

262,144-color, 132 x 176-dot Graphics Controller Driver for TFT LCD panels

REJxxxxxxx-xxxZ Rev.1.20 Jun.21.2003

Block Diagram	6
PAD Arrangement	7
PAD Coordinate	8
Pin Function	10
Block Function	15
1. System Interface	15
2. Bit Operation	15
3. Address Counter (AC)	
4. Hardware-dither circuit	
5. Graphics RAM (GRAM)	
7. LCD drive power supply	
8. Oscillation Circuit (OSC)	
9. LCD Driver Circuit	
GRAM Address MAP	17
Gram Address and display position on the panel (SS = "0")	17
The relationship between GRAM data and display data (SS ="0")	18
Gram Address and display position on the panel (SS = "1", BGR = "1")	20
The relationship between GRAM data and display data (SS ="1")	21
Instructions	23
Outline	23
Instructions	25
Index	25
Status Read	25
Start Oscillation (R00h)	25
Driver Output Control (R01h)	26
LCD Driving Waveform Control (R02h)	28
Power Control 1 (R03h) Power Control 2 (R04h)	29
Power Control 3 (R0Ch) Power Control 4 (R0Dh) Power Control 5 (R0Eh)	31
Entry Mode (R05h) Compare Register (R06h)	36
Display Control 1 (R07h)	38
Frame Cycle Control (R0Bh)	40

Gate Scan Position (R0Fh)	43
Vertical Scroll Control (R11h)	
1st-Screen Drive Position (R14h) 2nd-Screen Drive Position (R15h)	
Horizontal RAM Address Position (R16h) Vertical RAM Address Position (R17h)	
RAM Write Data Mask (R20h)	
RAM Address Set (R21h)	
Write Data to GRAM (R22h)	
GRAM data and liquid crystal output level	
Read Data from GRAM (R22h)	
GRAM read sequence	
Instruction List	53
Reset Function	
Initial state of output pin	55
System Interface	
18-bit interface	57
16-bit interface	58
9-bit interface	59
Data transmission synchronization in 9-bit bus interface mode	
8-bit interface	
Data transmission synchronization in 8-bit bus interface mode	
High-Speed Burst RAM Write Function	67
Conditions on using high-speed RAM write mode	
High-Speed RAM Write with Window Address	
Window Address Function	72
Graphics Operation Function	73
Write-data Mask Function	74
Graphics Operation Processing	75
Scan Mode Setting	83
γ-Correction Function	84
Configuration of Grayscale Amplifier	
γ-Correction Register	87
Ladder resistors and 8-to-1 selector	
Variable resistor	
Relationship between RAM data and output level	94
8-color Display Mode	95
Instruction Setting Flow	97

Power Supply Setting Flow	99
Oscillation Circuit	100
n-raster-row Inversion AC Drive	101
Interlaced Drive	102
AC Timing	104
Frame-Frequency Adjustment Function	
Screen -split Drive Function	
Internal Configuration of Power Generation Circuit	109
Specification of External Elements Connected to HD66773R	111
Pattern Diagram for Voltage Setting	112
Absolute Maximum Ratings	113
Electric Characteristics	
AC Characteristics	
68system Bus Interface Timing Characteristics	
80-system Bus Interface Timing Characteristics	
Serial Peripheral Interface timing characteristics	
Reset Timing Characteristics	
Notes to Electrical Characteristics	
Referential data	
Timing characteristics diagram	

Description

The HD66773R is a controller driver LSI compliant to 132RGB x 176-dot graphics display on TFT LCD panel in 262,144 colors. The HD66773R's bit-operation functions, 18-bit high-speed bus interface, and high-speed RAM-write function enable efficient data transfer and high-speed update of graphics RAM data.

The HD66773R operates with low voltage up to 2.2V for power supply. The HD66773R incorporates TFT gate-drive and source-drive circuits, a step-up circuit to generate LCD drive voltage, and power supply circuits such as breeder resistor and voltage follower for LCD drive, which enable a configuration of LCD module only with external elements such as capacitors and resistors. The HD66773R supports 8-color-display and standby modes, which enable precise power control by software. These features make this LSI the best solution for medium or small sized portable products such as digital cellular phones, bi-directional pagers, or small PDA, which support WWW browser, where long life battery is major concern.

Features

- Single chip controller/driver for 262,144-color, 132RGB x 176-dot graphics display on TFT LCD
- 18-/16-/9-/8-bit high-speed bus interfaces and a Serial Peripheral Interface (SPI)
- High-speed burst-RAM write function
- Window address function enabling data write in a rectangular RAM-address area
- Internal bit-operation for graphics
 - Bit-unit write-data mask function
 - Pixel-unit logical operation / conditional rewrite function
- Abundant color-display control function:
 - 262,144-color display (max.) with gamma adjustment function
 - Line-unit vertical bi-directional scrolling display function
- Architecture with low power consumption
 - □ Low-voltage operation: $Vcc = 2.2 \sim 3.3 \text{ V}$
 - □ Internal reference voltage power supply: $Vci = 2.5 \sim 3.3 \text{ V}$
 - Standby mode and other power-save functions:
 - Partial LCD drive: 2-screen display at arbitrary two positions
 - Internal power supply circuit
 - Internal equalizing function
- Compliant to Cst/Cadd structures
- Internal power supply circuits
 - Step-up circuit: 5 ~ 9-time scale, polarity inversion
 - Power supply for TFT common electrode: Compliant to Vcom n-raster-row AC drive
 - AC drive: Vgoff n-raster-row AC drive with Cadd structure
 - Vcom (Vgoff) amplitude adjustment: 22-scale internal electronic volume adjustment
 - Output power-supply voltage
- Internal RAM capacity: 46,464 bytes
- LCD drive circuit with 396-output source signal and 176-output gate signal
- n-raster-row inversion drive: polarity inversion by arbitrary number of lines.
- Internal oscillation and hardware reset
- Changeable source and gate shift directions
- Compliant to COG with single chip, incorporating gates arranged on both sides.

Block Diagram

PAD Arrangement

PAD Coordinate

r												_								
	No.	pad name	Х		Y	No.	pad name	Х		Y	No	. pa	ad name	Х	Y	No.	pad name	Х	1	Y
	1	DUMMY1 Vcom1	-102 -100	209	-1099 -1089	101	Vec		109	-1089 -1089	20	G12 G14		10104 10214	-610	301 302	S388 S387	724	49 10	994 1104
l		Vcoml	-99	961	-1089	103		- 2	269	-1089	20	G16	5	10104	-534	303	S386	71		994
ŀ		DUMMYR1 DUMMYR2	-9t	768	-1089 -1089	104			349 130	-1089 -1089	20	4 G18 G20		10214 10104	-496 -458	304	S385 S384	713		994
	6	RESET1*	-90	550	-1089	106	Vec	5	510	-1089	20	6 G22	2	10214	-420	306	S383	70:	58	1104
ŀ		DUMMY2 DUMMY3	-9	116	-1089 -1089	107			590 570	-1089 -1089	20	7 G24 8 G26		10104	-382 -343	307	S382 S381	702 698		994 1104
		DUMMY4	-80)48	-1089	109			750	-1089	20	G28	8	10104	-305		S380	694		994
ŀ		VGH VGH	-78	947 367	-1089 -1089	110	Vei		330 911	-1089 -1089	21	G30	2	10214 10104	-267 -229	310		690		1104 994
	12	Vci3	-71	765	-1089	112	Vei	- 5	991	-1089	21			10214	-191	312	S377	682	29	1104
ŀ		C23+ C23+	-76 -76		-1089 -1089		Vei4 OSC1		257	-1089 -1089		G36 G38		10104 10214	-153 -114		S376 S375	679		994 1104
	15		-7:	525	-1089		OSC2		337	-1089	21	G40)	10104	-76	315	S374	67		994
ŀ	16 17		-74 -73	365	-1089 -1089	116	TS0 TS1	14	418 498	-1089 -1089	21			10214 10104	-38 0	316	S372	663		994
	18	C22+		284 204	-1089				578	-1089		G46		10214 10104	38 76	318	S371 S370	660		1104
ı	19 20	C22-	-7	124	-1089 -1089	119		17	558 738	-1089 -1089	22	G48 G50		10214	114	320	S369	650 652	24	994 1104
	21	C21+ C21+	-70		-1089 -1089		TS5 TS6	18	318	-1089 -1089	22	G52	2	10104	153 191	321	S368 S367	648	86	994 1104
ŀ		C21-	-61		-1089		TS7		979	-1089	22	G56		10104	229	323	S366	640		994
		C21- C41+	-61 -61		-1089 -1089		DCTEST DUMMY7)59 177	-1089 -1089	22	4 G58 5 G60		10214 10104	267 305	324 325	S365 S364	633		1104 994
ľ	26	C41+	-60	543	-1089	126	DUMMY8	22	257	-1089	22	6 G62	2	10214	343	326	S363	629	95	1104
		C41-	-6: -6:	563	-1089 -1089	127	DUMMY9 DUMMY10		337 418	-1089 -1089	22	G64 G66		10104	382 420	327	S362 S361	62:		994 1104
ŀ	29	C31+	-6	103	-1089	129	DUMMY11	24	198	-1089	22	G68	8	10104	458	329	S360	618	80	994
	30	C31+ C31-	-62 -62	323	-1089 -1089	130 131	DUMMY12 VGS	25	578	-1089 -1089	23	G70)	10214 10104	496 534	330	S359 S358	614 610	42	1104
ŀ	32	C31-	-6	162	-1089	132	VGS	27	765	-1089	23	G72		10214	572	332	S357	600	66	1104
[33	VGL VGL	-60 -59		-1089 -1089		CGND CGND		372 952	-1089 -1089		G76 G78		10104 10214	610 649	333	S356 S355	602 599		994 1104
ŀ	35	VGL	-51	369	-1089	135	CGND	30)32	-1089	23	5 G80	0	10104	687	335	S354	59:	51	994
ļ	36	VGL CGND	-5°	789	-1089 -1089	136	V0P V0N	31	139	-1089 -1089	23			10214	725 763	336	S353 S352	59 58		1104 994
ŀ	38	CGND	-50		-1089	138	VMONI	32	299	-1089	23	G86	5	10214	801	338	S351	583	37	1104
		CGND VccDUM1	-5:	527 147	-1089 -1089		VMONI V31P		380 460	-1089 -1089	23		MMY23	10209 9919	1099 1104	339	S350 S349	579		994 1104
l	41	IM0/ID	-53	356	-1089	141	V31N	35	540	-1089	24	G90)	9881	994	341	S348	572	23	994
ŀ	42	GNDDUM1 IM1	-52 -5	237	-1089 -1089		VcomL TESTA4		737	-1089 -1089		G92 G94		9843 9805	1104 994		S347 S346	561 564		994
l	44	VccDUM2	-50	028	-1089	144	TESTA1	38	354	-1089	24	4 G96	5	9766	1104	344	S345	560	08	1104
ŀ	45	VccDUM3	-49 -49		-1089 -1089	145	VeomR VREGIOUT	39	934	-1089 -1089	24	G98		9728 9690	994 1104	345	S344 S343	55°		994 1104
	47		-4		-1089)94	-1089	24			9652	994		S342	549		994
ŀ		GNDDUM2 DUMMY5	-46 -43	508 528	-1089 -1089		DUMMY13 VTESTS	42	201 308	-1089 -1089	24	G10		9614 9576	1104 994	348	S341 S340	54: 54	17	1104 994
ļ.	50	DUMMY6	-44	148	-1089	150	DUMMY14	44	115	-1089	25	G10	08	9538 9499	1104	350	S339 S338	531	79	1104 994
ŀ		RESET2* GNDDUM3	-43 -43		-1089 -1089		DUMMY15 VcomH	44	195 502	-1089 -1089	25			9499	1104	351	S338 S337	534		1104
		TEST1	-4		-1089		VCL		740	-1089	25	G11		9423	994	353 354		526 527		994
ŀ	55	TEST2 DB17	-40 -39	987	-1089 -1089		VCL Veil	48	320 959	-1089 -1089	25	4 G11 5 G11		9385 9347	1104 994	354	S335 S334	511		1104 994
	56	DB16	-39	907	-1089	156	Veil	50)39	-1089	25	G12		9309 9270	1104 994	356	S333 S332	51: 51		1104 994
		DB15 DB14		746	-1089 -1089		Veil Veil	51	119	-1089 -1089	25			9232	1104	358	S331	500	74	
	59	DB13	-36	566	-1089		REGP		343	-1089	25	G12	26	9194	994	359	S330	503	36	1104 994
ŀ		DB12 DB11	-3: -3:		-1089 -1089		DUMMY16 Vei2	55	150 557	-1089 -1089	26	G12 G13	30	9156 9118	1104 994	360	S329 S328	499		994
	62	DB10	-34	126 346	-1089	162	DDVDH	56	595 776	-1089	26	G13	32	9080	1104	362	S327	492		1104
ŀ	63 64	GNDDUM4	-3:		-1089 -1089		DDVDH Vei3	59	909	-1089 -1089		G13		9042 9003	994 1104	364	S326 S325	484		994 1104
	65	DB8	-3 -3(136	-1089 -1089		C11-	60)47	-1089 -1089	26	G13		8965 8927	994 1104	365	S324	480	07	994 1104
ŀ	67	DB6	-29		-1089		C11-	62		-1089	26			8889	994	367	S322	473	31	994
	68		-21		-1089		C11-		287	-1089	26 26	G14 G14		8851 8813	1104 994	368	S321 S320	469	92	1104 994
ŀ	70		-21 -21	735	-1089 -1089	170	C11+ C11+	64		-1089 -1089	27	G14	48	8775	1104	370	S319	46		1104
	71		-20 -21	555	-1089 -1089	171	C11+ C11+	65	528	-1089 -1089	27	G15	50	8736 8698	994 1104	371	S318 S317	45°	78	994 1104
ŀ	73	DB0/SDI	-24	195	-1089	173	C12-	66	588	-1089	27	G15	54	8660	994	373	S316	450	02	994
[GNDDUM5 RW/RD*	-2: -2:		-1089 -1089	174	C12- C12-	67	768 348	-1089 -1089	27-	G15 G15	56	8622 8584	1104	374	S315 S314	440	25	994
	76	E/WR*/SCL	-22	205	-1089	176	C12-	69	929	-1089	27	6 G16	50	8546	1104	376	S313	438	87	1104
	77 78		-21 -20		-1089 -1089		C12+ C12+		009	-1089 -1089	27	G16		8507 8469	994 1104	377	S312 S311	43		994 1104
ŀ	79	TESTVI	-19	964	-1089	179	C12+	71	169	-1089	27	G16	56	8431	994	379	S310	421	73	994
		GNDDUM6 MTEST1	-13 -17		-1089 -1089		C12+ Vgoff	73	249 388	-1089 -1089	28	G16 G17		8393 8355	1104 994	380	S309 S308	423		994
	82	MTEST2	-16	575	-1089	182	VgoffOUT	74	168	-1089	28	2 G17	72	8317	1104	382	S307	41:	58	1104
		AGND AGND	-1: -1:		-1089 -1089		VgoffH VgoffL	76 76	501 581	-1089 -1089	28	G17	76	8279 8240	994 1104	383	S306 S305	412		994 1104
	85	AGND	-13	343	-1089	185	TESTA3	78	314	-1089	28	GTI	EST2	8164	1104	385	S304	40-	44	994
}		AGND AGND	-12 -1	161	-1089 -1089	187	DUMMY17		947 948	-1089 -1089	28		MMY24 MMY25	8088 8012	1104 1104	386		400 390	68	994
	88	AGND	-10	081	-1089	188	DUMMY18	85	582	-1089	28	DU	MMY26	7935	1104	388	S301	392	29	1104
-		GND GND	-1	948 368	-1089 -1089	189 190	DUMMY19 RESET3*	91	116 550	-1089 -1089		DU!	MMY27 MMY28	7859 7783	1104 1104	389	S300 S299	389	53	994 1104
	91	GND		767	-1089	191	DUMMY20	97	768	-1089	29	DU	MMY29	7706	1104	391	S298	38	15	994
		GND GND		587 585	-1089 -1089	192	DUMMY21 Vcom2	98	359 961	-1089 -1089	29		MMY30	7630 7554	1104 994	392	S297 S296	373		994
ļ	94	GND	Ÿ	505	-1089	194	Vcom2	100	041	-1089	29	4 S39)5	7516	1104	394	S295	370	01	1104
[RVcc RVcc		372	-1089 -1089	195	DUMMY22 G2	102		-1099 -801	29	100.5		7477	994 1104	395	S294 S293	360		994
				212	-1089	197	G4	101	104	-763	29	7 S39	12	7401	994	397	S292	351	86	994
ŀ	97	K V CC																		
	97 98 99	RVcc		-51	-1089 -1089	198 199	G6	102	104	-725 -687	29	S39 S39 S38	10	7363 7325	1104 994	398	S291 S290	354 35		1104 994

No.	pad name	X Y	\neg	No. pad name	X	Y	No. pad name	Х	Y	No. pad name	X	Y
401	S288		994	501 S188	-420	1104	601 S88	-4235	1104	701 G167	-8393	1104
402	S287		104	502 S187	-458	994	602 S87	-4273	994	702 G165	-8431	994
	S286		994	503 S186	-496	1104	603 S86	-4311	1104	703 G163	-8469	1104
	S285		104	504 S185	-534	994	604 S85	-4349	994	704 G161	-8507	994
405 406	S284 S283		994 104	505 S184 506 S183	-572 -610	1104 994	605 S84 606 S83	-4387 -4425	1104 994	705 G159 706 G157	-8546 -8584	1104
400	S283		994	500 S183	-649	1104	607 S82	-4423 -4464	1104	707 G155	-8622	1104
	S281		104	508 S181	-687	994	608 S81	-4502	994	708 G153	-8660	994
409	S280	3128	994	509 S180	-725	1104	609 S80	-4540	1104	709 G151	-8698	1104
410	S279	3090 1	104	510 S179	-763	994	610 S79	-4578	994	710 G149	-8736	994
	S278		994	511 S178	-801	1104	611 878	-4616	1104	711 G147	-8775	1104
	S277		104 994	512 S177	-839	994	612 877	-4654	994	712 G145	-8813 -8851	994
	S276 S275		104	513 S176 514 S175	-877 -916	1104 994	613 S76 614 S75	-4692 -4731	1104 994	713 G143 714 G141	-8851 -8889	1104 994
	S274		994	514 S175	-910	1104	615 S74	-4769	1104	715 G139	-8927	1104
416			104	516 S173	-992	994	616 S73	-4807	994	716 G137	-8965	994
	S272		994	517 S172	-1030	1104	617 S72	-4845	1104	717 G135	-9003	1104
	S271		104	518 S171	-1068	994	618 S71	-4883	994	718 G133	-9042	994
	S270		994	519 S170 520 S169	-1106	1104	619 S70	-4921	1104	719 G131	-9080	1104
420	S269 S268		104 994	520 S169 521 S168	-1145 -1183	994 1104	620 S69 621 S68	-4960 -4998	994 1104	720 G129 721 G127	-9118 -9156	994 1104
	S267		104	522 S167	-1103	994	622 S67	-5036	994	721 G127 722 G125	-9194	994
	S266		994	523 S166	-1259	1104	623 S66	-5074	1104	723 G123	-9232	1104
424	S265	2556 1	104	524 S165	-1297	994	624 S65	-5112	994	724 G121	-9270	994
	S264		994	525 S164	-1335	1104	625 S64	-5150	1104	725 G119	-9309	1104
	S263		104	526 S163	-1373	994	626 S63	-5188	994	726 G117	-9347	994
427	S262 S261		994 104	527 S162 528 S161	-1412 -1450	1104	627 S62 628 S61	-5227 -5265	1104 994	727 G115 728 G113	-9385 -9423	1104
	S261 S260		994	528 S161 529 S160	-1450 -1488	1104	628 S61 629 S60	-5265	1104	728 G113 729 G111	-9423 -9461	1104
	S259		104	530 S159	-1526	994	630 S59	-5341	994	730 G109	-9499	994
431	S258	2289	994	531 S158	-1564	1104	631 S58	-5379	1104	731 G107	-9538	1104
	S257		104	532 S157	-1602	994	632 S57	-5417	994	732 G105	-9576	994
	S256		994	533 S156	-1640	1104	633 S56	-5455	1104	733 G103	-9614	1104
434			104	534 S155	-1679	994	634 S55	-5494	994	734 G101	-9652	994
	S254 S253		994	535 S154	-1717	1104 994	635 S54	-5532 -5570	1104 994	735 G99 736 G97	-9690 -9728	1104 994
	S253 S252		104 994	536 S153 537 S152	-1755 -1793	994 1104	636 S53 637 S52	-5570 -5608	994 1104	736 G97 737 G95	-9728 -9766	994 1104
438	S251		104	538 S151	-1793	994	638 S51	-5646	994	738 G93	-9805	994
439	S250	1984	994	539 S150	-1869	1104	639 S50	-5684	1104	739 G91	-9843	1104
440	S249		104	540 S149	-1908	994	640 S49	-5723	994	740 G89	-9881	994
	S248		994	541 S148	-1946	1104	641 S48	-5761	1104	741 G87	-9919	1104
	S247		104	542 S147	-1984	994	642 S47	-5799	994	742 DUMMY39	-10209	1099
	S246 S245		994 104	543 S146 544 S145	-2022 -2060	1104 994	643 S46 644 S45	-5837 -5875	1104 994	743 G85 744 G83	-10214 -10104	801 763
444			994	544 S145 545 S144	-2060	1104	644 S45 645 S44	-5875 -5913	1104	745 G81	-10104	725
	S244 S243		104	546 S143	-2098	994	646 S43	-5951	994	746 G79	-10214	687
447	S242	1679	994	547 S142	-2175	1104	647 S42	-5990	1104	747 G77	-10214	649
448	S241		104	548 S141	-2213	994	648 S41	-6028	994	748 G75	-10104	610
	S240		994	549 S140	-2251	1104	649 S40	-6066	1104	749 G73	-10214	572
	S239		104	550 S139	-2289	994	650 S39 651 S38	-6104	994	750 G71	-10104	534
451 452	S238 S237		994 104	551 S138 552 S137	-2327 -2365	1104 994	651 S38 652 S37	-6142 -6180	1104 994	751 G69 752 G67	-10214 -10104	496 458
452	S237 S236		994	552 S137 553 S136	-2365	1104	652 S37 653 S36	-6180 -6218	1104	753 G65	-10104	458 420
	S235		104	554 S135	-2442	994	654 S35	-6257	994	754 G63	-10214	382
455	S234	1373	994	555 S134	-2480	1104	655 S34	-6295	1104	755 G61	-10214	343
456	S233	1335 1	104	556 S133	-2518	994	656 S33	-6333	994	756 G59	-10104	305
	S232		994	557 S132	-2556	1104	657 S32	-6371	1104	757 G57	-10214	267
458	S231		104	558 S131	-2594	994	658 S31	-6409	994	758 G55	-10104	229
459	S230 S229		994 104	559 S130 560 S129	-2632 -2671	1104	659 S30 660 S29	-6447 -6486	1104 994	759 G53 760 G51	-10214 -10104	191
	S229 S228		994	561 S128	-2071	1104	661 S28	-6524	1104	761 G49	-10104	114
462			104	562 S127	-2747	994	662 S27	-6562	994	762 G47	-10104	76
463	S226	1068	994	563 S126	-2785	1104	663 S26	-6600	1104	763 G45	-10214	38
464	S225	1030	104	564 S125	-2823	994	664 S25	-6638	994	764 G43	-10104	0
465	S224		994	565 S124	-2861	1104	665 S24	-6676	1104	765 G41	-10214	-38
466			104	566 S123	-2899	994	666 S23	-6714	994	766 G39	-10104	-76
467 468	S222 S221		994 104	567 S122 568 S121	-2938 -2976	1104 994	667 S22 668 S21	-6753 -6791	1104 994	767 G37 768 G35	-10214 -10104	-114 -153
468			994	569 S120	-2976	1104	669 S20	-6829	1104	769 G33	-10104	-153
470	S219		104	570 S119	-3014	994	670 S19	-6867	994	770 G31	-10214	-229
471	S218	763	994	571 S118	-3090	1104	671 S18	-6905	1104	771 G29	-10214	-267
	S217		104	572 S117	-3128	994	672 S17	-6943	994	772 G27	-10104	-305
	S216		994	573 S116	-3166	1104	673 S16	-6981	1104	773 G25	-10214	-343
	S215		104	574 S115 575 S114	-3205	994	674 S15 675 S14	-7020	994	774 G23	-10104	-382
475 476	S214 S213		994 104	575 S114 576 S113	-3243 -3281	1104 994	675 S14 676 S13	-7058 -7096	1104 994	775 G21 776 G19	-10214 -10104	-420 -458
477	S213		994	577 S112	-3281	1104	677 S12	-7134	1104	777 G17	-10104	-496
	S211		104	578 S111	-3357	994	678 S11	-7172	994	777 G17	-10104	-534
	S210	458	994	579 S110	-3395	1104	679 S10	-7210	1104	779 G13	-10214	-572
	S209	420 1	104	580 S109	-3434	994	680 S9	-7249	994	780 G11	-10104	-610
481	S208		994	581 S108	-3472	1104	681 S8	-7287	1104	781 G9	-10214	-649
	S207		104	582 S107	-3510	994	682 S7	-7325	994	782 G7	-10104	-687
	S206		994	583 S106	-3548	1104	683 S6	-7363 7401	1104	783 G5	-10214	-725
484	S205 S204		994	584 S105 585 S104	-3586 -3624	1104	684 S5 685 S4	-7401 -7439	994 1104	784 G3 785 G1	-10104 -10214	-763 -801
	S204 S203		104	586 S103	-3662	994	686 S3	-7477	994	786 GTEST1	-10214	-877
	S202		994	587 S102	-3701	1104	687 S2	-7516	1104		.0217	0//
488			104	588 S101	-3739	994	688 S1	-7554	994			
	S200	76	994	589 S100	-3777	1104	689 DUMMY31	-7630	1104	Alignment mark	X	Y
490	S199	38 1	104	590 S99	-3815	994	690 DUMMY32	-7706	1104	Cross	-10135	935
	S198		104	591 S98	-3853	1104	691 DUMMY33	-7783	1104		10135	935
	S197		994	592 S97	-3891	994	692 DUMMY34	-7859	1104	Circle (Positive)	-10119	1100
	S196		104	593 S96	-3929	1104	693 DUMMY35	-7935	1104	Circle (Negative)	10119	1100
	S195 S194		994 104	594 S95 595 S94	-3968 -4006	994 1104	694 DUMMY36	-8012 -8088	1104 1104	L (Positive)	-10029 10029	1100 1100
493	S194 S193		994	595 S94 596 S93	-4044	994	695 DUMMY37 696 DUMMY38	-8164	1104	L (Negative)	10029	1100
40.6			104	596 S93 597 S92	-4044	1104	697 G175	-8240	1104			
	IS192											
497	S192 S191		994	598 S91	-4120	994	698 G173	-8279	994			
497 498 499	S191 S190	-305 -343	994 104	598 S91 599 S90	-4120 -4158	994 1104	698 G173 699 G171	-8279 -8317	1104			
497 498 499	S191	-305 -343	994	598 S91	-4120	994	698 G173	-8279				

Pin Function

Signals	Number of Pins	I/O	Connected to	Funct	ions				
IM3-1, IM0/ID	4	I	GND or V _{CC}	Select	the m	node ir	nterfac	cing with MPU.	
				IM3	IM2	IM1	IM0	MPU interfacing mode	DB pins
				GND	GND	GND	GND	68-system 16-bit interface	DB17-10,DB8-1
				GND	GND	GND	Vcc	68-system 8-bit interface	DB17-10
				GND	GND	Vcc	GND	80-system 16-bit interface	DB17-10,DB8-1
				GND	GND	Vcc	Vcc	80-system 8-bit interface	DB17-10
				GND	Vcc	GND	ID	Serial Peripheral Interface	DB17-10,DB8-1
				GND	Vcc	Vcc	*	Setting disabled	
				Vcc	GND	GND	GND	68-system 18-bit interface	DB17-0
				Vcc	GND	GND	Vcc	68-system 9-bit interface	DB17-9
				Vcc	GND	Vcc	GND	80-system 18-bit interface	DB17-0
				Vcc	GND	Vcc	Vcc	80-system 9-bit interface	DB17-9
				Vcc	Vcc	*	*	Setting disabled	-
				In Seri				rface mode, IMO/ID pin ode.	is used for ID
CS*	1	1	MPU		Select	HD66	773R	and accessible 73R and inaccessible	
				Must b	e fixe	d to G	iND w	hen not used.	
RS	1	I	MPU	Regist Low: In High: 0 Must b	ndex/s Contro	status ol		al. GND in SPI mode.	
E/WR*/SCL	1	I	MPU	ENAB 68-sys Write	LE sig stem b strobe	nal to us into signa	activa erface Il in 80	ate data read/write opera e. O-system bus interface, v	
RW/RD*	1	I	MPU	Synchronizing clock signal in SPI mode. Read/write selection signal in 68-system bus interface. Low: Write, High: Read Read strobe signal in 80-system bus interface, read data at low. Must be fixed to Vcc or GND in SPI mode.					
DB0/SDI	1	I/O	MPU	18-bit 8-bit b 9-bit b 16-bit 18-bit The pi	bi-dire us inte us inte bus in bus in ns not data i	ectiona erface erface terfac terfac t used nput p	al data : DB1 : DB1 e: DB e: DB for da in (SI	a bus. 7-10 7-9 17-10, 8-1	

Signals	Number of Pins	I/O	Connected to	Functions
DB1/SDO	1	I/O	MPU	18-bit bi-directional data bus. 8-bit bus interface: DB17-10 9-bit bus interface: DB17-9 16-bit bus interface: DB17-10, 8-1 18-bit bus interface: DB17-0 The pins not used for data transfer must be fixed to Vcc or GND.
				Serial data output pin (SDO) to output on the falling edge of SCL signal in SPI mode.
DB2-DB17	16	I/O	MPU	18-bit bi-directional data bus. 8-bit bus interface: DB17-10 9-bit bus interface: DB17-9 16-bit bus interface: DB17-10, 8-1 18-bit bus interface: DB17-0 The pins not used for data transfer must be fixed to Vcc or GND.
OSC1, OSC2	2	I/O	Oscillation- resistor	Connect to an external resistor for R-C oscillation. When supplying clocks externally, supply with OSC1, and leave OSC2 open.
RESET1* RESET2* RESET3*	3	I	MPU or Reset generating circuit	Reset pin. Initialize the LSI at low. Power-on reset required when turning on the power supply. Supply with either one of RESET1,2,3, and leave the unused pins open.
TEST1	1	ı	GND	Test pin. Must be fixed to GND level.
TEST2	1	i	GND	Test pin. Must be fixed to GND level.
Vcc, GND	2	-	Power supply	Logic Vcc: +2.2V ~ +3.3V Logic-side ground, GND: 0V
RVcc	1	-	Power supply	Vcc power supply for internal RAM. Supply same electric potential as Vcc.
AGND	1	-	Power supply	Analogue-side ground, AGND: 0 V
CGND	1	0	Opposing GND for external elements	Output GND level. Opposing GND for external elements (capacitors, diodes).
Vci	1	I	Vcc or power supply	Power supply for analogue circuits. Connect to an external power supply of 2.5V ~ 3.3V.
Vci1	1	I/O	Vcc or power supply	Output internal reference voltage with amplitude between Vci and GND. Reference voltage for step-up circuit1. Connect to an external power supply of 2.75V or lower, when internal reference voltage is not used.
DDVDH	1	I/O	Stabilizing Capacitor or open	Output Vci1 after stepped-up 2~3 times by step-up circuit 1. The
Vci2	1	I	DDVDH or power supply	Reference voltage for step-up circuit 2. Connect to DDVDH. Connect to an external power supply of 5.5V or lower, when DDVDH is not used.
VGH	1	I/O	Stabilizing Capacitor or power supply	Output voltage with amplitude between VGH and GND after stepped-up 2~4 times by step-up circuit 2. The step-up scale is determined with internal register setting. Connect to a stabilizing capacitor. When step-up circuit 2 is not used, connect to an external power supply of 16.5V or lower.

Signals	Number of Pins	1/0	Connected to	Functions
Vci3	1	I	VGH or DDVDH or power supply	Reference voltage for step-up circuit 3. Connect to VGH or DDVDH. Connect to an external power supply of 16.5V or lower, when internal power supply is not used.
VGL	1	I/O	Stabilizing Capacitor or power supply	Output voltage with amplitude between VGH and GND after multiplied by -1 by step-up circuit 3. Connect to a stabilizing capacitor. When step-up circuit 3 is not used, connect to an external power supply of -16.5V or more.
Vci4	1	I	Vcc or Vci1 or power supply	Reference voltage for a step-up circuit 4. Connect to Vci or an external power supply between 2.5 ~ 3.3 V.
VCL	1	I/O	Stabilizing Capacitor or power supply	Output voltage with amplitude between Vci4 and GND after multiplied by -1 by step-up circuit 4. Connect to a stabilizing capacitor. Power supply for generating VcomL. When using an external power supply, connect to an external power supply of -3.3V or more if VcomL is negative voltage. When VcomL is GND or more, halt step-up circuit 4 and connect it to GND.
VREG1OUT	1	I/O	Stabilizing Capacitor or power supply	Generate from internally generated reference voltage with amplitude Vci-GND and output a reference voltage for VREG1 with amplitude DDVDH-GND. The step-up scale for output voltage is determined with internal register setting. Connect to a stabilizing capacitor. This is a reference voltage for generating Vcom. Connect to an external power supply of DDVDH or lower when step-up circuit 1 is not used.
VREG2OUT	1	I/O	Stabilizing Capacitor or power supply	Generate from internally generated reference voltage with amplitude Vci-GND and output a reference voltage for VREG2 with amplitude GND-VGL. The step-up scale for output voltage is determined with internal register setting. Connect to a stabilizing capacitor. This is a reference voltage for generating VgoffOUT. Connect to an external power supply of VGL or more when step-up circuit 2 is
C11+ ~ C23+,	10		Step-up	not used. Connect to a step-up capacitor if necessary depending on step-up
C11 - ~ C23 - C31+, C31-	2		capacitor Step-up capacitor	scale. When internal step-up circuit is not used, leave open. Connect to a step-up capacitor for generating the VGL level from the Vci3 and GND levels. When internal step-up circuit is not used, leave open.
C41+, C41-	2		Step-up capacitor	Connect to a step-up capacitor for generating the VCL level from the Vci4 and GND levels. When internal step-up circuit is not used, leave open.
Vcom1 Vcom2	2	0	TFT common electrode	Power supply for TFT common electrode. Output the same voltage level as VcomL during display off, and output the level with amplitude VcomH-VcomL during display on. The AC cycle is changeable with liquid crystal drive AC control register (R02). Connect to a TFT common electrode.
VcomR	1	I	Variable resistor or open	VcomH reference voltage. When VcomH is externally adjusted, halt the internal adjuster of VcomH with register setting and place a variable resistor between VREG10UT and GND. When VcomH is not externally adjusted, leave it open and adjust VcomH with internal register setting.

Signals	Number of Pins	I/O	Connected to	Functions
VcomH	1	0	Stabilizing Capacitor	Vcom high level generated during Vcom AC drive. Connect to a stabilizing capacitor.
VcomL	1	0	Stabilizing Capacitor or open	The Vcom level without Vcom AC drive, and Vcom low level with Vcom AC drive. The voltage can be adjusted with internal register setting. Connect to a stabilizing capacitor. VcomL output is halted when VCOMG bit is LOW, and in this case, stabilizing capacitor is not necessary.
VgoffOUT	1	0	Vgoff or Open	Output power supply for gate drive. Internal register setting enables AC drive in synchronization with Vcom. Make an appropriate setting for the structure of hold capacitor of TFT display. Output the amplitude VcomH-VcomL in reference to VgoffL with AC drive.
Vgoff	1	I	VgoffOUT or power supply	TFT gate off level. Negative voltage. Connect to VgoffOUT or otherwise, connect to external voltage power supply of VGL or more.
VgoffH	1	0	Stabilizing Capacitor or open	VgoffOUT high level with Vgoff AC drive. Connect to a stabilizing capacitor. The Vgoff output is halted when CAD bit is LOW. In this case, no stabilizing capacitor is necessary.
VgoffL	1	0	Stabilizing Capacitor	VgoffOUT without Vgoff AC drive, and VgoffOUT low level with Vgoff AC drive. The voltage can be adjusted with internal register setting. Connect to a stabilizing capacitor.
V0P V31P	2	I/O	Stabilizing Capacitor	Output from positive-polarity internal operational amplifier when the internal operational amplifier is turned on. Connect to a stabilizing capacitor.
V0N V31N	2	I/O	Stabilizing Capacitor	Output from negative-polarity internal operational amplifier when the internal operational amplifier is turned on. Connect to a stabilizing capacitor.
VGS	1	I	GND or external resistor	Reference voltage for grayscale voltage generating circuit. Place a variable resistor externally when adjusting a level for each panel.
S1-S396	396	0	LCD	Source output signal. The shift direction of segment signal is changeable with SS bit:
				SS = 0, RAM address 0000 is output from S1. SS = 1, it is output from S396.
				S1, S4, S7, display red (R), S2, S5, S8, display green (G), and S3, S6, S9, display blue (B) (SS = 0).
G1-176	176	0	LCD	Gate output signal. Output VGH level to select a gate line, and output Vgoff level not to select a gate line.
GTEST1-2	2	0	LCD or Open	Dummy gate output signal. Output the VGH level to select a gate line, and output the Vgoff level not to select a gate line when CAD bit is High. Output the Vgoff level not to select a gate line when CAD bit is Low. Leave open when not used.
TESTA1	1	I/O	Stabilizing Capacitor or Open	A test pin for the VcomH output. Leave it open or connect to a stabilizing capacitor if necessary depending on the quality of display.
TESTA2	1	I/O	Stabilizing Capacitor or Open	A test pin for the VcomL output. Leave it open or connect to a stabilizing capacitor if necessary depending on the quality of display.
TESTA3	1	I/O	Stabilizing Capacitor or Open	A test pin for the Vgoff output. Leave it open or connect to a stabilizing capacitor if necessary depending on the quality of display.

Signals	Number of Pins	I/O	Connected to	Functions
TESTA4	1	I/O	Stabilizing Capacitor or Open	A test pin for the VcomL output. Leave it open or connect to a stabilizing capacitor if necessary depending on the quality of display.
DCTEST	1	I	GND	A test pin. Must be connected to GND.
MTEST1	2	0	Open	Test pins. Leave open.
MTEST2				
VTESTS	1	I/O	Open	A test pin. Leave open.
TS0-TS7	8	0	Open	A test pin. Leave open.
VMONI	1	0	Open	A test pin. Leave open.
TESTV1	1	I	GND	A test pin. Must be connected to GND.
REGP	1	I/O	Open	A test pin for VREG1OUT. Leave open.
DUMMY1, 22, 23, 39	4	0	Open	Test outputs. Leave open.
DUMMY2-21, DUMMY24-38	35		Dummy	Dummy pads. Connected to nowhere.

Block Function

1. System Interface

The HD66773R incorporates three kinds of high-speed system interfaces: 68-system and 80-system interfaces with 18-/16-/9-/8-bit bus, and Serial Peripheral Interface (SPI). The interfacing mode is selected with IM3-0 pins.

The HD66773R has three 16-bit registers: index register (IR), write data register (WDR), and read data register (RDR). The IR stores the information of each control register and the index information of GRAM. The WDR temporarily stores data before written to the control register or GRAM. The RDR temporarily stores the data, which is read from GRAM. Data written into GRAM from the MPU is first written into the WDR and then is automatically written into GRAM by internal operation. Since data are read through the RDR from GRAM, the data read out first are invalid and the ensuing data are read out normally.

The execution time for the instructions other than oscillation start is 0-clock cycle, which enables instructions to be written consecutively.

Register Selection (8/9/16/18 Parallel Interface)

80-system		68-system	RS	Operation			
WR*	RD*	R/W	No	Operation			
0	1	0	0	Write index into IR			
1	0	1	0	Read internal status			
0	1	0	1	Write to control register and GRAM through WDR			
1	0	1	1	Read from GRAM through RDR			

Register Selection (Serial Peripheral Interface)

Start byte

-		
R/W Bits	RS Bits	Operations
0	0	Write index into IR
1	0	Read internal status
0	1	Write to control register and GRAM through WDR
1	1	Read from GRAM through RDR

2. Bit Operation

The HD66773R supports write data mask function to write bit data selectively to GRAM and logical arithmetical operation to perform logical arithmetical operation and conditional rewrite on GRAM display data and then rewrite the data to GRAM. These functions significantly reduce the load on the graphics-processing software in the microcomputer, and enable high-speed overwrite of GRAM display data. For details, see "Graphics Operation Function".

3. Address Counter (AC)

The address counter (AC) assigns addresses to GRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC.

After writing data into GRAM, the AC is automatically updated plus or minus 1. The AC is not updated when the data are read from GRAM. Window address function enables data write only in the rectangular area of GRAM specified by window addresses.

4. Hardware-dither circuit

The hardware-dither circuit converts 18-bit one-pixel data to 16-bit data with hardware-dither conversion.

5. Graphics RAM (GRAM)

GRAM is graphics RAM that stores bit-pattern data of 132 x 176 bytes with 16 bits per pixel.

6. Gray scale power supply voltage generating circuit

The grayscale voltage generation circuit generates liquid crystal drive voltage according to the grayscale level set with the γ -adjustment register, enabling 262,144-color display with 18 bits per pixel. For details, see the " γ -adjustment Register" section.

7. LCD drive power supply

The LCD drive power supply generates LCD drive voltage levels, VOP, VON, V31P, V31N, VGH, VGL, VgoffOUT, and Vcom.

8. Oscillation Circuit (OSC)

The HD66773R can provide R-C oscillation simply by placing an external oscillation-resistor between OSC1 and OSC2 pins. An appropriate oscillation frequency for operating voltage, display size, and frame frequency can be obtained by adjusting the external-resistor value. Clock pulses can be supplied externally. Since R-C oscillation is halted during standby mode, current consumption will be reduced. For details, see "Oscillation Circuit".

9. LCD Driver Circuit

The LCD driver circuit of HD66773R consists of a 396-output source driver ($S1 \sim S396$) and a 176-output gate driver ($G1 \sim G176$). Display pattern data are latched when 396-bit data arrive. The latched data controls source driver and generates drive waveforms. The gate driver, which operates display scan, selects either VGH or Vgoff level to output. The shift direction of outputting 396-bit data from source driver outputs is changeable with the SS bit. The shift direction of gate driver scan is changeable with the GS bit. The scan mode of gate driver is changeable with SM bit. Select an appropriate shift direction and scan mode for an assembly.

GRAM Address MAP

Gram Address and display position on the panel (SS = "0")

S/G	3 pin	S1	S2	S3	S4	S5	S6	S7	88	68	S10	S11	S12		S385	S386	S387	S388	S389	8390	S391	S392	S393	S394	S395	2306
GS=0	GS=1	DB 17		DE	DB 17		DE 0	DE 17	3	D	DB DI	3	DE	8	DB		DB	DB.		DB	DP 17	3	DB	DB.		. D
G1	G176	"0	000	"H	"00	01'	Ή	"0	002	"Н	l "0	003"	Ή		"00	080'	Ή	"00)81	"H	"0	082'	"H	"00	83'	<u>"</u> H
G2	G175	"0	100'	'H	"01	101'	'H	"0	102	"Н	l "0	103"	Ή		"O	180'	'H	"01	81	"Н	"0	182'	"H	"01	83"	Н
G3	G174	"0	200	"H	"02	201'	Ή	"0	202	"Н	l "0:	203"	Ή		"02	280'	'H	"0:	28	1"H	"0:	282'	"H	"02	283	"H
G4	G173	"0	300	"H	"03	301'	Ή_	"0	302	"Н	l "0;	303"	Ή_		"03	380'	Ή_	"03	381	"H	"0	382'	"H	"03	83'	"Н
G5	G172	"0	400	"H	"0 ²	101'	'H	"0	402	"Н	L "O4	103"	Ή		"04	480'	Ή	"0	481	1"H	"0	482'	"H	"04	183	"Н
G6	G171	"0	500	"H	"05	01	Н	"0	502	"Н	"0	503"	Ή		"0	580'	'H	"0	581	Н	"0!	582"	Ή.	"05	83'	"H
G7	G170	"00	300'	Ή_	"06	301'	Ή_	"0	602	"Н	l "0	303"	Ή_		"06	380'	<u>'H</u>	"06	381	"H	"0	682'	"H	"06	83'	"H
G8	G169	"0	700	"H	"0	701	"H	"0	702	<u>"H</u>	l "0 [.]	703"	Ή_		"0	780'	<u>'H</u>	"07	781	"H	"0	782'	"H	"07	'83'	"H
G9	G168	"0	800	<u>"H</u>	"08	301'	'H_	"0	802	<u>"H</u>	"0	303"	Ή_		"08	380'	'H	"0	88	1"H	"0	882'	"H	"08	383	"H
G10	G167	"0	900	"H	"09	901'	<u>'H</u>	"0	902	"H	l "0	903"	Ή		"09	980'	<u>'H</u>	"09	981	"H	"0	982'	"H	"09	83"	Ή
G11	G166	"0,	400	"H	"0 <i>F</i>	\01'	Ή_	"0	A02	2"H	1 "O	403'	Ή		"O <i>F</i>	\80'	Ή	"0/	<u>8</u>	1"H	"0.	A82	"H	"O <i>F</i>	۸83	" Н
G12	G165	"01	300	"H	"0E	301'	<u>'H</u>	"0	B02	<u>"</u> H	1 "01	303'	Ή_		"OE	380'	Ή_	"0E	81	"H	"0	B82	"H	"0B	83"	Ή
G13	G164	"00	C00	"H	"00	201	Ή_	"0	C02	2"	1 "O	C03'	"H		"00	C80'	"H	"00	C8′	1"H	"0	C82	"H	"00	283	<u>"H</u>
G14	G163	"01	D00	"H	"OE	01	Ή_	"0	D02	2"	H "01	D03'	"H		10"	080'	"H	"0E	81	"H	"0	D82	"Н	"0D	83'	<u>'H</u>
G15	G162	"0	E00	"Н	"OE	<u>=01</u>	"H	"(E02	2"	1 "O	E03	"H		"01	E80	"H	"OI	<u>∃</u> 8′	1"H	"0	E82	!"Н	"0E	83'	<u>"H</u>
G16	G161	"0	F00	"H	"OF	01	Ή_	"(F02	2"⊦	l "0	F03'	"H		"OI	-80'	"Η	"OF	81	"H	"0	F82	"Н	"0F	83'	<u>'H</u>
G17	G160	"1	000	<u>"H</u>	"10	01'	'H	"1	002	2"H	1 "1	003'	<u>'H</u>		"10	080'	Ή_	"10)81	"Н	"1	082	"H	"10	83"	Ή
G18	G159	"1	100'	<u>'H</u>	"11	01"	<u>H</u>	"1	102	<u>"H</u>	1 "1	103"	Ή_		"11	180"	Ή_	"11	81	"Н	=	182	=	"11	83'	<u>'H</u>
G19	G158	"1:	200	"H	"12	201'	Ή_	"1	202	2"H	1 "1	203'	<u>'H</u>		"12	280'	<u>'H</u>	"1:	28	1"H	"1	282	"H	"12	283	<u>"H</u>
G20	G157	"1	300	"H	"13	301'	'H	"1	302	2"H	1 "1	303'	'H		"13	380'	'H	"13	381	"H	"1	382	"H	"13	83'	"H
						:			:							:			:							
G169	G8	"A	.800	"Н	"A8	301	"H	"A	802	"Н	"A	803	"Н		"A	880	"H	"A	88	1"H	"A	882	"Н	"A8	383	"Н
G170	G7	"A	900	"Н	"A	901	"H	"A	902	"H	l "A	903	"H		"A	980	"H	"A	98	1"H	"A	982	"H	"A9	83"	<u>'H</u>
G171	G6	"A	A00	"Н	"A/	۹01	<u>"H</u>	"A	A02	"Н	I "А	A03	"Н		"A/	\80'	<u>'H</u>	"A	48	1"H	"A	A82	"H	"A/	\83	3"H
G172	G5	"A	B00	"H	"AE	301	"H	"A	B02	"H	I "А	B03	"H		"AE	380'	Ή.	"A	В8	1"H	"A	B82	"H	"AE	383	;"H
G173	G4	"A	C00	"Н	"A(201	"H	"A	C02	!"Н	Ι "д	C03	"H		"A(280'	"H	"A	C8 ⁻	1"H		\C82		"AC	283	3"H
G174	G3	"A	D00	"H	"АГ	001	 "H_	"A	D02	!"H	I "A	D03	"H		"A[080'	"H	"A	D8	1"H	"A	\D82	2"H	"AD	83'	'H
G175	G2	"A	E00)"H		E01		"A	E02	2"H	1 "A	E03	3"H		"Al	E80'	"H	"A	E8	1"H		\E82		"AE	83"	Ή
G176	G1	"A	F00	"H	"Al	F01	"H	"A	F02	."H	۵, ا	F03	"H		"AI	-80'	"H	"A	F8	1"H	"£	\F82	2"H	"Al	-83	3"H

The relationship between GRAM data and display data (SS ="0")

The following figures illustrate the relationship between GRAM data and display data in each interface mode.

Gram Address and display position on the panel (SS = "1", BGR = "1") $\,$

S/G pi	n	S1 S2 S3	S4 S5 S6	S7 S8 S9	S10 S11 S12	 S385 S386 S387	S388 S389 S390	S391 S392 S393	S394 S395
GS=0	GS=1	DB DB	DB DB ∩ 17	DB DB	DB DE	DB DB	DB DB	DB DB	DB D
G1	G176	"0083"H	"0082"H	"0081"H	"0080"H	 "0003"H	"0002"H	"0001"H	"0000"H
G2	G175	"0183"H	"0182"H	"0181"H	"0180"H	 "0103"H	"0102"H	"0101"H	"0100"H
G3	G174	"0283"H	"0282"H	"0281"H	"0280"H	 "0203"H	"0202"H	"0201"H	"0200"H
G4	G173	"0383"H	"0382"H	"0381"H	"0380"H	 "0303"H	"0302"H	"0301"H	"0300"H
G5	G172	"0483"H	"0482"H	"0481"H	"0480"H	 "0403"H	"0402"H	"0401"H	"0400"H
G6	G171	"0583"H	"0582"H	"0581 H	"0580"H	 "0503"H	"0502"H	"0501 H	"0500"H
G7	G170	"0683"H	"0682"H	"0681"H	"0680"H	 "0603"H	"0602"H	"0601"H	"0600"H
G8	G169	"0783"H	"0782"H	"0781"H	"0780"H	 "0703"H	"0702"H	"0701"H	"0700"H
G9	G168	"0883"H	"0882"H	"0881"H	"0880"H	 "0803"H	"0802"H	"0801"H	"0800"H
G10	G167	"0983"H	"0982"H	"0981"H	"0980"H	 "0903"H	"0902"H	"0901"H	"0900"H
G11	G166	"0A83"H	"0A82"H	"0A81"H	"0A80"H	 "0A03"H	"0A02"H	"0A01"H	"0A00"H
G12	G165	"0B83"H	"0B82"H	"0B81"H	"0B80"H	 "0B03"H	"0B02"H	"0B01"H	"0B00"H
G13	G164	"0C83"H	"0C82"H	"0C81"H	"0C80"H	 "0C03"H	"0C02"H	"0C01"H	"0C00"H
G14	G163	"0D83"H	"0D82"H	"0D81"H	"0D80"H	 "0D03"H	"0D02"H	"0D01"H	"0D00"H
G15	G162	"0E83"H	"0E82"H	"0E81"H	"0E80"H	 "0E03"H	"0E02"H	"0E01"H	"0E00"H
G16	G161	"0F83"H	"0F82"H	"0F81"H	"0F80"H	 "0F03"H	"0F02"H	"0F01"H	"0F00"H
G17	G160	"1083"H	"1082"H	"1081"H	"1080"H	 "1003"H	"1002"H	"1001"H	"1000"H
G18	G159	"1183"H	"1182"H	"1181"H	"1180"H	 "1103"H	"1102"H	"1101"H	"1100"H
G19	G158	"1283"H	"1282"H	"1281"H	"1280"H	 "1203"H	"1202"H	"1201"H	"1200"H
G20	G157	"1383"H	"1382"H	"1381"H	"1380"H	 "1303"H	"1302"H	"1301"H	"1300"H
				:					
G169	G8	"A883"H	"A882"H	"A881"H	"A880"H	 "A803"H	"A802"H	"A801"H	"A800"H
G170	G7	"A983"H	"A982"H	"A981"H	"A980"H	 "A903"H	"A902"H	"A901"H	"A900"H
G171	G6	"AA83"H	"AA82"H	"AA81"H	"AA80"H	 "AA03"H	"AA02"H	"AA01"H	"AA00"H
G172	G5	"AB83"H	"AB82"H	"AB81"H	"AB80"H	 "AB03"H	"AB02"H	"AB01"H	"AB00"H
G173	G4	"AC83"H	"AC82"H	"AC81"H	"AC80"H	 "AC03"H	"AC02"H	"AC01"H	"AC00"H
G174	G3	"AD83"H	"AD82"H	"AD81"H	"AD80"H	 "AD03"H	"AD02"H	"AD01"H	"AD00"H
G175	G2	"AE83"H	"AE82"H	"AE81"H	"AE80"H	 "AE03"H	"AE02"H	"AE01"H	"AE00"H
G176	G1	"AF83"H	"AF82"H	"AF81"H	"AF80"H	 "AF03"H	"AF02"H	"AF01"H	"AF00"H

The relationship between GRAM data and display data (SS ="1")

The following figures illustrate the relationship between GRAM data and display data in each interface mode.

Instructions

Outline

The HD66773R adapts 18-bit bus architecture that enables high-speed interfacing with a high-performance microcomputer. Data sent from external (18/16/9/8 bits) are stored temporarily in the instruction register (IR) and the data register (DR) to store control information before internal operation starts. Since internal operation is decided according to the signal sent from the microcomputer, register selection signal (RS), read/write signal (R/W), and internal 16-bit data bus signal (DB15 to DB0) are called instruction. GRAM is accessed through internal 18-bit data bus. There are eight categories of instructions:

- 1. Specify index
- 2. Read status
- 3. Control display
- 4. Control power management
- 5. Process graphics data
- 6. Set internal GRAM addresses
- 7. Transfer data to and from internal GRAM
- 8. Set grayscale level for internal grayscale γ -adjustment

Normally, the 7th instruction to write data to be displayed is executed the most frequently. The address of internal GRAM is updated automatically after data are written to internal GRAM. With window address function, this reduces the amount of data transmission to minimum and thereby lightens the load on the program in the microcomputer. Since instructions are executed in 0 cycle, it is possible to write instructions consecutively.

As the following figure shows, the assignment to the 16 instruction bits (IB15-0) varies according to the interface to be used. An instruction must adopt the data format for each interface.

Instruction bit assignment

Instructions

The following are detail explanations of instructions with illustrations of instruction bits (IB15-0) assigned to each interface.

Index

The index instruction specifies a index (R00h to R3Bh) of control registers and RAM control, that is accessed. It sets the register number from 0000000 to 111111111 in binary form. Do not try to access to the register to which instruction is not assigned.

Status Read

The status read instruction reads the internal status of the HD66773R.

L7–0: Indicate the position of raster-row driving liquid crystal.

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	0	L7	L6	L5	L4	L3	L2	L1	L0	0	0	0	0	0	0	0	0

Start Oscillation (R00h)

The start oscillation instruction restarts the oscillator in a halt state during standby mode. After executing this instruction, wait at least 10 ms for stabilizing oscillation before issuing a next instruction. For details, see the "Standby Mode" section.

"0773"H is read out, if this register is forced to read out.

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	0	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1
R	1	0	0	0	0	0	1	1	1	0	1	1	1	0	0	1	1

Driver Output Control (R01h)

GS: Select the shift direction of outputs from the gate driver. The scan order by the gate driver is changeable in accordance to the scan mode of gate driver. Select an optimum shift direction for the assembly.

SM: Set the scan order by the gate driver. Select an optimum scan order for the assembly. For details, see "Scan Mode Setting".

SS: Select the shift direction of outputs from the source driver. When SS = 0, the shift direction of outputs is from S1 to S396. When SS = 1, the shift direction of outputs is from S396 to S1. In addition to the shift direction, setting for both SS and BGR bits are required to change the assignment of R, G, B dots to the source driver pins. To assign R, G, B dots to the source driver pins interchangeably from S1, set SS = 0, SS = 0. To assign R, G, B dots to the source driver pins interchangeably from S396, set SS = 1, SS = 1, SS = 1, SS = 1.

NL4-0: Specify the number of LCD drive raster-rows. The number of drive raster-rows is adjusted by 8 multiple raster-rows. The mapping of addresses to GRAM is independent of this setting. Select the number of raster-rows so that the display size covers the size of a panel.

NL bits

NL4	NL3	NL2	NL1	NL0	Display Size	Number of LCD Driver Lines	Gate Driver Used
0	0	0	0	0	Setting disabled	Setting disabled	Setting disabled
0	0	0	0	1	396 x 16 dots	16	G1 to G16
0	0	0	1	0	396 x 24 dots	24	G1 to G24
0	0	0	1	1	396 x 32 dots	32	G1 to G32
0	0	1	0	0	396 x 40 dots	40	G1 to G40
0	0	1	0	1	396 x 48 dots	48	G1 to G48
0	0	1	1	0	396 x 56 dots	56	G1 to G56
0	0	1	1	1	396 x 64 dots	64	G1 to G64
0	1	0	0	0	396 x 72 dots	72	G1 to G72
0	1	0	0	1	396 x 80 dots	80	G1 to G80
0	1	0	1	0	396 x 88 dots	88	G1 to G88
0	1	0	1	1	396 x 96 dots	96	G1 to G96
0	1	1	0	0	396 x 104 dots	104	G1 to G104
0	1	1	0	1	396 x 112 dots	112	G1 to G112
0	1	1	1	0	396 x 120 dots	120	G1 to G120
0	1	1	1	1	396 x 128 dots	128	G1 to G128
1	0	0	0	0	396 x 136 dots	136	G1 to G136
1_	0	0	0	1	396 x 144 dots	144	G1 to G144
1	0	0	1	0	396 x 152 dots	152	G1 to G152
1	0	0	1	1	396 x 160 dots	160	G1 to G160
1	0	1	0	0	396 x 168 dots	168	G1 to G168
1	0	1	0	1	396 x 176 dots	176	G1 to G176

Note 1) A blanking period which lasts 8H, where all gate lines output Vgoff level, will be inserted after driving all gate lines.

LCD Driving Waveform Control (R02h)

R/W RS II	B15 IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W 1	0 0	0	0	FLD1	FLD0	B/C	EOR	0	0	NW5	NW4	NW3	NW2	NW1	NW0

FLD1-0: Specify the number of fields during n-field interlaced drive. For details, see "Interlaced Drive".

FLD Bits

FLD1 FLD0 Number of Fields

0	0	Setting disabled
0	1	1 field
1	0	Setting disabled
1	1	3 fields

B/C: When B/C =0, a field AC waveform is generated. Alternation occurs every frame to drive liquid crystal. When B/C=1, alternation occurs every n raster-rows according to the settings in EOR and NW5-0 bits of the LCD driving waveform control register. For details, see "n-raster-row Inversion AC Drive".

EOR: When EOR = 1 and a C-pattern waveform is generated (B/C =1), an odd/even frame select signal and an n-raster-row inversion signal are AC-driven. This instruction is available when liquid crystal AC drive is not made depending on the combination of numbers of LCD drive raster-rows and the value of "n" of n-raster-row inversion AC drive. For details, see "n-raster-row inversion AC drive".

NW5-0: Specify n, the number of raster-rows from 1 to 64 to alternate every n+1 raster-rows when C-pattern waveform is generated (B/C = 1).

Power Control 1 (R03h) Power Control 2 (R04h)

_R/	w.	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
v	N	1	0	0	0	0	0	BT2	BT1	вто	DC2	DC1	DC0	AP2	AP1	AP0	SLP	STB
7	N	1	CAD	0	0	0	0	0	0	0	0	0	0		0	0	0	0
Ľ	•	1	CAD	0	U	U	0	0	U	0		0	U		U	0	0	0

BT2–0: Change the step-up scale of the step-up circuit. Adjust the scale according to the voltage. Smaller scale consumes lesser current.

BT2	BT1	BT0	DDVDH Output	VGH Output	Note*	Capacitor connect pin
0	0	0	2 x Vci1	3 x Vci2	VGH = Vci1 x 6	DDVDH, VGH, VGL, VCL, C11±, C21±, C22±, C31±, C41±
0	0	1	2 x Vci1	4 x Vci2	VGH = Vci1 x 8	DDVDH, VGH, VGL, VCL, C11±, C21±, C22±, C23±, C31±, C41±
0	1	0	3 x Vci1	3 x Vci2	VGH = Vci1 x 9	DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, C31±, C41±
0	1	1	3 x Vci1	2 x Vci2	VGH = Vci1 x 6	DDVDH, VGH, VGL, VCL, C11±, C12±, C21±, C22±, C31±, C41±
1	0	0	2 x Vci1	Vci1 + 2 x Vci2	VGH = Vci1 x 5	DDVDH, VGH, VGL, VCL, C11±, C21±, C22±, C31±, C41±
1	0	1	2 x Vci1	Vci1 + 3 x Vci2	VGH = Vci1 x 7	DDVDH, VGH, VGL, VCL, C11±, C21±, C22±, C23±, C31±, C41±
1	1	0	Step-up disabled	3 x Vci2	VGH = Vci2 x 3	DDVDH, VGH, VGL, VCL, C21±, C22±, C31±, C41±
1	1	1	Setting disabled	Setting disabled	Setting disabled	_

Note*) The VGH is stepped-up from Vci1, which is the voltage level when DDVDH and Vci2 is short-circuited. The VGH must be set to satisfy VDDVDH \leq 5.5 V and VGH \leq 16.5 V.

DC2–0: Select the operating frequency for the step-up circuit. The higher step-up frequency enhances the drive capacity of step-up circuit as well as the display quality, while the current consumption will increase. Adjust the frequency taking both the display quality and the current consumption into consideration.

DC2	DC1	DC0	Step-up Cycle of Step-up Circuit 1	Step-up Cycle in Step-up Circuits 2/3/4
0	0	0	DCCLK /16	DCCLK / 64
0	0	1	DCCLK / 32	DCCLK / 64
0	1	0	DCCLK / 64	DCCLK / 64
0	1	1	DCCLK / 32	DCCLK / 256
1	0	0	DCCLK / 16	DCCLK / 128
1	0	1	DCCLK / 32	DCCLK / 128
1	1	0	DCCLK / 64	DCCLK / 128
1	1	1	DCCLK / 64	DCCLK / 256

AP2–0: Adjust the amount of fixed current from the fixed current source in the operational amplifier circuit in the liquid crystal drive power supply. When the amount of fixed current is set large, the liquid crystal drive capacity is enhanced and the display quality will improve, while the current consumption will increase. Select an optimum amount of current taking both the display quality and the current consumption into account. During non-display operation, set AP2-0 = "000" to halt the operation of operational amplifier and step-up circuit to further reduce current consumption.

AP2	AP1	AP0	Amount of Current in Operational Amplifier
0	0	0	Halt operational amplifier and step-up circuit
0	0	1	Small
0	1	0	Small or medium
0	1	1	Medium
1	0	0	Medium or large
1	0	1	Large
1	1	0	Setting disabled
1	1	1	Setting disabled
-			

SLP: When SLP = 1, the HD66773R enters into the sleep mode. In the sleep mode, internal display operation is halted except the R-C oscillator to reduce current consumption. No change is made to the GRAM data or instructions during the sleep mode, but it is retained.

STB: When STB = 1, the HD66773R enters into the standby mode. In the standby mode, display operation is completely halted, and all internal operation including the internal R-C oscillator and reception of external clock pulse, is halted. For details, see "Standby Mode". Only instructions to access R03h including the standby bit and to start oscillation are accepted during the standby mode.

CAD: Make an appropriate setting for the structure of TFT panel holding capacitor.

Set CAD = "0" for Cst structure.

Set CAD = "1" for Cadd structure.

Power Control 3 (R0Ch)

Power Control 4 (R0Dh)

Power Control 5 (R0Eh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VC2	VC1	VC0
W	1	0	0	0	0	VRL3	VRL2	VRL1	VRL0	0	0	0	PON	VRH3	VRH2	VRH1	VRH0
W	1	0	0	VCO MG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	VCM4	VCM3	VCM2	VCM1	VCM0
				•							•		•				

VC2-0: Adjust reference voltage for VREG1OUT, VREG2OUT, and Vci1 to the level of Vci multiples. When VC2-0 = "111", internal reference voltage generation is halted and an arbitrary level of voltage can be applied through Vci1.

VC2	VC1	VC0	VREG1OUT (reference, Vci1 output , REGP output voltage)
0	0	0	Vci
0	0	1	0.92 x Vci
0	1	0	0.87 x Vci
0	1	1	0.83 x Vci
1	0	0	0.76 x Vci
1	0	1	0.73 x Vci
1	1	0	0.68 x Vci
1	1	1	Vci1: Hi-Z REGP: GND

Note) Leave REGP open so that the voltage as specified above is output.

VRL3-0: Set the amplifying scale of VREG2OUT voltage (the reference voltage for Vgoff). The output from Vci voltage adjustment circuit can be amplified by $-1.5 \sim -6.5$ times.

VRL3	VRL2	VRL1	VRL0	VREG2OUT Voltage
0	0	0	0	Vci x -1.5
0	0	0	1	Vci x-2.0
0	0	1	0	Vci x - 2.5
0	0	1	1	Vci x - 3.0
0	1	0	0	Vci x- 3.5
0	1	0	1	Vci x - 4.0
0	1	1	0	Vci x - 4.5
0	1	1	1	Halt
1	0	0	0	Vci x - 5.0
1	0	0	1	Vci x - 5.5
1	0	1	0	Vci x - 6.0
1	0	1	1	Vci x - 6.5
1	1	0	0	Setting inhibited
1	1	0	1	Setting inhibited
1	1	1	0	Setting inhibited
1	1	1	1	Halt

Note) Adjust Vci and VRL3-0 so that the VREG2OUT voltage is -16.0 V or more.

PON: Start operation of step-up circuit 3. To halt operation, set PON = 0. To start operation, set PON = 1.

VRH3-0: Set the amplifying scale of VLOUT1 voltage (the reference voltage for VCOM and grayscale voltage). The output from Vciout output amplifier can be amplified by $1.33 \sim 2.775$ times.

VRH3	VRH2	VRH1	VRH0	VREG1OUT Voltage
0	0	0	0	REGP x 1.33
0	0	0	1	REGP x 1.45
0	0	1	0	REGP x 1.55
0	0	1	1	REGP x 1.65
0	1	0	0	REGP x 1.75
0	1	0	1	REGP x 1.80
0	1	1	0	REGP x 1.85
0	1	1	1	Halt
1	0	0	0	REGP x 1.900
1	0	0	1	REGP x 2.175
1	0	1	0	REGP x 2.325
1	0	1	1	REGP x 2.475
1	1	0	0	REGP x 2.625
1	1	0	1	REGP x 2.700
1	1	1	0	REGP x 2.775
1	1	1	1	Halt

Note) Adjust VC2-0 and VRH3-0 so that the VREG1OUT voltage is 5.0 V or less.

VCOMG: When VCOMG = 1, VcomL outputs a negative voltage up to -5V. When VCOMG = 0, the VcomL voltage is GND and negative-polarity amplifier is halted to reduce power consumption. When VCOMG = "0", the setting in VDV4-0 is made invalid. In this case, make adjustment for the AC amplitudes of Vcom and Vgoff with VCM4-0, VocomH settings.

VDV4-0: Set the AC amplitude of Vcom and Vgoff during Vcom AC drive. The amplitude can be specified within the range of VREG1OUT x $0.6 \sim 1.23$. When VCOMG = 0, this setting is invalid.

VDV4	VDV3	VDV2	VDV1	VDV0	Vcom Amplitude
0	0	0	0	0	VREG1OUT x 0.60
0	0	0	0	1	VREG1OUT x 0.63
0	0	0	1	0	VREG1OUT x 0.66
:	:	:	:	:	
0	1	1	0	0	VREG1OUT x 0.96
0	1	1	0	1	VREG1OUT x 0.99
0	1	1	1	0	VREG1OUT x 1.02
0	1	1	1	1	Setting disabled
1	0	0	0	0	VREG1OUT x 1.05
1	0	0	0	1	VREG1OUT x 1.08
1	0	0	1	0	VREG1OUT x 1.11
1	0	0	1	1	VREG1OUT x 1.14
1	0	1	0	0	VREG1OUT x 1.17
1	0	1	0	1	VREG1OUT x 1.20
1	0	1	1	0	VREG1OUT x 1.23
1	0	1	1	1	Satting disabled
1	1	*	*	*	 Setting disabled

Note) Adjust VREG10UT and VDV4-0 so that the Vcom and Vgoff amplitudes are 6.0 V or less.

VCM4-0: Set the VcomH voltage (The higher voltage during Vcom AC drive). The amplitude can be specified within the range of VREG1OUT x $0.4 \sim 0.98$. When VCM4-0 = "1111", the internal volume adjustment operation is halted, and the VcomH voltage can be adjust by placing an external resistor at VcomR.

VCM4	VCM3	VCM2	VCM1	VCM0	VcomH Voltage
0	0	0	0	0	VREG1OUT x 0.40
0	0	0	0	1	VREG1OUT x 0.42
0	0	0	1	0	VREG1OUT x 0.44
:	:	:	:	:	
0	1	1	0	0	VREG1OUT x 0.64
0	1	1	0	1	VREG1OUT x 0.66
0	1	1	1	0	VREG1OUT x 0.68
0	1	1	1	1	Halt internal volume. Adjust by an
					external variable resistor VcomR.
1	0	0	0	0	VREG1OUT x 0.70
1	0	0	0	1	VREG1OUT x 0.72
1	0	0	1	0	VREG1OUT x 0.74
:	:	:	:	:	
1	1	1	0	0	VREG1OUT x 0.94
1	1	1	0	1	VREG1OUT x 0.96
1	1	1	1	0	VREG1OUT x 0.98
1	1	1	1	1	Halt internal volume. Adjust by an external variable resistor VcomR.

Note) Adjust VREG1OUT and VCM4-0 so that the VcomH voltage is the VDH level or less.

GTEST1, 2 Output Timing Chart

Entry Mode (R05h)

Compare Register (R06h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	DIT	0	0	BGR	0	0	HWM	0	0	0	I/D1	I/D0	AM	LG2	LG1	LG0
W	1	CP15	CP14	CP13	CP12	CP11	CP10	CP9	CP8	CP7	CP6	CP5	CP4	СР3	CP2	CP1	СРО

The HD66773R modifies write data sent from the microcomputer before writing to GRAM. This enables high-speed GRAM data update, and reduces the load on the microcomputer software. For details, see "Graphics Operation Function".

HWM: When HWM=1, data are written to GRAM in high speed. In high-speed write mode, 4 words are written to GRAM in a single operation after executing 4 RAM write operations. If RAM write is terminated before it is executed 4 times, the last data will not be written. Make sure that RAM write is executed 4 times. For this reason, the lower 2 bits must be set to "0" when setting the RAM address. For details, "High-Speed RAM Write Mode".

I/D1-0: The address counter is automatically incremented by 1, after data are written to GRAM when I/D1-0 = "1". The address counter is automatically decremented by 1, after data are written to GRAM when I/D1-0 = "0". The setting for the increment or decrement of the address counter can be made independently for each upper and lower bits of the address. The transition direction of the address when data are written to GRAM is set with AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to GRAM. When AM = "0", the address counter is updated in the horizontal direction. When AM = "1", the address counter is updated in the vertical direction. When window addresses are specified, data are written to the GRAM area specified by the window address in the manner specified with I/D1-0, AM bits.

DIT: Hardware-dither mode when DIT = "1". Use hardware-dither mode with 18/9-bit interface modes.

Address transition direction

LG2–0: Rewrite data to GRAM after comparing the data that are written by the microcomputer to GRAM with the values in the compare registers (CP17–0) and performing a logical operation. For details, see "Graphics Operation function".

CP15–0: Set the value for the compare register, with which the data read out from GRAM or data written to GRAM by the microcomputer are compared. This function is not available with 18/19-bit interface modes. In 18/19-bit interface modes, make sure LG2-0 = "000".

BGR: Reverse the order from R, G, B to B, G, R for GRAM data. When setting BGR = 1, CP15-0 and WM15-0 bits will be automatically changed to the same effect.

Display Control 1 (R07h)

W 1 0 0 PT1 PT0 VLE2 VLE1 SPT 0 0 GON DTE	CL RE	EV D1 D0

PT1-0: Specify the kind of source output when non-display area is driven in the partial display mode. For details, see "Screen-split drive function".

VLE2–1: When VLE1 = 1, the first screen is scrolled in the vertical direction. When VLE2 = 1, the second screen is scrolled in the vertical direction. The first and second screens cannot be scrolled simultaneously. This function is not available with external display interface mode.

VLE Bits

VLE2	VLE1	Image on 2nd Screen	Image on 1st Screen
0	0	Stationary	Stationary
0	1	Stationary	Scrolled
1	0	Scrolled	Stationary
1	1	Setting disabled	Setting disabled

CL: When CL = 1, 8-color display mode is selected. For details, see "8-Color Display Mode".

CL Bit

CL	Colors	
0	65,536	
1	8	

SPT: When SPT = 1, liquid crystal is driven with 2 split screens. For details, see "Screen Split Drive Function".

REV: When REV = 1, a reverse display is shown. Inverting the grayscale levels allows the display of same data on both normally white and normally black panels. The source output level is as follows.

Combination with partial display

		Source o	utput level									
		Diamlay		non-display area								
REV	, GRAM data			PT1-0 = (0.*)		PT1-0= (1.0)		PT1-0 = (1.1)				
	VCOM ="L"	VCOM ="H"	VCOM="L"	VCOM="H"	VCOM ="L"	VCOM ="H"	VCOM ="L"	VCOM ="H"				
	16'h0000	V31	V0									
0				V31	V0	GND	GND	Hi-z	Hi-z			
	16'hFFFF	V0	V31									
	16'h0000	V0	V31									
1		 	;	V31	V0	GND	GND	Hi-z	Hi-z			
	16'hFFFF	V31	V0									

Combination with D1-0 bits

		Source output level									
REV	GRAM	D1-0 = (1.1)		D1-0 = (1.0)		D1-0 = (0.1)		D1-0 = (0.0)			
data		VCOM ="L"	VCOM ="H"	VCOM ="L"	VCOM ="H"	VCOM ="L"	VCOM ="H"	VCOM ="L"	VCOM ="H"		
0	16'h0000 	V31 	V0 V31	V31	VO	GND	GND	GND	GND		
1	16'h0000 	V0 V31	V31 	V31	VO	GND	GND	GND	GND		

GON: When GON = 0, the gate-off level is VGH.

D1–0: The graphics display is on when D1 = 1, and off when D1 = 0. When setting D1 = 0, the data are retained in GRAM. This means the graphics is instantly redisplayed when setting D1 to 1. When D1 is 0 (i.e., the display is off) all the source outputs are set to the GND level. This reduces the charged/discharged current during liquid crystal AC drive.

When D1-0=01, the HD66773R continues internal display operation, even while the external display is off. When D1-0=00, both internal and external display operation are halted. In combination with GON and DTE bits, D1-0 bits control ON/OFF of display. For details, see "Instruction Setting Flow".

GON	DTE	D1	D0	HD66773R Internal Display Operation	Source output	Gate output
0	0	0	0	Halt	GND	VGH
0	0	0	1	Operate	GND	VGH
1	0	0	1	Operate	GND	VGOFF
1	0	1	1	Operate	Grayscale level output	VGOFF
1	1	1	1	Operate	Grayscale level output	Gate selective line: VGH, Gate non-selective line: VGOFF

Note 1) GRAM write operation from the microcomputer is irrelevant to the setting in D1–0.

Note 2) In the standby mode, D1-0 = "00. The setting in the register D1-0 is retained.

Frame Cycle Control (R0Bh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	NO1	NO0	SDT1	SDT0	EQ1	EQ0	DIV1	DIV0	0	0	0	0	RTN3	RTN2	RTN1	RTN0

RTN3-0: Set the 1H (1 raster-row) period.

RTN Bits and Clock Cycles

RTN3	RTN2	RTN1	RTN0	Clock Cycles per Raster-row
0	0	0	0	16 clocks
0	0	0	1	17 clocks
0	0	1	0	18 clocks
		:		:
1	1	1	0	30 clocks
1	1	1	1	31 clocks

DIV1-0: Set the division ratio of clocks for internal operations (DIV1-0). Internal operations are in synchronization with the clock, the frequency of which is divided according to the DIV1-0 setting. When changing the number of drive raster-rows, adjust the frame frequency too. For details, see "Frame Frequency Adjustment Function".

DIV1	DIV0	Division Ratio	Internal Operating Clock Frequency
0	0	1	fosc / 1
0	1	2	fosc / 2
1	0	4	fosc / 4
1	1	8	fosc / 8

fosc = R-C oscillation frequency

Formula for the frame frequency

EQ1-0: Set the period for equalization, where Vcom output becomes Hi-z.

EQ1	EQ0	Equalizing period
0	0	Not equalized
0	1	1 clock
1	0	2 clocks
1	1	3 clocks

Note) Equalizing is valid while VcomL is 0V or more. Otherwise, set EQ = "00"

SDT1-0: Determine the amount of delay for the source output from the falling edge of the gate output.

SDT1	SDT0	Delay Time for Source Signal
0	0	1 clock
0	1	2 clocks
1	0	3 clocks
1	1	4 clocks

NO1-0: Specify the amount of non-overlap time for the gate output.

NO1	NO0	Non-overlap time
0	0	0 clock
0	1	4 clocks
1	0	6 clocks
1	1	8 clocks

Gate Scan Position (R0Fh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	0	0	0	SCN4	SCN3	SCN2	SCN1	SCN0

SCN4-0: Specify the position where the gate scan starts.

					Scan Start I	Position
SCN4	SCN3	SCN2	SCN1	SCN0	GS = 0	GS = 1
0	0	0	0	0	G1	G176
0	0	0	0	1	G9	G168
0	0	0	1	0	G17	G160
				•	•	
1	0	1	0	0	G161	G17
1	0	1	0	1	G169	G9

Vertical Scroll Control (R11h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	0	0	0	0	0	0	0	0	VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0

VL7–0: Specify the number of raster-rows to be scrolled and control smooth scrolling in the vertical direction. The number of raster-rows is specified between 0 to 176, the raster-rows of the specified number are scrolled during display. When the 176th raster-row is displayed, the scrolling display starts afresh from the 1st raster-row. The number of raster-rows to be scrolled (VL7–0) can be specified when the first screen vertical scroll enable bit VLE1 = 1 or the second screen vertical scroll enable bit VLE2 = 1. The number of raster-rows is fixed (not changeable) when VLE2-1 = 00.

VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0	Amount of Scrolling (Number of raster-row)
0	0	0	0	0	0	0	0	0 raster-row
0	0	0	0	0	0	0	1	1 raster-row
0	0	0	0	0	0	1	0	2 raster-rows
•		•	•					
1	1	1	0	1	1	1	0	174 raster-rows
1	1	1	0	1	1	1	1	175 raster-rows

Note: When setting the number of raster-rows for scrolling, it must be 175 ("AF"h) or less.

1st-Screen Drive Position (R14h)
2nd-Screen Drive Position (R15h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10
W	1	SE27	SE26	SE25	SE24	SE23	SE22	SE21	SE20	SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20

SS17–10: Specify the start position for driving the first screen by line. The liquid crystal is driven by from the gate driver of "the set value +1".

SE17–10: Specify the end position for driving the first screen by line. The liquid crystal is driven by to the gate driver of "the set value + 1". For instance, when SS17-10 = "07"H and SE17-10 = "10"H, the liquid crystal is driven from G8 to G17, and black display is driven from G1 to G7, and G18 thereafter. Make sure that $SS17-10 \le SE17-10 \le "AF"H$. For details, see "Screen-split Drive Function".

SS27–20: Specify the start position for driving the second screen by line. The liquid crystal is driven by from the gate driver of "the set value + 1". The second screen is driven when SPT = 1.

SE27–20: Specify the end position for driving the second screen by line. The liquid crystal is driven by to the gate driver of "the set value + 1". For instance, when SPT = 1, and SS27–20 = "20"H, SE27–20 = "4F"H, the liquid crystal is driven from 33 to G80. Make sure that SS17–10 \leq SE17–10 \leq SS27–20 \leq SE27–20 \leq "AEF"H. For details, see "Screen-split Drive Function".

Horizontal RAM Address Position (R16h) Vertical RAM Address Position (R17h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
W	1	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0

HSA7-0/HEA7-0: Specify the start/end positions of the window-address range by address in the horizontal direction. Data are written to GRAM within the area determined by the addresses specified by HEA7-0 and HSA7-0. These addresses must be set before RAM write. In setting these bits, make sure that "00"h \leq HSA7-0 \leq HEA7-0 \leq "83"h.

VSA7-0/VEA7-0: Specify the start/end positions of the window-address range by address in the vertical direction. Data are written to GRAM within the area determined by the addresses specified by VEA7-0 and VSA7-0. These addresses must be set before RAM write. In setting these bits, make sure that "00" h \leq VSA7-0 \leq VEA7-0 \leq "AF"h.

- Note 1) The window address area should be set within the GRAM address space.
- Note 2) In the high speed write mode, data are written to GRAM every 4 word. Some window address setting may require insurtion of dummy write. See "High Speed Burst RAM write".
- Note 3) The address set must be within the window address area. In the high speed write mode, set within the area including dummy write area.

RAM Write Data Mask (R20h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
w	1	WM 15	WM 14	WM 13	WM 12	WM 11	WM 10	WM 9	WM 8	WM 7	WM 6	WM 5	WM 4	WM 3	WM 2	WM 1	WM 0

WM15–0: Write-mask the data when written to GRAM by bit. The write-mask function is available with 8/16-bit interface modes. For example, if WM15 = 1, the data in WD15 bit is write-masked so that it is not written to GRAM. The rest of WM14-0 bits also write-mask the data in the corresponding WD bits when these bits are set to "1". For details, see "Graphics Operation Function".

RAM Address Set (R21h)

R/W RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
$ W _1$	AD 15	AD 14	AD 13	AD 12	AD 11	AD 10	AD 9	AD 8	AD 7	AD 6	AD 5	AD 4	AD 3	AD 2	AD 1	AD 0

AD15–0: Make a GRAM address initial setting in the address counter (AC). After GRAM data are written, the address counter is automatically updated according to the settings with AM, I/D bits and the setting for a new GRAM address is not required in the address counter. Therefore, data are written consecutively without resetting the address. The address counter is not automatically updated when data are read out from GRAM.

GRAM address setting can not be made during the standby mode. An address set should be made within the area specified with the window address.

GRAM Address Range

AD15-AD0	GRAM Setting
"0000"H – "0083"H	Bitmap data for G1
"0100"H – "0183"H	Bitmap data for G2
"0200"H – "0283"H	Bitmap data for G3
"0300"H – "0383"H	Bitmap data for G4
:	:
"AC00"H - "AC83"H	Bitmap data for G173
"AD00"H – "AD83"H	Bitmap data for G174
"AE00"H – "AE83"H	Bitmap data for G175
"AF00"H – "AF83"H	Bitmap data for G176

Write Data to GRAM (R22h)

R/W	RS																		
w	1				F	 RAM wr	ite data	 (WD17-	-0) The	pin assig	nment f	or DB1	7-0 vario	es for ea	ich inter	face (se	e below).	
						<u> </u>						L							
		PD17	PD16	PD15	PD14	PD13	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
When Re	GB-I/F	WD	WD 16	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD
		1 1/	I IN I	1 15	l 14	l 13	1 12 1		10	9	ı x	1 7	I 6 I	5	4	3	7	- 1 1	() [

WD17–0: All data are expanded into 18 bits internally before being written to GRAM. Each interface has its own way of expanding data to 18 bits.

The grayscale level is selected according to GRAM data. The address is automatically updated according to the setting with the AM and I/D bits after data are written to GRAM. During the standby mode, no access is allowed to GRAM. When the 9 or 18 bit interface mode is selected, set DIT = "1" to activate the internal hardware-dither circuit before writing to GRAM.

GRAM data and liquid crystal output level

GRAM Da	ata Setting	Selected	grayscale	GRAM Da	ata Setting	Selected	grayscale
G	R/B	Negative	Positive	G	R/B	Negative	Positive
000000	00000	V0	V31	010000	01000	V8	V23
000001	_	V0 – V1	V31 - V30	010001	-	V8 – V9	V23 – V22
000010	00001	V1	V30	010010	01001	V9	V22
000011	-		V30 – V29	010011	-	V9 –V10	V22 – V21
000100	00010	V2	V29	010100	01010	V10	V21
000101	-	V2 – V3	V29 – V28	010101	-	V10 – V11	V21 – V20
000110	00011	V3	V2 8	010110	01011	V11	V20
000111	-	V3 – V4	V28 – V27	010111	-	V11 – V12	V20 – V19
001000	00100	V4	V27	011000	01100	V12	V19
001001	-	V4 – V5	V27 – V26	011001	-	V12 – V13	V19 – V18
001010	00101	V5	V26	011010	01101	V13	V18
001011	-	V5 – V6	V26 – V25	011011	-	V13 – V14	V18 – V17
001100	00110	V6	V25	011100	01110	V14	V17
001101	-	V6 – V7	V25 – V24	011101	-	V14 – V15	V17 – V16
001110	00111	V7	V24	011110	01111	V15	V16
001111	-	V7 – V8	V24 – V23	011111	-	V15 – V16	V16 – V15
				1			
GRAM D	ata Setting	Selected	grayscale	GRAM Da	ta Setting	Selected	grayscale
G	R/B	Negative	Positive	G	R/B	Negative	Positive
100000	10000	V16	V15	110000	11000	V24	V7
100001	-	V16 – V17	V15 – V14	110001	-	V24 – V25	V7 – V6
100010	10001	V17	V14	110010	11001	V25	V6
100011	-	V17 –V18	V14 – V13	110011	-	V25 –V26	V6 – V5
100100	10010	V18	V13	110100	11010	V26	V5
100101	-	V18 – V19	V13 – V12	110101	-	V26 – V27	V5 – V4
100110	10011	V19	V12	110110	11011	V27	V4
100111	-	V19 – V20	V12 – V11	110111	-	V27 – V28	V4 – V3
101000	10100	V20	V11	111000	11100	V28	V3
101001	-	V20 – V21	V11 – V10	111001	-	V28 – V29	V3 – V2
101010	10101	V21	V10	111010	11101	V29	V2
101011	-	V21 – V22	V10 – V9	111011	-	V29 – V30	V2 – V1
101100	40440			II .	ı	1	1 1/4

111100

111101

111110

111111

11110

11111

V9

V22

V22 – V23 V9 – V8

V23 – V24 V8 – V7

101101

101110

101111

V30

V31

V30 – V31 V1 – V0

V0

V0

Read Data from GRAM (R22h)

R	R/W	RS																
	R	1		I	RAM Re	ead data	(RD17-	0) The 1	oin assig	nment fo	or DB1	 7-0 varie	es for ea	ch inter	face (se	e below]).	
١L	10	1															<u></u>	

RD15–0: Read 16-bit data from GRAM. The bit assignment for the data to be read out from GRAM is different according to the interface.

When data are read out from GRAM to the microcomputer, the first word read immediately after GRAM address set are latched in the internal read-data latch, and the data in the data bus (DB17–0) are nullified. The second word is read as a valid data. When the HD66773R performs an internal bit processing, such as logical operation, it uses the data latched in the read-data latch, and completes it by single read out operation. The data are expanded internally into 18 bits before going through the logical operation. GRAM data read and logical operation are available with 8-/16-bit interface mode. If 9-/18-bit interface modes are selected, this function is not available.

GRAM read sequence

Gamma Control (R30h to R3Bh)

	D.044																	
	R/W	RS	IB15	<u>IB14</u>	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R30	W	1	0	0	0	0	0	PKP 12	PKP 11	PKP 10	0	0	0	0	0	PKP 02	PKP 01	PKP 00
R31	W	1	0	0	0	0	0	PKP 32	PKP 31	PKP 30	0	0	0	0	0	PKP 22	PKP 21	PKP 20
R32	W	1	0	0	0	0	0	PKP 52	PKP 51	PKP 50	0	0	0	0	0	PKP 42	PKP 41	PKP 40
R33	W	1	0	0	0	0	0	PRP 12	PRP 11	PRP 10	0	0	0	0	0	PRP 02	PRP 01	PRP 00
R34	W	1	0	0	0	0	0	PKN 12	PKN 11	PKN 10	0	0	0	0	0	PKN 02	PKN 01	PKN 00
R35	W	1	0	0	0	0	0	PKN 32	PKN 31	PKN 30	0	0	0	0	0	PKN 22	PKN 21	PKN 20
R36	W	1	0	0	0	0	0	PKN 52	PKN 51	PKN 50	0	0	0	0	0	PKN 42	PKN 41	PKN 40
R37	W	1	0	0	0	0	0	PRN 42	PRN 41	PRN 40	0	0	0	0	0	PRN 02	PRN 01	PRN 00
R3A	W	1	0	0	0	VRP 14	VRP 13	VRP 12	VRP 11	VRP 10	0	0	0	0	VRP 03	VRP 02	VRP 01	VRP 00
R3B	W	1	0	0	0	VRN 14	VRN 13	VRN 12	VRN 11	VRN 10	0	0	0	0	VRN 03	VRN 02	VRN 01	VRN 00

PKP52–00: Gamma fine adjustment register for the positive polarity output

PRP12-00: Gradient adjustment register for the positive polarity output

VRP14-00: Amplitude adjustment register for the positive polarity output

PKN52-00: Gamma fine adjustment register for the negative polarity output

PRN12-00: Gradient adjustment register for the negative polarity output

VRN14-00: Amplitude adjustment register for the negative polarity output.

For details, see "Gamma Adjustment Function".

Instruction List

Register		L	H				Ubber	Code				L			Ower	Code				
	Register	RW	RS _	B15	B14	IB13	B12		IB10	1B9	88	187	9B	1B5	型	B3	B2	<u>8</u>	IB0	Instructions
Ť	Index	0	0	*	*	*	*	*	*	*	*	*	9QI	102	₫	ID3	ID2	101	0 <u>0</u>	Set index register values.
Ĺ	Status read	-	0	77	97	12	۲4	F3	7	7	9	0	0	0	0	0	0	0	0	Read out drive line position (L7-0).
4000	Oscillation Start	0	-	*	*	*	*	*	*	*		*	*	*	*	*	*	*	-	Start oscillation diring standby.
	Device code read	-	-	0	0	0	0	0	-	-	-	0	-	-	-	0	0	-	-	Read out "0773H".
R01h	Driver output control	0	-	0	0	0	0	0	SM	GS	SS	0	0	0	NL4	NL3	NL2	NL1	NLO	Set the gate driver shift direction (GS), source drive shift direction (SS), and the position of drive line(NL-4-0).
ROZh	LCD drive AC control	0	-	0	0	0	0	FLD1	FLD0	B/C	EOR	0	0	NW5	NW4	NW3	NW2	NW1	0MN	Set iquid cystal drive AC waveform (BC), the number of fields in interaced drive (PLD1-0), the EOR output (EOR) during C-patten AC drive, and the number of lines for AC drive "n" (NW5-0).
Rosh	Power control (1)	0	-	0	0	0	0	0	BT2	BT1	BT0	DC2	<u>P</u>	000	AP2	AP1	AP0	SLP	STB	Set landby mode (STB), LOD power supply ON (AP2-0), sleep mode (SLP), step-up cycle (DC2-0), and step-up output scale (BT3-0).
R04h	Power control (2)	0	1	CAD	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Set the structure of holding capacity (CAD).
Rosh	Entry mode	0	-	DIT	0	0	BGR	0	0	HWM	0	0	0	ι 1	ND0	AM	LG2	LG1	097	Set logical operation (LG2-0), AC counter mode (AM), increment/decrement (I/D1-0), high-speed write mode (HWM), BGR mode hard-dither mode(DIT).
ROGh	Compare register	0	1	CP15 C	CP14 (CP13	CP12	CP11	CP10	CP9	CP8	CP7	CP6	CP5	CP4	CP3	CP2	CP1	CP0	Set compare registers (CP15-0).
R07h	Display control	0	-	0	0	0	PT1	PT0	VLE2	VLE1	SPT	0	0	GON	DTE	ರ	REV	D1	00	Set disply ON (D11-0), reverse display (REV), display colors (CL), DISPTIMG ENABLE (DTE), gate output on (GOM), screen split control (SPT), vertical scroll (VLE2-1), and source output state (PT1-0).
RoBh	Frame cycle control	0	-	N 0	00 00 00	SDT1	SDT0	EQ1	EQ0	DIV1	DIVO	0	0	0	0	RTN3	RTN2	RTN1	RTN0	Set 1H period (RTN3-0), operational clock division ratio (DIV1-0), Equalize period (EQ1-0), source output delay (SDT1-0), and gete output non-overlap (NOT-0).
ROCh	Power control (3)	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	VC2	VC1	VC0	Set the Vci adjustment factor (VC2-0).
RODh	Power control (4)	0	-	0	0	0	0	VRL3	VRL2	VRL1	VRL0	0	0	0	NON	VRH3	VRH2	VRH1	VRH0	Start operation of slep-up circuit 3 (PON), specify the amplifying scale of VREGOUT1 voltage (VRH3-0), and amplifying scale of VREGOUT2 voltage (VRL3-0).
ROEH	Power control (5)	0	-	0	0	/COMG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	VCM4	VCM3	VCM2	VCM1	VCM0	Set the Voom H voltage (VCM4-0), the amplitude of Vgoff AC (VDV4-0), and the Voom voltage (VCOMG).
ROFh	Gate scan starting position	0	-	0	0	0	0	0	0	0	0	0	0	0	SCN4 S	SCN3	SCN2	SCN1	SCN0	Set the scan start position of gate driver (SCN4-0).
R11h	vertical scroll control	0	-	0	0	0	0	0	0	_	0	VL7	VL6		-	-	VL2	VL1	VL0	
	First display drive position	0	← ·		_	SE15	SE14	SE13	_	_	SE10					\rightarrow	SS12	SS11	SS10	
Т	Second display drive position	0	\neg				SE24	SE23			SE20	5527	SS26	SS25 8			SS22	SS21	_	
R17h	Horizontal RAM address position	0		VEA7 V	VEAG	VEAS	VFA4	VFA3	KF F	YE A	VEAD	VSA7	VSA6	VSA5 VSA4		VSA3	VSA2	VSA1	VSAO	RAM address startlend positions (HSA7-0, HEA7-0) in holizontal direction. RAM address startland nositions (VSA7-0 VFA7-0) in vertical direction.
1	RAM write data mask	0	-								WM8	WM7	WW	WW5		_	WM2	WMI	-	
R21h	RAM address set	0	-				AD15-8 (Upper	(Upper							AD7-0	AD7-0 (Lower)				Initialize Address Counter with RAM address.
R22h	RAM data write	0	-			^	Write Data (Upper)	a (Upp	<u>ار</u>					^	Write Data (Lower)	ta (Low	G)			Write data to RAM
	RAM data read	- 0					Read Data (Upper	ta (Upp	er)	į				г	Read Data (Lower	ta (Low		0	0000	Read data to RAM.
R31h	y control (1)	0 0		0 0	0 0	o c	0 0	0	PKP1Z	PKP3	PKP30	0	0 0	o c	o c) C	PKP02	PKP01	PKP20	Gamma control
Т	7 control (3)	0	-	0	0	0	0	0	PKP52	PKP51		0	0	0	0	Т				Gamma control.
Г	y control (4)	0	-	0	0	0	0	0	PRP12	PRP11	PRP10	0	0	0	0	П	PRP02	PRP01	PRP00	Gamma control.
R34h	γ control (5)	0	1	0	0	0	0	0	PKN12	PKN12 PKN11	PKN10	0	0	0	0	0	PKN02	PKN01	PKN00	
	γ control (6)	0	—	0	0	0	0	0	PKN32		PKN30	0	0	0	0	0	PKN22	PKN21	PKN20	
	y control (7)	0	-	0	0	0	0 (0	PKN52	PKN51	PKN50		0 (0	0	\neg	PKN42	PKN41		
7	y control (8)	0 (-	0 0	0 0	0 0	0	0	PRN12	PRN12 PRN11			0 0	0 0	Ť		PRN02	PRN01		
╅	y control (9)	0	-	0 1	0 1	1	VRP14	VRP13		VRP11	VRP10	0	0	0	Т	VRP03 V	VRP02	VRP01	VRP00	Gamma control.
K3551	7 control (10)	0		=	0	=	4777	242				0	0	=	2	Y 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222	2	2	Ciamma contro

Reset Function

The HD66773R makes internal initial settings with RESET input. During the RESET, the HD66773R is in a busy state, and no instructions from the MPU and access to GRAM are accepted. The time required for the RESET input is at least 1ms. In case of power-on reset, wait at least 10ms after the power is turned on until the R-C oscillation frequency becomes stabilized. While waiting, do not make initial settings for the instruction set, nor access to GRAM.

Initial State of Instructions

- a. Start oscillation
- b. Driver output control (NL4–0 = "10101", SS = "0", CS = "0")
- c. Liquid crystal AC drive control (FLD1-0 = "01", B/C = "0", EOR = "0", NW5-0 = "00000")
- d. Power control 1 (BT2-0 = "000", DC2-0 = "000", AP2-0 = "000": liquid crystal power supply off, SLP = "0", STB = "0": Standby mode off)
- e. Power control 2 (CAD = "0")
- f. Entry mode set (DIT = "0", BGR = "0", HWM = "0", I/D1-0 = "11": Increment by 1, AM = "0": Horizontal direction, LG2-0 = "000": Replace mode)
- g. Compare register (CP15–0: "0000 0000 0000 0000")
- h. Display control (PT1-0 = "00", VLE2-1 = "00": No vertical scroll, SPT = "0", GON = "0", DTE = "0", CL = "0": 262,144 colors, REV = "0", D1-0 = "00": Display OFF)
- i. Power control 3 (VC2-0 = "000")
- j. Power control 4 (VRL3-0 = "0000", PON = "0", VRH3-0 = "0000")
- k. Power control 5 (VDV4-0 = "00000", VCOMG = "0", VCM4-0 = "00000")
- 1. Frame cycle control (NO1-0 = "00", SDT1-0 = "00", EQ1-0 = "00": No equalization, DIV1-0 = "00": clock/1, RTN3-0 = "0000": 16 clocks in 1H period)
- m. Gate scan starting position (SCN4-0 = "00000")
- n. Vertical scroll (VL7–0 = "00000000")
- o. 1st split-screen (SE17-10 = "11111111", SS17-10 = "00000000")
- p. 2nd split-screen (SE27-20 = "11111111", SS27-20 = "00000000")
- q. Horizontal RAM address position (HEA7-0 = "10000011", HSA7-0 = "00000000")
- r. Vertical RAM address position (VEA7-0 = "10101111", VSA7-0 = "00000000")
- s. RAM write data mask (WM15–0 = "0000"H: No mask)
- t. RAM address set (AD15–0 = "0000"H)
- u. γ control

```
(PKP02-00 = "000", PKP12-10 = "000", PKP22-20 = "000", PKP32-30 = "000", PKP42-40 = "000", PKP52-50 = "000", PRP02-00 = "000", PRP12-10 = "000") (PKN02-00 = "000", PKN12-10 = "000", PKN22-20 = "000", PKN32-30 = "000", PKN42-40 = "000", PKN52-50 = "000", PRN02-00 = "000", PRN12-10 = "000") (VRP14-10 = "00000", VRP03-00 = "0000", VRN14-10 = "00000", VRN12-10 = "0000")
```

GRAM Data Initialization

The data in GRAM are not initialized with the RESET input. Initialize through software during the display OFF (D1-0 = 00).

Initial state of output pin

- a. Liquid crystal driver output pins (source outputs): Output GND level Liquid crystal driver output pins (gate outputs): Output VGH level
- b. Oscillator output pin (OSC2): Output oscillation signal

System Interface

A system interface is selected among the following interfaces with the IM3-0 pin setting. The system interface enables instruction setting and RAM access.

IM3	IM2	IM1	IMO	MPU-Interface Mode	DB Pin
0	0	0	0	68-system 16-bit interface	DB17 to 10, 8-to-1
0	0	0	1	68-system 8-bit interface	DB17 to 10
0	0	1	0	80-system 16-bit interface	DB17 to 10, 8-to-1
0	0	1	1	80-system 8-bit interface	DB17 to 10
0	1	0	*	Serial Peripheral Interface (SPI)	DB1 to 0
0	1	1	*	Setting inhibited	_
1	0	0	0	68-system 18-bit interface	DB17-0
1	0	0	1	68-system 9-bit interface	DB17-9
1	0	1	0	80-system 18-bit interface	DB17-0
1	0	1	1	80-system 9-bit interface	DB17-9
1	1	*	*	Setting inhibited	_

68-system 18-bit parallel data transmission becomes operable by setting IM3/2/1/0 pins to Vcc/GND/GND/GND levels respectively. 80-system 18-bit parallel data transmission becomes operable by setting IM3/2/1/0 pins to Vcc/GND/Vcc/GND levels respectively. The data transfer through 18-bit mode is effective only for write mode, and not effective for read operation.

68-system 16-bit parallel data transmission becomes operable by setting IM3/2/1/0 pins to GND/GND/GND/GND levels respectively. 80-system 16-bit parallel data transmission becomes operable by setting IM3/2/1/0 pins to GND/GND/Vcc/GND levels respectively.

68-system 9-bit parallel data transmission becomes operable by setting IM3/2/1/0 pins to Vcc/GND/GND/Vcc levels respectively throughDB17-9 pins. 80-system 9-bit parallel data transmission becomes operable by setting IM3/2/1/0 pins to Vcc/GND/Vcc/Vcc levels respectively throughDB17-9 pins. The 16-bit instruction is divided into 2 8-bit data and upper 8-bit data is transferred first. The LSB is not used for each upper/lower-bit data transfer. The 18-bit RAM data is also divided into 2 9-bit data and upper 9-bit data is transferred first. The unused pins DB8-0 must be fixed to either "Vcc" or "GND". The upper-byte write is also required when writing index registers. The data transfer through 9-bit mode is effective only for write mode, and not effective for read operation.

Data transmission synchronization in 9-bit bus interface mode

The HD66773R supports the data transmission synchronizing function, which resets the upper/lower counter that counts the number of transmission of upper/lower 9-bit data in the 9-bit bus interface mode. When a discrepancy occurs in the transmission of upper/lower 9-bit data due to effects from noise and so on, the "00" H instruction is written 4 times consecutively to forcibly reset the upper/lower counter so that data transmission restarts with an upper 9-bit transmission. Periodical execution of the synchronization allows the system recovery from the excursion.

68-system 8-bit parallel data transmission becomes operable by setting IM3/2/1/0 pins to GND/GND/GND/Vcc levels respectively throughDB17-10 pins. 80-system 8-bit parallel data transmission becomes operable by setting IM3/2/1/0 pins to GND/GND/Vcc/Vcc levels respectively throughDB17-10 pins. The 16-bit instruction is divided into 2 8-bit data and upper 8-bit data is transferred first. The LSB is not used for each upper/lower-bit data transfer. The 16-bit RAM data is also divided into 2 8-bit data and upper 9-bit data is transferred first. The unused pins DB9-0 must be fixed to either "Vcc" or "GND". The upper-byte write is also required when writing index registers.

Data transmission synchronization in 8-bit bus interface mode

The HD66773R supports the data transmission synchronizing function, which resets the upper/lower counter that counts the number of transmission of upper/lower 8-bit data in the 8-bit bus interface mode. When a discrepancy occurs in the transmission of upper/lower 8-bit data due to effects from noise and so on, the "00" H instruction is written 4 times consecutively to forcibly reset the upper/lower counter so that data transmission restarts with an upper 8-bit transmission. Periodical execution of the synchronization allows the system recovery from the excursion.

Serial Peripheral interface (SPI)

The Serial Peripheral Interface (SPI) becomes operable by setting IM3/2/1 pins to GND/Vcc/GND levels respectively. The SPI is available through the chip select line (CS*), serial transfer clock line (SCL), serial data input (SDI), and serial data output (SDO). In the SPI mode, the IM0/ID pin functions as ID pin. In the SPI mode, the unused DB15-2 pins must be fixed at either Vcc or GND level.

The HD66773R recognizes the start of data transfer at the falling edge of CS^* input to initiate the transfer of a start byte. It recognizes the end of data transfer at the rising edge of CS^* input. The HD66773R is selected when the 6-bit chip address in the start byte transferred from the transmission device and the 6-bit device identification code assigned to the HD66773R are compared and the both 6-bit data correspond. When selected, the HD66773R starts taking in the subsequent data string. The setting for the least significant bit of the identification code is made with the ID pin. The five upper bits of the identification code must be 01110. Two different chip addresses must be assigned to the HD66789 because the seventh bit of the start byte is assigned to a register select bit (RS). When RS = 0, index register write or status read is executed. When RS = 1, instruction write or RAM read/write is executed. The eighth bit of the start byte is to specify read or write (R/W bit). The data are received when the R/W bit is 0, and are transmitted when the R/W bit is 1.

In the SPI mode, the data are written to GRAM after the two-byte data transmission. The data are expanded into 18 bits by adding one bit (the same data as the MSB of RB) next to the LSB of RB data.

After receiving the start byte, the HD66773R starts data transmission/reception by byte. The data transmission adopts the format which the MSB is first transmitted. All HD66773R instructions consist of 16 bits and they are executed internally after two bytes are transmitted with the MSB first (DB15 to 0). The data to be written to RAM are expanded into 18-bit data. After the start byte is received, the upper eight bits of the instruction are always fetched as the first byte, and the lower eight bits of the instruction are always fetched as the second byte. The 4-byte data that are read from RAM right after the start byte are made invalid. The HD66773R reads as valid data from the 5th-byte data.

Start Byte Format

Transmitted bits	S	1	2	3	4	5	6	7	8
Start byte format	Transmission start	Dev	ice ID o	code				RS	R/W
		0	1	1	1	0	ID	_	

Note 1) ID bit is selected with the IMO/ID pin.

RS and R/W Bit Function

RS	R/W	Function
0	0	Set index register
0	1	Read status
1	0	Write instruction or RAM data
1	1	Read instruction or RAM data

High-Speed Burst RAM Write Function

The HD66773R incorporates the high-speed burst RAM-write function, which writes data to RAM in one-fourth the access time required for the standard RAM-write operation. This function is especially useful for applications which require the high-speed rewrite of the display data such as display of colored moving picture and so on.

In high-speed RAM write mode (HWM), data to be written to RAM is temporarily stored to the internal register of HD66773R. The data storage in the register is executed by word. When the data storage operation is executed 4 times, all the data stored in the register is written to RAM at once. While the data is being written from the register to RAM, another set of data is being written to the register. This function enables high-speed and consecutive RAM write, which is required in displaying moving pictures and so on.

Conditions on using high-speed RAM write mode

- 1. The logical/compare operations are not available.
- 2. RAM write operation is executed every four words. Set the lower 2 bits of the addresses as follows when setting addresses.
 - *When ID0=0, the lower two bits in the address must be set to 11 before RAM write.
 - *When ID0=1, the lower two bits in the address must be set to 00 before RAM write.
- 3. RAM write operation is executed every four words. If RAM write operation is terminated before all four-word data is written to RAM, the last data will not be written to RAM.
- 4. When the index register is set to R22H (RAM data write), the first RAM write operation is always executed. In this case, the RAM data read is not operable simultaneously. During RAM read, set the HWM to 0.
- 5. The high-speed RAM write mode is not compatible with the normal RAM write mode. When the mode must be switched to the other, make a new address setting before starting RAM write.
- 6. When writing data in high speed RAM write mode within the range specified with the window address, some window-address range may require dummy write operation. See "High-Speed RAM Write with Window Address Function".

Comparison between Normal and High-Speed RAM Write Operations

	Normal RAM Write (HWM=0)	High-Speed RAM Write (HWM=1)
Logical operation	Available in 8-/16-bit interface	Not available
Compare operation	Available in 8-/16-bit interface	Not available
BGR function	Available	Available
Write mask function	Available in 8-/16-bit interface	Available
RAM address set	Specified by one word	ID0 bit=0: Set the lower two bits to 11 ID0 bit=1: Set the lower two bits to 00
RAM read	Read by one word	Not available
RAM write	Write by one word	Some window-address range may require insertion of dummy write
Window address	Set by one word	Horizontal range(HSA/HSE): 4 word or more Number of horizontal writing : 4N (N>=2)
AM Setting	AM = 1/0	AM = 0

High-Speed RAM Write with Window Address

To rewrite the data in an arbitrary rectangular area of RAM consecutively in high speed, the number of RAM access should be made 4 multiple times. Accordingly some window-address range may require dummy write operation to make the RAM access 4 multiple times.

The horizontal window-address range specifying bits (HSA1-0, HEA1-0) specify the number of dummy write operations executed at the start and end of the data to be written to RAM. The total RAM access must be 4 multiple times per line.

Number of Dummy Write Operations in High-Speed RAM Write (HSA Bits)

HSA1	HSA0	Number of Dummy Write Operations to be Inserted at the Start of a Row
0	0	0
0	1	1
1	0	2 times
1	1	3 times

Number of Dummy Write Operations in High-Speed RAM Write (HEA Bits)

HEA1	HEA0	Number of Dummy Write Operations to be Inserted at the End of a Row
0	0	3 times
0	1	2 times
1	0	1 time
1	1	0

The number of RAM access when writing data in the horizontal direction must be made $4 \times N$ times by including the dummy writes.

Horizontal RAM write = start dummy write + write data + end dummy write = $4 \times N$ (times)

An example of RAM write in high speed RAM write mode with the window address is as follows.

The RAM data in the specified window-address range is written over consecutively in high speed by inserting two dummy writes at the start of the line and three dummy writes at the end of the line.

Window Address Function

The window address function enables consecutive data write within the rectangular window-address area on the on-chip GRAM, which is specified with horizontal address registers (start: HSA7-0, end: HEA 7-0) and vertical address registers (start: VSA7-0, end: VEA7-0).

The address transition direction is determined with AM bits (either increment or decrement). Accordingly, the data, including picture data, are written consecutively without taking the data wrap position into consideration.

The window-address range must be specified within the GRAM address area. An address set must be set within the window-address range.

[The condition of setting window-address range]

(Horizontal direction) "00"H \leq HSA7-0 \leq HSA7-0 \leq "83"H (Vertical direction) "00"H \leq VSA7-0 \leq VEA7-0 \leq "AF"H

[The condition of making an address set within the window-address range]

(RAM address) $HSA7-0 \le AD7-0 \le HEA7-0$ $VSA7-0 \le AD15-8 \le VEA7-0$

Note: In high-speed RAM write mode, the lower two bits of the address must be set as follows.

ID0=0: The lower two bits of the address must be set to 11.

ID0=1: The lower two bits of the address must be set to 00.

Graphics Operation Function

The HD66773R significantly reduces the load on the graphics-processing software in the microcomputer. The graphics operation includes:

- 1. The write data mask function that selectively rewrites some of the 16-bit write data.
- 2. Logical rewrite function to rewrite data after performing logical operation on the data from the microcomputer and graphics RAM base data.
- 3. The conditional rewrite function that compares the write data and the compare bit data and writes the data sent from the microcomputer only when the conditions are satisfied.

The graphics bit operation is controlled by the setting of bits in the entry mode register and RAM-write-data mask register, and the write operation from the microcomputer.

Graphics Operation

		_				
Operation Mode	I/D AM LG		LG2-0	Operation and Usage		
Write mode 1	0/1	0	000	Horizontal data replacement, Draw a horizontal line		
Write mode 2	0/1	1	000	Vertical data replacement, Draw a vertical line		
Write mode 3	0/1	0	110 111	Horizontal conditional data replacement, Draw a horizontal line		
Write mode 4	0/1	1	110 111	Vertical conditional data replacement Draw a vertical line		
Read/Write mode 1	0/1	0	001 010 011	Horizontal logical write, Draw a horizontal line		
Read/Write mode 2	0/1	1	001 010 011	Vertical logical write, Draw a vertical line		
Read/Write mode 3	0/1	0	100 101	Horizontal conditional data replacement, Draw a horizontal line		
Read/Write mode 4	0/1	1	100 101	Vertical conditional data replacement Draw a vertical line		

Note) In 18-/9-bit interface modes, only write modes 1, 2 are effective. All operations are effective in 16-/8-bit interface modes.

Write-data Mask Function

The HD66773R supports write data mask function, which controls GRAM data write by bit when 16-bit data from the microcomputer is being written to GRAM. The write data mask function write data in the bits whose corresponding bits in the write data mask resister (WM15–0) are assigned with "0". It does not write data in the bits whose corresponding bits in the write data mask register (WM15–0) are assigned with "1", and the corresponding data in GRAM are not overwritten but retained. This function is useful when only one-pixel data are rewritten or a particular color in the display is selectively changed.

Graphics Operation Processing

1. Write mode 1: AM = 0, LG2-0 = 000

This mode is used when data are horizontally written in high-speed mode. It is also used to initialize the graphics RAM (GRAM) or to draw a line horizontally. The write-data mask function (WM15–0) is also available in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and jumps to the counter at the opposing edge of the next one-raster-row below after when the counter reaches either left or right edge of GRAM.

2. Write mode 2: AM = 1, LG2-0 = 000

This mode is used when data are vertically written in high-speed mode. It is also used to initialize the graphics RAM (GRAM), develop font patterns or draw a line vertically. The write-data mask function (WM15–0) is also available in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the counter either at the top of the next right row (ID = 1) or the next left row (I/D = 0) according to the setting in the I/D bit, when the address reaches the bottom of GRAM.

HD66773R

3. Write mode 3: AM = 0, LG2-0 = 110/111

This mode is used when data are horizontally written with comparing the write data and the value set in the compare register (CP15–0). When the result of the comparison satisfies a condition, the write data sent from the microcomputer are written to GRAM. In this operation, the write-data mask function (WM15–0) is available. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and jumps to the counter at the opposing edge of the next one-raster-row below after when the counter reaches either left or right edge of GRAM.

4. Write mode 4: AM = 1, LG2-0 = 110/111

This mode is used when data are horizontally written with comparing the write data and the value set in the compare register (CP15–0). When the result of the comparison satisfies a condition, the write data sent from the microcomputer are written to GRAM. In this operation, the write-data mask function (WM15–0) is available. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the counter either at the top of the next right row (ID = 1) or the next left row (I/D = 0) according to the setting in the I/D bit, when the address reaches the bottom of GRAM.

5. Read/Write mode 1: AM = 0, LG2-0 = 001/010/011

This mode is used when data are horizontally written in high-speed with performing logical operation on the GRAM data (base data) and data from the microcomputer. The logical operation is performed on the GRAM read-out data and the data sent from the microcomputer, and the result of the logical operation is written to GRAM. In the read operation, the GRAM data is not read out to the microcomputer but retained temporarily in the read-data latch of the HD66773R. Accordingly, the read operation can be performed using the same pulse width with the write-access pulse (68-system: ENABLE "High" level width, 80-system: ENABLE "Low" level width), but requires the same bus cycle time as the normal read operation. In this operation, the write-data mask function (WM15–0) is available. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and jumps to the counter at the opposing edge of the next one-raster-row below after when the counter reaches either left or right edge of GRAM.

6. Read/Write mode 2: AM = 1, LG2–0 = 110/111

This mode is used when data are vertically written in high-speed with performing logical operation on the GRAM data (base data) and data from the microcomputer. The logical operation is performed on the GRAM read-out data and the data sent from the microcomputer, and the result of the logical operation is written to GRAM. In the read operation, the GRAM data is not read out to the microcomputer but retained temporarily in the read-data latch of the HD66773R. Accordingly, the read operation can be performed using the same pulse width with the write-access pulse (68-system: ENABLE "High" level width, 80-system: ENABLE "Low" level width), but requires the same bus cycle time as the normal read operation. In this operation, the write-data mask function (WM15–0) is available. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the counter either at the top of the next right row (ID = 1) or the next left row (I/D = 0) according to the setting in the I/D bit, when the address reaches the bottom of GRAM.

7. Read/Write mode 3: AM = 0, LG2-0 = 100/101

This mode is used when data are horizontally written in high-speed with performing compare operation on the GRAM data (base data) and the value set in the compare register (CP15-0). The compare operation is performed on the GRAM read-out data and the value set in the compare register by word. When the result of the comparison satisfies a condition, the data sent from the microcomputer are written to GRAM. In the read operation, the GRAM data is not read out to the microcomputer but retained temporarily in the read-data latch of the HD66773R. Accordingly, the read operation can be performed using the same pulse width with the write-access pulse (68-system: ENABLE "High" level width, 80-system: ENABLE "Low" level width), but requires the same bus cycle time as the normal read operation. In this operation, the write-data mask function (WM15-0) is available. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and jumps to the counter at the opposing edge of the next one-raster-row below after when the counter reaches either left or right edge of GRAM.

8. Read/Write mode 4: AM = 1, LG2–0 = 100/101

This mode is used when data are vertically written in high-speed with performing compare operation on the GRAM data (base data) and the value set in the compare register (CP15-0). The compare operation is performed on the GRAM read-out data and the value set in the compare register by word. When the result of the comparison satisfies a condition, the data sent from the microcomputer are written to GRAM. In the read operation, the GRAM data is not read out to the microcomputer but retained temporarily in the read-data latch of the HD66773R. Accordingly, the read operation can be performed using the same pulse width with the write-access pulse (68-system: ENABLE "High" level width, 80-system: ENABLE "Low" level width), but requires the same bus cycle time as the normal read operation. In this operation, the write-data mask function (WM15-0) is available. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the counter either at the top of the next right row (ID = 1) or the next left row (I/D = 0) according to the setting in the I/D bit, when the address reaches the bottom of GRAM.

Scan Mode Setting

The shift direction of gate signal is changeable by the combination of SM and GS bit settings. This allows various ways of connecting a liquid crystal panel and the HD66773R.

γ-Correction Function

The HD66773R incorporates γ -correction function to simultaneously display 262,144 colors, by which 8-level grayscale is determined by the gradient-adjustment and fine-adjustment registers. Select either positive or negative polarity of the registers according to the characteristics of a liquid crystal panel.

Note 1) 16-bit RAM data is expanded into 18-bit data through data expansion circuit.

Configuration of Grayscale Amplifier

The gradient adjustment and fine adjustment registers determine the eight levels (VIN0-7) of grayscale. The 8 levels are then divided into 32 levels (V0-31) by the ladder resistors placed between each level.

Ladder Resistors and 8-to-1 Selectors

γ-Correction Register

The γ -adjustment register is a group of registers to set an appropriate grayscale voltage for the γ -characteristics of a liquid crystal panel. The register group is categorized into the ones adjusting gradient, amplitude, and fine-tuning in relation to grayscale number and voltage characteristics. Each register can make an independent setting for the positive/negative polarity. The reference value and RGB are common for all registers.

γ-Correction Register

1. Gradient adjustment registers

The gradient adjustment registers are used to adjust the gradient around the middle of the grayscale number and voltage characteristics without changing the dynamic range. To adjust a gradient, the values of the variable resistors (VRHP (N)/VRL (N)) in the middle of the ladder resistor block for grayscale voltage generation are controlled. The registers incorporate separate registers for positive and negative polarities to be compatible with asymmetric drive.

2. Amplitude adjustment registers

The amplitude adjustment registers are used to adjust the amplitude of the grayscale voltage. To adjust the amplitude, the values of the variable resistor (VRP(N)1/0) located at the lower side of the ladder resistor block for grayscale voltage generation are adjusted. The variable resistor located at the upper side of the ladder resistor block is adjusted by the input VDH level or reference resistor. Same with the gradient registers, the registers also incorporate separate registers for positive and negative polarities.

3. Fine adjustment registers

The fine adjustment register is to fine-adjust the grayscale voltage level. To fine-adjust the grayscale voltage level, each level of 8-level reference voltages generated from the ladder registers is controlled by 8-to-1 selector. Same with the other registers, the registers also incorporate separate registers for positive and negative polarities.

HD66773R

γ-Correction Registers

Register Groups	Positive Polarity	Negative Polarity	Description
Gradient	PRP0 2 to 0	PRN0 2 to 0	Variable resistor VRHP (N)
adjustment	PRP1 2 to 0	PRN1 2 to 0	Variable resistor VRLP (N)
Amplitude	VRP0 3 to 0	VRN0 3 to 0	Variable resistor VRP (N)0
adjustment	VRP1 4 to 0	VRN1 4 to 0	Variable resistor VRP (N)1
Fine adjustment	PKP0 2 to 0	PKN0 2 to 0	8-to-1 selector (voltage level of grayscale 1)
	PKP1 2 to 0	PKN1 2 to 0	8-to-1 selector (voltage level of grayscale 8)
	PKP2 2 to 0	PKN2 2 to 0	8-to-1 selector (voltage level of grayscale 20)
	PKP3 2 to 0	PKN3 2 to 0	8-to-1 selector (voltage level of grayscale 43)
	PKP4 2 to 0	PKN4 2 to 0	8-to-1 selector (voltage level of grayscale 55)
	PKP5 2 to 0	PKN5 2 to 0	8-to-1 selector (voltage level of grayscale 62)

Ladder resistors and 8-to-1 selector

Block configuration

The block diagram of page **86** consists of two ladder resistors including variable resistors, and 8-to-1 selectors which select the voltage generated by the ladder resistors to output a reference voltage for the grayscale voltage. The variable resistors and the 8-to-1 selectors are controlled by the γ correction register. Pins to be connected to a variable resistor are provided to compensate the variation among the panels.

Variable resistor

There are two kinds of variable resistors for the gradient adjustment (VRHP(N)/VRLP(N)) and the amplitude adjustment (VRP(N)0/VRP(N)1). The resistance is determined by the gradient adjustment and amplitude adjustment registers as is shown below.

Gradient adjustment (1)		Gradient adj	ustment (2)
Register value PRP(N)0[2:0]	Resistance VRHP(N)	Register value PRP(N)1[2:0]	Resistance VRLP(N)
000	0R	000	0R
001	4R	001	4R
010	8R	010	8R
011	12R	011	12R
100	16R	100	16R
101	20R	101	20R
110	24R	110	24R
111	28R	111	28R
	·	·	

HD66773R

Amplitude adjustment (1) Amplitude adjustment (2)

Register value VRP(N)0[3:0]	Resistance VRP(N)0	Register value VRP(N)1[4:0]	Resistance VRP(N)1
0000	0R	00000	0R
0001	2R	00001	1R
0010	4R	00010	2R
•	•	•	•
•	•	:	•
1101	26R	11101	29R
1111	28R	11110	30R
1111	30R	11111	31R

8-to-1 selector

The 8-to-1 selectors select a voltage level generated by the ladder resistors according to the fine adjustment registers, and output six kinds of reference voltage, VIN1 to VIN 6. The relationship between the fine adjustment register and the selected voltage is as follows.

Fine adjustment registers and selected voltage

The value of Register	Selected \	/oltage				
PKP(N)[2:0]	VINP(N)1	VINP(N)2	VINP(N)3	VINP(N)4	VINP(N)5	VINP(N)6
000	KVP(N)1	KVP(N)9	KVP(N)17	KVP(N)25	KVP(N)33	KVP(N)41
001	KVP(N)2	KVP(N)10	KVP(N)18	KVP(N)26	KVP(N)34	KVP(N)42
010	KVP(N)3	KVP(N)11	KVP(N)19	KVP(N)27	KVP(N)35	KVP(N)43
011	KVP(N)4	KVP(N)12	KVP(N)20	KVP(N)28	KVP(N)36	KVP(N)44
100	KVP(N)5	KVP(N)13	KVP(N)21	KVP(N)29	KVP(N)37	KVP(N)45
101	KVP(N)6	KVP(N)14	KVP(N)22	KVP(N)30	KVP(N)38	KVP(N)46
110	KVP(N)7	KVP(N)15	KVP(N)23	KVP(N)31	KVP(N)39	KVP(N)47
111	KVP(N)8	KVP(N)16	KVP(N)24	KVP(N)32	KVP(N)40	KVP(N)48

The grayscale levels (V0-V31) are calculated according to the following formulas.

Formulas for calculating voltage (Positive polarity) (1)

	Formula	Micro-adjsting	Reference
Pins		register value	voltage
KVP0	VREG10UT-△V*VRP0/SUMRP	-	VINP0
KVP1	VREG10UT-△V*(VRP0+5R)/SUMRP	PKP02-00 = "000"	
KVP2	VREG10UT-△V*(VRP0+9R)/SUMRP	PKP02-00 = "001"	
KVP3	VREG10UT-△V*(VRP0+13R)/SUMRP	PKP02-00 = "010"	
KVP4	VREG10UT-△V*(VRP0+17R)/SUMRP	PKP02-00 = "011"	VINP1
KVP5	VREG10UT-△V*(VRP0+21R)/SUMRP	PKP02-00 = "100"	l *
KVP6	VREG10UT-△V*(VRP0+25R)/SUMRP	PKP02-00 = "101"	
KVP7	VREG10UT-△V*(VRP0+29R)/SUMRP	PKP02-00 = "110"	
KVP8	VREG10UT-△V*(VRP0+33R)/SUMRP	PKP02-00 = "111"	
KVP9	VREG10UT-△V*(VRP0+33R+VRHP)/SUMRP	PKP12-10 = "000"	
KVP10	VREG10UT-△V*(VRP0+34R+VRHP)/SUMRP	PKP12-10 = "001"	
KVP11	VREG1OUT-△V*(VRP0+35R+VRHP)/SUMRP	PKP12-10 = "010"	
KVP12	VREG10UT-△V*(VRP0+36R+VRHP)/SUMRP	PKP12-10 = "011"	VINP2
KVP13	VREG10UT-△V*(VRP0+37R+VRHP)/SUMRP	PKP12-10 = "100"	VIINEZ
KVP14	VREG10UT-△V*(VRP0+38R+VRHP)/SUMRP	PKP12-10 = "101"	
KVP15	VREG10UT-△V*(VRP0+39R+VRHP)/SUMRP	PKP12-10 = "110"	
KVP16	VREG1OUT-△V*(VRP0+40R+VRHP)/SUMRP	PKP12-10 = "111"	
KVP17	VREG1OUT-△V*(VRP0+45R+VRHP)/SUMRP	PKP22-20 = "000"	
KVP18	VREG10UT-△V*(VRP0+46R+VRHP)/SUMRP	PKP22-20 = "001"	1
KVP19	VREG1OUT-△V*(VRP0+47R+VRHP)/SUMRP	PKP22-20 = "010"	1
KVP20	VREG1OUT-△V*(VRP0+48R+VRHP)/SUMRP	PKP22-20 = "011"	VINIDO
KVP21	VREG10UT-△V*(VRP0+49R+VRHP)/SUMRP	PKP22-20 = "100"	VINP3
KVP22	VREG10UT-△V*(VRP0+50R+VRHP)/SUMRP	PKP22-20 = "101"	1
KVP23	VREG10UT-△V*(VRP0+51R+VRHP)/SUMRP	PKP22-20 = "110"	1
KVP24	VREG10UT-△V*(VRP0+52R+VRHP)/SUMRP	PKP22-20 = "111"	1
KVP25	VREG10UT-△V*(VRP0+68R+VRHP)/SUMRP	PKP32-30 = "000"	
KVP26	VREG10UT-△V*(VRP0+69R+VRHP)/SUMRP	PKP32-30 = "001"	1
KVP27	VREG10UT-△V*(VRP0+70R+VRHP)/SUMRP	PKP32-30 = "010"	1
KVP28	VREG10UT-△V*(VRP0+71R+VRHP)/SUMRP	PKP32-30 = "011"	l
KVP29	VREG10UT-△V*(VRP0+72R+VRHP)/SUMRP	PKP32-30 = "100"	VINP4
KVP30	VREG10UT-△V*(VRP0+73R+VRHP)/SUMRP	PKP32-30 = "101"	1
KVP31	VREG10UT-△V*(VRP0+74R+VRHP)/SUMRP	PKP32-30 = "110"	1
KVP32	VREG10UT-△V*(VRP0+75R+VRHP)/SUMRP	PKP32-30 = "111"	1
KVP33	VREG10UT-△V*(VRP0+80R+VRHP)/SUMRP	PKP42-00 = "000"	
KVP34	VREG10UT-△V*(VRP0+81R+VRHP)/SUMRP	PKP42-40 = "001"	1
KVP35	VREG10UT-△V*(VRP0+82R+VRHP)/SUMRP	PKP42-40 = "010"	1
KVP36	VREG10UT-△V*(VRP0+83R+VRHP)/SUMRP	PKP42-40 = "011"	
KVP37	VREG10UT-△V*(VRP0+84R+VRHP)/SUMRP	PKP42-40 = "100"	VINP5
KVP38	VREG10UT-△V*(VRP0+85R+VRHP)/SUMRP	PKP42-40 = "101"	1
KVP39	VREG10UT-△V*(VRP0+86R+VRHP)/SUMRP	PKP42-40 = "110"	1
	VREG10UT-△V*(VRP0+87R+VRHP)/SUMRP	PKP42-40 = "111"	1
KVP40	VREG10UT-△V*(VRP0+87R+VRHP+VRLP)/SUMRP	PKP52-50 = "000"	
KVP40 KVP41			
KVP41	1	PKP52-50 = "001"	1
KVP41 KVP42	VREG10UT-△V*(VRP0+91R+VRHP+VRLP)/SUMRP	PKP52-50 = "001" PKP52-50 = "010"	
KVP41 KVP42 KVP43	VREG10UT-△V*(VRP0+91R+VRHP+VRLP)/SUMRP VREG10UT-△V*(VRP0+95R+VRHP+VRLP)/SUMRP	PKP52-50 = "010"	
KVP41 KVP42 KVP43 KVP44	VREG10UT-△V*(VRP0+91R+VRHP+VRLP)/SUMRP VREG10UT-△V*(VRP0+95R+VRHP+VRLP)/SUMRP VREG10UT-△V*(VRP0+99R+VRHP+VRLP)/SUMRP	PKP52-50 = "010" PKP52-50 = "011"	VINP6
KVP41 KVP42 KVP43 KVP44 KVP45	$\label{eq:vreg1} $$ VREG10UT-\triangleV^*(VRP0+91R+VRHP+VRLP)/SUMRP$$ VREG10UT-\triangleV^*(VRP0+95R+VRHP+VRLP)/SUMRP$$ VREG10UT-\triangleV^*(VRP0+99R+VRHP+VRLP)/SUMRP$$ VREG10UT-\triangleV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\triangleV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\triangleV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\triangleV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\triangleV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\DeltaV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\DeltaV^*(VRP0+103R+VRHP+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\DeltaV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10U$	PKP52-50 = "010" PKP52-50 = "011" PKP52-50 = "100"	VINP6
KVP41 KVP42 KVP43 KVP44 KVP45 KVP46	$\label{eq:vreg1} $$ VREG10UT-\triangleV^*(VRP0+91R+VRHP+VRLP)/SUMRP $$ VREG10UT-\triangleV^*(VRP0+95R+VRHP+VRLP)/SUMRP $$ VREG10UT-\triangleV^*(VRP0+99R+VRHP+VRLP)/SUMRP $$ VREG10UT-\triangleV^*(VRP0+103R+VRHP+VRLP)/SUMRP $$ VREG10UT-\triangleV^*(VRP0+107R+VRHP+VRLP)/SUMRP $$ VREG10UT-\triangleV^*(VRP0+107R+VRHP+VRLP)/SUMRP $$ $$ VREG10UT-\triangleV^*(VRP0+107R+VRHP+VRLP)/SUMRP $$ $$ VREG10UT-\triangleV^*(VRP0+107R+VRHP+VRLP)/SUMRP $$ $$ $$ $$ VREG10UT-\triangleV^*(VRP0+107R+VRHP+VRLP)/SUMRP $$ $$ $$ VREG10UT-\triangleV^*(VRP0+107R+VRHP+VRLP)/SUMRP $$ $$ $$ $$ VREG10UT-DEVENUE $$ $$ $$ VREG10UT-DEVENUE $$ VREG10UT-DEVENUE $$ $$$	PKP52-50 = "010" PKP52-50 = "011" PKP52-50 = "100" PKP52-50 = "101"	VINP6
KVP41 KVP42 KVP43 KVP44 KVP45	$\label{eq:vreg1} $$ VREG10UT-\triangleV^*(VRP0+91R+VRHP+VRLP)/SUMRP$$ VREG10UT-\triangleV^*(VRP0+95R+VRHP+VRLP)/SUMRP$$ VREG10UT-\triangleV^*(VRP0+99R+VRHP+VRLP)/SUMRP$$ VREG10UT-\triangleV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\triangleV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\triangleV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\triangleV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\triangleV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\DeltaV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\DeltaV^*(VRP0+103R+VRHP+VRHP+VRLP)/SUMRP$$ $$ VREG10UT-\DeltaV^*(VRP0+103R+VRHP+VRLP)/SUMRP$$ $$ VREG10U$	PKP52-50 = "010" PKP52-50 = "011" PKP52-50 = "100"	VINP6

SUMRP: Total of the positive-polarity ladder resistors = 128 R + VRHP + VRLP + VRP0 + VRP1 SUMRN: Total of the negative-polarity ladder resistors= 128 R + VRHN + VRLN + VRN0 + VRN1 Δ V: Voltage difference between VREG10UT - VGS

Formulas for calculating voltage (Positive polarity) (2)

grayscale voltage	Formula
V0	VINP0
V1	V3D+(VINP1-V3D)*(8/24)
V2	V4+(V3D-V4)*(16/24)
V3	V4+(V3D-V4)*(8/24)
V4	VINP2
V5	V10+(V4-V10)*(20/24)
V6	V10+(V4-V10)*(16/24)
V7	V10+(V4-V10)*(12/24)
V8	V10+(V4-V10)*(8/24)
V9	V10+(V4-V10)*(4/24)
V10	VINP3
V11	V21+(V10-V21)*(21/24)
V12	V21+(V10-V21)*(19/24)
V13	V21+(V10-V21)*(17/24)
V14	V21+(V10-V21)*(15/24)
V15	V21+(V10-V21)*(13/24)
V16	V21+(V10-V21)*(11/24)
V17	V21+(V10-V21)*(9/24)
V18	V21+(V10-V21)*(7/24)
V19	V21+(V10-V21)*(5/24)
V20	V21+(V10-V21)*(3/24)
V21	VINP4
V22	V27+(V21-V27)*(20/24)
V23	V27+(V21-V27)*(16/24)
V24	V27+(V21-V27)*(12/24)
V25	V27+(V21-V27)*(8/24)
V26	V27+(V21-V27)*(4/24)
V27	VINP5
V28	VINP6+(V27-VINP6)*(780/960)
V29	VINP6+(V27-VINP6)*(600/960)
V30	VINP6+(V27-VINP6)*(280/960)
V31	VINP7

V3D: V3D = V4+(VINP1-V4)*(540/960)

Formulas for calculating voltage (Negative polarity) (1)

Pins	Formula	Micro-adjsting	Reference
		register value	voltage
KVN0	VREG10UT- △V*VRN0/SUMRN	-	VINN0
KVN1	VREG1OUT- △V*(VRN0+5R)/SUMRN	PKN02-00 = "000"	
KVN2	VREG1OUT- △V*(VRN0+9R)/SUMRN	PKN02-00 = "001"	ļ
KVN3	VREG10UT- △V*(VRN0+13R)/SUMRN	PKN02-00 = "010"	ļ
KVN4	VREG10UT- △V*(VRN0+17R)/SUMRN	PKN02-00 = "011"	VINN1
KVN5	VREG1OUT- △V*(VRN0+21R)/SUMRN	PKN02-00 = "100"	V
KVN6	VREG1OUT- △V*(VRN0+25R)/SUMRN	PKN02-00 = "101"	ļ
KVN7	VREG10UT- △V*(VRN0+29R)/SUMRN	PKN02-00 = "110"	
KVN8	VREG10UT- △V*(VRN0+33R)/SUMRN	PKN02-00 = "111"	
KVN9	VREG10UT- △V*(VRN0+33R+VRHN)/SUMRN	PKN12-10 = "000"	
KVN10	VREG1OUT- △ V*(VRN0+34R+VRHN)/SUMRN	PKN12-10 = "001"	
KVN11	VREG1OUT- △V*(VRN0+35R+VRHN)/SUMRN	PKN12-10 = "010"]
KVN12	VREG1OUT- △V*(VRN0+36R+VRHN)/SUMRN	PKN12-10 = "011"	VINN2
KVN13	VREG1OUT- △V*(VRN0+37R+VRHN)/SUMRN	PKN12-10 = "100"	VIIVIVE
KVN14	VREG10UT- △V*(VRN0+38R+VRHN)/SUMRN	PKN12-10 = "101"	l
KVN15	VREG10UT- △V*(VRN0+39R+VRHN)/SUMRN	PKN12-10 = "110"]
KVN16	VREG1OUT- △V*(VRN0+40R+VRHN)/SUMRN	PKN12-10 = "111"	
KVN17	VREG1OUT- △V*(VRN0+45R+VRHN)/SUMRN	PKN22-20 = "000"	
KVN18	VREG1OUT- △V*(VRN0+46R+VRHN)/SUMRN	PKN22-20 = "001"	
KVN19	VREG1OUT- △V*(VRN0+47R+VRHN)/SUMRN	PKN22-20 = "010"	
KVN20	VREG1OUT- △V*(VRN0+48R+VRHN)/SUMRN	PKN22-20 = "011"	VINN3
KVN21	VREG1OUT- △V*(VRN0+49R+VRHN)/SUMRN	PKN22-20 = "100"	VIININS
	VREG1OUT- △V*(VRN0+50R+VRHN)/SUMRN	PKN22-20 = "101"	1
	VREG10UT- △V*(VRN0+51R+VRHN)/SUMRN	PKN22-20 = "110"	1
KVN24	VREG1OUT- △V*(VRN0+52R+VRHN)/SUMRN	PKN22-20 = "111"	1
KVN25	VREG10UT- △V*(VRN0+68R+VRHN)/SUMRN	PKN32-30 = "000"	
KVN26	VREG10UT- ∧V*(VRN0+69R+VRHN)/SUMRN	PKN32-30 = "001"	1
KVN27	VREG1OUT- △V*(VRN0+70R+VRHN)/SUMRN	PKN32-30 = "010"	1
	VREG10UT- △V*(VRN0+71R+VRHN)/SUMRN	PKN32-30 = "011"	
	VREG10UT- △V*(VRN0+72R+VRHN)/SUMRN	PKN32-30 = "100"	VINN4
	VREG1OUT- △V*(VRN0+73R+VRHN)/SUMRN	PKN32-30 = "101"	1
KVN31	VREG10UT- △V*(VRN0+74R+VRHN)/SUMRN	PKN32-30 = "110"	1
KVN32	VREG1OUT- △V*(VRN0+75R+VRHN)/SUMRN	PKN32-30 = "111"	1
	VREG1OUT- △V*(VRN0+80R+VRHN)/SUMRN	PKN42-00 = "000"	
	VREG10UT- △V*(VRN0+81R+VRHN)/SUMRN	PKN42-00 = "001"	1
KVN35	VREG1OUT- ∧V*(VRN0+82R+VRHN)/SUMRN	PKN42-00 = "010"	1
KVN36	VREG10UT- △V*(VRN0+83R+VRHN)/SUMRN	PKN42-00 = "011"	1,
KVN37	VREG10UT- △V*(VRN0+84R+VRHN)/SUMRN	PKN42-00 = "100"	VINN5
	VREG10UT- ∧V*(VRN0+85R+VRHN)/SUMRN	PKN42-00 = "101"	1
	VREG10UT- △V*(VRN0+86R+VRHN)/SUMRN	PKN42-00 = "110"	1
KVN40	VREG10UT- △V*(VRN0+87R+VRHN)/SUMRN	PKN42-00 = "111"	1
KVN41	VREG10UT- \(\times V*(VRN0+87R+VRHN+VRLN)/SUMRN	PKN52-50 = "000"	
KVN42	VREG10UT- △V*(VRN0+91R+VRHN+VRLN)/SUMRN	PKN52-50 = "001"	1
	VREG10UT- \(\triangle V'(VRN0+95R+VRHN+VRLN)/SUMRN	PKN52-50 = "010"	1
KVN44	VREG10UT- \OX*(VRN0+99R+VRHN+VRLN)/SUMRN	PKN52-50 = "011"	1
KVN45	VREG10UT- \(\triangle V'(VRN0+103R+VRHN+VRLN)/SUMRN	PKN52-50 = "100"	VINN6
KVN46	VREG10UT- \(\triangle V \(\triangle V \(\triangle V \) VRHN+VRHN+VRLN)/SUMRN	PKN52-50 = "101"	1
KVN47	VREG10UT- \(\Delta V'(VRN0+111R+VRHN+VRLN)/SUMRN	PKN52-50 = "110"	1
	VREG1OUT- \(\Delta V^* (VRN0+111SR+VRHN+VRLN)/SUMRN	PKN52-50 = "111"	1
	VREG10UT- △V*(VRN0+120R+VRHN+VRLN)/SUMRN	-	VINN7

SUMRP: Total of the positive-polarity ladder resistors = 128 R + VRHP + VRLP + VRP0 + VRP1 SUMRN: Total of the negative-polarity ladder resistors= 128 R + VRHN + VRLN + VRN0 + VRN1 Δ V: Voltage difference between VREG1OUT - VGS

Formulas for calculating voltage (Negative polarity) (2)

grayscale voltage	Formula
VO	VINN0
V1	V3D+(VINN1-V3D)*(8/24)
V2	V4+(V3D-V4)*(16/24)
V3	V4+(V3D-V4)*(8/24)
V4	VINN2
V5	V10+(V4-V10)*(20/24)
V6	V10+(V4-V10)*(16/24)
V7	V10+(V4-V10)*(12/24)
V8	V10+(V4-V10)*(8/24)
V9	V10+(V4-V10)*(4/24)
V10	VINN3
V11	V21+(V10-V21)*(21/24)
V12	V21+(V10-V21)*(19/24)
V13	V21+(V10-V21)*(17/24)
V14	V21+(V10-V21)*(15/24)
V15	V21+(V10-V21)*(13/24)
V16	V21+(V10-V21)*(11/24)
V17	V21+(V10-V21)*(9/24)
V18	V21+(V10-V21)*(7/24)
V19	V21+(V10-V21)*(5/24)
V20	V21+(V10-V21)*(3/24)
V21	VINN4
V22	V27+(V21-V27)*(20/24)
V23	V27+(V21-V27)*(16/24)
V24	V27+(V21-V27)*(12/24)
V25	V27+(V21-V27)*(8/24)
V26	V27+(V21-V27)*(4/24)
V27	VINN5
V28	VINN6+(V27-VINN6)*(780/960)
V29	VINN6+(V27-VINN6)*(600/960)
V30	VINN6+(V27-VINN6)*(280/960)
V31	VINN7

V3D: V3D = V4+(VINN1-V4)*(540/960)

Relationship between RAM data and output level

The relationship between the RAM data and the source output level is as follows.

8-color Display Mode

The HD66773R incorporates 8-color display mode. The available grayscale levels are V0 and V31, and the voltages for the other levels (V1-V30) are halted to reduce power consumption.

The γ -fine-adjustment registers, PKP0-PKP5 and PKN0-PKN5 are not available in the 8-color display mode. Since the power supply for the levels V1-V30 are halted, R and B data in GRAM should be set to either "00000" or "11111" and G data in GRAM to either "000000" or "111111" before setting this mode so that V0 or V31 is selected.

To switch between the 262, 144-color mode and the 8-color mode, make settings according to the following sequences.

Instruction Setting Flow

Make the setting for each instruction according to the following sequence.

Display ON/OFF

Standby and Sleep

Power Supply Setting Flow

When turning on the power supply, follow the sequence below.

The stabilization time for the oscillation circuits, step-up circuits, and operation amplifiers may vary depending on the external resistors and capacitors.

Oscillation Circuit

n-raster-row Inversion AC Drive

The HD66773R, in addition to LCD inversion AC drive by frame, supports n-raster-row inversion AC drive where alternation occurs by n raster-rows, where n takes a number between 1 to 64. The n-raster-row inversion AC drive allows overcoming the problems related to display quality.

In determining n (the value set in the NW bit +1), the number of raster-rows by which alternation occurs, check the display quality on the actual liquid crystal panel. Setting a small number of raster-rows will raise the AC frequency of the liquid crystal and increase the charge/discharge current on the liquid crystal cells.

Interlaced Drive

The HD66773R supports interlaced drive, which divide one frame into n fields and then drive to prevent flickers.

To determine the number of fields (n: value set in the FLD bits), check the display quality on the actual liquid crystal panel. The following table shows the gate selection for each number of fields, 1 to 3. The figure illustrates the output waveforms of the 3-field interlaced drive.

Gate selection

GS = 0					
FLD1-0		01		11	
	Field	-	1	2	3
Gate					
G1	1	0	0		
G2		0		0	
G3		0			0
G4		0	0		
G5		0		0	
G6		0			0
G7		0	0		
G8		0		0	
G9		0			0
•		•	•	•	•
•		•	•	•	•
•		•	•	•	•
G173		0		0	
G174	4	0			0
G175	•	0	0		
G176		0		0	

GS = 1					
FLD1-0		01		11	
	Field	-	1	2	3
Gate					
G176		0	0		
G175		0		0	
G174		0			0
G173	1	0	0		
G172		0		0	
G171		0			0
G170		0	0		
G169		0		0	
G168		0			0
•		•	•	•	•
•		•	•	•	•
•		•	•	•	•
G4		0		0	
G3	4	0			0
G2	•	0	0		
G1		0		0	
	•		•		

HD66773R

Gate output timing during 3-field interlaced drive

AC Timing

The AC timings of frame inversion AC drive, 3-field interlaced drive, and n-raster-row inversion drive are illustrated as follows. In case of frame inversion AC drive, alternation occurs at the completion of drawing one frame, followed by a blank, which lasts for 16H periods. AC Timing

The AC timings of frame inversion AC drive, 3-field interlaced drive, and n-raster-row inversion drive are illustrated as follows. In case of frame inversion AC drive, alternation occurs at the completion of drawing one frame, followed by a blank, which lasts for 8H periods. In this case, all the outputs from the gate are Vgoff outputs. In case of interlaced drive, alternation occurs at the completion of drawing one field, followed by a blank. The total period of the blanks in one frame amounts to 8 period. In case of n-raster-row, a blank lasting 8H period is inserted after drawing a full screen.

Frame-Frequency Adjustment Function

The HD66773R incorporates frame frequency adjustment function. The frame frequency during the liquid crystal drive is adjusted by the instruction setting (DIV, RTN) while keeping the oscillation frequency fixed.

Setting the oscillation frequency high in advance allows switching the frame frequency in accordance to the kind of picture to be displayed (i.e. moving/still picture). When displaying a still picture, set the frame frequency low to save power consumption, while setting the frame frequency high for displaying a moving picture which requires high-speed switching of screens.

Relationship between Liquid Crystal Drive Duty and Frame Frequency

The relationship between the liquid crystal drive duty and the frame frequency is calculated by the following formula. The frame frequency is adjusted through instruction setting with the 1-H period adjustment bit (RTN bit) and the operation clock division bit (DIV bit).

(Formula for the frame frequency)							
fosc	m-1						
Clock cycles per raster-row × division ratio × (Line+8)	— [Hz]						
fosc: R-C oscillation frequency Line: number of drive raster-rows (NL bit) Clock cycles per raster-row: RTN bit Division ratio: DIV bit							
	fosc Clock cycles per raster-row × division ratio × (Line+8) fosc: R-C oscillation frequency Line: number of drive raster-rows (NL bit)						

Calculation Example The maximum frame frequency = 60 Hz

Number of drive raster-rows: 176

1-H period: 16 clock cycles (RTN3-0 = 0000) Operation clock division ratio: 1 division

 $fosc = 60 \text{ Hz} \times (0 + 16) \text{ clock} \times 1 \text{ division} \times (176 + 8) \text{ lines} = 177 \text{ (kHz)}$

In this case, the R-C oscillation frequency becomes 177 kHz. Adjust the resistance of external resistor for the R-C oscillator to 177 kHz.

Screen -split Drive Function

The HD66773R allows selectively driving two screens at arbitrary positions with the screen-drive position registers (R42 and R43). Only the raster-rows required to display two screens at arbitrary positions are selectively driven to reduce power consumption.

The first screen drive position register (R42) specifies the start line (SS17-10) and the end line (SE17-10) for displaying the first screen. The second screen drive position register (R43) specifies the start line (SS27-20) and the end line (SE27-20) for displaying the second screen. The second screen control is effective when the SPT bit is set to 1. The total number of raster-rows driven for displaying the first and second screens must be less than the number of liquid crystal drive raster-rows.

Conditions on Setting the 1st/2nd Screen Drive Position Register

When making settings for the start line (SS17-10) and end line (SE17-10) of the first screen drive position register (R42), and the start line (SS27-20) and end line (SE27-20) of the second screen drive position register (R43) with the HD66773R, it is necessary to satisfy the following conditions to display screens correctly.

One-screen Drive (SPT = 0)

Full screen display The area of (SE17-10) - (SS17-10) is normally displayed.	
Setting disabled	

Note 1) SS17-10 ≤ SE17-0 ≤ "AF"H

Note 2) Setting disabled for SS27-20 and SE27-20.

Two-screen Drive (SPT = 1)

Register Settings	Display Operation
((SE17-10) - (SS17-10)) + ((SE27-20) - (SS27-20)) = NL	Full screen display The area of (SE27-20) - (SS17-10) is normally displayed.
((SE17-10) - (SS17-10)) + ((SE27-20) - (S27-20)) < NL	Partial screen display The area of (SE27-10) - (SS17-10) is normally displayed. The rest of the area is white display irrespective of data in RAM.
((SE17-10) - (SS17-10)) + ((SE27-20) - (SS27-20)) > NL	Setting disabled

Note 1) Make sure that $SS17-10 \le SE17-10 < SS27-20 \le SE27-20 \le "AF"H$.

Note 2) Make sure that ((SE27-20) - (SS17-10)) \leq NL.

The setting for the driver output in the non-display area during the partial display is changeable according to the characteristics of the display panel.

Source outputs in non-display area

		Source Output for Non-display Area		Source Output for Non-display Area
PT1	PT0	Positive Polarity	Negative Polarity	
0	0	V31	V0	Normal drive
0	1	V31	V0	Vgoff
1	0	GND	GND	Vgoff
1	1	High-Z	High-Z	Vgoff

To make a setting for the partial display, follow the sequence below.

Internal Configuration of Power Generation Circuit

The internal configuration of power generation circuit of HD66773R is as follows. The step-up circuit is comprised of the step-up circuit 1 which boost 2 to 3 times the voltage supplied with Vci1, the step-up circuit 2 which further boost 2 to 4 times the voltage boosted by the step-up circuit 1, the step-up circuit 3 which invert the VGH-level voltage with the GND level as the axis and output the VGL-level voltage, and the step-up circuit 4 which invert the Vci-level voltage with the GND level as the axis and output the VCL-level voltage. The step-up circuit generates the voltage to drive a TFT LCD. Reference voltagea VDH, Vcom and Vgoff for the grayscale voltage are generated either by being adjusted in the internal voltage adjustment circuit or from the voltage at REGP, which is amplified in the amplifiers 1, 2. The Vcom, Vgoff voltages can alternate at an arbitrary voltage level. Vcom must be connected to the panel.

Internal configuration of power supply circuit

Specification of External Elements Connected to HD66773R

The following table shows specifications of external elements connected to HD66773R power supply.

Capacitor

Capacity	Recommended voltage	Connect pins
1 μF (B characteristic)	6V	VREG1OUT, Vci1, C41-/+ Note 1), VCL Note 1), VcomH, VcomL Note 1)
	10V	DDVDH, C11+/-, C12+/-, C21+/-, C22+/-, C23+/-
	25V	VREG2OUT, VGH, VGL, C31-/+, VgoffH Note 1), VgoffL
0.1 μF (B characteristic)	25V	(TESTA3) Note 2)
0.1 μF (B characteristic)	6V	V0P, V0N, V31P, V31N, (TESTA4) Note 2)

Note 1) These pins may not be required for some mode setting.

Note 2) Connect to a stabilizing capacitor depending on the display quality or power consumption.

Pattern Diagram for Voltage Setting

The following figures are the pattern diagram of voltage setting for the HD66733R and the voltage waveforms.

Absolute Maximum Ratings

Item	Symbol	Unit	Value	Notes
Power supply voltage (1)	Vcc	V	-0.3 ~ + 4.6	1, 2
Power supply voltage (2)	Vci - GND	V	-0.3 ~ + 4.6	1, 2
Power supply voltage (3)	DDVDH - GND	V	-0.3 ~ + 6.0	1, 2
Power supply voltage (4)	GND -VCL	V	-0.3 ~ + 4.6	1, 2
Power supply voltage (5)	DDVDH - VCL	V	-0.3 ~ + 9.0	1
Power supply voltage (6)	VGH - GND	V	-0.3 ~ + 18.5	1, 2
Power supply voltage (7)	GND - VGL	V	-0.3 ~ + 18.5	1, 2
Input voltage	Vt	V	-0.3 ~ Vcc + 0.3	1
Operating temperature	Topr	°C	-40 ~ + 85	1, 3
Storage temperature	Tstg	°C	-55 ~ + 110	1

Note 1) The LSI may be permanently damaged if it is used under the condition exceeding the above absolute maximum ratings. It is also recommended to use the LSI within the limit of its electric characteristics during normal operation. Exceeding the conditions may lead to malfunction of LSI and affect its credibility.

Note 2) The voltage from GND.

Note 3) The DC and AC characteristics of chip and wafer products are guaranteed at 85 °C.

Electric Characteristics

DC Characteristics

 $(V_{\rm CC}$ = 1.8 to 3.7 V, Ta = -40 \sim +85 $^{\circ}C$ $^{\rm Note\,1}$)

Item	Symbol	Unit	Test Condition	Min	Тур	Max	Notes
Input high voltage	V _{IH}	٧	$V_{CC} = 2.2 \text{ to } 3.3 \text{ V}$	0.7 V _{CC}	_	V _{CC}	2, 3
Input low voltage (1) (OSC1 pin)	V _{IL1}	V	$V_{CC} = 2.2 \text{ to } 3.3 \text{ V}$	-0.3	_	0.15V _{CC}	2, 3
Input low voltage (2)	V _{IL2}	V	V _{CC} = 2.2 to 2.4 V	-0.3	_	0.15V _{cc}	2, 3
(Except OSC1 pin)			Vcc = 2.4 to 3.3V	-0.3	_	0.2 V _{CC}	2, 3
Output high voltage (1) (DB0-17 pins)	V _{OH1}	V	I0H = -0.1mA	-0.75Vcc	_	_	2
Output low voltage (1)	V _{OL1}	V	Vcc = 2.2V to 2.4V,	_	_	0.2Vcc	2
(DB0-17 pins)			$I_{OL} = 0.1 \text{mA}$				
			Vcc = 2.4V to 3.3V,	_	_	0.15Vc	2
			I _{OL} =0.1mA			С	
I/O leakage current	I _{Li}	μΑ	Vin = 0 to Vcc	- 1	_	1	4
Current consumption during normal operation (Vcc – GND)	I _{OP}	Αц	Ta = 25°C, 260,000 colors display, Vcc = 3V, CR oscillation; fosc = 176kHz (176 line drive), RAM data: 0000h, AP=001, CAD=1, VCOMG=1 VCI1 = 0.92 x VCI (VC2-0 = 001), DDVDH = 2 x VCI1, VGH = 3 x VCI2 (BT2-0 = 000), Step up circuit 1 = 60 divided cycle, Step up circuit 2, 3, and 4 = 240 divided cycle (DC2-0 = 000), VREG1OUT = REGP x 1.65 = 4.55V, (VRH = 0011) VCOMH = VREG1OUT x 0.76 = 3.46V, (VCM = 10011), VCOML = 3.46 - (VREG1OUT x 1.23) = -2.13V, (VDV = 10110), VREG2OUT = VCI x - 5.5 = -16.5V, (VRL = 1001),		90	200	5
Current consumption during Normal operation (Vci – GND)	I _{ci}	mA	_5.5 = -16.5V, (VRL = 1001), VgoffL = -16.5V, VgoffH = - 16.5V + 5.59V = -10.9V	_	1.25	1.5	5
Current consumption during	I _{ST}	μΑ	Vcc = 3V, Ta <=50°C	_	0.1	5	_
Standby mode (Vcc – GND)			Vcc = 3V, Ta >50°C	_	_	20	-5
Output voltage difference	ΔVο	$_{m}V$	_	_	5	_	6
Average output voltage fluctuation	ΔV	mV		_		35	7

AC Characteristics

 $(V_{\rm CC}$ = 2.2 to 3.3 V, Ta = –40 to +85°C*1)

Clock Characteristics (V_{CC} = 2.2 to 3.3 V)

Item	Symbol	Unit	Test Condition	Min	Тур	Max	Notes
External clock frequency	Fcp	kHz	$V_{CC} = 2.2 \text{ to } 3.3 \text{ V}$	100	176	600	8
External clock duty ratio	Duty	%	$V_{CC} = 2.2 \text{ to } 3.3 \text{ V}$	45	50	55	8
External clock rise time	Trcp	μs	$V_{CC} = 2.2 \text{ to } 3.3 \text{ V}$	_	_	0.2	8
External clock fall time	Tfcp	μs	$V_{CC} = 2.2 \text{ to } 3.3 \text{ V}$	_	_	0.2	8
R-C oscillation clock	f _{osc}	kHz	Rf = 240k Ω , V _{CC} = 3 V	184	229	274	9

68system Bus Interface Timing Characteristics

Normal Write Mode (HWM=0) (Vcc = 2.2 to 2.4 V)

Item		Symbol	Unit	Timing diagram	Min	Тур	Max
Enable cycle time	Write		ns	Figure 1	600	_	
	Read	t _{CYCE}	ns	Figure 1	800	_	
Enable "High" level pulse	Write	- DW	ns	Figure 1	90	_	
width	Read	- PW _{EH}			350	_	_
Enable "Low" level pulse width	Write	DW	ns	Figure 1	300	_	
	Read	- PW _{EL}			400	_	
Inable rising and falling time		$t_{Er,}t_{Ef}$	ns	Figure 1	_	_	25
Set up time (RS, R/W, to E, CS*)		t _{ASE}	ns	Figure 1	10	_	_
Address hold time		t _{AHE}	ns	Figure 1	5	_	_
Write data set up time		t _{DSWE}	ns	Figure 1	60	_	_
Write data hold time		t _{HE}	ns	Figure 1	15	_	_
Read data delay time		t _{DDRE}	ns	Figure 1	_	_	200
Read data hold time		t _{DHRE}	ns	Figure 1	5	_	_

High-Speed Write Mode (HWM=1) (Vcc = 2.2 to 2.4 V)

ltem		Symbol	Unit	Timing diagram	Min	Тур	Max
Enable cycle time	Write	4	ns	Figure 1	200	_	_
	Read	t _{CYCE}	ns	Figure 1	800	_	
Enable "High" level pulse	Write	DW	ns	Figure 1	90	_	
width	Read	- PW _{EH}		•	350	_	_
Enable "Low" level pulse width	Write	DW	ns	Figure 1	90	_	_
-	Read	- PW _{EL}		•	400	_	_
Inable rising and falling time		$t_{Er,} t_{Ef}$	ns	Figure 1	_	_	25
Set up time (RS, R/W, to E, CS*)		t _{ASE}	ns	Figure 1	10	_	_
Address hold time		t _{AHE}	ns	Figure 1	5	_	
Write data set up time		t _{DSWE}	ns	Figure 1	60	_	
Write data hold time		t _{HE}	ns	Figure 1	15	_	_
Read data delay time		t _{DDRE}	ns	Figure 1	_	_	200
Read data hold time		t _{DHRE}	ns	Figure 1	5	_	

Normal Write Mode (HWM=0) (Vcc = 2.4 to 3.3 V)

Item		Symbol	Unit	Timing diagram	Min	Тур	Max	Note
Enable cycle time	Write		ns	Figure 1	200	_	_	_
	Read	t _{CYCE}	ns	Figure 1	300	_	_	_
Enable "High" level pulse	Write	- PW _{EH}	ns	Figure 1	40	_	_	_
width	Read	FVVEH			150	_	_	_
Enable "Low" level pulse width	Write	DW	ns	Figure 1	100	_	_	_
	Read	- PW _{EL}			100	_	_	_
Inable rising and falling time		$t_{\text{Er,}} t_{\text{Ef}}$	ns	Figure 1	_	_	25	_
Set up time (RS, R/W, to E,		t _{ASE}	ns	Figure 1	10	_	_	with status read
CS*)					0	_	_	without status
								read
Address hold time		t _{AHE}	ns	Figure 1	2	_	_	_
Write data set up time		t_{DSWE}	ns	Figure 1	60	_	_	_
Write data hold time		t _{HE}	ns	Figure 1	2	_	_	_
Read data delay time	•	t _{DDRE}	ns	Figure 1	_	_	100	_
Read data hold time		t _{DHRE}	ns	Figure 1	5	_	_	_

High-Speed Write Mode (HWM=1) (Vcc = 2.4 to 3.3 V)

Item		Symbol	Unit	Timing diagram	Min	Тур	Max	Note
Enable cycle time	Write		ns	Figure 1	100	_	_	
	Read	CYCE	ns	Figure 1	300	_	_	
Enable "High" level pulse	Write	- PW _{EH}	ns	Figure 1	40	_	_	
width	Read	- FVV _{EH}		Figure 1	150	_	_	
Enable "Low" level pulse width	Write	_ D\//	ns	Figure 1	40	_	_	
	Read	- PW _{EL}		Figure 1	100	_	_	
Inable rising and falling time		$t_{\text{Er,}} t_{\text{Ef}}$	ns	Figure 1	_	_	25	
Set up time (RS, R/W, to E,		t _{ASE}	ns	Figure 1	10	_	_	with status read
CS*)					0			without status read
Address hold time		t _{AHE}	ns	Figure 1	2	_	_	
Write data set up time		t _{DSWE}	ns	Figure 1	60	_	_	
Write data hold time		t _{HE}	ns	Figure 1	2	_	_	
Read data delay time		t _{DDRE}	ns	Figure 1	_	_	100	
Read data hold time		t_{DHRE}	ns	Figure 1	5	_	_	

80-system Bus Interface Timing Characteristics

Normal Write Mode (HWM=0) (Vcc = 2.2 to 2.4 V)

Item		Symbol	Unit	Timing diagram	Min	Тур	Max
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	600	_	_
	Read	t_{CYCR}	ns	Figure 2	800	_	_
Write low-level pulse width		PW_{LW}	ns	Figure 2	90	_	_
Read low-level pulse width		PW_{LR}	ns	Figure 2	350	_	_
Write high-level pulse width		PW_{HW}	ns	Figure 2	300	_	_
Read high-level pulse width		PW_{HR}	ns	Figure 2	400	_	_
Write/Read rise/fall time		t _{WRr, WRf}	ns	Figure 2	_	_	25
Setup time		t _{AS}	ns	Figure 2	10	_	_
(RS to CS*, WR*, RD*)							
Address hold time		t_{AH}	ns	Figure 2	5	_	_
Write data set up time		t_{DSW}	ns	Figure 2	60	_	_
Write data hold time		t _{HWR}	ns	Figure 2	15	_	_
Read data delay time	•	t _{DDR}	ns	Figure 2	_		200
Read data hold time		t_{DHR}	ns	Figure 2	5	_	_

High-Speed Write Mode (HWM=1) (Vcc = 2.2 to 2.4 V)

Item		Symbol	Unit	Timing diagram	Min	Тур	Max
Bus cycle time	Write	t_{CYCW}	ns	Figure 2	200	_	_
	Read	t_{CYCR}	ns	Figure 2	800	_	_
Write low-level pulse width		PW_{LW}	ns	Figure 2	90	_	_
Read low-level pulse width		PW_{LR}	ns	Figure 2	350	_	_
Write high-level pulse width		PW_{HW}	ns	Figure 2	90	_	_
Read high-level pulse width		PW_{HR}	ns	Figure 2	400	_	_
Write/Read rise/fall time		$t_{WRr, WRf}$	ns	Figure 2	_	_	25
Set up time		t _{AS}	ns	Figure 2	10	_	_
(RS to CS*, WR*, RD*)							
Address hold time		t_{AH}	ns	Figure 2	5	_	_
Write data set up time		$t_{\sf DSW}$	ns	Figure 2	60	_	
Write data hold time		t_{HWR}	ns	Figure 2	15	_	_
Read data delay time	•	t _{DDR}	ns	Figure 2	_	_	200
Read data hold time	•	t _{DHR}	ns	Figure 2	5	_	

Normal Write Mode (HWM=0) (Vcc = 2.4 to 3.3 V)

Item		Symbol	Unit	Timing diagram	Min	Тур	Max	Notes
Bus cycle time	Write	t_{CYCW}	ns	Figure 2	200	_	_	
	Read	t_{CYCR}	ns	Figure 2	300	_	_	
Write low-level pulse width		PW_{LW}	ns	Figure 2	40	_	_	
Read low-level pulse width		PW_{LR}	ns	Figure 2	150	_	_	_
Write high-level pulse width		PW_{HW}	ns	Figure 2	100	_	_	_
Read high-level pulse width		PW_{HR}	ns	Figure 2	100	_	_	
Write/Read rise/fall time		t _{WRr, WRf}	ns	Figure 2	_	_	25	
Set up time		4	20	Figure 2	10	_	_	with status read
(RS to CS*, WR*, RD*)		t _{AS}	ns	Figure 2	0	_	_	without status read
Address hold time		t _{AH}	ns	Figure 2	2	_	_	_
Write data setup time		t _{DSW}	ns	Figure 2	60	_	_	
Write data hold time		t_{HWR}	ns	Figure 2	2	_	_	
Read data delay time	•	t _{DDR}	ns	Figure 2	_	_	100	
Read data hold time	•	t _{DHR}	ns	Figure 2	5	_	_	

High-Speed Write Mode (HWM=1) (Vcc = 2.4 to 3.3 V)

Item		Symbol	Unit	Timing diagram	Min	Тур	Max	Notes
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	100	_	_	_
	Read	t _{CYCR}	ns	Figure 2	300	_	_	_
Write low-level pulse width		PW_{Lw}	ns	Figure 2	40	_	_	_
Read low-level pulse width		PW_{LR}	ns	Figure 2	150	_	_	_
Write high -level pulse width		PW_{HW}	ns	Figure 2	40	_	_	_
Read high -level pulse width		PW_{HR}	ns	Figure 2	100	_	_	_
Write/Read rise/fall time		t _{WRr} , _{WRf}	ns	Figure 2	_	_	25	
Set up time			no	Figure 2	10	_	_	with status read
(RS to CS*, WR*, RD*)		t _{AS}	ns	Figure 2	0			without status read
Address hold time		t _{AH}	ns	Figure 2	2	_	_	
Write data set up time		t_{DSW}	ns	Figure 2	60	_	_	
Write data hold time		t_{HWR}	ns	Figure 2	2	_	_	
Read data delay time		t_{DDR}	ns	Figure 2	_	_	100	
Read data hold time	•	t _{DHR}	ns	Figure 2	5	_	_	

Serial Peripheral Interface timing characteristics

 $(\mathbf{Vcc} = \mathbf{2.2V} \ \mathbf{to} \ \mathbf{2.4V})$

Item		Symbol	Unit	Timing diagram	Min	Тур	Max
Serial clock Write (received)		t _{scyc}	us	Figure 3	0.1	_	20
cycle time	Read (transmitted)	t_{SCYC}	us	Figure 3	0.25	_	20
Serial clock hith-level	Write (received)	$t_{\sf SCH}$	ns	Figure 3	40	_	
pulse width	Read (transmitted)	t _{sch}	ns	Figure 3	120	_	_
Serial clock low-level	Write (received)	t _{SCL}	ns	Figure 3	40	_	
pulse width	Read (transmitted)	t _{SCL}	ns	Figure 3	120	_	
Serial clock	Serial clock rise/fall time		ns	Figure 3	_	_	20
Chip select set up time		t_{CSU}	ns	Figure 3	20	_	_
Chip select hold time		t_{CH}	ns	Figure 3	60	_	_
Serial input data set up time		t_{SISU}	ns	Figure 3	30	_	_
Serial input data hold time		t _{sih}	ns	Figure 3	30	_	_
Serial output data delay time		t_{SOD}	ns	Figure 3	_	_	130
Serial output data hold time		t _{soh}	ns	Figure 3	5	_	_

(Vcc = 2.4V to 3.3V)

Item		Symbol	Unit	Timing diagram	Min	Тур	Max
Serial clock Write (received)		t _{scyc}	us	Figure 3	0.076	_	20
cycle time	Read (transmitted)	t _{scyc}	us	Figure 3	0.15	_	20
Serial clock hith-level	Write (received)	t _{sch}	ns	Figure 3	40	_	_
pulse width	Read (transmitted)	t _{sch}	ns	Figure 3	70	_	_
Serial clock low-level	Write (received)	t _{SCL}	ns	Figure 3	35	_	_
pulse width	Read (transmitted)	t _{SCL}	ns	Figure 3	70	_	_
Serial clock	Serial clock rise/fall time		ns	Figure 3	_	_	20
Chip select	Chip select set up time		ns	Figure 3	20	_	_
Chip select hold time		t_{CH}	ns	Figure 3	60	_	_
Serial input data set up time		t _{SISU}	ns	Figure 3	30	_	_
Serial input data hold time		t _{SIH}	ns	Figure 3	30	_	_
Serial output data delay time		t_{SOD}	ns	Figure 3	_		130
Serial output data hold time		t _{soh}	ns	Figure 3	5	_	_

Reset Timing Characteristics

 $(V_{CC} = 2.2 \text{ to } 3.3 \text{ V})$

Item	Symbol	Unit	Timing diagram	Min	Тур	Max
Reset low-level width	t _{RES}	ms	Figure 4	1	_	_
Reset rise time	t _{rRES}	μs	Figure 4	_		10

Notes to Electrical Characteristics

- 1. The DC/AC electrical characteristics of bare die and wafer products are guaranteed at 85°C.
- 2. The following figures illustrate the configurations of I pin, I/O pin, and O pin.

- 3. TEST, IM1, IM0/ID pins must be grounded or connected to Vcc.
- 4. This excludes the current through output drive MOS.
- 5. This excludes the current through the input/output units. The input level must be fixed to a certain level because penetrating current increases in the input circuit when CMOS input level takes a middle level. The current consumption is unchanged irrespective of "High" or "Low" of CS*pin while the HD66773R is not accessed through interface pins.
- 6. The output voltage difference is the difference in the voltages of neighboring source outputs for a same display (within a chip). This value is just for a referential purpose.
- 7. The average output voltage fluctuation is the difference in the average source output voltages among different chips. The average output voltage is an average source voltage within a chip for a same display.
- 8. This applies to the case when clocks are supplied externally.

9. This applies to the internal oscillator when external oscillation resistor Rf is used.

Referential data

Oscillation Resistance ($k\Omega$)	Vcc = 1.8 V	Vcc = 2.0 V	Vcc = 2.4 V	Vcc = 3.0V	Vcc = 3.3V
110kΩ	329.6	362.6	399.4	438.5	447.6
150kΩ	260.7	285.4	313.3	337.4	343.4
180kΩ	230.9	252.2	274.0	294.9	302.1
200 kΩ	213.0	230.4	251.5	268.7	274.8
240 kΩ	187.7	201.3	216.8	229.4	234.8
270 kΩ	168.6	181.3	195.1	206.9	210.2
300 kΩ	154.5	166.1	178.2	187.5	191.1
390 kΩ	125.4	133.7	142.3	148.9	151.6
430 kΩ	115.9	121.6	129.0	135.2	137.3

Load circuit for AC characteristics test

Timing characteristics diagram

68-system bus interface operation

Note 1) PWEH is determined by the overlapping period when CS* is "Low" and E is "High".

Note 2) Parallel data transfer with DB17-0 pins through 18-bit bus interface.

Parallel data transfer with DB17-10, DB8-1 pins through 16-bit bus interface.

Fix unused DB9,0 pins to "GND".

Parallel data transfer with DB17-9 pins through 9-bit bus interface.

Fix unused DB8-0 pins to "GND".

Parallel data transfer with DB17-10 pins through 8-bit bus interface.

Fix unused DB9-0 pins to "GND".

Figure 1

80-system bus interface operation

Parallel data transfer with DB17-10, DB8-1 pins through 16-bit bus interface.

Fix unused DB9,0 pins to "GND".

Parallel data transfer with DB17-9 pins through 9-bit bus interface.

Fix unused DB8-0 pins to "GND".

Parallel data transfer with DB17-10 pins through 8-bit bus interface.

Fix unused DB9-0 pins to "GND".

Figure 2

Serial Peripheral Interface Operation

Figure 3

Reset operation

Figure 4

6773R			
	Insert Wiring	example	
	moon wining	- Oxampio	

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials

 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they
 do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.

 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts,
 programs, algorithms, or circuit application examples contained in these materials.

 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these
 materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
 contact Renesas Technology Corporation or an authorized Renesas Technology Corporation before purchasing a product listed
 herein.

- contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

 Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destin

- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therei

http://www.renesas.com

Copyright © 2003. Renesas Technology Corporation, All rights reserved. Printed in Japan. Colophon 0.0

Revision Record

Rev.	Date	Contents of Modification	Drawn by	Approved by
1.01 2003.Jan.		Page 112. Delete "DB1SD0" and "DB0/SD1" in the figure.		
		Page 113. Change Note 6.		
		Change "R1" to "%RF" in the figure.		
1.2	2003.Jun.	Page 7. Add "or DDVDH".		
		Page 8. Error corrections.		
		Page 9. Error corrections. Add descriptions to "DUMMY1, 21, 23, 39" and "DUMMY 2-21, 24-38".		
		Page 21. Specify the instruction accessible during the standby mode: R03h		
		Page 73. Error correction.		
		Page 77. Add the power off sequence.		
		Page 78. Add the power off sequence.		
		Page 79. Correction to the Figure: Power Off Sequence.		
		Page 89. Change the recommended voltage for TEST4.		
		Page 90. Error correction.		
		Page 95, 96. Error corrections. Change Figure 1 to Figure 2, " $t_{\rm H}$ " to " $T_{\rm HWR}$ "		
		Page 97. Error correction.		
		Page 99. Specify the application of notes 6, 7.		