Kit de survie pour la réduction des matrices carrées

Valentin KILIAN (IPESUP)

1 Changement de base

Soit E un espace vectoriel de dimension n.

Définition 1.1. Soient $\mathcal{B} = (e_1, e_2, ..., e_n)$ et $\mathcal{B}' = (e_1', e_2', ..., e_n')$ deux bases de E. On appelle matrice de passage de la base \mathcal{B} à la base \mathcal{B}' et on note $P_{\mathcal{B},\mathcal{B}'}$ la matrice carrée d'ordre n dont les colonnes sont les coordonnées des vecteurs de \mathcal{B}' exprimées dans la base \mathcal{B} .

Proposition 1.2. Quand \mathcal{B} et \mathcal{B}' sont deux bases de E alors $P_{\mathcal{B},\mathcal{B}'}$ est inversible et $(P_{\mathcal{B},\mathcal{B}'})^{-1} = P_{\mathcal{B}',\mathcal{B}}$

Proposition 1.3. Soient \mathcal{B} et \mathcal{B}' deux bases de l'espace vectoriel E et $x \in E$. Soit $X = Mat_{\mathcal{B}}(x)$ et $X' = Mat'_{\mathcal{B}}(x)$ matrices colonnes des coordonnées du vecteur x dans \mathcal{B} et \mathcal{B}' . On a alors : $X = P_{\mathcal{B},\mathcal{B}'}.X'$ et $X' = P_{\mathcal{B}',\mathcal{B}}.X = (P_{\mathcal{B},\mathcal{B}'})^{-1}.X$.

Proposition 1.4. Changement de base pour un endomorphisme. Soit $f \in \mathcal{L}(E)$. Soient \mathcal{B} et \mathcal{B}' deux bases de E. Soient $A = Mat_{\mathcal{B}}(f)$ et $A' = Mat_{\mathcal{B}}(f)$ et $P = P_{\mathcal{BB}'}$. On a alors : $A = P.A'.P^{-1}$ et $A' = P^{-1}.A.P$

Définition 1.5. Deux matrices A et B de $\mathcal{M}_n(\mathbb{R})$ sont dites semblables s'il existe une matrice inversible $P \in \mathcal{M}_n(\mathbb{R})$ telle que : $B = P^{-1}.A.P$.

Proposition 1.6. Deux matrices semblables représentent le même endomorphisme dans deux bases différentes.

2 Diagonalisation

2.1 Valeurs propres et vecteurs propres

Définition 2.1. On dit que $\lambda \in \mathbb{R}$ est une valeur propre de la matrice $A \in \mathcal{M}_n(\mathbb{R})$ s'il exist un vecteur colonne $U \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul tel que $A.U = \lambda U$.

Un tel vecteur U non nul est appelé vecteur propre de A associé à la valeur propre λ . L'ensemble des valeurs propres d'une matrice A) s'appelle le spectre de A on note Sp(A).

Notation Soit λ un réel, on notera $E_{\lambda} = \{X \in \mathcal{M}_{n,1}(\mathbb{R})/AX = \lambda.X\}$

Proposition 2.2. $E_{\lambda} = Ker(A - \lambda I_n)$) est un sous-espace vectoriel $\mathcal{M}_{n,1}(\mathbb{R})$.

Définition 2.3. Si λ est une valeur propre de la matrice A alors E_{λ} est appelé espace propre de A associé à la valeur propre λ .

Proposition 2.4. λ est une valeur propre de A si et seulement si $E_{\lambda} \neq \{0_E\}$.

Remarque

- \blacktriangleright λ est une valeur propre de $A \in \mathcal{M}_n(\mathbb{R})$ si et seulement si $A \lambda I_n$ n'est pas inversible.
- ▶ $f \in \mathcal{L}(E)$ estbijective si et seulement si 0 n'est pas valeur propre de f.

2.2 Propriétés

Proposition 2.5. Deux matrices semblables ont les mêmes valeurs propres

Proposition 2.6. Une famille de vecteurs propres associés à des valeurs propres distinctes est libre.

Corollaire 2.7. Un endomorphisme d'un espace vectoriel de dimension n (resp. une matrice carrée d'ordre n) possède au plus n valeurs propres distinctes.

Proposition 2.8. *Soit* $f \in \mathcal{L}(E)$. *On suppose que dans une base* \mathcal{B} *donnée la matrice de* f :

$$Mat_{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & * & \dots & * \\ 0 & \lambda_2 & * & \dots \\ & 0 & \ddots & \dots \\ & & \ddots & \ddots & * \\ 0 & \ddots & \ddots & 0 & \lambda_n \end{pmatrix}.$$

Alors $\lambda_1, \lambda_2, ..., \lambda_n$ sont les valeurs propres de f.

2.3 Conditions de diagonalisation

Définition 2.9. *Soit* $f \in \mathcal{L}(E)$.

ullet On dit que f est diagonalisable s'il existe une base ${\cal B}$ de E telle que

$$Mat_{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & 0 & \dots & \dots & 0 \\ 0 & \lambda_2 & 0 & & \dots \\ \vdots & 0 & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & \vdots & \vdots & 0 & \lambda_n \end{pmatrix}$$

notée $diag(\lambda_1,...,\lambda_n)$ matrice diagonale avec les valeurs $\lambda_1,...,\lambda_n$ sur la diagonale.

- Diagonaliser un endomorphisme c'est trouver une telle base.
- Soit $\mathcal{B} = (u_1, u_2, ..., u_n)$ une base de E telle que $Mat_{\mathcal{B}}(f) = diag(\lambda_1, ..., \lambda_n)$

Alors $\forall i \in \{1,...,n\}$ on $a: f(u_i) = \lambda_i.u_i$ c'est-à-dire que u_i est un vecteur propre associé à la valeur propre λ_i .

Définition 2.10. Diagonaliser une matrice associée c'est trouver une matrice P inversible et une matrice D diagonale telles que : $A = P.D.P^{-1}$

Proposition 2.11. *Si* $f \in \mathcal{L}(E)$ *possède* n *valeurs propres distinctes alors* f *est diagonalisable.*

Théorème 2.12. (Théorème spectral) Tout matrice symétrique est diagonalisable.

2.4 Polynôme annulateur

Définition 2.13. Soit $P: x \mapsto \sum_{i=0}^{n} a_i.x^i$ une fonction polynôme non nulle. On dit que P est un polynôme annulateur de la matrice $A \in \mathcal{M}_k(\mathbb{R})$ si $P(A) = \sum_{i=0}^{n} a_i.A^i = 0_k$.

Proposition 2.14. Soit P un polynôme annulateur d'une matrice A. Toute valeur propre de A est racine de P.

Remarque : Par conséquent les valeurs propres possibles d'un endomorphisme ou d'une matrice carrée sont à rechercher dans les racines d'un polynôme annulateur.