Evolutionary drivers of stomatal size and density

Yujie Wang

Sperry Lab
Department of Biology
University of Utah

January 26, 2018

What is a stoma

What is a stoma

Why land plants need stomata

Short-term response

Long-term response

Stomatal size and density versus drought stress¹

WHY?

Hypothesis 1 – Response time

Smaller stomata respond faster

- Smaller volume and faster response time;
- Favored by any plant;
- Only valid under rapid environment changes;

Hypothesis 2 – Trade-off

Smaller stomata: shorter distance for diffusion

Bigger Stomata : higher diffusion rate per stoma

Simplified stomatal model

Simplified stomatal model

Simplified stomatal model

Converted Senario

Model Scenario

Gas exchange simulation

```
\begin{split} & G_{convert} & \text{ Leaf conductance of } H_2O \text{ from all wet surface;} \\ & G_{model} & \text{ Leaf conductance of } H_2O \text{ from mesophyll surface;} \\ & \text{DIFF} & G_{convert}/G_{model}-1; \end{split}
```

Simulation results

Simulation results

Model conclusion

Smaller and higher density stomata

At the same transpiration rate:

- Higher *G*_{model};
- Faster response time;

Hypotheses

Hypothesis 1 Invalid;

Hypothesis 2 Invalid;

What is the COST of smaller stomata?

Cell construction

- Total number of cells \propto (*Cell size*)⁻³;
- Cell wall area per cell \(\preceq (Cell size)^2 \);
- Total cost in cell wall per volume \propto (*Cell size*)⁻¹.

Cost and benefit analysis

Conclusion

- Smaller stomata are more efficient;
- Smaller stomata have higher construction cost;
- The trade-off of construction cost and water use efficiency is the driver of stomatal size and density.

"Side-effects"

DIFF influences the computation of photosynthesis-related parameters, such as:

- C_i ;
- \blacksquare G_{C} ;
- $\blacksquare G_{\mathrm{M}};$
- \bullet δC^{13} .

Acknowledgments

Supervisory Committee

- John Sperry
- Fred Adler
- Bill Anderegg
- Dave Bowling
- Tom Kursar

Also thanks

- David Love
- Martin Venturas

$$e^{(3)} = 1 + \frac{(3)}{1!} + \frac{(3)}{2!} + \cdots + \frac{(3)}{n!} + \cdots$$