Training Deep Neural Networks

Vanishing Gradients

Unchanged lower gradients

Vanishing/Exploding Gradients: Why?

Vanishing/Exploding Gradients

Vanishing/Exploding Gradients

Glorot Uniform	Logistic Activation Softmax Tanu	Normal DistributionUniform Distribution	
LeCun Normal	SELU		Outputs of each layer self-normalize (mean=0, std=1) Must initialize hidden layer weights with LeCun normal Neural Network(NN) architecture must be sequential
He	RELU ELU		ELU is slow, but coverages quicker than other functions
	Leaky RELU		Never dies'
RRELU Randomized			'alpha' variable acts as regularizer reducing overfitting
	Parametric Leaky RELU		'alpha' variables learns during training

BatchNormalization

Addresses gradients growth/drop problem by zero centered and normalizing data. Standardizing inputs during training. At the end of training 'final' statistics are used to evaluate. \longrightarrow \rightarrow $\blacksquare \longrightarrow$ Batch = 4 BN Layer Start

BatchNormalization

Note: Acts as a regularizer, reducing overfitting

BatchNormalization

Option 1

Option 2

Transfer Learning

Model B classifies

Transfer learning works on deep convolutional neural networks.

Not a good candidate for TL as small dense networks learn specific 'patterns'

Unsupervised Learning

Dropout

Neurons must be learn 'well' on their own as inputs will vary in size

Neurons less sensitive to input changes, sustaining learned behavior from few inputs, equating to a manageable variance

Dropout

At every step (new instance) a new training network is trained

10000 training steps = 10000 training networks

Dropout

Training Non-Training **During testing a neuron** Multiply each neuron input could be connected to connection weight neuron by 0.5 twice as many inputs Compensator(keep probability) = 0.50 Or Divide neurons outputs by 0.5 during training

Monte Carlo (4 prediction states)

Predictions made on 4 different networks

Residuals(Model, Model+MonteCarlo)

Dark - error

White - no error

ICycle Learning Schedule

