Øving 4 IELET1001 - Elektroteknikk

Gunnar Myhre, BIELEKTRO

22. oktober 2021

1 Oppgåve 1

Vi veit at utgongssignalet er gitt ved $v_o = A \cdot v_s$. For A = 15 får vi:

t[s]	0	$0,5^{-}$	$0,5^{+}$	1	$1,5^{-}$	$1,5^{+}$	2
$v_{in}[mV]$	0	50	-100	-150	0	50	0
$v_o[mV]$	0	750	-1500	-2250	0	750	0

2 Oppgåve 2

- $v^+ = v^-$ i ein ideell op-amp.
- $i^+ = i^- = 0$ i ein ideell op-amp.
- Utgongsstraumen i_o er avhengig av kretsen som op-ampen inngår i. For eksempel vil i_o for ein ikkje-inverterande forsterkar vere gitt ved $i_o = \frac{v_o v_{in}}{R_F} + \frac{v_o}{R_L}$

- Straumkjelda til venstre sørger for at $I_1=2,85mA$
- $\bullet\,$ Sidan dette er ein ideell op-amp er $I_2=0A$
- $\bullet\,$ Derfor (pga KCL) må $I_3=2,85mA$

4 Oppgåve 4

4.1 a)

Setter opp KCL i node $-v_e$. Vi setter $R_o = 0$ som gitt i oppgåveteksten (m.a.o. tenker på den som ein kortslutning).

$$\frac{-v_e - v_s}{R_1} + \frac{-v_e}{R_i} + \frac{-v_e - A_0 v_e}{R_2} = 0 \tag{1}$$

forenkler algebraisk for å finne uttrykk for A_0

$$A_0 = -\frac{R_2(v_e + v_s)}{R_1 v_e} - \frac{R_2}{R_i} - 1 \tag{2}$$

4.2 b)

Setter inn verdiar for $R_1 = 15\Omega$, $R_2 = 10\Omega$, $R_i = 24\Omega$ og $A_0 = 15$

$$15 = -\frac{10(v_e + v_s)}{15v_e} - \frac{10}{24} - 1 \tag{3}$$

får uttrykk for proporsjonen mellom v_s og v_e

$$v_s = -25,625v_e (4)$$

om vi setter dette inn i formelen for forsterking $v_o = A_0 \cdot v_s \Rightarrow A = \frac{v_o}{v_s}$ finner vi

$$A = \frac{A_0 v_e}{-25,625 v_e} = -\frac{15}{25,625} = -0,5853 \tag{5}$$

Sidan forsterkingskoeffisienten A er negativ har vi ein inverterande forsterkar

4.3 c)

Ein inverterande forsterkar med ideell op-amp vil ha ein forsterking på $-\frac{R_F}{R_I}$. Om vi setter inn for R_1 og R_2 får vi

$$-\frac{10}{15} = -\frac{2}{3} \approx -0.66 \tag{6}$$

altså lågare enn den ikkje-ideelle op-ampen var i stand til.

5 Oppgåve 5

Gjør KCL i v^- på op-ampen

$$\frac{0 - v_s}{5k\Omega} + \frac{0 - v_o}{25k\Omega} = 0 \tag{7}$$

finner uttrykk for v_s

$$v_s = -\frac{1}{5}v_o \tag{8}$$

sidan $A=\frac{v_o}{v_s}$ finner vi

$$A = -\frac{v_o}{\frac{1}{5}v_o} = -5 \tag{9}$$

6 Oppgåve 6

Bruker KCL i inngongsnoden til op-ampen v^-

$$\frac{0 - 1V}{10k\Omega} + \frac{0 - 2V}{20k\Omega} + \frac{0 + 3V}{30k\Omega} + \frac{0 - v_o}{30k\Omega} = 0$$
 (10)

som kan forenklast til

$$-3V - 3V + 3V = V_o \Rightarrow V_o = -3V \tag{11}$$

Setter opp KCL i dei to inngongsnodane til op-ampen, v^+ og v^- . Spenninga i desse nodane er den same pga. ideell op-amp. Kaller denne spenninga v

$$KCL^{-}: \frac{v - 3V}{2k\Omega} + \frac{v - v_o}{8k\Omega} = 0$$
 (12)

$$KCL^{+}: \frac{v - 3V}{5k\Omega} + \frac{v}{10k\Omega} = 0$$
 (13)

løyser likningssettet og finner $v_o=-2V.$ Setter opp KCL i utgongen for å finne I_o

$$\frac{v_o - v}{8k\Omega} + \frac{v_o}{4k\Omega} - I_o = 0 \Rightarrow I_o = -1\text{mA}$$
 (14)

8 Oppgåve 8

Setter opp KCL i inngongsnoden til op-ampen. Vi veit at $v^-=v^+=3V$

$$\frac{3V - 9V}{2k\Omega} + \frac{3V}{1k\Omega} + \frac{3V - V_o}{2k\Omega} = 0 \tag{15}$$

løyser og får

$$3V - 9V + 6V + 3V = V_o \Rightarrow V_o = 3V$$
 (16)

Vi veit at det ikkje går nokon straum inn i op-ampen, derfor er

$$I_{v2} = \frac{2V}{5k\Omega} = 2,5mA\tag{17}$$

spenninga i v_2 er derfor

$$v_2 = \frac{2V \cdot 20k\Omega}{5k\Omega} = 8V \tag{18}$$

Vi kan se bort ifrå op-ampen med output i V_1 . $V_1=3V$

vi veit at spenninga i v_i må vere 3V. Det går ingen straum igjennom 10k-motstanden og ein ideell op-amp sørger for at spenninga er lik på dei to inngongsterminalane.

$$KCL_{v_i}: \frac{3V}{30k\Omega} + \frac{3V - v_3}{50k\Omega} = 0$$

$$\tag{19}$$

finner at $v_3 = 8V$

setter opp KCL i noden $v_i = 0V$

$$\frac{0 - 8V}{80k\Omega} + \frac{0 - (-8V)}{40k\Omega} + \frac{0 - v_o}{100k\Omega} = 0$$
 (20)

finner $v_o = 10V$

Ein lettare måte å løyse oppgåva på ville ha vore å identifisere karakteristiske forsterkarar i kretsen (inverterande, ikkje-inverterande og summerande), og bruke formlane som vi kjenner frå før:

- Inverterande forsterkar: $v_2 = -\frac{20}{5}2V = -8V$
- Ikkje-inverterande forsterkar: $v_3 = (1 + \frac{50}{30})3V = 8V$
- Summerande forsterkar: $v_o = -(8V\frac{100}{80} 8V\frac{100}{40}) = 10V$

Kaller spenninga i inngongane til den høgre op-ampen for v_2 . Spenninga i inngongen til op-ampen til venstre er 0V. Vi finner første likning ved å sette opp KCL i minus-inngongen til op-ampen til venstre.

$$\frac{0 - v_1}{5k\Omega} + \frac{0 - v_2}{10k\Omega} + \frac{0 - v_o}{4k\Omega} = 0$$
 (21)

setter opp KCL i minus-inngongen til den høgre op-ampen

$$\frac{v_2}{10k\Omega} + \frac{v_2 - v_o}{2k\Omega} = 0 \tag{22}$$

forenkler til likningene

$$-2v_1 - v_2 - \frac{10}{4}v_o = 0$$

•
$$v_2 = \frac{5}{6}v_o$$

løyser likningssettet for v_1 og v_o og finner $\frac{v_o}{v_1} = -\frac{24}{40} = -0,6$

11 Oppgåve 11

Om vi teikner skjemaet på nytt er det lettare å sjå at dette er ein inverterande forsterkar.

Då veit vi at $v_o=-\frac{R_2}{R_1}v_s$. For at $-\frac{R_2}{R_1}=-110$ må R_2 vere 110 gonger større enn R_1 . Vi kan f.eks gjere slik:

- $R_1 = 2k\Omega$
- $R_2 = 220 \mathrm{k}\Omega$

Her er det uklart kva oppgåva meiner med eit invertert spenningssignal. Dersom eg skulle ha brukt ein inverterande forsterkar for å forsterke spenninga ville det krevd at forsterkingskoeffisienten A var positiv, altså at $-\frac{R_2}{R_1}$ må bli positiv. Det er ikkje mogleg med mindre ein av motstandane har negativ resistans, noko som viser at vi er på ville vegar.

Tar utgangspunkt i ein inverterande forsterkar

Straumen i_{inn} kan ikkje overstige 100 μ A, då må

$$\frac{v_s}{R_1} < 100\mu\text{A} \tag{23}$$

eg tolker det som at det er eit krav at inngongssignalet skal kunne nå 200mV. I såfall må R_1 minst vere $2k\Omega$ for å hindre å overstige straumkravet. Som tidlegare sagt kan vi ikkje få forsterkaren til å forsterke signalet, men om vi tolker det til at "maksimumsignalet" (minimumsignalet) skal vere -10V vil R_2 måtte ha ein verdi på:

$$\frac{v_o}{v_s} = -\frac{R_2}{R_1} \Rightarrow -R_2 = \frac{-10V}{0.0002A} 2k\Omega \Rightarrow R_2 = 100k\Omega$$
 (24)

Altså vil maks inn $v_s=100mV\Rightarrow v_o=-10V$ for $R_1=2\mathrm{k}\Omega$ og $R_2=100\mathrm{k}\Omega$. Straumen frå kjelda v_s vil vere $100\mathrm{\mu}\mathrm{A}$