Zahlensysteme

Formel	Beispiel
Vorkomma und Nachkomma: $\sum_{k=0}^{n} a^{n-k}$	45.0625 vom 6er ins 10er System
— k-0	Vorkomma: $1 * 6^2 + 1 * 6^1 + 3 * 6^0 = 36 + 6 + 3 = 45$
	Nachkomma: $3 * 6^{-3} + 4 * 6^{-2} + 0 * 6^{-1} = \frac{1}{72} + \frac{1}{9} + 0 = 0.125$
Vorkomma:	45.0625 vom 10ner ins 6er System
Der Zahlenwert wird durch die Ziel-Zahlensystem-Basis geteilt.	Vorkomma:
Der jeweilige Rest bildet den neuen Wert.	45: 6 = 7 Rest: 3
Nachkomma:	7:6 = 1 Rest:1
Die Kommazahl mal die Basis rechnen, Ganzzahlziffern bilden	1: 6 = 0 Rest: 1 Resultat: 113
den neuen Wert	Nachkomma:
	6 * 0,125 = 0,75 Ganzzahl: 0
	6 * 0,75 = 4,5 Ganzzahl: 4
	6 * 0.5 = 3 Ganzzahl: 3 Resultat: 0.043

Funktionen

Formel	Beispiel/Ergänzungen
Lineare Funktion	
f(x) = ax + b	3 Ay
Steigung	$f(x) = \frac{2}{3}x + 1$
	1 3 x
$a = \frac{\Delta y}{\Delta x}$	4 3 2 1 0 1 2 3 4 5
Fixkosten	4
$f(0) = K_f = K - ax$	2
	Copyright © 2000 - 2001 — by Henning Koch
Polynomfunktion	Eine Polynomfunktion vom Grad n besitzt höchstens n
$f(x) = \sum_{n=0}^{i} a_{n-i} x^{n-i}$	Nullstellen
	Der qualtiative Verlauf des Graphen hängt für grosse x
	nur vom Term der höchsten Potenz ab.
Quadtratische Funktion	Lösungen berechnen
$f(x) = ax^2 + bx + c$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
, , ,	$\chi = {2a}$
Potenzfunktion	Ist n gerade erhält man eine Parabel.
$f(x) = a * x^n$	Ist n ungerade erhält man eine konkav-konvexe Parabel
Exponentialfunktion	Funktion hat keine Nullstellen
$f(x) = K * a^x$	x-Achse ist die Asymptoten
	Graph steigt wenn a>1
	Graph fällt wenn 0 <a<1< td=""></a<1<>
Logarithmusfunktion	Umkehrfunktion der Exponentialfunktion
$f(x) = \log(x)$	$-0.2 + 3 = log(x) \to 10^{-0.2+3} = x$
Gebrochen-rationale Funktion	x ist Nullstelle von f wenn $\rightarrow Z(x) \neq 0 (und N(x) \neq 0)$
$D_f = R$	senkrechte Asymptote wenn $N(x) = 0 (und Z(x) \neq 0$
$f(x) = \frac{Polynom\ m-ten\ Grades}{Polynom\ n-ten\ Grades} = \frac{Z(x)}{N(x)}$	Grad(Z) = Grad(N) horizontale Asymptote (parallel zur
Polynom n -ten Grades $N(x)$	X-Achse) -> zur Berechnung siehe Asymptote
	Grad(Z) < Grad(N) x-Achse ist Asymptote
Stückweis definierte Funktion	Gewinn in Franken 3,500,000
Funktion aufstellen	3,000,000
$(W1 = 25x)$ $0 \le x < 50'000$	2,500,000
$W(x) \left\{ W2 = 25x * 0.9 \right\} \ 50'000 \le x < 100'000$	2,000,000
$W3 = 25x * 0.8 (100'000 \le x)$	1,500,000 ——0% Rabatt ——10% Rabatt
W2 = 25 * 0.9 * 50'000 = 1'125'000 1'125'000 / 25 = 45'000	1,000,000 ——20% Rabatt ——Kosten
W3 = 25 * 0.8 * 100'000 = 2'000'000 2'000'000/(25 * 0.9) = 88'888	500,000
Die Mengen von 45'000-50'000 und 88'888-100'000 werden nicht bestellt.	
W1 = 25 * 50'000 = 1'250'000	**************************************
W2 = 25 * 50'000 * 0.9 = 1'125'000	7 T T T T T T T T T
W2 - W1 = 125'000	Gewinn in Franken 4'000'000
W2 Neu = $25x * 0.9 + 125'000$	3'000'00
W2 = 25 * 100'000 * 0.9 + 125'000 = 2'375'000	3'00'000
W3 = 25 * 100'000 * 0.8 = 2'000'000	2500'000 ——0% Sebatt
W3 - W2 = 375'000	2 00/ 000 — 50 Robert — 150/ Robert — 20% Robert
W3 Neu = $25x * 0.8 + 375'000$	1:000'0000 ——Kisten
$(W1 = 25x) \qquad 0 \le x < 50'000$	500'000
$W(x) \left\{ W2 = 25x * 0.9 + 125'000 \right\} 50'000 \le x < 100'000$	O Menge
$(W3 = 25x * 0.8 + 375'000 (100'000 \le x)$	e de l'organiste de la
· · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * *

Umkehrfunktion

Funktion	Beispiel
$p(x) \rightarrow x(p)$	$x \to p = -1.25x + 9 p \to x = -0.8p + 7.2$
	$p \to x = -0.8p + 7.2$
Umkehrung Logarithmusfunktion	$y = 3^x \rightarrow x = \log_3(y)$

Ableitung

Die Ableitungsfunktion beschreibt die Veränderung der Funktion und die Tangentensteigung an einem bestimmten Punkt.

Aus $\frac{df}{dx} = f'(x)$ folgt formal die Beziehung:

Differenziale: df entspricht der Veränderung von y, z.B. die Zunahme von Kosten. **dx** beschreibt die Mengenzunahme.

 $df = f'(x) \cdot dx$

Oft wird für dx=1 gewählt, da es am interessantesten ist, was kostet mich ein Stück mehr.

Es gilt, je grösser dx desto ungenauer ist df.

(() 22 (() 0
$f(x) = 23 \rightarrow f'(x) = 0$
$f(x) = 4x \rightarrow f'(x) = 4$
$f(x) = 6x + 34 \to f'(x) = 6$
$f(x) = 3x^4 \rightarrow f'(x) = 4 * x^{4-1} * 3 = 12x^3$
Spezialfälle:
$f(x) = x^{-1} = \frac{1}{x} \to f'(x) = -x^{-2} = -\frac{1}{x^2}$
$f(x) = \sqrt{x} = x^{\frac{1}{2}} \to f'(x) = \frac{1}{2} * x^{-\frac{1}{2}} = \frac{1}{2 * \sqrt{x}}$
$f(x) = 5x^2 \to f'(x) = 5 * 2x$
$f(x) = 6x^2 - 3x + 2 \to f'(x) = 12x - 3$
$f(x) = 3e^{2x^3} \rightarrow f'(x) = 3e^{2x^3} * 6x^2$
$f(x) = 5^{3x^2-1} \rightarrow f'(x) = 5^{3x^2-1} * \ln(5) * 6x$
, , , , , , , , , , , , , , , , , , , ,
$f(x) = \ln(2x^3) \to f'(x) = \frac{1}{2x^3} * 6x^2$
$f(x) = \ln(2x^{-1}) \rightarrow f(x) = \frac{1}{2x^3} + 0x$
$f(x) = log_{10}(x^3 - 3) \rightarrow f'(x) = \frac{1}{(x^3 - 3) \cdot ln(10)} * 3x^2$
(x°-3)*III(10)
$f(x) = (7x^2 + 10x + 4) * (\log_6(x))$
$f'(x) = ((14x + 20) * \log_6 x) + ((7x^2 + 10x + 4) *$
$\left(\frac{1}{x \ln(6)}\right)$
$f(x) = \frac{3x^2 + 2x}{\sqrt{x}} \to$
$\int (\lambda) - \frac{1}{\sqrt{x}} \rightarrow$
$f'(x) = \frac{\left(6x + 2 * \sqrt{x}\right) - \left(\frac{1}{2\sqrt{x}} * (3x^2 + 2x)\right)}{x}$
$f(x) = (15x^5 + 8x^4)^4 \rightarrow$

Wirtschaft

Beschreibung	Formel	Grafik
Erlös	E(x) = p(x) * x	80000
Variable Kosten	$K_v(x) = x * k$	
Gesamtkosten	$K(x) = K_v + K_f = x * k + d$	60000 K
Fixkosten	$K_f(x) = K(x) - K_v(x) = d$	40000
Gewinn	G(x) = E(x) - K(x)	
Deckungsbeitrag	$G_D(x) = E(x) - K_v(x)$	20000 G
	$G_D(x) = E(x) - K_v(x)$ $pro Stück g_D = \frac{G_D}{x} = p(x) - k_v$	0 x
Gewinnschwelle	$G_S = \frac{K_f}{p-k}$	2000 4000 6000 8000 10000
Marginale Konsum- und	Y = C(Y) + S(Y)	
Sparquote für Einkommen Y		

Begriffe	Funktion
Grenz, Marginal = Ableitung	f'(x)
Stück, Durchschnitt	$\bar{f}(x) = \frac{f(x)}{x}$
Grenz-Durchschnitt	$(\bar{f}(x))'$

Senkrechte Asymptote Entsteht wenn bei einer Gebrochenen Rationalen Funktion der Nenner 0 ist.

Beispiel: $f(x) = \frac{1}{x-1}$

Nenner 0 setzen: $x - 1 = 0 \rightarrow x = 1$ Senkrechte Asymptote verläuft durch 1

Waagerechte Asymptote

Für die Waagerechte / Schiefe Asymptote benötigt man die Zähler- und Nennergerade.

Dies ist die Potenz welche im Zähler und Nenner vorkommt. $\frac{(4x^3+2x^2)}{5x^2}$ \rightarrow Hier wäre die Zählergerade 3 und Nennergerade 2. Wenn Zählergerade < Nennergerade: dann ist x-Achse die

Asymptote.

Wenn Zählergerade = Nennergerade: Asymptote berechnen.

Beispiel:
$$f(x) = \frac{4x^2+3}{2x^2+1}$$

ightarrow Zählergerade und Nennergerade sind 2.

Koeffizienten vor den Unbekannten mit den höchsten Potenzen im Zähler und Nenner dividieren.

 $y = \frac{4}{2} = 2$ \rightarrow Waagerechte Asymptote parallel zur X-Achse auf der Höhe y=2.

Darstellung mit Limes:

$$\lim_{x \to \infty} y = \frac{4x^2 + 3}{2x^2 + 1} * \frac{\frac{1}{x^2}}{\frac{1}{x^2}} = \frac{4 + \frac{3}{x^2}}{2 + \frac{1}{x^2}} = \frac{4}{2} = 2$$

Schiefe Asymptote

Wenn Zählergerade um eins grösser ist als Nennergerade.

Funktionsänderung

$$df = f'(x) * dx \approx \Delta f$$

$$\Delta f = f(x + dx) - f(x)$$

Kurvendiskussion

f dx df

Asymptote benötigt man die Schiefe Asymptote Sahlergrad - Nennergrad oder Zählergrad = Nennergrad oder Zählergrad = Nennergrad + 1 Gerade 3 und Nennergerade 2. Perade: dann ist x-Achse die Serade: Asymptote S

Kriterium

Höchste Potenz im Zähler

Höchste Potenz im Nenner

Nullstelle des Nenners (= Definitionslücke)

Grafik

Zählergrad bestimmen

Nennergrad bestimmen

Asymptoten berechnen

Senkrechte Asymptote

Die Kurvendiskussion umfasst Monotonie, Krümmung, Extremwerte, Wendepunkte und Asymptoten. Alle diese Werte stehen im Zusammenhang miteinander (die leeren Stellen sind nur rechnerisch erkennbar):

	N ullstellen	Extrema	W endepunkte
f	х	У	Z
fʻ	У	Z	
f"	Z		

Monotonie

Erl	klärung
fʻ	$f(x) > 0$ und $f''(x) > 0 \rightarrow f$ wächst konvex streng monoton
fʻ	$f''(x) > 0$ und $f''(x) < 0 \rightarrow f$ wächst konkav streng monoton
fʻ	$f''(x) < 0 \text{ und } f''(x) > 0 \rightarrow f \text{ fällt konvex streng monoton}$
f	$f''(x) < 0$ und $f''(x) < 0 \rightarrow f$ fällt konkav streng monoton

Monotonie: fällt oder steigt Krümmung: konvex oder konkav

Beispiel:

$$K(x) = \frac{1}{15}x^3 - 2x^2 + 60x + 900$$

$$K'(x) = 0.2x^2 - 4x + 60$$

$$K''(x) = 0.4x - 4$$

K''(x) = 0 an der Stelle x=10.

Für x < 10 gilt: K''(x) < 0 (K ist konkav.)

Zusammen mit $K'(x) > 0^*$ gilt: K wächst degressiv.

Für x > 10 gilt: K''(x) > 0 (K ist konvex.)

Zusammen mit $K'(x) > 0^*$ gilt: K wächst progressiv.

Extremwerte

f hat an der Stelle x ein relatives Maximum oder Minimum $\rightarrow f'(x) = 0$

Erklärung

f'(x) = 0

f''(x) > 0

f hat an der Stelle x ein relatives Minimum

f'(x) = 0

f''(x) < 0

f hat an der Stelle x ein relatives Maximum

Beispiel:

 $f(x) = \frac{1}{6}x^3 - \frac{5}{4}x^2 + 2x + 3 \text{ hat die stationären Stellen } x = 1 \text{ und } x = 4$ f''(x) = x - 2.5 $f''(1) = 1 - 2.5 < 0 \qquad \text{f hat also ein relatives Maximum an der Stelle } x=1.$

f''(4) = 4 - 2.5 > 0 f hat also ein relatives Minimum an der Stelle x=4.

Wendepunkte

f hat an der Stelle x einen Wendepunkt $\rightarrow f''(x) = 0$

Erklärung
f''(x) = 0
$f'''(x) \neq 0$
f hat an der Stelle x einen Wendepunkt
f''(x) = 0
f'''(x) > 0
f hat an der Stelle x einen konkaver/konvex Wendepunkt
f''(x) = 0
$f^{\prime\prime\prime}(x)<0$
f hat an der Stelle x einen konvex/konkaver Wendepunkt

Beispiel:

$$f'(x) = \frac{1}{6}x^3 - x^2 + \frac{3}{2}x$$

$$f''(x) = 0.5x^2 - 2x + 1.5$$

$$f'''(x) = x - 2$$

 $f''(x) = 0 \rightarrow \text{TR: poly-solv liefert } x = 1 \text{ sowie } x = 3$

f'''(1) = 1 - 2 < 0 konvex-konkaver Wendepunkt bei x=1 f'''(3) = 3 - 2 > 0 konkav-konvexer Wendepunkt bei x=3

Ausserdem ist f'(3) = 0. Der Wendepunkt bei x=3 ist also ein Sattelpunkt

Grafik

Taschenrechner

Aufgabe	Instruktionen	
Polynome lösen	2nd + ploly-solv (cos/cos-1) + 1 oder 2 + <enter values=""> + Solve</enter>	
	Optional:	
	Store x1 als x Variable und x2 als y Variable, x3 als z Variable	
Resultat bekannt - x-Werte	Variante 1:	
für bestimme Funktion	table + 2 + <enter function=""></enter>	
berechnen	table + <lookup value=""></lookup>	
	Variante 2:	
	<funktion umformen=""> + 2nd + ploly-solv (cos/cos-1)</funktion>	
	Variante 3:	
	2nd + num-solv (sind/sin-1) + <enter equation=""></enter>	
Funktion anhand x und y	data + <enter values=""></enter>	
Werten erstellen lassen	2nd + data + 4 (linReg)	
Ableiten von	table + 2 <edit function=""> + 2nd + d/dx (ln log) + <enter function=""> und</enter></edit>	
Funktionswerten	<enter (normally="" definition="" x="" x)=""></enter>	
Ableitung kontrollieren	table + 2 <edit function=""> + <enter ableitung=""> + (-) + 2nd + d/dx (ln</enter></edit>	
	log) + <enter function=""> und <enter (normally="" definition="" x="" x)=""></enter></enter>	
	Das Resultat sollte dann nahe zu 0 sein.	