Physik für B-TI – 1. Semester

Dozentin: Dr. Barbara Sandow, barbara.sandow@fu-berlin.de

Zusammenfassung 8. SU – 25.11.2019

2. MECHANIK

2.2 Energie / Impuls; Erhaltungssätze

Impuls, Impulserhaltungssatz

Der Impuls ist durch die einfache Gleichung:

Impuls
$$\vec{p} = m \cdot \vec{v}$$

definiert. Der Impuls hat die Einheit: 1 kg m/s.

Impulserhaltungsatz (kurz auch Impulssatz genannt)

Impuls kann weder erzeugt noch vernichtet, sondern lediglich ausgetauscht werden.

In einem System ist der Gesamtimpuls bzw. die Summe aller Einzelimpuls konstant:

$$p = \sum_{n} p_{n} = const.$$

Der Impulssatz gilt sowohl für den Betrag als auch für seine Richtung.

Bei Drehbewegungen besitzt jeder Körper einen Bahndrehimpuls $ec{L}$.

Im Fall einer Kreisbahn mit dem Radius r ist:

Drehimpuls $\vec{L} = r \cdot \vec{p} = r \cdot m \cdot \vec{v}$

Periodische Bewegung: Kreisbewegung und Schwingungen

Eine Schwingung zeigt einige Ähnlichkeiten mit der ebenen Kreisbewegung, z.B. sind beide Bewegungen an den Ort gebunden: die Kreisbewegung an den Kreismittelpunkt, die Schwingung an ihre sogenannte Ruhelage.

Kreisbewegung

Beschreibung durch die zeitliche Abhängigkeit des:

- Ortsvektor $\vec{r} = \vec{r}(t)$
- Geschwindigkeitsvektor $\vec{v} = \vec{v}(t)$
- Beschleunigungsvektor $\vec{a} = \vec{a}(t)$

Siehe dazu angehängte Tabelle:

Analogie geradlinige Bewegung (Translation) und Drehbewegung (Rotation)

Kräfte, die auf einen Gegenstand auf einer Kreisbahn wirken und diesen auf einer Kreisbahn halten sind:

- Radialkraft oder auch Zentripetalkraft $\mathbf{F}_{\mathbf{zp}}$ genannt
- Fliehkraft oder auch Zentrifugalkraft $\mathbf{F}_{\mathbf{zf}}$ genannt.

Quelle: leifi Physik: Kreisbewegung

Schwingungen

Schwingung ist eine periodische Veränderung einer physikalischen Größe an einem Ort.

Harmonischer Oszillator

- Oszillator führt Schwingungen (periodische Änderung einer physikalischen Größe) aus;
- Harmonische Oszillatoren: Schwingungen lassen sich mit einer Sinus- oder Kosinusfunktion beschreiben

z.B. Federschwinger: Federkraft - F_D = -D $(x - x_0)$, D: Federkonstante, x: Auslenkung, x₀: Ruhelage

$$F_D = m a = m\ddot{x} = m\frac{d^2x}{dt^2}$$

(!ohne Berücksichtigung der Schwerkraft!)

Differentialgleichung:

$$\ddot{x} + \frac{D}{m}(x - x_0) = 0$$

Lösung der Differentialgleichung:

$$x(t) = x_0 \sin(\omega_0 t + \varphi_0)$$

mit x_0 : Anfangsauslenkung oder Amplitude und φ_0 : Anfangsphase als Konstanten und der Kreisfrequenz ω_0 :

Schwingungsdauer:
$$T = 2\pi/\omega = 2\pi \sqrt{\frac{m}{D}}$$

$$T = 1/f$$
, mit f: Frequenz

Fig: zeitlicher Verlauf der Auslenkung einer harmonischen Schwingung ohne Dämpfung