Econ 703 Fall 2007 Homework 2

Due Tuesday, October 2.

- 1. Sundaram, #13, p.68
- 2. Sundaram, #17, p.68
- 3. Sundaram, #23, p.68
- 4. A point x is an interior point of set A if there exists a neighbourhood N of x such that $N \subset A$. Let \mathring{A} be the interior of the set A, i.e. the collection of all of its interior points. Prove the following:
 - (1) \mathring{A} is an open set;
 - (2) A is open iff $A = \mathring{A}$
 - (3) If $B \subset A$, and B is open, then $B \subset \mathring{A}$.
- 5. Let K be the union of the set $\{0\}$ and the set $\{1/n, n \in Z_{++}\}$. Prove that K is compact directly from the definition (i.e., without using the Heine–Borel Theorem).