Xin Liang

Gmail | Github

EDUCATION

Tongji University Shanghai, China

B.E. in Software Engineering, GPA: 89.74/100; Major GPA: 95/100

Jan 2021 – Jan 2025

• Relevant Courses: Linear Algebra, Advanced Mathematics, Probability and Statistics, Discrete Maths, High-Level Language Programming, Data Structure, Algorithm, Operating System, Database, Computer Organization, Human-Computer Interaction, Principles of Compilers

Tongji University Shanghai, China

Freshman in Architecture and Urban Planning

Apr 2020 – Jan 2021

RESEARCH INTERESTS

Currently my research interests lie in reseach on **Decentralized Autonomous Organization(DAO) Governance** using **Multi-Agent Reinforcement Learning(MARL)**. I'm interested in **AutoML**, and have some knowledge about **DARTS** in neural architecture search.

I'm also very interested in **Blockchain** and **Non-Fungible Token(NFT)**, I've been working on some projects about developing Decentralized App(**DApp**).

PROJECT EXPERIENCE

ETH Beijing Hackathon 2023

Apr 2023 - Apr 2023

Contestant, Innovative Layer 2 Dapp, Github

- Built a demo from scratch in three days.
- Developed a decentralized news system named FactLENS as validation ecosystem, which consists of FactLENS plugin
 and FactLENS website.

MIT-Tongji City Science Lab

Jan 2023 - Present

Intern, DApp-smart contract Group, Github

- Worked with Solidity to develop smart contract based on specific modules.
- Research into **DApp development architecture**, using **Hardhat** etc. to interface smart contrat with front-end and back-end interactions.
- Deployed **ABDK Library** to solve the problem of solidity not supporting floating point operations.

RESEARCH EXPERIENCE

MIT-Tongji City Science Lab

Mar 2023 - Present

Research Intern , MARL Group

Doing research on Social dilemmas and Decentralized Autonomous Organization(DAO) governance using MARL

Tongji University

Oct 2022 - Mar 2023

NaMI Lab, Research Intern

- A patent in preparation. The patent proposed a neural architecture search method. This automatic machine learning
 method reduced the search time required to find a suitable architecture and guaranteed the accuracy of the final result,
 ICASSP 2023 Poster Session.
- Learning Monte Carlo Trees, using pytorch, python to optimize the Chinese chess code based on AlphaZero, adding behavioural clones and then doing reinforcement learning to train the strategy network.

TECHNICAL SKILLS

Languages : C/C++,Python,Solidity,MATLAB,HTML,CSS

Machine Learning: PyTorch, TensorFlow

Databases : MySQL

Design and Modeling: Adobe PS/AI/ID/PR/AE, Unity3D, Auto CAD, Rhino, Sketch Up

Web3 and Blockchain : Polygon(Solidity), Hardhat, Remix