ROLL NO: MS NAME:

PHY202 Jan-Aug 2019: Midsem 2 Dated March 15, 2019: Inst: Dipanjan Chakraborty

• Time: 60 minutes

• Max Marks: 40

• Attempt all questions.

Question	1	2	3	4	T
Marks					

- 1. Each of the following question has 1 marks for the correct tick mark and the rest for justification.
- (a): The Legendre transformation of the function $y = ax^2$ is $c(m) = -m^2/4a$

YES NO

Justification

$$m = \frac{dy}{dx} = 2ax$$
 $x = \frac{m}{2a}$ —

$$C(m) = y - mx = a\left(\frac{m}{za}\right)^2 - \frac{m^2}{2a}$$

$$= \frac{m^2}{4a} - \frac{m^2}{2a} = -\frac{m^2}{4a} \longrightarrow 2$$

(b): The specific heat at constant volume C_V is given by $C_V = T\left(\frac{\partial^2 F}{\partial T^2}\right)_V$, where F is the Helmholtz free energy.

Justification

(c): For a rubber band the force–extension curve is given by F = AL/T, where A is a constant, T is the temperature. The difference in the specific heats $C_F - C_L$ is AF^2 .

Justification

$$C_{F} - C_{L} = TL \left(\frac{1}{L} \frac{2L}{2T}\right)_{F}^{2}$$

$$L = FT$$

$$\frac{1}{A} \frac{2L}{2T} = \frac{1}{A} \frac{2L}{2T}$$

$$\frac{1}{2} \frac{2L}{2T} = \frac{1}{A} \frac{2L}{2T}$$

$$\frac{1}{2} \frac{2L}{2T} = \frac{2L}{A} \frac{2L}{2T}$$

$$C_{F} - C_{L} = TL \left(\frac{F}{AL}\right)^{2} = TL \frac{F^{2}}{A^{2}L^{2}} = F^{2}/A$$

(b): An ideal monoatomic gas undergoes a free expansion. Upon reaching final state, the gas cools down.

[5]
YES NO

Justification

Internal energy is depended only on temperature. Hence, Co is constant number.]-3(4)
The temperature remains the same.

[Marks+10]

2. Consider a simple magnetic system. The generalized coordinate is the magnetization Mand the generalized force is the external magnetic field B. Write down the thermodynamic potentials for such a system and indicate the possible experimental conditions. Determine the corresponding Maxwell's relations.

Thermodynamic	Differential		
Potential	Differential	Maxwell Relation	Experimental Condition
U = TS + BM	$dU = T \ dS + B \ dM$		
	ab - 1 ab + b aM	2T1 281	Isolated System
-		24) = 35)	
		1)S DS/M	
F = U - TS	dF = -SdT + BdM	0-1	
	Jan 4 Bam	$\frac{\partial T}{\partial B} = -\frac{\partial M}{\partial S}$	Magnetic rytem + thermostat (1/2)
	(u)	0B) = 20	
(42)	(12)	B	+ thermostato
2 22			(12)
G = U - TS - MB	dG = -SdT - MdB	041	
		\$ D = 2018	Magnetic Soute
		DHY SO	System 1
(1/2)	(\mathcal{V}_{-})	2C) 2M	Magnetic System in prosence of 1/2 thormostat and
(11)	(12)	2 - 3M	in prosence of (1/2)
		OB4 9+/2	thormostat aw
7.7			Constant Magnetic Field
H = U - MB	dH = Tas -MdB	00	i joint Macq
		40000	Magnetic System
		de	0 (1)
(\mathfrak{I})	(V_{\bullet})	00	only constant- magnetic field.
(12)	(42)	35) = -19B)	Del. 10. 1 15
		DBYT OT	only constant
			magnetic field.
Gibbs-Duhem relation using $U = U(S, M)$		Gibbs-Duhem relation using $S = S(U, M)$	
		CACOS DUNCIN	Telemon using $D = D(U, M)$
SdT + MdB = 0			16211
sait Mal	5 = 0	Ud(1/T)	md(B/T)=0.
			U

Soa

$$S = \frac{1}{T} dU + U d(\frac{1}{T}) - \frac{B}{B} dM$$

$$- M d(\frac{B}{T})$$

$$Q(U d(\frac{1}{T}) - M d(\frac{B}{T}) = 0$$

3. For such a simple magnetic system, it is observed that if the magnetic field changes from Bto $B + \Delta B$ at fixed temperature, the change in entropy is given by $\Delta S = -N \tilde{A} B \Delta B / T^2$, where A is a constant. What is $\left(\frac{\partial S}{\partial B}\right)_T$? From this information, show that the magnetization depends on temperature as M = NAB/T. Note that for zero magnetic field, the magnetization is also zero in a paramagnetic system. Hint: you will need one of the Maxwell's relation that you have derived in the earlier question. [Marks=3]

$$\frac{\partial S}{\partial B} = \int_{T}^{T} \frac{\Delta S}{\Delta B} = -\frac{NAB}{T^{2}} \rightarrow 0$$

$$\frac{\partial S}{\partial B} = \frac{\partial M}{\partial T} = -\frac{NAB}{T^2} \rightarrow T$$

$$M = \frac{NAB}{T} \longrightarrow I$$

The Constant of integration is zero since al-zero magnetic field Magnetization is zero.

4. A paramagnetic needle is dipped in liquid helium at a temperature T_0 . The whole system is placed in a weak magnetic field B_0 directed along the needle's long axis. Then the magnetic field is suddenly decreased to B_ℓ . Determine the temperature of the needle, given that the specific heat at constant magnetic field goes as $C_B = NAB^2/T^2$ (A is the same constant as mentioned earlier) and you can use the relation between M and T derived in the earlier question. The sudden decrease means – too fast for heat exchange. Hence the process is adiabatic.

[Marks=5]

Adiabatic Process

$$S(T,B)$$

$$dS = \frac{2S}{2T} dT + \frac{2S}{2B} dB \rightarrow 1$$

$$dS = 0$$

$$\Rightarrow CB dT = -\frac{2S}{2B} dB \rightarrow 1$$

$$dT = \frac{2T}{2B} \frac{2B}{2B} = -1$$

$$dT = \frac{2S}{2B} \frac{2S}{2B} = -1$$

$$dT = \frac{2S}{2B} \frac{2$$

Rough Work