1 Matrix equations

1. Let $X,\, \mathbf{Y} A$ be arbitrary matrices, A invertible. Solve for $X\colon$

$$XA + A^{\top} = \mathbf{I}$$

2. Let X, A, B be arbitrary matrices, $(C-2A^{\top})$ invertible. Solve for X:

$$X^{\top}C = [2A(X+B)]^{\top}$$

3. Let $x \in \mathbb{R}^n, \ y \in \mathbb{R}^d, \ A \in \mathbb{R}^{d \times n}, \ A^{\top}A$ invertible. Solve for x:

$$(Ax - y)^{\top} A = \mathbf{0}_n^{\top}$$

4. As above, additionally $B \in \mathbb{R}^{n \times n},$ B positive-definite. Solve for x:

$$(Ax - y)^{\top}A + x^{\top}B = \mathbf{0}_n^{\top}$$

 $XA + A^{T} = I$ $X = (I - A^{T})A^{-1}$ $X = A^{T} - A^{T}A^{T}$

$$X = A^{-1} - A^{T}A^{-1}$$

$$X^{T}C = (X+B)^{T} \lambda A^{T} = (X^{T}+B^{T}) \lambda A^{T}$$

$$X^{T}(C-\lambda A^{T}) = B^{T} \lambda A^{T}$$

$$X^{T} = \lambda (AB)^{T} \cdot (C-\lambda A^{T})^{-1}$$

$$X = (\lambda (AB)^{T} \cdot (C-\lambda A^{T})^{-1})^{T}$$

$$X = \lambda ((C-\lambda A^{T})^{-1})^{T} \cdot AB = \lambda (C^{T}-\lambda A^{T})^{-1}AB$$

3.
$$(AX-Y)^{T}A = O_{n}^{T}$$

$$(X^{T}A^{T}-Y^{T}) A = O_{n}^{T}$$

$$X^{T}A^{T}A = Y^{T}A$$

$$X^{T} = (A^{T}A)^{T}A^{T}Y$$

$$X = (A^{T}A)^{T}A^{T}Y$$

4.
$$(AX-Y)^TA + X^TB = O_n^T$$

 $X^TA^TA - y^TA + X^TB = O_n^T$
 $X^T(A^TA + B) = y^TA$
 $(A^TA + B^T) X = A^Ty$

$$X^{T}(A^{T}A+B) = Y^{T}A$$

 $(A^{T}A+B^{T}) X = A^{T}A$

: B positive definite, ATA invertible

$$x^{T}(A^{T}A)x = (Ax)^{T}Ax > 0$$

 $x^{T}B x > 0$

XT(ATA+B)X70 ATA+B is positive difinite

$$\therefore A^{T}A+B \quad \text{in vertible} \\ X = (A^{T}A+B^{T})^{-1}A^{T}y$$

2 Vector derivatives

Let $x \in \mathbb{R}^n$, $y \in \mathbb{R}^d$, $A \in \mathbb{R}^{d \times n}$.

- 1. What is $\frac{\partial}{\partial x}x$? (Of what type/dimension is this thing?)
- 2. What is $\frac{\partial}{\partial x}[x^{\top}x]$?
- 3. Let B be symmetric and positive definite. What is the minimum of $(Ax-y)^{\top}(Ax-y)$

1. identity matrix with a dimension

$$\frac{4}{4} \left[x_1 \right] = \int X$$

3.
$$f(x) = (Ax-y)^T (Ax-y) + x^T Bx$$

Let $\frac{1}{\sqrt{2}} F(x) = \sum_{i} A^T (Ax-y) + \sum_{i} Bx$
 $= \sum_{i} (A^T Ax - A^T y + Bx)$
 $= 0$
 $A^T Ax - A^T y + Bx = 0$
 $(A^T A + B)x = A^T y$
 $A^T A + B = 0$
 $A^T A + B$

3 Error Measures

Let $y, \hat{y} \in \mathbb{R}^n$ be n true and predicted values of a regression problem.

- 1. Formally define the error measures Mean Squared Error (MSE) and Mean Absolute Error between y and \hat{y} .
- 2. How would choosing MAE or MSE as objective function for a regression problem impact the resulting prediction model? How do MSE and MAE differ?
- 3. Let $y, \hat{y} \in \{0, 1\}^n$ be n true and predicted labels of a binary classification problem. What would the MSE and MAE calculate in this case?

1. MSE: =
$$\frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^{2}$$

MYE: = $\frac{1}{n} \sum_{i=1}^{n} |y - \hat{y}|^{2}$

a. MSE will square the error and thus having a larger result if there is a large error, MSE is more sensitive to the errors so it has higher accuracy but it is not as nobust as MAE.

3. the probability of the prediction being false

Group Members:

Jiaqi Qin st170155@stud.uni-stuttgart.de

Jiaqi Wu st171193@stud.uni-stuttgart.de

Zhuo Zeng st169201@stud.uni-stuttgart.de