Simple Calculation Problems

- 1. X = -1 w.p. 0.5; X = 0 w.p. 0.2; X = 3 w.p. 0.3. Calculate $\sigma(X)$. Use Chebyshev's inequality to find an upper bound on $P(X \ge 3)$. $\sqrt{3.04}$; 0.45.
- 2. Continuous random variable Y has uniform distribution on the interval [0,3]. Calculate $\sigma(Y)$. Use Chebyshev's inequality to find an upper bound on the probability that $|Y-1.5| > 1.25 \sqrt{3}/2$; 0.48.
- 3. Continuous random variable Y has uniform distribution on the interval [-11,11]. Use your answer to the previous question and properties of expectation and variance to find $\sigma(Y)$. $11/\sqrt{3}$.
- 4. $X_i : i = 1, 2, 3$ are independent Bernoulli variables equal to 1 with probabilities 1/3, 1/2, 2/3 respectively, and equal to 0 otherwise. Calculate $\sigma(Y)$ if

$$Y = \min_{1 \le i \le 3} X_i$$

- $2\sqrt{2}/9$.
- 5. Discrete random variables $X_i: i=1,2,\ldots,10$ are Bernoulli variables with parameter $p=P(X_i=1)=0.25$. Discrete random variables $Y_i: i=1,2,\ldots,10$ are Bernoulli variables with parameter $p=P(X_i=1)=0.75$. All 20 variables are jointly independent. Let $Z=\sum_{i=1}^{10} X_i + Y_i$. Calculate $\sigma(Z)$. $\sqrt{15}/2$
- 6. Continuous random variable Y has density 1/6 on the interval [2, 4] and density 1/3 on the interval [6, 8]. Calculate $\sigma(Y)$. $\sqrt{35}/3$
- 7. Continuous random variable Y has density αy in the range $0 \le y \le 2$. Find α . Find $\sigma(Y)$.

Qualitative Problems

- 1. Let X and Y be independent random variables. Then $\sigma(X) + \sigma(Y) \sigma(X+Y)$ is:
 - (a) < 0
 - (b) ≤ 0 and can be < 0
 - (c) = 0
 - (d) ≥ 0 and can be > 0
 - (e) > 0
 - (f) sometimes 0, sometimes < 0 and sometimes > 0

Hint: try this on a couple of very simple random variables, or remember that by independence $\sigma^2(X) + \sigma^2(Y) = \sigma^2(X+Y)$ and think about what the square root function does.

- 2. Let X and Y be dependent random variables. Then $\sigma(X) + \sigma(Y) \sigma(X + Y)$ is:
 - (a) < 0
 - (b) ≤ 0 and can be < 0
 - (c) = 0
 - (d) ≥ 0 and can be > 0
 - (e) > 0
 - (f) sometimes 0, sometimes < 0 and sometimes > 0

Hint: The two extreme cases ought to be when X = Y (positive correlation) and when X = -Y (negative correlation). Figure out both extreme cases.

3. In Problem 5 above, suppose all 20 variables changed to be Bernoulli with parameter $p = \frac{1}{2}.25 + \frac{1}{2}.75 = .5$. Would $\sigma^2(Z)$ (the variance of Z, not the standard deviation of Z) change to a smaller, equal, or larger value? Hint: Consider the extreme case where p = 0 for the X_i variables and (you fill in the rest).

Problems

- 1. A Georgia Tech degree is worth \$100K today. Each day the value of the Tech degree increases by 1% with probability .5 and decreases by $\frac{100}{101}$ % with probability .5. Let X be the number of days until the degree is again worth exactly \$100K. Prove that you can't calculate $\sigma^2(X)$. Hint: Try to calculate E[X], or to find lower bounds on E[X].
- 2. Random variables X and Y are independent with E[X] = 5, $E[X^2] = 49$, E[Y] = 30, $E[Y^2] = 1000$. Use Chebyshev's inequality to find a number β (the smallest value you can get) such that $P(|X+Y-35| \ge \beta) \le 0.04$. Hint: use the independence of X and Y, and observe that E[X+Y] = 35.