《环境工程学一》作业

来自 Xzonn 的小站

目录

第	1 %	大作业	2
	1.		2
	2.		2
		(1)	2
		(2)	2
	3.		2
		(1)	2
		(2)	2
		(3)	3
	4.		3
		(1)	3
		(2)	3
		(3)	3
	5.		3
		(1)	3
		(2)	4
		(3)	4
		(4)	4
第	2 %	大作业	4
	1.		4
		(1)	4
		(2)	5
	2.		5
		(1)	5
		(2)	5
		(3)	5
	3.		6
	4.		6
		(1)	6
		(2)	6
		(3)	6
	5.		6
	6.		7

	7.		7
		(1)	7
		(2)	8
		(3)	8
	8.		8
第	3 次	7作业	8
	1.		8
	2.		8
	3.		9
	4.		9
	5.		9
	6.		9
	7.		9
	8.		10
	9.		11
	10.		11
		(1)	11
		(2)	11
	11.		11
		(1)	11
		(2)	11
		(3)	11
	12.		11
	13.		12
	14.		12
	15.		13
	16.		13
		(1)	13
		(2)	13
		(3)	14

第1次作业

1.

SO₂:
$$w_V = \frac{w_m V_m}{M} = \frac{0.15 \times 22.4}{64} = 52.5 \text{ ppb};$$

NO₂: $w_V = \frac{w_m V_m}{M} = \frac{0.12 \times 22.4}{46} = 58.4 \text{ ppb};$
CO: $w_V = \frac{w_m V_m}{M} = \frac{4.00 \times 22.4}{28} = 3.2 \text{ ppm}.$

2.

(1)

$$w_m = \frac{w_V M}{V_m} = \frac{1.50 \times 10^{-4} \times 154 \times 1000}{22.4} \text{g/m}_N^3 = 1.03 \text{ g/m}_N^3;$$

$$c = \frac{w_V}{V_m} = \frac{1.50 \times 10^{-4} \times 1000}{22.4} \text{g/m}_N^3 = 67.0 \text{ mol/m}_N^3.$$

(2)

$$m = qw_m t = \frac{10 \times 1.03 \times 86400}{1000} \text{kg} = 890 \text{ kg}.$$

3.

取 $100\,\mathrm{g}$ 重 油, 则 各 元 素 的 含 量 为: C: $85.5\,\mathrm{g} \to 7.12\,\mathrm{mol}, \; \mathrm{H}_1 \; 11.3\,\mathrm{g} \to 11.2\,\mathrm{mol}, \; \mathrm{O}_2 \; 2.0\,\mathrm{g} \to 0.125\,\mathrm{mol}, \; \mathrm{N}_1 \; 0.2\,\mathrm{g} \to 0.0143\,\mathrm{mol}, \; \mathrm{S}_1 \; 1.0\,\mathrm{g} \to 0.031\,25\,\mathrm{mol}$

(1)

① 理 论 耗 氧 量:
$$\frac{7.12 + \frac{1}{4} \times 11.2 + 0.03125 - \frac{1}{2} \times 0.125}{0.1}$$
mol/kg = 98.9 mol/kg, 理 论 空 气

量: $4.78 \times 98.9 \text{ mol/kg} = 473 \text{ mol/kg}$, 即 $\frac{473 \times 22.4}{1000} \text{m}^3/\text{kg} = 10.6 \text{ m}^3/\text{kg}$;

理 论 烟 气 量:
$$\left(\frac{7.12 + \frac{1}{2} \times 11.2 + \frac{1}{2} \times 0.0143 + 0.03125}{0.1} + 3.78 \times 98.9 \right)$$
 mol/kg = 501 mol/kg, 即

$$\frac{501 \times 22.4}{1000} \text{m}^3/\text{kg} = 11.2 \text{ m}^3/\text{kg}.$$

(2)

$$SO_2$$
 浓度: $\frac{0.03125}{0.1 \times 445} = 7.02 \times 10^{-4}$, CO_2 最大浓度: $\frac{7.12}{0.1 \times 331} = 0.16$.

(3) 实际空气量: 1.1 × 10.6 m³/kg = 11.7 m³/kg, 实际烟气量: 11.2 + 0.1 ×10.6 m³/kg = 12.3 m³/kg.

4.

取
$$100\,\mathrm{g}$$
 燃 煤, 则 各 元 素 的 含 量 为: C: $65.7\,\mathrm{g} \to 5.475\,\mathrm{mol},\ H: 3.2\,\mathrm{g} \to 3.17\,\mathrm{mol},\ O: 2.3\,\mathrm{g} \to 0.144\,\mathrm{mol},\ S: 1.7\,\mathrm{g} \to 0.0531\,\mathrm{mol},$ 水 分: $9.0\,\mathrm{g} \to 0.500\,\mathrm{mol}$ 。

(1)

理 论 耗 氧 量:
$$\frac{5.475 + \frac{1}{4} \times 3.17 + 0.0531 - \frac{1}{2} \times 0.144}{0.1} \mod/\text{kg} = 62.5 \mod/\text{kg}, \qquad 即$$

$$\frac{62.5 \times 22.4}{1000} \text{m}^3/\text{kg} = 1.4 \text{ m}^3/\text{kg};$$

理论空气量: $4.78 \times 1.4 \text{ m}^3/\text{kg} = 6.7 \text{ m}^3/\text{kg}$:

理 论 烟 气 量:
$$\left(\frac{5.475 + \frac{1}{2} \times 3.17 + 0.0531 + 0.500}{0.1} + 3.78 \times 62.5 \right)$$
 mol/kg = 312.1 mol/kg, 即

$$\frac{312.1 \times 22.4}{1000} \text{m}^3/\text{kg} = 7.0 \text{ m}^3/\text{kg};$$

$$SO_2$$
 的浓度: $\frac{0.0531 \times 22.4}{0.1 \times 1000 \times 7.0} = 1.70 \times 10^{-3}$.

(2)

灰分含量:
$$\frac{18.1 \times 10 \times 80 \%}{7.0} \times 10^6 \text{ mg/m}^3 = 2.07 \times 10^4 \text{ mg/m}^3$$
.

(3)

$$1\,t\,$$
 燃 煤 含 有 S 含 量 为 $17\,kg$, 物 质 的 量 $\frac{17}{32} mol = 0.531\,mol$; 则 需 要 Ca 质 量 为 $0.531 \times 40 \times 1.7\,kg = 36.1\,kg$, 石灰石的质量为 $\frac{28.9}{35\,\%} kg = 103.2\,kg$.

5.

(1)

烟 道 气 中
$$N_2$$
 的 体 积 分 数 为 $1-0.11-0.08-0.02-120\times 10^{-6}=0.79$,则 空 气 过 剩
$$\alpha=\frac{0.08-0.5\times 0.02}{0.264\times 0.79-0.08+0.5\times 0.02}=0.505.$$

(2)

 1 m^3 该状态下气体含有气体物质的量为: $\frac{700 \times 133.322}{8.31 \times 443} \text{mol} = 25.35 \text{ mol}$, 则 SO_2 排放浓度为 $120 \times 10^{-6} \times 25.35 \times 64 \times 10^6 \ \mu\text{g/m}^3 = 1.94 \times 10^5 \ \mu\text{g/m}^3$ 。

(3)

于 烟 道 气 排 放 流 量 为 $5663.37 \times (1-0.08) \text{m}^3/\text{min} = 5210.30 \text{ m}^3/\text{min}$, 校 准 至 标况: $\frac{5210.30 \times 700 \times 133.322 \times 273.15}{443 \times 101325} = 2958 \cdot 99 \text{ m}^3/\text{min}$ 。

(4)

标况下颗粒物浓度:
$$\frac{30.0 \times 5210.30}{2958.99}$$
 g/m³ = 52.83 g/m³.

第2次作业

1.

(1)

由已知, 列表, 如表 2-1 所示:

表 2-1 $G - x - \ln d_p$ 分布表

G	x 标准正态分布对应随机变量	<i>d_p</i> (μm)	$\ln d_p$
0.004	-2.652069808	2	0.693147181
0.065	-1.514101888	4	1.386294361
0.19	-0.877896295	6	1.791759469
0.47	-0.075269862	10	2.302585093
0.85	1.036433389	20	2.995732274
0.985	2.170090378	40	3.688879454

作图:

由图得: $r^2 = 0.9999$, 说明该粉尘的粒径分布符合对数正态分布。

(2)

由图得: $\ln \sigma = 0.6236$, 几何标准差 $\sigma = e^{0.6236} = 1.866$ 。 质量中位直径 MMD = $e^{2.3419} = 10.40~\mu\text{m}$, 个数中位直径 NMD = MMD $\cdot e^{-3 \ln^2 \sigma} = 3.24~\mu\text{m}$, 算术平均直径 $\bar{d}_L = \text{MMD} \cdot e^{-5/2 \ln^2 \sigma} = 3.93~\mu\text{m}$, 表面积-体积平均直径 $\bar{d}_{SV} = \text{MMD} \cdot e^{-1/2 \ln^2 \sigma} = 8.56~\mu\text{m}$.

2.

(1)

处理气体流量: $Q_{1,N}=10\,000~\mathrm{m_N^3/h},~Q_{2,N}=12\,000~\mathrm{m_N^3/h},~则~Q_N=\frac{1}{2}(Q_{1,N}+Q_{2,N})=11\,000~\mathrm{m_N^3/h}.$

(2)

漏风率:
$$\delta = \frac{Q_{1,N} - Q_{2,N}}{Q_{1,N}} \times 100 \% = -20 \%$$
.

(3)

除尘效率:考虑漏风,
$$\eta=1-\frac{\rho_{1,N}Q_{1,N}}{\rho_{2,N}Q_{2N}}=90.3\,\%$$
。不考虑漏风, $\eta=1-\frac{\rho_{1,N}}{\rho_{2,N}}=91.9\,\%$ 。

进气口气流流速 $v=\frac{Q_{1,N}\frac{T_1}{T_0}}{S}=17.94 \text{ m/s},$ 气体密度 $\rho=\frac{(p_0-p)M}{RT}=0.831 \text{ kg/m}^3$. 压力损失 $\Delta p=\frac{\varepsilon \rho v_1^2}{2}=1310 \text{ Pa}$.

4.

(1)

总除尘效率: $\eta = 1 - (1 - 80\%)(1 - 95\%) = 99\%$.

(2)

排放浓度:
$$c = \frac{\rho_1(1-\eta)}{Q} = \frac{22.2 \times (1-99\%)}{2.22} \text{g/m}^3 = 0.1 \text{ g/m}^3$$
.

(3)

排放量: $\rho_2 = \rho_1(1 - \eta) = 22.2 \times (1 - 99\%)$ g/s = 0.222 g/s.

5.

由公式:
$$\eta_i = 1 - P \frac{g_{2i}}{g_{1i}}$$
, 列表, 如表 2-2 所示:

表 2-2 分级除尘效率

粒径间隔	ϳ/ μm	<0.6	0.6~0.7	0.7~0.8	0.8~1.0	1~2	2~3	3~4	4~5	5~6	6~8	8~10	10~12	20~30
质量频率	进口 / g _{1i}	2	0.4	0.4	0.7	3.5	6	24	13	2	2	3	11	8
1%	出口 / g _{2i}	7	1	2	3	14	16	29	6	2	2	2.5	8.5	7
分级除尘效	效率/ η _i	0.930	0.950	0.900	0.914	0.920	0.947	0.976	0.991	0.980	0.980	0.983	0.985	0.983

作图:

分级除尘效率曲线

6. 由公式: $\eta = \sum_{i} n_{i} \eta_{i}$, 列表, 如表 2-3 所示:

表 2-3 分级除尘效率

	THE TAX NEW TIME												
平均粒 径/ <i>μ</i> m	0.25	1	2	3	4	5	6	7	8	10	14	20	>23.5
质量频 率/%	0.1	0.4	9.5	20	20	15	11	8.5	5.5	5.5	4	0.8	0.2
分级效 率/%	8	30	47.5	60	68.5	75	81	86	89.5	95	98	99	100
$n_i \eta_i$									0.049225				

求得 $\eta = 72.87\%$.

7.

查表得 387.5 K、101 325 Pa 下空气的黏度为 $\mu = 2.25 \times 10^{-5}$ Pa·s,密度为 $\rho = \frac{pM}{RT} = 0.912$ kg/m³。

(2)

直 径 $d_2=40~\mu\text{m}$, 忽 略 坎 宁 汉 修 正, 假 设 其 位 于 斯 托 克 斯 区, $u_2=\frac{d_2^2\rho_p}{18\mu}g=8.93\times 10^{-2}~\text{m/s},$ $Re=\frac{d_2\rho u_2}{\mu}=0.0145<1$, 符合要求。 $h_2=u_2t=2.68~\text{m}$ 。

(3)

直径 $d_3=4000~\mu\text{m}$,直接考虑位于湍流过渡区, $u_3=1.74\sqrt{\frac{d_2(\rho_p-\rho)g}{\rho}}=17.34~\text{m/s}$, $Re=\frac{d_2\rho u_2}{\mu}=281$,满足 1< Re<500,符合要求。 $h_3=u_3t=520~\text{m}$ 。

8.

查表得 293 K、101 325 Pa 下空气的黏度为 $\mu = 1.81 \times 10^{-5}$ Pa·s,密度为 $\rho = \frac{pM}{RT} = 1.206$ kg/m³。

考 虑 最 小 粒 径 的 水 泥 颗 粒, $d_p=25~\mu\mathrm{m}$, 忽 略 坎 宁 汉 修 正, 假 设 其 位 于 斯 托 克 斯 区, $u_s=\frac{d_p^2\rho_p}{18\mu}g=3.69\times 10^{-3}~\mathrm{m/s}$, 计算 $Re=\frac{d_2\rho u_2}{\mu}=6.26\times 10^{-2}<1$, 符合要求。

则沉降时间 $t = \frac{h}{u_s} = 122 \text{ s}$,最远距离 $s = v_0 t = 171 \text{ m}$ 。

第3次作业

1.

恰好完全分离时,最大石英颗粒和最小角闪石颗粒应具有相同的终端沉降速率。代入牛顿区终端沉降速率公式 $u_s=1.74\sqrt{\frac{d_{\rm p}(\rho_{\rm p}-\rho)g}{\rho}}$ 得: $\frac{d_{\rm pl}}{d_{\rm p2}}=\frac{\rho_{\rm p2}-\rho}{\rho_{\rm p1}-\rho}=\frac{3.5}{2.6}=1.37$,即最大石英粒径与最小角闪石粒径的最大比值为 1.37。

2.

给 定 温 度 293 K、 气 压 101325 Pa 条 件 下, 求 得 空 气 密 度 $\rho = \frac{pM}{RT} = 1.206 \text{ kg/m}^3$, 黏 度 $\mu = 1.809 \times 10^{-5} \text{ Pa·s}$ 。

先按斯托克斯区计算终端沉降速度, $u_{\rm s}=\frac{d_{\rm p}^2(\rho_{\rm p}-\rho)g}{18\mu}=2.23~{\rm m/s}$,雷诺数 $Re_{\rm p}=\frac{d_{\rm p}\rho u}{\mu}=29.7$,超出斯托克斯区范围,不符合假设。

按 湍 流 过 渡 区 计 算 终 端 沉 降 速 度, $u_{\rm s}=\frac{0.153 d_{\rm p}^{1.14}(\rho_{\rm p}-\rho)^{0.714} g^{0.714}}{\mu^{0.428} \rho^{0.286}}=1.04~{\rm m/s},~~{\rm ff}~~{\rm if}~~{\rm if}$

阻力系数
$$C_{\rm D} = \frac{18.5}{Re_{\rm p}^{0.6}} = 3.83$$
,阻力 $F_{\rm D} = \frac{1}{2} C_{\rm D} A_{\rm p} \rho u^2 = 7.76 \times 10^{-8} \text{ N}$ 。

给定温度 293 K、气压 101325 Pa 条件下,求得空气密度 $\rho = \frac{pM}{RT} = 1.206 \text{ kg/m}^3$,黏度 $\mu = 1.809 \times 10^{-5} \text{ Pa·s}$ 。

考 虑 最 小 粒 径 的 水 泥 颗 粒, $d_p=25~\mu\text{m}$, 忽 略 坎 宁 汉 修 正, 假 设 其 位 于 斯 托 克 斯 区, $u_s=\frac{d_p^2(\rho_p-\rho)g}{18\mu}=3.69\times 10^{-3}~\text{m/s}$, 计算 $Re_p=\frac{d_p\rho u}{\mu}=6.26\times 10^{-2}<1$, 符合要求。

则沉降时间 $t = \frac{h}{u_s} = 122 \text{ s}$,最远距离 $s = v_0 t = 171 \text{ m}$ 。

4.

给 定 温 度 433 K、 气 压 101 325 Pa 条 件 下, 求 得 空 气 密 度 $\rho = \frac{pM}{RT} = 0.816 \text{ kg/m}^3$, 黏 度 $\mu = 2.5 \times 10^{-5} \text{ Pa·s}$ 。

 $d_{\rm p}=10~\mu{\rm m}$ 时,假设其位于斯托克斯区, $u_{\rm s}=\frac{d_{\rm p}^2(\rho_{\rm p}-\rho)}{18\mu}\frac{u_{\rm t}^2}{R}=0.768~{\rm m/s}$,计算 $Re_{\rm p}=0.25$ 符合要求。

 $d_{\rm p} = 500~\mu{\rm m}$ 时,假设其位于牛顿区,有 $0.055\pi\rho d_{\rm p}^2 u_{\rm s}^2 = \frac{\pi d_{\rm p}^3 \rho_{\rm p}}{6} \frac{u_{\rm t}^2}{R}$,即

5.

在条件相同的情况下,多层重力沉降室除尘效率正比于层数,即 $\frac{\eta_1}{\eta_2} = \frac{n_1+1}{n_2+1}$,则 $n_2+1=\frac{\eta_2(n_1+1)}{n_1}=\frac{0.8\times 18}{0.649}=22.2$,即设置 23 层可得到 80%的操作效率。

6.

求得 $\mu = 0.067 \text{ kg/(m \cdot h)} = 1.86 \times 10^{-5} \text{ kg/(m \cdot s)} = 1.86 \times 10^{-5} \text{ Pa·s}$ 。

假设位于斯托克斯区, $d_{\min} = \sqrt{\frac{18\mu v_0 H}{\rho_{\rm n} g L}} = 8.39 \times 10^{-5} \text{ m} = 83.9 \ \mu\text{m} < 100 \ \mu\text{m}$, 满足要求。

7.

 $q_V = 3.61 \text{ L/min} = 6.02 \times 10^{-5} \text{ m}^3/\text{s}$.

对 粒 径 为 $0.63 \, \mu \text{m}$ 的 粒 子, 估 算 其 坎 宁 汉 修 正 系 数 $C=1+\frac{0.165}{d_{\text{p}}}=1.26, \ u_{\text{s}}=\frac{d_{\text{p}}^{2}\rho_{\text{p}}gC}{18\mu}=1.57\times10^{-5} \, \text{m/s}, \ 沉降效率 \ \eta=\frac{u_{\text{s}}LW(n+1)}{q_{V}}=52.3\,\%.$ 对 粒 径 为 $0.83 \, \mu \text{m}$ 的 粒 子, 估 算 其 坎 宁 汉 修 正 系 数 $C=1+\frac{0.165}{d_{\text{p}}}=1.20, \ u_{\text{s}}=\frac{d_{\text{p}}^{2}\rho_{\text{p}}gC}{18\mu}=2.60\times10^{-5} \, \text{m/s}, \ 沉降效率 \ \eta=\frac{u_{\text{s}}LW(n+1)}{q_{V}}=86.3\,\%.$

按公式 $\eta_i = \frac{\eta}{\eta + Pg_{2i}/g_{3i}}$, 计算分级效率, 如表 3-1 所示:

表 3-1 分级效率

X 0 1 7							
$d_{ m p}$	$d_{\mathrm{p}i}$	g _{3i}	g _{2i}	η_i (%)			
0 ~ 5	2.5	0.5	76	5.59			
5 ~ 10	7.5	1.4	12.9	49.41			
10 ~ 15	12.5	1.9	4.5	79.17			
15 ~ 20	17.5	2.1	2.1	90.00			
20 ~ 25	22.5	2.1	1.5	92.65			
25 ~ 30	27.5	2	0.7	96.26			
30 ~ 35	32.5	2	0.5	97.30			
35 ~ 40	37.5	2	0.4	97.83			
40 ~ 45	42.5	2	0.3	98.36			
>45	N/A	84	1.1	99.9			

按照上表计算结果作出分级效率曲线,如图1所示:

分级效率曲线

由图得,分割粒径为 7.5 μm。

$$\eta_i = \frac{(d_{pi}/d_c)^2}{1 + (d_{pi}/d_c)^2} = \frac{(d_{pi}/5)^2}{1 + (d_{pi}/5)^2} = \frac{(d_{pi})^2}{25 + (d_{pi})^2},$$

$$\eta = \int_0^{+\infty} \eta_i q dd_{pi} = \int_0^{+\infty} \frac{(d_{pi})^2}{25 + (d_{pi})^2} q dd_{pi},$$

由 于 颗 粒 粒 径 分 布 符 合 对 数 正 态 分 布, $D_{\rm m}=20~\mu{\rm m},~\sigma=1.25$, 贝 $q=\frac{1}{\sqrt{2\pi}d_{\rm pi}\ln\sigma_{\rm g}}\exp\left[-\left(\frac{\ln d_{\rm pi}/d_{\rm g}}{\sqrt{2}\ln\sigma_{\rm g}}\right)^2\right]=\frac{1.79}{d_{\rm pi}}{\rm e}^{-10.04(\ln d_{\rm pi}/20)^2}$ 。 积分可得 $\eta=96.3~\%$ 。

10.

(1)

四块板子将电除尘器分成 3 个通道,则 $q_V=2/3$ m³/s = 0.667 m³/s,板面积 $A=2\times3.66^2$ m² = 26.8 m²。则 $\eta_i=1-\mathrm{e}^{-26.8\times0.122/0.667}=99.3$ %。

(2)

流量为 50 % 的通道达到最大速度, $v_{\text{max}} = 0.5$; 平均速度为 $\bar{v} = 1/3$, 则二者比值为 $\frac{0.5}{1/3} = 1.5$ 。 查图 6-27 得校正系数 $F_V = 1.75$,则通过率 $P = (1 - \eta_i)F_V = 1.22$ %,分级效率 $\eta_i = 1 - P = 98.8$ %。

11.

(1)

代入
$$d_p = 0.9 \,\mu\text{m}$$
 时 $\eta = 0.5$,求得 $k = -\frac{\ln(1 - \eta)}{d_p} = 0.77 \,\mu\text{m}^{-1}$ 。

按公式计算,如表 3-2 所示:

表 3-2 分级除尘效率

质量分数/%	0 ~ 20	20 ~ 40	40 ~ 60	60 ~ 80	80 ~ 100
平均粒径/ μm	3.5	8.0	13.0	19.0	45.0
分级效率/%	93.25%	99.79%	100.00%	100.00%	100.00%

则总分级效率 $\eta = \sum \eta_i g_{1i} = 98.61\% > 98\%$.

(2)

排放浓度为 $\rho = 30 \times (1 - 98.61\%)$ g/m³ = 0.417 g/m³ < 0.5 g/m³,符合环境保护的相关规定。

(3)

满足使用者需要。

12.

给定温度 297 K, 求得空气黏度 $\mu = 1.829 \times 10^{-5} \text{ Pa·s}$.

当 粒 径 为 $d_{\rm p}=10~\mu{\rm m}$ 、 液 滴 直 径 为 $d_{\rm D}=50~\mu{\rm m}$ 时, 碰 撞 数

$$M = \sqrt{St} = \sqrt{\frac{d_{\rm p}^2 \rho_{\rm p} \Delta u}{18 \mu d_{\rm D}}} = 19.09, \quad R = d_{\rm p}/d_{\rm D} = 0.2, \quad \eta = e^{-(0.018 M^{0.5+R}/R - 0.6R^2)} = 50.39 \%.$$

同理分别求出粒径为 $10~\mu\text{m}$ 、 $50~\mu\text{m}$ 和液滴直径在 $50~\mu\text{m}$ 、 $100~\mu\text{m}$ 、 $500~\mu\text{m}$ 下的捕集效率,如表 3-3 所示:

表 3-3 捕集效率

. N 4114 N. I. E. N. E. I.						
液滴直径/ μm \ 粒径/ μm	10	50				
50	50.39%	0.00%				
100	42.66%	10.23%				
500	10.11%	25.05%				

13.

接公式 $P = \exp\left(-\frac{6.1 \times 10^{-9} \rho_{\rm L} \rho_{\rm p} d_{\rm p}^2 f^2 \Delta p}{\mu_{\rm G}^2}\right)$, 其中 $\Delta p = -1.03 \times 10^{-3} v_{\rm T}^2 \left(\frac{q_{V,\rm L}}{q_{V,\rm G}}\right) = 96.5 \text{ cmH}_2\text{O}$, 则 $P = \mathrm{e}^{-0.331 d_{\rm p}^2}$ 。求出各粒径分级效率,如表 3-4 所示:

表 3-4 分级效率

$d_{ m p}/\mu{ m m}$	$d_{\mathrm{p}i}/\mu\mathrm{m}$	<i>g</i> _i /%	η_i /%
< 0.1	0.05	0.01	0.1
0.1 ~ 0.5	0.3	0.21	2.9
0.5 ~ 1.0	0.75	0.78	17.0
1.0 ~ 5.0	3	13	94.9
5.0 ~ 10.0	7.5	16	100.0
10.0 ~ 15.0	12.5	12	100.0
15.0 ~ 20.0	17.5	8	100.0
> 20.0	N/A	50	100.00%

则总除尘效率 $\eta = \sum_{i} g_i \eta_i = 98.5 \%$.

14.

给定温度 293 K、气压 101325 Pa 条件下,求得空气密度 $\rho = \frac{pM}{RT} = 1.206 \text{ kg/m}^3$,黏度 $\mu = 1.809 \times 10^{-5} \text{ Pa·s}$ 。

雨滴直径为 2 mm, 位于牛顿区, 终端沉降速率 $u_{\rm D} = 1.74 \sqrt{\frac{d_{\rm D} \rho_{\rm D} g}{\rho}} = 7.02 \text{ m/s}$.

颗粒物密度取 $\rho_p = 2.0 \times 10^3 \text{ kg/m}^3$,则碰撞数 $M = \sqrt{St} = \sqrt{\frac{d_p^2 \rho_p \Delta u}{18 \mu d_D}} = 0.194$,查教材图 5-16 (3A) 得 $\eta_t = 15\%$ 。

由公式,每个雨滴下降过程中补给的颗粒物质量 $M=\frac{\pi}{4}d_{\mathrm{D}}^{2}\Delta zc\eta_{\mathrm{t}}=1.13\times10^{-2}~\mu\mathrm{g}$.

雨滴自身质量 $M_{\rm D} = \frac{\pi d_{\rm D}^3 \rho_{\rm D}}{6} = 4.19 \times 10^3 \ \mu {\rm g}$,则比例为 $\frac{1.13 \times 10^{-2}}{4.19 \times 10^3} = 2.7 \times 10^{-4} \%$ 。

15.

给定温度 300 K 条件下, 求得空气黏度 $\mu = 1.845 \times 10^{-5} \text{ Pa·s}$.

由公式 $\Delta p = \Delta p_0 + \Delta p_p = \Delta p_0 + \frac{x_p \mu_g v}{K_p}$, 其中 $x_p = \frac{m}{\rho_p S}$, 则 Δp 和 m 成线性关系,斜率为 $\frac{\mu_g v}{K_p \rho_p S}$ 。对 Δp 和 m 作散点图如图 3-2 所示:

求得回归曲线斜率为 k = 13146 Pa/kg, 则 $K_p = \frac{\mu_g v}{k \rho_p S} = 3.51 \times 10^{-12} \text{ m}^2$.

16.

(1)

给定温度 293 K、气压 101 325 Pa 条件下,求得空气密度 $\rho = \frac{pM}{RT} = 1.206 \text{ kg/m}^3$,黏度 $\mu = 1.809 \times 10^{-5} \text{ Pa·s}$ 。

代入公式
$$P = \exp\left(-\frac{7zv_sD_{pa}^2}{9D_c^2\mu_G\varepsilon}\right) = e^{-4.30} = 0.0136$$
,则 $\eta = 1 - P = 98.6\%$ 。

(2)

捕集效率为 99.9 % 时,
$$P=0.001$$
,代人公式得 $z=-\frac{9D_{\rm c}^2\mu_{\rm G}\varepsilon\ln P}{7v_{\rm s}D_{\rm pa}^2}=3.21~{\rm m}$ 。

(3)

由 《Air Pollution Control Engineering》 公 式, 穿 透 率
$$P = \exp\left(-\frac{\pi N v_c D^2 \rho_p}{9W_i \mu}\right)$$
, 取 $W_i = 0.25 D_c$, $N = \frac{0.5 z}{D_c}$, $v_c = \frac{v_s}{\epsilon}$, $D_{pa} = D^2 \rho_p$, 取 $2\pi = 7$, 即有 $P = \exp\left(-\frac{7 z v_s D_{pa}^2}{9 D_c^2 \mu_G \epsilon}\right)$.