グラフの探索

離散数学・オートマトン 2024 年後期 佐賀大学理工学部 只木進一

- ① 深さ優先探索 DFS: Depth-First search
- ② DFA アルゴリズム
- ③ 幅優先探索 BFS: Breadth-First search
- 4 BFS アルゴリズム

有向グラフと探索

• 指定した頂点から、各頂点への経路を調べる

- 到達できるかに関心がある
- 適切なアルゴリズムを作る

深さ優先探索 DFS: Depth-First search

- 出発点を定める
- たどれる限り、辺をたどる: 再帰的アルゴリズム
 - それ以上進めなくなるまで
 - 新たな点が無くなるまで
- 道を戻って、分岐可能な頂点から、別の辺をたどる
- 結果としてできる木 (spanning trees) は、深いものができる

例 1.1:

例 1.2:

DFA アルゴリズム

- ullet L: 到達した頂点のリスト: 初期値 $L=\{v_0\}$
- A: 使用する辺のリスト: 初期値 A = ∅

Algorithm 1 DFA アルゴリズム

```
procedure SEARCH(v, L, A)
    for all e \in \delta^+ v do
        w = \partial^- e
        if w \not\in L then
            L.\mathsf{append}(w)
            A.\mathsf{append}(e)
            SEARCH(w, L, A)
        end if
    end for
end procedure
```

 $\triangleright //v$ から出る全ての辺

実行状況

```
\begin{split} (v_0, [v_0], []) &\to (v_1, [v_0, v_1], [e_0]) \\ &\to (v_3, [v_0, v_1, v_3], [e_0, e_3]) \\ &\to (v_2, [v_0, v_1, v_3, v_2], [e_0, e_3, e_6]) \\ &\to (v_5, [v_0, v_1, v_3, v_2, v_5], [e_0, e_3, e_6, e_4]) \\ &\to (v_4, [v_0, v_1, v_3, v_2, v_5, v_4], [e_0, e_3, e_6, e_4, e_8]) \\ &\to (v_6, [v_0, v_1, v_3, v_2, v_5, v_4], [e_0, e_3, e_6, e_4, e_8, e_5]) \\ &\to (v_8, [v_0, v_1, v_3, v_2, v_5, v_4, v_6], [e_0, e_3, e_6, e_4, e_8, e_5, e_{10}]) \\ &\to (v_7, [v_0, v_1, v_3, v_2, v_5, v_4, v_6, v_8, v_7], [e_0, e_3, e_6, e_4, e_8, e_5, e_{10}, e_{14}]) \\ &\to (v_9, [v_0, v_1, v_3, v_2, v_5, v_4, v_6, v_8, v_7, v_9], [e_0, e_3, e_6, e_4, e_8, e_5, e_{10}, e_{14}, e_{15}]) \end{split}
```

例 2.1:

幅優先探索 BFS: Breadth-First search

- 出発点を定める。この点の集合を S₀ とする。
- 新たな頂点がなくなるまで繰り返す
 - ullet S_{i-1} の各点の隣接頂点のうち、未調査の点の集合を S_i とする
- 出発点から、移動する回数を一つずつ増やしていく
- 一つの頂点への複数の経路がある場合に注意
- 結果としてできる木 (spanning tree) は、浅いものができる

例 3.1:

例 1.2 に対する BFS の結果

BFS アルゴリズム

Algorithm 2 BFS アルゴリズム

```
L = \emptyset
A = \emptyset
Q = [(Null, r)]
while Q \neq \emptyset do
    (s,v)=e=Q.\mathsf{poke}()
    if v \notin L then
         if s \neq Null then
              A.\mathsf{append}(e)
         end if
         for all e \in \delta^+ v do
              if e \not\in Q then
                  Q.\mathsf{push}(e)
              end if
         end for
         L.append(v)
    end if
end while
```

```
▷ 到達済み頂点のリスト▷ 探索木の辺のリスト▷ 調査すべき辺の待ち行列
```

▷ 待ち行列の先頭要素を取り出す

待ち行列: Queue

- リストの一種
- 末尾から要素を追加
- 先頭から要素を削除
- First-In-First-Out

例 1.2: 探索の状況

	現在の頂点	L	Q
0		Ø	$[, v_0]$
1	v_0	$[v_0]$	$[e_0, e_1, e_2]$
2	v_1	$[v_0, v_1]$	$[e_1, e_2, e_4, e_5]$
3	v_2	$[v_0, v_1, v_2]$	$[e_2, e_4, e_5]$
4	v_3	$[v_0, v_1, v_2, v_3]$	$[e_4, e_5]$
5	v_5	$[v_0, v_1, v_2, v_3, v_5]$	$[e_5, e_8]$
6	v_6	$[v_0, v_1, v_2, v_3, v_5, v_6]$	$[e_8, e_{10}]$
7	v_4	$[v_0, v_1, v_2, v_3, v_5, v_6, v_4]$	$[e_{10}]$
8	v_8	$[v_0, v_1, v_2, v_3, v_5, v_6, v_4, v_8]$	$[e_{14}, e_{15}]$
9	v_7	$[v_0, v_1, v_2, v_3, v_5, v_6, v_4, v_8, v_7]$	$[e_{15}]$
10	v_9	$[v_0, v_1, v_2, v_3, v_5, v_6, v_4, v_8, v_7, v_9]$	

例 2.1: 結果

例 2.1: 探索の状況

	現在の頂点	L	Q
0		Ø	$[, v_0]$
1	v_0	$[v_0]$	$[e_0, e_1]$
2	v_1	$[v_0, v_1]$	$[e_1, e_2, e_3, e_4]$
3	v_2	$[v_0, v_1, v_2]$	$[e_2, e_3, e_4, e_5]$
4	v_3	$[v_0, v_1, v_2, v_3]$	$[e_3, e_4, e_5]$
5	v_5	$[v_0, v_1, v_2, v_3, v_5]$	$[e_4, e_5, e_{10}]$
6	v_6	$[v_0, v_1, v_2, v_3, v_5, v_6]$	$[e_5, e_{10}, e_{13}]$
7	v_9	$[v_0, v_1, v_2, v_3, v_5, v_6, v_9]$	$[e_{10}, e_{13}]$
8	v_4	$[v_0, v_1, v_2, v_3, v_5, v_6, v_9, v_4]$	$[e_{13}]$
9	v_8	$[v_0, v_1, v_2, v_3, v_5, v_6, v_9, v_4, v_8]$	$[e_{15}]$
10	v_7	$[v_0, v_1, v_2, v_3, v_5, v_6, v_9, v_4, v_8, v_7]$	