Lecture 25: Deep neural networks continued

Professor Ilias Bilionis

Loss functions for classification networks

Training a binary classifier network

Objected data:
$$x_{1:m} = (x_1, ..., x_n)$$
 $y_{1:n} = (y_1, ..., y_n)$, $y_1 \in \{0, 1\}$ and $y_1 \in \{0, 1\}$

Model:

 $p(y_1 = 1 \mid x_1, 0) = sigm(f(x_1, 0)) = \frac{e}{1 + e^{Hx_1}}$
 $p(y_1 = 1 \mid x_1, 0) = sigm(f(x_1, 0)) = \frac{e}{1 + e^{Hx_1}}$
 $p(y_1 \mid x_1, 0) = [sigm(f(x_1, 0)), if y_1 \mid x_1 \mid x_$

Training a multi-class classifier network

Observed details:
$$x_{lin} = (x_1, ..., x_n)$$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., K-1]$
 $y_{lin} = (y_1, ..., y_n)_j y_j \in [0, 1, ..., y_n]_j y_j \in [0, 1, ...$