

General Description

The SLG46811 provides a small, low power component for commonly used Mixed-Signal functions. The user creates their circuit design by programming the one time programmable (OTP) Non-Volatile Memory (NVM) to configure the interconnect logic, the IO Pins, and the macrocells of the SLG46811. This highly versatile device allows a wide variety of Mixed-Signal functions to be designed within a very small, low power single integrated circuit.

Key Features

- Multichannel Sampling Analog Comparator (MS ACMP)
 - Sampling up to Four Analog Channels
 - Selectable Voltage Reference for Each Channel
 - Different Sampling Scenarios
 - Synchronous or Asynchronous Result Appearance
- Integrated Voltage References (Vref)
- Twelve Combination Function Macrocells
- Two 2-Bit LUT or DFF/LATCH Macrocells
- One Selectable Programmable Pattern Generator or 2bit LUT
- Four 3-Bit LUT or DFF/LATCH with Set/Reset
- Four Selectable DFF/LATCH or 3-bit LUTs or Shift Registers
- One 4-Bit LUT or DFF/LATCH with Set/Reset Macrocell
- Six Multi-Function Macrocells
 - Five Selectable DFF/LATCH or 3-bit LUTs + 8-bit Delay/Counters
 - One Selectable DFF/LATCH or 3-bit LUTs + 8-bit Delay/Counter/FSM
- Extended Pattern Generator
 - Up to 8 Parallel Outputs
 - 92 bytes Pattern Stored in the NVM
- Serial Communications
 - I²C Protocol Interface
- Programmable Delay with Edge Detector Output
- Deglitch Filter or Edge Detector

Applications

- Notebook and Tablet PCs
- Smartphones and Fitness Bands
- Personal Computers and Servers
- PC Peripherals
- Consumer Electronics
- Data Communications Equipment
- Handheld and Portable Electronics

- Two Oscillators (OSC)
 - Selectable 2.048 kHz or 10 kHz Oscillator
 - 25 MHz Oscillator
- Analog Temperature Sensor
- Power-On Reset (POR) with CRC
- Read Back Protection (Read Lock)
- Power Supply
 - 2.3 V ≤ V_{DD} ≤ 5.5 V
- Operating Temperature Range: -40 °C to 85 °C
- RoHS Compliant/Halogen-Free
- Available Package
 - 12-pin STQFN: 1.6 mm x 1.6 mm x 0.55 mm, 0.4 mm pitch

Contents

General Description	
Key Features	1
Applications	
1 Block Diagram	7
2 Pinout	
2.1 Pin Configuration - STQFN- 12	
3 Characteristics	
3.1 Absolute Maximum Ratings	
3.2 Electrostatic Discharge Ratings	
3.3 Recommended Operating Conditions	
3.4 Electrical Characteristics	
3.5 I ² C Pins Electrical Characteristics	
3.6 Macrocells Current Consumption	
3.7 Timing Characteristics	
3.8 Counter/Delay Characteristics	
3.9 Oscillator Characteristics	
3.10 MS ACMP Characteristics	
3.11 Analog Temperature Sensor Characteristics	
4 User Programmability	24
5 IO Pins	
5.1 GPIO Pins	
5.2 GPI Pins	
5.3 Pull-Up/Down Resistors	
5.4 Fast Pull-up/down during Power-up	
5.5 GPI Structure	
5.6 GPIO with I ² C Mode IO Structure	
5.7 Matrix OE IO Structure	
5.8 Register OE IO Structure	
5.9 IO Typical Performance	
6 Connection Matrix	
6.1 Matrix Input Table	
6.2 Matrix Output Table	
6.3 Connection Matrix Virtual Inputs	
6.4 Connection Matrix Virtual Outputs	
7 Combination Function Macrocells	
7.1 2-Bit LUT or D Flip-Flop Macrocells	
7.2 2-bit LUT or Programmable Pattern Generator	
7.3 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells Or Shift Register Macrocells	
7.4 3-Bit LUT or D Flip-Flop with Set/Reset Macrocells	
7.5 4-Bit LUT or D Flip-Flop with Set/Reset Macrocell	
8 Multi-Function Macrocells	
8.1 3-Bit LUT or DFF/Latch with 8-Bit Counter/Delay Macrocells	
8.2 CNT/DLY Timing Diagrams	
8.3 FSM Timing Diagrams	
9 Multichannel Sampling Analog Comparator	
9.1 Multichannel Sampling ACMP Block Diagram	
9.2 MS ACMP Timing Diagrams	
9.3 ACMP Typical Performance	
10 Programmable Delay/Edge Detector	
10.1 Programmable Delay Timing Diagram - Edge Detector OUTPUT	
11 Additional Logic Function. Deglitch Filter	
12 Voltage Reference	
12.1 Voltage Reference Overview	
12.2 Vef Selection Table	
13 Clocking	

13.1 OSC General description	82
13.2 Oscillator0 (2.048 kHz/10 kHz)	83
13.3 Oscillator1 (25 MHz)	83
13.4 CNT/DLY Clock Scheme	84
13.5 External Clocking	84
13.6 Oscillators Power-On Delay	84
13.7 Oscillators Accuracy	87
13.8 Oscillators Settling Time	
13.9 Oscillators Current Consumption	
14 Power-On Reset	
14.1 General Operation	92
14.2 POR Sequence	
14.3 Macrocells Output States During POR Sequence	
15 I ² C Serial Communications Macrocell	
15.1 I ² C Serial Communications Macrocell Overview	
15.2 I ² C Serial Communications Device Addressing	
15.3 I ² C Serial General Timing	
15.4 I ² C Serial Communications Commands	
15.5 I ² C Serial Command Register Map	
15.6 I ² C Additional Options	
16 Extended Pattern Generator	
17 Analog Temperature Sensor	
18 Register Definitions	
18.1 Register Map	
19 Package Top Marking Definitions	
19.1 STQFN 12L 1.6 mm x 1.6 mm 0.4P FC, before February 1, 2021	
19.2 STQFN 12L 1.6 mm x 1.6 mm 0.4P FC, after February 1, 2021	
20 Package Information	
20.1 Package outlines FOR STQFN 12L 1.6 mm x 1.6 mm x 0.55 mm 0.4P FC Package	
20.2 Moisture Sensitivity Level	
20.3 Soldering Information	
21 Ordering Information	
21.1 Tape and Reel Specifications	
21.2 Carrier Tape Drawing and Dimensions	
22 Layout Guidelines	166
22.1 STQFN 12L 1.6 mm x 1.6 mm x 0.55 mm 0.4P FC Package	166
Glossary	
Revision History	170

Figures

Figure 1: Block Diagram	7
Figure 2: Steps to Create a Custom GreenPAK Device	24
Figure 3: GPI Structure Diagram	25
Figure 4: GPIO with I ² C Mode IO Structure Diagram	26
Figure 5: Matrix OE IO Structure Diagram	27
Figure 6: Register OE IO Structure Diagram	28
Figure 7: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C	29
Figure 8: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range	
Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C	
Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range	
Figure 11: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C	
Figure 12: Connection Matrix	
Figure 13: Connection Matrix Usage Example	
Figure 14: 2-bit LUT0 or DFF0	
Figure 15: 2-bit LUT1 or DFF1	
Figure 16: 2-bit LUT2 or PGen	
Figure 17: PGen Timing Diagram	
Figure 18: 3-bit LUT4 or DFF6 or Shift Register 0	
Figure 19: 3-bit LUT5 or DFF7 or Shift Register 1	
Figure 20: 3-bit LUT6 or DFF8 or Shift Register 2	
Figure 22: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation	
Figure 23: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nReset Option, DFF Initial Value: 1	
Figure 24: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nReset Option, DFF Initial Value: 1, Case 1	
Figure 25: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nReset Option, DFF Initial Value: 1, Case 2	
Figure 26: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nSet Option, DFF Initial Value: 0	
Figure 27: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nSet Option, DFF Initial Value: 0, Case 1	
Figure 28: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nSet Option, DFF Initial Value: 0, Case 2	
Figure 29: 3-bit LUT0 or DFF2	
Figure 30: 3-bit LUT1 or DFF3	
Figure 31: 3-bit LUT2 or DFF4	
Figure 32: 3-bit LUT3 or DFF5	
Figure 33: 4-bit LUT0 or DFF16	
Figure 34: Possible Connections Inside Multi-Function Macrocell	55
Figure 35: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT8/DFF10, CNT/DLY0/FSM)	56
Figure 36: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF11, CNT/DLY1)	57
Figure 37: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF12, CNT/DLY2)	58
Figure 38: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF13, CNT/DLY3)	59
Figure 39: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF14, CNT/DLY4)	
Figure 40: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT13/DFF15, CNT/DLY5)	
Figure 41: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3	
Figure 42: Delay Mode Timing Diagram for Different Edge Select Modes	
Figure 43: Counter Mode Timing Diagram without Two DFFs Synced Up	
Figure 44: Counter Mode Timing Diagram with Two DFFs Synced Up	
Figure 45: One-Shot Function Timing Diagram	
Figure 46: Frequency Detection Mode Timing Diagram	
Figure 47: Edge Detection Mode Timing Diagram	
Figure 48: Delayed Edge Detection Mode Timing Diagram	
Figure 49: Counter Value, Counter Data = 3	
Figure 50: CNT/FSM Mode Timing Diagram (Set Rising Edge Mode, Oscillator Is Forced On, UP = 1) for CNT Data = 3.	
Figure 51: Multichannel Sampling ACMP Block Diagram	
Figure 52: Timing Diagrams for MS ACMP. Edge Sensitive Mode. OSC0 and BG are Forced On	
Figure 53: Timing Diagrams for MS ACMP. Level Sensitive Mode. OSC0 and BG are Forced On	
Figure 54: Timing Diagrams for MS ACMP. Level Sensitive Mode. OSC0 is in Auto Power On Mode. BG is Forced On	
Figure 55: Typical Propagation Delay vs. Vref for MS ACMP at T = 25 $^{\circ}$ C, Gain = 1, Hysteresis = 0, Regular Mode	76

Figure 56: MS ACMP Power-On Delay vs. V _{DD} , Regular Mode	76
Figure 57: MS ACMP Power-On Delay vs. V _{DD} , Sampling Mode, T = -40 °C to 85 °C	77
Figure 58: MS ACMP Input Offset Voltage vs. Vref at T = -40 °C to 85 °C	
Figure 59: Current Consumption vs. V _{DD} for Regular Mode, External Vref, V _{IN+} = V _{DD} , V _{IN-} = GND	
Figure 60: Current Consumption vs. V_{DD} for Sampling Mode, 4 Channels, V_{IN+} = 2048 mV, V_{IN-} = 32 mV, Clock = 10 kHz	1 z.78
Figure 61: Programmable Delay	
Figure 62: Edge Detector Output	79
Figure 63: Deglitch Filter/Edge Detector Simplified Structure	80
Figure 64: Oscillator0 Block Diagram	83
Figure 65: Oscillator1 Block Diagram	83
Figure 66: Clock Scheme	84
Figure 67: Oscillator Startup Diagram	
Figure 68: Oscillator0 Maximum Power-On Delay vs. V _{DD} at T = 25 °C, OSC0 = 2.048 kHz/10 kHz	85
Figure 69: Oscillator1 Maximum Power-On Delay vs. V _{DD} at T = 25 °C, OSC1 = 25 MHz	
Figure 70: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz	87
Figure 71: Oscillator0 Frequency vs. Temperature, OSC0 = 10 kHz	87
Figure 72: Oscillator1 Frequency vs. Temperature, OSC1 = 25 MHz	88
Figure 73: Oscillators Total Error vs. Temperature	
Figure 74: Oscillator0 Settling Time, V _{DD} = 3.3 V, T = 25 °C, OSC0 = 2.048 kHz	89
Figure 75: Oscillator0 Settling Time, V _{DD} = 3.3 V, T = 25 °C, OSC0 = 10 kHz	89
Figure 76: Oscillator1 Settling Time, V _{DD} = 3.3 V, T = 25 °C, OSC1 = 25 MHz (Normal Start)	90
Figure 77: OSC0 Current Consumption vs. V _{DD} (All Pre-Dividers), OSC0 = 2.048 kHz	
Figure 78: OSC0 Current Consumption vs. V _{DD} (All Pre-Dividers), OSC0 = 10 kHz	91
Figure 79: OSC1 Current Consumption vs. V _{DD} , T = -40 °C to 85 °C, OSC1 = 25 MHz	91
Figure 80: POR Sequence	93
Figure 81: Internal Macrocell States During POR Sequence	
Figure 82: Power-Down	95
Figure 83: Basic Command Structure	
Figure 84: I ² C General Timing Characteristics	
Figure 85: Byte Write Command, R/W = 0	98
Figure 86: Sequential Write Command	
Figure 87: Current Address Read Command, R/W = 1	99
Figure 88: Random Read Command	99
Figure 89: Sequential Read Command	
Figure 90: Reset Command Timing	100
Figure 91: Example of I ² C Byte Write Bit Masking	
Figure 92: I ² C General Block Diagram	
Figure 93: Analog Temperature Sensor Structure Diagram	
Figure 94: TS Output vs. Temperature, V _{DD} = 2.3 V to 5.5 V	106

Tables

Table 1: Functional Pin Description	8
Table 2: Pin Type Definitions	
Table 3: Absolute Maximum Ratings	11
Table 4: Electrostatic Discharge Ratings	
Table 5: Recommended Operating Conditions	11
Table 6: EC at T = -40 °C to +85 °C, V _{DD} = 2.3 V to 5.5 V Unless Otherwise Noted	12
Table 7: EC of SDA and SCL Pins, DI Mode, at T = -40 °C to +85 °C, V _{DD} = 2.3 V to 5.5 V Unless Otherwise Noted	14
Table 8: EC of SDA and SCL Pins, DILV Mode, at T = -40 °C to +85 °C, V _{DD} = 2.3 V to 5.5 V Unless Otherwise Noted	15
Table 9: I ² C Bus Timing Characteristics, DI Mode, at T = -40 °C to +85 °C, V _{DD} = 2.3 V to 5.5 V Unless Otherwise Noted.	15
Table 10: I^2 C Bus Timing Characteristics, DILV Mode, at T = -40°C to +85°C, V_{DD} = 2.3V to 5.5V Unless Otherwise Noted	d16
Table 11: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C	17
Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C	17
Table 13: Programmable Delay Expected Delays and Widths (Typical) at T = 25 °C	19
Table 14: Typical Filter Rejection Pulse Width at T = 25 °C	19
Table 15: Typical Counter/Delay Offset at T = 25 °C	19
Table 16: Oscillators Frequency Limits. Vpp = 2.3 V to 5.5 V	20
Table 17: Oscillators Power-On Delay at T = -40 °C to +85 °C, OSC Power Setting: "Auto Power-On"	20
Table 18: MS ACMP Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted	20
Table 19: Temperature Sensor Output vs Temperature at V _{DD} = 2.3 V to 5.5 V	23
Table 20: Matrix Input Table	33
Table 21: Matrix Output Table	35
Table 22: Connection Matrix Virtual Inputs	37
Table 23: 2-bit LUT2_0 to 2-bit LUT2_1 Truth Table	
Table 24: 2-bit LUT Standard Digital Functions	
Table 25: 2-bit LUT2_2 Truth Table	
Table 26: 2-bit LUT Standard Digital Functions	42
Table 27: 3-bit LUT3_0 to 3-bit LUT3_9 Truth Table	
Table 28: 3-bit LUT Standard Digital Functions	
Table 29: 4-bit LUT0 Truth Table	
Table 30: 4-bit LUT Standard Digital Functions	
Table 31: 3-bit LUT8 Truth Table	
Table 32: 3-bit LUT9 Truth Table	
Table 33: 3-bit LUT10 Truth Table	
Table 34: 3-bit LUT11 Truth Table	
Table 35: 3-bit LUT12 Truth Table	
Table 36: 3-bit LUT13 Truth Table	62
Table 37: Recommended MS ACMP Clock Frequencies	
Table 38: Vref Selection Table	
Table 39: Oscillator Control Input Modes	
Table 40: Oscillator Operation Mode Configuration Settings	
Table 41: Read/Write Protection Options	
Table 42: Register Map	
Table 43: MSL Classification	164

Block Diagram

Figure 1: Block Diagram

2 **Pinout**

2.1 PIN CONFIGURATION - STQFN- 12

Pin#	Pin Name	Pin Functions
1	V_{DD}	Power Supply
2	GPI	GPI, SLA_0, EXT_CLK_OSC0
3	GPIO0	GPIO, I ² C SCL
4	GPIO1	GPIO, I ² C SDA
5	GPIO2	GPIO with OE
6	GPIO3	GPIO with OE, SLA_1, EXT_Vref
7	GND	Ground
8	GPIO4	GPIO, SLA_2, MS ACMP input 0
9	GPIO5	GPIO, MS ACMP input 1
10	GPIO6	GPIO, MS ACMP input 2
11	GPIO7	GPIO with OE, MS ACMP input 3, SLA_3, EXT_CLK_OSC1
12	GPIO8	GPIO with OE

Legend:

OE: Output Enable
MS ACMP input: Multichannel Sample ACMP Positive Input
I²C SCL: I²C Clock Input
I²C SDA: I²C Data Input/Output

EXT_CLKx: External Clock Input

SLA: Slave Address

Table 1: Functional Pin Description

STQFN 12 Pin #	Pin Name	Signal Name	Function	Input Options	Output Options
1	V_{DD}	V_{DD}	Power Supply		
				Digital Input without Schmitt Trigger	
		GPI	General Purpose Input	Digital Input with Schmitt Trigger	
2	GPI			Low Voltage Digital Input	
		Slave Address 0			
		External Clock of OSC0	External Clock Connection		
		GPIO	0 15 10	Digital Input without Schmitt Trigger	Open-Drain NMOS (3.2x)
			General Purpose IO with OE (Note 1)	Digital Input with Schmitt Trigger	
3	GPIO0			Low Voltage Digital Input	
3	GPIOU			Digital Input without Schmitt Trigger	
	I ² C SCL I ² C Serial Clock		I ² C SCL I ² C Serial Clock		
				Low Voltage Digital Input	

Table 1: Functional Pin Description (Continued)

STQFN 12 Pin #	Pin Name	Signal Name	Function	Input Options	Output Options
				Digital Input without Schmitt Trigger	Open-Drain NMOS (3.2x)
		GPIO	General Purpose IO	Digital Input with Schmitt Trigger	
4	GPIO1			Low Voltage Digital Input	
7	Grior			Digital Input without Schmitt Trigger	
		I ² C SDA	I ² C Serial Data	Digital Input with Schmitt Trigger	
				Low Voltage Digital Input	
			O a marred Down a see 10	Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)
5	GPIO2	GPIO	General Purpose IO with OE (Note 1)	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)
				Low Voltage Digital Input	
			0 15 10	Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)
		GPIO	General Purpose IO with OE (Note 1)	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)
6	6 GPIO3			Low Voltage Digital Input	
		EXT_Vref	ACMP Inverting Input	Analog	
		Slave Address 1			
7	GND	GND	Power Supply		
				Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)
		GPIO	General Purpose IO	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)
8	GPIO4			Low Voltage Digital Input	
	MS_ACMP In0		Positive Input 0 of MS ACMP	Analog	
		Slave Address 2			
				Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)
9	GPIO5	GPIO	General Purpose IO	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)
				Low Voltage Digital Input	
		MS ACMP In1	Positive Input 1 of MS ACMP	Analog	
				Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)
10 GPIO6		GPIO	General Purpose IO	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)
				Low Voltage Digital Input	
		MS ACMP In2	Positive Input 2 of MS ACMP	Analog	

Table 1: Functional Pin Description (Continued)

STQFN 12 Pin #	Pin Name	Signal Name	Function	Input Options	Output Options
		GPIO	0	Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)
			General Purpose IO with OE (Note 1)	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)
				Low Voltage Digital Input	
11	GPIO7	MS ACMP In 3	Positive Input 3 of MS ACMP	Analog	
		Slave Address 3			
		External Clock of OSC1	external Clock Connection		
			0 15 10	Digital Input without Schmitt Trigger	Push-Pull (1x) (2x)
12	GPIO8	GPIO	General Purpose IO with OE (Note 1)	Digital Input with Schmitt Trigger	Open-Drain NMOS (1x) (2x)
				Low Voltage Digital Input	

Note 1 General Purpose IO's with OE can be used to implement bidirectional signals under user control via Connection Matrix to OE signal in IO structure or as a 3-state output.

Table 2: Pin Type Definitions

Pin Type	Description
V_{DD}	Power Supply
GPI	General Purpose Input
GPIO	General Purpose Input/Output
GND	Ground

3 Characteristics

3.1 ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Table 3: Absolute Maximum Ratings

Parameter			Max	Unit
Supply Voltage on V	/ _{DD} relative to GND	-0.3	7	V
DC Input	Voltage	GND - 0.5 V	V _{DD} + 0.5 V	V
Maximum Averaç (Through V _{DD}			90	mA
	Push-Pull 1x		11	
Maximum Average or DC Current	Push-Pull 2x		16	mA
(Through pin)	OD 1x		11	
	OD 2x		21	
Current at	Input Pin	-1.0	1.0	mA
Input Leakage Current (Absolute Value)			1000	nA
Storage Temperature Range			150	°C
Junction Temperature			150	°C
Moisture Sensitive Level		•	1	

3.2 ELECTROSTATIC DISCHARGE RATINGS

Table 4: Electrostatic Discharge Ratings

Parameter		Max	Unit
ESD Protection (Human Body Model)	2000		V
ESD Protection (Charged Device Model)			V

3.3 RECOMMENDED OPERATING CONDITIONS

Table 5: Recommended Operating Conditions

Parameter	Condition	Min	Max	Unit
Supply Voltage (V _{DD})		2.3	5.5	V
Operating Temperature		-40	85	°C
Maximal Voltage Applied to any PIN in High Impedance State			V _{DD} + 0.3	٧
Capacitor Value at V _{DD}		0.1		μF
Analog Input Common Mode Range	Allowable Input Voltage at Analog Pins	0	V_{DD}	V

3.4 ELECTRICAL CHARACTERISTICS

Table 6: EC at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

Parameter	Description	Condition	Min	Тур	Max	Unit
		Logic Input (Note 1)	0.7x V _{DD}		V _{DD} + 0.3	٧
V _{IH}	HIGH-Level Input Voltage	Logic Input with Schmitt Trigger (Positive Going Threshold Voltage min = $0.4xV_{DD}$, max = $0.7xV_{DD}$)	0.8x V _{DD}		V _{DD} + 0.3	V
		Low-Level Logic Input (Note 1)	1.25			V
		Logic Input (Note 1)	GND- 0.3		0.3x V _{DD}	٧
V _{IL}	LOW-Level Input Voltage	Logic Input with Schmitt Trigger (Negative Going Threshold Voltage min = 0.3xV _{DD} , max = 0.6xV _{DD})	GND- 0.4		0.2x V _{DD}	V
		Low-Level Logic Input (Note 1)	GND- 0.5		0.5	>
		Push-Pull, 1x Drive, V _{DD} = 2.5 V ± 8 %, I _{OH} = 1 mA	2.18			V
	HIGH-Level Output Voltage	Push-Pull, 1x Drive, V_{DD} = 3.3 V ± 10 %, I_{OH} = 3 mA	2.68			V
V _{OH}		Push-Pull, 1x Drive, V_{DD} = 5.0 V ± 10 %, I_{OH} = 5 mA	4.16			٧
VOH		Push-Pull, 2x Drive, V _{DD} = 2.5 V ± 8 %, I _{OH} = 1 mA	2.24			٧
		Push-Pull, 2x Drive, V_{DD} = 3.3 V ± 10 %, I_{OH} = 3 mA	2.83			V
		Push-Pull, 2x Drive, V_{DD} = 5.0 V ± 10 %, I_{OH} = 5 mA	4.33			>
		Push-Pull, 1x Drive, V _{DD} = 2.5 V ± 8 %, I _{OL} = 1 mA			0.092	٧
		Push-Pull, 1x Drive, V_{DD} = 3.3 V ± 10 %, I_{OL} = 3 mA			0.227	V
		Push-Pull, 1x Drive, V_{DD} = 5.0 V ± 10 %, I_{OL} = 5 mA			0.283	V
V _{OL}	LOW-Level Output Voltage				0.045	V
* OL					0.111	V
		Push-Pull, 2x Drive, V_{DD} = 5.0 V ± 10 %, I_{OL} = 5 mA			0.140	٧
		NMOS OD, 1x Drive, V _{DD} = 2.5 V ± 8 %, I _{OL} = 1 mA			0.036	٧
		NMOS OD, 1x Drive, V _{DD} = 3.3 V ± 10 %, I _{OL} = 3 mA			0.089	٧

Table 6: EC at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)

Parameter	Description	Condition	Min	Тур	Max	Unit
		NMOS OD, 1x Drive, V _{DD} = 5.0 V ± 10 %, I _{OL} = 5 mA			0.112	V
V _{OL}	LOW-Level Output Voltage	NMOS OD, 2x Drive, V _{DD} = 2.5 V ± 8 %, I _{OL} = 1 mA			0.018	V
VOL.	2011 20101 Output Voltage	NMOS OD, 2x Drive, V _{DD} = 3.3 V ± 10 %, I _{OL} = 3 mA		-	0.046	V
		NMOS OD, 2x Drive, V _{DD} = 5.0 V ± 10 %, I _{OL} = 5 mA			0.059	V
		Push-Pull, 1x Drive, V _{DD} = 2.5 V ± 8 %, V _{OH} = V _{DD} - 0.2	1.520			mA
		Push-Pull, 1x Drive, V _{DD} = 3.3 V ± 10 %, V _{OH} = 2.4 V	5.125			mA
	HIGH-Level Output Pulse	Push-Pull, 1x Drive, V _{DD} = 5.0 V ± 10 %, V _{OH} = 2.4 V	19.589			mA
·OH	Current (Note 2)	Push-Pull, 2x Drive, $V_{DD} = 2.5 V \pm 8 \%$, $V_{OH} = V_{DD} - 0.2$	3.008			mA
		Push-Pull, 2x Drive, V _{DD} = 3.3 V ± 10 %, V _{OH} = 2.4 V	10.106			mA
		Push-Pull, 2x Drive, V _{DD} = 5.0 V ± 10 %, V _{OH} = 2.4 V	37.960			mA
		Push-Pull, 1x Drive, $V_{DD} = 2.5 \text{ V} \pm 8 \text{ %}, V_{OL} = 0.15 \text{ V}$	1.483			mA
		Push-Pull, 1x Drive, $V_{DD} = 3.3 \text{ V} \pm 10 \text{ %}, V_{OL} = 0.4 \text{ V}$	4.622			mA
		Push-Pull, 1x Drive, $V_{DD} = 5.0 \text{ V} \pm 10 \text{ %}, V_{OL} = 0.4 \text{ V}$	6.250			mA
		Push-Pull, 2x Drive, $V_{DD} = 2.5 \text{ V} \pm 8 \%, V_{OL} = 0.15 \text{ V}$	2.965			mA
I _{OL}		Push-Pull, 2x Drive, $V_{DD} = 3.3 \text{ V} \pm 10 \text{ %}, V_{OL} = 0.4 \text{ V}$	9.228			mA
lo	LOW-Level Output Pulse	Push-Pull, 2x Drive, $V_{DD} = 5.0 \text{ V} \pm 10 \text{ %}, V_{OL} = 0.4 \text{ V}$	12.443			mA
JOL	Current (Note 2)	NMOS OD, 1x Drive, V _{DD} = 2.5 V ± 8 %, V _{OL} = 0.15 V	3.676			mA
		NMOS OD, 1x Drive, V _{DD} = 3.3 V ± 10 %, V _{OL} = 0.4 V	11.438			mA
		NMOS OD, 1x Drive, V _{DD} = 5.0 V ± 10 %, V _{OL} = 0.4 V	15.397			mA
		NMOS OD, 2x Drive, V _{DD} = 2.5 V ± 8 %, V _{OL} = 0.15 V	7.285			mA
		NMOS OD, 2x Drive, V _{DD} = 3.3 V ± 10 %, V _{OL} = 0.4 V	22.589			mA
		NMOS OD, 2x Drive, V _{DD} = 5.0 V ± 10 %, V _{OL} = 0.4 V	30.030			mA
T _{SU}	Startup Time	T _{RAMP} =1 V/μs , From V _{DD} rising past PON _{THR}		1.85	3.42	ms
PON _{THR}	Power-On Threshold	V _{DD} Level Required to Start Up the Chip	1.55	1.86	2.17	V

Table 6: EC at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)

Parameter	Description	Condition	Min	Тур	Max	Unit
POFF _{THR}	FF _{THR} Power-Off Threshold V _{DD} Level Required to Switch C Chip		1.06	1.34	1.62	V
R _{PULL}	Pull-up or Pull-down Resistance	1 M for Pull-up: V _{IN} = GND; for Pull-down: V _{IN} = V _{DD}		1		МΩ
		100 k for Pull-up: V _{IN} = GND for Pull-down: V _{IN} = V _{DD}		100		kΩ
		10 k For Pull-up: V _{IN} = GND for Pull-down: V _{IN} = V _{DD}		10		kΩ
C _{IN}	Input Capacitance	T = 25 °C		2.4		pF

Note 1 No hysteresis.

Note 2 DC or average current through any pin should not exceed value given in Absolute Maximum Conditions.

3.5 I²C PINS ELECTRICAL CHARACTERISTICS

Table 7: EC of SDA and SCL Pins, DI Mode, at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

Parameter	Description	Condition	Fast-	Mode	Fast-Mo	de Plus	Unit
Parameter	Description	Condition	Min	Max	Min	Max	Unit
V _{IL}	LOW-level Input Voltage		-0.5	0.3xV _{DD}	-0.5	0.3xV _{DD}	٧
V _{IH}	HIGH-level Input Voltage		0.7xV _{DD}	5.5	0.7xV _{DD}	5.5	٧
V _{HYS}	Hysteresis of Schmitt Trigger Inputs		0.05xV _{DD}		0.05xV _{DD}		>
V _{OL1}	LOW-Level Output Voltage 1	(Open-Drain or open collector) at 3 mA sink current V _{DD} > 2 V	0	0.4	0	0.4	٧
V _{OL2}	LOW-Level Output Voltage 2	(Open-Drain or open collector) at 2 mA sink current V _{DD} ≤ 2 V	0	0.2xV _{DD}	0	0.2xV _{DD}	٧
		V _{OL} = 0.4 V, V _{DD} = 2.3 V	3		20		mA
1	LOW-Level Output	V _{OL} = 0.4 V, V _{DD} = 3.3 V	3		20		mA
l _{OL}	Current	V _{OL} = 0.4 V, V _{DD} = 4.5 V	3		20		mA
		$V_{OL} = 0.6 \text{ V}, \ V_{DD} = 5.5 \text{ V}$	6				mA
t _{of}	Output Fall Time from V _{IHmin} to V _{ILmax} (Note 1)		14x (V _{DD} /5.5V)	250	10x (V _{DD} /5.5V)	120	ns
+	Input Filter Spike	Digital Input (SDA)	50		50		ns
t _{SP}	Suppression	Digital Input (SCL)	50		50		ns
l _i	Input Current each IO Pin	$0.1xV_{DD} < V_{I} < 0.9xV_{DDmax}$	-10	+10	-10	+10	μА
C _i	Capacitance for each IO Pin			10		10	pF

Note 1 Does not meet standard I^2C specifications: $t_{of} = 20x(V_{DD}/5.5V)$ (min). **Note 2** For Fast-mode Plus SDA pin must be configured as NMOS 3.2x Open-Drain, see register [613] in section 18.

Table 8: EC of SDA and SCL Pins, DILV Mode, at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

Davamatav	Decemention	Condition	Fast-	Unit	
Parameter	Description	Condition	Min	Max	Unit
V _{IL}	LOW-level Input Voltage (Note 1)			0.7	V
V_{IH}	HIGH-level Input Voltage (Note 1)		1.25		V
V _{HYS}	Hysteresis of Schmitt Trigger Inputs		0.05xV _{DD}		٧
V _{OL1}	LOW-Level Output Voltage 1	(Open-Drain or open collector) at 3 mA sink current, V _{DD} > 2 V	0	0.4	V
V _{OL2}	LOW-Level Output Voltage 2	(Open-Drain or open collector) at 2 mA sink current, $V_{DD} \le 2 V$	0	0.2xV _{DD}	٧
		V _{OL} = 0.4 V, V _{DD} = 2.3 V	3		mA
ı	LOW Lovel Output Current	V _{OL} = 0.4 V, V _{DD} = 3.3 V	3		mA
l _{OL}	LOW-Level Output Current	V _{OL} = 0.4 V, V _{DD} = 4.5 V	3		mA
		V _{OL} = 0.6 V, V _{DD} = 5.5 V	6		mA
t _{of}	Output Fall Time from V _{IHmin} to V _{ILmax} (Note 1)		14x (V _{DD} /5.5V)	250	ns
4	Input Filter Spike Suppression	Digital Input LOW Voltage (SDA)	50		ns
t _{SP}	(SCL, SDA)				ns
lį	Input Current each IO Pin	$0.1xV_{DD} < V_I < 0.9xV_{DDmax}$	-10	+10	μΑ
Ci	Capacitance for each IO Pin			10	рF

Table 9: I^2C Bus Timing Characteristics, DI Mode, at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

				Spo	eed		
Parameter	Description	Condition	400	kHz	1 N	1Hz	Unit
			Min	Max	Min	Max	
F _{SCL}	Clock Frequency, SCL			400		1000	kHz
t _{LOW}	Clock Pulse Width Low		1300		500		ns
t _{HIGH}	Clock Pulse Width High		600		260		ns
t _{BUF}	Bus Free Time between Stop and Start		1300		500		ns
t _{HD_STA}	Start Hold Time		600		260		ns
t _{SU_STA}	Start Set-up Time		600		260		ns
t _{HD_DAT}	Data Hold Time		0		0		ns
t _{SU_DAT}	Data Set-up Time		100		50		ns
t _R	Inputs Rise Time			300		120	ns
t _F	Inputs Fall Time			300		120	ns
t _{SU_STO}	Stop Set-up Time		600		260		ns
t _{VD_ACK}	Data Out Hold Time		50		50		ns
t _{VD_DAT}	Clock Low to Data Out Valid			900		450	ns

Table 9: I^2C Bus Timing Characteristics, DI Mode, at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

	Parameter	Description	Condition					
				400 kHz		1 MHz		Unit
			Min	Max	Min	Max		
	Note 1 Timing diagram can be found in the Figure 84.							
	Note 2 Pleas	se follow official I ² C spec UM10204.						

Table 10: I^2C Bus Timing Characteristics, DILV Mode, at T = -40°C to +85°C, V_{DD} = 2.3V to 5.5V Unless Otherwise Noted

			Sp			
Parameter	Description	Condition	400	kHz	Unit	
			Min Max			
F _{SCL}	Clock Frequency, SCL			400	kHz	
t _{LOW}	Clock Pulse Width Low		1300		ns	
t _{HIGH}	Clock Pulse Width High		600		ns	
t _{BUF}	Bus Free Time between Stop and Start		1300		ns	
t _{HD_STA}	Start Hold Time		600		ns	
t _{SU_STA}	Start Set-up Time		600		ns	
t _{HD_DAT}	Data Hold Time (Note 1)		264		ns	
t _{SU_DAT}	Data Set-up Time (Note 1)		382		ns	
t _R	Inputs Rise Time			300	ns	
t _F	Inputs Fall Time			300	ns	
t _{SU_STO}	Stop Set-up Time		600		ns	
t _{VD_ACK}	Data Out Hold Time		50		ns	
t _{VD_DAT}	Clock Low to Data Out Valid			900	ns	

Note 1 Does not meet standard I^2C specifications: $t_{HD_DAT} = 0$ ns, $t_{SU_DAT} = 100$ ns. **Note 2** Please follow official I^2C spec UM10204.

Note 3 When SCL Input is in Low-Level Logic mode max frequency is 400 kHz.

Note 4 Timing diagram can be found in the Figure 84.

3.6 MACROCELLS CURRENT CONSUMPTION

Table 11: Typical Current Estimated for Each Macrocell at T = -40 °C to +85 °C

Parameter	Description	Note	$V_{DD} = 2.5 V$	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
		PDET+I ² C	0.06	0.08	0.13	μΑ
		PDET+BG+I ² C	0.38	0.41	0.49	μΑ
		Temperature Sensor Output	15.06	15.14	15.48	μΑ
		OSC2 25 MHz, Pre-divider = 1	82.44	106.46	162.02	μΑ
		OSC2 25 MHz, Pre-divider = 4	45.97	57.00	83.21	μΑ
		OSC2 25 MHz, Pre-divider = 8	39.62	48.35	69.35	μΑ
		OSC0 2.048 kHz, Pre-divider = 1	0.33	0.36	0.44	μΑ
		OSC0 2.048 kHz, Pre-divider = 4	0.33	0.36	0.44	μΑ
		OSC0 2.048 kHz, Pre-divider = 8	0.33	0.36	0.44	μΑ
		OSC0 10 kHz, Pre-divider = 1	0.45	0.49	0.60	μΑ
	Current	OSC0 10 kHz, Pre-divider = 4	0.44	0.48	0.57	μΑ
		OSC0 10 kHz, Pre-divider = 8	0.44	0.47	0.56	μΑ
I _{DD}		MS ACMP in regular mode (Vref Source - External VIN+ = 0 V, VIN- = 32 mV), level sensitive	14.44	14.83	15.95	μА
		MS ACMP in regular mode (Vref Source – Internal V _{IN+} = 0 V; V _{IN-} = 32 mV), level sensitive	21.56	21.97	23.21	μΑ
		MS ACMP in regular mode (Vref Source – Internal V _{IN+} = 1 M Pull-up V _{IN-} = 32 mV), level sensitive	35.40	36.11	38.18	μΑ
		MS ACMP in continuous sampling mode, four channels, V _{IN+} = 2.048 mV, V _{IN-} = 32 mV, 10 kHz oscillator clock (average consumption), level sensitive	35.78	36.47	38.57	μА

3.7 TIMING CHARACTERISTICS

Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C

D	D	Note	V _{DD} =	2.5 V	V _{DD} =	3.3 V	V _{DD} = 5 V		11!4
Parameter	Description	Note	Rising	Falling	Rising	Falling	Rising	Falling	Unit
tpd	Delay	Digital Input to PP 1x	31	32	22	24	17	18	ns
tpd	Delay	Digital Input to PP 2x	30	32	21	23	16	17	ns
tpd	Delay	Digital Input with Schmitt Trigger to PP 1x	31	32	22	24	17	18	ns
tpd	Delay	Low Voltage Digital Input to PP 1x	33	270	24	178	19	104	ns
tpd	Delay	Digital input to NMOS 1x		31		22	1	17	ns
tpd	Delay	Digital input to NMOS 2x		30		22	1	16	ns
tpd	Delay	Output enable from Pin, OE Hi-Z to 1	28		20	1	15		ns
tpd	Delay	Output enable from Pin, OE Hi-Z to 0		27		20	1	15	ns
tpd	Delay	1x3 State Hi-Z to 1	28		20	1	15		ns
tpd	Delay	1x3 State Hi-Z to 0		27		20	1	15	ns
tpd	Delay	2x3 State Hi-Z to 1	27		19		15		ns

Table 12: Typical Delay Estimated for Each Macrocell at T = 25 °C (Continued)

		N. C.	V _{DD} =	2.5 V	V _{DD} =	3.3 V	V _{DD} = 5 V		
Parameter	Description	Note	Rising	Falling		Falling			Unit
tpd	Delay	2x3 State Hi-Z to 0		26		19		14	ns
tpd	Delay	LATCH Q	15	16	12	11	8	8	ns
tpd	Delay	LATCH nQ	16	16	11	12	9	8	ns
tpd	Delay	LATCH nRESET High Q	23	24	16	18	12	12	ns
tpd	Delay	LATCH nRESET High nQ	23	25	17	18	12	12	ns
tpd	Delay	LATCH nRESET Low Q	23	24	16	17	12	12	ns
tpd	Delay	LATCH nRESET Low nQ	23	24	16	18	12	12	ns
tpd	Delay	LATCH nSET High Q	21	23	15	16	11	11	ns
tpd	Delay	LATCH nSET High nQ	22	22	15	17	11	11	ns
tpd	Delay	LATCH nSET Low Q	21	22	14	16	10	11	ns
tpd	Delay	LATCH nSET Low nQ	21	22	16	15	11	11	ns
tpd	Delay	2-bit LUT	13	13	10	10	7	7	ns
tpd	Delay	3-bit LUT	19	21	15	14	11	10	ns
tpd	Delay	4-bit LUT	18	20	13	14	9	10	ns
tpd	Delay	Shift Register Transition	70	71	49	50	32	32	ns
tpd	Delay	Shift Register Reset	26	25	19	18	13	13	ns
tpd	Delay	Edge detect	18	18	13	13	9	9	ns
tw	Width	Edge detect	212	212	157	157	113	114	ns
tpd	Delay	Edge detect Delayed	230	232	169	170	122	122	ns
tpd	Delay	DFF Q	15	17	11	13	8	9	ns
tpd	Delay	DFF nQ	16	17	12	13	8	9	ns
tpd	Delay	DFF nRESET High Q		23	1	17	1	12	ns
tpd	Delay	DFF nRESET High nQ	22	1	16	1	11	1	ns
tpd	Delay	DFF nRESET Low Q		23	-	16		12	ns
tpd	Delay	DFF nRESET Low nQ	22		15		11		ns
tpd	Delay	DFF nSET High Q	22		16		11		ns
tpd	Delay	DFF nSET High nQ		23		17		12	ns
tpd	Delay	DFF nSET Low Q	22		15		11		ns
tpd	Delay	DFF nSET Low nQ		23	-	17		12	ns
tpd	Delay	CNT/DLY	81	79	59	70	43	70	ns
tpd	Delay	PGen CLK	18	16	14	12	9	9	ns
tpd	Delay	PGen nRESET Z to 0		19		14		10	ns
tpd	Delay	PGen nRESET Z to 1	18		13		9		ns
tpd	Delay	Extended PGen CLK	488	488	487	487	493	495	ns
tpd	Delay	Extended PGen nRESET Z to 0		67		48		35	ns
tpd	Delay	Extended PGen nRESET Z to 1	68		48		33		ns
tpd	Delay	Filter Q, nQ	122	125	93	95	68	69	ns

Table 13: Programmable Delay Expected Delays and Widths (Typical) at T = 25 °C

Parameter	Description	Note	V _{DD} = 2.5 V	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
tw	Pulse Width, 1 cell	mode: (any) edge detect, edge detect output	216	160	115	ns
tw	Pulse Width, 2 cell	mode: (any) edge detect, edge detect output	427	316	228	ns
tw	Pulse Width, 3 cell	mode: (any) edge detect, edge detect output	638	471	341	ns
tw	Pulse Width, 4 cell	mode: (any) edge detect, edge detect output	850	627	453	ns
time1	Delay, 1 cell	mode: (any) edge detect, edge detect output	18	13	9	ns
time1	Delay, 2 cell	mode: (any) edge detect, edge detect output	18	13	9	ns
time1	Delay, 3 cell	mode: (any) edge detect, edge detect output	18	13	9	ns
time1	Delay, 4 cell	mode: (any) edge detect, edge detect output	18	13	9	ns
time2	Delay, 1 cell	mode: both edge delay, edge detect output	234	172	124	ns
time2	Delay, 2 cell	mode: both edge delay, edge detect output	446	328	237	ns
time2	Delay, 3 cell	mode: both edge delay, edge detect output	656	483	350	ns
time2	Delay, 4 cell	mode: both edge delay, edge detect output	866	639	461	ns

Table 14: Typical Filter Rejection Pulse Width at T = 25 °C

Parameter	V _{DD} = 2.5 V	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
Filtered Pulse Width, t _{block}	< 63	< 49	< 37	ns

3.8 COUNTER/DELAY CHARACTERISTICS

Table 15: Typical Counter/Delay Offset at T = 25 °C

Parameter	RC OSC Freq	RC OSC Power	V _{DD} = 2.5 V	V _{DD} = 3.3 V	V _{DD} = 5.0 V	Unit
Power-On time	25 MHz	auto	0.055	0.04	0.025	μs
Power-On time	2.048 kHz	auto	695	575	480	μs
Power-On time	10 kHz	auto	695	575	480	μs
Frequency Settling Time	25 MHz	auto	10	10	10	Stabilized Clk
Frequency Settling Time	2.048 kHz	auto	1	1	1	Stabilized Clk
Frequency Settling Time	10 kHz	auto	5	5	5	Stabilized Clk
Variable (CLK period)	25 MHz	forced	0-40	0-40	0-40	ns
Variable (CLK period)	2.048 kHz	forced	0-488	0-488	0-488	μs
Variable (CLK period)	10 kHz	forced	0-100	0-100	0-100	μs
Typical Propagation Delay (non-delayed edge)	25 MHz/ 2.048 kHz/ 10 kHz	either	35	25	18	ns

3.9 OSCILLATOR CHARACTERISTICS

Table 16: Oscillators Frequency Limits, V_{DD} = 2.3 V to 5.5 V

	Temperature Range						
Parameter	+25 °C			-40 °C to +85 °C			
, alamoto	Minimum Value, kHz	Maximum Value, kHz	Error, %	Minimum Value, kHz	Maximum Value, kHz	Error, %	
2.048 kHz OSC0	2.015	2.081	+1.6	1.900	2.099	+2.5	
2.040 KI IZ 0000	2.013	2.001	-1.6	1.900	2.099	-7.2	
10 kHz OSC0	9.84	10.16	+1.6	9.46	10.16	+1.6	
10 KHZ 0000	9.04	10.10	-1.6	3.40	10.10	-5.4	
25 MHz OSC1	24600	25400	+1.6	24000	25400	+1.6	
23 WI 12 030 1	24000	23400	-1.6	24000	25400	-4.0	

3.9.1 OSC Power-On Delay

Table 17: Oscillators Power-On Delay at T = -40 °C to +85 °C, OSC Power Setting: "Auto Power-On"

Power Sup- ply Range	OSC0 2.048 kHz		OSC0 10 kHz		OSC1 25 MHz			25 MHz th Delay
(V _{DD}), V	Typical Value, µs	Maximum Value, µs	Typical Value, µs	Maximum Value, µs	Typical Value, ns	Maximum Value, ns	Typical Value, ns	Maximum Value, ns
2.30	725	1098	725	1101	60	77	150	163
3.30	577	815	577	816	37	51	142	159
4.00	528	714	528	716	31	44	141	160
5.00	483	623	483	624	26	38	140	161
5.50	459	581	459	582	24	41	140	161

3.10 MS ACMP CHARACTERISTICS

Table 18: MS ACMP Specifications at T = -40 $^{\circ}$ C to +85 $^{\circ}$ C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted

Parame- ter	Description	Note	Condition	Min	Тур	Max	Unit
V	MS ACMP Input	Positive Input		0		V_{DD}	V
V _{ACMP}	Voltage Range	Negative Input		0		V_{DD}	V
V	MS ACMP Input	MS ACMP Vhys = 0 mV, Gain = 1, Vref = 32 mV to 2016 mV (regular mode)		-6.7	-0.6	5.2	mV
V _{offset}	Offset	MS ACMP Vhys = 0 mV, Gain = 1, Vref = 32 mV to 2016 mV (sampling mode)		-4.3	1.1	7.2	mV
			V _{DD} = 2.3 V		1.5	6.0	nA
I _{LKG}	ACMP Input Leakage	$V_{IN} = V_{DD}$	V _{DD} = 3.3 V		1.5	6.0	nA
			V _{DD} = 5.5 V		1.5	6.0	nA

Table 18: MS ACMP Specifications at T = -40 $^{\circ}$ C to +85 $^{\circ}$ C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)

Parame- ter	Description	Note	Condition	Min	Тур	Max	Unit
		MS ACMP Power-On delay (regular mode)				70.8	μs
		MS ACMP Power-On delay (sampling mode), OSC0 = 10 kHz	Bandgap: Forced On, OSC0: Forced On			0.56	ms
t _{start}	t _{start} ACMP Startup Time	MS ACMP Power-On delay (sampling mode), OSC0 = 10 kHz	Bandgap: Auto-On, OSC0: Auto-On			2.66	ms
		MS ACMP Power-On delay (sampling mode), OSC0 = 10 kHz	Bandgap: Forced On, OSC0: Auto-On			1.23	ms
		MS ACMP Power-On delay (sampling mode), OSC0 = 10 kHz	Bandgap: Auto-On, OSC0: Forced On			2.59	ms
		V _{HYS} = 32 mV (sampling mode) (Note 2)	T = 25 °C	23.36	30.22	34.83	mV
		V _{HYS} = 64 mV (regular mode)	T = 25 °C	55.62	61.57	65.58	mV
		V _{HYS} = 64 mV (sampling mode)	_{HYS} = 64 mV (sampling		62.16	66.64	mV
		V _{HYS} = 192 mV (regular mode)	T 05 °C	182.69	189.56	193.88	mV
V	Built-in Hysteresis	V _{HYS} = 192 mV (sampling mode)	T = 25 °C	182.08	190.14	195.22	mV
V _{HYS}	(Note 1)	V _{HYS} = 32 mV (sampling mode) (Note 2)		21.08	30.22	37.44	mV
		V _{HYS} = 64 mV (regular mode)		52.29	61.57	67.63	mV
		V _{HYS} = 64 mV (sampling mode)		52.24	62.16	69.77	mV
		V _{HYS} = 192 mV (regular mode)		178.95	189.56	195.75	mV
		V _{HYS} = 192 mV (sampling mode)		179.54	190.14	198.71	mV
		Gain = 1x			10		GΩ
D	Series Input	Gain = 0.5x		1.6	1.9	2.4	МΩ
R _{sin}	Resistance	Gain = 0.33x		1.6	1.9	2.4	МΩ
		Gain = 0.25x		1.6	1.9	2.4	МΩ

Table 18: MS ACMP Specifications at T = -40 °C to +85 °C, V_{DD} = 2.3 V to 5.5 V Unless Otherwise Noted (Continued)

Parame- ter	Description	Note	Condition	Min	Тур	Max	Unit
		Gain = 1,	Low to High	0.35	1.05	4.01	μs
		Vref = 32 mV to 2016 mV, Overdrive = 10 mV, regular mode	High to Low	0.53	1.45	3.30	μs
		Gain = 1, T = 25 °C,	Low to High	0.56	1.05	2.49	μs
		Vref = 32 mV to 2016 mV, Overdrive = 10 mV, regular mode	High to Low	0.69	1.45	2.42	μs
		Gain = 0.25, T = 25 °C,	Low to High	1.18	1.50	1.75	μs
PROP Propagation Delay, Response Time	Vref = 32 mV, Overdrive = 10 mV, regular mode	High to Low	2.23	2.49	2.84	μs	
		Gain = 1, T = 25 °C,	Low to High	0.23	0.34	0.48	μs
		Vref = 32 mV to 2016 mV, Overdrive = 100 mV, regular mode	High to Low	0.27	0.39	0.65	μs
		Gain = 0.25, T = 25 °C,	Low to High	0.46	0.56	0.65	μs
		Vref = 32 mV, Overdrive = 100 mV, regular mode	High to Low	1.33	1.48	1.70	μs
		G = 1		1	1	1	
G	Gain error	G = 0.5]	0.498	0.500	0.503	
G	Gaill Elloi	G = 0.33]	0.332	0.334	0.337	
		G = 0.25		0.249	0.251	0.253	
Vref	Vref Accuracy,		T = 25 °C	-0.43	-0.10	0.21	%
VICI	Vref = 2016 mV			-0.82	-0.10	0.24	%

Note 1 V_{IL} = Vin - V_{HYS}, V_{IH} = Vin. Note 2 Available only in Sampling mode.

3.11 ANALOG TEMPERATURE SENSOR CHARACTERISTICS

Temperature Sensor typical nonlinearity ± 0.57 % at V_{DD} = 2.3 V to 5.5 V.

Table 19: Temperature Sensor Output vs Temperature at V_{DD} = 2.3 V to 5.5 V

T, °C		Error, %		
ı, c	Min	Тур	Max	EITOI, %
-40 °C	1.997	2.008	2.023	±0.75
-30 °C	1.951	1.963	1.979	±0.82
-20 °C	1.906	1.918	1.933	±0.78
-10 °C	1.861	1.872	1.886	±0.75
0 °C	1.814	1.826	1.840	±0.77
10 °C	1.769	1.779	1.792	±0.73
20 °C	1.722	1.733	1.745	±0.69
25 °C	1.699	1.710	1.722	±0.70
30 °C	1.675	1.686	1.698	±0.71
40 °C	1.628	1.639	1.651	±0.73
50 °C	1.579	1.591	1.603	±0.75
60 °C	1.531	1.543	1.555	±0.78
70 °C	1.482	1.494	1.507	±0.87
80 °C	1.433	1.446	1.458	±0.90
85 °C	1.409	1.421	1.433	±0.84
90 °C	1.384	1.397	1.409	±0.93
100 °C	1.335	1.347	1.359	±0.89
110 °C	1.285	1.298	1.310	±1.00
120 °C	1.235	1.249	1.260	±1.12
125 °C	1.210	1.224	1.236	±1.14
130 °C	1.185	1.200	1.211	±1.25

4 User Programmability

The SLG46811 is a user programmable device with one time programmable (OTP) memory elements that are able to configure the connection matrix and macrocells. A programming development kit allows the user the ability to create initial devices. Once the design is finalized, the programming code (.gpx file) is forwarded to Renesas Electronics Corporation to integrate into a production process.

Figure 2: Steps to Create a Custom GreenPAK Device

5 IO Pins

The SLG46811 has a total of 9 GPIO and 1 GPI Pins which can function as either a user defined Input or Output.

5.1 GPIO PINS

Pins from GPIO0 to GPIO8 serve as General Purpose IO Pins. Input function of GPIO shared with I²C virtual inputs. See Section 6.1.

5.2 GPI PINS

GPI serves as a General Purpose Input Pin.

5.3 PULL-UP/DOWN RESISTORS

All IO Pins have the option for user selectable resistors connected to the input structure. The selectable values on these resistors are 10 k Ω , 100 k Ω , and 1 M Ω . The internal resistors can be configured as either Pull-up or Pull-downs.

5.4 FAST PULL-UP/DOWN DURING POWER-UP

During power-up, IO Pull-up/down resistance will switch to 2.6 k Ω initially and then it will switch to normal setting value. This function is enabled by register [594].

5.5 GPI STRUCTURE

5.5.1 GPI Structure (for GPI)

Figure 3: GPI Structure Diagram

5.6 GPIO WITH I²C MODE IO STRUCTURE

5.6.1 GPIO with I²C Mode Structure (for GPIO0 and GPIO1)

Input Mode [1:0]

00: Digital Input without Schmitt Trigger
01: Digital Input with Schmitt Trigger

10: Low Voltage Digital Input

register [606]=1: Open-Drain NMOS for GPIO0 register [613]=1: Open-Drain NMOS for GPIO1

Note 1: OE cannot be selected by user and is controlled by register. Digital In is Matrix input.

Note 2: GPIO0 and GPIO1 do not support Push-Pull and PMOS Open-Drain modes.

Note 3: It is possible to apply an input voltage higher than V_{DD} to GPIO0 and GPIO1. However, this voltage should not exceed 5.5 V. Note 4: Can be varied over PVT, for reference only.

Figure 4: GPIO with I²C Mode IO Structure Diagram

5.7 MATRIX OE IO STRUCTURE

5.7.1 Matrix OE IO Structure (for GPIO2, GPIO3, GPIO7, GPIO8)

Figure 5: Matrix OE IO Structure Diagram

5.8 REGISTER OE IO STRUCTURE

5.8.1 Register OE IO Structure (for GPIO4, GPIO5, GPIO6)

Figure 6: Register OE IO Structure Diagram

5.9 IO TYPICAL PERFORMANCE

Figure 7: Typical High Level Output Current vs. High Level Output Voltage at T = 25 °C

Figure 8: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C, Full Range

Figure 9: Typical Low Level Output Current vs. Low Level Output Voltage, 1x Drive at T = 25 °C

Figure 10: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C, Full Range

Figure 11: Typical Low Level Output Current vs. Low Level Output Voltage, 2x Drive at T = 25 °C

6 Connection Matrix

The Connection Matrix in the SLG46811 is used to create the internal routing for internal functional macrocells of the device once it is programmed. The registers are programmed from the one time programmable (OTP) NVM cell during Test Mode Operation. The output of each functional macrocell within the SLG46811 has a specific digital bit code assigned to it that is either set to active "High" or inactive "Low", based on the design that is created. Once the 1200 register bits within the SLG46811 are programmed a fully custom circuit will be created.

The Connection Matrix has 53 inputs and 72 outputs. Each of the 53 inputs to the Connection Matrix is hard-wired to the digital output of a particular source macrocell, including IO pins, LUTs, analog comparators, other digital resources, such as V_{DD} and GND. The input to a digital macrocell uses a 6-bit register to select one of these 53 input lines.

For a complete list of the SLG46811's register table, see Section 18.

Figure 12: Connection Matrix

Figure 13: Connection Matrix Usage Example

CFR0011-120-00

GreenPAK Programmable Mixed-Signal Matrix

6.1 MATRIX INPUT TABLE

Table 20: Matrix Input Table

Matrix Input	Matrix Invest Cines I Forestina		Matrix Decode						
Number	Matrix Input Signal Function	5	4	3	2	1	0		
0	GND	0	0	0	0	0	0		
1	LUT2_0/DFF0 output	0	0	0	0	0	1		
2	LUT2_1/DFF1 output	0	0	0	0	1	0		
3	LUT2_3/PGen output	0	0	0	0	1	1		
4	LUT3_0/DFF2 output	0	0	0	1	0	0		
5	LUT3_1/DFF3 output	0	0	0	1	0	1		
6	LUT3_2/DFF4 output	0	0	0	1	1	0		
7	LUT3_3/DFF5 output	0	0	0	1	1	1		
8	LUT3_4/DFF6 output/Shift_Reg0 output	0	0	1	0	0	0		
9	LUT3_5/DFF7 output/Shift_Reg1 output	0	0	1	0	0	1		
10	LUT3_6/DFF8 output/Shift_Reg2 output	0	0	1	0	1	0		
11	LUT3_7/DFF9 output/Shift_Reg3 output	0	0	1	0	1	1		
12	CNT0 output	0	0	1	1	0	0		
13	MLT0_LUT3_8/DFF10_OUT	0	0	1	1	0	1		
14	CNT1 output	0	0	1	1	1	0		
15	MLT1_LUT3_9/DFF11_OUT	0	0	1	1	1	1		
16	CNT2 output	0	1	0	0	0	0		
17	MLT2_LUT3_10/DFF12_OUT	0	1	0	0	0	1		
18	CNT3 output	0	1	0	0	1	0		
19	MLT3_LUT3_11/DFF13_OUT	0	1	0	0	1	1		
20	CNT4 output	0	1	0	1	0	0		
21	MLT4_LUT3_12/DFF14_OUT	0	1	0	1	0	1		
22	CNT5 output	0	1	0	1	1	0		
23	MLT5_LUT3_13/DFF15_OUT	0	1	0	1	1	1		
24	I ² C_virtual_0 Input, Extended Pattern Generator Output 0	0	1	1	0	0	0		
25	I ² C_virtual_1 Input, Extended Pattern Generator Output 1	0	1	1	0	0	1		
26	I ² C_virtual_2 Input, Extended Pattern Generator Output 2	0	1	1	0	1	0		
27	I ² C_virtual_3 Input, Extended Pattern Generator Output 3	0	1	1	0	1	1		
28	I ² C_virtual_4 Input, Extended Pattern Generator Output 4	0	1	1	1	0	0		
29	I ² C_virtual_5 Input, Extended Pattern Generator Output 5	0	1	1	1	0	1		
30	I ² C_virtual_6 Input, GPIO0 digital input, Extended Pattern Generator Output 6 or SCL	0	1	1	1	1	0		
31	I ² C_virtual_7 Input, GPIO1 digital input, Extended Pattern Generator Output 7 or SDA	0	1	1	1	1	1		
32	GPIO2 Digital Input or I ² C_virtual_8 Input	1	0	0	0	0	0		

Table 20: Matrix Input Table (Continued)

Matrix Input	Matrix Input Cianal Eurotian	Matrix Decode						
Number	Matrix Input Signal Function	5	4	3	2	1	0	
33	GPIO3 Digital Input or I ² C_virtual_9 Input	1	0	0	0	0	1	
34	GPIO4 Digital Input or I ² C_virtual_10 Input	1	0	0	0	1	0	
35	GPIO5 Digital Input or I ² C_virtual_11 Input	1	0	0	0	1	1	
36	GPIO6 Digital Input or I ² C_virtual_12 Input	1	0	0	1	0	0	
37	GPIO7 Digital Input or I ² C_virtual_13 Input	1	0	0	1	0	1	
38	GPIO8 Digital Input or I ² C_virtual_14 Input	1	0	0	1	1	0	
39	LUT4_0/DFF16 output	1	0	0	1	1	1	
40	GPI Digital Input	1	0	1	0	0	0	
41	Programmable Delay Edge Detect Output	1	0	1	0	0	1	
42	Edge Detect Filter Output	1	0	1	0	1	0	
43	Oscillator0 output 0	1	0	1	0	1	1	
44	Oscillator1 output	1	0	1	1	0	0	
45	MS ACMP Output 0	1	0	1	1	0	1	
46	MS ACMP Output 1	1	0	1	1	1	0	
47	MS ACMP Output 2	1	0	1	1	1	1	
48	MS ACMP Output 3	1	1	0	0	0	0	
49	Oscillator0 output 1	1	1	0	0	0	1	
50	MS ASMP Data Ready Signal	1	1	0	0	1	0	
51	POR	1	1	0	0	1	1	
52	V _{DD}	1	1	1	0	0	0	

6.2 MATRIX OUTPUT TABLE

Table 21: Matrix Output Table

Register Bit Address	Matrix Output Signal Function	Matrix Output Number
[5:0]	IN0 of LUT2_0 or Clock Input of DFF0	0
[11:6]	IN1 of LUT2_0 or Data Input of DFF0	1
[17:12]	IN0 of LUT2_1 or Clock Input of DFF1	2
[23:18]	IN1 of LUT2_1 or Data Input of DFF1	3
[29:24]	IN0 of LUT2_2 or Clock Input of PGen	4
[35:30]	IN1 of LUT2_2 or nRST of PGen	5
[41:36]	IN0 of LUT3_0 or CLK Input of DFF2	6
[47:42]	IN1 of LUT3_0 or Data of DFF2	7
[53:48]	IN2 of LUT3_0 or nRST (nSET) of DFF2	8
[59:54]	IN0 of LUT3_1 or CLK Input of DFF3	9
[65:60]	IN1 of LUT3_1 or Data of DFF3	10
[71:66]	IN2 of LUT3_1 or nRST (nSET) of DFF3	11
[77:72]	IN0 of LUT3_2 or CLK Input of DFF4	12
[83:78]	IN1 of LUT3_2 or Data of DFF4	13
[89:84]	IN2 of LUT3_2 or nRST (nSET) of DFF4	14
[95:90]	IN0 of LUT3_3 or CLK Input of DFF5	15
[101:96]	IN1 of LUT3_3 or Data of DFF5	16
[107:102]	IN2 of LUT3_3 or nRST (nSET) of DFF5	17
[113:108]	IN0 of LUT3_4 or CLK Input of DFF6 or Clock Input of Shift_Reg0	18
[119:114]	IN1 of LUT3_4 or Data of DFF6 or Data Input of Shift_Reg0	19
[125:120]	IN2 of LUT3_4 or nRST (nSET) of DFF6 or nRST (nSET) of Shift_Reg0	20
[131:126]	IN0 of LUT3_5 or CLK Input of DFF7 or Clock Input of Shift_Reg1	21
[137:132]	IN1 of LUT3_5 or Data of DFF7 or Data Input of Shift_Reg1	22
[143:138]	IN2 of LUT3_5 or nRST (nSET) of DFF7 or nRST (nSET) of Shift_Reg1	23
[149:144]	IN0 of LUT3_6 or CLK Input of DFF8 or Clock Input of Shift_Reg2	24
[155:150]	IN1 of LUT3_6 or Data of DFF8 or Data Input of Shift_Reg2	25
[161:156]	IN2 of LUT3_6 or nRST (nSET) of DFF8 or nRST (nSET) of Shift_Reg2	26
[167:162]	IN0 of LUT3_7 or CLK Input of DFF9 or Clock Input of Shift_Reg3	27
[173:168]	IN1 of LUT3_7 or Data of DFF9 or Data Input of Shift_Reg3	28
[179:174]	IN2 of LUT3_7 or nRST (nSET) of DFF9 or nRST (nSET) of Shift_Reg3	29
[185:180]	IN0 of LUT3_8 or CLK Input of DFF10 Delay0 Input (or Counter0 nRST Input) Up input of FSM	30
[191:186]	IN1 of LUT3_8 or nRST (nSET) of DFF10 Delay0 Input (or Counter0 nRST Input) or DLY/CNT/FSM External CLK input	31
[197:192]	IN2 of LUT3_8 or Data of DFF10 Delay0 Input (or Counter0 nRST Input) or FSM Reset/Set input	32

Table 21: Matrix Output Table (Continued)

Register Bit Address	Matrix Output Signal Function	Matrix Output Number
[203:198]	IN0 of LUT3_9 or CLK Input of DFF11 Delay1 Input (or Counter1 nRST Input)	33
[209:204]	IN1 of LUT3_9 or nRST (nSET) of DFF11 Delay1 Input (or Counter1 nRST Input)	34
[215:210]	IN2 of LUT3_9 or Data of DFF11 Delay1 Input (or Counter1 nRST Input)	35
[221:216]	IN0 of LUT3_10 or CLK Input of DFF12 Delay2 Input (or Counter1 nRST Input)	36
[227:222]	IN1 of LUT3_10 or nRST (nSET) of DFF12 Delay2 Input (or Counter1 nRST Input)	37
[233:228]	IN2 of LUT3_10 or Data of DFF12 Delay2 Input (or Counter2 nRST Input)	38
[239:234]	IN0 of LUT3_11 or CLK Input of DFF13 Delay3 Input (or Counter3 nRST Input)	39
[245:240]	IN1 of LUT3_11 or nRST (nSET) of DFF13 Delay3 Input (or Counter3 nRST Input)	40
[251:246]	IN2 of LUT3_11 or Data of DFF13 Delay3 Input (or Counter3 nRST Input)	41
[257:252]	IN0 of LUT3_12 or CLK Input of DFF14 Delay4 Input (or Counter4 nRST Input)	42
[263:258]	IN1 of LUT3_12 or nRST (nSET) of DFF14 Delay4 Input (or Counter4 nRST Input)	43
[269:264]	IN2 of LUT3_12 or Data of DFF14 Delay4 Input (or Counter4 nRST Input)	44
[275:270]	IN0 of LUT3_13 or CLK Input of DFF15 Delay5 Input (or Counter5 nRST Input)	45
[281:276]	IN1 of LUT3_13 or nRST (nSET) of DFF15 Delay5 Input (or Counter5 nRST Input)	46
[287:282]	IN2 of LUT3_13 or Data of DFF15 Delay5 Input (or Counter5 nRST Input)	47
[293:288]	IN0 of LUT4_0 or CLK Input of DFF16	48
[299:294]	IN1 of LUT4_0 or Data of DFF16	49
[305:300]	IN2 of LUT4_0 or nRST (nSET) of DFF16	50
[311:306]	IN3 of LUT4_0	51
[317:312]	Programmable Delay/Edge Detect Input	52
[323:318]	Filter/Edge Detect Input	53
[329:324]	GPIO0 Digital Output	54
[335:330]	GPIO1 Digital Output	55
[341:336]	GPIO2, Digital Output	56
[347:342]	GPIO2, Digital Output OE	57
[353:348]	GPIO3, Digital Output	58
[359:354]	GPIO3, Digital Output OE	59
[365:360]	GPIO4 Digital Output	60
[371:366]	GPIO5 Digital Output	61
[377:372]	GPIO6 Digital Output	62
[383:378]	GPIO7 Digital Output	63
[389:384]	GPIO7 Digital Output OE	64
[395:390]	GPIO8 Digital Output	65
[401:396]	GPIO8 Digital Output OE	66
[407:402]	MS ACMP Enable Input	67
[413:408]	Reset of MS ACMP DFFs	68
[419:414]	OSC Enable	69

Table 21: Matrix Output Table (Continued)

Register Bit Address	Matrix Output Signal Function	Matrix Output Number				
[425:420]	Extended Pattern Generator Clock	70				
[431:426]	[431:426] Extended Pattern Generator nReset					
Note 1 For each Ad	Note 1 For each Address, the two most significant bits are unused.					

6.3 CONNECTION MATRIX VIRTUAL INPUTS

As mentioned previously, the Connection Matrix inputs come from the outputs of various digital macrocells on the device. Fifteen of the Connection Matrix inputs have the special characteristic that the state of these signal lines comes from a corresponding data bit written as a register value via I^2C . This gives the user the ability to write data via the serial channel, and have this information translated to the inputs of other macrocells through Connection Matrix. The I^2C address for reading and writing these register values is byte 0x39, 0x3A < 6:0 >.

An I²C write command to these register bits will set the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read either the original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the values from a previous write command (if that has happened).

Connection Matrix Virtual Inputs are shared with input function of GPIO and Pattern Generator output.

If the virtual input mode is selected, an I²C write command to these register bits will set the signal values going into the Connection Matrix to the desired state. A read command to these register bits will read either the original data values coming from the NVM memory bits (that were loaded during the initial device startup), or the values from a previous write command (if that has happened). The I²C disable/enable registers [1078:1072] and [1184] select whether the Connection Matrix input comes from the Pin input or from the I²C virtual input. All I²C virtual inputs with shared functions are listed below:

- Select Pattern Generator 0 or Virtual Input 0
- Select Pattern Generator 1 or Virtual Input 1
- Select Pattern Generator 2 or Virtual Input 2
- Select Pattern Generator 3 or Virtual Input 3
- Select Pattern Generator 4 or Virtual Input 4
- Select Pattern Generator 5 or Virtual Input 5
- Select Pattern Generator 6 or Virtual Input 6 or GPI (GPIO0)
- Select Pattern Generator 7 or Virtual Input 7 or GPI (GPIO1)
- Select Virtual Input 8 or GPI (GPIO2)
- Select Virtual Input 9 or GPI (GPIO3)
- Select Virtual Input 10 or GPI (GPIO4)
- Select Virtual Input 11 or GPI (GPIO5)
- Select Virtual Input 12 or GPI (GPIO6)
- Select Virtual Input 13 or GPI (GPIO7)
- Select Virtual Input 14 or GPI (GPIO8)

See Table for Connection Matrix Virtual Inputs.

Table 22: Connection Matrix Virtual Inputs

	Matrix Input Number	Matrix Input Signal Function	Register Bit Addresses (d)
1	24	Extended Pattern Generator 0 or I ² C_virtual_0 Input	[456]
	25	Extended Pattern Generator 1 or I ² C_virtual_1 Input	[457]
	26	Extended Pattern Generator 2 or I ² C_virtual_2 Input	[458]

Table 22: Connection Matrix Virtual Inputs (Continued)

Matrix Input Number	Matrix Input Signal Function	Register Bit Addresses (d)
27	Extended Pattern Generator 3 or I ² C_virtual_3 Input	[459]
28	Extended Pattern Generator 4 or I ² C_virtual_4 Input	[460]
29	Extended Pattern Generator 5 or I ² C_virtual_5 Input	[461]
30	Extended Pattern Generator 6 or I ² C_virtual_6 Input or GPI (GPIO0)	[462]
31	Extended Pattern Generator 7 or I ² C_virtual_7 Input or GPI (GPIO1)	[463]
32	GPI (GPIO2) or I ² C_virtual_8 Input	[464]
33	GPI (GPIO3) or I ² C_virtual_9 Input	[465]
34	GPI (GPIO4) or I ² C_virtual_10 Input	[466]
35	GPI (GPIO5) or I ² C_virtual_11 Input	[467]
36	GPI (GPIO6) or I ² C_virtual_12 Input	[468]
37	GPI (GPIO7) or I ² C_virtual_13 Input	[469]
38	GPI (GPIO8) or I ² C_virtual_14 Input	[470]

6.4 CONNECTION MATRIX VIRTUAL OUTPUTS

The digital outputs of the various macrocells are routed to the Connection Matrix to enable interconnections to the inputs of other macrocells in the device. At the same time, it is possible to read the state of each of the macrocell outputs as a register value via I²C. This option, called Connection Matrix Virtual Outputs, allows the user to remotely read the values of each macrocell output. The I²C addresses for reading these register values are bytes 0x36 (053) to 0x3C (060) (except for registers [470:456]). Write commands to these same register values will be ignored (with the exception of the Virtual Input register bits at registers [470:456]).

7 Combination Function Macrocells

The SLG46811 has 12 combination function macrocells that can serve more than one logic or timing function. In each case, they can serve as a Look Up Table (LUT), or as another logic or timing function. See the list below for the functions that can be implemented in these macrocells.

- Two macrocells that can serve as either 2-bit LUT or as D Flip-Flop
- One macrocell that can serve as either 2-bit LUT or as Programmable Pattern Generator (PGen)
- Four macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input
- Four macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset Input or as Shift Register
- One macrocell that can serve as either 4-bit LUT or as D Flip-Flop with Set/Reset Input

Inputs/Outputs for the 12 combination function macrocells are configured from the connection matrix with specific logic functions being defined by the state of configuration bits.

When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).

7.1 2-BIT LUT OR D FLIP-FLOP MACROCELLS

There is one macrocell that can serve as either 2-bit LUT or as D Flip-Flop. When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix and produce a single output, which goes back into the connection matrix. When used to implement D Flip-Flop function, the two input signals from the connection matrix go to the data (D) and clock (CLK) inputs for the Flip-Flop, with the output going back to the connection matrix.

The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:

DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change

LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK is High).

rigule 14. 2-bit LOTO OF DEFO

Figure 15: 2-bit LUT1 or DFF1

7.1.1 2-Bit LUT or D Flip-Flop Macrocell Used as 2-Bit LUT

This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:

2-Bit LUT0 is defined by register [1019:1016]

2-Bit LUT1 is defined by register [1023:1020]

Table 23: 2-bit LUT2_0 to 2-bit LUT2_1 Truth Table

IN1	IN0	OUT LUT0	OUT LUT1	
0	0	Register [1016]	Register [1020]	LSB
0	1	Register [1017]	Register [1021]	
1	0	Register [1018]	Register [1022]	
1	1	Register [1019]	Register [1023]	MSB

Table 24 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created within each of the 2-bit LUT logic cells.

Table 24: 2-bit LUT Standard Digital Functions

Function	MSB			LSB
AND-2	1	0	0	0
NAND-2	0	1	1	1
OR-2	1	1	1	0
NOR-2	0	0	0	1
XOR-2	0	1	1	0
XNOR-2	1	0	0	1

7.2 2-BIT LUT OR PROGRAMMABLE PATTERN GENERATOR

The SLG46811 has one combination function macrocell that can serve as a logic or timing function. This macrocell can serve as a Look Up Table (LUT), or Programmable Pattern Generator (PGen).

When used to implement LUT functions, the 2-bit LUT takes in two input signals from the connection matrix and produces a single output, which goes back into the connection matrix. When used as a LUT to implement combinatorial logic functions, the outputs of the LUT can be configured to any user defined function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR). The user can also define the combinatorial relationship between inputs and outputs to be any selectable function.

It is possible to define the RST level for the PGen macrocell. There are both high level reset (RST) and a low level reset (nRST) options available which are selected by register [1027]. When operating as a Programmable Pattern Generator, the output of the macrocell will clock out a sequence of two to sixteen bits that are user selectable in their bit values, and user selectable in the number of bits (up to sixteen) that are output before the pattern repeats.

Figure 16: 2-bit LUT2 or PGen

Table 25: 2-bit LUT2_2 Truth Table

IN1	IN0	OUT	
0	0	register [1028]	LSB
0	1	register [1029]	
1	0	register [1030]	
1	1	register [1031]	MSB

This macrocell, when programmed for a LUT function, uses a 4-bit register to define their output function:

2-Bit LUT2_2 is defined by registers [1031:1028]

Table 26 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created within each of the 2-bit LUT logic cells.

Table 26: 2-bit LUT Standard Digital Functions

Function	MSB			LSB
AND-2	1	0	0	0
NAND-2	0	1	1	1
OR-2	1	1	1	0
NOR-2	0	0	0	1
XOR-2	0	1	1	0
XNOR-2	1	0	0	1

7.3 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS OR SHIFT REGISTER MACROCELLS

There are four macrocells that can serve as 3-bit LUT or as DFF/LATCH or as Shift Register. It is also possible to define the active level (Q or nQ) for the macrocell's output by registers [958], [974], [990], [1006]. DFF/Shift Register or LUT are selected by registers [951:948]. When used to implement LUT functions, the 3-bit LUT takes in three input signals from the connection matrix and produce a single output, which goes back into the connection matrix.

When used to implement Shift Register, the three input signals from the connection matrix go to the data (D_IN), clock (CLK), and Set/Reset (nSET/nRST) inputs for the Shift Register, with the output going back to the connection matrix. It is possible to define the active level for the reset/set input of Shift Register macrocell which is selected by registers [955], [971], [987], [1003]. The input data (D_IN) writes into LSB. The Shift Register length (up to 8 bits/memory cells) is selected by registers [954:952], registers [970:968], registers [986:984], and registers [1002:1000]. Shift register length = 1 (corresponding registers = 0) means that DFF/LATCH function is selected. Please note that D and CLK inputs of the Shift Register should remain unchanged while the I²C master is reading data from the Shift Register. Otherwise, the I²C master can read the wrong data. Signals at D and CLK inputs of the Shift Register will be ignored while I²C master is writing a new data to the Shift Register macrocell. Also, note that the reset input of the Shift Register has higher priority to the Shift Register than the I²C write routine.

When used to implement D Flip-Flop/LATCH function, the three input signals from the connection matrix go to the data (D_IN), clock (CLK), and Set/Reset (nSET/nRST) inputs for the Flip-Flop/LATCH, with the output going back to the connection matrix. It is possible to define the active level for the reset/set input (nSET/nRST_sel which is selected by registers [956], [972], [988], [1004]) of DFF/LATCH macrocell. LATCH or DFF configuration is selected by registers [959], [975], [991], [1007].

The operation of the D Flip-Flop and LATCH will follow the functional descriptions below:

DFF: CLK is rising edge triggered, then Q = D; otherwise Q will not change.

LATCH: when CLK is Low, then Q = D; otherwise Q remains its previous value (input D has no effect on the output, when CLK is High).

Special care must be taken when writing new data to bytes 78h, 7Ah, 7Ch, 7Eh via I²C. If LUT/DFF/LATCH/Shift_Register macrocells configured as DFF or LATCH, writing new data to LSB of bytes 78h, 7Ah, 7Ch, 7Eh can change the current state of DFF (LATCH).

It's possible to read/write the Shift Register content via I²C (bytes 78h, 7Ah, 7Ch, 7Eh). Note that CLK signal of the Shift Register should be low when getting access to the Shift Register macrocell via I²C.

Figure 18: 3-bit LUT4 or DFF6 or Shift Register 0

Figure 19: 3-bit LUT5 or DFF7 or Shift Register 1

Figure 20: 3-bit LUT6 or DFF8 or Shift Register 2

Figure 21: 3-bit LUT7 or DFF9 or Shift Register 3

Note1: Macrocell is configured as DFF

Note2: Macrocell is configured as 8-bit Shift Register

Figure 22: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation

Figure 23: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nReset Option, DFF Initial Value: 1

Note3: Macrocell is configured as 8-bits

Figure 24: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nReset Option, DFF Initial Value: 1, Case 1

Note3: Macrocell is configured as 8-bits

Figure 25: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nReset Option, DFF Initial Value: 1, Case 2

Note2: Macrocell is configured as DFF **Note3**: Macrocell is configured as 8-bits

Figure 26: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nSet Option, DFF Initial Value: 0

Figure 27: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nSet Option, DFF Initial Value: 0, Case 1

Figure 28: DFF6 to DFF9 or Shift Register 0 to Shift Register 3 Operation, nSet Option, DFF Initial Value: 0, Case 2

Note3: Macrocell is configured as 8-bits

7.3.1 3-Bit LUT or D Flip-Flop Macrocells Used as 3-Bit LUTs

Each macrocell, when programmed for a LUT function, uses an 8-bit register to define their output function:

3-Bit LUT3_0 is defined by registers [895:888]

3-Bit LUT3_1 is defined by registers [903:896]

3-Bit LUT3_2 is defined by registers [911:904]

3-Bit LUT3_3 is defined by registers [919:912]

3-Bit LUT3_4 is defined by registers [967:960]

3-Bit LUT3_5 is defined by registers [983:976]

3-Bit LUT3_6 is defined by registers [999:992]

3-Bit LUT3_7 is defined by registers [1015:1008]

Table 27: 3-bit LUT3_0 to 3-bit LUT3_9 Truth Table

INZ	IN1	ONI	OUT LUT3_0	OUT LUT3_1	OUT LUT3_2	OUT LUT3_3	OUT LUT3_4	OUT LUT3_5	OUT LUT3_6	OUT LUT3_7	
0	0	0	register [888]	register [896]	register [904]	register [912]	register [960]	register [976]	register [992]	register [1008]	LSB
0	0	1	register [889]	register [897]	register [905]	register [913]	register [961]	register [977]	register [993]	register [1009]	
0	1	0	register [890]	register [898]	register [906]	register [914]	register [962]	register [978]	register [994]	register [1010]	
0	1	1	register [891]	register [899]	register [907]	register [915]	register [963]	register [979]	register [995]	register [1011]	
1	0	0	register [892]	register [900]	register [908]	register [916]	register [964]	register [980]	register [996]	register [1012]	
1	0	1	register [893]	register [901]	register [909]	register [917]	register [965]	register [981]	register [997]	register [1013]	
1	1	0	register [894]	register [902]	register [910]	register [918]	register [966]	register [982]	register [998]	register [1014]	
1	1	1	register [895]	register [903]	register [911]	register [919]	register [967]	register [983]	register [999]	register [1015]	MSB

Table 28 shows the register bits for the standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR) that can be created within each of the four 3-bit LUT logic cells.

Table 28: 3-bit LUT Standard Digital Functions

Function	MSB							LSB
AND-3	1	0	0	0	0	0	0	0
NAND-3	0	1	1	1	1	1	1	1
OR-3	1	1	1	1	1	1	1	0
NOR-3	0	0	0	0	0	0	0	1
XOR-3	1	0	0	1	0	1	1	0
XNOR-3	0	1	1	0	1	0	0	1

7.4 3-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELLS

There are 4 macrocells that can serve as either 3-bit LUTs or as D Flip-Flops with Set/Reset inputs. When used to implement LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce a single output, which goes back into the connection matrix. When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the connection matrix. It is possible to define the active level for the reset/set input of DFF/LATCH macrocell. There are both active high level Reset/Set (RST/SET) and active low level Reset/Set (nRST/nSET) options available which are selected by register [890].

DFF2 operation will flow the functional description below:

- If register [892] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change.
- If register [892] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on CLK.

Figure 29: 3-bit LUT0 or DFF2

Figure 30: 3-bit LUT1 or DFF3

Figure 31: 3-bit LUT2 or DFF4

Figure 32: 3-bit LUT3 or DFF5

7.5 4-BIT LUT OR D FLIP-FLOP WITH SET/RESET MACROCELL

There is one macrocell that can serve as either a 4-bit LUT or as a D Flip-Flop with Set/Reset inputs. When used to implement LUT functions, the 4-bit LUT takes in four input signals from the connection matrix and produce a single output, which goes back into the connection matrix. When used to implement D Flip-Flop function, the input signals from the connection matrix go to the data (D) and clock (CLK), and Reset/Set (nRST/nSET) inputs for the Flip-Flop, with the output going back to the connection matrix

- If register [943] = 0, and the CLK is rising edge triggered, then Q = D, otherwise Q will not change.
- If register [943] = 1, then data from D is written into the DFF by the rising edge on CLK and output to Q by the falling edge on CLK.

It is possible to define the active level for the reset/set input of DFF/LATCH macrocell. There are both active high level reset/set (RST/SET) and active low level reset/set (nRST/nSET) options available which are selected by register [938].

Figure 33: 4-bit LUT0 or DFF16

7.5.1 4-Bit LUT Macrocell Used as 4-Bit LUT

Table 29: 4-bit LUT0 Truth Table

IN3	IN2	IN1	IN0	OUT	
0	0	0	0	register [928]	LSB
0	0	0	1	register [929]	
0	0	1	0	register [930]	
0	0	1	1	register [931]	
0	1	0	0	register [932]	
0	1	0	1	register [933]	
0	1	1	0	register [934]	
0	1	1	1	register [935]	
1	0	0	0	register [936]	
1	0	0	1	register [937]	
1	0	1	0	register [938]	
1	0	1	1	register [939]	
1	1	0	0	register [940]	
1	1	0	1	register [941]	
1	1	1	0	register [942]	
1	1	1	1	register [943]	MSB

This macrocell, when programmed for a LUT function, uses a 16-bit register to define their output function:

4-Bit LUT0 is defined by registers [943:928]

Table 30: 4-bit LUT Standard Digital Functions

Function	MSB															LSB
AND-4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAND-4	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
OR-4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
NOR-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
XOR-4	0	1	1	0	1	0	0	1	1	0	0	1	0	1	1	0
XNOR-4	1	0	0	1	0	1	1	0	0	1	1	0	1	0	0	1

8 Multi-Function Macrocells

The SLG46811 has 6 Multi-Function macrocells that can serve more than one logic or timing function. In each case, they can serve as a LUT, DFF with flexible settings, or as CNT/DLY with multiple modes such as One Shot, Frequency Detect, Edge Detect, and others. Also, the macrocell is capable to combine those functions: LUT/DFF connected to CNT/DLY or CNT/DLY connected to LUT/DFF, see Figure 34.

See the list below for the functions that can be implemented in these macrocells:

- Five macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays
- One macrocell that can serve as a 3-bit LUT/D Flip-Flop and as 8-Bit Counter/Delay/FSM

Figure 34: Possible Connections Inside Multi-Function Macrocell

Inputs/Outputs for the 6 Multi-Function function macrocells are configured from the connection matrix with specific logic functions being defined by the state of NVM bits.

When used as a LUT to implement combinatorial logic functions, the outputs of the LUTs can be configured to any user defined function, including the following standard digital logic devices (AND, NAND, OR, NOR, XOR, XNOR).

8.1 3-BIT LUT OR DFF/LATCH WITH 8-BIT COUNTER/DELAY MACROCELLS

There are five macrocells that can serve as 3-bit LUTs/D Flip-Flops and as 8-Bit Counter/Delays.

When used to implement LUT functions, the 3-bit LUTs each take in three input signals from the connection matrix and produce a single output, which goes back into the connection matrix or can be connected to CNT/DLY's input.

When used to implement D Flip-Flop function, the three input signals from the connection matrix go to the data (D), clock (CLK), and Set/Reset (nRST/nSET) inputs of the Flip-Flop, with the output going back to the connection matrix or to the CNT/DLY's input.

When used to implement Counter/Delays, each macrocell has a dedicated matrix input connection. For flexibility, each of these macrocells has a large selection of internal and external clock sources, as well as the option to chain from the output of the previous (N-1) CNT/DLY macrocell, to implement longer count/delay circuits. These macrocells can also operate in a One-Shot mode, which will generate an output pulse of user-defined width. They can also operate in a Frequency Detection or Edge Detection mode.

Counter/Delay macrocell has an initial value, which define its initial value after SLG46811 is powered up. It is possible to select initial Low or initial High, as well as initial value defined by a Delay In signal.

For example, in case initial LOW option is used, the rising edge delay will start operation.

For timing diagrams refer to sections 7.1 and 8.2.

Note: After two DFF – counters initialize with counter data = 0 after POR.

Initial state = 1 – counters initialize with counter data = 0 after POR.

Initial state = 0 And After two DFF is bypass – counters initialize with counter data after POR.

CNT/DLY0/FSM macrocell has an optional Finite State Machine (FSM) function. There is one additional Up/Down matrix input in FSM mode.

8.1.1 3-Bit LUT or 8-Bit CNT/DLY Block Diagrams

Figure 35: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT8/DFF10, CNT/DLY0/FSM)

Figure 36: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT9/DFF11, CNT/DLY1)

Figure 37: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT10/DFF12, CNT/DLY2)

Figure 38: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT11/DFF13, CNT/DLY3)

Figure 39: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT12/DFF14, CNT/DLY4)

Figure 40: 8-bit Multi-Function Macrocells Block Diagram (3-bit LUT13/DFF15, CNT/DLY5)

As shown in Figure 35 - Figure 40 there is a possibility to use LUT/DFF and CNT/DLY simultaneously.

Note: It is not possible to use LUT and DFF at once, one of these macrocells must be selected.

- Case 1. LUT/DFF in front of CNT/DLY. Three input signals from the connection matrix go to previously selected LUT or DFF's inputs and produce a single output which goes to a CND/DLY input. In its turn Counter/Delay's output goes back to the matrix.
- Case 2. CNT/DLY in front of LUT/DFF. Two input signals from the connection matrix go to CND/DLY's inputs (IN and CLK). Its output signal can be connected to any input of previously selected LUT or DFF, after which the signal goes back to the matrix.
- Case 3. Single LUT/DFF or CNT/DLY. Also, it is possible to use a standalone LUT/DFF or CNT/DLY. In this case, all inputs and output of the macrocell are connected to the matrix.

8.1.2 3-Bit LUT or CNT/DLYs Used as 3-Bit LUTs

Table 31: 3-bit LUT8 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [792]	LSB
0	0	1	register [793]	
0	1	0	register [794]	
0	1	1	register [795]	
1	0	0	register [796]	
1	0	1	register [797]	
1	1	0	register [798]	
1	1	1	register [799]	MSB

Table 32: 3-bit LUT9 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [808]	LSB
0	0	1	register [809]	
0	1	0	register [810]	
0	1	1	register [811]	
1	0	0	register [812]	
1	0	1	register [813]	
1	1	0	register [814]	
1	1	1	register [815]	MSB

Table 33: 3-bit LUT10 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [824]	LSB
0	0	1	register [825]	
0	1	0	register [826]	
0	1	1	register [827]	
1	0	0	register [828]	
1	0	1	register [829]	
1	1	0	register [830]	
1	1	1	register [831]	MSB

Table 34: 3-bit LUT11 Truth Table

IN2	IN1	IN0	IN0 OUT			
0	0	0	register [840]	LSB		
0	0	1	register [841]			
0	1	0	register [842]			
0	1	1	register [843]			
1	0	0	register [844]			
1	0	1	register [845]			
1	1	0	register [846]			
1	1	1	register [847]	MSB		

Table 35: 3-bit LUT12 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [856]	LSB
0	0	1	register [857]	
0	1	0	register [858]	
0	1	1	register [859]	
1	0	0	register [860]	
1	0	1	register [861]	
1	1	0	register [862]	
1	1	1	register [863]	MSB

Table 36: 3-bit LUT13 Truth Table

IN2	IN1	IN0	OUT	
0	0	0	register [872]	LSB
0	0	1	register [873]	
0	1	0	register [874]	
0	1	1	register [875]	
1	0	0	register [876]	
1	0	1	register [877]	
1	1	0	register [878]	
1	1	1	register [879]	MSB

Each macrocell, when programmed for a LUT function, uses a 8-bit register to define their output function:

3-Bit LUT8 is defined by registers [799:792]

3-Bit LUT9 is defined by registers [815:808]

3-Bit LUT10 is defined by registers [831:824]

3-Bit LUT11 is defined by registers [847:840]

3-Bit LUT12 is defined by registers [863:856]

3-Bit LUT13 is defined by registers [879:872]

Optional Finite State Machine (FSM) function. There is additional matrix input Up to support FSM functionality.

This macrocell can also operate in a one-shot mode, which will generate an output pulse of user-defined width.

This macrocell can also operate in a frequency detection or edge detection mode.

8.2 CNT/DLY TIMING DIAGRAMS

8.2.1 Delay Mode CNT/DLY0 to CNT/DLY5

Figure 41: Delay Mode Timing Diagram, Edge Select: Both, Counter Data: 3

The macrocell shifts the respective edge to a set time and restarts by appropriate edge. It works as a filter, if the input signal is shorter than the delay time.

Figure 42: Delay Mode Timing Diagram for Different Edge Select Modes

8.2.2 Count Mode (Count Data: 3), Counter Reset (Rising Edge Detect) CNT/DLY0 to CNT/DLY5

Figure 43: Counter Mode Timing Diagram without Two DFFs Synced Up

Figure 44: Counter Mode Timing Diagram with Two DFFs Synced Up

8.2.3 One-Shot Mode CNT/DLY0 to CNT/DLY5

This macrocell will generate a pulse whenever a selected edge is detected on its input. Register bits set the edge selection. The pulse width determines by counter data and clock selection properties. The output pulse polarity (non-inverted or inverted) is selected by register bit. Any incoming edges will be ignored during the pulse width generation. The following diagram shows one-shot function for non-inverted output.

This macrocell generates a high level pulse with a set width (defined by counter data) when detecting the respective edge. It does not restart while pulse is high.

8.2.4 Frequency Detection Mode CNT/DLY0 to CNT/DLY5

Rising Edge: The output goes high if the time between two successive edges is less than the delay. The output goes low if the second rising edge has not come after the last rising edge in specified time.

Falling Edge: The output goes high if the time between two falling edges is less than the set time. The output goes low if the second falling edge has not come after the last falling edge in specified time.

Both Edge: The output goes high if the time between the rising and falling edges is less than the set time, which is equivalent to the length of the pulse. The output goes low if after the last rising/falling edge and specified time, the second edge has not come.

Figure 46: Frequency Detection Mode Timing Diagram

8.2.5 Edge Detection Mode CNT/DLY1 to CNT/DLY5

The macrocell generates high level short pulse when detecting the respective edge. See Figure 47.

Figure 47: Edge Detection Mode Timing Diagram

8.2.6 Delayed Edge Detection Mode CNT/DLY0 to CNT/DLY5

In Delayed Edge Detection Mode, High level short pulses are generated on the macrocell output after the configured delay time, if the corresponding edge was detected on the input.

If the input signal is changed during the set delay time, the pulse will not be generated. See Figure 48.

Figure 48: Delayed Edge Detection Mode Timing Diagram

8.2.7 Difference in Counter Value for Counter, Delay, One-Shot, and Frequency Detect Modes

There is a difference in counter value for Counter and Delay/One-Shot/Frequency Detect modes. The counter value is shifted for two rising edges of the clock signal in Delay/One-Shot/Frequency Detect modes compared to Counter mode. See Figure 49:

Figure 49: Counter Value, Counter Data = 3

8.3 FSM TIMING DIAGRAMS

The behavior of FSM macrocell with low level at Up input is the same as the behavior of other multifunction macrocells in corresponding modes (Counter, Delay, One Shot, Freq. Detector, Delayed Edge Detector).

Figure 50: CNT/FSM Mode Timing Diagram (Set Rising Edge Mode, Oscillator Is Forced On, UP = 1) for CNT Data = 3

9 Multichannel Sampling Analog Comparator

The SLG46811 has one multichannel sampling ACMP that can make periodical samples of up to four input channels and latch the results at four outputs. The input sources for MS ACMP can be GPIO4, GPIO5, GPIO6, GPIO7, V_{DD} , Temperature sensor. User can select any number of channels to be sampled from one up to four, for example, Channel0, Channel2 and Channel3. Note that the channels are sampled in fixed order from 0 to 3rd. Each channel has separate configurable voltage reference and hysteresis. Vref range is from 32 mV to 2016 mV with 32 mV step in sampling mode and from 64 mV to 2016 mV with 32 mV step in regular mode. Hysteresis options are: no hysteresis, 32 mV (available only in sampling mode), 64 mV, 192 mV. Non-inverting input of MS ACMP has the input divider that can be configured for each channel separately. The options for the divider are: Vin, Vin / 2, Vin / 3, Vin / 4.

MS ACMP uses internal oscillator0 to switch between channels, change Vref and latch the results. Clock from the oscillator0 can be divided by 2, 4, or 8 inside the MS ACMP. If "Auto power on" setting of oscillator is selected, High voltage level (or rising edge, depending on setting) on Enable input starts the internal oscillator. Please use MS ACMP clock frequencies from Table 37 when interfacing the sensor with high output impedance with SLG46811.

Table 37: Recommended MS ACMP Clock Frequencies

Parameter	Range 1	Range 2	Range 3	Range 4	Range 5	Unit
Sensor Output Resistance	< 1	1 to 2	2 to 4	4 to 6	> 6	МΩ
MS ACMP Clock Frequency	≤ 10	≤ 5	≤ 2.5	≤ 1.25	≤ 0.5	kHz

User can select the way the results appear at the outputs of MS ACMP. In asynchronous mode (register [499] = 0) results appear continuously after each channel is sampled. In synchronous mode (register [499] = 1) results at the output appear simultaneously after the last selected channel was sampled. The signal Sync data ready (matrix input [50]) generates a pulse of 100 ns approximate width when the sequence of selected channels was sampled.

Basic modes for MS ACMP are the next:

- Regular mode, register [497] = 0. In this mode MS ACMP operates as conventional ACMP. One selected channel is measured continuously when logic level at Enable input is High
- Sampling mode, register [497] = 1. Enable input is level sensitive, register [498] = 0. In this mode MS ACMP changes sampled channels and latches the result every pulse at Clk input while Enable input is High. When Enable becomes Low level MS ACMP finishes sampling the sequence and goes power down.
- Sampling mode, register [497] = 1. Enable input is edge sensitive, register [498] = 1. In this mode, when rising edge comes at Enable input, MS ACMP samples selected channels (up to four) every rising edge at Clk input and goes power down until the next pulse at Enable input.

9.1 MULTICHANNEL SAMPLING ACMP BLOCK DIAGRAM

Figure 51: Multichannel Sampling ACMP Block Diagram

9.2 MS ACMP TIMING DIAGRAMS

Figure 52: Timing Diagrams for MS ACMP. Edge Sensitive Mode. OSC0 and BG are Forced On

Figure 53: Timing Diagrams for MS ACMP. Level Sensitive Mode. OSC0 and BG are Forced On

ACMP_EN [Matrix OUT]

VREFGEN/ACMP ON

T1-x4-GLOD enables inte

OSCO clk

T1 = VREFGEN/A CMP

Sampling CLK

Sampling CLK

Pos./Neg. Channel Selection

ACMP_

ACMPO/1/2/3 ready

ACMPO OUT [Async, Matrix IN]

ACMP2 OUT [Async, Matrix IN]

ACMP3 OUT [Async, Matrix IN]

Sync Ready [Matrix IN]

Figure 54: Timing Diagrams for MS ACMP. Level Sensitive Mode. OSC0 is in Auto Power On Mode. BG is Forced On

9.3 ACMP TYPICAL PERFORMANCE

Figure 55: Typical Propagation Delay vs. Vref for MS ACMP at T = 25 °C, Gain = 1, Hysteresis = 0, Regular Mode

Figure 56: MS ACMP Power-On Delay vs. V_{DD} , Regular Mode

Figure 57: MS ACMP Power-On Delay vs. V_{DD} , Sampling Mode, T = -40 °C to 85 °C

Figure 58: MS ACMP Input Offset Voltage vs. Vref at T = -40 °C to 85 °C

Figure 59: Current Consumption vs. V_{DD} for Regular Mode, External Vref, $V_{IN+} = V_{DD}$, $V_{IN-} = GND$

Figure 60: Current Consumption vs. V_{DD} for Sampling Mode, 4 Channels, $V_{|N+}$ = 2048 mV, $V_{|N-}$ = 32 mV, Clock = 10 kHz

10 Programmable Delay/Edge Detector

The SLG46811 has a programmable time delay logic cell that can generate a delay that is selectable from one of four timings (time2) configured in the GreenPAK Designer. The programmable time delay cell can generate one of four different delay patterns, rising edge detection, falling edge detection, both edge detection, and both edge delay. These four patterns can be further modified with the addition of delayed edge detection, which adds an extra unit of delay, as well as glitch rejection during the delay period. See Figure 62 for further information.

Note: The input signal must be longer than the delay, otherwise it will be filtered out.

Figure 61: Programmable Delay

10.1 PROGRAMMABLE DELAY TIMING DIAGRAM - EDGE DETECTOR OUTPUT

Figure 62: Edge Detector Output

Please refer to Table 12.

Additional Logic Function. Deglitch Filter 11

The SLG46811 has one Deglitch Filter macrocell with inverter function that is connected directly to the Connection Matrix inputs and outputs. The filter pass the input signal for pulse width > tpass (at typical temperature 25 °C. See Table 14).

In addition, this macrocell can be configured as an Edge Detector, with the following settings:

- Rising Edge Detector
- Falling Edge Detector
- Both Edge Detector
- Both Edge Delay

Figure 63: Deglitch Filter/Edge Detector Simplified Structure

12 Voltage Reference

12.1 VOLTAGE REFERENCE OVERVIEW

The SLG46811 has a Voltage Reference (Vref) macrocell to provide references to the Multichannel Sampling Analog Comparator. See Table 38 for the available selections for Multichannel Sampling Analog Comparator.

12.2 VREF SELECTION TABLE

Table 38: Vref Selection Table

SEL[5:0]	Vref	SEL[5:0]	Vref
0	0.032	32	1.056
1	0.064	33	1.088
2	0.096	34	1.12
3	0.128	35	1.152
4	0.16	36	1.184
5	0.192	37	1.216
6	0.224	38	1.248
7	0.256	39	1.28
8	0.288	40	1.312
9	0.32	41	1.344
10	0.352	42	1.376
11	0.384	43	1.408
12	0.416	44	1.44
13	0.448	45	1.472
14	0.48	46	1.504
15	0.512	47	1.536
16	0.544	48	1.568
17	0.576	49	1.6
18	0.608	50	1.632
19	0.64	51	1.664
20	0.672	52	1.696
21	0.704	53	1.728
22	0.736	54	1.76
23	0.768	55	1.792
24	0.8	56	1.824
25	0.832	57	1.856
26	0.864	58	1.888
27	0.896	59	1.92
28	0.928	60	1.952
29	0.96	61	1.984
30	0.992	62	2.016
31	1.024	63	External

Clocking 13

13.1 OSC GENERAL DESCRIPTION

The SLG46811 has two internal oscillators to support a variety of applications:

- Oscillator0 (2.048 kHz or 10 kHz optional selection)
- Oscillator1 (25 MHz).

The Oscillator0 can operate in one of two modes (2.048 kHz or 10 kHz) selected by register [581]. There are two divider stages for each oscillator that gives the user flexibility for introducing clock signals to connection matrix, as well as various other macrocells. The pre-divider (first stage) for Oscillator0 is clock /1, /2, /4 or /8. The pre-divider (first stage) for Oscillator1 is clock /1, /2, /4, /8, /12, /24, /48. The second stage divider has an input of frequency from the pre-divider, and outputs one of eight different frequencies divided by /1, /2, /3, /4, /8, /12, /24 or /64 on Connection Matrix Input lines [43], [49]. Please see Figure 64, Figure 65 and Figure 66 for more details on the SLG46811 clock scheme.

Oscillator1 (25 MHz) has an additional function of 100 ns delayed startup, which can be enabled/disabled by register [592]. This function is recommended to use when analog blocks are used along with the Oscillator.

The Matrix Power-down/Force On function allows switching off or force on the oscillators using an external pin (see Table 39). The Matrix Power-down/Force On (Connection Matrix Output [579]) signal has the highest priority.

Table 39: Oscillator Control Input Modes

Registers [567:566]] Description	
b00	OSC0 (2kHz/10kHz): Controlled by register [578] OSC1 (25MHz): Controlled by register [568]	
b01 OSC0 (2kHz/10kHz): Controlled by Matrix Output OSC1 (25MHz): Controlled by register [568]		
b10	OSC0 (2kHz/10kHz): Controlled by register [578] OSC1 (25MHz): Controlled by Matrix Output	
b11	OSC0 (2kHz/10kHz): Controlled by Matrix Output OSC1 (25MHz): Controlled by Matrix Output	

The OSC operates according to the Table 40:

Table 40: Oscillator Operation Mode Configuration Settings

POR	External Clock Selection	Signal From Connection Matrix	Register: Power-Down or Force On by Matrix Input	Register: Auto Power-On or Force On	OSC Enable Signal from CNT/DLY Macrocells	OSC Operation Mode	
0	X	X	X	X	X	OFF	
1	1	Х	Х	Х	X	Internal OSC is OFF, logic is ON	
1	0	1	0	X	X	OFF	
1	0	1	1	X	X	ON	
1	0	0	X	1	X	ON	
1	0	0	Х	0	CNT/DLY requires OSC	ON	
1	0	0	Х	0	CNT/DLY does not require OSC	OFF	
Note 1	Note 1 The OSC will run only when any macrocell that uses OSC is powered on.						

13.2 OSCILLATOR0 (2.048 KHZ/10 KHZ)

Figure 64: Oscillator0 Block Diagram

13.3 OSCILLATOR1 (25 MHZ)

Figure 65: Oscillator1 Block Diagram

13.4 CNT/DLY CLOCK SCHEME

Each CNT/DLY within Multi-Function macrocell has its own additional clock divider connected to oscillators pre-divider. Available dividers are:

- OSCO/1, OSCO/8, OSCO/12, OSCO/24, OSCO/64, OSCO/512, OSCO/4096
- OSC1/1, OSC1/4, OSC1/8, OSC1/64, OSC1/512

Figure 66: Clock Scheme

13.5 EXTERNAL CLOCKING

The SLG46811 supports several ways to use an external, higher accuracy clock as a reference source for internal operations.

13.5.1 GPI Source for Oscillator0 (2.048kHz/10 kHz)

When register [580] is set to 1, an external clocking signal on GPI will be routed in place of the internal oscillator derived 2.048 kHz clock source. See Figure 64. The low and high limits for external frequency that can be selected are 0 MHz and 10 MHz.

13.5.2 GPIO7 Source for Oscillator1 (25 MHz)

When register [570] is set to 1, an external clocking signal on GPIO7 will be routed in place of the internal oscillator derived 25 MHz clock source. See Figure 65. The external frequency range is 0 MHz to 20 MHz at V_{DD} = 2.3 V, 30 MHz at V_{DD} = 3.3 V, 50 MHz at V_{DD} = 5.0 V. When an external clock is selected for OSC1, the oscillator's output signal will be inverted with respect to the GPIO7 input signal.

13.6 OSCILLATORS POWER-ON DELAY

When OSC power mode is "Auto Power-On" "OSC enable" signal appears when any macrocell that uses OSC is powered on (see Figure 67). The values of Power-On Delay are in Table 17.

Figure 67: Oscillator Startup Diagram

Note 1 OSC power mode: "Auto Power-On".

Note 2 "OSC enable" signal appears when any macrocell that uses OSC is powered on.

Figure 68: Oscillator0 Maximum Power-On Delay vs. V_{DD} at T = 25 °C, OSC0 = 2.048 kHz/10 kHz

Figure 69: Oscillator1 Maximum Power-On Delay vs. V_{DD} at T = 25 °C, OSC1 = 25 MHz

13.7 OSCILLATORS ACCURACY

Note: OSC power setting: Force Power-On; Clock to matrix input - enable; Bandgap: turn on by register - enable.

Figure 70: Oscillator0 Frequency vs. Temperature, OSC0 = 2.048 kHz

Figure 71: Oscillator0 Frequency vs. Temperature, OSC0 = 10 kHz

Figure 72: Oscillator1 Frequency vs. Temperature, OSC1 = 25 MHz

Figure 73: Oscillators Total Error vs. Temperature

Note: For more information see Section 3.9.

13.8 OSCILLATORS SETTLING TIME

Figure 74: Oscillator0 Settling Time, V_{DD} = 3.3 V, T = 25 °C, OSC0 = 2.048 kHz

Figure 75: Oscillator0 Settling Time, V_{DD} = 3.3 V, T = 25 °C, OSC0 = 10 kHz

Figure 76: Oscillator1 Settling Time, V_{DD} = 3.3 V, T = 25 °C, OSC1 = 25 MHz (Normal Start)

13.9 OSCILLATORS CURRENT CONSUMPTION

Figure 77: OSC0 Current Consumption vs. V_{DD} (All Pre-Dividers), OSC0 = 2.048 kHz

Figure 78: OSC0 Current Consumption vs. V_{DD} (All Pre-Dividers), OSC0 = 10 kHz

Figure 79: OSC1 Current Consumption vs. V_{DD} , T = -40 °C to 85 °C, OSC1 = 25 MHz

14 Power-On Reset

The SLG46811 has a Power-On Reset (POR) macrocell to ensure correct device initialization and operation of all macrocells in the device. The purpose of the POR circuit is to have consistent behavior and predictable results when the V_{DD} power is first ramping to the device, and also while the V_{DD} is falling during power-down. To accomplish this goal, the POR drives a defined sequence of internal events that trigger changes to the states of different macrocells inside the device, and finally to the state of the IOs.

14.1 GENERAL OPERATION

The SLG46811 is guaranteed to be powered down and non-operational when the V_{DD} voltage (voltage on PIN1) is less than Power-Off Threshold (see in Table 6), but not less than -0.6 V. Another essential condition for the chip to be powered down is that no voltage higher (Note) than the V_{DD} voltage is applied to any other PIN. For example, if V_{DD} voltage is 0.3 V, applying a voltage higher than 0.3 V to any other PIN is incorrect, and can lead to incorrect or unexpected device behavior.

Note: There is a 0.6 V margin due to forward drop voltage of the ESD protection diodes.

To start the POR sequence in the SLG46811, the voltage applied on the V_{DD} should be higher than the Power-On threshold (Note). The full operational V_{DD} range for the SLG46811 is 2.3 V to 5.5 V. This means that the V_{DD} voltage must ramp up to the operational voltage value, but the POR sequence will start earlier, as soon as the V_{DD} voltage rises to the Power-On threshold. After the POR sequence has started, the SLG46811 will have a typical period of time to go through all the steps in the sequence (noted in the datasheet for that device), and will be ready and completely operational after the POR sequence is complete.

Note: The Power-On threshold is defined in Table 6.

To power down the chip the V_{DD} voltage should be lower than the operational and to guarantee that chip is powered down it should be less than Power-Off Threshold.

All PINs are in high impedance state when the chip is powered down and while the POR sequence is taking place. The last step in the POR sequence releases the IO structures from the high impedance state, at which time the device is operational. The pin configuration at this point in time is defined by the design programmed into the chip. Also, as it was mentioned before, the voltage on PINs can't be bigger than the V_{DD} , this rule also applies to the case when the chip is powered on.

14.2 POR SEQUENCE

The POR system generates a sequence of signals that enable certain macrocells. The sequence is shown in Figure 80.

As can be seen from Figure 80 after the V_{DD} has start ramping up and crosses the Power-On threshold, first, the on-chip NVM memory is reset. Next, the chip reads the data from NVM, and transfers this information to a CMOS LATCH that serves to configure each macrocell, and the Connection Matrix which routes signals between macrocells. The third stage causes the reset of the input pins, and then to enable them. After that, the LUTs are reset and become active. After LUTs the Delay cells, OSCs, DFFs, and LATCHES are initialized. Only after all macrocells are initialized internal POR signal (POR macrocell output) goes from LOW to HIGH. The last portion of the device to be initialized are the output pins, which transition from high impedance to active at this point.

The typical time that takes to complete the POR sequence varies by device type in the GreenPAK family. It also depends on many environmental factors, such as: slew rate, V_{DD} value, temperature, and even will vary from chip to chip (process influence).

14.3 MACROCELLS OUTPUT STATES DURING POR SEQUENCE

To have a full picture of SLG46811 operation during powering and POR sequence, review the overview the macrocell output states during the POR sequence (Figure 81 describes the output signals states).

First, before the NVM has been reset, all macrocells have their output set to logic LOW (except the output pins which are in high impedance state). On the next step, some of the macrocells start initialization: input pins output state becomes LOW; LUTs also output LOW. Only P_DLY macrocell configured as edge detector becomes active at this time. After that input pins are enabled.

Next, only LUTs are configured. Next, all other macrocells are initialized. After macrocells are initialized, internal POR matrix signal switches from LOW to HIGH. The last are output pins that become active and determined by the input signals.

Figure 81: Internal Macrocell States During POR Sequence

14.3.1 Initialization

All internal macrocells by default have initial low level. Starting from indicated power-up time of 1.84 V (typical), macrocells in SLG46811 are powered on while forced to the reset state. All outputs are in Hi-Z and chip starts loading data from NVM. Then the reset signal is released for internal macrocells and they start to initialize according to the following sequence:

- 1. Input pins, ACMP, Pull-up/down.
- 2. LUTs.
- 3. DFFs, Delays/Counters.
- 4. POR output to matrix.
- 5. Output pin corresponds to the internal logic.

The POR signal going high indicates the mentioned power-up sequence is complete.

Note: The maximum voltage applied to any pin should not be higher than the V_{DD} level. There are ESD Diodes between pin \rightarrow V_{DD} and pin \rightarrow GND on each pin. So, if the input signal applied to pin is higher than V_{DD} , then current will sink through the diode to V_{DD} . Exceeding V_{DD} results in leakage current on the input pin, and V_{DD} will be pulled up, following the voltage on the input pin. There is no effect from input pin when input voltage is applied at the same time as V_{DD} .

14.3.2 Power-Down

Figure 82: Power-Down

During Power-down, macrocells in SLG46811 are powered off after V_{DD} falling down below Power-Off Threshold. Please note that during a slow rampdown, outputs can possibly switch state during this time.

15 I²C Serial Communications Macrocell

15.1 I²C SERIAL COMMUNICATIONS MACROCELL OVERVIEW

In the standard use case for the GreenPAK devices, the configuration choices made by the user are stored as bit settings in the Non-Volatile Memory (NVM), and this information is transferred at startup time to volatile RAM registers that enable the configuration of the macrocells. Other RAM registers in the device are responsible for setting the connections in the Connection Matrix to route signals in the manner most appropriate for the user's application.

The I²C Serial Communications Macrocell in this device allows an I²C bus Master to read and write this information via a serial channel directly to the RAM registers, allowing the remote re-configuration of macrocells, and remote changes to signal chains within the device.

An I²C bus Master is also able read and write other register bits that are not associated with NVM memory. As an example, the input lines to the Connection Matrix can be read as digital register bits. These are the signal outputs of each of the macrocells in the device, giving an I²C bus Master the capability to remotely read the current value of any macrocell.

The user has the flexibility to control read access and write access via registers bits registers [1119:1117]. See Section 15.5 for more details on I²C read/write memory protection.

15.2 I²C SERIAL COMMUNICATIONS DEVICE ADDRESSING

Each command to the I²C Serial Communications macrocell begins with a Control Byte. The bits inside this Control Byte are shown in Figure 83. After the Start bit, the first four bits are a control code. Each bit in a control code can be sourced independently from the register or by value defined externally GPI0, GPIO2, GPIO4, and GPIO5. The LSB of the control code is defined by the value of GPI0, while the MSB is defined by the value of GPIO5. The address source (either register bit or PIN) for each bit in the control code is defined by registers [1179:1176]. This gives the user flexibility on the chip level addressing of this device and other devices on the same I²C bus. The Block Address is the next three bits (A10, A9, A8), which will define the most significant bits in the addressing of the data to be read or written by the command. The last bit in the Control Byte is the R/W bit, which selects whether a read command or write command is requested, with a "1" selecting for a Read command, and a "0" selecting for a Write command. This Control Byte will be followed by an Acknowledge bit (ACK), which is sent by this device to indicate successful communication of the Control Byte data.

In the I²C-bus specification and user manual, there are two groups of eight addresses (0000 xxx and 1111 xxx) that are reserved for the special functions, such as a system General Call address. If the user of this device choses to set the Control Code to either "1111" or "0000" in a system with other slave device, please consult the I²C-bus specification and user manual to understand the addressing and implementation of these special functions, to insure reliable operation.

In the read and write command address structure, there are a total of 11 bits of addressing, each pointing to a unique byte of information, resulting in a total address space of 2K bytes. Of this 2K byte address space, the valid addresses accessible to the I^2C Macrocell on the SLG46811 are in the range from 0 (0x00) to 255 (0xFF). The MSB address bits (A10, A9, and A8) will be "0" for all commands to the SLG46811.

With the exception of the Current Address Read command, all commands will have the Control Byte followed by the Word Address. Figure 83 shows this basic command structure.

Figure 83: Basic Command Structure

15.3 I²C SERIAL GENERAL TIMING

General timing characteristics for the I²C Serial Communications macrocell are shown in Figure 84. Timing specifications can be found in the AC Characteristics section.

Figure 84: I²C General Timing Characteristics

15.4 I²C SERIAL COMMUNICATIONS COMMANDS

15.4.1 Byte Write Command

Following the Start condition from the Master, the Control Code [4 bits], the Block Address [3 bits], and the R/W bit (set to "0"), are placed onto the I²C bus by the Master. After the SLG46811 sends an Acknowledge bit (ACK), the next byte transmitted by the Master is the Word Address. The Block Address (A10, A9, A8), combined with the Word Address (A7 through A0), together set the internal address pointer in the SLG46811, where the data byte is to be written. After the SLG46811 sends another Acknowledge bit, the Master will transmit the data byte to be written into the addressed memory location. The SLG46811 again provides an Acknowledge bit and then the Master generates a Stop condition. The internal write cycle for the data will take place at the time that the SLG46811 generates the Acknowledge bit.

It is possible to latch all IOs during I²C write command, register [1113] = 1 - Enable. It means that IOs will remain their state until the write command is done.

Figure 85: Byte Write Command, $R/\overline{W} = 0$

15.4.2 Sequential Write Command

The write Control Byte, Word Address and the first data byte are transmitted to the SLG46811 in the same way as in a Byte Write command. However, instead of generating a Stop condition, the Bus Master continues to transmit data bytes to the SLG46811. Each subsequent data byte will increment the internal address counter, and will be written into the next higher byte in the command addressing. As in the case of the Byte Write command, the internal write cycle will take place at the time that the SLG46811 generates the Acknowledge bit.

Figure 86: Sequential Write Command

15.4.3 Current Address Read Command

The Current Address Read Command reads from the current pointer address location. The address pointer is incremented at the first STOP bit following any write control byte. For example, if a Sequential Read command (which contains a write control byte) reads data up to address n, the address pointer would get incremented to n + 1 upon the STOP of that command. Subsequently, a Current Address Read that follows would start reading data at n + 1. The Current Address Read Command contains the Control Byte sent by the Master, with the R/W bit = "1". The SLG46811 will issue an Acknowledge bit, and then transmit eight data bits for the requested byte. The Master will not issue an Acknowledge bit, and follow immediately with a Stop condition.

Figure 87: Current Address Read Command, $R/\overline{W} = 1$

15.4.4 Random Read Command

The Random Read command starts with a Control Byte (with R/W bit set to "0", indicating a write command) and Word Address to set the internal byte address, followed by a Start bit, and then the Control Byte for the read (exactly the same as the Byte Write command). The Start bit in the middle of the command will halt the decoding of a Write command, but will set the internal address counter in preparation for the second half of the command. After the Start bit, the Bus Master issues a second control byte with the R/W bit set to "1", after which the SLG46811 issues an Acknowledge bit, followed by the requested eight data bits.

Figure 88: Random Read Command

15.4.5 Sequential Read Command

The Sequential Read command is initiated in the same way as a Random Read command, except that once the SLG46811 transmits the first data byte, the Bus Master issues an Acknowledge bit as opposed to a Stop condition in a random read. The Bus Master can continue reading sequential bytes of data, and will terminate the command with a Stop condition.

Figure 89: Sequential Read Command

15.4.6 I²C Serial Reset Command

If I²C serial communication is established with the device, it is possible to reset the device to initial power up conditions, including configuration of all macrocells, and all connections provided by the Connection Matrix. This is implemented by setting register [1112] I²C reset bit to "1", which causes the device to re-enable the Power-On Reset (POR) sequence, including the reload of all register data from NVM. During the POR sequence, the outputs of the device will be in tri-state. After the reset has taken place, the contents of register [1112] will be set to "0" automatically. The Figure 90 illustrates the sequence of events for this reset function.

15.5 I²C SERIAL COMMAND REGISTER MAP

There are seven read/write protect modes for the design sequence from being corrupted or copied. See Table 40 for details.

Table 41: Read/Write Protection Options

	Protection Modes Configuration								
Configurations	Unlocked	Partly Lock Read1	Partly Lock Read2	Partly Lock Read2/ Write	Lock Read	Lock Write	Lock Read/ Write	Register Ad- dress	
	(Mode 0)	(Mode 1)	(Mode 2)	(Mode 3)	(Mode 4)	(Mode 5)	(Mode 6)		
I ² C Byte Write Bit Masking (section 15.6.1)	R/W	R/W	R/W	R/W	W	R	-	8C	
I ² C Serial Reset Command (section 15.4.6)	R/W	R/W	R/W	R/W	R/W	R	R	8B, b'0	
Outputs Latching During I ² C Write	R/W	R/W	R/W	R/W	R/W	R	R	8B, b'1	
Connection Matrix Virtual Inputs (section 6.3)	R/W	R/W	R/W	R/W	W	R	-	39; 3A, b'6~0	
Configuration Bits for All Macrocells (IO Pins, ACMPs, Combination Function Macrocells, etc.)	R/W	R/W	W	-	W	R	-	3D~83, 85, 86	
Macrocells Inputs Configuration (Connection Matrix Outputs, section 6.2)	R/W	W	W	-	W	R	-	0~35	
Protection Mode Enable	R	R	R	R	R	R	R	8B, b'3	
Protection Mode Selection	R/W	R	R	R	R	R	R	8B, b'7~5	
Macrocells Output Values (Connection Matrix Inputs, section 6.1)	R	R	R	R	1	R	•	36~38; 3A,b'7; 3B; 3C,'b4~0	
I ² C Control Code (section 15.2)	R	R	R	R	R	R	R	93, b'3~0	
Pin Slave Address Select	R	R	R	R	R	R	R	93, b'7~4	
I ² C Disable/Enable	R	R	R	R	R	R	R	94, b'0	
Programming disable	R	R	R	R	R	R	R	94, b'1	
Code Compare Enable	R	R	R	R	R	R	R	94, b'2	

R/W	Allow Read and Write Data	
W	Allow Write Data Only	
R	Allow Read Data Only	
- The Data is protected for Read and Write		

It is possible to read some data from macrocells, such as connection matrix, Shift Registers State, and connection matrix virtual inputs. The I²C write will not have any impact on data in case data comes from macrocell output, except Connection Matrix Virtual Inputs. The silicon identification service bits allows identifying silicon family, its revision, and others.

See Section 18 for detailed information on all registers.

15.6 I²C ADDITIONAL OPTIONS

When Output latching during I^2C write, register [1113] = 1 allows all PINs output value to be latched until I^2C write is done. It will protect the output change due to configuration process during I^2C write in case multiple register bytes are changed. Inputs and internal macrocells retain their status during I^2C write.

If the user sets GPIO0 and GPIO1 function to a selection other than SDA and SCL, all access via I²C will be disabled.

Note: Any write commands that come to the device via I²C that are not blocked, based on the protection bits, will change the contents of the RAM register bits that mirror the NVM bits. These write commands will not change the NVM bits themselves, and a POR event will restore the register bits to original programmed contents of the NVM.

See Section 18 for detailed information on all registers.

15.6.1 I²C Byte Write Bit Masking

The I²C macrocell inside SLG46811 supports masking of individual bits within a byte that is written to the RAM memory space. This function is supported across the entire RAM memory space. To implement this function, the user performs a Byte Write Command (see Section 15.4.1 for details) on the I²C Byte Write Mask Register (address 0F6H) with the desired bit mask pattern. This sets a bit mask pattern for the target memory location that will take effect on the next Byte Write Command to this register byte. Any bit in the mask that is set to "1" in the I²C Byte Write Mask Register will mask the effect of changing that particular bit in the target register, during the next Byte Write Command. The contents of the I²C Byte Write Mask Register are reset (set to 00h) after valid Byte Write Command. If the next command received by the device is not a Byte Write Command, the effect of the bit masking function will be aborted, and the I²C Byte Write Mask Register will be reset with no effect. Figure 91 shows an example of this function.

Figure 91: Example of I²C Byte Write Bit Masking

16 Extended Pattern Generator

SLG46811 has an ability to read the data from the part of NVM and to set this data to the matrix inputs. This is done with help of Extended Pattern Generator that shares its output with I²C virtual inputs. Figure 92 shows I²C General block diagram with shared outputs. Registers [1078:1064] define I²C block configuration as Virtual Inputs or Pattern Generator, or GPI.

Figure 92: I²C General Block Diagram

Initial value of Extended Pattern Generator is defined by registers [495:488]. This value appears at the output of the macrocell after power up event and after applying low level at nReset input.

Every rising edge at Clk input generator loads byte from the NVM and this data appears at Pattern Generator outputs. The internal NVM pointer increases by 1. At the next rising edge new data from the next NVM byte will be loaded. The range of the data for the Extended Pattern Generator is 92 bytes from the NVM bit [1280] to the NVM bit [2015]. User can select the behavior of the Generator when the internal pointer reaches the last address of the NVM:

- If register [564] = 0, the internal counter will overflow.
- If register [564] = 1, the internal counter will stop when reaching the last byte of the NVM.

The maximum allowable speed of the EPG is 1 MHz.

The minimum duration of the clock pulse low and high level is 100 ns.

Low level at nReset input sets NVM pointer to the beginning and loads the initial value to the outputs. User can select any of Pattern Generator outputs to operate as Virtual Inputs.

17 Analog Temperature Sensor

The SLG46811 has an Analog Temperature sensor (TS) with an output voltage linearly-proportional to the Centigrade temperature. TS output can be selected as a source of MS ACMP channel. The TS is rated to operate over a -40°C to 85°C temperature range. The error in the whole temperature range does not exceed 5.96 %. For more detail refer to section 3.11.

The equation below calculates the typical analog voltage passed from the TS to the ACMPs' IN+ source input for V_{DD} = 2.3 V to 5.5 V . It is important to note that there will be a chip to chip variation of about ± 2 °C.

$$V_T = -4.8xT + 1825.2$$

where:

V_{TS} (mV) - TS Output Voltage.

T (°C) - Temperature

Temperature hysteresis can be setup by enabling the GreenPAK's internal ACMP hysteresis.

Figure 93: Analog Temperature Sensor Structure Diagram

Figure 94: TS Output vs. Temperature, V_{DD} = 2.3 V to 5.5 V

18 Register Definitions

18.1 REGISTER MAP

Table 42: Register Map

Address				
Byte	Register Bit	Signal Function	Register Bit Definition	
Matrix	Output			
	0			
	1			
	2		OUT0: IN0 of LUT2_0 or Clock Input of DFF0	
0	4			
	5			
	6	LUT2_0 & DFF0		
	7			
	8		OUT1:	
	9		IN1 of LUT2_0 or Data Input of DFF0	
	10 11			
1	12			
	13			
	14		OUT2:	
	15		IN0 of LUT2_1 or Clock Input of DFF1	
	16			
	17 18	LUT2_1 & DFF1		
	19		OUT3: IN1 of LUT2_1 or Data Input of DFF1	
2	20			
	21			
	22			
	23			
	24			
	25 26	-	OUT4:	
	27		IN0 of LUT2_2 or Clock Input of PGen	
3	28		_ ·	
	29	LUT2_2 & PGen		
	30			
	31			
	32 33		OUT5: IN1 of LUT2_2 or RSTB of PGen	
4	34		111 51 2012_2 61 110 11 611 661	
	35			

Table 42: Register Map (Continued)

A	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
	36		
4	37		
	38		OUT6:
	39		IN0 of LUT3_0 or CLK Input of DFF2
	40		
	41		
	42		
5	43		0.17
	44 45	LUT3_0 & DFF2	OUT7: IN1 of LUT3_0 or Data of DFF2
	46		1111 01 20 10_0 01 Batta 01 B1 1 2
	47		
	48		
	49		
	50		OUT8:
	51		IN2 of LUT3_0 or RSTB (SETB) of DFF2
6	52		
	53		
	54		
	55		
	56		OUT9:
	57		INO of LUT3_1 or CLK Input of DFF3
	58		
7	59		
	60		
	61	-	OUT40
	62 63	LUT3_1 & DFF3	OUT10: IN1 of LUT3_1 or Data of DFF3
	64		5. 25.15_1 of Bala of Bi 1 o
8 -	65		
	66		
	67		
	68		OUT11:
	69		IN2 of LUT3_1 or RSTB (SETB) of DFF3
-	70		
	71		

Table 42: Register Map (Continued)

	ddress	r wap (Continued)	
Byte	Register Bit	Signal Function	Register Bit Definition
	72		
	73		
	74		OUT12:
	75		IN0 of LUT3_2 or CLK Input of DFF4
9	76		
	77		
	78		
	79		
	80	LUT3_2 & DFF4	OUT13:
	81	2013_2 & 5114	IN1 of LUT3_2 or Data of DFF4
	82		
Α	83		
	84		
	85		l
	86		OUT14: IN2 of LUT3_2 or RSTB (SETB) of DFF4
	87 88		
	89		
	90		
	91		
В	92		OUT15:
	93		IN0 of LUT3_3 or CLK Input of DFF5
	94		_ ,
	95		
	96		
	97		
	98	LUT3_3 & DFF5	OUT16:
С	99	L013_3 & D113	IN1 of LUT3_3 or Data of DFF5
	100		
	101		
	102		
	103		l
	104		OUT17: IN2 of LUT3_3 or RSTB (SETB) of DFF5
	105 106		1142 OF E010_0 OF NOTE (OE1D) OF DITO
	107		
D	107		
	109		
	110		OUT18:
	111		IN0 of LUT3_4 or CLK Input of DFF6 or CLK input of SR0
	112		
	113	IIIT3 4 8 DEE6 9 SB0	
	114	LUT3_4 & DFF6 & SR0	
Е	115		
_	116		OUT19:
	117		IN1 of LUT3_4 or Data Input of DFF6 or Data Input of SR0
	118		
	119		

Table 42: Register Map (Continued)

Α	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
	120		
	121		OUT20:
	122	LUT3_4 & DFF6 & SR0	IN2 of LUT3 4 or RSTB (SETB) of DFF6 or RSTB(SETB)
F	123 124		input of SR0 /
	125		
	126		
	127		
	128		OUT21:
	129		IN0 of LUT3_5 or CLK Input of DFF7 or CLK input of SR1
	130		
10	131		
10	132		
	133		
	134	LUT3_5 & DFF7 & SR1	OUT22:
	135	_	IN1 of LUT3_5 or Data of DFF7 or Data Input of SR1
	136 137		
	138		
	139		
11	140		OUT23:
	141		IN2 of LUT3_5 or RSTB (SETB) of DFF7 or RSTB(SETB) input of SR1
	142		Imput of SK1
	143		
	144		
	145		
	146		OUT24:
12	147		IN0 of LUT3_6 or CLK Input of DFF8 or CLK input of SR2
	148		
	149		
	150 151		
	151		OUT25:
	153	LUT3_6 & DFF8 & SR2	OUT25: IN1 of LUT3 6 or Data of DFF8 or Data Input of SR2
	154		
4.0	155		
13	156		
	157		0.170
	158		OUT26: IN2 of LUT3_6 or RSTB (SETB) of DFF8 or RSTB(SETB)
	159		input of SR2
	160		
	161		
	162		
14	163		OUT OF
	164 165	LUT3_7 & DFF9 & SR3	OUT27: IN0 of LUT3_7 or CLK Input of DFF9 or CLK input of SR3
	166		into or 2010_1 or out input or bit 1 3 or out input or orto
	167		
	101		

Table 42: Register Map (Continued)

	ddress	er Map (Continued)	
Byte	Register Bit	Signal Function	Register Bit Definition
	168		
	169		
	170		OUT28:
15	171		IN1 of LUT3_7 or Data of DFF9 or Data Input of SR3
	172		
	173	LUT3_7 & DFF9 & SR3	
	174 175		
	176		OUT29:
	177		IN2 of LUT3_7 or RSTB (SETB) of DFF9 or RSTB(SETB)
	178		input of SR3
4.0	179		
16	180		
	181		21722
	182		OUT30: IN0 of LUT3_8 or CLK Input of DFF10
	183		Delay0 Input (or Counter5 RSTB Input)
	184		, ,
	185		
	186		
17	187	-Multi_function0	OUT31: IN1 of LUT3_8 or RSTB (SETB) of DFF10 Delay0 Input (or Counter5 RSTB Input)
	188 189		
	190		
	191		
	192		
	193		
	194		OUT32:
18	195		IN2 of LUT3_8 or Data of DFF10 Delay0 Input (or Counter5 RSTB Input)
10	196		Joseph Men (c. Commono : Co. 2 m.p.m.)
	197		
	198		
	199		OUT33:
	200		INO of LUT3 9 or CLK Input of DFF111
	201 202		Delay1 Input (or Counter 1 RSTB Input)
	202		
19	203		
	205		
	206		OUT34:
	207	Multi_function1	IN1 of LUT3 9 or RSTB (SETB) of DFF11 Delay1 Input (or Counter1 RSTB Input)
	208		
	209		
	210		
1A	211		OUT35:
', \	212		OUT35: IN2 of LUT3 9 or Data of DFF11
	213		Delay1 Input (or Counter1 RSTB Input)
	214		
	215		

CFR0011-120-00

Table 42: Register Map (Continued)

	ddress	map (Continued)	
	Register	Signal Function	Register Bit Definition
Byte	Bit		Trogistor Division
	216		
	217		
	218		OUT36:
45	219		IN0 of LUT3_10 or CLK Input of DFF12 Delay2 Input (or Counter2 RSTB Input)
1B	220		Boldy2 Input (of Counter2 No 1B input)
	221		
	222		
	223		0.1707
	224	Multi_function2	OUT37: IN1 of LUT3_10 or RSTB (SETB) of DFF12
	225	Turiodon2	Delay2 Input (or Counter2 RSTB Input)
	226		
1C	227		
	228		
	229		OUT38:
	230		IN2 of LUT3 10 or Data of DFF12
	231		Delay2 Input (or Counter2 RSTB Input)
	232 233		
	234		
	235		
1D	236		OUT39:
	237		INO of LUT3_11 or CLK Input of DFF13
	238	-	Delay3 Input (or Counter3 RSTB Input)
	239		
	240		
	241		OUT40: IN1 of LUT3_11 or RSTB (SETB) of DFF13 Delay3 Input (or Counter3 RSTB Input)
	242	NA. 14: 54: O	
1E	243	Multi_function3	
10	244		
	245		
	246		
	247		OUT 44.
	248		OUT41: IN2 of LUT3_11 or Data of DFF13
	249		Delay3 Input (or Counter3 RSTB Input)
	250		
1F	251		
	252		
	253 254		OUT42:
	254 255		IN0 of LUT3 12 or CLK Input of DFF14
	256		Delay4 Input (or Counter5 RSTB Input)
	257		
	258	Multi_function4	
	259		
20	260		OUT43:
	261		IN1 of LUT3_12 or RSTB (SETB) of DFF14 Delay4 Input (or Counter5 RSTB Input)
	262		Delay+ Input (or Counters Not B Input)
	263		
			I

Table 42: Register Map (Continued)

A	ddress		
Byte	Bit	Signal Function	Register Bit Definition
	264		
	265 266		OUT44:
	267	Multi_function4	IN2 of LUT3_12 or Data of DFF14
21	268		Delay4 Input (or Counter5 RSTB Input)
	269		
	270		
	271		OUT45:
	272 273		INO of LUT3 13 or CLK Input of DFF15
	274		Delay5 Input (or Counter5 RSTB Input)
	275		
22	276		
	277		OUT 40
	278	Multi_function5	OUT46: IN1 of LUT3_13 or RSTB (SETB) of DFF15
	279		Delay5 Input (or Counter5 RSTB Input)
	280 281		
	282		
00	283		
23	284		OUT47:
	285		IN2 of LUT3_13 or Data of DFF15 Delay5 Input (or Counter5 RSTB Input)
	286		
	287		
	288 289		
	290		OUT48:
0.4	291		IN0 of LUT4_0 or CLK Input of DFF16
24	292		
	293		
	294		
	295 296		OUT 40.
	296		OUT49: IN1 of LUT4 0 or Data of DFF16
	298		
25	299	LUT4_0_DFF16	
25	300	LU14_U_DFF10 	
	301		
	302		OUT50: IN2 of LUT4_0 or RSTB (SETB) of DFF16
	303 304		
	305		
	306		
26	307		
20	308		OUT51: IN3 of LUT4_0
	309		
	310 311		
	311		

Table 42: Register Map (Continued)

	ddress	i wap (Continued)	
Byte	Register Bit	Signal Function	Register Bit Definition
	312		
	313		
	314	Programmable Delay	OUT52:
27	315	Programmable Delay	Programmable Delay/Edge Detect Input
21	316		
	317		
	318		
	319		
	320	Filter/Edge Detect	OUT53:
	321		Filter/Edge Detect Input
	322		
28	323		
	324		
	325		
	326	GPIO0	OUT54: GPIO0 DOUT
	327		GF100 D001
	328 329		
	330		
	331		
29	332		OUTES
	333	GPIO1	OUT55: GPIO1 DOUT
	334		GI IOT BOOT
	335		
	336		
	337		
	338		OUT56:
	339		GPIO2 DOUT
2A	340		
	341		
	342	GPIO2	
	343		
	344		OUT57:
	345		GPIO2 DOUT OE
	346		
2B	347		
20	348		
	349		
	350		OUT58:
	351		GPIO3 DOUT
	352		
	353	GPIO3	
	354		
2C	355		
	356		OUT59:
	357		GPIO3 DOUT OE
	358		
	359		

Table 42: Register Map (Continued)

	ddress	er Map (Continued)	
		Signal Function	Register Bit Definition
Byte	Bit		register bit bemitten
	360		
	361		
	362		OUT60:
	363	GPIO4	GPIO4 DOUT
2D	364		
	365		
	366		
	367		
	368	GPIO5	OUT61:
	369	GFIOS	GPIO5 DOUT
	370		
2E	371		
2	372		
	373		
	374	GPI06	OUT62:
	375	0.100	GPIO6 DOUT
	376		
2F	377		
	378		
	379		
	380		OUT63: GPIO7 DOUT
	381 382		GFIOT BOOT
	383		
	384	GPIO7	
	385		
	386		OUT64:
	387		GPIO7 DOUT OE
30	388		
	389		
	390		
	391		
	392		OUT65:
	393		GPIO8 DOUT
	394		
31	395	GPIO8	
01	396		
	397		
	398		OUT66:
	399		GPIO8 DOUT OE
	400		
	401		
	402		
32	403		
	404	MS ACMP	OUT67: EN of MS ACMP
	405 406		LIN OF INIO ACIVII
	406		
	407		

Table 42: Register Map (Continued)

A	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
	408		
	409		
	410	MS ACMP	OUT68:
33	411	ING / LOWII	RSTB of ACMP LATs
	412		
	413		
	414		
	415		
	416	OSC0/1	OUT69: Oscillator Enable/Disable Input
	417		Oscillator Eriable/Disable Iriput
	418 419		
34	420		
	421		
	422		OUT70.
	423		OUT70: Clock of Pattern Generator
	424		0.000.00.0000
	425	LEPG	
	426	(Embedded Input Pattern Generator)	
	427	,	
35	428		OUT71:
	429		RESETB of Pattern Generator
	430		
	431		
	432	Matrix Input 0	GND
	433	Matrix Input 1	LUT2_0/DFF0 output
	434	Matrix Input 2	LUT2_1/DFF1 output
36	435	Matrix Input 3	LUT2_2/PGen output
30	436	Matrix Input 4	LUT3_0/DFF2 output
	437	Matrix Input 5	LUT3_1/DFF3 output
	438	Matrix Input 6	LUT3_2/DFF4 output
	439	Matrix Input 7	LUT3_3/DFF5 output
	440	Matrix Input 8	LUT3_4/DFF6/SR0 output
	441	Matrix Input 9	LUT3_5/DFF7/SR1 output
	442	Matrix Input 10	LUT3_6/DFF8/SR2 output
37	443	Matrix Input 11	LUT3_7/DFF9/SR3 output
	444	Matrix Input 12	CNT0 output
	445	Matrix Input 13	MLT0_LUT3_8/DFF10_OUT
	446	Matrix Input 14	CNT1 output
	447	Matrix Input 15	MLT1_LUT3_9/DFF11_OUT
	448	Matrix Input 16	CNT2 output
	449	Matrix Input 19	MLT2_LUT3_10/DFF12_OUT
	450 451	Matrix Input 18	CNT3 output
38	451 452	Matrix Input 19 Matrix Input 20	MLT3_LUT3_11/DFF13_OUT CNT4 output
	452 453	Matrix Input 20 Matrix Input 21	MLT4_LUT3_12/DFF14_OUT
	453 454	Matrix Input 21 Matrix Input 22	CNT5 output
	454 455	Matrix Input 23	MLT5 LUT3 13/DFF15 OUT
	400	Ινιατιλ Πιματ 20	WE19_F019_19/DEF19_001

Table 42: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	456	Virtual_0 Input	I2C_virtual_0 Input data value
	457	Virtual_1 Input	I2C_virtual_1 Input data value
•	458	Virtual 2 Input	I2C virtual 2 Input data value
20	459	Virtual_3 Input	I2C_virtual_3_input data value
39	460	Virtual_4 Input	I2C_virtual_4 Input data value
	461	Virtual_5 Input	I2C_virtual_5 Input data value
	462	Virtual_6 Input	I2C_virtual_6 Input data value
	463	Virtual_7 Input	I2C_virtual_7 Input data value
	464	Virtual_8 Input	I2C_virtual_8 Input data value
	465	Virtual_9 Input	I2C_virtual_9 Input data value
	466	Virtual_10 Input	I2C_virtual_10 Input data value
0.4	467	Virtual_11 Input	I2C_virtual_11 Input data value
3A	468	Virtual_12 Input	I2C_virtual_12 Input data value
	469	Virtual_13 Input	I2C_virtual_13 Input data value
•	470	Virtual 14 Input	I2C virtual 14 Input data value
	471	Matrix Input 39	LUT4_0/DFF16 output
	472	Matrix Input 40	GPI Digital Input
	473	Matrix Input 41	progdly_edgedet output
	474	Matrix Input 42	edgedet_filter output
3B	475	Matrix Input 43	OSC0 output 0
SB	476	Matrix Input 44	OSC1 output
	477	Matrix Input 45	ACMP0 Output
•	478	Matrix Input 46	ACMP1 Output
•	479	Matrix Input 47	ACMP2 Output
	480	Matrix Input 48	ACMP3 Output
•	481	Matrix Input 49	OSC0 output 1
•	482	Matrix Input 50	ACMP sync mode ready
3C	483	Matrix Input 51	Reset_core_matrix
30	484	Matrix Input 52	V_{DD}
	485	Reserved	
	486	Reserved	
	487	Reserved	
	488		
	489		
	490		
3D	491	EPG	Initial Value at POR & EPG RESETB
30	492	(Extended Pattern Generator)	Illinai value at i Oit a Li Giteoe ib
	493		
	494		
	495		
MS A	CMP		

Table 42: Register Map (Continued)

A	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
	496	Bandgap power down control	0: always on, 1: power down if no function enable it (ACMP, Vref, TS)
	497	Sampling enable	0: regular mode, 1: multi-channel sampling mode
	498	Edge enable	0: level sensitive mode, 1: edge sensitive mode
3E	499	Sync enable	0: ACMPs out async, 1: ACMPs out sync
02	500	as V _{DD})	0: disable, 1: enable
	501	Temp sensor enable (ACMP positive input selected as TS)	0: disable, 1: enable
	502		00: 1 channel,
	503	Define the number of sampling channels, NUM[1:0]	01: 2 channels, 10: 3 channels, 11: 4 channels
	504		00: APIO0,
	505	Define positive input channel on 1st sampling, CHS0[1:0]	01: APIO1, 10: APIO2 (or V _{DD} decided by register [500]), 11: APIO3 (or TS decided by register [501])
	506		00: APIO0,
3F	507	Define positive input channel on 2nd sampling, CHS1[1:0]	01: APIO1, 10: APIO2 (or V _{DD} decided by register [500]), 11: APIO3 (or TS decided by register [501])
ЭF	508		00: APIO0,
	509	Define positive input channel on 3rd sampling, CHS2[1:0]	01: APIO1, 10: APIO2 (or V _{DD} decided by register [500]), 11: APIO3 (or TS decided by register [501])
	510		00: APIO0,
	511	Define positive input channel on 4th sampling, CHS3[1:0]	01: APIO1, 10: APIO2 (or V _{DD} decided by register [500]), 11: APIO3 (or TS decided by register [501])
	512	ACMP LAT0 RST accessible selection	0: not accessible, 1: accessible
	513	ACMP LAT1 RST accessible selection	0: not accessible, 1: accessible
	514	ACMP LAT2 RST accessible selection	0: not accessible, 1: accessible
40	515	ACMP LAT3 RST accessible selection	0: not accessible, 1: accessible
	516		00: div1,
	517	Sampling CK selection	01: div2, 10: div4, 11:div8
	518	Reserved	
	519	Reserved	

Table 42: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	520		00: 0 mV, 01: 32 mV,
	521	ACMP0 hysteresis	10: 64mV; 11: 192 mV
	522		00: 0 mV,
44	523	ACMP1 hysteresis	01: 32 mV, 10: 64 mV, 11: 192 mV
41	524		00: 0 mV,
	525	ACMP2 hysteresis	01: 32 mV, 10: 64 mV, 11: 192 mV
	526		00: 0mV,
	527	ACMP3 hysteresis	01: 32 mV, 10: 64 mV, 11: 192 mV
	528		ACMP Gain Divider Select:
	529	ACMP0 Gain Divider	00: 1x; 01: 0.5x; 10: 0.33x; 11: 0.25x
42	530		
42	531		
	532	ACMP0 Vref	ACMP Vref Select: 000000: 32 mV ~ 111110: 2.016 V/step = 32 mV; 111111: External Vref
	533		
	534		
	535 536		ACMP Gain Divider Select:
	537	ACMP1 Gain Divider	00: 1x; 01: 0.5x; 10: 0.33x;
	538		11: 0.25x
43	539		
	540	A CAMPANY (ACMP Vref Select:
	541	ACMP1 Vref	000000: 32 mV ~ 111110: 2.016 V/ step = 32 mV; 111112: External Vref
	542		THE EXCHIGITATION
	543		
	544		ACMP Gain Divider Select:
	545	ACMP2 Gain Divider	00: 1x; 01: 0.5x; 10: 0.33x; 11: 0.25x
44	546		
	547		ACMP Vref Select:
	548	ACMP2 Vref	000000: 32 mV ~ 111110: 2.016 V/ step = 32 mV;
	549 550		111111: External Vref
	550 551		
	JJI		

Table 42: Register Map (Continued)

Α	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
	552		ACMP Gain Divider Select:
	553	ACMP3 Gain Divider	00: 1x; 01: 0.5x; 10: 0.33x; 11: 0.25x
45	554		
75	555		A CMP V CO L L
	556	ACMP3 Vref	ACMP Vref Select: 000000: 32 mV ~ 111110: 2.016 V/ step = 32 mV;
	557	, and a view	1111111: External Vref
	558		
	559		
	560	Reserved	Reserved
	561	Reserved	Reserved
	562	Reserved	Reserved
46	563	Reserved	Reserved
	564	EPG	EPG CNT overflow/keep selection 0: overflow to A0, 1: keep at FB
	565	Reserved	Reserved
OSC0	/1		
	566		00: OSC0 (2kHz/10kHz): Controlled by register
46	567	Oscillator Enable/Disable Input Selection from Matrix Output	OSC1 (25MHz): Controlled by register 01: OSC0 (2kHz/10kHz): Controlled by Matrix Output OSC1 (25MHz): Controlled by register 10: OSC0 (2kHz/10kHz): Controlled by register OSC1 (25MHz): Controlled by Matrix Output 11: OSC0 (2kHz/10kHz): Controlled by Matrix Output OSC1 (25MHz): Controlled by Matrix Output

Table 42: Register Map (Continued)

A	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
	568	OSC1 turn on by register	0: auto on by delay cells, 1: always on
	569	Matrix power down or on select	0: matrix down, 1: matrix on
47	570	External clock source enable	0: internal OSC1, 1: external clock from GPIO7
47	571	Output enable to matrix in 44	0: disable, 1: enable
	572		000: /1, 001: /2, 010: /4, 011: /8, 100: /12, 101: /24, 110: /48,
	573	Pre-divider ratio control	111: N/A
	574		
	575		000: /1, 001:/2, 010:/3, 011: /4, 100: /8, 101: /12, 110: /24, 111:
	576	Output mux control to matrix in 44	/64
	577		
	578	OSC0 turn on by register	0: auto on by delay cells 1: always on
	579	Matrix power down or on select	0: matrix down, 1: matrix on
48	580	External clock source enable	0: internal OSC0, 1: external clock from GPI
	581	OSC0 frequency selection	0: 2.048 kHz, 1: 10 kHz
	582		00: div 1;
	583	Pre-divider ratio control	01: div 2; 10: div 4; 11: div 8
	584	Output mux control to matrix in 43	000: /1, 001:/2, 010:/3, 011: /4, 100: /8, 101: /12, 110: /24, 111: /64
	585		
	586		
49	587	Output enable to matrix in 43	0: disable, 1: enable
	588	OSC0 2nd output mux control to matrix in 49	000: /1, 001:/2, 010:/3, 011: /4, 100: /8, 101: /12, 110: /24, 111: /64
	589		
	590		
	591	2nd output enable to matrix in 49	0: disable, 1: enable
	592	OSC1 startup delay with 100 ns	0: enable, 1: disable
4A	593	Reserved	Reserved
	594	IO fast Pull-up/down enable	0: disable, 1: enable
GPI			
	595		00: digital without Schmitt Trigger,
	596	Input mode configuration	01: digital with Schmitt Trigger, 10: low voltage digital in, 11: Reserved
4A	597		00: floating,
7/1	598	Pull-up/down resistance selection	01: 10K, 10: 100K, 11: 1M
	599	Pull-up/down selection	0: Pull-down, 1: Pull-up
GPIO)		-

Table 42: Register Map (Continued)

Δι	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
	600 601	Input mode configuration	00: digital without Schmitt Trigger, 01: digital with Schmitt Trigger, 10: low voltage digital in, 11: reserved
	602 603	Pull-up/down resistance selection	00: floating, 01: 10K, 10: 100K, 11: 1M
4B	604	Pull-up/down selection	0: Pull-down, 1: Pull-up
	605	I ² C mode selection	0: I2C fast mode +, 1: I2C standard/fast mode
	606	Open-drain output enable (3.2x drivability)	0: disable, 1: enable (3.2x)
	607	Reserved	
GPIO ²	1		
	608	Input mode configuration	00: digital without Schmitt Trigger, 01: digital with Schmitt Trigger, 10: low voltage digital in, 11: reserved
40	610 611	Pull-up/down resistance selection	00: floating, 01: 10K, 10: 100K, 11: 1M
4C	612	Pull-up/down selection	0: Pull-down, 1: Pull-up
	613	Open-drain output enable (3.2x drivability)	0: disable, 1: enable (3.2x)
	614	Reserved	
	615	Reserved	
GPIO2	2		
	616	Input mode configuration	00: digital without Schmitt Trigger, 01: digital with Schmitt Trigger, 10: low voltage digital in, 11: reserved
	618		00: Push-Pull 1x,
4D	619	Output mode configuration	01: Push-Pull 2x, 10: 1x Open-Drain, 11: 2x Open-Drain
	620 621	Pull-up/down resistance selection	00: floating, 01: 10K, 10: 100K, 11: 1M
	622	Pull-up/down selection	0: Pull-down, 1: Pull-up
	623	Reserved	
GPIO:	3		
	624		00: digital without Schmitt Trigger,
	625	Input mode configuration	01: digital with Schmitt Trigger, 10: low voltage digital in, 11: analog IO
	626		00: Push-Pull 1x,
4E	627	Output mode configuration	01: Push-Pull 2x, 10: 1x Open-Drain, 11: 2x Open-Drain
ļ	628 629	Pull-up/down resistance selection	00: floating, 01: 10K, 10: 100K, 11: 1M
	630	Pull-up/down selection	0: Pull-down, 1: Pull-up
	631	Reserved	

Table 42: Register Map (Continued)

Address		
Register	Signal Function	Register Bit Definition
4		
632 633	Input mode configuration	00: digital without Schmitt Trigger, 01: digital with Schmitt Trigger, 10: low voltage digital in, 11: analog IO
634 635	Output mode configuration	00: Push-Pull 1x, 01: Push-Pull 2x, 10: 1x Open-Drain, 11: 2x Open-Drain
636 637	Pull-up/down resistance selection	00: floating, 01: 10K, 10: 100K, 11: 1M
638	Pull-up/down selection	0: Pull-down, 1: Pull-up
639	Input mode/output mode selection	0: input, 1: output
640	Input mode configuration	00: digital without Schmitt Trigger, 01: digital with Schmitt Trigger, 10: low voltage digital in, 11: analog IO
642		00: Push-Pull 1x,
643	Output mode configuration	01: Push-Pull 2x, 10: 1x Open-Drain, 11: 2x Open-Drain
644 645	Pull-up/down resistance selection	00: floating, 01: 10K, 10: 100K, 11: 1M
646	Pull-up/down selection	0: Pull-down, 1: Pull-up
647	Input mode/output mode selection	0: input, 1: output
6		
648	Input mode configuration	00: digital without Schmitt Trigger, 01: digital with Schmitt Trigger, 10: low voltage digital in, 11: analog IO
650		00: Push-Pull 1x,
651	Output mode configuration	01: Push-Pull 2x, 10: 1x Open-Drain, 11: 2x Open-Drain
652 653	Pull-up/down resistance selection	00: floating, 01: 10K, 10: 100K, 11: 1M
654	Pull-up/down selection	0: Pull-down, 1: Pull-up
655	Input mode/output mode Selection	0: input, 1: output
7		
656 657	Input mode configuration	00: digital without Schmitt Trigger, 01: digital with Schmitt Trigger, 10: low voltage digital in,
		11: analog IO 00: Push-Pull 1x,
659	Output mode configuration	01: Push-Pull 2x, 10: 1x Open-Drain, 11: 2x Open-Drain
	Register Bit 4 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 65 648 649 650 651 652 653 654 655 7 656 657 658	Register Bit 4 632 633 Input mode configuration 634 635 Output mode configuration 636 637 638 Pull-up/down resistance selection 639 Input mode/output mode selection 640 641 Input mode configuration 642 643 Output mode configuration 644 645 Pull-up/down resistance selection 647 Input mode/output mode selection 648 649 Input mode/output mode selection 650 651 Output mode configuration 652 653 Pull-up/down resistance selection 654 Pull-up/down resistance selection 655 Input mode configuration 656 Input mode configuration 657 Input mode/output mode Selection 658 Output mode configuration

Table 42: Register Map (Continued)

Α	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
	660 661	Pull-up/down resistance selection	00: floating, 01: 10K, 10: 100K, 11: 1M
52	662	Pull-up/down selection	0: Pull-down, 1: Pull-up
	663	Analog input enable for ACMP3 IP	0: disable, 1: enable
GPIO	8		
	664		00: digital without Schmitt Trigger,
	665	Input mode configuration	01: digital with Schmitt Trigger, 10: low voltage digital in, 11: Reserved
	666		00: Push-Pull 1x,
	207	Output mode configuration	01: Push-Pull 2x,
53	667		10: 1x Open-Drain, 11: 2x Open-Drain
	668		·
	669	Pull-up/down resistance selection	00: floating, 01: 10K, 10: 100K, 11: 1M
		D /	0: Pull-down,
	670	Pull-up/down selection	1: Pull-up
	671	Reserved	
		Single 3-bit LUT	00000: Matrix A - In2; Matrix B - In1; Matrix C - In0 (DLY_IN - LOW)
		Single DFF w RST and SET	10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DLY_IN - LOW)
		Single CNT/DLY	00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK (CNT); Matrix C - NC (DLY_OUT connected to LUT/DFF)
		CNT/DLY → LUT	00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0 (DLY_OUT connected to In2)
F.4		CNT/DLY → DFF	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST; Matrix C - CLK (DLY_OUT connected to D)
54	676:672	CNT/DLY → LUT	00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0 (DLY_OUT connected to In1)
		CNT/DLY → DFF	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)
		CNT/DLY → LUT	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY_IN (DLY_OUT connected to In0)
		CNT/DLY → DFF	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN (DLY_OUT connected to CLK)
		LUT → CNT/DLY	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)
		DFF → CNT/DLY	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DFF_OUT connected to DLY_IN)

Table 42: Register Map (Continued)

Α	ddress	·	
Byte		Signal Function	Register Bit Definition
	677		0000: both edge Delay;
54	678		0001: falling edge delay; 0010: rising edge delay:
	679 680	CNT0 function and edge mode selection	0011: hing edge delay: 0011: both edge One Shot; 0100: falling edge One Shot; 0101: rising edge One Shot; 0110: both edge freq detect; 0111: falling edge freq detect; 1000: rising edge freq detect; 1001: both edge detect; 1010: falling edge detect; 1011: rising edge detect; 1100: both edge reset cnt; 1101: falling edge reset cnt; 1111: high level reset cnt
	681		00: bypass the initial;
	682	CNT0 initial value selection	01: initial 0; 10: initial 1; 11: initial 1
55	683		Clock source sel [3:0]
	684		0000: OSC1(25MHz); 0001: OSC1/4;
	685		0010: OSC1/8; 0011: OSC1/64;
	686	DLY/CNT0 Clock Source Select	0110: OSC1/512; 0101: OSC0(2K/10KHz); 0110: OSC0/8; 0111: OSC0/12; 1000: OSC0/24; 1001: OSC0/64; 1010: OSC0/512; 1011: OSC0/4096 1100: CNT4_END; 1101: External;
	687	CNT0 output pol selection	0: Default Output, 1: Inverted Output
	688	CNT0 CNT mode SYNC selection	0: bypass; 1: after two DFF
	689	CNT0 DLY EDET FUNCTION Selection	0: normal; 1: DLY function edge detection (registers [679:677] = 0000/ 0001/0010)
	690	CNT0 SET/RST Selection	0: Reset to 0 (High CNT output at CNT reset), 1: Set to data (Low CNT output at CNT reset)
56	691	FSM0 UP signal SYCN selection	0: bypass; 1: after two DFF
	692	Reserved	
	693	CNT1 output pol selection	0: Default Output, 1: Inverted Output
	694	CNT1 CNT mode SYNC selection	0: bypass; 1: after two DFF
	695	CNT1 DLY EDET FUNCTION Selection	0: normal; 1: DLY function edge detection (register [703:701] = 0000/ 0001/0010)

Table 42: Register Map (Continued)

A	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
		Single 3-bit LUT	00000: Matrix A - In2; Matrix B - In1; Matrix C - In0 (DLY_IN - LOW)
		Single DFF w RST and SET	10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DLY_IN - LOW)
		Single CNT/DLY	00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK (CNT); Matrix C - NC (DLY_OUT connected to LUT/DFF)
		CNT/DLY → LUT	00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0 (DLY_OUT connected to In2)
		CNT/DLY → DFF	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST; Matrix C - CLK (DLY_OUT connected to D)
57	700:696	CNT/DLY → LUT	00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0 (DLY_OUT connected to In1)
		CNT/DLY → DFF	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)
		CNT/DLY → LUT	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY_IN (DLY_OUT connected to In0)
		CNT/DLY → DFF	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN (DLY_OUT connected to CLK)
		LUT → CNT/DLY	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)
		$DFF \to CNT/DLY$	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DFF_OUT connected to DLY_IN)
	701 702		0000: both edge Delay; 0001: falling edge delay;
	703		0010: rising edge delay: 0011: both edge One Shot;
			0100: falling edge One Shot;
			0101: rising edge One Shot;
			0110: both edge freq detect; 0111: falling edge freq detect;
		CNT1 function and edge mode selection	1000: rising edge freq detect;
	704		1001: both edge detect; 1010: falling edge detect;
E0			1010: railing edge detect, 1011: rising edge detect;
58			1100: both edge reset cnt;
			1101: falling edge reset cnt; 1110: rising edge reset cnt;
			1111: high level reset cnt
	705		00: bypass the initial;
	706	CNT1 initial value selection	01: initial 0; 10: initial 1:
	700	700	

Table 42: Register Map (Continued)

A	ddress			
Byte	Register Bit	Signal Function	Register Bit Definition	
	707		Clock source sel [3:0]	
	708		0000: OSC1(25MHz); 0001: OSC1/4;	
	709		0001: OSC 1/4, 0010: OSC 1/8;	
			0011: OSC1/64;	
			0100: OSC1/512;	
		DLY/CNT1 Clock Source Select	0101: OSC0(2K/10KHz); 0110: OSC0/8;	
58		DET/CIVIT Clock Source Select	0111: OSC0/12;	
	710		1000: OSC0/24;	
			1001: OSC0/64;	
			1010: OSC0/512; 1011: OSC0/4096	
			1100: CNT4_END;	
			1101: External;	
	711	Reserved		
		Single 3-bit LUT	00000: Matrix A - In2; Matrix B - In1; Matrix C - In0	
		Single 3-bit LOT	(DLY IN - LOW)	
		Single DFF w RST and SET	10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DLY_IN - LOW)	
				00001: Matrix A - DLY IN (CNT); Matrix B - EXT CLK (CNT);
		Single CNT/DLY	Matrix C - NC (DLY OUT connected to LUT/DFF)	
			00010: Matrix A - DLY IN; Matrix B - In1; Matrix C - In0	
		CNT/DLY → LUT	(DLY_OUT connected to In2)	
		ONT/DIV DEE	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST;	
		CNT/DLY → DFF	Matrix C - CLK (DLY OUT connected to D)	
59	716:712	CNT/DLY → LUT	00110: Matrix A - In2; Matrix B - DLY IN; Matrix C - In0	
		CNT/DLY → LOT	(DLY_OUT connected to In1)	
		CNT/DLY → DFF	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)	
		CNT/DLY → LUT	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY IN	
		GNI/BEI -> EO I	(DLY_OUT connected to In0)	
		CNT/DLY → DFF	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN	
		0.1.7521 7.511	(DLY_OUT connected to CLK)	
		LUT → CNT/DLY	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)	
		DFF → CNT/DLY	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK	
		DIT ONIDET	(DFF_OUT connected to DLY_IN)	

Table 42: Register Map (Continued)

Address		r map (Continued)		
Byte	Register Bit	Signal Function	Register Bit Definition	
59	717 718 719		0000: both edge Delay; 0001: falling edge delay; 0010: rising edge delay: 0011: both edge One Shot;	
	720	CNT2 function and edge mode selection	0100: falling edge One Shot; 0101: rising edge One Shot; 0110: both edge freq detect; 0111: falling edge freq detect; 1000: rising edge freq detect; 1001: both edge detect; 1010: falling edge detect; 1011: rising edge detect; 1100: both edge reset cnt; 1101: falling edge reset cnt; 1110: rising edge reset cnt; 1111: high level reset cnt	
	721	CNT2 initial value selection	00: bypass the initial; 01: initial 0;	
	722	CIVIZ IIIIII Value Selection	10: initial 1; 11: initial 1	
5A	723		Clock source sel [3:0]	
	724		0000: OSC1(25MHz); 0001: OSC1/4;	
	725		0010: OSC1/8;	
	726	DLY/CNT2 Clock Source Select	0011: OSC1/64; 0100: OSC1/512; 0101: OSC0(2K/10KHz); 0110: OSC0/8; 0111: OSC0/12; 1000: OSC0/24; 1001: OSC0/64; 1010: OSC0/512; 1011: OSC0/4096; 1100: CNT4_END; 1101:External;	
	727	CNT2 output pol selection	0: Default Output, 1: Inverted Output	
	728	CNT2 CNT mode SYNC selection	0: bypass; 1: after two DFF	
	729	CNT2 DLY EDET FUNCTION Selection	0: normal; 1: DLY function edge detection (register [719:717] = 0000/ 0001/0010)	
	730	Reserved		
55	731	CNT3 output pol selection	0: Default Output, 1: Inverted Output	
5B	732	CNT3 CNT mode SYNC selection	0: bypass; 1: after two DFF	
	733	CNT3 DLY EDET FUNCTION Selection	0: normal; 1: DLY function edge detection (registers [743:742] = 0000/ 0001/0010)	
	734		00: bypass the initial;	
	735	CNT3 initial value selection	01: initial 0; 10: initial 1; 11: initial 1	

Table 42: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
		Single 3-bit LUT	00000: Matrix A - In2; Matrix B - In1; Matrix C - In0 (DLY_IN - LOW)
		Single DFF w RST and SET	10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DLY_IN - LOW)
		Single CNT/DLY	00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK (CNT); Matrix C - NC (DLY_OUT connected to LUT/DFF)
		CNT/DLY → LUT	00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0 (DLY_OUT connected to In2)
	740:736	$CNT/DLY \to DFF$	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST; Matrix C - CLK (DLY_OUT connected to D)
5C		CNT/DLY → LUT	00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0 (DLY_OUT connected to In1)
		CNT/DLY → DFF	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)
		CNT/DLY → LUT	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY_IN (DLY_OUT connected to In0)
		CNT/DLY → DFF	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN (DLY_OUT connected to CLK)
		LUT → CNT/DLY	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)
		DFF → CNT/DLY	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DFF_OUT connected to DLY_IN)
	741		0000: both edge Delay; 0001: falling edge delay;
	742 743		0010: rising edge delay:
	, 10		0011: both edge One Shot; 0100: falling edge One Shot;
5D	744	CNT3 function and edge mode selection	0101: rising edge One Shot; 0110: both edge freq detect; 0111: falling edge freq detect; 1000: rising edge freq detect; 1001: both edge detect; 1010: falling edge detect; 1011: rising edge detect; 1100: both edge reset cnt; 1110: falling edge reset cnt; 1111: high level reset cnt

Table 42: Register Map (Continued)

	ddress	(Continued)	
Byte	Register Bit	Signal Function	Register Bit Definition
5D	745 746 747 747	DLY/CNT3 Clock Source Select	Clock source sel [3:0] 0000: OSC1(25MHz); 0001: OSC1/4; 0010: OSC1/8; 0011: OSC1/64; 0100: OSC1/512; 0101: OSC0 (2K/10KHz); 0110: OSC0/8; 0111: OSC0/12; 1000: OSC0/24; 1001: OSC0/64; 1010: OSC0/512; 1011: OSC0/4096 1100: CNT4_END;
	749	CNT4 output pol selection	1101:External; 0: Default Output, 1: Inverted Output
	750	CNT4 CNT mode SYNC selection	0: bypass; 1: after two DFF
	751	CNT4 DLY EDET FUNCTION Selection	0: normal; 1: DLY function edge detection (registers [759:757] = 0000/ 0001/0010)
		Single 3-bit LUT	00000: Matrix A - In2; Matrix B - In1; Matrix C - In0 (DLY_IN - LOW)
		Single DFF w RST and SET	10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DLY_IN - LOW)
		Single CNT/DLY	00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK (CNT); Matrix C - NC (DLY_OUT connected to LUT/DFF)
		CNT/DLY → LUT	00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0 (DLY_OUT connected to In2)
5E	756:752	CNT/DLY → DFF	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST; Matrix C - CLK (DLY_OUT connected to D)
⊃E	750:752	CNT/DLY → LUT	00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0 (DLY_OUT connected to In1)
		CNT/DLY → DFF	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)
		CNT/DLY → LUT	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY_IN (DLY_OUT connected to In0)
		CNT/DLY → DFF	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN (DLY_OUT connected to CLK)
		LUT → CNT/DLY	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)
		DFF → CNT/DLY	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DFF_OUT connected to DLY_IN)

Table 42: Register Map (Continued)

	ddress	(Continued)	
Byte	Register Bit	Signal Function	Register Bit Definition
5E	757 758 759		0000: both edge Delay; 0001: falling edge delay; 0010: rising edge delay:
	760	CNT4 function and edge mode selection	0011: both edge One Shot; 0100: falling edge One Shot; 0101: rising edge One Shot; 0110: both edge freq detect; 0111: falling edge freq detect; 1000: rising edge freq detect; 1001: both edge detect; 1010: falling edge detect; 1011: rising edge detect; 1100: both edge reset cnt; 1101: falling edge reset cnt; 1111: high level reset cnt
	761		00: bypass the initial;
5F	762	CNT4 initial value selection	01: initial 0; 10: initial 1; 11: initial 1
	763		Clock source sel [3:0]
	764		0000: OSC1(25MHz); 0001: OSC1/4;
	765 766	DLY/CNT4 Clock Source Select Reserved	0010: OSC1/8; 0011: OSC1/64; 0100: OSC0/2K/10KHz); 0101: OSC0/8; 0111: OSC0/12; 1000: OSC0/24; 1001: OSC0/64; 1010: OSC0/512; 1011: OSC0/4096 1100: CNT4_END; 1101: External;
			00000: Matrix A - In2; Matrix B - In1;
		Single 3-bit LUT	Matrix C - In0 (DLY_IN - LOW) 10000: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK
		Single DFF w RST and SET Single CNT/DLY	(DLY_IN - LOW) 00001: Matrix A - DLY_IN (CNT); Matrix B - EXT_CLK (CNT); Matrix C - NC (DLY_OUT connected to LUT/DFF)
60	772:768	CNT/DLY → LUT	00010: Matrix A - DLY_IN; Matrix B - In1; Matrix C - In0 (DLY_OUT connected to In2)
		CNT/DLY → DFF	10010: Matrix A - DLY_IN; Matrix B - nSET/nRST; Matrix C - CLK (DLY_OUT connected to D)
		CNT/DLY → LUT	00110: Matrix A - In2; Matrix B - DLY_IN; Matrix C - In0 (DLY_OUT connected to In1)
		CNT/DLY → DFF	10110: Matrix A - D; Matrix B - DLY_IN; Matrix C - CLK (DLY_OUT connected to nSET/nRST)

Table 42: Register Map (Continued)

Address		er map (Continued)	
	Register	Signal Function	Register Bit Definition
Byte	Bit		Trogistor Bit Bommuon
		CNT/DLY → LUT	01010: Matrix A - In2; Matrix B - In1; Matrix C - DLY_IN (DLY_OUT connected to In0)
	772:768	CNT/DLY → DFF	11010: Matrix A - D; Matrix B - nSET/nRST; Matrix C - DLY_IN (DLY_OUT connected to CLK)
60		LUT → CNT/DLY	00011: Matrix A - In2; Matrix B - In1; Matrix C - In0 (LUT_OUT connected to DLY_IN)
		DFF → CNT/DLY	10011: Matrix A - D; Matrix B - nSET/nRST; Matrix C - CLK (DFF_OUT connected to DLY_IN)
	773		0000: both edge Delay;
	774		0001: falling edge delay; 0010: rising edge delay:
	775		0011: both edge One Shot;
			0100: falling edge One Shot; 0101: rising edge One Shot;
			0110: both edge freq detect;
		CNT5 function and edge mode selection	0111: falling edge freq detect;
		ONTO function and edge mode selection	1000: rising edge freq detect;
	776		1001: both edge detect; 1010: falling edge detect;
			1011: rising edge detect;
			1100: both edge reset cnt;
			1101: falling edge reset cnt; 1110: rising edge reset cnt;
			1110: High level reset cnt
	777		00: bypass the initial;
		CNT5 initial value selection	01: initial 0;
	778		10: initial 1; 11: initial 1
61	779		Clock source sel [3:0]
	780		0000: OSC1(25MHz);
	781	-	0001: OSC1/4; 0010: OSC1/8;
	701		0010: OSC1/64;
		DIV/ONTE OL LO OLL I	0100: OSC1/512;
			0101: OSC0 (2K/10KHz);
		DLY/CNT5 Clock Source Select	0110: OSC0/8; 0111: OSC0/12;
	782		1000: OSC0/24;
			1001: OSC0/64;
			1010: OSC0/512; 1011: OSC0/4096
			1100: CNT4_END;
			1101:External;
	783	CNT5 output pol selection	0: Default Output, 1: Inverted Output
	784	CNT5 CNT mode SYNC selection	0: bypass; 1: after two DFF
	785	CNT5 DLY EDET FUNCTION Selection	0: normal; 1: DLY function edge detection (registers [775:773] = 0000/ 0001/0010)
62	786	Reserved	Reserved
	787	Reserved	Reserved
	788	Reserved	Reserved
	789	Reserved	Reserved
	790	Reserved	Reserved
	791	Reserved	Reserved

Table 42: Register Map (Continued)

A	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
	792		[7]:LUT3_8 [7]/DFF10 or LATCH Select
	793		0: DFF function, 1: LATCH function
	794		[6]:LUT3_8 [6]/DFF10 Output Select 0: Q output, 1: QB output
63	795	Multi0_LUT3_8_DFF10 setting	[5]:LUT3 8 [5]/DFF10
	796		0: RSTB from Matrix Output, 1: SETB from Matrix Output
	797 798		[4]:LUT3_8 [4]/DFF10 Initial Polarity Select 0: Low, 1: High
	798		[3:0]:LUT3_8 [3:0]
	800		
	801		
	802		
0.4	803	DEC ONTO DE O	5 4 75 03
64	804	REG_CNT0_D[7:0]	Data[7:0]
	805		
	806		
	807		
	808		[7]:LUT3_9 [7]/DFF11 or LATCH Select
	809		0: DFF function, 1: LATCH function
65	810		[6]:LUT3_9 [6]/DFF11 Output Select 0: Q output, 1: QB output
	811	Multi1_LUT3_9_DFF11 setting	[5]:LUT3 9 [5]/DFF11
	812		0: RSTB from Matrix Output, 1: SETB from Matrix Output
	813 814		[4]:LUT3_9 [4]/DFF11 Initial Polarity Select 0: Low, 1: High
	815		[3:0]:LUT3_9 [3:0]
	816		
	817		
	818		
00	819		D 4 77 03
66	820	REG_CNT1_D[7:0]	Data[7:0]
	821		
	822		
	823		
	824		[7]:LUT3_10 [7]/DFF12 or LATCH Select
	825		0: DFF function, 1: LATCH function
	826		[6]:LUT3_10 [6]/DFF12 Output Select 0: Q output, 1: QB output
67	827	Multi2_LUT3_10_DFF12 setting	[5]:LUT3 10 [5]/DFF12
	828 829		0: RSTB from Matrix Output, 1: SETB from Matrix Output [4]:LUT3_10 [4]/DFF12 Initial Polarity Select
	830		0: Low, 1: High
	831		[3:0]:LUT3_10 [3:0]
	832		
	833		
	834		
60	835	DEC CNT2 DIZ:01	Deta[7:0]
68	836	REG_CNT2_D[7:0]	Data[7:0]
	837		
	838		
	839		

Table 42: Register Map (Continued)

A	ddress		
Byte		Signal Function	Register Bit Definition
	840		[7]:LUT3_11 [7]/DFF13 or LATCH Select
	841		0: DFF function, 1: LATCH function
	842		[6]:LUT3_11 [6]/DFF13 Output Select 0: Q output, 1: QB output
69	843	Multi3_LUT3_11_DFF13 setting	[5]:LUT3 11 [5]/DFF13
	844		0: RSTB from Matrix Output, 1: SETB from Matrix Output
	845 846		[4]:LUT3_11 [4]/DFF13 Initial Polarity Select 0: Low, 1: High
	847		[3:0]:LUT3_11 [3:0]
	848		
	849		
	850		
	851	DEC ONTO DIT OF	5
6A	852	REG_CNT3_D[7:0]	Data [7:0]
	853		
	854		
	855		
	856		[7]:LUT3_12 [7]/DFF14 or LATCH Select
6B	857		0: DFF function, 1: LATCH function
	858		[6]:LUT3_12 [6]/DFF14 Output Select 0: Q output, 1: QB output
	859	Multi4 LUT3 12 DFF14 setting	[[5]:LUT3 12 [5]/DFF14
	860		0: RSTB from Matrix Output, 1: SETB from Matrix Output
	861 862		[4]:LUT3_12 [4]/DFF14 Initial Polarity Select 0: Low, 1: High
	863		[3:0]:LUT3_12 [3:0]
	864		
	865		
	866		
00	867	DEC ONTA DIZ-01	D-4- [7:0]
6C	868	REG_CNT4_D[7:0]	Data [7:0]
	869		
	870		
	871		
	872		[7]:LUT3_13 [7]/DFF15 or LATCH Select
	873		0: DFF function, 1: LATCH function
	874		[6]:LUT3_13 [6]/DFF15 Output Select 0: Q output, 1: QB output
6D	875 876	Multi5_LUT3_13_DFF15 setting	[5]:LUT3 13 [5]/DFF15
	877		0: RSTB from Matrix Output, 1: SETB from Matrix Output [4]:LUT3_13 [4]/DFF15 Initial Polarity Select
	878		0: Low, 1: High
	879		[3:0]:LUT3_13 [3:0]
	880		
	881		
	882		
6E	883	DEC CNT5 DIZ-01	Data[7:0]
0⊏	884	REG_CNT5_D[7:0]	Data[7:0]
	885		
	886		
	887		

Table 42: Register Map (Continued)

	ddress	er map (Continued)	
		Signal Function	Register Bit Definition
Byte	Bit		
	888		[7]:LUT3_0 [7]/DFF2 or LATCH Select
	889		0: DFF function, 1: LATCH function
	890		[6]:LUT3_0 [6]/DFF2 Output Select 0: Q output, 1: QB output
	891		[5]:LUT3_0 [5]/DFF2 Initial Polarity Select
6F	892	LUT3 0 DFF2 setting	0: Low, 1: High [4]:LUT3_0 [4]/DFF2 stage selection
01	893	LOTO_O_DIT 2 Setting	0: Q of first DFF; 1: Q of second DFF
	894		[3]:LUT3_0 [3]/DFF2
			0: RSTB from Matrix Output, 1: SETB from Matrix Output [2]:LUT3_0 [2]/DFF2 Active level selection for RST/SET
	895		0: Active low level reset/set, 1: Active high level reset/set
	000		[1:0]: LUT3_0 [1:0]
	896 897		[7]:LUT3_1 [7]/DFF3 or LATCH Select 0: DFF function, 1: LATCH function
	898		[6]:LUT3_1 [6]/DFF3 Output Select
	899		0: Q output, 1: QB output [5]:LUT3_1 [5]/DFF3 Initial Polarity Select
70	900	LUT3_1_DFF3 setting	0: Low. 1: High
	901		[4]:LUT3_1 [4]/DFF3
	902		0: RSTB from Matrix Output, 1: SETB from Matrix Output [3]:LUT3_1 [3]/DFF3 Active level selection for RST/SET
	903		0: Active low level reset/set, 1: Active high level reset/set
	904		[2:0]: LUT3_1 [2:0] [7]:LUT3_2 [7]/DFF4 or LATCH Select
	904		0: DFF function, 1: LATCH function
	906		[6]:LUT3_2 [6]/DFF4 Output Select
	907	LUT3_2_DFF4 setting	0: Q output, 1: QB output [5]:LUT3_2 [5]/DFF4 Initial Polarity Select
71	908		0: Low, 1: High
	909		[4]:LUT3_2 [4]/DFF4 0: RSTB from Matrix Output, 1: SETB from Matrix Output
	910		[3]:LUT3_2 [3]/DFF4 Active level selection for RST/SET
	911		0: Active low level reset/set, 1: Active high level reset/set [2:0]: LUT3_2 [2:0]
	912		[7]:LUT3 3 [7]/DFF5 or LATCH Select
	913		0: DFF function, 1: LATCH function [6]:LUT3 3 [6]/DFF5 Output Select
	914		0: Q output, 1: QB output
70	915	LUT3_3_DFF5 setting	[5]:LUT3 3 [5]/DFF5 Initial Polarity Select
72	916		0: Low, 1: High [4]:LUT3_3 [4]/DFF5
	917		0: RSTB from Matrix Output, 1: SETB from Matrix Output
	918		[3]:LUT3_3 [3]/DFF5 Active level selection for RST/SET 0: Active low level reset/set, 1: Active high level reset/set
	919		[2:0]: LUT3_3 [2:0]
	920	LUT3_0 or DFF2 Select	0: LUT3_0, 1: DFF2
	921	LUT3_1 or DFF3 Select	0: LUT3_1, 1: DFF3
	922	LUT3_2 or DFF4 Select	0: LUT3_2, 1: DFF4
73	923	LUT3_3 or DFF5 Select	0: LUT3_3, 1: DFF5
	924	Reserved	
	925	Reserved	
	926	Reserved	
	927	LUT4_0 or DFF16 Select	0: LUT4_0, 1: DFF16

Table 42: Register Map (Continued)

Address		(Continued)	
Byte	Register Bit	Signal Function	Register Bit Definition
	928		
	929		
	930		
7.4	931		[15]:LUT4_0 [15]/DFF16 or LATCH Select
74	932		0: DFF function, 1: LATCH function
	933		[14]:LUT4_0 [14]/DFF16 Output Select 0: Q output, 1: QB output
	934		[13]:LUT4 0 [13]/DFF16 Initial Polarity Select
	935	LUT4 0 DFF16 setting	0: Low, 1: High [12]:LUT4_0 [12]/DFF16 stage selection
	936	LOT4_0_DIT TO Setting	0: Q of first DFF; 1 Q of second DFF
	937		[11]:LUT4 0 [11]/DFF16
	938		0: RSTB from Matrix Output, 1: SETB from Matrix Output [10]:LUT4 0 [10]/DFF16 Active level selection for RST/SET
75	939		0: Active low level reset/set, 1: Active high level reset/set
	940		[9:0]: LUT4_0 [9:0]
	941		
	942		
	943		
	944	Reserved	
	945	Reserved	
	946	Reserved	
•	947	Reserved	0: LUT3 4
76	948	LUT3_4 or DFF6/LATCH6/SR0 selection	1: DFF6/LATCH6/SR0
	949	LUT3_5 or DFF7/LATCH7/SR1 selection	0: LUT3_5 1: DFF7/LATCH7/SR1
	950	LUT3_6 or DFF8/LATCH8/SR2 selection	0: LUT3_6 1: DFF8/LATCH8/SR2
	951	LUT3_7 or DFF9/LATCH9/SR3 selection	0: LUT3_7 1: DFF9/LATCH9/SR3
	952		[7]:DFF or LATCH Select
	953		0: DFF function, 1: LATCH function
	954		[6]:DFF/LATCH/SR/Output polarity select
	955		0: non-inverted output, 1: inverted output
	956		[5] Reserved
	957		[4]:DFF/LATCH/SR RSTB or SETB selection
	958		0: RSTB from Matrix Output, 1: SETB from Matrix Output
77	959	DFF6/SR0 setting	1: SETB from Matrix Output [3]:DFF/LATCH/SR Active level selection for RST/SET 0: Active low level reset/set, 1: Active high level reset/set [2:0] SR Output Select 000: DFF/1st SR output, 001: 2nd SR output 010: 3rd SR output, 011: 4th SR output, 100: 5th SR output, 101: 6th SR output 110: 7th SR output, 111: 8th SR output

Table 42: Register Map (Continued)

Α	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
	960		
	961		
	962 963		[7:1]:LUT [7:1] or Shift Register initial value[7:1]
78	964	LUT3_4/DFF6/SR0 setting	[0]:LUT [0] or Shift Register initial value [0] (= DFF/LATCH Initial polarity select)
	965		0: Low, 1: High
	966		
	967		
	968		[7]:DFF or LATCH Select 0: DFF function,
	969 970		1: LATCH function
	970		[6]:DFF/LATCH/SR/Output polarity select 0: non-inverted output,
	972		1: inverted output
	973		[5] Reserved [4]:DFF/LATCH/SR RSTB or SETB selection
	974		0: RSTB from Matrix Output,
79	975	DFF7/SR1 setting	1: SETB from Matrix Output [3]:DFF/LATCH/SR Active level selection for RST/SET 0: Active low level reset/set, 1: Active high level reset/set [2:0] SR Output Select 000: DFF/1st SR output, 001: 2nd SR output 010: 3rd SR output, 011: 4th SR output, 100: 5th SR output, 101: 6th SR output, 111: 8th SR output,
	976		
	977 978		
	978		[7:1]:LUT [7:1] or Shift Register initial value[7:1] [0]:LUT [0] or Shift Register initial value [0]
7A	980	LUT3_5/DFF7/SR1 setting	(= DFF/LATCH Initial polarity select)
	981		0: Low, 1: High
	982		
	983		

Table 42: Register Map (Continued)

Α	ddress		
Byte	Register Bit	Signal Function	Register Bit Definition
7B	984 985 986 987 988 989 990	DFF8/SR2 setting	[7]: DFF or LATCH Select 0: DFF function, 1: LATCH function [6]:DFF/LATCH/SR/Output polarity select 0: non-inverted output, 1: inverted output [5] Reserved [4]:DFF/LATCH/SR RSTB or SETB selection 0: RSTB from Matrix Output, 1: SETB from Matrix Output [3]:DFF/LATCH/SR Active level selection for RST/SET 0: Active low level reset/set, 1: Active high level reset/set [2:0] SR Output Select 000: DFF/1st SR output, 001: 2nd SR output, 001: 3rd SR output 100: 5th SR output, 101: 6th SR output, 110: 7th SR output, 111: 8th SR output
7C	992 993 994 995 996 997 998 999	LUT3_6/DFF8/SR2 setting	[7:1]:LUT [7:1] or Shift Register initial value[7:1] [0]:LUT [0] or Shift Register initial value [0] (= DFF/LATCH Initial polarity select) 0: Low, 1: High
7D	1000 1001 1002 1003 1004 1005 1006	DFF9/SR3 setting	[7]:DFF or LATCH Select 0: DFF function, 1: LATCH function [6]:DFF/LATCH/SR/Output polarity select 0: non-inverted output, 1: inverted output [5] Reserved [4]:DFF/LATCH/SR RSTB or SETB selection 0: RSTB from Matrix Output, 1: SETB from Matrix Output [3]:DFF/LATCH/SR Active level selection for RST/SET 0: Active low level reset/set, 1: Active high level reset/set [2:0] SR Output Select 000: DFF/1st SR output, 001: 2nd SR output 010: 3rd SR output 110: 5th SR output, 111: 8th SR output, 111: 8th SR output

Table 42: Register Map (Continued)

Address		(Continued)	
	Register	Signal Function	Register Bit Definition
Byte	Bit	o.g.i.a. i a.i.o.i.o.ii	
	1008		
	1009		
	1010		[7:1]:LIT [7:1] or Shift Pogistor initial value[7:1]
7-	1011		[7:1]:LUT [7:1] or Shift Register initial value[7:1] [0]:LUT [0] or Shift Register initial value [0]
7E	1012	LUT3_7/DFF9/SR3 setting	(= DFF/LATCH Initial polarity select)
	1013		0: Low, 1: High
	1014		
	1015		
	1016		[3]:LUT2_0 [3]/DFF0 or LATCH Select
	1017		0: DFF function, 1: LATCH function [2]:LUT2 0 [2]/DFF0 Output Select
	1018	LUT2_0/DFF0 setting	0: Q output, 1: QB output
7F	1019		[1]:LUT2_0 [1]/DFF0 Initial Polarity Select 0: Low, 1: High [0]:LUT2_0 [0]
15	1020		[3]:LUT2_1 [3]/DFF1 or LATCH Select
	1021		0: DFF function, 1: LATCH function [2]:LUT2_1 [2]/DFF1 Output Select
	1022	LUT2_1/DFF1 setting	0: Q output, 1: QB output
	1023		[1]:LUT2_1 [1]/DFF1 Initial Polarity Select 0: Low, 1: High [0]:LUT2_1 [0]
	1024	LUT2_0 or DFF0 Select	0: LUT2_0, 1: DFF0
	1025	LUT2_1 or DFF1 Select	0: LUT2_1, 1: DFF1
80	1026	LUT2_2 or PGen Select	0: LUT2_3, 1: PGen
	1027	Active level selection for RST/SET for LUT2_2 or PGen	0: Active low level reset/set, 1: Active high level reset/set
	1028 1029	LUT2_2_VAL or PGEN_BIT_NUMBER	LUT2_2[3:0] or PGen BIT NUMBER[3:0]
	1029		
	1031		
	1032		
	1033		
	1034		
04	1035		
81	1036		
	1037		
	1038		
	1039	PGen data	PGen Data [15:0]
	1040		
	1041		
	1042		
82	1043		
	1044		
	1045		
	1046		
	1047		

Table 42: Register Map (Continued)

	ddress	map (Continued)	
Byte	Register Bit	Signal Function	Register Bit Definition
	1048	Filter or Edge Detector Selection	0, filter, 1, edge det
	1049	Output Polarity Select	0: output non-invert, 1: output invert
	1050		00: Rising Edges Det 01: Falling Edge Det
83	1051	Select the edge mode	10: Both Edge Det 11: Both Edge DLY
03	1052		00: 125 ns,
	1053	Delay Value Select for Programmable Delay & Edge Detector	01: 250 ns, 10: 375 ns, 11: 500 ns
	1054	Select the Edge Mode of Programmable Delay	00: Rising Edge Detector, 01: Falling Edge Detector,
	1055	& Edge Detector	10: Both Edge Detector, 11: Both Edge Delay
	1056	Reserved	Reserved
	1057	Reserved	Reserved
	1058	Reserved	Reserved
84	1059	Reserved	Reserved
	1060	Reserved	Reserved
	1061		
	1062 1063		
Matrix	Virtual Da	ita	
	1064	Pat Gen 0/I ² C_virtual input [0] select	0: matrix in 24 select Pat Gen 0 1: matrix in 24 select I ² C_virtual Input [0]
	1065	Pat Gen 1/I2C_virtual input [1] digital input select	0: matrix in 25 select Pat Gen 1 1: matrix in 25 select I ² C_virtual Input [1]
	1066	Pat Gen 2/I2C_virtual input [2] digital input select	0: matrix in 26 select Pat Gen 2 1: matrix in 26 select I ² C_virtual Input [2]
	1067	Pat Gen 3/I2C_virtual input [3] digital input select	0: matrix in 27 select Pat Gen 3 1: matrix in 27 select I ² C_virtual Input [3]
85	1068	Pat Gen 4/I2C_virtual input [4] digital input select	0: matrix in 28 select Pat Gen 4 1: matrix in 28 select I ² C_virtual Input [4]
	1069	Pat Gen 5/I2C_virtual input [5] digital input select	0: matrix in 28 select Pat Gen 5 1: matrix in 29 select I ² C_virtual Input [5]
	1070	Pat Gen 6/I ² C_virtual input [6] digital input select	0: matrix in 30 select Pat Gen 6 1: matrix in 30 select I ² C_virtual Input [6] or GPIO0 (at non-i2c mode)
	1071	Pat Gen 7/I ² C_virtual input [7] digital input select	0: matrix in 31 select Pat Gen 7 1: matrix in 31 select l ² C_virtual Input [7] or GPIO1 (at non-i2c mode)

Table 42: Register Map (Continued)

Address		(Continued)	
	Register	Signal Function	Register Bit Definition
Byte	Bit	3	
	1072	GPIO2/I ² C_virtual input [8] select	0: matrix in 32 select GPIO2 digital input (GPIO2) 1: matrix in 32 select I ² C_virtual Input [8]
	1073	GPIO3 /I ² C_virtual input [9] digital input select	0: matrix in 33 select GPIO3 digital input (GPIO3) 1: matrix in 33 select I ² C_virtual Input [9]
	1074	GPIO4/I ² C_virtual input [10] digital input select	0: matrix in 34 select GPIO4 digital input (GPIO4) 1: matrix in 34 select I ² C_virtual Input [10]
86	1075	GPIO5/I ² C_virtual input [11] digital input select	0: matrix in 35 select GPIO5 digital input (GPIO5) 1: matrix in 35 select I ² C_virtual Input [11]
	1076	GPIO6/I ² C_virtual input [12] digital input select	0: matrix in 36 select GPIO6 digital input (GPIO6) 1: matrix in 36 select I ² C_virtual Input [12]
	1077	GPIO7/I ² C_virtual input [13] digital input select	0: matrix in 37 select GPIO7 digital input (GPIO7) 1: matrix in 37 select I ² C_virtual Input [13]
	1078	GPIO8/I ² C_virtual input [14] digital input select	0: matrix in 38 select GPIO8 digital input (GPIO8) 1: matrix in 38 select I ² C_virtual Input [14]
	1079	Reserved	Reserved
	1080	Reserved	
	1081	Reserved	
	1082	Reserved	
87	1083	Reserved	
	1084	Reserved	
	1085	Reserved	
	1086 1087	Reserved	
	1087	Reserved Reserved	
	1089	Reserved	
	1009	Reserved	
	1091	Reserved	
88	1092	Reserved	
	1093	Reserved	
	1094	Reserved	
	1095	Reserved	
	1096	Reserved	
	1097	Reserved	
	1098	Reserved	
00	1099	Reserved	
89	1100	Reserved	
	1101	Reserved	
	1102	Reserved	
	1103	Reserved	
	1104	Reserved	
	1105	Reserved	
	1106	Reserved	
8A	1107	Reserved	
UA	1108	Reserved	
	1109	Reserved	
	1110	Reserved	
	1111	Reserved	

Table 42: Register Map (Continued)

Address			
Byte	Register Bit	Signal Function	Register Bit Definition
	1112	I2C reset bit with reloading NVM into Data register (soft reset)	Keep existing condition, Reset execution
	1113	IO Latching Enable During I2C Write Interface	0: Disable, 1: Enable
0.0	1114	Reserved	
8B	1115	Reserved	
	1116	Reserved	
	1117	Reserved	
	1118	Reserved	
	1119	Reserved	
	1120		
	1121		
	1122		
8C	1123	l ² C write mask bits	1: mask,
	1124	To who made she	0: overwrite
	1125		
	1126		
	1127		
	1128	Reserved	
	1129	Reserved	
	1130	Reserved	
	1131	Reserved	
8D	1132	Testmode EPG	0: partial OTP read (A0 to FB) 1: all OTP read (00 to FF)
	1133	Reserved	
	1134	Reserved	
	1135	Reserved	
	1136	Reserved	
	1137	Reserved	
	1138	Reserved	
8E	1139	Reserved	
0_	1140	Reserved	
	1141	Reserved	
	1142	Reserved	
	1143	Reserved	
	1144	Reserved	
	1145	Reserved	
	1146	Reserved	
8F	1147	Reserved	
	1148	Reserved	
	1149	Reserved	
	1150	Reserved	
	1151	Reserved	

Table 42: Register Map (Continued)

A	ddress		
Durto	Register	Signal Function	Register Bit Definition
Byte	Bit		
	1152	Reserved	
	1153	Reserved	
	1154	Reserved	
90	1155	Reserved	
90	1156	Reserved	
	1157	Reserved	
	1158	Reserved	
	1159	Reserved	
	1160	Reserved	
	1161	Reserved	
	1162	Reserved	
91	1163	Reserved	
91	1164	Reserved	
	1165	Reserved	7
	1166	Reserved	
	1167	Reserved	7
	1168	Reserved	
	1169	Reserved	7
	1170	Reserved	7
92	1171	Reserved	7
92	1172	Reserved	7
	1173	Reserved	7
	1174	Reserved	
	1175	Reserved	
	1176		
	1177	I ² C slave address	
	1178		
	1179		
93	1180	Slave address selection bit0	0: from register [1176], 1: from GPI
	1181	Slave address selection bit1	0: from register [1177], 1: from GPIO3
	1182	Slave address selection bit2	0: from register [1178], 1: from GPIO4
	1183	Slave address selection bit3	0: from register [1179], 1: from GPIO7
	1184	I ² C operation disable bit	0: I2C operation enable; matrix in 26(27) select I ² C_virtual_0(1) Input 1: I ² C operation disable; matrix in 26(27) select GPIO3(4) digital input
	1185	Reserved	
94	1186	Reserved	
	1187	Reserved	
	1188	Reserved	
	1189	Reserved	
	1190	Reserved	
	1191	Reserved	

Table 42: Register Map (Continued)

Address		. ,	
	Register	Signal Function	Register Bit Definition
Byte	Bit		Trogistor Bit Bollinition
	1192	Reserved	
	1193	Reserved	
	1194	Reserved	
	1195	Reserved	-
95	1196	Reserved	
	1197	Reserved	
	1198	Reserved	
	1199	Reserved	
	1200		
	1201		
	1202		
96	1203	Reserved	
30	1204	i keser ved	
	1205		
	1206		
	1207		
	1208		
	1209		
	1210		
97	1211	Reserved	
	1212		
	1213		
	1214		
	1215		
	1216 1217		
	1217		
	1219		
98	1219	Reserved	
	1221		
	1222		
	1223		
	1224	Reserved	
	1225	Reserved	
	1226	Reserved	
	1227	Reserved	
99	1228	Reserved	
	1229	Reserved	
	1230	Reserved	
	1231	Reserved	
	1232	Reserved	
	1233	Reserved	
	1234	Reserved	
9A	1235	Reserved	
3A	1236	Reserved	
	1237	Reserved	
	1238	Reserved	
	1239	Reserved	

Table 42: Register Map (Continued)

	ddress	i wap (Continued)	
		Signal Function	Register Bit Definition
Byte	Bit		
	1240	Reserved	
	1241	Reserved	
	1242	Reserved	
0.0	1243	Reserved	
9B	1244	Reserved	
	1245	Reserved	
	1246	Reserved	
	1247	Reserved	
	1248	Reserved	
	1249	Reserved	
	1250	Reserved	
9C	1251	Reserved	
90	1252	Reserved	
	1253	Reserved	
	1254	Reserved	
	1255	Reserved	
	1256	Reserved	
	1257	Reserved	
	1258	Reserved	
9D	1259	Reserved	
30	1260	Reserved	
	1261	Reserved	
	1262	Reserved	
	1263	Reserved	
	1264	Reserved	
	1265	Reserved	
	1266	Reserved	
9E	1267	Reserved	
0_	1268	Reserved	
	1269	Reserved	
	1270	Reserved	
	1271	Reserved	
	1272	Reserved	
	1273	Reserved	
	1274	Reserved	
9F	1275	Reserved	
	1276	Reserved	
	1277	Reserved	
	1278	Reserved	
	1279	Reserved	
	1280		
	1281		
	1282		
A0	1283	EPG Data Byte 0	
	1284		
	1285		
	1286		
	1287		

	ddress	i wap (Continued)	
		Signal Function	Register Bit Definition
Byte	Bit		
	1288		
	1289		
	1290		
	1291		
A1	1292	EPG Data Byte 1	
	1293		
	1294		
	1295		
	1296		
	1297		
	1298		
A2	1299	EPG Data Byte 2	
,	1300		
	1301		
	1302		
	1303		
	1304		
	1305		
	1306		
А3	1307 1308	EPG Data Byte 3	
	1308		
	1310		
	1311		
	1312		
	1313		
	1314		
	1315		
A4	1316	EPG Data Byte 4	
	1317		
	1318		
	1319		
	1320		
	1321		
	1322		
A5	1323	EPG Data Byte 5	
	1324	,	
	1325		
	1326		
	1327		
	1328 1329		
	1330		
	1331		
A6	1332	EPG Data Byte 6	
	1333		
	1334		
	1335		
			I.

	ddress	i wap (Continueu)	
Byte		Signal Function	Register Bit Definition
	1336		
	1337		
	1338		
	1339	500 D 4 D 4 7	
A7	1340	EPG Data Byte 7	
	1341		
	1342		
	1343		
	1344		
	1345		
	1346		
A8	1347	EPG Data Byte 8	
/ 10	1348		
	1349		
	1350		
	1351		
	1352		
	1353		
	1354		
A9	1355	EPG Data Byte 9	
	1356	,	
	1357		
	1358		
	1359 1360		
	1361		
	1362		
	1363		
AA	1364	EPG Data Byte 10	
	1365		
	1366		
	1367		
	1368		
	1369		
	1370		
AB	1371	EBC Data Byte 11	
AD	1372	EPG Data Byte 11	
	1373		
	1374		
	1375		
	1376		
	1377		
	1378		
AC	1379	EPG Data Byte 12	
	1380	-	
	1381		
	1382 1383		
	1303		

	ddress	i wap (Continued)	
Byte		Signal Function	Register Bit Definition
AD	1384 1385 1386 1387 1388 1389 1390 1391	EPG Data Byte 13	
AE	1392 1393 1394 1395 1396 1397 1398 1399	EPG Data Byte 14	
AF	1400 1401 1402 1403 1404 1405 1406 1407	EPG Data Byte 15	
В0	1408 1409 1410 1411 1412 1413 1414 1415	EPG Data Byte 16	
B1	1416 1417 1418 1419 1420 1421 1422 1423	EPG Data Byte 17	
B2	1424 1425 1426 1427 1428 1429 1430 1431	EPG Data Byte 18	

	ddress	i wap (Conunaeu)	
		Signal Function	Register Bit Definition
Byte	Bit	, °	
	1432		
	1433		
	1434		
В3	1435	EPG Data Byte 19	
ВЗ	1436	EPG Data Byte 19	
	1437		
	1438		
	1439		
	1440		
	1441		
	1442		
B4	1443	EPG Data Byte 20	
	1444	,	
	1445		
	1446		
	1447 1448		
	1449		
	1450		
	1451		
B5	1452	EPG Data Byte 21	
	1453		
	1454		
	1455		
	1456		
	1457		
	1458		
В6	1459	EPG Data Byte 22	
1 50	1460	Data Byte 22	
	1461		
	1462		
	1463		
	1464		
	1465		
	1466 1467		
B7	1467	EPG Data Byte 23	
	1469		
	1470		
	1471		
	1472		
	1473		
	1474		
B8	1475	EDC Data Buta 24	
D0	1476	EPG Data Byte 24	
	1477		
	1478		
	1479		

	ddress	i wap (Continued)	
Byte		Signal Function	Register Bit Definition
	1480		
	1481		
	1482		
B9	1483	FDC Data Buta 25	
БЭ	1484	EPG Data Byte 25	
	1485		
	1486		
	1487		
	1488		
	1489		
	1490		
BA	1491 1492	EPG Data Byte 26	
	1492		
	1494		
	1495		
	1496		
	1497		
	1498		
D.D.	1499	EDO Data Buta 27	
BB	1500	EPG Data Byte 27	
	1501		
	1502		
	1503		
	1504		
	1505		
	1506		
ВС	1507 1508	EPG Data Byte 28	
	1508		
	1510		
	1511		
	1512		
	1513		
	1514		
BD	1515	EPG Data Byte 29	
50	1516	Li O Dala Dyle 23	
	1517		
	1518		
	1519		
	1520		
	1521 1522		
	1522		
BE	1523	EPG Data Byte 30	
	1525		
	1526		
	1527		
		I .	I .

	ddress	i wap (Conunided)	
	Register	Signal Function	Register Bit Definition
Byte	Bit	0.9.14.1 4.110.101.	
	1528		
	1529		
	1530		
	1531		
BF	1532	EPG Data Byte 31	
	1533		
	1534		
	1535		
	1536		
	1537		
	1538		
00	1539	5D0 D / D / 00	
C0	1540	EPG Data Byte 32	
	1541		
	1542		
	1543		
	1544		
	1545		
	1546		
C1	1547	EPG Data Byte 33	
	1548	EFG Data Dyte 33	
	1549		
	1550		
	1551		
	1552		
	1553		
	1554		
C2	1555	EPG Data Byte 34	
	1556	,	
	1557		
	1558		
	1559		
	1560 1561		
	1562		
	1563		
C3	1564	EPG Data Byte 35	
	1565		
	1566		
	1567		
	1568		
	1569		
	1570		
	1571	FD0 D + D + 00	
C4	1572	EPG Data Byte 36	
	1573		
	1574		
	1575		

	ddress	i wap (Conunaeu)	
Byte		Signal Function	Register Bit Definition
	1576		
	1577		
	1578		
C5	1579	EPG Data Byte 37	
	1580	Data Byte 97	
	1581		
	1582		
	1583		
	1584		
	1585		
	1586		
C6	1587	EPG Data Byte 38	
	1588		
	1589		
	1590		
	1591		
	1592		
	1593 1594		
	1594		
C7	1595	EPG Data Byte 39	
	1597		
	1598		
	1599		
	1600		
	1601		
	1602		
00	1603		
C8	1604	EPG Data Byte 40	
	1605		
	1606		
	1607		
	1608		
	1609		
	1610		
C9	1611	EPG Data Byte 41	
	1612		
	1613		
	1614		
	1615		
	1616		
	1617 1618		
	1619		
CA	1620	EPG Data Byte 42	
	1621		
	1622		
	1623		
	1020		

	ddress	i wap (Continueu)	
		Signal Function	Register Bit Definition
Byte	Bit		regiotor Dit Dominion
	1624		
	1625		
	1626		
	1627		
СВ	1628	EPG Data Byte 43	
	1629		
	1630		
	1631		
	1632		
	1633		
	1634		
00	1635	FDC Data Buta 44	
CC	1636	EPG Data Byte 44	
	1637		
	1638		
	1639		
	1640		
	1641		
	1642		
CD	1643	EPG Data Byte 45	
	1644		
	1645		
	1646		
	1647		
	1648		
	1649		
	1650		
CE	1651	EPG Data Byte 46	
	1652 1653		
	1654		
	1655		
	1656		
	1657		
	1658		
	1659		
CF	1660	EPG Data Byte 47	
	1661		
	1662		
	1663		
	1664		
	1665		
	1666		
D0	1667	EPG Data Byte 48	
50	1668		
	1669		
	1670		
	1671		

	ddress	i wap (Conunded)	
		Signal Function	Register Bit Definition
Byte	Bit		
	1672		
	1673		
	1674		
	1675		
D1	1676	EPG Data Byte 49	
	1677		
	1678		
	1679		
	1680		
	1681		
	1682		
D2	1683	EPG Data Byte 50	
52	1684	E. O Bala Bylo oo	
	1685		
	1686		
	1687		
	1688		
	1689		
	1690		
D3	1691	EPG Data Byte 51	
	1692 1693		
	1693		
	1695		
	1696		
	1697		
	1698		
	1699		
D4	1700	EPG Data Byte 52	
	1701		
	1702		
	1703		
	1704		
	1705		
	1706		
D5	1707	EPG Data Byte 53	
	1708	- , 	
	1709		
	1710		
	1711		
	1712 1713		
	1713		
	1714		
D6	1716	EPG Data Byte 54	
	1717		
	1718		
	1719		
			I

	ddress	i wap (Continued)	
Byte		Signal Function	Register Bit Definition
D7	1720 1721 1722 1723 1724 1725 1726 1727	EPG Data Byte 55	
D8	1728 1729 1730 1731 1732 1733 1734 1735	EPG Data Byte 56	
D9	1736 1737 1738 1739 1740 1741 1742 1743	EPG Data Byte 57	
DA	1744 1745 1746 1747 1748 1749 1750 1751	EPG Data Byte 58	
DB	1752 1753 1754 1755 1756 1757 1758 1759	EPG Data Byte 59	
DC	1760 1761 1762 1763 1764 1765 1766 1767	EPG Data Byte 60	

Address			
		Signal Function	Register Bit Definition
Byte	Bit		
	1768		
	1769		
	1770		
DD	1771	EPG Data Byte 61	
	1772	Data Byte 01	
	1773		
	1774		
	1775		
	1776		
	1777		
	1778		
DE	1779	EPG Data Byte 62	
	1780 1781		
	1782		
	1783		
	1784		
	1785		
	1786		
	1787		
DF	1788	EPG Data Byte 63	
	1789		
	1790		
	1791		
	1792		
	1793		
	1794		
E0	1795	EPG Data Byte 64	
LO	1796		
	1797		
	1798		
	1799		
	1800		
	1801		
	1802		
E1	1803 1804	EPG Data Byte 65	
	1804		
	1806		
	1807		
	1808		
	1809		
	1810		
	1811	EDO D-t- D-t- CO	
E2	1812	EPG Data Byte 66	
	1813		
	1814		
	1815		

	ddress	i wap (Continueu)	
		Signal Function	Register Bit Definition
Byte	Bit		regiotor Dit Dominion
	1816		
-	1817		
	1818		
	1819		
E3	1820	EPG Data Byte 67	
	1821		
	1822		
	1823		
	1824		
	1825		
	1826		
E4	1827	EPG Data Byte 68	
	1828	2. O Bala Bylo oo	
	1829		
	1830		
	1831		
	1832		
	1833		
	1834 1835		
E5	1836	EPG Data Byte 69	
	1837		
	1838		
	1839		
	1840		
	1841		
	1842		
	1843		
E6	1844	EPG Data Byte 70	
	1845		
	1846		
	1847		
	1848		
	1849		
	1850		
E7	1851	EPG Data Byte 71	
	1852	, · · ·	
	1853		
	1854		
	1855		
	1856 1857		
	1857		
	1859		
E8	1860	EPG Data Byte 72	
	1861		
	1862		
	1863		
		1	

	ddress	i wap (Continueu)	
		Signal Function	Register Bit Definition
Byte	Bit		
	1864		
	1865		
	1866		
	1867		
E9	1868	EPG Data Byte 73	
	1869	1	
	1870		
	1871		
	1872		
	1873		
	1874		
EA	1875	EPG Data Byte 74	
	1876		
	1877		
	1878		
	1879		
	1880		
	1881		
	1882		
EB	1883	EPG Data Byte 75	
	1884		
	1885		
	1886		
	1887		
	1888		
	1889 1890		
	1891		
EC	1892	EPG Data Byte 76	
	1893		
	1894		
	1895		
	1896		
	1897		
	1898		
	1899	EDO D-4- D-4- 77	
ED	1900	EPG Data Byte 77	
	1901		
	1902		
	1903		
	1904		
	1905		
	1906		
EE	1907	EPG Data Byte 78	
	1908	, · -	
	1909		
	1910		
	1911		

Address		er map (Continued)	
Byte		Signal Function	Register Bit Definition
EF	1912 1913 1914 1915 1916 1917	EPG Data Byte 79	
	1917 1918 1919 1920 1921		
F0	1922 1923 1924 1925 1926 1927	EPG Data Byte 80	
F1	1928 1929 1930 1931 1932 1933 1934 1935	EPG Data Byte 81	
F2	1936 1937 1938 1939 1940 1941 1942 1943	EPG Data Byte 82	
F3	1944 1945 1946 1947 1948 1949 1950 1951	EPG Data Byte 83	
F4	1952 1953 1954 1955 1956 1957 1958 1959	EPG Data Byte 84	

	ddress	i wap (Continueu)	
Byte		Signal Function	Register Bit Definition
	1960		
	1961		
	1962		
F5	1963	EPG Data Byte 85	
. •	1964		
	1965		
	1966		
	1967		
	1968		
	1969 1970		
	1970		
F6	1971	EPG Data Byte 86	
	1973		
	1974		
	1975		
	1976		
	1977		
	1978		
	1979	500 D 4 D 4 07	
F7	1980	EPG Data Byte 87	
	1981		
	1982		
	1983		
	1984		
	1985		
	1986		
F8	1987	EPG Data Byte 88	
. •	1988		
	1989		
	1990		
	1991		
	1992		
	1993 1994		
	1994		
F9	1996	EPG Data Byte 89	
	1997		
	1998		
	1999		
	2000		
	2001		
	2002		
FA	2003	EPG Data Byte 90	
'^	2004	LI O Data Dyte 90	
	2005		
	2006		
	2007		

Α	ddress		
		Signal Function	Register Bit Definition
Byte	Bit	0.9	1.09.0.0.
	2008		
	2009		
	2010		
	2011		
FB	2012	EPG Data Byte 91	
	2013		
	2014		
	2015		
	2016	Reserved	
	2017	Reserved	
	2018	Reserved	
FC	2019	Reserved	
10	2020	Reserved	
	2021	Reserved	
	2022	Reserved	
	2023	Reserved	
	2024		
	2025		
	2026		
FD	2027	NVM CRC Remainder	
	2028		
	2029		
	2030		
	2031		
	2032		
	2033		
	2034		
FE	2035	NVM CRC Remainder	
	2036 2037		
	2037		
	2039		
	2039		
	2040		
	2041		
	2042		
FF	2043	NVM CRC Remainder	
	2044		
	2046		
	2047		
	2071		

19 Package Top Marking Definitions

19.1 STQFN 12L 1.6 MM X 1.6 MM 0.4P FC, BEFORE FEBRUARY 1, 2021

19.2 STQFN 12L 1.6 MM X 1.6 MM 0.4P FC, AFTER FEBRUARY 1, 2021

	PPP	Part Code
	WWR	Date Code + Revision
Pin 1 Identifier	<u> </u>	Serial Number Code

20 Package Information

20.1 PACKAGE OUTLINES FOR STQFN 12L 1.6 MM X 1.6 MM X 0.55 MM 0.4P FC PACKAGE

JEDEC MO-220IC Net Weight: 0.0035 g

Controlling dimensions: mm

	N	MILLIMETER		INCH			
Symbol	Min	Nom.	Max	Min	Nom.	Max	
Α	0.50	0.55	0.60	0.020	0.022	0.024	
A1	0.00	0.02	0.05	0.000	0.001	0.002	
A3	0.10	0.15	0.20	0.004	0.006	0.008	
D	1.55	1.60	1.65	0.061	0.063	0.065	
E	1.55	1.60	1.65	0.061	0.063	0.065	
е		0.40 BSC		0.016 BSC			
Г	0.26	0.31	0.36	0.010	0.012	0.014	
L1	0.35	0.40	0.45	0.014	0.016	0.018	
b	0.13	0.18	0.23	0.005 0.007		0.009	
S	(0.200 REF		0.008 REF			
aaa		0.07		0.003			
bbb		0.07		0.003			
CCC		0.10		0.004			
ddd		0.05		0.002			
666		0.08			0.003		

"A1" max lead coplanarity 0.05 mm Standard tolerance: ±0.05

Side View

Notes:

- 1. All dimensions are in millimeters.
- 2. Dimension "b" applies to metalized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension "b" should not be measured in that radius area.
- 3. Bilateral coplanarity zone applies to the exposed heat sink slug as well as the terminals.

20.2 MOISTURE SENSITIVITY LEVEL

The Moisture Sensitivity Level (MSL) is an indicator for the maximum allowable time period (floor lifetime) in which a moisture sensitive plastic device, once removed from the dry bag, can be exposed to an environment with a specified maximum temperature and a maximum relative humidity before the solder reflow process. The MSL classification is defined in Table 43.

For detailed information on MSL levels refer to the IPC/JEDEC standard J-STD-020, which can be downloaded from: http://www.jedec.org.

The <PACKAGE_NAME> package is qualified for MSL <n>.

Table 43: MSL Classification

MSL Level	Floor Lifetime	Conditions		
MSL 4	72 hours	30 °C / 60 % RH		
MSL 3	168 hours	30 °C / 60 % RH		
MSL 2A	4 weeks	30 °C / 60 % RH		
MSL 2	1 year	30 °C / 60 % RH		
MSL 1	Unlimited	30 °C / 85 % RH		

20.3 SOLDERING INFORMATION

Refer to the IPC/JEDEC standard J-STD-020 for relevant soldering information. This document can be downloaded from http://www.jedec.org.

21 Ordering Information

Part Number	Туре
SLG46811V	12-pin STQFN
SLG46811VTR	12-pin STQFN - Tape and Reel (3k units)

Note 1 Use SLG46811V to order. Shipments are automatically in Tape and Reel.

Note 2 "TR" suffix is no longer used. It is a legacy naming convention shown here only for informational purposes.

21.1 TAPE AND REEL SPECIFICATIONS

	# of	Nominal	Max Units		Reel &	Leader (min)		Trailer (min)		Таре	Part
Package Type	# OI Pins	Package Size (mm)		per Box	Hub Size (mm)	Pockets	Length (mm)	Pockets	Length (mm)	Width (mm)	Pitch (mm)
STQFN 12L 1.6 mm x 1.6mm x 0.55 mm 0.4P FC Green	12	1.6x1.6x0.55	3000	3000	178/60	100	400	100	400	8	4

21.2 CARRIER TAPE DRAWING AND DIMENSIONS

Package Type	PocketBTM Length (mm)	PocketBTM Width (mm)	Pocket Depth (mm)	Index Hole Pitch (mm)	Pocket Pitch (mm)	Index Hole Diameter (mm)	Index Hole to Tape Edge (mm)	Index Hole to Pocket Center (mm)	Tape Width (mm)
	A0	В0	K0	P0	P1	D0	E	F	W
STQFN 12L 1.6 mm x 1.6mm x 0.55 mm 0.4P FC Green	1.9	2.3	0.76	4	4	1.5	1.75	3.5	8

22 Layout Guidelines

22.1 STQFN 12L 1.6 MM X 1.6 MM X 0.55 MM 0.4P FC PACKAGE

1.6 0.4 (1X) 12 11 (11X) 10 9 4 9 5 6 Recommended Landing Pattern (Package face down)

Glossary

A

ACK Acknowledge bit
ACMP Analog Comparator

В

BG Bandgap

C

CLK Clock

CMO Connection matrix output

D

DFF D Flip-Flop DLY Delay

E

EPG Extended Pattern Generator

ESD Electrostatic discharge

EV End Value

F

FSM Finite State Machine

G

GPI General Purpose Input

GPIO General Purpose Input/Output

GPO General Purpose Output

IN Input

IO Input/Output

L

LPF Low Pass Filter
LSB Least Significant Bit
LUT Look Up Table
LV Low Voltage

M

MS ACMP Multichannel Sampling Analog Comparator

MSB Most Significant Bit

MUX Multiplexer

N

NPR Non-Volatile Memory Read/Write/Erase Protection

nRST Reset

NVM Non-Volatile Memory

0

OD Open-Drain
OE Output Enable
OSC Oscillator

OTP One Time Programmable

OUT Output

P

PD Power-down

PGen Pattern Generator POR Power-On Reset

PP Push-Pull PWR Power

P DLY Programmable Delay

R

R/W Read/Write

S

SCL I²C Clock Input

SDA I²C Data Input/Output

SLA Slave Address

SMT With Schmitt Trigger

SV nSET Value

Ť

TS Temperature Sensor

٧

Vref Voltage Reference

W

WOSMT Without Schmitt Trigger

Revision History

Revision	Date	Description
3.4	27-Feb-2023	Added notes to Ordering Information Fixed typos
3.3	8-Dec-2022	Fixed typos Updated section 3-Bit LUT or DFF with Set/Reset Macrocells Or Shift Register Macrocells
3.2	7-Mar-2022	Renesas re-branding Updated Pull-up or Pull-down Resistance Parameter in EC table
3.1	29-Dec-2021	Corrected Layout Guidelines Added IC Net Weight in Package Information section Added information about SCL and SDA Pins' Schmitt Trigger Updated section GPIO7 Source for Oscillator1 (25 MHz)
3.0	14-Apr-2021	Final version

Status Definitions

Revision	Datasheet Status	Product Status	Definition
1. <n></n>	Target	Development	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
2. <n></n>	Preliminary	Qualification	This datasheet contains the specifications and preliminary characterization data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.
3. <n></n>	Final	Production	This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Major specification changes are communicated via Customer Product Notifications. Datasheet changes are communicated via www.renesas.com.
4. <n></n>	Obsolete	Archived	This datasheet contains the specifications for discontinued products. The information is provided for reference only.

RoHS Compliance

Renesas Electronics Corporation's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics: SLG46811V