

Rush Hour

BigBrainz

Jordy Schifferstein

Leon Besseling

Yassin El-Baz

Case: Rush Hour

- Doel van spel
- Constraints
- Wat maakt de case moeilijk?
- Variaties:
 - o 6x6
 - o 9x9
 - o 12x12

Onderzoek

"Wat is de beste manier om een computer Rush Hour op te laten lossen?"

- Wat definieert een goede oplossing?
- Hypothese: breadth first search

State space

Aantal moves:

- Lower bound: aantal blokkerende auto's + 1
- Upper bound: willekeurig groot

Bordconfiguraties:

- Upper bound: $(b-1)^{\# \text{ auto's}} \cdot (b-2)^{\# \text{ vrachtauto's}}$
 - o b = bordgrootte
- $6x6_3$: $(6-1)^6 \cdot (6-2)^3 = 1000000$
- 12x12: $(12-1)^{28} \cdot (12-2)^{16} = 1.4 \cdot 10^{45}$

Random

- Lost alle borden snel op
 - Veel stappen
- Heuristiek:
 - Beweeg rode auto naar uitgang indien vrij

Breadth first

Breadth first with beam search

Iterative deepening

Depth first: Branch and bound

Depth first: Branch and bound

Onderzoek: limiet Branch & Bound

- Alle borden onder 40 moves, maar slechts 2 boven 30.
- Dynamisch door fail-save:
 - Iteratief dieper
- Dus: diepte 30 als instelling

Random oplossing

- Random oplossing
- Zet random stappen vanaf het begin

- Random oplossing
- Zet random stappen vanaf het begin

- Random oplossing
- Zet random stappen vanaf het begin

Onderzoek: iteraties Hillclimber

Iteraties: 100

- Random oplossing
- Zet random stappen vanaf het begin
- Selectieve eliminatie

- Random oplossing
- Zet random stappen vanaf het begin
- Selectieve eliminatie

- Random oplossing
- Zet random stappen
- Selectieve eliminatie

Resultaten

Vergelijking algoritmen

Hillclimb resultaten

 Grotere borden leiden tot slechtere oplossingen

Hillclimb resultaten

Board	difference from best solution
6x6_1	13
6x6_2	12
6x6_3	140
9x9_4	257
9x9_5	611
9x9_6	862
12x12_7	~4447

Advanced

EASY

HARD

Obstacle chain

Computer VS. Human

- Makkelijk bord is moeilijk voor computer
 - Vrije ruimte
 - Computer kijkt naar children (BFS / DFS)
- Mens kijkt naar blokkerende auto's

Future work

- A* algoritme
- Geheugenprobleem:
 - Auto's geheugen efficiënt opslaan
- 12x12 borden oplossen met alle algoritmen

Conclusie

"Wat is de beste manier om een computer Rush Hour op te laten lossen?"

- Hypothese: breadth first search
- Genoeg RAM: BFS
- Genoeg tijd: Iterative deepening/Branch and bound

Vragen?

Simulated annealing algoritme

- Slechtere resultaten
- Focus op andere algoritmen

Obstacle chain algoritme

- Heuristieken op random
- Problemen:
 - Werkt zichzelf in een loop
 - Algoritme te specifiek

A* algoritme

- Lastig om waardes aan moves toe te kennen
- Onduidelijk wat een verbetering is op vorige situatie

Hillclimb zonder selective elimination

Hillclimb vs random branch & bound

