Extracting information from biological data

Elise Rosati TIC Santé 2A 2019

Source: lab Meeting of M Madec, 20/02/2019

Assessement of the invasion efficiency of Pseudomonas Aeruginosa

Report

- For you trace of the work done during the two sessions
- Sent to me maybe graded
- Group work asking questions aloud enhances discussions, it's always good!
- The report != a list of answers questions are a guideline, can be answered in various order, you can and are encouraged to add your own reflexions/
- Justify everything you say explanations/curves/data

Goal

Estimation of the invasion efficiency of Pseudomonas Aeruginosa

Experimental set-up

Beer-Lambert law of absorption

Absorbance or Optical Density (OD): $A = \log \left(\frac{I}{I_0}\right)$

Beer Lambert law:
$$A = \varepsilon l c$$

Molar attenuation coefficient (m³.mol-¹.cm-¹)

Path length (cm)

Growth curves

Example of growth curve

Different initial concentrations of bacteria.

What can we notice?

Population growth model

Associated model

$$\frac{dn}{dt} = \alpha(t) \cdot \mu(n) \cdot n$$

n the population (number of bacteria) lpha the lag term (adjustment) μ the growth rate

Non-autonomous model

- Dynamic is not only population-dependent
- Time-varying parameters

Population growth model

Observed behaviour

Time

Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

What approximation can be used?

$$\alpha(t) = 1 - exp\left(-\frac{t}{\tau}\right)$$

Associated model

$$\frac{dn}{dt} = \alpha(t) \cdot \mu(n) \cdot n$$

Lag term

J. Baranyi et al., Food Microbiology, 10 (1993)

Population growth model

Observed behaviour Stationary phase Death (decline) phase Lag phase Time

Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Associated model

What do we expect from the model of $\mu(n)$?

Population growth model

Observed behaviour Stationary phase Death (decline) phase Lag phase

Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Time

$$\mu(n) = \mu_{max} \frac{S_0 - n}{S_k + S_0 - n}$$

Associated model

$$\frac{dn}{dt} = \alpha(t) \cdot \mu(n) \cdot n$$
 Lag term Variable growth rate

Limited by the initial stock S_0 of nutriment

Growth rate

$$\mu_a(n) = \mu_{max} \frac{S_0 - n}{S_k + S_0 - n}$$

$$\mu_b(n) = \mu_{max} \frac{S_k'}{S_k' + n}$$

$$\mu_c(n) = \mu_{max}$$
?

$$\mu_{\text{max}}$$
 S_k S_0 S_k' 1 10 100 110

What approximation for μ ?

Analytic solution

Approximations used

$$\frac{dn}{dt} = \alpha(t) \cdot \mu(n) \cdot n$$

$$\alpha(t) = \begin{cases} 0 \text{ before } t_{lag} & \mu(n) = \mu_{max} \\ 1 \text{ after } t_{lag} \end{cases}$$

Analytic solution of the differential equation:

$$n(t) = n_0 \cdot e^{\mu \cdot t}$$
$$\log n(t) = \log n_0 + \mu \cdot t$$

Interesting manipulation to the equation?

What parameter varies between these curves?

Methods to find the ratio of interest

TTD method and linear study

First method: TTD

Time-to-detect (TTD)

Time required for a growing population to reach a given OD

Multiple TTD

TTD estimated for multiple ODs

- \rightarrow Multiple estimation of N_0
- → Error reduction by averaging

Linear regression

For low OD, TTD is assumed to be proportional to the log of the initial population:

$$TTD = TTD_1 - \frac{\log N_0}{\mu}$$

I. Mytilinaios et al., International Journal of Food Microbiology, 154 (2012)

First method: TTD

Time-to-detect (TTD)

Time required for a growing population to reach a given OD

Where are the different points of a same growth curve?

What characteristic is shared by the points on a line?

I. Mytilinaios et al., International Journal of Food Microbiology, 154 (2012)

Manipulating experimental data

- Import the rawData.mat
- Calibration:
 - SerieNb = number of the dilution serie (4 series)
 - Dilution: log of the initial number of bacteria (7 corresponds to $n_0 = 10^7$)
- Measurement
 - MOI: factor related to the expected number of bacteria
 - Type: 0 → infecting bacteria, 1 → total bacteria

Manipulating experimental data

- Plot the data for one serie of dilutions.
- Chose a curve to study. Does the data need to be "cleaned"?
- Use matlab fit function with the model of your chosing (feel free to try different model). Check the parameters given by matlab.
- Apply the TTD method.
 - Compute a function that finds the time (TTD) at which the OD overpasses the OD threshold (use a linear interpolation between the neighboring points)
 - ullet Extract TTD for different OD threshold, for different n_0
 - Find the n₀ of the curve.
- Enhance your set up (use replicates...)