

10장. 알림 시스템 설계

알림 유형별 지원 방안

IOS 푸시알림

- 알림 제공자(provider): 알림 요청을 만들어 애플 푸시 알림 서비스로 보내주는 주체. 알림 요청을 보내려면 device token, paload 데이터가 필요
- 알림 서비스(Apple Push Notification Service): 애플이 제공하는 원격 서비스다. 푸시 알림을 iOS 장치로 보내는 역할을 담당

안드로이드 푸시 알림

• APNS 대신 FCM(Firebase Cloud Messaging) 을 사용한다는 점만 다름

연락처 정보 수집 절차

- 알림 보내려면 모바일 단말 토큰, 전화번호, 이메일 주소 등의 정보 필요
- 앱 설치한 후에 처음 계정 가입할 때 해당 사용자의 정보를 db에 저장

개략적 설계안(초안)

- 1부터 N까지의 서비스: 이 서비스 각각은 마이크로서비스일수도 있고, 크론잡일 수도 있고, 분산 시스템 컴포넌트일 수도 있다.
- 알림 시스템: 알림 시스템은 알림 전송/수신 처리의 핵심이다. 이 시스템은 서비스 1~N에 알림 전송을 위한 API를 제공해야 하고, 제 3자 서비스에 전달할 알림 페이로드를 만들어 낼 수 있어야 한다. (알림 서버의 역할이라고 생각)
- 제3자 서비스: 이 서비스들은 사용자에게 알림을 실제로 전달하는 역할을 한다. 제 3자 서비스와의 통합을 진행할 때 유의할 것은 확장성이다. 쉽게 새로운 서비스를 통합하거나 기존 서비스를 제거할 수 있어야 한다는 뜻이다.

위의 설계의 문제점

- SPOF(Single-Point-Of-Failure) : 하나의 알림 서비스에 장애가 생기면 전체 서비스의 장애로 이어진다
- 규모 확장성: 한 대 서비스로 푸시 알림 관련된 모든 것을 처리하므로, db나 캐시 등 중요 컴포넌트의 규모를 개별적으로 늘릴 방법이 없다.
- 성능 병목: 알림을 처리하고 보내는 것은 자원을 많이 필요로 하는 작업일 수 있다. 모든 것을 한 서버로 처리하면 사용자 트래픽이 많이 몰리는 시간에는 시스템이 과부하 상태에 빠질 수 있다.

개선된 설계안

- 데이터베이스와 캐시를 알림 시스템의 주 서버에서 분리한다.
- 알림 서버를 증설하고 자동으로 수평적 규모 확장이 이루어질 수 있도록 한다.
- 메세지 큐를 이용해 시스템 컴포넌트 사이의 강한 결합을 끊는다.

알림 서버의 역할

- 알림 전송 API: 스팸 방지를 위해 보통 사내 서비스 또는 인증된 클라이언트만 이용 가능하다.
- 알림 검증: 이메일 주소, 전화번호 등에 기본적 검증을 수행한다.
- 데이터베이스 또는 캐시 질의: 알림에 포함시킬 데이터를 가져오는 기능이다.

- 알림 전송: 알림 데이터를 메세지 큐에 넣는다. 본 설계안의 경우 하나 이상의 메세지 큐를 사용하므로 알림을 병렬적으로 처리할 수 있다.
- 캐시: 사용자 정보, 단말 정보, 알림 템플릿 등을 캐시한다.
- 데이터베이스: 사용자, 알림, 설정 등 다양한 정보를 저장한다.
- 메세지 큐: 시스템 컴포넌트 간 의존성을 제거하기 위해 사용한다. 다량의 알림이 전송되어 야 하는 경우를 대비한 버퍼 역할도 한다.
- 작업 서버: 메세지 큐에서 전송할 알림을 꺼내서 제 3자 서비스로 전달하는 역할을 담당하는 서버다.

알림 전송 과정

- 1. API를 호출하여 알림 서버로 알림을 보낸다.
- 2. 알림 서버는 사용자 정보, 단말 토큰, 알림 설정 같은 메타데이터를 캐시나 db에서 가져온다.
- 3. 알림 서버는 전송할 알림에 맞는 이벤트를 만들어 해당 이벤트를 위한 큐에 넣는다.
- 4. 작업 서버는 메시지 큐에서 알림 이벤트를 꺼낸다.
- 5. 작업 서버는 알림을 제3자 서비스로 보낸다.
- 6. 제3자 서비스는 사용자 단말로 알림을 전송한다.

상세 설계

- 안정성
- 개선된 설계안

안정성

분산 환경에서 운영될 알림 시스템을 설계할 때는 안정성을 확보하기 위한 사항 몇 가지를 반드시 고려해야 한다.

데이터 손실 방지

알림 전송 시스템의 가장 중요한 요구사항 가운데 하나는 어떤 상황에서도 알림이 소실되면 안된다는 것이다. 알림이 지연되거나 순서가 틀려도 괜찮지만, 사라지면 곤란하다는 것이다. 이 요구사항을 만족하려면 알림 시스템은 알림 데이터를 데이터베이스에 보관하고 재시도 메커니즘을 구현해야 한다.

알림 중복 전송 방지

같은 알림이 여러 번 반복되는 것을 완전히 막는 것은 가능하지 않다. 대부분의 경우 알림은 딱한 번만 전송되겠지만, 분산 시스템의 특성상 가끔은 같은 알림이 중복되어 전송되기도 할 것이다.

보내야 할 알림이 도착하면 그 이벤트 ID를 검사하여 이전에 보낸 적이 있는 이벤트인지 확인한다. 중복된 이벤트라면 버리고, 그렇지 않으면 알림을 발송한다.

추가로 필요한 컴포넌트 및 고려사항

알림 템플릿

대형 알림 시스템은 하루에도 수백만 건 이상의 알림을 처리한다. 그런데 그 알림 메세지 대부분은 형식이 비슷하다. 알림 템플릿은 이런 유사성을 고려하여, 알림 메세지의 모든 부분을 처음부터 다시 만들 필요 없도록 해 준다.

알림 설정

opt_in: boolean (#해당 채널로 알림을 받을 것인지의 여부)

특정 종류의 알림을 보내기 전에 반드시 유저가 알림을 켜 두었는지 확인하고 보내야 한다.

전송률 제한

사용자에게 너무 많은 알림을 보내지 않도록 하는 한 가지 방법은 한 사용자가 받을 수 있는 알림의 빈도를 제한하는 것이다. 이것이 중요한 이유는, 알림을 너무 많이 보내기 시작하면 사용자가 알림 기능을 아예 꺼버릴 수도 있기 때문

재시도 방법

제 3자 서비스가 알림 전송에 실패하면, 해당 알림을 재시도 전용 큐에 넣는다. 같은 문제가 계속해서 발생하면 개발자에게 통지

푸시 알림과 보안

iOS와 안드로이드 앱의 경우, 알림 전송 API는 appKey와 appSecret을 사용하여 보안을 유지한다. 따라서 인증된(authenticated), 혹은 승인된(verified) 클라이언트만 해당 API를 사용하여 알림을 보낼 수 있다.

큐 모니터링

알림 시스템을 모니터링 할 때 중요한 메트릭(metric) 하나는 큐에 쌓인 알림의 개수이다. 이 수가 너무 크면 작업 서버들이 이벤트를 빠르게 처리하고 있지 못하다는 뜻이다. 그런 경우네느 작업 서버를 증설하는게 바람직

이벤트 추적

알림 확인율, 클릭율, 실제 앱 사용으로 이어지는 비율 같은 메트릭은 사용자를 이해하는데 중요 하다.

데이터 분석 서비스를 통해 추적하게 될 알림 시스템 이벤트 사례

수정된 설계안

- 알림 서버에 인증(authentication)과 전송률 제한(rete-limiting 기능이 추가되었다.
- 전송 실패에 대응하기 위한 재시도 기능이 추가되었다. 전송에 실패한 알림은 다시 큐에 넣고 지정된 횟수만큼 재시도한다.
- 전송 템플릿을 사용하여 알림 생성 과정을 단순화하고 알림 내용의 일관성을 유지한다.
- 모니터링과 추적 시스템을 추가하여 시스템 상태를 확인하고 추후 시스템을 개선하기 쉽도 록 하였다.

마무리

- 안정성: 메세지 전송 실패율을 낮추기 위해 안정적인 재시도 메커니즘을 도입하였다.
- 보안: 인증된 클라이언트만이 알림을 보낼 수 있도록 appKey, appSecret 등의 메커니즘 을 이용하였다.
- 이벤트 추적 및 모니터링: 알림이 만들어진 후 성공적으로 전송되기까지의 과정을 추적하고 시스템 상태를 모니터링하기 위해 알림 전송의 각 단계마다 이벤트를 추적하고 모니터링할 수 있는 시스템을 통합하였다.
- 사용자 설정: 사용자가 알림 수신 설정을 조정할 수 있도록 하였다. 따라서 알림을 보내기 전 반드시 해당 설정을 확인하도록 시스템 설계를 변경하였다.
- 전송률 제한: 사용자에게 알림을 보내는 빈도를 제한할 수 있도록 하였다.

References

• https://velog.io/@haron/가상-면접-사례로-배우는-대규모-시스템-설계-기초-11장-뉴스-피드-시스템-설계