Ordenes parciales

Clase 10

IIC 1253

Prof. Cristian Riveros

¿en qué se parecen estas relaciones?

- **u** subconjunto: $A \subseteq B$
- menor o igual: $n \le m$
- divide a: a | b

Outline

Ordenes parciales

Ejemplos

Representación

Outline

Ordenes parciales

Ejemplos

Representación

Ordenes parciales

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

Decimos que R es un orden parcial si R cumple ser:

- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.
- 3. Transitiva: $\forall a, b, c \in A$. $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.

Ejemplos

- subconjunto: $A \subseteq B$
- menor o igual: $\mathbf{n} \leq \mathbf{m}$
- divide a: **a** | **b**

¿cómo comparamos el 6 con el 9 en la relación "divide a"?

Ordenes parciales

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

Decimos que R es un orden parcial si R cumple ser:

- 1. Refleja: $\forall a \in A. (a, a) \in R.$
- 2. Antisimétrica: $\forall a, b \in A$. $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$.
- 3. Transitiva: $\forall a, b, c \in A$. $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.

Notación

Un orden parcial sobre A los denotaremos como (\mathbf{A}, \leq) .

Ordenes totales

Sea A un conjunto y (A, \leq) un orden parcial.

Definición

Decimos que un orden parcial (A, \leq) es un orden total si \leq cumple ser:

Conexo: $\forall a, b \in A$. $(a, b) \in R \lor (b, a) \in R$.

¿cuál de los ordenes parciales anteriores son totales?

Outline

Ordenes parciales

Ejemplos

Representación

Ejemplos de ordenes parciales

Definición

Se define la relación \leq_2 entre pares en $\mathbb{N} \times \mathbb{N}$ como:

$$(i,j) \leq_2 (i',j')$$
 si, y solo si, $i < i' \lor (i = i' \land j \leq j')$

- $(2,100) \leq_2 (3,5)$?
- $(2,5) \leq_2 (2,100)$?
- $(2,5) \leq_2 (2,3)$?

Ejemplos de ordenes parciales

Definición

Se define la relación \leq_2 entre pares en $\mathbb{N} \times \mathbb{N}$ como:

$$(i,j) \leq_2 (i',j')$$
 si, y solo si, $i < i' \lor (i = i' \land j \leq j')$

; qué propiedades cumple \leq_2 ?

- 1. j es \leq_2 refleja?
- 2. i es \leq_2 anti-simétrica?
- 3. j es \leq_2 transitiva?

Orden lexicográfico

En general, si (A, \leq) es un orden parcial, entonces siempre podemos definir un orden parcial sobre $A \times A$.

Definición

Sea (A, \leq) un orden parcial.

Se define la relación \leq_2 entre pares en $A \times A$ como:

$$(a,b) \leq_2 (a',b')$$
 si, y solo si, $(a \neq a' \rightarrow a \leq a') \land (a = a' \rightarrow b \leq b')$

Demuestre que \leq_2 es un **orden parcial**.

- La relación \leq_2 se conoce como el **orden lexicográfico** en $A \times A$.
- Para todo k, es posible definir \leq_k sobre A^k . (¿cómo?)

Alfabetos, letras y palabras

Definiciones

- Un alfabeto Σ es un conjunto finito de elementos.
- Un elemento $a \in \Sigma$ lo llamaremos una letra o símbolo.
- Una palabra w sobre Σ es una secuencia finita de letras en Σ .

- $\Sigma = \{a, b, c\}$ es un alfabeto con tres letras.
- aa, abbca, o acaabaa son palabras.

Alfabetos, letras y palabras

Definiciones

■ El largo |w| de una palabra w sobre Σ es el número de letras.

$$|w| \stackrel{\mathsf{def}}{\equiv} \# \mathsf{de} \mathsf{letras} \mathsf{en} w$$

■ Denotaremos ϵ como la palabra vacía de largo 0.

$$|\epsilon| \stackrel{\mathsf{def}}{\equiv} 0$$

■ Denotaremos por Σ^* como el conjunto de todas las palabras sobre Σ .

- $\Sigma = \{a, b\}$ es un alfabeto con dos letras.
- $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, \ldots\}$

Concatenación de palabras

Definición

Dado dos palabras $u, v \in \Sigma^*$:

$$u \cdot v \stackrel{\text{def}}{\equiv} u \text{ concatenado con } v$$

 $u \cdot v$ corresponde a la secuencia u seguido de la secuencia v.

- aab · bab = aabbab
- bc · aabbc = bcaabbc
- $\epsilon \cdot abaca = abaca$

Concatenación de palabras

Definición

Dado dos palabras $u, v \in \Sigma^*$:

$$u \cdot v \stackrel{\text{def}}{\equiv} u \text{ concatenado con } v$$

 $u \cdot v$ corresponde a la secuencia u seguido de la secuencia v.

Preguntas

- ¿es la concatenación asociativa: $(u \cdot v) \cdot w = u \cdot (v \cdot w)$?
- ¿es la concatenación **conmutativa**: $u \cdot v = v \cdot u$?

¿por qué nos podría interesar trabajar con palabras?

Relaciones entre palabras

Definición

Sea Σ un alfabeto. Se definen las siguientes relaciones entre palabras en Σ^* :

$$\mathbf{u} \leq_{\mathbf{p}} \mathbf{v}$$
 si, y solo si, $\exists w \in \Sigma^*$. $u \cdot w = v$ $\mathbf{u} \leq_{\mathbf{s}} \mathbf{v}$ si, y solo si, $\exists w \in \Sigma^*$. $w \cdot u = v$

$$\mathbf{u} \leq_{\mathbf{i}} \mathbf{v}$$
 si, y solo si, $\exists w_1, w_2 \in \Sigma^*$. $w_1 \cdot u \cdot w_2 = v$

- aaab ≤_p aaabba? ✓
- bab \leq_p abbab ? \times
- bab ≤s baab? X
- cba ≤_i aabbcbaaa? ✓

Relaciones entre palabras

Definición

Sea Σ un alfabeto. Se definen las siguientes relaciones entre palabras en Σ^* :

$$\mathbf{u} \leq_{\mathbf{p}} \mathbf{v}$$
 si, y solo si, $\exists w \in \Sigma^*$. $u \cdot w = v$

$$\mathbf{u} \leq_{\mathbf{s}} \mathbf{v}$$
 si, y solo si, $\exists w \in \Sigma^*$. $w \cdot u = v$

$$\mathbf{u} \leq_{\mathbf{i}} \mathbf{v}$$
 si, y solo si, $\exists w_1, w_2 \in \Sigma^*$. $w_1 \cdot u \cdot w_2 = v$

¿qué propiedades cumple \leq_p , \leq_s o \leq_i ?

- 1. j es \leq_p , \leq_s o \leq_i refleja?
- 2. j es \leq_p , \leq_s o \leq_i anti-simétrica?
- 3. j es \leq_{D} , \leq_{s} o \leq_{i} transitiva?

Outline

Ordenes parciales

Ejemplos

Representación

¿podemos simplificar la visualización de este grafo?

Para simplificar la visualización del grafo podemos:

- Remover loops.
- Remover aristas "transitivas"

Definición

El diagrama de Hasse de (A, \leq) es el diagrama del grafo de \leq pero:

- se omiten los loops.
- $(a,b) \in \subseteq$ se omite si existe un c tal que $(a,c) \in \subseteq$ y $(c,b) \in \subseteq$.

orden \leq sobre \mathbb{N}

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow \cdots$$

Diagrama de Hasse de (\mathbb{N}, \leq)

Definición

El diagrama de Hasse de (A, \leq) es el diagrama del grafo de \leq pero:

- se omiten los loops.
- $(a,b) \in \subseteq$ se omite si existe un c tal que $(a,c) \in \subseteq$ y $(c,b) \in \subseteq$.

¿cómo se ve el orden parcial ⊆?

Diagrama de Hasse de $(\mathcal{P}(\{1,2,3\}),\subseteq)$

¿cómo se ve el orden lexicográfico \leq_2 ?

Diagrama de Hasse del orden lexicográfico $(\mathbb{N} \times \mathbb{N}, \leq_2)$

¿cómo se ve el orden parcial \leq_p sobre palabras?

Diagrama de Hasse de (Σ^*, \leq_p)

¿qué tienen de parecido todos estos grafos?

Caminos y ciclos de un grafo

Definiciones (recordatorio)

Sea G = (V, E) un grafo dirigido.

- Un camino en G es una secuencia v_0, v_1, \ldots, v_n en V tal que:
 - $(v_i, v_{i+1}) \in E$ para todo $0 \le i < n$.

Decimos que v_0, v_1, \ldots, v_n es un camino de v_0 a v_n .

- Un camino simple es un camino donde todos los vértices son distintos.
- Dos nodos u y v estan conectados en G si existe un camino de u a v

Caminos y ciclos de un grafo

Definiciones

Sea G = (V, E) un grafo dirigído.

- Un ciclo en G es un camino v_0, v_1, \ldots, v_n donde $v_0 = v_n$.
- Un ciclo simple en G es un ciclo v_0, v_1, \ldots, v_n tal que todos los vértices son distintos, exceptuando el primero y el último.
- El largo de un camino $v_0, v_1, ..., v_n$ es igual a n (el número de aristas que atraviesa).

Grafos acíclicos o DAGs

Definición

Sea G = (V, E) un grafo dirigído.

- *G* se dice acíclico si NO tiene ciclos.
- Si G es acíclico decimos que G es un DAG (Direct Acyclic Graph).

¿es un orden parcial un DAG?

Teorema

Si (A, \leq) es un orden parcial, entonces el grafo dirigido (A, \leq) NO tiene ciclos ≥ 2 .

En otras palabras, el diagrama de Hasse de (A, \leq) es un DAG.

¿es un orden parcial un DAG?

Demostración: orden parcial \Rightarrow (A, \leq) NO tiene ciclos ≥ 2

Por contradicción, suponga que:

- (A, \leq) es un orden parcial.
- el grafo (A, \leq) tiene un ciclo de largo mayor o igual a 2.

Sea v_0, v_1, \ldots, v_n con $n \ge 2$ el ciclo simple en (A, \le) tal que:

- $v_i \le v_{i+1}$ para todo i < n,
- $v_i \neq v_j$ para todo i < j < n, y
- $\mathbf{v}_0 = \mathbf{v}_n$.

PD: $v_0 \le v_i$ para todo i < n. (demostración: ejercicio)

De lo anterior, podemos deducir que:

$$v_0 \le v_{n-1}, \quad v_{n-1} \le v_0 \quad y \quad v_0 \ne v_{n-1}$$

por lo tanto, tenemos una contradicción (¿por qué?).

¿es un orden parcial un DAG?

Teorema

Si (A, \leq) es un orden parcial, entonces el grafo dirigido (A, \leq) NO tiene ciclos ≥ 2 .

En otras palabras, el diagrama de Hasse de (A, \leq) es un DAG.

Sea A un conjunto y $R \subseteq A \times A$.

Si (A, R) es un DAG, entonces ¿es (A, R) un orden parcial?