ET0023 Operating Systems

2: Computer Systems Overview

Generic x86 CPU System

- CPU
- Fast Memory Buses (Memory, Video)
 - Northbridge handles High Speed Ops
 - Southbridge handles Slower I/O
- Medium speed interfaces for Networking, USB, Hard-disk, DVD/CD Storage
- Slow speed mouse, keyboard and legacy I/O

The CPU

U

- Central Processing Unit built using VLSI
- Contains ALU, Registers, Program Counter, Control.
- Executes machine instructions, maintains the "heartbeat" of the system, controls operations
- Driven by a clock/pulse generator
- Each instruction completes in "X" clock cycles

http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/CPU/Lesson.html

CPU Internal structures

- Address
 - Program Instruction Counter
 - Address pointers
- Memory
 - Registers
 - Stack Pointer
- ALU (Arithmetic Logic Unit)
 - Program Status Word
- Pipelined architectures

Fetch Execute Cycle

- CPU fetches instructions from memory, decodes and executes them
- Each CPU has specific set of instructions that it can execute
- CPU speed is measured based on the speed of executing instructions

3. Instruction Decode/Execute

- CPU decodes the instruction based on the Functional Unit/Microcode
- CPU "Executes"
 - Perform an internal operation
 - Read another data
 - Write data
- Buses are NOT used during this period

Examples: Instruction

- Intel x86 Instruction set
 - -JMP 300
 - MOV AX, 940
 - ADD AX, 941
 - MOV 941, AX
 - -IN

http://en.wikibooks.org/wiki/X86 Assembly/X86 Family

Program Execution

Operating Systems: Internals & Design Principles William Stallings

Figure 1.4 Example of Program Execution (contents of memory and registers in hexadecimal)

Memory Hierarchy

Typical capacity Typical access time Register 1 nsec <1 KB 2 nsec Cache 4 MB 512 MB - 16 MB 10 nsec Main Memory 500 GB - 2 TB 10 msec Magnetic Disk 500 GB - 4 TB 100 msec Magnetic Tape

What is the cost per GB for a typical 1TB HDD?

Prof. Carver A. Mead: Moore's Law: The amount of transistors that can be placed on the same amount of silicon doubles every two years.

Memory

- Registers
 - Made of same material as the CPU thus just as fast
 - CISC vs RISC systems
- Cache Memory
 - High speed memory
 - As RAM is accessed in row format, stores row(s) of memory
 - Highly likelihood that next access is in the row
 - Cache Miss / Cache Hit

Memory

- RAM (Random Access Memory)
 - Usually dynamic/refreshed memory
 - Fast, large amounts of memory storage
- ROM (Read Only Memory)
 - Stores the startup/bootstrap program of the system
 - Stores BIOS/System Hardware routines
- EEPROM (Electrically Erasable ROM)
 - Able to be electrically erased and re-written
 - Allows flexibility in updating systems

Magnetic Storage Terms

- A disk consists of one or more metal/glass platters which may be accessed on 1 or 2 surfaces.
- Each platter is divided into a number of concentric tracks.
- A cylinder is made up of a track on each of the platters at the same horizontal position.
- Each track is divided into sectors which usually hold 512 bytes of user data.
- Outside tracks (OD)may hold more information than inside tracks (ID) on a platter.
- The platters spin at a high speed measured in RPM.
- Seek time is the time taken for the Read/Write head to move from one track to another for information.
- The amount of data that the drive can read/write per second is known as the data access rate.

Sectors and tracks

 Data is stored on the surface of a platter in sectors along the tracks.

• Tracks are *concentric* circles on imaginary) the disk.

 And sectors are part portion of a track.

25

Typical Hard Disk Parameters

Drive Specification	ST31000524AS
Formatted capacity (512 bytes/sector)*	1000GB
Guaranteed sectors	1,953,525,168
Heads	4
Disks	2
Bytes per sector	512
Default sectors per track	63
Default read/write heads	16
Default cylinders	16,383
Recording density (max)	1413kb/in
Track density (avg)	236 ktracks/in
Areal density (avg)	329Gb/in ²
Spindle speed	7200 RPM
Internal data transfer rate (max)	1695Mb/s
Sustained data transfer rate OD (max)	125MB/s
I/O data-transfer rate (max)	600MB/s
ATA data-transfer modes supported	
Cache buffer	32MB

Tape Drives

- IBM Total Storage
 LTO Ultrium
 ANNER Bear Cartridge
 Bear Cartridge
- Backup medium for Hard Disk storage
- Holds large data sets
- Full/Incremental backups
- Storage is serial, may need operations to move to the correct locations
- Current Technology: LTO 3/4
- Capacities: 400GB-1.5TB @ 140MB/s

Polling

- Check each device in turn for status
- If service required, check the device
- Keeping doing the operation
- Easy to implement using software
- Hard to manage priorities

Interrupts

- Normal operations progress
- When device requires service, it sends a hardware request to the CPU
- CPU completes current instruction
- CPU saves the status of operations
- CPU determines who has interrupted and services device
- CPU restores old status

Interrupt Strategies

- Interrupt request: Hardware/Software
- Need to determine who has interrupted
- How do we save the status?
- What do we need to save?
- Which Service routine do we execute?
- How do we return from the service routine?
- How do we restore the status?

Direct Memory Access

- Allows access to the system memory without CPU intervention.
- Specific hardware is used to transfer data from I/O device to Memory (DMA controller)
- Advantages: Overcomes slow I/O operations from the CPU
- Uses: Storage data transfers, Network transfers
- Main techniques:
 - Cycle Stealing
 - Block DMA requests
 - Transparent mode

User Interface

- Command Line Interface (CLI)
 - Command interpreter
 - Shells
 - Text input, can be scripted
- Graphical User Interface (GUI)
 - Windows, Gnome, KDI
 - Heavy use of memory and I/O
 - Keyboard, mouse, touch

Application Progg Interfaces (API)

- Functions, library for usage of the interface
- APIs provide libraries for
 - System calls, routines, transfers
 - Graphics
- Makes development of software
 - Consistent with the OS
 - Better controlled
 - Easier for the programmer

QUESTIONS