

I have a difficult problem that I cannot compute on my laptop...

- Maybe the problem is too complex
- Or maybe there is too much data to be processed

Strong scaling

High performance or high throughput?

Weak

scaling

How to distribute the calculation?

How to distribute ob is the action obtained of the distribute obtained of the distribute obtained obta

	HDFS	Ceph	GlusterFS	Lustre
Architecture	Centralized	Distributed	Decentralized (client-server)	Centralized
Interfaces				
System availability				
Data availability				
Load balancing				
Storage type				

Architecture

- Client-server: several servers store and share metadata and data between multiple clients (global namespace)
- Cluster-based: data and metadata are decoupled
 - Centralized = only 1 metadata server
 - Totally distributed = distributed metadata servers

	HDFS	Ceph	GlusterFS	Lustre
Architecture	Centralized	Distributed	Decentralized (client-server)	Centralized
Interfaces	CLI, FUSE, REST, API	FUSE, mount, REST	FUSE, mount	FUSE
System availability				
Data availability				
Load balancing				
Storage type				

 Command Line Interface (CLI): access files with traditional unix command (cp, rm, mv...)

Interfaces

- Application Programming Interface (API): implemented in different programming languages or REST (web-based)
- Mount: attach remote directories to the local filesystem (using unix mount or FUSE)

	HDFS	Ceph	GlusterFS	Lustre
Architecture	Centralized	Distributed	Decentralized (client-server)	Centralized
Interfaces	CLI, FUSE, REST, API	FUSE, mount, REST	FUSE, mount	FUSE
System availability	No failover	High	High	Failover
Data availability				
Load balancing				
Storage type				

 High availability: metadata are replicated and distributed across several servers

System availability

- Failover: several servers in standby periodically save the metadata to be ready to take control
- No failover: this is a Single Point of Failure (SPOF).
 In HDFS a second server periodically saves the metadata, but a system stop is required for it to take control.

	HDFS	Ceph	GlusterFS	Lustre
Architecture	Centralized	Distributed	Decentralized (client-server)	Centralized
Interfaces	CLI, FUSE, REST, API	FUSE, mount, REST	FUSE, mount	FUSE
System availability	No failover	High	High	Failover
Data availability	Replication	Replication	RAID-like	No
Load balancing				
Storage type				

Data availability

- Replication: several copies of the data are made.
 This might raise consistency issues solved by synchronization mechanisms and placement strategies.
- RAID-like: several copies of a whole storage device into other ones inside the same volume.
- No replication: rely on independent software

	HDFS	Ceph	GlusterFS	Lustre
Architecture	Centralized	Distributed	Decentralized (client-server)	Centralized
Interfaces	CLI, FUSE, REST, API	FUSE, mount, REST	FUSE, mount	FUSE
System availability	No failover	High	High	Failover
Data availability	Replication	Replication	RAID-like	No
Load balancing	Auto	Manual	Manual	No
Storage type				

Load balancing

 Overloaded servers can delay or abort request execution. These must be relieved and the data distributed on other servers in the cluster (possibly newly added empty ones).

ifier_ob modifier ob is the active ob

Storage type

	HDFS	Ceph	GlusterFS	Lustre
Architecture	Centralized	Distributed	Decentralized (client-server)	Centralized
Interfaces	CLI, FUSE, REST, API	FUSE, mount, REST	FUSE, mount	FUSE
System availability	No failover	High	High	Failover
Data availability	Replication	Replication	RAID-like	No
Load balancing	Auto	Manual	Manual	No
Storage type	File	Object	File	File (parallel)

• File store: data is organized in directory trees, folders, and individual files (hierarchical). It functions similarly to a local hard drive.

- Object store: breaks files into pieces called objects.

 Each object receives a unique ID and also stores
 metadata about the file. Not hierarchical, scalable.
- Block store: breaks up data into blocks and then stores them as separate pieces, each with a unique ID.

Datanode Information

In operation

Node	Last contact	Admin State	Capacity	Used	Non DFS Used	Remaining	Blocks	Block pool used	Failed Volumes	Version
vdummy03.to.infn.it:50010 (192.168.2.182:50010)	0	In Service	9.52 GB	466.95 MB	2.35 GB	6.72 GB	163	466.95 MB (4.79%)	0	2.7.2
vdummy08.to.infn.it:50010 (192.168.2.187:50010)	1	In Service	9.52 GB	403.55 MB	2.5 GB	6.63 GB	162	403.55 MB (4.14%)	0	2.7.2
vdummy16.to.infn.it:50010 (192.168.2.195:50010)	2	In Service	9.52 GB	755.95 MB	2.32 GB	6.47 GB	115	755.95 MB (7.75%)	0	2.7.2
yoga-hdfs-namenode-0.yoga-hdfs- namenode.default.svc.cluster.local:50010 (192.168.2.39:50010)	1	In Service	525.61 GB	493.14 MB	30.87 GB	494.26 GB	153	493.14 MB (0.09%)	0	2.7.2
vdummy01.to.infn.it:50010 (192.168.2.180:50010)	0	In Service	9.52 GB	614.87 MB	2.76 GB	6.17 GB	149	614.87 MB (6.3%)	0	2.7.2
t2-mlwn-04.to.infn.it:50010 (192.168.2.84:50010)	0	In Service	424.09 GB	44.12 MB	34.05 GB	390 GB	12	44.12 MB (0.01%)	0	2.7.2
vdummy06.to.infn.it:50010 (192.168.2.185:50010)	0	In Service	9.52 GB	522.04 MB	2.36 GB	6.65 GB	127	522.04 MB (5.35%)	0	2.7.2

Utilities 🔻

Hadoop Overview Datanodes Snapshot Startup Progress Utilities

Data

Browse Directory

In ope

/user

Hierarchical directory structure

Go!

	/u
Node	
vdummy03	
vdummy08	
vdummy16	
yoga-hdfs-r namenode.	
vdummy01	
t2-mlwn-04	
vdummy06	

Permission	Owner	Group	Size	Last Modified	Replication	Block Size	Name
drwxr-xr-x	jovyan	jovyan	0 B	11/15/2019, 12:12:08 PM	0	0 B	aliber92
drwxr-xr-x	jovyan	jovyan	0 B	11/14/2019, 6:48:25 PM	0	0 B	bagnasco
drwxr-xr-x	jovyan	jovyan	0 B	11/14/2019, 6:40:00 PM	0	0 B	gabrielefronze
drwxr-xr-x	jovyan	jovyan	0 B	11/14/2019, 6:53:12 PM	0	0 B	giorgiobar
drwxr-xr-x	jovyan	jovyan	0 B	11/14/2019, 6:36:21 PM	0	0 B	leggerf
drwxr-xr-x	jovyan	jovyan	0 B	11/15/2019, 12:13:42 PM	0	0 B	marco-ph
drwxr-xr-x	jovyan	jovyan	0 B	11/15/2019, 12:15:11 PM	0	0 B	obertino
drwxr-xr-x	jovyan	jovyan	0 B	11/14/2019, 6:49:07 PM	0	0 B	slusso
drwxr-xr-x	jovyan	jovyan	0 B	9/30/2019, 12:53:34 PM	0	0 B	svallero
drwxr-xr-x	jovyan	jovyan	0 B	10/2/2019, 11:37:29 AM	0	0 B	testuser
drwxr-xr-x	jovyan	jovyan	0 B	10/7/2019, 7:16:50 PM	0	0 B	testuser2

Some useful file format

Use tabular data structure with headers

CSV

- Comma separated values
- Data is organized in rows
- Human readable (text file)
- Used i.e. to export data from Microsoft Excel

```
"Index", "Year", "Age", "Name", "Movie"
 1, 1928, 22, "Janet Gaynor", "Seventh Heaven, Street Angel and Sunrise: A Song of Two Humans"
 2, 1929, 37, "Mary Pickford", "Coquette"
 3, 1930, 28, "Norma Shearer", "The Divorcee"
 4, 1931, 63, "Marie Dressler", "Min and Bill"
 5, 1932, 32, "Helen Hayes", "The Sin of Madelon Claudet"
 6, 1933, 26, "Katharine Hepburn", "Morning Glory"
 7, 1934, 31, "Claudette Colbert", "It Happened One Night"
 8, 1935, 27, "Bette Davis", "Dangerous"
 9, 1936, 27, "Luise Rainer", "The Great Ziegfeld"
                                                                     Example of CSV file
10, 1937, 28, "Luise Rainer", "The Good Earth"
11, 1938, 30, "Bette Davis", "Jezebel"
12, 1939, 26, "Vivien Leigh", "Gone with the Wind"
13, 1940, 29, "Ginger Rogers", "Kitty Foyle"
14, 1941, 24, "Joan Fontaine", "Suspicion"
15, 1942, 38, "Greer Garson", "Mrs. Miniver"
16, 1943, 25, "Jennifer Jones", "The Song of Bernadette"
17, 1944, 29, "Ingrid Bergman", "Gaslight"
```

18, 1945, 40, "Joan Crawford", "Mildred Pierce"

Some useful file format

Use tabular data structure with headers

CSV

- Comma separated values
- Data is organized in rows
- Human readable (text file)
- Used i.e. to export data from Microsoft Excel

Commercial Clouds charge you by the amount of data stored or scanned per query

Apache Parquet

- Columnar storage format
- Self describing (schema is embedded within the data)
- Supports complex nested data structures
- Optimized for query performance
- Minimized I/O
- Compression and encoding (Snappy)

deselected mirror modifier ob

modifier ob is the active ob

Dataset	Size on Amazon S3	Query Run time	Data Scanned	Cost
Data stored as CSV files	1 TB	236 seconds	1.15 TB	\$5.75
Data stored in Apache Parquet format*	130 GB	6.78 seconds	2.51 GB	\$0.01
Savings / Speedup	87% less with Parquet	34x faster	99% less data scanned	99.7% savings

Browse Directory

/c	lat	a

Permission	Owner	Group
drwxr-xr-x	root	supergro
drwxr-xr-x	root	supergro
-rwxr-xr-x	root	supergro
drwxr-xr-x	root	supergro

Hadoop, 2015.

Block information	✓ Block 0 Block 1 Block 2						
Block ID: 10737442	Block 3 Block 4 Block 5						
Block Pool ID: BP-15676661-192.135.19.9-1567437632293							
Generation Stamp: 3438							
Size: 134217728							
Availability:							
 vdummy15.to.ii 	nfn.it	CSV file on HDFS					
 vdummy16.to.ii 							
 vdummy02.to.ii 	nfn.it						

 \times

Close

PARQUET file on HDFS

/data/Higgs1M.parquet

Permission	Owner	Group	Size	Last Modified	Replication	Block Size	Name
-rwxr-xr-x	root	supergroup	0 B	10/2/2019, 5:00:03 PM	3	128 MB	_SUCCESS
-rwxr-xr-x	root	supergroup	2.09 MB	10/2/2019, 4:59:57 PM	3	128 MB	part-00000-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.18 MB	10/2/2019, 4:59:57 PM	3	128 MB	part-00001-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.09 MB	10/2/2019, 4:59:57 PM	3	128 MB	part-00002-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.18 MB	10/2/2019, 4:59:58 PM	3	128 MB	part-00003-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.14 MB	10/2/2019, 4:59:57 PM	3	128 MB	part-00004-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.09 MB	10/2/2019, 4:59:57 PM	3	128 MB	part-00005-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.18 MB	10/2/2019, 4:59:57 PM	3	128 MB	part-00006-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.09 MB	10/2/2019, 4:59:57 PM	3	128 MB	part-00007-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.18 MB	10/2/2019, 4:59:58 PM	3	128 MB	part-00008-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.15 MB	10/2/2019, 4:59:58 PM	3	128 MB	part-00009-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.09 MB	10/2/2019, 4:59:58 PM	3	128 MB	part-00010-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.18 MB	10/2/2019, 4:59:58 PM	3	128 MB	part-00011-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.09 MB	10/2/2019, 4:59:58 PM	3	128 MB	part-00012-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.18 MB	10/2/2019, 4:59:58 PM	3	128 MB	part-00013-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.15 MB	10/2/2019, 4:59:58 PM	3	128 MB	part-00014-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.09 MB	10/2/2019, 4:59:58 PM	3	128 MB	part-00015-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.18 MB	10/2/2019, 4:59:59 PM	3	128 MB	part-00016-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.09 MB	10/2/2019, 4:59:59 PM	3	128 MB	part-00017-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet
-rwxr-xr-x	root	supergroup	2.18 MB	10/2/2019, 4:59:59 PM	3	128 MB	part-00018-5febe6aa-bdd6-4f41-b199-9bdd2595d689-c000.snappy.parquet

• We know what a distributed filesystem is, why it's useful...

• ...and we can even name a few

File format matters