Fuzzy C-means clustering (Dembele, 2003)

Alexander Glötzl
Funktionelle Genomik
FAKULTÄT FÜR PHYSIK

Alexander Glötzl

$$J(K,m) = \sum_{k=1}^K \sum_{i=1}^N (u_{ki})^m d^2(\mathbf{x}_i,\!\mathbf{c}_k)$$

U	Cluster 1	Cluster 2	Cluster 3
Gene 1	0.10	0.70	0.20
Gene 2	0.82	0.06	0.12
Gene 3	0.12	0.23	0.65
Gene 4			
Gene 5			

$$d^2(\mathbf{x}_i,\!\mathbf{c}_k) = (\mathbf{x}_i \!-\! \mathbf{c}_k)^T (\mathbf{x}_i \!-\! \mathbf{c}_k)$$

d	ΔCluster1	ΔCluster2	ΔCluster3
Gene 1	3.54	1.10	3.09
Gene 2	0.98	4.51	3.40
Gene 3	3.39	2.80	1.22
Gene 4			
Gene 5			

$$J(K,m) = \sum_{k=1}^K \sum_{i=1}^N (u_{ki})^m d^2(\mathbf{x}_i, \mathbf{c}_k) \quad d^2(\mathbf{x}_i, \mathbf{c}_k) = (\mathbf{x}_i - \mathbf{c}_k)^T (\mathbf{x}_i - \mathbf{c}_k)$$

$$\mathbf{c}_k^l = rac{\sum_{i=1}^N (u_{ki}^{(l-1)})^m \mathbf{x}_i}{\sum_{i=1}^N (u_{ki}^{(l-1)})^m}; k = 1, 2, \dots, K$$

$$u_{ki}^{(l)} = \sum_{s=1}^{K} \left\lceil \frac{d^2(\mathbf{x}_i, \mathbf{c}_k^{(l)})}{d^2(\mathbf{x}_i, \mathbf{c}_s^{(l)})} \right\rceil^{\frac{-1}{(m-1)}} \quad \mathsf{I=0} \quad \underbrace{\mathsf{C}(\mathsf{K}, \mathsf{P})}^{\mathsf{X}(\mathsf{N}, \mathsf{P})} \quad \mathsf{D}(\mathsf{N}, \mathsf{K}) \quad \mathsf{U}(\mathsf{N}, \mathsf{K})$$

N = number of samples **P** = number of features

K = number of clusters

$$J(K,m) = \sum_{k=1}^K \sum_{i=1}^N (u_{ki})^m d^2(\mathbf{x}_i, \mathbf{c}_k) \quad d^2(\mathbf{x}_i, \mathbf{c}_k) = (\mathbf{x}_i - \mathbf{c}_k)^T (\mathbf{x}_i - \mathbf{c}_k)$$

$$\mathbf{c}_{k}^{l} = \frac{\sum_{i=1}^{N} (u_{ki}^{(l-1)})^{m} \mathbf{x}_{i}}{\sum_{i=1}^{N} (u_{ki}^{(l-1)})^{m}}; k = 1, 2, \dots, K$$

$$u_{ki}^{(l)} = \sum_{s=1}^{K} \left[\frac{d^{2}(\mathbf{x}_{i}, \mathbf{c}_{k}^{(l)})}{d^{2}(\mathbf{x}_{i}, \mathbf{c}_{s}^{(l)})} \right]^{\frac{-1}{(m-1)}}$$

$$\mathbf{D}(\mathbf{N}, \mathbf{K})$$

$$\mathbf{N} = \text{number of samples}$$

P = number of featuresK = number of clusters

Data sets:

	N	p	K used
Serum	517	13	10
Yeast	2945	16	16
Cancer	728	60	20

$$J(K,m) = \sum_{k=1}^K \sum_{i=1}^N (u_{ki})^m d^2(\mathbf{x}_i,\!\mathbf{c}_k)$$

 CLuster Identification via Connectivity Kernels (CLICK) algorithm (Sharan and Shamir, 2000)

$$u_{ki}^{(l)} = \sum_{s=1}^K \left\lceil rac{d^2(\mathbf{x}_i, \mathbf{c}_k^{(l)})}{d^2(\mathbf{x}_i, \mathbf{c}_s^{(l)})}
ight
ceil^{rac{-1}{(m-1)}}$$

$$Y_m = d^2(\mathbf{x}_i,\!\mathbf{x}_k^{(l)})^{rac{1}{(m-1)}}; \quad k
eq i = 1,2,\dots,N$$

coefficient of variation
$$= cv(x) = \frac{\sigma_x}{\overline{x}}$$

$$cv(Y_m) = rac{\sigma_{Y_m}}{\overline{Y_m}} pprox 0.03P$$

Alexander Glötzl

	N	p	m_{ub} exper.	m used	K used
Serum	517	13	2.548	1.25	10
Yeast	2945	16	1.71	1.17	16
Cancer	728	60	1.2	1.112	20

Alexander Glötzl

Universität Regensburg

Cancer data set

\mathcal{C}_k	MIPS functional category (total ORFs)	Raw clusters		Restricted clusters		
		N_k	M_k	n_k	m_k	<i>p</i> -Value
11	Ribosome biogenesis (215 ORFs)	225	86	183(81%)	81(94%)	4.05E-5
	Organization of cytoplasm (554 ORFs)		102		94(92%)	9.29E-5
	Organization of nucleus chromosome (44 ORFs)		7		7(100%)	0.23
16	DNA synthesis and replication (94 ORFs)	257	27	232(90%)	27(100%)	0.0538
	Mitotic cell cycle and cycle control (352 ORFs)		41		39(95%)	0.2
	DNA recombination and DNA repair (153 ORFs)		20		20(100%)	0.1187
	Organization of nucleus (774 ORFs)		50		50(100%)	0.0033
3	Organization of mitochondrion (366 ORFs)	217	37	155(71%)	30(81%)	0.107
	Respiration (88 ORFs)		12		10(83%)	0.2814
7	Mitotic cell cycle and cycle control (352 ORFs) 163	26	116(71%)	20(77%)	0.3258	
	Budding, cell polarity, filament form. (170 ORFs)		13		11(85%)	0.3687
	DNA synthesis and replication (94 ORFs)		6		6(100%)	0.125
13	TCA pathway or Krebs cycle (25 ORFs)	191	5	153(80%)	4(80%)	0.74
	C-compound, carbohydrate metabo. (415 ORFs)		26		21(81%)	0.5834
14	Nitrogen and sulfur metabolism (67 ORFs)	185	10	142(77%)	8(80%)	0.578
	Amino acid metabolism (204 ORFs)		16		14(80%)	0.2323

$$p ext{-value} = \sum_{i=m_k}^{M_k} \left[\binom{M_k}{i} \binom{N_k-M_k}{n_k-i} \right] / \binom{N_k}{n_k}$$
 $p ext{-value} = 1 - P(X < 81) =$

$$= P(X = 81) + P(X = 82) + \ldots + P(X = 86)$$

Alexander Glötzl

Universität Regensburg

Thank You

