# The role of information in anticipatory responses

A possible framework for its analysis

Pedro J. Aphalo Joensuu, 29 June 2016

Department of Biosciences, University of Helsinki and

Viikki Plant Science Center, University of Helsinki



#### ©2016 by Pedro J. Aphalo

Department of Biosciences, University of Helsinki, Finland.

http://blogs.helsinki.fi/senpep-blog/

'The role of information

in anticipatory responses' slides from a presentation by Pedro J. Aphalo are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



#### Outline

Background

Why sensory ecology?

A possible framework

Some variables familiar to all of you

Available evidence for UVB and drought

Preemptive acclimation: implications

Acknowledgements

## Background

 The focus of my presentation will be the sensory abilities of plants from an evolutionary and fitness perspective.

- The focus of my presentation will be the sensory abilities of plants from an evolutionary and fitness perspective.
- · Fitness represents an ultime cause (a why question).

- The focus of my presentation will be the sensory abilities of plants from an evolutionary and fitness perspective.
- Fitness represents an ultime cause (a why question).
- The physiological and/or molecular mechanisms are *proximate* causes (how questionss).

- The focus of my presentation will be the sensory abilities of plants from an evolutionary and fitness perspective.
- · Fitness represents an ultime cause (a why question).
- The physiological and/or molecular mechanisms are *proximate* causes (how questionss).
- In animal ecology sensory ecology is an important discipline.

- The focus of my presentation will be the sensory abilities of plants from an evolutionary and fitness perspective.
- · Fitness represents an ultime cause (a why question).
- The physiological and/or molecular mechanisms are *proximate* causes (how questionss).
- In animal ecology sensory ecology is an important discipline.
- In the case of plants this approach has been rarely used...

- The focus of my presentation will be the sensory abilities of plants from an evolutionary and fitness perspective.
- · Fitness represents an ultime cause (a why question).
- The physiological and/or molecular mechanisms are *proximate* causes (how questionss).
- In animal ecology sensory ecology is an important discipline.
- In the case of plants this approach has been rarely used...
- ...based on the assumption that sensory capabilities and specially information processing are very limited in plants.

- The focus of my presentation will be the sensory abilities of plants from an evolutionary and fitness perspective.
- · Fitness represents an ultime cause (a why question).
- The physiological and/or molecular mechanisms are *proximate* causes (how questionss).
- In animal ecology sensory ecology is an important discipline.
- In the case of plants this approach has been rarely used...
- ...based on the assumption that sensory capabilities and specially information processing are very limited in plants.
- Now we know that this assumption does not hold.

 The discussion of the role "future perception" in fitness is current (Novoplansky 2016).

- The discussion of the role "future perception" in fitness is current (Novoplansky 2016).
- We depend on informally forecasting all sorts of events every minute.

- The discussion of the role "future perception" in fitness is current (Novoplansky 2016).
- We depend on informally forecasting all sorts of events every minute.
- Sometimes we do this consciously, but most of the time we are not aware of what our brain is doing.

- The discussion of the role "future perception" in fitness is current (Novoplansky 2016).
- We depend on informally forecasting all sorts of events every minute.
- Sometimes we do this consciously, but most of the time we are not aware of what our brain is doing.
- We use forecasts at very different time scales and to many different ends.

- The discussion of the role "future perception" in fitness is current (Novoplansky 2016).
- We depend on informally forecasting all sorts of events every minute.
- Sometimes we do this consciously, but most of the time we are not aware of what our brain is doing.
- We use forecasts at very different time scales and to many different ends.
- If we use the abstraction of information, and for a moment forget about how its processing is implemented...

- The discussion of the role "future perception" in fitness is current (Novoplansky 2016).
- We depend on informally forecasting all sorts of events every minute.
- Sometimes we do this consciously, but most of the time we are not aware of what our brain is doing.
- We use forecasts at very different time scales and to many different ends.
- If we use the abstraction of information, and for a moment forget about how its processing is implemented...
- ...it is easy to imagine that every organism must have evolved the capacity to "forecast" future events important for fitness.

- The discussion of the role "future perception" in fitness is current (Novoplansky 2016).
- We depend on informally forecasting all sorts of events every minute.
- Sometimes we do this consciously, but most of the time we are not aware of what our brain is doing.
- We use forecasts at very different time scales and to many different ends.
- If we use the abstraction of information, and for a moment forget about how its processing is implemented...
- ...it is easy to imagine that every organism must have evolved the capacity to "forecast" future events important for fitness.
- How information is processed, "the machinery used", does not need to be the same as long the information is acquired, transmitted, stored and combined successfully.

 Several plant responses can be only explained from the evolutive/fitness point of view as being a 'preparation' to tolerate or escape future stress events or take advantage of future favourable conditions.

- Several plant responses can be only explained from the evolutive/fitness point of view as being a 'preparation' to tolerate or escape future stress events or take advantage of future favourable conditions.
  - Example 0: Phenology.

- Several plant responses can be only explained from the evolutive/fitness point of view as being a 'preparation' to tolerate or escape future stress events or take advantage of future favourable conditions.
  - Example 0: Phenology.
  - Example 1: Preemptive shade avoidance as a response to reflected far-red light from neighbouring plants.

- Several plant responses can be only explained from the evolutive/fitness point of view as being a 'preparation' to tolerate or escape future stress events or take advantage of future favourable conditions.
  - · Example 0: Phenology.
  - Example 1: Preemptive shade avoidance as a response to reflected far-red light from neighbouring plants.
  - Example 2: Eavesdropping-on/communicating-with neighbours to preemptively acclimate/prepare for drought, herbivore attacks, even to synchronize flowering among individuals.

- Several plant responses can be only explained from the evolutive/fitness point of view as being a 'preparation' to tolerate or escape future stress events or take advantage of future favourable conditions.
  - Example 0: Phenology.
  - Example 1: Preemptive shade avoidance as a response to reflected far-red light from neighbouring plants.
  - Example 2: Eavesdropping-on/communicating-with neighbours to preemptively acclimate/prepare for drought, herbivore attacks, even to synchronize flowering among individuals.
  - Example 3: Possibly (a hypothesis) preemptive acclimation to future soil drying in response to high ultraviolet-B irradiance.

Why sensory ecology?

1. Information sources are crucial to the performance and survival of organims...

- 1. Information sources are crucial to the performance and survival of organims...
- ...⇒ cross-correlations among variables in their environment and their lags, and autocorrelations, are key sources of information

- 1. Information sources are crucial to the performance and survival of organims...
- ...⇒ cross-correlations among variables in their environment and their lags, and autocorrelations, are key sources of information
- 3. ...⇒ we need to pay attention to 'joint statistical properties of environmental variables'...

- 1. Information sources are crucial to the performance and survival of organims...
- ...⇒ cross-correlations among variables in their environment and their lags, and autocorrelations, are key sources of information
- 3. ...⇒ we need to pay attention to 'joint statistical properties of environmental variables'...
- 4. Could we pay more attention to sources of information?

- 1. Information sources are crucial to the performance and survival of organims...
- ...⇒ cross-correlations among variables in their environment and their lags, and autocorrelations, are key sources of information
- 3. ...⇒ we need to pay attention to 'joint statistical properties of environmental variables'...
- 4. Could we pay more attention to sources of information?
- 5. ...and how sensory mechanisms have been "tuned" by evolution to filter information from noise?

#### Correlations in the environment



A possible framework

#### Conceptual framework

Environment























#### Conceptual framework



#### Example: Frost hardening



#### Example: Frost hardening





#### Conceptual framework



#### UVB example



#### UVB example



Some variables familiar to all of you

# Day length and twilight



# Temperature and its variability: 2004–2014



(P. J. Aphalo, A. Lindfors, unpublished)

# Global radiation and its variability: 2004–2014



(P. J. Aphalo, A. Lindfors, unpublished)

# UV radiation and its variability: 2004–2014



(P. J. Aphalo, A. Lindfors, unpublished)

# Available evidence for UVB and drought

#### Is there an environmental correlation? Yes



(P. J. Aphalo, A. Lindfors, unpublished)

#### Is there an environmental correlation? Yes



(P. J. Aphalo, A. Lindfors, unpublished)

# Can exposure to UV-B trigger drought-acclimation? Yes



(Robson et al. 2014)

# implications

Preemptive acclimation:

# Take home message from our research on UV

If our hypothesis holds for a range of species then there would be much to rethink:

- reduced growth under UV-B exposure could improve fitness instead of being deleterious,
- phenotyping for drought tolerance of dryland crops in the absence of UV-B could lead to little progress,
- what should we do with field crops under irrigation: do we need to breed out some of the UVB responses?,
- what about rain shelter experiments: should we supplement with UVB?
- What about climate change: should we acknowledge that changes in rainfall will correlate with changes in UVB?

#### Overall take home message

- · If we use a higher level abstraction...
- ...we can more easily see the parallels between different anticipatory responses...
- ...and their commonalities, in the spirit of the general systems theory.
- Use more consistent research approaches.
- More easily apply what we already know or will learn in the future about responses like the annual cycle of trees, or the shade avoidance response, to "newly" discovered or hypothesized anticipatory responses.

#### A caveat and a question to the audience

- The model I presented is mainly dealing, at least in my examples, with relatively "normal business", events that could take place every year to not more than a few generations apart.
- But our trees have also survived as species very exceptional extreme events.
- This has also shaped the current genotypes, so can we separate these aspects in our studies?

Acknowledgements



**Members of my research group:** Sari Siipola, Fang Wang, Neha Rai, Yan Yan, Cyntia Ayala.

Current collaborators: Luis O. Morales, T. Matthew Robson, Anders Lindfors, Víctor Sadras, Jorge J. Casal, Saara Hartikainen, David Israel, Mikael Brosché, Tarja Lehto, Åke Strid, Gareth Jenkins, Andreas Albert, Fred Stoddard



A new umbrella organization at our campus.



ACADEMY OF FINLAND

My employer.

For funding, decisions 252548, 16775.

#### References



Novoplansky, A. (2016). "Future Perception in Plants". In: *Anticipation Across Disciplines*. Springer, pp. 57–70.



Robson, T. M., S. M. Hartikainen, and P. J. Aphalo (2014). "How does solar ultraviolet-B radiation improve drought tolerance of silver birch (*Betula pendula* Roth.) seedlings?" In: *Plant, Cell* & *Environment* 38, pp. 953–967. DOI: 10.1111/pce.12405.

#### Some connections to earlier talks

- Veikko Koski's reference to "Heisenberg's uncertainty principle" triggered some thoughts: 1) the plants perceive the state of the environment but modify it, but also 2) in experiments we modify the environment, rather drastically, to study the responses of plants.
- In the discussion after Outi Savolainen's talk about the quantitative traits and the difficulties of dealing with many alleles the discussion centred on study methods. Later in the evening I started thinking whether having so many alleles could have a function in fitness. I came out with two ideas, at least the first one not original at all: 1) a smooth "continuous" range of possible daylength thresholds is good for fine tuning during "normal business", but 2) could this also be advantageous in "extreme years" as a way of preventing the loss of any alleles from the population even if a significant part of population with a non-hardy phenotype died.

# The origin of what I will present today

- BSc Agronomy with emphasis in crop breeding (Genetics + Ecology + Statistics + Meteorology)
- MSc Plant Production (Ecophysiology + Sensory photobiology + Simulation modelling + General Systems Theory)
- · Computing programming + Systems analysis
- · Electronics + Instrumentation
- PhD in "Science" (Ecophysiology + Sensory photobiology + Instrumentation + Simulation modelling)
- METLA seedling—seedling interactions + photobiology + growth regulators
- U. Joensuu roots + cold + UVB radiation + Instrumentation + Computer Programming + Mineral Nutrition + Secondary metabolites
- U. Jyväskylä statistics + time series analysis + UVB + Secondary metabolites
- U. Helsinki add Heikki, molecular biology, a few additional plant species, a pinch of metabolomics and shake well