Foundations of Computation

Assignment 3

January 3, 2022

Q1: Construct context-free grammars that generate the following languages (give your answers as a set of rules):

- (a) $\{a^k w \mid w \in \{a, b\}^*, |w| = k, k \ge 0 \}$
 - $S_1 \rightarrow aS_1a \mid aS_1b \mid \epsilon$
- (b) $\{a^n b^{n+k} a^k \in \{a, b\}^* \mid n \ge 0, k \ge 0\}$

 - $S_1 \to S_2 S_3 \mid \epsilon$ $S_2 \to a S_2 b \mid \epsilon$ $S_3 \to b S_3 a \mid \epsilon$

Q2: Construct pushdown automata that accept the following languages. You should give your answers in the form of diagrams, and each transition should only push a single symbol to the stack, i.e. you should not use the shorthand used in the proof of Theorem

(a) $\{w \in \{a,b\}^* \mid w = w^R\}$, where w^R denotes the reverse of w.

(b) $\{w \in \{a, b\}^* \mid w \text{ contains more } 'a' \text{s than } 'b' \text{s } \}$

Q3: Prove that the following languages are not context-free:

(a)
$$\{0^k 1 0^k 1 0^k 1 \in \{0, 1\}^* \mid k \ge 0\}$$

Step 1:

Suppose that $L = \{0^k 10^k 10^k 1 \in \{0, 1\}^* \mid k \ge 0\}$ is context-free. By the pumping lemma for context-free languages, \exists some p > 0 (pumping length) s.t. $\forall s$ with $|s| \ge p$ can be pumped.

Step 2:

Choose $s=0^p10^p10^p1$. Here |s|=3p+3. We want $3p+3\geq p$, which is true as p>0. Therefore, our choice of s is $0^p10^p10^p1$.

Step 3:

By the pumping lemma, \exists some division s = uvxyz s.t.

- 1. $uv^i x y^i z \in L, \forall i \geq 0$
- 2. |vy| > 0
- $3. |vxy| \leq p$

Step 4:

- (1) When both v and y contain only one type of symbol
 - i. when both v and y contain only 0 Then the string $s=uv^2xy^2z$ can be of the form $0^q10^p10^p1$, $0^q10^r10^p1$, $0^p10^q10^p1$, $0^p10^q10^r1$ or $0^p10^p10^q1$, where q,r>p. Hence $s\not\in L$
 - ii. when both v and y contain only 1. This case is not possible as |vxy| has to be less than p
- (2) When either v or y contains only 1 Then the string $s=uv^2xy^2z$ will contain extra 1s. Therefore $s\not\in L$
- (3) When either v or y contains both 0 and 1 Then the string $s = uv^2xy^2z$ will contain extra 1s. Therefore $s \notin L$

Contradiction! Therefore this given language is not context-free.

(b) $\{u \# v \mid u, v \in \{0, 1\}^* \text{ and } u \text{ is a substring of } v \}$

Step 1:

Suppose that $L = \{u \# v \mid u, v \in \{0,1\}^* \text{ and } u \text{ is a substring of } v \}$ is context-free. By the pumping lemma for context-free languages, \exists some p > 0 (pumping length) s.t. \forall s with $|s| \ge p$ can be pumped.

Step 2:

Choose $s=0^p1^p\#0^p1^p$. Here |s|=4p+1. We want $4p+1\geq p$, which is true as p>0. Therefore, our choice of s is $s=0^p1^p\#0^p1^p$.

Step 3:

By the pumping lemma, \exists some division s = uvxyz s.t.

- 1. $uv^i xy^i z \in L, \forall i \geq 0$
- 2. |vy| > 0
- $3. |vxy| \leq p$

Step 4:

- (1) When both v and y contain only one type of symbol
 - i. when both v and y contain only 0 Then the string $s = uv^2xy^2z$ can be of the form $0^q1^p\#0^p1^p$, where q > p. Here $u = 0^q1^p$ and $v = 0^p1^p$. u is not a substring of v. Hence $s \notin L$
 - ii. when both v and y contain only 1. Then the string $s = uv^2xy^2z$ can be of the form $0^p1^q\#0^p1^p$, where q > p. Here $u = 0^p1^q$ and $v = 0^p1^p$. u is not a substring of v. Hence $s \notin L$
- (2) When either v or y contains only 1 Then the string $s = uv^2xy^2z$ can be of the form $0^p1^q\#0^p1^p$, where q > p. Here $u = 0^p1^q$ and $v = 0^p1^p$. u is not a substring of v. Hence $s \notin L$
- (3) When either v or y contains both 0 and 1 Then the string $s = uv^2xy^2z$ can be of the form $0^m0^i1^j0^i1^j1^n\#0^p1^p$. Here $u = 0^m0^i1^j0^i1^j1^n$ and $v = 0^p1^p$, where m + i > p and j + n > p. Here 0s and 1s are not in the correct order. u is not a substring of v. Hence $s \notin L$

Contradiction! Therefore this given language is not context-free.

Q4: Given a language L, let L^R denote the reversal of the language, that is, $L^R = \{w^R \mid w \in L\}$. Is the class of context-free languages closed under reversal? If so, give a construction which shows this. If not, give a counterexample.

In order to prove the class of context-free languages is closed under reversal, we need to show that for any language L, if L is context-free, then L^R is also context-free.

According to Theorem 2.9 in Sipser book: Any context-free language is generated by a context-free grammar in Chomsky normal form (CNF). If L is a context-free language, then there is a grammar in CNF $G(V, \Sigma, R, S)$ that generates L. Here V is a finite set called variables, Σ is a finite set, disjoint from V, called the terminals, R is a finite set of rules, S is the start variable. Since this grammar G is in CNF, every rule is of the form $A \to BC$ or $A \to a$, where a is any terminal and A, B, C are any variables. B and C may not be the start variable. In addition, we permit the rule $S \to \epsilon$ where S is the start variable.

For every rule of the from $A \to BC$ in R, we can replace it with $A \to CB$, and put this updated rule in R'. For every rule of the from $A \to a$ in R, we leave it the same and put it in R'. Then the language L' generated by $G'(V, \Sigma, R', S)$ will be exactly the reverse of the language L generated by G.

Q5: Consider the language $L=\{u\#v\mid u,v\in a^*,\,|u|\text{ and }|v|\text{ have the same parity}\}$. Parity means odd or even, so the language only includes strings where both parts are odd or both parts are even. Draw a diagram version of a Turing machine that decides the language L.

Q6: A Caesar cipher is one of the simplest and earliest known tools for encrypting text, i.e., hiding it from plain sight with a reversable technique. To encode a string, you replace each letter with a letter shifted by some fixed number of positions later in the alphabet – wrapping around if necessary. So, for example, with a shift of 2 over the regular English alphabet $\{a,b,c,...,z\}$, a is replaced with c , b is replaced by d , and so on, with z being replaced by b . Decoding the string is simply a shift in the reverse direction.

Now, consider the language:

 $L=\{u\#v\mid u,v\in\{a,b,c,d\}^*,\ v \text{ is equal to } u \text{ with a Caesar cipher shift of 2}\}$ So $adab\#cbcd\in L$, but adab#adab< L.

Write a description of a Turing machine algorithm that decides L . You should not give a Turing machine diagram for this question.

Here we describe a Turing Machine M that decides $L = \{u \# v \mid u, v \in \{a, b, c, d\}^*, v \text{ is equal to } u \text{ with a Caesar cipher shift of } 2\}.$

M = "On input string w:

- 1. If the letter is #, move right; if the letter is being crossed off (marked as x), keep moving right until it encounters the end symbol, then accept;

 If the letter is not #, mark this letter as x, and move right.
- 2. Keep moving right until encountering #
- 3. If the letter is marked as x, keep moving right
- 4. If the first letter which is not x on the right of # is not the same letter as the letter that was previously marked as x with a Caesar cipher shift of 2, reject.

 If it's the same as the letter with a Caesar cipher shift of 2, cross off the letter, and move left
- 5. Keep moving left until encounter #
- 6. If the letter is among the a, b, c, d, keep moving left. Until the letter is x, move right. Then repeat from stage 1

For every character of a, b, c, d, have a branch - a set of states and transitions - which replaces the specific character with an x; then moves right on the tape until reaching the # char; then moves right over x; then on the first char that's not crossed off (marked as x) or blank, check if it is the correct Carsar cipher character the branch is for: if not reject; go left over xs until a #; then go left until an x; The branch is done and we go back to the initial state (and move one right to be on the next character that's not x)

- $Q = \{q_1, ..., q_{accept}, q_{reject}\}$
- $\Sigma = \{a, b, c, d, \#\}$
- $\Gamma = \{a, b, c, d, \#, x, \sqcup\}$
- the start, accept, reject states are q_1 , q_{accept} , q_{reject} respectively

Q7: Note: you must have correct solutions for Questions 5 and 6 before attempting this question.

- 1. Give the big O notation complexity for the Turing machine you drew in Question 5 O(the Turing Machine in Q5) = n, here n is the length of the string. It goes over each character once without going back (left) on the tape.
- 2. Give the big O notation complexity for the Turing machine you described in Question 6. $O(\text{the Turing Machine in Q6}) = (1+n+1+n)*n = (2*n+2)*n = 2*n^2+2*n = O(n^2)$ Here n is the length of the string before #. The length of the whole string is 2*n+1 It has a loop that goes scans right and left for each character going over about half the whole string each time.

Q8: Prove that the class P of languages with known polynomial time algorithms is closed under the operations of union and concatenation.

To prove that the class P of languages with polynomial time is closed under union and concatenation, we want to show that for languages L1 and $L2 \in P$, $L1 \cup L2 \in P$ and $L1L2 \in P$.

1. Union

Define M1 and M2 to be the Turing Machines that decide L1 and L2 respectively. By definition they run in polynomial time. Define a new Turing Machine M that uses M1 and M2 to decide the union of L1 and L2.

M = "On input w,

- (a) For any string $w \in L1 \cup L2$, we run M1, M2.
- (b) If either accepts, then accept.

The complexity of M is O(M) = O(M1) + O(M2), which is the sum of two polynomial times, which is also polynomial.

2. Concatenation

Define M1 and M2 to be the Turing Machines that decide L1 and L2 respectively. By definition they run in polynomial time. Define a new Turing Machine M' that uses M1 and M2 to decide the concatenation of L1 and L2.

M' = "On input w,

- (1) For every possible cut (every index), divide w into two substrings $w = w_1 w_2$
- (2) Run M1 and M2 on the divisions (M1 on w_1 and M2 on w_2); if both M1 and M2 accept, then accept;
- (3) if no cut is accepted, reject; "

The decision per cut is polynomial, and there are at most n cuts to be checked, so M' is polynomial