Use the attached diagram to write relational algebra expressions to answer the following:

1. Find the first and last names of all customers with a room in our system named "Kitchen"

$$\mathsf{RESULT} \leftarrow \pi_{\mathsf{first}, \mathsf{last}} \left(\mathsf{CUSTOMER} * (\sigma_{\mathsf{name} = \mathsf{``Kitchen''}}(\mathsf{ROOM})) \right)$$

2. Find the first and last names of all customers who have used a paint color named "Shocking Red"

PAINTED_RED
$$\leftarrow$$
 PAINTED * ($\sigma_{name} = \text{"Shocking Red"}(PAINT_COLOR)$)

RESULT $\leftarrow \pi_{first, last}$ (CUSTOMER * PAINTED_RED)

3. Find the business name of all contractors who do not have a phone number in our database.

HAS_PHONE
$$\leftarrow \pi_{bus_name}$$
 (CONTRACTOR_PHONE)

ALL_CONTRACTORS $\leftarrow \pi_{bus_name}$ (CONTRACTOR)

RESULT \leftarrow ALL_CONTRACTORS - HAS_PHONE

4. Find the business name of all contractors who have neither a phone number in our system nor have been hired by a customer.

```
HAS_PHONE \leftarrow \pi_{bus\_name} (CONTRACTOR_PHONE)

HAS_BEEN_HIRED \leftarrow \pi_{bus\_name} (HIRE)

ALL_CONTRACTORS \leftarrow \pi_{bus\_name} (CONTRACTOR)

RESULT \leftarrow ALL_CONTRACTORS – (HAS_PHONE \cup HAS_BEEN_HIRED)
```

5. Find the business name of all contractors who have both a phone number in our system and have been hired by a customer.

$$\mathsf{HAS_PHONE} \leftarrow \pi_{\,\, \mathsf{bus_name}} \, (\mathsf{CONTRACTOR_PHONE})$$

$$HAS_BEEN_HIRED \leftarrow \pi_{bus_name}$$
 (HIRE)

Another way to do this one is

RESULT
$$\leftarrow \pi_{bus_name}$$
 (CONTRACTOR_PHONE * HIRE)

