Un modelo de Markov para la segmentación automática de señales de audio

Rafael de Jesús Robledo Juárez

rrobledo@cimat.mx

Asesor: Dr. Salvador Ruíz Correa

Departamento de Ciencias de la Computación Centro de Investigación en Matemáticas, Guanajuato

Presentación de Avance de Tesis, 2013

Objetivo

- ▶ Utilizar un modelo del tipo HMM (*Hidden Markov Model* por sus siglas en Inglés) por medio del cual sea posible particionar una secuencia de audio en regiones homogéneas. Cada región debe corresponder con la identidad de un hablante.
- A esta tarea se le conoce con el nombre de "speaker diarisation".

Los segmentos obtenidos se etiquetarán de acuerdo a cada persona diferente que se identifique.

Motivación

- ► La identificación de las personas que participan en una grabación de audio, es una etapa importante en aplicaciones tales como transcripción automática y reconocimiento de voz.
- Un paso importante para la automatización de este proceso, consiste en poder segmentar la señal de audio sin necesidad de conocimiento a priori sobre el número o género de las personas involucradas en la grabación.

Metodología

Procesamiento de señal

Metodología

Modelo

Avances

▶ Implementación completa del sistema.

Resultados con datos sintéticos.

Pruebas con datos reales.

Pruebas con datos sintéticos

Pruebas con datos sintéticos

Calendario

Actividades

Febrero
Marzo
Abril
Mayo
Junio
Julio
Pruebas con
datos reales
Canáli

Comparación y análisis de resultados

Material de consulta

L.R. Rabiner, B.H. Juang

Fundamentals of speech recognition

Pearson Education India, 2008.

C. M. Bishop.

Pattern Recognition and Machine Learning.

Springer, 2006.

L.R. Rabiner

A tutorial on hidden Markov models and selected applications in speech recognition Proceedings of the IEEE, 1989.

T. Rydén.

Versus Markov chain Monte Carlo for Estimation of Hidden Markov Models: A Computational Perspective

Bayesian Analysis (2008) 3, Number 4, p. 659-688

E.B. Fox, E.B. Sudderth, M.I. Jordan, A.S. Willsky.

A sticky HDP-HMM with application to Speaker diarization.

Annals of Applied Statistics, 2011.

