Infinitos GRANDES

Infinitos pequeños

Erik Amézquita Morataya

Departamento de Matemáticas Universidad de Guanajuato

Marzo 2017

DEPARTAMENTO DE MATEMÁTICAS
DE LA UNIVERSIDAD DE GUANAJUATO

El Hotel Paradójico de Hilbert

Teoría de Conjuntos

- Georg Cantor
- (1845 1910)

- David Hilbert
- (1862 1943)

Relación Biyectiva

- Dos conjuntos relacionados: dominio X y contradominio Y.
- La relación es biyectiva si cada elemento en X está relacionado con un único elemento en Y y viceversa

Relación biyectiva: países y ciudades

- Francia
- Colombia
- España
- India
- Cuba

- La Habana
- París
- Madrid
- Bogotá
 - Delhi

Relación NO biyectiva

- Francia
- Colombia
- España
- India
- Cuba

- La Habana
- París
- Madrid
- Bogotá
- Delhi
- México DF
- Moscú

Relación NO biyectiva

- Francia
- Colombia
- España
- India
- Cuba

- La Habana
- París
- Madrid
- Barcelona
- Bogotá
- Delhi
- Medellín

¿ Por qué es importante ?

 Un conjunto es numerable si existe una biyección entre éste y los números naturales ¿Cuántos hay más? ¿Naturales o pares?

·1, 2, 3, 4, 5, 6, 7, 8, 9,...

· 2, 4, 6, 8, 10,12...

Ambos conjuntos son igual de gordos!

1, 2, 3, 4, 5, 6, 7, 8, 9,...

·2, 4, 6, 8, 10,12...

¿Cuántos hay más? ¿Enteros o naturales?

·1, 2, 3, 4, 5, 6, 7, 8, 9, ...

·..., -3, -2, -1, 0, 1, 2, 3, ...

Impar: no negativo
Par: negativo

· 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

·..., -3, -2, -1, 0, 1, 2, 3, ...

Seguimos el patrón...

· 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

· ..., -3, -2, -1, 0, 1, 2, 3, ...

¡ Son del mismo tamaño!

•1, 2, 3, 4, 5, 6, 7, 8, 9, ...

• ..., -3, -2, -1, 0, 1, 2, 3, ...

¿Y los racionales?

$$\mathbb{Q} := \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, b > 0 \right\}$$

Q

1/1	2/1	3/1	4/1	5/1	6/1	
1/2	2/2	3/2	4/2	5/2	6/2	
1/3	2/3	3/3	4/3	5/3	6/3	
1/4	2/4	3/4	4/4	5/4	6/4	
1/5	2/5	3/5	4/5	5/5	6/5	
÷						

Primer intento

¡ Nunca acabaremos si únicamente vamos en una fila !

Jugaremos mejor a la serpiente

	1	2	3	4	5	б	7	8	
1	1/1	$\frac{1}{2}$ -	$\rightarrow \frac{1}{3}$	$\frac{1}{4}$ —	<u>→</u> 1/5	$\frac{1}{6}$ -	$\frac{1}{7}$	1 8	•••
2	$\frac{1}{2}$	7 ° 1	$\frac{2}{3}$	7 · · · · · · · · · · · · · · · · · · ·	$\frac{2}{5}$	7 6	$\frac{2}{7}$	2 8	•••
3	$\frac{3}{1}$	$\frac{3}{2}$	3 K	$\frac{3}{4}$	3 K 1 5	₹6 3 6	3 7	<u>3</u> 8	
4	4/	***************************************	$\frac{4}{3}$	4 K	<u>4</u> 5	<u>4</u>	47	4 8	
5	5 K	$\frac{5}{2}$	5 K	<u>5</u> 4	<u>5</u> 5	<u>5</u>	<u>5</u>	<u>5</u> 8	
б	$\frac{6}{1}$	*	1 6 ×	<u>6</u> 4	<u>6</u> 5	<u>6</u> 6	<u>6</u> 7	<u>6</u> 8	•••
7	7 1	$\frac{7}{2}$	7 3 7 3	7/4	7 5	7 6	7/7	7/8	
8	8	$\frac{2}{8}$	<u>8</u> 3	8 4	<u>8</u> 5	<u>8</u> 6	8 7	8 8	

! Existe la misma cantidad de números naturales que de números enteros y números racionales !

De vuelta al Hotel de Hilbert

¿Qué hacemos con el huesped nuevo?

¡ Biyecciones! ¡ Debemos hallar una!

- Huéspedes en este momento
- ·*, 1, 2, 3, 4, 5, 6, ...

- 1, 2, 3, 4, 5, 6, 7, ...
- Habitaciones

No estaba tan difícil...

Ahora más difícil

• ¿Biyección?

¿A que se parece?

- Habitaciones
- ·1,2,3,4,5,6.

• 1,-1,2,-2,3,-

3,

Huéspedes

¡ Listo!

Habitaciones

•1,2,3,4,5,6.

• 1,-1,2,-2,3,-

3,

Huéspedes

Ahora con infinitos buses infinitos

Ahora con infinitos buses infinitos

- A cada visitante le damos una id. dependiendo de su número de asiento a y su número de bus b.
- Si es huésped oric $a_3b^{\text{s}b} =$

Correspondencia buena

Infinitos infinitos buses infinitos

Pero no podemos hospedar a los reales, ni siquiera al (0,1)

Real Numbers

Irrational

$$\sqrt{3}$$
 π 0.10010001...

$$(0,1) = \{x \in \mathbb{R} : 0 < x < 1\}$$

Diagonalización de Cantor

```
Natural Real
         0.236436775676...
    123456
         0.098473294543...
         0.193214042202...
         0.843279242093...
         0.012934812343...
         0.639423412934...
         0.017773923845...
    789
         0.238920090909...
         0.123984732999...
         0.646329878122...
   10
         0.000123943437...
         0.981298312892...
         0.293233992132...
         0.746894310875...
```

¿ Hay más reales que (0,1)? Proyección estereográfica

Los reales son más gordos

- Los naturales están en un infinito numerable.
- Los reales están en un infinito no numerable.
- Existe una biyección $f: \mathcal{P}(\mathbb{N}) \to \mathbb{R}$ reales.

- Los naturales viven en un infinito pequeño.
- Los reales, en uno menos pequeño.
- Se supone que no existe un infinito intermedio.

NO existe el "infinito"

 El conjunto potencia de X siempre será un infinito más grande que X.

$$f: \mathcal{P}(\mathbb{X}) \to \mathbb{Y}$$

- Podemos proceder infinitamente
- No importa en que infinito piensen, siempre habrá uno más grande.

La idea del infinito es infinita

