Rigid-Body Motions

Introduccion

En el anterior capitulo aprendimos que necesitamos al menos 6 numeros para determinar la posicion y orientacion de un cuerpo rigido en el espacio. En este capitulo desarrollaremos una forma sistematica de describir la posicion y orientacion de un cuerpo rigido usando cambiando los marcos de referencia. Utilizaremos una matriz 4x4, esto es una forma de representacion implicita como vimos en el capitulo pasado.

- O Los 6 parametros es obtenido por 16 parametros de la matriz 4x4 mas 10 restricciones
- O Esta matriz no solo nos sirve para representar la configuracion del espacio sino tambien para realizar operaciones como traslacion y rotacion.
- O Tambien para cambiar la representacion de un vector que tiene coordenadas bajo un marco de referencia a otro.
- Estas 3 operaciones las podemos realizar de forma sencilla con la matriz 4x4 aplicando algebra lineal es por esta razon "simplicidad" que escogemos esta configuracion.
- O Spatial velocity or twist es el vector de velocidad de 6 dimensiones 3 para las velocidades lineales y 3 para las angulares.
- O Spatial Force or wrench es el vector de fuerzas o momentos de 6 dimensiones.
- ▲ **Vector Libre:** Es una cantidad geometrica con magnitud y direccion. Se lo llama libre porque no es necesario que este anclado a una referencia.
 - 🔆 La velocidad lineal es un ejemplo de un vector libre, la magnitud del vector es la v
- O Un marco de referencia lo podemos anclar en cualquier parte del espacio.
- O Normalmente asumimos que tenemos un marco referencia fijo space frame, asimismo asumimos que al menos un marco de referencia es anclado a un cuerpo rigido body frame, el mismo que acompana al cuerpo en cualquier instante de tiempo.
 - **Importante:** Todos los marcos de referencia son estacionarios es decir que aunque el cuerpo se este moviendo nos referimos al marco estacionario coincidente con el marco del

3.1 Movimientos de un cuerpo rigido en el plano

0	Solo necesitamos la posicion y la orientacion del objeto para representar su configuracion.
0	Representaremos el eje del robot en terminos del eje referencia.
_	La posicion la representaremos con un vector de n dimensiones y la orientacion con una matriz

- O Esta matriz para determinar la orientacion se la conoce como matriz de rotacion.
 - Cada vector dentro de la matriz es unitario.
 - Todos los vectores deben ser ortogonales entre ellos.
- La matriz de rotacion se la puede usar para 3 cosas:
 - Para representar la configuracion del cuerpo con respecto a la referencia.
 - Para cambiar el eje de referencia.
 - Para desplazar el cuerpo.
- O La rotacion y desplazamiento de un cuerpo se puede representar como un rotacion sobre un punto fijo en el espacio. Esto se lo conoce como screw motion.
- O Screw motion tiene 3 parametros (β, s_x, s_y) , donde (s_x, s_y) es la posicion del punto fijo y β es el angulo al que voy a girar el cuerpo con respecto al punto fijo.
- Otra forma de representar el Screw motion es por medio de la velocidad angular y lineal formando el vector $S=(\omega,v_x,v_y)$ el cual es una representacion del screw axis .
- igcup Multiplicar el vector S por un angulo heta nos da como resultado el desplazamiento neto.
- O El desplazamiento neto obtenido por rotar un cuerpo sobre el screw axis a un angulo θ es equivalente al desplazamiento obtenido por rotar un cuerpo sobre el screw axis a un velocidad $\dot{\theta}$
- O Existen otras formas de representar la orientacion aparte de las coordenadas exponenciales como los angulos de euler, los parametros de Cayley-Rodrigues y los cuarterniones.

⚠ Utilizaremos las coordenadas exponenciales para representar la configuracion de un cuerpo rigido basados en el teorema de Chasles-Mozzi

▲ Coordenadas exponenciales: Son las que definen un eje de rotacion y un angulo para rotar alrededor del eje.

▲ Teorema de Chasles-Mozzi: Cualquier desplazamiento de un cuerpo rigido puede ser obtenido por rotaciones finitas alrededor de un eje fijo.

3.2 Rotaciones y Velocidades Angulares

3.2.1 Matrices de Rotacion

O De los nueve parametros en una matriz de rotacion 3x3, 6 de esos son restricciones y 3 se los escoge de manera independiente.

O Las siguientes condiciones se deben cumplir para R, la cual es la matriz de rotacion.

lacktriangledown Norma unitaria: $\hat{x}_b, \hat{y}_b, \hat{z}_b$ todos son vectores unitarios.

$$egin{aligned} r_{11}^2 + r_{21}^2 + r_{31}^2 &= 1, \ r_{12}^2 + r_{22}^2 + r_{32}^2 &= 1, \ r_{13}^2 + r_{23}^2 + r_{33}^2 &= 1, \end{aligned}$$

2 Ortogonalidad: $\hat{x}_b \cdot \hat{y}_b = \hat{x}_b \cdot \hat{z}_b = \hat{y}_b \cdot \hat{z}_b = 0$.

$$(r_{11})(r_{12})+(r_{21})(r_{22})+(r_{31})(r_{32})=0, \ (r_{12})(r_{13})+(r_{22})(r_{23})+(r_{32})(r_{33})=0, \ (r_{11})(r_{13})+(r_{21})(r_{23})+(r_{31})(r_{33})=0,$$

Estas 6 restricciones las podemos expresar en su forma compacta como

$$R^TR = I$$
,

donde I es la matriz identidad y R^T es la transpuesta de la matrix ${\sf R}.$

⚠ Ademas agregaremos una condicion extra la cual nos asegurara que podemos utilizar ejes de referencia utilizando la regla de la mano derecha

$$\det R = 1.$$

ightharpoonup Grupo Ortogonal Especial: Son todas las matrices reales 3x3 R que cumplen $R^TR=I\ y\det R=1.$

 \triangle Grupo Ortogonal Especial: Son todas las matrices reales 2x2 R que cumplen $R^TR=I\ y\det R=1.$

 $R \in SO(2)$ se puede escribir como:

$$R = egin{bmatrix} r_{11} & r_{12} \ r_{21} & r_{22} \end{bmatrix} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}, heta \in [0, 2\pi)$$

 \bigcirc SO(2) se usa para configuraciones de orientacion planares mientras que SO(3) configuraciones de orientaciones espaciales.

Propiedades

- lacktriangle Cerradura: AB debe pertenecer al conjunto.
- Asociativa: (AB)C = A(BC).
- **ldentidad:** Debe existir un elemento I en el grupo que IA = AI = A.
- Inverso: $AA_{-1} = A_{-1}A = I$.

Usos

- Representar orientacion.
- 2 Rotar un cuerpo.
- 3 Cambiar el eje de referencia el cual el cuerpo esta representado

🔅 Ejemplo

El mismo espacio y el mismo punto p representado en tres ejes distintos con 3 orientaciones distintas.

Orientacion de los 3 ejes relativos a $\{s\}$ se puede escribir como

$$R_a = egin{bmatrix} \hat{x}_a & \hat{y}_a & \hat{z}_a \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}, \quad R_b = egin{bmatrix} \hat{x}_b & \hat{y}_b & \hat{z}_b \ 0 & -1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix}, \quad R_c = egin{bmatrix} \hat{x}_c & \hat{y}_c & \hat{z}_c \ 0 & -1 & 0 \ 0 & 0 & -1 \ 1 & 0 & 0 \end{bmatrix}$$

La ubicacion del punto en estos ejes seria

$$p_a = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}, \quad p_b = egin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}, \quad p_b = egin{bmatrix} 0 \ -1 \ -1 \end{bmatrix},$$

 ${\color{red} {\bf \Lambda}}$ Nota: $\{b\}$ se obtiene rotando $\{a\}$ 90° alrededor de \hat{z}_a y $\{c\}$ se obtiene rotando $\{b\}-90^\circ$ alrededor de \hat{y}_b

Representando Orientacion:

- $lackbox{0.5}{$R$}$ R_{sc} Matriz de rotacion del eje $\{c\}$ relativo a $\{s\}$.
- $\bigcirc R_{ac}R_{ca} = I.$

Cambiando el eje de referencia:

O La matriz de rotacion R_{ab} representa la orientacion de $\{b\}$ en $\{a\}$, R_{bc} representa la orientacion de $\{c\}$ en $\{b\}$ para calcular la matriz de rotacion de $\{c\}$ en $\{a\}$ basta con.

$$R_{ac} = R_{ab}R_{bc}$$

Esto mismo podemos aplicar para vectores

$$R_{ab}p_b=p_a$$

Rotar un cuerpo:

$$\bigcirc$$
 $R_{sb} = R = Rot(\hat{\omega}, \theta)$

igcirc Para rotar un punto p_s es tan facil como hacer $p_s'=Rp_s$

- $igorup R_{sb'}=RR_{sb}$; rotar por R en $\{s\}$ eje (R_{sb})
- $igcup R_{sb''}=R_{sb}R$; rotar por R en $\{b\}$ eje (R_{sb})

3.2.2 Velocidades Angulares

O Si tenemos un marco de referencia con ejes $\{\hat{x},\hat{y},\hat{z}\}$ el cual esta anclado a un cuerpo rigido, si queremos determinar las derivadas con respecto al tiempo de los ejes unitarios. Tenemos que solo la dirección de los ejes varia con respecto al tiempo.

O la velocidad angular del marco de rotacion.

$$lackbox{}\dot{R}R^{-1}=[\omega_s]$$

$$lacksquare R^{-1}\dot{R}=[\omega_b]$$

O La velocidad angular de un eje.

$$lacksquare$$
 $\omega_c=R_{cd}\omega_d$

O velocidad lineal de ejes

$$lackbox{m{\bullet}}\dot{r}_i=\omega_s imes r_i, \qquad i=1,2,3$$

 $oldsymbol{\mathsf{O}}\ x = egin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T \in \mathbb{R}^3 \ ext{lo podemos definir como una matrix antisimetrica como:}$

$$[x] = egin{bmatrix} 0 & -x_3 & x_2 \ x_3 & 0 & -x_1 \ -x_2 & x_1 & 0 \end{bmatrix}$$

3.2.3 Representacion de rotacion usando coordenadas exponenciales

O Aparte de la matriz de rotacion, tenemos otra forma de representar la orientacion de un cuerpo rigido la cual es coordenadas exponenciales

O Las coordenadas exponenciales para la rotacion estan construidas por 3 parametros, parametrizan una matriz de rotacion en terminos de un eje de rotacion representado como $\hat{\omega}$ y un angulo de rotacion sobre el eje θ .

 \mathbf{O} $\hat{\omega} heta\in\mathbb{R}^3$ esta es la representación de las coordenadas exponenciales.

Ecuaciones Diferenciales

- O Si tenemos al siguiente funcion $\dot{x}(t)=ax(t);\ a\in\mathbb{R},\ x(t)\in\mathbb{R}$, por ecuaciones diferenciales sabemos que su solucion es $x(t)=e^{at}x_0$ donde $x(0)=x_0$ es la condicion inicial.
- O Expansion numerica de e^{at} :

$$e^{at} = 1 + at + \frac{(at)^2}{2!} + \frac{(at)^3}{3!} + \dots$$

igcup Lo mismo aplica si $x(t) \in \mathbb{R}^n, A \in \mathbb{R}^{nxn}$ y la condicion inicial es $x(0) = x_0$

$$egin{aligned} \dot{x}(t) &= Ax(t) \ x(t) &= e^{At}x_0 \ e^{At} &= I + At + rac{(At)^2}{2!} + rac{(At)^3}{3!} + \end{aligned}$$

- igcup La matriz exponencial $e^A t$ satisface además las siguientes propiedades:
 - $lacksquare d(e^{At})/dt = Ae^{At} = e^{At}A$
 - lacktriangle Si $A=PDP^{-1}$ para $D\in\mathbb{R}^{nxn}$ y $P\in\mathbb{R}^{nxn}$ e invertible $e^{At}=Pe^{Dt}P^{-1}$
 - lacksquare Si AB=BA entonces $e^Ae^b=e^{A+B}$
 - $(e^A)^{-1} = e^{-A}$

Coordenadas Exponenciales de Rotacion

O Si tenemos el vector $\hat{\omega}\theta\in\mathbb{R}^3$, si θ es un escalar y $\hat{\omega}\in\mathbb{R}^3$ es un vector unitario, la matriz de rotacion exponencial de $[\hat{\omega}]\theta=[\hat{\omega}\theta]$ es

$$Rot(\hat{\omega}, \theta) = I + \sin \theta[\hat{\omega}] + (1 - \cos \theta)[\hat{\omega}]^2 \in SO(3).$$
 (1)

- ▲ Nota: La ecuacion 1 es la formula de rotacion de Rodrigues
- $m{O}\ R'=e^{[\hat{\omega}] heta}R$ Rotar R a heta grados sobre el eje $\hat{\omega}$ en el marco de referencia fijo
- $m{O}\ R''=Re^{[\hat{\omega}] heta}$ Rotar R a heta grados sobre el eje $\hat{\omega}$ en el marco de referencia movil

Matriz Logaritmica de rotacion

O La matriz logaritmica es la inversa de la matriz exponencial la cual es la matriz de rotacion, $[\hat{\omega}\theta=[\hat{\omega}]\theta]$

O Si tenemos $R \in SO(3)$ debemos encontrar el angulo $\theta \in [0,\pi]$ y el eje unitario de rotacion $\hat{\omega} \in \mathbb{R}^3, \|\hat{\omega}\| = 1$, tal que $e^{[\hat{\omega}]\theta} = R$. El vector $\hat{\omega}\theta \in \mathbb{R}^3$ representa las coordenadas exponenciales de R y la matriz asimetrica $[\hat{\omega}]\theta \in so(3)$ es la matriz logaritmica de R.

- $lackbox{ }$ Si R=I entonces heta=0 y $\hat{\omega}$ es indefinido.
- Si la traza de de R=-1 entonces $\theta=\pi$ y $\hat{\omega}$ es igual a cualquiera de los siguientes vectores.

$$\hat{\omega} = rac{1}{\sqrt{2(1+r_{33})}}egin{bmatrix} r_{13} \ r_{23} \ 1+r_{33} \end{bmatrix}; \ \hat{\omega} = rac{1}{\sqrt{2(1+r_{22})}}egin{bmatrix} r_{12} \ 1+r_{22} \ r_{33} \end{bmatrix}; \ 1 & egin{bmatrix} 1+r_{11} \ \end{bmatrix}$$

$$\hat{\omega} = rac{1}{\sqrt{2(1+r_{11})}} egin{bmatrix} 1+r_{11} \ r_{21} \ 1+r_{31} \end{bmatrix};$$

- **** Importante:** $\sqrt{2(1+r_{nn})}$ debe ser mayor a 0
 - De otra forma

$$egin{aligned} heta &= rccos(rac{1}{2}(trR-1)) \in [0,\pi); \ &[\hat{\omega}] = rac{1}{2\sin heta}(R-R^T) \end{aligned}$$

- O Toda matriz $R \in SO(3)$ satisface uno de los 3 casos anteriores, para toda R existe una matrix logaritmica y por ende existe una representación en coordenadas exponenciales.
- igcirc Si $r=\hat{\omega} heta$ entonces $\hat{\omega}=r/\|r\|$ y $heta=\|r\|$

Funciones en Python

```
import modern_robotics as mr
mr.RotInv(R)
Inverso de la matriz de rotacion R
:paramtros: R : Matriz de Rotacion
:retorna: La inversa de la matriz R
.....
mr.VecToso3(omg)
Transforma un vector a una matriz 3x3 asimetrica
:parametros: omg : Vector de dimension 3
:retorna: Matrix 3x3 asimetrica
.....
mr.so3ToVec(so3mat)
Convierte una matrix asimetrica 3x3 en un vector de 3 dimensiones
:parametros: so3mat : Matriz asimetrica 3x3
:retorna: vector de dimension 3
0.00
mr.AxisAng3(expc3)
Transforma un vector de coordenadas exponenciales en la forma eje-angulo
:parametros: expc3 : Vector de coordenadas exponenciales de rotacion
:retorna: omg : eje de rotacion unitario
        : theta : angulo de rotacion
.....
mr.MatrixExp3(so3mat)
.....
Calcula la matriz de Rotacion de la matriz logaritmica so3mat
:parametros: so3mat : Matriz 3x3 asimetrica
:retorna: matriz de Rotacion
mr.MatrixLog3(R)
Calcula la matriz logaritmica de la matriz de rotacion R
:parametros: R : MAtriz 3x3 de Rotacion
:retorna: Matriz 3x3 logaritmica
0.00
```

3.3 Movimientos y Giros de un Cuerpo Rigido

- igcup La matriz de transformacion homogenea T es analogo a la matriz de rotacion R
- $oldsymbol{\bigcirc}$ el screw axis S es analogo a el eje de rotacion $\hat{\omega}$
- \mathbf{O} $S\theta\in\mathbb{R}^6$ son las coordenadas exponenciales del movimiento de los cuerpos rigididos similar a $\hat{\omega} heta\in\mathbb{R}^3$ para las rotaciones.

3.3.1 Matrices de Transformación Homogenea

- O estas matrices representaran la orientación y posición de los cuerpos rigidos.
- igcolon SE(3) es el grupos especial euclidenano o tambien conociudo como el grupo de las matrices de transformacion homogeneas en R^3 es el grupo de matrices 4x4

$$T = egin{bmatrix} R & p \ 0 & 1 \end{bmatrix} = egin{bmatrix} r_11 & r_12 & r_13 & p_1 \ r_21 & r_22 & r_23 & p_2 \ r_31 & r_32 & r_33 & p_3 \ 0 & 0 & 0 & 1 \end{bmatrix};$$

Donde $R \in SO(3), p \in \mathbb{R}^3$ es un vector columna

- O Lo que ocurre en que estamos encapsulando el vector p y la matriz R en una nueva matrix 4x4.
- $igcup \mathbf{O}$ el vector $[x^T1]^T$ es la representación de \mathbf{x} en coordenadas homogeneas

Propiedades

- Asociativa
- Cerradura
- Inversa
- Nota: NO es conmutativa

$$Tx = T egin{bmatrix} x \ 1 \end{bmatrix} = egin{bmatrix} R & p \ 0 & 1 \end{bmatrix} egin{bmatrix} x \ 1 \end{bmatrix} = egin{bmatrix} Rx + p \ 1 \end{bmatrix}$$
 $(a) \|Tx - Ty\| = \|x - y\|;$
 $\|x\| = \sqrt{x^T x}$

$$(b) < Tx - Tz, Ty - Tz > = < x - z, y - z >; < x, y > = x^Ty$$

- O la propiedad (a) preserva distancias mientras que la (b) preserva angulos.
- O Si tenemos un grupo de puntos $\{x,y,z\}$ donde $\{Tx,Ty,Tz\}$ representa el desplazamiento respetando distacias y orientacion.
- O Inversa de una matriz T se expresa de la siguiente forma.

$$T^{-1} = \begin{bmatrix} R^T & -R^T p \\ 0 & 1 \end{bmatrix}$$

Usos

- Representar la configuracion (posicion y orientacion) de un cuerpo rigido.
- 2 Cambiar el marco de referencia.
- 3 Desplazar un cuerpo un vector o eje.
- $igorup_{ab}T_{bc}=T_{ab}T_{bc}=T_{ac}$
- $igcup T_{ab} v_b = T_{ab} v_b = v_a$, donde v_a es el vector v expresado en {a}.
- $igcup T_{sb'} = TT_{sb} = Trans(p)Rot(\hat{\omega}, heta)T_{sb}$ eje de referencia
- $igcup T_{sb''} = T_{sb}T = T_{sb}Trans(p)Rot(\hat{\omega}, heta)$ eje del cuerpo

3.3.2 Twist