Amendments to the Claims:

The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 - 42. (Canceled)

43. (Currently Amended) A processProcess for producing a layer system for the protection against wear, for the protection against corrosion and for improving the sliding properties, having an adhesive layer for the arrangement on a substrate, a transition layer for the arrangement on the adhesive layer and a cover layer of an adamantine carbon,

comprising

- a) charging the substrate into a vacuum chamber and pumping down to a vacuum of a <u>starting</u> pressure of less than 10⁻⁴ mbar, preferably 10⁻⁵ mbar,
 - b) cleaning a surface of the substrate,
 - c) plasma-aided vapor-depositing of the adhesive layer on the substrate.
- d) applying the transition layer to the adhesion layer by simultaneous plasma-aided vapor depositing of adhesion layer constituents and depositing carbon from the gas phase,
- e) applying the adamantine carbon layer on the transition layer by a plasma-aided depositing of carbon from the gas phase, wherein

at least during process steps c), d) and e), a substrate bias voltage is applied to the substrate, and at least during process steps d) and e), the plasma is stabilized by a longitudinal magnetic field, the vapor depositing of the adhesive later is aided by an additional pulsed substrate bias voltage in a medium frequency range of from 1 to 10,000 kHz, and during at least one of the cleaning of the surface and the application of the adhesive layer and the application of transition layer and the application of cover layer made of an adamantine carbon, a longitudinal magnetic field with a uniform line of flux course is superimposed on the substrate, and the magnetic field being variable continuously or in steps with respect to at least one of time and space and wherein the magnetic flux course of the magnetic field is produced by two electromagnetic coils bounding the vacuum chamber on opposite sides thereof and current is introduced such that a mutually reinforcing magnetic field is created which is directed in the same direction at both coils, or the magnetic flux course of the magnetic field is also produced by only one coil for a smaller chamber, and the magnetic field is variable with respect to time and space for providing secondary plasmas in that the coil currents are displaced together with one another or are displaced against one another.

Serial No. 10/771,331 Supplemental Response Under 37 C.F.R. §1.114 Attorney Docket No. 080313.48830D1

- 44. (Previously Presented) The process according to claim 43, the cleaning of the substrate surface comprises at least one of a heating step and an etching step.
- 45. (Previously Presented) The process according to claim 44, wherein the heating step takes place by at least one of radiant heating, inductive heating and by electron bombardment.
- 46. (Previously Presented) The process according to claim 45, wherein the electron bombardment is caused by the ignition of a low-voltage arc and the simultaneous application of a continuous AC or AC superimposed bias voltage, as particularly a pulsed positive substrate bias voltage.
- 47. (Previously Presented) The process according to claim 44, wherein the etching step is carried out by ion etching, by means of at least one of a noble gas and hydrogen as the process gas, a low-voltage arc being ignited and a continuous negative substrate bias voltage being applied to the substrate.
- 48. (Previously Presented) The process according to claim 44, wherein the etching step is carried out by ion etching by means of at least one of a noble

Serial No. 10/771,331 Supplemental Response Under 37 C.F.R. §1.114 Attorney Docket No. 080313.48830D1

gas and hydrogen as a process gas, and an AC or AC superimposed substrate bias voltage, being applied.

49. (Previously Presented) The process according to claim 44, wherein the vapor depositing of the adhesive layer takes place one of by PVD processes, plasma CVD processes, cathodic sputtering and evaporation out of crucible by means of a low voltage arc.

50. (Previously Presented) The process according to claim 49, wherein the vapor depositing of the adhesive layer is aided by an additional low-voltage arc discharge and a negative substrate bias voltage is applied to the substrate.

51. (Canceled)

- **52.** (Previously Presented) The process according to claim 43, wherein, for the ignition of a plasma, a noble gas or a noble gas/hydrogen mixture, is fed into the vacuum chamber.
- 53. (Previously Presented) The process according to claim 43, wherein the transition layer is formed by an isochronous vapor depositing of at least one element from the Group which contains the elements from the 4th, 5th and 6th

Serial No. 10/771,331 Supplemental Response Under 37 C.F.R. §1.114 Attorney Docket No. 080313.48830D1

Subgroup and silicon, and a plasma-aided depositing of carbon from the gas phase, additionally, a carbon-containing gas, being used as the reaction gas.

- 54. (Previously Presented) The process according claim 53, wherein, as the thickness of the transition layer increases, the fraction of the carbon depositing is increased continuously or in steps.
- 55. (Previously Presented) The process according to claim 43 wherein, the adamantine carbon layer forming the cover layer is generated by the plasma CVD deposition of carbon from the gas phase with a carbon-containing gas being used as the reaction gas.
- 56. (Previously Presented) The process according to claim 53, wherein the reaction gas for depositing carbon, in addition to the carbon-containing gas, comprises at least one hydrogen and a noble gas.
- 57. (Previously Presented) The process according to claim 56, wherein, during the depositing of the cover layer made of adamantine carbon, at least one of the fraction of the carbon-containing gas is increased and the fraction of the noble gas is lowered.

- 58. (Previously Presented) The process according to claim 43, wherein a unipolar or bipolar substrate bias voltage is applied to the substrate, which is pulsed in a medium frequency range of from 1 to 10,000 kHz.
- 59. (Previously Presented) The process according to claim 58, wherein the substrate bias voltage is sinusoidal or is pulsed such that long negative and short positive pulse periods or large negative and low positive amplitudes are applied.

60. (Canceled)

61. (Previously Presented) The process according to claim 43, wherein said at least one of the application of the adhesive layer and the transition layer and the cover layer of adamantine carbon takes place at a pressure of from 10⁻⁴ mbar to 10⁻² mbar.

62. - 76. (Canceled)

77. (Previously Presented) The process according to claim 43, wherein the substrate surface cleaning comprises removing volatiles from the substrate surface.

- 78. (Previously Presented) The process according to claim 43, wherein the substrate surface cleaning comprises igniting a noble gas plasma.
- 79. (New) The process according to claim 43, wherein the magnetic fields adjustments take place periodically, in steps or continuously and thus the formation of stable secondary plasmas can be avoided.
- 80. (New) The process according to claim 43, wherein the magnetic field is built up by Helmholtz coils, and the substrate current and thus the plasma intensity are directly proportional to the coil currents and thus to the magnetic field buildup.
- 81. (New) The process according to claim 43, wherein, in addition to the longitudinal magnetic field that penetrates the entire vacuum chamber, additional local magnetic fields are provided by permanent magnetic systems on the walls bounding the vacuum chamber.