Real Business Cycle: Costos de Ajuste en la Inversión

Miguel Alvarado

Julio, 2022

1. Solución Analítica

Hogar representativo:

$$\max_{\{c_t, n_t, k_{t+1}, i_t\}_{t=0}^{\infty}} E_0 \left\{ \sum_{t=0}^{\infty} \beta^t \left(\frac{c_t^{1-\sigma} - 1}{1-\sigma} - \frac{n_t^{1+v}}{1+v} \right) \right\}$$

sujeto a:

$$c_t + i_t = w_t n_t + R_t k_t$$

 $k_{t+1} = (1 - \delta) k_t + i_t - \frac{\mathcal{X}}{2} i_t \left(\frac{i_t}{i_{t-1}} - 1 \right)^2$

el lagrangeano es:

$$l = E_0 \left\{ \sum_{t=0}^{\infty} \beta^t \left[\left(\frac{c_t^{1-\sigma} - 1}{1-\sigma} - \frac{n_t^{1+v}}{1+v} \right) + \lambda_t \left\{ w_t n_t + R_t k_t - c_t - i_t \right\} + Q_t \left\{ (1-\delta) k_t + i_t - \frac{\mathcal{X}}{2} i_t \left(\frac{i_t}{i_{t-1}} - 1 \right)^2 - k_{t+1} \right\} \right] \right\}$$

De las condiciones de primer orden, donde definimos $q_t = \frac{Q_t}{\lambda_t}$, se tiene que:

$$c_{t} - \lambda_{t} = 0$$

$$-n_{t}^{v} + \lambda_{t} w_{t} = 0$$

$$-1 + q_{t} \left(1 - \frac{\mathcal{X}}{2} \left[3 \frac{i_{t}^{2}}{i_{t-1}^{2}} - 4 \frac{i_{t}}{i_{t-1}} + 1 \right] \right) + \beta E_{t} \left\{ q_{t+1} \frac{\lambda_{t+1}}{\lambda_{t}} \mathcal{X} \left[\frac{i_{t+1}^{3}}{i_{t}^{3}} - \frac{i_{t+1}^{2}}{i_{t}^{2}} \right] \right\} = 0$$

$$q_{t} - \beta E_{t} \left\{ \frac{\lambda_{t+1}}{\lambda_{t}} R_{t+1} + q_{t+1} \frac{\lambda_{t+1}}{\lambda_{t}} (1 - \delta) \right\} = 0$$

Firma representativa:

$$\max_{\{n_t, k_t\}} \Pi_t = z_t k_t^{\alpha} n_t^{1-\alpha} - w_t n_t - R_t k_t$$

Las condiciones de primer orden:

$$w_t = (1 - \alpha) z_t k_t^{\alpha} n_t^{-\alpha}$$

$$R_t = \alpha z_t k_t^{\alpha - 1} n_t^{1 - \alpha}$$

Luego, el sistema no lineal de ecuaciones diferenciales estocástico que gobierna la dinámica del modelo, viene dada por:

$$c_{t}^{-o} - \lambda_{t} = 0$$

$$-n_{t}^{v} + \lambda_{t}w_{t} = 0$$

$$-1 + q_{t} \left(1 - \frac{\mathcal{X}}{2} \left[3\frac{i_{t}^{2}}{i_{t-1}^{2}} - 4\frac{i_{t}}{i_{t-1}} + 1\right]\right) + \beta E_{t} \left\{q_{t+1}\frac{\lambda_{t+1}}{\lambda_{t}}\mathcal{X}\left[\frac{i_{t+1}^{3}}{i_{t}^{3}} - \frac{i_{t+1}^{2}}{i_{t}^{2}}\right]\right\} = 0$$

$$q_{t} - \beta E_{t} \left\{\frac{\lambda_{t+1}}{\lambda_{t}}R_{t+1} + q_{t+1}\frac{\lambda_{t+1}}{\lambda_{t}}(1 - \delta)\right\} = 0$$

$$(1 - \alpha) z_{t}k_{t}^{\alpha}n_{t}^{-\alpha} = w_{t}$$

$$\alpha z_{t}k_{t}^{\alpha-1}n_{t}^{1-\alpha} = R_{t}$$

$$z_{t}k_{t}^{\alpha}n_{t}^{1-\alpha} = y_{t}$$

$$c_{t} + i_{t} = y_{t}$$

$$(1 - \delta) k_{t} + i_{t} - \frac{\mathcal{X}}{2}i_{t}\left(\frac{i_{t}}{i_{t-1}} - 1\right)^{2} = k_{t+1}$$

$$\rho_{z} \log(z_{t}) + \varepsilon_{t+1} = \log(z_{t+1})$$

Expresamos este sistema considerando las variables en su estado estacionario, esto es: $x_t = x_{t+1} = x, \forall t$. Así, tenemos el sistema no lineal de ecuaciones que determina el estado estacionario deterministico¹ (Sistema 1):

$$c^{-\sigma} - \lambda = 0$$

$$-n^{v} + \lambda w = 0$$

$$q - 1 = 0$$

$$\frac{q}{\beta} - (R + (1 - \delta)q) = 0$$

$$w - (1 - \alpha)zk^{\alpha}n^{-\alpha} = 0$$

$$R - \alpha zk^{\alpha - 1}n^{1 - \alpha} = 0$$

$$y - zk^{\alpha}n^{1 - \alpha} = 0$$

$$y - c - i = 0$$

$$i - \delta k = 0$$

$$z - 1 = 0$$

¹De este sistema, se desprende que $\frac{1}{\beta} = R + (1 - \delta)$

Log-linealizamos, en torno al estado estacionario, el sistema no lineal de ecuaciones diferenciales estocástico que gobierna la dinámica del modelo modelo.

$$\begin{split} \hat{\lambda}_t &= -\sigma \hat{c}_t \\ v \hat{n}_t &= \hat{w}_t + \hat{\lambda}_t \\ \hat{q}_t &= \mathcal{X} \left(\hat{i}_t - \hat{i}_{t-1} \right) - E_t \left\{ \beta \mathcal{X} \left(\hat{i}_{t+1} - \hat{i}_t \right) \right\} \\ \hat{q}_t &= E_t \left\{ \hat{\lambda}_{t+1} - \hat{\lambda}_t + \beta R \hat{R}_{t+1} + \beta \left(1 - \delta \right) \hat{q}_{t+1} \right\} \\ \hat{w}_t &= \hat{z}_t + \alpha \hat{k}_t - \alpha \hat{n}_t \\ \hat{R}_t &= \hat{z}_t + (\alpha - 1) \hat{k}_t + (1 - \alpha) \hat{n}_t \\ \hat{y}_t &= \hat{z}_t + \alpha \hat{k}_t + (1 - \alpha) \hat{n}_t \\ y \hat{y}_t &= c \hat{c}_t + i \hat{i}_t \\ k \hat{k}_{t+1} &= (1 - \delta) k \hat{k}_t + i \hat{i}_t \\ \hat{z}_{t+1} &= \rho_z \hat{z}_t + \varepsilon_{t+1} \end{split}$$

En la tercera ecuación de este último sistema, hago uso de la siguiente variable auxiliar:

$$\hat{I}_t = \hat{i}_{t-1}$$

Con esto, el sistema puede ser expresado del modo siguiente:

$$\hat{\lambda}_t = -\sigma \hat{c}_t \tag{1}$$

$$v\hat{n}_t = \hat{w}_t + \hat{\lambda}_t \tag{2}$$

$$\hat{q}_t = (1+\beta)\mathcal{X}\hat{i}_t - \mathcal{X}\hat{I}_t - E_t\left\{\beta\mathcal{X}\hat{i}_{t+1}\right\}$$
(3)

$$\hat{\lambda}_t + \hat{q}_t = E_t \left\{ \hat{\lambda}_{t+1} + \beta R \hat{R}_{t+1} + \beta (1 - \delta) \hat{q}_{t+1} \right\}$$

$$\tag{4}$$

$$\hat{w}_t = \hat{z}_t + \alpha \hat{k}_t - \alpha \hat{n}_t \tag{5}$$

$$\hat{R}_t = \hat{z}_t + (\alpha - 1) \, \hat{k}_t + (1 - \alpha) \, \hat{n}_t \tag{6}$$

$$\hat{y}_t = \hat{z}_t + \alpha \hat{k}_t + (1 - \alpha) \hat{n}_t \tag{7}$$

$$y\hat{y}_t = c\hat{c}_t + i\hat{i}_t \tag{8}$$

$$k\hat{k}_{t+1} = (1-\delta)k\hat{k}_t + i\hat{i}_t \tag{9}$$

$$\hat{z}_{t+1} = \rho_z \hat{z}_t + \varepsilon_{t+1} \tag{10}$$

$$\hat{I}_{t+1} = \hat{i}_t \tag{11}$$

Luego, nuestro sistema debe ser colpasado en cinco ecuaciones, las que poseen dinámica, es decir, ecuaciones (3), (4), (9), (10) y la nueva ecuación (11), tal que el sistema solo sea función de cinco variables: $\left\{\hat{c},\hat{k},\hat{z},\hat{q},\hat{I}\right\}$.

De este modo, después de un poco de álgebra y el algunos cambios de variables, para reducir el tamaño de las expresiones, se tiene (Sistema 2):

$$-\sigma \hat{c}_t + \hat{q}_t = h_1 \hat{c}_{t+1} + h_4 \hat{q}_{t+1} + h_2 \hat{k}_{t+1} + h_3 \hat{z}_{t+1} + h_1 \hat{\mu}_{t+1}^c + h_4 \hat{\mu}_{t+1}^q + h_2 \hat{\mu}_{t+1}^k + h_3 \hat{\mu}_{t+1}^4 + h_3 \hat{\mu}_{t+1}^4 + h_4 \hat{\mu}_{t+1}^q + h_4 \hat{\mu}_{t+1}^q$$

$$p_1\hat{c}_t + \hat{q}_t + \mathcal{X}\hat{I}_t + p_2\hat{k}_t + p_3\hat{z}_t = -f_3\hat{c}_{t+1} - f_4\hat{k}_{t+1} - f_5\hat{z}_{t+1} - f_3\hat{\mu}_{t+1}^c - f_4\hat{\mu}_{t+1}^k - f_5\hat{\mu}_{t+1}^z$$

$$\tag{13}$$

$$d_1\hat{c}_t + d_2\hat{k}_t + d_3\hat{z}_t = \hat{I}_{t+1} \tag{14}$$

$$r_1\hat{c}_t + r_2\hat{k}_t + r_3\hat{z}_t = \hat{k}_{t+1} \tag{15}$$

$$\rho_z \hat{z}_t = \hat{z}_{t+1} - \varepsilon_{t+1} \tag{16}$$

donde:

$$p_1 = -(1+\beta) \mathcal{X} d_1$$
 , $p_2 = -(1+\beta) \mathcal{X} d_2$, $p_3 = -(1+\beta) \mathcal{X} d_3$
 $f_3 = \beta \mathcal{X} d_1$, $f_4 = \beta \mathcal{X} d_2$, $f_5 = \beta \mathcal{X} d_3$

$$r_{1} = (1 - \alpha) e_{1} a_{1} - e_{2} \quad , \quad r_{2} = (1 - \delta) + \alpha e_{1} + (1 - \alpha) e_{1} a_{2} \quad , \quad r_{3} = e_{1} + (1 - \alpha) e_{1} a_{3}$$

$$e_{1} = \frac{y}{k} \quad , \quad e_{2} = \frac{c}{k} \quad , \quad b_{1} = \frac{y}{i} \quad , \quad b_{2} = \frac{c}{i}$$

$$a_{1} = \frac{-\sigma}{v + \alpha} \quad , \quad a_{2} = \frac{\alpha}{v + \alpha} \quad , \quad a_{3} = \frac{1}{v + \alpha}$$

$$d_{1} = (1 - \alpha) b_{1} a_{1} - b_{2} \quad , \quad d_{2} = \alpha b_{1} + (1 - \alpha) b_{1} a_{2} \quad , \quad d_{3} = b_{1} + (1 - \alpha) b_{1} a_{3}$$

$$g_{1} = (1 - \alpha) a_{1} \quad , \quad g_{2} = (\alpha - 1) + (1 - \alpha) a_{2} \quad , \quad g_{3} = 1 + (1 - \alpha) a_{3}$$

$$h_{1} = -(\sigma - \beta R g_{1}) \quad , \quad h_{2} = \beta R g_{2} \quad , \quad h_{3} = \beta R g_{3} \quad , \quad h_{4} = \beta (1 - \delta)$$

Finalmente, las ecuaciones (12), (13), (14), (15) y (16) se pueden expresar matricialmente como sigue:

Finalmente, la rutina programada en Matlab, nos selecciona el autovector asociado al autovalor estable. En este caso, donde tenemos dos raices estables, nos selecciona los autovectores q, de dimensión 2, asociados a dichas raices. Luego, sabemos que:

$$\begin{bmatrix} q_{11} & q_{12} & q_{13} & q_{14} & q_{15} \\ q_{21} & q_{22} & q_{23} & q_{24} & q_{25} \end{bmatrix} \begin{bmatrix} \hat{c}_t \\ \hat{q}_t \\ \hat{I}_t \\ \hat{k}_t \\ \hat{z}_t \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Esto es:

$$q_{11}\hat{c}_t + q_{12}\hat{q}_t + q_{13}\hat{I}_t + q_{14}\hat{k}_t + q_{15}\hat{z}_t = 0 (17)$$

$$q_{21}\hat{c}_t + q_{22}\hat{q}_t + q_{23}\hat{I}_t + q_{24}\hat{k}_t + q_{25}\hat{z}_t = 0 (18)$$

de donde, despejando para \hat{q}_t de (18):

$$\hat{q}_t = -\frac{q_{21}}{q_{22}}\hat{c}_t - \frac{q_{23}}{q_{22}}\hat{I}_t - \frac{q_{24}}{q_{22}}\hat{k}_t - \frac{q_{25}}{q_{22}}\hat{z}_t \tag{19}$$

Reemplazando esto último en (17), y un poco de álgebra, se tiene:

$$0 = q_{11}\hat{c}_t + q_{12} \left\{ -\frac{q_{21}}{q_{22}}\hat{c}_t - \frac{q_{23}}{q_{22}}\hat{I}_t - \frac{q_{24}}{q_{22}}\hat{k}_t - \frac{q_{25}}{q_{22}}\hat{z}_t \right\} + q_{13}\hat{I}_t + q_{14}\hat{k}_t + q_{15}\hat{z}_t$$

$$0 = \left(q_{11} - \frac{q_{12}q_{21}}{q_{22}} \right)\hat{c}_t - \left(\frac{q_{12}q_{23}}{q_{22}} - q_{13} \right)\hat{I}_t - \left(\frac{q_{12}q_{24}}{q_{22}} - q_{14} \right)\hat{k}_t - \left(\frac{q_{12}q_{25}}{q_{22}} - q_{15} \right)\hat{z}_t \quad (20)$$

Realizamos un cambios de variable sobre los coeficientes en las ecuaciones (19) y (20). De esta última despejamos para \hat{c}_t . Luego con las ecuaciones para \hat{c}_t y \hat{q}_t , reemplazamos en las ecuaciones log-linealizadas (14) y (15) de esta sección y con el proceso autoregresivo, tenemos el sistema que soluciona el modelo, es decir, las ecuaciones que determinan la trayectoria de las variables: $\left\{\hat{c}_t, \hat{q}_t, \hat{k}_{t+1}, \hat{I}_{t+1}, \hat{z}_{t+1}\right\}$, notando que, al ser variable predeterminada, $\hat{k}_1 = 0$ y dada la defición de $\hat{I}_t = \hat{i}_{t-1}$, se tiene que $\hat{I}_1 = 0$. Entonces, el sistema es:

$$\hat{c}_t = \frac{\omega_2}{\omega_1} \hat{I}_t + \frac{\omega_3}{\omega_1} \hat{k}_t + \frac{\omega_4}{\omega_1} \hat{z}_t \tag{21}$$

$$\hat{q}_t = \mu_1 \hat{c}_t + \mu_2 \hat{I}_t + \mu_3 \hat{k}_t + \mu_4 \hat{z}_t \tag{22}$$

$$\hat{k}_{t+1} = r_1 \left\{ \frac{\omega_2}{\omega_1} \hat{I}_t + \frac{\omega_3}{\omega_1} \hat{k}_t + \frac{\omega_4}{\omega_1} \hat{z}_t \right\} + r_2 \hat{k}_t + r_3 \hat{z}_t$$
 (23)

$$\hat{I}_{t+1} = d_1 \left\{ \frac{\omega_2}{\omega_1} \hat{I}_t + \frac{\omega_3}{\omega_1} \hat{k}_t + \frac{\omega_4}{\omega_1} \hat{z}_t \right\} + d_2 \hat{k}_t + d_3 \hat{z}_t$$
(24)

$$\hat{z}_{t+1} = \rho_z \hat{z}_t \tag{25}$$

Con estas trayectorias, y del sistema log-linealizado (Ecuaciones (1) - (11) de esta sección) y un poco de álgebra, recuperamos las restantes soluciones (trayectorias).

Por ejemplo, con las ecuaciones (1) y (5) en (2), se tiene la trayectoria para \hat{n}_t^2 :

$$\hat{n}_t = \frac{-\sigma}{v+\alpha}\hat{c}_t + \frac{\alpha}{v+\alpha}\hat{k}_t + \frac{1}{v+\alpha}\hat{z}_t \tag{26}$$

 $^{^{2}}$ El resto de las trayectorias, como se señala, se obtienen del sistema de ecuaciones (1 - 11). Esto es evidente en el m.file de Matlab.

2. Funciones Impulso Respuesta

Finalmente, una vez que hemos determinado las trayectorias de todas las variables, la rutina realiza un gráfico de estas:

