ECS 170 Homework 6

Hardy Jones 999397426 Professor Davidson Winter 2014

1. What condition must hold on the training data so that a perceptron can accurately represent a function which classifies the training data perfectly?

The training data must be linearly separable.

- 2. Name two properties why the objective function of linear units is desirable.
 - (a) This function is differentiable.
 - (b) This function will find the global minimum.
- 3. Construct a network of linear units that is capable of representing the XOR function of two inputs.

We cannot construct the network with a single perceptron. We need at least one hidden layer, depending on what primitive functions are available.

It helps to look at how to construct XOR.

Α	В	$A \oplus B$	$A \wedge B$	$A \vee B$	$\neg(A \land B)$	$\neg(A \land B) \land (A \lor B)$
0	0	0	0	0	1	0
0	1	1	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0

So, if we have functions for AND, OR, and NOT we can construct XOR.

So given two input nodes x_1 and x_2 we construct hidden nodes x_3 to x_6 , and output o_7 .

Intermediate nodes:

$$x_3 = AND(x_1, x_2)$$

$$x_4 = OR(x_1, x_2)$$

$$x_5 = NOT(x_3)$$

$$x_6 = NOT(NOT(x_4))$$
(*)

Output node:

$$o_7 = AND(x_5, x_6)$$

^{*:} this is the Identity function.

4. Suppose the inputs are given by x_1 and x_2 , and the activation functions at each unit is given by the function g. Write out the values o_5 and o_6 at the output nodes of figure 1 in terms of the weights $w_{i,j}$ and the inputs x_k .

It helps to work backwards from the output to the input. Let's start with o_6 .

$$o_6 = g(w_{3,6} \cdot x_3, w_{4,6} \cdot x_4)$$

= $g(w_{3,6} \cdot g(w_{1,3} \cdot x_1, w_{2,3} \cdot x_2), w_{4,6} \cdot g(w_{1,4} \cdot x_1, w_{2,4} \cdot x_2))$

And now o_5 .

$$o_5 = g(w_{3,5} \cdot x_3, w_{4,5} \cdot x_4)$$

= $g(w_{3,5} \cdot g(w_{1,3} \cdot x_1, w_{2,3} \cdot x_2), w_{4,5} \cdot g(w_{1,4} \cdot x_1, w_{2,4} \cdot x_2))$