

Data Mining with Spectral Clustering and Comparative Clustering Analysis: An Exploration with R

OLIVIA SAMPLES AND NATHAN MORGAN

Outline

- 1. Introduction/Background Information
- 2. Methodology
- 3. Results
- 4. Potential Challenges
- 5. Conclusion

1. Introduction/Background Information

- Approached by Big Data Science Incorporated (BDSI) to compare spectral clustering to other well-known clustering methods
- Goal: find a way to quantifiably measure which methods are best
- Clustering Methods Chosen: K-Means and K-Medoids
 - Previous work had been done on the chosen data set with these methods

2. Methodology

- Chosen Dataset: The Wine Dataset
 - Found within the University of California, Irvine's data repository
 - Compares 178 different wines from the same region in Italy that were developed from three distinct cultivars
 - Has 13 dimensions derived from a chemical analysis of each wine
 - Keys to choosing this dataset:
 - Already contains true labels
 - Existing tests had been completed on this data

Correlation Graph

- Data Exploration
 - Before digging into the clustering, a few functions were carried out on the data to find correlations and normalize it
 - This first graph shows the correlation of the data using the ggcorrplot function

0.5

0.0

-0.5

-1.0

Normalization w/ Boxplots

- Data Exploration
 - These two graphs show the normalization of the data through the use of boxplots
 - Finally, the data was split into training and testing groups before clustering

3. Results

- K-Means Algorithm
 - P-value: 0.994
 - Accuracy: 55.56%
 - Well-defined clusters that were incorrectly labeled
 - Given 3 well-defined classes, clustering with k=2 produced worse results

Flavanoids

3. Results

- K-Medoids Algorithm
 - P-value: < 2.2e^-16
 - Accuracy: 87.04%
 - Graph shows strong similarities in predictions

	Reference: 1	Reference: 2	Reference: 3
Prediction: 1	30	2	0
Prediction: 2	7	46	0
Prediction: 3	0	4	35

3. Results

- Spectral Clustering Algorithm
 - P-value: 0.01188
 - Train Accuracy: 52.42%
 - Test Accuracy: 40.74%
 - Silhouette Coefficients: (0.38, 0.16, 0.37)

Table of Comparison of the 3 Clustering Methods

Top: K-Means

Middle: K-Medoids

Bottom: Spectral

Clustering

	Reference: 1	Reference: 2	Reference: 3
Prediction: 1	37	2	0
Prediction: 2	0	0	35
Prediction: 3	0	50	0

	Reference: 1	Reference: 2	Reference: 3
Prediction: 1	30	2	0
Prediction: 2	7	46	0
Prediction: 3	0	4	35

	Reference: 1	Reference: 2	Reference: 3
Prediction: 1	29	0	0
Prediction: 2	8	1	0
Prediction: 3	0	51	35

4. Potential Challenges

- Traditionally, K-Means and K-Medoids work better with larger sample sizes and numbers of dimensions:
- The Wine Dataset has 178 instances and 13 dimensions, which is low for use of these methods
- The Travel Reviews Dataset (one we considered) has 980 instances, and, in preliminary testing, produced better results for K-Means and K-Medoids than Spectral Clustering

5. Conclusion

- With the Wine Dataset, K-Medoids clustering proved to more accurately cluster the data
- We were able to reject the null hypothesis with K-Medoids and Spectral Clustering
- Given the challenge of a relatively small dataset, the other methods may have proved more accurate had the population increased
- The key to any clustering analysis is to use multiple methods to find which will provide the best results

Thank you! Any questions?