Partiel Optimisation

Gautier Poursin

19 mai 2020

Exercice 1:

Avec les données de l'énoncé, nous avons pu établir le tableau suivant:

	R1	R2	
P1	3	6	1200
P2	4	3	1000
	160	180	

Grace à ce tableau, nous avons défini le programme linéaire suivant:

$$\max_{x_1, x_2} f(x_1, x_2) = 1200x_1 + 1000x_2$$

$$S.C \left\{ \begin{array}{l} 3x_1 + 4x_2 \le 160 \\ 6x_1 + 3x_2 \le 180 \end{array} \right.$$

Pour démarrer l'algorythme du simplexe, nous allons tout d'abord transformer les inégalités en égalités, grâce à l'ajout de nouvelles variables x_3 et x_4 positives. On obtient :

$$S.C \begin{cases} 3x_1 + 4x_2 + x_3 = 160 \\ 6x_1 + 3x_2 + x_4 = 180 \end{cases}$$

La base initiale est donc la base suivante (x_3,x_4) . Pour démarrer l'algorithme, je vais pas utiliser la fonction $\max f(x_1,x_2)=1200x_1+1000x_2$ mais $\min f(x_1,x_2)=-1200x_1-1000x_2$. L'algorithme s'arrête lorsque nous obtenons que des valeurs positives dans la dernière ligne du tableau. Voici le tableau initial:

base	X1	X2	X3	X4		
Х3	3	4	1	0	= 1	160
X4	6	3	0	1	=	180
	-1200	-1000	0	0	=	0+z

Figure 1: Initialisation méthode du simplexe

 x_1 va rentrer en base car -1200 < -1000. La variable associée à $min(\frac{180}{6}, \frac{160}{3})$ sort de la base. Il s'agit de x_4 . Le pivot est donc 6.

base	X1	X2	Х3	X4		
Х3	3	4	1	0	= ;	160
X4	6	3	0	1		180
	-1200	-1000	0	0	=	0+z

Figure 2: x1 rentre, x4 sort

On effecue la méthode du pivot de gauss avec le pivot 6.

base	X1	X2	X3	X4		4
Х3	0	5/2	1	-1/2	=	70
X1	6	3	0	1	:=:	180
	0	-400	0	200	=	36000+2

Figure 3: Pivot de gauss

On divise la ligne x_1 par 6 afin d'avoir le pivot précédent égal à 1.

base	X1	X2	Х3	X4		
Х3	0	5/2	1	-1/2	=::	70
X1	1	1/2	0	1/6	=	30
	0	-400	0	200	= 1	36000+z

Figure 4: Simplification du pivot

Dans la dernière ligne, il y a une valeur négative associée à x_2 , il rentre donc en base. La variable associé à $min(\frac{70}{\frac{5}{2}},\frac{30}{\frac{1}{2}})$ sort de la base. Il s'agit de x_3 . Le pivot est donc $\frac{5}{2}$.

base	X1	X2	Х3	X4		
Х3	0	(5/2)	1	-1/2	=	70
X1	1	1/2	0	1/6	=	30
	0	-400	0	200	=	36000+

Figure 5: x2 rentre, x3 sort

On effectue le pivot de gauss par rapport au pivot $\frac{5}{2}$

base	X1	X2	Х3	X4		
Х3	0	5/2	1	-1/2	=	70
X1	1	0	-1/5	4/15	=	16
**	0	0	160	120	=	47200+z

Figure 6: pivot de gauss

base	X1	X2	X3	X4		
X2	0	1	2/5	-1/5	=	28
X1	1	0	-1/5	4/15	=0	16
	0	0	160	120	=	47200+z

Figure 7: Tableau final

La tableau obtenu ici possède que des coéfficients positifs ou nuls sur la dernière ligne donc l'algorithme est terminé! On a donc les résultats suivants: $minf(x_1, x_2) = -47200, x_1 = 16, x_2 = 28$. En revenant à notre problème initial, on a $maxf(x_1, x_2) = 47200$

Vérifions que les contraintes sont bien respectées pour $(x_1^*, x_2^*) = (16, 28)$. On a :

$$\begin{cases} 3x_1^* + 4x_2^* = 160 \\ 6x_1^* + 3x_2^* = 180 \end{cases}$$

Question 3:

Nous allons vérifier que les conditions de Karush-Kuhn-Tucker sont respectées:

$$\begin{cases} \nabla f + \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2 = 0 \\ \lambda_1 g_1(x_1^*, x_2^*) = 0 \\ \lambda_2 g_2(x_1^*, x_2^*) = 0 \\ \lambda_1, \lambda_2 > 0 \end{cases}$$

avec f(x,y) = -1200x - 1000y, $g_1(x,y) = 3x + 4y - 160$ et $g_2(x,y) = 6x + 3y - 180$. Tout d'abord, on remarque que g_1etg_2 sont saturés en (x_1^*, x_2^*) et $\nabla g_1(x_1^*, x_2^*)! = 0$,

 $\nabla g_2(x_1^*, x_2^*)! = 0$. Ainsi, les conditions d'indépendances linéaires sont satisfaites et donc les conditions de Kuhn-Tucker sont applicables.

On a, en dérivant selon x_1etx_2 :

$$\begin{cases}
-1200 + 3\lambda_1 + 6\lambda_2 = 0 \\
-1000 + 4\lambda_1 + 3\lambda_2 = 0 \\
\lambda_1, \lambda_2 > 0
\end{cases}$$

Après calcul, on obtient : $\lambda_1 = 160, \lambda_2 = 120$. On remarque que ces valeurs sont exactement les valeurs situées dans la dernière ligne du tableau obtenu avec la méthode du simplexe! Nos valeurs sont cohérentes.

La solution obtenue satisfait donc les conditions de Kuhn-Tucker. Vérifions les résultats obtenus avec le solveur d'Excel:

X	16		
У	28		
Z	47200		
c1	160	<=	160
c2	180	<=	180

Figure 8: Tableau final

Les résultats obtenus sont donc cohérents avec le solveur d'Excel!

Exercice 2:

Soit le problème Primal (**P**):
$$\min_{x,y,z} f(x,y,z) = \mathbf{x}^2 + y^2 + z^2$$

$$S.C \begin{cases} x+y+z = -2 \\ x^2+y^2+3z \leq \frac{-5}{2} \end{cases}$$

Question 1:

Soit la fonction duale : $\theta(\lambda,\mu) = \inf x^2 + y^2 + z^2 + \lambda(x+y+z+2) + \mu(x^2+y^2+3z+\frac{5}{2})$ Le problème de minimisation est convexe, donc nous cherchons simplement un point critique. En effet, il suffit de calculer le hessien de f $H_f(X)$ et remarqué qu'il est défini-positif.

Voici le hessien de f: $H_f(X) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

Ainsi, on a $\Delta_1 > 0$, $\Delta_2 > 0$, $\Delta_3 > 0$ donc la matrice est définie positive, quelque soit la valeur de X. Le point critique sera donc un minimum local strict ainsi qu'un minimum global!.

Par propriété, la fonction Θ est concave, et on cherche à la maximiser. Pour cela, on va tout d'abord déterminer les expressions de x, y et z en fonction de λ et μ . On dérive Θ par rapport a x, y, z puis on annule sa dérivé.

$$\begin{cases} \frac{\partial \theta}{\partial x} = 2x + \lambda + 2x\mu = 0\\ \frac{\partial \theta}{\partial y} = 2y + \lambda + 2y\mu = 0\\ \frac{\partial \theta}{\partial z} = 2z + \lambda + 3\mu = 0 \end{cases}$$

Exprimons x,y et z en fonction de λ et μ :

$$\begin{cases} 2x + \lambda + 2x\mu = 0 \\ 2y + \lambda + 2y\mu = 0 \\ 2z + \lambda + 3\mu = 0 \end{cases} \Leftrightarrow \begin{cases} x = \frac{-\lambda}{2(1+\mu)} \\ y = \frac{-\lambda}{2(1+\mu)} \\ z = \frac{-(3\mu+\lambda)}{2} \end{cases}$$

Nous exprimons maintenant θ en fonction de λ et μ , grâce aux expressions obtenus précédement :

$$\begin{split} \theta(\lambda,\mu) &= 2x^2 + z^2 + \lambda(2x + z + 2) + \mu(2x^2 + 3z + \frac{5}{2}) \\ &= 2x^2(1+\mu) + z^2 + 2 + \lambda z + 2\lambda + 3z\mu + \frac{5\mu}{2} \\ &= \frac{2\lambda^2(1+\mu)}{4(1+\mu)^2} + \frac{(3\mu+\lambda)^2}{4} - \frac{\lambda^2}{(1+\mu)} - \frac{\lambda(3\mu+\lambda)}{2} + 2\lambda + \frac{5\mu}{2} - \frac{3\mu(3\mu+\lambda)}{2} \\ &= \frac{\lambda^2}{2(1+\mu)} - \frac{\lambda^2}{(1+\mu)} + \frac{(3\mu+\lambda)}{2} (\frac{(3\mu+\lambda)}{2} - \lambda - 3\mu) + 2\lambda + \frac{5\mu}{2} \\ \theta(\lambda,\mu) \\ \text{Finalement}, \quad \Theta(\lambda,\mu) &= \inf(\frac{-\lambda^2}{2(1+\mu)} - \frac{(3\mu+\lambda)^2}{4} + 2\lambda + \frac{5\mu}{2}) \end{split}$$

Désormais, dérivons Θ par μ et λ puis on va chercher à annuler les dérivées puisque on cherche le maximum, qui existe bien que elle est concave :

$$\begin{cases} \frac{\partial \theta}{\partial \lambda} = \frac{-\lambda}{(1+\mu)} - \frac{(3\mu+\lambda)}{2} + 2 = 0\\ \frac{\partial \theta}{\partial \mu} = \frac{\lambda^2}{2(1+\mu)^2} - \frac{3(3\mu+\lambda)}{2} + \frac{5}{2} = 0 \end{cases}$$

Nous cherchons un point critique:

$$\begin{cases} \frac{-\lambda}{(1+\mu)} - \frac{(3\mu+\lambda)}{2} + 2 = 0\\ \frac{\lambda^2}{2(1+\mu)^2} - \frac{3(3\mu+\lambda)}{2} + \frac{5}{2} = 0 \end{cases}$$

Après résolution de ce système, nous obtenons ces valeurs pour λ et μ :

$$\lambda = \frac{5}{4} et \ \mu = \frac{1}{4}$$

On remarque que ces valeurs sont en accord avec les contraintes, puisque il est nécessaire d'avoir λ et μ positifs!

En réinjectant ces valeurs dans les expression de x,y et z, nous obtenons :

$$x = y = \frac{-1}{2} et z = -1$$

Nous allons vérifier si ces valeurs obtenues respectent les contraintes de l'énoncé. Nous avons x+y+z=-2 et $x^2+y^2+3z=\frac{-5}{2}$. Les contraintes sont donc respectées et on ne peut pas mieux les respecter! Elles sont saturées. Avec ces valeurs, nous obtenons $minf(x,y,z)=\frac{3}{2}$

Question 2:

Soit
$$\mathbf{X}^* = \begin{pmatrix} \frac{-1}{2} \\ \frac{-1}{2} \\ -1 \end{pmatrix}$$
 solution de (\mathbf{P}) .

Nous avons vu que f est convexe, et son hessien est défini-positif donc le minimum est bien un minimum local strict.

Verifions qu'il n'y a pas de saut de dualite ie $\Theta(\lambda^*, \mu^*) = f(X^*)$. Après calcul, nous avons bien : $\Theta(\frac{5}{4}, \frac{1}{4}) = f(\frac{-1}{2}, \frac{-1}{2}, -1) = \frac{3}{2}$. Le saut de dualité est donc nul.

Grâce au solveur d'excel, je me suis permis de vérifier mes calculs, voici la solution obtenue via le solveur d'excel:

X	-0,49997475		
У	-0,50002519		
z	-1,00000006		
Z	1,50000007		
c1	-2,50000025	<=	-2,5
c2	-2	=	-2,5 -2

Figure 9: Solveur d'Excel

Ces solutions sont donc en rapport avec les résultats obtenus par calculs!