| Nom i Cognoms: | Una possible solució  |
|----------------|-----------------------|
| tom i cognoms. | e na possible solucio |

1) Quin és el mínim temps d'execució d'una rutina de servei a una interrupció de baixa prioritat? No considereu el codi extra que el usuari vulgui afegir a la RSI. Justifiqueu la vostra resposta.

```
Cal guardar els registres W, STATUS i BSR:

MOVWF (2 cicles (ull que venim d'un salt))

MOVFF (+2 cicles)

MOVFF (+2 cicles)

Cal incloure dos instruccions més per baixar el flag (+ 1 cicle)

Cal recuperar els registres W, STATUS i BSR:

MOVFF (+2 cicles)

MOVFF (+2 cicles)

MOVFF (+1 cicle (ull que ja no venim d'un salt))
```

i el retfie (2 cicles)

Ull: Seria convenient (tot i que no ho demana l'enunciat) incloure en els càlculs la latència (4 cicles) si es vol fer una estimació del temps total.

Total: 14 cicles

2) Quin mecanisme hardware assegura que no entri una interrupció de baixa prioritat mentre estigui activa una d'alta prioritat?

La sol·licitud d'interrupció d'alta prioritat entra negada a una porta AND que impedeix que s'elevi el flag de sol·licitud d'interrupció de baixa prioritat (veure l'esquema de la pàgina següent).

3) Justifiqueu la veracitat o falsedat de la següent afirmació: "Si s'activa un flag de petició d'interrupció IF per programa (XXXX. INTIF = 1), la rutina de servei a la interrupció no s'executarà encara que estigui habilitat el bit IE?

FALS. Els flags de petició d'interrupció es poden activar per software i s'executen de la mateixa manera que les interrupcions per hardware, cal però que GIE estigui habilitat i que INTIE també estigui habilitat.

4) Hi ha alguna cosa mal feta en el codi de la RSI d'alta prioritat mostrat a continuació? Funcionaria igualment? (s'espera que cada cop que arriba la INTO s'incrementi un comptador)

```
ORG 0x08
ISR_hi
                  W
          push
          push
                  BSR
                  STATUS
          push
                  count0,F
                                          ; inc interrupt count
          incf
                  INTCON, INT0IF
                                          ;clear interrupt bit
          bcf
                  STATUS
          pop
                  BSR
          pop
                  W
          pop
          retfie fast
```

Al ser una interrupció d'alta prioritat no cal guardar els registres d'estat, però funcionaria igualment.

5) Malgrat el vist a la pregunta 2, podríem fer que una única petició d'interrupció arribada per INT1IF provoqués una interrupció d'alta prioritat i DESPRÉS una de baixa prioritat? Si és possible indica com.

Si, a la rutina d'atenció a la interrupció 1, sense esborrar el INT1IF (caldria fer-ho per dir que ja l'hem atès), neguem el INT1IP (canviem la prioritat).



6) Indiqueu els valors amb els quals cal configurar el port A (TRISA) i quins valors cal escriure en el seu registre de dades (PORTA) per a que el led de la figura següent s'encengui.



## Nom i Cognoms: Una possible solució

TRISA= 0x00; // bit 0 sortida, bit 1 sortida PORTA=0x01; // bit 0 a 5V, bit 1 a 0V

7) A partir de quina tensió d'alimentació VDD garantitzem que al bit 0 del port A llegirem un "1" lògic? Justifica la resposta.



Com que les dues resistències són iguals, la tensió a RA0 serà VDD/2.

• Si VDD<4,5V la  $V_{IH}$  (entrada mínima per tenir un 1) és  $V_{IH} = 0.25$  VDD + 0.8V

Perquè  $RA0 > V_{IH}$ , cal que:  $VDD/2 > 0,25 \ VDD + 0,8V$ 

Resolent la inequació dóna: VDD > 3,2V

• Per VDD  $\ge$  4,5V la V<sub>IH</sub> és 2V. VDD/2 sempre serà major que 2V.

Per tant, qualsevol VDD>3,2V garanteix que llegim un "1"

| DC CHA       | RACTE  | RISTICS                                                          | Standard Operating Conditions (unless otherwise stated)<br>Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial |          |       |                                       |  |
|--------------|--------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------|-------|---------------------------------------|--|
| Param<br>No. | Symbol | Characteristic                                                   | Min                                                                                                                                    | Max      | Units | Conditions                            |  |
|              | VIL    | Input Low Voltage                                                |                                                                                                                                        |          |       |                                       |  |
|              |        | I/O Ports (except RC4/RC5 in USB mode):                          |                                                                                                                                        |          |       |                                       |  |
| D030         |        | with TTL Buffer                                                  | Vss                                                                                                                                    | 0.15 VDD | V     | VDD < 4.5V                            |  |
| D030A        |        |                                                                  | _                                                                                                                                      | 0.8      | V     | 4.5V ≤ VDD ≤ 5.5V                     |  |
| D031         |        | with Schmitt Trigger Buffer                                      | Vss                                                                                                                                    | 0.2 VDD  | V     | ,                                     |  |
|              |        | RB0 and RB1                                                      | Vss                                                                                                                                    | 0.3 VDD  | V     | When in I <sup>2</sup> C™ mode        |  |
| D032         |        | MCLR                                                             | Vss                                                                                                                                    | 0.2 VDD  | V     |                                       |  |
| D032A        |        | OSC1 and T1OSI                                                   | Vss                                                                                                                                    | 0.3 VDD  | V     | XT, HS,<br>HSPLL modes <sup>(1)</sup> |  |
| D033         |        | OSC1                                                             | Vss                                                                                                                                    | 0.2 VDD  | V     | EC mode <sup>(1)</sup>                |  |
|              | VIH    | Input High Voltage<br>I/O Ports (except RC4/RC5 in<br>USB mode): |                                                                                                                                        |          |       |                                       |  |
| D040         |        | with TTL Buffer                                                  | 0.25 VDD + 0.8V                                                                                                                        | VDD      | V     | VDD < 4.5V                            |  |
| D040A        |        |                                                                  | 2.0                                                                                                                                    | VDD      | V     | 4.5V ≤ VDD ≤ 5.5V                     |  |
| D041         |        | with Schmitt Trigger Buffer                                      | 0.8 VDD                                                                                                                                | VDD      | V     |                                       |  |
|              |        | RB0 and RB1                                                      | 0.7 VDD                                                                                                                                | VDD      | V     | When in I <sup>2</sup> C mode         |  |
| D042         |        | MCLR                                                             | 0.8 VDD                                                                                                                                | VDD      | V     |                                       |  |
| D042A        |        | OSC1 and T1OSI                                                   | 0.7 VDD                                                                                                                                | VDD      | V     | XT, HS,<br>HSPLL modes <sup>(1)</sup> |  |
| D043         |        | OSC1                                                             | 0.8 VDD                                                                                                                                | VDD      | V     | EC mode <sup>(1)</sup>                |  |

8) Necessitem generar un nou caràcter a la LCD emprada en pràctiques per representar el símbol de l'euro. Mostra la seqüència d'instruccions a fer per poder visualitzar a la posició 0,0 de la LCD aquest símbol. Podeu emprar les ordres XLCDCommand(int x) i XLCDPut(BYTE b).

| 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |

```
La CGRAM és per generar caràcters.

La DDRAM els dibuixa.

XLCDCommand ( 64); // 0001 000000 Triem la posició 0 de la CGRAM XLCDPut (0);

XLCDPut (7);

XLCDPut (8);

XLCDPut (30);

XLCDPut (8);

XLCDPut (30);

XLCDPut (30);

XLCDPut (8);
```

XLDCDCommand (1); // Clear display: borrem i triem la posició 0 de la DDRAM XLCDPut(0); // Escrivim el nou caràcter 0 a la pantalla

// Escrivim byte a byte a la CGRAM, hem creat el caràcter 0

Table 7.6 HD44780 instruction set

XLCDPut (7);

| Instruction                              | Code |     |    |      |             |     |     |      |    | Description                                                                                                                                                  | Execution |
|------------------------------------------|------|-----|----|------|-------------|-----|-----|------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Instruction                              | RS   | R/W | В7 | B6 B | 5 B4        | ВЗ  | В2  | В1   | В0 | Description                                                                                                                                                  | time      |
| Clear display                            | 0    | 0   | 0  | 0 (  | 0           | 0   | 0   | 0    | 1  | Clears display and returns cursor to the home position (address 0).                                                                                          | 1.64 ms   |
| Cursor home                              | 0    | 0   | 0  | 0 (  | 0           | 0   | 0   | 1    | *  | Returns cursor to home position (address 0). Also returns display being shifted to the original position. DDRAM contents remain unchanged.                   | 1.64 ms   |
| Entry mode set                           | 0    | 0   | 0  | 0 (  | 0           | 0   |     | I/D  |    | Set cursor move direction (I/D), specifies to shift the display (S). These operations are performed during data read/write.                                  | 40 µs     |
| Display on/off<br>control                | 0    | 0   | 0  | 0 (  |             | 1   |     | С    | В  | Sets on/off of all display (D), cursor on/off (C) and blink of cursor position character (B).                                                                | 40 μs     |
| Cursor /display<br>shift                 | 0    | 0   | 0  | 0 (  | 1           | S/C | R/I | *    | *  | Sets cursor-move or display-(S/C), shift direction (R/L). DDRAM contents remains unchanged.                                                                  | 40 μs     |
| Function set                             | 0    | 0   | 0  | 0 1  | DL          | N   | F   | *    | *  | Sets interface data length (DL), number of display line (N) and character font (F).                                                                          | 40 μs     |
| Set CGRAM<br>address                     | 0    | 0   | 0  | 1 (  | CGR         | AM  | ad  | dre  | SS | Sets the CGRAM address. CGRAM data is sent and received after this setting.                                                                                  | 40 μs     |
| Set DDRAM<br>address                     | 0    | 0   | 1  | DI   | DRA         | M a | ddı | ress |    | Sets the DDRAM address. DDRAM data is sent and received after this setting.                                                                                  | 40 μs     |
| Read busy flag<br>and address<br>counter | 0    | 1   | BF | add  | RAN<br>ress |     |     | AM   | I  | Reads busy flag (BF) indicating internal operation is being performed and reads CGRAM or DDRAM address counter contents (depending on previous instruction). | 0 µs      |
| Write to CGRAM<br>or DDRAM               | 1    | 0   |    |      | vrite       |     |     |      |    | Writes data to CGRAM or DDRAM.                                                                                                                               | 40 µs     |
| Read from<br>CGRAM or<br>DDRAM           | 1    | 1   |    | -    | read        | dat | a   |      |    | Reads data from CGRAM or DDRAM.                                                                                                                              | 40 μs     |