Exercice 1. Question de cours :

- 1. Donner la définition d'une suite de Cauchy.
- 2. Donner la définition d'une suite réelle tendant vers $+\infty$.
- 3. Soit $n \in \mathbb{N}$. Que vaut $\sum_{k=0}^{n} q^k$ pour $q \neq 1$?

Exercice 2. Une gentille étude de suite : Soit $(u_n)_{n\geq 1}$ une suite réelle définie par $u_1=1$ et la relation de récurrence

$$\forall n \in \mathbb{N}^*, u_{n+1} = 1 + \frac{u_n}{2}.$$

- 1. Montrer que $\forall n \in \mathbb{N}^*, u_n < 2$.
- 2. Montrer que $(u_n)_{n\geq 1}$ est croissante.
- 3. En déduire que $(u_n)_{n\geq 1}$ converge et déterminer sa limite.

Exercice 3. Calculs de limites : Calculer les limites des suites définies par les termes suivants :

1.
$$a_n = \frac{\cos n}{\sqrt{n} + (-1)^n}, \ n \ge 1.$$

2.
$$b_n = \exp\left(\frac{\ln n}{n}\right), \ n \ge 1.$$

MI 201 Groupe A1

Contrôle Continu 1 : Suites numériques

printemps 2014

Exercice 1. Question de cours :

- 1. Donner la définition d'une suite de Cauchy.
- 2. Donner la définition d'une suite réelle tendant vers $+\infty$.

3. Soit
$$n \in \mathbb{N}$$
. Que vaut $\sum_{k=0}^{n} q^k$ pour $q \neq 1$?

Exercice 2. Une gentille étude de suite : Soit $(u_n)_{n\geq 1}$ une suite réelle définie par $u_1=1$ et la relation de récurrence

$$\forall n \in \mathbb{N}^*, u_{n+1} = 1 + \frac{u_n}{2}.$$

- 1. Montrer que $\forall n \in \mathbb{N}^*, u_n < 2$.
- 2. Montrer que $(u_n)_{n\geq 1}$ est croissante.
- 3. En déduire que $(u_n)_{n\geq 1}$ converge et déterminer sa limite.

Exercice 3. Calculs de limites : Calculer les limites des suites définies par les termes suivants :

1.
$$a_n = \frac{\cos n}{\sqrt{n} + (-1)^n}, \ n \ge 1.$$

2.
$$b_n = \exp\left(\frac{\ln n}{n}\right), \ n \ge 1.$$