COMP 301 Analysis of Algorithms Instructor: Zafer Aydın HW 1

Submit your codes and answers to Canvas for the problems given below.

- 1. What is the smallest value of n such that an algorithm whose running time is $100n^2$ runs faster than an algorithm whose running time is 2^n on the same machine? Write a simple Java code that tries different values for n and solves this problem.
- 2. For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds. Write simple Java codes for $n \log n$ and n!, which try different values for n and solves this problem. Assume that a year contains 365 days and a century 36524 days.

	1	1	1	1	1	1	1
	second	minute	hour	day	month	year	century
$\lg n$							
$\frac{\lg n}{\sqrt{n}}$							
n							
$n \lg n$							
$\frac{n \lg n}{n^2}$ $\frac{n^3}{n^3}$							
n^3							
2^n							
n!							