CS 532: 3D Computer Vision Lecture 4

Two-View Stereo

Stereo

How Two Photographers Unknowingly Shot the Same Millisecond in Time

MAR 07, 2018

RON RISMAN

Slide credit:David Fouhey

https://petapixel.com/2018/03/07/two-photographers-unknowingly-shot-millisecond-time/

How Two Photographers Unknowingly Shot the Same Millisecond in Time

MAR 07, 2018

RON RISMAN

Slide credit:David Fouhey

How Two Photographers Unknowingly Shot the Same Millisecond in Time

MAR 07, 2018

RON RISMAN

Slide credit:David Fouhey

Humans can fuse pairs of images to get a sensation of depth

Stereograms: Invented by Sir Charles Wheatstone, 1838

Slide credit: S. Lazebnik

Stereograms What about this?

Bela Julesz: Random Dot Stereogram
Shows that stereo can operate *without* recognition

Humans can fuse pairs of images to get a sensation of depth

Autostereograms: www.magiceye.com

Humans can fuse pairs of images to get a sensation of depth

Autostereograms: www.magiceye.com

Problem formulation

Given a calibrated binocular stereo pair, fuse it to produce a depth image

image 1

image 2

Dense depth map

Slide credit: S. Lazebnik

Basic stereo matching algorithm

- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match
 - Triangulate the matches to get depth information
- Simplest case: epipolar lines = corresponding scanlines
 - When does this happen?

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths the same

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths the same
- Then epipolar lines fall along the horizontal scan lines of the images

Essential matrix for parallel images

$$\mathbf{p}^{\prime T} \mathbf{E} \mathbf{p} = 0 \quad \mathbf{E} = [\mathbf{t}_{x}] \mathbf{R}$$

What's R? What's t?

$$R = I$$

$$\mathbf{R} = \mathbf{I}$$
 $t = [T, 0, 0]$

$$\mathbf{z} \quad \mathbf{E} = [\mathbf{t}_x] \mathbf{R} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix}$$

$$\begin{bmatrix} u' \ v' \ 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = 0 \quad \begin{bmatrix} u' \ v' \ 1 \end{bmatrix} \begin{bmatrix} 0 \\ -T \\ Tv \end{bmatrix} = 0$$

$$Tv = Tv'$$

The y-coordinates of corresponding points are the same!

Stereo image rectification

Stereo image rectification

Reproject image planes onto a common plane parallel to the line between optical centers

C. Loop and Z. Zhang. <u>Computing</u>
<u>Rectifying Homographies for Stereo</u>
<u>Vision</u>. CVPR 1999

Slide credit: S. Lazebnik

Rectification example

Another rectification example

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match

Correspondence Search

Slide window along the right scanline, compare contents of that window with reference window on left

Matching cost: SSD or normalized correlation

Correspondence Search

Left

Right

Matching cost Sum of squared differences

$$\sum_{i} (l_i - r_i)^2$$

Disparity

scanline

Correspondence Search

Left

Right

Matching cost Normalized correlation

$$\widehat{x_i} = \frac{x_i - \text{mean}(x)}{\text{std}(x)}$$

$$\hat{l}\cdot\hat{r}$$

Disparity

scanline

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match x'
 - Triangulate the matches to get depth information

Triangulation: Older History

From Wikipedia: Gemma Frisius's 1533 diagram introducing the idea of triangulation into the science of surveying. Having established a baseline, e.g. the cities of Brussels and Antwerp, the location of other cities, e.g. Middelburg, Ghent etc., can be found by taking a compass direction from each end of the baseline, and plotting where the two directions cross. This was only a theoretical presentation of the concept — due to topographical restrictions, it is impossible to see Middelburg from either Brussels or Antwerp. Nevertheless, the figure soon became well known all across Europe.

Depth from disparity

By similar triangles

$$\frac{-x'}{f} = \frac{B_2}{z}$$

Similarly by similar triangles

Depth from disparity

$$\frac{x}{f} = \frac{B_1}{z} \qquad \frac{-x'}{f} = \frac{B_2}{z}$$
Add them
$$\frac{x - x'}{f} = \frac{B_1 + B_2}{z}$$

$$\frac{x - x'}{f} = \frac{fB}{z}$$
Disparity

Depth from disparity

$$\frac{x}{f} = \frac{B_1}{z} \quad \frac{x'}{f} = \frac{B_2}{z}$$

Subtract them

$$\frac{x - x'}{f} = \frac{B_1 - B_2}{z}$$

$$\frac{x - x'}{z} = \frac{fB}{z}$$

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match x'
 - Compute disparity x-x' and set $depth(x) = B^*f/(x-x')$

Failures of Correspondence Search

Textureless regions. Why?

Image credit: S. Lazebnik

Failures of Correspondence Search

Repeated Patterns. Why?

Image credit: S. Lazebnik

Failures of Correspondence Search

Specular Surfaces. Why?

Effect of window size

W = 3

W = 20

- Smaller window
 - + More detail
 - More noise
- Larger window
 - + Smoother disparity maps
 - Less detail

Results with window search

Data

Window-based matching

Ground truth

Image credit: S. Lazebnik

Better methods exist...

Graph cuts Ground truth

Y. Boykov, O. Veksler, and R. Zabih, <u>Fast Approximate Energy</u> <u>Minimization via Graph Cuts</u>, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/

Improving Window-based Matching

- Similarity is local (each window independent)
- Need non-local correspondence constraints / cues.

Uniqueness

- Each point in one image should match at most one point in other image.
- When might this not be true?

Ordering

Corresponding points should be in same order

Ordering

Not always true!

Smoothness

- We expect disparity values to change slowly (for the most part)
- When is this not true?

Scanline Stereo

- Try to coherently match pixels on the entire scanline
- Different scanlines are optimized (by dynamic programming) independently

Coherent Stereo on 2D Grid

Scanline stereo generates streaking artifacts

 Can't use dynamic programming to find spatially coherent disparities on a 2D grid

Stereo Matching as Optimization

$$E(D) = \underbrace{\sum_{i} \left(W_{1}(i) - W_{2}(i + D(i))\right)^{2}}_{location} + \lambda \underbrace{\sum_{\text{neighbors } i,j} \rho(D(i) - D(j))}_{location}$$
Data term

Smoothness term

Solvable by graph cuts for certain smoothnesses p

Y. Boykov, O. Veksler, and R. Zabih, <u>Fast Approximate Energy Minimization</u>
Slide credit: S. Lazebnik via Graph Cuts, PAMI 2001

Is This Doable by Deep Network?

Easy solution: replace the data term with a network

Deep Learning For Stereo

- Feed in two images to identical networks, concatenate outputs, learn multilayer perceptron
- Slow: why?

Deep Learning For Stereo

- Normalize outputs; treat dot product as prediction of match/no match
- Fast: why?

Stereo datasets

- Middlebury stereo datasets
- KITTI
- Synthetic data?

