不定积分

Table of Contents

1. 不定积分 indefinite integral → 即"原函数"的别名. 精确的说, "不定积分"就是"原函数的全体".

$$1.2. \int (0)dx = C$$

$$1.3. \int (k)dx = kx + C$$

1.4.
$$\int (x^n)dx = rac{1}{n+1}x^{n+1} + C, \;\; n
eq -1$$

1.5.
$$\int \left(\frac{1}{x}\right) dx = \ln |x| + C$$

1.6.
$$\int x dx = \frac{1}{2}x^2 + C$$

1.7.
$$\int (e^x)dx = e^x + C$$

$$1.8. \int (a^x) dx = \frac{a^x}{\ln a} + C$$

1.9.
$$\int \left(\frac{1}{1+x^2}\right) dx = \arctan x + C$$
,或 $= - \operatorname{arc} \cot x + C$

1.10.
$$\int \left(\frac{1}{\sqrt{1-x^2}}\right) dx = rcsin x + C,$$
 或 $= - rccos x + C$

$$1.11. \int (\sin x) dx = -\cos x + C$$

$$1.12. \int (\cos x) dx = \sin x + C$$

1.13.
$$\int (\tan x) dx = -\ln|\cos x| + C$$

1.14.
$$\int (\cot x) dx = \ln |\sin x| + C$$

1.15.
$$\int (\sec x) dx = \ln |\sec x + \tan x| + C$$

1.16.
$$\int (\csc x) dx = \ln|\csc x - \cot x| + C$$

$$1.17. \int (\sec^2 x) dx = \tan x + C$$

1.18.
$$\int (\csc^2 x) dx = -\cot x + C$$
1.19.
$$\int (\sec x \tan x) dx = \sec x + C$$
1.20.
$$\int (\csc x \cot x) dx = -\csc x + C$$

2. 不定积分 的性质

2.1.
$$\int [f(x)\pm g(x)]dx=\int f(x)dx\pm\int g(x)dx$$

2.2. $\int (kf(x))dx = k \cdot \int f(x)dx$, 其中 k 是常数, 且 k \neq 0. 注意: 如果k是一个变量, 如果该变量与x是无关的(即与"积分变量"无关的), 则可以朝外挪出去; 但如果该变量是与x相关的, 则就不能朝外挪.

2.3. 例题

1. 不定积分 indefinite integral → 即"原函数"的别名. 精确的说, "不定积分"就是"原函数的全体".

indefinite /in'definat/
adj.

lasting for a period of time that has no fixed end 无限期的; 期限不定的

• She will be away for the indefinite future. 她将离开一段时间,期限不定。

not clearly defined 模糊不清的; 不明确的 SYN imprecise

• an indefinite science 界定不明的科学

integral /'intigral/
adj.

- ~ (to sth)being an essential part of sth 必需的; 不可或缺的 +
- Practical experience is integral to the course. 这门课程也包括实践经验。

[usually before noun] included as part of sth, rather than supplied separately 作为组成部分的

• All models have an integral CD player. 所有型号都有内置的激光唱片机。

[usually before noun] having all the parts that are necessary for sth to be complete 完整的; 完备的

• an integral system 完整的系统

一个原函数, 求其导数, 能得到"导函数". 反过来, 从"导函数"算出其"原函数"的过程, 就是求其"不定积分". 换言之, "原函数"的别名就是"不定积分".

如: "原函数"是 F(x), 其"导函数"是 f(x), 即: F'(x) = f(x), 则 F(x) 就是 f(x) 的其中一个原函数.

注意: 能得到相同"导函数"的原函数, 可以不止一个. 比如: 2x 是导函数, 其原函数可以是 x^2 , 也可以是 x^2+3 等等.

所以,我们从"导函数"来反求其"原函数",只要求出一个"原函数" f(x) 即可,其他的的"原函数"可以表示为: f(x)+C,C是常数.

即:

(原函数
$$F(x)$$
 + 常数 C) $'$ = 导函数 $f(x)$

原函数什么时候会存在呢? → 连续(即能一笔画)的导函数, 一定有"原函数".

"原函数"的别名就是"不定积分", 求原函数, 就是求"不定积分". 即写作:

$$\int f(x)dx=$$
原函数 $F(x)+C$ $ightarrow$ 其中, $f(x)$ 叫做 "被积函数 ", 也即 "导函数 ". $ightarrow dx$ 叫做 "积分变量 "

符号 \int 是英文 sum 的 首字母s 变形.

 \int 和 Σ 的区别是:

Header 1	Header 2
\int	→是对"无穷个"连续的"无穷小量"的求和
Σ	→ 通常是对"有限个, 或者离散的量"求和。

类似的:

Header 1	Header 2
dx	→ 表示"无穷小"变量. 有"极限"的概念在里面.
Δ	→表示"有限小"的变量.

Header 1	Header 2
Column 1, row 1	$\frac{d}{dx} \left[\underbrace{\int \underbrace{f(x) dx}_{\frac{1}{9 \times 1000}}}_{\frac{1}{9 \times 10000}} \right] = \underbrace{f(x)}_{\frac{1}{9 \times 100000}} \leftarrow \text{ 对原函数}(不定积分)求导,依然回到导函数 $
	$digg[\int_{rac{f(x)dx}{rac{1}{\Im B} \boxtimes B}}igg] = \underbrace{f(x)}_{rac{1}{\Im B} \boxtimes B} dx$
	$\int_{\text{原函数的导数}} \frac{F'(x)}{\text{积分变量}} = \underbrace{F(x)}_{\text{原函数}} + C \leftarrow \text{原函数}F(x)$ 对 x 求导,得到 $F'(x)$ 注意比较:"积分变量"部分(即 d ?部分)的意义: $\int_{\text{原函数的导数}} \frac{dF(x)}{\text{积分变量}} = \underbrace{F(x)}_{\text{原函数}} + C \leftarrow \text{原函数}F(x)$ 对 $F(x)$ 求导,得到 1

所以:

$$\int 1dx = x + C$$

$$\int 1du = u + C$$

$$\int 1d(x^2 - 3) = x^2 - 3 + C = x^2 + C$$

$$\int 1dF(u) = F(u) + C$$

对照表		
不定积分	基本初等函数的导数	
1. $\int k dx = kx + C(k 常 数)$	(C) = 0(C为常数)	
2. $\int x^{\mu} dx = \frac{x^{\mu+1}}{\mu+1} + C$	$(x^{\alpha})' = \alpha x^{\alpha+1}$	
$3. \qquad \int \frac{dx}{x} = \ln x + C$	$(\ln x)' = \frac{1}{x}$ $((\log_a^x)' = \frac{1}{x \ln a})$	
$4. \qquad \int \frac{dx}{1+x^2} = \arctan x + C$	$(\arctan x)' = \frac{1}{1+x^2} ((\arctan x)' = -\frac{1}{1+x^2})$	
$5. \int \frac{dx}{1-x^2} = \arcsin x + C$	$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} ((\arccos x)' = -\frac{1}{\sqrt{1-x^2}})$	
$6. \int \cos x dx = \sin x + C$	$(\sin x)' = \cos x$	
$7. \int \sin x dx = -\cos x + C$	$(\cos x)' = -\sin x$	
8. $\int \frac{dx}{\cos^2 x} = \int \sec^2 x = \tan x + C$	$(\tan x)' = \sec^2 x = \frac{1}{\cos^2 x}$	
9. $\int \frac{dx}{\sin^2 x} = \int \csc^2 x = -\cot x + C$	$(\cot x)' = \csc^2 x = \frac{1}{\sin^2 x}$	
10. $\int \sec x \tan x dx = \sec x + C$	$(\sec x)' = \sec x \tan x$	
11. $\int \csc x \cot x dx = -\csc x + C$	$(\csc x)' = -\csc x \cot x$	
$12. \int e^x dx = e^x + C$	$(e^x)' = e^x$	
13. $\int a^x dx = \frac{a^x}{1 + C}$	$(a^x) = a^x \ln a$	

in a	
$14. \int shxdx = chx + C$	(chx)' = shx
15. $\int chxdx = shx + C$	$(shx)^{\cdot} = chx$
$16. \int \tan x dx = -\ln \cos x + C$	
$17. \int \cot x dx = -\ln \sin x + C$	
18. $\int \frac{1}{a^2 + x^2} dx = \frac{1}{2} \arctan \frac{x}{a} + C$	
19. $\int \frac{1}{x^{2-}a^2} dx = \frac{1}{2a} \ln \frac{x-a}{x+a} + C$	
20. $\int \csc x dx = \ln \csc x - \cot x + C$	
21. $\int \sec x dx = \ln \csc x + \tan x + C$	

1.1. 公式表

高等数学导数、微分、不定积分公式

三、不定积分基本公式:

$$1.\int kdx = kx + c$$

$$2.\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$3.\int e^x dx = e^x + c$$

$$4.\int a^x dx = a^x \frac{1}{\ln a} + c$$

$$5.\int \frac{1}{x} dx = \ln|x| + c$$

$$6.\int \sin x dx = -\cos x + c$$

$$7.\int \cos x dx = \sin x + c$$

$$8. \int \tan x dx = -\ln|\cos x| + c$$

$$9.\int \cot x dx = \ln|\sin x| + c$$

$$10.\int \csc x dx = \ln|\csc x - \cot x| + c$$

$$11.\int \sec x dx = \ln|\sec x + \tan x| + c$$

$$12.\int \frac{1}{\sin^2 x} dx = \int cs \, c^2 \, x dx = -\cot x + c$$

$$13.\int \frac{1}{\cos^2 x} dx = \int \sec^2 x dx = \tan x + c$$

$$14.\int \frac{1}{1+x^2} dx = \arctan x + c$$

$$15.\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$

$$16. \int \sec x \tan x dx = \sec x + c$$

$$17. \int \csc x \cot x dx = -\csc x + c$$

$$18.\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + c$$

$$19.\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c$$

$$20.\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + c$$

$$21.\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln|x + \sqrt{x^2 + a^2}| + c$$

$$22.\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln|x + \sqrt{x^2 - a^2}| + c$$

$$\int x dx = \frac{1}{2}x^2 + c$$

$$\int x^2 dx = \frac{1}{3}x^3 + c$$

$$\int \frac{1}{r^2} dx = -\frac{1}{r} + c$$

$$\int \frac{x}{1+x^2} dx = \frac{1}{2} \ln \left(1 + x^2 \right) + c$$

$$\int \frac{1}{1+x^2} dx = \arctan x + c$$

1.2.
$$\int (0)dx = C$$

1.3.
$$\int (k)dx = kx + C$$

1.4.
$$\int (x^n) dx = rac{1}{n+1} x^{n+1} + C, \;\; n
eq -1$$

Example 1. 标题

例如:

$$\int x^2 dx$$

$$= \frac{1}{2+1}x^{2+1} + C$$

$$=\frac{1}{3}x^3 + C$$

例如:

$$\int 2x \ dx$$

$$=\frac{1}{1+1}2x^{1+1}+C$$

$$= x^2 + C$$

1.5.
$$\int \left(\frac{1}{x}\right) dx = \ln |x| + C$$

1.6.
$$\int x dx = \frac{1}{2}x^2 + C$$

1.7.
$$\int (e^x) dx = e^x + C$$

1.8.
$$\int (a^x)dx = rac{a^x}{\ln a} + C$$

1.9.
$$\int \left(\frac{1}{1+x^2}\right) dx = \arctan x + C, \;$$
或 $= - arc\cot x + C$

1.10.
$$\int \left(\frac{1}{\sqrt{1-x^2}}\right) dx = \arcsin x + C$$
,或 $= -\arccos x + C$

$$1.11. \int (\sin x) dx = -\cos x + C$$

$$1.12. \int (\cos x) dx = \sin x + C$$

1.13.
$$\int (\tan x) dx = -\ln |\cos x| + C$$

1.14.
$$\int (\cot x) dx = \ln |\sin x| + C$$

1.15.
$$\int (\sec x) dx = \ln |\sec x + \tan x| + C$$

1.16.
$$\int (\csc x) dx = \ln |\csc x - \cot x| + C$$

1.17.
$$\int \left(\sec^2 x \right) dx = \tan x + C$$

1.18.
$$\int (\csc^2 x) dx = -\cot x + C$$

$$1.19. \int (\sec x \tan x) dx = \sec x + C$$

$$1.20. \int (\csc x \cot x) dx = -\csc x + C$$

2. 不定积分的性质

2.1.
$$\int [f(x)\pm g(x)]dx=\int f(x)dx\pm\int g(x)dx$$

2.2. $\int (kf(x))dx = k \cdot \int f(x)dx$, 其中 k 是常数, 且 k \neq 0. 注意: 如果k 是一个变量, 如果该变量与x是无关的(即与"积分变量"无关的), 则可以朝外挪出去; 但如果该变量是与x相关的, 则就不能朝外挪.

2.3. 例题

Example 3. 标题

$$\begin{split} &\int \sqrt{x} \, (x^2 - 5) dx \\ &= \int x^{\frac{1}{2}} \, (x^2 - 5) dx \\ &= \int \left(x^{\frac{5}{2}} - 5x^{\frac{1}{2}} \right) dx \\ &= \int x^{\frac{5}{2}} dx - \int 5x^{\frac{1}{2}} dx \\ &= \frac{1}{\frac{5}{2} + 1} x^{\frac{5}{2} + 1} - 5\frac{1}{\frac{1}{2} + 1} x^{\frac{1}{2} + 1} + C \\ &= \frac{2}{7} x^{\frac{7}{2}} - 5 \cdot \frac{2}{3} x^{\frac{3}{2}} + C \end{split}$$

$$= \frac{2}{7}x^{\frac{7}{2}} - \frac{10}{3}x^{\frac{3}{2}} + C$$

Example 4. 标题

例如:
$$\int \frac{(x-1)^3}{x^2} dx$$

$$= \int \frac{x^3 - 3x^2 + 3x - 1}{x^2} dx \leftarrow 根据公式: (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$\leftarrow "分母的次数"比"分子的次数小",我们就能把该分式拆分成"和"的形式,就能利用"不定积分"的性质公式了
$$= \int \left(x - 3 + 3 \cdot \frac{1}{x} - \frac{1}{x^2}\right) dx$$

$$= \frac{1}{2}x^2 - 3x + 3\ln|x| - \frac{1}{-2+1}x^{-2+1} + C$$

$$= \frac{1}{2}x^2 - 3x + 3\ln|x| + x^{-1} + C$$$$

Example 5. 标题

例如:
$$\int 2^x e^x dx$$

$$= \int (2e)^x dx \leftarrow 根据公式: \int a^x dx = \frac{a^x}{\ln a} + C$$

$$= \frac{(2e)^x}{\ln 2e} + C \leftarrow$$
 分母上根据公式 $\ln(ab) = \ln a + \ln b$
$$= \frac{2^x e^x}{\ln 2 + \ln e} + C$$

$$= \frac{2^x e^x}{\ln 2 + 1} + C$$

例如: $\int \left(\sin^2\frac{x}{2}\right) dx \leftarrow \text{ 根据三角函数的 "倍角公式": } \cos{(2A)} = \cos^2A - \sin^2A \\ = 2\cos^2A - 1 \\ = 1 - 2\sin^2A$ 就有: $\sin^2A = \frac{\cos{(2A)} - 1}{-2} = \frac{1 - \cos{(2A)}}{2}$ 所以 $\left(\sin\frac{x}{2}\right)^2 = \left(\frac{1 - \cos\left(2 \cdot \frac{x}{2}\right)}{2}\right)$ $= \int \left(\frac{1 - \cos x}{2}\right) dx$ $= \int \frac{1}{2}dx - \int \frac{\cos x}{2}dx$ $= \frac{1}{2}x - \frac{1}{2}\sin x + C$

Example 7. 标题

例如:

$$\int \frac{1}{\sin^2 \frac{x}{2} \cdot \cos^2 \frac{x}{2}} dx \leftarrow \text{分母上}, \text{ 根据三角函数 "倍角公式": } \sin(2A) = 2\sin A \cdot \cos A$$
 即 左右倒过来: $2\sin A \cdot \cos A = \sin(2A)$ 就有: $2 \cdot \sin \frac{x}{2} \cdot \cos \frac{x}{2} = \sin\left(2\frac{x}{2}\right)$
$$\sin \frac{x}{2} \cdot \cos \frac{x}{2} = \frac{1}{2}\sin\left(2\frac{x}{2}\right)$$

$$\left(\sin \frac{x}{2} \cdot \cos \frac{x}{2}\right)^2 = \left(\frac{1}{2}\sin\left(2\frac{x}{2}\right)\right)^2 \leftarrow \text{ 根据指数公式: } (ab)^n = a^nb^n \ \ (a,b>0)$$

$$\left(\sin \frac{x}{2}\right)^2 (\cos \frac{x}{2})^2 = \left(\frac{1}{2}\sin x\right)^2$$
 所以原式
$$= \int \frac{1}{\left(\frac{1}{2}\sin x\right)^2} dx = 4\int \frac{1}{\sin^2 x} dx = 4\int \frac{1}{\sin^2 x} dx \leftarrow \text{ 根据三角函数 } \csc x = \frac{1}{\sin x}$$
 所以 $\sin x = \frac{1}{\csc x} = \csc^{-1}x$
$$\left(\sin x\right)^{-2} = \csc^2 x$$

$$= 4\int (\csc x)^2 dx \leftarrow \text{ 根据不定积分公式: } \int (\csc^2 x) dx = -\cot x + C$$

$$= 4 \cdot (-\cot x + C) = -4\cot x + \frac{4C}{\cot x + C}$$

Example 8. 标题

例如:
$$\int \frac{2x^4+x^2+3}{x^2+1} dx \leftarrow \text{利用多项式的除法来做}$$

$$= \int (2x^2-1+\frac{4}{x^2+1}) dx$$

$$= 2\int x^2 - \int 1 + 4\int \frac{1}{x^2+1} \ dx \leftarrow \ \text{根据公式} \ \int \frac{1}{1+x^2} dx = \arctan x + C$$

$$= 2 \cdot \frac{1}{2+1} \cdot x^{2+1} - x + 4 \arctan x + C$$

$$= \frac{2}{3}x^3 - x + 4 \arctan x + C$$