

PDE Models Reductions

M. Allabou

Institut de Mathématiques de Toulouse (IMT), Universiteé de Toulouse, INSA Toulouse

Outline

1. Introduction

2. Linear cases: the standard POD-based method

μ -parameterized time dependent PDE

Given $\mu \in \mathcal{P}$, find $u(\mu; x, t) \in V$ such that:

$$\frac{\partial u}{\partial t}(\boldsymbol{\mu}; x, t) = F(\boldsymbol{\mu}; u(\boldsymbol{\mu}; x, t)) \qquad in \qquad \Omega \times [0, T], \tag{1}$$

- $u(\mu; x, t)$ is the state variable, the map $u \mapsto F(\cdot; u)$ is a PDE operator, linear or not,
- the map $\mu \mapsto F(\mu; \cdot)$ is non-affine.

μ -parameterized time dependent PDE

Given $\mu \in \mathcal{P}$, find $u(\mu; x, t) \in V$ such that:

$$\frac{\partial u}{\partial t}(\boldsymbol{\mu}; x, t) = F(\boldsymbol{\mu}; u(\boldsymbol{\mu}; x, t)) \qquad in \qquad \Omega \times [0, T], \tag{1}$$

- $u(\mu; x, t)$ is the state variable, the map $u \mapsto F(\cdot; u)$ is a PDE operator, linear or not,
- the map $\mu \mapsto F(\mu; \cdot)$ is non-affine.
 - ► Classical numerical solvers (FV, FE) → High Fidelity (HF) solvers.

μ -parameterized time dependent PDE

Given $\mu \in \mathcal{P}$, find $u(\mu; x, t) \in V$ such that:

$$\frac{\partial u}{\partial t}(\boldsymbol{\mu}; x, t) = F(\boldsymbol{\mu}; u(\boldsymbol{\mu}; x, t)) \qquad in \qquad \Omega \times [0, T], \tag{1}$$

- $u(\mu; x, t)$ is the state variable, the map $u \mapsto F(\cdot; u)$ is a PDE operator, linear or not,
- the map $\mu \mapsto F(\mu; \cdot)$ is non-affine.
 - ► Classical numerical solvers (FV, FE) → High Fidelity (HF) solvers.
 - CPU-time and memory consuming.

Goal: to develop a Reduced Order Model (ROM) of the HF model.

Introduction

ROM

Real world application: 2018 flood of the Aude river

Fig. 1: 2D Shallow Water (SW) system with parameterization: $\mu \in \mathbb{R}^5$ inflow discharge parameters. FV scheme, 7267 cells.

	HF	ROM
CPU time	118 s	5 s
Memory cost	1287 Mo	123 Mo

Fig. 2: Simulations performed in 11th Gen Intel(R) Core(TM) i9-11950H, 2.60GHz with 32Gb of RAM capacity.

Linear steady case

ROM

The steady-state parametrized PDE model

Let V a Hilbert space equipped with a scalar product $(u,v)_V, \, \forall \, u,v \in V$, and the induced norm $||u||_V = \sqrt{(u,u)_V}, \, \forall u \in V$ and let Ω be a bounded open set of \mathbb{R}^{N_h} . Let us introduce $\mathcal{P} \subset L^\infty(\Omega)$ the parameter space such that $\mu \in \mathcal{P}$ with $\dim(\mathcal{P}) = N_\mu$. Let $P_s = \{\mu_s\}_{s=1}^{N_s}$, be a parameters set of dimension N_s obtained by sampling in some way the parameter space \mathcal{P} .

Steady μ -parametrized PDE

Given $\mu \in \mathcal{P}$, find $u(\mu) \in V$ such that:

$$a(\mu; u, v) = l(\mu; v), \quad \forall v \in V.$$
 (2)

Linear steady case, Galerkin FE

The corresponding High-Fidelity (HF) Finite Element (FE) model

 V_h : the approximation space, using conforming FE method, i.e. $V_h \subset V$.

Steady µ-parametrized discrete PDE

Given $\mu \in \mathcal{P}$, find $u_h(\mu) \in V_h$ satisfying:

$$a(\boldsymbol{\mu}; u_h(\boldsymbol{\mu}), v_h) = l(\boldsymbol{\mu}; v_h) \quad \forall v_h \in V_h.$$
(3)

Linear steady case, Galerkin FE

The corresponding High-Fidelity (HF) Finite Element model

The corresponding FE linear system

 $\Phi(x)=\{\varphi_i(x)\}_{i=1}^{N_h}$ denotes the FE functions basis vector, $V_h=\operatorname{span}\Phi(x)$. One has:

$$u_h(\boldsymbol{\mu}; x) = \Phi^T(x) \mathbf{u}_h^{\boldsymbol{\mu}} = \sum_{i=1}^{N_h} (u_h^{\boldsymbol{\mu}})_i \varphi_i(x), \tag{4}$$

the vector of dof $\mathbf{u}_h^{\boldsymbol{\mu}} = ((u_h^{\boldsymbol{\mu}})_1, \cdots, (u_h^{\boldsymbol{\mu}})_{N_h})^T$ satisfies the linear system:

$$\mathbf{A}_h^{\boldsymbol{\mu}} \mathbf{u}_h^{\boldsymbol{\mu}} = \mathbf{F}_h^{\boldsymbol{\mu}},\tag{5}$$

with $\mathbf{u}_h^{\pmb{\mu}} \in \mathbb{R}^{N_h}$ and $\mathbf{A}_h^{\pmb{\mu}}$ is the stiffness matrix such that: $(\mathbf{A}_h^{\pmb{\mu}})_{ij} = (a_{ij})_{i,j=1,\cdots,N_h}$ with $a_{ij} = a(\pmb{\mu};\varphi_j,\varphi_i)$. $\mathbf{F}_h^{\pmb{\mu}}$ is the RHS: $(\mathbf{F}_h^{\pmb{\mu}})_i = l(\pmb{\mu};\varphi_i)_{i=1,\cdots,N_h}$.

Linear steady case: Reduced Order Model (ROM) The reduced space is defined by:

ROM

(3.1.4)

(3.1.5)

$$V_{\rm rb}={\rm span}\,\Xi(x),\quad\Xi(x)=(\xi_1(x),\dots,\xi_{N_{\rm rb}}(x))$$
 It is a subspace of the full-order space:

 $V_{\mathsf{rb}} \subset V_{b}$, with $V_{b} = \mathsf{span}\,\Phi(x)$

 $\dim(V_{\mathsf{rb}}) = N_{\mathsf{rb}} \ll N = \dim(V_h)$

$$\xi_n(x) \in V_h, \quad \forall n = 1, \dots, N_{\mathsf{rb}}$$

► The reduced space has much lower dimension:

Galerkin reduced basis μ -parametrized PDE

Given ${\color{blue}\mu}\in\mathcal{P}$, find $u_{rb}({\color{blue}\mu})\in V_{rb}$ satisfying:

$$a(\boldsymbol{\mu}; u_{rb}(\boldsymbol{\mu}), v_{rb}) = l(\boldsymbol{\mu}; v_{rb}), \quad \forall v_{rb} \in V_{rb}.$$

$$r_b$$
. (6

Linear steady case: Reduced Order Model (ROM)

The corresponding reduced basis FE system

 $\Xi(x) = \{\xi_n(x)\}_{n=1}^{N_{rb}} \text{ denotes the reduced basis functions, } V_{rb} = \operatorname{span}\Xi(x). \text{ Let } \mathbf{B}_{rb} = \left[\xi_1|\cdots|\xi_{N_{rb}}\right] \in \mathbb{R}^{N_h \times N_{rb}} \text{ be the change of basis between } V_h \text{ and } V_{rb}. \text{ The vector } \xi_n \text{ denotes the coordinates vector of the function } \xi_n(x) \text{ in the FE basis } \Phi(x). \text{ Therfore: } \Xi(x) = \mathbf{B}_{xb}^T \Phi(x), \text{ one has: } \mathbf{B}$

$$u_{rb}(\mu; x) = \Xi^{T}(x)\mathbf{u}_{rb}^{\mu} = \Phi^{T}(x)\mathbf{B}_{rb}\mathbf{u}_{rb}^{\mu} = \sum_{n=1}^{N_{rb}} (u_{rb}^{\mu})_{n}\xi_{n}(x) \qquad 1 \le i \le N_{rb}.$$
 (7)

The vector of dof $\mathbf{u}_{rb}^{\mu}=((u_{rb}^{\mu})_1,\cdots,(u_{rb}^{\mu})_{N_{rb}})\in\mathbb{R}^{N_{rb}}$ satisfies the linear reduced system:

$$\mathbf{B}_{rb}^T \mathbf{A}_h^{\mu} \mathbf{B}_{rb} \mathbf{u}_{rb}^{\mu} = \mathbf{B}_{rb}^T \mathbf{F}_h^{\mu} \tag{8}$$

Linear steady case: Reduced Order Model (ROM)

The corresponding reduced basis FE system

The reduced matrix \mathbf{A}^{μ}_{rb} and the reduced RHS \mathbf{F}^{μ}_{rb} are obtained from the linear discrete parametrized problem given by Eq. (6). Indeed, for $\xi_m, \xi_n \in V_h$, $1 \leq m, n \leq N_{rb}$ we have:

$$a(\mu;\xi_m,\xi_n) = \sum_{i=1}^{N_h} \sum_{j=1}^{N_h} (\xi_m(x))_j a(\mu;\varphi_j,\varphi_i) (\xi_n(x))_i \text{ and } l(\mu;\xi_n) = \sum_{i=1}^{N_h} l(\mu;\varphi_i) (\xi_n(x))_i.$$

Equivalently, in matrix form:

$$\mathbf{B}_{rb}^{T} \mathbf{A}_{h}^{\mu} \underbrace{\mathbf{B}_{rb} \mathbf{u}_{rb}^{\mu}}_{\bar{\mathbf{u}}_{h}^{\mu}} = \mathbf{B}_{rb}^{T} \mathbf{F}_{h}^{\mu} \tag{9}$$

Goal: find $\tilde{u}_h(\mu) \approx u_h(\mu)$ such that: $\tilde{\mathbf{u}}_h^{\mu} = \mathbf{B}_{rb}\mathbf{u}_{rb}^{\mu}$. **Question**: how to construct \mathbf{B}_{rb} ?

Solution manifolds

The continuous solution manifold

Let \mathcal{M} denotes the space of all solutions u of the μ -parametrized problem given by Eq. (2):

$$\mathcal{M} = \{ u(\mu), \quad u(\mu) \text{ solution of (2) with } \mu \in \mathcal{P} \} \subset V.$$
 (10)

The discrete solution manifold

Let us define the corresponding discrete space of all solutions as follows:

$$\mathcal{M}_h = \{ u_h(\mu), \quad u_h(\mu) \text{ solution of (3) with } \mu \in \mathcal{P} \} \subset V_h.$$
 (11)

The discrete solution manifold

The spaces $\mathcal M$ and $\mathcal M_h$ are called the solution manifolds or . We set $\mathcal M_{h,s}$ such that:

$$\mathcal{M}_{h,s} = \{u_h(\mu_s), \quad u_h(\mu_{N_s}) \in V_h \text{ solution of (3) with } \mu_s \in P_s\};$$

$$= \{u_h(\mu_1), \cdots, u_h(\mu_{N_s})\}.$$
(12)

 \mathcal{P} is the parameter space.

$$P_s = \{\mu_1, \cdots, \mu_{N_s}\} \in (\mathcal{P})^{N_s} \subset \mathbb{R}^{N_\mu}$$

 \mathcal{P} is the parameter space. \mathcal{M}_h is the set of HF solutions (snapshots)

 ${\mathcal P}$ is the parameter space. ${\mathcal M}_h$ is the set of HF solutions (snapshots)

 \mathcal{P} is the parameter space. \mathcal{M}_h is the set of HF solutions (snapshots)

 \mathcal{P} is the parameter space. \mathcal{M}_h is the set of HF solutions (snapshots)

 \mathcal{P} is the parameter space. \mathcal{M}_h is the set of HF solutions (snapshots) We build $\mathbf{S} = [\mathbf{u}_h(\mu_1)|\cdots|\mathbf{u}_h(\mu_{N_s})] \in \mathbb{R}^{N_h \times N_s}$ the snapshots matrix.

 \mathcal{P} is the parameter space. \mathcal{M}_h is the set of HF solutions (snapshots) We build $\mathbf{S} = [\mathbf{u}_h(\mu_1)|\cdots|\mathbf{u}_h(\mu_{N_s})] \in \mathbb{R}^{N_h \times N_s}$ the snapshots matrix. In the sequel, V_{rb} is constructed by the POD method.

Manifolds \mathcal{M}

Plot: a 3D manifold $\mathcal{M}_h = \{u_h(\mu); \ \mu \in \mathcal{P} = [0, 10] \subset \mathbb{R}\}$, for a steady linear advection-diffusion equation.

3 components of $\mathbf{u}_h(\mu)$ for various values of μ .

Fig. 3: (Left) Affine case: $(\lambda(\mu) = (\mu + \mu_0))$. (Right) Non-affine case: $(\lambda(\mu) = \exp(\mu_0(\mu + 1)))$.

The POD reduction method Singular value decomposition (SVD)

Definition

For $\mathbf{A} \in \mathcal{M}_{N_h \times N_s}$ a (real) matrix, there exist two orthogonal matrices $\mathbf{U} = (\boldsymbol{\xi}_1 | \cdots | \boldsymbol{\xi}_{N_h}) \in \mathcal{M}_{N_h \times N_h}$ and $\mathbf{Z} = (\boldsymbol{\psi}_1 | \cdots | \boldsymbol{\psi}_M) \in \mathcal{M}_{N_s \times N_s}$ such that:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{Z}^T \text{ with } \mathbf{\Sigma} = diag(\sigma_1, \cdots, \sigma_p) \in \mathcal{M}_{N_h \times N_s}$$
 (13)

and $\sigma_1 \ge \cdots \ge \sigma_p \ge 0$, $p = \min(N_h, N_s)$.

The SVD and correlation matrix

► Singular vector relations:

$$\mathbf{S}\boldsymbol{\psi}_m = \sigma_m \boldsymbol{\xi}_m, \qquad \mathbf{S}^T \boldsymbol{\xi}_m = \sigma_m \boldsymbol{\psi}_m \quad \text{for } m = 1, \dots, N_s$$

Equivalent eigenvalue problems:

$$\mathbf{S}^T \mathbf{S} \boldsymbol{\psi}_m = \sigma_m^2 \boldsymbol{\psi}_m, \qquad \mathbf{S} \mathbf{S}^T \boldsymbol{\xi}_m = \sigma_m^2 \boldsymbol{\xi}_m$$

▶ Correlation matrix: Define $\mathbf{C} \in \mathbb{R}^{N_s \times N_s}$ by:

$$\mathbf{C}_{mn} = (u_{\mu,m}, u_{\mu,n})_{\square} \quad \text{for } 1 \leq m, n \leq N_s$$

▶ The case where $\Box = L^2$ scalar product:

$$\mathbf{C} = \mathbf{S}^T \mathbf{S}$$

▶ The case where $\Box = V$ -scalar product:

$$\mathbf{C} = \mathbf{S}^T \mathbf{V}_h \mathbf{S}$$
 with \mathbf{V}_h symmetric positive definite

Spectral properties: ${\bf C}$ is symmetric positive definite \Rightarrow eigenvalues $\lambda_m=\sigma_m^2>0$

$$\mathbf{C}\boldsymbol{\psi}_m = \lambda_m \boldsymbol{\psi}_m$$

The Proper Orthogonal Decomposition (POD) reduced space

Definition

The POD reduced space V_{POD} is defined as:

$$V_{\mathsf{POD}} \equiv V_{\mathsf{rb}} = \mathsf{span}\left\{\boldsymbol{\xi}_{1}(x), \dots, \boldsymbol{\xi}_{N_{\mathsf{rb}}}(x)\right\} \tag{3.2.10}$$

where each $\xi_n(x) \in V_h$ is the n-th left singular vector of \mathbf{S} , i.e., the reduced basis consists of the first N_{rb} left singular vectors $\{\xi_m\}_{1 \leq m \leq N_{\mathsf{rb}}}$ of \mathbf{S} .

The POD reduced basis

Definition

The POD reduced basis basis can be also defined from $\{\mathbf{w}_1|\dots|\mathbf{w}_{N_s}\}$ the eigenvectors of the correlation matrix \mathbf{C} as follows:

$$\boldsymbol{\xi}_i = \frac{1}{\sigma_s} \mathbf{S} \mathbf{w}_i.$$

Therefore, in the matrix form, the reduced basis basis \mathbf{B}_{rb} satisfies:

$$\mathbf{B}_{rb} = \mathbf{SW} \mathbf{\Sigma}^{-1},\tag{14}$$

where $\Sigma^{-1} = diag(\sigma_1^{-1}, \cdots, \sigma_{N_s}^{-1})$ and $\mathbf{W} \in \mathcal{M}_{N_s \times N_s}$ is a matrix containing the eigenvectors of \mathbf{C} .

The orthogonal projector and error estimation

Definition

Given μ in \mathcal{P} , $\forall u_h(\mu) \in V_h$,

$$P_{POD}(u_h(\mu)) = \sum_{n=1}^{N_{rb}} (u_h(\mu), \xi_n(x))_{\square} \, \xi_n(x). \tag{15}$$

The orthogonal projector

The orthogonal projector matrix form

For each snapshot vector $\mathbf{u}_h(\mu) \in \mathbb{R}^{N_h}$, the POD projection operator denoted by \mathbf{P}_{rb} of $\mathbf{u}_h(\mu)$ onto the span of $\mathbf{B}_{rb} = [\boldsymbol{\xi}_1|\cdots|\boldsymbol{\xi}_{N_{rb}}] \in \mathbb{R}^{N_h \times N_{rb}}$ or equivalently onto the reduced space V_{rb} in matrix form is given by:

For L^2 scalar product:

$$\mathbf{P}_{rb}\mathbf{u}_h(\mu) = \mathbf{B}_{rb}\mathbf{B}_{rb}^T\mathbf{u}_h(\mu) = \mathbf{B}_{rb}\mathbf{u}_h^{N_{rb}}(\mu), \tag{16}$$

where

$$\mathbf{u}_h^{N_{rb}}(\mu) = \mathbf{B}_{rb}^T \mathbf{u}_h(\mu) \in \mathbb{R}^{N_{rb}}$$
(17)

► For *V* scalar product:

$$\mathbf{P}_{rb}\mathbf{u}_h(\mu) = \mathbf{B}_{rb}\mathbf{V}_h\mathbf{B}_{rb}^T\mathbf{u}_h(\mu). \tag{18}$$

where $\mathbf{V}_h \in \mathcal{M}_{N_h \times N_h}$ is symmetric and positive definite matrix.

The POD error estimation

Proposition 1

Among all semi-orthonormal bases of dimension N_{rb} , the POD basis is optimal in the least-squares sense. That is, it minimizes the total projection error:

$$\sum_{s=1}^{N_s} \|\mathbf{u}_{\mu,s} - \mathbf{P}_{POD}\mathbf{u}_{\mu,s}\|_{\square}^2 = \min_{\mathbf{B} \in \mathbf{B}_{N_{rb}}^{\perp}} \sum_{s=1}^{N_s} \|\mathbf{u}_{\mu,s} - \mathbf{P}_B \mathbf{u}_{\mu,s}\|_{\square}^2 = \sum_{s=N_{rb}+1}^{N_s} \lambda_s,$$
(19)

where P_B denotes the orthogonal projection onto the subspace B, and λ_s are the eigenvalues associated with the POD decomposition.

POD reduced basis algorithm - offline Phase

► Compute N_s HF snapshots and their corresponding vectors $\mathbf{u}_{\mu,n}$:

$$u_{\mu,n} \equiv u_h(\mu_n), \quad 1 \le n \le N_s, \quad \mu_n \in \mathbb{R}^{N_\mu}$$

► Build the snapshot matrix:

$$\mathbf{S} = [\mathbf{u}_{\mu,1} \mid \cdots \mid \mathbf{u}_{\mu,N_s}] \in \mathbb{R}^{N_h \times N_s}$$

Form the correlation matrix:

$$\mathbf{C} = \mathbf{S}^T \mathbf{V}_h \mathbf{S} \in \mathbb{R}^{N_S \times N_S}$$

where \mathbb{V}_h is the mass matrix (for L^2 or V-product). \mathbf{C} is symmetric positive definite.

ightharpoonup Compute the $N_{\rm rb}$ largest eigenpairs:

$$\mathbf{C}\mathbf{w}_n = \lambda_n \mathbf{w}_n, \quad \|\mathbf{w}_n\|_V = 1, \quad 1 \le n \le N_{\mathsf{rb}}$$

Recover the POD modes (left singular vectors of S):

$$\boldsymbol{\xi}_n = \frac{1}{\sqrt{\lambda_n}} \mathbf{S} \mathbf{w}_n, \quad 1 \le n \le N_{\mathsf{rb}}$$

Construct the reduced basis matrix:

$$\mathbf{B}_{\mathsf{r}\mathsf{b}} = [\boldsymbol{\xi}_1 \mid \cdots \mid \boldsymbol{\xi}_{N_{\mathsf{r}\mathsf{b}}}] \in \mathbb{R}^{N_h \times N_{\mathsf{r}\mathsf{b}}}$$

POD reduced basis algorithm – online phase

The online phase (real-time computations)

Given a new parameter value $\mu_{\text{new}} \in \mathcal{P}$:

Assemble the high-fidelity stiffness matrix:

$$\mathbf{A}_h^{\mu_{\mathsf{new}}} \in \mathbb{R}^{N_h \times N_h}$$

► Compute the reduced-order matrices:

$$\mathbf{A}_{\mathrm{rb}}^{\mu_{\mathrm{new}}} = \mathbf{B}_{\mathrm{rb}}^T \mathbf{A}_h^{\mu_{\mathrm{new}}} \mathbf{B}_{\mathrm{rb}}, \quad \mathbf{F}_{\mathrm{rb}}^{\mu_{\mathrm{new}}} = \mathbf{B}_{\mathrm{rb}}^T \mathbf{F}_h^{\mu_{\mathrm{new}}}$$

Solve the reduced system:

$$\mathbf{A}_{\mathsf{rb}}^{\mu_{\mathsf{new}}}\mathbf{u}_{\mathsf{rb}}(\mu_{\mathsf{new}}) = \mathbf{F}_{\mathsf{rb}}^{\mu_{\mathsf{new}}}, \quad \mathbf{u}_{\mathsf{rb}}(\mu_{\mathsf{new}}) \in \mathbb{R}^{N_{\mathsf{rb}}}$$

► Reconstruct the full solution in the FE basis:

$$\mathbf{u}_{\mathsf{rb}}^{Nh} = \mathbf{B}_{\mathsf{rb}} \mathbf{u}_{\mathsf{rb}}(\mu_{\mathsf{new}}) \quad \Rightarrow \quad \mathbf{u}_{\mathsf{rb}}^{Nh} \in \mathbb{R}^{Nh}$$

- lacktriangle The reconstructed solution $u_{
 m rb}(x;\mu_{
 m new})$ can be expressed using the FE basis $\{\varphi_i(x)\}_{i=1}^{N_h}$, enabling visualization.
- lacktriangle According to Proposition 1, ${f u}_{
 m rb}^{N_h}$ belongs to the optimal reduced basis of dimension $N_{
 m rb}$.

► Offline phase

- ▶ Offline phase
 - ▶ Sample the set of parameter $P_s = \{\mu_s\}_{s=1}^{N_s}$ (LHS, uniforme sample).

- ▶ Offline phase
 - ▶ Sample the set of parameter $P_s = \{\mu_s\}_{s=1}^{N_s}$ (LHS, uniforme sample).
 - ▶ Compute the set of HF snapshots $\mathcal{M}_h = \{u_h(\mu_i), \mu_i \in P_s\}.$

- ► Offline phase
 - ▶ Sample the set of parameter $P_s = \{\mu_s\}_{s=1}^{N_s}$ (LHS, uniforme sample).
 - ▶ Compute the set of HF snapshots $\mathcal{M}_h = \{u_h(\mu_i), \mu_i \in P_s\}.$
 - ▶ Compute the Reduced Basis (RB) matrix \mathbf{B}_{rb} using POD.

- ► Offline phase
 - ▶ Sample the set of parameter $P_s = \{\mu_s\}_{s=1}^{N_s}$ (LHS, uniforme sample).
 - ▶ Compute the set of HF snapshots $\mathcal{M}_h = \{u_h(\mu_i), \mu_i \in P_s\}.$
 - ▶ Compute the Reduced Basis (RB) matrix \mathbf{B}_{rb} using POD.
- ► Online phase

- ► Offline phase
 - ▶ Sample the set of parameter $P_s = \{\mu_s\}_{s=1}^{N_s}$ (LHS, uniforme sample).
 - ▶ Compute the set of HF snapshots $\mathcal{M}_h = \{u_h(\mu_i), \mu_i \in P_s\}.$
 - ▶ Compute the Reduced Basis (RB) matrix \mathbf{B}_{rb} using POD.
- ▶ Online phase
 - Given a new parameter μ_{new} , "re-assembly" the $(N_h \times N_h)$ -rigidity matrix $\mathbf{A}^{\mu_{new}}$. "Non-affinely" parameterized case: Discrete Empirical Interpolation Method (DEIM) can be used to re-assembly the rigidity matrix.

► Offline phase

- ▶ Sample the set of parameter $P_s = \{\mu_s\}_{s=1}^{N_s}$ (LHS, uniforme sample).
- ► Compute the set of HF snapshots $\mathcal{M}_h = \{u_h(\mu_i), \mu_i \in P_s\}.$
- ▶ Compute the Reduced Basis (RB) matrix \mathbf{B}_{rb} using POD.

▶ Online phase

- Given a new parameter μ_{new} , "re-assembly" the $(N_h \times N_h)$ -rigidity matrix $\mathbf{A}^{\mu_{new}}$. "Non-affinely" parameterized case: Discrete Empirical Interpolation Method (DEIM) can be used to re-assembly the rigidity matrix.
- ► Compute the RB stiffness matrix $\mathbf{A}_{rb}^{\mu_{new}} = \mathbf{B}_{rb}^T \mathbf{A}_h^{\mu_{new}} \mathbf{B}_{rb}$ and the RHS $\mathbf{F}_{rb}^{\mu} = \mathbf{B}_{rb}^T \mathbf{F}_h^{\mu_{new}}$

► Offline phase

- ▶ Sample the set of parameter $P_s = \{\mu_s\}_{s=1}^{N_s}$ (LHS, uniforme sample).
- ▶ Compute the set of HF snapshots $\mathcal{M}_h = \{u_h(\mu_i), \mu_i \in P_s\}.$
- ▶ Compute the Reduced Basis (RB) matrix \mathbf{B}_{rb} using POD.

▶ Online phase

- Given a new parameter μ_{new} , "re-assembly" the $(N_h \times N_h)$ -rigidity matrix $\mathbf{A}^{\mu_{new}}$. "Non-affinely" parameterized case: Discrete Empirical Interpolation Method (DEIM) can be used to re-assembly the rigidity matrix.
- ► Compute the RB stiffness matrix $\mathbf{A}_{rb}^{\mu_{new}} = \mathbf{B}_{rb}^T \mathbf{A}_h^{\mu_{new}} \mathbf{B}_{rb}$ and the RHS $\mathbf{F}_{rb}^{\mu} = \mathbf{B}_{rb}^T \mathbf{F}_h^{\mu_{new}}$
- ► Solve the N_{rb} -dimensional system: $\mathbf{A}_{rb}^{\mu_{new}} \mathbf{u}_{rb}^{\mu_{new}} = \mathbf{F}_{rb}^{\mu_{new}}$.

► Offline phase

- ▶ Sample the set of parameter $P_s = \{\mu_s\}_{s=1}^{N_s}$ (LHS, uniforme sample).
- ► Compute the set of HF snapshots $\mathcal{M}_h = \{u_h(\mu_i), \mu_i \in P_s\}.$
- ▶ Compute the Reduced Basis (RB) matrix \mathbf{B}_{rb} using POD.

▶ Online phase

- Given a new parameter μ_{new} , "re-assembly" the $(N_h \times N_h)$ -rigidity matrix $\mathbf{A}^{\mu_{new}}$. "Non-affinely" parameterized case: Discrete Empirical Interpolation Method (DEIM) can be used to re-assembly the rigidity matrix.
- ► Compute the RB stiffness matrix $\mathbf{A}_{rb}^{\mu_{new}} = \mathbf{B}_{rb}^T \mathbf{A}_h^{\mu_{new}} \mathbf{B}_{rb}$ and the RHS $\mathbf{F}_{rb}^{\mu} = \mathbf{B}_{rb}^T \mathbf{F}_h^{\mu_{new}}$
- Solve the N_{rb} -dimensional system: $\mathbf{A}_{rb}^{\mu_{new}} u_{rb}^{\mu_{new}} = \mathbf{F}_{rb}^{\mu_{new}}$.
- ▶ Deduce the reduced solution in the HF basis: $\tilde{\mathbf{u}}_h^{\mu_{new}} = \mathbf{B}_{rb}\mathbf{u}_{rb}^{\mu_{new}}$.

FE system using implicit Euler time discretization

$$\left(\frac{1}{\Delta t}\mathbf{M}_{h} + \mathbf{A}_{h}^{\mu}\right)\mathbf{u}_{h,k}^{\mu} = \frac{1}{\Delta t}\mathbf{M}_{h}\mathbf{u}_{h,k-1}^{\mu} + \mathbf{F}_{h}, \quad 1 \le k \le N_{t},$$
(20)

with $(\mathbf{M}_h)_{ij} = (\varphi_i, \varphi_j)_{L^2(\Omega)}, \ (\mathbf{A}_h^{\mu})_{ij} = a(\mu; \varphi_i, \varphi_j), \ 1 \leq i, j \leq N_h$ and $(\mathbf{F}_h)_i = l(\varphi_i), \ 1 \leq i \leq N_h.$

FE reduced system

$$\left(\frac{1}{\Delta t}\mathbf{M}_{rb} + \mathbf{A}_{rb}^{\mu}\right)\boldsymbol{u}_{rb,k}^{\mu} = \frac{1}{\Delta t}\mathbf{M}_{rb}\boldsymbol{u}_{rb,k-1}^{\mu} + \boldsymbol{F}_{rb}, \quad 1 \le k \le N_t, \tag{21}$$

with $\mathbf{M}_{rb} = \mathbf{B}_{rb}^T \mathbf{M}_h \mathbf{B}_{rb}$, $\mathbf{A}_{rb}^\mu = \mathbf{B}_{rb}^T \mathbf{A}_h^\mu \mathbf{B}_{rb}$ and $\mathbf{F}_{rb} = \mathbf{B}_{rb}^T \mathbf{F}_h$

The POD Method: Offline and Online Phases Unsteady Linear PDE Case

Numerical example: unsteady linear case, Galerkin FE

μ -parametrized unsteady linear advection-diffusion equation, $\mu = (\mu_1, \mu_2)$

$$\begin{cases} \partial_t u_h(\pmb{\mu};t) - \operatorname{div}(\lambda(\pmb{\mu_1}) \nabla u_h(\pmb{\mu};t)) + \pmb{w} \cdot \nabla u_h(\pmb{\mu};t) = f(\pmb{\mu_2}) & \text{in } \pmb{Q}_T = (0,T) \times \Omega, \\ u_h(\pmb{\mu};t) = 0 & \text{in } \varGamma_D, \\ -\lambda(\pmb{\mu_1}) \nabla u_h(\pmb{\mu};t) \cdot n = 0 & \text{in } \varGamma_N, \\ u_h(\pmb{\mu};0) = u_0(\pmb{\mu}) & \text{a.e in } \Omega. \end{cases}$$

with
$$\mu = (\mu_1, \mu_2)$$
, $\lambda(\mu_1) = \exp(\mu_1 - 11)$ and $f(\mu_2) = \cos(\mu_2 Lx)$

Numerics

- $\mu \in \mathcal{P} = [1, 10] \times [0, \frac{\pi}{L}].$
- ▶ N_s snapshots, $N_s = (20 \times 20) \times N_t$ with $N_t = 20$.
- ▶ HF dimension $N_h = 1296$. $\epsilon_{POD}^2 = 10^{-5}$ ⇒ RB dimension $N_{rh} = 32$.

Unsteady linear case

ROM

Standard POD method results

Case $\mu = (\mu_1, \mu_2)$, with non-affine parameterization, $\lambda(\mu_1) = \exp(\mu_1 - 11)$, $\mu_1 = 2.68$ and $f(\mu_2) = \cos(\mu_2 Lx)$ with $\mu_2 = 1.48$.

Fig. 4: (Left) The FE solution. (Middle) The POD RB solution. (Right) The absolute error between the FE and POD RB solutions. (Top) At time instant t = 0s. (Bottom) At time instant t = 0.87s.

References

- [1] Joshua Barnett, Charbel Farhat, and Yvon Maday. "Neural-network-augmented projection-based model order reduction for mitigating the Kolmogorov barrier to reducibility". In: *Journal of Computational Physics* 492 (2023), p. 112420.
- [2] Wenqian Chen, Qian Wang, Jan S Hesthaven, and Chuhua Zhang. "Physics-informed machine learning for reduced-order modeling of nonlinear problems". In: *Journal of computational physics* 446 (2021), p. 110666.
- [3] Jan S Hesthaven and Stefano Ubbiali. "Non-intrusive reduced order modeling of nonlinear problems using neural networks". In: *Journal of Computational Physics* 363 (2018), pp. 55–78.
- [4] Alfio Quarteroni, Andrea Manzoni, and Federico Negri. *Reduced basis methods for partial differential equations: an introduction.* Vol. 92. Springer, 2015.