САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Дисциплина: Архитектура ЭВМ

Отчет

по домашней работе №1

«Минимизация логических функций методом карт Карно»

Выполнил(а): Ступников Александр Сергеевич

студ. гр. М3135

Санкт-Петербург

Цель работы: моделирование простейших логических схем и минимизация логических функций методом карт Карно.

Инструментарий и требования к работе: работа выполняется в logisim.

Теоретическая часть

Карты Карно (см. рисунок 1) являются одним из способов задания логической функции. С их помощью можно минимизировать логическую функцию. В каждой ячейке карты записано значение функции для некоторого набора аргументов, например, на рисунке 1 в красной ячейке записано, что значение f(x3, x2, x1, x0) равно 1 при x3 = 0, x2 = 1, x1 = 1, x0 = 1. Таким образом, на карте Карно функция $f(x3, x2, x1, x0) = (\overline{x3} \land \overline{x2} \land \overline{x1} \land \overline{x0}) \lor (\overline{x3} \land \overline{x2} \land \overline{x1} \land \overline{x2} \land \overline{x1} \land \overline{x2} \land \overline{x1} \land \overline{x2} \land \overline{x1} \land \overline{x2} \land \overline{x2} \land \overline{x1} \land \overline{x2} \land \overline{x2} \land \overline{x2} \land \overline{x2} \land \overline{x3} \land \overline{x2$

f		x1x0			
		00	01	11	10
x3x2	00	1	1	0	1
	01	1	0	1	0
	11	1	0	0	0
	10	0	1	0	1

Рисунок №1 – Карта Карно для функции f(x3, x2, x1, x0)

Составим с помощью карты Карно минимальную дизъюнктивную нормальную форму (МДНФ) функции f. Для этого будем покрывать прямоугольниками те ячейки карты, которые содержат в себе единицу. Заметим, что длины сторон прямоугольников должны равняться степеням двойки (1, 2, 4, ...), при этом на каждом шаге необходимо выбирать больший прямоугольник, который содержит в себе наибольшее количество ещё не покрытых ячеек, содержащих единицу.

Выберем сначала оранжевый прямоугольник (см. рисунок 1), затем розовый. Далее можно выбрать синий прямоугольник, так как вверх и низ (а также левая и правая сторона) у карты Карно соединены между собой. По

той же причине выберем зелёный прямоугольник и, наконец, красный. После этого запишем каждый прямоугольник в виде конъюнкта, в котором будут указаны только те переменные, которые одинаковы для всех ячеек этого прямоугольника (переменные равные нулю возьмём с отрицанием). В нашем примере получится 5 конъюнктов: для оранжевого прямоугольника $-\overline{x3} \wedge \overline{x2} \wedge \overline{x1}$, розового $-\overline{x2} \wedge \overline{x1} \wedge \overline{x0}$, синего $-\overline{x2} \wedge x1 \wedge \overline{x0}$, зелёного $-\overline{x2} \wedge \overline{x1} \wedge x0$ и красного $-\overline{x3} \wedge x2 \wedge x1 \wedge x0$. Соединим полученные конъюнкты через дизъюнкцию и таким образом получим МДНФ для функции f:

$$f(x3, x2, x1, x0) = (x2 \lor \overline{x1} \lor \overline{x0}) \land (\overline{x2} \lor x1 \lor \overline{x0}) \land (\overline{x2} \lor \overline{x1} \lor x0) \land (\overline{x3} \lor x2 \lor x1 \lor x0) \land (\overline{x3} \lor \overline{x2} \lor \overline{x1})$$

С помощью карт Карно также можно получить СКНФ для заданной логической функции. Для этого нужно выбирать прямоугольники, содержащие нули, а вместо конъюнктов составлять дизъюнкты (в которых переменные, равные единице, необходимо взять с отрицанием). После соединения дизъюнктов через конъюнкцию и получится искомая СКНФ.

В заключение можно заметить, что карты Карно являются графическим упрощением для алгебраического метода минимизации логических функций, который основан на законах склеивания.

Практическая часть

Была задана вектор функция f(x3, x2, x1, x0) = (1110100101101000).

Задание 1.

Таблица №1 – Таблица истинности для функции f

x3	x2	x 1	x0	f
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0

Продолжение таблицы №1

0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Функция f, записанная в виде формулы (СДНФ):

 $f(x3, x2, x1, x0) = (\overline{x3} \wedge \overline{x2} \wedge \overline{x1} \wedge \overline{x0}) \vee (\overline{x3} \wedge \overline{x2} \wedge \overline{x1} \wedge x0) \vee (\overline{x3} \wedge \overline{x2} \wedge \overline{x1} \wedge \overline{x0}) \vee (\overline{x3} \wedge \overline{x2} \wedge \overline{x1} \wedge \overline{x0}) \vee (\overline{x3} \wedge \overline{x2} \wedge \overline{x1} \wedge \overline{x0})$

Задание 3.

СДНФ функции f:

 $f(x3, x2, x1, x0) = (\overline{x3} \wedge \overline{x2} \wedge \overline{x1} \wedge \overline{x0}) \vee (\overline{x3} \wedge \overline{x2} \wedge \overline{x1} \wedge x0) \vee (\overline{x3} \wedge \overline{x2} \wedge \overline{x1} \wedge \overline{x0}) \vee (\overline{x3} \wedge \overline{x2} \wedge \overline{x1} \wedge \overline{x0}) \vee (\overline{x3} \wedge \overline{x2} \wedge \overline{x1} \wedge \overline{x0})$

СКНФ функции f:

 $\frac{f(x3, x2, x1, x0) = (x3 \lor x2 \lor \overline{x1} \lor \overline{x0}) \land (x3 \lor \overline{x2} \lor x1 \lor \overline{x0}) \land (x3 \lor \overline{x2} \lor \overline{x1} \lor \overline{x0}) \land (x3 \lor \overline{x2} \lor \overline{x1} \lor \overline{x0}) \land (\overline{x3} \lor \overline{x2} \lor \overline{x1} \lor \overline{x0}) \land (\overline{x3} \lor \overline{x2} \lor \overline{x1} \lor \overline{x0})}{x0} \land (\overline{x3} \lor \overline{x2} \lor \overline{x1} \lor \overline{x0}) \land (\overline{x3} \lor \overline{x2} \lor \overline{x1} \lor \overline{x0})$

Задание 4.

Для построения схемы в СДНФ и СКНФ требуется одинаковое число элементов (56), поэтому схема составлена в СКНФ (см. «Листинг» файл 1).

Задание 5.

МДНФ функции f:

$$f(x3, x2, x1, x0) = (\overline{x3} \wedge \overline{x2} \wedge \overline{x1}) \vee (\overline{x2} \wedge \overline{x1} \wedge x0) \vee (\overline{x2} \wedge x1 \wedge \overline{x0}) \vee (x2 \wedge \overline{x1} \wedge \overline{x0}) \vee (\overline{x3} \wedge x2 \wedge x1 \wedge x0)$$

Карта Карно для получения МДНФ функции f представлена на рисунке 1.

МКНФ и карта Карно (см. таблица 2) для построения МКНФ функции f:

$$f(x3, x2, x1, x0) = (x2 \lor \overline{x1} \lor \overline{x0}) \land (\overline{x2} \lor x1 \lor \overline{x0}) \land (\overline{x2} \lor \overline{x1} \lor x0) \land (\overline{x3} \lor x2 \lor x1 \lor x0) \land (\overline{x3} \lor \overline{x2} \lor \overline{x1})$$

Таблица 2 – Карта Карно для построения МКНФ функции f

f		x1x0			
		00	01	11	10
x3x2	00	1	1	0	1
	01	1	0	1	0
	11	1	0	0	0
	10	0	1	0	1

Подробное описание построения МДНФ и МКНФ для заданной функции f было приведено в теоретической части.

Задание 6.

Для построения схемы в МДНФ и МКНФ требуется одинаковое число элементов (30), поэтому схема составлена в МКНФ (см. «Листинг» файл 2).

Листинг

Файл 1: СКНФ.сігс

Содержит логическую схему СКНФ функции f.

Файл 2: МКНФ.circ

Содержит логическую схему МКНФ функции f.