GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
	Diseño de Algoritmos	

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Propedéutico		120
	ANTECEDENTE	TIPO
	Ninguno	Teórico-Práctica

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA El alumno aprenderá a resolver problemas de forma algorítmica.

	CARGA POR UNIDAD EN HORAS			
UNIDADES	TEORIA	PRACTICA	TOTAL	OBJETIVOS POR UNIDAD

1. Introducción	5	15	20	Planteamiento, análisis, y solución de problemas matemáticos y lógicos.
2. Algoritmos	10	0	10	Conocer el concepto y el uso de los algoritmos.
3. Diagramas de flujo	10	0	10	Conocer el concepto y el uso de los diagramas de flujo, para representar la solución de problemas.
4. Herramienta de simulación de diagramas de flujo	0	20	20	Manejar una herramienta para la construcción y ejecución de diagramas de flujo.
5. Pseudocódigo	10	0	10	Conocer el concepto y el uso del pseudocódigo.
6. Herramienta de simulación de pseudocódigo	0	20	20	Manejar una herramienta para la construcción y ejecución de pseudocódigo.
7. Introducción a los lenguajes de programación	10	0	10	Conocer las características de los lenguajes de programación.
8. Uso de un lenguaje interpretado de programación estructurada		20	20	Que el alumno se familiarice con el corparadigma de programación estructurada.

	TEMAS Y SUBTEMAS	TAXONOMIA
1.	Introducción	Conocimiento
	1.1. Planteamiento, análisis y representación de datos para problemas lógicos y matemáticos.1.2. Metodología para la solución de problemas por medio de una computadora.	
2.	Algoritmos	Conocimiento
	2.1. Definiciones.2.2. Propiedades de los algoritmos.2.3. Análisis y modelado del problema.2.4. Diseño del algoritmo.2.5. Pruebas de escritorio.	
3.	Diagramas de flujo	Conocimiento
	3.1. Definiciones.3.2. Elementos de un diagrama de flujo.3.3. Variables y constantes.3.4. Estructuras de control.	,
4.	Herramienta de simulación de un diagrama de flujo.	Aplicación
	4.1. Introducción a la herramienta.4.2. Elementos de la herramienta.	, p. 100000
5.	Pseudocódigo	Conocimiento
	 5.1. Definiciones. 5.2. Tipos de datos. 5.3. Variables y constantes. 5.4. Estructuras de control. 5.5. Arreglos. 5.6. Modularidad. 	
6.	Herramienta de simulación de pseudocódigo.	Aplicación
	6.1. Introducción a la herramienta.6.2. Elementos de la herramienta.	
7.	Introducción a los lenguajes de programación.	Conocimiento
	7.1. Concepto de lenguaje de programación.7.2. Clasificación de los lenguajes de programación.7.3. Paradigmas de programación.7.4. Casos de estudio.	
8.	Uso de un lenguaje interpretado de programación estructurada	Aplicación
	8.1. Definiciones.8.2. Variables y constantes.8.3. Estructuras de control.8.4. Casos de estudio.	Labor et Sapundo Liberta
		Chun quina Tiaba uhi Nilian
		JEBATUBA DE CARRERA INGENIERIA EN COMPUTACIO

ACTIVIDADES DE APRENDIZAJE El profesor expondrá su clase a los alumnos de forma oral y utilizando los medios audiovisuales

disponibles en el Aula o Sala de Cómputo. Los alumnos deberán realizar conversiones entre sistemas numéricos (decimal, binario, octal y

hexadecimal), así como el resto de tareas asignadas por el profesor.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN La calificación final será el promedio de dos evaluaciones parciales (50% cada una). Para cada evaluación se tomaran en cuenta un examen escrito (60%) y tareas (40%).

BIBLIOGRAFÍA BÁSICA.

- Luis Joyanes Aguilar, "Fundamentos de Programación", ISBN: 84-481-3664-0, McGraw-Hill
 - Osvaldo Cairo, "Metodología de la programación", ISBN: 970-10-0258-X, Alfaomega
- Guzmán-Padilla-Gómez, "Gira-Izquierda", Segunda Edición.

BIBLIOGRAFÍA DE APOYO:

- - Malba Tahan, "El hombre que calculaba", ISBN: 987-1021-60-7, Editorial: Pluma Y Papel
 - Rosa Guerequeta y Antonio Vallecillo "Técnicas de Diseño de Algoritmos", Servicio de
- Publicaciones de la Universidad de Málaga. 2ª. Ed. 2000, ISBN: 84-7496-666-3
- Richard Neapolitan, Kumarss Naimipour, "Foundations of Algorithms", Jones and Bartlett
- Publishers, 2009.
- - Doris Appleby, y Julius VandeKopple, "Lenguajes de programación: paradigma y práctica", ISBN 9789701019450, McGraw-Hill Interamericana, 1998.
 - Terrence W. Pratt, Marvin V. Zelkowitz, "Lenguajes de programación: diseño e implementación", Prentice-Hall Hispanoamericana, 3 ed., 1998
 - Ravi Sethi, "Lenguajes de programación: conceptos y constructores", Addison-Wesley Iberoamericana, 1992
- URL's KAREL
 - http://www.omijal.org/pagina karel/manual basico.pdf
 - http://www.omijal.org/pagina karel/problemarios.html
 - http://www.olimpiadadeinformatica.org.mx/OMI/Problemas/Problemas 2013.aspx
 - http://www.olimpiadadeinformatica.org.mx/OMI/OMI/Material/Karel el Robot.aspx **PSEINT**
 - http://pseint.sourceforge.net/
 - PROBLEMAS LÓGICOS Y MATEMÁTICOS http://www.omijal.org/pagina log/problemarios.html
- http://www.omijal.org/pagina log/links.html
- http://platea.pntic.mec.es/~jescuder/fra prob.htm
- Maestría en Computación o Maestría afín.

PERFIL PROFESIONAL DEL DOCENTE

