XXIX Espaces euclidiens et préhilbertiens réels

2 août 2024

Table des matières

1	Prod	duit scalaire, norme et distance.	1
2	Orthogonalité.		
	2.1	Premières définitions	4
	2.2	Familles orthogonales	4
	2.3	Sous-espaces vectoriels orthogonaux	6
	2.4	Formes linéaires et hyperplans d'un espace euclidien	7
	2.5	Symétries et projecteurs orthogonaux	8
	2.6	Distance à un sous ev	8
	2.7	Distance et projection sur un hyperplan	9

Le corps de base est \mathbb{R} . n, p, q, r et s désignent des entiers naturels non nuls. E désigne un espace vectoriel.

1 Produit scalaire, norme et distance.

Définition 1.0.1.

On appelle produit scalaire sur E toute application $\varphi : E \times E \to \mathbb{R}$ bilinéaire symétrique et telle que pour tout $x \in E$, on ait d'une part $\varphi(x,x) \geqslant 0$ et d'autre part $\varphi(x,x) = 0$ si et seulement si x = 0. Un espace vectoriel réel muni d'un produit scalaire est dit préhilbertien. Si de plus il est de dimension finie, il est dit euclidien.

Remarque 1.0.2. — Différentes notations sont utilisées couramment pour le produit scalaire de x et y: $(x \mid y), \langle x \mid y \rangle, (x, y), \langle x, y \rangle, x \cdot y.$

- Par bilinéarité, si x ou y = 0, $\langle x \mid y \rangle = 0$.
- La symétrie et la linéarité par rapport à une variable suffisent à montrer la bilinéarité.
- Jusqu'à maintenant on définissait le produit scalaire à partir d'angles. En fait c'est l'inverse que l'on fait lorsque l'on théorise tout cela.

Exemple 1.0.3. — Les produits scalaires usuels vus en début d'année sur \mathbb{R}^2 et \mathbb{R}^3 sont bien évidemment des produits scalaires.

- Il existe de nombreux produits scalaires sur \mathbb{R}^2 ; par exemple $((x_1,y_1),(x_2,y_2)) \mapsto$ $x_1x_2 - y_1x_2 + 2y_1y_2 - x_1y_2$.
- Il existe également sur \mathbb{R}^n un produit scalaire canonique ; $(x_1, \ldots, x_n).(y_1, \ldots, y_n) =$ $\sum_{k=1}^{n} x_k y_k.$
- Par extension, tout \mathbb{R} -ev de dimension n, étant isomorphe à \mathbb{R}^n , est muni d'un produit scalaire. Ainsi, sur $\mathbb{R}_n[X]$ le produit scalaire usuel est $\left(\sum_{k=0}^{n} a_k X^k\right) \cdot \left(\sum_{k=0}^{n} b_k X^k\right) =$ $\left(\sum_{k=0}^{n}a_{k}b_{k}\right).$

— Soit a et b deux réels avec a < b. Sur $\mathscr{C}([a,b],\mathbb{R})$, l'application $(f,g) \mapsto \int_a^b fg$ est un produit scalaire (attention : cet espace est de dimension infinie, donc n'est pas euclidien, mais préhilbertien réel).

Exercice 1.0.4.

L'espérance munit-elle l'ensemble des variables aléatoires réelles sur un espace probabilisé fini d'un produit scalaire (via $\langle X, Y \rangle = E(XY)$)?

Proposer une solution à ce « problème ».

Définition 1.0.5 (Distance).

Soit E un ensemble (quelconque, pas nécessairement un espace vectoriel). On appelle distance $sur\ E$ toute application d: $E^2 \to \mathbb{R}^+$ vérifiant les trois conditions suivantes :

- $\begin{array}{ll} \text{(i)} \ \forall (x,y) \in E^2 & \quad \mathrm{d}(x,y) = 0 \iff x = y \ ; \\ \text{(ii)} \ \forall (x,y) \ \in \ E^2 & \quad \mathrm{d}(x,y) \ = \ \mathrm{d}(y,x) \ (\text{sym\'e-}$ trie);
- (iii) $\forall (x, y, z) \in E^3$ $d(x, z) \leq d(x, y) +$ d(y, z) (inégalité triangulaire).

Un ensemble muni d'une distance est appelé espace métrique.

Remarque 1.0.6.

Il convient de ne pas oublier la positivité dans la définition d'une distance.

Exemple 1.0.7. — La distance usuelle dans le plan est une distance.

— La distance de deux points sur un graphe connexe, comptée comme le nombre minimal d'arêtes à parcourir sur ce graphe pour relier ces deux points.

Remarque 1.0.8.

Soit E un ensemble muni d'une distance d. Soit $(x,y,z) \in E^3$. Alors, on a

$$|d(x,y) - d(x,z)| \leq d(y,z).$$

Démonstration.

On a $d(x, z) \leq d(x, y) + d(y, z)$, donc $d(x, z) - d(x, y) \leq$ d(y, z). De même, d(x, y) \leqslant d(x, z) + d(z, y), donc d(x, y) - d(x, z) \leqslant d(y, z). Or $|\operatorname{d}(x,y) - \operatorname{d}(x,z)|$ = $\max (d(x,z) - d(x,y), d(x,y) - d(x,z)), d'où le résul-$

Définition 1.0.9 (Norme).

Soit E un \mathbb{R} -espace vectoriel. On appelle norme sur E toute application $\|.\|: E \to \mathbb{R}^+$ vérifiant les trois conditions suivantes :

- (i) $\forall x \in E$ $||x|| = 0 \iff x = 0$;
- (ii) $\forall \lambda \in \mathbb{R}, \ \forall x \in E \qquad \|\lambda x\| = |\lambda| \|x\|$ (homogénéité) ;
- (iii) $\forall (x,y) \in E \quad ||x+y|| \leq ||x|| + ||y||$ (inégalité triangulaire).

Remarque 1.0.10.

Il convient de ne pas oublier la positivité dans la définition d'une norme.

Exemple 1.0.11.

Sur \mathbb{R}^n et pour $p \in [1, +\infty[$, les applications

$$\|\cdot\|_p : (x_1, \dots, x_n) \mapsto \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}$$

et

$$\|\cdot\|_{\infty} : (x_1,\ldots,x_n) \mapsto \max_{k \in [\![1,n]\!]} |x_k|$$

sont des normes.

Remarque 1.0.12.

Soit E un \mathbb{R} -espace vectoriel muni d'une norme $\|.\|$. Alors pour tout $(x,y) \in E^2$, on a

$$|||x|| - ||y||| \le ||x - y||$$
.

Démonstration.

Soit $(x,y) \in E^2$. Remarquons qu'on a $\|x\| = \|x+y-y\| \le \|x+y\| + \|y\|$ par l'inégalité triangulaire, d'où l'on déduit $\|x\| - \|y\| \le \|x+y\|$. Symétriquement, on remarque qu'on a $\|y\| - \|x\| \le \|x+y\|$. Or $\|x\| - \|y\| = \max(\|x\| - \|y\|, \|y\| - \|x\|)$. On en déduit le résultat. \square

Définition 1.0.13 (Distance associée à une norme).

Soit E un \mathbb{R} -espace vectoriel muni d'une norme $\|.\|$. On appelle distance associ'ee à la norme $\|.\|$ l'application $(x,y)\mapsto \|x-y\|$.

Proposition 1.0.14.

Cette application est bien une distance.

Exemple 1.0.15.

La distance associée à $\|\cdot\|_1$ est parfois appelée distance de Manhattan. Dans Manhattan, les rues forment un damier « orthogonal », on ne peut donc que se déplacer parallèlement à ces axes. La distance parcourue entre deux points n'est donc pas la distance « euclidienne » usuelle ...

Exercice 1.0.16.

Pour une norme $\|\cdot\|$, on appelle boule centrée en $a \in E$ et de rayon $r \ge 0$ l'ensemble

$$B(a,r) = \{ x \in E \mid ||a - x|| \le r \}.$$

Tracer les boules centrée en 0 et de rayon 1 pour les normes $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_{\infty}$ sur \mathbb{R}^2 .

Démonstration.

Soit d la distance associée à une norme $\|.\|$ sur un \mathbb{R} -espace vectoriel E. On a clairement $\forall (x,y) \in E^2 \quad d(x,y) \geqslant 0$, donc d est bien une application de E^2 dans \mathbb{R}^+ . On vérifie aisément les trois conditions de la définition d'une distance :

- (i) Soit $(x,y) \in E^2$. On a d(x,y) = ||x-y||. Or $||x-y|| = 0 \iff x-y = 0$. Donc $d(x,y) = 0 \iff x = y$.
- (ii) Soit $(x,y) \in E^2$. On a d(y,x) = ||y-x|| = ||-(x-y)|| = |-1| ||x-y|| = d(x,y).
- (iii) Soit $(x, y, z) \in E^3$. On a $d(x, z) = ||x y + y z|| \le ||x y|| + ||y z|| = d(x, y) + d(y, z)$.

Définition 1.0.17 (Norme associée à un produit scalaire).

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien. On appelle norme associée au produit scalaire $\langle \cdot | \cdot \rangle$ l'application $x \mapsto \sqrt{\langle x | x \rangle}$.

- Remarque 1.0.18. 1. Il est clair, par positivité du produit scalaire, que cette application est bien définie. La racine carrée étant à valeurs dans \mathbb{R}^+ , elle est de plus à valeurs dans \mathbb{R}^+ . Il reste à voir si cette application est bien une norme.
 - 2. La norme associée à un produit scalaire dépend évidemment du produit scalaire. Par exemple sur \mathbb{R}^2 , les normes associées respectivement au produit scalaire usuel et au produit scalaire $((x,y),(x',y')) \mapsto \frac{1}{2}xx' + 2yy'$ sont différentes (regarder par exemple les valeurs pour les vecteurs (1,0) et (0,1)).

3. On a directement que pour une famille (x_1, \ldots, x_n) de vecteurs,

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{1 \leqslant i, j \leqslant n} \langle x_i \mid x_j \rangle$$
$$= \sum_{i=1}^{n} \|x_i\|^2 + 2 \sum_{1 \leqslant i < j \leqslant n} \langle x_i \mid x_j \rangle.$$

Pour deux vecteurs, on retrouve $||x \pm y||^2 = ||x||^2 \pm 2 \langle x | y \rangle + ||y||^2$.

Dans tout ce qui suit, sauf mention expresse du contraire, $(E, \langle \cdot \mid \cdot \rangle)$ désigne un espace vectoriel préhilbertien, et $\|.\|$ la norme associée à son produit scalaire.

Proposition 1.0.19.

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien et $\|.\|$ la norme associée. On a

1.
$$\forall x \in E \quad ||x|| = 0 \iff x = 0$$
;

2.
$$\forall \lambda \in \mathbb{R} \quad \forall x \in E \qquad \|\lambda x\| = |\lambda| \cdot \|x\|.$$

Démonstration. 1. Soit $x \in E$. On a $||x|| = 0 \iff \langle x \mid x \rangle = 0$. $\langle \cdot \mid \cdot \rangle$ étant un produit scalaire, on a donc $||x|| = 0 \iff x = 0$.

2. Soit
$$\lambda \in \mathbb{R}$$
 et $x \in E$. On a $\|\lambda x\| = \sqrt{\langle \lambda x \mid \lambda x \rangle} = \sqrt{\lambda^2 \langle x \mid x \rangle} = |\lambda| \sqrt{\langle x \mid x \rangle}$.

Avec ce qui précède, il suffit maintenant de démontrer que ||.|| vérifie l'inégalité triangulaire pour démontrer qu'il s'agit bien d'une norme. Pour cela, on démontre tout d'abord le théorème suivant.

Théorème 1.0.20 (Inégalité de Cauchy-Schwarz).

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien et $\|.\|$ la norme associée. Alors pour tout $(x, y) \in E^2$, on a

$$|\langle x, y \rangle| \leqslant ||x|| \cdot ||y||.$$

L'égalité a lieu si et seulement si x et y sont colinéaires.

Démonstration.

Soient $x,y\in E.$ Pour y=0 le résultat est évident. Sinon, on peut donner deux démonstrations

Géométrique Posons $u = \frac{1}{\|y\|}y$. On vérifie aisément $\|u\| = 1$. Posons alors $x' = \langle x \mid u \rangle u$ et x'' = x - x' (faire un dessin). On a alors

$$\left\langle x'\mid x''\right\rangle = \left\langle x'\mid x\right\rangle - \left\langle x'\mid x'\right\rangle = \left\langle x\mid u\right\rangle^2 - \left\langle x\mid u\right\rangle^2 = 0.$$

On en déduit

$$||x||^{2} = ||x'||^{2} + 2\langle x' | x'' \rangle + ||x''||^{2}$$
$$= ||x'||^{2} + ||x''||^{2}$$
$$\ge ||x'||^{2}.$$

On en déduit $||x|| \cdot ||y|| \ge ||x'|| \cdot ||y||$. Or on a :

$$||x'|| \cdot ||y|| = |\langle x \mid u \rangle| \cdot ||y||$$
$$= |\langle x \mid y \rangle|.$$

D'où le résultat.

Algébrique pour tout $t \in \mathbb{R}$, on a : $||x + ty||^2 = ||x||^2 + 2t \langle x | y \rangle + t^2 ||y||^2$. C'est un polynôme toujours positif, donc son discriminant est négatif ou nul.

Il y a égalité dans l'inégalité de Cauchy-Schwarz si et seulement si ce discriminant est nul, donc si et seulement si ce polynôme a une racine réelle, donc si et seulement si il existe t tel que [à vous de l'écrire], donc si et seulement si x et y sont colinéaires.

Une idée calculatoire astucieuse Si x=0 ou y=0, le résultat est évident. Sinon, on remarque que $\left\|\frac{x}{\|x\|}\right\|=1$ et l'on écrit (\pm signifie qu'on le fait pour + puis pour -):

$$0 \leqslant \left\| \frac{x}{\|x\|} \pm \frac{y}{\|y\|} \right\|^2 = \left\| \frac{x}{\|x\|} \right\|^2 + \left\| \frac{y}{\|y\|} \right\|^2 \pm 2 \frac{\langle x \mid y \rangle}{\|x\| \|y\|}$$

ce qui donne

$$0 \leqslant 1 \pm \frac{\langle x \mid y \rangle}{\|x\| \|y\|}$$

et c'est fini!

Proposition 1.0.21 (Inégalité triangulaire). Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien, $x, y \in E$. Alors,

$$||x + y|| \le ||x|| + ||y||$$
.

De plus, on a l'égalité si et seulement si x et y sont colinéaires et de même sens.

Démonstration.

On a $||x + y||^2 = \langle x + y \mid x + y \rangle = ||x||^2 + 2 \langle x \mid y \rangle + ||y||^2$. Or $(||x|| + ||y||)^2 = ||x||^2 + 2 ||x|| \cdot ||y|| + ||y||^2$ et $\langle x \mid y \rangle \le ||x|| \cdot ||y||$, donc $||x + y||^2 \le (||x|| + ||y||)^2$. ||x + y|| et ||x|| + ||y|| étant positifs, on en déduit le résultat.

L'égalité a lieu si et seulement si $\langle x \mid y \rangle = ||x||$. ||y||. Pour cela, il est nécessaire d'avoir $\langle x \mid y \rangle \geqslant 0$ (car le produit de

deux normes est positif ou nul) et x et y colinéaires (cas d'égalité de Cauchy-Schwarz), donc il est nécessaire que x et y soient colinéaires — l'un s'écrit comme produit de l'autre par un scalaire — et de même sens — ce scalaire est positif ou nul. Cette condition est clairement suffisante. \square

Théorème 1.0.22.

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien, $x, y \in E$.

1. Identité du parallélogramme :

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

2. Identité de polarisation :

$$\langle x \mid y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$$

= $\frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$

Remarque 1.0.23.

Faire le dessin d'un parallélogramme, on utilise le théorème d'Al-Kashi deux fois (une par hypothénuse).

Démonstration.

Il suffit de développer les normes.

Remarque 1.0.24.

Ces identités permettent de retrouver l'expression du produit scalaire quand on ne connaît que la norme.

Exemple 1.0.25.

Existe-t-il un produit scalaire donnant la norme $||(x,y)||^2 = (x+y)^2 + x^2$?

2 Orthogonalité.

Soit $(E, \langle \cdot | \cdot \rangle)$ un ev préhilbertien et $\| \cdot \|$ la norme associée.

2.1 Premières définitions.

Définition 2.1.1.

Soient $x, y \in E$. On dit que x est unitaire (ou normé) si ||x|| = 1. On dit que x et y sont orthogonaux et l'on note $x \perp y$ si $\langle x \mid y \rangle = 0$.

Remarque 2.1.2.

Si $x \neq 0_E$, il y a exactement deux vecteurs unitaires colinéaires à x.

Exemple 2.1.3.

- Tout vecteur est toujours orthogonal au vecteur nul
- Dans \mathbb{R}^2 muni du produit scalaire usuel, (1,3) et (-6,2) sont orthogonaux.
- Dans \mathbb{R}^2 muni du produit scalaire $(x,y) \cdot (x',y') = 2xx' xy' x'y + 3yy'$, les vecteurs (1,1) et (2,-1) sont orthogonaux.

2.2 Familles orthogonales.

Définition 2.2.1.

Une famille de vecteurs est dite *orthogonale* s'ils sont 2 à 2 orthogonaux. Si les vecteurs sont de plus unitaires, la famille est dite *orthonormale* (ou *orthonormée*).

Exemple 2.2.2.

Les $f_n: x \mapsto \cos(nx)$, $n \in \mathbb{N}$, forment une famille orthogonale pour le produit scalaire usuel de $\mathscr{C}([0, 2\pi], \mathbb{R})$.

Théorème 2.2.3 (Pythagore).

Soit (v_1, \ldots, v_n) une famille orthogonale de n vec-

teurs. Alors
$$\left\| \sum_{k=1}^{n} v_k \right\|^2 = \sum_{k=1}^{n} \|v_k\|^2$$
.

Démonstration.

On développe le produit scalaire : $\|\sum_{k=0}^{n} v_k\|^2 =$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \langle v_i \mid v_j \rangle. \qquad \Box$$

Exemple 2.2.4.

Dans \mathbb{R}^3 muni du produit scalaire usuel, on pose $v_1 = (1,2,3)$, $v_2 = (-5,1,1)$ et $v_3 = (-1,-16,11)$. Vérifier que la famille (v_1,v_2,v_3) est orthogonale et s'assurer que l'égalité donnée par le théorème de Pythagore est vérifiée.

Théorème 2.2.5.

Toute famille orthogonale ne comportant aucun vecteur nul est libre.

Démonstration.

Soient
$$\lambda_k$$
 tels que $\sum_{k=1}^n \lambda_k v_k = 0$. Alors pour tout i ,

$$\left\langle \sum_{k=1}^{n} \lambda_{k} v_{k} \mid v_{i} \right\rangle = 0 \text{ or quand on développe la somme on a } \lambda_{i} \left\langle v_{i} \mid v_{i} \right\rangle.$$

Remarque 2.2.6.

Toute famille orthonormale est une famille orthogonale ne comportant aucun vecteur nul.

Corollaire 2.2.7.

Toute famille orthogonale ne comportant aucun vecteur nul et de cardinal $\dim E$ est une base de E.

Exemple 2.2.8.

$$\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
 et $\begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$ forment une famille ortho-

gonale de trois vecteurs non nuls de \mathbb{R}^3 , et donc une base de \mathbb{R}^3 .

Théorème 2.2.9 (orthonormalisation de Gram-Schmidt).

On suppose E euclidien de dim n. Soit (u_1, \ldots, u_n) une base de E. Alors il existe une base (v_1, \ldots, v_n) de E telle que :

- 1. (v_1, \ldots, v_n) est orthonormale;
- 2. pour tout $k \in [1, n]$,

$$Vect(u_1, \dots u_k) = Vect(v_1, \dots v_k).$$

Les v_k sont uniques au signe près et on peut

$$\text{choisir}: v_k = \frac{u_k - \sum\limits_{i=1}^{k-1} \left\langle u_k \mid v_i \right\rangle v_i}{\left\|u_k - \sum\limits_{i=1}^{k-1} \left\langle u_k \mid v_i \right\rangle v_i\right\|}.$$

Démonstration.

Explication pour le choix de v_1 .

• Analyse : on suppose la famille construite jusqu'au rang k. Construisons le $k+1^{\rm e}$ vecteur.

Il faut choisir
$$v_{k+1}$$
 dans $\text{Vect}(u_1, ..., u_k, u_{k+1}) = \text{Vect}(v_1, ..., v_k, u_{k+1}) : v_{k+1} = \lambda_1 v_1 + ... \lambda_k v_k + \mu u_{k+1}.$
 $\langle v_{k+1} | v_j \rangle = 0$ donne $\lambda_j + \mu \langle u_{k+1} | v_j \rangle = 0$, donc $v_{k+1} = 0$

$$\mu\left(-\sum_{i=1}^{k} \langle u_{k+1} | v_i \rangle v_i + u_{k+1}\right). \text{ Reste à choisir } \mu \text{ pour avoir } ||v_{k+1}|| = 1 \text{ (2 choix possibles)}.$$

 \bullet Synthèse : on a vu unicité au signe près. On vérifie que les vecteurs trouvés conviennent bien. $\hfill\Box$

Exemple 2.2.10.

Orthonormaliser $(1, X, X^2)$ pour le produit scalaire de $\mathbb{R}_2[X]$, $\langle P \mid Q \rangle = \int_0^1 P(t)Q(t) dt$. On trouve (P_0, P_1, P_2) , où

$$P_0 = 1,$$

$$P_1 = \frac{X - 1/2}{1/(2\sqrt{3})} = \sqrt{3}(2X - 1),$$

$$P_2 = \frac{X^2 - X + 1/6}{\|\dots\|} = \sqrt{5}(6X^2 - 6X + 1).$$

Corollaire 2.2.11.

Tout espace euclidien a une base orthonormale. Toute famille orthonormale peut être complétée en une base orthonormale.

Démonstration.

Pour l'existence, il suffit d'orthonormaliser une base quelconque.

Soit (e_1, \ldots, e_p) une famille orthonormale de E. On peut la compléter en base de $E: (e_1, \ldots, e_p, e'_{p+1}, \ldots, e'_n)$.

On orthonormalise ensuite cette base : pour les p premiers vecteurs, on a à chaque fois le choix entre e_i et $-e_i$, on choisit bien entendu e_i .

On obtient donc une base orthonormée de E dont les p premiers vecteurs sont e_1, \ldots, e_p .

Proposition 2.2.12 (Coordonnées dans une base orthonormale).

Soit E euclidien, (v_1, \ldots, v_n) base orthonormale de E. Alors, pour tout $x \in E$, $x = \sum_{k=1}^{n} \langle x \mid v_k \rangle v_k$.

Démonstration.

Soit
$$x \in E$$
, soit $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tels que $x = \sum_{k=1}^n \lambda_k v_k$. Si

 $1 \leq k \leq n$, on a par bilinéarité du produit scalaire

$$\langle x \mid v_k \rangle = \sum_{i=1}^n \lambda_i \langle v_k \mid v_i \rangle$$
$$= \sum_{i=1}^n \lambda_i \delta_{i,k}$$
$$= \lambda_k.$$

Exemple 2.2.13.

Trouver les coordonnées de (1, -3) dans la base $\left(\frac{1}{\sqrt{2}}(1, 1), \frac{1}{\sqrt{2}}(1, -1)\right)$ (pour le produit scalaire usuel).

Exercice 2.2.14.

Exprimer la formule de la proposition 2.2.12 dans le cas où (v_1, \ldots, v_n) base orthogonale de E.

Proposition 2.2.15 (Expression du produit scalaire dans une base orthonormale).

Soit E euclidien, (v_1, \ldots, v_n) une base orthonormale de E. x et y de coordonnées (x_i) et (y_i) dans

la base
$$(v_1, \ldots, v_n)$$
. Alors $\langle x \mid y \rangle = \sum_{k=1}^n x_k y_k$.

Corollaire 2.2.16.

Avec les mêmes notations,

$$||x||^2 = \sum_{i=1}^n x_i^2.$$

Remarque 2.2.17.

Tous les produits scalaires ont la même expression «usuelle» à condition de se placer dans une base orthonormale pour ce produit scalaire.

Remarque 2.2.18.

Ces formules d'adaptent encore dans le cas de bases orthogonales.

2.3 Sous-espaces vectoriels orthogonaux.

Définition 2.3.1.

Soit F et G deux sous-espaces vectoriels de E. On dit que F et G sont des sous-espaces orthogonaux et on écrit $F \perp G$ si

$$\forall x \in F \quad \forall y \in G \qquad x \perp y.$$

Exemple 2.3.2.

Dans \mathbb{R}^3 avec le produit scalaire usuel, $\operatorname{Vect}(1,-1,0) \perp \operatorname{Vect}((1,1,0),(0,0,1))$.

Remarque 2.3.3.

Si F et G sont orthogonaux, alors ils sont en somme directe. En effet, soit alors $x \in F \cap G$. On a alors $x \perp x$, donc $\langle x \mid x \rangle = 0$, donc x = 0. Donc $F \cap G \subset \{0\}$, d'où on déduit le résultat.

Théorème 2.3.4.

Soient F et G deux sev de dimension finies de E. On note (f_1,\ldots,f_q) une famille génératrice de F et (g_1,\ldots,g_p) une famille génératrice de G. Alors $F\perp G$ si et seulement si pour tout $i\in \llbracket 1,q \rrbracket$ et $j\in \llbracket 1,p \rrbracket$ on a $\langle f_i\mid g_j\rangle=0$.

Démonstration.

 (\Rightarrow) par définition de $F \perp G$.

$$(\Leftarrow) \text{ soient } f = \sum_{i} \lambda_{i} f_{i} \text{ et } g = \sum_{i} \mu_{j} g_{j}. \text{ Alors } \langle f \mid g \rangle = \sum_{i} \sum_{j} \lambda_{i} \mu_{j} \langle f_{i} \mid g_{j} \rangle = 0.$$

Définition 2.3.5.

Soit X une partie (quelconque) de E. On appelle orthogonal de X et on noté X^{\perp} (ou X^o) l'ensemble $\{ y \in E \mid \forall x \in X \ \langle x \mid y \rangle = 0 \}$.

Proposition 2.3.6.

Soit X une partie de E. Alors

- 1. X^{\perp} est un sev de E;
- 2. Pour toute partie Y de E telle que $X \subset Y$, on a $Y^{\perp} \subset X^{\perp}$:

3.
$$X \subset (X^{\perp})^{\perp}$$
.

Démonstration. 1. On a $0 \in X^{\perp}$ car 0 est orthogonal à tout vecteur, donc à tout vecteur de X; de plus toute combinaison linéaire de vecteurs orthogonaux à tout vecteur de X est orthogonale à tout vecteur de X.

Sinon, il suffit de voir que

$$X^{\perp} = \bigcap_{x \in X} \operatorname{Ker} \langle x \mid \cdot \rangle.$$

- 2. Tout élément de Y^{\perp} est orthogonal à tout vecteur de Y, donc a fortiori à tout vecteur de X.
- 3. Soit x un vecteur de X. Tout vecteur de X^{\perp} est orthogonal à tout vecteur de X, donc en particulier à x. Donc x est orthogonal à tout vecteur de X^{\perp} , donc appartient à $\left(X^{\perp}\right)^{\perp}$.

Remarque 2.3.7.

Il n'y a pas forcément égalité dans le dernier point. Par exemple, avec $X = \emptyset$, $(X^{\perp})^{\perp} = \{0\}$.

Théorème 2.3.8.

Soit F un sev de E. Alors F^{\perp} est le plus grand sous-espace vectoriel orthogonal à F (et F et F^{\perp} sont de plus en somme directe).

Si de plus F est de dimension finie, alors $E = F \oplus F^{\perp}$ et F^{\perp} est l'unique sous-espace vectoriel G vérifiant $E = F \oplus G$ et $F \perp G$. C'est pourquoi on appelle F^{\perp} le supplémentaire orthogonal de F dans E.

Enfin, si F est de dimension finie, alors $F = (F^{\perp})^{\perp}$.

Démonstration.

On sait déjà que F^{\perp} est un sous-espace vectoriel. F et F^{\perp} sont clairement orthogonaux (donc en somme directe) et de plus pour tout sous-espace vectoriel G tel que F et G sont orthogonaux, tout élément x de G est orthogonal à tout élément de F, donc appartient à F^{\perp} , donc $G \subset F^{\perp}$.

Supposons de plus que le sous-espace vectoriel F est de dimension finie. Alors F est aussi un espace vectoriel euclidien, donc possède une base orthonormale (f_1, \ldots, f_q) .

Soit
$$x \in E$$
. Posons $y = \sum_{i=1}^{q} \langle x | f_i \rangle f_i$ et $z = x - y$,

alors x=y+z et $y\in F$. Par ailleurs, si $1\leqslant k\leqslant q$, par bilinéarité du produit scalaire

$$\langle z \mid f_k \rangle = \langle x \mid f_k \rangle - \langle y \mid f_k \rangle$$

$$= \langle x \mid f_k \rangle - \sum_{i=1}^q \langle x \mid f_i \rangle \, \delta_{i,k}$$

$$= 0.$$

Par conséquent, $z \in F^{\perp}$. Cela assure que $E = F \oplus F^{\perp}$. Démontrons l'unicité : soit G un sev de E vérifiant $E = F \oplus G$ et $F \perp G$. Alors $G \subset F^{\perp}$.

Par ailleurs, soit $x \in F^{\perp}$. Il existe $(f,g) \in F \times G$ tel que x = f + g, et comme $x \in F^{\perp}$, $\langle x \mid f \rangle = 0$. Or $\langle x \mid f \rangle = \langle f \mid f \rangle + \langle g \mid f \rangle = \langle f \mid f \rangle$, donc f = 0 et $x \in G$. On en déduit que $G = F^{\perp}$.

Enfin, F est un sev de E vérifiant $E = F^{\perp} \oplus F$ et $F^{\perp} \perp F$. Comme l'unicité ne fait pas intervenir l'hypothèse sur la dimension finie, on peut en déduire que $F = (F^{\perp})^{\perp}$.

Remarque 2.3.9 (Important).

Le résultat ne se généralise pas à des sev F qui ne sont pas de dimension finie. Dans ce cas, on peut trouver des sous-espaces vectoriels F tels que F et F^{\perp} ne soient pas supplémentaires et tels que $\left(F^{\perp}\right)^{\perp} \neq F$ (on peut même trouver F tel que $F \neq E$ et $F^{\perp} = \{0\}$). On verra ce résultat en exercice dans le cas de $\mathbb{R}[X]$.

Exemple 2.3.10.

On pose, pour tout couple (P,Q) d'éléments de $\mathbb{R}_2[X]$, $\langle P \mid Q \rangle = P'(1)Q'(1) + P(-1)Q(-1) + P(0)Q(0)$. Vérifier qu'il s'agit d'un produit scalaire et trouver $\mathbb{R}_1[X]^{\perp}$ dans $\mathbb{R}_2[X]$.

Exercice 2.3.11.

On considère dans $\mathbb{R}[X]$ le sev $F = \text{Vect}(1+X, 1+X^2, \ldots, 1+X^n, \ldots)$. On rappelle qu'un hyperplan est un sev admettant un supplémentaire de dimension 1.

On munit $\mathbb{R}[X]$ du produit scalaire

$$\left(\sum_{k=0}^{+\infty} a_k X^k, \sum_{k=0}^{+\infty} b_k X^k\right) = \sum_{k=0}^{+\infty} a_k b_k.$$

- 1. Montrer que F est un hyperplan de $\mathbb{R}[X]$.
- 2. Déterminer F^{\perp} pour le produit scalaire usuel de $\mathbb{R}[X]$.
- 3. Quel résultat vrai en dimension finie est ici mis en défaut ?

2.4 Formes linéaires et hyperplans d'un espace euclidien.

Dans toute cette partie, $(E, \langle \cdot, \cdot \rangle)$ désigne un espace euclidien de dimension n.

Définition 2.4.1.

Soit H un hyperplan d'un espace euclidien, alors H^{\perp} est une droite vectorielle appelée droite normale à H.

Tout vecteur v vérifiant $H^{\perp} = \text{Vect}(v)$ est appelé vecteur normal à H.

Proposition 2.4.2.

Soit H un hyperplan d'un espace euclidien E, soit $v \in E$. Alors v est un vecteur normal à H si et seulement si $v \neq 0_E$ et $v \in H^{\perp}$.

Démonstration.

Immédiat.

Remarque 2.4.3 (Écriture matricielle du produit scalaire).

Soit $e = (e_1, \ldots, e_n)$ base orthonormale de E, x et y des vecteurs de matrices (dans e) X et Y. Alors $\langle x | y \rangle = {}^t X.Y$.

2.5 Symétries et projecteurs orthogonaux.

Définition 2.5.1.

Soit F sev de dimension finie d'un espace préhilbertien E. On appelle projection orthogonale (resp. symétrie orthogonale) toute projection (resp. symétrie) sur (resp. par rapport à un) F parallèlement à F^{\perp} .

Proposition 2.5.2.

Un projecteur p est orthogonal si et seulement si $\operatorname{Im} p \perp \operatorname{Ker} p$. Une symétrie s est orthogonale si et seulement si $\operatorname{Ker}(s-\operatorname{Id}) \perp \operatorname{Ker}(s+\operatorname{Id})$.

Démonstration.

Direct

Théorème 2.5.3 (expression d'un projecteur orthogonal dans une base orthonormée).

Soit F sev de dimension finie d'un espace préhilbertien E. Soit (f_1, \ldots, f_p) une base orthonormale

de F. Soit $x \in E$. Le projeté orthogonal de x sur F est $p(x) = \sum_{i=1}^{p} \langle x \mid f_i \rangle f_i$.

Démonstration.

Démontré dans 2.3.8

Exemple 2.5.4.

Déterminer la projection orthogonale (et la symétrie orthogonale) de (2,1) sur Vect(-1,2), ainsi que sur son supplémentaire orthogonal, pour le produit scalaire

$$((x_1, y_1) \mid (x_2, y_2)) = 5x_1x_2 + 2y_1x_2 + 2x_1y_2 + y_1y_2.$$

Remarque 2.5.5.

On peut ré-écrire le procédé d'orthonormalisation de Gram-Schmidt comme suit.

Avec $F_k = \text{Vect}(e_1, \dots, e_k)$, en notant p_k le projeté de e_{k+1} sur F_k , on procède comme suit.

- On renormalise e_1 pour obtenir v_1 .
- Pour chaque $1 \leq k \leq p-1$, on remarque que $e_{k+1} p_k \in F_k^{\perp}$. On renormalise donc $e_k p_k$ pour obtenir v_{k+1} .

2.6 Distance à un sous ev.

Définition 2.6.1 (distance d'un point à une partie d'un espace préhilbertien).

Soit A une partie non vide de E et $x \in E$. On appelle distance de x à A et on note d(x, A) le réel $\inf_{a \in A} d(x, a)$.

Théorème 2.6.2.

Soit F un sev de dimension finie de E. Alors la distance de x à F est atteinte en un seul point, qui est la projection orthogonale de x. De plus : $d(x,F)^2 = ||x-p(x)||^2$. En particulier d(x,F) = 0 si et seulement si $x \in F$.

Démonstration.

Soit $f \in F$. On a la décomposition dans $F^{\perp} \oplus F : x - f = x - p(x) + p(x) - f$. On conclut en appliquant le théorème de Pythagore.

П

Exemple 2.6.3.

Le minimum de la fonction

$$f: \begin{cases} \mathbb{R}^2 & \to \mathbb{R} \\ (a,b) & \mapsto \int_0^1 (-a-bx+x^2)^2 dx \end{cases}$$

est atteint pour a = -1/6 et b = 1 et vaut 1/180.

2.7 Distance et projection sur un hyperplan

Dans toute cette partie, $(E, \langle \cdot, \cdot \rangle)$ désigne un espace euclidien, H un hyperplan de E et u un vecteur normal à H.

Notamment, $H = Vect(u)^{\perp}$.

Proposition 2.7.1 (voir figure 1).

Soit $x \in E$, le projeté orthogonal de x sur H est

$$p(x) = x - \frac{\langle x, u \rangle}{\|u\|^2} u.$$

La distance de x à H est

$$d(x,H) = \frac{|\langle x, u \rangle|}{\|u\|}.$$

Démonstration.

Il suffit d'observer que

$$x = x - \frac{\langle x, u \rangle}{\|u\|^2} u + \frac{\langle x, u \rangle}{\|u\|^2} u$$

et que

$$\langle x - \frac{\langle x, u \rangle}{\|u\|^2} u, u \rangle = \langle x, u \rangle - \langle x, u \rangle = 0,$$

donc que

$$x - \frac{\langle x, u \rangle}{\|u\|^2} u \in H.$$

On peut aussi observer que $\frac{u}{\|u\|}$ est une b.o.n. de H^{\perp} , et donc que $\frac{\langle x,u\rangle}{\|u\|^2}u$ est le projeté orthogonal de x sur

 $\operatorname{Vect}(u)$. Ainsi, $x - \frac{\langle x, u \rangle}{\|u\|^2} u$ est le projeté orthogonal de x sur $\operatorname{Vect}(u)^{\perp}$.

FIGURE 1 – Projection orthogonale sur un hyperplan H.

Corollaire 2.7.2.

Soit (e_1, \ldots, e_n) une b.o.n. de E, dans laquelle on écrit

$$u = u_1 e_1 + \dots + u_n e_n,$$

$$x = x_1 e_1 + \dots + x_n e_n.$$

Alors, la distance de x à H est

$$\frac{|x_1u_1+\cdots+x_nu_n|}{\sqrt{u_1^2+\cdots+u_n^2}}.$$

Démonstration.

Immédiat.