Script 14

Integrals and Derivatives

14.1 Journal

5/4: **Theorem 14.1.** Suppose that f is integrable on [a,b]. Define $F:[a,b] \to \mathbb{R}$ by

$$F(x) = \int_{a}^{x} f$$

If f is continuous at $p \in (a, b)$, then F is differentiable at p and

$$F'(p) = f(p)$$

If f is continuous at a, then $F'_{+}(a)$ exists and equals f(a). Similarly, if f is continuous at b, $F'_{-}(b)$ exists and equals f(b).

Proof. To prove that F is differentiable at p and F'(p) = f(p), Definition 12.1 and Theorem 12.4 tell us that it will suffice to show that $\lim_{x\to p} \frac{F(x)-F(p)}{x-p} = f(p)$. To do this, Definition 11.1 tells us that it will suffice to verify that for every $\epsilon>0$, there exists a $\delta>0$ such that if $x\in [a,b]$ and $0<|x-p|<\delta$, then $|\frac{F(x)-F(p)}{x-p}-f(p)|<\epsilon$. Let $\epsilon>0$ be arbitrary. Since f is continuous at p, Theorem 11.5 asserts that there exists a $\delta_1>0$ such that if $x\in [a,b]$ and $|x-p|<\delta_1$, $|f(x)-f(p)|<\epsilon$. Additionally, since $p\in (a,b)$, we have by Theorem 4.10 that there exists a region R containing p such that $R\subset (a,b)$. It follows by Corollary 4.11 and Lemma 8.3 that R is an open interval. Thus, by Lemma 8.10, there exists a $\delta_2>0$ such that $(p-\delta_2,p+\delta_2)\subset R$.

Choose $\delta = \min(\frac{\delta_1}{2}, \delta_2)$. Before we can prove the desired inequality, we need a few preliminary results. First off, we can show that $[p-\delta, p+\delta] \subset [a,b]$ by Script 1 and the fact that $\delta \leq \delta_2$. Additionally, Exercise 10.21 implies that there exists a point $c \in [p-\delta, p+\delta]$ such that $f(c) \geq f(x)$ for all $x \in [p-\delta, p+\delta]$. By the previous result, $c \in [p-\delta, p+\delta]$ implies that $c \in [a,b]$. Furthermore, we have by an extension of Lemma 8.9 that $|c-p| \leq \delta \leq \frac{\delta_1}{2} < \delta_1$. This combined with the previous result implies by the above that $|f(c)-f(p)| < \epsilon$. Now let x be an arbitrary element of [a,b] that satisfies $0 < |x-p| < \delta$. However, before we go into the inequality, we have one final result to confirm: that $\int_p^x f \leq f(c)(x-p)$. Since $f(y) \leq f(c)$ for all $y \in [p-\delta, p+\delta]$, we naturally have that $f(y) \leq f(c)$ for all $y \in [p,x] \cup [x,p] \subset [p-\delta, p+\delta]$. Thus, by Theorem 13.27, $\int_p^x f \leq f(c)(x-p)$ as desired. Therefore,

$$\left| \frac{F(x) - F(p)}{x - p} - f(p) \right| = \left| \frac{\int_a^x f - \int_a^p f}{x - p} - f(p) \right|$$

$$= \left| \frac{\int_p^x f}{x - p} - f(p) \right|$$

$$\leq \left| \frac{f(c)(x - p)}{x - p} - f(p) \right|$$
Theorem 13.23

Script 14 MATH 16210

$$= |f(c) - f(p)| < \epsilon$$

as desired.

The proof is symmetric in the other two cases, with the help of Remark 12.2.