GATE-All BRANCHES Engineering Mathematics

Vector calculus

Lecture No.- 06

Recap of previous lecture

Topic Surface integral

Topic Question based on surface integral

Topic

Divergence of a vector function

Topics to be Covered

Gauss divergence theorem

Topic

Problems based on gauss divergence theorem

L'Important for मिनि शाश्रामानिर्म

0) is ____.

#Q. A vector is defined as $f = y \hat{\imath} + x \hat{\jmath} + z \hat{k}$, where $\hat{\imath}$, $\hat{\jmath}$, and \hat{k} are unit vectors in cartesian (x, y, z) coordinate system. The surface integral $\oiint f.ds$ over the closed surface S of a cube with vertices having the following coordinates: (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), (1, 1, 1)

a=| Cube

= 1+1+1=3

Incoming - ontgring = Diff div F = D (Solenordal behaviour) MMMM

Source-sink=0

Inductor (correte balance)

Fuld conservative

2) If div F = 0 conservative field = Incompressable plans div F = 0

$$f' = yi + xj + zk$$

$$du f' = \frac{\partial}{\partial x}(y) + \frac{\partial}{\partial y}(z) + \frac{\partial}{\partial z}(z)$$

$$= 0 + 0 + 1 = 1$$

Vong Guars divergence Theorem

$$\{f\} = \{f\} (\nabla F) dv$$

$$= a^3 = (1)^3 = 1$$

#Q. The surface integral $\iint_S \frac{1}{\pi} (9xi - 3yj) \cdot n \, dS$ over the sphere given Divergence \rightarrow surface

by $x^2 + y^2 + z^2 = 9$ is _____.

Using Guass Divergence Theorem SFF N'ds = \ff(\varphi\varphi)dv

Fig. (9xî-3yî) =
$$\frac{9x}{\pi}$$
 î - $\frac{3y}{\pi}$ j = F_1 î + F_2 ĵ + F_3 î kî $F_1 = \frac{9x}{\pi}$ $F_2 = \frac{3y}{\pi}$ div $\vec{F} = \vec{P} \cdot \vec{F} = Dot$ frodut = $\frac{3F_1}{3X} + \frac{3F_2}{3X} + \frac{3F_3}{3X}$ = $\frac{3}{3X} \left(\frac{9x}{\pi} \right) + \frac{3}{3Y} \left(\frac{-3y}{\pi} \right)$ = $\frac{9}{\pi} - \frac{3}{\pi} = \frac{6}{\pi}$ Wrong Guass Divergence Treorey $\vec{F} \cdot \vec{F} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{N} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{d} S = \frac{6}{\pi} \cdot \vec{d} S = \frac{6}{\pi} \times \frac{y}{\pi} \cdot \vec{d} S = \frac{9}{\pi} \cdot \vec{d} S = \frac{9}{\pi}$

7211

#Q. The surface integral $\iint_S F. ndS$ over the surface S of the sphere $x^2 + y^2 + z^2 = 9$, where F = (x + y)i + (x + z)j + (y + z)k and n is the unit outward surface normal, yields _____.

$$div \vec{F} = \frac{\partial}{\partial x}(x+y) + \frac{\partial}{\partial y}(x+z) + \frac{\partial}{\partial z}(y+z)$$
= 1+0+1=2

= $\iiint 2 dv = 2 \times volume of Sphere$ = $2 \times \frac{4}{3} \pi n^3$ $= 2 \times \frac{4}{3} \pi \times (3)^{3}$ = 9×87 =72n

The value of the integral $\oiint_S \vec{r} \cdot \vec{n} dS$ over the closed surface S #Q.

bounding a volume V, where $\bar{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ is the position

$$\text{ff}(\overline{v}.\widehat{n})ds = \text{ff}(\overline{v}.\widehat{r})dv = \text{ff}sdv$$

$$\sqrt{3V} = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(z)$$

$$= 3$$

$$= \underline{3}v$$

divil

#Q. The divergence of the vector field $\vec{u}=e^x(\cos y\hat{\imath} + \sin y\hat{\jmath})$ is

$$\overrightarrow{u} = \underbrace{e^{z}e_{0}y^{1} + e^{z}s_{0}y^{1}}_{\partial x}$$

$$div \overrightarrow{u} = \underbrace{\partial u_{1}}_{\partial x} + \underbrace{\partial u_{2}}_{\partial y} + \underbrace{\partial u_{3}}_{\partial z}$$

Guass Divergence

#Q. The value of the surface integral $\iint_S (9xi - 2yj - zk) \cdot ndS$ over the surface S of the sphere $x^2 + y^2 + z^2 = 9$, where n is the unit outward normal to the surface element dS, is $\frac{2 \cdot b \cdot \pi}{2}$

$$\iint_{S} \widehat{F} \, \hat{N} \, dS = \iiint_{S} (\nabla \cdot \widehat{F}) \, dN$$

$$\widehat{F} = 9 \times (-24) - 2 \times (-24) + \frac{3}{2} (-24$$

$$\nabla \cdot \vec{F} = 9 - 2 - 1 = 6 \int \text{Sphere} \\
= \iint 6 dv = 6 \iint \left(\frac{\text{dyd} \times \text{dz}}{3} \right)^2 = 216 \text{ T}$$

$$= 6 \times \frac{4}{3} \pi (3)^2 = 216 \pi$$

#Q. Given a vector $\overline{u} = \frac{1}{3} \left(-y^3 \hat{\imath} + x^3 \hat{\jmath} + z^3 \hat{k} \right)$ and \hat{n} as the unit normal vector to the surface of the hemisphere $(x^2 + y^2 + z^2 = 1; z \ge 0)$, the value of integral $\int (\nabla \times u).\overline{n} \, dS$ evaluated on the curved surface of the hemisphere S is $\int (\overline{w}) dV = \overline{1}$

2 mins Summary

Three

Topic Four

Topic

Topic Five

THANK - YOU