

https://iedib.net/

Matemàtiques I

Lliurament 8: Càlcul de distàncies i còniques

Josep Mulet Àmbit Científic IEDIB

Aquesta obra està subjecta a les condicions de Ilicència CREATIVE COMMONS no comercial i compartir igual.

Edició LATEX: ® Josep Mulet

Versió: 24-03-2021

Reconeixement-NoComercial-CompartirIgual 4.0 Internacional

Índex

1	Mesures en el pla	3
	1.1 Distància entre dos punts	3
	1.2 Distància entre un punt i una recta	6
	1.3 Distància entre dues rectes	
	1.4 Angle entre dues rectes	1 C
2	Les còniques	11
	2.1 La circumferència	
	2.2 L'el·lipse	13
	2.3 La hipèrbola	
	2.4 La paràbola	

1. Mesures en el pla

En el passat lliurament varem introduir el concepte de vector com un segment orientat entre dos punts, anomenats origen i extrem. Després, varem donar diferents formes d'expressar la recta en el pla i calcularem rectes que eren paral·leles i perpendiculars a una donada.

En aquest lliurament ens centrarem en la geometria mètrica, és a dir, aquella que té com objectiu determinar distàncies i angles entre diferents objectes geomètrics. En la segona part del lliurament estudiarem les còniques com a seccions d'una superfície cònica. Aprendrem a classificarles i saber quins són els seus elements característics. Finalment, mencionarem algunes de les seves nombroses aplicacions.

1.1 Distància entre dos punts

La distància entre dos punts A i B és igual al mòdul del vector \overrightarrow{AB}

$$d(A,B) = |\vec{AB}| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}$$
 (1)

EXERCICI RESOLT 1

Calcula la distància entre les ciutats situades als punts A=(2,1) i B=(-1,3).

Trobem el vector \overrightarrow{AB}

$$\overrightarrow{AB} = B - A = (-1 - 2, 3 - 1) = (-3, 2)$$
 (2)

I finalment el seu mòdul

$$d(A,B) = |\overrightarrow{AB}| = \sqrt{(-3)^2 + 2^2} = \sqrt{13}$$
 (3)

Punt mitjà d'un segment

El punt mitjà d'un segment \overline{AB} és el punt M del segment que equidista (es troba a igual distància) dels dos extrems.

Punt mitjà del segment \overline{AB}

$$M = \frac{A+B}{2}$$

Exercici Resolt 2

Calcula el punt mitjà del segment d'extrems A=(2,1) i B=(-4,3).

$$M = \frac{A+B}{2} = \frac{(2,1) + (-4,3)}{2} = \frac{(-2,4)}{2} = (-1,2)$$

(4)

Cerquem la distància entre el punt mitjà i els extrems

$$d(A, M) = \sqrt{(-3)^2 + 1^2} = \sqrt{10}$$

$$d(B, M) = \sqrt{3^2 + (-1)^2} = \sqrt{10}$$

Efectivament, comprovam que les distàncies són iguals $d(A,M)=d(B,M). \label{eq:def}$

La recta mediatriu

La **mediatriu** d'un segment d'extrems $A,\ B$ és la recta que és perpendicular al segment i passa pel punt mitjà.

Calcula la mediatriu del segment d'extrems A=(2,1) i B=(-4,3).

Calculam el punt mitjà

$$M = \frac{A+B}{2} = \frac{(2,1)+(-4,3)}{2} = \frac{(-2,4)}{2} = (-1,2)$$

Calculam el vector $\overrightarrow{AB}=(-4,3)-(2,1)=(-6,2)$. El vector director de la mediatriu és perpendicular al vector \overrightarrow{AB} ; és a dir, emprarem $\overrightarrow{d}=(2,6)$ com a vector director.

La mediatriu en forma contínua és:

$$\frac{x+1}{2} = \frac{y-2}{6}$$

Nota: També es pot emprar com vector director la meitat de \vec{d} .

Feim els productes en creus i trobam l'equació general de la mediatriu 3x-y+5=0.

La mediatriu també es pot calcular utilitzant distàncies. Si anomenam X=(x,y) un punt sobre la mediatriu, compleix que d(X,A)=d(X,B). Expressam aquestes distàncies amb components:

$$\sqrt{(x-2)^2 + (y-1)^2} = \sqrt{(x+4)^2 + (y-3)^2}$$

Elevam al quadrat i efectuam els productes notables.

$$\cancel{x} - 4x + 4 + \cancel{y} - 2y + 1 = \cancel{x} + 8x + 16 + \cancel{y} - 6y + 9$$

Simplificam l'expressió anterior $12x-4y+20=0\to:4$ i trobam la mateixa equació de la mediatriu 3x-y+5=0.

EXERCICIS PROPOSATS

- 1. Calcula la distància entre parells de punts A = (1, -2), B = (1, 0) i C = (3, 1). Quins d'aquests punts es troben més allunyats?
- **2.** Calcula l'equació de la mediatriu del segment \overline{AB} d'extrems A=(3,-2) i B=(1,2).

1.2 Distància entre un punt i una recta

En aquesta secció ens proposam calcular la distància entre un punt i una recta. En el cas que el punt pertanyi a la recta, podem assegurar que la distància és igual a zero. Recordam que un punt pertany a una recta si el punt compleix l'equació de la recta.

Per exemple, el punt P(2,1) pertany a la recta r: 2x-y-3=0 perquè $2\cdot 2-1-3=0$, la qual cosa ens permet assegurar directament que la distància és zero d(r,P)=0.

Consideram tot seguit el cas en què el punt és exterior a la recta. Mostrarem dues formes de calcular la distància.

Mètode constructiu

La distància entre un punt P i la recta r es defineix com la menor distància entre el punt P i un punt R qualsevol de la recta. La distància mínima es troba sobre la perpendicular que obtindrem a partir d'aquest procediment:

- 1. Calculam la recta t que és perpendicular a r que passa pel punt P
- 2. Trobam el punt de tall M de les rectes r i t. Per trobar el punt de tall entre dues rectes resolem el sistema format per les seves equacions.
- 3. Calculam la distància entre els punts P i M

Simulació 1: https://www.geogebra.org/m/dankfdu9 : *Premeu el botó PLAY per iniciar la construcció*

Calcula la distància entre el punt P=(6,3) i la recta r:x+2y-2=0.

Seguim el procediment:

1. Recta perpendicular

Emprarem el vector normal de la recta r $\vec{n}=(1,2)$. Les equacions paramètriques són:

$$t: \begin{cases} x = 6 + t \\ y = 3 + 2t \end{cases}$$
 (5)

2. Trobam el punt de tall

Per trobar el punt de tall substituïm les equacions (2) dins l'equació de la recta r:x+2y-2=0.

6+t+2(3+2t)-2=0 d'aquesta equació aïllam t=-2. Substituïm aquest valor dins () i trobam el punt de tall M=(4,-1)

3. Distància entre P i M

$$d(P,r) = d(P,M) = \sqrt{(6-4)^2 + (3-(-1))^2} = \sqrt{20} \approx 4{,}47$$

Ús de la fórmula

Si disposam de l'equació general de la recta, r:Ax+By+C=0, podem estalviar-nos el procés de calcular M perquè existeix una fórmula còmoda per trobar la distància d'un punt a la recta

Si el punt és $P(x_0, y_0)$ i la recta té equació Ax + By + C = 0

$$d(P,r) = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \tag{6}$$

Per utilitzar aquesta fórmula, l'equació general de la recta ha d'estar **igualada a** zero.

Si estau interessats podeu trobar una demostració d'aquesta fórmula en aquest enllaç [https://www.youtube.com/watch?v=hGOLyaxw-ic]

Vídeo 8.1: Distància entre un punt i una recta

https://www.youtube.com/watch?v=2PteNY3Rwe0

Repetiu el càlcul de la distància punt-recta de l'exemple anterior amb l'ús de la fórmula. Facem el càlcul ràpidament amb la fórmula

$$d(P,\pi) = \frac{|6+2\cdot 3-2|}{\sqrt{1^2+2^2}} = \frac{10}{\sqrt{5}} \approx 4,47 \tag{7}$$

Comprovam que obtenim el mateix resultat que amb el mètode constructiu.

EXERCICIS PROPOSATS

- **3.** Comprovau si el punt P = (2, 1) pertany a les rectes següents:
 - a) y = 2x 5
 - b) 3x 5y + 2 = 0
 - c) (x,y) = (-1,3) + t(-3,2)
- **4.** a) Calculau l'equació general recta t que passa pel punt P=(-2,7) i és perpendicular a la recta $r:\frac{x-2}{3}=\frac{y+1}{-1}$.
 - b) Calcula el punt d'intersecció M de les rectes r i t.
 - c) Calcula la distància entre el punts P i M
- **5.** Calculau la distància entre el punt P i la recta r de l'exercici anterior emprant la fórmula (6). Comprovau que obteniu el mateix resultat.

1.3 Distància entre dues rectes

Posició relativa

Dues rectes al pla poden ésser secants (es tallen a un punt), paral·leles o coincidents (són la mateixa recta).

Si les equacions generals de les dues rectes són r : Ax + By + C = 0 i s : A'x + B'y + C' = 0, la posició relativa és

Taula 1: Posicions relatives

Secants	Paral·leles	Coincidents	
rs	r	r, s	
	//		
$\frac{A}{A'} \neq \frac{B}{B'}$	$\frac{A}{A'} = \frac{B}{B'} \neq \frac{C}{C'}$	$\frac{A}{A'} = \frac{B}{B'} = \frac{C}{C'}$	

Si les rectes són secants o paral·leles, la distància entre elles és igual a zero. Aleshores, interessa estudiar el cas en què les rectes són paral·leles.

Distància entre rectes paral·leles

Si les rectes són paral·leles agafarem un punt qualsevol de la recta r i calculam la distància d'aquest punt a l'altra recta s.

Si r // s
$$d(r,s) = d(R,s)$$
 (8)

Vídeo 8.2: Distància entre dues rectes

https://www.youtube.com/watch?v=QV5nXZW8NtU

EXERCICI RESOLT 6

Calcula la distància entre les rectes r:2x-y+1=0 i s:-6x+3y+5=0.

En primer lloc, analitzam la posició relativa de les rectes

$$\frac{2}{-6} = \frac{-1}{3} \neq \frac{1}{5}$$

les rectes són paral·leles.

Per calcular la distància entre dues rectes paral·leles, agafam un punt qualsevol de la primera recta R=(0,1) i calculam la distància d'aquest punt a la recta s.

Facem el càlcul d'aquesta distància ràpidament amb la fórmula

$$d(P,\pi) = \frac{|-6\cdot 0 + 3\cdot 1 + 5|}{\sqrt{(-6)^2 + 3^2}} = \frac{8}{\sqrt{45}} \approx 1,193$$
 (9)

1.4 Angle entre dues rectes

L'angle entre dues rectes és el menor angle que formen els seus vectors directors (o vectors normals)

Utilitzant la fórmula que proporciona l'angle entre dos vectors

$$\alpha = \arccos \frac{|\vec{d_r} \cdot \vec{d_s}|}{|\vec{d_r}| \, |\vec{d_s}|} \tag{10}$$

Vídeo 8.3: Angle entre dues rectes https://www.youtube.com/watch?v=ElmqxKZkc7l&t=960s

EXERCICI RESOLT 7

Calcula l'angle entre les rectes

$$r: 5x - y + 4 = 0$$
 $s: \begin{cases} x = 3 - 2t \\ y = 1 + t \end{cases}$

La recta r té vector normal $\vec{n}_r(5,-1)$ i, per tant, vector director $\vec{d}_r(1,5)$. La recta s té vector director $\vec{d}_s(-2,1)$.

Calculam el producte escalar $\vec{d_r} \cdot \vec{d_s} = (1,5) \cdot (-2,1) = 3$

Els mòduls dels vectors directors $|\vec{d_r}|=\sqrt{1^2+5^2}=\sqrt{26}$ i $|\vec{d_s}|=\sqrt{(-2)^2+1^2}=\sqrt{5}.$

L'angle que formen les rectes és

$$\alpha = \arccos \frac{3}{\sqrt{26}\sqrt{5}} = \arccos 0, 26311 \dots = 74, 74^{\circ}$$

EXERCICIS PROPOSATS

6. Calcula l'angle que formen les rectes r: $\left\{ \begin{array}{ll} x=2+3t \\ y=5+t \end{array} \right.$ i s: 2x+y-1=0.

2. Les còniques

Seccions d'una superfície cònica

Les figures que s'estudiaran en aquesta secció, totes elles conegudes com còniques, es poden obtenir com a intersecció d'una superfície cònica amb un pla.

Anomenam **superfície cònica** de revolució a la superfície engendrada per una línia recta que gira al voltant d'un eix mantenint un punt fixat sobre aquest eix; mentre que denominem simplement **cònica** a la corba obtinguda al tallar aquesta superfície cònica amb un pla. Dependent de l'angle que forma el pla amb l'eix del con s'obtenen les diferents còniques:

- · circumferència
- el·lipse
- hipèrbola
- · paràbola.

Hem vist com les **rectes** venen descrites per equacions de **primer grau**, ara les **còniques** corresponen a equacions de **segon grau**. Possiblement recordis l'equació de la paràbola $y = ax^2 + bx + c$ la qual és efectivament de segon grau.

Taula 2: Classificació de les còniques

Vídeo 8.4: Les còniques com seccions d'una superfície cònica. https://www.youtube.com/watch?v=6SjcWQuzPkI

Les còniques són presents en nombroses situacions de la vida quotidiana i de la tecnologia.

- · La invenció de la roda
- Òrbites el·líptiques dels planetes del sistema solar
- · Miralls i antenes parabòliques
- · L'ombres d'un pal a diferents hores del dia (branca d'hipèrbola)
- Tir parabòlic

d'entre molts d'altres.

L'objectiu d'aquesta part del lliurament és que sàpigues identificar i classificar les còniques, representar-les i enumerar els seus elements característics. Un paràmetre important de les còniques és la seva **excentricitat** que proporciona una mesura de la seva forma. Per a cada cònica que estudiem anirem explicant el significat d'aquest paràmetre.

Deixarem com material d'ampliació aspectes com la deducció de les seves equacions i algunes de les seves propietats.

2.1 La circumferència

Definició

Es defineix **circumferència** com el lloc geomètric de tots els punts del pla tals que la **distància** a un punt fix **O** anomenat **centre** es manté constant.

Abans de començar a trobar l'equació de la circumferència, hem de recordar que la distància entre dos punts és (vegeu la secció anterior):

$$d(X,O) = \sqrt{(x-x_0)^2 + (y-y_0)^2}$$
 (11)

L'equació d'una circumferència de radi R i centre en el punt $O(x_0,y_0)$ s'obté imposant que de la distància entre el punt $O(x_0,y_0)$ i un punt qualsevol X(x,y) sigui igual a R. S'eleva al quadrat per eliminar l'arrel quadrada de l'equació (11)

$$(x - x_0)^2 + (y - y_0)^2 = R^2$$
 (12)

Aquesta relació és coneix com l'equació canònica de la circumferència.

Totes les circumferències tenen **excentricitat** e=0

EXERCICI RESOLT 8

Escriu l'equació de la circumferència que té un diàmetre als punts A=(-2,-3) i B=(6,1).

Per escriure l'equació necessitam el centre i el radi. El centre és el punt mitjà del segment $\overline{A}B,\,O=\frac{(-2,-3)+(6,1)}{2}=(2,-1).$ El radi s'obté de la distància del centre a un punt de la circumferència $R=d(O,B)=\sqrt{(6-2)^2+(1-(-1))^2}=\sqrt{20}.$

L'equació canònica de la circumferència és $(x-2)^2 + (y+1)^2 = 20$.

EXERCICI RESOLT 9

Determina el centre i el radi de la circumferència

$$(x+2)^2 + y^2 - 3 = 0$$

En primer lloc, arreglam l'equació $(x+2)^2+y^2=3$ i identificam

Radi: $R = \sqrt{3}$

Centre: O = (-2, 0)

Vídeo 8.5: Aprofundeix en l'estudi de la circumferència. https://www.youtube.com/watch?v=PqscDlsDMnl

2.2 L'el·lipse

Segons l'esquema de la figura adjunta, una el·lipse ve caracteritzada pels següents elements

- Dos punts anomenats focus: F i F'
- Quatre punts anomenats vèrtexs: V_1 , V_2 , V_3 , V_4
- La distància c: semi-distància focal.
- La distància a: semi-eix major.
- La distància b: semi-eix menor.

Definició

Es defineix el·lipse el conjunt de tots els punts del pla tals que la **suma** de les distàncies als focus F i F' es manté constant.

 \bigcirc Simulació 6: https://www.geogebra.org/m/yEZzBKCS : *Desplaça el punt X i comprova que d(X,F)+d(X,F')=cte en una el·lipse*.

Equació canònica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \tag{13}$$

Relació de distàncies

A més, en una el·lipse es compleix $a^2=b^2+c^2$

Totes les el·lipses tenen **excentricitat** 0 < e < 1.

Es defineix com $e = \frac{c}{a}$

Com més proper a 0, més semblant a una circumferència és l'el·lipse (per exemple, l'òrbita de la Terra és e=0.0167 [https://es.wikipedia.org/wiki/Excentricidad_orbital]). En canvi, si $e\to 1$, l'el·lipse serà molt allargada.

EXERCICI RESOLT 10

Donada l'equació de l'el·lipse $\frac{x^2}{Q} + y^2 = 1$, troba la posició dels seus focus i dels vèrtexs. Troba la seva excentricitat. Representa-la gràficament.

El semieix major val $a=\sqrt{9}=3$ i el semi-eix menor b=1. La semidistància focal es troba de $c = \sqrt{a^2 - b^2} = \sqrt{8}$.

Els vèrtexs estan a (-3,0); (3,0); (0,1); (0,-1). Els dos focus es troben a $F'(-\sqrt{8},0)$ i $F(\sqrt{8},0)$.

L'excentricitat és $e=c/a=\sqrt{8}/3=0.943$ propera a 1, cosa que ens indica que és bastant allargada.

La representació és:

EXERCICI RESOLT 11

Calcula l'equació de l'el·lipse que mostra la figura

Calcula la seva excentricitat.

De la figura deduïm c=2 i a=3. De la relació fonamental b=1 $\sqrt{a^2 - c^2} = \sqrt{3^2 - 2^2} = \sqrt{5}.$

L'equació de l'el·lipse és $\frac{x^2}{3^2} + \frac{y^2}{(\sqrt{5})^2} = 1 \to \frac{x^2}{9} + \frac{y^2}{5} = 1$.

L'excentricitat $e=\frac{c}{a}=\frac{2}{3}=0,66.$

Vídeo 8.6: Aprofundeix en l'estudi de l'el·lipse https://www.youtube.com/watch?v=uwZHUoCr5EE

2.3 La hipèrbola

Una hipèrbola és una figura que presenta dues **branques** i que ve caracteritzada pels següents elements

- Dos punts anomenats focus: F i F^\prime
- Dos punts anomenats vèrtexs: V_1 , V_2
- La distància c: semi-distància focal.
- La distància a: semi-eix major.
- La distància b: semi-eix menor.
- Dues rectes anomenades asímptotes.

Definició

Es defineix hipèrbola el conjunt de tots els punts del pla tals que la **diferència** de les distàncies als focus F i F' es manté constant.

Simulació 7: https://www.geogebra.org/m/Y25wUPNa : Desplaça el punt P i comprova que d(P,F)-d(P,F')=cte en una hipèrbola.

Equació canònica

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \tag{14}$$

Relació de distàncies

A més, en una hipèrbola es compleix $c^2 = a^2 + b^2$

Les branques de les hipèrboles s'apropen a dues línies rectes, anomenades **asímptotes** quan x, y tendeixen a l'infinit. Les equacions d'aquestes rectes són:

Asímptotes:

$$y = \pm \frac{b}{a}x\tag{15}$$

Les **hipèrboles equilàteres** són aquelles en què els semieixos són iguals a=b. Compleixen que les asímptotes són les rectes $y=\pm x$ les quals formen un angle de 90 graus.

Totes les hipèrboles tenen **excentricitat** e > 1.

Es defineix com $e = \frac{c}{a}$

Com major és l'excentricitat més obertes estan les asímptotes.

Totes les hipèrboles equilàteres tenen una excentricitat de $e = \sqrt{2}$.

EXERCICI RESOLT 12

Donada l'equació de la hipèrbola $\frac{x^2}{9} - \frac{y^2}{9} = 1$, troba la posició dels seus focus i dels vèrtexs. Calcula les seves asímptotes i representa-la gràficament.

Es tracta d'una hipèrbola equilàtera a=b=3. Els dos vèrtexs estan als punts $V_1(3,0); V_2(-3,0)$. La semi-distància focal val $c=\sqrt{a^2+b^2}=\sqrt{18}=3\sqrt{2}$ i els dos focus es troben a $F'(-3\sqrt{2},0)$ i $F(3\sqrt{2},0)$.

Les asímptotes són les rectes $y = \pm x$ i la gràfica

Finalment, l'excentricitat és $e=\frac{c}{a}=\frac{3\sqrt{2}}{3}=\sqrt{2}\approx 1.41$ com totes les hipèrboles equilàteres.

Calcula l'equació de la cònica que mostra la figura

F'

-3 -2 12 0 1 2 3

Calcula la seva excentricitat.

De la figura deduïm c=2 i a=1. De la relació fonamental $b=\sqrt{c^2-a^2}=\sqrt{2^2-1^2}=\sqrt{3}$.

L'equació de la hipèrbola és $\frac{x^2}{1^2} + \frac{y^2}{(\sqrt{3})^2} = 1 \rightarrow x^2 + \frac{y^2}{3} = 1$.

Finalment, l'excentricitat $e=\frac{c}{a}=\frac{\sqrt{3}}{1}=1,732.$

Vídeo 8.7: Aprofundeix en l'estudi de la hipèrbola https://www.youtube.com/watch?v=VriI7BjzCMQ

2.4 La paràbola

Una paràbola ve caracteritzada pels següents elements

- Un punt anomenat focus: F
- Un vèrtex: V
- · Una recta anomenada directriu.
- La distància entre el focus i directriu que anomenam 2p.

Definició

Es defineix una paràbola el conjunt de tots els punts del pla tals que la distància al focus **igual** a la distància a la directriu.

Simulació 8: https://www.geogebra.org/m/z7Zc7ynq: Desplaça el punt P i comprova que d(P,F)=d(P,r) una paràbola.

Equació canònica

$$y = \frac{1}{2p}x^2 \tag{16}$$

on hem suposat que el vèrtex és al punt V=(0,0). Si el vèrtex és al punt $V=(V_1,V_2),$ l'equació es transforma en

$$y - V_2 = \frac{1}{2p}(x - V_1)^2 \tag{17}$$

Per definició, totes les paràboles tenen **excentricitat** e=1.

EXERCICI RESOLT 14

Calcula la posició del focus d'una paràbola que té el vèrtex a l'origen de coordenades i passa pel punt P(3,3).

L'equació de la paràbola serà de la forma $y=\frac{1}{2p}x^2$. Substituïm el punt per on sabem que passa $3=\frac{1}{2p}3^2$ i aïllam $p=\frac{3}{2}$. Aquesta és la distància entre el focus i la directriu. La distància entre el vèrtex i el focus és just la meitat d'aquest valor i, per tant, el focus es troba al punt $F(0,\frac{3}{4})$.

Considera la paràbola

 $y=x^2+1$, troba la posició del seu focus, el vèrtex i l'equació de la directriu. Representa gràficament la situació.

Primer transformam l'equació perquè s'assembli a la forma (17): $y-1=1(x-0)^2$. D'aquí deduïm que el vèrtex és el punt V=(0,1). Identificam $1=\frac{1}{2p}\to p=\frac{1}{2}$.

El focus està a p/2 per sobre el vèrtex $F=(0,1+\frac{1}{4})=(0,\frac{5}{4}).$

La directriu és la recta que es troba p/2 per davall el vèrtex: $y=1-\frac{1}{4}$ $\to y=\frac{3}{4}.$

Vídeo 8.8: Aprofundeix en l'estudi de la paràbola. https://www.youtube.com/watch?v=BDxiSimW9Bc

Excentricitat de les còniques

Per recapitular el hem vist en aquestes seccions, les còniques es poden classificar segons un paràmetre que anomenam excentricitat. Existeixen rangs de valors possibles per a cada cònica

• Circumferència: e=0• El·lipse: 0 < e < 1• Hipèrbola: e>1• Paràbola: e=1

Figura 1: Còniques segons la seva excentricitat.

Com a curiositat teniu una taula amb algunes excentricitat de les òrbites de planetes i cometes perquè les pugueu classificar. Quin d'aquests objectes passarà una única vegada per la Terra?

Figura 2: L'asteriod interestelar Oumuamua l'any 2018.

Taula 3: Excentricitats d'algunes òrbites

Objecte	Mercuri	Venus	Plutó	Cometa Halley	Oumuamua
e	0,205	0,0068	0,2488	0,967	1,20

EXERCICIS PROPOSATS

- 7. Digues si els següents objectes són còniques i, si ho són, classifica-les en circumferència, el·lipse, hipèrbola i paràbola.

 - a) x y = 1b) $x + y^2 = 1$ c) $x^2 y^2 = 1$ d) $x^2 + y^2 = 1$
- 8. Obté l'excentricitat de les següents còniques.

 - a) $x^2 + y^2 = 9$ b) $x^2 y^2 = 1$ c) $\frac{x^2}{3} + \frac{y^2}{2} = 1$ d) $y = x^2 + 2x 1$
- 9. Calcula l'equació de la circumferència amb centre C=(2,-1) i radi 6.
- 10. Calcula l'equació de l'el·lipse centrada a l'origen amb semieix major 7 i semieix menor 3.
- 11. Calcula l'equació de la paràbola amb vèrtex a l'origen i que té com a directriu la recta y=-3. Determina la posició del seu focus.
- **12.** Quines són les equacions de les asímptotes de la hipèrbola $\frac{x^2}{5^2} \frac{y^2}{1} = 1$? Representa-les gràficament.

