

Python Device server for SCPI instruments

S. Blanch-Torné 1 A. Milán 2 M. Broseta 1 C. Falcón 1 J. Andreu 1 D. Roldán 1 J. Moldes 1 G. Cuní 1

¹ALBA Synchrotron, CELLS Cerdanyola del Vallés

> ²MAX IV Laboratory Lund

Tango Meeting, 2019

Table of Contents

- What's SCPI?
- Tango Device Servers
 - SkippyDS
 - Sardana Controller
- Open Python module
 - python-skippy
 - python-scpilib
- Wish & ToDo lists

What's SCPI?

Standard Commands for Programmable Instruments

From the wikipedia's definition

The Standard Commands for Programmable Instruments (SCPI; often pronounced "skippy") defines a standard for syntax and commands to use in controlling programmable test and measurement devices, such as automatic test equipment and electronic test equipment.

What's SCPI?

Standard Commands for Programmable Instruments

From the wikipedia's definition

The Standard Commands for Programmable Instruments (SCPI; often pronounced "skippy") defines a standard for syntax and commands to use in controlling programmable test and measurement devices, such as automatic test equipment and electronic test equipment.

Standard definition

- SCPI-99
- IEEE 488.2-2004

What's SCPI?

Standard Commands for Programmable Instruments

From the wikipedia's definition

The Standard Commands for Programmable Instruments (SCPI; often pronounced "skippy") defines a standard for syntax and commands to use in controlling programmable test and measurement devices, such as automatic test equipment and electronic test equipment.

- SCPI-99
- IEEE 488.2-2004

*IDN?. SOURce: FREQuency: STARt?,

*RST,... SYSTem: COMMunicate: SERial: BAUD 2400

What we (all) did with SCPI, or at least what I've seen:

• At least 49 Device Servers identified in the Catalogue

- At least 49 Device Servers identified in the Catalogue
- ullet Represents > 6% of the current Device Servers in the inventory

- At least 49 Device Servers identified in the Catalogue
- ullet Represents > 6% of the current Device Servers in the inventory
- 40 are written in Cpp, 8 in Python, 1 in Java

- At least 49 Device Servers identified in the Catalogue
- ullet Represents >6% of the current Device Servers in the inventory
- 40 are written in Cpp, 8 in Python, 1 in Java

by Family	
Communications	8
Instrumentation	19
Measurement Instruments	20
Other Instruments	1
Standard Interfaces	1

- At least 49 Device Servers identified in the Catalogue
- Represents > 6% of the current Device Servers in the inventory
- 40 are written in Cpp, 8 in Python, 1 in Java

by Family	
Communications	8
Instrumentation	19
Measurement Instruments	20
Other Instruments	1
Standard Interfaces	1

by Institute		
3control	1^a	
alba	7	
desy	22	
esrf	8	
nexeya	2	
soleil	9	

^aScpiDS multiple instruments

- At least 49 Device Servers identified in the Catalogue
- Represents > 6% of the current Device Servers in the inventory
- 40 are written in Cpp, 8 in Python, 1 in Java

by Family	
Communications	8
Instrumentation	19
Measurement Instruments	20
Other Instruments	1
Standard Interfaces	1

by Institut	:e	
3control alba desy esrf nexeya soleil	_	Skippy: 13 instruments 9 manufacturers 4 in progress
^a ScpiDS multiple instruments		

SkippyDS

State machine and tango description

SkippyDS

State machine and tango description

commands

- IDN()
- Off(), Standby(), On()
- Start(), Stop()
- {Add, Remove} Monitoring()
- {Get,Set}MonitoringPeriod()
- CMD()

SkippyDS

State machine and tango description

commands

- IDN()
- Off(), Standby(), On()
- Start(), Stop()
- {Add, Remove} Monitoring()
- {Get,Set}MonitoringPeriod()
- CMD()

attributes

- QueryWindow
- TimeStampsThreshold

State machine and tango description

Properties |

- Instrument
- Port
- Serial{Baudrate,Bytesize,...}
- Num{Channels, Functions, Multiple}
- MonitoredAttributes
- Auto{Standby,On,Start}

• IDN()

commands

- TxTerminator
- Off(), Standby(), On()
- Start(), Stop()
- {Add, Remove} Monitoring()
- {Get,Set}MonitoringPeriod()
- CMD()

attributes

- QueryWindow
- TimeStampsThreshold

How to define an attribute?

Attribute builder

keywords

- type, dim
- label, description,
- format, unit,
- memorized
- min/max

- readCmd, writeCmd
- channels, functions, multiple
- delayAfterWrite
- readFormula

1 Use a proxy in the controller

- Use a proxy in the controller
- Reduce layers: Instead of use a tango device, implement a native access to the instruments in the controller

- Use a proxy in the controller
- Reduce layers: Instead of use a tango device, implement a native access to the instruments in the controller
 - Again, one specific controller per instrument?

- Use a proxy in the controller
- Reduce layers: Instead of use a tango device, implement a native access to the instruments in the controller
 - Again, one specific controller per instrument?
 - Reimplement generic features?

- Use a proxy in the controller
- Reduce layers: Instead of use a tango device, implement a native access to the instruments in the controller
 - Again, one specific controller per instrument?
 - Reimplement generic features?
- Encapsulate and share the features: a python module

python-skippy module

python-skippy module

Python console example

```
>>> from skippylib import Skippy
    >>> skippyObj = Skippy(name='scodilt0401', port=5025, nChannels=4)
skippyObj.idn
   'KEYSIGHT TECHNOLOGIES, DSOS204A, MY58150181,06.30.00701'
   >>> stateCh1 = skippyObj.attributes['StateCh1']
    >>> print("{!r}".format(StateCh1))
   StateCh1 (SkippyReadWriteAttribute):
       rvalue: True
        wwalne: None
        timestamp: 1559207397.3
        quality: ATTR_VALID
        type: DevBoolean
        dim: 0
        readCmd: ': CHAN1: DISPlay?'
        readFormula: None
        writeCmd: ':%s%d:DISPlayu%s'
    >>> stateCh1.isRampeable()
    False
```

python-scpilib module

skippylib

- Improve new instrument insertion
- Improve the watchdog
- Dynamic attributes as property
- Dynamic commands
- Generalize *TxTerminator*
- Different ramp strategies
- WriteFormula
- input validation
- dependencies with state-like

skippylib

- Improve new instrument insertion
- Improve the watchdog
- Dynamic attributes as property
- Dynamic commands
- Generalize TxTerminator
- Different ramp strategies
- WriteFormula
- input validation
- dependencies with state-like

skippylib

- Improve new instrument insertion
- Improve the watchdog
- Dynamic attributes as property
- Dynamic commands
- Generalize *TxTerminator*
- Different ramp strategies
- WriteFormula
- input validation
- dependencies with state-like

scpilib

- autodoc scpi tree
- python3
- Set of minimal commands
- Write lock (current is RW)
- Report locker owner
- Extend *lock* feature to subtrees
- Listen more channels than network
- SSL and ACLs
- Event subscription
- multidimensional data

skippylib

- Improve new instrument insertion
- Improve the watchdog
- Dynamic attributes as property
- Dynamic commands
- Generalize *TxTerminator*
- Different ramp strategies
- WriteFormula
- input validation
- dependencies with state-like

scpilib

- autodoc scpi tree
- python3
- Set of minimal commands
- Write lock (current is RW)
- Report locker owner
- Extend *lock* feature to subtrees
- Listen more channels than network
- SSL and ACLs
- Event subscription
- multidimensional data

skippylib

- Improve new instrument insertion
- Improve the watchdog
- Dynamic attributes as property
- Dynamic commands
- Generalize *TxTerminator*
- Different ramp strategies
- WriteFormula
- input validation
- dependencies with state-like

scpilib

- autodoc scpi tree
- python3
- Set of minimal commands
- Write lock (current is RW)
- Report locker owner
- Extend *lock* feature to subtrees
- Listen more channels than network
- SSL and ACLs
- Event subscription
- multidimensional data

skippylib

- Improve new instrument insertion
- Improve the watchdog
- Dynamic attributes as property
- Dynamic commands
- Generalize *TxTerminator*
- Different ramp strategies
- WriteFormula
- input validation
- dependencies with state-like

scpilib

- autodoc scpi tree
- python3
- Set of minimal commands
- Write lock (current is RW)
- Report locker owner
- Extend *lock* feature to subtrees
- Listen more channels than network
- SSL and ACLs
- Event subscription

nensional data

gui

• Generic taurus gui for any of the instruments