Introduction To Algorithms

CLRS

May 25, 2022

Contents

1	Graph Algorithms			1
	1.1	Elementary Graph Algorithms		1
		1.1.1	Topological sort	1
	1.2	Single-Source Shortest Paths		2
		1.2.1	The Bellman-Ford algorithm	2
		1.2.2	Single-source shortest paths in directed acyclic graphs	4
		1.2.3	Dijkstra's algorithm	4
			Proofs of shortest-paths properties	

1 Graph Algorithms

1.1 Elementary Graph Algorithms

1.1.1 Topological sort

- 1: **procedure** Topological-Sort(G)
- 2: call DFS(G) to compute finishing times v.f for each vertex v
- 3: as each vertex is finished, insert it onto the front of a linked list
- 4: **return** the linked list of vertices
- 5: end procedure

We can perform a topological sort in time $\Theta(V+E)$, since depth-first search takes $\Theta(V+E)$ time and it takes O(1) time to insert each of the |V| vertices onto the front of the linked list

Exercise 1.1.1 (22.4-3). Give an algorithm that determines whether or not a given undirected graph G=(V,E) contains a simple cycle. Your algorithm should run in O(V) time, independent of |E|

Proof. If the graph is acylic, then $|E| \leq |V| - 1$ and we can run DFS in O(|V|). If there is a path going back, then at should end in |V|th step

Exercise 1.1.2 (22.4-5). Another way to perform topological sorting on a directed acylic graph G=(V,E) is to repeatedly find a vertex of in-degree 0, output it, and remove it and all of its outgoing edges from the graph. Explain how to implement this idea so that it runs in time O(V+E). What happens to this algorithm if G has cycles?

Proof.

1.2 Single-Source Shortest Paths

```
1: procedure Initialize-single-source(G, s)
2:
      for v \in G.V do
          v.d = \infty
3:
4:
          v.\pi = nil
      end for
5:
      s.d = 0
7: end procedure
1: procedure Relax(u, v, w)
      if v.d \ge u.d + w(u,v) then
          v.d = u.d + w(u, v)
3:
4:
          v.\pi = u
      end if
5:
6: end procedure
```

1.2.1 The Bellman-Ford algorithm

```
1: procedure Initialize-single-source(G, s)
       for i = 1 to |G, V| - 1 do
 2:
3:
          for (u, v) \in G.E do
              RELAX(u, v, w)
 4:
          end for
 5:
       end for
 6:
       for each edge (u, v) = G.E do
 7:
          if v.d > u.d + w(u, v) then
 8:
              return False
9:
          end if
10:
       end for
12: end procedure
```

Lemma 1.1. Let G = (V, E) be a weighted, directed graph with source s and weight function $w : E \to \mathbb{R}$, and assume that G contains no negative-weight cycles that are reachable from s. Then after the |V|-1 iterations of the **for** loops, we have $v.d = \delta(s, v)$ for all vertices v that are reachable from s

Proof. Consider any vertex v that is reachable from s, and let $p = \langle v_0, v_1, \dots, v_k \rangle$ where $v_0 = s$ and $v_k = v$ to be any shortest path from s to v. Because shortest paths are simple, p has at most |V|-1 edges, and so $k \leq |V|-1$. Each of the |V|-1 iterations of the for loop relaxes all |E| edges. Among the edges relaxed in the ith iteration, for $i=1,\dots,k$, is (v_{i-1},v_i) . By the path-relaxation property, therefore $v.d=v_k.d=\delta(s,v_k)=\delta(s,v)$

Corollary 1.2. Let G=(V,E) be a weighted, directed graph with source vertex s and weight function $w:E\to\mathbb{R}$, and assume that G contains no negative-weight cycles that are reachable from s. Then for each vertex $v\in V$ there is a path from s to v iff BELLMAN-FORD terminates with $v.d<\infty$ when it is run on G

Theorem 1.3 (Correctness of the Bellman-Ford algorithm). Let BELLMAN-FORD be run on a weighted, directed graph G=(V,E) with source s and weight function $w:E\to\mathbb{R}$. If G contains no negative-weight cycles that are reachable from s, then the algorithm return TRUE, we have $v.d=\delta(s,v)$ for all vertices $v\in V$, and the predecessor subgraph G_π is a shortest-path tree rooted at s. If G does contain a negative-weight cycle reachable from s, then the algorithm returns FALSE

Proof. Now suppose that graph G contains a negative-weight cycle that is reachable from the source s; let this cycle be $c=\langle v_0,\dots,v_k\rangle$, where $v_0=v_k$. Then

$$\sum_{i=1}^k w(v_{i-1}, v_i) < 0$$

Assume for the purpose of contradiction that the Bellman-Ford algorithm returns TRUE. Thus, $v_i.d \leq v_{i-1}.d + w(v_{i-1},v_i)$ for $i=1,\ldots,k$. Summing the inequalities around cycle c gives us

$$\begin{split} \sum_{i=1}^k v_i.d &\leq \sum_{i=1}^k (v_{i-1}.d + w(v_{i-1},v_i)) \\ &= \sum_{i=1}^k v_{i-1}.d + \sum_{i=1}^k w(v_{i-1},v_i) \end{split}$$

But since $\sum_{i=1}^k v_i . d = \sum_{i=1}^k v_{i-1} . d$, we have

$$0 \leq \sum_{i=1}^k w(v_{i-1},v_i)$$

Exercise 1.2.1.

1.2.2 Single-source shortest paths in directed acyclic graphs

By relaxing the edges of a weighted dag G=(V,E) according to a topological sort of its vertices, we can compute shortest paths from a single source in $\Theta(V+E)$ time. Shortest paths are always well defined in a dag

```
1: procedure Dag-Shortest-Paths (G, w, s)

2: topological sort the vertices of G

3: INITIALIZE-SINGLE-SOURCE (G, s)

4: for each vertex u, taken in topological sorted order do

5: for each vertex v \in G.Adj[u] do RELAX (u, v, w)

6: end for

7: end for

8: end procedure
```

Exercise 1.2.2 (24.2-4). Given an efficient algorithm to count the total number of paths in a directed acylic graph. Analyze your algorithm

1.2.3 Dijkstra's algorithm

Dijkstra's algorithm solves the single-source shortest-paths problem on a weighted, directed graph G=(V,E) for the case in which all edge weights are nonnegative.

```
1: procedure Dijkstra(G, w, s)
        S = \emptyset
 2:
       Q = G.V
 3:
       while Q \neq \emptyset do
 4:
           u = \text{EXTRACT-MIN}(Q)
 5:
            S = S \cup \{u\}
 6:
           for each vertex v \in G.Adj[u] do RELAX(u, v, w)
 7:
            end for
 8:
        end while
10: end procedure
```

1.2.4 Proofs of shortest-paths properties

Lemma 1.4 (Triangle inequality). Let G = (V, E) be a weighted, directed graph with weight function $w : E \to \mathbb{R}$ and source vertex s. Then for all edges $u, v \in E$ we have

$$\delta(s, v) < \delta(s, u) + w(u, v)$$

Lemma 1.5 (Upper-bound property). Let G=(V,E) be a weighted, directed graph with weight function $w:E\to\mathbb{R}$. Let $s\in V$ be the source vertex, and let the graph be initialized by INITIALIZE-SINGLE-SOURCE(G,s). Then $v.d\geq \delta(s,v)$ for all $v\in V$, and this invariant is maintained over any sequence of relaxation steps on the edges of G. Moreover, once v.d achieves its lower bound $\delta(s,v)$ it never changes

Proof. By the inductive hypothesis, $x.d \ge \delta(s,x)$ for all $x \in V$ prior to the relaxation. The only d that may change is v.d. If it changes, we have

$$v.d = u.d + w(u, v)$$

$$\geq \delta(s, u) + w(u, v)$$

$$\geq \delta(s, v)$$

Corollary 1.6 (No-path property). Suppose that in a weighted, directed graph G=(V,E) with weight function $w:E\to\mathbb{R}$, no path connects a source vertex $s\in V$ to a given vertex $v\in V$. Then, after the graph is initialized by INITIALIZE-SINGLE-SOURCE(G,s), we have $v.d=\delta(s,v)=\infty$ and this equality is maintained as an invariant over any sequence of relaxation steps on the edges of G

Proof. By the upper-bound property, we always have $\infty = \delta(s, v) \leq v.d$

Lemma 1.7. Let G = (V, E) be a weighted, directed graph with weight function $w : E \to \mathbb{R}$, and let $(u, v) \in E$. Then immediately after relaxing edge (u, v) by executing RELAX(u, v, w), we have $v.d \le u.d + w(u, v)$

Proof. If prior to relaxing edge (u,v), we have v.d > u.d + w(u,v), then v.d = u.d + w(u,v) afterward. Otherwise v.d doesn't change

Lemma 1.8 (Convergence property). Let G=(V,E) be a weighted, directed graph with weight function $w:E\to\mathbb{R}$, let $s\in V$ be a source vertex, and let $s\rightsquigarrow u\to v$ be a shortest path in G for some vertices $u,v\in V$. Suppose G is initialized by INITIALIZE-SINGLE-SOURCE(G,s) and then a sequence of relaxation steps that includes the call RELAX(u,v,w) is executed on the edges of G. If $u.d=\delta(s,u)$ at any time prior to the call, then $v.d=\delta(s,v)$ at all times after the call

Proof.

Lemma 1.9 (Path-relaxation property). Let G=(V,E) be a weighted, directed graph with weight function $w:E\to\mathbb{R}$, and let $s\in V$ be a source vertex. Consider any shortest path $p=\langle v_0,\dots,v_k\rangle$ from $s=v_0$ to v_k . If G is initialized by INITIALIZE-SINGLE-SOURCE(G,s) and then a sequence of relaxation steps occurs that includes, in order, relaxing the edges $(v_0,v_1),\dots,(v_{k-1},v_k)$ then $v_k.d=\delta(s,v_k)$ after these relaxations and at all times after wards.