Exercise 10.4

1. In $\triangle PAB$ of figure, $\overrightarrow{PQ} \perp \overrightarrow{AB}$ and $\overrightarrow{PA} \cong \overrightarrow{PB}$, prove that $\overrightarrow{AQ} \cong \overrightarrow{BQ}$ and $\angle APQ \cong \angle BPQ$.

Caven

In $\triangle PAB$, $\overrightarrow{PQ} \perp \overrightarrow{AB}$ and $\overrightarrow{PA} \cong \overrightarrow{PB}$

Lo Prove

 $\overrightarrow{AQ} \cong \overrightarrow{BQ}$ and $\angle \overrightarrow{APQ} \cong \angle \overrightarrow{BPQ}$

Proof

	Statements	Reasons
In	$\Delta APQ \leftrightarrow \Delta BPQ$	
	PA≅PB	
	$\overline{PQ} \cong \overline{PQ}$	Given
:.	$\Delta PAQ \cong \Delta PBQ$	Common
	$A\overline{Q} \cong \overline{BQ}$	H.S ≅ H.S
1 **	AV=bV	Corresponding sides of congruent triangles
	∠APQ≅∠BPQ	Corresponding angles of the congruent triangles.

2. In the figure, $m\angle C = m\angle D = 90^{\circ}$ and $\overline{BC} \cong \overline{AD}$. Prove that $\overline{AC} \cong \overline{BD}$ and $\angle BAC \cong \angle ABD$.

Caven

 $m\angle C = m\angle D = 90^{\circ}$ $\overline{BC} \cong \overline{AD}$

To Prove

AC≅BD

∠BAC ≅ ∠ABD

Proof

	Statements	Reasons
In	$\Delta ABC \leftrightarrow \Delta ABD$ $m \angle C \equiv m \angle D$	Each of 90°
 	$\overrightarrow{BC} \cong \overrightarrow{AD}$ $\overrightarrow{AB} \cong \overrightarrow{AB}$ $\triangle ABC \cong \triangle ABD$ $\overrightarrow{AC} \cong \overrightarrow{BD}$ $\angle BAC \cong \angle ABD$	Given Common H.S ≅ H.S Corresponding sides of congruent triangles Corresponding angles of the congruent
		triangles

3. In the figure, $m\angle B = m\angle D = 90^{\circ}$ and $\overrightarrow{AD} \cong \overrightarrow{BC}$. Prove that ABCD is a rectangle.

 $m \angle B = m \angle D = 90^{\circ}, \overline{AD} \cong \overline{BC}$

Proof

ABCD is a rectangle

	Statements	Reasons
In	$\triangle ABC \leftrightarrow \triangle ADC$	
	$m\angle B \cong m\angle D$	Each of 90°
	AD≅BC	Given
	$\overrightarrow{AC} \cong \overrightarrow{AC}$	Common
<i>:</i> -	$\triangle ABC \cong \triangle ADC$	H.S ≅ H.S
	$\overline{AB} \cong \overline{DC}$	
	$\angle 1 \cong \angle 2$ (i)	
	∠4 ≅ ∠3(ii)	
	$\angle 1 + \angle 4 = \angle 2 + m\angle 3$	
	$\angle A = \angle C = 90^{\circ}$	
	ABCD is a rectangle	By (i) and (ii)

- 4. Which of the following are true and which are false?
- (i) A ray has two end points.
- (ii) In a triangle, there can be only one right angle.
- (iii) Three points are said to be collinear if they lie on same line.
- (iv) Two parallel lines intersect at a point.
- (v) Two lines can intersect only in one point.
- (vi) A triangle of congruent sides has non-congruent angles.

Answers

- (i) False
- (ii) True
- (iii) True

- (iv) False
- (v) True
- (vi) False

5. If $\triangle ABC \cong \triangle LMN$, then

- (i) $m \angle M \cong \dots$
- (ii) m∠N ≅
- (iii) m∠A ≅

Answers

- (i) $m \angle M \cong m \angle B$
- (ii) m∠N≅ m∠C
- (iii) $m\angle A \cong m\angle L$

6. If $\triangle ABC \cong \triangle LMN$, then find the unknown x.

Answers

$$x = 60^{\circ}$$

7. Find the value of unknowns for the given congruent triangles.

ΔABD ≅ ΔACD

$$\overline{BD} \cong \overline{DC}$$

$$\Rightarrow 5m - 3 = 2m + 6$$

$$5m - 2m = 3 + 6$$

$$3m = 9$$

$$m = \frac{9}{3} = 3$$

Also

$$\angle ACD \cong \angle ABD \Rightarrow$$

Angles opposite to congruent sides are congruent

$$5x + 5 = 55$$

$$5x = 55 - 5$$

$$5x = 50$$

$$x = \frac{50}{5}$$

$$x = 10$$

8. If $\triangle PQR \cong \triangle ABC$

, then find the unknowns.

 $\Delta PQR \cong \Delta ABC$

$$\overline{PQ}\!\cong\!\overline{AB}$$

$$x = 3$$

$$\overline{BC} \cong \overline{QR}$$

$$\Rightarrow$$
 z = 4 cm

$$\overline{AC} \cong \overline{PR}$$

$$y - 1 = 5$$

$$y = 5 + 1$$

$$y = 6cm$$

$$\therefore$$
 x= 3cm, y = 6cm, z = 4cm

