MP*: Algèbre linéaire, anneau $\frac{\mathbb{Z}}{n\mathbb{Z}}$, anneaux de polynômes, algèbre

Coralie RENAULT

8 janvier 2015

Exercice

Soit A une sous algèbre de $\mathbb{R}[X]$ engendrée par X^2 et X^3 . Montrer que A n'est pas isomorphe à $\mathbb{R}[X]$.

Exercice

- a) Pour $(a, n) \in \mathbb{Z} \times \mathbb{N}^*$ avec $a \wedge n = 1$, montrer que $a^{\varphi(n)} = 1$ [n].
- b) Pour p premier et $k \in \{1, ..., p-1\}$, montrer que p divise $\binom{p}{k}$.
- c) Soit $(a, n) \in (\mathbb{N}^*)^2$. On suppose que $a^{n-1} = 1$ [n]. On suppose que pour tout x divisant n-1 et différent de n-1, on a $a^x \neq 1$ [n]. Montrer que n est premier.

Exercice

Soit \mathbb{K} une algèbre intègre sur \mathbb{R} de dimension finie $n \geq 2$. On assimile \mathbb{R} à $\mathbb{R}.1$ où 1 est l'élément de \mathbb{K} neutre pour le produit.

- a) Montrer que tout élément non nul de K est inversible.
- b) Soit a un élément de \mathbb{K} non situé dans \mathbb{R} . Montrer que la famille (1, a) est libre tandis que le famille $(1, a, a^2)$ est liée.
- c) Montrer l'existence de $i \in \mathbb{K}$ tel que $i^2 = -1$.
- d) Montrer que si \mathbb{K} est commutative alors \mathbb{K} est isomorphisme à \mathbb{C} .

Exercice

Déterminer les morphismes de groupes entre $(\mathbb{Z}/n\mathbb{Z}, +)$ et $(\mathbb{Z}/m\mathbb{Z}, +)$.

Exercice

— Trouver les polynomes $P \in \mathbb{C}[X]$ tels qu'existent p,q dans \mathbb{N}^* tels que $(P')^q$ divise P^q .

Exercice

Soit p un nombre premier supérieur à 3.

- a) Quel est le nombre de carrés dans $\mathbb{Z}/p\mathbb{Z}$?
- b) On suppose p = 1 [4]. En calculant de deux façons (p 1)!, justifier que -1 est un carré dans $\mathbb{Z}/p\mathbb{Z}$.
- c) On suppose p=3 [4]. Montrer que -1 n'est pas un carré dans $\mathbb{Z}/p\mathbb{Z}$.

Exercice

Soient A et $B \in \mathcal{M}_n(\mathbb{R})$ deux matrices semblables sur \mathbb{C} . Montrer que A et B sont semblables sur \mathbb{R} .

Exercice (Matrices de permutation)

Soit $n \in \mathbb{N} \setminus \{0, 1\}$. Pour $\sigma \in \mathfrak{S}_n$, on note

$$P(\sigma) = \left(\delta_{i,\sigma(j)}\right)_{1 \leqslant i,j \leqslant n} \in \mathcal{M}_n(\mathbb{R})$$

appelée matrice de permutation associée à σ .

a) Montrer que

$$\forall (\sigma, \sigma') \in \mathfrak{S}_n^2, P(\sigma \circ \sigma') = P(\sigma)P(\sigma')$$

- b) En déduire que $E = \{P(\sigma)/\sigma \in \mathfrak{S}_n\}$ est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$ isomorphe à \mathfrak{S}_n .
- c) Vérifier que

$$^{t}\left(P(\sigma)\right) =P(\sigma^{-1})$$

Exercice

- Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$ avec $a_{ii} = 0$ pour tout i et $a_{ij} \in \pm 1$ pour $i \neq j$. Si n est pair, montrer que A est inversible.
- On dispose de 2n + 1 cailloux, $n \ge 1$. On suppose que chaque sous-ensemble de 2n caillouxpeut se partager en deux paquets de n cailloux de meme masse totale. Montrer que tout les cailloux ont la meme masse.

Exercice

Soient $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{R})$ définie par

$$M = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

- a) Donner le rang de M et la dimension de son noyau.
- b) Préciser noyau et image de M.
- c) Calculer M^n .

Exercice

Déterminer l'ensemble des polynômes $P \in \mathbb{R}[X]$ tels que :

$$P \equiv 1 \pmod{(X-1)^3} \text{ et } P \equiv -1 \pmod{(X+1)^3}$$

Exercice

Soient a_0, a_1, \ldots, a_n des réels non nuls deux à deux distincts. On note F_j l'application de $\mathbb{R}_n[X]$ dans \mathbb{R} définie par

$$F_j(P) = \int_0^{a_j} P$$

Montrer que (F_0, F_1, \dots, F_n) est une base de $(\mathbb{R}_n [X])^*$.

Exercice

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E tel que $\forall x \in E \setminus 0$, on a (x,u(x)) qui est une famille liée.

Que dire de u?