

Physiology of Sleep

Assoc. Prof. Sinan Canan sinancanan@gmail.com www.sinancanan.net

Reticular Formation (Reticular activating system)

Neuromodulator Systems

Sleep

- Loss of wakefulness
- A fundamental function for physical and mental health
- Not loss of conciousness; only a "shift"
- An unconcious state which can be in part modified by sensory stimulations

Sleep centers

Areas causing sleep when stimulated:

1. Raphe nuclei in lower pons and medulla

- Targets (efferents): Reticular formation, thalamus, neocortex, hypothalamus, limbic system, dorsal roots of spinal cord
- Neurotransmitter: Serotonin (5HT)

Sleep centers

- 2. *"Medullary synchronization area" in nuc. tractus solitarius level:
 - May stimulate the Raphe nuclei?
- 3. *Diencephalic sleep areas:
 - 1. Rostral of hypothalamus, especially the suprachiasmatic area
 - 2. Intralaminar and anterior thalamic nuclei

4. Basal forebrain sleep area:

1. Preoptic area and Broca's diagonal band.

^{*}low freq stimulation (8/s) leads to sleep; while high freq. causes to wake up

Thalamus

Cortical activation Sleep spindle EEG synchronization

Some factors known to interfere with sleep

- **Adenosine** Inhibits the specific cholinergic neurons of RAS which stimulates the cortex
- PgD2-Increases tendency to sleep when released from medial preoptic area of hypothalamus
- PgE2-wakefulness
- IL-1
- Δ -sleep inducing factor
- Muramil Peptide
- Rythmic stimulation of **mechanoreceptors** (10 Hz or lower)

Why do we sleep?

Possible mechanisms of sleep-wake cycle

- Wakefulness: Excitatory effects of RAS and thalamus
- Stimultion of RAS reinforced by the positive feedback from cortex and peripheral nervous system
- RAS gets "tired" during the day.
- **Sleep**: Diminished RAS activity allows sleep centers to inhibit RAS - - and *drowsiness* begin...

Sleep-Wake Cycle: Biological Rythms

- A part of circa(about)dian(a day) rythms
- Suprachiasmatic nucleus – Biological clock
- Related to natural lightdark cycle

Sleep-Wake Cycle: Biological Rythms

- 1. Retinohypothalamic pathway-Pineal gland-Melatonin
- 2. Humoral fototransduction-circulating receptors?

Phases of Sleep

- 1. Slow-wave sleep (NonREM):
 - Phase 1-4
- 2. Paradoxal/desynchronized sleep (REM- Rapid Eye Movements)

Slow-Wave (nonREM) Sleep

- Entrance to sleep
- Takes appr. 90 minutes with 5-20 minutes intervals
- Peripheral vessel tone and vegetative body functions decrease
- Muscle tone decreases
- 10-30% decrease in blood pressure, respiration rate and basal metabolism
- Spinal reflexes can be elicited but strech (deep tendon) reflexes are absent.

Slow-Wave (nonREM) Sleep

- Dreams cannot be remembered
- Theta and delta waves in EEG
- Duration and frequency decrease with age
- Has 4 different stages

Sleep and EEG waves

Phase-1 nonREM

- Transition period between wakefulness and sleep; takes approximately 1-15 minutes.
- Eyes closed and relaxed...
- Light sleep, hallucination-like visions...
- α (alpha) waves weaken, slower θ (delta) waves emerge.

Phase-2 nonREM

- First stage of the real sleep; takes about 20 minutes...
- Sleep spindles: 12-14 Hz sharp waves appear for 1-2 seconds...
- Slow eye movements...
- Hard to awaken...
- Fragments of dreams?

Phase-3 nonREM

- Half-way deep sleep
- Body temperature and blood pressure decreases
- Harder to awaken
- Low frequency δ (theta) waves
- Sleep spindles are decreased
- No slow eye movements

Phase-4 nonREM

- Deepest sleep; takes about 30-40 mins.
- δ (theta) waves predominate
- Most reflexes are intact; muscle tone slightly decreased
- Sleep-walking; sleep-talking; snoring and bedwetting generally occurs at this stage.

Sleep Stages-EEG

Sleep Stages

REM Sleep

- 5-30 minutes with 90 minute-intervals
- Active dreaming (dreams are remembered)
- Active body movements
- More difficult to wake up with sensory stimulations
- Waking up in the morning generally coincides with the last REM period.
- **Decrease in muscle tone** (except respiratory and eye muscles)
- Irregularity in heart and respiration rate.
- 20% increase in brain metabolism

REM Sleep

- Atonia in neck muscles
- Rapid eye movements
- Beta waves in EEG
- =paradoxal sleep, =desynchronized sleep

Possible causes of REM Sleep

- ACh neurons in rostral reticular formation
 - Lateral tegmentum→lateral geniculate body→occipital cortex:
 - = Ponto-geniculo-occipital spikes in EEG

Possible causes of REM Sleep

Neurotransmitters and REM Sleep

Characteristics of REM and Non-REM Sleep

Slow EEG

MMMM

Muscular activity
Dreaming rare
Easily awakened
80% of sleep time

REM (Paradoxical)

EEG similar to awake person

No movement
Dreaming common
Hard to arouse easily
20% of sleep time

Typical sleep phases in night sleep

(A) Electroencephalogram (EEG)

(B) Electromyogram (EMG)

(C) Electrooculogram (EOG)

EEG / EMG / EOG

Cortical activity during sleep

(A) Reaction-time task

Subjects are trained on a reaction-time task, and brain activity is recorded with PET.

(B) REM sleep that night

Subjects display a similar pattern of brain activity during subsequent REM sleep.

Cortical activity during sleep

Waking up

- It is hard to wake up in nonREM Phase 4.
- Spontaneous arousal occurs in REM
- In thalamic neurons:
 - "Hyperpolarized" phasic firing during sleep;
 - "Depolarized" tonic firing due to sensory input...

Physiological effects of sleep

- Sleep,
 - Helps the maintenance of normal activity level of CNS.
 - Helps to maintain the "balance" between the different parts of the CNS.
- Increased sympathetic activity and muscle tone during the awake period decreases with sleep...

Physiological effects of sleep

- Body temperature drops, energy loss decreases
- Growth hormone and cortisol secretion
- Phosphate excretion from kidneys increase
- Melatonin secretion increases
- Skin and tissue repair

Sleep across life span

Sleep across life span

Sleep disorders

- Insomnia
 - Disturbances in sleep onset or maintenance
- Fatal Familial Insomnia
 - Unable to sleep, emotional instability, hallucinations, stupor- coma and death

Sleep deprivation

- Prolonged wakefulness may result in irritability, confusion and psychotic symptoms
- Fatigue, prostration, depression...
- Unability to direct attention
- Hypersensitivity to pain
- Visceral problems including anorexia and distruption of excretion
- Defects in skin repair
 - Collagen fibres loose their flexibility and may display color changes

REM sleep deprivation

- Confusion
- Paranoia
- Affective disorders
- Decrease in motor performance
- Memory consolidation impairments?
- Loss of balance
- Decreased immune efficiency
 - Work, traffic and home accidents!

Sleep disorders

Parasomnias

- Sleep walking (somnanbulism), talking, etc..
- Behavioral disorders in REM sleep
 - Excess motor activity in REM.
- Narcolepsy
- Restless leg sydrome
 - Reccurrent leg movements like shaking or withdrawalextension

Sleep paralysis

• Unable to move for a couple of minutes right after sleep onset or after waking up.

Sleep disorders

- Obstructive Sleep Apnea Syndrome
 - Collapse in the upper airways, interruption of respiration, snoring...
 - May cause restlesness and day sleep

Quote:

Have a nice sleep!