

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по курсу "Математическая статистика"

Тема	Гистограмма и эмпирическая функция распределения
Студе	ент Зайцева А. А.
Групп	иа <u>ИУ7-62Б</u>
Препо	одаватель Власов П А

Оглавление

1	Зад	ание	2
2	Teo	ретические сведения	3
	2.1	Формулы для вычисления величин	3
	2.2	Определение эмпирической плотности и гистограммы	3
	2.3	Определение эмпирической функции распределения	4
3 Результат работы		ультат работы	5
	3.1	Код программы	5
	3.2	Результаты расчётов	6

1 Задание

Цель работы: построение гистограммы и эмпирической функции распределения.

Для выборки объёма n из генеральной совокупности X реализовать в виде программы на $\operatorname{ЭВМ}$

- (a) вычисление максимального значения M_{\max} и минимального значения M_{\min} ;
- (b) размаха R выборки;
- (c) вычисление оценок $\hat{\mu}$ и S^2 математического ожидания MX и дисперсии DX;
- (d) группировку значений выборки в $m = [\log_2 n] + 2$ интервала;
- (e) построение на одной координатной плоскости гистограммы и графика функции плотности распределения вероятностей нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 ;
- (f) построение на другой координатной плоскости графика эмпирической функции распределения и функции распределения нормальной случайной величины с математическим ожиданием $\hat{\mu}$ и дисперсией S^2 .

Провести вычисления и построить графики для выборки из индивидуального варианта.

2 Теоретические сведения

2.1 Формулы для вычисления величин

Минимальное и максимальное значения выборки, соответственно:

$$M_{\text{max}} = X_{(n)}$$

$$M_{\text{min}} = X_{(1)}$$

$$(2.1)$$

Размах выборки:

$$R = M_{\text{max}} - M_{\text{min}}. (2.2)$$

Оценки математического ожидания и дисперсии, соответственно:

$$\hat{\mu}(\vec{X}_n) = \frac{1}{n} \sum_{i=1}^n X_i$$

$$S^2(\vec{X}_n) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$
(2.3)

2.2 Определение эмпирической плотности и гистограммы

Пусть $\vec{x} = (x_1, ..., x_n)$ – выборка из генеральной совокупности X, вектор $(x_{(1)}, ..., x_{(n)})$ – вариационный ряд, построенный по этой выборке. Если объем n выборки велик, то значения x_i группируют в так называемый интервальный статистический ряд. Для этого отрезок $J = [x_{(1)}; x_{(n)}]$ разбивают на m равновеликих промежутков:

$$J_{i} = [x_{(1)} + (i - 1) \cdot \Delta; x_{(1)} + i \cdot \Delta), i = \overline{1; m - 1}$$

$$J_{m} = [x_{(1)} + (m - 1) \cdot \Delta; x_{(n)}]$$

$$\Delta = \frac{|J|}{m} = \frac{x_{(n)} - x_{(1)}}{m}$$

Определение

Интервальным статистическим рядом, отвечающим выборке \vec{x} называют таблицу вида

где n_i – количество элементов выборки \vec{x} , которые $\in J_i$.

Для выбора m используют формулу $m = [\log_2 n] + 2$ или $m = [\log_2 n] + 1$.

Пусть для данной выборки \vec{x} построен интервальный статистический ряд $(J_i, n_i), i = \overline{1; m}$

Определение

Эмпирической функцией плотности распределения, соответсвующей выборке \vec{x} , называют функцию

$$\hat{f}_n(x) = \begin{cases} \frac{n_i}{n\Delta}, x \in J_i, i = \overline{1; m} \\ 0, \text{ иначе.} \end{cases}$$
 (2.4)

Определение График эмпирической функции плотности называют гистограммой.

2.3 Определение эмпирической функции распределения

Пусть $\vec{x}=(x_1,...,x_n)$ – выборка из генеральной совокупности X. Обозначим $n(t,\vec{x})$ – число компонент вектора \vec{x} , которые меньше, чем t.

Определение

Эмпирической функцией распределения, построенной по выборке \vec{x} , называют функцию $F_n: R \to R$, определенную правилом

$$F_n(t) = \frac{n(t, \vec{x})}{n} \tag{2.5}$$

3 Результат работы

3.1 Код программы

```
1 X =
                     [7.76, 6.34, 5.11, 7.62, 8.84, 4.68, 8.65, 6.90, 8.79, 6.61, 6.62, 7.13, 6.75, 7.28, 7.74, 7.08, 5.57, $.20, 7.76, 6.34, 5.11, 7.62, 8.84, 4.68, 8.65, 6.90, 8.79, 6.61, 6.62, 7.13, 6.75, 7.28, 7.74, 7.08, 5.57, $.20, 7.76, 6.34, 5.11, 7.62, 8.84, 4.68, 8.65, 6.90, 8.79, 6.61, 6.62, 7.13, 6.75, 7.28, 7.74, 7.08, 5.57, $.20, 7.76, 6.34, 5.11, 7.62, 8.84, 4.68, 8.65, 6.90, 8.79, 6.61, 6.62, 7.13, 6.75, 7.28, 7.74, 7.08, 5.57, $.20, 7.76, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.84, 6.8
  _{4}|_{M_{max}} = _{max}(X);
  _{5}|M_{min} = min(X);
  8 R = M_{max} - M_{min};
10 %
_{11} MX = mean(X);
12 DX = var(X); % sigma == std == sqrt(var(arg))
13
14 %
15 m = floor(log2(length(X))) + 2;
16 h = histogram(X, m);
17 %disp(h);
18
19 %
20 sigma = std(X);
x = (M_min - 1):(sigma / 100):(M_max + 1);
22 f = normpdf(x, MX, sigma); % normal probability distribution function
23 figure;
24 heights = h.Values / (sum(h.Values) * h.BinWidth);
25 centers = [];
26 for i = 1:(length(h.BinEdges) - 1)
                    centers = [centers, (h.BinEdges(i + 1) + h.BinEdges(i)) / 2];
28 end
29 %disp(centers);
30 hold on;
31 bar(centers, heights, 1); % :)
32 plot(x, f, 'g', 'LineWidth', 2);
33
35 F = normcdf(x, MX, sigma); % normal cumulative distribution function
36 figure;
38 ecdf(X); % empiric cumulative distribution function
39 plot(x, F, 'r');
```

3.2 Результаты расчётов

$$M_{\min} = -4,33$$

$$M_{\max} = 0,01$$

$$R = 4,34$$

$$\hat{\mu}(\vec{x}_n) = 2,0585$$

$$S^2(\vec{x}_n) = 0,994$$

$$m = 8$$

Рис. 3.1: Гистограмма и график функции плотности распределения вероятностей нормальной случайной величины с выборочными мат. ожиданием и дисперсией

Рис. 3.2: График эмперической функции распределения и функции распределения нормальной случайной величины с выборочными мат. ожиданием и дисперсией