

Fis 1

FIG. 2B

Fig. 3A

Figure 4 A

Fig. 5

Fis. 6

Tune Resonator to Critical Coupling Point when Electromagnetically Coupled to the Reference Sample

710

Obtain Resonator's $f_{\text{res},1}$ and Q_1 Parameters when Electromagnetically coupled to the First Calibration Sample

7-17

Obtain Resonator's f_{res,2} and Q₂ Parameters when Electromagnetically coupled to the Second Calibration Sample

2714

Calculate the Difference between $f_{res,2}$ and $f_{res,1}$ to obtain $\Delta f_{res,cal}$

0545

Calculate the Difference between Q_2 and Q_1 to obtain ΔQ_{cal}

2727

Calculate C' by taking the ratio of $\Delta\epsilon'_{cal}$ to $\Delta f_{res,cal}$

2729

Calculate C" by taking the ratio of $\Delta \epsilon$ "_{cal} to ΔQ_{cal}

2726

Fig 7A

540,550

Fig 7B

Fig. 8A

Fig. BB

Obtain Detector's I_1 and Q_1 Parameterswhen the Detector is Electromagnetically coupled to the First Calibration Sample $I_2 = I_1 I_2 I_3 I_4 I_5 I_5 I_5 I_6$
Obtain Detector's I ₂ and Q ₂ Parameterswhen the Detector is Electromagnetically coupled to the Second Calibration Sample
Compute $\{\Delta I_{cal}\}$ and $\{\Delta Q_{cal}\}$
Calculate {C'} by taking the ratio of $\{\Delta\epsilon'_{cal}\}$ to $\{\Delta I_{cal}\}$
Calculate {C"} by taking the ratio of $\{\Delta \epsilon^{"}_{cal}\}$ to $\{\Delta Q_{cal}\}$
Fig. 9 A
V 500, 550
Obtain I _{ref} and Q _{ref} when the Detector is Electromagnetically coupled to the Reference Sample
Obtain I _{sam} and Q _{sam} when the Detector is Electromagnetically coupled to the Test Sample
Compute $\{\Delta I_{sam-ref}\}$ and $\{\Delta Q_{sam-ref}\}$ 2 936
Compute $\{\Delta I_{sam-ref}\}$ and $\{\Delta Q_{sam-ref}\}$ ≥ 936 Compute Change in Permittivity between Test & Ref Samples: $\{\Delta \epsilon'_{sam-ref}\}=\{C'\}\times\{\Delta I_{sam-ref}\}$ $\{\Delta \epsilon''_{sam-ref}\}=\{C''\}\times\{\Delta Q_{sam-ref}\}$

Measine E Calbrahas measure oxph favance at 3 calbration Scupl 3 Bilinean Calibration Denive Co e Ricent reflection Coefficiel Test Sample measure Apply the measured Reflection coefficient to the 3 Bilincan calibration coefficients 05015

Fig. 10

Fig 12A

Use Dielectric Probe to Measure the Reference Sample 21255 Permittivity (Re and Im parts) at Temperatures $t_0, t_1, t_2....t_n$ Use Dielectric Probe to Measure the Test Sample 21224 Permittivity (Re and Im parts) at Temperatures $t_0, t_1, t_2 t_n$ Compute: $\Delta\epsilon'(t_0), \, \Delta\epsilon'(t_1), \, \Delta\epsilon'(t_2), \, \dots \, \Delta\epsilon'(t_n)$ and 21226 $\Delta \varepsilon$ "(t₀), $\Delta \varepsilon$ "(t₁), $\Delta \varepsilon$ "(t₂), ... $\Delta \varepsilon$ "(t_n) 128 C 1230 Compute: Abs[$\Delta\epsilon^{\text{\tiny{I}}}$ - $\Delta\epsilon^{\text{\tiny{I}}}(t_i)]_{ti}$ $_{=\{\text{to, t1, t2, }\dots\text{ tn}\}}$ and S 1535 Abs[$\Delta\epsilon$ " - $\Delta\epsilon$ "(t_i)]_{ti = \{t0,\,t1,\,t2,\,\ldots\,tn\}}

The Temperature-dependent Permittivity is the $\Delta\epsilon'(t_i)$ and $\Delta\epsilon''(t_i)$ which produces Absolute Values closest to zero.

Frs. 126

21234