This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
C07C 6/04, 11/06

A1

(11) International Publication Number: WO 00/14038
(43) International Publication Date: 16 March 2000 (16.03.00)

(21) International Application Number: PCT/IB99/01407

(22) International Filing Date: 9 August 1999 (09.08.99)

(30) Priority Data:

98/8113 4 September 1998 (04.09.98) ZA

(71)(72) Applicants and Inventors: BOTHA, Jan, Mattheus [ZA/ZA]; 38 Billingham Street, 9570 Sasolburg (ZA). MBATHA, Muzikayise, Mthokozisi, Justice [ZA/ZA]; No 3 Tswelopele Flat,, 9571 Zamdela (ZA). NKOSI, Bongani, Simon [ZA/ZA]; 1 Waterkant Street, 9570 Sasolburg (ZA). SPAMER, Alta [ZA/ZA]; 60 Beefwood Street, SE3, 1911 Vanderbijlpark (ZA). SWART, Joan [ZA/ZA]; 14 Maluti Avenue, 9573 Vaalpark (ZA).

(74) Agent: SCHWEIZER, Adrian, Victor, van Reenen; Adams & Adams - Pretoria Office, Adams & Adams Place, 1140 Prospect Street, Hatfield, 0083 Pretoria (ZA).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: PRODUCTION OF PROPYLENE

(57) Abstract

The invention provides a process for the production of propylene by butene metathesis. The process includes contacting a feedstock, which contains butene selected from the group consisting of 1-butene, 2-butene and mixtures thereof, with a catalyst which includes a catalytic amount of at least one metal oxide selected from the groups consisting of the oxides of the transition metals. The contacting is under reaction conditions which include a temperature of 300 - 600 °C and a pressure of 1 - 20 atmospheres, and converts the butene to propylene, thereby to produce a reaction product containing propylene.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					_		• •
AL	Albania	ES	Spain	LS	Lesotho	sı	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LÜ	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	тт	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
							•

PRODUCTION OF PROPYLENE

THIS INVENTION relates, broadly, to the production of propylene. More particularly, the invention relates to a process for the production of propylene, suitable for producing propylene from both pure and mixed hydrocarbon feedstocks.

According to the invention, broadly, there is provided a process for the production of propylene by butene metathesis which comprises contacting a feedstock, which contains butene selected from the group consisting of 1-butene, 2-butene and mixtures thereof, with a catalyst which includes a catalytic amount of at least one metal oxide selected from the groups consisting of the oxides of the transition metals, under reaction conditions which include a temperature of 300 - 600°C and a pressure of 1 - 20 atmospheres, to convert the butene to propylene, thereby to produce a reaction product containing propylene.

In this specification any reference to 1-butene or 2-butene includes all the isomers thereof.

Conveniently, the temperature is 500 - 600°C, eg about 550°C and the pressure may be about 1 atmosphere.

While the butene (which can also be referred to as butylene) may be in the form of a relatively pure butene feedstock, containing substantially only butene, it may instead form part of a mixed feedstock including, in addition to the butene, a plurality of other hydrocarbons. Thus, the feedstock may be a mixed hydrocarbon feedstock including, in addition to said butene, a plurality of other hydrocarbons.

5

10

15

10

15

20

25

In the latter case the feedstock may be a condensate, being for example a Fisher-Tropsch process-derived feedstock which is a condensate derived by reacting a synthesis gas mixture including carbon monoxide and hydrogen, in a selected CO:H₂ ratio, over a Fisher-Tropsch catalyst which may be a cobalt-based catalyst, an iron-based catalyst, a catalyst based on both iron and cobalt, or a mixture of such catalysts. The feedstock or condensate derived from the Fisher-Tropsch process will typically not be subjected to cracking at any stage, and it may include, in addition to butenes such as the isomers 1-butene and 2butene, one or more other alkenes or olefins, such as ethylene, propylene and various pentenes, hexenes and C7- or higher alkenes. In particular, the feedstock may be produced by a Fisher-Tropsch reaction at a temperature of 280 - 370°C, preferably 300 - 340°C, eg 320°C, in a circulating fluidized-bed reactor or in a fixed-bed reactor, or in a fixed fluidised bed reactor at a pressure of 10 - 40 atmospheres, preferably 15 - 25 atmosphere, eg 20 atmospheres, to produce a hydrocarbon product containing a range of hydrocarbon compounds with carbon numbers of C_1 - C_{35} or more, including olefinic hydrocarbon compounds.

In other words, more specifically, the feedstock may be a Fisher-Tropsch process-derived feedstock condensate derived by passing a synthesis gas mixture including carbon monoxide and hydrogen over a Fisher-Tropsch catalyst, the catalyst being selected from the group consisting of cobalt-based catalysts, iron-based catalysts, catalysts based on both iron and cobalt, and mixtures thereof; and the feedstock preferably contains, in addition to said butene, another alkene selected from the group consisting of ethylene, propylene, pentene, hexene, heptene, alkenes with more than 7 carbon atoms, and mixtures thereof. In this regard, the references to pentene, hexene, heptene and alkenes

with more than 7 carbon atoms are references to all the isomers thereof. Preferably, the feedstock is a condensate derived from a high temperature Fisher-Tropsch process having a reaction temperature of 280- 370°C and a reaction pressure of 10 - 40 atmospheres, hydrocarbon compounds of the feedstock including, in addition to olefinic hydrocarbons, also methane and other hydrocarbons, at least some of the hydrocarbons having carbon numbers higher than 35.

When a Fischer-Tropsch-derived feedstock is used as described above, it may be fractionated prior to the contacting thereof with the transition metal oxide catalyst, to obtain a fraction, for use as the feedstock in the reaction, containing an increased proportion of desired alkenes. The fractionation may be by distillation, for example so-called short path distillation at a temperature of 150 - 400 °C and at a pressure of 0.02 - 2.0 atmospheres x 10^{-3} , preferably 200 - 350 °C and 0.07 - 1.5 atmospheres x 10^{-3} , to obtain a fractionated feedstock having various proportions of C_2 olefins, C_3 olefins, α -olefins, branched olefins and a small proportion of internal olefins, the fractionated feedstock being used for the production of propylene according to the present invention. In particular, the feedstock may be an uncracked feedstock which has been subjected to fractionation to increase the proportion of olefins therein.

Instead, a feedstock may be used which is a condensate stream from a naphtha cracking process or from a gas cracking process, including streams of Raffinate I, Raffinate II and/or Raffinate III.

25 By Raffinate I is meant the residue which is obtained when a C₄ stream from a naphtha cracking process or from a gas cracking process

5

10

15

PCT/IB99/01407

(the C_4 stream typically containing, as its chief components, n-butane, 1-butene, 2-butene, isobutene and 1,3-butadiene, and optionally some isobutane and said chief components together forming up to 99% or more of the C_4 stream) is subjected to the removal of 1,3- butadiene therefrom. Thus removal may be by extractive distillation with an aprotic solvent such as acetonitrile, N-methylpyrrolidone or N,N-dimethylformamide, any remaining butadiene optionally being removed from the residue by an after-treatment such as selective hydrogenation, the residue being Raffinate I and containing, in substance, 1-butene, 2-butene and isobutene.

By Raffinate II in turn is meant a mixture of 1-butene and 2-butene which remains when Raffinate I has the isobutene separated therefrom by hydrogenation to tert-butanol in the presence of sulphuric acid; by reaction of the Raffinate I with methanol to synthesize methyl tert-butyl ether; or by oligomerization or polymerization of the isobutene.

Raffinate III in turn is meant what is obtained when the 1-butene in Raffinate II is separated therefrom by fractionation, extractive distillation or molecular sieve absorption, the residue of cis 2-butene and trans 2-butene remaining being Raffinate III. Raffinates I, II and III are described in more detail in Industrial Organic Chemicals, by Harold A. Wittcoff and Bryan G.Reuben, a Wiley Interscience Publication, published by John Wiley & Sons. Inc., New York, N.Y., U.S.A. (1996).

Another feedstock which may be used is a product obtained from dehydrogenation of paraffins, i.e. from dehydrogenation of alkanes, to yield olefins, i.e. alkenes, such products containing butenes, pentenes and higher olefins. Accordingly, the feedstock may be selected from

5

10

15

20

Raffinate I, Raffinate II, Raffinate III and mixtures thereof; or it may be a product derived from the dehydrogenation of alkanes.

It is a feature of the invention that products are formed which are predominantly in the C_2 - C_8 product range, with a propylene:ethylene mass ratio of up to 3:1, depending on the process conditions and catalyst used. The invention has been found to be capable of producing more propylene than ethylene from either a feedstock which consists of pure C_4 olefins (butenes), for example C_4 α -olefins, or from a feedstock which is a condensate stream which includes such C_4 olefins.

The transition metal oxide catalyst used for the catalytic conversion of butene to propylene is preferably selected from oxides of molybdenum, or of rhenium or of tungsten, or of mixtures of any two or more of tungsten, rhenium and molybdenum. This catalyst may be a homogeneous (unsupported) catalyst or a heterogeneous (supported) catalyst. Conveniently the catalyst is supported and any convenient support may be used, provided it neither interferes with nor inhibits the production of propylene from butene according to the invention. Suitable supports include those based on or including ceramic supports such as silica, alumina, titania, zirconia or mixtures thereof, with silica being preferred. The catalyst can be attached to its support in any convenient fashion, such as those known in the art, in particular by sublimation or by wet impregnation. The transition metal oxide constituent of the catalyst may amount to 1 - 30% by mass of the total catalyst mass (transition metal and support together), preferably 6 - 20% thereof. If desired, the catalyst mass may include one or more promoters such as phosphates, borates or magnesium oxide, which increase selectivity towards propylene. Instead, the catalyst mass may include one or more

5

10

15

20

promoters which are alkali metals, such as lithium, sodium, potassium and cesium, which decrease selectivity towards propylene. In particular the catalyst may be a WO₃-based (tungsten oxide-based) catalyst containing Cs (cesium) as a promoter.

In other words, the transition metal oxide catalyst used for the conversion of butene to propylene may be selected from the group consisting of the oxides of molybdenum, the oxides of rhenium, the oxides of tungsten, and mixtures thereof; and the transition metal oxide catalyst for the conversion of butene to propylene may form part of a catalyst mass in which the transition metal oxide is supported on a solid ceramic support of a material selected from the group consisting of silica, alumina, titania, zirconia and mixtures thereof. In this case the transition metal oxide may form 1 - 30% by mass of the total heterogeneous catalyst mass. In particular, the catalyst of the heterogeneous catalyst mass may consist essentially of tungsten oxide, being supported on silica, the catalyst mass containing a promotor selected from the group consisting of cesium (to decrease selectivity towards propylene) and

Preferably the catalyst has as high a proportion of acid sites thereon as practicable. Thus, tests conducted by the Applicant have shown that carrying out the process of the present invention with a catalyst having a relatively high proportion of acid sites favours the production, from butene, of propylene (and pentenes) over ethylene (and hexenes). Acidity of the catalyst can be enhanced by treating the catalyst with organic acids or inorganic acids, or by impregnation thereof with cations such as those of phosphates or borates. Acidity of the catalyst can, conversely, be reduced by blocking acid sites thereon, by

phosphates (to increase selectivity towards propylene).

5

10

15

20

means of alkaline earth metals, the presence of which alkaline earth metals can improve the selectivity of the reaction in favour of ethylene and hexenes.

The reaction product may be separated into its constituent parts by conventional separation techniques, for example into an ethylenecontaining fraction, a propylene-containing fraction, a C_4 -containing fraction and a fraction including C_{5} - and higher hydrocarbons, with the C_4 fraction optionally being recycled to the reaction. Thus, unreacted butene may be separated from the reaction product, the separated unreacted butene being converted to propylene by recycling it and contacting it, together with the feedstock, with the transition metal oxide catalyst; and C_5 - and higher hydrocarbons may be separated from the reaction product, the separated C_5 - and higher hydrocarbons then being converted to propylene by recycling them and contacting them, together with the feedstock, with the transition metal oxide catalyst. This recycling can act to increase the yield of propylene. The invention has been shown to be capable, from a pure 1-butene feedstock, of obtaining a product having a product spectrum as set forth in the following table, Table 1:

5

10

10

15

20

TABLE 1

Constituent	% by Mass		
ethylene fraction	8		
propylene fraction	35		
C ₄ fraction	20		
C ₅ - and higher fraction	27		

The invention will now be described, by way of non-limiting illustration, with reference to the following illustrative Examples:

EXAMPLES

In general, all experimental runs made and involved in the Examples were made by passing pure 1-butene or a 1-butene-containing. Fischer-Tropsch process-derived condensate, of a C_4 fraction of a Raffinate I stream or a C_4 fraction of a Raffinate II stream, downwards at a reaction pressure of 1 atmosphere through a vertical pipe reactor, unless otherwise specified, an exception being Example 3 in which a mixture of 1-butene and 2-butene was used. The reactor contained a fixed bed of catalyst and was about 25.4 mm in inside diameter and 400 mm in length, being located in a temperature-controlled furnace and having a thermocouple positioned in its catalyst bed.

A 100 mm depth of 2 mm diameter glass beads was held in the lower end of the pipe, supported therein by a layer of quartz wool under the beads. Another layer of quartz wool on top of the beads acted as a support for the catalyst bed,

10

15

20

which comprised about 12 g of the catalyst. A further layer of quartz wool was placed on top of the catalyst and the pipe was, above this uppermost layer of glass wool, filled up to the top with further 2 mm diameter glass beads. Each catalyst was activated by heating it to 550°C for 12 hours with a stream of air flowing down through the pipe, followed by heating at 600°C under a downward flow of nitrogen flow for 2 hours, the catalyst then being cooled under said nitrogen flow to the actual reaction temperature used for the propylene synthesis, which was typically 550°C. Catalysts were prepared by methods known in the art.

EXAMPLE 1

Two catalysts were used, in the form of WO₃ supported on silica, the silica having an average particle size of 300 μ m. The catalysts respectively comprised WO₃ and silica in WO₃:silica mass ratios of 8:92 and 20:80. These catalysts were respectively tested at temperatures of 500 - 550°C using a feedstock of pure 1-butene at a gas hourly space velocity (GHSV) of 500 h⁻¹. Samples were taken after the reaction had been on line for 4 hours. Results are set forth in the following table, Table 2:

TABLE 2

	WO ₃ •SiO ₂ Catalyst (8% m/m WO ₃)		WO ₃ • SiO ₂ Catalyst (20% m/m WO ₃)	
Temperature (°C)	500	550	550	
C ₄ -Conversion (%)	75.8	84.5	91.8	
2-Butene Yield (%)	22.5	20.9	11.2	
Ethylene Yield (%)	5.4	5.6	4.3	
Propylene Yield (%)	19.3	31.7	18.3	
C ₅ and Higher Yield (%)	28.6	26.3	58	

EXAMPLE 2

10

5

Two catalysts were also used in this Example, also in the form of WO_3 supported on SiO_2 , each comprising WO_3 and SiO_2 in a WO_3 : SiO_2 mass ratio of 8:90. One of the catalysts contained 2% by mass Cs $^+$ cations and the other contained 2% by mass PO_4^{3-} anions. These catalysts were tested at 550°C and at a GHSV of 1000 h $^{-1}$ using a pure 1-butene feedstock and results are set forth in the following table, Table 3:

TABLE 3

	WO ₃ • SiO ₂	WO ₃ • SiO ₂
	Catalyst	Catalyst
	(2% Cs and 8%	(2% PO ₄ and 8%
	WO ₃ m/m)	WO ₃ m/m)
C ₄ -Conversion (%)	50	87.5
2-Butene Yield (%)	2.7	18.5
Ethylene Yield (%)	8.7	5.4
Propylene Yield (%)	10.1	32.8
C ₅ and Higher Yield (%)	28.5	30.8

EXAMPLE 3

In this Example a catalyst in the form of a WO₃ supported on SiO₂ was used, in which the WO₃ and SiO₂ were in a mass ratio of 8:92. The process was operated at 550°C and the GHSV was 500 h⁻¹. As a feedstock was used a mixture of 1-butene and 2-butene (containing both the *cis*-and *trans* isomers) in a 1-butene:2-butene mass ratio of 1:9. Results are set forth in the following table, Table 4:

15 <u>TABLE 4</u>

	WO ₃ • SiO ₂ Catalyst (8% WO ₃ m/m)
C ₄ -Conversion (%)	54 .
Ethylene Selectivity (%)	5.6
Propylene Selectivity (%)	50
C ₅ and Higher selectivity (%)	44.4

EXAMPLE 4

In this Example the same catalyst was used as in Example 3, the process being operated at 550° C with an overall GHSV of 2900 h⁻¹. The 1-butene feedstock was fed through the reactor at a GHSV of 1000^{-1} . Some unreacted butene was recycled, together with most of the C_5 - C_9 hydrocarbon fraction formed in the reactor, to achieve the overall GHSV of 2900 h⁻¹, the balance thereof being purged to maintain the overall GHSV constant at 2900 h⁻¹. Results are set forth in the following table, Table 5.

TABLE 5

	WO ₃ • SiO ₂ Catalyst (8% WO ₃ m/m)
C ₄ -Conversion (%)	60.9
Ethylene Selectivity (%)	7.3
Propylene Selectivity (%)	46.5
C ₄ - C ₁₄ Purge (% - based on	19.7
1-butene feed taken in)	

15

5

10

20

Ways in which propylene can be produced by metathesis of butenes are limited. The Applicant is aware that 2-butene (both the *cis*- and *trans* isomers) can be metathesized with ethylene from a separate feed to yield propylene. An advantage of the present invention, however, is that it does not require a separate ethylene feed in order to produce propylene by metathesis of butene. The process of the present invention can be manipulated, by changing the acid/base properties of the catalyst, as illustrated

WO 00/14038 PCT/IB99/01407

13

in Examples 1 and 2, which in turn changes the selectivity of the process as regards ethylene and propylene. Furthermore, it has been found that that constant activity of the transition metal oxide catalyst can be maintained, at the high temperatures employed in the Examples, for periods of up to 48 hours or more, whereas at lower temperatures catalyst activity is lost within a few hours.

CLAIMS

5

- 1. A process for the production of propylene by butene metathesis which includes contacting a feedstock, which contains butene selected from the group consisting of 1-butene, 2-butene and mixtures thereof, with a catalyst which includes a catalytic amount of at least one metal oxide selected from the groups consisting of the oxides of the transition metals, under reaction conditions which include a temperature of 300 600°C and a pressure of 1 20 atmospheres, to convert the butene to propylene, thereby to produce a reaction product containing propylene.
- A process as claimed in claim 1, in which the feedstock is a mixed hydrocarbon feedstock including, in addition to said butene, a plurality of other hydrocarbons.
 - 3. A process as claimed in claim 2, in which the feedstock is a Fisher-Tropsch process-derived condensate derived by passing a synthesis gas mixture including carbon monoxide and hydrogen over a Fisher-Tropsch catalyst, the catalyst being selected from the group consisting of cobalt-based catalysts, iron-based catalysts, catalysts based on both iron and cobalt, and mixtures thereof.
- 4. A process as claimed in claim 3, in which the feedstock contains,20 in addition to said butene, another alkene selected from the group

consisting of ethylene, propylene, pentene, hexene, heptene, alkenes with more than 7 carbon atoms, and mixtures thereof.

- 5. A process as claimed in claim 3 or claim 4, in which the feedstock is a condensate derived from a high temperature Fisher-Tropsch process having a reaction temperature of 280- 370°C and a reaction pressure of 10 40 atmospheres, hydrocarbon compounds of the feedstock including, in addition to olefinic hydrocarbons, also methane and other hydrocarbons, at least some of the hydrocarbons having carbon numbers higher than 35.
- 10 6. A process as claimed in any one of claims 3 5 inclusive, in which the feedstock is an uncracked feedstock which has been subjected to fractionation to increase the proportion of olefins therein.
- 7. A process as claimed in claim 1 or claim 2, in which the feedstock is selected from Raffinate I, Raffinate II, Raffinate III and mixtures thereof.
 - 8. A process as claimed in claim 1 or claim 2, in which the feedstock is a product derived from the dehydrogenation of alkanes.
- A process as claimed in any one of the preceding claims, in which the transition metal oxide catalyst used for the conversion of butene to
 propylene is selected from the group consisting of the oxides of molybdenum, the oxides of rhenium, the oxides of tungsten, and mixtures thereof.

- 10. A process as claimed in any one of the preceding claims, in which the transition metal oxide catalyst used for the conversion of butene to propylene forms part of a heterogeneous catalyst mass, in which the transition metal oxide is supported on a solid ceramic support of a material selected from the group consisting of silica, alumina, titania, zirconia and mixtures thereof.
- 11. A process as claimed in claim 10, in which the transition metal oxide forms 1 30% by mass of the total heterogeneous catalyst mass.
- 10 12. A process as claimed in claim 11, in which the catalyst of the heterogeneous catalyst mass consists essentially of tungsten oxide, and is supported on silica, the catalyst mass containing a promotor selected from the group consisting of cesium and phosphates.
- 13. A process as claimed in any one of the preceding claims, in which unreacted butene is separated from the reaction product, the separated unreacted butene then being converted to propylene by recycling it and contacting it, together with the feedstock, with the transition metal oxide catalyst.
- 14. A process as claimed in any one of the preceding claims, in which C₅- and higher hydrocarbons are separated from the reaction product, the separated C₅- and higher hydrocarbons then being converted to propylene by recycling them and contacting them,together with the feedstock, with the transition metal oxide catalyst.
 - 15. A process as claimed in claim 1, substantially as described herein.

16. Propylene whenever produced by a process as claimed in any one of the preceding claims.

Inter onal Application No PCT/IB 99/01407

				<u> </u>
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C07C6/04 C07C11/06			
According to	b International Patent Classification (IPC) or to both national classifica	ition and IPC		
B. FIELDS	SEARCHED			
Minimum do IPC 7	cumentation searched (classification system followed by classification ${\tt C07C}$	n symbols)		
Documentat	ion searched other than minimum documentation to the extent that st	uch documents are inclu	uded in the fields se	arched
Electronic d	ata base consulted during the international search (name of data bas	e and, where practical	, search terms used	
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT	·		
Category ³	Citation of document, with indication, where appropriate, of the rele	evant passages		Relevant to claim No.
X	EP 0 832 867 A (BASF AG) 1 April 1998 (1998-04-01) the whole document			16
	-			
Ш	her documents are listed in the continuation of box C.	X Patent family	members are listed	in annex.
"A" docume consider the consideration of the considerati	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filling date but than the priority date claimed	cited to understar invention. "X" document of partic cannot be conside involve an inventi "Y" document of partic cannot be conside document is comf	id not in conflict with and the principle or the ular relevance; the cered novel or cannot ve step when the do ular relevance; the cered to involve an inbined with one or mobination being obvio	the application but early underlying the claimed invention be considered to cument is taken alone claimed invention ventive step when the pre other such docuus to a person skilled
	actual completion of the international search 6 October 1999	Date of mailing of 02/11/1	the international se	arch report
	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	OZ/11/1		
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Goetz,	G	

Form PCT/ISA/210 (second sheet) (July 1992)

formation on patent family members

PCT/IB 99/01407

1	Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
	EP 0832867	A	01-04-1998	DE DE CA CN JP	19640026 A 19740895 A 2215426 A 1182069 A 10182506 A	02-04-1998 18-03-1999 27-03-1998 20-05-1998 07-07-1998	

Form PCT/ISA/210 (patent family annex) (July 1992)

THIS PAGE BLANK (USPTO)