Chapter 36: The Max location problem.

In which we also apply Searching by Elimination.

Let g[M..N] be an array of int $\{M \le N\}$. We are asked to find the location of the largest element in g.

We shall apply the searching by elimination algorithm. We begin by defining F

* (0) F.x =
$$\langle \forall i :: g.i \leq g.x \rangle$$

We can now specify our problem as follows.

Pre:
$$\langle \exists k : M \le k \le N : F.k \rangle$$

Post: F.x

We now calculate our guards

F.a
$$\Rightarrow$$
 F.b
= {definition of F}
 $\langle \forall i :: g.i \le g.a \rangle \Rightarrow \langle \forall i :: g.i \le g.b \rangle$
 \Leftarrow { \leq transitive}
g.a \leq g.b

By symmetry, $(F.b \Rightarrow F.a) \leftarrow g.b \leq g.a$

; x := a

And thus, using the symmetric linear search, we arrive at our finished program

$$a, b := M, N$$

 $;do \ a \neq b \rightarrow \qquad \{M \leq a < b \leq N\}$
 $if \ g.a \leq g.b \rightarrow a := a+1$
 $[] \ g.b \leq g.a \rightarrow b := b-1$
 fi