DATA SCIENCE FOR ALL

Taweesak Samanchuen 21/1/2023

Data Analytics

Data Analytic คือ ศาสตร์ของการใช้ข้อมูลต่าง ๆ จากที่ต่าง ๆ มาวิเคราะห์ร่วมกันเพื่อ วัตถุประสงค์บางประการ เช่น เพิ่มความสามารถในการแข่งขัน เพิ่มยอดขาย และเกิด ความเข้าใจลูกค้า โดยออกมาในรูปแบบของ<u>รายงานผลการวิเคราะห์</u>

- •ระดับของ Data Analytics
 - Descriptive Analytics วิเคราะห์ให้รู้ว่าเกิดอะไรขึ้น
 - Diagnostic Analytics วิเคราะห์ต่อให้รู้ว่าสิ่งนั้นเกิดขึ้นเพราะอะไร
 - Predictive Analytics แล้วอีกหน่อยจะเกิดอะไรขึ้นได้อีกบ้าง
 - Prescriptive Analytics ถ้าเราทำแบบนี้แล้วจะเกิดอะไรขึ้นได้บ้าง

Data Science

DATA SCIENCE

Data Science

Data Science (วิทยาการข้อมูล) คือศาสตร์ที่ว่าด้วยการนำข้อมูลที่มีมาหาองค์ความรู้ใหม่ ด้วยวิธีการต่าง ๆ เพื่อเพิ่มความสามารถในการแข่งขันให้กับองค์กร โดยมีผลลัพธ์เป็น รายงานหรือระบบการทำงานอัตโนมัติ

Data Science Project: Movie Recommendation System

Data Science Project: Customer Segmentation

System Overview

- KDD (Knowledge Discovery in Database Process) : กระบวนการการค้นพบความรู้ในการวิเคราะห์ข้อมูล
- AI (Artificial Intelligence) : ปัญญาประดิษฐ์

อาชีพใน Data Science

คาดการณ์อาชีพ ปี 10 ข้างหน้า

ค่าตอบแทนของอาชีพใน USA

- Software Engineering Manager \$134,156.
- Mobile Applications Developer \$111,468.
- Information Systems Security Manager \$153,677.
- Database Manager \$58,161.
- Data Security Analyst -\$71,226.
- Product Manager \$100,000.
- Artificial Intelligence (AI) Engineer \$110,000.
- Full-Stack Developer \$106,000.

- Cloud Architect \$107,000.
- DevOps Engineer \$140,000.
- Blockchain Engineer \$150,000.
- Software Architect \$114,000.
- Big Data Engineer \$140,000.
- Internet of Things (IoT) Solutions Architect \$130,000.
- Data Scientist \$150,000.

https://www.simplilearn.com/highest-paying-tech-jobs-article

อาชีพที่รับสมัคร วันที่ 21/12/22

https://docs.google.com/spreadsheets/d/1S8Vs4-j6DChPJkpkM48gJRUV4HB-yPrTytu2AcAgq1Y/edit?usp=sharing

จำนวนหลักสูตรด้าน DATA Science

- ปริญญาตรี 24 หลักสูตร
- ปริญญาโท 14 หลักสูตร
- •ระยะสั้น 39 หลักสูตร

MACHINE LEARNING

FOR DATA SCIENCE

Taweesak Samanchuen

- KDD (Knowledge Discovery in Database Process) : กระบวนการการค้นพบความรู้ในการวิเคราะห์ข้อมูล
- AI (Artificial Intelligence) : ปัญญาประดิษฐ์

ความหมายของ ML

• Arthur Samuel (1959). Machine Learning:
Field of study that gives computers the ability to learn without being explicitly programmed.

• Tom Mitchell (1998) Well-posed Learning Problem:

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

ความหมายของ ML (ต่อ)

• Machine Learning คือ กระบวนการที่ระบบคอมพิวเตอร์เรียนรู้การทำงานใด ๆ โดยใช้การฝึกจากข้อมูลที่อยู่ในอดีตและนำผลลัพธ์ของการฝึกมาปรับปรุงการ ทำงานให้ดีขึ้นไปเรื่อย ๆ

ความหมายของ ML (ต่อ)

Can we improve computer's ability to perform task T over time (without being explicitly programmed)?

ประเภทของ ML

- 1) Supervised learning
- 2) Unsupervised learning
- 3) Reinforcement learning
- 4) Recommender systems

SUPERVISED LEARNING

Supervised Learning

- •เป็นกลุ่ม ML ที่มี<u>การระบุคำตอบ</u>ของข้อมูลที่นำมาสร้างแบบจำลอง เช่น
 - กรณีการทำนายค่าเชื้อเพลิงจากจำนวนผู้โดยสาร
 - กรณีการคัดแยก E-mail ที่รับมานั้นเป็น Spam หรือไม่

Airline Cost Data

Spam Prediction

Supervised Learning Types

Regression

เป็น ML ที่มี<u>การระบุคำตอบ</u>ของข้อมูลที่นำมาสร้างแบบจำลอง (Model) เป็น<u>แบบค่า</u> ต่อเนื่อง

เช่นการทำนายค่าเชื้อเพลิงจากจำนวนผู้โดยสาร

• Classification เป็น ML ที่มีการระบุคำตอบของข้อมูลที่นำมาสร้างแบบจำลอง (Model) เป็น<u>แบบเซตคำตอบที่รู้สมาชิกของคำตอบอย่างแน่นอน</u> เช่น การคัดแยก E-mail ที่เป็น Spam

UNSUPERVISED LEARNING

Unsupervised Learning

- •เป็นกลุ่ม ML ที่<u>ไม่มีการระบุคำตอบ</u>ของข้อมูลที่นำมาสร้างแบบจำลอง เช่น
 - กรณีการแบ่งกลุ่มลูกค้า
 - กรณีการแบ่งกลุ่ม E-mail
 - การลดจำนวนมิติข้อมูล
 - การตรวจจับธุรกรรมที่ผิดปกติ

ประเภทของ Unsupervised Learning

- Clustering (K-Means)
- Anomaly Detection
- Dimensionality Reduction

แบบฝึกหัด

ปัญหาต่อไปนี้เป็น ML แบบใด

- 1. การทำนายความสูงของคนจากน้ำหนักตัว
- 2. การทำนายชนิดของผลไม้ (Apple &Orange) จากขนาดและนำหนัก
- 3. แบ่งกลุ่มอีเมล
- 4. ตรวจสอบข้อความเป็น hate speech ด้วยคอมพิวเตอร์

INTRODUCTION TO RAPIDMINER STUDIO

Gartner 2018 & 2020 Magic Quadrant for Data Science Platforms

Source: Gartner (February 2020)

RapidMiner Products

RapidMiner Studio

RapidMiner Al-Hub

RapidMiner Go

RAPIDMINER STUDIO

LAB 1: แนะนำ PROGRAM RM

LAB 2: การสร้าง REPOSITORY ใน RM

LAB 3: การนำเข้าข้อมูลใน RM

LAB 4: การสำรวจข้อมูลเบื้องต้น

ประเด็นการตรวจสอบ

- ความหมายของข้อมูลโดยรวม
- ความของข้อมูลแต่ละ attribute
- คุณลักษณะ
- ความสมบูรณ์
- ความทันสมัย
- ความจำเป็นในการปรับปรุงข้อมูล
- ความเพียงของข้อมูล

คุณสมบัติของข้อมูลใน RM

ระดับการวัดของข้อมูลในสถิติ

Nominal

• Examples: ID numbers, eye color, zip codes

Ordinal

Examples: rankings (e.g., taste of potato chips on a scale from 1-10),
 grades, height in {tall, medium, short}

Interval

Examples: calendar dates, temperatures in Celsius or Fahrenheit.

Ratio

• Examples: temperature in Kelvin, length, time, counts

คุณสมบัติของข้อมูลใน RM

คุณสมบัติของข้อมูลใน RM แบ่งได้เป็น 2 ประเภท

- Type (ชนิด) หมายถึง คุณสมบัติที่บอกถึงความหมายข้อมูลที่ได้จัดเก็บเช่น เป็นตัวหนังสือ เป็นตัวเลข หรือเป็นวันที่
- Role (บทบาท) หมายถึง บทบาทของข้อมูลนั้นในการใช้งานใน RM ว่าทำบทบาทหรือ หน้าที่ในสถานะใดเช่น ข้อมูลทั่วไป id หรือ ข้อมูลเป้าหมายในการฝึก

Type (ชนิด) ของข้อมูลใน RM

- Text (ตัวหนังสือ)
 ข้อมูลถูกจัดเก็บเป็นข้อความ เป็นประโยค มี
 ความหลากหลายของคำ
- Nominal ข้อมูลถูกตีความเป็นคำนาม
 - Binominal ข้อมูลถูกตีความเป็นคำนาม
 และมีแค่สองคำ เช่น yes/no, ขาว/ดำ,
 Polynominal ข้อมูลถูกตีความเป็น
 คำนามเช่นเดียวกับ Binominal แต่มีมาก
 ว่าสองคำเข่นสี ดำ ขาว แดง

- Numeric (ตัวเลข) ถูกตีความเป็นตัวเลข
 - Integer ตัวเลขจำนวนเต็มเช่น 4-10
 - Real ตัวเลขจำนวนจริง เช่น 3.2 4.5 -5
- Date_Time ข้อมูลที่ถูกจัดเก็บหมายถึงวันที่ และเวลาโดยสามารถนำไปดำเนินการทาง คณิตศาสตร์ เช่น 23.12.2014 17:59
 - Date หมายถึงวันที่จัดเก็บเป็น วันเดือนปี เช่น 23.12.2014
 - Time หมายถึงเวลาที่จัดเก็บเป็น ชั่วโมง

Role (บทบาท) ของข้อมูลใน RM

- Attributes, Regular Attribute หมายถึง Attributes ทั่วไปโดยจะถูกใช้ในฝึกโมเดล ข้อมูลที่ถูก นำเข้าในระบบ RM จะถูกตั้ง default ไว้เป็นค่านี้
- Label หมายถึง Attribute ที่ถูกกำหนดเป็น Target Attribute หรือค่าเป้าหมายในการฝึก
- Id หมายถึง Attribute ที่ทำหน้าที่เป็นดัชนีข้อ (index) โดยจะไม่การซ้ำกันของข้อมูลเลย
- Cluster หมายถึง Attribute ที่กำหนดว่าข้อแต่ละตัวถูกกำหนดเป็น Cluster ใด โดยบทบาทนี้จะใช้ หรือเกิดขึ้นในกรณีการทำงานของแบบจำลองประเภท Clustering
- Prediction หมายถึง Attribute ที่ถูกสร้างขึ้นมาเพื่อเป็นผลการทำงานของ Model ประเภท Supervised Learning

Attributes, Feature

_	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
	10	No	Single	90K	Yes

Examples

Type : Binominal,

Nominal

Role: Regular Attr.

การสร้าง MODEL

กระบวนการทางสร้าง Model

Training Process

- เป็นกระบวนการฝึกแบบจำลอง
- ใช้ข้อมูลจำนวนหนึ่งเพื่อนำมาฝึกแบบจำลองให้มีประสิทธิที่ยอมรับได้
- ข้อมูลที่ใช้ฝึกนี้จะถูกเรียกว่า Training Set

Evaluation Process

- เป็นกระบวนการประเมินแบบจำลอง
- ใช้ข้อมูลจำนวนหนึ่งซึ่งปกติขนาดเล็กว่า Training Set มาใช้ประเมิน
- ข้อมูลชุดนี้จะถูกเรียกว่า Test Set

กระบวนการทางสร้าง Model (ต่อ)

SUPERVISED LEARNING:

REGRESSION

Regression Model

Airline Cost Data

LAB 5: LINEAR REGRESSION

Lab 5: Process

- Use data set DATA2 Airplan Fuel Cost.xls
- Create model Linear Regression

Lab 5: Model Result

Regression equation
$$\hat{Y} = 1.57 + 0.041X$$

LAB 6: LINEAR REGRESSION

Prediction Value

Lab 6: Create Test Data for Prediction

Modified the training to the test data

Lab 6: Process

Lab 6: Prediction Value

LAB 7: LINEAR REGRESSION

Performance Evaluation

Root Mean Square Error: Performance of Regression

$$\varepsilon_i = Y_i - \widehat{Y}_i$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \varepsilon_i^2}$$

Lab 7: Process

Lab 7: Performance Result

SUPERVISED LEARNING: CLASSIFICATION

DECISION TREE

Sample Dataset (was Tennis played?)

Day	Outlook	Temp	Humidity	Wind	Tennis?
<i>D1</i>	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
<i>D4</i>	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
<i>D6</i>	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
<i>D8</i>	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Sunny = มีแสงแดดมาก

Overcast = มีเมฆมาก

Rain = มีฝน

Hot = ร้อน

Mild = อบอุ่น

Cool = เย็น

Terminology

Representation in decision trees

Example of representing rule in DT's: if outlook = sunny AND humidity = normal OR if outlook = overcast OR if outlook = rain AND wind = weak then playtennis

LAB 8: DECISION TREE

LAB 9: DECISION TREE WITH APPLY MODEL

Row No.	Play	prediction(P	confidence(confidence(Outlook	Temperature	Humidity	Wind
1	no	no	1	0	sunny	85	85	false
2	no	no	1	0	sunny	80	90	true
3	yes	yes	0	1	overcast	83	78	false
4	yes	yes	0	1	rain	70	96	false
5	yes	yes	0	1	rain	68	80	false
6	no	no	1	0	rain	65	70	true
7	yes	yes	0	1	overcast	64	65	true
8	no	no	1	0	sunny	72	95	false
9	yes	yes	0	1	sunny	69	70	false
10	yes	yes	0	1	rain	75	80	false
11	yes	yes	0	1	sunny	75	70	true
12	yes	yes	0	1	overcast	72	90	true
13	yes	yes	0	1	overcast	81	75	false
14	no	no	1	0	rain	71	80	true

LAB 10: DECISION TREE WITH TEST SET

Row No.	Play	prediction(P	confidence(confidence(Outlook	Temperature	Humidity	Wind
1	yes	no	1	0	sunny	85	85	false
2	no	yes	0	1	overcast	80	90	true
3	yes	yes	0	1	overcast	83	78	false
4	yes	yes	0	1	rain	70	96	false
5	yes	no	1	0	rain	68	80	true
6	no	no	1	0	rain	65	70	true
7	yes	yes	0	1	overcast	64	65	true
8	no	no	1	0	sunny	72	95	false
9	yes	yes	0	1	sunny	69	70	false
10	no	no	1	0	sunny	75	80	false
11	yes	yes	0	1	sunny	68	70	true
12	yes	yes	0	1	overcast	72	90	true
13	no	yes	0	1	overcast	81	75	true
14	yes	no	1	0	rain	71	80	true

LAB 11: DECISION TREE PERFORMANCE EVALUATION

accuracy: 64.29%

	true no	true yes	class precision
pred. no	3	3	50.00%
pred. yes	2	6	75.00%
class recall	60.00%	66.67%	

MODEL EVALUATION MATRICES FOR CLASSIFICATION PROBLEM

Model Evaluation Metrics

- Confusion Matrix
- Accuracy
- Precession
- Recall
- F1-Score
- Area under curve (AUC)
- Kappa

More and more..

Confusion Matrix

True Positive (TP): หมายถึงจำนวนการทำนายว่า เป็น**บวก**เมื่อคลาสทำนายนั้นเป็น**บวก**

True Negative (TN): หมายถึงจำนวนการทำนายว่า เป็น<mark>ลบ</mark>เมื่อคลาสทำนายนั้นเป็น<mark>ลบ</mark>

False Positive (FP): หมายถึงจำนวนการทำนายว่า เป็น**บวก**เมื่อคลาสทำนายนั้นเป็น<mark>ลบ</mark>

False Negative (FN): หมายถึงจำนวนการทำนาย ว่าเป็น**ลบ**เมื่อคลาสทำนายนั้นเป็น**บวก**

Example of confusion matrix

Accuracy

$$Accuracy = \frac{Correct\ Preditions}{All\ Predctions}$$

Accuracy =
$$\frac{30 + 40}{100} = 0.7$$

ข้อจำกัดของ Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
- Accuracy is misleading because model does not detect any class 1 example

Precision

$$Precision \ Class \ 1 = \frac{true \ positive}{true \ positive + false \ positive}$$

Precision Class
$$1 = \frac{0}{0} = \infty$$

Precision Class
$$0 = \frac{9990}{10000} = 0.99$$

Recall

Recall Class
$$1 = \frac{\text{true positive}}{\text{true positive+false negative}}$$

Recall Class
$$1 = \frac{0}{10} = 0$$

Recall Class
$$0 = \frac{9990}{9990} = 1$$

Confusion Matrix Intuition

Confusion Matrix Intuition

F1-Score

F-Score

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\beta^2 \times \text{precision} + \text{recall}}$$

where eta is chosen such that recall is considered eta times as important as precision For eta=1, it becomes F1-Score

$$F1 = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

F1-Score

How to compare precision/recall numbers?

	Precision(P)	Recall (R)
Algorithm 1	0.5	0.4
Algorithm 2	0.7	0.1
Algorithm 3	0.02	1.0

$$\mathsf{F_1}$$
 Score: $2\frac{PR}{P+R}$

LOGISTIC REGRESSION

Logistic Regression

Binary Classification:

Multi-Class Classification:

Logistic Regression Model

Example of $h_{\theta}(x)$

$$z = \theta^T x = x_1$$

LAB 12:

Logistic Regression

Lab 12: Process

Attribute	Coefficient	Std. Coefficient	Std. Error	z-Value	p-Value
att1	0.206	4.013	0.048	4.296	0.000
att2	0.201	3.744	0.049	4.143	0.000
Intercept	-25.161	1.718	5.799	-4.339	0.000

Lab 12: Performance

accuracy: 89.00%

	true false	true true	class precision
pred. false	34	5	87.18%
pred. true	6	55	90.16%
class recall	85.00%	91.67%	

NEURAL NETWORK

Artificial Neural Network

LAB 13:

Neural Network for Iris

Lab 13: Model

Lab 13: Performance

NEAREST NEIGHBOR CLASSIFIERS

Adopt from slides by Carla P. Gomes

1-Nearest Neighbor

• เป็นโมเดลที่มีการทำงานที่ง่ายที่สุดโมเดลหนึ่ง

• Simple idea: การทำนาย class จะพิจารณาจากค่าข้อมูลที่อยู่ใกล้ที่สุดของข้อมูลที่ ทำนาย

k – Nearest Neighbor

- เพื่อเป็นการลด noise ที่จะเกิดขึ้นในการทำนาย จึงพิจารณาทำนายด้วยข้อมูลมากขึ้น
- การทำนายข้อมูลจะดูจากข้อมูลที่ใกล้เคียงจำนวน k ตัวโดยจะทำนายเป็น class ที่มาก ที่สุดในจำนวน k ตัว

Selecting the Number of Neighbors

- Increase k:
 - k ขนาดใหญ่ทำให้ การทำนายลดความไวต่อ noise

- Decrease k:
 - k ขนาดเล็กจะทำให้การทำนายละเอียดขึ้น

• The part of the

LAB 14: APPLE AND ORANGE

KNN Class Prediction

Lab 14: Process

LAB 15: APPLICATION EXAMPLE CAMPAIGN

Lab 15: Process

LAB 16:

Decision Tree, Naïve Bayes, k-Nearest Neighbors and Logistic Regression

Lab 16:

Use this operator if you want to uses the output more than once

Lab 16: Process

LAB 17:

Decision Tree, Naïve Bayes, and k-Nearest Neighbors with Sub Processes

Lab 17:

Use this operators to group some operator in one block

Use this operators to select subprocesses (like switch-case)

Subprocess

Select Subprocess

Lab 17: Process

Lab 17: Process

UNSUPERVISED LEARNING:

K-MEANS

Supervised Learning: Classification

Tumor Size

Training Set = {
$$\left(x_1^{(1)}, x_2^{(1)}, y^{(1)}\right), \left(x_1^{(2)}, x_2^{(2)}, y^{(2)}\right), \dots, \left(x_1^{(n)}, x_2^{(n)}, y^{(n)}\right)$$
}

Unsupervised Learning

Training Set =
$$\{(x_1^{(1)}, x_2^{(1)}), (x_1^{(2)}, x_2^{(2)}), \dots, (x_1^{(n)}, x_2^{(n)})\}$$

ตัวอย่างการใช้งาน Clustering

Market segmentation

Social Network Analysis

LAB 18: K-MEAN CLUSTERING

Lab 18: Process

Further Study

- Preprocessing
- Model Deployment
- Feature Selection
- Hyperparameter turning

•

Resource

- <u>www.kaggle.com</u>
- https://archive.ics.uci.edu/ml/index.php
- https://academy.rapidminer.com/