Cryptoparty Sichere Kommunikation im Internet

Stratum 0 e. V.

17. August 2013

Begrüßung

- Wer sind wir?
- Wer seid ihr?

Organisatorisches

- Ablauf:
 - kurzer Vortrag zur Theorie (15-20 Min)
 - Workshop in Kleingruppen
- Getränke hinten an der Theke
- WLAN-Passwort ist: FIXME
- Folien gibts auf https://stratum0.org/cryptoparty

Motivation

• Daten im Internet sind vergleichbar mit Postkarten:

Motivation

• Daten im Internet sind vergleichbar mit Postkarten:

- Mögliche Angriffspunkte:
 - Provider A
 - die große Internet-Wolke
 - Provider B

Motivation

• Daten im Internet sind vergleichbar mit Postkarten:

- Mögliche Angriffspunkte:
 - Provider A
 - die große Internet-Wolke
 - Provider B
- Aber: es gibt Möglichkeiten, das zu verhindern.

Disclaimer

- Es gibt keine 100-prozentige Sicherheit.
- Alles hier gezeigte ist Stand der Technik und hinreichend sicher.

Trotzdem: plant keine Terroranschläge über das Internet.

Public-Key-Kryptografie

(Kryptografie: die Lehre vom Geheimen)

- 1977 erfunden von Ron Rivest, Adi Shamir und Leonard Adleman
- komplizierte mathematische Verfahren
 - soll hier nicht erklärt werden
- Jeder Kommunikationsteilnehmer generiert ein zufälliges Schlüsselpaar:
 - einen öffentlichen Schlüssel zum Verschlüsseln von Nachrichten
 - einen geheimen Schlüssel zum Entschlüsseln von Nachrichten

Achtung

Der private Schlüssel sollte geheim gehalten werden, der öffentliche Schlüssel sollte veröffentlicht werden.

Bung Organisatorisches Einführung **Public-Key-Kryptographie** Surfen E-Mail Chats

Public-Key-Kryptografie

 Nachrichten, die mit dem öffentlichen Schlüssel verschlüsselt wurden, können nur mit dem passenden privaten Schlüssel entschlüsselt werden

 der private Schlüssel kann nicht aus dem öffentlichen Schlüssel hergeleitet werden

Analogie

- Das ist Bob: 🔝
- Bob verteilt Bügelschlösser für jeden, der Nachrichten an ihn verschlüsseln will:
 - öffentlicher Schlüssel
- Bob behält den Schlüssel für die Schlösser:
 - privater Schlüssel

Verschlüsseln und Entschlüsseln

Alice verschlüsselt eine Nachricht an Bob mit seinem öffentlichen Schlüssel:

Nur Bob kann diese Nachricht jetzt mit seinem privaten Schlüssel lesen:

g Organisatorisches Einführung **Public-Key-Kryptographie** Surfen E-Mail Chats

Signaturen

Das System auch umgekehrt für Signaturen einsetzbar:

- Bob verschlüsselt ein Dokument mit seinem privaten Schlüssel
 - nur Bob hat diesen privaten Schlüssel, also kann nur Bob diesen Schlüsseltext erstellt haben
- Jeder andere kann den Schlüsseltext entschlüsseln und Bobs Signatur überprüfen

Vertrauensnetzwerke

Soweit in Ordnung...

Aber wie kann ich sicher sein, dass der Schlüssel, mit dem ich Nachrichten verschlüssele, auch wirklich Bob gehört?

Vertrauensnetzwerke

Soweit in Ordnung...

Aber wie kann ich sicher sein, dass der Schlüssel, mit dem ich Nachrichten verschlüssele, auch wirklich Bob gehört?

Lösung: Vertrauensnetzwerke

- Ich pr
 üfe, ob Alices öffentlicher Schl
 üssel auch wirklich Alice geh
 ört
 - Falls ja, signiere ich ihren öffentlichen Schlüssel
 - Ich versichere damit, dass Alice diesen Schlüssel besitzt
- Alice hat das gleiche mit Bobs Schlüssel getan
- Falls Alice nicht schlampig war, kann ich Bobs Schlüssel indirekt vertrauen

Vertrauensnetzwerke

Beispiel Vertrauensnetzwerk:

Sicher surfen: HTTPS

- Webserver besitzt privaten und öffentlichen Schlüssel ("Zertifikat")
- Schlüsselerzeugung auf Benutzerseite dynamisch
- Vertrauensnetzwerk über *Certificate Authorities* (CA)
 - nehmen meist Geld für die Signatur des Server-Zertifikats
 - Identitätsprüfung je nach CA unterschiedlich genau...
 - Browser vertrauen nur bestimmten $CAs \Rightarrow Zertifikatswarnungen$

Sicher surfen: HTTPS

Achtung

Die Daten sind nur auf dem Weg zum Webserver geschützt, am Ende liegen sie wieder entschlüsselt vor!

- Auf dem Webserver könnte z. B. auch ein Angreifer seine Finger im Spiel haben...
- Certificate Authorities könnten gefälschte Zertifikate ausstellen
 - Beispiel: Comodo CA, DigiNotar, TürkTrust
- keine eingebaute Anonymisierung

Mails verschlüsseln: PGP

- PGP: Pretty Good Privacy ("Ziemlich gute Privatsphäre")
- seit 1998 ein Standard für Mailverschlüsselung
 - Freie Softwarelösung: GnuPG (GNU Privacy Guard)
- Verschlüsselt keine Metadaten (wie z. B. Betreffzeile)!
- Erweiterungen für viele Mailprogramme vorhanden

Webbasierte Dienste?

Mit webbasierte Diensten ist PGP kaum möglich – es ist nötig, ein Mailprogramm auf dem eigenen Rechner zu installieren! Die meisten Anbieter bieten Anleitungen zum Einrichten der Mailkonten im Mailprogramm an.

PGP: Softwareunterstützung

- Windows: Gpg4Win, http://gpg4win.org/
- Mac OS X: GPGTools, https://www.gpgtools.org/
- Linux: GnuPG, http://gnupg.org

Darauf aufbauend Unterstützung in Mailprogrammen:

- Mozilla Thunderbird: Enigmail, http://enigmail.org
- Apple Mail: GPGMail, https://www.gpgtools.org/
- Microsoft Outlook: Gpg4Win

Chats verschlüsseln: OTR

- OTR: Off-the-Record Messaging
- Verschlüsselung
- Authentizität
- Abstreitbarkeit
 - keiner kann nachher beweisen, ich hätte etwas bestimmtes gesendet
- Folgenlosigkeit
 - Verlust des privaten Schlüssels hat keine Auswirkung auf bisherige Verbindungen

OTR: Softwareunterstützung

- eingebaut in Adium (Mac OS X), Jitsi, Xabber (Android), ChatSecure (iOS)
- Pidgin (Windows, Linux): http://www.cypherpunks.ca/otr/
- Miranda (Windows): auf der Addons-Seite

Tipp

Adium, Pidgin und Miranda unterstützen alle gängigen Netzwerke, z. B. ICQ, MSN, Yahoo und auch Facebook Chat.

Weitere Informationen

- CryptoCD, Anleitungen auf deutsch,
 http://www.cryptocd.org/CryptoCDBetriebssystem
- Cryptoparty Handbook, mit Anleitungen zu allen hier gezeigten Themen (englisch),
 - https://www.cryptoparty.in/documentation/handbook

Lizenz

Dieses Dokument steht unter der Lizenz CC-BY-SA 3.0 Unported, siehe https://creativecommons.org/licenses/by-sa/3.0/deed.

Folgende Symbole wurden benutzt:

- Server-Symbol, Computer-Symbol: Tangerine Icon Theme, CC-BY-SA 2.5, Copyright 2004-2006 Canonical Ltd. https://launchpad.net/tangerine-icon-theme
- Schlüssel-Symbol: aus dem Gnome Icon Theme, CC-BY-SA 3.0 United States, Copyright GNOME Project
- Notizblock-Symbol: http://commons.wikimedia.org/wiki/File: Ruled_paper_note_with_pin.svg, Autor: Andreas Plank, CC-BY-SA-3.0 Unported
- alle anderen Symbole: Tango Desktop Project, gemeinfrei. http://tango.freedesktop.org