

Programación III Práctica Calificada 3 Pregrado 2023-0

Profesor: José A. Chávez Álvarez

Lab 1.01

Indicaciones específicas:

- Esta evaluación contiene 8 páginas (incluyendo esta página) con 7 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta.
 - p1.jpg
 - -p2.jpg
 - − p3.jpg
 - -p4.jpg
 - p5.jpg
 - p6.jpg
 - − p7.jpg
- Deberás subir estos archivos directamente a www.gradescope.com, uno en cada ejercicio. También puedes crear un .zip

Calificación:

Tabla de puntos (sólo para uso del professor)

Question	Points	Score
1	3	
2	2	
3	3	
4	3	
5	3	
6	3	
7	3	
Total:	20	

1. (3 points) Pilas

Supongamos que usted tiene una **Pila** vacía en la cual se deben insertar los números del 1 al 5 (en ese orden). Indique la secuencia de operaciones push y pop, de tal modo que al extraer obtengamos la siguiente secuencia de números.

- 5, 4, 3, 2, 1
- 2, 4, 5, 3, 1
- 1, 5, 4, 2, 3

La rúbrica para esta pregunta es:

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Implementación	La imple-	La imple-	La solución es	La solución es
del Álgoritmo	mentación del	mentación del	parcialmente	incorrecta(Opts)
	algoritmo es	algoritmo es	correcta (1pts).	
	clara y or-	clara y or-		
	denada. El	denada. El		
	desarrollo de	desarrollo de		
	la solución es	la solución es		
	detallado y cor-	suficiente (2pts)		
	recto (3pts).			

2. (2 points) Colas

Supongamos que tiene 3 Colas con la siguiente configuración:

```
A
B
C
D
--- --- q1 q2 q3
```

Donde A está en la parte frontal y D en la parte trasera. Si quisiéramos extraer un elemento de la Cola q1, tendríamos que ejecutar el comando

y si quisiéramos insertar ese elemento en la Cola q2 usaríamos

Indique la secuencia de comandos para obtener la siguiente configuración:

```
D
C
B
A
--- --- p1 p2 p3
```

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Implementación	La imple-	La imple-	La solución es	La solución
del Álgoritmo	mentación del	mentación del	parcialmente	es incor-
	algoritmo es	algoritmo es	correcta (1pts).	recta(0.5pts)
	clara y or-	clara y or-		
	denada. El	denada. El		
	desarrollo de	desarrollo de la		
	la solución es	solución es sufi-		
	detallado y cor-	ciente (1.5pts)		
	recto (2pts).			

3. (3 points) Árboles Binarios de Búsqueda

En el siguiente código se implemento la clase ABB (Árbol Binario de Búsqueda). Y cada uno de los nodos fueron insertados utilizando el método insert.

Dibuje el árbol, tenga en cuenta el primer elemento insertado es el 21 y el último el 41. Detalle la secuencia de pasos que utilizó para llegar a su respuesta.

Listing 1: Algoritmo 1

```
int main() {
  ABB arbol;
  arbol.insert(21);
  arbol.insert(20);
  arbol.insert(36);
  arbol.insert(10);
  arbol.insert(22);
  arbol.insert(30);
  arbol.insert(3);
  arbol.insert(5);
  arbol.insert(12);
  arbol.insert(28);
  arbol.insert(38);
  arbol.insert(1);
  arbol.insert(2);
  arbol.insert(7);
  arbol.insert(16);
  arbol.insert(26);
  arbol.insert(44);
  arbol.insert(41);
}
```

Criterio		Excelente	Adecuado	Mínimo	Insuficiente
Algoritmo	de	Muy buen	Buen detalle de	Buen detalle de	Contiene errores
Grafos		detalle de la	la descripción,	la descripción,	que no se hace
		descripción,	ilustrado cor-	ilustrado correc-	lo solicitado
		ordenada y fácil	rectamente y	tamente y con	(0pts).
		de leer, ilustrado	sin ningún error	ligeros error o	
		correctamente	aparente, orde-	incompletos o	
		y sin ningún	nado. (2pts)	difícil de enten-	
		error aparente,	\ - /	der (1pts).	
		muy ordenado.		, - ,	
		(3pts).			

4. (3 points) Algoritmo DFS

En el siguiente grafo, indique la secuencia de nodos visitados utilizando el algoritmo DFS. Detalle la secuencia de pasos que utilizó para llegar a su respuesta.

Criterio		Excelente	Adecuado	Mínimo	Insuficiente
Algoritmo	de	Muy buen	Buen detalle de	Buen detalle de	Contiene errores
Grafos		detalle de la	la descripción,	la descripción,	que no se hace
		descripción,	ilustrado cor-	ilustrado correc-	lo solicitado
		ordenada y fácil	rectamente y	tamente y con	(Opts).
		de leer, ilustrado	sin ningún error	ligeros error o	
		correctamente	aparente, orde-	incompletos o	
		y sin ningún	nado. (2pts)	difícil de enten-	
		error aparente,		der (1pts).	
		muy ordenado.		,	
		(3pts).			

5. (3 points) Algoritmo BFS

En el siguiente grafo, indique la secuencia de nodos visitados utilizando el algoritmo BFS. Detalle la secuencia de pasos que utilizó para llegar a su respuesta.

Criterio		Excelente	Adecuado	Mínimo	Insuficiente
Algoritmo	de	Muy buen	Buen detalle de	Buen detalle de	Contiene errores
Grafos		detalle de la	la descripción,	la descripción,	que no se hace
		descripción,	ilustrado cor-	ilustrado correc-	lo solicitado
		ordenada y fácil	rectamente y	tamente y con	(Opts).
		de leer, ilustrado	sin ningún error	ligeros error o	
		correctamente	aparente, orde-	incompletos o	
		y sin ningún	nado. (2pts)	difícil de enten-	
		error aparente,		der (1pts).	
		muy ordenado.		,	
		(3pts).			

6. (3 points) Álgoritmo de Kruskal

Dibujar el Árbol de Expansión Mínimo en el siguiente grafo. Detalle la secuencia de pasos que utilizó para llegar a su respuesta.

Criterio		Excelente	Adecuado	Mínimo	Insuficiente
Algoritmo	de	Muy buen	Buen detalle de	Buen detalle de	Contiene errores
Grafos		detalle de la	la descripción,	la descripción,	que no se hace
		descripción,	ilustrado cor-	ilustrado correc-	lo solicitado
		ordenada y fácil	rectamente y	tamente y con	(0pts).
		de leer, ilustrado	sin ningún error	ligeros error o	
		correctamente	aparente, orde-	incompletos o	
		y sin ningún	nado. (2pts)	difícil de enten-	
		error aparente,	, - ,	der (1pts).	
		muy ordenado.		, - /	
		(3pts).			

7. (3 points) Álgoritmo de Dijkstra

En el siguiente grafo, utilice el algoritmo de Dijkstra para crear una tabla en la cual se muestre el menor costo para llegar desde el vértice A (origen) a todos los demás vértices. Detalle la secuencia de pasos que utilizó para llegar a su respuesta.

Criterio		Excelente	Adecuado	Mínimo	Insuficiente
Algoritmo	de	Muy buen	Buen detalle de	Buen detalle de	Contiene errores
Grafos		detalle de la	la descripción,	la descripción,	que no se hace
		descripción,	ilustrado cor-	ilustrado correc-	lo solicitado
		ordenada y fácil	rectamente y	tamente y con	(Opts).
		de leer, ilustrado	sin ningún error	ligeros error o	
		correctamente	aparente, orde-	incompletos o	
		y sin ningún	nado. (2pts)	difícil de enten-	
		error aparente,		der (1pts).	
		muy ordenado.		, - /	
		(3pts).			