ИЗПИТ

по ДИС1 част, специалност "Компютърни науки" 27 август 2024г.

Име:	Фак.номер:
------	------------

- 1. Нека A е ограничено непразно множество от реални числа. Дайте дефиниция на $\sup A$ и $\inf A$. Какво означава, че $c \in \mathbb{R}$ не е инфимум на A? Нека M и N са такива непразни множества от реални числа, че за всяко x от M и за всяко y от N е изпълнено неравенството $x \leq y$. Докажете, че съществува такова реално число r, че да са в сила неравенствата $x \leq r \leq y$ за всяко $x \in M$ и за всяко $y \in N$.
- 2. Нека $\{a_n\}_{n=1}^{\infty}$ е редица от реални числа и $a \in \mathbb{R}$. Какво означава тази редица да клони към a? Какво означава a да е точка на сгъстяване на тази редица? Какво означава, че "редицата $\{a_n\}_{n=1}^{\infty}$ няма точки на сгъстяване"? Формулирайте и докажете Теоремата на Болцано-Вайерщрас (принцип за компактност).
- 3. Дайте дефиниция на $\lim_{x\to -\infty} f(x)=3$ във формата на Хайне и във формата на Коши, където $f:D\longrightarrow \mathbb{R},\ D\subset \mathbb{R}.$ Какво трябва да предположите за D, за да е смислена дадената дефиниция? Докажете, че ако $\lim_{x\to -\infty} f(x)=3$ в смисъл на Коши, то f клони към 3, когато аргументът клони към $-\infty$, в смисъл на Хайне.
- 4. Нека $f: D \longrightarrow \mathbb{R}$, където $D \subset \mathbb{R}$. Какво означава f да е непрекъсната в дадена точка? Какво означава f да е равномерно непрекъсната в D? Формулирайте и докажете Теоремата на Кантор.
- 5. Напишете дефиницията за производна на функция в дадена точка. Формулирайте и докажете правилото за диференциране на произведение на две функции.
- 6. Напишете формулата на Тейлър за n+1 пъти диференцируема функция f около точката a до n-тия член с остатък във формата на Лагранж. Пресметнете границата

$$\lim_{x \to 0} \frac{\sqrt[3]{1 + 12x} - \sqrt{1 + 8x}}{x^2}$$

като използвате бинома на Нютон (развитието в полином на Тейлър на $(1+x)^{\alpha}$).

- 7. Дайте дефиниция на изпъкнала функция.
- (a) Формулирайте необходимо и достатъчно условие една диференцируема функция да е изпъкнала.
- (б) Докажете неравенството

$$xy \le \frac{x^p}{p} + \frac{y^q}{q}$$

при положителни $x,\,y,\,p,\,q$ и $\frac{1}{p}+\frac{1}{q}=1.$