Chapter 5 PIC18 Timers

- Counter is a register that can be loaded with a binary number (count) which can be incremented per clock/instruction cycle.
- We can use this counter to measure time.
- Time is calculated as follows:
 - Find difference between beginning count and last count
 - Multiply the count difference by the clock/instruction period

Counters for External Events

- The register can also be used as a counter for external events by replacing the clock with a signal from an event.
- When a signal from an event arrives, the count in the register is incremented (or decremented); thus, the total number of events can be counted.

Timer Applications

- Time delay
- Pulse wave generation
- Timer as an event counter
- Frequency measurement

Application: How long you have travelled by a bicycle?

Distance

= No. of times the wheel rotates × Wheel circumference

$$= \frac{No.of\ square\ signal\ periods}{3} \times$$
Wheel circumference

http://www.cs.ou.edu/~fagg/classes/es_general/timers.pdf

PIC18 Timers

- The PIC18 microcontroller has multiple timers
- Timers are divided into two groups: 8-bit and 16bit
- Labeled as Timer 0 to Timer 2
 - Timer 0 can be set up as an 8-bit or 16-bit timer.
 - Timer 1 is a 16-bit timer.
 - Timer 2 is an 8-bit timer.
- Each timer associated with its Special Function Register (SFR): T0CON-T2CON

- Can be set up as an 8-bit or 16-bit timer
 - Parameters are set up by bits in T0CON register
 - Has eight options of pre-scale values (Bit2-Bit0)
 - Can run on internal clock source (instruction cycle) or external clock connected to pin RA4/T0CK1
 - Generates an interrupt or sets a flag when it overflows from FF_H to 00_H in the 8-bit mode and from FFFF_H to 0000_H in the 16-bit mode
 - Can be set up on either rising edge or falling edge
 (Bit4) when an external clock is used

T0CON (Timer 0 Control) Register

REGISTER 10-1: TOCON: TIMERO CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR00N	T08BIT	T0CS	T0SE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

- bit 7 TMR0ON: Timer0 On/Off Control bit
 - 1 = Enables Timer0
 - 0 = Stops Timer0
- bit 6 T08BIT: Timer0 8-bit/16-bit Control bit
 - 1 = Timer0 is configured as an 8-bit timer/counter
 - 0 = Timer0 is configured as a 16-bit timer/counter
- bit 5 ToCS: Timer0 Clock Source Select bit
 - 1 = Transition on T0CKI pin
 - 0 = Internal instruction cycle clock (CLKO)
- bit 4 T0SE: Timer0 Source Edge Select bit
 - 1 = Increment on high-to-low transition on ToCKI pin
 - 0 = Increment on low-to-high transition on T0CKI pin
- bit 3 PSA: Timer0 Prescaler Assignment bit
 - 1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.
 - 0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.
- bit 2-0 ToPS2:ToPS0: Timer0 Prescaler Select bits
 - 111 = 1:256 prescale value
 - 110 = 1:128 prescale value
 - 101 = 1:64 prescale value
 - 100 = 1:32 prescale value
 - 011 = 1:16 prescale value
 - 010 = 1:8 prescale value
 - 001 = 1:4 prescale value
 - 000 = 1:2 prescale value

T0CON (Timer 0 Control) Register

- TMR0ON = T0CON<7>: On (1) or Off (0)
- T08BIT = T0CON<6>: 8-bit (1) or 16-bit (0)
- TOCS = T0CON<5>: Use External (1) or Internal (0) clock
- TOSE = T0CON<4>: Increment on H-L (1) or L-H (0) transition
- PSA = T0CON<3>: Use (0) or Do not use
 (1) prescaling
- T0PS2:T0PS0 = T0CON<2:0>: Specify prescaler factor

Internal Clock Mode (T0CS = 0)

- Clock source is the instruction cycle clock
- The Timer 0 Interrupt Flag (TMR0IF = INTCON<2>) is raised when counter rollover from max value (FFFF in 16-bit mode, FF in 8-bit mode) to min value (0000 in 16-bit mode, 00 in 8-bit mode)
- Used as a timer to create delay

Create delay using Timer 0 16-bit Mode

- Characteristics of 16-bit mode
 - 16-bit timer allows values of 0000 to FFFF to be loaded into registers TMR0H and TMR0L
 - The timer must be started by setting the TMR0ON (i.e., bsf T0CON, TMR0ON)
 - The timer counts up after being started. When it rolls over from FFFF to 0000, it sets, the interrupt flag, TMR0IF.

Steps to create delay

- 1. Set T08BIT = T0CON < 6 > = 0 (use 16-bit mode)
- Load register TMR0H followed by TMR0L with initial count values
- 3. Start the timer: bsf TOCON, TMROON
- 4. Keep monitoring TMR0IF to see whether it is raised. Get out of loop if raised.
- 5. Stop the timer: bcf TOCON, TMROON
- 6. Clear TMR0IF for next round
- 7. Repeat from Step 2

Create delay using Timer 0 16-bit Mode

- TMR0 increments once each instruction cycle.
- Time delay obtained depends on the initial value.
- We stop when counter overflow, which is indicated by the TMR0IF flag.

Simple Example

Example

Create a square wave of 50% duty cycle on RB5 bit.

```
bcf
             TRISB, 5; Set PB5 as output
     bsf
             PORTB, 5
                           ; init. sq. wave to high (1)
     movlw B '00001000'
                           ; 16-bit, int clk, no prescaler
     movwf TOCON
Here
     movlw 0xFF
                           ; [TMROH] = 0xYY
     movwf TMR0H
     movlw 0xF2
                           ; [TMROL] = 0xXX
     movwf TMR0L
     bcf
            INTCON, TMR0IF ; Clear timer interrupt flag
     bsf
            TOCON, TMROON
                           : start Timer 0
Again btfss
            INTCON, TMR0IF
            Again
     bra
     bcf
            TOCON, TMROON
     btq
            PORTB, 5
     bra
            Here
                           ; load TMR0H and TMR0L again
```

Duty Cycle

Time Delay Calculation

- F_{osc} = clock frequency = 4MHz
- Instruction Cycle = 1µs
- Instruction Cycle required to reach FFFF = FFFF-FFF2 = 13 (in decimal)
- Need one more instruction cycle to rollover to 0000 where TMR0IF is triggered.
- Total time delay generated by Timer 0= 14
 x 1µs = 14µs

Formula to Compute Time Delay

- In Hex, total time delay generated by Timer 0 = (FFFF – YYXX + 1) x 1µs
 where YY and XX are the initial values of TMR0H and TMR0L respectively.
- In decimal, convert YYXX into its decimal equivalence NNNNN first and then use: (65536 – NNNNN) x 1µs

Use of Prescaler

- Longest delay that can be produced is 65.536 ms using a 16-bit timer. What if we want longer delay?
- Prescaler can be used to increase period of internal clock by a factor of 2^N, where N = 1, ..., 8 and specified by T0PS2:T0PS0 = T0CON<2:0>.
- e.g., When N = 6, the period of the clock is increased by a factor of 64 → 64µs. Max delay = 65536 x 64 µs = 4.194 s

Examples

Assume
$$F_{osc}$$
 = 4MHz and Instruction Cycle = 1MHz (FFFF - FC84 + 1) x 1µs = 892 µs

Initial TMR0	<u>Prescaler</u>	Time Delay (µs)
	1 (no prescaler)	892
	2	1,784
	4	3,568
FC84	8	7,136
FC04	16	14,272
	32	28,544
	64	57,088
	128	114,176

Create delay using Timer 0 8-bit Mode

8-bit Mode

16-bit Mode

Timer 0 as counter

 If driven by an external clock (T0CS = 1), Timer 0 will increment, either on every rising (T0SE = 0) or falling (T0SE = 1) edge of pin RA4/T0CKI.

Example

Assuming clock pulses are fed into Pin T0CKI (RA4), use Timer 0 as a 8-bit counter of pulses and display the state of TMR0L count on PORTB

```
bsf TRISA, RA4; PORTA.4 set as input
       clrf TRISB; PORTB set as output
       movlw 0x68; 01101000: Timer 0, 8-bit, ext clk, no prescale
      movwf TOCON
HERE movly 0 \times 0.0
      movwf TMROL
      bcf INTCON, TMR0IF
      bsf TOCON, TMROON
AGAIN movff TMROL, PORTB
       btfss INTCON, TMR0IF
       bra AGAIN
       bcf TOCON, TMROON
       goto HERE
```

Timer	0
-------	---

8-bit or 16-bit timer or counter. 16-bit timer or counter.

Timer 1

1, 2, 4, 8, 16, 32, 64, 128, 256.

Supports prescaling factors of Supports prescaling factors of 1, 2, 4 and 8.

Timer 0 counts clock pulses fed into RA4

Timer 1 counts clock pulses fed into RC0

When counter rolls over, TMR0IF in INTCON SFR is raised

When counter rolls over, TMR1IF in PIR1 SFR is raised

Lab 4 Task 2: Frequency Counter

Variable Frequency Generator: Output frequency depends on the charging/discharging time of C1, which is controlled by varying the resistor value R2 through turning a knob on the circuit board

Lab 4 Task 2: Frequency Counter

Write a subroutine MeasureFrequency to perform the following operations:

- Set up Timer 0 to generate a 1-second delay
- Use Timer 1 as a counter to count the rising edges of an unknown signal (fed to RC0) within the second
- Start Timer 0 and Timer 1
- Wait for IF flag for Timer 0 to raise
- Stop Timer 0 and Timer 1
- TMR1H:TMR1L would then be the frequency of the signal.

Overall structure of Lab 4

The algorithm consists of two components:

- 1. Generate a time delay of 1s using Timer 0
 - Lab 4 Task 1
 - Prescaler = 16
 - Expected total time delay = (FFFF-YYXX+1) x 16 x1µs = 1s
 - You will determine YYXX in prelab, but you know that (FFFF-YYXX+1) = 62500 (i.e., Timer 0 increments 62500 times before overflow)
 - Does the program generate a delay of <u>exactly</u> 1s?
- 2. Count total number of rising edges using Timer 1
 - The example code gives all information of how it can be done.

Overall structure of Lab 4

Lab 4 Task 1

You are given the following code fragment that uses TMR0 to count 1 second. Follow the instructions below to modify the code so that the LED turns on for exactly 1 second.

```
Main:
                                        ;set PortD output
             clrf
                    TRISD
             clrf
                    PORTD
             movlw 0x03
                                        ;TMR0, 16-bit, Int clk, 1:16 prescale
                    T0CON
             movwf
                    0xyy
             movlw
                           ;Students will determine initial YYXX to put in TMROH: TMROL
             movwf
                    TMR0H
                    0xXX
             movlw
             movwf
                    TMR0L
             bcf
                    INTCON, TMR0IF
             bsf
                    PORTD, RD0
                                       turn LED on;
                    INTCON, TMR0IF; Set Breakpoint 1 here right after LED was turned on
             bcf
             bsf
                    TOCON,
                            TMR00N
                                        ;start TMR0
             btfss
WaitTOdone:
                    INTCON, TMR0IF
                    WaitT0done
             bra
                                        ;turn LED off.
                    PORTD, RD0
             bcf
             bra
                                  ;set Breakpoint 2 here right after LED was turned off
                                  ; jump to current PC, loop forever;
```

Lab 4 Task 1

Code					Total Time Delay			
					Expected	Actual		
b	sf	PORTD,	RD0					
bcf bsf		INTCON,	TMR0IF	4		1		
		TOCON,	TMR00N			1		
WaitT0done:	btfss	INTCON,	TMROIF			999999 + 2		
	bra	WaitTOd	one		1,000,000 inst. cycles = 1 s	 333333 repetitions x 3 inst. cycle/ reps → TMR0 overflows → TMR0IF = 1 btfss skips (additional 2 inst. cycles 		
b	cf	PORTD,	RD0		7	1		
Total time LED has turned on (inst. cycles)				1	,000,000	1,000,004		

Lab 4 Task 1

- Need exact time delay for accurate frequency measurement
- Solution
 - Determine the initial value YYXX again so that Timer 0 increments 62499 times (instead of 62500) before overflow.
 - Time delay generated before TMR0IF is raised = 62499 x
 16 inst. cycles
 - Add a few nop to fill up the time.
 - Objective: Decide how many nops are needed to generate a time delay of exactly 1s.

Overall structure of Lab 4

- Validation of your measurement
 - Use debugger mode of PICKit 3. Set a breakpoint at the location where you exit the subroutine MeasureFrequency.
 - TMR1H and TMR1L store your frequency measurement.

- Can only be used as a timer to create time delay – No external clock source can fed in.
- Prescaler and Postscaler to lengthen delays.

• Postscaler = 4

T2CON: Timer 2 Control Register

REGISTER 12-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

```
bit 7 Unimplemented: Read as '0'
```

bit 6-3 TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits

0000 = 1:1 Postscale 0001 = 1:2 Postscale

•

•

•

1111 = 1:16 Postscale

bit 2 TMR2ON: Timer2 On bit

1 = Timer2 is on

0 = Timer2 is off

bit 1-0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits

00 = Prescaler is 1

01 = Prescaler is 4

1x = Prescaler is 16

TMR2 and PR2 SFR

- TMR2: 8-bit register of Timer 2
- PR2 (Period Register) is set to be a fixed value.
- The input period can be lengthened by selecting the prescaling factor.
- When TMR2 == PR2, EQ signal will reset TMR2 to 0.
- The output of the comparator is divided by postscaling factor.
 - i.e., If postscaler = 1:16, the EQ signal will need to be set 16 times before TMR2IF is set.

Example 1: Timer 2

 Write a program to turn on pin PORTB.4 when TMR2 reaches the value of 100 (decimal).

```
bcf TRISB, 4; make PORTB.4 as output
         bcf PORTB, 4; turn off PORTB.4
         movlw 0x00
         movwf T2CON; no prescale and postscale
         movlw 0x00
         movwf TMR2
         movlw D'100'
         movwf PR2
         bcf PIR1, TMR2IF
         bsf T2CON, TMR2ON
         btfss PIR1, TMR2IF
Again:
         bra Again
         bsf PORTB, 4
         bcf T2CON, TMR2ON
Here:
         bra Here
```

Example 2: Timer 2

- Use the prescaler and postscaler to create the longest possible delay by Timer 2.
- Total delay = $(255+1) \times 16 \times 16 \times 1\mu s = 65.536ms$

```
bcf TRISB, 4
          bcf PORTB, 4
          movlw B'01111011'
          movwf T2CON; prescale = 1:16, postscale = 1:16
          movlw 0x00
          movwf TMR2
          movlw D'255'
          movwf PR2
          bcf PIR1, TMR2IF
          bsf T2CON, TMR2ON
          btfss PIR1, TMR2IF
Again:
          bra Again
          bsf PORTB, 4
          bcf T2CON, TMR2ON
          bra Here
Here:
```

Timer 0, Timer 1 and Timer 2

Timer 0 8-bit or 16-bit timer or counter.	Timer 1 16-bit timer or counter.	Timer 2 8-bit timer. Cannot be used as counter
Supports prescaling factors of 1, 2, 4, 8, 16, 32, 64, 128, 256.	Supports prescaling factors of 1, 2, 4 and 8.	Supports prescaling and postscaling factors.
Timer 0 counts clock pulses fed into PORTA.4	Timer 1 counts clock pulses fed into PORTC.0	Cannot be used as counter
When counter rolls over, TMR0IF in INTCON SFR is raised	When counter rolls over, TMR1IF in PIR1 SFR is raised	When counter rolls over, TMR2IF in PIR1 SFR is raised

Time Delay Equation

- Time delay are expressed in <u>instruction</u> cycles.
- Timer 0/1 16-bit mode
 - Time Delay = (FFFF YYXX + 1) x Prescaler
 - where YY and XX are the initial values of TMRxH and TMRxL, respectively. x = 0, 1.
- Timer 0 8-bit mode
 - Time Delay = (FF XX + 1) x Prescaler
- Timer 2
 - Time Delay = (PR2+1) x Prescaler x Postscaler

You should be able to ...

- List the PIC18 timers and their associated registers.
- Describe various modes of the PIC18 timer.
- Program the PIC18 timers to generate time delays