Вопросы к экзамену по теорполу

2 июня 2020 г.

Перед просмотром

После названий некоторых вопросов указаны страницы с информацией по данной теме в лекциях Э. Т. Axмедова https://mipt.ru/upload/medialibrary/37f/lecturesto.pdf.

Содержание

		4
1	Преобразование Лоренца вдоль направления оси x . Релятивист-	
	ские γ - и β -факторы	4
2	Световой конус и относительность одновременности (стр. 8)	5
3	Лоренцево сокращение длин (стр. 10)	6
4	Релятивистское сложение скоростей вдоль одного и того же на-	
	правления (стр. 11)	7
5	Вычислить div r	8
6	Вектор 4-скорости и 4-ускорения и их скалярное произведение	8
7	Компоненты 4-импульса и связь энергии с трёхмерным импульсом.	8
8	Преобразование Лоренца произвольного вектора при бусте вдоль	
	оси x .	8
9	Эффективная масса нескольких частиц.	9
10	Калибровочные преобразования потенциалов	9
11	Калибровочные преобразования потенциалов в трёхмерной фор-	
	ме <i>(cmp. 40)</i>	9
12	Калибровочные преобразования потенциалов в четырехмерной	
	форме (стр. 41)	9
13	Выражения для ${\bf E}$ и ${\bf B}$ через компоненты 4-потенциала $(cmp.~40)$	10
14	Выражение для тензора электромагнитного поля через 4-вектор	
	потенциал.	10

15	Сила Лоренца (стр. 44)	10
16	Скорость дрейфа в скрещенных электромагнитных полях $(cmp.$ $49)$	11
17	Магнитное зеркало $(cmp.54)$	12
18	Вычислить среднее $\left\langle (\vec{a},\vec{n})\left(\vec{b},\vec{n}\right)\right\rangle$ по всем направлениям еди-	
	ничного вектора \vec{n} при постоянных \vec{a},\vec{b}	12
19	Вычислить среднее $\left\langle \left[\vec{a},\vec{n}\right]\left(\vec{b},\vec{n}\right)\right angle$ по всем направлениям еди-	
	ничного вектора \vec{n} при постоянных \vec{a},\vec{b}	13
20	Четыре-вектор тока и его компоненты <i>(стр. 60)</i>	13
21	Уравнение непрерывности в четырехмерной и трехмерной форме $(cmp. 60)$	13
22	Плотность энергии электромагнитного поля (стр. 75)	14
${23}$	Вектор Умова-Пойнтинга $(cmp. 75)$	14
24	Вектор потенциал A для плоской и монохроматической электро-	
	магнитной волны	15
25	Поляризация плоской монохроматической электромагнитной вол-	
	ны	15
26	Векторы E, B и Умова-Пойнтинга в плоской и монохроматиче-	
	ской электромагнитной волне.	15
27	Классический радиус электрона и как он возникает в выраже-	
	ниях, описывающих рассеяние электромагнитных волн	15
28	Аберрация света	15
29	Собственное время.	15
30	Вычислить grad $\frac{1}{ \vec{r} }$	15
31	Вычислить grad $\frac{1}{(\vec{k},\vec{r})}$, где \vec{k} — постоянный вектор	16
32	Вычислить grad $e^{i(ec{k},ec{r})},$ где $ec{k}$ — постоянный вектор	16
33	$ ext{Вычислить } \stackrel{arepsilon}{arepsilon_{ijk}} x_i x_k.$	16
34	Вычислить $\delta_{ij}^{ij}\partial_i x_k$	16
35	Вычислить $\delta_{ij}^{}\partial_i x_j$	16
36	Действие для свободной релятивистской частицы.	16
37	Вывести формулу для эффекта Доплера	16
38	Может ли свободный электрон излучить фотон? Объяснение	16
39	Действие для релятивистской частицы во внешнем электромаг-	
	нитном поле	16
40	Уравнение движения для релятивистской частицы во внешнем	
	электромагнитном поле в 4-мерной форме	17
41	Обобщенный импульс и энергия	17

42	Получите инварианты поля в четырехмерной (через тензор по-	
	ля) исходя и тензора э-м поля	17
43	Инварианты электромагнитного поля в трехмерной форме (че-	
	рез E и B)	1
44	Вычислить среднее $\langle [\vec{a}, \vec{r}] \vec{r} \rangle$ по всем направлениям вектора \vec{r} при	
	постоянных $ ec{r} , \ ec{a}, \ ec{b}$	17
45	Вычислить среднее $\left\langle \left[\vec{a},\vec{n}\right]\left[\vec{b},\vec{n}\right]\right angle$ по всем направлениям вектора	
	$ec{n}$ при постоянных $ec{a}, \ ec{b}.$	1
46	Первая и вторая пара уравнений Максвелла в четырехмерной форме.	17
47	Дипольный электрический момент и поле, создаваемое им	17
48	Квадрупольный момент.	18
49	Энергия электрического диполя и квадруполя во внешнем поле.	18
50	Потенциальная энергия взаимодействия диполя с диполем	18
51	Закон Био-Савара – магнитное поле, создаваемое стационарным	
	TOKOM	18
52	Калибровка Лоренца и вторая пара уравнений Максвелла в ней.	18
53	Калибровка Кулона и уравнение на три-вектор потенциал A в	
	присутствии стационарного тока.	18
54	Дипольный магнитный момент и поле, создаваемое им.	18
55	Прецессия магнитного момента в магнитном поле. Частота Лар-	
	мора	18
56	Запаздывающие потенциалы	19
57	Получить Потенциалы Лиенара-Вихерта в трехмерной и четы-	
	рехмерной форме из запаздывающих потенциалов	19
58	Волновая зона. Характер поведения полей E и B вблизи двига-	
	ющегося заряда.	19
59	Длина формирования излучения или длина когерентности	19
60	Характер распределения по углам излучения в ультрареляти-	
	вистском случае	19
61	Интенсивность излучения в дипольном приближении	19
62	Характерная частота при синхротронном излучении	19
63	Радиационная сила трения. Критерий применимости.	19
64	Лоренцева линия. Естественная ширина линии.	19
65	Формула Томсона для сечения рассеяния.	20
66	Тензор электромагнитного поля и связь его компонент с E и B .	20
67	Гамильтониан частицы в нерелятивистском приближении во внеш-	01
CO	нем электромагнитном поле	20
68	Можно ли превысить скорость света при движении под действи-	0.0
	ем постоянной силы? Объяснение	20

69	Четыре-вектор тока для точечной частицы.	20
70	Первая и вторая пара уравнений Максвелла в трехмерной форме.	20
71	Тензор энергии-импульса для точечной частицы.	20
72	Тензор энергии-импульса электромагнитного поля	20
73	Закон сохранения тензора энергии-импульса	20
74	Уравнение Пуассона и его решение. Потенциал Кулона	21
75	Разложение электромагнитного поля на осцилляторы. Фурье	
	разложение A, E и B	21
76	Действие для осцилляторов (собственных колебаний) электро-	
	магнитного поля	21
77	Запаздывающая функция Грина для электромагнитного поля и	
	ее свойства.	21
78	Получить запаздывающие потенциалы из запаздывающей функ-	
	ции Грина.	21
79	Характер зависимости поля произвольно двигающегося заряда	
	от расстояния. Сколько слагаемых в Е и В? Как они падают с	0.1
00	расстоянием? Как зависят от ускорения?	21
80	Мощность потерь на излучение в релятивистском случае и его	0.1
0.1	связь с полной интенсивностью излучения	21
81	Критерий применимости силы радиацонного терия.	21
82	Критерий применимости нерелятивистского приближения для	00
09	излучения.	22
83	Критерий применимости формулы Томсона для рассеяния	22

Определение. Здесь может быть определение чего-нибудь.

Теорема (Кого-нибудь о чём-нибудь). Здесь может быть теорема.

В данном документе для 3-векторов используются латинские индексы, а для 4-векторов — греческие.

1 Преобразование Лоренца вдоль направления оси x. Релятивистские γ - и β -факторы.

Буст Лоренца со скоростью v в положительном направлении оси x

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma & 0 & 0 \\ -\beta\gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix},$$

где
$$\beta = v/c, \, \gamma = 1/\sqrt{1-\beta^2}.$$

2 Световой конус и относительность одновременности (стр. 8)

Определение. Фигура, которая заметается в ПВ вссеми возможными лучами света, проходящими через данную точку, называется *световой конус* (см. рис. 1).

Определение. Точка в ПВ называется событием или мировой точкой.

Определение. Линия, заметаемая точечной частицей в ПВ, называется *мировой линией*.

Рис. 1: Световой конус

В данном вопросе стоит обсудить $npuнцun\ npuчuнности$ (рис. 1). Любое событие из верхней части светового конуса (например в мировой точке a находится в абсолютном будущем по отношению к вершине конуса o. Т. е. в любой

 ${
m CO}$ это событие произойдет позже, чем то, что произойдёт в вершине конуса. Любое же событие в нижней части светового конуса (например, событие в мировой точке b находится в абсолютном прошлом по отношению к вершине конуса. В прошлом или в будущем событие вне светового конуса (например, событие в мировой точке d по отношению к вершине конуса зависят от ${
m CO}$.

Объясним откуда следуют эти утверждения. Любая мировая точка внутри светового конуса соединяется с его вершиной отрезком с интервалом $\Delta s^2 = c^2 \Delta t^2 - \Delta t^2 - \Delta x^2 > 0$, т. к. для такого интервала смещение в пространстве и во времени связаны как $|\Delta \mathbf{x}| < c |\Delta t|$. Более того Δt не возможно положить равным нулю выбором СО, т. к. иначе нарушилось бы условие $\Delta s^2 > 0$. Поэтому если $\Delta t > 0$ в одной СО, то $\Delta t > 0$ и в любой другой СО. Тоже верно и в случае, если $\Delta t < 0$. Интервалы, для которых верно $\Delta s^2 > 0$ называются времениподобными.

Любая мировая точка вне светового конуса соединяется с его вершиной отрезком с $\Delta s^2 < 0$, т. к. для таких интервалов $|\Delta \mathbf{x}| > c |\Delta t|$. Поэтому, для таких интервалов выбором СО можно положить $\Delta = 0$, т. е., меняя систему отсчёта, можно сменить знак Δt . Следовательно, если событие было в прошлом по отношению к вершине конуса в одной СО, то его можно положить в будущее по отношению к вершине выбором другой СО. Интервалы, для которых верно $\Delta s^2 < 0$ называются пространственноподобными.

И наконец, любая точка на световом конусе соединяется с его вершиной интервалом с $\Delta s^2 = 0$, т. к. для такого интервала $|\Delta \mathbf{x}| = c|\Delta t|$. Такие интервалы называются *нулевыми* или *светоподобными*. Очевидно, является ли интервал светоподобными, пространственноподобным или временноподобным не зависит от CO, т. к. величина интервала не зависит от CO.

В СТО дновременность относительна. См., например, вопрос 3

3 Лоренцево сокращение длин (стр. 10)

Рассмотрим движение стержня длины l_0 вдоль своей оси симметрии со скоростью v. Пусть в ИСО стержня его задний конец находится в начале координат $x_1' = 0$, а передний, соответственно в $x_2' = l_0$. Пусть теперь в ЛСО в какой-то момент времени t (по часам ЛСО) задний конец стержня находится в точке x_1 , а передний в точке x_2 . Найдём $l = x_2 - x_1$. Из формулы для буста

Лоренца (см. вопрос 1) мы знаем как x' и t' связаны с x и t:

$$x'_{1} \equiv 0 = (x_{1} - \beta ct)\gamma$$

$$x'_{2} \equiv l_{0} = (x_{2} - \beta ct)\gamma$$

$$t'_{1} = \left(t - \frac{\beta x_{1}}{c}\right)\gamma$$

$$t'_{2} = \left(t - \frac{\beta x_{2}}{c}\gamma\right)$$

Из рассматриваемых уравнений следует, что

$$t_2' - t_1' = \frac{\gamma \beta}{c} (x_2 - x_1) \equiv \frac{\gamma \beta l}{c} > 0.$$

Т. е. если в ЛСО концы стержня находятся в точках x_1 и x_2 одновременно, то в системе отсчёта стержня попадание его заднего конца в точку x_1 , а переднего — в точку x_2 в ЛСО не есть одновременные события. Но при этом интервалы в двух ИСО должны быть равны:

$$ds^{2} = c^{2}(t-t)^{2} - (x_{2} - x_{1})^{2} = -(x_{2} - x_{1})^{2} \equiv -l^{2}$$

$$ds^{2} = c^{2}(t'_{2} - t'_{1})^{2} - (x'_{2} - x'_{1})^{2} = l^{2}\gamma^{2}\beta^{2} - l_{0}^{2}.$$

Поэтому $l^2 = -l^2 \gamma^2 \beta^2 + l_0^2$, отсюда

$$l = l_0/\gamma$$
.

Это явление в СТО и называется Лоренцевым сокращением длин.

4 Релятивистское сложение скоростей вдоль одного и того же направления (*cmp. 11*)

Пусть K- ЛСО; K_1- ИСО, движущаяся с скоростью v в ЛСО; K_2- ИСО, движущаяся со скоростью u в системе K_1 . Сделаем два буста Лоренца подряд— сначала для перехода из K в K_1 , а затем из K_1 в K_2 . Т. е. мы должны применить композицию двух Лоренцевских бустов с параметрами: $\cosh\alpha_1=1/\sqrt{1-\frac{v^2}{c^2}}, \tanh\alpha_1=v/c$ и $\cosh\alpha_2=1/\sqrt{1-\frac{u^2}{c^2}}, \tanh\alpha_2=u/c$:

$$\begin{pmatrix} ct_1 \\ x_1 \end{pmatrix} = \begin{pmatrix} \cosh \alpha_1 & \sinh \alpha_1 \\ \sinh \alpha_1 & \cosh \alpha_1 \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix}, \quad \begin{pmatrix} ct_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} \cosh \alpha_2 & \sinh \alpha_2 \\ \sinh \alpha_1 & \cosh \alpha_2 \end{pmatrix} \begin{pmatrix} ct_1 \\ x_1 \end{pmatrix}.$$

В результате мы получим опять буст Лоренца для перехода из K прямо в K_2 , а параметр его будет равен $\alpha = \alpha_1 + \alpha_2$. Т. е. скорость системы K_2 по отношению к системе K будет равна

$$\frac{V}{c} = \tanh(\alpha_1 + \alpha_2) = \frac{\tanh \alpha_1 + \tanh \alpha_2}{1 + \tanh \alpha_1 \tanh \alpha_2} = \frac{v/c + u/c}{1 + \frac{vu}{c^2}}.$$

$$\frac{V}{c} = \frac{v/c + u/c}{1 + \frac{vu}{c^2}}.$$

5 Вычислить div r

$$\operatorname{div} \mathbf{r} = \partial_i x_i = \delta_{ii} = 3.$$

6 Вектор 4-скорости и 4-ускорения и их скалярное произведение.

Компоненты 4-вектора скорости имеют вид

$$u^{\mu} = (\gamma, \gamma \boldsymbol{\beta}),$$

где $\beta = \mathbf{v}/c$. 4-ускорение определяется как:

$$w^{\mu} \equiv \frac{du^{\mu}}{ds} = \frac{du^{\mu}}{cdt\sqrt{1 - v^2/c^2}}.$$

$$u^{\mu}u_{\mu} = 1 \quad \Rightarrow \quad \frac{d}{ds}\left(u^{\mu}u_{\mu}\right) = 0 \quad \Rightarrow \quad w^{\mu}u^{\mu} = 0.$$

7 Компоненты 4-импульса и связь энергии с трёхмерным импульсом.

Компоненты ковариантного 4-импульса:

$$p^{\mu} = (mc\gamma, m\mathbf{v}\gamma) = (\mathcal{E}/c, \mathbf{p}).$$

Связь энергии с трёхмерным импульсом:

$$\mathbf{p} = \frac{\mathcal{E}\mathbf{v}}{c^2}, \qquad \frac{\mathcal{E}^2}{c^2} - \mathbf{p}^2 = m^2 c^2.$$

8 Преобразование Лоренца произвольного вектора при бусте вдоль оси x.

См. вопрос 1.

9 Эффективная масса нескольких частиц.

Определение. Эффективной массой п частиц называют величину

$$M = \left(\sum_{i=1}^{n} p_i^{\mu}\right)^2.$$

10 Калибровочные преобразования потенциалов.

Определение. *Калибровочными преобразованиями потенциалов* **А** и φ называют такие преобразования данных потенциалов, при которых построенные ЭМ поля **E** и **B** по новым потенциалам не будут отличаться от ЭМ полей, построенных по старым потенциалам.

11 Калибровочные преобразования потенциалов в трёхмерной форме $(cmp. \ 40)$

$$\mathbf{A}' = \mathbf{A} + \operatorname{grad} \alpha,$$
$$\varphi' = \varphi - \frac{1}{c} \frac{\partial \alpha}{\partial t},$$

где $\alpha = \alpha(t, \mathbf{x})$ — произвольная дифференцируемая функция. Прямой проверкой следует из вопросов 10, 13.

12 Калибровочные преобразования потенциалов в четырехмерной форме $(cmp.\ 41)$

См. вопрос 11.

Электромагнитный потенциал имеет следующий вид

$$A^{\mu} \equiv (\varphi, \mathbf{A}) \quad \Rightarrow \quad A_{\mu} = (\varphi, -\mathbf{A}).$$

Калибровочные преобразования для данного потенциала можно записать следующим образом

$$A'_{\mu} = A_{\mu} - \partial_{\mu} \alpha.$$

13 Выражения для E и B через компоненты 4-потенциала *(стр. 40)*

По определению

$$\mathbf{B} = \operatorname{rot} \mathbf{A}$$
.

Четвёртное уравнение Максвелла

$$\operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

при данной подстановке принимает вид

$$\operatorname{rot}\left(\mathbf{E} + \frac{1}{c}\frac{\partial \mathbf{A}}{\partial t}\right) = 0.$$

Полученное уравнение выполняется тождественно, если:

$$\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} = -\operatorname{grad} \varphi \quad \Rightarrow \quad \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} - \operatorname{grad} \varphi,$$

для любого дифференцируемого поля $\varphi(t, \mathbf{x})$, т. к. rot grad $\equiv 0$.

14 Выражение для тензора электромагнитного поля через 4-вектор потенциал.

По определению

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
.

15 Сила Лоренца *(стр. 44)*

Уравение движения релятивистской частицы во внешнем ЭМ поле:

$$mc\frac{du^{\mu}}{ds} = \frac{e}{c}F^{\mu\nu}u_{\nu}.$$

Пространиственные компоненты данного 4-мерного уравнения имееют вид:

$$mc\frac{du^{i}}{dt} = \frac{e}{c}F^{i\nu}\frac{dz_{\nu}}{dt} \equiv \frac{e}{c}\left(F^{i0}\frac{dz_{0}}{dt} + F^{ij}\frac{dz_{j}}{dt}\right).$$

Чтобы получить это уравнение, мы умножили левую и правую части исходного уравнения на ds/dt, тем самым заменив du^{μ}/ds на du^{μ}/dt , а $u_{\nu}=dz_{\nu}/ds$ на dz_{ν}/dt .

Вспоминая, что $mcu^i = p^i$, $dz_0/dt = c$ и выражая компоненты тензора F^{0i} и F^{ij} через компоненты ЭМ полей B_i и E_i , получаем уравнение:

$$\frac{dp_i}{dt} = eE_i + \frac{e}{c}\varepsilon_{ijk}v_jB_k,$$

которое в вектороной форме имеет вид

$$\frac{d\mathbf{p}}{dt} = e\mathbf{E} + \frac{e}{c}\mathbf{v} \times \mathbf{B}.$$

16 Скорость дрейфа в скрещенных электромагнитных полях (cmp. 49)

Ограничимся рассмотрением нерелятивистского случая, т. е. когда $v(t) \ll c$, $\forall t$. Тогда $\mathbf{p} \approx m\mathbf{v}$. Пусть поле \mathbf{B} направлено вдоль оси z, а плоскость, проходящая через \mathbf{E} и \mathbf{B} , совпадает с yz. Тогда уравнения движения частицы

$$m\dot{\mathbf{v}} = e\mathbf{E} + \frac{e}{c}\left[\mathbf{v} \times \mathbf{B}\right]$$

запишутся в виде

$$m\ddot{x} = \frac{e}{c}\dot{y}B,$$

$$m\ddot{y} = eE_y - \frac{e}{c}\dot{x}B,$$

$$m\ddot{z} = eE_z.$$

Из последнего уравнения очевидно следует $z(t) = \frac{eE_z t^2}{2m} + v_{0z} t$ — обычное равноускоренное движение. Первые два уравнения в этой системе можно записать как одно комплексное:

$$\frac{d}{dt}(\dot{x}+i\dot{y})+i\omega(\dot{x}+i\dot{y})=i\frac{e}{m}E_y,$$

где $\omega=eB/mc$ — частота Лармора. Решение полученного уравнения есть сумма общего решения однородного уравенения $ae^{-i\omega t}$, с амплитудой a следующей из начальных условий, и частного решения неоднородного уравнения. В качестве последнего мы выберем $(\dot{x}+i\dot{y})_{par}=eE_y/m\omega=cE_y/B$. Т. е. общее решение рассмотриваемого уравнения есть:

$$\dot{x} + i\dot{y} = at^{i\omega t} + \frac{cE_y}{R}.$$

Выберем начальные условия такими, чтобы a была действительной. Тогда:

$$\dot{x} = a\cos\omega t + \frac{cE_y}{B}, \quad \dot{y} = -a\sin\omega t.$$

Полученные компоненты сккороссти частицы являются периодическими функциями. Их средние по времени значения равны:

$$\overline{\dot{x}} = \frac{cE_y}{B}, \quad \overline{\dot{y}} = 0.$$

и определяют среднюю скорость движения заряда в скрещенных ЭМ полях — скорость *электрического дрейфа*. Её направление перпендикулярно обоим полям и не зависит от знака заряда. В векторном виде её можно записать как

$$\mathbf{v}_{dr} = \frac{c}{\mathbf{B}^2} \mathbf{E} \times \mathbf{B}.$$

Магнитное зеркало (cmp.54)17

Заряженная частица движется в магнитном поле по спирали с радиусом Роман $r = mv_{\perp}/eH$. Если поле переменное, то адиабатически сохраняется

$$I = \oint p_{\perp} dq_{\perp} = 2\pi r m v_{\perp} \sim \frac{v_{\perp}^2}{H}$$

При движении в магнитном поле энергия сохраняется, поэтому v_{\perp}^2 ограничено сверху и частица не сможет преодолеть барьер в некоторое $H_{\rm max}$

Вычислить среднее $\left\langle \left(\vec{a},\vec{n}\right)\left(\vec{b},\vec{n}\right)\right angle$ по всем направлени-18 ям единичного вектора \vec{n} при постоянных \vec{a} , \vec{b}

 $\langle n_i n_i \rangle$ не зависит от i. Из независимости компонент

Роман Солецкий

Солецкий

$$\sum_{i=1}^{3} \langle n_i n_i \rangle = \left\langle \sum_{i=1}^{3} n_i n_i \right\rangle = 1 \quad \Rightarrow \quad \langle n_i n_i \rangle = \frac{1}{3}.$$

Отсюда

$$\langle n_i n_k \rangle = \frac{\delta_{ik}}{3},$$

$$\langle (\vec{a}, \vec{n}) (\vec{b}, \vec{n}) \rangle = \langle a_i n_i b_k n_k \rangle = \frac{a_i b_k \delta_{ik}}{3} = \frac{(\vec{a}, \vec{b})}{3}$$

19 Вычислить среднее $\left<[\vec{a},\vec{n}]\left(\vec{b},\vec{n}\right)\right>$ по всем направлениям единичного вектора \vec{n} при постоянных $\vec{a},\,\vec{b}$

$$\left\langle \left[\vec{a}, \vec{n}\right] \left(\vec{b}, \vec{n}\right) \right\rangle = \left\langle \varepsilon_{ijk} a_j n_k b_l n_l \right\rangle = \frac{\left[\vec{a}, \vec{b}\right]}{3}$$

Роман Солецкий

20 Четыре-вектор тока и его компоненты (стр. 60)

4-вектор плотности тока:

$$j^{\mu} = (\rho c, \mathbf{j}).$$

 $de = \rho dV$ - количество заряда в области (скаляр).

Роман Солецкий

$$dedx^{i} = \rho dV dt \frac{dx^{i}}{dt}$$

dVdt - скаляр, $dedx^i$ - 4-х вектор, $\rho dx^i/dt$ - 4-х вектор тока $j^i.$ $j^i=(c\rho,\rho\vec{v})=\left(c\rho,\vec{j}\right)$

21 Уравнение непрерывности в четырехмерной и трехмерной форме (cmp. 60)

Из уравнения Максвелла

$$\partial_{\mu}F^{\mu\nu} = \frac{4\pi}{c}j^{\nu},$$

применяя к обеим его сторонам 4-дивергенцию, получаем:

$$\frac{4\pi}{c}\partial_{\nu}j^{\nu} = \partial_{\nu}\partial_{\mu}F^{\mu\nu} = \partial_{\nu}\partial_{\mu}(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) = \partial_{\nu}\partial^{2}A^{\nu} - \partial_{\mu}\partial^{2}A^{\mu} = 0,$$

где мы обозначили $\partial^2=\partial_\alpha\partial^\alpha$. Таким образом, из уравнений Максвелла следует уравнение непрерывности

Роман Солецкий

$$\frac{\partial j^{\mu}}{\partial x^{\mu}} = 0$$

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \mathbf{j} = 0$$

22 Плотность энергии электромагнитного поля (стр. 75)

Распишем покомпонентно ТЭИ через ЭМ поля Е и В

$$T_0^0 = -\frac{1}{4\pi} \left[F^{0\mu} F_{0\mu} - \frac{1}{4} \delta_0^0 F^2 \right] = -\frac{1}{4\pi} \left[F^{0i} F_{0i} - \frac{1}{2} \left(\mathbf{B}^2 - \mathbf{E}^2 \right) \right] = \frac{1}{8\pi} \left(\mathbf{E}^2 + \mathbf{B}^2 \right).$$

Величина $W \equiv T_0^0$ является *плотностью энергии ЭМ поля*. Действительно, Лагранжева плотность ЭМ поля равна:

плохо понел

$$\mathcal{L} \propto F_{\mu\nu}F^{\mu\nu} \propto \mathbf{E}^2 - \mathbf{B}^2 \equiv T - U,$$

где $T \propto E_i^2 \propto (\partial_0 A_i - \partial_i A_0)^2$ — это кинетическая энергия ЭМ поля, т. к. содержит производные по времени от канонических переменных $\partial_0 A_i$, т. е. зависит от скорости изменения этих величин; при этом $U \propto B_i^2 \propto (\varepsilon_{ijk} \partial_j A_k)^2$ не одержит производных по времени, а потому является потенциальной энергией Т. к. лагранжева плотность равна $\mathcal{L} = T - U$, то величина $W = T + U \propto \mathbf{E}^2 + \mathbf{B}^2$ должна быть плотностью энергии.

Роман Солецкий

$$\begin{split} \frac{1}{c}\frac{\partial\mathbf{E}}{\partial t}\mathbf{E} + \frac{1}{c}\frac{\partial\mathbf{H}}{\partial t}\mathbf{H} &= \mathbf{E}\left(\operatorname{rot}\mathbf{H} - \frac{4\pi}{c}\mathbf{j}\right) - \mathbf{H}\operatorname{rot}\mathbf{E} = -\frac{4\pi}{c}\mathbf{E}\mathbf{j} - \operatorname{div}\left[\mathbf{E},\mathbf{H}\right] \\ &\frac{1}{c}\frac{\partial\mathbf{E}}{\partial t}\mathbf{E} + \frac{1}{c}\frac{\partial\mathbf{H}}{\partial t}\mathbf{H} = \frac{1}{2c}\frac{\partial(\mathbf{E}^2 + \mathbf{H}^2)}{2} \\ &\int \mathbf{E}\mathbf{j}dV = \int \mathbf{E}\rho dV\mathbf{v} = \sum e\mathbf{E}\mathbf{v} = \frac{dE_{\text{\tiny Kuh}}}{dt} \\ &\frac{d}{dt}\left[E_{\text{\tiny Kuh}} + \int dV\frac{\mathbf{E}^2 + \mathbf{H}^2}{8\pi}\right] = -\int dV\frac{c}{4\pi}\operatorname{div}\left[\mathbf{E},\mathbf{H}\right] = -\oint dS\frac{c}{4\pi}\left[\mathbf{E},\mathbf{H}\right] \end{split}$$

Слева записано изменение полной энергия системы заключенной в некоторой оболочке, а справа то что эта энергия изменяется при излучении из оболочки. Полная энергия электромагнитного поля

$$W = \frac{\mathbf{E}^2 + \mathbf{H}^2}{8\pi}$$

23 Вектор Умова-Пойнтинга (стр. 75)

Рассмотрим 3-вектор:

$$S_{i} = -cT_{i}^{0} = \frac{c}{4\pi}F^{0\mu}F_{i\mu} = \frac{c}{4\pi}F^{0j}F_{ij} = \frac{c}{4\pi}(-E_{j})(-\varepsilon_{ijk}B_{k}) = \frac{c}{4\pi}\varepsilon_{ijk}E_{j}B_{k},$$

где T_i^0- вектор из компонент ТЭИ. Величина

$$\mathbf{S} = \frac{c}{4\pi} \left[\mathbf{E} \times \mathbf{B} \right]$$

называется вектором Умова-Пойнтинга.

Из предыдущего билета

 $\mathbf{S} = \frac{c}{4\pi} [\mathbf{E}, \mathbf{H}]$

Роман Солецкий

24 Вектор потенциал A для плоской и монохроматической электромагнитной волны.

hi

25 Поляризация плоской монохроматической электромагнитной волны.

hi

26 Векторы E, B и Умова-Пойнтинга в плоской и монохроматической электромагнитной волне.

hi

27 Классический радиус электрона и как он возникает в выражениях, описывающих рассеяние электромагнитных волн.

hi

28 Аберрация света.

hi

29 Собственное время.

hi

30 Вычислить grad $\frac{1}{|\vec{r}|}$

31 Вычислить $\operatorname{grad} \frac{1}{\left(\vec{k},\vec{r}\right)},$ где \vec{k} — постоянный вектор.

- 32 Вычислить $\operatorname{grad} e^{i\left(\vec{k},\vec{r}\right)},$ где \vec{k} постоянный вектор.
- 33 Вычислить $\varepsilon_{ijk}x_ix_k$.
- 34 Вычислить $\delta_{ij}\partial_i x_k$.
- 35 Вычислить $\delta_{ij}\partial_i x_j$.
- 36 Действие для свободной релятивистской частицы. $_{
 m hi}$
- 37 Вывести формулу для эффекта Доплера. hi
- 38 Может ли свободный электрон излучить фотон? Объяснение.
- 39 Действие для релятивистской частицы во внешнем электромагнитном поле.

hi

40 Уравнение движения для релятивистской частицы во внешнем электромагнитном поле в 4-мерной форме.

hi

41 Обобщенный импульс и энергия.

hi

42 Получите инварианты поля в четырехмерной (через тензор поля) исходя и тензора э-м поля.

hi

43 Инварианты электромагнитного поля в трехмерной форме (через E и B).

hi

44 Вычислить среднее $\langle [\vec{a}, \vec{r}] \, \vec{r} \rangle$ по всем направлениям вектора \vec{r} при постоянных $|\vec{r}|, \ \vec{a}, \ \vec{b}.$

hi

45 Вычислить среднее $\left<[\vec{a},\vec{n}]\left[\vec{b},\vec{n}\right]\right>$ по всем направлениям вектора \vec{n} при постоянных $\vec{a},\ \vec{b}.$

hi

46 Первая и вторая пара уравнений Максвелла в четырехмерной форме.

hi

47 Дипольный электрический момент и поле, создаваемое им.

48 Квадрупольный момент.

hi

49 Энергия электрического диполя и квадруполя во внешнем поле.

hi

50 Потенциальная энергия взаимодействия диполя с диполем.

hi

51 Закон Био-Савара – магнитное поле, создаваемое стационарным током.

hi

52 Калибровка Лоренца и вторая пара уравнений Максвелла в ней.

hi

53 Калибровка Кулона и уравнение на три-вектор потенциал A в присутствии стационарного тока.

hi

54 Дипольный магнитный момент и поле, создаваемое им.

hi

55 Прецессия магнитного момента в магнитном поле. Частота Лармора.

56 Запаздывающие потенциалы.

57 Получить Потенциалы Лиенара-Вихерта в трехмерной и четырехмерной форме из запаздывающих потенциалов.

hi

58 Волновая зона. Характер поведения полей E и B вблизи двигающегося заряда.

hi

59 Длина формирования излучения или длина когерентности.

hi

60 Характер распределения по углам излучения в ультрарелятивистском случае.

- 61 Интенсивность излучения в дипольном приближении. hi
- 62 Характерная частота при синхротронном излучении. hi
- 63 Радиационная сила трения. Критерий применимости. hi
- 64 Лоренцева линия. Естественная ширина линии. hi

65 Формула Томсона для сечения рассеяния. hi Тензор электромагнитного поля и связь его компонент с E и B. hi 67 Гамильтониан частицы в нерелятивистском приближении во внешнем электромагнитном поле. hi Можно ли превысить скорость света при движении под действием постоянной силы? Объяснение. hi 69 Четыре-вектор тока для точечной частицы. hi 70 Первая и вторая пара уравнений Максвелла в трехмерной форме. hi 71 Тензор энергии-импульса для точечной частицы. hi 72 Тензор энергии-импульса электромагнитного поля. hi 73 Закон сохранения тензора энергии-импульса. hi

74 Уравнение Пуассона и его решение. Потенциал Кулона.

hi

75 Разложение электромагнитного поля на осцилляторы. Фурье разложение A, E и B.

hi

76 Действие для осцилляторов (собственных колебаний) электромагнитного поля.

hi

77 Запаздывающая функция Грина для электромагнитного поля и ее свойства.

hi

78 Получить запаздывающие потенциалы из запаздывающей функции Грина.

hi

79 Характер зависимости поля произвольно двигающегося заряда от расстояния. Сколько слагаемых в E и B? Как они падают с расстоянием? Как зависят от ускорения?

hi

80 Мощность потерь на излучение в релятивистском случае и его связь с полной интенсивностью излучения.

hi

81 Критерий применимости силы радиацонного терия.

82 Критерий применимости нерелятивистского приближения для излучения.

hi

83 Критерий применимости формулы Томсона для рассеяния.