PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-050295

(43) Date of publication of application: 21.02.2003

(51)Int.CI.

G21F 1/10

G21C 19/40

G21F 3/00

G21F 9/36

(21)Application number: 2001-241004

(71)Applicant: MITSUBISHI HEAVY IND LTD

(22)Date of filing:

08.08.2001

(72)Inventor: HAYASHI NORIYA

TASAKA YOSHIYUKI **ISHIHARA NOBUO**

(54) COMPOSITION FOR NEUTRON SHIELDING MATERIAL, SHIELDING MATERIAL AND **VESSEL**

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a neutron shielding material having high heat resistance and securing neutron shielding capacity.

SOLUTION: This composition for the neutron shielding material includes a hydrogenated bisphenol type epoxy (in the structural formula (1), R1-R4 are selected from a group comprising CH3, H, F, Cl, Br respectively independently, and n=0-2), a hardener component having one or more ring structures and plural amino groups, and a boron compound, to thereby have excellent heat resistance and secure the neutron shielding capacity. The neutron shielding vessel manufactured therefrom is also provided.

LEGAL STATUS

[Date of request for examination]

16.07.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-50295 (P2003-50295A)

(43)公開日 平成15年2月21日(2003.2.21)

(51) Int.Cl. ⁷	設別記号	F I テーマコート*(参考)
G21F 1/10		G21F 1/10
G21C 19/4)	G21C 19/40 B
G21F 3/0		G21F 3/00 N
9/36	5 0 1	9/36 5 0 1 A
		審査請求 有 請求項の数9 OL (全 11 頁
(21)出願番号	特質2001-241004(P2001-241004)	(71)出題人 000006208 三菱重工業株式会社
(22)出顧日	平成13年8月8日(2001.8.8)	東京都千代田区丸の内二丁目5番1号
		(72) 発明者 林 宣也
		爱知県名古屋市中村区岩塚町字高道1番:
		三菱重工業株式会社名古屋研究所内
		(72)発明者 田坂 佳之
		神奈川県横浜市金沢区幸浦一丁目8番地 三菱重工業株式会社基盤技術研究所内
		(74)代理人 100099623
		弁理士 奥山 尚一 (外2名)
		最終百に新

取料貝に脱く

(54) 【発明の名称】 中性子遮蔽材用組成物、遮蔽材及び容器

(57)【要約】

耐熱性が高く、中性子遮蔽能力を確保した、 【課題】 中性子遮蔽材料を提供すること。

【化1】

(構造式(1)中、R1~R4は、それぞれ独立して、C H3、H、F、Cl、Brからなる群から選択され、n =0~2)と、少なくとも1つ以上の環構造と複数のア ミノ基とを有する硬化剤成分と、ホウ素化合物とを含ん

でなることにより耐熱性に優れ、中性子遮蔽能力を確保 した中性子遮蔽材用組成物、およびこれにより製造され た中性子遮蔽容器を提供する。

【解決手段】 水素添加ビスフェノール型エポキシ

ール型エポキシ

【特許請求の範囲】

次の構造式を有する水素添加ビスフェノ 【請求項1】

1

(構造式(1)中、R1~R4は、それぞれ独立して、C H3、H、F、C1、Brからなる群から選択され、n =0~2)と、少なくとも1つ以上の環構造と複数のア ミノ基とを有する硬化剤成分と、ホウ素化合物とを含ん 10 でなる中性子遮蔽材用組成物。

【請求項2】

【化2】

$$R_{5}-0 \longrightarrow H$$

$$(2)$$

(構造式(2)中、R5はCが1~10のアルキル基、 またはHであり、 $n=1\sim24$)と、

2

$$(CH2)n 0 - C$$
(3)

(構造式 (3) 中、n=1~8) と、 【化4】

(構造式 (6) 中、R9~R12 は、それぞれ独立して、 CH3、H、F、C1、Brからなる群から選択され、 $n=0\sim2)$ \geq

$$(4.5)$$

$$CH_{2}-0$$

$$CH_{2}-0$$

$$(9)$$

との構造式を有する化合物からなる群から選択される1 以上の化合物をさらに含む請求項1に記載の中性子遮蔽 材用組成物。

【請求項3】 硬化剤成分として

$$\{H_2N$$
 — CH_2 — NH_2 (4)

の構造式を有する化合物を含む請求項1または2に記載 の中性子遮蔽材用組成物。

【請求項4】 硬化剤成分として、

[化7]
$$H_2N-CH_2$$
 CH_2-NH_2
(5)

の構造式を有する化合物と、

【化8】

$$\begin{array}{ccc}
CH &=& CR_8 \\
R_6 - N & N \\
C & & \\
R_7
\end{array}$$
(8)

(構造式 (8) 中、R₆、R₇、R₈は、それぞれ独立し て、Cが1~18のアルキル基、またはHである)の構 造式を有する化合物のうちのいずれか一つ、あるいはそ れらの両方を含む請求項1~3のいずれかに記載の中性 子遮蔽材用組成物。

【請求項5】 充填剤をさらに含む請求項1~4のいず れかに記載の中性子遮蔽材用組成物。

耐火材をさらに含む請求項1~5のいず 【請求項6】 れかに記載の中性子遮蔽材用組成物。

【請求項7】 前記耐火材が、水酸化マグネシウム、水 酸化アルミニウムの少なくとも1種を含む請求項6に記 載の中性子遮蔽材用組成物。

【請求項8】 請求項1~7のいずれかに記載の中性子 遮蔽材用組成物により製造された中性子遮蔽材。

【請求項9】 請求項8に記載の中性子遮蔽材用組成物 により製造された中性子遮蔽容器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は中性子遮蔽材用組成 物に関する。更には、使用済核燃料の貯蔵および運搬用 50 の容器であるキャスクに適用する材料であり、耐熱性が 3

向上し、且つ中性子遮蔽性を確保したエポキシ樹脂系の 中性子遮蔽材用の組成物に関する。

[0002]

【従来の技術】原子力発電所などの原子力施設で使用された核燃料は、通常、再処理工場に移送され、再処理に供される。しかし、現在では、このような使用済核燃料の発生量が再処理能力を超えているため、使用済核燃料は長期にわたって貯蔵保管する必要性が生じている。この際、使用済核燃料は輸送に適した放射能レベルにまで冷却された後、中性子遮蔽容器であるキャスクに入れて輸送されるが、この段階でも中性子などの放射線を放出し続けている。中性子はエネルギーが高く、ガンマ線を発生して人体に重大な傷害を与えるため、この中性子を発生して人体に重大な傷害を与えるため、この中性子を確実に遮蔽することができる中性子遮蔽材の開発が必要とされている。

【0003】中性子はホウ素によって吸収されることが知られているが、ホウ素が中性子を吸収するためには、中性子を減速する必要がある。中性子を減速するための物質としては水素が最適であることが知られている。従って、中性子遮蔽材用の組成物としては、ホウ素と水素の原子を多く含む必要がある。さらに、中性子の発生源である使用済核燃料等は崩壊熱を生じるため、輸送や貯蔵のためにキャスクに密閉しておくと発熱し高温となる。この最高温度は使用済み核燃料の種類によって異なるが、高燃焼度対応の使用済み核燃料ではキャスク内での温度は200℃付近にまで達するといわれている。そこで、中性子遮蔽材として用いるには、このような高温条件下で、使用済み核燃料の貯蔵目安である約60年間耐えうることが望ましい。

【0004】このため、遮蔽材としては水素密度の高い物質、特に水の使用が提案され、一部実用にも供されている。しかし、水は液体であるため取り扱いが困難で、特に輸送と貯蔵を目的とするキャスクには適さない。また、水を使用した場合、キャスク内が100℃以上になるため、沸騰をおさえるのが困難であるといった問題が

$$CH_2-CH-CH_2-O \longrightarrow C \\ \downarrow \\ 0$$

【化10】

ある。

【0005】そこで従来、中性子遮蔽材の一材料として 樹脂組成物が用いられ、その樹脂組成物の1つにエポキ シ樹脂が用いられてきた。一般的に樹脂組成物の水素含 有量と耐熱性は相反関係にあり、水素含有量が多い物は 耐熱性が低く、耐熱性が高い物は水素含有量が低い傾向 にある。エポキシ樹脂は、耐熱性や硬化性には優れるも のの、中性子を減速させるために必須である水素の含有 量が少ないという傾向にあるため、従来はこれを水素含 有量が多いアミン系の硬化剤を用いて補う方法が一般的 であった。

【0006】特開平6-148388号公報には、多官能アミン 系エポキシ樹脂を用い、粘度を低下させて常温での作業 性を向上させるとともに、ポットライフに優れた中性子 遮蔽材用組成物が開示されている。また、特開平9-1764 96号公報には、アクリル樹脂、エポキシ樹脂、シリコー ン樹脂等からなる組成物をポリアミン系の硬化剤で硬化 させた中性子遮蔽材が開示されている。アミン系化合物 は比較的水素含有量が多いため、中性子の減速効果は向 上するが、アミン部分は熱により分解し易い。又、エポ キシ成分の水素含有量不足を補うため、ポリアミンの様 に水素含有量は豊富だがどちらかといえば耐熱性は低い 硬化剤を使用し、且つ樹脂組成物中におけるこの硬化剤 の成分比率を多くする傾向にあった。従って、従来のア ミン系の硬化剤により硬化した組成物よりも、新しい高 燃焼度対応の使用済核燃料を貯蔵し保管するために必要 な耐久性を十分に有する組成物の開発が求められる。

[0007]

【発明が解決する課題】本発明は、従来の組成物よりも 耐熱性に優れ、さらに、中性子遮蔽能力を確保した中性 子遮蔽材用組成物を提供することを目的とする。

[0008]

【課題を解決するための手段】前記課題を解決するため に、水素添加ビスフェノール型エポキシ

【化9】

$$R_{5}-0 \xrightarrow{0} H$$
(2)

(構造式 (2) 中、RsはCが1~10のアルキル基、またはHであり、n=1~24)と、

【化11】

6

$$(CH_2)_{\overline{n}} 0 - C$$

$$(3)$$

(構造式(3)中、n=1~8)と、 【化12】

$$\begin{array}{c} CH_{3}-CH-CH_{2}-0 \\ \hline \\ 0 \end{array} \begin{array}{c} R_{3} \\ \hline \\ R_{10} \end{array} \begin{array}{c} R_{11} \\ \hline \\ R_{12} \end{array} \begin{array}{c} CH_{2}-CH-CH_{2} \\ \hline \\ 0 \end{array} \begin{array}{c} CH_{2}-CH-CH_{2} \\ \hline \\ 0 \end{array} \begin{array}{c} CH_{2}-CH-CH_{2} \\ \hline \end{array} \begin{array}{c} CH-CH-CH-CH_$$

(構造式(6)中、 $R_9 \sim R_{12}$ は、それぞれ独立して、 CH_3 、H、F、Cl、Brからなる群から選択され、 $n=0\sim2$))と、

[{
$$\times 13$$
}]
$$CH_{2}-0$$

$$CH_{2}-0$$

$$CH_{2}-0$$
(9)

とからなる群から選択される1以上の化合物をさらに含むことが好ましい。硬化剤成分としては、

$$[\{H_2 N - CH_2 - NH_2 (4)\}]$$

を含むことが好ましく、

[化15]
$$H_2N-CH_2$$

$$CH_2-NH_2$$
(5)

$$\begin{array}{c} \text{CH} = \text{CR}_8 \\ \text{R}_8 - \text{N} & \text{N} \\ \text{C} & \\ \text{R}_8 \end{array}$$
 (8)

(構造式(8)中、R6、R7、R8は、それぞれ独立して、Cが1~18のアルキル基、またはHである)のうちのいずれか一つ、あるいはそれらの両方を含むことが好ましい。本発明の組成物はまた、充填剤と耐火材とをさらに含む。耐火材が、水酸化マグネシウム、水酸化アルミニウムの少なくとも1種を含むことが好ましい。さらに本発明は、前述の中性子遮蔽材用組成物により製造された中性子遮蔽材および中性子遮蔽容器を提供する。【0009】

【発明の実施の態様】以下に、本発明の実施の態様を詳細に説明する。なお、以下に説明する実施の態様は、本発明を限定するものではない。本発明を通じて、エポキシ成分とは、エポキシ環を有する化合物(以下、エポキシ化合物という)をいい、一種類のエポキシ化合物からなる場合も、二種類以上のエポキシ化合物の混合物から 50

なる場合をも含む。硬化剤成分とは、一種類以上の硬化剤をいう。樹脂成分とは、エポキシ成分と硬化剤成分と あわせたものをいう。

【0010】従来のエポキシ系の中性子遮蔽材におい て、特に耐熱性に問題があるのは、主に硬化剤成分とし て用いられるアミン化合物であった。髙温条件下では、 硬化した樹脂のアミン部分で結合が分解しやすいためで ある。しかしながら、従来の組成ではエポキシ成分の水 素含有量が少ないため、それを補うために水素含有量が 多く耐熱性が低いアミン系硬化剤を多く含む組成とする 20 ことで必要な水素量を確保していた。従って、本発明に おいては、エポキシ成分に比較的水素含有量が多く、且 つ剛直な構造や架橋構造を有する化合物を用いることで 高耐熱化を図り、エポキシ成分自体の高水素含有量化を 行う。また、硬化剤のアミンにも剛直な構造を有する化 合物を用いるとともに樹脂組成全体に対するアミン成分 の比率をも小さく押さえて、耐熱性の向上、分解部分の 少量化を図ることを目的とした。さらに、水素含有量の 多いエポキシ成分、硬化剤成分を用い、中性子減速効果 を向上させることを目的とした。

【0011】本発明は、エポキシ成分と、硬化剤成分と、中性子吸収剤であるホウ素化合物と、耐火材とを含んでなる、耐熱性に優れ、中性子遮蔽効果の高い水素含有率が高い組成物である。具体的には、本発明の組成物には、硬化させて樹脂としたときに熱重量分析による重量残存率90重量%の温度が330℃以上、好ましくは350℃以上、樹脂成分全体に占める水素含有量が9.8重量%以上であることが求められる。又、以上に加えて更に詳細には、長期間高温密閉環境下での熱耐久後の便化させた樹脂の重量減少及び圧縮強度の低下が小さい程良い。例えば190℃×1000hェの密閉熱耐久後の重量減少率は0.5重量%以下、好ましくは0.2重量%以下、圧縮強度は低下していない、最も好ましくはむしろ上昇傾向にあることが求められる。

【0012】以下、それぞれの成分について説明する。本発明のエポキシ成分には、アミン系の硬化剤を用いて硬化することができるエポキシ環を有するエポキシ化合物を用いる。エポキシ成分は、一種類のエポキシ化合物でも、複数のエポキシ化合物を混合したものであってもよい。耐熱性、水素含有量増加といった所望の性能を付与することができるようにエポキシ成分を構成するエポ

7

キシ化合物の種類や組成を選択する。

【0013】架橋密度を高くし、耐熱性を向上するため、エポキシ化合物としては、エポキシ環を複数有する化合物が特に好ましい。また、例えばベンゼン環のような環構造を多く含むと、強固な構造となるため、耐熱性の向上を図るのに適切である。さらに、これらの化合物には、中性子を減速させる目的で水素含有量が多いことが要求される。

【0014】 環構造としては、ベンゼン環は剛直で耐熱性には優れているが、水素含有量が少ないため、ベンゼ 10 ン環に水素付加したものを含むことが好ましい。 耐熱性を付与しうる剛直な構造としては、

を有するものが好ましいが、水素含有量を考えると、 【化18】

を有するものがさらに好ましい。

【0015】これらの点を考慮すると、構造式(1)で示される水素添加ビスフェノール型エポキシ、例えば、水素添加ビスフェノールA型エポキシや水素添加ビスフェノールF型エポキシ等が、水素含有量および耐熱性といった点から本発明の組成物のエポキシ成分として最も適切である。従って、本発明のエポキシ成分は、構造式(1)を必須の成分として含んでなる。

【0016】さらに、耐熱性を付与するエポキシ成分としては、構造式(3)、構造式(6)、を添加する。また、耐熱性及び耐加水分解性を向上させる成分としては、構造式(2)を添加する。構造式(9)は、水素含有量を保ち、かつ耐熱性が期待できるため、エポキシ成分としてこの化合物を添加することで、目的とする性質を付与することが可能となる。従って、本発明のエポキシ成分には、構造式(2)、構造式(3)、構造式

- (6)、構造式(9)の全てを含んでもよく、これらの うちの1種のみを含んでもよい。またこれらのうちのー 40 種類以上を、組成物の粘度やコストによって決定しても 良い。本発明のエポキシ成分は、水素添加ビスフェノー ルエポキシを主成分とし、構造式(2)、構造式
- (3)、構造式(6)、構造式(9)を考えられる全ての組み合わせで用いることが可能である。例えば、構造式(2)と構造式(3)、構造式(2)と構造式
- (6)、構造式(2)と構造式(9)、構造式(3)と構造式(6)、構造式(3)と構造式(9)、構造式
- (6) と構造式(9)、構造式(2)と構造式(3)と構造式(6)、構造式(2)と構造式(3)と構造式

(9)、構造式(2)と構造式(6)と構造式(9)、 構造式(3)と構造式(6)と構造式(9)の組み合わ せを、構造式(1)に添加して本発明のエポキシ成分と することができる。

【0017】本発明のエポキシ成分において、特に、構造式 (1)において、 $R_1 \sim R_4$ がメチル基であり、 $n=0 \sim 2$ である水素添加ビスフェノールA型エポキシを主成分として用いた場合は、単体で水素含有量と耐熱性との両方を適切に併せ持つと言った利点がある。また、構造式 (1)において、 $R_1 \sim R_4$ が水素であり、 $n=0 \sim 2$ である水素添加ビスフェノールF型エポキシは粘度が低いため、フレーク状のエポキシである構造式 (2)と混合して用いる場合に有利である。水素添加ビスフェノールF型エポキシと構造式 (2)に、構造式 (3)、構造式 (6)、構造式 (9)をさらに添加して、多成分系で大きな耐熱性を有することが期待できる。

【0018】例えば、本発明のエポキシ成分の一例としては、水素添加ビスフェノールF型エポキシと、構造式(2)とを含んでなるものが挙げられる。このとき、構20 造式(1)がエポキシ成分全体の、35重量%~90重量%、構造式(2)が、10重量%~65重量%となる組成であることが好ましい。更に好ましくは、構造式(1)がエポキシ成分全体の、50重量%~80重量

(1) がエポキシ成分全体の、50重量%~80重量%、構造式(2)が、20重量%~50重量%となる組成であることが好ましい。

【0019】これらのエポキシ成分の組成は、樹脂成分の水素含有量が、中性子を遮蔽するのに十分な量、好ましくは、9.8重量%以上になるように決定する。中性子遮蔽材の中性子遮蔽材の厚さにより決定される。この値は、キャスクに求められる中性子遮蔽性能とキャスクの中性子遮蔽材の設計厚さから決定される中性子遮蔽材に要求される水素含有量(密度)をもとに、中性子遮蔽材に混練される耐火材や中性子吸収材の配合量を考慮して樹脂成分に求められる水素含有量を算出した値を基準にしたものである。このとき、エポキシ成分中、構造式(1)を、35重量%以上で含むことが好ましく、50重量%以上がさらに好ましく、100重量%が最も好ましい。

【0020】構造式(3)をエポキシ成分として含むときは、エポキシ成分中、50重量%以下で含むことが好ましく、30重量%以下がさらに好ましい。構造式

(6) で示されるピスフェノール型エポキシを含むときは、50重量%以下で含むことが好ましく、30重量%以下がさらに好ましい。

【0021】構造式(2)で示される耐加水分解性及び耐熱性を付与する化合物の添加量は、エポキシ成分中、65重量%以下で含むことが好ましく、50重量%以下がさらに好ましい。構造式(2)を多く添加しすぎると粘度が上昇し、耐火

8

材等を添加することができなくなるおそれがあるためである。水素添加ビスフェノールF型エポキシを主成分として用いた場合には粘度上昇が抑えられるため、構造式(2)を多量に添加する際に効果的である。例えば、水素添加ビスフェノールF型エポキシを主成分として用い且つ構造式(2)をエポキシ成分中50重量%程度用いた場合には、水素添加ビスフェノールA型エポキシを主成分として用い且つ構造式(2)をエポキシ成分中35重量%程度用いたものと同程度の粘度とすることができる。

9

【0022】本発明において、エポキシ成分と反応して 架橋構造を形成する硬化剤成分としては、アミン系の化 合物を用いることができる。架橋密度を上げるために は、アミノ基を複数有する化合物が好ましく使用され る。さらなる耐熱性を付与するために、環構造を1つ以 上、好ましくは2つ以上有する硬化剤成分を用いる。さ らに中性子遮蔽効果を付与するために水素含有量が多い 化合物が好ましい。環構造には、ベンゼン環、ヘキサン 環、ナフタレン環等の炭化水素の環状構造、及びその他 複素環などの熱安定性の高い5員環又は6員環及びこれ らを結合させた構造や、これらよりなる複合の環状構造 等の環構造が好ましい。

【0023】このような硬化剤としては、様々な文献に多数記載されており、それらをエポキシ成分のエポキシ当量との兼ね合いから化学量論的に導かれる必要配合量と水素含有量等を考慮して任意に適用可能である。水素含有量と耐熱性、及び粘度等の点からメンセンジアミン、イソホロンジアミン、1,3ージアミノシクロヘキサンなどを用いることができる。中でも、耐熱性の面からは、2つの環構造を有するアミン化合物、具体的には30構造式(4)を用いることが好ましい。構造式(5)は、構造式(4)に対し、副成分として添加することができる。また、構造式(8)は少量の添加でも硬化剤として機能し、硬化促進剤的に機能するという特徴を有するため、硬化剤成分の減量に効果的である。

【0024】硬化剤成分が、構造式(4)を含む2種類以上の成分を含む場合、例えば、構造式(4)と構造式(5)との2種類のアミン化合物からなる場合には、構造式(4)は、硬化剤成分全体に対して、80重量%以下で添加することが好ましく、60重量%以下がさらに40好ましい。

【0025】硬化剤成分の添加量は、樹脂成分全体の25重量%以下が好ましく、23重量%以下がさらに好ましいが、基本的には必要配合量はエポキシ成分のエポキシ当量との兼ね合いから化学量論的に導かれる。

【0026】中性子吸収剤として添加されるホウ素化合物には、炭化ホウ素、窒化ホウ素,無水ホウ酸、ホウ素鉄、灰硼石、正ホウ酸、メタホウ酸等があるが、炭化ホウ素が最も好ましい。

【0027】上記のホウ素化合物は、粉末が用いられる 50

がその粒度及び添加量には特に制限はない。しかし、マトリックス樹脂のエポキシ樹脂内の分散性、中性子に対する遮蔽性を考慮すれば平均粒径は1~200ミクロン程度が好ましく、10~100ミクロン程度がより好ましく、20~50ミクロン程度が特に好ましい。一方、添加量は後述の充填剤も含めた組成物全体に対して0.5~20重量%の範囲が最も好ましい。0.5重量%未満では加えたホウ素化合物の中性子遮蔽材としての効果が低く、また、20重量%を超えた場合はホウ素化合物を均一に分散させることが困難になる。

【0028】本発明には充填剤として、シリカ、アルミナ、炭酸カルシウム、三酸化アンチモン、酸化チタン、アスベスト、クレー、マイカ等の粉末の他、ガラス繊維等も用いられ、また、必要に応じ炭素繊維等を添加しても良い。更に必要に応じて、離型剤としての天然ワックス、脂肪酸の金属塩、酸アミド類、脂肪酸エステル類等、難燃剤としての塩化パラフィン、プロムトルエン、ヘキサプロムベンゼン、三酸化アンチモン等、着色剤としてのカーボンプラック、ベンガラ等の他、シランカップリング剤、チタンカップリング剤等を添加することができる。

【0029】本発明に係る組成物において使用される耐火材は、万一、火災に遭遇した場合でも、ある程度以上の中性子遮蔽能力を維持できるよう、中性子遮蔽材をある程度以上残存させることを目的としている。このような耐火材としては、水酸化マグネシウム、水酸化アルミニウムが好ましい。中でも、水酸化マグネシウムは170℃以上の高温でも安定に存在するため、特に好ましい。これら耐火剤の添加量は上記組成物全体中20~70重量%が好ましく、35~60重量%が特に好ましい。

【0030】本発明の組成物は、エポキシ成分を混合後、室温に放置し、混合物が室温程度になったところで硬化剤成分を混合し、最後に耐火材と中性子吸収剤とその他の添加剤成分とを添加することによって調整する。重合は、室温でも可能だが加熱により行うのが好ましい。重合条件としては、樹脂成分の組成によっても異なるが、50 $^{\circ}$ $^{\circ}$ $^{\circ}$ 0 $^{\circ}$ 0 $^{\circ}$ 0 個題度条件において、1時間~3時間加熱を行うことが好ましい。さらには、このような加熱処理は2段階で行うことが好ましく、60 $^{\circ}$ $^{\circ}$ 0 $^{\circ}$ 0 で1時間~2時間加熱した後、120 $^{\circ}$ $^{\circ}$ 0 で2時間から3時間加熱処理することが好ましい。

【0031】以上のような組成物を用いて、使用済核燃料を貯蔵・輸送するためのキャスクを製造する。このような輸送用のキャスクは、公知技術を利用して製造することができる。例えば、特開平2000-9890号公報に開示されたキャスクにおいて、中性子遮蔽体を充填する個所が設けられている。このような個所に、本発明の組成物を充填することができる。

【0032】このようなキャスク中の遮蔽体に限定され

ることなく、本発明の組成物は、中性子の拡散を防止する装置や施設において、さまざまな個所に用いることができ、効果的に中性子を遮蔽することができる。

11

[0033]

【実施例】以下に、実施例を用いて本発明を詳細に説明 する。なお、以下の実施例は本発明を限定する目的では ない。

【0034】実施例において、本発明の組成物を調製し、中性子遮蔽効果を調べた。通常は中性子遮蔽材用樹脂組成物に、耐火材として水酸化アルミニウムや水酸化マグネシウム等を全体の60重量%程度、及び中性子吸収剤として炭化ホウ素等のホウ素化合物を全体の1重量%程度を混合して、中性子遮蔽材を作製する。しかし、ここでは樹脂成分、即ち、エポキシ成分と硬化剤成分とによる性能を評価すべく耐火材および中性子吸収剤は添加しないものを中心とした。

【0035】中性子遮蔽材に求められる性能としては、耐熱性(重量残存率、圧縮強度等)、耐火性、水素含有量(中性子遮蔽としての適性の判断目安として材料中の水素含有密度がある一定量以上あることが必要となる)等がある。耐火性は耐火材による部分が大であるため、中性子遮蔽材用樹脂組成物の評価としては重量残存率に見る耐熱性と水素含有量を評価した。重量残存率は、昇温時の重量変化を測定することにより、その耐熱性を評価するものである。測定にはTGAを用い、熱重量減少の測定条件は室温~600℃までを昇温速度10℃/min、窒素雰囲気下にて測定した。また、樹脂に求められる水素含有量の基準値としては樹脂単体中での水素含有量を9.8重量%程度以上とした。

【0036】 [実施例1] エポキシ樹脂として水素添加 ビスフェノールA型エポキシ樹脂(油化シェルエポキシ (株) 製、YL6663 (構造式(1))) 59.47 gと多官能脂環型エポキシ樹脂(ダイセル化学(株) 製、EHPE3150 (構造式(2)) 25.00gを 混合し、110℃に保持してEHPE3150 (固形) が溶解するまで良く攪拌した。EHPE3150溶解後 室温に放置し、室温付近まで温度が低下したら硬化剤と して1,3-BAC (三菱瓦斯化学 (株) 製、 (構造式 (5)) 15.53gを混合・攪拌して中性子遮蔽材用 に用いる樹脂組成物とした。上記中性子遮蔽材用樹脂組 成物の水素含有量を成分分析により測定した。測定の結 果、水素含有量は9.8重量%以上(10重量%程度以 上) で基準値を上回り満足した。上記中性子遮蔽材用樹 脂組成物を80℃×30min+150℃×2hrで硬化させ、その 硬化物の熱重量減少をTGAにより測定した。熱重量減少 測定の結果、200℃での重量残存率が99.5重量% 以上であり、また、重量残存率90重量%の温度が37 0℃以上と極めて良好な耐熱性、熱安定性を示した。 【0037】 [実施例2] エポキシ樹脂として水素添加

ピスフェノールA型エポキシ樹脂(YL6663(構造

式 (1))) 48.81gと脂環型エポキシ樹脂(ダイ セル化学 (株) 製、セロキサイド2021P (構造式 (3))) 10.00gと多官能脂環型エポキシ樹脂 (EHPE3150 (構造式 (2))) 25.00gを 混合し、110℃に保持してEHPE3150 (固形) が溶解するまで良く攪拌した。EHPE3150溶解後 室温に放置し、室温付近まで温度が低下したら硬化剤と して1, 3-BAC (構造式 (5)) 16.19gを混 合・攪拌して中性子遮蔽材用に用いる樹脂組成物とし た。樹脂組成物中の水素含有量を測定した結果、水素含 有量は9.8重量%以上(10重量%程度以上)で基準 値を上回り満足した。一方、上記中性子遮蔽材用樹脂組 成物を80℃×30min+150℃×2hrで硬化させ、熱重量減 少を測定した結果、200℃での重量残存率99.5重 量%以上、重量残存率90重量%の温度が380℃以上 と極めて良好な耐熱性、熱安定性を示した。

【0038】 [実施例3] エポキシ樹脂として水素添加 ビスフェノールA型エポキシ樹脂(Y L 6 6 6 3 (構造 式(1)))49.20gとピスフェノールA型エポキ シ樹脂(油化シェルエポキシ(株)製、エピコート82 8 (構造式 (6) 中、R9~R12 がメチル基であり、n =0~2) 10.00gと多官能脂環型エポキシ樹脂 (EHPE3150 (構造式 (2))) 25.00gを 混合し、110℃に保持してEHPE3150 (固形) が溶解するまで良く攪拌した。EHPE3150溶解後 室温に放置し、室温付近まで温度が低下したら硬化剤と して1,3-BAC(構造式(5))15.80gを混 合・攪拌して中性子遮蔽材用に用いる樹脂組成物とし た。樹脂組成物中の水素含有量を測定した結果、水素含 有量は9.8重量%以上(9.9重量%程度以上)で基 準値を上回り満足した。一方、上記中性子遮蔽材用樹脂 組成物を80℃×30min+150℃×2hrで硬化させ、熱重量 減少を測定した結果、200℃での重量残存率99.5 重量%以上、重量残存率90重量%の温度が380℃以 上と極めて良好な耐熱性、熱安定性を示した。

【0039】 [実施例4] エポキシ樹脂として水素添加ビスフェノールA型エポキシ樹脂(YL6663(構造式(1))) 55.44gと多官能脂環型エポキシ樹脂(EHPE3150(構造式(2))) 25.00gを混合し、110℃に保持してEHPE3150(固形)が溶解するまで良く攪拌した。EHPE3150溶解後室温に放置し、室温付近まで温度が低下したら硬化剤としてワンダミンHM(新日本理化(株) 製、(構造式

(4))) 14.67gと1,3-BAC (構造式

(5)) 4.89gを予め良く混合して相溶させた混合硬化剤19.56gを混合・攪拌して中性子遮蔽材用に用いる樹脂組成物とした。樹脂組成物中の水素含有量を測定した結果、水素含有量は9.8重量%以上(10重量%程度以上)で基準値を上回り満足した。一方、上記中性子遮蔽材用樹脂組成物を80℃×30min+150℃×2hr

で硬化させ、熱重量減少を測定した結果、200℃での 重量残存率99.5重量%以上、重量残存率90重量% の温度が390℃程度と極めて良好な耐熱性、熱安定性 を示した。

【0040】 [実施例5] エポキシ樹脂として水素添加 ビスフェノールA型エポキシ樹脂(YL6663 (構造 式(1))) 44.62gと脂環型エポキシ樹脂(セロ キサイド2021P(構造式(3)))10.00gと 多官能脂環型エポキシ樹脂(EHPE3150 (構造式 (2)))25.00gを混合し、110℃に保持して 10 EHPE3150(固形)が溶解するまで良く攪拌し た。EHPE3150溶解後室温に放置し、室温付近ま で温度が低下したら硬化剤としてワンダミンHM(構造 式(4))15.29gと1,3-BAC(構造式

(5)) 5.09gを予め良く混合して相溶させた混合 硬化剤19.38gを混合・攪拌して中性子遮蔽材用に 用いる樹脂組成物とした。樹脂組成物中の水素含有量を 測定した結果、水素含有量は9.8重量%以上(10重量%程度以上)で基準値を上回り満足した。一方、上記中性子遮蔽材用樹脂組成物を80℃×30min+150℃×2hrで硬化させ、熱重量減少を測定した結果、200℃での 重量残存率99.5重量%以上、重量残存率90重量% の温度が400℃程度と極めて良好な耐熱性、熱安定性を示した。

【0041】 [実施例6] エポキシ樹脂として水素添加ビスフェノールA型エポキシ樹脂(YL6663 (構造式(1))) 43. 42gとビスフェノールA型エポキシ樹脂(エピコート828 (構造式(6)中、R9~R12がメチル基であり、n=0~2)) 13. 28gと多官能脂環型エポキシ樹脂(EHPE3150 (構造式(2))) 24. 30gを混合し、110℃に保持してEHPE3150 (固形)が溶解するまで良く攪拌した。EHPE3150溶解後室温に放置し、室温付近まで温度が低下したら硬化剤としてワンダミンHM (構造式(4))11.4gと1,3-BAC (構造式

(5)) 7.6gを予め良く混合して相溶させた混合硬化剤19.00gを混合・攪拌して中性子遮蔽材用に用いる樹脂組成物とした。樹脂組成物中の水素含有量を測定した結果、水素含有量は9.8重量%程度で基準値を満足した。一方、上記中性子遮蔽材用樹脂組成物を80℃×30min+150℃×2hrで硬化させ、熱重量減少を測定した結果、200℃での重量残存率99.5重量%以上、重量残存率90重量%の温度が400℃以上と極めて良好な耐熱性、熱安定性を示した。

【0042】 [実施例7] エポキシ樹脂として水素添加 ビスフェノールA型エポキシ樹脂(YL6663(構造 式(1))) 80.83gに、硬化剤としてワンダミン HM(構造式(4)) 14.38gと1,3-BAC (構造式(5)) 4.79gを予め良く混合して相溶さ せた混合硬化剤19.17gを混合・攪拌して中性子遮 50 蔽材用に用いる樹脂組成物とした。樹脂組成物中の水素含有量を測定した結果、水素含有量は10.6重量%以上で基準値を大きく上回り満足した。一方、上記中性子遮蔽材用樹脂組成物を80℃×30min+150℃×2hrで硬化させ、熱重量減少を測定した結果、200℃での重量残存率99.5重量%程度、重量残存率90重量%の温度が330℃程度と良好な耐熱性、熱安定性を示した。

14

【0043】 [実施例8] エポキシ樹脂として水素添加ビスフェノールA型エポキシ樹脂(YL6663(構造式(1)))69.93gと脂環型エポキシ樹脂(セロキサイド2021P(構造式(3)))10.07gに、硬化剤としてワンダミンHM(構造式(4))15.00gと1,3-BAC(構造式(5))5.00gを予め良く混合して相容させた混合硬化剤20.00gを混合・攪拌して中性子遮蔽材用に用いる樹脂組成物とした。樹脂組成物中の水素含有量を測定した結果、水素含有量は10.5重量%程度で基準値を大きく上回り満足した。一方、上記中性子遮蔽材用樹脂組成物を80℃×30min+150℃×2hrで硬化させ、熱重量減少を測定した結果、200℃での重量残存率99.5重量%以上、重量残存率90重量%の温度が340℃程度と良好な耐熱性、熱安定性を示した。

【0044】[実施例9]エポキシ樹脂として水素添加 ビスフェノールA型エポキシ樹脂(YL6663(構造) 式(1)))49.48gとピスフェノールA型エポキ シ樹脂 (エピコート828 (構造式 (6) 中、R9~R 12 がメチル基であり、n=0~2)) 30.32gに、 硬化剤としてワンダミンHM(構造式(4))15.1 5gと1,3-BAC(構造式(5))5.05gを予 め良く混合して相溶させた混合硬化剤20.20gを混 合・攪拌して中性子遮蔽材用に用いる樹脂組成物とし た。樹脂組成物中の水素含有量を測定した結果、水素含 有量は9.8重量%程度で基準値を満足した。一方、上 記中性子遮蔽材用樹脂組成物を80℃×30min+150℃×2 hrで硬化させ、熱重量減少を測定した結果、200℃で の重量残存率99.5重量%以上、重量残存率90重量 %の温度が360℃程度と良好な耐熱性、熱安定性を示 した。

【0045】[実施例10] エポキシ樹脂として水素添加ピスフェノールA型エポキシ樹脂(YL6663(構造式(1)))55.02gとピスフェノールA型エポキシ樹脂(エピコート828(構造式(6)中、R9~R12がメチル基であり、n=0~2))28.98gに、硬化剤として1,3-BAC(構造式(5))16.00gを混合・攪拌して中性子遮蔽材用に用いる樹脂組成物とした。樹脂組成物中の水素含有量を測定した結果、水素含有量は9.8重量%程度で基準値を満足した。一方、上記中性子遮蔽材用樹脂組成物を80℃×30min+150℃×2hrで硬化させ、熱重量減少を測定した結果、200℃での重量残存率99.5重量%以上、重量

残存率90重量%の温度が340℃程度と良好な耐熱 性、熱安定性を示した。

【0046】 [実施例11] エポキシ樹脂として水素添 加ピスフェノールA型エポキシ樹脂(YL6663(構 造式(1))) 55.44gと多官能脂環型エポキシ樹 脂(EHPE3150(構造式(2)))25.00g を混合し、110℃に保持してEHPE3150 (固 形)が溶解するまで良く攪拌した。EHPE3150溶 解後室温に放置し、室温付近まで温度が低下したら硬化 剤としてワンダミンHM(構造式(4)) 14.5gと 1, 3-BAC(構造式(5))4. 85gとイミダゾ ール化合物(構造式(8))0.2を予め良く混合して 相溶させた混合硬化剤19.55gを混合・攪拌して中 性子遮蔽材用に用いる樹脂組成物とした。樹脂組成物中 の水素含有量を測定した結果、水素含有量は9.8重量 %以上(10重量%程度以上)で基準値を上回り満足し た。一方、上記中性子遮蔽材用樹脂組成物を80℃×30mi n+150℃×2hrで硬化させ、熱重量減少を測定した結 果、200℃での重量残存率99.5重量%以上、重量 残存率90重量%の温度が390℃以上と極めて良好な 耐熱性、熱安定性を示した。

【0047】 [実施例12] ここでは、さらに中性子吸 収剤と耐火材を添加した組成物を調製した。エポキシ樹 脂として水素添加ピスフェノールA型エポキシ樹脂(Y L6663 (構造式 (1))) 43. 42 gとピスフェ ノールA型エポキシ樹脂(エピコート828(構造式) (6) 中、R₉~R₁₂ がメチル基であり、n=0~ 2)) 13. 28gと多官能脂環型エポキシ樹脂(EH PE3150 (構造式 (2))) 24. 30gを混合 し、110℃に保持して固形のEHPE3150が溶解 するまで良く攪拌した。EHPE3150溶解後室温に 放置し、室温付近まで温度が低下したら硬化剤としてワ ンダミンHM (構造式 (4)) 11. 4 g と 1, 3 - B AC(構造式 (5)) 7.6gを予め良く混合して相溶 させた混合硬化剤19.00gを混合・攪拌した。これ に水酸化マグネシウムを146.5gと炭化ホウ素3. 5gを混合・攪拌して中性子遮蔽材用組成物とした。中 性子遮蔽材に求められる水素含有量の目安としては、水 素含有密度が 0.096g/cm³以上であるが、調製し た中性子遮蔽材組成物の水素含有密度を測定した結果、 0.096g/cm³以上で基準値を満足した。一方、上 記中性子遮蔽材用樹脂組成物を80℃×30min+150℃×2 hrで硬化させ、熱重量減少を測定した結果、200℃で の重量残存率99. 5重量%以上、重量残存率90重量 %の温度が400℃以上と極めて良好な耐熱性、熱安定 性を示した。又、上記硬化物を密閉容器に封入後、19 0℃×1000hrの耐熱耐久試験を行った。耐熱耐久 試験後、圧縮強度は試験前に比べ1.1倍上昇して12 3MPa、重量減少率は0.05%程度、ガラス転移温度 (粘弾性測定結果のtanδのピーク) は試験前の値13

0℃より上昇して約175℃であった。また、化学構造は赤外分光分析の結果から試験前後で殆ど変化していないことを確認した。図1に赤外分光スペクトルを示す。以上の結果から、極めて良好な耐熱耐久性を有することを確認した。

16

【0048】 [比較例1] エポキシ樹脂としてビスフェ ノールA型エポキシ樹脂 (エピコート828 (構造式 (6) 中、R9~R12 がメチル基であり、n=0~

2))とポリアミン系の硬化剤を1:1(化学量論的に等量となる)の割合で混合・攪拌して中性子遮蔽材用に用いる樹脂組成物とした。樹脂組成物中の水素含有量を測定した結果、水素含有量は9.8重量%以上で基準値を満足した。一方、上記中性子遮蔽材用樹脂組成物を80℃×30min+150℃×2hrで硬化させ、熱重量減少を測定した結果、200℃での重量残存率99重量%以下、重量残存率90重量%の温度が300℃以下であり、実施例の一群と比較して耐熱性、熱安定性は劣った。この組成系は現在使用されている中性子遮蔽材用の樹脂組成物と同様の系を模擬したものだが、比較例1は水素含有量の点からは適性があるが、耐熱性、熱安定性的には実施例の一群と比較して低い値であり、実施例の一群が耐熱性、熱安定性的に優れていることがわかる。

【0049】 [比較例2] エポキシ樹脂としてビスフェ ノールA型エポキシ樹脂(エピコート828 (構造式

(6) 中、R9~R12がメチル基であり、n=0~ 2)) 81.4gと、硬化剤としてイソホロンジアミン 18.6gを良く攪拌して中性子遮蔽材用に用いる樹脂 組成物とした。樹脂組成物中の水素含有量を測定した結 果、水素含有量は8.2重量%以下で基準値を大きく下 回り未達となった。一方、上記中性子遮蔽材用樹脂組成 物を80℃×30min+150℃×2hrで硬化させ、熱重量減少 を測定した結果、200℃での重量残存率99.5重量 %程度、重量残存率90重量%の温度が350℃程度と 耐熱性、熱安定性は良かった。この組成系は耐熱性、熱 安定性的には良好だが、実施例の一群と比較して水素含 有量の点から中性子遮蔽材用樹脂組成物としては不適で

あった。

【0050】 [比較例3] エポキシ樹脂として水素添加ビスフェノールA型エポキシ樹脂(YL6663(構造式(1)))とポリアミン系の硬化剤を1:1(化学量 論的に等量となる)の割合で混合・攪拌して中性子遮蔽材用に用いる樹脂組成物とした。ポリアミン系の硬化剤は、本発明の組成物において使用する硬化剤と異なり、耐熱性の高い剛直な構造を有しておらず、又、その配合量も比率として大きなものとなっている。樹脂組成物中の水素含有量を測定した結果、水素含有量は9.8重量%以上(10重量%程度以上)で基準値を上回り満足した。一方、上記中性子遮蔽材用樹脂組成物を80℃×30min+150℃×2hrで硬化させ、熱重量減少を測定した結果、200℃での重量残存率99.0重量%以下、重量

残存率90重量%の温度が280℃以下であり、実施例の一群と比較して耐熱性、熱安定性が劣った。

【0051】 [比較例4] エポキシ樹脂としてポリプロピレングリコールの両末端のOHをそれぞれグリシジルエーテルに置換した構造を持つエポキシ樹脂(エポキシ等量190)81.7gと、硬化剤としてイソホロンジアミン18.3gを良く攪拌して中性子遮蔽材用に用いる樹脂組成物とした。ここで用いるエポキシ樹脂は、本発明のエポキシ成分と異なり、剛直な構造を有さない。樹脂組成物中の水素含有量を測定した結果、水素含有量は9.8重量%以上で基準値を満足した。一方、上記中性子遮蔽材用樹脂組成物を80℃×30min+150℃×2hrで硬化させ、熱重量減少を測定した結果、200℃での重量残存率99.5重量%以下、重量残存率90重量%の温度が250℃程度未満であり、実施例の一群と比較して耐熱性、熱安定性が極めて劣った。

【0052】 [比較例5] エポキシ樹脂として1,6~キサンジグリシジルエーテル(エポキシ等量155)78.5gと、硬化剤としてイソホロンジアミン21.5gを良く攪拌して中性子遮蔽材用に用いる樹脂組成物とした。樹脂組成物中の水素含有量を測定した結果、水素含有量は9.8重量%以上で基準値を満足した。一方、上記中性子遮蔽材用樹脂組成物を80℃×30min+150℃×2hrで硬化させ、熱重量減少を測定した結果、200℃での重量残存率99.5重量%以下、重量残存率90重量%の温度が300℃未満であり、実施例の一群と比較して耐熱性、熱安定性が劣った。

【0053】 [比較例6] ここでは、エポキシ成分とポリアミン系の硬化剤とからなる組成物に、耐火材と中性子吸収剤とをさらに添加した組成物について、中性子遮蔽効果を評価した。エポキシ樹脂としてビスフェノール

A型エポキシ樹脂(エピコート828(構造式(6) 中、R₉~R₁₂ がメチル基であり、n=0~2))50 gとポリアミン系の硬化剤50g(化学量論的に等量と なる比率)を混合・攪拌したものに水酸化マグネシウム を146.5gと炭化ホウ素3.5gを混合・攪拌して 中性子遮蔽材用組成物とした。中性子遮蔽材に求められ る水素含有量の目安としては、水素含有密度が0.09 6 g/cm³以上であるが、調製した中性子遮蔽材組成物 の水素含有密度を測定した結果、0.096g/cm³以 上で基準値を満足した。一方、上記中性子遮蔽材用樹脂 組成物を80℃×30min+150℃×2hrで硬化させ、熱重量 減少を測定した結果、200℃での重量残存率99重量 %以下、重量残存率90重量%の温度が300℃以下で あり、実施例の一群と比較して耐熱性、熱安定性は劣っ た。又、上記硬化物を密閉容器に封入後、190℃×1 000hrの耐熱耐久試験を行った。圧縮強度は試験前 に比べ3割以上低下し、髙温環境下での耐久性は低いも のとなった。この組成系は、現在使用されている中性子 遮蔽材用組成物と同様の系を模擬したものである。比較 例6は水素含有量の点からは適性があるが、耐熱性、熱 安定性的については、実施例12と比較して低い値であ り、実施例12の組成物は耐熱性、熱安定性的に優れて いることがわかる。

[0054]

【発明の効果】本発明の中性子遮蔽用材料は、耐熱性の向上したエポキシ成分および硬化剤を用いるため、耐熱性が良く、使用済核燃料の長期にわたる貯蔵にも耐えることができる。また中性子遮蔽能力も確保している。

【図面の簡単な説明】

【図1】本発明の組成物で製造した中性子遮蔽材の遮蔽 試験前後の赤外分光スペクトルチャートである。

[図1]

フロントページの続き

(72)発明者 石原 伸夫 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内