# MO640/MC668

Guilherme P. Telles

IC-Unicamp

#### Avisado está

- Estes slides são incompletos.
- Estes slides contêm erros.

## Parte I

Rearranjo de genomas

#### Rearranjo de genomas

- Para comparar genomas inteiros pode ser mais adequado considerar mutações que afetam blocos maiores, e não simplesmente inserções, remoções e substituições.
- Blocos representam segmentos conservados dos genomas.
- Blocos podem ser orientados ou não orientados.
  - A orientação indica que o bloco indica que a orientação da molécula é conhecida.
  - A falta de orientação indica que a ordem relativa dos blocos é conhecida, mas não a direção.

Rearranjo de genomas Guilherme P. Telles 4 / 58

#### Rearranjo de genomas

- Operações que atuam sobre blocos são por exemplo
  - reversão.
  - transposição,
  - ▶ fissão e fusão,
  - translocação,
  - inserção, remoção e duplicação.
- Essas operações são chamadas de operações de rearranjo de genomas

Rearranjo de genomas Guilherme P. Telles 5 / 58

#### Rearranjo de genomas

- O problema biológico é comparar o genomas em termos do número mínimo de operações de um ou mais tipos que transformam um genoma no outro.
- As reversões são mutações que mais levam a diferenças significativas entre genomas.

Rearranjo de genomas Guilherme P. Telles 6/58

#### Reversão

| 8 | 7                    | 6                             | 5 | 4       | <del>3</del>         | 2 | $\overleftarrow{1}$ | 11 | 10 | 5 |
|---|----------------------|-------------------------------|---|---------|----------------------|---|---------------------|----|----|---|
| 8 | 7                    | 6                             | 5 | 4       | 3                    | 2 | <u></u>             | 11 | 10 | 5 |
| 8 | $\overrightarrow{2}$ | <del>5</del>                  | 4 | 5       | 6                    | 7 | 1                   | 11 | 10 | 5 |
| 8 | <u>7</u>             | <del>\frac{\frac{1}{3}}</del> | 4 | 5       | $\overrightarrow{1}$ | 7 | 6                   | 11 | 10 | 5 |
| ₹ | 3                    | 2                             | 8 | <u></u> | 1                    | 7 | 6                   | 11 | 10 | 5 |
| 4 | 3                    | ₹                             | 8 | 7       | $\overleftarrow{1}$  | 5 | 6                   | 11 | 10 | 5 |
| ₹ | 3                    | 2                             | 8 | 7       | $\overleftarrow{1}$  | 5 | 6                   | 11 | 10 | 5 |
| 4 | 3                    | 2                             | 8 | 7       | $\overleftarrow{1}$  | 5 | 6                   | 11 | 10 | 3 |

Rearranjo de genomas Guilherme P. Telles 7/58

#### Reversão

## Definições

- Vamos supor que os blocos nos dois genomas que serão comparados estão rotulados entre 1 e n.
- Seja  $\mathcal L$  um conjunto finito de rótulos. Um conjunto  $\mathcal L^o$  de rótulos orientados para  $\mathcal L$  é

$$\mathcal{L}^o = \bigcup_{a \in \mathcal{L}} \{\overrightarrow{a}, \overleftarrow{a}\}$$

- Para um rótulo  $x \in \mathcal{L}^o$ , |x| é um rótulo de  $\mathcal{L}$  obtido pela remoção da orientação.
- Então para todo  $x \in \mathcal{L}$  temos  $|\overrightarrow{x}| = |\overleftarrow{x}| = a$ .
- Para um rótulo x,  $\overline{x}$  é o rótulo x com sua orientação invertida.

Rearranjo de genomas Guilherme P. Telles 9 / 58

## Permutação orientada

- Uma permutação orientada de  $\mathcal{L}$  é um mapeamento  $\alpha:[1..n] \to \mathcal{L}^o$  tal que para qualquer rótulo  $a \in \mathcal{L}$  existe exatamente um  $i \in [1..n]$  com  $|\alpha(i)| = a$ .
- Uma permutação  $\alpha$  pode ser representada como uma sucessão dos seus elementos  $\alpha(1), \alpha(2), \ldots, \alpha(n)$ .
- A permutação identidade orientada é a permutação I tal que  $I(i) = \overrightarrow{i}$  , para  $1 \le i \le n$ .

Rearranjo de genomas Guilherme P. Telles 10/58

#### Reversão

- Uma reversão transforma uma permutação orientada em outra invertendo a ordem dos elementos de uma porção contínua da permutação e complementando as orientações desses elementos.
- Uma reversão que envolve os elementos  $\alpha(i) \dots \alpha(j)$  de  $\alpha$  é denotada  $[i \dots j].$
- Uma reversão  $\rho=[i\mathinner{.\,.} j]$  transforma uma permutação  $\alpha$  em uma permutação  $\alpha\rho$ , definida da seguinte forma

$$\alpha[i\mathinner{.\,.} j](k) = \left\{ \begin{array}{ll} \overline{\alpha(i+j-k)} & \text{se } i \leq k \leq j \\ \alpha(k) & \text{caso contrário} \end{array} \right.$$

Rearranjo de genomas Guilherme P. Telles 11/58

#### Reversão

• Há n(n+1)/2 reversões possíveis entre n rótulos, incluindo as reversões unitárias.

Rearranjo de genomas Guilherme P. Telles 12 / 58

#### Distância de reversão

- Dadas duas permutações orientadas  $\alpha$  e  $\beta$  sobre o mesmo conjunto  $\mathcal L$  de rótulos, o problema da ordenação por reversões é determinar o número mínimo de reversões que transformam  $\alpha$  em  $\beta$ .
- Ou seja, identificar uma série de reversões  $\rho_1, \rho_2, \dots, \rho_t$ , com t mínimo, tal que

$$\alpha \rho_1 \rho_2 \dots \rho_t = \beta$$
.

- O número t é a distância de reversão de  $\alpha$  com relação a  $\beta$  e é denotada por  $d_{\beta}(\alpha)$ .
- t é único para um par  $\alpha, \beta$  mas a série de reversões que ordena  $\alpha$  não necessariamente é única.

Rearranjo de genomas Guilherme P. Telles 13 / 58

#### Reversão ordenante

 $\bullet$  Uma reversão  $\rho$  é chamada  $\mathit{reversão}$   $\mathit{ordenante}$  de  $\alpha$  com relação  $\beta$  se

$$d_{\beta}(\alpha \rho) < d_{\beta}(\alpha).$$

- (São essas reversões que queremos encontrar para resolver o problema.)
- Como as distâncias de reversão de  $\alpha$  a  $\beta$  e de  $\alpha\rho$  a  $\beta$  não podem diferir de mais do que uma unidade, temos:

$$d_{\beta}(\alpha \rho) = d_{\beta}(\alpha) - 1.$$

• Vamos considerar alguns limites inferiores para a distância de reversão.

Rearranjo de genomas Guilherme P. Telles  $14 \ / \ 58$ 

#### Permutação estendida

• Dada uma permutação  $\alpha$ , a versão estendida de  $\alpha$  é obtida adicionando-se a ela um rótulo artificial L antes do primeiro rótulo  $\alpha(1)$  e um rótulo artificial R depois do último rótulo  $\alpha(n)$ .

Rearranjo de genomas Guilherme P. Telles 15 / 58

#### Ponto de quebra

- Um ponto de quebra de  $\alpha$  com respeito a  $\beta$  é um par x, y de elementos de  $\mathcal{L}^o$  tal que xy aparece na versão estendida de  $\alpha$  mas nem xy e nem  $\overline{yx}$  aparece na versão estendida de  $\beta$ .
- O número de pontos de quebra de uma permutação orientada  $\alpha$  com respeito a  $\beta$  é denotado por  $b_{\beta}(\alpha)$ .

Rearranjo de genomas Guilherme P. Telles 16 / 58

## Limite inferior para a ordenação

- Uma reversão pode remover no máximo dois pontos de quebra de uma permutação.
- Logo para qualquer  $\alpha$  e  $\rho$

$$b(\alpha) - b(\alpha \rho) \le 2$$
,

## Pontos de quebra

• Seja  $\rho_1, \rho_2, \dots, \rho_t$  uma seqüência de reversões que converte  $\alpha$  em  $\beta$ . Ou seja  $\alpha \rho_1 \rho_2 \dots \rho_t = \beta$ .

Então 
$$b(\alpha \rho_1 \rho_2 \dots \rho_t) = b(\beta) = 0.$$

Pela desigualdade anterior temos

$$b(\alpha) - b(\alpha \rho_1) \leq 2,$$

$$b(\alpha \rho_1) - b(\alpha \rho_1 \rho_2) \leq 2,$$

$$\vdots$$

$$b(\alpha \rho_1 \dots \rho_{t-1}) - b(\alpha \dots \rho_t) \leq 2,$$

Rearranjo de genomas Guilherme P. Telles 18 / 58

# Pontos de quebra

- Somando essas desigualdades e considerando que  $b(\alpha \rho_1 \rho_2 \dots \rho_t) = b(\beta) = 0$ , temos  $b(\alpha) \le 2t$ .
- Isso é verdade para qualquer ordenação de  $\alpha$  com respeito a  $\beta$ , inclusive para a ótima.
- Nesse caso,  $t = d(\alpha)$ .
- Então

$$\frac{b(\alpha)}{2} \le d(\alpha).$$

- Um limite inferior melhor pode ser estabelecido a partir do grafo conhecido como diagrama realidade-desejo.
- Dadas duas permutações orientadas  $\alpha$  e  $\beta$ , o diagrama realidade-desejo de  $\alpha$  com relação a  $\beta$ , denotado  $RD_{\beta}(\alpha)$ , pode ser construído da seguinte forma:

Rearranjo de genomas Guilherme P. Telles 20 / 58

- Para cada elemento l de  $\alpha$ , inclua dois vértices l- e l+ em  $RD_{\beta}(\alpha)$ , um vértice para cada orientação distinta.
  - ▶ l− corresponde à cauda da seta na orientação de l.
  - ▶ l+ corresponde à cabeça da seta na orientação de l.
- Inclua os vértices L e R em  $RD_{\beta}(\alpha)$ .
- Conecte os vértices dos elementos consecutivos de  $\alpha$  de acordo com suas orientações (arestas realidade).
- ullet Conecte L com o primeiro vértice e R com o último vértice.
- Conecte os vértices dos elementos de  $\alpha$  de acordo com a permutação  $\beta$  (arestas desejo).
- Posicione todos os vértices em um círculo começando com L e posicione os outros vértices no sentido anti-horário.

Rearranjo de genomas Guilherme P. Telles 21/58

- Sobre um diagrama realidade-desejo temos:
  - As arestas realidade circulam o diagrama e as desejo cortam o diagrama.
  - Laços representam pontos onde o desejo e a realidade se encontram (pontos que não são de quebra).
  - O grau de cada vértice é dois, sendo incidentes uma aresta realidade e uma desejo.
  - ► Todo ciclo tem um número par de arestas, sendo metade delas realidade e metade delas desejo.

Rearranjo de genomas Guilherme P. Telles 22 / 58

- O número de ciclos de  $RD_{\beta}(\alpha)$  é denotado por  $c_{\beta}(\alpha)$ .
- Observe que  $c_{\beta}(\beta) = n+1$  já que  $\beta$  não possui pontos de quebra. Disso, todas os seus ciclos correspondem a *loops*. Como existem 2n+2 nós, temos n+1 ciclos.
- Então podemos pensar no processo de ordenação de uma permutação  $\alpha$  por reversões como o processo de transformar  $RD_{\beta}(\alpha)$  em um diagrama com número máximo de ciclos.

Rearranjo de genomas Guilherme P. Telles 23 / 58

#### Como uma reversão afeta os ciclos em RD

- Sejam (s,t) e (u,v) duas arestas realidade que caracterizam uma reversão  $\rho$ , com (s,t) precedendo (u,v) na permutação  $\alpha$ .  $RD_{\beta}(\alpha)$  difere de  $RD_{\beta}(\alpha\rho)$  nos seguintes aspectos:
  - As arestas realidade (s,t) e (u,v) são substituídas pelas arestas (s,u) e (t,v).
  - As arestas desejo continuam inalteradas.
  - ► A seção do círculo que vai do nó t ao nó u, incluindo suas extremidades, no sentido anti-horário, é revertida.

Rearranjo de genomas Guilherme P. Telles 24 / 58

#### Convergência, divergência

• Sejam e e f duas arestas realidade pertencentes ao mesmo ciclo em  $RD_{\beta}(\alpha)$ . Assuma inicialmente que ambas estão orientadas no sentido anti-horário. Cada uma delas induz então uma orientação do ciclo em comum. Se essas orientações são as mesmas, dizemos que e e f convergem. senão, dizemos que e e f divergem.

Rearranjo de genomas Guilherme P. Telles 25/58

#### Reversões sobre ciclos

- Seja  $\rho$  uma reversão atuando em duas arestas realidade e e f de  $RD_{\beta}(\alpha)$ . Então:
  - se e e f pertencem a ciclos distintos,  $c(\alpha \rho) = c(\alpha) 1$ .
  - se e e f pertencem ao mesmo ciclo e convergem então  $c(\alpha\rho)=c(\alpha)$ .
  - se e e f pertencem ao mesmo ciclo e divergem então  $c(\alpha\rho)=c(\alpha)+1.$

Rearranjo de genomas Guilherme P. Telles 26 / 58

#### Outro limite inferior

- Do resultado anterior podemos concluir que o número de ciclos se altera em no máximo uma unidade a cada reversão.
- Isso fornece outro limite inferior para a distância de reversão de duas permutações orientadas  $\alpha$  e  $\beta$ .

Rearranjo de genomas Guilherme P. Telles 27 / 58

#### Outro limite inferior

• Seja  $\rho_1, \rho_2, \dots, \rho_t$  uma série de reversões (não necessariamente ótima) que converte  $\alpha$  em  $\beta$ . Ou seja

$$\alpha \rho_1 \rho_2 \dots \rho_t = \beta.$$

Então

$$c(\alpha \rho_1 \rho_2 \dots \rho_t) = c(\beta) = n + 1.$$

#### Outro limite inferior

Sabemos que

$$c(\alpha \rho_1) - c(\alpha) \leq 1,$$

$$c(\alpha \rho_1 \rho_2) - c(\alpha \rho_1) \leq 1,$$

$$\vdots$$

$$c(\alpha \rho_1 \dots \rho_t) - c(\alpha \rho_1 \dots \rho_{t-1}) \leq 1,$$

Somando temos

$$n+1-c(\alpha) \le t$$
.

Isso é verdade para qualquer ordenação de  $\alpha$  com respeito a  $\beta$ , inclusive para a ótima. Nesse caso,  $t=d(\alpha)$ .

Então

$$n+1-c(\alpha) \le d(\alpha)$$
.

#### Ciclos bons e ruins

- Um ciclo pode ser classificado com base nos efeitos de uma reversão no número de ciclos de um diagrama:
  - Ciclo bom: se tem duas arestas realidade divergentes.
  - Ciclo ruim: se não tem duas arestas realidade divergentes.
- A classificação se aplica a ciclos com pelo menos quatro arestas chamados ciclos próprios.
- Se tivermos apenas ciclos bons no diagrama realidade-desejo de  $\alpha$ , então o limite inferior é exato:  $n+1-c(\alpha)=d(\alpha)$ .

Rearranjo de genomas Guilherme P. Telles 30 / 58

#### Ciclos bons e ruins

- Quando há ciclos ruins às vezes é possível chegar a  $\beta$  adicionando um ciclo por reversão: uma reversão que quebra um ciclo bom também pode dobrar um ciclo ruim transformando-o em um ciclo bom.
- Esse relacionamento é caracterizado no grafo de intercalação.

Rearranjo de genomas Guilherme P. Telles 31 / 58

#### Grafo de intercalação

- Ciclos intercalados são ciclos em que alguma aresta desejo de um cruza uma aresta desejo do outro.
- O grafo de intercalação de  $\alpha$  com relação a  $\beta$ , denotado por  $I_{\beta}(\alpha)$  é tal que
  - os vértices são os ciclos próprios de  $RD_{\beta}(\alpha)$  e
  - dois vértices são adjacentes se e somente se os ciclos correspondentes se intercalam.

Rearranjo de genomas Guilherme P. Telles 32 / 58

## Grafo de intercalação



#### Componentes bons e ruins

- Se um componente de um grafo de intercalação é composto inteiramente de ciclos ruins, ele é um componente ruim. Caso contrário, ele é um componente bom.
- Uma reversão definida por duas arestas divergentes de um mesmo ciclo é uma reversão ordenante se e somente se sua aplicação não cria componentes ruins no grafo.
- É fato que se houver um ciclo bom em um diagrama realidade-desejo então vai sempre existir uma reversão ordenante.

Rearranjo de genomas Guilherme P. Telles 34 / 58

## Idéia do algoritmo

- A idéia para um algoritmo que ordena permutações com sinal por reversões é:
  - Processe todos os componentes bons, escolhendo arestas realidade que induzem uma reversão ordenante.
  - ► Processe todos os componentes ruins em uma ordem específica, de acordo com certas características desses componentes.

Rearranjo de genomas Guilherme P. Telles 35 / 58

## Separação

- Um componente B separa dois componentes A e C se todas as arestas desejo entre A e C teriam que cruzar uma aresta de B.
- Uma reversão envolvendo arestas de A e C dobra B. Ao ser dobrado, um componente ruim se torna bom. Mas um componente bom pode se tornar ruim.

Rearranjo de genomas Guilherme P. Telles \_\_\_\_\_\_\_ 36 / 58

#### Obstáculos

- Um *obstáculo* é um componente ruim que não separa nenhum outro par de componentes ruins.
- Um não-obstáculo é um componente ruim que separa pelo menos um par de componentes ruins.
- O número de obstáculos em uma permutação  $\alpha$  é  $h(\alpha)$ .

Rearranjo de genomas Guilherme P. Telles 37 / 58

#### Obstáculos

- Dizemos que um obstáculo A protege um não-obstáculo B quando a remoção de A transforma B em um obstáculo.
- Um obstáculo A é um super-obstáculo se ele protege algum não-obstáculo B. Caso contrário, ele é chamado obstáculo simples.
- Uma permutação  $\alpha$  é uma fortaleza quando o seu diagrama realidade-desejo contém um número ímpar de obstáculos e todos eles são super-obstáculos.

Rearranjo de genomas Guilherme P. Telles 38 / 58

### Fórmula para distância de reversão

 A fórmula exata para a distância de reversão de duas permutações orientadas é

$$d(\alpha) = n + 1 - c(\alpha) + h(\alpha) + f(\alpha),$$

onde  $c(\alpha)$  corresponde ao número de ciclos no diagrama,  $h(\alpha)$  ao número de obstáculos no diagrama e  $f(\alpha)$  é 0 caso a permutação não seja uma fortaleza e 1 caso contrário.

Rearranjo de genomas Guilherme P. Telles 39 / 58

## Algoritmo

- O algoritmo de ordenação produz uma seqüência de reversões ordenantes.
- Quando não há ciclos bons, ele usa uma reversão em arestas convergentes ou uma reversão em arestas de ciclos diferentes.

Rearranjo de genomas Guilherme P. Telles 40 / 58

# Hurdle cutting

- Uma reversão em arestas convergentes não muda o número de ciclos.
- A melhor escolha é um obstáculo: isso transforma a componente ruim em boa sem aumentar o número de ciclos.
- (Escolher um não-obstáculo não muda o número de obstáculos ou fortaleza. Um super obstáculo também não ajuda porque o não-obstáculo que ele protege se torna obstáculo).

Rearranjo de genomas Guilherme P. Telles 41/58

# Hurdle cutting

- A reversão sobre arestas realidade de um ciclo de um obstáculo é chamada de hurdle cutting.
- Ela não muda  $c(\alpha)$  e diminui  $h(\alpha)$  quando o obstáculo é simples, mas para não aumentar  $f(\alpha)$  ela só é empregada quando  $h(\alpha)$  é par.

Rearranjo de genomas Guilherme P. Telles 42 / 58

# Hurdle merging

- Uma reversão em arestas de ciclos diferentes diminui o número de ciclos, o que é ruim, mas o número de obstáculos pode ser diminuído de 2.
- Para isso as arestas devem ser de ciclos em obstáculos diferentes.
   Essa reversão é chamada de hurdle merging.
- Os dois obstáculos e quaisquer não-obstáculo que os separam se tornam componentes bons.

Rearranjo de genomas Guilherme P. Telles 43 / 58

## Hurdle merging

- Existe a possibilidade dessa operação transformar um não obstáculo em obstáculo.
- Para evitar isso precisamos escolher obstáculos opostos.
- Dois obstáculos A e B são opostos se o número de obstáculos entre A e B no sentido horário é igual no sentido anti-horário. Só existem se  $h(\alpha)$  é par.

Rearranjo de genomas Guilherme P. Telles 44 / 58

#### Fortaleza

- Se  $h(\alpha)$  é par, hurdle merging vai deixar  $h(\alpha)$  par.
- Se  $h(\alpha)$  é ímpar e existe obstáculo simples não pode haver obstáculo oposto. Então aplicamos hurddle cutting e  $h(\alpha)$  será par. Se  $h(\alpha)$  é ímpar e não existe obstáculo simples já temos uma fortaleza e  $f(\alpha)$  não pode aumentar.
- Então essas operações não transforma a permutação em fortaleza.

Rearranjo de genomas Guilherme P. Telles 45 / 58

### Algoritmo

```
SORTING-REVERSAL(\alpha, \beta)
    if there is a good component in RD_{\beta}(\alpha)
          Pick two divergent edges e and f in this component
          making sure the corresponding reversal does not
          create any bad components
 3
          return the reversal characterized by e and f
    else
 5
          if h(\alpha) is even
 6
               return merging of two opposite hurdles
          else
 8
               if h(\alpha) is odd and there is a simple hurdle
 9
                    return a reversal cutting this hurdle
               else // fortress
10
11
                    return merging of any two hurdles
```

Rearranjo de genomas Guilherme P. Telles 46 / 58

## Componentes ruins no algoritmo

- A primeira operação diminui o número de ciclos em uma unidade, mas diminui o número de obstáculos em duas, tornando-os componentes bons e não transforma o diagrama em uma fortaleza.
- A segunda operação transforma o componente ruim em um componente bom, sem modificar o número de ciclos e não transforma o diagrama em uma fortaleza.
- A terceira operação diminui o número de ciclos em uma unidade, mas diminui o número de obstáculos em duas, tornando-os componentes bons.

Rearranjo de genomas Guilherme P. Telles 47/58

## Complexidade

- O grafo para representar o diagrama, os componentes e fortaleza podem ser identificados em tempo  $O(n^2)$ .
- São  $O(n^2)$  reversões possíveis e cada uma pode ser verificada para a formação de componentes ruins em tempo  $O(n^2)$ . Então os componentes bons podem ser tratados em tempo  $O(n^4)$ .
- A função vai ser executada dba vezes e então o algoritmo é  $O(n^5)$ .

Rearranjo de genomas Guilherme P. Telles 48 / 58

### Permutação não-orientada

- Uma permutação não-orientada sobre um conjunto de n rótulos  $\mathcal{L}$  é um mapeamento  $\alpha:[1..n]\to\mathcal{L}$ .
- A permutação identidade não-orientada é a permutação I tal que I(i)=i, para  $1\leq i\leq n$ .

Rearranjo de genomas Guilherme P. Telles 49 / 58

#### Reversão

- Uma reversão transforma uma permutação orientada em outra revertendo a ordem dos elementos de uma porção contínua da permutação.
- Uma reversão que envolve os elementos  $\alpha(i) \dots \alpha(j)$  de  $\alpha$  é denotada  $[i \dots j]$ .
- Uma reversão  $\rho=[i\mathinner{.\,.} j]$  transforma uma permutação  $\alpha$  em uma permutação  $\alpha\rho$ , definida da seguinte forma

$$\alpha[i\mathinner{.\,.} j](k) = \left\{ \begin{array}{ll} \alpha(i+j-k) & \text{se } i \leq k \leq j \\ \alpha(k) & \text{caso contrário} \end{array} \right.$$

Rearranjo de genomas Guilherme P. Telles 50 / 58

#### Distância de reversão

- Dadas duas permutações não-orientadas  $\alpha$  e  $\beta$  sobre o mesmo conjunto  $\mathcal L$  de rótulos, o problema da ordenação por reversões é determinar o mínimo de reversões que transformam  $\alpha$  em  $\beta$ .
- Ou seja, identificar uma série de reversões  $\rho_1, \rho_2, \dots, \rho_t$ , com t mínimo, tal que

$$\alpha \rho_1 \rho_2 \dots \rho_t = \beta.$$

• O número t é a distância de reversão de  $\alpha$  com relação a  $\beta$  e é denotada por  $d_{\beta}(\alpha)$ .

Rearranjo de genomas Guilherme P. Telles 51/58

### Permutação estendida

• Dada uma permutação  $\alpha$ , a versão estendida dessa permutação é obtida adicionando-se a ela um rótulo artificial L antes do primeiro rótulo  $\alpha(1)$  e um rótulo artificial R depois do último rótulo  $\alpha(n)$ .

Rearranjo de genomas Guilherme P. Telles 52 / 58

## Ponto de quebra

- Um ponto de quebra de  $\alpha$  com respeito a  $\beta$  corresponde a um par x, y de elementos de  $\mathcal L$  tal que x e y são consecutivos em  $\alpha$  mas não são consecutivos em  $\beta$ .
- O número de pontos de quebra de uma permutação não-orientada  $\alpha$  com respeito a  $\beta$  é denotado por  $b_{\beta}(\alpha)$ .
- Para toda permutação  $\alpha \neq \beta$  temos  $b_{\beta}(\alpha) \geq 2$ .
- Uma reversão pode remover no máximo 2 pontos de quebra, então

$$d_{\beta}(\alpha) \ge \frac{b_{\beta}(\alpha)}{2}.$$

Rearranjo de genomas Guilherme P. Telles 53 / 58

#### Tiras

- Uma sequência consecutiva de rótulos delimitada por pontos-de-quebra é uma tira.
- Uma tira pode ser crescente ou decrescente.
- Tiras unitárias são crescentes e decrescentes.
- L e R formam uma única tira crescente LR.

Rearranjo de genomas Guilherme P. Telles 54 / 58

## Pontos-de-quebra e tiras

- Teorema: Se o rótulo k pertence a uma tira decrescente e k-1 pertence a uma tira crescente então existe uma reversão que remove pelo menos um breakpoint.
- Teorema: Se o rótulo k pertence a uma tira decrescente e k+1 pertence a uma tira crescente então existe uma reversão que remove pelo menos um breakpoint.
- Teorema: se o rótulo k pertence a uma tira decrescente e ou k+1 ou k-1 pertence a uma tira crescente então há uma reversão que remove pelo menos um ponto-de-quebra.
- Teorema: Seja  $\alpha$  uma permutação com tira decrescente. Se todas as reversões que removem um ponto-de-quebra de  $\alpha$  não deixam restar tiras decrescentes então existe uma reversão que remove 2 pontos de quebra de  $\alpha$ .

Rearranjo de genomas Guilherme P. Telles 55/58

## Algoritmo

 O algoritmo de aproximação a seguir remove um ponto-de-quebra em média a cada iteração. Quando a primeira iteração não tem uma tira decrescente então a última iteração produz a identidade removendo 2 pontos-de-quebra, compensando a primeira.

Rearranjo de genomas Guilherme P. Telles 56 / 58

### Algoritmo

```
SORTING-REVERSAL(\alpha, \beta)
     list = \emptyset
     while \alpha \neq 1
 3
           if a has a decreasing strip
                k = the smallest label in a decreasing strip
 5
                \rho = the reversal that cuts after k and k-1
 6
                if \alpha \rho has no decreasing strip
                      l = the largest label in a decreasing strip
 8
                      \rho = the reversal that cuts before l and l+1
 9
           else
10
                \rho = the reversal that cuts the first two breakpoints
11
                \alpha = \alpha \rho
12
           list = list + \rho
     return list
13
```

Rearranjo de genomas Guilherme P. Telles 57 / 58

# Outras operações

| Operação                                | Complex. | Melhor aproximação |
|-----------------------------------------|----------|--------------------|
| reversões com sinal                     | Р        | 1                  |
| reversões                               | NPD      | 1.375              |
| transposições                           | NPD      | 1.375              |
| reversões e transposições               | aberto   | 2.8334             |
| reversões com sinal e transposições     | aberto   | 2                  |
| reversões de prefixo                    | NPD      | 2                  |
| reversões de prefixo com sinal          | aberto   | 2                  |
| transposições de prefixo                | aberto   | 2                  |
| transposições de prefixo e transposiçõs | aberto   | $2+\varepsilon$    |

Rearranjo de genomas Guilherme P. Telles 58 / 58