PROBABILIDADE E ESTATÍSTICA MATEMÁTICA I

ARA, A.

ara@ufpr.br

Slide 02

DISTRIBUIÇÕES CONTÍNUAS

Anteriormente foram vistas algumas distribuições de probabilidade para variáveis aleatórias discretas e contínuas para apenas uma variável.

• Contexto univariado;

Nesta aula, vamos introduzir a teoria de probabilidades na presença de mais de uma variável.

Contexto multivariado.

Distribuição acumulada conjunta

Definição: Sejam X_1, X_2, \ldots, X_k k variáveis aleatórias definidas no mesmo espaço de probabilidade. A função de distribuição acumulada conjunta de X_1, X_2, \ldots, X_k , denotada por $F_{X_1, X_2, \ldots, X_k}(\cdot, \cdot, \ldots, \cdot)$, é definida como $P[X_1 \leq x_1, X_2 \leq x_2, \ldots, X_k \leq x_k]$ para todo (x_1, x_2, \ldots, x_k) .

• Note que uma função de distribuição acumulada conjunta é uma função com domínio do espaço euclidiano k-dimensional e contradomínio do intervalo [0,1].

Considere o experimento de lançarmos dois dados tradicionais de seis faces, como um dado branco e um dado preto, o espaço amostral será:

Os 36 pontos amostrais são igualmente prováveis.

Sejam as variáveis aleatórias X=resultado do dado branco e Y= resultado do dado preto.

Seja
$$F_{X,Y}(x,y) = P(X \leq x, Y \leq y)$$

Poderíamos estar interessados na $P[X \leq 2, Y \leq 5] = F_{X,Y}(2,5)$

Tabela dos valores de $F_{X,Y}(x,y)$

y ackslash x	x < 1	$1 \le x < 2$	$2 \le x < 3$	$3 \le x < 4$	$4 \le x < 5$	$5 \le x < 6$	$x \leq 6$
y < 1	Ο	Ο	Ο	Ο	Ο	Ο	0
$1 \le y < 2$	0	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$
$2 \leq y < 3$	Ο	$\frac{2}{36}$	$\frac{4}{36}$	$\frac{6}{36}$	$\frac{8}{36}$	$\frac{10}{36}$	$\frac{12}{36}$
$3 \leq y < 4$	0	$\frac{3}{36}$	$\frac{6}{36}$	$\frac{9}{36}$	$\frac{12}{36}$	$\frac{15}{36}$	$\frac{18}{36}$
$4 \leq y < 5$	0	$\frac{4}{36}$	$\frac{8}{36}$	$\frac{12}{36}$	$\frac{16}{36}$	$\frac{20}{36}$	$\frac{24}{36}$
$5 \le y < 6$	0	$\frac{5}{36}$	$\frac{10}{36}$	$\frac{15}{36}$	$\frac{20}{36}$	$\frac{25}{36}$	$\frac{30}{36}$
$y \leq 6$	0	$\frac{6}{36}$	$\frac{12}{36}$	$\frac{18}{36}$	$\frac{24}{36}$	$\frac{30}{36}$	1

Propriedades da função de distribuição cumulativa bivariada $F(\cdot,\cdot)$:

i.

$$egin{aligned} F(-\infty,y) &= \lim_{x o -\infty} F(x,y) = 0, \ orall \ y \ \\ F(x,-\infty) &= \lim_{y o -\infty} F(x,y) = 0, \ orall \ x \ \\ F(\infty,\infty) &= \lim_{\substack{x o \infty \ y o \infty}} F(x,y) = 1, \ orall \ x \end{aligned}$$

ii. Se $x_1 < x_2$ e $y_1 < y_2$, então

$$P[x_1 < X \le x_2, y_1 < Y \le y_2] = F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) > 0.$$

Propriedades da função de distribuição cumulativa bivariada $F(\cdot,\cdot)$:

iii. F(x,y) é contínua à direita, ou seja

$$\lim_{0 < h
ightarrow 0} F(x+h,y) = \lim_{0 < h
ightarrow 0} F(x,y+h) = F(x,y)$$

Função de distribuição acumulada bivariada: Qualquer função que satisfaça as propriedades de i a iii é definida como uma função de distribuição acumulada bivariada.

Distribuições marginais:

O conhecimento sobre a função de distribuição acumulada conjunta de X e Y implica no conhecimento das duas funções de distribuição acumulada marginal.

$$F_X(x) = F_{X,Y}(x,\infty)$$

$$F_Y(y) = F_{X,Y}(\infty,y)$$

Função probabilidade conjunta para variáveis aleatórias discretas

Definição: (X_1, \ldots, X_k) será uma variável aleatória discreta k-dimensional (vetor aleatório) se seus possíveis valores forem finitos ou infinitos enumeráveis.

Isto é, os valores possíveis de (X_1,\ldots,X_k) , denotados por (x_1,\ldots,x_k) , são finitos ou infinitos enumeráveis.

Definição: Seja (X_1,\ldots,X_k) uma variável aleatória discreta k-dimensional, a cada resultado possível (x_1,\ldots,x_k) associaremos

$$p(x_1, x_2, \dots, x_k) = P(X_1 = x_1, X2 = x_2, \dots, X_k = x_k)$$

Com as seguintes propriedades:

i.
$$p(x_1, x_2, \ldots, x_k) \geq 0, \quad orall \ x_i, i = 1, \ldots, k$$

ii. $\sum p(x_1,x_2,\ldots,x_k)=1$, sendo a soma sobre todos valores possíveis de (X_1,\ldots,X_k) .

Distribuição Multinomial

Distribuição Multinominal

Considere um experimento com k possíveis resultados, o i-ésimo resultado com probabilidade θ_i , $\sum_{i=1}^k \theta_i = 1$. X_i representa o número de ocorrências do i-ésimo resultado em n repetições independentes.

$$P(X_1=x_1,\ldots,X_k=x_k|n, heta_{_1},\ldots, heta_{_k})=rac{n!}{x_1!x_2!\ldots x_k!} heta_1^{x_1} heta_2^{x_2}\ldots heta_k^{x_k}$$

em que
$$\sum_{i=1}^k x_i = n$$
 e $\sum_{i=1}^k heta_i = 1$.

Quando k=2 temos o caso da distribuição binomial.

Função probabilidade conjunta para variáveis aleatórias contínuas

Definição: (X_1, \ldots, X_k) será uma variável aleatória contínua k-dimensional (vetor aleatório) se seus possíveis valores estão em algum conjunto não-enumerável do plano euclidiano.

Por exemplo, se (X_1,\ldots,X_k) puder tomar todos os valores no hiperretângulo $\{(x_1,\ldots,x_k)\mid a_1\leq x_1\leq b_1,\ldots,\ a_k\leq x_k\leq b_k\}$.

Isto é, os valores possíveis de (X_1,\ldots,X_k) , denotados por (x_1,\ldots,x_k) são finitos ou infinitos enumeráveis.

Função probabilidade conjunta para variáveis aleatórias contínuas

Definição: Seja (X_1,\ldots,X_k) uma variável aleatória contínua k-dimensional, a cada resultado possível (x_1,\ldots,x_k) associaremos uma função densidade de probabilidade k-dimensional $f(x_1,x_2,\ldots,x_k)$

com as seguintes propriedades

i.
$$f(x_1, x_2, \ldots, x_k) \geq 0, \quad orall \ x_i, i = 1, \ldots, k$$

ii.
$$\int \ldots \int f(x_1,x_2,\ldots,x_k) dx_1 \ldots dx_k = 1$$

Dessa forma,

$$P(a_1 \leq x_1 \leq b_1, \ldots, \ a_k \leq x_k \leq b_k) = \int_{a_1}^{b_1} \ldots \int_{a_k}^{b_k} f(x_1, x_2, \ldots, x_k) dx_1 \ldots dx_k.$$

EXEMPLO: Considere a função bivariada dada por

$$f(x,y) = c(x+y)I_{(0,1)}(x)I_{(0,1)}(y) = c(x+y)/I_U(x,y)$$

sendo $U = \{(x,y)|0 < x < 1 \text{ e } 0 < y < 1\}$. Calcule o valor de c para f(x,y) ser considerada uma densidade.

EXEMPLO: Considere a função bivariada dada por

$$f(x,y) = c(x+y)I_{(0,1)}(x)I_{(0,1)}(y) = c(x+y)/I_U(x,y)$$

sendo $U = \{(x,y)|0 < x < 1 \text{ e } 0 < y < 1\}$. Calcule o valor de c para f(x,y) ser considerada uma densidade.

$$egin{align} 1 &= \int_0^1 \int_0^1 f(x,y) dx dy = \int_0^1 \int_0^1 c(x+y) dx dy \ &= c \int_0^1 \int_0^1 (x+y) dx dy = c \left(\int_0^1 x dx + \int_0^1 y dy
ight) \ &= c \left(rac{x^2}{2} ig|_0^1 + rac{y^2}{2} ig|_0^1
ight) \ &= c \left(rac{1}{2} + rac{1}{2}
ight) \implies c = 1 \ \end{aligned}$$

Função probabilidade conjunta para variáveis aleatórias contínuas

Função probabilidade conjunta para variáveis aleatórias contínuas

Resultado: Se X e Y são variáveis aleatórias contínuas conjuntamente, então o conhecimento de $F_{X,Y}(\cdot,\cdot)$ é equivalente ao conhecimento de $f_{X,Y}(\cdot,\cdot)$. A observação se estende a variáveis aleatórias contínuas k-dimensionais.

$$egin{aligned} F_{X,Y}(x,y) &= \int_{-\infty}^x \int_{-\infty}^y f(x,y) dx dy \ f(x,y) &= rac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y} \end{aligned}$$

Distribuição Normal Multivariada

Distribuição Normal Multivariada

Um vetor aleatório contínuo $\mathbf{X}=(X_1,\ldots,X_k)$ com possíveis valores $\mathbf{x}=(x_1,\ldots,x_k)$ segue uma distribuição normal multivariada com parâmetros $\mu\in\mathbb{R}^k$ e Σ , $\mathbf{X}\sim N_k(\mu,\Sigma)$ se sua f.d.p multivariada é dada por

$$f(\mathbf{x}) = rac{1}{(2\pi)^{rac{k}{2}} |\mathbf{\Sigma}|^{rac{1}{2}}} \mathrm{exp}igg\{ -rac{1}{2} (\mathbf{x}-\mu)' \mathbf{\Sigma}^{-1} \left(\mathbf{x}-\mu
ight) igg\}$$

Comentário: ${f X}$ tem distribuição normal multivariada se qualquer combinação linear de seus componentes $\sum_{j=1}^p a_j X_j$ tem uma distribuição normal.

Distribuição Normal Multivariada

Representação gráfica de k=2.

A SHORT REVIEW:

- Distribuição conjunta
- Propriedades da função de distribuição acumulada bivariada
- Função probabilidade conjunta para variáveis aleatórias discretas
- Distribuição multinomial
- Função densidade conjunta para variáveis aleatórias contínuas
- Distribuição normal multivariada

Prof. Dr. Anderson Ara - ara@ufpr.br© 23 / 23