1. Probability

- 1.1 Properties of Probability
- + Infinite Series

What is Statistics?

- ☆ What is a statistic? A function of data
- ☆ Statistics: study of the collection, analysis, interpretation, presentation, and organization of data.

1. Probability

1.1 Properties of Probability

Random Experiments

In Statistics, we consider experiments where the outcome can not be predicted with certainty.

- Outcome space or Sample space, S collection of all possible outcomes
- An Event is a collection of outcomes in S.
- If a random experiment is performed and the outcome of the experiment is in A, we say event A has occurred.

Set notation and operations

Notation	Meaning
Ø, {}	Null or empty set
$x \in A$	x is an element of A
$A \cup B$	the union of A and B
$A \cap B$	the intersection of A and B
$A \subseteq B$	A is a subset of B
$A \subset B$	A is a proper subset of B
A', A ^c	the complement of A

Probability is a real-valued set function P that assigns, to each event A in the sample space S, a number P(A), called the probability of the event A, such that the following properties are satisfied:

- (a) $P(A) \ge 0$;
- (b) P(S) = 1;
- (c) if $A_1, A_2, A_3, ...$ are events and $A_i \cap A_j = \emptyset$, $i \neq j$, then

$$P(A_1 \cup A_2 \cup \cdots \cup A_k) = P(A_1) + P(A_2) + \cdots + P(A_k)$$

for each positive integer k, and

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$$

for an infinite, but countable, number of events.

Theorem 1.1-1

For each event A,

$$P(A) = 1 - P(A').$$

Proof [See Figure 1.1-1(a).] We have

$$S = A \cup A'$$
 and $A \cap A' = \emptyset$.

Thus, from properties (b) and (c), it follows that

$$1 = P(A) + P(A').$$

Hence

$$P(A) = 1 - P(A').$$

Probability Theorems

Theorem 1

$$P[A'] = 1 - P[A]$$

Theorem 2

$$P[\emptyset]=0$$

- Theorem3
 - □ If $A \subset B$, then $P[A] \leq P[B]$.

Probability Theorems

- Theorem 4
 - For any event A, $P[A] \leq 1$
- Theorem 5
 - If A and B are any two events, then

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

- Theorem 6
 - P[A U B U C] = P[A] + P[B] + P[C] $\overline{}$ P[A \cap B] $\overline{}$ P[A \cap C] $\overline{}$ P[B \cap C] + P[A \cap B \cap C]

- 1. Suppose a 6-sided die is rolled:
 - Let event A = {The outcome is even}
 - Let event B = {The outcome is greater than 3}
 - a) What are the outcomes in [A ∩ B]?
 - ii) What is $P[A \cap B]$?

- 1. Suppose a 6-sided die is rolled:
 - Let event A = {The outcome is even}
 - Let event B = {The outcome is greater than 3}
 - b) What are the outcomes in [A U B]?
 - ii) What is P[A U B]?

Suppose the die is loaded so that the probability of an outcome is proportional to the outcome, i.e.

$$P[1] = p$$
, $P[2] = 2p$, $P[3] = 3p$, $P[4] = 4p$, $P[5] = 5p$, $P[6] = 6p$,

- c) Find the value of p that would make this a valid probability model
- d) Find the following probabilities:

- i) P[A],ii) P[A'],iii) P[A U B]

- The probability that a randomly selected student at Zoom University owns a bicycle is 0.55, the probability that a student owns a car is 0.30, and the probability that a student owns both is 0.10.
 - A) What is the probability that a student selected at random does not own a bicycle?
 - B) What is the probability that a selected student at random owns either a car or a bicycle (or both)?

- The probability that a randomly selected student at Zoom University owns a bicycle is 0.55, the probability that a student owns a car is 0.30, and the probability that a student owns both is 0.10.
 - C) What is the probability that a student selected at random neither has a car nor a bicycle?

3. Let a > 2. Suppose S = {0, 1, 2, 3,} and
$$P[0] = c, P[k] = \frac{1}{a^k}, k = 1, 2, 3...$$

- A) Find the value of c that will make this a valid probability distribution.
- B) Find the probability of an odd outcome

4. Suppose S = {0, 1, 2, 3,}, P[0] = p, and P[k] = $\frac{1}{2^k k!}$, k = 1, 2, 3...

Find the value of p that will make this a valid probability distribution.