FACULTY OF ENGINEERING CHULALONGKORN UNIVERSITY

2110327 Algorithm Design

YEAR III, First Semester, Final-term Examination, November 30, 2015, Time 8:30 – 11:30

ชื่อ-นามสกุล_		เลขประจำตัวCR58								
<u>หมายเหตุ</u>										
1.	ข้อสอบ	ทั้งหมด 9 ข้อในกระดาษคำถามคำตอบ รวม จำนวน 8 หน้า 💮 คะแนนเต็ม 92 คะแนน								
2.	ไม่อนุถุ	ตให้นำตำราและเครื่องคำนวณต่างๆ ใดๆ เข้าห้องสอบ								
3.	ควรเขีย	เตอบด้วยลายมือที่อ่านง่ายและชัดเจน								
4.	ห้ามกา	หยิบยืมสิ่งใดๆ ทั้งสิ้น จากผู้สอบอื่นๆ เว้นแต่ผู้คุมสอบจะหยิบยืมให้								
5.	ય									
6.	v	ผู้เข้าสอบสามารถออกจากห้องสองได้ หลังจากผ่านการสอบไปแล้ว 45 นาที								
7.	เมื่อหม	เวลาสอบ ผู้เข้าสอบต้องหยุดการเขียนใดๆ ทั้งสิ้น								
8.	นิสิตกร	ทำผิดเกี่ยวกับการสอบ ตามข้อบังคับจุฬาลงกรณ์มหาวิทยาลัย มีโทษ คือ ได้รับ สัญลักษณ์ F ในรายวิชาที่ทุจริต และพัก								
		าอย่างน้อย 1 ภาคการศึกษา								
		ทรศัพท์หรืออุปกรณ์สื่อสารไว้กับตัวระหว่างสอบ หากตรวจพบจะถือว่านิสิตกระทำผิดเกี่ยวกับการสอบ ให้ได้รับ F และอาจะ								
<u>พิจ</u>		<u>กการศึกษา **</u>								
		พเจ้ายอมรับในข้อกำหนดที่กล่าวมานี้ ข้าพเจ้าเป็นผู้ทำข้อสอบนี้ด้วยตนเองโดยมิได้รับการช่วยเหลือ หรือให้ความช่วยเหลือในการ	ทำ							
ข้อส	ขานี้ ขอบนี้									
		ลงชื่อนิสิต								
		วันที่								
) จงระบุว่า ข้อย่อยต่อไปนี้ข้อใดจริง ข้อใดเท็จ (<u>ไม่ต้องอธิบายที่มาของคำตอบ เขียนตอบแค่ T หรือ F</u> คำตอบที่ถูกต้อง เนน คำตอบที่ผิดจะติดลบ 0.5 คะแนน คะแนนติดลบในข้อนี้จะไม่ส่งผลกระทบไปยังข้ออื่น)								
1))	อัลกอริทีมของ Floyd-Warshall อาศัย recurrence $d_{ij}(k)$ = min($d_{ij}(k-1),\;d_{ik}(k-1)+d_{kj}(k-1)$)								
2))	เราหา maximum spanning tree ของกราฟ G ได้ง่าย ๆ ด้วยการสร้างกราฟ H ที่เหมือน G แต่เส้นเชื่อมของ H มี น้ำหนักเป็นค่าติดลบของน้ำหนักเส้นเชื่อมใน G จะได้ว่า minimum spanning tree ของ H (ที่หาด้วย อัลกอริทึม Prim) ก็เป็น maximum spanning tree ของ G เช่นกัน								
3))	ให้ G เป็น directed acyclic graph เราหา longest path ใน G ได้ง่าย ๆ ด้วยการสร้างกราฟ H ที่เหมือน G แต่เส้น เชื่อมของ H มีน้ำหนักเป็นค่าติดลบของน้ำหนักเส้นเชื่อมใน G จะได้ว่า shortest path ของ H (ที่หาด้วยอัลกอริทึมของ Dijkstra) ก็เป็น longest path ของ G เช่นกัน								
4))	ให้ G เป็น dense graph ซึ่งคือกราฟที่มีจำนวนเส้นเชื่อม $e=m{\Theta}(\ v^2\)$ การหา minimum spanning tree ด้วย อัลกอริทึมของ Prim กับ Kruskal จะมี time complexity เท่ากัน ไม่ว่าจะเลือกใช้โครงสร้างข้อมูลแบบใดก็ตาม								
5))	เป็นได้ไหม ที่ directed graph G ที่มี v ปม เป็น weakly connected graph แต่มี v – 1 strongly connected								
		components								
6))	โดยปกติเรานิยามให้ความยาวของ path หนึ่งคือ ผลรวม ของ edge ทุกเส้นใน path นั้น ถ้าขอเปลี่ยนนิยามให้ความยา [;] ของ path หนึ่งเป็น ผลคูณ ของ edge ทุกเส้นใน path นั้น อยากทราบว่า ถ้าไม่มีเส้นเชื่อมใดที่ความยาวเป็นลบ จะใช้ อัลกอริทึม Dijkstra หา shortest path (ด้วยนิยามความยาวแบบผลคูณ) ได้หรือไม่	Ĵ							
7))	โดยปกติเรานิยามให้ความยาวของ path หนึ่งคือ ผลรวม ของ edge ทุกเส้นใน path นั้น ถ้าขอเปลี่ยนนิยามให้ความยา [,] ของ path หนึ่งเป็น <u>ผลคูณ</u> ของ edge ทุกเส้นใน path นั้น อยากทราบว่า จะใช้อัลกอริทึม Bellman-Ford หา	Ĵ							

shortest path (ด้วยนิยามความยาวแบบผลคูณ) ได้หรือไม่

- 8) กราฟที่มี topological sort แค่แบบเดียว เป็นกราฟที่หา shortest path ระหว่างปมใด ๆ ได้ใน O(v)
- 9) การเพิ่มความยาวให้กับเส้นเชื่อมทุกเส้นในกราฟด้วยค่าคงตัว K ไม่ได้ทำให้ shortest path ในกราฟเปลี่ยน
- 10) ให้ G เป็น directed graph ขนาด 10,000 ปม ที่มี 1 strongly connected component และทุก vertex มี indegree = 1 และ out-degree = 1 จะได้ว่าหน่วยความจำที่ใช้เพื่อทำ depth-first search มีปริมาณน้อยกว่าเมื่อทำ breadth-first search กับกราฟ G
- 11) การทำ depth-first search กับกราฟ G ที่มี v ปม e เส้น ที่แทนด้วย adjacency matrix ใช้เวลา $O(v^2)$
- 12) หลังจากอัลกอริทึมของ Ford-Fulkerson หยุดทำงานแล้ว เราสามารถหาปริมาณ max-flow ได้ง่าย ๆ ด้วยการรวม flow ของเส้นเชื่อมทุกเส้นที่พุ่งออกจากปม source ของ network
- 13) หลังจากอัลกอริทึมของ Ford-Fulkerson หยุดทำงานแล้ว เราสามารถหาปริมาณ min-cut ได้ง่าย ๆ ด้วยการรวม flow ของเส้นเชื่อมทุกเส้นที่พุ่งเข้าหาปม sink ของ network
- 14) การทดสอบว่ากราฟ G เป็น directed acyclic graph หรือไม่ ทำได้ในเวลา O(v+e) ด้วย depth-first search ดังนั้น ปัญหาการทดสอบว่ากราฟ G เป็น directed acyclic graph หรือไม่ จึงไม่จัดอยู่ในกลุ่ม NP
- 15) เราเรียก decision-problem $\,q\,$ ว่า เป็น NP-complete ก็ต่อเมื่อทุก ๆ ปัญหาใน NP สามารถลดรูป (reduce) ไปเป็น ปัญหา $\,q\,$ ได้
- 16) ทุกปัญหาใน P มีอัลกอริทึมหาคำตอบได้ใน polynomial time ดังนั้น ปัญหาใน P จึงมีความง่ายเท่ากันหมด
- 17) ปัญหาใน NP ที่ไม่อยู่ใน P ก็ต้องเป็น NP-complete
- 18) หากมีวิธี reduce (ในเวลา polynomial) ปัญหา S ไปเป็นปัญหา q สรุปได้ว่า ปัญหา S ไม่ง่ายกว่าปัญหา q
- 2. (4 คะแนน) จงเขียน<u>ลำดับของชื่อเส้นเชื่อม</u>ที่ถูกเลือกให้เป็นส่วนหนึ่งของ minimum spanning tree ด้วยการใช้ Kruskal's algorithm กับกราฟข้างล่างนี้ (ไม่ต้องแสดงวิธีทำ)

- 3. ตอบคำถามต่อไปนี้ โดยบรรยายการทำงานของอัลกอริทึมอย่างกระชับได้ใจความ สามารถใช้อัลกอริทึมที่นำเสนอในวิชานี้ได้เลย
 - 1) (5 คะแนน) G เป็น connected undirected graph ในรูปของ adjacency matrix จงบรรยายอัลกอริทึมที่ใช้เวลาที่มี ประสิทธิภาพดีสุด ๆ เพื่อหาว่า มี edge ใน G ไหม ที่เมื่อลบออกแล้ว G ยังคง connected

(BAN G 184 tree Usellai

25 a[i][j] = V-1

O(n2)

DFS/BFS O(|VI+|EI)

3) (5 คะแนน) จงบรรยายขั้นตอนการหา shortest path ระหว่างคู่ปมที่กำหนดให้ของกราฟ G ที่เส้นเชื่อมทุกเส้นยาวเท่ากัน หมดในเวลาเชิง asymptotic ที่เร็วสุด ๆ

BFS O(IVI+IEI)

4. (5 คะแนน) จงแสดงวิธีการเปลี่ยนปัญหาข้างล่างนี้ให้เป็นปัญหา max flows ยกตัวอย่างการแปลงประกอบด้วย (โดยใช้ตัวอย่างของ รูปที่แสดง) จงหาวิธีการวาง "เรือ" ที่ไม่ "กินกัน" ให้ได้จำนวนมากสุด ในช่องต่าง ๆ ของตารวงขนาด r × c (แถวแนวนอน r แถว, แถวแนวตั้ง c แถว) โดยตารางนี้มีบางช่องที่กำหนดให้ห้ามวางเรือ (กมายเหตุ เรือในหมากรุก มีการเดินและกินยาวได้ในแนวตั้ง- แนวนอน ดังนั้นจึงห้ามวางเรือมากกว่าหนึ่งตาวในแถวแนวนอน หรือแถวแนวตั้งเดียวกัน) ดังสองตัวอย่างข้างล่างนี้ ช่องสีดำคือช่อง ที่ห้ามวางเรือ

- 5. (10 คะแนน) จงแสดงให้เห็นจริงว่า ปัญหาต่อไปนี้ อยู่ในกลุ่ม *NP*
 - 1) "กราฟ G มี spanning tree ที่ผลรวมของน้ำหนักของเส้นเชื่อมไม่เกิน K หรือไม่ ?"

2) "กราฟ G มี clique ขนาดไม่น้อยกว่า K หรือไม่ ?"

(เราจะเรียกกราฟย่อยใดของกราฟ G ว่าเป็น clique ถ้ากราฟย่อยนั้นเป็น complete subgraph คือมีเส้นเชื่อมระหว่างทุกคู่
ปมในกราฟย่อยนั้น ขนาดของ clique ก็คือจำนวนปมของ clique นั้น)

- 6. (5 คะแนน) เราจะเรียกกราฟย่อยใดของกราฟ G ว่าเป็น clique ถ้ากราฟย่อยนั้นเป็น complete subgraph (คือมีเส้นเชื่อม ระหว่างทุกคู่ปมในกราฟย่อยนั้น) จงเขียน pseudo-code ของอัลกอริทึมที่ใช้ state space search แบบ depth-first เพื่อหาว่า กราฟ G มี clique ที่ใหญ่สุดขนาดเท่าใด (ขนาดของ clique คือจำนวนปมใน clique) ให้รับกราฟ G ในรูปของ adjacency matrix (depth-first search ธรรมดา ไม่ต้องมี backtrack ไม่ต้อง branch & bound)
 - 1) Generate (0,1,0,) manda
 - 2) ที่ใบ เช็คว่าได้ Complete graph รีเปล่า

7. ข้อนี้เราจะพิจารณาปัญหาชื่อว่า Minimum Set Cover ซึ่งนิยามได้ดังต่อไปนี้ กำหนดให้มี set $U=\{1,2,...,N\}$ และมี subset จำนวน m subsets คือ $s_1,s_2,...,s_m$ โดยที่ $s_i\subseteq U$ เราต้องการเลือก subset เหล่านี้มาสักชุดหนึ่ง (กำหนดให้ตัวที่ เลือกคือ $s_{c1},s_{c2},...,s_{ck}$) โดยมีข้อบังคับคือ $s_{c1}\cup s_{c2}\cup...\cup s_{ck}$ จะต้องเท่ากับ U แน่นอนว่าเราสามารถเลือก subset ดังกล่าวได้ง่าย ๆ โดยการเลือก s_i ทุกตัว แต่โจทย์ข้อนี้มีการกำหนดเพิ่มเติมคือ การเลือก s_i นั้นจะต้องเสีย cost s_i (s_i 0 เสมอ) ดังนั้น เราต้องการเลือก s_i 1 พุกตัว แต่โจทย์ข้อนี้มีการกำหนดเพิ่มเติมคือ การเลือก s_i 2 นั้นมีค่าน้อยที่สุด จงตอบคำถามต่อไปนี้

1) (5 คะแนน) จงพิสูจน์ว่า Minimum Set Cover เป็น NP-Complete โดยให้ Reduce ปัญหา minimum vertex cover ให้เป็นปัญหา Minimum Set Cover กำหนดให้ปัญหา minimum vertex cover เป็นดังนี้ มี Graph G = (V,E) โดยที่ ปม v_i นั้นกำกับด้วยน้ำหนัก w_i เราต้องการหา $V' \subseteq V$ ที่ทำให้เส้นเชื่อมทั้งหมดของ G นั้นตกกระทบกับอย่างน้อย ปมใดปมหนึ่งใน V' และทำให้น้ำหนักรวมของปมใน V' มีค่าน้อยที่สด

2) (5 คะแนน) จงออกแบบ State Space Search algorithm แบบ DFS ที่ไม่ใช้ backtracking หรือ branch & bound ใด ๆ สำหรับปัญหา Minimum Set Cover โดยให้ระบุ state ที่ใช้ และวิเคราะห์ประสิทธิภาพในการทำงาน พร้อมกับ ยกตัวอย่าง 1 ตัวอย่างของ minimum set cover ที่มีค่า m ไม่น้อยกว่า 3 และเขียน state space tree ประกอบ

3) (5 คะแนน) ถ้าต้องการใช้เทคนิค Backtracking และ/หรือ Branch & Bound จงระบุรายละเอียดของวิธีการดังกล่าว ว่า ใช้อะไรเป็นข้อจำกัดในการ backtracking และ/หรือ ยกตัวอย่าง bounding function ที่ใช้ พร้อมทั้งยกตัวอย่างประกอบ ให้เห็นภาพ (อย่าลืมว่า $p_i > 0$ เสมอ) พร้อมทั้งระบุประสิทธิภาพเชิงเวลาของ bounding function มาด้วย

8. (10 คะแนน) ให้คุณเป็นผู้คุมเหมืองเพชรแห่งหนึ่งโดยเหมืองนี้จะมีอุโมงค์อยู่ N อุโมงค์ที่จะสามารถเข้าไปขุดเพชรออกมาได้ คุณมี
คนงานอยู่ M (1<=M<=10N) คน โดยที่แต่ละคนจะสามารถเข้าไปในอุโมงค์เพียงหนึ่งอันเพื่อทำการขุดเพชรขึ้นมา และเพื่อความ
ปลอดภัยแต่ละอุโมงค์นั้นจะมีคนงานเข้าไปขุดได้ไม่เกิน 10 คน เพื่อการวางแผนการแบ่งคนงานที่ดี คุณจึงได้ใช้เครื่อง DMPS
(Diamond Mine Positioning System) ในการวัดมูลค่าของเพชรที่มีในอยู่ในแต่ละอุโมงค์ โดยเครื่อง DMPS นี้ได้คำนวณ Array 2
มิติ ของตัวเลข V[i][j] (1<=i<N, 1<=j<=10) ให้คุณโดย V[i][j] ระบุมูลค่าเพชรที่จะขุดได้ในอุโมงค์ที่ i หากใช้คนงาน j คนขุดใน
อุโมงค์ที่ i โดยที่ V[i][j] นั้นมีคุณสมบัติดังนี้ V[i][k] >= V[i][k-1] (2 <= k <= 10) เนื่องจากยิ่งคนงานมากก็ยิ่งได้เพชรมาก และ
V[i][l]- V[i][l-1] >= V[i][l+1]-V[i][l] (2<=l<=9) เนื่องจากกฎผลิตภาพหน่วยท้ายสุดลดลง (Law of diminishing return)
งานของคุณคือออกแบบอัลกอริทีมที่มีประสิทธิภาพดีที่สุดเพื่อจะหาว่าจะให้คนงานเข้าไปในอุโมงค์แต่ละอุโมงค์กี่คน เพื่อให้ผลรวม
ของมูลค่าเพชรที่ขุดได้สูงสุดเท่าที่จะทำได้

ตัวอย่าง มีอุโมงค์ 3 อุโมงค์ คนงาน 6 คน

อุโมงค์	1 คน	2 คน	3 คน	4 คน	5 คน	6 คน	7 คน	8 คน	9 คน	10 คน
1	100	180	250	300	330	350	350	350	350	350
2	120	230	330	400	450	500	540	570	600	620
3	200	300	320	330	330	330	330	330	330	330

วิธีที่ดีที่สุดคือให้คนงาน 1 คนขุดเพชรในอุโมงค์ที่ 1, คนงาน 3 คนขุดเพชรในอุโมงค์ที่ 2, คนงาน 2 คนขุดเพชรในอุโมงค์ที่ 3 โดย มูลค่ารวมคือ 100 + 330 + 300 = 730

9. (10 คะแนน) ในข้อนี้ให้ถือว่าคุณมีฟังก์ชั่น float shortestPath(int n, int s, int t, vector<Edge>& e) ซึ่งสามารถเรียกใช้ได้เลย ฟังก์ชันนี้คืนค่าความยาวของ shortest path จาก ปม s ไป ปม t ของกราฟมีน้ำหนักระบุทิศทางที่มี n ปมที่มีเส้นเชื่อม e[0]..e[e.size()-1] โดยนิยามของ Edge คือ

```
class Edge{
public:
    int i; //ปมตันทาง
    int j; //ปมปลายทาง
    float w; //ระยะทาง โดยที่ w >= 0 เสมอ
};
```

ปัญหาที่คุณต้องแก้ในข้อนี้คือคุณจะต้องเขียนฟังก์ชั่น

float shortestPathDiv2Twice(int m, int a, int b, vector<Edge>& f)

เพื่อหาระยะทางที่สั้นสุดจากปม a ไปยังปม b โดยเดินผ่านเส้นเชื่อมต่างๆที่ระบุใน f โดยที่คุณสามารถที่จะสามารถลดระยะทาง เส้น เชื่อมใดๆก็ได้ 2 เส้นลงครึ่งหนึ่ง

ตัวอย่าง

10th (0→1→2→3) 46t 2.5+5+1=8.5

shortestPathDiv2Twice(6,0,3,f) เมื่อ f เก็บเส้นในกราฟระบุทิศทางข้างบนเอาไว้ จะต้องคืนค่า 9 ออกมา (โดยเดินจาก 0->4->5->3 และใช้การลดระยะครึ่งหนึ่งที่เส้น 0->4 และ 5->3 ทำให้ระยะรวมคือ 4+1+4 = 9)

จงเขียน code เพื่อเรียกใช้ฟังก์ชั่น shortestPath (ด้วยกราฟอื่นที่สร้างจาก input) เพื่อให้คำนวณค่า shortestPathDiv2Twice ให้ถูกต้องในช่องว่างข้างล่างนี้

```
float shortestPathDiv2Twice(int m, int a, int b, vector<Edge>& f) {
            int n,s,t;
                                                   Suggest jømsmore by P'Tap
           vector<Edge> e;
            // เขียน code ตรงนี้
           r = a + b''
            n = 3 M
           0, = f
           for (Edge edge: f)
                  edge2 = Edge (edge.i', edge.j', edge.w) (copy
edge3 = Edge (edge.i'', edge.j'', edge.w) (on 2 84
                  edge 4 = Edge (edge.i', edge.j'', edge.w/2) | x5n yu 7n
edge 5 = Edge (edge.i, edge.j', edge.w/2) | 2 xu
                   e. add (edge 2, edge 3, edge 4, edge 5)
            return shortestPath(n,s,t,e);
```