s-in-king-count-usa-jupyterlite-1

February 28, 2024

[1]: string = 'In House Sales in King County, USA! This discover a diverse range of properties, from charming suburban homes to luxurious estates, in one of the most sought-after real estate markets in the country. King County boasts stunning natural beauty, a thriving job market, and top-notch schools, making it the perfect place to call home.'.split(' ') print(len(string))

54

- [43]: 'In House Sales in King County, USA! This discover a diverse range of properties, from charming suburban homes to luxurious estates, in one of the smost sought-after real estate markets in the country. King County boasts stunning natural beauty, a thriving job market, and top-notch schools, smaking it the perfect place to call home. House Sales in King County, USA is the data which discover a diverse range of properties, from charming suburban homes to luxurious estates. In this dataset the buying process of the features of the house are given. From that data available in dataset we conclude that which features of home buy at what price. Main purpose of the sproject is that to find the price of house on basis of the features of the shouse contains..'
- [43]: 'In House Sales in King County, USA! This discover a diverse range of properties, from charming suburban homes to luxurious estates, in one of the most sought-after real estate markets in the country. King County boasts stunning natural beauty, a thriving job market, and top-notch schools, making it the perfect place to call home. House Sales in King County, USA is the data which discover a diverse range of properties, from charming suburban homes to luxurious estates. In this dataset the buying process of the features of the house are given. From that data available in dataset we conclude that which features of home buy at what price. Main purpose of the project is that to find the price of house on basis of the features of the house contains..'
- [2]: text = "House Sales in King County, USA is the data which discover a diverse_□
 □ range of properties, from charming suburban homes to luxurious estates. In_□
 □ this dataset the buying process of the features of the house are given. From_□
 □ that data available in dataset we conclude that which features of home buy_□
 □ at what price. Main purpose of the project is that to find the price of □
 □ □ house on basis of the features of the house contains."

```
print(len(text))
```

421

This dataset contains house sale prices for King County, which includes Seattle. It includes homes sold between May 2014 and May 2015.

Variable	Description
id	A notation for a house
date	Date house was sold
price	Price is prediction target
bedrooms	Number of bedrooms
bathrooms	Number of bathrooms
$sqft_living$	Square footage of the home
sqft _lot	Square footage of the lot
floors	Total floors (levels) in house
waterfront	House which has a view to a waterfront
view	Has been viewed
condition	How good the condition is overall
grade	overall grade given to the housing unit, based on King County grading system
$sqft_above$	Square footage of house apart from basement
sqft_basem	nesiquare footage of the basement
yr_built	Built Year
yr_renovat	eYear when house was renovated
zipcode	Zip code
lat	Latitude coordinate
long	Longitude coordinate
$sqft_living$	15Living room area in 2015(implies—some renovations) This might or might not
	have affected the lotsize area
$sqft_lot15$	LotSize area in 2015(implies– some renovations)

```
[3]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler,PolynomialFeatures
from sklearn.linear_model import LinearRegression
%matplotlib inline
```

1 Module 1: Importing Data Sets

Use the Pandas method read_csv() to load the data from the web address.

```
[4]: df = pd.read_csv('kc_house_data_NaN.csv')
```

We use the method head to display the first 5 columns of the dataframe.

[5]: df.head()
---------------	---

[5]:		Unnamed: 0		id			(date)	p:	rice	bedro	ooms	bath	rooms	\
	0	0	71	29300520	20	01410	13T000	0000) 2	219	00.0		3.0		1.00	
	1	1	64	14100192	20	01412	09T000	0000	5	380	00.0		3.0		2.25	
	2	2	56	31500400	20	01502	25T000	0000) 1	800	00.0		2.0		1.00	
	3	3	24	87200875	20	01412	09T000	0000	6	040	00.0		4.0		3.00	
	4	4	19	54400510	20	01502	18T000	0000) 5	100	00.0		3.0		2.00	
		sqft_living	s	• –	flo		wateı	rfro	nt	•••	grad	e sq	ft_ak		\	
	0	1180		5650		1.0			0	•••	•	7	1	L180		
	1	2570		7242		2.0			0	•••		7	2	2170		
	2	770		10000		1.0			0	•••	(6		770		
	3	1960		5000		1.0			0	•••		7	1	L050		
	4	1680		8080		1.0			0	•••	;	8	1	1680		
		aaft baaama	a+	··· huil+		ro	n 0110+	- d	zin	a a d	_	1+		long	\	
	0	sqft_basemen	0	yr_built 1955	-	Ar_re	novate	εα 0	_	code 8178		lat .5112	100	long	\	
		Λι	00	1951			199					.7210				
	1	4(0	1931			198	0		802		.7210				
	2	0.	10	1965				0		813		.7379				
	3 4	9.	0	1987				0		8074		.6168				
	4		U	1907				U	9	0014	+ 41	.0100	-122	2.045		
		sqft_living	15	sqft_lot	:15											
	0	134	40	56	550											
	1	169	90	76	39											
	2	273	20	80	62											
	3	136			000											
	4	180			503											

[5 rows x 22 columns]

1.0.1 Question 1

Display the data types of each column using the function dtypes, then take a screenshot and submit it, include your code in the image.

[6]: df.dtypes

```
[6]: Unnamed: 0 int64
id int64
date object
price float64
bedrooms float64
bathrooms float64
sqft_living int64
```

sqft_lot int64 floors float64 int64 waterfront int64 view int64 condition grade int64sqft_above int64sqft_basement int64yr_built int64 yr_renovated int64 zipcode int64 lat float64 float64 long sqft_living15 int64 sqft_lot15 int64 dtype: object

We use the method describe to obtain a statistical summary of the dataframe.

[7]: df.describe()

[7]:		Uı	nnamed: 0		id		price		bedrooms	b	athrooms	\
	count	216	313.00000	2.1	.61300e+04	2.16	31300e+04	2160	0.00000	2160	3.000000	
	mean	108	306.00000	4.5	80302e+09	5.40	00881e+05		3.372870		2.115736	
	std	62	239.28002	2.8	376566e+09	3.6	71272e+05		0.926657		0.768996	
	min		0.00000	1.0	000102e+06	7.50	00000e+04		1.000000		0.500000	
	25%	54	403.00000	2.1	.23049e+09	3.2	19500e+05		3.000000		1.750000	
	50%	108	306.00000	3.9	004930e+09	4.50	00000e+05		3.000000		2.250000	
	75%	162	209.00000	7.3	308900e+09	6.4	50000e+05		4.000000		2.500000	
	max	216	312.00000	9.9	00000e+09	7.70	00000e+06	3	3.000000		8.000000	
		s	qft_living		sqft_lot		floors	W	aterfront		view	\
	count	216	313.000000	2.	161300e+04	216	313.000000	216	313.000000	216	313.000000	
	mean	20	079.899736	1.	510697e+04		1.494309		0.007542		0.234303	
	std	9	918.440897	4.	142051e+04		0.539989		0.086517		0.766318	
	min	2	290.000000	5.	200000e+02		1.000000		0.000000		0.000000	
	25%	14	427.000000	5.	040000e+03		1.000000		0.000000		0.000000	
	50%	19	910.000000	7.	618000e+03		1.500000		0.000000		0.000000	
	75%	25	550.000000	1.	068800e+04		2.000000		0.000000		0.000000	
	max	13	540.000000	1.	651359e+06		3.500000		1.000000		4.000000	
			gra	ade	sqft_abo	ove	sqft_base	ment	yr_b	uilt	\	
	count		21613.0000		21613.000		21613.00		21613.00			
	mean		7.6568	873 1788.3906		691	291.50	9045	1971.00	5136		
	std	•••	1.1754			978	442.57	5043	29.37	3411		
	min	•••	1.0000	000	290.000	000	0.00	0000	1900.00	0000		
	25%	•••	7.000	000	1190.000	000	0.00	0000	1951.00	0000		

```
50%
               7.000000
                           1560.000000
                                                          1975.000000
                                              0.000000
75%
               8.000000
                           2210.000000
                                            560.000000
                                                          1997.000000
max
              13.000000
                           9410.000000
                                           4820.000000
                                                          2015.000000
       yr_renovated
                            zipcode
                                                                   sqft_living15
                                               lat
                                                             long
       21613.000000
                      21613.000000
                                                    21613.000000
                                                                     21613.000000
count
                                     21613.000000
                      98077.939805
                                                      -122.213896
mean
           84.402258
                                         47.560053
                                                                      1986.552492
         401.679240
                         53.505026
                                          0.138564
                                                                       685.391304
std
                                                         0.140828
                      98001.000000
                                                      -122.519000
min
           0.000000
                                         47.155900
                                                                       399.000000
25%
           0.00000
                      98033.000000
                                         47.471000
                                                      -122.328000
                                                                      1490.000000
50%
            0.000000
                      98065.000000
                                         47.571800
                                                      -122.230000
                                                                      1840.000000
75%
           0.00000
                      98118.000000
                                                      -122.125000
                                                                      2360.000000
                                         47.678000
max
        2015.000000
                      98199.000000
                                         47.777600
                                                      -121.315000
                                                                      6210.000000
           sqft_lot15
count
        21613.000000
mean
        12768.455652
std
        27304.179631
           651.000000
min
25%
         5100.000000
50%
         7620.000000
75%
        10083.000000
       871200.000000
max
```

[8 rows x 21 columns]

2 Module 2: Data Wrangling

2.0.1 Question 2

Drop the columns "id" and "Unnamed: 0" from axis 1 using the method drop(), then use the method describe() to obtain a statistical summary of the data. Take a screenshot and submit it, make sure the inplace parameter is set to True

```
[8]: df.drop(["id","Unnamed: 0"],axis=1,inplace=True)
df.describe()
```

```
[8]:
                                                                             sqft_lot
                    price
                                bedrooms
                                              bathrooms
                                                           sqft_living
            2.161300e+04
                           21600.000000
                                          21603.000000
                                                         21613.000000
                                                                        2.161300e+04
     count
                                                                        1.510697e+04
     mean
            5.400881e+05
                                3.372870
                                               2.115736
                                                          2079.899736
     std
            3.671272e+05
                                0.926657
                                               0.768996
                                                           918.440897
                                                                        4.142051e+04
                                               0.500000
     min
            7.500000e+04
                                1.000000
                                                           290.000000
                                                                        5.200000e+02
     25%
            3.219500e+05
                                3.000000
                                               1.750000
                                                           1427.000000
                                                                        5.040000e+03
     50%
            4.500000e+05
                                3.000000
                                               2.250000
                                                           1910.000000
                                                                        7.618000e+03
     75%
            6.450000e+05
                                4.000000
                                               2.500000
                                                          2550.000000
                                                                        1.068800e+04
            7.700000e+06
                               33.000000
                                               8.000000
                                                         13540.000000
                                                                        1.651359e+06
     max
```

	floors	waterfront	view	condition	grade	\
count	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	
mean	1.494309	0.007542	0.234303	3.409430	7.656873	
std	0.539989	0.086517	0.766318	0.650743	1.175459	
min	1.000000	0.000000	0.000000	1.000000	1.000000	
25%	1.000000	0.000000	0.000000	3.000000	7.000000	
50%	1.500000	0.000000	0.000000	3.000000	7.000000	
75%	2.000000	0.000000	0.000000	4.000000	8.000000	
max	3.500000	1.000000	4.000000	5.000000	13.000000	
	sqft_above	sqft_basement	<pre>yr_built</pre>	$yr_renovated$	zipcode	\
count	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	
mean	1788.390691	291.509045	1971.005136	84.402258	98077.939805	
std	828.090978	442.575043	29.373411	401.679240	53.505026	
min	290.000000	0.000000	1900.000000	0.000000	98001.000000	
25%	1190.000000	0.000000	1951.000000	0.000000	98033.000000	
50%	1560.000000	0.000000	1975.000000	0.000000	98065.000000	
75%	2210.000000	560.000000	1997.000000	0.000000	98118.000000	
max	9410.000000	4820.000000	2015.000000	2015.000000	98199.000000	
	lat	long	sqft_living15	sqft_lot15	· •	
count	21613.000000	21613.000000	21613.000000	21613.000000)	
mean	47.560053	-122.213896	1986.552492	12768.455652	2	
std	0.138564	0.140828	685.391304	27304.179631		
min	47.155900	-122.519000	399.000000	651.000000)	
25%	47.471000	-122.328000	1490.000000	5100.000000)	
50%	47.571800	-122.230000	1840.000000	7620.000000)	
75%	47.678000	-122.125000	2360.000000	10083.000000)	
max	47.777600	-121.315000	6210.000000	871200.000000)	

We can see we have missing values for the columns bedrooms and bathrooms

```
[9]: print("number of NaN values for the column bedrooms:", df['bedrooms'].isnull().

sum())

print("number of NaN values for the column bathrooms:", df['bathrooms'].

sisnull().sum())
```

```
number of NaN values for the column bedrooms : 13 number of NaN values for the column bathrooms : 10
```

We can replace the missing values of the column 'bedrooms' with the mean of the column 'bedrooms' using the method replace(). Don't forget to set the inplace parameter to True

```
[10]: mean=df['bedrooms'].mean()
df['bedrooms'].replace(np.nan,mean, inplace=True)
```

We also replace the missing values of the column 'bathrooms' with the mean of the column 'bathrooms' using the method replace(). Don't forget to set the inplace parameter top True

```
[11]: mean=df['bathrooms'].mean()
df['bathrooms'].replace(np.nan,mean, inplace=True)
```

```
[12]: print("number of NaN values for the column bedrooms :", df['bedrooms'].isnull().

→sum())

print("number of NaN values for the column bathrooms :", df['bathrooms'].

→isnull().sum())
```

```
number of NaN values for the column bedrooms : 0 number of NaN values for the column bathrooms : 0
```

3 Module 3: Exploratory Data Analysis

3.0.1 Question **3**

Use the method value_counts to count the number of houses with unique floor values, use the method .to_frame() to convert it to a dataframe.

```
[13]: df.value_counts("floors").to_frame()
```

```
[13]: count floors 1.0 10680 2.0 8241 1.5 1910 3.0 613 2.5 161 3.5 8
```

3.0.2 Question 4

Use the function boxplot in the seaborn library to determine whether houses with a waterfront view or without a waterfront view have more price outliers.

```
[14]: sns.boxplot(x="waterfront",y="price",data=df)
plt.ylim(0,)
```

```
[14]: (0.0, 8081250.0)
```


3.0.3 Question 5

Use the function regplot in the seaborn library to determine if the feature $sqft_above$ is negatively or positively correlated with price.

```
[15]: sns.regplot(x="sqft_above" , y="price" ,data=df)
plt.ylim(0,)
```

[15]: (0.0, 8081250.0)

4 Module 4: Model Development

We can Fit a linear regression model using the longitude feature 'long' and caculate the R^2.

```
[16]: X = df[['long']]
Y = df['price']
lm = LinearRegression()
lm.fit(X,Y)
lm.score(X, Y)
```

[16]: 0.00046769430149007363

4.0.1 Question 6

Fit a linear regression model to predict the 'price' using the feature 'sqft_living' then calculate the R^2. Take a screenshot of your code and the value of the R^2.

```
[17]: m = df[["sqft_living"]]
    n = df["price"]
    lm.fit(m,n)
```

```
lm.score(m,n)
```

[17]: 0.4928532179037931

4.0.2 Question 7

Fit a linear regression model to predict the 'price' using the list of features:

```
[18]: features =["floors", "waterfront", "lat", "bedrooms", "sqft_basement", "view"

, "bathrooms", "sqft_living15", "sqft_above", "grade", "sqft_living"]
```

Then calculate the R^2. Take a screenshot of your code.

```
[19]: lm = LinearRegression()
    x=df[["floors"]]
    y=df['price']
    lm.fit(x,y)
    lm.score(x,y)
```

[19]: 0.06594310068341092

```
[20]: x=df[["waterfront"]]
    y=df['price']
    lm.fit(x,y)
    lm.score(x,y)
```

[20]: 0.07095267538578309

```
[21]: x=df[["lat"]]
    y=df['price']
    lm.fit(x,y)
    lm.score(x,y)
```

[21]: 0.09425113672917462

```
[22]: x=df[["bedrooms"]]
    y=df['price']
    lm.fit(x,y)
    lm.score(x,y)
```

[22]: 0.09535546506131365

```
[23]: x=df[["sqft_basement"]]
    y=df['price']
    lm.fit(x,y)
    lm.score(x,y)
```

[23]: 0.10485681526974377

```
[24]: x=df[["view"]]
      y=df['price']
      lm.fit(x,y)
      lm.score(x,y)
[24]: 0.15784211584121532
[25]: x=df[["bathrooms"]]
      y=df['price']
      lm.fit(x,y)
      lm.score(x,y)
[25]: 0.2763999306031437
[26]: x=df[["sqft_living15"]]
      y=df['price']
      lm.fit(x,y)
      lm.score(x,y)
[26]: 0.3426684607560172
[27]: x=df[["sqft_above"]]
      y=df['price']
      lm.fit(x,y)
      lm.score(x,y)
[27]: 0.3667117528382793
[28]: x=df[["grade"]]
      y=df['price']
      lm.fit(x,y)
      lm.score(x,y)
[28]: 0.44546848610928724
[29]: x=df[["sqft_living"]]
      y=df['price']
      lm.fit(x,y)
      lm.score(x,y)
[29]: 0.4928532179037931
```

4.0.3 This will help with Question 8

Create a list of tuples, the first element in the tuple contains the name of the estimator: 'scale'

```
'polynomial'
```

'model'

The second element in the tuple contains the model constructor

StandardScaler()

PolynomialFeatures(include_bias=False)

LinearRegression()

```
[30]: Input=[('scale',StandardScaler()),('polynomial',__ 
PolynomialFeatures(include_bias=False)),('model',LinearRegression())]
```

4.0.4 Question 8

Use the list to create a pipeline object to predict the 'price', fit the object using the features in the list features, and calculate the R^2.

```
[31]: pipe = Pipeline(Input)
pipe.fit(X,Y)
pipe.score(X,Y)
```

[31]: 0.003360798516638175

5 Module 5: Model Evaluation and Refinement

Import the necessary modules:

```
[32]: from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split print("done")
```

done

We will split the data into training and testing sets:

```
number of test samples: 3242 number of training samples: 18371
```

5.0.1 Question 9

Create and fit a Ridge regression object using the training data, set the regularization parameter to 0.1, and calculate the R^2 using the test data.

[37]: 0.7418167438675016

5.0.2 Question 10

Perform a second order polynomial transform on both the training data and testing data. Create and fit a Ridge regression object using the training data, set the regularisation parameter to 0.1, and calculate the R^2 utilising the test data provided. Take a screenshot of your code and the R^2.

```
[38]: from sklearn.preprocessing import PolynomialFeatures pr=PolynomialFeatures(degree=2) pr
```

[38]: PolynomialFeatures()

```
[39]: x_train_pr=pr.fit_transform(x_train[['floors', 'waterfront','lat' ,'bedrooms'_\]

\[
\times,'sqft_basement' ,'view'_\]

\[
\times,'bathrooms','sqft_living15','sqft_above','grade','sqft_living']])

x_polly=pr.fit_transform(x_train[['floors', 'waterfront','lat' ,'bedrooms'_\]

\[
\times,'sqft_basement' ,'view'_\]

\[
\times,'bathrooms','sqft_living15','sqft_above','grade','sqft_living']])
```

```
[40]: RidgeModel=Ridge(alpha=0.1)
```

```
[42]: RidgeModel.fit(x_train_pr,y_train)
```

RidgeModel.score(x_train_pr,y_train)

[42]: 0.7418167438675016

[]: