SAP BW

Lesson 01: Overview and Terminology

Business Warehouse

Business Intelligence

> Definition

 Business intelligence (BI) is a broad category of applications and technologies for gathering, storing, analyzing, and providing access to information to help a business make better business decisions.

3

Why it came that way?

- Over the years, software became bigger and more complex and the amount of data grew.
- ER models for Enterprise business scale have hundreds of logical entries(Eg. SAP has more than 15,000 tables for R/3), which are linked together.
- Millions of transaction per month made it more and more time consuming to get the data out of system -especially when the transactions are on going.

Solution needed

Three core problems can be seen for reporting in operational system.

- a) Difficult navigation
- b) Performance
- c)Data merge with other applications

Part of the solution was to move all the data from transactional system to seperate system, which is optimized for analysis purpose (user's don't do transactions).

OLTP(ECC) Vs OLAP (BW)

OLTP(ECC) Vs OLAP (BW)

	OLTP System Online Transaction Processing (Operational System)	OLAP System Online Analytical Processing (Data warehouse)		
Source of data	Operational data; OLTPs are the original source of the data.	Consolidation data; OLAP data comes from the various OLTP Databases		
Purpose of data	To control and run fundamental business tasks	To help with planning, problem solving, and decision support		
What the data	Payable a enanchat of angoing business processes	Multi-dimensional views of various kinds of business activities		
Inserts and Updates	Short and fast inserts and updates initiated by end users	rs Periodic long-running batch jobs refresh the data		
Queries	Relatively standardized and simple queries Returning relatively few records	Often complex queries involving aggregations		
Processing Speed	Typically very fast	Depends on the amount of data involved; batch data refreshes and complex queries may take many hours; quer speed can be improved by creating indexes		
Space Requirements	Can be relatively small if historical data is archived	Larger due to the existence of aggregation structures and history data; requires more indexes than OLTP		
Database Design	Highly normalized with many tables	Typically de-normalized with fewer tables; use of star and/or snowflake schemas		
Backup and Recovery	Backup religiously; operational data is critical to run the business, data loss is likely to entail significant monetary loss and legal liability	Instead of regular backups, some environments may consider simply reloading the OLTP data as a recovery method		

Key Capabilities

Datawarehousing (SAP BW administrator Workbench)

- Extraction transformation & loading
- Datawarehouse management
- Business Modelling

BI platform

- -Online analytical processing
- -Data mining
- -Alerting
- -Metadata Repository
- -Planning Framework

BI suite of tools (SAP BW Business Explorer)

- -Query Design
- -Managed reports and analysis
- -Visualization- Web apllications & design
- -Collaboration

Pre-configured Business content

Key Capabilities

Openness

- · Open Hub service dissemination of Information
- UD connect directly access to data to relational database tables and OLAP systems.
- Supports industry standards(eg. XML, XML for Analysis, JDBC, etc)

Integration

- Integration of technology, tools & applications allowing cross enterprise analytics & closed loop scenarios
- Integration of Enterprise portal as single point of Entry
- Integration of unstructured information such as files, documents, etc.

Web offerings:

- Interactive analysis of Information, via web and mobile devices.
- · Intuitive design of web applications
- Ad-Hoc design via Web

SAP BI Architecture

Data Warehousing & ETL (Extract, Transform & Load)

Data Warehousing

- Open for any source
- Flexible set of ETL capabilities
- Integration on application level
- Open to third-party tools
- Support of open standards

...to get a complete view of your business

Operational Data Store and Data Warehouse layer

Data Warehouse

- Non volatile
- Granular
- Integrated
- Historical foundation
- Built with ODS Objects

Operational Data Store

- Operational Reporting
- Near Real-Time / Volatile
- Granular
- Built with ODS Objects

Multidimensional Models

- Multidimensional analysis
- Aggregated view
- Integrated
- Built with InfoCubes

... to provide the right information for all users

BI Platform

.IDIX

Quick and easy design of and reporting

Query Designer: QRY_SI_US12 - USA last 12 miths

SAP Demo Sales and Distribution: .

M. Calculated Key Figure

Structure

Key Figure Restricted Key Figures

6 % D 3 Q 6 8 Q . P . ■ B 4 4 7 B 9 4 B Q .

▲ Value Type

Country

Information Broadcasting

Authorization

Standard Authorizations

- Based on standard role and authorization concept of SAP
- Was and still are used for BI administrator and developer activities

Reporting Authorizations

- Old security concept up to SAP NetWeaver '04 (up to SAP BW 3.5)
- Control for which data a user has access to in a query
- Realized through the standard authorization concept, which has many limitations

Analysis Authorizations

- New security concept as of SAP NetWeaver 2004s
- Is <u>not</u> based on standard authorization concept in order to overcome the limitations
- Takes features of reporting and analysis in BI into consideration

Open Analysis Interfaces

Business Content

Business Content

- Predefined, role-based and task-oriented information models
- Provide technical definitions, such as extraction and transformation rules

- >Predefined templates for reporting and analysis.
- For various industries and business areas

Business Content Benefits

- -Web enabled Immediate access to interpreted Information -
- ready to Go reports, data models, extractors, transformations
- Significant cut down implementations & costs
- Easily extensible

Consistency:

-Integrated view of corporate data

Validated & comparable information

- -Rich set of standard key performance indicators
- -Best practice models

Cross system/Cross applications

- -Integration of E business & ERP systems
- -Tight integration with MYSAP applications
- -Integration with non-SAP data

The new intelligence platform Value added within an SAP landscape

Data Warehouse Star Schema

Classic Star Schemas

A schema is called a *star schema* if all dimension tables can be joined directly to the fact table. The following diagram shows a classic star schema.

Infocube - Extended Star Schema

>Consolidating data warehouse layers that were not developed together may produce following inconsistencies

- Uncontrolled data flows
- Multiple extraction of the same data
- Local BI initiatives (without a global agreement)
- Several inconsistent data models
- Silos, standalone systems
- An unreliable corporate information basis (unreliable headquarter reporting)
- Overall: Redundant, expensive development

Why EDW?

- >All decisions made for the entire company
- ➤To produce a valid and stable corporate Data Warehouse solution that satisfies all of the demands for integrated and consistently structured information.
- For this, it is necessary to adhere to generally accepted guidelines.
- The Enterprise Data Warehouse architecture reflects all of these decisions.
- >The architecture is a "system design" decision that is valid and stable for a specified timeframe.

Non-Architectured Vs Architectured

Operational Data Store Layer

- Operational reporting
- Near real-time/volatile
- Granular
- Generally consisting of DataStore objects

Enterprise Data Warehouse Layer

- Not volatile
- **■** Granular
- History
- Integrated
- Application-neutral
- Generally: DataStore objects

Architected Data Marts Layer

- Representing a function, a department or a business area
- Aggregated view
- Integrated
- Generally consisting of MultiProviders and InfoCubes

... to give users the correct information

Layers and BW Objects

Tactical/Strategic Reporting & Analytics

- Summarized
- InfoCubes, Aggregates, MultiProviders

Architected Data Marts

Operational Reporting & Analytics

- · 'Standard reports', access-optimized
- · Ad hoc (that is, flexibility)
- · Detailed, less summarized
- · DataStore objects, InfoCubes

Enterprise Data Warehouse

'single version of truth'

- Corporate, integrated, granular, complete data
- · DataStore objects

Operational Data Store

Operational Reporting & Analytics

- · Restricted integration, highly granular
- · Short wait time, DataStore objects

Staging Area

Cleansing, Transformation, Quality

· Granular, PSA, DataStore objects

Comparison of different BI Layers

	Load frequency	Histor. back ground	Complete History	Primary Reporting Goal	Granularity of information	Owner	Overwriting/ changing loaded data	Archiv- ing
Data Marts (strategic)	daily, weekly, monthly	>= 2 years	N	Y	aggregated	user dept.	yes, for each project area	Y
Data Marts (operational)	daily, weekly, monthly	< 6 months	N	Y/(N)	easily aggregated/ granular	user dept.	yes, for each project area	Y
EDW	daily, weekly, monthly	several years	Υ	N/(Y)	granular	entire company	no	Y
Oper. Data Store	almost real- time – daily	< 6 months	N	Υ	granular	user dept.	yes, for each project area	Y