

Theory of Computation

Dr Samayveer Singh

Pushdown Automata

Definition of a PDA

A pushdown automaton is $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where:

 $\vec{}$

- Q is a finite set of states;
- $-\Sigma$ is the input alphabet;
- $-\Gamma$ is the stack alphabet
- $-q_0$ in Q is the initial state;
- $F \subseteq Q$ is a set of final states;
- $-\delta$ is the transition function

Symbol

δ: $Q × (Σ ∪ {ε}) × (Γ ∪ {ε})$ subsets of $Q × (Γ ∪ {ε})$

state input symbol pop symbol

state push symbol

Model of pushdown automata

Example 1: Construct a PDA that accepts $L = \{a^n b^n | n \ge 1\}$

Example 2: Construct a PDA that accepts $L = \{ wcw^R \mid w = (a+b)^* \}$

Following
$$S(90,0.2) = \{(90,0.2)\}$$

Transition $S(90,0.2) = \{(90,0.2)\}$

function! $S(90,0.2) = \{(90,0.2)\}$
 $S(90,0.6) = \{(90,0.6)\}$
 $S(90,0.6) = \{(90,0.6)\}$

$$\begin{cases}
(9,1,1,20) = \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1) \\
(9,1,1$$

Example 3: Construct a pda A accepting the set of all strings over {a, b} with equal number of a's and b's.

$$\int (90, a, 20) = \{(90, 920)\} \\
S(90, a, a) = \{(90, 920)\} \\
S(90, b, 20) = \{(90, b20)\} \\
S(90, b, b) = \{(90, bb)\} \\
S(90, a, b) = \{(90, a)\} \\
S(90, a, a) = \{(90, a)\} \\
S(90, a) = \{(90, a)\} \\
S(90,$$

Example 4: Construct a PDA that accepts $L = \{a^n b^{2n} \mid n \ge 1\}$

7