演算法 Homework 20190919 山下夏輝(Yamashita Natsuki) R08922160

Mini HW #1

截止時間 星期四, 14:20 **總分** 1 **繳交** 線上輸入或者檔案上傳**檔案類型** pdf **接受繳交時間** 9月19日 14:20 - 9月26日 14:20 7天

Let f(n) = g(n) - h(n).

Given $g(n) = \Theta(F(n))$ and h(n) = o(F(n)).

Prove or disprove $f(n) = \Omega(F(n))$ using the definitions of Θ, o, Ω given in the textbook.

Note that the definition of o is different from O. As for the definition of o, please refer to section 3.1 of the textbook.

Proof

The definitions of Θ , o and Ω is below.

 Θ (g(n))={f(n): there exist positive constant c and n₀ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

 $o(g(n))=\{f(n):$ for any positive constant c>0, there exists a constant $n_0>0$ such that $0\leq f(n)< cg(n)$ for all $n\geq n_0$

 $\Omega(g(n)) = \{f(n) : \text{for any positive constant c and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0$

At first, a function g(n) belongs to the set $\Theta(F(n))$ if there exist positive constants c_1 and c_2 . g(n) is in the range between $c_1g(n)$ and $c_2g(n)$.

Secondly, if there exist positive constants c_3 , the value of function h(n) is below $c_3h(n)$ and also $c_3h(n)$ can not be equal h(n).

Thirdly, if there exist positive constants c_4 , the value of function f(n) is always above $c_4f(n)$ and also $c_4f(n)$ includes the value of f(n).

In addition to them, according to the definitions, every formulas given is positive funtions.

As a result, this equation, $f(n) = \Omega(F(n))$, holds in the given condition.