Series 12, Bonus Exercise

David Wiedemann

5 juin 2022

1

Recall from a theorem that, to show that $f=x^3+ax+1, a\in\mathbb{Z}_+$ is irreducible over \mathbb{Q} , it suffices to show that it has no roots over \mathbb{Q} . Hence, suppose that $\frac{w}{z}\in\mathbb{Q}$ is a zero of f, further, without loss of generality suppose that w and z share no common factors. Plugging this into f yields

$$\frac{w^{3}}{z^{3}} + a\frac{w}{z} + 1 = 0$$
$$w^{3} + awz^{2} + z^{3} = 0$$
$$w^{3} = z^{2}(-aw - z)$$

Thus w and z share at least one common factor, a contradiction. As such, we conclude that f has no roots over \mathbb{Q} and is thus irreducible.

 $\mathbf{2}$

First notice that by elementary analysis results, f always has at least one real root (f is continuous over \mathbb{R} and $\lim_{x\to+\infty}f=+\infty$, $\lim_{x\to-\infty}f=-\infty$).

Hence, let l be this real root.

In this case, note that over \mathbb{R} , f splits as

$$f(x) = (x - l)(x^{2} + bx + c) = x^{3} + (b - l)x^{2} + (c - bl)x - lc = x^{3} + ax + 1$$

We pretend that in this case, $x^2 + bx + c$ has no real roots, to show this, it is sufficient to show that the discrimant $b^2 - 4c < 0$ As the family $\{x^i\}_{i=0}^{\infty}$ is a basis for the vector space $\mathbb{R}[x]$, we conclude that l, b and c must satisfy the following three equations

$$\begin{cases} b - l = 0 \\ c - bl = a \\ -lc = 1 \end{cases}$$

In particular, l = b and thus $c = a + b^2$.

Then, the discrimant becomes

$$\Delta = b^2 - 4c = b^2 - 4b^2 - 4a = -3b^2 - 4a$$

Now as a>0 and $b^2>0$ (as $b\in\mathbb{R}$), we conclude that $\Delta<0$ and thus f does not have three real roots.

3

First, we show that K is indeed of degree 3, ie. that $[K : \mathbb{Q}] = 3$, this follows immediatly from lemma 4.2.25 in the course, indeed, f is irreducible of degree 3 over \mathbb{Q} by part 1 and thus the hypothesis of the proposition applies.

Now we show that K is not Galois over \mathbb{Q} , to do this, we construct an embedding of $K \hookrightarrow \mathbb{R}$.

Let $l \in \mathbb{R} \setminus \mathbb{Q}$ be the (unique) real root of f, using a theorem from the course we know that $K \simeq \mathbb{Q}(l)$.

Let $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$, as $\sigma(l)$ must still be a root of f.

As l is the unique root of f in K (as $K \subset \mathbb{R}$ and f has a unique real root), $\sigma(l) = l$.

As l generates K over \mathbb{Q} , this implies that $\sigma = \operatorname{Id}$ and thus $|\operatorname{Gal}(L/\mathbb{Q})| = 1$. Since an extension K/\mathbb{Q} is Galois iff $[K : \mathbb{Q}] = |\operatorname{Gal}(L/\mathbb{Q})|$, we deduce that K is not Galois over \mathbb{Q} .

4

Let l, c_1, c_2 be the three distinct roots of f (where l is the real root and c_1, c_2 are the two complex ones).

By definition, L being the splitting field, it is generated by l, c_1, c_2 , ie. $L = \mathbb{Q}(l, c_1, c_2)$.

Using proposition 4.6.3.2 from the course notes, we thus conclude that there exists an injective group morphism $Gal(L/\mathbb{Q}) \hookrightarrow S_3$.

Notice that $|S_3| = 3! = 6$ and thus it suffices to show $|\operatorname{Gal}(L/\mathbb{Q})| = 6$, as an injective map between finite sets of same cardinality is bijective.

To show this, first notice that as we are working in characteristic 0, any extension of \mathbb{Q} is separable, this follows from our characterisation of perfect fields.

As L is a splitting field and is generated by separable elements, proposition 4.6.3.4 in fact implies that $|\operatorname{Gal}(L/\mathbb{Q})| = [L:\mathbb{Q}]$, so we reduce to showing that $[L:\mathbb{Q}] = 6$.

We claim that [L:K]=2.

To show this, notice that as $K = \mathbb{Q}(l)$, $L = K(c_1, c_2)$.

We pretend that $K(c_1) = L$.

Indeed, notice that over K, f splits as $(x-l)(x^2+bx+c), b,c \in K$, as $x^2 + bx + c$ is a degree 2 polynomial over K which does not have roots over K, it is irreducible and thus is a minimal polynomial for c_1 (as c_1 obviously is not a root of x - l).

From our general quadratic formula, we know that (up to switching the signs in front of the square root) $c_1 = \frac{1}{2}(-b+\sqrt{b^2-4c})$ and $c_2 = \frac{1}{2}(-b-\sqrt{b^2-4c})$, in particular $c_2 = -b - c_1$.

Thus, $K(c_1) \supset K(c_1, c_2)$, as the inclusion $K(c_1) \subset K(c_1, c_2)$ is trivial, we deduce that $K(c_1) = L$.

As,
$$K(c_1) = K[x]/(x^2 + bx + c)$$
, $[K(c_1) : K] = 2$.
As such, we may compute $[L : \mathbb{Q}] = [L : K][K : \mathbb{Q}] = 2 \cdot 3 = 6$.

Thus, the injective homomorphism $\operatorname{Gal}(L/\mathbb{Q}) \hookrightarrow S_3$ is in fact a bijection and thus $Gal(L/\mathbb{Q}) \simeq S_3$.