

Crazy Practical

Introduction

Teaching assistants:

Shushuai Li, Mohammad Askari, Won Dong Shin, Valentin Wüest

Task Setup

- Arena: pattern tiles
 (3 x 5 m area)
- Platform: 2 x carton box
 (~ 30 x 30 x 10 cm³ volume)
- Drone: initially placed on the take-off pad
- Task: navigation and obstacle avoidance
 - Estimate position from flow deck
 - Use multi-ranger to detect and avoid obstacles
 - Use z-ranger to detect and land on the platform

Last year's exam

Grading

 Level 0: presentation and video of working algorithm 	0-4	<=4
--	-----	-----

 Level 1: take-off, avoid obstacles in the way 	0-0.5	<=4.5
---	-------	-------

Group & hardware

- There will be 15 groups; each group will be made of 4 students
- Choose your group in Moodle before the next lecture (April 12th)
- During next lecture (April 12th), each group will be given a drone kit
- Return the drone on the date of the final exam (May 31st)

Github repository

Contains the instructions

https://github.com/dronecourse-epfl/crazy-practical-2022

0. Privately fork the project

- Create a private fork of a public repository · GitHub
- Add your teammates as collaborators
- Send code, presentation and video of the task by 29th May, 23:59

1. Unpacking

Visit the bitcraze documentation:

https://www.bitcraze.io/documentation/system/

2. Assembling

3. Installing the Python library

cflib: Crazyflie python library

- API written in Python
- used to communicate with the Crazyflie
- used to control the Crazyflie
- used by <u>cfclient</u>, the Crazyflie PC client

Visit the doc here:

https://www.bitcraze.io/documentation/repository/crazyflie-lib-python/master/

4. Setting up the radio interface

- Make sure you have the usb permission for the radio interface
- Configure the crazyradio and set your crazyflie address
- Remember to change the uri in the files of your algorithm

5. Installing the Crazyflie client

cfclient: Crazyflie PC Client

- written in Python
- used to flash, change settings, control, and visualize logs of the Crazyflie
- implements the user interface
- Visit the doc here:
 - https://www.bitcraze.io/documentation/repository/crazyfl ie-clients-python/master/
 - https://github.com/bitcraze/crazyflie-clients-python

6. Coding your algorithm

- Connect to the crazyflie
- Take off
- Explore the arena
- Avoid collisions
- Detect the box
- Estimate the box center
- Land on it
- Go back to start point

Crazyflie software architecture

https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/

Altitude estimation

Altitude estimation

Forward flight at constant altitude

Edge detection

When flying forward and passing over an obstacle (the box, in our case)

What's next?

- Do the installation
 - https://github.com/dronecourse-epfl/crazy-practical-2022
- Start coding
 - TAs will answer your questions

Test the drone and start coding (Apr 12)

- Sign the from to get your drone
- Change your drone's address with cfclient
 - Address is explained in https://github.com/dronecourse-epfl/crazy-practical-2022
 - Radio channel = 80 + 10*(mod(<team_number>,3) 1); Crazyflie address = 0xE7E7E7E7<team_number>
- Change address in each baciclog.py and test your drone with that file
- Put drone in the arena when testing logandfly.py or position_commander.py
- Update your crazy-practical-2022 repository with git pull command.
- Every time before flying the drone, restart it to get good position estimation.
- TAs will answer your questions

Some notes

- Initial position of the drone will be given one day before the final exam.
- Video details
 - Keep the drone in the field of view
 - Don't edit the video (except for speeding up)
 - Display a timer at the beginning and the end of the flight
 - Record one successful flight in an obstacle-rich environment
- Commander documentation (such as landing and taking off)
 - https://www.bitcraze.io/documentation/repository/crazyflie-lib-python/master/api/cflib/positioning/p
 osition hl commander/

