Navam's Law of Integers

"The product of the sum of x & y and the number of integers in between x & y is twice the sum of the integers in between x & y (where x < y and $x, y \in Z$)"

Or

$$m(x + y) = 2\Sigma n$$

where $m \Rightarrow$ number of integers in between x and y excluded and

 $\Sigma n \Rightarrow$ sum of all the integers in between x and y excluded!

Proof:

$$\Sigma n = n_1 + n_2 + \ldots + n_m$$

We know that, $n_1 = x + 1 \rightarrow a$

$$n_2 = y - 1 \rightarrow l$$

We also know that, $S_n = \frac{n}{2} (a + l)$

$$\Rightarrow \Sigma n = \frac{m}{2} \left(x + 1 + y - 1 \right)$$

$$\therefore m(x+y)=2\Sigma n$$

Another Version:

We know that the number of integers in between x & y is one less than the difference of y & x.

$$\Rightarrow m = (y - x) - 1$$

Navam's Law of Integers
$$\Rightarrow (y-x-1)(x+y) = 2 \Sigma n$$

$$(y-x)(y+x) - (x+y) = 2 \Sigma n$$

$$y^2 - x^2 - (x+y) = 2 \Sigma n$$

$$\therefore y^2 - x^2 = x + y + 2 \Sigma n$$