P8.4 Consider an electron moving in an electrostatic potential A⁰(x), the steady-state equation being

$$E\psi = (c\alpha \cdot \hat{\mathbf{p}} + \beta mc^2 + V)\psi, \qquad V = -eA^0(\mathbf{x})$$

Perform a reduction to 'large components' (analogous to that in section 8.6) by the following steps.

(a) Writing
$$E = mc^2 + E'$$
, $\psi = \begin{pmatrix} \Psi \\ \Phi \end{pmatrix}$, show that
$$(E' - V)\Psi = c\mathbf{\sigma} \cdot \hat{\mathbf{p}}\Phi$$
$$(2mc^2 + E' - V)\Phi = c\mathbf{\sigma} \cdot \hat{\mathbf{p}}\Psi$$

(b) By expressing Φ in terms of Ψ , and keeping terms of first order in $(E-V)/2mc^2$ only, show that Ψ satisfies the equation

$$(E'-V)\Psi = \frac{1}{2m}\mathbf{\sigma}.\,\hat{\mathbf{p}}\left\{1 - \frac{(E'-V)}{2mc^2}\right\}\mathbf{\sigma}.\,\hat{\mathbf{p}}\Psi$$

(c) Prove that $\sigma \cdot \nabla V(x) \sigma \cdot \nabla = \nabla V(x) \cdot \nabla + i \sigma \cdot (\nabla V(x) \times \nabla) + V(x) \nabla^2$ and use this result to reduce the equation derived in (b) to

$$(E' - V)\Psi = \left\{ \left(1 - \frac{E' - V}{2mc^2} \right) \frac{\hat{\mathbf{p}}^2}{2m} - \frac{i\hbar}{4m^2c^2} \nabla V \cdot \hat{\mathbf{p}} + \frac{\hbar}{4m^2c^2} \sigma \cdot (\nabla V \times \hat{\mathbf{p}}) \right\} \Psi$$

Thus $E'\Psi = \hat{\mathbf{p}}^2/2m + V + \text{terms of order } \mathbf{v}^2/c^2$. Deduce that to order \mathbf{v}^2/c^2 we can write

$$E'\Psi = \left\{ \frac{\hat{\bf p}^2}{2m} - \frac{\hat{\bf p}^4}{8m^2c^2} + V - \frac{\mathrm{i}\hbar}{4m^2c^2} \, \nabla V \, . \, \, \hat{\bf p} \, + \frac{\hbar}{4m^2c^2} \, \, \boldsymbol{\sigma} \, . \, \, (\nabla V \times \hat{\bf p}) \right\} \Psi$$

(d) Show that, if V = V(r), (r = |x|) the last term in the above equation is the spin-orbit interaction

$$\frac{1}{r} \frac{\mathrm{dV}}{\mathrm{dr}} \frac{\mathbf{S} \cdot \hat{\mathbf{L}}}{2m^2c^2} \Psi$$

where $S = \frac{1}{2}\hbar\sigma$.

(e) This is not quite the whole story, however. The quantity multiplying Ψ on the right-hand side of the third equation of part (c) ought, presumably, to be the Hamiltonian, to this order in v/c (namely, to order v^2/c^2). But it contains non-Hermitian terms (which?). This means that the 'total probability' $\int \Psi^{\dagger} \Psi \, d^3 \mathbf{x}$ would not be conserved. The reason (and the remedy) for this is well explained by Baym (1969). The true probability density is $\psi^{\dagger} \psi$, where $\psi = \begin{pmatrix} \Psi \\ \Phi \end{pmatrix}$; to order v^2/c^2 this is

 $\Psi^{\dagger}(1+\hat{\mathbf{p}}^2/4m^2c^2)\Psi$, not $\Psi^{\dagger}\Psi$ itself. We therefore expect that, if we define the wave function Ψ' by $\Psi'=(1+\hat{\mathbf{p}}^2/4m^2c^2)^{1/2}\Psi=(1+\hat{\mathbf{p}}^2/8m^2c^2)\Psi$ to this order, then Ψ' would satisfy an equation of the form of part (c) but with a Hermitian Hamiltonian. Check that this is so, by showing that $\hat{\mathbf{p}}^2V\Psi'-V\hat{\mathbf{p}}^2\Psi'=-\hbar^2(\nabla^2V)\Psi-2i\hbar\nabla V.\hat{\mathbf{p}}\Psi'$ and using this result to deduce that

$$E'\Psi' = \left\{ \frac{\hat{\mathbf{p}}^2}{2m} - \frac{\hat{\mathbf{p}}^4}{8m^2c^2} + \frac{\cancel{n}^2}{8m^2c^2} \, \nabla^2 V + \frac{\cancel{n}}{4m^2c^2} \, \boldsymbol{\sigma} \cdot (\nabla V \times \hat{\mathbf{p}}) \right\} \Psi'$$