



### Data-driven Sales Forecasting Proposal

### Agenda



#### Problem Definition

ACME's Sales representatives forecast their end-client product demand. Nevertheless, the error in demand forecast has increased significantly, causing:

- >> Stress in production
- >> Stress in stock
- >> Overproduction and Underproduction
- >> Financial Inefficiencies

We aim to enhance optimization by developing a robust analytical model. This project holds the potential to reshape ACME TEXTILE's future by leveraging data-driven insights for improved operational efficiency and profitability.

### Data-driven Quick Insights

- Visualized the ordering history for better understanding
- Plotted each time series
- >> No nulls
- Zeros left unaltered





## Statistical Testing For Models Technical EDA

Most time series models assume stationarity and do not work for White Noise series, so we will be following the Box-Jenkins Methodology, for each product we will:

Test for stationarity using ADF



We will take a difference [T-(T-1)] to make the series stationary.

Plot ACF & PACF and Test for White Noise



If our ACF & PACF do not have significant bars out bounds our series is probably White Noise.

3. Test for normality using Shapiro-Wilk test



If our series is called Gaussian WN, the series is totally unpredictable in mean and variance.

### Statistical Testing For Models Technical EDA



Product 1 has bars out of bounds in the ACF & PACF. The Ljung-Box test p-value is <0.05.

Not White Noise, as such, data is predictable.



Product 3 does not have bars out of bounds in the ACF & PACF. The Ljung-Box test p-value is >0.05.

White Noise, as such, the best prediction is just the series' mean.

## Statistical Testing For Models Technical EDA

| Material_ID | Stationary (ADF)            | White Noise (Ljung-Box) | Normally<br>Distributed(Shapiro) |
|-------------|-----------------------------|-------------------------|----------------------------------|
| 120004096   | No (Need one<br>Difference) | No                      | Yes                              |
| 120014488   | Yes                         | No                      | No                               |
| 120014486   | Yes                         | Yes                     | Yes                              |
| 120015996   | Yes                         | Yes                     | Yes                              |
| 120009816   | Yes                         | Yes                     | Yes                              |
| 120010342   | Yes                         | No                      | No                               |
| 120009814   | Yes                         | Yes                     | Yes                              |
| 120010566   | Yes                         | Yes                     | Yes                              |
| 120010970   | Yes                         | Yes                     | Yes                              |
| 120011782   | No (Need one<br>Difference) | No                      | No                               |
| 120011556   | Yes                         | Yes                     | Yes                              |
| 120012154   | Yes                         | Yes                     | No                               |
| 120012606   | Yes                         | Yes                     | Yes                              |
| 120015842   | Yes                         | No                      | Yes                              |

- 3 Predictable
- 2 Not Stationary but Predictable
- 1 White Noise
- 8 Gaussian White Noise

So most series cannot be predicted just by looking at their past, but... What if they are influenced by other series?

Correlation was plotted:

Series 4 vs Series 9, have (0.57) correlation.

## Statistical Testing For Models Technical EDA

Not normally distributed, we test if one influence the other with the Granger Causality Test:





Unable to reject the null hypothesis

Products will no influence each other, which decreases likelihood of overfitting.

## Statistical Testing For Models Technical EDA

It was also important to look at Seasonal Decomposing:

- Trend
- Seasonality
- Error



### Lazy / Dummy Models



These simple models are able to predict our series fairly good, with a straightforward approach:

- GlobalMeanGuessing
- GlobalMedianGuessing
- MonthSpecificMedian
- RollingMedianWindow







Time

Models were cross validated to ensure they were robust.

Around 70% Accuracy on unseen data

## **ARIMA** Exponential Smoothing & Prophet

#### ARIMA-AIC

Balancing the trade-off between model complexity and goodness of fit.

#### **ARIMA-ManualFinding**

Model picked that was best on unseen data, some overfitting risk.

#### **Exponential Smoothing**

Takes into account similar parameters as ARIMA, more importance given to recent observations.

#### **Prophet**

Works well with A LOT of data, with strong seasonality and trends a bit worse results than other models.

Around 80-90% Accuracy on unseen data

On non White Noise data

### Machine Learning Models

Why should we look into Machine learning models?

- Enriched columns
- External Features

Some features were added: Season, MonthName, GDP, Holidays in Spain, Unemployment, Time of release.

### Machine Learning Models

#### Models tested:

- LightGBM
- > KNN
- RandomForest
- >> SVR
- XGBoost





#### Feature Importance



## Machine Learning Models XGBoost

Why should we look into XGBoost?

- Relationships between Products
- Single Model for all Products

But the accuracy was lower...

- K-Fold Crossvalidation
- Requires more Data
- Overfitting to external Features

### Machine Learning Models DL RNN

Why should we look into RNN?

- Sequential Dependencies
- Feedback Mechanism



But the accuracy was lower...

- Less robust compared to XGBoost because of it's complexity.
- Prone to overfitting.



**Exponential Smoothing material 13** 



**Exponential Smoothing material 8** 



**Exponential Smoothing material 12** 



#### **ARIMA** material 4



#### **ARIMA** material 1



### Next Steps

How can we further increase performance?

Data Aggregation MLOps Pipeline

Additional Data

**Optimize Operations** 







## Business Benefits of The ARIMA Model

Sales forecasting allows businesses to:

- Fully optimized Inventory, Production, and Supplier Management.
- Improve their overall profitability

#### **Business Benefits of** The ARIMA Model





Accuracy

80% > 87%



Wrongly Allocated Units

44000 > 28500



Over-produced units decrease: 13000

Under-produced units decrease: 2500

## Business Benefits of The ARIMA Model

With this increase in accuracy, these were the monetary results:

- Average price 359 €
- Average profit margin 20%

Over-produced units decrease: 13000



3 600 000 €

Under-produced units decrease: 2500



880 000 €



Total amount saved: 4 480 000 €



# Data-driven Sales Forecasting Proposal



Vignesh Nambiar, Rita Orvalho,

Daniel Sebastián, Laufey Sverrisdóttir, Lucas Trenzado

