Выпуклые функции. Основная часть

Задача 1. (2 балла) Пусть дана функция $f: \mathbb{R}^2 \to \mathbb{R}$. Выясните является ли она выпуклой, если $f(x) = x_1^2 x_2^2$.

Задача 2. (3 балла) Пусть дана функция $f: \mathbb{R}^d \to \mathbb{R}$. Выясните является ли функция выпуклой/ μ -сильно выпуклой, если $f(x) = \sum_{i=1}^d x_i^4$. В случае μ -сильной выпуклости нужно найти и μ .

Задача 3. (3 балла) Пусть дана функция $f:\mathbb{S}^d\to\mathbb{R}$. Здесь \mathbb{S} – симметричные матрицы. Выясните является ли функция выпуклой/вогнутой, если

1)
$$f(X) = \lambda_{\max}(X)$$

2)
$$f(X) = \lambda_{\min}(X)$$

Задача 4. (2 балла) Пусть $f: \text{dom } f \to \mathbb{R}$ – функция с областью определения $\text{dom } f \subseteq \mathbb{R}^d$. Покажите, что f выпукла если и только если ее сужение на любую прямую выпукло. Формально это будет значить, что для любых $x_0 \in \text{dom } f, u \in \mathbb{R}^d$, функция $g: t \mapsto f(x_0 + tu)$ выпукла на $\text{dom } g:=\{t \in \mathbb{R}: x_0 + tu \in \text{dom } f\}$.

Выпуклые функции. Дополнительная часть

Задача 1. (2 балла) Докажите, что для всех $p,q\in\{x\in\mathbb{R}^d\mid x_i\geq 0,\sum_{i=1}^dx_i=1\}$ справедливо следующее утверждение

$$\sum_{i=1}^{d} \ln \left(\frac{p_i}{q_i} \right) p_i \ge 0.$$

Задача 2. (2 балла) Пусть $g:\mathbb{R}_+\to\mathbb{R}_+$ – выпукла, g(0)=0. Определим

$$f(x) = \frac{1}{x} \int_0^x g(t)dt, \ x > 0$$

Покажите, что f(x) – тоже выпукла.

Задача 3. (3 балла) Выясните является ли функция $f: \mathbb{S}_{++}^d \to \mathbb{R}$ выпуклой/вогнутой, если $f(X) = \operatorname{Tr}(X^{-1})$.

Задача 4. (3 балла) Воспользовавшись неравенством Йенсена для выпуклой на \mathbb{R}_{++} функции $f(x) = -\ln x$, докажите неравенство Гёльдера:

$$\sum_{i=1}^{d} x_i y_i \le \left(\sum_{i=1}^{d} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{d} |y_i|^q\right)^{1/q}$$

для $p>1, \ \frac{1}{p}+\frac{1}{q}=1. \ \mathbb{R}_{++}$ – положительные действительные числа.