





# What compound should be used for Boron Neutron Capture Therapy?

-A comparison between boron phenylalanine, sodium borocaptate and the third generation agents

By Chunyi Wang

#### Basic principle





(Figure 2. A schematic diagram for BNCT application)



Fig. 1. Boron neutron capture reaction Non-radioactive isotope,  $^{10}$ B atom, absorbs low energy (<0.5 eV) neutrons (thermal neutron) and disintegrates into an alpha ( $^{4}$ He) particle and a recoiling lithium nucleus ( $^{7}$ Li). These particles deposit large energy along their very short path (less than 10  $\mu$ m).

#### Main criteria of delivery agents

- Toxicity
- Concentration of <sup>10</sup>B
- Tumour-blood ratio
- Stability
- Clearance time

#### Second generation-BPA and BSH



**Structure of L-BPA** 



structure of sodium borocaptate

### Third generation of agents

- Boronated EGF or anti-EGFR monoclonal antibodies
- Carbon nanotube
- Boron nanotube
- Liposomes
- Magnetic nanoparticle
- Boronated porphyrin



# Comparison of agents

|                                         | BSH      | ВРА      | Boronated<br>EGF or anti-<br>EGFR<br>monoclonal<br>antibodies | Liposome | Carbon<br>nanotube | Boron<br>nanotube | Magnetic<br>nanoparticle | Boronated porphyrin |
|-----------------------------------------|----------|----------|---------------------------------------------------------------|----------|--------------------|-------------------|--------------------------|---------------------|
| Toxicity                                | X        | <b>1</b> | ×                                                             | 1        | ?                  | ?                 | ?                        | 1                   |
| Concentr<br>ation of<br><sup>10</sup> B | <b>√</b> | <b>√</b> |                                                               | 1        | ×                  | ?                 | <b>√</b>                 | <b>√</b>            |
| Tumour<br>to blood<br>ratio             | ×        | ×        | <b>√</b>                                                      | <b>√</b> | <b>√</b>           |                   | <b>√</b>                 | <b>√</b>            |
| Clearance<br>time                       | <b>√</b> | <b>√</b> | ×                                                             | ×        | ×                  | 1                 | 1                        | 1                   |
| Stability                               | ×        | <b>√</b> | ×                                                             | ×        | ×                  | 1                 | <b>√</b>                 | ×                   |

# Selection of the most important criterion



 Why do I choose the boron concentration as the most important criterion?

1. The characteristic of BNCT-selectivity

2. The difficulty of meeting this criterion

#### Conclusion



1.BPA better than BSH

2. Magnetic particle is the most promising one in the third generation of agents

3.We should use magnetic particle House control BPA and BSH



#### Conclusion

Why do I choose magnetic particles?

**Limitations** of the conclusion?

**Further work?** 

#### **Evaluation**



#### Research progress

Sources

Problems and solution

Any bias?

## Any questions?





#### Reference:

- 1. Boron Neutron Capture Therapy of Cancer: Current Status and Future Prospects
- 2. Drugs for BNCT:BSH and BPA
- 3. Boron compounds: new candidates for Boron carriers in BNCT
- 4. Major Neutron capture(NCT)Drug prototypes
- 5. Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment