

Biomecatrónica

Error en estado estacionario

Error en estado estacionario

Es la diferencia entre la entrada y la salida para una señal de prueba establecida cuando $t \rightarrow \infty$

e_{ss} para un control proporcional

Considerando el caso en el que:

- Referencia es un escalón unitario
- La planta tiene polos con parte real estrictamente negativa
- El controlador es solo un bloque de ganancia

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

$$= \lim_{s \to 0} \frac{s\frac{1}{s}}{1 + K}$$

$$= \frac{1}{1 + K}$$

e_{ss} para un control integral

Considerando el caso en el que:

- Referencia es un escalón unitario
- La planta tiene polos con parte real estrictamente negativa
- El controlador es un bloque integrador

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

$$= \lim_{s \to 0} \frac{s\frac{1}{s}}{1 + \frac{K}{s}}$$

$$= 0$$

e_{ss} para un control integral

Considerando el caso en el que:

- Referencia es una rampa de pendiente unitaria
- La planta tiene polos con parte real estrictamente negativa
- El controlador es un bloque integrador

$$e_{ss} = \lim_{s \to 0} \frac{sR(s)}{1 + G(s)}$$

$$= \lim_{s \to 0} \frac{s\frac{1}{s^2}}{1 + \frac{K}{s}}$$

$$= \frac{1}{K}$$

Tipo de sistema

Es el número de integradores (polos en el origen) del sistema en lazo abierto y sus errores son:

- Tipo 0: error finito y no nulo en respuesta a una entrada de escalón
- Tipo 1: error finito y no nulo en respuesta a una entrada de rampa
- **Tipo 2:** error finito y no nulo en respuesta a una entrada parabólica

Tipo de sistema

e_{ss} para entrada escalón

$$e_{ss} = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

Sistema tipo 0

Sistema tipo
$$n (n \ge 1)$$

$$G(s) = \frac{K(s+z_1)(s+z_2)\cdots}{(s+p_1)(s+p_2)\cdots}$$

$$G(s) = \frac{K(s+z_1)(s+z_2)\cdots}{s^n(s+p_1)(s+p_2)\cdots}$$

$$\lim_{s \to 0} G(s) = \frac{K z_1 z_2 \cdots}{p_1 p_2 \cdots} \neq \infty$$

$$\lim_{s\to 0} G(s) \to \infty$$

Constantes de error estático

$$K_p = \lim_{s \to 0} G(s)$$

$$K_v = \lim_{s \to 0} s G(s)$$

$$K_a = \lim_{s \to 0} s^2 G(s)$$

Tipo de	Entrada		
sistema	Escalón	Rampa	Parábola
0	$\frac{1}{1+K_p}$	∞	∞
1	0	$\frac{1}{K_{ u}}$	∞
2	0	0	$\frac{1}{K_a}$

e_{ss} para realimentación no unitaria

Ejemplo 1

¿Cuál es el error en estado estacionario del sistema mostrado en la figura ante una entrada escalón de amplitud 3?

Ejemplo 2

Diseñe el controlador, D(s), tal que el sistema de la figura exponga un error de 0.05 ante una entrada tipo rampa

Ejemplo 3

Determine la ganancia del controlador, K, para que el sistema de la figura exhiba un error en estado estacionario del 2% ante una entrada de referencia constante

