Федеральное государственное автономное образовательное учреждение

высшего образования

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Вариант №161 Домашняя работа №4 по дисциплине Дискретная математика

> Выполнил Студент группы Р3115 Владимир Мацюк Преподаватель: Поляков Владимир Иванович

Исходная таблица соединений R:

v/v	e1	e2	е3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	3			4	4	4	4		3	4	
e2	3	0	1					4		2		
e3		1	0	5					3	1		
e4			5	0	1	4	1		4	5	4	
e5	4			1	0	1				3		
e6	4			4	1	0	2				4	
e7	4			1		2	0			4		1
e8	4	4						0	3	3		5
e9			3	4				3	0		5	
e10	3	2	1	5	3		4	3		0	2	
e11	4			4		4			8	2	0	4
e12							1	5			4	0

1 Найти гамильтонов цикл

```
Включаем в S вершину х1. S=\{x1\} Возможная вершина: х2. S=\{x1,x2\} Возможная вершина: х3. S=\{x1,x2,x3\} Возможная вершина: х4. S=\{x1,x2,x3,x4\} Возможная вершина: х5. S=\{x1,x2,x3,x4,x5,x6\} Возможная вершина: х6. S=\{x1,x2,x3,x4,x5,x6\} Возможная вершина: х7. S=\{x1,x2,x3,x4,x5,x6,x7\} Возможная вершина: х10. S=\{x1,x2,x3,x4,x5,x6,x7,x10\} Возможная вершина: х8. S=\{x1,x2,x3,x4,x5,x6,x7,x10,x8\} Возможная вершина: х9. S=\{x1,x2,x3,x4,x5,x6,x7,x10,x8,x9\} Возможная вершина: х11. S=\{x1,x2,x3,x4,x5,x6,x7,x10,x8,x9,x11\} Возможная вершина: х12. S=\{x1,x2,x3,x4,x5,x6,x7,x10,x8,x9,x11,x12\} Ребра (x12,x1) нет, найдена гамильтонова цепь. Прибегнем к возвр
```

Ребра (x12,x1) нет, найдена гамильтонова цепь. Прибегнем к возвращению: удалим из S вершину x12, перейдем к x11. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x8,x9,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х9. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x8,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х $8. S= \{x1,x2,x3,x4,x5,x6,x7,x10,x8\}$

Возможная вершина: x12. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x8,x12\}$

Возможная вершина: x11. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x8,x12,x11\}$

Возможная вершина: $x9. S=\{x1,x2,x3,x4,x5,x6,x7,x10,x8,x12,x11,x9\}$

Ребра (x9,x1) нет, найдена гамильтонова цепь. Прибегнем к возвращению: удалим из S вершину x9, перейдем к x11. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x8,x12,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х12. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x8,x12\}$

У x12 больше нет возможных вершин, удалим ее. Перейдем к x8. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х $10. S=\{x1,x2,x3,x4,x5,x6,x7,x10\}$

Возможная вершина: x11. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11\}$

Возможная вершина: $x9. S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11,x9\}$

Возможная вершина: $x8. S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11,x9,x8\}$

Возможная вершина: x12. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11,x9,x8,x12\}$

Ребра (x12,x1) нет, найдена гамильтонова цепь. Прибегнем к возвращению: удалим из S вершину x12, перейдем к x8. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11,x9,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х9. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11,x9\}$

У х9 больше нет возможных вершин, удалим ее. Перейдем к х11. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11\}$

Возможная вершина: x12. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11,x12\}$

Возможная вершина: $x8. S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11,x12,x8\}$

Возможная вершина: $x9. S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11,x12,x8,x9\}$

Ребра (x9,x1) нет, найдена гамильтонова цепь. Прибегнем к возвращению: удалим из S вершину x9, перейдем к x8. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11,x12,x8\}$

У х8 больше нет возможных вершин, удалим ее. Перейдем к х12. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11,x12\}$

У х12 больше нет возможных вершин, удалим ее. Перейдем к х11. $S=\{x1,x2,x3,x4,x5,x6,x7,x10,x11\}$

У х11 больше нет возможных вершин, удалим ее. Перейдем к х10. $S=\{x1,x2,x3,x4,x5,x6,x7,x10\}$

У x10 больше нет возможных вершин, удалим ее. Перейдем к x7. $S=\{x1,x2,x3,x4,x5,x6,x7\}$

Возможная вершина: x12. $S=\{x1,x2,x3,x4,x5,x6,x7,x12\}$

Возможная вершина: $x8. S = \{x1, x2, x3, x4, x5, x6, x7, x12, x8\}$

Возможная вершина: $x9. S=\{x1,x2,x3,x4,x5,x6,x7,x12,x8,x9\}$

Возможная вершина: x11. $S=\{x1,x2,x3,x4,x5,x6,x7,x12,x8,x9,x11\}$

Возможная вершина: $x10. S=\{x1,x2,x3,x4,x5,x6,x7,x12,x8,x9,x11,x10\}$

 Γ амильтонов цикл найден. $S=\{x1,x2,x3,x4,x5,x6,x7,x12,x8,x9,x11,x10\}$

Матрица смежности с перенумерованными вершинами

0	1	0	0	1	1	1	0	1	0	1	1
1	0	1	0	0	0	0	0	1	0	0	1
0	1	0	1	0	0	0	0	0	1	0	1
0	0	1	0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	0	0	0	1
1	0	0	1	1	0	1	0	0	0	1	0
1	0	0	1	0	1	0	1	0	0	0	1
0	0	0	0	0	0	1	0	1	0	1	0
1	1	0	0	0	0	0	1	0	1	0	1
0	0	1	1	0	0	0	0	1	0	1	0
1	0	0	1	0	1	0	1	0	1	0	1
1	1	1	1	1	0	1	0	1	0	1	0

- до перенумерации x1 x2 x3 x4 x5 x6 x7 x12 x8 x9 x11 x10
- после перенумерации x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

2 Построение графа пересечений G'

Определим p212, для чего в матрице R выделим подматрицу R212.

Ребро (x2x12) пересекается с (x1x5),(x1x6),(x1x7),(x1x9),(x1x11)

Определим p29, для чего в матрице R выделим подматрицу R29.

Ребро (x2x9) пересекается с (x1x5),(x1x6),(x1x7)

Определим p312, для чего в матрице R выделим подматрицу R312.

Ребро (x3x12) пересекается с (x1x5),(x1x6),(x1x7),(x1x9),(x1x11),(x2x9)

Определим p310, для чего в матрице R выделим подматрицу R310.

Ребро (x3x10) пересекается с (x1x5),(x1x6),(x1x7),(x1x9),(x2x9)

Определим p412, для чего в матрице R выделим подматрицу R412.

Ребро (x4x12) пересекается с (x1x5),(x1x6),(x1x7),(x1x9),(x1x11),(x2x9),(x3x10)

Определим p411, для чего в матрице R выделим подматрицу R411.

Ребро (x4x11) пересекается с (x1x5),(x1x6),(x1x7),(x1x9),(x2x9),(x3x10)

Определим p410, для чего в матрице R выделим подматрицу R410.

Ребро (x4x10) пересекается с (x1x5),(x1x6),(x1x7),(x1x9),(x2x9)

Определим p47, для чего в матрице R выделим подматрицу R47.

Ребро (x4x7) пересекается с (x1x5),(x1x6)

Определим p46, для чего в матрице R выделим подматрицу R46.

Ребро (х4х6) пересекается с (х1х5)

Определим p512, для чего в матрице R выделим подматрицу R512.

Ребро (x5x12) пересекается с (x1x6),(x1x7),(x1x9),(x1x11),(x2x9),(x3x10),(x4x6),(x4x7),(x4x10),(x4x11)

15 пересечений графа найдено, закончим поиск.

	$p_{1\ 5}$	$p_{2\ 12}$	$p_{1 6}$	p_{17}	$p_{1 \ 9}$	$p_{1\ 11}$	$p_{2 \ 9}$	$p_{3\ 12}$	$p_{3\ 10}$	$p_{4\ 12}$	$p_{4\ 11}$	$p_{4\ 10}$	p_{47}	$p_{4\ 6}$	$p_{5\ 12}$
$p_{1\ 5}$	1	1	0	0	0	0	1	1	1	1	1	1	1	1	0
$p_{2\ 12}$	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
$p_{1 6}$	0	1	1	0	0	0	1	1	1	1	1	1	1	0	1
$p_{1\ 7}$	0	1	0	1	0	0	1	1	1	1	1	1	0	0	1
$p_{1 9}$	0	1	0	0	1	0	0	1	1	1	1	1	0	0	1
$p_{1\ 11}$	0	1	0	0	0	1	0	1	0	1	0	0	0	0	1
$p_{2\ 9}$	1	0	1	1	0	0	1	1	1	1	1	1	0	0	1
$p_{3\ 12}$	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0
$p_{3\ 10}$	1	0	1	1	1	0	1	0	1	1	1	0	0	0	1
$p_{4\ 12}$	1	0	1	1	1	1	1	0	1	1	0	0	0	0	0
$p_{4\ 11}$	1	0	1	1	1	0	1	0	1	0	1	0	0	0	1
$p_{4\ 10}$	1	0	1	1	1	0	1	0	0	0	0	1	0	0	1
$p_{4\ 7}$	1	0	1	0	0	0	0	0	0	0	0	0	1	0	1
$p_{4\ 6}$	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1
$p_{5\ 12}$	0	0	1	1	1	1	1	0	1	0	1	1	1	1	1

3 Построение семейства ψG

```
В 1 строке ищем первый нулевой элемент - r_{1\ 3}.
```

В строке $M_{1,3}$ находим номера нулевых элементов, составляем список $J' = \{4,5,6\}$.

В строке $M_{1\ 3\ 4}$ находим номера нулевых элементов, составляем список $J'=\{5,6\}$.

В строке $M_{1\ 3\ 4\ 5}$ находим номера нулевых элементов, составляем список $J'=\{6\}.$

В строке $M_{1\ 3\ 4\ 5\ 6}$ все 1. Построено $\psi_1=\{u_{1\ 5},u_{1\ 6},u_{1\ 7},u_{1\ 9},u_{1\ 11}\}$

В строке $M_{1\ 3\ 4\ 6}$ остались незакрытые 0.

В строке $M_{1\ 3\ 5}$ находим номера нулевых элементов, составляем список $J'=\{6\}.$

Строка 6 не закроет ноль на 4 позиции.

В строке $M_{1\ 3\ 6}$ остались незакрытые 0.

В строке $M_{1\ 4}$ находим номера нулевых элементов, составляем список $J'=\{5,6\}.$

Строки 5, 6 не закроют ноль на 3 позиции.

В строке $M_{1.5}$ находим номера нулевых элементов, составляем список $J' = \{6\}$.

Строка 6 не закроет нули на позициях 3, 4

В строке $M_{1\ 6}$ остались незакрытые 0.

В строке $M_{1\ 15}$ все 1. Построено $\psi_2=\{u_{1\ 5},u_{5\ 12}\}$

В 2 строке ищем первый нулевой элемент - $r_{2,7}$.

В строке $M_{2,7}$ находим номера нулевых элементов, составляем список $J' = \{13,14\}$.

В строке $M_{2,7,13}$ находим номера нулевых элементов, составляем список $J' = \{14\}$.

В строке $M_{2\ 7\ 13\ 14}$ все 1. Построено $\psi_3=\{u_{2\ 12},u_{2\ 9},u_{4\ 7},u_{4\ 6}\}$

В строке $M_{2\ 7\ 14}$ остались незакрытые 0.

Записываем дизъюнкцию $M_{2~8}=r_2 \vee r_8=111111000000000 \vee 1011111110000000=1111111110000000$

В строке $M_{2~8}$ находим номера нулевых элементов, составляем список $J'=\{9,10,11,12,13,14,15\}.$

```
В строке M_{289} находим номера нулевых элементов, составляем список J' = \{12, 13, 14\}.
 В строке M_{2.8,9.12} находим номера нулевых элементов, составляем список J' = \{13,14\}.
 В строке M_{2\ 8\ 9\ 12\ 13} находим номера нулевых элементов, составляем список J'=\{14\}.
 В строке M_{2~8~9~12~13~14} все 1. Построено \psi_4=\{u_{2~12},u_{3~12},u_{3~10},u_{4~10},u_{4~7},u_{4~6}\}
 В строке M_{2\ 8\ 9\ 12\ 14} остались незакрытые 0.
 В строке M_{2,8,9,13} находим номера нулевых элементов, составляем список J' = \{14\}.
 Строка 14 не закроет ноль на 12 позиции.
 В строке M_{2\ 8\ 9\ 14} остались незакрытые 0.
 Записываем дизъюнкцию M_{2~8~10}=M_{2~8} \vee r_{10}=1111111110000000 \vee 101111101100000=11111111111000000
 В строке M_{2\ 8\ 10} находим номера нулевых элементов, составляем список J'=\{11,12,13,14,15\}.
 В строке M_{2\ 8\ 10\ 11} находим номера нулевых элементов, составляем список J'=\{12,13,14\}.
 В строке M_{2~8~10~11~12} находим номера нулевых элементов, составляем список J'=\{13,14\}.
 1111111111111101
 В строке M_{2\ 8\ 10\ 11\ 12\ 13} находим номера нулевых элементов, составляем список J'=\{14\}.
 1111111111111111
 В строке M_{2\ 8\ 10\ 11\ 12\ 13\ 14} все 1. Построено \psi_5=\{u_{2\ 12},u_{3\ 12},u_{4\ 12},u_{4\ 11},u_{4\ 10},u_{4\ 7},u_{4\ 6}\}
 1111111111111011
 В строке M_{2\ 8\ 10\ 11\ 12\ 14} остались незакрытые 0.
 В строке M_{2.8,10,11,13} находим номера нулевых элементов, составляем список J' = \{14\}.
 Строка 14 не закроет ноль на 12 позиции.
 В строке M_{2\ 8\ 10\ 11\ 14} остались незакрытые 0.
 В строке M_{2\ 8\ 10\ 12} находим номера нулевых элементов, составляем список J'=\{13,14\}.
 Строки 13, 14 не закроют ноль на 11 позиции.
 В строке M_{2~8~10~13} находим номера нулевых элементов, составляем список J'=\{14\}.
 Строка 14 не закроет нули на позициях 11, 12
 В строке M_{2\ 8\ 10\ 14} остались незакрытые 0.
 В строке M_{2~8~10~15} все 1. Построено \psi_6 = \{u_{2~12}, u_{3~12}, u_{4~12}, u_{5~12}\}
 Записываем дизъюнкцию M_{2~8~11}=M_{2~8} \lor r_{11}=111111110000000 \lor 101110101010001=1111111110100011
 В строке M_{2.8,11} находим номера нулевых элементов, составляем список J' = \{12, 13, 14\}.
 Строки 12, 13, 14 не закроют ноль на 10 позиции.
 Записываем дизъюнкцию M_{2~8~12}=M_{2~8} \lor r_{12}=1111111110000000 \lor 101110100001001=1111111110001001
 В строке M_{2,8,12} находим номера нулевых элементов, составляем список J' = \{13,14\}.
 Строки 13, 14 не закроют нули на позициях 9, 10, 11
 Записываем дизъюнкцию M_{2~8~13}=M_{2~8} \vee r_{13}=1111111110000000 \vee 101000000000101=111111110000101
```

Записываем дизъюнкцию $M_{2~8~14}=M_{2~8}$ \vee $r_{14}=1111111110000000$ \vee 1000000000000011=1111111110000011 В строке $M_{2~8~14}$ остались незакрытые 0.

В строке $M_{2,8,13}$ находим номера нулевых элементов, составляем список $J' = \{14\}$.

Строка 14 не закроет нули на позициях 9, 10, 11, 12

```
Записываем дизъюнкцию M_{2~8~15}=M_{2~8} \vee r_{15}=111111110000000 \vee 001111101011111 = 1111111110111111
В строке M_{2\ 8\ 15} остались незакрытые 0.
Записываем дизъюнкцию M_{2\ 9}=r_2\lor r_9=111111000000000\lor 101110101110001=111111101110001
В строке M_{2,9} находим номера нулевых элементов, составляем список J' = \{12, 13, 14\}.
Строки 12, 13, 14 не закроют ноль на 8 позиции.
Записываем дизъюнкцию M_{2\ 10}=r_2 \lor r_{10}=111111000000000 \lor 101111101100000=111111101100000
В строке M_{2,10} находим номера нулевых элементов, составляем список J' = \{11, 12, 13, 14, 15\}.
Строки 11, 12, 13, 14, 15 не закроют ноль на 8 позиции.
Записываем дизъюнкцию M_{2\ 11} = r_2 \vee r_{11} = 111111000000000 \vee 101110101010001 = 111111101010001
В строке M_{2,11} находим номера нулевых элементов, составляем список J' = \{12, 13, 14\}.
Строки 12, 13, 14 не закроют нули на позициях 8, 10
Записываем дизъюнкцию M_{2\ 12}=r_2 \lor r_{12}=111111000000000 \lor 101110100001001=111111100001001
В строке M_{2\ 12} находим номера нулевых элементов, составляем список J'=\{13,14\}.
Строки 13, 14 не закроют нули на позициях 8, 9, 10, 11
Записываем дизъюнкцию M_{2\ 13}=r_2 \lor r_{13}=111111000000000 \lor 10100000000101=111111000000101
В строке M_{2,13} находим номера нулевых элементов, составляем список J' = \{14\}.
Строка 14 не закроет нули на позициях 7, 8, 9, 10, 11, 12
Записываем дизъюнкцию M_{2\ 14}=r_2 \lor r_{14}=111111000000000 \lor 10000000000011=111111000000011
В строке M_{2,14} остались незакрытые 0.
Записываем дизъюнкцию M_{2\ 15}=r_2 \lor r_{15}=111111000000000 \lor 001111101011111=1111111010111111
В строке M_{2\ 15} остались незакрытые 0.
В 3 строке ищем первый нулевой элемент - r_{3} 4.
Записываем дизъюнкцию M_{3\ 4}=r_3 \lor r_4=011000111111101 \lor 0101001111111001=011100111111101
В строке M_{3/4} находим номера нулевых элементов, составляем список J' = \{5, 6, 14\}.
В строке M_{3\ 4\ 5} находим номера нулевых элементов, составляем список J'=\{6,14\}.
В строке M_{3/4/5/6} находим номера нулевых элементов, составляем список J' = \{14\}.
В строке M_{3\ 4\ 5\ 6\ 14} все 1. Построено \psi_7=\{u_{1\ 6},u_{1\ 7},u_{1\ 9},u_{1\ 11},u_{4\ 6}\}
В строке M_{3\ 4\ 5\ 14} остались незакрытые 0.
Записываем дизъюнкцию M_{3\ 4\ 6}=M_{3\ 4} \lor r_6=0111001111111101 \lor 010001010100001=011101111111101
В строке M_{3/4/6} находим номера нулевых элементов, составляем список J' = \{14\}.
Строка 14 не закроет ноль на 5 позиции.
В строке M_{3\ 4\ 14} остались незакрытые 0.
Записываем дизъюнкцию M_{3\ 5}=r_3\lor r_5=011000111111101\lor 0100100111111001=011010111111101
В строке M_{3,5} находим номера нулевых элементов, составляем список J' = \{6,14\}.
Строки 6, 14 не закроют ноль на 4 позиции.
Записываем дизъюнкцию M_{3~6}=r_3 \lor r_6=0110001111111101 \lor 010001010100001=0110011111111101
В строке M_{3 6} находим номера нулевых элементов, составляем список J' = \{14\}.
Строка 14 не закроет нули на позициях 4, 5
В строке M_{3\ 14} остались незакрытые 0.
В 4 строке ищем первый нулевой элемент - r_{4\ 5}.
Записываем дизъюнкцию M_{4\ 5}=r_4 \lor r_5=010100111111001 \lor 0100100111111001=0101101111111001
В строке M_{4.5} находим номера нулевых элементов, составляем список J' = \{6, 13, 14\}.
Записываем дизъюнкцию M_{4\ 5\ 6}=M_{4\ 5}\ \lor\ r_{6}=0101101111111001\ \lor\ 010001010100001=0101111111111001
В строке M_{4\ 5\ 6} находим номера нулевых элементов, составляем список J'=\{13,14\}.
```

В строке $M_{4\ 5\ 6\ 13}$ находим номера нулевых элементов, составляем список $J'=\{14\}$.

```
Записываем дизъюнкцию M_{4\ 5\ 13}=M_{4\ 5} \lor r_{13}=010110111111001 \lor 101000000000101=111110111111101
В строке M_{4\ 5\ 13} находим номера нулевых элементов, составляем список J'=\{14\}.
Строка 14 не закроет ноль на 6 позиции.
Записываем дизъюнкцию M_{4\ 5\ 14}=M_{4\ 5} \lor r_{14}=0101101111111001 \lor 100000000000011=110110111111011
В строке M_{4\ 5\ 14} остались незакрытые 0.
Записываем дизъюнкцию M_{4\ 6}=r_4 \lor r_6=010100111111001 \lor 010001010100001=0101011111111001
В строке M_{4,6} находим номера нулевых элементов, составляем список J'=\{13,14\}.
Строки 13, 14 не закроют ноль на 5 позиции.
Записываем дизъюнкцию M_{4\ 13}=r_4 \lor r_{13}=0101001111111001 \lor 101000000000101=111100111111101
В строке M_{4\ 13} находим номера нулевых элементов, составляем список J'=\{14\}.
Строка 14 не закроет нули на позициях 5, 6
Записываем дизъюнкцию M_{4\ 14}=r_4 \lor r_{14}=010100111111001 \lor 100000000000011=110100111111011
В строке M_{4\ 14} остались незакрытые 0.
В 5 строке ищем первый нулевой элемент - r_{5\ 6}.
Записываем дизъюнкцию M_{5,6}=r_5 \lor r_6=010010011111001 \lor 010001010100001=010011011111001
В строке M_{5~6} находим номера нулевых элементов, составляем список J'=\{7,13,14\}.
В строке M_{5} 6 7 находим номера нулевых элементов, составляем список J' = \{13, 14\}.
В строке M_{5\ 6\ 7\ 13} находим номера нулевых элементов, составляем список J'=\{14\}.
В строке M_{5\ 6\ 7\ 13\ 14} все 1. Построено \psi_9=\{u_{1\ 9},u_{1\ 11},u_{2\ 9},u_{4\ 7},u_{4\ 6}\}
В строке M_{5\ 6\ 7\ 14} остались незакрытые 0.
Записываем дизъюнкцию M_{5~6~13}=M_{5~6} \lor r_{13}=0100110111111001 \lor 101000000000101=111011011111101
В строке M_{5~6~13} находим номера нулевых элементов, составляем список J' = \{14\}.
Строка 14 не закроет нули на позициях 4, 7
Записываем дизъюнкцию M_{5~6~14}=M_{5~6} \lor r_{14}=0100110111111001 \lor 100000000000011=110011011111011
В строке M_{5\ 6\ 14} остались незакрытые 0.
Записываем дизъюнкцию M_{5\ 7}=r_5 \lor r_7=0100100111111001 \lor 1011001111111001=1111101111111001
В строке M_{5,7} находим номера нулевых элементов, составляем список J'=\{13,14\}.
Строки 13, 14 не закроют ноль на 6 позиции.
Записываем дизъюнкцию M_{5\ 13}=r_5 \lor r_{13}=010010011111001 \lor 101000000000101=111010011111101
В строке M_{5,13} находим номера нулевых элементов, составляем список J' = \{14\}.
Строка 14 не закроет нули на позициях 4, 6, 7
Записываем дизъюнкцию M_{5\ 14}=r_5 \lor r_{14}=010010011111001 \lor 100000000000011=110010011111011
В строке M_{5\ 14} остались незакрытые 0.
В 6 строке ищем первый нулевой элемент - r_{6\ 7}.
Записываем дизъюнкцию M_{6.7}=r_6 \lor r_7=010001010100001 \lor 1011001111111001=1111011111111001
В строке M_{6,7} находим номера нулевых элементов, составляем список J'=\{13,14\}.
Строки 13, 14 не закроют ноль на 5 позиции.
В строке M_{6,9} находим номера нулевых элементов, составляем список J' = \{12, 13, 14\}.
Записываем дизъюнкцию M_{6\ 9\ 12}=M_{6\ 9} \lor r_{12}=1111111111110001 \lor 101110100001001=1111111111111001
В строке M_{6.9,12} находим номера нулевых элементов, составляем список J' = \{13,14\}.
В строке M_{6,9,12,13} находим номера нулевых элементов, составляем список J' = \{14\}.
В строке M_{6~9~12~13~14} все 1. Построено \psi_{10}=\{u_{1~11},u_{3~10},u_{4~10},u_{4~7},u_{4~6}\}
В строке M_{6\ 9\ 12\ 14} остались незакрытые 0.
```

В строке $M_{6\ 9\ 14}$ остались незакрытые 0.

В строке $M_{6,9,13}$ находим номера нулевых элементов, составляем список $J' = \{14\}$.

Строка 14 не закроет ноль на 12 позиции.

Записываем дизъюнкцию $M_{6\ 9\ 14}=M_{6\ 9}$ \lor $r_{14}=1111111111110001$ \lor 1000000000000011=1111111111110011

```
В строке M_{6,11} находим номера нулевых элементов, составляем список J' = \{12, 13, 14\}.
Записываем дизъюнкцию M_{6\ 11\ 12}=M_{6\ 11} \lor r_{12}=111111111111110001 \lor 101110100001001=1111111111111001
В строке M_{6,11,12} находим номера нулевых элементов, составляем список J' = \{13,14\}.
В строке M_{6\ 11\ 12\ 13} находим номера нулевых элементов, составляем список J'=\{14\}.
В строке M_{6\ 11\ 12\ 13\ 14} все 1. Построено \psi_{11}=\{u_{1\ 11},u_{4\ 11},u_{4\ 10},u_{4\ 7},u_{4\ 6}\}
В строке M_{6\ 11\ 12\ 14} остались незакрытые 0.
Записываем дизъюнкцию M_{6\ 11\ 13}=M_{6\ 11} \lor r_{13}=11111111111110001 \lor 1010000000000101=111111111110101
В строке M_{6,11,13} находим номера нулевых элементов, составляем список J' = \{14\}.
Строка 14 не закроет ноль на 12 позиции.
Записываем дизъюнкцию M_{6\ 11\ 14}=M_{6\ 11} \lor r_{14}=11111111111110001 \lor 1000000000000011=1111111111110011
В строке M_{6\ 11\ 14} остались незакрытые 0.
Записываем дизъюнкцию M_{6,12}=r_6 \lor r_{12}=010001010100001 \lor 101110100001001=1111111110101001
В строке M_{6,12} находим номера нулевых элементов, составляем список J' = \{13,14\}.
Строки 13, 14 не закроют нули на позициях 9, 11
Записываем дизъюнкцию M_{6\ 13}=r_6 \lor r_{13}=010001010100001 \lor 101000000000101=1110010101010101
В строке M_{6,13} находим номера нулевых элементов, составляем список J' = \{14\}.
Строка 14 не закроет нули на позициях 4, 5, 7, 9, 11, 12
Записываем дизъюнкцию M_{6\ 14}=r_6 \lor r_{14}=010001010100001 \lor 100000000000011=110001010100011
В строке M_{6\ 14} остались незакрытые 0.
Из матрицы R(G') видно, что строки с номерами j>6 не смогут закрыть ноль в позиции 2.
Семейство максимальных внутрение устойчивых множеств \psi_G построено. Это:
\psi_1 = \{u_{1\ 5}, u_{1\ 6}, u_{1\ 7}, u_{1\ 9}, u_{1\ 11}\}
\psi_2 = \{u_{1.5}, u_{5.12}\}
\psi_3 = \{u_{2,12}, u_{2,9}, u_{4,7}, u_{4,6}\}
\psi_4 = \{u_{2\ 12}, u_{3\ 12}, u_{3\ 10}, u_{4\ 10}, u_{4\ 7}, u_{4\ 6}\}
\psi_5 = \{u_{2\ 12}, u_{3\ 12}, u_{4\ 12}, u_{4\ 11}, u_{4\ 10}, u_{4\ 7}, u_{4\ 6}\}
\psi_6 = \{u_{2\ 12}, u_{3\ 12}, u_{4\ 12}, u_{5\ 12}\}
\psi_7 = \{u_{1,6}, u_{1,7}, u_{1,9}, u_{1,11}, u_{4,6}\}
\psi_8 = \{u_{17}, u_{19}, u_{111}, u_{47}, u_{46}\}
```

f 4 $\,$ Выделение из $G^{'}$ максимального двудольного подграфа $H^{'}$

Для каждой пары множеств вычислим значение критерия $\alpha_{\gamma\beta} = |\psi_{\gamma}| + |\psi_{\beta}| - |\psi_{\gamma} \cap \psi_{\beta}|$:

```
\alpha_{12} = |\psi_1| + |\psi_2| - |\psi_1 \cap \psi_2| = 5 + 2 - 1 = 6
\alpha_{13} = |\psi_1| + |\psi_3| - |\psi_1 \cap \psi_3| = 5 + 4 - 0 = 9
\alpha_{14} = |\psi_1| + |\psi_4| - |\psi_1 \cap \psi_4| = 5 + 6 - 0 = 11
\alpha_{15} = |\psi_1| + |\psi_5| - |\psi_1 \cap \psi_5| = 5 + 7 - 0 = 12
\alpha_{16} = |\psi_1| + |\psi_6| - |\psi_1 \cap \psi_6| = 5 + 4 - 0 = 9
\alpha_{17} = |\psi_1| + |\psi_7| - |\psi_1 \cap \psi_7| = 5 + 5 - 4 = 6
\alpha_{18} = |\psi_1| + |\psi_8| - |\psi_1 \cap \psi_8| = 5 + 5 - 3 = 7
\alpha_{19} = |\psi_1| + |\psi_9| - |\psi_1 \cap \psi_9| = 5 + 5 - 2 = 8
\alpha_{110} = |\psi_1| + |\psi_{10}| - |\psi_1 \cap \psi_{10}| = 5 + 5 - 1 = 9
\alpha_{111} = |\psi_1| + |\psi_{11}| - |\psi_1 \cap \psi_{11}| = 5 + 5 - 1 = 9
\alpha_{23} = |\psi_2| + |\psi_3| - |\psi_2 \cap \psi_3| = 2 + 4 - 0 = 6
\alpha_{24}^- = |\psi_2^-| + |\psi_4^-| - |\psi_2^- \cap \psi_4^-| = 2 + 6 - 0 = 8
\alpha_{25} = |\psi_2| + |\psi_5| - |\psi_2 \cap \psi_5| = 2 + 7 - 0 = 9
\alpha_{26} = |\psi_2| + |\psi_6| - |\psi_2 \cap \psi_6| = 2 + 4 - 1 = 5
\alpha_{27} = |\psi_2| + |\psi_7| - |\psi_2 \cap \psi_7| = 2 + 5 - 0 = 7
\alpha_{28} = |\psi_2| + |\psi_8| - |\psi_2 \cap \psi_8| = 2 + 5 - 0 = 7
```

 $\begin{array}{l} \psi_9 = \{u_{1\ 9}, u_{1\ 11}, u_{2\ 9}, u_{4\ 7}, u_{4\ 6}\} \\ \psi_{10} = \{u_{1\ 11}, u_{3\ 10}, u_{4\ 10}, u_{4\ 7}, u_{4\ 6}\} \\ \psi_{11} = \{u_{1\ 11}, u_{4\ 11}, u_{4\ 10}, u_{4\ 7}, u_{4\ 6}\} \end{array}$

```
\alpha_{29} = |\psi_2| + |\psi_9| - |\psi_2 \cap \psi_9| = 2 + 5 - 0 = 7
\alpha_{210} = |\psi_2| + |\psi_{10}| - |\psi_2 \cap \psi_{10}| = 2 + 5 - 0 = 7
\alpha_{211} = |\psi_2| + |\psi_{11}| - |\psi_2 \cap \psi_{11}| = 2 + 5 - 0 = 7
\alpha_{34} = |\psi_3| + |\psi_4| - |\psi_3 \cap \psi_4| = 4 + 6 - 3 = 7
\alpha_{35} = |\psi_3| + |\psi_5| - |\psi_3 \cap \psi_5| = 4 + 7 - 3 = 8
\alpha_{36} = |\psi_3| + |\psi_6| - |\psi_3 \cap \psi_6| = 4 + 4 - 1 = 7
\alpha_{37} = |\psi_3| + |\psi_7| - |\psi_3 \cap \psi_7| = 4 + 5 - 1 = 8
\alpha_{38} = |\psi_3| + |\psi_8| - |\psi_3 \cap \psi_8| = 4 + 5 - 2 = 7
\alpha_{39} = |\psi_3| + |\psi_9| - |\psi_3 \cap \psi_9| = 4 + 5 - 3 = 6
\alpha_{310} = |\psi_3| + |\psi_{10}| - |\psi_3 \cap \psi_{10}| = 4 + 5 - 2 = 7
\alpha_{311} = |\psi_3| + |\psi_{11}| - |\psi_3 \cap \psi_{11}| = 4 + 5 - 2 = 7
\alpha_{45} = |\psi_4| + |\psi_5| - |\psi_4 \cap \psi_5| = 6 + 7 - 5 = 8
\alpha_{46} = |\psi_4| + |\psi_6| - |\psi_4 \cap \psi_6| = 6 + 4 - 2 = 8
\alpha_{47} = |\psi_4| + |\psi_7| - |\psi_4 \cap \psi_7| = 6 + 5 - 1 = 10
\alpha_{48} = |\psi_4| + |\psi_8| - |\psi_4 \cap \psi_8| = 6 + 5 - 2 = 9
\alpha_{49} = |\psi_4| + |\psi_9| - |\psi_4 \cap \psi_9| = 6 + 5 - 2 = 9
\alpha_{410} = |\psi_4| + |\psi_{10}| - |\psi_4 \cap \psi_{10}| = 6 + 5 - 4 = 7
\alpha_{411} = |\psi_4| + |\psi_{11}| - |\psi_4 \cap \psi_{11}| = 6 + 5 - 3 = 8
\alpha_{56} = |\psi_5| + |\psi_6| - |\psi_5 \cap \psi_6| = 7 + 4 - 3 = 8
\alpha_{57} = |\psi_5| + |\psi_7| - |\psi_5 \cap \psi_7| = 7 + 5 - 1 = 11
\alpha_{58} = |\psi_5| + |\psi_8| - |\psi_5 \cap \psi_8| = 7 + 5 - 2 = 10
\alpha_{59} = |\psi_5| + |\psi_9| - |\psi_5 \cap \psi_9| = 7 + 5 - 2 = 10
\alpha_{510} = |\psi_5| + |\psi_{10}| - |\psi_5 \cap \psi_{10}| = 7 + 5 - 3 = 9
\alpha_{511} = |\psi_5| + |\psi_{11}| - |\psi_5 \cap \psi_{11}| = 7 + 5 - 4 = 8
\alpha_{67} = |\psi_6| + |\psi_7| - |\psi_6 \cap \psi_7| = 4 + 5 - 0 = 9
\alpha_{68} = |\psi_6| + |\psi_8| - |\psi_6 \cap \psi_8| = 4 + 5 - 0 = 9
\alpha_{69} = |\psi_6| + |\psi_9| - |\psi_6 \cap \psi_9| = 4 + 5 - 0 = 9
\alpha_{610} = |\psi_6| + |\psi_{10}| - |\psi_6 \cap \psi_{10}| = 4 + 5 - 0 = 9
\alpha_{611} = |\psi_6| + |\psi_{11}| - |\psi_6 \cap \psi_{11}| = 4 + 5 - 0 = 9
\alpha_{78} = |\psi_7| + |\psi_8| - |\psi_7 \cap \psi_8| = 5 + 5 - 4 = 6
\alpha_{79} = |\psi_7| + |\psi_9| - |\psi_7 \cap \psi_9| = 5 + 5 - 3 = 7
\alpha_{710} = |\psi_7| + |\psi_{10}| - |\psi_7 \cap \psi_{10}| = 5 + 5 - 2 = 8
\alpha_{711} = |\psi_7| + |\psi_{11}| - |\psi_7 \cap \psi_{11}| = 5 + 5 - 2 = 8
\alpha_{89} = |\psi_8| + |\psi_9| - |\psi_8 \cap \psi_9| = 5 + 5 - 4 = 6
\alpha_{810} = |\psi_8| + |\psi_{10}| - |\psi_8 \cap \psi_{10}| = 5 + 5 - 3 = 7
\alpha_{811} = |\psi_8| + |\psi_{11}| - |\psi_8 \cap \psi_{11}| = 5 + 5 - 3 = 7
\alpha_{910} = |\psi_9| + |\psi_{10}| - |\psi_9 \cap \psi_{10}| = 5 + 5 - 3 = 7
\alpha_{911} = |\psi_9| + |\psi_{11}| - |\psi_9 \cap \psi_{11}| = 5 + 5 - 3 = 7
\alpha_{1011} = |\psi_{10}| + |\psi_{11}| - |\psi_{10} \cap \psi_{11}| = 5 + 5 - 4 = 6
```

	1	2	3	4	5	6	7	8	9	10	11
1	0	6	9	11	12	9	6	7	8	9	9
2		0	6	8	9	5	7	7	7	7	7
3			0	7	8	7	8	7	6	7	7
4				0	8	8	10	9	9	7	8
5					0	8	11	10	10	9	8
6						0	9	9	9	9	9
7							0	6	7	8	8
8								0	6	7	7
9									0	7	7
10										0	6
11											0

```
 \max \alpha_{i-j} = \alpha_{1-5} = 12 \ \text{дает лишь пара множеств} \\ \psi_1 = \{u_{1\ 5}, u_{1\ 6}, u_{1\ 7}, u_{1\ 9}, u_{1\ 11}\} \\ \psi_5 = \{u_{2\ 12}, u_{3\ 12}, u_{4\ 12}, u_{4\ 11}, u_{4\ 10}, u_{4\ 7}, u_{4\ 6}\}
```

В суграфе Н, содержащем максимальное число непересекающихся ребер, проведем ребра из $\psi 1$ снаружи, а из $\psi 5$ внутри.

Удалим из ψG ребра, которые вошли в $\psi 1$ и $\psi 5$.

Удалим из
$$\psi$$
G ребра, которые вошли в ψ 1 и ψ 5.
$$\psi_1 = \{\}$$

$$\psi_2 = \{u_{5 \ 12}\}$$

$$\psi_3 = \{u_{2 \ 9}\}$$

$$\psi_4 = \{u_{3 \ 10}\}$$

$$\psi_5 = \{\}$$

$$\psi_6 = \{u_{5 \ 12}\}$$

$$\psi_7 = \{\}$$

$$\psi_8 = \{\}$$

$$\psi_9 = \{u_{2 \ 9}\}$$

$$\psi_{10} = \{u_{3 \ 10}\}$$

$$\psi_{11} = \{\}$$
Удаляем ψ 1 , ψ 5 , ψ 7 , ψ 8 , ψ 11 так как они пусты и объединяем одинаковые семейства $\psi_2 = \{u_{5 \ 12}\}$

$$\psi_2 = \{u_5 \ _{12}\}$$

$$\psi_3 = \{u_2 \ _{9}\}$$

$$\psi_4 = \{u_3 \ _{10}\}$$

	2	3	4
2	0	2	2
3		0	2
4			0

Возьмем множества

 $\begin{array}{l} \psi_2 = \{u_{5\ 12}\} \\ \psi_3 = \{u_{2\ 9}\} \end{array}$

 ${\bf B}$ суграфе H, содержащем максимальное число непересекающихся ребер, ребра, вошедшие в ψ 2 , проводим внутри гамильтонова цикла, а в ψ 3 – вне его.

Удаляем из Ψ G' ребра, вошедшие в ψ 2 , ψ 3

 $\psi_2 = \{\}$ $\psi_3 = \{\}$ $\psi_4 = \{u_{3 \ 10}\}$ Объединяем одинаковые множества:

 $\psi_4 = \{u_{3\ 10}\}$

Удаляем из $\Psi G'$ ребра, вошедшие в $\psi 4$

 $\psi_4 = \{\}$ В Ψ G' пусто – граф планаризирован.

При текущих условиях (при ограниченном количестве замененных ребер) толщина графа m=3. Если заменить все ребра – толщина будет другой.