STEPS & FORMULAE FOR REGRESSION ANALYSIS

Simple Linear Regression Model:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

where:

 β_0 is the y-intercept of the regression line β_1 is the slope of the regression line ε is the error term.

Estimated Simple Linear Regression Equation:

"y hat"
$$\longrightarrow \hat{y} = b_0 + b_1 x$$

where:

 \hat{y} is the predicted value of y for a given x value. b_0 is the y intercept of the line.

 b_1 is the slope of the line.

Least Squares Method:

Use Sample data to find the line of regression

$$\hat{y} = b_0 + b_1 x$$

where:

 \hat{y} is the predicted grade on exam b_0 is the y intercept of the line. b_1 is the slope of the line. x is number of hours studied

Least Squares Method:

$$\min \sum (y_i - \hat{y}_i)^2$$

where:

 y_i = observed value of the dependent variable for the *i*th observation

 \hat{y}_i = predicted value of the dependent variable for the *i*th observation

Example: x=3 hours studied \hat{y}_i = approx. 69

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

where:

 x_i = value of independent variable for *i*th observation

 y_i = value of dependent variable for *i*th observation

x = mean value for independent variable

y = mean value for dependent variable

Calculating the y - intercept:

$$b_0 = \bar{y} - b_1 \bar{x}$$

$$x_i$$
 y_i $x_i - \bar{x}$ $y_i - \bar{y}$ $(x_i - \bar{x})(y_i - \bar{y})$ $(x_i - \bar{x})^2$
2 69 -2.8 -8.8 24.64 7.84
 $\Sigma x_i = 48$ $\Sigma y_i = 778$ 320.6 67.6
 $\bar{x} = 48/10$ $\bar{y} = 778/10$ $\Sigma (x_i - \bar{x})(y_i - \bar{y})$ $\Sigma (x_i - \bar{x})^2$ $\Sigma (x_i - \bar{x})^2$

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

Page 3 of 5

$$\hat{y} = b_0 + b_1 x$$

Coefficient of Determination:

How well does the regression line fit the data?

$$r^2 = SSR/SST$$

where:

SSR = sum of squares due to regression = $\sum (\hat{y}_i - \bar{y})^2$

SST = total sum of squares = $\sum (y_i - \bar{y})^2$

SSE = sum of squares due to error = $\sum (y_i - \hat{y}_i)^2$

$$SST = SSR + SSE$$

Xi	y _i	Predicted Grades $\hat{y}_i = 55.048 + 4.74x_i$		Squared Error $(y_i - \widehat{y}_i)^2$	Deviation $y_i - y_i$	
2	69	64.528	4.472	19.9988	-8.8	77.44

```
SSE =79.1215
  SST = 1599.6
Coefficient of Determination:
   r^2 = SSR/SST
                                            = .9505
                      = 1520.4785/1599.6
                                      r^2 = percent of variability in y
   SST = SSR +
                    SSE
                                          can be explained by x
    SSR = SST - SSE
                                      r^2 = 95.05\% of the variability in
    SSR = 1599.6 - 79.1215
                                          grades can be explained by
          = 1520.4785
                                          the number of hours studied
```