Билеты к экзамену «Кратные интегралы и теория поля»

Авторы: Примак Евгений

Хоружий Кирилл

От: 10 января 2021 г.

Содержание

Свёрт	ка и приближение функций бесконечно гладкими	3
1	Свёртка функций и её свойства	3
2	Бесконечно гладкие функции с компактным носителем	3
3	Приближение функций бесконечно гладкими	9
Дифф	реренцируемые отображения и криволинейные замены координат	4
4	Дифференцируемые отображения и дифференцирование композиции	4
5	Системы криволинейных координат и теорема об обратном отображении	4
6	Теоремы о системе неявных функций	4
7	Теорема о расщеплении гладкого отображения	
Дифф	реренциал, гессиан, и исследование функции на экстремум	6
9	Локальные экстремумы функции и необходимое условие экстремума	6
10	Необходимые и достаточные условия экстремума C^2 функций	(
11	Условные экстремумы и необходимое условие в терминах первых производных	6
12	Необходимые и достаточные условия в терминах вторых производных	6
Векто	ры и дифференциальны формы первой степени	7
13	Вектор, как дифференцирование	7
14	Касательное пространство и дифференциал отображения	7
15	Диф-формы I степени	7
Диф-с	формы высших степеней	8
16	Определение и свойства диф-форм высших степеней	8
17	Внешнее умножение диф-форм	8
18	Внешнее дифференцирование	8
19	Обратный образ диф-форм	8
Интег	рирование дифференциальных форм	ç
20	Интегрирование диф-формы объёма	Ć
21	Представление диф-формы в каноническом виде	Ć
22	Поведение интеграла от формы при линейной замене координат	Ć
23	Гладкое разбиение единицы	Ć
24	Поведение интеграла от формы при гладкой замене координат	Ć
25	Формулы гладкой замены переменных в интеграле Лебега от функции	Ć
Много	ообразия (с краем) и формула Стокса	10
26	Вложенные многообразия	10
27	Абстрактное определение гладкого многообразия	10
28	Диф-формы, векторные поля и d на многообразии	10
29	Гладкие отображения многообразий	11
30	Ориентируемость многообразия	11
31	Определение интеграла диф-формы по ориентированному многообразию	12
32	Общая формула Стокса	12
33	Частные случаи формулы Стокса	12
34	Потенциал диф-форм	12

 $\mathcal{K}_{\mathbf{H}}\mathsf{K}$

Дифф	еренцирование и интегрирование векторных полей	14
43	Внутреннее дифференцирование	14
44	Производная Ли и скобка Ли	
45	Интегрирование векторных полей, как решение диф-уравнений	14
46	Геометрический смысл производной Ли	14
47	Дивергенция векторного поля на многообразии с формой объема	14
Решен	RUI	15
1	Свёртка функций и её свойства	15
2	Бесконечно гладкие функции с компактным носителем	15
3	Приближение функций бесконечно гладкими	15
6	Теоремы о системе неявных функций	15
Призр	аки прошлого и настоящего	17
	Прошлого	17
	Настоящего	

ФизТЕХ

 Δ_{M} Х $=\Sigma_{\mathrm{M}}$ Т

Свёртка и приближение функций бесконечно гладкими

1 Свёртка функций и её свойства

Def 1.1 (Свертка функции). Свёртку ещё пишут как h = f * g.

$$h(x) = \int_{\mathbb{R}^n} f(x-t)g(t) dt = \int_{\mathbb{R}^n} f(t)g(x-t) dt,$$

Свёртка также ассоциативна: f * (g * h) = (f * g) * h, для функций с конечным интегралом. Чтобы интеграл существовал, можно заметить, что если одна из функций ограничена, а другая имеет конечный интеграл, тогда и свёртка будет ограничена, кроме того:

Thr 1.2. Если f и g имеют конечный интегралы, **то** h = f * g определена почти всюду и верно неравенство

$$\int_{\mathbb{R}^n} |f * g| \, dx < \int_{\mathbb{R}^n} |f| \, dx \cdot \int_{\mathbb{R}^n} |g| \, dx,$$

и равенство:

$$\int_{\mathbb{R}^n} f * g \, dx = \int_{\mathbb{R}^n} f \, dx \cdot \int_{\mathbb{R}^n} g \, dx.$$

Lem 1.3. Если свёртка g * f — **ограничена**, где g — имеет конечный интеграл, $a f u \partial_x f$ — ограничены, **то** возможно дифференцирование под знаком интеграла (239.1), u мы получаем:

$$\frac{\partial (f * g)}{\partial x_i} = \int_{\mathbb{R}^n} \frac{\partial f(x - t)}{\partial x_i} g(t) dt = \frac{\partial f}{\partial x_i} * g.$$

2 Бесконечно гладкие функции с компактным носителем

Возьмём $f \in C^{\infty}$ такую, что $\forall k f^{(k)}(0) = 0$. Из неё составим $\varphi \in C^{\infty}$ большую нуля на (-1,1):

$$f(x) = \begin{cases} 0, & x \le 0; \\ e^{-1/x}, & x > 0. \end{cases} \qquad \varphi(x) = f(x+1)f(1-x).$$

Lem 2.1. $\forall \varepsilon > 0 \; \exists \; бесконечно \; гладкая \; \varphi_{\varepsilon} \colon \mathbb{R}^n \to \mathbb{R}^+, \; \varphi_{\varepsilon}(x) \neq 0 \; \forall x \in U_{\varepsilon}(0), \; \textit{makas umo} \; \int_{\mathbb{R}^n} \varphi_{\varepsilon}(x) \, dx = 1.$

Lem 2.2. $\forall \varepsilon > \delta > 0 \; \exists \; \text{бесконечно гладкая} \; \psi_{\varepsilon,\delta} \colon \mathbb{R}^n \to [0,1], \; \psi_{\varepsilon,\delta}(x) \neq 0 \; \forall x \in U_{\varepsilon}(0) \; u \; \psi_{\varepsilon,\delta}(x) \neq 0 \; \forall x \in U_{\delta}(0).$

3 Приближение функций бесконечно гладкими

Пусть $\varphi \colon \mathbb{R}^n \to \mathbb{R}$, неотрицательная $\varphi \in C^\infty$, $\varphi \neq 0$ при $|x| \leqslant 1$ и пусть $\int_{\mathbb{R}^n} \varphi(x) \, dx = 1$. Положим $\varphi_k(x) = k^n \varphi(kx)$, у которых так же будут $\int = 1$ и которые $\varphi_k \neq 0$ при $|x| \leqslant 1/k$.

Thr 3.1. Для непрерывной $f: \mathbb{R}^n \to \mathbb{R}$ определим свёртки:

$$f_k(x) = \int_{\mathbb{R}^n} f(x-t)\varphi_k \, dt = \int_{\mathbb{R}^n} f(t)\varphi_k(x-t) \, dt \qquad \leadsto \qquad f_k \in C^\infty, \ f_k \to f \ \ paвномерно \ \ ha \ \ komnakmax \ \ \ \mathbb{R}^n.$$

Thr 3.2. Если f имеет непр. производные до m-го порядка, то производные f_k до m-го порядка равномерно сходятся на компактах κ соответствующим f'.

Thr 3.3. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ и $f \in \mathcal{L}_c$. Тогда свёртки $f * \varphi_k$ с функциями из теоремы 3.1 сколь угодно близко приближают f в среднем.

 $M_{\rm IM}$ K $\Phi_{
m IM}$ 3 $T_{
m E}$ X

Дифференцируемые отображения и криволинейные замены координат

4 Дифференцируемые отображения и дифференцирование композиции

Def 4.1. Пусть $U \subset \mathbb{R}^n$ – открытое множество. Отображение $f: U \to \mathbb{R}^m$ называется $\partial u \phi \phi$ еренцируемым в точке $x_0 \in U$, если

$$f(x) = f(x_0) + Df_{x_0}(x - x_0) + o(|x - x_0|), \quad x \to x_0,$$

где $Df_{x_0} \colon \mathbb{R}^n \mapsto \mathbb{R}^m$ – линейное отображение, называемое производной f в точке x_0 .

Def 4.2. Функция f называется непрерывно дифференцируемой на U, если оно дифференцируемо в каждой точке и Df_x непрерывно зависит от x.

Thr 4.3 (Дифференицрование композиции). Если f дифференицируемо в точке x_0 , g дифференицируемо в точке $y_0 = f(x_0)$, то композиция $g \circ f$ дифференицируема в точке x_0 , и $D(g \circ f)_{x_0} = Dg_{y_0} \circ Df_{x_0}$.

Def 4.4. Производная функции f по направлению $v \in Rn$ в точке x называется

$$\frac{\partial f}{\partial v} = \lim_{t \to 0} \left(\frac{f(x + tv) - f(x)}{t} \right)$$

Lem 4.5. Если функция дифференцируема в точке x, то в этой точке

$$\frac{\partial f}{\partial v} = Df_x(v).$$

В частности для функционалов, верно что $\partial f/\partial v=df_x(v)$. Более того, выбрав в качестве v базисные векторы e_i , поймём что

$$df = \frac{\partial f}{\partial x^i} x^i,$$

zде $dx^i - \partial u \phi \phi$ еренциалы координатных функций, образующие двойственный базис.

Thr 4.6. Если отображение $f: U \mapsto \mathbb{R}^m$ из открытого $U \subseteq \mathbb{R}^n$ задано в координатах, как $y_i = f_i(x_1, \dots, x_n)$, для $i = 1, \dots, m$ и функции f_i имеют непрерывные частные производные на U, то f непрерывно дифференцируемо на U.

5 Системы криволинейных координат и теорема об обратном отображении

Def 5.1. *Криволинейная замена координат* — бесконечно гладкое отображение $\varphi: U \mapsto V$ такое, что φ^{-1} определено и тоже бесконечно гладко.

Lem 5.2. Пусть открытое множество $U \subset \mathbb{R}^n$ выпукло. Для непрерывно дифференцируемого отображения $\varphi \colon U \to \mathbb{R}^m$ найдётся непрерывное отображение $A \colon U \times U \mapsto \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, такое что $\forall x', x'' \in U$

$$\varphi(x'') - \varphi(x') = A(x', x'')(x'' - x')$$

 $u A(x,x) = D\varphi_x.$

Thr 5.3 (Теорема об обратном отображении). Если отображение $\varphi \colon U \mapsto \mathbb{R}^n$ непрерывно дифференцируемо в окрестности точки x u его дифференциал $D\varphi_x$ являетсяя невырожденным линейным преобразованием, то это отображение взаимно однозначно отображает некоторую окрестность $V \ni x$ на окрестность $W \ni y$, где $y = \varphi(x)$. Обратное отображение $\varphi^{-1} \colon W \to V$ тоже непрерывно дифференцируемо.

Def 5.4. *Криволинейной системой координат* в окрестности точки $p \in \mathbb{R}^n$ называется набор таких функций, которые явяются координатами гладкого отображения окрестности p на некоторое открытое множество в \mathbb{R}^n с гладким обратным 1 отображением.

6 Теоремы о системе неявных функций

Thr 6.1 (Теорема о неявной функции). Пусть функции f_1, \ldots, f_k непрерывно дифференцируемы в окрестности $p \in \mathbb{R}^n$ и

$$\det\left(\frac{\partial f_i}{\partial x_j}\right) \neq 0$$

 $^{^1}$ По теореме об обратном отображении для проверки системы преобразования достаточно проверить невырожденность $(\partial y_i/\partial x_j)$ в точке p, или линейную независимость dy^i в точке p.

 Φ_{M} ЗТ $_{\mathsf{E}}$ Х

в этой окрестности. Пусть $f_i(p) = y_i, i = 1, ..., k$. Тогда найдётся окрестность точки p вида $U \times V, U \subset \mathbb{R}^k, V \subset \mathbb{R}^{n-k}$, такая что в этой окрестности множество решений системы уравнений

$$\begin{cases} f_1(x) = y_1, \\ \dots \\ f_k(x) = y_k, \end{cases}$$

совпадает с графиком непрерывно дифференцируемого отображения $\varphi\colon V \to U$, заданного в координатах как

$$\begin{cases} x_1 = \varphi_1(y_1, \dots, y_k, x_{k+1}, \dots, x_n), \\ \dots \\ x_k = \varphi_k(y_1, \dots, y_k, x_{k+1}, \dots, x_n), \end{cases}$$

то есть отображения $\mathbb{R}^{n-k} \mapsto \mathbb{R}^k$.

7 Теорема о расщеплении гладкого отображения

Thr 7.1 (Теорема о расщеплении отображения на элементарные). Если отображение φ непрерывно дифференцируемо в окрестности точки $p \in \mathbb{R}^n$ и имеет обратимый $D\varphi_x$, то его можно представить в виде композиции перестановки координат, отображений координат и элементарных отображений, непрерывно дифференцируемо и возрастающим образом меняющих только одну координату $y_i = \psi_i(x_1, \dots, x_n)$.

Thr 7.2. Теоремы об обратном отображении, о неявной функции и о расщеплении отображения дают отображения класса C^k при $k \ge 1$, если исходные отображени были класса C^k .

Дифференциал, гессиан, и исследование функции на экстремум

9 Локальные экстремумы функции и необходимое условие экстремума

Def 9.1. Точка p называется локальным экстремумом функции f, если она является точкой экстремума (максимума или минимума) ограничения f на некоторую окрестность p.

Thr 9.2 (Необходимое условие экстремума).

$$\begin{cases} f \in C^1(U(p)) \\ p - def(9.1) \end{cases} \Rightarrow df_p = 0.$$

Lem 9.3. Если квадратичная форма Q > 0, то $\exists \varepsilon > 0$: $Q(v) \geqslant \varepsilon |v|^2$ $(\forall v)$.

10 Необходимые и достаточные условия экстремума ${f C}^2$ функций

Thr 10.1 (Необходимые условия экстремума).

$$\begin{cases} f \in C^2(U(p)) \\ p - def(9.1) \end{cases} \Rightarrow \begin{bmatrix} d_2 f_p \geqslant 0 - \min \\ d_2 f_p \leqslant 0 - \max \end{cases}$$

Thr 10.2 (Достаточные условия экстремума).

$$\begin{cases} f \in C^2(U(p)) \\ p - def(9.1) \\ df_p = 0 \ u \ d_2 f_p > 0 \end{cases} \Rightarrow p - m$$
очка строгого локального максимума

11 Условные экстремумы и необходимое условие в терминах первых производных

Def 11.1. Условный экстремум f — экстремум ограничения f на множество S, задаваемое системой C^1 уравнений $\varphi_1(x) = \ldots = \varphi_m(x) = 0$.

Забегая вперёд, нам самом деле нам нужно: $\dim \langle d\varphi_1, \dots, d\varphi_m \rangle = m$.

Thr 11.2 (Необходимые условия условного экстремума в терминах первых производных).

$$\begin{cases} f, \varphi_1, \dots, \varphi_m \in C^1(U(p)) \\ \dim \langle d\varphi_1, \dots, d\varphi_m \rangle = m & \Rightarrow \quad df_p = \lambda_1 \, d\varphi_{1,p} + \dots + \lambda_m \, d\varphi_{m,p}. \\ p - def(11.1) \end{cases}$$

12 Необходимые и достаточные условия в терминах вторых производных

Удобно положить: $L(x) = f(x) - \lambda_1 \varphi_1(x) - \ldots - \lambda_m \varphi_m(x)$. Это называется функцией Лагранжа,а λ_i — множители Лагранжа.

Thr 12.1 (Необходимые условия условного экстремума).

$$\begin{cases} f, \varphi_1, \dots, \varphi_m \in C^2(U(p)) \\ \dim \langle d\varphi_1, \dots, d\varphi_m \rangle = m \\ p - def(11.1) \\ v \colon d\varphi_{1,p}(v) = \dots = d\varphi_{m,p}(v) = 0 \end{cases} \Rightarrow \begin{cases} dL_p = 0 \\ \left[d_2 L_p \geqslant 0 (\partial_{\mathcal{I}\mathcal{R}} \text{ минимума}) \\ d_2 L_p \leqslant 0 (\partial_{\mathcal{I}\mathcal{R}} \text{ максимума}) \end{cases} \end{cases}$$

Thr 12.2 (Достаточные условия условного экстремума).

$$\begin{cases} f, \varphi_1, \dots, \varphi_m \in C^2(U(p)) \\ \dim \langle \, d\varphi_1, \dots, \, d\varphi_m \rangle = m \\ dL_p = 0 \\ \varphi_1(p) = \dots = \varphi_m(p) = 0 \\ \boldsymbol{v}(\neq 0) \colon \, d\varphi_{1,p}(\boldsymbol{v}) = \dots = \, d\varphi_{m,p}(\boldsymbol{v}) = 0 \\ d_2L(\boldsymbol{v}) > 0 \, \text{ или } \, d_2L(\boldsymbol{v}) < 0 \end{cases} \Rightarrow f \, \text{ имеет строгий условный экстремум в p.}$$

 Φ_{N} ЗТ $_{\mathsf{E}}$ Х

Векторы и дифференциальные формы первой степени

13 Вектор, как дифференцирование

Lem 13.1. Всякую гладкую функцию, определенную в некоторой окрестности $x_0 \in \mathbb{R}^n$, в возможно меньшей окрестности x_0 , можно представить в виде

$$f(x) = f(x_0) + \sum_{k=1}^{n} \partial_k f|_{x_0} (x^k - x_0^k),$$

c гладкими $\partial_k f$.

Def 13.2. Определим *касательный вектор* в точке $p \in U$ открытого множества $U \subseteq \mathbb{R}^n$ как \mathbb{R} -линейное отоборражение $X \colon C^{\infty}(U) \mapsto \mathbb{R}$, удовлетворяющее

$$X(fg) = X(f)g(p) + f(p)X(g).$$

Kacameльное пространство T_pU к U в точке p состоит из всех касательных векторов в точке p.

Lem 13.3. Если X – касательный вектор в точке $p \in U$, то для любой окресности $V \ni p, V \subseteq U$, выражение X(f) может зависеть только от значений f в V, а не на всём U.

В силу предыдущих лем мы можем перейти в окрестность, где f представима в виде (13.1), тогда

$$X(f) = X(f(p)) + \sum_{i=1}^{n} X(x_i)\partial_i f|_p + \sum_{i=1}^{n} x_i(p)X(\partial_i f|_p) = \sum_{i=1}^{n} X(x_i) \ \partial_i f|_p.$$

Числа $X_i = X(x_i)$ называются координатами касательного вектора в данной криволинейной системе координат, тогда весь вектор в точке p записывается, как $X = X^i \partial_i$.

14 Касательное пространство и дифференциал отображения

Def 14.1. Векторным полем на открытом множестве $U \subseteq \mathbb{R}^n$ называется выбор касательного вектора $X(p) \in T_pU$ для каждой точки $p \in U$, гладко² зависящий от p.

Lem 14.2. Для открытого $U \subseteq \mathbb{R}^n$ всякое \mathbb{R} -линейное отображение $X \colon C^\infty \mapsto C^\infty(U)$, удовлетворяющее правилу Лейбница X(fg) = X(f)g + fx(g) задаётся векторным полем на U.

Def 14.3. Пусть есть вектор $X \in T_pU$, $q = \varphi(p)$, тогда *прямой* образ вектора $\varphi_*(X)$ определяется по формуле

$$\varphi_*(X)f = X(f \circ \varphi), \qquad \Rightarrow (\varphi_*X)^i = \frac{\partial \varphi^i}{\partial x^j}X^j \quad \Leftrightarrow \quad \text{переписать в матричном виде.}$$

Def 14.4. Отображение $\varphi: U \mapsto V$ задаёт *гомоморфизм алгебр* (операция, сохраняющая умножение, сложение, и переводящая const в const): $\varphi^*: C^{\infty}(V) \mapsto C^{\infty}(U)$ по формуле

$$\varphi^*(f) = f \circ \varphi.$$

вектор даёт дифференцирование алгебры $X\colon C^\infty(U)\mapsto \mathbb{R},$ и тогда $\varphi_*X=X\circ \varphi^*$ тоже дифференцирование алгебры.

15 Диф-формы I степени

Def 15.1. Дифференциальная 1-форма — это ковекторное поле. Иначе, элемент двойственного пространства $(T_p U)^* \equiv T_p^* U$, линейная форма на касательны пространстве, гладко зависящая от p. Дифференциал функции f от векторного поля X это $df(X) \stackrel{\text{def}}{=} Xf$.

Дифференциалы dx_1,\ldots,dx_n дают базис T_p^*U , двойственный к $\partial_1,\ldots,\partial_n$, в смысле $dx^i\partial_j=\delta^i_j$. По этому базису можно разложить любую форму в точке, а применяя это $\forall p\in U\subseteq\mathbb{R}^n$ видим, что $\omega^1=\alpha_i dx^i$.

При замене координат компоненты ω^1 преобразуются как дифференциалы функции, то есть

$$\alpha = \alpha_j dx^j = \tilde{\alpha}_i dy^i = \underbrace{\tilde{\alpha}_i \partial_j y^i}_{\alpha_i} dx^j, \quad \Rightarrow \quad \alpha_j = \tilde{\alpha}_i \partial_j y^i \quad \Leftrightarrow \quad \text{переписать в матричном виде}.$$

 $^{^{2}}$ Гладкая зависимость понимается в смысле гладкой зависимости координат векторного поля $X_{i}(p)$ в точке p.

 $^{^3}$ Производную отображения arphi в точке p можно определить как $arphi_*\colon T_pU\mapsto T_qV$ при q=arphi(p). Иначе можем обозначать, как $Farphi_p$.

 $\mathsf{M}_{\mathsf{I}}\mathsf{X}$ Т $\mathsf{E}\mathsf{X}$

Диф-формы высших степеней

16 Определение и свойства диф-форм высших степеней

Def 16.1. Определим дифференциальную форму степени k на открытом $U \subseteq \mathbb{R}^n$ как кососимметричное отображение наборов из k гладких векторных полей X_1, \ldots, X_k на U в $C^{\infty}(U)$, линейное по каждому аргументу и относительно умножения на бесконечно гладкие функции.

Lem 16.2. Значение выражения $\alpha(X_1, ..., X_k)$ в точке p зависит только от значений векторных полей X_i в точке p.

Пространство диф-форм степени k на $U \subseteq \mathbb{R}^n$ обозначим $\Omega^k(U)$. Интересно, что $\Omega^n(U)$ в фиксированной системе координат выглядит как $C^\infty(U)$, но при замене координат ведёт себя иначе.

Свойства диф-форм?

17 Внешнее умножение диф-форм

Def 17.1. Внешнее умножение $\Omega^k(U) \times \Omega^l(U) \mapsto \Omega^{k+l}(U)$, можно определить как $\alpha \wedge \beta = \mathrm{Alt}\,(\alpha \otimes \beta)$, при чём $(dx_1 \wedge \ldots \wedge dx_k)(\partial_1, \ldots, \partial_k) = 1$.

Здесь можно написать про операцию альтернирования.

18 Внешнее дифференцирование

Lem 18.1. На гладких диф-формах на U существует единсвтенный \mathbb{R} -линейный оператор $\delta \colon \Omega^k(U) \mapsto \Omega^{k+1}(U)$, удовлетворяющий условиям: 1) d(f) = df; 2) $d^2 = 0$; 3) $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^{\deg \alpha} \alpha \wedge d\beta$ (а-ля правило Лейбница). Более того, операция d определена инвариантно.

Def 18.2. Внешнему дифференцированию 0,1,2-форм в ориентированном \mathbb{R}^3 отвечают соответственнооперации градиента скалярного поля, ротора и дивергенции векторного поля, определнные соотношениями

$$d\omega_f^0 \stackrel{\mathrm{def}}{=} \omega_{\mathrm{grad}\,f}^1, \qquad d\omega_{\overrightarrow{A}}^1 \stackrel{\mathrm{def}}{=} \omega_{\mathrm{rot}\,\overrightarrow{A}}^2, \qquad d\omega_{\overrightarrow{B}}^2 \stackrel{\mathrm{def}}{=} \omega_{\mathrm{div}\,\overrightarrow{B}}^3.$$

Также можно определить ΔA , как

$$\Delta \mathbf{A} = \operatorname{grad} \operatorname{div} \mathbf{A} - \operatorname{rot} \operatorname{rot} A.$$

19 Обратный образ диф-форм

Def 19.1 (Обратный образ). Для всякого гладкого отображения $\varphi: U \mapsto V$ между открытими подмножествами евклидовых пространств определено отображение пространств дифференциальных форм $\varphi^*: \Omega^k(V) \mapsto \Omega^k(U)$, действующее по формуле⁴

$$\varphi^*\alpha(X_1,\ldots,X_k)=\alpha(\varphi_*X_1,\ldots,\varphi_*X_k).$$

Для функции $f \in C^{\infty}(V) = \Omega^{0}(V)$ оказывается $\varphi^{*}f = f \circ \varphi$, что совпадает с замены переменных в функции. Для форм первой степени $\alpha \circ \varphi_{*}$, где $\alpha|_{f(p)}$, а $\varphi_{*}|_{p}$.

Lem 19.2. Взятие обратного образа диф-форм коммутирует с внешним умножением и внешним дифференцированием.

Таким образом взятие обратного образа происходит формально подстановкой⁵ выражений новых переменных через старые в коэффициенты формы и в дифференциалы новых переменных.

Task 19.3. Для двух гладких отображений открытых подмножеств евклидова пространства, $\varphi \colon U \mapsto V$ и $\psi \colon V \mapsto W$, имеет место соотношения

$$(\psi \circ \varphi)^* = \varphi^* \circ \psi, \qquad (\psi \circ \varphi)_* = \psi_* \circ \varphi_*.$$

 $^{^4}$ Важно заметить, что если левая часть вычисляется в точке $p \in U$, то правая в $\varphi(p)$.

 $^{^{5}}$ Было бы здорово посмотреть на задачи 6.96 и 6.97.

 Φ_{N} ЗТ $_{\mathsf{E}}$ Х

Интегрирование дифференциальных форм

20 Интегрирование диф-формы объёма

Def 20.1. Диф-форма с *компактным носителем* на \mathbb{R}^n – форма определенная⁶ на всём \mathbb{R}^n и равная 0 за пределами некоторого компакта.

Def 20.2. Для гладкой формы с компактным носителем $\nu = a(x)dx^1 \wedge \ldots \wedge dx^n \in \Omega^n_{\rm c}(U)$ определим в какой-то фиксированной системе координат

$$\int_{U} \nu \stackrel{\text{def}}{=} \int_{U} a(x) \, dx_{1} \dots \, dx_{n}.$$

Lem 20.3. Ecnu $\lambda \in \Omega_c^{n-1}(U)$, $mo^8 \int_U d\lambda = 0$.

21 Представление диф-формы в каноническом виде

Lem 21.1. Пусть $U = \prod_{i=1}^{n} (a_i, b_i)$, где $(a_i, b_i) \ni 0$. Пусть $\varphi \colon \mathbb{R} \mapsto \mathbb{R}^+$ - гладкая функция c компактным носителем, содержащимся e каждом (a_i, b_i) , u c единичным интегралом. Для всякой $v \in \Omega^n_c(U)$ найдётся число I u форма $\lambda \in \Omega^{n-1}_c(U)$, такие что $v = I\varphi(x_1) \dots \varphi(x_n) dx_1 \wedge \dots \wedge dx_n + d\lambda$.

Соп 21.2. Пусть $U = \prod_{i=1}^{n} (a_i, b_i)$ – произведение интервалов. Факторпространство $\Omega_c^n(U)/d\Omega_c^{n-1}(U)$ одномерно. Получается, что всевозможные способы определить интеграл формы $\nu \in \Omega_c^n(U)$ так, чтобы интеграл от $d\lambda$ равнялся нулю, могут отличаться только умножением на константу. Ещё раз.

22 Поведение интеграла от формы при линейной замене координат

Lem 22.1 (Поведение интеграла формы при линейной замене координат). Интеграл дифференциальной формы $\nu \in \Omega^n_c(\mathbb{R}^n)$ при отображении A^* , соответствующем линейному преобразованию $A: \mathbb{R}^n \to \mathbb{R}^n$ меняет или не меняет знак в зависимости от знака определителя $\det A$, то есть

$$\int_{\mathbb{R}^n} A^* \nu = (\operatorname{sign} \det A) \int_{\mathbb{R}^n} \nu.$$

23 Гладкое разбиение единицы

Lem 23.1 (Разбиение единицы в окрестности компакта в \mathbb{R}^n). Для любого открытого покрытия $\{U_{\alpha}\}_{\alpha}$ компакта $K \subseteq \mathbb{R}^n$ найдётся набор неотрицательных гладких функций $\{\rho_{\alpha}\}_{\alpha} : \mathbb{R}^n \mapsto [0,1]$ с компактными носителями $\sup \rho_{\alpha}$ таких, что $\forall \alpha \ \sup \rho_{\alpha} \subset U_{\alpha}$, и только конечное число из них не равно нулю и $\sum_{\alpha} \rho_{\alpha}(x) \equiv 1$ в некоторой окрестности K. Это называется разбиение единицы, подчиненное покрытию.

Task 23.2. Для связной области $U \subset \mathbb{R}^n$ пространство $\Omega^n_{\rm c}(U)/d\Omega^{n-1}_{\rm c}(U)$ одномерно.

24 Поведение интеграла от формы при гладкой замене координат

Thr 24.1 (Поведение интеграла формы относительно гладкой замены координат). Интеграл дифференциальной формы $\nu \in \Omega^n_c(V)$ при отображении φ^* , соответствующем диффеоморфизму $\varphi \colon U \mapsto V$ между областями в \mathbb{R}^n меняет или не меняет знак в зависимости от знака⁹ якобиана J_{φ} , то есть

$$\int_{U} \varphi^* \nu = (\operatorname{sign} J_{\varphi}) \int_{v} \nu.$$

25 Формулы гладкой замены переменных в интеграле Лебега от функции

Con 25.1 (Криволинейная замена переменных в кратном интеграле). При диффеоморфизме¹⁰ $\varphi: U \mapsto V$ для интегрируемой по Лебегу на V функции f имеет место формула

$$\int_{V} f(y) \, dy = \int_{U} f(\varphi(x)) |J_{\varphi}| \, dx.$$

⁶Вообще можно рассматривать $\Omega_c^k(U) \subseteq \Omega_c^k(\mathbb{R}^n)$.

 $^{^7}$ Т.к a(x) – гладкая с компактным носителем, этот интеграл \exists , как повторный интеграл Римана, или как интеграл Лебега.

 $^{^8}$ Таким образом интеграл оказывается определен как линейный функционал на факторпространстве $\Omega_c^n(U)/d\Omega_c^{n-1}(U)$.

 $^{^{9}}$ Так как U и V связны, то знак якоби
ана один и тот же во всех точках области.

 $^{^{10}}$ Вообще достаточно непрерывной дифференцируемости.

 $\mathsf{M}_{\mathsf{N}}\mathsf{K}$

Многообразия (с краем) и формула Стокса

26 Вложенные многообразия

Def 26.1. Замкнутое подмножество $M \subseteq \mathbb{R}^N$ называется *вложенным многообразием размерности* n, если $\forall p \in M \ \exists U_{\varepsilon}(p)$ и криволинейная система координат в ней, в которой включение $M \subset \mathbb{R}^N$ в пересечении с некоторой окрестностью нуля.

Яркий пример 11 — работа с условными экстремумами. Если M задаётся гладкими уравнениями $f_1=\ldots=f_{N_n}=0$ и дифференциалы этих уравнений линейно независимы в каждой точке M, то M будет вложенным многообразием размерности n, так как определяющие его функции можно считать частью системы координат $y_{n+1}=f_1,\ldots,y_N=f_{N-n}$ в окрестности каждой точки $p\in M$, и M в такой окрестности выглядит в точности как $\mathbb{R}^n\subset\mathbb{R}^N$ около нуля, а функции y_1,\ldots,y_n задают систему координат в M, пересеченном с окрестностью p.

Def 26.2. Замкнутое подмножество $M \subseteq \mathbb{R}^N$ называется вложенным многообразием с краем¹² размерности n, если для $\forall \ p \in M \ \exists U_{\varepsilon}(p)$ и криволинейная система координат в ней, в которой включение $M \subseteq \mathbb{R}^N$ либо превращается в стандартное вложение $\mathbb{R}^n \subset \mathbb{R}^N$, либо превращается в стандартное вложение $(-\infty,0] \times \mathbb{R}^{n-1} \subset \mathbb{R}^N$, пересеченное с окрестностью 0.

Def 26.3. Из определения M понятно, что $\forall p \in M$ есть окрестность¹³ в многообразие $M \cap U$ и отображение $\varphi \colon M \cap U \mapsto \mathbb{R}^n$, являющееся диффеоморфизмом между $M \cap U$ и $\varphi(M \cap U)$, которое называется *координатной картой* многообразия M.

Def 26.4. Набор карт, районы действия которых в совокупности покрывают всё многообразие, называется *ат*ласом многообразия.

27 Абстрактное определение гладкого многообразия

Def 27.1 (Абстрактное определение многообразия). *Гладкое п-мерное многообразие* M – хаусдорфово топологическое пространство со счётной базой, покрытое открытыми картами U_i так, что для каждой карты задано отображение $\varphi_i \colon U_i \mapsto \mathbb{R}^n$ являющееся гомеоморфизм на открытое подмножество \mathbb{R}^n , и для пары таких отображений $(\kappa apm) \varphi_i$ и φ_j композиция $\varphi_i \circ \varphi_j^{-1}$ является диффеоморфизмом на своей естественной области определения.

Def 27.2. Гладкое n-мерное многообразие c краем M отличается тем, что некоторые из карт являются не такими, как описано выше, а являются гомеоморфизмами на относительно открытое подмножество полупространства $(-\infty,0]\times\mathbb{R}^{n-1})$, в котором точки из $\{0\}\times\mathbb{R}^{n-1}$ образуют край в этой карте, а замены координат $\varphi_i\circ\varphi_j^{-1}$ переводят край в одной карте в край в другой карте.

28 Диф-формы, векторные поля и d на многообразии

Def 28.1. Дифференциальной формой $\alpha \in \Omega^k(M)$ на многообразии мы будем называть набор диф-форм α_i на образах карт $\varphi_i \colon U_i \mapsto \mathbb{R}^n$, которые обладают свойством

$$(\varphi_i \circ \varphi_j^{-1})^* \alpha_i = \alpha_j$$

на естественной области определения $\varphi_i \circ \varphi_j^{-1}$ в \mathbb{R}^n , для всяких двух карт $\varphi_i, \, \varphi_j.$

Можно неформально сказать, что глобальная форма собирается из локальных форм, если одна локальная форма переходит в другую при замене одной карты на другую, причём делает это именно так, как это происходит в раннее изученном случае, когда многообразие является областью в \mathbb{R}^n .

Достаточно рассматривать набор карт, покрывающих многообразие M. Для в любой другой координатной карте φ соответствующее представление $\alpha \in \Omega^k(\varphi(U))$ будет выглядеть как $\alpha = (\varphi_i \circ \varphi^{-1})^*\alpha_i$ на множестве $\varphi(U \cap U_i)$. По определению диф-формы и (19.3) оказывается

$$(\varphi_j \circ \varphi^{-1})^* \alpha_j = (\varphi_j \circ \varphi^{-1})^* (\varphi_i \circ \varphi_j)^* \alpha_i = (\varphi_i \circ \varphi^{-1})^* \alpha_i.$$

на $\varphi(U \cap U_i \cap U_i)$.

В силу установленной ранее независимости от выбор системы криволинейных координат операции \wedge и d верно определены для форм на многообразиях.

Простой и естественный способ получить диф-форму на $M \subset \mathbb{R}^N$ – ограничить какую-то диф-форму из евклидова пространства, или из окрестности M, или положить $\alpha_i = (\varphi_i^{-1})^* \alpha$ для $\alpha \in \Omega^k(\mathbb{R}^n)$.

 $^{^{11}{\}rm Tak},$ например, любая сфера в \mathbb{R}^n является вложенным многообразием размерности n-1.

 $^{^{12}}$ Край ∂M многообразия с краем M сам по себе является (n-1)-мерным многообразием без края.

¹³Относительно открытое подмножество многообразия.

 Φ_{N} ЗТ $_{\mathsf{E}}$ Х Ж $_{\mathsf{N}}$ К

Касательный вектор к вложенному многообразию $M \subset \mathbb{R}^N$ также можно рассматривать как касательный вектор к \mathbb{R}^N , так как любой вектор X в некоторой точке образа карты φ_i можно перенести в \mathbb{R}^n отображением $(\varphi_i^{-1})_*$.

Для гладкого отображения многообразий корректно определена производная $Df_p \colon T_pM \mapsto T_{f(p)}N$ в каждой точке $p \in M$, которую мы также называли прямым образом вектора φ_* , что и является линейным отображением касательных пространств в точке.

Отображение обратного образа диф-форм $f^* \colon \Omega^k(N) \mapsto \Omega^k(M)$ как

$$f^*\alpha|_p(X_1,\ldots,X_k) = \alpha|_{f(p)}(f_*X_1,\ldots,f_*X_k)$$

Для векторных полей $f_* = (f^{-1})^*$.

29 Гладкие отображения многообразий

- **Def 29.1.** Функция $f: M \to \mathbb{R}$ называется гладкой функцией на многообразии, $f \in C^{\infty}(M)$, если в каждой координатной карте $\varphi: U \mapsto \mathbb{R}^n$ эта функция $(f \circ \varphi^{-1})$ является гладкой функцией на образе $\varphi(U)$.
- **Def 29.2.** Гладкой структурой на топологическом пространстве называется максимальный по включению атлас, с которым пространство становится многообразием.
- **Def 29.3.** Гладким отображением между многообразиями $f: M \mapsto N$ размерностей m и n называется непрерывное отображение, которое в окрестности каждой точки, в достаточно малых координатных картах, выглядит как гладкое отображение из \mathbb{R}^m в \mathbb{R}^n .
- **Def 29.4.** Гладкое обратимое отображение $f: M \mapsto N$ с обратным гладким назовётся диффеоморфизмом многообразий.
- **Task 29.5.** Если взять некоторое *компактное* гладкое многообразие M (область параметров) и гладкое отображение $f: M \mapsto \mathbb{R}^n$, такое, что rg $Df_p = \dim M \ \forall p$, то f(M) будет вложенным многообразием.
- **Lem 29.6.** Для гладкого отображения $f: M \mapsto \mathbb{R}^n$ с $\operatorname{rg} Df \equiv m = \dim M$, для всякой $p \in M$ найдётся окрестность $U \ni p$ такая, что f(U) в некоторой криволинейной системе координат в окрестности f(p) является открытым подмножеством стандартно вложенного $\mathbb{R}^m \subseteq \mathbb{R}^n$.

30 Ориентируемость многообразия

Def 30.1. Гладкое многообразие M называется *ориентируемым*, если можно выбрать покрывающий атлас так, что якобианы замен координат между любыми двумя картами атласа будут положительными.

Если в исходном атласе был задан некоторый объект, например векторное поле X, то во всякой новой карте ψ мы тоже будем иметь векторное поле, собранное из прямых образов $(\psi \circ \varphi^{-1})_* X_{\varphi}$ полученных с имеющихся карт φ и образов X_{φ} в них.

- **Def 30.2.** Ориентацией гладкого многообразия M называется атлас с положительными якобианами перехода между картами, максимальный по включению среди всех таких атласов.
- **Lem 30.3.** Связное многообразие либо неориентируемо, либо допускает два класса ориентации.
- **Lem 30.4.** Многообразие M размерности n ориентируемо тогда и только тогда, когда существует дифференциальная форма $\nu \in \Omega^n(M)$, которая ни в одной точку не равна нулю.
- **Lem 30.5.** Многообразие ориентируемо тогда и только тогда, когда на нём не существует противоречивой (дезориентирующей) цепочки карт.
- **Def 30.6.** Для n-мерного ориентированного многообразия с краем M введём ориентацию на его крае ∂M следующим образом. Пусть карта M с координатами x_1, \ldots, x_n соответсвует ориентации M, причём образ отображения карты удовлетворяет неравенству $x_1 \leq 0$, а образ края соответствует равенству $x_1 = 0$. Тогда карта на соответствующей части ∂M из координат x_2, \ldots, x_n по определению объявляется положительной. Если же многообразие в этой карте задано неравенством в другую сторону, $x_1 \geq 0$, то карта x_2, \ldots, x_n на его краю по определению объявляется отрицательной.
- **Lem 30.7.** Предыдущее определение корректно задаёт ориентацию на ∂M .

 $M_{\rm H}$ K $\Phi_{\rm H}$ 3TEX

31 Определение интеграла диф-формы по ориентированному многообразию

Lem 31.1 (Разбиение единицы в окрестности компакта на многообразии). Пусть M – гладкое многообразие, а $K \subseteq M$ – его компактное подмножество. Для любого покрытия $\{U_{\alpha}\}_{\alpha}$ компакта K открытыми множествами найдётся набор неотрицательных гладких функций $\{\rho_{\alpha}\}_{\alpha}$ с компактными носителями $\{\rho_{\alpha}\}_{\alpha}$ с компактными носителями $\{\rho_{\alpha}\}_{\alpha}$ с компактными носителями $\{\rho_{\alpha}\}_{\alpha}$ с компактными $\{\rho_{\alpha}\}_{\alpha}$

$$\forall \alpha \text{ supp } \rho_{\alpha} \subset U_{\alpha},$$

только конечное число из них отлично от нуля и $\sum_{\alpha} \rho_{\alpha}(x) \equiv 1$ в некоторой окрестности K.

Def 31.2. Интеграл дифференциальной формы $\nu \in \Omega^n_{\rm c}(M)$ с компактным носителем по ориентированному *п*-мерному многообразию M определяется с помощью разбиения единицы в окрестности носителя ν

$$\rho_1 + \ldots + \rho_m = 1,$$

подчиненного некоторому набору положительно ориентрированных карт как

$$\int_{M} \nu = \sum_{i} \int_{M} \rho_{i} \nu_{i},$$

где интегралы справа рассматриваются в координатных картах, содержащих носители соответствующих ρ_i .

Lem 31.3. Определение интеграла не зависит от выбора системы положительных карт в данной ориентации и подчиненного им разбиения единциы.

32 Общая формула Стокса

Thr 32.1 (Формула Стокса). Для ориентированного многообразия с краем¹⁴ $(M, \partial M)$ размерности n и формы $\alpha \in \Omega_c^{n-1}(M)$ выполняется

$$\int_{M} d\alpha = \int_{\partial M} \alpha.$$

33 Частные случаи формулы Стокса

 \mathbb{R}^1 . Формула Стокса для ориентированной кривой с началом в точке p и концом в точке q сводится к

$$\int_{\gamma} df = f(q) - f(p).$$

 \mathbb{R}^2 . Для компактного множества $G \subset \mathbb{R}^2$ с гладкой границей, ориентированного так, что при движении по ∂G множество G оказывается слева, верна формула Γ рина

$$\int_{\partial G} P \, dx + Q \, dy = \int_{G} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \wedge dy.$$

 \mathbb{R}^3 . Для компактного множества $G \subset \mathbb{R}^3$ с гладкой границей (край в \mathbb{R}^3) верна формула Гаусса-Остроградского

$$\int_{\partial G} P\,dy \wedge dz + Q\,dz \wedge dx + R\,dx \wedge dy = \int_{G} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right)\,dx \wedge dy \wedge dz.$$

Кривую можно считать не бесконечно гладкой, а всего лишь кусочно непрерывно дифференцируемой, формула всё равно остаётся верной. С помощью предельного перехода также обобщается случай с $\simeq \mathbb{R}^2$ до множества с кусочно C^2 границей.

Вообще формула Стокса верна не только для вложенных двумерных многообразий, но и для всякого образа гладкого отображения $f \colon D \mapsto \mathbb{R}^3$ области $D \subset \mathbb{R}^2$ с кусочно гладкой границей, если интегралы мы понимаем как интегралы обратных образов $f^*(\alpha)$ и $f^*(d\alpha)$ по ∂D и D соответственно. Для практических применений полезно ослабить условие гладкости f до C^2 (в интеграле, в координатном представлении, используются производные f не более чем первого порядка).

34 Потенциал диф-форм

Физический потенциал силового поля в математический терминах означает поиск $f \in C^{\infty}(M)$: $df = \alpha$ для заданной силы $\alpha \in \Omega^1(M)$

Def 34.1. Пусть A – векторное поле вобласти $D \subset A$ Функция $U: D \mapsto \mathbb{R}$ называется *потенциалом поля* A в области D, если в этой области $A = \operatorname{grad} U$. Поле, обладающее потенциалом, называется *потенциальным полем*.

 $^{^{14}}$ край рассматривается с согласованной ориентацией.

 Δ изТЕХ Жи

Thr 34.2. Необходимым и достаточным условием наличия потенциала у непрерывной $\alpha \in \Omega^1(M)$, для гладкого M, является независимость $\int_{\gamma} \alpha$ от выбора кусочно-гладкой кривой γ между двумя точками.

Эквивалентно можно потребовать равенства нулю интегралов по всем замкнутым кусочно-гладким кривым.

Lem 34.3 (Необходимое условие потенциальности). *Необходимым условием существования потенциала у* $\alpha \in \Omega^1(M)$ *является* $d\alpha = 0$ $(m.\kappa.$ d(du) = 0).

Lem 34.4. В случае \mathbb{R}^3 по определению $d\omega_{\overrightarrow{A}}^1 = \omega_{\text{rot }\overrightarrow{A}}^2$, поэтому необходимое условие потенциальности поля A переписывается в виде rot A = 0.

Однако этого не достаточно, так например в открытой $U = \mathbb{R}^2 \setminus \{0\}$:

$$\alpha = \frac{x\,dy - y\,dx}{x^2 + y^2} \qquad \leadsto \qquad d\alpha = 0, \qquad \text{ho} \qquad \oint_{S^1} \alpha = 2\pi.$$

Def 34.5. Поле **A** называется *векторным потенциалом* поля **B** в области $D \subset \mathbb{R}^3$, если в этой области выполняется соотношение $B = \operatorname{rot} A$.

Это можно переписать в виде $\omega_{\vec{B}}^2 = d\omega_{\vec{A}}^1$, тогда $\omega_{\text{div}\,\vec{B}}^3 = d\omega_{\vec{B}}^2 = d^2\omega_{\vec{A}}^1 = 0$, то есть необходимое условие div B=0, принято такое поле называть *соленоидальным*.

 $M_{\rm II}$ К $\Phi_{\rm II}$ ЗТ $_{\rm E}$ Х

Дифференцирование и интегрирование векторных полей

43 Внутреннее дифференцирование

Def 43.1. Операция *внутреннего умножения* векторного поля на форму как $i_X \alpha(X_2, ..., X_k) = \alpha(X, X_2, ..., X_k)$.

- 1. i локальная операция,
- 2. $i_X \mapsto \Omega^k(M) \mapsto \Omega^{k-1}(M)$ линейное отображение;
- 3. Если $\omega_1 \in \Omega^{k_1}(M)$, $\omega_2 \in \Omega^{k_2}(M)$, то $i_X(\omega_1 \wedge \omega_2) = i_X \omega_1 \wedge \omega_2 + (-1)^{k_1} \omega_1 \wedge i_X \omega_2$;
- 4. Если $\omega \in \Omega^1(M)$, о $i_X\omega = \omega(X)$, а если $f \in \Omega^0(M)$, то $i_X f = 0$.

Если в локальных координатах x_1,\ldots,x^n карты $\varphi\colon\mathbb{R}^n\mapsto U\subset M$ форма ω (точнее $\omega|_U$), то

$$\omega = \frac{1}{k!} a_{i_1, \dots, i_k} \, dx^{i_1} \wedge \dots \wedge dx^{i_k}, \qquad X = X^i \partial_i \qquad \Rightarrow \qquad i_X \omega = \frac{1}{(k-1)!} X^i \alpha_{i, i_2, \dots, i_k} \, dx^{i_2} \wedge \dots \wedge dx^{i_k}.$$

44 Производная Ли и скобка Ли

Def 44.1 (Производная Ли диф-формы). Производная Ли вдоль векторного поля X на дифференциальных формах определяется, как $L_X = i_X d + d i_X$.

Из этого легко получть, что $L_X(\alpha \wedge \beta) = L_X \alpha \wedge \beta + \alpha \wedge L_X \beta$, и выражения для функций и линейных форм $L_X f = i_X df + d(I_X f) = i_X df = df(X) = X(f),$ $L_X df = i_X d(df) + d(i_X df) = d(X(f)).$

- 1. L_X локальная операция;
- 2. $L_X \colon \Omega^k(M) \mapsto \Omega^k(M)$ линейное отображение $\forall k;$
- 3. $L_X(\alpha \wedge \beta) = L_X \alpha \wedge \beta + \alpha \wedge L_X \beta;$
- 4. Если $f \in \Omega^0(M)$, то $L_X f = df(X) \stackrel{\text{def}}{=} Xf$, а $L_X df = d(Xf)$.

Def 44.2 (Производная Ли векторного поля). Потребуем выполнение формулы Лейбница для производной Ли вдоль X значения $\alpha(Y) = i_Y \alpha$, то есть

$$X(\alpha(Y)) = L_X(\alpha)(Y) + \alpha(L_XY), \quad \Rightarrow \quad \alpha(L_XY) = i_X d(i_Y\alpha) - i_Y d(i_X\alpha) - i_Y i_X d\alpha.$$

Подставив $\alpha = \alpha_i \, dx^i$, и считая, что $\alpha(L_XY) = a_i dx^i(L_XY)$, находим что

$$(L_X Y)^i = dx_i(L_X Y) = i_x d(i_Y dx^i) - i_Y d(i_X dx^i).$$

Рассматривая это, как дифференцирование функции f, получаем

$$(L_X Y)f = df(L_X Y) = i_X d(i_Y df) - i_Y d(i_X df) = X(Y(f)) - Y(X(f)).$$

Поэтому производная Ли L_XY – это коммутатор векторных полей [X,Y], то есть

$$L_XY = [X, Y] = (X^i \partial_i Y^j - Y^i \partial_i X^j) \partial_i.$$

Lem 44.3 (Тождество Якоби). Для любых трёх гладких векторных полей X, Y, Z всегда верно, что

$$[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.$$

Таѕк 44.4. Пусть X, Y – векторные поля, f, g – гладкие функции, тогда [fX, gY] = fg[X, Y] - gY(f)X + fX(g)Y.

- 45 Интегрирование векторных полей, как решение диф-уравнений
- 46 Геометрический смысл производной Ли
- 47 Дивергенция векторного поля на многообразии с формой объема

Физическая интерпретация векторных операторов

div ${m B}$. Для некоторой точки x области V (V_x — также объём области, r —её деаметр) с заданным полем ${m B}$, по формуле Стокса и теореме о среднем ($\exists x' \in V(x)$ такая, что)

$$\int_{\partial V} \boldsymbol{B} \cdot d\boldsymbol{\sigma} = \int_{V} \operatorname{div} \boldsymbol{B} \, dV = \operatorname{div} \boldsymbol{B}(x') V_{x}, \qquad \Rightarrow \qquad \operatorname{div} \boldsymbol{B}(x) \stackrel{\text{def}}{=} \lim_{r \to 0} \left(\frac{\iint_{\partial V(x)} \boldsymbol{B} \cdot d\boldsymbol{\sigma}}{V_{x}} \right).$$

 $\Phi_{\rm W}$ ЗТ $_{\rm F}$ Х $W_{n}K$

 $\operatorname{rot} A$. Возьмём круг $S_i(x)$ с центром в точке x, лежащей в плоскости, \bot к ∂_i , для i=1,2,3. Ориентируем $S_i(x)$ с помощью нормали, в качестве которой возьмём орт ∂_i , пусть r – диаметр $S_i(x)$, тогда по формуле Стокса

$$\oint_{\partial S} \boldsymbol{A} \cdot d\boldsymbol{s} = \iint_{S} (\operatorname{rot} \boldsymbol{A}) \cdot d\boldsymbol{\sigma}, \quad \Rightarrow \quad (\operatorname{rot} \boldsymbol{A})^{i} = \lim_{r \to 0} \left(\frac{\oint_{\partial S_{i}(x)} \boldsymbol{A} \cdot d\boldsymbol{s}}{S_{i}(x)} \right)$$

 $\operatorname{grad} f$. Посколько $\omega_{\operatorname{grad} f}^1(\boldsymbol{\xi}) = (\operatorname{grad} f \cdot \boldsymbol{\xi}) = df(\boldsymbol{\xi}) = D_{\boldsymbol{\xi}} f$, где $D_{\boldsymbol{\xi}} f$ – производная функции f по вектору $\boldsymbol{\xi}$, то вектор grad f ортогонален поверхностям уровня функции f, указывает в каждой точке направление наиболее быстрого роста значений функции.

Решения (ВЕТА)

Свёртка функций и её свойства

- 1.2. 1) $f(y)g(x) \in \mathcal{L}$ и по thr. Фубини: $\int |f \cdot g| = \int |f| \cdot \int |g|$;
 - 2) то же верно для f(x-t)g(t), отличие в лин. замене коор-т с det = 1;
 - 3) требуемое равенство напрямую из (1) и (2) замена: x t = y;
 - 4) для неравенства интегрируем по x: $|\int f(x-t)g(t) dt| \leqslant \int |f(x-t)g(t)| dt$.

Бесконечно гладкие функции с компактным носителем

- 2.1. 1) для введённой φ достаточно: $\varphi_{\varepsilon}(x_1,\ldots,x_n)=A\varphi\left(\frac{\sqrt{n}x_1}{\varepsilon}\right)\ldots\varphi\left(\frac{\sqrt{n}x_n}{\varepsilon}\right)$.
 - 2) $\psi(x)=B\int_{-\infty}^{x}\varphi(t)\,dt$, выбирем $B\colon \psi(x)\equiv 0\ \forall x\leqslant -1\$ и $\psi(x)\equiv 1\ \forall x\geqslant -1;$
 - 3) достаточно положить: $\psi_{\varepsilon,\delta}(x) = \psi\left(\frac{\delta + \varepsilon 2|x|}{\varepsilon \delta}\right)$.

Приближение функций бесконечно гладкими

- 3.1. 1) $f_k(x) f(x) = \int_{\mathbb{R}}^n (f(x-t) f(x)) \varphi_k(t) dt;$ 2) Пусть f р-но непр. в $U_{\delta}(K \subset \mathbb{R}^n)$ и пусть $|f(x) f(y)| < \varepsilon$ при $|x-y| < \delta$ там же;
 - 3) Выбирая $k: 1/k < \delta$, тогда $\varphi_k(t) \neq 0$ при $|t| < \delta$ и тогда $|f(x-t) f(x)| < \varepsilon$ при $x \in K$.
 - 4) при $x \in K$ верна р-ная сходимость: $|f_k(x) f(x)| \le \varepsilon \int_{\mathbb{R}^n} \varphi_k(x) \, dx = \varepsilon$.
 - 5) продифференцируем по параметру $\int_{\mathbb{R}^n} f(t) \varphi_k(x-t) \, dt;$
- 6) производная (5) при $x \in K$ будет зависеть только значений f в $U_{1/k}(K)$, то есть f можно считать интегрируемой при дифференцировании по параметру, что позволяет применять теорему.
- 3.2. По различным $\partial_{x_i} f * \varphi_k(x)$ получим по лемме 1.3, для производных свёрток схожее равенство, с самой f, а значит и р-ную сходимость.

$$\frac{\partial^m (f * \varphi_k)}{\partial x_{i_1} \dots \partial x_{i_m}} = \frac{\partial^m f}{\partial x_{i_1} \dots \partial x_{i_m}} * \varphi_k.$$

3.3. 1) по thr
(239.2) f=h+g,где g – эл. ступ.,
 $\int_{\mathbb{R}^n} |h|\,dx<\varepsilon;$

2) по thr(1.2): $\int_{\mathbb{R}^n} |h*\varphi_k| \, dx < \varepsilon$. То есть, если окажется: $\int_{\mathbb{R}^n} |g-g*`f_k| \, dx < \varepsilon$, то

$$\int_{\mathbb{R}^n} |f - f * \varphi_k| \, dx \leqslant \int_{\mathbb{R}^n} |g - g * \varphi_k| \, dx + \int_{\mathbb{R}^n} |h| \, dx + \int_{\mathbb{R}^n} |h * \varphi_k| \, dx < 3\varepsilon.$$

- 3) Раскладывая g в сумму х-их χ_P , останется доказать для одной χ_P ;
- 4) $\chi_P \chi_P \varphi_k \neq 0$ только в $U_{1/k}(\partial P)$ и по модулю ≤ 1 ;
- 5) То есть после интегрирования получим не более $\mu(U_{1/k}(\partial P))$.
- 6) Напрямую можно убедиться, что эта $\mu \to 0$ при $k \to 0$.

Теоремы о системе неявных функций

- 1. По условию $df_1, \ldots, df_k, dx_{k+1}, \ldots, dx_n$ линейно независимы. Тогда $f_1, \ldots, f_k, x_{k+1, \ldots, x_n}$ дают криволинейную систему координат.
 - 2. Тогда старые координаты (НД) выражаются через новые: $x_i = \varphi_i(f_1, \dots, f_k, x_{k+1}, \dots, x_n)$, при чём выберем $x\colon f_i=y_i.\Rightarrow \mathrm{Sol}\;\mathrm{CY}$ содержится в графике отображения $\varphi\colon V\mapsto U,$ при достаточно малых $V,\;U\colon \varphi(V)\subseteq U.$

 M_{II} X

3. Но график отображения содержится в Sol(CУ), т.к. в точке $p=(y_1,\ldots,y_k,x_{k+1},\ldots,x_n)$ значения $f_i=y_i,$ т.к. $\varphi_i(p)$ даст такие x_1,\ldots,x_k , что $f_i(x_i)=y_i.$ Q. E. D.

16

 $\Phi_{\mathsf{И}}$ ЗТ $_{\mathsf{E}}$ Х Ж $_{\mathsf{U}}$ К

Призраки прошлого и настоящего

239 Прошлого

Thr 239.1 (Дифференцирование под знаком интеграла).

$$f(x,y) \in \mathcal{L}_c^x \ \forall y \in (a,b)$$

$$f \ \partial u \phi \phi e p e h u u p y e ma \ no \ y$$

$$\forall x \in X, \forall y \in (a,b) |f_y'(x,y)| \leq g(x)$$

$$g \geqslant 0 \colon X \to \mathbb{R}^+ \in L_c \ na \ X$$
 \Rightarrow
$$\frac{d}{dy} \int_X f(x,y) \, dx = \int_X f_y'(x,y) \, dx.$$

Thr 239.2. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ интегрируема по Лебегу с конечным интегралом. Тогда f можно сколь угодно близко приблизить в среднем элементарно ступенчатой функцией.

556 Настоящего

Task 556.1 (Замена координат в интеграле для собственных отображений вообще). Пусть гладкое отображение $\varphi \colon \mathbb{R}^n \mapsto \mathbb{R}^n$ является собственным. Тогда

$$\int_{\mathbb{R}^n} \varphi^* \nu = C_{\varphi} \int_{\mathbb{R}^n} \nu, \quad C_{\varphi} \in \mathbb{Z}.$$

Формула Стокса

Lem 556.2 (формула Стокса в узком смысле). Для компактной двумерной поверхности с краем (то есть вложенного двумерного многообразия с краем) $S \subset \mathbb{R}^3$ верна

$$\int_{\partial S} P \, dx + Q \, dy + R \, dz = \int_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \, dy \wedge dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \, dz \wedge dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \wedge dy.$$

Task 556.3. Площадь области, ограниченной замкнутой гладкой кривой без самопересечений $C \subset \mathbb{R}^2$, можно посчитать по формуле:

$$A = \pm \int_C x \, dy,$$

где знак выбирается в зависимости от ориентации кривой.

Task 556.4. Объём области в \mathbb{R}^3 , ограниченной связной вложенной компактной поверхностью без края $S \subset \mathbb{R}^3$, можно посчитать по формуле:

$$A = \pm \int_{S} x \, dy \wedge dz,$$

где знак выбирается в зависимости от ориентации поверхности.

Task 556.5 (Порядок точки относительно кривой). Для замкнутой кусочно-гладкой $\gamma \in \mathbb{R}^2$, не проходящей через начало координат определим порядок начала координат относительно кривой:

$$w(\gamma, 0) - \frac{1}{2\pi} \int_{\gamma} \frac{x \, dy - y \, dx}{x^2 + y^2},$$

и он не меняется при непрерывных деформациях кривой, при которых она не проходит через начало координат.

Task 556.6. Порядок начала координат относительно кривой является целым.

Task 556.7. Порядок начала координат относительно не проходящей через него нечётной кривой является нечётным числом. $(\gamma \colon \mathbb{S}^1 \to \mathbb{R}^2, \ \gamma(-u) = -\gamma(u))$.

Task 556.8. Для замкнутой кривой на плоскости с всюду не нулевой скоростью $\int k(s) ds = 2\pi N, N \in \mathbb{Z}$.

Task 556.9 (Лемма Жордана). Замкнутая кусочно-гладкая кривая $\gamma \subset \mathbb{R}^2$ без самопересечений делит плоскость на две связные части внутреннюю и внешнюю (можно усложнить и сформулировать для непрерывных кривых).

Коммутатор

Для матриц известен коммутатор вида

$$[A, B] = AB - BA.$$

 $\mathsf{W}_{\mathsf{N}}\mathsf{K}$

Аналогично для дифференцирования

$$\left[\partial_{X},\partial_{Y}\right]f = \partial_{X}\partial_{Y}f - \partial_{Y}\partial_{X}f = X^{i}\frac{\partial}{\partial u^{i}}\left(Y^{j}\frac{\partial f}{\partial u^{j}}\right) - Y^{j}\frac{\partial}{\partial u^{j}}\left(X^{i}\frac{\partial f}{\partial u^{i}}\right) = X^{i}\frac{\partial Y^{j}}{\partial u^{i}}\frac{\partial f}{\partial u^{i}} - Y^{j}\frac{\partial X^{i}}{\partial u^{j}}\frac{\partial f}{\partial u^{j}}$$

Таким образом

$$[\partial_X, \partial_Y] f = (X^i \partial_i Y^j - Y^i \partial_i X^j) \partial_j f. \tag{36.1}$$

Это, как ни странно, дифференциальный оператор первого порядка. Это значит что есть такое векторное поле [X,Y], что

$$\partial_{[X,Y]} = [\partial_X, \partial_Y] f.$$

Таким образом [X,Y] существует и равен

$$[X,Y] = X^i \partial_i Y^j - Y^i \partial_i X^j. \tag{36.2}$$