Теоремы о зависимости решения от начальных данных

Сегодня мы затронем вопросы зависимости решения по Каратеодори от начальных данных, а именно исследуем непрерывность и дифференцируемость.

Рассмотрим следющую задачу Коши:

$$\begin{cases} \dot{x}(t) = g(t, x(t)), \\ x(t_0) = x^0, \end{cases}$$
 (3K)

её решение будем обозначать $x[t] = x(t, t_0, x^0)$.

Вопрос 1: когда $x(t, t_0, x^0)$ непрерывна по (t, t_0, x^0) ? Отдельно по t решение x[t] всегда непрерывно по определению решения (ЗК).

Вопрос 2: когда $x(t,t_0,x^0)$ дифференцируема по x^0 , а $\frac{\partial x}{\partial x^0}(t,x,x^0)$ непрерывна по (t,t_0,x^0) .

Для линейных систем всё просто: если $\dot{x}(t) = A(t)x(t) + c(t)$, то

$$x(t) = X(t, t_0)x^0 + \int_{t_0}^{t} X(t, s)c(s)ds.$$

Поскольку $X(t,t_0)$ непрерывна, ответ на первый вопрос «да». А что с дифференцируемостью? Обозначим

$$Y[t] = \frac{\partial x(t)}{\partial x^0} = X(t, t_0),$$

решение этого матричного дифференциального уравнения:

$$Y[t] = Y(t, t_0, x^0).$$

Если мы его продифференцируем, получим

$$\begin{cases} \frac{dY}{dt} = A(t)Y[t], \\ Y[t_0] = E, \end{cases}$$

то есть здесь всё снова следует из общего вида решения. Для систем общего вида:

• Вопрос 1 — ответ «да» (при накладываемых условиях на g(t,x));

• Вопрос 2 — ответ «да» при условии, что существует $\exists \frac{\partial g}{\partial x}$ измерима по t и непрерывна по x.

Продифференцируем $\dot{x}[t] = g(t,x[t])$ по x^0 :

$$\frac{\partial}{\partial x^0} \left(\frac{\partial x(t, t_0, x^0)}{\partial t} \right) = \frac{\partial}{\partial x^0} \left(g(t, x(t, t_0, x^0)) \right),$$

$$\frac{\partial}{\partial t} \left(\frac{\partial x(t, t_0, x^0)}{\partial x^0} \right) = \frac{\partial g}{\partial x} \frac{\partial x}{\partial x^0}.$$

Вновь обозначив $Y[t] = \frac{\partial x}{\partial x^0}$, получим уравнение в вариациях:

$$\frac{\partial Y[t]}{\partial t} = \frac{\partial g(t, x[t])}{\partial x} Y[t],$$

начальное условие снова

$$Y[t_0] = E.$$

Помимо тех теорем, которые будут рассмотрены сегодня, существуют также и более общие, например, теорема Понтрягина о зависимости от параметра μ , но они нам в курсе не понадобятся.

1 Непрерывность

Мы сформулируем частный случай теоремы о непрерывной зависимости.

Будем предполагать, что

$$g: [T_0, T_1] \times \mathbb{R}^n \to \mathbb{R}^n, -\infty \leqslant T_0 < T_1 \leqslant +\infty.$$

Кроме того, мы будем накладывать на g(t,x) следующие ограничения (\star) :

- 1. g(t,x) измерима по $t \in [T_0,T_1]$ для всех $\forall x \in \mathbb{R}^n$, g(t,x) непрерывна по x для п. в. $\dot{\forall} t \in [T_0,T_1]$;
- 2. $\exists L = const > 0$: $||g(t, x') g(t, x'')|| \leqslant L ||x' x''||$ для всех $\forall x', x'' \in \mathbb{R}^n$ и п. в. $\forall t \in [T_0, T_1]$;
- 3. $\exists A, B = const, A > 0, B > 0$: $\|g(t,x)\| \leqslant A \|x\| + B$ для всех $\forall x \in \mathbb{R}^n$ и п.в. $\dot{\forall} t \in [T_0,T_1]$.

Пусть $T_0 < \tau < T_1$. Мы будем рассмтривать чуть более общий вид системы:

$$\dot{x}(t) = g(t, x(t)),\tag{1}$$

$$x(\tau) = \xi,\tag{2}$$

где $\tau \in (T_0, T_1)$.

Определение 1. Функция $y(\cdot)$ называется ε -решением (1), если $y(\cdot) \in AC([\tau_0, \tau_1, \mathbb{R}^n])$ и $\|\dot{y}(t) - g(t, y(t))\| \leq \varepsilon$ для $n. \ 6. \ \forall t \in [\tau_0, \tau_1].$

Лемма 1. Пусть $y^1(\cdot) - \varepsilon_1$ -решение (1), а $y^2(\cdot) - \varepsilon_2$ -решение (1), при этом $\varepsilon_1, \varepsilon_2 \geqslant 0$, y^1, y^2 определены на $[\tau_0, \tau_1]$, $T_0 < \tau_0 < \tau < \tau_1 < T_1$ и $||y^1(\tau) - y^2(\tau)|| \leqslant \delta$. Тогда

$$||y^{1}(t) - y^{2}(t)|| \le \delta \mathbf{e}^{L|t-\tau|} + \frac{\varepsilon}{L} (\mathbf{e}^{L|t-\tau|} - 1),$$

 $e \partial e \varepsilon = \varepsilon_1 + \varepsilon_2 \geqslant 0, \ \tau_0 < t < \tau_1.$

Доказательство. Рассмотрим две функции

$$z^{j}(t) = \dot{y}^{j}(t) - g(t, y^{j}(t));$$

 $||z^j(t)|| \leqslant \varepsilon_j$ для п. в. $\dot{\forall} t$.

Очевидно, что $z^j(\cdot)$ — измеримы. Имеем:

$$y^{j}(t) - y^{j}(\tau) - \int_{-\infty}^{t} g(s, y^{j}(s))ds = \int_{-\infty}^{t} z^{j}(s)ds.$$

Вычтем одно равенство из другого:

$$(y^1(t) - y^2(t)) - (y^1(\tau) - y^2(\tau)) -$$

$$-\int_{\tau}^{t} \left[g(s, y^{1}(s)) - g(s, y^{2}(s)) \right] ds = \int_{\tau}^{t} \left[z^{1}(s) - z^{2}(s) \right] ds.$$

Обозначим $\Delta y(t) = y^1(t) - y^2(t), \, r(t) = \|\Delta y(t)\|,$ тогда

$$r(t) \leqslant r(\tau) + L \int_{\min(t,\tau)}^{\max(t,\tau)} r(s)ds + \varepsilon |t - \tau|.$$
 (3)

Не ограничивая общности, будем предполагать $t > \tau$. Обозначим $\dot{R}(t) = r(t)$, тогда, в силу условия $r(\tau) \leqslant \delta$, получим:

$$\dot{R}(t) - LR(t) \le \delta + \varepsilon(t - \tau).$$

Домножая на e^{-Lt} , получим

$$\frac{d}{dt} \left(Re^{-Lt} \right) \leqslant (\delta + \varepsilon(t - \tau))e^{-Lt}.$$

Проинтегрировав на отрезке времени от τ до t, получим

$$R(t)e^{-Lt} - R(\tau)e^{-L\tau} \leqslant \frac{\delta}{L} \left(e^{L\tau} - e^{-Lt} \right) - \frac{\varepsilon\tau}{L} \left(e^{-L\tau} - e^{-Lt} \right) + \frac{\varepsilon}{L} \left(\tau e^{-L\tau} - t e^{-Lt} \right) + \frac{\varepsilon}{L^2} \left(e^{-L\tau} - e^{-Lt} \right).$$

Домножим всё на \mathbf{e}^{Lt} , получим:

$$R(t) \leqslant \frac{\delta}{L} \left(\mathbf{e}^{L(t-\tau)} - 1 \right) - \frac{\varepsilon}{L} (t-\tau) + \frac{\varepsilon}{L^2} \left(\mathbf{e}^{L(t-\tau)} - 1 \right).$$

Это неравенство можно подставить в оценку (3) (за R(t) мы обозначили интеграл, стоящий справа от знака неравенства):

$$r(t) \leqslant \delta + \delta \left(\mathbf{e}^{L(t-\tau)} - 1 \right) + \varepsilon \left(\frac{\mathbf{e}^{L(t-\tau)} - 1}{L} - (t-\tau) + (t-\tau) \right).$$

Приводя слагаемые, получим оценку из условия леммы.

Рассмотрим $x(t, \tau, \xi)$ — решение (1), (2).

Теорема 1. Пусть выполнены условия (*). Тогда в области $(T_0, T_1)^2 \times \mathbb{R}^n$ решение $x(t, \tau, \xi)$ непрерывно.

Доказательство. Обозначим $V=(T_0,T_1)^2\times\mathbb{R}^n$. Рассмотрим последовательность:

$$x^{(0)}(t, \tau, \xi) = y[t] + \xi - y[\tau],$$

где $y[t] = x(t, t_0, x^0)$ для некоторого t_0 : $T_0 < t_0 < T_1$.

$$y[t] = y[\tau] + \int_{-\infty}^{t} g(s, y[s]) ds.$$

Для $k \in \mathbb{N}$ определим

$$x^{(k)}(t,\tau,\xi) = \xi + \int_{\tau}^{t} g(s, x^{(k-1)}(s,\tau,\xi)) ds.$$

Тогда

$$||x^{(0)}(t,\tau,\xi) - y[t]|| = ||\xi - y[\tau]||,$$

$$||x^{(1)}(t,\tau,\xi) - x^{(0)}(t,\tau,\xi)|| =$$

$$= \left\| \int_{\tau}^{t} \left[g\left(s, x^{(0)}(s,\tau,\xi) \right) - g(s,y[s]) \right) \right| ds \le$$

$$\le L ||\xi - y[\tau]|| |t - \tau|.$$

Для произвольного $k \in \mathbb{N}$:

$$||x^{(k+1)}(t,\tau,\xi) - x^{(k)}(t,\tau,\xi)|| \le \frac{L^{k+1}|t-\tau|^{k+1}}{(k+1)!} ||\xi - y[\tau]||,$$

т. е.

$$||x^{(k+1)}(t,\tau,\xi) - x^{(k)}(t,\tau,\xi)|| \to 0$$

при $k \to \infty$, причём равномерно на любом $\forall K$ — компакте из V. Значит, $x^{(k)}$ равномерно сходится на нём (в силу сходимости в C).

Тогда имеем:

$$\begin{split} & \left\| x^{(k)}(t,\tau,\xi) - y[t] \right\| \leqslant \left\| x^{(k)}(t,\tau,\xi) - x^{(k-1)}(t,\tau,\xi) \right\| + \\ & + \left\| x^{(k-1)}(t,\tau,\xi) - y[t] \right\| \leqslant \{\text{ряд Тейлора}\} \leqslant \mathbf{e}^{L|t-\tau|} \left\| \xi - y[\tau] \right\|. \end{split}$$

 Т. к. $x(t,\tau,\xi) = \xi + \int\limits_{\tau}^{t} g(s,x(s,\tau,\xi)) ds,$ то
$$x^{(k)}(t,\tau,\xi) \Longrightarrow x(t,\tau,\xi), \ k \to \infty$$

и выполняется оценка

$$||x(t,\tau,\xi) - y[t]|| \le e^{L|t-\tau|} ||\xi - y[\tau]||.$$

Из непрерывности y[t] (в силу (\star)) следует непрерывность $x^{(k)}(t,\tau,\xi)$, а значит, и непрерывность $x(t,\tau,\xi)$.

Следствие 1. $x(t,\tau,\cdot)$ является гомеоморфизмом (топологическое отображение), т. е. $x(t,\tau,\cdot)\colon \mathbb{R}^n \to \mathbb{R}^n$ взаимно однозначное, непрерывное и обратно непрерывное отображение:

$$x^{-1}(t,\tau,\cdot) = x(\tau,t,\cdot).$$

Следствие 2.

$$\begin{cases} \dot{x}(t) = f(t, x(t), u(t)), \\ x(t_0) = x^0, \quad u(t) \in \mathscr{P}(t). \end{cases}$$

 $\mathscr{X}[t]=\mathscr{X}(t,t_0,x^0)$. Тогда если $\xi\in int\mathscr{X}[\tau]$, то $\forall t>\tau$, $\forall u(\cdot)$ для $s\in [\tau,t]$

$$x[s] = x(s,\tau,\xi|u(\cdot)) \in \operatorname{int}\mathscr{X}[s].$$

Замечание 1. Если $\xi \in int \mathscr{X}[\tau]$, то некоторая окрестность $U_{\delta}(\xi) \subseteq \mathscr{X}[\tau]$. Возъмём $x \in U_{\delta}(\xi)$ и рассмотрим $y[s] = x(s,\tau,x|u(\cdot))$ (управление $u(\cdot)$ такое жее).

$$\bigcup_{x \in U_{\delta}(\xi)} \left\{ y[s] \right\} \subseteq \mathscr{X}[s] \Rightarrow x[s] \in int \bigcup_{x \in U_{\delta}(\xi)} \left\{ y[s] \right\}.$$

Замечание 2. Таким образом, если в нелинейной системе траектория движеется по границе трубки достижимости и в какой-то момент «проваливается» внутрь неё, то снова оказаться на границе траектория не сможет. В соответствии с принципом максимума, такая траектория может уже не быть оптимальной, например, в задаче быстродействия. Отличие от линейных систем здесь в том, что для последних траектория уйти с границы не может.

2 Дифференцируемость

Теорема 2. Пусть выполнены условия (\star) и, кроме того, производная $\frac{\partial g}{\partial x}$ существует для всех $\forall x \in \mathbb{R}^n$, $\dot{\forall} t \in [T_0, T_1]$, измерима по t, непрерывна по x, а также удовлетворяет следующему условию регулярности:

пусть для любых $\forall \tau_0, \tau_1 \colon T_0 < \tau_0 < \tau_1 < T_1$, для любых $\forall \varepsilon > 0, \ \forall D \subseteq \mathbb{R}^n, \ D - непустой компакт, существует <math>\exists \delta(\varepsilon, \tau_0, \tau_1, D) > 0$:

$$\forall x', x'' \in D \colon \|x' - x''\| \leqslant \delta, \forall t \in [\tau_0, \tau_1] \Rightarrow$$
$$\left\| \frac{\partial g}{\partial x}(t, x') - \frac{\partial g}{\partial x}(t, x'') \right\| \leqslant \varepsilon.$$

Тогда $\exists \frac{\partial x(t,\tau,\xi))}{\partial \xi}\bigg|_{(t,t_0,x^0)} = Y(t,\tau,\xi), \ Y[\cdot] \in AC, \ y$ довлетворяющая уравнению в вариациях

$$\dot{Y}[t] = \frac{\partial g(t, x(t, \tau, \xi))}{\partial x} Y[t], \tag{YB}$$
$$Y[\tau] = E.$$

Доказательство. Обозначим $y[t] = x(t, \tau, \xi^0)$. Зафиксируем $\forall h \in \mathbb{R}^n$ и рассмотрим $x_h[t] = x(t, \tau, \xi^0 + \alpha h)$. Обозначим норму разности этих решений

$$\vartheta_h(t, \tau, \xi^0, \alpha) = x_h[t] - y[t].$$

Существует ли $\lim_{\alpha \to 0} \frac{\vartheta_h(t,\tau,\xi^0,\alpha)}{\alpha}$ (на некотором компакте $|\alpha| \leqslant \alpha_0$)? Поскольку y[t] и $x_h[t]$ являются решениями исходной системы, они также являются её ε -решениями с $\varepsilon=0$. Мы можем применить лемму 1 для того, чтобы оценить ϑ_h :

$$\|\vartheta_h(t,\tau,\xi^0,\alpha)\| \le |\alpha| \|h\| e^{L|t-\tau|} \underset{\alpha \to 0}{\longrightarrow} 0,$$

причём сходимость равномерна по (t, τ, ξ) в пределах произвольного компакта.

Теперь продифференцируем ϑ_h по времени. Для п. в. $\dot{\forall}t$:

$$\frac{d\vartheta_h(t,\tau,\xi^0,\alpha)}{dt} = g(t,x_h[t]) - g(t,y[t]) =$$

= {ф-ла конечных приращений} =

$$\left[\frac{\partial g}{\partial x}(t, y[t] + \beta(t)(x_h[t] - y[t]))\right] \vartheta_h(t, \tau, \xi^0, \alpha) = **$$

Пусть τ_0, τ_1 : $T_0 < \tau_0 < \tau_1 < T_1$ и $D \in \mathbb{R}^n$, D — компакт, таковы, что $\forall t \in [\tau_0, \tau_1]$, $\forall \beta \in [0, 1]$, $\forall \tau \in [\tau_0, \tau_1]$ и $\forall \alpha \colon |\alpha| \leqslant \alpha_0 \Rightarrow y[t] + \beta \vartheta_h(t, \tau, \xi^0, \alpha) \in D$. Это возможно ввиду ограниченности y[t] и полученной оценки на ϑ_h .

Из условия регулярности на q:

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon, \tau_0, \tau_1, D) > 0$$
:

$$\left\|\frac{\partial g(t,y[t])}{\partial x} - \frac{\partial g(t,y[t] + \beta[t]\vartheta_h)}{\partial x}\right\| \leqslant \varepsilon \text{ при } \|\vartheta_h\| \leqslant \delta.$$

Обозначим разность производных, стоящих под знаком нормы, за $-\Gamma$.

Тогда

$$** = \left[\frac{\partial g}{\partial x}(t, y[t]) + \Gamma\right] \vartheta_h(t, \tau, \xi^0, \alpha) =$$

$$= \left\{\gamma : \alpha \gamma = \Gamma \vartheta_h \Rightarrow \|\gamma\| \leqslant \|\Gamma\| \|h\| e^{L|t-\tau|} \right\} =$$

$$= \frac{\partial g}{\partial x}(t, y[t]) \vartheta_h(t, \tau, \xi^0, \alpha) + \gamma \alpha.$$

Введём новую функцию $\chi_h(t,\tau,\xi^0,\alpha) = \frac{\vartheta_h(t,\tau,\xi^0,\alpha)}{\alpha}$.

$$\frac{\partial \chi}{\partial t}(t, \tau, \xi^0, \alpha) = \frac{\partial g}{\partial x}(t, y[t])\chi_h(t, \tau, \xi^0, \alpha) + \gamma,$$

т. е. χ_h - это $\tilde{\varepsilon}$ -решение уравнения (УВ)

$$\dot{z}[t] = \frac{\partial g}{\partial x}(t, y[t])z[t]$$

с $\|\gamma\| \leqslant \tilde{\varepsilon}$. Покажем, что это действительно так.

Пусть $\psi_h[\cdot] = \psi_h(\cdot, \tau)$ — истинное решение (УВ) с начальным условием $\psi_h[\tau] = h$. Заметим, что

$$\chi_h(\tau, \tau, \xi^0, \alpha) = \frac{x_h[\tau] - y[\tau]}{\alpha} = \frac{\xi^0 + \alpha h - \xi^0}{\alpha} = h,$$

тогда

$$\|\chi_h(\tau, \tau, \xi^0, \alpha) - \psi_h(\tau, \tau)\| = 0.$$

Применим лемму 1 к (УВ): при $\delta=0,\ \varepsilon_1=\tilde{\varepsilon},\ \varepsilon_2=0$ (т. е. $\varepsilon=\varepsilon_1+\varepsilon_2=\tilde{\varepsilon}$) справедлива оценка

$$\|\chi_h(t,\tau,\xi^0,\alpha) - \psi_h(t,\tau)\| \leqslant \frac{\tilde{\varepsilon}}{L} \left(e^{L|t-\tau|} - 1 \right) < \varepsilon^0.$$

Это верно $npu |\alpha| \leq \alpha_0$.

Двигаясь по цепочке $\varepsilon^0 \to \tilde{\varepsilon} \to \varepsilon \to \delta$, возспользуемся оценкой

$$\|\vartheta_h\| \leqslant |\alpha| \|h\| e^{L|t-\tau|}$$

для получения

$$\forall \varepsilon^0 > 0 \exists \tilde{\alpha} > 0 \colon |\alpha| \leqslant \tilde{\alpha} \Rightarrow ||\vartheta_h|| \leqslant \delta.$$

Это значит, что

$$\chi_h \Longrightarrow \psi_h$$
 при $\alpha \to 0$

на компакте $K = [\tau_0, \tau_1]^2$. Значит, существует искомый предел.

 $\lim \chi_h$ — производная по направлению h. Чтобы получить итоговое $Y[\cdot]$, найдём $\frac{\partial x}{\partial \xi_1},\dots,\frac{\partial x}{\partial \xi_n}$ (по стандартному ОНБ), и положим столбцы Y равными этим частым производным. Тогда Y[t] будет удовлетворяться матричному (УВ) и начальному условию $T[\tau]=E$.

Следствие 3. Чувствительность к вариации в начале:

$$x(t,\tau,\xi) = x(t,\tau,\xi^0) + Y(t,\tau,\xi^0)(\xi - \xi^0) + \bar{o}(\|\xi - \xi^0\|).$$

Следствие 4. Когда выполнено условие регулярности из последней теоремы?

Ответ: когда $\frac{\partial f}{\partial x}(t,x,u)$ непрерывна по (t,x,u). Поскольку $y(\cdot) \in L_{\infty}$, $||u(\cdot)|| \leqslant C$. $\forall D \subset \mathbb{R}^n$, $D - \kappa$ ом $na\kappa m, \ \forall [\tau_0, \tau_1] \Rightarrow K = [\tau_0, \tau_1] \times D \times B_C(0)$ следует, что $\frac{\partial f}{\partial x}$ равномерно непрерывна на К (теорема Кантора), значит

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x', x'' : \|x' - x''\| \leqslant \delta \Rightarrow$$

$$\Rightarrow \left\| \frac{\partial f}{\partial x}(t, x', u) - \frac{\partial f}{\partial x}(t, x'', u) \right\| \leqslant \varepsilon, \quad \forall t \in [\tau_0, \tau_1], \forall u \in B_C(0).$$

Следствие 5. Применение теоремы: ψ — внешняя нормаль к $\partial \mathscr{X}[t]$.