Solutions Manual

A Book of Abstract Algebra - 2nd EditionCharles C. Pinter

This solution manual was created by the MathLearners study group.

Contents

1	1 Operations					
	1.1	A: Examples of Operations		5		
	1.2	B: Properties of Operations	. 5	5		

Chapter 1

Operations

1.1 A: Examples of Operations

3 a * b is a root of the equation $x^2 - a^2b^2 = 0$, on the set \mathbb{R} .

Solution. From $x^2 - a^2b^2 = 0$ we get $x^2 = a^2b^2$, so $\pm ab$ is a root, which means it's not unique. Thus a * b is not an operation on \mathbb{R} .

5 Subtraction, on the set $\{n \in \mathbb{Z} | n \ge 0\}$.

Solution. Subtraction is not an operation on that set, because if we have $k, l \in \mathbb{Z}_{>0}$, where l > k, we get a negative result, which would not be in $\mathbb{Z}_{>0}$.

1.2 B: Properties of Operations

$$1 x * y = x + 2y + 4$$

Solution. We follow the steps from the example.

- I. Commutative: x * y = x + 2y + 4; y * x = y + 2x + 4. Thus x * y is not commutative.
- II. Associative: x * (y * z) = x * (y + 2z + 4) = x + 2(y + 2z + 4) + 4(x * y) * z = (x + 2y + 4) * z = x + 2y + 4 + 2z. Thus x * y is not associative.
- III. Solve x * e = x for e.

$$x * e = x$$

$$x + 2e + 4 = x$$

$$4 = -2e$$

$$-2 = e.$$

IV. Solve
$$x * x' = e$$
 for x' .

$$x * x' = e$$

$$x + 2x' + 4 = e$$

$$x + 2x' + 4 = -2$$

$$x + 2x' = -6$$

$$2x' = -6 - x$$

$$x' = -\frac{6 + x}{2}$$

$$2 x * y = x + 2y - xy$$

Solution. We follow the steps from the example.

I. Commutative:

$$x * y = x + 2y - xy$$
$$y * x = y + 2x - yx.$$

Thus x * y is not commutative.

II. Associative:

$$x * (y * z) = x * (y + 2z - yz) = x + 2(y + 2z - yz) - x(y + 2z - yz)$$
$$(x * y) * z = (x + 2y - xy) * z = x + 2y - xy + 2z - (x + 2y - xy)z.$$

Thus x * y is not associative.

III. Solve
$$x * e = x$$
 for e .

$$x * e = x$$

$$x + 2e - xe = x$$

$$2e - xe = 0$$

$$e(2 - x) = 0$$

$$e = 0$$

Check that it works: $x * 0 = x + 2 \cdot 0 - x \cdot 0 = x + 0 - 0 = x$.

IV. Solve
$$x * x' = e$$
 for x' .

$$x * x' = e$$

$$x + 2x' - xx' = 0$$

$$x + x'(2 - x) = 0$$

$$x'(2 - x) = -x$$

$$x' = -\frac{x}{2 - x}$$

If x = 2, then the right side is undefined. Thus there is no inverse.

$$3 x * y = |x + y|$$

Solution. We follow the steps from the example.

I. Commutative:

$$x * y = |x + y|$$

 $y * x = |y + x| = |x + y|$.

Thus x * y is commutative.

II. Associative:

$$x * (y * z) = x * |y + z| = |x + |y + z||$$

 $(x * y) * z = |x + y| * z = ||x + y| + z|$

Let x = 2, y = -2 and z = 0. Then x * (y * z) = 2 * (-2 * 0) = <math>|2 + | -2 + 0|| = |2 + 2| = 4. But (x * y) * z = (2 * -2) * 0 = ||2 + (-2)| + 0|| = |0 + 0|| = 0. Thus x * y is not associative.

III. Solve x * e = x for e.

$$x * e = x$$
$$|x + e| = x.$$

But if x < 0, then the right side is negative, but the left side is nonnegative, which is a contradiction. Thus there is no identity element.