Logarithme

Propriétés du logarithme népérien \mathbf{A}

1 Caractérisation

La fonction logarithme népérien notée l
n et définie sur \mathbb{R}^{+*} est définie par:

$$\ln x = y \Leftrightarrow x = e^y$$

Le logarithme népérien est donc le réciproque de l'exponentielle

$$\forall x \in \mathbb{R}^{+*}, \ln e^x = x$$

$$\forall x \in \mathbb{R}^{+*}, e^{\ln x} = x$$

Signe

• $\forall x \in]0;1], \ln x \leq 0$

Propriétés

 $\forall x \in \mathbb{R}^{+*}$:

$$\bullet \ \ln xy = \ln x + \ln y$$

•
$$\ln \frac{x}{y} = \ln x - \ln y$$
 • $\ln \frac{1}{x} = -\ln x$

•
$$\ln \frac{1}{x} = -\ln x$$

 $\forall x \in \mathbb{R}^{+*} \text{ et } \forall n \in \mathbb{Z}$:

•
$$\ln x^n = n \ln x$$

•
$$\ln \sqrt{x} = \frac{1}{2} \ln x$$

Étude du logarithme népérien

Limites

(a) Limites

Aux bornes de son ensemble de définition, les limites du logarithme népérien sont:

$$\bullet \lim_{x \to 0^+} \ln x = -\infty$$

$$\bullet \quad \lim_{x \to +\infty} \ln x = +\infty$$

(b) Croissances comparées

$$\bullet \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\bullet \lim_{x \to 0^+} x \ln x = 0$$

1

2 Dérivée

(a) Dérivée de $\ln x$

 $\ln x$ est dérivable sur \mathbb{R}^{+*} et

$$\ln \prime x = \frac{1}{x}$$

(b) Dérivée de $\ln u$

u est une fonction dérivable et strictement positive sur $I,\,\ln u$ est alors dérivable sur I

$$(\ln u)'(x) = \frac{u'(x)}{u(x)}$$

3 Logarithme décimal

(a) Définition

La fonction logarithme décimal notée log est définie sur \mathbb{R}^{+*} est définie par

$$\log x = \frac{\ln x}{\ln 10}$$

(b) Propriétés

 $\forall n \in \mathbb{N}:$

•
$$\log 10 = 1$$

•
$$\log 10^n = n$$