Ce corrigé a été rédigé par Nicolas Billerey qui en a fait très gentiment cadeau à Bibm@th!

Pour signaler une erreur : forum@bibmath.net

Problème nº 1 : VRAI - FAUX

I. Ensembles de nombres

- 1. FAUX. Par exemple, l'entier 2 n'a pas d'inverse dans \mathbb{Z} .
- **2.** VRAI. Soient $\frac{a}{10^n}$ et $\frac{b}{10^m}$ (avec $a, b \in \mathbb{Z}$ et $n, m \in \mathbb{N}$) deux nombres décimaux. Alors

$$\frac{a}{10^n} + \frac{b}{10^m} = \frac{10^m a + 10^n b}{10^{n+m}}$$

est un nombre décimal.

- **3.** FAUX. Si $\frac{1}{3} = \frac{a}{10^n}$ avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$, alors $3a = 10^n$, puis 3 divise 10^n . Or 3 est premier, donc 3 divise 10, ce qui est absurde.
- **4.** VRAI. Si $\sqrt{5}$ est rationnel, alors il s'écrit $\sqrt{5} = \frac{a}{b}$ avec $a, b \in \mathbb{Z}$ et $b \neq 0$. Quitte à simplifier la fraction, on peut de plus supposer a et b premiers entre eux. On a alors $5b^2 = a^2$, puis $5 \mid a$ car 5 est premier. Il existe donc $a' \in \mathbb{Z}$ tel que a = 5a'. Ainsi, on a $b^2 = 5a'^2$ et pour les mêmes raisons que précédemment, 5 divise également b, ce qui est absurde puisqu'on a supposé a et b premiers entre eux.
- **5.** FAUX. Par exemple, le nombre $\sqrt{1} = 1$ est rationnel.
- **6.** FAUX. Par exemple, les nombres $\sqrt{5}$ et $-\sqrt{5}$ sont irrationnels mais leur somme est nulle, donc rationnelle.
- 7. VRAI. Soient $\frac{a}{b}$, avec $a, b \in \mathbb{Z}$, $b \neq 0$, un nombre rationnel et x un nombre irrationnel. Si $x + \frac{a}{b}$ est rationnel, alors il existe $c, d \in \mathbb{Z}$, $d \neq 0$ tels que $x + \frac{a}{b} = \frac{c}{d}$, puis $x = \frac{-ad + cb}{bd}$, ce qui est absurde car x est irrationnel.

II. Géométrie dans le plan

- **8.** VRAI. Toute équation de la forme ax + by + c = 0 avec $a, b, c \in \mathbb{R}$, $(a, b) \neq (0, 0)$ définit une équation (cartésienne) de droite dans le plan. Ici, il s'agit de la droite correspondant au choix (a, b, c) = (2, 0, -3).
- **9.** VRAI. On a \overrightarrow{AB} de coordonnées $\begin{pmatrix} -2\\1 \end{pmatrix}$ et \overrightarrow{CD} de coordonnées $\begin{pmatrix} 3\\6 \end{pmatrix}$, d'où $\overrightarrow{AB}.\overrightarrow{CD}=0$. Ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont orthogonaux et les droites (AB) et (CD) sont bien perpendiculaires.
- **10.** FAUX. On a $\overrightarrow{AD}.\overrightarrow{AC} = \left(\frac{1}{2}\overrightarrow{AC} + \overrightarrow{AB}\right).\overrightarrow{AC} = \frac{1}{2}\overrightarrow{AC}.\overrightarrow{AC} + \overrightarrow{AB}.\overrightarrow{AC} = 8 \text{ car } \overrightarrow{AB}.\overrightarrow{AC} = 0 \text{ (le triangle } ABC \text{ est rectangle en } A) \text{ et } \overrightarrow{AC}.\overrightarrow{AC} = \|\overrightarrow{AC}\|^2 = AC^2 = 4^2 = 16.$

III. Géométrie dans l'espace

11. FAUX. La droite D engendrée par le vecteur de coordonnées $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ (droite des abscisses) et celle D' engendrée par le vecteur de coordonnées $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ (droite des ordonnées) sont parallèles au plan P d'équation z=0. Or D et D' ne sont pas parallèles.

- 12. FAUX. Dans l'espace, l'équation 2x + 3y = 3 définit un plan.
- 13. a. VRAI. En effet, (1,0,1) est solution du système d'équations $\begin{cases} x+2y+z=2\\ x+y-z=0 \end{cases}$.
 - b. FAUX. On a

$$\begin{cases} x + 2y + z = 2 \\ x + y - z = 0 \end{cases} \Leftrightarrow \begin{cases} x + 2y + z = 2 \\ -y - 2z = -2 \end{cases}$$
$$\Leftrightarrow \begin{cases} x = -2 + 3z \\ y = 2 - 2z \end{cases}.$$

Ainsi un vecteur directeur de la droite D est le vecteur de coordonnés $\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$ qui n'est pas colinéaire à \overrightarrow{u} .

c. VRAI. Soit
$$(x,y,z) \in \Delta$$
. On a $\left\{ \begin{array}{l} x+2y+z=2 \\ x+y-z=0 \end{array} \right.$, puis

$$(x + 2y + z) + 2 \times (x + y - z) = 2 + 2 \times 0 = 2,$$

c'est-à-dire 3x+4y-z=2. Donc Δ est bien contenue dans le plan P.

IV. Matrices

- **14.** VRAI. Les matrices $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ sont de rang 1.
- **15.** FAUX. Deux matrices semblables ont la même trace. Or ce n'est pas le cas des matrices $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$.
- **16.** FAUX. En effet, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{cases} x+y = \lambda x \\ y = \lambda y \end{cases}$ admet une solution non nulle si et seulement si $\lambda = 1$. Ainsi, la matrice $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ admet une unique valeur propre (égale à 1) et le sous-espace propre associé est de dimension 1 (engendré par $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$). Donc A n'est pas diagonalisable.
- 17. VRAI. La matrice $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ admet 2 valeurs propres : 1 et 2. La concaténation d'un vecteur propre pour chacune des ces deux valeurs propres forme une base de \mathbb{R}^2 . Concrètement, on a par exemple

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}.$$

V. Suites

- 18. FAUX. Par exemple, la suite $\left(1+\frac{1}{n}\right)_{n\geq 1}$ est décroissante et minorée par 0, mais elle ne converge pas vers 0.
- **19.** FAUX. Par exemple, pour la suite de terme général $u_n = (-1)^n$ vérifie que les suites $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent (elles sont constantes), mais la suite $(u_n)_n$ ne converge pas.

VI. Probabilités

La variable aléatoire X donnant le nombre de réponses correctes fournies par l'élève suit une loi binomiale de paramètres n=5 et $p=\frac{1}{2}$. Pour tout $k\in\{0,1,2,3,4,5\}$, on a donc $\mathbf{P}(X=k)=\binom{5}{k}\frac{1}{2^5}$.

- **20.** VRAI. On a $P(X = 5) = \frac{1}{2^5} = \frac{1}{32}$.
- **21.** VRAI. On a $P(X=3) = {5 \choose 3} \frac{1}{2^5} = \frac{10}{32}$.
- **22.** VRAI. La note moyenne à laquelle l'élève peut prétendre est $\mathbf{E}(X) = np = 2, 5$ ou directement :

$$\mathbf{E}(X) = \sum_{k=0}^{5} k \mathbf{P}(X=k) = \sum_{k=1}^{5} k {5 \choose k} \frac{1}{2^5} = \frac{1}{32} (5 + 20 + 30 + 20 + 5) = \frac{80}{32} = \frac{5}{2} = 2, 5.$$

VII. Arithmétique

- **23.** FAUX. Par exemple, si a = b = 2, on a bien a et b qui divisent c = 2, mais ab = 4 ne divise pas c.
- **24.** VRAI. L'entier bc est même un multiple de a^2 . En effet, par hypothèse, il existe $b', c' \in \mathbb{Z}$ tels que b = ab' et c = ac'. D'où, on a $bc = a^2b'c'$.
- **25.** VRAI. On a $19x \equiv 3 \pmod{53}$ si et seulement si il existe $y \in \mathbb{Z}$ tel que 19x + 53y = 3. Or 19 et 53 étant premiers entre eux, cette dernière équation admet des solutions $(x, y) \in \mathbb{Z}^2$ par le théorème de Bézout. (L'ensemble des solutions de l'équation de congruence $19x \equiv 3 \pmod{53}$ est $\{42 + 53k \; ; \; k \in \mathbb{Z}\}$.)

Problème nº 2 : convexité

I. Préliminaires

1. L'assertion « f est croissante sur I » se traduit à l'aide de quantificateurs par :

$$\forall x, y \in I, x \le y \Rightarrow f(x) \le f(y).$$

2. L'assertion « f n'est pas croissante sur I » se traduit à l'aide de quantificateurs par :

$$\exists x, y \in I, x \leq y, f(x) > f(y).$$

3. L'assertion « f est une fonction affine sur I » se traduit à l'aide de quantificateurs par :

$$\exists a, b \in \mathbb{R}, \forall x \in I, f(x) = ax + b.$$

4. L'assertion « f est continue en un point a de I » se traduit à l'aide de quantificateurs par :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, |x - a| < \eta \Rightarrow |f(x) - f(a)| < \varepsilon.$$

II. Quelques propriétés et exemples

5. Une fonction f est concave sur I si

$$\forall (x,y) \in I^2, \forall \lambda \in [0;1], f(\lambda x + (1-\lambda)y) \ge \lambda f(x) + (1-\lambda)f(y).$$

- 6. Caractérisation graphique de la convexité.
 - **a.** Si $z \in [x; y]$, alors il existe $t \in [0; 1]$ tel que z = x + t(y x). D'où $z = \lambda x + (1 \lambda)y$ en posant $\lambda = 1 t \in [0; 1]$. Réciproquement, s'il existe $\lambda \in [0; 1]$ tel que $z = \lambda x + (1 \lambda)y$, alors z = x + t(y x) avec $t = 1 \lambda \in [0; 1]$, et donc $z \in [x; y]$.
 - **b.** La notion de convexité se traduit géométriquement par le fait que pour tout $(x, y) \in I^2$, le segment [(x, f(x)); (y, f(y))] de \mathbb{R}^2 se situe au-dessus de la courbe représentative de f entre x et y.

7. a. Soit $(x,y) \in I^2$ et soit $\lambda \in [0;1]$. On a $\lambda x + (1-\lambda y) \in I$ par la question précédente puis

$$(f+g)(\lambda x + (1-\lambda)y) = f(\lambda x + (1-\lambda)y) + g(\lambda x + (1-\lambda)y)$$

$$\leq \lambda f(x) + (1-\lambda)f(y) + \lambda g(x) + (1-\lambda)g(y) \quad \text{car } f, g \text{ convexes}$$

$$\leq \lambda (f+g)(x) + (1-\lambda)(f+g)(y).$$

Donc f + g est convexe sur I.

b. Soit $(x,y) \in I^2$ et soit $\lambda \in [0;1]$. Comme f est convexe sur I, on a

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

Par ailleurs, $\lambda f(x) + (1 - \lambda)f(y) \in J$ car J est un intervalle et $f(x), f(y) \in J$. D'où, par croissance de g sur J, il vient

$$(g \circ f)(\lambda x + (1 - \lambda)y) = g(f(\lambda x + (1 - \lambda)y)) \le g(\lambda f(x) + (1 - \lambda)f(y)).$$

Enfin, comme g est convexe sur J, on en déduit

$$g(\lambda f(x) + (1 - \lambda)f(y)) \le \lambda g(f(x)) + (1 - \lambda)g(f(y))$$

et le résultat souhaité.

- c. Voici deux énoncés du même type permettant de conclure que $g \circ f$ est concave.
 - Soient f une fonction convexe sur I à valeurs dans J et g une fonction concave et décroissante sur J. Alors $g \circ f$ est concave sur I.
 - Soient f une fonction concave sur I à valeurs dans J et g une fonction concave et croissante sur J. Alors $g \circ f$ est concave sur I.

8. Quelques exemples.

a. Soient $(x,y) \in \mathbb{R}^2$ et $\lambda \in [0,1]$. D'après l'inégalité triangulaire, on a

$$|\lambda x + (1 - \lambda)y| \le |\lambda x| + |(1 - \lambda)y| = \lambda |x| + (1 - \lambda)|y|,$$

car λ et $1 - \lambda$ sont positifs ou nuls. D'où le résultat.

b. Soient $(x,y) \in \mathbb{R}^2$ et $\lambda \in [0;1]$. On rappelle que l'on a $2xy \le x^2 + y^2$. Il vient alors

$$(\lambda x + (1 - \lambda)y)^{2} = \lambda^{2} x^{2} + 2\lambda (1 - \lambda)xy + (1 - \lambda)^{2} y^{2}$$

$$\leq (\lambda^{2} + \lambda (1 - \lambda))x^{2} + ((1 - \lambda)^{2} + \lambda (1 - \lambda))y^{2}$$

$$\leq \lambda x^{2} + (1 - \lambda)y^{2}$$

ce qui est le résultat voulu.

c. i. Pour tout $t \in [0; 1]$, on a

$$g'(t) = \frac{x - y}{tx + (1 - t)y} + \ln(y) - \ln(x). \tag{1}$$

Comme x < y, la fonction $t \mapsto tx + (1-t)y$ est strictement décroissante. Par ailleurs, elle est à valeurs dans $[x;y] \subset \mathbb{R}_+^*$. On en déduit que la fonction g' est strictement décroissante.

ii. D'après le théorème des accroissements finis appliqué à la fonction ln sur l'intervalle [x; y], il existe un réel $\theta \in]x; y[$ tel que

$$\frac{\ln(x) - \ln(y)}{x - y} = \frac{1}{\theta}.$$

On en déduit les inégalités demandées.

iii. D'après la formule (1) et la question précédente, on a

$$g'(0) = \frac{x-y}{y} + \ln(y) - \ln(x) = (x-y)\left(\frac{1}{y} - \frac{\ln(x) - \ln(y)}{x-y}\right) \ge 0$$

et

$$g'(1) = \frac{x - y}{x} + \ln(y) - \ln(x) = (x - y) \left(\frac{1}{x} - \frac{\ln(x) - \ln(y)}{x - y}\right) \le 0.$$

- iv. La fonction g' est continue sur [0;1] et vérifie $g'(0)g'(1) \leq 0$. D'après le théorème des valeurs intermédiaires, elle s'annule donc au moins une fois sur [0;1]. Par ailleurs, la fonction g' est strictement décroissante sur [0;1] et donc s'annule au plus une fois. D'où le résultat.
- v. D'après la question précédente, la fonction g est croissante puis décroissante sur l'intervalle [0;1]. Comme g(0)=g(1)=0, on en déduit qu'elle est positive sur [0;1], ce qui se traduit par l'inégalité suivante, valable pour tout $(x,y) \in (\mathbb{R}_+^*)^2$ tel que x < y et tout $t \in [0;1]$:

$$\ln(tx + (1-t)y) \ge t \ln(x) + (1-t) \ln(y).$$

Si $(x,y) \in (\mathbb{R}_+^*)^2$ est tel que x > y, en appliquant l'inégalité précédente avec (x,y) remplacé par (y,x) et $t \in [0;1]$ remplacé par 1-t, il vient à nouveau :

$$\ln(tx + (1-t)y) \ge t \ln(x) + (1-t)\ln(y).$$

Par ailleurs, cette inégalité est clairement vérifiée pour x = y et $t \in [0; 1]$ quelconque. On a donc bien démontré que la fonction ln est concave sur \mathbb{R}_+^* .

9. Généralisation de l'inégalité de convexité.

Soit $n \in \mathbb{N}^*$. On note H(n) la proposition de récurrence suivante :

« Pour tout $(x_1, \ldots, x_n) \in I^n$ et pour tout $(\lambda_1, \ldots, \lambda_n) \in (\mathbb{R}_+)^n$ tels que $\sum_{k=1}^n \lambda_k = 1$, on a

$$\sum_{k=1}^{n} \lambda_k x_k \in I \quad \text{ et } \quad f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \le \sum_{k=1}^{n} \lambda_k f(x_k). \text{ }$$

Pour n = 1, le résultat est immédiat.

Soit $n \geq 1$ entier. On suppose que H(n) est vraie et on considère $(x_1, \ldots, x_{n+1}) \in I^{n+1}$ et $(\lambda_1, \ldots, \lambda_{n+1}) \in (\mathbb{R}_+)^{n+1}$ tels que $\sum_{k=1}^{n+1} \lambda_k = 1$. On montre que l'on a

$$\sum_{k=1}^{n+1} \lambda_k x_k \in I \tag{2}$$

et

$$f\left(\sum_{k=1}^{n+1} \lambda_k x_k\right) \le \sum_{k=1}^{n+1} \lambda_k f(x_k). \tag{3}$$

Si $\lambda_{n+1} = 1$, alors $\lambda_1 = \cdots = \lambda_n = 0$ et les relations (2) et (3) sont satisfaites. On peut donc supposer que l'on a $0 \le \lambda_{n+1} < 1$. Ainsi, on a

$$\sum_{k=1}^{n+1} \lambda_k x_k = (1 - \lambda_{n+1}) \sum_{k=1}^{n} \frac{\lambda_k}{1 - \lambda_{n+1}} x_k + \lambda_{n+1} x_{n+1}.$$

Or, si pour $k \in \{1, \dots, n\}$, on pose $\mu_k = \frac{\lambda_k}{1 - \lambda_{n+1}}$, on a $(\mu_1, \dots, \mu_n) \in (\mathbb{R}_+)^n$ et $\sum_{k=1}^n \mu_k = 1$. Par hypothèse de récurrence H(n) appliquée à $(x_1, \dots, x_n) \in I^n$ et $(\mu_1, \dots, \mu_n) \in (\mathbb{R}_+)^n$, il vient $\sum_{k=1}^n \frac{\lambda_k}{1 - \lambda_{n+1}} x_k = \sum_{k=1}^n \mu_k x_k \in I$. On conclut alors à la relation (2) avec la question **6.a** appliquée à $x = x_{n+1} \in I$, $y = \sum_{k=1}^n \mu_k x_k \in I$ et $\lambda = \lambda_{n+1}$ (si x < y). Par ailleurs, avec ces notations, on a

$$f\left(\sum_{k=1}^{n+1} \lambda_k x_k\right) = f(\lambda x + (1-\lambda)y))$$

$$\leq \lambda f(x) + (1-\lambda)f(y) \quad \text{car } f \text{ est convexe}$$

$$\leq \lambda_{n+1} f(x_{n+1}) + (1-\lambda_{n+1}) f\left(\sum_{k=1}^{n} \mu_k x_k\right)$$

$$\leq \lambda_{n+1} f(x_{n+1}) + (1-\lambda_{n+1}) \sum_{k=1}^{n} \mu_k f(x_k) \quad \text{d'après l'hypothèse de récurrence}$$

$$\leq \lambda_{n+1} f(x_{n+1}) + \sum_{k=1}^{n} \lambda_k f(x_k)$$

d'où l'inégalité (3).

Ainsi, la proposition H(n+1) est vraie.

On a montré que H(1) est vraie et, pour tout entier $n \geq 1$, on a vérifié que si H(n) est vraie alors H(n+1) est encore vraie. Par principe de récurrence, la proposition H(n) est donc vraie quel que soit $n \in \mathbb{N}^*$.

10. Deux applications.

a. La fonction ln est concave. D'après la question précédente, pour tout $(a, b, c) \in (\mathbb{R}_+^*)^3$, on a en particulier

$$\frac{1}{3}\ln(a) + \frac{1}{3}\ln(b) + \frac{1}{3}\ln(c) \le \ln\left(\frac{a+b+c}{3}\right).$$

d'où il vient

$$\ln(\sqrt[3]{abc}) \le \ln\left(\frac{a+b+c}{3}\right)$$

et l'inégalité souhaitée en appliquant la fonction (croissante) exp.

b. Soient $(x,y) \in (]1,+\infty[)^2$ et $\lambda \in [0;1]$. Par concavité de la fonction ln sur $]1,+\infty[$, on a

$$\ln(\lambda x + (1 - \lambda)y) \ge \lambda \ln(x) + (1 - \lambda) \ln(y).$$

Par croissance de la fonction ln, il vient alors :

$$(\ln \circ \ln)(\lambda x + (1 - \lambda)y) \ge \ln(\lambda X + (1 - \lambda)Y)$$

avec $X = \ln(x)$ et $Y = \ln(Y)$. Enfin, à nouveau par concavité de la fonction ln, cette fois-ci sur l'intervalle $]0, +\infty[$ contenant X et Y, on en déduit l'inégalité

$$(\ln \circ \ln)(\lambda x + (1 - \lambda)y) \ge \lambda \ln(X) + (1 - \lambda) \ln(Y)$$

> $\lambda (\ln \circ \ln)(x) + (1 - \lambda)(\ln \circ \ln)(y)$

et la concavité de la fonction $\ln \circ \ln \text{ sur }]1, +\infty[$. On en déduit que l'on a

$$(\ln \circ \ln) \left(\frac{x+y}{2}\right) \ge \frac{1}{2} \left((\ln \circ \ln)(x) + (\ln \circ \ln)(y) \right)$$
$$\ge \frac{1}{2} \ln(\ln(x) \ln(y))$$
$$\ge \ln\left(\sqrt{\ln(x) \ln(y)}\right)$$

et le résultat souhaité en appliquant la fonction (croissante) exp.

III. Inégalités des trois pentes et conséquences

11. a. i. On a

$$\begin{split} f(u) - f(a) &= f(\lambda t + (1 - \lambda)a) - f(a) \\ &\leq \lambda f(t) + (1 - \lambda)f(a) - f(a) \quad \text{par convexit\'e de } f \\ &\leq \lambda (f(t) - f(a)). \end{split}$$

Par ailleurs, on a $\lambda = \frac{u-a}{t-a}$ et comme u-a < 0, il vient

$$\frac{f(u) - f(a)}{u - a} \ge \frac{f(t) - f(a)}{t - a}$$

ou encore $\Delta_a(t) \leq \Delta_a(u)$.

- ii. On en déduit que la fonction Δ_a est croissante sur $I \setminus \{a\}$.
- **b.** i. On a $\lambda x + (1-\lambda)y \in]x;y]$. Donc par croissance de la fonction Δ_x sur $]x;y] \subset I \setminus \{x\}$, il vient $\Delta_x(\lambda x + (1-\lambda)y) \leq \Delta_x(y)$.
 - ii. L'inégalité de la question précédente se traduit par

$$\frac{f(\lambda x + (1-\lambda)y) - f(x)}{(1-\lambda)(y-x)} \le \frac{f(y) - f(x)}{y-x},$$

puis par l'inégalité $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$ en multipliant par $(1 - \lambda)(y - x) > 0$. Cette inégalité est par ailleurs triviale pour $\lambda = 1$. Par un raisonnement analogue à celui de la question **8.c.v**, il vient alors que f est convexe sur I.

- **c.** La fonction f convexe sur I si et seulement si pour tout $a \in I$, la fonction Δ_a est croissante sur $I \setminus \{a\}$.
- 12. a. D'après la question 11 et les inégalités a < b < c, on a

$$\frac{f(b) - f(a)}{b - a} = \Delta_a(b) \le \Delta_a(c) = \frac{f(c) - f(a)}{c - a} = \Delta_c(a) \le \Delta_c(b) = \frac{f(c) - f(b)}{c - b}.$$

b. On illustre graphiquement les inégalités

$$\Delta_a(b) \le \Delta_a(c) = \Delta_c(a) \le \Delta_c(b).$$

FIGURE 1 – Pentes des différents segments reliant (a, f(a)), (b, f(b)) et (c, f(c))

13. a. Théorème de la limite monotone.

i. L'ensemble $\{\varphi(x); x \in]a; b[\}$ est une partie non vide (a < b) et majorée $(\varphi$ est majorée) de \mathbb{R} . On pose donc $\ell = \sup\{\varphi(x); x \in]a; b[\}$. Montrons que l'on a

$$\varphi(x) \xrightarrow[x < b]{x \to b} \ell.$$

Soit $\varepsilon > 0$. Alors, $\ell - \varepsilon$ n'est pas un majorant de l'ensemble $\{\varphi(x); x \in]a; b[\}$. En particulier, il existe $x_0 \in]a; b[$ tel que $\ell - \varepsilon < \varphi(x_0) \le \ell$. Par croissance de la fonction φ , pour tout $x \in [x_0; b[$, on a

$$\ell - \varepsilon < \varphi(x_0) \le \varphi(x) \le \ell$$

ou encore $|\varphi(x)-\ell|<\varepsilon$. Ainsi, en posant $\eta=b-x_0>0$, on a, pour tout $x\in]a;b[$,

$$|x - b| < \eta \Rightarrow |\varphi(x) - \ell| < \varepsilon.$$

C'est le résultat voulu.

- ii. Si φ est minorée, alors φ admet une limite finie à droite en a, égale à la borne inférieure de l'ensemble $\{\varphi(x); x \in]a; b[\}$.
- b. i. D'après la question 11, la fonction Δ_b est croissante sur $[a;c]\setminus\{b\}$. En particulier, pour tout $x\in[a;b[$, on a $\Delta_b(x)\leq\Delta_b(c)$. Ainsi, la fonction Δ_b est croissante et majorée sur [a;b[. Par le théorème de la limite monotone, on en déduit que le taux d'accroissement $\Delta_b(x)=\frac{f(x)-f(b)}{x-b}$ admet une limite lorsque x tend vers b par valeurs inférieures. Autrement dit, la fonction f est dérivable à gauche en b; on note $f'_a(b)$ le nombre dérivé correspondant.

Par un raisonnement similaire, on montre que f est dérivable à droite en b et on note $f'_d(b)$ le nombre dérivé correspondant.

Enfin, par croissance de la fonction Δ_b sur $I \setminus \{b\}$, pour tout $x \in [a; b[$ et pour tout $y \in]b; c]$, on a

$$\frac{f(b) - f(a)}{b - a} = \Delta_b(a) \le \Delta_b(x) \le \Delta_b(y) \le \Delta_b(c) = \frac{f(c) - f(b)}{c - b}.$$

Par passage à la limite $x \xrightarrow[x < b]{} b$ puis $y \xrightarrow[y > b]{} b$, on en déduit les inégalités :

$$\frac{f(b)-f(a)}{b-a} \le f_g'(b) \le f_d'(b) \le \frac{f(c)-f(b)}{c-b}.$$

ii. Pour tout $x \in [a; c] \setminus \{b\}$, on a

$$f(x) - f(b) = \Delta_b(x)(x - b).$$

En passant à la limite $x \xrightarrow[x < b]{} b$ dans cette égalité, il vient

$$f(x) - f(b) \xrightarrow[\substack{x \to b \\ x < b}]{} f'_g(b) \cdot 0 = 0$$

et on vérifie de même que $f(x) \xrightarrow[x > b]{x \to b} f(b)$. D'où le résultat.

c. La fonction $f:[0;1]\to\mathbb{R}$ définie par

$$f(x) = \begin{cases} 0 & \text{si } x \in]0;1] \\ 1 & \text{si } x = 0 \end{cases}$$

est convexe et non continue.

IV. Caractérisation des fonctions convexes dérivables

14. a. Soit $(x,y) \in I^2$ tel que $x \le b$, $x \ne a$ et $y \ge a$, $y \ne b$. D'après la question **11**, on a

$$\frac{f(x) - f(a)}{x - a} = \Delta_a(x) \le \Delta_a(b) = \frac{f(b) - f(a)}{b - a} = \Delta_b(a) \le \Delta_b(y) = \frac{f(b) - f(y)}{b - y}.$$

Par passage à la limite $x \xrightarrow[x \neq a]{} a$ et $y \xrightarrow[y \geq a]{} b$ dans ces inégalités, on en déduit $y \xrightarrow[y \neq b]{} b$

$$f'(a) \le \frac{f(b) - f(a)}{b - a} \le f'(b)$$

et le fait que f' est croissante sur I.

b. On doit montrer que pour tout $(x_0, x) \in I^2$, on a

$$f(x) \ge f'(x_0)(x - x_0) + f(x_0).$$

Pour $x = x_0$, le résultat est immédiat et si $x \neq x_0$, c'est équivalent à

$$\frac{f(x_0) - f(x)}{x_0 - x} \le f'(x_0) \quad \text{si } x < x_0$$

et

$$f'(x_0) \le \frac{f(x) - f(x_0)}{x - x_0}$$
 si $x_0 < x$.

Or, ces inégalités sont vérifiées d'après la question précédente.

15. a. La fonction ϕ est dérivable sur [0;1] comme composée de fonctions dérivables sur [0;1]. Soit $t \in [0;1]$. On a :

$$\phi'(t) = f(x) - f(y) - (x - y)f'(tx + (1 - t)y). \tag{4}$$

b. D'après le théorème des accroissements finis appliqué à la fonction f entre x et y, il existe un réel $\theta \in]x;y[$ tel que

$$f(y) - f(x) = f'(\theta)(y - x).$$

D'après la question **6.a**, on écrit $\theta = \gamma x + (1 - \gamma)y$ avec $\gamma \in]0;1[$. Ainsi, d'après la relation (4), on a, pour tout $t \in [0;1]$:

$$\phi'(t) = (x - y)(f'(\gamma x + (1 - \gamma)y) - f'(tx + (1 - t)y).$$
(5)

- c. La fonction $t \mapsto f'(tx + (1-t)y)$ est décroissante comme composée d'une fonction décroissante avec une fonction croissante. Donc, d'après l'expresionn (5), la fonction ϕ' est positive sur $[0; \gamma]$ et négative sur $[\gamma; 1]$. Ainsi, la fonction ϕ est croissante sur $[0; \gamma]$ et décroissante sur $[\gamma; 1]$.
- **d.** Comme $\phi(0) = \phi(1) = 0$, on en déduit que ϕ est positive sur [0;1]. Autrement dit, pour tout $t \in [0;1]$, on a :

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y).$$

Cette inégalité étant valable quels que soient $(x, y) \in I^2$ tel que x < y et $t \in [0; 1]$, on en déduit comme à la question **8.c.v** que f est convexe.

16. On suppose que f est deux fois dérivable sur I. D'après ce qui précède, f est convexe sur I si et seulement si f' est croissante sur I, ou encore si et seulement si f'' est positive sur I.

V. Différentes inégalités

17. a. Soit $(x_1, x_2, y_1, y_2) \in (\mathbb{R}_+^*)^4$. On a :

$$\psi(x_1, y_1) + \psi(x_2, y_2) = y_1 f\left(\frac{x_1}{y_1}\right) + y_2 f\left(\frac{x_2}{y_2}\right)$$

$$= (y_1 + y_2) \left(\frac{y_1}{y_1 + y_2} f\left(\frac{x_1}{y_1}\right) + \frac{y_2}{y_1 + y_2} f\left(\frac{x_2}{y_2}\right)\right)$$

$$\leq (y_1 + y_2) f\left(\frac{y_1}{y_1 + y_2} \frac{x_1}{y_1} + \frac{y_2}{y_1 + y_2} \frac{x_2}{y_2}\right) \quad \text{car } f \text{ est concave}$$

$$\leq (y_1 + y_2) f\left(\frac{x_1 + x_2}{y_1 + y_2}\right)$$

$$\leq \psi(x_1 + x_2, y_1 + y_2).$$

b. On raisonne par récurrence sur $n \in \mathbb{N}^*$. Pour n = 1 c'est immédiat et pour n = 2 c'est le résultat de la question précédente.

Soient $n \in \mathbb{N}^*$ et $(x_1, \dots, x_{n+1}, y_1, \dots, y_{n+1}) \in (\mathbb{R}_+^*)^{2(n+1)}$. On a :

$$\begin{split} \sum_{k=1}^{n+1} \psi(x_k, y_k) &= \sum_{k=1}^n \psi(x_k, y_k) + \psi(x_{n+1}, y_{n+1}) \\ &\leq \psi\left(\sum_{k=1}^n x_k, \sum_{k=1}^n y_k\right) + \psi(x_{n+1}, y_{n+1}) \quad \text{par hypothèse de récurrence} \\ &\leq \psi\left(\sum_{k=1}^{n+1} x_k, \sum_{k=1}^{n+1} y_k\right) \quad \text{d'après la question précédente.} \end{split}$$

- 18. Application.
 - **a.** On a $f''(t) = -\frac{1}{pq} \frac{1}{t^{\frac{1}{q}+1}} \le 0$. Ainsi la fonction -f est convexe d'après la question 16 et donc f est concave.
 - **b.** Avec les notations de la question 17 appliquée à la fonction f considérée, on a :

$$\psi(x,y) = yf\left(\frac{x}{y}\right) = x^{\frac{1}{p}}y^{\frac{1}{q}}$$

pour tout $(x,y)\in (\mathbb{R}_+^*)^2.$ On en déduit que l'on a :

$$\begin{split} \sum_{k=1}^n a_k b_k &= \sum_{k=1}^n \psi\left(a_k^p, b_k^q\right) \\ &\leq \psi\left(\sum_{k=1}^n a_k^p, \sum_{k=1}^n b_k^q\right) \quad \text{d'après la question } \mathbf{17.b} \\ &\leq \left(\sum_{k=1}^n a_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^n b_k^q\right)^{\frac{1}{p}}. \end{split}$$

On a ainsi démontré l'inégalité de Hölder.