Time Series Analysis ARMA Models

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Parameter Estimation: Maximum Likelihood Estimation

About This Lesson

ARMA Model

 $\{X_t, t \in \mathbb{Z}\}$ an ARMA(p, q) process,

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}$$

where $Z_t \sim WN(0, \sigma^2)$.

- Model Parameters: ϕ_1 , ..., ϕ_p (AR coefficients), θ_1 , ..., θ_q (MA coefficients), μ (mean) and σ^2 (variance) unknown
- Commonly, de-mean the process X_t (hence $\mu = 0$)
- Orders: p, q set fixed but they need to be selected

Gaussian Time Series

 $\{X_t\}$ a Gaussian time series if all of its joint distributions are multivariate normal, i.e. if for any collection of integers i_1, \ldots, i_n , the vector $(X_{i_1}, \ldots, X_{i_n})^T$ has a multivariate normal distribution.

Property: If $\{Z_t\} \sim N(0, \sigma^2)$ iid, then any causal invertible ARMA process $\phi(B)X_t = \theta(B)Z_t$

is a Gaussian time series.

Maximum Likelihood Estimation

Let
$$\bar{X}_n=(X_1,\ldots,X_n)^T$$
 and $\hat{\bar{X}}_n=\left(\hat{X}_1,\ldots,\hat{X}_n\right)^T$, where $\hat{X}_n=P_{n-1}X_n$.

• Since \bar{X}_n is MVN, its likelihood is

$$L(\Gamma_n) = \frac{1}{(2\pi)^{n/2}} (\det \Gamma_n)^{-\frac{1}{2}} e^{-\frac{1}{2}\bar{X}_n^T \Gamma_n^{-1} \bar{X}_n}$$

where
$$\Gamma_n = [\gamma_X(i-j)]_{i,i=1,\dots,n}$$
.

• The innovations algorithm allows the likelihood to be computed without directly computing det Γ_n or Γ_n^{-1} .

Maximum Likelihood Estimation (cont'd)

The likelihood of a stationary zero-mean Gaussian time series is given by

$$L(\Gamma_n) = \frac{1}{(2\pi)^{n/2}} (v_0 v_1 \dots v_{n-1})^{-1/2} e^{-\frac{1}{2} \sum_{j=1}^n (X_j - \hat{X}_j)^2 / v_{j-1}},$$

where v_0, \ldots, v_{n-1} are the mean squared errors

$$v_i = E\left[\left(X_{i+1} - \hat{X}_{i+1}\right)^2\right]$$

obtained using the innovations algorithm.

The terms v_1, \ldots, v_{n-1} and $\{(X_j - \hat{X}_j), j = 1, \ldots, n\}$ can be obtained recursively using the innovations algorithm.

Example: AR Model via Linear Regression

Let $\{X_t\}$ be an AR(p) process satisfying

$$X_t = \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + Z_t, \quad Z_t \sim \mathsf{IID}(0, \sigma^2)$$

- Predicting variables: $X_{t-1},...,X_{t-p}$
- Regression coefficients: $\phi_1,...,\phi_p$
- Model selection: AR order
- Assumptions: $Z_t \sim N(0, \sigma^2)$ iid

MLE versus Other Approaches

Advantages of MLE:

- Efficient (low variance estimator).
- Often the Gaussian assumption is reasonable.
- Even if $\{X_t\}$ is not Gaussian, the asymptotic distribution of the estimators is the same as the Gaussian case.

Disadvantages of MLE:

- Difficult optimization problem minimization is done numerically.
- Need to choose a good starting point (often use other estimators for this).

MLE: Preliminary Parameter Estimates

AR(p): Yule-Walker

MA(q): Innovations algorithm f

ARMA(p,q): Hannan-Rissanen algorithm

- 1. Estimate high-order AR.
- 2. Use to 'estimate' (unobserved) noise Z_t : \hat{Z}_t
- 3. Regress X_t onto $X_{t-1}, \dots, X_{t-p}, \hat{Z}_{t-1}, \dots, \hat{Z}_{t-q}$
- 4. Regress again with improved estimates of Z_t

MLE: Statistical Property

 $\{X_t\}$ be an ARMA(p,q): the MLE satisfies

$$\begin{pmatrix} \widehat{\phi} \\ \widehat{\theta} \end{pmatrix} - \begin{pmatrix} \phi \\ \theta \end{pmatrix} \sim \mathsf{AN} \left(0, \frac{\sigma^2}{n} \begin{pmatrix} \Gamma_{\phi\phi} & \Gamma_{\phi\theta} \\ \Gamma_{\theta\phi} & \Gamma_{\theta\theta} \end{pmatrix}^{-1} \right)$$

where
$$\begin{pmatrix} \Gamma_{\phi\phi} & \Gamma_{\phi\theta} \\ \Gamma_{\theta\phi} & \Gamma_{\theta\theta} \end{pmatrix} = \text{Cov}\big((X,Y),(X,Y)\big)$$

 $\phi(B)X_t = Z_t$
 $\theta(B)Y_t = Z_t$

Summary

