SCHEMAS: RDFS + AN INTRODUCTION TO OWL

Schema information in RDF

- RDF allows to model the instance level of an ontology
- On the other hand, RDF provides very simple mechanisms to constrain the instance level through ontology schema information

Which means have you already discussed to specify schema constraints?

Schema information in RDF

- RDF allows to model the instance level of an ontology
- On the other hand, RDF provides very simple mechanisms to constrain the instance level through ontology schema information
 - we can specify the type of a resource of a predicate (rdf:type as property)
 - we can specify that a given predicate is indeed a property (rdf:Property as object)
- modeling complex domains requires more sophisticated ontology schema information

RDF Typing

- Languages for specifying
 - constraints over individuals (subjects, objects) and predicates used in RDF
 - i.e., an ontology schema an RDF graph is an instance of
- Two main proposals
 - RDF Schema (RDFS)
 - Web Ontology Language (OWL)
- Different expressive power
- Bringing the Semantics to the Semantic Web!

RDFS - RESOURCE DESCRIPTION FRAMEWORK SCHEMA

RDF Schema (RDFS)

- First step towards the "extra knowledge"
- Vocabulary (defining terms)
 - use the term "novel" (a class)
- Schema (defining types)
 - "The Glass Palace" is a novel to be more precise: <http://.../000651409X> is a novel
- Taxonomy (defining hierarchies)
 - Any "novel" is a "fiction"

- RDFS defines resources and classes:
 - everything in RDF is a "resource"
 - "classes" are also resources, but...
 - ...they are also a collection of possible resources (i.e., "individuals" "fiction", "novel", ...)

Classes, resources in RDFS

Inferred properties IN RDFS

- is not in the original RDF data...
- ...but can be inferred from the RDFS rules
- RDFS environments return that triple, too

RDF Schema (RDFS)

- Type of constraints
 - [objects and subjects as instances of certain classes]
 → already in RDF, beyond the pure schema
 - inclusion statements between classes and between properties
 - semantic relations between the "domain"/the "range" of a property and some classes
- RDFS formalizes these notions as RDF triples, using some specific properties and objects

RDF Schema

- Declaration of instances (beyond the pure schema)
 - Dupond rdf:type AcademicStaff >
- Declaration of classes and subclass relationships
 - \(\text{Staff rdf:type rdfs:Class} \)
 - ► ⟨Java rdfs:subClassOf CSCourse⟩


```
► ⟨ RegisteredTo rdf:type rdf:Property ⟩
```

- Declaration of subproperty relationships
 - LateRegisteredTo rdfs:subPropertyOf RegisteredTo >
- Declaration of domain and range restrictions for predicates
 - \[
 \left\] TeachesIn rdfs:domain AcademicStaff
 \[
 \left\]
 subject
 - TeachesIn rdfs:range Course >
 - ► TeachesIn(AcademicStaff, Course)

object

Domain and range

domain

range

s, teachesIn, o

AcademicStaff
Course

A very simple example

- Let's look at that sentence:
 - "Madrid is the capital of Spain."
- Published on the Semantic Web (i.e., using RDF):
 - :Madrid :capitalOf :Spain .
- How many pieces of information can we (i.e., humans) derive from that sentence?

A very simple example – adding simple semantics (schema information)

A very simple example

States, cities, and capitals

a is an alternative syntax (qname, shorthand) for rdf:type

```
:State a rdfs:Class .
:City a rdfs:Class .
:locatedIn a rdf:Property .
:capitalOf rdfs:subPropertyOf :locatedIn .
:capitalOf rdfs:domain :City .
:capitalOf rdfs:range :State .

RDFS

Definition of the Assertions (A-box)
RDF
```

RDFS Logical Semantics

	RDF and RDFS statements	FOL translation
	(irdf:type C)	C(i)
	(iPj)	P(i,j)
$\forall \dots (\dots \Rightarrow \dots)$	(Crdfs:subClassOfD)	$\forall X (C(X) \Rightarrow D(X))$
	(Prdfs:subPropertyOfR)	$\forall X \forall Y (P(X,Y) \Rightarrow R(X,Y))$
	(Prdfs:domainC)	$\forall X \forall Y (P(X,Y) \Rightarrow C(X))$
	⟨Prdfs:rangeD⟩	$\forall X \forall Y (P(X,Y) \Rightarrow D(Y))$

What do we gain now?

```
:Country a rdfs:Class .
         :City a rdfs:Class .
       :locatedIn a rdfs:Property .
:capitalOf rdfs:subPropertyOf :locatedIn
  :capitalOf rdfs:domain :City .
   :capitalOf rdfs:range :Country
         :Madrid :capitalOf :Spain .
```

What do we gain now?

```
\langle P \text{ rdfs:domain } C \rangle \qquad | \forall X \forall Y (P(X,Y) \Rightarrow C(X))
   :Madrid :capitalOf :Spain .
+ :capitalOf rdfs:domain :City
→ :Madrid a :City .
                                                      \langle P \text{ rdfs:range D} \rangle \forall X \forall Y (P(X,Y) \Rightarrow D(Y))
                 :Madrid :capitalOf :Spain .
              + : capitalOf rdfs:range:Country
              → :Spain a :Country .
                               :Madrid :capitalOf :Spain .
                            + :capitalOf rdfs:subPropertyOf :locatedIn .
                            → :Madrid :locatedIn :Spain .
 \langle P rdfs:subPropertyOfR \rangle | \forall X \forall Y (P(X,Y) \Rightarrow R(X,Y)) |
```

RDFS Operational Semantics

- The logical formulas representing the semantics of RDFS are very useful in practice and are very adapted to deductive reasoning on RDF
- This means that
 - given facts and rules
 - we can derive new facts
- The corresponding tools are called reasoners
- The logical formulas can be interpreted as rules (tuple generating dependencies) that may be thought of as a factory for generating new facts

RDFS Operational Semantics

- Deduction rules are an interpretation function
- Simple reasoning algorithm (a.k.a. forward chaining):

RFDS Operational semantics: Example

if < r rdf:type A > and < A rdfs:subClassOf B > then < r rdf:type B > where r, A, and B are variables

- This means that:
 - if we know two triplets matching the patterns
 - < r rdf:type A > and
 - < A rdfs:subClassOf B >
 for some values of r, A, B, then
 - we can infer the triplet < r rdf:type B > with the values of r, B taken to be those of the match

RDFS Operational Semantics

- if < r rdf:type A > and < A rdfs:subClassOf B > then < r rdf:type B >
- 2. if < r P s > and < P rdfs:subPropertyOf Q >
 then < r Q s >
- 3. if < P rdfs:domain C > and < x P y >
 then < x rdf:type C >
- 4. if < P rdfs:range D > and < x P y >
 then < y rdf:type D >

A very simple example

States, cities, and capitals

```
:State a rdfs:Class .
:City a rdfs:Class .
:locatedIn a rdf:Property .
                                                   Definition of the
:capitalOf rdfs:subPropertyOf :locatedIn
                                                   Terminology
:capitalOf rdfs:domain :City .
                                                   (T-Box)
:capitalOf rdfs:range :State .
                                                   RDFS
                                                   Definition of the
                                                   Assertions
:Madrid :capitalOf :Spain .
                                                   (A-box)
:Madrid a :City
                                                   RDF
:Spain a :Country
:Madrid :locatedIn :Spain
```

OWL WEB ONTOLOGY LANGUAGE

What is missing up to now?

- · Our mission: make computers understand information on the Web
- But what does understand actually mean?

Semantics

- Let's look at that sentence:
 - "Madrid is the capital of Spain."
- Published on the Semantic Web (i.e., using RDF):
 - :Madrid :capitalOf :Spain .
- How many pieces of information can we (i.e., humans) derive from that sentence?
 - (1 piece of information = 1 statement <S,P,O>)

Semantics – How does it work?

Semantics

- Let's look at that sentence:
 - "Madrid is the capital of Spain."
- We can get the following information:
 - "Madrid is the capital of Spain."
 - "Spain is a state."
 - "Madrid is a city."
 - "Madrid is located in Spain."
 - "Barcelona is not the capital of Spain."
 - "Madrid is not the capital of France."
 - "Madrid is not a state."
 - ...

What have we gained?

- Let's look at that sentence:
 - "Madrid is the capital of Spain."
- We can get the following information:
 - "Madrid is the capital of Spain." ✓
 - "Spain is a state." ✓
 - "Madrid is a city." ✓
 - "Madrid is located in Spain."
 - "Barcelona is not the capital of Spain." *
 - "Madrid is not the capital of France." *
 - "Madrid is not a state." *

– ...

What we cannot express (up to now)?

- "Every state has exactly one capital"
 - Property cardinalities
- "Every city can only be the capital of one state."
 - Functional properties
- "A city cannot be a state at the same time."
 - Class disjointness
- ...
- For those, we need more expressive languages than RDFS!

Expressive Ontologies using OWL

OWL extends RDFS with the possibility to express additional constraints

OWL was designed to find a reasonable balance between

- expressivity of the language and
- efficient reasoning, i.e. scalability

This also motivates the different sublanguages

Expressive Ontologies using OWL

- "Barcelona is not the capital of Spain." X
- Why not?
 - Countries have exactly one capital
 - Barcelona and Madrid are not the same

In OWL:

```
:capitalOf a owl:InverseFunctionalProperty .
:Madrid :capitalOf :Spain .
:Madrid owl:differentFrom :Barcelona .

ASK { :Barcelona :capitalOf :Spain . } → false
```

Expressive Ontologies using OWL

- "Madrid is not the capital of France." X
- Why not?
 - A city can only be the capital of one country
 - Spain and France are not the same

Also:

```
:capitalOf a owl:FunctionalProperty .
:Madrid :capitalOf :Spain .
:Spain owl:differentFrom :France .

ASK { :Madrid :capitalOf :France . } → false
```

Expressive ontologies using OWL

Madrid is not a state

- Why not?
 - A capital is a city and a city cannot be a state (states and cities are disjoint)

```
:Madrid :capitalOf :Spain .
:capitalOf rdfs:domain :City .
:City owl:disjoint With :State .
```

```
ASK {:Madrid :a :State .} -> false
```

What is OWL?

- Standard language (W3C) for representing vocabularies/ ontologies/schemas
- Much richer than RDF Schema and SKOS (W3C recommendations for light-weight vocabularies)
- Original OWL
 - Published as W3C recommendation on 10.2.2004
- OWL 2
 - Latest W3C recommendation on 11.12.2012 Extends and replaces the old recommendation

OWL 2 Syntaxes

```
Turtle ex:JohnSmith rdf:type ex:Person .
 RDF/XML <ex:Person rdf:about="#JohnSmith"/>
OWL/XML <ClassAssertion>
               <Class IRI="Person" />
               <NamedIndividual IRI="JohnSmith" />
            </ClassAssertion>
Functional-style ClassAssertion(:Person:JohnSmith)
Manchester Individual: JohnSmith
              Types: Person
```

Many examples, translated into all syntaxes: OWL 2 Web Ontology Language: Primer http://www.w3.org/TR/owl2-primer/

«Schema knowledge» in RDFS

rdf:type rdf:Property

rdfs:Class

rdfs:range rdfs:domain

rdfs:subClassOf rdfs:subPropertyOf

«Schema knowledge» in RDFS

ex:isMarriedTo rdfs:domain ex:Person . ex:isMarriedTo rdfs:range ex:Person . ex:instituteAIFB rdf:type ex:Institution

ex:pascal ex:isMarriedTo ex:instituteAIFB

- It likely is a modeling flaw
- It would result in rejecting the insertion in a database
- In RDFS it results in inferring

ex:instituteAIFB rdf:type ex:Person

- Multiple class membership is allowed
- No inconsistency

RDFS (and OWL) Semantics

- Open World Assumption The absence of a triple in a graph does not imply that the corresponding statement does not hold
- The fact that a statement is not true cannot be described in RDFS

 No Unique Name Assumption: differently named individuals can denote the same thing

The OWL View of Life

- OWL is not like a database system
- no requirement that the only properties of an individual are those mentioned in a class it belongs to
- no assumption that everything is known
- classes and properties can have multiple "definitions"
- statements about individuals need not be together (in the same document)

OWL Constructs

- Class (&instance) relations
- Property relations & characteristics
- Combining classes (set opns)
- Property restrictions and intensional classes

Class Relations

Disjointness between classes:

	FOL translation
(Cowl:disjointWithD)	$\forall X (C(X) \Rightarrow \neg D(X))$

ex:isMarriedTo rdfs:domain ex:Person .
ex:isMarriedTo rdfs:range ex:Person .
ex:instituteAIFB rdf:type ex:Institution .
ex:Institution owl:disjointWith ex:Person

ex:pascal ex:isMarriedTo ex:instituteAIFB

ex:instituteAIFB rdf:type ex:Person

Class Relations (back to our initial example)

Madrid is not a state

- Why not?
 - A capital is a city and a city cannot be a state (states and cities are disjoint)

```
:Madrid :capitalOf :Spain .
:capitalOf rdfs:domain :City .
:City owl:disjoint With :State .
ASK {:Madrid :a :State .} -> false
```

Other class & instance relations

owl:equivalentClass

owl:sameAs

• owl:differentFrom

Needed because of lack of Unique Name Assumption

Property Relations

Constraints of functionality and symmetry on predicates:

OWL notation			FOL translation
(Р	rdf:type	$\forall X \forall Y \forall Z$
owl:Fu	unctionalPro	perty)	
			$(P(X,Y) \land P(X,Z) \Rightarrow Y = Z)$
⟨Prdf:type			$\forall X \forall Y \forall Z$
owl:InverseFunctionalProperty			$(P(X,Y) \land P(Z,Y) \Rightarrow X = Z)$
>			
⟨Powl:inverseOfQ⟩			$\forall X \forall Y (P(X,Y) \Leftrightarrow Q(Y,X))$
(P	rdf:type	$\forall X \forall Y (P(X,Y) \Rightarrow P(Y,X))$
owl:SymmetricProperty >			

```
owl:TransitiveProperty
...

owl:equivalentProperty
owl:propertyDisjointWith
```

Property Relations

hasParent owl:inverseOf hasChild

hasBirthMother rdf:type owl:FunctionalProperty

• hasSocialSecurityNumber rdf:type owl:InverseFunctionalProperty

Property Relations (back to our initial example)

- "Barcelona is not the capital of Spain." X
- Why not?
 - Countries have exactly one capital
 - Barcelona and Madrid are not the same

In OWI :

inverseFunctionality leads to the fact that any city capital of Spain is the same thing as Madrid (Barcelona = Madrid) If we add owl:differentFrom we get an inconsistency

Property Relations (back to our initial example)

- "Madrid is not the capital of France." X
- Why not?
 - A city can only be the capital of one country
 - Spain and France are not the same

Also:

```
:capitalOf a owl:FunctionalProperty .
:Madrid :capitalOf :Spain .
:Spain owl:differentFrom :France .
ASK { :Madrid :capitalOf :France . } → false
```


Functionality leads to
the fact that any country which capital
is Madrid is the same thing as Spain
(France = Spain)
If we add owl:differentFrom we
get an inconsistency

Key Notions

- An ontology is a clear, unambiguous, formal model of some part of the real world that is shared by several people
- OWL can be used to describe ontologies
- OWL adds to RDFS the possibility to
 - clarify that two individuals are identical or different
 - express that two classes are equivalent or disjoint
 - declare a property to be the inverse of another property
 - construct new classes by taking the union, intersection or complement of other existing classes
 - define classes by specifying restrictions on the cardinality or possible values of properties
- OWL is based on description logics, which makes its semantics machine accessible

Suggested Reading

 Pascal Hitzler, Markus Krötzsch and Sebastian Rudolph. Foundations of Semantic Web Technologies. Chapman & Hall/CRC, 2009. (Chapter 4)

 Matthew Horridge. A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools. Edition 1.3.

 Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, Sebastian Rudolph. OWL 2 Web Ontology Language Primer (Second Edition), 2012