Algebra Lineal

Profesor: Jesús Gil Galindo Cuevas Notas: LaRana

TEMARIO

- 1. Espacios Vectoriales
- 1.1. Campos
- 1.2. Espacios
- 1.3. Subespacios
- 1.4. Independencia Lineal
- 1.5. Base
- 1.6. Dimensión
- 2. Transformaciones Lineales
- 2.1 Definición y propiedades
- 2.2 Isomorfismo
- 2.3 Núcleo e imagen
- 2.4 Representación Matricial
- 3. Eigenvalor y eigenvector
- 3.1 Definiciones y polinomio caracteristico
- 3.2 Teorema de Cayley Hamilton
- 3.3 Diagonalización de operaciones lineales
- 4. Producto Interno
- 4.1 Espacios con producto interno
- 4.2 Ortogonalización
- 4.3 Proceso GramSchmidt
- 5. Operadores Ortogonales
- 5.1 Diagonalización
- 5.2 Operadores simétricos
- 5.3 Operadores hermitianos

LITERATURA

- Larson
- Anton
- Grossman
- Lipschutz
- Friedberg
- Hoffman
- Sheldon Axler
- Egor Maximenko, Algebra 2 y 3

RECURSOS ADICIONALES

- Pagina web del profesor
- Canal de Youtube

Introducción

Iniciaremos el curso estudiando la estructura matemática del espacio vectorial. Para esto utilizaremos lenguaje de teoría de conjuntos.

Un espacio vectorial puede ser definido como una estructura:

$$(V, F, +, \cdot)$$

V es un vector.

F es un campo.

+ es un operador.

· es una función.

 $+ \wedge \cdot$ son binarios.

Desarrollaremos las siguientes propiedades:

1)

$$u + v \in F$$

2)

$$u + v = v + u$$

3)

$$v + (v + w) = (u + v) + w$$

4)

$$\exists ! 0 \in F \to u + 0 = 0 + u = u$$

5)

$$\forall u \in F \exists ! - u \in F \to u + (-u) = -u + u = 0$$

6)

$$uv \in F$$

7)

$$uv = vu$$

8)

$$u(vw) = (uv)w$$

9)

$$\exists ! 1 \in F \to u \cdot 1 = \cdot 1 = u$$

10)

$$\forall u \in F; u \neq 0 \exists ! u^{-1} \in F \to u u^{-1} = u^{-1} u = 1$$

11)

$$u(v+w) = uv + uw \wedge (v+w)u = vu + wu$$

I. AXIOMAS DEL CAMPO

Cerradura de la suma $\forall u, v \in V$;

$$u + v \in V$$

Asociatividad de la suma $\forall u, v, w \in V$;

$$u + (v + w) = (u + v) + w$$

Conmutatividad de la suma $\forall u, v \in V$;

$$u + v = v + u$$

Elemento neutro $\exists ! 0 \in V$ tal que:

$$0 + v = v + 0 = v$$

Inverso aditivo $\forall v \in V \exists ! w \in V \text{ tal que:}$

$$v + w = w + v = 0$$

Cerradura del producto $\forall \lambda \in \mathbb{K}; \forall v \in V$;

$$\lambda v \in V$$

Distributividad respecto escalar $\forall \alpha, \beta \in \mathbb{K}$;

$$\forall v \in V; (\alpha + \beta)v = \alpha v + \beta v$$

Distributividad respecto elemento vector $\forall \alpha \in \mathbb{K}$;

$$\forall u, v \in V; \alpha(u+v) = \alpha u + \alpha v$$

Asociatividad $\forall \alpha, \beta \in \mathbb{K}$;

$$\forall v \in V; (\alpha \beta)v = \alpha(\beta v)$$

Identidad de \mathbb{K} respecto al producto $\forall u \in V; \exists ! 1 \in \mathbb{K}$

tal que:
$$1u = u$$

Definición 1: Sean A, B conjuntos.

Decimos que:

$$A \subseteq B$$

Si:

$$\forall x \in A \rightarrow x \in B$$

II. ESPACIOS VECTORIALES

Definición 2: (Espacio Vectorial)

Sea:

V un conjunto no vacío,

F un campo y

$$+: V \times V \to V;$$

$$\cdot : \mathbb{F} \times V \to V$$

Tal que se cumplen los siguientes axiomas:

$$\forall u, v, w \in V; \alpha, \beta \in \mathbb{F}$$

Cerradura de la suma en el espacio vectorial.

$$u + v \in V$$

Asociatividad de la suma en el espacio vectorial.

$$(u+w)=u+(v+w)$$

Conmutatividad de la suma en E.V.

$$u + v = v + u$$

Existencia del vector cero. $\exists ! 0 \in V$ tal que:

$$0 + v = v + 0 = v$$

Existencia del inverso aditivo del vector. $\exists ! - v \in V$ tal

$$-v + v = v + (-v) = 0$$

Cerradura del producto escalar sobre el vector.

$$\alpha v \in V$$

Distributividad del P.E. respecto a la suma del vector.

$$\alpha(u+v) = \alpha u + \alpha v$$

Distributividad del P.E. respecto a la suma del campo.

$$(\alpha + \beta)v = \alpha v + \beta v$$

Existencia del neutro multiplicativo del campo. $\exists ! 1 \in \mathbb{F}$

tal que:

$$1 \cdot v = v$$

Asociatividad del producto de escalares por el vector.

$$\alpha(\beta v) = (\alpha \beta) v$$

Entonces V se llama espacio vectorial sobre el campo \mathbb{F} . A los elementos de V se le llama vectores.

Ejemplo 1: \mathbb{R}^n sobre \mathbb{R} es un espacio vectorial con las operaciones:

$$+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$$

 $:: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$

Sean
$$x(x_1, x_2, ..., x_n), y(y_1, ..., y_n) \in \mathbb{R}^n$$

 $x + y : (x_1 + y_1, x_2 + y_2, ..., x_n + y_n) \in \mathbb{R}^n$
 $\alpha x : (\alpha x, \alpha x_1, ..., \alpha x_n) \in \mathbb{R}^n$

1) Cerradura de suma.

Comprueba: $x + y = (x_1 + y_1, ..., x_n + y_n) \in \mathbb{R}^n$

$$t_1 = x_1 + y_1, t_2 = x_2 + y_2, ..., t_n = x_n + y_n$$

 $\Rightarrow x + y = (t_1, t_2, ..., t_n) \mathbb{R}^n$

 $t_k \in \mathbb{R}$ por cerradura de la suma en el campo

Siendo
$$k = \sum_{i=1}^{n}$$

- 2) Conmutatividad de suma.
- 3) Asociatividad de suma.
- 4) Existencia del vector 0 en \mathbb{R}^n .
- 5) Existencia del inverso aditivo.
- 6) Cerradura del producto por escalar.
- 7) Distributividad del P.E respecto a suma del vector.
- 8) Distributividad del P.E respecto a suma del campo.
- 9) Existencia del neutro multiplicativo del campo. 10) Asociatividad del producto de escalares.