

Advanced Propulsion Technologies

October 29, 2014

marShall

In-Space and Advanced Propulsion

TODAY

CREW FLY-BY

CREW STAY

BASES & SETTLEMENTS

IN-SPACE PROPULSION

R&D INVESTMENTS IN KEY AREAS ENABLE EVOLVED CAPABILITY AND OFFER MODEST GAINS IN CAPABILITY – *PROGRESS IS PREDICTABLE.*

ARM
Mission

Electric / Plasma
Propulsion

AES /
NCPS

Nuclear Thermal
Propulsion

E-Cryo
Lander

Chemical
Propulsion

Sustained,
Low-Level
Funding

Research in Advanced Energetic Processes and Concepts

ADVANCED PROPULSION

SUSTAINED FUNDAMENTAL RESEARCH ENABLES POSSIBILITY FOR NEW, REVOLUTIONARY TECHNOLOGIES - *PROGRESS CANNOT BE PREDICTED.*

Antimatter

Pulsed Fission/
Fusion

Gas Core NTR

Advanced Energy
Physics

Pulsed
Fusion

Pulsed
Fission

Emerging High-Capability Propulsion Concepts

A Prototype Engine for Additive Manufacturing TRL Advancement

Injector Water Flow Testing

Injector Body
with Lox Dome

Fuel Pump Components

Assembled Valve and Actuator

Lox Pump Components

AM Turbine Bowl, with Bypass
and Turbine Exhaust Nozzle

Development for nozzle
and MCC liners

Main Chamber Liner

Main Chamber
Manufacturing

Iodine Satellite (iSAT) Project

iSAT is the maturation of iodine Hall technology to enable high ΔV primary propulsion for small satellites culminating in a technology flight demonstration targeted for 2017.

Marshall is developing the solar sail propulsion system for NEA Scout and Lunar Flashlight, drawing from our extensive history in solar sail technology development.

Solar sails derive thrust by reflecting sunlight and therefore never run out of fuel, enabling many heretofore impossible robotic missions.

20-m ground demos
(MSFC Program Management 2005)

3.5-m NanoSail-D
(MSFC 2010)

~9-m NEA Scout
(MSFC / JPL 2017)

Nuclear Thermal Propulsion (NTP)

Nuclear thermal propulsion (NTP) is a fundamentally new capability enhancing mission opportunities to Mars and beyond

- Energy from fission, not chemical reactions-virtually unlimited energy density

Enables shortest trip times with less launches

- Exposes astronauts to less galactic cosmic radiation and zero-g time

Higher Technology Readiness Level (TRL)

- Current TRL 4 for fuel and TRL 5-6 for non-nuclear “rocket” engine components (due to materials/environment)
- Flight demo mission in 2020s and human mission to Mars by 2030s

Affordable Development Strategy

- Currently working fuel element development at Oak Ridge National Laboratory and Marshall Space Flight Center
- Affordable non-nuclear testing to help resolve significant issues (including fuel endurance at temperature) using Marshall Nuclear Thermal Rocket Element Environmental Simulator (NTREES), Compact Fuel Element Environmental Test (CFEET) System, and other capabilities
- Possible use of low enriched uranium to reduce cost and schedule and increase programmatic flexibility

Fusion Propulsion Research

Experimental and Theoretical Fusion

Round trip to Mars in 7 months
(20 year development time)

Z-Pinch

Developing Thermonuclear Propulsion

www.nasa.gov_marshall

