# CLASE 10 ARQUITECTURAS DSP

## **DSP: Digital Signal Processor**

Un DSP no es más que un <u>microprocesador especializado</u>. Tanto en su repertorio de instrucciones como en su organización. La tecnología utilizada es la misma que para los procesadores de propósitos generales.

Se trata de una arquitectura optimizada para las necesidades del procesamiento digital de señales. Optimizada tanto en capacidad de cómputo como en eficiencia energética.

Aplicaciones en audio, comunicaciones, radar, reconocimiento de voz, procesamiento de imágenes médicas, televisión digital, industria automotriz, etc.

Phil Lapsley et al, DSP Processor Fundamentals, IEEE Press 1997
Motorola, DSP56000 User Manual, 1994

## Procesamiento de señales: digital vs. analógico



## Procesamiento analógico de señales





## Procesamiento digital de señales





Filtro FIR (respuesta finita al impulso), N es el orden del filtro

## **Arquitectura Harvard + MAC**



Como las dos memorias y la MAC son independientes, el DSP podría realizar

- dos cargas,
- una multiplicación y
- una acumulación

en cada ciclo de reloj.

Este esquema representa la máxima performance que se puede tener con un único multiplicador.

ESTRATEGIA: FAVORECER EL CASO MÁS FRECUENTE



Discusión sobre los beneficios y diseño del acumulador

## **Suma de productos**

#### Convolución de secuencias discretas



$$y[n] y[i] = \sum_{j=0}^{M-1} h[j] x[i-j]$$





### Principales aplicaciones de los DSP

#### Tipos de aplicaciones

- Embedded de bajo costo (celulares, control de motores HD, automotriz)
- Aplicaciones de alta performance (algoritmos específicos demandantes)
- PC Multimedia

#### **Problemas típicos**

- Demanda de procesamiento en tiempo real con altas frecuencias de muestreo.
- Muestreo y generación de señales analógicas.
- Aplicaciones de bajo consumo y pobres niveles de señal.
- Compresión de datos en tiempo real.

#### **Ejemplos**

 Machine vision (guia de robots y manejo autónomo), radar, software defined radios (SDR), audio, video codec, biométrica.



## Consideraciones generales de diseño de la solución

- Tipos de representación numérica: punto fijo versus punto flotante: rango y precisión
- Algoritmo a implementar
- Frecuencia de muestreo fm necesaria
- Frecuencia de reloj fc del DSP
- Relación fc/fm ("cantidad de hardware disponible")

Cuántas instrucciones del DSP puedo ejecutar entre dos muestras de la señal

El problema

El dispositivo

## **DETALLES DE DISEÑO**

- **1.** Representación numérica -> Punto fijo [-1,+1] vs. punto flotante.
- **2. Aritmética** -> Datapath incluye acumulador, shifter normalizador, saturación y redondeo.
- 3. Sistema de memoria -> Harvard, multiple access.
- **4.** Acceso a los datos -> AGU doble (address generation unit) y modos de direccionamiento especiales (circular, bit reversed).
- **5.** Control -> Set de instrucciones especializado (MAC, loop, etc.).

Incluyen **segmentación** profunda, características **superescalares** y **VLIW** (paralelismo)

Compiladores (C)

#### 1. Representación numérica → punto fijo vs. punto flotante

- 2. Aritmética
- 3. Sistema de memoria
- 4. Acceso a los datos
- 5. Estructuras de control

#### Representación fraccional en punto fijo

Un mismo número en complemento a 2 puede representar un entero o un fraccional. Puede utilizarse la misma ALU para ambos formatos. El resultado se interpreta en forma diferente.



| Word<br>Value                       | Integer<br>Value | Fractional<br>Value |  |
|-------------------------------------|------------------|---------------------|--|
| 0x8000                              | -32768           | -1.000000           |  |
| 0xA000                              | -24576           | -0.750000           |  |
| 0xC000                              | -16384           | -0.500000           |  |
| 0xE000                              | -8192            | -0.250000           |  |
| 0x0000                              | 0                | 0.000000            |  |
| 0x2000                              | 8192             | 0.250000            |  |
| 0x4000                              | 16384            | 0.500000            |  |
| 0x6000                              | 24576            | 0.750000            |  |
| 0x7FFF                              | 32767            | 0.999969            |  |
| Para N = 16 bits, $2^{N-1} = 32768$ |                  |                     |  |



Los fraccionales son siempre menores a la unidad, por lo tanto el producto no puede tener **overflow** (solo puede aparecer en las sumas). Limitar el overflow es importante por la fase del resultado.

Los fraccionales se multiplican como si fueran enteros. Se necesitan 2n bits en el acumulador para expresar el producto de dos números de n bits. Además se requieren algunos bits adicionales si se quiere prevenir el overflow en las sumas: **DSP56000:** registros de 24 bits –

Acumulador de 56 bits (24+24+8) **DSP96002:** registros de 32 bits – Acumulador de 96 bits (32+32+32)

#### 1. Representación numérica → punto fijo vs. punto flotante

- 2. Aritmética
- 3. Sistema de memoria
- 4. Acceso a los datos
- 5. Estructuras de control



#### RANGO DINÁMICO

Es la relación entre el mayor y el menor número de una representación. Supongamos que la longitud de palabra es de 32 bits.

En representación de **punto fijo**, el número más pequeño es 2<sup>-31</sup> y el número más grande es 1-2<sup>-31</sup>. El cociente es aproximadamente 2.15 e+9, lo que representa unos **187 db.** 

En representación de **punto flotante** (24 bits de mantisa y 8 de exponente), el número más chico es 5.88 e-39 y el mayor 3.40 e+38, lo que da un rango dinámico de 5.79 e+76, unos **1535 db**.

La necesidad de rango dinámico está impuesta por la aplicación. En telecomunicaciones suele alcanzar con 50db. Audio de alta fidelidad requiere unos 90 db. Radar/IoT 120 db.

- Representación numérica
   Aritmética → Datapath con acumulador, shifter normalizador, saturación y redondeo
- 2. Arithetica → Datapath con acumulador, Shifter normalizador, Saturación y redonde
- 3. Sistema de memoria
- 4. Acceso a los datos
- 5. Estructuras de control

#### DSP56000

Registros y buses de 24 bits Acumulador de 56 bits (24+24+8)

Datapath incluye acumulador, shifter normalizador, saturación y redondeo.



- 1. Representación numérica
- 2. Aritmética
- 3. Sistema de memoria → Harvard, multiple access
- 4. Acceso a los datos
- 5. Estructuras de control



- Representación numérica
- 2. Aritmética
- 3. Sistema de memoria
- 4. Acceso a los datos →
- 5. Estructuras de control



0th output element =  $X_0$ 4th output element =  $X_1$ 2nd output element =  $X_2$ 6th output element =  $X_3$ 1st output element =  $X_4$ 5th output element =  $X_5$ 3rd output element =  $X_6$ 7th output element =  $X_7$ 

- Modos de direccionamiento indirecto vía registro con post decremento e incremento: MAC (RØ)+,(R4)+,A
- > Buffers circulares. Direccionamiento "módulo n"
- Direccionamiento "bit reversal" (FFT ver)
- > AGU (address generation unit) doble





- Representación numérica
- 2. Aritmética
- 3. Sistema de memoria
- 4. Acceso a los datos
- 5. Estructuras de control → LOOP, MAC, etc.



## **Arquitecturas híbridas**

- Digital Signal Controller (DSC):
   Microcontrolador + DSP
   Microchip dsPIC33CH
   https://microchipdeveloper.com/16bit:ch-overview
- FPGA con módulos MAC
   Xilinx Virtex 4
   https://www.xilinx.com/products/technology/dsp.html
- Microcontroladores con instrucción MAC y saturación
   ARM Cortex-M4



## **EJEMPLO: Microchip dsPIC**



#### https://microchipdeveloper.com/dsp0201:start

"The dsPIC® Central Processing Unit, or CPU, seamlessly integrates the best features of a 16-bit microcontroller (MCU) and digital signal processor (DSP). "

### Caracteríasticas VLIW







**Figure 3.** TMS320C62xx execution units and memory architecture. The TMS320C62xx has eight execution units, grouped in two sets of four.

### Medición de performance: FIR





Cycle counts for FIR filter

Execution times for FIR filter



http://www.bdti.com/Resources/BenchmarkResults/BDTImark2000 https://www.eembc.org/coremark/



Program memory usage for FIR filter

### **ANEXO: SHARC**

# Super Harvard ARChitecture AD 32-Bit Floating-Point Processors

"Super" Harvard architecture extends the original concepts of separate program and data memory busses by adding an I/O processor with its associated dedicated busses.

In addition to satisfying the demands of the most computationally intensive, real-time signal-processing applications, SHARC processors integrate large memory arrays and application-specific peripherals designed to simplify product development and reduce time to market.

https://www.analog.com/media/en/news-marketing-collateral/product-highlight/SHARC Proc Family (C) Final.pdf





#### Características de la familia

- 32/40-bit IEEE floating-point math
- 32-bit fixed-point multipliers with 64-bit product & 80-bit accumulation
- no arithmetic pipeline; all computations are single-cycle
- circular buffer addressing supported in hardware
- 32 address pointers support 32 circular buffers
- six nested levels of zero-overhead looping in hardware
- rich, algebraic assembly language syntax
- instruction set supports conditional arithmetic, bit manipulation, divide & square root, bit field deposit and extract
- dma allows zero-overhead background transfers at full clock rate without processor intervention

### Diagrama funcional



#### **Performance**

| First Generation       | 1994   | 66 MHz  |           | 198 MFLOPs  | 3 |
|------------------------|--------|---------|-----------|-------------|---|
| Second Generation SIMD |        | 100 MHz |           | 600 MFLOPs  | 6 |
| Third Generation       |        | 450 MHz | 900 MMACs | 2700 MFLOPs | 6 |
| Fourth Generation      | Actual | 450 MHz | 900 MMACs | 2700 MFLOPs | 6 |

Kits de desarrollo para el AD-21262 disponibles PROYECTO FINAL

|                             | ADSP-2116  | ADSP-21261 | ADSP-21262  | ADSP-21371  | ADSP-21364  | ADSP-21368  | ADSP-2146x  |
|-----------------------------|------------|------------|-------------|-------------|-------------|-------------|-------------|
| Clock Cycle                 | 100 MHz    | 150 MHz    | 200 MHz     | 266 MHz     | 333 MHz     | 400 MHz     | 450 MHz     |
| Instruction Cycle Time      | 10 ns      | 6.67 ns    | 5 ns        | 3.75 ns     | 3 ns        | 2.5 ns      | 2.22 ns     |
| MFLOPS Sustained            | 400 MFLOPS | 600 MFLOPS | 800 MFLOPS  | 1064 MFLOPS | 1332 MFLOPS | 1600 MFLOPS | 1800 MFLOPS |
| MFLOPS Peak                 | 600 MFLOPS | 900 MFLOPS | 1200 MFLOPS | 1596 MFLOPS | 1998 MFLOPS | 2400 MFLOPS | 2700 MFLOPS |
| 1024 Point Complex FFT      | 92 µs      | 61.3 µs    | 46 µs       | 34.5 μs     | 28 µs       | 23 us       | 20.44 µs    |
| FIR Filter (per tap)        | 5 ns       | 3.3 ns     | 2.5 ns      | 1.88 ns     | 1.5 ns      | 1.25 ns     | 1.11 ns     |
| IIR Filter (per biquad)     | 20 ns      | 13.3 ns    | 10 ns       | 7.5 ns      | 6 ns        | 5 ns        | 4.43 ns     |
| Matrix Multiply (pipelined) | 45 ns      | 30 ns      | 22.5 ns     | 16.91 ns    | 13.5 ns     | 11.25 ns    | 10.00 ns    |
|                             | 80 ns      | 53.3 ns    | 40 ns       | 30.07 ns    | 24 ns       | 20 ns       | 17.78 ns    |
| Divide (y/x)                | 30 ns      | 20 ns      | 15 ns       | 11.27 ns    | 9 ns        | 7.5 ns      | 6.67 ns     |
| Inverse Square Root         | 45 ns      | 30 ns      | 22.5 ns     | 16.91 ns    | 13.5 ns     | 11.25 ns    | 10.00 ns    |

#### **ISA**

- The architecture knows nothing of 8-bit or 16-bit values since each address is used to point to a whole 32-bit word, not just a octet. It is thus neither little-endian nor big-endian, though a compiler may use either convention if it implements 64-bit data and/or some way to pack multiple 8-bit or 16-bit values into a single 32-bit word. Analog Devices chose to avoid the issue by using a 32-bit char in their C compiler.
- The word size is 48-bit for instructions, 32-bit for integers and normal floating-point, and 40-bit for extended floating-point.
- SHARC instructions may contain a 32-bit immediate operand. Instructions without this operand are generally able to perform two or more operations simultaneously.
- Many instructions are conditional, and may be preceded with "if condition " in the assembly language.
- The SHARC has a 32-bit word-addressed address space.
- There are two delay slots. After a jump, two instructions following the jump will normally be executed.
- The SHARC processor has built-in support for loop control. Up to 6 levels may be used, avoiding the need for normal branching instructions and the normal bookkeeping related to loop exit.
- The SHARC has two full sets of general-purpose registers. Code can instantly switch between them, allowing for fast context switches between an application and an OS or between two threads.

### **TigerSHARC**

As a static superscalar DSP, the TigerSHARC Processor core can execute simultaneously from one to four 32-bit instructions encoded in a single instruction line.

With a few exceptions, an instruction line, whether it contains one, two, three or **four 32-bit instructions**, executes with a throughput of one cycle in an eight-deep processor pipeline.

**VLIW** 



### **ANEXO:** Cortex M

#### Procesadores ARM para aplicaciones embebidas

Son una familia de MCU (Micro-Controller Unit). No tienen MMU (Memory Management Unit), necesaria para correr un sistema operativo de propósitos generales (Android en Cortex A).



'8/16-bit' Traditional application space

'16/32-bit' Traditional application space

https://en.wikipedia.org/wiki/ARM architecture#32-bit architecture

#### **ISA**

ARM Cortex-M Instruction Sets[6][7]

| ARM<br>Cortex-M          | Thumb  | Thumb-2 | Hardware multiply | Hardware divide | Saturated math | DSP extensions | Floating-Point<br>Unit (FPU) | ARM architecture |
|--------------------------|--------|---------|-------------------|-----------------|----------------|----------------|------------------------------|------------------|
| Cortex-M0 <sup>[1]</sup> | Most   | Subset  | 1 or 32 cycle     | No              | No             | No             | No                           | ARMv6-M          |
| Cortex-M0+[2]            | Most   | Subset  | 1 or 32 cycle     | No              | No             | No             | No                           | ARMv6-M          |
| Cortex-M1[3]             | Most   | Subset  | 3 or 33 cycle     | No              | No             | No             | No                           | ARMv6-M          |
| Cortex-M3 <sup>[4]</sup> | Entire | Entire  | 1 cycle           | Yes             | Yes            | No             | No                           | ARMv7-M          |
| Cortex-M4 <sup>[5]</sup> | Entire | Entire  | 1 cycle           | Yes             | Yes            | Yes            | Optional, SP                 | ARMv7E-M         |
| Cortex-M7                | Entire | Entire  | 1 cycle           | Yes             | Yes            | Yes            | Yes, SP & DP                 | ARMv7E-M         |

**M4 DSP:** Harvard architecture, Single cycle MAC, Floating Point, Barrel shifter, SIMD, Aritmética con saturación

**M4 no-DSP:** Circular and bit-reversed addressing, Zero overhead loops, Load and store operations in parallel with math operations

**BENCHMARK:** Decodifica MP3 con menos de 10 MHz de clock (un DSP común requiere 15 MHz y uno especializado de audio 5 MHz).

### **ARM Cortex-M Family Instruction Set**



### **ARM Cortex-M4 DSP Instructions Compared**

|                |                                    | Cycle counts |        |           |  |
|----------------|------------------------------------|--------------|--------|-----------|--|
| CLASS          | INSTRUCTION                        | ARM9E-S      |        | Cortex-M4 |  |
| Arithmetic     | ALU operation (not PC)             | 1 - 2        | 1      | 1         |  |
|                | ALU operation to PC                | 3 - 4        | 3      | 3         |  |
|                | CLZ                                | 1            | 1      | 1         |  |
|                | QADD, QDADD, QSUB, QDSUB           | 1 - 2        | n/a    | 1         |  |
|                | QADD8, QADD16, QSUB8, QSUB16       | n/a          | n/a    | 1         |  |
|                | QDADD, QDSUB                       | n/a          | n/a    | 1         |  |
|                | QASX, QSAX, SASX, SSAX             | n/a          | n/a    | 1         |  |
|                | SHASX, SHSAX, UHASX, UHSAX         | n/a          | n/a    | 1         |  |
|                | SADD8, SADD16, SSUB8, SSUB16       | n/a          | n/a    | 1         |  |
|                | SHADD8, SHADD16, SHSUB8, SHSUB16   | n/a          | n/a    | 1         |  |
|                | UQADD8, UQADD16, UQSUB8, UQSUB16   | n/a          | n/a    | 1         |  |
|                | UHADD8, UHADD16, UHSUB8, UHSUB16   | n/a          | n/a    | 1         |  |
|                | UADD8, UADD16, USUB8, USUB16       | n/a          | n/a    | 1         |  |
|                | UQASX, UQSAX, USAX, UASX           | n/a          | n/a    | 1         |  |
|                | UXTAB, UXTAB16, UXTAH              | n/a          | n/a    | 1         |  |
| X3             | USAD8, USADA8                      | n/a          | n/a    | 1         |  |
| Multiplication | MUL, MLA                           | 2 - 3        | 1 - 2  | 1         |  |
|                | MULS, MLAS                         | 4            | 1 - 2  | 1         |  |
|                | SMULL, UMULL, SMLAL, UMLAL         | 3 - 4        | 5 - 7  | 1         |  |
|                | SMULBB, SMULBT, SMULTB, SMULTT     | 1 - 2        | n/a    | 1         |  |
|                | SMLABB, SMLBT, SMLATB, SMLATT      | 1 - 2        | n/a    | 1         |  |
|                | SMULWB, SMULWT, SMLAWB, SMLAWT     | 1 - 2        | n/a    | 1         |  |
|                | SMLALBB, SMLALBT, SMLALTB, SMLALTT | 2 - 3        | n/a    | 1         |  |
|                | SMLAD, SMLADX, SMLALD, SMLALDX     | n/a          | n/a    | 1         |  |
|                | SMLSD, SMLSDX                      | n/a          | n/a    | 1         |  |
|                | SMLSLD, SMLSLD                     | n/a          | n/a    | 1         |  |
|                | SMMLA, SMMLAR, SMMLS, SMMLSR       | n/a          | n/a    | 1         |  |
|                | SMMUL, SMMULR                      | n/a          | n/a    | 1         |  |
|                | SMUAD, SMUADX, SMUSD, SMUSDX       | n/a          | n/a    | 1         |  |
|                | UMAAL                              | n/a          | n/a    | 1         |  |
| Division       | SDIV, UDIV                         | n/a          | 2 - 12 | 2 - 12    |  |

Single cycle MAC

### **ARM Cortex-M4 Single Cycle MAC Instructions**

| OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INSTRUCTIONS                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 16 x 16 = 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SMULBB, SMULBT, SMULTB, SMULTT     |
| $16 \times 16 + 32 = 32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SMLABB, SMLABT, SMLATB, SMLATT     |
| 16 x 16 + 64 = 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SMLALBB, SMLALBT, SMLALTB, SMLALTT |
| 16 x 32 = 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SMULWB, SMULWT                     |
| $(16 \times 32) + 32 = 32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SMLAWB, SMLAWT                     |
| $(16 \times 16) \pm (16 \times 16) = 32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SMUAD, SMUADX, SMUSD, SMUSDX       |
| $(16 \times 16) \pm (16 \times 16) + 32 = 32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SMLAD, SMLADX, SMLSD, SMLSDX       |
| $(16 \times 16) \pm (16 \times 16) + 64 = 64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SMLALD, SMLALDX, SMLSLD, SMLSLDX   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| 32 x 32 = 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MUL                                |
| $32 \pm (32 \times 32) = 32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MLA, MLS                           |
| $32 \times 32 = 64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SMULL, UMULL                       |
| $(32 \times 32) + 64 = 64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SMLAL, UMLAL                       |
| $(32 \times 32) + 32 + 32 = 64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UMAAL                              |
| and the second of the second o |                                    |
| $32 \pm (32 \times 32) = 32 \text{ (upper)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SMMLA, SMMLAR, SMMLS, SMMLSR       |
| $(32 \times 32) = 32 \text{ (upper)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SMMUL, SMMULR                      |

#### **ARM Cortex-M4 SIMD Instructions**

SIMD extensions perform multiple operations in one cycle

$$Sum = Sum + (A \times C) + (B \times D)$$



SIMD techniques operate with packed data

#### **Performance**

| ARM Cortex | CoreMark/MHz | DMIPS/MHz                      |
|------------|--------------|--------------------------------|
| M7         | 5.04         | 2.14 / 2.55 / 3.23 DMIPS/MHz** |
| M4         | 3.40         | 1.25 / 1.52 / 1.91 DMIPS/MHz** |
| M3         | 3.32         | 1.25 / 1.50 / 1.89 DMIPS/MHz** |
| МО         | 2.33         | 0.87 / 1.02 / 1.27 DMIPS/MHz** |

https://www.eembc.org/coremark/ http://en.wikipedia.org/wiki/Coremark http://en.wikipedia.org/wiki/Dhrystone Interesante...
M3 y M4 tienen la
misma performance
(Dhrystone)

http://infocenter.arm.com/help/topic/com.arm.doc.dai0350a/DAI0350A coremark benchmarking.pdf

<sup>\*\*</sup> The first result abides by all of the "ground rules" laid out in the Dhrystone documentation, the second permits inlining of functions, not just the permitted C string libraries, while the third additionally permits simultaneous ("multi-file") compilation. All are with the original (K&R) v2.1 of Dhrystone