Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ροή Λ, 8ο εξάμηνο

Εαρινό Εξάμηνο 2018 - 2019

Συστήματα και Τεχνολογίες Γνώσης Πρώτη Σειρά Ασκήσεων

Ονοματεπώνυμο Παπασκαρλάτος Αλέξανδρος

A.M. 03111097

<u>Ημερομηνία Υποβολής</u>: 24 Μαΐου 2019

Movτέλο I :

$$\Delta^{I} = \{a, b, c, d\}$$

 $A^{I} = \{a\}$
 $B^{I} = \{b\}$
 $R^{I} = \{(a,b), (a,c), (a,d)\}$

$$(β')$$
 $\exists R. A \sqcap \exists R. B \sqcap \forall R. (C \sqcup B)$ $\mu \beta \tau$. $T = \{B \sqsubseteq D, \exists R. (D \sqcup C) \sqsubseteq \forall R. \neg A\}$

Δεν υπάρχει μοντέλο.

<u>Απόδειξη</u>

Έστω $P \equiv \exists R. A \sqcap \exists R. B \sqcap \forall R. (C \sqcup B)$ Έστω ερμηνεία $<\Delta^{I}$, $I > \tau.ω. p ∈ P^{I}$.

Τότε με βάση τη σημασιολογία του τελεστή □ θα ισχύει ότι :

$$p \in (\exists R. A)^{I}$$

$$p \in (\exists R. B)^{I}$$

$$p \in (\forall R. (C \sqcup B))^{I}$$

$$(3)$$

Επίσης, σύμφωνα με το Τ_{box} έχουμε :

$$x \in B^{I} \Rightarrow x \in D^{I}$$
 (4)
 $x \in (\exists R. (D \cup C))^{I} \Rightarrow x \in (\forall R. \neg A)^{I}$ (5)

Η σχέση (5) υποδηλώνει πως αν ένα άτομο έχει R-παιδί κατηγορίας D ή C, τότε όλα τα R-παιδιά του είναι ¬ A, δηλαδή δεν έχει κανένα παιδί κατηγορίας A.

Από (1), αναγκαία υπάρχει a τ.ω. R(p, a) και a
$$\epsilon$$
 A $^{\rm I}$ (6) Από (2), αναγκαία υπάρχει b τ.ω. R(p, b) και b ϵ B $^{\rm I}$ (7) Από (4), (7), εφόσον το b ϵ B $^{\rm I}$, ισχύει πως b ϵ D $^{\rm I}$ (8) Από (7), (8), το p έχει R-παιδί κατηγορίας D (9) Από (5), (9), εφόσον το p έχει R-παιδί κατηγορίας D, άρα και (D $^{\rm U}$ C), το x δεν έχει R-παιδιά κατηγορίας A (10)

Από (6), (10), καταλήγουμε σε άτοπο, καθώς το p έχει R-παιδί κατηγορίας A (το a), αλλά ταυτόχρονα δεν έχει κανένα παιδί κατηγορίας A.

2.
$$(\alpha')$$
 D \Box B \subseteq A \qquad $\mu\beta\tau$. $T = \{B \subseteq A \sqcup C, D \subseteq \neg C\}$

Έστω μια ερμηνεία <Δ $^{\rm I}$, $^{\rm I}$ > του $^{\rm T}$ _{box}.

Από το T_{box} , έχουμε τα εξής :

$$x \in B^{I} \Rightarrow x \in (A \sqcup C)^{I} \Rightarrow x \in A^{I} \uparrow x \in C^{I}$$
 (1)
 $x \in D^{I} \Rightarrow x \in (\neg C)^{I} \Rightarrow x \notin C^{I}$ (2)

Η υπαγωγή θα ισχύει ανν για κάθε δυνατό μοντέλο <Δ $^{\rm I}$, $~{\rm I}$ > του ${\rm T}_{\rm box}$, ισχύει :

$$x \in (D \sqcap B)^{\mathrm{I}} \Rightarrow x \in A^{\mathrm{I}}$$

Έστω ένα τέτοιο μοντέλο και έστω p ϵ (B \sqcap D) $^{\rm I}$.

Τότε από τη σημασιολογία των τελεστών ϵ και □ προκύπτει ότι p ϵ B I και p ϵ D I .

Aπό (2), εφόσον $p ∈ D^{I}$, προκύπτει πως $p ∈ C^{I}$. (3)

Aπό (1), εφόσον $p \in B^{I}$, προκύπτει πως $p \in A^{I}$ ή $x \in C^{I}$. (4)

Από (3), (4), προκύπτει πως p ϵ A $^{\rm I}$.

Συνεπώς, η υπαγωγή ισχύει : D \sqcap B \sqsubseteq A.

$$(β')$$
 $C \sqsubseteq \neg C_1 \sqcup C_2$
 μ βτ. $T = \{C \sqsubseteq \exists R. (A \sqcap \exists R. B), \exists R. B \sqsubseteq D, \exists R. (A \sqcap D) \sqsubseteq \neg (C_1 \sqcap C_2)\}$

Η υπαγωγή δεν ισχύει.

 Ω ς απόδειξη, αρκεί να παρουσιάσουμε μια ερμηνεία-μοντέλο του T_{box} αντιπαράδειγμα, όπου δηλαδή δε θα ισχύει το $C \sqsubseteq \neg C_1 \sqcup C_2$.

$$\Delta^{I} = \{a, b, c\}$$
 $A^{I} = \{a\}$
 $B^{I} = \{b\}$
 $C^{I} = \{c\}$
 $C_{1}^{I} = \{c\}$
 $C_{2}^{I} = \emptyset$
 $D^{I} = \{a\}$
 $R^{I} = \{(c, a), (a, b)\}$

Πράγματι, ικανοποιούνται όλοι οι κανόνες του T_{box} , αλλά ενώ $c \in C^{\ \ I}$, ταυτόχρονα ισχύει πως $c \in C_1^{\ \ I}$ και $c \notin C_2^{\ \ I}$, δηλαδή $c \notin (\ \neg \ C_1 \sqcup C_2)^{\ \ I}$ και άρα $C \not\sqsubseteq \neg \ C_1 \sqcup C_2$.

$$\begin{split} & \Delta^{\ I} = \{\alpha_{1}, \, \alpha_{2}, \, \alpha_{3}, \, \alpha_{4}\} \\ & A^{\ I} = \{\alpha_{1}\} \\ & B^{\ I} = \{\alpha_{2}\} \\ & C^{\ I} = \{\alpha_{3}\} \\ & D^{\ I} = \{\alpha_{4}\} \\ & r^{\ I} = \{(\alpha_{1}, \, \alpha_{2}), \, (\alpha_{4}, \, \alpha_{3}), \, (\alpha_{4}, \, \alpha_{4})\} \\ & s^{\ I} = \{(\alpha_{1}, \, \alpha_{2}), \, (\alpha_{1}, \, \alpha_{3}), \, (\alpha_{2}, \, \alpha_{4})\} \end{split}$$

- i. $(∀ s. ∀ r. ⊥)^{⊥} = {α₁, α₃, α₄}$ Σημείωση : Για τα α₃, α₄ ισχύει "τετριμμένα" καθώς δεν έχουν s-παιδιά.
- ii. (\exists s. ($D \sqcup \exists r^-$. C)) $^{\text{I}} = \{\alpha_2\}$
- iii. ($\exists r. \exists s^-. \exists r)^{I} = \{\alpha_1, \alpha_4\}$
- iv. $(\forall r^-. \perp \neg (A \sqcup C))^T = \{\alpha_1\}$

```
C_1 \equiv \forall \ r. \ A \sqcap C \sqcap \forall \ r. \ \forall \ r. \ E \sqcap \forall \ r. \ B \sqcap E \sqcap \forall \ r. \ (A \sqcap B) \sqcap \forall \ r. \ \forall \ r. \ \forall \ s. \ D
C_2 \equiv \forall \ r. \ \forall \ r. \ \forall \ r. \ \forall \ s. \ (D \sqcap A) \sqcap E
```

Εκτελούμε τον αλγόριθμο δομικής επαγωγής FL_0 για να ελέγξουμε αν ισχύει $\mathsf{C}_1 \sqsubseteq \mathsf{C}_2$.

Μετατρέπουμε τις C_1 , C_2 σε κανονική μορφή.

$$\begin{array}{lll} C_1 & \equiv E \sqcap C \sqcap \forall \ r. \ (A \sqcap B) \sqcap \forall \ r. \ \forall \ r. \ E \sqcap \forall \ r. \ \forall \ s. \ D \\ & \equiv E \sqcap C \sqcap \forall \ r. \ (\ (A \sqcap B) \sqcap \forall \ r. \ (E \sqcap \forall \ s. \ D) \) \end{array}$$

$$C_2 \equiv \forall r. \forall r. \exists r. \forall r. \forall s. (D \sqcap A) \sqcap E$$

 $\equiv \exists \vdash \forall r. (\forall r. (\exists \vdash \forall s. (D \sqcap A)))$

i.
$$NC_1 = \{E, C\}$$

 $NC_2 = \{E\}$
 $RC_1 = \{r\}$

 $RC_2 = \{r\}$

ii.
$$X = A \sqcap B \sqcap \forall r. (E \sqcap \forall s. D)$$

 $Y = E \sqcap \forall r. (\forall r. (E \sqcap \forall s. (D \sqcap A)))$
 $NC_1 = \{A, B\}$
 $NC_2 = \emptyset$
 $RC_1 = \{r\}$
 $RC_2 = \{r\}$

iii.
$$X = E \sqcap \forall s. D$$

 $Y = E \sqcap \forall s. (D \sqcap A)$
 $NC_1 = \{E\}$
 $NC_2 = \{E\}$
 $RC_1 = \{s\}$
 $RC_2 = \{s\}$

iv.
$$X = D$$

 $Y = D \sqcap A$
 $NC_1 = \{D\}$
 $NC_2 = \{D, A\}$
 $RC_1 = \emptyset$
 $RC_2 = \emptyset$

Εδώ, στο βήμα (iv), βλέπουμε πως το A ϵ NC $_2$, αλλά A \notin NC $_1$. Συνεπώς, δεν ισχύει η ζητούμενη υπαγωγή, δηλαδή C $_1 \not\sqsubseteq C_2$.

<u>Δοθέντα</u>

Έννοιες : Άνθρωπος

Ρόλους : έχειΣύζυγο, έχειΠαιδί, έχειΑδερφό

Ορίζουμε τις εξής βοηθητικές έννοιες και ρόλους :

έχειΕγγόνι ≡ έχειΠαιδί ∘ έχειΠαιδί

ΈχωνΤέσσεραΕγγόνια $\equiv \ge 4$ έχειΕγγόνι $\sqcap \le 4$ έχειΕγγόνι $\subseteq 4$ έχειΑδελφό. $\subseteq 4$ έχειΑδελφό. $\subseteq 5$ έχειΑδελφό. $\subseteq 5$ έχειΑδελφό. $\subseteq 5$ έχειΑδελφό. $\subseteq 5$ έχει $\subseteq 5$

ΜοναδικόςΑδελφόςΑνύπαντρουΓονιούΜεΤέσσεραΕγγόνια ≡ έχειΑδελφο ¯. (ΈχωνΜοναδικόΑδελφό □ Γονιός □ ΈχωνΤέσσεραΕγγόνια)

Σημείωση :

Όπως δίνεται η έννοια, η σημασιολογία είναι διφορούμενη.

Παραπάνω ορίζω την έννοια, ως ότι ο Ανύπαντρος Γονιός έχει τα Τέσσερα Εγγόνια.

Αν αντ' αυτού, ζητείται η έννοια που αντιστοιχεί στο ότι ο Μοναδικός Αδελφός έχει τα Τέσσερα Εγγόνια, τότε ο ζητούμενος ορισμός είναι :

ΜοναδικόςΑδελφόςΑνύπαντρουΓονιούΜεΤέσσεραΕγγόνια ≡ έχειΑδελφο ¯. (ΈχωνΜοναδικόΑδελφό □ Γονιός) □ ΈχωνΤέσσεραΕγγόνια

Θεωρούμε ορισμένες τις παραπάνω βοηθητικές έννοιες και ρόλους και ορίζουμε και επιπλέον:

έχειΜηΠαιδί ≡ ¬ έχειΠαιδί

(δηλαδή έχειΜηΠαιδί(a,b) σημαίνει απλά πως το b δεν είναι παιδί του a)

έχειΔιαφορετικόΓονιόΜε ≡ έχειΓονιό ∘ έχειΜηΠαιδί

(δηλαδή έχειΔιαφορετικόΓονιό(a,b) σημαίνει απλά πως ο a έχει κάποιον διαφορετικό γονιό από τον b)

έχειΔιαφορετικόΓονιόΜεΤονΑδερφόΤουΤάδε ≡ έχειΔιαφορετικόΓονιό ∘ έχειΑδελφό

(δηλαδή έχει Δ ιαφορετικόΓονιόΜεΤον Δ δερφόΤουΤάδε(a,b) σημαίνει απλά πως \exists c, τ.ω. ο a έχει διαφορετικό γονιό από τον c και ο c έχει αδερφό τον b)

Ετεροθαλής Αδερφός Ε Ε έχει Διαφορετικό Γονιό Με Τον Αδερφό Του Τάδε. Self

(δηλαδή ΕτεροθαλήςΑδερφός(a) σημαίνει απλά πως ∃ b, τ.ω. ο a έχει διαφορετικό γονιό από τον b και ο b έχει αδερφό τον a, άρα οι a, b είναι αδέρφια αλλά έχουν διαφορετικό γονιό)

ΕτεροθαλήςΑδελφόςΧωρίςΠαντρεμέναΕγγόνια ≡ ΕτεροθαλήςΑδελφός □ ∀ έχειΕγγόνι. Ανύπαντρος

Συνολικά η βάση γνώσης έχει τα εξής:

```
Άνθρωπος
έχειΣύζυγο
έχειΠαιδί
έχειΑδερφό
έχειΕγγόνι ≡ έχειΠαιδί ∘ έχειΠαιδί
ΈχωνΤέσσεραΕγγόνια \equiv \geq 4 έχειΕγγόνι \sqcap \leq 4 έχειΕγγόνι
ΈχωνΜοναδικόΑδελφό \equiv \exists έχειΑδελφό.Τ \sqcap \leq 1 έχειΑδελφό.Τ
Ανύπαντρος ≡ ∀ έχειΣύζυγο. ⊥
Γονιός ≡ ∃ έχειΠαιδί.Τ
ΜοναδικόςΑδελφόςΑνύπαντρουΓονιούΜεΤέσσεραΕγγόνια ≡
έχειΑδελφο ¯. (ΈχωνΜοναδικόΑδελφό □ Γονιός □ ΈχωνΤέσσεραΕγγόνια)
(ή ανάλογα με το τι θέλει να πει ο ποιητής, όπως εξηγώ παραπάνω :
ΜοναδικόςΑδελφόςΑνύπαντρουΓονιούΜεΤέσσεραΕγγόνια ≡
έχειΑδελφο -. (ΈχωνΜοναδικόΑδελφό ΠΓονιός) ΠΈχωνΤέσσεραΕγγόνια
)
έχειΜηΠαιδί ≡ ¬ έχειΠαιδί
έχειΔιαφορετικόΓονιόΜε ≡ έχειΓονιό ο έχειΜηΠαιδί
έχειΔιαφορετικόΓονιόΜεΤονΑδερφόΤουΤάδε ≡ έχειΔιαφορετικόΓονιό ∘ έχειΑδελφό
```

Ετεροθαλής Αδερφός Ε Ε έχει Διαφορετικό Γονιό Με Τον Αδερφό Του Τάδε. Self