Electrical-, protocoland application layer validation of MIPI D-PHY and M-PHY designs

Roland Scherzinger

MIPI Application Expert Digital Test Division Agilent Technologies

Agenda

Introduction, Smart Device Overview

MIPI Interfaces in Smart Devices

Validating MIPI Interfaces

Outlook

Smart Devices Overview

Features of Smart Devices

Internet, eMail, Organizer, Phone

- Wireless (WLAN, UMTS, LTE, ...)
 Imaging, Photo, Video, Movies
- High resolution Camera and Display Audio, Music
- MP3, WMA, AAC, ...

Maps

GPS, aGPS

Book Reading

Gaming

Mobile (Smart) Device Evolution

Agenda

Introduction, Smart Device Overview

MIPI Interfaces in Smart Devices

- MIPI Overview
- D-PHY Overview
- M-PHY Overview

Validating MIPI Interfaces

Outlook

Technology Challenges in Mobile Computing

Too Many Interfaces, All Different

MIPI Interfaces in a Mobile Platform

This picture is only an illustrative example for several ways of integration with the purpose of demonstrating MIPI diversity on interfaces

D-PHY basedM-PHY based

SLIMbusSPMI/RFFE

UniPort : UniPro™ + D-PHY or M-PHY

UniPro based IF technology are: UFS, CSI-3, DSI-2, GBT, UniPort

(*) Transferred to IEEE (**) Liaison with JEDEC

processor interface

Physical / Protocol / Application Support

MIPI
Mobile industry
processor Interface

Agenda

Introduction, Smart Device Overview

MIPI Interfaces in Smart Devices

- MIPI Overview
- D-PHY Overview
- M-PHY Overview

Validating MIPI Interfaces

Outlook

What is MIPI D-PHY?

MIPI D-PHY is a Serial Bus

Mobile Display

Mobile Camera

Mobile Controller

Why use MIPI D-PHY?

Standard Bus: Facilitates Integration and Interoperability

Performance: up to 4Gbs for high resolution camera and displays

Low power and high Scalability:

Multilane architecture

MIPI D-PHY Characteristics

Data Lanes

- High Speed Mode 80Mbps -1Gbps
- May go up to 1.5 Gbps in the future
- Low Power Mode < 10Mbps
- Bidirectional

Lane Scalability

Up to 4 Lanes + 1 clock lane

Power

- Low Operational power
- Very Low Standby power

Anatomy of a MIPI D-PHY link

2 data lanes MIPI D-PHY Link Example

Master drives the clock

MIPI D-PHY at the Physical Layer

Dual Signaling for high speed and low power transmission Dynamic termination

MIPI D-PHY Signals

MIPI DPhy DSI/CSI-2 Short Packet Structure

Note: The packet structure is identical for DSI and CSI-2. The difference is the interpretation of the Data ID field.

Data Identifier: Contains the Data Type Information (Short vs. Long) denotes the format/content of the Payload Data.

8-bit Correction Code: 8-bit ECC code for the Packet Header. Allows 1-bit error correction and 2-bit error detection.

32-bit SHORT PACKET (SH)

MIPI DSI/CSI-2 Long Packet Structure

Agenda

Introduction, Smart Device Overview

MIPI Interfaces in Smart Devices

- MIPI Overview
- D-PHY Overview
- M-PHY Overview

Validating MIPI Interfaces

Outlook

Main properties of M-PHY

Main LANE characteristics		2 pins/wires, differential, unidirectional	
Minimum composition		Dual-simplex (4 wires)	
Media		0-30 cm PCB, micro coax <1.2 m cable optical waveguides	
Clocking method	HS	Embedded clock (8b10b) with or without shared RefClk	
	LS	PWM: Self-clocking SYS: Synchronous to RefClk	
Raw bitrates (8b10b coded)	HS	1¼ & 1½, 2½ & 3 , 5 & 6 Gb/s	
	LS	PWM: 10 kb/s-600 Mb/s SYS: RefClk rate	
RefClk frequencies		19.2 / 26 / 38.4 / 52 MHz	
Data BURST encoding		8b10b	
Power efficiency (overall)		<10pJ per payload-bit	
CDR at receive side		Yes for HS, No for LS(-only)	
TX pre-emphasis / RX equalization		No / Not specified	
Signal levels (supply independent!)		0 - 200mV _{RT} - 400mV _{NT} (large drive) 0 - 100mV _{RT} - 200mV _{NT} (small drive)	
Configuration	<u> </u>	Using protocol & PHY mechanisms	

Layered Interface Standards

Applications:

- DigRF v4
- UniPRO
 - CSI / DSI / UFS / GBT
- LLI

M-PHY Scope

Electrical signal characteristics

TX always provides LINE termination

Switchable RX line termination: operation with or without termination

RX can hold undriven LINE at 'differential-zero' with Z_{HI} impedances

Two different TX drive strengths: Large & Small (=Large/2)

Optional Slew-Rate Control for EMI reduction

Bit signaling schemes

NRZ

Non-Return-to-Zero (Trivial)

PWM

- Pulse-Width-Modulation
- Self-Clocking

Comparison of D-PHY with M-PHY

Min. number of pins per direction	4	2
Minimum configuration	4 only unidir or half-duplex	4 dual-simplex=full-duplex
Minimal UniPRO configuration	8	4
Medium	<30 cm PCB, flex, micro coax	< 30 cm PCB, flex, micro coax, <1.2 m cable, optical
Data rate per lane HS	>80 Mb/s (Practical limit <1Gb/s) < 10 Mb/s	~ 1¼ , 2½ , 5 Gb/s ~ 1½ , 3 , 6 Gb/s 10k-600Mb/s
Electrical signaling HS	SLVS-200 LVCMOS1.2V	SLVS-200 SLVS-200 w/o RX-R _T
HS Clocking method	DDR Source-Sync Clk	Embedded Clk
HS Line coding	None or 8b9b	8b10b
Power – Energy/bit	Low	Lower
Receiver CDR required	No	Yes
Suited for optical transmission	No	Yes
LP only PHY's	Disallowed	Allowed

DigRF V4 Overview

DigRF v4 is the next generation link between the BB-IC and RF-IC in a mobile device, enabling LTE and WiMAX data rates

Bus between BB-IC and RF-IC must support high traffic flows

4G standards (LTE, WiMAX) enable downlink speed of over 300

MBit/s

DigRF V4 is an enabling technology for LTE and WiMAX Applications

UniPro Overview

- D-PHY and M-PHY
- High Scalable Bandwidth with low pincount
- Low power consumption
- Reliable packet based, latency-aware Traffic Classes
- Network architecture
- Connection management
- Device discovery
- Remote configuration
- Security

Layered Model of UniPro v1.5

*MIPI D-PHY or MIPI M-PHY

Low Latency Interface (LLI) Overview

The LLI interface allows sharing a DRAM memory between 2 chips for data and program. The main motivation for LLI is cost reduction.

The LLI specification defines several logical layers to help to make the specification more understandable:

- Transaction layer: exchanges memory mapped read/write transactions and signals between 2 chips.
- Data link layer: provides several independent virtual channels between the 2 chips.
- PHY adapter layer: provides an interface to the physical media. Focus first on serial MIPI M-PHY. Ensure reliability as necessary.
- Power management. Interface control for optimal power consumption; definition of the power states.
- Boot and reset
- Test

Agenda

Introduction, Smart Device Overview

MIPI Interfaces in Smart Devices

Validating MIPI Interfaces

- Testing Overview
- D-PHY Testing
- M-Phy Testing

Outlook

Test Applications

Electrical Layer

- TX & RX Compliance (Scope & Generator (BERT))
- BringUp & Debug (Scope)

Protocol & Application Layer

- Protocol Compliance (Protocol Exerciser / Analyzer)
- BringUp & Debug (Protocol analyzer or Scope)
- Device Emulation (Protocol Exerciser)
- Performance Validation (Protocol Exerciser)
- Application testing (Software Add-ons for Protocol exerciser)

How to electrically test an RX Bit Error Ratio Test Principle

Bit Error Ratio Tester (BERT)

Agenda

Introduction, Smart Device Overview

MIPI Interfaces in Smart Devices

Validating MIPI Interfaces

- Testing Overview
- D-PHY Testing
- M-Phy Testing

Outlook

Agilent D-PHY Physical Layer Test Solution Integrated Rx and Tx Test Setups

MIPI D-PHY Protocol Test System configuration

Protocol Stimulus and Analysis

Notes:

- Loopback board orderable N4850-66402 for around \$750.
- Dynamic termination board available from UNH-IOL.

N4861B Stimulus Probe

- Speed: 1Gbps per lane
- 3 lanes support
- CSI & DSI stimulus generation
- Error injection
- Voltage control
- Timing control
- High Speed and Low power mode

N4851B Analysis Probe

- Speed: up to 1Gbps per lane
- 4 lanes support
- Flying leads or soft touch
- Full Protocol Triggering
- Real time error detection
- CSI & DSI packet viewer
- High Speed and Low power mode

Test Model #1: Camera Sensor Test

Functional Analysis

Capture Traffic in real-time

Protocol Level Trigger and Display

Real time Errors detection

Compliance test

Notes:

- Analyzer operates in high impedance mode
- Dynamic Termination required on target System
- Camera= bus Master

Test Model #2 : Display Module Evaluation Functional Stimulus and Analysis

DSI Packet & Image Generation

DSI Packet & Image View

Initialization Commands
Data File

Send Stimulus to Display Device

Logic Analyzer Real-time capture of Bus activity

Notes:

 Dynamic Impedance required on target system if bus-turn around

Test model #3: Camera Emulation

Functional Analysis

Send Stimulus to Controller Device

Challenge: simulating various CSI devices

Generate Real-time CSI traffic

1Gbps on 3 lanes

Capture and replay

Test model #4 : Controller, Display & Camera Integration

ViewScope for cross triggering and time correlated measurement

Protocol Analysis

Agenda

Introduction, Smart Device Overview

MIPI Interfaces in Smart Devices

Validating MIPI Interfaces

- Testing Overview
- D-PHY Testing
- M-Phy Testing

Outlook

Knowledge/Techniques Required for DigRF

Analysis

Signal Integrity Knowledge

The property of the property o

Digital I/Q Analysis Technique

Various knowledge/techniques are required for DigRF analysis. In particular there are new *high* speed digital physical layer and protocol level testing and validation required.

Receiver Test With BERT Generator and BERT Error Detector

Focus on receiver characterization and R&D level debugging

Utilizes the line loopback mode

Test pattern: all kinds of test pattern supported

Receiver Test With BERT Generator and DigRFv4 Exerciser

Receiver characterization and system timing stress test

Utilizes the logic loopback mode with additional limited support for line loopback

Test pattern:

DigRF4 commands with payload and checksum in logic loopback mode, and PRBS 7 and PRBS 15 in line loopback mode

Digital Signal Integrity Evaluation

DigRF evaluation begins with the digital physical layer evaluation. Digital quality is tied directly to the final RF quality

Preliminary Compliance test with UDA

DigRF v3/v4 RF-IC Unit Testing Environment

Modulation Analysis and C/N Measurement

RF-IC, BB-IC, Integration Testing Environment

Agenda

Introduction, Smart Device Overview

MIPI Interfaces in Smart Devices

Validating MIPI Interfaces

Outlook

What will happen in 2011 / 2012?

D-PHY evolving towards 1.3 .. 1.5 Gbit/s bandwidth

M-PHY Gear 2 followed by Gear 3

3D support for Display and Camera

CSI-3, DSI-2 and UFS on UniPro 1.4 / M-PHY Gear 2

Low Latency Interface 1.0

- UniPro based applications and LLI will require protocol aware stimulus as both protocols are implementing real-time handshaking.
- Agilent will ensure appropriate test equipment availability at the right time.

Do you have any questions?