PRACTICE PROBLEMS CHAPTER 6

- 1. (i) Find eigenvalue and bases for the associated eigenspace for the following matrices:
- (b) $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ (c) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
- (ii) For each of the matrix in (a)-(d) determine whether or not the matrix is diagonalizable. If it is, give an invertible matrix X and a diagonal matrix D such that $D = X^{-1}AX$.
- **2.** Consider the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 6 \\ 0 & 0 & 3 \end{bmatrix}$.
 - (a) Find the eigenvalues of the matrices A, A^2 and A^n .
 - (b) Find the associated eigenspaces (for the matrices A, A^2 , and A^n).
 - (c) Find formulas for the entries of A^n .
 - (d) Find A⁷
- 3. Let $A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$
 - (a) Find the eigenvalues of A.
 - (b) Find the eigenvalues of 5A.
 - (c) Find the eigenvalues of $A^2 + \alpha A + \beta I$ where I is the 2×2 identity matrix and α and β are scalars.
- 4. Determine the values of k for which the matrix $\mathbf{A} = \begin{bmatrix} 7 & k \\ -9 & -5 \end{bmatrix}$ has two distinct eigenvalues.
- 5. Let A be a 2×2 matrix with tr(A) = 5 and det(A) = -14. Find the eigenvalues of A.
- 6. Let $\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$, and $\mathbf{x}_2 = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$ be eigenvectors of a matrix A with corresponding
 - eigenvalues $\lambda_1 = -2$, and $\lambda_2 = 3$, respectively. (a) Let $\mathbf{v} = \begin{bmatrix} 19 \\ 6 \\ -13 \end{bmatrix}$. Write \mathbf{v} as a linear combination of \mathbf{x}_1 and \mathbf{x}_2 .
 - (b) Find Av.
 - 7. In (a)-(b) determine whether the given matrix is diagonalizable. If it is, find a diagonalizing matrix X and a diagonal matrix D such that $D = X^{1} A X$. If not, explain why.

 - (a) $A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ (b) $A = \begin{bmatrix} 4 & -3 & 0 \\ 0 & 1 & 0 \\ -4 & 4 & 1 \end{bmatrix}$
- **8.** Given $A = \begin{bmatrix} 4 & -3 & 0 \\ 0 & 1 & 0 \\ -4 & 4 & 1 \end{bmatrix}$, find a matrix B such that $B^2 = A$.
- **9.** Let A be a 4×4 matrix with real entries that has all 1's on the main diagonal (i.e. $a_{11}=a_{22}=a_{33}=a_{44}=1$). If A is singular and $\lambda_1 = 3 + 2i$ is an eigenvalue of A, then what, if anything, is it possible to conclude about the values of the remaining eigenvalues λ_2 , λ_3 , and λ_4 ?

- **10.** Let A be a nonsingular $n \times n$ matrix and let λ be an eigenvalue of A.
 - (a) Show that $\lambda \neq 0$.
 - (b) Show that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .
- 11. Show that if A is a matrix of the form $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{bmatrix}$ then A must be defective.
- 12. Let A be a diagonalizable $n \times n$ matrix. Prove that if B is any matrix that is similar to A, then B is diagonalizable.
- **13.** Let *A* be a matrix whose singular value decomposition is given by

$$\begin{bmatrix} \frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} & \frac{3}{5} \\ \frac{2}{5} & -\frac{2}{5} & -\frac{2}{5} & \frac{3}{5} & -\frac{2}{5} \\ \frac{2}{5} & -\frac{2}{5} & \frac{3}{5} & -\frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{2}{5} & \frac{3}{5} & -\frac{2}{5} & -\frac{2}{5} \\ \frac{2}{5} & \frac{3}{5} & -\frac{2}{5} & -\frac{2}{5} & \frac{2}{5} \\ \frac{3}{5} & \frac{2}{5} & \frac{2}{5} & \frac{2}{5} & \frac{2}{5} \end{bmatrix} \begin{bmatrix} 100 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Make use of the singular value decomposition to do each of the following:

- (a) Determine the rank of A.
- (b) Find an orthonormal basis for $R(A^T)$.
- (c) Find an orthonormal basis for R(A).
- (d) Find the rank 1 matrix B that is the closest matrix of rank 1 to A (distance between matrices is measured using the Frobenius norm).
- (e) Let *B* be the matrix asked for in part (d). Use the singular values of *A* to determine the distance between *A* and *B* (i.e. use the singular values of *A* to determine the value of $||B A||_F$).
- (f) Find the rank 2 matrix C that is the closest matrix of rank 2 to A.
- (g) Use the singular values of A to determine the distance between A and C (i.e. use the singular values of A to determine the value of $||B C||_{E}$).
- **14.** A singular value decomposition of a matrix *A* is as follows:

$$\begin{bmatrix} 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 & -0.5 \\ -0.5 & -0.5 & 0.5 & 0.5 \\ -0.5 & 0.5 & 0.5 & -0.5 \end{bmatrix} \begin{bmatrix} 20 & 0 \\ 0 & 15 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -0.8 & 0.6 \\ 0.6 & 0.8 \end{bmatrix}$$

Use the SVD to find the least squares solution of the linear system $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \begin{bmatrix} -1 \\ -1 \\ 5 \\ 2 \end{bmatrix}$

15. Find the SVD decomposition of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$