

PROGRAM MANAGER. RMA CONTAMINATION CLEANUP

U.S. ARMY MATERIEL COMMAND

COMMITTED TO PROTECTION OF THE ENVIRONMENT —

COMPREHENSIVE MONITORING PROGRAM

Contract Number DAAA15-87-0095

FINAL SURFACE WATER DATA ASSESSMENT REPORT FOR 1989

JUNE 1990

Version 2.0

Volume V

Acces

R.L. STOLLAR & ASSOCIATES, INC.

Harding Lawson Associates
Ebasco Services Incorporated
DataChem, Inc.
Enseco-Cal Lab
Midwest Research Institute

REQUESTS FOR COPIES OF THIS OPCUMENT
SHOULD BE REFERRED TO THE PROGRAM MANAGER
FOR THE ROCKY MOUNTAINARGENAL CONTAMINATION CLBANUP,
AMXRM ABERDEEN PROVING GROUND, MARYLAND

DTIC QUALITY INSPECTED 3

19950613 161

Contract Number DAAA15-87-0095

FINAL SURFACE WATER DATA ASSESSMENT REPORT FOR 1989

JUNE 1990

Version 2.0

Volume V

APPENDIX B

(Appendices B-1 to B-7)

Prepared by:

R. L. STOLLAR & ASSOCIATES INC.
HARDING LAWSON ASSOCIATES
EBASCO SERVICES INC.
DATACHEM,INC.

ENVIRONMENTAL SCIENCE ENGINEERING, INC. RIVERSIDE TECHNOLOGY, INC.

U. S. ARMY PROGRAM MANAGER FOR ROCKY MOUNTAIN ARSENAL

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

THE USE OF TRADE NAMES IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS. THE REPORT MAY NOT BE CITED FOR PURPOSES OF ADVERTISEMENT.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 06/00/90 3. REPORT TYPE AND DATES	COVERED
4. TITLE AND SUBTITLE COMPREHENSIVE MONITORING PROGRAM, FINAL SURFACE WATER DATA ASSESSMENT REPORT FOR 1989, VERSION 2.0 5. FUN	DING NUMBERS
6. AUTHOR(S) DAAA1	5 87 0095
	ORMING ORGANIZATION
ROBERT L. STOLLAR AND ASSOCIATES DENVER, CO	91343R01
	NSORING/MONITORING NCY REPORT NUMBER
11. SUPPLEMENTARY NOTES	
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DI	STRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED	
THE 1989 SURFACE WATER REPORT IS DIVIDED INTO SIX SECTIONS AN APPENDICES. SECTION 1 PROVIDES A GENERAL HISTORICAL REVIEW OF TO THE RMA. THE HISTORICAL ROLE OF SURFACE WATER FEATURES AT REST OF RMA INDUSTRIAL ACTIVITIES ON SURFACE SYSTEM MORPHOLOGY, AND TO DRAINAGE BASINS THAT EXIST ON RMA ARE PRESENTED IN SECTION 2. SECTION 4 PRESENTS THE WATER QUALITY AND QUANTITY DATA COLLECTED YEAR 1989. SECTION 5 INTERPRETS THE COLLECTED SURFACE WATER DATA PROVIDES CONCLUSIONS AND A DETAILED SUMMARY OF FY89 RESULTS. APPENDIX A INCLUDES INFORMATION RELATED TO SURFACE WATER QUANTITY INCLUDES INFORMATION RELATED TO SURFACE WATER QUANTITY.	THE DEVELOPMENT AA, THE EFFECTS THE MAJOR SECTION 3 PROVIDE D METHODOLOGIES. D DURING FISCAL TA. SECTION 6
14. SUBJECT TERMS	15. NUMBER OF PAGES
CONTAMINANTS, SAMPLING, DRAINAGE BASINS	16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION	

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

TABLE OF CONTENTS

				PAG	ŧΕ
VOLUME I					
EXECUTIVE	E SUMM	IARY			
1.0 INTROD	OUCTIO	N			1
1.1 1.2	Site Ba Surfac	ackground e-Water N		rogram Objectives and Activities	1 2
	1.2.1 1.2.2	FY88 Pro FY89 Pro	ogram Activi ogram Activi	itiesities	2 4
1.3	RMA	Surface-W	ater Investig	gations	5
	1.3.1 1.3.2				14 17
		1.3.2.1 1.3.2.2 1.3.2.3 1.3.2.4	Sampling A Remedial I	Activities During the Remedial Investigation	18 18 18 20
			1.3.2.4.2 1.3.2.4.3 1.3.2.4.4 1.3.2.4.5 1.3.2.4.6	South Plants Study Area Eastern Study Area Central Study Area North Plants Study Area North-Central Study Area	20 20 20 20 21 21
		1.3.2.5	Fiscal Year	r 1988 CMP Results	21
			1.3.2.5.2 1.3.2.5.3 1.3.2.5.4 1.3.2.5.5	GC/MS Detections	22 22 22 27 27 27
		1.3.2.6	Historical l	Data Base for Surface-Water Quality at RMA 2	27
			1.3.2.6.2 1.3.2.6.3	Intended Use	27 30 30 34
	1.3.3 1.3.4			• • • • • • • • • • • • • • • • • • • •	43 43
2.0 ENVIRC	NMEN	TAL SETT	TING		45

2.1 2.2 2.3	Groun	d-Water F	Hydrology	45 46 47
	2.3.1	Drainage	Basins	47
		2.3.1.1 2.3.1.2 2.3.1.3 2.3.1.4 2.3.1.5	First Creek Drainage Basin Second Creek Drainage Sand Creek Drainage South Platte Drainage Basin Irondale Gulch Drainage Basin	47 52 53 54 54
	2.3.2	Other Su	rface-Water Features	55
		2.3.2.1 2.3.2.2	Diversion Channels and Ditches	55 58
			2.3.2.2.1 Upper Derby Lake 2.3.2.2.2 Lower Derby Lake 2.3.2.2.3 Ladora Lake 2.3.2.2.4 Lake Mary 2.3.2.2.5 Rod and Gun Club Pond	59 59 60 61 61
		2.3.2.3	Collection Basins	62
2.4	Sewer	System .		64
3.0 PROGRA	am str	ATEGY A	AND METHODOLOGY	66
3.1	Surfac	e-Water Q	Quantity	66
	3.1.1	Surface-	Water Monitoring Network	66
		3.1.1.1	Irondale Gulch Drainage Basin	69
			3.1.1.1.1 Havana Interceptor (SW11002). 3.1.1.1.2 Peoria Interceptor (SW11001). 3.1.1.1.3 Havana Pond (SW11003). 3.1.1.1.4 Ladora Weir (SW02001). 3.1.1.1.5 South Uvalda (SW12005). 3.1.1.1.6 North Uvalda (SW01001). 3.1.1.1.7 Highline Lateral (SW12007). 3.1.1.1.8 South Plants Ditch (SW01003). 3.1.1.1.9 Lake Monitoring Stations.	69 72 73 73 74 74 75 75
		3.1.1.2	First Creek Drainage Basin.	76
			3.1.1.2.1 South First Creek (SW08003)	76 77

		3.1.1.3	3.1.1.2.3 3.1.1.2.4 South Plat	First Creek Off-Post (SW37001)	77 78 78
			3.1.1.3.1	Basin A (SW36001)	78
	3.1.2	Surface-V	Water Quan	tity Data Acquisition	79
		3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4 3.1.2.5	Datapod P Data Logg Stream Sta Discharge Discharge	rt Procedures and Equipment Procedures and Equipment Ger Procedures and Equipment Ger Procedures and Equipment Ger Data Computation Measurement Procedures and Computation of Data Trve Development Procedures	79 80 80 81 82 84
			3.1.2.6.1 3.1.2.6.2	Conversion of Stream Stage to Discharge Channel Reach Surveys	8 <i>6</i> 87
		3.1.2.7	Related Su	urface-Water Data Acquisition	87
	3.1.3	South Uv	alda Stage	Record Review Procedures	88
3.2	Surfac	e-Water Q	uality		90
	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Surface-V Surface-V Laborator	Water Quali Water Quali ry Analytic	ty Monitoring Network ty Monitoring Strategies ty Monitoring Field Methods al Procedures for Water and Sediments Control Data	91 91 101 102 102
		3.2.5.1 3.2.5.2	Quality Co	ality and Sediment Analytical Assurance and control	102
			Quality Co	ontrol	103
3.3	Sedime	ent Transp	ort		103
	3.3.1	Scope of	Investigation	on	103
		3.3.1.1 3.3.1.2	Sediment Sediment	Quantity	104 104
	3.3.2	Sediment	Strategy ar	nd Methods	104
3.4	Groun	d-Water a	nd Surface-	Water Interaction	105
	3.4.1	Scope of	Investigation	on	105

				PAGE
		3.4.1.1 3.4.1.2 3.4.1.3 3.4.1.4	First Creek South Plants Lakes Havana Pond Uvalda Interceptor	105
	3.4.2	Strategy	and Methods	106
		3.4.2.1 3.4.2.2 3.4.2.3	Comparison of Hydrographic Data	107
VOLUME II				
4.0 PROGR	AM RES	SULTS		109
4.1	Surfac	e-Water Q	Quantity Results	109
	4.1.1 4.1.2		imatological Conditions	
		4.1.2.1	Continuous Stage Data	. 112
			4.1.2.1.1 Havana Interceptor 4.1.2.1.2 Peoria Interceptor 4.1.2.1.3 Ladora Weir 4.1.2.1.4 South Uvalda 4.1.2.1.5 North Uvalda 4.1.2.1.6 Highline Lateral 4.1.2.1.7 South Plants Ditch 4.1.2.1.8 South First Creek 4.1.2.1.9 North First Creek 4.1.2.1.10 First Creek Off-Post 4.1.2.1.11 Basin A	113 114 115 115 115 116 116
		4.1.2.2	Stage Comparison of Analog and Digital Data	. 117
			4.1.2.2.1 South Uvalda (SW12005) 4.1.2.2.2 South First Creek (SW08003) 4.1.2.2.3 North First Creek (SW24002)	118
		4.1.2.3	Rating Curves and Equations	119
			4.1.2.3.1 Havana Interceptor 4.1.2.3.2 Peoria Interceptor 4.1.2.3.3 Ladora Weir 4.1.2.3.4 South Uvalda 4.1.2.3.5 North Uvalda 4.1.2.3.6 Highline Lateral	120 122 122 122

		4.1.2.3.7 South Plants Ditch 4.1.2.3.8 South First Creek 4.1.2.3.9 North First Creek 4.1.2.3.10 First Creek Off-Post 4.1.2.3.11 Basin A	123 123 123 123 124
4.1.3	Surface-V	ater Hydrologic Conditions	124
	4.1.3.1	Streamflow Characteristics and Extremes	126
		4.1.3.1.1 Havana Interceptor 4.1.3.1.2 Peoria Interceptor 4.1.3.1.3 Ladora Weir 4.1.3.1.4 South Uvalda 4.1.3.1.5 North Uvalda 4.1.3.1.6 Highline Lateral 4.1.3.1.7 South Plants Ditch 4.1.3.1.8 South First Creek 4.1.3.1.9 North First Creek 4.1.3.1.10 First Creek Off-Post 4.1.3.1.11 Basin A 4.1.3.1.12 Streamflow Inflow/Outflow Comparison	127 127 127 127 128 128 128 128 128 129 129
	4.1.3.2 4.1.3.3	Annual Streamflow Analysis	129 131
		4.1.3.3.1 Havana Interceptor 4.1.3.3.2 Peoria Interceptor 4.1.3.3.3 Ladora Weir 4.1.3.3.4 South Uvalda 4.1.3.3.5 North Uvalda 4.1.3.3.6 Highline Lateral 4.1.3.3.7 South Plants Ditch 4.1.3.3.8 South First Creek 4.1.3.3.9 North First Creek 4.1.3.3.10 First Creek Off-Post 4.1.3.3.11 Basin A	131 131 136 136 136 136 136 137
	4.1.3.4 4.1.3.5	Streamflow Storm Runoff Hydrographs	137 138
		4.1.3.5.1 Havana Pond 4.1.3.5.2 Upper Derby Lake 4.1.3.5.3 Lower Derby Lake 4.1.3.5.4 Ladora Lake	140 143 143 143
	4136	Sewage Treatment Plant Trends and Extremes	143

		4.1.3.7	South Uvalda Historical Stage Data Review Results	145
4.2	Surfac	e-Water C	Quality Results	162
	4.2.1 4.2.2	Surface- Occurren	Water Quality Program Overview	162 162
		4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 4.2.2.5 4.2.2.6 4.2.2.7 4.2.2.8 4.2.2.9	Volatile Aromatics. Organosulfur Compounds. Organochlorine Pesticides. Hydrocarbons. Organophosphorus Compounds. Phosphonates. Dibromochloropropane (DBCP).	169 170 171 173 173 174 175
	4.2.3 4.2.4	Occurrer Occurrer	nce of Nontarget Organic Compounds	176 178
		4.2.4.1 4.2.4.2 4.2.4.3 4.2.4.4 4.2.4.5 4.2.4.6	Arsenic. 1 Zinc. 1 Mercury. 1 Lead. 1	178 178 181 181 182 182
	4.2.5	Field Par	rameter Measurements	182
		4.2.5.1 4.2.5.2 4.2.5.3	Specific Conductance	182 183 183
	4.2.6	Occurren	nce of Major Inorganic Constituents	184
		4.2.6.1 4.2.6.2 4.2.6.3 4.2.6.4 4.2.6.5 4.2.6.6 4.2.6.7 4.2.6.8	Sodium	186 187
	4.2.7		ter Chemistry Calculations for Major Inorganic ents	190
		4.2.7.1		192 193

		4.2.7.3 4.2.7.4	Total Dissolved Solids	
	4.2.8	Comparis	on of Total and Dissolved Inorganic Analyses	194
		4.2.8.1 4.2.8.2	Trace Metal Inorganic Analytes	
4.3	Sedime	ent Transp	ort	197
	4.3.1 4.3.2		Quantity	
		4.3.2.1 4.3.2.2	Organic Compounds	199 203
4.4	Surfac	e-Water/G	round-Water Interaction	207
	4.4.1 4.4.2 4.4.3 4.4.4	Surface-V Surface-V	Water and Ground-Water Hydrographs Water and Ground-Water Ion Data Water and Ground-Water Organic Data S	209 210
4.5	Quality	y A ssuranc	e/Quality Control Results of Water Quality Data	212
	4.5.1		and Inorganic Compounds Quality Assurance and Quality Results	213
		4.5.1.1 4.5.1.2 4.5.1.3	Blank Results	219
			Results).	219
5.0 DATA A	ASSESSM	ENT		225
5.1	Surfac	e-Water Q	uantity Data Assessment	225
	5.1.1	Stream Fl	ow Data	225
		5.1.1.1 5.1.1.2	Rates and Volumes of Flow	
	5.1.2	Lake and	Pond Stage Data	227
		5.1.2.1 5.1.2.2 5.1.2.3 5.1.2.4 5.1.2.5	Upper Derby Lake. Lower Derby Lake. Ladora Lake. Lake Mary. Havana Pond.	232 232

PAGE

	5.1.3	Evaporation and Precipitation Data	32
5.2	Surfa	ce-Water Quality Assessment	32
	5.2.1	First Creek Drainage Basin	34
		5.2.1.1Organic Compounds in Surface Water.2.5.2.1.2Inorganic Constituents in Surface Water.2.5.2.1.3Organic Compounds in Stream-Bottom Sediments.2.5.2.1.4Trace Metals in Stream-Bottom Sediments.2.	36 39
	5.2.2	Irondale Gulch Drainage Basin	40
		5.2.2.1 Organic Compounds in Surface Water	43 44
	5.2.3	South Platte Drainage Basin 2	48
		5.2.3.1 Organic Compounds in Surface Water.25.2.3.2 Inorganic Constituents in Surface Water.25.2.3.3 Organic Compounds in Stream-Bottom Sediments.25.2.3.4 Trace Metals in Stream-Bottom Sediments.2	.50 .50
	5.2.4	Sand Creek Drainage Basin 2	51
		5.2.4.1 Organic Compounds in Surface Water	.51 .51
5.3	Grou	nd-Water/Surface-Water Interaction Assessment	:51
	5.3.1 5.3.2	First Creek Drainage Basin	.51 .52
CONCLU	SION		:54
6.1 6.2	Surfa Surfa	ce-Water Quantity Conclusions	!54 !55
	6.2.1	First Creek Drainage Basin 2	255
			257

6.0

		6.2.2	Irondale Gulch Drainage Basin	58
			6.2.2.1Organic Compounds in Surface Water.2.56.2.2.2Inorganic Constituents in Surface Water.2.56.2.2.3Organic Compounds in Stream-Bottom Sediments.2.66.2.2.4Trace Metals in Stream-Bottom Sediments.2.66.2.2.5Ground-Water/Surface-Water Interactions.2.6	.59 .60
		6.2.3	South Platte Drainage Basin 20	61
			6.2.3.1 Organic Compounds in Surface Water.266.2.3.2 Inorganic Constituents in Surface Water.266.2.3.3 Organic Compounds in Stream-Bottom Sediments.266.2.3.4 Trace Metals in Stream-Bottom Sediments.26	62 62
		6.2.4	Sand Creek Drainage Basin 26	62
			6.2.4.1 Organic Compounds in Surface Water	
7.0	REFERE	NCES		64
VOI	LUME III			
		SHRE	ACE-WATER QUALITY DATA FOR WATER YEAR 1989	
AII	A-1		e Water Station Survey Information	
	A-1			
			Monitoring Station Survey Information Station Survey Information	
			A-1.2.1 Cross Section Survey Plots A-1.2.2 Monitoring Station Plan Views A-1.2.3 Cross Section Survey Data A-1.2.4 Channel Reach Survey Procedure	
	A-2	Instant	aneous Discharge Measurements	
		A-2.2	Flume Specifications Discharge Measurement Procedures 1989 Water Year Instanteous Discharge Measurement Records WY89 Discharge Measurements Summary WY89 Discharge Measurement Field Records	
	A-3	Rating	Curves	
			Rating Curve Development Procedures Gage Height vs. Discharge	

PAGE

A - 3.3	Head	VS.	Discharge
---------	------	-----	-----------

- A-4 Rating Equations
- A-5 Comparison of Instantaneous Discharge Versus Computed Discharge
- A-6 Continuous Gage Height Recorders Equipment and Procedures
 - A-6.1 Stevens Type F Equipment Specifications and Procedures
 - A-6.2 Datapod Equipment Specifications and Procedures
 - A-6.3 Data Logger Equipment Specifications and Procedures

VOLUME IV

- A-7 Gage Height Data
 - A-7.1 Water Year 1989 Gage Height Data
 - A-7.2 South Uvalda Historical Gage Height Data
- A-8 Water Discharge Records
 - A-8.1 1989 Water Year Discharge Records
 - A-8.2 South Uvalda Historical Discharge Records
- A-9 Lake Volume Records
- A-10 Sewage Treatment Plant Records
- A-11 Climatic Conditions Records
 - A-11.1 Precipitation Graphs/Plots
 - A-11.2 Daily Temperature and Precipitation Data
- A-12 Well Water Levels

VOLUME V

APPENDIX B SURFACE-WATER QUALITY DATA FOR 1989 WATER YEAR

- B-1 Sample Location Survey Information
- B-2 Spring 1989 Water Quality Data
- B-3 High Event 1989 Water Quality Data
- B-4 Fall 1989 Water Quality Data
- B-5 Ion Balance Calculations
- B-6 Water Quality Field Data
- B-7 Laboratory Analytical Procedures
 - B-7.1 Procedure for Water Analysis
 - B-7.2 Procedures for Sediment Analysis
 - B-7.3 Procedure for Suspended Solids Analysis

LIST OF TABLES

Table 1.3-1	Chronology of RMA Surface-Water Monitoring
Table 1.3-2	Evolution of Surface-Water Monitoring Stations
Table 1.3-3	RMA Remedial Investigations and Study Area Reports
Table 1.3-4	Occurrence of Target Organic Compounds During CMP FY88 Sampling Activities
Table 1.3-5	Occurrence of Trace Inorganic Constituents During CMP FY88 Sampling Activities
Table 1.3-6	Summary of Major Constituent Occurrence During CMP FY88 Sampling Activities
Table 1.3-7	Occurrence of Organic Compounds and Trace Inorganic Constituents in Bed Load Sediments for FY88
Table 1.3-8	Correlation of Historical and CMP FY89 Surface-Water Sampling Locations
Table 1.3-9	Historical Organic Compound Detections at Current CMP Surface- Water Sites
Table 1.3-10	Historical Trace Inorganic Constituent Detections at Current CMP Surface-Water Sites
Table 2.3-1	Monitoring Stations Used During FY89
Table 2.3-2	Sample Locations Considered During FY89
Table 3.1-1	Surface-Water Monitoring Network
Table 3.1-2	Surface-Water Monitoring Station Activities
Table 3.2-1	Water Year 1989, Summary of Sampling Activities
Table 3.2-2	Data Chem and Hunter ESE/ Laboratories Analytical Methods for Water and Sediment Samples
Table 3.4-1	Wells Used to Delineate Ground-Water/Surface-Water Interaction
Table 4.1-1	Monthly Averages of Temperature, Precipitation and Evaporation Data, Water Year 1989
Table 4.1-2	Surface-Water Structures, Channel Control and Rating Curves
Table 4.1-3	Surface-Water Sources at Continuous-recording Stations
Table 4.1-4	Summary of RMA Inflow and Outflow Volumes
Table 4.1-5	Summary of Minimum and Maximum Discharges

LIST OF TABLES (continued)

Table 4.1-6	Comparison of High and Extended Precipitation Events and Mean Daily Discharges
Table 4.1-7	Stage/Elevation Survey Information
Table 4.1-8	Average Storage Precipitation and Evaporation Volumes for South Plants Lakes and Havana Pond, Water Year 1989
Table 4.1-9	Sewage Treatment Plant Monthly Flow Summaries, Water Year 1989
Table 4.1-10	Historical Strip Chart Reduction Preliminary Analysis
Table 4.1-11	Comparison of Instantaneous Peak Stages
Table 4.1-12	General Stage Comparison
Table 4.1-13	Comparison of the Monthly Instantaneous Minimum and Maximum Stages and Flows
Table 4.1-14	Comparison of the Minimum and Maximum Daily Mean Flows
Table 4.1-15	Comparison of Total Monthly Flows
Table 4.2-1	CMP Surface-Water List of Target Organic Compounds
Table 4.2-2	FY89 Occurrences of Target Organic Compounds in Surface-Water Samples
Table 4.2-3	Ocurrence of Nontarget Organic Compounds
Table 4.2-4	Occurrence of Trace Inorganic Constituents
Table 4.2-5	Surface-Water Alkalinity Summary of Analytical and Field Results (Spring 1989)
Table 4.2-6	Calculations for Major Inorganic Constituents in Samples Collected During the Spring Sampling Event
Table 4.2-7	Summary of Dissolved Versus Total Recoverable Inorganic Constituent Analysis
Table 4.3-1	FY89 Total Suspended Solids Analytical Results
Table 4.3-2	FY89 Target Organic Compound Detections in Stream Bottom Sediment Samples
Table 4.3-3	FY89 Trace Inorganic Constituent Detections in Stream Bottom Sediment Samples
Table 4.4-1	Comparison of Surface-Water and Ground-Water Organic Compound Detections for Spring FY89

LIST OF TABLES (continued)

Table 4.5-1	Surface-Water Rejected Data
Table 4.5-2	Surface-Water Duplicate and Relative Percent Difference
Table 4.5-3	Confirmation Analysis Results
Table 5.1-1	Ratio of Daily Maximum Discharge to Mean Daily Discharge
Table 5.1-2	Ratio of Instantaneous Maximum Discharge to Mean Daily Discharge
Table 5.1-3	Evaporation, Precipitation, Lake Storage and Sewage Treatment Plant Discharge Data
Table 5.2-1	Baseline Surface-Water Quality Levels for Inorganic Constituents Entering RMA in the First Creek Drainage Basin at First Creek South Boundary (SW08001) during Base Flow Conditions
Table 5.2-2	Elevated Inorganic Constituent Concentrations for First Creek Drainage Basin Sites for FY89 CMP
Table 5.2-3	Baseline Surface-Water Quality Levels for Inorganic Constituents Entering RMA in the Irondale Gulch Drainage Basin During Base and Elevated Flow Conditions
Table 5.2-4	Elevated Inorganic Constituent Concentrations for Irondale Gulch Drainage Basin and South Platte Drainage Basin Sites for FY89 CMP
Table 5.2-5	Baseline Trace Metal Concentrations for Stream-Bottom Sediments in the Irondale Gulch Drainage Basin

LIST OF FIGURES

1.1-1	Rocky Mountain Arsenal Location Map
1.1-2	Rocky Mountain Features Map
1.3-1	Location of Study Areas
2.3-1	Detail of First Creek Drainage
2.3-2	Thalweg Slope and Cross Section of First Creek
2.3-3	Detail of South Boundary Storm Sewer Drainages
2.3-4	Location Map of Return Water Ditches
4.1-1	Precipitation and Evaporation, Water Year 1989
4.1-2	South Uvalda Stage Data Comparison
4.1-3	South First Creek Stage Data Comparison
4.1-4	North First Creek Stage Data Comparison
4.1-5	Havana Interceptor Monthly Total Discharge
4.1-6	Peoria Interceptor Monthly Total Discharge
4.1-7	Ladora Weir Monthly Total Discharge
4.1-8	South Uvalda Monthly Total Discharge
4.1-9	North Uvalda Monthly Total Discharge
4.1-10	Highline Lateral Monthly Total Discharge
4.1-11	South Plants Ditch Monthly Total Discharge
4.1-12	South First Creek Monthly Total Discharge
4.1-13	North First Creek Monthly Total Discharge
4.1-14	First Creek Off-Post Monthly Total Discharge
4.1-15	Basin A Monthly Total Discharge
4.1-16	Havana Interceptor Daily Mean Discharge Hydrograph
4.1-17	Peoria Interceptor Daily Mean Discharge Hydrograph
4.1-18	Ladora Weir Daily Mean Discharge Hydrograph
4.1-19	South Uvalda Daily Mean Discharge Hydrograph

LIST OF FIGURES (Continued)

4.1-20	North Uvalda Daily Mean Discharge Hydrograph
4.1-21	Highline Lateral Daily Mean Discharge Hydrograph
4.1-22	South Plants Ditch Daily Mean Discharge Hydrograph
4.1-23	South First Creek Daily Mean Discharge Hydrograph
4.1-24	North First Creek Daily Mean Discharge Hydrograph
4.1-25	First Creek Off-Post Daily Mean Discharge Hydrograph
4.1-26	Basin A Daily Mean Discharge Hydrograph
4.1-27	Comparison of RMA Inflow and Outflow Volumes
4.1-28	Havana Interceptor Mean Monthly Maximum Daily and Minimum Daily Discharge
4.1-29	Peoria Interceptor Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-30	Ladora Weir Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-31	South Uvalda Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-32	North Uvalda Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-33	Highline Lateral Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-34	South Plants Ditch Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-35	South First Creek Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-36	North First Creek Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-37	First Creek Off-Post Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-38	Basin A Mean Monthly, Maximum Daily and Minimum Daily Discharge
4.1-39	Havana Pond Storage Volume
4.1-40	Upper Derby Lake Storage Volume
4.1-41	Lower Derby Lake Storage Volume
4.1-42	Ladora Lake Storage Volume
4.1-43	Sewage Treatment Plant Discharge
4.4-1	Havana Pond and Adjacent Wells Water Elevations
4.4-2	Upper Derby Lake and Adjacent Wells Water Elevations

LIST OF FIGURES (Continued)

4.4-3	Lower Derby Lake and Adjacent Wells Water Elevations
4.4-4	Ladora Lake and Adjacent Wells Water Elevations
4.4-5	Lake Mary and Adjacent Wells Water Elevations
4.4-6	Stiff Diagrams for First Creek Drainage
4.4-7	Stiff Diagrams for South Plants Lakes Area
5.2-1	Direct Relationship Between Discharge and Concentration
5.2-2	Inverse Relationship Between Discharge and Concentration

LIST OF PLATES

1.3-1	Surface-Water Quantity Monitoring Station Locations
1.3-2	Surface-Water Quality Sampling Locations
1.3-3	Occurrence of CMP Surface-Water FY88 Target Organic Compounds
1.3-4	Occurrence of CMP Surface-Water FY88 Trace Inorganic Constituents
1.3-5	Correlation of CMP and Historical Surface-Water Quality Sampling Locations
1.3-6	Frequency of Historical Organic Compound Detections
1.3-7	Frequency of Historical Trace Inorganic Constituent Detections
2.3-1	Diagram of RMA Surface-Water Features and Drainage Basins
3.4-1	Location Map of Surface-Water Sampling Sites and Monitoring Wells Used for Ground-Water/Surface-Water Interaction Study
4.2-1	1989 Occurrences of CMP Surface-Water Target Organic Compounds
4.2-2	1989 Occurrence of Trace Inorganic Constituents
4.3-1	1989 Organic and Trace Inorganic Compound Detections in Stream Bottom Sediments

TABLE OF CONTENTS

APPENDIX A SURFACE-WATER QUALITY DATA FOR WATER YEAR 1989

A-1	Surface	Water	Station	Survey	Information
-----	---------	-------	---------	--------	-------------

- A-1.1 Monitoring Station Survey Information
- A-1.2 Station Survey Information
 - A-1.2.1 Cross Section Survey Plots
 - A-1.2.2 Monitoring Station Plan Views
 - A-1.2.3 Cross Section Survey Data
 - A-1.2.4 Channel Reach Survey Procedure

A-2 Instantaneous Discharge Measurements

- A-2.1 Flume Specifications
- A-2.2 Discharge Measurement Procedures
- A-2.3 1989 Water Year Instanteous Discharge Measurement Records WY89 Discharge Measurements Summary WY89 Discharge Measurement Field Records

A-3 Rating Curves

- A-3.1 Rating Curve Development Procedures
- A-3.2 Gage Height vs. Discharge
- A-3.3 Head vs. Discharge

A-4 Rating Equations

- A-5 Comparison of Instantaneous Discharge Versus Computed Discharge
- A-6 Continuous Gage Height Recorders Equipment and Procedures
 - A-6.1 Stevens Type F Equipment Specifications and Procedures
 - A-6.2 Datapod Equipment Specifications and Procedures
 - A-6.3 Data Logger Equipment Specifications and Procedures

A-7 Gage Height Data

- A-7.1 Water Year 1989 Gage Height Data
- A-7.2 South Uvalda Historical Gage Height Data

A-8 Water Discharge Records

- A-8.1 1989 Water Year Discharge Records
- A-8.2 South Uvalda Historical Discharge Records

A-9 Lake Volume Records

- A-10 Sewage Treatment Plant Records
- A-11 Climatic Conditions Records
 - A-11.1 Precipitation Graphs/Plots
 - A-11.2 Daily Temperature and Precipitation Data

A-12 Well Water Levels

TABLE OF CONTENTS

APPENDIX B SURFACE-WATER QUALITY DATA FOR 1989 WATER YEAR

B-1	Sample Location Survey Information
B-2	Spring 1989 Water Quality Data

- B-3 High Event 1989 Water Quality Data
- B-4 Fall 1989 Water Quality Data
- B-5 Ion Balance Calculations
- B-6 Water Quality Field Data
- B-7 Laboratory Analytical Procedures
 - B-7.1 Procedure for Water Analysis
 - B-7.2 Procedures for Sediment Analysis
 - B-7.3 Procedure for Suspended Solids Analysis

APPENDIX B

Surface-Water Quality Data for 1989 Water Year

APPENDIX B-1

Sample Location Survey Information

Appendix B-1 Table B-1-1 Sample Location Survey Information

\$\text{SW02002} \tag{175,721.40} \tag{2,182,686.29} \tag{5,234.51} \text{SW02003} \tag{177,726.61} \tag{2,179,691.86} \tag{5,223.23} \text{SW02004} \tag{177,7378.84} \tag{2,178,434.27} \tag{5,206.35} \text{SW02006} \tag{177,998.25} \tag{2,181,339.77} \tag{5,231.15} \tag{5,257.90} \text{SW02006} \tag{179,121.05} \tag{2,182,840.84} \tag{5,257.90} \text{SW04001} \tag{177,928.55} \tag{2,172,516.56} \tag{5,195.20} \text{SW05001} \tag{170,230.73} \tag{2,191,183.13} \tag{5,295.71} \text{SW07002} \tag{170,191.43} \tag{2,189,198.96} \tag{5,291.33} \text{SW07002} \tag{170,1284.98} \tag{2,194,415.70} \tag{5,315.13} \text{SW08001} \tag{5,288.91} \tag{5,288.91} \tag{5,288.91} \tag{5,288.91} \tag{5,288.91} \tag{5,288.40} \tag{5,248.08} \tag{5,276.30} \tag{5,276.20} 5,27	Sample Location	Northing	Easting	Staked Elevation (ft-msl)
SW01002	SWOLOOL	175 588 02	2 187 896 41	5.260.51
SW01003				
SW01004 176,332.23 2,187,034.25 5,256.51 SW01005 176,395.24 2,183,915.96 5,236.73 SW02001 176,311.48 2,183,915.96 5,235.49 SW02002 175,721.40 2,182,686.29 5,234.51 SW02003 177,726.61 2,179,691.86 5,223.23 SW02004 177,378.84 2,178,434.27 5,206.35 SW02005 177,998.25 2,181,339.77 5,231.15 SW02006 179,121.05 2,182,840.84 5,257.90 SW04001 177,928.55 2,172,516.56 5,195.20 SW05001 175,590.08 2,197,131.85 5,282.37 SW07001 170,230.73 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,299.91 SW080001 172,887.88 2,194,415.70 5,315.13 SW080003 173,686.65 2,198,520.22 5,293.84 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22				
SW01005 176,395.24 2,183,915.96 5,246.73 SW02001 176,311.48 2,183,915.96 5,235.49 SW02002 175,721.40 2,182,686.29 5,234.51 SW02003 177,778.84 2,178,691.86 5,223.23 SW02005 177,798.25 2,181,339.77 5,231.15 SW02006 179,121.05 2,182,840.84 5,257.90 SW04001 177,928.55 2,172,516.56 5,195.20 SW07001 175,590.08 2,197,131.85 5,282.37 SW07001 170,230.73 2,191,183.13 5,295.71 SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW11000 170,287.71 2,179,583.49 5,248.08 SW11000 170,287.71 2,179,583.49 5,248.08 SW11000 170,295.42 2,186,484.87 5,262.22 </td <td></td> <td></td> <td></td> <td></td>				
SW02001 176,311.48 2,183,915.96 5,235.49 SW02002 175,721.40 2,182,686.29 5,234.51 SW02003 177,726.61 2,179,691.86 5,223.23 SW02004 177,378.84 2,178,434.27 5,206.35 SW02005 177,998.25 2,181,339.77 5,231.15 SW02006 179,121.05 2,182,840.84 5,257.90 SW04001 177,928.55 2,172,516.56 5,195.20 SW05001 175,590.08 2,197,131.85 5,282.37 SW07001 170,230.73 2,191,183.13 5,295.71 SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,2696.42 2,186,942.80 5,278.76 <				
\$\text{SW02002} \tag{175,721.40} \tag{2,182,686.29} \tag{5,234.51} \\ \$\text{SW02003} \tag{177,726.61} \tag{2,179,691.86} \tag{5,223.23} \\ \$\text{SW02004} \tag{177,378.84} \tag{2,178,434.27} \tag{5,206.35} \\ \$\text{SW02006} \tag{177,998.25} \tag{2,181,339.77} \tag{5,231.15} \\ \$\text{SW02006} \tag{179,121.05} \tag{2,182,840.84} \tag{5,257.90} \\ \$\text{SW04001} \tag{177,928.55} \tag{2,181,339.77} \tag{5,231.15} \\ \$\text{SW05001} \tag{177,928.55} \tag{2,172,516.56} \tag{5,195.20} \\ \$\text{SW05001} \tag{170,230.73} \tag{2,191,183.13} \tag{5,295.71} \\ \$\text{SW07002} \tag{170,191.43} \tag{2,189,198.96} \tag{5,291.33} \\ \$\text{SW08001} \tag{170,284.98} \tag{2,194,415.70} \tag{5,315.13} \\ \$\text{SW08002} \tag{170,284.98} \tag{2,194,415.70} \tag{5,315.13} \\ \$\text{SW08003} \tag{173,686.65} \tag{2,198,520.22} \tag{5,293.84} \\ \$\text{SW08004} \tag{174,711.01} \tag{2,187,612.81} \tag{5,288.40} \\ \$\text{SW11001} \tag{170,282.71} \tag{2,179,583.49} \tag{5,248.08} \\ \$\text{SW11002} \tag{170,195.60} \tag{2,186,942.80} \tag{5,278.46} \\ \$\text{SW11003} \tag{172,696.42} \tag{2,186,942.80} \tag{5,278.46} \\ \$\text{SW12001} \tag{170,156.02} \tag{186,746.06} \tag{5,274.14} \\ \$\text{SW12002} \tag{170,156.02} \tag{186,746.06} \tag{5,274.14} \\ \$\text{SW12003} \tag{170,136.67} \tag{2,188,725.83} \tag{5,275.15} \\ \$\text{SW12004} \tag{170,136.67} \tag{2,188,725.83} \tag{5,275.20} \\ \$\text{SW12009} \tag{175,292.77} \tag{2,186,740.06} \tag{5,274.14} \\ \$\text{SW12000} \tag{170,136.60} \tag{2,188,745.85} \tag{5,262.22} \\ \$\text{SW12000} \tag{170,136.02} \tag{2,186,746.06} \tag{5,274.14} \\ \$\text{SW120004} \tag{170,136.60} \tag{2,188,745.85} \tag{5,275.20} \\ \$\text{SW120005} \tag{170,456.02} \tag{1,188,747.55} \tag{5,260.25} \\ \$\text{SW120006} \tag{170,136.60} \tag{2,188,745.85} \tag{5,275.20} \\ \$\text{SW120009} \tag{175,315.77} \tag{2,186,740.06} \tag{5,277.15} \\ \$\text{SW120009} \tag{175,292.77} \tag{2,188,725.83} \tag{5,275.15} \\ \$\text{SW120009} \tag{175,292.77} \tag{2,188,725.83} \tag{5,275.20} \\ \$SW12000	SW01005	1/6,395.24	2,183,913.90	3,240.73
\$\text{SW02002} \tag{175,721.40} \tag{2,182,686.29} \tag{5,234.51} \text{SW02003} \tag{177,726.61} \tag{2,179,691.86} \tag{5,223.23} \text{SW02004} \tag{177,7378.84} \tag{2,178,434.27} \tag{5,206.35} \text{SW02006} \tag{177,998.25} \tag{2,181,339.77} \tag{5,231.15} \tag{5,257.90} \text{SW02006} \tag{179,121.05} \tag{2,182,840.84} \tag{5,257.90} \text{SW04001} \tag{177,928.55} \tag{2,172,516.56} \tag{5,195.20} \text{SW05001} \tag{170,230.73} \tag{2,191,183.13} \tag{5,295.71} \text{SW07002} \tag{170,191.43} \tag{2,189,198.96} \tag{5,291.33} \text{SW07002} \tag{170,1284.98} \tag{2,194,415.70} \tag{5,315.13} \text{SW08001} \tag{5,288.91} \tag{5,288.91} \tag{5,288.91} \tag{5,288.91} \tag{5,288.91} \tag{5,288.40} \tag{5,248.08} \tag{5,276.30} \tag{5,276.20} 5,27	SW02001	176,311.48	2,183,915.96	5,235.49
SW02003 177,726.61 2,179,691.86 5,223.23 SW02004 177,378.84 2,178,434.27 5,206.35 SW02005 177,938.25 2,181,339.77 5,231.15 SW02006 179,121.05 2,182,840.84 5,257.90 SW04001 177,928.55 2,181,339.77 5,231.15 SW05001 175,590.08 2,197,131.85 5,282.37 SW07001 170,230.73 2,191,183.13 5,295.71 SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW120002 170,156.02 2,188,189.77 5,276.22 SW120003 175,315.77 2,186,625.33 5,254.18 SW120004 170,192.44 2,188,947.15 5,276.22 SW12004 170,192.44 2,188,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,188,725.83 5,275.15 SW12007 175,299.77 2,188,725.83 5,275.15 SW12009 175,209.16 2,188,748.79 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24003 196,357.55 2,188,749.45 5,137.80 SW30001 188,547.58 2,188,840.20 5,191.10 SW24002 196,426.80 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24003 196,357.55 2,188,840.20 5,191.10 SW24002 196,426.80 2,188,749.45 5,137.80 SW24001 188,547.58 2,188,700.59 5,275.20 SW30001 188,547.58 2,188,840.20 5,191.10 SW24002 196,426.80 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24003 196,357.55 2,188,840.20 5,191.10 SW24002 188,563.22 2,189,296.25 5,184,43 SW30001 184,589.82 2,190,050.52 5,253.65 SW30001 184,589.82 2,190,050.52 5,253.65 SW30001 180,985.85 2,184,525.97 5,253.65			2,182,686.29	5,234.51
SW02004 177,378.84 2,178,434.27 5,206.35 SW02006 177,978.25 2,181,339.77 5,231.15 SW02006 179,121.05 2,182,840.84 5,257.90 SW04001 177,928.55 2,172,516.56 5,195.20 SW05001 175,590.08 2,197,131.85 5,282.37 SW07001 170,230.73 2,191,183.13 5,295.71 SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,625.33 5,254.18 SW12002 170,156.02 2,186,625.33 5,254.18 </td <td></td> <td></td> <td></td> <td>5,223.23</td>				5,223.23
\$\text{SW02006} \text{177,982.55} \text{2,181,339.77} \text{5,231.15} \text{SW02006} \text{179,121.05} \text{2,182,840.84} \text{5,257.90} \text{SW04001} \text{177,928.55} \text{2,172,516.56} \text{5,195.20} \text{SW05001} \text{177,590.08} \text{2,197,131.85} \text{5,282.37} \text{SW07001} \text{170,230.73} \text{2,191,183.13} \text{5,295.71} \text{SW07002} \text{170,191.43} \text{2,189,198.96} \text{5,291.33} \text{SW08001} \text{170,284.98} \text{2,194,415.70} \text{5,315.13} \text{SW08002} \text{170,284.98} \text{2,194,415.70} \text{5,315.13} \text{SW08003} \text{170,284.98} \text{2,194,415.70} \text{5,315.13} \text{SW080004} \text{174,711.01} \text{2,197,612.81} \text{5,2284.40} \text{SW11001} \text{170,287.71} \text{2,179,583.49} \text{5,248.08} \text{SW11002} \text{170,992.86} \text{2,178,854.75} \text{5,262.22} \text{SW11003} \text{172,696.42} \text{2,180,121.78} \text{5,254.28} \text{SW12001} \text{170,205.42} \text{2,186,942.80} \text{5,278.46} \text{SW12002} \text{170,156.02} \text{2,186,942.80} \text{5,278.46} \text{SW12004} \text{170,129.44} \text{2,184,947.15} \text{5,276.22} \text{SW12004} \text{170,132.67} \text{2,186,746.06} \text{5,274.14} \text{SW12006} \text{170,132.67} \text{2,184,180.89} \text{5,276.30} \text{SW12007} \text{175,292.77} \text{2,184,180.89} \text{5,275.15} \text{SW12009} \text{175,209.16} \text{2,186,670.69} \text{5,275.20} \text{SW12009} \text{175,209.16} \text{2,186,327.81} \text{5,137.80} \text{SW24001} \text{195,373.14} \text{2,186,700.69} \text{5,275.15} \text{SW12009} \text{175,209.16} \text{2,188,544.87} \text{5,268.60} \text{SW24001} \text{195,375.14} \text{2,186,625.33} \text{5,137.80} \text{SW24002} \text{196,426.80} \text{2,186,327.81} \text{5,137.80} \text{SW24002} \text{196,426.80} \text{2,186,670.69} \text{5,275.15} \text{SW12009} \text{175,209.16} \text{2,186,625.35} \text{5,144,90} \text{SW24002} \text{196,426.80} \text{2,186,625.35} \text{5,144,90} \text{SW24002} \text{196,426.80} \text{2,186,327.81} \text{5,137.80} \text{SW30001} \text{188,547.58} 2,1				
\$\text{SW02006}\$ \$179,121.05\$ \$2,182,840.84\$ \$5,257.90\$ \$\text{SW04001}\$ \$177,928.55\$ \$2,172,516.56\$ \$5,195.20\$ \$\text{SW05001}\$ \$175,590.08\$ \$2,197,131.85\$ \$5,282.37\$ \$\text{SW07002}\$ \$170,191.43\$ \$2,189,198.96\$ \$5,291.33\$ \$\text{SW08001}\$ \$172,876.88\$ \$2,199,286.91\$ \$5,298.91\$ \$\$\text{SW08002}\$ \$170,284.98\$ \$2,194,415.70\$ \$5,315.13\$ \$\$\text{SW08003}\$ \$173,686.65\$ \$2,198,520.22\$ \$5,293.84\$ \$\$\text{SW08004}\$ \$174,711.01\$ \$2,197,612.81\$ \$5,288.40\$ \$\$\text{SW11001}\$ \$170,287.71\$ \$2,179,583.49\$ \$5,248.08\$ \$\$\text{SW11002}\$ \$170,992.86\$ \$2,178,854.75\$ \$5,262.22\$ \$\$\text{SW11003}\$ \$172,696.42\$ \$2,186,942.80\$ \$5,278.46\$ \$\$\text{SW12002}\$ \$170,156.02\$ \$2,186,818.97\$ \$5,274.18 \$\$\text{SW12003}\$ \$175,315.77\$ \$2,186,625.33\$ \$5,254.18\$ \$\text{SW12004}\$ \$\$\text{SW12005}\$ \$170,445.36\$ \$2,186,746.06\$ \$5,274.14\$ \$\$\text{SW12006}\$ \$170,132.67\$ \$2,184,947.15\$ \$5,276.22\$ \$\$\text{SW12007}\$ \$170,445.36\$ \$2,186,746.06\$ \$5,274.14\$ \$\$\text{SW12006}\$ \$170,132.67\$ \$2,188,725.83\$ \$5,275.15\$ \$\$\text{SW12009}\$ \$175,292.77\$ \$2,188,725.83\$ \$5,275.15\$ \$\$\text{SW12009}\$ \$175,292.16\$ \$2,188,725.83\$ \$5,275.15\$ \$\$\text{SW12009}\$ \$175,291.6\$ \$2,188,724.81 \$5,137.80\$ \$\$\text{SW24001}\$ \$195,373.14\$ \$2,187,281.35\$ \$3,137.80\$ \$\$\text{SW24003}\$ \$196,357.55\$ \$2,184,791.45\$ \$5,137.24\$ \$\$\text{SW30001}\$ \$188,547.58\$ \$2,188,840.20 \$5,191.10\$ \$\$\text{SW300002}\$ \$188,563.22 \$2,189,296.25\$ \$5,184,433 \$\$\text{SW30001}\$ \$180,985.85\$ \$2,184,555.97\$ \$5,253.65\$				
SW04001 177,928.55 2,172,516.56 5,195.20 SW05001 175,590.08 2,197,131.85 5,282.37 SW07001 170,230.73 2,191,183.13 5,295.71 SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,258.33 5,275.15 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24001 195,373.14 2,187,258.33 5,275.15 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24001 195,373.14 2,187,281.35 5,137.80 SW24002 196,426.80 2,186,327.81 5,137.80 SW24002 196,426.80 2,186,327.81 5,137.80 SW24002 196,426.80 2,188,542.59 5,184.43 SW31001 188,547.58 2,188,40.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
\$\text{SW05001}\$ 175,590.08 2,197,131.85 5,282.37 \$\text{SW07001}\$ 170,230.73 2,191,183.13 5,295.71 \$\text{SW07002}\$ 170,191.43 2,189,198.96 5,291.33 \$\text{SW08001}\$ 172,876.88 2,199,286.91 5,291.33 \$\text{SW080002}\$ 170,284.98 2,194,415.70 5,315.13 \$\text{SW08003}\$ 173,686.65 2,198,520.22 5,293.84 \$\text{SW08004}\$ 174,711.01 2,197,612.81 5,288.40 \$\text{SW11001}\$ 170,287.71 2,179,583.49 5,248.08 \$\text{SW11002}\$ 170,992.86 2,178,854.75 5,262.22 \$\text{SW11003}\$ 172,696.42 2,180,121.78 5,254.28 \$\text{SW12001}\$ 170,205.42 2,186,818.97 5,278.77 \$\text{SW12003}\$ 175,315.77 2,186,625.33 5,254.18 \$\text{SW12004}\$ 170,129.44 2,184,947.15 5,276.22 \$\text{SW12005}\$ 170,445.36 2,186,746.06 5,274.14 \$\text{SW12006}\$ 170,132.67 2,184,180.89 5,276.30 \$\text{SW12007}\$ 175,292.77 2,188,725.83 5,276.30 \$\text{SW12008}\$ 172,231.54 2,186,700.69 5,275.20 \$\text{SW12009}\$ 175,209.16 2,188,544.87 5,268.60 \$\text{SW24001}\$ 195,373.14 2,187,281.35 5,144.90 \$\text{SW24002}\$ 196,426.80 2,186,327.81 5,137.80 \$\text{SW30001}\$ 188,547.58 2,188,40.20 5,191.10 \$\text{SW30002}\$ 188,563.22 2,189,296.25 5,184.43 \$\text{SW31001}\$ 184,589.82 2,190,050.52 5,215.74 \$\text{SW31001}\$ 180,985.85 2,184,525.97 5,253.65	SW02006	179,121.03	2,182,840.84	3,237.90
SW07001 170,230.73 2,191,183.13 5,295.71 SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.46 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,947.15 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12007 175,292.77 2,188,725.83 5,275.15 SW12009 175,209.16 2,186,6327.81 5,137.80 SW24001 195,373.14 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,840.20 5,191.10 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW04001	177,928.55	2,172,516.56	5,195.20
SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,186,746.06 5,274.14 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,782.83 5,275.15 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 </td <td>SW05001</td> <td>175,590.08</td> <td>2,197,131.85</td> <td>5,282.37</td>	SW05001	175,590.08	2,197,131.85	5,282.37
SW07002 170,191.43 2,189,198.96 5,291.33 SW08001 172,876.88 2,199,286.91 5,298.91 SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,186,746.06 5,274.14 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,782.83 5,275.15 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 </td <td>CW07001</td> <td>170 220 73</td> <td>2 101 183 13</td> <td>5 295 71</td>	CW07001	170 220 73	2 101 183 13	5 295 71
\$\begin{array}{cccccccccccccccccccccccccccccccccccc				
SW08002 170,284.98 2,194,415.70 5,315.13 SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 </td <td>SW07002</td> <td>170,191.43</td> <td>2,189,198.90</td> <td>3,291.33</td>	SW07002	170,191.43	2,189,198.90	3,291.33
SW08003 SW08004 173,686.65 174,711.01 2,198,520.22 2,197,612.81 5,293.84 5,288.40 SW11001 SW11002 170,287.71 170,992.86 2,179,583.49 2,178,854.75 5,248.08 5,262.22 5,262.22 5,264.28 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 SW12002 170,156.02 170,156.02 2,186,942.80 2,186,818.97 5,278.46 5,278.77 SW12003 SW12004 170,129.44 170,129.44 2,186,625.33 2,186,625.33 5,254.18 5,276.22 5,276.22 SW12004 SW12005 170,145.36 170,132.67 2,186,746.06 2,186,746.06 5,274.14 5,276.20 SW12006 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 5,275.20 5,275.20 SW12009 5,275.20 5,275.20 SW12009 5,275.20 5,275.20 5,275.20 SW12009 5,275.20 5,268.60 SW24001 SW24002 196,426.80 196,357.55 2,188,544.87 5,268.60 SW24003 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 SW30002 188,547.58 188,563.22 2,188,840.20 2,189,296.25 5,184.43 SW31001 SW30001 184,589.82 182,789.48 2,190,050.52 2,189,296.25 5,215.74 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65 <td>SW08001</td> <td>172,876.88</td> <td>2,199,286.91</td> <td></td>	SW08001	172,876.88	2,199,286.91	
SW08003 173,686.65 2,198,520.22 5,293.84 SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24	SW08002	170,284.98	2,194,415.70	5,315.13
SW08004 174,711.01 2,197,612.81 5,288.40 SW11001 170,287.71 2,179,583.49 5,248.08 SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43				
SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW31001 184,589.82 2,189,296.25 5,184.43 SW31002 182,789.48 2,192,251.80 5,235.46	SW08004			
SW11002 170,992.86 2,178,854.75 5,262.22 SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW31001 184,589.82 2,189,296.25 5,184.43 SW31002 182,789.48 2,192,251.80 5,235.46	SW11001	170 287 71	2 179 583 49	5.248.08
SW11003 172,696.42 2,180,121.78 5,254.28 SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW31002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46				
SW12001 170,205.42 2,186,942.80 5,278.46 SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31001 180,985.85 2,184,525.97 5,253.65				
SW12002 170,156.02 2,186,818.97 5,278.77 SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	3W11003	172,090.42	2,160,121.76	3,234.20
SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW12001	170,205.42		
SW12003 175,315.77 2,186,625.33 5,254.18 SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW12002	170,156.02	2,186,818.97	5,278.77
SW12004 170,129.44 2,184,947.15 5,276.22 SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65			2,186,625.33	5,254.18
SW12005 170,445.36 2,186,746.06 5,274.14 SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65		170,129,44		5,276.22
SW12006 170,132.67 2,184,180.89 5,276.30 SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
SW12007 175,292.77 2,188,725.83 5,275.15 SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
SW12008 172,231.54 2,186,700.69 5,275.20 SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
SW12009 175,209.16 2,188,544.87 5,268.60 SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
SW24001 195,373.14 2,187,281.35 5,144.90 SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				
SW24002 196,426.80 2,186,327.81 5,137.80 SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65				•
SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW24001			· ·
SW24003 196,357.55 2,184,791.45 5,137.24 SW30001 188,547.58 2,188,840.20 5,191.10 SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW24002	196,426.80	2,186,327.81	5,137.80
SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW24003	196,357.55	2,184,791.45	5,137.24
SW30002 188,563.22 2,189,296.25 5,184.43 SW31001 184,589.82 2,190,050.52 5,215.74 SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW30001	188 547 58	2.188.840.20	5.191.10
SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW30002			
SW31002 182,789.48 2,192,251.80 5,235.46 SW36001 180,985.85 2,184,525.97 5,253.65	SW31001	184 589 82	2 190 050 52	5.215.74
SW36001 180,985.85 2,184,525.97 5,253.65	SW31001 SW31002	,		
				5 253 65
SW37001 199,013.30 2,180,816.71 5,106.76	511 3000 1	100,703.03		
	SW37001	199,013.30	2,180,816.71	5,106.76

APPENDIX B-2

Spring 1989 Water Quality Data

R. C. Stollar and Associates Comprehensive Monitoring Program 01/10/90

Summary of Analytical Results

ampling Oate	Station Number	Sample Depth (cm)	Sample Type	*Method	Analytical Parameters	Re	esults	Units	Sample Humber
			and the control of	LEANS	d d t Weight avanthan	1 Tr	1.00 0	002/1	GEZ005
891.17	SW01001	0.1	STRM	UM21	1,1,1-Trichloroethane	LT LT	7.60 -1	ug/l ug/l	GHE007
				N8	1,1,1-Trichlorosthans	LT	1.00 0	ug/l	GEZOO5
				UM21	1,1,2-Trichloroethane	LT	7.80 - 0	ug/i	GHE007
				N8 UM21	1,1,2-Trichlorcethane 1,1-Dichlorcethene	LT	1.00 0	ug/l	GEZO05
				50 T 100 A	2,2				
				Н8	1,1-Dichloroethene	LT	1.70 0	ug/l	GH E007
				UM21	1,1-Dichloroethane	Lĭ	1.00 0	ug/l	GEZ005
				NS	1,1-Dichloroethane	LT	7.30 -i	ug/l	GH 6007
				UM21	1,2-Dichlorosthene	LT	5.00 0	ug/l	GEZ005
				М8	1,2-Dichloroethene	LT	7.60 -1	ug/l	GH E007
				UM:21	1,2-Dichloroethane	LT	1.00 0	ug/l	GEZ005
				N6	1,2-Dichloroethane	ĹŤ	1.10 0	ug/l	GHE007
				UM21	1.2-Dichleropropane	LT	1.00 0	ug/l	GEZOOS
				UM23	1,3-Dichloropenzene	LT	1.00 0	ug/l	GEZ005
				UM21	1.3-Dichloropropane	LT	4.80 0	ug/l	GEZOO5
						LT	1.00 0	ug/l	GEZ005
				UM21	m-Xylene	LT	1.32 0	ug/l	GH0007
				6VA	m-Xylene	LT	3.50 0	ug/l	GEZ005
				UM21	2-Chloroethylvinyl Ether	LT	8.40 0	ug/1	GEZ005
				UM21 KK8	Acrylonitrile Aldrin	L1	5.00 -2	ug/1	GFG018
				NNO	Material				
				UM25	Aldrin	LT	1.30 1	ug/1	GFV004
				00	ALKALINITY		1.76 2	ug/l	GE0015
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GFX017
				AX8	Arsenic	LT	2.35 0	ug/1	GFX018
				UH11	Atrazine	LT	4.03 0	ug/l	GFK014
				UM25	Atrazine	LT	5.90 0	ug/l	GFV004
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GFD014
				UM21	Bromodichloromethane	LT	1.00 0	ug/l	GEZ005
				AAA6	Benzothiazole	LT	5.00 0	ug/1	GFH015
				UM21	Vinyl Chloride	LT	1.20 1	ug/l	GEZ 00 5
								3	
				UM21	Chloroethane	LT	8.00 0	ug/l	GEZ00S
				UM21	Benzene	LT	1.00 0	ug/l	GEZ005
				AV8	Benzene	LT	1.05 0	ug/l	GHD007
				GG8	Calcium (filtered)		4.54 4	ug/1	GHH009

Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

empling Cate	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Humber
38117	SW01001	0.1	STRM	GG6	Calcium		4.95 4	ug/l	GHH017
C*	JW01001	0.1	W11317	Um21	Trichlorofluoromethane	LT	1.00 0		GEZ005
				UM21	Carbon letrachloride	LT	1.00 0		GEZ005
				NS	Carbon Tetrachloride	LT	9.90 -1	ug/l	GHE007
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GHH009
				GG8	Cadmium	LT	6.40 0	ug/l	GHH017
				UM21	Methylene Chloride	LT	1.00 0	ug/l	GEZ005
				NB	Methylene Chloride	LT	7.40 0	ug/l	GHE007
				UM21	Bromomethane	LT	1.40 1	ug/l	GEZ005
				UM21.	Chloromethane	LT	1.20 0	ug/l	GEZ 00 5
				UM21	Bromoform	LT	1.10 1	ug/l	GEZ0 0 5
				UM21	Chloroform	LT	1.00 0	ug/l	GEZ005
				N8	Chloroform	LT	5.00 -1	ug/l	GHE007
				HH8A	Chloride		3.30 4	ug/l	GFL010
				KK8	Hexachlorocyclopentadiene	LT	4,80 -2	ug/l	GFG016
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GFV004
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GEZ008
				N6	Chlorobenzene	LT	8.20 -1	ug/l	GHEOO:
				KK8	Chlordane	LT	9.50 -2	ug/l	GFG018
				UM25	Chlordane	LT	3.70 1	ug/l	GFV004
				AAA8	p-Chiorophenylmethyl Sulfide	LT	5.69 0	ug/l	GFH015
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GFV004
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GFH015
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l.	GFV004
				AAA6	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GFH015
				UM25	p-Chlarophenylmethyl Sulfone	LT	5.30 0	ug/l	GFV004
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GHH009
				GG8	Chromium	LT	2.40 1	ug/l	GHH017
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GHH009
				GG8	Copper	LT	2.60 1	ug/l	GHH017
				TF20	Cyanide	LT	5.00 0	ug/l	GEN015
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GFN019
				UM25	Dibromochloropropane	LT	1.20 1		GFV004
				UM21	Dibromochloromethane	LT	1.00 0	ug/1	GEZ00

R. L. Stollar and Associates

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
		Ci. II	.T.T.T.164	UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GEZ 00 5
89117	SW01001	0.1	STRM	P8	Dicyclopentadiene	LT	5.00 0	ug/l	GFD014
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GFV004
				UH11	Vapona	LT	3.84 -1	ug/1	GFK014
				UM25	Vapona	LT	8.50 0	ug/l	GFV004
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GFP015
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GFV00
				AAAA	Dithiane	LT	1.34 0	ug/1	GPH01
				UM25	Dithiane	LT	3.30 0	ug/l	GFV004
				KK8	Dieldrin	LT	5.00 -2	ug/l	GFG01
				UM25	Dieldrin	LT	2.60 1	ug/l	GPV00
				AAA6	Dimethyldisulfide	LT	5.50 -1	ug/l	GFH01
				UM21	Acetone	LT	8.00 0	ug/l	GEZOO
				AT8	Dimethylmethyl Phosphate		1.03 0	ug/1	GFP01
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GFV00
				KKS	Endrin	LT	5.00 -2	ug/l	GFG01
				UM25	Endrin	LT	1.60 1	ug/l	GFV00
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GEZOO
				AV6	Ethylbenzene	LT	1.37 0	ug/l	GHDOO
				HH8A	Fluoride		1.15 3	ug/l	GFL01
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GGW01
				008	Mercury	LT	1.00 -1	ug/1	GGW02
				KK8	Isodrin	LT	5.10 -2	ug/l	GFG01
				UM25	Isodrin	LT	7.80 0	ug/1	GFV00
				GG8	Potassium (filtered)		4.44 3	ug/l	GHHOO
				GG8	Potassium		4.87 3	ug/l	GHH01
				UM21	Toluene	LT		ug/l	GEZ00
				AV8	Toluene		1.47 0	ug/l	GHD00
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GEZOO
				GG8	Magnesium (filtered)		1.48 4	ug/l	GHH00
				GG8	Magnesium		1.57 4	ug/l	GHH01
				UM21	Methylisobutyl Ketone		1.40 0	ug/l	GEZ00
				P8	Methylisobutyl Ketone		4.90 0	ug/l	GFD01
				UH11	Malathion	LT	3.73 -1	ug/1	GFK01

0173:1190

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Řts	esults	Units	Sample Number
- 89117	SW01001	0.1	STRM	UM25	Malathion	LT	2.10 1	ug/l	GFV004
09117	34671001		\$711311	668	Sodium (filtered)		6.00 4	ug/1	GHH009
				GGS	Sodium		5.94 4	ug/l	GHPO:7
				LLS	Nitrite, Nitrate - Non specific		7.00 2	ug/1	GCLG31
				AAA6	1,4-Oxathiane	LT	2.38 0	ug/l	GFHOIS
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GFV/)04
				668	Lead (filtered)	LT	7.40 1	ug/l	GHH009
				GG8	Lead	LT	7.40 1	ug/l	GHH017
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GFG018
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GFV004
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/i	GFG018
				UM25	Dichlorodiphenyltrichloro~ ethane	LT	1.80 1	ug/l	GFV004
				UHI1	Parathion	LT	6.47 -1	us/l	GFK014
				UM25	Parathion	LT	3.70 1	ug/l	GFV004
				KH8A	Sulfate		8.50 4	ug/l	GFL010
				UH11	2-Chloro-1(2.4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GFK014
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/1	GFV004
1				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GEZ005
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GEZ005
				И8	Tetrachloroethene	LT	7.50 -1	ug/l	GHE007
				UM21	Trichloroethene	LT	1.00 0	ug/l	GEZ005
				N8	Trichloroethene	LT	5.60 -1	ug/l	GHE007
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GEZ005
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/1	GHD007
				GC8	Zinc (filtered)	L.T	2.20 1	ug/l	GHH009
				GG8	Zinc		2.38 1	ug/l	GHH017
89117	SW01001B	0.1	STRM	NN9	1,1,1-Trichloroethane	LT		u9/1	GFS009
				NNS	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GPS009
				NNS	1,1-Dichloroethene	LT	2.40 -1	ug/l	GFS009
				еии	1,1-Dichlorcethane	LT	7.40 -2	ug/l	GFS009

R : Stollar and Associates

Comprehensive Monitoring Program

mpling Date	Station rlumber	Sample Depth (cm)	Sample Type	method	Analytical Parameters		esults	Units	Sample Number
-maann	SW01001B	0.1	STRM	ниэ	1.2-Dichloroethene	LT	2.60 -1	ug/l	GFS00
9117	2MOTOOTE	0.1	2100	NN9	1,2-Dichloroethane	LT	8.50 -2	ug/l	GFS00
				AA9	m-Xylene	LT	2.60 -1	ug/l	GFT00
				69	Arsenic	LT	2.50 0	ug/l	GDM02
				LH15	Atrazine		1.00 0	ug/l	GFR00
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKY01
				HH9	Benzothiazole	LT	2.04 0	ug/l	GFA01
				669	Benzene	LT	8.50 -2	ug/l	GFTOO
				ИИ9	Carbon Tetrachloride	LT	1.20 -1	ug/1	GFS00
				P9	Cadmium	LT	7.40 -1	ug/l	GDK02
				РИИ	Methylene Chloride	LT	3.70 0	ug/l	GFS00
				NN9	Chloroform	LT	6.80 -2	ug/l	GFSOC
				NN9	Chlorobenzene	LT	2.00 -1	ug/l	GFS00
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GFA01
				HH9	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/l	GFA01
				нн9	p-Chlorophenylmethyl Sulfone		9.01 0	ug/l	GFA01
				P9	Chromium	LT	6.50 0	ug/l	GDK02
				bà	Copper	LT	4.70 0	ug/1	GDK02
				59	Dibromochloropropane	LT	5.00 -3	ug/l	GFB01
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKY01
				LH15	Vapona	LT		ug/l	GFRO
				T T9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KSU01
				HH9	Dithiane	LT	1.45 0	ug/l	GFA01
				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GFA01
				T T9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU01
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GFTOC
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/1	KRS01
				Y9	Mercury		5.00 -2	ug/l	GDL02
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS01
				AA9	Toluene	LT	1.90 -1	ug/l	GFT00
				ZZ9	Methylisobutyl Ketone		5.24 0	ug/l	IKY01
				LH15	Malathion		1.26 -1	ug/l	GFROO
				HH9	1,4-Oxathiane	LT	1.74 0	ug/1	GFA01

Comprehensive Monatoring Program

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	~ Method	Analytical Parameters	Re	esults	Units	Sample Number
89117	SW01001B	0.1	STRM	P9	Lead	LT	6.40 0	ug/l	GDK026
~~~~				LH15	Parathion	LT	1.59 -1	ug/l	GFR009
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GFR009
				NN9	Tetrachloroethene	LT	2.70 -1	ug/1	GFS009
				NHS	Trichloroethene	LT	1.40 -1	ug/l	GFS009
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GFT009
				<b>P</b> 9	Zinc		2.74 1	ug/l	GDK026
89117	SW01001T6	0	QCTB	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GEZ006
				N6	1,1,1-Trichloroethane	LT	7.60 -1	ug/1	GHE008
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GEZOO6
				NE	1,1,2-Trichloroethane	LT	7.80 -1	ug/1	GHE008
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GEZ006
				N8	1.1-Dichloroethene	LT	1.70 0	ug/l	GHE008
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GEZ006
				N6	1,1-Dichloroethane	LT	7.30 -1	ug/l	GHE008
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GEZ006
				ИВ	1,2-Dichloroethene	LT	7.60 -1	ug/l	GHE008
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GEZ006
				N⊜	1,2-Dichloroethane	LT	1.10 0	ug/l	GHE008
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	GEZ006
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	GEZ006
				UM21	1,3-Dichloropropane	LT	4.60 0	ug/l	GEZ006
				UM21	. m-Xylene	LT	1.00 0	ug/l	GEZ006
				AV8	m-Xylene	LT	1.32 0	ug/l	GHD008
				UM21 "	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GEZ006
				UM21	Acrylonitrile	LT	6.40 0	ug/l	GEZ006
				KK8	Aldrin	LT	5.00 -2	ug/l	GFG019
				UM25	Aldrin	LT	1.30 1	ug/l	GFV005
				00	ALKALINITY	LT	8.78 1	ug/l	GE0016
				AX8	Arsenic (filtered)	LT	2.35 0	ug/1	GFX019
				UH11	Atrazine	LT	4.03 0	ug/l	GFK015
				UM25	Atrazine	LT	5.90 0	ug/l	GFV005

R. L. Stollar and Associates

Summary of Analytical Results

sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number	
			25/2000/0000000000000000000000000000000	maranataria anda anda anda anda anda anda anda an		************			April 1990 - September	
89117	SW01001TB	O	QCTB	P6	Bicycloheptadiene	LT	5.90 0	ug/1	GFD015	
				UM21	Bromodichloromethane	LT	1.00 0	ug/l -	_GEZ006	
				AAAA	Benzothiarole	LT	5.00 0	ug/l	GFH016	
				UM21	Vinyl Chloride	LT	1.20 1	ug/1	GEZ006	
				UM21	Chloroethane	LT	8.00 0	ug/l	GEZ006	
				UM21	Benzene	LT	1.00 0	_ ug/l	GEZ006	
				AV8	Benz ene	LT	1.05 0	ug/1	GHD008	
1				GG8	Calcium (filtered)	LT	5.00.2	_ ug/l	GHH018	
1				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	GEZ006	
				UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	GEZ006	
l				N6	Carbon Tetrachloride	LT	9.90 -1	ug/l	GHE008	
,				GG8	Cadmium (filtered) .	LT	8.40 0	ug/l	GHH018	
				UM21	Methylene Chloride	LT	1.00 0	ug/1	GEZ006	
				Na	Methylene Chloride	LT	7.40 0	ug/1	GHE008	
i	• .			UM21	Bromomethane	LT	1.40 1	ug/l	GEZO06	
1				UM21	Chloromethane	LT	1.20 0	ug/l	GEZ006	
				UM21	Bromoform	LT	1.10 1	ug/l	GEZ006	
				UM21	Chloroform Chloroform	LT	1.00 0.	ug/1	GEZQ06	
				NB	Chloroform	LT	5.00 -1	ug/l	GHE008	
				HHƏA	Chloride	LT	7.20 2	ug/l	GFL011	
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GFG019	
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GFV005	
		er e		UM21	Chlorobenzene	LT	1.00 0	ug/1	GEZ006	
				N8	Chlorobenzene	LT	8.20 -1	ug/l	GHE006	
		6 ·		KK8	Chlordane	LT	9.50 -2	ug/l	GFG019	
				UM25	Chlordane	LT	3.70 1	ug/l	GFV005	
				AAAB	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GFH016	
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GFV005	
•				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GFH016	
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GFV005	
i				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GFH016	
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/1	GFV005	
				GG8	Chromium (filtered)	LT	2.40 1	ug/1	GHH018	
j				GG8	Copper (filtered)	LT	2.60 1	ug/1	GHH018	

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cin)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
69117	SW01001TB	O	QCTB	TF20	Cyanide	LT	5.00 0	ug/l	GEN016
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GFN016
				UM25	Dibromochloropropane	LT	1.20 i	ug/1	GFV005
				UM21	Dibromochloromethane	LT	1.00 0	ug/1	GEZ006 -
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GEZ006
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GFD015
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GFV005
				UH11	Vapona	LT	3.84 -1	ug/1	GFK015
				UM25	Vapona	LT	6.50 0	ug/l	GFV005
				ATO	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GFP016
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GFV005
				AAA6	Dithiane	LT	1.34 0	ug/1	GFH016
				UM25	Dithiane	LT	3.30 0	ug/1	GFV005
				KK8	Dieldrin	LT	5.00 -2	ug/l	GFG019
				UM25	Dieldrin	LT	2.60 1	ug/l	GFV005
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GFH016
				UM21	Acetone	LT	8.00 O	ug/l	GEZ006
				ATA	Dimethylmethyl Phosphate		7.76 -1	ug/l	GFP016
	•			UM25	Dimethylmethyl Phosphate		1.30 2	ug/l	GFV005
				KK8	Endrin	LT	5.00 -2	ug/l	GFG019
				UM25	Endrin		1.80 1	ug/1	GFV005
			* *	UM21	Ethylbenzene		1.00 0	ug/l	GEZ006
				AV8	Ethylbenzene		1.37 0	ug/l	GHD008
			* * *	HH8A CC8	Fluoride Mercury (filtered)	LT	4.62 2 1.00 -1	ug/l ug/l	GFL011 GGW021
				KK8	Isodrin	LΫ́	5.10 -2	ug/l	GFG019
				UM25	Isodrin		7.60 0	ug/l	GFV005
				GG8	Potassium (filtered)		2.50 2	ug/l	GHH018
				UM21	Toluene		1.00 0	ug/l	GEZ006
				AV8	Toluene		1.47 0	ug/1	GHD008
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GEZ006
				GG8	Magnesium (filtered)		5.00 2	ug/l	GHH018
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GEZO06
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GFD015

Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eśults	Units	Sample Number
69117	SW01001TB	0	QCTB	UH11	Malathion	LT	3.73 -1	ug/l	GFK015
09117	340100110		QU'ID	UM25	Malathion	LT	2.10 1	ug/l	GFV005
				GG8	Sodium (filtered)	LT	9.40 2	ug/l	GHH018
				LLS	Nitrite, Nitrate - Non specific		1.11 1	ug/l	GCL032
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GFH016
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GFV005
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GHH018
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GFG019
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GFV005
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GFG019
1				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GFV005
				UH11	Parathion	LT	6.47 -1	ug/1	GFK015
į				UM25	Parathion	LT	3.70 1	ug/1	GFV005
				HH8A	Sulfate	LT	2.51 2	ug/l	GFL011
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GFK015
				.UM25	2-Chloro-1(2,4-Dichloropheny1) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GFV005
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GEZ006
				UM21	Tetrachloroethene	LT	1.00 0	ug/1	GEZ006
				.N8	Tetrachloroethene	LT	7.50 -1	ug/1	GHE008
				UM21	Trichloroethene	LT	1.00 0	ug/l	GEZ006
1				N8	Trichloroethene	LT	5.60 -1	ug/l	GHE006
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GEZ006
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/1	GHD006
				GGA	Zinc (filtered)	LT	2.20 1	ug/l	GHH018
89138	SW01002	0.3	POND	N8	1,1,1-Trichloroethane	L۳	7.60 -1	ug/l	GLY011
				UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GLL008
				N6	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GLY011
J				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GLL008
1				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	GLY011
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GLL008

01/10/90

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Units	Sample Number
89138	SW01002	0.3	POND	N6	1,1-Dichloroethane	LT	7.30	-1	.ug/1	GLY011
09130	3401002	0.0	1 0110	UM21	1,1-Dichloroethane	LT	1.00		ug/l	GLL008
				N8	1,2-Dichloroethene	LT	7.60	-1	ug/l	GLY01:
				UM21	1.2-Dichloroethene	LT	5.00	0	ug/l	GLL008
				Na	1,2-Dichloroethane	LT	1.10	0	ug/1	GLY01
				UM21	1,2-Dichloroethane	LT	1.00	0	-ug/l	GLL00
				UM21	1,2-Dichloropropane	LT	1.00	0	ug/1	GLL00
				UM21	1,3-Dichlorobenzene	LT	1.00	0	ug/l	GLLOO
				UM21	1,3-Dichloropropane	LT	4.60	0	ug/1	GLL008
				UM21	m-Xylene	LT	1.00	0	ug/l	GLL00
				AV8	m-Xylene	LT	1.32	0	ug/l	GLZ01
				UM21	2-Chloroethylvinyl Ether	LT	3.50	0	ug/l	GLL00
				UM21	Acrylonitrile .	LT	8.40	0	ug/1	GLL00
				KK8	Aldrin		3.20	0	ug/l	GLH01
				UM25	Aldrin	LT	1.30	1	ug/l	GMR00
				00	ALKALINITY		1.37	2	ug/l	GMK00
				AX8	Arsenic (filtered)		1.69	1	ug/1	GLP01
				UH11	Atrazine		6.52		ug/l	GLG01
				UM25	Atrazine	LT	5.90		ug/l	GMROO
				P8	Bicycloheptadiene	LT	5.90	0	ug/l	GLF01
	•			UM21	Bromodichloromethane	LT	1.00		ug/l	GLL00
	**			<b>AA</b> A6	Benzothiazole		1.42	1	ug/l	GLJ01
				UM21	Vinyl Chloride	LT	1.20		ug/l	GLLOO
				UM21	Chloroëthane	LT	8.00		ug/l	GLL00
				UM21	Benz ene	LT	1.00	. 0	ug/l	GLLOO
			•	AV6	Benzene	LT	1.05	0	ug/l	GLZ01
				GG8	Calcium (filtered)		5.25	4	ug/l	GL001
				UM21	Trichlorofluoromethane	LT	1.00		ug/I	GLLOO
				N8	Carbon Tetrachloride	LT	9.90	-1	ug/l	GLY01
				UM21	Carbon Tetrachloride	LT	1.00	0	ug/l	GLL00
				GG8	Cadmium (filtered)	LT	6.40	o	ug/l	GL001
				N8	Methylene Chloride	LT	7.40	0	ug/l	GLY01
				UM21	Methylene Chloride	LT	1.00	0	ug/l	GLL00
				UM21	Bromomethane	LT	1.40	1	ug/l	GLLOO

R. L. Stollar and Americates

Comprehensive Monitoring Program

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
		***************************************		***************************************					
89138	SW01002	0.3	POND	UM21	Chloromethane	LT	1.20 0	ug/l	GLL008
				UM21	Bromoform	LT	1.10 1	ug/l	GLL008
				N8	Chloroform		7.07 0	ug/l	GLY011
				UM21	Chloroform	-	5.66 0	ug/l	GLL008
				ннаа	Chloride		2.70 4	ug/l	GLN016
				KK8	Hexachlorocyclopentadiene		2.21 -1	ug/l	GLH012
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GMR002
				N8	Chlorobenzene	LT	8.20 -1	ug/1	GLY011
				UM21	Chlorobenzene	LT	1.00 0	ug/1	GLL008
				KK8	Chlordane		9.90 0	ug/l	GLH012
				UM25	Chlordane	LT	3.70 i	ug/l	GMIRO02
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GLJ013
	•			UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GMR00
				AAA8	p-Chlorophenylmethyl Sulfoxide		7.50 2	ug/1	GLJ01
				UM25	p-Chlorophenylmethyl Sulfoxide	GT	3.00 2	ug/l	GMR00
				AAAG	p-Chlorophenylmethyl Sulfone		8.40 1	ug/l	GLJ01
				UM25	p-Chlorophenylmethyl Sulfone		1.01 2	ug/l	GMR00
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GL0019
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GL0019
				TF20	Cyanide	LT	5.00 0	ug/l	GLMQ03
				AY6	Dibromochloropropane		3.80 1	ug/l	GLI01
			4.0	UM25	Dibromochloropropane	LT	1.20 1	ug/l	GMR00
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GLL00
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/1	GLL008
				P8	Dicyclopentadiene		9.69 1	ug/l	GLF017
		1.5		UM25	Dicyclopentadiene		7.56 1	ug/l =	GMR002
				UH11	Vapona	LT	3.84 -1	ug/l	GLG012
				UM25	Vapona	LT	8.50 0	ug/l	GMR002
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GLK016
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GMR00
				AAA8	Dithiane	LT	1.34 0	ug/l	GLJ013
				UM25	Dithiane	LT	3.30 0		GMR002
				KK8	Dieldrin		2.00 0	ug/1	GLH01
				UM25	Dieldrin	LT	2.60 1	ug/1	GMROO

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 39

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
00170	CHOLOGO	0.3	POND	AAA8	Dimethyldisulfide	1.7	5.501	ug/l	GLJ013
89138	SW01002	0.3	FOND	AT8	Dimethylmethyl Phosphate	Sec. 1	7.42 -1	ug/l	GLK016
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/1	GMR002
				KK8	Endrin	Spari 4	4.70 -1	ug/1	GLH012
				UM25	Endrin	LT	1.80 1	ug/l	GMR002
				UM21	- Ethylbenzene	LT	1.00 0	ug/l	GLL008
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GLZ011
				HH8A	Fluoride		1.02 3	ug/l	GLN016
				CC8	Mercury (filtered)		1.98 -1	ug/1	GML032
				KK8	Isodrin		7.40 -1	ug/l	GLH012
				UM25	Isodrin	LT	7.80 0	ug/l	GMR002
				GG8	Potassium (filtered)		4.21 3	ug/l	GL0019
				UM21	Taluene ·	LT	1.00 0	ug/l	GLL008
				AV8	Toluene		4.42 0	ug/l	GLZ011
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GLL008
				GG8	Magnesium (filtered)		1.14 4	ug/l	GL0019
				P8	Methylisobutyl Ketone		4.90 0	ug/1	GLF017
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/1	GLL008
				UH11	Malathion		1.07 1	ug/l	GLG012
				UM25	Malathion	LT	2.10 1	ug/l	GMR002
				GG8	Sodium (filtered)		5.60 4	. ug/l	GL0019
				rre	Nitrite, Nitrate - Non specific		1.70 3	ug/l	GMZ005
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GLJ013
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GMR002
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GL0019
				KK8	Dichlorodiphenylethane		5.40 -2	ug/l	GLH012
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/1	GMR002
				KK8	Dichlorodiphenyltrichloro- ethane		1.93 -1	ug/l	GLH012
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GMR002
				UH11	Parathion		1.51 1	ug/l	GLG012
				UM25	Parathion	LT	3.70 1	ug/l	GMR002
				HH8A	Sulfate		1.00 5	ug/1	GLN016

01/10/90

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Re	esults	Units	Sample Number
89138	SW01002	0.3	POND	UH11	2-Chloro-1(2,4-Dichlorophenyl)		7.10 0	ug/l	GLG012
					Vinyldiethyl Phosphates				
				UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/1	GMRO02
					Vinyldiethyl Phosphates				011000
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GLL008
			•	N8	Tetrachloroethene		1.64 0	ug/l	GLY011
				UM21	Tetrachloroethene		1.20 0	ug/l	GLL008
				ив	Trichloroethene	LT	5.60 -1	ug/1	GLY011
				UM21	Trichloroethene	LT	1.00 0	ug/l	GLL008
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GLL008
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GLZ011
				GG8	Zinc (filtered)		3.48 1	ug/l	GL0019
39136	SW010028	0.3	POND	N9	1,1,1-Trichloroethane	LT	4.30 -1	ug/l	GLV006
35130	34010020	0.0	1 0110	NN9	1,1,1-Trichloroethane	LT	8.60 -2	ug/l	GLW003
				N9	1,1,2-Trichloroethane	LT	3.90 -1	ug/l	GLV00
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GLW00
				ии9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GLW00
				Н9	1,1-Dichloroethane	LT	1.70 0	ug/l	GLV006
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GLW003
				N9	1,2-Dichloroethene	LT	1.70 0	ug/l	GLV006
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GLW005
				N9	1,2-Dichloroethane	LT	5.60 -1	ug/l	GLV006
		•		NN9	1,2-Dichloroethane	LT	8.50 -2	ug/1	GLW003
		. *		N9	m-Xylene	LT	7.40 -1	ug/1	GLV006
				KK9A	Aldrin		8.40 0	ug/l	GLS009
				LH15	Atrazine	LT	1.54 -1	ug/l	GLX006
				N9	Bicycloheptadiene	LT	3.60 -1	ug/l	GLV006
				NC	Danzana	1 74"	2 EA 4	ua /i	GLV006
				N9	Benzene		2.50 -1	ug/l	
				N9	Carbon Tetrachloride	LT		ug/1	GLV006
				ниэ	Carbon Tetrachloride		1.20 -1	ug/l	GLW00
				N9	Methylene Chloride	LT	1.50 0	ug/l	GLV00
				NN9	Methylene Chloride	LT	3.70 0	ug/l	GLW00
				N9	Chloroform	LT	2.90 -1	ug/l	GLV006

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
00476	0.044000	A 7	POND	еии	Chloroform	LT	6.80 -2	ug/l	GLW005
69136	SW01002B	0.3	PURD	KK9A	Hexachlorocyclopentadiene	LT	1.80 -3	ug/l	GLS009
				NS VVSM	Chlorobenzene	LT	1.50 0	ug/l	GLV006
				NN9	Chlorobenzene			ug/l	GLW005
				KK9A	Chlordane		2.30 -2	ug/l	GLS005
				S9	Dibromochloropropane		2.93 -2	ug/l	GLQOOS
		-		И9	Dibromochloropropane	LT	2.40 0	ug/l	GLV006
				N9	Dicyclopentadiene	LT	6.40 -1	ug/l	GLV006
				LH15	Vapona	LT	8.00 -2	. ug/l	GLX006
				KK9A	Dieldrin		4.00 -1	ug/l	GLS009
				И9	Dimethyldisulfide	LT	2.00 1	ug/l	GLV006
				KK9A	Endrin	LT	5.80 -3	ug/l	GLS009
				N9	Ethylbenzene	LT	3.80 -1	ug/l	GLV006
				KK9A	Isodrin		2.80 -1	ug/l	GLS009
				<b>Н9</b>	Toluene	LT	2.50 -1	ug/l	GLV006
				Н9	Methylisobutyl Ketone	LT	7.30 -1	ug/l	GLV006
				LH15	Malathion	LT	1.26 -1	ug/l	GLX006
				KK9A	Dichlorodiphenylethane		6.10 -2	ug/l	GLS009
				KK9A	Dichlorodiphenyltrichloro- ethane		1.60 -1	ug/l	GLS009
		•		LH15	Parathion	LT	1.59 -1	ug/l	GLX006
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GLX006
				N9 ·	Tetrachloroethene	LT	2.50 -1	ug/1	GLV006
				NN9	Tetrachloroethene	LT	2.70 -1	ug/l	GLW005
				N9	Trichloroethene	LT	5.40 -1	ug/1	GLV006
				NN9	Trichloroethene	LT	1.40 -1	ug/l	GLW003
				ИЭ	Cirtho- & Para-Xylene	LT	4.90 0	ug/l	GLV006
89138	SW01002B	0.3	POND	<b>A</b> A9	m-Xylene	LT	2.60 -1	ug/l	GLU003
				ZZ9	Bicycloheptadiene		5.08 0	ug/1	IKZ00
				AA9	Benzene	LT	8.50 -2	ug/1	GLU00!
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKZ00
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KSX00

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	<b>R</b> €	esults	Units	Sample Number
<b>6</b> 9136	SW01002B	0.3	- POND	TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSX <b>005</b>
03130	3401002.0	0.0	T CATE	AA9	Ethylbenzene	LT	1.60 -1	ug/l	GLU005
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRV009
				AAA9	Isopropylmethyl Phosphonic	LT	2.11 0	ug/l	KRV009
					Acid				1
				AA9	Toluene	LT	1.90 -1	ug/l	GLU005
ļ				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKZ005
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GLU005
69109	SW01004	0.3	LAKE	AV8	m-Xylene	LT	1.32 0	ug/l	GCS012
				KK8	Aldrin	LT	5.00 -2	ug/l	GCY014
				UM25	Aldrin	LT	1.30 ì	ug/l	GDV006
				00	ALKALINITY		1.87 2	ug/l	GCJ012
ı				AX8	Arsenic (filtered)		2.44 0	ug/l	GCM021
				AX8	Arsenic		2.61 0	ug/1	GCM022
				UH11	Atrazine	LT	4.03 0	ug/l	GCW012
				UM25	Atrazine	LT	5.90 0	ug/1	GDV006
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GCV012
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GCZ014
				AV8	Benzene	LT	1.05 0	ug/l	GCS012
				GG8	Calcium (filtered)		5.73 4	ug/1	GC0021
				GG8	Calcium		5.64 4	ug/l	GC0022
				· GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GC0021
j				GG8	Cadmium	LT	6.40 0	ug/1	GC0022
1		a.		HH8A	Chloride		5.70 4	ug/l	GCK012
İ				KK8	Hexachlorocyclopentadiene	LT	4.60 -2	ug/l	GCY014
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GDV006
				KK8	Chlordane	LT	9,50 -2	ug/1	GCY014
				UM25	Chlordane	LT	3.70 1	ug/l	GDV006
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GCZ014
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GDV006
				AAAB	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GCZ014
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GDV006
l				AAAB	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ014

01/10/90

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Re	sults	Units	Sample Number
89109	SW01004	0.3	LAKE	UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GDV006
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GC0021
				GG8	Chromium	LT	2.40 1	ug/l	GC0022
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0021
		·		GG8	Copper	LT	2.60 1	ug/l	GC0022
				TF20	Cyanide	LT	5.00 0	ug/l	GCR012
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA014
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GDV006
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GCV012
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GDV006
				UH11	Vapona	LT	3.84 -1	ug/l	GCW012
				UM25	Yapona	LT	8.50 0	ug/l	GDV006
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX014
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GDV006
				AAA8	Dithiane	LT	1.34 0	ug/l	GCZ014
			•	UM25	Dithiane	LT	3.30 0	ug/l	GDV006
				KK8	Dieldrin		4.93 -2	ug/l	GCY014
				UM25	Dieldrin	LT	2.60 1	ug/l	GDY006
				AAA6	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ014
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GCX014
				UM25	_Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GDV006
				KK8	Endrin		5.33 -2	ug/l	GCY014
				UM25	Endrin	LT	1.60 1	ug/l	GDV006
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS012
				HH8A	Fluoride		1.11 3	ug/l	GCK012
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN021
				cce	Mercury	LT	1.00 -1	ug/l	GCN022
				KK8	Isodrin		5.10 -2	ug/l	GCY014
				UM25	Isodrin	LT		ug/1	GDV006
				GG6	Potassium (filtered)		6.91 3		GC0021
				GGS	Potassium		7.37 3	ug/l	GC0022
				AV8	Toluene	1 T	1.47 0	ug/l	GCS012
				GG8	Magnesium (filtered)	Sac F	1.50 4		GC0021
				COO	HOWELLEGISH (ITTOGLED)		1.00 4	ug/l	GCOVZ.

R. L. Stollar and Associates

Summary of Analytical Results Surface Water Samples for Spring 89

ampling Date	Station Number	Sample Depth (cm)	Sample Type		Analytical Parameters	Re	esults	Units	Sample Number
69109	SW01004	0.3	LAKE	P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GCV012
OBIOS	3401004	0.5	Section View	UM25	Malathion	LT	2.10 1	ug/l	GDV006
				GG8	Sodium (filtered)		6.67 4	ug/l	GC0021
				GG8	Sodium		6.74 4	ug/l	GC0022
				LL8	Nitrite, Nitrate - Non specific		2.40 2	ug/l	GCL012
				AAA6	1,4-Oxathiane	LT	2.38 0	ug/l	GCZ014
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GDV006
-				GG6	Lead (filtered)	LT	7.40 1	-	GC0021
				GG8	Lead	LT	7.40 1		GC0022
_				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GCY014
				UM25	Dichlorodiphenylethane	LT	1.40 1		GDV006
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GCY014
				UM25	Oichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GDV006
				UM25	Parathion	LT	3.70 1	ug/1	GDV006
				HH8A	Sulfate		5.20 4	ug/l	GCK012
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GDV006
		44**		AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS012
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GC0021
				GG6	Zinc	LT	2.20 1	ug/l	GC0022
89107	SW01005	0.3 %	LAKE	GGS	Calcium (filtered)		4.44 4		GC0007.
				GG8	Cadmium (filtered)	LT	8.40 0		GC0007
				GG6	Chromium (filtered)	LT	2.40 1	ug/l	GC0007
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0007
				GG8	Potassium (filtered)		3.50 3	ug/l	GC0007
				GG8	Magnesium (filtered)		1.35 4	ug/l	GC0007
				GG8	Sodium (filtered)		4.13 4	ug/l	GC0007
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GC0007
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GC0007
89108	SW01005	0.3	LAKE	AV6	m-Xylene	LT	1.32 0		GCS006
				KK8	Aldrin	LT	5.00 -2		GCY006
				UM25	Aldrin	LT	1.30 1	ug/l	GDV002

Comprehensive Monitoring Program

Summary of Analytical Results

Date	Station Number SW01005	Sample Depth (cm)  O.3	Sample Type ——— LAKE	-Method	Analytical Parameters	Re	eults		Units	Sample Number
89108	SW01005	0.3	LAKE	00						
89106	SW01005	0.3	LAKE	00						
					ALKALINITY		1.27		ug/l	GCJ006
				AX8	Arsenic (filtered)		2.35		ug/l	GCM007
				AX6	Arsenic		2.35		ug/l	GCMO08
				UH11	Atrazine	LT	4.03		ug/l	GCW006
				UM25	Atrazine	LT	5.90	0	ug/l	GDV002
				P8	Bicycloheptadiene	LT	5.90	٥	ug/l	GCV006
				AAA6	Benrothiazole	LT	5.00	0	ug/l	GCZ006
				AV8	Benzene	LT	1.05	0	ug/l	GCS006
				GG8	Calcium		4.94	4	ug/l	GC0008
				GG8	Cadmium	LT	8.40	0 '	ug/l	GC0008
				HH8A	Chloride		3.30	4	ug/l	GCK006
				KK6	Hexachlorocyclopentadiene	LT	4.80 -		ug/l	GCY006_
				UM25	Hexachlorocyclopentadiene	LT	5.40	1	ug/l	GDV002
				KK8	Chlordane	LT	9.50 -	2	ug/l	GCY006
ı				UM25	Chlordane	LT	3.70	1	ug/l	GDV002
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69	ο,	ug/l	GCZ006
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1	ug/1	GDV002
				AAAB	p-Chlorophenylmethyl Sulfoxide	LT	1.15	1	ug/l	GCZ006
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1	ug/l	GDV002
	-			AAA6	p-Chlorophenylmethyl Sulfone	LT	7.46	Э	ug/l	GCZ006
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0	ug/l	GDV002
				GG8	Chromium	LT	2.40		ug/l	GC0008
				GGS	Copper	LT	2.60		ug/l	GC0008
				TF20	Cyanide	LT	5.00	Ö	ug/l	GCR006
	- 0.0			AY8	Dibromochloropropane		1.95 -		ug/l	GDA006
İ				UM25	Dibromochloropropane	LT	1.20	1	ug/l	GDV002
				P8	Dicyclopentadiene	LT	5.00		ug/l	GCV006
				UM25	Dicyclopentadiene	LT	5.50		ug/l	GDV002
				UH11	Vapona	LT	3.84 -		ug/l	GCW006
				UM25	Vapona		8.50		ug/l	GDV002
				AT6	Diisopropylmethyl Phosphonate	LT	3.92 -	1	ug/l	GCX006
				UM25	Diisopropylmethyl Phosphonate		2.10		ug/1	GDV002
				AAA8	Dithiane		1.34		ug/l	GCZ006
				UM25	Dithiane		3.30		ug/1	GDV002

Comprehensive Monitoring Program

Summary of Analytical Results Surface Water Samples for Spring 89

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	·Units	Sample Number
89108	SW01005	0.3	LAKE	KK8	-Dieldrin-vo	LT	5.00 -2	ug/l	GCY006
05100	31701100	2.0	A	UM25	Dieldrin	LT	2.60 1	ug/l	GDV002
				AAAS	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ006
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/1	GCX006
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GDV002
				KK8	Endrin	LT	5.00 -2	ug/l	GCY006
				UM25	Endrin	LT	1.80 1	ug/l	GDV002
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS006
				HHBA	Fluoride		1.00 3	ug/1	GCK006
				CC6	Mercury (filtered)	LT	1.00 -1	ug/l	GCN007
				CC8	Mercury	LT	1.00 -1	ug/l	GCN008
				KK8	Isodrin	LT	5.10 -2	ug/1	GCY006
				UM25	Isodrin	LT	7.80 0	ug/l	GDV002
				GG8	Potassium		3.69 3	ug/l	GC0008
				AVS	Toluene	LT	1.47 0	ug/l	GC\$006
				GG8	Magnesium		1.42 4	ug/l	GC0008
				P8	Methylisobutyl Ketone	LT		ug/l	GCV006
				UM25	Malathion	LT	2.10 1	. ug/l	GDV002
				GG8	Sodium		4.52 4	ug/l	GC0008
				LL8	Nitrite, Nitrate - Non specific		5,74 1	ug/l	GCL007
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GCZ006
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GDV002
	***	um e		GG8	Lead	LT	7.40 1	ug/l	GC0008
		***		KK6	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GCY006
	••			UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GDV002
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GCY006
				. UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GDV002
				UM25	Parathion	LT	3.70 1	ug/l	GDV002
				HHBA	Sulfate		7.10 4	ug/l	GCK006
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GDV002
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GC\$006

01/10/90

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Numbe
89108	SW01005	0.3	LAKE	GG8	Zinc	LT	2.20 1	ug/l	GC0008
69106	SW01005D	0.3	· LAKE	AV8 =	m-Xylene	LT	1.32 0	ug/l	GCS001
	01102000		207 11 110	KK8	Aldrin	LT	5.00 -2	ug/l	GCY001
				UM25	Aldrin	LT	1.30 1	ug/l	GDV00
				00	ALKALINITY		1.26 2	ug/l	GCJ00
				AX8	Arsenic	LT	2.35 0	ug/l	GCMOO
				AX8	Arsenic	LT	2.35 0	ug/l	GCM01
				UH11	Atrazine	LT	4.03 0	ug/l	GCWOO
				UM25	Atrazine	LT	5.90 0	ug/l	GDV00
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GCV00
				AAAB	Benzothiazole	LT	5.00 0	ug/l	GCZOC
				AV8	Benzene	LT	1.05 0	ug/l	GCSOC
				GG8	Calcium		4.77 4	ug/1	GCOO
				GG8	Calcium		4.86 4	ug/1	GC001
				GG8	Cadmium	LT	6.40 0	ug/1	GC000
				GG8	Cadmium	LT	6.40 0	ug/l	GC001
				HH8A	Chloride		3.30 4	ug/l	GCK00
			,	KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/1	GCY00
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GDVOC
				KK8	Chlordane	LT	9.50 -2	ug/l	GCYOO
				UM25	Chlordane	LT	3.70 1	ug/l	GDV00
	- 1	.7. 1		AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GCZOC
				UM25	p-Chlorophenylmethyl Sulfide	LT-	1.00 1	ug/l	<b>GDV00</b>
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GCZOO
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GDV00
				AAAS	p-Chlorophenylmethyl Sulfone	LT	. 7.46 0	ug/1	GCZOO
				UM25	p-Chlorophenylmethyl Sulfone	LT		ug/l	GDV00
				GG8	Chromium	LT	2.40 1	ug/l	GCOOC
				GG8	Chromium	LT	2.40 1	ug/1	GC001
				<b>GG</b> 8	Copper	LT	2.60 1	ug/1	GCOOK
				GG8	Copper	LT	2.60 1	ug/l	GC001
				TF20	Cyanide		5.00 0	ug/l	GCROC
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDAOC

Summary of Analytical Results Surface Water Samples for Spring 89

Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Septimizer   Sep	Sampling Date	Station Number	Sample Depth (cm)	Sample Type	-Method	Analytical Parameters	Re	sults	,,,,,,,,,,,,	Units	Sample Number
PS	89108	SW01005D	0.3 -	- LAKE	UM25	. Dibromochloropropane	LT	1.20	1	ug/l	GDV003
UM25 Oicyclopentadiene						· ·	LT	5.00	0	ug/l	GCV007
LM25					UM25		LT	5.50	0	ug/l	GDV003
ATS					UH11	Vapona	LT	3.64	-1	ug/l	GCW007
UM25 Diisopropylmethyl Phosphonate LT 2.10 1 ug/1 GCV007 GCR07 UH25 Dithiane LT 3.30 0 ug/1 GCV007 UH25 Dichiane LT 3.30 0 ug/1 GCV007 UH25 Dichiane LT 5.00 -2 ug/1 GCV007 UH25 Dieldrin LT 5.00 -2 ug/1 GCV007 UH25 Dieldrin LT 5.00 -2 ug/1 GCV007 UH25 Dieldrin LT 5.50 -1 ug/1 GCV007 UH25 Dimethyldisulfide LT 5.50 -1 ug/1 GCX007 UH25 Dimethylmethyl Phosphate LT 1.30 2 ug/1 GCX007 UH25 Dimethylmethyl Phosphate LT 1.30 2 ug/1 GCX007 UH25 Dimethylmethyl Phosphate LT 1.30 2 ug/1 GCX007 UH25 Dimethylmethyl Phosphate LT 1.30 2 ug/1 GCY007 UH25 Endrin LT 5.00 -2 ug/1 GCY007 UH25 Endrin LT 1.00 1 ug/1 GCX007 HH8A Fluoride LT 1.00 1 ug/1 GCX007 UH25 Endrin LT 1.00 -1 ug/1 GCX007 UH26 UF3 UF3 UF3 UF3 UF3 UF3 UF3 UF3 UF3 UF3	1				UM25	Vapona	LT	8.50	٥	ug/l	GDV003
ARABS Dithiane LT 1.34 0 ug/1 GCX007 UM25 Dithiane LT 3.30 0 ug/1 GCY007 KK8 Dieldrin LT 5.00 -2 ug/1 GCY007 UM25 Dieldrin LT 5.00 -2 ug/1 GCY007 ARABS Dimethyldisulfide LT 5.50 -1 ug/1 GCX007 UM25 Dimethylmethyl Phosphate LT 1.86 1 ug/1 GCX007 UM25 Dimethylmethyl Phosphate LT 1.86 -1 ug/1 GCX007 UM25 Dimethylmethyl Phosphate LT 1.30 2 ug/1 GCY007 UM25 Dimethylmethyl Phosphate LT 1.30 2 ug/1 GCY007 UM25 Endrin LT 5.00 -2 ug/1 GCY007 UM25 Endrin LT 1.80 1 ug/1 GCX007 UM25 Endrin LT 1.80 1 ug/1 GCX007 UM25 Endrin LT 1.37 0 ug/1 GCX007 UM25 Endrin LT 1.30 3 ug/1 GCX007 UM25 Endrin LT 1.00 -1 ug/1 GCX007 UM25 Endrin LT 1.00 -1 ug/1 GCX007 UM25 UM25 UM25 UM25 UM25 UM25 UM25 UM25					AT8	Diisopropylmethyl Phosphonate	LT	3.92	-1	ug/l	GCX007
Dithiane					UM25	Diisopropylmethyl Phosphonate	LT		1	ug/l	
MASS   Dieldrin   LT   5.00 -2   ug/l   GCY007	l				AAAB	Dithiane	LT				
UM25 Dieldrin LT 2.60 1 ug/1 GDV003 AAAB Dimethyldisulfide LT 5.50 -1 ug/1 GCZ007 ATB Dimethylmethyl Phosphate LT 1.68 -1 ug/1 GCX007 UM25 Dimethylmethyl Phosphate LT 1.30 2 ug/1 GDV003 KK8 Endrin LT 5.00 -2 ug/1 GCY007  UM25 Endrin LT 1.60 1 ug/1 GDV003 AV8 Ethylbenzene LT 1.37 0 ug/1 GCS007 HHEA Fluoride 1.09 3 ug/1 GCX007 CC8 Mercury (filtered) LT 1.00 -1 ug/1 GCN009 CC8 Mercury (filtered) LT 1.00 -1 ug/1 GCN009 CC8 Mercury LT 1.00 -1 ug/1 GCN009 CC9 Mercury LT 1.00 -1 ug/1 GCN009 CC9 Potassium LT 7.60 0 ug/1 GCY007 UM25 Isodrin LT 7.60 0 ug/1 GCY007 UM25 Isodrin LT 7.60 0 ug/1 GCY007 CG8 Potassium 3.58 3 ug/1 GC0009 CG9 Potassium 3.58 3 ug/1 GC0009 CG9 Magnesium 1.37 4 ug/1 GC0010 AV8 Toluene LT 1.47 0 ug/1 GC0009 CG8 Magnesium 1.37 4 ug/1 GC0010 CG9 Magnesium 1.37 4 ug/1 GC0009 CG9 Magnesium 1.45 4 ug/1 GC0009 CG9 Magnesium 1.45 4 ug/1 GC0009 CG9 Sodium 1.42 4 ug/1 GC0009 CG9 Sodium 4.40 4 ug/1 GC0009 CG9 Sodium 4.22 4 ug/1 GC0009 CG9 Sodium 4.40 4 ug/1 GC0009 CG9 Sodium 4.40 4 ug/1 GC0010 CG000 AAAB6 1,4-Oxathiane LT 2.38 0 ug/1 GC0007					UM25	Dithiane	LT				
AAAS Dimethyldisulfide LT 5.50 -1 ug/l GCZ007 ATS Dimethylmethyl Phosphate LT 1.86 -1 ug/l GCX007 UM25 Dimethylmethyl Phosphate LT 1.30 2 ug/l GCY007 KKS Endrin LT 5.00 -2 ug/l GCY007  UM25 Endrin LT 1.60 1 ug/l GCY007  UM25 Endrin LT 1.37 0 ug/l GCS007 HH8A Fluoride LT 1.37 0 ug/l GCS007 HH8A Fluoride 1.09 3 ug/l GCK007 CC8 Mercury (filtered) LT 1.00 -1 ug/l GCN009 CC8 Mercury LT 1.00 -1 ug/l GCN009 CC8 Mercury LT 1.00 -1 ug/l GCN009 CC9 Potassium LT 5.10 -2 ug/l GCY007  UM25 Isodrin LT 5.00 -2 ug/l GCY007  UM25 Isodrin LT 7.80 0 ug/l GCN009 GGS Potassium 3.58 3 ug/l GC0009 GGS Potassium 3.58 3 ug/l GC0009 GGS Potassium 1.47 0 ug/l GC0009 GGS Magnesium 1.47 0 ug/l GC0009 GGS Magnesium 1.47 0 ug/l GC0009 GGS Magnesium 1.45 4 ug/l GC0010 PS Methylisobutyl Ketone LT 4.90 0 ug/l GCV007 UM25 Malathion LT 2.10 1 ug/l GC0009 GGS Sodium 4.22 4 ug/l GC0009 GGS Sodium 4.22 4 ug/l GC0009					KK8	Dieldrin	LT	5.00	-2	ug/l	GCY007
ATS Dimethylmethyl Phosphate LT 1.88 -1 ug/l GCX007 UM25 Dimethylmethyl Phosphate LT 1.30 2 ug/l GDV003 KK8 Endrin LT 5.00 -2 ug/l GCV007 UM25 Endrin LT 1.80 1 ug/l GDV003 AV8 Ethylbenzene LT 1.37 0 ug/l GCX007 UM25 Endrin LT 1.00 -1 ug/l GCX007 CC8 Mercury (filtered) LT 1.00 -1 ug/l GCX007 CC8 Mercury (filtered) LT 1.00 -1 ug/l GCX007 UM25 Isodrin LT 7.80 0 ug/l GCX007 UM25 Isodrin LT 7.80 0 ug/l GCX007 GG8 Potassium 3.58 3 ug/l GCX007 GG8 Potassium 3.58 3 ug/l GCX007 GG8 Potassium 3.93 3 ug/l GCX007 UM25 Isodrin LT 7.80 0 ug/l GCX007 GG8 Magnesium 3.93 3 ug/l GCX0009 GG8 Magnesium 1.37 4 ug/l GCX007 UM25 Malathion LT 1.47 0 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.10 1 ug/l GCX007 UM25 Malathion LT 2.38 0 ug/l GCX007	İ				UM25	Dieldrin	LT				
UM25   Dimethylmethyl Phosphate   LT   1.30   2   ug/l   GDV003   KK8   Endrin   LT   5.00 -2   ug/l   GCY007	,				AAA8	Dimethyldisulfide	LT	5.50	-1		
UM25 Endrin LT 5.00 -2 ug/1 GCY007  UM25 Endrin LT 1.80 1 ug/1 GDV003  AV8 Ethylbenzene LT 1.37 0 ug/1 GCS007  HH6A Fluoride 1.09 3 ug/1 GCK007  CC8 Mercury (filtered) LT 1.00 -1 ug/1 GCN009  CC8 Mercury (filtered) LT 1.00 -1 ug/1 GCN009  CC8 Mercury LT 1.00 -1 ug/1 GCN009  CC8 Mercury LT 1.00 -1 ug/1 GCN009  CC8 Mercury LT 1.00 -1 ug/1 GCN009  CC9 Mercury LT 1.00 -1 ug/1 GCN009  CC9 Mercury LT 1.00 -1 ug/1 GCN009  CC9 Potassium S.58 3 ug/1 GC0009  CG8 Potassium 3.58 3 ug/1 GC0009  CG8 Potassium 3.93 3 ug/1 GC0009  CG9 Magnesium 1.37 4 ug/1 GC0009  CG9 Magnesium 1.37 4 ug/1 GC0009  CG9 Magnesium 1.45 4 ug/1 GC0010  CG9 Magnesium 1.45 4 ug/1 GC0010  CG9 Magnesium 1.45 4 ug/1 GC0009  CG9 Sodium 1.42 4 ug/1 GC0009  CG9 Sodium 4.42 4 ug/1 GC0009  CG9 Sodium 4.40 4 ug/1 GC0009  CG9 Sodium 4.40 4 ug/1 GC0009  CG9 Sodium 4.40 4 ug/1 GC0009  CG9 Sodium 4.40 4 ug/1 GC0009  CG9 Sodium 4.40 4 ug/1 GC0009  CG9 Sodium 4.40 4 ug/1 GC0009  CG9 Sodium 4.40 4 ug/1 GC0009  CG9 Sodium 4.40 4 ug/1 GC0009  CG0009  CG9 Sodium 4.40 4 ug/1 GC0009  CG0009  CG9 Sodium 4.40 4 ug/1 GC0009  CG0009				ATB	Dimethylmethyl Phosphate	LT				GCX007	
UM25 Endrin LT 1.80 1 ug/l GDV003 AV8 Ethylbenzene LT 1.37 0 ug/l GCS007 HH8A Fluoride 1.09 3 ug/l GCK007 CC8 Mercury (filtered) LT 1.00 -1 ug/l GCN009 CC8 Mercury (filtered) LT 1.00 -1 ug/l GCN010  KK8 Isodrin LT 5.10 -2 ug/l GCY007 UM25 Isodrin LT 7.80 0 ug/l GDV003 GG8 Potassium 3.58 3 ug/l GC0009 GG8 Potassium 3.58 3 ug/l GC0009 GG8 Potassium 1.37 3 ug/l GC0010 AV8 Toluene LT 1.47 0 ug/l GC0010 AV8 Toluene LT 1.47 0 ug/l GC0009 GG8 Magnesium 1.37 4 ug/l GC0009 GG8 Magnesium 1.45 4 ug/l GC0009 GG8 Mathylisobutyl Ketone LT 4.90 0 ug/l GCV007 UM25 Malathion LT 2.10 1 ug/l GC0009 GG8 Sodium 4.22 4 ug/l GC0009 GG8 Sodium 4.22 4 ug/l GC0009 GG8 Sodium 4.20 4 ug/l GC0009					UM25	Dimethylmethyl Phosphate	LT				CDV003
AV8 Ethylbenzene LT 1.37 0 ug/l GCS007 HH6A Fluoride 1.09 3 ug/l GCK007 CC6 Mercury (filtered) LT 1.00 -1 ug/l GCN009 CC6 Mercury LT 1.00 -1 ug/l GCN010  KK6 Isodrin LT 5.10 -2 ug/l GCY007 UM25 Isodrin LT 7.80 0 ug/l GDV003 GG8 Potassium 3.58 3 ug/l GC0009 GG8 Potassium 3.93 3 ug/l GC0010  AV6 Toluene LT 1.47 0 ug/l GCS007  GG8 Magnesium 1.37 4 ug/l GC0009 GG8 Magnesium 1.37 4 ug/l GC0009 GG8 Magnesium 1.45 4 ug/l GC0009 GG8 Magnesium 1.45 4 ug/l GC0009 GG8 Magnesium LT 4.90 0 ug/l GCV007 UM25 Malathion LT 2.10 1 ug/l GCV007 UM25 Malathion LT 2.10 1 ug/l GC0009 GG8 Sodium 4.22 4 ug/l GC0009  GG8 Sodium 4.40 4 ug/l GC0010 LL6 Nitrite,Nitrate - Non specific 7.46 1 ug/l GC0010					KK8	Endrin	LT	5.00	-2	ug/l	GCY007
HMSA Fluoride 1.09 3 ug/1 GCK007 CC8 Mercury (filtered) LT 1.00 -1 ug/1 GCN009 CC8 Mercury (filtered) LT 1.00 -1 ug/1 GCN009 CC8 Mercury LT 1.00 -1 ug/1 GCN010  KK8 Isodrin LT 5.10 -2 ug/1 GCY007 UM25 Isodrin LT 7.80 0 ug/1 GC0009 GG8 Potassium 3.58 3 ug/1 GC0009 GG8 Potassium 3.58 3 ug/1 GC0009 GG8 Potassium 1.37 4 ug/1 GC0009 GG8 Magnesium 1.37 4 ug/1 GC0009 GG8 Magnesium 1.45 4 ug/1 GC0010 P8 Methylisobutyl Ketone LT 4.90 0 ug/1 GCV007 UM25 Malathion LT 2.10 1 ug/1 GCV007 UM25 Malathion LT 2.10 1 ug/1 GC0009 GG8 Sodium 4.22 4 ug/1 GC0009  GG8 Sodium 4.40 4 ug/1 GC0009 GG8 Sodium 4.40 4 ug/1 GC0010 LL8 Nitrite,Nitrate - Non specific 7.46 1 ug/1 GC0009					UM25	Endrin					
CC8 Mercury (filtered) LT 1.00 -1 ug/l GCN009 CC8 Mercury LT 1.00 -1 ug/l GCN010  KK6 Isodrin LT 5.10 -2 ug/l GCN010  KK6 Isodrin LT 7.80 0 ug/l GDV003 GG8 Potassium 3.58 3 ug/l GC0009 GG8 Potassium 3.93 3 ug/l GC0009 GG8 Potassium 3.93 3 ug/l GC0010 AV6 Toluene LT 1.47 0 ug/l GC0009 GG8 Magnesium 1.37 4 ug/l GC0009 GG8 Magnesium 1.37 4 ug/l GC0009 GG8 Magnesium 1.45 4 ug/l GC0010 P6 Methylisobutyl Ketone LT 4.90 0 ug/l GCV007 UM25 Malathion LT 2.10 1 ug/l GCV007 UM25 Malathion LT 2.10 1 ug/l GC0009 GG8 Sodium 4.40 4 ug/l GC0009 GG8 Sodium 4.40 4 ug/l GC0009 GG8 Sodium 4.40 4 ug/l GC0010 LL8 Nitrite,Nitrate - Non specific 7.46 1 ug/l GC0009 GAAA8 1,4-Oxathiane LT 2.38 0 ug/l GC2007					AV8	Ethylbenzene	LT		0		
CC6   Marcury   LT   1.00 -1   ug/l   GCN010											
KK6 Isodrin LT 5.10 -2 ug/l GCY007  UM25 Isodrin LT 7.80 0 ug/l GDV003  GG6 Potassium 3.58 3 ug/l GC0009  GG8 Potassium 3.93 3 ug/l GC0010  AV6 Toluene LT 1.47 0 ug/l GC0009  GG8 Magnesium 1.37 4 ug/l GC0009  GG8 Magnesium 1.45 4 ug/l GC0010  P6 Methylisobutyl Ketone LT 4.90 0 ug/l GCV007  UM25 Malathion LT 2.10 1 ug/l GC0009  GG8 Sodium 4.22 4 ug/l GC0009  GG8 Sodium 4.22 4 ug/l GC0009  GG8 Nitrite,Nitrate - Non specific 7.46 1 ug/l GC0009  AAA6 1,4-Oxathiane LT 2.38 0 ug/l GC2007	1					Mercury (filtered)					
UM25 Isodrin LT 7.80 0 ug/1 GDV003 GG8 Potassium 3.58 3 ug/1 GC0009 GG8 Potassium 3.93 3 ug/1 GC0010 AV8 Toluene LT 1.47 0 ug/1 GC0009 GG8 Magnesium 1.37 4 ug/1 GC0009 GG8 Magnesium 1.45 4 ug/1 GC0010 P8 Methylisobutyl Ketone LT 4.90 0 ug/1 GCV007 UM25 Malathion LT 2.10 1 ug/1 GDV003 GG8 Sodium 4.22 4 ug/1 GC0009  GG8 Sodium 4.40 4 ug/1 GC0009 AAA8 1,4-Oxathiane LT 2.38 0 ug/1 GC0009					CC8	Mercury	LT	1.00	-1	ug/l	GCN010
GG8 Potassium 3.58 3 ug/l GC0009 GG8 Potassium 3.93 3 ug/l GC0010 AV6 Toluene LT 1.47 0 ug/l GC5007  GG8 Magnesium 1.37 4 ug/l GC0009 GG8 Magnesium 1.45 4 ug/l GC0010 P6 Methylisobutyl Ketone LT 4.90 0 ug/l GCV007 UM25 Malathion LT 2.10 1 ug/l GDV003 GG8 Sodium 4.22 4 ug/l GC0009  GG8 Sodium 4.22 4 ug/l GC0009  GG8 Sodium 4.40 4 ug/l GC0010 LL6 Nitrite,Nitrate - Non specific 7.46 1 ug/l GC0009  AAA6 1,4-Oxathiane LT 2.38 0 ug/l GCZ007					KK8	Isodrin					
GG8 Potassium 3.93 3 ug/1 GC0010 AV8 Toluene LT 1.47 0 ug/1 GC5007  GG8 Magnesium 1.37 4 ug/1 GC0009 GG8 Magnesium 1.45 4 ug/1 GC0010 P6 Methylisobutyl Ketone LT 4.90 0 ug/1 GCV007 UM25 Malathion LT 2.10 1 ug/1 GDV003 GG8 Sodium 4.22 4 ug/1 GC0009  GG8 Sodium 4.40 4 ug/1 GC0009  GG8 Sodium 4.40 4 ug/1 GC0009 AAA8 1,4-Oxathiane LT 2.38 0 ug/1 GC2007					UM25	Isodrin	LT		0		
AV8 Toluene LT 1.47 0 ug/l GCS007  GG8 Magnesium					GG8				3		
GG8 Magnesium 1.37 4 ug/l GC0009 GG8 Magnesium 1.45 4 ug/l GC0010 P6 Methylisobutyl Ketone LT 4.90 0 ug/l GCV007 UM25 Malathion LT 2.10 1 ug/l GDV003 GG8 Sodium 4.22 4 ug/l GC0009  GG8 Sodium 4.40 4 ug/l GC0010 LL6 Nitrite,Nitrate - Non specific 7.46 1 ug/l GCL009 AAA6 1,4-Oxathiane LT 2.38 0 ug/l GCZ007					GG8						
GG8 Magnesium 1.45 4 ug/l GC0010 P6 Methylisobutyl Ketone LT 4.90 0 ug/l GCV007 UM25 Malathion LT 2.10 1 ug/l GDV003 GG8 Sodium 4.22 4 ug/l GC0009  GG8 Sodium 4.40 4 ug/l GC0010 LL6 Nitrite,Nitrate - Non specific 7.46 1 ug/l GCL009 AAA6 1,4-Oxathiane LT 2.38 0 ug/l GCZ007					AVS	Toluene	LT	1.47	0	ug/l	GCS007
P8 Methylisobutyl Ketone LT 4.90 0 ug/l GCV007 UM25 Malathion LT 2.10 1 ug/l GDV003 GG8 Sodium 4.22 4 ug/l GC0009  GG8 Sodium 4.40 4 ug/l GC0010 LL8 Nitrite,Nitrate - Non specific 7.46 1 ug/l GCL009 AAA8 1,4-Oxathiane LT 2.38 0 ug/l GCZ007	ł					Magnesium					
UM25       Malathion       LT       2.10       1       ug/l       GDV003         GG8       Sodium       4.22       4       ug/l       GC0009    GG8 Sodium 4.40 4 ug/l GC0010 LL8 Nitrite, Nitrate - Non specific 7.46 1 1 2.38 0 ug/l GCZ007 GCZ007					GG8						
GG8 Sodium 4.22 4 ug/l GC0009  GG8 Sodium 4.40 4 ug/l GC0010  LL8 Nitrite,Nitrate - Non specific 7.46 1 ug/l GCL009  AAA8 1,4-Oxathiane LT 2.38 0 ug/l GCZ007					P6:	Methylisobutyl Ketone					GCV007
GG8 Sodium 4.40 4 ug/l GC0010 LL8 Nitrite,Nitrate - Non specific 7.46 1 ug/l GCL009 AAA8 1,4-Oxathiane LT 2.38 0 ug/l GCZ007					UM25		LT				
LL6 Nitrite,Nitrate - Non specific 7.46 1 ug/l GCL009  AAAB 1,4-Oxathiane LT 2.38 0 ug/l GCZ007	1				GG8	Sodium		4.22	4	ug/l	GC0009
AAA8 1,4-Oxathiane LT 2.38 0 ug/l GCZ007					GG8	Sodium				ug/l	
					LL8	Nitrite, Nitrate - Non specific				ug/l	
UM25 1,4-Oxathiane LT 2.70 1 ug/l GDV003					AAA8					ug/1	
	1				UM25	1,4-Oxathiane	LT	2.70	1	ug/l	CDA003

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	R	esults		Jnits ———	Sample Number
<b>8</b> 91 <b>0</b> 8	SW01005D	0.3	LAKE	GG8	Lead	LT	7.40	1	ug/l	GC0009
1				GG8	Lead	LT	7.40	1	ug/l	GC0010
				KK8	Dichlorodiphenylethane	_ LT	5.40	-2	ug/l	GCY007
ì				UM25	Dichlorodiphenylethane	LT	1.40	1	ug/l	GDV003
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4,90	-2	ug/l	GCY <b>007</b>
1				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1	ug/l	GDV003
				UM25	Parathion	LT	3.70	1	ug/l	GDV003 .
				HH8A	Sulfate		7.00	4	ug/l	GCK007
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90	i	ug/l	GDV003
				AV8	Ortho- & Para-Xylene	LT	1.36	0	ug/l	GCS <b>007</b>
				GG8	Zinc		2.81	1	ug/l	GC0009
j				GG8	Zinc		2.30	1	ug/l	GC0010
69108	SW02003	0.3	LAKE	UM21	1,1,1-Trichloroethane	LT	1.00	0	ug/l	GCQ003
				UM21	1,1,2-Trichloroethane	LT	1.00	0	ug/l	E00003
				UM21	1,1-Dichloroethene	LT	1.00	O	ug/l	GCQ003
1				UM21	1,1-Dichloroethane	LT	1.00	0	ug/l	GCQOO3
				UM21	1,2-Dichloroethene	LT	5.00	0	ug/ĺ	GCQ003
				UM21	1,2-Dichloroethane	LT	1.00	0	ug/l	600003
				UM21	1,2-Dichloropropane	LT			ug/l	GCQ003
				UM21	1,3-Dichlorobenzene	LT	1.00	0	ug/1	GCQ003
	. 4			UM21	1,3-Dichloropropane	LT	4.80		ug/l	GCG003
	*			UM21	m-Xylene	LT	1.00	0	ug/l	GC <b>Q00</b> 3
				AV8	m-Xylene	LT			ug/l	GCS008
				UM21	2-Chloroethylvinyl Ether	LT	3.50		ug/1	GCQQQX
				UM21	Acrylonitrile		6.40		ug/l	GCG003
				KK8	Aldrin		5.00		ug/l	GCY008
ı .				UM25	Aldrin	LT	1.30	1	ug/l	GCT003
				00	ALKALINITY		1.25	2	ug/l	GCJ <b>00</b> 8
				AX8	Arsenic (filtered)	LT	2.35	0	ug/l	GCM011
				AXA	Arsenic	LT	2.35	0	ug/l	GCM012
				UH11	Atrazine	LT	4.03	0	ug/l	GCW008

R. L. Stollar and Associates

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	-Method	Analytical Parameters	Re	sults		_Units	Sample Number
89108	SW02003	0.3	LAKE	UM25	Atrazine	LT	5.90	0	ug/l	GCT003
				P8	Bicycloheptadiene	LT	5.90	٥	ug/l	GCV008
				UM21	Bromodichloromethane	LT	1.00	0	ug/1	CCQ003
				AAA8	Benzothiazole	LT	5.00	0	ug/l	GCZ008
				UM21	Vinyl Chloride	LT	1.20	-1	ug/l	GCQ003
				UM21	Chloroethane	LT	8.00	0	ug/l	GCQ003
				UM21	Benzene	LT	1.00	0	ug/1	GCQ003
				AV8	Benz ene	LT	1.05	0	ug/l	GCS008
				GG8	Calcium (filtered)		4.35	4	ug/l	GC0011
				GG8	Calcium		4.31	4		GC0012
				UM21	Trichlorofluoromethane	LT	1.00	0	ug/l	GCQ003
				UM21	Carbon Tetrachloride	LT	1.00	0	ug/l	GCQ003
				GG8	Cadmium (filtered)	LT	6.40	0	ug/l	GC0011
				GG6	Cadmium	LT	6.40	0	ug/l	GC0012
				UM21	Methylene Chloride	LT	1.00	0	ug/l	GCQ003
				UM21	Bromomethane	LT	1.40	1	ug/l	GCQ003
				UM21	Chloromethane	LT	1.20	٥	ug/1	GCQ003
				UM21	Bromoform	LT	1.10	1	ug/l	GCQ003
				UM21	Chloroform	LT	1.00	0	ug/l	GCQ003
				HH8A	Chloride		4.60	4	ug/l	GCK003
				KK8	Hexachlorocyclopentadiene	LT	4.80	-2	ug/l	GCY008
	•			UM25	Hexachlorocyclopentadiene	LT	5.40	1	ug/l	GCT003
				UM21	Chlorobenzene	LT	1.00	0	ug/1	GCQ003
				KK8	Chlordane	LT	9.50	-2	ug/1	GCY008
				UM25	Chlordane	LT	3.70	1	ug/l	GCT003
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69	0	ug/l	GCZ008
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1	ug/l	GCT003
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15		ug/1	GCZ008
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50		ug/l	GCT003
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46	0	ug/l	GCZ008
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0	ug/l	GCT003
				GG8	Chromium (filtered)	LT	2.40	1	ug/1	GC0011
				GG8	Chromium	LT	2.40	1	ug/l	GC0012
				GG6	Copper (filtered)	LT	2.60	1	ug/l	GC0011

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm).	Sample Type	Method	Analytical Parameters	R∈	eults	Units	Sample Number
<b>8</b> 9108	SW02003	0.3	LAKE	GG8	Copper	LT	2.60	1 ug/l	GC0012
				TF20	Cyanide	LT	5.00	0 ug/l	GCR008
				AY8	Dibromoch <b>loropropane</b> .	LT	1.95 -	·1 ug/l	GDA008
				UM25	Dibromochloropropane	LT	1.20	1 ug/l	GCT003
				UM21	Dibromochloromethane	LT	1.00	0 ug/l	GCQ003
				UM21	1,4-Dichlorobenzene	LT	2.00	0 ug/l	GCQ003
				P6	Dicyclopentadiene	LT	5.00	0 ug/l	GCV008
				UM25	Dicyclopentadiene	LT	5.50	0 ug/l	GCT003
				UH11 UM25	Vapona Vapona	LT LT	3.84 - 8.50		GCW008 GCT003
						1 ***	* 00	1/1	00V000
				ATB	Diisopropylmethyl Phosphonate	LT	3.92 -		GCX008
				UM25	Diisopropylmethyl Phosphonate	LT LT	1.34		GCT003 GCZ008
i				AAA8 UM25	Dithiane Dithiane	LT	3.30		GCT003
				KK8	Dieldrin	LT	5.00 -		GCY008
í				UM25	Dieldrin	LT	2.60	1 ug/l	GCT003
		•	110	AAA8	Dimethyldisulfide	LT	5.50 -	1 ug/l	GCZ008
				UM21	Acetone	LT	6.00	0 ug/l	GCQ003
				ATS	Dimethylmethyl Phosphate	LT	1.88 -	1 ug/l	GCX008
				UM25	Dimethylmethyl Phosphate	LT	1.30	2 ug/l	GCT003
<u> </u>				KK8	Endrin	LT	5.00	2 ug/l	GCY008
				UM25	Endrin	LT	1.80	1 ug/l	GCT003
				UM21	Ethylbenzene	LT	1.00	0  ug/l	GCQOO3
, do .				AV8	Ethylbenzene	LT	1.37	0 ug/l	GCS008
				HH8A	Fluoride -		1.20	3 ug/l	GCK008
				CC8	Mercury (filtered)	LT	1.00 -		GCN011
				CC8	Mercury	LT	1.00 -	-	GCN012
				KK8	Isodrin		5.10 -		GCY008
-				UM25	Isodrin	LT	7.80		GCT003
				GG8	Potassium (filtered)		2.50	3 ug/l	GC0011
				GG8	Potassium		2.90		GC0012
				UM21	Toluene		1.00		GCQ003
				AV8	Toluene		1.47		GCS008
t e				UM21	Methylethyl Ketone	LT	1.00	1 ug/l	GCQ003

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Unit	Sampl Sample	
89108 ·	SW02003	- 0.3	LAKE	GG6	Magnesium (filtered)		1.88	4 ug/	i GC001	1
•				GG8	Magnesium		1.92	4 ug/	1 GC001	2
				UM21	Methylisobutyl Ketone	LT	1.40	0 ug/	'1 GCQ00	3
l .				P8	Methylisobutyl Ketone	LT	4.90	0 ug/	1 GCV00	ප
				UM25	Malathion	ŁT	2.10	1 ug/	1 GCT00	3
				GG6	Sodium (filtered)		6.49	4 ug/	1 GC001	1
				GG8	Sodium		6.70	4 ug/	1 GC001	2
1				LL8	Nitrite, Nitrate - Non specific		7.40	1 ug/	1 GCLOO	8
				AAA8	1,4-Oxathiane	LT	2.38	0 ug/	1 GCZOO	8
				UM25	1,4-Oxathiane	LT	2.70	1 ug/	1 GCTOO	3 .
				. GG8	Lead (filtered)	LT	7.40	i ug/	1 GC001	1
				GG6	Lead	LT	7.40	1 ug/	1 G0001	2
				KK8	Dichlorodiphenylethane .	LT	5.40	-2 ug/	1 GCY00	8
				UM25	Dichlorodiphenylethane	LT	1.40	1 ug/	1 GCTOO	3
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90	-2 ug/	1 GCY00	8
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1 ug/	1 GCTOO	3
			* *	UM25	Parathion	LT	3.70	1 ug/	1 GCTOO	3 .
				HH8A	Sulfate		9.30	4 ug/	1 GCK00	8
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90	1 ug/	1 GCTOO	3
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50	0 ug/	'1 GCQ00	3
				UM21	Tetrachloroethene	LT	1.00	0 ug/	1 GCQ00	3
			***	UM21	Trichloroethene	LT	1.00	0 ug/	'1 GCQ00	3
				UM21	Ortho- & Para-Xylene	LT	2.00			3
,				AV8	Ortho- & Para-Xylene	LT	1.36			6
7				GG8	Zinc (filtered)	LT	2.20	1 ug/	1 GC001	1
į				GG8	Zinc	LT	2.20	1 ug/	'1 GC001	2 .
69106	SW02003RB	0	QCRB	UM21	1,1,1-Trichloroethane	LT	1.00	0 ug/	1 GCQ00	4
\$				UM21	1,1,2-Trichloroethane	LT	1.00	0 ug/	1 GCQ00	4
				UM21	1,1-Dichloroethene	LT	1.00	0 ug/	1 GCQ00	4
				UM21	1,1-Dichloroethane	LT	1.00	0 ug/	1 GCQ00	4
				UM21	1,2-Dichloroethene	LT	5.00	0 ug/	1 GCQ00	14

Comprehensive Monitoring Program

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Ft∈	sults		Units	Sample Number
69108	SW02 <b>003RB</b>	0	QCRB	UM21	1,2-Dichloroethane	L.T	1.00	.0	ug/l	GCQ004
				UM21	1,2-Dichloropropane	LT	1.00	0	ug/l	GCQ004
				UM21	1,3-Dichlorobenzene	LT	1.00	0	ug/1-	GCQ004
				UM21	1,3-Dichloropropane	LT	4.80	Ø.,	ug/l	GCQ004
				UM21	m-Xylene	LT	1.00	· O ·	ug/l	GCQ004
				AV8	m-Xylene	·LT·	1.32	0	ug/l	GCS009
				UM21	2-Chloroethylvinyl Ether	LT	3.50	0	ug/l	GCQ004
				UM21	Acrylonitrile	LT	8.40	0	ug/1	GCQ004
				KK8	Aldrin	LT	5.00	-2	ug/l	GCY009
				UM25	Aldrin	LT	1.30	1	ug/l	GCT004
				00	ALKALINITY	LT	6.26	1 /	ug/l	GCJ009
				AX8	Arsenic (filtered)	LT	2.35	0	ug/l	GCM013
				AX8	Arsenic	LT	2.35		ug/l	GCM014
			•	UH11	Atrazine	LT	4.03	O	ug/1	GCW009
				UM25	Atrazine	LT	5.90	0	ug/l	GCT004
				P8	Bicycloheptadiene	LT	5.90		ug/l	GCV009
				UM21	Bromodichloromethane	LT	1.00		ug/l	GCQ004
	•			AAA8	Benzothiarole	LT	5.00		ug/l	GCZ009
	*** ·			UM21	Vinyl Chloride	 LT	1.20	1	ug/l	GCQ004
				UM21	Chloroethane	LT	8.00	0	ug/l	GCQ004
				UM21	Benzene	LT	1.00		ug/l	GCQ004
•				AV8	Benzene	LT	1.05		ug/l	GCS009
				GG8	Calcium (filtered)	LT	5.00		ug/l	GC0013
	-			GG6	Calcium	LT	5.00		ug/l	GC0014
	**			UM21 -	Trichlorofluoromethane	LT	1.00	0	ug/l	GCQ004
				UM21	Carbon Tetrachloride	LT	1.00		ug/l	:GCQ004
				GG8	Cadmium (filtered)	LT	8.40		ug/l	GC0013
				GG8	Cadmium		8.40	0	ug/1	GC0014
				UM21	Methylene Chloride		1.00		ug/l	GCQ004
				UM21	Bromomethane	LT	1.40	1	ug/l	GCQ004
				UM21	Chloromethane		1.20		ug/l	GCQ004
				UM21	Bromoform		1.10		ug/l	GCQ004
				UM21	Chloroform		1.00		ug/1	GCQ004
				HH8A	Chloride	LT	7.20	2	ug/l	GCK009

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Re	eults	Units	Sample Number
69108	SW02003RB	0	QCR6	KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GCY009
03100	5W02005Rb		QUIND	UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GCT004
				UM21	Chlorobenzene	LT	1.00 0	ug/1	GCQ004
į.				KK8	Chlordane	LT	9.50 -2	ug/l	GCY009
ì				UM25	Chlordane	LT	3.70 1	ug/l	GCT004
				AAAS	p-Chlorophenylmethyl Sulfide	LT	5,69 0	ug/l	GCZ009
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GCT004
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GCZ009
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GCT004
				AAAS	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ009
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GCT004
	•			GG8	Chromium (filtered)	LT	2.40 1	ug/1	GC0013
				GG8	Chromium	LT	2.40 1	ug/l	GC0014
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0013
				GG6	Copper	LT	2.60 1	ug/l	GC0014
				TF20	Cyanide	LT	5.00 0	ug/l	GCR009
1				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA009
				UM25	Dibromochloropropane	LT	1.20 1	- ug/l	GCT:004
				UM21	Dibromochloromethane	LT	1.00 0	ug/1	GCQ004
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GCQ004
				P8	Dicyclopentadiene	LT	5.00 O	ug/l	GCV009
1				UM25	- Dicyclopentadiene	LT	5.50 0	ug/1	GCT004
				UH11	Vapona	LT	3.84 -1	ug/l	GCW009
				UM25	Vapona	LT	8.50 0	ug/l	GCT004
			w ¹¹	AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX009
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GCT004
i				<del>AA</del> A6	Dithiane	LT	1.34 0	ug/l	GCZ009
				UM25	Dithiane	LT	3.30 0	ug/1	GCT004
				KK8	Dieldrin		5.00 -2	ug/l	GCY009
Ì				UM25	Dieldrin	LT	2.60 1	ug/l	GCT004
				AAA8	Dimethyldisulfide		5.50 -1	ug/l	GCZ009
_				UM21	Acetone		8.00 0	ug/l	GCQ004
				AT8	Dimethylmethyl Phosphate		1.88 -1	ug/l	GCX009
,				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GCT004

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
<b>6910</b> 6	<b>SW020</b> 03RB	О .	QCSP	KKS	Endrin	LT	5.00 -2	ug/l	GCY009
03100	3#02003RD	ω .	101C-01	UM25	Endrin	LT	1.80 1	ug/l	GCT004
				Uri21	Ethylbenzene	LT	1.00 0	ug/l	GCQ004
				AV8	Ethylbenzene		1.37 0	ug/l	GCS009
				ннаа	Fluoride		4.82 2	ug/l	GCK009
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN013
				cca	Mercury	LT	1.00 -1	ug/l	GCN014
				KK8	Isodrin	LT	5.10 -2	ug/l	GCY009
				UM25	Isodrin	LT	7.80 0	ug/l	GCT004
		•		GG8	Potassium (filtered)	LT	2.50 2	ug/l	GC0013
				GG8	Potassium	LT	2.50 2	ug/l	GC0014
				UM21	Toluene	LT	1.00 0	ug/l	GCQ004
				AV8	Toluene	LT	1.47 0	ug/l	GCS009
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GCQ004
				GG8	Magnesium (filtered)	LT	5.00 2	ug/l	GC0013
				GG6	Magnesium	LT	5.00 2	ug/l	GC0014
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GCQ004
				P8 -	Methylisobutyl Ketone	LT	4.90 0	ug/l	GCV009
e,				UM25	Malathion	LT	2.10 1	ug/l	GCT004
				GG8	Sodium (filtered)	LT	9.40 2	ug/l	GC0013
				GG8	Sodium	LT	9.40 2	_ug/l	GC0014
				LL8	Nitrite,Nitrate - Non specific		9.35 1	ug/l	GCL006
				AAAB	1,4-Oxathiane	LT	2.38 0	ug/l	GCZ009
•• .				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GCT004
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GC0013
				GG8	Lead	LT	7.40 1	ug/l	GC0014
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GCY009
				UM25	Dichlorodiphenylethane		1.40 1	ug/l	GCT004
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GCY009
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GCT004
				UM25	Parathion	LT	3.70 1	ug/l	GCT004
				W1 1/40 W	, w. w. VIII WII		W AL		

R. L. Stollar and Associates

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89108	SW02003RB	0	QCRB	UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/l	GCT004
					Vinyldiethyl Phosphates				
				UM21	1,1,2,2-Tetrachloroethane		1.50 0	ug/l	GCQ004
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GCQ004
				UM21	Trichloroethene	LT	1.00 0	ug/l	GCQ004
				UM21	Ortho~ & Para-Xylene	LT	2.00 0	ug/l	GCQ004
<i>.</i>				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS009
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GC0013
				GG8	Zinc		6.28 1	ug/l	GC0014
691 <b>0</b> 9	SW02004	0.3	LAKE	AV8	m-Xylene	LT	1.32 0	ug/l	GCS011
				KK8	Aldrin	LT	5.00 -2	ug/l	GCY013
				UM25	Aldrin	LT	1.30 1	ug/1	GDV005
				00	ALKALINITY		1.50 2	ug/1	GCJ011
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GCM019
				AX8	Arsenic	LT	2.35 0	ug/l	GCM020
				UH11	Atrazine	LT	4.03 0	ug/l	GCW011
				UM25	Atrazine	LT	5.90 0	ug/1	GDV005
				P6	Bicycloheptadiene	LT	5.90 0	ug/1	GCV011
				- AAA8	Benzothiazole	LT	5.00 0	ug/l	GCZ013
				AV8	Benz ene	LT	1.05 0	ug/l	GC\$011
				GG8	Calcium (filtered)		4.03 4	ug/1	GC0019
				GG8	Calcium		4.27 4	ug/l	GC0020
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GC0019
				GG8	Cadmium	LT	8.40 0	ug/l	GC0020
				ннаа	Chloride		6.00 4	ug/l	GCK011
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GCY013
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GDV005
				KK8	Chlordane	LT	9.50 -2	ug/1	GCY013
				UM25	Chlordane	LT	3.70 1	ug/l	GDV005
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GCZ013
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/1	GDY005
				AAAS	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GCZ013
				UM25	p-Chlorophenylmethyl Sulfoxide		1.50 1	ug/l	GDV005
				AAA6	p-Chlorophenylmethyl Sulfone		7.46 0	ug/l	GCZ013

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
								/3	AMI 10 A F
89109	SW02004	0.3	LAKE	UM25	p-Chlorophenylmethyl Sulfone		5.30 0		GDV005
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GC0019
				SG8	Chromium	LT	2.40 1	ug/l	GC0020
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0019
				GG6	Copper	LT	2.60 1	ug/l	GC0020
				TF20	Cyanide	LT	5.00 0	ug/l	GCR011
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA013
				UM25	Dibromochloropropane	LT	1.20 1	ug/1	GDV005
	•			P6	Dicyclopentadiene	LT	5.00 0	ug/l	GCV011
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GDV005
				UH11	Vapona	LT	3.64 -1	ug/l	GCW011
				UM25	Vapona	LT	8.50 0	ug/1	GDV005
				AT8	Diisopropylmethyl, Phosphonate	LT	3.92 -1	ug/1	GCX013
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GDV00S
				AAAB	Dithiane	LT	1.34 0	ug/l	GCZ013
				UM25	Dithiane	LT	3.30 O	ug/l	GDV005
				KK8	Dieldrin	LT	5.00 -2	ug/1	GCY013
				UM25	Dieldrin	LT	2.60 1	ug/1	GDV005
	***			AAA8	Dimethyldisulfide	LT	5.50 -1	ug/1	GCZ013
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GCX013
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GDV005
				KK8	Endrin	LT	5.00 -2	ug/l	GCY013
				UM25	Endrin	LT	1.80 1	ug/l	GDV005
	Zer 1			AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS011
				HHBA	Fluoride		1.18 3	ug/l	GCK011
			·	CCS	Mercury (filtered)	LT	1.00 -1	ug/l	GCN019
				CC8	Mercury	LT	1.00 -1	ug/l	GCN020
				KK6	Isodrin		9.72 -2	ug/l	GCY013
				UM25	Isodrin	LT	7.80 0	ug/1	GDV005
				GG8	Potassium (filtered)		3.38 3	ug/l	GC0019
				668	Potassium		3.59 3	ug/l	GC0020
				AV8	Toluene	LT	1.47 0	ug/l	GCS011
				GG8	Magnesium (filtered)		1.51 4	ug/l	GC0019
				GG8	Magnesium		1.59 4	ug/l	GC0020

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Triethod	Analytical Parameters	Re	sults	mprocepanies	Units	Sample Number	
22422	OLINODO A	Λ	1 A12 m	no	Methylisobutyl Ketone	LT	4.90	٥	ug/l	G0V011	
89109	SW02004	0.3	LAKE	P6	Malathion	LT	2.10		ug/l	GDV005	
				UM25		₩ I	7.84		ug/l	GC0019	
				GG8			6.69		ug/l	GC0020	
				GG6 LL8	Sodium Nitrite,Nitrate - Non specific		7.21		ug/1	GCL011	
							•				
				AAA8	1,4-Oxathiane	LT	2.38		ug/l	GCZ013	
_				UM25	1,4-Oxathiane	LT	2.70	1	ug/l	GDV005	
				GGS	Lead - (filtered)	LT	7.40	1	ug/1	GC0019	
				GG8	Lead	LT	7.40	1	ug/1	GC0020	
				KK8	Dichlorodiphenylethane	LT	5.40	-2	ug/l	GCY013	
				UM25	Dichlorodiphenylethane	LT	1.40	1	ug/l	GDV005	
				KK6	Dichlorodiphenyltrichloro- ethane	LT	4.90	-2.	ug/l	GCY013	
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1	ug/l	GDV005	
				UM25	Parathion	LT	3.70	1	ug/l	GDV005	
l				HH8A	Sulfate		7.60	4	ug/l	GCK011	
		•		UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90	1.	ug/l	GDV005	
1					Vinyldiethyl Phosphates			. 15.77			
1				AV8	Ortho- & Para-Xylene	LT	1.36	0	ug/l	GCS011	
•				GG8	Zinc (filtered)	LT	2.20	1	ug/1	GC0019	
				GG8	Zinc	LT	2.20	1 .	ug/l	GC0020	
89117	SW02006	0.2	ртсн	UM21	1,1,1-Trichloroethane	LT	1.00	o	ug/l	GEZ003	
~~~,		. F		UM21	1,1,2-Trichloroethane	LT	1.00	0	ug/1	GEZ003	
1		sine i		UM21	1,1-Dichloroethene	LT	1.00	-O	ug/l	GEZ003	
				UM21	1.1-Dichloroethane	LT	1.00	0	ug/l	GEZ003	
				UM21	1,2-Dichloroethene	LT	5.00	0	ug/l	GEZ003	
				UM21	1,2-Dichloroethane	LT	1.00	0	ug/l	GEZ003	
				UM21	1,2-Dichloropropane	LT	1.00		ug/l	GEZ003	
				UM21	1,3-Dichlorobenzene	LT	1.00		ug/l	GEZ003	
				UM21	1,3-Dichloropropane	LT	4.60		ug/1	GEZ003	٠
•				UM21.	m-Xylene		1.00		ug/l	GEZ003	
a .				AV8	m-Xylene	LT	1.32	0	ug/l	GHD005	

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters		Re	esults		Units	Sample Number
	variation variable de la constitución de la constit		***************************************								
89117	SW02006	0.2	DTCH	UM21	Acrylonitrile		LT	8.40	Ö	ug/l	GEZ003
				KK8	Aldrin		LT	5.00	-2	ug/l	GFG016
				UM25	Aldrin		LT	1.30	1	ug/l	GFV002
				00	ALKALINITY			1.20	2	ug/l	GE0013
			-	AX8	Arsenic (filtered)		LT	2.35	0	_ug/l	GFX013
				AX8	Arsenic		LT	2.35	0	ug/l	GFX014
				UH11	Atrazine		LT	4.03	0	ug/l	GFK012
				UM25	Atrazine		LT	5.90	0	ug/l	GFV002
				P8	Bicycloheptadiene		LT	5.90	0	ug/l	GFD012
				UM21	Bromodichloromethane		LT	1.00	0	ug/l	GEZ003
				AAA8	Benzothiazole		LT	5.00	0	ug/l	GFH013
				UM21	Vinyl Chloride		LT	1.20	1	ug/l	GEZ003
				UM21	Chloroethane		LT	8.00	0	ug/l	GEZ003
				UM21	Benz ene		LT	1.00	0	ug/l	GEZ003
				AV8	Benz ene		LT	1.05	0	ug/l	GHD005
				G G8	Calcium (filtered)			3.40	4	ug/l	GHH005
				GG8	Calcium			3.43	4	ug/l	GHH006
				UM21 -	Trichlorofluoromethane		LT	1.00	0	ug/l	GEZ003
				UM21	Carbon Tetrachloride	mic	LT	1.00	0	ug/l	GEZ003
				GG6	Cadmium (filtered)		LT	8.40	0	ug/1	GHH005
				GG8	Cadmium		LT	8.40	0	ug/l	GHH006
				UM21	Methylene Chloride	main.	LT	1.00	0	ug/1	GEZOO3
				UM21	Bromomethane		LT	1.40	1	ug/l	GEZ003
				UM21	Chloromethane		LT.	1.20	0	ug/1	GEZ003
				UM21	Bromoform		LT	1.10	1	ug/l	GEZ003
				UM21 ·	Chloroform			3. 7 7	0	ug/l	GEZ003
				HH8A	Chloride			4.80	4	ug/l	GFL008
				KK8	Hexachlorocyclopentadiene		LT	4.60	-2	ug/l	GFG016
				UM25	Hexachlorocyclopentadiene		LT	5.40	1	ug/1	GFV002
				UM21	Chlorobenzene		LT	1.00	0	ug/l	GEZOO3
				KK8	Chlordane		LT	9.50	-2	ug/l	GFG016
				UM25	Chlordane		LT	3.70	1	ug/l	GFV002
				AAAG	p-Chlorophenylmethyl Sulfide		LT	5.69	0	ug/l	GFH013
				UM25	p-Chlorophenylmethyl Sulfide		LT	1.00	1	ug/l	GFV002

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
00117	CHOOOC	0.2	DTCH	AAAB	p-Chlorophenylmethyl Sulfoxide	LΤ	1.15	1 ug/l	GFH013
89117	SW02006	V.2	OTCH	UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50		GFV002
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46) ug/l	GFH013
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30) ug/l	GFV002
				GG8	Chromium (filtered)	LT	2.40	l ug/l	GHH005
				GG8	Chromium	LT	2.40	1 ug/l	GHHQ06
				GG8	Copper (filtered)	LT	2.60	l ug/l	GHH005
				GG8	Copper	LT	2.60	1 ug/l	GHH006
				TF20	Cyanide	LT	5.00) ug/l	GEN013
				AY6	Dibromochloropropane	LT	1.95 -	i ug/i	· GFN013
				UM25	Dibromochloropropane	LT	.1.20	1 ug/l	GFV002
				UM21	Dibromochloromethane	LT	1.00) ug/l	GEZ003
				UM21	1,4-Dichlorobenzene	LT	2.00) ug/l	GEZ003
				P6	Dicyclopentadiene	LT	5.00) ug/l	GFD012
				UM25	Dicyclopentadiene	LT	5.50) ug/l	GFV002
				UH11	Vapona	LT	3.84 -	i ug/l	GFK012
				UM25	Vapona	LT	8.50	0 ug/l	GFV002
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -	1 ug/l	GFP013
	•			UM25	Diisopropylmethyl Phosphonate	LT	2.10		GFV002
				AAA8	Dithiane	LT	1.34	0 ug/l	GFH013
				UM25	Dithiane	LT	3.30		GFV002
				KK8	Dieldrin	LT	5.00 -		GFG016
l .				UM25	Dieldrin	LT	2.60		GFV002
		***		AAAS	Dimethyldisulfide	LT	5.50 -		. GFH013
				UM21	Acetone	LT	8.00	D ug/l	GEZ003
				ATE	Dimethylmethyl Phosphate		2.54		GFP013
•				UM25	Dimethylmethyl Phosphate	LT	1.30	2 ug/1	GFV002
				KK8	Endrin	LT	5.00 -	2 ug/l	GFG016
				UM25	Endrin.	LT	1.80		GFV002
				UM21	Ethylbenzene	LT	1.00	0 ug/l	GEZ003
				AV8	Ethylbenzene	LT	1.37		GHD005
				HH8A	Fluoride		1.23		GFL008
1				CC8	Mercury (filtered)		1.03 -		GGW015
				CC6	Mercury		1.33 -	1 ug/l	GGW016

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Date	Station Nümber	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
69117	SW02006	0.2	DTCH	KK8	Isodrin	LT	5,10 -2	- ug/l	GFG016
02111	JW02.000	U + A.	D1011	UM25	Isodrin	LT	7.80 0		GFV002
				GG8	Potassium (filtered)		2.35 3		GHH005
				GG8	Potassium		2.46 3		GHH006
				UM21	Toluene	LT	1.00 0		GEZ003
				AV8	Toluene	LT	1.47 0	ug/l	GHD005
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GEZ003
				GG8	Magnesium (filtered)		1.48 4	ug/l	GHH005
				GG8	Magnesium		1.48 4	ug/l	GHH006
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GEZ003
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GFD012
				UH11	Malathion	LT	3.73 -1	ug/l	GFK012
				UM25	Malathion	LT	2.10 1	ug/l	GFV002
				GG8	Sodium (filtered)		6.82 4	ug/l	GHH005
				GG8	Sodium		6.95 4	ug/l	GHH006
				LL8	Nitrite, Nitrate - Non specific		1.70 2	ug/l	GCL029
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GFH013
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GFV002
			91 - 18 -17 - 18	GGS	Lead (filtered)	LT	7.40 1	ug/l	GHH005
				GG8	Lead	LT	7.40 1	ug/l	GHH006
			, ········.	KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	GFG016
				UM25 -	Dichlorodiphenylethane	LT	1.40 1	ug/1	GFV002
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GFG016
			•	UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GFV002
				UH11	Parathion	LT	6.47 -1	ug/l	GFK012
				UM25	Parathion	LT	3.70 1	ug/l	GFV002
				HHBA	Sulfate		8.90 4	ug/1	GFL008
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GFK012
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GFV002
				UM21	1,1,2,2-Tetrachloroethane		1.50 0	ug/l	GEZ003

Comprehensive Monitoring Program

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	₩ethod ———	Analytical Parameters	Re	esults	Units	Sample Number
69117	SW02006	0.2	DTCH	UM21	Tetrachloroethene	LT	1.00 0	ug/l	GEZ003
_				UM21	Trichloroethene	LT	1.00 0	ug/l	GEZ003
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GEZ003
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GHD005
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GHH005
				GG8	Zinc	LT	2.20 1	ug/l	GHH006
89116	SW02006	0.2	DTCH	на	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GHE005
				NS	1,1,2-Trichloroethane	LT	7.80 -1	ug/1	GHE005
				NS	1,1-Dichloroethene	LT	1.70 0	ug/l	GHEO05
				М8	1,1-Dichloroethane	LT	7.30 -1	ug/l	GHEO05
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	GHE005
				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	GHE005
				N6	Carbon Tetrachloride	LT	9.90 -1	ug/l	GHE005
				NS	Methylene Chloride	LT	7.40 0	ug/1	GHEOO5
				И8	Chloroform		4.33 0	ug/1	GHE005
				И8	Chlorobenzene	LT	8.20 -1	ug/l	GHEO05
				не	Tetrachloroethene	LT	7.50 -1	ug/l	GHEO05
8				N8	Trichloroethene	LT	5.60 -1	ug/l	GHEO05
89117	SW02006B	.20	DTCH	LH15	Atrazine		6.23 0	ug/l	GFR010
				LH15	Vapona	LT	8.00 -2	ug/1	GFR010
				LH15	Malathion	LT	1.26 -1	ug/l	GFR010
		* w	ν,	LH15	Parathion	LT	1.59 -1	ug/l	GFR010
				LH15	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.48 -1	ug/l	GFR010
					Vinyldiethyl Phosphates				
- 69117	SW02006B	0.2	DTCH	ннэ	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GFS010
		•		PN 9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GFS010
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GFS010
				enn	1,1-Dichloroethane	LT	7.40 -2	ug/l	GFS010
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GFS010
				NN9	1,2-Dichloroethane	LT	6.50 -2	ug/l	GFS010
-				AR9	m-Xylene	LT	2.60 -1	ug/l	GFT010
				B 9	Arsenic	LT	2.50 0	ug/l	GDM026
-	-								

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	*Method	Analytical Paramoters		Results	Units	Sample Number
69117	SW02006B	0.2	DTCH	ZZ9	Bicycloheptadiene	L	5.08 0	-ug/l	- IKY016
03217				AA9	Benzene	L"		ug/1	GFT010
				NN9	Carbon Tetrachloride	L"	1.20 -1	ug/l	GFS010
				NN9	Methylene Chloride	L-	3.70 0	ug/l-	GFS010
P :				еии	Chloroform	L	6.80 -2	ug/l	GFS010
				инэ	Chlorobenzene	L	2.00 -1	ug/l	GFS010
				S9	Dibromochloropropane		2.01 -2	ug/l	GFB012
				ZZ9	Dicyclopentadiene	· LT	5.12 0	ug/1	IKY016
				TT9	Diisopropylmethyl Phosphonate	L	1.14 -1	ug/l	KSU018
				TT9	Dimethylmethyl Phosphate	L.T	1.33 -1	ug/l	KSU018
	•			A A9	Ethylbenzene	L	1.60 -1	ug/l	GFT010
				AAA9	Fluoroacetic Acid	L	2.00 0	ug/1	KRS016
				Y 9	Mercury		8.00 O	ug/1	GDL026
				AAA9	Isopropylmethyl Phosphonic Acid	L	2.11 0	ug/l	KRS018
				A A9	Toluene	LT	1.90 -1	ug/l	GFT010
	•			ZZ9	Methylisobutyl Ketone	L	5.24 0	ug/l	IKY016
				NN9	Tetrachloroethene	· L	2.70 -1	ug/l	GFS010
				NN9	Trichloroethene	LT	1.40 -1	ug/l	GFS010
				AA9	Ortho- & Para-Xylene	Li	3.90 -1	ug/l	GFT010
89117	SW02006B	2.0	DTCH	P9 ·	Cadmium	LT		ug/l	GDK027
				P9	Chromium		1.37 1	ug/l	GDK027
				P9	Copper		7.88 1	ug/l	GDK027
				P9	Lead		7.47 1	ug/l	GDK027
				P9	Zinc		1.59 2	ug/l	GDK027
89135	SW04001ST	0.2	DTCH	Na	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GKN010
				N8	1,1,2-Trichloroethane	L	7.80 -1	ug/l	GKN010
				NS	1,1-Dichloroethene		1.70 0	ug/l	GKN010
				N6	1,1-Dichloroethane	LT		ug/l	GKN010
				N8	1,2-Dichloroethene	LT		ug/l	GKN010
				NS	1,2-Dichloroethane	LT		ug/l	GKN010
				AV8	m-Xylene	LT	1.32 0	ug/l	GK0010
				KK8	Aldrin	LT	5.00 -2	ug/1	GKK007

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number	
891 3 5	SW04001ST	0.2	DTCH	UM25	Aldrin	LΫ́	1.30 1	ug/l	GKW004	
00200	340400101	W	Dion	00	ALKALINITY		2.29 1	ug/1	GMK008	
				AX8	Arsenic (filtered)	LT	2.35 0	ug/1	GKS016	
}				UH11	Atraxine	LT	4.03 0	ug/l	GKM007	
1				UM25	Atrazine	LT	5.90 0	ug/1	GKW004	
				P6	Bicycloheptadiene	LT	5.90 0	ug/l	GKQ012	
				AAAB	Benzothiazole	LT	5.00 0	ug/l	GKJ007	
				AV8	Benzene	LT	1.05 0	ug/l	GK0010	
				GG8	Calcium (filtered)		6.21 3	ug/l	GKR013	
				N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	GKN010	
				GG6	Cadmium (filtered)	LT	8.40 0	ug/l	GKR013	
				N6	Methylene Chloride	LT	7.40 0	ug/l	GKN010	
				N8	Chloroform	LT	5.00 -1	ug/1	GKN010	
				HH6A	Chloride		1.26 3	ug/l	GKP015	
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GKK007	**
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GKW004	
			÷	N8	Chlorobenzene	LT	6.20 -1	ug/1	GKN010	-
				KK8	Chlordane	LT	9.50 -2	ug/l	GKK007	
				UM25	Chlordane	LT	3.70 1	ug/l	GKW004	
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GKJ007	
1				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GKW004	
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GKJ007	
,				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GKW004	٠
white .				AAA8 UM25	p-Chlorophenylmethyl Sulfone p-Chlorophenylmethyl Sulfone	LT	7.46 0 5.30 0	ug/l ug/l	GKJ007 GKW004	
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GKR013	
				GG6	Copper (filtered)	LT	2.60 1	ug/1	GKR013	
				TF20	Cyanide	LT	5.00 0	ug/l	GKT010	
				AY8	Dibromochloropropane	LT	1.95 -1	ug/1	GKL007	
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GKW004	
į				P6	Dicyclopentadiene	LT	5.00 0	ug/l	GKQ012	
				UM25	Dicyclopentadiene	LT	5.50 0	ug/1	GKW004	
				UH11	Vapona	LT	3.84 -1	ug/l	GKM007	
I .				UM25	Vapona	LT	8.50 0	ug/1	GKW004	

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
			DTOLL	۸۳۵	Didana cana di mathali Dhacabas ata	1.70	3.92 -1	ug/l	GK1005
89135	SW04001ST	0.2	DTCH	AT6	Diisopropylmethyl Phosphonate Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GKW004
				UM25	Dithiane	LT	1.34 0	ug/l	GKJ007
				AAA8 UM25	Dithiane		3.30 0	ug/l	GKW004
				KK8	Dieldrin	LI	5.51 -2	ug/l	GKK007
				UM25	Dieldrin	LT	2.60 1	ug/l	GKW004
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/1	GKJ007
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GKI005
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GKW004
				KK8	Endrin	LT	5.00 -2	ug/l	GKK007
				UM25	Endrin	LT	1.80 1	ug/l	GKW004
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GK0010
				HH8A	Fluoride		8.07 2	ug/l	GKP015
				CC8	Mercury (filtered)	LT	1.00 -1	ug/1	GML006
				KK8	Isodrin	LT	5.10 -2	ug/l	GKK007
				UM25	Isodrin	LT	7.80 0	ug/l	GKW004
				GG8	Potassium (filtered)		2.93 3	ug/1	GKR013
				AV8	Toluene	LT	1.47 0	ug/1	GK0010
				GG8	Magnesium (filtered)		8.65 2	ug/1	GKR013
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GKQ012
				UH11	Malathion	LT	3.73 -1	ug/l	GKM007
				UM25	Malathion	LT	2.10 1	ug/l	GKW004
				GG8	Sodium (filtered)		1.23 3	ug/l	GKR013
	****			LL8	-Nitrite,Nitrate - Non specific		6.60 2	ug/1	GKV018
				AAA6	1,4-Oxathiane	LT	2.38 0	ug/l	GKJ007
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GKW004
				GGS	Lead (filtered)	LT	7.40 1	ug/l	GKR013
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GKK007
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GKW004
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GKK007
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GKW004
				UH11	Parathion	LT	6.47 -1	ug/l	GKM007

R. L. Stollar and Associates

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	÷	Units	Sample Number
		***************************************	***************************************	***************************************			~ ~~	******		CIALIDA
89135	SW04001ST	0.2	DTCH	UM25	Parathion	LT	3.70 3.46	1	ug/l	GKW004 GKP015
				HH8A	Sulfate	1 ~~	7.87		ug/l ug/l	GKM007
				UH11	2-Chloro-1(2,4-Dichlorophenyl)	LT	7.07	1	ug/I	GKI1007
				L Belling	Vinyldiethyl Phosphates 2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90	1	ug/l	GKW004
				UM25	Vinyldiethyl Phosphates	7-1	1.50	*	0/S/ 1	CI (WOOM
				ИВ	Tetrachloroethene	LT	7.50	-1	ug/l	GKN010
				NO	te or actitor de otiene	ω,	7.50	*	W 9/ 1	CH (10 L 0
				N8	Trichloroethene	LT	5.60	1	ug/l	GKN010
				AVB	Ortho- & Para-Xylene	LT	1.36		ug/l	GK0010
			-	GG8	Zinc (filtered)		4.37		ug/1	GKR013
89117	SW07001	0.1	DTCH	UM21	1,1,1-Trichloroethane	LT	1.00	0	ug/l	GEZ004
				N8	1,1,1-Trichloroethane	LT	7.60	-1	ug/l	GHE006
				UM21	1,1,2-Trichloroethane	LT	1.00	O	ug/1	GEZ004
				N8	1,1,2-Trichloroethane	LT	7.80	-1	ug/l	GHE006
j				UM21	1,1-Dichloroethene	LT	1.00	0	ug/l	GEZO04
				N6	1,1-Dichloroethene	LT	1.70	0	ug/l	GHE006
				UM21	1,1-Dichloroethane	LT	1.00	٥	ug/l	GEZO04
				N8	1,1-Dichloroethane	LT	7.30	-1	ug/l	GHE006
				UM21	1,2-Dichloroethene	LT	5.00	0	ug/l	GEZ004
				N8	1,2-Dichloroethene	LT	7.60	-1	ug/l	GHE006
				UM21	1,2-Dichloroethane	LT	1.00	0	ug/l	GEZO04
				N8	1,2-Dichloroethane	LT	1.10	0	ug/1	GHEOO6
				UM21	1,2-Dichloropropane	LT	1.00	0	ug/l	GEZ004
				UM21	1,3-Dichlorobenzene	LT	1.00	0	ug/1	GEZ004
				UM21	1,3-Dichloropropane	LT	4.80	0	ug/l	GEZ004
				UM21	m-Xylene	LT	1.00	0	ug/l	GEZO04
				AVB	m-Xylene	LT	1.32	0	ug/1	CHDO06
				UM21	2-Chloroethylvinyl Ether	LT	3.50	0	ug/l	GEZ004
				UM21	Acrylonitrile	LT	8.40	0	ug/l	GEZ004
				KK8	Aldrin		1.52	-1	ug/l	GFG017
				UM25	Aldrin	LT	1.30	1	ug/l	GFV003
				00	ALKALINITY		1.46		ug/l	GE0014
				AXB	Arsenic (filtered)	LT	2.35		ug/l	GFX015
					Arsenic		2.35		ug/l	GFX016

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	~Method	Analytical Parameters		Re	sults		Units	Sample Number	
89117	SW07001	0.1	DTCH	UH11	Atrazine		LT	4.03	0	ug/l	GFK013	
07117	3007001	V.1	Dich	UM25	Atrazine		LT	5.90		ug/1	GFV003	
				P8	Bicycloheptadiene		LT	5.90		ug/l	GFD013	
				UM21	Bromodichloromethane		LT	1.00		ug/l	GEZO04	
1				AAA8	Benzothiazole		LT	5.00		ug/l	GFH014	
				UM21	Vinyl Chloride		LT	1.20	1	ug/l	GEZO04	
				UM21	Chloroethane		LT	8.00	0	ug/1	GEZ004	
				UM21	Benz ene		LT	1.00	0	ug/1	GEZO04	
				AV8	Benzene		LT	1.05	0	ug/l	GHD006	
	7			GG8	Calcium (filtered)			4.43	4	ug/l	GHH007	
				GGS	Calcium			4.59	4	ug/l	GHH008	
				UM21	Trichlorofluoromethane		LT	1.00	0	ug/l	GEZ004	
				UM21	Carbon Tetrachloride		LT	1.00	0	ug/l	GEZO04	
				N8	Carbon Tetrachloride		LT	9.90		ug/l	GHE006	
				GG8	Cadmium (filtered)		LT	8.40		ug/l	GHH007	
				GG8	Cadmium		LT	8.40	0	ug/l	GHH008	
				UM21	Methylene Chloride		LT	1.00	0	ug/l	GEZ004	
				N8	Methylene Chloride		LT	7.40		ug/l	GHE006	
	•			UM21 UM21	Bromomethane Chloromethane		LT LT	1.40		ug/l ug/l	GEZ004 GEZ004	
1				UM21	Bromoform		LT	1.10		ug/l	GEZ004	
				UM21	Chloroform		LT	1.00		ug/l	GEZ004	
				N6	Chloroform		LT	5.00		ug/l	GHE006	
				HH6A KK8	Chloride Hexachlorocyclopentadiene			5.30 7.17		ug/l ug/l	GFL009 GFG017	
				.UM25	Hexachlorocyclopentadiene		LT	5.40	1	ug/l	GFV003	
				UM21	Chlorobenzene		LT	1.00		ug/l	GEZO04	
				N8	Chlorobenzene		LT	6.20		ug/l	GHE006	
				KK8	Chlordane		LT	9.50		ug/l	GFG017	
				UM25	Chlordane		LT			ug/l	GFV003	
				AAAS	p-Chlorophenylmethyl Sulfide		LT	5.69	0	ug/l	GFH014	
				UM25	p-Chlorophenylmethyl Sulfide		LT	1.00	1	ug/l	GFV003	
				AAA6	p-Chlorophenylmethyl Sulfoxide	9	LT	1.15	1	ug/1	GFH014	
				UM25	p-Chlorophenylmethyl Sulfoxide	9	LT	1.50	1	ug/1	GFV003	

R. L. Stollar and Associates Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Type Type	-Method	Analytical Parameters	Re	esults	Units	Sample Number
						1 990	~ 4~ 0		oruns 4
89117	SW07001	0.1	DTCH	AAA6	p-Chlorophenylmethyl Sulfone	LT	e et al.	ug/l	GFH014
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GFV003
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GHH007
				GG8	Chromium	LT		ug/l	GHH008
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GHH007
				GG8	Copper	LT	2.60 1	ug/l	CHHO08
				TF20	Cyanide		6.25 0	ug/l	GEN014
				AY8	Dibromochloropropane	LT	1.95 -1	ug/1	GFN014
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GFV003
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GEZ004
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GEZ004
				P8	Dicyclopentadiene	LT	5.00 0	ug/1	GFD013
				UM25	Dicyclopentadiene	LT	5.50 0	ug/1	GFV003
				UH11	Vapona		1.86 0	ug/1	GFK013
				UM25	Vapona	LT	8.50 0	ug/l	_ GFV003
				AT6	Diisopropylmethyl Phosphonate	LT	3.92 -1	úg/l	GFP014
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GFY003
				AAAB	Dithiane	LT	1.34 0	ug/l	GFH014
		-25.7		UM25	Dithiane	LT	3.30 0	ug/l	GFV003
				KK8	Dieldrin		7.95 -2	ug/l	GFG017
				UM25	Dieldrin	LT	2.60 1	ug/l	GFV003
			-	BAAA	Dimethyldisulfide	LT	5.50 -1	ug/1	GFH014
				UM21	Acetone	LT	8.00 0	ug/1	GEZ004
				ATS	Dimethylmethyl Phosphate		2.08 0	ug/l	GFP014
		и.		UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/1.	GFV003
				KK8	Endrin	LT	5.00 -2	ug/l	GFG017
				UM25	Endrin	LT	1.80 1	ug/l	GFV003
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GEZ004
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GHD006
				HHBA	Fluoride		1.63 3	ug/l	GFL009
				CCS	Mercury (filtered)	LT	1.00 -1	ug/l	GGW017
				CC8	Mercury		2.01 -1	ug/l	GGW018
				KK8	Isodrin		1.32 -1	ug/l	GFG017
				UM25	Isodrin	LT	7.80 0	ug/l	GFV00

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Re	sults		Units	Sample Number
89117	SW07001	0.1	DTCH	GG8	Potassium (filtered)		7.98	3	ug/l	GHH007
				GG8	Potassium		8.24	3	ug/l	GHH008
				UM21	Toluene	LT	1.00	0	ug/l	GEZ004
				AV8	Toluene	LT	1.47	O	ug/1	GHD006
				UM21	Methylethyl Ketone	LT	1.00	1	ug/l	GEZ004
				GG8	Magnesium (filtered)		1.21	4	ug/l	GHH007
				GG8	Magnesium		1.36	4	ug/1	GHH008
				UM21	Methylisobutyl Ketone	LT	1.40	0	ug/1	GEZ004
				P8	Methylisobutyl Ketone	LT	4.90	0	ug/l	GF0013
				UH11	Malathion	LT	3.73	-1	ug/l	GFK013
				UM25	Malathion	LT	2.10	1	ug/l	GFV003
				GG6	Sodium (filtered)		6.65	4	ug/1	GHH007
				GG8	Sodium		6.98	4	ug/l	GHH008
				LL8	Nitrite, Nitrate - Non specific		3.30	3	ug/l	GCL030
				AAA8	1,4-Oxathiane	LT	2.38	0	ug/l	GFH014
				UM25	1,4-Oxathiane	LT	2.70	1	ug/l	GFV003
				GG8	Lead (filtered)	LT	7.40	1	ug/l	GHH007
				GG8	Lead	LT	7.40	1	ug/l	GHH008
		A		KK8	Dichlorodiphenylethane		2.52	-1	ug/l	GFG017
				UM25	Dichlorodiphenylethane	LT	1.40	1	ug/l	GFV003
			er.	KK8	Dichlorodiphenyltrichloro- ethane		6.38	-2	ug/l	GFG017
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1	ug/l	GFV003
		No. 11		UH11	Parathion	LT	6.47	-1	ug/1	GFK013
	-			UM25	Parathion	LT	3.70	1	ug/l	GFV003
				HH8A	Sulfate		6.80	4	ug/l	GFL009
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87	-1	ug/l	GFK013
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90	1	ug/l	GFV003
				UM21	1,1,2,2-Tetrachloroethane	1 7	1.50	0	ug/l	GEZ004
				UM21	Tetrachloroethene		1.00		ug/1	GEZ004
				N8	Tetrachloroethene		7.50		ug/l	GHEO06

01/10/90

Summary of Analytical Results

Sampling	Station	Sample	Sample							Sample	
Date	Number	Depth (cm)	Type	`Method	Analytical Parameters	Re	sults		Units	Number	

89117	SW07001	0.1	DTCH	UM21	Trichloroethene	LT	1.00		ug/l	GEZO04	
				N8	Trichloroethene	LT	5.60		ug/l	GHE006	
				UM21	Ortho- & Para-Xylene	LT	2.00		ug/l	GEZO04	
				AV6	Ortho- & Para-Xylene	LT	1.36		ug/l	GHD006	
1				GG8	Zinc (filtered)		5.27	1	ug/l	GHH007	
				GG8	Zinc		6.88	1	ug/l	GHH008	
89117	SW07001B	0.1	DTCH	ни9	1,1,1-Trichloroethane	LT	8.80	-2	ug/l	GFS008	
				ИИ9	1,1,2-Trichloroethane	LT	2.60	-1	ug/l	GFS008	
				МИ 9	1,1-Dichloroethene	LT	2.40	-1	ug/l	GFS008	
ì				NN9	1,1-Dichloroethane	LT	7.40	-2	ug/l	GFS008	
j				ИИЭ	1,2-Dichloroethene	LT	2.60	-1	ug/l	GFS008	
				ниэ	1,2-Dichloroethane	LT	8.50	-2	ug/l	GFS008	
				AA9	m-Xylene	LT	2.60	-1	ug/1	GFT008	
				59	Arsenic	LT	2.50	0	ug/1	GDM024	
				LH15	Atrazine '		2.94	0	ug/l	GFR008	
				ZZ9	Bicycloheptadiene	LT	5.08	0	ug/l	IKY015	
				нн9	Benzothiazole	LT	2.04	٥	ug/l	GFA010	
•				AA9	Benzene	LT	8.50	-2	ug/l	GFT008	
				еми	Carbon Tetrachloride	LT	1.20	-1	ug/l	GFS008	
				P9	Cadmium	LT	7.40	-1	ug/l	GDK025	
				ИИЗ	Methylene Chloride	LT	3.70	0	ug/l	GFS008	
				ии9	Chloroform	LT	6.80	-2	ug/l	GFS008	
-1				NN9	Chlorobenzene	LT	2.00	-1	ug/l	GFS008	
1				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40	0	ug/l	GFA010	
				HH9	p-Chlorophenylmethyl Sulfoxide	LT	4.81	0	ug/l	GFA010	
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01	0	ug/l	GFA010	
				P9	Chromium	LT	6.50		ug/l	GDK025	
				P9	Copper		1.75		ug/l	GDK025	
_				\$9	Dibromochloropropane		1.40		ug/l	GFB010	
				ZZ9	Dicyclopentadiene	LT	5.12		ug/l	IKY015	
				LH15	Vapona	LT	6.00	-2	ug/l	GFR008	
				TT9	Diisopropylmethyl Phosphonate		1.14		ug/l	KSU017	
				HH9	Dithiane	LT	1.45	0	ug/l	GFA010	

01/10/90

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sampl: Numbe
	or language	0.1	25,700,004.1	1006	Prince de la constitució de la	1 ***	7 10 A	ua/1	GFA01
69117	SW070018	0.1	DTCH	HH9	Dimethyldisulfide	LT	3.12 -0 1.33 -1	ug/l ug/l	KSU01
				779	Dimethylmethyl Phosphate	LT	1.60 -1	ug/l	GFT00
				AA9	Ethylbenzene Fluorozcetic Acid	LT	2.00 0	ug/l	KRS01
			•	AAA9		LT	5.00 -2	ug/l	GDL02
				Y9	Mercury	LI	5.00 -2	ug/ 1	ODEO2
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS01
				AA9	Toluene	LT	1.90 -1	ug/l	GFT008
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY01
				LH15	Malathion	LT	1.26 -1	ug/l	GFROO
				HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GFA01
				P9	Lead		3.22 1	ug/l	GDK02
				LH15	Parathion	LT	1.59 -1	ug/l	GFR00
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GFR00
				еии	Tetrachloroethene	LT	2.70 -1	ug/l	GFS00
				ни9	Trichloroethene	LT	1.40 -1		GFS00
				AA 9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GFT00
		* *		P9 :	Zinc	'	6.34 1	ug/l	GDK02
						, ~~			GDXOO
39115	SW08001	0.2	STRM	UM21.	1,1,1-Trichloroethane		1.00 0	ug/l	
		* .		UM21	1,1,2-Trichloroethane	LT		ug/l	GDX00
				UM21 ***	1,1-Dichloroethene	LT	1.00 0	ug/l	GDX00
				UM21	1,1-Dichloroethane 1,2-Dichloroethene		5.00 0	ug/l ug/l	GDX00
					4.000	1 ***	4 00 0	(7	crv/aa
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GDX00
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	CDX00
				UM21	1,3-Dichlorobenzene		1.00 0	ug/l	GDX00
				UM21	1,3-Dichloropropane		4.80 0	ug/l	GDX00
				UM21	m-Xylene	L.I	1.00 0	ug/l	GDXOO
				AV8	m-Xylene	LT	1.32 0	ug/l	GCS02
				UM21	2-Chloroethylvinyl Ether		3.50 0	ug/l	GDX00
				UM21	Acrylonitrile		6.40 0	ug/1	GDX00
				UM25	Aldrin		1.30 1	ug/l	GDZOO
				KK8	Aldrin		5.00 -2	ug/1	GEG01

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Re	sults		Units	Sample Number	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>	***************************************	1.				_		oronor	
89115	SW08001	0.2	STRM	00	ALKALINITY		2.54		ug/l	GE0005	
				AX8	Arsenic (filtered)	1 7/	2.61		ug/l	GFI013	
				AX8	Arsenic		2.35		ug/l	GFI014	
				UM25	Atrazine	LT LT	4.03		ug/l ug/l	GDZ004 GEJ010	
				UH11	Atrazine	L. 1	4.05	V	ug/ 1	GCJVIV	
				P6	Bicycloheptadiene	LT	5.90	0	ug/1	GEI010	
				UM21	Bromodichloromethane	LT	1.00	0	ug/l	GDX004	
				UM21	Vinyl Chloride	LT	1.20	1.	ug/1	GDX004	
				UM21	Chloroethane	LT	8.00	0	ug/l	GDX004	
				UM21	Benzene	LT	1.00	0	ug/l	GDX004	
				AV8	Benz <i>e</i> ne	LT	1.05	0	ug/1	GCS021	
				GG8	Calcium (filtered)		8.01	4	ug/l	GEP019	
				GG8	Calcium		8.20	Ą	ug/l	GEP020	
				UM21	Trichlorofluoromethane	LT	1.00	0	ug/l	GDX004	
•				UM21	Carbon Tetrachloride	LT	1.00	٥	ug/l	GDX004	
				GG8	Cadmium (filtered)	LT	8.40	0	ug/l	GEP019	
				GG8	Cadmium	LT	8.40	0	ug/1	GEP020	
				UM21	Methylene Chloride	LT	1.00	0	ug/l	GDX004	
				UM21	Bromomethane	LT	1.40	1	ug/l	GDX004	
				UM21	Chloromethane	LT	1.20	0	ug/l	GDX004	
				UM21	Bromoform	LT	1.10	1	ug/1	GDX004	
				UM21	Chloroform	LT	1.00	0	ug/l	GDX004	
				HH8A	Chloride		3.20	4	ug/l	GCK021	
			*	KK8	Hexachlorocyclopentadiene	LT	4.80	-2	ug/l	GEGO10	
				UM21	Chlorobenzene	LT	1.00	0	ug/l	GDX004	
				UM25	Chlordane	LT	3.70	i	ug/l	GDZ004	
				KK6	Chlordane	LT	9.50	-2	ug/1	GEGO10	
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1	ug/l	GDZ004	
•				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50		ug/l	GDZ004	
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0	ug/l	GDZ004	
				ලෙව	Chromium (filtered)	LT	2.40	1	ug/l	GEP019	
				GG8	Chromium	LT	2.40	1	ug/1	GEP020	
				GG8	Copper (filtered)	LT	2.60	1	ug/l	GEP019	
				GG8	Copper	LT	2.60	1	ug/l	GEP020	

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	-	Analytical Parameters	Re	e s ults	Units	Sample Number	
89115	SW06001	0.2	STRM	TF20	- Cyanide	LT	5.00 0	ug/l	GEN005	
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GEE010	
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GDZ004	
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GDX004	
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GDX004	
ı				P6	Dicyclopentadiene	LT	5.00 0	ug/l	GEI010	
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GDZ004	
				UM25	Vapona	LT	8.50 0	ug/1	GDZ004	
				UH11	Vapona		7.88 -1	ug/1	GEJ010	
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GDZ004	
		•		AT6	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GEH010	
				UM25	Dithiane	LT	3.30 0	ug/l	GDZ004	
1				UM25	Dieldrin	LT	2.60 1	ug/1	GDZ004	
				KK8	Dieldrin	LT	5.00 -2	ug/1	GEG010	
				UM21	Acetone	LT	8.00 0	ug/l	GDX004	
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GDZ004	
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GEH010	
				UM25	Endrin	LT	1.60 1	ug/l	GDZ004	
	•			KK8	Endrin	" LT	5.00 -2	ug/l	GEG010	
				-UM21	Ethylbenzene	LT	1.00 0	ug/l	GDX004	
				AV6	Ethylbenzene	LT	1.37 0	ug/l	GCS021	
	211			HHBA	Fluoride	***	1.22 3	ug/l	GCK021	
			**	CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN039	
				CC8	Mercury	LT	1.00 -1	ug/l	GCN040	
		•		UM25	Isodrin	LT	7.80 0	ug/l	GDZOO4	
				KK8	Isodrin	LT	5.10 -2	ug/l	GEGO10	
				66 8	Potassium (filtered)		3.78 3	ug/l	GEP019	
				GG8	Potassium		3.64 3	ug/l	GEP020	
				UM21	Toluene			ug/l	GDX004	
				AV8	Toluene	LT	1.47 0	ug/l	GCS021	
				UM21	Methylethyl Ketone	LT	1.00 1	ug/1	GDX004	
				GC8	Magnesium (filtered)		1.73 4	ug/l	GEP019	
				GG8	Magnesium		1.75 4	ug/l	GEP020	
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GDX004	

01/10/90

Sampling	Station	Sample .	Sample Type	Method	Analytical Parameters	 Re	esults	Units	Sample Number
Date	Number	Depth (cm)	1 y Der	TRECTION	mialy tited 1 and to 1 3				
					*				
89115	SW08001	0.2	STRM	P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GEI010
				UM25	Malathion	LT	2.10 1	ug/l	GDZ004
				UH11	Malathion	LT	3.73 -1	ug/1	GEJ010
		-		GG8	Sodium (filtered)		5.62 4	ug/1	GEP019
				GG8	Sodium		5.81 4	ug/l	GEP020
				LL8	Nitrite, Nitrate - Non specific		1.03 2	ug/l	GCL021
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GDZ004
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP019
				GG8	Lead	LT	7.40 1	. ug/l	GEP020
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GDZ004
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GEG010
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GDZ004
				KK8	Oichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GEG010
				UM25	Parathion	LT	3.70 1	ug/l	GDZ004
				UH11	Parathion	LT	6.47 -1	ug/1	GEJ010
				HH8A	Sulfate		9.00 4	ug/l	GCK021
			and .	UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GDZ004
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ010
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/1	GDX004
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GDX004
				UM21	Trichloroethene .	LT	1.00 0	ug/l	GDX004
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GDX004
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS021
				GG8	Zinc (filtered)	LT	2.20 1	ug/1	GEP019
				GG8	Zinc	LT	2.20 1	ug/l	GEP020
89115	SW08001	5.0	STRM	AAA8	Benzothiazole	LT	5.00 0	ug/l	GEF010
				AAA6	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GEF010
				AAAB	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GEF010
				AAAS	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GEF010
				AAA 6	Dithiane	LT	1.34 0	ug/l	GEF010

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters		Ře	esults	Units	Sample Number
69115	SW08001	5.0	STRM	- AAA8	Dimethyldisulfide		LT	5.50 -1	ug/l	GEF010
				AAA6	1,4-Oxathiane		LT	2.38 0	ug/l	GEF010
89115	SW08001B	0.1	STRM	N9	1,1,1-Trichloroethane		LT	4.30 -1	ug/l	GEQ005
				NN9	1,1,1-Trichloroethane		LT	8.80 -2	ug/l	GDY009
B				N9	1,1,2-Trichloroethane		LT	3.90 -1	ug/l	GEQ005
_				NN9	1,1,2-Trichloroethane		LT	2.60 -1	ug/l	GDY009
				ниэ	1,1-Dichloroethene		LT	2.40 -1	ug/l	GDY009
				Н9	1,1-Dichloroethane		LT	1.70 0	ug/l	GEQ005
<u> </u>				NN9	1,1-Dichloroethane		LT	7.40 -2	ug/1	GDY009
				ИЭ	1,2-Dichloroethene		LT	1.70 0	.ug/l	GEQ005
				NN9	1,2-Dichloroethene		LT	2.60 -1	ug/l	GDY009
_				ИЭ	1,2-Dichloroethane		LT	5.60 -1	ug/l	GEQ005
				ни9	1,2-Dichloroethane		LT	8.50 -2	ug/l	GDY009
				N9	m-Xylene	6	LT	7.40 -1	ug/l	GEQ00S
_				AA9	m-Xylene		LT	2.60 -1	ug/1	GDW009
				KK9A	Aldrin		LT	1.90 -3	ug/l	GEB009
				B9	Arsenic		LT	2.50 0	ug/l	GDM014
		2.1	a get a	LH15	Atrazine			2.29 0	ug/1	GEA009
				N9	Bicycloheptadiene		·LT	3.60 -1	ug/l	GEQ005
				ZZ9	Bicycloheptadiene		LT	5.08 0	ug/l	IKYO10
				HH9	Benzothiazole		LT	2.04 0	ug/l	GEC008
				Н9	Benzene		LT	2.50 -1	ug/l	GEQ005
_				AA9	Benzene		LT	8.50 -2	ug/l	GDW009
				N9	Carbon Tetrachloride		LT	2.50 -1	ug/l	GEQ005
				NN9	Carbon Tetrachloride		LT	1.20 -1	ug/1	GDY009
				P9	Cadmium		LT	7.40 -1	ug/l	GDK014
		-		N9	Methylene Chloride		LT	1.50 0	ug/l	GEQ005
_				NN9	Methylene Chloride			3.70 0	ug/l	GDA008
				N9	Chloroform			2.90 -1	ug/l	GEQ005
				NN9	Chloroform			6.80 -2	ug/l	GDY009
_				KK9A	Hexachlorocyclopentadiene			1.80 -3	ug/l	GEB009
				И9	Chlorobenzene		LT	1.50 0	ug/1	GEQ005
				нчэ	Chlorobenzene		LT	2.00 -1	ug/l	GDY009

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89115	SW08001B	0.1	STRM	KK9A	Chlordane	LT	.2.30 -2	ug/l	GEB009
GPA & G	34000010	0.1	W1147	HH9	p-Chlorophenylmethyl Sulfide	LT	4.40		GEC008
	. • •			HH9	p-Chlorophenylmethyl Sulfoxide		6.88 0	ug/1	GEC008
				нн9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/1	GEC008
				P9	Chromium	LT	6.50	ug/l	GDK014
				P9	Copper	LT	4.70	ug/l	GDK014
				S9	Dibromochloropropane	LT	5.00 -3	ug/l	GED009
				N9	Dibromochloropropane	LT	2.40	ug/l	GEQ005
				N9	Dicyclopentadiene	LT	6.40 -1		GEQ005
				· ZZ9	Dicyclopentadiene	LT	5.12	ug/l	IKY010
				LH15	Vapona	LT	8.00 -2		GEA009
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1		KSU012
				HH9	Dithiane	LT	1.45 0		GEC008
				KK9A	Dieldrin	LT	3.30 -3		GEB009
				N9	Dimethyldisulfide	LT	2.00 1	ug/l	GEQ005
				HH9	Dimethyldisulfide	LT	3.12	ug/1	GEC008
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/1	KSU012
				KK9A	Endrin	LT	5.60 -3	ug/l	GEB009
				N9	Ethylbenzene	LT	3.80 -1	ug/l	GEQ005
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GDW009
				AAA9	Fluoroacetic Acid	LT	2.00	ug/l	KRS012
				Y9	Mercury	LT	5.00 -2	ug/1	GDL014
				AAA9	Isopropylmethyl Phosphonic Acid	LT.	2.11 0	ug/l	KRS012
				KK9A	Isodrin	LT	1.10 -3	ug/l	GEB009
				N9	Toluene	LT	2.50 -1	ug/l	GEQ005
				AA 9	Toluene	LT	1.90 -1	ug/l	GDW009
				N9	Methylisobutyl Ketone	LT	7.30 -1		GEQ005
				ZZ9	Methylisobutyl Ketone	LT	5.24	ug/1	IKY010
				LH15	Malathion	LT			GEA009
				HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GEC008
				P9	Lead	LT	6.40		GDK014
				KK9A	Dichlorodiphenylethane	LT			GEB009
				KK9A	Dichlorodiphenyltrichloro-	LT	2.00 -3	ug/1	GEB009
					ethane				

01/10/90

ampling Oate	Station Number	Sample Depth (cm)	Sample Type	~ Method	Analytical Parameters	Re	sults	Units	Sampl Numbe
				1147	Carrathina	17	1.59 -1	·· ue/i	GEA00
39115	SW08001B	0.1	STRM	LH15 LH15	Parathion 2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GEA00
				N9	Tetrachloroethene	LT	2.50 -1	ug/l	GEQ00
				РИИ	Tetrachloroethene	LT	2.70 -1	ug/l	GDY00
				Н9	Trichloroethene	LT	5.40 -1	ug/l	GEQOO
				ииэ	Trichloroethene	LT	1.40 -1	ug/l	GDY00
				N9	Ortho- & Para-Xylene	LT	4.90 0	ug/1	GEQ00
				A69	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GDWOO
				P9	Zinc		2.24 1	ug/l	GDK01
89115	SW08003	0.2	STRM	AV8	m-Xylene	LT	1.32 0	ug/l	GCS02
				AA9	m-Xylene	LT	2.60 -1	ug/l	GDW01
				KK8	Aldrin	LT	5.00 -2	ug/l	GEG01
				UM25	Aldrin	LT	1.30 1	ug/1	GEKO
				00	ALKALINITY		2.61 2	ug/l	GEOO
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GFIO:
				AX8	Arsenic	LT	2.35 0	ug/1	GFIO
				LH15	Atrazine		1.03 1	ug/1	GEAO
				UM25	Atrazine	LT	5.90 0	ug/l	GEKO
				UH11	Atrazine	LT	4.03 0	ug/l	GEJO
				P8 ···	Bicycloheptadiene	LT	5.90 0	ug/l	GEIO
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKYO
				AV8	Benzene	LT	1.05 0	ug/l	GCSO
				AA9	Benzene	LT	8.50 -2	ug/l	GDWO
				GG8	Calcium (filtered)		6.69 4	ug/l	GEPO
				GG8	Calcium		9.15 4	ug/l	GEPO
				GG8	Cadmium (filtered)	LT	6.40 0	ug/1	GEP0
				GG8	Cadmium	LT	8.40 0	ug/l	GEP0
				P9	Cadmium	LT	7.40 -1	ug/l	GDKO
				HH8A	Chloride		3.30 4	ug/l	GCKO
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GEGO
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GEKO
				KK8	Chlordane	LT	9.50 -2	ug/l	GEGO
				UM25	Chlordane	LT	3.70 1	ug/1	GEKO

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Jnits	Sample Number
						1 70	1.00	1	ug/l	GEKOO6
89115	\$0080WZ	0.2	STRM	UM25	p-Chlorophenylmethyl Sulfide	LT			ug/l	GEKOO6
				UM25	p-Chlorophenylmethyl Sulfoxide	LT			ug/l	GEK006
				UM25	p-Chlorophenylmethyl Sulfone	LT LT			ug/l	GEP023
				GG8 GG8	Chromium (filtered) Chromium	LT			ug/1	GEP024
				P9	Chromium	LT	6.50	o	ug/l	GDK015
				GG8	Copper (filtered)	LT	2.60	1	ug/l	GEP023
				GG8	Copper	LT	2.60	1	ug/1	GEP024
				p9	Copper	LT	4.70	0	u9/1	GDK015
				TF20	Cyanide	LT	5.00	0	ug/l	GEN007
				AY8	Dibromochloropropane	LT	1.95 -	-1	ug/l	GEE012
				\$9	Dibromochloropropane	LT	5.00	-3	ug/l	GE0010
				UM25	Dibromochloropropane	LT	1.20	1	ug/1	GEK006
				P8	Dicyclopentadiene	LT	5.00	0	ug/l	GET012
				UM25	Dicyclopentadiene	LT	5.50	0	ug/l	GEK006
				ZZ9	Dicyclopentadiene	LT	5.12		ug/l	IKY009
				LH15	Vapona	LT	8.00 -		ug/l	GEA010
				UM25	Vapona	LT	8.50		ug/l	GEKO06
				UH11	Vapona	LT	3.84 -		ug/l	GEJ012
			4	AT6	Diisopropylmethyl Phosphonate	LT	3.92 -	-1	ug/l	GEH012
				UM25	Diisopropylmethyl Phosphonate	LT	2.10		ug/l	GEK006
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -		ug/l	KSU011
				UM25	Dithiane	LT	3.30		ug/l	GEK006
	•		.**	KK6 UM25	Dieldrin Dieldrin	LT LT	5.00 - 2.60		ug/l ug/l	GEG012 GEK006
				ATO	Dimethylmethyl Phosphate	LT	1.88		ug/l	GEH012
				UM25	Dimethylmethyl Phosphate	LT	1.30		ug/1	GEK006
				TT9	Dimethylmethyl Phosphate		1.33 -		ug/l	KSU011
				KK8 UM25	Endrin Endrin	LT	5.00 - 1.60		ug/l ug/l	GEG012 GEK006
				AVO	Et hui hanz ana	1 7	1 77	0	ua/l	GCS 023
				AV6	Ethylbenzene Ethylbenzene		1.37		ug/l ug/l	GDW010
				AA9	i	i. I	1.20			
				HH6A	Fluoride		1.20	<u>ټ</u>	ug/l	GCK023

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number	
			TT. 1000 May 4			,	4 77 4		00110477	
89115	SW08003	0.2	STRM	CC8	Mercury (filtered)		1.00 -1	ug/l	GCN043	
		•		CC6	Mercury		1.00 -1	ug/l	GCN044	
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS011	
				KK8	Isodrin	LT	5.10 -2	ug/l	GEG012	
				UM25	Isodrin		7.60 0	ug/1	GEK006	
				GG8	Potassium (filtered)		3.78 3	ug/1	GEP023	
				GG8	Potassium		3.81 3	ug/l	GEP024	
				AV8	Toluene		1.47 0		GCS023	
				A A9	Toluene	LT	1.90 -1	ug/l	GDW010	
				GG8	Magnesium (filtered)		1.88 4	ug/l	GEP023	
				GG8	Magnesium		1.68 4	ug/l	GEP024	
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GEI012	
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/1	IKY009	
				LH15	Malathion	LT	1.26 -1	ug/l	GEA010	
				UM25	Malathion	LT	2.10 1	ug/l	GEK006	
				UH11	Malathion	LT	3.73 -1	ug/l	GEJ012	
				GG8	Sodium (filtered)		6.19 4	ug/l	GEP023	
				GG8	Sodium		6.34 4	ug/l	GEP024	
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GEKOO6	
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP023	
				GG8	Lead	ıπ	7.40 1	ug/l	GEP024	
				P9	Lead		8.40 0	ug/l	GDK015	
				KK8	Dichlorodiphenylethane		5.40 -2	ug/l	GEG012	
				UM25	Dichlorodiphenylethane		1.40 1	ug/l	GEKO06	
				KK8	Dichlorodiphenyltrichloro-		4.90 -2	ug/l	GEG012	
					ethane	-	7.50 2	VI 37 I	ULWV 12.	-
				UM25	Dichlorodiphenyltrichloro-	LT	1.80 1	ug/l	GEK 00 6	
				1114 2	ethane			43		
				LH15	Parathion		1.59 -1	ug/l	GEA010	
				UM25	Parathion		3.70 1	ug/l	GEK006	
				UH11	Parathion	LI	6.47 -1	ug/l	GEJ012	
				HH8A	Sulfate		9.40 4	ug/l	GCK023	
				LH15	2-Chloro-1(2,4-Dichlorophenyl) LT	1.48 -1	ug/l	GEA010	
					Vinyldiethyl Phosphates					

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`method	Analytical Parameters	Re	sults	Units	Sample Number
89115	SW08003	0.2	STRM	UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LŢ	1.90 1	ug/l	GEK006
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ012
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/1	GCS023
				A A9	Ortho- & Para-Xylene	LT	3.90 -1	ug/1	GDW010
				GGଟ	Zinc (filtered)	LT	2.20 1	ug/l	GEP023
				GG8	Zinc	LT	2.20 1	ug/l	GEP024
				P9	Zinc	LT	6.70 0	ug/l	GDK015
69115	SW08003	5.0	STRM	AAA8	Benzothiazole	LT	5.00 0	ug/l	GEF012
				AAAB	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GEF012
				AAA6	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	GEF012
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/1	GEF012
				AAA8	Dithiane	LT	1.34 0	ug/l	GEF012
		٠.		AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GEF012
				A AA8	1,4-Oxathiane	LT	2.36 0	ug/l	GEF012
89117	\$0080WZ	0.1	STRM	LLS	Nitrite, Nitrate - Non specific		2.80 2	ug/l	GCL028
89115	SW08003B	0.2	STRM	N9	1,1,1-Trichloroethane	LT	4.30 -1	ug/l	GEQOOS
				NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDY010
			251	И9	1,1,2-Trichloroethane	LT	3.90 -1	ug/1	GEQ006
		tr	-4.	еии	1,1,2-Trichloroethane	LT	2.60 -1	ug/1	GDY01(
				Р ИР	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDY010
		***		N 9	1,1-Dichloroethane	LT	1.70 0	ug/l	GEQ006
				РИЯ	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDY010
				N9	1,2-Dichloroethene	LT	1.70 0	ug/l	GEQ006
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/1	GDY010
				Н9	1,2-Dichloroethane	LT	5.60 -1	ug/l	GEQ006
				NN9	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDY010
				Н9	m-Xylene	LT	7.40 -1	ug/1	GEQOO
				KK9A	Aldrin	LT	1.90 -3	ug/1	GEB010
				B 9	Arsenic	LT	2.50 0	ug/l	GDM013
				M9	Bicycloheptadiene	LT	3.60 -1	ug/l	GEQ006

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
69115	SW06003B	0.2	STRM	HH9	Benzothiazole	LT	2.04 0	ug/l	GEC009
. 09113	344000030	V.2	21131	N9	Benzene	LT	2.50 -1	ug/l	GEQ006
				N9	Carbon Tetrachloride	LT	2.50 -1	ug/l	GEQ006
,				NN9	Carbon Tetrachloride		1.20 -1	ug/l	GDY010
ı				И9	Methylene Chloride		8.70 0	ug/l	GEQ006
				ни9	Methylene Chloride	LT	3.70 0	ug/l	GDY010
		•		М9	Chloroform	LT	2.90 -1	ug/1	GEQ006
				РИЯ	Chloroform	LT	6.80 -2	ug/1	GDY010
į				KK9A	Hexachlorocyclopentadiene	LT	1.80 -3	. ug/1	GEB010
•				И9	Chlorobenzene	LT	1.50 0	ug/l	GEQ006
,				РИИ9	Chlorobenzene	LT	2.00 -1	ug/1	GDY010
,				KK9A	Chlordane	LT	2.30 -2	ug/1	GEB010
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/1	GEC009
				HH9	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/1	GECO09
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GEC009
				И9	Dibromochloropropane	LT	2.40 0	ug/l	GEQ006
ľ				М9	Dicyclopentadiene	LT	6.40 -1	ug/1	GEQ006
				HH9	Dithiane	LT	1.45 0	ug/l	GEC009
i,		. :		KK9A	Dieldrin	LT	3.30 -3	ug/l	GEB010
				И9	Dimethyldisulfide	LT	2.00 1	ug/l	GEQ006
				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GEC009
		-		KK9A	Endrin	LT	5.60 -3	ug/1	GEBO10 :-
				N9	Ethylbenzene	LT	3.80 -1	ug/l	GEQ006
_				Y9	Mercury	LT	5.00 -2	ug/l	GDL015
				KK9A	Isodrin	LT	1.10 -3	ug/l	GEBO10
				N9	Toluene	LT	2.50 -1	ug/l	GEQ006
				И9	Methylisobutyl Ketone		7.30 -1	ug/1	GEQ006
				HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GECOO9
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/1	GEB010
				KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/l	GE9010
				N 9	Tetrachloroethene	LT	2.50 -1	ug/l	GEQ006
				NN9	Tetrachloroethene		2.70 -1	ug/l	GDY010
				N 9	Trichloroethene	LT	5.40 -1	ug/l	GEQ006

01/10/90

`										
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number	
						Approximation of the second	···········	***************************************	and the second s	
						, Tr	1 40 1	ua (1	GDY010	
69115	SWOSOO3B	0.2	STRM	М19	Trichloroethene	LT	1.40 -1	ug/l ug/l	GEQ006	
				И9	Ortho- & Para-Xylene	LT	4.90 0	49/1	argood	
89134	SW08003ST	0.2	STRM	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GJU014	
				UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GLL004	
				NB	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GJU014	
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/1	GLL004	
				N6	1,1-Dichloroethene	LT	1.70 0	ug/l	GJU014	
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GLL004	
				И8	1,1-Dichloroethane	LT	7.30 -1	ug/l	GJU014	
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GLL004	
				NS	1,2-Dichloroethene	LT	7.60 -1	ug/l	GJU014	
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GLL004	
				N6	1,2-Dichloroethane	LT	1.10 0	ug/l	GJU014	
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/1	GLL004	
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	GLL004	
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	GLL004	
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	GLL004	
				AV8	m-Xylene	LT	1.32 0	ug/l	GJT014	
				UM21	m-Xylene	LT	1.00 0	ug/l	GLL004	
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GLL004	
				UM21	Acrylonitrile	LT	6.40 0	ug/l	GLL004	
	, 1 1 AF			· KK8	Aldrin	LT	5.00 -2	ug/l	GJV007	
P				UM25	Aldrin	LT	1.30 i	ug/l	GKW002	- '
				00	ALKALINITY		1.03 .2	ug/l	GMK005	
				AX8	Arsenic	LT	2.35 0	ug/l	GKF021	•
				UH11	Atrazine	LT	4.03 0	ug/l	GJX007	
				UM25	Atrazine	LT	5.90 0	ug/1	GKW002	
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GKC012	
				UM21	Bromodichloromethane	LT		ug/1	GLL004	
				AAA8	Benrothiarole	LT	5.00 0	ug/l	GJY007	
				UM21	Vinyl Chloride	LT	1.20 1	ug/l	GLL004	
				UM21	Chloroethane	LT	8.00 0	ug/l	GLL004	
				AV8	Benzene	LT	1.05 0	ug/l	GJT014	

				**	,				
Sampling	Station	Sample	Sample			•••	24		Sample
Date	Number	Depth (cm)	Type	Method	Analytical Parameters		esults	Units	Number
89134	SW08003ST	0.2	STRM	UM21	Benzene	LT	1.00 0	ug/l	GLL004
				GG8	Calcium (filtered)		3.02 4	ug/l	GKB013
				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	GLL004
				N6	Carbon Tetrachloride	LT	9.90 -1	ug/l	GJU014
				UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	GLL004
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GKB013
				84	Methylene Chloride	LT	7.40 O	ug/l	GJU014
				UM21	Methylene Chloride	LT	1.00 0	ug/l	GLL004
•				UM21	Bromomethane	LT	1.40 1	ug/l	GLL004
				UM21	Chloromethane	LT	1.20 0	ug/l	GLL004
				UM21	Bromoform	LT	1.10 1	ug/l	GLL004
				N8	Chloroform	LT	5.00 -1	ug/l	GJU014
ľ				UM21	Chloroform	LT	1.00 0	ug/1 ·	GLL004
				HHSA	Chloride		1.30 4	ug/l	CKH019
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GJV007
				UM25	Hexachlorocyclopentadiene	LT	5.40.1	ug/l	GKW002
) .				N8	Chlorobenzene	LT	8.20 -1	ug/l	GJU014
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GLL004
				KK8	Chlordane	. LT	9.50 -2	ug/l	GJV007
•			•	UM25	Chlordane	LT	3.70 1	ug/l	GKW002
1				AAA6	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GJY007
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GKW002
				AAA 8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GJY007
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GKW002
ļ				AAAS	.p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/1	GJY007
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GKW002
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GKB013
				GG6	Copper (filtered)	LT	2.60 1	ug/l	GKB013
				TF20	Cyanide	LT	5.00 0	ug/l	GKE005
				AY8	Dibromochloropropane		2.41 -1	ug/l	GJW007
ŀ				UM25	Dibromochloropropane		1.20 1	ug/1	GKW002
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GLL004
				UM21	1,4-Dichlorobenzene		2.00 0	ug/l	GLL004
5				P6	Dicyclopentadiene	LT	5.00 0	ug/1	GKC012

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method.	Analytical Parameters	Re	sults	Units	Sample Number
			m T The	INOE	Dicyclopentadiene	LT	5.50 0	ug/l	GKW002
89134	SWOSOO3ST	0.2	STRM	UM25		LT	3.84 -1	ug/l	GJX007
				UH11 UM25	Vapona Vapona	LT	8.50 0	ug/l	GKW002
					Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GJZ015
				AT8 UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GKW00
				AAA8	Dithiane	LT	1.34 0	ug/l	GJY00
				UM25	Dithiane	LT	3.30 0	ug/l	GKW00
				KK8	Dieldrin	LT	5.00 -2	ug/1	GJV00
				UM25	Dieldrin	LT	2.60 1	ug/1	GKW000
				AAAG	Dimethyldisulfide	LT	5.50 -i	ug/l	GJY00
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GJZ01
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GKM00
				KK8	Endrin	LT	5.00 -2	ug/l	GJV00
				UM25	Endrin	LT	1.60 1	ug/l	GKM00
		•		AVS	Ethylbenzene	LT	1.37 0	ug/l	GJT01
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GLL00
				HH8A	Fluoride	LT	4.82 2	ug/l	GKH01
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GKG03
		•		KK8	Isodrin	LT	5.10 -2	ug/l	GJV00
				UM25	Isodrin	LT	7.60 0	ug/l	GKWOO
				GG6	Potassium (filtered)		2.70 3	ug/l	GKB01
				AV8	-Toluene	LT	1.47 0	ug/l	GJT01
				UM21	Toluene	LT	1.00 0	ug/l	GLL 0 0
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GLL00
			•	GG8	Magnesium (filtered)		6.21 3	ug/l	GKB01
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GKC01
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GLL00
				UH11	Malathion	LT	3.73 -1	ug/l	GJX00
				UM25	Malathion	LT	2.10 1	ug/l	GKWOC
				622	Sodium (filtered)		2.49 4	ug/l	GKB01
				LL8	Nitrite, Nitrate - Non specific		4.10 2	ug/l	GKD03
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GJY00
				UM25	1,4-Oxathiane	LT	2.70 1	ug/1	GKWOO
				GG8	Lead (filtered)	LT	7.40 1	ug/1	GKB01

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eulte	Units	Sample Number
89134	SWOGOOJST	0.2	STRM	KK6	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GJV007
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GKW002
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	. GJV007
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GKW002
				UH11	Parathion	LT	6.47 -1	ug/l	GJX007
				UM25	Parathion	LT	3.70 1	ug/l	GKW002
				HHBA	Sulfate		3.10 4	ug/l	GKH019
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GJX007
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GKW002
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GLL004
				N8	Tetrachloroethene	LT	7.50 -1	ug/l	GJU014
				UM21	Tetrachloroethene	LT	1.00 0	ug/1	GLL004
				ИВ	Trichloroethene	LT	5.60 -1	ug/1	GJU014
				UM21	Trichloroethene	LT	1.00 0	ug/l	GLL004
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GJT014
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/1	GLL004
				GG 8	Zinc (filtered)	LT	2.20 1	ug/l	GKB013
89116	SW11001	0.0	STSW	UM21	. 1,1,1-Trichloroethane	LT	1.00 0	ug/l	GF0002
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GF0002
	•			UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GF0002
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GF0002
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GF0002
				UM21	1,2-Dichloroethane		1.00 0	ug/l	GF0002
				UM21	1,2-Dichloropropane		1.00 0	ug/l	GF0002
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	GF0002
				UM21	1,3-Dichloropropane	LT	4.60 0	ug/l	GF0002
				UM21	m-Xylene	LT	1.00 0	ug/l	GF0002
				AV8	m-Xylene		1.32 0	ug/l	GCS025
				UM21	2-Chloroethylvinyl Ether		3.50 0	ug/l	GF0002
				UM21	Acrylonitrile	LT	8.40 0	ug/1	GF0002

Comprehensive Monitoring Program

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Amalytical Parameters	Re	esults	Units	Sample Number
		m m	M75 ML 1	KKO	A) division	LT	5.00 -2	ug/l	ĠFG008
89116	SW11001	0.0	STSW	KK8	Aldrin Aldrin	LT	1.30 1		GFC002
				UM25 00	ALKALINITY	L. 1	3.42 1		GE0009
						17	2.35 0		GFI025
				AX8 AX8	Arsenic (filtered) Arsenic	LT	2.35 0		GF1026
				UH11	Atrazine	LT	4.03 0	ug/l	GFK006
				UM25	Atrazine	LT	5.90 0	ug/l	GFC00
				P6	Bicycloheptadiene	LT	5.90 0	ug/l	GFD008
				UM21	Bromodichloromethane	LT	1.00 0	ug/1	GF0000
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GFH00
				UM2i	Vinyl Chloride	LT	1.20 1	ug/l	GF000
				UM21	Chloroethane	LT	8.00 0	ug/l	GF000
				UM21	Benzene	LT	1.00 0	ug/1	GF000
				AVE	Benzene	LT	1.05 0		GCS02
				GG8	Calcium (filtered)		1.67 4	-ug/1	GFF01
				GG8	Calcium		1.56 4		GFF01
				UM21	Trich]orofluoromethane	LT	1.00 0		GF000
				UM21	Carbon Tetrachloride	LT	1.00 0		GF000
				GG8	Cadmium (filtered)	LT	8.40 0		GFF01
				GG8	Cadmium	LT	6.40 0	ug/l	GFF01
				UM21	Methylene Chloride	LT	1.00 0	ug/l	GF000
				UM21	Bromomethane	LT	1.40 1	ug/l	GF000
				UM21	Chloromethane	LT	1.20 0	ug/l	GF000
				UM21	Bromoform	LT	1.10 1	ug/1	GF000
				UM21	Chloroform	LT	1.00 0	ug/l	GF000
				HH8A	Chloride		5.59 3	ug/l	GCK02
				KK8	Hexachlorocyclopentadiene		7.10 -1	ug/l	GFG00
				UM25	Hexachlorocyclopentadiene	LT	5.40 1		GFC00
				UM21	Chlorobenzene	LT	1.00 0		GF000
				KK8	Chlordane	LT	9.50 -2	ug/l	GFG00
				UM25	Chlordane	LT	3.70 1		GFC00
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0		GFH00
				UM25	p-Chlorophenylmethyl Sulfide				GFC00
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GFHOO

01/10/90

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
								***************************************	***************************************
89116	SW11001	0.0	STSW	UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GFC002
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GFH005
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GFC002
				GG8	Chromium (filtered)	LT	2.40 1	ug/1	GFF01
				GG8	Chromium	LT	2.40 1	ug/l	GFF01
				GG8	Copper (filtered)	· LT	2.60 1	ug/l	GFF01
				GG8	Copper	LT	2.60 1	ug/l	GFF01:
				TF20	Cyanide	LT	5.00 0	ug/1	GENOO
				AY8	Dibromochloropropane	LT	1.95 -1	ug/1	GFNOO
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GFC00
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GF000
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GFOOO
				P8	Dicyclopentadiene	LT	5.00 0	ug/1	GFDOO
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GFC00
				UH11	Vapona	LT	3.64 -1	ug/l	GFK00
				UM25	Vapona	LT	6.50 0	ug/l	GFC00
				ATB	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/1	GFP00
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GFC00
		100		AAA8	Dithiane	LT	1.34 0	-	GFH00
				UM25	Dithiane	LT	3.30 0	ug/l	GFC00
				кка	Dieldrin	LT	5.00 -2	ug/l	GFG00
				UM25	Dieldrin	LT	2.60 1	ug/1	· GFC00
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GFHOO
				UM21	Acetone	LT	6.00 0	ug/l	GF000
				ATS	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GFP00
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GFC00
				KK8	Endrin		5.00 -2	ug/l	GFG00
				UM25	Endrin	LT	1.80 1	ug/l	GFC00
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GF000
				AV6	Ethylbenzene	LT	1.37 0	ug/l	GCS02
				HHBA	Fluoride	LT	4.62 2	ug/l	GCK02
				CC8	Mercury (filtered)	LT		ug/1	GCN05
				CC8	Mercury	LT	1.00 -1	ug/l	GCN05
				KK6	Isodrin	LT	5.10 -2	ug/1	GFG00

Comprehensive Monitoring Program

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults		Units	Sample Number
89116	SW11001	0.0	STSW	UM25	Isodrin	LT	-7-80	0	ug/l	GFC002
03110	0,1,2,002			GG8	Potassium (filtered)		3.24	3	ug/l	GEF011
				GG8	Potassium		3.27	-3	ug/l	GFF012
				UM21	Toluene	LT	1.00	0	ug/l	GF0002
				AV8	Toluene	L.T	1.47	0	ug/l	GCS025
				UM21	Methylethyl Ketone	LT	1.00	1	ug/l	GF0002
				GG8	Magnesium (filtered)		2.60	3	ug/1	GFF011
				GG8	Magnesium		2.61	3	ug/l	GFF012
				P8 ·	Methylisobutyl Ketone	LT	4.90	0	ug/1	GFD008
				UM21	Methylisobutyl Ketone	LT	1.40	0	ug/l	GF0002
				UH11	Malathion	LT	3.73	-1	ug/l	GFK008
				UM25	Malathion	LT	2.10	1	ug/1	GFC002
				GG8	Sodium (filtered)		9.95	3	ug/l	GFF011
				GG8	Sodium		9.64	3	ug/1	GFF012
				LL8	Nitrite, Nitrate - Non specific		2.50	2	ug/l	GCL024
				AAA8	1,4-Oxathiane	- LT	2.38	0	ug/l	GFH005
				UM25	1,4-Oxathiane	LT	2.70	1	ug/l	GFC002
				GG8 .	Lead (filtered)	LT	7.40	1	ug/l	GFF011
				GG8		LT	7.40	1	ug/l	GFF012
				KK8	Dichlorodiphenylethane	LT	5.40	-2	ug/l	GFG008
				UM25	Dichlorodiphenylethane	LT	1:40	1	ug/l	GFC002
				KK8:	Dichlorodiphenyltrichloro- ethane	LT	4.90	-2	ug/l	GFG008
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1	ug/l	GFC002
				UH11	Parathion	LT	6.47	-1	ug/l	GFK008
				UM25	Parathion	LT	3.70	1	ug/l	GFC002
				HH8A	Sulfate		2.20	4	ug/l	GCK025
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87	-1	ug/l	GFK008
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90	1	ug/l	GFC002
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50	O	ug/l	GF0002
				UM21	Tetrachloroethene		1.38		ug/l	GF0002

R. L. Stollar and Associates Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number	
~~~	C114 4 D D 4	A A	ereu	UM21	Trichloroethene	LT	1.00 0	ug/l	GF0002	
89116	SW11001	0.0	STSW	UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GF0002	
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/1	GCS025	
				GG8	Zinc (filtered)	las I	3.02 1	ug/1	GFF011	
				GG6	Zinc	LT	2.20 1	ug/l	GFF012	
69116	SW11001B	0.1	SURF	NN9	1,1,1-Trichloroethane		3.36 -1	ug/l	- GFS <b>0</b> 05	
05110	O**11001D	U . X	<b>D</b> (0) (1)	NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/1	GFS005	
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/1	GFS005	
_				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GFS005	
				ниэ	1,2-Dichloroethene	LT	2.60 -1	ug/l	GFS005	
				ИИ9	1,2-Dichloroethane	LT	6.50 -2	ug/l	GFS005	
				AA9	m-Xylene	LT	2.60 -1	ug/l	GFT005	
				B9	Arsenic	LT	2.50 0	ug/l	GDM019	
				LH15	Atrazine		4.58 0	ug/l	GFR005	
				<b>Z</b> Z9	Bicycloheptadiene	LT	5.08 0	ug/l	IKY011	
				HH9 ·	Benzothiazole	LT	2.04 0	ug/1	GFA007	
				AA9	Benzene	LT	8.50 -2	ug/l	GFT005	
į				NN9	Carbon Tetrachloride	LT.	1.20 -1	ug/1	GFS005	
	•			p9	Cadmium	LT	7.40 -1	ug/l	GDK019	
-				ин9	Methylene Chloride	LT	3.70 0	ug/l	GFS005	
				нн9	Chloroform	LT	6.80 -2	ug/l	GFS005	
				NN3	Chlorobenzene	LT	2.00 -1	ug/l	GFS005	
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GFA007	
				HH9	p-Chlorophenylmethyl Sulfoxide		3.50 1	ug/l	GFA007	
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GFA007	
				P9	Chromium		9.99 0	ug/l	GDK019	
-				P9	Copper		1.45 1	ug/l	GDK019	
_				\$9	Dibromochloropropane		2.29 -2	ug/l	GFB007	
				ZZ9	Dicyclopentadiene		5.12 0	ug/l	IKY011	
				LH15	Vapona	LT	8.00 -2	ug/l	GFR005	
_				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/1	KSU013	
				HH9	Dithiane	LT	1.45 0	ug/l	GFA007	
				НН9	Dimethyldisulfide	LT	3.12 0	ug/l	GFA007	

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number	
***************************************	White distribution commission approximation .	\				***************************************				
89116	SW110018	0.1	STSW	TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU013	
				AA9	Ethylbenzene	LT	1.60 -1	ug/1	GFT005	
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS013	
				Y9	Mercury	LT	5.00 -2	ug/1	GDL021	
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS013	
				669	Toluene		3.75 -1	ug/l	GFT005	
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY011	
				LH15	Malathion	LT	1.26 -1	ug/1	GFR005	
				нн9	1,4-Oxathiane	LT	1.74 0	ug/l	GFA007	
				P9	Lead		2.74 1	ug/l	GDK019	
				LH15	Parathion	LT	1.59 -1	ug/l	GFR005	
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GFR005	
,				ни9	Tetrachloroethene	LT	2.70 -1	ug/1	GFS005	
				еии	Trichloroethene	LT	1.40 -1	ug/1	GFS005	
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GFT005	
				P9	Zinc		1.02 2	ug/l	GDK019	
89116	SW11001BD	0.1	SURF	ни9	1,1,1-Trichloroethane	LT	8.60 -2	ug/l	GFS006	
				NH9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GFS006	
<b>1</b>				<b>PN9</b>	1,1-Dichloroethene	LT	2.40 -1	ug/l	GFS006	
			1	<b>PNN</b>	1,1-Dichloroethane	LT	7.40 -2	ug/l	GFS006	
			++ + + 1/2	. NN9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GFS006	
				еии	1,2-Dichloroethane	LT	6.50 -2	ug/l	GFS006	
				AA9	m-Xylene	LT	2.60 -1	ug/1	GFT006	
				B9	Arsenic	LT	2.50 0	ug/1	GDM020	
				LH15	Atrazine		2.40 1	ug/1	GFR006	
				<b>ZZ9</b>	Bicycloheptadiene	LT	5.08 0	ug/l	IKY012	
				ННЭ	Benzothiazole	LT	2.04 0	ug/l	GFA008	
				AA9	Benzene	LT	8.50 -2	ug/l	GFT006	
				NN9	Carbon Tetrachloride	LT	1.20 -1	ug/1	GFS006	
				P9	Cadmium	LT	7.40 -1	ug/l	GDK020	
				NN9	Methylene Chloride	LT	3.70 0	ug/l	GFS006	
_										

Comprehensive Monitoring Program R. L. Stollar and Associates

		Depth (cm)	Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
	#1000000000000000000000000000000000000		***************************************						***************************************
89116	SW11001BD	0.1	SURF	NN9	Chloroform	LT	6.80 -2	ug/1 .	GFS006
				NN9 -	Chlorobenzene	LT	2.00 -1	ug/1	GFS006
•				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GFA008
				HH9	p-Chlorophenylmethyl Sulfoxide		3.40 1	ug/1	GFA008
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/1	GFA008
				P9	Chromium	LT	6.50 0	ug/ĭ	GDK020
1				P9	Copper		7.97 0	ug/l	GDK020
				S9	Dibromochloropropane		6.90 -3	ug/1	GF8008
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/1	IKY012
				LH15	Vapona	LT	8.00 -2	ug/l	GFR006
J		•		TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KSU014
				HH9	Dithiane	LT	1.45 0	ug/1	GFA008
				HH5	Dimethyldisulfide	LT	3.12 0	ug/1	GFA008
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU014
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GFT006
				6669	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS014
				Y9	Mercury	LT	5.00 -2	ug/1	GDL022
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/ľ	KRS014
				AA9	Toluene	LT	1.90 -1	ug/l	GFT006
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY012
				LH15	Malathion	LT	1.26 -1	ug/l	GFR006
				HH9	1,4-Oxathiane	LT	1.74 0	ug/1	GFA008
				P9	Lead		1.76 1	ug/l	GDK020
				LH15	Farathion	LT	1.59 -1	ug/1	GFR006
	•			LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GFR006
				ин9	Tetrachloroethene	LT	2.70 -1	ug/l	GFS006
:				NN9	Trichloroethene	LT	1.40 -1	ug/l	GFS006
				AA9	Ortho- & Para-Xylene		3.90 -1	ug/l	GFT006
				P9	Zinc	3~ I	6.02 1	ug/l	GDK020
89116	SW11001D	0.0	STSW	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GF0003
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GF0003
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GF0003

Comprehensive Monitoring Program

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample _ Type Method	Analytical Parameters	. Re	sults	Units	Sample Number
89116	SW11001D	0.0	STSW UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GF0003
03210			UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GF0003
			UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GF0003
			UM21	1,2-Dichloropropane	LT	1.00 0	ug/1	GF0003
			UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	GF0003
			UM21	1,3-Dichloropropane	LT	4.60 0	ug/l	GF0003
			UM21	m-Xylene	LT	1.00 0	ug/l	GF0000
			AV8	m-Xylene	LT	1.32 0	.ug/l	GCS026
			UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/1	GF0000
			UM21	Acrylonitrile	LT	8.40 0	ug/l	GF000
			KK8	Aldrin	LT	5.00 -2	ug/l	GFG009
			UM25	Aldrin	LT	1.30 1	ug/l	GFC00
			00	ALKALINITY		3.27 1	ug/1	GE001
			AX8	Arsenic	LT	2.35 0	ug/l	GF102
			AX8	Arsenic	LT	2.35 0	ug/1	GFX00
			UH11	Atrazine	LT	4.03 0		GFK00
			UM25	Atrazine	LT	5.90 0		GFC00
			P6	Bicycloheptadiene	LT	5.90 0		GFD009
	*** "		UM21	Bromodichloromethane		1.00 0		GF0000
			AAA8	Benrothiarole	LT	5.00 0	ug/l	GFH006
			UM21	Vinyl Chloride		1.20 1		GF0003
	1.0		UM21	Chloroethane		8.00 0		GF0000
			UM21	Benzene	LT	1.00 0		GF0003
			AV6	Benzene	LT	1.05 0		GCS026
			GG8	Calcium		1.53 4	ug/l	GFF013
			GG8	Calcium		1.57 4		GFF014
			UM21	Trichlorofluoromethane		1.00 0		GF000
			UM21	Carbon Tetrachloride		1.00 0		GF000
			GG8	Cadmium	LT	8.40 0	·	GFF01
			GG8	Cadmium	LT	8.40 0	ug/l	GFF014
			UM21	Methylene Chloride		1.00 0		GF0003
			UM21	Bromomethane		1.40 1		GF0000
			UM21	Chloromethane		1.20 0		GF000
			UM21	Bromoform	LT	1.10 1	ug/1	GF000

01/10/90

Summary of Analytical Results

	Chank 1 am	01	01-						C1-
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	R	esults	Units	Sample Number
69116	SW11001D	0.0	STSW	UM21	Chloroform	17	1.00 0	ug/l	GF0003
	W1122002D		01011	HH8A	Chloride		5.78 3	ug/l	GCK026
				KK8	Hexachlorocyclopentadiene		1.80 0	ug/l	GFG009
				UM25	Hexachlorocyclopentadiene	LT		ug/l	GFC003
				UM21	Chlorobenzene	LT		ug/1	GF0003
ı				KK8	Chlordane	LT	9.50 -2	ug/l	GFG009
				UM25	Chlordane	LT	3.70 1	ug/1	GFC003
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GFH006
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GFC003
				AAA6	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GFH006
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GFC003
				AAA8	p-Chlorophenylmethyl Sulfone	LT		ug/l	GFH006
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GFC003
				GG8	Chromium	LT	2.40 1	ug/l	GFF013
				GG8	Chromium	LT	2.40 1	ug/l	GFF014
				GG8	Copper	LT	2.60 1	ug/l	GFF013
				GG8	Copper	LT	2.60 1	ug/1	GFF014
ł				TF20	Cyanide	LT	5.00 0	ug/1	GEN010
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GFN006
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GFC003
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GF0003
				UM21	1,4-Dichlorobenzene	LT	2:00 0	ug/l	GF0003
				P6	Dicyclopentadiene	LT	5.00 0	ug/l	GFD009
				UM25	Dicyclopentadiene	LT	5.50 0	ug/1	GFC003
į				UH11	Vapona	LT	3.64 -1	ug/l	GFK009
				UM25	Vapona	LT	6.50 O	ug/l	GFC003
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GFP006
			•	UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GFC003
				<b>AAA</b> 8	Dithiane	LT	1.34 0	ug/1	GFH006
				UM25	Dithiane	LT	3.30 0	ug/l	GFC003
				KK8	Dieldrin		5.00 -2	ug/l	GFG009
				UM25	Dieldrin		2.60 1	ug/l	GFC003
				AAA8	Dimethyldisulfide		5.50 -1	ug/l	GFH006
,				UM21	Acetone	LT	8.00 0	ug/1	GF0003

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method	Analytical Parameters	Re	esults	Units	Sample Number	
20115	C) 16 4 DO 6 D	Δ.Δ.	STSW	AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GFP006	
89116	SW11001D	0.0	⇒ 1 ⇒W		Dimethylmethyl Phosphate	LT	1.30 2		GFC003	
			•	KK8	Endrin	LT	5.00 -2		GFG009	
				UM25	Endrin	LT	1.60 1		GFC003	
				UM21	Ethylbenzene	LT	1.00 0		GF0003	
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS026	
				HH8A	Fluoride	LT	4.82 2	ug/l	GCK026	
				CC8	Mercury	LT	1.00 -1	ug/l	GCN053	
				CC8	Mercury	LT	1.00 -1	ug/l	GGW005	
•				KK8	Isodrin	LT	5.10 -2	ug/l	GFG009	
				UM25	Isodrin	LT	7.80 0		GFC003	
				GG8	Potassium		2.96 3		GFF013	
				GGS	Potassium		3.30 3	ug/l	GFF014	
				UM21	Toluene	LT	1.00 0		GF0003	
				AV8	Toluene	LT	1.47 0	ug/l	GCS026	
			÷	UM21	Methylethyl Ketone	LT			GF0003	
				GG8	Magnesium		2.65 3		GFF013	
				<b>G</b> G8	Magnesium		2.84 3		GFF014	
				P8	Methylisobutyl Ketone	LT	4.90 0		GFD009	
•				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GF0003	
				UH11	Malathion	LT	3.73 -1	ug/l	GFK009	
				UM25	Malathion	LT	2.10 1	ug/l	GFC003	
				GG8	Sodium		9.13 3	ug/l	GFF013	
				GG8	Sodium		9.89 3	ug/l	GFF014	
				LL6	Nitrite, Nitrate - Non specific		2.50 2	ug/l	GCL025	
				AAAB	1,4-Oxathiane	LT	2.38 0		GFH006	
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GFC003	
				<b>GG</b> ⊜	Lead	LT	7.40 1	ug/l	GFF013	
				GG8	Lead		7.40 1		GFF014	
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GFG009	
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GFC003	
				KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/1	GFG009	
					ethane					
<b>J</b>				UM25	Oichlorodiphenyltrichloro-	LT	1.80 1	ug/1	GFC003	
					ethane					

Comprehensive Monitoring Program

01/10/90

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Re	sults	Units .	Sample Number
	***************************************			,	-				
89116	SW11001D	0.0	STSW	UH11	Parathion	LT	6.47 -1	ug/l	GFK009
03110	J172 2 0 0 2 2	3.13		UM25	Parathion	LT	3.70 1	ug/1	GFC003
				HH8A	Sulfate		2.10 4	ug/1	GCK026
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/1	GFK009
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GFC003
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GF0003
				UM21	Tetrachloroethene		1.29 0	ug/1	GF0003
	-			UM21	Trichloroethene	LT	1.00 0	ug/1	GF0003
				Um21	Ortho- & Para-Xylene	LT	2.00 0	ug/1	GF0003
				AVA	Ortho- & Para-Xylene	LT	1.36 0	.ug/l -	GC\$026
				668	Zinc	LT	2.20 1	ug/l	GFF013
				GG8	Zinc	LT	2.20 1	ug/l	GFF014
89130	SW11001ST	0.2	STSW	TT8	1,1,1-Trichloroethane	LT	1.09 0	ug/l	GBY008
				UU3	1,1,1-Trichloroethane	LT	2.40 0	ug/l	GSH007
				TT8	1,1,2-Trichloroethane	LT	1.63 0	ug/l	GBY008
		•		UU8	1,1,2-Trichloroethane	LT	1.60 0	ug/l	GSH007
				TTE	1,1-Dichloroethene	LT	1.85 0	ug/l	GBY008
				TT8	1,1-Dichloroethane	LT	1.93 0	ug/l	G6Y008
				UU8	1,1-Dichloroethane	LT	1.40 0	ug/l	GSH007
				TT8	1,2-Dichloroethene	LT	1.75 0	ug/l	GBY008
		*		<b>UU</b> 8	1,2-Dichloroethene	LT	3.20 0	ug/l	GSH007
ì			-	TT6	1,2-Dichloroethane	LT	2.07 0	ug/l	G6Y008
•				UU8	1,2-Dichloroethane	LT	7.20 -i	ug/l	GSH007
_				UM18	1,3-Dichlorobenzene	LT	1.70 0	ug/1	PHF005
				\$\$8	m-Xylene	LT	1.04 0	ug/l	GAX015
				UUB	m-Xylene	LT	2.90 0	ug/1	GSH007
_				MM8A	Aldrin	LT	8.30 -2	ug/l	GPL014
				UM18	Aldrin	ND	5.00 0	ug/l	PHF005
				<b>VV</b> 8	Arsenic	LT	2.50 0	ug/l	GH0021
				<b>UU</b> 8	Bicycloheptadiene	LT	1.80 0	ug/1	GSH007
				PP6A	Benzothiazole	LT	1.14 0	ug/1	GIQ011
				SS8	Benzene	LT	1.92 0	ug/1	GAX015

Comprehensive Monitoring Program

Summary of Analytical Results

ampling Oate	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Ře	sults	Units	Sample Number
	***************************************	***************************************		***************************************					
89130	SW11001ST	0.2	STRM	UU6	Benz ene	LT	2.70	0 ug/l	GSH007
	-			TT8	Carbon Tetrachloride	LT	1.69	0 ug/l	GBY008
				UU8	Carbon Tetrachloride	LT	4.90	0 ug/l	GSH007
				R9D	Cadmium	LT	5.00	0 ug/l	QSD008
			-	TT8	Methylene Chloride	LT	2.48	0 ug/l	GBY008
				<b>UU</b> 6	Methylene Chloride	ND	5.00	0 ug/l	GSH007
				TT8	Chloroform	LT	1.68	0 ug/l	G6Y008
				UU6	Chloroform	LT	1.70	0 ug/l	GSH007
				NN8	Chloride		8.63	3 ug/l	GJK008
				MMSA	Hexachlorocyclopentadiene	LT	8.30 -	2 ug/l	GPL014
				UM18	- Hexachlorocyclopentadiene	LT	8.60	0 ug/l	PHF00
				TT8	Chlorobenzene	LT	1.36	0 ug/1	.GBY00
				UU6	Chlorobenzene	LT	1.60	0 ug/l	GSH00
				MM8A	Chlordane	LT	1.52 -	1 ug/l	GPL01
				PP6A	p-Chlorophenylmethyl Sulfide	LT	1.08	0 ug/l	GIQ01
				PP8A	p-Chlorophenylmethyl Sulfoxide	LT	1.98	0 ug/l	GIQ01
				PP6A	p-Chlorophenylmethyl Sulfone	LT	2.24	0 ug/l	GIQ01
				R90	Chromium	LT	2.20	1 ug/l	QSD00
				R90	Copper	LILT	1.00	1 ug/l	QSD00
				TF18	Cyanide	LT	2.50	0 ug/l	LCN00
				Qe	Dibromochloropropane	LT	1.30 ~	1 ug/l	GKU02
				UU8	Dibromochloropropane	LT	5.60	0   ug/1	GSH00
				UU6	Dicyclopentadiene	LT	3.70	0 ug/l	GSH00
				QQ8	Diisopropylmethyl Phosphonate	LT	1.01	1 ug/l	GGS00
				PP6A	Dithiane	LT	3.34	0 ug/l	GIQ01
				MM6A	Dieldrin	LT	5.39 -	2 ug/l	GPL01
				UM18	Dieldrin	ND	5.00	0 ug/l	PHF00
				PP8A	Dimethyldisulfide	LT	1.16	0 ug/l	GIQ01
				uua	Dimethyldisulfide	LT	3.70	0 ug/l	GSH00
				<b>QQ</b> 8	Dimethylmethyl Phosphate	LT	1.63	1 ug/l	GGS00
			,	MMSA	Endrin	LT	6.00 -	2 ug/l	GPL01
				UM18	Endrin	ND	6.00	0 ug/l	PHFOO
				588	Ethylbenzene	LT	6.20 -	1 ug/l	GAX01
				<b>UU</b> 8	Ethylbenzene	LT	2.40	0 ug/l	GSH00

Comprehensive Monitoring Program

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults		Units	Sample Number
							··········			
89130	SW11001ST	0.2	STSW	NNS	Fluoride		1.22	3	ug/1	GJK008
				WW8	Mercury	LT	5.00	-1	ug/1	GWA011
				MM8A	ľsodrin	LT	5.60	-2	ug/1	GPL014
				XX8	Potassium		2.98	3	ug/l	DYW008
				SS8	Toluene	LT	2.10	0	ug/l	GAX015
				UU6	Toluene	LT	3.50	0	ug/l	GSH007
				UU8	Methylisobutyl Ketone	LT	1.20	0	ug/1	- GSH007
				TF22	Nitrite, Nitrate - Non specific		1.00	3	ug/l	PCD018
				UM18	N-Nitrosodimethylamine	ND	2.00	0 .	ug/l	PHF005
				UM18	N-Nitrosodi-N-Propylamine	LT	4.40	0	ug/l	PHF005
				PP6A	1,4-0xathiane	LT	1.35	0	ug/1	GIQ011
				R9D	Lead	LT	5.20	1	ug/l	QSD008
				MMSA	Dichlorodiphenylethane	LT	4.60	-2	ug/l	GPL014
				UM18	Dichlorodiphenylethane	ND	5.00	0	ug/l	PHF005
				MMBA	Dichlorodiphenyltrichloro- ethane	LT	5,90	-2	ug/l	GPL014
				UM18	Dichlorodiphenyltrichloro- ethane	ИD	9.00	0	ug/l	PHF005
				UNO7	Parathion		1.04	0	ug/l	PGB006
				NN8	Sulfate		1.11	4	ug/l	GJK008
				TT8	Tetrachloroethene	LT	2.76	0	ug/1	GBY008
	т.			UU8	Tetrachloroethene	LT	2.90	0	ug/l	GSH007
				TT8	Trichloroethene	LT	1.31	0	ug/l	GBY008
				UU8	Trichloroethene	LT	2.00	0	ug/l	GSH007
				SS8	Ortho- & Para-Xylene		1.46	0	ug/l	GAX015
				UU8	Ortho- & Para-Xylene	LT	2.40	0	ug/l	GSH007
				R9D	Zinc		3.81	1	ug/l	QSD008
9116	SW11002	0.1	STRM	UM21	1,1,1-Trichloroethane		1.00		ug/l	GF0004
				UM21	1,1,2-Trichloroethane	LT	1.00		ug/l	GF0004
				UM21	1,1-Dichloroethene	LT	1.00		ug/l	GF0004
				UM21	1,1-Dichloroethane	LT	1.00	0	ug/l	GF0004
				UM21	1,2-Dichloroethene	LT	5.00	0	ug/1	GF0004
				UM21	1,2-Dichloroethane	LT	1.00	0	ug/l	GF0004

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Tmethod	Analytical Parameters	- Re	sults	Units	Sample Number	
89116	SW11002	0.1	STRM	UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	GF0004	
				UM21	1,3-Dichlorobenzene	 LT	1.00 0	ug/l	GF0004	
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/1	GF0004	
				UM21	m-Xylene	LT	1.00 0	ug/l	GF0004	
		÷		AV8	m-Xylene	LT	1.32 0	ug/l	GCS027	
				UM21	· 2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GF0004	
				UM21	Acrylonitrile	LT	8.40 0	ug/l	GF0004	
				KK8	Aldrin	LT	5.00 -2	ug/1	GFG010	
				UM25	Aldrin	LT	1.30 1	ug/1	GFC004	
				00	ALKALINITY		5.12 1	ug/l	GE0011	
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GFX006	
				AX8	Arsenic	LT	2.35 0	ug/1	GFX007	
				UH11	Atrazine	LT	4.03 0	ug/l	GFK010	
				UM25	Atrazine	LT	5.90 0	ug/l	GFC004	
				P8 " "	Bicycloheptadiene	LT	5.90 0	ug/l	GFD010	
				UM21	Bromodichloromethane	LT	1.00 0	ug/l	GF0004	
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GFH007	
				UM21	Vinyl Chloride	LT	1.20 1	ug/l	GF0004	
				UM21	Chloroethane	LT	8.00 0	ug/1	GF0004	
				UM21	Benzene	LT	1.00 0	ug/l	GF0004	
				AVS	Benzene	LT	1.05 0	ug/l	GC\$027	
				GG8	Calcium (filtered)		2.37 4	ug/l	GFF015	
				GG6	Calcium		2.33 4	ug/l	GFF016	
				UM21	Trichlorofluoromethane	LT	1.00 0	ug/1	GF0004	
			,	UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	GF0004	
					Cadmium (filtered)	LT	6.40 0	ug/l	GFF015	
1				GC8	Cadmium	LT	6.40 0	ug/l	GFF016	
				UM21	Methylene Chloride		1.00 0	ug/l	GF0004	
				UM21	Bromomethane	LT	1.40 1	ug/l	GF0004	
				UM21	Chloromethane	LT	1.20 0	ug/l	GF0004	
				UM21	Bromoform		1.10 1	ug/l	GF0004	
				UM21	Chloroform	LT	1.00 0	ug/l	GF0004	
				HH8A	Chloride		1.70 4	ug/l	GCK027	
				KK8	Hexachlorocyclopentadiene		2.59 -1	ug/1	GFG010	

01/10/90

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Ře	esults	U	nits	Sample Number
		grampa del male para de despres o que e asagemas como de mático de deservi-				***************************************				
89116	SW11002	0.1	STRM	UM25	Hexachlorocyclopentadiene .	LT.	5.40	1 1	ug/1	GFC004
				UM21	Chlorobenzene	LT	1.00	0	ug/l	GF0004
				KK8	Chlordane	LT	9.50	-2 1	ug/1	GFG010
				UM25	Chlordane	LT		1	ug/1	GFC004
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69	0 1	ug/l	GFH007
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1 (	ug/l	GFC004
				AAAB	p-Chlorophenylmethyl Sulfoxide	LT	1.15	1 (	ug/1	GFH007
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1 (	19/1	GFC004
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46	0 .	ug/1	GFH007
•				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0 1	19/1	GFC004
				GG8	Chromium (filtered)	LT	2.40	1	ug/l	GFF015
				GG8	Chromium	LT	2.40	1 1	19/1	GFF016
				GG8	Copper (filtered)	LT	2.60	1 1	ug/1	GFF015
				GG8	Copper	LT		1 (	1/gu	GFF016
				TF20	Cyanide	LT	5.00	0 1	<b>19/1</b>	GEN011
				AY8	Dibromochloropropane	LT	1.95	-1 (	l/gr	GFN007
•				UM25	Dibromochloropropane	LT	1.20	1 (	1/2	GFC004
				UM21	Dibromochloromethane	LT	1.00	0 (	g/1	GF0004
			Te	- UM21	1,4-Dichlorobenzene	LT			19/1	GF0004
				P6	Dicyclopentadiene	LT	5.00	0 1	ug/l	GFD010
				UM25	Dicyclopentadiene	LT	.5.50		ug/l	GFC004
	•			UH11	Vapona	LT	3.84		19/1	GFK010
				UM25	Vapona	LT	8.50		ug/1	GFC004
			* **		Diisopropylmethyl Phosphonate	LT	3.92		ug/l	GFP007
				UM25	Diisopropylmethyl Phosphonate	LT	2.10	1 (	ug/l	GFC004
			٠.	AAA8	Dithiane	LT	1.34		ug/l	GFH007
				UM25	Dithiane	LT	3.30		13/1	GFC004
				KK6	Dieldrin		5.00		ug/l	GFG010
				UM25	Dieldrin		2.60		ug/l	GFC004
1				AAA8	Dimethyldisulfide	LT	5.50	-1 (	ug/l	GFH007
				UM21	Acetone	LT	8.00	0 1	19/1	GF0004
				AT6	Dimethylmethyl Phosphate		4.30	-1, 1	ug/l	GFP007
				UM25	Dimethylmethyl Phosphate	LT	1.30	2 (	19/1	GFC004
				KK8	Endrin	1.70	5.00	<u> </u>	<b>1/g</b>	GFG010

R. L. Stollar and Associates

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	e <b>s</b> ults	Units	Sample Number
89116	SW11002	0.1	STRM	UM25	Endrin	LT	1.80 1	ug/l	GFC004
05110	34711002		0	UM21	Ethylbenzene	LT	1.00 0	ug/1	GF0004
				AV8	Ethylpenzene	LT		ug/l	GCS027
				HH8A	Fluoride		7.40 2	ug/l	GCK027
				CC8	Mercury (filtered)	LT	1.00 -1	ug/1	GGW007
				CC8	Mercury	LT	1.00 -1	ug/l	GGW008
				KK6	Isodrin	LT	5.10 -2	ug/l	GFG010
				UM25	Isodrin	LT	7.80 0	ug/1	GFC004
				GG8	Potassium (filtered)		4.52 3	ug/1	GFF015
				GG8	Potassium		4.70 3	ug/l	GFF016
				UM21	Toluene	LT	1.00 0	ug/l	GF0004
				AV8	Toluene	LT	1.47 0	ug/1	GCS027
				UM21	Methylethyl Ketone	LT	1.00 1	ug/1	GF0004
				GG8	Magnesium (filtered)		3.73 3	ug/l	GFF015
				GG8	Magnesium		3.74 3	ug/l	GFF016
				P8	Methylisabutyl Ketone	LT	4.90 0	ug/l	GFD010
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GF0004
				UH11	Malathion	LT	3.73 -1	ug/1	GFK010
•			***	UM25	Malathion	LT	2.10 1	ug/l	GFC004
Δ.				GG8	Sodium (filtered)		2.04 4	ug/l	GFF015
				<b>622</b>	Sodium		2.09 4	ug/l	GFF016
				LL8	Nitrite, Nitrate - Non specific		. 5,19 1	ug/l	GCL026
				AAA6	1,4-Oxathiane		2.38 0	ug/l	GFH007
				. UM25 GG6	1,4-Oxathiane Lead (filtered)		2.70 1 7.40 1	ug/l ug/l	GFC004 GFF015
				GG8	Lead	LT	7.40 1	ug/l	GFF016
				KK8	Dichlorodiphenylethane		5.40 -2	ug/l	GFG010
				UM25	Dichlorodiphenylethane		1.40 1	ug/l	GFC004
				KK8	Dichlorodiphenyltrichloro- ethane		4.90 -2	ug/l	GFG010
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GFC004
				UH11	Parathion	LT	6.47 -1	ug/l	GFK010
				UM25	Parathion	LT	3.70 1	ug/l	GFC004

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89116	SW11002	0.1	STRM	HH8A	Sulfate		3.10 4	ug/l	GCK027
05110	3474 4 0 0 m			UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GFK010
1			4 1	UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GFC004
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/1	GF0004
7				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GF0004
			1.794	UM21	Trichloroethene	LT	1.00 0	ug/1	GF0004
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GF0004
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS027
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GFF015
				GG8	Zinc	LT	2.20 1	ug/l	GFF016
69116	SW11002B	0.1	STRM	NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GFS007
02110	W/12 2 W W W.W			NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GFS007
_				ни9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GFS007
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GFS007
				ниэ	1,2-Dichloroethene	LT	2.60 -1	ug/l	GFS007
		1.24		NN9	1,2-Dichloroethane	LT	8.50 -2	ug/l	GFS007
				AA9	m-Xylene	LT	2.60 -1	ug/l	-GFT007
				<b>B</b> 9	Arsenic	LT	2.50 0	ug/l	GDM021
				LH15 ZZ9	Atrazine Bicycloheptadiene	LT	3.72 0 5.08 0	ug/l ug/l	GFR007 IKY013
				нн9	Benzothiazole	LT	2.04 0	ug/l	GFA009
				AA9	Benzene	LT	8.50 -2	ug/l	GFT007
•				NN9	Carbon Tetrachloride	LT	1.20 -1	ug/l	GFS007
				P9	Cadmium	LT	7.40 -1	ug/l	GDK021
				РИЭ	Methylene Chloride	LT	3.70 0	ug/l	GFS007
				еии	Chloroform	LT			GFS007
				NN9	Chlorobenzene	LT		ug/1	GFS007
				HH9	p-Chlorophenylmethyl Sulfide	LT			GFA009
_				HH9	p-Chlorophenylmethyl Sulfoxide		5.94 0		GFA009
				нн9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GFA009
ı				P9	Chromium	LT	6.50 0	ug/l	GDK021

01/10/90

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
- 89116	SW11002B	0.1	STRM	P9	Copper	LT	4.70 0	ug/i	GDK021
- 03110	SWIIOUZB	V-1	21101	S9	Dibromochloropropane	LT	5.00 -3	ug/l	GFB009
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKY013
				LH15	Vapona	LT	8.00 -2	ug/l	GFR007
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KSU015
1				ннэ	Dithiane	LT	1.45 0	ug/l	GFA009
				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GFA009
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU015
İ				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GFT007
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS015
				<b>Y</b> 9	Mercury	LT	5.00 -2	ug/l	GDL023
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS015
				AA9	Toluene	LT	1.90 -1	ug/l	GFT007
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY013
1				LH15	Malathion	LT	1.26 -1	ug/l	GFR007
				нн9	1,4-Oxathiane	LT	1.74 0	ug/l	GFA009
				P9	Lead		1.81 1	ug/l	GDK021
			e ages	LH15	Parathion	LT	1.59 -1	ug/1 🗆	GFR007
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GFR007
Ì				ии9	Tetrachloroethene	LT	2.70 -1	ug/l	GF\$007
j			and a	ннэ	Trichloroethene	LT	1.40 -1	ug/l	GFS007
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GFT007
				P9	Zinc		6.47 1	ug/l	GDK021
89116	SW11002FB	0	QCFB	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GF0005
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GF0005
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GF0005
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/1	GF0005
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GF0005
j				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GF0005
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	GF0005
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	GF0005
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	GF0005

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Fee	esults	Units	Sample Number
89116	SW11002FB	0	QCFB	UM21	m-Xylene	LT	1.00 0	ug/l	GF0005
69110	3W11002F6	O	QUI D	AV8	m-Xylene	LT	1.32 0	ug/l	GCS028
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GF0005
				UM21	Acrylonitrile	LT	8.40 0	ug/l	GF0005
				KK8	Aldrin	LT	5.00 -2	ug/l	GFG011
,				UM25	Aldrin	LT	1.30 1	ug/l	GFC005
•				00	ALKALINITY	LT	5.12 1	ug/l	GE0012
				AX8	Arsenic (filtered)	LT	2.35 0	ug/1	GFX008
•			**	UH11	Atrazine	LT	4.03 0	ug/1	GFK011
1				UM25	Atrazine	LT	5.90 0	ug/l	GFC005
	-			P6	Bicycloheptadiene	LT	5.90 0	ug/l	GFD011
				UM21	Bromodichloromethane	LT	1.00 0	ug/l	GF0005
				AAAB	Benzothiazole	LT	5.00 0	ug/l	GFH008
				UM21	Vinyl Chloride	LT	1.20 1	ug/l	GF0005
				UM21	Chloroethane	LT	8.00 0	ug/l	GF0005
				UM21	Benzene	LT	1.00 0	ug/l	GF0005
				AV8	Benzene	LT	1.05 0	ug/l	GCS028
				GG8	Calcium (filtered)	LT	5.00 2	ug/l	GFF017
."			<del>th</del> , 1 (1)	UM21 UM21	Trichlorofluoromethane  Carbon Tetrachloride	LT LT	1.00 0	ug/l ug/l	GF0005 GF0005
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GFF017
				UM21	Methylene Chloride		1.00 0	ug/l	GF0005
				UM21	Bromomethane	LT	1.40 1	ug/l	GF0005
				UM21	Chloromethane	LT	1.20 0	ug/l	GF0005
				UM21	Bromoform	LT	1.10 1	ug/l	GF0005
				UM21	Chloroform	LT	1.00 0	ug/l	GF0005
				HHBA	Chloride	LT	7.20 2	ug/1	GCK028
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GFG011
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/1	GFC005
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GF0005
				кке	Chlordane	LT	9.50 -2	ug/l	GFG011
				UM25	Chlordane	LT	3.70 1	ug/l	GFC005
				AAAB	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GFH008
•				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/1	GFC005

Comprehensive Monitoring Program

Summary of Analytical Results

bampling Date	Station Number	Sample Depth (cm)	Sample Type	_Method	Analytical Parameters	Re	sults		Units	Sample Number	
89116	SW11002FB	0	QCFB	AAAS	p-Chlarophenylmethyl Sulfaxide	LT	1.15	1	ug/l	GFH008	
02110	WY 10021 D	Ü	40.0	UM25	p-Chlorophenylmethyl Sulfoxide	LT		1	ug/l	GFC005	
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46	0	ug/l	GFHQ08	
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0	ug/l	GFC005	
				GG8	Chromium (filtered)	LT	2.40	1	ug/l	GFF017	
				GG8	Copper (filtered)	LT	2.60	1	ug/l	GFF017	
				TF20	Cyanide	LT	5.00	0	ug/l	GEN012	
				AY6	Dibromochloropropane	LT	1.95	-1	ug/1	GFN008	
				UM25	Dibromochloropropane	LT	1.20	1	ug/l	GFC005	
				UM21	Dibromochloromethane	LT	1.00	0	ug/l	GF0005	
				UM21	1,4-Dichlorobenzene	LT	2.00	0	ug/l	GF0005	
				P6	Dicyclopentadiene	LT	5.00	0	ug/l	GFD011	
				UM25	Dicyclopentadiene	LT	5.50	O	ug/l	GFC005	
				UH11	Vapona	LT	3.84		ug/l	GFK011	
				UM25	Vapona	LT	8.50	0	ug/l	GFC005	
				AT8	Diisopropylmethyl Phosphonate	LT	3.92	-1	ug/l	GFP008	
				UM25	Diisopropylmethyl Phosphonate	LT	2.10	1	ug/l	GFC005	
				<b>AAA</b> 8	Dithiane	LT	1.34	0	ug/l	GFH003	
				UM25	Dithiane	LT	3.30	0	ug/l	GFC005	
				KK8	Dieldrin	LT	5.00	-2	ug/1	GFG011	
				UM25	Dieldrin	LT	2.60		ug/l	GFC005	
				AAAS	Dimethyldisulfide	LT	5.50		ug/l	GFH008	
				UM21	Acetone	LT	8.00		ug/l	GF0005	
				ATE	Dimethylmethyl Phosphate	LT	1.66		ug/l	GFP008	
				UM25	Dimethylmethyl Phosphate	LT	1.30	2	ug/l	GFC005	
				KK8	Endrin	LT	5.00		ug/l	GFG011	
				UM25	Endrin	LT	1.80		ug/1	GFC005	
				UM21	Ethylbenzene		1.00		ug/1	GF0005	
				AV8	Ethylbenzehe		1.37		ug/l	GCS028	
				HH8A	Fluoride	LT	4.82	2	ug/l	GCK028	
				CC8	Mercury (filtered)		1.00		ug/l	GGW009	
				KK8	Isodrin		5.10		ug/l	GFG011	
				UM25	Isodrin		7.80		ug/l	GFC005	
				GG8	Potassium (filtered)	LT	2.50	2	ug/l	GFF017	

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	-Method	Analytical Parameters	Pe	esults	Units	Sample Number
Dave	Runber	Depth (Cit)	1 ) t ve	Life CITOO	MIATY CICAL PARAMETERS			JII 00	
89116	SW11002FB	: o	QCSP	UM21	Toluene	LT	1.00	) ug/l	GF0005
				AV8	Toluene	LT	1.47	) ug/l	GCS028
			* 1*	UM21	Methylethyl Ketone	LT	1.00 1	i ug/l	GF0005
				GGS	Magnesium (filtered)	LT	5.00 2	2. ug/l	GFF017
				P6	Methylisobutyl Ketone	LT	4.90	) ug/l	GFD011
				UM21	Methylisobutyl Ketone	LT	1.40	) ug/l	GF0005
				UH11	Malathion	LT	3.73 -1	ug/l	GFK011
				UM25	Malathion	LT	2.10 1	ug/1	GFC005
				GG8	Sodium (filtered)	LT	9.40 2	2 ug/l	GFF017
•				LLG	Nitrite, Nitrate - Non specific		7.43 1	ug/l	GCL027
				AAAS	1,4-Oxathiane	LT	2.38	) ug/l	GFH008
				UM25	1,4-Oxathiane	LT	2.70 1	ug/1	GFC005
				GG8	Lead (filtered)	LT	7.40 1	. ug/l	GFF017
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	GFG011
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/1	GFC005
				KK8	Dichlorodiphenyltrichloro- ethane	· LT	4.90 -2	2 ug/1	GFG011
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GFC005
				UH11	Parathion	LT	6.47 -1	ug/l	GFK011
				UM25	Parathion	LT	3.70 1	ug/l	GFC005
				HH8A	Sulfate	LT	2.51 2	ug/l	GCK028
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GFK011
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GFC005
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GF0005
				UM21	Tetrachloroethene	LT	1.00 0	ug/1	GF0005
				UM21	Trichloroethene	LT	1.00 0	ug/1	GF0005
				UM21	Ortho- & Para-Xylene	LT	2.00 0	) ug/l	GF0005
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS028
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GFF017
89130	SW11002ST	0.2	STRM	TT8	1,1,1-Trichloroethane	LT	1.09 0	ug/1	GBY006
				UU3	1,1,1-Trichloroethane	LT	2.40 0	ug/l	GSH005

R. L. Stollar and Associates

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	⊱ <b>s</b> ults	Units	Sample Humber
89130	SW11002ST	0.2	STRM	TT8	1,1,2-Trichloroethane	LT	1.63	0 ug/l	GBY006
03100				UU8	1,1,2-Trichloroethane	LT	1.60	0 ug/l	GSH005
				тта	1.1-Dichloroethene	LT	1.85	0 ug/l	GBY006
				TT8	1,1-Dichloroethane	LT	1.93		GBY006
				UU8	1,1-Dichloroethane	LT	1.40	0 ug/l	GSH005
				TTB	1,2-Dichloroethene	LT	1.75	0 ug/l	GBY006
				UU8	1,2-Dichloroethene	LT	3.20	0 ug/l	GSH005
				TT8	1,2-Dichloroethane	LT	2.07	0 ug/l	GBY006
				UU8	1,2-Dichloroethane	LT	7.20 -	1 ug/l	GSH005
				UM18	1,3-Dichlorobenzene	LT	1.70	0 ug/l	PHF003
				SS8	m-Xylene	LT	1.04	0 ug/l	GAX006
				UU8	m-Xylene	LT	2.90	0 ug/l	GSH005
				MMOA	Aldrin	LT	8.30 -	2 ug/l	GPL012
				MMSA	Aldrin	LT	8.30 -	2 ug/l	GPL013
				UM16	Aldrin	ND	4.70	0 ug/l	PHF003
				VV6	Arsenic	LT	2.50	0 ug/l	GH0019
				UU8	Bicycloheptadiene	LT	1.80	0 ug/l	GSH005
				PP8A	Benzothiazole	LT	1.14	0 ug/l	G10009
				UM18	Benzothiazole		3.00	0 ug/l	PHF003
			* 4	SS8	Benzene	LT	1.92	0 ug/l	GAX006
				UU8	Benzene	LT	2.70		GSH005
				TTE	Carbon Tetrachloride	LT	1.69		GBY006
				UU8	Carbon Tetrachloride	"LT .	4.90		GSH005
				R90	Cadmium	LT	5.00		QSD006
				TT8	Methylene Chloride	LT	2.48	0 ug/l	GBY006
				UU6	Methylene Chloride	ОМ		0 ug/l	GSH005
				TTE	Chloroform	LT		0 ug/l	GBY006
				UU8	Chloroform	LT	1.70		GSH005
				NN8	Chloride		1.16		GJK006
				MMSA	Hexachlorocyclopentadiene	LT	8.30 -	2 ug/l	GPL012
				MMSA	Hexachlorocyclopentadiene	LT	8.30 -	2 ug/l	GPL013
				UM16	Hexachlorocyclopentadiene	LT	8.60		PHF003
				TT6	Chlorobenzene	LT	1.36		900A85
				uua	Chlorobenzene	LT	1.80	0  ug/1	GSH005

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample -Type	-Method	Analytical Parameters	Re	esults	Units	Sample Number
69130	SW11002ST	0.2	STRM	MM8A	- Chlordan <del>e</del>	LT	1.52 -1	ug/l	GPL012
02100	J#1100251	0 1 2	<b>\$1141</b>	MMBA	Chlordane	LT	1.52 -1	ug/l	GPL013
				PP6A	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/1	GIQ009
				PP8A	p-Chlorophenylmethyl Sulfoxide	LT	1.98 0	ug/l	GIQ009
				PP6A	p-Chlorophenylmethyl Sulfone	LT	2.24 0	ug/l	G1Q009
				R9D	Chromium	LT	2.20 1	ug/l	QSD006
				R9D	Copper		1.05 1	ug/1	QSD006
				TF18	Cyanide	LT	2.50 0	ug/1	LCHO05
				Q6 ·	Dibromochloropropane	LT	1.30 -1	ug/1	GKU020
				UU6	Dibromochloropropane	LT	5.60 0	ug/l	GSH005
				R6	Dicyclopentadiene	LT	9.31 0	ug/l	GXA020
				UU8	Dicyclopentadiene	LT	3.70 0	ug/l	GSH005
				QQ8	Diisopropylmethyl Phosphonate	LT	1.01 i	ug/1	GGS006
				PP8A	Dithiane	LT	3.34 0	ug/1	GIQ009
		=:		MMBA	Dieldrin	LT	5.39 -2	ug/l-	GPL012
				MM8A	Dieldrin	LT	5.39 -2	ug/l	GPL013
				UM18	Dieldrin	DM	4.70 0	ug/l	PHF003
				PP8A	Dimethyldisulfide	LT	1.16 0	ug/l	GIQOO9
				UU8	Dimethyldisulfide	LT	3.70 0	ug/l	GSH005
			-	<b>QQ</b> 8	Dimethylmethyl Phosphate	LT	1.63 1	ug/l	GGS006
				MMBA	Endrin	LT	6.00 -2	ug/l	GPL012
				MMSA	Endrin	LT	6.00 -2	ug/l	GPL013
				UM18	Endrin	ПN	7.60 0	ug/l	PHF003
				\$\$8	Ethylbenzene	LT	6.20 -1	ug/l	GAX006
		18.1		- 008	Ethy1benzene	LT	2.40 0	ug/l	GSH005
				ние	Fluoride	LT	1.00 3	ug/l	GJK006
				<b>WW</b> 8	Mercury	LT	5.00 -1	ug/l	GW9009
				MMSA	Isodrin	LT	5.60 -2	ug/l -	GPL012
				MM6A	Isodrin	LT	5.60 -2	ug/l	GPL013
				XX8	Potassium		2.62 3	ug/l	DYW006
				SSA	Toluene		2.10 0	ug/l	GAX006
				UU8	Toluene	LT	3.50 0	ug/l	GSH005
				R6	Methylisobutyl Ketone	LT	1.29 1	ug/1	GXA020
				UUS	Methylisobutyl Ketone	LT	1.20 0	ug/1	GSH005

R. L. Stollar and Associates

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters:	Re	eults	· (	Jnits	Sample Number
00170	OUIS LANGUET	0.0	стом	TF22	Nitrite, Nitrate - Non specific		1.00	₹	ug/l	PCD016
89130	SW11002ST	0.2	STRM	UM18	N-Nitrosodimethylamine	ND		0	ug/1	PHF003
				UM18	N-Nitrosodi-N-Propylamine	LT	4.40		ug/1	PHF003
				PP8A	1,4-Oxathiane	LT	1.35		ug/l	GIQ009
				R90	Lead	LT	5.20		ug/l	QSD006
				MM6A	Dichlorodiphenylethane	LT	4.60	-2	ug/l	GPL012
				MMSA	Dichlorodiphenylethane	LT	4.60	-2	ug/l	GPL013
		•		UM18	Dichlorodiphenylethane	ND	4.70	0	ug/l	PHF003
				MM8A	Dichlorodiphenyltrichloro- ethane	LT	5.90	-2	ug/1	GPL012
				UM18	Dichlorodiphenyltrichloro- ethane	ПH	9.20	0	ug/l	PHF003
				UN07	Parathion	LT	2.50	-1	ug/l	PGB006
				вин	Sulfate		1.34	4	ug/l	GJK006
				TTE	Tetrachloroethene	LT	2.76	0	ug/1	GBY006
				UU3	Tetrachloroethene	LT	2.90		ug/l	GSH005
				TT8	Trichloroethene	LT	1.31	0	ug/l	G8Y006
				uua	Trichloroethene	LT	2.00	0	ug/l	GSH005
				\$\$8	Ortho- & Para-Xylene	LT	1.34		ug/l	GAX006
				UU6 R9D	Ortho- & Para-Xylene Zinc	LT	2.40		ug/l ug/l	QSD006
89115	SW11003	0.2	POND	UM21	1,1,1-Trichloroethane	LT	1.00	0	ug/l	GDX005
~~~			91	UM21	1,1,2-Trichloroethane	LT	1.00		ug/1	GDX005
				UM21	1,1-Dichloroethene	LT	1.00		ug/l	GDX005
				UM21	1,1-Dichloroethane	LT	1.00		ug/1	GDX005
				UM21	1,2-Dichloroethene	LT	5.00		ug/l	GDX005
				UM21	1,2-Dichloroethane	LT	1.00	0	ug/l	GDX005
	•			UM21	1,2-Dichloropropane	LT	1.00		ug/l	GDX005
				UM21	1,3-Dichlorobenzene	LT	1.00	0	ug/1	GDX005
				UM21	1,3-Dichloropropane	LT	4.80	0	ug/l	GDX005
				UM21	m-Xylene	LT	1.00	0	ug/l	GDX005
				AV8	m-Xylene		1.32		ug/l	GCS024
				UM21	2-Chloroethylvinyl Ether	LT	3.50		ug/l	GDX005
				UM21	Acrylonitrile	LT	8.40	0	ug/l	GDX005

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults		Units	Sample. Number	
4			-					·······			~
6 9115	SW11003	0.2	STRM	UM25	Aldrin	LT	1.30	1	ug/1	GDZ005	
				KK8	Aldrin		5.81	-2	ug/l	GEG013	
				UM25	Aldrin	LT	1.30	1	ug/l	GEK007	
				00	ALKALINITY -		4.49	1	ug/l	GE0008	
				AX8	Arsenic (filtered)	LT	2.35	0	ug/l	GFI019	
				AXB	Arsenic	LT	2.35	0	ug/l	GFI020	
				UM25	Atrazine	LT	5.90	0	ug/l	GDZ005	
Ì				UM25	Atrazine	LT	5.90	O	ug/l	GEK007	
				UH11	Atrazine	LT	4.03	0	ug/l	GEJ013	
_				P8	Bicycloheptadiene	LT	5.90	0	ug/l	GEI013	
				UM21	Bromodichloromethane	LT	1.00	0	ug/l	GDX005	
				UM21	Vinyl Chloride	LT	1.20	. 1	ug/1	GDX005	
•				UM21	Chloroethane	LT	8.00	0	ug/1	GDX005	
ř				UM21	Benzene	LT	1.00	0	ug/1	GDX005	
				AV8	Benzene	LT	1.05	0	ug/l	GCS024	
				GG8	Calcium (filtered)		1.84	4	ug/l	GFF005	
				GG8	Calcium		1.94	4	ug/1	GFF006	
				UM21	Trichlorofluoromethane	LT	1.00	0	ug/l	GDX005	
ĺ				UM21	Carbon-Tetrachloride	LT	1.00	0	ug/l	GDX005	
				GG8	Cadmium (filtered)	LT	8.40	0	ug/l	GFF005	
				GG8 -	Cadmium	LT	8.40	0	ug/l	GFF006	
				UM21	Methylene Chloride	LT	1.00	0	ug/1	GDX005	
				UM21	Bromomethane	LT	1.40	1	ug/l	GDX005	
				UM21	Chloromethane	LT	1.20	0	ug/1	GDX005	
				UM21	Bromoform	LT	1.10	1	ug/l	GDX005	
				UM21	Chloroform	LT	1.00	0	ug/l	GDX005	
i				HHBA	Chloride		1.40	5	ug/l	GCK024	
				KK8	Hexachlorocyclopentadiene	LT	4.80	-2	ug/l	GEG013	
				UM25	Hexachlorocyclopentadiene	LT	5.40	1	ug/l	GEK007	
				UM21	Chlorobenzene	LT	1.00	0	ug/l	GDX005	
				UM25	Chlordane	LT	3.70	1	ug/l	GDZ005	
N				KK8	Chlordane		1.49	-1	ug/l	GEG013	
1				UM25	Chlordane	LT	3.70	1	ug/1	GEK007	
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1	ug/l	GDZ005	

R. L. Stollar and Associates

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults		Units	Sample Number
00445 -	0.14 4 0.07		masto	UM25	p-Chlorophenylmethyl Sulfide	1 7	1.00	1	ug/l	GEK007
89115	SW11003	0.2	POND		p-Chlorophenylmethyl Sulfoxide	LT	1.50	1	ug/l	GDZ005
				UM25 UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1	ug/l	GEK007
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	Ô	ug/l	GDZ005
				UM25		LT		0	ug/1	GEK007
				GG8	Chromium (filtered)	LT	2.40	1	ug/l	GFF005
				GG8	Chromium	LT	2.40	1	ug/l	GFF006
				GG8	Copper (filtered)	LT	2.60	1	ug/1	GFF005
		1.		GG8	Copper	LT	2.60	1	ug/l	GFF006
				TF20	Cyanide	LT	5.00	0	ug/l	GEN008
				AY8	Dibromochloropropane	LT	1.95	1	ug/l	GEE013
				UM25	Dibromochloropropane	ĿT		1	ug/l	GDZ005
	,et			UM25	Dibromochloropropane	LT	1.20	1	ug/l	GEK007
				UM21	Dibromochloromethane	LT	1.00	0	ug/l	GDX005
		* 48		UM21	1,4-Dichlorobenzene	LT	2.00	0	ug/l	GDX005
				P8	Dicyclopentadiene	LT	5.00	o	ug/l	GEI013
				UM25	Dicyclopentadiene	LT	5.50	٥	ug/l	GDZ005
				UM25	Dicyclopentadiene	LT	5.50	0	ug/l	GEK007
				UM25	Vapona	LT	8.50	0	ug/1	GDZ005
				UM25	Vapona	LT	8.50	0	ug/l	GEK007
				UH11	Vapona		7.27		ug/l	GEJ013
				UM25	Diisopropylmethyl Phosphonate		2.10		ug/l	GDZ005
	•		· #	AT8	Diisopropylmethyl Phosphonate	LT	3.92		ug/l	GEH013
			•	UM25 UM25	Diisopropylmethyl Phosphonate Dithiane	LT	3.30		ug/l ug/l	GEK007 GDZ005
				UM25	Dithiane	LT.	3.30	0	ug/1	GEK007
				UM25	Dieldrin	LT	2.60	1	ug/l	GDZ005
				KK8	Dieldrin	LT	5.00	-2	ug/l	GEG013
				UM25	Dieldrin	LT	2.60	1	ug/1	GEK007
				UM21	Acetone	LT	8.00	0	ug/l	GDX005
				UM25	Dimethylmethyl Phosphate	LT			ug/l	GDZ005
				AT6	Dimethylmethyl Phosphate	LT			ug/l	GEH013
				UM25	Dimethylmethyl Phosphate	LT	1.30		ug/l	GEK007
				UM25	Endrin	LT	1.80	1	ug/1	GDZ005

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	Re	esults	Units	Sample Number
89115	SW11003	0.2	POND	KK8	Endrin	LT	5.00 -2	ug/1	GEG013
09113	2M11000	0.2	10110	UM25	Endrin	LT	1.80 1	ug/1	GEK007
				UM21	Ethylbenzene	LT	1.00 0	ug/1	GDX005
				AV8	Ethylbenzene		1.37 0	ug/l	GCS024
				HH8A	Fluoride		8.68 2	ug/l	GCK024
				CCS	Mercury (filtered)	LT	1.00 -1	ug/1	GCN045
				CC8	Mercury	LT	1.00 -1	ug/l	GCN046
				UM25	Isodrin	LT	7.80 0	ug/l	GDZ005
				KK8	Isodrin	LT	5.10 -2	ug/l	GEG013
				UM25	Isodrin	LT	7.80 0	ug/l	GEK007
				GG8	Potassium (filtered)		4.81 3	ug/l	GFF005
				GG8	Potassium		5.13 3	ug/1	GFF006
				UM21	Toluene		1.00 0	ug/l	GDXQ05
				AV8	Toluene	LT	1.47 0	ug/1	GCS024
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GDX005
				GG8	Magnesium (filtered)		1.71 3	ug/l	GFF005
				GG8	Magnesium		1.91 3	ug/l	GFF006
				UM21	Methylisobutyl Ketone		1.40 0	ug/l	GDX005
		•		P8	Methylisobutyl Ketone		4.90 0	ug/1	GEI013
				UM25	Malathion	LT	2.10 1	ug/l	GDZ005
				UM25	Malathion		2.10 1	ug/1	GEK007
				UH11	Malathion	LT	3.73 -1	ug/l	GEJ013
				GG8	Sodium (filtered)		1.30 5	ug/l	GFF005
				GG8	Sodium		1.40 5	ug/l	GFF006
				LL8	Nitrite, Nitrate - Non specific		3.20 2	ug/l	GCL023
				UM25	1,4-Oxathiane		2.70 1	ug/l	GDZ005
				UM25	1,4-Oxathiane		2.70 1	ug/l	GEK007
				GG8	Lead (filtered)		7.40 1	ug/l	GFF005
				GG8	Lead		7.40 1	ug/l	GFF006
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GDZ005
				KK8	Dichlorodiphenylethane		5.40 -2	ug/l	GEG013
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GEK007
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GDZ005

R. L. Stollar and Associates

Summary of Analytical Results

Sampling	Station	Sample	Sample						Sample
Date	Number	Depth (cm)	Type	-Method	Analytical Parameters	R€	sults	Units	Number
89115	SW11003	0.2	POND	KK8 -	··Dichlorodiphenyltrichloro-		5.52 -2	ug/l	GEG013
					ethane				
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GEK007
				UM25	Parathion	LT	3.70 1	ug/l	GDZ005
				UM25	Parathion	LT	3.70 1	ug/l	GEKO07
				UH11	Parathion	LT	6.47 -1	ug/l	GEJ013
				ннаа	Sulfate		2.70 4	ug/l	GCK024
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GDZ005
				UM25	2-Chloro-i(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GEK007
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ013
				UM21.	1,1,2.2-Tetrachloroethane	LT	1.50 0	ug/l	GDX005
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GDX005
				UM21	Trichloroethene	LT	1.00 0	ug/l	GDX005
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GDX005
				AV6	Ortho- & Para-Xylene	LT	1.36 0	ug/1	GCS024
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GFF005
				GG8	Zinc	LT	2.20 1	ug/l	GFF006
89115	SW11003	5.0	POND	AAA8	Benzothiazole	LT	5.00 0	ug/l	GEF013
	** * 1			AAA8 -	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GEF013
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	GEF013
				AAA6	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GEF013
				AAA8	Dithiane	LT	1.34 0	ug/l	GEF013
				AAAA	Dimethyldisulfide		5.50 -1	ug/l	GEF013
				AAAS	1,4-Oxathiane	LT	2.38 0	ug/l	GEF013
89110	SW12001	0.1	DTCH	AV8	m-Xylene		1.32 0	ug/l	GCS014
				KK8	Aldrin		5.00 -2	ug/l	GCY016
			•	UM25	Aldrin	LT	1.30 1	ug/l	GDV007
				00	ALKALINITY		2.66 2	ug/l	GCJ014
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GCM025

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults ·	Units .	Sample Number
69110	SW12001	0.1	DTCH	AX6	Arsenic	LT	2.35 0	ug/l	GCM026
				UH11	Atrazine	LT	4.03 0	ug/l	GCW014
				UM25	Atrazine	LT	5.90 0	ug/l	GDV007
				P8	Bicycloheptadiene	LT	5.90 0	ug/1	GCV014
				AAA8	Benzothiazole	LT	5.00 0	ug/1	GCZ016
				AV8	Benzene	LT	1.05 0	ug/l	GCS014
				GG8	Calcium (filtered)		7.58 4	ug/l	GEP005
				GG8	Calcium		7.56 4	ug/1	GEP006
				GG8	Cadmium (filtered)	LT	8.40 0	ug/1	GEP005
				GG8	Cadmium	LT	8.40 0	ug/l	GEP006
				HH8A	Chloride		3.60 4	ug/l	GCK014
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/1	GCY016
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GDV007
				KK8	Chlordane	LT	9.50 -2	ug/l	GCY016
				UM25	Chlordane	LT	3.70 1	ug/l	GDV007
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GCZ016
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GDV007
				AAA8	p—Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GCZ016
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GDV007
				AAAS	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ016
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GDV007
				GG8	Chromium (filtered)	LT	2.40 1	ug/1	GEP005
				GG8	Chromium	LT	2.40 1	ug/l	GEP006
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GEP005
				GG8	Copper	. LT	2.60 1	ug/l	GEP006
				TF20	Cyanide		6.91 0	ug/l	GCR014
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA016
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GDV007
				P6	Dicyclopentadiene		5.00 0	ug/l	GCV014
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GDV007
				UH11	Vapona	LT	3.84 -1	ug/l	GCW014
				UM25	Vapona	LT	8.50 0	ug/l	GDV007
		*		AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX016
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GDV007

R. L. Stollar and Associates

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89110	SW12001	0.1	ртсн	AAA6	Dithiane	LT	1.34 0	ug/l	GCZ016
OJIIO	5W12001	W - #-	07011		Dithiane	LT	3.30 0	ug/l	GDV007
				KK8	Dieldrin	LT	5.00 -2	ug/1	GCY016
				UM25	Dieldrin	LT	2.60 1	ug/l	GDV007
				AAA6	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ016
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GCX016
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/1	GDV007
				KK8	Endrin	LT	5.00 -2	ug/l	GCY016
				UM25	Endrin	LT	1.80 1	ug/1	GDV007
				AV8	Ethylbenzene	LT	1.37 0	ug/1	GCS014
				HH8A	Fluoride		1.40 3	ug/l	GCK014
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN025
				833	Mercury	LT	1.00 -1	ug/1	GCN026
				KK8	Isodrin	LT	5.10 -2	ug/1	GCY016
				UM25	Isodrin	LT	7.80 0	ug/l	GDV007
				GG8	Potassium (filtered)		2.95 3	ug/l	GEP005
				GG8	Potassium		3.02 3	ug/l	GEP006
				AV8	Toluene	LT	1.47 0	ug/l	GCS014
				GG8	Magnesium (filtered)		2.27 4	ug/1	GEP005
				GG8	Magnesium		2.26-4	ug/l	GEP006
				P8	Methylisobutyl Ketone		4.90 0	ug/l	GCV014
				UM25	Malathion		2.10 1	ug/1	GDV007
	**			GG8	Sodium (filtered)	-, %	7.66 - 4	ug/1	GEP005
				GG8	Sodium		7.68 4	ug/1	GEP006
				LL6	Nitrite, Nitrate - Non specific		3.50 3	ug/l	GCL014
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GCZ016
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GDV007
				GG8	Lead (filtered)	LT	7.40 1	ug/1	GEP005
				GG8	Lead	LT	7.40 1	ug/l	GEP006
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GCY016
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GDV007
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GCY016
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GDV007

01/10/90

Summary of Analytical Results

Sampling	Station	Sample	Sample						Sample
Date	Number	Depth (cm)	Type	Method	Analytical Parameters	Re	sults.	Units	Number
00115	014000	m 4	ATOU	1.840.5	Parathion	ı T	3.70	i ug/l	GDV007
89110	SW12001	0.1	DTCH	UM25 HH8A	Sulfate	L., 1	1.10		GCK014
				UM25	2-Chloro-1(2,4-Dichlorophenyl)	ΙT	1.90		GDV007
				OFIZS	Vinyldiethyl Phosphates	hou ?	* * **	. 49/1	GD 1007
				AV8	Ortho- & Para-Xylene	1 T	1.36	0 ug/l	GCS014
				GG8	Zinc (filtered)		4.57		GEP005
				-	(12200100)				
				GG8	Zinc	LT	2.20	1 ug/l	GEP006
1									
89125	SW12002	0.2	DTCH	HH8A	Chloride		7.40	2 ug/l	GKP016 ·
				HH8A	Fluoride	LT	4.82	2 ug/l	GKP016
[HH8A	Sulfate		2.49	3 ug/l	GKP016
89110	SW12003	0.1	POND	AV8	m-Xylene	LT	1.32	0 ug/l	GCS013
ì				KK8	Aldrin	LT	5.00 -	2 ug/l	GCY015
				UM25	Aldrin	LT	1.30	1 ug/1	GDV008
				00	ALKALINITY		3.09	2 ug/l	GCJ013
(AX8	Arsenic (filtered)		2.77) ug/l	GCM023
				AX8	Arsenic		3.11) ug/l	GCM024
				UH11	Atrazine	LT	4.03	0 ug/l	GCW013
				UM25	Atrazine	LT	5.90	0 ug/l	GDV008
				P6	Bicycloheptadiene	LT	5.90	0 ug/l	GCV013
				AAA8	Benzothiazole	LT	5.00) ug/l	GCZ015
				AV8	Benzene	LT	1.05	0 ug/l	GCS013
				GG8	Calcium (filtered)		1.10		GC0023
				GG8	Calcium		1.00		GC0024
			н	GG8	Cadmium (filtered)	LT	8.40	-	GC0023
				: GGS	Cadmium	LT	8.40	0 ug/l	GC0024
				HH8A	Chloride		6.00	4 ug/l	GCK013
				KK8	Hexachlorocyclopentadiene	LT	4.80 -	2 ug/l	GCY015
				UM25	Hexachlorocyclopentadiene	LT	5.40	i ug/l	GDV008
		•		KK6	Chlordane		9.50 -		GCY015
				UM25	Chlordane	LT	3.70	1 ug/l	GDV008
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69	0 ug/l	GCZ015
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1 ug/l	GDV008
				AAA6	p-Chlorophenylmethyl Sulfoxide	1 7	1.15	1 ug/l	GCZ015

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	-Method	Analytical Parameters	Re	sults	Units	Sample Number
00650	OL14 9557	A 1	POND	- UM25-	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GDV008
89110	SW12003	0.1	PORD	AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0		GCZ015
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0		GDV008
				GG8	Chromium (filtered)	LT	2.40 1		GC0023
				GG8	Chromium	LT	2.40 1		GC0024
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0023
				GG8	Copper	LT	2.60 1	ug/l	GC0024
1				TF20	Cyanide	LT	5.00 0	ug/1	GCR013
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA015
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GDV0 08
				P6	Dicyclopentadiene	LT	5.00 0	ug/l	GCV013
				UM25	Dicyclopentadiene	.LT	5.50 0	ug/1	GDV008
				UH11	Vapona	LT	3.84 -1	ug/l	GCW013
				UM25	Vapona	LT	8.50 0	ug/l	GDV008
				T ATO	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX015
[UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GDV008
				AAA8	Dithiane	LT	1.34 0	ug/l	GCZ015
				UM25	Dithiane	LT	3.30 0		GDV008
				KK6	Dieldrin	LT	5.00 -2	-	GCY015
			٠	UM25	Dieldrin	LT	2.60 1	ug/l	GDV008
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ015
,				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GCX015
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/1	GDV008
				KK8	Endrin		5.88 -2	ug/1	GCY015
				UM25	Endrin	LT	1.80 1	ug/l	GDV008
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS013
1				HHBA	Fluoride		1.84 3	ug/l	GCK013
			•	CC8	Mercury (filtered)		1.00 -1	ug/l	GCN023
				CC6	Mercury		1.00 -1	ug/1	GCN024
				KK6	Isodrin	LT	5.10 -2	ug/l	GCY015
				UM25	Isodrin	LT	7.80 0	ug/l	GDV006
				GG8	Potassium (filtered)		1.20 4	ug/l	GC0023
				GG8	Potassium		1.20 4		GC0024
				AV8	Toluene	LT	1.47 0	ug/l	GCS013

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	`Method	Analytical Parameters	R	esults	Units	Sample Numbe
89110	SW12003	0.1	POND	GG8	Magnesium (filtered)		4.25 4	ug/l	GC0021
03110	01722000	0.7.1	1 0110	GG®	Magnesium		4.54 4		GC0024
				P8	Methylisobutyl Ketone	LT	4.90 0		GCV013
				UM25	Malathion	LT			GDV008
				GG8	Sodium (filtered)		1.10 5	ug/1	GC0023
				GG8	Sodium		1.10 5	ug/l	GC0024
				LL8	Nitrite, Nitrate - Non specific		3.90 2		GCL01
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GCZ013
				UM25	1,4-0xathiane	LT	2.70 1		GDV008
				GC8	Lead (filtered)	LT	7.40 1	ug/l	G00023
				GG8	Lead	LT	7.40 1	ug/l	GC0024
				KK8	Dichlorodiphenylethane	LT	5.40 -2		GCY01
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/1	GDV00
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GCY01
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GDVOO
				UM25	Parathion	LT	3.70 1	ug/l	GDV008
			• • •	HH8A	Sulfate		2.40 5	-ug/1	GCK013
			egg e	UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GDV008
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS01
				GG8	Zinc (filtered)		3.69 1	ug/l	GC0023
				GGS	Zinc	LT	2.20 1	ug/l	GC0024
39110	SW12003B	0.1	POND	ниэ	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDJ008
			٠	NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/1	GDJ008
				PN9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDJ00
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDJ00
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDJ00
				ннэ	1,2-Dichloroethane	LT	8.50 -2	ug/1	GDJ008
				AA9	m-Xylene	LT	2.60 -1	ug/1	GDH008
				B 9	Arsenic		4.67 0	ug/l	GDM010
				LH15	Atrazine		8.85 -1	ug/1	GDF00
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/1	IKX010

Comprehensive Monitoring Program

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
······			***************************************			***************************************	· · · · · · · · · · · · · · · · · · ·		
89110	SW12003B	0.1	POND	нн9	Benrothiarole	LT	2.04 0	ug/l	GDC010
				AA9	Benzene	LT	8.50 -2	ug/l	GDH008
				NN9	Carbon Tetrachloride	LT.	1.20 -1	ug/l	GDJ008
				P9	Cadmium		1.71 0	ug/l	GDK010
				еии	Methylene Chloride	LT	3.70 0	ug/l	GDJ008
				NN9	Chloroform	LT	6.80 -2	ug/l	GDJ008
				NN9	Chlorobenzene	LT	2.00 -1	ug/1	GDJ008
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GDC010
				HH9	p-Chlorophenylmethyl Sulfoxide		2.38 1	ug/l	GDC010
				нн9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GDC010
				P9	Chromium		1.59 1	ug/l	GDK010
				P9	Copper		1.92 1	ug/l	G0K010
				\$9	Dibromochloropropane	LT	5.00 -3	ug/l	G06010
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKX010
				LH15	Vapona	LT	8.00 -2	ug/l	GDF007
				TT 9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KST009
				HH9	Dithiane	LT	1.45 0	ug/l	GDC010
				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GDC010
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KST009
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GDH008
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRR012
				Y9	Mercury	LT	5.00 -2	ug/l	GDL010
			-	AA A9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRR012
				AA9	Toluene	LT	1.90 -1	ug/l	GDH008
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKX010
				LH15	Malathion	LT	1.26 -1	ug/l	GDF007
				HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GDC010
				P9	Lead		1.19 2	ug/l	GDK010
				LH15	Parathion	LT	1.59 -1	ug/l	GDF007
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GDF007
				МИ Э	Tetrachloroethene	LT	2.70 -1	ug/l	GDJ008
				NN9	Trichloroethene	LT	1.40 -1	ug/l	GDJ008

01/10/90

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Ře	sults	Units	Sample Number
					notes of Paris Walnut	. ~	3.90 -1	ug/l	GDH008
89110	SW12003B	0.1	POND	AA9 P9	Ortho- & Para-Xylene Zinc	LT	7.75 1	ug/l	GDK010
89109	SW12004	0.1	STSW	AV8	m-Xylene	LT	1.32 0	ug/l	GCS010
1				KK8	Aldrin	LT	5.00 -2	ug/1	GCY012
				UM25	Aldrin	LT	1.30 1	ug/1	GDY004
				00	ALKALINITY		7.54 1	ug/l	GCJ010
1				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GCM017
				AX8	Arsenic	LT	2.35 0	ug/l	GCM018
				UH11	Atrazine	LT	4.03 0	ug/l	GCW010
				UM25	Atrazine	LT	5.90 0	ug/l	GDV004
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GCV010
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GCZ012
				AV8	Benzene	LT	1.05 0	ug/l	GCS010
				GG6	Calcium (filtered)		3.05 4	ug/l	GC0017
				GG8	Calcium		2.97 4	ug/l	GC0018
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GC0017
				GGS	Cadmium	LT	8.40 0	ug/l	GC0018
				HHBA	Chloride		1.50 4	ug/l	GCK010
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/1	GCY012
				· UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/1	GDY004
				KK8	Chlordane	LT	9.50 -2	ug/1	GCY012
			-	UM25	Chlordane	LT	3.70 1	ug/l	GDV004
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GCZ012
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GDV004
				AAA8	p-Chlorophenylmethyl Sulfoxide		3.59 1	ug/l	GCZ012
	•		£.	UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GDVQ04
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ012
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GDV004
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GC0017
				GG8	Chromium	LT	2.40 1	ug/1	GC0018
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0017
				GG8	Copper	LT	2.60 1	ug/l	GC0018
				TF20	Cyanide	LT	5.00 0	ug/l	GCR010

R. L. Stollar and Associates

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number

89109	SW12004	0.1	STRM	AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GD4012
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GDV004
				Pa	Dicyclopentadiene	LT	5.00 0	ug/1	GCV010
				UM25	Dicyclopentadiene	LT	5.50 0	ug/1	GDV004
				UH11	Vapona	LT	3.84 -1	ug/l	GCW010
				UM2S	Vapona	LT	8.50 0	ug/l	GDV004
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX012
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GDV004
				AAA8	Dithiane	LT	1.34 0	ug/1	GCZ012
				UM25	Dithiane	LT	3.30 0	ug/l	GDV004
				KK8	Dieldrin	LT	5.00 -2	ug/l	GCY012
				UM25	Dieldrin	LT	2.60 1	ug/1	GDV004
		•		AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ012
				AT6	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GCX012
	-			UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GDV004
				KK8	Endrin	LT	5.00 -2	ug/l	GCY012
				UM25	Endrin	LT	1.80 1	ug/l	GDV004
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS010
				HHBA	Fluoride		1.81 3	ug/l	.GCK010
				CC8	Mercury (filtered)	ŁT	1.00 -1	ug/l	GCN017
				cca	Mercury	LT	1.00 -1	ug/l	GCN018
				KK8	Isodrin	LT	5.10 -2	ug/l	GCY012
				UM25	Isodrin	LT	7.80 0	ug/l	GDV004
				GG8	Potassium (filtered)		1.00 4	ug/l	GC0017
				668	Potassium		1.06 4	ug/l	GC0018
				AV8	Toluene	LT	1.47 0	ug/l	GCS010
			•	GG8	Magnesium (filtered)		5.23 3	ug/l	GC0017
				GG8	Magnesium		5.46 3	ug/1	GC0018
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GCV010
				UM25	Malathion	LT	2.10 1	ug/l	GDV004
				GG8	Sodium (filtered)		1.92 4	ug/l	GC0017
				පටව	Sodium		1.65 4	ug/l	GC0018
				LL8	Nitrite, Nitrate - Non specific		3.60 2	ug/1	GCL010
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GCZ012

01/10/90

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
89109	SW12004	0.1	STSW	UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GDV004
00100	Office of	W - 2		GG8	Lead (filtered)	LT	7.40 1	ug/l	GC0017
				GG8	Lead	LT	7.40 1	ug/1	GC0018
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GCY012
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GDV004
				KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/l	GCY012
				UM25	Dichlorodiphenyltrichloro-	LT	1.80 1	ug/l	GDV004
					ethane				
				UM25	Parathion	LT	3.70 1	ug/l	GDV004
				HH8A	Sulfate		3.60 4	ug/1	GCK01
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GDV00
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS01
				GG8	Zinc (filtered)		3.51 1	ug/1	GC001
				GG8	Zinc		8.73 1	ug/l	GC0018
69109	SW12004B	0.1	SURF	ни9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDJOO
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDJ00
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDJOO
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/1	GDJ 00
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDJOO
				ииэ	1,2-Dichloroethane	LT	6.50 -2	ug/l	GDJ000
				AA 9	m-Xylene	LT	2.60 -1	ug/l	GDHOO
				89	Arsenic	LT	2.50 0	ug/1	GDM00
				LH15	Atrazine		1.20 1	ug/l	GDF000
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKX00
				ннэ	Benzothiazole		2.04 0	ug/l	GDC00
				AA9	Benzene	LT	8.50 -2	ug/l	GDH00
				еии	Carbon Tetrachloride	LT	1.20 -1	ug/1	CDIOO
				P9	Cadmium		7.40 -1	ug/l	GDK00
				ии9	Methylene Chloride	LT	3.70 0	ug/l	GDJ00
				ни9	Chloroform		6.60 -2	ug/l	GDJ00
				ин9	Chlorobenzene	LT	2.00 -1	ug/1	GDJ00
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GDC00

R. L. Stollar and Associates

Summary of Analytical Results

	······									
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Ře	sults	Units	Sample Number	
Deve										
89109	SW12004B	0.1	SURF	HH9	p-Chlorophenylmethyl Sulfoxide		3.90 2	ug/l	GDC006	
1				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/1	GDC006	
				P9	Chromium	LT	6.50 0	ug/l	GDK006	
				P9	Copper		1.20 1	ug/1	GDK006	
				S9	Dibromochloropropane	LT	5.00 -3	ug/l	GD6006	
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKX006	
				LH15	Vapona		3.80 0	ug/l	GDF006	
1				TT9	Diisopropylmethyl Phosphonate	LT	2.28 -1	ug/l	KSS009	
				HH9	Dithiane	LT	1.45 0	ug/1	GDC006	
				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GDC006	
				TT9	Dimethylmethyl Phosphate	LT	2.66 -1	ug/l	KSS 009	
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GDH006	
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/1	KRR008	
				Y 9	Mercury	LT	5.00 -2	ug/l	GDL006	
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRROO8	
				AA9	Toluene	LT	1.90 -1	ug/l	GDH006	
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKX006	
		•		LH15	Malathion	LT	1.26 -1	ug/1	GDF006	
				HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GDC006	
				P9	Lead		3.70 1	ug/l	GDK006	
				LH15	Parathion		4.27 -1	ug/l	GDF006	
j .				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GDF006	
				NN9	Tetrachloroethene	LT	2.70 -1	ug/l	GDJ006	
				NN9	Trichloroethene	LT	1.40 -1	ug/l	GDJ006	
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	COHOO6	
				P 9	Zinc		8.92 1	ug/l	GDK006	
89107	SW12005	0.3	STRM	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GCQ002	
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GCQ002	
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/1	GCQ002	
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GCQ002	
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GCQ002	

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	•*	Unit⊜	Sample Number
		***************************************		***************************************		***************************************				***************************************
89107	SW12005	0.3	STRM	UM21	1,2-Dichloroethane	LT	1.00	0	ug/1	GCQ002
				UM21	1,2-Dichloropropane	LT	1.00	0	ug/l	GCQ002
				UM21	1,3-Dichlorobenzene	LT	1.00	0	ug/l	GCQ002
				UM21	1,3-Dichloropropane	LT	4.60	0	ug/l	GCQ002
				UM21	m-Xylene	LT	1.00	0	ug/l	GCQ002
				AV6	m-Xylene	LT	1.32	0	ug/l	GCS005
				UM21	2-Chloroethylvinyl Ether	LT	3.50	0	ug/l	GCQ002
				UM21	Acrylonitrile	LT	8.40	0	ug/l	GCQ002
				KK8	Aldrin	LT	5.00	-2	ug/l	GCY005
				UM25	Aldrin	LT	1.30	1	ug/l	GCT002
				00	ALKALINITY		2.30	2	ug/l	GCJ005
				AX8	Arsenic (filtered)	LT	2.35	0	ug/l	GCM005
				AX8	Arsenic	LT	2.35	0	ug/l	GCM006
				UH11	Atrazine	LT	4.03	0	ug/l	GCW005
				UM25	Atrazine	LT	5.90	0	ug/l	GCT002
				P8	Bicycloheptadiene	LT	5.90	0	ug/l	GCV005
				UM21	Bromodichloromethane	LT	1.00	0	ug/l	GCQ002
				AAA 8	Benzothiazole	LT	5.00	0	ug/l	GCZ005
				UM21	Vinyl Chloride	LT	1.20	1	ug/l	GCQ002
				UM21	Chloroethane	LT	8.00	0	ug/l	GCQ002
	-			.UM21	Benzene	LT	1.00	0	ug/l	GCQ002
				AV8	Benzene	· LT	1.05	0	ug/l	GCS005
				G G8	Calcium (filtered)		6.56	4	ug/l	GC0005
				GG8	Calcium		6.55	4	ug/l	GC0006
				UM21	Trichlorofluoromethane	LT	1.00	0	ug/l	GCQ002
			-	UM21	Carbon Tetrachloride	LT	1.00	0	ug/l	GCQ002
, ·				GG8	Cadmium (filtered)	LT	8.40	0	ug/1	GC0005
				GG8	Cadmium	LT	6.40	0	ug/l	GC0006
				UM21	Methylene Chloride	LT	1.00	0	ug/1	GCQ002
				UM21	Bromomethane	LT	1.40	1	ug/l	GCQ002
				UM21	Chloromethane	LT	1.20	0	ug/l	GCQ002
				UM21	Bromoform	LT	1.10	1	ug/l	GCQ002
				UM21	Chloroform	LT	1.00	0	ug/l	GCQ002
				HH8A	Chloride		3.60	4	ug/1	GCK005

Comprehensive Monitoring Program

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sulta	Units	Sample Number
									001100
89107	\$W12005	0.3	STRM	KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/1	GCY005
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GCT002
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GCQ002
				KK8	Chlordane	LT	9.50 -2	ug/l	GCY005
				UM25	Chlordane	LT	3.70 1	ug/l	GCT002
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GCZ005
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GCT002
				AAA6	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1/	ug/1	GCZOOS
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/1	GCT002
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ005
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GCT002
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GC000!
				GGS	Chromium	LT	2.40 1	ug/l	GC0000
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GC0003
				GG8	Copper	LT	2.60 1	ug/l	GC0006
				TF20	Cyanide	LT	5.00 0	ug/l	GCR00
				AY8	Dibromochloropropane	LT	1.95 -1	ug/1	GDA00!
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GCT00
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GEQ002
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GCQ002
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GCV003
				UM25	Dicyclopentadiene	LT	5.50 0	ug/1	GCT002
				UH11	. Vapona	LT	3.84 -1	ug/1	GCW003
				UM25	Vapona	LT	8.50 0	ug/1	GCT00
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GCX003
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GCTOO
				AAAS	Dithiane	LT	1.34 0	ug/l	GCZ003
				UM25	Dithiane	LT	3.30 0	ug/l	GCT002
				KK8	Dieldrin		5.00 -2	ug/l	GCY003
				UM25	Dieldrin		2.60 1	ug/l	GCT002
				AAAS	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ005
				UM21	Acetone	LT		ug/l	GCQ002
				AT8	Dimethylmethyl Phosphate		1.88 -1	ug/l	GCX00!
				UM25	Dimethylmethyl Phosphate		1.30 2	ug/l	GCT00

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
89107	SW12005	0.3	STRM	KK8	Endrin	LT	5.00 -2	ug/l	- GCY005
				UM25	Endrin	LT	1.80 1	ug/l	GCT002
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GCQ002
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS005
ł				HH8A	Fluoride		1.42 3	ug/l	GCK005
				cca	Mercury (filtered)	LT	1.00 -1	ug/l	GCN005
•				CC8	Mercury	LT	1.00 -1	ug/l	GCN006
		***		KK8	Isodrin	LT	5.10 -2	ug/1	GCY005
,				UM25	Isodrin	LT	7.80 0	ug/l	GCT002
				GG8	Potassium (filtered)		3.31 3	ug/l	GC0005
				GG8	Potassium		3.11 3	ug/l	GC0006
				UM21	Toluene	LT	1.00 0	ug/l	GCQ002
				AV8	Toluene	LT	1.47 0	ug/1	GCS005
				UM21	Methylethyl Ketone	LT	1.00 1	ug/1	GCQ002
				GG8	Magnesium (filtered)		2.12 4	ug/l	GC0005
				GG8	Magnesium		2.17 4	ug/l	GC0006
				UM21	Methylisobutyl Ketone		1.40 0	ug/l	GCQ002
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GCV005
		The second section of the second		UM25	Malathion	LT	2.10 1		GCT002
				GG8	Sodium (filtered)		7.13 4	ug/l	GC0005
				GG8	Sodium		7.20 4	ug/l	GC0006
				LL8	Nitrite, Nitrate - Non specific		3.00 3	ug/l	GCL005
				AAA8	1,4-Oxathiane	LT	2.38 0	-ug/1	GCZ005
			٠	UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GCT002
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GC0005
				GG8	Lead	ıπ	7.40 1	ug/l	GC0006
				KK8	Dichlorodiphenylethane		5.40 -2	ug/1	GCY005
				UM25	Dichlorodiphenylethane		1.40 1	ug/1	GCT002
				KK8	Dichlorodiphenyltrichloro-		4.90 -2	ug/l	GCY005
				UM25	ethane Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GCT002
				UM25	Parathion	LT	3.70 1	ug/l	GCT002
				HH8A	Sulfate		1.10 5	ug/l	GCK005

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
69107	SW12005	0.3	STRM	UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/l	GCT002
69107	3412003	0.0	51101	OT IL	Vinyldiethyl Phosphates				
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GCQ002
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GCQ002
				UM21	Trichloroethene	LT	1.00 0	ug/l	GCQ002
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GCQ002
				AV6	Ortho- & Para-Xvlene	LT	1.36 0	ug/l	GCS005
				GG8 ·	Zinc (filtered)	LT	2.20 1	ug/l	GC0005
				GG8	Zinc		6.44 1	ug/l	GC0006
89107	SW120056	0.2	BORE	ИЭ	1,1,1-Trichloroethane	LT	4.30 -1	ug/l	GD1002
				NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDJ005
				N9	1,1,2-Trichloroethane	LT	3.90 -1	ug/l	GDI002
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDJ 005
				еии	.1,1-Dichloroethene	LT	2.40 -1	ug/l	GDJ 005
	•			н9	1,1-Dichloroethane	LT	1.70 0	ug/l	GDIOO
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDJ009
				M 9	1,2-Dichloroethene	LT	1.70 0	ug/l	GD1002
				NH9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDJ 003
				И9	1,2-Dichloroethane	LT	5.60 -1	ug/l	GD1002
				еии	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDJ005
				И9	m-Xylene	LT	7.40 -1	ug/l	GD1002
		1		AA9	m-Xylene	LT	2.60 -1	ug/l	GDH005
				F9	Aldrin Arsenic	LT LT	3.00 -1 2.50 0	ug/l ug/l	GDG002 GDM003
				LH15	Atrazine		3.00 0	ug/1	GDF005
				L9	Atrazine	LT	3.00 -1	ug/l	GDG002
				PP9	Bicycloheptadiene		1.10 0	ug/l	GDE003
				N9	Bicycloheptadiene		3.60 -1	ug/l	GD1002
				НН9	Benzothiazole	LT	2.04 0	ug/l	GDC003
				Н9	Benzene		2.50 -1	ug/l	GD1002
				AA9	Benzene		8.50 -2	ug/l	GDH003
				Р 9	Carbon Tetrachloride		2.50 -1	ug/l	GD1002
				РИИ9	Carbon Tetrachloride		1.20 -1	ug/l	GDJ 00
				P9	Cadmium	LT	7.40 -1	ug/1	GDK00

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esuits	Units	Sample Number
a 89107	SW120056	0.2	BORE	Н9	- Methylene Chloride	LT	1.50 0	ug/1	GD1002
				NN9	Methylene Chloride	LT	3.70 0	ug/l	GDJ005
				N9	Chloroform	LT	2.90 -1	ug/l	GD1002
				· NN9	Chloroform	LT	6.80 -2	ug/1	GDJ005
				L9	Hexachlorocyclopentadiene	LT	6.00 -1	ug/l	GDG002
				N9	Chlorobenzene	LT	1.50 0	ug/l	GD1002
				ни9 .	Chlorobenzene	LT	2.00 -1	ug/1	GDJ005
		*		L9	Chlordane	LT	2.00 0	ug/l	GDG002
				L9	p-Chlorophenylmethyl Sulfide	LT	9.00 -1	ug/1	GDG002
				нн9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GDC005
				L9	p-Chlorophenylmethyl Sulfoxide	LT	3.00 -1	ug/l	GDG002 -
_				HH9	p-Chlorophenylmethyl Sulfoxide	GT	2.00 1	ug/l	GDC005
	**			L9	p-Chlorophenylmethyl Sulfone	LT	3.00 -1	ug/l	GDG002
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/1	GDC005
_				P9	Chromium	LT	6.50 0	ug/l	GDK005
				P9	Copper	LT	4.70 0	ug/l	GDK005
				\$9	Dibromochloropropane	LT	5.00 -3	ug/1	GD6005
				И9	Dibromochloropropane	LT	2.40 0	ug/l	GD1002
7 -			.*	L9	Dibromochloropropane	LT.	3.00 -1	ug/l	GDG002
			•	PP9	Dicyclopentadiene	LT	4.50 -1	ug/l	GDE005
				№9	Dicyclopentadiene	LT	6.40 -1	ug/1.	GDI002 -
	4.2			L9	Dicyclopentadiene		1.00 0	ug/l	GDG002
		•		LH15	Vapona	LT	8.00 -2	ug/l	GDF005
				L9	Vapona	LT	3.00 0	ug/l	GDG002
				L9	Diisopropylmethyl Phosphonate	LT	1.00 0	ug/l	GDG002
				TT9	Diisopropylmethyl Phosphonate		2.28 -1	ug/l	KSS006
				L9	Dithiane	LT	4.00 -1	ug/l	GDG002
				HH9	Dithiane		1.45 0	ug/l	GDC005
_				L9	Dieldrin		3.00 -1	ug/l	GDG002
				Н9	Dimethyldisulfide	LT	2.00 1	ug/l	GD1002
-				нн9	Dimethyldisulfide		3.12 0	ug/l	GDC005
				TT9	Dimethylmethyl Phosphate	LT		ug/l	KSS006
				L9	Endrin	LT	5.00 -1	ug/l	GDG002
_				N9	Ethylbenzene	LT	3.80 -1	ug/l	GD1002

Comprehensive Monitoring Program

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
				*			***************************************	anno constant de la c	
89107	SW1,2005B	0.2	STRM	AA9	Ethylbenzene	LT	1.60 -1	ug/l	GDH005
				Y9	Mercury	LT	5.00 -2	ug/l	GDLOOS
				L9	Isod rin	LT	3.00 -i	ug/l	GDG002
				N9	Toluene	LT	2.50 -1	ug/l	GD1002
				AA9	Toluene	LT	1.90 -1	ug/l	GDH005
				PP9	Methylisobutyl Ketone	LT	6.40 -1	ug/l	GDE005
				N9	Methylisobutyl Ketone	LT	7.30 -1	ug/l	GD1002
				LH15	Malathion	LT	1.26 -1	ug/l	GDF005
				L9	Malathion	LT	7.00 -1	ug/1	GDG002
ł				L9	1,4-Oxathiane	LT	3.00 -i	ug/l	GDG002
				нн9	1,4-Oxathiane	LT	1.74 0	ug/l	GDC005
				P9	Lead	LT	6.40 0	ug/l	GDK005
				L9	Dichlorodiphenylethane	LT	6.00 -1	ug/l	GDG002
				L9 .	Dichlorodiphenyltrichloro- ethane	LT	5.00 -1	ug/l	GDG002
				LH15	Parathion	LT	1.59 -1	ug/l	GDF005
				L9	Parathion	LT	9.00 -1	ug/l	GDG002
				LH15	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.48 -1	ug/l	GDF005
					Vinyldiethyl Phosphates				
				L9	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	6.001	ug/l	GDG002 -
				Н9	Tetrachloroethene	LT	2.50 -1	ug/l	GD1002
				NN9	Tetrachloroethene	LŢ.	2.70 -1	ug/l	GDJ005
			2.44	. НЭ	Trichloroethene	LT	5.40 -1	ug/l	GD1002
				NN9	Trichloroethene	LT	1.40 -1	ug/l	GDJ005
				N9	Ortho- & Para-Xylene	LT	4.90 0	ug/l	GD1002
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GDH005
				P9	Zinc		5.61 1	ug/l	GDK005
89130	SW12005ST	0.2	STRM	TT8	1,1,1-Trichloroethane		1.09 0	ug/l	GBY007
				UU8	1,1,1-Trichloroethane	LT	2.40 0	ug/1	GSH006
				TT8	1,1,2-Trichloroethane	LT	1.63 0	ug/l	GBY007
				UU8	1,1,2-Trichloroethane	LT	1.60 0	ug/l	GSH006
				TT6	1,1-Dichloroethene	LT	1.85 0	ug/l	GBY007

R. L. Stollar and Associates

Summary of Analytical Results . Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Units	Sample . Number
				*************************				_	4.4	
69130	SW12005ST	0.2	STRM		1,1-Dichloroethane	LT	1.93		ug/1	GBY007
<u> </u>				UU8	1,1-Dichloroethane	LT	1.40		ug/l	GSH006
,				TTS	1,2-Dichloroethene	LT	1.75		ug/l	GBY007
_				UU8	- 1,2-Dichloroethene	LT	3.20		ug/1	GSH006
i				TTE	1,2-Dichloroethane	LT	2.07	0	ug/l	GBY007
ļ				UU8	1,2-Dichlorcethane	LT	7.20	1	ug/l	GSH006
				UM18	1,3-Dichlorobenzene	LT	1.70		ug/l	PHF004
				\$\$8	m-Xylene	LT	1.04		ug/l	GAX007
j				UU 8	m-Xylene	LT	2.90		ug/l	GSH006
				UM18	Aldrin	ND	4.70		ug/l	PHF004
				VV8	Arsenic	LT	2.50	0	ug/l	GH0020
				UU8	Bicycloheptadiene	LT	1.60		ug/1	GSH006
				PP6A	Benzothiazole	LT	1.14		ug/1	GIQ010
				SS8	Benzene	LT	1.92	0	ug/1	GAX007
				uua	Benzene	LT	2.70		ug/l	GSH006
1				TT8	Carbon Tetrachloride	LT	1.69	0	ug/l	GBY007
1				UU3	Carbon Tetrachloride	LT	4.90		ug/l	GSH006
				R9D	Cadmium	LT	5.00		ug/1	QSD007
l .				TTB	Methylene Chloride	LT	2.48		ug/l	GBY007
j				UU8	Methylene Chloride	ND	5.00		ug/l	GSH006
				TT6	Chloroform	LT	1.66	0	ug/l	GBY 0 07
A		,2		UU8	Chloroform	LT	1.70	0	ug/1	GSH006
				NN6	Chloride		1.81	4	ug/1	GJK007
				UM18	Hexachlorocyclopentadiene	LT	8.60	0	ug/1	PHF004
				TT6	Chlorobenzene	LT	1.36	0	ug/l	GBY007
				UU6	Chlorobenzene	LT	1.80	0	ug/l	GSH006
ł				PP8A	p-Chlorophenylmethyl Sulfide	LT	1.00	0	ug/1	GIQ010
				PP8A	p-Chlorophenylmethyl Sulfoxide	LT	1.98	0	ug/1	GIQ010
				PP8A	p-Chlorophenylmethyl Sulfone	LT	2.24	0	ug/l	GIQ010
1				R9D	Chromium	LT	2.20	1	ug/1	QSD007
j				R90	Copper	LT	1.00	1	ug/l	QSD007
				TF18	Cyanide	LT	2.50	0	ug/1	LCN006
				Q 8	Dibromochloropropane	LT	1.30	-1	ug/l	GKU021
					Dibromochloropropane		5.60		ug/l	GSH006

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
	***************************************		***************************************			***************************************		****	
89130	SW12005ST	0.2	STRM	Ra ·	Dicyclopentadiene	LT	9.31	0 -ug/l.	GXA021
				R8	Dicyclopentadiene	LT	9.31	0 ug/l	GXA022
				UU6	Dicyclopentadiene	LT	3.70	0 ug/l	GSH006
				ଭ ଭ୍ରତ	Diisopropylmethyl Phosphonate	LT	1.01	1 ug/l	GGS007
				PP8A	Dithiane	LT	3.34	0 ug/l	GIQO10
				UM18	Dieldrin	ND	4.70	0 ug/l	PHF004
				PP6A	Dimethyldisulfide	LT	1.16	0 ug/l	GIQ010
				nne .	Dimethyldisulfide	LT	3.70	0 ug/l	GSHOO6
				ପ୍ରପ୍ରଚ	Dimethylmethyl Phosphate	LT	1.63	1 ug/l	GGS007
				UM18	Endrin	ND	7.60	0 ug/l	PHF004
				\$\$8	Ethy] benzene	LT	6.20 -	1 ug/l	GAX007
				UU8	Ethylbenzene	LT	2.40	0 ug/l	GSH006
				вии	Fluoride	LT	1.00	3 ug/l	GJK007
			* .	WW8	Mercury	LT	5.00 -	1 ug/l	GWA010
				XX8	Potassium		5.05	3 ug/l	DYW007
				.558	Toluene	LT	2.10	0 ug/l	GAX007
				UU8	Toluene	LT	3.50		GSH006
				R6	Methylisobutyl Ketone	LT	1.29	1 ug/l	GXA021
			***************************************	- R8	Methylisobutyl Ketone	LT	1.29		G)(A022
			,	UU6	Methylisobutyl Ketone	LT	1.20	0 ug/l	GSH006
				TF22	Nitrite, Nitrate - Non specific		1.60	3 ug/l	PCD017
				UM18	N-Nitrosodimethylamine	ND	2.00	0 ug/l	PHF004
				UM18	N-Nitrosodi-N-Propylamine	LT	4.40	0 ug/l	PHF004
			v	PP8A	1,4-Oxathiane	LT	1.35	0 ug/l	G10010
				R9D	Lead	LT	5.20	1 ug/l	QSD007
				UM18	Dichlorodiphenylethane	ND	4.70	0 ug/l	PHF004
				MMBA	Dichlorodiphenyltrichloro- ethane	LT	5.90 ~	2 ug/l	GPL013
				UM18	Dichlorodiphenyltrichloro- ethane	ПD	9.20) ug/l	PHF004
				UN07	Parathion	LT	2.50 -	1 ug/l	PGB007
				нив	Sulfate		2.44	4 ug/l	GJK007
				TT6	Tetrachloroethene	LT	2.76	0 ug/1	GBY007

R. L. Stollar and Associates

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	R€	sults	Units	Sample Number
00170	CUIORATET	0.2	STRM	TTa	Trichloroethene	. 17	1.31 0	ug/l	GBY007
89130	SW12005ST	0.2	SIRT	UUS	Trichloroethene	LT	2.00 0	ug/l	GSH006
				558	Ortho- & Para-Xylene	LT	1.34 0	ug/l	GAX007
				UU8	Ortho- & Para-Xylene	LT	2.40 0	ug/1	GSH006
				R90	Zinc		2.73 1	ug/1	QSD007
				1120					
89138	SW24001	0.0	STP	МӘ	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GLY012
				UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/1	GLL009
				NB	1,1,2-Trichloroethane	LT	7.60 -1	ug/1	GLY012
				UMZ1	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GLL009
				88	1,1-Dichloroethene	LT	1.70 0	ug/l	GLY012
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/1	GLL009
				И8	1,1-Dichloroethane	LT	7.30 -1	ug/1	GLY01
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GLL00
				18M	1,2-Dichloroethene	LT	7.60 -1	ug/l	GLY01
			b ***	UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GLL009
				ка	1,2-Dichloroethane	LT	1.10 0	ug/l	GLY01
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GLL009
		**		UM21	1,2-Dichloropropane	LT	1.00 0	_ua/l	GLL00
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	GLLOO
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	GLL009
				UM21	m-Xylene	LT	1.00-0	ug/l	GLL009
				AV8	m-Xylene	LT	1.32 0	ug/l	GLZ012
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GLL009
	•			UM21	Acrylonitrile	LT	8.40 0	ug/1	GLL009
				KK8	Aldrin	LT	5.00 -2	ug/l	GLH01
				UM25	Aldrin	LT	1.30 1	ug/l	GMR003
				00	ALKALINITY		1.48 2	ug/l	GMK010
				AX8	Arsenic (filtered)		2.90 1	ug/l	GLP01
				UH11	Atrazine		4.03 0	ug/l	GLG01
				UM25	Atrazine	LT	5.90 0	ug/l	GMR00
				P 8	Bicycloheptadiene		5.90 0	ug/l	GLF018
				UM21	Bromodichloromethane	LT	1.00 0	ug/l	GLL009
•				AAA8	Benzothiazole	LT	5.00 0	ug/l	GLJ01

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Re	esults	Units_	Sample Number	
00170	CUD ABBA	0.0	STP	UM21	Vinyl Chloride	LT	1.20 1	ug/l	GLL009	
89138	SW24001	0.0	211	UM21	Chloroethane	LT	8.00 0	ug/l	GLL009	
				UM21	Benzene	LT	1.00 0	ug/l	GLL009	
				AV8	Benzene	LT	1.05 0	ug/1	GLZ012	
				GG8	Calcium (filtered)		3.67 4	ug/l	GL0020	
				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	GLL 0 09	
		- •		на	Carbon Tetrachloride	LT	9.90 -1	ug/l	GLY012	
				UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	GLL009	
				GG8	Cadmium (filtered)	LT	8.40 0	ug/1	GL0020	
				МЗ	Methylene Chloride	LT	7.40 0	ug/l	GLY012	
į				UM21	Methylene Chloride	LT	1.00 0	ug/l	GLL 00 9	
				UM21	Bromomethane	LT	1.40 1	ug/l	GLL009	
				UM21	Chloromethane	LT	1.20 0	ug/l	GLL009	
				UM21	Bromoform	LT	1.10 1	ug/l	GLL009	
				H8	Chloroform	LT	5.00 -1	ug/l	GLY012	
				UM21	Chloroform	LT	1.00 0	ug/l	GLL009	
		•	•	HH8A	Chloride		4.70 4	ug/1	GLN017	
				KK8	Hexachlorocyclopentadiene	LT	4.60 -2	ug/l	GLH013	
				UM25	Hexachlorocyclopentadiene	LT	5.40 1		GMR003	
				N8	Chlorobenzene	LT	6.20 -1	ug/l	GLY012	
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GLL009	
				KK8	Chlordane	LT	9.50 -2	ug/l	GLH013	
				UM25	Chlordane	LT	3.70 1	-ug/1	GMR003	
			÷ 1.	AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GLJ014	
				UM25	p—Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GMR003	
_				AAAS	p—Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GLJ014	
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GMR003	
				A AA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GLJ014	
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GMR003	
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GL0020	
•				G G8	Copper (filtered)	LT	2.60 1	ug/l	GL0020	
				TF20	Cyanide		5.00 0	ug/l	GLM006	
				AY8	Dibromochloropropane		1.95 -1	ug/l	GLI014	
•				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GMR003	

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number -
69138	SW24001	0.0	STP	UM21	Dibromochloromethane	LT	1.00 0	ug/l	GLL009
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/1	GLL009
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GLF018
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GMR003
				UH11	Vapona	LT	3.84 -1	ug/l	GLG013
				UM25	Vapona	LT	6.50 0	ug/l	GMR003
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/1	GLK017
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GMR003
				AAAS	Dithiane	LT	1.34 0	ug/l	GLJ014
				UM25	Dithiane	LT	3.30 0	ug/l	GMR003
				KK8	Dieldrin	LT	5.00 -2	ug/l	GLH013
				UM25	Dieldrin	LT	2.60 1	ug/l	GMR003
		,		AAAA	Dimethyldisulfide	LT	5.50 -1	ug/1	GLJ014
				ATA	Dimethylmethyl Phosphate	LT	1.68 -1	ug/l	GLK017
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GMR003
				KK8	Endrin	LT	5.00 -2	ug/l	GLH013
_				UM25	Endrin	LT	1.80 1	ug/l	GMROO3
		**		UM21	Ethylbenzene	LT	1.00 0	ug/l	GLL009
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GLZ012
				HH6A	Fluoride		1.16 3	ug/l	GLN017
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GML033
		** *		KK8	Isodrin	LT	5.10 -2	ug/l .	GLH013
				UM25	Isodrin	LT	7.80 0	ug/l	GMR003
				GG8	Potassium (filtered)		4.79 3	ug/l	GL0020
				UM21	Toluene	LT	1.00 0	ug/l	GLL009
_				AV8	Toluene	LT	1.47 0	ug/l	GLZ012
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GLL009
				GG8	Magnesium (filtered)		1.18 4	ug/l	GL0020
_				P8	Methylisobutyl Ketone		4.90 0	ug/l	GLF016
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GLL009
				UH11	Malathion		3.73 -1	ug/1	GLG013
				UM25	Malathion	LT	2.10 1	ug/l	GMR003
				GG8	Sodium (filtered)		7.60 4	ug/l	GL0020
_				LL6	Nitrite, Nitrate - Non specific		4.40 3	ug/l	GMZ006

01/10/90

Summary of Analytical Result:

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Ře	esults	Units	Sample Number
69138	SW24001	0:0	STP	AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GLJ014
				UM25	1,4-0xathiane	LT	2.70 1	ug/l	GMR000
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GL0020
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	GLH013
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GMROOT
,				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GLH013
				UM25	Dichlorodiphenyltrichloro-	LT	1.80 1	ug/1	GMR003
				1 11.24 1	ethane Darathion	LT	6.47 -1	ug/l	GLG013
				UH11	Parathion - Parathion	LT	3.70 1	ug/l	GMR001
				UM25 HH8A	Sulfate	h. I	6.90 4	ug/l	GLN01
				UH11	2-Chloro-1(2,4-Dichlorophenyl)	LT	7.87 -1	ug/l	GLG01
					Vinyldiethyl Phosphates		4 00 4		0 H/0 0 0
				UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/l	GMR00
				1.04724	Vinyldiethyl Phosphates	, T	1 50 A	()	GLL00
				UM21	1,1,2,2-Tetrachloroethane Tetrachloroethene	LT	7.50 0	ug/l ug/l	GLY01:
				N8 UM21	Tetrachloroethene	LT	1.00 0	ug/l	GLL00
				ви	Trichloroethene	LT	5.60 -1	ug/l	GLY01:
				UM21	Trichloroethene	LT	1.00 0	ug/l	GLL00
		: .		UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GLL00
		•		AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GLZ01
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GL002
					a a a water la la constitue a	1 790		(1	CLVA1
89138	SW24001D	0.0	STP	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GLY01
				UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GLL010
				N6	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GLY013
				UM21	1,1,2-Trichloroethane		1.00 0	ug/l	GLL01
				М8	1,1-Dichloroethene	LI	1.70 0	ug/l	GLY01
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GLL01
				N6	1,1-Dichloroethane	LT	7.30 -1	ug/l	GLY01
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GLL01
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	GLY01
				UM21	1,2-Dichloroethene	1 7	5.00 0	ug/l	GLL01

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	~ Method	Analytical Parameters	Re	esults	Units	Sample Number=
		<u> </u>				, yet addition to the second			***************************************
89138	SW24001D	0.0	STP	. N8	1,2-Dichloroethane	LT	1.10 0		GLY013
				UM21	1,2-Dichloroethane	LT	1.00 0		GLL010
				UM21	1,2-Dichloropropane	LT	1.00 0		GLL010
				UM21	1,3-Dichlorobenzene	LT	1.00 0	-	-GLL010 -
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	GLL 010
				UM21	m-Xylene	LT	1.00 0	ug/l	GLL010
				AV8	m-Xylene	LT	1.32 0	ug/1	- GLZ013
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/1	GLL010
				UM21	Acrylonitrile	LT	8.40 0	ug/1	GLL010
				KK8	Aldrin	LT	5.00 -2	ug/l	GLH014
				UM25	Aldrin	LT	1.30 1	ug/l	GMR004
				00	ALKALINITY		1.48 2	ug/l	GMK011
				AX8	Arsenic		2.58 1	ug/1	GLP018
				UH11	Atrazine	LT	4.03 0	ug/l	GLG014
				UM25	Atrazine	LT	5.90 0	ug/1	GMR004
				P6	Bicycloheptadiene	LT	5.90 0	ug/l	GLF019
				UM21	Bromodichloromethane	LT	1.00 0	ug/1	GLL010
				AAA8	Benzothiazole	LT	5.00 0	ug/1	GLJ015
		950		UM21	Vinyl Chloride	LT	1.20 1	ug/1	~GLL010~
				UM21	Chloroethane	LT	8.00 0	ug/l	GLL010
				UM21	Benzene	LT	1.00 0	ug/l	GLL010
				AV8	Benzene	LT	1.05 0	ug/1	GLZ 01 3
				GG8	Calcium		3.84 4	ug/l	GL0021
				UM21 ::	Trichlorofluoromethane	LT	1.00 0	ug/1	GLL010
				N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	GLY01-3
				-UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	GLL010
				GG8	Cadmium	LT	8.40 0	ug/l	GL0021
				И8	Methylene Chloride	LT	7.40 0	ug/l	GLY013
				UM21	Methylene Chloride	LT	1.00 0	ug/l	GLL010
				UM21	Bromomethane	LT	1.40 1	ug/l	GLL010
				UM21	Chloromethane	LT	1.20 0	ug/l	GLL010
				UM21	Bromoform	LT	1.10 1	ug/l	GLL010
				NB	Chloroform	LT	5.00 -1	ug/l	GLY013
				UM21	Chloroform	LT	1.00 0	ug/1	GLL010

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	method	Analytical Parameters	Re	sults	Units	Sample Number
89138	SW24001D	0.0	- STP	HH8A	Chloride		4.60 4	ug/l	GLN018
09130	W2.40030	0.0		KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GLH014
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GMR004
				NS	Chlorobenzene	LT	8.20 -1	ug/l	GLY013
				UM21	Chlorobenzene	LT	1.00 0	ug/l	GLL010
				KK8	Chlordane	LT	9.50 -2	ug/l	GLH014
				UM25	Chlordane	LT	3.70 1	u9/l	GMR004
				A AA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	.ug/l	GLJ015
Í				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/1	GMR004
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GLJ015
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GMR004
				AAAA	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/1	GLJ015
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/1	GMRO04
				GG8	Chromium	LT	2.40 1	ug/1	GL0021
				GG8	Copper	LT	2.60 1	ug/l	GL0021
				TF20	Cyanide	LT	5.00 0	ug/l	GLM007
				AY8	Dibromochloropropane	LT	1.95 -1	ug/1	-GLI015
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GMR004
			W	UM21	Dibromochloromethane	LT	1.00 0	ug/l	GLL010
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GLL010
			No. 2	P6	Dicyclopentadiene	LT	5.00 0	ug/l	GLF019
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GMR004
				UH11	Vapona	LT	3.84 -1	ug/l	GLG014
}				UM25	Vapona	LT	8.50 0	ug/l	GMR004
				AT6	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GLK018
				-UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GMR004
				AAA8	Dithiane	LT	1.34 0	ug/l	GLJ015
				UM25	Dithiane	LT	3.30 0	ug/l	GMR004
				KK8	Dieldrin	LT	5.00 -2	ug/l	GLH014
				UM25	Dieldrin	LT	2.60 1	ug/l	GMROO4
!				AAA8	Dimethyldisulfide	LT		ug/l	GLJ015
				STA	Dimethylmethyl Phosphate	LT	1.68 -1	ug/l	GLK018
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GMR004
				KK8	Endrin	LT	5.00 -2	ug/1	GLH014

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
_ 69138	SW24001D	0.0	STP	UM25	Endrin	LT	1.80 1	ug/l	GMR004
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GLL010
				AV8	Ethylbenrene	LT	1.37 0	ug/l	GLZ013
				HH8A	Fluoride		1.10 3	ug/l	GLN018
				633	Mercury	LT	1.00 -1	ug/l	GML034
				KK8	Isodrin	LT	5.10 -2	ug/l	GLH014
ì		·		UM25	Isodrin	LT	7.80 0	ug/1	GMR004
				GG8	Potassium		4.73 3	ug/1	GL0021
				UM21	Toluene	LT	1.00 0	ug/l	GLL010
				AV8	Toluene	LT	1.47 0	ug/l	GLZ013
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GLL010
				GG8	Magnesium		1.24 4	ug/l	GL0021
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	GLF019
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GLL010
				UH11	Malathion	LT	3.73 -1	ug/l	GLG014
				UM25	Malathion	LT	2.10 1	ug/l	GMR004
				GG8	Sodium		7.36 4	ug/l	GL0021
_				LL6	Nitrite, Nitrate - Non specific		4.40 3	ug/1	GMZ007
				AAA 6	1,4-Oxathiane	LT	2.38 0	ug/l	GLJ015
	•			UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GMR004
Ì				GG8	Lead	LT	7.40 1	ug/l	GL0021
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GLH014
	•			UM25	Dichlorodiphenylethane	LT	1.40 1	ug/1	GMR004
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GLH014
				UM25	Oichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GMROO4
				UH11	Parathion	LT	6.47 -1	ug/l	GLG014
				UM25	Parathion	LT	3.70 1	ug/l	GMR004
				HH8A	Sulfate		6.90 4	ug/1	GLN018
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GLG014
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GMR004

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
- 69138	SW24001D	0.0	STP	- UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	·ug/1 ·	GLL010
09130	54240010	0.0	211	M8	Tetrachloroethene	LT	7.50 -1	ug/1	GLY013
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GLL010
				N8	Trichloroethene	LT	5.60 -1	ug/1	GLY013
				UM21	Trichloroethene	LT	1.00 0	ug/l	GLL010
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GLL010
			at a	AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GLZ013
				GGS	Zinc	LT	2.20 1	ug/l	GL0021
<u>~</u> 69111	SW24002	0.1	STRM	Uri21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GDX003
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/1	GDX002
				UM21	1,1-Dichloroethene	LT	1.00 - 0	ug/1	GDX002
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GDX002
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GDX002
				Um22	1,2-Dichloroethane	LT	1.00 0	ug/l	GDX002
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/1	GDX002
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/1	GDX002
	* *			UM21	1,3-Dichloropropane	LT	4.80 0	ug/1	GDX002
				UM21	m-Xylene	LT	1.00 0	ug/1	GDX002
				AV8	m-Xylene	LT	1.32 0	ug/l	GCS016
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GDX002
		at:		UM21	Acrylonitrile	LT	8.40 0	ug/l	GDX002
				UM25	Aldrin	LT	1.30 1	ug/l	GDZ002
				KK8	Aldrin	LT	5.00 -2	ug/l	GEG005
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GF1005
				AX8	Arsenic	LT	2.35 0	ug/l	GFI006
_				UM25	Atrazine	LT	5.90 0	ug/l	GDZ002
				UH11	Atrazine	LT	4.03 0	ug/l	GEJ005
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GE1005
				UM21	Bromodichloromethane		1.00 0	ug/l	GDX002
				UM21	Vinyl Chloride	LT	1.20 1	ug/l	GDX002
				UM21	Chloroethane	LT		ug/l	GDX002
				UM21	Benzene	LT		ug/l	GDX002
				AV8	Benzene	LT	1.05 0	ug/l	GC\$016

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Re	esults		Units	Sample Number
224	~1.0.40.00	n 6 .	**************************************	000	Calcium (filtered)		8.93	4	ug/l	GEP011
89111	SW24002	0.1	STRM	GG8 GG8	Calcium (filtered) Calcium		8.84		ug/1	GEP012
				UM21	Trichlorofluoromethane	LT	1.00		ug/l	GDX002
				UM21	Carbon Tetrachloride	LT	1.00		ug/l	GDX002
				GG8	Cadmium (filtered)	LT	8.40		ug/l	GEP011
				GG8	Cadmium	LT	8.40	0	ug/l	GEP012
				UM21	Methylene Chloride	LT	1.00	0	ug/1	GDX002
				UM21	Bromomethane	LT	1.40	1	ug/l	GDX002
				UM21	Chloromethane	LT	1.20	0	ug/l	GDX002
				UM21	Bromoform	LT	1.10	1	ug/l	GDX002
				UM21	Chloroform	LT		0	ug/l	GDX002
				HHSA	Chloride		5.40		ug/l	GCK016
				KK8	Hexachlorocyclopentadiene	LT	4.80		ug/l	GEGO05
				UM21	Chlorobenzene	LT	1.00		ug/l	GDX002
				UM25	Chlordane	LT	3.70	1	ug/l	GDZ002
				KK8	Chlordane	LT	9.50	-2	ug/1	GEGO05
		·. r		UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1	ug/l	GDZ002
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1	ug/1	GDZ002
		WAS TO SEE		UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0	ug/1	GDZ002
				822	Chromium (filtered)	LT.	2.40	1	ug/l	GEP011
				GG8	Chromium	LT	2.40	1	ug/l	GEP012
				GG8	Copper (filtered)	LT	2.60	1	ug/l	GEP011
				GGS	Copper	LT	2.60	1	ug/1	GEP012
				TF20	Cyanide	LT	5.00	0	ug/1	GCR016
			•	AY8	Dibromochloropropane	LT	1.95	-1	ug/l	- GEE003
		15		UM25	Dibromochloropropane	LT		1	ug/l	GDZ002
				UM21	Dibromochloromethane	LT	1.00		ug/l	GDX002
				UM21	1,4-Dichlorobenzene		2.00		ug/l	GDX002
				P8	Dicyclopentadiene		5.00		ug/l	GEI005
				UM25	Dicyclopentadiene	LT	5.50	0	ug/l	GDZ002
				UM25	Vapona	LT	6.50		ug/l	GDZ002
				UH11	Vapona		6.60		ug/1	GEJ009
				UM25	Diisopropylmethyl Phosphonate		2.10		ug/l	GDZ002
				AT8	Diisopropylmethyl Phosphonate	LT	3.92	-1	ug/1	GEH005

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	F/s	esults	Units	Sample Number
69111	SW24002	0.1	STRM	UM25	Dithiane	LT	3.30 0	ug/l	GDZ002
ODILL	JY2.7002	W 2. A	* // 11 11	UM25	Dieldrin	LT	2.60 1	ug/l	GDZ002
				KK8	Dieldrin	LT	5.00 -2	ug/1	GEG005
				UM21	Acetone	LT	8.00 0	ug/l	GDX002
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GDZ002 ·
				ATS	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GEH005
				UM25	Endrin	LT	1.80 1	ug/1	GDZ002
				KK8	Endrin	LT	5.00 -2	ug/1	GEGOO5
				UM21	Ethylbenzene	LT	1.00 0	ug/l	GDX002
				AVS	Ethylbenzene	LT	1.37 0	ug/l	GCS016
				ннаа	Fluoride		1.63 3	ug/l	GCK016
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN031
				CC8	Mercury	LT	1.00 -1	ug/l	GCN032
				UM25	Isodrin	LT	7.80 0	ug/1	GDZ002
				KK8	Isodrin	LT	5.10 -2	ug/l	GEGOO5
				ece	Potassium (filtered)		3.94 3	ug/l	GEP011
				GG8	Potassium		4.01 3	. ug/l	GEP012
				UM21	Toluene	LT	1.00 0	ug/l	GDX002
				AV8	Toluene	LT	1.47 0	ug/1	
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GDXOO2
				GG8	Magnesium (filtered)		2.93 4	ug/l	GEP011
				GG8	Magnesium			ug/l	GEP012
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/1	GDX002
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GEIOO5
				UM25	Malathion	LT	2.10 1	ug/l	GDZ002
				UH11	Malathion	LT	3.73 -1	ug/l	GEJ00S
				GG8	Sodium (filtered)		1.20 5	ug/l	GEP011
				GG8	Sodium		1.20 5	ug/l	GEP012
				LL8	Nitrite,Nitrate - Non specific		6.74 1	ug/l	GCL016
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GDZ002
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP011
				GG8	Lead	LT	7.40 1	ug/l	GEP012
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GDZ002
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	GEG005

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample · Type ·		Analytical Parameters	Re	esults	Units	Sample - Number
89111	SW24002	.0.1	STRM	UM25	Dichlorodiphenyltrichloro-	LT	1.80 1	ug/l	G0Z002
					ethane				
				KK8 "	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/l	GEG005
_					ethane				
				UM25	Parathion		3.70 1	ug/l	GDZ002
				UH11	Parathion	LT	6.47 -1	ug/l	GEJ005
				HH8A	Sulfate		2.30 5	ug/l	GCK016
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1,90 1	ug/l	GDZ002
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ005
				UM21	1.1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GDX002
				UM21	Tetrachloroethene	LT	1.00 0	ug/1	GDX002
8				UM21	Trichloroethene	LT	1.00 0	ug/1	GDX002
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GDX002
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS016
				GG8	Zinc (filtered)		2.20 1	ug/l	GEP011
5				GG8	Zinc	LT	2.20 1	ug/l	GEP012
							× 00 0	23	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
89111	SW24002	3.0	STRM	AAA8	Benzothiazole	LT	5.00 0	ug/1	GEF005
				AAA6	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GEF005
				AAA6	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	- GEFOOS
				aaa8 aaa8	p-Chlorophenylmethyl Sulfone Dithiane	LT LT	7.46 0 1.34 0	ug/l ug/l	GEF005
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GEF005
				AA A6	1,4-Oxathiane	LT	2.38 0	ug/l	GEF005
69114	SW24002	0.1	STRM	00	ALKALINITY		2.99 2	ug/l	GCJ016
69111	SW24002B	0.2	STRM	нн 9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDY006
,				PN 9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDY006
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/1	GDY006
				РИ9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDY006
				NN9	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDY006
				AA9	m-Xylene	LT	2.60 -1	ug/l	GDW006
					Aldrin		1.90 -3	ug/l	GEB005

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
				Accessed the contract of the c			·····		
89111	SW24002B	0.2	STRM	KK9A	Aldrin	LT	1.90 -3	ug/l	GEB006
				B9	Arsenic	LT	2.50 0	ug/l	GDM018
				LH15	Atrazine	LT	1.54 -1	ug/l	GEA006
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKX008
				HH9	Benzothiazole	LT	2.04 0	ug/l	GEC012
				AA9	Benzene	LT	8.50 -2	ug/l	GDW006
				PMM	Carbon Tetrachloride	LT	1.20 -1	ug/l	GDY006
				P9	Cadmium	LT	7.40 -1	ug/1	GDK018
				NN9	Methylene Chloride	LT	3.70 0	ug/l	GDY006
				M M9	Chloroform	LT	6.80 -2	ug/l	GDY006
				KK9A	Hexachlorocyc lopentadiene	LT	1.80 -3	ug/l	GEBOOS
				KK9A	Hexachlorocyclopentadiene	LT	1.80 -3	ug/l	GE8006
				PNN9	Chlorobenzene	LT	2.00 -1	ug/1	GDY006
				KK9A	Chlordane	LT	2.30 -2	ug/l	GEB005
				KK9A	Chlordane	LT	2.30 -2	ug/l	GEB006
				H H9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GEC012
				HH9	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/1	GEC012
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/1	GEC012
				P9	Chromium		1.28 1	ug/l	GDK018
				P9	Copper		1.15 1	ug/l	GDK018
				S 9	Dibromochloropropane	LT	5.00 -3	ug/l	GED006
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKX008
				LH15	Vapona	LT	8.00 -2	ug/1	GEA006
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KST007
				HH9	Dithiane	LT	1.45 0	ug/l	GEC012
				KK9A	Dieldrin	LT	3.30 -3	ug/l	GEBO05
				KK9A	Dieldrin	LT	3.30 -3	ug/l	GEB006
				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GEC012
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KST007
				KK9A	Endrin	ĻT	5.80 -3	ug/l	GEB005
				KK9A	Endrin	LT	5.80 -3	ug/l	GEB006
				AA 9	Ethylbenzene	LT	1.60 -1	ug/l	GDW006
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRR010
				Y9	Mercury	LT	5.00 -2	ug/1	GDL018

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Ř	e s ults	Units	Sample Number
89111	SW240026	0.2	STRM	AAA9	Isopropylmethyl Phosphonic	LT	2.11 0	ug/l	KRR010
					Acid	. ***	4 40 "		CEDAAE
,				KK9A	Isodrin		1.10 -3	ug/l	GEBOOS
				KK9A	Isodrin	LT	1.10 -3	ug/l	GE6006
				AA9 ZZ9	Toluene Methylisobutyl Ketone	LT LT	1.90 -1 5.24 0	ug/l ug/l	IKXOD8
				LH15	Malathion	LŢ	1.26 -1	ug/l	GEA006
				HH9	1,4-0xathiane	LT	1.74 0	ug/1	GEC012
				P 9	Lead		1.99 1	ug/l	GDK018
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/l	GE8005
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/l	GEB 00 6
				KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/l	GEB005
				KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/l	GEBOO6
				LH15	Parathion	LT	1.59 -1	ug/l	GEA006
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GEA006
				еии	Tetrachloroethene	LT	2.70 -1	ug/l	GDY006
				инэ	Trichloroethene	LT	1.40 -1	ug/l	GDY006
		•		AA 9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GDW006
				P9	Zinc		4.54 1	ug/l	GDK018
89111	SW24002BD	0.2	STRM	ииэ	1,1,1-Trichloroethane	LT	6.80 -2	ug/l	GDY005
				NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDY006
				PM9	1,1,2-Trichloroethane	LT	2.60 -1	ug/1	GDY005
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDY005
				еии	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDY005
				ииэ	1,2-Dichloroethene		2.60 -1	ug/l	GDY005
				NN9	1,2-Dichloroethane		8.50 -2	ug/l	GDY005
				AA9	m-Xylene		2.60 -1	ug/1	GDW005
				B9 LH15	Arsenic Atrazine	LT LT	2.50 0 1.54 -1	ug/l ug/l	GDM011 GEA005
				ZZ9	Bicycloheptadiene		5.08 0	ug/l	IKX009
				HH9	Benzothiazole	LT	2.04 0	ug/l	GEC005

Comprehensive Monitoring Program

Summary of Analytical Results Surface Water Samples for Spring 89

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Mumber
89111	SW24002ED	0.2	STRM	AA9	Benzene	. LT	8.50 -2	ug/l	GDW005
92111	247410700	υ	STMI	NN9	Carbon Tetrachloride	LT	1.20 -1	ug/l	GDY005
				P9	Cadmium	LT	7.40 -1	ug/l	GDK011
				NN9	Methylene Chloride		3.70 0	ug/l	GDY005
				им9	Chloroform	LT		ug/l	GDY005
		***		еии	Chlorobenzene	LT	2.00 -1	ug/l	GDY005
		•		HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GEC005
				нн9	p-Chlorophenylmethyl Sulfoxide	GT	2.00 1	ug/l	GEC005
				нн9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	· ug/l	GEC005
				P9	Chromium	LT	6.50 0	ug/l	GDK011
				P9	Copper		1.08 1	ug/l	GDK011
				\$9	Dibromochloropropane	LT	5.00 -3	ug/1	GED005
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/1	IKX009
				LH15	Vapona	LT	8.00 -2	ug/l	GEA005
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KST008
				нн9	Dithiane	LT	1.45 0	ug/l	GEC005
				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GEC005
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/1	KST008
				AA9	Ethylbenzene	LT	1.60 -1	ug/1	GDW00.5
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRR011
				Y 9	Mercury	LT	5.00 -2	ug/l	GDL011
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRR011
				AA9	Toluene	LT	1.90 -1	ug/l	GDW005
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/1	IKX009
				LH15	Malathion	LT	1.26 -1	ug/l	GEA005
				HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GEC005
				P9	Lead		8.40 0	ug/l	GDK011
				LH15	Parathion		1.59 -1	ug/l	GEA005
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GEA005
				РИН	Tetrachloroethene	LT	2.70 -1	ug/l	GDY005
				Н ИЭ	Trichloroethene	LT	1.40 -1	ug/l	GDY005
				AA 9	Ortho- & Para-Xylene	LT	3.90 -1	ug/1	GDW005

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	ř: (************************************	esults ·	Units	Sample ·
89111	SW24002BD	0.2	STRM	P9 .	Zinc		3.39 1	ug/l	GOK011
89135	SW24002ST	0.2	STRM	ИВ	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GJU015
				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	-GJU015
				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	GJU015
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	GJU015
_				NB	1,2-Dichloroethene	LT	7.60 -1	ug/l	GJU015
				N6	1,2-Dichloroethane	LT	1.10 0	ug/l	GJU015
				AV8	m-Xylene	LT	1.32 0	ug/1	GJT015
				KK8	Aldrin	LT	5.00 -2	ug/1	GJV008
				UM25	Aldrin	LT	1.30 1	ug/l	GKW003
				00	ALKALINITY		2.88 2	ug/l	GMK006
				AX8	Arsenic	LT	2.35 0	ug/l	GKF022
				UH11	Atrazine	LT	4.03 0	ug/1	GJX008
				UM25	Atrazine	LT	5.90 0	ug/1	GKW003
				P6	Bicycloheptadiene	LT	5.90 0	ug/l	GKC013
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GJY008
				AV8	Benzene	LT	1.05 0	ug/l	GJT015
				GG8	Calcium (filtered)		8.46 4	ug/l	GKB014
				N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	GJU015
_				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GKB014
				H8	Methylene Chloride	LT	7.40 0	ug/l	GJU015
_		•		NS	Chloroform	LT	5.00 -1	ug/l	GJU015
				HHBA	Chloride		4.80 4	ug/l	GKH020
		•		KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GJV008
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/1	GKW003
				N8	Chlorobenzene	.LT	8.20 -1	ug/l	GJU015
				KK8	Chlordane		9.50 -2	ug/l	GJV008
				UM25	Chlordane	LT	3.70 1	ug/l	GKW003
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GJY008
				UM25	p-Chlorophenylmethyl Sulfide		1.00 1	ug/l	GKW003
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 i	ug/l	GJY008
				UM25	p-Chlorophenylmethyl Sulfoxide		1.50 1	ug/l	GKW003
_				AAA8	p-Chlorophenylmethyl Sulfone	L. I	7.46 0	ug/1	GJY008

R. L. Stollar and Associates

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm),	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
***************************************		**************************************		***************************************					
89135	SW24002ST	0.2	STRM	UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/1	GKM003
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GK6014
				GG8	Copper (filtered)	LT	2.60 1	ug/1	GKB014
				TF20	Cyanide	LT	5.00 0	ug/l	GKE006
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GJW008
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GKW003
				P6	Dicyclopentadiene	LT	5.00 0	ug/1	GKC013
				UM25	Dicyclopentadiene	. LT	5.50 0	ug/1	GKW003
				UH11	Vapona	LT	3.84 -1	ug/1	G3X008
				UM25	Vapona	LT	8.50 0	ug/l	GKW003
				ATS .	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GJ Z016
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GKW003
				AAA8	Dithiane	LT	1.34 0	ug/l	GJY008
				UM25	Dithiane	LT	3.30 0	ug/1	GKW003
				KK8	Dieldrin	LT	5.00 -2	ug/l	GJV008
				UM25	Dieldrin	LT	2.60 1	ug/l	GKW003
				AAAB	Dimethyldisulfide	LT	5.50 -1	ug/l	GJY008
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/1	GJZ016
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GKW003
				KK8	Endrin	LT	5.00 -2	ug/l	GJV008
				UM25	Endrin	LT	1.80 1	ug/l	GKW003
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GJT015
				HH6A	Fluoride		1.35 3	ug/l	GKH020
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GKG031
				KK8	Isodrin	LT	5.10 -2	ug/l	GJV008
				UM25	Isodrin	LT	7.80 0	ug/l	GKW003
				G G8	Potassium (filtered)		6.44 3	ug/l	GKB014
				AV8	Toluene	LT	1.47 0	ug/l	GJT015
				G G8	Magnesium (filtered)		2.50 4	ug/1	GKB014
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GKC013
				UH11	Malathion	LT	3.73 -1	ug/l	GJX008
				UM25	Malathion	LT	2.10 1	ug/l	GKM003
				608	Sodium (filtered)		8.89 4	ug/l	GKB014
				LL8	Nitrite, Nitrate - Non specific		1.90 2	ug/l	GKD039

01/10/90

Summary of Analytical Results Surface Water Samples for Spring 69

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	-	Analytic	cal Parameters		Re	sults		Units	Sample Number	
89135	CLIDADOST	0.2	STRM	^^^	1 A - Ov -+1	·	•	17	2.38		ug/l	GJY008	
03172	SW24002ST	0.2	21141	UM25	1,4-0xatl			LT	2.70		ug/l	GKW003	
			. *	GG8	Lead	(filtered)			7.40		ug/l	GKB014	
	•			KK8 ···		liphenylethane			5.40		ug/l	GJV008	
				UM25		liphenylethane			1.40		ug/l	GKW003	
				KK8	Dichlorod ethane	liphenyltrichloro	D	LT	4.90	-2	ug/l	GJV 0 08	
				UM25	Dichloroo ethane	iphenyltrichloro)	LT	1.80	1	ug/l	GKW003	
				UH11	Parathion			LT	6.47	-1	ug/l	GJX008	
				UM25	Parathion			LT	3.70	1	ug/l	GKW003	
				HH8A	Sulfate				1.50	5	ug/l	GKH020	
				UH11		1(2,4-Dichloroph thyl Phosphates	nenyl)	LT	7.87	-1	ug/l	GJX008	
				UM25		1(2,4-Dichloroph thyl Phosphates	menyl)	LT	1.90	1	ug/l	GKW003	
				N8	Tetrachlo	roethene		LT	7.50	-1	ug/l	GJU015	
				N8	Trichlord	ethene		LT	5.60	-1	ug/l	GJU015	
1				AV8	Ortho- &	Para-Xylene		LT	1.36	0	ug/l	GJT015	
				GG8	Zinc	(filtered)		.LT	2.20	1	ug/l	GKB014	
89111	SW24003	0.3	POND	- UM21	1,1,1-Tri	chloroethane	er Pul		1.00		ug/l	GDX003 _	į.
Jan.	• •		1 200	UM21		chloroethane	45		1.00		ug/l	GDX003	, -
				UM21		oroethene				0	ug/l	GDX003	
				UM21 UM21		oroethane oroethene		LT	1.00 5.00	0	ug/l ug/l	GDX003	
				UM21	1,2-Dichl	oroethane		LT	1.00	0	.ug/1	GDX003	
1			•	UM21	1,2-Dichl	oropropane		LT	1.00	0	ug/l	GDX003 .	
				UM21	1,3-Dichl	orobenzene		LT	1.00	0	ug/l	GDX003	
				UM21	1,3-Dichl	oropropane		LT	4.80	0	ug/l	GDX003	
				UM21	m-Xylene			LT	1.00	0	ug/l	GDX003	
				AV8	m-Xylene			LT	1.32	0	ug/l	GCS017	
				UM21		thylvinyl Ether			3.50		ug/l	GDX003	
				UM21	Acrylonit	rile			6.40		ug/l	GDX003	
				UM25	Aldrin			LT	1.30	1	ug/l	GDZ003	

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults		Units	Sample Number
							F 00	_	/3	cronne
89111	SW24003	0.3	POND	KK8	Aldrin	LI	5.00		ug/1	6EG006
				00	ALKALINITY		1.73		ug/l	GCJ017
				AX6	Arsenic (filtered)	LT		0	ug/l	GCM029
				AX8	Arsenic	LT	2.35	0	ug/l	GCM030
				UM25	Atrazine	LT	5.90	O	ug/l	GDZ003
				UH11	Atrazine	LT	4.03	0	ug/l	GEJ006
				P8	Bicycloheptadiene	LT	5.90	0	ug/1	GEI006
				UM21	Bromodichloromethane	LT	1.00	0	ug/l	GDX003
				UM21	Vinyl Chloride	LT	1.20	1	ug/1	GDX003
				UM21	Chloroethane	LT	8.00	0	ug/l	GDX003
				UM21	Benz ene	LT	1.00	0	ug/l	GDX003
				AV8	Benzene	LT	1.05	0	ug/l	GCS017
				GG8	Calcium (filtered)		1.10	5	ug/1	GEP009
				GGS	Calcium		1.10	5	ug/l	GEP010
				UM21	Trichlorofluoromethane	LT	1.00	0	ug/l	GDX003
				UM21	Carbon Tetrachloride	LT	1.00	O	ug/l	GDX003
				GG8	Cadmium (filtered)	LT	8.40		ug/l	GEP009
				GG8	Cadmium	LT	6.40		ug/l	GEP010
				UM21	Methylene Chloride	LT		0	ug/1	GDX003
				UM21	Bromomethane			1	ug/l	GDX003
				UM21	Chloromethane	LT	1.20	0	ug/l	GDX003
				UM21	Bromoform		1.10		ug/1	GDX003
				UM21	Chloroform	LT	1.00		ug/1	GDX003
				HHBA	Chloride		2.40		ug/l	GCK017
			,	KK8	Hexachlorocyclopentadiene	LT	4.80	-2	ug/1	GEG006
				UM21	Chlorobenzene	LT	1.00	0	ug/1	GDX003
				UM25	Chlordane	LT	3.70	1	ug/1	GDZ003
				KK8	Chlordane		9.50		ug/l	GEG006
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00		ug/l	GDZ003
				UM25	p-Chlorophenylmethyl Sulfoxide		1.50		ug/l	GDZ003
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0	ug/l	GDZ003
				GG8	Chromium (filtered)	LT	2.40		ug/l	GEP009
				622	Chromium	LT	2.40		ug/l	GEP010
				GG8	Copper (filtered)	LT			ug/1	GEP009

R. L. Stollar and Associates Comprehensive Monitoring Program 01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Unit	9	Sample Number	
	SW24003	0.3	POND	GG8	Copper	LT	2.60	1 ug/	1	GEP010	
	W112 1000	***		TF20	Cyanide	LT:	5.00	0 ug/	1	GCR017	
				AY8	Dibromochloropropane	LT	1.95 -	1 . ug/	1	GEE006	
				UM25	Dibromochloropropane	LT	1.20	1 ug/	1	GDZ003	
				UM21	Dibromochloromethane	LT	1.00	0 ug/	1	GDX003	
				UM21	1,4-Dichlorobenzene	LT	2.00	0 ug/	1	CDX003	
				P8	Dicyclopentadiene	LT	5.00	0 ug/	1	GEI006	
				UM25	Dicyclopentadiene	·LT	5.50	0 ug/	1	GDZ003	
		•		UM25	Vapona	LT	8.50			GDZ003	
				UH11	Vapona		6.35 -	1 ug/	1	GEJ006	
				UM25	Diisopropylmethyl Phosphonate	LT	2.10			GDZ003	
				ATB	Diisopropylmethyl Phosphonate		2.06			GEH006	
1				UM25	Dithiane	LT	3.30			GDZ003	
				UM25	Dieldrin	LT	2.60			GDZ003	
_				KK8	Dieldrin	LT	5.00 -	2 ug/	1	GEG006	
				UM21	Acetone	LT	6.00	0 ug/	1	GDX003	
	-			UM25	Dimethylmethyl Phosphate	LT	1.30	2 ug/	1	GDZ003	
				ATS	Dimethylmethyl Phosphate	LT	1.88 -	1 ug/	1	GEH006	
				UM25	Endrin	LT	1.80	1 ug/	1	GDZ003	
				KK8	Endrin	LT	5.00 =	2 ug/	1	GEG006	
				UM21	Ethylbenzene	LT	1.00			-GDX003	
			1.1	AV8	Ethylbenzene	LT	1.37			GCS017	
				HH8A	Fluoride		2.37			GCK017	
				CC8	Mercury (filtered)		1.00 -			GCN029	
				cce	Mercury	LT	1.00	1 ug/	1	GCN030	
_				UM25	Isodrin		7.80			GDZ003	
				KK8	Isodrin	LT	5.10 -			GEGOO6	
				GG8	Potassium (filtered)		3.26			GEP009	
				GG8	Potassium		3.76			GEP010	
				UM21	Toluene	LT	1.00	0 ug/	I	GDX003	
_				AV8	Toluene		1.47			GCS017	
				UM21	Methylethyl Ketone	LT	1.00			GDX003	
				GG8	Magnesium (filtered)		6.35			GEP009	
				GG8	Magnesium		6.24	4 ug/	1	GEP010	

Summary of Analytical Results Summar

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
69111	SW24003	0.3	POND	UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	GDX003 =
OSILI	3424000	0.0		P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GE1006
				UM25	Malathion	LT	2.10 1	ug/l	GDZ003
				UH11	Malathion	LT	3.73 -1	ug/1	GEJ006
				GG8	Sodium (filtered)		2.50 5	ug/l	GEP009
				668	Sodium		2.60 5	ug/1 .	GEP010
				LL6	Nitrite, Nitrate - Non specific		2.40 2	ug/l	GCL017
				UM25	1,4-Oxathiane	LT	2.70 1	ug/1	GDZ003
			•	GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP009
				GG8	Lead	LT	7.40 1	ug/l	GEP010
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GDZ003
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	GEG006
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GDZ003
				KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/l	GEG006
				UM25	ethane Parathion	LT	3.70 1	ug/l	GDZ003
				UH11	Parathion	LT	6.47 -1	ug/l	GEJ006
				HHSA	Sulfate		4.50 5	ug/1	GCK017
		-		UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	- GDZ003
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	- LT	7.87 -1	ug/l	GEJ006
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GDX003
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GDX003
				UM21	Trichloroethene	LT	1.00 0	ug/1	GDX003
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GDX003
14				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS017
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GEP009
				600	Zinc	LT	2.20 1	ug/l	GEP010
89111	SW24003	8.0	POND	AAAS	Benzothiazole	LT	5.00 0	ug/l	GEF006
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GEF006
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GEF006
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GEF006

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	. Re	esults	Units	Sample Number
89111	SW24003	8.0	POND	AAAB	Dithiane	LT	1.34 0	ug/1	GEF006
				AAA8	- Dimethyldisulfide	LT	5.50 -1	ug/1	GEF006
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GEF006
69114	SW24004	0.1	STRM	AV8	m-Xylene	LT	1.32 0	ug/l	GCS020
				KK8	Aldrin	LT	5.00 -2	ug/l	GEG009
				UM25	Aldrin	LT	1.30 1	ug/1	GEK004
				00	ALKALINITY		3.03 2	ug/l	GCJ020
				AX6	Arsenic (filtered)	LT	2.35 0	ug/l	GFI011
				AX6	Arsenic	LT	2.35 0	ug/l	GFI012
				UM25	Atrazine	LT	5.90 0	ug/l	GEK004
				UH11	Atrazine	LT	4.03 0	ug/1	GEJ009
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GE1009
				AV8	Benzene	LT	1.05 0	ug/l	GCS020
				GG8	Calcium (filtered)		8.91 4	ug/l	GEP017
				GG8	Calcium		8.60 4	ug/l	GEP018
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GEP017
				GG8	Cadmium	LT	8.40 0	ug/l	GEP018
				, HH O A	Chloride		5.50 4	ug/l	GCK020
				KK8	Hexachlorocyclopentadiene	LT.	4.80 -2	ug/l	GEG009
	••	•		UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l .	GEK004
				KK8	Chlordane	LT	9.50 -2	ug/l	GEGOO9
				UM25	Chlordane	LT	3.70 1	ug/l	GEK004
		•		UM25	p-Chlorophenylmethyl Sulfide	LT	-1.00 1	ug/l	GEK004
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GEK004
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/1	GEK004
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GEP017
				GG8	Chromium	LT	2.40 1	ug/l	GEP018
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GEP017
				GG8	Copper	LT	2.60 1	ug/l	GEP018
				TF20	Cyanide	LT	5.00 0	ug/l	GCR020
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GEE009
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GEK004
				P6	Dicyclopentadiene	LT	5.00 0	ug/1	GE1009

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	*Method	Analytical Parameters	Re	esults	Units	Sample Number
89114	SW24004	0.1	STRM	- UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GEK004
03114	3424004	0.1	. SIMI	UM25	Vapona	LT	8.50 O	ug/l	GEK004
				UH11	Vapona	LT	3.84 -1	ug/l	GEJ009
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GEHO09
		•		UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GEK004
				UM25	Dithiane	LT	3.30 0	ug/l	GEK004
				KK8	Dieldrin	LT	5.00 -2	ug/l	GEG009
				UM25	Dieldrin	LT	2.60 1	ug/l	GEK004
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GEH009
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GEK004
				KK8	Endrin	LT	5.00 -2	ug/l	GEG009
				UM25	Endrin	LT	1.80 1	ug/1	GEK004
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS020
				HH8A	Fluoride	* =	1.50 3	ug/l	GCK020
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN037
				CC8	Mercury			ug/l	GCN038
				KK8	Isodrin	LT	5.10 -2	ug/l	GEG009
				UM25	Isodrin	LT	_7.60 0	ug/l	GEKO04
	e en			608 608	Potassium (filtered) Potassium		4.00 3	ug/l ug/l	GEP017 GEP018
				AVS	Toluene	LT	1.47 0	ug/l	GCS020
				GG8	Magnesium (filtered)		3.09 4	ug/l	GEP017
				GG8	Magnesium		3.04 4	ug/l	GEP018
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/1	GEI009
				UM25	Malathion	LT	2.10 1	ug/l	GEK004
				UH11	Malathion	LT	3.73 -1	ug/l	GEJ009
				GG8	Sodium (filtered)		1.30 5	ug/l	GEP017
				GG8	Sodium		1.30 5	ug/l	GEP018
				LL8	Nitrite, Nitrate - Non specific		7.91 1	ug/l	GCL020
				UM25	1,4-0xathiane	LT	2.70 1	ug/l	GEK004
				GG8	Lead (filtered)		7.40 1	ug/l	GEP017
				GG8	Lead	LT		ug/l	GEP018
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GEG009
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GEK004

01/10/90

. Summary of Analytical Results

Date	Number	Depth (cm)	Туре	Method	Analytical Parameters	Re	sults	Units	Number
69114	SW24004	0.1	STRM	KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/l	GEG009
					ethane				
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GEK004
			٠.	UM25	Parathion ·	LT	3.70 1	ug/1	GEK004
				UH11	Parathion	LT	6.47 -1	ug/1	GEJ009
				HH8A	Sulfate		2.40 5	ug/l	GCK020
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GEK004
			-	UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ009
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS020
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GEP017
			,	GG8	Zinc	LT	2.20 1	ug/l	GEP018
39114	SW24004	3.0	STRM	AAAA	Benzothiazole	LT	5.00 0	ug/l	GEF009
	01120001			AAAB	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GEF009
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GEF009
			,	AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/1	GEFO09
				AAA8	Dithiane	LT	1.34 0	ug/l	GEF009
		was and the second		AAA6	Dimethyldisulfide	LT	5.50 -1	ug/1	GEF009
				AAAB	1,4-Oxathiane	LT	2.38 0	ug/l	GEF009
89114	SW30002	0.2	STRM	AV6	. m-Xylene .	LT	1.32 0	ug/l	GCS019
	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			KK8	Aldrin	LT	5.00 -2	ug/l	GEG008
				UM25	Aldrin	LT	1.30 1	ug/l	GEK003
				00	ALKALINITY		3.09 2	ug/l	GCJ019
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GFI009
				AX8	Arsenic	LT	2.35 0	ug/l	GFI010
				UM25	Atrazine		5.90 0	ug/1	GEK003
				UH11	Atrazine		4.03 0	ug/l	GEJ008
				P6	Bicycloheptadiene		5.90 0	ug/1	GEI008
				AV8	Benzene	LT	1.05 0	ug/l	GCS019
				GG8	Calcium (filtered)		9.26 4	ug/l	GEPO15
					,				

Comprehensive Monitoring Program

Summary of Analytical Results

Campling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eşults	Units.	Sample Number
<u> </u>									decreased fire in consideration of the consideratio
69114	SW30002	0.2	STRM	GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GEP015
				GG8	Cadmium	LT	6.40 0	ug/1	GEP016
				HH8A	Chloride		5.20 4	ug/l	GCK019
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GEG008
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GEK003
				KK8	Chlordane	LT	9.50 -2	ug/l	GEG008
				UM25	Chlordane	LT	3.70 1	ug/l	GEK003
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 i	ug/1	GEK003
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GEK003
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GEK003
		•		G G8	Chromium (filtered)	LT	2.40 1	ug/l	GEP015
				GG8	Chromium	LT	2.40 1	ug/l	GEP016
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GEP015
				GG8	Copper	LT	2.60 1	ug/l	GEP016
				TF20	Cyanide	LT	5.00 0	ug/l	GCR019
				AYS	Dibromochloropropane	LT	1.95 -1	ug/l	GEE008
			•	UM25	Dibromochloropropane	LT	1.20 1	ug/1	GEK003
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GE1008
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GEK003
				UM25	Vapona	LT	6.50 0	ug/l	GEK003
				UH11	Vapona		6.35 -1	ug/l	GEJ008
				ATS	Diisopropylmethyl Phosphonate	: LT	3.92 -i	ug/l	GEH008
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GEK003
				UM25	Dithiane	LT	3.30 0	ug/l	GEK003
				KK8	Dieldrin	LT	5.00 -2	ug/l	GEG008
				UM25	Dieldrin	LT	2.60 1	ug/l	GEK003
•				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/1	GEH008
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GEK003
				KK8	Endrin	LT	5.00 -2	ug/l	GEG008
				UM25	Endrin	LT	1.80 1	ug/l	GEK003
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS019
				HHBA	Fluoride		1.55 3	ug/l	GCK019
				CC8	Mercury (filtered)	LT	1.00 -1	ug/1	GCN035
				CC8	Mercury	LT	1.00 -1	ug/l	GCN036

01/10/90

Summary of Analytical Results

					· ·					
Sampling	Station	Sample	Sample	a sec	· · · · · · · · · · · · · · · · · · ·	Da	.m./1+m	lhita	Sample	
Date	Number	Depth (cm)	Туре	Method	Analytical Parameters		esults	Units	Number	
89114	SW30002	0.2	STRM	KK8	Isodrin	LT	5.10 -2	ug/1	GEGOO8	
				UM25	Isodrin	LT	7.80 0	ug/1	GEK003	
				GG8	Potassium (filtered)		4.18 3	ug/l	GEP015	
				GG8	Potassium		3.89 3	ug/1	GEP016	
				AV8	Toluene	LT	1.47 0	ug/l	GCS019	
				. GG8	Magnesium (filtered)		3.02 4	ug/l	GEP015	
1				GG8	Magnesium		2.78 4	ug/l	GEP016	
				P8	Methylisobutyl Ketone	- LT	4.90 0	ug/l	GE1008	
				UM25	Malathion	LT	2.10 1	ug/1	GEK003	
				UH11	Malathion	LT	3.73 -1	ug/l	GEJ008	
				GG8	Sodium (filtered)		1.20 5	ug/l	GEP015	
				GG8	Sodium		1.10 5	ug/l	GEP016	
				LL8	Nitrite, Nitrate - Non specific		7.50 2	ug/1	GCL019	
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GEK003	
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP015	
				GG8	Lead	LT	7.40 1	ug/l	GEP016	
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GEGOO8	
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/1	GEK003	
				KK8	Dichlorodiphenyltrichloro- ethane	LT.	4.90 -2	ug/l	GEGOO8	
				UM25	Dichlorodiphenyltrichloro-	LT	1.80 1	ug/l	GEK003	
				VI a.c.	ethane					
				UM25	Parathion	LT	3.70 1	ug/l	GEK003	
				UH11	Parathion	LT	6.47 -1	ug/l	GEJ008	
				HH8A	Sulfate		1.90 5	ug/l	GCK019	
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GEK003	
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ008	
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS019	
				GG8	Zinc (filtered)		2.20 1	ug/1	GEP015	
				GG8	Zinc		2.20 1	ug/l	GEP016	
89114	SW30002	5.0	STRM	AAA8	Benzothiazole	LT	5.00 0	ug/l	GEF008	
ļ				AAA6	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GEF008	

Summary of Analytical Results

mpling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Units	Sampl Numbe
89114	SW30002	5.0	STRM	AAA 8	p-Chlorophenylmethyl Sulfoxide	LT	1.15	1	ug/l	GEF00
~~~	01100002			AAA8	p-Chlorophenylmethyl Sulfone	LT		0	ug/l	GEF00
				AAA8	Dithiane	LT	1.34	O	ug/l	GEF00
				AAA8	Dimethyldisulfide	LT	5.50	-1	ug/l	GEFOO
				AAA8	1,4-Oxathiane	LT	2.38	0	ug/l	GEF00
9114	SW30002B	0.2	STRM	РИИ	1,1,1-Trichloroethane	LT	8.80	-2	ug/l	GDY00
				NN9	1,1,2-Trichloroethane	LT	2.60	-1	ug/1	GDYOO
				NN9	1,1-Dichloroethene	LT	2.40	-1	ug/l	GDYOO
				HN9	1,1-Dichloroethane	LT	7.40	-2	ug/l	GDYOO
				NN9	1,2-Dichloroethene	LT	2.60	-1	ug/l	GDYOO
				ниэ	1,2-Dichloroethane	LT	8.50	-2	ug/l	GDYOC
				<b>AA9</b>	m-Xylene	LT	2.60	-1	ug/l	GDWOO
				KK9A	Aldrin	LT	1.90	-3	ug/l	GEBOO
				69	Arsenic	LT	2.50	0	ug/1	GDM01
				LH15	Atrarine		1.57	1	ug/l	GEAO
				ZZ9	Bicycloheptadiene	LT	5.08		ug/l	IKYO
				HH9	Benzothiazole	LT	2.04		ug/l	GECOC
				AA9	Benzene	LT	8.50	-2	ug/l	GDWOO
				. NN9	Carbon Tetrachloride	LT	1.20		ug/1	GDY00
				P9	Cadmium	LT	7.40	-1	ug/l	GDK01
				еии	Methylene Chloride	LT	3.70		ug/l	GDYO
				NN9	Chloroform	LT	6.80		ug/l	GDYO
				KK9A	Hexachlorocyclopentadiene	LT	1.80		ug/l	GEBO
				NN9	Chlorobenzene	LT	2.00		ug/l	GDYO
				KK9A	Chlordane	LT	2.30	-2	ug/l	GEBOO
				нн9	p-Chlorophenylmethyl Sulfide	LT	4.40	0	ug/l	GECOC
			÷	HH9	p-Chlorophenylmethyl Sulfoxide		5.40		ug/l	GECO
				HH9	p-Chlorophenylmethyl Sulfone		9.01		ug/l	GECO
				P9	Chromium		6.50		ug/l	GDK01
				P9	Copper	LT	4.70	0	ug/l	GDK01
				<b>S</b> 9	Dibromochloropropane		5.00		ug/l	GEDOC
				ZZ9	Dicyclopentadiene	LT	5.12	0	ug/l	IKYO
				LH15	Vapona	LT	6.00	-2	ug/l	GEACC

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
									WOLIO DO
69114	SW30002B	0.2	STRM	TT9	Diisopropylmethyl Phosphonate		1.14 -1	ug/l	KSU008
				HH9	Dithiane	LT	1.45 0	ug/1	GEC006
l				KK9A	Dieldrin		3.30 -3	ug/l	GEB007
				HH9	Dimethyldisulfide		3.12 0	ug/l	GEC006
	•			TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU008
				KK9A	Endrin	LT	5.80 -3	ug/l	GEB007
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GDW007
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS008
				Y9	Mercury	LT	5.00 -2	ug/l	GDL012
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS006
				KK9A	Isodrin	LT	1.10 -3	ug/l	GEB007
				AA9	Toluene	LT	1.90 -1	ug/1	GDW007
				<b>Z</b> Z9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKY006
				LH15	Malathion	LT	1.26 -1	ug/l	GEA007
				нн9	1,4-Oxathiane	LT	1.74 0	ug/l	GEC006
				P9	Lead	LT	6.40 0	ug/l	GDK012
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/l	GEB007
				KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/l	GEB007
				LH15	Parathion	LT	1.59 -1	ug/l	GEA007
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates		1.48 -1	ug/l	GEA007
				NN9	Tetrachloroethene	LT	2.70 -1	ug/l	GDY007
				NN9	Trichloroethene	LT	1.40 -1	ug/l	GDY007
				<del>66</del> 9	Ortho- & Para-Xylene		3.90 -1	ug/l	GDW007
	•			<b>P</b> 9	Zinc		8.70 0	ug/l	GDK012
89114	CUT1 001	0.1	STRM	AV8	m-Xylene	1 7	1.32 0	ug/l	GCS018
09114	SW31001	0.1	SIRH	KK8	Aldrin	LT	5.00 -2	ug/l	GEGOO7
				UM25	Aldrin		1.30 1	ug/l	GEK002
				00	ALKALINITY	b 1	2.74 2	ug/l	GCJ018
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GF1007
				AX6	Arsenic	1 T	235 0	um/l	GFIQ08
							2.35 0	ug/l	
				UM25	Atrazine	L.I	5.90 0	ug/l	GEKO02

01/10/90

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	. Re	eults	Units	Sample Number
39114	SW31001	0.1	STRM	UH11	Atrazine	LT	4.03 0	ug/l	GEJ007
33114	J#131001	U-1	01141	P8	Bicycloheptadiene	LT	5.90 0	ug/l	GE1007
				AV8	Benzene	LT	1.05 0	ug/l	GCS018
				GG8	Calcium (filtered)		5.81 4	ug/l	GEP013
				GG6	Calcium		6.55 4	ug/l	GEP014
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GEP013
				GG8	Cadmium	LT	8.40 O	ug/l	GEP014
				HHSA	Chloride		4.40 4	ug/1	GCK018
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/1	GEG007
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GEKOO:
				KK8	Chlordane	LT	9.50 -2	ug/l	GEGOOT
				UM25	Chlordane	LT	3.70 1	ug/l	GEK00
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GEK00
				UM25	p-Chlorophenylmethyl Sulfoxide	.LT	1.50 1	ug/l	GEK00
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GEK00
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GEP01
				GG8	Chromium	LT	2.40 1	ug/l	GEP01
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GEP01
				GGS	Copper	LT	2.60 1	ug/l	GEP01
				TF20	Cyanide	LT	5.00 0	ug/l	GCR01
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GEEOO
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GEKOO
				P6	Dicyclopentadiene	LT	5.00 0	ug/l	GEI00
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GEKOO:
				UM25	Vapona	LT	8.50 0	ug/l	GEK00
				UH11	Vapona	LT	3.64 -1	ug/l	GEJ00
				AT8	Diisopropylmethyl Phosphonate	LT		ug/l	GEH00
				UM25	Diisopropylmethyl Phosphonate		2.10 1	ug/l	GEK00
				UM25	Dithiane	LT	3.30 0	ug/l	GEK00
				KK8	Dieldrin	LT	5.00 -2	ug/l	GEG001
				UM25	Dieldrin		2.60 1	ug/l	GEK002
				ATB	Dimethylmethyl Phosphate	LT	1.68 -1	ug/l	GEH00
				UM25	Dimethylmethyl Phosphate		1.30 2	ug/l	GEK00
				KK8	Endrin	LT	5.00 -2	ug/l	GEG00

01/10/90

Summary of Analytical Results

Campling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	R	esults	Units	Sample Number
89114	SW31001	0.1	STRM	UM25	Endrin	LT	1.80 1	_ug/l	GEK002
ODITA	JWJ1001	011		AV8	Ethylbenzene	LT	1.37 0	ug/l	GCS018
				HHBA	Fluoride		1.95 3	ug/l	GCK018
				CCS	Mercury (filtered)	LT	1.00 -1	ug/l	GCN033
				CC8	Mercury	LT	1.00 -1	ug/l	GCN034
				KK8	Isodrin	LT	5.10 -2	ug/l	GEG007
				UM25	Isodrin	LT	7.80 0	ug/l	GEK002
				GG8	Potassium (filtered)		3.78 3	ug/l	GEP013
				GG8	Potassium		3.85 3	ug/l	GEP014
				AV8	Toluene	LT	1.47 0	ug/l	GCS018
				668	Magnesium (filtered)		2.79 4	ug/l	GEP013
				GG8	Magnesium		3.04 4	ug/1	GEP014
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GEI007
				UM25	Malathion	LT	2.10 1	ug/1	GEK002
				UH11	Malathion	LT	3.73 -1	ug/l	GEJ007
				GG8	Sodium (filtered)		9.74 4	ug/l	GEP013
				GG8	Sodium		9.48 4	ug/l	GEP014
-				LL8	Nitrite, Nitrate - Non specific		5.20 3	ug/l	GCL018
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GEK.002
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP013
				GG8	Lead	LT	7-40 1	ug/l	GEP014
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GEG007
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GEK002
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GEG007
				UM25	Dichlorodiphenyltrichloro- ethane	ĻŢ	1.80 1	ug/l	GEK002
				UM25	Parathion	LT	3.70 1	ug/l	GEK002
				UH11	Parathion	LT	6.47 -1	ug/l	GEJ007
				HHBA	Sulfate		1.30 5	ug/l	GCK018
				UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/l	GEK002
				UH11	Vinyldiethyl Phosphates 2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GEJ007

R. L. Stollar and Associates

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
69114	SW31001	0.1	STRM	AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS018
03114	5W31001	<b>U</b> J.I. 1,	W1141	GG8	Zinc (filtered)	LT	2.20 1	ug/1	GEP013
				GG8	Zinc	LT	2.20 1	ug/l	GEP014
89114	SW31001	3.0	STRM	AAAB	Benrothiarole	LT	5.00 0	ug/l	GEÊ007
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GEF007
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	GEF007
				AAAB	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GEF007
				AAAS	Dithiane	LT	1.34 0	ug/l	GEF007
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GEF007
				AAAA	1,4-Oxathiane	LT	2.38 0	ug/l	GEF007
89114	SW31001B	0.1	STRM	NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDY008
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDY008
	*			NN9	1,1-Dichloroethene	LT	2.40 -1	ug/1	GDY008
		-		HN9	1,1-Dichloroethane	LT	7.40 -2	ug/1	GDY008
				<b>NN9</b>	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDY008
				NN9	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDY008
				AA9	m-Xylene	LT	2.60 -1	ug/l	GDW008
	•			KK9A	Aldrin	LT	1.90 -3	ug/l	GEB008
				69	Arsenic	LT	2.50 0	ug/1	GDM013
				LH15	Atrazine		4.55 0	ug/l	GEA008
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKY007
				HH9	Benzothiazole	LT	2.04 0	ug/l	GEC007
				<b>AA9</b>	Benzene	LT	8.50 -2	ug/l	GDW008
				РИЯ	Carbon Tetrachloride	LT	1.20 -1	ug/l	GDY008
				P9	Cadmium	LT	7.40 -1	ug/l	GDK013
				ниэ	Methylene Chloride		3.70 0	ug/l	GDY008
				9ИИ	Chloroform	LT	6.80 -2	ug/l	GDY008
				KK9A	Hexachlorocyclopentadiene	LT	1.60 -3	ug/l	GEB008
				NN9	Chlorobenzene	LT	2.00 -1	ug/l	GDY008
				KK9A	Chlordane	LT	2.30 -2	ug/l	GEB008
				ннэ	p-Chlorophenylmethyl Sulfide	LT		ug/l	GEC007
				HH9	p-Chlorophenylmethyl Sulfoxide	LT	4.61 0	ug/l	GEC007
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GEC007

R. L. Stollar and Associates

Summary of Analytical Results

Date	Number	Depth (cm)	Туре	Method	Analytical Parameters	. Ro	esults	Units	Sampl: .Numbe
39114	SW31001B	0.1	STRM	P9	Chromium		1.18 1	ug/l	GDK01
				p9	Copper		1.05 1	ug/l	GDK01
				. \$9	Dibromochloropropane	LT	5.00 -3	ug/1	GED00
				ZZ9	Dicyclopentadiene		5.12 0	ug/1	IKY00
				LH15	Vapona		8.00 -2	ug/l	GEA00
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KSU00
				HH9	Dithiane	LT	1.45 0	ug/l	GECOC
				KK9A	Dieldrin		1.86 -2	ug/1	GEBOO
				HH9	Dimethyldisulfide	LT	3.12 0	ug/1	GECOC
				<b>T</b> T9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSUOC
				KK9A	Endrin		1.88 -2	ug/l	GEBOO
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GDWOO
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS00
				<b>Y</b> 9	Mercury	LT	5.00 -2	ug/1	GDL01
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS00
				KK9A	Isodrin	LT	1.10 -3	ug/l	GEB00
				AA9	Toluene	LT	1.90 -1	ug/l	GDWOO
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/l	IKYOO
				LH15	Malathion	LT	1.26 -1	ug/1	GEAOC
				HH9	1,4-Oxathiane	LT	1.74 0	ug/l	GEC00
				P9	Lead	LT	a.40 o	ug/l	GDK01
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/l	GEBOO
			•	KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/1	GEBOO
				LH15	Parathion	LT	1.59 -1	ug/1	GEA00
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/l	GEA00
				NN9	Tetrachloroethene	LT	2.70 -1	ug/l	GDY00
				NN9	Trichloroethene	LT	1.40 -1	ug/l	GDYOO
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GDW00
				P9	Zinc		4.32 1	ug/l	GDK01
9115	SW31002	0.1	POND	AV8	m-Xylene	LT	1.32 0	ug/l	GCS02
				KK8	Aldrin	LT	5.00 -2	ug/l	GEGO1:

## Comprehensive Monitoring Program

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Units	Sample Number
			***************************************							
89115	SW31002	0.1	POND	UM25	Aldrin	LT	1.30	1	ug/l	GEK005
				00	ALKALINITY	-	2.66	2	ug/l	GE0006
				AX8	Arsenic (filtered)	LT	2.35	0	ug/l	GFI015
				AX8	Arsenic	LT	2.35	0	ug/1	GFI016
				UM25	Atrazine	LT	5.90	0	ug/l	GEK005
				UH11	Atrazine	LT	4.03	o	ug/l	GEJ011
				P8	Bicycloheptadiene	LT	5.90	0	ug/l	GEI011
				AV8	Benzene	LT	1.05	0	ug/1	GCS022
*				GG8	Calcium (filtered)		8.37	4	ug/l	GEP021
				GG8	Calcium		8.71	4	ug/l	GEP022
				GG8	Cadmium (filtered)	LT	8.40	0	ug/l	GEP021
				GG8	Cadmium	LT	8.40	0	ug/l	GEP022
				HH8A	Chloride		4.40	4	ug/l	GCK022
				KK8	Hexachlorocyclopentadiene	LT	4.80	-2	ug/1	GEGO11
				UM25	Hexachlorocyclopentadiene	LT	5.40	1	ug/l	GEK005
				KK8	Chlordane	LT	9.50	-2	ug/l	GEG011
				UM25	Chlordane	LT	3.70	1	ug/1	GEK005
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1	ug/l	GEKOO5
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1	ug/l	GEK005
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0	ug/l	GEK005
				GG8	Chromium (filtered)	LT	2.40	1	ug/l	GEP021
				GG8	Chromium	LT	2.40	1	ug/l	GEP022
				GG6	Copper (filtered)	LT	2.60	1	ug/l	GEP021
				GG8	Copper	LT	2.60	1	ug/1	GEP022
				TF20	Cyanide	LT	5.00	0	ug/l	GEN006
				AY8	Dibromochloropropane	LT	1.95	-1	ug/l	GEE011
				UM25	Dibromochloropropane	LT	1.20	1	ug/l	GEKOO5
				P6	Dicyclopentadiene	LT	5.00	0	ug/l	GEI011
				UM25	Dicyclopentadiene		5.50		ug/l	GEK005
				UM25	Vapona	LT	8.50	0	ug/l	GEK005
				UH11	Vapona	LT	3.84	-1	ug/l	GEJ011
			:	AT6	Diisopropylmethyl Phosphonate		3.92		ug/l	GEH011
				UM25	Diisopropylmethyl Phosphonate	LT	2.10	1	ug/1	GEK005
				UM25	Dithiane	LT	3.30	0	ug/l	GEK005

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	. R	esults	Units	Sample Number
<b>6</b> 9115	SW31002	0.1	POND	KK8	Dieldrin	LT	5.00 -2	ug/l	- GEG011
1	ONOTODE	0.1	, 0,,,,	UM25	Dieldrin	LT	2.60 1	ug/1	GEK005
				AT6	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GEH011
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GEK005
ı				кка	Endrin	LT		ug/1	GEGO11
				UM25	Endrin	LT	1.60 1	ug/l	GEKOO5
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GC\$022
				HHSA	Fluoride		1.39 3	ug/l	GCK022
J				CC8	Mercury (filtered)	LT	1.00 -1	ug/1	GCN041
				cce	Mercury	LT	1.00 -1	ug/l	GCN042
				KK8	Isodrin	LT	5.10 -2	ug/l	GEGO11
				UM25	Isodrin	LT	7.80 0	ug/l	GEK005
				GG8	Potassium (filtered)		4.37 3	ug/l	GEP021
				GG8	Potassium		4.48 3	ug/l	GEP022
•				AV8	Toluene	LT	1.47 0	ug/l	GCS022
				GG8	Magnesium (filtered)		2.39 4	ug/l	GEP021
				GG8	Magnesium		2.48 4	ug/l	GEP022
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/1	GEI011
	**			UM25	Malathion	LT	2.10 1	ug/l	GEK005
				UH11	Malathion .	LT	3.73 -1	ug/l	GEJ011
ř				GG8	Sodium (filtered)		9.03 4	ug/l	GEP021
				GG8	Sodium		8.96 4	ug/l	GEP022
				LL8	Nitrite, Nitrate - Non specific		7.65 1	ug/l	GCL022
				UM25	1,4-Oxathiane	LT		ug/l	GEK005
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GEP021
				GG6	Lead	LT	7.40 1	ug/l	GEP022
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GEGO11
ļ .				UM25	Dichlorodiphenylethane		1.40 1	ug/l	GEK005
•				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GEGO11
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GEK005
				UM25	Parathion	LT	3.70 1	ug/l	GEK005
				UH11	Parathion	LT	6.47 -1	ug/1	GEJ011

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
69115	SW31002	0.1	POND	HHSA	Sulfate		1.50 5	ug/l	GCK022
09113	311002	3.1		UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GEK005
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/1	GEJ011
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS022
			*	GG8	Zinc (filtered)	LT	2.20 1	ug/l	GEP021
				GG8	Zinc	LT	2.20 1	ug/l	GEP022
89115	SW31002	4.0	POND	AAA8	Benzothiazole	LT	5.00 0	ug/l	GEF011
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GEF011
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GEF011
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GEF011
Ì				AAAB	Dithiane	LT	1.34 0	ug/l	GEF011
ji .				AAAS	Dimethyldisulfide	LT	5.50 -1	ug/l	GEF011
				AAA8	1,4-Oxathiane	LT	2.36 0	ug/l	GEF011
69115	SW31002B	0.1	POND	<b>NN</b> 9	1,1,1-Trichloroethane	LT	6.80 -2	ug/l	GDY011
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDY011
				<b>NN9</b>	1,1-Dichloroethene	LT	2.40 -1	ug/l	GDY011
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/1	GDY011
_				NN9	1,2-Dichloroethene	LT.	2.60 -1	ug/l	GDY011
				ни9	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDY011
				<b>PA9</b>	m-Xylene	LT	2.60 -1	ug/l	GDW011
				KK9A	Aldrin	LT	1.90 -3	ug/1	GEB011
				69	Arsenic	LT	2.50 0	ug/1	GDM016
				LH15	Atrazine		3.03 -1	ug/l	GEA011
ì				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/1	IKY008
				HH9	Benzothiazole	LT	2.04 0	ug/l	GEC010
				AA9	Benzene		8.50 -2	ug/1	GDW011
1				NN9	Carbon Tetrachloride		1.20 -1	ug/l	GDY011
į.				P9	Cadmium	LT	7.40 -1	ug/l	GDK016
				ни9	Methylene Chloride		3.70 0	ug/l	GDY011
				РИИ9	Chloroform		6.80 -2	ug/l	GDY011
				KK9A	Hexachlorocyclopentadiene	LT	1.80 -3	ug/l	GEB011

R. L. Stollar and Associates

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89115	SW310026	0.1	POND	NN9	Chlorobenzene	LT	2.00 -1	ug/l	GDY011
07110	3H31002D	0.1	, 0,10	KK9A	Chlordane	LT	2.30 -2	ug/l	GEB011
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/l	GEC010
	•			ннэ	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/l	GEC010
				ННЭ	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GECO10
				P9	Chromium		1.31 1	ug/l	GDK016
				P9	Copper		1.17 1	ug/1	GDK016
				S9	Dibromochloropropane	LT	5.00 -3	ug/l	GED011
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/1	IKY008
				LH15	Vapona		3.88 -1	ug/l	GEA011
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KSU010
				HH9	Dithiane	LT	1.45 0	ug/l	GEC010
				KK9A	Dieldrin	LT	3.30 -3	ug/1	GEB011
				HH9	Dimethyldisulfide	LT	3.12 0	ug/l	GEC010
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KSU010
				KK9A	Endrin	LT	5.80 -3	ug/l	GEB011
				AA9	Ethylbenzene	LT	1.60 -1	ug/l	GDW011
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRS010
				<b>Y</b> 9	Mercury	LT	5.00 -2	ug/l	GDL016
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRS010
				KK9A	Isodrin	LT	1.10 -3	ug/l	GEB011
				AA9	Toluene	LT	1.90 -1	ug/1	GDW011
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	-ug/l	IKY008
	-			LH15	Malathion	LT	1.26 -1	ug/1	GEA011
				ННЭ	1,4-Oxathiane	LT	1.74 0	ug/l	GEC010
				P9	Lead		1.87 1	ug/l	GDK016
				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/l	GEB011
				KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/l	GEB011
				LH15	Parathion	LT	1.59 -1	ug/l	· GEA011
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates		1.48 -1	ug/l	GEA011
				NN9	Tetrachloroethene	LT	2.70 -1	ug/l	GDY011

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	. Re	esults	Units	Sample Number
69115	SW31002B	0.1	POND	еии	Trichloroethene	LT	1.40 -1	ug/l	GDY011
09113	34310020	0.1	1 4711	AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/l	GDW011
				P9	Zinc		4.94 1	ug/l	GDK016
<b>≅</b> 69118	SW36001	0.1	STRM	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GFW007
				N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/1	GHE009
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GFW007
				N8	1,1,2-Trichloroethane		1.20 1	ug/l	GHE009
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GFW007
_				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	GHE009
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/1	GFW007
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	GHE009
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GFW007
				NS	1,2-Dichloroethene		7.30 1	ug/l	GHEO09
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GFW007
_				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	GHEO09
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/1	GFW007
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/1	GFW007
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	GFW007
				UM21	m-Xylene		4.04 2	ug/l	GFW007
				AV8	m-Xylene		1.80 2	ug/l	CHD009
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	GFW007
				UM21	Acrylonitrile	LT	6.40 0	ug/1	- GFW007
•				KK8	Aldrin		6.50 0	ug/l	GFG025
				UM25	Aldrin	LT	1.30 1	ug/l	GFV011
				00	ALKALINITY		3.46 2	ug/1	GGX005
				AX8	Arsenic (filtered)		2.80 2	ug/l	GFX027
				AX8	Arsenic		2.80 2	ug/l	GFX028
				UH11	Atrazine		3.70 2	ug/l	GFK016
				UM25	Atrazine		5.08 1	ug/l	GFV011
				P6	Bicycloheptadiene		5.34 1	ug/l	GFD016
				UM21	Bromodichloromethane	LT	1.00 0	ug/l	GFW007
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GGK005
				UM21	Vinyl Chloride	LT	1.20 1	ug/l	GFW007

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	- esults-	_	Units	Sample Number
89118	SW36001	0.1	STRM	UM21	Chloroethane	LT	6.00	Ο.	ug/l	GFW007
03110	0,400001	0.1.1	01111	UM21	Benzene		2.12		ug/1	GFW007
				AV8	Benzene		3.60	2	ug/l	GHD009
				GG8	Calcium (filtered)		6.66	4	ug/l	GHH026
		•		GG8	Calcium		6.46	4	ug/l	GHH027
				UM21	Trichlorofluoromethane	LT	1.00		ug/l	GFW007
				UM21	Carbon Tetrachloride	LT	1.00	0	ug/1	GFW007
				M8	Carbon Tetrachloride	LT	9.90	-1	ug/l	GHEO09
				GG8	Cadmium (filtered)		1.35	1	ug/1	GHH026
				GG8	Cadmium		1.49	1	ug/l	GHH027
	t			UM21	Methylene Chloride	LT	1.00	0	ug/l	GFW007
_				N6	Methylene Chloride	LT		0	ug/l	GHE009
				UM21	Bromomethane	LT		1	ug/l	GFW007
				UM21	Chloromethane	LT		0	ug/l	GFW007
				UM21	Bromoform	LT	1.10	1	ug/l	GFWOO7
				UM21	Chloroform		7.45	2	ug/l	GFW007
				NB	Chloroform		9.40	2	ug/l	GHE009
_				HH8A	Chloride		1.10	511	ug/l	GFL012
:			4 4	KK8	Hexachlorocyclopentadiene	٠	1.00	0	ug/l	GFG025
				UM25	Hexachlorocyclopentadiene	LT	5.40	1	ug/l	GFV011
				UM21	Chlorobenzene		5.72	3	ug/l	GFW007
				NB	Chlorobenzene		7.50	3	ug/l	GHE009
				KK8	Chlordane		6.40	1	ug/1	GFG025
				UM25	Chlordane	LT	3.70	1	ug/l	GFV011
				UM25	p-Chlorophenylmethyl Sulfide	٠	9.81	1	ug/l	GFV011
_				AAA8	p-Chlorophenylmethyl Sulfide		1.20		ug/l	GGK005
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50		ug/l	GFV011
•				AAA8	p-Chlorophenylmethyl Sulfoxide		7.37		ug/l	GGK005
_				UM25	p-Chlorophenylmethyl Sulfone	GT	3.00		ug/l	GFV011
				AAA8	p-Chlorophenylmethyl Sulfone		1.60	3	ug/l	GGK005
_				GG8	Chromium (filtered)		2.40		ug/l	GHH026
				668	Chromium		2.40		ug/l	GHH027
				GG8	Copper (filtered)		2.60		ug/l	GHH026
<del>-</del>				GG8	Copper	r.I	2.60	Ţ	ug/l	GHH027

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Units	Sample Number
89118	SW36001	0.1	STRM	TF20	Cyanide	LT	5.00	0	ug/1	GHF005
				AY8	Dibromochloropropane		1.30	2	ug/l	GFN022
				UM25	Dibromochloropropane		1.66	2	ug/l	GFV011
				UM21	Dibromochloromethane	LT	1.00	0	ug/l	GFW001
				UM21	1,4-Dichlorobenzene		7.91	3	ug/l	GFW001
				P6	Dicyclopentadiene		7.67	1	ug/l	GFD016
				UM25	Dicyclopentadiene		1.01	2	ug/l	GFV01
				UH11	Vapona		5.70	1	ug/l	GFK016
				UM25	Vapona	LT	8.50	0	ug/l	GFV011
				AT8	Diisopropylmethyl Phosphonate		4.13	0	ug/l	GFM010
				UM25	Diisopropylmethyl Phosphonate	LT	2.10	í	ug/l	GFV01
				UM25	Dithiane	LT	3.30	0	ug/1	GFV01
				AAA8	Dithiane		1.58	0	ug/1	GGK00
				KK8	Dieldrin		6.50	0	ug/l	GFG02
				UM25	Dieldrin	LT	2.60	1	ug/l	GFV01
				AAA8	Dimethyldisulfide		1.82	0	ug/l	GGK00
				UM21	Acetone	LT	8.00	٥	ug/1	GFWOO'
				AT8	Dimethylmethyl Phosphate		1.08	1	ug/l	GFM01
				UM25	Dimethylmethyl Phosphate	LT	1.30	2	ug/1	GFV01
				KK8	Endrin		6.80	-1	ug/l	GFG02
				UM25	Endrin	LT	1.80	1	ug/1	GFV01
				UM21	Ethylbenzene		3.85		ug/l	GFW00
				AV8	Ethylbenzene		3.10	2	ug/1	GHDOO
				HHBA	Fluoride		2.22		ug/1	GFL01
		•		CC8	Mercury (filtered)	LT	1.00	-1	ug/l	GGW02
				cce	Mercury	LT	1.00		ug/l	GGW02
				KK8	Isodrin		4.55		ug/l	GFG02
				UM25	Isodrin.	LT	7.60		ug/l	GFV01:
				GG8	Potassium (filtered)		3.21		ug/l	GHH02
				GG8	Potassium		2.99	3	ug/l	GHH02
			-	UM21	Toluene		8.50		ug/l	GFW00
				AV8	Toluene		1.40	2	ug/l	GHD00
				UM21	Methylethyl Ketone	LT	1.00	1	ug/l	GFW00
				GG8	Magnesium (filtered)		2.55	4	ug/l	GHH02

01/10/90

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults		Units	Sample Number
00110	CH76001	0.1	STRM	GG8	Magnesium		2.49	4	ug/l	GHH027
<b>6</b> 9118	SW36001	0.1	21141	P8	Methylisobutyl Ketone			3	ug/l	GFD016
				UM21	Methylisobutyl Ketone		3.66		ug/l	GFW007
				UH11	Malathion	LT	3.73		ug/l	GFK016
				UM25	Malathion	LT	2.10		ug/l	GFV011
				GG8	Sodium (filtered)		1.40	ς.	ug/l	GHH026
				GG8	Sodium		1.50		ug/l	GHH027
				LL8	Nitrite, Nitrate - Non specific		6.42		ug/l	GCL033
				UM25	1,4-Oxathiane	LT	2.70		ug/l	GFV011
				AAA8	1,4-Oxathiane	LT	2.38		ug/l	GGK005
				GG8	Lead (filtered)	LT	7.40	1	ug/l	GHH026
				GG8	Lead	LT	7.40	1	ug/l	GHH027
				KK8	Dichlorodiphenylethane		8.99	-1	ug/l	GFG025
				UM25	Dichlorodiphenylethane	LT	1.40	1	ug/l	GFV011
				KK8	Dichlorodiphenyltrichloro- ethane		5.08	-1	ug/l	GFG025
				-UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1	ug/l	GFV011
				UH11	Parathion	GT	5.00	1	ug/l	GFK016
				UM25	Parathion	LT		1	ug/l	GFV011
				HH8A	Sulfate		5.60	4	ug/l	GFL012
1				ÚH11	2-Chloro-1(2,4-Dichlorophenyl)		1.91	0	ug/l	GFK016
					Vinyldiethyl Phosphates					
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90	1	ug/l	GFV011
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50	0	ug/l	GFW007
				UM21	Tetrachloroethene		2.12	2	ug/l	GFW007
1				NB	Tetrachloroethene		3.40	2	ug/l	GHE009
				UM21	Trichloroethene		1.93	2	ug/l	GFW007
				N8	Trichloroethene		2.70	2	ug/l	GHE009
				UM21	Ortho- & Para-Xylene		6.89	2	ug/l	GFW007
				AV6	Ortho- & Para-Xylene		5.20	2	ug/l	GHD009
				GG8	Zinc (filtered)		3.27	1	ug/l	GHH026
				GG8	Zinc	LT	2.20	1	ug/l	GHH027

Summary of Analytical Results

eampling Date	Station Number	Sample Depth (cm)	Sample Type	Method ———	Analytical Parameters	 Re	sults	Units:	Sample Number
89118	SW36001B	0.1	STRM	N9	1,1,1-Trichloroethane	LT	4.30 -1	ug/l -	GEQ008
				NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GFS011
				N9	1,1,2-Trichloroethane	LT	3.90 -1	ug/1	GEQOO8
_				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GFS011
i				еии	1,1-Dichloroethene	LT	2.40 -1	ug/l	GFS011
-				N9	1,1-Dichloroethane	LT	1.70 0	ug/l	GEQ008
				NN9	1,1-Dichlorcethane	 LT	7.40 -2	ug/l	GFS011
				N9	1,2-Dichloroethene	LT	1.70 0	ug/l	GEQ008
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/1	GFS011
				И9	1,2-Dichloroethane	LT	5.60 -1	ug/l	GEQ008
į				NN9	1,2-Dichloroethane	LT	8.50 -2	ug/1	GFS011
				N9	m-Xylene		1.07 0	ug/1	GEQ008
				AA9	m-Xylene		9.49 -1	ug/1	GFT011
				B9	Arsenic		4.40 1	ug/1	GDM028
				LH15	Atrazine		1.30 1	ug/l	GFR011
				N9	Bicycloheptadiene	LT	3.60 -1	ug/l	GEQ008
•				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/l	IKY017
				N9	Benzene	LT	2.50 -1	ug/l	GEQ008
				AA9	Benzene		2.81 -1	ug/1	GFT011
				N9	Carbon Tetrachloride	LT	2.50 -1	ug/l	GEQ008
ı				NN9	Carbon Tetrachloride	LT	1.20 -1	ug/l	GFS011
				P9	Cadmium		1.93 0	ug/l	GDK028
				N9	Methylene Chloride	LT	1.50 0	ug/l	GEQOO8
	•			NN9	Methylene Chloride	LT	3.70 0	ug/1	GFS011
				N9	Chloroform	LT	2.90 -1	ug/l	GEQ008
_				- NN9	Chloroform	LT	6.80 -2	ug/l	GFS011
				N9	Chlorobenzene		1.17 1	ug/l	GEQ008
				NN9	Chlorobenzene		1.07 1	ug/l	GFS011
				P9	Chromium	LT	6.50 0	ug/l	GDK028
				P9	Copper		1.29 1	ug/l	GDK028
				N9	Dibromochloropropane	LT	2.40 0	ug/l	GEQ008
				\$9	Dibromochloropropane		1.70 -1	ug/l	GFB014
	•			N9	Dicyclopentadiene	1 T	6.40 -1	ug/l	GEQ008

01/10/90

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
			w.w.w.(1.1 '		Policy in the management are an	1 7	5.12 0	ug/l	IKY017
89118	SW36001B	0.1	STRM	ZZ9	Dicyclopentadiene		8.00 -2	ug/l	GFR011
				LH15	Vapona	LT	1.14 -1	ug/l	KSU020
				TT9	Diisopropylmethyl Phosphonate	LT	2.00 1	ug/l	GEQ008
				N9	Dimethyldisulfide	LT LT	1.33 -1	ug/l	KSU020
				TT9	Dimethylmethyl Phosphate	C.I	1.00 -1	ug/1	1/30020
				N9	Ethylbenzene		1.15 0	ug/1	GEQ008
				AA9	Ethylbenzene		5.80 -1	ug/l	GFT011
				<b>AAA</b> 9	Fluoroacetic Acid	LT	2.00 0	ug/1	KRS020
				Y9	Mercury		5.01 -1	ug/l	GDL028
				AAA9	Isopropylmethyl Phosphonic . Acid	LT	2.11 0	ug/l	KRS020
				Н9	Toluene	LT	2.50 -1	ug/l	GEQ008
				<b>AA9</b>	Toluene		5.61 -1	ug/1	GFT011
				N9	Methylisobutyl Ketone	LT	7.30 -1	ug/l	GEQ008
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/1	IKY017
				LH15	Malathion	LT	1.26 -1	ug/l	GFR011
				P9	Lead		1.03 2	ug/l	GDK028
				LH15	Parathion	LT	1.59 -1	ug/l	GFR011
				LH15	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.48 -1	ug/l	GFR011
					Vinyldiethyl Phosphates				-
				И9	Tetrachloroethene		8.59 -1	ug/l	_GEQ008
				NN9	Tetrachloroethene		1.00 0	ug/l	GFS011
				N9	Trichloroethene	LT	5.40 -1	ug/l	GEQ008
				NN9	Trichloroethene	LT	1.40 -1	ug/1	GFS011
				N9	Ortho- & Para-Xylene	LT	4.90 0	ug/1	GEQ008
				AA9	Ortho- & Para-Xylene		2.10 0	ug/l	GFT011
				P9	Zinc		6.01 1	ug/l	GDK028
69110	SW37001	0.2	STRM	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GCQ011
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	GCQ011
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	GCQ011
		-		UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	GCQ011
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GCQ011
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GCQ011

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters		Re	eults		Units	Sample Number
89110	SW37001	0.2	STRM	UM21	1,2-Dichloropropane	ور د	LT	1.00	o	ug/l	GCQ011
07110				UM21	1,3-Dichlorobenzene		LT	1.00		ug/l	GCQ011
		•		UM21	1,3-Dichloropropane		LT	4.60		ug/1	GCQ011
				UM21	m-Xylene		LT	1.00		ug/l	GCQ011
_				AV8	m-Xylene	*	LT	1.32	0	ug/1	GCS015
				UM21	2-Chloroethylvinyl Ether		LT	3.50	0	ug/1	GCQ011
				UM21	Acrylonitrile		LT	8.40	0	ug/l	GCQ011
_				KK8	Aldrin		LT	5.00	-2	ug/1	GCY017
				UM25	Aldrin		LT	1.30	1	ug/l	GCT007
				00	ALKALINITY			2.48	2	ug/l	GCJ015
				AX8	Arsenic (filtered)		LT	2.35	0	ug/l	GCM027
				AX8	Arsenic		LT	2.35	0	ug/1	GCM028
		•		UH11	Atrazine			9.59	0	ug/1	GCW015
1				UM25	Atrazine		LT	5.90	0	ug/1	GCT007
				P8	Bicycloheptadiene		LT	5.90	0	ug/l	GCV015
				UM21	Bromodichloromethane		LT	1.00	o	ug/l	GCQ011
				<b>AAA</b> 8	Benzothiazole		LT	5.00	0	ug/l	GCZ017
				UM21	Vinyl Chloride		LT	1.20	1	ug/l	GCQ011
_				UM21	Chloroethane		LT	8.00	0	ug/l	GCQ011
				UM21	Benzene		LT	1.00	.0	ug/l	GCQ011
•				AV8	Benzene		LT	1.05	0	ug/l	GCS015
				GG8	Calcium (filtered)			9.04	4	ug/l	GEP007
			•	GG8	Calcium		*	8.79	.4	ug/l	GEP008
				UM21	Trichlorofluoromethane		LT	1.00	0	ug/1	GCQ011
				UM21	Carbon Tetrachloride		LT	1.00	0	ug/l	GCQ011
				GG8	Cadmium (filtered)		LT	8.40	0	ug/l	GEP007
				GG8	Cadmium		LT	8.40	0	ug/l	GEP008
				UM21	Methylene Chloride	-		1.00		ug/l	GCQ011
				UM21	Bromomethane			1.40		ug/l	GCQ011
				UM21	Chloromethane		LT	1.20	0	ug/l	GCQ011
				UM21	Bromoform			1.10		ug/l	GCQ011
				UM21	Chloroform		LT	1.00		ug/l	GCQ011
•				HH8A	Chloride			1.30		ug/l	GCK015
				KK8	Hexachlorocyclopentadiene		LT	4.80	-2	ug/l	GCY017

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	"Method	Analytical Parameters	Re	esults	Units	Sample Number
69110	SW37001	0.2	STRM	UM25	Hexachlorocyclopentadiene	17	5.40 1	ug/l	GCT007
69110	- SW37001 -	V-2	21101	UM21	Chlorobenzene	LT	1.00 0	ug/l	GCQ011
				KK8	Chlordane	- 1	2.68 -1	ug/l	GCY017
				UM25	Chlordane	LT		ug/l	GCT007
				AAAS	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GCZ017
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GCT007
				AAAB	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	GCZ017
	-			UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GCT007
		-		AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GCZ017
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GCT007
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GEP007
,				GG8	Chromium	LT	2.40 1	ug/1	GEP008
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GEP007
				GGS	Copper	LT	2.60 1	ug/l	GEP008
				TF20	Cyanide	LT	5.00 0	ug/l	GCR015
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GDA017
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GCT007
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GCQ011
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GCQ011
				P6	Dicyclopentadiene	-	2.11 1	ug/l	GCV015
				UM25	Dicyclopentadiene		1.39 1	ug/l	GCT007
				UH11	Vapona	LT	3.84 -1	ug/l	GCW015
		, I		UM25	Vapona	LT	8.50 0	ug/l	GCT007
				AT8 UM25	Diisopropylmethyl Phosphonate Diisopropylmethyl Phosphonate		6.60 1 1.04 2	ug/l ug/l	GCX017 GCT007
				AAA8	Dithiane	LT	1.34 0	ug/l	GCZ017
ì				UM25	Dithiane	LT	3.30 0	ug/l	GCT007
				KK6	Dieldrin	. 🖵	5.77 -2	ug/l	GCY017
				UM25	Dieldrin		2.60 1	ug/l	GCT007
				AAAB	Dimethyldisulfide	LT	5.50 -1	ug/l	GCZ017
				UM21	Acetone		8.00 0	ug/l	GCQ011
				ATE	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GCX017
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GCT007
				KK8	Endrin		6.43 -2	ug/l	GCY017

01/10/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89110	SW37001	0.2	STRM	UM25	Endrin	LT	1.80 1	ug/1	GCT007
69110	3W37001	V+2.	01141	UM21	Ethylbenzene	LT	1.00 0	ug/1	GCQ011
				AV8	Ethylbenzene		1.37 0	ug/1	GCS015
				HHBA	Fluoride		2.05 3	ug/l	GCK015
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GCN027
				CC8	Mercury	LT	1.00 -1	ug/l	GCN028
				KK8	Isodrin	LT	5.10 -2	ug/1	GCY017
				UM25	Isodrin	LT	7.80 0	ug/l	GCT007
				GG8	Potassium (filtered)		4.66 3	ug/l	GEP007
				GG8	Potassium		4.44 3	ug/l	GEP008
				UM21	Toluene	LT	1.00 0	ug/l	GCQ011
				AV8	Toluene	LT	1.47 0	ug/1	GCS015
				UM21	Methylethyl Ketone	LT	1.00 1	ug/1	GCQ011
				GG8	Magnesium (filtered)		4.17 4	ug/l	GEP001
				GG8	Magnesium	•	4.04 4	ug/l	GEP008
				UM21	Methylisobutyl Ketone	LŢ	1.40 0	ug/1	GCQ011
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GCV015
				UM25	Malathion	LT	2.10 1	ug/l	GCT007
				GG8	Sodium (filtered)		2.10 5	ug/l	GEP001
				GG6	Sodium		2.10 5	ug/l	GEP008
				LL8	Nitrite, Nitrate - Non specific	LT	1.00 1	ug/l	GCL015
				AAA8	1,4-0xathiane	LŤ	2.38 0	ug/l	GCZ017
				UM25	1,4-0xathiane	LT	2.70 1	ug/l	GCT007
				<b>G</b> G8	Lead (filtered)	LT	7.40 1	ug/l	GEP001
				GG8	Lead	LT	7.40 1	ug/l	GEP008
	•			KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GCY017
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GCT007
				KK8	Dichlorodiphenyltrichloro- ethane		5.71 -2	ug/l	GCY017
<u> </u>				UM25	Dichlorodiphenyltrichloro-	LT	1.80 1	ug/l	GCT007
				UM25	ethane Parathion	LT	3.70 1	ug/l	GCT007
				ur.					
				HH8A	Sulfate	,	3.20 5	ug/l	GCK019
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GCT00

Summary of Analytical Results

Sampling Date	Station - Number	Sample' Depth (cm)	Sample Type	"Method	Analytical Parameters	iRe	esults	Units	Sample Number
	-	<u></u>							
89110	SW37001	0.2	STRM	UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GCQ011
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	GCQ011
				UM21	Trichloroethene	LT	1.00 0	ug/1	GCQ011
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GCQ011
		~		AV6	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GCS015
				GG6	Zinc (filtered)	LT	2.20 1	ug/l	GEP007
				GG8	Zinc	LT	2.20 1	ug/l	GEP008
69110	SW37001B	0.2	BORE	Н9	1,1,1-Trichloroethane	LT	4.30 -1	ug/l	GD1005
				NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/l	GDJ007
				Н9	1,1,2-Trichloroethane	LT	3.90 -1	ug/l	GD1005
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/l	GDJ007
				NN9	1,1-Dichloroethene	LΥ	2.40 -1	ug/l	GDJ007
				N9	1,1-Dichloroethane	LT	1.70 0	ug/l	GD1005
				еии	1,1-Dichloroethane	LT	7.40 -2	ug/l	GDJ007
				N9	1,2-Dichloroethene	LT	1.70 0	ug/l	GD1005
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/l	GDJ007
				И9	1,2-Dichloroethane	LT	5.60 -1	ug/l	GD1005
				ни9	1,2-Dichloroethane	LT	8.50 -2	ug/l	GDJ007
				N9	m-Xylene	LT	7.40 -1	ug/l	GD1005
				AA9	m-Xylene	LT	2.60 -1	ug/l	GDH007
				69	Arsenic	LT	2.50 0	ug/l	GDM009
				LH15	Atrazine		3.42 0	ug/l	GDF008
				Н9	Bicycloheptadiene	LT	3.60 -1	ug/l	GD1005
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/1	IKX007
				HH9	Benzothiazole	LT	2.04 0	ug/l	GDC009
				Н9	Benzene	LT	2.50 -1	ug/l	GD1005
				AA9	Benzene	LT	8.50 -2	ug/l	GDH007
				N9	Carbon Tetrachloride	LT	2.50 -1	ug/l	GD1005
				ни9	Carbon Tetrachloride		1.20 -1	ug/l	GDJ007
				P9	Cadmium		7.40 -1	ug/l	GDK009
				N9	Methylene Chloride		1.50 0	ug/l	GD1005
				ИИЭ	Methylene Chloride		3.70 0	ug/l	GDJ007
				Н9	Chloroform	LT	2.90 -1	ug/l	GD1005

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type Method	Analytical Parameters	Re	esults	Units	Sample Number
						***************************************	***************************************	,
89110	SW37001B	0.2	STRM NN9	Chloroform	LT	5.80 -2	ug/l	GDJ007
			Н9	Chlorobenzene	LT	1.50 0	ug/l	GD1005
		•	еии	·Chlorobenzene	LT	2.00 -1	ug/1	GDJ007
			ННЭ	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/1	GDC009
			ННЭ	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/l	GDC009
			ннэ .	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/l	GDC009
			P9	Chromium	LT	6.50 0	ug/1	GDK009
			P9	Copper		9.11 0	ug/1	GDK009
			\$9	Dibromochloropropane	LT	5.00 -3	ug/l	GD6009
		•	<b>н</b> 9	Dibromochloropropane	LT	2.40 0	ug/l	GD1005
			н9	Dicyclopentadiene	LT	6.40 -1	ug/l	GD1005
			ZZ9	Dicyclopentadiene	LT	5.12 0	ug/l	IKX007
			LH15	Vapona	LT	8.00 -2	ug/1	GDF008
ł			TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/l	KST006
i			ннэ	Dithiane	LT	1.45 0	ug/l	GDC009
			N9	Dimethyldisulfide	LT	2.00 1	ug/l	GD1005
			нн9	Dimethyldisulfide	LT	3.12 0	ug/l	GDC009
			TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/l	KST006
			N9	Ethylbenzene	LT	3.80 -1	ug/1	GD1005
			AA9	Ethylbenzene	LT	1.60 -1	ug/l	GDH007
			AAA9	Fluoroacetic Acid	LT	2.00 0	ug/l	KRR009
Ì			Y9	Mercury	LT	5.00 -2	ug/1	GDL009
		•	AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/l	KRR009
			И9	Toluene	LT	2.50 -1	ug/l	GD1005
			AA9	Toluene	LT	1.90 -1	ug/l	GDH007
			еи	Methylisobutyl Ketone	LŤ	7.30 -1	ug/l	GD1005
			ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/1	IKX007
			LH15	Malathion	LT	1.26 -1	ug/l	GDF008
	•		ннэ	1,4-Oxathiane	LT	1.74 0	ug/l	GDC009
			P9	Lead	LT	6.40 0	ug/l	GDK009
			LH15	Parathion	LT	1.59 -1	ug/1	GDF008
			LH15	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.48 -1	ug/l	GDF008
				Vinyldiethyl Phosphates				

Comprehensive Monitoring Program

01/10/90

Summary of Analytical Results

•										
Sampling . Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	·	Results	Units	Sample Number	
<b>6</b> 9110	SW37001B	0.2	BORE	N9	Tetrachloroethene		LT 2.50 -1	ug/l	GD1005	
1				NN9	Tetrachloroethene		LT 2.70 -1	ug/l	GDJ007	
				N9	Trichloroethene		LT 5.40 -1	ug/l	GD1005	
				еии	Trichloroethene		LT 1.40 -1	ug/1	GDJ007	
1				И9	Ortho- & Para-Xylene		LT 4.90 0	ug/l	GD1005	
ļ				669	Ortho- & Para-Xylene		LT 3.90 -1	ug/l	GDH007	
				P9	Zinc		4.12 1	ug/l	GDK009	

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results Surface Water Sediment Samples - Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89117	SW02006B	.20	ртсн	LH15	Atrazine		6.23 ₀	ug/g	GFR010
				LH15	Vapona	LT	8.00 _2	ug/g	GFR010
				LH15	Malathion	LT	1.26 -1	ug/g	GFR010
				LH15	Parathion	LT	1.59 -1	ug/g	GFR010
				LH15	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.48 -1	ug/g	GFR010
					Vinyldiethyl Phosphates				
89117	SW02006B	0.2	DTCH	еии	1,1,1-Trichloroethane	ĹŦ	8.80 -2	ug/g	GFS010
				NN9	1,1,2-Trichloroethane	LT		ug/g	GFS010
				PH9	1,1-Dichloroethene	LT	2.40 -1	ug/g	GFS010
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/g	GFS010
		•		ня	1,2-Dichloroethene	LT	2.60 -1	ug/g	GFS010
				еии	1,2-Dichloroethane	LT	8.50 -2	ug/g	GFS010
				<b>AA9</b>	m-Xylene	LT	2.60 -1	ug/g	GFT010
				<b>B</b> 9	Arsenic	LT	2.50 0	ug/g	GDM026
				ZZ9	Bicycloheptadiene	LT	5.08 0	ug/g	IKY016
				AA9	Benz ene	LT	8.50 -2	ug/g	GFT010
				NN9	Carbon Tetrachloride	LT	1.20 -1	ug/g	GFS010
			• •	PHH 6	Methylene Chloride	LT	3.70 0	ug/g	GFS010
				PN9	Chloroform	LT	6.80 -2	ug/g	GFS010
				en <b>n</b>	Chlorobenzene	LT	2.00 -1	ug/g	GFS010
				S9	Dibromochloropropane		2.01 -2	ug/g	GFB012
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/g	IKY016
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	KSU016
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	KSU018
				AA9	Ethylbenzene	LT	1.60 -1	ug/g	GFT010
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/g	KRS018
				Y9	Mercury		8.00 0	ug/g	GDL026
	-			AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/g	KRS018
				<del>AA</del> 9	Toluene	LT	1.90 -1	ug/g	GFT010
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	IKY016
				en <del>n</del>	Tetrachloroethene	LT	2.70 -1	ug/g	GFS010
				еии	Trichloroethene	LT	1.40 -1	ug/g	GFS010

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Surface Water Sediment Samples - Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eulte	Units	Sample Number
<b>69117</b>	SW02006B	0.2	DTCH	AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/g	GFT010
89117	SW02006B	2.0	DTCH	P9	Cadmium	LT	7.40 -1	ug/g	GDK027
	0,1,02,000			pg.	Chromium		1.37 1	ug/g	GDK027
				P9	Copper		7.86 1	ug/g	GDK027
				P9	Lead		7.47 1	ug/g	GDK027
				P9	Zinc		1.59 2	ug/g	GDK027
69115	SW08003B	0.2	STRM	нэ -	1,1,1-Trichloroethane	LT	4.30 -1	ug/g	GEQ006
				еии	1,1,1-Trichloroethane	LT	8.80 -2	ug/g	GDY010
				N9	1,1,2-Trichloroethane	LT	3.90 -1	ug/g	GEQ006
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/g	GDY010 -
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/g	GDY010
				Н9	1,1-Dichloroethane	LT	1.70 0	ug/g	GEQ006
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/g	GDY010
				Н9	1,2-Dichloroethene	LT	1.70 0	ug/g	GEQ006
		• •		NN9	1,2-Dichloroethene	LT	2.60 -1	ug/g	GDY010
				N9	1,2-Dichloroethane	LT	5.60 -1	ug/g	GEQ006
				NN9	1,2-Dichloroethane	LT	8.50 -2	ug/g	GDY010
				N9	m-Xylene	LT	7.40 -1	ug/g	GEQ006
				KK9A	Aldrin	LT	1.90 -3	ug/g	GEB010
				<b>B</b> 9	Arsenic	LT	2.50 0	ug/g	GDM015
				N9	Bicycloheptadiene	ĻT	3.60 -1	ug/g	GEQ006
				НН9	Benzothiazole	LT	2.04 0	ug/g	GEC009
				N9	Benzene	LT	2.50 -1	ug/g	GEQ006
				N9	Carbon Tetrachloride	LT	2.50 -1	ug/g	GEQ006
	-			NN9	Carbon Tetrachloride	LT	1.20 -1	ug/g	GDY010
				N9	Methylene Chloride		8.70 0	ug/g	GEQ006
				<b>НИЭ</b>	Methylene Chloride		3.70 0	ug/g	GDY010
				N9	Chloroform		2.90 -1	ug/g	GEQ006
				NN9	Chloroform		6.80 -2	ug/g	GDY010
				KK9A	Hexachlorocyclopentadiene		1.80 -3	ug/g	GEB010
				N9	Chlorobenzene	LT	1.50 0	ug/g	GEQ006
				ниэ	Chlorobenzene	LT	2.00 -1	ug/g	GDY010

03/23/90

Summary of Analytical Results

Surface Water Sediment Samples - Spring 89

Sampling Date	Station Number	Sample Depth (cm)	Sample~	Method	Analytical Parameters	Re	esults	Units	Sample Number
89115	SW08003B	0.2	STRM	KK9A	Chlordane	LT	2.30 -2	ug/g	GEB010
09113		0.2	01741	HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/g	GEC009
				нн9	p-Chlorophenylmethyl Sulfoxide	LT	4.81 0	ug/g	GEC009
				нн9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/g	GECO09
				N9	Dibromochloropropane	LT	2.40 0	ug/g	GEQ006
				N9	Dicyclopentadiene	LT	6.40 -1	ug/g	GEQ006
				HH9	Dithiane	LT	1.45 0	ug/g	GEC009
				KK9A	Dieldrin	LT	3.30 -3	ug/g	GEB010
				N9	Dimethyldisulfide	LT	2.00 1	ug/g	GEQ006
				HH9	Dimethyldisulfide	LT	3.12 0	ug/g	GECOO9
				KK9A	Endrin	LT	5.80 -3	ug/g	GEB010
				N9	Ethylbenzene	LT	3.80 -1	ug/g	GEQ006
				Y9	Mercury	LT	5.00 -2	ug/g	GDL015
				KK9A	Isodrin	LT	1.10 -3	ug/g	GEB010
				N9	Toluene	LT	2.50 -1	ug/g	GEQ006
				Н9	Methylisobutyl Ketone		7.30 -1	ug/g	GEQ006
				HH9	1,4-Oxathiane	LT	1.74 0	ug/g	GEC009
1				KK9A	Dichlorodiphenylethane	LT	2.40 -3	ug/g	GEB010
				KK9A	Dichlorodiphenyltrichloro- ethane	LT	2.00 -3	ug/g	GEB010
1				N9	Tetrachloroethene	LT	2.50 -1	ug/g	GEQ006
				ниэ	Tetrachloroethene	LT	2.70 -1	ug/g	GDY010
				N9	Trichloroethene	LT	5.40 -1	ug/g	GEQ006
				PN9	Trichloroethene	LT	1.40 -1	ug/g	GDY010
				N9	Ortho- & Para-Xylene	LT	4.90 0	ug/g	GEQ006
69116	SW11001B	0.1	SURF	NN9	1,1,1-Trichloroethane		3.36 -1	ug/g	GFS005
17				PN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/g	GFS005
				еии	1,1-Dichloroethene		2.40 -1	ug/g	GFS005
				NN9	1,1-Dichloroethane		7.40 -2	ug/g	GFS005
1				еии	1,2-Dichloroethene	LT	2.60 -1	ug/g	GFS005
				<b>NN9</b>	1,2-Dichloroethane		8.50 -2	ug/g	GFS005
1				<del>AA</del> 9	m-Xylene		2.60 -1	ug/g	GFT005
				B9 .	Arsenic	LT	2.50 0	ug/g	GDM019
				LH15	Atraxine		4.58 0	ug/g	GFR005

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89116	SW11001B	0.1	STSW	ZZ9	Bicycloheptadiene	LT	5.08 0	ug/g	IKY011
03110	0,1110010		-,	HH9	Benzothiazole	LT	2.04 0	ug/g	GFA007
				AA9	Benzene	LT	8.50 -2	ug/g	GFT005
				NN9	Carbon Tetrachloride	LT	1.20 -1	ug/g	GFS005
				P9	Cadmium	LT	7.40 -1	ug/g	GDK019
1				ни9	Methylene Chloride	LT	3.70 0	ug/g	GFS005
				NN9	Chloroform	LT	6.80 -2	ug/g	GFS005
				PN9	Chlorobenzene	LT	2.00 -1	ug/g	GFS005
				нн9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/g	GFA007
			•	нн9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/g	GFA007
				P9	Chromium		9.99 0	ug/g	GDK019
				P9	Copper		1.45 1	ug/g	GDK019
				S9	Dibromochloropropane		2.29 -2	ug/g	GFB007
				<b>ZZ9</b>	Dicyclopentadiene	LT	5.12 0	ug/g	IKY011
				LH15	Vapona	LT	8.00 -2	ug/g	GFR005
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	KSU013
			•	HH9	Dithiane	LT	1.45 0	ug/g	GFA007
	•			HH9	Dimethyldisulfide	LT	3.12 0	ug/g	GFA007
				1119	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	KSU013
				AA9	Ethylbenzene	LT	1.60 -1	ug/g	GFT005
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/g	KRS013
				<b>Y</b> 9	Mercury	LT	5.00 -2	ug/g	GDL021
i				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/g	KRS013
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	IKY011
,				LH15	Malathion	LT	1.26 -1	ug/g	GFR005
				ННЭ	1,4-Oxathiane	LT	1.74 0	ug/g	GFA007
				P9	Lead		2.74 1	ug/g	GDK019
				LH15	Parathion	LT	1.59 -1	ug/g	GFR005
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/g	GFR005
1				<b>н</b> и9	Tetrachloroethene	LT	2.70 -1	ug/g	GFS005
				ни9	Trichloroethene	LT	1.40 -1	ug/g	GFS005
				AA9	Ortho- & Para-Xylene	LT	3.90 -1	ug/g	GFT005

## Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89116	SW11001B	0.1	SURF	P9	Zinc with the way		1.02 2	ug/g	GDK019
89107	SW12005B	0.2	BORE	нэ	1,1,1-Trichloroethane	LT	4.30 -1	ug/g	GD1002
03107	011220000	<b>5</b> + <b>2</b> .	20112	NN9	1,1,1-Trichloroethane	LT	8.80 -2	ug/g	GDJ005
				N9	1,1,2-Trichloroethane	LT	3.90 -1	ug/g	GD1002
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/g	GDJ005
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/g	GDJ005
•					•				
				N9	1,1-Dichloroethane	LT	1.70 0	ug/g	GD1002
-				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/g	GDJ005
•				Н9	1,2-Dichloroethene	LT	1.70 0	ug/g	GDI002
				NN9	1,2-Dichloroethene	LT	2.60 -1	ug/g	GDJ 005
				N9	1,2-Dichloroethane	LT	5.60 -1	ug/g	GD1002
				ни9	1,2-Dichloroethane	LT	8.50 -2	ug/g	GDJ 005
				N9	m-Xylene	LT	7.40 -1	ug/g	GD1002
				AA9	m-Xylene	LT	2.60 -1	ug/g	GDH005
1				L9	Aldrin	LT	3.00 -1	ug/g	GDG002
				B9	Arsenic	LT	2.50 0	ug/g	GDM005
				LH15	Atrazine		3.00 0	ug/g	GDF005
				L9	Atrazine	LT	3.00 -1	ug/g	GDG002
				PP9	Bicycloheptadiene	LT	1.10 0	ug/g	GDE005
_				N9	Bicycloheptadiene	LT	3.60 -1	ug/g	GD1002
				ННЭ	Benzothiazole	LT	2.04 0	ug/g	GDC005
				N9	Benzene	LT	2.50 -1	ug/g	GD1002
				<b>AA9</b>	Benzene	LT	6.50 -2	ug/g	GDH005
				N9	Carbon Tetrachloride	LT	2.50 -1	ug/g	GD1002
				<b>NN9</b>	Carbon Tetrachloride	LT	1.20 -1	ug/g	GDJ 005
1				P9	Cadmium	LT	7.40 -1	ug/g	GDK005
•				N9	Methylene Chloride	LT	1.50 0	ug/g	GD1002
_				. NN9	Methylene Chloride	LT	3.70 0	ug/g	GDJ005
				N9	Chloroform	LT	2.90 -1	ug/g	GDI002
				PH9	Chloroform	LT	6.80 -2	ug/g	GDJ 005
				L9	Hexachlorocyclopentadiene	LT	6.00 -1	ug/g	GDG002
				N9	Chlorobenzene	LT	1.50 0	ug/g	GD1002
•				ннэ	Chlorobenzene	LT	2.00 -1	ug/g	GDJ005

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number	
89107	SW12005B	0.2	STRM	L9	Chlordane	LT	2.00 0	ug/g	GDG002	
05107	01/120005	012	•	L9	p-Chlorophenylmethyl Sulfide	LT	9.00 -1	ug/g	GDG002	
				HH9	p-Chlorophenylmethyl Sulfide	LT	4.40 0	ug/g	GDC005	
_				L9	p-Chlorophenylmethyl Sulfoxide	LT	3.00 -1	ug/g	GDG002	
				нн9	p-Chlorophenylmethyl Sulfoxide	GT	2.00 1	ug/g	GDC005	
				L9	p-Chlorophenylmethyl Sulfone	LT	3.00 -1	ug/g	GDG002	
				HH9	p-Chlorophenylmethyl Sulfone	LT	9.01 0	ug/g	GDC005	
				P9	Chromium	LT	6.50 0	ug/g	GDK005	
				P9	Copper	LT	4.70 0	ug/g	GDK005	
				S9	Dibromochloropropane	LT	5.00 -3	ug/g	GDB005	
				нэ	Dibromochloropropane	LT	2.40 0	ug/g	GD1002	
				L9	Dibromochloropropane	LT	3.00 -1	ug/g	GDG002	
	•			PP9	Dicyclopentadiene	LT	4.50 -1	ug/g	GDE005	
				N9	Dicyclopentadiene	LT	6.40 -1	ug/g	GDI002	
				L9	Dicyclopentadiene	LT	1.00 0	ug/g	GDG002	
				LH15	Vapona	LT	8.00 -2	ug/g	GDF005	
				L9	Vapona	LT	3.00 0	ug/g	GDG002	
B				L9	Diisopropylmethyl Phosphonate	LT	1.00 0	ug/g	GDG002	
				TT9	Diisopropylmethyl Phosphonate	LT	2.281	ug/g	KSS006	
				L9	Dithiane	LT	4.00 -1	ug/g	GDG002	
				ННЭ	Dithiane	LT	1.45 0	ug/g	GDC005	
				L9	Dieldrin	LT	3.00 -1	ug/g	GDG002	
				N9	Dimethyldisulfide	LT	2.00 1	ug/g	GDI002	
				HH9	Dimethyldisulfide	LT	3.12 0	ug/g	GDC005	
				<b>TT</b> 9	Dimethylmethyl Phosphate	LT	2.66 -1	ug/g	KSS006	
				L9	Endrin		5.00 -i	ug/g	GDG002	
				N9	Ethylbenzene		3.80 -1	ug/g	GDI002	
_				AA9	Ethylbenzene		1.60 -1	ug/g	GDH005	
				Y9	Mercury		5.00 -2	ug/g	GDL005	
				L9	Isodrin	LT	3.00 -1	ug/g	GDG002	
_				нэ	Toluene		2.50 -1	ug/g	GD1002	
				AA9	Toluene		1.90 -1	ug/g	GDH005	
				PP9	Methylisobutyl Ketone	LT		ug/g	GDE005	
				<b>N</b> 9	Methylisobutyl Ketone	LT	7.30 -1	ug/g	GD1002	

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
69107	SW12005B	0.2	STRM	LH15	Malathion Culture to the second	LT	1.26 -1	ug/g	GDF005
03107		0.2	31141	L9	Malathion	LT	7.00 -1	ug/g	GDG002
				L9	1,4-Oxathiane	LT	3.00 -1	ug/g	GDG002
				HH9	1.4-Oxathiane	LT	1.74 0	ug/g	GDC005
				P9	Lead	LT	6.40 0	ug/g	GDK005
				L9	Dichlorodiphenylethane	LT	6.00 -1	ug/g	GDG002
				- L9	Dichlorodiphenyltrichloro- ethane	LT	5.00 -1	ug/g	GDG002
		* •		LH15	Parathion	LT	1.59 -1	ug/g	GDF005
				L9	Parathion	LT	9.00 -1	ug/g	GDG002
				LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/g	GDF005
				L9	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	6.00 -1	ug/g	GDG002
				N9	Tetrachloroethene	LT	2.50 -1	ug/g	GDI002
				NN9	Tetrachloroethene	LT	2.70 -1	ug/g	GDJ005
				N9	Trichloroethene	LT	5.40 -1	ug/g	GDI002
				NN9	Trichloroethene	LT	1.40 -1	ug/g	GDJ005
				N9	Ortho- & Para-Xylene	LT		ug/g	GD1002
				AA9 P9	Ortho- & Para-Xylene Zinc	LT	3.90 -1 5.61 1	ug/g	GDH005 GDK005
<b>89</b> 118	SW36001B	0.1	STRM	N9 ·	1,1,1-Trichloroethane	LT	4.30 -1	ug/g	GEQ008
03110	01100000			нн9	1,1,1-Trichloroethane	LT	8.80 -2	ug/g	GFS011
				N9	1,1,2-Trichloroethane	LT	3.90 -1	ug/g	GEQ008
				NN9	1,1,2-Trichloroethane	LT	2.60 -1	ug/g	GFS011
				NN9	1,1-Dichloroethene	LT	2.40 -1	ug/g	GFS011
				N9	1,1-Dichloroethane		1.70 0	ug/g	GEQ008
				NN9	1,1-Dichloroethane	LT	7.40 -2	ug/g	GFS011
				N9	1,2-Dichloroethene	LT		ug/g	GEQ008
				NH9	1,2-Dichloroethene		2.60 -1	ug/g	GFS011
				N9	1,2-Dichloroethane	LT	5.60 -1	ug/g	GEQ008
				NN9	1,2-Dichloroethane	LT	8.50 -2	ug/g	GFS011
	•			Н9	m-Xylene		1.07 0	ug/g	GEQ008
				B9	Arsenic		4.40 1	ug/g	GDM028

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Sample Depth (cm) Type	Method	Analytical Parameters	Re	sults	Units	Sample Number	
89118	SW36001B	0.1 STRM	LH15	Atrazine		1.30 1	ug/g	GFR011	
			N9	Bicycloheptadiene	LT	3.60 -1	ug/g	GEQ008	
			ZZ9	Bicycloheptadiene	LT	5.08 0	ug/g	IKY017	
			N9	Benzene	LT	2.50 -1	ug/g	GEQ008	
			N9	Carbon Tetrachloride	LT	2.50 -1	ug/g	GEQ006	
			ннэ	Carbon Tetrachloride	LT	1.20 -1	ug/g	GFS011	
		•	P9	Cadmium		1.93 0	ug/g	GDK028	
			N9	Methylene Chloride	LT	1.50 0	ug/g	GEQ008	
			NN9	Methylene Chloride	LT	3.70 0	ug/g	GFS011	
			Н9	Chloroform	LT	2.90 -1	ug/g	GEQ008	
ŀ			еии	Chloroform	LT	6.80 -2	ug/g	GFS011	
			N9	Chlorobenzene		1.17 1	ug/g	GEQ008	
			NN9	Chlorobenzene		1.07 1	ug/g	GFS011	
			P9	Chromium	LT	6.50 0	ug/g	GDK028	
			P9	Copper		1.29 1	ug/g	GDK028	
			N9	Dibromochloropropane	LT	2.40 0	ug/g	GEQ008	
			\$9	Dibromochloropropane		1.70 -1	ug/g	GFB014	
			N9	Dicyclopentadiene	LT	6.40 -1	ug/g	GEQ008	
			ZZ9	Dicyclopentadiene	LT	5.12 0	ug/g	IKY017	
			LH15	Vapona	LT	8.00 -2	ug/g	GFR011	
			TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	KSU020	
			Н9	Dimethyldisulfide	LT	2.00 1	ug/g	GEQ008	
_			TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	KSU020	
			N9	Ethylbenzene		1.15 0	ug/g	GEQ008	
			AAA9	Fluoroacetic Acid	LT	2.00 0	ug/g	KRS020	
			Y9	Mercury		5.01 -1	ug/g	GDL028	
			AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/g	KRS020	
_			Н9	Toluene	LT	2.50 -1	ug/g	GEQ008	
			<b>N</b> 9	Methylisobutyl Ketone	LT	7.30 -1	ug/g	GEQ008	
			<b>Z</b> Z9	Methylisobutyl Ketone	LT	5.24 0	ug/g	IKY017	
			LH15	Malathion	LT	1.26 -1	ug/g	GFR011	
			P9	Lead		1.03 2	ug/g	GDK028	
			LH15	Parathion	LT	1.59 -1	ug/g	GFR011	

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89118	SW36001B	0.1	STRM	LH15	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.48 -1	ug/g	GFR011
,				N9	Tetrachloroethene		8.59 -1	ug/g	GEQ008
				NN9	Tetrachloroethene		1.00 0	ug/g	GFS011
				N9	Trichloroethene	LT	5.40 -1	ug/g	GEQ008
				<b>РИИ</b>	Trichloroethene	LT	1.40 -1	ug/g	GFS011
				N9	Ortho- & Para-Xylene	LT	4.90 0	ug/g	GEQ008
				P9	Zinc		6.01 1	ug/g	GDK028

APPENDIX B-3

High Event 1989 Water Quality Data

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
89135	SW04001ST	0.2	DTCH	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GKN010
05133	340400131	0.2	DICH	NB	1,1,1-Trichloroethane	LT	7.60 -1	ug/1	GKN010
				NB	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GKN010
				И8	1,1-Dichloroethene	LT	1.70 0	ug/1	GKN010
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	GKN010
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	GKN010
		•		N8	1,2-Dichloroethane	LT	1.10 0	ug/l	GKN010
				AV8	m-Xylene	LT	1.32 0	ug/l	GK0010
				KK8	Aldrin	LT	5.00 -2	ug/l	GKK007
				UM25	Aldrin	LT	1.30 1	ug/l	GKW004
				00	ALKALINITY		2.29 1	ug/l	GMK008
				AX8	Arsenic (filtered)	LT	2.35 0	ug/l	GKS016
				UH11	Atrazine	LT	4.03 0	ug/l	GKM001
				UM25	Atrazine	LT	5.90 0	ug/l	GKW004
				P6	Bicycloheptadiene	LT	5.90 0	ug/l	GKQ012
				AAA8	Benzothiazole	LT	5.00 O	ug/l	GK100
			•	AV8	Benzene	LT	1.05 0	ug/l	GK001(
				GG8	Calcium (filtered)		6.21 3	ug/l	GKR01
				NB	Carbon Tetrachloride	LT	9.90 -1	ug/l	GKN01
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GKR01
				NB	Methylene Chloride	LT	7.40 . 0	ug/1	GKN01
				NB	Chloroform	LT	5.00 -1	ug/l	GKN01
				HHBA	Chloride		1.26 3	ug/l	GKP01
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GKK00
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GKW00
				ИВ	Chlorobenzene		8.20 -1	ug/l	GKN01
				KK8	Chlordane		9.50 -2	ug/l	GKK001
				UM25	Chlordane		3.70 1	ug/l	GKW004
				AAA8	p-Chlorophenylmethyl Sulfide		5.69 0	ug/1	GK100.
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GKW00
				AAA8	p-Chlorophenylmethyl Sulfoxide		1.15 1	ug/l	GKJ007
				UM25	p-Chlorophenylmethyl Sulfoxide		1.50 1	ug/l	GKW00
				AAA8	p-Chlorophenylmethyl Sulfone		7.46 0	ug/l	GK100
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GKW004

Summary of Analytical Results

			•						
Sampling	Station	Sample	Sample		•				Samp]
Date	Number	Depth (cm)	Type	Method	Analytical Parameters	Re	sults	Units	Numbe
			***************************************						
89135	SW04001ST	0.2	DTCH	GG8	Chromium (filtered)	LT	2.40 1	ug/1	GKR01
				GG8	Copper (filtered)	LT	2.60 1	ug/1	GKR01
				TF20	Cyanide	LT	5.00 0	ug/l	GKTO
				AY8	Dibromochloropropane	LT	1.95 -1	- ug/l	GKLO
				UM25	Dibromochloropropane	LT	1.20 1	ug/l	GKWOX
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GKQ0
				UM25	Dicyclopentadiene	LT	5.50 0	ug/1	GKWO
				UH11	Vapona	LT	3.84 -1	ug/l	GKMO
				UM25	Vapona	LT	8.50 0	ug/l	GKWO
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GKIO
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GKWO
				AAA8	Dithiane	LT	1.34 0	ug/l	GKJ0
				UM25	Dithiane	LT	3.30 0	ug/l	GKWO
				KK8	Dieldrin		5.51 -2	ug/l	GKKO
		•		UM25	Dieldrin	LT	2.60 1	ug/l	GKWO
				AAA8	Dimethyldisulfide	- LT	5.50 -1	ug/l	GKJO
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GKIO
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/1	GKWO
				KK8	Endrin	LT	5.00 -2	ug/l	GKKO
				UM25	Endrin	LT	1.80 1	ug/l	GKWO
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GKOO
				HH8A	Fluoride		8.07 2	ug/1	GKPO
				CC8	Mercury (filtered)	LT	1.00 -1	ug/l	GMLO
				KK8	Isodrin	LT	5.10 -2	ug/l	GKKO
				UM25	Isodrin	LT	7.80 0	ug/l	GKWO
				GG8	Potassium (filtered)		2.93 3	ug/l	GKR0
				AV8	Toluene	LT	1.47 0	ug/1	GKOO
				GG8	Magnesium (filtered)		8.65 2	ug/l	GKRO
				P8	Methylisobutyl Ketone		4.90 0	ug/l	GKQO
				UH11	Malathion	LT	3.73 -1	ug/l	GKMO
				UM25	Malathion	LT	2.10 1	ug/l	GKWO
				GG8	Sodium (filtered)		1.23 3	ug/l	GKR0
				LL8	Nitrite, Nitrate - Non specific		6.60 2	ug/l	GKV0
				AAA8	1,4-0xathiane	LT	2.38 0	ug/l	GKJO

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	Units	Samp1 Numbe
00175	CUIDADO1CT	0.2	DTCH	UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GKWOO
89135	SW04001ST	0.2	DICH	GG8	Lead (filtered)	LT	7.40 1	ug/1	GKR01
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GKKO
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GKWO
				KK8	Dichlorodiphenyltrichloro- ethane	LT		ug/l	GKKO
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GKWO
				UH11	Parathion	LT	6.47 -1	ug/l	GKMO
				UM25	Parathion	LT	3.70 1	ug/l	GKWO
				HH8A	Sulfate		3.46 3	ug/l	GKPC
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.67 -1	ug/l	GKMO
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	·LT	1.90 1	ug/l	GKWC
				N8	Tetrachloroethene	LT	7.50 -1	ug/1	GKNO
				NB	Trichloroethene	LT	5.60 -1	ug/1	GKNC
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GKOC
				GG8	Zinc (filtered)		4.37 1	ug/l	GKRO
39134	SW08003ST	0.2	STRM	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GJUO
				UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	GLLC
				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/1	GJUC
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/1	GLLC
				NB	1,1-Dichloroethene	LT	1.70 0	ug/1	GJUO
			4	UM21	1,1-Dichloroethene	LT	1.00 0	ug/1	GLLO
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	GJUO
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/1	GLLO
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	GJUO
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	GLLO
				NB	1,2-Dichloroethane	LT	1.10 0	ug/l	GJUO
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	GLLO
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/1	GLLO
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/1	GLLO
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/1	GLLO

UM21 m-Xylene LT 1.00 0 ug, UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug, UM21 Acrylonitrile LT 6.40 0 ug, KK8 Aldrin LT 5.00 -2 ug,  UM25 Aldrin LT 1.30 1 ug, 00 ALKALINITY 1.03 2 ug, AX8 Arsenic LT 2.35 0 ug, UM11 Atrazine LT 4.03 0 ug, UM25 Atrazine LT 5.90 0 ug, UM25 Atrazine LT 5.90 0 ug, UM21 Bromodichloromethane LT 1.00 0 ug, UM21 Vinyl Chloride LT 1.20 1 ug, UM21 Vinyl Chloride LT 1.20 1 ug, UM21 Chloroethane LT 1.00 0 ug, UM21 Eenzene LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 9.90 -1 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug,	s Number	Units		sults	Re		Analytical Parameters	Method	Sample Type	Sample Depth (cm)	Station Number	Sampling Date
UM21 m-Xylene LT 1.00 0 ug, UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug, UM21 Acrylonitrile LT 8.40 0 ug, KK8 Aldrin LT 5.00 -2 ug,  UM25 Aldrin LT 1.30 1 ug, 00 ALKALINITY 1.03 2 ug, AX8 Arsenic LT 2.35 0 ug, UH11 Atrazine LT 4.03 0 ug, UM25 Atrazine LT 5.90 0 ug, UM26 Atrazine LT 5.90 0 ug, UM21 Bromodichloromethane LT 1.00 0 ug, UM21 Vinyl Chloride LT 1.20 1 ug, UM21 Chloroethane LT 6.90 0 ug, UM21 Chloroethane LT 1.00 0 ug, UM21 Benzene LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 9.90 -1 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug,	C77044			4 70	. **							
UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug, UM21 Acrylonitrile LT 8.40 0 ug, KK8 Aldrin LT 5.00 -2 ug,  UM25 Aldrin LT 1.30 1 ug, 00 ALKALINITY 1.03 2 ug, AX8 Arsenic LT 2.35 0 ug, UM11 Atrazine LT 4.03 0 ug, UM25 Atrazine LT 5.90 0 ug, UM25 Atrazine LT 5.90 0 ug, UM26 Arsenic LT 5.90 0 ug, UM27 Bromodichloromethane LT 1.00 0 ug, AAA8 Benzothiazole LT 5.00 0 ug, UM21 Vinyl Chloride LT 1.20 1 ug, UM21 Chloroethane LT 8.00 0 ug, UM21 Chloroethane LT 1.00 0 ug, UM21 Benzene LT 1.00 0 ug, UM21 Benzene LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Chloroethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug,		ug/l					·		STRM	0.2	T2E0080MS	89134
UM21 Acrylonitrile		ug/1										
KK8       Aldrin       LT       5.00 -2       ug.         UM25       Aldrin       LT       1.30 1 ug.       ug.         00       ALKALINITY       1.03 2 ug.       ug.         AX8       Arsenic       LT       2.35 0 ug.         UH11       Atrazine       LT       4.03 0 ug.         UM25       Atrazine       LT       5.90 0 ug.         UM21       Bromodichloromethane       LT       1.00 0 ug.         AAA8       Benzothiazole       LT       5.00 0 ug.         UM21       Vinyl Chloride       LT       1.20 1 ug.         UM21       Chloroethane       LT       1.05 0 ug.         UM21       Benzene       LT       1.00 0 ug.         UM21       Benzene       LT       1.00 0 ug.         UM21       Trichlorofluoromethane       LT       1.00 0 ug.         NB       Carbon Tetrachloride       LT       1.00 0 ug.         UM21       Carbon Tetrachloride       LT       1.00 0 ug.         UM21       Carbon Tetrachloride       LT       3.40 0 ug.         UM21       Carbon Tetrachloride       LT       7.40 0 ug.		ug/l										
UM25 Aldrin LT 1.30 1 ug, 00 ALKALINITY 1.03 2 ug, AX8 Arsenic LT 2.35 0 ug, UH11 Atraxine LT 4.03 0 ug, UM25 Atraxine LT 5.90 0 ug, UM26 Benzothiazole LT 5.00 0 ug, UM21 Vinyl Chloride LT 1.20 1 ug, UM21 Chloroethane LT 8.00 0 ug, UM21 Chloroethane LT 1.00 0 ug, UM21 Benzene LT 1.00 0 ug, UM21 Benzene LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 9.90 -1 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug,		ug/l										
00       ALKALINITY       1.03 2 ug,         AX8       Arsenic       LT 2.35 0 ug,         UH11       Atrazine       LT 4.03 0 ug,         UM25       Atrazine       LT 5.90 0 ug,         UM21       Bromodichloromethane       LT 1.00 0 ug,         AAA8       Benzothiazole       LT 5.00 0 ug,         UM21       Vinyl Chloride       LT 1.20 1 ug,         UM21       Chloroethane       LT 8.00 0 ug,         UM21       Benzene       LT 1.05 0 ug,         UM21       Benzene       LT 1.00 0 ug,         GG8       Calcium (filtered)       3.02 4 ug,         UM21       Trichlorofluoromethane       LT 1.00 0 ug,         N8       Carbon Tetrachloride       LT 9.90 -1 ug,         UM21       Carbon Tetrachloride       LT 1.00 0 ug,         UM21       Carbon Tetrachloride       LT 1.00 0 ug,         UM21       Carbon Tetrachloride       LT 3.40 0 ug,         UM21       Carbon Tetrachloride       LT 3.40 0 ug,         UM21       Carbon Tetrachloride       LT 7.40 0 ug,	1 GJV007	ug/l	2	5.00	LT		Aldrin	KK8				
00       ALKALINITY       1.03 2 ug,         AX8       Arsenic       LT 2.35 0 ug,         UH11       Atrazine       LT 4.03 0 ug,         UM25       Atrazine       LT 5.90 0 ug,         UM21       Bromodichloromethane       LT 1.00 0 ug,         AAA8       Benzothiazole       LT 5.00 0 ug,         UM21       Vinyl Chloride       LT 1.20 1 ug,         UM21       Chloroethane       LT 8.00 0 ug,         AV8       Benzene       LT 1.05 0 ug,         UM21       Benzene       LT 1.00 0 ug,         UM21       Benzene       LT 1.00 0 ug,         UM21       Trichlorofluoromethane       LT 1.00 0 ug,         UM21       Trichlorofluoromethane       LT 1.00 0 ug,         NS       Carbon Tetrachloride       LT 1.00 0 ug,         UM21       Carbon Tetrachloride       LT 1.00 0 ug,         UM21       Carbon Tetrachloride       LT 1.00 0 ug,         UM21       Carbon Tetrachloride       LT 3.40 0 ug,         UM21       Carbon Tetrachloride       LT 7.40 0 ug,         UM21       Carbon Tetrachloride       LT 7.40 0 ug,	1 GKW002	ug/l	1	1.30	LT		Aldrin	UM25				
AX8 Arsenic LT 2.35 0 ug, UH11 Atrazine LT 4.03 0 ug, UM25 Atrazine LT 5.90 0 ug, UM21 Bromodichloromethane LT 1.00 0 ug, AAA8 Benzothiazole LT 5.00 0 ug, UM21 Vinyl Chloride LT 1.20 1 ug, UM21 Chloroethane LT 8.00 0 ug, UM21 Chloroethane LT 1.05 0 ug, UM21 Benzene LT 1.00 0 ug, GG8 Calcium (filtered) 3.02 4 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, N8 Carbon Tetrachloride LT 1.00 0 ug, CG8 Cadmium (filtered) LT 9.90 -1 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, CG8 Cadmium (filtered) LT 8.40 0 ug, CG68 Cadmium (filtered) LT 8.40 0 ug, CG68 Cadmium (filtered) LT 8.40 0 ug, CG68 Cadmium (filtered) LT 8.40 0 ug, CG68 Cadmium (filtered) LT 8.40 0 ug, CG68 Cadmium (filtered) LT 8.40 0 ug, CG68 Cadmium (filtered) LT 8.40 0 ug, CG68 Cadmium (filtered) LT 7.40 0 ug, CG68 CADMIUM (fil	1 GMK005	ug/1	2	1.03		* 4.	ALKALINITY					
UH11       Atrazine       LT 4.03 0 ug,         UM25       Atrazine       LT 5.90 0 ug,         P8       Bicycloheptadiene       LT 5.90 0 ug,         UM21       Bromodichloromethane       LT 1.00 0 ug,         AAA8       Benzothiazole       LT 5.00 0 ug,         UM21       Vinyl Chloride       LT 1.20 1 ug,         UM21       Chloroethane       LT 8.00 0 ug,         UM21       Chloroethane       LT 1.05 0 ug,         UM21       Benzene       LT 1.00 0 ug,         GG8       Calcium (filtered)       3.02 4 ug,         UM21       Trichlorofluoromethane       LT 1.00 0 ug,         N8       Carbon Tetrachloride       LT 9.90 -1 ug,         UM21       Carbon Tetrachloride       LT 1.00 0 ug,         UM21       Carbon Tetrachloride       LT 1.00 0 ug,         GG8       Cadmium (filtered)       LT 8.40 0 ug,         N8       Methylene Chloride       LT 7.40 0 ug,	1 GKF021	ug/l	0	2.35	LT		Arsenic	AX8				
UM25       Atraxine       LT 5.90 0 ug,         P8       Bicycloheptadiene       LT 5.90 0 ug,         UM21       Bromodichloromethane       LT 1.00 0 ug,         AAA8       Benzothiazole       LT 5.00 0 ug,         UM21       Vinyl Chloride       LT 1.20 1 ug,         UM21       Chloroethane       LT 8.00 0 ug,         UM21       Chloroethane       LT 1.05 0 ug,         UM21       Benzene       LT 1.00 0 ug,         GG8       Calcium (filtered)       3.02 4 ug,         UM21       Trichlorofluoromethane       LT 1.00 0 ug,         N8       Carbon Tetrachloride       LT 9.90 -1 ug,         UM21       Carbon Tetrachloride       LT 1.00 0 ug,         GG8       Cadmium (filtered)       LT 8.40 0 ug,         N8       Methylene Chloride       LT 7.40 0 ug,	1 GJX007	ug/1	0	4.03	LT		Atrazine					
UM21 Bromodichloromethane LT 1.00 0 ug, AAA8 Benzothiazole LT 5.00 0 ug, UM21 Vinyl Chloride LT 1.20 1 ug, UM21 Chloroethane LT 8.00 0 ug, UM21 Benzene LT 1.05 0 ug, UM21 Benzene LT 1.00 0 ug, GG8 Calcium (filtered) 3.02 4 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, N8 Carbon Tetrachloride LT 9.90 -1 ug, GG8 Cadmium (filtered) LT 8.40 0 ug, N8 Methylene Chloride LT 7.40 0 ug,	1 GKW002	ug/l	0	5.90	LT		Atrazine					
AAA8 Benzothiazole LT 5.00 0 ug, UM21 Vinyl Chloride LT 1.20 1 ug, UM21 Chloroethane LT 8.00 0 ug, AV8 Benzene LT 1.05 0 ug, UM21 Benzene LT 1.00 0 ug, GG8 Calcium (filtered) 3.02 4 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, N8 Carbon Tetrachloride LT 9.90 -1 ug, GG8 Cadmium (filtered) LT 8.40 0 ug, N8 Methylene Chloride LT 7.40 0 ug,	1 GKC012	ug/l	0	5.90	LT		Bicycloheptadiene	P8				
UM21       Vinyl Chloride       LT 1.20 1 ug,         UM21       Chloroethane       LT 8.00 0 ug,         AV8       Benzene       LT 1.05 0 ug,         UM21       Benzene       LT 1.00 0 ug,         GG8       Calcium (filtered)       3.02 4 ug,         UM21       Trichlorofluoromethane       LT 1.00 0 ug,         N8       Carbon Tetrachloride       LT 9.90 -1 ug,         UM21       Carbon Tetrachloride       LT 1.00 0 ug,         GG8       Cadmium (filtered)       LT 3.40 0 ug,         N8       Methylene Chloride       LT 7.40 0 ug,	1 GLL004	ug/l	0	1.00	LT		Bromodichloromethane	UM21	-			
UM21       Chloroethane       LT 8.00 0 ug,         AV8       Benzene       LT 1.05 0 ug,         UM21       Benzene       LT 1.00 0 ug,         GG8       Calcium (filtered)       3.02 4 ug,         UM21       Trichlorofluoromethane       LT 1.00 0 ug,         N8       Carbon Tetrachloride       LT 9.90 -1 ug,         UM21       Carbon Tetrachloride       LT 1.00 0 ug,         GG8       Cadmium (filtered)       LT 8.40 0 ug,         N8       Methylene Chloride       LT 7.40 0 ug,	1 GJY007	ug/l	0	5.00	LT		Benzothiazole	AAA8				
AV8 Benzene LT 1.05 0 ug, UM21 Benzene LT 1.00 0 ug, GG8 Calcium (filtered) 3:02 4 ug, UM21 Trichlorofluoromethane LT 1.00 0 ug, NS Carbon Tetrachloride LT 9.90 -1 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, GG8 Cadmium (filtered) LT 8.40 0 ug, NS Methylene Chloride LT 7.40 0 ug,		ug/l	1	1.20	LT		Vinyl Chloride	UM21				
UM21       Benzene       LT 1.00 0 ug,         GG8       Calcium (filtered)       3.02 4 ug,         UM21       Trichlorofluoromethane       LT 1.00 0 ug,         N8       Carbon Tetrachloride       LT 9.90 -1 ug,         UM21       Carbon Tetrachloride       LT 1.00 0 ug,         GG8       Cadmium (filtered)       LT 8.40 0 ug,         N8       Methylene Chloride       LT 7.40 0 ug,	1 GLL004	ug/l	0	8.00	LT		Chloroethane	UM21				
GG8       Calcium (filtered)       3.02 4 ug,         UM21       Trichlorofluoromethane       LT 1.00 0 ug,         N8       Carbon Tetrachloride       LT 9.90 -1 ug,         UM21       Carbon Tetrachloride       LT 1.00 0 ug,         GG8       Cadmium (filtered)       LT 8.40 0 ug,         N8       Methylene Chloride       LT 7.40 0 ug,		ug/l	0				Benzene	AV8				
UM21 Trichlorofluoromethane LT 1.00 0 ug, N8 Carbon Tetrachloride LT 9.90 -1 ug, UM21 Carbon Tetrachloride LT 1.00 0 ug, GG8 Cadmium (filtered) LT 8.40 0 ug, N8 Methylene Chloride LT 7.40 0 ug,		ug/l			LT		Benzene	UM21		. •		
N8 Carbon Tetrachloride LT 9.90 -1 ug,  UM21 Carbon Tetrachloride LT 1.00 0 ug,  GG8 Cadmium (filtered) LT 8.40 0 ug,  N8 Methylene Chloride LT 7.40 0 ug,		ug/l					Calcium (filtered)	GG8				
UM21 Carbon Tetrachloride LT 1.00 0 ug, GG8 Cadmium (filtered) LT 8.40 0 ug, N8 Methylene Chloride LT 7.40 0 ug,		ug/l						UM21				
GG8 Cadmium (filtered) LT 8.40 0 ug, N8 Methylene Chloride LT 7.40 0 ug,	1 GJU014	ug/l	-1	9.90	LT		Carbon Tetrachloride	N8				
NS Methylene Chloride LT 7.40 O ug.	1 GLL004	ug/l	0	1.00	LT		Carbon Tetrachloride	UM21				
	1 GKB013	ug/l	0	8.40	LT		Cadmium (filtered)	GG8				
UM21 Methylene Chloride LT 1.00 0 ug,	1 GJU014	ug/1	0	7.40	LT		Methylene Chloride	М8				
	1 GLL004	ug/l	0	1.00	LT		Methylene Chloride	UM21				
UM21 Bromomethane LT 1.40 1 ug,	1 GLL004	ug/l	1	1.40	LT	*	Bromomethane	UM21				
- · · · · · · · · · · · · · · · · · · ·		ug/l	0				Chloromethane	UM21				
		ug/l					Bromoform	UM21				
		ug/l					Chloroform	ИВ				
		ug/1			LT		Chloroform	UM21				
HH8A Chloride 1.30 4 ug.	1 GKH019	ug/l	4	1.30			Chloride	HH8A				
KK8 Hexachlorocyclopentadiene LT 4.80 -2 ug,	1 GJV007	ug/l	-2	4.80	LT		Hexachlorocyclopentadiene	KK8				
UM25 Hexachlorocyclopentadiene LT 5.40 1 ug.	1 GKW002	ug/1	1	5.40	LT		Hexachlorocyclopentadiene	UM25				
N8 Chlorobenzene LT 8.20 -1 ug.	1 GJU014	ug/1	-1	8.20	LT		Chlorobenzene	N8				
UM21 Chlorobenzene LT 1.00 0 ug.	1 GLL004	ug/1	0	1.00	LT		Chlorobenzene	UM21				

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89134	SW08003ST	0.2	STRM	KK8	Chlordane	LT	9.50 -2	ug/l	GJV007
09134	<b>3#0000</b> 331	0.2	21141	UM25	Chlordane	LT	3.70 1	ug/1	GKW002
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	GJY007
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/1	GKW002
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GJY001
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GKW00
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GJY00
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GKW00
				<b>G</b> G8	Chromium (filtered)	LT	2.40 1	ug/1	GKB01
				GG8	Copper (filtered)	LT	2.60 1	ug/l	GKB01
				TF20	Cyanide	LT	5.00 0	ug/l	GKE00
			•	AY8	Dibromochloropropane		2.41 -1	ug/l	GJWOO
				UM25	Dibromochloropropane	LT	1.20 1	ug/1	GKWOO
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	GLLOC
		•		UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	GLL00
				P6	Dicyclopentadiene	LT	5.00 0	ug/l	GKC01
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GKWOO
	-			UH11	Vapona	LT	3.84 -1	ug/l	GJXOC
				UM25 AT8	Vapona Diisopropylmethyl Phosphonate	LT LT	8.50 0 3.92 -1	ug/l ug/l	GKW00
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	GKWOO
				AAAB	Dithiane		1.34 0	ug/l	GJYOO
				UM25	Dithiane	LT	3.30 0	ug/l	GKWOO
				KK8	Dieldrin	LT	5.00 -2	ug/l	GJV00
				UM25	Dieldrin	LT	2.60 1	ug/l	GKWOO
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	GJYOO
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/1	GJZ01
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GKWOX
				KK8	Endrin	LT	5.00 -2	ug/l	GJVOC
				UM25	Endrin	LT	1.80 1	ug/l	GKWOO
				AV8	Ethylbenzene		1.37 0	ug/1	GJT01
				UM21	Ethylbenzene		1.00 0	ug/l	GLLOC
				HHBA	Fluoride		4.82 2	ug/l	GKH01
				CC8	Mercury (filtered)	LT	1.00 -1	ug/1	GKGO

				•						
	Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
						***				***************************************
	89134	SW08003ST	0.2	STRM	KK8	Isodrin	LT	5.10 -2	ug/l	GJV007
					UM25	Isodrin	LT	7.80 0	ug/l	GKW002
					GG8	Potassium (filtered)		2.70 3	ug/1	GKB013
					AV8	Toluene	LT	1.47 0	ug/1	GJT014
		• •			UM21	Toluene	LT	1.00 0	ug/l	GLL004
					UM21	Methylethyl Ketone	LT	1.00 1	ug/l	GLL004
					GG8	Magnesium (filtered)		6.21 3	ug/1	GKB013
					P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GKC012
					UM21	Methylisobutyl Ketone	LT	1.40 0	ug/1	GLL004
					UH11	Malathion	LT	3.73 -1	ug/l	GJX007
•			•		UM25	Malathion	LT	2.10 1	ug/l	GKW002
			•		GG8	Sodium (filtered)		2.49 4	ug/l	GKB013
					LL8	Nitrite, Nitrate - Non specific		4.10 2	ug/1	GKD038
					AAA8	1,4-Oxathiane	LT	2.38 0	ug/1	GJY007
					UM25	1,4-Oxathiane	LT	2.70 1	ug/l	GKW002
					GG8	Lead (filtered)	LT	7.40 1	ug/l	GKB013
					KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	GJV007
					UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GKW002
					KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GJV007
					UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GKW002
				•	UH11	Parathion	LT	6.47 -1	ug/l	GJX007
					UM25	Parathion	LT	3.70 1	ug/1	GKW002
					HH8A	Sulfate		3.10 4	ug/l	GKH019
					UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GJX007
					UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/1	GKW002
						Vinyldiethyl Phosphates				
					UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	GLL004
					NB	Tetrachloroethene	LT	7.50 -1	ug/l	GJU014
					UM21	Tetrachloroethene	LT	1.00 0	ug/l	GLL004
					N8	Trichloroethene	LT	5.60 -1	ug/1	GJU014
					UM21	Trichloroethene	LT	1.00 0	ug/l	GLL004

Summary of Analytical Results

Sampling Date	Station Number	Sämple Depth (cm)	Sample Type	Method	Analytical Parameters	R	esults	Units	Sample
89134	SW08003ST	0.2	STRM	AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GJT014
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	GLL004
				GG8	Zinc (filtered)	LT	2.20 1	ug/1	GKB013
89130	SW11001ST	0.2	STSW	TTS	1,1,1-Trichloroethane	LT	1.09 0	ug/l	GBY008
				UU8	1,1,1-Trichloroethane	LT	2.40 0	ug/1	GSH007
				TT6	1,1,2-Trichloroethane	LT	1.63 0	ug/1	GBY008
				UU8	1,1,2-Trichloroethane	LT	1.60 0	ug/l	GSH007
				TTE	1,1-Dichloroethene	LT	1.85 0	ug/l	GBY008
•				TT8	1,1-Dichloroethane	LT	1.93 0	ug/l	GBY008
				UU8	1,1-Dichloroethane	LT		ug/1	GSH007
				TT8	1,2-Dichloroethene	LT		ug/1	GBY008
				UUS	1,2-Dichloroethene	LT		ug/l	GSH007
				TTS	1,2-Dichloroethane	LT		ug/1	GBY008
				UU8	1,2-Dichloroethane	LT	7.20 -1	ug/l	GSH007
				UM18	1,3-Dichlorobenzene	LT	1.70 0	ug/1	PHF005
				SS8	m-Xylene	LT	1.04 0	ug/l	GAX015
				UU8	m-Xylene	LT	2.90 0	ug/l	GSH007
				MM8A	Aldrin	LT	8.30 -2	ug/l	GPL014
		-		UM18	Aldrin	ND	5.00 0	ug/l	PHF005
				<b>VV</b> 8	Arsenic	LT	2.50 0	ug/l	GH0021
				UUS	Bicycloheptadiene	···· LT	1.80 0	ug/1	GSH007
				PP8A	Benzothiazole	LT	1.14 0	ug/1	GIQ011
				SS8	Benzene	LT	1.92 0	ug/l	GAX015
				UU8	Benzene	LT	2.70 0	ug/l	GSH007
				TT8	Carbon Tetrachloride	LT	1.69 0	ug/l	GBY008
				UU8	Carbon Tetrachloride	LT	4.90 0	ug/l	GSH007
				R9D	Cadmium	LT		ug/1	QSD008
•				TTE	Methylene Chloride	LT	2.48 0	ug/l	GBY008
				UU8	Methylene Chloride	ND		ug/l	GSH007
				TT8	Chloroform	LT		ug/l	GBY008
				UUB	Chloroform	LT	1.70 0	ug/l	GSH007
		•		нив	Chloride		8.63 3	ug/l	GJK008
				MM8A	Hexachlorocyclopentadiene	LT	8.30 -2	ug/l	GPL014

Sampl Dat		Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults		Units	Sample Number	-
										~	
8913	SO SW11001ST	0.2	STSW	UM18	Hexachlorocyclopentadiene	LT	8.60	0	ug/l	PHF005	
				TTB	Chlorobenzene	LT		0	ug/l	GBY008	
				UUS	Chlorobenzene	LT	1.80		ug/l	GSH007	
				MM8A	Chlordane	LT	1.52		ug/l	GPL014	
				PP8A	p-Chlorophenylmethyl Sulfide	LT	1.08	0	ug/l	GIQ011	
				PP8A	p-Chlorophenylmethyl Sulfoxide		1.98	0	ug/l	GIQ011	
				PP8A	p-Chlorophenylmethyl Sulfone	LT	2.24	0	ug/l	GIQ011	
				R9D	Chromium	LT	2.20	1	ug/l	QSD008	
				R90	Copper	LT	1.00	1	ug/l	QSD008	
				TF18	Cyanide	LT	2.50	0	ug/l	LCN007	
				Q8	Dibromochloropropane	LT	1.30	-1	ug/l	GKU022	
				UU6	Dibromochloropropane	LT	5.60	0	ug/l	GSH007	
				UU8	Dicyclopentadiene	LT	3.70	0	ug/1	GSH007	
				QQS	Diisopropylmethyl Phosphonate	LŢ	1.01	1	ug/1	GGS008	
				PP8A	Dithiane	LT	3.34	0	ug/1	GIQ011	
				MM8A	Dieldrin	LT	5.39	-2	ug/l	GPL014	
				UM18	Dieldrin	ND	5.00	0	ug/1	PHF005	
				PP8A	Dimethyldisulfide	LT	1.16	0	ug/1	GIQ011	
				UU3	Dimethyldisulfide	LT	3.70	0	ug/1	GSH007	***
				QQ8	Dimethylmethyl Phosphate	LT	1.63	1	ug/l	GGS008	
	•			MM8A	Endrin	LT	6.00	-2	ug/l	GPL014	
				UM18	Endrin	ND	8.00	0	ug/1	PHF005	
				SS8	Ethylbenzene	LT	6.20	-1	ug/l	GAX015	
				UUB	Ethylbenzene	LT	2.40	0	ug/1	GSH007	
				нив	Fluoride		1.22	3	ug/l	GJK008	
				WW8	Mercury	LT	5.00	-1	ug/l	GWA011	
				MM8A	Isodrin	LT	5.60	-2	ug/l	GPL014	
				XX8	Potassium		2.98	3	ug/1	DYW008	
				\$\$8	Toluene	LT	2.10	0	ug/l	GAX015	
				UUS	Toluene	LT	3.50	0	ug/l	GSH007	
				UU8	Methylisobutyl Ketone	LT	1.20	0	ug/l	GSH007	
				TF22	Nitrite, Nitrate - Non specific		1.00	3	ug/1	PCD018	
				UM18	N-Nitrosodimethylamine	ND	2.00	ō	ug/1	PHF005	
				UM18	N-Nitrosodi-N-Propylamine	LT	4.40	0	ug/l	PHF005	

Comprehensive Monitoring Program

01/12/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89130	SW11001ST	0.2	STSW	PP8A	1,4-Oxathiane	LT	1.35 0	ug/l	GIQ011
09130	3W1100131	V.2	01011	R9D	Lead	LT	5.20 1		QSD008
				MM8A	Dichlorodiphenylethane	LT	4.60 -2		GPL014
				UM18	Dichlorodiphenylethane	ND	5.00 0	ug/l	PHF005
				MM8A	Dichlorodiphenyltrichloro- ethane	LT	5.90 -2	ug/l	GPL014
				UM18	Dichlorodiphenyltrichloro- ethane	ND	9.00 0	ug/l	PHF005
				UN07	Parathion		1.04 0	ug/l	PGB008
				иив	Sulfate		1.11 4	ug/l	GJK008
				TT8	Tetrachloroethene	LT	2.76 0	ug/l	GBY008
				UU6	Tetrachloroethene	LT	2.90 0	ug/l	GSH007
•				TTS	Trichloroethene	LT	1.31 0		GBY008
				UU6	Trichloroethene	LT	2.00 0		GSH007
				SS8	Ortho- & Para-Xylene		1.46 0		GAX015
				UU8	Ortho- & Para-Xylene	LT	2.40 0		GSH007
				R9D	Zinc		3.81 1	ug/l	QSD008
89130	SW11002ST	0.2	STRM	TT8	1,1,1-Trichloroethane	LT	1.09 0	ug/l	GBY006
				UU8	1,1,1-Trichloroethane	LT	2.40 0	ug/l	GSH005
				TT8	1,1,2-Trichloroethane	LT	1.63 0	ug/l	GBY006
				UUS	1,1,2-Trichloroethane	LT	1.60 0		GSH005
				TTB	1,1-Dichloroethene	LT	1.85 0	ug/l	GBY006
				TT8	1,1-Dichloroethane	LT	1.93 0		GBY006
				UUS	1,1-Dichloroethane	LT	1.40 0		GSH005
				TTB	1,2-Dichloroethene	LT	1.75 0		GBY006
				UUS TTS	1,2-Dichloroethene 1,2-Dichloroethane	LT LT	3.20 0		GSH005 GBY006
				110	aya bacıtacı oc oronto			43, -	
				UU8	1,2-Dichloroethane	LT	7.20 -1		GSH005
				UM18	1,3-Dichlorobenzene	LT	1.70 0		PHF003
				<b>SS8</b>	m-Xylene	LT	1.04 0		GAX006
				UU8	m-Xylene	LT	2.90 0		GSH005
				MM8A	Aldrin	LT	8.30 -2	ug/l	GPL012
				MM8A	Aldrin		8.30 -2	ug/1	GPL013

## Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Units	Sample Number
69130	SW11002ST	0.2	STRM	UM18	Aldrin	ND	4.70	0	ug/l	PHF003
03130	O#110020.			VV8	Arsenic	LT	2.50	0	ug/l	GH0019
				UU8	Bicycloheptadiene	LT	1.80	0	ug/l	GSH005
				PP8A	Benzothiazole	LT	1.14	0	ug/l	GIQ009
			٠.	UM18	Benzothiazole		3.00	0	ug/1	PHF003
				SS8	Benzene	LT	1.92	o	. ug/1	GAX006
				UU8	Benzene	LT	2.70	0	ug/l	GSH005
				TTS	Carbon Tetrachloride	LT	1.69	0	ug/l	GBY006
				UU8	Carbon Tetrachloride	LT	4.90	0	ug/l	GSH005
				R9D	Cadmium	LT	5.00	0	ug/l	QSD006
				ттв	Methylene Chloride	LT	2.48	0	ug/l	GBY006
				UU3	Methylene Chloride	ND	5.00	0	ug/l	GSH005
				TT8	Chloroform	LT	1.88	0	ug/l	GBY006
				UU6	Chloroform	LT	1.70	0	ug/l	GSH005
				иив	Chloride		1.16	4	ug/l	GJK006
	•			MM6A	Hexachlorocyclopentadiene	LT			ug/l	GPL012
				MM8A	Hexachlorocyclopentadiene	LT	8.30		ug/l	GPL013
				UM18	Hexachlorocyclopentadiene	LT	8.60		ug/l	PHF003
				TTB	Chlorobenzene	LT	1.36	0	ug/l	GBY006
				UU8	Chlorobenzene	LT	1.80	0	ug/l	GSH005
				MM8A	Chlordane	LT	1.52		ug/l	GPL012
				MM8A	Chlordane	LT	1.52		ug/l	GPL013
				PP8A	p-Chlorophenylmethyl Sulfide	LT	1.08		ug/l	GIQ009
	•			PP8A	p-Chlorophenylmethyl Sulfoxide	LT	1.98	0	ug/1	GIQ009
				PP6A	p-Chlorophenylmethyl Sulfone	LT	2.24	0	ug/l	GIQ009
				R9D	Chromium	LT		1	ug/l	QSD006
				R9D	Copper		1.05	1	ug/l	QSD006
				TF18	Cyanide	LT			ug/l	LCN005
				Q8	Dibromochloropropane	LT	1.30		ug/1	GKU020
			•	UU8	Dibromochloropropane	LT	5.60	O	ug/l	GSH005
				RB	Dicyclopentadiene		9.31		ug/l	GXA020
				uus	Dicyclopentadiene	LT	3.70		ug/l	GSH005
				QQ8	Diisopropylmethyl Phosphonate	LT		1	ug/l	GGS006
				PP6A	Dithiane	LT	3.34	0	ug/l	GIQ009

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Samp1 Numbe
							F 70 0		CDI A1
89130	SW11002ST	0.2	STRM	MM8A	Dieldrin		5.39 -2	ug/1	GPL01
				MM8A	Dieldrin	LT	5.39 -2	ug/1	GPL01
				UM18	Dieldrin	ND	4.70 0	ug/1	PHF00
				PP6A	Dimethyldisulfide	LT	1.16 0	ug/1	GIQOO
	•			UUS	Dimethyldisulfide	LI	3.70 0	ug/l	GSH00
				QQ8	Dimethylmethyl Phosphate	LT	1.63 1	ug/l	GGS00
	•			MM8A	Endrin	LT	6.00 -2	ug/l	GPL01
				MMSA	Endrin	LT	6.00 -2	ug/l	GPL01
				UM18	Endrin	ND	7.60 0	ug/l	PHFOO
				SS8	Ethylbenzene	LT	6.20 -1	ug/l	GAX00
				UU8	Ethylbenzene	LT	2.40 0	ug/l	GSH00
				NN8	Fluoride	LT	1.00 3	ug/l	GJKO
				WW8	Mercury	LT	5.00 -1	ug/1	GWAOC
				MM6A	Isodrin	LT	5.60 -2	ug/l	GPL01
				MM8A	Isodrin	LT	5.60 -2	ug/l	GPL0
				XX8	Potassium		2.62 3	ug/l	DYWX
				SS6	Toluene	LT	2.10 0	ug/l	GAXO
				UU8	Toluene	LT	3.50 0	ug/l	GSHO
-				R8	Methylisobutyl Ketone	LT	1.29 1	ug/l	GXA0
				UU8	Methylisobutyl Ketone	LT	1.20 0	ug/l	GSHO
				TF22	Nitrite, Nitrate - Non specific		1.00 3	ug/l	PCD0:
				UM18	N-Nitrosodimethylamine	ND	2.00 0	ug/l	PHFO
				UM18	N-Nitrosodi-N-Propylamine	LT	4.40 0	ug/l	PHFO
				PP8A	1,4-Oxathiane	LT	1.35 0	ug/l	GIQO
				R9D	Lead	LT	5.20 1	ug/l	QSD00
				MM8A	Dichlorodiphenylethane	LT	4.60 -2	ug/l	GPLO:
				MMSA	Dichlorodiphenylethane		4.60 -2	ug/l	GPLO:
				UM18	Dichlorodiphenylethane		4.70 0	ug/l	PHFO
				MMSA	Dichlorodiphenyltrichloro- ethane	. LT	5.90 -2	ug/l	GPL0:
				UM18	Dichlorodiphenyltrichloro- ethane	ND	9.20 0	ug/l	PHFO
				UN07	Parathion	LT	2.50 -1	ug/l	PGBOO
				NNS	Sulfate		1.34 4	ug/l	GJKO

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
90170	SW11002ST	0.2	STRM	TT8	Tetrachloroethene	LT	2.76 0	ug/l	GBY006
89130	SW1100251	V-2	ωII41	·uua	Tetrachloroethene	LT	2.90 0	ug/l	GSH005
				TT8	Trichloroethene	LT	1.31 0	ug/1	GBY006
-				UU8	Trichloroethene	LT	2.00 0	ug/1	GSH005
				\$\$8	Ortho- & Para-Xylene	LT	1.34 0	ug/l	GAX006
				UU8	Ortho- & Para-Xylene	LT	2.40 0	ug/l	GSH005
				R9D	Zinc		2.94 1	ug/l	QSD006
89135	SW12002ST	0.2	DTCH	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GKN011
				NB	1,1,2-Trichloroethane	LT	7.80 -1	ug/1	GKN011
				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	GKN011
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/1	GKN011
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/l	GKN011
				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	GKN011
				AV8	m-Xylene	LT	1.32 0	ug/1	GK0011
				KK8	Aldrin	LT	5.00 -2	ug/l	GKK008
				UM25	Aldrin	LT	1.30 1	ug/1	GKW005
				00	ALKALINITY	LT	9.61 1	ug/l	GMK007
				AX8	Arsenic (filtered)		2.35 0	ug/l	_GKS017
				UH11	Atrazine		4.03 0	ug/l	GKM008
				UM25	Atrazine		5.90 0	ug/l	GKW005
				P8	Bicycloheptadiene	LT	5.90 0	ug/l	GKQ013
				AAA8	Benzothiazole	LT	5.00 0	ug/l	GKJ008
				AV8	Benzene	LT	1.05 0	ug/l	GK0011
		-		GG8	Calcium (filtered)		2.00 3	ug/l	GKR014
				N8	Carbon Tetrachloride		9.90 -1	ug/l	GKN011
				GG8	Cadmium (filtered)	LT	8.40 0	ug/l	GKR014
				N8	Methylene Chloride	LŢ	7.40 0	ug/l	GKN011
				พธ	Chloroform		5.00 -1	ug/1	GKN011
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GKK008
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	GKW005
				N8	Chlorobenzene	LT		ug/l	GKN011
				KK8	Chlordane	LT	9.50 -2	ug/l	GKK008
				UM25	Chlordane	LT	3.70 1	ug/l	GKW005

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
			DTO!	0000	p-Chlorophenylmethyl Sulfide	I۳	5.69 0	ug/l	GKJ008
89135	SW12002ST	0.2	DTCH	AAA8	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GKW005
•				UM25	p-Chlorophenylmethyl Sulfoxide		1.15 1	ug/1	GKJ008
				AAA8	p-Chlorophenylmethyl Sulfoxide		1.50 1	ug/1	GKW005
				UM25 AAA8	p-Chlorophenylmethyl Sulfone		7.46 0	ug/l	GKJ008
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GKW005
				GG8	Chromium (filtered)	LT	2.40 1	ug/1	GKR014
				GG8	Copper (filtered)	LT	2.60 1	ug/1	GKR014
				TF20	Cyanide	LT	5.00 0	ug/1	GKT011
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GKL008
				UM25	Dibromochloropropane		1.20 1	ug/l	GKW005
-		•		P8	Dicyclopentadiene	LT	5.00 0	ug/1	GKQ013
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	GKW005
				UH11	Vapona	LT	3.84 -1	ug/l	GKM008
				UM25	Vapona	LT	8.50 0	ug/l	GKW005
				AT8	Diisopropylmethyl Phosphonate		3.92 -1	ug/l	GK1006
		-		UM25	Diisopropylmethyl Phosphonate	LT		ug/l	GKW005
		• •		AAA8	Dithiane	LT	1.34 0	ug/l	GKJ008
				UM25	Dithiane		3.30 0	ug/1	GKW005
				KK8	Dieldrin	LT	5.00 -2	ug/l	GKK008
				UM25	Dieldrin		2.60 1	ug/l	GKW005
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/1	GKJ008
				STA	Dimethylmethyl Phosphate	LT	1.881	ug/l	GK1006
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	GKW005
				KK8	Endrin	LT	5.00 -2	ug/l	GKK008
				UM25	Endrin	LT		ug/l	GKW005
		•		AV8	Ethylbenzene		1.37 0	ug/1	GK0011
		_		CC8	Mercury (filtered)		1.00 -1	ug/l	GML007
		•		KK8	Isodrin		5.10 -2	ug/1	GKK008
				UM25	Isodrin	LT	7.80 0	ug/l	GKW005
				GG8	Potassium (filtered)		1.47 3	ug/l	GKR014
				AV8	Toluene		1.47 0	ug/l	GK0011
				GG8	Magnesium (filtered)		5.00 2	ug/l	GKR014
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	GKQ013

R. L. Stollar and Associates

## Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
AA4 WF	OUGODOOT	0.0	DTCU	11411	Malathian	LT	3.73 -1	ug/l	GKM008
89135	SW12002ST	0.2	DTCH	UH11 UM25	Malathion Malathion		2.10 1	ug/1	GKW005
				GG8	Sodium (filtered)	<b>.</b> . 1	2.14 3	ug/1	GKR014
				LL8	Nitrite.Nitrate - Non specific		4.60 2	ug/l	GKV019
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	GKJ008
				UM25	1,4-Oxathiane	LT	2.70 1	ug/1	GKW005
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GKR014
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GKK008
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/1	GKW005
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GKK008
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GKW005
				UH11	Parathion	LT	6.47 -1	ug/1	GKM008
				UM25	Parathion	LT	3.70 1	ug/1	GKW005
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	GKM008
				UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 -1	ug/l	GKW005
					Vinyldiethyl Phosphates				
				NB	Tetrachloroethene	LT	7.50 -1	ug/l	GKN011
				N8	Trichloroethene	LT		ug/l	GKN011
			٠,	AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/1	GK0011
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GKR014
89130	SW12005ST	0.2	STRM	тта	1,1,1-Trichloroethane	LT	1.09 0	ug/l	GBY007
				UU8	1,1,1-Trichloroethane	LT		ug/l	GSH006
				TT8	1,1,2-Trichloroethane	LT	1.63 0	ug/l	GBY007
				uua -	1,1,2-Trichloroethane	LT	1.60 0	ug/l	GSH006
				TT8	1,1-Dichloroethene	LT	1.85 0	ug/l	GBY007
				TT8	1,1-Dichloroethane		1.93 0	ug/l	GBY007
				008	1,1-Dichloroethane		1.40 0	ug/l	GSH006
				TT6	1,2-Dichloroethene		1.75 0	ug/l	GBY007
				UUS	1,2-Dichloroethene	LT		ug/1	GSH006
				TT6	1,2-Dichloroethane	LT	2.07 0	ug/l	GBY007
				UUS	1,2-Dichloroethane	LT	7.20 -1	ug/l	GSH006

			•							
Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Units	Sample Number
00470	CUI ORBECT		CTOM	I IM1 ©	1,3-Dichlorobenzene	LT	1.70	δ	ug/l	PHF004
89130	SW12005ST	0.2	STRM	UM18 SS8	m-Xylene	LT	1.04	0	ug/l	GAX007
				550 UU8	m-Xylene	LT	2.90	0	ug/l	GSH006
				UM18	Aldrin	ND	4.70	0	ug/l	PHF004
				VV8	Arsenic	LT	2.50	0	ug/l	GH0020
				UU8	Bicycloheptadiene	LT	1.80	0	ug/l	GSH006
				PP8A	Benzothiazole	LT	1.14	0	ug/1	GIQ010
				SSB	Benzene	LT	1.92	0	ug/l	GAX007
				UUG	Benzene	LT	2.70	0	ug/1	GSH006
				TT8	Carbon Tetrachloride	LT	1.69	0	ug/l	GBY007
				SUU	Carbon Tetrachloride	LT	4.90	0	ug/l	GSH006
				R9D	Cadmium	LT	5.00	0	ug/1	QSD007
				TT8	Methylene Chloride	LT	2.48	0	ug/l	GBY007
				UU8	Methylene Chloride	ND	5.00	0	ug/l	GSH006
				TT8	Chloroform	LT	1.88	0	ug/l	GBY007
				UU8	Chloroform	LT		0	ug/l	GSH006
				NNS	Chloride		1.81	4	ug/1	GJK007
		-		UM18	Hexachlorocyclopentadiene	LT	8.60	0	ug/l	PHF004
				TT8	Chlorobenzene	ĹŤ	1.36	0	ug/l	GBY007
			. •	UUS	Chlorobenzene	LT	1.80	0	ug/l	GSH006
			• •	PP8A	p-Chlorophenylmethyl Sulfide	LT	1.08	0	ug/l	GIQ010
				PP8A	p-Chlorophenylmethyl Sulfoxide	e LT	1.98	0	ug/1	GIQ010
				PP8A	p-Chlorophenylmethyl Sulfone	LT	2.24	0	ug/l	GIQ010
				R90	Chromium	LT	2.20	1	ug/l	QSD007
				R9D	Copper	LT	1.00	1	ug/l	QSD007
				TF18	Cyanide	LT		0	ug/l	LCN006
				ପ୍ରଚ	Dibromochloropropane	LT	1.30		ug/1	GKU021
				UU8	Dibromochloropropane		5.60		ug/1	GSH006
				R8	Dicyclopentadiene		9.31		ug/1	GXA021
				R8	Dicyclopentadiene	LT	9.31	0	ug/l	GXA022
				uua	Dicyclopentadiene		3.70		ug/l	GSH006
			*	QQ8	Diisopropylmethyl Phosphonate	LT			ug/l	GGS007
				PP8A	Dithiane	LT	3.34		ug/l	GIQ010
				UM18	Dieldrin	ND	4.70	0	ug/l	PHF004

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
-	A. I. A. A. A. C. C. T.		STRM	PP8A	-Dimethyldisulfide	LT	1.16 0	ug/l	GIQ010
69130	SW12005ST	0.2	SIRT	UUS	Dimethyldisulfide	LT	3.70 0	ug/l	GSH006
				QQ8	Dimethylmethyl Phosphate	LT	1.63 1	ug/l	GGS007
				UM18	Endrin	ND	7.60 0	ug/l	PHF004
				SS8	Ethylbenzene	LT	6.20 -1	ug/l	GAX007
				UU8	Ethylbenzene	LT	2.40 0	ug/l	GSH006
				NNS	Fluoride	LT	1.00 3	ug/l	GJK007
				WW8	Mercury	LT	5.00 -1	ug/1	GWA010
				XX8	Potassium		5.05 3	ug/l	DYW007
				\$\$8	Toluene	LT	2.10 0	ug/l	GAX007
				UU8	Toluene	LT	3.50 0	ug/l	GSH006
				R8	Methylisobutyl Ketone	LT	1.29 1	ug/l	GXA021
				R8	Methylisobutyl Ketone	LT	1.29 1	ug/l	GXA022
				UUS	Methylisobutyl Ketone	LT	1.20 0	ug/1	GSH006
				TF22	Nitrite, Nitrate - Non specific		1.60 3	ug/l	PCD017
				UM18	N-Nitrosodimethylamine	ND	2.00 0	ug/l	PHF004
				UM18	N-Nitrosodi-N-Propylamine		4.40 0	ug/l	PHF004
				PP6A	1,4-Oxathiane	LT	1.35 0	ug/1	GIQ010
				R9D	Lead	LT	5.20 1	ug/1	QSD007
				UM18	Dichlorodiphenylethane	ND	4.70 0	ug/l	PHF004
				MM8A	Dichlorodiphenyltrichloro- ethane	, LT	5.90 -2	ug/1	GPL013
				UM18	Dichlorodiphenyltrichloro- ethane	ND	9.20 0	ug/l	PHF004
				UN07	Parathion	LT	2.50 -1	ug/l	PGB007
				NN8	Sulfate		2.44 4	ug/1	GJK007
				TT8	Tetrachloroethene	LT	2.76 0	ug/l	GBY007
				UU8	: Tetrachloroethene	LT	2.90 0	ug/l	GSH006
				TT8	Trichloroethene	LT	1.31 0	ug/1	GBY007
				UU8	Trichloroethene	LT	2.00 0	ug/1	GSH006
				SS8	Ortho- & Para-Xylene	LT	1.34 0	ug/1	GAX007
				UU8	Ortho- & Para-Xylene	LT	2.40 0	ug/l	GSH006
				R9D	Zinc		2.73 1	ug/l	QSD007
89135	SW24002ST	0.2	STRM	ИВ	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	GJU015

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults "	Units	Sample Number
			,						ARTICLE CONTROL OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERT
89135	SW24002ST	0.2	STRM	N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	GJU015
				ИВ	1,1-Dichloroethene	LT	1.70 0	ug/1	GJU015
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	GJU015
				И8	1,2-Dichloroethene	LT	7.60 -1	ug/l	GJU015
				NB	1,2-Dichloroethane	LT	1.10 0	ug/l	GJU015
		٠		AV8	m-Xylene	LT	1.32 0	ug/l	GJT015
				KK8	Aldrin	LT	5.00 -2	ug/1	GJV008
				UM25	Aldrin	LT	1.30 1	ug/1	GKM003
				00	ALKALINITY		2.88 2	ug/1	GMK006
				AX8	Arsenic	LT	2.35 0	ug/l	GKF022
				UH11	Atrazine	LT	4.03 0	ug/l	GJX008
				UM25	Atrazine	LT	5.90 0	ug/1	GKM003
				<b>P</b> 6	Bicycloheptadiene	LT	5.90 0	ug/1	'GKC013
				AAA8	Benzothiazole	LT	5.00 0	ug/1	GJY008
				AV8	Benzene	LT	1.05 0	ug/l	GJT015
				GG8	Calcium (filtered)		8.46 4	ug/l	GKB014
				NB	Carbon Tetrachloride	LT	9.90 -1	ug/l	GJU015
				GG8	Cadmium (filtered)	LT	8.40 O	ug/l	GKB014
	-			нв	Methylene Chloride	LT	7.40 0	ug/1	GJU015
				N8	Chloroform	LT	5.00 -1	ug/l	GJU015
				HH8A	Chloride		4.80 4	ug/l	GKH020
			~	KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	GJV008
				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	CKM003
				ИВ	Chlorobenzene	LT	8.20 -1	ug/l	GJU015
				KK8	Chlordane	LT	9.50 -2	ug/l	GJV008
				UM25	Chlordane	LT	3.70 1	ug/l	GKW003
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	GJY008
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	GKW003
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	GJY008
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	GKW003
				AAAA	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	GJY008
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	GKW003
				GG8	Chromium (filtered)	LT	2.40 1	ug/l	GKB014
				GG8	Copper (filtered)	LT	2.60 1	ug/1	GKB014

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Res	sults	Units	Sample Number
89135	SW24002ST	0.2	STRM	TF20	Cyanide	LT	5.00 0	ug/1 -	GKE006
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	GJW008
				UM25	Dibromochloropropane	LT	1.20 1	ug/1	GKW003
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	GKC013
				UM25	Dicyclopentadiene	LT	5.50 0	ug/l	<b>GKMO</b> 03
				UH11	Vapona	LT	3.84 -1	ug/l	GJX008
				UM25	Vapona	LT	8.50 O	ug/l	GK <b>M00</b> 3
. •				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	GJZ016
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	GKW003
				AAA8	Dithiane	LT	1.34 0	ug/l	GJY008
				UM25	Dithiane	LT	3.30 0	ug/l	GKW003
				KK8	Dieldrin		5.00 -2	ug/l	GJV008
				UM25	Dieldrin	LT	2.60 1	ug/l	<b>GKM003</b>
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	CJY008
				ATB	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	GJZ016
•	•			UM25	Dimethylmethyl Phosphate		1.30 2	ug/l	CKM003
				KK8	Endrin		5.00 -2	ug/l	GJV008
				UM25	Endrin		1.80 1	ug/l	GKM003
				AV8	Ethylbenzene	LT	1.37 0	ug/l	GJT015
				HH8A	Fluoride		1.35 3	ug/l	GKH020
				CC8	Mercury (filtered)		1.00 -1	ug/l	GKG031
				KK8	Isodrin		5.10 -2	ug/l	<b>GJV00</b> 8
		*		UM25	Isodrin	LT	7.80 0	ug/l	GKW003
				GG8	Potassium (filtered)		6.44 3	ug/l	GKB014
			-	AV8	Toluene	LT	1.47 0	ug/l	GJT015
				GG8	Magnesium (filtered)		2.50 4	ug/l	GKB014
				P8	Methylisobutyl Ketone		4.90 0	ug/l	GKC013
				UH11	Malathion		3.73 -1	ug/l	GJX008
				UM25	Malathion		2.10 1	ug/l	GKW003
				GG8	Sodium (filtered)		8.89 4	ug/l	GKB014
				LL8	Nitrite, Nitrate - Non specifi		1.90 2	ug/l	GKD039
				AAA6	1,4-Oxathiane		2.38 0	ug/l	GJY008
				UM25	1,4-Oxathiane		2.70 1	ug/1	GKW003
				GG8	Lead (filtered)	LT	7.40 1	ug/l	GKB014

Comprehensive Monitoring Program

01/12/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89135	SW24002ST	0.2	STRM	KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	GJV008
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	GKW003
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	GJ\008
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	GKW003
				UH11	Parathion	LT	6.47 -1	ug/1	GJX008
				UM25	Parathion	LT	3.70 1	ug/l	GKW003
				HH8A	Sulfate		1.50 5	ug/1	GKH020
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	ejx008
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	GKW003
				N8	Tetrachloroethene	LT	7.50 -1	ug/l	GJU015
				N8	Trichloroethene	-LT	5.60 -1	ug/1	GJU015
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	GJT015
				GG8	Zinc (filtered)	LT	2.20 1	ug/l	GKB014

APPENDIX B-4

Fall 1989 Water Quality Data

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method .	Analytical Parameters	Re	esults	(	<i>l</i> nits	Sample Number
		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	***************************************	***************************************						
89269	SW01001	0.1	DTCH	NS	1,1,1-Trichloroethane	LT	7.60	-1.	ug/l	HHU009
	01101001			NS	1,1,2-Trichloroethane	LT	7.80	-1	u9/1	HHU009
				N8	1,1-Dichloroethene	LT	1.70	0	ug/1	HHU009
				И8	1,1-Dichloroethane	LT	7.30	-1	ug/l	HHU009
				N8	1,2-Dichloroethene	LT	7.60	-1	ug/l	HHU009
				М8	1,2-Dichloroethane	LT	1.10	0	ug/l	HHU009
				AV8	m-Xylene	LT	1.32	0	ug/l	HHV009
				KK8	Aldrin	LT	5.00	-2	ug/l	HHD009 .
				00	ALKALINITY		1.82	5	ug/l	HHW006
•				AX8	Arsenic	LT	2.35	0.	ug/1	HIB009
l				UH11	Atrazine	LT	4.03	0	ug/l	HHG009
				P8	Bicycloheptadiene	LT	5.90	0	ug/l	HHF009
				AAA8	Berizothiazole	LT	5.00	0	ug/l	HHC009
				AV8	Benzene	LT	1.05	0	ug/l	HHV009
				SS12	Calcium		6.46	4	ug/l	HICOO9
				И8	Carbon Tetrachloride	LT	9.90	-1	ug/l	нн0009
				SS12	Cadmium	LT	6.78	٥	ug/l	HICO09
				N8	Methylene Chloride	·LT	7.40	0	ug/l	HH0003
				N8	Chloroform	LT	5.00		ug/1 -	HHU009
				TT09 .	Chloride	-	4.10	41	ug/l	HHZ009
					The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa					
_				KK8	Hexachlorocyclopentadiene	LT	4.80		ug/1	HHD009
	•			И8	Chlorobenzene	LT	8.20		ug/l	HHU009
				KK8	Chlordane 🔪		9.50		ug/l	HHD009
				SAAA	p-Chlorophenylmethyl Sulfide		5.69		ug/1	HHC009
1			-	AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15	1	ug/l	HHC009
ı				AAA8	p-Chlorophenylmethyl Sulfone		7.46		ug/1	HHC009
				<b>S</b> S12	Chromium	LT	1.68	1	ug/l	HICO09
				SS12	Copper	LT			ug/l	HIC009
		•		TF20	Cyanide	LT	5.00		ug/l	HHX009
				AY8	Dibromochloropropane	LT	1.95	-1	ug/l	HH1009
				P6	Dicyclopentadiene	LT	5.00		ug/l	HHF009
				UH11	Vapona	LT	3.84	-1	ug/l	HHG009
				AT6	Diisopropylmethyl Phosphonate	LT	3.92		ug/l	HHE009
				AAA8	Dithiane	LT	1.34	O	ug/l	HHC009

Summary of Analytical Results Surface Water Samples for FALL 69

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters	Re	sults	Units	Sample Number
69269	SW01001	0.1	DTCH	KK8	Dieldrin	LT	5.00 -2	ug/l	HHD009
				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/1	HHC009
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	-HHEOOS
				KK8	Endrin	LT	5.00 -2	ug/1	HHDOOS
				AV8	Ethylbenzene	LT	1.37 0	ug/l	HHV009
				T <b>T0</b> 9	Fluoride		1.29 3	ug/l	HHZ009
**				CC8	Mercury	LT	1.00 -1	ug/1	HIA009
				KK8	Isodrin	LT	5.10 -2	ug/1	HHDOOS
				SS12	Potassium		5.11 3	ug/1	HICO09
				AV8	Toluene	LT	1.47 0	ug/1	HHV009
				SS12	Magnesium		2.09 4	ug/l	HICO09
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/1	HHFOO
				UH11	-Malathion	LT	3.73 -1	ug/l	HHGOO
				SS12	Sodium		6.90 4	ug/l	HIC00
				LL8	Nitrite, Nitrate - Non specific		1.50 .3	ug/l	HHYOO
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	HHCOO
				\$\$12	Lead	LT	4.34 1	ug/1	HIC00
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	HHDOO
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.902	ug/l	HHDOOS
				UH11	Parathion	LT	6.47,-1	ug/l	HHG009
		•		TT09	Sulfate		1.00 5	ug/l	HHZOO
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	HHGOO
				м8	Tetrachloroethene	LT	7.50 -1	ug/l	HHU005
				N8	Trichloroethene	LT	5.60 -1	ug/l	HHU00
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	HHVOO
				SS12	Zinc	LT	1.80 1	ug/l	HICOO!
89270	SW02006	0.2	DTCH	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/1	нн јоо
				N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	HHU013
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	HHJOOS
				หล	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU013
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	HRJOOS

Sampling Date	Station Number	Sample Depth (cm)	Sample Type Meth	nod Analytical Parameters		Re	esults	. a	Units	Sample Number
				4 4 1 2 4 1	•	1 %	4 70			11111111111111111
89270	SW02006	0.2				LT	1.70			HHU013 .
			. UM:			LT	1.00	0	ug/1	HHJ005
			84	1,1-Dichloroethane		LT	7.30			HHU013
		•	UM			LT	5.00		ug/l	HHJ005
			Н8	1,2-Dichloroethene		LT	7.60	-1	ug/l	HHU013
			UMX	21 1,2-Dichloroethane		LT	1.00	0	ug/l	<b>ННЈ00</b> 5
			Na	1,2-Dichloroethane		LT	1.10	0	ug/l	HHU013
			UMC			LT	1.00		ug/l	HHJ005
			UMX			LT	1.00		ug/l	ннјооѕ
			UM			LT	4.80		ug/l	HHJ005
			UM2	21 m-Xylene		LT	1.00	0	ug/l	HHJ005
			AVA			LT	1.32	0	ug/1	HHV013
			UM;		•	LT	3.50	0	ug/1	HHJ005
			UMX	21 Acrylonitrile		- LT	8.40	0	ug/l	HHJ005
			KKE	3 Aldrin		LT	5.00	-2	ug/1	HHD013
			UM2	25 Aldrin		LT	1.30	1	ug/l	HHH005
			00	ALKALINITY			6.26	4	ug/l	HHW010
}			AXA	3 Arsenic			2.64	0	ug/l	HIB013
			UH	11 Atrazine		LT	4.03	0	ug/1	HHG013
			UM	25 Atrazine		LT	5.90	0	ug/l	HHH <b>0</b> 05
			P8	Bicycloheptadiene		LT	5.90	0	ug/l	HHF013
			UM:	21 Bromodichloromethane		LT	1.00	O.	ug/l	: ННЈ005
			AAA	A8 Benzothiazole		ŁT	5.00	O	ug/1	HHC013
			UM2	21 Vinyl Chloride		LT	1.20	1	ug/1	HHJ005
			UM2	21 Chloroethane		LT	8.00	0	ug/l	ннјоо5
ţ			UM	21 Benzene		LT	1.00	0	ug/l	HHJ005
			AVE	Benzene		LT	1.05	0	ug/1	HHV013
			SS:	12 Calcium			2.14	4	ug/l	HICO13
			UM	21 Trichlorofluoromethane		LT	1.00		ug/1	HHJ005
			UMX	21 Carbon Tetrachloride		LT	1.00	٥	ug/1	ННЈ005
			не	Carbon Tetrachloride		LT	9.90	-1	ug/l	HHU013
			SS	12 Cadmium		LT	6.78	0	ug/1	HIC013
			Um:	21 Methylene Chloride		LT	1.00		ug/l	HHJ005
			ИЗ	Methylene Chloride		LT	7.40	0	ug/1	HHU013

Sampling Date	Station Number	Sample Depth (cm)	Sample Type - Method	Analytical Parameters	Re	esults	Units	Sample Number
89270	SW02006	0.2	DTCH UM21	Bromomethane	LT	1.40 1	ug/l	HHJ005
_	01102000		UM21	Chloromethane	LT	1.20 0	ug/l	HHJ005
			UM21	Bromoform	LT	1.10 1	ug/1	ННЈ005
ŀ			UM21	Chloroform		3.00 0	ug/l	HHJ005
			NB	Chloroform		4.26 0	ug/l	HHU013
			TT09	Chloride		5.20 4	ug/l	HHZ013
			KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/1	HHD013
1			UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	HHH005
			UM21	Chlorobenzene	LT	1.00 0	ug/l	HHJ005
			на	Chlorobenzene	LT	8.20 -1	ug/l	HHU013
l			кка	Chlordane	LT	9.50 -2	ug/l	HHD013
			UM25	Chlordane	LT	3.70 1	ug/l	HHH005
			AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC013
			UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	HHH005
	-		AAA8:	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	HHC013
ı			UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	HHH005
			AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC013
			UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	HHH005
			SS12	Chromium	LT	1.68 1	ug/l	HICO13
			SS12	Copper	LT	1.88 1	ug/l	HICO13
			TF20	Cyanide	LT	5.00 0	ug/l	HHX013
-			<b>U</b> M25	Dibromochloropropane	LT	1.20 1	ug/l	HHH005
			AYS	Dibromochloropropane	LT	1.95 -1	ug/l	HH1013
			UM21 UM21	Dibromochloromethane 1,4-Dichlorobenzene	LT	1.00 0 2.00 0	ug/l ug/l	HHJ005 HHJ005
			P6	Dicyclopentadiene	LT	5.00 0	ug/l	HHF013
			UM25	Dicyclopentadiene	LT	5.50 0	ug/l	HHH005
			UH11	Vapona	LT	3.84 -1	ug/l	HHG013
			UM25	Vapona	LT	8.50 0	ug/l	HHH005
			ATS	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	HHE013
i			UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	HHH005
			AAA8	Dithiane	LT	1.34 0	ug/l	HHC013
		•	UM25	Dithiane	LT	3.30 0	ug/1	HHH005
			KK8	Dieldrin	LT	5.00 -2	ug/l	HHD013

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults	.Units	Sample Number
89270	SW02006	0.2	DTCH	UM25	Dieldrin	LT	2.60 1	ug/l	HHH005
U32/\/	34402000	W + 4	D1011	AAA8	Dimethyldisulfide		5.50 -1	ug/l	HHC013
				AT8	Dimethylmethyl Phosphate		1.88 -1		HHE013
				UM25	Dimethylmethyl Phosphate		1.30 2		HHH005
				KK8	Endrin	LT			HHD013
				<b>UM</b> 25	Endrin	LT	1.80 1	ug/l	HHH005
				UM21	Ethylbenzene	LT	1.00 0	ug/l	HHJ005
				AV8	Ethylbenzene	LT	1.37 0	ug/1	HHV013
		•		TT09	Fluoride		1.24 3	- ug/l	HHZ013
				CC8	Mercury		2.94 -1	ug/l	HIA013
				KK8	Isodrin	LT	5.10 -2	ug/1	HKD013
				UM25	Isodrin	LT	7.80 0	ug/1	HHH005
				SS12	Potassium		2.83 3	ug/1	HICO13
				UM21	Toluene	LT	1.00 0	ug/l	HHJ005
				AV8	Toluene ·	· LT	1.47 0	ug/l	HHV013
				UM21	Methylethyl Ketone	LT	1.00 1	ug/l	ннјоо5
				SS12	Magnesium		1.48 4	ug/l	HICO13
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF013
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	HHJ005
				UH11	Malathion	LT	3.73 -1	ug/l	HHG013
		- 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 -		UM25	Malathion	LT	2.10 1		HHH005
				\$\$12	Sodium		7.60 4		HICO13
				LL8	Nitrite, Nitrate - Non specific		2.90 2	ug/l	HHY013
				AAA8	1,4-Oxathiane		2.38 0	ug/l	HHC013
				UM25	1,4-Oxathiane	LT	2.70   1	ug/l	ннноо5
				SS12	Lead		4.34 1	ug/1	HICO13
			-	KK8	Dichlorodiphenylethane	LT		ug/l	HHD013
				UM25	Dichlorodiphenyltrichloro	LT LT	1.40 1	ug/l	HHHO05
				KK8	Dichlorodiphenyltrichloro- ethane	L.I	4.902	ug/l	HHD013
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	HHH005
				UH11	Parathion	LT	6.47 -1	ug/l	HHG013
				UM25	Parathion	LT	3.70 1	ug/1	HHH005

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	- Method	Analytical Parameters		esults	Units	Sample Number
	***************************************								
89270	SW02006	0.2	DTCH	TT09	Sulfate - Day - Holly - The Control		9.40 4	ug/l	HHZ013
	***************************************	4 0		UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	HHG013
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	HHH005
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	HHJ005
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	HHJ005
				не	Tetrachloroethene	LT	7.50 -1	ug/l	HHU013
				UM21	Trichloroethene	LT	1.00 0	ug/1	HHJ005
				N8	Trichloroethene	LT	5.60 -1	ug/l	HHU013
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	ННЈ005
				AVE	Ortho- & Para-Xylene	LT	1.36 0	ug/1	HHV013
				\$\$12	Zinc	LT	1.80 1	ug/l	HIC013
69270	SW02006B	0.0	DTCH	LL03	Benzothiazole		3.55 0	ug/l	RGA009
				LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/l	RGA009
				LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/l	RGA009
				LL03	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/1	RGA009
				009	Dibromochloropropane	LT	5.00 ~3	ug/l	GTC008
				LL03	Dithiane	LT	1.47 0	ug/l	RGA009
				LL03	Dimethyldisulfide	LT	6.92 -1	ug/l	RGA009
				HG9	Mercury		4.90 0	ug/l	QUD008
				LL03	1,4-Oxathiane	LT	8.56 -1	ug/l	RGA009
<b>692</b> 68	SW07001	0.2	STSW	Ne	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	: HHU005
				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU005
				N8	1,1-Dichloroethene	LT	1.70 0	ug/1	HHU005
				NS	1,1-Dichloroethane	LT	7.30 -1	ug/l	HHU005
		N.		М8	1,2-Dichloroethene	LT	7.60 -1	ug/l	HHU005
				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU005
				AV8	m-Xylene	LT	1.32 0	ug/l	HHV005
				KK8	Aldrin	LT	5.00 -2	ug/l	HHD005
				.00	ALKALINITY		2.75 5	ug/1	HHW002
				AX8	Arsenic	LT	2.35 0	ug/l	H1B005
				UH11	Atraxine '	LT	4.03 0	ug/l	HHG005

Sampling Date	Station Number	Sample Depth (cm)	Sample Type _ M	ethad	Analytical Parameters	Re	esults	Units	Sample Number
89268	SW07001	0.2	STSW I	P8	Bicycloheptadiene	LT	5.90 0	ug/l	HHF005
			1	<b>AA</b> A8	Benzothiazole	LT	5.00 0	ug/l	HHC005
			f	AV8	Benzene	LT	1.05 0	ug/l	HHV005
				SS12	Calcium		8.00 4	ug/l	HICO05
		•	ı	N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	HHU005
			5	\$\$12	Cadmium	LT	6.78 0	ug/l	HIC005
			ı	N8	Methylene Chloride	LT	7.40 0	ug/1	HHU005
			ł	N8	Chloroform	LT	5.00 -1	ug/1	HHU005
			•	TT09	Chloride		5.20 4	ug/l	HHZ005
			1	KK8	Hexachlorocyclopentadiene	LT	4.802	ug/l	HHD005
			ì	NS	Chlorobenzene	LT	8.20 -1	ug/l	HHU005
			ş	KK8	Chlordane	LT	9.50 -2	ug/1	HHD005
			1	AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC005
			1	AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	HHC005
		•		AAA8 .	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC005
				SS12	Chromium	LT	1.68 1	ug/l	HIC005
			9	SS12	Copper	LT	1.88 1	ug/1	HICO05
			_	TF20	Cyanide	LT	5.00 0	ug/l	HHX005
			1	AY8	Dibromochloropropane	LT	1.95 ~1	ug/l	HHIO05
				P8	Dicyclopentadiene	LT	5. <b>0</b> 0 0	ug/l	HHF005
			·	UH11	Vapona	LT	3.84 -1	ug/l	HHG005
ŀ			i sa i	AT8	Diisopropylmethyl Phosphonate		3.92 -1	ug/1	HHEOO5
				<b>AA</b> A8	Dithiane	LT	1.34 0	ug/l	HHC005
			ŧ	KK8	Dieldrin	LT	5.00 -2	ug/l	HHD005
•				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	HHC005
			1	AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	HHE005
_				KK8	Endrin	LT	5.00 -2	ug/l	HHD005
			f	AV8	Ethylbenzene	LT	1.37 0	ug/1	HHV005
				TT09	Fluoride		2.14 3	ug/l	HHZ005
_				CCS	Mercury	LT	1.00 -1	ug/l	HIA005
			1	KK8	Isodrin	LT	5.10 -2	ug/l	HHD005
-			:	SS12	Potassium		3.54 3	ug/l	RICOOS.
				AV8	Toluene	LT	1.47 0	ug/1	HHV005
			:	SS12	Magnesium		3.42 4	ug/l	HIC005

Sampling	Station	Sample	Sample			·	7 4 -	16.14	Sample
Date 	Number	Depth (cm)	Type	- Method	Analytical Parameters	Re	esults	Units	Number
89268	SW07001	0.2	STSW	P8	Methylisobutyl Ketone	LT	4.90	0 ug/1	HHF005
*				UH11	Malathion	·LT	3.73 -	1 ug/l	HHG005
				SS12	Sodium		9.80	4 ug/l	HICOOS .
				LL8	Nitrite, Nitrate - Non specific		3.70	3 ug/l	HHY005
				AAA8	1,4-Oxathiane	LT	2.38	0 ug/l	HHC005
				SS12	Lead	LŢ	4.34	1 ug/l	HIC005
				KK8	Dichlorodiphenylethane	LT.	5.40 -	2 ug/1	HHD005
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -	2 ug/l	нн0005
				UH11	Parathion	LT	6.47 -	1 ug/l	HHG005
				TTO9	Sulfate		1.20	5 ug/l	HHZ005
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87	1 ug/l	HHG005
				на	Tetrachloroethene	LT	7.50	i ug/l	HHU005
				ИВ	Trichloroethene	LT	5.60	1 ug/l	HHU005
				AV8	Ortho- & Para-Xylene	LT	1.36	0 ug/l	HHV005
				\$\$12	Zinc	LT	1.80	1 ug/l	HICO05
69268	SW07002	0.5	STSW	N8 ⁻	1,1,1-Trichloroethane	LT	7.60 -	1 ug/l	HHU006
07200				NS	1,1,2-Trichloroethane	LT	7.60 ~		HHU006
				ИВ	1,1-Dichloroethene	LT	1.70		HHU006
				ИВ	1,1-Dichloroethane	LT	7.30 -:		HHU006
				84	1,2-Dichloroethene	LT	7.60 -	1 ug/l	HHU006
				В	1,2-Dichloroethane	LT	1.10	) ug/l	HHU006
				AV8	m-Xylene	LT	1.32	) ug/l	HHY006
				KK8	Aldrin	LT	5.00 -	2 ug/l	HHD006
				00	ALKALINITY		1.55	<del></del>	HHMOO3
				8XA	Arsenic		2.64 (	) ug/l	HIB006
				UH11	Atrazine		4.03 (		HHG006
				P8	Bicycloheptadiene				HHF006
				AAA6	Benzothiazole				HHC006
				AV8	Benzene Calcium	L i	1.05 (		HHV006
				SS12	Calcium		7.61	4 ug/l	HICOO6
				ИВ	Carbon Tetrachloride	LT	9.90	1 ug/l	HHU006

Summary of Analytical Results Surface Water Samples for FALL 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method	Analytical Parameters	Re	sults	Units	Sample Number
<b>8926</b> 8	SW07002	0.5	STSW	SS12	Cadmium	LT	6.78 0	-ug/l	HIC006
03200	J4407002			N8	Methylene Chloride	LT	7.40 0	ug/1	HHU006
				N8	Chloroform	LT	5.00 -1	ug/l	HHU006
				TT09	Chloride		4.40 4	ug/l	HHZ006
				KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/1	HHD006
				М8	Chlorobenzene	LT	8.20 -1	ug/l	HHU006
1		A .		KK8	Chlordane	LT	9.50 -2	ug/l	HHD006
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC006
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	HHC006
i .		-		AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC006
ı				SS12	Chromium	LT	1.68 1	ug/l	HIC006
				SS12	Copper	LT	1.88 1	ug/1	HICO06
				TF20	Cyanide	LT	5.00 0	ug/l	HHX006
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	HH1006
				P8	Dicyclopentadiene	LT	5.00 0	/ug/l	HHF006
				UH11	Vapona	LT	3.84 -1	ug/l	HHG006
				AT8	Diisopropylmethyl Phosphonate		6.41 -1	ug/l	HHE006
-				AAA8	Dithiane	LT	1.34 0	ug/l	HHC006
				KK8	Dieldrin	LT	5.002	ug/1	HHD006
7				AAAS	Dimethyldisulfide	LT	5.50 -1	ug/1	HHC006
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l -	HHE006
1		440 1		KK8	Endrin	LT	5.00 -2	ug/l	HHD006
				AV8	Ethylbenzene	LT	1.37 0	ug/1	HHV006
		•		TT09	Fluoride		1.52 3	ug/l	HHZ006
				ccs	Mercury	LT	1.001	ug/l	HIAOO6
į				KK8	Isodrin	LT	5.10 -2	ug/1	HHD006
				SS12	Potassium		2.94 3	ug/l	HICO06
				AV8	Toluene	LT	1.47 0	ug/1	HHV006
			:	\$\$12	Magnesium		2.52 4	ug/l	HICO06
				P6	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF006
				UH11	Malathion	LT	3.73 -1	ug/l	HHG006
				\$\$12	Sodium		8.80 4	ug/l	HICO06
•				LL8	Nitrite, Nitrate - Non specific		4.10 . 3	ug/1	. HHY006
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	HHC006

Summary of Analytical Results Surface Water Samples for FALL 89

Sampling	Ctation	Sample	Sample						Sample
Date	Station Number	Depth (cm)		Method	Analytical Parameters	Re	esults	Units	Numbe
90369	CHAZAAA		CTCII	SS12	load	LT	A 7A 1	· vei / i	UTCAA
<b>69</b> 268	SW07002	0.5	STSW	SS12 KK8	Lead Dichlorodiphenylethane	LT	4.34 1 5.402	ug/l ug/l	HHD000
				KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/l	HHDOO
				VV0	ethane	L.I	4.50 ~2	ug/1	·
				UH11	Parathion	LT	6.47 -1	ug/l	HHGOO
				TT09	Sulfate		9.90 4	ug/l	HHZ00
			٠	UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	HHGOO
				нв	Tetrachloroethene	LT	7.50 -1	ug/l	HHUOO
				ив	Trichloroethene	LT	5.60 -1	ug/l	HHUOO
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	HHVOO
				SS12	Zinc	LT	1.80 1	ug/l	HICOO
89272	SW08001S	0.2	CREK				• .		
89269	\$000003	0.2	STRM	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	HHJOC
				из	1,1,1-Trichloroethane	LT	7.60 -1	ug/1	HHU01
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	HHJOC
				И8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU01
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	ннјос
				N8	1,1-Dichloroethene	LT	1.70 .0	ug/l	HHU01
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	ннјос
				ив	1,1-Dichloroethane	LT	7.30 -1	ug/1	HHU01
		-		UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	ннлос
				нв	1,2-Dichloroethene	LT	7.60 -1	ug/l	HHU01
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	ннјоо
				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU01
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	ннэос
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	<b>ННЈО</b> О
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	ннэоо
				UM21	m-Xylene	LT	1.00 0	ug/l	нноос
				AV8	m-Xylene	LT	1.32 0	ug/l	HHV01
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	нноос
				UM21	Acrylonitrile	LT	8.40 0	ug/l	HHJOO
				KK8	Aldrin	LT	5.00 -2	ug/l	HHD01
				UM25	Aldrin	ΙT	1.30 1	ug/1	ниноо

Sampling Date	Station Number	Sample Depth (cm)	Type i	Method	Analytical Parameters	Re	esults	Units	Sample Number
89269	SW08003	0.2	STRM	<b>0</b> 0000	ALKALINITY		2.52 5	ug/l	HHW007
				AXS	Arsenic		2.63 0		HIB010
				UH11	Atrazine	LT	4.03 0		HHG010
				UM25	Atrazine	LT	5.90 0		HHH002
				P6	Bicycloheptadiene	LT	5.90 0	ug/l	HHF010
				UM21	Bromodichloromethane	·LT	1.00 0	ug/l	HHJ002
				<b>AAA</b> 8	Benzothiazole	LT	5.00 0	ug/l	HHC010
				UM21	Vinyl Chloride	LT	1.20 1	ug/1	ННЈ002
				UM21	Chloroethane	LT	8.00 0	ug/l	HHJ002
				UM21	Benzene	LT	1.00 0	ug/l	HHJ002
				AV8	Benzene	LT	1.05 0	ug/1	HHV010
				SS12	Calcium		1.13 5	ug/1	HICO10
				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	HHJ002
	-		1 2 - 1 .	UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	HHJ002
				NB	Carbon Tetrachloride	LT	9.90 ~1	ug/l	HHU010
				SS12	Cadmium	LT		ug/l	HICO10
				UM21	Methylene Chloride	LT	1.00 0	ug/l	HHJ <b>0</b> 02
				NS	Methylene Chloride	LT	7.40 0	ug/1	HHU010
				UM21	Bromomethane	LT	1.40 1	ug/l	HHJ002
				UM21	Chloromethane	LT	1.20 0	ug/l	HHJ002
				UM21	Bromoform		1.10 1	ug/l	HHJ002
				UM21	Chloroform	LT	1.00 0	ug/l	HHJ002
				N8	Chloroform	LT	5.00 -1	ug/l	HHU010
				TT09 KK8	Chloride Hexachlorocyclopentadiene	LT	5.20 4 4.80 -2	ug/l ug/l	HHZO10 HHDO10
	4			UH25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	HHH <b>0</b> 02
		,		UM21	Chlorobenzene		1.00 0	ug/1	ННЈ002
				N8	Chlorobenzene		8.20 -1	ug/l	HHU010
				KK8	Chlordane		9.50 -2	ug/l	HHD010
				UM25	Chlordane	LT	3.70 1	ug/l	HHH002
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC010
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	HHH002
				<b>AAA</b> 8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC010
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	HHH002

Sampling Date	Station Number	Sample Depth (cm)	Sample Type - Metho	d Analytical Parameters	Re	esults	Units	Sample Number
6 <b>9</b> 269	CHOODAT	0.2	STRM AAAA	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ua /1	HHC010
03203	SW08003	0.2	UM2		LT	5.30 0	ug/l ug/l	HHH002
			SS12		LT	1.68 1	ug/l	HICO10
			SS12		LT	1.88 1	ug/l	
			TF2(	* *	LT	5.00 0	ug/l	HHX010
ı			1120	Cyanice	C1	5.00	ug/ 1	1117/020
			UM2!	Dibromochloropropane	LT	1.20 1	ug/1	HHH002
			AY8	Dibromochloropropane	LT	1.95 -1	ug/l	- HHI010
			UM2:	Dibromochloromethane	LT	1.00 0	ug/1	HHJ002
			UM2:	1,4-Dichlorobenzene	LT	2.00 0	ug/l	HHJ002
			P6	Dicyclopentadiene	LT	5.00 0	ug/l	HHF010
			UM25	Dicyclopentadiene	LT	5.50 0	ug/l	HHH002
			UH11	Vapona	LT	3.84 -1	ug/l	HHG010
			UM25		LT	8.50 0	ug/1	HHH002
L			AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	HHEO10
			UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	HHH002
			AAA	Dithiane	LT	1.34 0	ug/l	HHC010
			UM25		LT	3.30 0	ug/l	HHH002
			кка	Dieldrin		6.21 -2	ug/l	HHD010
			UM25		LT	2.60 1	ug/l	HHH002
			AAA		LT	5.50 -1	ug/l	HHC010
			AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	HHE010
•	•		UM25			1.30 2	ug/l	HHH002
			KK8	Endrin		6.25 -2	ug/l	HHD010
			UM25		LT	1.80 1	ug/l	HHH002
1			UM21		LT	1.00 0	ug/l	HHJ002
			AV8	Ethylbenzene	LT	1.37 0	ug/l	HHV010
			TTO			1.11 3	ug/l	HHZO10
			cca	Mercury	LT	1.00 -1	ug/l	HIAO10
			KK8	Isodrin	LT		ug/1	HHD010
			UM25			7.80 0	ug/l	HHH002
			SS12	Potassium		4.35 3	ug/l	HICO10
			UM21		LT	1.00 0	ug/l	HHJ002
			AV8	Toluene	LT	1.47 0	ug/l	HHV010
			UM21		LT	1.00 1	ug/l	HHJ002

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method	Analytical Parameters	Re	esults	Units	Sample Number
89269	SW08003	0.2	STRM	SS12	Magnesium	•	2.37 4	ug/l	- HICO10
02203	011000000			P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF010
				UM21	Methylisobutyl Ketone	LT	1.40 0	ug/l	HHJ002
				UH11	Malathion	LT	3.73 -1	ug/1	HHG010
				UM25	Malathion	LT	2.10 1	ug/l	HHH002
				SS12	Sodium		7.60 4	ug/l	HICO10
				LL8	Nitrite, Nitrate - Non specific		1.04 2	ug/1	HHY010
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/1	HHC010
				UM25	1,4-Oxathiane	LT	2.70 1	ug/1	HHHO02
				SS12	Lead	LT	4.34 1	ug/l	HICO10
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	HHD010
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/1	HHH002
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	u9/l	HHD010
				UM25	Dichlorodiphenyltrichloro	LT	1.80 1	ug/l	HHH002
				UH11	Parathion	LT	6.47 -1	ug/l	HHG010
				UM25	Parathion	LT	3.70 1	ug/l	HHH002
				TT09	Sulfate		1.50 5	ug/l	HHZ010
				UH11 :	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	HHG010
	•	•		UM25		LŤ	1.90 1	ug/l	ннн002
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	ННЈ002
_				UM21	Tetrachloroethene	- LT	1.00 0	ug/l	нн 1002
				NB	Tetrachloroethene .	LT	7.50 -1	ug/1	HHU010
				UM21	Trichloroethene	LT	1.00 0	ug/1	HHJ002
				И8	Trichloroethene	LT	5.60 -1	ug/1	HHU010
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	ННЈ002
•				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	HHV010
				\$\$12	Zinc	LT	1.80 1	ug/l	HICO10
89269	SW08003B	0.0	STRM	QQ9	Dibromochloropropane	LT	5.003	ug/l	GTC006
				HG9	Mercury	LT	2.70 -2	ug/1	9000Up
69269	SW080038	0.5	STRM	LL03	Benzothiazole	LT	1.08 0	ug/1	RGA006

Sampling Date	Station Number	Sample Depth (cm)	Sample Type - Me	lethod	Analytical Parameters	Re	sults ·	Units	Sample Number	
			and the second second second			•	·······		<del></del>	
89269	SW08003B	0.5	STRM I	LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/l	RGA006	
				LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/l	RGA006	
				LL03	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/l	RGA006	
			Į	LL03	Dithiane	LT	1.47 0	ug/l	RGA006	
ı			1	LL03	Dimethyldisulfide	LT	6.92 -1	ug/l	RGA006	
		• .	t	LL03	1,4-Oxathiane	LT	8.56 -1	ug/l	RGA006	
89269	SW08003BD	0.0	STRM (	<b>QQ</b> 9	Dibromochloropropane	LT	5.00 -3	ug/l	GTC007	
			ŀ	HG9	Mercury	··· LT~	2.70 -2	ug/l	QUD007	
89269	SW08003BD	0.5	STRM (	LL03	Benzothiazole		3.37 0	ug/l	RGA007	
			i i	LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/1	RGA007	
			1	LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/1	RGA007	
			. (	LL03 ·	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/l	RGA007	
				LL03	Dithiane	LT	1.47 0	ug/l	RGA007	
			ı	LL03	Dimethyldisulfide	LT	6.92 -1	ug/l	RGA007	
	·		i	LF03	1,4-Oxathiane	LT	8.56 -1	ug/l	RGA007	
89269	SW08003D	0.2	STRM (	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	HHJ003	
			4	на	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	HHU011	
			ŧ	UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/1	EOOTHH	
			1	<b>N</b> 8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU011	
			ι	UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	E00THH	
			1	<b>N</b> 8	1,1-Dichloroethene	LT	1.70 0	ug/l	HHU011	
			ι	UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	HH1003	
				84	1,1-Dichloroethane	LT	7.30 -1	ug/l	HHU011	
				UM21	1,2-Dichloroethene	LT	5:00 0	ug/l	HHJ003	
			1	H8	1,2-Dichloroethene	LT	7.60 -1	ug/l	HHU011	
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	ННЈ003	
				И8	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU011	
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	HHJ003	
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/1	HHJ003	
			· ·	UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	HHJ003	
			t	UM21	m-Xylene	LT	1.00 0	ug/l	HHJ003	
				AV8	m-Xylene	LT	1.32 0	ug/l	HHV011	

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults		Units	Sample Number
89269	SW08003D	0.2	STRM	UM21	2-Chloroethylvinyl Ether	LT	3.50	0	ug/1	-HHJ003
				UM21	Acrylonitrile	LT	8.40	0	ug/1	HHJ003
		· m		KK8	Aldrin	LT	5.00	-2	ug/l	HHD011
				UM25	Aldrin	LT	1.30	1	ug/l	тинооз
		•		00	ALKALINITY		2.68	5	ug/l	800WHH
				AX8	Arsenic	LT	2.35		ug/l	HIB011
				UH11	Atrazine	LT	4.03	0	ug/1	HHG011
				UM25	Atrazine	LT	5.90	0	ug/l	E00HHH
				P8	Bicycloheptadiene	LT	5.90	O	ug/1	HHF011
				UM21	Bromodichloromethane	LT	1.00	0	ug/l	HHJ003
				AAA8	Benzothiazole	LT		0	ug/l	HHC011
				UM21	Vinyl Chloride	LT		1	ug/l	ннлооз
				UM21	Chloroethane	LT		0	ug/1	HHJOOG
				UM21	Benzene	LT		0	ug/l	HHJOO3
				AV8	Benzene	LT	1.05	٥	ug/l	HHV011
				\$\$12	Calcium		1.19		ug/l	HICO11
				UM21	Trichlorofluoromethane	LT	1.00		ug/l	ннлооз
				UM21	Carbon Tetrachloride	LT	1.00		ug/l	HHJ003
				N8	Carbon Tetrachloride	LT	9.90		-ug/1	HHU011
				SS12	Cadmium	LT	6.78	0	ug/l	HICO11
	•			UM21	Methylene Chloride	LT	1.00	0	ug/l	нн јооз
				NB	Methylene Chloride	LT	7.40	0	ug/l	HHU011
				UM21	Bromomethane	LT	1.40	1	ug/1	HHJOOT
				UM21	Chloromethane	LT	1.20	0	ug/l	HHJOOJ
				UM21	Bromoform	LT	1.10	-1	ug/l	HHJ003
				UM21	Chloroform	LT	1.00	0	ug/l	ннјооз
				N8	Chloroform	LT	5.00	-1	ug/l	HHU011
				TT09	Chloride		4.80		ug/1	HHZ011
				KK8	Hexachlorocyclopentadiene	LT	4.80	-2	ug/l	HHD011
		• ,		UM25	Hexachlorocyclopentadiene	LT	5.40	1	ug/l	НННООЗ
				UM21	Chlorobenzene	LT	1.00		ug/l	HHJ003
				N8	Chlorobenzene	LT			ug/l	HHU011
				KK8	Chlordane	LT	9.50	-2	ug/l	HHD011
				UM25	Chlordane	LT	3.70	1	ug/1	HHHOO

Sampling Date	Station Number	Sample Depth (cm)	Sample Type - Method	Analytical Parameters	Re	esults	Units	Sample Number
89269	SW08003D	0.2	STRM AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHCO11
052.05	011000000		UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	HHH003
			AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	HHC011
			UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/l	HHH003
			AAA6	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC011
			UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	нинооз
			\$\$12	Chromium	LT	1.68 1	ug/1	HICO11
			SS12	Copper	LT	1.88 1	ug/l	HICO11
			TF20	Cyanide	LT	5.00 0	ug/1	HHX011
			UM25	Dibromochloropropane	LT	1.20 1	ug/l	КООННИ
			AY8	Dibromochloropropane	LT	1.95 -1	ug/l	HHIO11
	-		UM21	Dibromochloromethane	LT	1.00 0	ug/l	HHJ003
			UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	HHJ003
			P6	Dicyclopentadiene	LT	5.00 0	ug/l	HHF011
			UM25	Dicyclopentadiene	LT	5.50 0	ug/l	E00HHH
	7		UH11	Vapona .	LT	3.84 -1	ug/l	HHG011
			UM25	Vapona	LT	8.50 0	ug/1	HHH003
			AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/1	HHE011
			UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	HHH003
			AAAS	Dithiane	LT	1.34 0	ug/l	HHC011
			UM25	Dithiane	LT	3.30 0	ug/l	НННООЗ
			KK8	Dieldrin	LT	5.00 -2	ug/l	HHD011
<b>.</b>			UM25	Dieldrin	LT	2.60 1	ug/l	HHH003
			AAAA	Dimethyldisulfide	LT	5.50 -1	ug/1	HHC011
			AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	HHEO11
			UM25	Dimethylmethyl Phosphate	L.T	1.30 2	ug/l	нннооз
•			KK8	Endrin	LT	5.00 -2	ug/1	HHD011
	-		UM25	Endrin		1.80 1	ug/1	ЕООННИ
			UM21	Ethylbenzene	LT	1.00 0	ug/l	HHJ003
			AV8	Ethylbenzene	LT	1.37 0	ug/l	HHV011
	•		TT09	Fluoride		1.10 3	ug/l	HHZ011
			CC8	Mercury	LT	1.00 -1	ug/l	HIA011
1			KK8	Isodrin	LT	5.10 -2	ug/l	HHD011
			UM25	Isodrin	LT	7.80 0	ug/l	E00HHH

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults		Units	Sample Number
							4.00	****		HTCD11
89269	SM08003D	0.2	STRM	SS12	Potassium	. *	4.89	3	ug/l	HICO11
				UM21	Toluene		1.00		ug/l	HHJ003
				AV8	Toluene	LT		1	ug/l	HHV011
				UM21 SS12	Methylethyl Ketone Magnesium	LT	1.00 2.47		ug/l ug/l	ННЈ003 НІС011
				P8	Methylisobutyl Ketone	LT	4.90	0	ug/l	HHF011
				UM21	Methylisobutyl Ketone	LT	1.40		ug/l	ннлооз
				UH11	Malathion	LT	3.73		ug/1	HHG011
				UM25	Malathion	LT	2.10		ug/l	HHH003
				SS12	Sodium		7.90	4	ug/l	HICO11
				LL8	Nitrite, Nitrate - Non specific	:	1.05	2	ug/l	HHY011
				AAA6	1,4-Oxathiane	LT	2.38	0	ug/1	HHC011
				UM25	1,4-Oxathiane	LT	2.70	1 -	ug/l	HHH003
				SS12	Lead	LT	4.34	1	ug/l	HICO11
				KK8	Dichlorodiphenylethane	LT	5.40	-2	ug/l	HHD011
				UM25	Dichlorodiphenylethane		1.40		ug/l	нннооз
٠				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90	-2	ug/l	HHD011
,				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80	1	ug/l	HHH003
				UH11	Parathion	LT	6.47	-1	ug/1	HHG011
				UM25	Parathion	LT	3.70	1	ug/l	E00HHH
		•		TT09	Sulfate		1.40	5	ug/1	HHZ011
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87	-1	ug/l	HHG011
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90	1	ug/l	HHH003
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50	0	ug/1	HHJ003
				UM21	Tetrachloroethene	LT	1.00	0	ug/l	HHJ003
				N8	Tetrachloroethene	LT	7.50	-1	ug/l	HHU011
	•			UM21 .	Trichloroethene	LT	1,00	0	ug/1	HHJOO3
				NB	Trichloroethene		5.60		ug/l	HHU011
				UM21	·Ortho- & Para-Xylene	LT	2.00	0	ug/l	EOOTHH
				AV8	Ortho- & Para-Xylene	LT.	1.36	0	ug/l	HHV011

Comprehensive Monitoring Program

01/19/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	. Method	Analytical Parameters	Re	sults	Units	Sample Number	
89269	SW08003D	0.2	STRM	\$\$12	Zinc	LT	1.80 1	ug/l	HICO11	
69272	SW08003S	0.2	CREK							
89272	SW08004S	0.2	CREK							
89270	SW11001	0.0	DTCH	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	ННЈ006	
09270	SW11001	0.0	DICH	N8	1.1.1-Trichloroethane	LT	7.60 -1	ug/l	HHU014	
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/l	ННЈ006	
				N8	1,1,2-Trichloroethane	LT	7.60 -1	ug/1	HHU014	
_				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	HHJ006	
				N8	1,1-Dichloroethene	LT	1.70 0	ug/1	HHU014	
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	HHJ006	
				Office	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		2.00	45/ *	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/1	HHU014	
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/1	HHJ006	
				NS	1,2-Dichloroethene	LT	7.60 -1	ug/1	HHU014	
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/1	HHJ006	
		• •		ИВ	1,2-Dichloroethane	LT	1.10 0	ug/1	HHU014	
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/l	HHJ006	
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	HHJ006	
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	HHJ006	
				UM21	m-Xylene	LT	1.00 0	ug/1	HHJ006	
				AV8	m-Xylene	LT	1.32 0	ug/1	HHV014	
				18401	2 Chlasenskistedard Ekhas	LT	3.50 0	ug/l	ннјоо6	
		-		UM21	2-Chloroethylvinyl Ether	LT	8.40 0	ug/l	HHJ006	
	•			UM21	Acrylonitrile		5.00 -2			
				KK8	Aldrin	LT	1.30 1	ug/1	HHD014 HHH006	
				UM25	Aldrin	LT	4.03 4	ug/l	HHW011	
				00	ALKALINITY		4.03 4	ug/l	HUMOTT	
				AX8	Arsenic	LT	2.35 0	ug/l	HIB014	
				UH11	Atrazine	LT	4.03 0	ug/l	HHG014	
				UM25	Atrazine	LT	5.90 0	ug/1	HHH006	
				P8	Bicycloheptadiene	LT	5.90 0	ug/1	HHF014	
				UM21	Bromodichloromethane	LT	1.00 0	ug/1	HHJ006	
				AAA8	Benzothiazole	LT	5.00 0	ug/1	HHC014	
				UM21	Vinyl Chloride		1.20 1	ug/1	HHJ006	
			•	UM21	Chloroethane		8.00 0	ug/1	HHJ006	
				UM21	Benzene		1.00 0	ug/l	HHJ006	

R. L. Stollar and Associates

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample. Number	
			***************************************							
89270	SW11001	0.0	DTCH	AV8	Benzene	LT	1.05 0	ug/l	HHV014	
				SS12	Calcium		2.24 4	ug/l	HICO14	
				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	HHJ006	
				UM21	Carbon Tetrachloride	LT	1.00 0	ug/l	900CHH	
				N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	HHU014	
r				SS12	Cadmium	LT	6.78 0	ug/l	HICO14	
				UM21	Methylene Chloride	LT	1.00 0	ug/l	HHJ006	
				Na	Methylene Chloride	LT	7.40 0	ug/l	HHU014	
· ·				UM21	Bromomethane	LT	1.40 1	ug/1	HHJ006	
				UM21	Chloromethane	LT	1.20 0	ug/l	HHJ006	
				UM21	Bromoform .	LT	1.10 1	ug/l	<b>HHJ00</b> 6	
				UM21	Chloroform	LT	1.00 0	ug/1	ннјооб	
				М8	Chloroform	LT	5.00 -1	ug/l	HHU014	
				TT09	Chloride		8.21 3	ug/l	HHZ014	
	100			KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	HHD014	
`				UM25	Hexachlorocyclopentadiene	LT	5.40 1	ug/l	нннооб	
				UM21	Chlorobenzene	LT	1.00 0	ug/l	ннјооб	
				И8	Chlorobenzene	LT	8.20 -1	ug/l	HHU014	
				KK8	Chlordane	LT	9.50 -2	ug/l	HHD014	
		-	•••	UM25	Chlordane	LT	3.70 1	ug/l	ннноо6	
				AAAS	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC014	
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/l	HHH006	
			÷ ,	AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC014	
				UM25	p-Chlorophenylmethyl Sulfoxide		1.50 1	ug/l	HHH006	
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC014	
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30 0	ug/l	ннноо6	
			7	SS12	Chromium	LT	1.68 1	ug/l	HICO14	
				SS12	Copper		1.88 1	ug/1	HICO14	
	•			TF20	Cyanide		5.00 0	ug/l	HHX014	
				UM25	Dibromochloropropane	LT	1.20 1	ug/1	HHH006	
			•	AY8	Dibromochloropropane		1.95 -1	ug/l	HHI014	
				UM21	Dibromochloromethane	LT	1.00 0	ug/l	HHJ006	
D'				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/l	HHJ006	
				P8	Dicyclopentadiene	LT	5.00 0	ug/l	HHF014	

Sampling Date	Station Number	Sample Depth (cm)	Sample Type .	Method	Analytical Parameters	Re	esults	Units	Sample Number	
89270	SW11001	0.0	DTCH	UM25	Dicyclopentadiene	LT	5.50 0	ug/l	∴ HHH006	
				UH11	Vapona	LT	3.84 -1	ug/l	. HHG014	
				UM25	Vapona	LT	8.50 0	ug/1	HHH006	
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/1	HHE014	
				UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	ннн006	
				AAA8	Dithiane	LT	1.34 0	ug/1	HHC014	
-				UM25	Dithiane	LT	3.30 0	ug/1	HHH006	
				KK8	Dieldrin	LT	5.00 -2	ug/l	HHD014	
				UM25	Dieldrin	LT	2.60 1	ug/l	HHH006	
		•		AAA8	- Dimethyldisulfide	LT	5.50 -1	ug/l	HHC014	
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	HHE014	
				UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/l	HHH006	
				KK8	Endrin	LT	5.00 -2	ug/l	HHD014	
				UM25	Endrin	LT	1.80 1	ug/l	HHH006	
1				UM21	Ethylbenzene	LT	1.00 0	ug/l	HHJ006	
				AV8	Ethylbenz <i>e</i> ne	LT	1.37 0	ug/l	HHV014	
				TT09	Fluoride		9.43 2	ug/1	HHZ014	
				CC8	Mercury	LT	1.00 -1	ug/l	HIA014	
				KK8	Isodrin	LT	5.10 -2	ug/1	HHD014	
		•		UM25	Isodrin	LT	7.80 0	ug/1	HHH006	
				SS12	Potassium		3.76 3	ug/1	HICO14	
ì				UM21	Toluene	LT	1.00 0	ug/1	HHJ006	
				AV8	Toluene	LT	1.47 0	ug/1	HHV014	
				UM21	Methylethyl Ketone	LT	1.00 1	ug/1	HHJ006	
				SS12	Magnesium		3.51 3	ug/l	HICO14	
Ė				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF014	
_ )				UM21	Methylisabutyl Ketone	LT	1.40 0	ug/1	HHJ006	
				UH11	Malathion	LT	3.73 -1	ug/1	HHG014	
				UM25	Malathion	LT	2.10 1	ug/1	HHH006	
_				\$\$12	Sodium		1.11 4	ug/l	HICO14	
				LL8	Nitrite, Nitrate - Non specific		2.80 2	ug/l	HHY014	
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/1	HHC014	
				UM25	1,4-Oxathiane	LT	2.70 1	ug/1	HHH006	
				SS12	Lead	LT	4.34 1	ug/l	HICO14	

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	R∈	sults	Units	Sample Number
89270	SW11001	0.0	DTCH	KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	HHD014
09270	3W11001	0.0	Dicii	UM25	Dichlorodiphenylethane	LT	1.40 1	ug/1	HHH006
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	HHD014
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/l	ннноо6
			•	UH11	Parathion	LT	6.47 -1	ug/l	HHG014
				UM25	Parathion	LT	3.70 1	ug/l	HHH006
				TT09	Sulfate		2.40 4	ug/1	HHZ014
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	HHG014
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90 1	ug/l	. ннноо6
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/1	нн <b>ј00</b> 6
			•	UM21	Tetrachloroethene	LT	1.00 0.	ug/l	ннјооб
				И8	Tetrachloroethene	LT	7.50 -1	ug/l	HHU014
				UM21	Trichloroethene	LT	1.00 0	ug/l	HHJ006
				N8	Trichloroethene	LT	5.60 ~1	ug/l	HHU014
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	HH1006
	•			AV8	Ortho- & Para-Xylene	LT	1.360	ug/l	HHV014
				SS12	Zinc	LT	1.80 1	ug/l	HICO14
89270	SW11001B	0.0	DTCH	LL03	Benzothiazole	LT	1.08 0	ug/l	RGA008
				LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/1	RGA008
				LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/l	RGA008
				LF03	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/l	RGA008
				QQS	Dibromochloropropane	LT	5. <b>0</b> 0 -3	ug/l	GTC009
i				LF03	Dithiane		1.47 0	ug/1	RGA008
				FF03	Dimethyldisulfide		6.921	ug/1	RGA008
				FF03 HG3	Mercury 1,4-Oxathiane		2.702 6.561	ug/l ug/l	QUD009 RGA008
89270	SW11002	0.1	DTCH	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	HHJ007
				NS	1,1,1-Trichloroethane		7.60 -1	ug/1	HHU015
				UM21	1,1,2-Trichloroethane	LT		ug/l	ННЈ007
				М8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU015

01/19/90

Summary of Analytical Results

					•				
Sampling	Station	Sample Depth (cm)	Sample	Mathad	Analytical Parameters	Da	esults	Units	Sample Number
Date	Number	Depth (Cill)	iype 7	Method	Hidiyulcai Parameters				
89270	SW11002	0.1	DTCH	UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	HHJ007
				N8	1,1-Dichloroethene	LT	1.70 0	ug/1	HHU015
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/1	HHJ007
				NB	1,1-Dichloroethane	LT	7.30 -1	ug/1	HHU015
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	HHJ007
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/1	HHU015
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	HHJ007
	-			И8	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU015
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/1	HHJ007
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/l	HHJ007
				UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	ННЈ007
				UM21	m-Xylene	LT	1.00 0	ug/1	HHJ007
				8VA	m-Xylene	LT	1.32 0	ug/1	HHV015
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/1	HHJ007
				UM21	Acrylonitrile	LT	8.40 0	ug/l	ННЈ007
				кка	Aldrin	LT	5.00 -2	ug/l	HHD015
		•	-	UM25	Aldrin	LT	1.30 1	ug/l	HHH007
				00	ALKALINITY		3.38 4	ug/l	HHW012
				AX8	Arsenic	LT	2.35 0		HIB015
				UH11	Atrazine	LT	4.03 0	ug/l	HHG015 ·
				UM25	Atrazine	LT	5.90 0	ug/l	HHH007
		and the second second		P8	Bicycloheptadiene	LT	5.90 0		HHF015
				UM21	Bromodichloromethane	LT	1.00 0	ug/1	HHJ007
				AAA8	Benzothiazole	LT	5.00 0	ug/l	HHC015
				UM21	Vinyl Chloride	LT	1.20 1	ug/l	ннј007
				UM21	Chloroethane	LT	8.00 0	ug/l	ННЈ007
				UM21	Benzene	LT	1.00 0	ug/1	ННЈ007
				<b>AV</b> 8	Benzene	LT	1.05 0	ug/1	HHV015
				SS12	Calcium		2.29 4	ug/l	HICO15
				UM21	Trichlorofluoromethane	LT	1.00 0	ug/l	ННЈ007
				UM21	Carbon Tetrachloride		1.00 0	ug/l	ННЈ007
	-			Н8	Carbon Tetrachloride	LT	9.90 -1	ug/l	HHU015
				SS12	Cadmium		6.78 0	ug/l	HICO15
		-		UM21	Methylene Chloride	LT	1.00 0	ug/l	HHJ <b>0</b> 07

Sampling	Station	Sample	Sample							Sample
Date	Number	Depth (cm)	Type	Method	Analytical Parameters	Re	sults		Units	Number
00070	CUI 1000	0.1	DTCH	N8	Methylene Chloride	LT	7.40	Λ	ug/1	HHU015
89270	SW11002	0.1	Dich	UM21	Bromomethane	LT		1	ug/1	ННЈ007
1				UM21	Chloromethane	LT		Ô	ug/l	ННЈ007
				UM21	Bromoform	LT		1	ug/l	ННЈ007
		•		UM21	Chloroform	LT		O	ug/1	ННЈ007
				И8	Chloroform	LT	5.00	-1	ug/l	HHU015
				TT09	Chloride		2.10	4	ug/l	HHZ015
				KK8	Hexachlorocyclopentadiene	LT	4.80	-2	ug/l	HHD015
				UM25	Hexachlorocyclopentadiene	LT	5.40	1	ug/l	<b>HHH007</b>
				UM21	Chlorobenzene	LT	1.00	0	ug/l	HHJ007
				NB	Chlorobenzene	LT	8.20	-1	ug/l	HHU015
				KK8	Chlordane	LT	9.50	-2	ug/l	HHD015
				UM25	Chlordane	LT	3.70	1	ug/l	HHH007
		-		AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69	0	ug/1	HHC015
				<b>U</b> M25	p-Chlorophenylmethyl Sulfide	LT	1.00	.1	ug/l	ННН007
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT		1	ug/l	HHC015
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1	ug/1	HHH007
		-		AAA8	p-Chlorophenylmethyl Sulfone	LT		٥	ug/1	HHC015
				. UM25	p-Chlorophenylmethyl Sulfone	LT		0	ug/1	HHH007
- •				<b>S</b> S12	Chromium	LT	1.68	1	ug/l	HICO15
			•	SS12	Copper	LT		1	ug/l	HICO15
				TF20	Cyanide	LT	5.00	0	ug/l	HHX015
				UM25	Dibromochloropropane	LT		1	ug/l	HHHO07
				AY8	Dibromochloropropane	LT	1.95		ug/l	HHIO15
				UM21	Dibromochloromethane	LT	1.00	0	ug/l	ННЈ007
				UM21	1,4-Dichlorobenzene	LT	2.00	0	ug/l	ННЈ007
				P6	Dicyclopentadiene	LT		0	ug/l	HHF015
				UM25	Dicyclopentadiene		5.50		ug/1	HHH007
				. UH11	Vapona	LT	3.84		ug/l	HHG015
	•			UM25	Vapona	LT	8.50	0	ug/l	HHH <b>0</b> 07
		••		AT8	Diisopropylmethyl Phosphonate	LT	3.92		ug/l	HHEO15
				. UM25	Diisopropylmethyl Phosphonate	LT	2.10		ug/l	HHH007
				AAA8	Dithiane	LT	1.34		ug/l	HHCO15
				UM25	Dithiane	LT	3.30	0	ug/l	HHH007

Summary of Analytical Results Surface Water Samples for FALL 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89270	SW11002	0.1	DTCH	KK8	Dieldrin	LT	5.00 -2	2 ug/l	HHD015
09270	SW11002	0.1	DICH .	UM25	Dieldrin	LT	2.60 1		HHH007
					Dimethyldisulfide	LT	5.50 -1		HHC015
				aaa8 at8	Dimethylmethyl Phosphate	LT	1.88 -1		HHEO15
				UM25	Dimethylmethyl Phosphate		1.30 2		HHH007
				I/I/O	Production	. ~	5.00 -2	2 40/1	HHD015
j				KK8	Endrin	LT	1.80 1		HHH007
				UM25	Endrin	LT	1.00		HHJ007
				UM21	Ethylbenzene	LT	1.37		
				AV8 TT09	Ethylbenzene Fluoride	LT	8.83 2		HHV015 HHZ015
				CC8	Mercury	LT	1.00 -1	ug/1	HIAO15
					Isodrin	LT	5.10 2		HHD015
				KK8	Isodrin	LT	7.80		HHH007
				UM25 SS12	Potassium		3.30		HICO15
				UM21	Toluene	LT	1.00		ННЈ007
				AV8	Toluene	LT	1.47 0	) ug/l	HHV015
				UM21	Methylethyl Ketone	LT	1.00 1	ug/1	HHJ007
				SS12	Magnesium		5.11 3	s ug/1	HICO15
				P6	Methylisobutyl Ketone	LT	4.90 0	) ug/l	HHF015
				UM21	Methylisobutyl Ketone	LT	1.40 0	) ug/l	_HHJ007
				UH11	Malathion	LT	3.73 -1	ug/1	HHG015
	-			UM25	Malathion	LT	2.10 1	ug/1-	HHH007
				<b>S</b> S12	Sodium		1.79 4	ug/1	HICO15
				rra	Nitrite, Nitrate - Non specific		1.80 3	ug/1	<b>HHY015</b>
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/1	HHC015
				UM25	1,4-Oxathiane	LT	2.70 1	ug/l	ннноо7
				<b>S</b> S12	Lead	LT	4.34 1	ug/l	HICO15
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	HHD015
				UM25	Dichlorodiphenylethane	LT	1.40 1	ug/l	HHH007
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.902	2 ug/l	HHD015
		•						44	
				UM25	Dichlorodiphenyltrichloro- ethane	LT	1.80 1	ug/1	HHH007
				UH11	Parathion	LT	6.47 -1	ug/l	HHG015

Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults		Units	Sample Number
				***************************************						
89270	SW11002	0.1	DTCH	UM25	Parathion	LT	3.70	1	ug/l	<b>ННН007</b>
				TT09	Sulfate		3.20	4	ug/1	HHZ015
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87	-1	ug/l	HHG015
				UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	1.90	1	ug/l	HHH007
٠				UM21	1,1,2,2-Tetrachloroethane	LT	1.50	Ö	ug/l	HHJ007
				UM21	Tetrachloroethene	LT	1.00	0	ug/l	HHJ007
				N8	Tetrachloroethene	LT	7.50		ug/l	HHU015
				UM21	Trichloroethene		1.00		ug/l	HHJ007
				N8	Trichloroethene		5.60		ug/1	HHU015
				UM21	Ortho- & Para-Xylene	LT	2.00		ug/l	ННЈ007
				AV8	Ortho- & Para-Xylene	LT	1.36	0	ug/l	HHV015
				\$\$12	Zinc	LT	1.80	_1	ug/l	HICO15
89268	SW12001	0.2	DTCH	NB	1,1,1-Trichloroethane	LT	7.60	-1	ug/1	HHU007
				NB	1,1,2-Trichloroethane	LT	7.80		ug/l	HHU007
•				ИВ	1,1-Dichloroethene	LT	1.70		ug/l	HHU007
•				N8	1,1-Dichloroethane		7.30		ug/l	HHU007
				NB	1,2-Dichloroethene	LT	7.60	-1	ug/l	HHU007
	•			N8	1,2-Dichloroethane	LT	1.10		ug/l	HHU007
				AV8	m-Xylene	LT	1.32		ug/l	HHV007
				KK8	Aldrin	LT	5.00	-2	ug/1	HHD007
				00	ALKALINITY		1.50	5	ug/l	HHW004
				AX8	Arsenic	LT	2.35	0	ug/l	- HIB007
				UH11	Atrazine	LT	4.03	O	ug/l	HHG007
	•		-	P8	Bicycloheptadiene		5.90	0	ug/1	HHF007
		-		AAA8	Benzothiazole		5.00	0	ug/l	HHC007
				AV8	Benzene		1.05		ug/l	HHV007
				\$\$12	Calcium		8.03		ug/1	HIC007
						,	0.00			DUI DAT
				N8	Carbon Tetrachloride		9.90		ug/1	HHU007
	•			SS12	Cadmium		6.78		ug/l	HICO07
				N8	Methylene Chloride		7.40		ug/l	HHU007
•				N8	Chlaroform	LT	5.00		ug/l	HHU007
	*			TT09	Chloride		4.70	4	-ug/1	HHZ007

Comprehensive Monitoring Program

01/19/90

Summary of Analytical Results

Sampling	Station	Sample	Sample						Sample
Date	Number	Depth (cm)	Type .	. Method	Analytical Parameters	Re	esults	Units	Number
		-			• • • • • • • • • • • • • • • • • • • •				
89268	SW12001	0.2	DTCH	KK8	Hexachlorocyclopentadiene	LT	4.80 -2	ug/l	HHD007
				М8	Chlorobenzene	LT	8.20 -1	ug/1	HHU007
		•		KK8	Chlordane	LT	9.50 -2	ug/1	HHD007
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	HHC007
•				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	HHC007
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	HHC007
				SS12	Chromium	LT	1.68 1	ug/l	HICO07
	-			SS12	Copper	LT	1.88 1	ug/1	HICO07
				TF20	Cyanide	LT	5.00 0	ug/l	HHX007
				AY8	Dibromochloropropane	LT	1.95 -1	ug/1	HH1007
i			-	P8	Dicyclopentadiene	LT	5.00 0	ug/l	HHF007
ļ				UH11	Vapona	LT	3.64 -1	ug/1	HHG007
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	HHE007
				AAAA	Dithiane	LT	1.34 0	ug/1	HHC007
	•		•	KK8	Dieldrin	LŢ	5.00 -2	ug/l	HHD007
1		*. *		AAA8	Dimethyldisulfide .	LT	5.50 -1	ug/l	HHC007
		•,		AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	HHEO07
				KK8	Endrin	LT	5.00 -2	ug/l	HHD007
				AV8	Ethylbenzene	LT	1.37 0	ug/1	HHV007
				TT09	Fluoride		1.43 3	ug/l	HHZ007
				ccs	Mercury	LT	1.00 -1	ug/1	HIA007
		•	٠.	KK8	Isodrin	LT	5.10 -2	ug/1	HHD007
				\$\$12	Potassium		3.57 3	ug/1	HICO07
			•	AV8	Toluene	"LT	1.47 0	ug/1	HHV007
				SS12	Magnesium		2.55 4	ug/l	HIC <b>00</b> 7
i				P8	Methylisobutyl Ketone	LT	4.90 0	ug/1	HHF007
				UH11	Malathion	LT:	3.73 -1	ug/1	HHG007
	-			\$\$12	Sodium		9.30 4	ug/1	HICO07
				LL8	Nitrite, Nitrate - Non specific		4.30 3	ug/1	HHY007
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	HHC007
		•		SS12	Lead	LT	4.34 1	ug/l	HIC007
•				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	HHD007
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/1-	HHD007

01/19/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults	Units	Sample Number
89268	SW12001	0.2	DTCH	UH11	Parathion	LT	6.47 -1	ug/l -	HHG007
			*	TT09	Sulfate		1.20 5	ug/l	HHZ007
		*		UH11	2-Chloro-1(2,4-Dichlorophenyl)	LT	7.87 -1	ug/l	HHG007
		•			Vinyldiethyl Phosphates				
				н8	Tetrachloroethene	LT	7.50 -1	ug/1	HHU007
	•			ИВ	Trichloroethene	LT	5.60 -1	ug/l	HHU007
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	HHV007
				\$\$12	Zinc	LT	1.80 1	ug/l	HICO07
<i>y</i> ''		•		-					
89268	SW12004	0.2	STSW	М8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	HHU008
				на	1,1,2-Trichloroethane	LT	7.80 -1	ug/1	HHU008
				N8	1,1-Dichloroethene	LT,	1.70 0	ug/l	HHU008
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/l	HHU008
				NB	1,2-Dichloroethene	LT	7.60 -1	ug/l	HHUOOS
	•			N8	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU008
				AV8	m-Xylene	LT	1.32 0	ug/l	HHV008
				KK8	Aldrin	LT	5.00 -2	ug/l	HHD008
				00	ALKALINITY		5.22 4	ug/l	HHW005
		•		AX8	Arsenic	LT	2.35 0	ug/l	HIB008
	. •		0.5	18011 -	Atuntina		4.28 0	ug/l	HHG008
				UH11 P8	Atrazine Bicycloheptadiene	LT	5.90 0	ug/l	HHF008
				AAA8	Benzothiazole	LT	5.00 0	ug/l	HHC008
				AV8	Benzene	LT	1.05 0	ug/l	HHV008
				\$\$12	Calcium		3.12 4	ug/l	HIC008
					·			-3/ -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				ИВ	Carbon Tetrachloride	LT	9.90 -1	ug/1	HHU008
				\$\$12	Cadmium	LT	6.78 0	ug/l	HICO08
				N8	Methylene Chloride	LT	7.40 0	ug/1	HHU008
				N8	Chloroform	LT	5.00 -1	ug/1	HHU008
				TT <b>0</b> 9	Chloride		1.80 4	ug/1	HHZOO8
				KK8	Hexachlorocyclopentadiene	ĮΤ	4.802	ug/l	HHD008
				N8	Chlorobenzene	LT	8.20 -1	ug/1	8000HH
				KK8	Chlordane	LT	9.50 -2	ug/l	HHD008
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/l	HHC008
				AAA8	p-Chlorophenylmethyl Sulfoxide		1.15 1	ug/l	HHC008
				HANC	w without opinity aims only a work two and		*		

01/19/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_ Method	Analytical Parameters	Re	esults	Units	Sample Number
					-				
89268	SW12004	0.2	STSW	AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/l	- HHC008
				SS12	Chromium	LT	1.68 1	ug/1	HICO08
				SS12	Copper	LT	1.88 1	ug/1	HICO08
				TF20	Cyanide	LT	5.00 0	ug/1	HHX008
				AY8	Dibromochloropropane	LT	1.95 -1	ug/1	HHIOOS
		• .		P8	Dicyclopentadiene	LT	5.00 0	ug/l	HHF008
1				UH11	Vapona		7.03 -1	ug/1	HHG008
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	HHE008
				AAA8	Dithiane	LT	1.34 0	ug/l	HHC008
ŀ				KK8	Dieldrin	LT	5.00 -2	_ug/1	HHD008
i				AAA8	Dimethyldisulfide	LT	5.50 -1	ug/l	HHC008
				AT8	Dimethylmethyl Phosphate	LT.	1.88 -1	ug/l	HHEOO8
				KK8	Endrin	LT	5.00 -2	ug/1	HHDOOS
1				AV8	Ethylbenzene	LT	1.37 0	ug/l	HHVOOS
				TT09	Fluoride		1.81 3	ug/1	HHZ008
			. *	cc8	Mercury	LT	1.00 -1	ug/l	HIA008
				KK8	Isodrin	LT	5.10 -2	ug/1	HHDOOB
				SS12	Potassium		8.57 3	ug/1	HICO08
,				AV8	Toluene	LT	1.47 0	ug/1	HHV008
				SS12	Magnesium		6.03 3	ug/l	HIC008
				P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF008
	1			UH11	Malathion	LT	3.73 -1	ug/1	HHG008
				SS12	Sodium		1.61 4	ug/1	HICO08
	-			LL8	Nitrite, Nitrate - Non specific		2.30 2	ug/l	RNOOS
				AAA6	1,4-Oxathiane	LT	2.38 0	ug/l	HHC008
l .				SS12	Lead	LT	4.34 1	ug/l	HIC008
				KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/1	HHD006
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	8000HH
				UH11	Parathion	LT	6.47 -1	ug/1	HHG008
				7709	Sulfate		5.00 4	ug/1	HHZ008
l				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	ug/l	HHG008
i				N8	Tetrachloroethene	LT	7.50 -1	ug/l	800UHH

## Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results Surface Water Samples for FALL 89

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esul <b>ts</b>	Units	Sample Number
<b>692</b> 68	SW12004	0.2	STSW	NS	Trichloroethene	LT	5.60 -1	ug/l	HHUOOE
03200	3112004	U-12	31311	AV8	Ortho- & Para-Xylene		1.36 0	ug/l	HHVOOE
				SS12	Zinc	LT	1.80 1	ug/l	HICOOE
89269	SW12005	0.2	DTCH	N8	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	HHU012
			•	на	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU012
				Ne	1,1-Dichloroethene	LT	1.70 0	ug/l	HHU012
	**			N8 -	1,1-Dichloroethane	LT.	7.30 -1	ug/l	HHU012
				N8	1,2-Dichloroethene	LT	7.60 -1	ug/1	HHU012
				N8	1,2-Dichloroethane	LT	1.10 0	ug/l	HHU012
				AV8	m-Xylene	LT	1.32 0	ug/l	HHV012
				KK8	Aldrin	LT	5.00 -2	ug/l	HHD01
				00	ALKALINITY		2.32 5	ug/l	HHWOO
				AX8	Arsenic		2.43 0	ug/l	HIBO1
				UH11	Atrazine	LT	4.03 0	ug/l	HHG01
,				P6	Bicycloheptadiene	LT	5.90 0	ug/l	HHF01
				<b>AAA</b> 8	Benzothiazole	LT	5.00 0	ug/l	HHC01
				AV8	Benzene	LT	1.05 0	ug/1	HHV01
				SS12	Calcium		7.95 4	ug/l	HICO1
	•			N8	Carbon Tetrachloride	LT	9.90 -1	ug/l	HHU01
				SS12	Cadmium -	LT	6.78 0	ug/l	HICO1
				NB	Methylene Chloride	LT	7.40 0	ug/l	HHU01
				N8	Chloroform	LT	5.00 -1	ug/1	HHU01
				TT09	Chloride		4.30 4	ug/l	HHZ01
				KK8	Hexachlorocyclopentadiene		4.60 -2	ug/l	HHD01
				NS	Chlorobenzene		8.20 -1	ug/1	HHU01
	•			KK8	Chlordane	LT	9.50 -2		HHD01
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69 0	_ug/1_	
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/l	HHC01
		• •		AAA8	p-Chlorophenylmethyl Sulfone		7.46 0	ug/l	HHC01
		***		SS12	Chromium		1.68 1	ug/1	HICO1
		•		<b>S</b> S12	Copper		1.88 1	ug/l	HICO1
				TF20	Cyanide	LT	5.00 0	ug/l	HHX01
				AY8	Dibromochloropropane	LT	1.95 -1	ug/l	HHIO12

1/19/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	. Method	Analytical Parameters	Re	sults	Units	Sample Number
89269	SW12005	0.2	DTCH	P6	Dicyclopentadiene	LT	5.00 0	ug/1	HHF012
_				UH11	Vapona	LT	3.84 -1	ug/l	HHG012
				AT8	Diisopropylmethyl Phosphonate	LΤ	3.92 -1	ug/l	HHE012
				AAA6	Dithiane	LT	1.34 0	ug/l	HHC012
				KK8	Dieldrin	LT	5.00 -2	ug/l	HHD012
				AAAB	Dimethyldisulfide	LT	5.50 -1	ug/l	HHC012
•				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/l	HHE012
	• •			KK8	Endrin	LT	5.00 -2	ug/1	HHD012
				AV8	Ethylbenzene		1.37 0	ug/l	HHV012
•				1109	Fluoride		1.41 3	ug/l	HHZ012
ŀ				600	Mercury	LT	1.00 -1	ug/l	HIA012
				кка	Isodrin	LT	5.10 -2	ug/l	HHD012
•	100			SS12	Potassium		2.94 3	ug/1	HICO12
				AV8	Toluene	LT	1.47 0	ug/1	HHV012
				\$\$12	Magnesium		2.39 4	ug/l	HICO12
_			4,	P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF012
			• ' '	UH11	Malathion	LT	3.73 -1	ug/l	HHG012
	-		•	SS12	Sodium		7.60 4	ug/1	HICO12
			•	LL8	Nitrite, Nitrate - Non specific		4.00 3	ug/l	HHY012
				AAA8	1,4-Oxathiane	LT	2.38 0	ug/l	HHC012
•				SS12	Lead	LT	4.34 1	ug/l	HICO12
Ŀ	•			KK8	Dichlorodiphenylethane	LT	5.40 -2	ug/l	HHD012 -
				KK8	Dichlorodiphenyltrichloro- ethane	LT	4.90 -2	ug/l	HHD012
				UH11	Parathion	LT	6.47 -1	ug/l	HHG012
				TT09	Sulfate		1.10 5	ug/l	HHZ012
			:						
1				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87 -1	-ug/1	HHG012
		-4		N8	Tetrachloroethene	LT	7.50 -1	ug/1	HHU012
				NB	Trichloroethene	LT	5.60 -1	ug/l	HHU012
				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/l	HHV012
				\$\$12	Zinc		1.80 1	ug/1	HICO12
89269	SW12005B	0.0	DTCH	QQ9	Dibromochloropropane	LT	5.00 -3	ug/l	GTC005

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	<b>M</b> ethod	Analytical Parameters	Re	esults	Units	Sample Number
89269	SW120058	0.0	DTCH	HG9	Mercury	LT	2.70 -2	ug/l	QUD005
89269	SW12005B	0.2	DTCH	LL03	Benzothiazole	LT	1.08 0	ug/l	RGA005
09209	3#120030		010.1	LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0		RGA005
				LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/l	RGA005
				LL03	p-Chlorophenylmethyl Sulfone	LT	2.37 0		RGA005
				LL03	Dithiane		1.47 0		RGA005
				LL03	Dimethyldisulfide	LT	6.92 -1	ug/l	RGA005
				LF03	1,4-Oxathiane	LT	8.56 -1	ug/l	RGA005
00078	SW24001	0.0	STP	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	HHJ008
89270	SW24001	0.0	311	И8	1,1,1-Trichloroethane	LT	7.60 -1	ug/1	HHU016
				UM21	1,1,2-Trichloroethane	LT	1.00 0		нн јоое
		-		N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU016
	ar-			UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	ннјоое
				NS	1,1-Dichloroethene	LT	1.70 0	ug/l	HHU016
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	HHJ006
				N8	1,1-Dichloroethane	LT	7.30 -1	ug/1	HHU016
				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	HHJ006
				И8	1,2-Dichloroethene	LT	7.60 -1	ug/l	HHU016
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/l	HHJ008
			****	N8	1,2-Dichloroethane	LT	1.10 0		HHU016
				UM21	1,2-Dichloropropane	LT	1.00 0		нн јоое
				UM21	1,3-Dichlorobenzene		1.00 0		нн јоое
				UM21	1,3-Dichloropropane	LT	4.80 0		HHJ006
				UM21	m-Xylene	LT	1.00 0		HHJ008
				AV8	m-Xylene	LT	1.32 0	***	HHV016
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/l	HHJOOE
				UM21	Acrylonitrile	LT	8.40 0	ug/1	HHJ00€
				KK8	Aldrin	LT	5.00 -2	ug/l	HHD016
				UM25	Aldrin	L.T	1.30 1	ug/l	ннноов
				00	ALKALINITY		9.16 4		HHW013
				AX8	Arsenic		3.02 1		HIB016
				UH11	Atrazine	۱۳	4.03 0		HHG016
			•	UM25	Atrazine		5.90 0		ниноос

R. L. Stollar and Associates Comprehensive Monitoring Program

Sampling Date	Station Number	Sample Depth (cm)	Sample Type - M	<b>let</b> hod	Analytical Parameters	Re	esults	Units	Sample Number
89270	SW24001	0.0: -	STP	P6	Bicycloheptadiene	LT	5.90	0 ug/l	HHF016
				UM21	Bromodichloromethane	LT	1.00	*	нн јоов
		•		<b>AA</b> A8	Benzothiazole	LT	5.00		HHC016
				UM21	Vinyl Chloride	LT		1 ug/l	нн јоов
				UM21	Chloroethane	LT		0 ug/l	HHJ008
				UM21	Benzene	LT	1.00	0 ug/l	HH1008
				AV8	Benzene	LT	1.05		HHV016
	•	•		SS12	Calcium	_		4 ug/l	HICO16
			-	UM21	Trichlorofluoromethane	LT		0 ug/l	HHJ008
				UM21	Carbon Tetrachloride	LT			HHJ008
				N8	Carbon Tetrachloride	LT	9.90 -	1 ug/l	HHU016
				SS12	Cadmium	LT	6.78	0 ug/l	HICO16
				UM21	Methylene Chloride	LT	1.00	0 ug/l	HHJ008
				N8	Methylene Chloride	LT	7.40	0 ug/l	HHU016
				UM21	Bromomethane	LT	1.40	1 ug/l	HHJ008
		,							
				UM21	Chloromethane	LT	1.20	0 ug/l	HH1008
				UM21	Bromoform	LT	1.10	1 ug/l	HHJ008
				UM21	Chloroform	LT	1.00	0 ug/l	HH1008
			4	NS	Chloroform	LT	5.00 -	1 ug/l	HHU016
			•	TT09	Chloride		5.50	4 ug/1	HHZ016
			-			4.			
				KK8	Hexachlorocyclopentadiene	LT	4.80 -	2 ug/1	HHD016
				UM25	Hexachlorocyclopentadiene	LT	5.40	1 ug/l	HHH008
				UM21	Chlorobenzene	LT	1.00	0 ug/l	HHJ008
•				N8	Chlorobenzene	LT	8.20 -	1  ug/l	HHU016
		*	•	KK8	Chlordane	LT	9.50 -	2 ug/l	HHD016
						1000	. ,		
ľ				UM25	Chlordane	LT	3.70	1 ug/l	HHH008
				AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69	0 ug/l	- HHC016
	•			UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1  ug/1	ннноов
			*	AAA8	p-Chlorophenylmethyl Sulfoxide	LT			HHC016
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1 ug/l	HHH008
	÷								
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46		HHC016
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30		800HHH
				SS12	Chromium		1.68		HICO16
				SS12	Copper	LT	1.88	1 ug/l	HICO16

R. L. Stollar and Associates

Sampling	Station	Sample	Sample	.· .						Sample
Date	Number	Depth (cm)	- 4	Method	Analytical Parameters	R∈	sults	U	hits	Number
								-		
00078	SW24001	0.0	STP	TF20	Cyanide	LT	5.00	0	ug/l	HHX016
89270	SW24001	0.0	31F	UM25	Dibromochloropropane	LT			ug/l	ннноов
				AY8	Dibromochloropropane	LT	1.95	200	ug/l	HH1016
				UM21	Dibromochloromethane		1.00		ug/l	ннјоов
					1,4-Dichlorobenzene	LT	2.00		ug/l	ннјоов
				UM21	1,4-Dichlor Coenzene	Sw 1	2.00		W 5/ 1	11110000
_	*				Dicyclopentadiene	1 T	5.00	^	ug/l	HHF016
				P8			5.50		ug/l	HHH008
			4	UM25	Dicyclopentadiene		3.84		ug/l	HHG016
	-			UH11	Vapona	LT				HHH0010
		*		UM25	Vapona	LT	8.50		ug/1	
				AT8	Diisopropylmethyl Phosphonats	LT	3.92	~1	ug/l	HHE016
				UM25	Diisopropylmethyl Phosphonate	LT	2.10	1	ug/l	ннноое
	•			AAA8	Dithiane	LT	1.34		ug/l	HHC016
		•		UM25	Dithiane	LT	3.30		ug/l	ннноо
				KK8	Dieldrin	LT	5.00		ug/l	HHD016
•				UM25	Dieldrin		2.60		ug/l	ннноо
				O IZO	DAGAGI AII.			7		
				AAA8	Dimethyldisulfide	LT	5.50	-1	ug/l	HHC016
	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			AT8	Dimethylmethyl Phosphate		5.08		ug/l	HHE016
			:	UM25	Dimethylmethyl Phosphate	LT	1.30		ug/l	ннноов
		ا المعدد الم		KK8	Endrin	LT	5.00		ug/l	HHD016
				UM25	Endrin	LT	1.80		ug/l	ннноов
			\$	-						
				UM21	Ethylbenzene	LT	1.00	0	ug/l	нноос
				AV8	Ethylbenzene	LT	1.37		ug/l	HHV016
				TT09	Fluoride		1.33		ug/1	HHZ016
				CC8	Mercury	LŤ	1.00		ug/1	HIA016
				KK8	Isodrin	LT	5.10		ug/1	HHD016
					***					
	•			UM25	Isodrin	LT	7.80	0	ug/1	ннноов
				SS12	Potassium		5.29	3	ug/l	HICO16
				UM21	Toluene	LT	1.00		ug/l	HHJ008
		•		AV8	Toluene	LT	1.47	0	ug/l	HHV016
				UM21	Methylethyl Ketone	LT	1.00	1	ug/l	ннлоог
				SS12	Magnesium		8.92		ug/l	HICO16
				P8	Methylisobutyl Ketone		4.90		ug/l	HHF016
				UM21	Methylisobutyl Ketone		1.40		ug/l	HHJ008
				UH11	Malathion	LT	3.73 -	-1	ug/l	HHG016

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults		Units	Sample Number
89270	SW24001	0.0	STP	UM25	Malathion	LT	2.10	1	ug/l	HHH008
03270	3W24001	0.0	J	\$\$12	Sodium		5.70	4	ug/l	HICO16
				LL8	Nitrite, Nitrate - Non specific		2.00	3	ug/l	HHY016
				AAA8	1,4-Oxathiane	LT	2.38	0	ug/l	HHC016
				UM25	1,4-Oxathiane	LT	2.70	1	ug/1	HHH008
1			•	OI ILO	2,1					
				\$\$12	Lead	LT	4.34	1	ug/1	HICO16
				KK8	Dichlorodiphenylethane		5.40	-2	ug/l	HHD016
	1 to 1 to 1 to 1 to 1 to 1 to 1 to 1 to			UM25	Dichlorodiphenylethane		1.40		ug/1	HHH008
			4	KK8	Dichlorodiphenyltrichloro-		4.90		ug/l	HHD016
}					ethane				-	
				UM25	Dichlorodiphenyltrichloro-	LT	1.80	1	ug/l	HHH008
					ethane					
				UH11	Parathion	LT	6.47	-1	ug/1	HHG016
1	•			UM25	Parathion	LT	3.70	1	ug/1	HHH008
				TT09	Sulfate		5.20	4	ug/1	HHZ016
				UH11	2-Chloro-1(2,4-Dichlorophenyl)	LT	7.87	-1	ug/l	HHG016
	i de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania del compania del compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania del compania de la compania del compania de la compania de la compania de la compania de la compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania del compania	. Since the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco			Vinyldiethyl Phosphates	:				
	entere e en en Den Generale (1). Generale			UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90	1	ug/1	HHH008
				:	Vinyldiethyl Phosphates					
										•
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50	0	ug/l	HHJ008
				UM21	Tetrachloroethene	LT	1.00	0	ug/1	HHJ008
				N8	Tetrachloroethene	LT	7.50	-1	ug/l	HHU016
		** ** ** **	•	UM21	Trichloroethene	LT	1.00		ug/1	HHJ008
				N8	Trichloroethene	LT	5.60	-1	ug/l	HHU016
				UM21	Ortho- & Para-Xylene	LT	2.00	0	ug/1	ннјоов
		•		AV8	Ortho- & Para-Xylene	LT	1.36	0	. ug/l	HHV016
				\$\$12	Zinc	LT	1.80	1	ug/1	HICO16
89271	SW36001	0.2	DTCH	UM21	1,1,1-Trichloroethane		1.00	0	ug/l	HHJ009
				N8	1,1,1-Trichloroethane		7.60		ug/l	HHU017
				UM21	1,1,2-Trichloroethane	LT	1.00		ug/1	HHJ009
				N8	1,1,2-Trichloroethane		9.69	-1	ug/1	HHU017
				UM21	1,1-Dichloroethene	LT	1.00	0	ug/l	HHJ009
				NB	1,1-Dichloroethene	LT	1.70	0	ug/l	HHU017
				UM21	1,1-Dichloroethane		1.00		ug/l	HHJ009

Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

ampling Date	Station Number	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	ample Type Method	Analytical Parameters	Re	sults		Units	Sample Numbe
					•				
39271	SW36001	0.2	DTCH N8	1.1-Dichloroethane	LT	7.30	-1	ug/l	HHU01
			UM21	1,2-Dichloroethene	LT	5.00	O	ug/1	ннјоо
		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	NB	1,2-Dichloroethene		8.20	0	ug/1	HHU01
			UM21	1.2-Dichloroethane	LT	1.00	0	ug/l	ннјоо
			NB	1,2-Dichloroethane	LT	1.10	0	ug/l	HHU01
	•								
			UM21	1,2-Dichloropropane	LT	1.00	0	ug/l	ннјос
			UM21	1,3-Dichlorobenzene	LT	1.00	0	ug/l	HHJOC
			UM21	1,3-Dichloropropane	LT	4.80	0	ug/1	HHJOO
• •			UM21	m-Xylene	LŢ	1.00	0	ug/1	HHJOC
			AV8	m-Xylene	LT	1.32	0	ug/l	HHV01
			_	<u>.</u>					
	•		UM21	2-Chloroethylvinyl Ether	LT	3.50	0	ug/l	HHJO
			UM21	Acrylonitrile	LT	8.40	0	ug/1	HHJOO
			KK8	Aldrin		1.30	1	ug/1 -	HHD01
			UM25	Aldrin	LT	1.30	1	ug/l	нннос
			00	ALKALINITY		1.46	5	ug/l	HHW01
	•							*	
		والمعين فالمناف المراجعين	AX8	Arsenic		1.18	2	ug/1	HIB01
			UH11	Atrazine	•	8.06	0	ug/l	HHG01
			UM25	Atrazine		6.17	0	ug/1	нннос
			P8	Bicycloheptadiene		1.09	1	ug/1	HHFO
			UM21	Bromodichloromethane	LT	1.00	0	ug/1	ННЈО
			AAA8	Benzothiazole	LT	5.00	0	ug/l	HHC01
			UM21	Vinyl Chloride	LT	1.20	1	ug/l	ннос
			UM21	Chloroethane	LT	8.00	0	ug/l	ннос
		•	UM21	Benzene	LT	1.00	0_	_ug/l	HHJOO
•			AV8	Benzene		1.86	1	ug/1	HHVO
		-	\$\$12	Calcium		4.19	4	ug/l	HICO1
ı			UM21	Trichlorofluoromethane	LT		0	ug/1	ННЈОС
		•	UM21	Carbon Tetrachloride		1.00		ug/l	ннјос
				Carbon Tetrachloride	LT	9.90		ug/l	HHU01
		•	SS12	Cadmium	LT	6.78	0	ug/l	HICO1
								44	
			UM21	Methylene Chloride		1.00		ug/l	ННЈОС
			NB	Methylene Chloride	LT	7.40		ug/l	HHU01
		•	UM21	Bromomethane	LT	1.40		ug/1	HHJOO
•		-	UM21	Chloromethane	LT	1.20	0	ug/1	HHJOC

	m	~	C1							Sample
Sampling Date	Station Number	Sample Depth (cm)	Sample Type -	Method	Analytical Parameters	Re	sults		Units	Number
								· ·	<u> </u>	
			-	and the second						
89271	SW36001	0.2	DTCH	UM21	Bromoform	LT.	1.10	1	ug/l	HH1009
				UM21	Chloroform		7.60	1 .	ug/l	HHJ009
				N8	Chloroform		1.28	2	ug/1	HHU017
				TT09	Chloride		8.60	4	ug/1	HHZ017
				KK8	Hexachlorocyclopentadiene		6.73	-1	ug/l	HHD017
-				UM25	Hexachlorocyclopentadiene	LT	5.40	1	ug/l	нннооэ
				UM21	Chlorobenzene	÷	4.23	2	ug/1	<b>ННЈ009</b>
		n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co		NB	Chlorobenzene	GT	2.00	2	ug/l	HHU017
				KK8	Chlordane		6.60	0 .	ug/l	HHD017
				UM25	Chlordane	LT	3.70	1	ug/1	HHH009
				1. 1.						
			•	AAA8	p-Chlorophenylmethyl Sulfide	LT	5.69	0	ug/l	HHC017
				UM25	p-Chlorophenylmethyl Sulfide		1.26	1	ug/l	HHH009
		•		AAA8	p-Chlorophenylmethyl Sulfoxide	- LT	1.15	1	ug/1	HHC017
		* *		UM25	p-Chlorophenylmethyl Sulfoxide		3.80	1	ug/1	<b>HHH009</b>
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46	0	ug/l	HHC017
							1116			
				UM25	p-Chlorophenylmethyl Sulfone	GT.	3.00	2	ug/1	HHH009
				SS12	Chromium	LT	1.68	1	ug/l	HICO17
		•		SS12	Copper	LT		1	ug/l	HICO17
				TF20	Cyanide	LT	5.00	0	ug/l	HHX017
		en en green de la company de la company de la company de la company de la company de la company de la company La company de la company de la company de la company de la company de la company de la company de la company d		UM25	Dibromochloropropane	LT	1.20		ug/l	HHH009
· ·				G IZ.	prof different options					
		•		AY8	Dibromochloropropane		6.23	0	ug/l	HHIO17
		eg en er er gant i dan		UM21	Dibromochloromethane	LT	1.00	0	ug/1	нн јоо 9
				UM21	1,4-Dichlorobenzene	-	2,90	2	ug/l	ННЈ009
				P6	Dicyclopentadiene		2.29	1	ug/1	HHF017
		. 1 -		UM25	Dicyclopentadiene		1.51	1	ug/l	HHH009
				01125	DICYCIOPERCAGIERE		1.01	•	49/1	11111000
	•	• .		f #14'4	Manage 2		6.29	0	ug/l	HHG017
				UH11	Vapona		8.50	0	ug/l	HHH009
				UM25	Vapona	L-1.				*
				AT8	Diisopropylmethyl Phosphonate		4.96		ug/1	HHE017
				UM25	Diisopropylmethyl Phosphonate	LT	2.10		ug/l	
				AAAB	Dithiane	LI.	1.34	·	ug/l	HHC017
				4 = 4 =		, _				1881555
				UM25	Dithiane	LT	3.30		ug/l	HHHOO9
		*		KK8	Dieldrin		4.80		ug/l	HHD017
				UM25	Dieldrin		2.60		ug/1	HHH009
		•		<b>AAA</b> 8	Dimethyldisulfide	LT	5.50	-1	ug/l	HHCO17

## Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

Sampling	Station	Sample	Sample		Analytical Dayametry	Da	sults	Units	Sample Number
Date	Number	Depth (cm)	Type	Method	Analytical Parameters	Le	:50105	011100	namber
	<del></del>								
89271	SW36001	0.2	DTCH	AT8	Dimethylmethyl Phosphate		1.70	0 ug/l	HHE017
092/1	3#30001	V.2	01011	UM25	Dimethylmethyl Phosphate	LT		2 ug/l	ннноо9
				KK8	Endrin			0 ug/l	HHD017
A				UM25	Endrin	LT		1 ug/l	ннноо9
***				UM21	Ethylbenzene			1 ug/l	ННЈ009
				UI IA.A					
				AV8	Ethylbenzene		2.88	1 ug/l	HHV017
	•			TT09	Fluoride		1.62		HHZ017
	<i>‡</i>		٠.	CC8	Mercury		2.36 -		HIA017
				KK8	Isodrin			0 ug/l	HHD017
			•	UM25	Isodrin	LT.	7.80		HHH009
				Of IZ.O					
				SS12	Potassium		3.43	3 ug/l	HICO17
		•		UM21	Toluene	LT		0 ug/l	нн <b>л</b> ооэ
	·			AV8	Toluene			0 ug/l	HHV017
				UM21	Methylethyl Ketone	LT	1.00	1 ug/l	нн јоо э
	. *			SS12	Magnesium		2.44	4 ug/l	HIC017
				P8	Methylisobutyl Ketone		8.77	0 ug/l	HHF017
				UM21	Methylisobutyl Ketone	LŤ	1.40	0 ug/l	HHJ009
				UH11	Malathion	LT	3.73 -	1 ug/l	HHG017
				UM25	Malathion	LT	2.10	1 ug/l	HHH009
		2.4 -		SS12	Sodium		1.10	5 ug/l	-HIC017
						ř.,			•
				LL8	Nitrite, Nitrate - Non specific	-	5.06	1 ug/l	HHY017
	. "		1.4	AAA8	1,4-Oxathiane	LT	2.38	0 ug/1	HHC017
		A December 1		UM25	1,4-Oxathiane	LT	2.70	1 ug/l	HHH009
				SS12	Lead	ĹŤ	4.34	1 ug/l	HICO17
				KK8	Dichlorodiphenylethane		2.60 -	1 ug/l	HHD017
				UM25	Dichlorodiphenylethane	LT	1.40	1 · ug/l	HHH009
	£.			KK8	Dichlorodiphenyltrichloro-		~ ~~	0 ug/l	HHD017
				1410	ethane				
				UM25	Dichlorodiphenyltrichloro-	LT	1.80	1 ug/l	HHH009
					ethane				
		si.		UH11	Parathion	LT	6.47	1 ug/l	HHG017
	•	*		UM25	Parathion		3.70		ниноо9
	•						<del>.</del>		
				TT09	Sulfate		1.30	5 ug/l	HHZ017
				UH11	2-Chloro-1(2,4-Dichlorophenyl)		4.44		HHG017
				W11.A.A.	Vinyldiethyl Phosphates				

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	_Method	Analytical Parameters	Re	sults		Units	Sample Number
			***				1.			
89271	SW36001	0.2	DTCH	UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90	1 -	ug/1	HHH009
					Vinyldiethyl Phosphates					
				UM21	1,1,2,2-Tetrachloroethane	LT	1.50	0	ug/1	HHJ009
				UM21	Tetrachloroethene		3.80	1	ug/l	HHJ009
				N8	Tetrachloroethene		4.47	0	ug/1	HHU017
				UM21	Trichloroethene		1.00	1	ug/l	ннјоо9
				ИВ	Trichloroethene		2.04	1	ug/l	HHU017
		•		UM21	Ortho- & Para-Xylene		3.27	1	ug/l	нн јоо 9
				AV8	Ortho- & Para-Xylene			1	ug/l	HHV017
				SS12	Zinc	LT	1.80	1	ug/l	HICO17
89271	SW36001B	0.0	тотсн	QQ9	Dibromochloropropane	ΙT	5.00	<b>-</b> -3	ug/1	GTC010
09271	SWSOWIB	0.0	Dicii	HG9	Mercury		5.70		ug/l	QUD010
69271	SW36001B	0.2	DTCH	LL03	Benzothiazole	LT_	1.08	٥	ug/l	RGA010
				LL03	p-Chlorophenylmethyl Sulfide	LT	1.08	0	ug/1	RGA010
				LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25	0	ug/l	RGA010
				LL03	p-Chlorophenylmethyl Sulfone	LŢ	2.37	0	ug/1	RGA010
				LL03	Dithiane	LT	1.47	0	ug/l	RGA010
				LL03	Dimethyldisulfide	LT	6.92	-1	ug/l	RGA010
				LL03	1,4-Oxathiane	LT	8.56	<b>-1</b>	ug/l	RGA010
	CLT/CAD4 FD		QCFB	UM21	1,1,1-Trichloroethane	. IT	1.00	ο.	ug/l	ннјо10
89271	SW36001FB	0	GCFD	N8	1,1,1-Trichloroethane		7.60		ug/1	HHU018
				UM21	1,1,2-Trichloroethane		1.00		ug/1	ННЈ010
		÷		N8	1,1,2-Trichloroethane		7.80		ug/1	HHU018
		-		UM21	1,1-Dichloroethene	LT	1.00		ug/l	ннјо10
Į.				N8	1,1-Dichloroethene	LT	1.70	0	ug/l	HHU018
			••	UM21	1,1-Dichloroethane	ĻŢ	1.00	O	ug/1	ННЈО10
				88	1,1-Dichloroethane		- 7.30		ug/l	HHU018
				UM21	1,2-Dichloroethene		5.00		ug/1	ННЈ010
				. N8	1,2-Dichloroethene	LT	7.60	-1	ug/l	HHU018
				UM21	1,2-Dichloroethane	LT	1.00		ug/l	ННЈ010
				ив	1,2-Dichloroethane	LT	1.10		ug/1	HHU018
				UM21	1,2-Dichloropropane	LT	1.00		ug/1	ННЈО10
	•			UM21	1,3-Dichlorobenzene	LT	1.00	0	ug/l	HHJ010

Carralina	Station	Sample	Sample								Sample
Sampling Date	Station Number	Depth (cm)	Type	Method	Analytical Parameters		Re	sults		Units	Number
							<u> </u>				
89271	SW36001FB	0	QCFB	UM21	1,3-Dichloropropane		LT	4.80	0	ug/1	ннјо10
052/1	383000110		QCI D	UM21	m-Xylene		LT	1.00	0	ug/l	ННЈО10
				AV8	m-Xylene		LT	1.32	0	ug/l	HHV018
				UM21	2-Chloroethylvinyl Ether		LT	3.50	Ö	ug/l	ННЈ010
				UM21	Acrylonitrile		LT	8.40	0	ug/l	ННЈО10
				Office	noi y long or late				_	~~~~	
				KK8	Aldrin		LT	5.00	-2	ug/l	HHD018
	.* .			UM25	Aldrin		LT	1.30		ug/l	HHH010
			4	00	ALKALINITY		LT			ug/1	HHW015
				AX8	Arsenic				0	ug/1	HIB018
				UH11 -	Atrazine		LT	4.03	0	ug/1	- HHG018
								• •	•		
				UM25	Atrazine		LT	5.90	0	ug/l	HHH010
			5	P6	Bicycloheptadiene		LT	5.90	0	ug/l	HHF018
				UM21	Bromodichloromethane		LT	1.00	0	ug/1	ННЈ010
				AAA8	Benzothiazole		LT	5.00	0	ug/1	HHC018
				UM21	Vinyl Chloride		LT	1.20	1	ug/l	ННЈО10
				UM21	Chloroethane		LT	8.00	0	ug/l	ННЈО10
				UM21	Benzene		LT	1.00	0	ug/l	ННЈ010
				AV8	Benzene .		LT	1.05	0	ug/l	HHV018
		100		\$\$12	Calcium		LT	1.05	2	ug/l	HICO18
				UM21	Trichlorofluoromethane		LT	1.00	0	ug/l	ННЈО10
				UM21	Carbon Tetrachloride		LT	1.00	0	ug/l	ннјо10
				N8	Carbon Tetrachloride		LT	9.90		ug/l	HHU018
				SS12	Cadmium		LT	6.78		ug/l	HICO18
	2 + 22 ·			UM21	Methylene Chloride		LT	1.00	0	ug/l	ННЈ010
				NS	Methylene Chloride		LT	7.40	0	ug/1	HHU018
		• .		UM21	Bromomethane		LT	1.40	1	ug/l	ННЈ010
				UM21	Chloromethane		LT	1.20	0	ug/l	ННЈ010
				UM21	Bromoform		LT	1.10	1	ug/1	<b>ННЈ010</b>
				UM21 .	Chloroform		LT	1.00		ug/l	ННЈ010
	•			NB	Chloroform		LT	5.00	-1	ug/1	HHU018
	•					,					
				TT09	Chloride		LT	2.78	2	ug/1	HHZ018
				KK8	Hexachlorocyclopentadiene		LT	4.80	-2	ug/1	HHD018
				UM25	Hexachlorocyclopentadiene		LT	5.40	1 .	ug/l	HHH010
				UM21	Chlorobenzene		LT	1.00	0	ug/1	HHJ010

R. L. Stollar and Associates

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type _ Method	Analytical Parameters	Results	Units	Sample Number
***************************************					-	-	
89271	SW36001FB	0	QCFB N8	Chlorobenzene	LT 8.20 -1	ug/1	HHU018
		<u> </u>	кке	Chlordane	LT 9.50 -2	ug/l	HHD018
			UM25	Chlordane	LT 3.70 -1	ug/1	ннно10
			AAA6	p-Chlorophenylmethyl Sulfide	LT 5.69 C	ug/1	HHC018
			UM25	p-Chlorophenylmethyl Sulfide	LT 1.00 1	ug/1	HHH010
			AAAB	p-Chlorophenylmethyl Sulfoxide	LT 1.15 1	ug/1	HHC018
	: <del></del> -		UM25	p-Chlorophenylmethyl Sulfoxide	LT 1.50 1	ug/1	HHHO10
		,	AAA8	p-Chlorophenylmethyl Sulfone	LT 7.46 C	ug/1	HHC018
	-		UM25	p-Chlorophenylmethyl Sulfone	LT 5.30 C	ug/l	HHHO10
			SS12	Chromium	LT 1.68 1	ug/l	HICO18
ı			•				
			\$\$12	Copper	LT 1.88 1		HICO18
			TF20	Cyanide	LT 5.00 C		HHX018
			UM25	Dibromochloropropane	LT 1.20 1		ннно10
			AY8	Dibromochloropropane	LT 1.95 -1		HHI018
			UM21	Dibromochloromethane	LT 1.00 C	) ug/l	ннјо10
			UM21	1,4-Dichlorobenzene	LT 2.00 C	ug/l	ннјо10
			P6	Dicyclopentadiene	LT 5.00 C	ug/1	HHF018
			UM25	Dicyclopentadiene	LT 5.50 C	ug/1	HHHO10
			UH11	Vapona	LT 3.84 -1	ug/1	HHG018
			UM25	Vapona	LT 8.50 (	ug/1	HHH010
							1815010
			AT8	Diisopropylmethyl Phosphonate	LT 3.92 -1		HHE018
	· <del>- </del> .		UM25	Diisopropylmethyl Phosphonate	LT 2.10 1		HHH010
			AAA8	Dithiane	LT 1.34 (		HHC018
			- UM25	Dithiane	LT 3.30 C	•	ннно10
			KK8	Dieldrin	LT 5.00 -2	2 ug/l	HHD018
			UM25	Dieldrin	LT 2.60 1	ug/l	HHH010
			AAA8	Dimethyldisulfide	LT 5.50 -1	ug/1	HHC018
			AT8	Dimethylmethyl Phosphate	LT 1.88 -1		HHE018
			UM25	Dimethylmethyl Phosphate	LT 1.30 2		HHH010
		•	кка	Endrin	LT 5.00 -2		HHD016
,							
			UM25	Endrin	LT 1.80 1	ug/l	ннно10
		•	UM21	Ethylbenzene	LT 1.00 C	ug/l	<b>ННЈО10</b> -
			AV8	Ethylbenzene	LT 1.37 C	ug/1	HHV018
			TT09	Fluoride	LT 1.53 2	ug/1	HHZ018

## Comprehensive Monitoring Program

R. L. Stollar and Associates

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Results	Units	Sample . Number
	***************************************		<u></u>					
						17 3 00 4		UTABLO
89271	SW36001FB	0	QCFB	CC8	Mercury	LT 1.00 -1	ug/1	HIA018
				KK8	Isodrin	LT 5.10 -2	ug/l	HHD018
		•		UM25	Isodrin	LT 7.80 0	ug/1	HHH010
•				SS12	Potassium	LT 1.24 3	ug/1	HICO18
				UM21	Toluene	LT 1.00 0	ug/l	ннјо10
				AV8	Toluene	LT 1.47 0	ug/l	HHV018
	•			UM21	Methylethyl Ketone	LT 1.00 1	ug/l	ННЈ010
				SS12	Magnesium	LT 1.35 2	ug/l	HICO18
				P8	Methylisobutyl Ketone	LT 4.90 0	ug/l	HHF018
				UM21	Methylisobutyl Ketone	LT 1.40 0	ug/1	ННЈ010
		,		UH11	Malathion	LT 3.73 -1	ug/l	HHG018
				UM25	Malathion	LT 2.10 · 1	ug/1	HHHO10
				SS12	Sodium	LT 2.79 2	ug/1	HICO18
				LL8	Nitrite, Nitrate - Non specific	1.05 2	ug/l	HHY018
				AAA8	1,4-Oxathiane	LT 2.38 0	ug/l	HHC018
				UM25	1,4-Oxathiane	LT 2.70 1	ug/l	HHH010
,				\$\$12	Lead	LT 4.34 1	ug/1	HICO18
				KK8	Dichlorodiphenylethane	LT 5.40 -2	ug/l	HHD018
				UM25	Dichlorodiphenylethane	LT 1.40 1	ug/l	HHHO10
				KK8	Dichlorodiphenyltrichloro-	LT 4.90 -2	ug/1	HHD018
		•	• • •		ethane			
	• •			UM25	Dichlorodiphenyltrichloro- ethane	LT 1.80 1	ug/l	HHH010
			,	UH11	Parathion	LT 6.47 -1	ug/1	HHG018
				UM25	Parathion	LT 3.70 1	ug/1	HHH010
				TT09	Sulfate ·	LT 1.75 2	ug/1	HHZO18
	. •			UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT 7.87 -1	ug/l	HHG018
	•			UM25	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT 1.90 1	ug/l	ннно10
	•			UM21	1,1,2,2-Tetrachloroethane	LT 1.50 0	ug/1	ННЈ010
	•		*	UM21	Tetrachloroethene	LT 1.00 0	ug/l	ННЈ010
				N6	Tetrachloroethene	LT 7.50 -1	ug/l	HHU018
				UM21	Trichloroethene	LT 1.00 0	ug/l	ННЈ010

•									
Sampling	Station	Sample	Sample						Sample
Date	Number	Depth (cm)	Type	_ Method	Analytical Parameters	Re	sults	Units	Number
			***************************************						
89271	SW36001FB	0	QCFB	N8	Trichloroethene	LT	5.60 -1	ug/1	HHU018
02272	01100001111	ű	40.2	UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/l	ннјо10
1				AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/1	HHV018
				SS12	Zinc	LT	1.80 1	ug/l	HICO18
	•								
89271	SW36001TB	0	QCTB	UM21	1,1,1-Trichloroethane	LT	1.00 0	ug/l	ННЈ011
				NB	1,1,1-Trichloroethane	LT	7.60 -1	ug/l	HHU019
				UM21	1,1,2-Trichloroethane	LT	1.00 0	ug/1	ННЈО11
				N8	1,1,2-Trichloroethane	LT	7.80 -1	ug/l	HHU019
				UM21	1,1-Dichloroethene	LT	1.00 0	ug/l	ННЈ011
				N8	1,1-Dichloroethene	LT	1.70 0	ug/l	HHU019
				UM21	1,1-Dichloroethane	LT	1.00 0	ug/l	HHJ011
			,	NB	1,1-Dichloroethane	LT	7.30 -1	ug/1	HHU019
•				UM21	1,2-Dichloroethene	LT	5.00 0	ug/l	ннјо11
1				N8	1,2-Dichloroethene	LT	7.60 -1	ug/1	HHU019
				UM21	1,2-Dichloroethane	LT	1.00 0	ug/1	HHJ011
la a series		٠.	. 5	N8	1,2-Dichloroethane	LT	1.10 0	ug/1	HHU019
				UM21	1,2-Dichloropropane	LT	1.00 0	ug/1	ННЈ011
				UM21	1,3-Dichlorobenzene	LT	1.00 0	ug/1	HHJ011
		•		UM21	1,3-Dichloropropane	LT	4.80 0	ug/l	HHJ011
	•					+	•		
ļ				UM21	m-Xylene	LT	1.00 0	ug/l	HHJ011
				AV8	m-Xylene	LT	1.32 0	ug/1	HHV019
				UM21	2-Chloroethylvinyl Ether	LT	3.50 0	ug/1	HHJ011
	-	• '		UM21	Acrylonitrile	LT	8.40 0	ug/1	HHJ011
	* .			KK8	Aldrin	LT	5.00 -2	ug/1	HHD019
È	,			UM25	Aldrin	LT	1.30 1	ug/l	HHH011
				00	ALKALINITY	LT	7.30 4	ug/1	HHW016
				AX8	Arsenic	LT	2.35 0	ug/1	HIB019
1				UH11	Atrazine	·LT	4.03 .0	ug/1	HHG019
				UM25	Atrazine		5.90 0	ug/1	HHH011
				01120	1107		0120	~3/ *	11111022
4		•		. <b>P</b> 8	Bicycloheptadiene	LT	5.90 0	ug/1	HHF019
				UM21	Bromodichloromethane	LT	1.00 0	ug/l	ННЈ011
				AAA8	Benzothiazole	LŤ	5.00 0	ug/l	HHC019
		•		UM21	Vinyl Chloride	LT	1.20 1	ug/l	ННЈ011
1		÷ *		UM21	Chloroethane	LT	8.00 0	ug/l	HHJ011
4									

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	esults		Units	Sample Number
89271	SW36001TB	0	QCTB	UM21	Benzene	LT	1.00	0	· ug/1	ННЈ011
				AV8	Benzene	LT	1.05	0	ug/l	HHV019
		•		SS12	Calcium	LT	1.05	2	ug/1	HICO19
•				UM21	Trichlorofluoromethane	ĹT	1.00	O	ug/1	ННЈ011
		•		UM21	Carbon Tetrachloride	LT	1.00	0	ug/l	ННЈ011
							1.			
				N8	Carbon Tetrachloride	LT	9.90	-1	ug/l	HHU019
				SS12	Cadmium	LT	6.78	.0	ug/1	HICO19
				UM21	Methylene Chloride	LT	1.00	0	ug/l	ННЈО11
				N8	Methylene Chloride	LT	7.40	. 0	ug/l	. HHUO19
				UM21	Bromomethane	LT	1.40	1	ug/1	ННЈО1:
		•		UM21	Chloromethane	ĹT	1.20	0	ug/l	HHJ01:
				UM21	Bromoform	LT	1.10	1	ug/1	· ННЈ01
				UM21	Chloroform	LT	1.00	0	ug/l	HHJ01
				NB	Chloroform	LT	5.00	-1	ug/l	HHU01
				TT09	Chloride	LT	2.78	2	ug/1	HHZ01
				KK8	Hexachlorocyclopentadiene	LT	4.80	-2	ug/l	HHD019
				UM25	Hexachlorocyclopentadiene	LT	5.40		ug/1	ннно1:
				UM21	Chlorobenzene	LT	1.00		ug/l	ННЈО1:
				NB	Chlorobenzene	LT			ug/l	HHU01
			· ·	кка	Chlordane	LŢ	9.50		ug/l	HHD01
				UM25	Chlordane	LT	3.70	1	ug/l	HHHO1:
				AAA8	p-Chlorophenylmethyl Sulfide	LT		0	ug/l	HHC019
				UM25	p-Chlorophenylmethyl Sulfide	LT	1.00	1	ug/l	HHHO1:
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15	1	ug/1	HHC019
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50	1	ug/1	HHHO1:
				<b>AAA</b> 6	p-Chlorophenylmethyl Sulfone	LT	7.46	0	ug/l	HHC019
				UM25	p-Chlorophenylmethyl Sulfone	LT	5.30	0	ug/1	HHH01:
				\$\$12	Chromium	LT	1.68	1	ug/l	HICO1
				\$\$12	Copper	LT	1.88	1	ug/1	HICO19
				TF20	Cyanide	LT	5.00		ug/l	HHX01
				UM25	Dibromochloropropane	LT	1.20	1	ug/l	ннно1:
				AY8	Dibromochloropropane	LT	1.95	-1	ug/1	HHIO19
				UM21	Dibromochloromethane	LT	1.00		ug/l	HHJ01:
				UM21	1,4-Dichlorobenzene	LT	2.00		ug/1	ннјо11

R. L. Stollar and Associates

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Sample Depth (cm) Type	. Method	Analytical Parameters	Re	sults	Units	Sample Number	
									•
89271	SW36001TB	о оств	P8	Dicyclopentadiene	LT	5.00 O	ug/l	HHF019	4.
05271			UM25	Dicyclopentadiene	LT	5.50 O	ug/l	ннно11	
			UH11	Vapona	LT	3.84 -1	ug/1	HHG019	
			UM25	Vapona	LT	8.50 O	ug/l	HHH011	
			AT6	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/l	HHE019	
				C					
		,	UM25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/l	HHH011	
			AAA8	Dithiane	LT	1.34 0	ug/l	HHC019	
			UM25	Dithiane	LT	3.30 0	ug/1	HHH011	
			KK8	Dieldrin	LT	5.00 -2	ug/1	HHD019	
			UM25	Dieldrin	LT	2.60 1	ug/l	HHH011	
		•							
			AAA8	Dimethyldisulfide	·LT	5.50 -1	ug/l	HHC019	
			AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/1	HHE019	
			UM25	Dimethylmethyl Phosphate	LT	1.30 2	ug/I	HHH011	
	-		KK8	Endrin	LT		ug/1	HHD019	
		•.	UM25	Endrin	LT		ug/l	ннно11	
								* *	
			UM21	Ethylbenzene	LT	1.00 0	ug/1	HHJ011	
			AV8	Ethylbenzene	LT	1.37 0	ug/l	HHV019	
			TT09	Fluoride	LT	1.53 2	ug/1	HHZ019	
			CC8	Mercury	LT	1.00 -1	ug/l	HIA019	
			KK8	Isodrin	LT	5.10 -2	ug/l	HHD019	
		*							
			UM25	Isodrin	LŤ	7.80 0	ug/l	<b>HHH011</b>	
	-		SS12	Potassium	LT	1.24 3	ug/1	HICO19	
			UM21	Toluene	LT	1.00 0	ug/1	HHJ011	
•		•	AV8	Toluene	LT	1.47 0	ug/l	HHV019	
			UM21	Methylethyl Ketone	LT	1.00 1	ug/l	HHJ011	
						* *			
			SS12	Magnesium	LT	1.35 2	ug/l	HICO19	
			P8	Methylisobutyl Ketone	LT	4.90 0	ug/l	HHF019	
			UM21	Methylisobutyl Ketone	LT	1.40 0	ug/1	ННЈ011	
			UH11	Malathion	LT	3.73 -1	ug/1	HHG019	
			UM25	Malathion	LT	2.10 1	ug/l	ннн011	
								• .	
			\$\$12	Sodium	LT	2.79 2	ug/l	HICO19	
			LL8	Nitrite, Nitrate - Non specific	LŦ	1.00 1	ug/l	HHY019	
		•	AAA8	1,4-Oxathiane		2.38 0	ug/l	HHC019	
			UM25	1,4-Oxathiane	LT	2.70 1	ug/l	HHH011	

Sampling	Station	Sample	Sample						Sample
Date	Number	Depth (cm)		Method	Analytical Parameters	Re	esults	Units	Number
			*						-
			· · · · · · · · · · · · · · · · · · ·					- 1	
89271	SW36001TB	0	QCTB	SS12	Lead	LT	4.34 1	ug/l	HICO19
	A ^t			KK8	Dichlorodiphenylethane	LT	-5.40 -2	ug/l	HHD019
		."		UM25	Dichlorodiphenylethane	LT	1.40 1	ug/1	HHHO11
	1			KK8	Dichlorodiphenyltrichloro-	LT	4.90 -2	ug/1	HHD019
					ethane			F	
1				UM25	Dichlorodiphenyltrichloro-	LT	1.80 1	ug/1-	<b>HHHO11</b>
	et e		. •		ethane				
			,						. 12
		· · · · · · · · · · · · · · · · · · ·		UH11	Parathion	LT	6.47 -1	ug/1	HHG019
				UM25	Parathion	LT	3.70 1	ug/1	HHH011
		•		TT09	Sulfate	LT.	1.75 2	ug/1	HHZ019
				UH11	2-Chloro-1(2,4-Dichlorophenyl)	LT	7.87 -1	ug/l	HHG019
		•			Vinyldiethyl Phosphates				
	*	• .		UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90 1	ug/1	HHH011
	S. C.				Vinyldiethyl Phosphates				
		•	antiques .	UM21	1,1,2,2-Tetrachloroethane	LT	1.50 0	ug/l	ННЈО11
				UM21	Tetrachloroethene	LT	1.00 0	ug/l	HHJ011
				N8	Tetrachloroethene	LT	7.50 -1	ug/1	HHU019
				UM21	Trichloroethene	LT	1.00 0	ug/1	HHJ011
				N8	Trichloroethene	LT	5.60 -1	ug/l	HHU019
				UM21	Ortho- & Para-Xylene	LT	2.00 0	ug/1	ННЈ011
		100	-	AV8	Ortho- & Para-Xylene	LT	1.36 0	ug/1	HHV019
	.6			SS12	Zinc	· LT	1.80 1	ug/l	HICO19

Summary of Analytical Results

Base   Number   Depth (cm)   Type	Sampling	Station	Sample	Sample.	•						Sample
N8	Date	Number	Depth (cm)	Type	Method	Analytical Parameters	. Re	sults		Units	Number
N8											
N8		SW36001FB	0	DTCH	UM21	1,1,1-Trichloroethane	LT	1.00	0	ug/1	HHJ010
N8					N8	1,1,1-Trichloroethane	LT	7.60 -	-1	ug/1	HHU018
N8					UM21	1,1,2-Trichloroethane	LT	1.00	0	ug/1	HHJ010
N8				-	N8	1,1,2-Trichloroethane	LT	7.80 -	- 1	ug/1	HHU018
UM21					UM21	1,1-Dichloroethene	LT	1.00	0	ug/1	HHJ010
N8					N8	1,1-Dichloroethene	LT	1.70	0	ug/1	HHU018
MR21					UM21	1,1-Dichloroethane	· LT	1.00	0	ug/1	HHJ010
N8	Α.				N8	1,1-Dichloroethane	LT	7.30 -	-1	ug/1	HHU018
UM21 1,2-Dichloroethane LT 1.00 0 ug/1 HHJ010 N8 1,2-Dichloroethane LT 1.10 0 ug/1 HHU018 UM21 1,2-Dichloropropane LT 1.00 0 ug/1 HHJ010 UM21 1,3-Dichlorobenzene LT 1.00 0 ug/1 HHJ010 UM21 1,3-Dichloropropane LT 1.00 0 ug/1 HHJ010 UM21 1,3-Dichloropropane LT 1.00 0 ug/1 HHJ010 UM21 m-Xylene LT 1.00 0 ug/1 HHJ010 AV8 m-Xylene LT 1.32 0 ug/1 HHJ010 UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/1 HHJ010 UM21 Acrylonitrile LT 8.40 0 ug/1 HHJ010 KK8 Aldrin LT 5.00 -2 ug/1 HH0018 UM25 Aldrin LT 1.30 1 ug/1 HH0018 UM25 Aldrin LT 1.30 1 ug/1 HH0018 UM26 Arsenic 2.43 0 ug/1 HH0018 UM11 Atrazine LT 4.03 0 ug/1 HH0018 UM27 Atrazine LT 5.90 0 ug/1 HH0018 UM28 Benzenthiazole LT 5.90 0 ug/1 HH010 UM21 Bromodichloromethane LT 1.00 0 ug/1 HH0018 UM21 Vinyl Chloride LT 1.20 1 ug/1 HH0018 UM21 Chloroethane LT 8.00 0 ug/1 HHJ010 UM21 Benzene LT 1.00 0 ug/1 HHJ010 UM21 Benzene LT 1.00 0 ug/1 HHJ010 UM21 Benzene LT 1.00 0 ug/1 HHJ010					UM21	1,2-Dichloroethene	LT	5.00	0	ug/1	HHJ010
N8					N8	1,2-Dichloroethene	LT	7.60	-1	ug/1	HHU018
UM21					UM21	1,2-Dichloroethane	LT	1.00	0	ug/1	HHJ010
UM21 1,3-Dichlorobenzene LT 1.00 0 ug/1 HHJ010 UM21 1,3-Dichloropropane LT 4.80 0 ug/1 HHJ010  UM21 m-Xylene LT 1.00 0 ug/1 HHJ010  AV8 m-Xylene LT 1.32 0 ug/1 HHV018  UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/1 HHJ010  UW21 Acrylonitrile LT 8.40 0 ug/1 HHJ010  KK8 Aldrin LT 5.00 -2 ug/1 HHD018  UM25 Aldrin LT 1.30 1 ug/1 HHH010  00 ALKALINITY LT 7.30 4 ug/1 HHW015  AX8 Arsenic 2.43 0 ug/1 HHW015  AX8 Arsenic 2.43 0 ug/1 HHG018  UH11 Atrazine LT 4.03 0 ug/1 HHG018  UH25 Atrazine LT 5.90 0 ug/1 HHH018  UM25 Atrazine LT 5.90 0 ug/1 HHH018  UM25 Atrazine LT 5.90 0 ug/1 HHH018  UM21 Bromodichloromethane LT 5.90 0 ug/1 HHH018  UM21 Vinyl Chloride LT 1.00 0 ug/1 HHJ010  UM21 Benzene LT 8.00 0 ug/1 HHJ010  UM21 Benzene LT 1.00 0 ug/1 HHJ010  UM21 Benzene LT 1.00 0 ug/1 HHJ010  UM21 Benzene LT 1.00 0 ug/1 HHJ010					N8	1,2-Dichloroethane	LT	1.10	0	ug/1	HHU018.
UM21 1,3-Dichloropropane LT 4.80 0 ug/1 HHJ010  UM21 m-Xylene LT 1.00 0 ug/1 HHJ010  AV8 m-Xylene LT 1.32 0 ug/1 HHJ010  UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/1 HHJ010  UM21 Acrylonitrile LT 8.40 0 ug/1 HHJ010  KK8 Aldrin LT 5.00 -2 ug/1 HH0018  UM25 Aldrin LT 1.30 1 ug/1 HHH010  00 ALKALINITY LT 7.30 4 ug/1 HHW015  AX8 Arsenic 2.43 0 ug/1 HHB018  UH11 Atrazine LT 4.03 0 ug/1 HHG018  UM25 Atrazine LT 5.90 0 ug/1 HHG018  UM25 Atrazine LT 5.90 0 ug/1 HHH010  P8 Bicycloheptadiene LT 5.90 0 ug/1 HHH010  AAAB Benzothiazole LT 5.90 0 ug/1 HHJ010  AAAB Benzothiazole LT 5.90 0 ug/1 HHJ010  UM21 Vinyl Chloride LT 1.20 1 ug/1 HHJ010  UM21 Chloroethane LT 8.00 0 ug/1 HHJ010  UM21 Benzene LT 1.00 0 ug/1 HHJ010  UM21 Benzene LT 1.05 0 ug/1 HHJ010					UM21	1,2-Dichloropropane	LT	1.00	0	ug/1	HHJ010
UM21 1,3-Dichloropropane LT 4.80 0 ug/1 HHJ010  UM21 m-Xylene LT 1.00 0 ug/1 HHJ010  AV8 m-Xylene LT 1.32 0 ug/1 HHJ010  UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/1 HHJ010  UM21 Acrylonitrile LT 8.40 0 ug/1 HHJ010  KK8 Aldrin LT 5.00 -2 ug/1 HH0018  UM25 Aldrin LT 5.00 -2 ug/1 HH0018  UM25 Aldrin LT 7.30 4 ug/1 HHM015  AX8 Arsenic 2.43 0 ug/1 HH0018  UH11 Atrazine LT 4.03 0 ug/1 HHG018  UH25 Atrazine LT 5.90 0 ug/1 HHG018  UM25 Atrazine LT 5.90 0 ug/1 HHG018  UM25 Atrazine LT 5.90 0 ug/1 HHH010  P8 Bicycloheptadiene LT 5.90 0 ug/1 HHH010  AAAB Benzothiazole LT 5.90 0 ug/1 HHJ010  UM21 Vinyl Chloride LT 1.20 1 ug/1 HHJ010  UM21 Chloroethane LT 8.00 0 ug/1 HHJ010  UM21 Benzene LT 1.00 0 ug/1 HHJ010  UM21 Benzene LT 1.00 0 ug/1 HHJ010  UM21 Benzene LT 1.05 0 ug/1 HHJ010					UM21	1,3-Dichlorobenzene	LT	1.00	0	ug/1	HHJ010
AV8 m-Xylene LT 1.32 0 ug/1 HHV018 UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/1 HHJ010 UM21 Acrylonitrile LT 8.40 0 ug/1 HHJ010 KK8 Aldrin LT 5.00 -2 ug/1 HH0018  UM25 Aldrin LT 1.30 1 ug/1 HHH010 00 ALKALINITY LT 7.30 4 ug/1 HHW015 AX8 Arsenic 2.43 0 ug/1 HIB018 UH11 Atrazine LT 4.03 0 ug/1 HHG018 UM25 Atrazine LT 5.90 0 ug/1 HHH010  P8 Bicycloheptadiene LT 5.90 0 ug/1 HHH010 AAA8 Benzothiazole LT 1.00 0 ug/1 HHJ010 AAA8 Benzothiazole LT 5.00 ug/1 HHC018 UM21 Vinyl Chloride LT 1.20 1 ug/1 HHJ010 UM21 Chloroethane LT 8.00 0 ug/1 HHJ010 UM21 Benzene LT 8.00 0 ug/1 HHJ010 UM21 Benzene LT 1.00 0 ug/1 HHJ010 AV8 Benzene LT 1.05 0 ug/1 HHJ010 AV8 Benzene LT 1.05 0 ug/1 HHV018					UM21	1,3-Dichloropropane	LT	4.80	0	ug/1	HHJ010
UM21 2-Chloroethylvinyl Ether LT 3.50 0 ug/l HHJ010 UM21 Acrylonitrile LT 8.40 0 ug/l HHJ010 KK8 Aldrin LT 5.00 -2 ug/l HHD018  UM25 Aldrin LT 1.30 1 ug/l HHH010 00 ALKALINITY LT 7.30 4 ug/l HHW015 AX8 Arsenic 2.43 0 ug/l HHB018  UH11 Atrazine LT 4.03 0 ug/l HHG018  UM25 Atrazine LT 5.90 0 ug/l HHG018  UM25 Atrazine LT 5.90 0 ug/l HHH010  P8 Bicycloheptadiene LT 5.90 0 ug/l HHH010  P8 Bicycloheptadiene LT 5.00 0 ug/l HHJ010  AAA8 Benzothiazole LT 5.00 0 ug/l HHJ010  AAA8 Benzothiazole LT 5.00 0 ug/l HHJ010  UM21 Vinyl Chloride LT 1.20 1 ug/l HHJ010  UM21 Chloroethane LT 8.00 0 ug/l HHJ010  UM21 Benzene LT 1.00 0 ug/l HHJ010					UM21	m-Xylene	LT	1.00	0	ug/1	HHJ010
UM21   Acrylonitrile					AV8	m-Xylene	LT	1.32	0	ug/1	HHV018
MK8					UM21	2-Chloroethylvinyl Ether	LT	3.50	O	ug/1	HHJ010
UM25 Aldrin LT 1.30 1 ug/l HHH010 00 ALKALINITY LT 7.30 4 ug/l HHW015 AX8 Arsenic 2.43 0 ug/l HIB018 UH11 Atrazine LT 4.03 0 ug/l HHG018 UM25 Atrazine LT 5.90 0 ug/l HHH010  P8 Bicycloheptadiene LT 5.90 0 ug/l HHH010  AAAB Benzothiazole LT 1.00 0 ug/l HHJ010  AAAB Benzothiazole LT 5.00 0 ug/l HHC018 UM21 Vinyl Chloride LT 1.20 1 ug/l HHJ010  UM21 Chloroethane LT 8.00 0 ug/l HHJ010  UM21 Benzene LT 1.00 0 ug/l HHJ010  AV8 Benzene LT 1.05 0 ug/l HHJ010  AV8 Benzene LT 1.05 0 ug/l HHV018  SS12 Calcium LT 1.05 2 ug/l HIC018					UM21	Acrylonitrile	LT	8.40	0	ug/1	HHJ010
00       ALKALINITY       LT 7.30 4 ug/1 HHW015         AX8       Arsenic       2.43 0 ug/1 HIB018         UH11       Atrazine       LT 4.03 0 ug/1 HHG018         UM25       Atrazine       LT 5.90 0 ug/1 HHH010         P8       Bicycloheptadiene       LT 5.90 0 ug/1 HHF018         UM21       Bromodichloromethane       LT 1.00 0 ug/1 HHJ010         AAA8       Benzothiazole       LT 5.00 0 ug/1 HHC018         UM21       Vinyl Chloride       LT 1.20 1 ug/1 HHJ010         UM21       Chloroethane       LT 8.00 0 ug/1 HHJ010         UM21       Benzene       LT 1.00 0 ug/1 HHJ010         AV8       Benzene       LT 1.05 0 ug/1 HHV018         SS12       Calcium       LT 1.05 2 ug/1 HIC018	•				KK8	Aldrin	LT	5.00	-2	ug/1	HHD018
AX8 Arsenic 2.43 0 ug/1 HIB018 UH11 Atrazine LT 4.03 0 ug/1 HHG018 UM25 Atrazine LT 5.90 0 ug/1 HHH010  P8 Bicycloheptadiene LT 5.90 0 ug/1 HHF018 UM21 Bromodichloromethane LT 1.00 0 ug/1 HHJ010 AAAB Benzothiazole LT 5.00 0 ug/1 HHC018 UM21 Vinyl Chloride LT 1.20 1 ug/1 HHJ010 UM21 Chloroethane LT 8.00 0 ug/1 HHJ010 UM21 Benzene LT 8.00 0 ug/1 HHJ010 AV8 Benzene LT 1.05 0 ug/1 HHJ010 AV8 Benzene LT 1.05 0 ug/1 HHV018 SS12 Calcium LT 1.05 2 ug/1 HIC018		·			UM25	Aldrin	LT	1.30	1	ug/1	ннно10
UH11 Atrazine LT 4.03 0 ug/1 HHG018 UM25 Atrazine LT 5.90 0 ug/1 HHH010  P8 Bicycloheptadiene LT 5.90 0 ug/1 HHF018 UM21 Bromodichloromethane LT 1.00 0 ug/1 HHJ010 AAAB Benzothiazole LT 5.00 0 ug/1 HHC018 UM21 Vinyl Chloride LT 1.20 1 ug/1 HHJ010 UM21 Chloroethane LT 8.00 0 ug/1 HHJ010  UM21 Benzene LT 1.00 0 ug/1 HHJ010 AV8 Benzene LT 1.05 0 ug/1 HHV018 SS12 Calcium LT 1.05 2 ug/1 HIC018					00	ALKALINITY	LT.	7.30	4	ug/1	HHW015
UM25 Atrazine LT 5.90 0 ug/l HHH010  P8 Bicycloheptadiene LT 5.90 0 ug/l HHF018  UM21 Bromodichloromethane LT 1.00 0 ug/l HHJ010  AAAB Benzothiazole LT 5.00 0 ug/l HHC018  UM21 Vinyl Chloride LT 1.20 1 ug/l HHJ010  UM21 Chloroethane LT 8.00 0 ug/l HHJ010  UM21 Benzene LT 1.00 0 ug/l HHJ010  AV8 Benzene LT 1.05 0 ug/l HHV018  SS12 Calcium LT 1.05 2 ug/l HIC018					8XA	Arsenic		2.43	0	ug/1	HIBO18
P8 Bicycloheptadiene LT 5.90 0 ug/l HHF018 UM21 Bromodichloromethane LT 1.00 0 ug/l HHJ010 AAAB Benzothiazole LT 5.00 0 ug/l HHC018 UM21 Vinyl Chloride LT 1.20 1 ug/l HHJ010 UM21 Chloroethane LT 8.00 0 ug/l HHJ010  UM21 Benzene LT 1.00 0 ug/l HHJ010 AV8 Benzene LT 1.05 0 ug/l HHV018 SS12 Calcium LT 1.05 2 ug/l HIC018					UH11	Atrazine	LT	4.03	0	ug/1	HHG018
UM21 Bromodichloromethane LT 1.00 0 ug/l HHJ010 AAA8 Benzothiazole LT 5.00 0 ug/l HHC018 UM21 Vinyl Chloride LT 1.20 1 ug/l HHJ010 UM21 Chloroethane LT 8.00 0 ug/l HHJ010  UM21 Benzene LT 1.00 0 ug/l HHJ010 AV8 Benzene LT 1.05 0 ug/l HHV018 SS12 Calcium LT 1.05 2 ug/l HIC018					UM25	Atrazine	LT	5.90	0	ug/1	HHH010
UM21 Bromodichloromethane LT 1.00 0 ug/l HHJ010 AAAB Benzothiazole LT 5.00 0 ug/l HHC018 UM21 Vinyl Chloride LT 1.20 1 ug/l HHJ010 UM21 Chloroethane LT 8.00 0 ug/l HHJ010  UM21 Benzene LT 1.00 0 ug/l HHJ010 AV8 Benzene LT 1.05 0 ug/l HHV018 SS12 Calcium LT 1.05 2 ug/l HIC018					P8	Bicycloheptadiene	LT	5.90	0	ug/1	HHF018
UM21 Vinyl Chloride LT 1.20 1 ug/l HHJ010 UM21 Chloroethane LT 8.00 0 ug/l HHJ010  UM21 Benzene LT 1.00 0 ug/l HHJ010  AV8 Benzene LT 1.05 0 ug/l HHV018  SS12 Calcium LT 1.05 2 ug/l HIC018					UM21		LT	1.00	0	ug/1	HHJ010
UM21         Chloroethane         LT 8.00 0 ug/l         HHJ010           UM21         Benzene         LT 1.00 0 ug/l         HHJ010           AV8         Benzene         LT 1.05 0 ug/l         HHV018           SS12         Calcium         LT 1.05 2 ug/l         HIC018					AAAB	Benzothiazole	LT	5.00	0	ug/1	HHC018
UM21         Chloroethane         LT 8.00 0 ug/l         HHJ010           UM21         Benzene         LT 1.00 0 ug/l         HHJ010           AV8         Benzene         LT 1.05 0 ug/l         HHV018           SS12         Calcium         LT 1.05 2 ug/l         HIC018											HHJ010
AV8 Benzene LT 1.05 0 ug/1 HHV018 SS12 Calcium LT 1.05 2 ug/1 HIC018	1						LT	8.00	0	ug/1	HHJ010
AV8 Benzene LT 1.05 0 ug/1 HHV018 SS12 Calcium LT 1.05 2 ug/1 HIC018					UM21	Benzene	LT	1.00	0	ug/l	HHJ010
					AV8	Benzene	LT	1.05	0	ug/1	HHV018
UM21 Trichlorofluoromethane LT 1.00 0 ug/1 HHJ010					SS12	Calcium	LT	1.05	2	ug/1	HICO18
					UM21	Trichlorofluoromethane	LT	1.00	0	ug/1	HHJ010

Comprehensive Monitoring Program

02/02/90

Summary of Analytical Results

ampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Resu1t	:S	Units	Samp le Number
	•								
89271	SW36001FB	0	DTCH	UM21	Carbon Tetrachloride	LT 1.0	0 0	ug/1	HHJ010
00271				N8	Carbon Tetrachloride	LT 9.9	0 -1	ug/1	HHU018
			:	5312	Cadmium		8 0	ug/1	HICO18
				UM21	Methylene Chloride	LT 1.0		ug/1	HHJ010
				N8	Methylene Chloride	LT 7.4		ug/1	HHU018
	•								
				UM21	Bromomethane	LT 1.4	0 1	ug/1	HHJ010
				UM21	Chloromethane	LT 1.2	0 0	ug/1	HHJ01
				UM21	Bromoform	LT 1.1	0 1	ug/1	HHJ01
				UM21	Chloroform	LT 1.0	0 0	ug/1	HHJ01
				N8	Chloroform		0 -1	ug/1	HHU01
		•							
				TTO9	Chloride	LT 2.7	8 2	ug/1	HHZ01
				кка	Hexachlorocyclopentadiene	LT 4.8	0 -2	ug/1	HHD01
		• 1	•	UM25	Hexachlorocyclopentadiene	LT 5.4	0 1	ug/1	ннно1
				UM21	Chlorobenzene		0 0	ug/1	HHJ01
				NB	Chlorobenzene		0 -1	ug/1	HHU01
		•		KK8	Chlordane	LT . 9.5	0 -2	ug/1	HHD01
				UM25	Ch1ordane	LT 3.7	0 1	ug/1	ннно1
				AAA8 -	p-Chlorophenylmethyl Sulfide	LT 5.6		ug/1	HHC01
				UM25	p-Chlorophenylmethyl Sulfide	LT 1.0		ug/1	ннно1
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT 1.1		ug/1	HHC01
	-	•		- Firmo					
				UM25	p-Chlorophenylmethyl Sulfoxide	LT 1.5	0 1	ug/1	HHH01
*				AAA8	p-Chlorophenylmethyl Sulfone	LT 7.4		ug/1	HHC01
				UM25	p-Chlorophenylmethyl Sulfone	LT 5.3	0 0	ug/1	ннно1
				5512	Chromium	LT 1.6	8 1	ug/1	HICO1
				SS12	Copper	LT 1.8	8 1	ug/1	HICO1
								-	
-	*			TF20	Cyanide	LT 5.0	0 0	ug/1	HHX01
				UM25	Dibromochloropropane	LT 1.2	0 1	ug/1	ннно1
				AY8	Dibromochloropropane	LT 1.9		ug/1	HHIO1
				UM21	Dibromochloromethane		0 0	ug/1	HHJ01
				UM21	1,4-Dichlorobenzene		0 0	ug/1	HHJ01
	•			P8	Dicyclopentadiene	LT 5.0	0 0	ug/1	HHF01
							0 0	ug/1	ннно1
				UM25	Dicyclopentadiene		4 -1		HHG01
				UH11	Vapona	LT 3.8	- 1	ug/1	HHH01

R. L. Stollar and Associates

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample .		Analytical Parameters	Re	sults		Units	Sample Number
					and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th	•				
89271	SW36001FB	o	DTCH	<b>АТВ</b>	Diisopropylmethyl Phosphonate	LT	3.92	-1	ug/1	HHE018
				UM25	Diisopropylmethyl Phosphonate	LT	2.10	1	ug/1 -	HHH010
				BAAA	Dithiane	LT	1.34	0	ug/1	HHC018
				UM25	Dithiane	LT	3.30	0	ug/1	<b>HHH010</b>
				KK8	Dieldrin	LT	5.00	-2	ug/1	HHD018
				UM25	Dieldrin	LT.	2.60	1	ug/1	HHH010
				8AAA	Dimethyldisulfide	LT	5.50	-1	ug/1	HHC018
				AT8	Dimethylmethyl Phosphate	LT	1.88	-1	ug/1	HHE018
				UM25	Dimethylmethyl Phosphate	LT	1.30	2	ug/1	<b>HHH010</b>
				KK8	Endrin	LT	5.00	-2	ug/1	HHD018
				•						
				UM25	Endrin	LT	1.80	1	ug/1	HHH010
**				UM21	Ethylbenzene	LT	1.00	0	ug/1	HHJ010
				AV8	Ethylbenzene	LT	1.37	0	ug/1	HHV018
				TT09	Fluoride	LT	1.53	2	ug/1	HHZ018
				CC8	Mercury	LT	1.00	-1	ug/1	HIA018
				KK8	Isodrin	LT	5.10	-2	ug/1	HHD018
				UM25	Isodrin	LT	7.80	0	ug/1	HHH010
				8812	Potassium	LT	1.24	3	ug/1	HICO18
	- Jan 19			UM21	Toluene	LT	1.00	0	ug/1	HHJ010
				AV8	Toluene	LT	1.47	0	ug/1	HHV018
7	•		***		· · · · · · · · · · · · · · · · · · ·					
- 11	-			UM21	Methylethyl Ketone	LT	1.00	1	ug/1	<b>HHJ010</b>
		•		<b>S</b> S12	Magnesium	LT	1.35	2	ug/1	HICO18
				P8	Methylisobutyl Ketone	LT	4.90	0	ug/1	HHF018
•				UM21	Methylisobutyl Ketone	LT	1.40	0	ug/1	<b>HHJ010</b>
				UH 1 1	Malathion	LT	3.73	-1	ug/1	HHG018
				UM25	Malathion	LT	2.10	1	ug/1	<b>HHH010</b>
			,	SS12	Sodium	LT	2.79	2	ug/1	HICO18
				LL8	Nitrite, Nitrate - Non specific		1.05	2	ug/1	HHY018
				<b>BAAA</b>	1,4-0xathiane	LT	2.38	0	ug/1	HHC018
				UM25	1,4-Oxathiane	LT	2.70	1	ug/1	<b>HHHO10</b>
	•									
				SS12	Lead	LT	4.34	1	ug/1	HICO18
				KK8	Dichlorodiphenylethane	ET	5.40	-2	ug/1	HHD018
				UM25	Dichlorodiphenylethane	LT	1.40	1	ug/1	<b>HHHO10</b>
				KK8	Dichlorodiphenyltrichloro-	LT	4.90	-2	ug/1	HHD018
					ethane					

Summary of Analytical Results Surface Water Data - Fall 89'

Date	Station Number	Sample Depth (cm)	Type	Method	Analytical Parameters	Re	sults		Units	Sample Number
89271	SW36001FB	0	DTCH	UM25	Dichlorodiphenyltrichloro-	LT	1.80	1	ug/1	ннн010
					ethane					
				UH11	Parathion	LT	6.47		ug/1	HHG018
				UM25	Parathion	LT	3.70	1	ug/1	HHH010
				TT09	Sulfate	LT	1.75		ug/1	HHZ018
				UH11	2-Chloro-1(2,4-Dichlorophenyl)	LT	7.87	-1	ug/1	HHG018
					Vinyldiethyl Phosphates					
		* .				* 1				
• •				UM25	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.90	1	ug/1	HHH010
					Vinyldiethyl Phosphates					
	-			UM21	1,1,2,2-Tetrachloroethane		1.50		ug/1	нн J010
				UM21	Tetrachloroethene	LT	1.00	0	ug/1	HHJ010
		•	•	N8	Tetrachloroethene	LT	7.50	-1	ug/l	HHU018
	-			UM21	Trichloroethene	LT	1.00	0	ug/1	HHJ010
				N8	Trichloroethene	LT	5.60	-1	ug/1	HHU018
			-	UM21	Ortho- & Para-Xylene	LT	2.00		ug/1	HHJ010
	*			AV8	Ortho- & Para-Xylene	LT	1.36	0	ug/1	HHV018
				8812	Zinc	LT	1.80	1	ug/1	HICO18
						•				
89271	SW36001TB	0	DTCH	UM21	1,1,1-Trichloroethane	LT	1.00	٠.,	ug/1	HHJ011
				N8	1,1,1-Trichloroethane	LT	7.60		ug/1	HHU019
				UM21	1,1,2-Trichloroethane		1.00		ug/1	HHJ011
	· <u>-</u> ·	-		N8	1,1,2-Trichloroethane		7.80		ug/1	HHU019
				UM21	1,1-Dichloroethene	LT	1.00	0	ug/1	HHJ011
								_		
		• *		N8	1,1-Dichloroethene		1.70	0	ug/1	HHU019
				UM21	1,1-Dichloroethane	LT		0	ug/1	HHJ011
				NB	1,1-Dichloroethane	LT	7.30		ug/1	HHU019
				UM21	1,2-Dichloroethene	LT	5.00		ug/1	HHJ011
				" N8	1,2-Dichloroethene	LT	7.60	-1	ug/1	HHU019
					1 0 Dishlausakhana		1 00	^		- NR 1011
		_		UM21	1,2-Dichloroethane		1.00		ug/1	HHJ011
				N8	1,2-Dichloroethane		1.10		ug/1	HHU019
		· · · · · ·		UM21	1,2-Dichloropropane	LT	1.00		ug/1	HHJ011
				UM21	1,3-Dichlorobenzene		1.00		ug/1	HHJ011
				UM21	1,3-Dichloropropane	LT	4.80	U	ug/1	HHJ011
				UM21	m-Xylene	įΤ	1.00	0	ug/1	ННЈ011

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling	Station	Sample	Sample								Sample
Date	Number	Depth (cm)	Type	Method	Analytical Parameters		Re	sults		Units	Number
89271	SW36001TB	0	DTCH	UM21	2-Chloroethylvinyl Ether		LT	3.50	0	ug/1	HHJ011
				UM21	Acrylonitrile		LT	8.40	0	ug/1	HHJ011
				KK8	Aldrin		LT	5.00	-2	ug/1	HHD019
				UM25	Aldrin		LT	1.30	1	ug/1	HHHO11
				00	ALKALINITY		LŤ	7.30	4	ug/1	HHW016
									,		
				AX8	Arsenic		LT	2.35	0	ug/1	HIB019
				UH11	Atrazine		LT	4.03	0	ug/1	HHG019
				UH25	Atrazine		LT	5.90	0	ug/1	<b>HHH011</b>
	•			P8	Bicycloheptadiene		LT	5.90	0	ug/1	HHF019
				UM21	Bromodichloromethane		LT	1.00	0	ug/1	HHJ011
				AAAB	Benzothiazole		LT	5.00	.0	ug/1	HHC019
				UM21	Vinyl Chloride		LT	1.20	1	ug/1	HHJ011
•		•		UM21	Chloroethane		LT	8.00	0	ug/1	<b>HHJ011</b>
				UM21	Benzene		LT	1.00	0	ug/1	HHJ011
		•		AV8	Benzene		LT	1.05	0	ug/1	HHV019
							,				
			•	SS12	Calcium		LT	1.05	2	ug/1	HICO19
				UH21	Trichlorofluoromethane		LT	1.00	0	ug/1	HHJ011
				UM21	Carbon Tetrachloride		LT	1.00	0	ug/1	HHJ011
				N8	Carbon Tetrachloride	, , ,:	LT	9.90	-1	ug/1	HHU019
				<b>S</b> S12	Cadmium		LT.	6.78	0	ug/1	HICO19
							. :				
				UM21	Methylene Chloride		LT	1.00	0	· ug/1	HHJ011
				N8	Methylene Chloride		LT	7.40	0	ug/1	HHU019
•				UM21	Bromomethane		LT	1.40	1	ug/1	HHJ011
-				UM21	Chloromethane		LT	1.20	0	ug/1	HHJ011
				UM21	Bromoform		LT	1.10	i	ug/1	HHJ011
				UM21	Chloroform		LT	1.00	0	ug/1	HHJ011
				NB	Chloroform		LT	5.00	-1	ug/1	HHU019
				TT09	Chloride	•	LT	2.78	2	ug/1	HHZ019
		المراجعة المحادث	2 to 12 mm	KK8	Hexachlorocyclopentadiene		LT	4.80	-2	ug/1	HHD019
				UM25	Hexachlorocyclopentadiene		LT	5.40	1	ug/1	<b>HHH011</b>
		;									
				UM21	Chlorobenzene		LT	1.00	Ō.	' ug/1	HHJ011
				N8	Chlorobenzene		LT -	8.20	-1	ug/1	HHU019
				KKB	Ch1ordane Ch1ordane		LT	9.50	-2	ug/1	HHD019
				UN25	Chlordane		LT	3.70		ug/1	<b>HHHO11</b>

Comprehensive Monitoring Program

Summary of Analytical Results

Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	sults	Units	Sample Number
89271	SW36001TB	0	DTCH	BAAA	p-Chlorophenylmethyl Sulfide	LT	5.69 0	ug/1	HHC019
892/1	SW360011B		DICH	UM25	p-Chlorophenylmethyl Sulfide	LT	1.00 1	ug/1	HHH011
				AAA8	p-Chlorophenylmethyl Sulfoxide	LT	1.15 1	ug/1	HHC019
				UM25	p-Chlorophenylmethyl Sulfoxide	LT	1.50 1	ug/1	HHH011
				AAA8	p-Chlorophenylmethyl Sulfone	LT	7.46 0	ug/1	HHC019
			•_•		p-off for optiony fine city is out to to			-3, .	
				UM25	p-Chlorophenylmethyl Sulfone	ĻT	5.30 0	ug/1	HHH011
		***		\$312	Chromium	LT	1.68 1	ug/1	HICO19
		wa		SS12	Copper	LT	- 1.88 1	ug/1	HICO19
				TF20	Cyanide	LT	5.00 0	ug/1	HHX019
				UM25	Dibromochloropropane	LT	1.20 1	ug/1	HHH011
		A							
				AY8	Dibromochloropropane	LT	1.95 -1	ug/1	HHI019
		-		UM21	Dibromochloromethane	LT	1.00 0	ug/1	HHJ011
				UM21	1,4-Dichlorobenzene	LT	2.00 0	ug/1	HHJ011
			-	P8	Dicyclopentadiene	LT	5.00 0	ug/1	HHF01
				UM25	Dicyclopentadiene	LT	5.50 0	ug/1	HHH011
	*					4.2			
				UH11 UM25	Vapona Vapona	LT LT	3.84 -1 8.50 0	ug/1 ug/1	HHGO19
				AT8	Diisopropylmethyl Phosphonate	LT	3.92 -1	ug/1	HHEO19
				UN25	Diisopropylmethyl Phosphonate	LT	2.10 1	ug/1	HHHO1
				AAA8	Dithiane		1.34 0	ug/1	HHC01
				UM25	Dithiane	LT	3.30 0	ug/1	HHH01
				KK8	Dieldrin	LT	5.00 -2	ug/1	HHD019
				UM25	Dieldrin	LT	2.60 1	ug/1	HHH01
		-		<b>BAAA</b>	Dimethyldisulfide	LT	5.50 -1	ug/1	HHC019
				AT8	Dimethylmethyl Phosphate	LT	1.88 -1	ug/1	HHE019
				UM25	Dimethylmethyl Phosphate	ŁŤ	1.30 2	ug/1	ннно1
				KK8	Endrin	LT	5.00 -2	ug/1	HHD019
				UM25	Endrin	LT	1.80 1	ug/1	HHH01:
				UH21	Ethylbenzene	LT	1.00 0	ug/1	HHJ011
				AV8	Ethylbenzene	LT	1.37 0	ug/1	HHV019
			•	TT09	Fluoride	LT	1.53 2	ug/1	HHZ019
				CC8	Mercury		1.00 -1	-g/1	HIA01
				KKB	Isodrin	LT	5.10 -2	ug/1	HHD019
				UM25	Isodrin		7.80 0	ug/1	ННН011

### Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical Parameters	Re	eults		Units	Sample Number
						1.7	1.24	3	ug/1	HICO19
89271	SW36001TB	· · · · O	DTCH	SS12	Potassium	LT	1.00	_	_	HHJ011
				UM21	Toluene	LT	1.47		ug/T ug/1	HHV019
		e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l		AV8	Toluene	LT		1	ug/1	HHJ011
				UM21 SS12	Methylethyl Ketone Magnesium	LT		2	ug/1	HICO19
				3512	Magnesium	_,	1.00	-	49/1	1120013
				P8	Hethylisobutyl Ketone	LT	4.90	0	ug/1	HHF019
				UM21	Methylisobutyl Ketone	LT	1.40	0	ug/1	HHJ011
				UH 1 1	Malathion	LŢ.	3.73	-1	ug/l	HHG019
				UM25	Malathion	LT	2.10	1	ug/1	- HHH011
				8312	Sodium	LT	2.79	2	ug/1	HICO19
				L£8	Nitrite, Nitrate - Non specific	LT	1.00	1	ug/1	HHY019
				AAAB	1,4-0xathiane	LT	2.38	0	ug/1	HHC019
				UM25	1,4-0xathiane	LT	2.70	1	ug/1	HHH011
				8812	Lead		4.34	1	ug/1	HICO19
				KK8	Dichlorodiphenylethane	LT	5.40	-2	ug/1	HHD019
			1 2	UM25	Dichlorodiphenylethane	LT	1.40	1.	ug/1	HHH011
				KK8	Dichlorodiphenyltrichloro-	LT	4.90	-2	ug/1	HHD019
					ethane					
	* - 2		•	UM25	Dichlorodiphenyltrichloro-	LT	1.80	1	ug/1	HHH011
					ethane		e /7		(3	HHG019
		* ***		UH11	Parathion		6.47		ug/1	
				UM25	Parathion	LT	3.70	1	ug/1	НННО11
				TT09	Sulfate	LT	1.75	2	ug/1	HHZ019
				UH11	2-Chloro-1(2,4-Dichlorophenyl) Vinyldiethyl Phosphates	LT	7.87	-1	ug/1	HHG019
				UM25	2-Chloro-1(2,4-Dichlorophenyl)	1.7	1.90	1	ug/1	HHH011
		• .		OHLJ	Vinyldiethyl Phosphates		. 1.50	•	-3/ .	
	-			UM21	1,1,2,2-Tetrachloroethane	LT	1.50	o	ug/1	HHJ011
	•			UM21	Tetrachloroethene		1.00		ug/1	HHJ011
				NB	Tetrachloroethene	LT	7.50	-1 -	ug/1	HHU019
				UM21	Trichloroethene		1.00		ug/1	HHJ011
	•			N8	Trichloroethene	LT	5.60		ug/1	HHU019
				UM21	Ortho- & Para-Xylene	LT	2.00		ug/1	HHJ011
				AV8	Ortho- & Para-Xylene		1.36		ug/1	HHV019

Comprehensive Monitoring Program

02/02/90

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample Type	Method	Analytical	Parameters	Resúlts	Units	Sample Number	
					-		 - 1	-		
89271	SW36001TB	0	DTCH	8812	Zinc		LT 1.80 1	ug/1	HICO19	

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

		•							
Sampling	Station	Sample	Sample						Sample
Date	Number	Depth (cm)	Type	Method	Analytical Parameters	Re	esults	Units	Number
						***************************************		•	
89270	SW02006B	0.0	DTCH	ZZ9	Bicycloheptadiene	LT	5.08 0	ug/g	RHA009
			. *	LL03	Benzothiazole		3.55 o	ug/g	RGA009
				LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/g	RGA009
				LL03	p-Chlorophenylmethyl Sulfoxide	LT		ug/g	RGA009
		•		LL03	p-Chlorophenylmethyl Sulfone	LT		ug/g	RGA009
	-								
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/g	RHA009
			•	TT9	Diisopropylmethyl Phosphonate	LT		ug/g	PLD009
				LL03	Dithiane	LT	1.47 0	ug/g	RGA009
				LL03	Dimethyldisulfide	LT	6.92 -1	ug/g	RGA009
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	PLD009
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	<b>RHA00</b> 9
				LL03	1,4-Oxathiane	LT	8.56 -1	ug/g	RGA009
89270	S₩02006B	0.5	DTCH	MK9	Aldrin		3.00 0	ug/g	QTIOO6
				AS9	Arsenic	LT	9.10 -1	ug/g	GMC008
				MK9	Hexachlorocyclopentadiene	ND	3.74 -3	ug/g	QT1008
				MK9	Chlordane	LT	1.38 -2	ug/g	QTI008
	1 1			QQ9	Dibromochloropropane	- LT	5.00 -3	ug/g	GTC008
	,			MK9	Dieldrin	:	3.50 0	ug/g	QTIOOS
	-			MK9	Endrin		2.90 -1	ug/g	QTI008
				<b>AAA9</b>	Fluoroacetic Acid	LT		ug/g	KRY011
				HG9	Mercury		4.90 0	ug/g	QUD008
				AAA9	Isopropylmethyl Phosphonic	LT	2.11 0	ug/g	KRY011
					Acid		-	-3/3	
٠				MK9	Isodrin		6.00 -2	ug/g	QT1008
				MK9	Dichlorodiphenylethane		6.20 -2	ug/g	QTIOO8
				MK9	Dichlorodiphenyltrichloro-	LT	2.25 -3	ug/g	QTIOO8
					ethane		. *		
89269	SM08003B	0.5	STRM	MK9	Aldrin	LT	2.59 -3	ug/g	QT1006
,				AS9	Arsenic	LT	9.10 -1	ug/g	QWC006
				<b>ZZ9</b>	Bicycloheptadiene	LT	5.08 0	ug/g	RHA006
				LL03	Benzothiazole	LT	1.08 0	ug/g	RGA006
				MK9	Hexachlorocyclopentadiene	ND	3.74 -3	ug/g	QT1006
	•			MK9	Chlordane	LT	1.38 -2	ug/g	QT1006

R. L. Stollar and Associates

Comprehensive Monitoring Program

Summary of Analytical Results

	:		:						
Sampling Date	Station Number	Sample Depth (cm)	Sample_ Type	Method	Analytical Parameters	Re	eults	Units	Sample Number
89269	SW08003B	0.5	STRM	LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/g	RGA006
	3H0,0003D	. 0.0		LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/g	RGA006
				LL03	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/g	RGA006
				QQ9	Dibromochloropropane	LT	5.00 -3	ug/g	GTC006
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/g	RHA006
				LL.3	Dicycloperioadiene		J.12. U	. u =/ = .	14111000
				TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	PLD006
				LL03	Dithiane	LT	1.47 0	ug/g	RGA006
				MK9	Dieldrin		3.20 -2	ug/g	QTIOO6
				LL03	Dimethyldisulfide	LT	6.92 -1	ug/g	RGA006
		•		TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	PLD006
i									
				MK9	Endrin	LT	2.00 -3	ug/g	QT1006
				<b>AAA9</b>	Fluoroacetic Acid	LT	2.00 0	ug/g	KRY008
				HG9	Mercury	LT	2.70 -2	ug/g	QUD006
				AAA9	Isopropylmethyl Phosphonic		2.11 0	ug/g	KRY008
					Acid				
				MK9	Isodrin	LT	1.69 -3	ug/g	QT1006
		* V - *							
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	RHA006
				LL03	1,4-Oxathiane	LT	8.56 -1	ug/g	RGA006
				MK9	Dichlorodiphenylethane	LT	2.15 -3	ug/g	QT1006
				MK9	Dichlorodiphenyltrichloro-	LT	2.25 -3	ug/g	QT1006
					ethane				
l									
89269	SW0600380	0.5	STRM	MK9	Aldrin	LT	2.59 -3	ug/g	QT1007
				AS9	Arsenic	LT	9.10 -1	ug/g	QMC007
_				<b>ZZ9</b>	Bicycloheptadiene	LT	5.08 0	ug/g	RHA007
				LL03	Benzothiazole		3.37 0	ug/g	RGA007
				MK9	Hexachlorocyclopentadiene	ND	3.74 -3	ug/g	QT1007
•				MK9	Chlordane	LT	1.38 -2	ug/g	QT1007
				LL03	p-Chlorophenylmethyl Sulfide	LT	1.06 0	ug/g	RGA007
				LL03	p-Chlorophenylmethyl Sulfoxide	LT		ug/g	RGA007
				LL03	p-Chlorophenylmethyl Sulfone		2.37 0	ug/g	RGA007
				<b>QQ9</b>	Dibromochloropropane		5.00 -3	ug/g	GTC007
•				<b>ZZ</b> 9	Dicyclopentadiene	17	5.12 0	ug/g	RHA007
ı				TT9	Diisopropylmethyl Phosphonate		1.14 -1	ug/g	PLD007
				LL03	Dithiane		1.47 0	ug/g	RGA007
				LLVO	WA VI IAOI IC	₩ I	1.47	42/ A	(WETOV)

03/23/90

Summary of Analytical Results

Sampling	Station	Sample	Sample.						Sample
Date	Number	Depth (cm)	Type	Method	Analytical Parameters	Re	esults	Units	Number
	<del></del>								
20070	O 100007777		0704	hard on	manal dual		200.2	ism (m	OTTONT
89269	SW08003BD	0.5	STRM	MK9	Dieldrin		2.90 -2		QT1007
				LL03	Dimethyldisulfide	LT		ug/g	- RGA007
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	PLD007
				MK9	Endrin	LT	2.00 -3	ug/g	QT1007 KRY009
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/g	NKTOOS
				HG9	Mercury	LT	2.70 -2	ug/g	QUD007
				AAA9	Isopropylmethyl Phosphonic	LT	2.11 0	ug/g	KRY009
				78815	Acid		2.11	43/3	1411003
				MK9	Isodrin	LT	1.69 -3	ug/g	QT1007
				ZZ9	Methylisobutyl Ketone	LT		ug/g	RHA007
			•	FF03	1,4-Oxathiane	LT	6.56 -1	ug/g	RGA007
				MK9	Dichlorodiphenylethane	LT	2.15 -3	ug/g	QT1007
		•		MK9	Dichlorodiphenyltrichloro-	LT		ug/g	QT1007
					ethane		.,	-37.5	
89270	SW11001B	0.0	DTCH	MK9	Aldrin	LT	2.59 -3	ug/g	QT1009
				AS9	Arsenic	LT	9.10 -1	ug/g	QWC009
				ZZ9	Bicycloheptadiene	LT	5.06 0	ug/g	RHA008
				LL03	Benrothiarole	LT	1.06 0	ug/g	RGA006
· ···; •			•	MK9	Hexachlorocyclopentadiene	ND	3.74 -3	ug/g	QT1009
				MK9	Chlordane	LT	1.38 -2	ug/g	QT1009
				LL03	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/g	RGA008
	_			LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/g	RGA008
				LL03	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/g	RGA006
		• "	•	QQ9	Dibromochloropropane	LT	5.00 -3	ug/g	GTC009
				<b>ZZ</b> 9	Dicyclopentadiene	LT	5.12 0	ug/g	RHA006
				<b>TT9</b>	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	PLD008
				LL03	Dithiane	LT	1.47 0	ug/g	RGA006
			•	MK9	Dieldrin	LT	1.93 -3	ug/g	QTIO09
				LL03	Dimethyldisulfide	LT	6.92 -1	ug/g	RGA008
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	PL0008
				MK9	Endrin	LT	2.00 -3	ug/g	QTIOO9
				<del>000</del> 9	Fluoroacetic Acid	LT	2.00 0	ug/g	KRY010
				HG9	Mercury	LT	2.70 -2	ug/g	QUD009
				AAA9	Isopropylmethyl Phosphonic	LT	2.11 0	ug/g	KRY010
					Acid				

R. L. Stollar and Associates

Comprehensive Monitoring Program

Summary of Analytical Results

Sampling Date	Station Number	Sample Depth (cm)	Sample_ Type	Method	Analytical Parameters	Re	<b>sults</b>	Units	Sample Number
	-					-	,		
89270	SW11001B	0.0	DTCH	MK9	Isodrin	LT	1.69 -3	ug/g	QT1009
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	RHA008
				LL03	1,4-Oxathiane	LT	6.56 -1	ug/g	RGA008
				MK9	Dichlorodiphenylethane	LT	2.15 -3	ug/g	QT1009
				MK9	Dichlorodiphenyltrichloro-	LT	2.25 -3	ug/g	QT1009
					ethane				
				3**					
89269	SW12005B	0.2	DTCH	MK9	Aldrin	LT	2.59 -3	ug/g	QTI005
				AS9	Arsenic		1.23 0	ug/g	QWC005
	•			ZZ9	Bicycloheptadiene	LT	5.06 0	ug/g	RHA005
			-	LL03	Benzothiazole	LT	1.08 0	ug/g	RGA005
				MK9	Hexachlorocyclopentadiene	ND	3.74 -3	ug/g	QT1005
•				MK9	Chlordane	LT-	1.38 -2	ug/g	QT1005
				LL03	p-Chlorophenylmethyl Sulfide	LT	1.06 0	ug/g	RGA005
	-			LL03	p-Chlorophenylmethyl Sulfoxide	LT	2.25 0	ug/g	RGA005
				LL03	p-Chlorophenylmethyl Sulfone	LT	2.37 0	ug/g	RGA005
				QQ9	Dibromochloropropane	LT	5.00 -3	ug/g	GTC005
				ZZ9	Dicyclopentadiene	LT	5.12 0	ug/g	RHA005
		± .		TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	PLD005
				FF03	Dithiane	LT	1.47 0	ug/g	RGA005
				MK9	Dieldrin		6.94 -3	ug/g	QT1005
				LF03	Dimethyldisulfide	LT	6.92 -1	ug/g	RGA005
		•		TT9	Dimethylmethyl Phosphate		5.34 -1	ug/g	PLD005
	-			MK9	Endrin	LT	2.00 -3	ug/g	QT1005
				AAA9	Fluoroacetic Acid	LT	2.00 0	ug/g	KRY007
				HG9	Mercury	LT	2.70 -2	ug/g	QUD005
				AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/g	KRY007
				MK9	Isodrin	LT	1.69 -3	ug/g	QT1005
				<b>ZZ9</b>	Methylisobutyl Ketone		5.24 0	ug/g	RHA005
	•			LL03	1,4-Oxathiane	LT	8.56 -1	ug/g	RGA005
			*	MK9	Dichlorodiphenylethane	LT	2.15 -3	ug/g	QT1005
				MK9	Dichlorodiphenyltrichloro- ethane	LT	2.25 -3	ug/g	QT1005

Summary of Analytical Results

Compling	Station	Samolo	Sample-						Sample
Sampling Date	Station Number	Sample Depth (cm)	Type	Method	Analytical Parameters	Re	sults	Units	Number
							4.75		OLEMODO.
89271	SW36001B	0.0	DTCH	SV9	Aldrin		1.65 1		QVM002
				SV9	Atrazine	LT		ug/g	QVMOO2
				SV9	Hexachlorocyclopentadiene	LI	7.04 -1	ug/g .ug/g	QVM002 QVM002
				SV9	Chlordane		2.58 0		QVM002
			•	SV9	p-Chlorophenylmethyl Sulfide	LT	2.66 -1	ug/g	QVI1002
<u>.</u>				<b>~</b>	- Ohlawahan Jashida Culfavida		4 11 0	ua (a	QVM002
			-	SV9	p-Chlorophenylmethyl Sulfoxide		1.11 0	ug/g ug/g	QVM002
				SV9	p-Chlorophenylmethyl Sulfone		6.66 -1	ug/g ug/g	QVM002
	•	•		SV9	Dibromochloropropane	LT	3.63 -1 4.50 -1	ug/g ug/g	QVM002
	•			SV9	Dicyclopentadiene		2.66 -1		QVM002
				SV9	Diisopropylmethyl Phosphonate	LT	2.00 -1	u9/9	WVI 1002
_				<b>SV</b> 9	Dithiane	1 77	8.89 -1	ug/g	QVM002
•	•			SV9	Dieldrin	Ju 1.	2.36 1	ug/g	QVM002
				SV9	Endrin	17	2.66 -1	ug/g	QVM002
				SV9	Isodrin	LI	4.80 -1	ug/g	QVM002
_				SV9	Malathion	ıT	8.84 -1	ug/g	QVM002
			. 3,	317	imiauliui			~5/ 5	2
				SV9	1,4-Oxathiane	LT	1.21 0	ug/g	QVM002
·				SV9	Dichlorodiphenylethane		5.13 -1	ug/g	QVM002
				SV9	Dichlorodiphenyltrichloro-		2.22 0	ug/g	QVM002
			100		ethane				
				SV9	Parathion	LT	5.43 -1	ug/g	QVM002 -
			. (	SV9	2-Chloro-1(2,4-Dichlorophenyl)	LT	1.72 -1	ug/g	QVM002
			•		Vinyldiethyl Phosphates				
				MK9	Aldrin		3.70 1	ug/g	QTIO10
89271	SW36001B	0.2	DTCH	AS9	Arsenic		1.90 1	ug/g	QWC010
032/1	CHOCOLD .	U.2	D1011	ZZ9	Bicycloheptadiene	LT		ug/g	RHA010
				LL03	Benrothiarole		1.06 0	ug/g	RGA010
				MK9	Hexachlorocyclopentadiene		3.74 -3.		QTIO10
				MK9	Chlordane	LŤ		ug/g	QT1010
			:						
	· · · · · ·	•		1103	p-Chlorophenylmethyl Sulfide	LT	1.08 0	ug/g	RGA010
				LL03	p-Chlorophenylmethyl Sulfoxide	LT		ug/g	RGA010
				LL03	p-Chlorophenylmethyl Sulfone		2.37 0	ug/g	RGA010
				QQ9	Dibromochloropropane		5.00 -3	ug/g	GTC010
				779	Dicyclopentadiene		5.12 0	ug/g	RHA010

Comprehensive Monitoring Program

03/23/90

Summary of Analytical Results

Sampling	Station	Sample	Sample	i. ii.					Sample
Date	Number	Depth (cm)	Type	Method	Analytical Parameters	Re	sults	Units	Number
89271	SW36001B	0.2	DTCH	TT9	Diisopropylmethyl Phosphonate	LT	1.14 -1	ug/g	PLD010
				LL03	Dithiane	LT	1.47 0	ug/g	. RGA010
		•		MK9	Dieldrin		1.80 1	ug/g	QTI010
•				LL03	Dimethyldisulfide	LT	6.92 -1	ug/g	RGA010
				TT9	Dimethylmethyl Phosphate	LT	1.33 -1	ug/g	PLD010
				MK9	Endrin		1.60 1	ug/g	QTIO10
i				<b>AA</b> A9	Fluoroacetic Acid	LT	2.00 0	ug/g	KRY012
				HG9	Mercury		5.70 -1	ug/g	QUD010
	· · · · · · · · · · · · · · · · · · ·			AAA9	Isopropylmethyl Phosphonic Acid	LT	2.11 0	ug/g	KRY012
				MK9	Isodrin		3.30 0	ug/g	QTI010
				ZZ9	Methylisobutyl Ketone	LT	5.24 0	ug/g	RHA010
				LL03	1,4-0xathiane	LT	8.56 -1	ug/g	RGA010
				MK9	Dichlorodiphenylethane		4.90 -1	ug/g	QTI010
				MK9	Dichlorodiphenyltrichloro- ethane	LT	2.25 -3	ug/g	QTIO10

APPENDIX B-5

Ion Balance Calculations

SITE/DATE: SW01005 18-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA MG	44.40 13.50	2.22 1.12	42.52
K NA CATION TOTAL	3.50 41.30	0.09 1.80 5.22	1.71 34.39 100.00
SO4	71.00	1.48	22.45
CL NO3 MG/L-N	33.00 0.06	0.93	14.15 0.07
FL HCO3 CO3	1.00 226.92 12.00	0.05 3.72 0.40	0.80 56.46 6.07
ANION TOTAL		6.59	100.00

CHARGE-BALANCE ERROR (%) : 11.58 pH : 8.13

### ION BALANCE CALCULATIONS

SITE/DATE: SW02003 18-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	43.50	2.18	32.88
MG	18.80	1.55	23.49
K	2.50	0.06	0.97
NA	64.90	2.82	42.66
CATION TOTAL		6.61	100.00
SO4	93.00	1.94	31.12
CL	46.00	1.30	20.87
NO3 MG/L-N	0.07	0.01	0.08
FL	1.20	0.06	1.01
HCO3	156.65	2.57	41.25
CO3	10.56	0.35	5.65
ANION TOTAL		6.23	100.00

CHARGE-BALANCE ERROR (%) : -3.03 pH : 8.73

SITE/DATE : SW02004 19-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	40.30	2.01	29.82
MG	15.10	1.25	18.47
K	3.38	0.09	1.28
NA	78.40	3.41	50.44
CATION TOTAL		6.76	100.00
S04	76.00	1.58	23.06
CL	60.00	1.69	24.69
NO3 MG/L-N	0.07	0.01	0.07
FL	1.18	0.06	0.90
HCO3	143.96	2.36	34.38
CO3	34.80	1.16	16.90
ANION TOTAL		6.87	100.00

CHARGE-BALANCE ERROR (%) : 0.79 pH : 8.78

### ION BALANCE CALCULATIONS

SITE/DATE: SW02006 27-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	34.00	1.70	28.58
MG	14.80	1.22	20.56
K	2.35	. 0.06	1.01
NA	68.20	2.97	49.85
CATION TOTAL		5.95	100.00
SO4	89.00	1.85	31.60
CL	48.00	1.36	23.11
NO3 MG/L-N	0.17	0.01	0.21
FL	1.23	0.06	1.10
HCO3	118.34	1.94	33.07
CO3	19.20	0.64	10.91
ANION TOTAL		5.87	100.00

CHARGE-BALANCE ERROR (%) : -0.69 pH : 8.74

SITE/DATE: SW07001 27-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	44.30	2.22	35.10
MG	12.10	1.00	15.85
K	7.98	0.20	3.23
NA	66.50	2.89	45.82
CATION TOTAL		6.31	100.00
SO4	68.00	1.42	22.72
CL	53.00	1.50	24.01
NO3 MG/L-N	3.30	0.24	3.78
FL	1.63	0.09	1.38
HCO3	183.00	3.00	48.11
CO3	0.00	0.00	0.00
ANION TOTAL		6.24	100.00

CHARGE-BALANCE ERROR (%) : -0.60 pH : 8.09

### ION BALANCE CALCULATIONS

SITE/DATE : SW08001 25-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	80.10	4.01	50.22
MG	17.30	1.43	17.93
K	3.78	. 0.10	1.21
NA	56.20	2.44	30.64
CATION TOTAL		7.97	100.00
SO4	90.00	1.88	22.84
CL	32.00	0.90	11.01
NO3 MG/L-N	0.10	0.01	0.09
FL	1.22	0.06	0.78
HCO3	290.36	4.76	57.98
CO3	18.00	0.60	7.31
ANION TOTAL		8.21	100.00

CHARGE-BALANCE ERROR (%) : 1.45 pH : 8.74

SITE/DATE : SW08003 25-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	88.90	4.45	50.59
MG	18.80	1.55	17.68
K	3.78	0.10	1.10
NA	61.90	2.69	30.63
CATION TOTAL		8.79	100.00
G 0.4	04.00	1 06	22.42
SO4	94.00	1.96	22.42
CL	33.00	0.93	10.67
NO3 MG/L-N	0.28	0.02	0.23
FL	1.20	0.06	0.72
HCO3	351.36	5.76	65.95
CO3	0.00	0.00	0.00
ANION TOTAL		8.73	100.00

CHARGE-BALANCE ERROR (%) : -0.30 pH : 8.21

### ION BALANCE CALCULATIONS

SITE/DATE : SW11002 26-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA MG K NA CATION TOTAL	23.70 3.73 4.52 20.40	1.19 0.31 0.12 0.89 2.50	47.48 12.35 4.63 35.54 100.00
SO4 CL NO3 MG/L-N FL HCO3 CO3 ANION TOTAL	31.00 17.00 0.05 0.74 28.06 20.40	0.65 0.48 0.00 0.04 0.46 0.68 2.31	27.98 20.80 0.15 1.69 19.93 29.46 100.00

CHARGE-BALANCE ERROR (%) : -3.90 pH : 9.96

SITE/DATE : SW11003 25-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	18.40	0.92	13.46
MG	1.71	0.14	2.07
K	4.81	0.12	1.80
NA	130.00	5.65	82.68
CATION TOTAL		6.84	100.00
SO4	27.00	0.56	10.15
CL	140.00	3.95	71.33
NO3 MG/L-N	0.30	0.02	0.39
FL	0.87	0.05	0.83
HCO3	14.64	0.24	4.33
CO3	21.60	0.72	12.99
ANION TOTAL		5.54	100.00

CHARGE-BALANCE ERROR (%) : -10.44 pH : 9.95

### ION BALANCE CALCULATIONS

SITE/DATE: SW12001 20-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA MG K NA CATION TOTAL	75.80 22.70 2.95 76.60	3.79 1.88 . 0.08 3.33 9.07	41.78 20.68 0.83 36.71 100.00
SO4 CL NO3 MG/L-N FL HCO3 CO3 ANION TOTAL	110.00 36.00 3.50 1.40 283.04 0.00	2.29 1.02 0.25 0.07 4.64 0.00 8.27	27.70 12.29 3.02 0.89 56.09 0.00 100.00

CHARGE-BALANCE ERROR (%) : -4.61 pH : 8.19

SITE/DATE: SW12003 20-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	110.00	5.50	39.00
MG	42.50	3.51	24.91
K	12.00	0.31	2.18
NA	110.00	4.78	33.91
CATION TOTAL		14.10	100.00
S04	240.00	5.00	36.92
CL	80.00	2.26	16.68
NO3 MG/L-N	0.39	0.03	0.21
FL	1.84	0.10	0.71
HCO3	375.76	6.16	45.48
CO3	0.00	0.00	0.00
ANION TOTAL		13.54	100.00

CHARGE-BALANCE ERROR (%) : -2.02 pH : 7.50

# ION BALANCE CALCULATIONS

SITE/DATE : SW12004 19-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	30.50	1.53	50.04
MG	5.23	0.43	14.18
K	10.00 .	0.26	8.39
NA	19.20	0.83	27.39
CATION TOTAL		3.05	100.00
S04	36.00	0.75	26.63
CL	15.00	0.42	15.05
NO3 MG/L-N	0.38	0.03	0.9 <i>6</i>
FL	1.81	0.10	3.38
HCO3	92.72	1.52	53.97
CO3	0.00	0.00	0.00
ANION TOTAL		2.82	100.00

CHARGE-BALANCE ERROR (%) : -3.95 pH : 7.16

SITE/DATE : SW12005 17-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	65.60	3.28	39.92
MG	21.20	1.75	21.32
K	3.31	0.08	1.03
NA	71.30	3.10	37.73
CATION TOTAL		8.22	100.00
S04	110.00	2.29	27.73
CL	36.00	1.02	12.30
NO3 MG/L-N	3.00	0.21	2.59
FL	1.42	0.07	0.90
HCO3	247.42	4.06	49.07
CO3	18.36	0.61	7.40
ANION TOTAL		8.27	100.00

CHARGE-BALANCE ERROR (%) : 0.30 pH : 8.90

# ION BALANCE CALCULATIONS

SITE/DATE: SW24002 21-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	89.30	4.47	36.58
MG K	29.30 3.94 .	2.42 0.10	19.84 0.83
NA CATION TOTAL	120.00	5.22 12.20	42.75 100.0G
	230.00	4.79	37.97
SO4 CL	54.00	1.53	12.09
NO3 MG/L-N FL	0.09 1.63	0.01 0.09	0.05 0.68
HC03	352.00 13.20	5.77 0.44	45.73 3.49
CO3 ANION TOTAL	13.20	12.62	100.00

CHARGE-BALANCE ERROR (%) : 1.67 pH : 8.60

SITE/DATE : SW24003 21-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA MG K	110.00 63.50 3.26	5.50 5.25 0.08	25.34 24.18 0.38
NA CATION TOTAL	250.00	10.87 21.70	50.09 100.00
SO4 CL NO3 MG/L-N	450.00 240.00 0.24	9.38 6.78 0.02	52.04 37.63 0.10 0.69
FL HCO3 CO3 ANION TOTAL	2.37 73.20 15.60	0.12 1.20 0.52 18.02	6.66 2.89 100.00

CHARGE-BALANCE ERROR (%) : -9.28 pH : 8.45

### ION BALANCE CALCULATIONS

SITE/DATE: SW24004 24-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	89.10	4.46	34.91
MG	30.90	2.55	20.01
K	4.00	. 0.10	0.80
NA	130.00	5.65	44.28
CATION TOTAL		12.76	100.00
S04	240.00	5.00	51.88
CL	55.00	1.55	16.12
NO3 MG/L-N	0.08	0.01	0.0€
FL	1.50	0.08	0.82
HCO3	183.00	3.00	31.13
CO3	0.00	0.00	0.00
ANION TOTAL		9.64	100.00

CHARGE-BALANCE ERROR (%) : -13.95

pH : 5.96

SITE/DATE: SW31001 24-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	58.10	2.91	30.44
MG	27.90	2.31	24.16
K	3.78	0.10	1.01
NA	97.40	4.23	44.38
CATION TOTAL		9.54	100.00
SO4	130.00	2.71	27.91
CL	44.00	1.24	12.81
NO3 MG/L-N	5.20	0.37	3.83
FL	1.95	0.10	1.0€
HCO3	312.32	5.12	52.75
CO3	4.80	0.16	1.65
ANION TOTAL		9.71	100.00

CHARGE-BALANCE ERROR (%) : 0.85 pH : 8.68

ION BALANCE CALCULATIONS

SITE/DATE: SW31002 25-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	83.70	4.19	41.04
MG	23.90	1.98	19.37
K	4.37	0.11	1.10
NA	90.30	3.93	38.50
CATION TOTAL		10.20	100.00
			of the second
SO4	150.00	3.13	29.91
CL	44.00	1.24	11.90
NO3 MG/L-N	0.08	0.01	0.05
FL	1.39	0.07	0.79
HCO3	366.00	6.00	57.43
CO3	0.00	0.00	0.00
ANION TOTAL		10.45	100.69

CHARGE-BALANCE ERROR (%) : 1.20 pH : 8.18

SITE/DATE: SW36001 28-Apr-89

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	66.60	3.33	28.69
MG	25.50	2.11	18.16
K	3.21	0.08	0.71
NA	140.00	6.09	52.44
CATION TOTAL		11.61	100.00
S04	56.00	1.17	9.89
CL	110.00	3.11	26.34
NO3 MG/L-N	0.06	0.00	0.04
FL	2.22	0.12	0.99
HCO3	451.40	7.40	62.74
CO3	0.00	0.00	0.00
ANION TOTAL		11.80	100.00

CHARGE-BALANCE ERROR (%) : 0.81 pH : 7.79

### ION BALANCE CALCULATIONS

SITE/DATE: SW37001 20-Apr-89

MG/L	MEQ/L	% TOTAL MEQ/L
90.40 41.70 4.66 210.00	4.52 3.45 0.12 9.13	26.25 20.02 0.69 53.03
		100.00
130.00	3.67	43.61 24.02
2.05	0.11 4.20	0.00 0.71 27.47
19.20	0.64 15.29	4.19 100.00
	90.40 41.70 4.66 210.00 320.00 130.00 0.01 2.05 256.20	90.40 4.52 41.70 3.45 4.66 0.12 210.00 9.13 17.22 320.00 6.67 130.00 3.67 0.01 0.00 2.05 0.11 256.20 4.20 19.20 0.64

CHARGE-BALANCE ERROR (%): -5.93 pH: 8.72

SITE/DATE: GW Well 01047 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	96.20	4.81	21.64
MG	25.50	2.11	9.48
K	3.68	0.09	0.42
NA	350.00	15.22	68.46
CATION TOTAL		22.23	100.00
S04	450.00	9.38	47.79
CL	220.00	6.21	31.68
NO3 MG/L-N	5.70	0.41	2.08
FL	2.09	0.11	0.56
HCO3	214.00	3.51	17.89
CO3	0.00	0.00	0.00
ANION TOTAL		19.62	100.00

CHARGE-BALANCE ERROR (%) : -6.25 Ph : 7.30

7.30

### ION BALANCE CALCULATIONS

SITE/DATE: GW Well 01073 - Spring 1989

SPECIES	MG/L .	MEQ/L	% TOTAL MEQ/L
CA	47.90	2.40	25.04
MG	17.70	1.46	15.29
K	2.16	0.06	0.58
NA	130.00	5.65	59.03
CATION TOTAL		9.57	100.65
SO4	98.00	2.04	19.27
CL	64.00	1.81	17.67
NO3 MG/L-N	0.39	0.03	0.25
FL	3.01	0.16	1.50
HCO3	400.00	6.56	61.90
CO3	0.00	0.00	0.60
ANION TOTAL		10.59	100.00

CHARGE-BALANCE ERROR (%) : Ph : 5.10

7.49

SITE/DATE: GW Well 01074 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	58.00	2.90	39.23
MG	17.20	1.42	19.23
K	2.92	0.07	1.01
NA	68.90	3.00	40.53
CATION TOTAL		7.39	100.00
S04	77.00	1.60	20.35
CL	32.00	0.90	11.47
NO3 MG/L-N	0.63	0.05	0.57
$\mathtt{FL}$	`1.00	0.05	0.66
HCO3	322.00	5.28	66.95
CO3	0.00	0.00	0.00
ANION TOTAL		7.88	100.00

CHARGE-BALANCE ERROR (%) : 3.22 Ph : 7.53

# ION BALANCE CALCULATIONS

SITE/DATE: GW Well 02034 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MED/I
CA	84.30	4.22	31.88
MG	18.70	1.55	11.63
K	2.65	0.07	0.51
NA	170.00	7.39	55.91
CATION TOTAL	ı	13.22	100.00
SO4	160.00	3.33	19.61
CL	90.00	2.54	14.95
NO3 MG/L-N	17.00	1.21	7.14
FL	1.99	0.10	0.62
HCO3	598.00	9.86	57.67
CO3	0.00	0.06	0.60
ANION TOTAL		17.00	100.00

CHARGE-BALANCE ERROR (%) : 12.50 Ph : 7.42

SITE/DATE: GW Well 02055 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	126.00	6.30	45.37
MG	22.40	1.85	13.33
K	3.24	0.08	0.60
NA	130.00	5.65	40.70
CATION TOTAL		13.89	100.00
S04	230.00	4.79	30.71
CL	140.00	3.95	25.35
NO3 MG/L-N	>0.01	0.00	0.00
FL	1.32	0.07	0.45
HCO3	414.00	6.79	43.50
CO3	0.00	0.00	0.00
ANION TOTAL		15.60	100.00

CHARGE-BALANCE ERROR (%) : 5.82 Ph : 7.51

#### ION BALANCE CALCULATIONS

SITE/DATE : GW Well 02056 - Spring 1989

CA 130.00 6.50 45.16  MG 26.70 2.21 15.31  K 2.04 0.05 0.36  NA 130.00 5.65 39.22  CATION TOTAL 14.41 100.61  S04 160.00 3.33 21.75  CL 60.00 1.69 11.66  NO3 MG/L-N 23.00 1.64 10.72  FL 1.54 0.08 0.53  HCO3 523.00 8.57 55.94  CO3 0.00 0.06 0.66	SPECIES	MG/L	MEQ/L	% TOTAL MEZ/L
CATION TOTAL       14.41       100.61         SO4       160.00       3.33       21.75         CL       60.00       1.69       11.65         NO3 MG/L-N       23.00       1.64       10.72         FL       1.54       0.08       0.53         HCO3       523.00       8.57       55.94         CO3       0.00       0.06       0.06	MG K	26.70	2.21 0.05	15.31 0.35
CL     60.00     1.69     11.65       NO3 MG/L-N     23.00     1.64     10.72       FL     1.54     0.08     0.53       HCO3     523.00     8.57     55.94       CO3     0.00     0.06     0.06		130.00		
VILTOR TOTUL	CL NO3 MG/L-N FL HCO3	60.00 23.00 1.54 523.00	1.69 1.64 0.08 8.57	11.65 10.72 0.53 55.94

CHARGE-BALANCE ERROR (%) : Ph : 3.08

7.62

SITE/DATE: GW Well 02059 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	66.80	3.34	49.94
MG	16.40	1.36	20.27
K	1.76	0.05	0.67
NA	44.80	1.95	29.12
CATION TOTAL		6.69	100.00
SO4	76.00	1.58	13.83
CL	47.00	1.33	11.60
NO3 MG/L-N	>0.01	0.00	0.01
FL	1.81	0.10	0.83
HCO3	515.00	8.44	73.74
CO3	0.00	0.00	0.00
ANION TOTAL		11.45	100.00

CHARGE-BALANCE ERROR (%) : 26.25 Ph : 7.60

# ION BALANCE CALCULATIONS

SITE/DATE : GW Well 02060 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEG/L
CA	44.70	2.24	19.88
MG	3.32	0.27	2.44
K	1.44	0.04	0.33
NA	200.00	8.70	77.35
CATION TOTAL		11.24	100.00
SO4	96.00	2.00	23.22
CL	21.00	0.59	6.23
NO3 MG/L-N	0.14	0.01	0.11
FL	1.10	0.06	0.67
HCO3	363.00	5.95	69.10
CO3	0.00	0.00	0.00
ANION TOTAL		8.61	100.00
		· · · · · · · · · · · · · · · · · · ·	

CHARGE-BALANCE ERROR (%) : -13.25

Ph: 7.81

SITE/DATE: GW Well 24188 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEQ/L
CA	400.00	20.00	33.13
MG	140.00	11.57	19.16
K .	4.35	0.11	0.18
NA	660.00	28.70	47.53
CATION TOTAL	ı	60.38	100.00
SO4	2000.00	41.67	71.23
CL	250.00	7.06	12.07
NO3 MG/L-N	0.28	0.02	0.03
FL	3.90	0.21	0.35
HCO3	582.00	9.54	16.31
CO3	0.00	0.00	0.00
ANION TOTAL		58.50	100.00

CHARGE-BALANCE ERROR (%): -1.58

Ph: 7.36

### ION BALANCE CALCULATIONS

SITE/DATE : GW Well 31016 - Spring 1989

SPECIES	MG/L	MEQ/L	% TOTAL MEDIL
CA MG	96.10 34.30	4.81 2.83	31.75 18.73
K	4.11	0.11	0.69
NA	170.00	7.39	48.83
CATION TOTAL		15.14	100.05
SO4	230.00	4.79	38.84
CL	74.00	2.09	16.95
NO3 MG/L-N	>0.01	0.00	0.01
FL	2.07	0.11	38.0
HCO3	326.00	5.34	43.32
CO3	0.00	0.00	0.00
ANION TOTAL		12.34	100.00

CHARGE-BALANCE ERROR (%) : -10.19

Ph: 7.58

APPENDIX B-6

Water Quality Field Data

COMPREHENSIVE MON	NTORING PROJECT/ROCK	Y MOUNTAIN ARSENA	<b>V</b> _	- 1
Sie O Nurber	SAMPLING FIELD DA			Page of
SW01001	Hydrogeologis(s)  KH JK LB	Sample Numbers (range K 2496 - K	2529	89117 4/27/89
Analytical Equipment	Meter Calibration	K 2598 - K	Discharge (CFS)	Measurement #
pH Motor: \$4 Beduman phi 21	pt 700 = 7.06 at	9.5 c 1206	AGA NO	DISCHARGE NA
☐ Omega pHH6SA ☐ Orion SA2SO	pH 10.00 - 10 . 1   21	92012.07	Equipment Used	Serial No.
Other	Conductance Standard: 100	00 umhos/om at 25°C	LONG-THROAT	ED FLUME NA
Serial No. <u>OJU 5035</u> Conductivity Malar:	Moosured Value: 620 umtos/o		Staff Gauge Reading	
YSI Model 33	Calband Conduction - Moseum	of Conference + MM		0.04'
Serial No. 15596	(mossured conductance) (25°C - A 137.8 799.8 unhoston a	beh 89118 11100	Sampling Method	Sample Type
Dissolved Oxygen Meter;  St Model 518	peen out	time		
	Dissolved Oxygen A mr	of at NA +c NA	GRAB	STRM
Señal No	Titration Results (Acid Concentration	r 🗆 0.16, 🕱 1.6)	Conductivity / TEM F	o .
Beckman  Other		- · · · · · · · · · · · · · · · · · · ·	1610	11.5°C
Serial No. 045035	pH 8.3 4.8		PH ITEMP 1 DS	11.5 C umhos/cm
Fitration Equipment:	#Clids 110 170	0 174 63		
Geotech Parastatic Pump Geotech 0.45 micron ster	coo plar pint	C pink green	404 10.0	NA
Sample Location Description	1000-11	1 977-11	<u> </u>	mg/liter
WATER SAMPLE	D IN NOTCH	OF WEIR; SED	IMENT SAN	APLED I FT UPSTREAM
Appearance of Stream or Lake		6	F WEIR	
LOW FLOW	, FREE OF	DEBRIS		
Appearance of Sample			7	
LT BROW	$\sim$			
Condition of Station				
GOOD BU	T STEVENS.	TUDE C METCO	DIALARMA	
	•			
Current Weather Condition  (1) +50F	LIGHT.	VINDS 6-SI	MPH RAI	N (SNOW)
TUDEATTAK	12:10 of 87121			
Previous Precipitation	12:10 1 [210	HAIL BEB	INS	
1 - 00 1				
LT KAIN + HA	IL DURING SAM	IPLING; NOTHIN	6 FUR 3	DAYS PREVIOUS
	\$ P			
REQUESTED EFT MS MENT	The Table	Rema		
100	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		RIP BLANK	L DONE
	BO BO	F	LUME WOULD	NOT WORK ON
TARGET GC/MS SEOLMENT			THIS LOW	N A FLOW, NO SE TAKEN
ANALYSIS TARG GC/ SEOU	7/8		DIJCHARO er Sonature:	HE TAKEN
XXX	2	Sample	The Gold	his
FOPM130	7211111	1 1 1 1 1 1	IM CAL	VINUY

	TORING PROJECT/ROCKY MOU SAMPLING FIELD DATA SE		1	Page _ /_ of _ /
Sie O Nurbo	Hydrogeologist(s)	Sample Numbers (rung	c)	Date
Swowoi	TG, SEG	14097- L	-4113	89269
Analytical Equipment	Meter Calibration	Time	Osdarge (CFS)	Measurement #
pH Motor:  GD Bookman phi 21  Cmega pH+65A	p1700 - 701 = 30.5	Time	UNASC 10	GET RESOLUTION NA
Orion SA2SO	pH 10.00 = 10.06 = 20.9 Conducance Standard: 1434	21.6	Equipment Used	Seral No.
Serial No015781	Conducance Standard: 1434	unthodom at <del>25°C</del> Time	100mm LONG 17	YROATED FUNK NA
Conductivity Motor:  SI VISI Model 33	Moccured Value: ASD_ untrodom at 2		Staff Gauge Reading	
Other	Calibrated Conductivity - Massured Conduct (massured conductance) (25.6 - Actual Temp	D)): Time	.19 @	1127
Serial No. 13076 Dissolved Oxygen Meter:		1129	1	Sarroie Type OT-87006
☐ YSI Model 51B	Dissalved Oxygen		GRAB	STRM
Serial No. NA Temperature Meter:			Conductivy/TEM	PHINE
G Beckman Other	Tiration Results (Acid Concentration: 0.			,
Serial No. 01578.	рн 8.3 4.8 4	7.5 (7.0)	470 / 16.5	Ossolved O, / TEMP / TIME
Fitration Equipment:	#Circles			
Geolecty Paracetic Pump Geolecty 0.45 micron ster	coox /VA		8.46 B.8/15	NA mortaer
Sample Location Description	Þ			
RIGHT	BEIDS THE WEIR			
Appearance of Stream or Lake	IERY MARROW GRASSES GROWN	44 FROM CONTE	in of little :	TIGHTS YOUNG
Appearance of Sample				
	CLEAR			
Condition of Station				
	•			
Current Weather Condition	OK PARTLY CLOUDY 15750F	· · · · · · · · · · · · · · · · · · ·		
T	HEICH CLOWY VIII			
	•			
Previous Precipitation	MISDAYS PRIOR - LAST R	AINTAIL		
	RAIN WAS HEAVY, UTSTED	SDAM		
2		Remai	95	
REAUGHEO PER N S N S NEAT				
VSIS REST GC/MS SEDIMENT				
TARGET GC/MS				
TAR GC/ SEO!		Sans	v Corne	
\$ X + + +			uson Jelg	1/_
	!         ! !	1 / 1	many 1ctd	ver

	HORING PROJECTIROCKY MOI SAMPLING FIELD DATA SH		<b>d_</b> .	t	age _/_ of _/
Sie O Number Sed Poind	Hydrogeologist(s) L. 13vouilland	Sample Numbers (rang	e) k 9480-	Date	age/ 0i/_
SW 01002	H. Hedberg	K 9501-K	9510		138
Analytical Equipment	Meter Calibration	Time	Discharge (CFS)	1	Measurement #
pH Motor.	pH 700 = 7,00 a 24.5	~ 0904	100	1.	
Bedeman phi 21		Time	N	T	
Omega pHH6SA	pH 1000 = 10.02 a 24.4	5 0904	Equipment Used		Serial No
Orion SA2SO					204 10.
30.2	Conductance Standard: [UUTO	unthos/on at 25°C	NA	1	NA
Serial No. 0144748		Time			
Conductivity Motor:	Moasured Value: 880 unthos/on at 2	0 0 0905	Staff Gauge Reading		
LD A21 Woodel 33					
Other	Calibrated Conductivity - Measured Conduct (measured conductance) (25°C - Actual Temp	ance + (0,02		NA	
Serial No. H8016755	110 4 C 12 17 8917	1000/2			
Dissolved Oxygen Meler:	968 \$80 17 8917 univos/cm at 25°C_	0100	Sampling Method	Sample	Type
SYST Model 518		Time			25.40
	Dissolved Oxygen NA mg/ at	-c	GRAB		OND
Serial No.			0	0.1 = 1.00	
Temperature Meter:	Titration Results (Acid Concentration: 0.	16, 17.6)	Conductivity / TEM		
Beckman			11/7	/14.5/	2914
Other	pH 8.3 4.8 4	1.5 (7.0)	450	1 12.13	umhos/cm
Serial No. 15 above			PH TEMP 1	Assolved O, /TEA	
Fittration Equipment:	#Clicks 145	14.8			er / ime
12 Geolech Parastatic Pump			9,05 13.3	NA	
12 Geotech 0.45 micron ther	Color light p				mg/liter
Sample Location Description	half aver of porder Largar Sedimenta	1 11-1-	1 - 5 -> / .	1 0	- Inglicer
NW worner of	Larger Sediment as	time Pand	1 División	diamet	er in e
metal caturalt	5	1 2001	· Directly	JE JE	220 01
Amazon of Sman or Lake					
Apasace u sieali u cae	rost of Sedima	tetus P.	and is	dry - Ap	POX 1/3
is wet. Sans	Nost of Sedima pled area was a	2' deep			,
,		,			•
Appropriate of County			-		
Appearance or Sample 5/19	htly cloudy, y	Mount	bround		
	7				
				•	
Condition of Station					
NA					
	•				
Current Weather Condition		· · · · · · · · · · · · · · · · · · ·			
Will Thousand Carolan	65°F, LLEAR	LICAT	BRUEZI	- topa	, WEST
		/	0. 2020		-
Previous Precipitation	T TO WARD O	4 151-0			
LIGH	T TO HEAVY Pr	47N MAN	OCCURP	ev For	
	FOR THE WELLT		SAMPLET	O DAY.	21
DIDNUT	RAIN YESTERDAY.				
	·				
8		Remar	rks:		
5				.01 1	
31		$ \cdot \cdot $	IT OF Science	pic cont	inued 9 (29.2) sed. (~ 6min)
Peoueste et revt		1	e drop tro	n over	7 (~ 7.2)
四月三十二		1 1	6 ~ 8,0 08	time pass	sed. (~ omin)
7 2 7 3					
JAS RESOLVES SECUMENTS					
TAR TAR			6.		
211111	1 1 1 1 1 1 1	Sample	r Signature:		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</td <td></td> <td></td> <td>( ) su ( )</td> <td>mulla</td> <td></td>			( ) su ( )	mulla	

COMPREHENSIVE MON SURFACE-WATER S	ITORING PROJECT/ROCKY MOU SAMPLING FIELD DATA SH	UNTAIN ARSENAI HEET	L	t	age _ l or _
Sie O Number	Hydrogeologist(s)	Sample Numbers (range	2)	Dato	age 01
SW01004	KH, SG, LB	K1706 - K	<1726	8910	9
Analytical Equipment	Meter Calibration	Time	Discharge (CFS)		Measurement #
pH Motor: 129 Bookman phi 21	сн 700 = 7.04 æ 14.9	_ ℃ <u>1009</u> Time	NA	\	NA
☐ Omega pHHeSA ☐ Orion SA2S0	рн 1000 = 10.13 = 14.0	-c 1010	Equipment Used		Serial No.
Other	Conductance Standard: 1000	umhos/on at 25°C	NA		NA
Serial No. 0(45035 Conductivity Motor:	Massured Value: 680 untrookon at 15	Time 5.8 +c 1013	Staff Gauge Reading	• • • • • • • • • • • • • • • • • • • •	
Ø YSI Model 33 □ Other	Calibrated Conductivity = Measured Conduct	ance + (0.02	1 ;		
Serial No. 15596	(messured conductance) (25°C - Actual Tempo		Sampling Method	4 Sample	Y
Dissolved Oxygen Meter:  VD YSI Model 51B	$\frac{805.12}{14}$ unthos/cm at 25°C $\frac{14}{14}$ Dissolved Oxygen $\frac{7.9}{14}$ mg/ at $\frac{9}{14}$	o. O. h Time			
Serial No. 13634	Dissorted Oxygen 7.9 mg/ at 2	H 4/1024		L	
Temperature Meter:	Tirzion Results (Acid Concentration: 0.	16, pg 1.6)	Conductivity / TEM		ı E
⊠ Beckman  □ Other	рн <b>8.</b> 3 4.8 4	1.5 (7.0)	500 16.0	1	075
Serial No.0145035 Fittration Equipment:		26 111	PH TEMP O		AP /TIME
© Geotech Parastatic Pump S Geotech 0.45 micron ther		rk green	8.16 17.0 1027	5.5 /15.	2°C/1026
Sample Location Description					mymer
just south	of catwalk; i	vater gru	ta stagn	ant w	rere sampled
three feet from	of catwalk; n	dried out	reeded	avea	<b>,</b>
	w-lofs of m				
Appearance of Sample brown, mur brobably plan	Ky though still - nt material - wood	translucen dy mater	t; contai	ns float	ing objects-
		Tan)			-c . M
murky, stagnant	conditions (10W	walk )	Nav not	tom ot	staff gage
Current Weather Condition	·	0 -			:
high clouds	, slight breeze	, 68°F			; ; ;
Previous Precipitation					
snow fall	ten days	ago			i
B		Remar	ks:		:
PEQUENTED SET MENT		5	eway to	upe so	medi
2 F S S S S S S S S S S S S S S S S S S		al		0.	:
TARGET GC/MS SEOIMEN					uses shel
ANALYSIS TARE GC/ SECI		buc	iplitation in Ket and med	15 Ming	odle.
ZX		Salipe	Yinn 5d	Locks	

FOPM130

	TORING PROJECT/ROCKY MOUNTAIN ARSENAL  SAMPLING FIELD DATA SHEET	Page o:
Sin D Nerbox	Hydrogeologist(s) 5.6cLOBCRL Sample Numbers (args) Date	1 age 0
Jely 60	K. HEDROOL K1727-K1747	
5W01005+ 9/981	L BROWNERO K 1748-1768 DEPLOTE 8	1108
Analytical Equipment	Meter Calibration Teme Discharge (CFS)	Measurement #
pH Motor;	pH 700 = 7.08 x 10.3 x 0932	
80 Bedoman phi 21	Time · NA	NA
☐ Ornega pH146SA ☐ Orion SA2SO	pH 10.00 = 10.19 = 9.1 = 0.930 Equipment Used	Serial No.
Other		A f A
Serial No. 0145035	Conducance Standard: 1000 unhosom x 250	
Conductivity Meter:	Moosured Value: 490 untros/orn at 27 °C 0934 Sall Gauge Reading	
EDIAZI Wodel 33	0.0 10 . 1	
Other	Calibrated Conductivity = Measured Conductance + (0.02) (measured conductance) (25°C - Adual Templ)): Time 15.7	
Serial No. 15596	(measured conductavity = Measured Conductavite + (0.02) (measured conductance) (25°C - Actual Templ): Time   15 _ 7'	Sample Type
Dissolved Oxygen Meter:	Tere	
☐ YSI Model 51B	Dissolved Caypen mg/ at c _ GRAG	LAKÉ
Serial No. NA	Conductivity / TEM. P	LANC
Temperature Moter:	Titration Results (Acid Concentration: 0.16, 6 1.6)	
© Beckman ☐ Other	1 1 1 1 1 1 1 1 1	^ O./-
	pH 8.3 4.8 4.5 (7.0) 350 MM = 125/	0990 week
Serial No. 045035 Fittration Equipment:	#Clids 10 125 127 PH TEMP OF CO.	TEMP /TIME
☐ Geotech Parastatic Pump	Color LT PINK 19 (5 8.1. 0941 8 mg/s	14°C 1124
ID Georech 0.45 micron ther	COLOR GETT TOWN GETT TOWN GETT 313 12.8	A beh 4/1
Sample Location Description		
END OF CATWALK, LOWER A BUCKET VIA ROSE		
Appearance of Steam or Lake IS SURROUNDED BY MARSHY AREAS + TREES SALLY LIEUES.		
BOTTOM IS COMPOSED OF MEDIUM SAND, SOME WHITE FORM OLLUPS AT THE WATERS		
EDTE. WATER IS ABOUT 2 FT - 3 FT FROM THE BANK LOTS OF ORLOWE WITHER INCHES TWISSTED		
Appearance of Sample	ALSO, ABUNDANT FISH IN LAKE.	H UM IN COLUMN SA SA
i r aa a		
Condition of Session		
San Grand Grand		
	•	
GDOD GDOD		
Current Weather Condition		
	SUNNY USOF, 5 WINDY	
Previous Precipitation		
	SNOWFAIL 9 DAYS AGO	
		STEEL PARCE-
3	Aug Posses	
Peauesteo et ms	A STAINLES SEE	
四面到到		
2 2 7 3	3 No Meter not accusate	- supplies
LYSIS REQUIRENT SEOIMENT	ander comments	
TARGE GC/	Sarder Spraine:	-
4 7	Sander cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cercons of Sander Cerco	2
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	

	ITORING PROJECT/ROCKY MOI SAMPLING FIELD DATA SH		1_	Page
Sie O Number	Hydrogeologist(s)	Sample Numbers (range	e)	Case 0 1
SW02003	KH, 3G, LB	K1640-K1684	; K1769-K1771	89108 4/18/85
Analytical Equipment	Meter Calibration	Trne	Discharge (CFS)	Measurement #
pH Motor; 153 Beckman phi 21	pH 700 = 7.03 at 17.2	℃ <u>1307</u> Time	N/A	NA
Omega pHH6SA Crion SA2SO DIM	pH 10.00 = 10.11 # 16.2	·c_1312_	Equipment Used	Serial No.
Other 0145035 4 8 18 18 18 18 18 18 18 18 18 18 18 18 1	Conductance Standard;	umhos/cm ж 25°С Типе	NA.	NA
Conductivity Meter:	Moosured Value: 700 untrooten at 17	•c <u>13/1</u>	Staff Gauge Reading	
1000 155 Kil 4 (85)	Calibrated Conductivity - Measured Conduct (measured conductance) (25°C - Actual Temp		13. iss.	5/29 12.   feet
Serial No. <u>i 5596</u> Dissolved Oxygen Meler:	812 untros/on at 25°C _	1312 Tirre	Sampling Method	Sample Type
☑ YSI Model 518	Dissolved Oxygen NA mg/ at	NA & NA	GRAB	LAKE
Serial No. 13634 Temperature Meler:	Tarason Results (Acid Concentration: 180	16. 16,	Conductivity / TEM	
② Beckman Other	pH 8.3 4.8	1.5% (7.0)	500 /14	e.5
Serial No. 01450.35 Fituation Equipment:	#Clicks 88 (4.98) (4.	17)		Desire O, / TEMP / TIME
☑ Geotech Parastatic Pump ☑ Geotech 0.45 micron ther	color clear pink p		8.73 6.7	NETEC INOPERABLE
Sample Location Description	oth of pump station	n, 8 feet	from waie	
20 ,60			•	
Appearance of Steam of Lake	BOTTOM OF LAKE			
HYDROGEN S	ULFIDE SMELL;	CLEAR WAT	TER; MUCH	- WUATIC GROWT-
Appearance of Sample	: .		700	(5) E00C
cloudy -	slightly brownish			
Condion of Station				
gage d	efficult to read			
0 0			•	
Outent Weather Condition	oudy, warm 69	5°F inh	ermillent	CTITES 0-1000
1	odocy , was an	3		
Previous Precipitation	·		,	
snow ful	1 9 days ag	0		
J110 V0 10-	, coogs			
5TEO		Pena		TOSSE
Reducento et n.s vent				secret to repe
1 3 2 3				TELL BUCKET -:
TAR GC/			ET SAMO	
A × ×		Sample	Sonature:	Service Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of th
OPM130			KIN GAR	the transfer of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th

	ITORING PROJECT/ROCKY MOU		1_		1 /
	SAMPLING FIELD DATA SH	EET		F	age _ 1_ o _ /
Sie O Number	Hydrogeologist(s)	Sample Numbers (rang	e)	Date	
5w02004	TH 36 LB	K1685-	tr 1705	891	09
Analytical Equipment	Meter Calibration	Time	Discharge (CFS)		Measurement #
pH Motor: 12 Beckman phi 21	pH 700 = 7.06 a 9.5	-c 0832	NIA		NU
Ornoga pHH6SA	N 100 - 10,20 - 8.8	~ N834	Equipment Used	·	Serial No.
Orion SA2SO	pH 1000 = 10.20 # 8.8	19/89		,	
	Conductance Standard: 520 1000	umhos/on at 25°C Time	المؤرم	•	NX
Serial No. 0145035 Conductivity Motor:	Moesured Value: 520 umtos/om at 9.		Staff Gauge Reading	213	
Ø YSI Model 33	Calbraed Conductivity = Measured Conducta	wa + 10 ts	8-0	_	0818
	(meesured conductance) (25°C - Actual Temp)				
Serial No. 15596 Dissolved Oxygen Maler:		O811	Sampling Method	Sample	Туре
DYSI Model 51B	Dissolved Oxygen 7.2 mg/ at 19		GRAB		LAKE
Serial No. 13634	Dissolved Oxygen 1.6 mg/ at 15	C 0866			-1112
Temperature Meter:	Tritasion Results (Acid Concentration: 0.1	6, 125 1.6)	Conductivity / TEM	P	
10 Beckman	THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	0, 12, 1.0)	1450	1,3.5	1/08=7
☐ Other	рн 8.3 4.8 4	.5 (7.0)			357556
Serial No. 01450.35	#Clicks 29 174 17	6 69	PH TEMP : D	50,/TG	np /TIME
Fittration Equipment:  12 Geotech Parastatic Pump		01	8.78	a 11/2 =	2/2011-
Geotech 0.45 micron ster	color dear pink pin	nk   gren	16.1°C	T. 4/10:3	c/084=
Sample Location Description	-1 - 1	t - 111		< d 0	
W.	est side of la	are many	, near	J/24"(	jage
Amazzone of Smarr of Sta	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
14 mater 19 -	clear to sightly or shore, sandy-	MUUTTY)	some v	cach to	1 14
00-1 1/2	a score, saray-	- 51/ty 6	oc Hevy		
Appearance of Sample	1 1 1		1		
	ker to light	reasky	0004		
Condion of Station	_				
	good .				
Current Weather Condition	clear, very 1	celt bre	425		
		J ,	- 2-		
	~ 70° F				
Previous Precipitation					
· · · · · · · · · · · · · · · · · · ·	Sow Lel 10	dens pre	201045/1		
		<i>y</i> ,	/		
9 1 1 1		1 15			
12		Renar	souple -	fot on	4810
			stainless	5+41	6412
图片內里			1		1 - 11
25 5		1	and mers vaded -	5	1901c.
3 8 0 8		6	Vaded -	So vers	1/2
TAR JEC SEO			19HC te		<del>· - / -</del>
13 VI-1-X-1		Sample	Sonatire:	entre	12/
			JM7	-1/1/	<del>'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del>
FOPM130 JK 89109	Ť				_

Sie O Number		ic			9 -1 - 0 -1
	L. Brevilland	Sample Humbers lang		Date	
02006	Hydrogrokojists) Hand H. Hedberg T tochnen	1 KZ467-K	71195	891	1 <del>-7</del>
	Trochnen	I KUYUU K	6717	0 /	
Analytical Equipment	Meter Calibration	Tene	Discharge (CFS)	1	Measurement :
pH Motor:	7.0% 130	)		1	
	pt 700 = 7.04 a 13.0	c 15 %	3447	'	1
O Bedaman phi 21		Terres	,5771		
☐ Omega pH+H6SA	pH 1000 = 10.15 at 12.	4 - 1541	Equipment Used		Serial No
Orion SA250	priow = 10.15 a 12.	· · · · · · · · · · · · · · · · · · ·	edoprior 0355		JONE 140.
Other	Conducence Standard: /000	reproving a sec	1		411
	1000	unoscii z 270	LONG THREATE	D FLOME	NA
Serial No. 014503)	220	*****			
Conductivity Meter:	Moosured Value: 730 untoston at	15 - 1544	Staff Gauge Reading		
IZI YSI Model 33					
□ Other	Calibrated Conductivity = Measured Condu	asua + lotti			_
	(messured conductance) (25°C - Adual Ten	np)): Terre	NONE	INSTAUES	9
Serial No. 15596	876 unthos/on at 25°C	1=117	Sampling Method	Sample 1	Timo
Dissolved Oxygen Meter:	unthos/on at 25°C	1347	Salibrid Met 85	Saire	туре
☐ YSI Model 51B	_				
G 134 NOOR 316	Dissolved Oxygen	~	GRAG	$\mathcal{O}$	TCH
	Case of Sen non at _				
Serial No.			Conductivity / TEM!		
Temperature Meter:	Titration Results (Acid Concentration:	0.16, 15			
☑ Beckman			0-1	1100	
☐ Other	рн 8.3 4.8	4.5	500/	16	
	PA 8.3 7.0	4·3 (7.0)	1 /		
Serial No. 0 145.095	#Clids 16 128	129	PH TEMP : DE	O, /TEN	IP /TIME
Fitration Equipment:	#0ids 16 128	121			
Geotech Parastatic Pumo	1.4.1		8,74 15.8	NH	
Georgeth 0.45 micron feer	coor green light	Pin h		~ ~ (	
			'C		गर्भ
Sample Location Description 5	TEAM PLANT EFFLUE	WIT DITCH	SAMPL=	TAFIN	APPLA
FO FT DOWN	BTREAM OF CULU	USET.			11/7/2=30
211	210				
Appearance of Stream or Lake	ATIN IN OTT				<del></del>
		4 ALLINOCK	0 1-211	<b>~</b> <1 /	
	WATER IN OITCH	+ APPEDRS	RELATELL	EY CO	LEAR.
SILTY - SA	MPY BUTTOM. DI	TCH 3-4	RELATIVE WIDE	EY C	LEAR.
SILTY - SAY	MPY BUTTOM. D	TCH 3-4	WIDE	xy co	LGAR.
SILTY - SAY	NPY BUTTOM. O	TCH 3-4	WIDE	xy Co	LGAR.
SILTY - SAY	NPY BUTTOM. DI	TCH 3-4	LELATAL WIDE	-	
SILTY - SAY	EAK - SUGHTLY	TCH 3-4	LELATAL WIDE	Erfon	COARK
SILTY - SAY	NPY BUTTOM. DI	TCH 3-4	RELATIVE WIDE	Erfon	COARK
SILTY - SAY	NPY BUTTOM. DI	TCH 3-4	RELATIVE WIDE	Erfon	
SILTY - SAY	NPY BUTTOM. DI	TCH 3-4	RELATIZE WIOE	Erfon	COARK
Appearance of Sample CL	MPY BUTTOM. DI	CLUMBY	WIOE	Erfon	COARK
Appearance of Sample CL	NPY BUTTOM. DI	CLUMBY	WIOE	Erfon	COARK
Appearance of Sample CL	MPY BUTTOM. DI	CLUMBY	WIOE	Erfon	COARK
Appearance of Sample CL	MPY BUTTOM. DI	CLUMBY	WIOE	Erfon	COARK
Appearance of Sample CL	MPY BUTTOM. DI	CLUMBY	WIOE	Erfon	COARK
Appearance of Sample CL.  Condition of Station FULL	MPY BUTTOM. DI	CLUMBY	WIOE	Erfon	COARK
Appearance of Sample CL.  Condition of Station FUL	MPY BUTTOM. DIETK - SUIGHTLY  L OF THOUS LE	CLUDY CLUDY	WIDE	Erfon Si-con	CORRK
Appearance of Sample  CL  Condition of Station  FUL  Current Weather Condition	LOOL, APPROX	CLUST 3-4  CLUST 3-4  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7	S VERCAST	Erfon Si-con	CORRK
Appearance of Sample  CL  Condition of Station  FUL  Current Weather Condition	LOOL, APPROX	CLUST 3-4  CLUST 3-4  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7	S VERCAST	Erfon Si-con	CORRK
Appearance of Sample  CL  Condition of Station  FUL  Current Weather Condition	MPY BUTTOM. DIETK - SUIGHTLY  L OF THOUS LE	CLUST 3-4  CLUST 3-4  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7	S VERCAST	Erfon Si-con	CORRK
Appearance of Sample  CL  Condition of Station  FUL  Current Weather Condition	LOOL, APPROX	CLUST 3-4  CLUST 3-4  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7	S VERCAST	Erfon Si-con	CORRK
Appearance of Sample CL.  Condition of Station FULL  Current Weather Condition  MIXED WITH	LOOL, APPROX	CLUST 3-4  CLUST 3-4  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7  CLUST 7	S VERCAST	Erfon Si-con	CORRK
Appearance of Sample CL.  Condition of Station FULL  Current Weather Condition  MINIO WIT	NPY BUTTOM. DIETR - SUGHTLY  L OF THOMBLE  LOOL, APPROX TH HAIL EARLIES	TCH 3-4  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSOF  CLUSO	S VERCAST	ERRON SITE!	CORRECTION O SWOTES,
Appearance of Sample  Condition of Station  FUL  Condition of Station  FUL  Current Weather Condition  MYLO WITH  Previous Precipitation  LIGHT	LOOL, APPROX TH HAIL EARLIES	CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY	S VERCAST X	ERRON SITE!	SHOWER
Appearance of Sample  Condition of Station  FUL  Condition of Station  FUL  Current Weather Condition  MYLO WITH  Previous Precipitation  LIGHT	LOOL, APPROX TH HAIL EARLIES	CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY  CLUMPY	S VERCAST X	ERRON SITE!	SHOWER
Appearance of Sample  CL  Condition of Station  FUL  Current Weather Condition  MIXED WITH  Previous Precipitation  LIGHTY  W	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CL	SURCUST,  ABLG FOR LINST	ERRON SITE!	SHOWER
Appearance of Sample  CLA  Condition of Station  Full  Current Weather Condition  MIXED WITH  Previous Precipitation  LIGHT  IV	LOOL, APPROX TH HAIL EARLIES	CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CL	SURCUST,  ABLG FOR LINST	ERRON SITE!	SHOWER
Appearance of Sample  CL  Condition of Station  FUL  Current Weather Condition  MIXED WITH  Previous Precipitation  LIGHTY  W	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CL	SURCUST,  ABLG FOR LINST	ERRON SITE!	SHOWER
Appearance of Sample  Condition of Station  FUL:  Condition of Station  FUL:  Current Weather Condition  MYLEO WITH  Previous Precipitation  LIGHT  W  CW A	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	TCH 3-4  CLUDY  CLUDY  SOF, OCE  R IN ON,  PHEIP PREVIOUS T	ABLG CO	ERRON SITE!	SHOWER
Appearance of Sample  Condition of Station  FUL:  Condition of Station  FUL:  Current Weather Condition  MYLEO WITH  Previous Precipitation  LIGHT  W  CW A	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CLUDY  CL	ABLG CO	ERRON SITE!	SHOWER
Appearance of Sample  Condition of Station  FUL:  Condition of Station  FUL:  Current Weather Condition  MYLEO WITH  Previous Precipitation  LIGHT  W  CW A	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	TCH 3-4  CLUDY  CLUDY  SOF, OCE  R IN ON,  PHEIP PREVIOUS T	ABLG CO	ERRON SITE!	SHOWER
Appearance of Sample  CLA  Condition of Station  FUL  Current Weather Condition  MYLLO WITH  Previous Precipitation  LIGHT  W  CW A	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	TCH 3-4  CLUDY  CLUDY  SOF, OCE  R IN ON,  PHEIP PREVIOUS T	ABLG CO	ERRON SITE!	SHOWER
Appearance of Sample CL.  Condition of Station FULL  Current Weather Condition  MIXED WITH  Previous Precipitation LIGHT  WW. A.	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	TCH 3-4  CLUDY  CLUDY  SOF, OCE  R IN ON,  PHEIP PREVIOUS T	ABLG CO	ERRON SITE!	SHOWER
Appearance of Sample CL.  Condition of Station FULL  Current Weather Condition  MIXED WITH  Previous Precipitation LIGHT  WW. A.	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	TCH 3-4  CLUDY  CLUDY  SOF, OCE  R IN ON,  PHEIP PREVIOUS T	ABLG CO	ERRON SITE!	SHOWER
Appearance of Sample  Condition of Station  Full  Current Weather Condition  MYLOO WITH  Previous Precipitation  LIGHTY — S.A.  W. W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current W. W. J.  Current W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Curren	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	TCH 3-4  CLUDY  CLUDY  SOF, OCE  R IN ON,  PHEIP PREVIOUS T	ABLG CO	ERRON SITE!	SHOWER
Appearance of Sample  Condition of Station  Full  Current Weather Condition  MYLOO WITH  Previous Precipitation  LIGHTY — S.A.  W. W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current W. W. J.  Current W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Curren	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	TCH 3-4  CLUDY  CLUDY  SOF, OCE  R IN ON,  PHEIP PREVIOUS T	ABLG CO	ERRON SITE!	SHOWER
Appearance of Sample  Condition of Station  Full  Current Weather Condition  MYLOO WITH  Previous Precipitation  LIGHTY — S.A.  W. W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current W. W. J.  Current W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Curren	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	TCH 3-4  CLUDY  CLUDY  SOF, OCE  R IN ON,  PHEIP PREVIOUS T	ABLG CO	ERRON SITE!	SHOWER
Appearance of Sample  Condition of Station  Full  Current Weather Condition  MYLOO WITH  Previous Precipitation  LIGHTY — S.A.  W. W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current Weather Condition  W. W. J.  Current W. W. J.  Current W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Current W. W. J.  Curren	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	CLUSOY  CLUSOY  CLUSOY  SOF, OCE  R IN ON,  PHERIP FREEVILLES TO  REVIOUS TO  SETS	ABLG FOR LINST	ERRON SITE!	SHOWER
Appearance of Sample  Condition of Station  Full  Current Weather Condition  MYLDO WITH  Previous Precipitation  LIGHTY — S.A.  W. W. W. T.  Current Weather Condition  W. W. W. M.  Current Weather Condition  W. W. W. M.  Current Weather Condition  W. W. W. M.  Current Weather Condition  MYLDO W. I.  Current Weather Condition  W. W. W. W. W. W. W. W. W. W. W. W. W. W	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	CLUSOY  CLUSOY  CLUSOY  SOF, OCE  R IN ON,  PHERIP FREEVILLES TO  REVIOUS TO  SETS	ABLG CO	ERRON SITE!	SHOWER
Appearance of Sample  Condition of Station  Current Weather Condition  MINION  Previous Precipitation  LIGHT  W  LU  A	LOOL, APPROX THE HAIL EARLIES  ONY, NO MAJOR	CLUSOY  CLUSOY  CLUSOY  SOF, OCE  R IN ON,  PHERIP FREEVILLES TO  REVIOUS TO  SETS	ABLG FOR LINST	ERRON SITE!	SHOWER

COMPREHENSIVE MON	NITORING PROJECT/ROCKY MO SAMPLING FIELD DATA S	OUNTAIN ARSENAL	0 1 '"
Sie O Number	Hydrogeologist(s)	Sample Numbers (range)	Page
02006	SEG, TG, GPP		8970
Analytical Equipment	Meter Calibration	Time Discharge (CFS)	Measuremen: =
pH Motor: CD/Bookman phi 21	Meter Calibration pH 7.00 = x 31.6	c 1321	11 69278 16 Flume NA
☐ Ornoga pH16SA ☐ Orion SA2SO	рн 10.00 = 9.96 = 30.0	7 ·c 1322 Equipment Uses	FLUME NA Soin No.
Other	Conductance Standard: 1434	21.6	
Serial No. <u>015781</u>		Time	
Conductivity Meter:	Macaured Value: 490 untostorn as _	38 ·c 1322 Staff Gauge Reads	·c
Other	Calibrated Conductivity = Massured Conductivity = Massured Conductance) (25°C - Actual Text	xcance + (0.02 mp)): Time /	Sample Type DTC
Serial No. 13076		1322 Sampling Method	Sample Type
Dissolved Oxygen Meter:  TSI Model S1B	Dissolved Oxygen IN A mg/ at 1	Іпте	1 110
Serial No. NA		Conductivity / To	T ABO
Jemporature Meter:  Beckman	Titration Results (Acid Concentration:	0.16, 🛘 1.6)	. 1
Other	н 8.3 4.8	4.5 00 715 /	250/1330
Serial No. 01578	*Circles   NA	PH TEMP	25C 1330 == CO/CTEMP / TIME
Fitration Equipment: Geotech Parasatic Pump Geotech 0.45 micron ther	Color .	863 22.6/	
Sample Location Description			
Mart upstream of	STATION STAKE \$188	220	
Appearance of Stream or Lake	TURBIS BROWN WITH	DREADIC PLE MATERIAL FLC=	"IL DEPLOYED
	MUDDY, ORGANIC BOTTOM		z , postoliti zu
Appearance of Sample			
Alvance of Salbe	CLEAR		
•			
Condition of Station ,			
	レハ		
	•		
Current Weather Condition US	of, HOT, MUGGY, PARTL	y Clause	
	, , , , , , , , , , , , , , , , , , , ,	e e e e e e e e e e e e e e e e e e e	
Previous Precipitation 1.0			
N II	e DAYS AGO RAINCH FOR	S Dire.	
Peaueste et ns near		Serraris:	
20			
Mess Res			
1 12 17 1			
17985 SEO			
TARE SEOL		Sampler Signature:	
3 7 X X 1 1 1	<del>                                     </del>		PORT -
DPM130	1 1 1 1 1 1 1	111 Shwan	TO NOT

	TORING PROJECT/ROCKY MOISAMPLING FIELD DATA SE		<b>V.</b>		
Sie O Number	Hydrogeologist(s)	Sample Humbers (range	225	Date	Page or
SW04001 51	BS, TX	K8603 -		89135	5/15/84
Analytical Equipment	Motor Calibration	Troe	Discharge (CFS)	0.707	Measurement 2
pH Mater:  AD Bookman phi 21	pH 700 = 7.03 a 15.3	× 1820	NA		NA
Omoga pHH6SA Orion SA2SO	pH 1000 - 10,12 = 15.1	-c1821	Equipment Uses		Serial No.
Other	Conductance Standard; 1050	umhoden z 25°C	NA		NA
Serial No. 044150 Conductivity Meter:	Mossured Value: 825 untroofern at /		Staff Gauge Reading		
MySt Model 33	Calibrated Conductivity = Measured Conduct	2000 + 10.00		NSTALLE	
Serial No. /405/	(measured conducance) (25°C - Actual Terro 973, 5 unhos/on at 25°C		Sampling Method		
Dissolved Oxygen Maler:  TSI Model 518				Sample	
Serial No.	Dissolved Oxygen mg/ at	NA c NA	GRAG		DTCH
Temperature Meter:	Titration Results (Acid Concentration: 0.	16, D 1.E,	Conductivity / TEM		:- 0
☐ Other	рн 8.3 4.8 4	1.5 (2.0)	75 protos	/cm &	16 C
Serial No. <u>D/44750</u> Fittration Equipment:	#Clicks		PH TEMP Q	sides 0, /TE	mp /TIME
Geotech Parastatic Pump	Color		9.17 10.8	NA	
Sample Location Description					Toplier
NEAR MOTOR	700L PUST WEST OF	TRACKS G	NORTH SIL	DE OF FA	CIV.TTIFS
Appearance of Steam or Lake					
	NG UP FROM GROU	IND THEN	FLOWING DO	WINGEAD.	ENT
Appearance of Sarrole	PIRTY WATER				
					•
VERY DIRTI	SILTY, CLOUDY				7
Condition of Station			<u> </u>		
NO STATI	ION INSTALLED, ONL	4 Senjois	- 00 44		
Current Weather Condition					
RAIN, COO	9 L.				
Previous Precipitation					
TRACE - 1	14" / RAINING	HEHNLY	AS SAMELA	US DCC	VRS
		Ferze			
4NALYSIS REQUESTED  SEC/MS  SECIMENT			Sgnaure:		
K   X   Y			Datu!	och	es.
ОРМ130		/	1-111-	,	
			<b>,</b>		

	TORING PROJECT/ROCKY MOU SAMPLING FIELD DATA SH		0- 1
Sie O Number	<del></del>	1	Page
SW 07001	Hydrogeologists) GREG PUDLIK, SUSAN GOLDBERG	Sample Numbers (exp.)   L4138 - L4154	9/25/89 89268
Analytical Equipment	Motor Calibration	Time Discharge (CFS)	\$9278   Measurement :
pH Motor:	p4700 = 7.02 = 19.5		1 76
Mac Bedyman phi 21 □ Omega pHH6SA		Time U 10	4
☐ Orion SA250	pH 10.00 = 10.06 at 19.9		Serial No.
Other	Conductance Standard: 14.34	_ unhoson z 20 100 MM	IWME NA
Serial No. 015781	1262	14.70	
Conductivity Motor:  XI YSI Model 33	Measured Value: 12.50 untroston at 24	5 ·c 0923   Sall Gauge Reading	
□ Other	Calibrated Conductivity = Measured Conductivity (measured conductance) (75°C - Actual Terror	ance + poz	NONE INSTALLED
Serial No. 13076	(moesured conductance) (25°C - Actual Temp	0923 Sampling Method	Sample Type OK 1306
Dissolved Oxygen Meler:    YSI Model 518		Time	CREEK
	Dissolved Oxygen	GRAB	DTCH
Serial No		Conductivity / TEM	
Beckman	Tration Results (Acid Concentration: 0.	16. DIE	€ @ 14.1°C
Other	рн <b>8.</b> 3 <b>4</b> .8 4	1.5 (7.5) 610 -cm	transfer of
Serial No. 015781	#Clids N	PH TEMP	Desire O, / TEMP / TIME
Fistration Equipment: UA		240 12.9°	I /A
☐ Geotedi 0.45 micron ster	Color		MALE HOLLE
Sample Location Description San	uple collected a 20 d	ownstream of culvert	conflaence with
drainage			
Appearance of Stream or Lake	#	(	
dear, low fle	xu, scallered debus	(glass, plastic, paper)	
Appearance of Sample			
dear			
Condition of Station			
OK			
	• ,		
Current Weather Condition			
	1.112 1.2.1./		
15+1	WIND 1-3 W		
Previous Precipitation and	1 20:112 /- 2 2	1	
14 days, Me	avy rains for n 20	lays	
		<i>V</i>	
8		Fertigner:	
Reduested AS		76.23.	
13 1 5			
四日至			
VSIS RED FARGET SECIMENT			
TARGET BECOME			
TAR GC/ SEO		Sampler Signature:	
4X		Drecory P	Pull b
FOPM130		July of the second	

	ITTORING PROJECT/ROCKY MOI SAMPLING FIELD DATA SH		1_		
Sie O Number	Y			4	age
	Hydrogeologisus) GREG PUDLIK,	Sample Humbers (range	:)	Date	
SW07001	SUSAN GOLD BERG	4138-	L4154	9/25/89	89268
Analytical Equipment	Moter Calibration	Time	Discharge (CFS)	89278	Measurement ±
pH Motor:	pH 700 = 7.02 = 19.5	_ < <u>0923</u>	0.00	1 16	
Bio Beckman phi 21 ☐ Omega pH+16SA		Time	0,081	<i>†</i>	
☐ Oron SA2S0	pH 10.00 = 10,06 = 19,9		Equipment Used		Serial No.
Other	Conductance Standard: 14.34	umbocken x 26.6 C	100 MM	LUME	NA
Serial No. 015781	1252	Time			
Conductivity Motor:  IXI YSI Model 33	Measured Value: 12.50 untoolon at 24	5 € 0923	Staff Gauge Fleading		
Other	Calibrated Conductivity = Measured Conduct (measured conductance) (ZSrC - Actual Temp	tsuce + (005	NA -	WONE INT	MAIRO
Serial No. 13076		19 79 2			
Dissolved Oxygen Molec	untos/cm at 25°C	Time	Sampling Method	Sample	
☐ YSI Model 51B	Dissolved Oxygen NA mol at		GRAB	Ī	OTCH
Serial No. NA			Conductivity / TEM		21011
Temperature Meter: ·  Beckman	Titration Results (Acid Concentration: 0.	.16, 🗆 1.6,			5 _
D Other	рн <b>3.3 4.</b> 8 4	1.5	610 unties	@ 14.1	
Serial No. 015781		1.5 (7.5)	PH TEMP :	0 /TE	NO ITIME
Fittration Equipment: 11A	#Clicks A/A		1 !		of 7 time
Georgeth Parastatic Pump	Color		240 12.9°C	NA	
	1 Martial and	1		-	TOTAL
desimal	uple collected a 20° d	ownwiam q	z cuweri c	antiging.	ww
drainage					
Appearance of Stream or Lake	and them debis	1-1444 0/4	•Tin 4		
clear, low fle	ow, exaltered debits	(grass, pra	our, jurper,		
Appearance of Sample					
dear					
Condition of Station					
OK	• /				
	,				
Current Weather Condition					
dear, 75° I	wind 1-3 W				
/ /3 / /	3 1 3 10				
Previous Precipitation and h	avy rains for n 20	1.			
14 days, Me	any name for the	xays			
		V			
Reauestep ST NS IEAT		Ferren	4.		
1 L					
RES MENS					
1 1 2 2 1 1					
TARGET GC/MS SECIMENT					
4NALVSIS TAR GC/ SEO		-	Signature:		
\$ V	<del>                                     </del>			OAFL	
			recory P#	WILP	
OPM130			1 1		

	ITORING PROJECT/ROCKY MC		<b>U</b> _		, ,
Sie O Nurbo	SAMPLING FIELD DATA S				Page _
SW 08001	Hydrogeologist(s) GPP, TG	Sample Numbers (rang	)c)	034 89272	9/29/89
Analytical Equipment	Meter Calibration	Tere	Discharge (CFS)	-	Measurement #
pH Molor;  SE Bedoman phi 21 □ Omega pHH-6SA	p4700 = 7001 = 22.6	~ 1152 Tere	.24 = .16	97 cfs	NA
Orion SA2SO	pH 1000 = 10.05 at 21.1 Conductance Standard: 1434	umhaciam 21.6°C	Equipment Used DH-48 100 mm flome	<b>.</b>	Serial No.
Serial No.015781 Conductivity Meter:  X YSI Model 33	Moosured Value: 1200 unthoston at 2	4.3 ~ 1205	Saff Gauge Reading		
Other Serial No13076	Calibrated Conductivity & Measured Condu (measured conductance) (25°C - Actual Ten	roll: Tere	NA		
Dissolved Oxygen Moler:  TSI Model 518	Dissolved Oxygen MAmg/ at	Terra	Sampling Metroc		Type SPENDED ED
Serial No	Titration Results (Acid Concentration:	0.16, D 1£	Conductivity / TEM.	F	
Other <u>01578</u> [ Serial No. <u>01576</u> ]	pH <b>9.3 4.8</b>	4.5 (7.5)		C 0,/76	mp /TIME
Fitration Equipment:  Geolech Parastatic Pump Geolech 0.45 micron Car	Color		8,23 15.30	NA	
Sample Location Description 5 Negrtation (sm	1st Cruk, Stream A	has channel	~4' wids,	E"duf,	heavy
Appearance of Stream or Lake Cleon, with	some oil spots on	surface			
Appearance of Sample CUBN					
Condition of Station					
good	•				
Ounert Weather Condition	1-5 mph SW wind	h			
	7 3 mpri 300 wind	· · ·			
Previous Precipitation	for a days				
		Ferze	<b>હ</b> :		
T-SS					·
TAR GC / T.S		Sarrole	Some Fred		
PM130			Sneg tust	E.	

	ITTORING PROJECTIROCKY MOUNTAIN ARSENAL  SAMPLING FIELD DATA SHEET:  1	5
Sie O Number	Hydrogeologist(s) Sample Numbers (range) K2265-K2273 Date	Page of
SW08003	KH, LB, JK, BS K2235-K2255 89115	4/25/89
Analytical Equipment	Motor Calibration 4.01 22.2 but Time Oscharge (CFS)  pH 700 = 10.05 at 21.4 pure Time 10.30  10.05 21.4 pure Time 10.30  10.05 21.4 pure Time 10.30	Measurement #
pH Motor: 101 Beckman phi 21	pH 700 = 10.05 at 21.0 c 1018 1027 0.72	
☐ Omega pHH6SA.	pH 10.00 = 10.05 at -20.5 89115 Time 1030 C 172  Equipment Used	
Orion SA250		Serial No.
Serial No. 0145035	Conductance Standard: 1000 unthodictin at 25°C PORTABLE FLUME	NA
Conductivity Motor:  DA YSI Model 33	Moasured Value: \$00 untos/om at 19 +c 1015 Saft Gauge Reading	
Other	Calibrated Conductivity = Measured Conductance + (0.02	
Serial No. 15596	896 untros/on at 25°C 10/5 Sampling Method Sample	Туре
Dissolved Oxygen Meler:  TSI Model 518		TRAN
Serial No	1077 mg/ a 1077 c 1777	
Temperature Meter: ·	Titration Results (Acid Concentration: 0.16, 57, 1.6)	
₫ Other	PH 8.3 4.8 4.5 (7.0) 620 / 15°C	, Varioses
Serial No. 0145035	#0760ts NA 285 288 62 PH TEMP DESIGN 0,/TE	
Fittration Equipment:  Signature Geolech Parastatic Pump	8.21 1/2 C/ NA	
Sample Location Description	color NA blue blue degr	TOTE
IN CEMENT	WEIR; SEDS JUST UPSTREAM	
Appearance of Stream or Lake	Just 57115	
LOW TO MOD	DERATE UNIFORM FLE FLOW; CLEAR WHIER	:
Appearance of Sample		
CLEAR		
Count		
Condition of Station		
FULL OF	TUMBLEWEEDS WHICH WERE CLEARED	
Current Weather Condition		
CHAIN	70°F BREEZY 0-5 MPH	
30,107	40°F BREEL 0 3 mm	
Previous Precipitation		
O- TRACE	THREE DAYS PREVIOUSLY	
7150	After cambrates it many appeared on reactions to	itera i
PEQUENTE ET NS NS NEVT	After cautivos	bih
国图图	appeared on read sur ; fe	89115
TARGET GC/MS SEDIMENT SED 66/	recalibrated	
ANALYSIS F TARE GC/ SEO!		
X L LX	Sarroler Sonature:	
111 17	11111111111111111111111111111111111111	

	ITORING PROJECT/ROCKY MO SAMPLING FIELD DATA SI		N_	£	Page of
Sie O Number	Hydrogeologist(s)	Sample fumbers (range	re)	Date	uge 01
5W08003 8T	JK	K7426 -	7446	8913	4 5/4/89
Analytical Equipment	Meter Calibration	Terre	Discharge (CFS)	·	Measurement =
pH Motor: OH Bodoman phi 21	H700 = 7.05 a 10.8	_ · _ 1608	NA		NA
6 Omega pHH6SA	pt 1000 = 10.17 at 10.9	- 11.19	1 '		Seral No.
Orion SA2S0	Conducence Standard: 1000		NA		MA
Serial No. 0/44750		Time		· · · · · · · · · · · · · · · · · · ·	7071
Conductivity Motor:  (\$1/51 Model 33	Mossured Value: 775 untros/on at _		Statt Gauge Feating	10	
Other	Calbrasid Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measured Conductivity = Measu	p)): The	FINISH 1.		
Serial No. 1405/ Dissolved Oxygen Meter:	976.5 unthos/on at 25°C_	1610	Sampling Memori	Sample	Туре
☐ YSI Model 51B	Dissolved Caypen NA mod as 1	NA ONA	GZAB	4	STRM
Serial No	Trazion Results (Acid Concentration: 🔲 (	0.16, 근 :크	Conduction / TEM	P	
QVBedoman ☐ Other	н <b>9.</b> 3 <b>4.</b> 8	4.5 (7.0)	225 W	tos ha a	12°C
Serial No. 0/44750	#Cids		pH Temp C	Description O, /TE	NP /THE
Fitration Equipment:  [A]Geoech Parastatic Pump  [A]Geoech 0.45 micron than	Coior		8.71 6.90	NA	
Sample Location Description					=glae
	NOTCH IN WEIR, 1	TAC TO SAM	ILE YERS A	F SIBES	TO HELP
Appearance of Stream or Lake	UKE ATR IN BOTTLES		•		
MODERATELY	HIGH FLOW, PLOWING TLY MUPPY WATER	ora 2/3	OF WETZ	(MORE T	HAW 1-9675)
Appearance of Sample SIIGHTLY	MUPDY, BROWN COLO	r£			
Condition of Station					
GOOD CONO	TTOW, ALL BOUTPMEN	NT STACTON	AL		
Owner Weather Condition	an Cranal of				
DIORMY - C	ease, cloudy, ct w	140			
Previous Precipitation	11. 12 DAMA 300		4 .	A 1/2:	* * * * * * * * * * * * * * * * * * * *
WLTHIN	HOUR PRIOR THE	EMM DIFFE	AREL FELL	CIED HAI	L F K-Y
<u> </u>		Remar	ks:		
Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugnited Ferrical Resugn			NO DISCHE	EE TAKEN	1 OFFEC TE
Res T Res		3	FEET 53.55	HA GHER	BAMBE
1 7: 1 1					
ANALYSIS TAR SEO!					
AVX -		Sample	Sonarou	Shower	
2PM130	1 1 1 1 1 1		follow	Wy INCH	
		U			

	IITORING PROJECT/ROCKY MI SAMPLING FIELD DATA S		d .	Page 1
Sie O Nurbor	Hydrogeologist(s)	Sample Numbers (see		Page / of /
ALSO				
SWOBOO3/ DIPLICA	SEG, GPP, TG	L4360=1	4379 8	9269
Analytical Equipment	Meter Calibration	L43\$3, L41	*Produce (CFS)	Measurement =
pH Motor;	198 2117	1619	10 87278 1	6
Bedoman phi 21	04700 = 6.98 = 34.3	- 65207	AZHEFS	NA
☐ Omega pH165A	0.93	Time /		
O Orion SA250	рн 1000 - <u>9.93</u> а <u>34.</u> /	-01507	Equipment Used	Serial No.
Other	Conductance Standard: 1434	umhoden a 31.6	100	N ( C
Serial No. 015781		Time	100 mm winds w	worthed Fluere AM
Conductivity Motor:	Measured Value: 1390 untros/on at	38 -0100	Salf Gauge Reading	
ID XSI Model 33				
Other	Calbrated Conductivity Measured Cond (measured conductance) (25°C - Actual Te		. 22 C	14.70
Serial No13076	_	111140	100	1925
Dissolved Oxygen Moler:	934 umhos/cm at 25°C	7001	Sampling Method	Sample Type CT_1930
TYST Model_SIB_			GRAB	STRM
Serial No. NA	Dissolved Oxygen mg/ _at _	1UA & 14	GRAG	-STREAM
Serial No. V/I			Conductivity / TEMP /- M	
Beckman	Titration Results (Acid Concentration:	0.16, 🛮 1.6)	1 1	<b>E</b>
Other	рн <b>8.</b> 3 4.8	16	20/2/1	100
DIC 761	рн 8.3 4.8	4.5 (7.0)	110/21/	1508 WHENCH
Serial No. <u>DIS 781</u>	#Clicks		ph IEMP Dissources	0, / TEMP / TIME
Fitration Equipment:  Geored Paragetic Pump	700		10.11	
Geolegh 6.45 officion ther	Color		5.46 10.4 K	A/A
Sample Location Description			8.46/8.4/15/0	/ V / i ngaz
			71.95	
VIET LIDSTOCA	0.00 130 0			
Appearance of Stream or Lake	ODE WER WATER OF	DEEP, JAMPUN	VE " 3" PRION SIETH	E
	WILLOUS & GERSSES ON BA PERONI JUARANO KU PALI) KI	101C 1011H 8046	WHICH PRETITIES SEE	BOILDUSHIS
	of deriver everythe property	TOWN TO TE	of Low Coly	
Appearance of Sample				
Tyrona de di Saripa	CLEAR			
Condition of Station				
( ) s.	GOOD			
	•			
Organ Martin Confine				
Current Weather Condition PAR	LRY CLEUST 11800F	-Hoti		
1				
Previous Precipitation U 15	DAYSAGO RAUSO FOR 2 I	)A4;		
8		Remark	ye-	
2   2				
Z				
PEQUESTED PROJECTED 5				
STORE BY				
10 27 7 6 6				
2 4 4 3 3 3 3	10/			
VSIS BEST TARGET SECIMENT SECIMENT PAPELLY	360			
Takysi:	300	Sargie	Sonaire:	
ANALYSIS  K TAR  CGC /  SEO!  TARE	1026	Santie	Sgraure:	:

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL SURFACE-WATER SAMPLING FIELD DATA SHEET Page ___ o / Sie O Number S. 1st Cr. Hydrogeologist(s) GPP, TG Sample Numbers (series) Date SW08003 9/29/89 59272 Analytical Equipment Meter Cathorino Discharge (CFS) Measurement = Terre old Mater PH 700 - 7.01 # 22,6 0 1152 ,0814 cfs Bodoman phi 21 NA ☐ Omega pHH6SA pH 1000 = 10,05 x 21,1 .c 1152 Equipment Used Orion SA2SO Serial No. DH-48 □ Other Conductance Standard: 1434 NA 100 mm flund Serial No. 01578/ Moasured Value: 1200 untros/om at 24,3 °C 1305 Conductivity Meter: Staff Gauge Reading DX YSI Model 33 Calibrated Conductivity = Measured Conductance + (0.02) 0.20 □ Other (measured conductance) (25°C - Actual Templ): Serial No. 13076 Sampling Method umhos/on at 25°C Sample Type Dissolved Oxygen Meter: Tare Suspended TSI Model 51B GRAB Dissolved Oxygen Sed Serial No. _ NA Conductivity / TEMP Temperature Meter: Titration Results (Acid Concentration: □ 0.16, □ 1.5 Q[™] Beckman 675/18,3°C ☐ Other _ @ 1233 8.3 4.5 (7.0) MEGG. Serial No. 015781 TEMP DEDUCO, / TEMP / TIME #Clicks Fitration Equipment: 7.95 15.86 ☐ Geotech Parastatic Pump Color ☐ Georech 0.45 micron ther @1230 Sample Location Description 50 Sample taken a 13' westram of wer charmel a 10' with 1st Cr. 8" dup, cottonuceds along bank we various seasons and well with some oil spots on surface Appearance of Sample clear Condion of Station Ourient Weather Condition clear, 85°F, 1-3 mpt 5W WIND Previous Precipization ~ 17 days ago, rain for 2 days

ANALYSIS REQUEST

TORMAN

Sacres Square:

They Property

They Property

They Property

COMPREHENSIVE MON	TORING PROJECT/ROCKY MO	UNTAIN ARSENAL	
Six O Nerton / (ch. (	SAMPLING FIELD DATA SE		Pageof
SW S. ISE C.	Hydrogeologist(s) GPP, TG	Sample Numbers (range)	Date
08004			0/20/-
Analytical Equipment	Meter Calibration	Code (OSO)	89373 9/29/85
pH Motor;		Time Discharge (CFS)	Measurement #
Bedoman phi 21	p11700 = 6,99 x 29,1	- c 1328 . 12' = . C	nua e i un
☐ Omega pHH65A		Time Id - C	1492 cts   NA
Orion SA2SO	pH 1000 = 9,98 # 28,5	*C 1328 Equipment Used	Serial No.
Other		1 /17 - 4 1	Setta 140.
0/555	Conductance Standard:	_ unhos/on at 25°C   1000mm	1.00
Serial No. <u>015781</u>		Time 100 mm plu	me List
Conductivity Motor:	Moasured Value: 1450 untros/orn at 3	4 ·c 1330 Saff Gauge Reading	
XX YSI Model 33	Calibrated Conductivity = Measured Conductivity		
G 0.12	(measured conductance) (25°C - Actual Temp	11.	NA
Serial No. <u>13076</u>		1110	
Dissolved Oxygen Moter:	unhos/cm at 25°C _	Sampling Method	Sample Type
☐ YSI Model 51B	111	Time	suspended sed.
1 10	Dissolved Oxygen	GRAB	
Serial No. NA			
Temperature Meter:  A Beckman	Traion Results (Acid Concentration: 0.1	Conductivity / TEM	Ρ .
Other D			°C 1334
	pH 8.3 4.8 4	.5 (7.0) 790/28	,
Serial No. <u>015781</u>	7		umhos/cm
Fatration Equipment:	#Clicks		Issolved O, / TEMP / TIME
Geotech Parastatic Pump	St. / WA	38.26 32.8	NA-
☐ Geotech 0.45 micron ster	Color	@1335	1071
Sample Location Description 5.	1st on channel	is ~ 18" wide 1-2" de low flow with sand	mg/liter
core of months	sand Illater is along	1 wed 1-3" d	us with vegetation
Soon of mesery of	vans, with the steam	sac gras well sand	y chances bed
Appearance of Stream or Lake			
clear			
Appearance of Sample			
dear			
Condition of Station			
CO CALCA CA SALOA			
2000			•
	•		
Current Weather Condition			
don hot a	5° P :1-3mph SE W	Just	
Sect, sur 3.	51 1-3mph 32 a	TUKE	
	•		
Previous Precipitation			
~17 days ago,	7 200		
1017 ways cago,	x acys of nan		
9			
E		Remarks:	
3			
Reauestep et vent		1 1 1	
四四四十二			
1312 2161			
TARGET BECKEL			
1 MOLAK			
TAR GC/ SEO!		Sampler Sonar er	
<del>t</del> ll		Sampier Sonature Pudlik	/
		I I July rud Di	
DPM130		0	,

	ITORING PROJECT/ROCKY MOUNTA SAMPLING FIELD DATA SHEET			Page / of /
Sie O Number				
SW 11001	Hydromokojisus)  L. Brandland 1100  T. Hadban 1100	1-123	036 - K 2319 Date 0 - 2369 6 - 2451	89116
Analytical Equipment	Meter Calibration 15.8 20		Discharge (CFS)	Measurement #
pH Motor: El Bockman phi 21	p11700 = 7.03 = 4917 C		.128	
☐ Omega pHH6SA	pH 1000 - 10.11 a 15.6 -c	0912	Equipment Used	Serial No.
Orion SA250				
Serial No. 0145735	Conducance Standard: 1000 unit	Time		ED FLOWE NA
Conductivity Meter:	Moosured Value: 750 umbos/om at 16 .	c 0913	Staff Gauge Reading	
Ø YSI Model 33 □ Other	Calbraed Conductivity & Measured Conductance + (measured conductance) (25°C - Actual Temp!):	I	0,7	23
Serial No. 15592	885 unthos/orn at 25°C 09	1/3	Sampling Method	Sample Type
Dissolved Oxygen Meter:		Time		
☐ YSI Model 51B	Dissolved OxygenNAmg/ at	-c	GRAB	STSW
Serial No.			Conductivity / TEMP	
Temperature Meter:  D Beckman	Titration Results (Acid Concentration: 0.16, 0	1/6		0
Other	рн 8.3 4.8 4.5	(7.0)	15 / 1	umhos/cm
Serial No. 0/45735 Entration Equipment:	#Clids Missed 49 51		PH TEMP Dissolver	10, / TEMP / TIME
Geotech Parastatic Pump	color light pints		8.61 12.0	
☑ Geotech: 0.45 micron £ter	PINE	1	1-6	mg/liter
Sample Location Description	Peeria gazing Station. Scalinet sumple tate	m. w	ctor sample	tatten from
	Dily film on surfaces have formed app	ace of	water u 5' down str	in the toomy
Appearance of Sample 5/15	ntly cloudy			
Condition of Station New	1/=10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			+
Appea	V-notch metal us	is pu	ete mstalled	last week
Current Weather Condition A	and liet alle		c c: + 1	2:
1	pax 60° F, partly	cray	15/4/	THEE FLOW
No	th west			
Previous Precipitation / CD	mojor precip in les	7 20	neck s. Due	and very
100	wat.	,	o - is. Ovy	
2 4 4		Remark	ks: pt water	ued is doop
PEQUESTE NS NS NS Thirt	7	a	fter tating 5	ample stabilized
TARGET GC/MS SEOIMENT Dup Ton	3		eductivity	T. Very Lew
TARGET TARGET GC/MS SEOIMER Dup T	4			
TAR GC SEO	4			
3/1/1/1/		Sample	Spare:	, , (
X 7 1 1 1	M		Mu Tra	well-d

Sie O Numbor  5 W   1 O O    Analytical Equipment  pH Motor:  13 Beckman phi 21  1 Omega pHH65A  1 Orion SA2SO	Hydrogeologist(s)  TK, UE  Meter Calibration						
Analytical Equipment pH Motor: 130 Bedoman phi 21  Omega pHH6SA	JK, LE		Sample Numbers (ran	Gs)	Date		
pH Motor:  Q Beckman phi 21  Omega pH16SA	1 44 . 00 .	, -	K7468-1	K7488		89130	5/10/8
D Bedoman phi 21 Omega pHH-6SA			Time	Discharge (CI	-S)	Me.	asurement #
☐ Omega pH16SA	p11700 = 7.00	2 at <u>17. 7</u>	c 1725	N.	4		NA
Orion SA2S0	100	a 176	Time				
C 01			c 1725	Equipment Us	<b>6</b> d	s	erial No.
Other	Conductance Standard:	1000	umhos/om at 25°C	1	IA		NA
Serial No. <u>0145035</u>	87	-	7/ 170/	C4 C 0			
Conductivity Motor: 20 YSI Model 33	Moasured Value: CF	2 untos/on at _0	21 ·c 1724	Staff Gauge R	eaong	56'	@ 1540
Other	Calbrased Conductivity & (measured conductance)		11.	SIAKI		1101	@ 1663
Serial No. 15596	43.0	•	THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	Sampling Meth	H Q	1,78	e 1553
Dissolved Oxygen Meter:		mhos/om at 25°C _	1/2/ Time	Sampling Meth	03	Sample Type	
☐ YSI Model SIB	Dissolved Oxygen 1	JA mi m		GRA	B	5730	(2)
Serial No	Carrier Caryon	ng, at				1 2,00	
Temperature Meter:	Titration Results (Acid Co	oncentration: 0	.16, 🔲 1.6)	Conductivity /	· A	1700	
197 Beckman □ Other		10	1.	100	62	1 6	
Serial No. 01450.35	рн 9.3	4.8	4.5 (7.0)				umhos/cr
Serial No. 01730.37	#Clicks			PH TEN	Ussowed	0, / TEMP	1 TIME
Z Geolech Parastatic Pump	Color			18 16 16	,4 NA	1	
70 Georech 0.45 micron fizer ample Location Description				10.10			mg/ker
ondion of Station	EVERY MUN		Ur Vē	DrIS A	VD 8RC	BANIC 1	MATERIALS
ALL FACE	LITZES SEE	M IN 6	SOOD SHA	PE.			
unent Weather Condition		7					
urrent Weather Condition  OOOL , CLO	DUDY, WIND						
urrent Weather Condition  OOOL , CLI  LIOHT ST	OUDY, WIND PRINKLES 1	NOW WH	ICH FOLLO	WA HE	AVY FAS	ST RAI	rJ
urrent Weather Condition  OPOL , CLO  LTOHT ST  revious Precipitation	PRINKLES 1						
urrent Weather Condition  OPOL , CLO  LIGHT ST  revious Precipitation  AS WE		SITE A	A FAST AN				

COMPREHENSIVE MON	IITORING PROJECT/ROCKY MOI SAMPLING FIELD DATA SE	UNTAIN ARSENA	<b>N</b> _		1
Sie O Number				Pa	agei
SW 11001	Hydrogeologiss(s) GPD, SEE, TE	Sample Numbers (and		Date 89220	9/22/22
Analytical Equipment	Meter Calibration	L4193 - L4	Certa 1000	1	9/27/89
pH Motor;	M1700 = 7.06 a 25,5		.0643	CAS 89 278	Measuremen: :
© Bockman phi 21 ☐ Omega pH+16SA	1	Time	-Wi-	,05	NA
Orion SA250	pH 10.00 = 10.02 at 24.7	·c 0930	Equipment Used		Serial No
Other	Conductance Standard: 1434				
Serial No. 015781		Time	100 mm long &	broat flower	NA
Conductivity Motor: TOT YSI Model 33	Moasured Value: 1200 untroston at 2	4 ·c 0922	Staff Gauge Reading		
Other	Calibrated Conductivity = Measured Conduct	200 + 10.02	0.72 6	1 0025	
Serial No. 13076	(measured conductance) (25°C - Actual Temp	)): Time	0.1a G	0825	
Dissolved Oxygen Meter:		0722	Sampling Method	Sample Ty	pe 27 89307
☐ YSI Model 51B	Dissolved Oxygen	tere	GRAB	DITO	TH TK 89307
Serial No	costiled caypen	~~		1 31.5	iw .
Temperature Meter:	Titration Results (Acid Concentration: 0.1	16, 🛘 1.6)	Conductivity / TEM	P	
Other			130/16		
Serial No. <u>015781</u>	pH 8.3 4.8 4	.5 (7.5)			under a
Fittration Equipment:	#Clicks		1 +	some O, /TEM	) /TIME
Georech Orts moran ter	Color		7.43 15.2°C	NA	
Sample Location Description 8/	nm daginas dital		\$ 0924		uāzs.
same debrial	to the world of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	5-6 weds	and 5" deep	0, 1 <i>845</i> G	low
- cupus (a	nm drainag ditch, n Juminum, paper, plasti	c, dead fish	1. 2")		
Appearance of Stream or Lake S	tream is slightly of	racie url	to liter a	1 ~1	·
			out of		
					,
Appearance of Sample opog	h A				
. 9209					
					,
Condition of Station good					· · · · · · · · · · · · · · · · · · ·
9000					
	•				
					:
Current Weather Condition	11. 1.	- /			
paring	cloudy, ~68°F, a	ound 1-3	SW		
Previous Precipitation					
rain for 2 day	12, 16 daza ago				
0	a, is tage				
2		- Ference			
Keaueste Fr			•		
\$ 1, 1, 5					
D					
TARGET ROCKELLYSIS R					•
15 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17 SEC 17					
TAR GC SEOI		Saroler	Sgraure:	4	
1 X×X		TT 1	nes Pudli		
O. 4			/		

SURFACE-WATER	ITORING PROJECT/ROCKY S <i>AMPLING FIELD DATA</i>	MOUNTAIN ARSENA	V.	0 1 1
Sie O Number	Hydrogeologist(s)			Page 1 0
6.11000		Sample Numbers (and Ka370 - Ka	2403	Date I I I
Sw 1100 2	KH TB 1K	FB = K2404-	K2427	89116 4/26/89
Analytical Equipment	Meter Calibration	Time	Discharge (CFS)	Measurement :
pH Meter:	pt 700 = 1.00 at 26	.2 c N59		
59 Beckman phi 21 ☐ Omega pHH-6SA		Time	, 365	
Orion SA2SO	pH 1000 = 10.02 at . 24	1.6 0 1205	Equipment Used	Serial No.
Other	Conductance Standard: 100	O umhos/cm at 25°C	Current t	625 PYGMY NN6349
Serial No. <u>0145035</u>		Time		625 PYGMY NN6349
Conductivity Meter: 50 YSI Model 33	Measured Value: 900 unthos/on a	1 <u>25                                   </u>	Staff Gauge Reading	,
Other	Calibrated Conductivity . Measured C	onduciance + 10.02	NA	
Serial No. 15596	(measured conductance) (25°C - Actual	Temp)): Time	NA	
Dissolved Oxygen Meter:			Sampling Method	Sample Type
☐ YSI Model 51B	NA	at NA -c NA	GRAB	STOAM
Serial No.	Dissaved Oxygen mg/ ;	a 1011 6 1042		STRM
Temperature Meter:	Titration Results (Acid Concentration:	□016 <b>M</b> 16	Conductivity / TEM	
D Other	,	205, (1)	200	25.5°C
	pH 8.3 4.8	4.5 \((7.9)	220 Munos	S/cm =======
Serial No. 0145035	#Clicks 17 56	57 2534	PH TEMP O	Sources O. / TEMP / TIME
Fitration Equipment: 18 Geotech Parastatic Pump	1	1/23	987 seh 89	NA
(SD) Georech 0.45 micron filer	color clear pine	piny clear	1,96 26.2	101
Sample Location Description		1 2 6 600	1116 4.2:	ngker .
20 Feet	WEST CUPSTRE	7444 7 7 7 6	20:21	
	WI SIFE	AM) OF	DKIVGE	
Appearance of Stream or Lake				
LOW FLOW	, CLEAR WATE	R. LOTS	OF GRAV	EL IN SEDIMENT
		·	6.410	
Appearance of Sample				
LIGHT BROW	DIT.			
PIONI DICOU	O.V			
Condition of Station				
1 000				
600D				
0		·		
Current Weather Condition				
CUNNY A	LEAR, 100 F	LT BRET	EZE OF	-SMPH
	1			
Previous Precipitation				
O-TRAIF	4 DAYS AGO			
	. ,,,,,			
P 30		Remark		
REQUESTED NS	4	F. F.		K (DISTILLED
13 1 1		\	ADE BOW	
四四四十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二		pen	Ellip Poll	resty into bothers
12 1 2 2			20 POULED	11.76-
TARGET GC/MS SECIMENT		hand	pottos lott u	resty into bothles
TARE SEOU SEOU		Samini	Sonating /	16
4XXXX			1 00	Maril
L KAN I IN			M C TI	VIV//

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL

		IITORING PROJECTIROCKY MOI SAMPLING FIELD DATA SH		V.	Page	101
	Sie O Number	Hydrogeologist(s)	Sample Humbers (rang	(3)	Date _	
	500 11002	SCG, TG, 6PP	44217-	L4236	89270	
	Analytical Equipment	Meter Calibration	Tere	6: 1		surement :
	pH Motor:  Discolumn phi 21	pH 700 = 700 at 25.5		0000	16	
	☐ Omega pHH6SA		Time	Hass		UA
	□ Orion SA2S0	pH 10.00 = 10.02 at 24.	311	Equipment Usec	Ser	ial No.
	Other	Conductance Standard 1434	unhosem a 2000	200 Min 23	- THRONTED ALLUNE_	NA
	Serial No. 016781 Conductivity Meter:	Measured Value: 1200 untos/on at 20		Staff Gauge Reading		
	DAZI Model 33	Calibrated Conductivity . Measured Conductivity			, Bu	BBLE - NE
	Other	(messured conductance) (25°C - Actual Temp	o)): Tere	5-5-14-1	<b>₹</b> •	= 0,35'
	Serial No. 13076 Dissolved Oxygen Meter:		0922	Sampling Mesos	Sample Type	11 32 500
	☐ YSI Model 518	Dissolved Oxygen NA mg/ at 1		GRAG	DIC	rt -
	Serial No. MA	permission oxygen 10/1 mg/ at/1/	+ +	Conductivity / TEM:	e 1 19172	<del></del>
	Temperature Meter:  [1] Beckman	Titration Results (Acid Concentration: 0.	16. 🗆 ැද	condocavily / [ _ v · ·	i .	
	☐ Other	рн <b>9.3 4.8</b> 4	1.5 (2.0)	165/12=	1.957	una.c.
	Serial No. 016781	#Clids		PH TEMP :	\$57 0,/TEMP/	TIME
	Fittration Equipment:  Georech Parastatic/Pump	MA		007 11.70	111	
	Sample Location Description	Color / V / I		8.87 16. PC.	- NH	- ಮ್
	Condition of Station  Outcome Weather Condition	CONCRETT BANKS. CHANNEL IME, MOSS, ALGER GROWN ON CA	#175 SACCY BO	Man with Est Decest ==	ETT FREKT WITH	Mess de sur g
	Previous Precipitation UN 1/67	DAYS AGS RAINCO FOR 2 DA				
		S TO TOTAL PORTOR FORE & CAN				
1	TARGET  GC/MS  SEOIMENT		Sample	r Signature:		
FO	PM130			Airis-	-danny	
_	- <del>-</del>				_	

	TORING PROJECT/ROCKY MOSAMPLING FIELD DATA SI	_	L .	Page _ ( of _/		
Site 10 Number Uvalder Disch C	Hydrogeologist(s)	Sample Numbers (rang	e) :	Date		
12001	L.B., 56., K.H., J.K	K1826 - KI	846	89110		
Analytical Equipment	Meter Calibration	Time	Discharge (CFS)	Measureres #		
pH Motor:	pH 7.00 = 7.01 at 22.6	_ ·c _ 735	325			
☑ Beckman phi 21 ☐ Omega pHH-65A		Time				
☐ Orion SA250	pH 10.00 = 10.05 at 21.8	_•c <u>955</u>	Equipment Used	Serial No.		
Other	Conductance Standard: 1000	umhos/cm at 25°C	Burtey No	nut nde NN 5349		
Serial No. 0 145035	440		Staff Gauge Reading			
Conductivity Meter:	Measured Value: 680 umhos/cm at 2	- <u>-</u> •c / / -				
☐ YSI Model 33 ☐ Other	Calibrated Conductivity = Measured Conduct (measured conductance) (25°C - Actual Term	p)): Time	No stall	at this sistem		
Serial No.	932.8 umhos/cm at 25°C	956	Sampling Memoc	Sample Type		
Dissolved Oxygen Meter:		Time				
☐ YSI Model 51B	Dissolved Oxygen NA mg/ at	•c	6KAB	Ptch		
Serial No. <u>1559</u> C	Dissover Oxygen mgr az					
Jemperature Meter:	Titration Results (Acid Concentration: 0	0.16, 10 1.6)	Conductiva			
Beckman	8.3	, 20,	-	750 / 15,8° =		
Other	рН — <b>Э.</b> 4.8	4.5 (7.0)		amos/on		
Serial No. 0145035			pH _ Des	soked O ₂		
Fitration Equipment:	#Clicks — 230 2	.32	2	i 1		
Geotech Parastatric Pump	color - light p	en to	8.19/1386	NA		
Geotech 0.45 micron filter	1 1	1	,	चतुर्वस्य		
Appearance of Stream or Lake ( weeds before of  of Silt. Long.)  Appearance of Sample	ast branch of Uvo In W-5 uvalder In., , current meter vending Ditch initrally full current vending. Bot Morning water 15 C	ed tund tom of dite lear	ble ce = eds.	. Removed Links		
trash alex	•		e piens.	Occasional		
	ment Weather Condition Parally Cloudy, 80° F					
Previous Precipitation Surv	w foll 11 days varm last scu	prevers,	s s	es pres-p		
1 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 200 / 20		Sample		milled		
XPM130	<del></del>	<del></del>				

	BAMPLING FIELD DATA SI		1_	Page / of
Sie D Number	Hydrogeologist(s)	Sample Numbers (range	e)	Date
12001	S GODBERG G. PUPGK T. GEISGLMAN	L4237 - L	טיז ריד	89268
Analytical Equipment	Meter Calibration	Time	Dscharge (CFS)	Measurement #
pH Motor:	pH 700 = 6.99 # 30.4			872/50
□ Viseckman phi 21 □ Omega pHH6SA		Time	70 27	·27 NA
Orion SA250	pH 10.00 = 9.98 at 28.4	1 ·c <u>1514</u>	Equipment Used	Serial No.
Other	Conductance Standard: 1434	umhos/on at- <del>25-0</del>	NA	NA
Serial No. <u>015781</u>	120. 2	Time 21.6	Szf Gauge Reading	
Conductivity Meter:  ST Model 33	Measured Value: [29] untros/on at 3		Sal Gauge Reading	
Other	Calibrated Conductivity = Measured Conduct (measured conductance) (25°C - Actual Term	~!!·	- /	VA
Serial No. 13076	1073 21.6 untos/om at 25°C	1516	Sampling Method	Sample Type
Dissolved Oxygen Meter:				_ DTCH
	Dissolved Oxygen NA mg/ at A	JA ~ NA	GRAB	- Drich
Serial No. NA Temperature Meter:	Trazion Results (Acid Concentration:	0.16, 🗆 1.6)	Conductivity / TEM	P
☐ Beckman	Than Than (All or the Park I have	,16, [] 1,0)	500 /	199 / 1518 umbosi=
Other	рн 9.3 4.8	4.5 (7.0)	· ·	
Serial No. <u>015781</u>	#Clicks NA		PH TEMP C	booker of /TEMP /TIME
Fitration Equipment:  Geoled Parestatic Pump Geoled 0.45 micron liter	Color		0,7 166	. 7 K
Sample Location Description	30 ft UPSTREAM OF SAM		P.63 16.6	mg/iner
	OUS FLOW, GLASSY BANKS, G.	RASS 7 PLANTS CW	BURN STANGE	t English
Appearance of Sample	CLEAR WI SOME ORGANIC-	Debay Flower	x.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Condition of Station	1			
	OK			
Current Weather Condition }	tot. u goof CLEAR			
	BO TENTE			:
Province Opening				
Previous Precipitation	MIYDAYS AGO, HEAD	NA BAIN FOR	2 DAYS	
3		Rena	ks:	
20				
Peaueste et nevt				
TAR GC / SEO				
TARG GC/ SEO!		Commin	r Sgrature:	
\$ 7	<del>                                     </del>		May Gol	1 "
		1 1 1 1 1 1 1 1 1 1 1 1	DANG YAY	(* 1 to 8 )

COMPREHENSIVE MON SURFACE-WATER S				ਹੈ		Page	1 01
Sie O Number	Hydrogeologist(s)	Same	e temes in	***	Date		
SW12002	JK, BS	K	1847-	K1867	8913	35	5/15/89
Analytical Equipment	Motor Calibration		Teme	Osdange (CFS)			urement :
pH Motor: Bedoman phi 21	pH 700 = 7.03 =	/5.3 €	1820	NA			WA
☐ Omega pHH6SA ☐ Orion SA2S0	pH 10.00 = 10.12	* 15.1 ·c	1821	Equipment Uses		Seri	al No.
Other	Conductance Standard:			NA			NE
Serial No. 0/44750			Terres				707;
Conductivity Motor:  YSI Model 33	Measured Value: 825 um	hos/on at <u>16</u> .	c/820	Salf Gauge Reading	(0.	ss Qui	2005 = 400
Other	Calibrated Conductivity = Me (measured conductance) (25°C	- Actual Terroll:	T	NONE	INSTAL	LED	ATSITE
Serial No. 14051	973.5 unhos	cm at 25°C 18	22	Sampling Method		le Type	
Dissolved Oxygen Meler:  [] YSI Model 518							r
	Dissolved Oxygen/UA	mg/ at NA	~ MA	GRAG		DICH	•
Serial No	Titration Results (Acid Concent	nin: Das s	7.45	Conductivity / TEM	P		
Ø Beckman ☑ Other	THE CONTROL (ACC) CONTROL	radon: 10.16, E	] 15]	96 "	116	16	0
	рн 8.3	4.8 4.5	(7.£);	25 pm			
Serial No. 0144750 A Faturation Equipment:	#Clicks			PH TEMP 5	Cooked 0, /T	Emp /	TIME
Geotech Parastatic Pump Geotech 0.45 micron ther	Color			7.57 9.6	NA		
Sample Location Description  SAMPLE FROM							THE
Appearance of Stream or Lake LOW - MODEL  Appearance of Sample CLB VOM, SI		9 FATR	4MOUNT	OF OREF.	IIC M	PTER.	AUS:
Condition of Station							
NO STATIO	$^{\prime\prime}$	•					
Current Weather Condition							
RAINING, C	COOL						
Previous Precipitation							
21/4" RAIN	IING AS WE	= SAMPE	E				
TARGET GC/MS SECIMENT			Sarow	Sonature:			
PM130	1 1 1 1 1		- 4	Som for	100	=	
			1				

	ITTORING PROJECT/ROCKY MOUNTAIN ARSENAL  SAMPLING FIELD DATA SHEET  Page / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /					
Sie O Number						
RODTEUN CLUB POND	K HEDBOX K1807 - K1401					
5WQ12003	L. BROWN 180 K 1942 - K1951 89110					
Analytical Equipment	Meter Calibration Time Discharge (CFS) Measurement =					
ph Motor:  10 Bedoman phi 21	pH 700 = 6.94 a 27.6 C 1157					
Omega pHH6SA	1					
Orion SA250	pH 10.00 = 9.99 at 87.5 °C 11.58 Equipment Used Serial No.					
Other	Conductance Standard: 1000 umhos/cm z 25°C NA					
Serial No. 0145035	/ologo tene					
Conductivity Motor:  EVYSI Model 33	Measured Value: 7.63 unitos/on at 30 °C 1204 Staff Gauge Reading					
Other	Calibrated Conductivity = Measured Conductance + (0.02 (measured conductance) (25°C - Actual Temp)): Temp					
Serial No. 15596	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Dissolved Oxygen Meter:	909 unitos/om at 25°C 20°4 Sampling Method Sample Type					
⊕rsi Model 51B	Dissolved Oxygen 5.9 mg/ at 25 c 1210 GRAG LAKE					
Serial No. 13634	17000					
Temperature Meter:	Titrasion Results (Acid Concentration: 0.16, 1921.6) Conductivity / TEMP					
Other pt4603	1202					
Sejial No0145035	pH 8.3 4.8 4.5 (7.0) 1200 mentos / 22°C pH TEMP Description Of TEMP / TIME					
Patration Equipment:	#08ids — 298 308 31 7.50					
☑ Geotech Parastatic Pump						
Sample Location Description	COLOR - LINK PINK GREEN 1201 19.3°C 3.6 /200/1210 TOGGE					
Appearance of Street of Marsh Reeds. About 20FT FROM WATERS EDGE, ERWINDED BY Appearance of Sample  V. SLIGHTLY BROXDLY, A LITTLE BIT PERTICULTER.						
Current Weather Condition	OK.					
Previous Precipization	780F, SL. CLOUPY SCHEET BREEZE					
THE PROPERTY OF THE PARTY OF TH	II DAYS AGD SNOW					
	VERY HOT LAST Z DAYS (>30°F)					
4NALYSIS REQUESTED  C TARGET  GC/MS  SEDIMENT	Remarks: STOCC					
0004420	Drivan Principal					
OPM130						

	ITORING PROJECT/ROCKY MOUNTAIN ARSENAL  SAMPLING FIELD DATA SHEET  Page
Sie 10 Number	Hydrogeologist(s) Sample Numbers (args) Date
SW12004	KH SG LB K1775-41804 89109 =
Analytical Equipment	Motor Calibration Tree Discharge (CFS) Measurement :
pH Motor:	pH 700 = 7.01 = 20.7 0 BHU NA NA
Ø Bedoman phi 21 ☐ Omega pHH-6SA	inte 147
☐ Orion SA2S0 ☐ Other	
	Conductance Standard: 1000 umhos/cm z zicc NA NA
Serial No. 0145035 Conductivity Meter:	Measured Value: 750 umbos/om at 22 °C 1342 Saff Gauge Reading
IZI YSI Model 33	Calbrased Conductivity = Measured Conductance + (D.C.2)  N.A.
Other	(measured conductance) (25°C - Actual Temp)): Time
Serial No. 15596 Dissolved Oxygen Meter:	
IZI YSI Model 518	Dissolved Oxygen 7.9 mg/ at 18.5 to 1349 GRAB STSW
Serial No. 13634	5. 5 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Temperature Meter:	Titration Results (Acid Concentration: 0.16, \$1.5)
Other	PH 8.3 4.8 4.5 (7.0) 250 18°C
Serial No. 0145035	makes NA 108 76 6 PH TEMP DESCRIE O, / TEMP / TIME
Fittration Equipment:	7.16 23.7 77 (/:8/°) 125=
Geotech 0.45 micron Ster	coo NA pink pink green 7.16 23.72.7 mg/ 18.6°C 1352
Sample Location Description 20-30 feet No	ORTH OF STORM SEWER; JUST PAST STALNANT WATER
1	(WHICH CREATED STAGNANT POOL)
Appearance of Stream or Lake	
BLACK IN O	COLOR, OILY SHEEN ON SURFACE, LOTS OF TEXH
IN STORM	SEWER INCLUDING OIL CONTAINERS, STYFEFORM, ALUM. CANE
Appearance or Sample	
CLOUDY, BA	COWN ; FLOATABLES - ORGANIC AND INDREAMIR MATTER
Condition of Station	CACH MARKET CONTRACTOR CONTRACTOR
į –	RASH, TUMBLEWEEDS, ORGANIC MATER TO WATER TO WATER TO WATER
THROUGH SEDIT	19/89 CEMENT TUNNELY BUT WATER 15 FLEWING - NOER TUNNEL
Ourrent Weather Condition	(10) DS: Jicht howers (0:5 = 20), 76° =
SUNNY, MIGH	CLOUDS; slight breeze (0.5mon); 75°=
Previous Precipitation	
10 DAYS 6	PREVIOUSLY: SNOWFALL
5	Ferrare:
Resueste et ns nevt	
8 1 2	
TARGET GC/MS SEDIMENT	
ANALYSIS X TARG X SEOL	Sarow Sonature:
FIVE IVE	71.70 4 4 6614

SURFACE-WATER S	SAMPLING FIELD DATA SH	EET		Page	of
Sie 10 Number	Hydrogeologist(s)	sauces (range	1	Date	
5W12004	SUSAN GOLDBERG GREG FUSUK TERRY GOSELMAN	<u>-4354-19</u>	4270	89268	
Analytical Equipment	Meter Calibration	Time	Dozze 1055)		Europet =
gH Moder:  (ID Beckman phi 21  (I) Omega pHH-6SA	pH 700 = 1.99 = 28.3	Time	1 STA	GNANT	NA
Orion SA250	рн 10.00 = <u>9.98</u> <u>ж 28.3</u>		Equipment Used	5	ens No.
Other	Conducence Standard: 1434	_ vrn∞cn z 2546   ime	NA.		N.A
Serial No. <u>(15.7%)</u> Conductivity Meter: (D/YSI Model 33	Messured Value: 1290 untos/on a 30	= 1457	Sal Garpe Feeding		
Other	Calibrated Conductivity = Measured Conduction (measured conductance) (RSAG- Actual Terror):	i	Samoin Maria		
Seral No. 13076 Dissolved Oxygen Meter:	1073 umbostom at 25°C	1457	Sampling Metros	Sample Type	JF 130
YSI Model 518  Serial No	Dissorved Oxygen NA mg/ at 1	<u> </u>	GRAB	STS GRU	:W <del>=</del> -
Temperature Meter:  D Beckman AS	Terzion Results (Acid Concentration: 🗆 0.55	E is	Coracing / TEM	•	
1 Other 015	рн 9.3 4.8 4.	5 (7.0)	253/22	11400	umnosen
Serial No. <u>015781</u> Fetration Equipment: NA	#Cids NA		i i	ssoked O, /TEMF	TIDE
Geolech Parastatic Pump Geolech 0.45 micron faer	Coor		14 5	N.A	
Sample Location Description		<u></u>	1-50		
STAGULANT MU STAGLUS, F	OF CHINERY, WATER 1500 LCKY OIL SUBSTANCE FLORING INCOME LONGING ORGANIC MATERIAL, SE-	ELECTION ON E	عدد تعمد ال	ERIS COG	
Condition of Station	DV.				
	DK			e	
	•				
Current Weather Condition	LEAR HOT, APPROXIMATELY	75==-80°F			
Previous Precipization 14	Days AGO RAINED FOR 22	FRE WATELY	25		
	<u>'</u>				
VSIS REQUESTED TARGET GC/MS SEDIMENT		Remarks	s:	T-NO DS-	1455 -
TAR GC SEO(		Sampler	50320	10	
-OB4430			1152 - 110	ivey	

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL

	TORING PROJECT/ROCKY MOU		1	_	
Sie D Number	SAMPLING FIELD DATA SF Hydrogeologisu(s)	Sample Humbers (range	0)	Date	age/_ o/_
SW/2005	LB, KH PW, BS SG, JK			8910	7
Analytical Equipment	Meter Calibration	Tene	Discharge (CFS)		Measurement #
pH Motor: 1⊠ Bedoman phi 21	pH 700 = 6.99 = 26.8	~c <u>/340</u> Time			NO
☐ Ornega pHH-65A ☐ Orion SA250	pH 10.00 = 10.00 a 26.5	_c_1342	Equipment Used	١.	Serial No.
Other	Conductance Standard: 1000		Pramy Eu	and mely	+625 NO. NILE349
Serial No. <u>0145035</u> Conductivity Meter:  180YSI Model 33	Measured Value: 560 umhos/om at 2	Firme 6 •c 1345	Saff Gauge Reading	<del></del>	A 1401
Other	Calibrated Conductivity Measured Conduct (measured conductance) (25°C - Actual Temp				
Serial No. <u>15596</u> Dissolved Oxygen Meler:	<u>677</u> umhos/om at 25°C	1410	Sampling Method	Sample	Туре
YSI Model 51B Serial No.	Dissolved Oxygen//Amg/l at		GRAG		TRM
Temperature Meter:	Treation Results (Acid Concentration: 1976)	16, 🛭 1.5)	Conductivity / TEM		
Other	рн 8.3 4.8 4	1.5 (7.0)	690/19		neced
Serial No. <u>0145035</u> Fittration Equipment:	#Olids 153 2258 2	334	PH TEMP 3	0,/TG	np / TIME
15 Geotech Parastatic Pump 15 Geotech 0.45 micron liter	color light parts do	th	8.9 18.5	NA	
Sample Location Description				<u></u>	nglier
36	emple dates in m	otion of	Zonne /	5-245-46	126
Appearance (Stream of Lake			·		
	stream bottem :	plastic +	esh in	HreaM	<i>و د</i> ن
Appearance of Sample			,		
	clean to very	124+ 6	awy		
Condition of Station					
al	1 equipment fu	redicas al.	- bubije	- cd	stilling "
<i>_</i>	•			e et te ve	> .
Current Weather Condition	Land to partly	this do	c1,- b+ =		
	lear to partly	Air trong	2 - 70 F	72 -	
		· ·			
Previous Precipitation	days preversty	had a	300-,-	الكارية	
क्षान्त्र र		Ferrer	ks:		
Requente					
1 1 1 1					
TAR TAR SEO!		Sarroe	Sonature:	المستأل	
			1/4 Dr.	<b>ب</b> سروودر	

	IMORING PROJECT/ROCKY MO S <i>AMPLING FIELD DATA</i> S		AL	Doo	
Sie O Number 5, VVALPA	Hydrogeologist(s)	Sample Numbers (ran	03)	Date	e _/_ oʻ _/
SW12005		K7510.	_	89130	5/10/89
Analytical Equipment			Discharge (CFS)		feasurement =
pH Motor:	Moter Calibration  pH 7.00 = 7.02 at 17.7	7 ·c 1725	NA		NA
☐ Omega pHH-6SA	pH 10.00 = 10.09 at 17.		1 , .		Serial No.
Orion SA2S0 Other	Conductance Standard: 1000		NA		NA
Serial No. 0145035		Time			7077
Conductivity Meter:  [2] YSI Model 33	Measured Value: 825 umbos/on at 6		Staff Gauge Reading	SIE VEN	15
Other	Calibrated Conductivity = Measured Conductivity = Measured Conductance) (25°C - Actual Tele	luctance + (0.02 http://ime	4.58		1,35
Serial No. 15596 Dissolved Oxygen Meter:		1727 Toe	Sampling Method	Sample Typ	e pk 89/3
YSI Model 51B	Dissolved Oxygen <u>NA</u> mg/ at _		GRAB	2-1	PM
Serial No			Conductivity / TEM.	F 1 101	NI
159 Beckman	Titration Results (Acid Concentration:	]0.16, [] 1.5)		@ 21°c	
1 Other	рн 8.3 4.8	4.5 (7.0)			<u> </u>
Serial No. <u>0/45035</u> Fittration Equipment:	#Clids		PH TEMP	O./TEMP	TIME
12 Geotech Parastatic Pump 12 Geotech 0.45 micron ther	Color		840 18.4	NA	
Sample Location Description	as atomic satisfies	10770 110		200-106 118	A
FS CLOSE	OF NOTCH IN WEFR, W	PAIPR 13 NUT	16TALLY =	icinino w.	OTH BI
Appearance of Stream or Lake					
	WITH A FAIR AME ON SURFACE	DUNT OF DE	-BRIS ANC	CRENICS	· 476=
Appearance of Sample  BROULIA) MU	IRKY LOOK. WITH	- DERAKE A	1010 0065	i itreo	MINE
	200721 002171	DL DR (S Z	ND ORGES.	E ZWIEK	
Condition of Station					
STATION IN	GOOD SHAPE, STIL	LLING WELL	- INLETS 3	- EL TIME	LAG
	•	RELATIVE	TO CHART	PEADINES	
Current Weather Condition					C/ 35 =
COOL, PARTL	4 ELOUDY, LT WIND	•			JC 87 =
STORN W	HICH CAUSED HIGH FL	ows 445 =	SS FD 70	= + CRTH	WE-
Previous Preopitation					
MAY HAVE	EBEEN UP TO 1/4	OF FLIN	APPROY =1-	13-81 /	A Hotel 25th
B		· Seria	ris:		
Reduester M.S. New T.			NO DISC- =	i == TICEN	
\$ F N 5			LOWERINE	- EETU	RU 20-1
1.61			COMPLETE		
3 4 3 3			AND PRE	Zin SHIPP	ing
ANALYSIS X GC SEO	<del>                                     </del>	Samo	Sonatre:	1 1	- <del> </del>
			Som:	Letner	n
DPM130					

	SAMPLING FIELD DATA S		U.	Page <u>/</u> of _
Sie O Number	Hydrogeologist(s)	Sample Humbers (range	) (35)	Date
5W12005	SEG, GPP, T.G.	14291- 1	4314	89269
Analytical Equipment	Meter Calibration	Tere .	Discrete (CFS)	Measurament #
pH Motor: CD Bedyman phi 21	pH 700 = 7.01 = 208	_ = 090c		81278
Omega pHH-6SA		Terre	+6415	·30 1.4
☐ Orion SA250 ☐ Other	pH 1000 = 10.05 a 21.1		Equipment Used	Sera No.
	Conductance Standard: 1434	umhas/cri. <del>z. 25.0.</del>	200 mm LONG	THEORED FLUNE NA
Serial No. <u>015787</u> Conductivity Motor;	Measured Value: [100] umtos/om at-2	Time 1 - ACS &	Staff Gauge Fleading	
VSI Model 33			•51'4	
Other	Calbraied Conductivity = Measured Condu (measured conductance) (25°C - Actual Ter	wii	671	@ 0931
Serial No. 13076	1/13 21.6 untros/on at 25°C	0909	Sampling Metrod	Sample Type 7 89300
Dissolved Oxygen Meter:  U YSI Model 518				STRM
0 · · · · · · · · · · · · · · · · · · ·	Dissolved Oxygen MA mg/ at	NX ~ NX	GRAB	DRU
Serial No. NA Temperature Moter:	Titration Results (Acid Concentration:	26 5 -	Conductivity / TEM	P
© Beckman □ Other <u>DY</u>	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	0.16. 🛘 1.6,		12c /
	pH 8.3 4.8	4·5 (F.D)	H0019/ Z	7 dg / 0937 umbos
Serial No. 015781. Fittration Equipment:	*Clicks N/A -		PH TEMP 0	essolved O, / TEMP / TIME
Georgia Parastatic Pump Georgia 10.45 micron facr	Color		840 45	A 1 A
Sample Location Description			2734	/V/
ppearance of Sample	C: CA =			
	CLEAR			
ongtion of Station	DK			
0				
	•			
intent Weather Condition	LEAR, HOT, U700	F		
evious Precipitation (2)	E DAUG ALO LAGE O			
	5 DAYS AGO LAST R	AINE RAINE	O ACPECAL	LIELY Z DAY!
AS WENT		Semark	s:	
1 1 2 3 3				
PARGE / MS				
शिक्ष ।				
		Sampler	Signature:	
I KKK			wan Grad	1210
1130		<i>A</i>	wen Tros	3

Sie 10 Number 5. Trest 1.	Hydrogeologist(s)	Samole Numbers (range	e)	Date	
SW 24001	L. Browill and to Headberry	K1997	- 2145(0)	89138	
Analytical Equipment	Meter Calibration	Tene	Discrete FEE	Mezsierren =	
pH Mater:	pH 700 = 6,99 a 30.7	-	2.5 7	pm !	
Bedman phi 21	a				
☐ Omega pHH6SA	97 79	) inte	At end of:		
☐ Orion SA2S0	pH 10.00 = 9,97 at 29.	> c 1108	Equipment Usec	Seral No.	
Other	Conductance Standard: 1000	~ ~~	MERSURIN		
Serial No. 0 144748		unesc., a 250	LROEL	_ NA	
Conductivity Mater:	Measured Value: 1000 umhos/on at	32 -c 1109	Staff Gauge Fleating		
PYSI Model 33	Calibrated Conductivity = Measured Conductivity	2000 + 0.79		NA	
Other	(measured conductance) (25°C - Actual Tem	p)): Tre		7001	
Serial No. 14801675 Dissolved Oxygen Meler:	860 unthos/on at 25°C _	1109	Sampling Memoc	Sample Type	
YSI Model 518	4	Tirre	GRAG	57,2	
	Dissolved Oxygen NAmg/ at		GZAG	3/#	
Serial No	Tening Dog to Unid Communication Do		Conduction/TEM	P/TIME	
☑ Beckman	Titration Results (Acid Concentration: 0	.16, <u>C</u> 12		1 1 4.0	
☐ Other	pH 8.3 4.8	1.5 (7.0)	500/	16"4/1118	
Serial No. 15 about	#Clicks 157 14	3 100	PH TEE D	soiled 0, / TEMP ITUE	
Fittration Equipment:					
☐ Geotech Parastatic Pump ☐ Geotech 0.45 micron ther	Color pint 1	oint green	8,69 13 Z	NA	
Sample Location Description	IMPLE TAHEW FR		į.	ಗಳಿಗೆ ಆ	
LEWASE TON	ENT MENT PLANT.	0:400061	NIPE 15 720	THREING 27	
	H CONNETS TO F			., ., ., .,	
Appearance of Stream or Lake			<i></i>		
04	ISCHARGIAG WATE	2 15 06	LINK R	ATE OF DIZLARGE	
	HANGES PERIOUILALL				
	TANGES PERSONAL PAR	/			
Amount of Samue					
Appearance of Sample					
CLEAR					
Conding of Contract					
Condition of Seion 6000 REENS GROWING IN DITCH IN WHICH					
1015	CHARLE IS . OLL	uppinh			
Outrent Weather Condition	EUR, WUKM 2 7	OF LIG	UT BIE	ISE.	
	em SE	,			
<i>F</i> .	pany se				
Previous Presidian LIGHT TO HEAVY RAIN FIL WINET PEFORE					
SAMPLE THEW. DIDNE RAIN YESTERIAT					
500.		, - , ,,,	0 72 2 -	,	
16					
811311		I Compd		1 - 1 + 1 -	
Peaueste or or or or or or or or or or or or or		neran	0. p =	inned to dry	
3		0	fter -22	g sample	
8 L W 5 3		. 0	schare -	included drives	
TARGET GC/MS SEOIMENT DUPLICA		4		included diving lands where the stage measurement is sampling	
2 2 2 2 2		34	- Jan 19	charge may read	
2 5 6 7 7 7			antes alle	, sampling	
TAR SEO			- 11102		
4/1/1					
< / / / / / / / / / / / / / / / / / / /		Sample	Sonature	20 1	
* 11111		Sample	Signazare -	willed	

COMPREHENSIVE MON	ITORING PROJECT/ROCKY MO SAMPLING FIELD DATA SI	OUNTAIN ARSENA	U.	Door	
Sie O Number	Hydrogeologist(s) GPP, TG,	Samula territora (non		rage	of/
5W 24001	SEG	L4271- L4	1200	1270 9/27/5	S
Analytical Equipment	Motor Calibration	Teme	Distraction (CFS		प्रस्था #
pH Motor; IX Bockman phi 21	H1700 = 6.98 = 31.6	_ = <u>1321</u>	\ \/ \k		L
Other O157841	рн 10.00 = 9.96 ж 30.9		Equipment Usas	Seria	Vc.
Serial No.	Conducance Standard: 1434	unosan zele	calibrated but	sket	MA
Conductivity Motor:  XYSI Model 33	Mossured Value: $1490$ umboslom at $3$	1322.	Staff Gauge Fleating		
13076	Calbrated Conductivity & Measured Conduct (measured conductance) (2542 - Actual Terry 31.6	ence p.x. pli: Time	NA		
Serial No	1001 umhos/om at 25°C	1327	Samping Metros	Sample Type	RM F
☐ YSI Model 51B	Dissolved Oxygen NA mod at _	c	GRAS	TRE-	TOTERST
Serial No. NH Temperature Motor:	Trasion Results (Acid Concentration: 0.0	.16, []:S	Conductivity / TEMP	1,0,	GP,2
□ Beckman □ 0157841 67P		1.5 (7.0)	400/32.5	°C	<del>230</del>
Serial No Filtration Equipment:	#Clicks	(7.0)	PH TEME Desson	ves 0, / TEMP /-	unhosica.
Geotech (Varastatic Pump Geotech (Varastatic Pump Geotech (V45 Inicron Ster	Codor		7.51 323	M/ N.	
	expan treatment alo	est dualiana	1 2 6 6	IVN	толает
a lined ditch (p	was treatment pla lastic lines) heavily or	egitation in	ditil channel	suscensory.	into
Appearance of Stream or Lake	,	<i>V</i>		· · · · · · · · · · · · · · · · · · ·	
clear					
Appearance of Sample					_
CLUM					
Cau					$J_A$
Condition of Station					
good					
U	•				
Current Weather Condition	0 -	•			
parly cloudy,	85°F, WIND 1-3	5			:
	,				:
Previous Precipitation	11 12.1 0 = 4				
rain for 2 day,	16 augs ugo				
8		15		c 10 70 cc : :	
EEQUESTED ET N.S. N.S. NEVT.		Femark	W=C= - 1	erico 100 millor retrico Disconesc	-
8 F N E				- 1.53	
1.61.				\$92.70	: :
TARGET GC/MS SEDIMEN					
TAR GC SEOI		Sampler	Signature	11%	
PM130			Drug Jud	M	
			U		

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL SURFACE-WATER SAMPLING FIELD DATA SHEET Page / of ___ Sire D Number Hydrogeologist(s) Sample Numbers (range) Date 5 Gaoger K2021-K2041 SISRELUNA L. Beaulaso 89111 JWAYDDA Kann Kans - Escu- su com K. HEDRERG Analytical Equipment Meter Calibration Commerce (SS) letterer = Time pH Motor: pH 7.00 = 7.02 at 19.7 5 D922 D/Bedoman phi 21 . 31 ☐ Omega pHH-6SA c 0925 pH 1000 = 10.08 at 18.7 Orion SA2SO Examer Used See 14 Other | Conductance Standard: 1000 umhos/om at 25°C PIGATY MN 6349 Time Serial No. 0145035 Measured Value: 800 unrhos/om at 18 •C D929 Conductivity Meter: Stati Gauge Reading DVSI Model 33 Calibrated Conductivity = Measured Conductance + (0.02) Other _ (measured conductance) (25°C - Actual Temp)): Time Serial No. 15596 912 _ unthos/on at 25°C ____0929 Sarricle Tope Dissolved Oxygen Meter. Time COLYSI Model 51B GZAB Dissolved Oxygen <u>7.8</u> mg/l at <u>20</u> ℃ <u>1035</u> SIRFEI Serial No. Concursing / TEMP Temperature Meter: Trazion Results (Acid Concentration: □0.16, 🗆 1.ฦ 19 Beckman Other DIYSO \$111 1:70 8.3 4.8 4.5 (7.0) Serial No. 0145035 Ossolved O, /TEME #Clicks Fittration Equipment: 99 303 311 800 ☐ Geotech Parastatic Pump Decech 0.45 migron for GREEN PINK GREEN Sample Location Description NOTCH Jagan WATER SAMRE TAKED IN V NOTHER OF WEIR SEDMENT SAMPLES TAKEN 2 FT UPSREAM OF WEIR Appearance of Steam of Lake BANKS ARC STEEP AND CONERED WITH VEGET STEET BOTCH OF STEET STEET AND SILTY WITH GRASSY VEGETATION UP AND DANUSTRETHY == SITTE POINT. Appearance of Sample CLEAR Condition of Station Current Weather Condition JUNNY, HOT BREZY, M70°F Previous Precipitation SNOWED IZ DAYS AGO THE LAST 3 DAYS HAVE THE - TELLY HOT TO THE Remarks - January STREAM 1655 VACTURE STEEL WATER STEEL ST FO MAN VERECETE - TOOKS OR HALLENT ef ₹ J Sampler Trace duca- Folier FOPM130

	MORING PROJECT/ROCKY MOUNTAIN ARSENAL				
Sie O Number	SAMPLING FIELD DATA SHEET  Hydrogeologist(s)   Samoia Numbors (range)	Page of			
5w 24002 ST	1	7 89135 ⁵ /15/89			
Analytical Equipment	Meter Calibration Discrete	1055) AL COLET Measurers :			
pH Moter: 100 Bodomen phi 21	pH 700 = $\frac{7.03}{100}$ at $\frac{17.3}{100}$ $\approx \frac{14.14}{100}$	14 3,35 NA			
☐ Omega pHH65A ☐ Orion SA2S0 ☐ Other	pH 10.00 = 10.09 at 17.2 5 14/4 Equipment	Cosc Sera No.			
Serial No. 0/4/756	inte	MY 4625 131/2349			
Conductivity Meter: (2) YSI Model 33	STAF	e feeding T 0.93			
5 Other	Calbrased Conductivity = Measured Conductance = 10.02	1.0-			
Serial No. <u>#05/</u> Dissolved Oxygen Meter:	(measured conductance) (25°C - Actual Temp)): Temp  986 unthos/orn at 25°C	U.97 Wester Sample Type			
C] YSI Model 518	Dissolved Oxygen NA mg/ as NA C	ZAB STEM			
Serial No	Tration Results (Acid Concentration: 170.16 17 16)	v/TEMP			
Ď Other	рн 8.3 4.8 4.5 (7.0)	50 unites/cm @ 57°C			
Serial No. <u>0/447.50</u> Fittration Equipment:	#Clicks pH =	Dissolved O. / TEMP / TIME			
SD Geotech Parastatic Pump SD Geotech 0.45 micron filer	Color . 8.27	1.6 NA TOKE			
Sample Location Description  JAMPLED AT NOTEST IN WELL DIRECTLY A V-NOTEST  Appearance of Stream or Lake					
FLOW IS HIGH.	ER THAN NORMAL AND WATER RAS A SE NCE	EFFILY BROWN MURCY			
Appearance of Sample  SAMPLE IS SLIGHTLY BROWN AND MURKY  Condition of Station					
75 MOTING	IN GOOD CONDITION AND ALL EQUIPME	3, 25 OFERMI RAIN.			
Current Weather Condition	of ITCIET INTOLO BECKE CO.				
COOL, CLOUPY, LIGHT WIND, ETGHT SPRINGLES					
Previous Precipitation					
PRECIPITATION LAST NIGHT, SOUTH FIRST CREEZ -ITH RISE WITH					
TA	KES APPROXIMATELY 20 HRS TO REL	CF NORTH FIRE DEL			
Remarks:					
3 5 5 1					
GC TAR SEO					
X	Sampler Signature	Le Solmon			
24130		11			

SURFACE-WATER S	AMPLING FIELD DATA SHEL			F	Page _ / _ : _ / _	
Sie D Number	Hydrogeologisu(s) tr. Hedberg Sau	Trole Numbers (range	1/1975	Date		
Sw 24003	L. Browilland, S. Coldberg	K2312 -	-H2335(5)	8711	/	
Analytical Equipment	Meter Calibration	Time	Discharge (CFS;		Measuremen =	
pH. Motor. ☑ Beckman phi 21	pH 7.00 = 6.99 at 29.0	1438	NA		V+	
Omega pHH-6SA	2.0%	Time				
☐ Orion SA2S0	pH 10.00 = 9.98 a 29.0	c 1438	Equipment Used		Serial No	
Other	Conductance Standard:		Not		NF	
Serial No. 0145035	•	Time			10%	
Conductivity Meter: PJ YSI Model 33	Measured Value: 1010 umhos/cm at 30	_ +c <u>1438</u>	Staff Gauge Reading			
Other	Cafbraed Conductivity = Measured Conductance (measured conductance) (25°C - Actual Templ):	+ (O.C.) Time		NA		
Serial No. 1559L	909 umhos/cm at 25°C		Sampling Method	Sample	Туре	
Dissolved Oxygen Meler:		Time				
☐ YSI Model 51B	Dissolved OxygenM_ mg/ at	~	GRAG	P	OND	
Serial No	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	_ `	0.4.4.4.	1 .		
Temperature Meter: ·  Beckman	Titration Results (Acid Concentration: 0.16,	□ 1.5)	Conductivity / TEM			
Other	pH <b>8.3</b> 4.8 4.5		1850/	24° C		
Serial No. 0145035		(7.0)	DH TEMP O	coved 0, /TE	mp /TIME	
Fittration Equipment:	#Olids 13 80 86				7 11102	
Geotech Parastatic Pump Geotech 0.45 micron taer	color grean ponts ponts		8,45 22.2	NA		
Sample Location Description					- स्ट्रॉवर	
OF METAL ID	SAMPLE STATE. 34	WASE TO	AHEW IN	HEUT	IFT WATER	
100						
1	TURKY GREEN BROW	UN COL	UK. SIL	74 130°	Trom	
					1	
Appearance of Sample			·			
B	ROWN CLOUDY TR	ANS LUCK	mT			
Condition of Station	מים					
	•					
Current Weather Condition	BUYT 85° F					
DUNTLY CLOUDY						
CLUBSIONAL LIGHT BREEZE FROM SONT						
Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Precipitation (1996) Transfer of the Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previous Previou						
WARM AND PRY LAST WEEKS AGO.						
	•			·		
2		Remark	<b>ও</b> :			
Reaueste or S vent						
18 4 10 5						
REG REGIONAL						
TARGET GC/MS SEOLMENT						
LV312					-	
TARYSIS		Sampler	Signature:	. /		
4.1/1			Signature:	Short		
FOPM130			•	_		

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL

COMPREHENSIVE MONITORING PROJECT/ROCKY MOUNTAIN ARSENAL  SURFACE-WATER SAMPLING FIELD DATA SHEET  Page 01						
Sie O Number	Hydrogeologist(s)   Sample Numbers (range)	os)	Date			
SW24004	JK, LB, KH K1976-		89114			
Analytical Equipment	Meter Calibration	Distracte (CFS)	Meztrament z			
pH Moter: 10 Bedoman phi 21	pH 7.00 = 1.03 at 15.3 = 0923	.142				
☐ Omega pHH6SA ☐ Orion SA2S0 ☐ Other	pH 10.00 = 10.12 at 15.0 -c 09.24  Conductance Standard: 1000 univos/cm at 25°C		Seed No.			
Serial No. 0/4/5035	Measured Value: \$50 umhos/om at \$8.0 to \$19.25	PORTRELLE FL.	UME N/A			
Conductivity Meter:  12 YSI Model 33  C) Other	Calbraed Conductivity = Measured Conductance + 10.00	Ni/A				
Serial No. 15596	(meesured conductance) (25°C - Actual Temp)): Tame 969	Satisfic Mand	Sample Tyse			
Dissolved Oxygen Meter:  YSI Model 51B	Time  Dissolved Oxygen _ N A _ mg/ at   ©	GZAB	STR "			
Serial No		Coracing/TEM	P			
Temperature Meter:  199 Bedoman  Other	Titration Results (Acid Concentration: 0.15, 78/1.5)		/			
Serial No0145035	рн <b>8.3 4.8 4.5</b> (7.0)	010	DISSOLVED ON TEMP TIME			
Fittration Equipment:	#Clicks - 1815 1500 -					
Geotech Parastatic Pump Geotech 0.45 micron Ster	color - PINK PINK -	5.10 [33]				
Sample Location Description		!	my€.			
100 YARTS UPG	TREAM OF ARSENAL BOUNDAR	<b>Y</b> .				
Appearance of Stream or Lake	E OF TUMBLEWEEDS, CLEAR					
fow row, reco	or romovewelly, clerk					
Appearance of Sample						
CLEAR	CLERR					
Condition of Station						
6000						
Current Weather Condition						
MOSTLY CLOUDY, LIGHT WINDS (C-Smph), E===						
Previous Precipitation						
O-TRACE AMOUNTS OVER WEEKEND						
Sampler Strang						
ANA	Sample	May !	ockmer.			
		- A				

	ITORING PROJECT/ROCKY MC		N_	r	2200 / -/
	· · · · · · · · · · · · · · · · · · ·	<del></del>			Page/_ of _/_
Sie 0 Number Sijy 3000 2	Hydrogeologisus) L. Brourlland H. Hedbarg	Sample Numbers (range / 17 2/4/ –	羿 2171	Date 69//	4
Analytical Equipment	Meter Calibration	Time	Discharge (CFS)	1	Measurement #
pM Motor: 1 Bedaman phi 21	pH 700 = 7.01 z 21.2	- c ///8	0.464	C	
☐ Ornega pHH-6SA ☐ Orion SA2SO	pH 10.00 = 10.05 a 21.3	3 -c _// 8	Equipment Used LONG TH	14,47,00	Serial No. 69114
Other	Conducance Standard: /000		FLUME		NNHO
Serial No. <u>0145035</u> Conductivity Mater:	Measured Value: 870 umhos/om at 2	Time 2 -c ///8	Staff Gauge Reading	Parada Maria Maria	
① YSI Model 33	Calibrated Conductivity = Measured Conduc (measured conductance) (25°C - Actual Term	tance + (0.02 np)): Time	NA		
Serial No. 15396 Dissolved Oxygen Meler:	422,2 untros/cm at 25°C		Sampling Method	Sample	Туре
☐ YSI Model 518	Dissolved Oxygen NA mg/ at	rime	GRAB	5	TRM
Serial No	Titration Results (Acid Concentration:		Conductivity / TEM	,	
Ø Beckman ☐ Other 014 5 0 35	_		8:	50 / 15'	0
Serial No	pH 9.3 4.8	4.5 (7.0)	PH TEMP C	Dissolved O, /TE	mp / TIME
Eftration Equipment:	les vit		8.86 13.8		
2 Geotech 0.45 micron fiter Sample Location Description			00		mg/iter
A/	PPROX 10' UPSTA				
A					
Appearance of Stream or Lake	LLEAR FLOW, S		Trom, &	ome c	SKASSY
	AND REED VIE	GE/4 (0W			
Appearance of Sample	LEAR		A		
					`.
Condition of Station	coD				
5					
Current Weather Condition	waxen ~ 70°F	PAKTLY	1 Cloub;	<i>y</i>	
•	INTERMITTENT BR	WETE 1	your E-	- 52	
Previous Precipitation 546	STANTIA SVONT	AND WH	CM. MINOR	PROVIDE	13. LACE
	CKEIP IN LAST L			,	
8		Rema	rks:		
Resuestry ST NS IENT		P	H dupped	quietily	stream.
RES T SEE			taking sauge	alded be	tituted
TARGET GC/MS SEOIMEN			,		
4NALVSIS TAR GC/ SEO		Sample	er Signature:		
£1111			Au E	Swill	end

COMPREHENSIVE MONITORING PROJECTIROCKY MOUNTAIN ARSENIX  SURFACE-WATER SAMPLING FIELD DATA SHEET  DE DI NINCH GROWN  TO DI NINCH GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GROWN  AND GRO					
See D. Nuttery (1/6417)  Analytical Englowers  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Manuar  pit Man				AL	Page ( or /
Analytical Enforment  pt Mose  pt 1700 - 0.99		T	Sample Numbers (ran	8e) (	
PA Moder   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Par	5W30001	LB KH, JC	K 2112 - K	2202	89114
Section 19. 21    Once   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   PH 1500   P	Analytical Equipment	Meter Calibration	6 Time	Discharge (CFS)	FLOW TOO Measurement #
Disconting philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Philoso   Phi	1 4	pH 700 = U.19 a 20.	J ~ 1448	NA	DJGMY OR
Serial No. 0 14585 Serial No. 0 14585 Conductify Motor:  10 YS Model 33  Other Serial No. 15596 Discorded Conjugate Motor: 10 YS Model 33  Other Serial No. 15597 Discorded Conjugate Motor: 10 YS Model 33  Other Serial No. 15597 Discorded Conjugate Motor: 10 YS Model 33  Other Serial No. 15597 Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  Discorded Conjugate Motor: 10 YS Model 33  NO NE 1NSTA LED  Samples Motor 1 YS MODE TIME 10 YS Model 13 YS MODE 1 YEAR CONJUGATION OF STREAM  Appearance of Service Condition 10 YS APPROXIMATELY TO YARDS UPSTREAM OF JUNCION W/FIRST CREEK FLU W DISSONT EXTEND TO TIRST CREEK, AREA THEKK W/VEGETATION ON TIRSAM BOTTON  Appearance of Service 10 YS MODEL 1 W YS MODEL 1 W YS MODEL TO MATTER  Condition of Sasson 10 YS TATION  Condition of Sasson 10 YS TATION  Condition of Sasson 10 YS TATION  Condition of Sasson 10 YS TATION  Condition of Sasson 10 YS TATION  Condition of Sasson 10 YS TATION  Condition of Sasson 11 YS AMPLE 2 TO YES  Condition of Sasson 11 YS TATION  Condition of Sasson 11 YS AMPLE 2 TO YES  Condition of Sasson 11 YS AMPLE 2 TO YES  Condition of Sasson 11 YS AMPLE 2 TO YES  Condition of Sasson 12 YS TREAM OF SAGC OUT TO YES  CONTROL TO THE MOTOR TO THE YES  CONTROL THE MOTOR TO THE YES  CONTROL THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOTOR THE MOT	Omega pHH6SA	10.00 M. 10.00	Time O JUH9		FLUME
Serial No. 0. 14585 Constantively Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Serial No. 1559.6 Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Other Dissolved Conjugan Malace  Oth	<b>1</b>				Serial NO.
Conductivity Malar of YS Model of YS Model of YS Model of The United at 2 U C 1490  Social No. 1559, Dissolved Oxygen Malar  Social No. 1559, Dissolved Oxygen Malar  Social No. 1559, Dissolved Oxygen Malar  Social No. 1559, Dissolved Oxygen Malar  Social No. 1559, Dissolved Oxygen Malar  Social No. 1559, Dissolved Oxygen Malar  Social No. 1559, Dissolved Oxygen Malar  Social No. 1559, Dissolved Oxygen Malar  Social No. 1559, Dissolved Oxygen Malar  Social No. 1559, Dissolved Oxygen Malar  Social No. 1559, Dissolved Oxygen Malar  Social No. 1659, Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Social No. 1659, Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved Oxygen Malar  Dissolved		Conductance Standard: 1000		MA	NA
Control Social No. 1559.6  Control Social No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No. 1559.6  Costant No.		Measured Value: 975 umhos/cm at		Staff Gauge Reading	
Sorial No	2 4				
Dissolved Organ Mater    YSI Model SIB   Sorial No.   Temporature Mater:   Times   Dissolved Organ   mpl at   C   CFRAB   STRM		(measured conductance) (25°C - Actual Te	mp)): Time	NONE	INSTALLED
Dissolved Oxygen	Serial No. 1557.6		1452	Sampling Method	Sample Type
Social No.  Tirason Results (Acid Concentration:   0.0.16, 10)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)   1.0)			ııme	GRAB	
Transporture Meter:    Beckman	Serial No.	Ussalved Oxygen mg/i at			
Discourant  Weight No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 1145035  Seriel No. 114	Temperature Meter:	Titration Results (Acid Concentration:	10.16, 20 1.5)	Conductivity / TEMP	
Serial No. 0145035 Fitterion Equipment: Geographic Equipment: Geographic Description LICATION 15 APPROXIMATELY 70 YARDS UPSTREAM OF JUNCTION W/FIRST CREEK FLUW DOESN'T EXTEND TO FIRST CREEK, AREA THECK W/VEGETATION ON STREAM DOTTEN Appearance of Streem or Like VERY LOW FLOW, VEGETATION ON BOTTOM OF STREAM  Appearance of Sample CLOUDY W/ PARTICULATE MATTER  Condition of Saison WARM, JUNNY, LIGHT WING TEMP A 75° WINDS 5-10 MPN  Previous Precipitation  O - TRACE IN 2 WEEKS  Remarks: 11AO TO SIMPLE & 70 YOS UPSTREAM OF STREAM  Remarks: 11AO TO SIMPLE & 70 YOS UPSTREAM OF STREAM OF STREE OUT F WEEKS			•	900	76°
Fittation Equipment:  © Goode Parassetic Pump © Georgeti Description  Location Description  Location Description  Location Description  Location Description  Location Description  Location Description  Location Description  Location Description  Location Description  Location Description  Location Description  Location Description  Location Description  Appearance of Singer or Like  VERY LOW PLOW, VEGETATION ON BOTTOH OF STREAM  Appearance of Sorgie  CLOUD 9 W/ PARTICULATE MATTER  Condition of Sasion  NO STATION  Current Weather Condition  WARM, JUNNY, LIGHT WING TEMP & 75° WINDS 5-10 MPN  Previous Precipitation  O - TRACE IN 2 WEEKS  Remarks: MAO TO SIMPLE & 70 YES  UPSTREAM OF SIRCE DUE TO WE	Said No 1145035		/	1 /	GIEROS/CT
B Geoech Practation Per Color GRN LLEAT FIND FIND GREEN Y. 68 dd. 7 NA INGLE Sample Location Description  LOCATION 15 APPREXEMATELY 70 YARDS UPSTREAM OF JUNCTION W/FIRST CREEK FLOW DOESN'T EXTEND TO FIRST CREEK, AREA THECK W/VEGETATION ON STREAM BUTTEN  Appearance of Samon or Like VERY LOW PLOW, VEGETATION ON BOTTOM OF STREAM  Appearance of Sample CLOUPY W/ PARTICULATE MATTER  Condition of Saison  NO STATION  Content Weather Condition  WARM, JUNNY, LIGHT WING TEMP & 75° WINDS 5-10 MPN  Previous Precipitation  O - TRACE IN 2 WEEKS  Remarks: MAO TO SIMPLE & 70 YES  UPSTREAM OF STREE DUE TO WE	Fittration Equipment:		764 /01		area of 1 telub 1 time
Sample Location Description  LOCATION 15 APPROXIMATELY 70 YARDS UPSTREAM OF JUNCTION W/FIRST CREEK  FLUW DOESN'T EXTEND TO FIRST CLEEK, AREA THECK W/VEGETATION ON STREAM BOTTON  Appearance of Stream or Lake  VERY LOW FLOW, VEGETATION ON BOTTOM OF STREAM  Appearance of Sample  (LOUD Y W/ PARTICULATE MATTER  Condition of Station  NO STATION  Current Weather Condition  WARM, JUNNY, LIGHT WING TEMPA 75° WINDS 5-10 MPV  Previous Precipitation  O - TRACE IN J WEEKS  Remarks: MAO TO SIMILE & 70 YES  UPSTREAM OF STREE DUE TO WE		Color Color (LEAR)		8 68 22.4	
Appearance of Steem or Lake  VERY LOW FLOW, VEGETATION ON BOTTOM OF STREAM  Appearance of Sample  (LOUDY W/ PARTICULATE MATTER  Condition of Station  NO STATION  Current Weather Condition  WARM, JUNNY, LEGHT WING TEMP & 75° WINDS 5-10 MPW  Previous Precipitation  O - TRACE IN J WEEKS  Remarks: MAD TO SIMPLE & 70 YCS  UPSTREAM OF STACE DUE TO NE	Sample Location Description		100		
Appearance of Steem or Lake  VERY LOW FLOW, VEGETATION ON BOTTOM OF STREAM  Appearance of Sample  (LOUDY W/ PARTICULATE MATTER  Condition of Station  NO STATION  Current Weather Condition  WARM, JUNNY, LEGHT WING TEMP & 75° WINDS 5-10 MPW  Previous Precipitation  O - TRACE IN J WEEKS  Remarks: MAD TO SIMPLE & 70 YCS  UPSTREAM OF STACE DUE TO NE	LOCATION I FUW DOES	S APPROXIMATELY 70 NT EXTEND TO FIRST O	YARDS UPSTA CLEEK AREA TO	LEAM OF JUNC HECK W/VFGETAT	TION W/FIRST CREEK
Appearance of Sample  CLOUDY W/ PARTICULATE MATTER  Condition of Station  NO STATION  Current Weather Condition  WARM, JUNNY, LIGHT WING TEMP & 75° WINDS 5-10 MPN  Previous Precipitation  O-TRACE IN 2 WEEKS  Remarks: MAD TO SIMPLE & 70 YCS  UPSTREAM OF SIGCE DUE TO NE	Appearance of Stream or Lake				-11-211-17 20/162
Condition of Station  NO STATION  Current Weather Condition  WARM, JUNNY, LIGHT WING TEMP & 75° WINDS 5-10 MPN  Previous Precipitation  O - TRACE IN 2 WEEKS  Provided To SAMPLE & 70 YCS  UPSTREAM OF STACE DUE TO NO.	VERY LOW	FLOW, VEGETATION &	N BOITOH OF	STREAM	
Condition of Station  NO STATION  Current Weather Condition  WARM, JUNNY, LIGHT WING TEMP & 75° WINDS 5-10 MPN  Previous Precipitation  O - TRACE IN 2 WEEKS  Provided To SAMPLE & 70 YCS  UPSTREAM OF STACE DUE TO NO.					
Condition of Station  NO STATION  Current Weather Condition  WARM, JUNNY, LIGHT WING TEMPR 75° WINDS 5-10 MPN  Previous Precipitation  O-TRACE IN J WEEKS  Remarks: MAD TO SIMPLE & 70 YCS  UPSTREAM OF STACE DUE TO NO.		120000		***	
Ourent Weather Condision  WARM, JUNNY, LIGHT WING TEMP & 75° WINDS 5-10 MPN  Previous Precipitation  O-TRACE IN 2 WEEKS  Remarks: MAD TO SIMPLE & 70 YCS  UPSTREAM OF STREE DUE TO NE	(2000 9	/ PAKILCULATE MAT	TER		
Ourent Weather Condision  WARM, JUNNY, LIGHT WING TEMP & 75° WINDS 5-10 MPN  Previous Precipitation  O-TRACE IN 2 WEEKS  Remarks: MAD TO SIMPLE & 70 YCS  UPSTREAM OF STREE DUE TO NE			,		
Current Weather Condision  WARM, JUNNY, LIGHT WING TEMP & 75° WINDS 5-10 MPN  Previous Precipitation  O - TRACE IN 2 WEEKS  Remarks: MAD TO SAMPLE & 70 YES  UPSTREAM OF STACE DUE TO NO.	Condition of Station			· · · · · · · · · · · · · · · · · · ·	
Ourere Weather Condison  WARM, JUNNY, LIGHT WING TEMP & 75° WINDS 5-10 MPW  Previous Precipitation  O - TRACE IN J WEEKS  Remarks: MAD TO SIMPLE & 70 YOS  UPSTREAM OF STACE DUE TO NO.	NO STA	TION			
Previous Precipitation  O - TRACE IN 2 WEEKS  Remarks: MAD TO SAMPLE & 70 YOS  UPSTREAM OF STACE DUE TO NO		•			
Previous Precipitation  O - TRACE IN 2 WEEKS  Remarks: MAD TO SAMPLE & 70 YOS  UPSTREAM OF STACE DUE TO NO	Current Weather Condition				
Previous Precipitation  0 - TRACE IN 2 WEEKS  Remarks: MAD TO SAMPLE & 70 405  UPSTREAM OF STACE DUE TO NO		UNNY LIGHT WING	G TEMP A	750 WIN	105 5-10 MPN
O- TRACE IN 2 WEEKS  Remarks: MAD TO SAMPLE & 70 YOS  UPSTREAM OF STACE DUE TO NO	/	. '	2.1, 7		
O- TRACE IN 2 WEEKS  Remarks: MAD TO SAMPLE & 70 YOS  UPSTREAM OF STACE DUC TO NO					
Remarks: MAD TO SAMPLE & 70 YOS  UPSTREAM OF STACE DUE TO NO	Prevous Preopization				
Remarks: MAD TO SAMPLE & 70 YOS  UPSTREAM OF STACE DUE TO NO	D. TON				
Remarks: MAD TO SAMPLE & 70 YOS  UPSTREAM OF STORE DUE TO NO	U / NAC	E IN I WEEKS			
UPSTREAM OF STACE DUE TO NO	2		Rema	urks: 140 = 0	20 405
DI TO STORE AM OF STORE DUC 10 NO					
$P(0) \le P(0) \le P(0)$	8 L W 5			PSTREAM OF S	TACE DUE 18 PE
171   2   1   1   1   1   1   1   1   1	1 1 7 1 2 1 1		F	LOW C STACE	
FLOW C STACE	2 8 9 8				
	13 FON		Lame 2	or Sinnature: //	
Sampler Signature:	\$ V V		Saripa		of lan n.
OPM150				John V	an wan

COMPE	REHENSIVE MON	ITORING	PROJE	CT/ROCKY	MOUN	TAIN ARSE	NAL					,
Sie D	ACE-WATER			LU DATA						Pa	ige _	1 01
		Hydrogeol		,		ample Numbers (			Date	a –		11/
5W310	702	KIM	Hed	bury		KZZO	4-KZ	2234	8	9115		4/25/89
Anai	ytical Equipment	Meter C	libration	0		Time	Disch	arge (CFS)			Measu	rement #
AG PH I	Matar: man phi 21	pH 7.00	<u> </u>	at 15	. ها.	c 0827		N	A	1	٨	JA-
	man pn ∠1 ga pHH-6SA		la .	_	_	Time			/ \			J /("
☐ Orion		pH 10.00	- 10.17	a <u>15</u>	.3	~ 0828	Equipo	ment Used			Seria	No.
☐ Other		Conducar	oe Standam	t. <u>1000</u>		umhos/om at 25	_	.1 ^	Λ.			111
Serial	No. 0145035					Time	<u> </u>	$N^{F}$	1		/	VA
Cond	luctivity Meter:	Measured	Value: 7	Untros/an :	a 15.5	-c0829	Staff C	Sauge Readin	g			-,
2 VS VS			•	Measured (				Λ/	^ ^			
☐ Other		(measured	anductana	25°C - Actua	d Temp)):	: + (0.02 Time		/\/	A			
	No. 15596	80	12.5	umhos/cm at 2	sc C	1829	Sample	ng Method		Sample Ty	pe	
Disson	fived Oxygen Meter:					Time		_				
0 13 1	W 318	Dissolved (	Daygen	JA most	at N	A ·c		JRA B	•	ST	ev	
	No						Coodu	ctivity / TE	MP			
Temp ★ Beckn	orature Meter:	Titration R	esuts (Acid (	Concentration:	0.16,	<b>[2]</b> 1.6)	00,00					
Other		۸u	2,3	18	1 6		17	50		15°C		
Comme	No. 0145035	pН	2,3	4.8	4.5	(7.0)		10000		- /	-	บกท่างร/ตา
	on Equipment:	#Clicks	NA	296	300	90	pН	TEMP	Ussolved	0, / TEMI	17	IME
XX. Geotec	h Parastatic Pump	Color	NA	2011			8.18	14.7		AIA		
	n 0.45 micron fizer	Color	NA	pink	PIOLE	green		1.1.1	4	7 ( )		mg/liter
1	ocation Description											
JUS	ST UPSTREA	M D	F 10	NDED	AR	5A 1.	NR	EEDS				
Appearance	of Stream or Lake					-	****					
LOW	FLOW IN	STREA	M i	EADIN	16 10	POAT	,					
	of Sample				- /	70.01	,					
	·											
1 546	SHLY CLOU	DY;	MUCH	1 ORGA	tNIC	MATER	IAL	IN	5ED1	MENT.	5	
Condition of												
	7											
6	$\infty$ D			•								:
Current Wa	sather Condition											
PA	RTLY CL	DUDY		SOF		ILLHT	BR	0571	•			
	,		, .		J	VIOIT		cut				
Previous P	recipitation											
^	-TRACE	2 DA	\ \<	A60								
U	1	5 0	1/3	760								
Reauesteo 3T						Rei	marks:					
3												
181	w 5											
I W	N S (MES											
2 8	SEDIMENT SEDIMENT											
LYSIS RE TARGET	SEO								1			
4NALVSIS		1				San	pler Signat	re: _	11	11		
XX	_X						Vih	1 6	X+1	1/xx	1	
FOPM130			<del>\</del>		·		14.10	<u> </u>	11	71.0	-0	

	ITTORING PROJECT/ROCKY MOUNTAIN ARSENAL  SAMPLING FIELD DATA SHEET  Page 1 of	١
Sie O Number	SAMPLING FIELD DATA SHEET Page _ ! _ of _ Hydrogeologist(s)   Sample Numbers (range)   Date	<u></u>
5W36001	KHEDBERG, J KOEHNEN K2530 - K2563 89118 4/281	159
Analytical Equipment	Meter Calibration Time Discharge (CFS) Measurement #	
pH Motor: Æ Bedsman phi 21	pH 700 = 7.10 = 2.4 0 0859 NA NA	
☐ Omega pHH6SA ☐ Orion SA2SO	pH 10.00 = 10,29 at 2.3 •c 0900 Equipment Used Serial No.	
Other	1000	
Serial No. <u>0145035</u>	Time ////	
Conductivity Meter:  1/2 YSI Model 33	Messured Value: 100 unthos/orn at 10 •c0918 Staff Gauge Reading	
Other	Calibrated Conductivity = Measured Conductance + (0.02 (measured conductance) (25°C - Actual Templ)): Time	
Serial No. 15596 Dissolved Oxygen Meter:	IDIO umbos/cm at 25°C OG IB Sampling Method Sample Type	
☐ YSI Model 518	Dissolved Oxygen NA mol at NA to NA GRAB STRM	
Serial No.	Cosave Copper 1011 at 1011 & 1011	
Temperature Meter: ·  IXI Beckman	Titration Results (Acid Concentration: 0.16, NO 1.6)	
Other	of 02 18 15 - 140 Winhistory	
Serial No. 6145035	I PH TEMP OSSORED O. / TEMP / TIME	C7.
Fittration Equipment: 78 Geotech Parastatic Pump	NA 363 370 64 119 216	
(2) Georech 0.45 micron ther	color NA pink pink green !! 1.6 N/	er.
Sample Location Description	CAPPROX IUFT DOWNSTREAM FROM PONDED AREA	
60-70 FEE		
Appearance of Stream or Lake		
LOW UNIF	ORM FLOW	
Appearance of Sample		
CLEAR TO	SLIGHTLY CLOUDY - LT BROWNISH	
Condition of Station	2000) / 2000) / 1	:
6061) - 5	STRIP CHART. OPERATIONAL	
Current Weather Condition		
COLD 40°1	F-35°F CLOUDY, NO WIND	
Previous Precipitation	No when	
0-1/4" rain	and hail yesterday	
PEQUESTED NS NS NS NS NS NS NS NS NS NS NS NS NS	Remarks: NU DISCHARGE BECAUSE LARGE	
1 N 2 3	PONDED AREA WOULD CAUSE	
1 0 3 1 1		
TARE SEO!	TOO MUCH BACK UP	
18 1 1 1 1 1 1 1 1	Sampler Signature: \(\lambda \lambda \rangle \rangle \)	
X X X X	TIME SKUMI	
FOPM130	1 Million Comments	

	NITORING PROJECT/ROCKY MO SAMPLING FIELD DATA SI		1.	Page of
Sie O Number	Hydrogeologist(s)	Sample Numbers (rang	e) Date	-30 1 0. 1
5W36001	SEG, TG, GPP	14315-L	L6533-L6572 .4338 892	.71
Analytical Equipment	Meter Calibration	Time	Discharge (CFS)	Measurement #
pH Motor:	pH 700 = 7.04 = 14-6	o ~ 0848	/	
© Beckman phi 21 □ Omega pHH6SA	10.17	08 ingg 892	NONE TAKEN/LO	MPUTED NA
☐ Orion SA250 ☐ Other	pH 700 = 7.09 z /4.6 pH 1000 = 10.12 at 15.0 Conducance Standard 14.34	21.6	Equipment Used	Serial No.
Serial No. 015781	Conductance Standard: 1434	umhos/cm a <del>t 25/C</del> Time	NA	NA
Conductivity Meter:	Moestured Value: 950 untrootom at	16 ·c 0852	Staff Gauge Reading	
100√YSI Model 33 ☐ Other	Calbrated Conductivity a Measured Conduc	zanoe + (0.02	.11'	
	(measured conductance) (25°C - Actual Term	14110		
Serial No. 13076 Dissolved Oxygen Meler:	1056 untroston at 25°C	Time	Sampling Method	Sample Type OK 89306
YSI Model 51B	Dissolved Oxygen NA mg/ at 1	VA ~ NA	GRAB	DTCA
Serial No. IVA			Conductivity / TEMP / TI	N.C.
☐ Bedoman	Titration Results (Acid Concentration: 🗀 0	0.16, 🗀 1.6)		,
Other	рн 8.3 4.8	4.5 (7.0)	600 MHOS/17	5°C 1917 unrock
Serial No. Q15 78 I. Fittration Equipment:	#Clids - NA		pH TEMP Dissolved	O, / TEMP / TIME
Geolecti (Parastatic Pump	Color			VA
Sample Location Description			794 16.7 2	ന്നുള്ള
WATEL SAMPCES WEIR.	TAKEN SUST BELOW WEI	P. SEDIMENT S	SAMRES TAKED U	75 FT UPSTREAMOF
Appearance of Stream or Lake	COUCRETE STRUCTURE. LOTS	OF "TUMBLEL	DECOS IN DITTLE SU	MY FLOET GROWNING
	ON BOTTOM IN 15" OF SEDIME	EUT BUILTUP	ON UPSTREAM SIVE	er weiz
Appearance of Sample (	LETE			
	JC 412		•	
Condition of Station	OK			
7	UK			
	•			
Ourrent Weather Condition	v -			
Samuel Mazer Colonia	LOUDY, SOMEWHAT MATERIA	1 465°F		
·				
Previous Precipitation (//	17 DAYS 1900 - HEAVY 2	AWS FOR ZD	Aris	
				•
5		Remark	ks:	
Reaucongo er nent nent anic				
8 F S 5 4 2				
1312				
TARGET GC/MS SECIMENT FIELD BANIK				
ANALYSIS TAR GC/ X FIELL X TARE		Sangio	C Signature:	
4 x x x x		1	usan Goldbury	
OPM170		A	win jumy	

	SAMPLING FIELD DATA SE		V	Page of			
Sie 10 Number	Hydrogeologist(s) 2.8 5.6.	Sample Numbers (rang	ge)	Date			
37001	K.H., J.K.	11908 -	K1941	89110			
Analytical Equipment	Motor Calibration	Trne	Discharge (CFS)	Measurement #			
pH Motor:  10 Beckman phi 21	pH 700 = 6.99 at 28,8	c 1549	0.31				
☐ Omega pHH6SA	pH 10.00 = 9.98 at 28.8	1 = 1549	Equipment Used	Serial No.			
☐ Orion SA2SO ☐ Other	Conductance Standard: 1000						
Serial No. Q 145035	7000	Time	PYGMY #6.	25 NN 6349			
Conductivity Meter:	Measured Value: 1050 umhos/on at 3	0 ·c 155/	Staff Gauge Reading				
ØYSI Model 33 □ Other	Calibrated Conductivity Measured Conduct (measured conductance) (25°C - Actual Temp	14 -	0.	5-2·			
Serial No. 15596	445 unhos/on at 25°C	******	Sampling Method	Sample Type			
Dissolved Oxygen Meter:	unioson at 25C _	Time					
YSI Model 51B	Dissolved OxygenN_A mg/ at		GRAB	STRM			
Serial No Temperature Meter:	Tritation Results (Acid Concentration: 0.	16 17 18	Conductivity / TEM	P			
☐ Beckman ☐ Other		•	1600	125°6			
	рн <b>8</b> .3 4.8 4	1.5 (7.0)		unhosies.  Assolved O, /TEMP /TIME			
Serial No. 0145035 Fittration Equipment:	#Clicks 16 240 24	1					
12 Geotech Parastatic Pump 12 Geotech 0.45 micron ther	Color gran 1151 pi	1	8,72 24.0	NA			
Sample Location Description	~ 5 Ft upstream		tral strue	-tex-			
1	<i>A</i>			,			
4	er Surface Rough						
SMAG	The uniform How es	ecept at	control wi	here surface becomes			
0,100	rough	1.					
Appearance of Sample 1100	V	1.4					
Appearance of Sample Clear to slightly cloudy, No suspended sediments							
Condition of Station	. 0 1: . 0	(	01	a loc a			
Hume not functioning properly, water flowing under flume							
	• • •			1			
Ourrent Weather Condition			,	- ,			
warm -	warm-but cooling, slightly cloudy, slight wind						
	· • · · · · · · · · · · · · · · · · · ·	,	V				
Previous Precipitation							
22	MARCHE POINT						
	WEEKS PRIOR						
Peaueste et ns ns ns ns ns ns ns ns ns ns ns ns ns		Rema	rks:				
20   F F							
四月八月百四							
TARGET BC/MS SEDIMENT SEDIMENT							
TAR SEO							
\$ (1/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Sample	er Signature:				
7/1/1/1/1/			Om C	roulland			
PM130							

APPENDIX B-7

Laboratory Analytical Procedures

APPENDIX B-7.1

Procedure for Water Analysis

## B-7.1 Procedure for Water Analysis

 Determination of purgeable aromatic compounds in water by purge and trap gas chromatography is by Method #AV8 from DataChem.

A 5 millimeter (ml) water sample is purged, trapped and desorbed with Tekmar Automatic Liquid Sampler (ALS), then analyzed by SP 1000 Carbopak B packed column on a gas chromatography with a 10.0 eV photoionization detector. Sensitivities range from .5 to 1.5 part per billion (ppb) and are quantitive.

 Determination of volatile halocarbon compounds in water samples by purge and trap gas chromatography using a Hall detector by Method #N8 from DataChem.

A 5 ml water sample is purged, trapped and desorbed with a Tekmar ALS on to a 8 ft packed glass column with 1 percent SP 1000 Carbopak B and analyzed by a gas chromatograph equipped with a Hall (electrolyte conductivity detector). Sensitivities range from .5 to 7.5 ppb depending on the analyte.

 Determination of 1,2-dibromo 3-chloropropane in water samples by Method #AY8 from Datachem.

A 30 ml sample is extracted with 3 ml hexane, shaken for four minutes, and pipetted into an amber vial containing anhydrous sodium sulfate ( $Na_2SO_4$ ). Then 2 microliters ( $\mu$ l) of extract is injected into a gas chromatograph equipped with a fused silica DB5 capillary column and electron capture detector. Sensitivity is near 2 ppb.

 Determination of organosulfur compounds in water samples by gas chromatography by Method #AAA8 from DataChem.

An 800 ml sample is extracted with three 50 ml portions of methylene chloride. The portions are combined through anhydrous sodium sulfate. The extract is condensed to 2 ml final volume. An aliquot is injected into a gas chromatograph equipped with a fused silica DB-1 capillary column and flame photometric detector with sulfur filter. Sensitivities are from .55 to 11.5 ppb.

 Determination of organochlorine pesticides in water samples by Method #KK8 from DataChem.

An 800 ml aliquot sample is extracted with three 50 ml portions of methylene chloride. The portions are combined through anhydrous sodium sulfate. The extract is condensed to 1 ml,

then 50 ml hexane is added to solvent exchange, which is condensed down to 2 ml. The volume is adjusted to 50 ml, and then 3  $\mu$ l is injected into a gas chromatograph equipped with a DB 17 fused-silica capillary column and an electron capture detector. Sensitivities are from .048 to .095 ppb.

 Determination of bicycloheptadiene, and methylisobutyl ketone in water samples by Method #P8 from DataChem.

A 100 ml aliquot of sample is extracted with 5 ml methylene chloride. The extract is drained through anhydrous  $Na_2SO_4$  into a 5 ml volumetric, 1  $\mu$ l of extract is injected onto a gas chromatograph equipped with a DB-5 fused silica capillary column and a flame ionization detector. Sensitivities are from 4.90 to 5.90 ppb.

• Determination of the anions, bromine, chloride, fluoride, and sulfate by ion chromatography in water samples by Method #HH8A from DataChem.

One ml of effluent is added to 100 ml of sample and filtered. A 2 ml aliquot of filtrate is added to a sample vial for analysis by a Dionex ion chromatograph equipped with a Waters 710 B autosampler and a conductivity detector. Sensitivity ranges from 150 to 400 ppb.

• Determination of nitrate in water samples by Method #LL8 from DataChem.

The sample is neutralized to pH between 5 and 9 and is analyzed by a Technicon Auto Analyzer (AA) can with a nitrate and cartridge and 520 nanometer (NM) colimetric filter. Sensitivity is approximately 10 ppb.

Determination of arsenic in water samples by graphite-furnace atomic spectrometry (GF-AA)
 by Method AX8 from DataChem.

A 100 ml sample is digested, filtered and brought to a 100 ml total volume with American Society for Testing and Materials (ASTM) Type 1 water. A small portion, 1 to 50  $\mu$ l, is mixed with a modifier solution and analyzed using a Perkin-Elmer atomic absorption spectrophotometer equipped with a graphite furnace. Sensitivity for the method is in the 2.35 ppb range.

 Determination of mercury in water samples by cold vapor atomic absorptions spectrometry by Method #CC8 from DataChem. A 100 ml aliquot of sample is added to a 300 ml Biological Oxygen Demand (BOD) bottle and digested. The sampled is aerated and analyzed by a Perkin-Elmer 305A atomic absorption spectrophotometer equipped with a quartz window cell, peristaltic pump, bubbler, and strip chart recorder. Sensitivity for the method is in the low ppb (1.0 range).

• Determination of metals in water samples by inductivity coupled argon plasma spectroscopy (ICP) by Method SS12 from DataChem.

A 50 ml portion of the sample is heated in the presence of nitric and hydrochloric acids. The volume is reduced to between 10 and 20 ml. The sample is collected and diluted to 50 ml with ASTM Type 1 water. The resulting digest is analyzed using a Thermo Jarrell Ash ICAP 61 equipped with an IBM Personal Computer - AT and Thermo spec software.

 Determination of volatile organics in water samples by gas chromatography/mass spectrometry (GC/MS) by Method UM21 from DataChem.

A 5 ml portion of the sample is spiked with internal standard and surrogates and then transferred to the purging device. The sample is purged with helium and the analytes are trapped on a 3-phase sorbent tube. The analytes are desorbed at 180° C into a Finnigan 5100 Gas Chromatograph/Mass Spectrometer with electron impact ionization source and quadrapole detector.

Determination of semi-volatiles in water samples by GC/MS by Method UM25 from DataChem.

A 1000 ml of the sample is extracted with methylene chloride and then concentrated to 1 ml. The resulting is analyzed using a Finnigan 5100 B Gas Chromatograph/Mass Spectrometer with an electron impact ionization source and a quadrapole detector. The extract is passed through anhydrous sodium sulfate and condensed to a 1 ml final volume. A 2  $\mu$ l aliquot is injected on a wide bore DB5 fused silica column and analyzed by GC/MS equipped with electron impact source and electron multiplier detector. Sensitivities range from 1 to 200 ppb depending on the analyte.

- Determination of total cyanide in water samples by a colormetric auto analyzer by Method #TF20 from DataChem. A 250 ml portion of sample is treated with acid, distilled, and collected into a sodium hydroxide solution. The distillate is analyzed by a Technicon Auto Analyzer II equipped with a colorimeter detector fitted with a 570 nm filter. Sensitivity is near 5 ppb.
- Determination of nitrogen/phosphorus pesticides in water by GC by Method #UH11 by

Datachem. An 800 ml portion of sample is serially extracted with methylene chloride. The extract is funneled through anhydrous sodium sulfate and condensed to 50 ml. A 50 ml portion of hexane is added to solvent exchange and condensed to a final volume of 5 ml. An aliquot of extract is injected on to a DB5 fused silica capillary column and analyzed by GC equipped with an electron capture detector. Sensitivities range from .500 ppb to 4 ppb depending on the analyte.

APPENDIX B-7.2

Procedures for Sediment Analysis

 Determination of purgeable aromatic compounds in soil samples by Purge and Trap Gas Chromatography (GC) using a photoionization detector by Method AA9 from DataChem.

Weight 10 grams (g) of soil sample into a 40 ml Volatile Organic Analysis (VOA) bottle, add 10 ml of High Pressure Liquid Chromatography (HPLC) grade (or better) methanol. Cap tightly with a teflon-lined septa and shake for four hours using a wrist action shaker. Allow to settle. Remove a 100  $\mu$ l portion of the methanol extract and transfer to a syringe containing 5 ml organic free water. Analyze sample by a Tekmar Automatic Liquid Sampler (ALS) purger and trap device compound with a gas chromatograph equipped with a 1 percent SP1000 Carbopak column and photoionization detector. The system is then interfaced with a laboratory automation system. Sensitivities range from 0.09 to 0.39  $\mu$ g/g depending on the compound.

 Determination of purgeable organohalogen compounds in soil samples by purge and trap GC using a Hall Detector by Method NN9 from DataChem.

Transfer 10 g of soil sample to a 40 ml VOA bottle, add 10 ml HPLC grade (or better) methanol, cap tightly and shake for four hours on a wrist action shaker. Allow to settle. Remove 100  $\mu$ g of the methanol extract to a syringe containing 5 ml of organic free water. Analyze by a purge trap Tekmar automatic liquid sample compiled with a gas chromatograph with a 1 percent SP1000 Carbopak B column and a Hall electrolytic conductivity detector. The entire system is interfaced to a Laboratory Automation System Sensitivities range from 0.068 to 3.7  $\mu$ g/g depending on the target analyte.

 Determination of dibromochloropropane (DBCP) in soil samples by GC/EC by Method S9 from DataChem.

A 10 g portion of the soil sample is transferred to a 40 ml amber glass VOA vial equipped with a teflon-lined screw cap. Then 20 ml of 1:1 acetone/hexane mixture is added and shaken of four hours on a wrist action shaker. This is allowed to settle and 10 ml of the extract is removed and added to a 125 ml separatory funnel containing 50 ml hexane extracted water. This is shaken for 15 seconds until all phases separate. Then the hexane extract is drained into a 10 ml volumetric flash and brought to volume. A portion of the extract is injected onto a 30 meter DB05 fused silica capillary column and analyzed by a gas chromatograph equipped with an 63Ni electron capture detector and integrated with a laboratory automation system. Sensitivity for this method is approximately  $0.005 \mu g/g$ .

• Determination of organosulfur compounds in soil samples by Method HH9A from DataChem.

Transfer a 10 g soil portion to 1 60 ml amber vial and mix with 10 g of anhydrous sodium sulfate. Add 20 ml methylene chloride and cap tightly. Shake for four hours on a wrist action shaker. Allow to settle and transfer 1-2 ml of extract to autosampler vial. A 5  $\mu$ l volume of extract is injected onto a DB-1 fused silica capillary column and analyzed by a gas chromatograph equipped with a flame photometric detector operated with a sulfur filter. Sensitivities range from 1.45  $\mu$ g/g to 9.01  $\mu$ g/g depending on the compound.

• Determination of organochlorine pesticides in soil samples by Method KK9B from DataChem.

Transfer a 20 g portion of soil sample to a 40 ml screw-cap septum vial. Add 20 ml of 1:1 acetone/hexane solvent mixture, cap, and shake for four hours on a wrist action shaker. Allow to settle. Remove 10 ml of extract and place into a 125 ml separatory funnel containing 50 ml hexane-extracted water. Extract is analyzed on a 30 meter DB-17 fused silica capillary column with a gas chromatograph equipped with an electron capture detector and a laboratory data system. Sensitivities range from 0.0018  $\mu$ g/g to 0.23  $\mu$ g/g depending on the compound.

• Determination of bicycloheptadiene, dicyclopentadiene, and methylisobutyl ketone (hydrocarbons) in soil samples by Method PP9 DataChem.

Transfer 10 g of the soil sample to a 50 ml culture tube and mix with anhydrous sodium sulfate. Add 20 ml of methylene chloride and cap tightly. Shake for four hours on a wrist action shaker. Allow to settle. Transfer 1-2 ml of extract to an autosampler vial. A 10  $\mu$ l volume of the extract is injected onto a 30 meter DB-5 fused silica capillary column and analyzed by a gas chromatograph with a flame ionization detector and interfaced to an integrator. Sensitivities from approximately 0.45 to 1.06  $\mu$ g/g depending on the target analyte.

 Determination of Arsenic in samples by Graphite Furnace Atomic Absorption Spectroscopy (GF-AA) by Method B9 from DataChem.

Weigh 0.995 - 1.005 g of the soil sample in a 125 ml beaker. Add 10 ml 1:1 nitric acid, cover with a watch glass, and heat to 95° C for 10 minutes without boiling. Cool and add 5 ml concentrated nitric acid and reflux for 30 minutes. Add 2 ml Type II water and 3 ml of 30 percent hydrogen peroxide and heat. Then add hydrogen peroxide until sample is unchanged. Reduce to 2 ml and add 10 ml Type II water and warm, then cool. Filter and dilute to 100 ml. The digestate is analyzed by injecting 15  $\mu$ l with 15  $\mu$ l modifier onto an Atomic Absorption Spectrophotometer equipped with a graphite furnace/autosampler accessory. Sensitivity is near 2.5  $\mu$ g/g.

 Determination of mercury in soil samples by Cold Vapor Absorption Spectroscopy (CVAA) by Method Y9 from DataChem.

Weight a 1.0-1.5 g portion of the soil sample into a 250 ml Phillips beaker. Add 25 ml aqua regia and heat 5 minutes on steam bath. Cool and add 50 ml distilled water and 20 ml potassium permanganate solution. The color should remain purple. repeat addition of potassium permanganate solution. Add 50 ml to a BOD bottle, add 50 ml distilled water. Add 5 ml 20 percent hydroxylamine hydrochloride solution. Add 5 ml stannous chloride, insert bubbler, and analyze by atomic absorption spectrometer equipped with Hg EDL lamp, cold vapor accessory and strip chart recorder. Sensitivity is approximately 0.0543  $\mu$ g/g.

 Determination of metals in soil samples by Inductively Coupled Argon Plasma Spectroscopy by Method P9 from DataChem.

Weight 1.0 to 1.5 g of soil sample into a 125 ml Phillips beaker. Digest sample with 3.0 ml concentrated nitric acid to near dryness. Cool. Repeat until digestion is complete. Add 2.0 ml 1:1 HNO and 2.0 ml 1:1 HCL and heat for four minutes. Wash sides of beaker and filter through Whatman filter paper. Dilute sample to final volume of 50.0 ml with deionized water. A portion of the digestate is analyzed using sequential inductively coupled argon plasma emission spectrometer equipped with software for background correction and inter-element correction. Sensitivities range from approximately 0.7 to 8.7  $\mu$ g/g depending on the target analyte.

Determination of volatile organics in soil samples by gas chromatography/mass spectrometry
 Method LM23 from DataChem.

A 10 g portion of the sample is extracted with 9 ml of methanol and 1 ml of the surrogate solution. A 50  $\mu$ l of water containing the internal standard and then transferred to the purging device. The sample is purged with helium, and the analytes are trapped on a 3-phase sorbent tube. The analytes are desorbed at 180° C into a Finnigan Gas Chromatograph/Mass Spectrometer with an electron impact ionization source and a quadrapole detector.

 Determination of semivolatile organics in soil samples by gas chromatography/mass spectrometry by Method L9 from DataChem.

A 15 g portion of sample is mixed with 30 grams of anhydrous sodium sulfate, 300 ml of methylene chloride and 12 ml of surrogate spike solution are placed into a soxhlet extractor and extracted. The extract is then concentrated and analyzed by a Finnigan Model 5100 gas chromatograph-mass spectrometer equipped with a fused silica capillary column.

• Determination of semivolatile organics in soil samples by chromatography.mass spectrometry by Method SV-9 from Hunter/ESE, Inc. Denver.

An extraction is performed on a 30 g soil sample into a 1:1 solution of methylene chloride/acetone. Extraction solvent is decanted from soil, dried with  $Na_2SO_4$  and concentrated to 1 milliliter. Extract is loaded onto a gel permeation chromatographic column for cleanup. a 2  $\mu$ l aliquot of the cleaned extract is injected onto the gas chromatograph/mass spectrometer (Hewlett Packard 5995C) equipped with electron impact ionization source and quadrapole detector. GC column is a DB-5 fused-silica capillary column. CRLs range from 0.266-1.857  $\mu$ g/g. Upper Certified Ranges are 6.00-10.700  $\mu$ g/g.

Determination of 1,2-dibromo-3-chloropropane (DBCP) in soil samples by gas chromatography
 by Method QQ-9 from Hunter/ESE, Inc. Denver.

A 10 g soil sample is extracted into 20 ml of a 1:0 acetone/hexane solvent mixture. The extract is decanted, mixed with  $Na_2SO_4$  to remove water and brought to volume in a 10 ml volumetric flask. A 1  $\mu$ l aliquot is injected into a gas chromatograph (HP 5890) using a 30 meter DB-5 fused-silica capillary column equipped with an electron capture detector. The CRL is 0.005  $\mu$ g/g with an upper tested concentration of 0.098  $\mu$ g/g.

• Determination of dicyclopentadiene (DCPD) and methylisobutyl ketone (MIBK) in soil samples by gas chromatography by Method ZZ9 from Hunter/ESE, Inc. Gainsville.

In a culture tube, a measured weight of sample is mixed with an equal weight of anhydrous sodium sulfate and then extracted on a mechanical shaker with methylene chloride. The supernatant extract is collected, and an aliquot of the extract is injected into a Gas Chromatograph which is equipped with a packed column. Chromatograph conditions were developed to allow the separation of the target analytes for the analysis. Qualitative identification is performed by comparing the absolute retention times of the standards peaks with the sample chromatogram peaks. Quantitative analysis is performed by calibrating the instrument with external standards, and comparing the resultant calibration curve with the sample analyte responses.

• Determination of phosphonates in soil by Method TT-9 from Hunter/ESE, Inc. Gainsville.

In an amber glass vial, a measured weight of sample is extracted with distilled water. This extract is then analyzed via Gas Chromatography using packed GC column Chromatographic conditions were developed that resolve the two analytes in the Rocky Mountain Arsenal

"standard" soil to allow quantitation. Qualitative identification is performed by comparing the absolute retention times with the retention times of peaks in the sample chromatograms. Quantitative analysis is performed by calibrating the instrument with external standards, and comparing the resultant calibration curve with the sample responses.

Determination of organosulfur compounds in soil samples by Method LL03 from Hunter/ESE,
 Inc. Gainsville.

Ten grams of soil are dried with an equal amount of anhydrous sodium sulfate and then extracted with methylene chloride for four hours on a wrist action shaker. The supernatant extract is collected, and an aliquot of the extract is injected into a Gas Chromatograph which is equipped with a packed column and a flame photometric detector set in the sulfur detection mode. Chromatographic conditions were developed to allow the separation of the target analytes for the analysis. Qualitative identification is performed by comparing the absolute retention times of the standards peaks with the sample chromatogram peaks. Quantitative analysis is performed by calibrating the instrument with external standards, and comparing the resultant calibration curve with the sample analyte responses.

• Determination of Arsenic in soil samples by Method AS-9 from Hunter/ESE, Inc. Gainsville.

A measured weight of soil/sediment is digested with an oxidizing-acid solution on a hot plate for a fixed period of time. The digestate is cooled and filtered through a glass fiber filter and diluted to a fixed volume of 100 ml. Analysis of the digestate is performed using a Graphite Furnace Atomic Absorption Spectrophotometer (GFAA) the has been calibrated for arsenic. Quantitative analysis is performed by calibrating the instrument with external standards, and comparing the resultant curve with the sample analyte responses.

• Determination of mercury in soil samples by Method HG-9 from Hunter. ESE, Inc. Gainsville.

A measured weight of soil/sediment is digested with an aqua regia acid solution (HCI/HNO₃), followed by further oxidation with potassium permanganate. This digestate is then placed in a cold vapor purge apparatus that is connected to an Atomic Absorption Spectrophotometer (AA). Stannous chloride is added to the digestate to convert all the mercury in the sample to its metallic state. The sample is purged with air, and the vapor is swept through a cell mounted in the light path of the AA instrument. The absorbance of the mercury vapor is measured and compared against a calibration curve of known calibration standards.

## APPENDIX B-7.3

Procedure for Suspended Solids Analysis

## B-7.3 Procedure for Suspended Solids

Total suspended solids were determined by EPA Method 160 for non-filterable residue. Non-filterable residue is defined as those solids which are retained by a glass filter and dried to constant weight at 103-105° C. After drying to constant weight, non-filterable residue is determined by weighing the filter with the residue and calculating the concentrations by:

$$mg/I = \frac{(A-B) \times 10000}{C}$$

where:

A = weight of filter and residue in mg;

B = weight of filter in mg; and

C = ml of sample filtered.

The practical range of the determination is 4 mg/l to 20,000 mg/l.