

Regresión Lineal

CIV-175-09 CIV-PLS09 CIV-PLS13

```
: np.unique(eca["Cod.Car.Sec"])
```

: array(['ELE-175-09', 'ELE-PLS09', 'ELE-PLS13'], dtype=object)

CALCULO 4
DINAMICA
ESTRUCTURAS 1
FISICA 4
MECANICA DE MATERIALES 1
Cantidad de elementos (8848, 23)

CALCULO 4
CALCULO 5
DINAMICA
FISICA 4
MECANICA DE MATERIALES 1
Cantidad de elementos (6140, 23)

	Alumnos	Ingreso	Duracion
0	es_1120	2012	6
1	es_1243	2012	4
2	es_1261	2012	4
3	es_1298	2013	3
4	es_1301	2012	6
246	es_4040	2018	2
247	es_4084	2018	2
248	es_4101	2018	2
249	es_4179	2018	2
250	es_770	2012	4


```
Train Data shape: (378, 1)
test Data shape: (42, 1)
Train labels shape: (378,)
test labels shape: (42,)
```

```
Coeficiente de determinacion 0.18393233172103607
```

b0: 663.0921736215854

b1: [-0.32755153]


```
prediccion = lm.predict(X_test)
prediccion

array([3.73093682, 2.74828222, 4.05848835, 3.73093682, 3.73093682, 3.40338529, 4.05848835, 3.07583375, 3.40338529, 3.07583375, 4.05848835, 3.73093682, 3.40338529, 2.74828222, 3.40338529, 3.73093682, 2.09317915, 2.74828222, 3.07583375, 4.05848835, 4.05848835, 3.07583375, 4.05848835, 3.07583375, 4.05848835, 3.07583375, 3.73093682, 3.40338529, 2.42073069, 4.05848835, 3.07583375, 3.73093682, 3.73093682, 2.74828222, 4.05848835, 3.73093682, 2.42073069, 4.05848835, 3.07583375])
```

Cuanto tarda en promedio un alumno en aprobar cursos básicos?

3.38778759366996

Regresión Lineal (Electromecánica)

Datos=pd.DataFrame({'Alumnos':Alumnos,'Ingreso':Inicio,'Duracion':Duracion})
Datos

	Alumnos	Ingreso	Duracion	
0	es_1120	2012	6	
1	es_1243	2012	4	
2	es_1261	2012	4	
3	es_1298	2013	3	
4	es_1301	2012	6	

246	es_4040	2018	2	
247	es_4084	2018	2	
248	es_4101	2018	2	
249	es_4179	2018	2	
250	250 es_770 2012		4	

251 rows x 3 columns

```
DatosIngreso=Datos[ (Datos["Ingreso"]>=2012) & (Datos["Ingreso"]<=2015)]
DatosIngreso.info()
```


Con 10% de test

Coeficiente de determinacion 6.0217176670929184e-05

b0: 18.699918115697617

b1: [-0.00775493]

3.0829760929948784

Regresión Logística (CIVIL)

```
daf=civil[(civil["Aprobado"]=="S")|(civil["Aprobado"]=="N") ]
estudiantes=np.unique(daf['id_anony'])
materias=np.unique(daf['Asignatura'])
print(len(estudiantes))
2006
```


	Alumnos	Ingreso	Duracion	Materias	CB Fin
0	es_104	2012	9	14	0
1	es_1102	2012	1	11	0
2	es_1104	2012	4	22	1
3	es_1108	2012	7	11	0
4	es_1114	2012	4	20	1

Train Data shape: (1368, 3) test Data shape: (153, 3) Train labels shape: (1368,) test labels shape: (153,)

En un lapso de 8 años de 153 alumnos cuantos aprobaron Cursos Basicos

La cantidad de alumnos: (153,) Alumnos que no aprobaron: 105 Alumnos que aprobaron: 48 Regresión Logística (Electromecánica)


```
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.10)
print("Train Data shape: " + str(X_train.shape))
print("test Data shape: " + str(X_test.shape))
print("Train labels shape: " + str(Y_train.shape))
print("test labels shape: " + str(Y_test.shape))
```

Train Data shape: (789, 3) test Data shape: (88, 3) Train labels shape: (789,) test labels shape: (88,)

]: print("Precision del modelo:", metrics.accuracy_score(Y_test,Y_pred))

Precision del modelo: 0.8977272727272727

