Innhold (I rekkefølge):

- Potens

0	Potens forklaring	s. 1
---	-------------------	------

Potens

Potens forklaring

En **Potens** er satt sammen av to deler. Et **grunntall** og en **eksponent**. En **potens** er en måte å representere gjentatt ganging av et tall. **Grunntallet** ganges med seg like mange ganger som **eksponenten** sier. I dette eksemplet skal 5 ganges med seg selv 3 ganger. Altså $5^3 = 5 \cdot 5 \cdot 5$, derfor er $5^3 = 125$.

MERK! Alt opphøyd i 0 blir 1. Eksempel: $4^0 = 1$.

Alt opphøyd i 1 blir det samme. $5^1 = 5$.

Potens oppgaver 1

Identifiser grunntall og eksponent og skriv om til gjentatt multiplikasjon.

d)
$$2^{3}$$

Potens oppgaver 2

Skriv om til potens.

b)
$$6 \cdot 6 \cdot 6 \cdot 6$$

c)
$$3 \cdot 3 \cdot 3$$

Potens oppgaver 3

Potens, kvadratrot og kvadrattall

Hjelpehefte

a) 5^3

b) 99^{0}

c) 36^{1}

d) 9^2

e) 6^{3}

f) 4²

 $g) 2^5$

h) 7²

i) 11⁰

 $j) 3^{0}$

k) 3³

1) 4³

m) 55¹

n) 3¹

o) 5²

Potens forklaring (negative tall)

Når det kommer til potenser er det viktig å følge med på hva man gjør når man ser et minus tegn.

I **figur A** ser vi -4^2 , det vil si at kun 4 skal opphøyes i andre og kan vises som: $-4^2 = -(4^2) = -(4 \cdot 4) = -(16) = -16$

I **Figur B** ser vi at potensen er utenfor en parentes, det vil si at vi skal gange hele parentesen med seg selv like mye som eksponenten sier, i dette tilfelle, 2 ganger. Vi kan illustrere dette som:

$$(-4)^2 = (-4) \cdot (-4) = 16$$

Oppsummering:

Hvis grunntallet er i en parentes og eksponenten er utenfor, skal hele parentesen ganges med seg selv like mange ganger som eksponenten sier.

Hvis grunntallet ikke er i en parentes ignorerer du *fortegnet* under prosessen av å gange med seg selv, så legger du den til når du har fått produktet.

Potens oppgaver 4 (negative tall)

Skriv om til gjentatt multiplikasjon.

- a) -4^4
- b) -2^5
- c) -6^3
- d) $(-2)^4$

- e) $(-1)^3$
- f) $(-5)^2$
- $g) (3^3)$
- h) $-(4^2)$

- $i) (3^2)$
- $j) (2)^2$
- $k) (3)^2$

Potens oppgaver 5 (negative tall)

a) -4^2

b) -9^2

c) -3^3

d) $(-2)^2$

e) $(-6)^2$

f) $(-1)^3$

g) $(-2)^3$

h) $(-3)^3$

i) $(-3)^2$

 $j) -1^3$

 $k) - (5^2)$

1) $-(3^3)$

 $m) (-2)^4$

n) $(-1)^4$

o) -2^{0}

Kvadratrot

Kvadratrot forklaring

Notasjon

Kvadratrot av et tall skrives som \sqrt{tall} , hvor tallet kan være hvilket som helst positive tall eller null. Tegnet $\sqrt{}$ kalles **kvadratrot symbolet/tegnet**. Tallet man tar kvadratroten av kalles ikke for noe spesielt.

Areal = A

Hvordan fungerer kvadratrot (se på figuren)

(A kan være hvilket som helst tall. Tips: tenk på A som 25, og b som 5) $(b \cdot b \text{ kan skrives som } b^2)$

Tenk på et kvadrat med like lange sider, hvor lengden til en side blir representert med bokstaven b. Vi vet at $Areal = side \cdot side$. Vi kaller sidene for b, og la oss kalle arealet for A. Altså er $A = b \cdot b$.

Her er det to like lange sider (to like tall) som ganges sammen, for å få areal.

$$Areal = A A = b \cdot b$$

$$b$$

$$b$$

$$A$$

$$b$$

Kvadratrot defineres som «kvadroten til ett tall, er tallet du kan gange med seg selv, for å få det vi tar kvadratroten av».

Her kommer det med $A = b \cdot b$ inn. For $\sqrt{A} = b$ fordi b er det tallet som du må gange med seg selv for å få A. Altså er $\sqrt{A} = b$ fordi $b \cdot b = A$.

Kvadrattallet er A, som er et produktet av $b \cdot b$, dette gjelder når det er et positivt heltall (uten desimaler).

Kvadratrot & kvadrattall, oppgave 1

Identifiser kvadratroten og kvadrattallet.

Potens, kvadratrot og kvadrattall

Hjelpehefte

Kvadratrot & kvadrattall, oppgave 2

Finn kvadrattallene.

- a) 4
- b) 1
- c) 6
- d) 11
- e) 5
- f) 8
- g) 3

- h) 9
- i) 4
- j) 12
- k) 2
- 1) 7
- m) 10
- n) 8

Kvadratrot & kvadrattall, oppgave 3

Løs uttrykkene.

a) $\sqrt{100}$

b) √25

c) $\sqrt{1}$

d) $\sqrt{0}$

e) $\sqrt{81}$

f) $\sqrt{49}$

g) $\sqrt{121}$

h) $\sqrt{4}$

i) $\sqrt{36}$

 $j)\sqrt{9}$

k) $\sqrt{64}$

 $1)\sqrt{121}$

Lære bort strategi

Potens

- 1) Gå igjennom strukturen til en potens.
- 2) Forklar prinsippet bak en potens (gjentatt ganging).
- 3) Repeter dette med først positive, så negative grunntall:
 - a. Gi 3 eksempler av å skrive om en potens til gjentatt ganging.
 - b. Ta de samme oppgavene (fra steg 3), og løs potensen
 - c. Gi oppgaver om å skrive om.
 - d. Gi oppgaver om å løse potensene.

Kvadratrot & kvadrattall

- 1) Forklare begreper
 - Kvadratrot
 - > Kvadrattall areal
 - > Ta kvadratroten av noe
 - Kvadratrot symbolet
- 2) Vise hva kvadratroten prøver å finne med KVADRAT eksemplet.
 - > Referer til begrepene
- 3) Vise notasjon av kvadratrot

$$\rightarrow \sqrt{x^2} = x \cdot x$$

- 4) Forklar hvorfor $\sqrt{x \cdot x} = x$.
 - $Eksempel: 5 \rightarrow \sqrt{5 \cdot 5} = 5$
 - Fordi: $\sqrt{5 \cdot 5} = \sqrt{25}$ «Hvilke 2 tall ganges sammen for å få 25, og begge tallene er like»
 - ➤ «FEM!»
 - ➤ Vis at $5 \cdot 5 = 5^2$
- 5) Vise flere eksempler av

$$\rightarrow \sqrt{x} = y$$

$$\rightarrow \sqrt{x^2} = x \cdot x$$

6) Gi oppgaver

