基礎コンピュータ工学 2022 年度 前期中間試験

(2022.05.30 重村 哲至)

IE1 **番 氏名**

模範解答

1. 空欄に適切な用語・数値・数式を答えなさい. ((1),(2) には用語を, (3),(4) には数値を, (5) には数式を答えること) $(2 <table-cell> \times 5$ 問=10 点)

情報の最小単位は (1) と呼ばれる. これを 4 つ合わせたものはニブル, 8 つ合わせたものは (2) と呼ばれる. 1 ニブルでは (3) 種類の状態を表現できる. 1 (2) では (4) 種類の状態を表現できる.

n ビットで表現できる状態の種類を表す数式は (5) である.

(1)	ビット	(2)	バイト
(3)	1 6	(4)	2 5 6
(5)	2^n		

2. 同じ値を 2 進数、16 進数、10 進数で書き並べた次の表を完成しなさい。(4 点×6 間=24 点)

2 進数	(8 桁)	16 進数 (2 桁)	10 進数
0011	0010	32	50
0110	0010	62	98
1100	1000	C8	200
1101	0010	D2	210

3. 10 進数と 8 ビット 2 の補数表現の対応表を完成しなさい。 (5 点 ×3 間=15 点)

10 進数	8 ビット 2 の補数表現		
-1	1111	1111	
112	0111	0000	
-16	1111	0000	
-10	1111	0110	

4. 次の 2 進数の計算を 8 桁で行いなさい。但し、8 桁目からの桁上げは無視し、8 桁目への桁借りは自由に行えるものとします。 $(2 \text{ の補数の計算で学んだ 9 ビット目を無視する手順で計算する。}) <math>(4 \text{ 点} \times 3 \text{ 問} = 12 \text{ 点})$

$$(\emptyset) = \begin{array}{c} 1111 & 1111 \\ + & 0000 & 0001 \\ \hline 0000 & 0000 \\ 0110 & 0001 \\ + & 0001 & 1110 \\ \hline 0111 & 1111 \\ \hline & & & & \\ 1111 & 1000 \\ \hline & & & & \\ 1111 & 0110 \\ \hline & & & & \\ (3) & & & & \\ \hline & & & & \\ 1110 & 1100 \\ \hline \end{array}$$

5. 4. の計算で用いた 8 ビット 2 進数が 2 の補数表現を用いて符号付き整数を表していたとします。 $(1)\sim(3)$ の各計算の意味を 10 進数で書くとどのようになるか答えなさい。(4 点 $\times 3$ 問=12 点)

) + (30) = (127)

97

基礎コンピュータ工学 2022 年度 前期中間試験

(2022.05.30 重村 哲至)

IE1 **番 氏名**

模範解答

6. 10 進数と固定小数点数形式の 2 進数の対応表を完成しなさい。なお、2 進数は、符号無しの 8 ビット 2 進数である。8 ビットの内容は、整数部 4 ビット、小数部 4 ビットとする。(4 点×3 問=12 点)

10 進数	8 ビット 2 進数表現 (xxxx.xxxx)
15.5	1111.1000
9.125	1001.0010
11.625	1011.1010
5.375	0101.0110

- 下の ASCII 文字コード表に関する問いに答えなさい。
 (2点×4問=8点)
- (1) 記号「*」の文字コードを 16 進数で答えなさい。

(2) 数字「9」の文字コードを16進数で答えなさい。

(3) 文字コードが16進数で「45」の文字を答えなさい。

(4) 文字コードが16進数で「68」の文字を答えなさい。

(上位3ビット) 4 5 7 0 1 3 6 NUL DLE (SP) p 1 1 SOH DC1 Α \mathbf{q} 2 STX DC2 2 В b C ETX DC3 4 \$ D d EOT DC4 5 ENO NAK % Ε e u 6 6 F f ACK SYN & \mathbf{V} 7 G W BEL ETB g W 8 Η h BS CAN 9 9 HTEMУ Α LF SUB В K VTESC k C < 1 FFFS L M D m CR GS

8. 回路図から真理値表と論理式を答えなさい.

RS

US

Ε

SO

SI

?

(1) 真理値表を完成しなさい. (4点)

A	В	X
0	0	1
0	1	0
1	0	0
1	1	0

(2) 論理式を答えなさい. (3点)

$$X = \overline{(A \oplus B) + B}$$