- 1. P versus NP
- 2. NP-completitudine

 \Rightarrow există argumente atât în favoarea <u>tezei</u> $P \neq NP$ cât şi în favoarea <u>tezei</u> P = NP.

 $P \neq NP \Leftrightarrow \underline{\text{nu există}}$ un algoritm rapid care să inlocuiască căutarea directă.

Cea mai bună metodă cunoscută în prezent pentru a rezolva probleme din clasa NP în mod determinist necesită timp de lucru exponenţial

 \Rightarrow putem demonstra că: $NP \subseteq EXPTIME = \underset{k \in N}{YTIME}(2^{n^k})$ Terminologie

- P = clasa problemelor rezolvabile algoritmic în timp de lucru polinomial (determinist),
- NP = clasa problemelor rezolvabile algoritmic în timp de lucru exponenţial (determinist).
 - = clasa problemelor rezolvabile algoritmic în timp polinomial nedeterminist
 - = clasa problemelor verificabile algoritmic în timp polinomial determinist.

٠

Teorema 1

 $P \subseteq NP \cap coNP$

Observatia 1

 $P \subset NP \cap coNP$.

Observatia 2

 $P \subset EXPTIME$.

- 1. P versus NP
- 2. NP-completitudine

1970: Stephen COOK şi Leonid LEVIN:

Probleme din clasa *NP* a căror complexitate proprie este strâns legată de complexitatea întregii clase.

Aceste probleme se numesc **NP-complete**.

- Fenomenul *NP*-completitudinii este important din punct de vedere:
- teoretic:
- practic:
- Cercetatorii considera că $P \neq NP$
- ⇒ demonstrarea faptului că o problemă este NP-completă este o dovadă puternică a caracterului ei nepolinomial.

Exemplul 1: Problema evaluarii = satisfiabilitatii (Satisfiability Problem)

Definiţia 1

- O formulă booleană se numește satisfezabila=evaluabilă
- există o combinaţie de valori de adevăr care, date variabilelor booleene din formulă, evaluează formula la valoarea 1.
- Problema evaluării (satisfiabilităţii) constă în a verifica dacă o formulă booleeană oarecare este evaluabilă (satisfezabilă) şi se codifică prin:

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ este o formulă booleeană evaluabilă } \}$

Teorema 2 (Cook-Levin)

 $SAT \in P \Leftrightarrow P = NP$

demonstrație

Metoda folosită: reductibilitatea polinomială a timpului de lucru.

Definiția 2

Funcţia $f: \Sigma^* \to \Sigma^*$ se numeşte polinomial calculabila

 \Leftrightarrow există o MT cu timp de lucru polinomial: \forall w \in Σ *, se opreşte, având pe bandă secvenţa f(w).

Definiția 3

Fie limbajele A, B $\subseteq \Sigma^*$.

Limbajul A se numește polinomial reductibil la limbajul B

 $\Leftrightarrow \exists f : \Sigma^* \to \Sigma^* \text{ polinomial calculabilă astfel încât } \forall w \in \Sigma^* : w \in A \leftrightarrow f(w) \in B.$

Funcţia f se numeşte reducerea polinomială a lui A la B.

Notatia 1

 $A \leq_{P} B$

Teorema 3

```
Fie limbajele A, B \subseteq \Sigma^*.
```

Daca $A \leq_P B \text{ si } B \in P \Rightarrow A \in P$.

demonstratie

- Cf. ip.: ∃ M = algoritm cu timp de lucru polinomial care decide B
- Cf. ip.: ∃ f = reducere polinomiala a lui A la B

Construim urmatorul algoritm N care decide limbajul A:

- N = "Fie secventa de intrare $w \in \Sigma^*$:
 - 1. Se calculeaza f(w).
 - Se ruleaza M pe intrarea f(w); N returneaza exact ceea ce returneaza M."

Cf. ip.
$$A \leq_P B$$
: $w \in A \leftrightarrow f(w) \in B => M$ accepta $f(w) \leftrightarrow w \in A$. (*)

N ruleaza in timp polinomial pt ca: (**

- etapa 1: reducerea f este polinomiala => timp polinomial
- etapa 2: avem o compunere de 2 polinoame => timp polinomial

Cf. (*) si (**):
$$A \in P$$
.

Definitia 4

```
Fie un limbaj B \subseteq \Sigma^*.
```

Limbajul B se numeşte NP-complet ⇔

- 1. B∈NP;
- 2. $\forall A \in NP: A \leq_P B.$

Teorema 4

Fie un limbaj B $\subseteq \Sigma^*$.

Daca B este NP-complet si B∈P => P=NP.

demonstratie

Rezulta imediat din definitia reductibilitatii polinomiale

```
Teorema 5
Fie un limbaj B \subseteq \Sigma^*.
Daca B este NP-complet si
       \forall C \in NP: B \leq_P C
   => C este NP-complet.
    demonstratie
Cf. ip.: B este NP-complet \rightarrow (cf. Def.4) \forall A \in NP: A \leq_{P} B,
Cf. ip.: \forall C \in NP: B \leq_{P} C,
compunerea a 2 polinoame este tot un polinom
A \leq_{P} C
=> (cf. Def.4) C este NP-complet.
```


- 1. P versus NP
- 2. NP-completitudine