Decomposition

What is decomposition?

- Decomposition is the process of breaking down given relation into two or more relations.
- Relation R is replaced by two or more relations in such a way that:
 - Each new relation contains a subset of the attributes of R
 - Together, they all include all tuples and attributes of R
- Types of decomposition
 - Lossy decomposition
 - Lossless decomposition (non-loss decomposition)
- Properties of Decomposition:
 - Lossless (Mandatory)
 - Dependency Preserving (Optional)

Lossy decomposition

- The decomposition of relation R into R1 and R2 is lossy when the natural join of R1 and R2 does not yield the same relation as in R.
- This is also referred as lossy-join decomposition.
- The disadvantage of such kind of decomposition is that some information is lost during retrieval of original relation.
- From practical point of view, decomposition should not be lossy decomposition.

Lossless decomposition

- The decomposition of relation R into R1 and R2 is lossless when the natural join of R1 and R2 produces the same relation as in R.
- This is also referred as a non-additive (non-loss) decomposition.
- All decompositions must be lossless.

Determine Whether Decomposition Is Lossless Or Lossy?

Consider a relation R is decomposed into two sub relations R₁ and R₂.

Then,

- If all the following conditions satisfy, then the decomposition is lossless.
- If any of these conditions fail, then the decomposition is lossy.

Condition-01: Union of both the sub relations must contain all the attributes that are present in the original relation R.

$$R_1 \cup R_2 = R$$

Condition-02:

- Intersection of both the sub relations must not be null.
- In other words, there must be some common attribute which is present in both the sub relations.

$$R1 \cap R2 \neq \emptyset$$

Condition-03: Intersection of both the sub relations must be a candidate key of either R_1 or R_2 or both.

$$R_1 \cap R_2$$
 = candidate key of R_1 or R_2

Determine Whether Decomposition Is Dependency Preserving?

Consider a relation R having a set of FDs is decomposed into two sub-relations R_1 and R_2 . Then,

- Find out all the valid non-trivial FDs for each sub relations.
- If all the FDs of R are proved to be the member of non-trivial FD set of sub-relations, it is said to be dependency preserving decomposition.
- First write down all the possible non-trivial FDs for all sub-relations.
- Now, check which are valid and invalid FDs out of them.
 - Determine the closure of each non-trivial FD with the help of FD set of R and if it satisfies the non-trivial FD, it is said to be valid non-trivial FD.

Decomposition R1(AB), R2(BC), and R3(CD)

- Is Lossless?
- Is Dependency Preserving?

For Lossless Decomposition:

- Take the closure of common attribute between R1 and R2, i.e., B. B⁺ = BCDA.
- It is the CK of both R1 and R2 because it is determining all the attributes of both the table.
- Take the closure of common attribute between R12(ABC) and R3(CD), i.e., C^+ = CDAB.
- It is the CK of both R12 and R3 because it is determining all the attributes of both the table.
- It means it is lossless decomposition.

For Dependency Preserving Decomposition:

- Find out all the valid non-trivial FDs of all the decomposed tables.
- If we can derive all the FD of R with the help of F1 and F2, then decomposition will be called dependency preserving.

- A -> B, B -> C, and C -> D are directly exist in the set of valid non-trivial FDs.
- The membership of D -> A will be checked by taking the closure of D with the help of valid non-trivial FD set.

$$D^+ = DCBA$$
, hence $D \rightarrow A$ exists.

R(ABC)

 $FD = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$

Decomposition R1(AB) and R2(BC)

- Is Lossless?
- Is Dependency Preserving?

R(ABCD)

FD = {AB -> CD, D -> A}

Decomposition R1(AD) and R2(BCD)

- Is Lossless?
- Is Dependency Preserving?

R(ABCDEG)

 $FD = \{AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow G\}$

Decomposition R1(ABC), R2(ABDE) and R3(EG)

- Is Lossless?
- Is Dependency Preserving?

R(ABCDE)

FD = {A -> BC, C -> DE, D -> E}

Decomposition R1(ABCD) and R2(DE)

- Is Lossless?
- Is Dependency Preserving?