CHAPITRE 12 TRANSFORMATIONS GEOMETRIQUES

TRANSFORMATIONS SUR QUADRILLAGES	
PAVAGES DU PLAN	260
LES TRANSFORMATIONS - RAPPELS	262
Exercices	264
CORRIGÉS DES EXERCICES	

TRANSFORMATIONS SUR QUADRILLAGES

Déterminer la translation qui permet de passer :

- ❖ de la figure **①** à la figure **②**
- ❖ de la figure ② à la figure ⑤
- ❖ de la figure **①** à la figure **⑤**

Déterminer la transformation qui permet de passer:

- ❖ de la figure **①** à la figure **②**
- ❖ de la figure ② à la figure ⑤
- ❖ de la figure **①** à la figure **③**

Déterminer la transformation qui permet de passer :

- ❖ de la figure **①** à la figure **②**
- de la figure 2 à la figure 3
- ❖ de la figure **①** à la figure **⑤**

Déterminer la translation qui permet de passer :

- ❖ de la figure **①** à la figure **②**
- ❖ de la figure ② à la figure ❸
- ❖ de la figure **①** à la figure **④**
- ❖ de la figure ② à la figure ⑤
- de la figure 2 à la figure 6
- ❖ de la figure **§** à la figure **6**

PAVAGES DU PLAN

Paver le plan, c'est recouvrir entièrement le plan, sans trou, ni superposition, avec une forme de base appelée pavé de base, que l'on reproduit autant que l'on veut en lui faisant subir des transformations simples et répétées.

Dans les 4 exemples proposés ici, retrouver le pavé de base et les différentes transformations qui permettent le pavage.

LES TRANSFORMATIONS - RAPPELS

<u>1.</u>	SYMÉTRIE AXIALE	262
2.	Translation	262
3.	ROTATION	263

Bilan des différentes transformations rencontrées au cours des quatre années de collège.

1. Symétrie axiale

<u>Définition</u>: Deux points A et B sont symétriques par rapport à une droite (d) si (d) est la médiatrice de [AB]; c'est à dire si (d) est perpendiculaire à [AB] en son milieu.

Par symétrie axiale, une figure et sa symétrique se superposent en pliant le long de l'axe de symétrie.

Définir une symétrie axiale, c'est définir l'axe de symétrie.

2. Translation

<u>Définition</u>: L'image d'un point M par la translation de vecteur $\stackrel{?}{AA'}$ est le point M' tel que

Les demi-droites [AA') et [MM') sont parallèles et de même sens

[AA'] et [MM'] ont la même longueur.

On dit que M' est le translaté de M.

Par translation, une figure et sa translatée se superposent en glissant le long de la direction.

Définir une translation, c'est définir le vecteur de translation.

Propriété fondamentale des vecteurs :

Soit quatre points A, B, C et D,

- \bullet Si AB = CD, alors le quadrilatère ABDC est un parallélogramme.
- * Réciproquement Si ABDC est un parallélogramme, alors $\vec{AB} = \vec{CD}$ et $\vec{AC} = \vec{BD}$

3. Rotation

<u>Définition</u>: Pour un point O et un angle a donnés, la **rotation** de centre O et d'angle a fait tourner un point M sur le cercle de centre O et de rayon OM, de telle sorte que l'angle \widehat{MOM}' soit égal à l'angle a

 60°

Définir une rotation, c'est définir le centre et l'angle de la rotation.

Une <u>symétrie centrale</u> est une rotation particulière pour laquelle l'angle est 180°

Propriétés des transformations :

Toutes ces transformations laissent inchangées la forme des figures transformées. C'est à dire que l'image d'une figure est superposable à la figure initiale.

- Donc:
- **L**es longueurs sont conservées
- **L**es angles sont conservés
- **!** Les aires sont conservées.

EXERCICES

Exercice 1

1) Placer trois points A, D et C non alignés et construire le point B tel que : DB = DA + DC

La parallèle à (AC) passant par B coupe (AD) en E et (DC) en F.

Démontrer que AC = BB et que AC = BB.

En déduire que B est le milieu de [EF].

2) On note O le point d'intersection des diagonales du parallélogramme ABCD et O' son symétrique par rapport à B.

Démontrer que.ÉO' = ÖF

Exercice 2

- 1) Reproduire ce dessin en vraie grandeur sachant que OA = 3 cm et que les points A, O et C, d'une part, et les points B, O et D, d'autre part, sont alignés.
- 2) Démontrer que ABCD est un rectangle.
- 3) Placer, sur le dessin, le point E image du point O par la translation de vecteur BA.
- 4) Placer le point F image du point C par la rotation de centre O et d'angle 60° dans le sens de la flèche.
- 5) Montrer que les points A, B, C, D, E, F sont sur un même cercle que l'on précisera.
- 6) Écrire un vecteur égal au vecteur $\stackrel{\frown}{CB}$ + $\stackrel{\frown}{CD}$.

Exercice 3

(Utiliser une feuille de papier quadrillé.)

Construire un triangle EFG, rectangle en F tel que EF = FG = 4 cm.

- 1) Placer le point K image de E par la symétrie de centre F.
- 2) Placer le point L image de F par la symétrie orthogonale d'axe (EG).
- 3) Placer le point J image de G par la translation de EF.
- 4) Placer le point H tel que HE = FG.

Quelle est l'image de H par la rotation de centre F qui transforme E en G ? Justifier ce résultat.

ABCD est un rectangle de centre O.

I, J, K et L sont les milieux respectifs des segments [AB], [BC], [CD] et [DA].

AIOL, LOKD, IBJO, OJCK sont alors des rectangles et O le milieu des segments [LJ] et [IK].

- 1) a) Quel est le transformé du triangle AIL par la symétrie d'axe (IK)?
 - b) Quel est le transformé du triangle AIL par la symétrie de centre O?
- 2) a) Établir les égalités vectorielles : ALB = 100 ; LDB = 000. En déduire : ALB = 100 .
 - b) Établir les égalités vectorielles : $\H{AL} = \H{LD}$; $\H{LO} = \H{DK}$. En déduire : $\H{AO} = \H{LK}$.
 - c) Quel est le transformé du triangle AIL dans la translation de vecteur \mathcal{W} ?

Exercice 5

Tracer un triangle équilatéral ABC de 4 cm de côté et faire les trois constructions demandées à partir de ce triangle, sans les justifier.

- 1) Construire l'image du triangle ABC dans la symétrie de centre C et hachurer au crayon de papier l'intérieur de cette image.
- 2) Construire l'image du triangle ABC dans la symétrie orthogonale par rapport à la droite (BC); la hachurer en rouge.
- 3) Construire l'image du triangle ABC dans la rotation de centre C, d'angle 120° et de sens, le sens inverse des aiguilles d'une montre ; la hachurer en bleu ou noir.

Exercice 6

On commencera le dessin au centre de la feuille.

On considère un losange ABCD tel que AC = 6 cm et BD = 4 cm.

- 1) Dessiner le losange ABCD en vraie grandeur. On appelle L_1 ce losange.
- 2) Construire le symétrique L_2 du losange L_1 par rapport à la droite (AD).
- 3) Construire l'image L_3 du losange L_1 dans la translation de vecteur \overrightarrow{CB} .
- 4) Construire l'image L_4 du losange L_1 dans la translation de vecteur CB + CD. (Les lettres L_1 , L_2 , L_3 seront écrites sur le dessin.)

Fiche d'exercices

Sur la figure ci-contre, on a : AB = AC = BC = CD = AD et $\overrightarrow{CD} = \overrightarrow{DE}$ Soit O le milieu du segment [AC]. (Ne pas refaire la figure.)

Compléter les phrases suivantes après les avoir recopiées.

- 1) a) Le point D est l'image du point B par la symétrie
- b) Par la translation de vecteur \overrightarrow{AE} , le point B a pour image

2)+
$$\overrightarrow{OD} = \overrightarrow{AD}$$
.

Exercice 8

La figure ci-contre est constituée de 6 losanges superposables. Recopier et compléter, sans démonstration, chacune des phrases suivantes.

- 1) Par la translation de vecteur AO, l'image du losange ALOB est le losange ...
- 2) Par la symétrie orthogonale d'axe (HB), l'image du losange ALOB est le losange ...
- 3) Par la rotation de centre O et d'angle 120° dans le sens des aiguilles d'une montre, l'image du losange ALOB est le losange ...

Exercice 9

On a reproduit plusieurs fois une figure à l'intérieur du carré HGKE dont [EG] est une diagonale.

1) Compléter les phrases suivantes en utilisant les numéros des figures et les points déjà nommés :

La figure ... est l'image de la figure 1 par la symétrie de centre ...

La figure ... est l'image de la figure 1 par la translation de vecteur ...

La figure 2 est l'image de la figure 1 par la

2) Tracer l'image de la figure 1 par la rotation de centre A, d'angle 90° dans le sens des aiguilles d'une montre.

On a représenté sur un quadrillage cinq triangles rectangle de mêmes dimensions.

Sans justification, répondre aux questions suivantes :

- 1) Quelle est l'image du triangle FGH par la symétrie d'axe d_1 ?
- 2) Quelle est l'image du triangle GKL par la rotation de centre K, d'angle 90° dans le sens des aiguilles d'une montre ?
- 3) Quelle est la transformation par laquelle on passe du triangle ABC au triangle EDC?
- 4) Quelle est la transformation par laquelle

on passe du triangle GKL au triangle HGF?

Exercice 11

Chacun des triangles 2, 3, 4 et 5 est obtenu à partir du triangle 1 à l'aide d'une symétrie axiale, d'une symétrie centrale, d'une translation ou d'une rotation.

Recopier les quatre phrases suivantes et compléter:

- 1) L'image du triangle 1 par la symétrie axiale d'axe ... est le triangle ...
- 2) L'image du triangle 1 par la symétrie centrale de centre ... est le triangle ...
- 3) L'image du triangle 1 par la translation de vecteur ... est le triangle ...
- 4) Le triangle 1 a pour image le triangle 4 par la rotation de centre ... et d'angle ... (le sens de la rotation est indiqué par la flèche).

Exercice 12

On appelle T la figure représentée par le polygone ABCDEFG.

- 1) Construire sur le quadrillage :
- a) l'image T_1 de T par la symétrie centrale de centre B;
- b) l'image T₂ de T par la rotation de centre E, d'angle 90°, dans le sens des aiguilles d'une montre;
- c) l'image T_3 de T par la translation de vecteur \overrightarrow{AE} .
- 2) Placer le point O tel que $\overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{AG}$.

(On écrira les lettres T_1 , T_2 , T_3 et

O sur le dessin.)

La figure F_1 est tracée ci-dessous.

- 1) Tracer l'image F_2 de F_1 par la symétrie de centre B; préciser l'image de A par cette symétrie.
- 2) Tracer l'image F_3 de F_2 par la symétrie de centre C.
- 3) Par quelle transformation passe-t-on de F_1 à F_3 ? En utilisant des points du dessin, préciser cette transformation.

Exercice 14

Dans le repère orthonormal (O, I, J) donné ci-dessous, on a placé trois points A, B, C.

- 1) a) Donner par lecture graphique les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{OC} .
- b) En déduire la nature du quadrilatère OABC.
- 2) Construire $OA_1B_1C_1$ image de OABC dans la symétrie orthogonale d'axe (OJ).
- 3) Construire $OA_2B_2C_2$ image de OABC dans la translation de vecteur \overrightarrow{BO} .
- 4) Construire $OA_3B_3C_3$ image de OABC dans la rotation de centre O, d'angle 90° , dans le sens des aiguilles d'une montre.

Exercice 15

Sur le schéma ci-après, le plan est pavé par des triangles équilatéraux.

- 1. Parmi les figures 1, 2, 3, deux figures sont symétriques par rapport à une droite (D). Lesquelles ? Tracer la droite (D).
- 2. Construire la figure 4, image de la figure 3 par la translation de vecteur AB.

La figure suivante est constituée de dix hexagones réguliers numérotés de 1 à 10.

L'hexagone 5 est noté ABCDEF. Le point I est le milieu du segment [AB].

Sans justification, répondre aux questions suivantes .

- 1) Quelle est l'image de l'hexagone 2 par la symétrie de centre 1?
- 2) Quelle est l'image de l'hexagone 4 par là symétrie d'axe la droite (AB) ?
- 3) Quelle est l'image de l'hexagone 3 par la translation de vecteur \overrightarrow{CE} ?
- 4) Quelle est l'image de l'hexagone 8 par la rotation de centre A et d'angle 120°? Tourner dans le sens inverse des aiguilles d'une montre.

Exercice 17

La figure ci-contre est un assemblage de huit rectangles de mêmes dimensions que ABGF. Par observation de la figure, répondre aux questions suivantes.

(Il n'est demandé aucune justification et il n'est pas demandé de reproduire la figure.)

Quelle est l'image du triangle AFG par :

- 1) La symétrie orthogonale d'axe (CM)?
- 2) La symétrie de centre H?
- 3) La translation de vecteur \overrightarrow{LN} ?

Exercice 18

Un dessous-de-plat a la forme d'un rectangle, il est recouvert d'un carrelage comme le montre la figure.

- 1) a) Hachurer l'image du motif $\mathbf{0}$ dans la symétrie d'axe (OG). L'appeler $\mathbf{2}$.
- b) Hachurer l'image du motif **1** dans la translation de vecteur \overrightarrow{BF} . L'appeler **3**.
- c) Hachurer l'image du motif **1** dans la symétrie centrale de centre C. L'appeler **2**.
- 2) Par quelle translation le motif **1** a-t-il pour image le motif **5** ?

La figure ci-dessous est formée de triangles rectangles superposables.

Recopier et compléter les phrases suivantes en complétant chacune d'elles par l'une des expressions :

- translation;
- rotation;
- · symétrie centrale ;
- · symétrie orthogonale.

Phrase 1 : Le triangle 2 est le transformé du triangle 1 par une ...

Phrase 2 : Le triangle 3 est le transformé du triangle 1 par une ...

Phrase 3 : Le triangle 4 est le transformé du triangle 1 par une ...

Exercice 20

La figure ombrée suivante a pour lignes frontières :

- le segment [BC];
- · le quart de cercle de centre I et de rayon IO;
- \cdot le quart de cercle de centre J et de rayon JO.

Représenter, sans explications, mais en les numérotant, et en les hachurant, les images de cette figure dans les applications suivantes :

- 1) La symétrie de centre O.
- 2) La symétrie orthogonale d'axe (AB).
- 3) La translation de vecteur CA
- 4) La rotation de centre A qui transforme B en D.

Corrigés des 'exercices

CORRIGES DES EXERCICES

Exercice 1

 $Si \stackrel{\mathcal{D}B}{D} = \stackrel{\mathcal{D}A}{D} + \stackrel{\mathcal{D}C}{D}$, alors DABC est un parallélogramme. Donc (DA) // (BC).

Par ailleurs, on a construit (EB) // (AC).

Le quadrilatère ACBE, ayant ses côtés parallèle deux à deux, est un parallélogramme.

En conséquence, $\H{AC} = \H{EB}$.

De la même manière, on montre que $\overset{\text{NAC}}{AC} = \overset{\text{NAC}}{BF}.$

Conclusion les deux vecteurs EB et BF sont égaux, car ils sont égaux au même vecteur AC.

Comme EB = BF, le point B est le milieu du segment [EF].

Par symétrie, O est aussi le milieu du segment [OO'].

Dans le quadrilatère OFO'E, les diagonales ont le même milieu, donc c'est un parallélogramme. Et par conséquent, EO' = OF

Exercice 2

ABCD est un rectangle car ses diagonales ont le même milieu et la même longueur.

[OE] a la même longueur que [AB] , car la translation conserve les longueurs.

[OF] a la même longueur que [OC], car la rotation conserve les longueurs.

$$Donc\ OA = OB = OC = OD = OE = OF.$$

 $\label{eq:continuous} \begin{cases} Et\ A\ ,\ B,\ C\ ,\ D\ ,\ E\ et\ F\ sont\ sur\ le\ m\^eme\\ cercle\ de\ centre\ O. \end{cases}$

$$\overset{34340}{CB} + \overset{34340}{CD} = \overset{34340}{CA}$$

Corrigés des exercices

Exercice 3

La rotation de centre F qui transforme E en G est une rotation de 90°.

Par cette même rotation, H est transformé en L.

Exercice 4

Le transformé du triangle AIL par la symétrie d'axe (IK) est le triangle IBJ Le transformé du triangle AIL par la symétrie de centre O est le triangle CKJ.

AL = IO car AIOL est un rectangle, donc un parallélogramme.

 $\vec{LO} = \vec{OJ}$ car O est le milieu de [LJ] $\vec{IJ} = \vec{AO}$ car $\vec{AI} = \vec{LO}$ et $\vec{LO} = \vec{OJ}$, donc $\vec{AI} = \vec{OJ}$ et AIJO est un parallélogramme, $donc \stackrel{\text{"M-B}}{IJ} = \stackrel{\text{"M-B}}{AO}.$

 $\stackrel{33}{AL} = \stackrel{13}{LD}$, car L est le milieu de [AD]

 $L\ddot{O} = D\ddot{K}$ car LOKD est un rectangle. $\ddot{A}\ddot{O} = L\ddot{K}$ car $\ddot{A}\ddot{L} = \ddot{L}\ddot{D}$ et $\ddot{L}\ddot{D} = \ddot{O}\ddot{K}$, donc $\ddot{A}\ddot{L} = \ddot{O}\ddot{K}$ et ALKO est un parallélogramme, $donc \ \mathring{AO} = \mathring{L} \mathring{K}$.

Le transformé du triangle AIL dans la translation de vecteur II est le triangle OJK.

- 1) Image du triangle ABC dans la symétrie de centre C: A1B1C
- 2) Image du triangle ABC dans la symétrie orthogonale par rapport à la droite (BC) : A2BC
- 3) L'image du triangle ABC dans la rotation de centre C, d'angle 120° et de sens, le sens inverse des aiguilles d'une montre A1A2C

Corrigés des 'exercices

Exercice 6

Exercice 7

1) a) Le point D est l'image du point B par la symétrie de centre O, ou bien d'axe (AC) b) Par la translation de vecteur ÅE, le point B a pour image le point D. 2) ÅÖ + ÖD = ÅD.

Exercice 8

- 1) Par la translation de vecteur ÅÖ, l'image du losange ALOB est le losange OHGF
- 2) Par la symétrie orthogonale d'axe (HB), l'image du losange ALOB est le losange BCDO
- 3) Par la rotation de centre O et d'angle 120° dans le sens des aiguilles d'une montre, l'image du losange ALOB est le losange **ODEF**

Exercice 9

1) La figure 4 est l'image de la figure 1 par la symétrie de centre F La figure 3 est l'image de la figure 1 par la translation de vecteur AC La figure 2 est l'image de la figure 1 par la symétrie d'axe (EG)

- 1) L'image du triangle FGH par la symétrie d'axe d_1 : **CDE**
- 2) L'image du triangle GKL par la rotation de centre K, d'angle 90° dans le sens des aiguilles d'une montre : KMH
- 3) La transformation par laquelle on passe du triangle ABC au triangle EDC : Symétrie de centre ${\it C}$
- 4) La transformation par laquelle on passe du triangle GKL au triangle HGF : Translation de vecteur $\H K \H G$

- 1) L'image du triangle 1 par la symétrie axiale d'axe (xy) est le triangle 3
- 2) L'image du triangle 1 par la symétrie centrale de centre A est le triangle 5
- 3) L'image du triangle 1 par la translation de vecteur EF est le triangle 2
- 4) Le triangle 1 a pour image le triangle 4 par la rotation de centre A et d'angle 90°.

Corrigés des 'exercices

Exercice 14

Exercice 15

Exercice 16

- 1) L'image de l'hexagone 2 par la symétrie de centre 1 est le n°9
- 2) L'image de l'hexagone 4 par là symétrie d'axe la droite (AB) est le n° 7.
- 3) L'image de l'hexagone 3 par la translation de vecteur CE est le n° 6
- 4) L'image de l'hexagone 8 par la rotation de centre A et d'angle 120° est le n° 10

Exercice 17

L'image du triangle AFG par :

- 1) La symétrie orthogonale d'axe (CM) est le triangle IJE.
- 2) La symétrie de centre H est le triangle IJO.
- 3) La translation de vecteur LN est le triangle CHI.

C'est la translation de vecteur CH qui permet d'obtenir **9** à partir de **0**.

Exercice 19

Phrase 1 : Le triangle 2 est le transformé du triangle 1 par une symétrie centrale

Phrase 2 : Le triangle 3 est le transformé du triangle 1 par une translation.

Phrase 3 : Le triangle 4 est le transformé du triangle 1 par une symétrie orthogonale.

