Semiconductor memories

• • Semiconductor Memories

Some design issues:

- How many cells?
- Function?
- Power consuption ?
- Access type?
- How fast are read/write operations?

• • Semiconductor Memories

RWM		NVRWM	ROM
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed Programmable (PROM)
SRAM DRAM	FIFO LIFO Shift Register CAM	FLASH	

• • Architecture

Problem: ASPECT RATIO or HEIGHT >> WIDTH

• • Architecture: example

256 cells

32 bytes

2⁵ bytes

L=5

M = 8 K = 1 L-K=4

Blocks (≥ 1Mbit)

Advantages:

- 1. Shorter wires within blocks
- 2. Block address activates only 1 block => power savings

Area occupation

INTEL 2102 1Kx1bit SRAM 1972

• • Area occupation

Micron
1 Gbit DRAM
Today

Area occupation

Write/read cycles

• • Semiconductor Memories

Read cycle

• • SRAM & DRAM

• • Read-Write Memories (RAM)

STATIC (SRAM)

Data stored as long as supply is applied Large (6 transistors/cell)

Fast
Differential

DYNAMIC (DRAM)

Periodic refresh required Small (1-3 transistors/cell) Slower Single Ended

Basic Static Memory Element

- If D is high, \overline{D} will be driven low
 - · Which makes D stay high
- Positive feedback

6-transistor CMOS SRAM Cell

CMOS SRAM Analysis (Read)

CMOS SRAM Analysis (Read)

CMOS SRAM Analysis (Read)

$$CR = \frac{W_1/L_1}{W_5/L_5}$$

CMOS SRAM Analysis (Write)

• • 6 transistor SRAM : features

- 6 transistors cell (large number !)
- o nMOS and PMOS in the cell → wells
- o 5 lines: BL, BL, WL, VDD, GND
- Critical read driven by small cell transistors → increase access time

1-Transistor DRAM Cell (1T DRAM)

Write: C_S is charged or discharged by asserting WL and BL.

Read: Charge redistribution takes places between bit line and storage capacitance

$$\Delta V = V_{BL} - V_{PRE} = (V_{BIT} - V_{PRE}) \frac{C_S}{C_S + C_{BL}}$$

Voltage swing is small; typically around 250 mV.

Sense Amp Operation

• • DRAM Cell Observations

1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out.

DRAM memory cells are single ended in contrast to SRAM cells.

The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation.

When writing a "1" into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than $V_{\rm DD}$.

• • 1-T DRAM Cell

Used Polysilicon-Diffusion Capacitance Expensive in Area

Advanced 1T DRAM Cells

Trench Cell

Stacked-capacitor Cell

• • 1T DRAM Capacitors

• • Periphery

Decoders

Sense Amplifiers

Input/Output Buffers

Control / Timing Circuitry

• • Row Decoders

Collection of 2^M complex logic gates Organized in regular and dense fashion

(N)AND Decoder

$$WL_0 = A_0A_1A_2A_3A_4A_5A_6A_7A_8A_9$$

$$WL_{511} = A_0A_1A_2A_3A_4A_5A_6A_7A_8A_9$$

NOR Decoder

$$WL_{0} = \overline{A_{0} + A_{1} + A_{2} + A_{3} + A_{4} + A_{5} + A_{6} + A_{7} + A_{8} + A_{9}}$$

$$WL_{511} = \overline{A_{0} + \overline{A_{1}} + \overline{A_{2}} + \overline{A_{3}} + \overline{A_{4}} + \overline{A_{5}} + \overline{A_{6}} + \overline{A_{7}} + \overline{A_{8}} + \overline{A_{9}}}$$

4 input pass-transistor based column decoder

sadvantage: large transistor count

4-to-1 tree based column decoder

Number of devices drastically reduced

Delay increases quadratically with # of sections; prohibitive for large decoders

Solutions: buffers

progressive sizing

combination of tree and pass transistor approaches

• • Sense Amplifiers

Idea: Use Sense Amplifer

Differential Sensing - SRAM

(a) SRAM sensing scheme.

(b) Doubled-ended Current Mirror Amplifier

(c) Cross-Coupled Amplifier

• • Latch-Based Sense Amplifier

Initialized in its meta-stable point with EQ Once adequate voltage gap created, sense amp enabled with SE Positive feedback quickly forces output to a stable operating point.

Alpha-particles

1 particle ~ 1 million carriers

Paper on soft error

Alpha-particles

<Planar capacitor>

<Trench capacitor>

• • Yield

• • Dynamic Decoders

Dynamic 2-to-4 NOR decoder

2-to-4 MOS dynamic NAND Decoder

Propagation delay is primary concern

Differential Sensing - SRAM

Open bitline architecture

DRAM Read Process with Dummy Cell

• • Redundancy

Redundancy and Error Correction

