Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. - 39. (Cancelled)

40. (Currently Amended) A production method of a transition metal complex of formula (3):

wherein M represents an element of Group 4 of the periodic table,

 R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , X^1 and L are as defined below,

q represents an integer of 0 or 1,

 G^{20} represents any one of G^{21} to G^{26} ,

$$G^{21}$$
: $A_{R^9}^{1}$ G^{22} : $A_{R^{13}R^{12}}^{1}$ $G^{23'}$: $A_{R^{14}}^{2}$

$$G^{24'}$$
: A^{2} G^{25} : A^{2} G^{25} : A^{17} A^{18} A^{26} : A^{19} A^{20}

wherein A¹ represents an element of Group 15 of the periodic table,

provided that A^1 in G^{23} represents an anion of an element of Group 15 of the periodic table and A^1 in G^{21} represents a nitrogen atom,

A² represents an element of Group 16 of the periodic table,

R⁹ and R¹⁴ each represents,

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s), a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or

a group of formula:

 R^{90} -N- R^{91} ;

wherein R⁹⁰ and R⁹¹ are the same or different, and represent

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 to carbon atoms,

a substituted or unsubstituted aryl group having 6 to 20 10 carbon atoms, or

a ring evclic structure by being linked together;

 $R^{12},\,R^{13},\,R^{19}$ and R^{20} each independently represents

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or

R¹² and R¹³, and R¹⁹ and R²⁰, each independently, are linked together and

represent cyclic structure each independently represents a ring structure by being linked together;

 R^{10} , R^{11} , R^{15} , and R^{16} , R^{21} and R^{22} each independently represents a hydrogen atom,

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, or

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms;

 R^{17} and R^{18} are <u>the same or</u> different one another, and represent

a hydrogen atom,

a halogen atom,

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, or

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,

m represents an integer of 0 or 1, and

the line linking M and G^{20} represents that M is linked or coordinated to an element of Group 15 or 16 of the periodic table or to a fluorine atom constituting G^{20} ,

which comprises reacting

a phosphine compound of formula (2):

wherein R¹, R², R³, R⁴, R⁶, R⁷ and R⁸ are the same or different, and

independently represent,
a hydrogen atom,
a halogen atom,
a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),
a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,
a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,
a silyl group substituted with a substituted or unsubstituted hydrocarbon having
1 to 20 carbon atom(s),
a substituted or unsubstituted alkoxy group having 1 to 10 carbon atom(s),
a substituted or unsubstituted aralkyloxy group having 7 to 20 carbon atoms,
a substituted or unsubstituted aryloxy group having 6 to 20 carbon atoms, or
an amino group disubstituted with hydrocarbons having 1 to 20 carbon atom(s);
R ⁵ represents,
a hydrogen atom,
a fluorine atom,
a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),
a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,
a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or
a silyl group substituted with a substituted or unsubstituted hydrocarbon having
1 to 20 carbon atoms,
G ² represents any one of G ²¹ to G ²⁶ below,

$$G^{21}$$
: $A_{R^9}^{1}$ G^{22} : $A_{R^{13}R^{12}}^{1}$ G^{23} : $A_{R^{14}}^{2}$

$$G^{24}$$
: A^{2} G^{25} : A^{2} G^{25} : A^{2} A^{2}

wherein A^1 represents an element of Group 15 of the periodic table, and A^2 represents an element of Group 16 of the periodic table, and A^1 in G^{21} represents a nitrogen atom;

R⁹ and R¹⁴ each represents

- a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),
- a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,
 - a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or
- a group of formula:

 $R^{90}-N-R^{91}$

wherein \mathbf{R}^{90} and \mathbf{R}^{91} are the same or different, and represent

- a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),
 - a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,
 - a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or

a cyclic structure by being linked together,

R¹², R¹³, R¹⁹ and R²⁰ each independently represents,

a substituted or unsubstituted alkyl group 1 to 10,

- a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, or
 - a substituted or unsubstituted aryl group having 6 to 20 carbon atoms; or
- R¹² and R¹³, and R¹⁹ and R²⁰, each independently, are linked together and represent cyclic structure,

10 - 11 - 15 - 16 - 21 - - 22

R¹⁰, R¹¹, R¹⁵, R¹⁶, R²¹ and R²² each independently represents

a hydrogen atom,

a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),

a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, or

a substituted or unsubstituted aryl group having 6 to 20 carbon atoms;

R ¹⁷ and R ¹⁸ are the same or different, and represent
a hydrogen atom,
a halogen atom,
a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),
a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms, or
a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,
m represents an integer of 0 or 1,
wherein R^4 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 and G^2 are as defined in Claim 1, and G^{10} represents a
protective group of the hydroxyl group selected from alkyl groups having secondary or
tertiary carbon atom linked to an the oxygen atom of phenol, or a C1 to C2 alkyl groups
substituted with a substituted or unsubstituted alkoxy group,
with a transition metal compound of formula (4):
$MX^{1}_{3}LL^{1}p (4)$
wherein M represents an element of Group 4 of the periodic table,
X^1 represents,
a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s),
a substituted or unsubstituted aralkyl group having 7 to 20 carbon atoms,
a substituted or unsubstituted aryl group having 6 to 20 carbon atoms,
a substituted or unsubstituted alkoxy group having 1 to 10 carbon atom(s),
a substituted or unsubstituted araloxy group having 7 to 10 carbon atoms,
a substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, or
an amino group disubstituted with hydrocarbons having 1 to 20 carbon atoms; and
L represents a balancing counter ion or neutral ligand, being an atom or group similar
to X ¹ , and is bonding or coordinating to metal M,
L ¹ represents a neutral ligand, and p represents an integer of 0 to 2.

- 41. (Original) The method according to Claim 40, a base is used.
- 42. (Original) The method according to Claim 41, wherein G¹⁰ is a hydrogen atom.
- 43. (Currently Amended) A production method of the transition metal compound of formula (3) according to Claim 40, wherein G¹⁰ is a protective group of the hydroxyl group selected from alkyl groups having secondary or tertiary carbon atom linked to an the oxygen atom of phenol, or a C1 to C2 alkyl group substituted with a substituted or unsubstituted alkoxy group.
- 44. (Original) The production method according to Claim 43, wherein G¹⁰ is a methoxymethyl group, an ethoxyethyl group, a methoxymethyl group, trimethylsilylethoxymethyl group or 1-ethoxyethyl group.
- 45. (Previously Presented) The production method according to Claim 40, wherein M is a titanium atom or a zirconium atom.
- 46. (Original) The production method of the transition metal complex according to Claim 45, wherein A¹ represents a nitrogen atom and A² represented an oxygen atom.
- 47. (Original) The production method of the transition metal complex according to Claim 46, wherein G^2 is G^{21} .
- 48. (Original) The production method of the transition metal complex according to Claim 46, wherein G^2 is G^{22} .
- 49. (Original) The production method of the transition metal complex according to Claim 46, wherein G^2 is G^{23} .
- 50. (Original) The production method of the transition metal complex according to Claim 46, wherein G^2 is G^{24} .
- 51. (Original) The production method of the transition metal complex according to Claim 46, wherein G^2 is G^{25} .
- 52. (Original) The production method of the transition metal complex according to Claim 46, wherein G^2 is G^{26} .

53. (Original) The transition metal complex of formula (3):

wherein M, L, X¹, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, q and G²⁰ are as defined in Claim 40.

- 54. (Original) The transition metal complex according to Claim 53, wherein A¹ represent a nitrogen atom and A² represents an oxygen atom.
- 55. (Original) The transition metal complex according to Claim 54, wherein M is a titanium atom or a zirconium atom.
- 56. (Previously Presented) The transition metal complex according to Claim 54, wherein G^2 is G^{21} .
- 57. (Previously Presented) The transition metal complex according to Claim 54, wherein G^2 is G^{22} .
- 58. (Previously Presented) The transition metal complex according to Claim 54, wherein G^2 is G^{23} .
- 59. (Previously Presented) The transition metal complex according to Claim 54, wherein G^2 is G^{24} .
- 60. (Previously Presented) The transition metal complex according to Claim 54, wherein G^2 is G^{25} .
- 61. (Previously Presented) The transition metal complex according to Claim 54, wherein G^2 is G^{26} .

62. (Currently Amended) An olefin polymerization catalyst comprising a combination of transition metal complex according to Claim 53, compound A below, and optionally compound B:

compound A: any one of compounds A1 to A3, or a mixture of at least two of them, compound A1: an organic aluminum compound of formula (E1)_aAl(Z)_{3-a}, compound A2: a cyclic aluminoxane having a structure of formula [-Al(E2)-O-]_b, and compound A3: a linear aluminoxane of formula E3[-AlE3-O-]_cAlE3₂, wherein E1 to E3 are the same or different and each represents a hydrocarbon group

wherein E1 to E3 are the same or different and each represents a hydrocarbon group having 1 to 8 carbon atom(s),

Z is the same or different, and represents a hydrogen atom or a halogen atom,

e <u>a</u> represents 1, 2 or 3,

b represents an integer of 2 or more, and

c represents an integer of 1 or more;

compound B: any one of compounds B1 to B3, or a mixture of at least two of them,

compound B1: a boron compound of formula BQ1Q2Q3,

compound B2: a boron compound of formula Z⁺(BQ¹Q²Q³Q⁴), and

compound B3: a boron compound of formula (L-H)⁺(BQ¹Q²Q³Q⁴),

wherein B is a boron atom of a trivalent state, and

Q¹ to Q⁴ are the same or different and represent a halogen atom, a hydrocarbon group having 1 to 20 carbon atom(s), a halogenated hydrocarbon group having 1 to 20 carbon atom(s), a silyl group substituted with the hydrocarbon groups having 1 to 20 carbon atom(s), or an amino group disubstituted with the hydrocarbon groups having 1 to 20 carbon atom(s), and "Z⁺ represents an inorganic or organic cation, and (L-H) represents Brønsted acid".

63. (Original) A production method of an olefin polymer, which comprises polymerizing an olefin in the presence of the olefin polymerization catalyst according to Claim 62.