$A \rightarrow C$ $B \rightarrow D$

Let X denote a finite set of labels or taxa names.

Then a PHYLOGENETIC TREE or formally PHYLOGENETIC X-tree
byective
byective

4.2 A tree T = (V,E) together with a labelling MAP

4.2 A from the leaves to X.

A
$$V_{4}$$
 V_{5} $V_$

Since one goal of phylogenetic inference is to determine the 'best' tree relating sequence data, we next need to Court how many trees there are.

Notation: Fix n= number of taxa |x|=n

Define b(n) = number of distinct unrooted binary phylogenetic X-trees see Figure

Question: What is b(n)?

$$n=2$$
 $n=3$
 $n=4$
 1
 2
 3
 4
 3
 3
 4
 3
 3
 4
 3
 3
 4
 3
 4
 3
 4
 3

6(4)=3

Isomorphic versions.

n=5: Think proof ...

(# of 3-taxen trees) (number of edges to graft new edge onto)

(3) (5)

b(5) = 15

n=6: b(5) (number of edges in 5-taxon unrooted tree)

Comments: The formula for b(n) is recursive and we need to Know the number of edges in any (n-1) - taxon tree.

Theorem: If Tn is an unrooted, n-taxon, binary tree, then

Tn has ____ vertices and ____ edges

~ /	vertices	edges	Calc II
2 3 4	4	3 5 7	2n
G	8	9	Formed proof by induction.
\sim	2n-2	2n-3	Internal boot

Given an (n-1)-taxen tree, adding an edge and 2 vertices and 2 edges

Theorem 2: If $T=(V_iE)$ is an unrooted phylogenetic X-tree with |X|=n 7, 2, then $b(n)=(2n-5)!!=1\cdot3\cdot5\cdot\cdots(2n-5)$

b(n) grows super exponentially so for n-taxon datasets, there are many, many tree shapes to test for goodness of fit. Searching tree-space is hard!

To count the number of rooted phylogenetic trees, observe that each vocated tree To on n= |x| + axa corresponds to

2 3 4 5

an unrooted tree on not - taxa

Add a branch from p and view the tree as unrooted.

Theorem: The number of rooted phylogenetic X-trees on n taxa is b(n+1) = (2n-3)!! = 1.2.3. ... (2n-3)

To quantify the amount of evolutionary change relating taxes, we use METRIC TREES: A metric tree (T, ω) is a rooted or unrooted tree together with a function $\omega: E \to \mathbb{R}^{\geq 0}$ which assigns nonnegative weights or lengths to the edger in T.

Graph:

Given a rooted phylogenetic X-trae with weighte or edge lengths, we can compute pairwise distances

τ_{i}	

	2	3	4
(.2	. 6	. 6
2		.6	, 6
3			,2

Now consider the tree To in companion to Ti

Tz suggests that " more" motorion

occurred in taxon z's descent from
a common encestor than taxon l's

= Differing amounts of motohon

This might be caused by a change (speeding up or slowing down) of

the motohon rate for instance.

Defn: A rooted metric tree is called ULTRAMETRIC or we have a MOLECULAR CLack of all typs/leans are equidistant from the root.

1.e. for all $l_1, l_2 \in \mathcal{L}$ leaves, $d(\rho, l_1) = d(\rho, l_2)$.

One benefit of a makeouer clock at work is that one might assume that the mutation rate is constant so that rage lengths are proportional to time.