Complexity and effectiveness

Enrico Lovisotto

- 1. Specification
 - 1.1 Design
 - 1.2 Working modes
- 2. Simulation
 - 2.1 Encoder
 - 2.2 Modulator and channel
 - 2.3 Decoder
- Results
 - 3.1 Error detection
 - 3.2 Sum-product iterations
- 4. Conclusions

Design

For each code rate, a *compressed* encoding matrix is specified by the standard: it is then be expanded to suit a specific code length.

Working modes

IEEE 802.16e WiMAX specification defines various code lengths and rates. All combinations will be further analyzed.

576	672	768	864			
960	1056	1152	1248			
1344	1440	1536	1632			
1728	1824	1920	2016	1/2	2/3A	2/3B
2112	2208	2304		3/4B	3/4A	5/6
Code lengths				Code rates		

- Specification
 - 1.1 Design
 - 1.2 Working modes
- 2. Simulation
 - 2.1 Encoder
 - 2.2 Modulator and channel
 - 2.3 Decoder
- Results
 - 3.1 Error detection
 - 3.2 Sum-product iterations
- 4. Conclusions

Encoder

$$\begin{array}{c}
u_i \\
\hline
\end{array}$$
ENC
$$c_i = \text{ENC}(u_i) = \begin{bmatrix} u_i \mid Au_i \end{bmatrix} \text{ where } \begin{cases} H = \begin{bmatrix} B \mid C \end{bmatrix} \\ A = C^{-1}B \end{cases}$$

Modulator and channel

Message passing

ch channel information

- F forward messages
- **B** backward messages
- b extrinsic information

Matrix operations

Graph node processing is expressed as simple matrix operations.

Sparse matrix representation

In-memory representation of a generic matrix A

Function $\tilde{\phi}$

Function is approximated for small and high values of x

- Specification
 - 1.1 Design
 - 1.2 Working modes
- 2. Simulation
 - 2.1 Encoder
 - 2.2 Modulator and channel
 - 2.3 Decoder
- 3. Results
 - 3.1 Error detection
 - 3.2 Sum-product iterations
- 4. Conclusions

Error detection per code length

Error detection per code rate

Sum-product iterations per code length

Sum-product iterations per code rate

- Specification
 - 1.1 Design
 - 1.2 Working modes
- Simulation
 - 2.1 Encoder
 - 2.2 Modulator and channel
 - 2.3 Decoder
- Results
 - 3.1 Error detection
 - 3.2 Sum-product iterations
- 4. Conclusions

Conclusions

- MP performs lots of accesses to messages data structures
- such structures are sparse, since FFG is sparse as well
- stronger codes are easily obtained tuning code rate, while increasing code length gives only a slighter improvement