1. Лабораторная работа №1

Дискретное представление типовых сигналов.

На примере типовых сигналов рассмотреть особенности дискретизации и последующего восстановления сигналов.

2 типовых сигнала:

а) Прямоугольный импульс. Выбрав некоторый шаг дискретизации Δt , получить отсчет дискретизации, по формуле Котельникова восстановить сигнал. В качестве результата должно получиться два графика: исходный сигнал (прямоугольный импульс) и его восстановленный аналог. Графики в одной СК. Параметр Δt можно изменять. Объяснить эффекты, который при этом возникают.

Рис. 1 — Прямоугольный импульс

Рис. 2 — Результат

а) Сигнал Гаусса. $u(t) = Ae^{-\frac{t^2}{\sigma^2}}$ (А - амплитуда). Параметр σ определяет ширину кривой. Для этого сигнала выполнить то же самое, что и для прямо-угольного импульса. $T=3\sigma$ (ориентировочно). Объяснить, почему в одном случае восстановление происходит лучше, чем в другом.

Рис. 3 — Сигнал Гаусса

Лабораторная работа №2 Алгоритмы ДПФ и БПФ

- а) Исходный сигнал: прямоугольный импульс и сигнал Гаусса.
- б) Результат работы. От каждого сигнала вычислить дискретное и быстрое преобразование Фурье и отобразить их графически. При этом рассматриваются две ситуации:
 - 1) При наличии эффекта «близнецов»
 - 2) Без наличия эффекта «близнецов»: $(-1)^t$