Assignment 6

- 1. Let's say $w=a^qb^0$, where $q\geq p(p$ is pumping length), q is prime. $w\in L$ since q is prime.
 - Since $b^0=\lambda$ and $|vy|\geq 1$, vxy should consists of only a. let's say |vy|=k. Then $|uv^ixy^iz|=q-k+ik=q+k(i-1)$
 - If we choose i=q+1, $|uv^{q+1}xy^{q+1}z|=q+qk=q(k+1)$. Since q is prime, q>1. Since $k=|vy|\geq 1$, k+1>1. Therefore, q(k+1) is composite number.
 - ullet By proof by contradiction, L is not satisfying pumping lemma for CFL. Therefore, L is not context-free.
- 2. We should reduce the number of 1s to half. That means output has one 1 per two input 1. When x is odd, we can just drop one 1.

3. For simplicity, I assume that $n \in \mathbb{N}$. Initially, it compare n with 0. If $n \leq 0$, it returns x (the initial value of x = 1). Else, it subtracts 1 from n and multiply x by

Assignment 6 1

2. Looping this will lead to 2^n .

- 4. Two-tape Turing machine is Turing machine that has $\delta:Q imes\Gamma imes\Gamma imesQ imes\Gamma imes\Gamma imes\{L,R\} imes\{L,R\}.$
 - We can define Two-tape Turing machine with stay option for convience.

$$\circ \ \delta: Q \times \Gamma \times \Gamma \to Q \times \Gamma \times \Gamma \times \{L,R,S\} \times \{L,R,S\}$$

