# Ext-algebra of Standard Modules of Rhombal Algebras

for Gradings and Decomposition Numbers Workshop, Stuttgart

Aaron Chan

University of Aberdeen, UK

September 28, 2012

## Quasi-hereditary algebras with duality

Let  $(A, \chi)$  be quasi-hereditary (qh) algebra

#### Definition (Irving/C.Xi)

We say A is  $\operatorname{\mathsf{qh}}$  with duality (or  $\operatorname{\mathsf{BGG-algbera}}$ ) if there is a contravariant functor  $\delta: A\operatorname{\mathrm{\hspace{-.07em}-mod}}\to \operatorname{\mathsf{mod}} A$  which fixes simples.

Equivalently, 
$$\delta P(x) = I(x)$$
  
Equivalently,  $\delta \Delta(x) = \nabla(x)$ 

Example:  $\delta$  induced by an involutary anti-automorphism of the algebra.

## Standard Koszul algebras

### Definition (Ágoston-Dlab-Lukács)

A qh algebra is called standard Koszul if all standard module  $\Delta(x)$  admits linear projective resolution  $\widetilde{\Delta}(x)$ :

$$\cdots \to \widetilde{\Delta}^{i}(x)\langle i \rangle \to \cdots \widetilde{\Delta}^{1}(x)\langle 1 \rangle \to \widetilde{\Delta}^{0}(x) = P(x) \twoheadrightarrow \Delta(x)$$

and all costandard module  $\nabla(x)$  admits linear injective coresolution.

- If A has duality, only need to check condition on  $\Delta$
- ② Standard Koszul  $\Rightarrow$  Koszul (i.e. there is a grading on A with degree 0 part of A admiting linear projective resolution)

## Ext-algebras

A qh  $\Rightarrow$  6 families of special modules whose indecomposables are indexed by  $\chi$ :

- projectives P
- injectives I
- simples L
- $\bullet$  standard  $\Delta$
- ullet costandard abla
- (characteristic) tilting modules T

Let 
$$X \in \{L, P, I, \Delta, \nabla, T\}$$

Question: How does A relate to Ext-algebra of X?

## Ext-algebras

From now on, assume A standard Koszul

For convenience:  $A^X := \operatorname{Ext}_A(X,X)^{\operatorname{op}}$ 

Recall: any A is Morita to a basic algebra given by quivers and relations kQ/I.

- $A^P = \operatorname{End}_A(P)^{\operatorname{op}} = kQ/I = \operatorname{End}_A(I)^{\operatorname{op}} = A^I$
- $A^T = \operatorname{End}_A(T)^{\operatorname{op}} = \operatorname{Ringel} \operatorname{dual} \operatorname{of} A$
- $A^L = A^!$  Koszul dual of A

In these cases,  $A^X$  is also qh with respect to  $(\chi, \leq^{\operatorname{op}})$  Quiver of  $A^X$  is the opposite quiver of A Moreover,  $A^X$  is derived equivalent to A

## Ext-algebra of standards

In the case of  $A^{\Delta} := \operatorname{Ext}_{\mathcal{A}}(\Delta, \Delta)^{\operatorname{op}}$ , the algebra and homological structure is not so clear in general.

Works appeared so far:

- (general theory)
  - Y.Drozd-V.Mazorchuk (on Koszulity)
  - D.Madsen (on derived equivalence)
  - L.P.Li (generalising to...)
- (particular examples)
  - V.Miemietz-W.Turner [MT]  $(GL_2(\overline{\mathbb{F}_p}))$
  - A.Klamt-C.Stroppel [KS] (some generalised Khonvanov arc algebras)

## The zigzag algebra

There is one (family of) algebra  $A_n$  which satisfies (H).

(Some) Concrete version of "the algebra  $A_n$ ":

- **1**  $A_p$  = weight 1 block of Schur algebra.
- ② first case in [KS]:  $A_n = \text{basic algebra } K_1^n$  of principal block of parabolic category  $\mathcal O$  of  $\mathfrak{gl}_{n+1}$  with Levi  $\mathfrak{gl}_n \oplus \mathfrak{gl}_1$

Second case of [KS]:  $\mathfrak{gl}_{n+2}$  with Levi  $\mathfrak{gl}_2 \oplus \mathfrak{gl}_n$ . Call this algebra  $K_2^n$ . So " $K_2^n$  generalises  $A_n$ ".

## Rhombal also generalises zigzag!

Let B be a weight 2 block of symmetric group and  $\overline{B}$  be weight 2 block of Schur algebras, then there is a rhombal algebra  $U_\chi$  such that

$$eU_{\chi}e \cong e'Be'$$

$$f(U_{\chi}/U_{\chi}gU_{\chi})f \cong f'(\overline{B}/\overline{B}g'\overline{B})f'$$

where the unexplained symbols are some sums of primitive idempotents.

## Some (unrelated) remarks

- Conjectured relation of higher weight blocks and cubist algebra. (True for the Rouquier blocks.)
- ② Rhombal algebra can relates to  $K_2^n$  via truncation, but this truncation satisfy (H).
- 3 The truncations of principal and RoCK block of weight w, satisfy (H); but not for other weight 2 blocks in general.

### Construction in brief

- You start off living in  $\mathbb{R}^3$  (r=3).
- ② You pick a subset of  $\chi \subset \mathbb{Z}^3$  such that  $\chi \cap \{x + (1,1,1) | x \in \chi\} = \emptyset$ .
- 3 Connect vertices with distance 1 by an edge.
- This gives a rhombic tiling for the wallpaper (2-dimensional space) in your living room via suitable projection.
- **5** Construct quiver: with vertices  $\chi$ , and place a pair of arrows, one in each direction, on each edge.
- 6 And then you impose some relations...

## Example

(Part of) An example:



## Weight 2 block example

#### Weight 2 block example



#### Idea

The combinatorics of cubist (rhombal) algebras give the following:

#### Theorem (Chuang-Turner)

The infinite dimensional algebra  $U_{\chi}$  is symmetric, standard Koszul, with duality.

#### To calculate $A^{\Delta}$ :

- ightharpoonup calculate its basis:  $\operatorname{Ext}_A(\Delta(x),\Delta(y))=e_xA^\Delta e_y$
- $\rightsquigarrow$  look at  $\operatorname{Hom}_U(\widetilde{\Delta}(x), \Delta(y))$
- whis can boils down to combinatorics of cubists set (the rhombic tiling)

## Homological structure

The partial order on  $\mathbb{Z}^3 \supset \chi \longrightarrow \text{bijection } \lambda : \chi \to \{\text{rhombi}\}\$ 

This gives the standard modules of  $U_{\chi}$ :

$$[\Delta(x): L(y)] = \begin{cases} q^{d(x,y)} & y \le d(x,y) \le w = 2\\ 0 & \text{otherwise} \end{cases}$$

There is also a map  $\mu: \chi \to \mathbb{R}^3$  representing  $\widetilde{\Delta}(x)$  of  $\Delta(x)$  i.e.

$$P(y)\langle i \rangle$$
 a summand of  $\widetilde{\Delta}^j(x) \Leftrightarrow i = j = d(x,y)$  and  $y \in \mu x$ 

# Example of visualising $\lambda(x)$ and $\mu(x)$



## Combinatorial non-vanishing condition

#### Theorem

For rhombal algebra U, and  $x < y \in \chi$  $\operatorname{Ext}_A(\Delta(x), \Delta(y)) \neq 0$  precisely when  $\lambda y \cap \mu x \neq \emptyset$  and for all  $z \in \lambda y \cap \mu x$ , d(x, y) = d(x, z) + d(z, y).

Remark: Also true in cubist algebra, r = w + 1, when  $\lambda y \subset \mu x$ .

The proof of the theorem is given by looking at the decomposition of the Ext-group into the graded ext-groups

## Graded decomposition

If  $\operatorname{Ext}_U^*(\Delta(x), \Delta(y))$  non-zero, then it has the following decomposition:

$$\bigoplus_{i=i_0}^{i_0+s} \operatorname{ext}_U^i(\Delta(x), \Delta(y)\langle i-(d-i)\rangle)$$

The basis of each graded ext-group is indexed by  $z \in \lambda y \cap \mu x$  which are of distance i from x.

## Restating the graded decomposition

Another way to look at the graded decomposition:

$$\operatorname{ext}_U^i(\Delta(x),\Delta(y)\langle j\rangle) \neq 0 \ \Rightarrow \ 2i-j=d(x,y)$$

Recall that for Koszul algebras:

$$\operatorname{ext}_{A}^{i}(L(x), L(y)\langle j \rangle) \neq 0 \ \Rightarrow \ i - j = 0$$

## Quiver description

An application of the non-vanishing condition and the description of the graded decomposition is:

#### $\mathsf{Theorem}$

U be a rhombal algebra. Then there is a combinatorial description of the quiver of  $U^{\Delta}$ .

For rhombal algebra which relates with block of symmetric group/Schur algebra, we also calculated all the relations.

## Example

#### Example continued:



## Example

#### Example continued:



## Weight 2 block example

Weight 2 block example:



#### What's next?

Really not much insight to understanding  $A^{\Delta}$  in general:

- Structure of  $A^{\Delta}$  in general: Quiver of  $A^{\Delta}$ ?
- Homological properties: Formality and derived equivalence?
- How much does this help to calculate  $B^{\Delta}$  for B a weight 2 block of symmetric group/Schur algebra?