Interial 2 Pl

01

- a) 1.2566 rad b) 0.9425 rad c) -1.0472 rad d) -5.2360 rad

- a) 210° b) 114.6° c) 50° d) -24°

Q3

 $\cos \theta = \frac{9}{41}$ $\sec \theta = \frac{41}{9}$ $\tan \theta = \frac{9}{9}$ $\cot \theta = \frac{9}{40}$

- a) $-670^{\circ}, -310^{\circ}, 410^{\circ}, 770^{\circ}$ b) $-\frac{137}{4}, -\frac{57}{4}, \frac{117}{4}, \frac{197}{4}$ c) $-\frac{137}{6}, -\frac{7}{6}, \frac{27}{6}, \frac{27}{6}$
- d) -171, -97, 77, 157
- Q4 57 m

- Q5
 a) 1381 b) 25

Q6 7 M2

07

- a) $8in \theta = \frac{4}{5}$ $esc \theta = \frac{5}{4}$ b) $8in \theta = \frac{40}{41}$ $csc \theta = \frac{41}{40}$
 - $Gs 0 = \frac{3}{5} \quad gec 0 = \frac{5}{3}$

 - $\tan \theta = \frac{4}{3} \quad \cot \theta = \frac{3}{4}$
- c) $8in \theta = \frac{7}{8} coc\theta = \frac{8}{7}$
 - $Cos O = \frac{\sqrt{15}}{8} sec O = \frac{g}{\sqrt{15}}$
 - $ton 0 = \frac{7}{5\pi}$ at $0 = \frac{55}{7}$

08

- (a) $12\sqrt{2}$ (b) $\frac{4}{\sqrt{3}}$ (c) $\frac{25}{8in53}$ °

Q9

- (a) $\frac{170}{\sqrt{3}}$ (b) $\frac{160}{\sqrt{3}}$ (c) $\frac{10}{\sqrt{3}}$

all

- a) 81° b) 45° c) 30° d) $\frac{\pi}{4}$ e) $\pi 2.3$ rad

- (1) a) = b) 2 c) = d) -= 2 e) = f) -1

- a) $\frac{-\sqrt{1-Gc^2\theta}}{Gos\theta}$ b) $\sqrt{1-Sin^2\theta}$ c) $-\sqrt{1+ten^2\theta}$ d $\sqrt{1-Sin^2\theta}$

Q17

- a) $8in \theta = \frac{3}{5} \cos \theta = \frac{1}{3}$ b) $8in \theta = -\frac{3}{4} \cos \theta = \frac{1}{3}$ c) $8in \theta = \frac{3}{7} \cos \theta = \frac{1}{7}$ c) $8in \theta = \frac{1}{7} \cos \theta = \frac{1}{7}$ c) $8in \theta = \frac{1}{7} \cos \theta = \frac{1}{7}$ $C_00 = \frac{-4}{5}$ Sec $0 = -\frac{5}{4}$
 - $ton0 = \frac{-3}{4}$ Cot 0 = $-\frac{4}{3}$

- $C_{00}0 = \frac{4}{5}$ $Sec_{0}0 = \frac{5}{4}$ $C_{00}0 = -\frac{2}{3}$ $Sec_{0}0 = -\frac{2}{3}$ Se

d)
$$\sin \theta = \frac{1}{2}$$
 $\csc \theta = 2$

$$\sin \theta = 2$$

$$\cos \theta = \frac{\sqrt{3}}{2}$$

$$\sec \theta = \frac{2}{\sqrt{3}}$$

$$\cos 0 = 2$$
 $\tan 0 = \sqrt{3}$

Q18

- a) $\sin(a\theta) = \frac{\sqrt{3}}{3}$, $a\sin\theta = \sqrt{3}$ b) $\sin(5\theta) = \frac{1}{3}$, $\frac{1}{3}\sin\theta = \frac{\sqrt{3}}{4}$, $\frac{2}{3}\sin^2\theta = \frac{3}{4}$ $\sin(0^2) = 0.2707$
- Q19 29.9583

620

b

رے)

٦.

Q21

a)
$$y = -38in \times$$

amplitude = 3
period = 2π

b) $y = \frac{1}{2} as(\frac{1}{4}x)$

acsbx

 $y = -3 \sin x$

 $y = \frac{1}{2} \cos(\frac{1}{4}z)$ -4π $-\frac{1}{2}$ $-\frac{1}{2}$ $+\pi$

Q21 c) y=1+ = Cos TIX

, amplitude = $\frac{1}{2}$, period = $\frac{2\pi}{\pi}$ = 2

 $-48in(3x+\frac{\pi}{2})=-48in3(x+\frac{\pi}{4})$

Q32
a)
$$y = 3 Cas(x + \frac{\pi}{4})$$

amplitude = 3
period = $\frac{2\pi}{1} = 2\pi$
phase = $-\frac{\pi}{4}$

b)
$$y = -48 \text{ in } 2(x + \frac{\pi}{2})$$

amplitude = 4
period = $\frac{2\pi}{2} = \bar{1}$
phase = $-\frac{\pi}{2}$

c)
$$y = \frac{1}{2} - \frac{1}{2} \cos(2x - \frac{\pi}{3})$$

 $= \frac{1}{2} - \frac{1}{2} \cos(2(x - \frac{\pi}{6}))$
amplitude $= \frac{1}{2}$
period $= \frac{2\pi}{3} = \pi$
phase $= \frac{\pi}{6}$

Q23 $q) = \frac{1}{2} \quad b) = \frac{1}{4} \quad c) = \frac{1}{2} \quad d) = \frac{1}{3} \quad e) \quad 0 \quad f) = \frac{1}{3}$ $g) = \frac{1}{6} \quad d) = \frac{1}{6}$

Q > 4 $A) \stackrel{?}{=} \qquad b) \stackrel{?}{=} \qquad c) \stackrel{?}{=} \qquad d) \stackrel{?}{=} \qquad e) \stackrel{?}{=} \qquad f) \stackrel{?}{=} \qquad g) \stackrel{?}{=} \qquad h) \stackrel{?}$