UNIVERSITY OF VICTORIA EXAMINATIONS SUMMER 2012

C SC 230 - Introduction to Computer Architecture and Assembly Language - CRN# 30161

STUDENT NUMBER:			 	
TIME: 3 hours	•			
INSTRUCTOR: M. Serra				
TOTAL MARKS: 116				

Question No.	Value	Mark	Question No.	Value	Mark
1	6		11	4	
2	4	*	12	2	
3	4		13	. 5	
4	8		14	4	
5	11		15	3	
6	2		16	11	
7	8		17	. 9	
8	8		18	3	
9	3		19	15	
10	6	-	TOTAL	116	

INSTRUCTIONS:

TO BE ANSWERED ON THE PAPER

- STUDENTS MUST COUNT THE NUMBER OF PAGES IN THIS EXAMINATION PAPER BEFORE BEGINNING TO WRITE, AND REPORT ANY DISCREPANCY IMMEDIATELY TO THE INVIGILATOR
- 2. This examination paper consists of 15 pages including this cover page.
- 3. No aids are permitted. However, a handout describing the ARM instruction set is provided for your use.
- 4. The marks assigned to each question are shown within square brackets. Partial marks are available for all questions.
- 5. Please be precise but brief, and use point form where appropriate.
- 6. It is strongly recommended that you read the entire exam through from beginning to end before beginning to answer the questions.

Question 1. [6] Fill in the table below with the appropriate information about the instructions. The column "Bus used?" refers ONLY to the execution phase, not the fetch phase.

Instruction	Addressing Modes of All Operands	Bus used?	What it does (be precise)
CMP r1,#1	·		
STR r1,[r2,#4]!			· · · · · · · · · · · · · · · · · · ·
MOV r1,r2,LSL #4			

			i i		
MOV r1,r2,LSL #4				•	
Question 2. [4] (a) [3] St RAM. Show how the	ate at least 3 ma ey apply to each	in characteris	tics to differen	itiate between stati	c and dynamic
		:			· ·
		•			
			·	•	
b) [1] State at least 1 ma	ain characteristi	c to differenti	ate between vo	olatile and non-vo	latile memory.
Question 3. [4] (a) [2] C	hoose one porti	on of the Flyn	n taxonomy a	nd describe it <i>brief</i>	ly.

Flynn	Taxonomy fo	or Processors	3 Organization
SISD	SIMD	MISD	MIMD
		*	

PRONT Intermediate END Large Lode Intermediate Lode L									
of a compiler decomposed into a "Front End and a "Back End" with Intermediate Code generated in between. Explain briefly in poi what the units do, how, what the features and dependencies are; in summary, anything we a terse yet complete explanation. In an interview situation, you should not take more that ites; be similarly concise and precise.									
of a compiler decomposed into a "Front End and a "Back End" with Intermediate Code generated in between. Explain briefly in poi what the units do, how, what the features and dependencies are; in summary, anything we a terse yet complete explanation. In an interview situation, you should not take more that ites; be similarly concise and precise.			•						
of a compiler decomposed into a "Front Enc and a "Back End" with Intermediate Code generated in between. Explain briefly in poi what the units do, how, what the features and dependencies are; in summary, anything we at a terse yet complete explanation. In an interview situation, you should not take more that thes; be similarly concise and precise.	•					·			
of a compiler decomposed into a "Front End and a "Back End" with Intermediate Code generated in between. Explain briefly in poi what the units do, how, what the features and dependencies are; in summary, anything we a terse yet complete explanation. In an interview situation, you should not take more that ites; be similarly concise and precise.			-		• •			•	
of a compiler decomposed into a "Front Enc and a "Back End" with Intermediate Code generated in between. Explain briefly in poi what the units do, how, what the features and dependencies are; in summary, anything we at a terse yet complete explanation. In an interview situation, you should not take more that thes; be similarly concise and precise.									
intermediate code code sense less intermediate code generated in between. Explain briefly in poi what the units do, how, what the features and dependencies are; in summary, anything we a terse yet complete explanation. In an interview situation, you should not take more that ites; be similarly concise and precise.								-	
intermediate code code sense less intermediate code generated in between. Explain briefly in poi what the units do, how, what the features and dependencies are; in summary, anything we a terse yet complete explanation. In an interview situation, you should not take more that ites; be similarly concise and precise.				•					
of a compiler decomposed into a "Front End and a "Back End" with Intermediate Code generated in between. Explain briefly in poi what the units do, how, what the features and dependencies are; in summary, anything we a terse yet complete explanation. In an interview situation, you should not take more that ites; be similarly concise and precise.									
of a compiler decomposed into a "Front Enc and a "Back End" with Intermediate Code generated in between. Explain briefly in poi what the units do, how, what the features and dependencies are; in summary, anything we at a terse yet complete explanation. In an interview situation, you should not take more that thes; be similarly concise and precise.		·		· · · · · · · · · · · · · · · · · · ·	O	fol / \ rel mg	<i>c</i> : 1		
generated in between. Explain briefly in poi what the units do, how, what the features and dependencies are; in summary, anything we a terse yet complete explanation. In an interview situation, you should not take more that tes; be similarly concise and precise.		·		`` '	Question 4., of a comi	[8] (a) [5] The piler decomp	e figure si osed int o	nows the str	ru nd
generated in between. Explain briefly in poi what the units do, how, what the features and dependencies are; in summary, anything we a terse yet complete explanation. In an interview situation, you should not take more that ites; be similarly concise and precise.	rce ———		iate	target					
s a terse yet complete explanation. In an interview situation, you should not take more that tes; be similarly concise and precise.				 .					
s a terse yet complete explanation. In an interview situation, you should not take more that tes; be similarly concise and precise.	what the ur	uits do, ho	w, what tl	he features	and depende	encies are; in	summar	y, anything	W
tes; be similarly concise and precise.	a terse yet	complete e	explanatio	n. In an int	erview situa	tion, vou sho	ould not t	ake more th	าล
	ıtes; be simil	arly conci	ise and pr	ecise.	,			une mere u	
		=	-						
		•							
	<u> </u>								
		<u> </u>						. ·	
					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			 	
		· 							
							.'		
				·					
		-							
						·			
			•						
					· · ·				

Question 5. [11] The diagram below is a reproduction from your textbook, discussed in class (we talked also about other possibilities for arrows). Consider such a system with Virtual Memory, using an MMU, a Page Table and a TLB, plus 3 levels of cache, L1, L2 and L3.

- (d) [8] Suppose the CPU needs access to some data. There are 4 cases:
 - 1. The data is in L1
 - 2.The data is in L2 or in L3
 - 3. The data is in memory
 - 4. The data is on disk

State algorithmically the steps to be followed in the search and retrieval of this data for each of the 4 cases, clearly naming which component is involved and how.

Case 1: data is in L1 cache					
	•				
		٠			
		•	•		
			•		
·			•		
Case 2: data is in L2 or L3 cache				·	
cache					·
				•	
				•	
		•			•
No.				•	
				, i	
		•			
·					
Case 3: data is in memory					
				•	;
			·		,
		•			
					•
		4			•
		ů.			
Case 4: data is on disk					
Case 4: data is on disk					
Case 4: data is on disk					
Case 4: data is on disk					
Case 4: data is on disk					
Case 4: data is on disk					
Case 4: data is on disk					
Case 4: data is on disk					

Question 6. [2] In the table below, we see that the relative performance of the IBM 360 Model 75 is 50 times that of the 360 Model 30 (see row 4), yet the instruction cycle time is only 5 times as fast (see row 3). How would you account in general for this discrepancy? (No computation is involved here).

Characteristic	Model 30	Model 40	Model 50	Model 65	Model 75
Maximum memory size (bytes)	64K	256K	256K	512K	512K
Data rate from memory (Mbytes/s)	0.5	0.8	2.0	8.0	16.0
Processor cycle time (μs)	1.0	0.625	0.5	0.25	0.2
Relative speed	1	3.5	10	21	50
Maximum number of data channels	3	3	4	6	6
Maximum data rate on one channel (Kbytes/s)	250	400	800	1250	1250

	•		

Make sure to add comments. Assume that X has been declared in the DATA section as 'X: .skip 4'

```
X=15;
for (k=100; k>0; k--) {
     X = X+3;
```

Question 8. [8] The diagram below shows a memory and an 8-way set associative mapped cache organization. It also shows the mapping of a few memory blocks to their set/cache lines (memory is comprised of 2²⁷ blocks). Redraw the diagram to show what would change if the cache used a 4-way set associative mapped cache organization. and state which cache blocks would be used by the memory blocks in the order presented in the table below. Relabel the number of blocks precisely.

Memory Block Number	State where it is mapped in a 4-way set associative Cache
1	
2 ¹⁴ -1	
2 ¹⁴	
2 ¹⁴ +1	
2 ²⁷ -2	
2 ²⁷ -1	

Question 9. [3] Given the 4-bit hexadecimal number below, state the *decimal* equivalent according to the representation shown in each heading:

Hexadecimal	Unsigned Integer	2's Complement	Signed Magnitude
D2 ₁₆			

Question 10. [6] A benchmark program is run on a 40 MHz¹ processor. The executed program consists of 100,000 instruction executions, with the following instruction mix and clock cycle count:

Instruction type	Instruction count	Cycles per instruction
Integer arithmetic	45,000	1
Data transfer	32,000	2
Floating point	15,000	2
Control transfer	8,000	2

	Control transfer	8,000	1 2	
(a)	[2] Determine the effective CPI (show yo	our calculations).		
(b)	[2] Compute the execution time (show y	our calculations).		· · · · · · · · · · · · · · · · · · ·
e V	[2] A common measure of performance fexecuted, expressed as millions of instructions are can express the MIPS rate in terms of MIPS State the MIPS rate for the benchmark professor of the computation).	ctions per second (M) the clock rate and C rate = $\frac{\text{Clock rate}}{\text{CPI} \times 10^6}$	IPS), referred to as t PI as follows:	he MIPS rate.
	1			

^{1.} Hz is cycles/sec. MHz = cycles/sec $\times 10^6$

Question 11. [4] Consider a hy of two fields: the first byte contoperand address.	tains the opcode	e and the rema	inder the imm	ediate operand o	r an
(a) What is the maximum direct					
(b) What is the maximum num					
(c) What is the smallest size ne		the program c	ounter and the	e instruction regis	ster?
PC:	_ IR:				
			·		
Question 12. [2] Consider the	following code:				
for (i=0; i<20; i+ for (j=0; j<1 a[i] = a			÷		
(a) [1] Give one example of the	spatial locality	in the code.			
		•			
				·	
(b) [1] Give one example of the	e temporal local	ity in the code	•		
Question 13. [5] A processor a cache memory is interposed be faster access time of <i>T1</i> < <i>T2</i> . The designed so that the words most that the probability that the next Hit ratio). (a) [1] For any single memory a cache rather than in main memory and the statement of the statemen	tween the proce e cache holds, a re likely to be a ct word accessed ccess, what is the	essor and main tany time, cop ccessed in the i d by the proces	n memory. The lies of some ma near future are ssor is in the ca	cache has a signi ain memory word in the cache. Ass ache is <i>H</i> (known	ficantly Is and is sume as the

(b) [2] Let T be the average ac	cess time. Expre	ess T as a func	tion of T1, T2 a	and <i>H</i> .	
		•	. •		
(c) [2] In practice, a system m determine if the word is in (opposite of a hit), memor new assumption.	n the cache and,	if it is not, the	n access main	memory, so tha	at on a mis
					·····
	•	-			
		•			
Question 14. [4] Consider an memory access, in the case of (size of cache, cache organiza 1.5 ns (memory access time restated as:	a cache miss, is tion) such that v	10 ns. Supposve increase H	e that we can to 0.97, but inc	change the cach	ne design ess time to
T average =	= H× cache acces	ss time $+ (1 - H)$	nemory ac	cess time	
(a) [1] State T1 as the average		•	•		-
(w) [2] State 11 as are average	- CI O access thi	- Delote the c	actie redesign.		
			٠.	, , , , , , , , , , , , , , , , , , ,	
·					
(b) [1] State T2 as the average	e CPU access tin	ne after the cac	he redesign.	•	
	•				
(c) [2] Let a general memory a redesign at T2 to result in	access time be N improved perfo	I (instead of the rmance from T	ne 10 ns above [1, what condi). If we want the tion on M mus	e cache t be met b
comparing T2 and T1?					
·					•
			•		
			•		

Question 15. [3]	In the context of disk drives, define the terms seek time, rotational delay, access	s time.
•		
•	. ,	
uestion 16. [1] device issue	I] (a) [2] When a device interrupt occurs, how does a processor determine wild the interrupt?	hich
[5] Number general inter	the following steps from 1 to 5 in the order they are performed in processing rupt sequence using the interrupt jump table technique:	; a
	recognize the interrupt event and set the event flag	
	load the PC with the address from the interrupt vector table	
	execute the first instruction of the interrupt handling routine	
	push the processor registers onto the stack	
	determine the interrupt vector number	
) [2] Explain b	riefly the necessity for "levels" of interrupts.	
-		
	•	

estion 17. [9] (a) [4] When describing the functionality of a pipelined execution processor, the possibilities for hazards, which can reduce the performance increase, were described. State hazards are possible and give a complete definition for one of them (your choice).	estion 17. [9] (a) [4] When describing the functionality of a pipelined execution processor, the possibilities for hazards, which can reduce the performance increase, were described. State was are possible and give a complete definition for one of them (your choice).						•		
possibilities for hazards, which can reduce the performance increase, were described. State	possibilities for hazards, which can reduce the performance increase, were described. State v								
possibilities for hazards, which can reduce the pertormance increase, were described. State	possibilities for hazards, which can reduce the performance increase, were described. State v								
possibilities for hazards, which can reduce the performance increase, were described. State	possibilities for hazards, which can reduce the performance increase, were described. State v								
possibilities for hazards, which can reduce the performance increase, were described. State	possibilities for hazards, which can reduce the performance increase, were described. State v								
possibilities for hazards, which can reduce the performance increase, were described. State	possibilities for hazards, which can reduce the performance increase, were described. State v						•		
possibilities for hazards, which can reduce the pertormance increase, were described. State	possibilities for hazards, which can reduce the performance increase, were described. State v								
possibilities for hazards, which can reduce the performance increase, were described. State	possibilities for hazards, which can reduce the performance increase, were described. State v							4	
possibilities for hazards, which can reduce the pertormance increase, were described. State	possibilities for hazards, which can reduce the performance increase, were described. State v						* · •		
possibilities for hazards, which can reduce the performance increase, were described. State	possibilities for hazards, which can reduce the performance increase, were described. State v								
ossibilities for hazards, which can reduce the performance increase, were described. State	possibilities for hazards, which can reduce the performance increase, were described. State v								-
		nazards are p	possible an	id give a c	omplete defi	nition for <i>one</i> (of them (you	choice).	
								•	
							•		

	•								

calculated i						···
·	•					•
			•			
						•
				· .		
	·	4,				
c) [2] When ev	valuating the per	rformance o	f a pipeline,	we calculate t	he possible spee	dup as the rati
		Sr	$peedup = \frac{T}{T_p}$	serial		•
			•	•		
What is the	speedup that ca	an be obtain	ed using the	pipeline of p	art (b)?	
			 			
•					•	
			-			
						•
					•	
1) [1] In oone		. 1 1	1 . 1			
r) [r] m Sener	al, the speedup	can be calcu	lated as: T	M		
•		Speedup	$= \frac{T_{serial}}{T_{pipeline}}$	$=\frac{m\times N}{m+N-1}$		
where m de	notes the numb	er of stages i	n a pipeline	and N denote	es the number of	items to be pro
cessed. If or	ne assumes that .	$N \gg m$, wha	it can you sa	y about the as	symptotic speed	up which could
be obtained	in theory?					
	·					
		•				
						,
						·
•	•					
					,	
	1		·			

Question 18. [3] Circle the correct value returned in R0 after executing the following code segment:

.equ P,6 LDR. R9,#1 LDR R8,#P CMP R8,#0

BEQ Done

Loop: MOV R9, R9, ASL #1

SUBS R8, R8, #1 ..

BNE Loop

Done:

MOV RO, R9

(a) $R0 = 10^6$ (b) $R0 = 2^6$ (c) $R0 = 10^{-6}$ (d) $R0 = 2^{-6}$ (e) R0 = 2*6

Question 19. [15] The subroutine *Identity* is required to initialize the elements of a $N \times N$ matrix to be all zeroes, except for the elements along the diagonal which are initialized to one. For example, a 3×3 matrix should be initialized to the values shown on the right. The maximum size for any matrix was given as: #define MAXSIZE.

1 0 0 0 1 0

0 0 1

(a) [5] Give the C code for the *Identity* subroutine. It is called with two parameters: the address of a $N \times N$ matrix of integers and the value of N.

(b) [10] Give ARM code for the *Identity* subroutine. The address of the matrix is passed in R1 and N is passed in R2. No result is returned in any register. The matrix elements are arranged consecutively in memory so that an element A[i, j] has the address $A + (i \times N + j) \times 4$, where $0 \le i < N$, $0 \le j < N$.

```
0 \le j < N.
@ Identity(MatrixAddress, N)
     initializes a N by N matrix at address MatrixAddress to be
     an identity matrix. On entry, R1 = MatrixAddress, R2 = N.
Identity:
     stmfd sp!,{r0-r10,lr} ; save all registers
                            ; restore registers and return
     ldmfd sp!, {r0-r10,pc}
```

C 230	
APPENDIA CSC 23	

Operation	a Assembler -	Action		Addressi
Move	MOV{S} Rd, <oprnd2></oprnd2>	Rd := Oprnd2 {CPSR}	Pre-indexed	Immediate
	MVN{S} Rd, <opmd2></opmd2>	Rd := NOT Oprnd2 {CPSR}		Zero offset
Arithmetic	ADD{S} Rd, Rn, <opmd2></opmd2>	Rd := Rn + Oprnd2 {CPSR}		Register of
	ADC{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn + Oprnd2 + Carry {CPSR}		Scaled regi
	SUB{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn - Opmd2 {CPSR}		
, -	SBC{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn + Oprnd2 + Carry {CPSR}		
,	RSB{S} Rd, Rn, <opmd2></opmd2>	Rd := Oprnd2 - Rn {CPSR}		
	RSC{S} Rd, Rn, <opmd2></opmd2>	Rd := Oprnd2 - Rn - NOTCarry {CPSR}		
	MUL{S} Rd, Rm, Rs	Rd := Rm * Rs {CPSR}	Post-indexed	Immediate
	MLA{S} Rd, Rm, Rs, Rn	Rd := Rm * Rs + Rn {CPSR}		Register of
· 	CLZ Rd, Rm	Rd := # leading zero in Rm		Zero offset
Logical	AND{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn AND Oprnd2 {CPSR}		Scaled regis
	EOR{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn EXOR Oprnd2 {CPSR}	-	
	ORR{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn OR Oprnd2 {CPSR}	•	
	TST Rn, <oprnd2></oprnd2>	Update CPSR on Rn AND Oprnd2		
_	TEQ Rn, <oprnd2></oprnd2>	Update CPSR on Rn EOR Oprnd2		
-	BIC{S} Rd, Rn, <0pmd2>	Rd := Rn AND NOT Oprnd2 {CPSR}		
	NOP	R0 := R0		
Compare	CMP Rd, <opmd2></opmd2>	Update CPSR on Rn - Oprnd2		{cond}
Branch	B{cond} label	R15 := label		<oprnd2></oprnd2>
• .	BL{cond} label	R14 := R15-4; R15 := label		{s}
Swap	SWP Rd, Rm	temp := Rn; Rn := Rm; Rd := temp		<immed></immed>
Load	LDR Rd, <a_mode2></a_mode2>	Rd := address		<a mode2="">
	LDM <a_mode4l> Rd{!}, <reglist></reglist></a_mode4l>	Load list of registers from [Rd]		<a_mode4></a_mode4>
Store	STR Rd, <a_mode2></a_mode2>	[address]:= Rd		<re>freglist></re>
	STM <a_mode4s> Rd{!}, <reglist></reglist></a_mode4s>	Store list of registers to [Rd]	٠	{i}
SWI	SWI <immed_24></immed_24>	Software Interrupt		

			San
Addressing Mode	Mode 2	- Data Transfer	
Immediate offset	ßet	[Rn, #+/- <immed_12>]{!}</immed_12>	{i}
Zero offiset		[Rn]	
Register offset	,	[Rn, +/-Rm]{!}	
Scaled register offset	r offset	[Rn, +/-Rm, LSL # <immed_5>]{!}</immed_5>	med_5>]{!}
	,	[Rn, +/-Rm, LSR# <immed< td=""><td>ned_5>]{!}</td></immed<>	ned_5>]{!}
		[Rn, +/-Rm, ASR # <immed< td=""><td>med_5>]{!}</td></immed<>	med_5>]{!}
		[Rn, +/-Rm, ROR # <immed_5>]{!}</immed_5>	med_5>]{!}
		[Rn, +/-Rm, RRX]{!}	•
Immediate offset	set	[Rn], #+/- <immed_12></immed_12>	
Register offset		[Rn], +/-Rm	•
Zero offset		[Rn]	
Scaled register offset	r offset	[Rn], +/-Rm, LSL # <immed< td=""><td>med_5></td></immed<>	med_5>
	-	[Rn], +/-Rm, LSR # <immed< td=""><td>med_5></td></immed<>	med_5>
		[Rn], +/-Rm, ASR # <immed< td=""><td>ımed_5></td></immed<>	ımed_5>
		[Rn], +/-Rm, ROR # <immed< td=""><td>nmed_5></td></immed<>	nmed_5>
		[Rn], +/-Rm, RRX	
	Key to tables	ples	
{cond}	See Co	See Condition Field	
<oprnd2></oprnd2>	See Op	Operand 2	
{s}	Update	Updates CPSR if present	

_	Key to tables
{cond}	See Condition Field
<oprnd2></oprnd2>	See Operand 2
{S}	Updates CPSR if present
<immed></immed>	Constant
<a_mode2></a_mode2>	See Addressing Mode 2
<a_mode4></a_mode4>	See Addressing Mode 4
<re>creglist></re>	List of registers with commas
{I}	Updates base register if present

1
D
5
ŗ
<u>-</u>
۵
ñ
1
J
S
Ú

¹ dO	Operand 2
Immediate value	# <immed_8></immed_8>
Logical shift left immediate	Rm, LSL # <immed_5></immed_5>
Logical shift right immediate	Rm, LSR # <immed_5></immed_5>
Arithmetic shift right immediate	Rm, ASR # <immed_5></immed_5>
Rotate right immediate	Rm, ROR # <immed_5></immed_5>
Register	Rm
Rotate right extended	Rm, RRX
Logical shift left register	Rm, LSL Rs
Logical shift right register	Rm, LSR Rs
Arithmetic shift right register	Rm, ASR Rs
Rotate right register	Rm, ROR Rs

			,									,	,		٠.
Condition Field	Equal	Not equal	Carry Set	Carry clear	Negative	Positive or zero	Overflow	No overflow	Unsigned higher	Unsigned lower or same	Signed greater or equal	Signed less than	Signed greater than	Signed less than or equal	Always
	БЭ	NE	SD.	2	MI	PL	SA	ΛC	ΙΗ	LS	GE	ដ	GT	王工	ΑΓ

, , , , , , , , , , , , , , , , , , ,	r	ĭ		í	<u>.</u>	ı			 	,			ï			
Hex	. 00	10	05	03	40	05	90	07	80	60	Ý0	OB	႘	6	OE.	OF
Bin	00000000	00000001	00000010	00000011	000000100	00000101	000000110	00000111	00001000	00001001	00001010	00001011	00001100	00001101	00001110	00001111
Dec	0	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15

¥	Addressing Mode 4 - Multiple Data Transfer	Multipl	e Data Transfer	
Block load	load	Stack pop	dod	
ΨI	Increment After	FD	Full Descending	
æ	Increment Before	αа	Empty Descending	
DÀ	Decrement After	FA	Full Ascending	
DB	Decrement Before	EA	Empty Ascending	
Block store	store	Stack push	push	Q
IA	Increment After	EA	Empty Ascending	0
IB	Increment Before	FA	Full Ascending	-
DA	Decrement After	ЕD	Empty Descending	7
.DB	Decrement Before	FD	Full Descending	ú"

BIN	Н	D	BIN	н	Q	BIN	Ħ	O	BIN	Ħ	
00 00000000	00	4	. 000000100	04	8	000010000	08 12	12	00001100	၁၀	
00000001 01	01	5	00000101	05	6	00001001	60	13	00001101	00	
 00000010	02	9	00000110 06 10	06	10	01010000	0A 14	14	00001110	0E	·
00000011	03	7	00000111 07 11	07		00001011	0B 15	15	00001111	0F	

0	Operand 2
Immediate value	# <immed_8></immed_8>
Logical shift left immediate	Rm, LSL # <immed_5></immed_5>
Logical shift right immediate	Rm, LSR # <immed_5></immed_5>
Arithmetic shift right immediate	Rm, ASR # <immed_5></immed_5>
Rotate right immediate	Rm, ROR # <immed_5></immed_5>
Register	Rm
Rotate right extended	Rm, RRX
Logical shift left register	Rm, LSL Rs
Logical shift right register	Rm, LSR Rs
Arithmetic shift right register	Rm, ASR Rs
Rotate right register	Rm, ROR Rs

(Sc 230 page 2

|--|

															•	
Hex	00	01	02	03	04	05	90	70	80	60	0,A	0B	ပွ	00	0E	0F
Bin	00000000	0000000	00000010	00000011	000000100	00000101	00000110	00000111	000010000	00001001	00001010	00001011	00001100	00001101	00001110	00001111
рес	0	1	2	3	4	5	9		8	6	10	11	12	13	14	15

Block load IA Incr IB Incr DA Dec			
		Stack pop	dod
	Increment After	FD	Full Descending
	Increment Before	ED	Empty Descending
H	Decrement After	FA	Full Ascending
-	Decrement Before	EA	Empty Ascending
Block store		Stack push	push
IA Incr	Increment After	EĄ	Empty Ascending
IB Incr	Increment Before	FA	Full Ascending
DA Deci	Decrement After	ED	Empty Descending
.DB Dec	Decrement Before	FD	Full Descending

Q	BIN	Н	н р	BIN	нр	Ω	BIN	н р	O	BIN	н
0	00000000	00	4	00 4 . 00000100 04	04	8	000010000	80	12	12 00001100	သ
1	00000001	01 5	5	00000101 05	05	6	00001001 09 13 00001101	60	13		O)
2	00000010	0.2	9	000000110 06	90	10	00001010 0A 14 00001110	0A	14	00001110	<u></u> 田
6	00000011	03	7	00000111	07	11	11 00001011	0B	15	0B 15 00001111	0F