Chapitre 2: théorèmes généraux

P. Chartier et E. Faou

5 octobre 2016

1 Préliminaires

1.1 Cadre général

Soit $I \subset \mathbb{R}$ un intervalle ouvert, d'intérieur non vide, et $t_0 \in I$. Soit E un espace de Banach, D un ouvert connexe de E. On considère une application

$$f: D \times I \to E$$

et un point $y_0 \in D$.

Définition 1.1 On appelle problème de Cauchy la recherche d'un intervalle J tel que $t_0 \in J \subset I$ et d'une application $y: J \to D$ telle que y soit dérivable et satisfait pour tout $t \in J$

$$\begin{cases} y'(t) = f(t, y(t)), \\ y(t_0) = y_0. \end{cases}$$
 (1)

Remarque 1.2 La plus souvent, on considérera que $E=\mathbb{R}^d, d\in\mathbb{N}$. On supposera aussi que f est au moins continue.

Une formulation équivalente de (1) est donnée par

$$\forall t \in J, \quad y(t) = y_0 + \int_{t_0}^t f(s, y(s)) ds.$$
 (2)

Définition 1.3 On donne maintenant quelques définitions :

1. Le couple (J, y) est appelé solution locale si $t_0 \in J \subset I$, $y \in C^1(J)$, J est un voisinage de t_0 dans I, et (1) est satisfaite pour tout $t \in J$.

2. Soient (J_1,y_1) et (J_2,y_2) deux solutions locales. On dit que (J_1,y_1) **prolonge** (J_2,y_2) si

$$\begin{cases} J_2 \subset J_1, \\ y_1 \big|_{J_2} = y_2. \end{cases}$$

- 3. Une solution locale (J, y) est appelée **solution maximale** si pour tout prolongement (\tilde{J}, \tilde{y}) de (J, y), on a $\tilde{J} = J$ et $\tilde{y} = y$.
- 4. Une solution locale (J, y) est appelée solution globale si J = I.

Remarque 1.4 On peut immédiatement faire les remarques suivantes :

- Toute solution globale est solution maximale.
- Soient t_i , i = 1, ..., 4 tels que $t_1 < t_0 < t_2$ et $t_3 < t_2 < t_4$, et soient (J_1, y_1) et (J_2, y_2) deux solutions locales telles que

$$[t_1,t_2]\subset J_1, \quad {\rm et} \quad \left\{ egin{array}{ll} y_1'(t) &=& f(t,y_1(t)), \\ y_1(t_0) &=& y_0. \end{array}
ight.$$

et

$$[t_3, t_4] \subset J_2$$
, et
$$\begin{cases} y_2'(t) &= f(t, y_2(t)), \\ y_2(t_2) &= y_1(t_2). \end{cases}$$

Alors le couple (J, y) défini par

$$J = [t_1, t_4], \quad \text{et} \quad y = \begin{cases} y_1 & \text{sur} & [t_1, t_2], \\ y_2 & \text{sur} & [t_2, t_4], \end{cases}$$

est une solution locale, prolongement de $([t_1, t_2], y_1)$ (pas forcément de (J_2, y_2) !!).

Le résultat suivant est immédiat.

Lemme 1.5 Si f est de classe C^k sur $I \times D$, alors pour toute solution locale (J, y), y est de classe C^{k+1} sur J.

1.2 Exemples

1. Le problème

$$\begin{cases} \dot{y} = -2ty^2 \\ y(0) = 1 \\ I = \mathbb{R} \end{cases}$$

admet une unique solution globale $(\mathbb{R}, \frac{1}{1+t^2})$.

2. Le problème

$$\begin{cases} \dot{y} = +2ty^2 \\ y(0) = 1 \\ I = \mathbb{R} \end{cases}$$

admet une unique solution maximale $(]-1,+1[,\frac{1}{1-t^2})$

3. On considére le problème

$$\begin{cases} \dot{y} = -y^2 \\ y(0) = 1 \end{cases}$$

Avec $I = \mathbb{R}_+$ le problème admet une solution globale $y(t) = \frac{1}{1+t}$.

Avec $I = \mathbb{R}$ le problème admet une solution maximale $(]-1,+\infty[,\frac{1}{1+t})$ qui est non globale.

4. Le problème

$$\begin{cases} \dot{y} = y^2 \\ y(0) = 1 \\ I = \mathbb{R} \end{cases}$$

admet une solution maximale $(]-\infty,1[,\frac{1}{1-t})$

5. Attention : le temps d'existence ne dépend pas de manière sympathique du second membre : le problème

$$\begin{cases} \dot{y} = y^2 - \varepsilon y^3 \\ y(0) = 1 \end{cases}$$

admet une solution globale définie sur (] $-T_{\varepsilon}$, $+\infty$ [) avec $T_{\varepsilon}<\infty$ et même $T_{\varepsilon}\to\infty$, $\varepsilon\to0$.

6. Attention si le second membre n'est pas "régulier", on perd l'unicité : le problème

$$\begin{cases} \dot{y} = 2\sqrt{|y|}(1+y) \\ y(0) = 0 \\ I = \mathbb{R}_+ \end{cases}$$

3

admet (évidemment) $(\mathbb{R}_+,0)$ pour solution globale, mais aussi toutes les solutions maximales

$$a \ge 0, \quad \begin{cases} y_a = 0 & t \in [0, a] \\ y_a = \tan^2(t - a), & t \in [a, a + \frac{\pi}{2}]. \end{cases}$$

(on peut montrer qu'il n'y a pas d'autre solution maximale).

1.3 Lemme de Gronwall

Lemme 1.6 Soit $t_0 \in I$ et $u : I \to \mathbb{R}_+$ une fonction positive et continue, et deux fonctions $f, g \in \mathcal{C}(I, \mathbb{R}_+)$ telles que

$$\forall t \in I, \quad u(t) \le f(t) + \left| \int_{t_0}^t u(s)g(s)ds \right|.$$

Alors

$$\forall t \in I, \quad u(t) \le f(t) + \left| \int_{t_0}^t f(s)g(s) \exp\left(\left| \int_s^t g(\sigma) d\sigma \right|\right) ds \right|.$$

Preuve. On considère tout d'abord le cas $t \ge t_0$.

On définit la fonction

$$Y(t) = \int_{t_0}^t u(s)g(s)\mathrm{d}s \ge 0.$$

On a $Y(t_0) = 0$, et par hypothèse

$$Y'(t) = u(t)g(t) \le f(t)g(t) + g(t)Y(t).$$

On calcule alors

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big(Y(t) e^{-\int_{t_0}^t g(s) \mathrm{d}s} \Big) \leq (f(t)g(t) + g(t)Y(t) - Y(t)g(t)) e^{-\int_{t_0}^t g(s) \mathrm{d}s}
= f(t)g(t) e^{-\int_{t_0}^t g(s) \mathrm{d}s}.$$

En intégrant entre t_0 et t, on trouve

$$Y(t)e^{-\int_{t_0}^t g(s)ds} \le \int_{t_0}^t f(s)g(s)e^{-\int_{t_0}^s g(\sigma)d\sigma}ds$$

d'où

$$Y(t) \le \int_{t_0}^t f(s)g(s)e^{\int_s^t g(\sigma)d\sigma}ds.$$

Mais par hypothèse, on a

$$u(t) \le f(t) + Y(t)$$

ce qui donne le résultat.

On considére maintenant le cas $t \le t_0$. Dans cette situation, on a $Y(t) \le 0$, et

$$Y'(t) \le u(t)g(t) - g(t)Y(t).$$

En calculant comme précédemment, on trouve

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big(Y(t) e^{\int_{t_0}^t g(s) \mathrm{d}s} \Big) \le f(t) g(t) e^{\int_{t_0}^t g(s) \mathrm{d}s}.$$

et en intégrant entre t et t_0 ,

$$-Y(t)e^{\int_{t_0}^t g(s)\mathrm{d}s} \le \int_t^{t_0} f(s)g(s)e^{\int_{t_0}^s g(\sigma)\mathrm{d}\sigma}\mathrm{d}s$$

d'où

$$-Y(t) \leq \int_{t}^{t_0} f(s)g(s)e^{\int_{t}^{s} g(\sigma)d\sigma}ds$$
$$\leq \left| \int_{t_0}^{t} f(s)g(s)e^{\left| \int_{s}^{t} g(\sigma)d\sigma \right|}ds \right|$$

et on conclut en remarquant que l'hypothèse s'écrit dans ce cas

$$u(t) \le f(t) - Y(t).$$

Corollaire 1.7 ($f \equiv c_1$) Sous les hypothèses précédentes, si f est une fonction constante égale à $c_1 \geq 0$, on a

$$\forall t \in I, \quad u(t) \le c_1 \exp\left(\left|\int_{t_0}^t g(\sigma) d\sigma\right|\right).$$

Preuve. Le lemme précédent montre que

$$u(t) \le c_1 \left(1 + \left| \int_{t_0}^t g(s) \exp\left(\left| \int_s^t g(\sigma) d\sigma \right| \right) ds \right| \right).$$

Supposons que $t \ge t_0$, on a

$$g(s) \exp \left(\int_{s}^{t} g(\sigma) d\sigma \right) = -\frac{d}{ds} \exp \left(\int_{s}^{t} g(\sigma) d\sigma \right)$$

ce qui donne directement le résultat. Le résultat pour $t \le t_0$ se montre de manière identique.

Remarque 1.8 Si $f \equiv 0$ dans le corollaire précédent, le résultat montre que $u \leq 0$.

Corollaire 1.9 ($f \equiv c_1, g \equiv c_2$) Sous les hypothèses précédentes, si f est une fonction constante égale à $c_1 \geq 0$ et g une fonction constante égale à $c_2 \geq 0$ alors on a

$$\forall t \in I, \quad u(t) \le c_1 \exp(c_2|t - t_0|).$$

2 Le cas Lipschitz

On se place toujours dans un espace de Banach E. Soit D un ouvert connexe de E, I un intervalle de \mathbb{R} d'intérieur non vide, et $f: I \times D \to E$.

Définition 2.1

1. On dit que f est (globalement) Lipschitzienne par rapport à x si il existe $L \geq 0$ telle que

$$\forall x_1, x_2 \in D, \quad \forall t \in I, \quad \|f(t, x_1) - f(t, x_2)\|_E \le L \|x_1 - x_2\|_E.$$

2. On dit que f est localement Lipschitzienne par rapport à x si pour tout $(t_0, x_0) \in I \times D$, il existe un voisinage \mathcal{V} de (t_0, x_0) et une constante $L(t_0, x_0) \geq 0$ tels que

$$\forall (t, x_1) \in \mathcal{V}, \quad \forall (t, x_2) \in \mathcal{V}, \quad \|f(t, x_1) - f(t, x_2)\|_{E} \le L(t_0, y_0) \|x_1 - x_2\|_{E}.$$

On rappelle le

Théorème 2.2 (du point fixe) Soit X un fermé de E, et $F: X \to X$ contractante. Alors F admet un unique point fixe $y \in X$ tel que F(y) = y.

2.1 Le cas global

Théorème 2.3 (Existence et unicité globale) On suppose que D = E, et $f \in C(I \times D)$ une fonction **globalement lipschitzienne** par rapport à x. Alors pour tout $y_0 \in D$, il existe une unique solution globale au problème de Cauchy (1). De plus toute solution locale est une restriction de celle-ci.

Preuve. On suppose tout d'abord que l'intervalle I est fermé et borné.

On pose $\mathcal{E} = \mathcal{C}(I, E)$ l'ensemble des fonctions continues de I dans E, muni de la norme

$$||y||_{\mathcal{E}} = \max_{t \in I} e^{-2L|t-t_0|} ||y(t)||_{E}$$

où L est la constante de Lipschitz de f. Il est clair que \mathcal{E} est un espace vectoriel normé complet (car I est compact).

On définit la transformation $\mathcal{T}: \mathcal{E} \to \mathcal{E}$ par la formule

$$\forall t \in I, \quad (\mathcal{T}y)(t) = y_0 + \int_{t_0}^t f(s, y(s)) \, \mathrm{d}s.$$

Il est clair que \mathcal{T} envoie bien \mathcal{E} dans lui-même.

Supposons que $t \ge t_0$. On a

$$\|\mathcal{T}y_{1}(t) - \mathcal{T}y_{2}(t)\|_{E} \leq \int_{t_{0}}^{t} L\|y_{1}(s) - y_{2}(s)\|_{E} ds$$

$$\leq \int_{t_{0}}^{t} Le^{2L|s-t_{0}|} \|y_{1} - y_{2}\|_{\mathcal{E}} ds$$

$$\leq \frac{1}{2}e^{2L|t-t_{0}|} \|y_{1} - y_{2}\|_{\mathcal{E}}$$

la même inégalité étant valable pour $t \leq t_0$. On trouve donc que pour tout y_1 et y_2 dans \mathcal{E} , on a

$$\|\mathcal{T}y_1 - \mathcal{T}y_2\|_{\mathcal{E}} \le \frac{1}{2}\|y_1 - y_2\|_{\mathcal{E}}.$$

L'application \mathcal{T} est donc contractante de \mathcal{E} dans \mathcal{E} et le théorème du point fixe montre l'existence d'une unique solution.

Si maintenant I n'est pas fermé et borné. Alors on peut toujours écrire

$$I=\bigcup_{n\in\mathbb{N}}I_n,\quad \text{avec pour tout }n,\quad I_n\subset I_{n+1}\quad \text{et}\quad I_n\quad \text{ferm\'e et born\'e}.$$

Soit y_n la soluton sur I_n . Par unicité, on a

$$y_{n+1}\big|_{I_n} = y_n.$$

On définit alors y par la formule $y=y_n$ sur I_n , ce qui donne l'existence et l'unicité de la solution.

Soit maintenant (\tilde{y}, \tilde{I}) , $\tilde{I} \subset I$, une autre solution. On décompose $\tilde{I} = \bigcup_{n \in \mathbb{N}} \tilde{I}_n$ avec $\tilde{I}_n = \tilde{I} \cap I_n$ borné. Par unicité, on a $\tilde{y} \big|_{\tilde{I}_n} = y \big|_{\tilde{I}_n}$, ce qui montre que $\tilde{y} = y \big|_{\tilde{I}}$.

Proposition 2.4 Dans le cadre du théorème précédent, soit y_1 et y_2 deux solutions. Alors

$$\forall t \in I, \quad \|y_1(t) - y_2(t)\|_E \le e^{L|t - t_0|} \|y_1(t_0) - y_2(t_0)\|_E$$

2.2 Existence locale

On considère toujours I un intervalle d'intérieur non vide de \mathbb{R} , et D un ouvert connexe d'un espace de Banach E. Pour $y_0 \in D$ et r > 0, on définit la boule

$$B_r(y_0) = \{ y \in E, | \|y - y_0\|_E \le r \}.$$

Théorème 2.5 (Existence locale) Soit $f \in C(I \times D, E)$. Soient η , r, M et L des constantes telles que

$$\begin{aligned} &[t_{0} - \eta, t_{0} + \eta] \times B_{r}(y_{0}) \subset I \times D \\ &\forall (t, y) \in [t_{0} - \eta, t_{0} + \eta] \times B_{r}(y_{0}), \quad \|f(t, y)\|_{E} \leq M \\ &\forall (t, y_{1}), (t, y_{2}) \in [t_{0} - \eta, t_{0} + \eta] \times B_{r}(y_{0}), \quad \|f(t, y_{1}) - f(t, y_{2})\|_{E} \leq L \|y_{1} - y_{2}\|_{E} \end{aligned}$$

Alors il existe (J, y) une solution locale de (1), avec

$$J = [t_0 - \tilde{\eta}, t_0 + \tilde{\eta}], \quad où \quad \tilde{\eta} = \min(\eta, \frac{r}{2M}).$$

Remarque 2.6 Si f est **localement Lipschitzienne**, alors il est clair qu'elle vérifie les hypothèses précédentes.

Preuve. Soit $\theta \in \mathcal{C}^1(\mathbb{R}_+)$ une fonction telle que

$$\theta(x) = 1 \quad x \le 1/2$$

$$\theta(x) = 0 \quad x \ge 1$$

$$|\theta(x)| \le 1 \quad x \in [1/2, 1]$$

On pose

$$F(t,y) = \begin{cases} \theta \left(\frac{\|y - y_0\|_E}{r} \right) f(t,y) & (t,y) \in [t_0 - \eta, t_0 + \eta] \times B_r(y_0), \\ 0 & (t,y) \in [t_0 - \eta, t_0 + \eta] \times E \setminus B_r(y_0) \end{cases}$$

On montre facilement que F(t,y) est globalement lipschitzienne sur $[t_0 - \eta, t_0 + \eta] \times E$. De plus, on a $\|F(t,y)\|_E \leq M$. Par le théorème précédent, on en déduit qu'il existe une unique solution globale au problème

$$\begin{cases} y'(t) = F(t, y(t)) \\ y(t_0) = y_0. \end{cases}$$

De plus, en utilisant l'équation intégrale, on voit facilement que

$$||y(t) - y(t_0)||_E \le M|t - t_0|.$$

Maintenant, par définition de $\tilde{\eta}$ on a

$$|t - t_0| \le \tilde{\eta} \Longrightarrow |t - t_0| \le \frac{r}{2M}$$

et donc

$$||y(t) - y(t_0)||_E \le \frac{r}{2}.$$

Or pour t et y tels que $|t - t_0| \le \tilde{\eta}$ et $y \in B_r(y_0)$ on a F(t, y) = f(t, y), et donc y est solution de (1) sur l'intervalle annoncé.

2.3 Unicité locale

Lemme 2.7 Soit f une fonction localement lipschitzienne par rapport à x, et soient $J \subset I$ un compact de I et $K \subset D$ un compact de D. Alors f est uniformément lipschitizienne par rapport à x sur $J \times K$.

Preuve. Soit $M = \max_{(t,y) \in J \times K} \|f(t,y)\|_E$. Par hypothèse, pour tout $(t,y) \in J \times K$, il existe L(t,y) et un voisinage $\mathcal{U}_t \times \mathcal{V}_x$ de (t,y) dans $I \times D$ tels que

$$\forall (s, y_1), (s, y_2) \in \mathcal{U}_t \times \mathcal{V}_x, \quad \|f(s, y_1) - f(s, y_2)\|_E \le L(t, y) \|y_1 - y_2\|_E.$$

On peut toujours supposer que $V_y = B_{r(y)}(y)$ pour un certain r(y) > 0. Puisque $J \times K$ est compact, il existe $(t_i, y_i) \in J \times K$, i = 1, ..., n, tels que

$$J \times K \subset \bigcup_{i=1}^{n} \mathcal{U}_{t_i} \times B_{r(y_i)/2}(y_i).$$

On pose alors

$$L = \max_{i=1,...,n} L(t_i, y_i)$$
 et $r = \min_{i=1,...,n} r(y_i)$.

Soient (t, y_1) et (t, y_2) des élements de $J \times K$. Il existe un indice i_0 tel que

$$(t, y_1) \in \mathcal{U}_{t_{i_0}} \times B_{r(y_{i_0})/2}(y_{i_0}).$$

On distingue alors deux cas:

Cas 1: $||y_1 - y_2||_F \le r/2$. Dans ce cas on a $y_2 \in B_r(y_{i_0})$ et donc par hypothèse

$$||f(t, y_1) - f(t, y_2)||_E \le L||y_1 - y_2||_E$$
.

Cas 2: $||y_1 - y_2||_E > r/2$. On a alors

$$||f(t,y_1) - f(t,y_2)||_E \le 2M \le \frac{4M}{r} ||y_1 - y_2||_E.$$

On conclut en prenant la constante de Lipschitz $L_0 := \max(\frac{4M}{r}, L)$.

Théorème 2.8 (Unicité locale) Soit $f: I \times D \to E$ une fonction continue, **localement lipschitzienne** par rapport à x. Soient (J_1, y_1) et (J_2, y_2) deux solutions locales du problème de Cauchy

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0. \end{cases}$$

Alors

$$y_1\big|_{J_1\cap J_2} = y_2\big|_{J_1\cap J_2}$$
.

Preuve. Soit $I \subset J_1 \cap J_2$ un intervalle compact, et soit $K = y_1(I) \cup y_2(I)$ qui est donc compact. Le lemme précédent implique que f est globalement lipschitzienne sur $J \times K$. On en déduit (voir la Proposition 2.4) que $y_1\big|_I = y_2\big|_I$. Le fait que I soit un compact arbitraire de $J_1 \cap J_2$ montre le résultat.

Corollaire 2.9 Sous les hypothèses du théorème précédent, si deux solutions de l'équation y'(t) = f(t, y(t)) coïncident en un point, elle coïncident sur l'intersection de leurs domaines de définition.

2.4 Solution maximale

Corollaire 2.10 (Existence d'une unique solution maximale) Sous les hypothèses du théorème 2.8, il existe une unique solution maximale (J, y) au problème (1). De plus, J est ouvert dans I.

Preuve. On pose

$$t^+ = \sup \{ \tilde{t} \mid \text{il existe une solution sur } [t_0, \tilde{t}] \}.$$

et

$$t^- = \inf \{ \tilde{t} \mid \text{il existe une solution sur } [\tilde{t}, t_0] \}.$$

On définit une solution sur $]t^-,t^+[$ en "recollant les morceaux" de la façon suivante : si $t\in]t^-,t^+[$ avec $t>t_0$, alors il existe $\tilde t>t$ tel que $([t_0,\tilde t],\tilde y)$ soit solution. On pose alors $y(t)=\tilde y(t)$. Par unicité locale, ceci définit bien une solution.

Supposons maintenant que t^+ soit dans l'intérieur (relatif) de I. Alors on peut résoudre le problème

$$\begin{cases} \tilde{y}'(t) &= f(t, \tilde{y}(t)) \\ \tilde{y}(t^+) &= y(t^+) \end{cases}$$

ce qui fournit une solution sur $[t^+,t^++\varepsilon]$ pour un certain $\varepsilon>0$. Ceci est impossible. Le même raisonnement montre que t^+ et t^- ne sont pas dans l'intérieur de I.

3 Le cas continu en dimension finie

3.1 Le théorème d'Ascoli

Définition 3.1 Soit $(g_n)_{n\in\mathbb{N}}$ une suite de fonctions de I and E. On dit que $(g_n)_{n\in\mathbb{N}}$ est équicontinue si

$$\forall t \in I, \ \forall \varepsilon > 0, \quad \exists \delta > 0, \quad \forall n \in \mathbb{N}, \forall t' \in I, |t - t'| < \delta \Longrightarrow ||g_n(t') - g_n(t)| < \varepsilon$$

Théorème 3.2 Soit $(g_n)_{n\in\mathbb{N}}$ une suite de fonctions de I, intervalle fermé borné de \mathbb{R} , dans E, équicontinue et de plus uniformément bornée par $M \in \mathbb{R}_+$, i.e.

$$\forall n \in \mathbb{N}, \quad ||g_n||_{\infty} := \sup_{t \in I} ||g_n(t)||_E \le M.$$

On peut extraire une sous-suite $(g_{n_k})_{k\in\mathbb{N}}$ de $(g_n)_{n\in\mathbb{N}}$ qui converge uniformément sur I vers une fonction g continue sur I.

La preuve ne fait pas partie du programme de ce cours.

3.2 Solutions approchées

On suppose ici que $E=\mathbb{R}^d$ est de dimension finie. I est toujours un intervalle de \mathbb{R} et $D\subset E$ un ouvert connexe. On considère à nouveau le problème de Cauchy

$$\begin{cases} x'(t) = f(t, x(t)), \\ x(t_0) = x_0 \end{cases}$$

avec $f: I \times D \to E$ continue.

Définition 3.3 Soit $\varepsilon > 0$, $J \subset I$ et $x : J \to D$. On dit que (J,x) est une ε -solution approchée si

- J est d'intérieur non vide et $t_0 \in J$,
- $x \in \mathcal{C}(J; D)$,
- $x(t_0) = x_0$,
- pour tout $t \in J$,

$$\left\| x(t) - x_0 - \int_{t_0}^t f(s, x(s)) \, \mathrm{d}s \right\|_{\mathbb{R}^d} \le \varepsilon.$$

Lemme 3.4 Soit $f \in C(I \times D; E)$ et $(t_0, x_0) \in I \times D$. Soient $\eta, r > 0$ tels que $I_{\eta} = [t_0 - \eta, t_0 + \eta] \subset I$ et $\overline{B_r(x_0)} \subset D$. On pose

$$C_{\eta,r} = I_{\eta} \times \overline{B_r(x_0)}, \quad M = \max_{(t,x) \in C_{\eta,r}} \|f(t,x)\|_{\mathbb{R}^d} \quad et \quad \tilde{\eta} = \min(\eta, \frac{r}{M}).$$

Alors pour tout $\varepsilon > 0$, il existe une ε -solution approchée $x_{\varepsilon} \in \mathcal{C}(I_{\tilde{\eta}}, \overline{B_r(x_0)})$. De plus,

$$\forall (t,s) \in I_{\tilde{n}}^2, \quad \|x_{\varepsilon}(t) - x_{\varepsilon}(s)\|_{\mathbb{P}^d} \le M|t - s|.$$

Preuve. L'ensemble $C_{\eta,r}$ étant compact, la fonction $f|_{C_{\eta,r}}$ est uniformément continue (hypothèse de dimension finie). Donc pour tout $\varepsilon > 0$, il existe $\delta > 0$ tels que

$$\max(\|x - \bar{x}\|_{\mathbb{R}^d}, |t - \bar{t}|) < \delta \Longrightarrow \|f(t, x) - f(\bar{t}, \bar{x})\|_{\mathbb{R}^d} \le \frac{\varepsilon}{\tilde{n}}.$$
 (3)

Considérons alors des points t_j , $j = -n, \ldots, n$, tels que

$$t_0 - \tilde{\eta} = t_{-n} < t_{-n+1} < \dots < t_0 < \dots < t_n = t_0 + \tilde{\eta}$$

et tels que

$$\max_{j=-n,\dots,n-1} |t_{i+1} - t_i| \le \min\left(\delta, \frac{\delta}{M}.\right)$$

On définit alors

$$x_{\varepsilon}(t) = \left\{ \begin{array}{ll} x_{\varepsilon}(t_i) + (t-t_i)f(t_i, x_{\varepsilon}(t_i)) & \text{pour} \quad t \in [t_i, t_{i+1}], \quad i \geq 0, \\ \\ x_{\varepsilon}(t_{i+1}) + (t-t_{i+1})f(t_{i+1}, x_{\varepsilon}(t_{i+1})) & \text{pour} \quad t \in [t_i, t_{i+1}], \quad i \leq -1. \end{array} \right.$$

A priori, cette fonction est définie sur un intervalle du type $[t_{-\tilde{K}}, t_K]$ avec $\tilde{K}, K \leq n$ où K est défini comme le plus petit indice pour lequel il existe $t \in [t_{K-1}, t_K]$ tel que $x_{\varepsilon}(t_i) + (t - t_i) f(t_i, x_{\varepsilon}(t_i))$ ne soit pas dans $\overline{B_r(x_0)}$ (\tilde{K} est défini similairement). Pour $t \in [t_0, t_K]$ on a

$$||x_{\varepsilon}(t) - x_{\varepsilon}(t_{0})||_{\mathbb{R}^{d}} \leq ||x_{\varepsilon}(t) - x_{\varepsilon}(t_{K-1})||_{\mathbb{R}^{d}} + \sum_{\ell=1}^{K-1} ||x_{\varepsilon}(t_{\ell}) - x_{\varepsilon}(t_{\ell-1})||_{\mathbb{R}^{d}}$$

$$\leq (t - t_{K-1}) ||f(t_{K-1}, x_{\varepsilon}(t_{K-1}))||_{\mathbb{R}^{d}}$$

$$+ \sum_{\ell=1}^{K-1} (t_{\ell} - t_{\ell-1}) ||f(t_{\ell-1}, x_{\varepsilon}(t_{\ell-1}))||_{\mathbb{R}^{d}}$$

$$\leq M(t - t_{0})$$

$$\leq M\tilde{\eta} \leq r.$$

Ainsi on obtient que x_{ε} ne sort pas de $\overline{B_r(x_0)}$ et ceci montre que K=n. Le même raisonnement montre que $\tilde{K}=n$, et de plus pour t et s dans $I_{\tilde{\eta}}$ on a

$$||x_{\varepsilon}(t) - x_{\varepsilon}(s)||_{\mathbb{R}^d} \le M|t - s|.$$
 (4)

Enfin, pour $0 \le \ell < n$ et $t \in [t_0, t_{\ell+1}]$, on a

$$x_{\varepsilon}(t) - x_{0} - \int_{t_{0}}^{t} f(s, x_{\varepsilon}(s)) \, \mathrm{d}s$$

$$\leq (t - t_{\ell}) f(t_{\ell}, x_{\varepsilon}(t_{\ell})) + \sum_{i=0}^{\ell-1} (t_{i+1} - t_{i}) f(t_{i}, x_{\varepsilon}(t_{i})) - \int_{t_{0}}^{t} f(s, x_{\varepsilon}(s)) \, \mathrm{d}s$$

$$= \int_{t_{0}}^{t} f(t_{\ell}, x_{\varepsilon}(t_{\ell})) - f(s, x_{\varepsilon}(s)) \, \mathrm{d}s + \sum_{i=0}^{\ell-1} \int_{t_{i}}^{t_{i+1}} f(t_{i}, x_{\varepsilon}(t_{i})) - f(s, x_{\varepsilon}(s)) \, \mathrm{d}s$$

Notons que pour un i fixé et $s \in [t_i, t_{i+1}]$, on a évidemment $|s - t_i| < \delta$ et

$$||x_{\varepsilon}(t_i) - x_{\varepsilon}(s)||_{\mathbb{R}^d} \le M|t_i - s| \le M\frac{\delta}{M} = \delta.$$

L'inégalité (3) peut donc s'appliquer, et on obtient

$$\|x_{\varepsilon}(t) - x_0 - \int_{t_0}^t f(s, x_{\varepsilon}(s)) ds\|_{\mathbb{R}^d} \le \frac{\varepsilon}{\tilde{\eta}}(t - t_0) \le \varepsilon.$$

Le même raisonnement pour $t \le t_0$ montre le résultat.

Théorème 3.5 (Cauchy Peano) Avec les notations et les hypothèses utilisées dans le lemme précédent, il existe au moins une solution locale définie sur $I_{\tilde{\eta}}$. De plus $x \in \mathcal{C}^1(I_{\tilde{\eta}}, \overline{B_r(x_0)})$.

Preuve. On utilise le lemme précédent, avec $\varepsilon = \frac{1}{n}$. On note $x_n \in \mathcal{C}(I_{\tilde{\eta}}, \overline{B_r(x_0)})$ la

 $\frac{1}{n}$ -solution approchée. Le point important ici est que $\tilde{\eta}$ et M ne dépendent pas de n dans l'estimation (4).

On utilise le théorème d'Ascoli pour la suite $(x_n)_{n\in\mathbb{N}}$. En vertu de l'estimation (4), $(x_n)_{n\in\mathbb{N}}$ est équicontinue (il suffit de prendre $\delta=\frac{\varepsilon}{M}$). De plus, on a montré que

$$\forall n \in \mathbb{N}, \forall t \in I_{\tilde{\eta}}, ||x_n(t)||_{\mathbb{R}^d} \le r$$

et donc $(x_n)_{n\in\mathbb{N}}$ est uniformément bornée. On en déduit donc qu'il existe une sous-suite $(x_{n_k})_{k\in\mathbb{N}}$ qui converge vers $x\in\mathcal{C}(I_{\tilde{\eta}},\overline{B_r(x_0)})$. Enfin, pour tout $k\in\mathbb{N}$, on a

$$\left\| x_{n_k}(t) - x_0 - \int_{t_0}^t f(s, x_{n_k}(s)) \, \mathrm{d}s \right\|_{\mathbb{R}^d} \le \frac{1}{n_k},$$

ce qui montre que l'expression du membre de gauche tend vers 0 quand k tend vers $+\infty$. Mais on a vu que x_{n_k} tend vers x uniformément sur $I_{\tilde{\eta}}$. Ceci implique en particulier que

$$\int_{t_0}^t f(s, x_{n_k}(s)) ds \longrightarrow \int_{t_0}^t f(s, x(s)) ds, \quad \text{pour} \quad k \to +\infty.$$

On en déduit donc que

$$\forall t \in I_{\tilde{\eta}}, \quad x(t) - x_0 - \int_{t_0}^t f(s, x(s)) \, ds = 0,$$

ce qui montre le résultat.

Remarque 3.6 En dimension infinie, le théorème est faux. Il faut faire une hypothèse du type que l'image $f(I_{\tilde{\eta}}, \overline{B_r(y_0)})$ est compacte.

Théorème 3.7 Sous les hypothèses précédentes, il existe une solution maximale définie sur un intervalle J ouvert dans I.

Remarque 3.8 En fait pour toute solution locale, il existe une solution maximale qui la prolonge.

4 Dépendance continue

On considère cette fois $f: I \times E \to E$ une fonction globalement Lipschitzienne par rapport à y. On note $t \to y(t, y_0)$ la solution du problème de Cauchy

$$\dot{y}(t) = f(t, y(t)),$$

$$y(t_0) = y_0.$$

La proposition suivante montre la continuité de la solution par rapport à la condtion initiale y_0 .

Proposition 4.1 Avec les notations précédentes, pour tout intervalle J compact inclus dans I, l'application

$$E \rightarrow \mathcal{C}(J, E)$$

$$y_0 \mapsto y_0(t,y_0)$$

est continue, et de plus pour tout y_0 et \tilde{y}_0 dans E, on a l'estimation

$$\forall t \in J, \quad \|y(t, y_0) - y(t, \tilde{y}_0)\|_E \le e^{L|t - t_0|} \|y_0 - \tilde{y}_0\|_E$$

Preuve. On a par définition pour tout $J \subset I$ compact,

$$\forall t \in J, \quad y(t, y_0) = y_0 + \int_{t_0}^t f(s, y(s, y_0)) ds.$$

d'où

$$y(t, y_0) - y(t, \tilde{y}_0) = y_0 - \tilde{y}_0 + \int_{t_0}^t f(s, y(s, y_0)) - f(s, y(s, \tilde{y}_0)) ds,$$

ce qui donne la majoration

$$\forall t \in J, \quad \|y(t, y_0) - y(t, \tilde{y}_0)\|_E \le \|y_0 - \tilde{y}_0\|_E + L \int_{t_0}^t \|y(s, y_0)\|_E \, \mathrm{d}s.$$

Le lemme de Gronwall donne alors immédiatement le résultat.

On vérifiera en exercice qu'en fait l'application

$$J \times E \rightarrow E$$
$$(t, y_0) \mapsto y(t, y_0)$$

est continue.

On se place maintenant dans le cas localement Lipschitz décrit plus haut.

Proposition 4.2 Avec les notations habituelles, soit $f: I \times D \to E$ une fonction localement lipschitizienne. Alors pour tout y_0 dans D, il existe un voisinage V de y_0 et $\eta > 0$ tel que pour tout \tilde{y}_0 dans V, il existe une unique solution sur l'intervalle $I_{\eta} = [t_0 - \eta, t_0 + \eta]$. De plus l'application

$$\mathcal{V} \rightarrow \mathcal{C}(I_{\eta}, D)$$

$$\tilde{y}_0 \mapsto y(\cdot, \tilde{y}_0)$$

est continue.

Preuve. On reprend la construction du théorème 2.5 (Existence d'une unique solution). Partant de l'hypothèse f continue et localement lipschitzienne sur $[t_0 - \eta, t_0 + \eta] \times B_r(y_0)$, on a obtenu l'existence d'une solution unique sur l'intervalle $[t_0 - \tilde{\eta}, t_0 + \tilde{\eta}]$ avec $\tilde{\eta} = \min(\eta, r/(2M))$. De plus, la solution obtenue satisfait

$$||y(t, y_0) - y_0||_E \le \frac{r}{2},$$

de sorte que $y(t, y_0)$) ne "sort" pas de la boule de centre y_0 et de rayon r/2. Considérons maintenant $\tilde{y}_0 \in B_{r/4}(y_0)$. On peut à nouveau construire une solution sur un intervalle $[t_0 - \mu, t_0 + \mu]$ en prenant cette fois $\mu = \min(\eta, r/(4M))$, de sorte que

$$||y(t, \tilde{y}_0) - \tilde{y}_0||_E \le \frac{r}{4}.$$

Ainsi, on a:

$$||y(t, \tilde{y}_0) - y_0||_E \le ||y(t, \tilde{y}_0) - \tilde{y}_0||_E + ||\tilde{y}_0 - y_0||_E \le \frac{r}{2},$$

c'est-à-dire que $y(t, \tilde{y}_0)$ ne sort pas de la boule $B_{r/2}(y_0)$ sur l'intervalle

$$[t_0 - \mu, t_0 + \mu] \subset [t_0 - \eta, t_0 + \eta].$$

Donc les deux solutions $y(t, y_0)$ et $y(t, \tilde{y}_0)$ sont bien définies sur $[t_0 - \mu, t_0 + \mu]$ et restent dans $B_{r/2}(y_0)$. Elles coincident donc avec les solutions de

$$\dot{y} = F(t, y)$$

avec conditions initiales $y(t_0, y_0) = y_0$ et $y(t, \tilde{y}_0) = \tilde{y}_0$. Comme F est globalement lipschitzienne, on a la dépendance continue.

On se place ci-dessous dans le cas $D = E = \mathbb{R}^d$.

Proposition 4.3 Soit $f: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ une fonction continue et localement lipschitzienne par rapport à y, et soient $y_0 \in \mathbb{R}^d$, $t_0 \in \mathbb{R}$, et (J, y) la solution maximale du problème de Cauchy

$$\begin{cases} \dot{y}(t) = f(t, y(t)) \\ y(t_0) = y_0. \end{cases}$$

Alors on peut écrire J sous la forme $J=]T^-(y_0), T^+(y_0)[$ et de plus, pour tout $\varepsilon>0$, il existe un $R_{\varepsilon}>0$ tel que

$$\forall \, \tilde{y}_0 \in B_{R_{\varepsilon}}(y_0), \quad \left\{ \begin{array}{ll} T^+(\tilde{y}_0) \geq T^+(y_0) - \varepsilon & (\textit{resp.} \quad \frac{1}{\varepsilon} \quad \textit{si} \quad T^+(y_0) = +\infty) \\ \\ T^-(\tilde{y}_0) \leq T^-(y_0) + \varepsilon & (\textit{resp.} \quad -\frac{1}{\varepsilon} \quad \textit{si} \quad T^-(y_0) = -\infty) \end{array} \right.$$

En outre, l'application (respectivement la même application où les bornes de l'intervalle de définition sont modifiées en $\pm 1/\varepsilon$ selon la valeur de $T^{\pm}(y_0)$)

$$B_{R_{\varepsilon}}(y_0) \to \mathcal{C}([T^-(y_0) + \varepsilon, T^+(y_0) - \varepsilon], \mathbb{R}^d)$$

$$\tilde{y}_0 \mapsto y(\cdot, \tilde{y}_0)$$
(5)

est Lipschitz.

Preuve. On pose

$$T_{\varepsilon}^{+} = \min\left(\frac{1}{\varepsilon}, T^{+}(y_0) - \varepsilon\right) \quad \text{et} \quad T_{\varepsilon}^{-} = \max\left(-\frac{1}{\varepsilon}, T^{-}(y_0) + \varepsilon\right),$$

et

$$M_{\varepsilon} = \sup_{t \in [T_{\varepsilon}^{-}, T_{\varepsilon}^{+}]} \|y(t, y_{0})\|_{\mathbb{R}^{d}}.$$

Soit $\theta \in \mathcal{C}^1(\mathbb{R}_+)$ une fonction satisfaisant

$$\theta(x) = \begin{cases} 1 & \text{si} \quad x \in [0, 1] \\ 0 & \text{si} \quad x \ge 2 \\ \in [0, 1] & \text{pour tout} \quad x \in \mathbb{R}^+. \end{cases}$$

On pose

$$F_{\varepsilon}(t,y) = \theta\left(\frac{\|y\|_{\mathbb{R}^d}}{2M}\right) f(t,y).$$

Il est clair que $y\left|_{[T_{\varepsilon}^-,T_{\varepsilon}^+]}\right|$ est solution du problème

$$\begin{cases} \dot{y}(t) = F_{\varepsilon}(t, y(t)) \\ y(t_0) = y_0. \end{cases}$$
 (6)

Pour tout $\tilde{y}_0 \in \mathbb{R}^d$, on note $y_{\varepsilon}(\cdot, \tilde{y}_0)$ la solution globale (car F_{ε} est globalement lipschitzienne par rapport à y) correspondant au système (6) ayant pour valeur initiale \tilde{y}_0 en t_0 . On a alors (grâce au lemme de Gronwall) que pour tout $t \in [T_{\varepsilon}^-, T_{\varepsilon}^+]$,

$$||y_{\varepsilon}(t, \tilde{y}_0) - y_{\varepsilon}(t, y_0)||_{\mathbb{P}^d} \le e^{L_{\varepsilon}|t - t_0||} ||y_0 - \tilde{y}_0||_{\mathbb{P}^d}$$

On voit donc que si

$$\|\tilde{y}_0 - y_0\|_{\mathbb{R}^d} \le R_{\varepsilon} := M_{\varepsilon} \exp\left(-L_{\varepsilon} \max(|T_{\varepsilon}^- - t_0|, |T_{\varepsilon}^+ - t_0|)\right)$$

on a

$$\|y_{\theta}(t, \tilde{y}_0) - y_{\varepsilon}(t, y_0)\|_{\mathbb{R}^d} \le M_{\varepsilon}$$

pour $t \in [T_{\varepsilon}^-, T_{\varepsilon}^+]$. En particulier, pour tout $\tilde{y}_0 \in B_R(y_0)$ et tout $t \in [T_{\varepsilon}^-, T_{\varepsilon}^+]$, on a $\|y_{\varepsilon}(t, \tilde{y}_0)\| \leq 2M_{\varepsilon}$, et donc y_{ε} est en fait solution du problème avec f(t, y) comme second membre, c'est-à-dire qu'on a $y_{\varepsilon}(t, \tilde{y}_0) = y(t, \tilde{y}_0)$. Ceci montre donc que pour tout $\tilde{y}_0 \in B_{R_{\varepsilon}}(y_0)$ on a $T^-(\tilde{y}_0) \leq T_{\varepsilon}^-$ et $T^+(\tilde{y}_0) \geq T_{\varepsilon}^+$. La majoration précédente montre de plus que l'application (5) est Lipschitz.

Remarque 4.4 Si f est de classe C^1 , alors on peut montrer (exercice) que l'application $y_0 \mapsto y(t, y_0)$ est C^1 et que de plus l'application

$$t \mapsto Y(t) = D_{y_0} y(t, y_0) \in \mathcal{L}(\mathbb{R}^d, \mathbb{R}^d)$$

est solution du problème variationnel

$$\begin{cases} \dot{Y}(t) = D_y f(t, y(t)) \cdot Y(t) \\ Y(0) = \mathrm{Id}_{\mathbb{R}^d} \end{cases}$$

Remarque 4.5 On peut avoir une solution globale pour un y_0 mais pas pour un voisinage de ce même y_0 . Par exemple, le problème de Cauchy

$$\begin{cases} \dot{y}(t) = y(t)^2 \\ y(0) = y_0 \end{cases}$$

admet pour solution $y(t) \equiv 0$ si $y_0 = 0$ (solution globale), mais

$$y(t) = \frac{1}{-t + \frac{1}{y_0}}$$

dès que $y_0 \neq 0$. On voit donc que $T^+(0) = +\infty$, $T^-(0) = -\infty$, mais que pour $y_0 > 0$, $T^+(y_0) = \frac{1}{y_0}$ et $T^-(y_0) = -\infty$.

5 Principe de majoration a priori. Solutions globales.

On considère maintenant $f:I\times D\to\mathbb{R}^d$ un fonction continue, $D\subset\mathbb{R}^d$ un ouvert connexe, et I un intervalle ouvert de \mathbb{R} .

Théorème 5.1 Soit (J, y) une solution maximale du problème

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(t_0) = y_0. \end{cases}$$

On note $J =]T^-, T^+[$. Alors

- Soit $T^+ = \sup I$
- Soit $\liminf_{t\to T^+} d(y(t), \partial D) = 0$
- Soit f(t, y(t)) n'est pas borné en T^+ (et donc y(t) est non borné en T^+).

De même,

- Soit $T^- = \inf I$
- Soit $\liminf_{t\to T^-} d(y(t), \partial D) = 0$
- Soit f(t, y(t)) n'est pas borné en T^- (et donc y(t) est non borné en T^-).

Si de plus f est localement lipschitzienne par rapport à y, alors l'alternative devient

- Soit $T^+ = \sup I$
- Soit $\lim_{t\to T^+} d(y(t), \partial D) = 0$
- Soit $\lim_{t\to T^+} ||y(t)|| = +\infty$.

et de même en T-.

Remarque 5.2 Dans le cas où I est fermé, par exemple I = [0, T], alors soit $T^+ = T$ et $T^+ \in J$, soit J est ouvert en T^+ et alors soit f(t, y(t)) est non bornée en T^+ , soit $\lim \inf_{t \to T^+} d(y(t), \partial D) = 0$.

On va en fait démontrer un énoncé plus élémentaire du théorème précédent, dans le cas D=E (E **Banach quelconque ici**) et en supposant que f est localement lipschitzienne par rapport à y. Soit (J,y) la solution maximale du problème de Cauchy :

$$\dot{y}(t) = f(t, y(t)), t \in I,
 y(t_0) = y_0$$

L'intervalle J est ouvert dans I donc de la forme $J=]T^-,T^+[$. Si $T^+<\sup I$, la solution maximale "explose" au voisinage de T^+ , de la manière décrite dans les théorèmes suivants :

Théorème 5.3 (Sortie de tout compact) Soit $(]T^-, T^+[, y)$ la solution maximale du problème de Cauchy. Si $T^+ < \sup I$, alors la trajectoire $\{y(t)\}_{t \in]T^-, T^+[}$ sort de tout compact au voisinage de T^+ : quel que soit K compact de E, il existe $T_K \in]T^-, T^+[$ tel que, pour tout $t \in [T_K, T^+[, y(t) \in E/K]$.

Preuve. Supposons par l'absurde qu'il existe un compact K de E et une suite de points $(t_n)_{n\in\mathbb{N}}$ de T^-, T^+ tendant vers T^+ pour n tendant vers l'infini, tels que :

$$\forall N \in \mathbb{N}, \quad \exists n > N, \quad y(t_n) \in K.$$

Soit alors $y^+ \in K$ une valeur d'adhérence de cette suite. Comme f est continue et localement lipschitzienne en sa deuxième variable, il existe η, r, L et M des réels strictement positifs tels que :

- (i) $[T^+ \eta, T^+ + \eta] \times B_r(y^+) \subset I \times D$,
- (ii) $\forall (t,y) \in [T^+ \eta, T^+ + \eta] \times B_r(y^+), \quad ||f(t,y)||_E \le M,$
- (iii) $\forall (t, y_1), (t, y_2) \in [T^+ \eta, T^+ + \eta] \times B_r(y^+), \quad ||f(t, y_2) f(t, y_1)||_E \le L||y_2 y_1||_E.$

On pose alors $\hat{\eta} = \min(\eta, \frac{r}{2M})$ et on se donne n tel que

$$|T^+ - t_n| < \frac{\hat{\eta}}{3} \text{ et } ||y(t_n) - y^+|| < \frac{r}{2}.$$

Les propriétés (i), (ii) et (iii) sont encore vraies sur $[t_n - \eta/2, t_n + \eta/2] \times B_{r/2}(y(t_n))$. D'après le théorème d'existence locale, il existe une solution sur un intervalle $[t_n - \alpha, t_n + \alpha]$ avec $\alpha = \min(\eta/2, r/(4M)) = \hat{\eta}/2$. Or, on a :

$$t_n + \alpha > T^+ - \hat{\eta}/3 + \hat{\eta}/2 > T^+.$$

On peut donc définir un prolongement strict de la solution, ce qui contredit l'hypothèse de maximalité de la solution.

Corollaire 5.4 (Explosion en temps fini) On suppose que E est de dimension finie. Soit $(]T^-, T^+[, y)$ la solution maximale du problème de Cauchy. Si $T^+ < \sup I$, alors

$$\lim_{t \to T^+} \|y(t)\|_E = +\infty.$$

Preuve. Il suffit d'appliquer le théorème précédent avec $K = B_R(0)$ et R > 0 aussi grand que l'on souhaite. Ainsi, pour tout R > 0, il existe $T_R \in]T^-, T^+[$ tel que pour tout $t \in [T_R, T^+[, \|y(t)\|_E > R$. C'est très exactement dire que $\lim_{t \to T^+} \|y(t)\|_E = +\infty$.

Remarque 5.5 Si E est de dimension finie, il suffit de montrer qu'une solution maximale est bornée pour qu'elle soit globale!

Exemple 5.6 Soit *I* un intervalle ouvert. Considérons le problème

$$\begin{cases} \dot{y}(t) = f(t, y(t)) \\ y(t_0) = y_0 \end{cases}$$

où $f:I\times\mathbb{R}^d\to\mathbb{R}^d$ est continue et satisfait

$$\forall t \in I, \quad \forall y \in \mathbb{R}^d, \quad ||f(t,y)||_E \le \alpha(t)||y||_E + \beta(t)$$

où α et β sont deux fonctions positives appartenant à $L^1_{loc}(I)$ (c'est-à-dire que pour tout compact $J \subset I$, on a $\int_J \alpha < +\infty$). Alors on a pour tout intervalle J compact de I et tout $t \in J$,

$$||y(t)|| \le ||y_0|| + \left| \int_{t_0}^t \alpha(s) ||y(s)|| \, ds \right| + \left| \int_{t_0}^t \beta(s) \, ds \right|$$

et donc

$$||y(t)|| \le \exp\left(\left|\int_{t_0}^t \alpha(s) ds\right|\right) \left(||y_0|| + \left|\int_{t_0}^t \beta(s) ds\right|\right).$$

Donc y est borné sur J, et donc puisque J est arbitraire, la solution existe sur I tout entier.

Notons le cas particulier où f est Lipschitz par rapport à y, continue, et où il existe $L(t) \ge 0$ appartenant à $L^1_{loc}(I)$ telle que

$$\forall x, y \in \mathbb{R}^d$$
, $\|f(t, x) - f(t, y)\|_E \le L(t) \|x - y\|_E$.

Alors on a

$$\|f(t,y)\|_{E} \le L(t)\|y\|_{E} + \|f(t,0)\|_{E}$$

qui vérifie bien les hypothèses (un fonction continue sur I est bien $L^1_{loc}(I)$).

Un autre cas particulier est celui où

$$f(t,y) = A(t)y + b(t)$$

où

$$A \in \mathcal{C}(I, \mathcal{L}(\mathbb{R}^d))$$

est une matrice dépendant du temps, et $b(t) \in \mathcal{C}(I, \mathbb{R}^d)$ un vecteur. On étudiera plus amplement les systèmes linéaires dans le chapitre suivant.

Exemple 5.7 On considère maintenant $I = \mathbb{R}_+$, $t_0 \ge 0$, et

$$f(t,y) = \sum_{k=0}^{2p-1} a_k y^k,$$

avec $a_{2p-1} < 0$. Alors on a

$$(y^{2})' = 2\sum_{k=0}^{2p-1} a_{k}y^{k+1}$$
$$= 2a_{2p-1}y^{2p} + Q(y)$$

où Q(y) est un polynôme de degré plus petit que 2p. Il existe β une constante positive, telles que :

$$\forall y \in \mathbb{R}, \quad 2a_{2p-1}y^{2p} + Q(y) \le \beta.$$

On en déduit donc que

$$y^{2}(t) \le y(t_{0})^{2} + \beta(t - t_{0}).$$

Attention au fait que la solution n'est pas globale sur \mathbb{R} tout entier.

Exemple 5.8 (Fonction de Lyapunov). On considère maintenant un fonction $f: \mathbb{R}^d \to \mathbb{R}^d$. Supposons qu'il existe une fonction $V: \mathbb{R}^d \to \mathbb{R}$, de classe \mathcal{C}^1 , telle que

$$\forall y \in \mathbb{R}^d, \quad \langle \nabla V(y), f(y) \rangle \le 0,$$

et

$$\forall M \ge 0, \quad \{y \mid V(y) \le M\}$$
 est borné.

Alors on a le long de tout solution

$$\frac{\mathrm{d}V(y(t))}{\mathrm{d}t} = \langle \nabla V(y(t)), \dot{y}(t) \rangle = \langle \nabla V(y(t)), f(y(t)) \rangle \le 0,$$

donc

$$\forall t \in \mathbb{R}, \quad V(y(t)) \le V(y(t_0))$$

ce qui montre l'existence globale sur \mathbb{R}_+ .

Un cas particulier de tels systèmes concerne les systèmes gradient du type

$$\dot{y}(t) = -\nabla V(y(t)).$$

Une autre grande classe de systèmes possédant une fonction de Lyapunov est donnée par les systèmes Hamiltonien du type

$$\ddot{q} = -\nabla U(q)$$

qui s'écrivent encore

$$\begin{cases} \dot{p} &= -\nabla_q H(p,q), \\ \dot{q} &= +\nabla_p H(p,q) \end{cases}$$

où $p,q\in\mathbb{R}^d$ et où $H(p,q)=\frac{1}{2}p^Tp+U(q)$ est une quantité conservée le long du système. De même, le système de Lotka-Volterra étudié en introduction est un système avec une énergie conservée, ce qui donne l'existence globale (il s'agit en fait d'un système Hamiltonien à condition de faire un changement de variable).