A simulation-based approach for quantifying

and partitioning uncertainty to improve

ecological forecasts

Andrew T. Tredennick¹, Peter B. Adler¹, and others²

- ¹ Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT,
- 6 United States
- ⁷ Department of somewhere

8 Abstract

- 9 Making informed ecosystem management decisions in the face of rapid environmental change
- requires forecasts from models of ecological processes. However, forecasts from ecological models
- are often associated with high degrees of uncertainty, making it difficult for such forecasts to inform
- decision-making processes. To make progress toward the goal of reliable and informative
- ecological forecasts, we need to know from where forecast uncertainty arises. Such knowledge can
- guide investment in future research that will most improve forecast skill. There is a rich history of
- analytical expressions that partition the variance of future dynamics, but these expressions suffer
- from necessary assumptions such as linear dynamics and small-variance approximations that
- exclude interactions. Similarly, the earth systems modeling community has developed methods for
- paritioning uncertainty of model projections, but these operate at a different modeling grain than
- most of ecology. Building on these approaches, we develop a simulation-based approach for

- 20 quantifying and partitioning forecast uncertainty from Bayesian state-space models that overcomes
- the limitations of previous analytical approaches. Our approach is similar to an Analysis of
- Variance, where the total variance of a forecast is paritioned among its constituent parts, namely
- 23 initial conditions uncertainty, parameter uncertainty, driver uncertainty, process error, and their
- interactions. We demonstrate the approach with simulated data and with an empirical example
- using data from the Yellowstone bison population. We also provide functions written in the
- statistical programming language R, which will allow others using Bayesian state-space models to
- employ our approach in their own research.
- 28 Keywords: Bayesian state-space model, forecast, Markov chain Monte Carlo, prediction,
- 29 population model, uncertainty, Yellowstone bison

Introduction

- A fundamental challenge facing society is to predict the ecological impacts of global environmental
- changes such as nitrogen deposition, climate change, and habitat fragmentation. Each of these
- global change drivers have now exceeded their historical ranges of variability (Steffen et al. 2015),
- ushering in a no-analog era in which the past cannot predict the future. We can, however, look to
- 35 the past to parameterize models that allow us to forecast the future states of ecological systems
- 36 (Clark et al. 2001, Dietze et al. 2018). Ecologists are in an excellent position to meet this
- forecasting challenge because we have spent decades gaining understanding of the processes that
- regulate populations, communities, and ecosystems. However, we lack a systematic understanding
- of the current limits to ecological forecasts. As a result, we do not know how to allocate research
- effort to improve our forecasts.
- Making poor forecasts is inevitable as ecology matures into a more predictive science. The key is to
- 42 learn from our failures so that forecasts become more accurate over time. The success of
- meteorological forecasting tells us that basic research on the causes of forecast uncertainty is an

- essential component of this learning process (Bauer et al. 2015).
- Various approaches have been used to characterize and partition forecast uncertainty (Sobol' 1993,
- ⁴⁶ Cariboni et al. 2007). For example, consider a dynamic model designed to predict some state y in
- the future (y_{t+1}) based on the current state (y_t) , an environmental driver(s) (x), parameters (θ) , and
- process error (ε) . We can then write a general form of the model as:

$$y_{t+1} = f(y_t, x_t | \boldsymbol{\theta}) + \varepsilon_{t+1}, \tag{1}$$

which states that y at time t + 1 is a function of y and x at time t conditional on the model parameters (θ) plus process error (ε). Ignoring covariance among factors and assuming linear dynamics, Dietze (2017), following Sobol' (1993) and Cariboni et al. (2007), suggests that forecast variance ($Var[y_{t+1}]$) is approximately:

$$Var[y_{t+1}] \approx \underbrace{\left(\frac{\delta f}{\delta y}\right)^{2}}_{\text{stability}} \underbrace{Var[y_{t}]}_{\text{IC uncert.}} + \underbrace{\left(\frac{\delta f}{\delta x}\right)^{2}}_{\text{driver sens. driver uncert.}} \underbrace{Var[x_{t}]}_{\text{param sens. param. uncert.}} + \underbrace{\left(\frac{\delta f}{\delta \theta}\right)^{2}}_{\text{process error}} \underbrace{Var[\theta]}_{\text{process error}} + \underbrace{Var[\epsilon_{t+1}]}_{\text{process error}}, \quad (2)$$

where each additive term follows a pattern of *sensitivity* times *variance* and "IC uncert." refers to "Initial Conditions uncertainty." The variance attributable to any particular factor is a function of how sensitive the model is to the factor and the variance of that factor. For example, the atmosphere is a chaotic system, meaning its dynamics are internally unstable and sensitive to initial conditions uncertainty. This is why billions of dollars are spent each year to measure meterological variables – meterologists learned that the key to reducing forecast error $(Var[y_{t+1}])$ was to reduce the uncertainty of initial conditions $(Var[y_t])$. In contrast, ecologists are attempting to make actionable forecasts with little knowledge of which term in Eq. 2 dominates forecast error. Knowing which term dominates forecast error in different ecological settings will advance our fundamental understanding of the natural world and immediately impact practical efforts to monitor, model, and

Figure 1: Example of forecast uncertainty with different sources of error set to zero. Each line represents one realization, out of 200, from an order-one autoregressive model (AR1 process). Contrary to the analytical expression (Eq. 2), initial conditions uncertainty and parameter uncertainty clearly interact. The spread of lines in (A) is not wholly because of initial conditions uncertainty (B) or parameter uncertainty (C), it is their combined influence that causes the spread of realizations in (A). At least in this example, process error (D) does appear to be independent, but we used a small value of process error to highlight other interactions. Source code: generate_forecast_fxns.R.

63 predict ecological dynamics.

While having an analytical expression such as Eq. 2 is satisfying, arriving at the expression involves strict assumptions. First, Eq. 2 only holds when the underlying dynamics are linear, which may not be the case for many populations and models. Second, Eq. 2 only includes additive effects of each factor because the Taylor series decomposition requires small-variance approximations that eliminate interactions. But, interactions among the factors are probably commone. For example, in a simple simulation of an AR(1) process, we show that initial conditions uncertainty and parameter error interact to generate the full spread of forecast variance (Figure 1). Therefore, progress in quantifying and partioning forecast uncertainty requires a more flexible approach than that provided by Eq. 2.

A Brief History of Partitioning Forecast Uncertainty

74	Error propagation
75	Lo paper, etc.
76	Weather forecasting
77	Chaos.
78	Earth system models
79	Carbon.
80	Dynamical models
81	Lotka-Volterra.
82	A Simulation-Based Approach for Partitioning Forecast
83	Uncertainty
84	Analytical expressions of forecast uncertainty must rely on simplifying assumptions. Two
85	important assumptions are (1) that different sources of uncertainty do not interact and (2) that the
86	system of equations is linear. These analytical expressions are important for guiding our intuition,
87	but these strict assumptions limit our ability to partition forecast uncertainty in practice. Thus, we
88	present a simulation approach that is entirely model-based and requires no assumptions, other than
89	those embedded in the model itself. We are building on the ideas put forth by Dietze (2017), who

- suggested a simulation approach for quantifying the terms in Eq. 2. Here we test the general idea
- using simulated data and extend the approach to consider interactions among sources of uncertainty.
- As a starting point, consider a generic Bayesian state-space model

Data Model:
$$y_t \sim [y_t \mid z_t, \sigma_0^2], \qquad t = 1, \dots, T,$$
 (3)

Process Models:
$$z_t \sim \left[z_t \mid \mu_t, \sigma_p^2 \right],$$
 (4)

$$\mu_t = g\left(z_{t-1}, \mathbf{x}_t', \mathbf{\theta}\right), \qquad t = 2, \dots, T, \tag{5}$$

Parameter Models:
$$\phi \sim \left[\theta, \sigma_p^2, \sigma_o^2, z_{t=1}\right],$$
 (6)

where y_t is the observed state at time t, z_t is the latent state at time t, μ_t is the determinstic

prediction of z at time t from the process model g, which is a function of z at time t-1, a vector of

covariates (x) at time t, and a set of unknown parameters, θ . σ_0^2 is observation error and σ_p^2 is

process error. The notation $[a \mid b, c]$ reads, "the probability of a given b and c" (Gelfand and Smith

1990), and ϕ refers to the prior probability distributions for all unknown parameters and the initial

conditions for the latent state, $z_{t=1}$.

For our purposes, we are interested in the probability distributions of the true state \mathbf{z} at future points

in time, conditional on previous observations (y). This is referred to as the forecast distribution or

the predictive process distribution (Hobbs and Hooten 2015 pp. 199–200), which, for one time step

ahead of the final observation (T+1), is defined as

$$[z_{T+1}|y_1,\dots,y_T] = \int \int \dots \int [z_{T+1}|z_T,\theta,\sigma_p^2] \times [z_1,\dots,z_T,\theta,\sigma_p^2|y_1,\dots,y_T] d\theta d\sigma_p^2 dz_1\dots dz_T.$$

$$(7)$$

This type of model is easily fit using Bayesian methods and Markov chain Monte carlo (MCMC) algorithms. The posterior distribution of all unkowns, including states and parameters, is estimated over *K* MCMC iterations.

Figure 2: Forecasts can be made using (A) a point estimate of the median of the latent state z, $\bar{z}_{(t)}$, as a starting value or (B) using the full distribution of z, $[z_{(t)}]$. In both panels, the small points are the estimates of z at time t from each of 1000 MCMC iterations, the boxplots show the distribution, and the large point shows the median. The scenario in A represents the case where initial conditions uncertainty is set to zero. Comparing the variance of forecasts made under scenarios A and B allows us to quantify the amount of uncertainty attributable to initial conditions.

Application: Yellowstone Bison Population

References

- Bauer, P., A. Thorpe, and G. Brunet. 2015. The quiet revolution of numerical weather prediction.
- 109 Nature 525:47–55.
- ¹¹⁰ Cariboni, J., D. Gatelli, R. Liska, and A. Saltelli. 2007. The role of sensitivity analysis in ecological
- modelling. Ecological Modelling 203:167–182.
- Clark, J. S., S. R. Carpenter, M. Barber, S. Collins, A. Dobson, J. A. Foley, D. M. Lodge, M.
- Pascual, R. Pielke, W. Pizer, C. Pringle, W. V. Reid, K. A. Rose, O. Sala, W. H. Schlesinger, D. H.
- Wall, and D. Wear. 2001. Ecological forecasts: an emerging imperative. Science 293:657–660.
- Dietze, M. C. 2017. Prediction in ecology: A first-principles framework. Ecological Applications
- 116 27:2048–2060.
- Dietze, M. C., A. Fox, L. M. Beck-Johnson, J. L. Betancourt, M. B. Hooten, C. S. Jarnevich, T. H.
- Keitt, M. A. Kenney, C. M. Laney, L. G. Larsen, H. W. Loescher, C. K. Lunch, B. C. Pijanowski, J.

- T. Randerson, E. K. Read, A. T. Tredennick, R. Vargas, K. C. Weathers, and E. P. White. 2018.
- 120 Iterative near-term ecological forecasting: Needs, opportunities, and challenges. Proceedings of the
- National Academy of Sciences 115:1424–1432.
- Gelfand, A. E., and A. F. Smith. 1990. Sampling-based approaches to calculating marginal
- densities. Journal of the American Statistical Association 85:398–409.
- Hobbs, N. T., and M. B. Hooten. 2015. Bayesian Models: A Statistical Primer for Ecologists.
- Princeton University Press, Princeton.
- Sobol', I. 1993. Sensitivity Estimates for Nonlinear Mathematical Models.
- Steffen, W., K. Richardson, J. Rockström, S. Cornell, I. Fetzer, E. Bennett, R. Biggs, and S.
- ¹²⁸ Carpenter. 2015. Planetary boundaries: Guiding human development on a changing planet. Science
- 129 348:1217.