Lectures

Bioenergetics : 3
DNA replication : 2
Transcription : 2
Translation : 2

Genes to proteins &

Protein function: 1

10

Quiz 2

- **❖** Syllabus = First 4 Lectures
- \bigstar Marks = 10
- Date and Time: 24th March 2018 (Saturday)
- Time: 8:50 AM 9:10 AM (20 minutes)
- **Venue**: L1, L2, L3, L4

Dr. P. Satpati, BSBE, IIT Guwahati

L1: Bioenergetics

Dr. P. Satpati, BSBE, IIT Guwahati

Sun is the ultimate source of energy...

Photosynthesis:

Energy from sun is converted into chemical bonds (Glucose) $6H_2O+6CO_2+h\nu(Energy) \rightarrow C_6H_{12}O_6+6O_2$

Cellular respiration:

Glucose broken down into usable form of Energy **ATP**.

 $C_6H_{12}O_6+6O_2$

 \rightarrow 6H₂O+6CO₂+ ATP(energy)

Bioenergetics:

Quantitative study of the *energy transductions* – changes of one form of energy into another – that occur in living cells. Nature and function of the chemical process underlying these transductions.

Biological energy transductions obey the laws of Thermodynamics

 $h\nu(Energy) \rightarrow C_6H_{12}O_6 \rightarrow ATP(Energy) \rightarrow USEFUL WORK$

The goals of this lesson

- Review the laws of thermodynamics
- Understand the quantitative relationships among free energy, enthalpy and entropy

Quantitative answers for the following questions

$$A+B \neq C$$

- 1. Will this happen spontaneously? (Driving Force)
- 2. How much will this happen?
- 3. Relation between 1 and 2?
- 4. How all this is related to biology?
- 5. How fast will this happen?

The goals of this lesson

- Review the laws of thermodynamics
- Understand the quantitative relationships among free energy, enthalpy and entropy

Quantitative answers for the following questions

$$A+B \neq C$$

- 1. Will this happen spontaneously? (Driving Force)
- 2. How much will this happen?
- 3. Relation between 1 and 2?
- 4. How all this is related to biology?
- 5. How fast will this happen? (KINETICS)

Energetics of Living System

Non-living

Heat Engine: Flow of Heat → Work

Living

Energy of chemical reactions

- Synthesis of complex molecules,
- Concentration gradient,
- Electrical gradient,
- Motion,
- Heat,
- Light

Chemical reactions in Lab: Closed system

Living cell: Open system

Laws of thermodynamics

1. CONSERVATION OF ENERGY; energy may change its form, but it can not be created or destroyed.

PE→ KE→ Light+Heat

Laws of thermodynamics

1. CONSERVATION OF ENERGY; energy may change form, but it can not be created or destroyed.

Energy U = KE+PE

Work (W)

$$\Delta \mathbf{U} = \mathbf{Q} + \mathbf{W}$$

Energy can produce heat, work...

$\Delta E = q + w$, q and w may change value (path) but ΔE stays the same

Smooth surface

Rough surface

$$\Delta \mathbf{U} = \mathbf{Q} + \mathbf{W}$$

Biological Thermodynamics

Work (W) and Heat (Q)

 $\Delta U = W + Q$

Work involves the non-random movement of particles

Heat involves the random movement of particles

Energy transfer to the motion of **OBJECTS** Energy transfer to the motion of ATOMS/ MOLECULES

$$\Delta \mathbf{U} = \mathbf{Q} + \mathbf{W}$$

Q=+, heat added to the system

Q = -, Heat released by the system

W=+, Workdone on the system

W= -, Wordone by the system

$$=$$
) $\Delta U = Q + (W_{Mech} + W_{non-Mech})$

[Say no non-mechanical work]

$$=) \Delta \mathbf{U} = \mathbf{Q} + \mathbf{W}_{mech}$$

$$=$$
) $\Delta \mathbf{U} = \mathbf{Q} - \mathbf{P} \Delta \mathbf{V}$

$$=$$
) $\Delta \mathbf{U} + \mathbf{P} \Delta \mathbf{V} = \mathbf{Q}$

[At constant Pressure]

$$=) \Delta \mathbf{U} + \Delta \mathbf{P} \mathbf{V} = \mathbf{Q}_{\mathbf{p}}$$

$$=) \Delta(\mathbf{U} + \mathbf{PV}) = \mathbf{Q_p}$$

$$=) \Delta \mathbf{H} = \mathbf{Q}_{\mathbf{p}}$$

 W_{mech} = Force x Distance = Pressure x Area x Dist

 $= - P \Delta V$

In biology we usually interested in enthalpy change. Measured experimentally by determining the heat change at constant Pressure

$$=) \Delta U + P \Delta V = Q$$
[At constant Volume]
$$=) \Delta U = Q_v$$

- Difference between $\Delta H \equiv Q_p$ and $\Delta U \equiv Q_v$ is small for reactions that involve liquid/solid.
- For Endothermic reactions ΔH is +ve. For exothermic it is –ve. Unit of H is kJ/mol
- Remember Hess's law for calculating ΔH of a reaction.

Biological Thermodynamics

Enthalpy change (ΔH)

 ΔH during a chemical reaction is the heat absorbed or released in the breaking and formation of bonds

Calorimetry

- Calorimetry is the measurement of the heat gained or lost in a chemical reaction.
 - A calorimeter is a device that isolates the outside environment.
 - Any loss or gain of energy in the products results in a change in temperature only in the calorimeter.
 - The rise (or drop) of temperature in the calorimeter is dependent on the amount of heat released or gained and the heat capacity of the surroundings

 Motorized stirrer
 - Bomb calorimeter
 - \Rightarrow q = (mass_{water})(C_{water})(Δ T)

2. For any spontenious process, entropy=S of the universe increases

Things can happen in both direction: No restriction from 1st Law

2nd Law explain the arrow of Time

Lets define a quantity =
$$S = \frac{Q}{T} = \frac{Heat}{Temp}$$

Case I: Heat flow from Hot \rightarrow Cold

$$\Delta S = -\frac{Q}{T_h} + \frac{Q}{T_c} > 0$$

Case III (
$$T_h=T_c$$
), Equilibrium

$$\Delta S = \frac{Q}{T_h} - \frac{Q}{T_c} = 0$$

Case II: Heat Flow from Cold → Hot

$$\Delta S = \frac{Q}{T_h} - \frac{Q}{T_c} < 0$$

- Enengy is conserved for all cases I, II, III
- $\Delta S_{universe} \ge 0$, Not only explain why things happen in one direction but also quantitative.

What is entropy?

Very strange quantity: (Randomness/Temp) and state function

Why do we need a quantative equation?

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} \ge 0$$

Apparent contradiction of 2nd Law of thermodynamics?

- crystallization
- Life on earth

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} \ge 0$$

Need to calculate Δ Ssurroundings all the time?

$$\Delta S_{\text{surrounding}} = \frac{Q_{\text{surrounding}}}{T} = \frac{-Q_{\text{system}}}{T}$$

[At constant Pressure]

$$\Delta S_{\text{surrounding}} = \frac{-Q_{\text{system}}}{T} = \frac{-Q_p}{T} = \frac{-\Delta H_{\text{system}}}{T}$$

Lets try to get rid of surrounding entropy?

2nd Law,
$$\Delta S_{\text{system}} + \Delta S_{\text{surroundings}} \ge 0$$

$$=) \quad \Delta S_{\text{system}} - \frac{\Delta H_{\text{system}}}{T} \ge 0$$

$$=$$
) $T \Delta S_{\text{system}} - \Delta H_{\text{system}} \ge 0$

$$=$$
) $-(-T \Delta S_{\text{system}} + \Delta H_{\text{system}} \ge 0$

$$=$$
) $(-T \Delta S_{\text{system}} + \Delta H_{\text{system}}) \leq 0$

At constant pressure and temperature?

$$=$$
) $\Delta(H_{\text{system}} - TS_{\text{system}} +) \leq 0$

=)
$$\Delta(H - TS) \leq 0$$
 No Surrounding term; System only term. predict spontaneity based on system (G).

=)
$$\Delta G \leq 0$$
 (2nd law in terms of system)

At constant volume and temperature?

$$\Delta S_{\text{surrounding}} = \frac{-Q_{\text{system}}}{T} = \frac{-Q_{v}}{T} = \frac{-\Delta U_{\text{system}}}{T}$$

2nd Law,
$$\Delta S_{\text{system}} + \Delta S_{\text{surroundings}} \ge 0$$

$$=) \quad \Delta S_{\text{system}} - \frac{\Delta U_{\text{system}}}{T} \ge 0$$

$$=$$
) $\Delta(U_{\text{system}} - TS_{\text{system}} +) \leq 0$

$$=$$
) $\Delta(U - TS) \leq 0$

=)
$$\Delta A \leq 0$$

(A = U - TS = Hemloltz Free Energy = STATE FUNCTION)

Property of Gibbs Free Energy? What's the big deal?

$$G = H - TS$$

$$=) \quad \Delta G = \Delta H - T\Delta S - S\Delta T$$
 Substituting , $H = U + PV$

$$=$$
) $\Delta G = \Delta (U + PV) - T\Delta S - S\Delta T$

$$=) \quad \Delta G = \Delta U + P\Delta V + V\Delta P - T\Delta S - S\Delta T$$

$$1st \ Law , \Delta U = Q + W$$

$$=$$
) $\Delta G = (Q + W) + P\Delta V + V\Delta P - T\Delta S - S\Delta T$

Now,
$$W = W_{Mech} + W_{nonMech} = - (P\Delta V + W_{nonMech})$$

$$=) \quad \Delta G = Q - (P\Delta V + W_{\text{nonMech}}) + P\Delta V + V\Delta P - T\Delta S - S\Delta T$$

Definition of entropy: For a reversible process $\Delta S = Q/T$

=)
$$\Delta G = Q - (P\Delta V + W_{nonMech}) + P\Delta V + V\Delta P - T\Delta S - S\Delta T$$

$$=$$
) $\Delta G = -W_{\text{nonMech}} + V\Delta P - S\Delta T$

At constant pressure, Temp

$$=$$
) $\Delta G_{P,T} = -W_{\text{nonMech}}$

Free Energy:

It is the portion of a system's energy that is able to perform work when temperature and pressure is uniform throughout the system, as in a living cell

 Free energy also refers to the amount of energy actually available to break and subsequently form other chemical bonds

Summary

o First Law

- As we know for a spontaneous process, as $\Delta S_{total} > 0$ or $\Delta G < 0$.
- o for $A \rightarrow B$, If ΔG for $A \rightarrow B$ is (-)ve, spontaneous. If ΔG for A B is (+)ve, the reverse will proceed. $\Delta G = 0$ at equilibrium.
- \circ ΔG could be used for doing work (Heart beat, muscle etc, Drive another chemical reactions etc)

$$A+B \neq C$$

Quantitative answers for the following questions

- 1. Will this happen spontaneously? (Driving Force). Answer: magnitude and sign of ΔG
- 2. How much will this happen?
- 3. Relation between 1 and 2?
- 4. How all this is related to biology

BT 101 Textbooks:

- [1] J. L. Tymoczko, J. M. Berg and L. Stryer, Biochemistry, 5th Ed, W. H. Freeman & Co
- [2] D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry, Macmillan Worth
- [3] Gordon G. Hammes, Thermodynamics and kinetics for biological sciences, WILEY-INERSCIENCE John Wiley & sons.

