Sequences and Series

EE24BTECH11060-Sruthi Bijili

JEE ADVANCED/IIT-JEE

- 5) Sum of the n terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is equal to (1988-2 Marks)
 - a) $2^{n} n 1$
 - b) $1 2^{-2}$
 - c) $n + 2^{-2} 1$
 - d) $2^n + 1$
- 6) The number $\log_2 7$ is (1990- 2 Marks)
 - a) an integer
 - b) a rational number
 - c) an irrational number
 - d) a prime number
- 7) If $\ln(a + c), \ln(a + c), \ln(2b + c)$ are in A.P, then (1994)
 - a) a,b,c are in A,P
 - b) a^2, b^2, c^2 are im A.P
 - c) a,b,c are in G.P
 - d) a,b,c are in H.P
- 8) Let $a_1, a_2, a_3, \dots a_{10}$ be in A.P, and $h_1, h_2, h_3, \dots h_{10}$ be in H.P.If $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$, then a_7h_7 is (1999 2 Marks)
 - a) 2
 - b) 3
 - c) 5
 - d) 6
- 9) The harmonic mean of the roots of the equation $(5 + \sqrt{2})x^2 (4 + \sqrt{5})x + 8 + 2\sqrt{5} = 0$ is (1999 -2 Marks)
 - a) 2
 - b) 4
 - c) 6
 - d) 6
- 10) Consider an infinite geometric series with first term a and common ratio r.If its sum is 4 and the second term is $\frac{3}{4}$ (2000S)
 - a) $a = \frac{4}{7}, r = \frac{3}{7}$
 - b) $a = 2, r = \frac{3}{8}$
 - c) $a = \frac{3}{2}, r = \frac{9}{2}$
 - d) $a = \bar{3}, r = \frac{\bar{1}}{4}$
- 11) Let α,β be the roots of $x^2-x+p=0$ and γ,δ be the

roots of $x^2 - 4x + q = 0$. If $\alpha, \beta, \gamma, \delta$ are in G.P, then the integral values of p and q respectively are (2001S)

1

- a) -2, -32
- b) -2, 3
- c) -6, 3
- d) 6, -32
- 12) Let the positive numbers a,b,c,d be in A.P.Then abc, abd, acd, bcd are (2001S)
 - a) NOT in A.P/G.P/H.P
 - b) in A.P
 - c) in G.P
 - d) in H.P
- 13) If the sum of the first 2n terms of the A.P 2, 5, 8, is equal to the sum of the first n terms of the A.P,57, 59, 61,then n equals (2001S)
 - a) 10
 - b) 12
 - c) 11
 - d) 13
- 14) Suppose a, b, c are in A.P and a^2, b^2, c^2 are in G.P,if a
b<c and a+b+c= $\frac{3}{2}$, then the value of a is (2002S)
 - a) $\frac{1}{2\sqrt{2}}$
 - b) $\frac{1}{2\sqrt{3}}$
 - c) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
 - d) $\frac{1}{2} \frac{2}{\sqrt{2}}$
- 15) An infinite G.P has first term 'x' and sum '5', then x belongs to (2004S)
 - a) x < -10
 - b) 10 < x < 0
 - c) 0 < x < 10
 - d) x>0
- 16) In the quadratic equation $ax^2 + bx + c = 0, \Delta = b^2 4ac$ and $\alpha + \beta, \alpha^2 + \beta^2, \alpha^3 + \beta^3$, are in G.P where α, β are the root of $ax^2 + bx + c = 0$, then (2005S)
 - a) $\Delta \neq 0$
 - b) $b\Delta \neq 0$
 - c) $c\Delta \neq 0$
 - d) $\Delta = 0$

- 17) In the sum of first n terms of an A.P is cn^2 , then the sum of squares of these n terms is (2009)
 - a) $\frac{n(4n^2-1)c^2}{6}$
 - b) $\frac{n(4n^2+1)c^2}{3}$
 - c) $\frac{n(4n^2-1)c^2}{2}$
 - d) $\frac{n(4n^2+1)c^2}{6}$
- 18) Let $a_1, a_2, a_3,...$ be in harmonic progression with $a_1 = 5$ and $a_{20} = 25$. The least positive integer n for which $a_n < 0$ is (2012)
 - a) 22
 - b) 23
 - c) 24
 - d) 25
- 19) Let $b_i > 1$ for i=1, 2,101. Suppose $\log_e b_1, \log_e b_2, \log_e b_{101}$ are in Arithmetic Progression (A.P) with the common difference $\log_e 2$. Suppose a_1, a_2, a_{101} are in A.P. such that $a_1, =b_1$ and $a_{51}=b_{51}$. If $t=b_1+b_2+...+andb_{51}$ $s=a_1+a_2+...a_{53}$, then (JEE ADV.2016)
 - a) s>t and $a_{101}>b_{101}$
 - b) s>t and $a_{101} < b_{101}$
 - c) s<t and $a_{101}>b_{101}$
 - d) s<t and $a_{101} < b_{101}$