SENTIMENT SENTIMENT

Speaker Mohamed Emran

Introduction

Problem..

• The problem is to analyze user behavior on Twitter, by using Natural Language Processing (NLP), to determine if the tweet is either positive or negative.

Value..

- By analyzing user-behavior, we gain a deep understanding towards specific topics, products or brands
- Businesses can also monitor user in real-time, by responding to any issues before it escalates.

Where did I get my data?

The Source..

Data obtained from a research group in Stanford University (http://help.sentiment140.com/for-students/)

Collected From...

Kaggle: Sentiment140 dataset with 1.6 million tweets

Data Collection

Preprocessing

- 1. Sampling dataset
 - 10% ~ 160k
- 2. Vectorizing
 - Using CountVectorizer
 - I tested out stemmer and lemmatizer

Modeling

- 1. Logisitic Regression
- 2.SVM
- 3. Decision Trees
- 4.XG Boost

GridSearch Best Model	Train Score	Train Score	Validation score	Test score
Logistic Regression	C=1, max_iter=10000, penalty='I1', random_state=1,,solver='liblinear'	76.5%	76%	74.9%
LinearSVC	C=0.1, max_iter=10000, random_state=1, penalty='l2'	76.6%	76.4%	74.5%
Random Forest	max_depth=11, n_estimators=200, random_state=1	70.6%	70.2%	69.2%
XG Boost	learning_rate=0.3, max_depth=9 n_estimators=200, n_jobs=None, random_state=1	81.8%	73.2%	72.9%

Baseline Model	Default Model Parameters	Train Score	Validation score	Test score
Logistic Regression	C = 1, penalty = 'I2', solver = 'lbfgs'	77%	74.3%	74.1%

