Valbal Trajectory Planning

Joan Creus-Costa and John Dean
Stanford Student Space Initiative

December 6, 2018

System Dynamics

Assumptions

- $-v_t$ is small
- $F_d \propto v$ i.e. drag is linear.
- $F_l F_g = F_d$ i.e. the balloon is always at terminal velocity
- Equations of motion
 - let $l=F_l-F_g$ be the net lift on the balloon
 - -i is commanded by controller
 - $-v=k_d\int \dot{l}\,dt$
 - $-h = \int v dt$
 - $-\mathcal{L}\{\cdot\} = k_d/s^2$

 F_d : Force of drag

 F_g : Gravity

 F_l : Buoyant force

v: vertical velocity of balloon

 v_t : vertical velocity of

surrounding air

Open Loop Block Diagram

 \dot{l}_c : commanded change in lift (valve and ballast actions)

 \dot{l}_t : atmospheric lift disturbance

 v_t : atmosphereic velocity disturbance

h: altitude

Altitude Control 3

Spaghetti Controller Motivation

▶ Use a simple linear compensator to stabilize altitude with robust stability margins

b

Spaghetti Block Diagram

K(s): First order lead compensator.

Spaghetti Flight

- ▶ 120hr flight from December with spaghetti as controller
 - blue shows ballast events, green shows vent events
 - temperature shows sunset/sunrise, large effect on ballast use
- issues durring flight:
 - valve controller had software bug, instead of changing duty cylce, one threshold met valve was repeatedly opened
 - At end of flight, balloon has low overpressure—opening valve has no effect until balloon rises high enough

Oscillations

Velocity Estimator

Lowpass filtered velocity estimate that fuses information on actions from the controller.

 $H_1(s)$ is differentiation and 2nd order lowpass filter $H_2(s)$ is integration with decay (estimate of effect of actions, decays to 0 over time)

Lasagna Block Diagram

 $K_1(s)$: Position loop compensator

 $K_2(s)$: Velocity loop compensator

 $H_1(s), H_2(s)$: Velocity estimator

With just proportional control, we have $\dot{l}_c = ((h_c - h)k_h - \hat{v})k_v$

Lasagna

Lasanga Nonlinearities

Since we typically command a target altitude and an allowable region, we add a deadband to the controller output. Let \dot{l}_o be the output of the nonlinearity. Deadband:

To set bounds on the altutude, we set $\tau=e_{\mathrm{tol}}k_vk_h$, where e_{tol} is the allowable distance from the altitude command.

Picking gains

note: while the deadband makes the controller non-linear, it still peicewise linear, thus linear analysis can be used.

Transfer function for the linear system is

$$\frac{k_v k_h k_l}{s^2 + k_l k_v s + k_l k_v k_h}$$

So damping ratio is $\zeta = \frac{1}{2} \sqrt{\frac{k_l k_v}{k_h}}$.

- lacktriangle We choose gains such that $\zeta=1$ and we have critical damping.
- ▶ This gives ratio between k_v and k_h , but what about magnitude?
- lacktriangle high gain ightarrow controller waits and acts agressively near $e_{
 m tol}$
- lacktriangle low gain o controller acts cautiously before $e_{
 m tol}$

demonstraited on next slide

High vs Low Gain

Plots of simulation shown

low gain

High gain performs better but can't tolerate uncertainty, low gain is worse but performs better under uncertainty

Lasagna 12

Nightfall

- Left plot shows 10 sunsets across various flights (each flight different color).
- plot blow shows a fit to the data using convex regularization and contraints

Lasagna 13