All lab assignments must be done individually. You should submit your codes to SUCourse+ during the lab hours (In-Lab Code Submission) and you should submit your lab-reports within one week after the lab (Post-Lab Report).

Grading: In-lab Codes has a weight of 20% and Post-lab Reports has a weight of 80%. Your programs should be modular, bug-free, commented in MATLAB, self- explanatory. Also, your report should include necessary comments and discussions. Please note that if you miss the lab, you will get automatically zero (even if you submit post-lab report)

Important Note: Submit all your codes to SUCourse as a single zip file. Deadline for submission to SUCourse is **until the end of the lab**.

Correlation Matching for finding Correspondences:

• We will use correlation matching to solve the correspondence problem in stereo vision. We will search for the best subR (right sub-image) similar to subL (left sub-image) starting from the same pixel location and along the vicinity of that location (in window $R = \omega \times \omega$). In order to achieve this, we need to calculate the similarity between the sub-images for each displacement $d = [d_1, d_2]$ in R as follows:

$$C(d) = \sum_{k=-W}^{k=W} \sum_{l=-W}^{l=W} \Psi\left(f(i+k,j+l), g(i+k-d_1,j+l-d_2)\right)$$
 (1)

where Ψ is the similarity measure such as SSD which can be calculated as follows:

$$SSD = \sum_{k=-W}^{k=W} \sum_{l=-W}^{l=W} [f(i+k, j+l) - g(i+k, j+l)]^2$$
 (2)

• We will store the displacements (d_1 and d_2) and the similarity values in each row of a matrix called dist. We can then use find command to retrieve the row index of the minimum similarity value in dist matrix as follows:

ind = find
$$\left(dist(:,3) = min \left(dist(:,3) \right) \right);$$

- Note that the correspondence points will be found for every pixel and the disparity map will be calculated from these corresponding pixels of stereo images, i.e., $d = x_{left} x_{right}$.
- Save your codes as "lab7.m".

Your results should look as follows:

Useful codes for this lab:

% Pad the image by offset amount

paddedIm = padarray(Im, [offset offset], 'both');

% Show stereo pair in a red-cyan anaglyph

imshow(stereoAnaglyph(ImLeft, ImRight));

% Show disparity map with colorbar

figure; imagesc(dispar); colormap jet; colorbar

Post Lab

Provide resulting images for different windows size and search areas. Explain all of the procedure that you follow. Comment on how you choose the size of sub-images and the size of search window. Compare your disparity map with the result you obtain by using built-in MATLAB function called 'disparity'. Discuss your results.

Deadline for post lab report submission to SUCourse+: 14 January 2021, 23:55.