FILIERE M

COMPOSITION DE MATHEMATIQUES OPTION

PREMIERE PARTIE: matrice compagne d'un endomorphisme cyclique

- I 1) Si f est cyclique, il existe un vecteur x_0 tel que la famille $\mathscr{B}=(x_0,f(x_0),\ldots,f^{n-1}(x_0))$ soit une base de E. Notons $(-a_0, \ldots, -a_{n-1})$ les coordonnées du vecteur $f^n(x_0) = f(f^{n-1}(x_0))$ dans la base \mathscr{B} . Dans cette base, la matrice de f est la matrice C.
- $\bullet \text{ R\'eciproquement, si } \mathscr{B} = (e_1, \ldots, e_n) \text{ est une base de E dans laquelle la matrice de f est C, posons } x_0 = e_1. \\ \text{Pour } i \in [\![2,n]\!], \text{ on a } e_i = f(e_{i-1}) \text{ et donc, pour } i \in [\![1,n-1]\!], e_i = f^{i-1}(e_1) = f^{i-1}(x_0). \\ \text{La famille } (x_0,f(x_0),\ldots,f^{n-1}(x_0)) = f^{i-1}(x_0). \\ \text{La famille } (x_0,f($ est donc une base de E et f est cyclique.

f est cyclique si et seulement si il ${\mathscr B}$ base de E telle que ${\rm Mat}_{\mathscr B}(f)=C.$

I 2) En développant $\det(C - XI_n)$ suivant sa dernière colonne, on obtient

$$P_C = (-\alpha_{n-1} - X)(-X)^{n-1} + \sum_{k=0}^{n-2} (-1)^{n+k+1} (-\alpha_k) \Delta_k,$$

 $\Delta_{\mathbf{k}} = (-\mathbf{X})^{\mathbf{k}}$ et donc,

$$P_C = (-1)^n (X^n + a_{n-1}X^{n-1} + \sum_{k=0}^{n-2} (-1)^k a_k (-1)^k X^k) = (-1)^n (X^n + \sum_{k=0}^{n-1} a_k X^k) = (-1)^n Q.$$

$$P_C = (-1)^n Q.$$

Si f est cyclique, on peut lui associer comme en 1) une matrice compagne. D'après le calcul précédent, les coefficients de la dernière colonne de cette matrice sont uniquement déterminés à partir des coefficients du polynôme caractéristique de f. La matrice compagne associée à un endomorphisme cyclique est uniquement définie.

I 3) Soit λ une valeur propre complexe de la matrice C. La matrice constituée par les n-1 premières colonnes et n-1dernières lignes de la matrice $C - \lambda I_n$ est inversible car de déterminant 1. La matrice $C - \lambda I_n$ est donc de rang n-1 au moins ou encore $\dim(\operatorname{Ker}(C - \lambda I_n)) \leq 1$. Puisque λ est valeur propre, on a plus précisément $\dim(\operatorname{Ker}(C - \lambda I_n)) = 1$ et donc

les sous-espaces propres de la matrice C sont donc des droites vectorielles.

Déterminons alors les sous-espaces propres de C.

Soient λ une valeur propre complexe de la matrice C et $X = (x_i)_{1 \leq i \leq n} \in \mathcal{M}_{n,1}(\mathbb{C})$.

$$\begin{split} AX &= \lambda X \Leftrightarrow \left\{ \begin{array}{l} -\alpha_0 x_n = \lambda x_1 \\ \forall i \in [\![2,n]\!], \ x_{i-1} - \alpha_{i-1} x_n = \lambda x_i \end{array} \right. \\ &\Rightarrow \left\{ \begin{array}{l} x_{n-1} = (\alpha_{n-1} + \lambda) x_n \\ x_{n-2} = \alpha_{n-2} x_n + \lambda x_{n-1} = (\alpha_{n-2} + \alpha_{n-1} \lambda + \lambda^2) x_n \\ x_{n-3} = \alpha_{n-3} x_n + \lambda (\alpha_{n-2} + \alpha_{n-1} \lambda + \lambda^2) x_n = (\alpha_{n-3} + \alpha_{n-2} \lambda + \alpha_{n-1} \lambda^2 + \lambda^3) x_n \\ \vdots \\ x_1 = (\alpha_1 + \alpha_2 \lambda + \ldots + \alpha_{n-1} \lambda^{n-2} + \lambda^{n-1}) x_n \end{array} \right. \end{split}$$

ce qui montre que $Ker(C - \lambda I_n)$ est la droite vectorielle engendrée par le vecteur

$$(a_1 + a_2\lambda + \ldots + a_{n-1}\lambda^{n-2} + \lambda^{n-1}, \ldots, a_{n-2} + a_{n-1}\lambda + \lambda^2, a_{n-1} + \lambda, 1).$$

$\ \, \textbf{DEUXIEME PARTIE}: \textbf{endomorphismes nilpotents} \\$

 $\textbf{II 4)} \text{ Soit } x_0 \text{ un vecteur tel que } f^{n-1}(x_0) \neq \textbf{0}. \text{ Vérifions que la famille } (x_0,f(x_0),...,f^{n-1}(x_0)) \text{ est une base de } E. \text{ Puisque } \operatorname{card}(f^i(x_0))_{0 \leq i \leq n-1} = n = \dim(E) < +\infty, \text{ il suffit de vérifier que la famille } (f^i(x_0))_{0 \leq i \leq n-1} \text{ est libre.}$

Supposons par l'absurde qu'il existe $(\alpha_0, \dots, \alpha_{n-1}) \neq (0, 0, \dots, 0)$ tel que $\sum_{i=0}^{n-1} \alpha_i f^i(x_0) = 0$.

Soit $k = \min\{i \in [0, n-1]/ \alpha_i \neq 0\}$. On a alors

$$\begin{split} \sum_{i=0}^{n-1} \alpha_i f^i(x_0) &= 0 \Rightarrow \sum_{i=k}^{n-1} \alpha_i f^i(x_0) = 0 \Rightarrow f^{n-1-k} \left(\sum_{i=k}^{n-1} \alpha_i f^i(x_0) \right) = 0 \Rightarrow \sum_{i=k}^{n-1} \alpha_i f^{n+i-k-1}(x_0) = 0 \\ &\Rightarrow \alpha_k f^{n-1}(x_0) = 0 \text{ (car pour } i \geq k+1, \ n+i-k-1 \geq n \text{ et donc } f^{n+i-k-1}(x_0) = 0) \\ &\Rightarrow \alpha_k = 0 \text{ (car } f^{n-1}(x_0) \neq 0). \end{split}$$

Ceci contredit la définition de k. La famille $(x_0, f(x_0), ..., f^{n-1}(x_0))$ est donc une base de E et f est cyclique.

Si f est nilpotent d'indice n, alors f est cyclique.

$$\text{Puisque } f(f^{n-1}(x_0)) = 0, \text{ la matrice de } f \text{ dans la base } (x_0, f(x_0), ..., f^{n-1}(x_0)) \text{ est } \begin{pmatrix} 0 & \dots & \dots & 0 \\ 1 & \ddots & & \vdots \\ 0 & \ddots & & & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix} \text{ qui est une }$$

matrice compagne et donc la matrice compagne de f.

D'après la question 3), Kerf est de dimension au plus 1. Mais f étant nilpotent, f n ?est pas inversible et donc

$$\dim(\operatorname{Kerf}) = 1.$$

II 5) a) Soient $x \in E$ et $k \in [0, p-1]$.

$$x \in N_k \Rightarrow f^k(x) = 0 \Rightarrow f(f^k(x)) = 0 \Rightarrow f^{k+1}(x) = 0 \Rightarrow x \in N_{k+1}$$

Donc,

$$\forall k \in [0, p-1], \ N_k \subset N_{k+1}.$$

Soient $k \in [0, p-1]$ et $y \in f(N_{k+1})$. Il existe $x \in N_{k+1}$ tel que y = f(x). Mais alors $f^k(y) = f^k(f(x)) = f^{k+1}(x) = 0$ et donc $y \in N_k$. Ainsi

$$\forall k \in [\![0,p-1]\!], \ f(N_{k+1}) \subset N_k.$$

b) D'après la question a), ϕ est bien une application de N_{k+1} dans N_k , linéaire car f l'est. Le théorème du rang permet alors d'écrire

$$\begin{split} n_{k+1} &= \dim(N_{k+1}) = \dim(\operatorname{Ker}\phi) + \dim(\operatorname{Im}\phi) \\ &= \dim(\operatorname{Ker}f \cap N_{k+1}) + \dim(f(N_{k+1})) = \dim(\operatorname{Ker}f) + \dim(f(N_{k+1})) \; (\operatorname{car} \, \operatorname{Ker}f = N_1 \subset N_{k+1}) \\ &\leq \dim(\operatorname{Ker}f) + \dim(N_k) \\ &= 1 + n_k \; (\operatorname{d'après} \, 4)). \end{split}$$

$$\forall k \in [0, p-1], \ n_{k+1} \le n_k + 1.$$

- c) Si $n_k = n_{k+1} (< +\infty)$ alors, puisque $N_k \subset N_{k+1}$ (d'après 5)a)), on a $N_k = N_{k+1}$.
- Soit $j \ge k+1$. Supposons que $N_j = N_k$ et montrons que $N_{j+1} = N_k$. On a déjà $N_k = N_j \subset N_{j+1}$. Mais pour $x \in E$,

$$x \in N_{j+1} \Rightarrow f^{j+1}(x) = 0 \Rightarrow f^j(f(x)) = 0 \Rightarrow f(x) \in N_j = N_k \Rightarrow f^k(f(x)) = 0 \Rightarrow x \in N_{k+1} = N_k.$$

et donc, $N_{j+1} = N_k$.

On a montré par récurrence que $\forall j \geq k+1, N_j = N_k$.

$$\label{eq:single_signal} \text{Si } n_k = n_{k+1} \text{ alors } \forall j \geq k+1, \ N_j = N_k.$$

On a $n_p = \dim(\operatorname{Ker} f^p) = n$ et $\forall k \in [0, p-1], n_k \le n_{k+1} \le 1 + n_k$. Par suite, $n_{k+1} = n_k$ ou $n_{k+1} = n_k + 1$. Maintenant, puisque $f^{p-1} \ne 0 = f^p, \ N^{p-1} \ne N_p$ et le début de la question montre que $\forall k \in [0, p-1], n_{k+1} = n_k + 1$. Par suite, $\forall k \in [1, p], n_k = n_1 + (k-1) = k$ ce qui reste vrai pour k = 0. En particulier, $p = n_p = n$. On a montré que

$$p = n \text{ et } \forall k \in [0, n], \ n_k = k.$$

TROISIEME PARTIE : une caractérisation des endomorphismes cycliques

III 6) f est cyclique donc il existe un vecteur x_0 tel que la famille $(x_0, f(x_0), ..., f^{n-1}(x_0))$ soit une base de E. Soit $(\alpha_0, ..., \alpha_{n-1}) \in \mathbb{C}^n$.

$$\begin{split} \alpha_0 \mathrm{Id} + \alpha_1 f + ... + \alpha_{n-1} f^{n-1} &= 0 \Rightarrow \forall x \in E, \ \alpha_0 x + \alpha_1 f(x) + ... + \alpha_{n-1} f^{n-1}(x) = 0 \\ &\Rightarrow \alpha_0 x_0 + \alpha_1 f(x_0) + ... + \alpha_{n-1} f^{n-1}(x_0) = 0 \\ &\Rightarrow \alpha_0 = \alpha_1 = ... = \alpha_{n-1} = 0 \ (\mathrm{car} \ \mathrm{la} \ \mathrm{famille} \ (x_0, f(x_0), ..., f_{n-1}(x_0)) \ \mathrm{est} \ \mathrm{libre}). \end{split}$$

Donc,

si f
 est un endomorphisme cyclique, la famille $(\mathrm{Id},f,...,f^{n-1})$ est libre.

III 7) a) $(f - \lambda_k I)^{m_k}$ est un polynôme en f et donc commute avec f. On sait alors que $E_k = \mathrm{Ker}(f - \lambda_k I)^{m_k}$ est stable par f.

Les polynômes $(X-\lambda_k)^{m_k}$ sont deux à deux premiers entre eux (les λ_k étant deux à deux distincts, ces polynômes pris deux à deux n'ont pas de racines communes dans \mathbb{C}). D'après le théorème de décomposition des noyaux, $\operatorname{Ker}(P_f(f)) = E_1 \oplus ... \oplus E_p$. Mais d'après le théorème de Cayley-Hamilton, $P_f(f) = 0$ et donc $\operatorname{Ker}(P_f(f)) = E$. Finalement,

$$\forall k \in [\![1,p]\!], \ f(E_k) \subset E_k \ \mathrm{et} \ E = E_1 \oplus ... \oplus E_{\mathfrak{p}}.$$

b) Puisque f laisse stable E_k , ϕ_k est bien un endomorphisme de E_k . Par définition de E_k , on a pour tout vecteur x élément de E_k , $(f - \lambda_k I)^{m_k}(x) = 0$ ou encore $\phi_k^{m_k}(x) = 0$.

$$\varphi_k^{\mathfrak{m}_k} = 0.$$

Notons f_k la restriction de f à E_k (on a donc $f_k = \lambda_k Id_{E_k} + \phi_k$). Puisque le polynôme $(X - \lambda_k)^{m_k}$ est annulateur de f_k , λ_k est l'unique valeur propre de f_k (f_k admettant au moins une valeur propre puisque $\mathbb{K} = \mathbb{C}$ et que $E_k \neq \{0\}$). Par suite, le polynôme caractéristique de f_k est $(X - \lambda_k)^{\dim(E_k)}$. On sait alors que ce polynôme divise le polynôme caractéristique de f ce qui montre que

$$\dim(\mathsf{E}_k) \leq \mathsf{m}_k$$
.

 $\begin{aligned} & \text{Maintenant, si pour un entier } k \in [\![1,p]\!] \text{ on a } \dim(E_k) < m_k, \text{ alors } \sum_{j=1}^p \dim(E_j) < \sum_{j=1}^n m_j = n, \text{ ce qui contredit le fait que } E = E_1 \oplus ... \oplus E_p. \text{ Finalement,} \end{aligned}$

$$\forall k \in [\![1,p]\!], \ \dim(E_k) = m_k.$$

Montrons que $\varphi^{m_k-1} \neq 0$. Supposons par l'absurde que $\varphi^{m_k-1} = 0$ et considérons le polynôme

$$Q = (X - \lambda_k)^{\mathfrak{m}_k - 1} \prod_{j \neq k} (X - \lambda_j)^{\mathfrak{m}_j} \text{ si } \mathfrak{p} \geq 2 \text{ ou } Q = (X - \lambda_k)^{\mathfrak{m}_k - 1} = (X - \lambda_1)^{\mathfrak{n} - 1} \text{ si } \mathfrak{p} = 1.$$

Pour $i \in [\![1,p]\!]$, on a $Q(f_i)=0$ (des polynômes en f commutent) et donc Q(f)=0. Mais Q est un polynôme non nul de degré $(m_k-1)+\sum_{j\neq k}m_j=\left(\sum_{j=1}^pm_j\right)-1=n-1$. L'égalité Q(f)=0 fournit alors une combinaison linéaire nulle à coefficients non tous nuls de la famille $(Id,f,f^2,...,f^{n-1})$ ce qui contredit la liberté de cette famille. Donc

$$\varphi^{\mathfrak{m}_k-1}\neq 0.$$

c) φ_k est donc un endomorphisme nilpotent de E_k , d'indice $\mathfrak{m}_k = \dim E_k$. D'après la question 4), il existe une base \mathscr{B}_k de E_k dans laquelle la matrice de φ_k est la matrice compagnon de format \mathfrak{m}_k

$$\begin{pmatrix} 0 & \dots & & \dots & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & & & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix},$$

ou encore dans laquelle la matrice de f_k est

$$\begin{pmatrix} \lambda_{k} & 0 & \dots & \dots & 0 \\ 1 & \ddots & & & \vdots \\ 0 & \ddots & & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & \lambda_{k} \end{pmatrix}.$$

Soit $\mathscr{B} = \mathscr{B}_1 \cup ... \cup \mathscr{B}_k$. D'après la question 7)a), $E = E_1 \oplus ... \oplus E_p$ et donc \mathscr{B} est une base de E et la matrice de f dans cette base a la forme désirée.

d) Il s'agit de vérifier que la matrice précédente est semblable à une matrice compagne qui ne peut être, d'après la question 2), que la matrice compagne de P_f.

Soit donc C la matrice compagne de P_f et g l'endomorphisme de matrice C dans une base donnée de E. Le polynôme caractéristique de g est celui de f à savoir $\prod_{k=1}^p (X-\lambda_k)^{\mathfrak{m}_k}$ et d'autre part, g est cyclique d'après la question 1).

D'après la question 6), la famille $(Id, g, ..., g^{n-1})$ est libre et d'après la question 7), il existe une base de E dans laquelle la matrice de g est la matrice diagonale par blocs du 7). C est donc semblable à cette matrice ce qui montre que f est cyclique.

si $(Id, f, ..., f^{n-1})$ est une famille libre, f est cyclique.

III 8) a) $\det(Q_1 + \lambda Q_2)$ est un polynôme en λ , non nul car $\det(Q_1 + iQ_2) = \det Q \neq 0$ et admet donc un nombre fini de racines. \mathbb{R} étant infini, il existe au moins un réel λ_0 tel que $\det(Q_1 + \lambda_0 Q_2) \neq 0$ ou encore tel que la matrice $P = Q_1 + \lambda_0 Q_2$ soit une matrice réelle inversible.

$$\{\lambda \in \mathbb{R}/ Q_1 + \lambda Q_2 \in \mathscr{GL}_n(\mathbb{R})\} \neq \varnothing.$$

Maintenant, en posant $P = Q_1 + \lambda_0 Q_2$,

$$\begin{split} A &= QBQ^{-1} \Rightarrow AQ = QB \Rightarrow AQ_1 + iAQ_2 = Q_1B + iQ_2B \\ &\Rightarrow AQ_1 = Q_1B \text{ et } AQ_2 = Q_2B \text{ (en identifiant les parties réelles et imaginaires puisque A et B sont réelles)} \\ &\Rightarrow A(Q_1 + \lambda_0Q_2) = (Q_1 + \lambda_0Q_2)B \\ &\Rightarrow AP = PB \Rightarrow A = PBP^{-1}. \end{split}$$

 $\forall (A,B) \in (\mathscr{M}_n(\mathbb{R}))^2, \ (A \ \mathrm{et} \ B \ \mathrm{semblables} \ \mathrm{dans} \ \mathscr{M}_n(\mathbb{C}) \Rightarrow A \ \mathrm{et} \ B \ \mathrm{semblables} \ \mathrm{dans} \ \mathscr{M}_n(\mathbb{R})).$

b) Soit A la matrice de f dans une base donnée de E. D'après la question 7), A est semblable dans $\mathbb C$ à une matrice compagne. Mais A est réelle, et donc cette matrice compagne est réelle. Ces deux matrices réelles sont semblables dans $\mathcal{M}_n(\mathbb C)$ et donc, d'après la question a), dans $\mathcal{M}_n(\mathbb R)$. Par suite, il existe une base de E dans laquelle la matrice de f est une matrice compagne. D'après la question 1), f est cyclique.

Si $\mathbb{K} = \mathbb{C}$ ou $\mathbb{K} = \mathbb{R}$, f est cyclique si et seulement si la famille $(\mathrm{Id}, f, ..., f^{n-1})$ est libre.

QUATRIEME PARTIE : une autre caractérisation des endomorphismes cycliques

IV 9) a) Soit $g \in \mathcal{C}(f)$. Puisque la famille $(x_0, f(x_0), ..., f^{n-1}(x_0))$ est une base de E, on peut poser

$$g(x_0) = \sum_{k=0}^{n-1} \alpha_k f^k(x_0).$$

 $\text{Posons encore } h = \sum_{k=0}^{n-1} \alpha_k f^k \text{ de sorte que l'on a déjà } g(x_0) = h(x_0). \text{ Plus généralement, pour } j \in [\![0,n-1]\!],$

$$\begin{split} g(f^j(x_0)) &= f^j(g(x_0)) \text{ (puisque } g \text{ est dans } \mathscr{C}(f)) \\ &= f^j(h(x_0)) \\ &= h(f^j(x_0)) \text{ (puisque } h \text{ est un polynôme en } f \text{ et donc commute avec } f^j). \end{split}$$

Ainsi, les endomorphismes g et h coïncident sur une base de E et donc sont égaux. Par suite, $g \in \mathbb{K}[f]$. En résumé, $\mathscr{C}(f) \subset \mathbb{K}[f]$. Comme on a toujours $\mathbb{K}[f] \subset \mathscr{C}(f)$, on a montré que

si f est cyclique,
$$\mathcal{C}(f) = \mathbb{K}[f]$$
.

b) Soit $g \in \mathcal{L}(E)$. S'il existe $R \in \mathbb{K}_{n-1}[X]$ tel que g = R(f) alors g est dans $\mathcal{C}(f)$. Réciproquement, si g est dans $\mathcal{C}(f)$, d?après la question a), il existe un polynôme $P \in \mathbb{K}[X]$ tel que g = P(f). La division euclidienne de P par P_f fournit un polynôme Q et un polynôme R de degré au plus n-1 tels que $P = QP_f + R$. Par suite,

$$g = P(f) = Q(f)oP_f(f) + R(f) = R(f)$$
 d'après le théorème de Cayley-Hamilton.

g est donc bien de la forme R(f) où R est un polynôme de degré au plus n-1.

$$\mathscr{C}(f)=\mathbb{K}_{n-1}[f].$$

 $\textbf{IV 10)} \text{ Supposons } f \text{ non cyclique. D'après la question 7), la famille } (\text{Id}, f, ..., f^{n-1}) \text{ est liée et, en écrivant une relation de dépendance, on voit qu'il existe un entier } p \in \llbracket 0, n-1 \rrbracket \text{ tel que } f^p \in \text{Vect}(\text{Id}, f, ..., f^{p-1}).$

Mais alors, par récurrence, pour $k \geq p$, $f^k \in \mathrm{Vect}(\mathrm{Id}, f, ..., f^{p-1})$ (en effet, si pour $k \geq p$, $f^k \in \mathrm{Vect}(\mathrm{Id}, f, ..., f^{p-1})$ alors $f^{k+1} \in \mathrm{Vect}(f, ..., f^p) \subset \mathrm{Vect}(\mathrm{Id}, f, ..., f^{p-1})$).

Par suite, $\mathscr{C}(f) = \mathbb{K}[f] = \mathrm{Vect}(f^k)_{k \in \mathbb{N}} = \mathrm{Vect}(\mathrm{Id}, f, ..., f^{p-1})$ et en particulier, $\dim(\mathbb{K}[f]) \leq \mathfrak{p} < \mathfrak{n}$. Ceci contredit le résultat admis dans le préambule de l'énoncé à savoir $\dim(\mathscr{C}(f)) \geq \mathfrak{n}$. On a montré que si $\mathscr{C}(f) = \mathbb{K}[f]$ alors f est cyclique. Finalement

f est cyclique si et seulement si $\mathscr{C}(f) = \mathbb{K}[f]$.

CINQUIEME PARTIE: cycles

V 11) a) Pour $k \in [0, p-1]$, $f^p(f^k(x_0)) = f^k(f^p(x_0)) = f^k(x_0) = I(f^k(x_0))$. Par suite, les endomorphismes f^p et I coïncident sur une famille génératrice de E et donc $f^p = I$.

si f est un p-cycle,
$$f^p = I$$
.

- b) $\mathscr E$ est un sous-ensemble de $\mathbb N$, non vide (car x_0 est nécessairement non nul de sorte que k=1 est dans $\mathscr E$) et majoré par $\mathfrak n$ (car le cardinal d'une famille libre de E est majoré par la dimension de E). $\mathscr E$ admet donc un plus grand élément que l'on note $\mathfrak m$.
- c) Par définition de m, la famille $(x_0, f(x_0), ..., f^{m-1}(x_0))$ est libre et la famille $(x_0, f(x_0), ..., f^m(x_0))$ est liée. Par suite, $f^m(x_0) \in \text{Vect}(x_0, f(x_0), ..., f^{m-1}(x_0))$. De plus, si pour $k \ge m$, $f^k(x_0) \in \text{Vect}(x_0, f(x_0), ..., f^{m-1}(x_0))$ alors

$$f^{k+1}(x_0) \in \operatorname{Vect}(f(x_0),...,f^m(x_0)) \subset \operatorname{Vect}(x_0,f(x_0),...,f^{m-1}(x_0)).$$

On a montré par récurrence que

$$\forall k \geq m, \ f^k(x_0) \in \mathrm{Vect}(x_0, f(x_0), ..., f^{m-1}(x_0)).$$

La famille $(x_0,f(x_0),...,f^{m-1}(x_0))$ est déjà libre dans E. Vérifions que cette famille est génératrice de E. On a déjà $m \le n \le p$ (car la famille $(x_0,f(x_0),...,f^{m-1}(x_0))$ est libre dans E et la famille $(x_0,f(x_0),...,f^{p-1}(x_0))$ est génératrice de E). De plus, pour $k \ge m$, $f^k(x_0) \in \operatorname{Vect}(x_0,f(x_0),...,f^{m-1}(x_0))$. Donc, $E = \operatorname{Vect}(x_0,f(x_0),...,f^{p-1}(x_0)) = \operatorname{Vect}(x_0,f(x_0),...,f^{m-1}(x_0))$ et la famille $\operatorname{Vect}(x_0,f(x_0),...,f^{m-1}(x_0))$ est une base de E. On en déduit que

$$m = n$$
 et que f est cyclique.

Le polynôme X^p-1 est annulateur de f, non nul à racines simples dans \mathbb{C} (car sans racine commune avec sa dérivée pX^{p-1}). Donc, f est diagonalisable. Par suite, l'ordre de multiplicité de chacune de ses valeurs propres est exactement la dimension du sous-espace propre associé. Mais, f étant cyclique, les sous-espaces propres de f sont d'après la question 3) de dimension 1. Finalement, f admet \mathfrak{n} valeurs propres simples ou encore \mathfrak{n} valeurs propres deux à deux distinctes. Notons que ces valeurs propres sont à choisir parmi les racines du polynôme X^p-1 et sont donc des racines \mathfrak{p} -ièmes de l'?unité.

f admet $\mathfrak n$ valeurs propres deux à deux distinctes.

$$\mathbf{V} \ \mathbf{12)} \ \mathrm{Si} \ \mathfrak{p} = \mathfrak{n}, \ \mathrm{la \ matrice \ de \ f \ dans \ la \ base} \ (x_0, f(x_0), ..., f^{\mathfrak{n}-1}(x_0)) \ \mathrm{est} \left(\begin{array}{cccc} 0 & \ldots & \ldots & 0 & 1 \\ 1 & \ddots & & & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & 0 & 1 & 0 \end{array} \right). \ \mathrm{C'est \ une \ matrice}$$

compagne et donc la matrice compagne de f.

Soit alors $k \in [1, n]$.

$$CU_k = \begin{pmatrix} \overline{\varpi}^{nk} \\ \overline{\varpi}^k \\ \overline{\varpi}^{2k} \\ \vdots \\ \overline{\varpi}^{(n-1)k} \end{pmatrix} = \frac{1}{\overline{\varpi}^k} \begin{pmatrix} \overline{\varpi}^k \\ \overline{\varpi}^{2k} \\ \overline{\varpi}^{3k} \\ \vdots \\ \overline{\varpi}^{nk} \end{pmatrix} = \omega^k U_k.$$

V 13) Le coefficient ligne k, colonne l de la matrice $M\overline{M}$ vaut

$$\sum_{j=1}^n \overline{\omega}^{kj} \omega^{jl} = \sum_{j=1}^n \omega^{-kj} \omega^{jl} = \sum_{j=1}^n (\omega^{(l-k)})^j.$$

Maintenant, $\omega^{1-k}=1 \Leftrightarrow l-k \in n\mathbb{Z}$. Mais, puisque $1 \leq k \leq n$ et $1 \leq l \leq n$, on a $-(n-1) \leq l-k \leq n-1$. Mais alors, le seul multiple de n compris entre -(n-1) et n-1 étant 0, $\omega^{1-k}=1 \Leftrightarrow k=l$. On a donc deux cas :

1er cas. Si k = l,

$$\sum_{j=1}^{n} \overline{\omega}^{kj} \omega^{jl} = \sum_{j=1}^{n} 1 = n.$$

2ème cas. Si $k \neq l$,

$$\sum_{i=1}^{n} \overline{\omega}^{kj} \omega^{jl} = \omega^{l-k} \frac{1 - (\omega^{l-k})^n}{1 - \omega^{l-k}} = \omega^{l-k} \frac{1 - 1}{1 - \omega^{l-k}} = 0.$$

Ainsi, le coefficient ligne k, colonne l de la matrice $M\overline{M}$ vaut $\mathfrak{n}\delta_{k,l}$. On en déduit que $M\overline{M}=\mathfrak{n}I_\mathfrak{n}$ ou encore que $M\left(\frac{1}{\mathfrak{n}}\overline{M}\right)=\left(\frac{1}{\mathfrak{n}}\overline{M}\right)M=I_\mathfrak{n}$. Ainsi

$$M\in \mathrm{GL}_n(\mathbb{C}) \ \mathrm{et} \ M^{-1}=\frac{1}{n}\overline{M}.$$

V 14)) On note que $A = a_0I_n + a_1C + a_2C^2 + ... + a_{n-1}C^{n-1} = Q(C)$ où $Q = a_0 + a_1X + ... + a_{n-1}X^{n-1}$. D'après les questions 11)c) et 12), f (ou C) a n valeurs propres deux à deux distinctes à savoir les ω_k , $1 \le k \le n$, une base de vecteurs propres associée étant $(U_1, ..., U_n)$ et est donc diagonalisable. La matrice dans la base canonique de $\mathcal{M}_{n,1}(\mathbb{C})$ de la famille $(U_1, ..., U_n)$ étant M, on a plus précisément

$$C = MDM^{-1}$$
 où $D = \operatorname{diag}(\omega, \omega^2, ..., \omega^n)$.

Mais alors,

$$A=Q(C)=MQ(D)M^{-1}=M\mathrm{diag}(Q(\omega),Q(\omega^2),...,Q(\omega^n))M^{-1}.$$

Ainsi,

 $\begin{array}{l} \text{A est diagonalisable, } \mathrm{Sp}(A) = (Q(\omega), Q(\omega^2), ..., Q(\omega^n)) \text{ où } Q = a_0 + a_1 X + ... + a_{n-1} X^{n-1} \\ \text{et une base de vecteurs propres de } A \text{ est } (U_1, ..., U_n). \end{array}$