PJE: MODELISATION D'UN RPC

Ngatam THIEBAUT
Gwezheneg RIVIERE

Sommaire

I. Contexte et objectifs :

• Travail portant sur le **robot parallèle à câbles** de l'atelier

- Les objectifs sont de :
 - Trouver des modèles cinématiques et dynamiques du robot
 - Les exprimer sous leurs formes directes et indirectes
 - Implémenter les modèles sur le robot pour comparer nos simulations aux valeurs réelles

II. Présentation du système

Hypothèses:

- -Problème 2D
- -Diamètres des poulies négligés
- -Câbles modélisés par des barres de longueur variable

1. Modèle géométrique

Modèle directe (fermeture géométrique):

 X_e, Y_e : Position de l'effecteur dans le repère global

 $\lambda_{
m i}$: Longueur du câble lié à la $i_{{
m e}me}$ poulie

 h_1 : Hauteur des poulies du bas (1,3)

 h_2 : Hauteur des poulies du haut (2,4)

 l_1 : Distance entre les poulies (1,2) et (3,4)

l: Largeur de la plaque

L: Longueur de la plaque

 $heta_i$: Angle du $i_{\grave{ ext{e}}me}$ câble dans son repère local

 ϕ_1 : Inclinaison de l'effecteur autour de l'axe Z_b

(1)
$$: X_e = -\lambda_1 \sin(\theta_1) - \frac{1}{2} [l\cos(\phi_1) + L\sin(\phi_1)] + l_1$$

(2)
$$:Y_e = \lambda_1 \cos(\theta_1) + \frac{1}{2} [-l\sin(\phi_1) + L\cos(\phi_1)] + h_1$$

(3)
$$: X_e = -\lambda_2 \cos(\theta_2) - \frac{1}{2} [l\cos(\phi_1) - L\sin(\phi_1)] + l_1$$

(4)
$$Y_e = -\lambda_2 \sin(\theta_2) - \frac{1}{2} [lsin(\phi_1) + Lcos(\phi_1)] + h_2$$

(5)
$$: X_e = \lambda_3 \cos(\theta_3) + \frac{1}{2} [l\cos(\phi_1) - L\sin(\phi_1)]$$

(6)
$$:Y_e = \lambda_3 \sin(\theta_3) + \frac{1}{2} [lsin(\phi_1) + Lcos(\phi_1)] + h_1$$

(7)
$$: X_e = \lambda_4 \cos(\theta_4) + \frac{1}{2} [l\cos(\phi_1) + L\sin(\phi_1)]$$

(8)
$$:Y_e = -\lambda_4 \sin(\theta_4) + \frac{1}{2} [l\sin(\phi_1) - L\cos(\phi_1)] + h_2$$

1. Modèle géométrique

Modèle inverse

 $\lambda_{1} = \sqrt{(-\frac{1}{2}(l\cos(\phi_{1}) + L\sin(\phi_{1}) - X_{e} + l_{1})^{2} + (+\frac{1}{2}(l\sin(\phi_{1}) - L\cos(\phi_{1}) + Y_{e} - h_{1})^{2}}$ $\lambda_{2} = \sqrt{(-\frac{1}{2}(l\cos(\phi_{1}) - L\sin(\phi_{1}) - X_{e} + l_{1})^{2} + (-\frac{1}{2}(l\sin(\phi_{1}) + L\cos(\phi_{1}) - Y_{e} + h_{2})^{2}}$ $\lambda_{3} = \sqrt{(-\frac{1}{2}(l\cos(\phi_{1}) - L\sin(\phi_{1}) + X_{e})^{2} + (-\frac{1}{2}(l\sin(\phi_{1}) + L\cos(\phi_{1}) + Y_{e} - h_{1})^{2}}$ $\lambda_{4} = \sqrt{(-\frac{1}{2}(l\cos(\phi_{1}) - L\sin(\phi_{1}) + X_{e})^{2} + (\frac{1}{2}(l\sin(\phi_{1}) - L\cos(\phi_{1}) - Y_{e} + h_{2})^{2}}$

On peut relier les **longueurs de câble** aux **positions angulaire des moteurs** :

$$X_{initial} = (X_0 Y_0 \phi_0)^{\tau} \qquad X_{final} = [X_1 Y_1 \phi_1]^{\tau}$$

$$\Lambda_0 = [\lambda_{1_0} \lambda_{2_0} \lambda_{3_0} \lambda_{4_0}]^{\tau} \qquad \Lambda_1 = [\lambda_{1_1} \lambda_{2_1} \lambda_{3_1} \lambda_{4_1}]^{\tau}$$

$$Q_0 = [q_{1_0} q_{2_0} q_{3_0} q_{4_0}]^{\tau} \qquad Q_1 = [q_{1_1} q_{2_1} q_{3_1} q_{4_1}]^{\tau}$$

 q_i : Position angulaire du $i_{\grave{e}me}$ moteur $R=r*I_4$ avec r le rayon des bobines

2. Modèle cinématique

Modèle inverse et Jacobienne

En dérivant la relation suivante : $Q_1 - Q_0 = R^{-1} * (\Lambda_1 - \Lambda_0)$; on obtient $\dot{Q}_1 = R^{-1} * \dot{\Lambda}_1 = R^{-1} * J(x) * \dot{X}_1$. On en déduit l'expression suivante par dérivation :

$$\dot{J}_i = \begin{bmatrix} \frac{2X_e - 2X_i + 2a_i\cos(\phi_1) - 2b_i\sin(\phi_1)}{2l_i} \\ \frac{2Y_e - 2Y_i + 2b_i\cos(\phi_1) + 2a_i\sin(\phi_1)}{2l_i} \\ \frac{-2(b_i\cos(\phi_1) + a_i\sin(\phi_1))(X_e - X_i + a_i\cos(\phi_1) - b_i\sin(\phi_1))) - 2(a_i\cos(\phi_1) - b_i\sin(\phi_1))(Y_e - Y_i + b_i\cos(\phi_1) + a_i\sin(\phi_1))}{2l_i} \end{bmatrix}$$

 a_i et b_i sont les coordonnées des points d'accroche de l'effecteur dans son repère X_i et Y_i sont les coordonnées du point de la poulie i

2. Modèle cinématique

Modèle directe

Pour le modèle cinématique directe, on va utiliser la **pseudo inverse** de la Jacobienne précédemment présenté et calculé, car la Jacobienne étant de taille 3x4, nous ne pouvons pas calculer son inverse. Rappelons le calcul d'une pseudo inverse noté J^+ , pour une matrice Jacobienne noté J.

On a :
$$J^+ = (J^{\tau} * J)^{-1} * J^{\tau}$$

À partir de l'équation du modèle inverse on a alors :

$$\dot{X}_1 = J^+(x) * R * \dot{Q}_1$$

3. Simulation et comparaison

Simulation sur **Python** où l'objectif est de vérifier les **écarts** entre notre premier **modèle** et le **système réel**.

Essais pour un déplacement de **500mm** sur **X** et **Y** depuis la **position centrale** avec une rotation nulle de l'effecteur.

3. Simulation et comparaison

<u>Résultats:</u>

Initialisation

Longueurs câble 1	Longueurs câble 2	Longueurs câble 3	Longueurs câble 4	Vitesses câble 1	Vitesses câble 2	Vitesses câble 3	Vitesses câble 4	Coordonées du cent	Coordonées du centr	re de l'effecteur su	ır l'axe y
956,1511	1257,269	1055,758	1334,588	-158,585	-992,479	974,5835	-50,0935	1010	1075		
708eme itération (première itération où l'objectif est atteint)											
1095,335	561,43	1752,512	1478,765	-503,686	959,1329	-986,685	-433,707	1510,339	1575,345		

Analyse:

	Cable 1 (mm)	Cable 2 (mm)	Cable 3 (mm)	Cable 4 (mm)	Xe (mm)	Ye (mm)
Initialisation	956	1257	1055	1334	1010	1075
Simulation	1095	561	1753	1479	1510	1575
Mesure initiale	1030	1030	1030	1030	1010	1075
Mesure finale	1090	630	1670	1450	1510	1575

IV. Objectifs à venir

- Avancer sur les modèles dynamiques
- Implémenter ces modèles et les vérifier
- Pivoter sur un problème 3D
- Vérifier automatiquement la tension des câbles et la position de l'effecteur avant la mise en mouvement

Merci

