Econ4570/6560 Econometrics/Introduction to Econometrics Slide 2: Review of Statistics

Huaming Peng

Stock and Watson Chapter 2-3

- Simple random sampling
- Distribution of the sample average
- Large sample approximation to the distribution of the sample mean
 - Law of large numbers
 - central limit theorem
- Estimation of the population mean
 - unbiasedness
 - consistency
 - efficiency
- Hypothesis test concerning the population mean
- · Confidence intervals for the population mean

Let $Y_1, Y_2, ..., Y_n$ denote the 1st to the *n*th randomly drawn object.

Under simple random sampling:

- The marginal probability distribution of Y_i is the same for all i = 1, 2, ..., n and equals the population distribution of Y.
 - because Y₁, Y₂, ..., Y_n are drawn randomly from the same population.
- Y₁ is distributed independently from Y₂, ..., Y_n
 - knowing the value of Y_i does not provide information on Y_j for $i \neq j$

When $Y_1, ..., Y_n$ are drawn from the same population and are independently distributed, they are said to be i.i.d random variables

3

Simple random sampling: Example

- Let G be the gender of an individual (G = 1 if female, G = 0 if male)
- G is a Bernoulli random variable with $E(G) = \mu_G = Pr(G = 1) = 0.5$
- Suppose we take the population register and randomly draw a sample of size n
 - The probability distribution of G_i is a Bernoulli distribution with mean 0.5
 - G₁ is distributed independently from G₂, ..., G_n
- Suppose we draw a random sample of individuals entering the building of the physics department
 - This is not a sample obtained by simple random sampling and G₁,..., G_n are not i.i.d
 - Men are more likely to enter the building of the physics department!

The sampling distribution of the sample average

The sample average \bar{Y} of a randomly drawn sample is a random variable with a probability distribution called the sampling distribution.

$$\bar{Y} = \frac{1}{n}(Y_1 + Y_2 + ... + Y_n) = \frac{1}{n}\sum_{i=1}^n Y_i$$

Suppose $Y_1, ..., Y_n$ are i.i.d and the mean & variance of the population distribution of Y are respectively $\mu_Y \& \sigma_Y^2$

• The mean of \overline{Y} is

$$E\left(\bar{Y}\right) = E\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}E\left(Y_{i}\right) = \frac{1}{n}nE(Y) = \mu_{Y}$$

The variance of Y
 is

$$Var\left(\overline{Y}\right) = Var\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right)$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}Var\left(Y_{i}\right) + 2\frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1,j\neq i}^{n}Cov(Y_{i},Y_{j})$$

$$= \frac{1}{n^{2}}nVar\left(Y\right) + 0$$

$$= \frac{1}{n}\sigma_{Y}^{2}$$

The sampling distribution of the sample average:example

- Let G be the gender of an individual (G = 1 if female, G = 0 if male)
- The mean of the population distribution of G is

$$E(G) = \mu_G = p = 0.5$$

6

The variance of the population distribution of G is

$$Var(G) = \sigma_G^2 = p(1-p) = 0.5(1-05) = 0.25$$

• The mean and variance of the average gender (proportion of women) \overline{G} in a random sample with n = 10 are

$$E\left(\overline{G}\right) = \mu_G = 0.5$$

$$Var\left(\overline{G}\right) = \frac{1}{n}\sigma_{G}^{2} = \frac{1}{10}0.25 = 0.025$$

The finite sample distribution of the sample average

The finite sample distribution is the sampling distribution that exactly describes the distribution of \overline{Y} for any sample size n.

- In general the exact sampling distribution of \overline{Y} is complicated and depends on the population distribution of Y.
- A special case is when $Y_1, Y_2, ..., Y_n$ are i.i.d draws from the $N(\mu_Y, \sigma_Y^2)$, because in this case

$$\overline{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right)$$

The finite sample distribution of average gender \overline{G}

Suppose we draw 999 samples of n = 2:

Sample 1		Sample 2		Sample 3			 Sample 999				
G ₁	G ₂	G 0.5	G ₁	G ₂	<u>G</u> 1	G ₁ 0	G ₂	<i>G</i> 0.5	G ₁	G ₂	<i>G</i> 0

The asymptotic distribution of \overline{Y}

- Given that the exact sampling distribution of \overline{Y} is complicated
- and given that we generally use large samples in econometrics
- we will often use an approximation of the sample distribution that relies on the sample being large

The asymptotic distribution is the approximate sampling distribution of \overline{Y} if the sample size $n \longrightarrow \infty$

We will use two concepts to approximate the large-sample distribution of the sample average

- The law of large numbers.
- The central limit theorem.

Law of Large Numbers

The Law of Large Numbers states that if

- Y_i, i = 1,.., n are independently and identically distributed with E (Y_i) = μ_Y
- and large outliers are unlikely; $Var(Y_i) = \sigma_Y^2 < \infty$

 \overline{Y} will be near μ_Y with very high probability when n is very large $(n \longrightarrow \infty)$

$$\overline{Y} \stackrel{p}{\longrightarrow} \mu_Y$$

Law of Large Numbers

Example: Gender $G \sim Bernouilli$ (0.5, 0.25)

The Central Limit Theorem states that if

- Y_i , i = 1, ..., n are i.i.d. with $E(Y_i) = \mu_Y$
- and $Var(Y_i) = \sigma_Y^2$ with $0 < \sigma_Y^2 < \infty$

The distribution of the sample average is approximately normal if $n \longrightarrow \infty$

$$\overline{Y} \sim N\left(\mu_Y, \ \frac{\sigma_Y^2}{n}\right)$$

The distribution of the standardized sample average is approximately standard normal for $n\longrightarrow\infty$

$$\frac{\overline{Y} - \mu_{Y}}{\sigma_{\overline{Y}}^{2}} \sim N(0,1)$$

The Central Limit theorem

Example: Gender $G \sim Bernouilli$ (0.5, 0.25)

Standard normal probability densitiy

Standard normal probability densitiy

The Central Limit theorem

How good is the large-sample approximation?

- If $Y_i \sim N\left(\mu_Y, \sigma_Y^2\right)$ the approximation is perfect
- If Y_i is not normally distributed the quality of the approximation depends on how close n is to infinity
- For $n \ge 100$ the normal approximation to the distribution of \overline{Y} is typically very good for a wide variety of population distributions

Estimation

Estimators and estimates

An Estimator is a function of a sample of data *to be* drawn randomly from a population

 An estimator is a random variable because of randomness in drawing the sample

An Estimate is the numerical value of an estimator when it is actually computed using a specific sample.

Estimation of the population mean

Suppose we want to know the mean value of $Y(\mu_Y)$ in a population, for example

- · The mean wage of college graduates.
- The mean level of education in Norway.
- The mean probability of passing the econometrics exam.

Suppose we draw a random sample of size n with $Y_1, ..., Y_n$ i.i.d

Possible estimators of μ_Y are:

- The sample average $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$
- The first observation Y₁
- The weighted average: $\widetilde{Y} = \frac{1}{n} \left(\frac{1}{2} Y_1 + \frac{3}{2} Y_2 + ... + \frac{1}{2} Y_{n-1} + \frac{3}{2} Y_n \right)$

Estimation of the population mean

To determine which of the estimators, \overline{Y} , Y_1 or \widetilde{Y} is the best estimator of μ_Y we consider 3 properties:

Let $\hat{\mu}_Y$ be an estimator of the population mean μ_Y .

Unbiasedness: The mean of the sampling distribution of $\hat{\mu}_Y$ equals μ_Y

$$E(\hat{\mu}_Y) = \mu_Y$$

Consistency: The probability that $\hat{\mu}_Y$ is within a very small interval of μ_Y approaches 1 if $n \longrightarrow \infty$

$$\hat{\mu}_Y \stackrel{p}{\longrightarrow} \mu_Y$$

Efficiency: If the variance of the sampling distribution of $\hat{\mu}_Y$ is smaller than that of some other estimator $\tilde{\mu}_Y$, $\hat{\mu}_Y$ is more efficient

$$Var(\hat{\mu}_Y) < Var(\widetilde{\mu}_Y)$$

Example

Suppose we are interested in the mean wages $\mu_{\it w}$ of individuals with a master degree

We draw the following sample (n = 10) by simple random sampling

i	W_i				
1	47281.92				
2	70781.94				
3	55174.46				
4	49096.05				
5	67424.82				
6	39252.85				
7	78815.33				
8	46750.78				
9	46587.89				
10	25015.71				

The 3 estimators give the following estimates:

$$\overline{W} = \frac{1}{10} \sum_{i=1}^{10} W_i = 52618.18$$

$$W_1 = 47281.92$$

$$\widetilde{W} = \frac{1}{10} \left(\frac{1}{2} W_1 + \frac{3}{2} W_2 + \dots + \frac{1}{2} W_9 + \frac{3}{2} W_{10} \right) = 49398.82.$$

All 3 proposed estimators are unbiased:

- As shown on slide 5: $E\left(\overline{Y}\right) = \mu_Y$
- Since Y_i are i.i.d. $E(Y_1) = E(Y) = \mu_Y$

$$E\left(\widetilde{Y}\right) = E\left(\frac{1}{n}\left(\frac{1}{2}Y_{1} + \frac{3}{2}Y_{2} + \dots + \frac{1}{2}Y_{n-1} + \frac{3}{2}Y_{n}\right)\right)$$

$$= \frac{1}{n}\left(\frac{1}{2}E(Y_{1}) + \frac{3}{2}E(Y_{2}) + \dots + \frac{1}{2}E(Y_{n-1}) + \frac{3}{2}E(Y_{n})\right)$$

$$= \frac{1}{n}\left[\left(\frac{n}{2} \cdot \frac{1}{2}\right)E(Y_{i}) + \left(\frac{n}{2} \cdot \frac{3}{2}\right)E(Y_{i})\right]$$

$$= \mu_{Y}$$

Consistency

Example: mean wages of individuals with a master degree with $\mu_{\rm w}=60\,000$

By the law of large numbers

$$\overline{W} \stackrel{\rho}{\longrightarrow} \mu_W$$

which implies that the probability that \overline{W} is within a very small interval of μ_W approaches 1 if $n\longrightarrow\infty$

Consistency

Example: mean wages of individuals with a master degree with $\mu_w = 60\,000$

$$\widetilde{W} = \frac{1}{n} \left(\frac{1}{2} W_1 + \frac{3}{2} W_2 + ... + \frac{1}{2} W_{n-1} + \frac{3}{2} W_n \right)$$
 is also consistent

weighted average

However W_1 is not a consistent estimator of μ_W :

Efficiency entails a comparison of estimators on the basis of their variance

• The variance of \overline{Y} equals

$$Var\left(\overline{Y}\right) = \frac{1}{n}\sigma_Y^2$$

• The variance of Y₁ equals

$$Var(Y_1) = Var(Y) = \sigma_Y^2$$

• The variance of \widetilde{Y} equals

$$Var\left(\widetilde{Y}\right) = 1.25 \frac{1}{n} \sigma_Y^2$$

For any $n > 2 \overline{Y}$ is more efficient than Y_1 and \widetilde{Y}

• \overline{Y} is not only more efficient than Y_1 and \widetilde{Y} , but it is more efficient than any unbiased estimator of μ_Y that is a weighted average of $Y_1,, Y_n$

 \overline{Y} is the Best Linear Unbiased Estimator (BLUE) it is the most efficient estimator of μ_Y among all unbiased estimators that are weighted averages of $Y_1,, Y_n$

• Let $\hat{\mu}_Y$ be an unbiased estimator of μ_Y

$$\hat{\mu}_Y = \frac{1}{n} \sum_{i=1}^n a_i Y_i$$
 with $a_1, ... a_n$ nonrandom constants

then \overline{Y} is more efficient than $\hat{\mu}_Y$, that is

$$Var\left(\overline{Y}\right) < Var\left(\hat{\mu}_{Y}\right)$$

Hypothesis tests concerning the population mean

Hypothesis tests concerning the population mean

Consider the following questions:

- Is the mean monthly wage of college graduates equal to NOK 60 000?
- Is the mean level of education in Norway equal to 12 years?
- Is the mean probability of passing the econometrics exam equal to 1?

These questions involve the population mean taking on a specific value $\mu_{Y,0}$

Answering these questions implies using data to compare a null hypothesis

$$H_0: E(Y) = \mu_{Y,0}$$

to an alternative hypothesis, which is often the following two sided hypothesis

$$H_1: E(Y) \neq \mu_{Y,0}$$

Hypothesis tests concerning the population mean p-value

Suppose we have a sample of n i.i.d observations and compute the sample average \overline{Y}

The sample average can differ from $\mu_{Y,0}$ for two reasons

- 1 The population mean μ_Y is not equal to $\mu_{Y,0}$ (H_0 not true)
- 2 Due to random sampling $\overline{Y} \neq \mu_Y = \mu_{Y,0}$ (H_0 true)

To quantify the second reason we define the p-value

The p-value is the probability of drawing a sample with \overline{Y} at least as far from $\mu_{Y,0}$ given that the null hypothesis is true.

Hypothesis tests concerning the population mean p-value

$$p-\mathit{value} = \mathit{Pr}_{\mathit{H}_0}\left[\,|\overline{Y} - \mu_{\mathit{Y},0}|\,>\,|\overline{Y}^{\mathit{act}} - \mu_{\mathit{Y},0}|\,
ight]$$

To compute the p-value we need to know the sampling distribution of \overline{Y}

- Sampling distribution of \overline{Y} is complicated for small n
- With large n the central limit theorem states that

$$\overline{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right)$$

This implies that if the null hypothesis is true:

$$\frac{\overline{Y} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{n}}} \sim N(0,1)$$

Computing the p-value when σ_Y is known

$$p - value = Pr_{H_0} \left[\left| \frac{\overline{Y} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{n}}} \right| > \left| \frac{\overline{Y}^{act} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{n}}} \right| \right] = 2\Phi \left(- \left| \frac{\overline{Y}^{act} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{n}}} \right| \right)$$
The *p*-value is the shaded area in the graph
$$N(0, 1)$$

$$- \left| \frac{\overline{Y}^{act} - \mu_{Y,0}}{\sigma_{-}} \right| \frac{\overline{Y}^{act} - \mu_{Y,0}}{\sigma_{-}}$$

• For large n, p-value = the probability that Z falls outside $\left| \frac{\overline{Y}^{act} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{\rho}}} \right|$

Estimating the standard deviation of \overline{Y}

• In practice σ_Y^2 is usually unknown and must be estimated

The sample variance s_Y^2 is the estimator of $\sigma_Y^2 = E\left[\left(Y_i - \mu_Y\right)^2\right]$

$$s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n \left(Y_i - \overline{Y} \right)^2$$

- division by n-1 because we "replace" μ_Y by \overline{Y} which uses up 1 degree of freedom
- if $Y_1,...,Y_n$ are i.i.d. and $E\left(Y^4\right)<\infty,\,s_Y^2\stackrel{\rho}{\longrightarrow}\sigma_Y^2$ (Law of Large Numbers)

The sample standard deviation $s_Y = \sqrt{s_Y^2}$ is the estimator of σ_Y

The standard error $SE(\overline{Y})$ is an estimator of $\sigma_{\overline{Y}}$

$$SE\left(\overline{Y}\right) = \frac{s_Y}{\sqrt{n}}$$

- Because s_Y^2 is a consistent estimator of σ_Y^2 , we can (for large *n*) replace $\sqrt{\frac{\sigma_Y^2}{n}}$ by $SE\left(\overline{Y}\right) = \frac{s_Y}{\sqrt{n}}$
- This implies that when σ_Y^2 is unknown and $Y_1, ..., Y_n$ are i.i.d. the p-value is computed as

$$p - value = 2\Phi\left(-\left|rac{\overline{Y}^{act} - \mu_{Y,0}}{SE\left(\overline{Y}
ight)}
ight|
ight)$$

The t-statistic and its large-sample distribution

- The standardized sample average $\left(\overline{Y}^{act} \mu_{Y,0}\right)/SE\left(\overline{Y}\right)$ plays a central role in testing statistical hypothesis
- It has a special name, the t-statistic

$$t = \left| rac{\overline{Y} - \mu_{Y,0}}{SE\left(\overline{Y}
ight)}
ight|$$

- t is approximately N(0,1) distributed for large n
- The p-value can be computed as

$$p-value=2\Phi\left(-\left|t^{act}\right|\right)$$

The t-statistic and its large-sample distribution

Type I and type II errors and the significance level

There are 2 types of mistakes when conduction a hypothesis test

Type I error refers to the mistake of rejecting H_0 when it is true Type II error refers to the mistake of not rejecting H_0 when it is false

In hypothesis testing we usually fix the probability of a type I error

The significance level α is the probability of rejecting H_0 when it is true

• Most often used significance level is 5% ($\alpha = 0.05$)

Since area in tails of N(0,1) outside ± 1.96 is 5%:

- We reject H_0 if p-value is smaller than 0.05.
- We reject H_0 if $|t^{act}| > 1.96$

4 steps in testing a hypothesis about the population mean

$$H_0: E(Y) = \mu_{Y,0}$$
 $H_1: E(Y) \neq \mu_{Y,0}$

- Step 1: Compute the sample average \overline{Y}
- Step 2: Compute the standard error of \overline{Y}

$$SE\left(\overline{Y}\right) = \frac{s_Y}{\sqrt{n}}$$

Step 3: Compute the t-statistic

$$t^{act} = rac{\overline{Y} - \mu_{Y,0}}{SE(\overline{Y})}$$

- Step 4: Reject the null hypothesis at a 5% significance level if
 - $|t^{act}| > 1.96$
 - or if *p* − *value* < 0.05

Hypothesis tests concerning the population mean Example: The mean wage of individuals with a master degree

Suppose we would like to test

$$H_0: E(W) = 60000$$
 $H_1: E(W) \neq 60000$

using a sample of 250 individuals with a master degree

Step 1:
$$\overline{W} = \frac{1}{n} \sum_{i=1}^{n} W_i = 61977.12$$

Step 2:
$$SE(\overline{W}) = \frac{s_W}{\sqrt{n}} = 1334.19$$

Step 3:
$$t^{act} = \frac{\overline{W} - \mu_{W,0}}{SE(\overline{W})} = \frac{61977.12 - 60000}{1334.19} = 1.48$$

Step 4: Since we use a 5% significance level, we do not reject H_0 because $|t^{act}| = 1.48 < 1.96$

Note: We do never accept the null hypothesis!

Hypothesis tests concerning the population mean Example: The mean wage of individuals with a master degree

This is how to do the test in Stata:

. ttest wage=60000

One-sample t test

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf. Inte	erval]
wage	250	61977.12	1334.189	21095.37	59349.39	64604.85
mean = Ho: mean =	mean(wage)			degree	t = s of freedom =	1.4819
	< 60000		Ha: mean !=		Ha: mean	> 60000

Hypothesis test with a one-sides alternative

• Sometimes the alternative hypothesis is that the mean exceeds $\mu_{Y,0}$

$$H_0: E(Y) = \mu_{Y,0}$$
 $H_1: E(Y) > \mu_{Y,0}$

 In this case the p-value is the area under N (0, 1) to the right of the t-statistic

$$p - value = Pr_{H_0} \left(t > t^{act} \right) = 1 - \Phi \left(t^{act} \right)$$

- With a significance level of 5% ($\alpha = 0.05$) we reject H_0 if $t^{act} > 1.64$
- If the alternative hypothesis is $H_1: E(Y) < \mu_{Y,0}$

$$p - value = Pr_{H_0} \left(t < t^{act} \right) = 1 - \Phi \left(-t^{act} \right)$$

and we reject H_0 if $t^{act} < -1.64 / p - value < 0.05$

Hypothesis test with a one-sides alternative Example: The mean wage of individuals with a master degree

. ttest wage=60000

One-sample t test

_						
Variable	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf. Inte	erval]
wage	250	61977.12	1334.189	21095.37	59349.39	64604.85
mean = Ho: mean =	mean(wage)			degree	t = s of freedom =	1.4819
	< 60000 = 0.9302		Ha: mean != T > t) =			> 60000 = 0.0698

Confidence intervals for the population mean

- Suppose we would do a two-sided hypothesis test for many different values of $\mu_{Y,0}$
- On the basis of this we can construct a set of values which are not rejected at a 5% significance level
- If we were able to test all possible values of $\mu_{Y,0}$ we could construct a 95% confidence interval

A 95% confidence interval is an interval that contains the true value of μ_Y in 95% of all possible random samples.

 Instead of doing infinitely many hypothesis tests we can compute the 95% confidence interval as

$$\left\{ \overline{Y} - 1.96 \cdot \textit{SE}\left(\overline{Y}\right) \quad , \quad \overline{Y} + 1.96 \cdot \textit{SE}\left(\overline{Y}\right) \right\}$$

• Intuition: a value of $\mu_{Y,0}$ smaller than $\overline{Y} - 1.96 \cdot SE\left(\overline{Y}\right)$ or bigger than $\overline{Y} - 1.96 \cdot SE\left(\overline{Y}\right)$ will be rejected at $\alpha = 0.05$

Confidence intervals for the population mean Example: The mean wage of individuals with a master degree

When the sample size *n* is large:

95% confidence interval for
$$\mu_Y = \left\{ \overline{Y} \pm 1.96 \cdot SE\left(\overline{Y}\right) \right\}$$
90% confidence interval for $\mu_Y = \left\{ \overline{Y} \pm 1.64 \cdot SE\left(\overline{Y}\right) \right\}$

99% confidence interval for $\mu_Y = \left\{ \overline{Y} \pm 2.58 \cdot SE\left(\overline{Y}\right) \right\}$

Using the sample of 250 individuals with a master degree:

95% conf. int. for
$$\mu_W$$
 is $\{61977.12\pm1.96\cdot1334.19\}=\{59349.39\,,\,64604.85\}$ 90% conf. int. for μ_W is $\{61977.12\pm1.64\cdot1334.19\}=\{59774.38\,,\,64179.86\}$ 99% conf. int. for μ_W is $\{61977.12\pm2.58\cdot1334.19\}=\{58513.94\,,\,65440.30\}$

.