Introduction

Calcul scientifique et Analyse de données

Première partie I

Motivations

Exemple 1 : Reconstruction de données manquantes

Missions satellitaires relatives à l'observation de l'environnement.

Cycle journalier de MERIS (Envisat) en avril 2004 (ESA)

- Instruments radiométriques (couleur de l'eau) dans le domaine du visible/quasi-infrarouge
 - ▷ "Trous" dans les données causés par la nuit, la couverture nuageuse.
- Peut-on remplir les trous? Comment?

Exemple 1 : Reconstruction de données manquantes

Modélisation du problème

- Collection d'images satellite : tableau de données.
- Réduction de dimension du problème : construction de sous-espaces "pertinents".
 - Un problème de valeurs propres.
 - Analyse en composantes principales, décomposition SVD, méthode de la puissance itérée.
- Projection de la nouvelle image sur ces sous-espaces.

Exemple 2 : Reconnaissance de visages

Modélisation du problème

- Collection d'images de visages.
- Réduction de dimension du problème : construction de sous-espaces "pertinents".
 - Un problème de valeurs propres.
 - Analyse en composantes principales, décomposition SVD, méthode de la puissance itérée.
- Classification de la nouvelle image.
- Projet 2017-2018

Jonnées

Exemple 3 : Moteurs de recherche

Classement des pages Web (page ranking)

- Internet : graphe orienté.
- Importance relative d'une page dans le graphe de l'Internet :
 - \triangleright I_i l'ensemble des pages Web ayant un lien vers la page i.
 - \triangleright O_i l'ensemble des pages Web vers lesquelles la page i a un lien. $N_i = |O_i|$.
 - $ho_r \in \mathbb{R}^n$ le vecteur des importances relatives des pages Web défini par r = Qr avec

$$Q_{ij} = \begin{cases} 1/N_j & \text{si } j \in I_i \\ 0 & \text{sinon} \end{cases}$$

- Un problème de recherche de vecteurs propres.
 - Méthode de la puissance itérée.

Exemple 4 : Prévision de l'évolution de notre milieu naturel

Assimilation de données

Ensemble des techniques permettant de combiner l'information mathématique contenue dans les équations et l'information physique provenant des observations, en vue de reconstituer au mieux l'état d'un système.

Modèles numériques

Observations

ROMS-AGRIF (UCLA/IRD, Rutgers), Penven, Marchesiello, McWilliams, Debreu.

Exemple 4 : Prévision de l'évolution de notre milieu naturel

Minimisation d'une fonctionnelle

Fonction de coût 4D-Var :

$$J(\mathbf{x_0}) = \underbrace{\frac{1}{2}(\mathbf{x_0} - \mathbf{x}^b)^T \mathbf{B^{-1}}(\mathbf{x_0} - \mathbf{x}^b)}_{\text{\'ecart \'a l'\'ebauche}} + \underbrace{\frac{1}{2}\sum_{i=0}^{N}(H_i[M_{\mathbf{0}\rightarrow i}(\mathbf{x_0})] - \mathbf{y}_i)^T \mathbf{R}_i^{-1}(H_i[M_{\mathbf{0}\rightarrow i}(\mathbf{x_0})] - \mathbf{y}_i)}_{\text{\'ecart aux observations}}$$

Résolution en pratique

- Résolution de systèmes linéaires.
 - Pésolution d'équations aux dérivées partielles (modèles numériques).
- Moindres carrés, factorisations LU, Cholesky, steepest descent, méthodes des gradients conjugués.
- Réduction des dimensions des problèmes.
 - Décomposition en valeurs singulières, factorisation QR.

Exemple 5 : Partitionnement de données

- Division d'un ensemble de données en différents groupes "homogènes".
 - Etudes de marchés, reconnaissance de communautés, écologie, segmentation d'images, etc..
- Apprentissage non supervisé, méthodes de K-means, algorithme EM.

Mouysset et al. (2013)

Partitionnement de données médicales (cerveau).

Segmentation d'images (CNES).

Deuxième partie II

Rappels d'algèbre linéaire

Rappel sur les matrices : $A \in \mathcal{M}_n(\mathbb{R})$

- $A = [a_{ij}]$ $\begin{cases} i = 1, \dots, n & \text{indices de lignes} \\ j = 1, \dots, n & \text{indices de colonnes} \end{cases}$
- Matrice transposée ${}^{t}A = A^{T} = [a_{ji}]$ $(A \cdot B)^{T} = B^{T} \cdot A^{T}$ $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$ $(A^{-1})^{T} = (A^{T})^{-1}$
- $(\cdot|\cdot)$ produit scalaire Euclidien : $(x|A\cdot y)=(A^T\cdot x|y)=x^T\cdot A\cdot y$
- A symétrique : $A = A^T (a_{ij} = a_{ji} \quad i, j = 1, ..., n)$
- Déterminant de A: $\det(A) = |A|$ $\forall \alpha \in \mathbb{R} \quad |\alpha A| = \alpha^n |A| \quad |A| = |A^T|$ $|A \cdot B| = |A| \cdot |B| \quad |A^{-1}| = 1/|A|$

Rappel sur les matrices : $A \in \mathcal{M}_n(\mathbb{R})$

$$A \text{ inversible } \iff |A| \neq 0 \\ \iff rang(A) = n \\ \iff A \text{ régulière }$$

A définie positive
$$\iff \forall x \in \mathbb{R}^{n*} \qquad x^T \cdot A \cdot x = (x|A \cdot x) > 0$$

$$\iff \forall x \in \mathbb{R}^n \qquad (x|A \cdot x) \geqslant 0$$

$$\text{et } (x|A \cdot x) = 0 \implies x = 0$$

A orthogonale
$$\iff A^{-1} = A^T$$

$$\lambda \in \mathbb{C}$$
 valeur propre de $A \iff \exists x \in \mathbb{C}^{n^*}$, appelé vecteur propre t.q. $A \cdot x = \lambda x$

Opérations élémentaires sur les matrices

Les matrices élémentaires dans $\mathcal{M}_n(\mathbb{K})$

- Base canonique de $\mathcal{M}_{m,n}(\mathbb{K})$: $E_{i,j} = [\delta_{p,i}\delta_{q,j}]_{1 \leq p \leq m, 1 \leq q \leq n}$
- Matrice de permutation $P_{\sigma} = \sum_{j=1}^{n} E_{\sigma(j),j}$, avec σ une permutation de $\{1,\ldots,n\}$. On a $P_{\sigma}^{-1} = P_{\sigma^{-1}}$.
- Matrice de transvection $T_{i,j}(\lambda) = I_n + \lambda E_{i,j}$, avec $i \neq j$ et $\lambda \neq 0$ On a $T_{i,j}(\lambda)^{-1} = T_{i,j}(-\lambda)$.
- Matrice de dilatation $D_i(\lambda) = I_n + (\lambda 1)E_{i,i}$ avec $\lambda \neq 0$. On a $D_i(\lambda)^{-1} = D_i(\frac{1}{\lambda})$

Opérations élémentaires sur les matrices

Opérations élémentaires sur les lignes : multiplication à gauche

- $E_{i,j}$. A est la matrice dont toutes les lignes sont nulles sauf la i-ème qui est la j-ème ligne de A.
- $P_{\sigma}.A$ est la matrice obtenue en effectuant la permutation σ^{-1} sur les lignes de A.
- $T_{i,j}(\lambda).A: L_i \leftarrow L_i + \lambda L_j$, avec L_i et L_j les ième et jème lignes de A.
- $D_i(\lambda).A: L_i \leftarrow \lambda L_i$.

Opérations élémentaires sur les colonnes : multiplication à droite

- A. E_{i,j} est la matrice dont toutes les colonnes sont nulles sauf la j-ème qui est la i-ème colonne de A.
- $A.P_{\sigma}$ est la matrice obtenue en effectuant la permutation σ sur les colonnes de A.
- $A.T_{i,j}(\lambda): C_j \leftarrow C_j + \lambda C_i$, avec C_i et C_j les ième et jème colonnes de A.
- $A.D_j(\lambda): C_j \leftarrow \lambda C_j$.

Normes matricielles

 $\mathcal{M}_n(\mathbb{R})$ espace vectoriel de dimension finie : toutes les normes sont équivalentes.

• Norme la plus usuelle : norme matricielle induite par une norme vectorielle $\|\cdot\|$ de \mathbb{R}^n

$$A\in\mathcal{M}_n(\mathbb{R})\qquad \|A\|=\sup_{\|x\|\neq 0}\frac{\|Ax\|}{\|x\|}=\sup_{\|x\|=1}\|Ax\|$$

Propriétés :
$$||Ax|| \le ||A|| \cdot ||x||$$
 $||A \cdot B|| \le ||A|| \cdot ||B||$

Norme la plus usuelle : norme matricielle induite par une *p*-norme vectorielle

$$(\forall x \in \mathbb{R}^n, ||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}).$$

On a $\forall A \in \mathcal{M}_n(\mathbb{R})$,

•
$$||A||_1 = \max_{j=1:n} \sum_{i=1}^n |a_{ij}|.$$

• $||A||_2 = \sqrt{\rho(A^T A)}$, avec ρ le rayon spectral.

$$\forall x \in \mathbb{R}^n, \|x\|_{\infty} = \max_{i=1:n} |x_i|, \qquad \forall A \in \mathcal{M}_n(\mathbb{R}), \|A\|_{\infty} = \max_{i=1:n} \sum_{i=1}^n |a_{ij}|.$$

• Autres normes usuelles :

norme
$$\operatorname{Max}: \|A\|_{\operatorname{max}} = \operatorname{max}_{i,j} |a_{i,j}|$$
 (pas sous-multiplicative!)

norme de Frobenius : $||A||_F = (\sum_{i=1}^m \sum_{j=1}^m |a_{i,j}|^2)^{\frac{1}{2}} = \sqrt{tr(A^*A)}$

Structures par blocs

Structures particulières

Matrice triangulaire

Soit A triangulaire inférieure (resp. supérieure) :

- Si A inversible alors A^{-1} est triangulaire inférieure (resp. supérieure).
- |A| = produit des coefficients diagonaux.
- Le produit de 2 matrices triangulaires inférieures est triangulaire inférieur.

Matrice triangulaire inférieure

Matrice triangulaire supérieure

Structures particulières

Matrice triangularisable

Une matrice A est dite triangularisable si elle est semblable à une matrice triangulaire supérieure.

Prop.:

- $\forall A \in \mathcal{M}_n(\mathbb{K})$, A triangularisable \iff le polynôme caractéristique de A est scindé sur \mathbb{K} .
- $\forall A \in \mathcal{M}_n(\mathbb{C})$ est triangularisable.

Théorème de triangularisation unitaire de Schur

 $\forall A \in \mathcal{M}_n(\mathbb{C})$, il existe $U \in \mathcal{M}_n(\mathbb{C})$ unitaire ($U^* = U^{-1}$) telle que U^*AU est triangulaire supérieure avec les valeurs propres de A sur la diagonale.

Remarque:

• Si $A \in \mathcal{M}_n(\mathbb{R})$, avec des valeurs propres toutes réelles, alors $U \in \mathcal{M}_n(\mathbb{R})$ est orthogonale.

Structures particulières

Matrice symétrique

- Les valeurs propres sont réelles (non nécessairement distinctes)
- Si u_1 est un vecteur propre associé à λ_1 , si u_2 est un vecteur propre associé à λ_2 (avec $\lambda_1 \neq \lambda_2$), alors $(u_1|u_2) = 0$

Matrice symétrique définie positive

- Les valeurs propres sont strictement positives (c'est une CNS pour montrer le caractère défini positif d'une matrice symétrique)
- Le déterminant et les coefficients diagonaux sont strictement positifs (la matrice est donc inversible)
- Les sous-matrices principales sont symétriques définies positives

Systèmes à structure particulière

Systèmes diagonaux, diagonaux par blocs

Algorithmique naturelle

Systèmes tridiagonaux, tridiagonaux par blocs

- Simplification d'un algorithme de résolution général ou
- Méthode spécifique comme les techniques de réduction

Systèmes triangulaires inférieurs

- Algorithme sans reports pour un accès à la matrice par lignes ou
- Algorithme avec reports pour un accès à la matrice par colonnes

Méthodes directes

Principes

Le nombre d'opérations ne dépend que de la dimension de la matrice (il est indépendant de la valeur des coefficients). Résultat exact aux erreurs numériques près.

Les plus fréquentes : méthodes de factorisation

$$A \cdot x = b \rightarrow A_1 \cdot A_2 \cdot A_3 \cdot x = b$$
; $A_1 \cdot y = b$; $A_2 \cdot z = y$; $A_3 \cdot x = z$

- Cas général : factorisation de Gauss
- Matrice symétrique définie positive : factorisation de Cholesky

Contraintes des méthodes de factorisation :

- La factorisation met en évidence des matrices à structure simple (A_1, A_2, A_3) triangulaires ou diagonales, tridiagonales, orthogonales...)
- Une seule structure de données matricielle de mémorisée (les coefficients de A₁, A₂, A₃ se substituent à certains des coefficients de A)

Méthodes itératives

Principe

On cherche une suite $x^{(p)}$ de \mathbb{R}^n convergeant vers la solution de $A \cdot x = b$ $\forall x^{(0)} \qquad x^{(p+1)} = H\left(x^{(p)}\right)$.

Propriétés

- La matrice A n'est jamais modifiée.
- Problème du suivi de la convergence et du choix du test d'arrêt.
- La solution obtenue n'est pas exacte.
- La matrice doit vérifier des conditions de convergence.
- La vitesse de convergence dépend de la valeur des coefficients de la matrice.