Lógica El

	2.° Teste — 5 de junho de 2018 ————	duração: 2 horas
nome:		número

Grupo I

Este grupo é constituído por 5 questões. Em cada questão, deve dizer se a afirmação indicada é verdadeira (V) ou falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída será 1 valor, -0,5 valores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assinalada resposta, respetivamente. A cotação total neste grupo é no mínimo 0 valores.

Grupo II

- 1. Sejam $\varphi = \neg (p_0 \land p_1) \land p_2 \in \psi = p_0 \rightarrow \neg p_1$.
 - (a) Construa uma demonstração de $\varphi \to \psi$ em DNP.
 - (b) Mostre que, no entanto, $\not\vdash \psi \to \varphi$.
- 2. Prove que, para qualquer $\Gamma \subseteq \mathcal{F}^{CP}$ e quaisquer $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$, se $\Gamma, \varphi \vdash \psi$ e $\psi \to \sigma$ é uma tautologia, então $\Gamma \vdash \varphi \to \sigma$.

Grupo III

(Nas seguintes questões, exceto na 6(a), apresente cada resposta no espaço disponibilizado para o efeito.)

Considere o tipo de linguagem $L=(\{1,d,x\},\{P,>\},\mathcal{N})$ em que $\mathcal{N}(1)=0,\,\mathcal{N}(d)=1,\,\mathcal{N}(x)=2,\,\mathcal{N}(P)=1$ e $\mathcal{N}(>)=2$. Seja $E=(\mathbb{N},\overline{})$ a L-estrutura tal que:

$$\overline{\mathbf{1}} = 1 \qquad \qquad \overline{\mathbf{P}} \text{ \'e o predicado "\'e par" em } \mathbb{N}$$

$$\overline{\mathbf{d}} : \mathbb{N} \to \mathbb{N} \text{ tal que } \overline{\mathbf{d}}(n) = 2n \qquad \qquad \overline{\mathbf{p}} \text{ \'e a relação "maior do que" em } \mathbb{N}$$

$$\overline{\mathbf{x}} \text{ \'e a multiplicação em } \mathbb{N}$$

- 1. Sem justificar, dê exemplo de um termo de tipo L com pelo menos 2 ocorrências de um dos símbolos de função de L.
- 2. Sem justificar, dê exemplo de um termo t de tipo L tal que $x_1, x_2 \in VAR((d(x_0) \times 1)[t/x_0])$.
- 3. Defina, por recursão estrutural, a função $f: \mathcal{T}_L \to \mathbb{N}_0$ que a cada termo t faz corresponder o número de ocorrências de símbolos de função não constantes em t.

- 4. Seja α a atribuição em E tal que, para todo $i \in \mathbb{N}_0$, $\alpha(x_i) = 3i$. Indique, sem justificar, $\overline{\mathsf{d}(\mathsf{d}(x_1) \times x_2)}_{\alpha}$.
- 5. Considere a fórmula $\psi = \neg P(x_1 \times x_2)$. Seja α uma atribuição em E tal que $\alpha(x_1) = 5$. Indique, sem justificar, uma condição que α tem de satisfazer de modo a que $\overline{\psi}_{\alpha} = 1$.
- 6. Seja φ a L-fórmula $\exists x_1(\mathsf{d}(x_1) > x_1 \times x_1)$.
 - (a) Prove que φ é verdadeira em E.
 - (b) Indique, sem justificar, uma estrutura E' de tipo L que seja diferente de E apenas na interpretação do símbolo d e tal que φ não seja verdadeira em E'.

Cotogog	I	II	III
Cotações	5	2+1,75+1,5	1,5+1,5+2,5+1+1+1,25+1