パターン認識と学習 ガイダンス

管理工学科 篠沢佳久

パターン認識と学習

■ パターン認識と(機械)学習

Pattern Recognition and Machine Learning

パターン認識と学習

- 管理工学科を卒業した皆さんへ
 - □ パターン認識
 - □ 管理工学科4年生 秋学期 月曜日4時限目
 - □ 本講義は、この科目の後継科目
- その他の学科を卒業した皆さんへ
 - □ 管理工学科を卒業した学生のレベル, 前提知識

資料の内容

■ パターン認識, 学習(機械学習)とは

- ■講義内容
 - □ 講義計画, 講義の進め方

パターン認識とは

パターンとは①

- パターン
 - □型,類型
 - □規則性のある特徴
 - □ 規則性, 周期性のある繰り返し

□ ABBAABBAABBA•••

パターンとは②

- (講義で扱う)パターン
 - □ 観測可能な事象
 - □ 人間が知覚できる実世界の情報
 - 視覚, 聴覚, 嗅覚, 触覚, 味覚に関する情報
 - □ 観測された事象同士が同一であるかどうかを判 定できる性質を持つ

パターンとは③

■視覚

- 聴覚, 嗅覚, 触覚, 味覚
- 人間が知覚できるすべてのものはパターンとしての性質を持つ

パターン認識とは①

- ■パターン認識
 - 観測されたパターンをあらかじめ定めておいた複数個の「概念」の中の一つと対応付けする
- ■概念
 - □ 同等とみなされるパターンの集合
 - □ クラス, カテゴリーとも呼ばれる

人間の認知情報処理

パターン認識とは②

- 心理学においては,
 - □ 外界からの情報が、何らかの意味付けをされ、意 識にのぼる過程
 - □ 感覚記憶から短期記憶への情報転送過程にて生 じる
 - □ 認知(cognition)と呼ばれる

パターン認識とは③

- 計算機科学においては,
 - □ 雑多な情報の中から、あらかじめ定めておいた複数個の「概念」の中の一つと対応付けを行なう技術
 - □ パターン認識(pattern recognition)と呼ばれる
 - □ re(再)+cognition(認知)

パターン認識は学習によって獲得されるのか

- ■学習説
 - □ 経験, 学習によって機能が獲得される
- 生得説
 - □ 生まれながらに機能が備わっている
 - □ (例)
 - 群化
 - 選好注視法
 - 視覚的断崖
 - 言語獲得

学習とは

パターン認識は生得的か

- 群化(grouping)
 - □ ゲシュタルト心理学
 - □ 意味のある形, まとまりをゲシュタルトと呼ぶ
 - □ 図(物体)と地(背景)の分離
 - Border Ownership選択性細胞

選好注視法(Fantz,1961)

- 生得的?
 - □ Fantzの実験(1961)
 - □ 乳児(生後46時間から6ヶ月)に対する選好注視法
 - □ 二つの刺激を提示, 注視時間を測定

乳児の注視時間からみた図形パターンに対する好み

^{*}基礎からの心理学, おうふう, 2009

視覚的断崖(Visual Cliff)

- 生得的? or 学習?
 - □ 奥行き知覚(Gibson & Walk, 1960)
 - □ 社会的参照
 - 母親の表情を読み取る

言語獲得

- プラトンの問題(Chomsky)
 - □ 人間は生まれてから短期間で母国語をほぼ完全に獲得する
 - □ 幼児期のみ(第二言語獲得の困難さ)
 - □ その間に受ける(言語的)刺激は限られている(刺激 の貧困)
 - □ しかも不完全なものも多い(否定証拠)
 - □ それにもかかわらず, 言語知識を獲得できる
 - □ 文法的に正しい文を無限に生成できるのはなぜか

言語機能の生得性

(Avram Noam Chomsky)

- 生成文法(1955, 1957)
 - □ 特定の言語の文法記述ではない
 - □ 人間が生得的に持っている言語能力によって文法的 な文のみを限りなく生成していく仕組み

■ 生得性

- □ 人間には有限の言語要素を用いて、無限の文を生成する言語機能(心的器官)を生まれながらに持っている
- □ 言語獲得とは, 言語機能の発達(成長)

普遍文法(Universal Grammar)

- ■言語の初期状態
 - □ 全ての人間の言語の要素,特性を示す原理,状態, 規則
 - □ 文法の設計図
 - □ 生得的に持つ
- ■言語獲得装置
 - □ 周囲で話される言語から個別文法を獲得する器官
 - □ 普遍文法のパラメータを調整
 - □ 個別文法は普遍文法のパラメータの差に過ぎない

言語獲得=言語機能の成長

パターン認識は学習によって獲得されるのか

- ■生得説
 - □ 生まれながらに機能が備わっている(機能を成長させる)

- ■学習説
 - □ 経験, 学習によって機能が獲得される

■ 人は両方の性質を持つ

計算機にパターン認識を行なわせるためには①

位直情報 形状 色情報など

計算機にパターン認識を行なわせるためには②

機械学習(Machine Learning)

- Mitchellの定義(1997)
 - □構成要素
 - 経験E
 - タスクT
 - 評価尺度P
 - □ あるタスクTについて、評価尺度Pで測られたタスクの実行能力が経験Eを通じて向上
 - □ 経験Eより学習

機械学習とは

得、改善、パラメータの調整

経験E(データ)

26

機械学習によるパターン認識

経験E(データ)

パターン認識 のタスクT

 $y_1, y_2, \cdots y_n$

出力值

機械学習

評価尺度Pを向上させるよう に出力値を改善する

タスクTのアルゴリズムの獲 得、改善、パラメータの調整

目的值

 $t_1, t_2, \cdots t_n$

評価尺度P

パターン認識と学習

- 幼児はいつから文字を読み、書くことができるようになるのか
- 幼児はいつから計算ができるようになるのか

人間は、長期間の「学習」によってパターン認識 能力を向上させる

パターン認識と人工知能

- John MaCarthy
 - □ ダートマス会議(1956)

- 計算機に人間の知能を持たせようとする試み
- パターン認識は「人工知能」の分野とも関連が深い

- 近年は第三次(?)ニューラルネットワークブーム
 - □ パーセプトロン→誤差逆伝播則→深層学習(Deep Learning)

パターン認識と数理モデル

- ■最適化
 - □ 入力パターンが正しいクラスに分類された場合, 間違ったクラスに分類された場合,それらを評価 する指標(評価基準)を決める

□ 評価基準を最大(もしくは最小)にするという「最適 化問題」に帰着できる

パターン認識をとりまく分野

パターン認識をとりまく環境

Googleの猫(Q.V.Le, 2012) 1,000万の画像の教師なし学習 Googleの猫 Input to another layer above (image with 8 channels) Number of output channels = 8 Size = 5 9層(3層×3個) H One layer Number of maps = 8Number of input channels = 3 Image Size = 200

- AlexNet(A. Krizhevsky,2012)
 - □ ILSVRC2012において判定エラー率を25.8%から 16.4%に改善

■ ILSVRCにおけるエラー率の向上

ILSVRC2013:ZFNET ILSVRC2016:CUImage

■ ノイズを混ぜると...

人のパターン認識は未解明

- 人は,
 - 見えないものも見える
 - □ 同じものも異なって見える
 - □ 動かないものも動いて見える

パターン認識の目的

人間のパターン認識 の機能の解明

パターン認識の原理を 数理モデルにて構築

パターン認識の技術 を工学的に応用

本講義の目的

人間のパターン認識 の機能の解明

パターン認識の原理を 数理モデルにて構築

パターン認識の技術 を工学的に応用

特に「機械学習」を用いた手法

講義内容

講義計画 講義の進め方, 講義資料

講義計画①

第一回	9月24日	ガイダンス パターン認識の基礎
第二回	10月1日	テンプレートマッチング python入門
第三回	10月15日	最近傍法, K近傍法
第四回	10月22日	統計的パターン認識(1) ベイズ決定則,最尤法,
第五回	10月29日	統計的パターン認識(2) 分布の推定
第六回	11月5日	教師あり学習(1) 線形識別関数の学習
第七回	11月12日	教師あり学習(2) 集合学習

講義計画②

第八回	11月19日	ニューラルネットワーク(1) パーセプトロン
第九回	11月26日	ニューラルネットワーク(2) 誤差逆伝播則
第十回	12月3日	深層学習(1) 畳み込みニューラルネットワーク
第十一回	12月10日	深層学習(2) 生成モデル, オートエンコーダー
第十二回	12月17日	深層学習(3) 深層学習の応用事例
第十三回	12月24日	教師なし学習(1) k平均法, EMアルゴリズム
第十四回	1月7日	教師なし学習(2) 自己組織化マップ
第十五回	1月21日	講義のまとめ

講義に必要な知識①

人間のパターン認識 の機能の解明

パターン認識の原理を 数理モデルにて構築

パターン認識の技術 を工学的に応用

統計,線形代数

計算機, アルゴリズム

講義に必要な知識②

- アルゴリズム
 - □ Pythonで説明
 - https://www.python.org/

- □ 利用するパッケージ(ライブラリイ)
 - numpy, scikit-learn, PIL, chainerなど
- □ 次回以降, 少しずつ説明します

講義資料

- ■教科書
 - □ なし
 - □参考書は適宜示す
- ■資料
 - http://lecture.comp.ae.keio.ac.jp/prml2018/
 - □ 講義に関する連絡は上記のURL上に掲載する

評価方法

- レポート
 - □二回を予定
 - □ 三田祭前, 冬休み前
 - □資料中の「問題点」「宿題」を主として出題

講義に関しての質問

- ■講義に関する情報
 - http://lecture.comp.ae.keio.ac.jp/prml2018/

- ■質問
 - □ 電子メール: shino@ ae.keio.ac.jp
 - □ 篠沢の居室:23-624

(内線42633)

(本日の)参考文献

■ 村田厚生: 認知科学, 朝倉書店(1997)