11.

Notes on parabolic Hessenberg varieties inside the affine flag variety.

11.1.

11.1. Let G be a connected reductive algebraic group over G. Fix a maximal torus $T \subseteq G$ and Borel $B \subseteq G$ containing G. Let G be the corresponding character lattice, root system, and subsets of positive/negative roots. Let

$$\rho^{\vee} = \frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha^{\vee} \in X^{\vee} \otimes \mathbf{Q}.$$

Let \mathfrak{g} and \mathfrak{t} be the Lie algebras of G and T.

Let $W = N_G(T)/T$ and $\widetilde{W} = N_{G((z))}(T[\![z]\!])/T[\![z]\!]$. At the level of **C**-points, we have isomorphisms $W \simeq N_{G((z))}(T((z)))/T((z))$ and $X^{\vee} \simeq T((z))/T[\![z]\!]$. They induce an isomorphism $\widetilde{W} \simeq W \ltimes X^{\vee}$.

11.2. We picture each affine root $(\alpha, k) \in \Phi \times \mathbf{Z}$ as a hyperplane in $X^{\vee} \otimes \mathbf{R}$ with a fixed orientation: namely, pointing toward vectors x such that $\langle \alpha, x \rangle + k > 0$. For all $x \in X^{\vee} \otimes \mathbf{R}$ and $r \in \mathbf{R}$, we set

$$\mathfrak{g}((z))_{x,\kappa} = \prod_{\substack{(\alpha,k) \in \Phi \times \mathbf{Z} \\ (\alpha,x)+k=r}} z^k \mathfrak{g}_{\alpha} \times \begin{cases} z^r \mathfrak{t} & r \in \mathbf{Z}, \\ 0 & r \notin \mathbf{Z}. \end{cases}$$

(The product symbol is an abuse of notation for the completion of a direct sum.) Let $l_x \subseteq \mathfrak{p}_x \subseteq \mathfrak{g}((z))$ be defined by

$$\mathfrak{l}_x = \mathfrak{g}((z))_{x,0},
\mathfrak{P}_x = \prod_{r \ge 0} \mathfrak{g}((z))_{x,r}.$$

Let \mathbf{P}_x be the parahoric subgroup of G((z)) with Lie algebra \mathfrak{P}_x . Then its Levi factor L_x is a connected (finite-dimensional) reductive algebraic group with Lie algebra \mathfrak{l}_x . Note that \mathbf{P}_x contains $T[\![z]\!]$, whereas L_x contains T. Let $W_x = N_{L_x}(T)/T$.

It helps to picture the hyperplane arrangement of the root system of L_x as the set of hyperplanes that pass through x. For example, taking x = 0, we find that $l_0 = G$ and $\mathfrak{P}_0 = G[[z]]$, giving $W_0 = W$.

The conjugation action of W on T induces a right action of W on X^{\vee} . Under it,

$$\mathfrak{g}((z))_{x,r} \cdot w = \mathfrak{g}((z))_{x \cdot w,r}$$

Therefore, $\mathfrak{l}_x \cdot w = \mathfrak{l}_{x \cdot w}$ and $\mathfrak{P}_x \cdot w = \mathfrak{P}_{x \cdot w}$. For instance, if $G = \mathrm{SL}_2$, then

$$\mathfrak{p}_0\cdot\alpha^\vee=z^{-\alpha^\vee}\mathfrak{g}[\![z]\!]z^{\alpha^\vee}=z^{-2}\mathfrak{g}_\alpha[\![z]\!]\oplus\mathfrak{t}[\![z]\!]\oplus z^2\mathfrak{g}_{-\alpha}[\![z]\!].$$

11.3. If x is rational, meaning $x = (d/e)x_0$ for some $d, e \in \mathbf{Q}$ and $x_0 \in X^{\vee}$, then it defines a \mathbf{G}_m -action on G((z)) as follows: For all $g = g(z) \in G((z))$ and $c \in \mathbf{G}_m$, let

$$c \cdot_x g(z) = \operatorname{Ad}(c^{dx_0})g(c^m z).$$

Taking the differential of the action above, we get a G_m -action on $\mathfrak{g}((z))$.

Proposition 11.1. Above, $\mathfrak{g}((z))_{x,r}$ is the eigenspace of \cdot_x of weight er.

Corollary 11.2. The adjoint action of G((z)) on $\mathfrak{g}((z))$ restricts to an L_x -action on $\mathfrak{g}((z))_{x,r}$ for each r.

11.2.

11.4. Recall that the fundamental alcove is the region of points $x \in X^{\vee} \otimes \mathbf{R}$ such that $0 < \langle \alpha, x \rangle < 1$ for all $\alpha \in \Phi^+$. Let $\mathfrak{I} = \mathfrak{P}_x$ and $\mathbf{I} = \mathbf{P}_x$ for any choice of x inside the fundamental alcove. For example, if $G = \mathrm{SL}_2$, so that $\Phi^{\pm} = \{\pm \alpha\}$, then

$$\mathfrak{I} = \mathfrak{g}_{\alpha} \llbracket z \rrbracket \oplus \mathfrak{t} \llbracket z \rrbracket \oplus z \mathfrak{g}_{-\alpha} \llbracket z \rrbracket.$$

11.5. The affine flag variety with respect to **I** is (the underlying reduced ind-scheme of) the (fpqc) quotient $\mathcal{F}\ell = G(z)/I$. We have an affine Bruhat decomposition

$$\mathcal{F}\ell = \coprod_{w \in W_x \setminus \widetilde{W}} \mathbf{P}_x \dot{w} \mathbf{I}/\mathbf{I}.$$

The action \cdot_x descends from G((z)) to $\mathcal{F}\ell$. The fixed points are given by

$$\mathcal{F}\ell^{\mathbf{G}_m} = \coprod_{w \in W_{\mathcal{X}} \setminus \widetilde{W}} L_{\mathcal{X}} \dot{w} \mathbf{I}/\mathbf{I}.$$

For any $\gamma \in \mathfrak{g}((z))$, the affine Springer fiber above γ of type **I** is

$$\mathcal{F}\ell_{\gamma} = \{g\mathbf{I} \in \mathcal{F}\ell \mid \mathrm{Ad}(g^{-1})\gamma \in \mathfrak{I}\}.$$

Proposition 11.3. *If* γ *is an eigenvector of* \cdot_x *, then* $\mathcal{F}\ell_{\gamma}$ *is stable under the* \mathbf{G}_m *-action induced on* $\mathcal{F}\ell$.

We will focus on the case where γ is regular semisimple, since $\mathcal{F}\ell^{\gamma}$ is locally of finite type for such γ , as shown by Kazhdan–Lusztig. To this end, let $\mathfrak{t}^{\text{reg}} \subseteq \mathfrak{t}$ be the locus where W acts freely. Let $\mathfrak{g}((z))^{\text{rs}} \subseteq \mathfrak{g}((z))$ be the regular semisimple locus, meaning the preimage of $(\mathfrak{t}^{\text{reg}} //W)((z))$ along the map $\mathfrak{g} \to \mathfrak{t} //W$ induced by Chevalley restriction. Let $\mathfrak{g}((z))^{\text{rs}}_{x,r} \subseteq \mathfrak{g}((z))_{x,r}$ be defined similarly.

11.6. For all $w \in \widetilde{W}$ and $r \in \mathbf{R}$, let

$$V_{x,r,w} = \mathfrak{g}((z))_{x,r} \cap w \mathfrak{I} w^{-1},$$

$$\mathfrak{p}_{x,w} = V_{x,0,w} = \mathfrak{l}_x \cap w \mathfrak{I} w^{-1},$$

$$P_{x,w} = L_x \cap w \mathbf{I} w^{-1}.$$

Then $P_{x,w}$ is a parabolic subgroup of L_x with Lie algebra $\mathfrak{p}_{x,w}$. The adjoint L_x -action on $\mathfrak{g}(\!(z)\!)_{x,r}$ restricts to a $P_{x,w}$ -action on $V_{x,r,w}$. Thus, for all $\gamma \in \mathfrak{g}(\!(z)\!)_{x,r}$, we can form

$$\text{Hess}_{x,w,y} = \{ gP_{x,w} \in L_x / P_{x,w} \mid \text{Ad}(g^{-1}) \gamma \in V_{x,r,w} \},$$

a parabolic Hessenberg variety.

We may regard $\operatorname{Hess}_{x,w,\gamma}$ as the zero locus of a section of the vector bundle

$$(L_x \times \mathfrak{g}((z))_{x,r}/V_{x,r,w})/P_{x,w} \rightarrow L_x/P_{x,w}$$

defined by γ . If $\gamma \in \mathfrak{g}((z))_{x,r}^{rs}$, then it is transverse to the zero section, giving:

Proposition 11.4 (Goresky–Kottwiz–MacPherson). *If* $\gamma \in \mathfrak{g}((z))_{x,r}^{rs}$, then $\operatorname{Hess}_{x,w,\gamma}$ is smooth and

$$\dim \operatorname{Hess}_{x,w,\gamma} = \dim L_x / P_{x,w} - \dim \mathfrak{g}((z))_{x,r} / V_{x,\nu,w}$$
$$= \{(\alpha, k) \mid \langle \alpha, y \cdot w \rangle + k < 0 \le \langle \alpha, x \rangle + k = r\}$$

for any choice of y such that $\mathbf{I} = \mathbf{P}_{v}$.

The inclusion $L_x \subseteq G((z))$ descends to an inclusion $L_x/P_{x,w} \subseteq \mathcal{F}\ell$. For all $w \in \widetilde{W}$, we identify $\operatorname{Hess}_{x,w,\gamma}$ with its image in $\mathcal{F}\ell$.

11.3.

11.7. Fix a fraction $\nu = d/m > 0$ in lowest terms, where m is a regular number for W. Then ν is an admissible slope for W in the sense of Oblomkov–Yun. Henceforth,

$$x = \nu \rho^{\vee} \in X^{\vee} \otimes \mathbf{Q}.$$

Theorem 11.5 (Goresky–Kottwitz–MacPherson). Suppose that $\gamma \in \mathfrak{g}((z))_{x,\nu}^{rs}$. Then

$$\mathcal{F}\ell_{\gamma}^{\mathbf{G}_m} = \coprod_{w \in W_{\gamma} \setminus \widetilde{W}} \mathrm{Hess}_{x,w,\gamma}.$$

Moreover, the locus that contracts onto a given Hessenberg variety under the \mathbf{G}_m -action forms an affine-space bundle over that variety. As we run over $w \in W_x \setminus \widetilde{W}$, these loci form a stratification of $\mathcal{F}\ell_{\nu}$.

Following Varagnolo-Vasserot, connected components of

$$X^{\vee} \otimes \mathbf{R} - \bigcup_{\substack{(\alpha,k) \in \Phi \times \mathbf{Z} \\ \langle \alpha,x \rangle + k = \nu}} \{ y \mid \langle \alpha, y \rangle + k = 0 \}$$

are called ν -clans.

Proposition 11.6 (Varagnolo–Vasserot). If the w- and w'-translates of the fundamental alcove are contained in the same clan, then $V_{x,v,w} = V_{x,v,w'}$ and $P_{x,w} = P_{x,w'}$, whence $\operatorname{Hess}_{x,w,\gamma} \simeq \operatorname{Hess}_{x,w',\gamma}$ for all $\gamma \in \mathfrak{g}(\!(z)\!)_{x,v}$.