IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Applicant:		§	Confirmation No. 4902
		§	
David LIOR		§	Patent No. 7,404,286
		§	Issued: July 29, 2008
Serial No.:	10/518,767	§	
		§	
Filed:	December 21, 2004	§	Group Art Unit: 3746
		§	
For: ORB	ITING COMBUSTION	§	
NOZZLE ENGINE		§	
		§	Attorney Docket No.: 1133/16
Examiner:	Ted Kim	§	

Commissioner of Patents and Trademarks Alexandria, VA 22313-1450

REQUEST FOR CERTIFICATE OF CORRECTION OF PATENT FOR PTO MISTAKE (37 CFR1.322(a))

- 1. Attached in duplicate is Form PTO-1050 with at least one copy being suitable for printing.
- 2. The correction is not due to any error by applicant and no fee is due.

Respectfully submitted,

Mark M. Friedman Attorney for Applicant Registration No. 33,883

Date: August 28, 2008

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.: DATED: INVENTOR:	7,404,286 July 29, 2008 David LIOR				
It is certified that error appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:					
In the original Pate	nt, Page 24 was missed, as follows:				

OCN - Orbiting Combustion Nozzle Engine

Table of contents

- I Abstract
- II Nomenclature
- 1. Introduction
- 2. Description
- 3. Thermodynamic Cycle Analysis
- 4. Performance analysis
- 5. Conclusions

OCN performance calculation

- Fig 1.: OCN Cross sections of Turbo-shaft version
- Fig 2.: T-S Diagram
- Fig 3.: OCN Thermal efficiencies vs. Compressor pressure ratio
- Fig 4.: OCN Specific Power vs. Compressor pressure ratio
- Fig 5.: OCN and conventional gas turbine Specific power comparison
- Fig 6.: OCN and conventional gas turbine efficiencies comparison
- Fig 7.: OCN Turbofan S.F.C. vs. Turbine temperature
- Fig 8.: OCN Turbofan Thrust vs. Turbine temperature
- Fig 9.: OCN Effect of Part Load on Thermal Efficiency
- Fig 10.: OCN Effect of Part Load on Power
- Fig 11.: OCN Velocity Triangles

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.: DATED: INVENTOR:	7,404,286 July 29, 2008 David LIOR				
It is certified that error appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:					
In the original Pate	ent, Page 24 was missed, as follows:				
in the original Lac	ong Lage 24 was missed, as follows.				

OCN – Orbiting Combustion Nozzle Engine

Table of contents

- I Abstract
- II Nomenclature
- 1. Introduction
- 2. Description
- 3. Thermodynamic Cycle Analysis
- 4. Performance analysis
- 5. Conclusions

OCN performance calculation

- Fig 1.: OCN Cross sections of Turbo-shaft version
- Fig 2.: T-S Diagram
- Fig 3.: OCN Thermal efficiencies vs. Compressor pressure ratio
- Fig 4.: OCN Specific Power vs. Compressor pressure ratio
- Fig 5.: OCN and conventional gas turbine Specific power comparison
- Fig 6.: OCN and conventional gas turbine efficiencies comparison
- Fig 7.: OCN Turbofan S.F.C. vs. Turbine temperature
- Fig 8.: OCN Turbofan Thrust vs. Turbine temperature
- Fig 9.: OCN Effect of Part Load on Thermal Efficiency
- Fig 10.: OCN Effect of Part Load on Power
- Fig 11.: OCN Velocity Triangles