Connectionists - Neural Networks (Deep Learning)

Connectionists are a class of machine learning algorithms that learn from examples by building a general model of the problem domain, and then apply the model to make predictions. Connectionists are also known as **neural networks** or **deep learning**.

They are inspired by the way biological nervous systems, such as the brain, process information.

- To simulate the way the brain works, connectionists use artificial neural networks (ANNs), which are composed of neurons - computational units that receive n inputs and produce a single output σ;
- Each input is weighted by a synaptic weight w_i ;
- The neuron sums the weighted inputs and applies an activation function f to the result f is usually a sigmoid function;

$$- \sigma = f(\sum_{i=1}^{n} w_i x_i)$$

• Learning is achieved by adjusting the synaptic weights.

Summary:

- Records represented as **vectors** of **features**;
- Training consists of adjusting the weights of the synapses between neurons, in order to minimize the generalization error;
- Classification consists of propagating the input vector through the network, activating the neurons and selecting the class with the highest activation.

Perceptron

- Perceptron is a single-layer neural network that can be used for classification it is a linear classifier;
- It can represent **hyperplanes** in the feature space;

- It can represent conjunctions and disjunctions, but not exclusive disjunctions it cannot represent datasets that are not linearly separable;
- A perceptron is a function $f: \mathbb{R}^d \to \mathbb{R}$ defined as:
 - $f(x) = \sigma(\sum_{i=1}^{d} w_i x_i + b)$
 - In binary classification, the range of f is $\{-1, 1\}$;
 - Usually, the activation function is a logistic function $(\sigma(x) = \frac{1}{1+e^{-x}})$ or a hyperbolic tangent $(\sigma(x) = \frac{e^x e^{-x}}{e^x + e^{-x}})$;
- The error of a perceptron is the number of misclassified records: $E = \frac{1}{2} \sum_{i=1}^{n} (y_i f(x_i))^2$;

Gradient Descent

- Gradient descent is an optimization algorithm used to minimize a function by iteratively moving in the direction of the steepest descent as defined by the negative of the gradient;
- Used to train perceptrons;
- In order to minimize the error, we need to compute its derivative with respect to the weights: $\frac{\partial E}{\partial m_i}$;
- After computing the gradient, we update the weights by subtracting the gradient multiplied by a learning rate η :
 - $w_i \leftarrow w_i \eta \frac{\partial E}{\partial w_i}$
 - The learning rate is a hyperparameter that controls the step size;
 - A common practice, is to use a learning rate that decreases over time.

Multi-Layer Perceptron

- Multi-layer perceptron (MLP) is a feedforward neural network that consists of multiple layers of perceptrons;
- By default, MLPs are **fully connected** each neuron in a layer is connected to all neurons in the next layer;
- Another common type of MLP, is one where all variables are input to all neurons.

SVMs and Kernels

...