Kamila Zdybał, Ph.D.

kamilazdybal@gmail.com

Coogle Scholar | Personal website | ☐ GitHub | ☐ LinkedIn | ▶ YouTube

In my research, I develop computationally-efficient and adaptive data-driven models of high-dimensional dynamical systems using machine learning and numerical optimization. I am also dedicated to developing open-source scientific software.

Academic appointments

- Feb 2024 Jan 2026, Postdoctoral researcher, Computational Engineering laboratory, Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland PI: Dr. Ivan Lunati
- May 2023 Jan 2024, Postdoctoral researcher, Université Libre de Bruxelles, Brussels, Belgium PI: Prof. Alessandro Parente

Education

- Sep 2018 Apr 2023, Ph.D. student, Université Libre de Bruxelles, Brussels, Belgium
 - o Jan 2020 Apr 2020, research stay at the University of Utah, Salt Lake City, UT, USA

Advisors: Prof. Alessandro Parente and Prof. James C. Sutherland **Dissertation:** Reduced-order modeling of turbulent reacting flows using data-driven approaches. https://doi.org/10.13140/RG.2.2.18843.95521

• Jul 2016 - Sep 2016, Research student, the von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, Belgium Advisor: Prof. Miguel A. Mendez

Report: POD and DMD decomposition of numerical and experimental data.

- https://doi.org/10.13140/RG.2.2.34150.91201
- Mar 2015 Sep 2016, Master degree in Civil Engineering, Cracow University of Technology, Cracow, Poland **Thesis:** Quasi-static model of wind action in flutter of bridge structures.
- Oct 2010 Feb 2014, Bachelor degree in Civil Engineering, Cracow University of Technology, Cracow, Poland Thesis: Analysis of wind action on a support structure of a dual-rotor wind turbine. Graduated with honors.

Teaching

- September 9–11 2024, Training school instructor for Machine Learning for Reacting Flows with ≈40 participants, Thessaloniki, Greece.
- Spring semester 2022, Master-level: Data-driven engineering, Exercise sessions for ≈40 students, Université Libre de Bruxelles
- https://github.com/burn-research/data-driven-engineering-course
- Fall semester 2019, Master-level: Fluid mechanics and transport phenomena, Exercise sessions for ≈40 students, Université Libre de Bruxelles

Graduate students supervised

• 2024-2028 (Ph.D.) Grégoire Corlùy, in collaboration with Université Libre de Bruxelles

Work experience

- Feb 2017 Aug 2018, Software test engineer, Nokia, Cracow, Poland
- May 2014 Dec 2014, Civil structures intern, BMT Fluid Mechanics, Teddington, United Kingdom

Academic awards & grants

- 2023, Winner of the 18th ERCOFTAC da Vinci Competition Awarded for the best European Ph.D. thesis in flow, turbulence and combustion, and outstanding scientific contributions with engineering relevance (€1,000)
- 2023, 39th ISOC Distinguished Paper Award for Numerical Combustion
- 2023, Student Travel Award for the SIAM Conference on Computational Science and Engineering (\$700)
- 2022, Student Travel Award for the SIAM Conference on Mathematics of Data Science (\$800)
- 2020, Funding for an abroad research stay, CCCI, Université Libre de Bruxelles (€4,500)
- 2019, F.R.S.-FNRS Aspirant Research Fellow grant & grant renewal in 2021 (€125,000 + €10,000 ancillary costs)
- 2018, Scholarship for the first year of my Ph.D., Université Libre de Bruxelles (€25,000 + €3,000 ancillary costs) Granted to Ph.D. students who scored just below the threshold for obtaining a F.R.S.-FNRS grant in 2018 to encourage another application to F.R.S.-FNRS the following year.
- 2016, Funding for an abroad research stay, Erasmus+ (€500)
- 2016, Dean's scholarship for the best students, Cracow University of Technology (approx. 4800)
- 2012, GE Foundation Scholar Leaders scholarship (€3,000)

Peer-reviewed journal articles (8)

- 2025 **K. Zdybał**, J. C. Sutherland, and A. Parente. Optimizing progress variables for ammonia/hydrogen combustion using encoding-decoding networks. *Combustion and Flame*, 2025. (accepted)

 */> https://qithub.com/kamilazdybal/pv-optimization
- 2023 **K. Zdybał**, A. Parente, and J. C. Sutherland. Improving reduced-order models through nonlinear decoding of projection-dependent outputs. *Patterns*, 4:100859, 2023.

```
https://github.com/kamilazdybal/nonlinear-decoding
https://doi.org/10.1016/j.patter.2023.100859
```

2023 K. Zdybał, E. Armstrong, A. Parente, and J. C. Sutherland. PCAfold 2.0—Novel tools and algorithms for low-dimensional manifold assessment and optimization. SoftwareX, 23:101447, 2023.

```
https://gitlab.multiscale.utah.edu/common/PCAfold
https://doi.org/10.1016/j.softx.2023.101447
https://youtu.be/oVF4QaLpc6k
```

- 2023 K. Zdybał, G. D'Alessio, A. Attili, A. Coussement, J. C. Sutherland, and A. Parente. Local manifold learning and its link to domain-based physics knowledge. *Applications in Energy and Combustion Science*, 14:100131, 2023.
 - https://doi.org/10.1016/j.jaecs.2023.100131
- 2023 A. C. Ispir, K. Zdybał, B. H. Saracoglu, T. Magin, A. Parente, and A. Coussement. Reduced-order modeling of supersonic fuel-air mixing in a multi-strut injection scramjet engine using machine learning techniques. Acta Astronautica, 202:564–584, 2023.

```
https://doi.org/10.1016/j.actaastro.2022.11.013
```

2022 K. Zdybał, E. Armstrong, J. C. Sutherland, and A. Parente. Cost function for low-dimensional manifold topology assessment. Scientific Reports, 12:14496, 2022.

```
https://github.com/kamilazdybal/cost-function-manifold-assessment 
https://doi.org/10.1038/s41598-022-18655-1
```

2022 K. Zdybał, J. C. Sutherland, and A. Parente. Manifold-informed state vector subset for reduced-order modeling. *Proceedings of the Combustion Institute*, 39(4):5145–5154, 2023.

This paper has received the Distinguished Paper Award from The Combustion Institute.

```
https://github.com/kamilazdybal/manifold-informed-state-vector-subset
https://doi.org/10.1016/j.proci.2022.06.019
https://youtu.be/MMldWMduCp0
```

2020 K. Zdybał, E. Armstrong, A. Parente, and J. C. Sutherland. PCAfold: Python software to generate, analyze and improve PCA-derived low-dimensional manifolds. SoftwareX, 12:100630, 2020.

```
https://gitlab.multiscale.utah.edu/common/PCAfold https://doi.org/10.1016/j.softx.2020.100630
```

Book chapters (2)

- 2023 K. Zdybał, G. D'Alessio, G. Aversano, M. R. Malik, A. Coussement, J. C. Sutherland, and A. Parente. Advancing reactive flow simulations with data-driven models. In M. A. Mendez, A. Ianiro, B. R. Noack, and S. L. Brunton, editors, *Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning*, chapter 15, pages 304–329. Cambridge University Press, 2023.
 - https://doi.org/10.1017/9781108896214.022
 - https://doi.org/10.48550/arXiv.2209.02051
- 2023 K. Zdybał, M. R. Malik, A. Coussement, J. C. Sutherland, and A. Parente. Reduced-order modeling of reactive flows using data-driven approaches. In N. Swaminathan and A. Parente, editors, *Machine Learning and Its Application to Reacting Flows: ML and Combustion*, chapter 9, pages 245–278. Springer, 2023.
 - https://github.com/kamilazdybal/ROM-of-reacting-flows-Springer
 - https://doi.org/10.1007/978-3-031-16248-0_9

Articles to be submitted in 2025 (3)

- 2025 K. Zdybał, C. Mucignat, and I. Lunati. pykitPIV: Rich and reproducible virtual training of machine learning algorithms in velocimetry. In preparation for SoftwareX, 2025.
- 2025 A. Procacci, K. Zdybał, M. A. Mendez, T. Grenga, A. Coussement, and A. Parente. Advances in dimensionality reduction and manifold learning for parametrization and modeling of large combustion systems: A review. In preparation for Progress in Energy and Combustion Science, 2025.
- 2025 K. Zdybał, C. Mucignat, and I. Lunati. Optimization of hyper-parameters and padding for a lightweight velocimetry network. In preparation for Measurement Science and Technology, 2025.

Software development

I am the main developer of the following packages:

- pykitPIV a Python library for kinematic training of machine learning algorithms in particle image velocimetry
- PCAfold (\$\daggeq\$14) a Python software package for generating, analyzing and improving low-dimensional manifolds \$\dagge\$ https://pcafold.readthedocs.io
- multipy an educational Python library for multicomponent mass transfer
 https://multipy-lib.readthedocs.io
- reduced-order-modelling a collection of MATLAB® tools for data pre-processing, reduced-order modeling and results visualization
 - https://github.com/burn-research/reduced-order-modelling
- plotting a collection of MATLAB® functions for automating plotting scientific results
 https://github.com/burn-research/plotting
- POD-DMD-GUI a MATLAB® GUI for POD and DMD decomposition of experimental or numerical data
 https://github.com/kamilazdybal/POD-DMD-decompositions

I am ${\bf a}$ ${\bf contributor}$ to the following package:

• LIMA - Lightweight Image Matching Architecture for velocimetry

Contributions to science outreach

- 2023—present, Creating YouTube tutorials for our open-source Python software, PCAfold
 YouTube playlist: PCAfold tutorials
- 2023—present, Creating YouTube tutorials Python for Academics
 YouTube playlist: Python for Academics
 https://github.com/kamilazdybal/python-for-academics
- 2018—present, Developing open-source educational materials https://kamilazdybal.github.io
- 2021, Developing Python software for a graduate course on multicomponent mass transfer

- 2018–2021, Co-organizing annual Pinguino Lecture Series for fellow PhD students and academics
- 2016–2017, Leading Arduino Study Group, Jagiellonian University
- 2013–2015, Developing online materials in STEM for high school students as part of the GE Foundation Scholar Leaders voluntary experience

https://wszechswiatnauki.wordpress.com

- \circ 2016, One of my educational articles is published in *Neutrino*, a popular science magazine issued by the Physics Department at the Jagiellonian University
 - http://www.neutrino.if.uj.edu.pl/archiwum/2016/33

Invited talks (15)

- 2025 **K. Zdybał**. Convolutions and particles: How can machine learning support PIV? In *Machine Learning for Complex Flows*, ETSIAE-UPM, Madrid, Spain, 2025.
- 2024 K. Zdybał. Representation learning in combustion and beyond. In Machine Learning for Reacting Flows, CERTH The Centre for Research & Technology, Hellas, Thessaloniki, Greece, 2024.
- 2024 **K. Zdybał**. The beauty and pitfalls of t-SNE. In *Université Libre de Bruxelles*, Online, 2024. Guest lecture in the master-level course MECA-H419 Data-Driven Engineering.
 - Part 1: https://youtu.be/tfk6Jo0pUQ8
 - Part 2: https://youtu.be/8fqk-3Z7J4Y
- 2024 **K. Zdybał**. Introduction to artificial neural networks. In *Université Libre de Bruxelles*, Online, 2024. Guest lecture in the master-level course MECA-H419 Data-Driven Engineering.
- 2024 **K. Zdybał**. Introduction to machine learning and artificial neural networks. In *The University of Utah*, Online, 2024. Guest lecture in the undergraduate course CHEN-2450 Numerical Methods.
 - https://www.youtube.com/watch?v=IGEWE81FWMA
- 2023 **K. Zdybał**. Efficient dimensionality reduction of combustion data. In *Machine Learning in Combustion*, Online, 2023. Technische Universität Darmstadt & RWTH Aachen University workshop.

 •• https://www.nhr4ces.de/machine-learning-in-combustion/
- 2023 K. Zdybał. Modeling high-dimensional systems with data science and machine learning. In *Empa, Swiss Federal Laboratories for Materials Science and Technology*, Dübendorf, Switzerland, 2023. Talk.
- 2023 **K. Zdybał**. Learning from high-dimensional data. In *Stanford University, School of Medicine*, Online, 2023. Seminar at Bendall Lab.
- 2023 K. Zdybał. How to project data? In Université Libre de Bruxelles, Brussels, Belgium, 2023. Seminar.
- 2023 K. Zdybał. Introduction to machine learning and artificial neural networks. In *The University of Utah*, Online, 2023. Guest lecture in the undergraduate course CHEN-2450 Numerical Methods.

 https://www.youtube.com/watch?v=wPL2l1K6KPM
- 2023 K. Zdybał. Improving reduced-order models, one manifold at a time. In *The von Karman Institute for Fluid Dynamics*, Rhode-Saint-Genese, Belgium, 2023. Research Master seminar.
- 2023 **K. Zdybał**. Modeling turbulent reacting flows: Data science to the rescue. In *University of Utah*, Online, 2023. Graduate seminar at the Department of Chemical Engineering.
- 2022 **K. Zdybał**. Adventures in low-dimensional manifolds and reduced-order modeling. In *Université Libre de Bruxelles*, Brussels, Belgium, 2022. Seminar.
- 2022 **K. Zdybał**. Cost function for low-dimensional manifold topology optimization. In *The von Karman Institute for Fluid Dynamics*, Rhode-Saint-Genese, Belgium, 2022. Seminar.

 | | https://www.vki.ac.be/index.php/vki-seminars
- 2018 **K. Zdybał**. Principal Component Analysis for chemistry reduction. In *Pinguino Lecture Series*, Brussels, Belgium, 2018. Talk.

Conference presentations (19)

- 2025 G. Corlùy, **K. Zdybał**, X. Wen, L. Berger, H. Pitsch, and A. Parente. Reduced-order modeling with an optimized progress variable for a hydrogen flame. In *Math to Product (M2P)*, Valencia, Spain, 2025 (**upcoming**).
- 2025 G. Corlùy, **K. Zdybał**, X. Wen, L. Berger, H. Pitsch, and A. Parente. Progress variable optimization of a hydrogen flame for reduced-order modeling using an encoder-decoder. In *AI and Fluid Mechanics*, Crete, Greece, 2025 (**upcoming**).
- 2024 **K. Zdybał**, C. Mucignat, and I. Lunati. Optimization of hyper-parameters and padding for a lightweight velocimetry network. In *APS Division of Fluid Dynamics Meeting*, Salt Lake City, UT, USA, 2024.

- 2024 J. C. Sutherland, K. Zdybał, and A. Parente. Optimizing progress variables for ammonia/hydrogen combustion using encoding-decoding networks. In APS Division of Fluid Dynamics Meeting, Salt Lake City, UT, USA, 2024.
- 2023 K. Zdybał, J. C. Sutherland, and A. Parente. On the effect of manifold topology in reduced-order modeling of turbulent combustion. In *Joint Meeting of the Belgian and Italian Sections of the Combustion Institute*, Florence, Italy, 2023.
- 2023 H. Dave, M. R. Malik, **K. Zdybał**, H. G. Im, and A. Parente. On the use of projection to latent structures (PLS) and gaussian process regression (GPR) to reduce combustion chemistry. In *Joint Meeting of the Belgian and Italian Sections of the Combustion Institute*, Florence, Italy, 2023.
- 2023 J. C. Sutherland, K. Zdybał, and A. Parente. Reduced-order modeling of reacting flows with a regression-aware autoencoder. In 13th U.S. National Combustion Meeting, Texas A&M University in College Station, TX, USA, 2023.
- 2023 J. C. Sutherland and K. Zdybał. Topological characteristics of low-dimensional manifolds in reduced-order modeling of turbulent combustion. In SIAM Conference on Computational Science and Engineering, Amsterdam, The Netherlands, 2023.
- 2023 K. Zdybał, A. Parente, and J. C. Sutherland. Reduced-order modeling with a regression-aware autoencoder. In SIAM Conference on Computational Science and Engineering, Amsterdam, The Netherlands, 2023.
- 2023 **K. Zdybał**. Reduced-order modeling using regression-aware autoencoder. In *Université Libre de Bruxelles and Vrije Universiteit Brussel BRITE workshop*, Brussels, Belgium, 2023. Talk.
- 2022 K. Zdybał, E. Armstrong, J. C. Sutherland, and A. Parente. Cost function for assessing the quality of low-dimensional manifolds. In SIAM Conference on Mathematics of Data Science, San Diego, CA, USA, 2022.
- 2022 **K. Zdybał**, J. C. Sutherland, and A. Parente. Manifold-informed state vector subset for reduced-order modeling. In 39th International Symposium on Combustion, Vancouver, Canada, 2022.

 https://www.youtube.com/watch?v=MMldWMduCpθ
- 2022 K. Zdybał, M. R. Malik, E. Armstrong, J. C. Sutherland, and A. Parente. Characterizing manifold topologies for reduced-order modeling. In 18th International Conference on Numerical Combustion, La Jolla, CA, USA, 2022.
- 2022 A. Parente, L. Donato, K. Zdybał, A. Procacci, and M. Savarese. Data-enhanced analysis, parameterisation and reduced-order modelling of turbulent reacting flows. In 18th International Conference on Numerical Combustion, La Jolla, CA, USA, 2022.
- 2022 K. Zdybał. Manifold-informed state vector subset for reduced-order modeling. In 26th Journees D'Etudes of the Belgian Section of the Combustion Institute, Ghent, Belgium, 2022.
- 2022 **K. Zdybał**. Cost function for low-dimensional manifold topology optimization. In *Université Libre de Bruxelles and Vrije Universiteit Brussel BRITE workshop*, Brussels, Belgium, 2022. Talk.
- 2022 E. Armstrong, **K. Zdybał**, A. Parente, and J. C. Sutherland. A cost function for optimizing manifold topology in reduced-order modeling. In 2022 WSSCI Spring Technical Meeting, Stanford, CA, USA, 2022.
- 2021 **K. Zdybał**, J. C. Sutherland, and A. Parente. Manifold-informed state vector subset for reduced-order modeling. In *Combura Symposium*, pages 39–40, Soesterberg, The Netherlands, 2021.
- 2019 G. D'Alessio, G. Aversano, **K. Zdybał**, A. Cuoci, and A. Parente. Feature extraction in combustion applications. In 17th International Conference on Numerical Combustion, Aachen, Germany, 2019.

Posters (2)

- 2021 **K. Zdybał**, E. Armstrong, A. Parente, and J. C. Sutherland. PCAfold: Python software to generate, analyze and improve PCA-derived low-dimensional manifolds. In *Combura Symposium*, pages 88–89, Soesterberg, The Netherlands, 2021.
- 2019 **K. Zdybał**, M. R. Malik, and A. Parente. Nonlinear regression of chemical source terms using Deep Neural Networks. In *Tsinghua-Princeton-CI 2019 Summer School on Combustion*, Beijing, China, 2019.

Journal reviewer

 $\label{lem:combustion} \mbox{ Journal of Computational Physics} \mid \mbox{Proceedings of the Combustion Institute} \mid \mbox{Data-Centric Engineering} \mid \mbox{Nonlinear Dynamics} \mid$

Society member

Belgian Section of the Combustion Institute | Society for Industrial and Applied Mathematics (SIAM) | American Physical Society (APS) |

Technologies used

Programming languages

Python (7 years of experience) | Elixir (1 year of experience) | Julia (beginner) | C/C++ (beginner) |

Other

 $\label{lem:condition} \begin{tabular}{ll} Jupyter\ lab\ |\ TensorFlow\ |\ Keras\ |\ PyTorch\ |\ Sphinx\ |\ git\ |\ GitHub\ |\ GitLab\ |\ MATLAB\ |\ Notion\ |\ LaTeX\ |\ texmaker\ |\ draw.io\ |\ ReadTheDocs\ |\ SLURM\ |\ Atom\ |\ PyCharm\ |\ Rhinoceros\ 3D\ |\ AutoCAD\ |\ SketchBook\ |\ Confluence\ |\ Jira\ |\ wandb\ |\ \\ \begin{tabular}{ll} LaTeX\ |\ draw.io\ |\ Rhinoceros\ 3D\ |\ AutoCAD\ |\ SketchBook\ |\ Confluence\ |\ Jira\ |\ wandb\ |\ \\ \begin{tabular}{ll} LaTeX\ |\ draw.io\ |\ Rhinoceros\ 3D\ |\ AutoCAD\ |\ SketchBook\ |\ Rhinoceros\ 3D\ |\ AutoCAD\ |\ SketchBook\ |\ Rhinoceros\ 3D\ |\$

Selected course certifications

- The Basics of Transport Phenomena, Delft University of Technology
- Advanced Transport Phenomena, Delft University of Technology
- Learning Data Visualization, LinkedIn Learning
- Deep Learning Fundamentals with Keras, IBM
- Deep Learning with Tensorflow, IBM
- Being a Good Mentor, LinkedIn Learning
- Communicating through Disagreement, LinkedIn Learning

Professional references

rof. Alessandro Parente, Université Libre de Bruxelles Alessandro.Parente@ulb.be

₱ Prof. James C. Sutherland, The University of Utah
James.Sutherland@utah.edu

Prof. Miguel A. Mendez, The von Karman Institute for Fluid Dynamics Miguel.Alfonso.Mendez@vki.ac.be

Last updated: March 25, 2025.