Notas de Álgebra Moderna IV. Módulos.

Cristo Daniel Alvarado

11 de septiembre de 2024

Índice general

1.	1. Módulos Libres y Espacios Vectoriales	2
	1.1. Conceptos Fundamentales	 2

Capítulo 1

Módulos Libres y Espacios Vectoriales

1.1. Conceptos Fundamentales

No queda de otra más que asumir este resultado de categorías:

Teorema 1.1.1 (Hungerford, Theorem I.7.8)

Si \mathcal{C} es una categoría concreta, F y F' son objetos en C tales que F es libre en el conjunto X y F' lo es en X' siendo estos conjuntos tales que |X| = |X'|, entonces F es equivalente a F'.

En particular, la categoría de R-módulos unitarios es una categoría concreta, donde la equivalencia entre dos objetos de la categoría es un isomorfismo entre ambos R-módulos.

Teorema 1.1.2

Sea R un anillo conmutativo con identidad. Las siguientes condiciones son equivalentes en un R-módulo unitario F:

- I. F tiene base no vacía.
- II. F es la suma interna directa de una familia cíclica de R-módulos, cada uno de los cuales es isomorfo a R como un R-módulo.
- III. F es un R-módulo isomorfo a la suma directa de copias del R-módulo izquierdo R.
- IV. Existe un conjunto no vacío X y una función $i:X\to F$ con la siguiente propiedad: dado un R-módulo, A y una función $f:X\to A$ existe un único homomorfismo de R-módulos $\overline{f}:F\to A$ tal que

$$\overline{f} \circ i = f$$

En otras palabras, F es un objeto libre en la categoría de R-módulos uniatrios.

Demostración:

 $(i)\Rightarrow (iv)$: Sea X una base no vacía de F y sea $i:X\to F$ el mapeo inclusión. Sea A un R-módulo y $f:X\to A$ una función.

Si $u \in F$, entonces existen $n \in \mathbb{N} \cup \{0\}$, $r_i \in R$ y $x_i \in X$, para todo $i \in \{1, ..., n\}$ tales que

$$u = \sum_{i=1}^{n} r_i x_i$$

Definimos la función $\overline{f}: F \to A$ dada por:

$$\overline{f}(u) = \sum_{i=1}^{n} r_i f(x_i)$$

Esta función está bien definida, pues F tiene como base a X (por ende, todo elemento se representa de forma única como combinación lineal finita de elementos de X). Además,

$$\overline{f} \circ i(x_i) = \overline{f}(x_i)$$

$$= 1_R \cdot f(x_i)$$

$$= f(x_i), \quad \forall x_i \in X$$

por ende, $\overline{f} \circ i = f$.

Veamos que es homomorfismo de R-módulos (no sé como se verifica eso, chécalo porfa Roque).

Ahora, si $g: F \to A$ es otro homomorfismo de R-módulos tal que

$$g \circ i = f$$

se tiene que

$$\overline{f} \circ i = g \circ i \Rightarrow \overline{f}|_{X} = g|_{X}$$

Como X genera F y todo homomorfismo de R-módulos que vaya de F en algún R-módulo, B queda únicamente determinado por X, basta ver que $\overline{f} = g$ en X, lo cual sucede por la igualdad anterior. Por tanto, \overline{f} es único.

 $(iv)\Rightarrow (iii)$: Asumiendo (iv), sean $X\subseteq F$ no vacío y una función $i:X\to F$ que cumplan esta propiedad. Considere el R-módulo

$$A = \sum_{x \in X} R$$

(es decir, es la suma directa de |X|-veces el R-módulo izquierdo R). Sea

$$Y = \left\{ \theta_x \middle| x \in X \right\}$$

donde

$$\theta_x(y) = \begin{cases} 1_R & \text{si} \quad y = x \\ 0_R & \text{si} \quad y \neq x \end{cases}, \quad \forall y \in Y$$

Como X es no vacío, entonces Y es no vacío. Por la parte $(iii) \Rightarrow (i)$, se sabe que Y es una base del R-módulo unitario A. En particular, como $(iii) \Rightarrow (iv)$, se tiene que A es un R-módulo libre en la categoría de R-módulos unitarios.

En particular, F y A son R-módulos libres en la categoría de R-módulos unitarios y son tales que |X| = |Y| (por la forma en que se construyó Y), luego por el Teorema anterior son equivalentes en esta categoría, es decir que existe un isomorfismo $f: F \to A$. Así que

$$F\cong \sum_{x\in X}R$$

lo que prueba el resultado.