	Marwadi University		
Marwadi University	Faculty of Technology		
Oniversity	Department of Information and Communication Technology		
Subject: Artificial	Aim: To obtain the best fit line over single feature scattered datapoints		
Intelligence(01CT0616)	using Linear Regression		
Experiment No: 02	Date:	Enrollment No: 92200133003	

<u>Aim:</u> To obtain the best fit line over single feature scattered datapoints using Linear Regression

IDE: Google Colab

Theory:

Linear regression is a method for determining the best linear relationship between two variables X and Y. If variables X and Y are uncorrelated, it is pointless embarking upon linear regression. However, if a reasonable degree of correlation exists between X and Y then linear regression may be a useful means to describe the relationship between the two variables. The usual approach is to use the *least-squares* method, which minimizes the squared difference between the actual data points and a straight line. Let $[x_i, y_i]$, i = 1, 2, 3, ..., N be the N pairs of data values of the variables X and Y. The straight-line relating X and Y is Y = mx + c, where M and C are the gradient and constant values (to be determined) defining the straight line. Thus, $Y(x_i) - Y_i$ is the difference between the line and data point I (see Fig. 1). Taking all the data points, we seek values of I0 and I1 that minimize the squared difference I2.

$$\sum_{1}^{N} [y(x_i) - y_i]^2$$

This is achieved by calculating the partial derivatives of SD with respect to m and c and finding the pair [m,c] such that SD is at a minimum.

Figure 1: Illustration of Linear Regression. Linear least squares regression, the idea is to find the line y = mx + c that minimizes the mean squared difference between the line and the data points

	Marwadi University		
Marwadi University	Faculty of Technology		
Oniversity	Department of Information and Communication Technology		
Subject: Artificial	Aim: To obtain the best fit line over single feature scattered datapoints		
Intelligence(01CT0616)	using Linear Regression		
Experiment No: 02	Date: Enrollment No: 92200133003		

Batch Gradient Descent:

Gradient Descent is an optimization algorithm used for minimizing the cost function in various machine learning algorithms. It is basically used for updating the parameters of the learning model. Batch gradient descent which processes all the training examples for each iteration of gradient descent. But if the number of training examples is large, then batch gradient descent is computationally very expensive.

Let m be the number of training examples. Let n be the number of features.

Algorithm for batch gradient descent:

Let $h_{\theta}(x)$ be the hypothesis for linear regression. Then, the cost function is given by: Let Σ represents the sum of all training examples from i=1 to m. $J_{train}(\theta) = (1/2m) \Sigma (h_{\theta}(x^{(i)}) - y^{(i)})^2$

```
Repeat {  \theta j = \theta j - (learning \ rate/m) * \Sigma (\ h_{\theta}(x^{(i)}) \ - y^{(i)}) x_j^{(i)}  For every j = 0 \ ... n }
```

Where $x_j^{(i)}$ Represents the j^{th} feature of the i^{th} training example. So if m is very large(e.g. 5 million training samples), then it takes hours or even days to converge to the global minimum. That's why for large datasets, it is not recommended to use batch gradient descent as it slows down the learning.

Pre Lab Exercise:

a. Explain the meaning of linear regression	
b. Write three applications of linear regression	

Marwadi University		
Faculty of Technology		
Department of Information and Communication Technology		
Aim: To obtain the best fit line over single feature scattered datapoints		
using Linear Regression		
Date: Enrollment No: 92200133003		
	Faculty of Technology Department of Informa Aim: To obtain the best fi using Linear Regression	

c. Write three advantages of linear regression		
d. Write three limitations of linear regression		

Methodology:

- 1. Load the basic libraries and packages
- 2. Load the dataset
- 3. Analyse the dataset
- 4. Pre-process the data
- 5. Visualize the Data
- 6. Separate the feature and prediction value columns
- 7. Write the Hypothesis Function
- 8. Write the Cost Function
- 9. Write the Gradient Descent optimization algorithm
- 10. Apply the training over the dataset to minimize the loss
- 11. Find the best fit line to the given dataset
- 12. Observe the cost function vs iterations learning curve

Program (Code):

1. Load the basic libraries and packages

	Marwadi University		
Marwadi University	Faculty of Technology		
Oniversity	Department of Information and Communication Technology		
Subject: Artificial	Aim: To obtain the best fit line over single feature scattered datapoints		
Intelligence(01CT0616)	using Linear Regression		
Experiment No: 02	Date: Enrollment No: 92200133003		

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

2. Load the dataset

	X	у
0	24.0	21.549452
1	50.0	47.464463
2	15.0	17.218656
3	38.0	36.586398
4	87.0	87.288984
695	58.0	58.595006
695 696	58.0 93.0	58.595006 94.625094
696	93.0	94.625094
696 697 698	93.0 82.0	94.625094 88.603770 63.648685

700 rows × 2 columns

3. Analyse the dataset

	Marwadi University		
Marwadi University	Faculty of Technology		
Oniversity	Department of Information and Communication Technology		
Subject: Artificial	Aim: To obtain the best fit line over single feature scattered datapoints		
Intelligence(01CT0616)	using Linear Regression		
Experiment No: 02	Date:	Enrollment No: 92200133003	

[]	dataset.shape			
_ _₹	(700, 2)			
[]	dataset.describe()			
∑ ₹		х	у	
	count	700.000000	699.000000	
	mean	54.985939	49.939869	
	std	134.681703	29.109217	
	min	0.000000	-3.839981	
	25%	25.000000	24.929968	
	50%	49.000000	48.973020	
	75 %	75.000000	74.929911	
	max	3530.157369	108.871618	

4. Pre-process the data

Marwadi University Faculty of Technology

Department of Information and Communication Technology

Subject: Artificial Intelligence(01CT0616) Aim: To obtain the best fit line over single feature scattered datapoints

using Linear Regression

Experiment No: 02 Date: **Enrollment No: 92200133003**

5. Visualize the Data

plt.scatter(x_value,y_value)

	Marwadi University		
Marwadi University	Faculty of Technology		
Oniversity	Department of Information and Communication Technology		
Subject: Artificial	Aim: To obtain the best fit line over single feature scattered datapoints		
Intelligence(01CT0616)	using Linear Regression		
Experiment No: 02	Date: Enrollment No: 92200133003		

6. Write the Hypothesis Function

```
7. def hypothesis(theta_array,x):
8. h=theta_array[0]+theta_array[1]*x
9. return h
```

10. Write the Cost Function

```
11. def costfunction(theta_array,x,y,m):
12. total_cost=0
13. for i in range(m):
14. total_cost+=((theta_array[0]+theta_array[1]*x[i])-y[i])**2
15. return total cost/(2*m)
```

16. Write the Gradient Descent optimization algorithm

```
def gradient_descent(theta_array,x,y,m,alpha):
    summation_0=0
    summation_1=0
    for i in range(m):
        summation_0+=((theta_array[0]+theta_array[1]*x[i])-y[i])
        summation_1+=((theta_array[0]+theta_array[1]*x[i])-y[i])*x[i]
        new_theta0=theta_array[0]-(summation_0*alpha)/m
        new_theta1=theta_array[1]-(summation_1*alpha)/m
        improvised_theta=[new_theta0,new_theta1]
        print(improvised_theta)
        return improvised_theta
```

17. . Apply the training over the dataset to minimize the loss

```
def training(x,y,alpha,epochs):
       theta_0=0
      theta 1=0
      m=x.size
      cost_values=[]
       theta_array=[theta_0,theta_1]
       for i in range(epochs):
        theta_array=gradient_descent(theta_array,x,y,m,alpha)
        loss=costfunction(theta_array,x,y,m)
        cost_values.append(loss)
        y_new=theta_array[0]+theta_array[1]*x
       plt.scatter(x,y)
       plt.plot(x,y_new,'r')
       plt.show()
       x=np.arange(0,epochs)
       plt.plot(x,cost values)
       plt.show()
```

	Marwadi University		
Marwadi University	Faculty of Technology		
o in i versity	Department of Information and Communication Technology		
Subject: Artificial	Aim: To obtain the best fit line over single feature scattered datapoints		
Intelligence(01CT0616)	using Linear Regression		
Experiment No. 02	Date:	Enrollment No: 92200133003	

18. Find the best fit line to the given dataset

19. Observe the cost function vs iterations learning curve

Observation and Result Analysis:

a.	Nature	of	the	dataset

Marwadi University	Marwadi University	
	Faculty of Technology	
	Department of Information and Communication Technology	
Subject: Artificial	Aim: To obtain the best fit line over single feature scattered datapoints	
Intelligence(01CT0616)	using Linear Regression	
Experiment No: 02	Date:	Enrollment No: 92200133003

d. Derive the Normal Equation for the Linear Regression.