

ARE YOU READY?

A Nonlinear program (NLP) can have a linear or nonlinear objective function with linear and/or nonlinear constraints (If both the objective function and the constraints are linear then it is a linear programming model)

- For any LP, the coefficients of the variable are fixed. For example: a company wants to sell shirts for R150 and shorts for R300. We will define our objective function as $15x_1 + 30x_2$.
- For any NLP the variables can be dependant on each other. For example: Q & H Company advertises on soap operas and football games. if S soap opera ads are bought, they will be seen by $5\sqrt{S}$ men. If F football ads are bought, they will be seen by $17\sqrt{F}$ men. We will define our constraint as $5S^{1/2} + 17F^{1/2} \ge 40$ (Men).
- For an NLP we need to use some form of numerical search.

- If *K* units of capital and *L* units of labour are used, a company can produce *KL* units of a manufactured good. Capital can be purchased at \$4/unit and labour can be purchased at \$1/unit. A total of \$8 is available to purchase capital and labour. How can the firm maximize the quantity of the goods that can be manufactured?
- Let K= units of capital purchased and L= units of labour purchased. Then K and L must satisfy $4K+L\leq 8, K\geq 0$, and $L\geq 0$. Thus, the firm wants to solve the following constrained maximization problem:

$$\max z = KL$$

s. t. $4K + L \le 8$

$$K, L \geq 0$$

INTRODUCTION TO NLP

- An NLP with no constraints is an unconstrained NLP
- Non-convexity can be an issue in an NLP model, because solver may not find the global minimum and may instead find a local minimum.
- The objective function or the constraints can be non-convex.
- A local maximum/minimum may not be the optimal solution to an NLP, like shown in the picture.

NLP WITH MULTIPLE LOCAL OPTIMAL SOLUTIONS

 For NLPs having multiple local optimal solutions, the Excel Solver may fail to find the optimal solution, because it may pick a local extremum that is not a global extremum. To illustrate, consider the following NLP:

$$\max z = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5)$$

$$s. t. x \ge 1$$

$$x \le 5$$

Note there are two local maxima for this problem.

USING SOLVER FOR AN NLP WITH MULTIPLE LOCAL OPTIMAL SOLUTIONS

- The first time we find the optimal solution, which is x = 3.5 and z = 1.4 and we can see on the graph in the previous slide that this point is not the best maximum point.
- The second time, we begin with changing the second constraint to $x \le 2$ and we find the other local maximum, x = 1.4 and z = 3.5.
- The reason for this is that Solver use calculus-based methods (to be described later) to solve NLPs. Any calculus-based approach to solving NLPs runs the risk of finding a local extremum that is not a global extremum.

First Solution				
	х			
Dec. variables	3.573700358			
Objective function	1.41283319	5.049042476		
s. t.	1	3.573700358	>=	1
	1	3.573700358	<=	5
		wrong answe	r	

Second Solution				
	х			
Dec. variables	1.426299971			
Objective function	3.539958339	5.049042476		
s. t.	1	1.426299971	>=	1
	1	1.426299971	<=	2
		right answer		

CONVEX AND CONCAVE FUNCTIONS

- Convex and concave functions play an extremely important role in the study of nonlinear programming problems.
- We need to check whether the function is a convex or concave function.
- With a Single variable NLP, we can determine whether it is convex or concave with second derivatives.

Saddle point

SINGLE VARIABLE CONVEX AND CONCAVE FUNCTIONS

- For a single variable function, we can use second partial derivative to see whether a function is concave or convex:
 - If $f''(x) \ge 0$ then the function is convex (the function has a local minimum)
 - If $f''(x) \le 0$ then the function is concave (the function has a local maximum)
 - For example:

$$f(x) = x^2$$

f''(x) = 2 which is ≥ 0 showing that this function is convex.

$$f(x) = x^{\frac{1}{2}}$$

 $f''(x) = -\frac{1}{4}x^{-\frac{3}{2}}$ which is ≤ 0 showing that this function is concave.

- To determine whether a multi-variable function is convex or concave, we need to use the Hessian matrix with partial second derivatives.
- The determinant of the Hessian matrix denoted by |H| can have three cases:
 - If |H| > 0 and $\frac{\partial^2 f}{\partial^2 x^2} > 0$ then f(x, y) has a local minimum (Convex).
 - If |H| > 0 and $\frac{\partial^2 f}{\partial^2 x^2} < 0$ then f(x, y) has a local maximum (Concave).
 - If |H| < 0 and then f(x, y) has a saddle point.

FINDING THE HESSIAN MATRIX

• For example Let's calculated the hessian matrix at point (2; 1) for the function $f(x, y) = x^2y^2$

•
$$\frac{\partial f}{\partial x} = 2xy^2$$
, $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$ or $\frac{\partial^2 f}{\partial^2 x^2} = 2y^2$

•
$$\frac{\partial f}{\partial y} = x^2 2y, \frac{\partial^2 f}{\partial^2 y^2} = 2x^2$$

•
$$\frac{\partial^2 f}{\partial x \partial y}$$
 and $\frac{\partial^2 f}{\partial y \partial x} = 4xy$

•
$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial^2 x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial^2 y^2} \end{bmatrix} = \begin{bmatrix} 2y^2 & 4xy \\ 4xy & 2x^2 \end{bmatrix}$$

At point (2; 1):

$$\begin{bmatrix} 2(1)^2 & 4(2)(1) \\ 4(2)(1) & 2(2)^2 \end{bmatrix} = \begin{bmatrix} 2 & 8 \\ 8 & 8 \end{bmatrix}$$

First principal 2 and 8 are positive and the determinant = -48 which is negative. |H| < 0 -> saddle point

Using the Hessian matrix to identify whether a function is CAMPUS iTVERSITY convex or concave Example 1

It's the way we're would

Show that $f(x_1, x_2) = -x_1^2 - x_1x_2 - 2x_2^2$ is a concave function

$$H(x_1, x_2) = \begin{bmatrix} -2 & -1 \\ -1 & -4 \end{bmatrix}$$

- The first principal minors are the diagonal entries of the Hessian (-2 and -4). These are both nonpositive.
- The second principal minor is the determinant of $H(x_1, x_2)$ and equals -2(-4)-(-1)(-1)=7>0. Thus, $f(x_1, x_2)$ is a concave function on R^2

$$|H| > 0$$
 and $\frac{\partial^2 f}{\partial^2 x^2} < 0$ -> concave

Using the Hessian matrix to identify whether a function is CAMPUS iTVERSITY convex or concave Example 2

It's the way we're would

Show that $f(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2$ is a convex function on $S = x_1^2 + 2x_1x_2 + x_2^2$

$$H(x_1, x_2) = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

- The first principal minors of the Hessian are the diagonal entries (both equal $2 \ge 0$).
- The second principal minor is $2(2)-2(2)=0\geq 0$. For any point, all principal minors of H are nonnegative, so Thus, $f(x_1,x_2)$ is a convex function on R^2

$$|H| > 0$$
 and $\frac{\partial^2 f}{\partial^2 x^2} > 0$ -> convex

Using the Hessian matrix to identify whether a function is CAMPUS iTVERSITY convex or concave Example 3

It's the way we're would

Show that for $S = R^2$, $f(x_1, x_2) = x_1^2 - 3x_1x_2 + 2x_2^2$ is not a convex or a concave function.

$$H(x_1, x_2) = \begin{bmatrix} 2 & -3 \\ -3 & 4 \end{bmatrix}$$

- The first principal minors of the Hessian are 2 and 4. Because both the first principal minors are positive, $f(x_1, x_2)$ cannot be concave.
- The second principal minor is 2(4) (-3)(-3) = -1 < 0. Thus, $f(x_1, x_2)$ cannot be convex. Together, these facts show that $f(x_1, x_2)$ cannot be a convex or a concave function.

$$|H| < 0$$
 -> saddle point

Using the Hessian matrix to identify whether a function is LGIUM CAMPUS convex or concave Example 4

It's the way we're with

Show that for $S = R^3$, $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 2x_3^2 - x_1x_2 - x_2x_3 - x_1x_3$ is a convex function.

$$H(x_1, x_2, x_3) = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 4 \end{bmatrix}$$

- The first principal minors of the Hessian are 2, 2 and 4. Because the first principal minors are positive, $f(x_1, x_2, x_3)$ cannot be concave.
- We can find the second order principal minors doing the following:
 - By deleting row 1 and column 1 of Hessian, we find the second-order principal minor

$$det \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix} = 7 > 0$$

Using the Hessian matrix to identify whether a function is the way we're wired convex or concave Example 4

• By deleting row 2 and column 2 of Hessian, we find the second-order principal minor

$$det \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix} = 7 > 0$$

• By deleting row 3 and column 3 of Hessian, we find the second-order principal minor

$$det \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = 3 > 0$$

• The third-order principal minor is simply the determinant of the Hessian itself. Expanding by row 1 cofactors we find the third-order principal minor

$$2[(2)(4) - (-1)(-1)] - (-1)[(-1)(4) - (-1)(-1)] + (-1)[(-1)(-1) - (-1)(2)]$$

$$= 14 - 5 - 3 = 6 > 0$$

Because for all (x_1, x_2, x_3) all principal minors of the Hessian are non-negative, we have shown that $f(x_1, x_2, x_3)$ is a convex function on \mathbb{R}^3 .

- Once we identified whether the unconstrained function is convex, concave or neither, we can use a Numerical search method.
- For solving an NLP with one variable, we can use the Golden Section Search algorithm
- For solving an NLP with *n* number of variable, we can use the Steepest ascent/descent algorithm.

Exercises

Using the Hessian matrix, show whether the following functions are convex, concave or if they have a saddle point.

•
$$f(x_1, x_2) = x_1^2 + 3x_1x_2 + 2x_2^2$$

•
$$f(x_1, x_2) = -x_1^2 - 2x_1x_2 - 2x_2^2$$

Solutions:

•
$$H(x_1, x_2) = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$$
 -> det=-1<0 -> Saddle point

•
$$H(x_1, x_2) = \begin{bmatrix} -2 & -2 \\ -2 & -4 \end{bmatrix}$$
 -> det=4>0 and -2 & -4 are both negative <0-> Concave

info@belgiumcampus.ac.za

+27 10 593 5368

+27 (0) 12 543-1617

PO Box 60327, Karenpark 0118, South Africa

@BelgiumCampusSA

@BelgiumCampus

/Belgium Campus

- Tshwane Campus 138 Berg Avenue Heatherdale, Pretoria
- Ekurhuleni Campus 45A Long Street **Kempton Park**
- Nelson Mandela Bay Campus 6 Uitenhage Road North End, Port Elizabeth,