MIPS Reference Data

Meterchec Data						
CORE INSTRUCTI	ON SE				OPCODE	
NAME AGIENO	NIC	FOR-			/ FUNCT	
NAME, MNEMO Add	add	MAT R		(1)	(Hex) 0 / 20 _{hex}	
Add Immediate	addi	I	R[rd] = R[rs] + R[rt] R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}	
Add Imm. Unsigned		I	R[rt] = R[rs] + SignExtImm R[rt] = R[rs] + SignExtImm	(2)		
Add Unsigned	addu	R		(2)	9 _{hex} 0 / 21 _{hex}	
		R	R[rd] = R[rs] + R[rt] $R[rd] = R[rs] + R[rt]$		0 / 24 _{hex}	
And Immediate	and andi	I	R[rd] = R[rs] & R[rt]	(3)		
Branch On Equal	beq	I	R[rt] = R[rs] & ZeroExtImm if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	c _{hex}	
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}	
Jump	j	J	PC=JumpAddr	(5)	2_{hex}	
Jump And Link	jal	J	R[31]=PC+4;PC=JumpAddr	(5)	3 _{hex}	
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}	
Load Byte Unsigned	lbu	Ι	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}	
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}	
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}	
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}	
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23_{hex}	
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		$0/27_{hex}$	
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		$0/25_{hex}$	
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	d_{hex}	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / $2a_{hex}$	
Set Less Than Imm.	slti	I	$R[rt] = (R[rs] \le SignExtImm)? \ 1$: 0 (2)	a _{hex}	
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}	
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	11070	
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		$0 / 00_{hex}$	
Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		$0 / 02_{hex}$	
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}	
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}	
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}	
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{\text{hex}}$	
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	11071	
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}	
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic						
BASIC INSTRUCTI	ON EO	DMA	Te			

BASIC	INSTRU	CTION	FORMATS
-------	--------	-------	----------------

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5
I	opcode	rs	rt		immediate	e
	31 26	25 21	20 16	15		-
J	opcode			address		
	21 26	25				

ARITHMETIC CORE INSTRUCTION SET

			O	FMT/FT
		FOR-		/ FUNCT
NAME, MNEMO		MAT	OPERATION	(Hex)
Branch On FP True	bc1t	FI	$if(FPcond)PC=PC+4+BranchAddr\ (4)$	11/8/1/
Branch On FP False	bc1f	FI	$if(!FPcond)PC \!\!=\!\! PC \!\!+\!\! 4 \!\!+\! BranchAddr(4)$	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
	divu	R	$Lo=R[rs]/R[rt]; Hi=R[rs]\%R[rt] \hspace{0.5cm} (6)$	0//-1b
	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double			{F[ft],F[ft+1]}	
FP Compare Single	C.X.S*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	c.x.d*	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
Double			$\{F[ft],F[ft+1]\}\)?1:0$	11/11/ /y
			=, <, or <=) (y is 32, 3c, or 3e)	11/10/ /2
	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
Double Circles	-	ED	{F[ft],F[ft+1]}	11/10/ /2
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply Double	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2
	,	FR	{F[ft],F[ft+1]}	11/10//1
FP Subtract	sub.s	ГК	F[fd]=F[fs] - F[ft]	11/10//1
Double	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[ft],F[ft+1]}$	11/11//1
Load FP Single	lwc1	I	$ \{F[tt], F[tt+1]\} $ $F[rt]=M[R[rs]+SignExtImm] $	31//
Load FP	IWCI	-	F[rt]=M[R[rs]+SignExtImm]; (2)	
Double	ldc1	I	F[rt+1]=M[R[rs]+SignExtImm+4]	35//
	mfhi	R	R[rd] = Hi	0 ///10
	mflo	R	R[rd] = Lo	0 ///12
Move From Control		R	R[rd] = CR[rs]	10 /0//0
	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
1 -	nultu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ $\{6\}$	0///19
Shift Right Arith.	sra	R	R[rd] = R[rt] >>> shamt	0///3
Store FP Single	swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP			M[R[rs]+SignExtInm] = F[rt]; (2)	
Double	sdc1	I	M[R[rs]+SignExtImm+4] = F[rt+1]	3d//
			[] Digitamini ij I[it i]	

(2) OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	9
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

	.,	3E.1., 33E, 37LE 33111E.	******
NAME	NUMBER	USE	PRESERVEDACROSS
NAME		USE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v	1 2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a	3 4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	7 16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k	1 26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	No

MIPS

OPCODES	BASE CONVERSION	ASCII SYMBOLS

3
exa-

	(1) MIPS	(2) MIPS	ISIUN, A			ASCII		Hexa-	ASCI
opcode	funct	funct	Binary	Dec1-		Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)	Dillary	mal	mal	acter	mal	mal	acter
	sll		00 0000	0	0	NUL	64	40	
(1)	SII	add.f	00 0000	1	1	SOH	65	41	@ A
		sub.f	00 0001	2	2	STX	66	42	B
j	srl	mul.f	00 0010	3	3	ETX	67	42	С
jal	sra sllv	div.f	00 0011	4	4	EOT	68	43	D
beq	SIIV	sqrt.f	00 0100	5	5	ENQ	69	45	E
bne blez	1	abs.f	00 0101	6	6	ACK	70	45	F
	srlv	mov.f	00 0110	7	7	BEL	71	47	G
bgtz	srav	neg.f	00 1000	8	8	BS	72	48	H
addi	jr		00 1000	9	9	HT	73	49	П I
addiu	jalr			10		LF	74	49 4a	J
slti	movz		00 1010 00 1011	11	a b	VT	75	4a 4b	K
sltiu	movn		00 1011	12	c	FF	76	4c	L
andi	syscall	round.w.f	00 1100	13	d	CR	77	4d	M
ori	break	trunc.w.f	00 1101	13		SO	78	4u 4e	N
xori		ceil.w.f	00 1110	15	e f	SI	79	4e 4f	O
lui	sync	floor.w.f					80	50	P
(2)	mfhi		01 0000 01 0001	16 17	10 11	DLE DC1	81	51	Q
(2)	mthi	<i>ſ</i>		17				52	
	mflo	movz.f	01 0010 01 0011	18	12 13	DC2 DC3	82 83	53	R S
	mtlo	movn.f	01 0011	20	13	DC3	84	54	T
			01 0100	21	15		85	55	U
			01 0101	22	16	NAK SYN	86	56	V
				23					
			01 0111	23	17	ETB	87	57 58	X
	mult		01 1000	25	19	CAN	89	59	Y
	multu		01 1001	26		EM	90		Z
	div		01 1010 01 1011	26	1a	SUB ESC	90	5a	
	divu			28	1b 1c	FS	91	5b 5c	_]
			01 1100	29			93	5d	
			01 1101		1d	GS			Ì
			01 1110	30	le	RS	94	5e	,,
2.1			01 1111	31	1f 20	US	95 96	5f	
lb	add	cvt.s.f	10 0000	33	21	Space !	97	60 61	
lh	addu	$\operatorname{cvt.d} f$			22	:	98		a
lwl	sub		10 0010	34		#	98	62	b
lw	subu		10 0011	35	23			63	c
lbu	and	$\operatorname{cvt.w.}\!f$	10 0100		24 25	\$	100	64	d
lhu	or		10 0101	37		%	101	65	e
lwr	xor		10 0110	38	26	&	102	66	f
,	nor		10 0111	39	27		103	67	g
sb			10 1000	40	28	(104	68	h
sh			10 1001	41	29)	105	69	i
swl	slt		10 1010	42	2a		106	6a	j
SW	sltu		10 1011	43	2b	+	107	6b	k
			10 1100	44	2c	,	108	6c	1
			10 1101	45	2d	-	109	6d	m
swr,			10 1110	46	2e	,	110	6e	n
cache			10 1111	47 48	2f 30	0	111	6f	0
11	tge	c.f.f	11 0000	48 49		1	112	70	p
lwc1	tgeu	c.un.f	11 0001		31		113	71	q
lwc2	tlt	c.eq f	11 0010	50	32	2	114	72	r
pref	tltu	c.ueq.f	11 0011	51	33	3	115	73	S
111	teq	c.olt.f	11 0100	52	34	4	116	74	t
ldc1		c.ult.f	11 0101	53	35	5	117	75 76	u
ldc2	tne	c.ole.f	11 0110	54	36	6	118	76	V
		c.ule.f	11 0111	55	37	7	119	77	W
sc		c.sf.f	11 1000	56	38	8	120	78	X
swc1		c.ngle f	11 1001	57	39	9	121	79	У
swc2		c.seq.f	11 1010	58	3a	:	122	7a	Z
		c.ngl f	11 1011	59	3b	;	123	7b	{
		c.lt.f	11 1100	60	3c	<	124	7c	
sdc1		c.nge f	11 1101	61	3d	=	125	7d	}
sdc2		${\tt c.le.} f$	11 1110	62	3e	>	126	7e	~
		c.ngt f	11 1111	63	3f	?	127	7f	DEL
14.5	1 (21 26)	_			_				

(1) opcode(31:26) == 0

(2) opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f = s$ (single); if $fmt(25:21) = 17_{ten} (11_{hex}) f = d (double)$

IEEE 754 FLOATING-POINT STANDARD

4 IEEE 754 Symbols

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

Exponent	Fraction	Object					
0	0	± 0					
0	≠0	± Denorm					
1 to MAX - 1	anything	± Fl. Pt. Num.					
MAX	0	±⊗					
MAX	≠0	NaN					
S.P. MAX = 255, D.P. MAX = 2047							

Higher

Stack

Grows

Memory

Addresses

IEEE Single Precision and Double Precision Formats:

> S Exponent Fraction Exponent Fraction 52 51

DATA ALIGNMENT

Double Word								
Word					W	ord		
Halfword Halfword		Hal	fword	Half	word			
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	
0	1	2	3	4	5	6	7	

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

EF HON CONTROL REGISTERS. CAUSE AND STATUS											
	В			Pending			Ex	ception			
	D			Interrupt				Code			
	31		15	:	8		6		2		
				Interrupt	1			U		Е	Ι
				Mask				M		L	Е
			15		8			4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

Number	Name	Cause of Exception	Number	Name	Cause of Exception			
0	Int	Interrupt (hardware)	9	Вр	Breakpoint Exception			
4	AdEL	Address Error Exception	10	RI	Reserved Instruction			
-		(load or instruction fetch)	10	KI	Exception			
5	AdES	Address Error Exception	11	CpU	Coprocessor			
]		(store)	11 C		Unimplemented			
6	IBE	Bus Error on	12	Ov	Arithmetic Overflow			
0		Instruction Fetch	12	Ov	Exception			
7	DBE	Bus Error on	13	Tr	Trap			
/		Load or Store	13	11				
8	Sys	Syscall Exception	15	FPE	Floating Point Exception			

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

	SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol				
	10 ³	Kilo-	K	2 ¹⁰	Kibi-	Ki				
	10 ⁶	Mega-	M	2 ²⁰	Mebi-	Mi				
	10 ⁹	Giga-	G	230	Gibi-	Gi				
	10^{12}	Tera-	T	2 ⁴⁰	Tebi-	Ti				
	10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi				
[10^{18}	Exa-	Е	260	Exbi-	Ei				
ш	10^{21}	Zetta-	Z	270	Zebi-	Zi				
	1024	Yotta-	Y	280	Yobi-	Yi				

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Compa