BÀI TẬP LÝ THUYẾT QUY HOẠCH PHI TUYẾN LẦN 1

Bài 1. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}^2$ được xác định bởi

$$f(x) = \begin{cases} (x; x^2) & \text{if } x \neq 0, \\ (0; 0) & \text{if } x = 0. \end{cases}$$

- (a) Hàm số trên có khả vi theo hướng tại $x_0 = 0$?
- (b) Hàm số trên có khả vi Gateaux tại $x_0 = 0$?
- (c) Hàm số trên có khả vi Frechet tại $x_0 = 0$?

Bài 2. Cho ánh xạ $f: \mathbb{R}^2 \to \mathbb{R}$ được xác định bởi

$$f(x,y) = \begin{cases} \frac{x^2 y^4}{x^4 + y^8} & \text{if } (x;y) \neq (0;0), \\ 0 & \text{if } (x;y) = (0;0). \end{cases}$$

- (a) Hàm số trên có khả vi theo hướng tại $x_0 = (0, 0)$?
- (b) Hàm số trên có khả vi Gateaux tại $x_0 = (0;0)$?
- (c) Hàm số trên có khả vi Frechet tại $x_0 = (0; 0)$?

Bài 3. Cho X là một không gian định chuẩn, $M \subset X$ và $x_0 \in X$. Nón tiếp xúc (contingent cone, tangent cone, Bouligand cone) của M tại x_0 , được cho bởi công thức sau

$$T(M, x_0) = \{ u \in X | \exists t_n \to 0^+, u_n \to u, x_0 + t_n u_n \in M, \forall n \in \mathbb{N} \}.$$

Bằng định nghĩa trên, hãy tính các nón tiếp xúc sau

(a)
$$M = \{(x_1, x_2) \in \mathbb{R}^2 | x_1^3 + x_2^2 = 0 \}$$
 và $x_0 = (0, 0)$.

(b)
$$M = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 + x_2 \ge 2, x_2 \le x_1^3 \}$$
 và $x_0 = (1, 1)$.

Bài tập sau đây cho ta một số tính chất về nón tiếp xúc cấp 1.

Bài 4. Cho X là một không gian định chuẩn, $M \subset X$ và $x_0 \in X$.

- (i) Nếu $T(M, x_0) \neq \emptyset$ thì $x_0 \in \overline{M}$ (trong đó \overline{M} là bao đóng của tập M).
- (ii) $T(M, x_0)$ là một nón đóng.
- (iii) $T(M,x_0)\subset \overline{{\rm cone}(M-x_0)}.$ Hơn nữa, nếu M là tập lồi thì
- (iv) $T(M, x_0) = \overline{\operatorname{cone}(M x_0)}$, và do đó $T(M, x_0)$ là tập lồi.
- (v) $T(M, x_0) = \{ v \in X | \forall t_n \to 0^+, \forall v_n \to v, x_0 + t_n v_n \in M; \}.$

Bài 5. Công thức tính nón tiếp xúc của một hệ ràng buộc bất đẳng thức Giả sử $g_i: \mathbb{R}^n \to \mathbb{R}$ là các hàm khả vi Fréchet với mọi $i=1,\ldots,m$. Tập M được xác định bởi

$$M = \{x \in \mathbb{R}^n | g_i(x) \le 0, \forall i = 1, \dots, m\}.$$

Lấy $x_0 \in M$, đặt tập chỉ số $I(x_0) = \{i \in \{1, \dots, m\} | g_i(x_0) = 0\}$. Khi đó, ta có

- (i) Nếu $I(x_0) = \emptyset$ thì $T(M, x_0) = \mathbb{R}^n$.
- (ii) Nếu $I(x_0) \neq \emptyset$ thì

$$T(M, x_0) \subset \{v \in \mathbb{R}^n | \nabla g_i(x_0)(v) \leq 0, \forall i \in I(x_0)\}.$$

(iii) Hơn nữa nếu điều kiện sau đây thỏa:

 $\exists \bar{v} \in \mathbb{R}^n$ sao cho $\nabla g_i(x_0)(\bar{v}) < 0, \forall i \in I(x_0),$ thì ta có

$$T(M, x_0) = \{ v \in \mathbb{R}^n | \nabla g_i(x_0)(v) \le 0, \forall i \in I(x_0) \}.$$

Trong đó, $\nabla g_i(x_0)(v)$ là đạo hàm Fréchet của g_i tại x_0 áp lên vector v.

 ${\bf Bài}$ 6. Vận dụng các kết quả của Bài tập 5 để tính nón tiếp xúc ở Bài tập 3b.

Bài 7. Điều kiện cần tối ưu cấp 1 dạng hình học cho bài toán vô hướng

Xét bài toán (P) như sau

(P) Min
$$f(x)$$
 s.t. $x \in \Omega$.

Trong đó $f: \mathbb{R}^n \to \mathbb{R}$ và $\Omega \subseteq \mathbb{R}^n$.

Ta có điều kiện cần tối ưu cấp 1 dạng hình học cho (P) như sau:

If x_0 is local minimum of (P) then $\forall u \in T(\Omega, x_0) : \langle \nabla f(x_0), u \rangle \geq 0$.

Chứng minh kết quả trên

Bài 8. Xét bài toán sau

(P)
$$\operatorname{Min} x^2 + y$$
 s.t. $(x, y) \in \Omega = \{(x, y) \in \mathbb{R}^2 | x^2 + y^3 = 0\}.$

- (a) Tính nón tiếp xúc của Ω tại $x_0 = (0,0)$?
- (b) Áp dụng kết quả câu 7, chứng minh $x_0 = (0,0)$ không là cực tiểu địa phương của (P) hay không?

Bài 9. Xét bài toán sau

(P) Min
$$x + 2y$$
 s.t. $x^2 + y^2 \le 1$, $x + y \le 1$

Áp dụng kết quả câu 7, kiểm tra $x_0 = (0,1)$ có phải là cực tiểu địa phương của (P) hay không?

Bài 10. Xét bài toán sau

(P) Min
$$-xy$$
 s.t. $x + y = 8, x \ge 0, y \ge 0$.

Áp dụng kết quả câu 7 có kiểm tra $x_0 = (4,4)$ có phải là cực tiểu địa phương của (P) hay không?

Bài 11. Xét bài toán sau

(P) Min
$$x^2 + y^2$$
 s.t. $x^2 - (y-1)^3 = 0$.

- (a) Bằng các phương pháp đại số hoặc hình học, hãy giải bài toán trên?
- (b) Kiểm chứng lại điều kiện cần ở Bài tập 7.

Bài 12. Cho $X = \mathbb{R}^n$ là không gian hữu hạn chiều, xét hàm chuẩn

$$f(x) = ||x||$$

- (a) Chứng minh rằng $\nabla f(a) = \|a\|^{-1}a$ với mọi $a \neq 0$.
- (b) Chứng minh rằng f không khả vi Frechet tại a=0

Good luck to you.