Compactly supported cohomology of discrete groups

Daniel Miller

August 7, 2016

1 Motivation

Let $\Gamma \subset \operatorname{SL}_2(\mathbf{Z})$ be a congruence subgroup. We are interested in the cohomology $\operatorname{H}^{\bullet}(\Gamma, \operatorname{sym}^k \mathbf{C})$. These groups are isomorphic to $\operatorname{H}^{\bullet}(\Gamma \backslash \mathfrak{H}, \operatorname{sym}^k \mathbf{C})$, where \mathfrak{H} is the upper half plane and $\operatorname{sym}^k \mathbf{C}$ is the local system on $\Gamma \backslash \mathfrak{H}$ with monodromy $\operatorname{sym}^k \mathbf{C}$. Once we've introduced the symmetric spaces $S_{\Gamma} = \Gamma \backslash \mathfrak{H}$, it seems natural to also consider their cohomology with compact supports: $\operatorname{H}^{\bullet}_{\mathfrak{C}}(S_{\Gamma}, \widetilde{V})$, where $V = \operatorname{sym}^k \mathbf{C}$.

More generally, let $G_{/\mathbf{Q}}$ be a split semisimple group, $K \subset G(\mathbf{R})$ a maximal compact subgroup, and $X = G(\mathbf{R})/Z(\mathbf{R})K$ the associated symmetric space. For $\Gamma \subset G(\mathbf{Q})$ a congruence subgroup, we have the quotient $S_{\Gamma} = \Gamma \backslash X$. If V is a representation of G, there is an induced local system \widetilde{V} on S_{Γ} , and once again $H^{\bullet}(\Gamma, V) = H^{\bullet}(S_{\Gamma}, \widetilde{V})$. Once again, it is natural to consider $H^{\bullet}_{\mathfrak{c}}(S_{\Gamma}, \widetilde{V})$.

Of course, we can work in the greatest possible generality. Suppose Γ is an arbitrary (discrete) group. Let X be a contractible space on which Γ acts properly discontinuously. There is a natural (exact) functor $\widetilde{\cdot}$: $\operatorname{Mod}_{\mathbf{C}}(\Gamma) \to \operatorname{Sh}(\Gamma \backslash X)$, $V \mapsto \mathbf{C}_{\Gamma \backslash X} \otimes V$. And we have the functor "sections with compact support" $\Gamma_{\mathbf{c}} \colon \operatorname{Sh}(\Gamma \backslash X) \to \operatorname{Ab}$. This gives us two functors at the level of derived categories: $\operatorname{D}(\operatorname{Mod}(\Gamma)) \to \operatorname{D}(\operatorname{Ab})$, namely

$$V \mapsto \mathrm{R}\Gamma(\widetilde{V})$$
$$V \mapsto \mathrm{R}\Gamma_{\mathrm{c}}(\widetilde{V}).$$

First, it is not at all clear whether $\mathrm{H}^{\bullet}_{\mathrm{c}}(\Gamma \backslash X, \widetilde{V})$ is independent of X.

2 An example

Let F be a number field, $G = \mathbf{R}_{F/\mathbf{Q}} \mathbf{G}_{\mathbf{m}}$. Then $G(\mathbf{R}) = \prod_{v \mid \infty} F_v^{\times}$. If $\mathbf{N} \colon F_{\infty} \to \mathbf{R}$ is the norm map, then (up to finite index), a maximal compact subgroup $K \subset G(\mathbf{R})$ is given by the \mathbf{R} -points of the anisotropic group $G^{\mathbf{N}=1}$. The quotient G_{∞}/\mathbf{R} is topologically a finite disjoint union of Euclidean spaces. Let $\Gamma \subset G(F) = F^{\times}$ be a congruence subgroup—that is Γ is commensurable with O_F^{\times} . What is the quotient $\Gamma \setminus G_{\infty}/K$?

For example, if $F = \mathbf{Q}(\sqrt{d})$ is a real quadratic field, we want a unit $\varepsilon \in O_F^{\times}$ of infinite order. We are then interested in $\varepsilon^{\mathbf{Z}} \backslash F_{\infty}^{\times}$.

. . .

Let F be a number field, $\Gamma \subset F^{\times}$ a torsion-free group commensurable with O_F^{\times} . We know that $\Gamma \simeq \mathbf{Z}^{r+s-1}$. Does $\Gamma \backslash F_{\infty}^{\times} / K$ have a natural volume?

More generally, let $K_f \subset \mathbf{A}_{F,f}^{\times}$ be open compact. Put

$$Y_{K_{\mathrm{f}}} = F^{\times} \backslash \mathbf{A}_{F}^{\times} / K_{\infty}^{\circ} K_{\mathrm{f}}.$$

If K_f is sufficiently small (i.e., torsion-free) then Y_{K_f} is naturally a Riemannian manifold.

Start with the stupidest example, $F = \mathbf{Q}$. Then $K_{\infty}^{\circ} = 1$, so we are interested in $\mathbf{Q}^{\times} \backslash \mathbf{A}^{\times} / K_{\mathrm{f}}$. Suppose $K_{\mathrm{f}} = \Gamma(n) = \ker(\widehat{\mathbf{Z}}^{\times} \to (\mathbf{Z}/n)^{\times})$...this won't have finite volume.

3 Tamagawa numbers of tori

Let $T_{/F}$ be a torus. Takashi Ono has found a formula for the Tamagawa number of T, i.e. the volume $T(F)\backslash T(\mathbf{A}_F)$. Put

$$h(T) = \# \operatorname{H}^{1}(F, T^{\vee})$$

 $i(T) = \# \operatorname{III}^{1}(T).$

Then $\operatorname{vol}(T(F)\backslash T(\mathbf{A}_F)) = \tau(T) = h(T)/i(T)$. [See Milne, ADT. Here T^{\vee} is the dual torus in the sense of Langlands.]

[This isn't right, because $T(F)\backslash T(\mathbf{A}_F)$ shouldn't have finite volume! Never mind actually, it should have finite volume if and only if $T(F)\backslash T(\mathbf{A}_F)/K$ does.]

First, let's review some stuff about tori, their character groups, and Galois representations. Let L/K be a finite (possibly non-Galois) extension, $G = R_{L/K} T$. Then T^{\vee} is a Gal_L -module, and $(R_{L/K} T)^{\vee} = \operatorname{ind}_L^K T^{\vee}$. Thus

$$h_L(T) = \# \operatorname{H}^1(L, T^{\vee}) = \# \operatorname{H}^1(K, \operatorname{ind}_L^K T^{\vee}) = h_K(R_{L/K} T).$$

So h(T) does not really depend on K, as long as we restrict appropriately. For example, $h_L(\mathbf{G}_{\mathrm{m}L}) = h_K(\mathbf{R}_{L/K}\mathbf{G}_{\mathrm{m}})$. I'm pretty sure the same holds for $\mathrm{III}(T)$.

So, if $T = \mathbf{G}_{\mathrm{m}}$, we should have h(T) = i(T) = 1, whence $\tau(\mathbf{G}_{\mathrm{m}}) = 1$. Let's try this directly. Let $\omega = \frac{\mathrm{d}t}{t}$. Let

$$\rho(\mathbf{G}_{m/F}) = \lim_{s \to 1} \frac{1}{s - 1} L(F, s) = \frac{2^r (2\pi)^s \# \operatorname{Pic}(O_F) \Omega_F}{\# \mu(F) \sqrt{|D_F|}},$$

where L(F, s) is the Artin L-function of F.

What is the maximal **Q**-split torus of $R_{F/\mathbf{Q}} \mathbf{G}_{m}$? Clearly the diagonal embedding $\mathbf{G}_{m} \hookrightarrow R_{F/\mathbf{Q}} \mathbf{G}_{m}$ is split. Suppose F/\mathbf{Q} is non-Galois, e.g. $\mathbf{Q}(\sqrt[4]{2})/\mathbf{Q}$.

3.1 Locally symmetric spaces for $G_{\rm m}$

Let F be a number field, $G = R_{F/\mathbf{Q}} \mathbf{G}_{\mathrm{m}}$. We claim that the diagonal $\mathbf{G}_{\mathrm{m}} \subset G$ is a maximal split torus. Note that

$$\hom(\mathbf{G}_{\mathrm{m}},G) = \hom_{\mathrm{Gal}_{\mathbf{Q}}}(G^{\vee},\mathbf{Z}) = \hom(\mathrm{ind}_{F}^{\mathbf{Q}}\mathbf{Z},\mathbf{Z}) = \hom(\mathbf{Z},\mathrm{res}_{F}^{\mathbf{Q}}\mathbf{Z}) = \mathbf{Z}.$$

The result follows.

Thus, the symmetric spaces we are interested in are of the form

$$S_{K_{\rm f}} = F^{\times} \backslash \mathbf{A}_F^{\times} / \mathbf{R}^+ K_{\rm f},$$

for $K_f \subset \mathbf{A}_{F,f}^{\times}$ open compact. Here $\mathbf{R}_{>0} \hookrightarrow F_{\infty}^{\times}$ via the diagonal embedding. At infinity, the space we're interested in is $F_{\infty}^{\times}/\mathbf{R}^+$, which is is isomorphic (as a Lie group) to $(F_{\infty}^{\times})^{\mathrm{N=1}}$. It is well-known that $(F_{\infty}^{\times})^{\mathrm{N=1}}/O_F^{\times}$ is compact, which tells us that for $\Gamma \subset F^{\times}$ a torsion-free arithmetic subgroup, the double quotient $\Gamma \backslash F_{\infty}^{\times}/\mathbf{R}^+$ is a torus. Its volume (with respect to the natural Haar measure induced from F_{∞}) should be computed in a similar manner to the regulator of F.