Questions for DTSP practical exam

1. Write a python code to determine y[n] the linear convolution of two sequences x[n] and h[n] using formula given below and hence verify your answer

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

a.
$$x[n] = [1, 2, 3, 4]$$
 and $h[n] = [1, 1, 3, 2]$

b.
$$x[n] = [1, 2, 3, 0, 5]$$
 and $h[n] = [1, 0, 2]$

2. Design a Lowpass Butterworth IIR filter using Bilinear transformation to satisfy the following specifications for T=0.1 sec

$$0.9 \le \left| H(e^{j\omega}) \right| \le 1$$
 $0 \le \omega \le 0.35\pi$
 $\left| H(e^{j\omega}) \right| \le 0.1$ $0.8\pi \le \omega \le \pi$

3. Design a High pass Butterworth digital IIR filter using Bilinear Transformation assuming T=0.1s to satisfy the following specifications:

$$0.9 \le \left| H(e^{j\omega}) \right| \le 1$$
 $0.8\pi \le \omega \le \pi$ $\left| H(e^{j\omega}) \right| \le 0.1$ $0 \le \omega \le 0.35\pi$

4. Design a Lowpass Chebyshev digital IIR filter using Bilinear Transformation assuming T=0.1s to satisfy the following specifications:

$$0.9 \le \left| H(e^{j\omega}) \right| \le 1$$
 $0 \le \omega \le 0.35\pi$
 $\left| H(e^{j\omega}) \right| \le 0.1$ $0.8\pi \le \omega \le \pi$

5. Design an FIR low-pass filter using Hanning window with the following specifications: Length: 9 Cutoff frequency: $\pi/2$.

6. Design a FIR digital filter using window method for following specification

$$H(e^{j\omega}) = e^{-j3\omega}$$
 $0 \le |\omega| \le \frac{3\pi}{4}$
= 0 Otherwise

Use Hamming window of length 7.

7. Design a Bandpass FIR filter using Blackman window for the following specifications

Length of the filter: 11

cutoff frequencies :0.3 π and 0.6 π .

8. Design a Bandstop FIR filter using Blackman window for the following specifications

Length of the filter 11

cutoff frequencies $:0.3\pi$ and 0.6π

9. Design a High pass Chebyshev digital IIR filter using Bilinear Transformation assuming T=0.1s to satisfy the following specifications:

$$0.9 \le \left| H(e^{j\omega}) \right| \le 1$$
 $0.8\pi \le \omega \le \pi$ $\left| H(e^{j\omega}) \right| \le 0.1$ $0 \le \omega \le 0.35\pi$

10. Write a python code to determine y[n] the circular convolution of two sequence x[n] and h[n] using time domain method and hence verify your result.

a.
$$x[n] = [1, 2, 3, 4]$$
 and $h[n] = [1, 1, 3, 2]$

b.
$$x[n] = [1, 2, 3, 0, 5]$$
 and $h[n] = [1, 0, 2]$

11. Write a python code to determine DFT of the following sequence and hence verify your result.

a.
$$x_1[n] = [1,0,2,0]$$

b.
$$x_2[n] = [1, 2, 3]$$

12. Write a python code to determine DFT of the following sequence and hence verify your result.

a.
$$x_1[n] = [1,2]$$

b.
$$x_2[n] = [1+j,2+j,3+3j,4+4j]$$

13. Write a python code to determine IDFT of the following sequence and hence verify your result.

a.
$$X_1[k] = [10, -2+2j, -2, -2-2j]$$

b.
$$X_2[k] = [16, 0, 0, 0]$$

14. Write a Python code to implement circular convolution of two sequence using DFT/IDFT method and hence verify your result.

a.
$$x[n] = [1, 2, 3, 4]$$
 and $h[n] = [1, 1, 3, 2]$

b.
$$x[n] = [1, 2, 0, 5]$$
 and $h[n] = [1, 0, 2, 1]$

15. Write a Python code to prove linearity property of DFT and hence verify your result for following sequences.

a.
$$x1[n] = [1, 2, 3, 4]$$
 and $x2[n] = [1, 1, 3, 2]$

b.
$$x1[n] = [1, 2, 0, 5]$$
 and $x2[n] = [1, 0, 2, 1]$

16. Write a Python code to generate basic signals

(Unit Ramp signal and Unit step signal). And solve the following problem.

The unit sample response of a system is $h(n) = \{3, 2, 1\}$ use overlap-add method of linear

filtering to determine output sequence for the repeating input sequences

$$x(n) = \{2, 0, -2, 0, 2, 1, 0, -2, -1, 0\}$$

17. Write a Python code to compute SPECTRUM of signal using DFT.

And solve the following problem.

The unit sample response of a system is $h(n) = \{3, 2\}$ use overlap-save method of linear filtering to determine output sequence for the repeating input sequences

$$x(n) = \{2, 0, -2, 0, 2, 1, 0, -2, -1, 0\}$$