Алгоритмы и Структуры Данных ДЗ-10

Гарипов Роман М3138 01.12.2019

Задача №1

Считаем ответ на задачу, используя вспомогательную динамику

Будем считать две динамики, первая - ответ на задачу, по множеству будем получать гамильтонов цикл минимального веса - $dp_0[X]$.

Вторая - вспомогательная, будет выглядеть так :

Пусть мы зафиксировали какую-то вершину s. Множество X, которое будет использовано далее не может содержать вершины с элементами больше s.

 $dp_1[X][i]$ - гамильтонов путь минимального веса, начинающийся в зафиксированной вершине s и заканчивающийся в вершине i, проходящий по всем вершинам из X.

Когда посчитали такую динамику для фиксированного s, можем попробовать улучшить dp_0 для всех множеств, содержащих вершины с номерами не больше s. Для этого просто выберем какое-то множество X, какой-то конец пути i и если $(i \to s) \in E$, тогда $dp_0[X] = \min(dp_0[X], dp_1[X][i] + w_{(i \to s)})$. Таким образом, мы прошли по пути от s до i и потом по ребру $(i \to s)$, получили цикл.

Если перебрать все s, то посчитаем для всех подмножеств гамильтонов цикл максимального веса.

Считаем вспомогательную динамику

Пусть зафиксировали s.

Положим $dp_1[\{s\}][s] = 0$ - база динамики.

Пусть имеем уже посчитаное состояние dp[X][i]. Тогда, переберём вершину j:

$$j \in [1 \dots s], j \notin X, (i \to j) \in E$$

$$dp_1[X \cup \{j\}][j] = \min(dp_1[X \cup \{j\}][j], dp_1[X][i] + w_{(i \to j)})$$

У нас был путь из вершины s в i, мы прошли по ребру $(i \to j)$ и попытались улучшить ответ для нового состояния. Поскольку мы переберём все возможные ребра из i, то получим все возможные варианты и выберем из них минимум. Поэтому наша динамика посчитается верно.

После того как посчитали все состояния динамики, попытаемся улучшить ответ для основной динамики как это было описано ранее.

Ассимптотика

Решение работает за

$$\sum_{i=1}^{n} (i^2 \cdot 2^i) = \mathcal{O}(2^n n^2)$$

По индукции:

$$\sum_{i=1}^{n} (i^2 2^i) \le 2^{n+1} n^2$$

.

Задача №4

Для того чтобы решить эту задачу, научимся считать количество гамильтоновых путей с фиксированным началом и концом в любом подномжестве вершин, а потом поймем как из этого получить количество простых циклов.

Динамика

dp[S][i] = количество гамильтоновых путей в множестве вершин $S \subset V$, которые начинаются в $\min(S)$ - вершина с минимальным номером, и заканчиваются в вершине i.

База динамики

Положим $\forall i \in [1\dots n], X = \{i\}: dp[X][i] = 1$ Для всех одноэлементных множеств сказали, что в них ровно 1 гамильтонов цикл который начинается в i и заканчивается там же. Все остальные состояния проинициализируем нулями.

Динамический переход

Хотим посчитать dp[Y][i] для каких-то конкретно выбранных Y и i, причем важно, что $i \neq \min(Y)$. Пусть для всех множеств размером меньше |Y| уже посчитали динамику. Тогда будем пересчитывать текущее состояние так :

$$dp[Y][i] = \sum_{j \in [1...n], (j \to i) \in E} (dp[Y \setminus \{i\}][j])$$

Мы взяли все пути, которые начинались в $\min(Y)$ и заканчивались в j и добавили ребро. Посколько мы сделали это для всех j, это и будет количество гамильтоновых путей, начинающихся в $\min(Y)$ и заканчивающихся в вершине i.

Требование на то, что $i \neq \min(Y)$ необходимо для того, чтобы путь начинался строго в $\min(Y)$, так как простые циклы равны с точностью до циклических сдвигов, мы не хотим посчитать лишние.

Вся динамика считается за $\mathcal{O}(2^n n^2)$, так как мы перебираем сначала подмножество, а потом две вершины.

Ответ

Теперь осталось понять как по этой динамике вычислить ответ на задачу. Ответом будет следующая величина :

$$\frac{1}{2}\sum_{|X|\geq 2, i\in[1...n], (i\rightarrow \min(X))\in E}(dp[X][i])$$

Мы взяли гамильтонов путь длины хотя бы 2, который начинался в $\min(X)$ и заканчивался в i, причем потребовали, чтобы было ребро $(i \to \min(X))$. Пройдемся по этому пути, а потом по ребру и получим цикл. Мы выбрали все возможные подмножества вершин и все возможные концы путей, следовательно посчитали все простые циклы, но каждый посчитали 2 раза, потому что, к примеру a-b-c и a-c-b это разные пути, но один и тот же цикл.