

UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO DCC606- ANALISE DE ALGORITMOS- 2025 PROF. DR. HEBERT OLIVEIRA ROCHA

CLEILLYSON OSMAR SOUZA DINIZ DE ALMEIDA SARAH EVELYN DO VALE DA SILVA

Geração de Cronogramas com Coloração Aproximada de Grafos

BOA VISTA, RR 2025

CLEILLYSON OSMAR SOUZA DINIZ DE ALMEIDA SARAH EVELYN DO VALE DA SILVA

Geração de Cronogramas com Coloração Aproximada de Grafos

Trabalho da disciplina de Análise de Algoritmos do ano de 2025.1 apresentado à Universidade Federal de Roraima do curso de Bacharelado em ciência da computação.

Docente: Prof. Dr. Hebert O. Rocha

BOA VISTA, RR 2025

LISTA DE ABREVIATURAS E SIGLAS

DSATUR Degree of saturation

SUMÁRIO

1.	Introdução	.5
	Algoritmos	
	Algoritmo Guloso	
2.1.1.	Pseudocódigo	.5
2.2.	Algoritmo Dsatur	.6
	Pseudocódigo	
	Avaliação Experimental	

1. Introdução

Coloração de grafos é uma técnica que consiste em aplicar cores aos vértices seguindo a regra de que dois vértices ligados por uma aresta não podem ter a mesma cor, a tarefa é usar a menor quantidade de cores, coloração de grafos pode ser usada em várias áreas mas o trabalho vai focar em resolver os problemas de conflitos em gerações de cronogramas.

2. Algoritmos

Foram implementados 2 algoritmos, um algoritmo guloso e um algoritmo DSatur os dois tem a mesma entrada. A primeira entrada é N que é o numero de vértices, as próximas entradas são U e V e são as arestas.

2.1. Algoritmo Guloso

Seu funcionamento é simples ele apenas checa a menor cor disponível, colore o vértice com essa cor e passa pro próximo, por percorrer ordenadamente o os vértices seus resultados são dependentes da ordem de inseção ele não vai garantir uma solução ótima mas é eficiente.

Sua complexidade é $O(V^2 + E) V$ é a quantidade de vértices e E é a quantidade de arestas.

2.1.1. Pseudocódigo

```
ALGORITMO ColoracaoGulosa(G: Grafo)
ENTRADA: G - grafo não direcionado com V vértices
SAÍDA: resultado[] - array com a cor de cada vértice
INÍCIO
  // Inicialização
  resultado ← array de tamanho G.numVertices inicializado com -1
  disponivel ← array de tamanho G.numVertices de booleanos
  // Colorir o primeiro vértice com cor 0
  resultado[0] \leftarrow 0
  // Colorir os vértices restantes
  PARA u ← 1 ATÉ G.numVertices-1 FAÇA
    // Marcar todas as cores como disponíveis
    PARA i ← 0 ATÉ G.numVertices-1 FAÇA
       disponivel[i] ← VERDADEIRO
    FIM PARA
    // Marcar cores dos vizinhos como indisponíveis
    atual ← G.listaAdjacencia[u]
    ENQUANTO atual ≠ NULO FAÇA
       vizinho ← atual.vertice
       SE resultado[vizinho] ≠ -1 ENTÃO
         disponivel[resultado[vizinho]] ← FALSO
       FIM SE
       atual ← atual.proximo
```

FIM ENQUANTO

```
// Encontrar primeira cor disponível
cor ← 0
ENQUANTO cor < G.numVertices E disponivel[cor] = FALSO FAÇA
cor ← cor + 1
FIM ENQUANTO

// Atribuir a cor ao vértice
resultado[u] ← cor

FIM PARA

RETORNAR resultado
FIM
```

2.2. Algoritmo Dsatur

Esse algoritmo também tem uma abordagem guloso mas é considerado um pouco mais sofistica pois além de usar apenas o grau ou a posição do vértice, também usa o conceito de grau de saturação. O grau de saturação é definido como o numero de cores diferentes atribuídas aos seus vizinhos.

O primeiro vértice que ele escolhe é o de maior grau e atribui a ele a primeira cor disponível. Depois vai buscar sempre o que tiver o maior grau de saturação e usa o grau do vértice como critério de desempate. E já que é um algoritmo guloso ele sempre vai atribuir a menor cor disponível.

2.2.1. Pseudocódigo

```
ALGORITMO DSatur Coloracao Grafo(G)
ENTRADA: Grafo G = (V, E) com n vértices
SAÍDA: Coloração válida do grafo usando o menor número de cores possível
INÍCIO
  // Inicialização
  cores[1..n] ← -1
                       // Nenhum vértice colorido inicialmente
  colorido[1..n] ← FALSO // Marca vértices já coloridos
  num_cores \leftarrow 0
                        // Contador de cores utilizadas
  // PASSO 1: Escolher vértice inicial (maior grau)
  v inicial ← vértice com maior grau em G
  cores[v inicial] \leftarrow 0
  colorido[v inicial] ← VERDADEIRO
  num cores ← 1
  vertices restantes ← n - 1
  // PASSO 2: Colorir vértices restantes usando critério DSatur
  ENQUANTO vertices restantes > 0 FAÇA
    // Encontrar próximo vértice pelo critério DSatur
    max saturacao ← -1
    max grau ← -1
    proximo vertice ← -1
```

```
PARA CADA v ∈ V FAÇA
      SE colorido[v] = FALSO ENTÃO
         sat ← Calcular_Grau_Saturacao(v, G, cores)
        grau ← Calcular_Grau(v, G)
         SE (sat > max saturação) OU
          (sat = max saturacao E grau > max grau) ENTÃO
           max saturacao ← sat
           max grau ← grau
           proximo vertice ← v
         FIM SE
      FIM SE
    FIM PARA
    // Encontrar menor cor disponível para o vértice escolhido
    cores_usadas[0..n] ← FALSO
    PARA CADA u adjacente a proximo vertice FAÇA
      SE cores[u] ≠ -1 ENTÃO
         cores usadas[cores[u]] ← VERDADEIRO
      FIM SE
    FIM PARA
    cor escolhida ← 0
    ENQUANTO cores_usadas[cor_escolhida] = VERDADEIRO FAÇA
      cor escolhida ← cor escolhida + 1
    FIM ENQUANTO
    // Colorir o vértice
    cores[proximo vertice] ← cor escolhida
    colorido[proximo vertice] ← VERDADEIRO
    vertices restantes ← vertices restantes - 1
    SE cor escolhida ≥ num cores ENTÃO
      num cores ← cor escolhida + 1
    FIM SE
  FIM ENQUANTO
  RETORNAR (cores, num cores)
FIM
FUNÇÃO Calcular Grau Saturacao(v, G, cores)
ENTRADA: Vértice v, Grafo G, Array de cores
SAÍDA: Grau de saturação do vértice v
INÍCIO
  cores_distintas ← conjunto vazio
  PARA CADA u adjacente a v FAÇA
    SE cores[u] ≠ -1 ENTÃO
      cores distintas ← cores distintas U {cores[u]}
    FIM SE
  FIM PARA
  RETORNAR |cores_distintas|
FIM
```

```
FUNÇÃO Calcular_Grau(v, G)
ENTRADA: Vértice v, Grafo G
SAÍDA: Grau do vértice v

INÍCIO
grau ← 0
PARA CADA u ∈ V FAÇA
SE (v,u) ∈ E ENTÃO
grau ← grau + 1
FIM SE
FIM PARA
RETORNAR grau

FIM
```

3. Avaliação Experimental

Foi usado como teste o a grade curricular do semestre de 2025.2 do curso de ciências da computação. Foram 16 matérias obrigatárias ofertadas no semestre, modelamos e colocamos para os algoritmos calcularem os horários. Ambos os algorítimos chegaram a 5 cores, mas o algoritmo guloso conseguiu agrupar melhor os resultados.

4. CONCLUSÃO

Os dois algoritmos não entregam a opção ótima mas ao menos o DSatur consegue entregar constantemente uma resposta aproximada de ótimo. A principal limitação é a entrada de dados, pois é preciso que as arestas sejam feitas previamente. Isso dificulta para usuários comuns.

REFERÊNCIAS

FRANKNBERGER, F. F.; BRANDL, M.; LEITE, M. ESTUDO SOBRE POSSÍVEIS SOLUÇÕES PARA O PROBLEMA DA COLORAÇÃO DE GRAFOS. Anais da Feira do Conhecimento Tecnológico e Científico , [S. I.], v. 1, n. 25, 2024. Disponível em: https://publicacoes.ifc.edu.br/index.php/fetec/article/view/6165

Karger, D., Motwani, R., Sudan, M. (1998). Approximate Graph Coloring by Semidefinite Programming.