Lista 3: Fundamentos Estatísticos para Ciência dos Dados

Ricardo Pagoto Marinho

16 de março de 2018

- 1. $P(A^C) = 1 P(A)$ Seja P(A) = q e A^C os elementos que estão em Ω mas não em A. Logo, $A^C = \Omega - A$, então $P(A^C) = P(\Omega) - P(A) = 1 - P(A)$.
 - Sabe-se que P(A)=1 e \forall A \subset A, $P(\Sigma \cup A)=1$. Logo, $0 \leq P(A) \leq 1$
 - Suponha que $A_1 \subset A_2$ e $P(A_1) > P(A_2)$. Logo, dentro do experimento, existem mais possibilidades de aparecer um elemento de A_1 do que de A_2 . Portanto, $A_1 > A_2$. Absurdo, já que $A_1 \subset A_2$.
 - Seja A_i uma coleção de conjuntos de A. $P(\bigcup_{n=1}^{\infty} A_i)$ cai em dois casos:
 - caso 1: Todos $A_i s$ são disjuntos. Portanto, $P(\bigcup_{n=1}^{\infty} A_i) = \sum_{n=1}^{\infty} A_i$
 - caso 2: Alguns A_i se intersectam. Neste caso, deve-se tirar a probabilidade $P(A_i \cap A_{i+1})$ para os A_i e A_{i+1} tais que $A_i \cap A_{i+1} \neq \emptyset$. Logo $P(\bigcup_{n=1}^{\infty} A_i) < \sum_{n=1}^{\infty} A_i$ Portanto $P(\bigcup_{n=1}^{\infty} A_i) \leq \sum_{n=1}^{\infty} A_i$.
 - $P(A \cup B)$ é a probabilidade de um item selecionado estiver em A ou B. C ontudo, caso $A \cap B \neq \emptyset$, a soma das probabilidades somará duas vezes os itens que estão em $A \cap B$. Logo, $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 2. V
 - V
 - F
 - F
 - F
 - V
 - V
 - V
- 3. O contrário não pode ser dito.

$$\begin{split} P(B|A) &= \frac{P(B\cap A)}{P(A)}, \text{ caso } A\supset B, \ P(B\cap A) = P(B) \text{ e } P(B|A) = \frac{P(B)}{P(A)}. \\ \text{Como } 0 &\leq P(A) \leq 1, \ \frac{P(B)}{P(A)} \geq P(B). \end{split}$$

- 4. Essas probabilidades podem ser obtidas observando os pacientes ao longo de um ano e contabiliza os pacientes que se mantiveram vivos e os que não sobreviveram ao período.
- Significa que, quanto maior a taxa, mais confiável fica o teste, logo todos os positivos serão flagrados.

- A afirmação diz que quanto maior a sensibilidade, mais confiável o teste se torna.
- Recall é proporção de pacientes que o teste foi positivo e ele realmente estava doente.
- 6. To do.
- 7. F
 - F
 - F
 - V
- 8. Para mostrar que um evento é independente de outro, temos que mostrar que $P(A|B) = P(A) \times P(B)$. Como P(A) = 0, $P(A|B) = 0 \times P(B) = 0$, $\forall B$, logo A é independente de qualquer B quando P(A) = 0.

Sim, intuitivamente faz sentido, já que se não existe a possibilidade de A, os eventos seguintes não vão sofrer nenhuma influência dele.

9.
$$P(A|A) = P(A) \times P(A) \longleftrightarrow P(A) = 1$$
 ou $P(A) = 0$.