

FOUNDATIONS OF STATISTICAL ANALYSIS & MACHINE LEARNING

Amric Trudel

amric.trudel@epita.fr

COURSE PROGRAM

	Structure					
PREPARATION	Data exploration					
PREPARATION	Data preprocessing					
	Linear regression with one variable					
REGRESSIONS	Multiple and polynomial regressions					
	Regression model assessment					
	Logistic regression					
	Classification model assessment					
CLASSIFICATIONS	Discriminant Analysis					
CB CONTO, CHOING						
CLUSTERING	k-means, hierarchical clustering					
DIMENSIONALITY REDUCTION	Principal Components Analysis Extensions					
ALL NOTIONS	Final assignment					

Why?

- Remove irrelevant data
- "Repair" incorrect/missing data
- Set to numeric format
- Split data: predictors/response, train/test

Removing unrelevant data

Removing a column

```
dataset.drop(['PassengerId'], axis=1)
```

Removing rows

```
dataset.drop_duplicates()
dataset.drop(dataset[dataset['Fare'] <= 0].index,
    axis=0)</pre>
```

SibSt	Age	Sex	Name	Pclass	Survived	Passengerld	
1	22	male	Braund, Mr. Owen Harris	3	0	1	1
1	38	female	Bradley (Florence Briggs Thayer)	1	1	2	2
(26	female	Heikkinen, Miss. Laina	3	1	3	3
1	35	female	frs. Jacques Heath (Lily May Peel)	1	1	4	4
(35	male	Allen, Mr. William Henry	3	0	5	5
(21	male	Moran, Mr. James	3	0	6	6
(54	male	McCarthy, Mr. Timothy J	1	0	7	7
1	2	male	Palsson, Master. Gosta Leonard	3	0	8	8
(27	female	scar W (Elisabeth Vilhelmina Berg)	3	1	9	9
1	14	female	sser, Mrs. Nicholas (Adele Achem)	2	1	10	10
1	4	female	Sandstrom, Miss. Marguerite Rut	3	1	11	11
(58	female	Bonnell, Miss. Elizabeth	1	1	12	12
(20	male	Saundercock, Mr. William Henry	3	0	13	13
1	39	male	Andersson, Mr. Anders Johan	3	0	14	14
(14	female	rom, Miss. Hulda Amanda Adolfina	3	0	15	15
(55	female	Hewlett, Mrs. (Mary D Kingcome)	2	1	16	16
4	2	male	Rice, Master. Eugene	3	0	17	17
(32	male	Williams, Mr. Charles Eugene	2	1	18	18
1	31	female	lius (Emelia Maria Vandemoortele)	3	0	19	19
(45	female	Masselmani, Mrs. Fatima	3	1	20	20
(35	male	Fynney, Mr. Joseph J	2	0	21	21
(34	male	Beesley, Mr. Lawrence	2	1	22	22
(15	female	McGowan, Miss. Anna "Annie"	3	1	23	23
(28	male	Sloper, Mr. William Thompson	1	1	24	24
;	8	female	Palsson, Miss. Torborg Danira	3	0	25	25
1	38	female	Selma Augusta Emilia Johansson)	3	1	26	26
(28	male	Emir, Mr. Farred Chehab	3	0	27	27
:	19	male	Fortune, Mr. Charles Alexander	1	0	28	28
(35	female	O'Dwyer, Miss. Ellen "Nellie"	3	1	29	29
(25	male	Todoroff, Mr. Lalio	3	0	30	30
(40	male	Uruchurtu, Don. Manuel E	1	0	31	31
	57	female	William Augustus (Marie Eugenie)	1	1	32	32

Filling missing data

Replace the missing values:

```
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
                                                                      NaN
imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
```

```
imputer2 = SimpleImputer(missing_values='error', strategy='constant',
  fill_value=0)
```

Preparing features and response sets

• Identification of the predictors

Identification of the response (case of supervised learning)

```
y = dataset.iloc[:, -1]
```

Χ	
Fare	

mbarked	Pclass	Fare	Sex	Age
2	3	7.25	0	22.0
0	1	71.2833	1	38.0
2	3	7.925	1	26.0
2	1	53.1	1	35.0
2	3	8.05	0	35.0
1	3	8.4583	0	21.0
2	1	51.8625	0	54.0
2	3	21.075	0	2.0
2	3	11.1333	1	27.0
0	2	30.0708	1	14.0
2	3	16.7	1	4.0
2	1	26.55	1	58.0
2	3	8.05	0	20.0
2	3	31.275	0	39.0
2	3	7.8542	1	14.0

Encoding data

- Boolean data:
 - Explicit encoding:

```
encoding_dict = {'female':1, 'male': 0}
X['Sex'] = X['Sex'].replace(encoding_dict)
```

Implicit encoding:

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
X['Sex'] = label_encoder.fit_transform(X['Sex'])
```

```
male
female
female
female
male
male
```

Encoding data

- Categorical data:
 - Explicit encoding (suitable for an ordered set only):

```
encoding_dict = {'bad':0, 'middle': 1, 'good': 2}
X['Level'] = X['Level'].replace(encoding_dict)
```

- Implicit encoding (suitable for distinct categories):

```
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
oh_encoder = ColumnTransformer(transformers=[('encoder',
          OneHotEncoder(), ['Embarked'])], remainder='passthrough')
X = oh_encoder.fit_transform(X)
```

Splitting the data set

 Split the data set so to have data dedicated to training a model and data dedicated to testing this model:

from sklearn.model_selection import train_test_split X train, X test, y train, y test = train test split(X, y, test_size = 0.25, random_state = 1)

	Embarked	Pclass	Fare	Sex	Age	Sur
	2	3	7.25	0	22.0	
	0	1	71.2833	1	38.0	
	2	3	7.925	1	26.0	
	2	1	53.1	1	35.0	
	2	3	8.05	0	35.0	
_	1	3	8.4583	0	21.0	
_ _ _ _	2	1	51.8625	0	54.0	
_	2	3	21.075	0	2.0	
ر	2	3	11.1333	1	27.0	
	0	2	30.0708	1	14.0	
	2	3	16.7	1	4.0	
	2	1	26.55	1	58.0	
	2	3	8.05	0	20.0	
	2	3	31.275	0	39.0	
	2	3	7.8542	1	14.0	

د	1	3	7.8792	1	35.0	
Ç	2	3	7.8958	0	25.0	
ر	0	1	27.7208	0	40.0	
_	0	1	146.5208	1	57.0	

Scaling data

• Standardisation:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train[:, 5:])
X_train[:, 5:] = scaler.transform(X_train[:, 5:])
```

• Normalisation:

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0,1))
data rescaled = scaler.fit transform(data)
```

Standardisation	Normalisation
$x_{\text{stand}} = \frac{x - \text{mean}(x)}{\text{standard deviation }(x)}$	$x_{\text{norm}} = \frac{x - \min(x)}{\max(x) - \min(x)}$

16.

22.	-0.52
31.	0.08
50.	1.36
53.	1.56
38.	0.55
17.	-0.86
40.	0.69
20.	-0.66
47.	1.16
48.	1.23
26.	-0.25
26.	-0.25
40.	0.69
31.	0.08
20.5	-0.62
19.	-0.72
31.	0.08
24.	-0.39
32.5	0.18

-0.93

Implementation

- Titanic data set: information on passengers (age, class, survived, etc.)
- Objectives:
 - Make it ready for ML processing

Practice

- Bank churn: list of customers of a loan bank.
- Objectives:
 - Explore the data
 - Prepare the data set so that it can be directly used for ML processing for churn prediction
- Deadline: Tuesday 29th 6 p.m.

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
5	6	15574012	Chu	645	Spain	Male	44	8	113755.78	2	1	0	149756.71	1
6	7	15592531	Bartlett	822	France	Male	50	7	0.00	2	1	1	10062.80	0
7	8	15656148	Obinna	376	Germany	Female	29	4	115046.74	4	1	0	119346.88	1
8	9	15792365	He	501	France	Male	44	4	142051.07	2	0	1	74940.50	0
9	10	15592389	H?	684	France	Male	27	2	134603.88	1	1	1	71725.73	0
10	11	15767821	Bearce	528	France	Male	31	6	102016.72	2	0	0	80181.12	0
11	12	15737173	Andrews	497	Spain	Male	24	3	0.00	2	1	0	76390.01	0
12	13	15632264	Kay	476	France	Female	34	10	0.00	2	1	0	26260.98	0
13	14	15691483	Chin	549	France	Female	25	5	0.00	2	0	0	190857.79	0
14	15	15600882	Scott	635	Spain	Female	35	7	0.00	2	1	1	65951.65	0
15	16	15643966	Goforth	616	Germany	Male	45	3	143129.41	2	0	1	64327.26	0
16	17	15737452	Romeo	653	Germany	Male	58	1	132602.88	1	1	0	5097.67	1
17	18	15788218	Henderson	549	Spain	Female	24	9	0.00	2	1	1	14406.41	0
18	19	15661507	Muldrow	587	Spain	Male	45	6	0.00	1	0	0	158684.81	0
19	20	15568982	Hao	726	France	Female	24	6	0.00	2	1		54724.03	0

45