

Fakultät Mathematik Institut für Stochastik, Professur für Statistik

Mathematische Statistik

Prof. Dr. Dietmar Ferger

Wintersemester 2020/21

Mitschrift : Eric Kunze

E-Mail : eric.kunze@mailbox.tu-dresden.de

Inhaltsverzeichnis

1	Median	2
2	Metrische Räume	7
3	Zufallsvariablen in metrischen Räumen	12
	3.1 Messbarkeit in metrischen Räumen	12
	3.2 Fast sichere Konvergenz	14
	3.3 Stochastische Konvergenz	17
	3.4 Konvergenz in Produkträumen	18

Kapitel 1

MEDIAN

Viele Schätzer in der Statistik sind definiert als Minimal- oder Maximalstelle von bestimmten Kriteriumsfunktionen, z.B. der Maximum-Likelihood-Schätzer (MLS) oder Minimum-Quadrat-Schätzer (MQS, KQS) oder Bayes-Schätzer. Allgemein nennt man solche Schätzer M-Schätzer.

Beispiel 1.1 (Maximum-Likelyhood-Schätzer) Gegeben seien $X_1, ..., X_n$ iid. $\sim f_{\theta}$. Dann ist $\hat{\theta}_n$ die Maximumstelle von der Funktion $l \colon \theta \mapsto \sum_{i=0}^n \log f_{\theta}(X_i)$ (sogenannte Log-Likelyhood-Funktion). Dabei kommen alle θ aus einer möglichen Menge Θ in Frage.

Ziel: Untersuchung des asymptotischen Verhaltens $(n \to \infty)$ von M-Schätzern über einen funktionalen Ansatz. Als Beispiel betrachten wir nun den Median

Sei $X: (\Omega, \mathcal{A}, \mathbb{P}) \to \mathbb{R}$ eine reelle Zufallsvariable mit Verteilungsfunktion $F_X: \mathbb{R} \to [0, 1], d. h.$

$$F_X(x) := \mathbb{P}(X \le x) := \mathbb{P}(\{\omega \in \Omega : X(\omega) \le x\}) = \mathbb{P}\left(X^{-1}\left((-\infty, x]\right)\right),$$

also $X \sim F_X$. Definiere

$$Y(t) := \mathbb{E}(|X - t|)$$

$$= \int_{\Omega} |X(\omega) - t| \, \mathbb{P}(d\omega)$$

$$\stackrel{??}{=} \int_{\mathbb{R}} |x - t| \, (\mathbb{P} \circ X^{-1})(dx)$$

$$= \int_{\mathbb{R}} |x - t| \, F_X(dx) \qquad \forall t \in \mathbb{R}$$

$$(1.0)$$

und

$$m \in \operatorname*{arg\,min}_{t \in \mathbb{R}} Y(t) \tag{M}$$

als (irgendeine) Minimalstelle der Funktion Y.

Definition 1.2 Hierbei heißt $m \in \mathbb{R}$ Median von der Zufallsgröße X.

Wir haben den **Korrespondenzsatz** genutzt, der besagt, dass das Bildmaß $\mathbb{P} \circ X^{-1}$ eindeutig von der Verteilungsfunktion F bestimmt ist. Das heißt also wir schreiben F(dx) und meinen $\mathbb{P} \circ X^{-1}(dx)$

Notation: $F(m-) := F(m-0) := \lim_{t \uparrow m} F(t)$. Der Ausdruck ist wohldefiniert für Verteilungsfunktionen, denn diese sind rechtsseitig stetig und haben linksseitige Limiten.

In folgendem kleinen Lemma wollen wir die Menge aller Mediane charakterisieren.

Lemma 1.0 Sei $X \sim F_X =: F$ integrierbar und $m \in \mathbb{R}$. Dann sind äquivalent:

- (1) $F(m-) \le \frac{1}{2} \le F(m)$
- (2) $\mathbb{E}[|X t|] \ge \mathbb{E}|X m| \quad \forall t \in \mathbb{R}$
- (3) m ist Median

Beispiel 1.1 Für F, $a < b \in \mathbb{R}$ mit

$$F(x) \begin{cases} < \frac{1}{2}, & \text{für } x < a \\ = \frac{1}{2}, & \text{für } a \le x < b \\ > \frac{1}{2}, & \text{für } x \ge b \end{cases}$$

ist die Menge der Mediane genau das Intervall [a, b].

Beweis. (1) \Rightarrow (2): Sei $\mathbb{Q} := \mathbb{P} \circ X^{-1}$ das zu F gehörige Bildmaß. Setze

$$h(t) := \mathbb{E}\left[|X - t| - |X - m|\right] \stackrel{lin.}{=} Y(t) - Y(m)$$

Dann ist (2) äquivalent zu $h(t) \ge 0$ für alle $t \in \mathbb{R}$. Dies wollen wir nun zeigen.

Fall A: Sei t < m.

$$h(t) \stackrel{\operatorname{Trafo}}{=} \int_{\mathbb{R}} |x-t| - |x-m| F(\mathrm{d}x)$$

$$= \int_{(-\infty,t]} \underbrace{\frac{|x-t| - |x-m|}{=t-x-(m-x)=-(m-t)}}_{=t-x-(m-x)=-(m-t)} F(\mathrm{d}x) + \int_{(t,m)} \underbrace{\frac{|x-t| - |x-m|}{x-t-(m-x)}}_{\geq 0} F(\mathrm{d}x)$$

$$+ \int_{[m,\infty)} \underbrace{\frac{|x-t| - |x-m|}{x-t-(x-m)=m-t}}_{=t-(m-t)} F(\mathrm{d}x)$$

$$\geq -(m-t) \cdot \underbrace{Q((-\infty,t])}_{F(t)} + (-(m-t) \cdot F(m-) - F(t)) + (m-t) \cdot \underbrace{Q([m,\infty))}_{1-\underbrace{Q((-\infty,m))}_{F(m-)}}_{F(m-)}$$

$$= -\underbrace{(m-t) \cdot (\underbrace{1-2 \cdot F(m-)}_{\text{wegen 1. Ungl. in (1):} \geq 0}_{\text{wegen 1. Ungl. in (1):} \geq 0}$$

$$\geq 0$$

Fall B: Sei t > m. Wir verfahren ganz ähnlich:

$$h(t) = \int_{(-\infty,m]} |x-t| - |x-m| F(dx) + \int_{(m,t]} |x-t| - |x-m| F(dx)$$

$$+ \int_{(t,\infty)} |x-t| - |x-m| F(dx)$$

$$= \int_{(-\infty,m]} t - x - (m-x) F(dx) + \int_{(m,t]} t - x - (x-m) F(dx)$$

$$+ \int_{(t,\infty)} x - t - (x-m) F(dx)$$

$$\geq (t-m) F(m) - (t-m) (F(t) - F(m)) + (m-t) (1 - F(t))$$

$$= (t-m) (F(m) - F(t) + F(m) - 1 + F(t))$$

$$= \underbrace{(t-m)}_{>0} \cdot \underbrace{(2 \cdot F(m) - 1)}_{\text{wegen 2. Ungl. in (1)} \geq 0}$$

$$\geq 0$$

Fall C: Für t = m ist die Aussage trivial.

(2) \Rightarrow (1): Nach Annahme ist $h(t) \geq 0$ für alle $t \in \mathbb{R}$.

Fall A: Sei t < m. Die obige Rechnung im Fall 1 bei \Rightarrow zeigt

$$0 \leq h(t) = -(m-t) \cdot F(t) + \int_{t}^{m} \underbrace{x}_{=2x-t-m \leq m-t} F(\mathrm{d}x) + (m-t) \cdot (1-F(m-))$$

$$\leq -(m-t) \cdot \left(F(t) - 1 \underbrace{+F(m-) - F(m-)}_{=0} + F(t)\right)$$

$$= \underbrace{(m-t)}_{>0} \cdot (1-2 \cdot F(t))$$

$$\Rightarrow \forall t < m : 0 \leq (m-t) \cdot (1-2 \cdot F(t))$$

$$\Rightarrow \forall t < m : 0 \leq 1-2 \cdot F(t)$$

$$\Rightarrow \forall t < m : F(t) \leq \frac{1}{2}$$

$$\stackrel{t \uparrow m}{\Rightarrow} F(m-) \leq \frac{1}{2}$$
(Def. linksseitiger Limes)

Fall B: Sei t > m. Siehe 2. Fall, analog:

$$\begin{split} 0 & \leq h(t) = (t-m) \cdot F(m) + \int_{m}^{t} \underbrace{t-x-(x-m)}_{=t+m-2x \leq t-m} F(\mathrm{d}x) + (m-t) \cdot (1-F(t)) \\ & \leq (t-m) \cdot (F(m)+F(t)-F(m)-1+F(t)) \\ & = \underbrace{(t-m)}_{>0} (2F(t)-1) \\ & \Rightarrow \forall t < m: \ 0 \leq 2F(t)-1 \\ & \Rightarrow \forall t < m: \ F(t) \geq \frac{1}{2} \\ & \stackrel{t\downarrow m}{\Rightarrow} F(m) \geq \frac{1}{2} \end{split} \tag{Rechtsstetigkeit von } F)$$

 $(2) \Rightarrow (3)$: Die Aussage (2) ist offensichtlich äquivalent zur Definition des Medians.

Bemerkung 1.2

- (1) Aussage Punkt (1) in Lemma 1.0 besagt, dass $\{m \in \mathbb{R} : m \text{ erfüllt } (\ref{eq:model})\}$ die Menge aller Mediane von F ist. Der Median ist im Allgemeinen nicht eindeutig bestimmt.
- (2) Im Allgemeinen gibt es mehrere Mediane. Üblicherweise wählt man $m := F^{-1}\left(\frac{1}{2}\right)$, wobei

$$F^{-1}(u) := \inf \{ x \in \mathbb{R} : F(x) \ge u \} \quad \forall u \in (0, 1)$$

die **Quantilfuntion** oder auch **verallgemeinerte Inverse** ist. Für weiterführende Literatur siehe [27, Seite 20]. Da

$$F\left(F^{-1}(u)-\right) \le u \le F\left(F^{-1}(u)\right) \qquad \forall u \in (0,1),$$

erfüllt $m = F^{-1}\left(\frac{1}{2}\right)$ die Bedingung (1) in Lemma 1.0 und ist somit ein Median, nämlich der kleinste.

(3) Die obige Funktion (1.0)

$$Y : \mathbb{R} \to \mathbb{R} \text{ mit } Y(t) = \int_{\mathbb{R}} |x - t| \ F(dx) \qquad \forall t \in \mathbb{R}$$

ist stetig¹, aber im Allgemeinen nicht differenzierbar, z. B. falls $F \sim X$ eine diskrete Zufallsvariable ist. In diesem Fall ist somit die Minimierung über Differentiation nicht möglich.

(4) Sei $\mu = \mathbb{E}(X)$ der Erwartungswert von X. Dann gilt (Übung):

$$\mu = \operatorname*{arg\,min}_{t \in \mathbb{R}} \mathbb{E}\left[(X - t)^2 \right] = \operatorname*{arg\,min}_{t \in \mathbb{R}} \mathbb{E}\left[(X - t)^2 - X^2 \right].$$

(Das zweite X^2 wird abgezogen, da das arg min nicht davon betroffen ist und so die Bedin-

 $^{^{1}}$ zur Stetigkeit von Y: nutze Folgenkriterium + dominierte Konvergenz mit Majorante |X| + |t|

gung $\mathbb{E}\left[X^2\right]<\infty$ entfällt.) Begründung:

$$\mathbb{E}\left[(X-t)^2) - X^2\right] = \mathbb{E}\left[X^2 - 2tX + t^2 - X^2\right]$$
$$= \mathbb{E}\left[X^2\right] - 2t\mu + t^2 - \mathbb{E}\left[X^2\right] = t^2 - 2t\mu$$

Minimiere nun diese quadratische Funktion und erhalte die gewünschte Resultat.

In der Statistik identifizieren wir oft stillschweigend Zufallsgrößen mit ihren Realisationen, also $X \leadsto x$ was sich formal $X(\omega_0) = x$ schreiben lässt.

Zur Schätzung von m seien $X_1, \ldots, X_n \sim F$ iid Zufallsvariablen mit zugehöriger **empirischer** Verteilungsfunktion

$$F_n \colon \mathbb{R} \to [0,1] \quad \text{mit} \quad F_n(x) := \frac{1}{n} \cdot \sum_{i=1}^n \mathbb{1}_{\{x_i \le x\}}(x) \quad \forall x \in \mathbb{R}.$$

Tatsächlich ist F_n die Verteilungsfunktion zum **empirischen Maß**

$$Q_n \colon \mathcal{B}(\mathbb{R}) \to [0,1] \quad \text{mit} \quad Q_n(B) := \frac{1}{n} \cdot \sum_{i=1}^n \delta_{x_i}(B)$$

wobei das **Dirac-Maß** in t definiert ist als

$$\delta_t \colon \mathcal{B}(\mathbb{R}) \to [0,1] \quad \text{ mit } \quad \delta_t(B) := \begin{cases} 0, & \text{ falls } t \notin B \\ 1, & \text{ falls } t \in B \end{cases} \quad \forall B \in \mathcal{B}(\mathbb{R}) \ \forall t \in \mathbb{R}$$

Gemäß dem Satz von Gliwenko-Cantelli gilt:

$$\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \stackrel{n \to \infty}{\longrightarrow} 0 \qquad \mathbb{P}\text{-fast sicher für alle Verteilungsfunktionen } F$$

Die empirische Verteilungsfunktion konvergiert also gegen die wahre Verteilungsfunktion.

Erinnerung. Für das Dirac-Maß $\delta_x \colon \mathcal{A} \to \mathbb{R}_+$ mit $\delta_x(A) := \mathbb{1}_A(x)$ gilt:

$$\int_{\mathbb{R}} f(t) \, \delta_x(\mathrm{d}t) = f(x) \qquad \forall x \in \mathbb{R}$$
 (Dir)

Notation. Wir identifizieren eine Verteilung $\mathbb{P} \circ X^{-1}$ mit der zugehörigen Verteilungsfunktion F_X , also $\mathbb{P} \circ X^{-1} \leftrightarrow F_X$ und $F_X(\mathrm{d}x) := (\mathbb{P} \circ X^{-1} \mathrm{d}x)$.

Erinnerung. Das Lebesgue-Maß ist linear im Maß, d. h.:

$$\int_{\omega} f d(a \cdot \mu + b \cdot \nu) = a \cdot \int_{\omega} f d\mu + b \cdot \int_{\omega} f d\nu$$
 (Lin)

Kapitel 2

METRISCHE RÄUME

Sei (\mathcal{S}, d) ein metrischer Raum.

Beispiel 2.1 (Supremums-Metrik)

$$\begin{split} \mathcal{S} &= C([0,1]) := \{f \colon [0,1] \to \mathbb{R} : f \text{ stetig}\} \\ & d(f,g) := \sup_{t \in [0,1]} |f(t) - g(t)| \qquad \forall f,g \in C([0,1]) \end{split}$$

Definition 2.2 (1) Für $x \in \mathcal{S}$ und r > 0 ist

$$B(x,r) := B_d(x,r) := \{ y \in \mathcal{S} : d(x,y) < r \}$$

die offene Kugel um Mittelpunkt x und Radius r.

- (2) Sei $A \subseteq \mathcal{S}$. Dann ist:
 - $A^{\circ} \dots$ das **Innere** von A
 - \overline{A} ... die abgeschlossene Hülle von A
 - $\partial A := \overline{A} \cap \overline{A^C} = \overline{A} \setminus A^{\circ} \dots$ der Rand von A
 - $A^{\mathsf{C}} := \mathcal{S} \setminus A \dots$ das **Komplement** von A
- (3) Die durch d induzierte **Topologie** ist

$$\mathcal{G} := \mathcal{G}(\mathcal{S}) := \{ G \subseteq \mathcal{S} : G \text{ ist offen bzgl. } d \}$$
$$= \{ G \subseteq \mathcal{S} : \forall x \in G : \exists r > 0 : B_d(x, r) \subseteq G \}$$

und

$$\mathcal{F} := \mathcal{F}(\mathcal{S}) := \{ F \subseteq \mathcal{S} : F \text{ ist abgeschlossen} \} = \{ F : F = G^{\mathsf{C}}, G \in \mathcal{G} \}$$

ist die Menge der abgeschlossenen Mengen.

- (4) Sei $\emptyset \neq A \subseteq \mathcal{S}$ und $x \in \mathcal{S}$. Dann ist $d(x, A) := \inf \{d(x, a) : a \in A\} \ge 0$ der **Abstand** von x zu A.
- (5) Es ist

$$\begin{split} C(\mathcal{S}) &:= \{f \colon S \to \mathbb{R} : f \text{ stetig}\} \\ C^b(\mathcal{S}) &:= \{f \in C(\mathcal{S}) : f \text{ beschränkt}\} \\ \|f\| &:= \|f\|_{\infty} := \sup_{x \in \mathcal{S}} |f(x)| \end{split}$$

Lemma 2.3 Sei $A \neq \emptyset$.

- (1) Es ist $x \in \overline{A} \iff d(x, A) = 0$.
- (2) Für alle $x, y \in \mathcal{S}$ gilt $|d(x, A) d(y, A)| \le d(x, y)$.
- (3) Die Abbildung $d(\cdot, A) : \mathcal{S} \to [0, \infty), x \mapsto d(x, A)$ ist gleichmäßig stetig.

Beweis. (zu 1) (\Rightarrow) Sei $x \in \overline{A}$. Dann existiert für alle $\varepsilon > 0$ ein $a \in A$ mit $d(x, a) < \varepsilon$. Somit

$$0 \le d(x,A) \le d(x,a) < \varepsilon \quad \forall \varepsilon > 0 \stackrel{\varepsilon \to 0}{\Rightarrow} d(x,A) = 0$$

 (\Leftarrow) Sei d(x, A) = 0. Dann folgt aus der Infimumseigenschaft:

$$\forall \varepsilon > 0 \ \exists a \in A : \ 0 \le d(x, a) \le 0 + \varepsilon = \varepsilon \ \Rightarrow \ x \in \overline{A}$$

(zu 2) Seien $x, y \in \mathcal{S}$. Dann gilt $d(x, a) \leq d(x, y) + d(y, a)$ mit der Dreiecksungleichung für alle $a \in A$ und somit

$$d(x,A) \le d(x,y) + d(y,A) \Rightarrow d(x,A) - d(y,A) \le d(x,y)$$

Vertauschen von x und y liefert $d(y,A)-d(x,A) \leq d(y,x)=d(x,y)$ und daraus folgt die Behauptung.

(zu 3) Folgt aus Punkt (2) da die Funktion $d(\cdot,A)$ Lipschitz-stetig und damit gleichmäßig stetig ist.

Satz 2.4 (Stetige Approximation von Indikatorfunktionen) Zu $A \subseteq \mathcal{S}$ und $\varepsilon > 0$ existiert eine gleichmäßig stetige Funktion

$$f \colon \mathcal{S} \to [0,1] \quad \text{ mit der Eigenschaft} \quad f(x) = \begin{cases} 1 & \text{ falls } x \in A \\ 0 & \text{ falls } d(x,A) \geq \varepsilon \end{cases}$$

Beweis. Setze

$$\varphi \colon \mathbb{R} \to [0, 1] \quad \text{mit} \quad \varphi(t) := \begin{cases} 1 & \text{falls } t \le 0 \\ 1 - t & \text{falls } 0 < t < 1 \\ 0 & \text{falls } t \ge 1 \end{cases}$$

Dann ist φ gleichmäßig stetig auf \mathbb{R} . Sei

$$f(x) := \varphi\left(\frac{1}{\varepsilon} \cdot d(x, A)\right) \qquad \forall x \in \mathcal{S}$$

Dann hat dieses f die gewünschte Eigenschaft wegen Lemma 2.3.

Definition 2.5 Ein metrischer Raum (S, d) heißt separabel

 $:\Leftrightarrow \exists \text{ abz\"{a}hlbares } S_0 \subseteq \mathcal{S} : \mathcal{S} \subseteq \overline{S_0}$

 $\Leftrightarrow \exists \text{ abz\"{a}hlbares } S_0 \subseteq \mathcal{S} : \mathcal{S} = \overline{S_0}$

 $\Leftrightarrow \exists$ abzählbares $S_0 \subseteq \mathcal{S} : S_0$ liegt dicht in \mathcal{S}

Beispiel 2.6 Der metrische Raum C([0,1]) mit Supremums-Metrik ist separabel.

Beweis. Die Menge $S_0 := \{P : P \text{ ist Polynom mit rationalen Koeffizienten}\}$ ist abzählbar. Aus dem Approximationssatz von Weierstraß und der Dichtheit von \mathbb{Q} folgt die Behauptung. \square

Definition 2.7 $\mathcal{G}_0 \subseteq \mathcal{G}$ heißt **Basis** von \mathcal{G} genau dann, wenn sich jedes $G \in \mathcal{G}$ als Vereinigung von Mengen aus \mathcal{G}_0 , so genannte \mathcal{G}_0 -Mengen, darstellen lässt.

Beispiel 2.8 Die Menge $\{B(x,r) : x \in \mathcal{S}, 0 < r \in \mathbb{Q}\}$ ist Basis von \mathcal{G} .

Beweis. Sei $G \in \mathcal{G}$. Dann gilt:

$$\forall x \in G \ \exists \ 0 < r_x \in \mathbb{Q} : B(x, r_x) \subseteq G \ \Rightarrow \ G = \bigcup_{x \in G} \{x\} \subseteq \bigcup_{x \in G} \underbrace{B(x, r_x)}_{\subseteq G} \subseteq G$$

Damit gilt also Gleichheit.

Satz 2.9 \mathcal{S} separabel $\Leftrightarrow \mathcal{G}$ hat eine abzählbare Basis

Beweis. (\Rightarrow) Sei $S_0 \subseteq \mathcal{S}$ abzählbar und dicht in \mathcal{S} . Wir zeigen, dass

$$\mathcal{G}_0 := \{ B(x, r) : x \in S_0, 0 < r \in \mathbb{Q} \} \subseteq \mathcal{G}$$

eine Basis ist. Sei also G offen. Dann folgt aus Beispiel Beispiel 2.8, dass

$$G = \bigcup_{x \in G} B(x, r_x), \qquad 0 < r_x \in \mathbb{Q} \ \forall x \in G$$
 (*)

Da $\overline{S_0} = \mathcal{S}$ gilt:

$$\forall x \in G : \exists y_x \in S_0 : d(x, y_x) < \frac{r_x}{2}$$

$$\Rightarrow \quad d(x, y) \overset{\triangle - \text{Ungl.}}{\leq} d(x, y_x) + d(y_x, x) < \frac{r_x}{2} + \frac{r_x}{2} = r_x \qquad \forall y \in B\left(y_x, \frac{r_x}{2}\right)$$

$$\Rightarrow \quad B\left(y_x, \frac{r_x}{2}\right) \subseteq B(x, r_x) \qquad \forall x \in G$$

$$\Rightarrow \quad G \overset{(\star)}{\supseteq} \bigcup_{x \in G} \underbrace{B\left(y_x, \frac{r_x}{2}\right)}_{\supseteq \{x\}} \supseteq \bigcup_{x \in G} \{x\} = G$$

Damit gilt also Gleichheit und \mathcal{G}_0 ist eine Basis. Da S_0 abzählbar ist, ist \mathcal{G}_0 abzählbar.

(\Leftarrow) Sei \mathcal{G}_0 abzählbare Basis von \mathcal{G} und sei oBdA $\emptyset \notin \mathcal{G}_0$. Wähle für jedes $G \in \mathcal{G}_0$ ein $x_G \in G$ fest aus. Setze $S_0 := \{x_G : G \in \mathcal{G}_0\}$. Dann ist S_0 auch abzählbar. Es verbleibt die Dichtheit zu zeigen. Sei $x \in \mathcal{S}$ und $\varepsilon > 0$ beliebig. Da $B(x, \varepsilon)$ offen und \mathcal{G}_0 eine Basis ist, gilt:

$$\exists \mathcal{G}_{x,\varepsilon} \subseteq \mathcal{G}_0 \text{ mit } B(x,\varepsilon) = \bigcup_{G \in \mathcal{G}_{x,\varepsilon}} G \ \Rightarrow \ G \subseteq B(x,\varepsilon) \qquad \forall G \in \mathcal{G}_{x,\varepsilon}$$

Wähle ein G von diesen aus. Dann gilt:

$$x_G \in G \subseteq B(x,\varepsilon) \Rightarrow x_G \in B(x,\varepsilon) \Rightarrow d(\underbrace{x_G}_{\in S_0}, x) < \varepsilon$$

Satz 2.10 Seien (S, d) und (S', d') metrische Räume.

(1) Auf $S \times S'$ sind Metriken definiert durch

$$d_{1}((x,x'),(y,y')) := ((d(x,y))^{2} + (d'(x',y'))^{2})^{\frac{1}{2}} \qquad \forall (x,x'),(y,y') \in \mathcal{S} \times \mathcal{S}'$$

$$d_{2}((x,x'),(y,y')) := \max \{d(x,y),d'(x',y')\} \qquad \forall (x,x'),(y,y') \in \mathcal{S} \times \mathcal{S}'$$

$$d_{3}((x,x'),(y,y')) := d(x,y) + d'(x',y') \qquad \forall (x,x'),(y,y') \in \mathcal{S} \times \mathcal{S}'$$

(2) Die Metriken d_1 , d_2 und d_3 induzieren dieselbe Topologie $\mathcal{G}(\mathcal{S} \times \mathcal{S}')$ auf $\mathcal{S} \times \mathcal{S}'$, die sogenannte **Produkttopologie** von $\mathcal{G}(\mathcal{S})$ und $\mathcal{G}(\mathcal{S}')$.

$$(3) \ \mathcal{G}(\mathcal{S} \times \mathcal{S}') = \left\{ \bigcup_{\substack{G \in \mathcal{O} \\ G' \in \mathcal{O}'}} G \times G' : \mathcal{O} \subseteq \mathcal{G}(\mathcal{S}), \mathcal{O}' \subseteq \mathcal{G}(\mathcal{S}') \right\}, \text{ d.h.}$$

$$\left\{ G \times G' : G \in \mathcal{G}(\mathcal{S}), G' \in \mathcal{G}(\mathcal{S}') \right\} \qquad \text{(Menge offener Rechtecke)}$$

bildet eine Basis von $\mathcal{G}(S \times \mathcal{S}')$.

Beweis. (zu 1) Überprüfung der Eigenschaften einer Metrik (zur Übung).

(zu 2) Punktweise gelten die Beziehungen:

$$d_2 \le d_1 \le \sqrt{2} \cdot d_2, \qquad \frac{1}{\sqrt{2}} \cdot d_3 \le d_1 \le d_3, \qquad d_2 \le d_3 \le 2 \cdot d_2$$

Beachte beim Nachweis, dass die d_i 's als Metriken größer oder gleich Null sind. Aus obigen Beziehungen folgt u. a.:

$$B_{d_2}\left(x, \frac{r}{\sqrt{2}}\right) \subseteq B_{d_1}(x, r)$$

denn

$$r > \sqrt{2} \cdot d_2(y, x) \ge d_1(y, x)$$
 (2.1)

Damit folgt aus G d_1 -offen schon, dass G d_2 -offen ist, denn für $x \in G$ existiert r > 0 mit $B_{d_1}(x,r) \subseteq G$ und (2.1) liefert $B_{d_2}(x,\frac{r}{\sqrt{2}}) \subseteq G$. Damit ist x auch ein ein d_2 -innerer Punkt. Die anderen Relationen gelten analog.

KAPITEL 2. METRISCHE RÄUME

(zu 3) \subseteq : Sei $G^* \in \mathcal{G}(\mathcal{S} \times \mathcal{S}')$ eine offene Menge in der Produkttopologie. Dann gilt

$$\forall x^* = (x, x') \in G^* : \exists r = r_{x^*} > 0 : G^* = \bigcup_{x^* \in G^*} B(x^*, r_{x^*}).$$

Wegen Punkt (2) sei oBdA. $S^* := S \times S'$ versehen mit der Metrik d_2 . Dann gilt:

$$B_{d_{2}}(x^{*}, r_{x^{*}}) = \{(y, y') \in \mathcal{S} \times \mathcal{S}' : \max\{d(x, y), d'(x', y')\} < r_{x^{*}}\}$$

$$= \{(y, y') \in \mathcal{S} \times \mathcal{S}' : d(x, y) < r_{x^{*}} \land d'(x', y') < r_{x^{*}}\}$$

$$= \underbrace{B_{d}(x, r_{x^{*}})}_{\in \mathcal{G}(\mathcal{S})} \times \underbrace{B_{d'}(x', r_{x^{*}})}_{\in \mathcal{G}(\mathcal{S}')}$$

 \supseteq : Sei zunächst $G \times G'$ G, G' offen und $x^* = (x, x') \in G \times G'$. Also ist $x \in G$ und $x' \in G'$ und somit

$$\exists r, r' > 0 : B_d(x, r) \subseteq G \land B_{d'}(x', r') \subseteq G'$$

Setze $r^* := \min\{r, r'\} > 0$. Damit folgt

$$B_{d_{2}}(x^{*}, r^{*}) \subseteq B_{d}(x, r) \times B_{d'}(x', r')$$

$$\subseteq G \times G' = G^{*}$$

$$\Rightarrow G \times G' \in \mathcal{G}(\mathcal{S} \times \mathcal{S}')$$

$$\Rightarrow \bigcup_{\substack{G \in \mathcal{O} \\ G' \in \mathcal{O}'}} G \times G' \subseteq \mathcal{G}(\mathcal{S} \times \mathcal{S}') \qquad \forall \mathcal{O} \subseteq \mathcal{G}(\mathcal{S}), \mathcal{O}' \subseteq \mathcal{G}(\mathcal{S}')$$

da die Produkttopologie vereinigungsstabil ist.

Definition 2.11 Die Metriken d_1, d_2 und d_3 heißen **Produktmetriken**. Daher alternative Schreibweise $d \times d'$, also z. B. $d \times d' := \max\{d, d'\}$ usw.

Bemerkung 2.12 Analog zu obigen Definitonen lassen sich Produktmetriken für endlich viele metrische Räume $(S_i, d_i)_{i \in \{1,...,k\}}$ definieren, z. B.

$$d_1 \times \cdots \times d_k := \left(\sum_{i=1}^k d_i^2\right)^{\frac{1}{2}},$$

die wiederum dieselbe Produkttopologie induzieren. Die bisherigen Resultate gelten analog.

———— Kapitel 3 ZUFALLSVARIABLEN IN METRISCHEN RÄUMEN

3.1 Messbarkeit in metrischen Räumen

Definition 3.1 Die durch den metrischen Raum (S, d) induzierte σ -Algebra

$$\mathcal{B} := \mathcal{B}(\mathcal{S}) := \mathcal{B}_d(\mathcal{S}) := \sigma((\mathcal{G}(\mathcal{S}))) := \sigma(\mathcal{G}).$$

heißt Borel- σ -Algebra. Elemente $B \in \mathcal{B}(\mathcal{S})$ heißen Borel-Mengen in \mathcal{S} .

Beachte: $\mathcal{B}(\mathcal{S}) = \mathcal{B}_d(\mathcal{S})$ hängt im Allgemeinen von der Metrik d ab.

Lemma 3.2 Es gilt:

- (1) $\mathcal{B}(\mathcal{S}) = \sigma(\mathcal{F}(\mathcal{S}))$
- (2) Ist $f: (\mathcal{S}, d) \to (\mathcal{S}', d)$ stetig, so ist f auch $\mathcal{B}_d(\mathcal{S})$ - $\mathcal{B}_d(\mathcal{S}')$ -messbar.
- (3) Sei \mathcal{G}_0 abzählbare Basis von $\mathcal{G}(\mathcal{S})$. Dann gilt $\sigma(\mathcal{G}_0) = \mathcal{B}(\mathcal{S})$.
- Beweis. (zu a) \subseteq : Sei $G \in \mathcal{G}(\mathcal{S})$. Dann gilt ist $G^{\mathsf{C}} \in \mathcal{F}(\mathcal{S}) \subseteq \sigma(\mathcal{F}(\mathcal{S}))$. Da $\sigma(\mathcal{F}(\mathcal{S}))$ stabil unter Bildung von Komplementen ist, ist auch $G = (G^{\mathsf{C}})^{\mathsf{C}} \in \sigma(\mathcal{F}(\mathcal{S}))$. Weiter folgt aus $\mathcal{G} \subseteq \sigma(\mathcal{F})$ schon $\sigma(\mathcal{G}) \subseteq \sigma(\mathcal{F})$.

⊇: analog

- (zu b) Per Definition gilt $f^{-1}(\mathcal{B}_{d'}(\mathcal{S}')) = f^{-1}(\sigma(\mathcal{G}(\mathcal{S}')))$. Ein Satz aus der Maßtheorie liefert uns weiter $f^{-1}(\sigma(\mathcal{G}(\mathcal{S}'))) = \sigma(f^{-1}(\mathcal{G}(\mathcal{S}')))$. Bekannterweise sind für stetige Funktionen Urbilder offener Mengen wieder offen, d.h. es gilt $f^{-1}(\mathcal{G}(\mathcal{S}')) \subseteq \mathcal{G}(S)$. Somit ist $\sigma(f^{-1}(\mathcal{G}(\mathcal{S}'))) \subseteq \sigma(\mathcal{G}(S)) = \mathcal{B}(S)$.
- (zu c) \subseteq : klar wegen $\mathcal{G}_0 \subseteq \mathcal{G}(\mathcal{S})$ und σ monoton
 - \supseteq : Sei $G \in \mathcal{G}$. Dann existieren geeignete $G_i \in \mathcal{G}_0 \subseteq \sigma(\mathcal{G}_0)$, sodass $G = \bigcup_{i \in \mathbb{N}} G_i$. Damit ist $G \in \sigma(\mathcal{G}_0)$. Aus der Stabilität unter Vereinigungen folgt die Behauptung:

$$G = \bigcup_{i \in \mathbb{N}} G_i \subseteq \sigma(\mathcal{G}_0) = \mathcal{B}(\mathcal{S}) \in \sigma(\mathcal{G}_0),$$

da σ -Algebren $abz\ddot{a}hlbar$ vereinigungsstabil sind.

Satz 3.3 Sei (\mathcal{S}, d) separabler metrischer Raum. Dann gilt:

$$\mathcal{B}_{d\times d}(\mathcal{S}\times\mathcal{S}) = \mathcal{B}(S)\otimes\mathcal{B}(\mathcal{S})$$

Ohne Separabilität gilt nur " \supseteq ". Für S_1 und S_2 separabel gilt $\mathcal{B}_{d_1 \times d_2}(\mathcal{S}_1 \times \mathcal{S}_2) = \mathcal{B}(S_1) \otimes \mathcal{B}(\mathcal{S}_2)$ analog, auch erweiterbar auf endliche Produkte.

Beweis. Seien

$$\pi_1 : \mathcal{S} \times \mathcal{S} \to \mathcal{S} \text{ mit } \pi_1(x,y) := x \qquad \forall (x,y) \in \mathcal{S} \times \mathcal{S}$$

 $\pi_2 : \mathcal{S} \times \mathcal{S} \to \mathcal{S} \text{ mit } \pi_2(x,y) := y \qquad \forall (x,y) \in \mathcal{S} \times \mathcal{S}$

die Projektionsabbildungen. Dann gilt

$$\mathcal{B}(\mathcal{S}) \otimes \mathcal{B}(\mathcal{S}) = \sigma(\pi_{1}, \pi_{2}) = \sigma\left(\pi_{1}^{-1}(\sigma(\mathcal{G})) \cup \pi_{2}^{-1}(\sigma(\mathcal{G}))\right)$$

$$= \sigma\left(\sigma\left(\pi_{1}^{-1}(\mathcal{G})\right) \cup \sigma\left(\pi_{2}^{-1}(\mathcal{G})\right)\right)$$

$$\stackrel{(\star)}{=} \sigma\left(\pi_{1}^{-1}(\mathcal{G}) \cup \pi_{2}^{-1}(\mathcal{G})\right)$$

$$= \sigma\left(\left\{G \times S, S \times G' : G, G' \in \mathcal{G}\right\}\right)$$

$$= \sigma\left(\left\{G \times S, S \times G' : G, G' \in \mathcal{G}\right\}\right)$$

$$= \sigma\left(\left\{G \times S, G \times G' : G, G' \in \mathcal{G}\right\}\right)$$

$$(,,\subseteq)^{\circ}, da S \in \mathcal{G} ; ,,\supseteq)^{\circ}, da \sigma-Algebra \cap-stabil)$$

$$\stackrel{(\star\star)}{=} \sigma\left(\left\{\bigcup_{G \in \mathcal{O}' \\ G' \in \mathcal{O}'} G \times G' : \mathcal{O}, \mathcal{O}' \subseteq \mathcal{G}\right\}\right)$$

$$= \sigma\left(\mathcal{G}(\mathcal{S} \times \mathcal{S})\right)$$

$$= \sigma\left(\mathcal{G}(\mathcal{S} \times \mathcal{S})\right)$$
(Satz 2.10, Punkt (3))
$$\stackrel{\text{Def}}{=} \mathcal{B}(\mathcal{S} \times \mathcal{S})$$

Zum Nachweis von (\star) :

$$\supseteq : \text{ Setze } \mathcal{E} := \underbrace{\sigma\left(\pi_1^{-1}(\mathcal{G})\right)}_{\supseteq \pi_1^{-1}(\mathcal{G})} \cup \underbrace{\sigma\left(\pi_2^{-1}(\mathcal{G})\right)}_{\supseteq \pi_2^{-1}(\mathcal{G})} \supseteq \pi_1^{-1}(\mathcal{G}) \cup \pi_2^{-1}(\mathcal{G}) =: \mathcal{H}. \text{ Dann ist } \sigma(\mathcal{E}) \supseteq \sigma(\mathcal{H}).$$

 \subseteq : Es ist $\pi_1^{-1}(\mathcal{G}) \subseteq \left(\pi_1^{-1}(\mathcal{G}) \cup \pi_2^{-1}(\mathcal{G})\right) = \mathcal{H}$. Also ist auch $\sigma\left(\pi_1^{-1}(\mathcal{G})\right) \subseteq \sigma(\mathcal{H})$. Analog erhalten wir auch $\sigma\left(\pi_2^{-1}(\mathcal{G})\right) \subseteq \sigma(\mathcal{H})$. Dann gilt

$$\mathcal{E} = \underbrace{\sigma\left(\pi_1^{-1}(\mathcal{G})\right)}_{\subset \sigma(\mathcal{H})} \cup \underbrace{\sigma\left(\pi_2^{-1}(\mathcal{G})\right)}_{\subset \sigma(\mathcal{H})} \subseteq \sigma(\mathcal{H}) ,$$

also auch $\sigma(\mathcal{E}) \subseteq \sigma(\mathcal{H})$.

Bleibt Nachweis von $(\star\star)$:

 \subseteq : ist klar mit \mathcal{O} und \mathcal{O}' einelementig (gilt auch ohne Separabilität)

 \supseteq : Gemäß Satz 2.9 existiert abzählbare Basis \mathcal{G}_0 von \mathcal{G} . Seien $\mathcal{O}, \mathcal{O} \subseteq \mathcal{G}$. Sei

$$G^* = \bigcup_{\substack{G \in \mathcal{O} \\ G' \in \mathcal{O}'}} G \times G' = \bigcup_{\substack{G, G' \text{ offen} \\ G \times G' \subseteq G^*}} G \times G' \stackrel{(!)}{=} \bigcup_{\substack{G_0, G'_0 \in \mathcal{G}_0 \\ G \times G'_0 \subseteq G^*}} G_0 \times G'_0$$

eine abzählbare Vereinigung, da \mathcal{G}_0 Basis ist, also abzählbar. Somit gilt dann $G^* \in \sigma(\{G \times G' : G, G' \in \mathcal{G}\})$.

Definition 3.4 Sei (Ω, \mathcal{A}) ein Messraum. Eine Abbildung $X : \Omega \to \mathcal{S}$, die \mathcal{A} - $\mathcal{B}(\mathcal{S})$ -messbar ist, heißt **Zufallsvariable** (ZV) in dem metrischen Raum (\mathcal{S}, d) über (Ω, \mathcal{A}) .

Sei \mathbb{P} ein Wahrscheinlichkeitsmaß auf (Ω, \mathcal{A}) , also $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Das Bildmaß

$$\mathbb{P} \circ X^{-1} := \mathbb{P}_X := \mathcal{L}(X) := \mathcal{L}(X \mid \mathbb{P})$$
$$\left(\mathbb{P} \circ X^{-1}\right)(B) := \mathbb{P}\left(X^{-1}(B)\right) = \mathbb{P}\left(\{\omega \in \Omega : X(\omega) \in B\}\right) =: \mathbb{P}(X \in B) \qquad \forall B \in \mathcal{B}(\mathcal{S})$$

heißt **Verteilung** von X unter \mathbb{P} .

Satz 3.5 Sei (S, d) ein separabler metrischer Raum und seien X, Y Zufallsvariablen in (S, d) über (Ω, A) . Dann ist d(X, Y) eine reelle Zufallsvariable.

Beweis (gute Prüfungsfrage). Die Abbildungen $X,Y:(\Omega,\mathcal{A})\to(\mathcal{S},\mathcal{B}(\mathcal{S}))$ sind messbar genau dann, wenn die Abbildung $(X,Y):(\Omega,\mathcal{A})\to(\mathcal{S}\times\mathcal{S},\underbrace{\mathcal{B}(\mathcal{S})\otimes\mathcal{B}(\mathcal{S})})$ messbar ist. Jede Metrik $\underbrace{=\mathcal{B}(\mathcal{S}\times\mathcal{S})}$

ist bekanntlich stetig, also auch $d \colon (\mathcal{S} \times \mathcal{S}, \mathcal{G}(\mathcal{S} \times \mathcal{S})) \to \mathbb{R}^1$. Dann folgt aus Lemma 3.2, dass $d \colon \mathcal{B}(\mathcal{S} \times \mathcal{S}) \to \mathcal{B}(\mathbb{R})$ messbar ist. Damit folgt die Behauptung, denn $d(X,Y) = d \circ (X,Y)$ ist messbar als Komposition von messbaren Abbildungen.

3.2 Fast sichere Konvergenz

Definition 3.6 Seien $X, X_n \ (n \in \mathbb{N})$ Zufallsvariablen in einem separablen, metrischen Raum (S, d) über $(\Omega, \mathcal{A}, \mathbb{P})$.

$$X_n \stackrel{n \to \infty}{\longrightarrow} X$$
 \mathbb{P} -fast sicher $:\Leftrightarrow \mathbb{P}\left(\underbrace{\left\{\omega \in \Omega : d\left(X_n(\omega), X(\omega)\right) \stackrel{n \to \infty}{\longrightarrow} 0\right\}}_{=:M}\right) = 1$

Beachte: Die Definition von M mengentheoretisch aufgeschrieben (Schnitt \sim "für alle"; Verei-

 $^{^{1}\}mathbb{R}$ sei mit der natürlichen Topologie versehen

nigung \sim "Es gibt"):

$$M = \bigcap_{0 < \varepsilon \in \mathbb{Q}} \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} \left\{ \underbrace{d(X_n, X)}_{=:\zeta_n} < \varepsilon \right\} \stackrel{\text{Satz 3.5}}{\in} \mathcal{A}, \text{ denn } \zeta_n^{-1} \left((-\infty, \varepsilon) \right) \in \mathcal{A}$$

Hierbei gilt $M \in \mathcal{A}$ aufgrund der Abzählbarkeit der beteiligten Schnitte und Vereinigungen. Man schreibt auch:

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=X\right)=1$$
 oder $d(X_n,X)\to 0 \ (n\to\infty)$ \mathbb{P} -f. s.

Die bekannten Regeln (Ergebnisse) für *reelle* Zufallsvariablen lassen sich mühelos verallgemeinern; so zum Beispiel der folgende Satz.

Satz 3.7 Der fast-sichere Grenzwert ist P-fast sicher eindeutig:

$$X_n \stackrel{n \to \infty}{\longrightarrow} X$$
 \mathbb{P} -fast sicher und $X_n \stackrel{n \to \infty}{\longrightarrow} X'$ \mathbb{P} -fast sicher $\Rightarrow X = X'$ \mathbb{P} -fast sicher

Beweis. Es ist $\{X \neq X'\} \subseteq \{X_n \not\to X\} \cup \{X_n \not\to X'\}$ und $\mathbb{P}(X_n \not\to X) + \mathbb{P}(X_n \not\to X') = 0 + 0$. Also ist auch $\mathbb{P}(X \neq X') = 0$ und mit dem Gegenereignis gilt $\mathbb{P}(X = X') = 1 - \mathbb{P}(X \neq X') = 1$.

Satz 3.8 Seien X, X_n $(n \in \mathbb{N})$ Zufallsvariablen im separablen, metrischen Raum (\mathcal{S}, d) und sei $f: (\mathcal{S}, d) \to (\mathcal{S}', d')$ $\mathcal{B}_d(S)$ - $\mathcal{B}_{d'}(S')$ -messbar und stetig in X \mathbb{P} -fast sicher. ^a Dann gilt:

$$X_n \stackrel{n \to \infty}{\longrightarrow} X$$
 \mathbb{P} -fast sicher $\Rightarrow f(X_n) \stackrel{n \to \infty}{\longrightarrow} f(X)$ \mathbb{P} -fast sicher

", stetig in X \mathbb{P} -fast sicher" bedeutet, dass $\mathbb{P}(\{\omega \in \Omega : f \text{ in } X(\omega) \text{ stetig}\}) = 1$. Insbesondere ist $\{\omega \in \Omega : f \text{ in } X(\omega) \text{ stetig}\}$ messbar, was keine Selbstverständlichkeit ist.

Beweis. Aufgrund der Folgenstetigkeit gilt

$$\left\{X_n \overset{n \to \infty}{\longrightarrow} X\right\} \cap \left\{f \text{ stetig in } X\right\} \subseteq \left\{f(X_n) \overset{n \to \infty}{\longrightarrow} f(X)\right\}$$

Da abzählbare Schnitte von Einsmengen stets Einsmengen sind, d. h.

$$\forall i \in \mathbb{N} : \mathbb{P}(E_i) = 1 \implies \mathbb{P}\left(\bigcap_{i \in \mathbb{N}} E_i\right) = 1 \qquad \forall \{E_i\} \subseteq \Omega \text{ mit } \mathbb{P}(E_i) = 1$$

folgt

$$1 = \mathbb{P}\left(\left\{X_n \overset{n \to \infty}{\longrightarrow} X \text{ und } f \text{ stetig in } X\right\}\right) \le \mathbb{P}\left(\left\{f(X_n) \overset{n \to \infty}{\longrightarrow} f(X)\right\}\right) \le 1$$

und somit schon $\mathbb{P}\left(\left\{f(X_n) \stackrel{n \to \infty}{\longrightarrow} f(X)\right\}\right) = 1.$

Satz 3.9 (Konvergenz-Kriterium)

$$X_n \xrightarrow{n \to \infty} X$$
 \mathbb{P} -fast sicher $\Leftrightarrow \forall \varepsilon > 0 : \lim_{n \to \infty} \mathbb{P}\left(\sup_{m \ge n} d(X_m, X) > \varepsilon\right) = 0$

Beweis. Man ersetze im Beweis für den Fall reeller Zufallsvariablen $|X_n - X|$ durch $d(X_n, X)$. Und beachte, dass alle Schlussfolgerungen bestehen bleiben. Hier ausführlich:

$$X_n \overset{n \to \infty}{\longrightarrow} X \text{ \mathbb{P}-fast sicher } \Leftrightarrow 1 = \mathbb{P}\left(\bigcup_{0 < \varepsilon} \bigcap_{m \in \mathbb{N}} \bigcup_{n \ge m} d(X_n, X) < \varepsilon\right)$$

$$\Leftrightarrow 0 = \mathbb{P}\left(\bigcap_{0 < \varepsilon} \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} d(X_n, X) \ge \varepsilon\right)$$

$$\Leftrightarrow 0 = \mathbb{P}\left(\bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} d(X_n, X) \ge \varepsilon\right) \quad \forall \varepsilon > 0$$

Da für $m \to \infty$ die Mengen $\left\{ \bigcap_{n \ge m} d(X_n, X) \ge \varepsilon \right\}$ kleiner werden, ist dies äquivalent zu

$$\forall \varepsilon > 0 \ \forall \delta > 0 \ \exists \, m \in \mathbb{N} : \quad \mathbb{P}\left(\bigcap_{n \geq m} d(X_n, X) \geq \varepsilon\right) < \delta$$

$$\Leftrightarrow \ \forall \varepsilon > 0 : \quad \lim_{m \to \infty} \mathbb{P}\left(\bigcap_{n \geq m} d(X_n, X) \geq \varepsilon\right) = 0$$

$$\Leftrightarrow \ \forall \varepsilon > 0 : \quad \lim_{m \to \infty} \mathbb{P}\left(\sup_{n \geq m} d(X_n, X) \geq \varepsilon\right) = 0$$

Ein sehr nützliches Kriterium ist Folgendes:

Satz 3.10

$$\forall \varepsilon > 0: \quad \sum_{n \in \mathbb{N}_{> 1}} \mathbb{P}\left(d(X_n, X) > \varepsilon\right) < \infty \quad \Longrightarrow \quad X_n \overset{n \to \infty}{\longrightarrow} X \quad \mathbb{P}\text{-fast sicher}$$

Bemerkung. Die $\mathbb{P}(d(X_n, X) > \varepsilon)$ werden in der Statistik **Fehlerwahrscheinlichkeit** oder **tail probability** genannt. Um Fehlerwahrscheinlichkeiten abzuschätzen, also die Voraussetzung für diesen Satz für einen speziellen Fall zu zeigen, nutzt man häufig sogenannte Maximalungleichungen wie die Markov-Ungleichung und die Tschebychew-Ungleichung.

Beweis. Setze $A_n(\varepsilon) := \{d(X_n, X) > \varepsilon\} \in \mathcal{A}$ wegen Satz 3.5. Dann folgt aus dem *ersten Borel-Cantelli-Lemma* $\mathbb{P}\left(\limsup_{n \to \infty} A_n(\varepsilon)\right) = 0$ für alle $\varepsilon > 0$. Mit

$$\lim_{n \to \infty} \inf \left(A_n(\varepsilon)^{\mathsf{C}} \right) \stackrel{\text{Def}}{=} \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} \left(A_n(\varepsilon) \right)^{\mathsf{C}} = \left(\bigcap_{m \in \mathbb{N}} \bigcup_{n \ge m} \left\{ d(X_n, X) > \varepsilon \right\} \right)^{\mathsf{C}}$$

$$\stackrel{\text{Def}}{=} \left(\limsup_{n \to \infty} A_n(\varepsilon) \right)^{\mathsf{C}}$$

folgt dann

$$1 = \mathbb{P}\left(\left(\limsup_{n \to \infty} A_n(\varepsilon)\right)^{\mathsf{C}}\right) = \mathbb{P}\left(\liminf_{n \to \infty} \left(A_n(\varepsilon)^{\mathsf{C}}\right)\right) \qquad \forall \varepsilon > 0$$

Da abzählbare Durchschnitte von Eins-Mengen (also Mengen mit P-Maß 1) wieder Eins-Mengen sind, folgt schließlich:

$$\mathbb{P}\left(\underbrace{\bigcap_{0<\varepsilon\in\mathbb{Q}}\bigcap_{m\in\mathbb{N}}\bigcap_{n\geq m}\left\{d(X_n,X)\leq\varepsilon\right\}}_{\{X_n\to X\}=\{d(X_n,X)\to 0\}}\right)=1$$

Weitere Eigenschaften der fast sicheren Konvergenz von Zufallsvariablen in metrischen Räumen finden sich z. B. in [12, Kapitel 8.2].

3.3 Stochastische Konvergenz

Definition 3.11 X_n konvergiert stochastisch bzw. in Wahrscheinlichkeit gegen X, in Symbolen:

$$X_n \xrightarrow{\mathbb{P}} X : \Leftrightarrow \forall \varepsilon > 0 : \mathbb{P}\left(\left\{d(X_n, X) > \varepsilon\right\}\right) \xrightarrow{n \to \infty} 0$$

d. h. $d(X_n, X) \stackrel{\mathbb{P}}{\longrightarrow} 0$.

Satz 3.12
$$X_n \stackrel{n \to \infty}{\longrightarrow} X$$
 \mathbb{P} -fast sicher $\Rightarrow X_n \stackrel{\mathbb{P}}{\longrightarrow} X$

Beweis. Gemäß Satz 3.9 gilt

$$\forall \varepsilon > 0: \ 0 \le \mathbb{P}\left(d(X_n, X) > \varepsilon\right) \le \mathbb{P}\left(\sup_{m \ge n} d(X_m, X) > \varepsilon\right) \stackrel{n \to \infty}{\longrightarrow} 0$$

Die Umkehrung von Satz 3.12 gilt im Allgemeinen nicht, aber es gilt das folgende Teilfolgenkriterium.

Satz 3.13 (Teilfolgenkriterium für stochastische Konvergenz) Folgende Aussagen sind äquivalent:

- $(1) X_n \stackrel{\mathbb{P}}{\longrightarrow} X$
- (2) Zu jeder Teilfolge (TF) $(X_{n'})$ von $(X_n)_{n\in\mathbb{N}}$ existiert eine Teilfolge $(X_{n''})$ von $(X_{n'})$ derart, dass $X_{n''} \stackrel{n''\to\infty}{\longrightarrow} X$ \mathbb{P} -fast sicher.

Die Notation $(X_{n''})$ stammt aus [2].

Beweis. Wir verfahren wie im Reellen: Es gelte Punkt (1). Sei $\varepsilon > 0$ beliebig und $(X_{n_k})_k$ eine Teilfolge von $(X_n)_n$. Da $\mathbb{P}(\{d(X_n,X)>\varepsilon\})\to 0$, können wir eine Teilteilfolge $(X_{n_{k_i}})_i:=(Y_i)_i$ finden mit $\mathbb{P}(\{d(Y_i,X)>\varepsilon\})< i^{-2}$. Dann ist für alle $n\in\mathbb{N}$ und mit $n\to\infty$

$$\mathbb{P}\left(\sup_{i\geq n}d(Y_i,X)<\varepsilon\right)=\mathbb{P}\left(\bigcup_{i\geq n}\left\{d(Y_i,X)<\varepsilon\right\}\right)\leq \sum_{i=n}^{\infty}\mathbb{P}\left(\left\{d(Y_i,X)<\varepsilon\right\}\right)\leq \sum_{i=n}^{\infty}i^{-2}\to 0$$

Laut dem Konvergenz-Kriterium in Satz 3.9 bedeutet das $Y_i \to X$ \mathbb{P} -fast sicher.

Gelte nun Punkt (2) und wir nehmen an, es gäbe ein $\varepsilon > 0$ und eine Teilfolge $(X_{n_k})_k$ von $(X_n)_n$, sodass $\mathbb{P}(\{d(X_{n_k},X)>\varepsilon\})>\delta>0$ für ein passendes δ . Dann konvergiert nach Punkt (2) eine Teilteilfolge $(X_{n_{k_i}})_i$ \mathbb{P} -fast sicher gegen X, also laut Satz 3.12 auch stochastisch. Das widerspricht aber der obigen Annahme über $(X_{n_k})_k$, die sich auch auf $(X_{n_{k_i}})_i$ überträgt.

Mit dem Teilfolgenkriterium lassen sich Rechenregeln für fast sichere Konvergenz auf stochastische Konvergenz übertragen.

Korollar 3.14 (a)
$$X_n \xrightarrow{\mathbb{P}} X$$
 und $X_n \xrightarrow{\mathbb{P}} X' \Rightarrow X = X'$ \mathbb{P} -fast sicher

- (b) Gelte $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ in (\mathcal{S}, d) und $f: (\mathcal{S}, d) \to (\mathcal{S}', d')$ messbar mit f stetig in X \mathbb{P} -fast sicher. Dann gilt auch $f(X_n) \stackrel{\mathbb{P}}{\longrightarrow} f(X)$.
- Beweis. (zu a) Wegen $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$ existiert nach Satz 3.13 eine Teilfolge $(X_{n'}) \subseteq (X_n)_{n \in \mathbb{N}}$ mit $X_{n'} \stackrel{n' \to \infty}{\longrightarrow} X$ \mathbb{P} -fast sicher. Zu $(X_{n'})$ existiert (wegen $X_n \stackrel{\mathbb{P}}{\longrightarrow} X'$ und Satz 3.13) eine Teilfolge $(X_{n''})$ von $(X_{n'})$, sodass aus $X_{n''} \stackrel{n \to \infty}{\longrightarrow} X'$ \mathbb{P} -fast sicher mit Satz 3.7 schon X = X' fast sicher folgt.
- (zu b) Zu einer beliebigen Teilfolge $(X_{n'})$ von (X_n) existiert eine Teilfolge $(X_{n''})$ von $(X_{n'})$ mit $X_{n''} \to X$ \mathbb{P} -fast sicher. Mit Satz 3.8 folgt $f(X_{n''}) \to f(X)$ \mathbb{P} -fast sicher und mit Satz 3.13 angewendet auf $(f(X_n))_n$ gilt $f(X_n) \xrightarrow{\mathbb{P}} f(X)$.

3.4 Konvergenz in Produkträumen

Seien (S, d) und (S', d') separable metrische Räume. Dann ist auch $(S \times S', d \times d')$ ein separabler metrischer Raum. Dies folgt z. B. aus dem Satz von der koordinatenweise Konvergenz:

$$(a_n, a'_n) \xrightarrow{d \times d'} (a, a') \Leftrightarrow (a_n) \xrightarrow{d} a \text{ und } (a'_n) \xrightarrow{d'} a'$$
 (3.1)

Es gibt auch eine "stochastische Versionen" dieses Satzes.

Satz 3.15 (Koordinatenweise Konvergenz vom Zufallsgrößen)

- $(1) \ (X_n, X_n') \stackrel{d \times d'}{\longrightarrow} (X, X') \ \mathbb{P}\text{-f. s.} \ \Leftrightarrow \ X_n \stackrel{d}{\longrightarrow} X \ \mathbb{P}\text{-f. s.} \quad \text{und} \ X_n' \stackrel{d'}{\longrightarrow} X' \ \mathbb{P}\text{-f. s.}$
- $(2) \ (X_n, X_n') \stackrel{\mathbb{P}}{\longrightarrow} (X, X') \ \Leftrightarrow \ X_n \stackrel{\mathbb{P}}{\longrightarrow} X \ \text{und} \ X_n' \stackrel{\mathbb{P}}{\longrightarrow} X'$
- Beweis. (zu 1) Nach Gleichung (3.1) folgt aus $(X_n, X'_n) \xrightarrow{d \times d'} (X, X')$ P-fast sicher auch $X_n \to X$ und $X'_n \to X'$ P-fast sicher. Da der Schnitt von Eins-Mengen wieder eine Eins-Menge ist, ist dies wiederum äquivalent zu $X_n \to X$ P-fast sicher und $X'_n \to X'$ P-fast sicher. Achtung die "Stellung" der Fast-Sicherheit spielt eine Rolle!
- (zu 2) Die linke Seite ist wegen (3.1) und Satz 3.13 äquivalent dazu, dass für alle Teilfolgen $(X_{n'}, X'_{n'}) \subseteq (X_n, X'_n)$ eine Teilteilfolge $(X_{n''}, X'_{n''})$ existiert mit $(X_{n''}, X'_{n''}) \stackrel{n \to \infty}{\longrightarrow} 0$ fast

sicher. Also gilt wegen Punkt (1)

$$X_{n''} \to X$$
 f. s. und $X'_{n''} \to X'$ f. s.

Somit existiert für alle Teilfolgen $(X_{n'}) \subseteq (X_n)$ eine Teilteilfolge $(X_{n''}) \subseteq (X_{n'})$ mit $X_{n''} \to X$ fast sicher. Dies ist wegen (3.1) äquivalent zu $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$. Analog gilt auch $X'_n \to X'$.

3.4.1 Gleichheit in Verteilung

Definition 3.16 Seien X_i (i = 1, 2) Zufallsvariablen in (\mathcal{S}, d) über $(\Omega_i, \mathcal{A}_i, \mathbb{P}_i)$. Sie heißen gleich in Verteilung, in Zeichen

$$X_1 \stackrel{\mathrm{d}}{=} X_2 : \Leftrightarrow \mathbb{P}_1 \circ X_1^{-1} = \mathbb{P}_2 \circ X_2^{-1}$$

Wir wollen Verteilungsgleichheit in folgendem Satz charakterisieren.

Satz 3.17 Es gilt:

(a) Seien \mathbb{P}, \mathbb{Q} Wahrscheinlichkeitsmaße auf $\mathcal{B}(\mathcal{S})$. Dann gilt:

$$\mathbb{P} \equiv \mathbb{Q} \iff \int f \ d\mathbb{P} = \int f \ d\mathbb{Q} \qquad \forall f \in C^b(\mathcal{S}) \text{ glm. stetig}$$

(b) Es gilt

$$X \stackrel{\mathrm{d}}{=} Y \;\;\Leftrightarrow\;\; \mathbb{E}\left[f(X)\right] = \int_{\Omega_1} f(X_1) \;\; \mathrm{d}\mathbb{P}_1 = \int_{\Omega_2} f(X_2) \;\; \mathrm{d}\mathbb{P}_2 = \mathbb{E}\left[f(Y)\right]$$

für all $f \in C^b(\mathcal{S})$ gleichmäßig stetig.

Beweis. (zu a) (\Rightarrow) Klar.

(\Leftarrow) Aus Lemma 3.2, Punkt (1) wissen wir, dass $\mathcal{B}(\mathcal{S}) = \sigma(\mathcal{F}(\mathcal{S}))$ und \mathbb{F} ist durch-schnittsstabil. Wegen des $Ma\betaeindeutigkeitssatz$ reicht es zu zeigen, dass $\mathbb{P}(F) = \mathbb{Q}(F)$ für alle $F \in \mathcal{F}(S)$. Sei nun $F \subseteq \mathcal{S}$ abgeschlossen. Setze $f_k(x) := \varphi(k \cdot d(x, F))$ (vgl. Satz 2.4, φ wie dort). Aus Lemma 2.3 folgt, dass die f_k beschränkt und gleichmäßig stetig sind mit $f_k \searrow \mathbb{1}_F$ für $k \to \infty$. Also gilt:

$$\mathbb{P}(F) = \int \mathbb{1}_F \ d\mathbb{P} = \int \lim_{k \to \infty} f_k \ d\mathbb{P}$$

und mit monotoner Konvergenz

$$= \lim_{k \to \infty} \int f_k \ d\mathbb{P} = \lim_{k \to \infty} \int f_k \ d\mathbb{Q}$$

Wiederum mit monotoner Konvergenz

$$= \int \lim_{k \to \infty} f_k \ d\mathbb{Q} = \int \mathbb{1}_F \ d\mathbb{Q} = \mathbb{Q}(F)$$

Da F beliebig war, folgt die Behauptung.

(zu b) Dies folgt aus Punkt (a) mit dem Transformationssatz (??):

$$\begin{split} X & \stackrel{\mathrm{d}}{\Leftrightarrow} Y \stackrel{3,16}{\Leftrightarrow} \mathbb{P} \circ X^{-1} = \mathbb{P} \circ Y^{-1} \\ & \stackrel{(a)}{\Leftrightarrow} \int_{\mathcal{S}} f \ \mathrm{d}(\mathbb{P} \circ X^{-1}) = \int_{\mathcal{S}} f \ \mathrm{d}(\mathbb{P} \circ Y^{-1}) \\ & \stackrel{(*)}{\Leftrightarrow} \mathbb{E}\left[f(X)\right] = \mathbb{E}\left[f(Y)\right] \\ \end{split} \qquad \forall f \in C^b(\mathcal{S}) \ \mathrm{glm. \ stetig} \end{split}$$

Verwende dafür:

$$\int_{\mathcal{S}} f \ \mathrm{d}(\mathbb{P} \circ X^{-1}) \stackrel{\mathrm{Trafo}}{=} \int_{\Omega} \underbrace{f \circ X}_{=:f(X)} \ \mathrm{d}\mathbb{P} \stackrel{\mathrm{Def}}{=} \mathbb{E}\left[f(X)\right] \tag{*}$$

LITERATURVERZEICHNIS

- [1] Billingsley, P.: Convergence of probability measures. John Wiley & Sons, 1968
- [2] Billingsley, P.: Probability and measure. John Wiley & Sons, 1995
- [3] BORODIN, A. N.; SALMINEN, P.: Handbook of Brownian motion-facts and formulae. Birkhäuser, 2002
- [4] Chow, Y. S.; Teicher, H.: Probability theory: independence, interchangeability, martingales. Springer Science & Business Media, 1997
- [5] Csörgő, M.; Horváth, L.: Limit theorems in change-point analysis. John Wiley & Sons Chichester, 1997
- [6] CZADO, C.; SCHMIDT, T.: Mathematische Statistik. Springer, 2011
- [7] DUDLEY, R. M.: Real Analysis and Probability. Chapman and Hall/CRC, 1999
- [8] FERGER, D.: Asymptotic distribution theory of change-point estimators and confidence intervals based on bootstrap approximation. In: Mathematical Methods of Statistics 3 (1994), Nr. 4, S. 362
- [9] FERGER, D.: Moment equalities for sums of random variables via integer partitions and Faà di Bruno's formula. In: *Turkish Journal of Mathematics* 38 (2014), Nr. 3, S. 558–575
- [10] FERGER, D.: Optimal constants in the Marcinkiewicz–Zygmund inequalities. In: Statistics & Probability Letters 84 (2014), S. 96–101
- [11] Ferger, D.: On the supremum of a Brownian bridge standardized by its maximizing point with applications to statistics. In: *Statistics & Probability Letters* 134 (2018), S. 63–69
- [12] GÄNSSLER, P.; STUTE, W.: Wahrscheinlichkeitstheorie. Berlin, Heidelberg [u.a.]: Springer, 1977. ISBN 9780387084183
- [13] Hand, D. J.: Statistical Decision Theory: Estimation, Testing, and Selection by Friedrich Liese, Klaus-J. Miescke. In: *International Statistical Review* 76 (2008), Nr. 3, S. 450–450
- [14] Heuser, H.: Funktionalanalysis. 2006
- [15] HJORT, N. L.; POLLARD, D.: Asymptotics for minimisers of convex processes. In: arXiv preprint arXiv:1107.3806 (2011)
- [16] JACOD, J.; PROTTER, P.: Probability essentials. Springer Science & Business Media, 2000
- [17] Kallenberg, O.: Foundations of modern probability. Springer, 1997
- [18] Klenke, A.: Wahrscheinlichkeitstheorie. Bd. 1. Springer, 2008

LITERATURVERZEICHNIS

- [19] Prokhorov, Y. V.: Convergence of random processes and limit theorems in probability theory. In: *Theory of Probability & Its Applications* 1 (1956), Nr. 2, S. 157–214
- [20] Rockafellar, R.: Convex analysis. In: Princeton Univ., Princeton, NJ (1972)
- [21] ROYDEN, H. L.; FITZPATRICK, P.: Real analysis. Bd. 32. Macmillan New York, 1988
- [22] SCHMIDT, K. D.: Maß und Wahrscheinlichkeit. Springer-Verlag, 2011
- [23] Schubert, H.: Topologie eine Einführung. 4. Aufl. Stuttgart: Teubner, 1975. ISBN 3519122006
- [24] Shorack, G. R.; Wellner, J. A.: Empirical processes with applications to statistics. Bd. 59. Siam, 1986
- [25] SMIRNOV, N. V.: Limit distributions for the terms of a variational series. In: *Trudy Mate-maticheskogo Instituta imeni VA Steklova* 25 (1949), S. 3–60
- [26] Whith, W.: Weak convergence of probability measures on the function space C([0,unendlich)). In: The Annals of Mathematical Statistics 41 (1970), Nr. 3, S. 939–944
- [27] WITTING, H.; MÜLLER-FUNK, U.: Mathematische Statistik 1 Parametrische Verfahren bei festem Stichprobenumfang. Stuttgart: Teubner, 1985. ISBN 3519020262
- [28] WITTING, H.; MÜLLER-FUNK, U.: Mathematische Statistik II: Asymptotische Statistik: Parametrische Statistik und nichtparametrische Modelle. Stuttgart: Teubner, 1995