

姓名: /全社含 学号: # 117/14/4 实验日期: 2019, 4.17

触发器 (R-S、D、J-K) /9-0

1. 实验目的

- 熟悉并掌握 R-S、D、J-K 触发器的构成、工作原理和功能测试方法:
- ▶ 学会正确使用触发器集成芯片:
- 了解不同逻辑功能触发器相互转换的方法。

2. 实验器材

序号	名 称	型号与规格	数量	备注
1	直流稳压电源	DP1308A	1	
2	数字示波器	数字示波器 TDS2012C		
3	函数信号发生器	DG1022	1	
4	模电数电综合实验箱	TPE-ADII	1	
5	元器件	74LS74 双D触发器 1片, 74LS112 双J-K触发器 1片, 74LS00 二输入端四与非门 1片	3	

3. 实验内容

3.1 基本 R-S 触发器功能测试

两个 TTL 与非门首尾相接构成的基本 R-S 触发器的电路如图 1.1 所示,按 照表 1.1 的输入顺序在输入端加入信号,观察并记录触发器的输出状态,将结 果填入表 1.1 中, 并说明在上述各种输入状态下, 触发器执行的是什么功能?

图 1.1 R-S Flip-Flop

数字电路实验报告

表 1.1 R-S Flip-Flop 逻辑功能测试

\overline{S}_d	\overline{R}_d	Q	Q	逻辑功能
0	1	1	0	置 (置位)
1	1		0	储备
1	0	0		置0(复位)
16-14 > 20-12-1		0		储存

将输入端按如下要求接入电平或者脉冲, 画出输入输出的波形图。

a) $\overline{S}_d = 0$, \overline{R}_d 端加脉冲:

当 \bar{S}_a 、 \bar{R}_a 都接低电平时,观察 Q、 \bar{Q} 端的状态。当 \bar{S}_a 、 \bar{R}_a 同时由低电平跳为高电平时,注意观察 Q、 \bar{Q} 端的状态,重复 3~5 次看 Q、 \bar{Q} 端的状态是否相同,以正确理解"不一定"状态的含义。

3.2 边沿 D 触发器功能测试

双D型正边沿维持—阻塞型触发器74LS74引脚图如2.1所示。图中PR、CLR为异步置位端、复位端,低电平有效,CLK为时钟输入端,D为数据输入端,Q及 \bar{Q} 为输出端。

数字电路实验报告

图 2.1 74LS74 引脚图

按下表设置输入端,然后观察输出端的状态,将结果填入表2.1中。

表 2.

7天 2. 1						
PR	CLR	CLK	D	Q^n	Q^{n+1}	
0	1	X	X	0	1	
				1		
1	0	X	Х	0	0	
				1	0	
1	1	1	0	0	0	
				1	0	
1	1	1	1	0	1	
1				1		

表中X表示无关项, 个为上升沿, 由实验箱上的手动脉冲实现。

使得PR = CLR = 1,将D与 $ar{Q}$ 端相连,CLK加连续脉冲,用示波器观察并记录Q相对于CLK的波形。

数字电路实验报告

有方科技大学 SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY

3.3 负边沿J-K触发器功能测试

双J-K负边沿触发器74LS112的引脚图如图3.1所示,

图 3.1 双 J-K 负边沿触发器 74LS112 引脚图

表 3.1 双 I-K 负边沿触发器 74LS112 的逻辑功能测试

PR	CLR	CLK	J	K	Q^n	Q^{n+1}
0	1	Х	Х	Х	Х	1
1	0	X	Х	X	Х	0
1	1	1	0	X	0	0
1	1	+	1	х	0	1
1	1	+	х	0	1	
1	1	+	х	1	1	0

若令 J=K=1 时,CLK 加连续脉冲,用示波器观察 Q-CLK 波形,和边沿 D 触发器的 D 与 \overline{Q} 端相连时观察到的 Q 端波形相比较,有何异同点?

不同点: 旅職实验的触发沿星下降沿,而边沿口触发器的5页结构连时

的触发沿为上升沿

村园同点:当两个角块发影响达到角块中沿时,

其罗翰敦化都的 Q*= Q'

数字电路实验报告 SOUTHERN LINIVERSITY OF SCIENCE AND TECHNICAL

3.4触发器功能转换

分别将 D 触发器和 J-K 触发器转换为 \mathbf{T}' 触发器 (特性方程: $Q^{n+1} = (Q^n)'$), 列出表达式, 画出实验电路图。

接入连续脉冲,观察各触发器 CLK 及 Q 端波形,比较两者关系。

对于D触线器改整得的下触线器: 当CLK到上升治时,Q的逻辑状态取反,即Q*=Q' 对于JR触发器改数得的T'南岛发影: 为CLK到下降治时,只的逻辑状态取成,即Q*=Q*