MIEInf 23 de Janeiro de 2019 [duração 2h]

Cálculo – Época de Exame

Nome completo::

Número::

Prova::

T2:: Teste 2

Justifique convenientemente todas as suas respostas.

1. (2 valores)

Considere a função polinomial $Q(x) = 3x^4 - 5x^2 + x + 1$.

- (a) Identifique o polinómio de Taylor de Q de ordem 3 em torno do ponto zero.
- (b) Escreva o polinómio Q em potências de (x-1).

2. (7 valores)

Responda a esta questão na folha de teste. Calcule cada um dos integrais.

$$(a) \int \frac{e^{2x}}{e^{2x} - 3} \, dx$$

(c)
$$\int x^2 \, \operatorname{sh}(2x) \, dx$$

(b)
$$\int \frac{6-x}{x(x^2+3)} \, dx$$

(d)
$$\int_1^2 \frac{1}{x(1+\ln x)^2} \, dx$$
 fazendo a substituição $t=\ln x$.

3. (5 valores)

Considere a região do plano definida por $D=\{(x,y)\in\mathbb{R}^2: x^2-2\leq y\leq |x|\,\}$.

(a) Apresente um esboço gráfico da região D.

(b) Calcule a medida da área da região D.

(c) Estabeleça um integral, ou a soma de integrais, que lhe permita calcular o perímetro da região D.

4. (4 valores)

Considere o seguinte integral

$$\int_{1}^{+\infty} x e^{-x^2} dx.$$

(a) Mostre que o integral é convergente.

(b) Determine a natureza da série $\sum_{n=1}^{+\infty} n \, e^{-n^2}$.

5. (2 valores)

Indique, justificando, se cada uma das afirmações seguintes é verdadeira ou falsa:

(a) Se $F:[0,1]\longrightarrow \mathbb{R}$ é uma primitiva da função $f:[0,1]\longrightarrow \mathbb{R}$ então F é uma função contínua.

(b) Se $f:[0,2] \longrightarrow \mathbb{R}$ é uma função integrável tal que $\int_0^1 f(x) dx = -1$ e $\int_1^2 f(x) dx = 2$ então f tem pelo menos um zero.

1. (6 valores)

Considere a função $f:]-5,8[\setminus \{-3,6\} \longrightarrow \mathbb{R}$ cujo gráfico está representado na figura.

(a) O que pode dizer sobre $\lim_{x \to a} f(x)$ quando a = -3, a = 0, a = 5 e

- (b) Indique, caso existam, os pontos de descontinuidade de f.
- (c) Indique, se existir, um ponto onde f seja derivável e um ponto onde f não seja derivável.
- (d) O que pode dizer sobre o sinal de f'(a) e de f''(a) quando a=-4, a=4?
- (e) Indique uma restrição de f a I, um intervalo à sua escolha, em que a função seja integrável mas não seja primitivável.
- (f) Qual o sinal de $\int_{-2}^{1} x f(x) dx$?

2. (3 valores)

Considere a função $f: D \longrightarrow \mathbb{R}$ definida por $f(x) = \ln(2 + \sin^9 x)$.

(a) Indique o domínio D da função f.

(b) Calcule a derivada da função f.

(c) Determine a equação da reta tangente ao gráfico de f em $(\pi/2, f(\pi/2))$.

3. (2 valores)

Responda a esta questão na folha de teste. Calcule, ou mostre que não existe, $\lim_{x \to 0} \frac{\operatorname{tg} x - x}{1 - \cos x}$.

4. (3 valores)

Responda a esta questão na folha de teste. Calcule cada um dos integrais indefinidos.

(a)
$$\int \frac{e^{2x}}{e^{2x}-3} \, dx$$

(b)
$$\int x^2 \, \operatorname{sh}(2x) \, dx$$

5. (4 valores)

Considere a região do plano definida por $D=\{(x,y)\in\mathbb{R}^2: x^2-2\leq y\leq |x|\,\}$.

(a) Apresente um esboço gráfico da região D.

(b) Calcule a medida da área da região D.

6. (2 valores)

Responda a esta questão na folha de teste. Estude a natureza de $\sum_{n=1}^{+\infty} \frac{n}{n^6+6}$.

FIM Exame