Ostfalia Hochschule für angewandte Wissenschaften
Fakultät Fahrzeugtechnik

Fakultät Fahrzeugtechnik Prof. Dr.-Ing. V. von Holt Institut für Fahrzeugsystemund Servicetechnologien Modulprüfung

Mikroprozessortechnik BPO 2011 BPO 2008

> WS 2013/14 21.01.2014

Name:
Vorname
Matr.Nr.:
Unterschrift

Zugelassene	Hilfsmittel:	Einfacher	Taschenrec	hner
-------------	--------------	-----------	-------------------	------

Zeit: 60 Minuten

Punkte:

1 (16)	2 (24)	3 (20)	Punktsumme (max. 60)	Prozente

Note Klausur (70%)	Note Labor (30%)	Gesamtnote

Aufgabe 1 (16 Punkte) – Rechnerarchitektur

a)	(4 P) Skizzieren Sie den grundlegenden Aufbau eines einfachen Mikroprozessorsystems mit Harvard-Architektur! Was unterscheidet diese Architektur im Wesentlichen von anderen Architekturen?
b)	(3 P) Durch welche Maßnahme wird bei Hochleistungsrechnern die Geschwindigkeitslücke zwischen schnellem Prozessor und langsamem Speicher "entschärft"? Erklären Sie kurz das Grundfunktionsprinzip!
c)	(2 P) Welche Grundannahme über Programmcode und Programmdaten liegen der unter b) gefragten Maßnahme zugrunde?
d)	(4 P) Worin besteht die Grundidee des Pipelinings? Erläutern Sie das Grundprinzip mit einer Skizze anhand einer 3-stufigen Pipeline mit den Stufen FETCH – DECODE – EXECUTE!
e)	(1 P) Um welchen Faktor kann die 3-stufige Pipeline unter d) ein Programm aus n Befehlen maximal beschleunigen?
f)	(2 P) Nennen Sie 2 Gründe, warum eine Pipeline die theoretisch mögliche Beschleunigung in der Praxis selten erreicht!

Aufgabe 2 (24 Punkte) - Systembus/Adressdekodierung

- a) (5 P) Im untenstehenden Diagramm soll das Zeitverhalten eines **Synchronen** Busses für einen **Lesevorgang** dargestellt werden.
 - 1. Skizzieren Sie den Verlauf der Address(A)- und Daten(D)-Signale für diesen Lesevorgang!
 - 2. Welches Signal muss noch ergänzt werden, damit der Bus korrekt arbeitet?
 - 3. Ergänzen Sie das Diagramm um den Verlauf dieses Signals!
 - 4. Markieren Sie, zu welchen Zeitpunkten die jeweiligen Signale gültig sein müssen!

- b) (5 P) Mit welcher Art der Busanschaltung werden **Steuerleitungen** verschaltet, deren Pegel von verschiedenen Gatterausgängen bestimmt werden kann?
 - 1. Skizzieren Sie die Verschaltung!

- 2. Wie nennt man diese Art der Verschaltung bzw. Gatterausgänge?
- 3. Welcher Pegel ist bei dieser Verschaltung der aktive Pegel (Low oder High)?

- c) (14 P) Ein uC-Evaluationsboard soll mit einem Flash-ROM (FLASH), einem RAM und einem Peripheriebaustein (I/O) ausgestattet werden. Der Adressbus umfasst **12 Leitungen** (a₁₁...a₀). Die Speichergrößen der einzelnen Bausteine sowie die Startadressen sind in der untenstehenden Skizze angemerkt.
 - 1. Wie viele Adressleitungen benötigen die 3 Bausteine für die interne Adressierung innerhalb des jeweiligen Bausteins?

FLASH:	RAM:	I/O
1 L/ (OI I.	1 1/ 11/1.	1/ 0

2. Verbinden Sie die Adressleitungen der Bausteine sowie die zugehörigen Chip-Select-Logiken mit den Adressleitungen!

3. Geben Sie die Logischen Ausdrücke für die 3 CS-Logiken an! (Hinweis: Die CS-Logik für den I/O-Baustein erfordert wegen der gewählten Startadresse eine aufwendigere Logik!)

Aufgabe 3 (20 Punkte) – Timer und Serielle Kommunikation

Gegeben sei ein mit 8 MHz getakteter Mikrocontroller. Dieser soll in einem Türsteuergerät eingesetzt und über einen seriellen LIN-Bus mit einer Datenrate von 20 kBit/s vernetzt werden. Da der Mikrocontroller über keine integrierte LIN-Schnittstelle verfügt, soll diese über einen einfachen Digital-I/O-Port in Software realisiert werden.

Das Bit-Timing soll mithilfe eines **16-Bit-Timers** erfolgen. Der Timer verfügt über ein **Zählerstandsregister TCNT** und ein ladbares **Vergleichsregister TCR**. Bei Erreichen des Werts in TCR wird das **Überlauf-Bit OVF** im **Statusregister TSR** gesetzt und TCNT auf 0 zurückgesetzt. Der Timer verfügt über die **Vorteiler** 1 - 2 - 4 - 8 - 16 - 32 - 64 - 128 - 256.

zur	ückgesetzt. Der Timer verfügt über die Vorteiler 1 – 2 – 4 – 8 – 16 – 32 – 64 – 128 – 256.
a)	(1 P) Berechnen Sie die Periodendauer des LIN-Bussignals!
b)	(1 P) Berechnen Sie die Periodendauer des Prozessors!
c)	(1 P) Berechnen Sie die Periodendauer des 16-Bit-Timers!
d)	(4 P) Wählen Sie einen Vorteiler für den Timer, so dass dieser für die Realisierung des Bus- Timings genutzt werden kann, dabei aber eine möglichst hohe Auflösung behält!
e)	(3 P) Skizzieren Sie in nachfolgendem Diagramm den Verlauf des Zählerstandes über der Zeit für 2 Perioden und markieren die wesentlichen Punkte mit Werten!
	ähler- † and

