National University of Computer and Emerging Sciences, Lahore Campus

Course:	DLD Lab	Course Code:	EL227
Program:	BS (Computer Science)	Semester:	Spring 2017
Duration:	50 minutes	Total Marks:	50
Date	26-03-18	Weight	25%
Section:	B2 (A)	Pages:	2

Mid	Term	Exam
IVII(I	I erm	r.xam

NAME:	Roll #:	

READ THE INSTRUCTIONS CAREFULLY.

- 1. Final Submissions should be done in your respective section folder on sandata/xeon/Spring2018/AbdulKhaliq/DLDSectionB2/MidSubmission.
- **2.** LogicWorks File must be renamed after your roll number e.g., **"17L-4125".** Multiple submissions are not allowed (if done, only first one will be considered).
- 3. For your ease, Pin Configurations of all ICs is given in word file named "ICs Info" placed in folder at sandata/xeon/Spring2018/AbdulKhalig/DLDSectionB2.
- **4.** You will be immediately **disqualified** from the exam if:
- i. You are seen talking, whispering, borrowing or looking at someone's Paper.

Problem Statement: Implement the following Boolean functions using 3x8 Decoder and external gates.

$$F1 = y'z + xz$$

 $F2 = xy'z' + x'y + x'y(z + z')$

a. Draw the truth table for above problem statement.

[10 Point]

A	В	С	F1	F2
0	0	0		

0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

- b. Implement the complete circuit on LogicWorks Tool using 3x8 Decoder and 2-input external gates. (Note: Use as minimum no. of logic gates as possible) [15 Points]
- c. Implement the circuit of part (b) on the trainer board and verify the results.
 (Note: Use as minimum no. of logic gates as possible)
 [25 Points]