Name:	
Exercise 1. Functions and equations.	
(a) What is a function? (Write down the definition of a function)	
(b) What is an equation? (Write down the definition of an equation)	
(c) Give an example of an equation whose graph is NOT the graph of a function. Write an equat AND sketch its graph.	ion
(d) If $f: \mathbb{R} \to \mathbb{R}$ is a function, can you always write an equation involving x and y whose graptine exactly the graph of f ? If yes, demonstrate how – if no, explain why not.	h is
Exercise 2. Even and odd functions. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. NOTE: If you don't know the definition of an even or odd function in the following problem, copy it from the Wikipedia page titled, "Even and odd functions".	
(a) $f(x)$ is even if An example of an even function is $f(x) = $.
(b) $g(x)$ is odd if An example of an odd function is $g(x) =$	_•
(c) Define the absolute value function as a piecewise function :	
$ x = \begin{cases} & \text{if} \\ & \text{if} \end{cases}$	

Show that $\left|x\right|$ is an even function using the definition of an even function.

(d) Can a function be neither even nor odd? If yes, give an example. If no, explain why.
Choose ONE of the following questions and respond to it in \sim 3 sentences. Question 1. What is a number?
Question 2. What is area? Does every closed shape have an area?
Question 3. Let S be some 2-dimensional shape. Is it possible for both of the following statements to be true simultaneously? Why/why not? • S has an area • It is impossible for us to calculate the area of S
Question 4. Consider a polynomial p , or for example, $p(x) = x^5 + 20x + 16$. Is it possible for both of the following statements to be true simultaneously? Why/why not? • There exists a real number $a \in \mathbb{R}$ such that $p(a) = 0$. (We say that a is a zero of p .)
• We cannot calculate any of the zeros of p .