Homework 17

Joe Baker, Brett Schreiber, Brian Knotten

February 20, 2018

27

Assume that our coin-flip Turing machine M doesn't require that ρ be efficiently computable.

Let $\rho = \frac{1}{\pi}$.

The complete binary representation of $\frac{1}{\pi}$ is infinitely long. Any finite representation is not completely accurate, since $\frac{1}{\pi}$ is irrational.

By the law of large numbers, since $\frac{1}{\pi}$ represented in binary is infinitely long with no repeated patterns, the probability that it must contain a substring of bits which is the encoding of a Turing machine that decides membership in the language $HALT = \{\langle M, x | M \text{ halts on } x\}$ in polynomial time goes to 1 as the number of bits in $\frac{1}{\pi}$ goes to infinity.

Since M generates a Turing machine to decide the halting problem as an intermediate step, removing the requirement that ρ be efficiently computable implies that M can decide an undecidable language in polynomial time.

28

Show that $(NP \cup co-NP) \subseteq PP$.

Proof

We will show that Boolean Satisfiability \in PP. Since Boolean Satisfiability is NP-complete, then any $L \in$ NP $\to L \in$ PP

Let M be a probabilistic Turing machine which takes a Boolean formula F as input. Then does the following:

- 1. Pick a random assignment of variables for F
- 2. Verify if F is satisfied
- 3. If F is satisfied, then accept
- 4. If F is not satisfied, accept with P(1/2) or reject with P(1/2)

First note that each step can clearly be done in polynomial time. P(M accepts) = 1/2 + P(random assignment is satisfied) and since P(random assignment is satisfied) > 0, then P(M accepts) > 1/2 and P(M rejects) < 1/2. Thus Boolean Satisfiability $\in PP$ since M is a Turing machine which meets the requirements for PP. So NP is contained in PP.

Since PP is closed under complement and contains NP, it must also contain co-NP. Finally, $(NP \cup co-NP) \subseteq PP$.