Chemistry 107: Exam 3A

The 100 pts exam consists of 9 questions and students have 2 hours to complete the exam. Answers must be written in the box provided or else no credit is provided. Use the empty space provided to do your work. A periodic table and formulas are provided at the end. Additional scratch paper will be provided. Fill in your name along with your student ID number.

Problem 1: True/False Determine whether the statement is true or false. (10 pts)

(a)	a) For an ideal gas, increasing the pressure decreases the volume.					
(b)	The second ionization energy of alkaline earth metals is higher than the second ionization energy of alkali metals.					
(c)	In a compound with resonance structures, the actual structure of the molecule is the average of all resonance structures.					
(d)	Lewis structures can predict the geometric shape of compounds.					
(e)	The atomic radius increases moving from the left to right on the periodic table.					
(f)	The electron configuration of molybdenum (Mo) is [Kr]5s ² 4d ⁴ .					
(g)	At each energy level, the multielectron orbital diagram shows that the atomic orbitals are nondegenerate.					
(h)	Chemical bonds are made of atomic orbitals.					
(i)	UV lights have lower energy than infrared.					
(j)	As the frequency of light increases, the photon energy increases as well					

Problem 2 : Boyle's Law Given fixed amount of gas at constant temperature. Answer the following questions and report to 3 significant figures. (16 pts)

(a)	A balloon contains 500.mL of helium when filled at 1.00atm. What would be the volume of the balloon if it were subjected to 5.50atm of pressure?					
(1.)						
(b)	What pressure is needed to compress 350mL of oxygen gas at 2.50atm to a volume of 75mL?					
(c)	A particular balloon is designed by its manufacturer to be inflated to a volume of no more than 2.5 liters. If the balloon is filled with 2.0 liters of helium at sea level (101.325 kPa), and rises to an altitude where the pressure is 89.1kPa, will the balloon burst?					
(d)	Draw the graph of the relationship between pressure (P) and volume (V). Describe the relationship.					

Problem 3 : Charles' Law Given a fixed amount of gas at constant pressure. Answer the following questions and report to 3 significant figures. (12 pts)

	If the first to 5 significant figures. (12 pts)
(a)	If a sample of chlorine gas occupies 50.0mL at 100.°C, what is its volume at 25.0°C?
(1.)	
(b)	Calculate the temperature (in Celsius) when 2.00L at 21.0°C is compressed to 1.00L.
()	
(c)	Draw the graph of the relationship between volume (V) and temperature (T) for an ideal gas. Describe the relationship.

Problem 4 : Avogadro's Hypothesis At constant pressure and temperature, answer the following questions and report to 3 significant figures. (12 pts)

(a)	If a $10.0L$ balloon contains 1.00 mol of gas, what will be the volume of a balloon that contains 0.20 mol of gas?
(b)	A flexible container at an initial volume of 5.120L contains 8.500mol of gas. More gas is then added to the container until it reaches a final volume of 18.1L. Determine the total number of moles at 18.1L.
(c)	Draw the graph of the relationship between volume (V) and mole of gas (n) for an ideal gas. Describe the relationship.

Problem 5 : Photosynthesis - the Chloroplast Photosynthesis is a vital process providing organisms oxygen and food. Plants performs this vital process using a protein called chlorophyll a. The protein absorbs mainly light at 430nm (violet) and and 662nm (red). Answer the following questions and report to 3 significant figures. (10 pts)

(a) Determine the energy in J of the violet (430nm) and red light (662nm) that chlorophyll a absorbs.

(b) How much energy is contained in one mole of photons for violet and red lights?

Page 5

Problem 6: Energy from a Laser In 2021, HiLASE Center broke the world record developing the strongest high-energy laser that emits a wavelength of $1030 \, \mathrm{nm}$. Answer the following questions and report to 3 significant figures. (12 pts)

(a)	Determine the energy of a single photon from 1030nm.
(3 \	
(b)	A single laser pulse emits 145 Joules of energy. Determine how many photons that is.
(c)	Compute the energy in J/mol of a mole of photon at 1030nm. Compare this energy to part b).
(0)	Compute the energy in 5/mor or a more or photon at 1000mm. Compare this energy to part 5).

Problem 7 : Drawing Lewis Structures Draw the Lewis structures for the following compounds, identify the geometric shape, and whether the compound is polar or nonpolar. If there are resonance structures, then include them in your answer.(12 pts)

(a)	CO_2
(b)	${ m SCN}^-$
(D)	SON
(c)	${ m BF}_3$

Class						
Id	number					

(d)	$\mathrm{NH_{3}}$
(e)	PO_4^{3-}
(f)	SO_4^{2-}

Problem 8 : Periodic Properties Rank the following periodic properties. (8 pts) (a) Rank elements from highest to lowest first ionization energy: F, Li, He, Mg, I (b) Rank elements from highest to lowest electronegativity: Li, Be, Se, O, F (c) Rank elements from largest to smallest atomic radius: He, H, K, F, I (d) Ranking ions from largest to smeallest atomic radius: N³⁻, I⁻, Li⁺, F⁻, O²⁻ **Problem 9 : Electron Configuration** Determine the electron configurations for the following. (8 pts) (a) Mg (b) S (c) Al^{3+} (d) Cr (e) Zn^{2+} (f) Fe^{2+} (g) Ag⁺ (h) Gd

Chemistry 107 : Appendix 1 - Periodic Table

2 Helium 4.003	Neon 20.180	18 Argon 39.948	36 Krypton 83.798	54 Kenon 131.293	R 86 [222]	00 0ganes son [294]	
	9 Fluorine 18.998	Chlorine 35.45	35 Br Bromine 79.904	53 	85 At Actatine [210]	117 5 Fennessine [293]	
	8 Oxygen 15.999	16 Suffur 32.06	Selenium 78.97	53 Tellurium 127.60	84 Polonium [209]	116 LV Livermorium [293]	
	Nitrogen 14.007	15 Phosphorus 30.974	Assenic 74.922	51 Sb Antimony 121.760	83 B ismuth 208.980	115 MC Moscovium [289]	70 Yb vitertium 173.045 NO Nobelium [259]
	6 Carbon 12.011	Sicon 28.085	32 Ge Germanium 72.630	50 # 118710	82 Pb Lead 207.2	114 F Ferovium [289]	69 Thulium 168.934 101 Md Mendelevium [258]
	5 Boran 10.81	13 Auminum 26.982	31 Ga Gallium 69.723	49	81 Thallium 204.38	Nihonium [286]	68 Erium 167.259 100 Fm
			30 Zinc 2inc 65.38	48 Cadmium 112.414	81 Hg Mercury 200.592	Coperation [285]	67 HOmium 164.930 99 ES Ensteinium
			CU Copper 63.546	47 Ag siver 107.868	80 Sod 196.997	Roentgenum [281]	66 Dysprosium Dysprosium 162.500 88 Cf Caffornium [251]
			28 Nickel 58.693	Pd Palladium 106.42	79 Pt Platinum 195.084	DS Darms tackium [281]	65 Tb Terbium 158.925 97 97 Bk Berkelium [247]
			27 CO cobalt 58.933	Rhodium 102.906	78	109 Mt	64 Gaddinim 157.25 P6 Cm Curium [247]
			26 Ion 55.845	Ruthenium 101.07	76 OSmium 190.23	108 Hassium [270]	63 Europium 151.964 95 Am
			Mn Manganes e 54.938	43 C Technetium [97]	75 Re Rhenium 186.207	Bohrium [270]	Samarium 150.36 94 Plutonium [244]
			24 Cr Chromium 51.996	MO Molybdenum 95.95	74 W Tungsten 183.84	Sg seaborgium [269]	61 Pm Promethium [145] 93 Neptumium [237]
			23 Vanadium 50.942	41 Nobium 92.906	73 a Fartalum 180.948	105 Db Dubnium [270]	60 Nectymium 144.242 02 Unanium 238.029
			22 Ttanium 47.867	40 Zirconium 91.224	72 Hafnium 178.49	104 Rutherfordium [267]	59 Prascodymim 140.908 91 Pa Pa Protactinim 231.036
			- 10	39 Yttrium 88.906		103 C C Lawrencium [262]	58 Cerium 140.116 90 Th Thorium
					* 57 - 70	** 89 - 102	57 Lanthanum 138.905 89 AC Actinism [227]
	Beryllium	Mg Magnesium 24.305	20 Cacium 40.078	Sr Strontium 87.62	56 Ba rium 137.327	88 Radium [226]	<u>\overline{\over</u>
1 Hydrogen 1.008	3 Lithium 6.94	Na Sodium 22:990	19 K	Rubidium 85.468	55 Cestum 132:905	87 Fanctum [223]	*Lanthanide series *Actinide series

Chemistry 107 : Apppendix 2 - Formulas and Constants

$$q = mC\Delta T$$

$$E = \frac{hc}{\lambda} = h\nu$$

$$h = 6.626 \times 10^{-34} \text{J s}$$

$$c = \lambda \nu$$

$$c = 3.00 \times 10^8 \text{m/s}$$

$$N_A = 6.022 \times 10^{23}$$

$$P_1 V_1 = P_2 V_2$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$\frac{P_1}{n_1} = \frac{P_2}{n_2}$$