

ESTATÍSTICA

MEDIDAS DE DISPERSÃO

DESVIO MÉDIO ABSOLUTO, VARIÂNCIA E DESVIO PADRÃO

https://youtu.be/rQIcIEBxkwo

(Famema) Em uma pesquisa foram utilizadas 50 mudas de determinado tipo de planta com alturas diferentes. A tabela mostra o número de mudas e suas respectivas alturas.
 Número de mudas Altura da muda (em cm)

18	10
7	13
9	8
16	4,5

Considerando as alturas de todas essas mudas, a média, a moda e a mediana são, respectivamente,

- **A** 8,5 cm; 18 cm; 8 cm.
- **B** 8,3 cm; 10 cm; 9 cm.
- **@** 8,8 cm; 10 cm; 9 cm.
- **D** 8,3 cm; 18 cm; 8 cm.
- **3** 8,8 cm; 18 cm; 9 cm.

2. (FGV) Uma lista de quatro números inteiros tem média 7 e diferença entre o maior e o menor dos números igual a 24. A moda e a mediana da lista são, ambas, iguais a 8. Assim, o desvio padrão da lista é igual a

- **(A)** $\sqrt{69}$
- **3** $\sqrt{70}$
- **Q** $\sqrt{71}$
- $\mathbf{O} \sqrt{72}$
- **3** $\sqrt{73}$

3. (ENEM) Um fiscal de certa empresa de ônibus registra o tempo, em minuto, que um motorista novato gasta para completar certo percurso. No Quadro 1 figuram os tempos gastos pelo motorista ao realizar o mesmo percurso sete vezes. O Quadro 2 apresenta uma classificação para a variabilidade do tempo, segundo o valor do desvio padrão.

Quadro 1								
Tempos								
(em mi- nuto)	48	54	50	46	44	52	49	

Quadro 2				
Variabilidade	Desvio padrão do			
variabilidade	tempo (min)			
Extremamente baixa	$0 < \sigma \le 2$			
Baixa	$2<\sigma\leq 4$			
Moderada	$4 < \sigma \le 6$			
Alta	$6 < \sigma \le 8$			
Extremamente alta	σ > 8			

Com base nas informações apresentadas nos quadros, a variabilidade do tempo é

- A extremamente baixa.
- baixa.
- moderada.
- alta.
- **3** extremamente alta.

4. (UPE) Ao realizar o levantamento das famílias de uma pequena cidade do interior, cujos filhos são beneficiários de algum programa social, um pesquisador obteve os seguintes dados:

Beneficiados em Programa Social				
Número de Filhos	Quantidade de Famílias			
5	03			
4	07			
3	21			
2	28			
1	23			
0	18			
Total: 100				

Com base nessas informações, é **CORRETO** afirmar que o desvio-padrão do número de filhos dessa amostra é de, aproximadamente:

A 1,4

G 2,0

6.7

3 1,8

① 2,5

5. (FGV) A tabela mostra a série de um indicador econômico de um país, em bilhões de US\$, nos 12 meses de 2013.

Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
21	24	20	23	22	22	18	17	16	17	16	18

- ♠ Calcule a média, a(s) moda(s), a mediana e a maior taxa mensal de crescimento (em porcentagem) dessa série.
- ⊕ Sabe-se que, em janeiro de 2014, esse indicador econômico atingiu um valor positivo para o qual a nova série (de janeiro de 2013 até janeiro de 2014) passou a ter mediana de 18 bilhões de US\$, e um número inteiro de bilhões de US\$ como média mensal. Calcule o desvio médio (DM) dessa nova série.

6. (UEG) Os números de casos registrados de acidentes domésticos em uma determinada cidade nos últimos cinco anos foram: 100, 88, 112, 94 e 106. O desvio padrão desses valores é aproximadamente

A 3.6

③ 7,2

6 8,5

0 9.0

10,0

7. (ENEM) O procedimento de perda rápida de "peso" é comum entre os atletas dos esportes de combate. Para participar de um torneio, quatro atletas da categoria até 66 kg, Peso-Pena, foram submetidos a dietas balanceadas e atividades físicas. Realizaram três "pesagens" antes do início do torneio. Pelo regulamento do torneio, a primeira luta deverá ocorrer entre o atleta mais regular e o menos regular quanto aos "pesos". As informações com base <u>nas pesagens dos atletas estão no quadro.</u>

Atleta	1ª pesa- gem (kg)	2ª pesa- gem (kg)	3ª pesa- gem (kg)	Mé- dia	Me- di- ana	Des- vio- pa- drão
I	78	72	66	72	72	4,90
II	83	65	65	71	65	8,49
III	75	70	65	70	70	4,08
IV	80	77	62	73	77	7,87

Após as três "pesagens", os organizadores do torneio informaram aos atletas quais deles se enfrentariam na primeira luta.

A primeira luta foi entre os atletas

A le III.

B le IV.

⊕ II e III.

① II e IV.

III e IV.

8. (UPE) O quadro abaixo mostra o número de gols marcados em cada uma das partidas do grupo do Brasil na primeira fase da Copa do Mundo de 2014.

Partida	Gols marcados
Brasil × Croácia	4
México × Camarões	1
Brasil × México	0
Croácia × Camarões	4
Camarões × Brasil	5
Croácia × México	4

O desvio médio de gols marcados por partida nos jogos desse grupo foi de, aproximadamente,

- **(A)** 3,0
- **3** 2,0
- **(**1,7
- **①** 1.5
- **3** 1,2

9. (UPE) Numa competição esportiva, cinco atletas estão disputando as três primeiras colocações da prova de salto em distância. A classificação será pela ordem decrescente da média aritmética de pontos obtidos por eles, após três saltos consecutivos na prova. Em caso de empate, o critério adotado será a ordem crescente do valor da variância. A pontuação de cada atleta está apresentada na tabela a seguir:

Atleta	Pontuação - 1º salto	Pontuação - 2º salto	Pontuação - 3º salto
Α	6	6	6
В	7	3	8
С	5	7	6
D	4	6	8
E	5	8	5

Com base nas informações apresentadas, o primeiro, o segundo e o terceiro lugares dessa prova foram ocupados, respectivamente, pelos atletas

- ♠ A; C; E
- ❸ B; D; E
- **G** E; D; B
- **⊙** B; D; C
- (3) A; B; D

GABARITOS

Resposta da questão 1: [B]

Calculando:

$$\text{m\'edia} = \frac{18 \cdot 10 + 7 \cdot 13 + 9 \cdot 8 + 16 \cdot 4{,}5}{18 + 7 + 9 + 16} = \frac{415}{50} \Longrightarrow \text{m\'edia} = 8{,}3$$

$$moda = 10$$

total elementos = 50
$$\Rightarrow$$
 mediana = $\frac{x_{25} + x_{26}}{2} = \frac{8 + 10}{2} \Rightarrow$ mediana = 9

Resposta da questão 2: [E]

Calculando:

$$\frac{a+b+c+d}{4} = 7$$

$$d-a = 24$$

$$\frac{b+c}{2} = 8 \Rightarrow b+c = 16$$

$$\frac{a+16+d}{4} = 7 \Rightarrow a+d = 12 \Rightarrow d = 12-a$$

$$d-a = 24 \Rightarrow 12-a-a = 24 \Rightarrow -2a = 12 \Rightarrow a = -6 \Rightarrow d = 18$$

$$Moda = 8 \Rightarrow b = c = 8$$

$$\sigma^2 = \sqrt{\frac{\left(-6-7\right)^2 + \left(8-7\right)^2 + \left(8-7\right)^2 + \left(18-7\right)^2}{4}} = \sqrt{\frac{169+1+1+121}{4}} = \sqrt{73}$$

Resposta da questão 3: [B]

Considere a tabela.

x _i	x _i ²
48	2304
54	2916
50	2500
46	2116
44	1936
52	2704
49	2401
$\sum_{i=1}^{7} x_i = 343$	$\sum_{i=1}^{7} x_i^2 = 16877$

Logo, temos

$$\sigma = \sqrt{\frac{1}{7} \left[\sum_{i=1}^{7} x_i^2 - \frac{(\sum_{i=1}^{7} x_i)^2}{7} \right]}$$
$$= \sqrt{\frac{1}{7} \left[16877 - \frac{343^2}{7} \right]}$$
$$\approx 3,16.$$

Portanto, a variabilidade do tempo é baixa.

Resposta da questão 4: [A]

$$\text{M\'edia} = \overline{X} = \frac{(5 \cdot 3) + (4 \cdot 7) + (3 \cdot 21) + (2 \cdot 28) + (1 \cdot 23) + (0 \cdot 18)}{100} = 1,85 \text{ filhos / fam\'ilia}$$

Desvio Padrão =
$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{X})^2 \cdot f_i}{n-1}}$$

Desvio Padrão =
$$S = \sqrt{\frac{\displaystyle\sum_{i=1}^{n} \left(x_i - \overline{X}\right)^2 \cdot f_i}{n-1}}$$

$$S = \sqrt{\frac{\left(5 - 1,85\right)^2 \cdot 3 + \left(4 - 1,85\right)^2 \cdot 7 + \left(3 - 1,85\right)^2 \cdot 21 + \left(2 - 1,85\right)^2 \cdot 28 + \left(1 - 1,85\right)^2 \cdot 23 + \left(0 - 1,85\right)^2 \cdot 18}{100 - 1}}$$

$$S \approx 1,31$$

Como não há a alternativa 1,31, o valor mais próximo que se pode aproximar é 1,4, ou seja, alternativa [A].

Resposta da questão 5:

a) A média:

$$\overset{-}{x} = \sum_{i=1}^{12} x_i = \frac{21 + 24 + 20 + 23 + 22 + 22 + 18 + 17 + 16 + 17 + 16 + 18}{12} = \frac{234}{12} = 19.5$$

A moda:

São os valores: 16, 17, 18 e 22, pois estes valores aparecem duas vezes cada na séria representada acima.

A mediana:

Colocando os números em ordem crescente, temos:

$$Md = \frac{18 + 20}{2} = 19$$

Maior taxa mensal de crescimento

Ocorreram aumentos entre:

$$\mathsf{JAN}\;\mathsf{e}\;\mathsf{FEV} \Rightarrow \frac{24-21}{21} \times 100 \cong 14,28\%$$

MAR e ABR
$$\Rightarrow \frac{23-20}{20} \times 100 = 15\%$$

Portanto, a maior taxa mensal de crescimento ocorreu entre Março e Abril.

b) A média:

$$\overset{-}{x} = \sum_{i=1}^{13} x_i = \frac{21 + 24 + 20 + 23 + 22 + 22 + 18 + 17 + 16 + 17 + 16 + 18 + x}{13} = \frac{234 + x}{13} \Rightarrow \text{ n\'umero inteiro}.$$

A mediana:

Em ordem crescente, e sabendo que a mediana é 18, temos que em Jan de 2014 o valor é menor ou igual a 18. Portanto, considerando estes fatos, temos que x vale 13, pois dará um número divisível por 13.

(13, 16, 16, 17, 17, 18, 18, 20, 21, 22, 22, 23, 24) que nos dá mediana 18

E média mensal:

$$\bar{x} = \sum_{i=1}^{13} x_i = \frac{21 + 24 + 20 + 23 + 22 + 22 + 18 + 17 + 16 + 17 + 16 + 18 + 13}{13} = \frac{247}{13} = 19$$

$$\frac{\sum\limits_{i=1}^{n}\mid x_{i}-x^{-}\mid}{\text{Cálculo do Desvio Médio}}=\frac{\sum\limits_{i=1}^{n}\mid x_{i}-x^{-}\mid}{\text{n}}, \text{ sendo } x^{-} \text{ a média aritmética}.$$

$$\begin{split} & \sum_{m=1}^{n} |x_{i} - \overline{x}| \\ & D_{m} = \frac{\sum_{i=1}^{n} |x_{i} - \overline{x}|}{n} \\ & = \frac{\left|13 - 19\right| + 2\left|16 - 19\right| + 2\left|17 - 19\right| + 2\left|18 - 19\right| + \left|20 - 19\right| + \left|21 - 19\right| + 2\left|22 - 19\right| + \left|23 - 19\right| + \left|24 - 19\right|}{13} \\ & = \frac{6 + 6 + 4 + 2 + 1 + 2 + 6 + 4 + 5}{13} \\ & = \frac{36}{13} \end{split}$$

Resposta da questão 6: [C]

Calculando a média aritmética, temos:

$$\bar{x} = \frac{100 + 88 + 112 + 94 + 106}{5} = 100$$

E depois o desvio padrão:

$$\sqrt{\sigma} = \sqrt{\frac{(100 - 100)^2 + (100 - 88)^2 + (100 - 112)^2 + (100 - 94)^2 + (100 - 106)^2}{5}} = \sqrt{72} \approx 8.5$$

Resposta da questão 7: [C]

O menos regular é o que apresenta maior desvio-padrão e o mais regular é o que apresenta menor desvio-padrão. Portanto, a luta será entre os atletas II e III.

Resposta da questão 8: [C]

Considere a tabela.

Partida	x_i	x _i - x
Brasil × Croácia	4	1
México × Camarões	1	2
Brasil × México	0	3
Croácia × Camarões	4	1
Camarões × Brasil	5	2
Croácia × México	4	1
	$\sum_{1}^{6} x_i = 18$	$\sum_{1}^{6} x_{i} - \overline{x} = 10$

A média de gols marcados nas 6 partidas foi de

$$\bar{x} = \frac{\sum_{i=1}^{6} x_i}{6} = \frac{18}{6} = 3.$$

Portanto, o desvio médio de gols marcados por partida nos jogos desse grupo foi

$$D_{m} = \frac{\sum_{i=1}^{6} |x_{i} - \overline{x}|}{6} = \frac{10}{6} \approx 1.7.$$

Resposta da questão 9: [A]

É fácil ver que a média aritmética dos pontos obtidos por cada atleta é igual a 6, já que todos somaram 18 pontos e foram realizados três saltos.

Por outro lado, calculando a variância dos pontos de cada atleta, obtemos

$$\begin{aligned} \text{Var}_{A} &= \frac{(6-6)^2 + (6-6)^2 + (6-6)^2}{3} = 0, \\ \text{Var}_{B} &= \frac{(7-6)^2 + (3-6)^2 + (8-6)^2}{3} \cong 4,67, \\ \text{Var}_{C} &= \frac{(5-6)^2 + (7-6)^2 + (6-6)^2}{3} \cong 0,67, \\ \text{Var}_{D} &= \frac{(4-6)^2 + (6-6)^2 + (8-6)^2}{3} \cong 2,67, \\ \text{Var}_{E} &= \frac{(5-6)^2 + (8-6)^2 + (5-6)^2}{3} = 2. \end{aligned}$$

Portanto, como $Var_A < Var_C < Var_B < Var_B$, segue-se que o primeiro, o segundo e o terceiro lugares dessa prova foram ocupados, respectivamente, pelos atletas A, C

SIGA MEU PERFIL NO PASSEI DIRETO

https://www.passeidireto.com/perfil/matematica-rapidola

INSCREVA-SE NO CANAL MATEMÁTICA RAPIDOLA

https://www.youtube.com/rapidola