ریاضی عمومی ۲

ارائه دهنده: دکتر داریوش کیانی

دانشکدهٔ ریاضی و علوم کامپیوتر دانشگاه صنعتی امیرکبیر

اطرح درس

- ۹ کاربردهای مشتقات جزئی
 - ۱۰ انتگرال دوگانه
 - 🚺 انتگرال سەگانە
- 🚻 انتگرال روی خم (یا انتگرال خط)
 - ۱۳ انتگرال روی سطح
 - 🚻 قضایای دیورژانس و استوکس
 - ۱۵ مقدمهای بر جبرخطی

- \mathbb{R}^3 یادآوری هندسه تحلیلی در \mathbb{R}^2 و \mathbb{R}^3
 - 🛛 توابع برداری و خمها (منحنیها)
 - 🔽 معرفي توابع چندمتغيره
- ا مشتق پذیری مشتق پذیری کا مشتق حملاً کا مشتق کا مش ۴ حد و پیوستگی

 - ۷ مشتق جهتی
 - 🖊 توابع ضمني

توابع چندمتغیره

قبل از تعریف دقیق یک تابع چندمتغیره، برخی سطوح (رویههای) درجهٔ دوم را مرور میکنیم.

۲۹/۴ Kiani-Saeedi Madani-Saki

کرہ

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = a^2$$

:a کره با مرکز (x_0,y_0,z_0) و شعاع

$$x^2 + y^2 + z^2 = a^2$$

كره با مركز مبدأ و شعاع a:

ىىضىگون

$$\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}+\frac{(z-z_0)^2}{c^2}=1$$
 $:(x_0,y_0,z_0)$ بیضیگون با مرکز مبدأ $:z$

بیضی گون با مرکز مندأ:

است: (x_0,y_0) است: هائم با متغیر آزاد z که مقطع آن دایرهای به شعاع a و مرکز

$$(x - x_0)^2 + (y - y_0)^2 = a^2$$

استوانهٔ قائم با متغیر آزاد z که مقطع آن دایرهای به شعاع a و مرکز مبدأ است:

$$x^2 + y^2 = a^2$$

استوانهٔ بیضوی با متغیر آزاد z که مقطع آن یک بیضی با مرکز (x_0,y_0) است:

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

استوانهٔ بیضوی با متغیر آزاد z که مقطع آن یک بیضی با مرکز مبدأ است:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

استوانهٔ سهموی با متغیر آزاد y که مقطع آن یک سهمی با رأس (x_0,z_0) است:

$$z - z_0 = \alpha (x - x_0)^2, \quad \alpha \neq 0$$

استوانهٔ سهموی با متغیر آزاد y و $\alpha=1$ ، که مقطع آن یک سهمی با رأس مبدأ است:

استوانهٔ هذلولوی با متغیر آزاد z که مقطع آن یک هذلولی با مرکز مبدأ است z

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$z^2 = rac{x^2}{a^2} + rac{y^2}{b^2}$$
 نيضى: مخروط با قاعدهٔ بيضى: $z^2 = x^2 + y^2$ مخروط با قاعدهٔ دايره:

سهمیگون بیضوی:
$$z=rac{x^2}{a^2}+rac{y^2}{b^2}$$
 عربی میمیگون بیضوی:

سهمىگون

$$z=rac{x^2}{a^2}-rac{y^2}{b^2}$$
 نسهمیگون هذلولوی: z

هذلوليگون

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

هذلولىگون يكپارچە:

$$-\frac{z}{c^2} = \Gamma(z)$$

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 \, (z)$$

هذلو ليگون

$$-rac{x^2}{a^2}-rac{y^2}{b^2}+rac{z^2}{c^2}=1$$
 يا $rac{x^2}{a^2}+rac{y^2}{b^2}-rac{z^2}{c^2}=-1$ هذلولیگون دوپارچه:

(ج) هر دو مقطع بالاكنار هم

هذلو لي گون

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 يا $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$ هنلوليگون دوپارچه:

تعريف توابع چندمتغيره

فرض کنید $1\geq m$ و $n\geq 2$. تابع \mathbb{R}^m تابع $m\geq 1$ را یک تابع چندمتغیره مینامیم، که در آن

$$f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$$

 $f_i:D\subseteq\mathbb{R}^n o\mathbb{R}$ ، $1\leq i\leq m$ و بهازای هر

را در m=1 را وقات حالت m=1 را در m=1 با توجه به اینکه تحلیل f_i ها به تحلیل m=1 کمک میکند، غالب اوقات حالت m=1 را در نظر میگیریم.

۲۹/۱۹ Kiani-Saeedi Madani-Saki

مجموعههای تراز و نمودار توابع چندمتغیره

. است. ابع است. $f:D\subseteq\mathbb{R}^n \to \mathbb{R}$ فرض کنید

پهازای هر $c \in \mathbb{R}$ مجموعهٔ تراز منسوب به c را بهصورت زیر تعریف میکنیم:

$$f^{-1}(c) = \{(x_1, \dots, x_n) \in D : f(x_1, \dots, x_n) = c\}$$

نمودار f را بهصورت زیر تعریف میکنیم:

$$\{(x_1,\ldots,x_n,x_{n+1})\in D\times\mathbb{R}: x_{n+1}=f(x_1,\ldots,x_n)\}$$

Y9 / Yo Kiani-Saeedi Madani-Saki

مثالی از نمودار یک تابع دو متغیره:

مثال

مجموعههای تراز تابع زیر را بیابید:

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad z = f(x, y) = \frac{x^2}{a^2} + \frac{y^2}{b^2}, \quad a, b > 0$$

پاسخ: داریم:

$$f^{-1}(c)=\{(x,y)\in\mathbb{R}^2:f(x,y)=c\}=\left\{(x,y)\in\mathbb{R}^2:\frac{x^2}{a^2}+\frac{y^2}{b^2}=c\right\}$$
 بنابراین، بهازای $c=0$ ، $c=0$ ، واضح است که بهازای $f^{-1}(c)=\emptyset$ ، $c<0$ یک بیضی است. همچنین، نمودار $f^{-1}(c)=\{(0,0)\}$ بهصورت زیر است:

$$\left\{ (x,y,z) \in \mathbb{R}^3 : z = f(x,y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} \right\}$$

:f نمودار و بعضی از مجموعههای تراز

Y9 / YT Kiani-Saeedi Madani-Saki

مجموعههای تراز تابع زیر را بیابید:

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad z = f(x, y) = x^2 - y^2$$

پاسخ: داریم:

$$f^{-1}(c) = \{(x,y) \in \mathbb{R}^2 : f(x,y) = c\} = \{(x,y) \in \mathbb{R}^2 : x^2 - y^2 = c\}$$

سه حالت مختلف بهازای c در نظر میگیریم.

c>0 :حالت اول

در این صورت، مجموعههای تراز، همگی هذلولیهایی هستند که محور xها را در $\pm \sqrt{c}$ قطع میکنند.

: c > 0 بعضی از مجموعههای تراز f بهازای

c < 0 :حالت دوم

در این صورت، مجموعهٔ تراز منسوب به c، هذلولی $y^2-x^2=-c$ است.

c=0 حالت سوم: \blacksquare

در این صورت، مجموعهٔ تراز، بهصورت زیر است:

$$f^{-1}(0) = \{(x,y) \in \mathbb{R}^2 : x^2 - y^2 = 0\}$$

و از این رو، این مجموعه اجتماع نقاط دو خط y=x و y=x در صفحه است.

c=0 و c<0 ، مجموعههای تراز بهازای هر سه حالت

تمرير

مجموعههای تراز توابع زیر را بهدست آورید:

$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = 3\left(1 - \frac{x}{2} - \frac{y}{4}\right)$$

$$g: \mathbb{R}^2 \to \mathbb{R}, \qquad g(x,y) = \sqrt{9 - x^2 - y^2}$$

79 / 79