实验安排

数字逻辑电路课程有16个学时的实验,初步安排如下:

计算机1班 第8,10周 周三上午 1-4 (8:00-11:40)

计算机2班 第9,11周 周三上午 1-4 (8:00-11:40)

计算机3班 第9-12周 周二的下午5-6节

计算机4班 第10-13周 周一晚上 9-10 (19:00-20:50)

计算机5班 第9-12周 周三晚上9-10 (19:00-20:50)

物联网1班 第8,10周 周三下午5-8 (14:00-17:40)

物联网2班 第9,11周 周三下午5-8 (14:00-17:40)

计算机1班 第13,14周 周二上午4节 (8:00-11:40) 计算机2班 第13,14周 周二下午4节 (14:00-17:40) 计算机3班 第13,14周 周二晚上4节 (18:30-22:10) 计算机4班 第13,14周 周四上午4节 (8:00-11:40) 计算机5班 第13,14周 周四下午4节 (14:00-17:40) 物联网1班 第13,14周 周三下午4节 (14:00-17:40) 物联网2班 第13,14周 周三晚上4节(18:30-22:10) 实验设备台套数有限,所以一次只能安排一个班实验。

实验地点:综合实验楼305房间

第四章作业布置

本次(3月28号)作业要求: 每个同学自己从第四章的课后习题中选3题做到作业本中,至于做哪3 题,每个同学自己选择。不作硬性规定。我在检查作业时,只看是否做了4题。 (从你购买的课本上选题做就可以了。)

数字逻辑

丁贤庆

ahhfdxq@163.com

4、减法运算

$$N_{\uparrow \downarrow} = N_{\Sigma} + 1$$

设两个数A、B相减,利用以上两式可得

$$A - B = A + B_{\uparrow \uparrow} - 2^n = A + B_{\boxtimes} + 1 - 2^n$$

在实际应用中,通常是将减法运算变为加法运算来处理,即采用加补码的方法完成减法运算。

1) A-B ≥ 0的情况。

A=0101 , B=0010

2) A-B<0的情况。

A = 0001 , B = 0101

舍弃

当 $A-B \ge 0$ 时,舍弃的进位为1,所得结果就是差的原码,不需再求反补。

当A-B<0时,舍弃的进位为0,所得结果是补码,要得到原码需再求补。

0 1 1 0 1

舍弃

输出为原码的4位减法运算逻辑图

4.5 组合可编程逻辑器件

4.5.1 PLD的结构、表示方法及分类

4.5.2 组合逻辑电路的PLD实现

4.5 组合可编程逻辑器件

可编程逻辑器件是一种可以由用户定义和设置 逻辑功能的器件。该类器件具有逻辑功能实现 灵活、集成度高、处理速度快和可靠性高等特点。

4.5.1 PLD的结构、表示方法及分类

1、PLD的基本结构

- 可由或阵列直接输出,构成组合输出;
- 通过寄存器输出,构成时序方式输出。

输出

(b)

或

阵列

2. PLD的逻辑符号表示方法

(1) 连接的方式

硬线连接单元

被编程接通单

被编程擦除单元

(2)基本门电路的表示方式

输出恒等于0的与门

输出为1的与门

输入缓冲器

(3) 编程连接技术

PLD表示的与门 A B C D L +++ +- L

 $A \times B \times C$ 有一个输入低电平0V 5V

 $A \times B \times C$ 三个都输入高电平+5V

$$L=A \cdot B \cdot C$$

A、B、C中有一个为0

输出为0;

A、B、C 都为1 输出为1。

L=ABC

L=AC

器件的开关状态不同, 电路实现逻辑函数也就不同

(4) 浮栅MOS管开关

叠栅注入MOS(SIMOS)管

浮栅MOS管

浮栅隧道氧化层MOS(Flotox MOS)管

快闪(Flash)叠栅MOS管

用不同的浮栅MOS管连接的PLD,编程信息的擦除方法也不同。SIMOS管连接的PLD,采用紫外光照射擦除; Flotox MOS管和快闪叠栅MOS管,采用电擦除方法。

a.叠栅注入MOS(SIMOS)管

当浮栅上没有电荷时,给控制栅加上大于V_{T1}的控制电压, MOS管导通。

若要擦除,可用紫外线或X射线,距管子2厘米处照射15-20分钟。

截止

漏极d 源极 s 控制栅 gc **GND 5V 5V** N^+ 浮栅 gf P 型衬底

导通

b.浮栅隧道氧化层MOS(Flotox MOS)管

浮栅延长区与漏区N+之间的交叠处有一个厚度约为80A(埃)的薄绝缘层——遂道区。

当遂道区的电场强度大到一定程 度,使漏区与浮栅间出现导电遂道, 形成电流将浮栅电荷泄放掉。

> 遂道MOS管是用电擦除的, 擦除速度快。

c.快闪叠栅MOS管开关(Flash Memory)(自学)

结构特点:

- 1.闪速存储器存储单元MOS管的源极N+区大于漏极N+区,而SIMOS管的源极N+区和漏极N+区是对称的;
 - 2. 浮栅到P型衬底间的氧化绝缘层 比SIMOS管的更薄。

特点:结构简单、集成度高、编程可靠、擦除快捷。

3.PLD的分类

(1) 按集成密度划分为

(2) 按结构特点划分

■简单PLD (PAL, GAL)

■复杂的可编程器件(CPLD):

CPLD的代表芯片如: Altera的MAX系列

■现场可编程门阵列(FPGA)

(3) 按PLD中的与、或阵列是否编程分

PLD中的三种与、或阵列

4.5.2 组合逻辑电路的 PLD 实现

例1 由PLA构成的逻辑电路如图 所示,试写出该电路的逻辑表达式, 并确定其逻辑功能。

写出该电路的逻辑表达式:

全加器

试写出该电路的逻辑表达式。

$$L_0 = \overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D$$

$$L_1 = B\overline{C}\overline{D} + \overline{A}\overline{B}\overline{D} + \overline{A}BC$$

$$L_2 = B\overline{C}\overline{D} + \overline{B}\overline{C}D$$

$$L_3 = L_0 + A\overline{B}C + \overline{A}BD$$

4.6 用VerilogHDL描述组合逻辑电路

4.6.1 组合逻辑电路的行为级建模

4.6.2 分模块、分层次的电路设计

4.6.1 组合逻辑电路的行为级建模

组合逻辑电路的行为级描述一般使用assign结构和过程

赋值语句、条件语句(if-else)、多路分支语句(case-

endcase) 和for循环语句等。

1、条件语句(if语句)

条件语句就是根据判断条件是否成立,确定下一步的运算。 Verilog语言中有3种形式的if语句:

- (1) if (condition_expr) true_statement;
 - (2) if (condition_expr)true_statement; else fale_statement;
 - (3) if (condition_expr1) true_statement1; else if (condition_expr2) true_statement2; else if (condition_expr3) true_statement3;

else default statement;

if后面的条件表达式一般为逻辑表达式或关系表达式。执行if语句时,首先计算表达式的值,若结果为0、x或z,按"假"处理;若结果为1,按"真"处理,并执行相应的语句。

例:使用if-else语句对4选1数据选择器的行为进行描述

module mux4to1_bh(D, S, Y);
input [3:0] D; //输入端口
input [1:0] S; //输入端口
output reg Y; //输出端口及变量数据类型
always @(D, S) //电路功能描述
if (S == 2'b00) Y = D[0];
else if (S== 2'b01) Y = D[1];
else if (S== 2'b10) Y = D[2];
else Y = D[3];
endmodule

注意,过程赋值语句只能给寄存器型变量赋值,因此,输出 变量Y的数据类型定义为reg。

2、多路分支语句(case语句)

是一种多分支条件选择语句,一般形式如下 case (case_expr)

item expr1: statement1;

item_expr2: statement2;

• • • • • •

default: default_statement; //default语句可以省略 endcase

注意: 当分支项中的语句是多条语句,必须在最前面写上 关键词begin,在最后写上关键词end,成为顺序语句块。

另外,用关键词casex和casez表示含有无关项x和高阻z的情况。

例:对具有使能端En的4选1数据选择器的行为进行Verilog描述。 当En=0时,数据选择器工作,En=1时,禁止工作,输出为0。

```
module mux4to1 bh (D, S, Y);
       input [3:0] D, [1:0] S;
          output reg Y;
always @(D, S, En) //2001, 2005 syntax
               begin
if (En==1) Y = 0; //En=1时, 输出为0
        //En=0时,选择器工作
  else
               case (S)
            2'd0: Y = D[0];
            2'd1: Y = D[1];
            2'd2: Y = D[2];
            2'd3: Y = D[3];
               endcase
               end
            endmodule
```

例:对基本的4线-2线优先编码器的行为进行Verilog描述。

```
module priority(W, Y)
                   input [3:0] W;
                 output reg [1:0] Y;
                    always @(W)
                       casex (W)
                     4'b1xxx: Y = 3;
                     4'b01xx: Y = 2;
                     4'b001x: Y = 1;
                     4'b0001: Y =0;;
default: begin z = 0; Y=2'bx; end //W无效时,z=0,Y为高阻
                        endcase
                   endendmodule
```


3、for循环语句

一般形式如下

for (initial_assignment; condition; step_assignment) statement;

initial_assignment为循环变量的初始值。

Condition为循环的条件,若为真,执行过程赋值语句statement,若不成立,循环结束,执行for后面的语句。

step_assignment为循环变量的步长,每次迭代后,循环变量将增力或减少一个步长。

试用Verilog语言描述具有高电平使能的3线-8线译码器.

```
module ecoder3to8 bh(A,En,Y);
            input [2:0] A, En;
            output reg [7:0]Y;
     integer k; //声明一个整型变量k
           always @(A, En) //
                  begin
   Y=8'b1111 1111; //设译码器输出的默认值
for(k = 0; k <= 7; k = k+1) //下面的if-else语句循环8次
            if ((En==1) & & (A==k))
        Y[k] = 0; //当En=1时,根据A进行译码
                     else
      Y[k] = 1; //处理使能无效或输入无效的情况
                   end
              endmodule
```

例:用条件运算符描述了一个2选1的数据选择器。

```
module mux2x1_df (A,B,SEL,L);
input A,B,SEL;
output L;
assign L = SEL ? A : B;
endmodule
```

在连续赋值语句中,如果SEL=1,则输出L=A;否则L=B。

module mux2x1_df (A,B,SEL,L);
input A,B,SEL;
output reg Y;
always @(D1,D0,S) //用always语句和条件运算符建模
L=S?D1:D0;
endmodule

例:用数据流建模方法对2 线-4线译码器的行为进行 描述。

module decoder_df (A1,A0,E,Y);
 input A1,A0,E;
 output [3:0] Y;

assign Y[0] = ~(~A1 & ~A0 & ~E);

assign Y[1] = ~(~A1 & A0 & ~E);

assign Y[2] = ~(A1 & ~A0 & ~E);

assign Y[3] = ~(A1 & A0 & ~E);

endmodule

4.6.2 分模块、分层次的电路设计

分层次的电路设计:在电路设计中,将两个或多个模块组合起来描述电路逻辑功能的设计方法。

设计方法: 自顶向下和自底向上两种常用的设计方法

module halfadder (S,C,A,B);
input A,B;
output S,C;
xor (S,A,B);
and (C,A,B);
endmodule

module fulladder (S,CO,A,B,CI); input A,B,CI; output S,CO; wire S1,D1,D2; //内部节点信号 halfadder HA1 (S1,D1,A,B); halfadder HA2 (S,D2,S1,CI) or g1(CO,D2,D1); endmodule

全加器的描述-调用半加器


```
module 4bit adder (S,C3,A,B,C 1);
            input [3:0] A,B;
               input C 1;
             output [3:0] S;
               output C3;
   wire C0,C1,C2; //内部进位信号
  fulladder FA0 (S[0],C0,A[0],B[0],C_1),
              FA1 (S[1],C1,A[1],B[1],C0),
              FA2 (S[2],C2,A[2],B[2],C1),
FA3 (S[3],C3,A[3],B[3],C2);
              endmodule
```

4位全加器的描述 --调用1位全加器

第五章

锁存器和触发器

时序逻辑电路概述

1、时序逻辑电路与锁存器、触发器:

时序逻辑电路:

工作特征: 时序逻辑电路的工作特点是任意时刻的输出状态不

仅与该当前的输入信号有关,而且与此前电路的状态有关。

结构特征:由组合逻辑电路和存储电路组成,电路中存在反馈。

锁存器和触发器是构成时序逻辑电路的基本逻辑单元。

2、锁存器与触发器

共同点:具有0和1两个稳定状态,一旦状态被确定,就能自行保持。一个锁存器或触发器能存储一位二进制码。

不同点:

锁存器**---对脉冲电平敏感的**存储 电路,在特定输入脉冲电平作用下 改变状态。

触发器---对脉冲边沿敏感的存储电路,在时钟脉冲的上升沿或下降沿的变化瞬间改变状态。

5.1 双稳态电路

5.1.1 双稳态的概念

5.1.2 最基本的双稳态电路

5.1 双稳态电路

5.1.1 双稳态的概念

5.1.2 最基本的双稳态电路

1. 电路结构

2、数字逻辑分析

——电路具有记忆1位二进制数据的功能。

3. 模拟特性分析

$$\upsilon_{01} = \upsilon_{12}$$
 $\upsilon_{11} = \upsilon_{02}$

5.2 SR锁存器

5.2.1 基本SR 锁存器

5.2.2 <u>门控SR锁存器</u>

5.2 SR锁存器

5.2.1基本SR 锁存器

1. 工作原理

现态: R、S信号作用前Q端的 次态: R、S信号作用后Q端的 状态, 现态用Q "表示。 状态, 次态用Q "+1表示。

1. 工作原理

R=0, S=0

状态不变

若现态 $Q^{n=0}$

R=0、S=1 置1

无论现态Q "为0或1,锁存器的次态为1态。 信号消失后新的状态将被记忆下来。

若现态 $Q^{n=1}$

若现态 $Q^{n=0}$

R=1、S=0 置0

无论现态 Q^n 为0或1,锁存器的次态为0态。 信号消失后新的状态将被记忆下来。

若现态 $Q^{n=0}$

无论现态 Q^n 为0或1,触发器的次态 Q^n 、 Q^n 都为0。

触发器的输出既不是0态,也不是1态

当*S、R*同时回到0时,由于两个与非门的延迟时间无法确定,使得触发器最终稳定状态也不能确定。

约束条件: SR = 0

工作波形

2. 基本SR锁存器的动态特性

 t_{pLH} 和 t_{pHL} 分别为输出由高到低和由低到高时,相对于输入的延迟时间。

脉冲宽度 t_{W} : 如果输入脉冲宽度 $< t_{W}$,Q未越过介稳态点,S端信号撤出,会使输出状态不稳定。图中 t_{W1} 和 t_{W2} 均 $> t_{W}$ 。

3. 用与非门构成的基本SR锁存器

a.电路图

b. 功能表

c.国标逻辑符号

- R	\overline{S}	Q	\overline{Q}
1	1	不变	不变
1	0	1	0
0	1	0	1
0	0	1	1

约束条件:

$$\overline{S} + \overline{R} = 1$$

例 运用基本SR锁存器消除机械开关触点抖动引起的脉冲输出。

5.2.2 门控SR 锁存器

1. 电路结构

简单SR锁存器

国标逻辑符号

使能信号控制门电路

2、工作原理

$$E=0$$
: 状态不变

$$E=1$$
: $Q_3=S$ $Q_4=R$ 状态发生变化。

$$S=0$$
, $R=0$: $Q^{n+1}=Q^n$

$$S=1$$
, $R=0$: $Q^{n+1}=1$

$$S=0$$
, $R=1$: $Q^{n+1}=0$

$$S=1$$
, $R=1$: $Q^{n+1}=\Phi$

例:逻辑门控SR锁存器的E、S、R的波形如下图虚线上边所示,锁存器的原始状态为Q=0,试画出 Q_3 、 Q_4 、Q和 \overline{Q} 的波形。

5.3 D锁存器

5.3.1 D锁存器的电路结构

5.3.2 典型的D锁存器集成电路

5.3.3 D 锁存器的动态特性

5.3.1 D锁存器的电路结构

- 1. 传输门控D锁存器
- (1) 逻辑电路图

逻辑符号

(2)工作原理

(a) E=1时

TG₁导通, TG₂断开

Q = D

(b) E=0时

TG₂导通, TG₁断开

Q不变

(3) 逻辑功能

D锁存器的功能表

E	D	Q	$ar{ar{arrho}}$	功能
0	×	不变	不变	保持
1	0	0	1	置0
1	1	1	0	置1

Q不变

 $Q = \mathbf{D}$

(4) 工作波形

2. 逻辑门控D锁存器

逻辑电路图

D锁存器的功能表

E	D	Q	$ar{oldsymbol{arrho}}$	功能
0	×	不变	不变	保持
1	0	0	1	置0
1	1	1	0	置1

$$E=0$$
 Q不变

$$E=1$$
 $D=0$

$$S=0$$
 $R=1$

$$Q = 0$$

$$S=1$$
 $R=0$

$$Q = 1$$

5.3.2 典型的D锁存器集成电路

74HC/HCT373 八D锁存器

74HC/HCT373的功能表

工作模式	输入			内部锁存器	输出
上下快入	OE	LE	D_n	状 态	Q_n
使能和读锁存	L	H	L	L	L
器 (传送模式)	L	Н	Н	Н	Н
锁存和读锁存	L	L	L*	L	L
器	L	L	H*	Н	Н
锁存和禁止输	H	×	×	×	高阻
出	H	×	×	×	高阻

L*和H*表示门控电平LE由高变低之前瞬间 D_n 的逻辑电平。

5.3.3 D锁存器的动态特性

定时图:表示电路动作过程中,对各输入信号的时间要求以及输出对输入信号的响应时间。

有建立时间t_{SU}、保持时间t_U、脉冲宽度t_W等。

5.4 触发器的电路结构和工作原理

- 5.4.1 主从D触发器的电路结构和工作原理
- 5.4.2 典型主从D触发器集成电路
- 5.4.3 主从D触发器的动态特性
- 5.4.4 其他电路结构的触发器

5.4 触发器的电路结构和工作原理

1. 锁存器与触发器

锁存器在E的高(低)电平期间 对信号敏感

触发器在CP的上升沿(下降 沿)对信号敏感

在VerilogHDL中对锁存器与触发器的描述语句是不同的

5.4 触发器的电路结构和工作原理

5.4.1 主从D触发器的电路结构和工作原理

1. 电路结构

主锁存器与从锁存器结 构相同

 TG_1 和 TG_4 的工作状态相同

 TG_2 和 TG_3 的工作状态相同

2. 工作原理

(1) CP=0时:

$$\overline{C}$$
 =1, C =0,

TG₁导通,TG₂断开——输入信号D 送入主锁存器。

Q'跟随D端的状态变化,使Q'=D。

 TG_3 断开, TG_4 导通——从锁存器维持在原来的状态不变。

2. 工作原理

(2) CP由0跳变到1:

$$\overline{C}$$
 =0, C =1,

TG₁断开,TG₂导通——输入信号D 不能送入主锁存器。 主锁存器维持原态不变。

 TG_3 导通, TG_4 断开——从锁存器Q'的信号送Q端。

触发器的状态仅仅取决于CP信号上升沿到达前瞬间的D信号

5.4.2 典型主从D触发器集成电路

74HC/HCT74 中D触发器的逻辑图

74HC/HCT74的逻辑符号和功能表

74HC/HCT74的功能表

国标逻辑符号

	输	输 出			
$\overline{S}_{\mathrm{D}}$	$\overline{R}_{\mathrm{D}}$	CP	D	Q	\overline{Q}
L	H	X	X	Н	L
H	L	×	×	L	Н
L	L	×	×	H	Н
$\overline{\overline{S}}_{\mathrm{D}}$	$\overline{R}_{ m D}$	CP	D	Q^{n+1}	\overline{Q}^{n+1}
Н	Н	1	L	L	Н
H	Н	1	Н	Н	L

具有直接置1、直接置0,正边沿触发的D功能触发器

5.4.3 主从D触发器的动态特性

动态特性反映其触发器对输入信号和时钟信号间的时间要求,以及输出状态对时钟信号响应的延迟时间。

建立时间 t_{SU} ,保证与D 相关的电路建立起稳定的状态,使触发器状态得到正确的转换。

保持时间 $t_{\rm H}$: 保证D状态可靠地传送到Q

触发脉冲宽度 t_{w} : 保证内部各门正确翻转。

传输延迟时间 t_{PLH} 和 t_{PHL} : 时钟脉冲CP上升沿至输出端新状态稳定建立起来的时间

最高触发频率 f_{cmax} :触发器内部都要完成一系列动作,需要一定的时间延迟,所以对于CP最高工作频率有一个限制。

5.4.4 其他电路结构的触发器

1. 维持阻塞触发器

2、工作原理

$$CP = 0$$

$$Q_4 = \overline{D} \quad Q_1 = D$$

$$Q^{n+1} = Q^n$$

D信号存于 Q_4

D 信号进入触发器, 为状态刷新作好准备

当CP 由0 跳变为1 $Q^{n+1} = D$

$$Q^{n+1} = D$$

在CP脉冲的上升沿,触法器按此前的D信号刷新

当CP = 1

D信号不影响 \overline{S} 、 \overline{R} 的状态,Q的状态不变

在CP脉冲的上升沿到来瞬间使触发器的状态变化

