2} = \sqrt{16 + 1 + 4} = \sqrt{21}$$

L'angle heta entre $ec{u}$ et $ec{v}$ est donné par :

$$\cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot \|\vec{v}\|} = \frac{13}{\sqrt{14} \cdot \sqrt{21}}$$

6. Traduction des termes importants

• Produit scalaire : Dot product

• Vecteur : Vector

• Norme: Magnitude

• Angle: Angle

• Repère orthonormé: Orthogonal coordinate system

• Composante : Component

• Orthogonaux : Perpendicular

- **De même sens**: In the same direction
- De sens opposés : In opposite directions

5. Exercices

Calculer les angles demandés en se basant sur la figure ci-dessous et à l'aide de la formule du produit scalaire.

