参考例 2 で製造した樹脂(3) (0.5 g) 、N- アリルオキシカルボニルー 4- ピペリドン (0.396 g) 、チオフェン-2- イルメチルアミン (0.205 m 1) およびN- (t- ブチルオキシカルボニル) ロイシン (0.542 g) 、4- フェニルオキシベンゾアルデヒド (0.252 g) を用いて、実施例 2 3 と同様の操作をし、以下の物性値を有する本発明化合物(2 7 4 m g)を得た。

TLC: Rf 0.39 (クロロホルム:メタノール=20:1); NMR (CD₃OD): δ 7.48 (m, 2 H), 7.39 (m, 2 H), 7.28 (m, 1 H), 7.18 (m, 2 H), 7.04 (m, 4 H), 6.91 (m, 1 H), 4.86 (s, 2 H), 4.32 (s, 2 H), 4.12 (dd, J = 8.1, 4.5 Hz, 1 H), 3.77 (m, 2 H), 3.49 (m, 2 H), 2.60 - 2.30 (m, 2 H), 2.19 (m, 2 H), 1.98 (s, 3 H), 1.97 - 1.58 (m, 3 H), 0.94 (d, J = 6.0 Hz, 6 H)。

実施例23 (H22-1)~23 (H31-31)

5

10

15

参考例 2 で製造した樹脂 (3) 、相当する4 - ピペリドン誘導体、相当するアミン誘導体、相当するアミノ酸誘導体、および相当するアルデヒド誘導体を用いて、実施例 2 3 または 2 3 (1) と同様の操作をし、以下の表 2 2 $A-1\sim3$ 1 A-4 に化合物名を示し、表 2 2 $B-1\sim3$ 1 B-5 に構造式を示した本発明化合物を得た。また、それらの本発明化合物の物性値を、以下の表 2 2 $C-1\sim3$ 1 C-2 に示した。

表 22A-1

実施例番号	化合物名
23 (H22-1)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-2)	(3R) - 1 - プロピルー2, 5 - ジオキソー3 - (2 - メチルプロピル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-3)	(3S) -1 - プロピル - 2, 5 - ジオキソ - 3 - メチル - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン
23 (H22-4)	(3S) -1 - プロピルー2, 5 - ジオキソー3 - ベンジルー9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン
23 (H22-5)	(3S)-1-プロピル -2 , $5-$ ジオキソ $-3-$ (1-(ベンジルオキシメチル) イミダゾール $-5-$ イルメチル) -9 $-(6-$ フェニルヘキシル) -1 , 4 , $9-$ トリアザスピロ[5.5] ウンデカン
23 (H22-6)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (ベンジルオキシメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-7)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (4 - メトキシフェニルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-8)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - ((1R) - 1 - (ベンジルオキシ) エチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$

表 22A-2

実施例番号	化合物名
23 (H22-9)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (ピリジン - 3 - イルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-10)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - ブチル - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-11)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (シクロヘキシルオキシカルボニルメチル) -9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-12)	(3.S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (シクロヘキシルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-13)	(3R) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (シクロヘキシルオキシカルボニルメチル) -9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-14)	(3R)-1-プロピル -2 , $5-$ ジオキソ $-3-$ ($2-$ (2) クロヘキシルオキシカルボニル)エチル) $-9-$ ($6-$ フェニルヘキシル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
23 (H22-15)	(3R) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (4 - (ベンジルオキシ) フェニルメチル) -9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-16)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - ヒドロキシメチル - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$

<u> 表 22A-3</u>

実施例番号	化合物名
23 (H22-17)	(3S)-1-プロピル-2,5-ジオキソ-3-(4-(ベンジルオキシ)フェニルメチル)-9-(6-フェニルヘキシル)-1,4,9-トリアザスピロ[5.5]ウンデカン
23 (H22-18)	(3R) - 1 - プロピルー2, 5 - ジオキソー3 - ブチルー9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ[5.5] ウンデカン
23 (H22-19)	(3R) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (シクロヘキシルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-20)	(3R) - 1 - プロピル-2, 5 - ジオキソ-3 - ((1S) - 1 - (ベンジルオキシ) エチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-21)	(3R) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (ベンジルオキシメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-22)	$(3R) - 1 - プロピル - 2$, $5 - ジオキソ - 3 - ((4 - メトキシフェニルメチルチオ) メチル) -9 - (6 - フェニル \land + シル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-23)	(3R) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (ベンジルチオメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-24)	(3S) - 1 - プロピルー2, 5 - ジオキソー9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン

表 22A-4

実施例番号	化合物名
23 (H22-25)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (イミダ ゾール - 4 - イルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-26)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - ヒドロキシメチル - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-27)	(3R) -1 $ 2$ $ 2$ $ 3$ $ 3$ $ 3$ $ 3$ $ 3$ $ 3$ $ 4$ $ 4$ $ 4$ $ -$
23 (H22-28)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (1 - ベンジルイミダゾール - 4 - イルメチル) - 9 - (6 - フェニルヘキシル) - 1$, 4 , $9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-29)	(3R) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (4 - ヒドロキシフェニルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-30)	(3S)-1-プロピル -2 , $5-$ ジオキソ $-3-$ ($4-$ (ベンジルオキシカルボニルアミノ) フェニルメチル) $-9-$ (6 $-$ フェニルヘキシル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H22-31)	(3R) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (3 - (ア ミノカルボニルアミノ) プロピル) - 9 - (6 - フェニルへ キシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-32)	(3R) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (1 - ナ フチルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5. 5] ウンデカン$

表 22A-5

実施例番号	化合物名
23 (H22-33)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (3, 4 - ジクロロフェニルメチル) -9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5. 5] ウンデカン$
23 (H22-34)	(3R) - 1 - プロピル - 2, $5 - ジオキソ - 3 - ((1, 1 - ジメチルエチルチオ) メチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5. 5] ウンデカン$
23 (H22-35)	(3S) -1 - プロピル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 4 - メチル - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン
23 (H22-36)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - プロピル - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-37)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (4 - ベンジルオキシフェニルメチル) - 4 - メチル - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-38)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - ((1R) - 1 - ヒドロキシエチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-39)	(3S) -1 -3 -1 -3 -1 -1 -1 -1 -1 -1 -1 -1
23 (H22-40)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - ((1R) - 1 - ヒドロキシエチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-41)	(3R) - 1 - プロピル - 2, $5 - ジオキソ - 3 - メチル - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$

表 22A-6

実施例番号	化合物名
23 (H22-42)	(3R) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (ピリジン - 3 - イルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-43)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (カルボキシメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-44)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (4 - ヒドロキシフェニルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-45)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (2 - メチルチオエチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-46)	$(3R) - 1 - プロピル - 2$, $5 - \Im + \Im - 3 - ((\cancel{3} + 3) + 3) + 3 - (\cancel{3} + 3) + (\cancel{3} + 3) + 3 - (\cancel{3} + 3) + (\cancel{3} + 3) + (\cancel{3} + 3) + (\cancel{3} +$
23 (H22-47)	(3R) - 1 - プロピル - 2, 5 - ジオキソ - 3 - ((1S) - 1 - ヒドロキシエチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン
23 (H22-48)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (2 - D)$ ロロフェニルメチル) $-9 - (6 - フェニルヘキシル) - 1$, 4 , $9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-49)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (1 - ナ フチルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-50)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (4 - フルオロフェニルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン

<u>表 22A-7</u>

実施例番号	化合物名
23 (H22-51)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (シアノメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-52)	(3R) - 1 - プロピル- 2, $5 - ジオキソ- 3 - (インドール- 3 - イルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-53)	(3S)-1-プロピル -2 , $5-$ ジオキソ $-3-$ ($4-$ ($2-$ クロロフェニルメチルオキシカルボニルアミノ)ブチル) $-9-$ ($6-$ フェニルヘキシル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
23 (H22-54)	(3R) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (ベンジルオキシカルボニルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン
23 (H22-55)	(3S)-1-プロピル-2,5-ジオキソ-3-(3-(1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
23 (H22-56)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (ベンジルオキシカルボニルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン
23 (H22-57)	(3S)-1-プロピル -2 , $5-$ ジオキソ $-3-$ ($4-$ (ベンジルオキシカルボニルアミノ)ブチル) $-9-$ ($6-$ フェニルヘキシル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H22-58)	(3R) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (4 - メ トキシフェニルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ $[5.5]$ ウンデカン

<u>表 22A-8</u>

実施例番号	化合物名
23 (H22-59)	(3R)-1-プロピル -2 , $5-$ ジオキソ $-3-$ ($4-$ (ベンジルオキシカルボニルアミノ) ブチル) $-9-$ ($6-$ フェニルヘキシル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
23 (H22-60)	(3S)-1-プロピル -2 , $5-$ ジオキソ $-3-$ (3-(ベンジルオキシカルボニルアミノ)プロピル) $-9-$ (6-フェニルヘキシル) -1 , 4 , $9-$ トリアザスピロ[5.5]ウンデカン
23 (H22-61)	(3R)-1-プロピル -2 , $5-$ ジオキソ $-3-$ ($1-$ (ベンジルオキシメチル) イミダゾール $-4-$ イルメチル) -9 $-(6-$ フェニルヘキシル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H22-62)	(3R) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (4 - エトキシフェニルメチル) - 9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-63)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (4 - フェニルフェニルメチル) -9 - (6 - フェニルヘキシル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H22-64)	(3S) -1 -プロピル -2 , 5 -ジオキソ -3 -(1, 1 -ジフェニルメチル) -9 -(6-フェニルヘキシル) -1 , 4, 9 -トリアザスピロ [5. 5] ウンデカン

表 23A-1

実施例番号	化合物名
23 (H23-1)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-(1 , $4-$ ベンゾジオキサン $-6-$ イルメチル) -1 , 4, $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H23-2)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($4-$ メトキシフェニルメチル) -1, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H23-3)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($4-$ ジエチルアミノフェニルメチル) -1, 4, 9 -トリアザスピロ [5.5] ウンデカン
23 (H23-4)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) ー $9-$ (3 , $5-$ ジメチルー $1-$ フェニルピラゾールー $4-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H23-5)	1-ブチルー2, $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($4-$ ベンジルオキシフェニルメチル) -1, 4, 9 -トリアザスピロ [5.5] ウンデカン
23 (H23-6)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($4-$ フェニルオキシフェニルメチル) -1, 4 , 9 -トリアザスピロ [5.5] ウンデカン
23 (H23-7)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($4-$ アリルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H23-8)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $ 9-$ (ジベンゾフランー $2-$ イルメチル) $ 1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H23-9)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($2-$ フェニルイミダゾール $-4-$ イルメチル) -1 , 4, $9-$ トリアザスピロ $[5.5]$ ウンデカン

表 23A-2

実施例番号	化合物名
23 (H23-10)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (1, $4-$ ベンゾジオキサン $-6-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H23-11)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($4-$ メトキシフェニルメチル)ー 1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H23-12)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($4-$ ジエチルアミノフェニルメチル) $ 1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H23-13)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (3, $5-$ ジメチル $-1-$ フェニルピラゾール $-4-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H23-14)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチル -9- ($4-$ ベンジルオキシフェニルメチル) -1, 4 , 9 -トリアザスピロ [5 . 5] ウンデカン
23 (H23-15)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($4-$ フェニルオキシフェニルメチル)ー 1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H23-16)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチル ー $9-$ ($4-$ アリルオキシフェニルメチル) $ 1$, 4 , $9-$ トリアザスピロ $[5$. 5] ウンデカン
23 (H23-17)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ (ジベンゾフランー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5$. 5] ウンデカン
23 (H23-18)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(2-$ フェニルイミダゾール $-4-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

表 24A-1

実施例番号	化合物名
23 (H24-1)	1-エチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-(1 , $4-$ ベンゾジオキサン $-6-$ イルメチル) -1 , 4, $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H24-2)	1-x+y-2, $5-y+y-3-(2-y+y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-$
23 (H24-3)	1-xチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ メチルフラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ [5 . 5] ウンデカン
23 (H24-4)	1-x+y-2, $5-y+y-3-(2-y+y-y-2-y-2-y-2-y-2-y-2-y-2-y-2-y-2-y-$
23 (H24-5)	1-xチルー2, $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($3-$ メチルチオフェンー $2-$ イルメチル)-1,4, 9-トリアザスピロ[$5.$ 5]ウンデカン
23 (H24-6)	1-エチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ エチルフラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H24-7)	1-エチル-2,5-ジオキソ-3-(2-メチルプロピル) -9-(ピリジン-4-イルメチル)-1,4,9-トリア ザスピロ[5.5]ウンデカン
23 (H24-8)	1-エチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($1-$ メチルインドール $-3-$ イルメチル) -1 , 4 , 9-トリアザスピロ $[5.5]$ ウンデカン
23 (H24-9)	1-エチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($4-$ メチルイミダゾール $-5-$ イルメチル) -1 , 4, $9-$ トリアザスピロ [5 . 5] ウンデカン

表 24A-2

実施例番号	化合物名
23 (H24-10)	1-x+y-2, $5-y+y-3-(2-y+y-y-y-y-y-1)-9-(2, 4-y+y-1, 3-y+y-y-y-y-1)5-4y+y-y-1$, 4 , $9-y+y-y+y-y-15-y+y-y-15-y+y-y-15-y+y-y-1$
23 (H24-11)	1-エチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $ 9-$ ($5-$ ($2-$ クロロフェニル) フランー $2-$ イルメチル) $ 1$, 4 , $9-$ トリアザスピロ [5 , 5] ウンデカン
23 (H24-12)	1-x チルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $ 9-$ ($5-$ ($3-$ クロロフェニル) フランー $2-$ イルメチル) $ 1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H24-13)	1-x+y-2, $5-y+y-3-(2-y+y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-$
23 (H24-14)	1-x+y-2, $5-y+y-3-(2-y+y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-$
23 (H24-15)	1-エチル-2,5-ジオキソ-3-(2-メチルプロピル) -9-(5-(カルボキシ)チオフェン-2-イルメチル) -1,4,9-トリアザスピロ[5.5]ウンデカン
23 (H24-16)	1-x+y-2, $5-y+y-3-(2-y+y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-$
23 (H24-17)	1-xチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ xチルチオフェン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ [5 . 5] ウンデカン
23 (H24-18)	1-x+y-2, $5-y+y-3-(2-y+y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-$

<u>表 24A-3</u>

実施例番号	化合物名
23 (H24-19)	1-x+y-2, $5-y+y-3-(2-y+y+y-1)-9-(5-(2-y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+$
23 (H24-20)	1-x+y-2, $5-y+y-3-(2-y+y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-$
23 (H24-21)	1-x+y-2, $5-y+y-3-(2-y+y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-$
23 (H24-22)	1-x+y-2, $5-y+y-3-(2-y+y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-$
23 (H24-23)	1-x+y-2, $5-y+y-3-(2-y+y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-$
23 (H24-24)	1-x+y-2, $5-y+y-3-(2-y+y+y-1)-9-(5-(3-y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+$
23 (H24-25)	1-エチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($1-$ アセチルインドール $-3-$ イルメチル) -1 , 4, $9-$ トリアザスピロ $[5.5]$ ウンデカン

表 24A-4

実施例番号	化合物名
23 (H24-26)	1-x+y-2, $5-y+y-3-(2-y+y+y-1)-9-(5-(3, 5-y+y+y-1))$ -1 , 4 , $9-y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+$
23 (H24-27)	1-x+y-2, $5-y+y-3-(2-y+y+y-1)-9-(5-p+y-1)-4-(1-y+y-1)-4-(1-y+y-1)-1$, 4 , $9-(1-y+y-1)-1$
23 (H24-28)	1-x+y-2, $5-y+y-3-(2-y+y+y-1)-9-(5-(4-y+y+y-1))$ $-3-(2-y+y+y+y-1)-1$, 4 , $9-y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+$
23 (H24-29)	1-x+y-2, $5-y+y-3-(2-y+y+y-1)-9-(5-(2-y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+y+$
23 (H24-30)	1-x+y-2, $5-y+y-3-(2-y+y-y-y-y-y-1)-9-(2, 5-y+y-1-(4-y+y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-$
23 (H24-31)	1-エチル-2,5-ジオキソ-3-(2-メチルプロピル) -9-(5-(4-クロロフェニル)フラン-2-イルメチル)-1,4,9-トリアザスピロ[5.6]ウンデカン

表 25A-1

実施例番号	化合物名
23 (H25-1)	1-プロピルー 2 , $5-$ ジオキソー $3 (2-$ メチルプロピル) $-9 (1$, $4-$ ベンゾジオキサン $-$ 6-イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H25-2)	$1-\mathcal{I}$ ロピルー2, $5-\mathcal{I}$ オキソー3ー($2-\mathcal{I}$ チルプロピル)-9-(3, $5-\mathcal{I}$ メチルー $1-\mathcal{I}$ エニルピラゾールー4-イルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン
23 (H25-3)	1-プロピル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) $-9-$ ($5-$ メチルフラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
23 (H25-4)	1-プロピルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $ 9-$ ($5-$ ブロモチオフェンー $2-$ イルメチル) $ 1$, 4 , $9-$ トリアザスピロ $[5$. 5] ウンデカン
23 (H25-5)	1-プロピルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $ 9-$ ($3-$ メチルチオフェンー $2-$ イルメチル) $ 1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H25-6)	1-プロピルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $ 9-$ ($5-$ エチルフランー $2-$ イルメチル) $ 1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H25-7)	1-プロピル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) $-9-$ ($1-$ メチルインドール $-3-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ [5.5] ウンデカン
23 (H25-8)	1-プロピルー2, $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $-9-$ ($4-$ メチルイミダゾールー $5-$ イルメチル) $-$ 1, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

表 25A-2

実施例番号	化合物名
23 (H25-9)	$1-\mathcal{I}_{0}$ ロピルー2, $5-\mathcal{I}_{0}$ オキソー3ー(2ーメチルプロピル)-9-(2, $4-\mathcal{I}_{0}$ オキソー1, $3-\mathcal{I}_{0}$ ヒドロピリミジンー5-イルメチル)-1, 4 , $9-\mathcal{I}_{0}$ サンデカン
23 (H25-10)	1-プロピルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $-9-$ ($5-$ ($2-$ クロロフェニル) フランー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H25-11)	$1 - \mathcal{I}$ ロピルー 2 , $5 - \mathcal{I}$ オキソー $3 - (2 - \mathcal{I}$ チルプロピル) $- 9 - (\mathcal{I}$ ンドールー $3 - \mathcal{I}$ ルメチル) $- 1$, 4 , $9 - \mathcal{I}$ トリアザスピロ $[5.5]$ ウンデカン
23 (H25-12)	1-プロピル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) $-9-$ ($5-$ (ヒドロキシメチル)フラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H25-13)	1-プロピルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $-9-$ ($5-$ (カルボキシ) フランー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5$. 5] ウンデカン
23 (H25-14)	1-プロピルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $ 9-$ ($5-$ エチルチオフェンー $2-$ イルメチル) $ 1$, 4 , $9-$ トリアザスピロ $[$ 5. 5 $]$ ウンデカン
23 (H25-15)	1-プロピル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) $-9-$ ($1-$ メチルベンゾイミダゾール $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H25-16)	$1-\mathcal{I}$ ロピルー2, $5-\mathcal{I}$ オキソー3ー($2-\mathcal{I}$ チルプロピル)-9-($5-(2-\mathcal{I})$ フルオロメトキシフェニル)フラン- $2-\mathcal{I}$ ルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン

表 25A-3

実施例番号	化合物名
23 (H25-17)	1-プロピル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) $-9-$ ($6-$ (メトキシカルボニル) インドール $-3-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H25-18)	$1-\mathcal{I}$ ロピルー2, $5-\mathcal{I}$ オキソー3ー($2-\mathcal{I}$ チルプロピル)-9-($5-(2,6-\mathcal{I})$ クロロー4ートリフルオロメチルフェニル)フランー $2-\mathcal{I}$ ルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン
23 (H25-19)	1-プロピル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) $-9-$ ($4-$ ブロモチオフェン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H25-20)	$1-\mathcal{I}$ ロピルー2, $5-\mathcal{I}$ オキソー3ー($2-\mathcal{I}$ チルプロピル)-9-($5-(2-\mathcal{I})$ ロロー $5-\mathcal{I}$ トリフルオロメチルフェニル)フランー $2-\mathcal{I}$ ルメチル)-1, 4 , $9-\mathcal{I}$ リアザスピロ[5 . 5] ウンデカン
23 (H25-21)	$1-\mathcal{I}$ ロピルー2, $5-\mathcal{I}$ オキソー3ー($2-\mathcal{I}$ チルプロピル)-9ー($5-(3-\mathcal{I})$ リフルオロメチルフェニル)フランー2ーイルメチル)-1, 4, 9ートリアザスピロ[5.5]ウンデカン
23 (H25-22)	1-プロピル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) $-9-$ ($1-$ アセチルインドール $-3-$ イルメチル) $-$ 1, 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
23 (H25-23)	$1-\mathcal{I}$ ロピルー2, $5-\mathcal{I}$ オキソー3ー($2-\mathcal{I}$ チルプロピル)-9-($5-(3,5-\mathcal{I}$ ス(トリフルオロメチル)フェニル)フラン- $2-\mathcal{I}$ ルメチル)-1, $4,9-\mathcal{I}$ トリアザスピロ[5.5] ウンデカン

表 25A-4

実施例番号	化合物名
23 (H25-24)	$1-\mathcal{I}$ ロピルー2, $5-\mathcal{I}$ オキソー3ー($2-\mathcal{I}$ チルプロピル)-9-($5-\mathcal{I}$ ロロー3ーメチルー $1-\mathcal{I}$ エニルピラゾールー4ーイルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン
23 (H25-25)	$1 - \mathcal{J}$ ロピルー2, $5 - \mathcal{J}$ オキソー3 - $(2 - \mathcal{J}$ チルプロピル) - 9 - $(5 - (4 - \mathcal{J})$ トキシフェニル) チオフェンー2 - イルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン
23 (H25-26)	$1 - \mathcal{J}$ ロピルー2, $5 - \mathcal{J}$ オキソー3 - (2 - メチルプロピル) - 9 - (5 - (2 - トリフルオロメチルフェニル) フランー2 - イルメチル) - 1, 4,9 - トリアザスピロ [5.5] ウンデカン
23 (H25-27)	$1-\mathcal{I}$ ロピルー2, $5-\mathcal{I}$ オキソー3ー($2-\mathcal{I}$ チルプロピル)-9-(2 , $5-\mathcal{I}$ メチルー $1-(4-\mathcal{I})$ ルボキシフェニル)ピロールー3-イルメチル)-1, 4, 9-トリアザスピロ[5 . 5] ウンデカン
23 (H25-28)	1-プロピルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $-9-$ ($5-$ ($4-$ クロロフェニル) フランー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.6]$ ウンデカン

表 26A-1

実施例番号	化合物名
23 (H26-1)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-(1, $4-$ ベンゾジオキサンー $6-$ イルメチル) -1, 4, $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H26-2)	1-ブチルー2, $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) ー $9-$ (3 , $5-$ ジメチルー $1-$ フェニルピラゾールー $4-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H26-3)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ メチルフラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ [5 . 5] ウンデカン
23 (H26-4)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ ブロモチオフェン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H26-5)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $ 9-$ ($3-$ メチルチオフェンー $2-$ イルメチル) $ 1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H26-6)	1-ブチル-2,5-ジオキソ-3-(2-メチルプロピル) -9-(5-エチルフラン-2-イルメチル)-1,4,9 -トリアザスピロ[5.5]ウンデカン
23 (H26-7)	1-ブチル-2,5-ジオキソ-3-(2-メチルプロピル) -9-(ピリジン-4-イルメチル)-1,4,9-トリア ザスピロ[5.5]ウンデカン
23 (H26-8)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($1-$ メチルインドール $-3-$ イルメチル) -1 , 4 , 9-トリアザスピロ $[5.5]$ ウンデカン
23 (H26-9)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($4-$ メチルイミダゾール $-5-$ イルメチル) -1 , 4, $9-$ トリアザスピロ $[5.5]$ ウンデカン

<u>表 26A-2</u>

実施例番号	化合物名
23 (H26-10)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-(2 , $4-$ ジオキソ -1 , $3-$ ジヒドロピリミジン $-$ 5 $-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ [5.5] ウンデカン
23 (H26-11)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ ($2-$ クロロフェニル) フラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H26-12)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($5-$ ($3-$ クロロフェニル)フランー $2-$ イルメチル)-1, 4, $9-$ トリアザスピロ[5 . 5]ウンデカン
23 (H26-13)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9- (インドールー $3-$ イルメチル) -1, 4, 9-トリアザスピロ $[5.5]$ ウンデカン
23 (H26-14)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($5-$ (ヒドロキシメチル) フランー $2-$ イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン
23 (H26-15)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($5-$ (カルボキシ) チオフェンー $2-$ イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン
23 (H26-16)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ (カルボキシ)フラン $-2-$ イルメチル) -1 , 4, $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H26-17)	1-ブチル-2, $5-ジオキソ-3-(2-メチルプロピル) -9-(5-エチルチオフェン-2-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン$
23 (H26-18)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($1-$ メチルベンゾイミダゾール $-2-$ イルメチル) -1, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

表 26A-3

実施例番号	化合物名
23 (H26-19)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ ($2-$ トリフルオロメトキシフェニル) フラン -2-イルメチル) -1 , 4 , $9-$ トリアザスピロ [5.5] ウンデカン
23 (H26-20)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) ー $9-$ ($6-$ (メトキシカルボニル)インドールー $3-$ イル メチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H26-21)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ (2 , $6-$ ジクロロ $-4-$ トリフルオロメチル フェニル)フラン $-2-$ イルメチル) -1 , 4 , $9-$ トリア ザスピロ[5 . 5] ウンデカン
23 (H26-22)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($4-$ ブロモチオフェン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H26-23)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ ($2-$ クロロ $-5-$ トリフルオロメチルフェニル)フラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
23 (H26-24)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ ($3-$ トリフルオロメチルフェニル)フランー 2-イルメチル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
23 (H26-25)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($1-$ アセチルインドール $-3-$ イルメチル) -1 , 4, $9-$ トリアザスピロ [5.5] ウンデカン

<u>表 26A-4</u>

実施例番号	化合物名
23 (H26-26)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $-$ 9-($5-$ (3 , $5-$ ビス(トリフルオロメチル) フェニル) フランー $2-$ イルメチル) $-$ 1, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H26-27)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($5-$ クロロー $3-$ メチルー $1-$ フェニルピラゾール -4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン
23 (H26-28)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($5-$ ($4-$ メトキシフェニル)チオフェンー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H26-29)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) ー $9-$ ($5-$ ($2-$ トリフルオロメチルフェニル)フランー 2-イルメチル) $ 1$, 4 , $9-$ トリアザスピロ $[5.5]ウンデカン$
23 (H26-30)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-(2 , $5-$ ジメチルー $1-$ ($4-$ カルボキシフェニル) ピロールー $3-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H26-31)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($5-$ ($4-$ クロロフェニル)フランー $2-$ イルメチル)-1, 4 , $9-$ トリアザスピロ $[5.6]$ ウンデカン

表 27A-1

実施例番号	化合物名
23 (H27-1)	1-ベンジル-2, $5-ジオキソ-3-(2-メチルプロピル) -9-ベンジル-1, 4, 9-トリアザスピロ [5.5] ウンデカン$
23 (H27-2)	$1 - \langle x \rangle = 0$ $1 - \langle x \rangle =$
23 (H27-3)	1-ベンジル-2, $5-ジオキソ-3-(2-メチルプロピル)-9-(1, 4-ベンゾジオキサン-6-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン$
23 (H27-4)	$1 - \langle x \rangle = 2$, $5 - \langle x \rangle = 3 - \langle x \rangle = 2 - \langle x \rangle $
23 (H27-5)	$1 - \langle x \rangle = 0$ $1 - \langle x \rangle =$
23 (H27-6)	1 - ベンジル - 2, $5 - ジオキソ - 3 - (2 - メチルプロピ $ $) - 9 - (3$, $5 - ジメチル - 1 - フェニルピラゾール - 4 - イルメチル) - 1$, 4 , $9 - トリアザスピロ [5.5] ウンデカン$
23 (H27-7)	$1 - \langle x \rangle = 0$ $1 - \langle x \rangle =$
23 (H27-8)	$1 - \langle x \rangle = 0$ $1 - \langle x \rangle =$
23 (H27-9)	$1 - ((2 - \lambda + \lambda$

表 27A-2

実施例番号	化合物名
23 (H27-10)	1-((2-)++)フェニル)メチル) -2 , $5-$ ジオキソ $-3-(2-)$ メチルプロピル) $-9-((4-)++)$ フェニル)メチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H27-11)	1-((2-メトキシフェニル) メチル) -2, 5-ジオキソ -3-(2-メチルプロピル) -9-(1, 4-ベンゾジオ キサン-6-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン
23 (H27-12)	1-((2-)++)フェニル)メチル) -2 , $5-$ ジオキソ $-3-(2-)$ メチルプロピル) $-9-((4-)$ エノキシフェニル)メチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H27-13)	$1 - ((2 - \lambda + \lambda$
23 (H27-14)	$1 - ((2 - \lambda) + \lambda) + \lambda + \lambda) - 2, 5 - \lambda + \lambda + \lambda - 3 - (2 - \lambda) + \lambda $
23 (H27-15)	1-((2-メトキシフェニル) メチル) -2, 5-ジオキソ -3-(2-メチルプロピル) -9-(2-フェニルイミダ ゾール-5-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン
23 (H27-16)	1-((2-メトキシフェニル) メチル) -2, 5-ジオキソ -3-(2-メチルプロピル) -9-((4-ヒドロキシフェニル) メチル) -1, 4, 9-トリアザスピロ $[5.5]$ ウンデカン

<u>表 27A-3</u>

実施例番号	化合物名
23 (H27-17)	$1 - ((3 - \lambda) + \lambda) + \lambda + \lambda$
23 (H27-18)	1-((3-)++)フェニル)メチル) -2 , $5-$ ジオキソ $-3-(2-)$ メチルプロピル) $-9-((4-)++)$ フェニル)メチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H27-19)	1-((3-メトキシフェニル) メチル) -2, 5-ジオキソ -3-(2-メチルプロピル) -9-((4-フェノキシフェニル) メチル) -1, 4, 9-トリアザスピロ $[5.5]$ ウンデカン
23 (H27-20)	1 - ((3 - 3 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +
23 (H27-21)	$1 - ((3 - \lambda) + \lambda + \lambda) + \lambda + \lambda + \lambda + \lambda + \lambda + \lambda + \lambda$
23 (H27-22)	$1 - ((3 - \lambda + \lambda$
23 (H27-23)	1-((3-)++)フェニル)メチル) -2 , $5-$ ジオキソ $-3-(2-)$ メチルプロピル) $-9-((4-)+)$ フェニル)メチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

表 27A-4

実施例番号	化合物名
23 (H27-24)	$1 - ((4 - \lambda + \lambda$
23 (H27-25)	1-((4-メトキシフェニル) メチル) -2,5-ジオキソ -3-(2-メチルプロピル) -9-(1,4-ベンゾジオキサン-6-イルメチル) -1,4,9-トリアザスピロ[5.5] ウンデカン
23 (H27-26)	1-((4-メトキシフェニル) メチル) -2,5-ジオキソ -3-(2-メチルプロピル) -9-((4-フェノキシフェニル) メチル) -1,4,9-トリアザスピロ $[5.5]$ ウンデカン
23 (H27-27)	$1 - ((4 - \lambda) + \lambda) + \lambda + \lambda) - 2, 5 - \lambda + \lambda + \lambda - 3 - (2 - \lambda) + \lambda + \lambda + \lambda - 3 - (2 - \lambda) + \lambda $
23 (H27-28)	$1 - ((4 - \lambda) + \lambda) + \lambda) - 2, 5 - \lambda + \lambda$ - $3 - (2 - \lambda) + \lambda + \lambda$ - $3 - (2 - \lambda) + \lambda + \lambda$ - $3 - (2 - \lambda) + \lambda + \lambda$ - $4, 9 - \lambda$ - $4, 9 $
23 (H27-29)	1-((4-メトキシフェニル) メチル) -2,5-ジオキソ -3-(2-メチルプロピル) -9-(2-フェニルイミダ ゾール-5-イルメチル) -1,4,9-トリアザスピロ[5.5] ウンデカン
23 (H27-30)	$1 - ((4 - \lambda) + \lambda) + \lambda) - 2, 5 - \lambda + \lambda$ $-3 - (2 - \lambda) + \lambda + \lambda$ $-3 - (2 - \lambda) + \lambda$ $-3 - (4 - \lambda) + \lambda$ -3 -

表 27A-5

実施例番号	化合物名
23 (H27-31)	1 - (""" U"" U"" U"" U"" U"" U"" U"" U"" U
23 (H27-32)	1 - (""" U"" U"" U"" U"" U"" U"" U"" U"" U
23 (H27-33)	1-(ピリジン-2-イルメチル)-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(2H, 3H-ベンゾ[3,4-e]1,4-ジオキサン-6-イルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン
23 (H27-34)	1 - (l l l l l l l l l l l l l l l l l l
23 (H27-35)	1 - (
23 (H27-36)	1 - (""" U"" U"" U"" U"" U"" U"" U"" U"" U
23 (H27-37)	1 - (

表 27A-6

実施例番号	化合物名
23 (H27-38)	1 - (
23 (H27-39)	1 - (
23 (H27-40)	1 - (l l l l l l l l l l l l l l l l l l
23 (H27-41)	1 - (l l l l l l l l l l l l l l l l l l
23 (H27-42)	1 - (l l l l l l l l l l l l l l l l l l
23 (H27-43)	1 - (""" U"" U"" U"" U"" U"" U"" U"" U"" U
23 (H27-44)	1 - (""" U"" U"" U"" U"" U"" U"" U"" U"" U

表 27A-7

実施例番号	化合物名
23 (H27-45)	1 - (l l l l l l l l l l l l l l l l l l
23 (H27-46)	1 - (""" """" """ """ """ """" """" """ """ """ """" """ """ """" """ """"
23 (H27-47)	1 - (
23 (H27-48)	1 - (
23 (H27-49)	1 - (
23 (H27-50)	1 - (
23 (H27-51)	1 - (

<u>表 27A-8</u>

実施例番号	化合物名
23 (H27-52)	1 - (
23 (H27-53)	1 - (
23 (H27-54)	1-(ピリジン-4-イルメチル)-2,5-ジオキソ-3-(2-メチルプロピル)-9-((4-ヒドロキシフェニル)メチル)-1,4,9-トリアザスピロ[5.5]ウンデカン
23 (H27-55)	1 - ((2 - x + x + x + x + x + x + x + x + x + x
23 (H27-56)	1-((2-メチルフェニル) メチル) -2,5-ジオキソー3-(2-メチルプロピル) -9-((4-メトキシフェニル) メチル) -1,4,9-トリアザスピロ $[5.5]$ ウンデカン
23 (H27-57)	1-((2-メチルフェニル) メチル) -2,5-ジオキソー3-(2-メチルプロピル) -9-(1,4-ベンゾジオキサン-6-イルメチル) -1,4,9-トリアザスピロ[5.5] ウンデカン
23 (H27-58)	1-((2-メチルフェニル) メチル) -2,5-ジオキソー3-(2-メチルプロピル) -9-((4-フェノキシフェニル) メチル) -1,4,9-トリアザスピロ $[5.5]$ ウンデカン

表 27A-9

実施例番号	化合物名
23 (H27-59)	1 - ((2 - x + x + x + x + x + x + x + x + x + x
23 (H27-60)	1 - ((2 - x + x + x + x + x + x + x + x + x + x
23 (H27-61)	1-((2-メチルフェニル) メチル) -2,5-ジオキソー3-(2-メチルプロピル) -9-(2-フェニルイミダゾール-5-イルメチル) -1,4,9-トリアザスピロ[5.5]ウンデカン
23 (H27-62)	1-((2-)3+)7+(2-)3+(2-
23 (H27-63)	1 - ((3 - x + x + x + x + x + x + x + x + x + x
23 (H27-64)	1 - ((3 - x + x + x + x + x + x + x + x + x + x
23 (H27-65)	1-((3-メチルフェニル)メチル) -2 , $5-$ ジオキソー $3-(2-$ メチルプロピル) $-9-(1, 4-$ ベンゾジオキ サン $-6-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ [5.5] ウンデカン

<u>表 27A-10</u>

実施例番号	化合物名
23 (H27-66)	1-((3-メチルフェニル $)$ メチル $)-2$, $5-$ ジオキソー $3-(2-$ メチルプロピル $)-9-((4-$ フェノキシフェニル $)$ メチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H27-67)	1 - ((3 - x + x + x + x + x + x + x + x + x + x
23 (H27-68)	1 - ((3 - x + x + x + x + x + x + x + x + x + x
23 (H27-69)	1 - ((3 - x + x + x + x + x + x + x + x + x + x
23 (H27-70)	1 - ((3 - x + x + x + x + x + x + x + x + x + x
23 (H27-71)	1 - ((4 - x + x + x + x + x + x + x + x + x + x
23 (H27-72)	1-((4-メチルフェニル)メチル) -2 , $5-$ ジオキソ $-3-(2-$ メチルプロピル) $-9-((4-$ メトキシフェニル)メチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

表 27A-11

実施例番号	化合物名
23 (H27-73)	1-((4-メチルフェニル)メチル) -2 ,5 $-$ ジオキソ $-3-(2-$ メチルプロピル) $-9-(1,4-$ ベンゾジオキサン $-6-$ イルメチル) -1 ,4,9 $-$ トリアザスピロ[5.5]ウンデカン
23 (H27-74)	1-((4-メチルフェニル $)$ メチル $)-2$, $5-$ ジオキソー $3-(2-$ メチルプロピル $)-9-((4-$ フェノキシフェニル $)$ メチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H27-75)	1 - ((4 - x + x + x + x + x + x + x + x + x + x
23 (H27-76)	1 - ((4 - x + x + x + x + x + x + x + x + x + x
23 (H27-77)	1 - ((4 - x + x + x + x + x + x + x + x + x + x
23 (H27-78)	1-((4-メチルフェニル) メチル) -2 , $5-$ ジオキソー $3-(2-$ メチルプロピル) $-9-((4-$ ヒドロキシフェニル) メチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

表 28A-1

実施例番号	化合物名
23 (H28-1)	1-プロピル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (1, $4-$ ベンゾジオキサン $-6-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H28-2)	$1 - \mathcal{I} \Box \mathcal{I} \mathcal{U} \mathcal{U} - 2$, $5 - \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}$
23 (H28-3)	$1 - \mathcal{I}$ ロピルー2, $5 - \mathcal{I}$ オキソー $3 - \mathcal{I}$ クロヘキシルメチルー9 - $(5 - \mathcal{I}$ チルフランー $2 - \mathcal{I}$ ルメチル) - 1 , 4 , $9 - \mathcal{I}$ トリアザスピロ $[5. 5]$ ウンデカン
23 (H28-4)	$1 - \mathcal{I} \Box \mathcal{I} \mathcal{U} - 2$, $5 - \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}$
23 (H28-5)	$1 - \mathcal{I}$ ロピルー2, $5 - \mathcal{I}$ オキソー $3 - \mathcal{I}$ クロヘキシルメチルー9 - $(3 - \mathcal{I}$ チルチオフェンー $2 - \mathcal{I}$ ルメチル) - 1 , 4 , $9 - \mathcal{I}$ トリアザスピロ $[5.5]$ ウンデカン
23 (H28-6)	1-プロピル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ エチルフラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ [5 . 5] ウンデカン
23 (H28-7)	1-プロピル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (ピリジン $-4-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H28-8)	1-プロピル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($1-$ メチルインドール $-3-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ [5.5] ウンデカン
23 (H28-9)	$1 - \mathcal{I}$ ロピルー 2 , $5 - \mathcal{I}$ オキソー $3 - \mathcal{I}$ クロヘキシルメチルー $9 - (4 - \mathcal{I}$ チルイミダゾールー $5 - \mathcal{I}$ ルー $9 - \mathcal{I}$ ルー 1 ,

表 28A-2

実施例番号	化合物名
23 (H28-10)	$1-\mathcal{I}$ ロピルー2, $5-\mathcal{I}$ オキソー $3-\mathcal{I}$ クロヘキシルメチルー9ー(2, $4-\mathcal{I}$ オキソー1, $3-\mathcal{I}$ ヒドロピリミジンー $5-\mathcal{I}$ ールメチル)ー1, 4 , $9-\mathcal{I}$ ープザスピロ[5. 5]ウンデカン
23 (H28-11)	1-プロピルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($5-$ ($2-$ クロロフェニル) フランー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H28-12)	1 - プロピル - 2, $5 - ジオキソ - 3 - シクロヘキシルメチル - 9 - (5 - (3 - クロロフェニル) フラン - 2 - イルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
23 (H28-13)	1-プロピル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (5-)(ヒドロキシメチル)フラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ[5.5]ウンデカン
23 (H28-14)	1-プロピルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチル $1-$ 0
23 (H28-15)	1-プロピルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチル 0 0 0 0 0 0 0 0 0 0
23 (H28-16)	1-プロピル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ エチルチオフェン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H28-17)	$1 - \mathcal{I} \Box \mathcal{I} \mathcal{U} - 2$, $5 - \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} + 3 - \mathcal{I} \mathcal{I} \Box \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}$

表 28A-3

実施例番号	化合物名
23 (H28-18)	$1 - \mathcal{I}$ ロピルー2, $5 - \mathcal{I}$ オキソー $3 - \mathcal{I}$ クロヘキシルメチルー9 - (5 - (2 - トリフルオロメトキシフェニル) フランー2 - イルメチル) - 1, 4,9 - トリアザスピロ [5.5] ウンデカン
23 (H28-19)	$1 - \mathcal{C}$ ロピルー2, $5 - \mathcal{C}$ オキソー3 - シクロヘキシルメチルー9 - (6 - (メトキシカルボニル) インドールー3 - イルメチル) - 1, 4,9 - トリアザスピロ $\begin{bmatrix} 5 & 5 \end{bmatrix}$ ウンデカン
23 (H28-20)	$1-\mathcal{I}$ ロピルー2, $5-\mathcal{I}$ オキソー $3-\mathcal{I}$ クロヘキシルメチルー9ー($5-(2,6-\mathcal{I})$ クロロー $4-\mathcal{I}$ リフルオロメチルフェニル)フランー $2-\mathcal{I}$ ルメチル)ー1, 4 , $9-\mathcal{I}$ リアザスピロ[5 . 5] ウンデカン
23 (H28-21)	$1 - \mathcal{I}$ ロピルー2, $5 - \mathcal{I}$ オキソー $3 - \mathcal{I}$ クロヘキシルメチルー9 - $(4 - \mathcal{I}$ ロモチオフェンー $2 - \mathcal{I}$ ルメチル) - 1 , 4 , $9 - \mathcal{I}$ トリアザスピロ $[5.5]$ ウンデカン
23 (H28-22)	$1-\mathcal{I}$ ロピルー2, $5-\mathcal{I}$ オキソー $3-\mathcal{I}$ クロヘキシルメチルー9ー($5-(2-\mathcal{I})$ ロロー $5-\mathcal{I}$ トリフルオロメチルフェニル)フランー $2-\mathcal{I}$ ルメチル)ー1, 4 , $9-\mathcal{I}$ トリアザスピロ[5 . 5] ウンデカン
23 (H28-23)	1-プロピル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ ($3-$ トリフルオロメチルフェニル) フラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ [5.5] ウンデカン
23 (H28-24)	$1 - \mathcal{I}$ ロピルー 2, $5 - \mathcal{I}$ オキソー $3 - \mathcal{I}$ クロヘキシルメチル $- 9 - (1 - \mathcal{I}$ セチルインドールー $3 - \mathcal{I}$ ルー $9 - \mathcal{I}$ トリアザスピロ $[5.5]$ ウンデカン

表 28A-4

実施例番号	化合物名
23 (H28-25)	$1- \Im \Box \Box \Box U U - 2$, $5- \Im \Box $
23 (H28-26)	$1 - \mathcal{C} \Box \mathcal{C} \mathcal{U} - 2$, $5 - \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C}$
23 (H28-27)	1-プロピル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (5-(4-メトキシフェニル) チオフェン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H28-28)	$1-\mathcal{I}_{0}$ ロピルー 2, $5-\mathcal{I}_{0}$ オキソー $3-\mathcal{I}_{0}$ ロヘキシルメチルー $9-(5-(2-\mathcal{I}_{0})$ フランー $2-\mathcal{I}_{0}$ ルー 1 , 4 , $9-\mathcal{I}_{0}$ アザスピロ $[5.5]$ ウンデカン
23 (H28-29)	1-
23 (H28-30)	$1-\mathcal{I}$ ロピルー 2, $5-\mathcal{I}$ オキソー $3-\mathcal{I}$ クロヘキシルメチルー $9-(5-(4-\mathcal{I})$ フランー $2-\mathcal{I}$ ルメチル) -1 , 4 , $9-\mathcal{I}$ トリアザスピロ $[5.6]$ ウンデカン

表 29A-1

実施例番号	化合物名
23 (H29-1)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (1, $4-$ ベンゾジオキサン $-6-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-2)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (3, $5-$ ジメチル $-1-$ フェニルピラゾール $-4-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-3)	1-ブチルー2, $5-$ ジオキソー $3-$ シクロヘキシルメチル ー9- $(5-$ メチルフランー $2-$ イルメチル)-1, 4, 9 ートリアザスピロ $[5.5]$ ウンデカン
23 (H29-4)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチル ー $9-$ ($5-$ ブロモチオフェンー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-5)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチル ー $9-$ ($3-$ メチルチオフェンー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-6)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ エチルフラン $-2-$ イルメチル) -1 , 4 , $9-$ 0-トリアザスピロ $[5.5]$ ウンデカン
23 (H29-7)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチル ー $9-$ (ピリジンー $4-$ イルメチル) -1 , 4 , $9-$ トリア ザスピロ $[5.5]$ ウンデカン
23 (H29-8)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($1-$ メチルインドールー $3-$ イルメチル)ー 1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-9)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($4-$ メチルイミダゾール $-5-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

表 29A-2

実施例番号	化合物名
23 (H29-10)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (2, $4-$ ジオキソ -1 , $3-$ ジヒドロピリミジン $-$ 5 $-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-11)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($5-$ ($2-$ クロロフェニル)フランー $2-$ イルメチル)- 1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-12)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($5-$ ($3-$ クロロフェニル) フランー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-13)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチル ー $9-$ (インドールー $3-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-14)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチル ー $9-$ ($5-$ (ヒドロキシメチル) フランー $2-$ イルメチル) ー 1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-15)	1-ブチルー2, $5-$ ジオキソー $3-$ シクロヘキシルメチル -9-(5-(カルボキシ)チオフェン-2-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン
23 (H29-16)	1-ブチルー2, $5-$ ジオキソー $3-$ シクロヘキシルメチル ー9-(5-(カルボキシ) フランー $2-$ イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン
23 (H29-17)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ エチルチオフェン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-18)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($1-$ メチルベンゾイミダゾール $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

<u>表 29A-3</u>

実施例番号	化合物名
23 (H29-19)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ ($2-$ トリフルオロメトキシフェニル) フラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
23 (H29-20)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($6-$ (メトキシカルボニル)インドールー $3-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-21)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ (2 , $6-$ ジクロロ $-4-$ トリフルオロメチルフェニル)フラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-22)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($4-$ ブロモチオフェン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-23)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ ($2-$ クロロ $-5-$ トリフルオロメチルフェニル)フラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
23 (H29-24)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ ($3-$ トリフルオロメチルフェニル) フランー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-25)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($1-$ アセチルインドール $-3-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

表 29A-4

実施例番号	化合物名
23 (H29-26)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ (3 , $5-$ ビス(トリフルオロメチル)フェニル)フラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
23 (H29-27)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ クロロ $-3-$ メチル $-1-$ フェニルピラゾール $-4-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-28)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ ($4-$ メトキシフェニル)チオフェン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-29)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($5-$ ($2-$ トリフルオロメチルフェニル)フランー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H29-30)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (2, $5-$ ジメチル $-1-$ (4-カルボキシフェニル)ピロール $-3-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ[5.5]ウンデカン
23 (H29-31)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ ($4-$ クロロフェニル) フラン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.6]$ ウンデカン

表 30A-1

実施例番号	化合物名
23 (H30-1)	1-(2-3) (2-3) -2 (3-3) -2 (3-3) -2 (1) -2 (3-3) -2 (1) -2 (1) -2 (1) -2 (2) -2 (3-3) -2 (3-3) -2 (4) -2 (5) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (7) -2 (8) -2 (7) -2 (7) -2 (8) -2 (7) -2 (7) -2 (8) -2 (7) -2 (7) -2 (7) -2 (8) -2 (8) -2 (9) -2 (9) -2 (10) -2 (11) -2 (12) -2 (13) -2 (13) -2 (13) -2 (14) -2 (15) -2 (15) -2 (17) -2 (17) -2 (17) -2 (17) -2 (17) -2 (17) -2 (17) -2 (17) -2 (18) -2 (19) $-$
23 (H30-2)	1-(2-3) (2-3) $1-(2-3)$ (3) $1-(2-3)$ (4) $1-(2-3)$ (5) $1-(2-3)$ (6) $1-(2-3)$ (7) $1-(2-3)$ (7) $1-(2-3)$ (7) $1-(2-3)$ (8) $1-(2-3)$ (7) $1-(2-3)$ (8) $1-(2-3)$ (8) $1-(2-3)$ (9) $1-(2-3)$ (9) $1-(2-3)$ (10)
23 (H30-3)	1-(2-3)
23 (H30-4)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(5-$ ブロモチオフェン $-2-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-5)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(3-$ メチルチオフェン $-2-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-6)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(5-$ エチルフラン $-2-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-7)	1-(2-3) -2 , $5-3$ -3 -3 -3 -3 -3 -3 -3
23 (H30-8)	1-(2-x)++>x++)-2, $5-y++y-3-y-21-(2-x)++y++y-3-y+21-(2-x)++y+1-3-y+21-(2-x)+y+1$

表 30A-2

実施例番号	化合物名
23 (H30-9)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(4-$ メチルイミダゾール $-5-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-10)	1-(2-)++>x++)-2, 5-3++y-3->0 1-(2-)++>x++y-9-(2, 4-3++y-1, 3-3++y-1) 1-(2-)+++y-3-2+y-1 1-(2-)++++y-3-2+y-1 1-(2-)+++++++++++++++++++++++++++++++++++
23 (H30-11)	1-(2-3+2) -2 , $5-3+2$ -2 -2 -2 -2 -2 -2 -2 $-$
23 (H30-12)	1-(2-メトキシエチル)-2, $5-ジオキソ-3-シクロヘキシルメチル-9-(5-(3-クロロフェニル)フラン-2-イルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン$
23 (H30-13)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (インドール $-3-$ イルメチル $)-$ 1, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-14)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(5-(ヒドロキシメチル))$ フラン $-2-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-15)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(5-(カルボキシ)$ チオフェン $-2-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

表 30A-3

実施例番号	化合物名
23 (H30-16)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(5-(カルボキシ))$ フラン $-2-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (Н30-17)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(5-$ エチルチオフェン $-2-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-18)	1-(2-3) $(2-3)$ $($
23 (H30-19)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(5-(2-$ トリフルオロメトキシフェニル $)$ フラン $-2-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-20)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(6-($ メトキシカルボニル $)$ インドール $-3-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-21)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(5-(2,6-$ ジクロロ $-4-$ トリフルオロメチルフェニル $)$ フラン $-2-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-22)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(4-$ プロモチオフェン $-2-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

表 30A-4

実施例番号	化合物名
23 (H30-23)	1-(2-3) (2-3) $1-(2-3)$ (3-2) $1-(2-3)$ (3
23 (H30-24)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-(5-(3-$ トリフルオロメチルフェニル $)$ フランー $2-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-25)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(1-$ アセチルインドール $-3-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-26)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(5-(3,5-$ ビス(トリフルオロメチル)フェニル $)$ フラン $-2-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H30-27)	1-(2-3)
23 (H30-28)	1-(2-3) (2-3) $1-(2-3)$ (3-2) $1-(2-3)$ (4-3) $1-(2-3)$ (5-(4-3) $1-(2-3)$ (5-2) $1-(2-3)$ (5-2) $1-(2-3)$ (7-3) $1-(2-3)$
23 (H30-29)	$1-(2-x)++>x+\nu)-2$, $5-y++y-3-y-2$ 1-(2-x)++y-1 1-(2-x)+y-1 1-(2-x)+y-1 1-(2-x)+y-1 1-(2-x)+y-1 1-(2-x)+y-1 1-(2-x)+y-1 1-(2-x)+y-1 1-(2-x)+y-1 1-(2-x)+y-1

<u>表 30A-5</u>

実施例番号	化合物名
23 (H30-30)	$1-(2-\lambda)+2$ エチル) -2 、 $5-3$ オキソー $3-2$ ロヘキシルメチルー9ー(2 、 $5-3$ メチルー1ー(4ーカルボキシフェニル)ピロールー3ーイルメチル) -1 、4 、9ートリアザスピロ [5 . 5] ウンデカン
23 (H30-31)	1-(2-x++)x+y)-2, $5-y+y-3-y-21-(2-x++)x+y-9-(5-(4-2)y+y-1)1-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y-11-(2-x++)y+y+y-11-(2-x++)y+y+y-11-(2-x++)y+y+y-11-(2-x++)y+y+y-11-(2-x++)y+y+y-11-(2-x++)y+y+y-11-(2-x++)y+y+y-11-(2-x++)y+y+y+y-11-(2-x++)y+y+y+y+11-(2-x++)y+y+y+11-(2-x++)y+y+y+11-(2-x++)y+y+y+11-(2-x++)y+y+y+11-(2-x++)y+y+11-(2-x++)y+y+11-(2-x++)y+y+11-(2-x++)y+y+11-(2-x++)y+11-(2-x$

<u>表 31A-1</u>

実施例番号	化合物名
23 (H31-1)	1-ベンジル-2, $5-ジオキソ-3-シクロヘキシルメチル-9-(1, 4-ベンゾジオキサン-6-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン$
23 (H31-2)	1-ベンジルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ (3, $5-$ ジメチルー $1-$ フェニルピラゾールー $4-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H31-3)	$1 - \text{ベンジル} - 2$, $5 - \text{ジオキソ} - 3 - \text{シクロ} \text{ヘキシルメチ}$ $\mathcal{N} - 9 - (5 - \text{メチルフラン} - 2 - \text{イルメチル}) - 1$, 4 , $9 - \text{トリアザスピロ} [5.5] ウンデカン$
23 (H31-4)	1 - ベンジル - 2, $5 - ジオキソ - 3 - シクロへキシルメチ$ $n - 9 - (5 - ブロモチオフェン - 2 - イルメチル) - 1$, 4 , $9 - トリアザスピロ [5.5] ウンデカン$
23 (H31-5)	$1 - \langle x \rangle = 0$ $1 - \langle x \rangle =$
23 (H31-6)	$1 - \text{ベンジル} - 2$, $5 - \text{ジオキソ} - 3 - \text{シクロへキシルメチ}$ $\mathcal{N} - 9 - (5 - \text{エチルフラン} - 2 - \text{イルメチル}) - 1$, 4 , $9 - \text{トリアザスピロ} [5.5] ウンデカン$
23 (H31-7)	$1 - \langle x \rangle = 0$ $1 - \langle x \rangle =$
23 (H31-8)	$1 - \langle x \rangle = 0$ $1 -$
23 (H31-9)	$1 - \text{1} - \text{2} -$

表 31A-2

実施例番号	化合物名
23 (H31-10)	1-ベンジル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (2, $4-$ ジオキソ -1 , $3-$ ジヒドロピリミジン $-5-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H31-11)	1-ベンジル-2, $5-ジオキソ-3-シクロヘキシルメチル-9-(5-(2-クロロフェニル) フラン-2-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン$
23 (H31-12)	1-ベンジルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($5-$ ($3-$ クロロフェニル) フランー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H31-13)	$1 - \text{ベンジル} - 2$, $5 - \text{ジオキソ} - 3 - \text{シクロ} \text{ヘキシルメチ}$ $\mathcal{N} - 9 - (\text{インドール} - 3 - \text{イルメチル}) - 1$, 4 , $9 - \text{ト}$ \mathbf{U} $$
23 (H31-14)	1 - VVIV - 2, $5 - VIV + VVIV - 3 - VVIV - 2 + VVIV + VVIV - 3 - VVIV - 2 - VVIV + VVIV + VVIV - 2 - VVIV + VVIV +$
23 (H31-15)	1 - ベンジル - 2, $5 - ジオキソ - 3 - シクロへキシルメチ$
23 (H31-16)	1 - ベンジル - 2, $5 - ジオキソ - 3 - シクロへキシルメチ$
23 (H31-17)	$1 - \text{ベンジル} - 2$, $5 - \text{ジオキソ} - 3 - \text{シクロへキシルメチ}$ $\mathcal{N} - 9 - (5 - \text{エチルチオフェン} - 2 - \text{イルメチル}) - 1$, 4 , $9 - \text{トリアザスピロ} [5.5] ウンデカン$
23 (H31-18)	$1 - \langle x \rangle = 2$, $5 - \langle x \rangle = 2$, $5 - \langle x \rangle = 3 - \langle x \rangle = 2$, $5 - \langle x \rangle = 3 - \langle x \rangle = 2 - \langle x \rangle = 2$, $1 - \langle x \rangle = 2 - \langle x \rangle = 2$, $1 - \langle $

表 31A-3

実施例番号	化合物名
23 (H31-19)	$1 - \text{1} - \text{2} + \text{1} - \text{2} - \text{2} + \text{1} - \text{2} - \text{2} - \text{2} + \text{2} - \text{2} -$
23 (H31-20)	1-ベンジル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($6-$ (メトキシカルボニル) インドール $-3-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H31-21)	$1 - \text{ベンジル} - 2$, $5 - \text{ジオキソ} - 3 - \text{シクロへキシルメチ}$ $\mathcal{N} - 9 - (5 - (2, 6 - \text{ジクロロ} - 4 - \text{トリフルオロメチ}$ $\mathcal{N} - 3 - \text{NOT}$
23 (H31-22)	1 - ベンジル - 2, $5 - ジオキソ - 3 - シクロへキシルメチ$ $1 - VOUSLOOTE$
23 (H31-23)	$1 - \text{$^{-}\text{$^{-}\text{$^{\circ}$}}$}$ $1 - \text{$^{\circ}\text{$^{\circ}$}$}$ $0 - \text{$^{\circ}\text{$^{\circ}$}$}$ $0 - \text{$^{\circ}\text{$^{\circ}$}$}$ $0 - \text{$^{\circ}\text{$^{\circ}$}$}$ $0 - \text{$^{\circ}\text{$^{\circ}\text{$^{\circ}$}$}}$ $0 - \text{$^{\circ}\text{$^{\circ}\text{$^{\circ}$}$}}$ $0 - \text{$^{\circ}\text{$^{\circ}\text{$^{\circ}\text{$^{\circ}$}$}}}$ $0 - \text{$^{\circ}}\text{$^{\circ}}\text{$^{\circ}\text{$^{\circ}}\text{$^{\circ}}\text{$^{\circ}}\text{$^{\circ}}\text{$^{\circ}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
23 (H31-24)	$1 - \langle x \rangle = 2$, $5 - \langle x \rangle = 3 - \langle x \rangle = 2 - \langle x \rangle $
23 (H31-25)	$1 - \langle x \rangle = 0$ $1 - \langle x \rangle =$

表 31A-4

実施例番号	化合物名
23 (H31-26)	$1 - \text{1} \text{1}$
23 (H31-27)	1-ベンジルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($5-$ クロロー $3-$ メチルー $1-$ フェニルピラゾールー $4-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ [5.5] ウンデカン
23 (H31-28)	1-ベンジル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($5-$ ($4-$ メトキシフェニル) チオフェン $-2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H31-29)	1-ベンジルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($5-$ ($2-$ トリフルオロメチルフェニル)フランー $2-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H31-30)	1-ベンジル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (2, $5-$ ジメチル $-1-$ (4-カルボキシフェニル) ピロール $-3-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
23 (H31-31)	$1 - \text{ベンジル} - 2$, $5 - \text{ジオキソ} - 3 - \text{シクロへキシルメチ}$ $\mathcal{N} - 9 - (5 - (4 - \text{クロロフェニル}) フラン - 2 - \text{イルメ}$ $\mathcal{F} \mathcal{N}$) $- 1$, 4 , $9 - \text{トリアザスピロ} [5.6] ウンデカン$

$$\begin{array}{c|c} & H_3C \\ \hline \\ & O \\ \hline \\ & CH_2)_6 - N \\ \hline \\ & CH_3COOH \\ & O \\ \hline \\ & R^5 \\ \end{array}$$

実施例番号	R^3	R ⁴	R ⁵
23 (H22-1)	Н	X ₁ ······ H ₃ C	Н
23 (H22-2)	Н	X ₁ —CH ₃	н
23 (H22-3)	Н	X;·····CH₃	Н
23 (H22-4)	Н	X	Н
23 (H22-5)	Н	X ₁	н
23 (H22-6)	H	X:······O	н
23 (H22-7)	н	X;CH ₃	н
23 (H2 <u>2</u> -8)	Н	X _i ······〈 CH ₃	Н

実施例番号	R^3	R ⁴	R ⁵
23 (H22-9)	н	X ₁	Н
23 (H22-10)	Н	X;····· CH ₃	Н
23(H22-11)	Н	X:	H
23 (H22-12)	Н	X:	H
23 (H22-13)	H		Н
23 (H22-14)	н	× Co	Н
23 (H22-15)	Н	X ₁	Н
23 (H22-16)	Н	X OH	Н

実施例番号	R ³	R ⁴	R ⁵
23 (H22-17)	Ħ	X:	Н
23 (H22-18)	Н	X ₄ CH ₃	Н
23 (H22-19)	Н	X _i	Н
23 (H22-20)	Н	X ₁ —CH ₃	Н
23 (H22-21)	Н	X ₁ O	Ħ
23 (H22-22)	Н	X; CH ₃	Н
23 (H22-23)	Н	X,······s	Н
23(H22-24)	Н	Н .	Н

実施例番号	R ³	R ⁴	R ⁵
23 (H22-25)	Н	X; NH	Н
23 (H22-26)	. Н	X;, OH	н
23 (H22-27)	Ħ	X; S S	H
23 (H22-28)	Н	XX	Н
23 (H22-29)	Н	У. ОН	Н
23 (H22-30)	Н	X	Н
23 (H22-31)	Н	NH ₂	Н

実施例番号	R^3	R ⁴	R ⁵
23 (H22-32)	н	X.	Н
23 (H22-33)	Н	X;,CI	Н
23 (H22-34)	Н	H ₃ C CH ₃ X; CH ₃	Н
23 (H22-35)	Τ	X;CH ₃	Ӽ—СҢ₃
23 (H22-36)	Н	X;····· CH ₃	Н
23 (H22-37)	Н	X _i	Х ₅ —СН ₃
23 (H22-38)	Н	X;····· CH₃	Н
23 (H22-39)	Н	X;·····NH ₂	Н

実施例番号	R ³	R ⁴	R^5
23 (H22-40)	Н	X _i ······ CH₃	Н
23 (H22-41)	H	XCH ₃	Н
23 (H22-42)	Ή	X ₁	Н
23 (H22-43)	Н	X;, OH	Н
23 (H22-44)	Н	Х ¹ , ОН	H
23 (H22-45)	Н	X: "" S CH3	Н
23 (H22-46)	Н	X;, s H o CH3	Н
23 (H22-47)	Н	X-OH CH ₃	Н
23(H22-48)	Н	X;······ CI	Н

実施例番号	R ³	. R ⁴	R^5
23 (H22-49)	Н	X ₁	Н
23 (H22-50)	Н	X _{4····} F	Н
23 (H22-51)	Н	X _{i····} CN	Н
23 (H22-52)	Н	X	Н
23 (H22-53)	Н	X	Н
23 (H22-54)	Н		П
23 (H22-55)	Н	X ₁ NH O CH ₃ CH ₃ CH ₃	Н

実施例番号	R ³	R ⁴	R ⁵
23 (H22-56)	н	X,	Н
23 (H22-57)	Ħ	X	Н
23 (H22-58)	Ι	X ₄ CH ₃	Н
23 (H22-59)	Н	O CIT	I
23 (H22-60)	Н	Xi	Н
23 (H22-61)	Н	X N O	Н

実施例番号	R ³	R ⁴	R ⁵
23 (H22-62)	Н	X, O CH ₃	Н
23 (H22-63)	Н	X _i ······	Н
23 (H22-64)	Н	X:	Н

実施例番号	R ¹	\mathbb{R}^3	R ⁴
23 (H23-1)	° X	Н	H ₃ C CH ₃
23 (H23-2)	H ₃ C,	Н	H ₃ C CH ₃
23 (H23-3)	H ₃ C N X	н	H ₃ C CH ₃
23 (H23-4)	H ₃ C X ₁ CH ₃	Ι	H ₃ C CH ₃
23 (H23-5)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Н	H ₃ C CH ₃
23 (H23-6)	O N	Н	H ₃ C CH ₃
23 (H23-7)	H ₂ C X	Н	H ₃ C CH ₃
23 (H23-8)	X	Н	H ₃ C CH ₃

実施例番号	R^1	R ³	R⁴
23 (H23-9)	N X	н	H ₃ C CH ₃
23(H23-10)	o x	Н	x,
23(H23-11)	H ₃ C X	H	X ₁
23 (H23-12)	H ₃ C N X	Н	X ₁
23 (H23-13)	H ₃ C X ₁ CH ₃	Н	X ₁
23 (H23-14)	~~~x	Н	X
23 (H23-15)	Q _o C x	н	X ₁

実施例番号	R ¹	R ³	R⁴
23 (H23-16)	H ₂ C	Н	X
23 (H23-17)	X	Н	X ₁
23 (H23-18)	The state of the s	Н	X ₁

実施例番号	R ¹
23 (H24-1)	o x
23 (H24-2)	H ₃ C N CH ₃
23 (H24-3)	H ₃ C-\(\sqrt{\sqrt{ \chi_{ \chi} \chi_{ \chi}\q\chi_{ \chi_{ \chi_{\qua
23 (H24-4)	Br—\\S\X
23 (H24-5)	S X
23 (H24-6)	H ₃ C X
23 (H24-7)	X
23 (H24-8)	H ₃ C X

実施例番号	R ¹
23 (H24-9)	HN—CH ₃
23(H24-10)	O N O X
23(H24-11)	CI X
23(H24-12)	CI
23 (H24-13)	X H
23 (H24-14)	HO X
23 (H24-15)	HO S X
23 (H24-16)	HOOX

実施例番号	R ¹
23 (H24-17)	H ₃ C X
23 (H24-18)	CH ₃
23 (H24-19)	F X
23 (H24-20)	H ₃ C-O
23(H24-21)	F CI CI
23 (H24-22)	Br—X

$$\frac{\underline{\$} \ 24B-4}{\mathsf{CH}_3}$$
 $\mathsf{R}^1-\mathsf{N}$
 N

	· · · · · · · · · · · · · · · · · · ·
実施例番号	R ¹
23(H24-23)	CI F F
23(H24-24)	F F
23 (H24-25)	H ₃ C X ₁
23 (H24-26)	F F F
23(H24-27)	CI CH ₃
23 (H24-28)	H ₃ C O S X

表
$$24B-5$$
 CH_3
 O
 N
 N
 CH_3

実施例番号	R ¹
23(H24-29)	F F F O X
23 (H24-30)	H ₃ C H ₃ C X ₁
23 (H24-31)	CI—OXX

$$\begin{array}{c|c} \underline{\sharp} \ 25B-1 \\ \\ \text{H}_3\text{C} \\ \text{O} \\ \\ \text{R}^1-\text{N} \\ \bullet \ \text{CH}_3\text{COOH O} \\ \end{array} \begin{array}{c} \text{O} \\ \text{NH} \\ \text{CH}_3\text{C} \\ \end{array}$$

実施例番号	R ¹
23 (H25-1)	CO X
23 (H25-2)	H ₃ C N CH ₃
23 (H25-3)	H ₃ C — X
23 (H25-4)	Br—SX
23 (H25-5)	S X
23 (H25-6)	H ₃ C X
23 (H25-7)	X ₁ H ₃ C
23 (H25-8)	HN—CH ₃

実施例番号	R ¹
23 (H25-9)	O N O X
23(H25-10)	CI X
23(H25-11)	X H
23(H25-12)	HO X
23 (H25-13)	HO O X
23(H25-14)	H ₃ C X
23(H25-15)	CH ₃

$$\begin{array}{c|c} \underline{\sharp \ 25B-3} \\ \\ \text{H}_{3}\textbf{C} \\ \\ \textbf{O} \\ \\ \textbf{N} \\ \\ \textbf{N} \\ \\ \textbf{N} \\ \\ \textbf{O} \\ \\ \textbf{N} \\ \\ \textbf{O} \\ \\ \textbf{O}$$

実施例番号	R ¹
23 (H25-16)	F O X
23 (H25-17)	H ₃ C-O X ₁
23(H25-18)	F CI CI
23 (H25-19)	Br—X
23 (H25-20)	CI V F F F
23(H25-21)	F F

$$\begin{array}{c|c} \underline{\mathbb{R}} & 25B-4 \\ & \text{H}_3\text{C} \\ & \text{O} \\ & \text{R}^1-\text{N} \\ & \text{CH}_3\text{COOH O} \\ & \text{H}_3\text{C} \\ \end{array}$$

実施例番号	R ¹
23(H25-22)	H ₃ C X
23 (H25-23)	F F F F F F F F F F F F F F F F F F F
23(H25-24)	N CH ₃
23 (H25-25)	H ₃ C O X
23 (H25-26)	F F F O X
23(H25-27)	HO N X

実施例番号	R ¹
23 (H25-28)	CI—OX

実施例番号	R ¹
23 (H26-1)	o X
23 (H26-2)	H ₃ C N CH ₃
23 (H26-3)	H₃C—√O_X
23 (H26-4)	Br—\X
23 (H26-5)	S—X
23 (H26-6)	H ₃ C X
23 (H26-7)	X
23 (H26-8)	H ₃ C

実施例番号	R^1
23 (H26-9)	HN CH ₃
23(H26-10)	O N O
23 (H26-11)	CI
23 (H26-12)	CI
23 (H26-13)	X H
23 (H26-14)	HO
23 (H26-15)	HO S X

実施例番号	R ¹		
23 (H26-16)	HO O X		
23(H26-17)	H ₃ C X		
23 (H26-18)	N CH ₃		
23 (H26-19)	F X		
23(H26-20)	H ₃ C-O X		
23 (H26-21)	F CI CI		
23 (H26-22)	Br—X		

実施例番号	R ¹
23 (H26-23)	CI F F
23 (H26-24)	F F
23 (H26-25)	H ₃ C X
23 (H26-26)	F F F F F
23(H26-27)	N CH ₃

実施例番号	R ¹
23 (H26-28)	H ₃ C S X
23(H26-29)	F F X
23 (H26-30)	H ₃ C N N H ₃ C
23 (H26-31)	CI X

実施例番号	R ¹	R ²
23 (H27-1)	√×,	x ₂
23 (H27-2)	H ₃ C X	x ₂
23 (H27-3)	O X	X ₂
23 (H27-4)	X	X ₂
23 (H27-5)	X O	X ₂
23 (H27-6)	H ₃ C N CH ₃	xý Š
23 (H27-7)	X X	X ₂
23 (H27-8)	но	x ₂

実施例番号	R ¹	R ²
23 (H27-9)	X,	H ₃ C O X ₂
23 (H27-10)	H ₃ C _O X ₁	H ₃ C O X ₂
23 (H27-11)	o x	H ₃ C V ₂
23 (H27-12)	X X	H ₃ C O X ₂
23 (H27-13)	X O	H ₃ C O X ₂
23 (H27-14)	H ₃ C N CH ₃	H ₃ C O X

$$\underline{\underline{\mathbf{R^2}}}$$
 O

実施例番号	R ¹	R ²
23 (H27-15)	X N	H ₃ C V ₂
23 (H27-16)	но	H ₃ C O
23 (H27-17)	×	O-CH ₃
23 (H27-18)	H ₃ C X	O-CH ₃
23 (H27-19)	X	O-CH ₃
23 (H27-20)	X O	O-CH ₃
23 (H27-21)	H ₃ C X _{CH₃}	O-CH ₃

実施例番号	R ¹	R ²
23 (H27-22)	X X	O-CH ₃
23 (H27-23)	но	O-CH ₃
23 (H27-24)	X X	X ₂ CH ₃
23 (H27-25)	O	Z ₂ CH ₃
23 (H27-26)	X	X ₂ CH ₃
23 (H27-27)	X O	X ₂ CH ₃
23 (H27-28)	H ₃ C X	X ₂ CH ₃
23 (H27-29)	X X	X ₂ CH ₃

実施例番号	R ¹	R ²
23 (H27-30)	но	X ₂ CH ₃
23 (H27-31)	X,	N= X ₂
23 (H27-32)	H ₃ C X	N=
23 (H27-33)	o X	N= X ₂
23 (H27-34)	X	N= X ₂
23 (H27-35)	X	N= X ₂
23 (H27-36)	H ₃ C X CH ₃	X ₂ N=
23 (H27-37)	X N	N= X ₂

実施例番号	R ¹	R ²
23 (H27-38)	но	N=
23 (H27-39)	X X	X ₂
23 (H27-40)	H ₃ C X	X ₂
23(H27-41)	o X	X ₂
23 (H27-42)	X	X ₂
23 (H27-43)	X O	X ₂
23 (H27-44)	H ₃ C X	X ₂
23 (H27-45)	₩ X	X ₂

実施例番号	R ¹	R ²
23 (H27-46)	но	
23 (H27-47)	X X	X ₂ N
23 (H27-48)	H₃C O X	N X Z
23(H27-49)	CO X	X ₂ N
23 (H27-50)	X	N X2
23 (H27-51)	X O	N X2
23 (H27-52)	H ₃ C X ₁ CH ₃	X ₂
23 (H27-53)	X X	X ₂ N

実施例番号	R ¹	R ²
23 (H27-54)	но	X ₂ N
23 (H27-55)	×	H ₃ C X ₂
23 (H27-56)	H ₃ C O X	H ₃ C
23 (H27-57)	o X	H ₃ C
23 (H27-58)	X	H ₃ C
23 (H27-59)	X O	H ₃ C
23 (H27-60)	H ₃ C N CH ₃	H ₃ C

実施例番号	R ¹	R ²
23 (H27-61)	X X	H ₃ C X ₂
23 (H27-62)	но	H ₃ C
23 (H27-63)	X X	ZH ₃
23 (H27-64)	H ₃ C X	CH ₃
23 (H27-65)	O X	CH ₃
23 (H27-66)	X	CH ₃
23 (H27-67)	x o x	CH ₃

実施例番号	R ¹	R ²
23 (H27-68)	H ₃ C N CH ₃	CH ₃
23 (H27-69)	X X	ZH ₃
23(H27-70)	но	CH ₃
23(H27-71)	X X	X ₂ CH ₃
23 (H27-72)	H₃C O X	Z ₂ CH ₃
23 (H27-73)	o x	ZZ CH ₃
23 (H27-74)	Q X X	Z ₂ —CH ₃
23 (H27-75)	X O	X ₂ —CH ₃

実施例番号	R ¹	\mathbb{R}^2
23 (H27-76)	H ₃ C N CH ₃	X ₂ CH ₃
23 (H27-77)	X	CH ₃
23 (H27-78)	но	X ₂ CH ₃

実施例番号	R ¹
23 (H28-1)	o x
23 (H28-2)	H ₃ C N CH ₃
23 (H28-3)	н₃с— О Х
23 (H28-4)	Br—SX
23 (H28-5)	S X
23 (H28-6)	H ₃ C X
23 (H28-7)	X
23 (H28-8)	X H ₃ C

実施例番号	. R ¹	
23 (H28-9)	HN CH ₃	
23(H28-10)	O N O	
23(H28-11)	CI	
23 (H28-12)	CI	
23 (H28-13)	HO	
23(H28-14)	HO S X	
23(H28-15)	HOOX	
23 (H28-16)	H ₃ C X	

実施例番号	R ¹	
23 (H28-17)	N X CH ₃	
23 (H28-18)	FOX	
23 (H28-19)	H ₃ C-O X	
23 (H28-20)	F CI CI	
23 (H28-21)	Br—X	
23 (H28-22)	CI F F	

実施例番号	R ¹	
23 (H28-23)	F F	
23(H28-24)	H ₃ C X	
23 (H28-25)	F F F	
23 (H28-26)	N CH ₃	
23 (H28-27)	H ₃ C O X	
23 (H28-28)	F F F X	

実施例番号	R ¹
23 (H28-29)	HO N X
23 (H28-30)	CI—OX

実施例番号	R ¹
23 (H29-1)	o x
23 (H29-2)	H ₃ C N CH ₃
23 (H29-3)	H ₃ C—X
23 (H29-4)	Br—S—X
23 (H29-5)	S X
23 (H29-6)	H ₃ C X
23 (H29-7)	X

実施例番号	R ¹
23 (H29-8)	X H ₃ C
23 (H29-9)	HN CH ₃
23(H29-10)	O N O N
23 (H29-11)	CI
23(H29-12)	CI
23 (H29-13)	X X
23 (H29-14)	HO

	<u></u>
実施例番号	R ¹
23 (H29-15)	HO S X
23 (H29-16)	HO O X
23 (H29-17)	H ₃ C X
23 (H29-18)	N X CH ₃
23 (H29-19)	F O
23 (H29-20)	H ₃ C-O X
23(H29-21)	F CI

実施例番号	R ¹
23 (H29-22)	Br—X
23 (H29-23)	CI V F F
23(H29-24)	F F
23 (H29-25)	H ₃ C X
23 (H29-26)	F F F F F F F F F F F F F F F F F F F

実施例番号	R ¹
23 (H29-27)	N CH ₃
23 (H29-28)	H ₃ C O S X
23 (H29-29)	FF
23 (H29-30)	HO N N X
23 (H29-31)	CI——X

実施例番号	R ¹
23 (H30-1)	o x
23 (H30-2)	H ₃ C N CH ₃
23 (H30-3)	H ₃ C—X
23 (H30-4)	Br—S—X
23 (H30-5)	S X
23 (H30-6)	H ₃ C X
23 (H30-7)	X

実施例番号	R ¹
23 (H30-8)	H ₃ C
23 (H30-9)	HN CH ₃
23 (H30-10)	O N O X
23 (H30-11)	CI O X
23 (H30-12)	CI
23 (H30-13)	X X
23 (H30-14)	HO

実施例番号	R ¹
23 (H30-15)	HO S X
23 (H30-16)	HO O X
23 (H30-17)	H ₃ C X
23 (H30-18)	N X
23 (H30-19)	F O X
23 (H30-20)	H ₃ C-O X ₁

実施例番号	R^1
23 (H30-21)	F CI CI
23 (H30-22)	Br—X
23 (H30-23)	CI V F F F F
23 (H30-24)	F F
23 (H30-25)	H ₃ C X

実施例番号	R ¹
23 (H30-26)	F F F F F F F F F F F F F F F F F F F
23 (H30-27)	N CH ₃
23 (H30-28)	H ₃ C O-X S X
23 (H30-29)	F F F V V V V V V V V V V V V V V V V V
23 (H30-30)	HO N X
23 (H30-31)	ci—Q_X

実施例番号	R ¹
23 (H31-1)	o x
23 (H31-2)	H ₃ C N CH ₃
23 (H31-3)	H ₃ C—X
23 (H31-4)	Br—S—X
23 (H31-5)	CH ₃
23 (H31-6)	H ₃ C X
23 (H31-7)	X

実施例番号	R^1
23 (H31-8)	H ₃ C X
23 (H31-9)	HN CH ₃
23(H31-10)	ON O
23 (H31-11)	CI O X
23 (H31-12)	CI
23 (H31-13)	X X
23 (H31-14)	HO

実施例番号	R ¹
23 (H31-15)	HOSXX
23 (H31-16)	HO O X
23 (H31-17)	H ₃ C X
23 (H31-18)	CH ₃
23 (H31-19)	F X
23 (H31-20)	H ₃ C-O X
23 (H31-21)	F CI

実施例番号	R ¹
23 (H31-22)	Br—X
23 (H31-23)	F F
23(H31-24)	F F
23(H31-25)	H ₃ C X
23(H31-26)	F F O X

実施例番号	R ¹
23 (H31-27)	CI CH ₃
23 (H31-28)	H ₃ C S X
23 (H31-29)	F F F X
23 (H31-30)	HO N N X
23 (H31-31)	CI—

表 22C-1

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H22-1)	E	3.67	442 (M + H) ⁺ , 369.	APCI (Pos., 40 V)
23 (H22-2)	E	3.67	442 (M + H) ⁺ , 440, 369.	APCI (Pos., 40 V)
23 (H22-3)	Е	3.22	400 (M + H) ⁺ , 398, 370, 327.	APCI (Pos., 40 V)
23 (H22-4)	E	3.76	476 (M + H) ⁺ , 400.	APCI (Pos., 40 V)
23 (H22-5)	E	3.36	586 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-6)	E	3.78	506 (M + H) ⁺ , 398.	APCI (Pos., 40 V)
23 (H22-7)	E	3.73	506 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-8)	E	3.97	520 (M + H) ⁺ , 412, 356.	APCI (Pos., 40 V)
23 (H22-9)	E	2.99	477 (M + H) ⁺ , 400.	APCI (Pos., 40 V)
23 (H22-10)	E	3.70	442 (M + H) ⁺ , 412, 369.	APCI (Pos., 40 V)
23 (H22-11)	E	4.03	526 (M + H) ⁺ , 453, 372.	APCI (Pos., 40 V)
23 (H22-12)	E	4.06	482 (M + H) ⁺ , 409.	APCI (Pos., 40 V)
23 (H22-13)	E	4.04	526 (M + H) ⁺ , 453, 372.	APCI (Pos., 40 V)
23 (H22-14)	E	4.10	540 (M + H) ⁺ , 416.	APCI (Pos., 40 V)
23 (H22-15)	E	4.29	582 (M + H) ⁺ , 492.	APCI (Pos., 40 V)
23 (H22-16)	E	3.15	416 (M + H) ⁺ , 398.	APCI (Pos., 40 V)
23 (H22-17)	E	4.29	582 (M + H) ⁺ , 492.	APCI (Pos., 40 V)
23 (H22-18)	E	3.71	442 (M + H) ⁺ , 440, 412, 369.	APCI (Pos., 40 V)
23 (H22-19)	E	4.05	482 (M + H) ⁺ , 452, 409.	APCI (Pos., 40 V)
23 (H22-20)	E	3.97	520 (M + H) ⁺ , 478, 412.	APCI (Pos., 40 V)
23 (H22-21)	E	3.89	506 (M + H) ⁺ , 398.	APCI (Pos., 40 V)
23 (H22-22)	E	4.02	552 (M + H) ⁺ , 398.	APCI (Pos., 40 V)
23 (H22-23)	E	4.03	522 (M + H) ⁺ , 432, 398.	APCI (Pos., 40 V)
23 (H22-24)	E	3.20	386 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-25)	E	2.93	466 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-26)	Е	3.79	416 (M + H) ⁺ .	APCI (Pos., 40 V)

表 22C-2

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H22-27)	E	4.16	586 (M + H) ⁺ , 432, 398, 295.	APCI (Pos., 40 V)
23 (H22-28)	E	3.34	556 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-29)	E	3.33	492 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-30)	E	4.12	625 (M + H) ⁺ , 491.	APCI (Pos., 40 V)
23 (H22-31)	Е	3.10	486 (M + H) ⁺ , 484.	APCI (Pos., 40 V)
23 (H22-32)	E	4.06	526 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-33)	E	4.22	544 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-34)	E	3.90	488 (M + H) ⁺ , 398.	APCI (Pos., 40 V)
23 (H22-35)	E	3.82	456 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-36)	E	3.11	428 (M + H) ⁺ , 355.	APCI (Pos., 40 V)
23 (H22-37)	E	4.39	596 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-38)	Е	3.18	430 (M + H) ⁺ , 386	APCI (Pos., 40 V)
23 (H22-39)	E	3.12	443 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-40)	E	3.18	430 (M + H) ⁺ , 386, 356.	APCI (Pos., 40 V)
23 (H22-41)	E	3.22	400 (M + H) ⁺ , 398, 370, 327.	APCI (Pos., 40 V)
23 (H22-42)	E	2.98	$477 (M + H)^{+}$.	APCI (Pos., 40 V)
23 (H22-43)	E	3.17	444 (M + H) ⁺ , 398.	APCI (Pos., 40 V)
23 (H22-44)	Е	3.32	$492 (M + H)^{+}$.	APCI (Pos., 40 V)
23 (H22-45)	Е	4.53	$460 (M + H)^{+}$.	APCI (Pos., 40 V)
23 (H22-46)	Е	2.26	503 (M + H) ⁺ , 432, 398, 263.	APCI (Pos., 40 V)
23 (H22-47)	E	3.20	430 (M + H) ⁺ , 386.	APCI (Pos., 40 V)
23 (H22-48)	E	3.87	510 (M + H) ⁺ , 472.	APCI (Pos., 40 V)
23 (H22-49)	E	4.11	526 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-50)	E	3.89	494 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-51)	E	3.27	425 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-52)	Е	3.74	515 (M + H) ⁺ .	APCI (Pos., 40 V)

<u>表 22C-3</u>

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H22-53)	E	4.19	$625 (M + H)^{+}$.	APCI (Pos., 40 V)
23 (H22-54)	E	3.93	534 (M + H) ⁺ , 458.	APCI (Pos., 40 V)
23 (H22-55)	E	4.08	667 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-56)	E	3.94	534 (M + H) ⁺ , 458.	APCI (Pos., 40 V)
23 (H22-57)	E	4.02	591 (M + H) ⁺ , 457.	APCI (Pos., 40 V)
23 (H22-58)	E	3.79	506 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-59)	E	4.01	591 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-60)	E	3.91	577 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-61)	E	3.47	586 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-62)	E	3.94	520 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-63)	E	4.33	552 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H22-64)	E	4.21	552 (M + H) ⁺ .	APCI (Pos., 40 V)

表 23C

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H23-1)	E	3.00	444 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H23-2)	E	3.07	416 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H23-3)	E	2.52	457 (M + H) ⁺ , 296, 162.	APCI (Pos., 40 V)
23 (H23-4)	E	3.17	480 (M + H) ⁺ , 296, 217, 185.	APCI (Pos., 40 V)
23 (H23-5)	E	3.80	492 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H23-6)	E	3.79	478 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H23-7)	E	3.43	442 (M + H) ⁺ , 402, 336, 296.	APCI (Pos., 40 V)
23 (H23-8)	E	3.86	498 (M + Na) ⁺ , 476 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H23-9)	Е	2.90	$452 (M + H)^{+}, 296.$	APCI (Pos., 40 V)
23 (H23-10)	E	3.57	484 (M + H) ⁺ , 332.	APCI (Pos., 40 V)
23 (H23-11)	E	3.62	$456 (M + H)^{+}$.	APCI (Pos., 40 V)
23 (H23-12)	E	3.22	497 (M + H) ⁺ , 336, 162.	APCI (Pos., 40 V)
23 (H23-13)	E	3.69	520 (M + H) ⁺ , 185.	APCI (Pos., 40 V)
23 (H23-14)	E	4.16	$532 (M + H)^{+}$.	APCI (Pos., 40 V)
23 (H23-15)	Е	4.16	518 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H23-16)	E	3.89	482 (M + H) ⁺ , 442, 376, 336.	APCI (Pos., 40 V)
23 (H23-17)	E	4.21	516 (M + H) ⁺ .	APCI (Pos., 40 V)
23 (H23-18)	E	3.48	492 (M + H) ⁺ , 336, 189 , 157.	APCI (Pos., 40 V)

表 24C-1

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H24-1)	F	3.07	416 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-2)	F	3.11	452 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-3)	F	3.04	362 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-4)	F	3.16	442 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-5)	F	3.07	378 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-6)	F	3.12	376 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-7)	F	2.74	359 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-8)	F	3.18	411 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-9)	F	2.76	362 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-10)	F	2.76	392 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-11)	F	3.35	458 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-12)	F	3.38	458 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-13)	F	3.12	397 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-14)	F	2.87	378 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-15)	F	2.92	408 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-16)	F	2.89	392 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-17)	F	3.18	392 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-18)	F	3.01	412 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-19)	F	3.44	508 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-20)	F	3.11	455 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-21)	F	3.53	560 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-22)	F	3.12	442 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-23)	F	3.49	526 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-24)	F	3.42	492 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-25)	F	3.16	439 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-26)	F	3.57	560 (M + H) ⁺ .	ESI (Pos., 20 V)

表 24C-2

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H24-27)	F	3.18	472 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-28)	F	3.33	470 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-29)	F	3.38	492 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-30)	F	3.16	495 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H24-31)	F	3.38	458 (M + H) ⁺ .	ESI (Pos., 20 V)

表 25C-1

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H25-1)	F	3.16	430 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-2)	F	3.18	466 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-3)	F	3.11	376 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-4)	F	3.23	456 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-5)	F	3.16	392 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-6)	F	3.20	390 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-7)	F	3.28	425 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-8)	F	2.85	376 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-9)	F	2.89	$406 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H25-10)	F	3.44	$472 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H25-11)	F	3.18	411 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-12)	F	3.45	392 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-13)	F	2.96	$406 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H25-14)	F	3.27	406 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-15)	F	3.09	426 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-16)	F	3.53	$522 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H25-17)	F	3.18	469 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-18)	F	3.60	$574 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H25-19)	F	3.22	456 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-20)	F	3.55	$540 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H25-21)	F	3.49	506 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-22)	F	3.25	$453 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H25-23)	F	3.64	574 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-24)	F	3.25	486 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-25)	F	3.42	484 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-26)	F	3.47	506 (M + H) ⁺ .	ESI (Pos., 20 V)

表 25C-2

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H25-27)	F	3.24	509 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H25-28)	F	3.47	472 (M + H) ⁺ .	ESI (Pos., 20 V)

			表 26C-1	
実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H26-1)	F	3.25	444 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-2)	F	3.26	480 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-3)	F	3.22	390 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-4)	F	3.33	470 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-5)	F	3.23	406 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-6)	F	3.29	404 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-7)	F	2.93	387 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-8)	F	3.34	439 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-9)	F	2.93	390 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-10)	F	2.97	420 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-11)	F	3.50	486 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-12)	F	3.52	486 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-13)	F	3.28	425 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-14)	F	3.04	406 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-15)	F	3.11	436 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-16)	F	3.04	$420 (M + H)^{+}$	ESI (Pos., 20 V)
23 (H26-17)	F	3.35	420 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-18)	F	3.20	440 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-19)	F	3.58	536 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-20)	F	3.25	$483 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H26-21)	F	3.68	588 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-22)	F	3.30	472 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-23)	F	3.62	554 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-24)	F	3.57	520 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-25)	F	3.33	467 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-26)	F	3.71	588 (M + H) ⁺ .	ESI (Pos., 20 V)

表 26C-2

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H26-27)	F	3.33	500 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-28)	F	3.49	498 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-29)	F	3.52	520 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-30)	F	3.32	523 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H26-31)	F	3.55	486 (M + H) ⁺ .	ESI (Pos., 20 V)

表 27C-1

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H27-1)	F	3.31	420 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-2)	F	3.33	450 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-3)	F	3.31	478 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-4)	F	3.55	512 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-5)	F	3.58	526 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-6)	F	3.33	514 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-7)	F	3.16	486 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-8)	F	3.18	436 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-9)	F	3.31	450 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-10)	F	3.33	480 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-11)	F	3.33	508 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-12)	F	3.58	542 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-13)	F	3.60	556 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-14)	F	3.34	544 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-15)	F	3.18	516 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-16)	F	3.22	466 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-17)	F	3.29	450 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-18)	F	3.33	480 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-19)	F	3.56	542 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-20)	F	3.58	556 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-21)	F	3.33	544 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-22)	F	3.18	516 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-23)	F	3.20	466 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-24)	F	3.29	450 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-25)	F	3.31	508 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-26)	F	3.55	542 (M + H) ⁺ .	ESI (Pos., 20 V)

表 27C-2

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H27-27)	F	3.56	556 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-28)	F	3.33	544 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-29)	F	3.17	516 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-30)	F	3.20	466 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-31)	F	2.92	421 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-32)	F	2.97	451 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-33)	F	2.96	479 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-34)	F	3.22	513 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-35)	F	3.25	527 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-36)	F	3.00	515 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-37)	F	2.87	487 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-38)	F	2.83	437 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-39)	F	2.90	421 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-40)	F	2.94	451 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-41)	F	2.92	$479 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H27-42)	F	3.16	513 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-43)	F	3.20	527 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-44)	F	2.98	$515 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H27-45)	F	2.85	487 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-46)	F	2.81	437 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-47)	F	2.89	421 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-48)	F	2.94	451 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-49)	F	2.92	479 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-50)	F	3.16	513 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-51)	F	3.18	527 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-52)	F	2.98	515 (M + H) ⁺ .	ESI (Pos., 20 V)

表 27C-3

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H27-53)	F	2.83	487 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-54)	F	2.81	437 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-55)	F	3.33	434 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-56)	F	3.36	464 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-57)	F	3.34	492 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-58)	F	3.60	526 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-59)	F	3.62	540 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-60)	F	3.36	528 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-61)	F	3.20	500 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-62)	F	3.23	450 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-63)	F	3.36	434 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-64)	F	3.38	464 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-65)	F	3.36	492 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-66)	F	3.62	526 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-67)	F	3.62	540 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-68)	F	3.38	$528 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H27-69)	F	3.23	$500 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H27-70)	F	3.25	$450 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H27-71)	F	3.36	434 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-72)	F	3.38	$464 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H27-73)	F	3.36	492 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-74)	F	3.62	526 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-75)	F	3.62	540 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-76)	F	3.36	528 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-77)	F	3.22	500 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H27-78)	F	3.23	450 (M + H) ⁺ .	ESI (Pos., 20 V)

表 28C-1

実施例番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H28-1)	F	3.36	470 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-2)	F	3.37	506 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-3)	F	3.31	416 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-4)	F	3.42	498 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-5)	F	3.35	432 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-6)	F	3.41	430 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-7)	F	3.04	413 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-8)	F	3.45	465 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-9)	F	3.03	416 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-10)	F	3.77	446 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-11)	F	3.61	512 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-12)	F	3.61	512 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-13)	F	3.15	432 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-14)	F	3.22	462 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-15)	F	3.16	446 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-16)	F	3.46	446 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-17)	F	3.29	466 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-18)	F	3.68	562 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-19)	F	3.36	509 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-20)	F	3.76	614 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-21)	F	3.42	498 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-22)	F	3.71	580 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-23)	F	3.66	546 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-24)	F	3.44	493 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-25)	F	3.79	614 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-26)	F	3.42	526 (M + H) ⁺ .	ESI (Pos., 20 V)

表 28C-2

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H28-27)	F	3.58	524 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-28)	F	3.62	546 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-29)	F	3.42	549 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H28-30)	F	3.62	512 (M + H) ⁺ .	ESI (Pos., 20 V)

表 29C-1

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H29-1)	F	3.44	484 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-2)	F	3.44	520 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-3)	F	3.42	430 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-4)	F	3.53	512 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-5)	F	3.44	446 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-6)	F	3.49	444 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-7)	F	3.09	427 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-8)	F	3.53	479 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-9)	F	3.11	430 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-10)	F	3.14	460 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-11)	F	3.67	526 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-12)	F	3.69	526 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-13)	F	3.47	465 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-14)	F	3.23	446 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-15)	F	3.29	476 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-16)	F	3.24	460 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-17)	F	3.55	460 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-18)	F	3.35	480 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-19)	F	3.73	576 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-20)	F	3.44	523 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-21)	F	3.83	628 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-22)	F	3.49	510 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-23)	F	3. 77	594 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-24)	F	3.72	560 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-25)	F	3.52	507 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-26)	F	3.85	628 (M + H) ⁺ .	ESI (Pos., 20 V)

表_29C-2

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H29-27)	F	3.51	540 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-28)	F	3.66	538 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-29)	F	3.69	560 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-30)	F	3.47	563 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H29-31)	F	3.68	526 (M + H) ⁺ .	ESI (Pos., 20 V)

表 30C-1

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H30-1)	F	3.27	486 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-2)	F	3.31	522 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-3)	F	3.24	432 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-4)	F	3.34	512 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-5)	F	3.29	448 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-6)	F	3.33	446 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-7)	F	2.98	429 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-8)	F	3.38	481 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-9)	F	2.98	432 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-10)	F	3.01	462 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-11)	F	3.51	528 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-12)	F	3.55	528 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-13)	F	3.33	467 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-14)	F	3.09	448 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-15)	F	3.16	478 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-16)	F	3.09	462 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-17)	F	3.36	462 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-18)	F	3.22	482 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-19)	F	3.60	$578 (M + H)^{+}$.	ESI (Pos., 20 V)
23 (H30-20)	F	3.31	525 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-21)	F	3.69	630 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-22)	F	3.33	512 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-23)	F	3.64	596 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-24)	F	3.59	562 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-25)	F	3.34	509 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-26)	F	3.71	630 (M + H) ⁺ .	ESI (Pos., 20 V)

表 30C-2

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H30-27)	F	3.34	542 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-28)	F	3.51	540 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-29)	F	3.53	562 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-30)	F	3.34	565 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H30-31)	F	3.55	528 (M + H) ⁺ .	ESI (Pos., 20 V)

表 31C-1

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H31-1)	F	3.47	518 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-2)	F	3.47	554 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-3)	F	3.45	464 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-4)	F	3.55	544 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-5)	F	3.47	480 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-6)	F	3.53	478 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-7)	F	3.14	461 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-8)	F	3.56	513 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-9)	F	3.14	464 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-10)	F	3.20	494 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-11)	F	3.69	560 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-12)	F	3.71	560 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-13)	F	3.51	499 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-14)	F	3.27	480 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-15)	F	3.33	510 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-16)	F	3.29	494 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-17)	F	3.58	494 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-18)	F	3.40	514 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-19)	F	3.75	610 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-20)	F	3.49	557 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-21)	F	3.86	662 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-22)	F	3.53	544 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-23)	F	3.80	628 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-24)	F	3.75	594 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-25)	F	3.57	541 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-26)	F	3.86	662 (M + H) ⁺ .	ESI (Pos., 20 V)

表 31C-2

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
23 (H31-27)	F	3.53	574 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-28)	F	3.67	572 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-29)	F	3.71	594 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-30)	F	3.51	597 (M + H) ⁺ .	ESI (Pos., 20 V)
23 (H31-31)	F	3.73	560 (M + H) ⁺ .	ESI (Pos., 20 V)

実施例24(1)~24(119)

参考例 2で製造した樹脂(3)およびN-アリルオキシカルボニル-4-ピペリドンと、n-プロピルアミンおよびN-(t-ブチルオキシカルボニル)ロイシンの代わりにそれぞれ相当する化合物を用いて、参考例 $3 \rightarrow$ 参考例 4 と同様の操作をし、さらに 3 、5-ジメチル-1-フェニル-4-ホルミルピラゾールの代わりに、相当する化合物を用いて、参考例 $5 \rightarrow$ 参考例 $6 \rightarrow$ 実施例 1 と同様の操作をし、以下の本発明化合物を得た。

実施例24(1)

5

10 (3S) -1-ブチル-2, 5-ジオキソ-3-(4-メトキシフェニルメチル) -9-シクロヘキシルメチル-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

15 NMR (CD₃OD) : δ 7.06 (d, J = 9.0 Hz, 2H), 6.84 (d, J = 9.0 Hz, 2H), 4.31 (dd, J = 4.5, 3.6 Hz, 1H), 3.82-3.67 (m, 4H), 3.49-3.30 (m, 3H), 3.25 (dd, J = 13.8, 3.6 Hz, 1H), 3.23-3.10 (m, 2H), 2.95-2.87 (m, 2H), 2.87 (dd, J = 13.8, 4.5 Hz, 1H), 2.31 (m, 1H), 2.05 (m, 1H), 1.91-1.64 (m, 7H), 1.56-1.14 (m, 7H), 1.09-0.91 (m, 2H), 2.95-2.87 (m, 2H), 2.56-1.14 (m, 2H), 2.05-0.91 (m, 2H), 2.05 (m, 2H), 2.05

5H), 0.26 (m, 1H).

実施例24(2)

1 ーブチルー2, 5 ージオキソー3 ー (2 ーメチルプロピル) - 9 ー (2 ー
 5 (4 ークロロフェニル) チオフェンー5 ーイルメチル) - 1, 4, 9 ートリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.60 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.65 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 3.6 Hz, 1H), 7.34 (d, J = 3.6 Hz, 1H), 4.61 (brs, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.95-3.72 (m, 2H), 3.65-3.50 (m, 2H), 3.44-3.34 (m, 2H), 2.50-2.12 (m, 4H), 1.89-1.45 (m, 5H), 1.45-1.28 (m, 2H), 1.13-0.89 (m, 9H).

実施例24(3)

10

15 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(2-(4-メトキシフェニル) チオフェン-5-イルメチル)-1, 4, 9-ト リアザスピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.60 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.57 (d, J = 9.0 Hz, 2H), 7.33-7.26 (m, 2H), 6.97 (d, J = 9.0 Hz, 2H), 4.58 (brs, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.93-3.71 (m, 5H), 3.64-3.50 (m, 2H), 3.44-3.34 (m, 2H), 2.49-2.12 (m, 4H), 1.90-1.45 (m, 5H), 1.45-1.28 (m, 2H), 1.03-0.88 (m, 9H).

実施例24(4)

TLC: Rf 0.32 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 7.52 (d, J = 8.7 Hz, 2H), 7.44-7.35 (m, 2H), 7.22-7.14 (m, 1H), 7.06 (d, J = 8.7 Hz, 2H), 7.10-7.00 (m, 2H), 5.75-5.60 (m, 1H), 5.52-5.38 (m,

1H), 4.33 (s, 2H), 4.15-3.93 (m, 2H), 4.03 (dd, J = 7.8, 4.5 Hz, 1H), 3.88-3.66 (m, 2H), 3.55-3.42 (m, 2H), 2.52-2.35 (m, 2H), 2.28-2.08 (m, 2H), 1.90-1.57 (m, 3H), 1.65 (dd, J = 6.3, 1.5 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H).

5 実施例24(5)

1-(フラン-2- (1) - 2, 5- (2-) - 3- (2-) -

TLC:Rf 0.33 (クロロホルム:メタノール=20:1);
NMR (CD₃OD): δ7.52 (d, J = 8.7 Hz, 2H), 7.43-7.36 (m, 3H), 7.18 (t, J = 7.2 Hz, 1H), 7.09-6.99 (m, 4H), 6.33 (m, 1H), 6.28 (d, J = 3.0 Hz, 1H), 4.69 (s, 2H), 4.33 (s, 2H), 4.08 (dd, J = 7.8, 4.5 Hz, 1H), 3.87-3.72 (m, 2H), 3.57-3.42 (m, 2H), 2.65-2.38 (m, 2H), 2.30-2.12 (m, 2H), 1.90-1.56 (m, 3H), 0.93 (d, J = 6.6 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H)。

実施例24(6)

20

1-(チオフェン-2-イルメチル)-2,5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.39 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD): δ 7.53 (d, J = 8.7 Hz, 2H), 7.43-7.34 (m, 2H), 7.27 (dd, J = 5.1, 1.2 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 7.09-7.00 (m, 5H), 6.91 (dd, J = 5.1, 3.3 Hz, 1H), 4.92 (brs, 2H), 4.32 (s, 2H), 4.11 (dd, J = 7.8, 4.5 Hz, 1H), 3.84-3.66 (m, 2H), 3.53-3.41 (m, 2H), 2.68-2.46 (m, 2H), 2.23-2.06 (m, 2H), 1.95-1.59 (m, 3H), 0.95 (d, J = 6.6 Hz, 6H).

実施例24(7)

5

10 1-シクロプロピルメチルー 2, 5-ジオキソー 3-(2-メチルプロピル) -9-(4-フェニルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC:Rf 0.40(クロロホルム:メタノール=20:1);

15 NMR (CD₃OD) : δ 7.53 (d, J = 8.7 Hz, 2H), 7.43-7.35 (m, 2H), 7.18 (t, J = 7.2

Hz, 1H), 7.08-7.00 (m, 4H), 4.33 (s, 2H), 4.04 (dd, J = 7.8, 4.5 Hz, 1H), 3.87-3.68 (m, 2H), 3.56-3.43 (m, 2H), 3.46-3.35 (m 2H), 2.56-2.35 (m, 2H), 2.23-2.12 (m, 2H), 1.95-1.58 (m, 3H), 1.10-0.95 (m, 1H), 0.95 (d, J = 6.6 Hz, 6H), 0.56-0.45 (m, 2H), 0.42-0.34 (m, 2H).

5

実施例24(8)

1-(2-7)ルプロフェニルメチル)-2, 5-ジオキソ-3-(2-メチルプロピル) <math>-9-(4-7)エニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

10

15

TLC: Rf 0.43 (0.43) (0.43);

NMR (CD₃OD) : δ 7.48 (d, J = 9.0 Hz, 2H), 7.42-7.34 (m, 2H), 7.32-7.21 (m, 1H), 7.17 (t, J = 7.5 Hz, 1H), 7.14-7.06 (m, 3H), 7.06-6.98 (m, 4H), 4.80 (brs, 2H), 4.30 (s, 2H), 4.18 (dd, J = 8.1, 4.8 Hz, 1H), 3.86-3.68 (m, 2H), 3.50-3.35 (m, 2H), 2.50-2.30 (m, 1H), 2.30-2.14 (m, 3H), 1.94-1.62 (m, 3H), 0.97 (d, J = 6.3 Hz, 6H).

実施例24(9)

1-(3-メチル-2-ブテニル)-2, 5-ジオキソ-3-(2-メチル)20 プロピル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-ト

リアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.29 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 7.52 (d, J = 8.4 Hz, 2H), 7.43-7.35 (m, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.09-7.00 (m, 4H), 4.97 (br, 1H), 4.32 (s, 2H), 4.20-4.00 (m, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.90-3.68 (m, 2H), 3.55-3.45 (m, 2H), 2.52-2.32 (m, 2H), 2.30-2.08 (m, 2H), 1.90-1.56 (m, 3H), 1.74 (s, 3H), 1.69 (s, 3H), 0.94 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3

10 実施例24(10)

5

1-ブチルー2, 5-ジオキソー3- (2-メチルプロピル) -9- (キノリンー3-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2 塩酸塩

TLC: R f 0.25 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 9.52 (d, J = 1.5 Hz, 1H), 9.35 (d, J = 1.5 Hz, 1H), 8.35 (d, J = 8.7 Hz, 1H), 8.27 (d, J = 8.7 Hz, 1H), 8.24-8.16 (m, 1H), 8.04-7.96 (m, 1H), 4.76 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 4.00-3.85 (m, 2H), 3.68-3.55 (m, 2H), 3.55-3.43 (m, 2H), 2.76-2.56 (m, 2H), 2.27-2.05 (m, 2H), 1.82-1.10 (m, 15H), 1.05-0.83 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H).

実施例24(11)

5

15

1-ブチル-2, 5-ジオキソ-3-(ベンジルオキシカルボニルメチル) -9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC:Rf 0.74(クロロホルム:メタノール=9:1);

NMR (CD₃OD) : δ 7.52 (d, J = 7.0 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.33 (m, 5H), 7.18 (t, J = 7.5 Hz, 1H), 7.05 (m, 4H), 5.12 (s, 2H), 4.33 (s, 2H), 4.31 (m, 1H), 3.88 (m, 1H), 3.66 (m, 1H), 3.50-3.35 (m, 4H), 3.08 (dd, J = 17.7, 4.8 Hz, 1H), 2.86 (dd, J = 17.7, 3.0 Hz, 1H), 2.34 (m, 2H), 2.25 (m, 2H), 1.50 (m, 2H), 1.36 (m, 2H), 0.94 (t, J = 7.5 Hz, 3H).

実施例24(12)

1-(3-メチル-2-ブテニル)-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(1, 4-ベンゾジオキサン-6-イルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

5

10

15

TLC: R f 0.63 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.04 (d, J = 2.1 Hz, 1H), 6.96 (dd, J = 8.1, 2.1 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 4.96 (m, 1H), 4.26 (s, 4H), 4.22 (s, 2H), 4.10-4.00 (m, 3H), 3.84-3.68 (m, 2H), 3.52-3.40 (m, 2H), 2.43-2.08 (m, 4H), 1.84-1.42 (m, 13H), 1.38-1.12 (m, 4H), 1.04-0.85 (m, 2H).

実施例24(13)

1-ブチルー2, 5-ジオキソー3-シクロヘキシルメチルー9-((2E) -3-フェニルー2-プロペニル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: R f 0.28 (0.28 (0.28 (0.28 (0.28 (0.28);

NMR (CD₃OD) : δ 7.53-7.48 (m, 2H), 7.30-7.40 (m, 3H), 6.95 (d, J = 16.2 Hz, 1H), 6.36 (dd, J = 16.2, 8.1 Hz, 1H), 4.07 (dd, J = 7.5, 4.5 Hz, 1H), 3.96 (d, J = 8.1 Hz, 2H), 3.86-3.75 (m, 2H), 3.60-3.52 (m, 2H), 3.42-3.34 (m, 2H), 2.42-2.18 (m, 4H), 1.82-1.14 (m, 15H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H) $_{\circ}$

実施例24(14)

5

(3S) -1 - \overline{J} - 1 - \overline{J} - 1 -

TLC: Rf 0.50 (0.50 (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50)

NMR (CD₃OD) : δ 7.54 (d, J = 8.5 Hz, 2H), 7.39 (m, 2H), 7.18 (t, J = 7.5 Hz,

1H), 7.08-7.02 (m, 4H), 4.34 (s, 2H), 3.88 (m, 2H), 3.62 (s, 1H), 3.46 (m, 4H), 2.45 (m, 2H), 2.13 (m, 2H), 1.66-1.47 (m, 2H), 1.36 (m, 2H), 1.02 (s, 9H), 0.95 (t, J = 7.0 Hz, 3H).

5 実施例24(15)

(3S) -1-ブチル-2,5-ジオキソ-3-(1,1-ジメチルエチル)-9-(1,4-ベンゾジオキサン-6-イルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン・塩酸塩

10 TLC:Rf 0.47 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ7.07 (m, 1H), 6.99 (d, J = 8.0 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 4.26 (m, 4H), 4.24 (s, 2H), 3.83 (m, 2H), 3.62 (s, 1H), 3.45 (m, 4H), 2.42 (m, 2H), 2.11 (m, 2H), 1.64-1.5 (m, 2H), 1.38 (m, 2H), 1.01 (s, 9H), 0.95 (t, J = 7.0 Hz, 3H)。

15

実施例24(16)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-メチルチアゾール-2-イルメチル)-1, 4, 9-トリアザスピロ[5. 5] ウンデカン・塩酸塩

TLC: Rf 0.67 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 7.34 (s, 1H), 4.73 (s, 2H), 4.01 (dd, J = 8.0, 4.5 Hz, 1H), 3.93 (m, 2H), 3.65 (m, 2H), 3.41 (m, 2H), 2.53-2.41 (m, 2H), 2.48 (s, 3H), 2.23 (m, 2H), 1.85-1.52 (m, 5H), 1.38 (m, 2H), 0.96 (t, J = 7.0 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H), 0.93 (d, J = 6.5 Hz, 3H).

実施例24(17)

5

1-ブチルー2, 5-ジオキソー3-シクロヘキシルメチルー9-(5-メ 10 チルチアゾールー2-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

NMR (CD₃OD) : δ 7.34 (s, 1H), 4.72 (s, 2H), 4.04 (dd, J = 7.5, 4.5 Hz, 1H),

3.98-3.86 (m, 2H), 3.67-3.63 (m, 2H), 3.44-3.38 (m, 2H), 2.56-2.42 (m, 2H), 2.48 (s, 3H), 2.30-2.14 (m, 2H), 1.84-1.18 (m, 15H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H).

5 実施例24(18)

1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-メチルチアゾール-2-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

10 TLC: Rf 0.63 (クロロホルム: メタノール=10:1);

NMR (CD₃OD) : δ 7.63 (s, 1H), 4.69 (s, 2H), 4.03 (dd, J = 7.3, 4.5 Hz, 1H), 3.96-3.82 (m, 2H), 3.72-3,58 (m, 2H), 3.42-3.37 (m, 2H), 2.52 (s, 3H), 2.56-2.36 (m, 2H), 2.28-2.12 (m, 2H), 1.80-1.12 (m, 15H), 0.96 (t, J = 7.5 Hz, 3H), 0.96 (m, 2H).

15

実施例24(19)

1-ブチルー2, 5-ジオキソー3- (2-メチルプロピル) -9- (5-メチルチアゾールー2-イルメチル) -1, 4, 9-トリアザスピロ [5. 5] ウンデカン・塩酸塩

TLC: R f 0.70 (0.70 (0.70 (0.70 (0.70);

NMR (CD₃OD) : δ 7.63 (s, 1H), 4.69 (brs, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.99-3.83 (m, 2H), 3.70-3.58 (m, 2H), 3.44-3.34 (m, 2H), 2.53 (s, 3H), 2.50-2.33 (m, 2H), 2.32-2.12 (m, 2H), 1.88-1.46 (m, 5H), 1.45-1.31 (m, 2H), 1.01-0.90 (m, 9H).

実施例24(20)

5

(3R) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 10 - (1, 4-ベンゾジオキサン-6-イルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.59(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.04 (d, J = 2.0 Hz, 1H), 6.97 (dd, J = 8.5, 2.0 Hz, 1H), 6.93

(d, J = 8.5 Hz, 1H), 4.26 (s, 4H), 4.24 (s, 2H), 4.04 (dd, J = 7.5, 5.0 Hz, 1H), 3.76 (m, 2H), 3.46 (m, 4H), 2.39-2.11 (m, 4H), 1.78-1.17 (m, 15H), 0.95 (t, J = 7.0 Hz, 3H), 0.95 (m, 2H).

HPLC条件

5 使用したカラム: YMC CHIRAL-CD BR、0.46×25cm、YMC、DB12S05-2546WTI;

使用した流速: 0.5mL/min;

使用した溶媒

A液:0.1Mリン酸二水素カリウム水溶液

10 B液:アセトニトリル

A: B = 84:16;

使用したUV:235nm;

保持時間:18min。

15 実施例24(21)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - シクロヘキシルメチル - 9 - (1, 4 - ベンゾジオキサン - 6 - イルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.59 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.04 (d, J = 2.0 Hz, 1H), 6.97 (dd, J = 8.5, 2.0 Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H), 4.26 (s, 4H), 4.24 (s, 2H), 4.04 (dd, J = 7.5, 5.0 Hz, 1H), 3.76 (m, 2H), 3.46 (m, 4H), 2.39-2.11 (m, 4H), 1.78-1.17 (m, 15H), 0.95 (t, J = 7.0 Hz, 3H), 0.95 (m, 2H).

HPLC条件

5

20

使用したカラム: YMC CHIRAL-CD BR、0.46×25cm、YMC、DB12S05-2546WTI;

使用した流速:0.5mL/min;

10 使用した溶媒

A液:0.1Mリン酸二水素カリウム水溶液

B液:アセトニトリル

A: B = 84:16;

使用したUV:235nm;

15 保持時間: 20 min。

実施例24(22)

(3R) - 1 - ブチル - 2, 5 - ジオキソ - 3 - ((1R) - 1 - メチルプロピル) - 9 - (4 - フェニルオキシフェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・塩酸塩

TLC: R f 0.59 (0.59) (0.

NMR (CD₃OD) : δ 7.53 (d, J = 8.5 Hz, 2H), 7.39 (m, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.08-7.01 (m, 4H), 4.33 (s, 2H), 3.96 (d, J = 2.5 Hz, 1H), 3.92 (m, 1H), 3.75 (m, 1H), 3.53-3.44 (m, 4H), 2.49-2.32 (m, 2H), 2.16 (m, 2H), 2.06-1.98 (m, 1H), 1.61-1.21 (m, 6H), 1.00-0.89 (m, 9H).

実施例24(23)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-((1S)-1-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.59 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.53 (d, J = 8.5 Hz, 2H), 7.39 (m, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.08-7.01 (m, 4H), 4.33 (s, 2H), 3.96 (d, J = 2.5 Hz, 1H), 3.92 (m, 1H), 3.75 (m, 1H), 3.53-3.44 (m, 4H), 2.49-2.32 (m, 2H), 2.16 (m, 2H), 2.06-1.98 (m, 1H), 1.61-1.21 (m, 6H), 1.00-0.89 (m, 9H) _ο

実施例24(24)

1-(2-ブチニル)-2, 5-ジオキソ-3-(2-メチルプロピル)-20 9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ

[5.5] ウンデカン・塩酸塩

TLC:Rf 0.70(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.51 (d, J = 8.7 Hz, 2H), 7.39 (dd, J = 8.7, 7.2 Hz, 2H), 7.18 (t, J = 7.2 Hz, 1H), 7.09-7.00 (m, 4H), 4.33 (brs, 2H), 4.28-4.10 (m, 2H), 4.05 (dd, J = 7.8, 4.5 Hz, 1H), 3.86-3.70 (m, 2H), 3.56-3.43 (m, 2H), 2.59-2.40 (m, 2H), 2.34-2.15 (m, 2H), 1.89-1.57 (m, 6H), 0.94 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H).

10 実施例24(25)

5

1-(2-7) チェル) -2 , 5-9 オキソー3-9 クロヘキシルメチルー9 -(1,4-4) ジオキサンー6-4 ルメチル) -1 , 4 , 9-1 アザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.52 (0.52) (0.52) (0.52) (0.52) (0.52) (0.52) (0.52)

NMR (CD₃OD) : δ 7.04 (d, J = 2.1 Hz, 1H), 6.97 (dd, J = 8.4, 2.1 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 4.26 (s, 4H), 4.23 (s, 2H), 4.18 (brs, 2H), 4.07 (dd, J = 6.9, 4.8 Hz, 1H), 3.84-3.68 (m, 2H), 3.55-3.42 (m, 2H), 2.57-2.40 (m, 2H), 2.32-2.12 (m, 2H), 1.85-1.42 (m, 11H), 1.38-1.13 (m, 3H), 1.04-0.85 (m, 2H).

実施例24(26)

5

15

1-ペンチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(1,4-ベンゾジオキサン-6-イルメチル)-1,4,9-トリアザスピロ[5.10 5] ウンデカン・塩酸塩

TLC: Rf 0.61 (クロロホルム: メタノール=10:1); NMR (CD₃OD): δ 7.04 (d, J = 2.1 Hz, 1H), 6.97 (dd, J = 8.4, 2.1 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 4.26 (s, 4H), 4.22 (brs, 2H), 4.03 (dd, J = 7.2, 4.5 Hz, 1H), 3.84-3.67 (m, 2H), 3.52-3.33 (m, 4H), 2.43-2.07 (m, 4H), 1.83-1.42 (m, 9H), 1.41-1.13 (m, 8H), 1.04-0.85 (m, 5H)。

実施例24(2<u>7)</u>

1-(3-メトキシフェニルメチル)-2, 5-ジオキソ-3-(ベンジルオキシメチル)-9-(3, 5-ジメチル-1-フェニルピラゾール-4-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・2 塩酸塩

5

10

NMR (CD₃OD) : δ 7.60-7.43 (m, 5H), 7.38-7.24 (m, 5H), 7.14 (t, J = 8.4 Hz, 1H), 6.83-6.72 (m, 3H), 4.96-4.70 (m, 2H), 4.60 (d, J = 11.4 Hz, 1H), 4.50 (d, J = 11.4 Hz, 1H), 4.29 (t, J = 2.4 Hz, 1H), 4.24 (s, 2H), 4.02 (dd, J = 9.6, 2.4 Hz, 1H), 3.93-3.79 (m, 1H), 3.72 (s, 3H), 3.70 (dd, J = 9.6, 2.4 Hz, 1H), 3.70-3.60 (m, 1H), 3.55-3.44 (m, 1H), 3.35-3.23 (m, 1H), 2.58-2.05 (m, 10H).

実施例24(28)

(3R) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

 $TLC: R f = 0.29 (D \Box \Box \pi \lambda \Delta : \forall B) = 10:1);$

NMR (CD₃OD) : δ 7.54 (d, J = 8.7 Hz, 2H), 7.42-7.36 (m, 2H), 7.18 (m, 1H), 7.05 (d, J = 8.7 Hz, 2H), 7.05 - 7.02 (m, 2H), 4.32 (s, 2H), 4.01 (dd, J = 7.8, 4.8 Hz, 1H), 3.85-3.72 (m, 2H), 3.50-3.39 (m, 4H), 2.52-2.38 (m, 2H), 2.24-2.11 (m, 2H), 1.84-1.20 (m, 7H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.93 (d, J = 6.3 Hz, 3H).

HPLC条件

使用したカラム: CHIRALCEL OD-R、0.46×25cm、DAICEL、ODR0CE-HD028;

10 使用した流速:0.4mL/min;

使用した溶媒

A液:0.2Mリン酸二水素カリウム水溶液

B液:アセトニトリル

A: B = 64: 36;

15 使用したUV:235nm;

保持時間: 30min。

<u>実施例24(29</u>)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(4-フェニルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.29 (0.29)

NMR (CD₃OD) : δ 7.54 (d, J = 8.7 Hz, 2H), 7.42-7.36 (m, 2H), 7.18 (m, 1H), 7.05 (d, J = 8.7 Hz, 2H), 7.05-7.02 (m, 2H), 4.33 (s, 2H), 3.98 (dd, J = 8..1, 4.5 Hz, 1H), 3.86-3.72 (m, 2H), 3.53-3.37 (m, 4H), 2.47-2.36 (m, 2H), 2.24-2.12 (m, 2H), 1.80-1.30 (m, 7H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.93 (d, J = 6.3 Hz, 3H).

HPLC条件

- 5

使用したカラム: CHIRALCEL OD-R、0.46×25cm、DAICEL、ODR0CE-HD028;

10 使用した流速: 0.4m L/m i n;

使用した溶媒

A液:0.2Mリン酸二水素カリウム水溶液

B液:アセトニトリル

A : B = 64 : 36;

15 使用したUV:235nm;

保持時間:28min。

実施例24(30)

1 ーブチルー2, 5 ージオキソー3 ーシクロペンチルメチルー9 ー (1, 4
 20 ーベンゾジオキサンー6ーイルメチル)ー1, 4, 9ートリアザスピロ[5.
 5] ウンデカン・塩酸塩

TLC: Rf 0.53 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.05 (d, J = 2.0 Hz, 1H), 6.98 (dd, J = 8.5, 2.0 Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H), 4.26 (s, 4H), 4.23 (s, 2H), 3.99 (t, J = 6.0 Hz, 1H), 3.77 (m, 2H), 3.46 (m, 2H), 3.37 (m, 2H), 2.36 (m, 2H), 2.15 (m, 2H), 1.96 (m, 1H), 1.81 (m, 4H), 1.59 (m, 6H), 1.36 (m, 2H), 1.15 (m, 2H), 0.95 (t, J = 7.0 Hz, 3H).

実施例24(31)

5

1-プロピルー 2, 5-ジオキソー 3- (シクロヘキシルメチルオキシメチ 10 ル) -9- (3, 5-ジメチルー 1-フェニルピラゾールー 4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・ 2 塩酸塩

TLC: Rf 0.63 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 7.59-7.46 (m, 5H), 4.33 (s, 2H), 4.08 (m, 1H), 4.00 (m, 1H), 3.83 (m, 1H), 3.77 (m, 1H), 3.59 (m, 2H), 3.52 (m, 1H), 3.25 (d, J= 6.5 Hz, 2H), 2.53 (m, 2H), 2.42 (m, 1H), 2.40 (s, 3H), 2.39 (s, 3H), 2.21 (m, 2H), 1.69 (m, 6H), 1.52 (m, 2H), 1.21 (m, 4H), 0.95 (t, J = 7.0 Hz, 3H), 0.88 (m, 2H).

5

実施例24(32)

(3S) -1 - $\overline{)}$ -1 - $\overline{)}$ -1 - 1

10

15

TLC: Rf 0.47 (クロロホルム: メタノール= 10:1);

NMR (CD_3OD): δ 7.06-6.90 (m, 3H), 4.26 (s, 4H), 4.23 (s, 2H), 3.95 (d, J = 3.3 Hz, 1H), 3.87 (m, 1H), 3.70 (m, 1H), 3.58-3.42 (m, 4H), 2.56-2.30 (m, 2H), 2.20-1.98 (m, 2H), 1.54-1.00 (m, 7H), 0.99 (d, J = 7.2 Hz, 3H), 0.95 (t, J = 7.5 Hz, 3H), 0.91 (t, J = 7.5 Hz, 3H).

実施例24(33)

(3R) -1-ブチル-2, 5-ジオキソ-3-(1-メチルプロピル) -9-(1, 4-ベンゾジオキサン-6-イルメチル) -1, 4, 9-トリア
 びスピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.47 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 7.06-6.91 (m, 3H), 4.26 (s, 4H), 4.23 (s, 2H), 3.95 (d, J = 3.3 Hz, 1H), 3.87 (m, 1H), 3.70 (m, 1H), 3.56-3.40 (m, 4H), 2.50-2.32 (m, 2H), 2.18-1.96 (m, 2H), 1.62-1.17 (m, 7H), 0.99 (d, J = 7.2 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 7.5 Hz, 3H).

実施例24(34)

1ーブチルー2,5ージオキソー3ー(2ーメチルプロピル)-9ー(5-10 フェニルメチルチオフェンー2ーイルメチル)-1,4,9ートリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.56 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.32-7.21 (m, 5H), 7.17 (d, J = 3.6 Hz, 1H), 6.89 (d, J = 3.6 Hz, 1H), 4.51 (s,2H), 4.17 (s, 2H), 4.00 (dd, J = 7.8 Hz, 4.5 Hz, 1H), 3.84-3.72 (m,

2H), 3.56-3.44 (m, 2H), 3.38-3.32 (m, 2H), 2.42-2.14 (m, 4H), 1 .84-1.30 (m, 7H), 0.95 (t, J = 6.9 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H), 0.92 (d, J = 6.3 Hz, 3H).

実施例24(35)

5 1ーブチルー2,5ージオキソー3ーシクロヘキシルメチルー9ー(2ーフェニルメチルチオフェンー5ーイルメチル)-1,4,9ートリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.59 (クロロホルム:メタノール=10:1);

NMR (CD₃OD): δ 7.32-7.21 (m, 5H), 7.18 (d, J = 3.6 Hz, 1H), 6.89 (d, J = 3.6 Hz, 1H), 4.51 (s, 2H), 4.17 (s, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.84-3.72 (m, 2H), 3.58-3.44 (m, 2H), 3.40-3.36 (m, 2H), 2.44-2.08 (m, 4H), 1.81-1.07 (m, 15H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (m, 2H).

15 実施例24(36)

(3R) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1

TLC: Rf 0.41 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 7.05 (s, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 4.26 (s, 4H), 4.23 (s, 2H), 4.00 (dd, J = 7.0, 3.0 Hz, 1H), 3.83 - 3.64 (m, 2H), 3.50 (m, 2H), 3.38 (m, 2H), 2.35 (m, 2H), 2.25 (m, 2H), 1.99 (m, 1H), 1.55 (m, 1H), 1.50 (m, 2H), 1.35 (m, 2H), 0.99 (s, 9H), 0.95 (t, J = 7.0 Hz, 3H) $_{\circ}$

実施例24(37)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2, 2-ジメチルプロピ
 10 ル) -9-(1, 4-ベンゾジオキサン-6-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.41 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 7.05 (s, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 4.26 (s, 4H), 4.23 (s, 2H), 4.00 (dd, J = 7.0, 3.0 Hz, 1H), 3.83 - 3.63 (m, 2H),

3.50 (m, 2H), 3.38 (m, 2H), 2.35 (m, 2H), 2.25 (m, 2H), 1.99 (dd, J = 14.0, 3.0 Hz, 1H), 1.55 (dd, J = 14.0, 7.0 Hz, 1H), 1.50 (m, 2H), 1.35 (m, 2H), 0.99 (s, 9H), 0.95 (t, J = 7.0 Hz, 3H).

5 実施例24(38)

(3R) - 1 - (2 - ブチニル) - 2, 5 - ジオキソ-3 - (2, 2 - ジメ チルプロピル) -9 - (4 - フェニルオキシフェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・塩酸塩

TLC: Rf 0.60 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ7.51 (d, J = 8.7 Hz, 2H), 7.39 (dd, J = 8.7, 7.5 Hz, 2H), 7.18
(t, J = 7.5 Hz, 1H), 7.10-7.00 (m, 4H), 4.33 (brs, 2H), 4.33-4.09 (m, 2H), 4.03 (dd, J = 6.9, 3.3 Hz, 1H), 3.85-3.68 (m, 2H), 3.58-3.43 (m, 2H), 2.59-2.41 (m, 2H), 2.40-2.20 (m, 2H), 2.03 (dd, J = 14.4, 3.3 Hz, 1H), 1.75 (brs, 3H), 1.56 (dd, J = 14.4, 6.9 Hz, 1H), 0.99 (s, 9H)。

実施例24 (39)

20

TLC: Rf 0.60 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.51 (d, J = 8.7 Hz, 2H), 7.39 (dd, J = 8.7, 7.5 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.10-7.00 (m, 4H), 4.33 (brs, 2H), 4.33-4.09 (m, 2H), 4.03 (dd, J = 6.9, 3.3 Hz, 1H), 3.85-3.68 (m, 2H), 3.58-3.43 (m, 2H), 2.59-2.41 (m, 2H), 2.40-2.20 (m, 2H), 2.03 (dd, J = 14.4, 3.3 Hz, 1H), 1.75 (brs, 3H), 1.56 (dd, J = 14.4, 6.9 Hz, 1H), 0.99 (s, 9H).

実施例24(40)

10 1-ブチル-2,5-ジオキソ-3-シクロヘプチルメチル-9-(1,4 -ベンゾジオキサン-6-イルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.70 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.04 (d, J = 2.1 Hz, 1H), 6.97 (dd, J = 8.4, 2.1 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 4.26 (s, 4H), 4.24 (s, 2H), 3.99 (dd, J = 8.1, 4.2 Hz, 1H), 3.84-3.70 (m, 2H), 3.45 (m, 2H), 3.36 (m, 2H), 2.37-2.11 (m, 4H), 1.80-1.49 (m, 15H), 1.36 (m, 2H), 1.22 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H).

5

実施例24(41)

1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(2, 4, 6-トリメトキシフェニルメチル) <math>-1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

10

TLC: Rf 0.55 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 6.31 (s, 2H), 4.26 (s, 2H), 4.03 (dd, J = 7.8, 4.5 Hz, 1H), 3.89 (s, 6H), 3.84 (s, 3H), 3.84-3.73 (m, 2H), 3.54-3.33 (m, 4H), 2.44-2.25 (m, 2H), 2.24-2.03 (m, 2H), 1.84-1.12 (m, 15H), 1.06-0.85 (m, 5H).

15

実施例24(42)

1-ブチル-2, 5-ジオキソ-3-(3-シクロヘキシルプロピル)-9-(1, 4-ベンゾジオキサン-6-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC:Rf 0.71(クロロホルム:メタノール=10:1);

NMR (CD₃OD): δ 7.05-6.91 (m, 3H), 4.26 (s, 4H), 4.22 (s, 2H), 4.04 (t, J = 5.4 Hz, 1H), 3.84 (m, 1H), 3.67 (m, 1H), 3.54-3.40 (m, 3H), 3.35 (m, 1H), 2.44-2.08 (m, 4H), 1.90-1.16 (m, 19H), 0.95 (t, J = 7.5 Hz, 3H), 0.95 (m, 2H).

実施例24(43)

5

10

1-ブチルー2, 5-ジオキソー3-(3-シクロヘキシルプロピル) -9 -(4-フェニルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.76 (DDDT + VA: VB) = 10:10;

NMR (CD₃OD) : δ 7.53-7.49 (m, 2H), 7.42-7.36 (m, 2H), 7.18 (m, 1H), 7.10-7.02 (m, 4H), 4.32 (s, 2H), 4.04 (t, J = 4.8 Hz, 1H), 3.87 (m, 1H), 3.71 (m, 1H), 3.56-3.40 (m, 3H), 3.35 (m, 1H), 2.48-2.12 (m, 4H), 1.86-1.10 (m, 19H), 0.95 (t, J = 7.5 Hz, 3H), 0.95 (m, 2H).

実施例24(44)

5

15

1 ーブチルー2, 5 ージオキソー3 ー (3 ーシクロヘキシルプロピル) - 9
 - (3, 5 ージメチルー1 ーフェニルピラゾールー4 ーイルメチル) - 1,
 4, 9 ートリアザスピロ [5. 5] ウンデカン・2 塩酸塩

NMR (CD₃OD): δ 7.59-7.45 (m, 5H), 4.31 (s, 2H), 4.06 (t, J = 5.0 Hz, 1H), 3.92 (m, 1H), 3.77 (m, 1H), 3.63-3.37 (m, 4H), 2.44 (m, 2H), 2.39 (s, 3H), 2.38 (s,

TLC: Rf 0.64 (クロロホルム: メタノール= 10:1);

3H), 2.21 (m, 2H), 1.85-1.6 8 (m, 7H), 1.54 (m, 2H), 1.39 (m, 4H), 1.23 (m, 6H), 0.96 (t, J = 7.5 Hz, 3H), 0.89 (m, 2H).

実施例24(45)

1-ブチル- 2 , 5-ジオキソ-3 - (2-ヒドロキシ-2 -メチルプロピル) - 9- (4-フェニルオキシフェニルメチル) - 1 , 4 , 9-トリアザスピロ [5. 5] ウンデカン・塩酸塩

5 TLC: Rf 0.52 (クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.50 (d, J = 8.7 Hz, 2H), 7.39 (dd, J = 8.7, 7.5 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.09-7.00 (m, 4H), 4.32 (brs, 2H), 4.29 (dd, J = 9.9, 3.0 Hz, 1H), 4.04-3.88 (m, 2H), 3.59-3.40 (m, 4H), 2.46-2.21 (m, 4H), 2.18 (dd, J = 14.4, 3.0 Hz, 1H), 1.75 (dd, J = 14.4, 9.9 Hz, 1H), 1.61-1.43 (m, 2H), 1.42-1.29 (m, 2H), 1.28 (s, 6H), 0.95 (t, J = 7.5 Hz, 3H).

実施例24(46)

10

1-(2-ブチニル)-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(3, <math>5-ジメチル-1-フェニルピラゾール-4-イルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC: Rf 0.41 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 7.61-7.45 (m, 5H), 4.32 (s, 2H), 4.31-4.18 (m, 2H), 4.06 (dd, J = 7.8, 4.5 Hz, 1H), 3.93-3.77 (m, 2H), 3.68-3.57 (m, 2H), 2.72-2.57 (m, 2H), 2.40 (s, 3H), 2.38 (s, 3H), 2.36-2.16 (m, 2H), 1.92-1.59 (m, 6H), 0.95 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H).

実施例24(47)

5

1-(2-ブチニル)-2, 5-ジオキソ-3-シクロヘキシルメチル-910 -(3,5-ジメチル-1-フェニルピラゾール-4-イルメチル)-1, 4,9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC: Rf 0.37 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : 7.60-7.43 (m, 5H), 4.32 (s, 2H), 4.23 (d, J = 2.1 Hz, 2H), 4.09

(dd, J = 7.2, 4.8 Hz, 1H), 3.92-3.78 (m, 2H), 3.68-3.56 (m, 2H), 2.66-2.51 (m, 2H), 2.38 (s, 3H), 2.36 (s, 3H), 2.36-2.16 (m, 2H), 1.83-1.60 (m, 10H), 1.59-1.43 (m, 1H), 1.38-1.12 (m, 3H), 1.06-0.87 (m, 2H).

5 実施例24(48)

1-ブチルー2, 5-ジオキソー3-シクロヘキシルメチルー9-(3, 5-ジメチルー1-フェニルピラゾールー4-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・2 塩酸塩

10 TLC: R f 0.35 (0.35 (0.35) (0.35) 0.35 (0.35) 0.35 (0.35) 0.35

NMR (CD₃OD) : δ 7.63-7.48 (m, 5H), 4.33 (s, 2H), 4.05 (dd, J = 7.8, 4.5 Hz, 1H), 3.95-3.74 (m, 2H), 3.67-3.56 (m, 2H), 3.48 (m, 2H), 2.72-2.58 (m, 2H), 2.45 (s, 3H), 2.41 (s, 3H), 2.30-2.07 (m, 2H), 1.84-1.10 (m, 15 H), 1.02-0.92 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H).

15

実施例24(49)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(2-フェニルオキシピリジン-3-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2 塩酸塩

TLC: R f 0.23 (D D D T N A : Y P J - N = 10:1);

NMR (CD₃OD): δ 8.19 (m, 1H), 8.07 (m, 1H), 7.47-7.42 (m, 2H), 7.29-7.19 (m, 4H), 4.55 (s, 2H), 4.03 (dd, J = 7.8, 4.5 Hz, 1H), 3.94 (m, 2H), 3.64 (m, 2H), 3.38 (m, 2H), 2.54-2.16 (m, 4H), 1.90-1.28 (m, 7H), 0.96 (t, J = 6.9 Hz, 3H), 0.96 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

実施例24(50)

5

1-ブチルー2, 5-ジオキソー3-シクロヘキシルメチルー9-(2-フ 10 ェニルオキシピリジンー3-イルメチル)-1, 4, 9-トリアザスピロ[5.5] ウンデカン・2 塩酸塩

TLC: Rf 0.62 (クロロホルム: メタノール= 10:1);

NMR (CD_3OD): δ 8.19 (m, 1H), 8.09 (m, 1H), 7.47-7.42 (m, 2H), 7.29-7.19 (m,

4H), 4.55 (s, 2H), 4.05 (dd, J = 7.8, 4.8 Hz, 1H), 3.96 (m, 2H), 3.64 (m, 2H), 3.42 (m, 2H), 2.48 (m, 2H), 2.36-2.16 (m, 2H), 1.82-1.14 (m, 15H), 0.96 (t, J = 7.5 Hz, 3H), 0.95-0.84 (m, 2H).

5 実施例24(51)

1-ブチルー2, 5-ジオキソー3-シクロヘキシルメチルー9-(4-メチルベンゾモルホリンー7-イルメチル)-1, 4, 9-トリアザスピロ[5. 5] ウンデカン・2 塩酸塩

TLC: Rf 0.69 (クロロホルム:メタノール=10:1);
NMR (CDCl₃): δ 6.93 (d, J = 8.7 Hz, 1H), 6.86 (s, 1H), 6.75 (d, J = 8.7 Hz, 1H),
4.28-4.25 (m, 2H), 4.17 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.80-3.65 (m, 2H),
3.50-3.40 (m, 2H), 3.40-3.30 (m, 2H), 2.91 (s, 3H), 2.38-2.06 (m, 4H), 1.78-1.63 (m, 8H), 1.63-1.42 (m, 3H), 1.40-1.18 (m, 6H), 1.05-0.90 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H)。

実施例24(52)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-メチルベンゾモルホリン-7-イルメチル)-1, 4, 9-トリアザスピロ

[5.5] ウンデカン・2塩酸塩

TLC: Rf 0.56 (クロロホルム: メタノール= 10:1);

NMR (CDCl₃): δ 7.00 (d, J = 7.2 Hz, 1H), 6.94 (s, 1H), 6.85 (d, J = 7.2 Hz, 1H), 4.31-4.29 (m, 2H), 4.19 (s, 2H), 4.00 (dd, J = 7.8, 4.5 Hz, 1H), 3.79-3.66 (m, 2H), 3.47-3.34 (m, 6H), 2.97 (s, 3H), 2.45-2.34 (m, 2H), 2.22-2.10 (m, 2H), 1.84-1.75 (m, 1H), 1.71-1.46 (m, 4H), 1.42-1.32 (m, 2H), 0.97-0.92 (m, 9H).

実施例24(53)

5

10 1ーブチルー2,5ージオキソー3ー(2ーメチルプロピル)-9ー(4ー(NーメチルーNーフェニルアミノ)フェニルメチル)-1,4,9ートリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC: Rf 0.40 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 7.40-7.28 (m, 4H), 7.19-7.10 (m, 3H), 6.94-6.86 (m, 2H), 4.23 (s, 2H), 4.00 (dd, J = 7.8, 4.5 Hz, 1H), 3.86-3.63 (m, 2H), 3.55-3.30 (m, 4H), 3.31 (s, 3H), 2.46-2.27 (m, 2H), 2.26-2.06 (m, 2H), 1.90-1.42 (m, 5H), 1.44-1.26 (m, 2H), 0.98-0.91 (m, 9H).

5

実施例24(54)

1-ブチルー2, 5-ジオキソー3-シクロヘキシルメチルー9-(4-(N- 2 4 4 9-トリアザスピロ [5.5] ウンデカン・2 塩酸塩

10

15

TLC: Rf 0.52 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 7.40-7.28 (m, 4H), 7.20-7.12 (m, 3H), 6.93-6.86 (m, 2H), 4.24 (s, 2H), 4.03 (dd, J = 7.5, 4.8 Hz, 1H), 3.85-3.66 (m, 2H), 3.55-3.40 (m, 2H), 3.40-3.30 (m, 2H), 3.32 (s, 3H), 2.44-2.07 (m, 4H), 1.84-1.40 (m, 10H), 1.40-1.10 (m, 5H), 1.06-0.85 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H).

実施例24(55)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(2-(3, 5-ジメチルピラゾール-1-イル)-5-メトキシフェニルメチル)

-1, 4, 9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC: Rf 0.58 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.53 (d, J = 3.0 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.22 (dd, J = 8.7, 3.0 Hz, 1H), 6.29 (s, 1H), 4.09 (s, 2H), 4.02 (dd, J = 7.5, 4.5 Hz, 1H), 3.94 (s, 3H), 3.74 (m, 2H), 3.42 (m, 4H), 2.44 (m, 2H), 2.37 (s, 3H), 2.22 (s, 3H), 2.22 (m, 2H), 1.86-1.30 (m, 7H), 0.96 (t, J = 7.8 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

10 実施例24(56)

1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(2-(3, 5-ジメチルピラゾール-1-イル) -5-メトキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2 塩酸塩

TLC: R f 0.61 (0.61);

NMR (CD₃OD) : δ 7.43 (d, J = 8.7 Hz, 1H), 7.40 (d, J = 2.7 Hz, 1H), 7.22 (dd, J = 8.7, 2.7 Hz, 1H), 6.22 (s, 1H), 4.09 (s, 2H), 4.06 (dd, J = 7.5, 4.2 Hz, 1H), 3.93 (s, 3H), 3.80 (m, 2H), 3.42 (m, 4H), 2.38 (m, 2H), 2.34 (s, 3H), 2.22 (s, 3H), 2.20 (m, 2H), 1.80-1.16 (m, 15H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H).

実施例24(57)

1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル) -9-(3, 10 5-ジエチルー1-(4-クロロフェニル) ピラゾールー4-イルメチル) -1, 4, 9-トリアザスピロ [5. 5] ウンデカン・2塩酸塩

TLC: Rf 0.47 (0.47 (0.47);

NMR (CD₃OD) : δ 7.53 (d, J = 9.0 Hz, 2H), 7.49 (d, J = 9.0 Hz, 2H), 4.31 (s,

2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.94-3.73 (m, 2H), 3.65-3.54 (m, 2H), 3.49-3.38 (m, 2H), 2.88 (q, J = 7.5 Hz, 2H), 2.77 (q, J = 7.5 Hz, 2H), 2.58-2.38 (m, 2H), 2.30-2.12 (m, 2H), 1.90-1.56 (m, 5H), 1.55-1.30 (m, 2H), 1.31 (t, J = 7.5 Hz, 3H), 0.99-0.94 (m, 12H).

5

実施例24(58)

1ーブチル-2,5ージオキソ-3ーシクロヘキシルメチル-9-(3,5ージエチル-1-(4ークロロフェニル)ピラゾール-4ーイルメチル)ー1,4,9ートリアザスピロ[5.5]ウンデカン・2塩酸塩

10

15

TLC: R f 0.51 (0.51);

NMR (CD₃OD) : δ 7.58 (d, J = 9.0 Hz, 2H), 7.48 (d, J = 9.0 Hz, 2H), 4.31 (s, 2H), 4.05 (dd, J = 7.5, 4.5 Hz, 1H), 3.94-3.73 (m, 2H), 3.65-3.54 (m, 2H), 3.50-3.38 (m, 2H), 2.88 (q, J = 7.5 Hz, 2H), 2.77 (q, J = 7.5 Hz, 2H), 2.60-2.40 (m, 2H), 2.28-2.09 (m, 2H), 1.85-1.10 (m, 15H), 1.31 (t, J = 7.5 Hz, 3H), 1.04-0.85 (m, 2H), 0.96 (t, J = 7.5 Hz, 3H), 0.94 (t, J = 7.5 Hz, 3H).

実施例24(59)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(6-

フェニルオキシピリジン-3-イルメチル)-1,4,9-トリアザスピロ [5.5] ウンデカン・2塩酸塩

TLC: Rf 0.65 (クロロホルム: メタノール= 10:1);

5 NMR (CD₃OD) : δ 8.32 (s, 1H), 8.06 (m, 1H), 7.44 (t, J = 7.5 Hz, 2H), 7.26 (t, J = 7.5 Hz, 1H), 7.14 (d, J = 7.5 Hz, 2H), 7.06 (d, J = 8.7 Hz, 1H), 4.39 (s, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.90-3.70 (m, 2H), 3.53-3.41 (m, 4H), 2.45 (m, 2H), 2.25-2.12 (m, 2H), 1.78 (m, 1H), 1.72-1.50 (m, 4H), 1.36 (m, 2H), 0.97-0.93 (m, 9H).

10

実施例24(60)

1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(6-フェニルオキシピリジン-3-イルメチル)-1, 4, 9-トリアザスピロ[5.5] ウンデカン・2 塩酸塩

TLC: Rf 0.67 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 8.31 (s, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 7.26 (t, J = 7.5 Hz, 1H), 7.14 (d, J = 7.5 Hz, 2H), 7.06 (d, J = 8.3 Hz, 1H), 4.39 (s, 2H), 4.04 (dd, J = 7.8, 4.6 Hz, 1H), 3.90-3. 76 (m, 2H), 3.52-3.38 (m, 4H), 2.58-2.36 (m, 2H), 2.25-2.11 (m, 2H), 1.80-1.42 (m, 10H), 1.42-1.17 (m, 5H), 1.05-0.85 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H).

実施例24(61)

5

10 1-ブチル-2,5-ジオキソ-3-(2-メチルプロピル)-9-(1,3-ベンゾジオキソラン-5-イルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: R f 0.38 (0.38 (0.38 (0.38 (0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38) 0.38 (0.38) 0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38 (0.38) 0.38 (0.38 (0.38 (0.38) 0.38 (0.38 (0.38 (0.38 (0.38 (0.38)

NMR (CD₃OD) : δ 7.05-7.00 (m, 2H), 6.92 (m, 1H), 6.03 (s, 2H), 4.26 (s, 2H), 4.02 (dd, J= 7.5, 4.5 Hz, 1H), 3.84-3.68 (m, 2H), 3.52-3.36 (m, 4H), 2.42-2.10 (m, 4H), 1.88-1.32 (m, 7H), 0.96 (t, J = 6.9 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

5

実施例24(62)

1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(1, 3-ベンゾジオキソラン-5-イルメチル)-1, 4, 9-トリアザスピロ[5. 5] ウンデカン・塩酸塩

10

TLC: Rf 0.42 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.06-7.01 (m, 2H), 6.92 (m, 1H), 6.03 (s, 2H), 4.27 (s, 2H), 4.04 (dd, J = 7.5, 4.5 Hz, 1H), 3.82-3.70 (m, 2H), 3.56-3.36 (m, 4H), 2.48-2.10 (m, 4H), 1.82-1.16 (m, 15H), 0.96 (t, J = 7.5 Hz, 3H), 0.96 (m, 2H).

15

実施例24(63)

1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(2-ヒドロキシ-4-メトキシフェニルメチル)-1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

 $TLC: R f = 0.88 (D \Box \Box \pi \lambda \Delta : \forall D \Box \pi = 10:1);$

NMR (CD₃OD) : δ 7.26 (d, J = 8.5 Hz, 1H), 6.51 (dd, J = 8.5, 2.5 Hz, 1H), 6.48 (d, J = 2.5 Hz, 1H), 4.26 (s, 2H), 4.03 (m, 1H), 3.77 (m, 5H), 3.47 (m, 2H), 3.37 (m, 2H), 2.34 (m, 2H), 2.15 (m, 2H), 1.69 (m, 6H), 1.52 (m, 4H), 1.31 (m, 5H), 0.95 (m, 5H).

実施例24(64)

5

1 ーブチルー2, 5 ージオキソー3 ーシクロヘキシルメチルー9 ー (4 ーメ10 チルチオフェニルメチル) -1, 4, 9 ートリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.83 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.44 (d, J = 8.7 Hz, 2H), 7.36 (d, J = 8.7 Hz, 2H), 4.32 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.80 (m, 2H), 3.49 (m, 2H), 3.34 (m, 2H), 2.50 (s, 3H), 2.36-2.11 (m, 4H), 1.69 (m, 10H), 1.39-1.23 (m, 5H), 0.95 (m, 5H).

5 実施例24(65)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-(N, N-ジフェニルアミノ)フェニルメチル)-1, 4, 9-トリアザスピロ [5.5]ウンデカン・塩酸塩

10 TLC:Rf 0.48 (クロロホルム:メタノール=20:1);

NMR (CD₃OD): δ 7.40-7.25 (m, 6H), 7.13-7.01 (m, 8H), 4.27 (s, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.87-3.68 (m, 2H), 3.56-3.44 (m, 2H), 3.44-3.32 (m, 2H), 2.48-2.32 (m, 2H), 2.29-2.10 (m, 2H), 1.90-1.44 (m, 5H), 1.44-1.30 (m, 2H), 0.96 (t, J = 6.9 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

15

実施例24(6<u>6)</u>

 $1 - \overline{J} + \overline{$

5] ウンデカン・塩酸塩

TLC: Rf 0.53 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD): δ 7.41-7.26 (m, 6H), 7.14-7.00 (m, 8H), 4.27 (s, 2H), 4.04 (dd, J = 7.5, 4.5 Hz, 1H), 3.88-3.68 (m, 2H), 3.57-3.45 (m, 2H), 3.44-3.36 (m, 2H), 2.48-2.32 (m, 2H), 2.28-2.07 (m, 2H), 1.84-1.44 (m, 10H), 1.44-1.14 (m, 5H), 1.00-0.90 (m, 2H), 0.96 (t, J = 6.9 Hz, 3H).

実施例24(67)

5

10 (3S) -1 - (2 - ブチニル) -2, 5 - ジオキソ-3 - シクロヘキシルメチル-9 - (3, 5 - ジメチル-1 - フェニルピラゾール-4 - イルメチル) -1, 4, 9 - トリアザスピロ [5. 5] ウンデカン・2塩酸塩

TLC:Rf 0.32(クロロホルム:メタノール=20:1);

NMR (CD₃OD) : δ 7.59-7.46 (m, 5H), 4.32 (s, 2H), 4.24 (s, 2H), 4.09 (dd, J = 7.5, 4.5 Hz, 1H), 3.86 (m, 2H), 3.65 (m, 2H), 2.60 (m, 2H), 2.39 (s, 3H), 2.38 (s, 3H), 2.26 (m, 2H), 1.88-1.66 (m, 10H), 1.53 (m, 1H), 1.25 (m, 3H), 0.96 (m, 2H).

実施例24(68)

5

(3S) -1-(2-ブチニル)-2, 5-ジオキソ-3-(2-メチルプ10 ロピル) -9-(3,5-ジメチル-1-フェニルピラゾール-4-イルメチル) <math>-1, 4,9-トリアザスピロ [5.5] ウンデカン・2塩酸塩

TLC: Rf 0.43 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 7.60-7.46 (m, 5H), 4.32 (s, 2H), 4.26 (m, 2H), 4.06 (dd, J =

7.5, 4.5 Hz, 1H), 3.85 (m, 2H), 3.62 (m, 2H), 2.60 (m, 2H), 2.39 (s, 3H), 2.38 (s, 3H), 2.27 (m, 2H), 1.89-1.61 (m, 6H), 0.95 (d, J = 6.5 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H).

5 実施例24(69)

10 TLC: Rf 0.57 (クロロホルム: メタノール=20:1);
NMR (CD₃OD): δ7.59-7.45 (m, 5H), 4.32 (s, 2H), 4.06 (dd, J = 7.8, 4.5 Hz, 1H), 3.85 (m, 2H), 3.60 (m, 2H), 3.43 (m, 2H), 2.53-2.44 (m, 2H), 2.45 (s, 3H), 2.41 (s, 3H), 2.32-2.16 (m, 2H), 1.80-1.17 (m, 15H), 1.02-0.93 (m, 2H), 0.96 (d, J = 7.0 Hz, 3H)。

15

実施例24(70)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(3, <math>5-ジメチル-1-(4-メチルフェニル) ピラゾールー4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2塩酸塩

TLC: Rf 0.46 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.36 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 4.30 (s, 2H), 4.02 (dd, J = 7.8, 4.8 Hz, 1H), 3.84 (m, 2H), 3.60 (m, 2H), 3.38 (m, 2H), 2.42 (s, 3H), 2.37 (s, 3H), 2.35 (s, 3H), 2.52-2.18 (m, 4H), 1.90-1.32 (m, 7H), 0.96 (t, J = 7.8 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

実施例24(71)

1 ーブチルー2, 5 ージオキソー3 ーシクロヘキシルメチルー9 ー (3, 5)
 10 ージメチルー1 ー (4 ーメチルフェニル) ピラゾールー4 ーイルメチル) ー
 1, 4, 9 ートリアザスピロ [5, 5] ウンデカン・2 塩酸塩

TLC: Rf 0.51 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.38 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 4.31 (s,

2H), 4.06 (dd, J = 7.5, 4.5 Hz, 1H), 3.82 (m, 2H), 3.60 (m, 2H), 3.42 (m, 2H), 2.43 (s, 3H), 2.38 (s, 3H), 2.36 (s, 3H), 2.56-2.14 (m, 3H), 1.84-1.16 (m, 15H), 0.97 (t, J = 7.2 Hz, 3H), 0.97 (m, 2H).

5 実施例24(72)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(3, 5-ジメチル-1-(4-クロロフェニル)ピラゾール-4-イルメチル)-1, 4, 9-トリアザスピロ[5. 5]ウンデカン・2塩酸塩

TLC: Rf 0.30 (クロロホルム:メタノール=20:1);
NMR (CD₃OD): δ7.57 (d, J = 9.0 Hz, 2H), 7.49 (d, J = 9.0 Hz, 2H), 4.31 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.91-3.80 (m, 2H), 3.60 (m, 2H), 3.46 (m, 2H), 2.52 (m, 2H), 2.40 (s, 3H), 2.39 (s, 3H), 2.27-2.15 (m, 2H), 1.86-1.81 (m, 1H), 1.76-1.51 (m, 4H), 1.44-1.32 (m, 2H), 0.96 (t, J = 7.0 Hz, 3H), 0.95 (d, J = 6.0 Hz, 3H), 0.94 (d, J = 6.0 Hz, 3H)。

実施例24(73)

20

1ーブチルー2,5ージオキソー3ーシクロヘキシルメチルー9ー(3,5ージメチルー1ー(4ークロロフェニル)ピラゾールー4ーイルメチル)ー1,4,9ートリアザスピロ[5,5]ウンデカン・2塩酸塩

TLC: Rf 0.27 (0.27 (0.27 (0.27 (0.27 (0.27 (0.27);

NMR (CD₃OD) : δ 7.57 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 4.31 (s, 2H), 4.04 (dd, J = 7.8, 4.5 Hz, 1H), 3.91-3.77 (m, 2H), 3.60 (m, 2H), 3.45 (m, 2H), 2.50 (m, 2H), 2.39 (s, 6H), 2.27-2.14 (m, 2H), 1.80 -1.51 (m, 9H), 1.44-1.17 (m, 6H), 1.03-0.89 (m, 5H).

実施例24(74)

5

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(3, 10 5-ジメチル-1-(4-トリフルオロメチルフェニル)ピラゾール-4-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・2 塩酸塩

TLC:Rf 0.23 (クロロホルム:メタノール=20:1);

NMR (CD₃OD) : δ 7.87 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 8.7 Hz, 2H), 4.32 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.93-3.78 (m, 2H), 3.60 (m, 2H), 3.43 (m, 2H), 2.50 (m, 2H), 2.45 (s, 3H), 2.40 (s, 3H), 2.29-2.16 (m, 2H), 1.86-1.77 (m, 1H), 1.74-1.54 (m, 4H), 1.44-1.34 (m, 2H), 0.96 (t, J = 7.0 Hz, 3H), 0.95 (d, J = 6.0 Hz, 3H), 0.94 (d, J = 6.0 Hz, 3H).

実施例24(75)

5

15

1 ーブチルー2, 5 ージオキソー3 ーシクロヘキシルメチルー9ー(3, 5 ージメチルー1ー(4ートリフルオロメチルフェニル)ピラゾールー4ーイ
 10 ルメチル)ー1, 4, 9ートリアザスピロ[5. 5]ウンデカン・2塩酸塩

TLC: Rf 0.37 (0.37) (0.37) (0.37) (0.37) (0.37) (0.37)

NMR (CD₃OD) : δ 7.87 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 4.32 (s, 2H), 4.05 (dd, J = 7.8, 4.5 Hz, 1H), 3.92-3.78 (m, 2H), 3.60 (m, 2H), 3.45 (m, 2H), 2.50 (m, 2H), 2.45 (s, 3H), 2.40 (s, 3H), 2.28-2.15 (m, 2H), 1.80-1.51 (m, 9H), 1.44-1.21 (m, 6H), 1.03-0.93 (m, 5H).

実施例24(76)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(3,

5 - ジエチル - 1 - フェニルピラゾール - 4 - イルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・2 塩酸塩

TLC:Rf 0.70 (DDDTNA: ADJ-N=10:1);

5 NMR (CD₃OD): δ 7.61-7.53 (m, 3H), 7.53-7.46 (m, 2H), 4.32 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.95-3.79 (m, 2H), 3.65-3.58 (m, 2H), 3.50-3.38 (m, 2H), 2.85-2.75 (m, 4H), 2.47 (br, 2H), 2.28-2.16 (m, 2H), 1. 83-1.46 (m, 3H), 1.41-1.29 (m, 4H), 0.98-0.91 (m, 15H).

10 実施例24(77)

1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(3, 5-ジエチル-1-フェニルピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2 塩酸塩

TLC: Rf 0.67 (0.67) (0.67) (0.67) (0.67) (0.67) (0.67)

NMR (CD₃OD): δ 7.61-7.53 (m, 3H), 7.53-7.46 (m, 2H), 4.32 (s, 2H), 4.05 (dd, J = 7.5, 4.5 Hz, 1H), 3.95-3.79 (m, 2H), 3.70-3.55 (m, 2H), 3.47-3.31 (m, 2H), 2.91-2.75 (m, 4H), 2.60-2.45 (m, 2H), 2.30-2.14 (m, 2H), 1.80-1.43 (m, 9H), 1.43-1.15 (m, 8H), 0.98-0.91 (m, 9H).

実施例24(78)

5

15

1-ブチルー2, 5-ジオキソー3-シクロヘキシルメチルー9-(2-フェニルチアゾールー4-イルメチル)-1, 4, 9-トリアザスピロ [5.

10 5] ウンデカン・塩酸塩

TLC: Rf 0.62 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.03-8.00 (m, 2H), 7.87 (s, 1H), 7.52-7.49 (m, 3H), 4.54 (s, 2H), 4.04 (dd, J = 7.6, 4.8 Hz, 1H), 4.04-3.87 (m, 2H), 3.70-3.58 (m, 2H), 3.51-3.39 (m, 2H), 2.58-2.38 (m, 2H), 2.26-2.13 (m, 2H), 1.7 8-1.43 (m, 9H), 1.40-1.15 (m, 6H), 1.10-0.90 (m, 5H).

実施例24(79)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(2-

フェニルチアゾールー4ーイルメチル)-1, 4, 9ートリアザスピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.38 (クロロホルム: メタノール= 10:1);

5 NMR (CD₃OD): δ 8.02-8.01 (m, 2H), 7.85 (s, 1H), 7.51-7.50 (m, 3H), 4.55 (s, 2H), 4.03-3.86 (m, 3H), 3.68-3.59 (m, 2H), 3.45-3.36 (m, 2H), 2.50-2.34 (m, 2H), 2.29-2.16 (m, 2H), 1.88-1.45 (m, 5H), 1.36 (q, J = 7.2 Hz, 2H), 0.97-0.93 (m, 9H).

実施例24(80)

10 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(2 (1, 4-ベンゾジオキサン-2-イル)チアゾール-4-イルメチル) 1, 4, 9-トリアザスピロ[5, 5]ウンデカン・塩酸塩

TLC: Rf 0.36 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.88 (s, 1H), 7.00 (m, 1H), 6.94-6.87 (m, 3H), 5.66 (dd, J = 6.0, 2.7 Hz, 1H), 4.62 (dd, J = 11.7, 2.7 Hz, 1H), 4.51 (s, 2H), 4.42 (dd, J = 11.7, 6.0 Hz, 1H), 4.02 (dd, J = 7.5, 4.5 Hz, 1H), 3.88 (m, 2H), 3.58 (m, 2H), 3.40 (m, 2H), 2.48-2.16 (m, 4H), 1.90-1.28 (m, 7H), 0.97 (t, J = 7.5 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

実施例24(81)

5

15

20

1 ーブチルー2, 5 ージオキソー3 ー (2 ーメチルプロピル) ー9 ー (4 ートリフルオロメチルー2 ー (モルホリンー1 ーイル) チアゾールー5 ーイル
 10 メチル) ー1, 4, 9 ートリアザスピロ [5.5] ウンデカン・2塩酸塩

TLC: Rf 0.78 (0.78) (0.78) (0.78) (0.78) (0.78)

NMR (CD₃OD) : δ 4.63 (s, 2H), 4.03 (dd, J = 7.8, 4,8 Hz, 1H), 3.86-3.78 (m, 6H), 3.58 (m, 6H), 3.40 (m, 2H), 2.44 (m, 2H), 2.22 (m, 2H), 1.88-1.32 (m, 8H), 0.97 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H).

実施例24(82)

1-ブチル-2, 5-ジオキソ-3-(テトラヒドロピラン-4-イルメチル)-9-(3, 5-ジメチル-1-フェニルピラゾール-4-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・2 塩酸塩

TLC: Rf 0.31 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.60-7.46 (m, 5H), 4.33 (s, 2H), 4.09 (dd, J = 7.5, 4.5 Hz, 1H), 3.98 - 3.78 (m, 4H), 3.68 - 3.56 (m, 2H), 3.50 - 3.36 (m, 4H), 2.58-2.16 (m, 4H), 2.40 (s, 3H), 2.39 (s, 3H), 1.84-1.20 (m, 11H), 0.97 (t, J = 7.2 Hz, 3H).

実施例24(83)

5

1-ブチル-2,5-ジオキソ-3-(テトラヒドロピラン-4-イルメチル)-9-(1,4-ベンゾジオキサン-6-イルメチル)-1,4,9 10 トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.34(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.06-6.92 (m, 3H), 4.27 (s, 4H), 4,24 (s, 2H), 4.07 (dd, J =

7.5, 4.5 Hz, 1H), 3.96 - 3.86 (m, 2H), 3.84 - 3.68 (m,2H), 3.52 - 3.36 (m, 6H), 2.44-2.10 (m, 4H), 1.82-1.22 (m, 11H), 0.96 (t, J = 7.2 Hz, 3H).

実施例24(84)

5 1ーブチルー2,5ージオキソー3ーシクロヘキシルメチルー9ー(4ーカルボキシフェニルメチル)-1,4,9ートリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.58 (クロロホルム: メタノール: 酢酸=20:2:1);

NMR (CD₃OD): δ 8.14 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 4.45 (s, 2H), 4.04 (dd, J = 7.5, 4.5 Hz, 1H), 3.94-3.76 (m, 2H), 3.56-3.43 (m, 2H), 3.43-3.34 (m, 2H), 2.50-2.31 (m, 2H), 2.28-2.08 (m, 2H), 1.84-1.12 (m, 15H), 1.06-0.90 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H)。

15 実施例24(85)

1-ブチル-2, 5-ジオキソ-3-(2-シクロヘキシルエチル) -9-(3, 5-ジメチル-1-フェニルピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2塩酸塩

TLC: Rf 0.47 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.56-7.45 (m, 5H), 4.32 (s, 2H), 4.02 (t, J = 4.8 Hz, 1H), 3.98-3.85 (m, 1H), 3.85-3.70 (m, 1H), 3.65-3.56 (m, 2H), 3.56-3.42 (m, 1H), 3.42-3.30 (m, 1H), 2.55-2.37 (m, 2H), 2.38 (s, 3H), 2.37 (s, 3H), 2.30-2.13 (m, 2H), 1.92-1.78 (m, 2H), 1.78-1.60 (m, 5H), 1.60-1.48 (m, 2H), 1.48-1.32 (m, 2H), 1.32-1.08 (m, 6H), 0.96 (t, J = 7.2 Hz, 3H), 0.96-0.85 (m, 2H).

実施例24(86)

5

10 1ーブチルー2,5ージオキソー3ー(2ーシクロヘキシルエチル)-9ー(1,4ーベンゾジオキサンー6ーイルメチル)-1,4,9ートリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.50 (0.50 (0.50);

15 NMR (CD₃OD) : δ 7.05 (d, J = 2.1 Hz, 1H), 6.98 (dd, J = 8.1, 2.1 Hz, 1H), 6.92

(d, J = 8.1 Hz, 1H), 4.26 (s, 4H), 4.23 (s, 2H), 4.03 (t, J = 4.8 Hz, 1H), 3.90-3.79 (m, 1H), 3.76-3.62 (m, 1H), 3.50-3.38 (m, 3H), 3.38-3.30 (m, 1H), 2.43-2.06 (m, 4H), 1.92-1.78 (m, 2H), 1.78-1.60 (m, 5H), 1.60-1.45 (m, 2H), 1.42-1.30 (m, 2H), 1.30-1.08 (m, 6H), 0.95 (t, J = 7.2 Hz, 3H), 0.97-0.88 (m, 2H).

5

実施例24(87)

(3R) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1

10

15

TLC: Rf 0.43 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.61-7.48 (m, 5H), 4.33 (s, 2H), 4.06 (dd, J = 7.5, 4.5 Hz, 1H), 3.95 - 3.78 (m, 2H), 3.68 - 3.58 (m, 2H), 3.50 - 3.40 (m, 2H), 2.62 - 2.45 (m, 2H), 2.42 (s, 3H), 2.40 (s, 3H), 2.30 - 2.12 (m, 2H), 1.82-1.12 (m, 15H), 0.97 (t, J = 7.2 Hz, 3H), 0.97 (m, 2H).

実施例24(88)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-メチル-2-フェニルチアゾール-5-イルメチル)-1, 4, 9-トリア

ザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.75(クロロホルム:メタノール=10:1);

NMR (CD₃OD): δ 7.98-7.95 (m, 2H), 7.55-7.50 (m, 3H), 4.69 (s, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.98-3.78 (m, 2H), 3.65-3.56 (m, 2H), 3.50-3.40 (m, 2H), 2.58 (s, 3H), 2.60-2.48 (m, 2H), 2.27-2.14 (m, 2H), 1.8 8-1.48 (m, 5H), 1.48-1.30 (m, 2H), 0.97-0.93 (m, 9H).

実施例24(89)

5

10 1 ーブチルー2, 5 ージオキソー3 ー (2 ーメチルプロピル) ー9 ー (2 ー (チオフェンー1 ーイル) チアゾールー4 ーイルメチル) ー1, 4, 9 ート リアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.60 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.81 (s, 1H), 7.67 (d, J = 3.9 Hz, 1H), 7.60 (d, J = 5.4 Hz, 1H), 7.14 (dd, J = 5.4, 3.9 Hz, 1H), 4.49 (s, 2H), 4.00 (dd, J = 7.8, 4.5 Hz, 1H), 3.98-3.82 (m, 2H), 3.62-3.55 (m, 2H), 3.42 (t, J = 7.5 Hz, 2H), 2.58-2.40 (m, 2H), 2.28-2.10 (m, 2H), 1.86-1.42 (m, 5H), 1.46-1.30 (m, 2H), 0.97-0.93 (m, 9H).

5

実施例24(90)

1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル) -9-(2-(ピリジンー4-イル) チアゾールー4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2 塩酸塩

10

15

20

TLC: Rf 0.51 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.98 (d, J = 6.9 Hz, 2H), 8.71 (d, J = 6.9 Hz, 2H), 8.37 (s, 1H), 4.66 (s, 2H), 4.01 (dd, J = 7.8, 4.8 Hz, 1H), 4.00-3.87 (m, 2H), 3.70-3.59 (m, 2H), 3.50 (t, J = 7.8 Hz, 2H), 2.72-2.58 (m, 2H), 2.25-2.08 (m, 2H), 1.88-1.46 (m, 5H), 1.46-1.35 (m, 2H), 0.97-0.92 (m, 9H).

実施例24(91)

1 - ブチル-2, 5 - ジオキソ-3 - シクロヘキシルメチル-9 - (3, 4 - ジメトキシフェニルメチル) - 1, 4, 9 - トリアザスピロ [5. 5] ウンデカン・塩酸塩

TLC:Rf 0.28 (クロロホルム:メタノール=10:1);

NMR (CD₃OD): δ 7.23 (s, 1H), 7.09 (d, J = 8.4 Hz, 1H), 7.03 (d, J= 8.4 Hz, 1H), 4.29 (s, 2H), 4.04 (dd, J = 7.5, 4.8 Hz, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.88-3.64 (m, 2H), 3.56-3.38 (m, 4H), 2.58-2.37 (m, 2H), 2.24-2.08 (m, 2H), 1.82-1.10 (m, 15H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H).

実施例24(92)

5

1ーブチルー2,5ージオキソー3ーシクロヘキシルメチルー9ー(3,510 ージメトキシフェニルメチル)-1,4,9ートリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.31 (0.31);

NMR (CD₃OD) : δ 6.74 (d, J = 1.8 Hz, 2H), 6.60 (t, J = 1.8 Hz, 1H), 4.28 (s, 2H), 4.04 (dd, J = 7.8, 4.8 Hz, 1H), 3.86-3.70 (m, 2H), 3.83 (s, 6H), 3.58-3.36 (m, 4H), 2.52-2.36 (m, 2H), 2.24-2.08 (m, 2H), 1.82-1.10 (m, 15H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H).

5

実施例24(93)

1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル)-9-(5-(ピリジンー2-イル) フランー2-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・2 塩酸塩

10

15

TLC:Rf 0.39(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 8.76 (dd, J = 5.4, 1.5 Hz, 1H), 8.51 (ddd, J = 8.1, 7.5, 1.5 Hz, 1H), 8.39 (d, J = 7.5 Hz, 1H), 7.85 (dd, J = 8.1, 5.4 Hz, 1H), 7.61 (d, J = 3.6 Hz, 1H), 7.08 (d, J = 3.6 Hz, 1H), 4.63 (s, 2H), 4.00 (dd, J = 7.8, 4.5 Hz, 1H), 3.98-3.81 (m, 2H), 3.65-3.55 (m, 2H), 3.49 (t, J = 8.1 Hz, 2H), 2.72-2.55 (m, 2H), 2.28-2.10 (m, 2H), 1.90-1.27 (m, 7H), 1.00-0.89 (m, 9H).

実施例24(94)

1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル) -9-(5-20 (ピリジンー3-イル) フランー2-イルメチル) -1, 4, 9-トリアザ

スピロ[5.5]ウンデカン・2塩酸塩

TLC: Rf 0.45 (クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 9.34 (d, J = 1.8 Hz, 1H), 8.94 (dd, J = 8.1, 1.8 Hz, 1H), 8.75 (d, J = 5.4 Hz, 1H), 8.10 (dd, J = 8.1, 5.4 Hz, 1H), 7.34 (d, J = 3.6 Hz, 1H), 6.98 (d, J = 3.6 Hz, 1H), 4.57 (s, 2H), 4.00 (dd, J = 7.8, 4.5 Hz, 1H), 3.98-3.77 (m, 2H), 3.63-3.43 (m, 4H), 2.73-2.55 (m, 2H), 2.28-2.09 (m, 2H), 1.89-1.27 (m, 7H), 1.00-0.89 (m, 9H) $_{\circ}$

10 実施例24(95)

5

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-(3, 5-ジメチルピラゾール-1-イル)フェニルメチル)-1, 4, 9-トリアザスピロ [5.5]ウンデカン・2塩酸塩

TLC: Rf 0.52 (クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.94 (d, J = 8.1 Hz, 2H), 7.71 (d, J = 8.1 Hz, 2H), 6.51 (s, 1H), 4.49 (s, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.85-3.76 (m, 2H), 3.58-3.48 (m, 4H), 2.72-2.58 (m, 2H), 2.45 (s, 3H), 2.39 (s, 3H), 2.23-2.06 (m, 2H), 1.88-1.45 (m, 5H), 1.45-1.34 (m, 2H), 0.97-0.92 (m, 9H).

実施例24(96)

5

1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル) -9-(4-10 (5-クロロピリジンー3-イルオキシ) フェニルメチル) -1, 4, 9-トリアザスピロ [5. 5] ウンデカン・2 塩酸塩

TLC: Rf 0.57 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.54 (bs, 1H), 8.45 (bs, 1H), 7.87 (bs, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 4.39 (s, 2H), 4.01 (dd, J = 7.8, 4.8 Hz, 1H), 3.90-3.73 (m, 2H), 3.56-3.40 (m, 4H), 2.64-2.46 (m, 2 H), 2.24-2.09 (m, 2H), 1.86-1.42 (m, 5H), 1.42-1.30 (m, 2H), 0.97-0.92 (m, 9H).

実施例24(97)

5

1 ーブチルー2, 5 ージオキソー3 ー (2 ーメチルプロピル) ー9 ー (4 ー (ピリミジンー2 ーイルオキシ) フェニルメチル) ー1, 4, 9 ートリアザ
 10 スピロ[5.5]ウンデカン・2 塩酸塩

TLC: Rf 0.61 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.62 (d, J = 4.8 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.26 (t, J = 4.8 Hz, 1H), 4.40 (s, 2H), 4.02 (dd, J = 7.5, 4.5 Hz, 1H), 3.93-3.72 (m, 2H), 3.60-3.35 (m, 4H), 2.58-2.40 (m, 2H), 2.28-2.07 (m, 2H), 1.90-1.45 (m, 5H), 1.45-1.36 (m, 2H), 0.98-0.90 (m, 9H).

実施例24(98)

1 - ブチル-2, 5 - ジオキソ-3 - (2 - メチルプロピル) - 9 - (4 - 20) (ピリジン-3 - イルオキシ)フェニルメチル) - 1, 4, 9 - トリアザス

ピロ[5.5]ウンデカン・2塩酸塩

TLC: Rf 0.61 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.76 (d, J = 2.7 Hz, 1H), 8.63 (d, J = 5.7 Hz, 1H), 8.28 (dd, J = 8.7, 2.7 Hz, 1H), 8.07 (dd, J = 8.7, 5.7 Hz, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 4.41 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.93-3.72 (m, 2H), 3.58-3.40 (m, 4H), 2.68-2.48 (m, 2H), 2.26-2.06 (m, 2H), 1.90-1.46 (m, 5H), 1.46-1.30 (m, 2H), 0.98-0.91 (m, 9H).

10 実施例24(99)

1-(2-ブチニル)-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(3, <math>5-ジメチル-1-(4-メチルフェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2塩酸塩

TLC: R f 0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28) 0.28

NMR (CD₃OD): δ 7.39-7.29 (m, 4H), 4.31 (s, 2H), 4.27-4.20 (m, 2H), 4.06 (dd, J = 7.5, 4.8 Hz, 1H), 3.84 (m, 2H), 3.62 (m, 2H), 2.59 (m, 2H), 2.42 (s, 3H), 2.37 (s, 3H), 2.34 (s, 3H), 2.28 (m, 2H), 1.92-1.60 (m, 6H), 0.96 (d, J = 6.3 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H).

実施例24(100)

5

(3R)-1-(2-ブチニル)-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(3,5-ジメチル-1-フェニルピラゾール-4-イルメチ10 ル)-1,4,9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC: Rf 0.29 (クロロホルム: メタノール=19:1);

NMR (CD₃OD) : δ 7.59-7.43 (m, 5H), 4.31 (s, 2H), 4.25 (q, J = 2.1 Hz, 2H), 4.09 (dd, J = 7.2, 4.8 Hz, 1H), 3.85 (dt, J = 3.0, 12.3 Hz, 2H), 3.68-3.56 (m, 2H), 2.61 (m, 2H), 2.38 (s, 3H), 2.37 (s, 3H), 2.26 (m, 2H), 1.83-1.43 (m, 8H), 1.75 (t, J = 2.1 Hz, 3H), 1.38-1.12 (m, 3H), 0.96 (m, 2H).

実施例24(101)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-

(4-ヒドロキシフェニルオキシ)フェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.46 (クロロホルム: メタノール= 10:1);

5 NMR (CD₃OD): δ 7.47 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 6.80 (d, J = 9.0 Hz, 2H), 4.30 (s, 2H), 4.00 (dd, J = 7.5, 4.8 Hz, 1H), 3.86-3.70 (m, 2H), 3.52-3.34 (m, 4H), 2.48-2.3 0 (m, 2H), 2.28-2.10 (m, 2H), 1.88-1.44 (m, 5H), 1.44-1.28 (m, 2H), 0.97-0.92 (m, 9H).

10 実施例24(102)

1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル) -9-(4-(ピリジンー2-イル) フェニルメチル) -1, 4, 9-トリアザスピロ[5. 5] ウンデカン・2 塩酸塩

TLC: R f 0.50 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.89 (d, J = 7.8 Hz, 1H), 8.70 (t, J = 7.8 Hz, 1H), 8.43 (d, J = 8.4 Hz, 1H), 8.10-8.06 (m, 3H), 7.98 (d, J = 8.7 Hz, 2H), 4.51 (s, 2H), 4.01 (dd, J = 7.8, 4.8 Hz, 1H), 3.96-3.78 (m, 2H), 3.56-3.45 (m, 4H), 2.72-2.58 (m, 2H), 2.24-2.08 (m, 2H), 1.84-1.44 (m, 5H), 1.44-1.34 (m, 2H), 0.97-0.92 (m, 9H).

実施例24(103)

5

15

1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル)-9-(4-(ピリジン-3-イル)フェニルメチル)-1, 4, 9-トリアザスピロ [5. 10 5] ウンデカン・2 塩酸塩

 $TLC: R f = 0.47 (D \Box \Box \pi \lambda \Delta : \forall B) = 10 : 1);$

NMR (CD₃OD) : δ 9.24 (s, 1H), 8.98 (d, J = 8.4 Hz, 1H), 8.88 (d, J = 8.4 Hz, 1H), 8.21 (dd, J = 8.4, 5.7 Hz, 1H), 7.96 (d, J = 8.4 Hz, 2H), 7.87 (d, J = 8.4 Hz, 2H), 4.47 (s, 2H), 4.01 (dd, J = 7.5, 4.8 Hz, 1H), 3.96-3.75 (m, 2H), 3.58-3.44 (m, 4H), 2.64-2.50 (m, 2H), 2.25-2.08 (m, 2H), 1.88-1.48 (m, 5H), 1.48-1.32 (m, 2H), 0.97-0.92 (m, 9H) $_{\circ}$

実施例24(104)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(3, <math>5-ジメチル-1-(4-カルボキシフェニル) ピラゾールー4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

5 TLC: Rf 0.27 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ 8.19 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 4.32 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.96-3.74 (m, 2H), 3.66-3.55 (m, 2H), 3.48-3.36 (m, 2H), 2.58-2.40 (m, 2H), 2.45 (s, 3H), 2.40 (s, 3H), 2.32-2.14 (m, 2H), 1.90-1.46 (m, 5H), 1.46-1.30 (m, 2H), 0.99-0.95 (m, 9H)。

10

実施例24(105)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-(ピラジン-2-イルオキシ)フェニルメチル)-1, 4, 9-トリアザスピロ [5.5]ウンデカン・2塩酸塩

TLC: Rf 0.48 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 8.47 (d, J = 1.5 Hz, 1H), 8.32 (d, J = 2.7 Hz, 1H), 8.13 (dd, J = 2.7, 1.5 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 4.40 (s, 2H), 4.02 (dd, J = 7.5, 4.5 Hz, 1H), 3.94-3.73 (m, 2H), 3.58-3.46 (m, 2H), 3.44-3.34 (m, 2H), 2.52-2.34 (m, 2H), 2.30-2.10 (m, 2H), 1.90-1.43 (m, 5H), 1.43-1.26 (m, 2H), 0.99-0.90 (m, 9H).

実施例24(106)

10 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-(4-カルボキシフェニル)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.20(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 8.11 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.77 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 4.43 (s, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.96-3.74 (m, 2H), 3.58-3.36 (m, 4H), 2.55-2.3 8 (m, 2H), 2.28-2.10 (m, 2H), 1.88-1.44 (m, 5H), 1.44-1.30 (m, 2H), 0.97-0.92 (m, 9H).

実施例24(107)

5

10

1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル) -9-(4-(ピリジンー4-イル) フェニルメチル) -1, 4, 9-トリアザスピロ[5. 5] ウンデカン・2 塩酸塩

 $TLC: R f 0.50 (DDD \pi N \Delta : \forall DDD = 10:1);$

NMR (CD₃OD) : δ 8.91 (d, J = 6.9 Hz, 2H), 8.45 (d, J = 6.9 Hz, 2H), 8.11 (d, J = 7.8 Hz, 2H), 7.91 (d, J = 7.8 Hz, 2H), 4.49 (s, 2H), 4.01 (dd, J = 7.8, 4.8 Hz, 1H), 3.96-3.78 (m, 2H), 3.58-3.40 (m, 4H), 2.64-2.48 (m, 2H), 2.26-2.08 (m, 2H), 1.90-1.28 (m, 7H), 0.96 - 0.93 (m, 9H).

実施例24(108)

1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-

(ピリジン-2-イルオキシ)フェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・2塩酸塩

TLC: Rf 0.46 (クロロホルム: メタノール= 10:1);

5 NMR (CD₃OD) : δ 8.44-8.15 (m, 2H), 7.82 (d, J = 7.2 Hz, 2H), 7.60-7.40 (m, 1H), 7.42 (d, J = 7.2 Hz, 2H), 7.27-7.24 (m, 1H), 4.43 (s, 2H), 4.02 (dd, J = 7.5, 4.5 Hz, 1H), 3.92-3.70 (m, 2H), 3.58-3.40 (m, 4H), 2.6 4-2.42 (m, 2H), 2.28-2.06 (m, 2H), 1.92-1.28 (m, 7H), 0.97 - 0.94 (m, 9H).

10 実施例24(109)

1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(ナフタレン-2-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: R f 0.71 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 8.08-7.93 (m, 4H), 7.64-7.57 (m, 3H), 4.54 (s, 2H), 4.04 (dd, J = 7.5, 4.8 Hz, 1H), 3.96-3.80 (m, 2H), 3.60-3.44 (m, 2H), 3.42-3.36 (m, 2H), 2.42-2.08 (m, 4H), 1.82-1.16 (m, 15H), 0.95 (t, J = 7.5 Hz, 3H), 0.95 (m, 2H).

5

実施例24(110)

1-ブチルー2, 5-ジオキソー3-シクロヘキシルメチルー9-(6-メトキシナフタレンー2-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

10

15

TLC: Rf 0.75 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.98 (s, 1H), 7.91 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 8.7 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.31 (d, J = 2.4 Hz, 1H), 7.22 (dd, J = 8.7, 2.4 Hz, 1H), 4.48 (s, 2H), 4.04 (dd, J = 7.8, 4.8 Hz, 1H), 3.94-3.78 (m, 2H), 3.93 (s, 3H), 3.58-3.44 (m, 2H), 3.42-3.36 (m, 2H), 2.48-2.30 (m, 2H), 2.24-2.08 (m, 2H), 1.82-1.10 (m, 15H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (m, 2H).

実施例24(111)

1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル)-9-(4-(4-カルボキシフェニルオキシ)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

5 TLC: Rf 0.27 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ 8.03 (d, J = 8.7 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 4.37 (s, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.90-3.70 (m, 2H), 3.56-3.36 (m, 4H), 2.56-2.3 8 (m, 2H), 2.25-2.10 (m, 2H), 1.84-1.44 (m, 5H), 1.44-1.39 (m, 2H), 0.98-0.93 (m, 9H)。

実施例24(112)

1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル)-9-(5-(ピリジン-4-イル) フラン-2-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・2 塩酸塩

15

10

TLC: Rf 0.39 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.80 (d, J = 6.9 Hz, 2H), 8.39 (d, J = 6.9 Hz, 2H), 7.69 (d, J = 3.6 Hz, 1H), 7.08 (d, J = 3.6 Hz, 1H), 4.62 (s, 2H), 4.00 (dd, J = 7.8, 4.5, Hz, 1H), 3.99-3.79 (m, 2H), 3.65-3.43 (m, 4H), 2.72-2. 54 (m, 2H), 2.30-2.10 (m, 2H), 1.88-1.26 (m, 7H), 1.00-0.84 (m, 9H).

実施例24(113)

5

1-ブチルー2, 5-ジオキソー3-シクロペンチルメチルー9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.66 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.52 (d, J = 8.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.05 (m, 4H), 4.34 (s, 2H), 4.00 (t, J = 6.0 Hz, 1H), 3.82 (m, 2H), 3.49 (m, 2H), 3.39 (m, 2H), 2.37 (m, 2H), 2.17 (m, 2H), 1.96 (m, 1H), 1.81 (m, 4H), 1.58 (m, 6H), 1.38 (m, 2H), 1.17 (m, 2H), 0.95 (t, J = 7.0 Hz, 3H).

実施例24(114)

 $(3R) - 1 - \vec{j} + \vec{j} + \vec{j} + \vec{j} = 0$

ル) -9-(4-7) ルンデカン・塩酸塩

TLC: R f 0.52 (0.52) (0.52) (0.52) (0.52) (0.52) (0.52) (0.52)

5 NMR (CD₃OD) : δ 7.52 (d, J = 9.0 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.04 (m, 4H), 4.33 (s, 2H), 4.01 (dd, J = 7.2, 3.3 Hz, 1H), 3.82 (m, 1H), 3.71 (m, 1H), 3.50 (m, 2H), 3.43 (m, 2H), 2.38 (m, 2H), 2.24 (m, 2H), 2.00 (dd, J = 14.0, 3.3 Hz, 1H), 1.55 (dd, J = 14.0, 7.2 Hz, 1H), 1.50 (m, 2H), 1.36 (m, 2H), 0.99 (s, 9H), 0.95 (t, J = 7.0 Hz, 3H).

10

実施例24(115)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2, 2 - ジメチルプロピル) - 9 - (4 - フェニルオキシフェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

15

 $TLC: Rf 0.52 (DDD \pi N \Delta : \forall DDD \pi DDD = 20:1);$

NMR (CD₃OD) : δ 7.52 (d, J = 9.0 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.04 (m, 4H), 4.33 (s, 2H), 4.01 (dd, J = 7.2, 3.3 Hz, 1H), 3.82 (m, 1H), 3.71 (m, 1H), 3.50 (m, 2H), 3.43 (m, 2H), 2.38 (m, 2H), 2.24 (m, 2H), 2.00 (dd, J = 14.0, 3.3 Hz, 1H), 1.55 (dd, J = 14.0, 7.2 Hz, 1H), 1.50 (m, 2H), 1.36 (m, 2H), 0.99 (s, 9H), 0.95 (t, J = 7.0 Hz, 3H).

実施例24(116)

5

15

1ープチルー2,5ージオキソー3ーシクロヘキシルメチルー9ー(4ーニ10 トロフェニルメチル)-1,4,9ートリアザスピロ[5.5]ウンデカン・ 塩酸塩

TLC: Rf 0.68 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.33 (d, J=8.7Hz, 2H), 7.78 (d, J=8.7Hz, 2H), 4.49 (s, 2H), 4.03 (dd, J=7.5, 4.5Hz, 1H), 3.93-3.76 (m, 2H), 3.55-3.43 (m, 2H), 3.40-3.31 (m, 2H), 2.45-2.28 (m, 2H), 2.27-2.08 (m, 2H), 1.83-1.14 (m, 15H), 1.04-0.86 (m, 5H).

実施例24(117)

(3R) - 1 - (テトラヒドロフラン - 2 - イルメチル) - 2, 5 - ジオキ ソ - 3 - フェニルメチル - 9 - (4 - フェニルブチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

5 TLC: Rf 0.55 (クロロホルム:メタノール=10:1); NMR (CDCl₃): δ7.38-7.14 (m, 10H), 6.00 - 5.75 (m, 1H), 4.40-4.15 (m, 2H), 3.92-3.58 (m, 3H), 3.58-2.25 (m, 13H), 2.18-1.45 (m, 10H)。

実施例24(118)

10 (3S) -1 - (テトラヒドロフラン -2 - イルメチル) -2, 5 - ジオキ ソ-3 - フェニルメチル -9 - (4 - フェニルブチル) -1, 4, 9 - トリ アザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.55 (クロロホルム: メタノール= 10:1);

NMR (CDCl₃): δ 7.40-7.15 (m, 10 H), 6.05 - 5.80 (m, 1H), 4.40-4.10 (m, 2 H), 3.90-3.55 (m, 3 H), 3.55-2.20 (m, 13 H), 2.18-1.45 (m, 10 H).

5 実施例24(119)

(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (3 - (ベンジルオキシカルボニルアミノ) プロピル) <math>-9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

10 TLC:Rf 0.32 (クロロホルム:メタノール=10:1);

NMR (CD₃OD): δ 7.40 - 7.20 (m, 10 H), 5.06 (s, 2 H), 4.09 (dd, J = 5.2, 4.6 Hz, 1 H), 4.00 - 3.70 (m, 2 H), 3.70 - 3.55 (m, 2 H), 3.50 - 3.30 (m, 4 H), 3.20 - 3.00 (m, 4 H), 2.65 - 2.35 (m, 2 H), 2.30 - 2.10 (m, 2 H), 2.00 - 1.75 (m, 2 H), 1.70 - 1.40 (m, 4 H), 0.96 (t, J = 7.4 Hz, 3 H).

実施例25

15

1-ブチル-2, 5-ジオキソ-3-(カルボキシメチル) -9-(4-フェニルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウ

ンデカン・塩酸塩

5

10

15

実施例24(11)で製造した化合物(173mg)のメタノール(5mL)溶液に、2N水酸化ナトリウム水溶液(2m1)を加えた。反応混合物を室温で3時間撹拌した。反応混合物に2N塩酸水溶液をpHが4になるまで加え、酢酸エチルで抽出した。抽出物を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥し、濃縮した。得られた残渣を1,4-ジオキサンに溶解し、4N塩酸・1,4-ジオキサン溶液を加えた。反応混合物を濃縮し、得られた残渣をジエチルエーテルで洗浄し、乾燥し、以下の物性値を有する本発明化合物(127mg)を得た。

TLC: Rf 0.51 (クロロホルム: メタノール: 酢酸= 20:4:1); NMR (CD₃OD) : 7.55-7.53 (m, 2H), 7.42-7.36 (m, 2H), 7.20-7.15 (m, 1H), 7.07-7.02 (m, 4H), 4.33 (s, 2H), 4.27 (t, J = 4.5 Hz, 1H), 3.96-3.90 (m, 1H), 3.72-3.66 (m, 1H), 3.54-3.38 (m,4H), 2.97 (dd, J = 18.0, 4.8 Hz, 1H), 2.79 (dd, J = 18.0, 4.8 Hz, 1H), 2.50-2.36 (m, 3H), 2.27-2.16 (m, 1H), 1.62-1.48 (m, 2H), 1.41-1.30 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H)。

実施例26(1)~26(3)

参考例2で製造した樹脂(3) およびN-アリルオキシカルボニル-4-20 ピペリドンを用いて、n-プロピルアミンおよびN-(t-ブチルオキシカ

ルボニル)ロイシンの代わりにそれぞれ相当する化合物を用いて、参考例 3 →参考例 4 と同様の操作をし、さらに 3 、5 - ジメチル- 1 - フェニル- 4 - ホルミルピラゾールの代わりに、相当する化合物を用いて、参考例 5 \to 考例 6 \to 実施例 1 と同様の操作をし、さらに、水酸基が一部アセチル化されたために、実施例 2 5 と同様の操作をし、以下の本発明化合物を得た。

実施例26(1)

5

1-(3-ヒドロキシブチル)-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリア がスピロ [5.5] ウンデカン・塩酸塩

 $TLC: R f = 0.49 (D \Box \Box \pi \lambda \Delta : \forall B) - \lambda = 10:1);$

NMR (CD₃OD) : δ 7.54 (d, J = 8.5 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.04 (m, 4H), 4.33 (s, 2H), 4.02 (m, 1H), 3.80 (m, 3H), 3.51 (m, 4H), 2.46 (m, 2H), 2.19 (m, 2H), 1.85-1.57 (m, 5H), 1. 17 (d, J = 6.0 Hz, 3H), 0.94 (d, J = 9.0 Hz, 6H).

実施例26(2)

1-(3-ヒドロキシプロピル)-2, 5-ジオキソ-3-(2-メチルプ 20 ロピル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリ

アザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.46 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.51 (d, J = 8.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.04 (m, 4H), 4.34 (s, 2H), 4.02 (dd, J = 7.5, 4.0 Hz, 1H), 3.80 (m, 2H), 3.60 (t, J = 6.0 Hz, 2H), 3.48 (m, 4H), 2.40 (m, 2H), 2.20 (m, 2H), 1.82-1.58 (m, 5H), 0.94 (d, J = 6.0 Hz, 3H), 0.93 (d, J = 6.0 Hz, 3H).

実施例26(3)

5

10 1-(2-ヒドロキシブチル)-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.49 (クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.50 (d, J = 8.7 Hz, 2H), 7.39 (dd, J = 8.7, 7.5 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.10-7.00 (m, 4H), 4.32 (s, 2H), 4.03 (dd, J = 8.1, 4.8 Hz, 1H), 3.96-3.41 (m, 6H), 3.27-3.14 (m, 1H), 2.68-2.53 (m, 1H), 2.37-2.26 (m, 3H), 1.94-1.24 (m, 5H), 1.08-0.82 (m, 9H).

5

実施例27

1-ブチルー2, 5-ジオキソー3-シクロヘキシルメチルー9-(4-アミノフェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

10

15

実施例24(116)で製造した化合物(50mg)のメタノール溶液にアルゴン雰囲気下、5%パラジウムー炭素(10mg)を加えた。反応混合物を水素ガス雰囲気下、室温で20分間撹拌した。反応混合物をセライト(商品名)を通して、ろ過し、ろ液を濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1→30:1→20:1)によって精製した。得られた化合物をメタノールに溶解し、4N塩酸/酢酸エチル溶液を加え、濃縮した。得られた残渣をジエチルエーテルで洗浄し、乾燥し、以下の物性値を有する本発明化合物(34mg)を得た。

TLC: Rf 0.21 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.80 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 4.41 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.86-3.74 (m, 2H), 3.52-3.45 (m, 4H), 2.65-2.52 (m, 2H), 2.24-2.08 (m, 2H), 1.80-1.16 (m, 15H), 0.94 (t, J = 7.5 Hz, 3H), 0.94 (m, 2H).

5

実施例28

1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-((4-) -メチルフェニル) スルホニルアミノ) フェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

10

15

実施例28で製造した化合物(33mg)のピリジン(2m1)溶液に、pートルエンスルホニルクロライド(21mg)を加えた。反応混合物を室温で27時間撹拌した。反応混合物を濃縮し、飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出物を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=10:1)によって精製した。得られた化合物をメタノールに溶解し、4N塩酸/酢酸エチル溶液を加え、濃縮した。得られた残渣をジエチルエーテルで洗浄し、乾燥し、以下の物性値を有する本発明化合物(27mg)を得た。

TLC: R f 0.63 (0.63) (0.63) (0.63) (0.63) (0.63) (0.63) (0.63)

NMR (CD₃OD) : δ 7.70 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 4.25 (s, 2H), 4.03 (dd, J = 7.2, 4.5 Hz, 1H), 3.78 (m, 2H), 3.42 (m, 4H), 2.42-2.06 (m, 4H), 2.37 (s, 3H), 1.82-1.10 (m, 15H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (m, 2H).

実施例28(1)

5

1 ーブチルー2,5 ージオキソー3 ーシクロヘキシルメチルー9 ー(4 ー(フェニルカルボニルアミノ)フェニルメチル)ー1,4,9 ートリアザスピロ
 10 [5.5]ウンデカン・2 塩酸塩

p-トルエンスルホニルクロライドの代わりに、ベンゾイルクロライドを 用いて、実施例28と同様の操作をし、以下の物性値を有する本発明化合物 を得た。

TLC: Rf 0.43 (クロロホルム: メタノール=10:1);
NMR (CD₃OD): δ7.93 (d, J = 8.4 Hz, 2H), 7.88 (d, J = 8.4 Hz, 2H), 7.61-7.50 (m, 5H), 4.34 (s, 2H), 4.05 (dd, J = 7.8, 4.5 Hz, 1H), 3.80 (m, 2H), 3.42 (m, 4H), 2.24 (m, 4H), 1.82-1.16 (m, 15H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H)。

実施例 2 9

5

参考例2で製造した樹脂(3) およびN-ベンジルオキシカルボニル-4 -ピペリドン、O-ベンジル-N-(t-ブチルオキシカルボニル) -L-セリンを用いて、参考例3→参考例6→実施例1と同様の操作をし、以下の物性値を有する本発明化合物を得た。

10

TLC:Rf 0.66(クロロホルム:メタノール=20:1);

NMR (CDCl₃): δ 7.40-7.25 (m, 10H), 6.09 (brs, 1H), 5.15 (s, 2H), 4.54 (s, 2H), 4.20-3.98 (br, 2H), 4.18 (dd, J = 8.4, 3.6 Hz, 1H), 3.93 (dd, J = 9.3, 3.6 Hz, 1H), 3.80-3.56 (br, 1H), 3.66 (dd, J = 9.3, 8.4, Hz, 1H), 3.45-3.12 (m, 3H), 2.02-1.75 (m, 4H), 1.57-1.39 (m, 2H), 1.38-1.20 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H).

15

実施例30

ン

実施例29で製造した化合物(245mg)のジクロロメタン(5m1)溶液に、-40℃で三臭化ホウ素の1 Mジクロロメタン溶液(1.4m1)を加え、-20℃で3時間撹拌した。反応混合物に水と飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。抽出物を水、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=30:1)によって精製し、以下の物性値を有する本発明化合物(173mg)を得た。

10 TLC: Rf 0.29 (クロロホルム: メタノール=20:1);
NMR (CDCl₃): δ7.42-7.27 (m, 5H), 6.26-6.15 (br, 1H), 5.16 (s, 2H), 4.26-4.00 (m, 2H), 3.98-3.82 (m, 2H), 3.84-3.60 (br, 1H), 3.43-3.13 (m, 4H), 2.80-2.68 (br, 1H), 2.05-1.75 (m, 4H), 1.58-1.40 (m, 2H), 1.40-1.20 (m, 2H), 0.92 (t, J = 7.5 Hz, 3H)。

15

5

実施例31

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - ヒドロキシメチル - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン

実施例30で製造した化合物を用いて、実施例9と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC:Rf 0.21 (クロロホルム:メタノール:酢酸=20:4:1); NMR (d_6 -DMSO): δ 7.83 (brs, 1H), 5.10-4.90 (br, 1H), 3.88-3.78 (m, 1H), 3.76-3.65 (m, 1H), 3.58-3.48 (m, 1H), 3.28-3.18 (m, 1H), 3.18-3.04 (m, 3H), 2.88-2.75 (m, 2H), 1.94-1.83 (m, 1H), 1.83-1.64 (m, 3H), 1.56-1.42 (m, 1H), 1.42-1.20 (m, 3H), 0.88 (t, J = 7.2 Hz, 3H)。

10 実施例32(1)

(3S)-1-ブチル-2,5-ジオキソ-3-ヒドロキシメチル-9-(4-7) - 1,4,9-トリアザスピロ [5.5] ウンデカン・塩酸塩

15 4-フェニルオキシベンズアルデヒドと実施例31で製造した化合物を用

いて、実施例10と同様の操作をし、以下の物性値を有する本発明化合物を 得た。

 $TLC: R f = 0.49 (D \Box \Box \pi \lambda \Delta : \forall P J - \lambda = 10:1) ;$

NMR (CD₃OD) : δ 7.52 (d, J = 8.7 Hz, 2H), 7.43-7.35 (m, 2H), 7.22-7.14 (m, 1H), 7.06 (d, J = 8.7 Hz, 2H), 7.06-7.00 (m, 2H), 4.33 (s, 2H), 4.03-3.90 (m, 3H), 3.79-3.66 (m, 1H), 3.65 (dd, J = 10.5, 2.4 Hz, 1H), 3.61-3.42 (m, 3H), 3.30-3.18 (m, 1H), 2.50-2.24 (m, 3H), 2.24-2.12 (m, 1H), 1.76-1.58 (m, 1H), 1.54-1.26 (m, 3H), 0.95 (t, J = 7.5 Hz, 3H).

10 実施例32(2)

5

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - ヒドロキシメチル - 9 - (3, 5 - ジメチル - 1 - フェニルピラゾール - 4 - イルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・2 塩酸塩

15 1-フェニル-3,5-ジメチル-4-ホルミルピラゾールと実施例31 で製造した化合物を用いて、実施例10と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC: R f 0.47 (0.47 (0.47 (0.47 (0.47 (0.47 (0.47);

NMR (CD₃OD) : δ 7.61-7.46 (m, 5H), 4.32 (s, 2H), 4.08-3.92 (m, 3H), 3.83-

20 3.70 (m, 1H), 3.66 (dd, J = 10.5, 2.4 Hz, 1H), 3.66-3.52 (m, 3H), 3.40-3.25 (m,

1H), 2.64-2.50 (m, 1H), 2.50-2.40 (m, 2H), 2.41 (s, 3H), 2.39 (s, 3H), 2.28-2.15 (m, 1H), 1.80-1.58 (m, 1H), 1.58-1.30 (m, 3H), 0.96 (t, J = 7.5 Hz, 3H).

参考例11:化合物(7)の合成

5

10

を得た。

参考例 2 で製造した樹脂(3) およびN-アリルオキシカルボニルー4-ピペリドン、n-ブチルアミンおよびN-(t-ブチルオキシカルボニル)ロイシンを用いて、参考例 3 →参考例 4 と同様の操作をし、さらに 3 、5-ジメチルー1-フェニルー4-ホルミルピラゾールの代わりに、4-ヒドロキシベンズアルデヒドを用いて、参考例 5 と同様の操作をし、化合物(7)

参考例12:化合物(8)の合成

参考例 1 1 で製造した化合物(6 0 mg)のジクロロメタン(2 m 1)懸濁液に、トリフェニルホスフィン(8 0 mg)と 1 Mのシクロペンタノールのジクロロメタン溶液(0.302m 1)とジエチルアゾジカルボキシレート(0.137 m 1)を加えた。反応混合物を室温で 1 8 時間撹拌した。反応液をろ過し、得られた樹脂をジクロロメタン(2 m 1 × 4 回)、メタノール(2 m 1 × 3 回)、ジクロロメタン(3 m 1 × 4 回)で洗浄し、化合物(8)を得た。

実施例33

10 1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル)-9-(4-シクロペンチルオキシフェニルメチル)-1, 4, 9-トリアザスピロ[5. 5] ウンデカン・塩酸塩

参考例12で製造した化合物を用いて、参考例6→実施例1と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC: Rf 0.49 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.41 (d, J = 8.7 Hz, 2H), 6.98 (d, J = 8.7 Hz, 2H), 4.83 (m, 1H), 4.25 (brs, 2H), 4.00 (dd, J = 7.8, 4.5 Hz, 1H), 3.86-3.65 (m, 2H), 3.53-3.27 (m, 4H), 2.40-2.06 (m, 4H), 2.02-1.43 (m, 13H), 1.43-1.24 (m, 2H), 1.01-0.90 (m, 9H).

実施例33(1)~33(6)

10 nーブチルアミンおよびNー(tーブチルオキシカルボニル)ロイシンの代わりに、相当する化合物を用いて、参考例11と同様の操作をし、シクロペンタノールの代わりに、相当する化合物を用いて、参考例12→実施例33と同様の操作をし、以下に示した本発明化合物を得た。

15 実施例33(1)

5

1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-(2-ジエチルアミノエチルオキシ)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC:Rf 0.54(クロロホルム:メタノール:28%アンモニア水=80:10:1);

NMR (CD₃OD) : δ 7.57 (d, J = 8.7 Hz, 2H), 7.12 (d, J = 8.7 Hz, 2H), 4.40 (t, J = 4.8 Hz, 2H), 4.30 (s, 2H), 4.03 (dd, J = 7.5, 5.1 Hz, 1H), 3.84-3.67 (m, 2H), 3.63 (t, J = 4.8 Hz, 2H), 3.50-3.40 (m, 4H), 3.40-3.31 (m, 4H), 2.58-2.41 (m, 2H), 2.23-2.04 (m, 2H), 1.82-1.42 (m, 10H), 1.41-1.12 (m, 11H), 1.04-0.87 (m, 5H).

実施例33(2)

5

1 ーブチルー2,5 ージオキソー3 ーシクロヘキシルメチルー9 ー(4 ー(2)
 10 ージメチルアミノエチルオキシ)フェニルメチル)ー1,4,9ートリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC:Rf 0.46(クロロホルム:メタノール:28%アンモニア水=80:10:1);

NMR (CD₃OD): δ 7.57 (d, J = 8.7 Hz, 2H), 7.13 (d, J = 8.7 Hz, 2H), 4.39 (t, J = 4.8 Hz, 2H), 4.30 (s, 2H), 4.02 (dd, J = 7.5, 4.5 Hz, 1H), 3.84-3.67 (m, 2H), 3.61 (t, J = 4.8 Hz, 2H), 3.50-3.38 (m, 4H), 2.98 (s, 6H), 2.59-2.42 (m, 2H), 2.24-2.03 (m, 2H), 1.83-1.12 (m, 15H), 1.04-0.86 (m, 5H).

実施例33(3)

5

10

1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-プロピルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.59 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.43 (d, J = 8.7 Hz, 2H), 7.01 (d, J = 8.7 Hz, 2H), 4.27 (brs, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.96 (t, J = 6.6 Hz, 2H), 3.85-3.67 (m, 2H), 3.53-3.33 (m, 4H), 2.45-2.27 (m, 2H), 2.26-2.07 (m, 2H), 1.86-1.14 (m, 17H), 1.03 (t, J = 7.2 Hz, 3H), 1.00-0.89 (m, 5H).

実施例33(4)

1-(チオフェン-2- イルメチル)-2, 5-ジオキソ-3-シクロヘキ15 シルメチル-9-(4-シクロプロピルメチルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.61 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.42 (d, J = 8.7 Hz, 2H), 7.27 (dd, J = 5.4, 0.9 Hz, 1H), 7.06-6.97 (m, 3H), 6.91 (dd, J = 5.4, 3.6 Hz, 1H), 4.95-4.85 (m, 2H), 4.27 (brs, 2H), 4.14 (dd, J = 7.5, 4.5 Hz, 1H), 3.84 (d, J = 6.6 Hz, 2H), 3.84-3.66 (m, 2H), 3.51-3.39 (m, 2H), 2.59-2.36 (m, 2H), 2.24-2.07 (m, 2H), 1.84-1.44 (m, 8H), 1.35-1.12 (m, 4H), 1.04-0.85 (m, 2H), 0.66-0.57 (m, 2H), 0.38-0.31 (m, 2H).

実施例33(5)

5

10 1ーブチルー2,5ージオキソー3ーシクロヘキシルメチルー9ー(4ーシクロプロピルメチルオキシフェニルメチル)-1,4,9ートリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.61 (クロロホルム: メタノール=10:1);

NMR (CD₃OD) : δ 7.42 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 4.26 (brs, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.84 (d, J = 6.9 Hz, 2H), 3.83-3.66 (m, 2H), 3.51-3.33 (m, 4H), 2.44-2.26 (m, 2H), 2.25-2.06 (m, 2H), 1.82-1.12 (m, 16H), 1.04-0.86 (m, 5H), 0.66-0.57 (m, 2H), 0.38-0.31 (m, 2H).

実施例33(6)

5

1 ーブチルー2, 5 ージオキソー3 ー (2 ーメチルプロピル) ー9 ー (4 ー10 シクロプロピルメチルオキシフェニルメチル) ー1, 4, 9 ートリアザスピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.55 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.42 (d, J = 8.7 Hz, 2H), 7.01 (d, J = 8.7 Hz, 2H), 4.26 (brs, 2H), 4.00 (dd, J = 7.8, 4.5 Hz, 1H), 3.84 (d, J = 6.9 Hz, 2H), 3.84-3.66 (m, 2H), 3.50-3.33 (m, 4H), 2.43-2.26 (m, 2H), 2.26-2.08 (m, 2H), 1.89-1.43 (m, 5H), 1.43-1.17 (m, 3H), 1.00-0.88 (m, 9H), 0.66-0.58 (m, 2H), 0.38-0.31 (m, 2H).

実施例34

5

1 ーブチルー2,5 ージオキソー3 ーシクロヘキシルメチルー9 ー(4 ー(ジメチルアミノ)フェニルメチル)ー1,4,9 ートリアザスピロ[5.5]10 ウンデカン・2 塩酸塩

4-ジメチルアミノベンズアルデヒドと実施例9(1)で製造した化合物を用いて、実施例10と同様の操作をし、以下の物性値を有する本発明化合物を得た。

15 TLC: Rf 0.26 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ7.78 (d, J = 8.7 Hz, 2H), 7.59 (d, J = 8.7 Hz, 2H), 4.39 (s, 2H), 4.03 (dd, J = 7.5, 4.8, Hz, 1H), 3.90-3.70 (m, 2H), 3.52-3.40 (m, 4H), 3.26 (s, 6H), 2.64-2.47 (m, 2H), 2.24-2.04 (m, 2H), 1.82-1. 12 (m, 15H), 1.04-0.88 (m, 5H)。

実施例34(1)

5

1-ブチルー2, 5-ジオキソー3-シクロヘキシルメチルー9-(4-(ジエチルアミノ)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

4 - ジメチルアミノベンズアルデヒドの代わりに、4 - ジエチルアミノベンズアルデヒドを用いて、実施例34と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC: Rf 0.28 (クロロホルム: メタノール: 酢酸=10:1);
NMR (CD₃OD): δ7.94-7.78 (m, 2H), 7.72-7.52 (m, 2H), 4.43 (s, 2H), 4.03 (dd, J=7.5, 4.8, Hz, 1H), 3.92-3.73 (m, 2H), 3.73-3.60 (m, 4H), 3.54-3.40 (m, 4H), 2.63-2.45 (m, 2H), 2.25-2.05 (m, 2H), 1.82-1.10 (m, 21 H), 1.04-0.86 (m, 5H)。

15 実施例35

参考例 2で製造した樹脂(3)、N-ベンジルオキシカルボニル-4-ピペリドン、n-ブチルアミン、N-(t-ブチルオキシカルボニル)-L-ロイシンを用いて、参考例 3 →参考例 6 →実施例 1 と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC: Rf 0.67 (クロロホルム: メタノール=20:1); NMR (CD₃OD) : δ 7.35 (m, 5H), 6.50 (brs, 1H), 5.15 (s, 2H), 4.08 (m, 2H), 3.96 (m, 1H), 3.62 (brs, 1H), 3.44 (brs, 1H), 3.26 (m, 2H), 1.95-1.76 (m, 4H), 1.61-1.45 (m, 5H), 1.31 (m, 2H), 0.96 (d, J = 6.3 Hz, 3H), 0.93 (d, J = 6.3 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H)。

<u>実施例36</u>

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -1, 4, 9-トリアザスピロ[5, 5] ウンデカン・塩酸塩

15

5

10

実施例35で製造した化合物を用いて、実施例9と同様の操作をし、以下 の物性値を有する本発明化合物を得た。

TLC:Rf 0.18 (クロロホルム:メタノール=4:1);
NMR (CD₃OD): δ 4.02 (dd, J = 7.8, 4.6 Hz, 1H), 3.80 (dd, J = 12.5, 4.0 Hz, 1H),
3.72 (dd, J = 12.5, 4.0 Hz, 1H), 3.39 (m, 4H), 2.34-2.09 (m, 4H), 1.88-1.50 (m, 5H), 1.37 (m, 2H), 0.96 (t, J = 7.5 Hz, 3H), 0.95 (d, J = 6.5 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H)。

<u>実施例37(1)~37(8</u>8)

10 実施例36で製造した化合物と相当するアルデヒド化合物を用いて、実施 例10と同様の操作をし、以下に示した本発明化合物を得た。

実施例37(1)

TLC: Rf 0.46 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 7.42 (d, J = 8.1 Hz, 1H), 7.28 (d, J = 1.5 Hz, 1H), 7.19 (dd, J = 8.1, 1.5 Hz, 1H), 7.11 (d, J = 8.1 Hz, 2H), 6.92 (d, J = 8.1 Hz, 2H), 6.65 (s, 1H), 5.35 (s, 2H), 4.40 (s, 2H), 4.02 (dd, J = 7.5, 4.5 Hz, 1H), 3.97-3.76 (m, 2H), 3.64-3.52 (m, 2H), 3.46-3.35 (m, 2H), 2.56-2.38 (m, 2H), 2.35 (s, 3H), 2.28 (s, 3H), 2.30-2.10 (m, 2H), 1.91-1.46 (m, 5H), 1.46-1.30 (m, 2H), 0.96 (t, J = 6.9 Hz, 3H), 0.95 (d, J = 6.3 Hz, 6H).

実施例37(2)

5

15

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(4-ジメチルアミノフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2塩酸塩

T L C: R f 0.47 (クロロホルム:メタノール=10:1); N M R (CD₃OD): δ 7.78 (d, J = 8.7 Hz, 2H), 7.58 (d, J = 8.7 Hz, 2H), 4.40 (s, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.82 (m, 2H), 3.42 (m, 4H), 3.26 (s, 6H), 2.56 (m, 2H), 2.18 (m, 2H), 1.88-1.30 (m, 7H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H)。

実施例37(3)

20 $(3S) - 1 - \vec{j} + \vec{j} +$

[5.5] ウンデカン・2塩酸塩

TLC: Rf 0.34 (クロロホルム: メタノール= 10:1);

NMR (CD_3OD): δ 7.96-7.82 (m, 2H), 7.74-7.55 (m, 2H), 4.40 (s, 2H), 4.00 (dd, J = 7.5, 4.5 Hz, 1H), 3.93-3.60 (m, 6H), 3.55-3.40 (m, 4H), 2.65-2.48 (m, 2H), 2.25-2.06 (m, 2H), 1.89-1.26 (m, 7H), 1.15 (t, J = 7.2 Hz, 6H), 1.00-0.87 (m, 9H).

実施例37(4)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(4-シクロヘキシルオキシフェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.61 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.45-7.42 (m, 2H), 7.02-6.99 (m, 2H), 4.40-4.31 (m, 1H),

4.27 (s, 2H), 4.00 (dd, J = 8.0, 4.5 Hz, 1H), 3.83-3.70 (m, 2H), 3.47 (brd, 2H), 3.42-3.35 (m, 2H), 2.43-2.32 (m, 2H), 2.24-2.11 (m, 2H), 2.00-1.93 (m, 2H), 1.86-1.32 (m, 15H), 0.97-0.92 (m, 9H).

5 実施例37(5)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (4 - メチルフェニルオキシ) フェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・塩酸塩

10 TLC: Rf 0.70 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ7.52-7.47 (m, 2H), 7.22-7.19 (m, 2H), 7.04-7.00 (m, 2H), 6.94-6.90 (m, 2H), 4.32 (s, 2H), 4.01 (dd, J = 8.0, 4.5 Hz, 1H), 3.86-3.73 (m, 2H), 3.48 (brd, 2H), 3.42-3.34 (m, 2H), 2.45-2.33 (m, 5H), 2.25-2.12 (m, 2H), 1.85-1.48 (m, 5H), 1.41-1.31 (m, 2H), 0.97-0.92 (m, 9H)。

15

実施例37(6)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (4 - メトキシフェニルオキシ) フェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・塩酸塩

TLC:Rf 0.65(クロロホルム:メタノール=10:1);

NMR (CD₃OD): δ 7.49-7.46 (m, 2H), 7.00-6.94 (m, 6H), 4.31 (s, 2H), 4.01 (dd, J = 8.0, 4.5 Hz, 1H), 3.84-3.71 (m, 5H), 3.48 (brd, 2H), 3.40-3.31 (m, 2H), 2.42-2.30 (m, 2H), 2.25-2.12 (m, 2H), 1.83-1.48 (m, 5H), 1.41-1.30 (m, 2H), 0.97-0.92 (m, 9H).

実施例37(7)

5

TLC: Rf 0.35 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.46 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 4.31 (s, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.84-3.68 (m, 2H), 3.54-3.36 (m, 4H), 2.67 (t, 2H)

J = 7.8 Hz, 2H), 2.48-2.30 (m, 2H), 2.26-2.08 (m, 2 H), 1.90-1.28 (m, 11H), 0.96 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H).

5 実施例37(8)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (2 - メチルプロピル) フェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・塩酸塩

10 TLC: Rf 0.38 (クロロホルム:メタノール=10:1);
NMR(CD₃OD): δ7.47 (d, J = 6.9 Hz, 2H),7.30 (d, J = 6.9 Hz, 2H), 4.33 (s, 2H),
4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.90-3.70 (m, 2H), 3.56-3.34 (m, 4H), 2.53 (d, J = 7.2 Hz, 2H), 2.53-2.30 (m, 2H), 2.24-2.08 (m, 2H), 1.96-1.26 (m, 8H), 0.95 (t, J = 7.8 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H).

実施例37(9)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-(4-フルオロフェニルオキシ) フェニルメチル) -1, 4, 9
 20 -トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.36 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 7.53 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 7.16 - 7.04 (m, 4H), 4.33 (s, 2H), 4.02 (dd, J = 7.8, 4.8 Hz, 1H), 3.88-3.68 (m, 2H), 3.58-3.36 (m, 4H), 2.46-2.10 (m, 4H), 1.90-1.24 (m, 7H), 0.96 (t, J = 6.9 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H).

実施例37(10)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(3-ヒドロキシ-4-メトキシフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.20(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.03-6.94 (m, 3H), 4.23 (s, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.89 (s, 3H), 3.84-3.68 (m, 2H), 3.56-3.36 (m, 4H), 2.42-2.08 (m, 4H), 1.88-

 $1.24 \,(m, 7H)$, $0.96 \,(t, J = 7.2 \,Hz, 3H)$, $0.95 \,(d, J = 6.3 \,Hz, 3H)$, $0.94 \,(d, J = 6.3 \,Hz, 3H)$.

実施例37 (11)

5 (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) - 9-(2-フルオロフェニルメチル) -1, 4, 9-トリアザスピロ [5.
 5] ウンデカン・塩酸塩

TLC:Rf 0.48 (ヘキサン:酢酸エチル=1:1);

NMR (CD₃OD): δ 7.64-7.54 (m, 2H), 7.37-7.27 (m, 2H), 4.45 (s, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.94-3.81 (m, 2H), 3.54 (m, 2H), 3.36 (m, 2H), 2.38 (m, 2H), 2.19 (m, 2H), 1.82-1.49 (m, 5H), 1.35 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H), 0.93 (d, J = 6.5 Hz, 3H).

15 実施例37(12)

TLC:Rf 0.52 (ヘキサン:酢酸エチル=1:1);

NMR (CD₃OD) : δ 7.52 (dt, J = 8.3, 6.0 Hz, 1H), 7.41-7.37 (m, 2H), 7.26 (t, J = 8.3 Hz, 1H), 4.39 (s, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.89-3.76 (m, 2H), 3.50-3.38 (m, 4H), 2.48-2.38 (m, 2H), 2.25-2.12 (m, 2H), 1.84-1.75 (m, 1H), 1.72-1.46 (m, 4H), 1.42-1.28 (m, 2H), 0.99-0.92 (m, 9H) $_{\circ}$

実施例37(13)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(4-フルオロフェニルメチル) -1, 4, 9-トリアザスピロ [5.
 5] ウンデカン・塩酸塩

TLC:Rf 0.33 (ヘキサン:酢酸エチル=1:1);

NMR (CD₃OD) : δ 7.60 (dd, J = 8.7, 5.4 Hz, 2H), 7.24 (t, J = 8.7 Hz, 2H), 4.36 (s, 2H), 3.99 (dd, J = 7.5, 4.5 Hz, 1H), 3.78 (m, 2H), 3.49-3.35 (m, 4H), 2.44-2.13

(m, 4H), 1.84-1.46 (m, 5H), 1.37 (m, 2H), 0.99-0.95 (m, 9H).

<u>実施例37(14)</u>

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -5 9-(2-クロロフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.62 (ヘキサン:酢酸エチル=1:1);

NMR (CD₃OD) : δ 7.72 (d, J = 7.0 Hz, 1H), 7.60 (dd, J = 8.0, 1.5 Hz, 1H),

7.56-7.45 (m, 2H), 4.55 (s, 2H), 4.00 (dd, J = 7.5, 4.5 Hz, 1H), 3.94 (m, 2H), 3.55 (m, 2H), 3.42-3.32 (m, 2H), 2.43-2.37 (m, 2H), 2.26-2. 13 (m, 2H), 1.85-1.46 (m, 5H), 1.35 (m, 2H), 0.97-0.92 (m, 9H).

実施例37(15)

15 (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) - 9-(4-クロロフェニルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.50 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.55 (d, J = 8.7 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 4.34 (s, 2H), 4.00 (dd, J = 7.8, 4.5, Hz, 1H), 3.88-3.68 (m, 2H), 3.51-3.34 (m, 4H), 2.49-2.52 (m, 2H), 2.26-2.08 (m, 2H), 1.90-1.44 (m, 5H), 1.44-1.29 (m, 2H), 1.00-0.89 (m, 9H).

実施例37(16)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(3-クロロフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]
 ウンデカン・塩酸塩

TLC:Rf 0.55 (クロロホルム:メタノール=20:1); NMR(CD₃OD): δ 7.68-7.64 (m, 1H), 7.56-7.45 (m, 3H), 4.37 (s, 2H), 4.00 (dd, 15 J=7.8, 4.5 Hz, 1H), 3.91-3.72 (m, 2H), 3.54-3.32 (m, 4H), 2.53-2.34 (m, 2H),

2.27-2.08 (m, 2H), 1.90-1.44 (m, 5H), 1.44-1.27 (m, 2H), 0.99-0.89 (m, 9H).

実施例37(17)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(3-メチル-4-メトキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.34 (クロロホルム: メタノール=20:1); NMR (CD₃OD): δ 7.38-7.30 (m, 2H), 6.99 (d, J = 8.1 Hz, 1H), 4.25 (s, 2H), 4.00 (dd, J = 7.8, 4.5 Hz, 1H), 3.85 (s, 3H), 3.85-3.65 (m, 2H), 3.52-3.33 (m, 4H), 2.50-2.30 (m, 2H), 2.22 (s, 3H), 2.20-2.07 (m, 2H), 1.90-1.43 (m, 5H), 1.43-1.28 (m, 2H), 0.99-0.88 (m, 9H)。

実施例37(18)

10

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) - 9-(7-メトキシ-1, 3-ベンゾジオキソラン-5-イルメチル) -1,
 4.9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.36 (クロロホルム:メタノール=20:1);

NMR (CD₃OD) : δ 6.85 (d, J = 1.8 Hz, 1H), 6.74 (d, J = 1.8 Hz, 1H), 5.99 (s, 2H), 4.25 (s, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.92 (s, 3H), 3.87-3.66 (m, 2H), 3.52-3.32 (m, 4H), 2.52-2.34 (m, 2H), 2.26-2.08 (m, 2H), 1.90-1.43 (m, 5H), 1.43-1.29 (m, 2H), 0.99-0.90 (m, 9H).

実施例37(19)

5

TLC: Rf 0.52 (クロロホルム: メタノール=20:1); NMR (CD₃OD): δ 7.50-7.36 (m, 7H), 7.30 (d, J = 8.7 Hz, 2H), 4.31 (s, 2H), 4.00 (dd, J = 7.8, 4.5 Hz, 1H), 3.88-3.68 (m, 2H), 3.53-3.32 (m, 4H), 2.50-2.30 (m,

2H), 2.26-2.06 (m, 2H), 1.90-1.42 (m, 5H), 1.42-1.27 (m, 2H), 0.98-0.89 (m, 9H).

実施例37(20)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -5 9-(2-メチルフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.41 (クロロホルム:メタノール=19:1);
NMR (CD₃OD): δ7.57 (d, J = 7.8 Hz, 1H), 7.42-7.28 (m, 3H), 4.41 (s, 2H),
4.01 (dd, J = 7.8, 4.8 Hz, 1H), 3.89 (m, 2H), 3.53 (m, 2H), 3.42 (m, 2H), 2.48 (s, 3H), 2.48 (m, 2H), 2.16 (m, 2H), 1.90-1.42 (m, 5H), 1.36 (sextet, J = 7.2 Hz, 2H),
0.94 (d, J = 6.6 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H)。

実施例37(21)

10

15 (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) - 9-(3-メチルフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

NMR (CD₃OD) : δ 7.41-7.29 (m, 4H), 4.31 (s, 2H), 4.00 (dd, J = 7.8, 4.8 Hz, 1H), 3.79 (m, 2H), 3.52-3.34 (m, 4H), 2.40 (m, 2H), 2.40 (s, 3H), 2.17 (m, 2H), 1.90-1.44 (m, 5H), 1.36 (sextet, J = 7.5 Hz, 2H), 0.94 (t, J = 7.5 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H).

実施例37(22)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -10 9-(4-メチルフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.31 (0.31 (0.31 (0.31 (0.31);

NMR (CD₃OD) : δ 7.43 (d, J = 7.8 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H), 4.31 (s, 2H), 4.00 (dd, J = 7.8, 4.8 Hz, 1H), 3.78 (m, 2H), 3.52-3.35 (m, 4H), 2.40 (m,

2H), 2.37 (s, 3H), 2.17 (m, 2H), 1.88-1.44 (m, 5H), 1.36 (sextet, J = 7.5 Hz, 2H), 0.94 (t, J = 7.5 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H).

実施例37(23)

5 (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) - 9-(4-(1-メチルエチル) フェニルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC:Rf 0.49 (DDDT + VA: VB) = 10:1);

NMR (CD₃OD) : δ 7.48 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 4.32 (s, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.88-3.70 (m, 2H), 3.54-3.36 (m, 4H), 3.04-2.88 (m, 1H), 2.48-2.30 (m, 2H), 2.28-2.08 (m, 2H), 1.90-1.28 (m, 7H), 1.26 (d, J = 6.9 Hz, 6H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 6.9 Hz, 3H).

15

実施例37(24)

TLC: Rf 0.44 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.40-7.32 (m, 2H), 7.21 (m, 1H), 4.31 (s, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.92 (s, 3H), 3.86-3.64 (m, 2H), 3.58-3.36 (m, 4H), 2.56-2.32 (m, 2H), 2.28-2.08 (m, 2H), 1.90-1.26 (m, 7H), 0.96 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H).

実施例37(25)

5

15

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(4-(2-ヒドロキシエチルオキシ) フェニルメチル) -1, 4, 9
 -トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC:Rf 0.22 (クロロホルム:メタノール=10:1); NMR (CD₃OD): δ 7.48 (d, J = 8.7 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 4.29 (s, 2H), 4.09 (t, J = 5.1 Hz, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.88 (t, J = 5.1 Hz,

2H), 3.86-3.64 (m, 2H), 3.54-3.36 (m, 4H), 2.50-2.30 (m, 2H), 2.26-2.08 (m, 2H), 1.90-1.24 (m, 7H), 0.96 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H).

5 実施例37(26)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (2 - ヒドロキシ - 3 - メチルフェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5. 5] ウンデカン・塩酸塩

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

10 TLC: R f 0.66 (クロロホルム:メタノール=10:1);

NMR (CD₃OD): δ 7.24 (d, J = 7.7 Hz, 2H), 6.89 (t, J = 7.7 Hz, 1H), 4.36 (s, 2H), 4.02 (dd, J = 7.5, 4.5 Hz, 1H), 3.95-3.76 (m, 2H), 3.58-3.36 (m, 4H), 2.44-2.08 (m, 4H), 2.89 (s, 3H), 1.90-1.24 (m, 7H), 0.96 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H).

15

実施例37(27)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - トリフルオロメチルオキシフェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.49 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.71 (d, J = 7.8 Hz, 2H), 7.42 (d, J = 7.8 Hz, 2H), 4.41 (s, 2H), 4.01 (dd, J = 7.8, 4.8 Hz, 1H), 3.90-3.72 (m, 2H), 3.56-3.36 (m, 4H), 2.56-2.36 (m, 2H), 2.26-2.08 (m, 2H), 1.90-1.28 (m, 7H), 0.95 (t, J = 7.5 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

実施例37(28)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(3-メチル-5-クロロ-1-フェニルピラゾール-4-イルメチル)
 -1, 4, 9-トリアザスピロ [5. 5] ウンデカン・2塩酸塩

TLC: Rf 0.39 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.59-7.50 (m, 5H), 4.35 (s, 2H), 4.03 (dd, J = 7.8, 4.5 Hz,

1H), 3.98-3.80 (m, 2H), 3.72-3.58 (m, 2H), 3.46-3.38 (m, 2H), 2.58-2.38 (m, 2H), 2.45 (s, 3H), 2.36-2.18 (m, 2H), 1.92-1.24 (m, 7H), 0.97 (t, J = 7.5 Hz, 3H), 0.96 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H).

5 実施例37(29)

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1

10 TLC: Rf 0.28 (クロロホルム: メタノール=10:1);

NMR (CD₃OD): δ 9.17 (s, 1H), 8.80 (m, 1H), 8.39 (m, 1H), 8.03-7.97 (m, 2H), 7.73-7.65 (m, 3H), 4.65 (s, 2H), 4.03 (dd, J = 7.2, 4.2 Hz, 1H), 4.02-3.82 (m, 2H), 3.64-3.42 (m, 2H), 3.78-3.56 (m, 2H), 2.30-2.08 (m, 2H), 1.88-1.24 (m, 7H), 0.96 (d, J = 6.3 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H).

実施例37(30)

15

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1

TLC: R f 0.18 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.54 (d, J = 8.7 Hz, 2H), 7.30 (d, J = 9.0 Hz, 2H), 7.08 (d, J = 8.7 Hz, 2H), 7.04 (d, J = 9.0 Hz, 2H), 4.34 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.88-3.68 (m, 2H), 3.56-3.35 (m, 4H), 2.96 (s, 3H), 2.50-2.08 (m, 4H), 1.88-1.26 (m, 7H), 0.96 (t, J = 6.9 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H).

実施例37(31)

5

10 (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(3, 5-ジメチル-1-(4-メチルスルホニルアミノフェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ [5. 5] ウンデカン・2 塩酸塩

15 TLC: R f 0.15 (0.15) (0.15);

NMR (CD₃OD) : δ 7.49 (d, J = 8.7 Hz, 2H), 7.43 (d, J = 8.7 Hz, 2H), 4.33 (s, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.96-3.76 (m, 2H), 3.66-3.58 (m, 2H), 3.56-3.42 (m, 2H), 3.05 (s, 3H), 2.68-2.46 (m, 2H), 2.44 (s, 3H), 2.41 (s, 3H), 2.32-2.10 (m, 2H), 1.90-1.28 (m, 7H), 0.97 (t, J = 6.6 Hz, 3H), 0.96 (d, J = 6.3 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H).

実施例37(32)

5

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1 -

TLC:Rf 0.29 (クロロホルム:メタノール=10:1); NMR (CD₃OD) : δ 8.12 (s, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 8.7 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 7.06 (d, J = 8.4 Hz, 1H), 4.40 (s, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.94-3.76 (m, 2H), 3.58-3.40 (m, 4H), 2.56-2.36 (m, 2H), 2.38 (s, 3H), 2.30-2.08 (m, 2H), 1.88-1.24 (m, 7H), 0.96 (t, J = 7.8 Hz, 3H), 0.96 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H)。

<u>実施例37(33)</u>

20 (3S) $-1-\vec{\jmath} \ne \nu - 2$, $5-\vec{\jmath} \ne \nu + 3-(2-\vec{\jmath} \ne \nu) - 9-(4-(6-\vec{\jmath} \ne \nu) + 2) = 1-\vec{\jmath} \ne \nu + 3-(2-\vec{\jmath} \ne \nu) = 1-(2-\vec{\jmath} \ne \nu) = 1-(2$

ルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC: $R f = 0.24 (D \Box \Box \pi \lambda \Delta : \forall B J - \lambda = 10:1) ;$

NMR (CD₃OD) ; δ 8.47 (s, 1H), 7.71 (d, J = 8.7 Hz, 2H), 7.62 - 7.48 (m, 2H), 7.29 (d, J = 8.7 Hz, 2H), 4.40 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.92-3.72 (m, 2H), 3.58-3.38 (m, 4H), 2.64-2.40 (m, 2H), 2.60 (s, 3H), 2.28-2.10 (m, 2H), 1.90-1.28 (m, 7H), 0.96 (t, J = 7.8 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H).

10 実施例37(34)

5

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1

TLC:Rf 0.23 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ8.16 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 1.5 Hz, 1H), 7.78 (d, J = 3.6 Hz, 1H), 7.50 (dd, J = 8.4, 1.5 Hz, 1H), 6.75 (d, J = 3.6 Hz, 1H), 4.46 (s, 2H), 4.27 (d, J = 6.6 Hz, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.82-3.74 (m, 2H), 3.58-3.36 (m, 4H), 2.48-2.30 (m, 2H), 2.26-2.08 (m, 3H), 1.88-1.24 (m, 7H), 1.09 (s, 3H), 1.06 (s, 3H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H)。

実施例37(35)

TLC: Rf 0.32 (クロロホルム: メタノール= 10:1);

15 NMR (CD₃OD): δ 8.05-8.02 (m, 2H), 7.52-7.50 (m, 3H), 4.35 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.98-3.80 (m, 2H), 3.70-3.58 (m, 2H), 3.44-3.38 (m, 2H), 2.53 (s, 3H), 2.53-2.36 (m, 2H), 2.34-2.14 (m, 2H), 1.90-1.26 (m, 7H), 0.96 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

20 実施例37(36)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (テトラヒドロピラン - 4 - イルオキシ) フェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・塩酸塩

5 TLC: Rf 0.33 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ7.47 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 4.64 (m, 1H), 4.29 (s, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.98-3.91 (m, 2H), 3.84-3.68 (m, 2H), 3.64-3.56 (m, 2H), 3.50-3.37 (m, 4H), 2.50-2.30 (m, 2H), 2.24-1.98 (m, 4H), 1.88-1.26 (m, 9H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H)。

実施例37(37)

15

TLC:Rf 0.22 (クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 8.55 (d, J = 2.7 Hz, 1H), 8.10 (dd, J = 9.0, 2.7 Hz, 1H), 7.84 (d, J = 9.0 Hz, 1H), 7.72 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 8.7 Hz, 2H), 4.40 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.94-3.70 (m, 2H), 3.58-3.38 (m, 4H), 2.74 (s, 3H), 2.60-2.42 (m, 2H), 2.28-2.08 (m, 2H), 1.90-1.26 (m, 7H), 0.96 (t, J = 7.5 Hz, 3H), 0.96 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H).

実施例37(38)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(3, 5-ジメチル-1-(4-フルオロフェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ [5. 5] ウンデカン・2塩酸塩

15 TLC: Rf 0.58 (クロロホルム: メタノール=10:1);

NMR (CD₃OD): δ 7.55-7.46 (m, 2H), 7.36-7.25 (m, 2H), 4.30 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.95-3.73 (m, 2H), 3.66-3.55 (m, 2H), 3.52-3.40 (m, 2H), 2.63-2.45 (m, 2H), 2.39 (s, 3H), 2.37 (s, 3H), 2.30-2.10 (m, 2H), 1.90-1.43 (m, 5H), 1.43-1.30 (m, 2H), 0.99-0.91 (m, 9H).

5

実施例37(39)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (3, <math>5 - ジメチル - 1 - (ピリジン - 2 - イル) ピラゾール - 4 - イルメチル) - 1, 4, 9 - トリアザスピロ [5. 5] ウンデカン・2塩酸塩

10

15

TLC: Rf 0.52 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.55 (d, J = 4.8 Hz, 1H), 8.12 (dd, J = 8.4, 7.2 Hz, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.50 (dd, J = 7.2, 4.8 Hz, 1H), 4.32 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.96-3.73 (m, 2H), 3.67-3.55 (m, 2H), 3.54-3.40 (m, 2H), 2.69 (s, 3H), 2.70-2.48 (m, 2H), 2.44 (s, 3H), 2.28-2.08 (m, 2H), 1.92-1.43 (m, 5H), 1.43-1.26 (m, 2H), 0.99-0.90 (m, 9H) $_{\circ}$

実施例37(4<u>0)</u>

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(3, 5-ジメチル-1-(4-ヒドロキシフェニル) ピラゾール-4-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・2塩

酸塩

5

TLC: Rf 0.48 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 7.30 (d, J = 9.0 Hz, 2H), 6.95 (d, J = 9.0 Hz, 2H), 4.33 (s, 2H), 4.02 (dd, J = 7.5, 4.5 Hz, 1H), 3.92-3.77 (m, 2H), 3.61 (m, 2H), 3.47 (m, 2H), 2.58 (m, 2H), 2.45 (s, 3H), 2.36 (s, 3H), 2.20 (m, 2 H), 1.88-1.76 (m, 1H), 1.73-1.32 (m, 6H), 0.96 (t, J = 7.5 Hz, 3H), 0.95 (d, J = 6.5 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H).

10 実施例37(41)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (2 - カルボキシエチル) フェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・塩酸塩

TLC: Rf 0.38 (クロロホルム: メタノール=10:1); NMR (CD₃OD): δ 7.47 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 4.31 (s, 2H), 4.00 (dd, J = 7.5, 4.5 Hz, 1H), 3.86-3.73 (m, 2H), 3.49-3.35 (m, 4H), 2.96 (t, J = 7.5 Hz, 2H), 2.62 (t, J = 7.5 Hz, 2H), 2.44-2.33 (m, 2H), 2.23-2.11 (m, 2H), 1.84-1.32 (m, 7H), 0.94 (t, J = 7.5 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H), 0.93 (d, J = 6.5 Hz, 3H)。

実施例37(42)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(3, 5-ジメチル-1-(4-(ジメチルアミノスルホニル)) フェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC: Rf 0.54 (\bigcirc \bigcirc D \bigcirc TLC: Rf 0.54 (\bigcirc D \bigcirc D \bigcirc TLC: \bigcirc Rf 0.54 (\bigcirc D \bigcirc D \bigcirc D \bigcirc D \bigcirc Figure 1.

NMR (CD₃OD) : δ 7.96 (d, J = 8.7 Hz, 2H), 7.77 (d, J = 8.7 Hz, 2H), 4.32 (s, 2H), 4.02 (dd, J = 7.8, 4.8 Hz, 1H), 3.95-3.75 (m, 2H), 3.66-3.56 (m, 2H), 3.47 (m, 2H), 2.74 (s, 6H), 2.56 (m, 2H), 2.48 (s, 3H), 2.41 (s, 3H), 2.30-2.12 (m, 2H), 1.90-1.46 (m, 5H), 1.38 (sextet, J = 7.2 Hz, 2H), 0.98-0.93 (m, 9H).

20 実施例37(43)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (5 - メチルピリジン - 1 - オキシド - 2 - イルオキシ) フェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

5 TLC: Rf 0.41 (クロロホルム:メタノール=9:1);
NMR (CD₃OD): δ7.77 (brs, 1H), 7.65-7.59 (m, 2H), 7.56 (dd, J = 9.3, 2.4 Hz, 1H), 7.03-6.97 (m, 2H), 6.73 (d, J = 9.3 Hz, 1H), 4.33 (s, 2H), 4.00 (dd, J = 7.8, 4.8 Hz, 1H), 3.86-3.68 (m, 2H), 3.51-3.36 (m, 4H), 2.46 (m, 2H), 2.25-2.07 (m, 2H), 2.18 (s, 3H), 1.90-1.44 (m, 5H), 1.36 (sextet, J = 7.2 Hz, 2H), 0.97-0.91 (m, 9H)。

実施例37(44)

15

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (2 - カルボキシ - 1 - エテニル) フェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5. 5] ウンデカン・塩酸塩

TLC:Rf 0.20(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.75 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 16.2 Hz, 1H), 7.61 (d, J = 8.4 Hz, 2H), 6.58 (d, J = 16.2 Hz, 2H), 4.39 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.92-3.74 (m, 2H), 3.58-3.36 (m, 4H), 2.50-2.32 (m, 2H), 2.30-2.10 (m, 2H), 1.90-1.24 (m, 7H), 0.96 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

実施例37(45)

5

TLC: Rf 0.34 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.69-7.57 (m, 5H), 7.14 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.7 Hz, 2H), 6.42 (d, J = 15.9 Hz, 1H), 4.36 (s, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.92-3.70 (m, 2H), 3.56-3.35 (m, 4H), 2.48-2.30 (m, 2H), 2.30-2.12 (m, 2H), 1.88-1.25 (m, 7H), 0.98-0.88 (m, 9H).

5

実施例<u>37(46)</u>

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (4 - アミノカルボニルフェニルオキシ) フェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

10

15

20

TLC: Rf 0.38 (クロロホルム: メタノール=10:1); NMR (CD₃OD): δ 7.90 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 8.7 Hz, 2H), 7.15 (d, J = 8.7 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 4.36 (s, 2H), 4.01 (dd, J = 7.8, 4.5, Hz, 1H), 3.90-3.70 (m, 2H), 3.58-3.35 (m, 4H), 2.54-2.36 (m, 2H), 2.30-2.10 (m, 2H), 1.90-1.26 (m, 7H), 1.00-0.86 (m, 9H)。

実施例37(47)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (4 - アミノスルホニルフェニルオキシ) フェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC:Rf 0.41 (クロロホルム:メタノール=10:1); $NMR (CD_3OD): \delta 7.90 (d, J=8.7 \, Hz, 2H), 7.57 (d, J=8.7 \, Hz, 2H), 7.17 (d, J=8.7 \,$

 $= 8.7 \text{ Hz}, 2\text{H}, 7.13 \text{ (d, J} = 8.7 \text{ Hz}, 2\text{H}), 4.28 \text{ (brs, 2H), } 4.01 \text{ (dd, J} = 7.8, 4.5, Hz, }$

1H), 3.83-3.60 (m, 2H), 3.49-3.34 (m, 4H), 2.44-2.26 (m, 2H), 2.26-2.09 (m, 2H), 1.89-1.26 (m, 7H), 1.00-0.88 (m, 9H).

実施例37(48)

5

TLC: Rf 0.40 (DDDTMA: ADJ-M=10:1);

NMR (CD₃OD) : δ 7.41-7.33 (m, 3H), 7.21-7.19 (m, 2H), 5.45 (s, 2H), 4.30 (s, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.89-3.73 (m, 2H), 3.60-3.46 (m, 4H), 2.61

(m, 2H), 2.48 (s, 3H), 2.46 (s, 3H), 2.23-2.11 (m, 2H), 1.87-1.31 (m, 7H), 0.95 (t, J = 7.0 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H), 0.93 (d, J = 6.5 Hz, 3H).

実施例37(49)

5 (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(3, 5-ジメチル-1-(2, 4-ジフルオロフェニル) ピラゾールー4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

TLC: Rf 0.40 (クロロホルム: メタノール=10:1);
NMR (CD₃OD): δ7.61-7.53 (m, 1H), 7.33-7.26 (m, 1H), 7.23-7.16 (m, 1H), 4.31 (s, 2H), 4.02 (dd, J = 7.5, 4.5 Hz, 1H), 3.92-3.76 (m, 2H), 3.63-3.56 (m, 2H), 3.49-3.45 (m, 2H), 2.57 (m, 2H), 2.40 (s, 3H), 2.29 (s, 3H), 2.19 (m, 2H), 1.86-1.34 (m, 7H), 0.96 (t, J = 7.0 Hz, 3H), 0.95 (d, J = 6.5 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H)。

実施例37(50)

20

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-(ピロリジン-1-イルメチル) フェニルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

TLC: Rf 0.10 (クロロホルム: メタノール=10:1);

NMR (CD₃OD) : δ 7.75 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 4.43 (s, 2H), 4.40 (s, 2H), 4.00 (dd, J = 7.5, 4.5 Hz, 1H), 3.92-3.70 (m, 2H), 3.56-3.40 (m, 6H), 3.25-3.12 (m, 2H), 2.68-2.48 (m, 2H), 2.28-1.95 (m, 6H), 1.88-1.42 (m, 5H), 1.42-1.30 (m, 2H), 0.98-0.90 (m, 9H).

実施例37(51)

5

TLC: Rf 0.43 (0.43) (0.43) (0.43) (0.43) (0.43) (0.43) (0.43)

NMR (CD₃OD) : δ 7.95 (d, J = 8.7 Hz, 2H), 7.80 (d, J = 8.7 Hz, 2H), 4.32 (s, 2H), 4.02 (dd, J = 7.8, 4.8 Hz, 1H), 3.95-3.72 (m, 2H), 3.76-3.67 (m, 4H), 3.66-3.57 (m, 2H), 3.56-3.42 (m, 2H), 3.08-2.95 (m, 4H), 2.70-2.50 (m, 2H), 2.50 (s, 3H), 2.42 (s, 3H), 2.31-2.10 (m, 2H), 1.90-1.44 (m, 5H), 1.44-1.30 (m, 2H), 1.00-0.91 (m, 9H) $_{\circ}$

実施例37(52)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(3, 5-ジメチル-1-(4-(メチルアミノスルホニル) フェニル)
 10 ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2塩酸塩

TLC: Rf 0.21 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ 8.01 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 4.34 (s, 2H), 4.04 (dd, J = 7.8, 4.8 Hz, 1H), 3.98-3.78 (m, 2H), 3.66-3.58 (m, 2H), 3.44-3.30 (m, 2H), 2.59 (s, 3H), 2.54-2.38 (m, 2H), 2.47 (s, 3H), 2.40 (s, 3H), 2.36-2.16 (m, 2H), 1.90-1.26 (m, 7H), 0.97 (t, J = 7.5 Hz, 3H), 0.96 (d, J = 6.6 Hz, 6H)。

実施例37(53)

20 (3S) -1 - ブチル -2, 5 - ジオキソ -3 - (2 - メチルプロピル) -

9-(4-(4-シアノフェニルオキシ)フェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.30(クロロホルム:メタノール=10:1);

5 NMR (CD₃OD) : δ 7.75 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.7 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 4.39 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.94-3.72 (m, 2H), 3.58-3.36 (m, 4H), 2.58-2.38 (m, 2H), 2.28-2.08 (m, 2H), 1.88-1.24 (m, 7H), 0.96 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

10

実施例37(54)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (ジメチルアミノメチル) フェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・2 塩酸塩

15

TLC: R f 0.16 (0.16 (0.16 (0.16);

NMR (CD₃OD) : δ 7.76 (d, J = 8.1 Hz, 2H), 7.63 (d, J = 8.1 Hz, 2H), 4.41 (s, 2H), 4.37 (s, 2H), 4.00 (dd, J = 7.8, 4.8 Hz, 1H), 3.90-3.72 (m, 2H), 3.50-3.42 (m, 4H), 2.87 (s, 6H), 2.65-2.50 (m, 2H), 2.22-2.04 (m, 2H), 1.88-1.32 (m, 7H), 0.97-0.92 (m, 9H).

実施例37(55)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(3, 5-ジメチル-1-(4-(2-ジメチルアミノエチルアミノス
 10 ルホニル) フェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリア ザスピロ [5.5] ウンデカン・3塩酸塩

NMR (CD₃OD) : δ 8.07 (d, J = 8.7 Hz, 2H), 7.78 (d, J = 8.7 Hz, 2H), 4.31 (s, 2H), 4.01 (dd, J = 8.1, 5.1 Hz, 1H), 3.95-3.74 (m, 2H), 3.68-3.45 (m, 4H), 3.40-3.20 (m, 4H), 2.95 (s, 6H), 2.70-2.50 (m, 2H), 2.49 (s, 3H), 2.41 (s, 3H), 2.28-2.12 (m, 2H), 1.88-1.34 (m, 7H), 0.98-0.92 (m, 9H).

<u>実施例37(56)</u>

 $(3S) - 1 - \vec{J} + \vec{J} + \vec{J} = (2 - \vec{J} + \vec{J}$

9-(3-(4-ヒドロキシフェニル)フェニルメチル)-1,4,9-ト リアザスピロ[5.5]ウンデカン・塩酸塩

TLC: R f 0.53 (クロロホルム: メタノール= 10:1);

5 NMR (CD₃OD) : δ 7.81 (s, 1H), 7.69 (d, J = 7.5 Hz, 1H), 7.53 (d, J = 9.0 Hz, 2H), 7.55-7.48 (m, 1H), 7.45 (d, J = 7.5 Hz, 1H), 6.87 (d, J = 9.0 Hz, 2H), 4.40 (s, 2H), 4.00 (dd, J = 7.5, 4.5 Hz, 1H), 3.94-3.73 (m, 2H), 3.56-3.44 (m, 2H), 3.44-3.30 (m, 2H), 2.53-2.33 (m, 2H), 2.26-2.08 (m, 2H), 1.90-1.40 (m, 5H), 1.43-1.25 (m, 2H), 0.94 (d, J = 6.3 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H), 0.93 (d, J = 6.3 Hz, 3H).

実施例37(57)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-(3-メトキシフェニルオキシ) フェニルメチル) -1, 4, 9
 15 -トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.54 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.53 (d, J = 8.5 Hz, 2H), 7.28 (t, J = 8.3 Hz, 1H), 7.07 (d, J = 8.5 Hz, 2H), 6.75 (ddd, J = 8.3, 2.3, 1.0 Hz, 1H), 6.60-6.57 (m, 2H), 4.33 (s, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.86-3.73 (m, 2H), 3.77 (s, 3H), 3.51-3.34 (m, 4H), 2.41 (m, 2H), 2.42-2.12 (m, 2H), 1.84-1.33 (m, 7H), 0.95 (t, J = 7.2 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H), 0.93 (d, J = 6.5 Hz, 3H).

実施例37(58)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(3, 5-ジメチル-1-(キノキサリン-2-イル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2塩酸塩

15 TLC: Rf 0.52 (クロロホルム: メタノール=10:1);

NMR (CD₃OD): δ 9.51 (s, 1H), 8.12 (d, J = 8.0 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.90-7.80 (m, 2H), 4.37 (s, 2H), 4.02 (dd, J = 7.5, 4.5 Hz, 1H), 3.96-3.81 (m, 2H), 3.63 (m, 2H), 3.44 (m, 2H), 2.92 (s, 3H), 2.47 (s, 3H), 2.47 (m, 2H), 2.29-2.17 (m, 2H), 1.86-1.33 (m, 7H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.5 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H).

実施例37(59)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) - 9-(4-フェニルカルボニルフェニルメチル) -1, 4, 9-トリアザス
 10 ピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.76(クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.88 (d, J = 8.4 Hz, 2H), 7.81-7.67 (m, 5H), 7.57-7.52 (m, 2H), 4.49 (s, 2H), 4.01 (dd, J = 8.1, 4.8 Hz, 1H), 4.00-3.78 (m, 2H), 3.59-3.48 (m, 2H), 3.44-3.35 (m, 2H), 2.50-2.32 (m, 2H), 2.32-2.14 (m, 2H), 1.88-1.24 (m, 7H), 1.02-0.88 (m, 9H) 。

実施例37(60)

4, 9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC: Rf 0.34(クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.00 (d, J = 8.7 Hz, 2H), 7.76 (d, J = 8.7 Hz, 2H), 4.34 (s, 2H), 4.04 (dd, J = 7.8, 4.5 Hz, 1H), 3.98-3.76 (m, 2H), 3.70 (t, J = 5.7 Hz, 2H), 3.68-3.58 (m, 2H), 3.50-3.38 (m, 2H), 3.20 (t, J = 5.7 Hz, 2H), 2.88 (s, 3H), 2.58-2.38 (m, 2H), 2.48 (s, 3H), 2.41 (s, 3H), 2.36-2.16 (m, 2H), 1.90-1.24 (m, 7H), 0.97 (t, J = 6.9 Hz, 3H), 0.96 (d, J = 6.3 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H) \circ

10 実施例37(61)

5

 $TLC: Rf 0.24 (D \Box \Box \pi \lambda \Delta : \forall B) = 10:1);$

NMR (CD₃OD) : δ 7.31-7.23 (m, 3H), 7.10 (d, J = 6.6 Hz, 2H), 4.44 (t, J = 6.3 Hz, 2H), 4.21 (s, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.82-3.60 (m, 2H), 3.58-3.32 (m, 4H), 3.13 (t, J = 6.3 Hz, 2H), 2.72-2.52 (m, 2H), 2.50 (s, 3H), 2.24-2.04 (m, 2H), 1.99 (s, 3H), 1.90-1.36 (m, 7H), 0.97 (t, J = 7.2 Hz, 3H), 0.96 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H).

実施例37(62)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(1, 3, 5-トリメチルピラゾール-4-イルメチル) -1, 4, 9
 -トリアザスピロ[5. 5] ウンデカン・2塩酸塩

TLC: Rf 0.43 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ4.28 (s, 2H), 4.00 (dd, J = 7.8, 4.8 Hz, 1H), 3.87 (s, 3H),
3.87-3.69 (m, 2H), 3.60-3.43 (m, 4H), 2.69-2.50 (m, 2H), 2.46 (s, 3H), 2.44 (s, 3H), 2.26-2.08 (m, 2H), 1.90-1.28 (m, 7H), 0.98-0.85 (m, 9H)。

実施例37(63)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(4-(モルホリン-4-イルメチル) フェニルメチル) -1, 4, 9
 -トリアザスピロ「5.5] ウンデカン・2 塩酸塩

TLC: Rf 0.56 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.74 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 4.40 (s, 4H), 4.00 (dd, J = 7.5, 4.5 Hz, 1H), 4.10-3.70 (m, 6H), 3.54-3.42 (m, 4H), 3.40-3.16 (m, 4H), 2.65-2.46 (m, 2H), 2.24-2.03 (m, 2H), 1.88-1.28 (m, 7H), 1.02-0.88 (m, 9H).

実施例37(64)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(4-(4-メチルピペラジン-1-イルメチル) フェニルメチル) 1, 4, 9-トリアザスピロ[5.5] ウンデカン・3塩酸塩

TLC: Rf 0.64 (クロロホルム: メタノール=5:1);

NMR (CD₃OD) : δ 7.45 (m, 4H), 4.55 (s, 2H), 4.42 (s, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.88-3.56 (m, 10H), 3.53-3.43 (m, 4H), 3.01 (s, 3H), 2.59-2.47 (m,

2H), 2.22-2.09 (m, 2H), 1.85-1.33 (m, 7H), 0.94 (t, J = 7.2 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H), 0.93 (d, J = 6.5 Hz, 3H).

実施例37(65)

5 (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) - 9-(4-フェニルスルホニルフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.70(酢酸エチル:メタノール=9:1);

NMR (CD₃OD): δ 8.08 (d, J = 8.4 Hz, 2H), 8.02-7.96 (m, 2H), 7.80 (d, J= 8.4 Hz, 2H), 7.70-7.55 (m, 3H), 4.43 (s, 2H), 3.99 (dd, J = 7.8, 4.8 Hz, 1H), 3.91-3.72 (m, 2H), 3.48-3.34 (m, 4H), 2.48-2.32 (m, 2H), 2.23-2.06 (m, 2H), 1.88-1.43 (m, 5H), 1.34 (sextet, J = 7.2 Hz, 2H), 0.96-0.90 (m, 9H).

15 実施例37(66)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (3, <math>5 - ジメチル - 1 - シクロヘキシルピラゾール - 4 - イルメチル) - 1, 4, 9 - トリアザスピロ [5. 5] ウンデカン・2 塩酸塩

TLC:Rf 0.28(酢酸エチル:メタノール=9:1);

NMR (CD₃OD) : δ 4.35-4.20 (m, 3H), 4.01 (dd, J = 7.8, 4.8 Hz, 1H), 3.90-3.68 (m, 2H), 3.58-3.41 (m, 4H), 2.60-2.46 (m, 2H), 2.45 (s, 3H), 2.40 (s, 3H), 2.26-2.08 (m, 2H), 1.98-1.26 (m, 17H), 0.98-0.91 (m, 9H).

<u>実施例37(67</u>)

5

10

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (3 - カルボキシフェニルオキシ) フェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC:Rf 0.11(酢酸エチル:メタノール=9:1);

NMR (CD₃OD): δ 7.83 (ddd, J = 7.8, 1.5, 0.9 Hz, 1H), 7.61 (dd, J = 2.4, 1.5 Hz, 1H), 7.58 (d, J = 8.7 Hz, 2H), 7.51 (t, J = 7.8 Hz, 1H), 7.29 (ddd, J = 7.8, 2.4, 0.9 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 4.35 (s, 2H), 4.01 (dd, J = 7.8, 4.8 Hz, 1H),

3.90-3.72 (m, 2H), 3.57-3.36 (m, 4H), 2.50-2.34 (m, 2H), 2.28-2.09 (m, 2H), 1.89-1.44 (m, 5H), 1.36 (sextet, J = 7.2 Hz, 2H), 0.98-0.91 (m, 9H).

実施例37(68)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-(ピペリジン-1-イルメチル) フェニルメチル) -1, 4, 9
 -トリアザスピロ[5.5] ウンデカン・2塩酸塩

TLC: Rf 0.52 (0.52) (0.52) (0.52) (0.52) (0.52) (0.52) (0.52)

NMR (CD₃OD) : δ 7.75 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 4.41 (s, 2H), 4.34 (s, 2H), 4.00 (dd, J = 7.8, 4.5 Hz, 1H), 3.91-3.71 (m, 2H), 3.54-3.41 (m, 6H), 3.05-2.91 (m, 2H), 2.67-2.49 (m, 2H), 2.25-2.05 (m, 2H), 2.00-1.28 (m, 13H); 0.98-0.91 (m, 9H).

15 実施例37(69)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (3, <math>5 - ジメチル - 1 - (4 - (ピロリジン - 1 - イルスルホニル) フェニル) ピラゾール - 4 - イルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・2 塩酸塩

TLC:Rf 0.36(酢酸エチル:メタノール=9:1);

NMR (CD₃OD) : δ 8.01 (d, J = 8.7 Hz, 2H), 7.76 (d, J = 8.7 Hz, 2H), 4.32 (s, 2H), 4.02 (dd, J = 7.8, 4.8 Hz, 1H), 3.95-3.74 (m, 2H), 3.66-3.55 (m, 2H), 3.50-3.40 (m, 2H), 3.34-3.24 (m, 4H), 2.62-2.47 (m, 2H), 2.48 (s, 3H), 2.40 (s, 3H), 2.30-2.11 (m, 2H), 1.90-1.45 (m, 9H), 1.38 (sextet, J = 7.2 Hz, 2H), 1.00-0.90 (m, 9H).

実施例37(70)

10 (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) - 9-(2, 3-ジヒドロベンゾフラン-5-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC:Rf 0.56(酢酸エチル:メタノール=9:1);

15 NMR (CD_3OD) : δ 7.40 (brs, 1H), 7.26 (dd, J = 8.1, 1.8 Hz, 1H), 6.80 (d, J = 8.1

Hz, 1H), 4.59 (t, J = 8.7 Hz, 2H), 4.26 (s, 2H), 4.00 (dd, J = 7.8, 4.8 Hz, 1H), 3.84-3.66 (m, 2H), 3.52-3.36 (m, 4H), 3.24 (t, J = 8.7 Hz, 2H), 2.49-2.35 (m, 2H), 2.25-2.08 (m, 2H), 1.89-1.43 (m, 5H), 1.36 (sextet, J = 7.2 Hz, 2H), 0.98-0.91 (m, 9H).

5

10

15

実施例37(71)

(3S) - 1 - ブチル- 2, 5 - ジオキソ- 3 - (2 - メチルプロピル) - 9 - (3, <math>5 - ジメチル- 1 - (4 - (2 - ヒドロキシエチルアミノスルホニル) フェニル) ピラゾール- 4 - イルメチル) - 1, 4,9 - トリアザスピロ [5.5] ウンデカン・2 塩酸塩

TLC: R f 0.35 (0.35 (0.35);

NMR (CD₃OD) : δ 8.03 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 8.7 Hz, 2H), 4.32 (s, 2H), 4.02 (dd, J = 7.5, 4.5 Hz, 1H), 3.95-3.73 (m, 2H), 3.67-3.57 (m, 2H), 3.56 (t, J = 5.7 Hz, 2H), 3.51-3.40 (m, 2H), 3.01 (t, J = 5.7 Hz, 2H), 2.63-2.42 (m, 2H), 2.47 (s, 3H), 2.41 (s, 3H), 2.32-2.12 (m, 2H), 1.92-1.44 (m, 5H), 1.44-1.30 (m, 2H), 1.00-0.91 (m, 9H) $_{\circ}$

実施例37(72)

20 (3S) $-1 - \vec{J} + \vec$

9-(4-(カルボキシメチルオキシ)フェニルメチル)-1,4,9-ト リアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.30 (クロロホルム: メタノール= 10:1);

5 NMR (CD₃OD) : δ 7.47 (d, J = 8.7 Hz, 2H), 7.04 (d, J = 8.7 Hz, 2H), 4.71 (s, 2H), 4.29 (s, 2H), 4.00 (dd, J = 7.8, 4.5 Hz, 1H), 3.88-3.67 (m, 2H), 3.53-3.33 (m, 4H), 2.46-2.28 (m, 2H), 2.26-2.08 (m, 2H), 1.90-1.27 (m, 7H), 0.99-0.90 (m, 9H) .

実施例37(73)_

TLC:Rf 0.23 (クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.62-7.18 (m, 9H), 5.82 (s, 1H), 4.33 (s, 2H), 4.00 (dd, J = 7.8, 4.8 Hz, 1H), 3.88-3.68 (m, 2H), 3.56-3.36 (m, 4H), 2.48-2.28 (m, 2H), 2.24-2.06 (m, 2H), 1.88-1.24 (m, 7H), 0.95 (t, J = 6.6 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H), 0.93 (d, J = 6.3 Hz, 3H).

5

実施例37(74)

(3S) - 1 - ブチル-2, 5 - ジオキソ-3 - (2 - メチルプロピル) - 9 - (4 - (4 - ヒドロキシピペリジン-1 - イルメチル) フェニルメチル) <math>-1, 4, 9 - トリアザスピロ [5. 5] ウンデカン・2 塩酸塩

10

15

20

TLC: Rf 0.16 (0.16 (0.16 (0.16);

NMR (CD₃OD) : δ 7.73 (d, J = 7.8 Hz, 2H), 7.69-7.61 (m, 2H), 4.42 (s, 2H), 4.40-4.34 (m, 2H), 4.11-4.05 (m, 1H), 4.00 (dd, J = 7.5, 4.5 Hz, 1H), 3.93-3.72 (m, 2H), 3.55-3.38 (m, 4H), 3.16-3.00 (m, 1H), 2.60-2.38 (m, 2H), 2.26-2.06 (m, 3H), 2.00-1.88 (m, 2H), 1.88-1.43 (m, 9H), 1.43-1.14 (m, 2H), 0.98-0.90 (m, 9H).

実施例37(75)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (3 - カルボキシフェニルメチルオキシ) フェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC:Rf 0.58(クロロホルム:メタノール=5:1);

NMR (CD₃OD) : δ 8.10 (s, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.50 (t, J = 8.1 Hz, 1H), 7.47 (d, J = 8.7 Hz, 2H), 7.13 (d, J = 8.7 Hz, 2H), 5.22 (s, 2H), 4.29 (s, 2H), 4.01 (dd, J = 7.5, 4.5 Hz, 1H), 3.86-3.68 (m, 2H), 3.54-3.32 (m, 4H), 2.42-2.08 (m, 4H), 1.90-1.28 (m, 7H), 0.95 (t, J = 6.9 Hz, 3H), 0.95

実施例37 (76)

(d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H)

5

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

 $TLC: R f = 0.64 (D \Box \Box \pi \nu \Delta : \forall P J - \nu = 5 : 1) ;$

NMR (CD₃OD) : δ 7.72 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 4.44 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.96-3.78 (m, 2H), 3.58-3.36 (m, 4H), 3.47 (s, 6H), 2.50-2.12 (m, 4H), 1.92-1.28 (m, 7H), 0.96 (t, J = 6.9 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

実施例37(77)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) - 9-(4-(1, 4-ベンゾジオキサン-6-イルオキシ) フェニルメチル)
 10 -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.34 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.49 (d, J = 8.7 Hz, 2H), 7.02 (d, J = 8.7 Hz, 2H), 6.85 (m, 1H), 6.55 - 6.51 (m, 2H), 4.33 (s, 2H), 4.24 (s, 4H), 4.02 (dd, J = 7.5, 4.8 Hz, 1H), 3.88-3.70 (m, 2H), 3.56-3.32 (m, 4H), 2.42-2.10 (m, 4H), 1.92-1.24 (m, 7H), 0.96 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H).

実施例37(78)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 20 9 - (3 - (3 - ヒドロキシフェニル) フェニルメチル) - 1, 4, 9 - ト

リアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.19 (DDD T N L : V D L + V

NMR (CD₃OD): δ 7.83 (s, 1H), 7.74 (m, 1H), 7.59-7.51 (m, 2H), 7.28 (m, 1H), 7.16-7.09 (m, 2H), 6.81 (m, 1H), 4.44 (s, 2H), 4.01 (dd, J = 7.8, 4.5 Hz, 1H), 3.94-3.76 (m, 2H), 3.58-3.32 (m, 4H), 2.50-2.32 (m, 2H), 2.28-2.08 (m, 2H), 1.88-1.26 (m, 7H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

10 実施例37(79)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (メチルスルホニルアミノ) フェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・塩酸塩

15 TLC: R f 0.40 (0.40 (0.40 (0.40);

NMR (CD₃OD) : δ 7.52 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 4.32 (s, 2H), 4.01 (dd, J = 7.8, 4.8 Hz, 1H), 3.88-3.72 (m, 2H), 3.52-3.14 (m, 4H), 3.01 (s, 3H), 2.46-2.30 (m, 2H), 2.28-2.10 (m, 2H), 1.88-1.10 (m, 7H), 0.98-0.90 (m, 9H).

5

実施例37(80)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(6-(4-メトキシフェニルオキシ) ピリジン-3-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2塩酸塩

10

TLC: Rf 0.48 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 8.30 (m, 1H), 8.05 (m, 1H), 7.10-6.86 (m, 5H), 4.39 (s, 2H), 4.01 (dd, J = 7.8, 4.8 Hz, 1H), 3.90-3.74 (m, 2H), 3.81 (s, 3H), 3.54-3.32 (m, 4H), 2.54-2.32 (m, 2H), 2.28-2.05 (m, 2H), 1.88-1.26 (m, 7H), 0.98-0.90 (m, 9H).

15

実施例37(81)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (4 - メチルアミノカルボニルフェニルオキシ) フェニルメチル) - 1, 4, 9 - トリアザスピロ [5, 5] ウンデカン・塩酸塩

TLC: Rf 0.54 (クロロホルム: メタノール=10:1); NMR (CD₃OD): δ 8.39 (brd, J = 4.5 Hz, 1H), 7.84 (d, J = 9.0 Hz, 2H), 7.59 (d, J = 9.0 Hz, 2H), 7.15 (d, J = 9.0 Hz, 2H), 7.07 (d, J = 9.0 Hz, 2H), 4.35 (s, 2H), 4.01 (m, 1H), 3.86-3.73 (m, 2H), 3.53-3.41 (m, 4H), 2.91 (d, J = 4.5 Hz, 3H), 2.55-2.30 (m, 2H), 2.30-2.10 (m, 2H), 1.90-1.30 (m, 7H), 0.95 (t, J = 6.9 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H)。

実施例37(82)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) - 9-(4-(4-クロロフェニルオキシ) フェニルメチル) -1, 4, 9 トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC:Rf 0.59 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ 7.53 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 9.0 Hz, 2H), 7.08 (d, J

= 8.4 Hz, 2H), 7.02 (d, J = 9.0 Hz, 2H), 4.31 (s, 2H), 4.01 (m, 1H), 3.90-3.70 (m, 2H), 3.60-3.30 (m, 4H), 2.50-2.10 (m, 4H), 1.90-1. 30 (m, 7H), 0.95 (t, J = 7.2 Hz, 3H), 0.94 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H).

5 実施例37(83)

(3S) - 1 - ブチルー2, 5 - ジオキソー3 - (2 - メチルプロピル) - 9 - (3 - (4 - カルボキシフェニル) フェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・塩酸塩

TLC: Rf 0.60 (クロロホルム:メタノール=5:1);
NMR (CD₃OD): δ8.13 (d, J = 9.0 Hz, 2H), 7.93 (s, 1H), 7.84 (m, 1H), 7.81 (d, J = 9.0 Hz, 2H), 7.66-7.56 (m, 2H), 4.46 (s, 2H), 4.02 (dd, J = 7.5, 4.8 Hz, 1H),
3.96-3.74 (m, 2H), 3.58-3.36 (m, 4H), 2.48-2.08 (m, 4H), 1.88-1.24 (m, 7H), 0.95

(t, J = 6.9 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H)

15

実施例37(84)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - (2 - メチルプロピル) - 9 - (4 - (フェニルアミノカルボニル) フェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・塩酸塩

TLC:Rf 0.27(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 8.07 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.72-7.67 (m, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.17 (t, J = 7.5 Hz, 1H), 4.47 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.96-3.76 (m, 2H), 3.58-3.36 (m, 4H), 2.54-2.36 (m, 2H), 2.28-2.12 (m, 2H), 1.90-1.24 (m, 7H), 0.96 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

実施例37(85)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-(4-メチルチオフェニルオキシ) フェニルメチル) -1, 4,
 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.49 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.53 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 8.7 Hz, 2H), 4.34 (s, 2H), 4.02 (dd, J = 7.8, 4.5 Hz, 1H), 3.88-3.68 (m, 2H), 3.56-3.36 (m, 4H), 2.48 (s, 3H), 2.48-2.32 (m, 2H), 2.28-2.08 (m, 2H), 1.90-1.28 (m, 7H), 0.96 (t, J = 7.2 Hz, 3H), 0.95 (d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H).

実施例37(86)

5

15

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) - 9-(4-(4-(2-ジメチルアミノエチルアミノカルボニル) フェニル
 10 オキシ) フェニルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C

TLC: Rf 0.11 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.93 (d, J = 9.0 Hz, 2H), 7.64 (d, J = 8.7 Hz, 2H), 7.15 (d, J = 8.7 Hz, 2H), 7.10 (d, J = 9.0 Hz, 2H), 4.36 (s, 2H), 4.01 (dd, J = 7.8, 4.8 Hz, 1H), 3.88-3.70 (m, 4H), 3.54-3.36 (m, 6H), 2.98 (s, 6H), 2.62-2.44 (m, 2H), 2.24-2.08 (m, 2H), 1.88-1.30 (m, 7H), 0.98-0.90 (m, 9H).

実施例37(87)

20 $(3S) - 1 - \vec{j} + \vec{j} +$

ロ[5.5]ウンデカン・塩酸塩

TLC: R f 0.17 (DDD T N L : V P J - N = 10:1);

NMR (CD₃OD) : δ 7.98 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 8.7 Hz, 2H), 4.43 (s, 2H), 4.00 (dd, J = 7.5, 4.5 Hz, 1H), 3.92-3.74 (m, 2H), 3.52-3.36 (m, 4H), 2.58-2.40 (m, 2H), 2.26-2.08 (m, 2H), 1.88-1.28 (m, 7H), 0.98-0.88 (m, 9H).

実施例37(88)

(3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) 9-(4-ジメチルアミノカルボニルフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

NMR (CD₃OD) : δ 7.68 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 4.41 (s, 2H), 4.01 (dd, J = 7.8, 4.8 Hz, 1H), 3.92-3.82 (m, 2H), 3.54-3.36 (m, 4H), 3.11 (s,

3H), 2.99 (s, 3H), 2.56-2.38 (m, 2H), 2.26-2.08 (m, 2H), 1.86-1.28 (m, 7H), 1.00-0.86 (m, 9H).

実施例38

5 (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9 -ベンジルオキシカルボニル-1, 4, 9-トリアザスピロ[5.5]ウン デカン

N-(t-ブチルオキシカルボニル)-L-ロイシンの代わりに、<math>N-(t-10)0 ーブチルオキシカルボニル) -L-シクロへキシルアラニンを用いて、実施 例35と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC:Rf 0.35 (ヘキサン:酢酸エチル=1:1);

NMR (CDCl₃): δ 7.39-7.31 (m, 5H), 6.48 (brs, 1H), 5.16 (s, 2H), 4.15 (brs, 2H), 4.00 (ddd, J = 9.6, 4.8, 1.5 Hz, 1H), 3.76-3.16 (m, 4H), 2.02-1.12 (m, 19H), 1.08-0.88 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H).

実施例39

15

(3S) -1-ブチル-2,5-ジオキソ-3-シクロヘキシルメチル-1,4,9-トリアザスピロ[5.5]ウンデカン・塩酸塩

実施例38で製造した化合物を用いて、実施例9と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC: Rf 0.08 (クロロホルム: メタノール: 酢酸=90:10:1);

NMR (CD₃OD): δ 4.05 (dd, J = 7.8, 4.8 Hz, 1H), 3.84-3.68 (m, 2H), 3.46-3.34 (m, 4H), 2.40-2.04 (m, 4H), 1.83-1.46 (m, 10H), 1.39 (sextet, J = 7.5 Hz, 2H), 1.33 - 1.15 (m, 3H), 1.05-0.86 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H)。

実施例40(1)~40(90)

10 実施例39で製造した化合物と相当するアルデヒド化合物を用いて、実施 例10と同様の操作をし、以下に示した本発明化合物を得た。

実施例40(1)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 15 -(4-(4-メチルフェニルオキシ)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.71(酢酸エチル);

NMR (CD₃OD) : δ 7.50 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 7.02 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 4.32 (s, 2H), 4.04 (dd, J = 7.5, 4.5 Hz, 1H), 3.87-3.69 (m, 2H), 3.55-3.42 (m, 2H), 3.42-3.34 (m, 2H), 2.49-2.30 (m, 2H), 2.33 (s, 3H), 2.30-2.08 (m, 2H), 1.82-1.10 (m, 15H), 1.05-0.85 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H).

実施例40(2)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(4-(4-メトキシフェニルオキシ)フェニルメチル)-1, 4, 9 トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.67(酢酸エチル);

NMR (CD₃OD) : δ 7.49 (d, J = 8.4 Hz, 2H), 7.02-6.92 (m, 6H), 4.31 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.86-3.69 (m, 2H), 3.79 (s, 3H), 3.54-3.30 (m, 4H), 2.50-2.30 (m, 2H), 2.28-2.06 (m, 2H), 1.83-1.10 (m, 15H), 1.05-0.83 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H).

5

実施例40_(3)_

(3S) -1 - ブチル-2, 5 - ジオキソ-3 - シクロヘキシルメチル-9 - (2-7 - 1 -

10

15

20

TLC:Rf 0.38 (ヘキサン:酢酸エチル=1:1);

NMR (CD_3OD): δ 7.70-7.53 (m, 2H), 7.38-7.23 (m, 2H), 4.44 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.95-3.77 (m, 2H), 3.60-3.45 (m, 2H), 3.45-3.30 (m, 2H), 2.53-2.34 (m, 2H), 2.28-2.08 (m, 2H), 1.83-1.10 (m, 15H), 1.05-0.82 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H).

実施例40(4)

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1 -

TLC:Rf 0.40 (ヘキサン:酢酸エチル=1:1);

NMR (CD₃OD) : δ 7.57-7.48 (m, 1H), 7.44-7.37 (m, 2H), 7.30-7.21 (m, 1H), 4.38 (s, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.90-3.72 (m, 2H), 3.55-3.33 (m, 4H), 2.56-2.37 (m, 2H), 2.25-2.04 (m, 2H), 1.82-1.08 (m, 15H), 1.06-0.83 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H).

実施例40(5)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-910 -(4-フルオロフェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.27 (ヘキサン:酢酸エチル=1:1);

NMR (CD₃OD) : δ 7.62 (dd, J = 8.7, 5.1 Hz, 2H), 7.23 (dd, J = 8.7, 8.7 Hz, 2H),

4.36 (s, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.88-3.71 (m, 2H), 3.53-3.33 (m, 4H), 2.53-2.35 (m, 2H), 2.27-2.04 (m, 2H), 1.82-1.10 (m, 15H), 1.05-0.82 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H).

5 実施例40(6)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - シクロヘキシルメチル - 9 - (3 - クロロフェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

10 TLC:Rf 0.60 (ヘキサン:酢酸エチル=1:1);

NMR (CD₃OD) : δ 7.65 (m, 1H), 7.55-7.49 (m, 3H), 4.37 (s, 2H), 4.04 (dd, J = 7.0, 4.5 Hz, 1H), 3.83 (m, 2H), 3.54-3.47 (m, 2H), 3.41-3.35 (m, 2H), 2.38 (m, 2H), 2.18 (m, 2H), 1.78-1.47 (m, 9H), 1.42-1.17 (m, 6H), 0.95 (t, J = 7.5 Hz, 3H), 0.97-0.92 (m, 2H) $_{\circ}$

実施例40(7)

15

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1 -

TLC:Rf 0.36 (クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.41 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 8.7 Hz, 2H), 4.36 (m, 1H), 4.24 (s, 2H), 4.03 (dd, J = 7.8, 4.5 Hz, 1H), 3.82-3.65 (m, 2H), 3.50-3.30 (m, 4H), 2.42-2.25 (m, 2H), 2.25-2.06 (m, 2H), 2.02-1.92 (m, 2H), 1.84-1.14 (m, 23H), 1.04-0.89 (m, 5H).

実施例40(8)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 10 -(4-メトキシ-3-ヒドロキシフェニルメチル) -1, 4, 9-トリア ザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.34 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.01 (d, J = 7.8 Hz, 1H), 6.99-6.93 (m, 2H), 4.22 (s, 2H),

4.03 (dd, J = 7.5, 4.8 Hz, 1H), 3.87 (s, 3H), 3.83-3.67 (m, 2H), 3.52-3.42 (m, 2H), 3.42-3.33 (m, 2H), 2.44-2.27 (m, 2H), 2.26-2.07 (m, 2H), 1.83-1.12 (m, 15H), 1.04-0.89 (m, 5H).

5 実施例40(9)

(3S) -1 - ブチル - 2, 5 - ジオキソ - 3 - シクロヘキシルメチル - 9 - (2 - クロロフェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.77 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ7.69 (dd, J = 7.5, 2.1 Hz, 1H), 7.60 (dd, J = 7.5, 2.1 Hz, 1H),
7.51 (dt, J = 2.1, 7.5 Hz, 1H), 7.47 (dt, J = 2.1, 7.5 Hz, 1H), 4.52 (s, 2H), 4.04 (dd,
J = 7.8, 4.8 Hz, 1H), 4.00-3.82 (m, 2H), 3.60-3.48 (m, 2H), 3.43-3.34 (m, 2H),
2.48-2.29 (m, 2H), 2.28-2.07 (m, 2H), 1.83-1.44 (m, 10H), 1.43-1.12 (m, 5H),
1.04-0.88 (m, 5H)。

実施例40(10)

20

(3S) -1 - $\overline{)}$ -1 - $\overline{)}$ -1 - 1

TLC: Rf 0.77 (0.77 (0.77 (0.77 (0.77 (0.77 (0.77 (0.77));

NMR (CD₃OD) : δ 7.56 (d, J = 7.2 Hz, 1H), 7.41-7.30 (m, 3H), 4.41 (s, 2H), 4.04 (dd, J = 7.5, 4.5 Hz, 1H), 3.98-3.79 (m, 2H), 3.57-3.48 (m, 2H), 3.44-3.39 (m, 2H), 2.56-2.38 (m, 2H), 2.48 (s, 3H), 2.26-2.06 (m, 2 H), 1.82-1.15 (m, 15H), 1.02-0.84 (m, 5H).

実施例40(11)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-910 -(3-メチルフェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.58 (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58)

NMR (CD₃OD) : δ 7.40-7.28 (m, 4H), 4.31 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz,

1H), 3.84-3.70 (m, 2H), 3.52-3.46 (m, 4H), 2.51-2.30 (m, 2H), 2.39 (s, 3H), 2.24-2.04 (m, 2H), 1.80-1.12 (m, 15H), 1.02-0.84 (m, 5H).

実施例40(12)

5 (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-メチルフェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

NMR (CD₃OD) : δ 7.44 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 4.31 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.88-3.70 (m, 2H), 3.52-3.36 (m, 4H), 2.48-2.30 (m, 2H), 2.38 (s, 3H), 2.30-2.08 (m, 2H), 1.81-1.10 (m, 15H), 1.04-0.82 (m, 5H).

15 実施例40(13)

(3S) -1 - ブチル-2, 5 - ジオキソ-3 - シクロヘキシルメチル-9 - (4-7 - 1 +

TLC: Rf 0.74 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.50-7.37 (m, 7H), 7.29 (d, J = 8.4 Hz, 2H), 4.31 (s, 2H), 4.03 (dd, J = 7.5, 4.8 Hz, 1H), 3.84-3.70 (m, 2H), 3.50-3.32 (m, 4H), 2.56-2.38 (m, 2H), 2.24-2.05 (m, 2H), 1.81-1.06 (m, 15H), 1.02-0.84 (m, 5H).

実施例40(14)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(3-(2-メチルプロピル)フェニルメチル)-1, 4, 9-トリアザ
 スピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.41 (クロロホルム: メタノール=19:1);

NMR (CD₃OD) : δ 7.47 (d, J = 7.5 Hz, 2H), 7.29 (d, J = 7.5 Hz, 2H), 4.32 (s, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.80 (m, 2H), 3.56-3.36 (m, 4H), 2.52 (d, J =

7.2 Hz, 2H), 2.45 (m, 2H), 2.16 (m, 2H), 1.96-1.14 (m, 16H), 0.97-0.89 (m, 11H).

実施例40(15)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-95 -(3-ブチルフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.37 (クロロホルム: メタノール= 19:1):

NMR (CD₃OD) : δ 7.46 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 4.31 (s, 2H), 4.03 (dd, J = 7.2, 4.8 Hz, 1H), 3.79 (m, 2H), 3.56-3.36 (m, 4H), 2.66 (t, J = 7.5 Hz, 2H), 2.41 (m, 2H), 2.16 (m, 2H), 1.82-1.20 (m, 19H), 1.00-0.89 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H), 0.93 (t, J = 7.2 Hz, 3H).

実施例40(16)

15 (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(4-イソプロピルフェニルメチル)-1, 4, 9-トリアザスピロ[5.
 5] ウンデカン・塩酸塩

TLC: Rf 0.63 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.46 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 4.32 (s, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.88-3.74 (m, 2H), 3.52-3.43 (m, 2H), 3.43-3.32 (m, 2H), 3.02-2.90 (m, 1H), 2.45-2.25 (m, 2H), 2.2 5-2.08 (m, 2H), 1.80-1.12 (m, 21H), 1.04-0.88 (m, 5H).

実施例40(17)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 10 -(4-メトキシ-3-フルオロフェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.58 (クロロホルム: メタノール=10:1);

NMR (CD₃OD): δ 7.40-7.31 (m, 2H), 7.22-7.17 (m, 1H), 4.30 (s, 2H), 4.03 (dd,

J = 7.8, 4.8 Hz, 1H), 3.90 (s, 3H), 3.86-3.70 (m, 2H), 3.50-3.38 (m, 4H), 2.52-2.32 (m, 2H), 2.26-2.05 (m, 2H), 1.80-1.15 (m, 15H), 1.01-0.88 (m, 5H).

実施例40(18)

5 (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(4-(2-ヒドロキシエトキシ)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.40 (クロロホルム: メタノール= 10:1);

10 NMR (CD₃OD) : δ 7.47 (d, J = 8.7 Hz, 2H), 7.06 (d, J = 8.7 Hz, 2H), 4.29 (s, 2H), 4.08-4.00 (m, 3H), 3.89-3.84 (m, 2H), 3.84-3.68 (m, 2H), 3.52-3.36 (m, 4H), 2.48-2.30 (m, 2H), 2.25-2.08 (m, 2H), 1.80-1.10 (m, 15 H), 1.04-0.86 (m, 5H) $_{\circ}$

実施例40(19)

15 (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(2-ヒドロキシ-3-メチルフェニルメチル)-1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.85 (0.85) (0.85) (0.85) (0.85) (0.85) (0.85) (0.85)

NMR (CD₃OD): δ 7.30-7.21 (m, 2H), 6.88 (t, J = 7.5 Hz, 1H), 4.36 (s, 2H), 4.03 (dd, J = 7.8, 4.2 Hz, 1H), 3.94-3.78 (m, 2H), 3.56-3.46 (m, 2H), 3.42-3.32 (m, 2H), 2.50-2.30 (m, 2H), 2.28 (s, 3H), 2.28-2.06 (m, 2 H), 1.82-1.01 (m, 15H), 1.00-0.87 (m, 5H).

実施例40(20)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-910 -(4-クロロフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.60(クロロホルム:メタノール=20:1);

NMR (CD₃OD) : δ 7.57 (d, J = 8.7 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 4.36 (s,

2H), 4.03 (dd, J = 7.5, 4.8 Hz, 1H), 3.89-3.71 (m, 2H), 3.53-3.33 (m, 4H), 2.52-2.32 (m, 2H), 2.26-2.07 (m, 2H), 1.83-1.06 (m, 15H), 1.04-0.84 (m, 2H), 0.95 (t, J = 6.9 Hz, 3H).

5 実施例40(21)

10 TLC: Rf 0.43 (クロロホルム:メタノール=20:1);
NMR (CD₃OD): δ6.85 (s, 1H), 6.74 (s, 1H), 5.99 (s, 2H), 4.25 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.92 (s, 3H), 3.87-3.67 (m, 2H), 3.54-3.34 (m, 4H), 2.53-2.30 (m, 2H), 2.25-2.05 (m, 2H), 1.83-1.10 (m, 15H), 1.06-0.83 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H)。

15

実施例40(22)

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1

TLC: Rf 0.38 (0.38) (0.38) (0.38) (0.38) 0.38) 0.38

NMR (CD₃OD) : δ 7.37-7.28 (m, 2H), 6.99 (d, J = 8.1 Hz, 1H), 4.25 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.85 (s, 3H), 3.84-3.66 (m, 2H), 3.52-3.32 (m, 4H), 2.48-2.28 (m, 2H), 2.22 (s, 3H), 2.22-2.05 (m, 2H), 1.83-1.10 (m, 15H), 1.06-0.83 (m, 2H), 0.94 (t, J = 6.9 Hz, 3H).

実施例40(23)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 10 -(4-(4-フルオロフェニルオキシ) フェニルメチル) -1, 4, 9 トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.53 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 7.53 (d, J = 8.7 Hz, 2H), 7.18-7.00 (m, 6H), 4.33 (s, 2H),

4.04 (dd, J = 7.5, 4.5 Hz, 1H), 3.87-3.69 (m, 2H), 3.55-3.32 (m, 4H), 2.52-2.32 (m, 2H), 2.28-2.08 (m, 2H), 1.83-1.12 (m, 15H), 1.06-0.83 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H).

5 実施例40(24)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - シクロヘキシルメチル - 9 - (4 - トリフルオロメトキシフェニルメチル) - 1, 4, 9 - トリアザス ピロ [5.5] ウンデカン・塩酸塩

10 TLC: Rf 0.60 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ7.72-7.69 (m, 2H), 7.41 (d, J = 7.8 Hz, 2H), 4.40 (s, 2H),
4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.90-3.75 (m, 2H), 3.52-3.38 (m, 4H), 2.54-2.32 (m, 2H), 2.28-2.10 (m, 2H), 1.80-1.10 (m, 15H), 1.02-0.88 (m, 5H)。

15 実施例40(25)

(3S) -1 - $\overline{)}$ -1 - $\overline{)}$ -1 - 1

TLC: Rf 0.50 (0.50) (0.5

NMR (CD₃OD) : δ 7.56-7.50 (m, 5H), 4.33 (s, 2H), 4.05 (dd, J = 7.8, 4.5 Hz, 1H), 3.98-3.80 (m, 2H), 3.70-3.59 (m, 2H), 3.50-3.40 (m, 2H), 2.60-2.38 (m, 2H), 2.45 (s, 3H), 2.32-2.14 (m, 2H), 1.82-1.14 (m, 15H), 1.02-0.86 (m, 5H).

実施例40(26)_

5

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(2, 3-ジメチル-5-オキソ-1-フェニルピラゾリン-4-イルメ
 チル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

TLC: Rf 0.27 (クロロホルム:メタノール=10:1); NMR(CD₃OD): δ 7.62-7.48 (m, 3H), 7.44-7.38 (m, 2H), 4.13 (s, 2H), 4.04 (dd, J=7.5, 4.5 Hz, 1H), 3.88-3.72 (m, 2H), 3.64-3.52 (m, 2H), 3.50-3.38 (m, 2H),

3.35 (s, 3H), 2.60-2.40 (m, 2H), 2.48 (s, 3H), 2.28-2.1 0 (m, 2H), 1.82-1.10 (m, 15H), 1.02-0.84 (m, 5H).

<u>実施例40(27)</u>

5 (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9- (1-(2-メチルプロピルオキシカルボニル) インドール-5-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.55 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.26 (d, J = 8.4 Hz, 1H), 7.82 (s, 1H), 7.76 (d, J = 3.6 Hz, 1H), 7.50 (dd, J = 8.4, 1.8 Hz, 1H), 6.74 (d, J = 3.6 Hz, 1H), 4.44 (s, 2H), 4.25 (d, J = 6.6 Hz, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.86-3.72 (m, 2H), 3.52-3.40 (m, 4H), 2.52-2.36 (m, 2H), 2.25-2.06 (m, 3H), 1.80-1.10 (m, 15H), 1.07 (d, J = 9.0 Hz, 6H), 1.00-0.84 (m, 5H).

15

実施例40(28)

(3S) − 1 − ブチル− 2, 5 − ジオキソ− 3 − シクロヘキシルメチル− 9 − (5 − メチル− 2 − フェニルオキサゾール− 4 − イルメチル) − 1, 4,

9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.48 (クロロホルム:メタノール=10:1);

NMR (CD₃OD): δ 8.04-8.00 (m, 2H), 7.51-7.49 (m, 3H), 4.34 (s, 2H), 4.04 (dd, J = 7.8, 4.8 Hz, 1H), 3.98-3.82 (m, 2H), 3.70-3.60 (m, 2H), 3.44-3.38 (m, 2H), 2.52 (s, 3H), 2.50-2.36 (m, 2H), 2.28-2.12 (m, 2H), 1.80-1.12 (m, 15H), 1.00-0.86 (m, 5H).

実施例40(29)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(3, 5-ジメチル-1-(4-メチルスルホニルアミノフェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

TLC: Rf 0.32 (クロロホルム: メタノール=10:1);

NMR (CD₃OD) : δ 7.47 (d, J = 9.0 Hz, 2H), 7.41 (d, J = 9.0 Hz, 2H), 4.32 (s, 2H), 4.04 (dd, J = 7.8, 4.8 Hz, 1H), 3.92-3.76 (m, 2H), 3.65-3.58 (m, 2H), 3.52-3.45 (m, 2H), 3.04 (s, 3H), 2.64-2.50 (m, 2H), 2.43 (s, 3H), 2.40 (s, 3H), 2.28-2.12 (m, 2H), 1.82-1.10 (m, 15H), 1.00-0.88 (m, 5H).

<u>実施例40(30)</u>

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 10 - (4-(4-メチルスルホニルアミノフェニルオキシ) フェニルメチル)
 -1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.42 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.53 (d, J = 9.0 Hz, 2H), 7.29 (d, J = 9.0 Hz, 2H), 7.08-7.00

(m, 4H), 4.33 (s, 2H), 4.03 (dd, J = 7.5, 4.8 Hz, 1H), 3.85-3.72 (m, 2H), 3.54-3.36 (m, 4H), 2.95 (s, 3H), 2.48-2.34 (m, 2H), 2.25-2.08 (m, 2H), 1.80-1.14 (m, 15H), 0.98-0.88 (m, 5H).

5 実施例40(31)

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1 -

10 TLC: Rf 0.42 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ 8.58 (d, J = 2.7 Hz, 1H), 8.17 (m, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 9.0 Hz, 2H), 7.30 (d, J = 9.0 Hz, 2H), 4.39 (s, 2H), 4.03 (dd, J = 7.5, 4.8 Hz, 1H), 3.88-3.72 (m, 2H), 3.56-3.44 (m, 4 H), 2.76 (s, 3H), 2.68-2.50 (m, 2H), 2.24-2.06 (m, 2H), 1.82-1.14 (m, 15H), 1.02-0.88 (m, 5H)。

実施例40(32)

15

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - シクロヘキシルメチル - 9 - (4 - (6 - メチルピリジン - 1 - オキシド - 3 - イルオキシ) フェニルメチル) - 1, 4,9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.38 (0.38) (0.38) (0.38) (0.38) 0.38) 0.38

NMR (CD₃OD): δ 8.40 (m, 1H), 7.69 (d, J = 8.4 Hz, 2H), 7.69 (m, 1H), 7.54 (m, 1H), 7.27 (d, J = 8.4 Hz, 2H), 4.39 (s, 2H), 4.04 (dd, J = 7.5, 4.8 Hz, 1H), 3.88-3.72 (m, 2H), 3.58-3.39 (m, 4H), 2.59 (s, 3 H), 2.58-2.40 (m, 2H), 2.28-2.06 (m, 2H), 1.82-1.10 (m, 15H), 1.02-0.84 (m, 5H).

実施例40(33)

5

TLC: Rf 0.48(クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.49 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 4.63 (m,

1H), 4.27 (s, 2H), 4.02 (dd, J = 7.8, 4.8 Hz, 1H), 3.97-3.90 (m, 2H), 3.84-3.66 (m, 2H), 3.62-3.52 (m, 2H), 3.50-3.38 (m, 3H), 2.5 4-2.38 (m, 2H), 2.22-1.98 (m, 4H), 1.80-1.10 (m, 18H), 1.00-0.86 (m, 5H).

5 実施例40(34)

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1 -

10 TLC: Rf 0.50 (クロロホルム:メタノール=10:1);
NMR(CD₃OD): δ9.14 (m, 1H), 8.75 (m, 1H), 8.36 (m, 1H), 8.02-7.99 (m, 2H),
7.68-7.62 (m, 3H), 4.63 (s, 2H), 4.05 (dd, J = 7.5, 4.5 Hz, 1H), 4.02-3.94 (m, 2H),
3.64-3.42 (m, 4H), 2.72-2.56 (m, 2H), 2.25-2.06 (m, 2H), 1.80-1.10 (m, 15H),
1.00-0.86 (m, 5H)。

15

実施例40(35)

TLC:Rf 0.60(クロロホルム:メタノール=10:1);

NMR (CD₃OD): δ 7.58-7.50 (m, 2H), 7.37-7.28 (m, 2H), 4.32 (s, 2H), 4.05 (dd, J = 7.5, 4.5 Hz, 1H), 3.94-3.73 (m, 2H), 3.67-3.55 (m, 2H), 3.53-3.42 (m, 2H), 2.70-2.48 (m, 2H), 2.43 (s, 3H), 2.39 (s, 3H), 2.30-2.08 (m, 2H), 1.84-1.10 (m, 15H), 1.08-0.93 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H).

実施例40(36)

5

TLC:Rf 0.60(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 8.53 (dd, J = 4.8, 1.5 Hz, 1H), 8.11-8.00 (m, 1H), 7.84 (d, J

= 8.4 Hz, 1H), 7.49-7.41 (m, 1H), 4.32 (s, 2H), 4.05 (dd, J = 7.5, 4.5 Hz, 1H), 3.95-3.74 (m, 2H), 3.66-3.54 (m, 2H), 3.50-3.37 (m, 2H), 2.68 (s, 3H), 2.64-2.40 (m, 2H), 2.43 (s, 3H), 2.30-2.08 (m, 2H), 1.93-1.10 (m, 15H), 1.08-0.92 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H).

5

10

15

<u>実施例40(37)</u>

TLC: Rf 0.48 (0.48) (0.48) (0.48) (0.48) (0.48) (0.48) (0.48) (0.48)

NMR (CD₃OD): δ 7.34 (d, J = 9.0 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 4.35 (s, 2H), 4.05 (dd, J = 7.5, 4.5 Hz, 1H), 3.93-3.78 (m, 2H), 3.64-3.61 (m, 2H), 3.50 (t, J = 8.0 Hz, 2H), 2.68-2.56 (m, 2H), 2.49 (s, 3H), 2.3 9 (s, 3H), 2.25-2.12 (m, 2H), 1.81-1.19 (m, 15H), 0.95 (t, J = 7.5 Hz, 3H), 0.99-0.91 (m, 2H).

実施例40(38)

-(4-(2-)ルボキシエチル)フェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC:Rf 0.43 (クロロホルム:メタノール=10:1);

5 NMR (CD₃OD): δ 7.46 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 4.32 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.85-3.74 (m, 2H), 3.50-3.46 (m, 2H), 3.40-3.35 (m, 2H), 2.96 (t, J = 7.2 Hz, 2H), 2.62 (t, J = 7.2 Hz, 2H), 2.42-2.30 (m, 2H), 2.34-2.10 (m, 2H), 1.78-1.18 (m, 15H), 0.94 (t, J = 7.2 Hz, 3H), 0.94 (m, 2H).

10 実施例40(39)

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1 -

TLC: Rf 0.54 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.47 (d, J = 8.4 Hz, 2H), 6.97 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 6.80 (d, J = 9.0 Hz, 2H), 4.30 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.83-3.72 (m, 2H), 3.49-3.34 (m, 4H), 2.38 (m, 2H), 2.23-2.10 (m, 2H), 1.78-1.16 (m, 15H), 1.02-0.92 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H).

実施例40(40)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 10 -(3,5-ジメチル-1-(4-カルボキシフェニル) ピラゾール-4-イルメチル) -1,4,9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

TLC:Rf 0.25(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 8.19 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 4.33 (s, 2H), 4.06 (dd, J = 7.5, 4.5 Hz, 1H), 3.93-3.80 (m, 2H), 3.61 (m, 2H), 3.43-3.38 (m, 2H), 2.44 (s, 3H), 2.40 (m, 2H), 2.39 (s, 3H), 2.21 (m, 2H), 1.75-1.18 (m, 15H), 0.96 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H).

5

10

15

実施例 <u>4 0 (4 1)</u>

TLC: R f 0.54 (0.54);

NMR (CD₃OD) : δ 7.96 (d, J = 8.7 Hz, 2H), 7.78 (d, J = 8.7 Hz, 2H), 4.31 (s, 2H), 4.05 (dd, J = 7.8, 4.5 Hz, 1H), 3.94-3.74 (m, 2H), 3.66-3.56 (m, 2H), 3.48 (m, 2H), 2.74 (s, 6H), 2.59 (m, 2H), 2.49 (s, 3H), 2.41 (s, 3H), 2.29-2.10 (m, 2H), 1.84-1.16 (m, 13H), 1.06-0.86 (m, 5H).

実施例40(42)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - シクロヘキシルメチル - 920 - (4 - (5 - メチルピリジン - 1 - オキシド - 2 - イルオキシ) フェニル

メチル)-1,4,9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.49 (クロロホルム: メタノール= 9:1);

NMR (CD₃OD): δ 7.77 (brs, 1H), 7.61 (d, J = 7.5 Hz, 2H), 7.56 (dd, J = 9.3, 2.4 Hz, 1H), 7.00 (d, J = 7.5 Hz, 2H), 6.73 (d, J = 9.3 Hz, 1H), 4.34 (s, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.86-3.69 (m, 2H), 3.52-3.35 (m, 4H), 2.44 (m, 2H), 2.25-2.06 (m, 2H), 2.18 (s, 3H), 1.84-1.14 (m, 15H), 1.04-0.96 (m, 5H).

実施例40(43)_

5

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(4-(2-カルボキシ-1-エチニル)フェニルメチル)-1, 4, 9
 -トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: R f 0.17 (クロロホルム: メタノール=10:1); NMR (CD₃OD): δ 7.75 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 15.9 Hz, 1H), 7.61 (d,

J = 8.4 Hz, 2H), 6.57 (d, J = 15.9 Hz, 1H), 4.39 (s, 2H), 4.04 (dd, J = 7.2, 4.8 Hz, 1H), 3.90-3.72 (m, 2H), 3.58-3.36 (m, 4H), 2.50-2.32 (m, 2H), 2.28-2.08 (m, 2H), 1.92-1.10 (m, 15H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H).

実施例40(44)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9 -(4-(4-(1E)-2-カルボキシ-1-エチニル)フェニルオキ
 10 シ)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.44(クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.69-7.63 (m, 3H), 7.57 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 6.42 (d, J = 15.9 Hz, 1H), 4.36 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.90-3.74 (m, 2H), 3.55-3.36 (m, 4H), 2.50-2.30 (m, 2H), 2.30-2.08 (m, 2H), 1.82-1.10 (m, 15H), 1.02-0.88 (m, 5H).

実施例40(45)

-(4-(4-アミノカルボニルフェニルオキシ) フェニルメチル) <math>-1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.41 (クロロホルム: メタノール= 10:1);

5 NMR (CD₃OD): δ 7.90 (d, J = 9.0 Hz, 2H), 7.60 (d, J = 9.0 Hz, 2H), 7.15 (d, J = 9.0 Hz, 2H), 7.07 (d, J = 9.0 Hz, 2H), 4.36 (s, 2H), 4.04 (dd, J = 7.5, 4.5, Hz, 1H), 3.90-3.72 (m, 2H), 3.56-3.35 (m, 4H), 2.53-2.35 (m, 2H), 2.28-2.08 (m, 2H), 1.84-1.13 (m, 15H), 1.06-0.86 (m, 5H).

10 実施例40(46)

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1 -

TLC: Rf 0.33 (クロロホルム:メタノール=10:1); NMR (d_6 -DMSO): δ 11.03 (brs, 1H), 8.42 (brs, 1H), 7.82 (d, J = 8.7 Hz, 2H), 7.71 (d, J = 8.7 Hz, 2H), 7.33 (brs, 2H), 7.16 (d, J = 8.7 Hz, 4H), 4.38-4.23 (m, 2H), 3.91 (m, 1H), 3.61-3.23 (m, 6H), 2.58-2.30 (m, 2H), 2.18-1.91 (m, 2H), 1.76-1.00 (m, 15H), 0.98-0.71 (m, 5H)。

実施例40(47)

5

10

15

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(3, 5-ジメチル-1-ベンジルピラゾール-4-イルメチル)-1,4. 9-トリアザスピロ[5. 5] ウンデカン・2塩酸塩

TLC: Rf 0.40 (クロロホルム: メタノール=10:1); NMR (CD₃OD): δ 7.41-7.33 (m, 3H), 7.22-7.20 (m, 2H), 5.46 (s, 2H), 4.31 (s, 2H), 4.04 (dd, J = 7.5, 4.5 Hz, 1H), 3.88-3.74 (m, 2H), 3.58-3.48 (m, 4H), 2.61 (m, 2H), 2.47 (s, 6H), 2.24-2.09 (m, 2H), 1.80-1.16 (m, 15H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (m, 2H)。

実施例40(48)

4-イルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン・2 塩酸塩

TLC: Rf 0.48 (クロロホルム: メタノール= 10:1);

5 NMR (CD₃OD) : δ 7.58-7.51 (m, 1H), 7.33-7.25 (m, 1H), 7.22-7.16 (m, 1H), 4.31 (s, 2H), 4.05 (dd, J = 7.5, 4.5 Hz, 1H), 3.91-3.78 (m, 2H), 3.59 (m, 2H), 3.44 (m, 2H), 2.49 (m, 2H), 2.38 (s, 3H), 2.28 (s, 3H), 2.27-2.15 (m, 2H), 1.81-1.16 (m, 15H), 0.96 (t, J = 7.0 Hz, 3H), 0.96 (m, 2H).

10 実施例40(49)

(3S) -1 - ブチル-2, 5 - ジオキソ-3 - シクロヘキシルメチル-9 - (4 - (ピロリジン- 1 - 1 - 1 + 1

TLC: Rf 0.14 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.74 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 4.43 (s, 2H), 4.40 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.90-3.70 (m, 2H), 3.56-3.38 (m, 6H), 3.28-3.10 (m, 2H), 2.66-2.48 (m, 2H), 2.26-1.92 (m, 6H), 1.83-1.10 (m, 15H), 1.06-0.83 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H).

実施例40(50)

5

15

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(3, 5-ジメチル-1-(4-(モルホン-4-イルスルホニル)フェ
 コル)ピラゾール-4-イルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC:Rf 0.46(クロロホルム:メタノール=20:1);

NMR (CD₃OD) : δ 7.95 (d, J = 8.7 Hz, 2H), 7.80 (d, J = 8.7 Hz, 2H), 4.32 (s, 2H), 4.05 (dd, J = 7.8, 4.5 Hz, 1H), 3.94-3.74 (m, 2H), 3.76-3.67 (m, 4H), 3.66-3.56 (m, 2H), 3.56-3.42 (m, 2H), 3.10-2.92 (m, 4H), 2.68-2.50 (m, 2H), 2.50 (s, 3H), 2.42 (s, 3H), 2.30-2.08 (m, 2H), 1.84-1.08 (m, 15H), 1.08-0.83 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H).

20 実施例40(51)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - シクロヘキシルメチル - 9 - (4 - (4 - シアノフェニルオキシ) フェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

5 TLC: Rf 0.33 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ7.75 (d, J = 9.3 Hz, 2H), 7.64 (d, J = 9.0 Hz, 2H), 7.22 (d, J = 9.0 Hz, 2H), 7.14 (d, J = 9.3 Hz, 2H), 4.40 (s, 2H), 4.05 (dd, J = 7.5, 4.8 Hz, 1H), 3.92-3.74 (m, 2H), 3.58-3.36 (m, 4H), 2.52-2.36 (m, 2H), 2.32-2.08 (m, 2H), 1.84-1.12 (m, 15H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H)。

10

15

実施例40(52)

NMR (CD₃OD) : δ 8.00 (d, J = 8.7 Hz, 2H), 7.78 (d, J = 8.7 Hz, 2H), 4.33 (s, 2H), 4.06 (dd, J = 7.5, 4.5 Hz, 1H), 3.86-3.76 (m, 2H), 3.70 (t, J = 5.7 Hz, 2H),

5 3.68-3.60 (m, 2H), 3.58-3.42 (m, 2H), 3.20 (t, J = 5.7 Hz, 2H), 2.88 (s, 3H), 2.72-2.58 (m, 2H), 2.50 (s, 3H), 2.44 (s, 3H), 2.28-2.06 (m, 2H), 1.82-1.10 (m, 15H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H).

実施例40(53)

10 (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(3, 5-ジメチル-1-(2-フェニルエチル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

TLC:Rf 0.24(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.28-7.23 (m, 3H), 7.10 - 7.07 (m, 2H), 4.40 (t, J = 6.6 Hz, 2H), 4.19 (s, 2H), 4.06 (dd, J = 7.2, 4.8 Hz, 1H), 3.80-3.60 (m, 2H), 3.58-3.36 (m, 4H), 3.12 (t, J = 6.6 Hz, 2H), 2.64-2.45 (m, 2H), 2.45 (s, 3H), 2.26-2.04 (m, 2H), 1.95 (s, 3H), 1.84-1.14 (m, 15H), 0.97 (t, J = 7.5 Hz, 3H), 0.97 (m, 2H).

5

実施例40(54)

10

20

NMR (CD₃OD) : δ 7.76 (d, J = 8.1 Hz, 2H), 7.63 (d, J = 8.1 Hz, 2H), 4.41 (s, 2H), 4.37 (s, 2H), 4.03 (dd, J = 7.8, 5.1 Hz, 1H), 3.90-3.75 (m, 2H), 3.52-3.38 (m, 4H), 2.87 (s, 6H), 2.64-2.48 (m, 2H), 2.22-2.04 (m, 2H), 1.80-1.15 (m, 15H),

15 1.00-0.86 (m, 5H).

実施例40(55)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(3-(4-ヒドロキシフェニル)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

NMR (CD₃OD) : δ 7.81 (s, 1H), 7.69 (d, J = 7.5 Hz, 1H), 7.54 (d, J = 9.0 Hz, 2H), 7.55-7.48 (m, 1H), 7.45 (d, J = 7.5 Hz, 1H), 6.87 (d, J = 9.0 Hz, 2H), 4.40 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.92-3.73 (m, 2H), 3.58-3.43 (m, 2H), 3.43-3.32 (m, 2H), 2.55-2.35 (m, 2H), 2.28-2.06 (m, 2H), 1.82-1.10 (m, 15H), 1.08-0.83 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H) $_{\circ}$

TLC: Rf 0.58 (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58) (0.58)

実施例40(56)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(3, 5-ジメチル-1-(キノキサリン-2-イル)ピラゾール-4-イルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC: Rf 0.67 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 9.51 (s, 1H), 8.13 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.91-7.80 (m, 2H), 4.38 (s, 2H), 4.05 (dd, J = 7.5, 4.5 Hz, 1H), 3.96-3.82 (m, 2H), 3.63 (m, 2H), 3.42 (m, 2H), 2.92 (s, 3H), 2.47 (s, 3H), 2.47 (m, 2H), 2.29-2.16 (m, 2H), 1.80-1.18 (m, 15H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (m, 2H).

実施例40(57)

5

15

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(4-(フェニルカルボニル)フェニルメチル)-1, 4, 9-トリアザ
 スピロ[5.5]ウンデカン・塩酸塩

NMR (CD₃OD) : δ 7.87 (d, J = 8.4 Hz, 2H), 7.82-7.74 (m, 4H), 7.67 (t, J = 8.4 Hz, 1H), 7.57-7.51 (m, 2H), 4.48 (s, 2H), 4.04 (dd, J = 7.8, 4.8 Hz, 1H), 3.84-3.78 (m, 2H), 3.58-3.38 (m, 4H), 2.58-2.40 (m, 2H), 2.30-2.10 (m, 2H), 1.82-1.14 (m, 15H), 1.02-0.86 (m, 5H).

実施例40(58)

ゾールー4ーイルメチル)-1, 4, 9ートリアザスピロ [5.5] ウンデカン・2 塩酸塩

TLC: Rf 0.30 (0.30 (0.30 (0.30 (0.30);

5 NMR (CD₃OD) : δ 8.01 (d, J = 8.7 Hz, 2H), 7.74 (d, J = 8.7 Hz, 2H), 4.33 (s, 2H), 4.06 (dd, J = 7.8, 4.5 Hz, 1H), 3.86-3.78 (m, 2H), 3.68-3.58 (m, 2H), 3.52-3.36 (m, 2H), 2.59 (s, 3H), 2.59-2.38 (m, 2H), 2.48 (s, 3H), 2.41 (s, 3H), 2.34-2.10 (m, 2H), 1.84-1.16 (m, 15H), 0.97 (t, J = 7.2 Hz, 3H), 0.97 (m, 2H).

10 実施例40(59)

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1

TLC: Rf 0.43 (0.43) (0.43) (0.43) (0.43) (0.43) (0.43) (0.43)

NMR (CD₃OD) : δ 4.28 (s, 2H), 4.03 (dd, J = 7.8, 4.5 Hz, 1H), 3.87 (s, 3H), 3.87-3.69 (m, 2H), 3.61-3.43 (m, 4H), 2.69-2.50 (m, 2H), 2.46 (s, 3H), 2.44 (s, 3H), 2.25-2.06 (m, 2H), 1.83-1.12 (m, 15H), 1.05-0.86 (m, 5H).

5

実施例40(60)

(3S) -1 - ブチル-2, 5 - ジオキソ-3 - シクロヘキシルメチル-9 - (4 - (モルホリン-4 - イルメチル) フェニルメチル) -1, 4, 9 - トリアザスピロ [5.5] ウンデカン・2 塩酸塩

10

15

TLC: Rf 0.56 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.74 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 4.40 (s, 4H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 4.00-3.70 (m, 6H), 3.54-3.40 (m, 4H), 3.35-3.18 (m, 4H), 2.63-2.47 (m, 2H), 2.24-2.02 (m, 2H), 1.83-1.12 (m, 15H), 1.06-0.85 (m, 5H) $_{\circ}$

実施例40(61)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(4-(3-メトキシフェニルオキシ)フェニルメチル)-1, 4, 9 20 トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.57 (0.57) (0.57) (0.57) (0.57) (0.57)

NMR (CD₃OD) : δ 7.53 (d, J = 8.7 Hz, 2H), 7.28 (t, J = 8.4 Hz, 1H), 7.07 (d, J = 8.7 Hz, 2H), 6.75 (ddd, J = 8.4, 2.4, 1.0 Hz, 1H), 6.61-6.57 (m, 2H), 4.34 (s, 2H), 4.04 (dd, J = 7.5, 4.5 Hz, 1H), 3.85-3.55 (m, 2H), 3.77 (s, 3H), 3.53-3.47 (m, 2H), 3.40 (m, 2H), 2.50-2.35 (m, 2H), 2.25-2.11 (m, 2H), 1.80-1.23 (m, 15H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (m, 2H).

実施例40(62)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(4-(4-メチルピペラジン-1-イルメチル)フェニルメチル)-1,
 4,9-トリアザスピロ[5.5]ウンデカン・3塩酸塩

TLC:Rf 0.69(クロロホルム:メタノール=5:1);

NMR (CD₃OD): δ 7.74 (s, 4H), 4.54 (s, 2H), 4.41 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.87-3.42 (m, 14H), 3.00 (s, 3H), 2.61-2.46 (m, 2H), 2.21-2.07 (m, 2H), 1.79-1.15 (m, 15H), 1.02-0.92 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H).

5 実施例40(63)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(4-(ピリジン-1-オキシド-3-イルオキシ) フェニルメチル) 1, 4, 9-トリアザスピロ [5. 5] ウンデカン・塩酸塩

TLC: Rf 0.42 (クロロホルム:メタノール=9:1);
NMR (CD₃OD): δ8.45 (t, J = 1.8 Hz, 1H), 8.37 (brd, J = 6.3 Hz, 1H), 7.71 (dd, J = 8.4, 6.3 Hz, 1H), 7.72 (d, J = 8.7 Hz, 2H), 7.59 (brdd, J = 8.4, 1.8 Hz, 1H), 7.31 (d, J = 8.7 Hz, 2H), 4.40 (s, 2H), 4.04 (dd, J = 7.8 Hz, 1H), 3.90-3.74 (m, 2H), 3.57-3.40 (m, 4H), 2.58-2.40 (m, 2H), 2.28-2.08 (m, 2H), 1.82-1.14 (m, 15H), 1.04-0.90 (m, 5H)。

実施例 4 0 (6 <u>4</u>)

20

(3S) - 1 - プチル - 2, 5 - ジオキソ - 3 - シクロヘキシルメチル - 9- (4 - フェニルスルホニルフェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC:Rf 0.77(酢酸エチル:メタノール=9:1);

NMR (CD₃OD) : δ 8.08 (d, J = 8.4 Hz, 2H), 8.02-7.96 (m, 2H), 7.80 (d, J= 8.4 Hz, 2H), 7.70-7.55 (m, 3H), 4.43 (s, 2H), 4.02 (dd, J = 7.8, 4.8 Hz, 1H), 3.89-3.73 (m, 2H), 3.49-3.34 (m, 4H), 2.48-2.33 (m, 2H), 2.23-2.04 (m, 2H), 1.82-1.14 (m, 15H), 1.03-0.85 (m, 5H).

実施例40(65)

TLC:Rf 0.32(酢酸エチル:メタノール=9:1);

NMR (CD₃OD) : δ 4.42-4.28 (m, 1H), 4.28 (s, 2H), 4.04 (dd, J = 7.5, 4.5 Hz,

1H), 3.90-3.72 (m, 2H), 3.60-3.43 (m, 4H), 2.68-2.50 (m, 2H), 2.50 (s, 3H), 2.46 (s, 3H), 2.25-2.06 (m, 2H), 2.04-1.15 (m, 25H), 1.05-0.89 (m, 5H).

実施例40(66)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(4-(3-カルボキシフェニルオキシ)フェニルメチル)-1, 4, 9
 -トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.16(酢酸エチル:メタノール=9:1);

NMR (CD₃OD): δ 7.83 (ddd, J = 7.8, 1.5, 1.2 Hz, 1H), 7.60 (dd, J = 2.4, 1.5 Hz, 1H), 7.57 (d, J = 8.7 Hz, 2H), 7.51 (t, J = 7.8 Hz, 1H), 7.29 (ddd, J = 7.8, 2.4, 1.2 Hz, 1H), 7.12 (d, J = 8.7 Hz, 2H), 4.35 (s, 2H), 4.04 (dd, J = 7.5, 4.5 Hz, 1H), 3.90-3.74 (m, 2H), 3.58-3.35 (m, 4H), 2.49-2.34 (m, 2H), 2.28-2.09 (m, 2H), 1.93-1.10 (m, 15H), 1.07-0.85 (m, 5H).

実施例40(67)

15

TLC:Rf 0.56(クロロホルム:メタノール=9:1);

NMR (CD₃OD) : δ 7.75 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 4.40 (s, 2H), 4.34 (s, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.90-3.72 (m, 2H), 3.53-3.38 (m, 5H), 3.05-2.91 (m, 2H), 2.66-2.49 (m, 2H), 2.24-2.04 (m, 2H), 2.00-1.13 (m, 21H), 1.04-0.86 (m, 5H).

実施例40(68)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 10 - (3, 5-ジメチル-1-(4-(ピロリジン-1-イルスルホニル))フェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

TLC:Rf 0.40 (酢酸エチル:メタノール=9:1);

NMR (CD₃OD) : δ 8.01 (d, J = 8.7 Hz, 2H), 7.76 (d, J = 8.7 Hz, 2H), 4.32 (s, 2H), 4.05 (dd, J = 7.5, 4.5 Hz, 1H), 3.94-3.75 (m, 2H), 3.66-3.56 (m, 2H), 3.49-3.41 (m, 2H), 3.32-3.25 (m, 4H), 2.60-2.46 (m, 2H), 2.48 (s, 3H), 2.40 (s, 3H), 2.30-2.11 (m, 2H), 1.83-1.14 (m, 19H), 1.05-0.87 (m, 5H).

5

実施例40(69)

(3S) -1 - $\overline{)}$ - 1 -

10

15

TLC:Rf 0.61 (酢酸エチル:メタノール=9:1);

NMR (CD₃OD) : δ 7.39 (d, J = 1.8 Hz, 1H), 7.26 (dd, J = 8.4, 1.8 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 4.59 (t, J = 8.7 Hz, 2H), 4.26 (s, 2H), 4.04 (dd, J = 7.8, 4.8 Hz, 1H), 3.84-3.67 (m, 2H), 3.54-3.34 (m, 4H), 3.25 (t, J = 8.7 Hz, 2H), 2.48-2.31 (m, 2H), 2.26-2.07 (m, 2H), 1.83-1.14 (m, 15H), 1.04-0.87 (m, 5H).

実施例40(70)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(4-(4-カルボキシフェニルオキシ)フェニルメチル)-1, 4, 9
 20 -トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.55(酢酸エチル:メタノール=9:1);

NMR (CD₃OD) : δ 8.04 (d, J = 8.7 Hz, 2H), 7.61 (d, J = 8.7 Hz, 2H), 7.18 (d, J = 8.7 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 4.38 (s, 2H), 4.05 (dd, J = 7.8, 4.8 Hz, 1H), 3.91-3.74 (m, 2H), 3.57-3.35 (m, 4H), 2.50-2.33 (m, 2H), 2.29-2.09 (m, 2H), 1.84-1.14 (m, 15H), 1.05-0.86 (m, 5H) $_{\circ}$

実施例40(71)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 10 -(3, 5-ジメチル-1-(4-(2-ヒドロキシエチルアミノスルホニル) フェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

TLC: Rf 0.38 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.03 (d, J = 8.7 Hz, 2H), 7.72 (d, J = 8.7 Hz, 2H), 4.31 (s, 2H), 4.05 (dd, J = 7.5, 4.5 Hz, 1H), 3.94-3.74 (m, 2H), 3.66-3.56 (m, 2H), 3.56 (t, J = 5.7 Hz, 2H), 3.51-3.41 (m, 2H), 3.01 (t, J = 5.7 Hz, 2H), 2.63-2.43 (m, 2H), 2.47 (s, 3H), 2.40 (s, 3H), 2.32-2.10 (m, 2H), 1.93-1.10 (m, 15H), 1.06-0.93 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H).

実施例40(72)_

5

15

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(3, 5-ジメチル-1-(4-(2-ジメチルアミノエチルアミノスル
 ホニル) フェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・3塩酸塩

TLC: Rf 0.13 (クロロホルム:メタノール=10:1); NMR (CD₃OD): δ 8.07 (d, J = 8.7 Hz, 2H), 7.79 (d, J = 8.7 Hz, 2H), 4.31 (s, 2H), 4.04 (dd, J = 7.5, 4.2 Hz, 1H), 3.82-3.76 (m, 2H), 3.68-3.48 (m, 4H), 3.34-3.24 (m, 4H), 2.95 (s, 6H), 2.76-2.52 (m, 2H), 2.50 (s, 3H), 2.43 (s, 3H), 2.25-2.08 (m, 2H), 1.82-1.14 (m, 15H), 1.02-0.88 (m, 5H)。

実施例40(73)

 $(3S) - 1 - \vec{j} + \vec{j} + \vec{j} + \vec{j} = 0$

- (4-(1-ヒドロキシ-1-フェニルメチル)フェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: R f 0.30 (0.30 (0.30);

NMR (CD₃OD): δ 7.62-7.18 (m, 9H), 5.82 (s, 1H), 4.34 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.88-3.72 (m, 2H), 3.58-3.30 (m, 4H), 2.42-2.04 (m, 4H), 1.82-1.24 (m, 15H), 0.94 (t, J = 7.2 Hz, 3H), 0.94 (m, 2H).

実施例40(74)

10 (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-(カルボキシメチルオキシ)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.30 (クロロホルム: メタノール=10:1); NMR (CD₃OD) : δ 7.47 (d, J = 8.7 Hz, 2H), 7.04 (d, J = 8.7 Hz, 2H), 4.70 (s, 2H), 4.29 (s, 2H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.86-3.69 (m, 2H), 3.54-3.33 (m, 4H), 2.44-2.28 (m, 2H), 2.26-2.06 (m, 2H), 1.83-1.12 (m, 15H), 1.04-0.85 (m, 5H)。

実施例40(75)

5

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(4-(4-ヒドロキシピペリジン-1-イルメチル)フェニルメチル)
 -1, 4, 9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC: Rf 0.17 (クロロホルム: メタノール=10:1); NMR (CD₃OD): δ7.76 (d, J = 7.8 Hz, 2H), 7.70-7.61 (m, 2H), 4.40 (s, 2H), 4.38-4.32 (m, 2H), 4.10-4.05 (m, 1H), 4.03 (dd, J = 7.5, 4.5 Hz, 1H), 3.90-3.68 (m, 2H), 3.56-3.40 (m, 4H), 3.18-3.00 (m, 1H), 2.70-2.48 (m, 2H), 2.23-1.82 (m, 5H), 1.82-1.10 (m, 19H), 1.06-0.83 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H)。

実施例40(76)

(3S) − 1 − ブチル − 2, 5 − ジオキソ − 3 − シクロヘキシルメチル − 9 20 − (4 − (3 − カルボキシフェニルメチルオキシ)フェニルメチル) − 1.

4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.57(クロロホルム:メタノール=5:1);

NMR (CD₃OD) : δ 8.10 (s, 1H), 7.98 (d, J = 7.8 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.46 (d, J = 8.7 Hz, 2H), 7.13 (d, J = 8.7 Hz, 2H), 5.22 (s, 2H), 4.28 (s, 2H), 4.04 (dd, J = 7.8, 4.8 Hz, 1H), 3.84-3.68 (m, 2H), 3.52-3.32 (m, 4H), 2.42-2.08 (m, 4H), 1.82-1.16 (m, 15H), 0.95 (t, J = 7.8 Hz, 3H), 0.95 (m, 2H) $_{\circ}$

10 実施例40(77)

(3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1

TLC: Rf 0.41 (クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.48 (d, J = 9.0 Hz, 2H), 7.02 (d, J = 9.0 Hz, 2H), 6.86 (m, 1H), 6.55 - 6.51 (m, 2H), 4.31 (s, 2H), 4.24 (s, 4H), 4.05 (dd, J = 7.5, 4.5 Hz, 1H), 3.86-3.70 (m, 2H), 3.58-3.36 (m, 4H), 2.42-2.08 (m, 4H), 1.82-1.12 (m, 15H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H) 。

実施例40(78)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 10 -(3-(3-ヒドロキシフェニル)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.24 (クロロホルム: メタノール=10:1);

NMR (CD₃OD): δ 7.81 (s, 1H), 7.74 (m, 1H), 7.60-7.50 (m, 2H), 7.28 (m, 1H), 7.15-7.08 (m, 2H), 6.82 (m, 1H), 4.43 (s, 2H), 4.04 (dd, J = 7.5, 4.5 Hz, 1H), 3.86-3.78 (m, 2H), 3.58-3.34 (m, 4H), 2.48-2.08 (m, 4H), 1.84-1.12 (m, 15H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (m, 2H).

5

実施例40(79)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - シクロヘキシルメチル - 9 - (4 - (メチルスルホニルアミノ) フェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

10

TLC:Rf 0.40 (クロロホルム:メタノール=10:1); NMR (CD₃OD) : δ 7.53 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 4.32 (s, 2H), 4.03 (dd, J = 7.8, 4.8 Hz, 1H), 3.86-3.72 (m, 2H), 3.52-3.34 (m, 4H), 3.01 (s, 3H), 2.50-2.32 (m, 2H), 2.24-2.06 (m, 2H), 1.82-1.10 (m, 15H), 1.02-0.86 (m, 2H), 2.50-2.32 (m, 2H), 2.24-2.06 (m, 2

15 5H).

20

実施例40(80)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(6-(4-メトキシフェニル) ピリジン-3-イルメチル) -1, 4,9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

TLC: Rf 0.67 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 8.26 (m, 1H), 8.02 (m, 1H), 7.08-6.84 (m, 5H), 4.38 (s, 2H), 4.04 (dd, J = 7.8, 4.8 Hz, 1H), 3.90-3.72 (m, 2H), 3.81 (s, 3H), 3.56-3.44 (m, 2H), 3.42-3.32 (m, 2H), 2.50-2.30 (m, 2H), 2.30-2.08 (m, 2H), 1.82-1.14 (m, 15H), 1.02-0.88 (m, 5H).

<u>実</u>施例40(8<u>1)</u>

TLC: Rf 0.46 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.39 (br d, J = 4.5 Hz, 1H), 7.84 (d, J = 9.0 Hz, 2H), 7.58 (d,

J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 9.0 Hz, 2H), 4.35 (s, 2H), 4.04 (m, 1H), 3.85-3.74 (m, 2H), 3.53-3.38 (m, 4H), 2.91 (d, J = 4.5 Hz, 3H), 2.55-2.30 (m, 2H), 2.30-2.10 (m, 2H), 1.80-1.10 (m, 15H), 1.10-0.90 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H).

5

実施例40(82)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - シクロヘキシルメチル - 9 - (4 - (4 - クロロフェニルオキシ) フェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

10

TLC: Rf 0.76 (クロロホルム: メタノール=10:1); NMR (CD₃OD): δ 7.52 (d, J = 9.0 Hz, 2H), 7.38 (d, J = 9.0 Hz, 2H), 7.09 (d, J = 9.0 Hz, 2H), 7.02 (d, J = 9.0 Hz, 2H), 4.32 (s, 2H), 4.04 (m, 1H), 3.90-3.70 (m, 2H), 3.60-3.30 (m, 4H), 2.50-2.10 (m, 4H), 1.90-1.10 (m, 15H), 1.10-0.90 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H)。

15

20

実施例40(83)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-ビス(メチルスルホニル)アミノフェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

NMR (CD₃OD) : δ 7.69 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 4.41 (s, 2H), 4.05 (dd, J = 7.8, 4.8 Hz, 1H), 3.92-3.70 (m, 2H), 3.56-3.36 (m, 4H), 3.47 (s, 6H), 2.46-2.08 (m, 4H), 1.84-1.16 (m, 15H), 0.96 (t, J = 7.5 Hz, 3H), 0.96 (m, 2H).

実施例40 (84)

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 10 -(3-(4-カルボキシフェニル)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.60 (クロロホルム: メタノール=5:1);

NMR (CD₃OD): δ 8.13 (d, J = 9.0 Hz, 2H), 7.95 (s, 1H), 7.84 (m, 1H), 7.82 (d, J = 9.0 Hz, 2H), 7.66-7.61 (m, 2H), 4.46 (s, 2H), 4.04 (dd, J = 7.5, 4.5 Hz, 1H), 3.96-3.78 (m, 2H), 3.62-3.36 (m, 4H), 2.54-2.32 (m, 2H), 2.28-2.08 (m, 2H), 1.82-1.08 (m, 15H), 0.95 (t, J = 7.2 Hz, 3H), 0.95 (m, 2H).

5

実施例40(85)

(3S) -1 - ブチル-2, 5 - ジオキソ-3 - シクロヘキシルメチル-9 - (4 - (フェニルアミノカルボニル)フェニルメチル) -1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

10

TLC: R f 0.25 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.07 (d, J = 8.1 Hz, 2H), 7.73-7.67 (m, 2H), 7.71 (d, J = 8.1 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.17 (t, J = 7.5 Hz, 1H), 4.45 (s, 2H), 4.05 (dd, J = 7.8, 4.8 Hz, 1H), 3.92-3.72 (m, 2H), 3.58-3.36 (m, 4H), 2.50-2.08 (m, 4H),

15 1.84-1.08 (m, 15H), 0.96 (t, J = 7.8 Hz, 3H), 0.96 (m, 2H).

実施例40(86)_

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - シクロヘキシルメチル - 9 - (4 - (4 - メチルチオフェニルオキシ) フェニルメチル) - 1, 4, 9

- トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC:Rf 0.48 (クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.54 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H), 7.06 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 8.7 Hz, 2H), 4.34 (s, 2H), 4.05 (dd, J = 7.5, 4.5 Hz, 1H), 3.86-3.70 (m, 2H), 3.56-3.36 (m, 4H), 2.48 (s, 3H), 2.48-2.32 (m, 2H), 2.28-2.08 (m, 2H), 1.82-1.14 (m, 15H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H).

実施例40(87)

10 (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9 -(4-(4-(2-ジメチルアミノエチルアミノカルボニル)フェニルオ キシ)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカ ン・塩酸塩

TLC: Rf 0.11 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.94 (d, J = 9.0 Hz, 2H), 7.64 (d, J = 8.7 Hz, 2H), 7.15 (d, J = 8.7 Hz, 2H), 7.10 (d, J = 9.0 Hz, 2H), 4.36 (s, 2H), 4.04 (dd, J = 7.8, 4.8 Hz, 1H), 3.88-3.72 (m, 4H), 3.52-3.36 (m, 6H), 2.98 (s, 6H), 2.62-2.44 (m, 2H), 2.24-2.08 (m, 2H), 1.80-1.10 (m, 15H), 1.00-0.88 (m, 5H).

実施例40(88)

5

15

20

(3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9
 -(4-アミノカルボニルフェニルメチル)-1, 4, 9-トリアザスピロ
 [5.5] ウンデカン・塩酸塩

TLC: Rf 0.19 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.98 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 4.43 (s, 2H), 4.03 (dd, J = 7.5, 4.8 Hz, 1H), 3.92-3.76 (m, 2H), 3.54-3.28 (m, 4H), 2.52-2.36 (m, 2H), 2.24-2.08 (m, 2H), 1.82-1.10 (m, 15H), 1.02-0.88 (m, 5H) \circ

実施例40(89)

TLC: Rf 0.33 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.67 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 4.41 (s, 2H), 4.04 (dd, J = 7.5, 4.2 Hz, 1H), 3.92-3.76 (m, 2H), 3.54-3.32 (m, 4H), 3.11 (s, 3H), 2.99 (s, 3H), 2.52-2.32 (m, 2H), 2.26-2.08 (m, 2H), 1.82-1.10 (m, 15H), 1.02-0.86 (m, 5H).

実施例40(90)

5

(3S) -1 - $\overline{)}$ $\overline{)}$ - 1

TLC: Rf 0.73 (クロロホルム: メタノール= 10:1);

NMR (CDCl₃): δ 7.37-7.25 (m, 4H), 7.10 (m,1H), 7.04-6.98 (m, 2H), 6.96 (d, 15 J = 8.7 Hz, 2H), 5.81 (brs, 1H), 3.99 (m, 1H), 3.52 (s, 2H), 3.52-3.32 (m, 2H),

2.92-2.74 (m, 3H), 2.57 (dt, J = 12.0, 3.0 Hz, 1H), 2.18-1.88 (m, 5H), 1.76-1.13 (m, 14H), 1.07-0.88 (m, 2H), 0.93 (t, J = 7.5 Hz, 3H).

実施例41

5 参考例2で製造した樹脂(3)、N-アリルオキシカルボニル-4-ピペリドン、n-ブチルアミンおよび(2R*,3R*)-N-(t-ブチルオキシカルボニル)-2-アミノ-3-ヒドロキシ-4-メチルペンタン酸を用いて、参考例3→参考例4と同様の操作をし、さらに1,4-ベンゾジオキサン-6-カルボキシアルデヒドを用いて、参考例5→参考例6→実施例1
2 と同様の操作をし、以下の本発明化合物(1)および(2)をそれぞれ得た。

実施例41(1)

15

1-ブチルー2, 5-ジオキソー3-(1-ヒドロキシー2-メチルプロピル) -9-(1, 4-ベンゾジオキサン-6-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

(*は、syn 体と anti 体が2:3の割合で混合していることを表す。)

 $TLC: Rf 0.47 (DDD \pi NA: \forall DDD \pi NA: \forall DD$

NMR (CD₃OD) : δ 7.04 (d, J = 2.1 Hz, 1H), 6.97 (dd, J = 8.4, 2.1 Hz, 1H), 6.93 20 (d, J = 8.4 Hz, 1H), 4.26 (s, 4H), 4.23 (s, 2H), 4.13 (d, J = 2.1 Hz, 0.6H), 4.08 (d, J = 1.2 Hz, 0.4H), 4.05-3.90 (m, 1H), 3.76-3.63 (m, 1H), 3.62-3.35 (m, 3.4H),

3.19 (dd, J = 9.6, 2.1 Hz, 0.6H), 3.20-3.10 (m, 1H), 2.55-2.33 (m, 2H), 2.30-1.95 (m, 3H), 1.80-1.60 (m, 1H), 1.55-1.25 (m, 3H), 1.05-0.89 (m, 9H).

実施例41(2)

5 (Z) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピリデン)-9-(1, 4-ベンゾジオキサン-6-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC: Rf 0.52 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 7.04 (d, J = 2.1 Hz, 1H), 6.97 (dd, J = 8.4, 2.1 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 5.84 (d, J = 10.5 Hz, 1H), 4.26 (s, 4H), 4.23 (s, 2H), 3.72-3.55 (m, 2H), 3.53-3.35 (m, 4H), 2.80-2.60 (m, 1H), 2.43-2.26 (m, 2H), 2.25-2.15 (m, 2H), 1.62-1.48 (m, 2H), 1.45-1.30 (m, 2H), 1.04 (d, J = 6.6 Hz, 6H), 0.95 (t, J = 7.5 Hz, 3H) $_{\circ}$

15

20

<u>実施例41</u>(3)~41(5)

(2R*, 3R*) -N-(t-ブチルオキシカルボニル) -2-アミノ-3-ヒドロキシ-4-メチルペンタン酸の代わりに相当する化合物を、1,4-ベンゾジオキサン-6-カルボキシアルデヒドの代わりに相当する化合物を用いて、実施例41と同様の操作をし、以下の本発明化合物得た。

実施例41(3)

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - ((1R) - 1 - ヒドロキシエチル) - 9 - (4 - フェニルオキシフェニルメチル) - 1, 4, 9 - トリアザスピロ <math>[5.5] ウンデカン・塩酸塩

5

10

TLC: Rf 0.39 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.54 (d, J = 8.7 Hz, 2H), 7.43-7.35 (m, 2H), 7.21-7.14 (m, 1H), 7.08-7.00 (m, 4H), 4.32 (s, 2H), 4.19 (dq, J = 1.5, 6.9 Hz, 1H), 4.10-3.97 (m, 1H), 3.78 (d, J = 1.5 Hz, 1H), 3.72-3.51 (m, 2H), 3.51-3.40 (m, 2H), 3.28-3.14 (m, 1H), 2.57-2.42 (m, 2H), 2.40-2.25 (m, 1H), 2.21-2.10 (m, 1H), 1.81-1.60 (m, 1H), 1.50-1.30 (m, 3H), 1.22 (d, J = 6.9 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H) \circ

実施例41(4)

(Z) -1-ブチル-2, 5-ジオキソ-3-エチリデン-9-(4-フェ15 ニルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.29 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 7.53 (d, J = 9.0 Hz, 2H), 7.43-7.35 (m, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.09-7.00 (m, 4H), 6.08 (q, J = 7.5 Hz, 1H), 4.33 (s, 2H), 3.76-3.61 (m, 5 2H), 3.57-3.40 (m, 4H), 2.45-2.30 (m, 2H), 2.28-2.15 (m, 2H), 1.77 (d, J = 7.5 Hz, 3H), 1.62-1.46 (m, 2H), 1.44-1.28 (m, 2H), 0.96 (t, J = 7.5 Hz, 3H).

実施例41(5)

TLC: Rf 0.42 (クロロホルム: メタノール= 20:1);

NMR (CD₃OD) : δ 7.51 (d, J = 8.7 Hz, 2H), 7.43-7.35 (m, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 8.7 Hz, 2H), 7.08-7.01 (m, 2H), 5.85 (d, J = 10.5 Hz, 1H),

4.34 (s, 2H), 3.78-3.64 (m, 2H), 3.57-3.40 (m, 4H), 2.78-2.62 (m, 1H), 2.43-2.18 (m, 4H), 1.62-1.48 (m, 2H), 1.46-1.30 (m, 2H), 1.04 (d, J = 6.6 Hz, 6H), 0.96 (t, J = 7.5 Hz, 3H).

5 実施例42

10 N-(t-ブチルオキシカルボニル)-L-ロイシンの代わりに、(2R*, 3R*)-N-(t-ブチルオキシカルボニル)-2-アミノ-3-ヒドロキシ-4-メチルペンタン酸を用いて、実施例35と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC: Rf 0.43 (クロロホルム: メタノール= 10:1);

15 NMR (CD₃OD) : δ 7.39-7.30 (m, 5H), 5.13 (br, 2H), 4.12 (d, J = 2.5 Hz, 1H), 4.10-4.00 (m, 2H), 3.76-3.50 (m, 2H), 3.39-3.25 (m, 2H), 3.10-2.94 (m, 1H), 2.18 (m, 1H), 2.08-1.83 (m, 4H), 1.70-1.56 (m, 1H), 1.45-1.15 (m, 3H), 1.01-0.89 (m, 9H).

20 実施例43

 $(3R^*) - 1 - \vec{j} + \vec{j} + \vec{j} = 2$, $5 - \vec{j} + \vec{j} + \vec{j} = 3 - ((1R^*) - 1 - E + E)$

キシー2ーメチルプロピル)-1,4,9-トリアザスピロ[5.5]ウンデカン・塩酸塩

実施例42で製造した化合物を用いて、実施例9と同様の操作をし、以下 5 の物性値を有する本発明化合物を得た。

TLC: Rf 0.08 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 4.15 (d, J = 2.0 Hz, 1H), 3.96 (dt, J = 13.0, 4.0 Hz, 1H), 3.71 (dt, J = 13.0, 4.0 Hz, 1H), 3.57-3.47 (m, 1H), 3.40-3.34 (m, 2H), 3.23-3.12 (m, 2H), 2.47-2.30 (m, 2H), 2.25-1.98 (m, 3H), 1.79-1.66 (m, 1H), 1.52-1.28 (m, 3H), 1.07-0.94 (m, 9H).

実施例44(1)~44(13)

実施例43で製造した化合物と相当するアルデヒド化合物を用いて、実施 例10と同様の操作をし、以下に示した本発明化合物を得た。

15

10

実施例44(1)

 $TLC: Rf 0.51 (DDD \pi N \Delta : \forall P J - N = 10:1);$

NMR (CD₃OD) : δ 7.52 (d, J = 8.7 Hz, 2H), 7.44-7.35 (m, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.10-7.00 (m, 4H), 4.33 (s, 2H), 4.14 (d, J = 2.1 Hz, 1H), 4.06-3.93 (m, 1H), 3.80-3.67 (m, 1H), 3.56-3.40 (m, 3H), 3.19 (dd, J = 9.3, 2.1 Hz, 1H), 3.20-3.10 (m, 1H), 2.53-2.35 (m, 2H), 2.35-2.20 (m, 1H), 2.19-2.08 (m, 1H), 2.07-1.91 (m, 1H), 1.80-1.70 (m, 1H), 1.50-1.25 (m, 3H), 0.99 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H).

10 実施例44(2)

(3R*) -1 - $\overline{)}$ -1 - $\overline{)}$ -1 - - -1 - - -1

15

TLC:Rf 0.38 (クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.60-7.45 (m, 5H), 4.30 (s, 2H), 4.15 (d, J = 2.4 Hz, 1H), 4.05 (m, 1H), 3.79 (m, 1H), 3.62-3.48 (m, 3H), 3.29-3.16 (m, 2H), 2.60-2.45 (m, 2H), 2.44-2.30 (m, 7H), 2.17 (m, 1H), 2.01 (m, 1H), 1.70 (m, 1H), 1.51-1.31 (m, 3H), 1.03-0.91 (m, 9H).

実施例44(3)

5

(3 R*) -1-ブチル-2, 5-ジオキソ-3-((1 R*) -1-ヒドロキシ-2-メチルプロピル) -9-(6-フェニルオキシピリジン-3-イ
 10 ルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・2塩酸塩

TLC:Rf 0.51(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 8.39 (d, J = 2.1 Hz, 1H), 8.16 (dd, J = 8.4, 2.1 Hz, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.29 (t, J = 7.8 Hz, 1H), 7.17 (d, J = 7.8 Hz, 2H), 7.08 (d, J = 8.4 Hz, 1H), 4.40 (s, 2H), 4.13 (d, J = 2.1 Hz, 1H), 4.07-3.94 (m, 1H), 3.83-3.69 (m, 1H), 3.60-3.42 (m, 3H), 3.29-3.22 (m, 1H), 3.19 (dd, J = 9.6, 2.1 Hz, 1H), 2.62-2.32 (m, 3H), 2.18-2.07 (m, 1H), 2.06-1.94 (m, 1H), 1.78-1.60 (m, 1H), 1.50 -1.31 (m, 3H), 1.07-0.87 (m, 9H).

20 実施例44(4)

(3R*) -1 - $\overline{)}$ -1 - $\overline{)}$ -1 - - -1 - - -1 - - -1 - - -1 - - -1 - - -1 - - -1 - - -1 -

TLC: Rf 0.46 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.47 (d, J = 8.7 Hz, 2H), 7.20 (d, J = 8.7 Hz, 2H), 7.02 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.7 Hz, 2H), 4.29 (s, 2H), 4.14 (d, J = 2.1 Hz, 1H), 3.97 (m, 1H), 3.72 (m, 1H), 3.56-3.39 (m, 2H), 3.25-3.09 (m, 3H), 2.53-2.08 (m, 7H), 2.01 (m, 1H), 1.70 (m, 1H), 1.48-1.28 (m, 3H), 1.05-0.88 (m, 9H).

<u>実施例44</u>(5)

5

10

(3R*) -1 - $\overline{)}$ -1 - $\overline{)}$ -1 - - -1 - - -1 - - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - -1 - - -1 - - -1 - - -1 - - -1 - - -1 - - -1 - - -1 -

TLC: Rf 0.43 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.40 (d, J = 8.7 Hz, 2H), 7.00 (d, J = 8.7 Hz, 2H), 4.37 (m, 1H), 4.24 (brs, 2H), 4.13 (d, J = 2.1 Hz, 1H), 3.94 (m, 1H), 3.68 (m, 1H), 3.52-3.34 (m, 2H), 3.29-3.07 (m, 3H), 2.52-1.92 (m, 7H), 1.8 5-1.27 (m, 12H), 1.04-0.89 (m, 9H).

実施例44(6)

5

(3 R*) -1-ブチル-2, 5-ジオキソ-3-((1 R*) -1-ヒドロ
 10 キシ-2-メチルプロピル) -9-(4-(テトラヒドロピラン-4-イルオキシ) フェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC:Rf 0.20(酢酸エチル:メタノール=10:1);

15 NMR (CD₃OD) : δ 7.45 (d, J = 8.7 Hz, 2H), 7.06 (d, J = 8.7 Hz, 2H), 4.67-4.59

(m, 1H), 4.28 (s, 2H), 4.13 (d, J = 2.5 Hz, 1H), 4.00-3.90 (m, 3H), 3.75-3.67 (m, 1H), 3.63-3.53 (m, 2H), 3.50-3.41 (m, 3H), 3.18 (dd, J = 9.0, 2.0 Hz, 1H), 3.18 (m, 1H), 2.49-1.96 (m, 7H), 1.77-1.65 (m, 3H), 1.44-1.30 (m, 3H), 0.98 (d, J = 6.5 Hz, 3H), 0.96 (d, J = 6.5 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H).

5

実施例44(7)

10 酸塩

15

TLC:Rf 0.22 (酢酸エチル:メタノール=10:1);

NMR (CD₃OD) : δ 8.76 (d, J = 2.5 Hz, 1H), 8.63 (d, J = 6.0 Hz, 1H), 8.29 (dd, J = 9.0, 2.5 Hz, 1H), 8.08 (dd, J = 9.0, 6.0 Hz, 1H), 7.77 (d, J = 9.0 Hz, 2H), 7.35 (d, J = 9.0 Hz, 2H), 4.41 (s, 2H), 4.14 (d, J = 2.0 Hz, 1H), 4.00 (m, 1H), 3.76 (m, 1H), 3.61-3.47 (m, 3H), 3.20 (dd, J = 9.5, 2.0 Hz, 1H), 3.20 (m, 1H), 2.62 (m, 1H), 2.46 (m, 2H), 2.10 (m, 1H), 2.05-1.95 (m, 1H), 1.69 (m, 1H), 1.41-1.35 (m, 3H), 0.99 (d, J = 6.5 Hz, 3H), 0.97 (d, J = 6.5 Hz, 3H), 0.95 (t, J = 7.5 Hz, 3H).

20 実施例44(8)

5 TLC: Rf 0.55 (クロロホルム: メタノール=10:1);
NMR (CD₃OD): δ7.47 (d, J = 8.1 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 4.31 (s, 2H), 4.13 (d, J = 2.1 Hz, 1H), 4.05-3.91 (m, 1H), 3.80-3.65 (m, 1H), 3.57-3.38 (m, 3H), 3.26-3.13 (m, 1H), 3.19 (dd, J = 9.3, 2.1 Hz, 1H), 3.03-2.86 (m, 1H), 2.53-2.38 (m, 2H), 2.38-2.23 (m, 1H), 2.16-2.05 (m, 1H), 2.06-1.92 (m, 1H), 1.77-1.56 (m, 1H), 1.49-1.26 (m, 3H), 1.25 (d, J = 6.9 Hz, 6H), 0.98 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H)。

実施例44(9)

TLC:Rf 0.49(クロロホルム:メタノール=10:1);

NMR (CD₃OD): δ 7.40 (s, 4H), 4.33 (s, 2H), 4.15 (d, J = 2.1 Hz, 1H), 4.11-3.97 (m, 1H), 3.86-3.72 (m, 1H), 3.64-3.50 (m, 3H), 3.39-3.30 (m, 1H), 3.21 (dd, J = 9.3, 2.1 Hz, 1H), 2.72-2.55 (m, 1H), 2.53-2.40 (m, 2H), 2.46 (s, 3H), 2.44 (s, 3H), 2.40 (s, 3H), 2.18-2.07 (m, 1H), 2.07-1.96 (m, 1H), 1.78-1.60 (m, 1H), 1.50-1.30 (m, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H) $_{\circ}$

10 実施例44(10)

(3R*) -1 - $\overline{)}$ - 1 -

15

 $TLC: Rf 0.56 (DDD \pi N \Delta : \forall DDD \pi DDD = 10:1);$

NMR (CD₃OD) : δ 7.58-7.47 (m, 5H), 4.33 (s, 2H), 4.15 (d, J = 2.1 Hz, 1H), 4.15-4.02 (m, 1H), 3.89-3.75 (m, 1H), 3.65-3.48 (m, 3H), 3.30-3.20 (m, 1H), 3.20 (dd, J = 9.6, 2.1 Hz, 1H), 2.64-2.46 (m, 2H), 2.44 (s, 3H), 2.44-2.32 (m, 1H), 2.21-2.10 (m, 1H), 2.08-1.93 (m, 1H), 1.80-1.60 (m, 1H), 1.52-1.30 (m, 3H), 0.99 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H).

実施例44(11)

5

TLC: Rf 0.29 (クロロホルム: メタノール= 10:1);

15 NMR (CD₃OD) : δ 8.04 (d, J = 9.0 Hz, 2H), 7.60 (d, J = 8.7 Hz, 2H), 7.18 (d, J = 8.7 Hz, 2H), 7.07 (d, J = 9.0 Hz, 2H), 4.37 (s, 2H), 4.14 (d, J = 2.1 Hz, 1H), 4.10-3.94 (m, 1H), 3.83-3.69 (m, 1H), 3.59-3.40 (m, 3H), 3.25-3.12 (m, 1H), 3.19 (dd, J = 9.3, 2.1 Hz, 1H), 2.55-2.37 (m, 2H), 2.37-2.22 (m, 1H), 2.19-2.08 (m, 1H), 2.08-1.94 (m, 1H), 1.79-1.60 (m, 1H), 1.52-1.26 (m, 3H), 0.99 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H) 。

実施例44(12)

(3R*) -1 - $\overline{)}$ - 1 -

TLC: Rf 0.28 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 8.53 (d, J = 5.1 Hz, 1H), 8.05 (t, J = 7.8 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.44 (dd, J = 7.8, 5.1 Hz, 1H), 4.33 (s, 2H), 4.16 (d, J = 2.1 Hz, 1H), 4.06 (m, 1H), 3.78 (m, 1H), 3.62-3.44 (m, 3H), 3.26 (m, 1H), 3.21 (dd, J = 9.6, 2.1 Hz, 1H), 2.68 (s, 3H), 2.60-2.30 (m, 3H), 2.42 (s, 3H), 2.16 (m, 1H), 2.02 (m, 1H), 1.72 (m, 1H), 1.50-1.26 (m, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.99 (d, J = 6.6 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H).

15

20

10

5

実施例44(13)

TLC: Rf 0.25 (クロロホルム: メタノール: 酢酸=20:2:1); NMR (CD₃OD): δ 8.19 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 8.7 Hz, 2H), 4.32 (s, 2H), 4.16 (d, J = 2.1 Hz, 1H), 4.12-3.98 (m, 1H), 3.87-3.74 (m, 1H), 3.63-3.45 (m, 3H), 3.30-3.10 (m, 1H), 3.20 (dd, J = 9.3, 2.1 Hz, 1H), 2.59-2.48 (m, 2H), 2.44 (s, 3H), 2.40-2.23 (m, 1H), 2.39 (s, 3H), 2.23-2.10 (m, 1H), 2.10-1.96 (m, 1H), 1.80-1.62 (m, 1H), 1.52-1.24 (m, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H)。

10 実施例45

5

N-(t-)ブチルオキシカルボニル)-L-ロイシンの代わりに、(2R*、3R*)-N-(t-)ブチルオキシカルボニル)-2-アミノ-3-ヒドロキシ-3-シクロヘキシルプロパン酸を用いて、実施例35と同様の操作をし、以下の物性値を有する本発明化合物を得た。

5 TLC:Rf 0.53 (クロロホルム:メタノール=10:1);
NMR (CD₃OD): δ7.39-7.27 (m, 5H), 5.13 (m, 2H), 4.13 (d, J = 2.5 Hz, 1H),
4.06-4.02 (m, 2H), 3.78-3.48 (m, 2H), 3.36-3.29 (m, 2H), 3.02 (br, 1H), 2.17 (m, 1H), 2.03-1.58 (m, 10H), 1.47-1.13 (m, 6H), 1.02-0.89 (m, 5H)。

10 実施例46

15 実施例45で製造した化合物を用いて、実施例9と同様の操作をし、以下 の物性値を有する本発明化合物を得た。

TLC:Rf 0.33 (クロロホルム:メタノール:酢酸=20:6:1); NMR (CD₃OD) : δ 4.13 (d, J = 2.5 Hz, 1H), 3.48-3.22 (m, 5H), 2.97-2.89 (m, 2H), 2.12-1.65 (m, 10H), 1.56-1.16 (m, 7H), 1.03-0.85 (m, 5H)。

実施例47(1)~47(8)

実施例46で製造した化合物と相当するアルデヒド化合物を用いて、実施 例10と同様の操作をし、以下に示した本発明化合物を得た。

5 実施例47(1)

10 TLC: Rf 0.44 (クロロホルム: メタノール=10:1);

NMR (CD₃OD) : δ 7.55-7.51 (m, 2H), 7.42-7.36 (m, 2H), 7.18 (tt, J = 7.5, 1.0 Hz, 1H), 7.08-7.01 (m, 4H), 4.32 (s, 2H), 4.15 (d, J = 2.0 Hz, 1H), 3.98 (dt, J = 3.5, 12.5 Hz, 1H), 3.73 (dt, J = 3.5, 12.5 Hz, 1H), 3.57-3.39 (m, 3H), 3.26 (d, J = 2.0 Hz, 1H), 3.20 (m, 1H), 2.52-2.39 (m, 2H), 2.30 (m, 1H), 2.12 (d, J = 15.5 Hz, 1H), 2.04-1.92 (m, 2H), 1.80-1.62 (m, 5H), 1.48-1.11 (m, 6H), 1.01-0.82 (m, 5H).

実施例47(2)

15

ルピラゾールー4ーイルメチル)-1, 4, 9ートリアザスピロ [5.5] ウンデカン・2 塩酸塩

TLC: Rf 0.41 (クロロホルム: メタノール= 10:1);

5 NMR (CD₃OD) : δ 7.60-7.50 (m, 5H), 4.33 (s, 2H), 4.17 (d, J = 2.5 Hz, 1H), 4.04 (m, 1H), 3.85-3.75 (m, 1H), 3.61-3.51 (m, 3H), 3.35-3.27 (m, 2H), 2.62 (m, 1H), 2.49-2.44 (m, 5H), 2.41 (s, 3H), 2.15 (m, 1H), 2.05-1.92 (m, 2H), 1.77-1.65 (m, 5H), 1.44-1.15 (m, 6H), 1.01-0.85 (m, 5H).

10 実施例47(3)

TLC: Rf 0.69 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.48 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 4.31 (s, 2H), 4.14 (d, J = 2.1 Hz, 1H), 3.98 (m, 1H), 3.72 (m, 1H), 3.55-3.40 (m, 3H), 3.29-3.16 (m, 2H), 2.95 (m, 1H), 2.52-2.24 (m, 3H), 2.15- 1.86 (m, 3H), 1.80-1.60 (m, 5H), 1.48-1.10 (m, 6H), 1.25 (d, J = 6.9 Hz, 6H), 1.02-0.82 (m, 5H).

実施例47(4)

5

(3 R*) -1-ブチル-2, 5-ジオキソ-3-((1 R*) -1-ヒドロキシ-1-シクロヘキシルメチル) -9-(4-(6-メチルピリジン-3 -10 -イルオキシ) フェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・2 塩酸塩

TLC:Rf 0.51(酢酸エチル:メタノール=10:1);

NMR (CD₃OD) : δ 8.59 (d, J = 2.7Hz, 1H), 8.19 (dd, J = 9.0, 2.7 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 4.39 (s, 2H), 4.15 (d, J = 2.0 Hz, 1H), 3.99 (m, 1H), 3.73 (m, 1H), 3.61-3.46 (m, 3H), 3.37-3.26 (m, 2H), 2.77 (s, 3H), 2.62 (m, 1H), 2.45 (m, 1H), 2.13-1.92 (m, 3H), 1.73 (m, 4H), 1.40-1.14 (m, 8H), 1.01-0.86 (m, 2H), 0.95 (t, J = 7.0 Hz, 3H) 。

20 実施例47(5)

5

10

15

TLC:Rf 0.49 (酢酸エチル:メタノール=10:1);

NMR (CD₃OD) : δ 7.57 (m, 2H), 7.37-7.31 (m, 2H), 4.32 (s, 2H), 4.16 (d, J = 2.0 Hz, 1H), 4.08-4.00 (m, 1H), 3.79 (m, 1H), 3.63-3.52 (m, 3H), 3.37-3.27 (m, 2H), 2.65 (m, 1H), 2.48 (m, 1H), 2.45 (s, 3H), 2.39 (s, 3H), 2.16-1.92 (m, 3H), 1.73 (m, 4H), 1.42-1.15 (m, 8H), 1.01-0.88 (m, 2H), 0.95 (t, J = 7.0 Hz, 3H) δ

実施例47(6)

(3R*) -1 - $\overline{)}$ -1 - $\overline{)}$ -1 - - -1 -

TLC: Rf 0.25 (0.25) (0.2

NMR (CD₃OD) : δ 7.47 (d, J = 9.0 Hz, 2H), 7.00 (d, J = 9.0 Hz, 2H), 6.99-6.92 (m, 4H), 4.30 (s, 2H), 4.16 (d, J = 2.1 Hz, 1H), 3.98 (m, 1H), 3.80 (s, 3H), 3.72 (m, 1H), 3.58-3.38 (m, 3H), 3.30-3.08 (m, 2H), 2.54-1.88 (m, 6H), 1.82-1.60 (m, 5H), 1.50-1.10 (m, 6H), 0.96 (t, J = 7.5 Hz, 3H), 0.96 (m, 2H) $_{\circ}$

実施例47(7)

5

(3R*) -1-ブチル-2,5-ジオキソ-3-((1R*)-1-ヒドロ
 10 キシ-1-シクロヘキシルメチル)-9-(4-(4-フルオロフェニルオキシ)フェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン・塩酸塩

TLC: Rf 0.28 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.51 (d, J = 8.7 Hz, 2H), 7.13 (d, J = 8.7 Hz, 2H), 7.10 - 7.04 (m, 4H), 4.33 (s, 2H), 4.16 (d, J = 2.1 Hz, 1H), 4.00 (m, 1H), 3.72 (m, 1H), 3.58-3.40 (m, 3H), 3.30-3.08 (m, 2H), 2.56-1.88 (m, 6H), 1.82-1.60 (m, 5H), 1.54-1.10 (m, 6H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H) $_{\circ}$

5

実施例47(8)

10 5] ウンデカン・塩酸塩

TLC:Rf 0.52 (酢酸エチル:メタノール=10:1);

NMR (CD₃OD) : δ 7.53 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 9.0 Hz, 2H), 7.08 (d, J = 8.1 Hz, 2H), 7.04 (d, J = 9.0 Hz, 2H), 4.34 (s, 2H), 4.16 (d, J = 2.1 Hz, 1H), 4.00 (m, 1H), 3.76 (m, 1H), 3.58-3.42 (m, 3H), 3.30-3.08 (m, 2H), 2.96 (s, 3H), 2.54-1.88 (m, 6H), 1.82-1.62 (m, 5H), 1.50-1.14 (m, 6H), 0.96 (t, J = 7.2 Hz, 3H), 0.96 (m, 2H).

実施例48

15

20 $(3R^*) - 1 - (2 - \vec{7} + \vec{7} + \vec{7}) - 2, 5 - \vec{7} + \vec{7} +$

1-ヒドロキシ-1-シクロヘキシルメチル)-9-アリルオキシカルボニル-1, 4, 9-トリアザスピロ[5.5]ウンデカン

参考例2で製造した樹脂(3)、N-アリルオキシカルボニル-4-ピペ 5 リドン、2-ブチニルアミン、(2R*, 3R*)-N-(t-ブチルオキシ カルボニル)-2-アミノ-3-ヒドロキシ-3-シクロヘキシルプロパン 酸を用いて、参考例3→参考例6→実施例1と同様の操作をし、以下の物性 値を有する本発明化合物を得た。

TLC: Rf 0.32 (クロロホルム: メタノール=15:1);

NMR (CD₃OD) : δ 6.04-5.91 (m, 1H), 5.35-5.27 (m, 1H), 5.23-5.19 (m, 1H), 4.60-4.58 (m, 2H), 4.27 (dq, J = 17.5, 2.5 Hz, 1H), 4.19 (d, J = 2.5 Hz, 1H), 4.07-4.01 (m, 2H), 3.89 (dq, J = 17.5, 2.5 Hz, 1H), 3.75-3.50 (m, 2H), 3.38 (dd, J = 9.0, 2.5 Hz, 1H), 2.32-2.17 (m, 2H), 2.07-1.70 (m, 11H), 1.33-1.14 (m, 3H), 1.00-0.85 (m, 2H).

15

実施例49

実施例48で製造した化合物を用いて、参考例4と同様の操作をし、以下 の物性値を有する本発明化合物を得た。

TLC:Rf 0.33 (クロロホルム:メタノール:酢酸=20:6:1); 5 NMR (CD₃OD): δ 4.28 (dq, J = 17.5, 2.5 Hz, 1H), 4.18 (d, J = 2.5 Hz, 1H), 4.03 (dq, J = 17.5, 2.5 Hz, 1H), 3.48-3.29 (m, 3H), 2.99-2.90 (m, 2H), 2.26-1.73 (m, 14H), 1.32-1.18 (m, 3H), 1.01-0.91 (m, 2H)。

実施例50(1)~50(6)

10 実施例49で製造した化合物と相当するアルデヒド化合物を用いて、実施例10と同様の操作をし、以下に示した本発明化合物を得た。

実施例50(1)

(3 R*) -1-(2-ブチニル) -2, 5-ジオキソ-3-((1 R*) -15
 1-ヒドロキシ-1-シクロヘキシルメチル) -9-(3, 5-ジメチルー1-フェニルピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

TLC: Rf 0.37 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.60-7.50 (m, 5H), 4.42-4.33 (m, 3H), 4.21 (d, J = 2.5 Hz, 1H), 4.08-3.99 (m, 2H), 3.85-3.75 (m, 1H), 3.65-3.57 (m, 2H), 3.32 (m, 1H), 2.79 (m, 1H), 2.48-2.43 (m, 5H), 2.40 (s, 3H), 2.22 (m, 1 H), 2.05-1.93 (m, 2H), 1.80-1.64 (m, 7H), 1.39-1.11 (m, 3H), 1.03-0.84 (m, 2H).

実施例50(2)

(3R*) -1-(2-ブチニル) -2, 5-ジオキソ-3-((1R*) -10
 1-ヒドロキシ-1-シクロヘキシルメチル) -9-(3, 5-ジメチルー1-(4-メチルフェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2塩酸塩

TLC: Rf 0.35 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 7.40 (s, 4H), 4.45-4.30 (m, 3H), 4.20 (m, 1H), 4.16-3.98 (m, 2H), 3.78 (m, 1H), 3.68-3.56 (m, 2H), 3.30 (m, 1H), 2.82 (m, 1H), 2.56-2.42 (m, 8H), 2.39 (s, 3H), 2.28-1.88 (m, 3H), 1.80-1.60 (m, 7H), 1.40-1.10 (m, 3H), 1.12-0.82 (m, 2H).

5

10

15

実施例50(3)

(3R*) -1 -(2 - $\overline{)}$ + -2 + -2 + -3 -((1R*) -1 - - -1 - - -1

TLC: Rf 0.33 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.47 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 4.38-4.28 (m, 3H), 4.17 (m, 1H), 4.04-3.88 (m, 2H), 3.74 (m, 1H), 3.50-3.40 (m, 2H), 3.28 (m, 1H), 2.92 (m, 1H), 2.64 (m, 1H), 2.50-1.86 (m, 5H), 1.80-1.62 (m, 7H), 1.36-1.04 (m, 3H), 1.25 (d, J = 7.2 Hz, 6H), 1.00-0.82 (m, 2H).

実施例50(4)

(3 R*) - 1 - (2 - ブチニル) - 2, 5 - ジオキソ - 3 - ((1 R*) - 20 1 - ヒドロキシ - 1 - シクロヘキシルメチル) - 9 - (4 - フェニルオキシ

フェニルメチル) -1, 4, 9-トリアザスピロ <math>[5.5] ウンデカン・塩酸塩

TLC: Rf 0.39 (クロロホルム: メタノール= 10:1);

5 NMR (CD₃OD) : δ 7.53 (d, J = 9.0 Hz, 2H), 7.42-7.37 (m, 2H), 7.17 (t, J = 7.5 Hz, 1H), 7.06-7.02 (m, 4H), 4.40-4.30 (m, 3H), 4.18 (m, 1H), 4.04-3.90 (m, 2H), 3.72 (m, 1H), 3.30-3.20 (m, 2H), 3.28 (m, 1H), 2.68 (m, 1H), 2.52-1.86 (m, 5H), 1.80-1.60 (m, 7H), 1.38-1.10 (m, 3H), 1.02-0.82 (m, 2H)。

10 実施例50(5)_

TLC: R f 0.45 (0.45) (0.45) (0.45) (0.45) (0.45) (0.45) (0.45)

NMR (CD₃OD) : δ 7.50 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.7 Hz, 2H), 7.01 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 4.40-4.28 (m, 3H), 4.18 (m, 1H), 4.04-3.88 (m, 2H), 3.74 (m, 1H), 3.52-3.40 (m, 2H), 3.26 (m, 1H), 2.64 (m, 1H), 2.54-1.86 (m, 5H), 2.33 (s, 3H), 1.80-1.62 (m, 7H), 1.38-1.10 (m, 3H), 1.02-0.82 (m, 2H).

実施例50(6)

5

10 (3 R*) -1-(2-ブチニル) -2, 5-ジオキソ-3-((1 R*) -1-ヒドロキシ-1-シクロヘキシルメチル) -9-(1, 4-ベンゾジオキサン-6-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

NMR (CD₃OD): δ 7.04 (s, 1H), 6.99-6.91 (m, 2H), 4.35 (m, 1H), 4.27 (s, 4H), 4.24 (s, 2H), 4.18 (m, 1H), 4.04-3.84 (m, 2H), 3.70 (m, 1H), 3.56-3.38 (m, 2H), 3.28 (m, 1H), 2.68-1.88 (m, 6H), 1.80-1.60 (m, 7H), 1.4 0-1.10 (m, 3H), 1.02-0.80 (m, 2H)。

実施例51

5

10

15

20

(3R*) -1-(2-ブチニル) -2, 5-ジオキソ-3-((1R*) - 1-ヒドロキシ-2-メチルプロピル) <math>-1, 4, 9-トリアザスピロ[5.5] ウンデカン・酢酸塩

(2R*, 3R*) -N-(t-ブチルオキシカルボニル) -2-アミノー3-ヒドロキシ-3-シクロヘキシルプロパン酸の代わりに、<math>(2R*, 3R*) -N-(t-ブチルオキシカルボニル) -2-アミノ-3-ヒドロキシ-4-メチルペンタン酸を用いて、実施例48→実施例49と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC:Rf 0.22 (クロロホルム:メタノール:酢酸=20:6:1); NMR (CD₃OD) : δ 4.36 (dq, J = 17.0, 2.5 Hz, 1H), 4.19 (d, J = 2.0 Hz, 1H), 3.95-3.79 (m, 2H), 3.62 (dt, J = 3.5, 13.0 Hz, 1H), 3.34-3.26 (m, 2H), 3.22 (dd, J = 9.5, 2.0 Hz, 1H), 2.54-2.43 (m, 1H), 2.37 (m, 1H), 2.20-1.98 (m, 3H), 1.91 (s,

3H), 1.75 (t, J = 2.5 Hz, 3H), 1.01-0.97 (m, 6H).

実施例52(1)~52(5)

実施例51で製造した化合物と相当するアルデヒド化合物を用いて、実施 5 例10と同様の操作をし、以下に示した本発明化合物を得た。

実施例52(1)

(3R*) -1-(2-ブチニル) -2, 5-ジオキソ-3-((1R*) -1-ヒドロキシ-2-メチルプロピル) -9-(3, 5-ジメチル-1-(4 -10 -メチルフェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・2塩酸塩

TLC: Rf 0.28 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.38 (d, J = 3.9 Hz, 2H), 7.35 (d, J = 3.9 Hz, 2H), 4.33 (s, 2H), 4.20 (d, J = 2.1 Hz, 1H), 4.10-3.90 (m, 2H), 3.78 (m, 1H), 3.68-3.52 (m, 2H), 3.22 (dd, J = 9.3, 2.1 Hz, 1H), 2.74 (m, 1H), 2.54-2.20 (m, 3H), 2.44 (s, 3H), 2.40 (s, 3H), 2.36 (s, 3H), 1.98 (m, 1H), 1.75 (t, J = 2.1 Hz, 3H), 1.01 (d, J = 6.6 Hz, 3H), 0.99 (d, J = 6.6 Hz, 3H).

20 実施例52(2)

TLC: Rf 0.26 (0.26 (0.26 (0.26 (0.26 (0.26 (0.26));

NMR (CD₃OD) : δ 7.49 (d, J = 9.0 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.04 (d, J = 9.0 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 4.40 (m, 1H), 4.34 (s, 2H), 4.19 (d, J = 2.1 Hz, 1H), 4.08-3.82 (m, 2H), 3.76 (m, 1H), 3.58-3.40 (m, 2H), 3.20 (dd, J = 9.6, 2.1 Hz, 1H), 2.72-2.42 (m, 2H), 2.35 (s, 3H), 2.35-2.18 (m, 2H), 2.00 (m, 1H), 1.74 (t, J = 2.1 Hz, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H).

実施例52(3)

5

10

(3R*) -1-(2-ブチニル) -2, 5-ジオキソ-3-((1R*) 1-ヒドロキシ-2-メチルプロピル) -9-(1, 4-ベンゾジオキサン -6-イルメチル) -1, 4, 9-トリアザスピロ [5. 5] ウンデカン・塩酸塩

TLC: Rf 0.34 (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34)

NMR (CD₃OD): δ 7.06-6.92 (m, 3H), 4.38 (m, 1H), 4.28 (s, 4H), 4.25 (s, 2H), 4.19 (d, J = 2.1 Hz, 1H), 4.02-3.84 (m, 2H), 3.70 (m, 1H), 3.52-3.36 (m, 2H), 3.20 (dd, J = 9.6, 2.1 Hz, 1H), 2.60 (m, 1H), 2.48 (m, 1H), 2.32-2.16 (m, 2H), 2.00 (m, 1H), 1.74 (t, J = 2.1 Hz, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H).

実施例52(4)

5

10 (3R*) -1-(2-ブチニル) -2, 5-ジオキソ-3-((1R*) -1-ヒドロキシ-2-メチルプロピル) -9-(4-イソプロピルフェニルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC:Rf 0.29 (クロロホルム:メタノール=10:1):

15 NMR (CD₃OD) : δ 7.47 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 4.40 (m,

1H), 4.33 (s, 2H), 4.19 (d, J = 2.1 Hz, 1H), 4.08-3.84 (m, 2H), 3.76 (m, 1H), 3.52-3.40 (m, 2H), 3.20 (dd, J = 9.6, 2.1 Hz, 1H), 2.96 (m, 1H), 2.62 (m, 1H), 2.48 (m, 1H), 2.36-2.12 (m, 2H), 2.00 (m, 1H), 1.74 (t, J = 2.1 Hz, 3H), 1.24 (d, J = 7.2 Hz, 6H), 1.00 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H).

5

実施例52(5)

10

15

TLC: Rf 0.24 (0.24 (0.24 (0.24 (0.24 (0.24 (0.24);

NMR (CD₃OD) : δ 7.52 (d, J = 9.0 Hz, 2H), 7.41 (t, J = 7.2 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H), 7.09-7.03 (m, 4H), 4.40 (m, 1H), 4.35 (s, 2H), 4.19 (d, J = 2.1 Hz, 1H), 4.08-3.84 (m, 2H), 3.78 (m, 1H), 3.58-3.42 (m, 2H), 3.21 (dd, J = 9.6, 2.1 Hz, 1H), 2.72-2.42 (m, 2H), 2.38-2.18 (m, 2H), 2.00 (m, 1H), 1.74 (t, J = 2.1 Hz, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H).

実施例53

(3R*) - 1 - ブチル - 2, 5 - ジオキソ - 3 - ((1S*) - 1 - EFD)20 キシ - 1 - シクロヘキシルメチル) - 9 - ベンジル - 1, 4, 9 - トリアザ

スピロ[5.5]ウンデカン

参考例2で製造した樹脂(3)、N-ベンジル-4-ピペリドン、n-ブチルアミン、(2R*, 3S*)-N-(t-ブチルオキシカルボニル)-2
5 -アミノ-3-ヒドロキシ-3-シクロヘキシルプロパン酸を用いて、参考例3→参考例6→実施例1と同様の操作をし、以下の物性値を有する本発明化合物を得た。

 $TLC: R f = 0.33 (D \Box \Box \pi \lambda \Delta : \forall B J - \lambda = 10:1);$

NMR (CD₃OD) : δ 7.40-7.20 (m, 5H), 4.04 (d, J = 1.5 Hz, 1H), 3.65-3.45 (m, 2H), 3.57 (s, 2H), 3.30 (m, 1H), 3.05 (m 1H), 2.86-2.77 (m, 3H), 2.30-2.00 (m, 4H), 1.90-1.60 (m, 6H), 1.60-1.10 (m, 9H), 1.10-0.90 (m, 2H), 0.95 (t, J = 7.2Hz, 3H).

実施例54

15 (3 R*) -1-ブチル-2, 5-ジオキソ-3-((1 S*) -1-ヒドロキシ-1-シクロヘキシルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン・塩酸塩

実施例53で製造した化合物を用いて、実施例9と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC: Rf 0.59 (クロロホルム:メタノール:酢酸=10:2:1);

NMR (CD₃OD): δ4.08 (d, J = 1.5 Hz, 1H), 4.03 (m, 1H), 3.70-3.12 (m, 7H),

2.50-2.02 (m, 5H), 1.85-1.66 (m, 5H), 1.55-1.10 (m, 7H), 1.10-0.85 (m, 2H), 0.97 (t, J = 6.9 Hz, 3H)。

実施例55(1)~55(3)

10 実施例54で製造した化合物と相当するアルデヒド化合物を用いて、実施 例10と同様の操作をし、以下に示した本発明化合物を得た。

実施例55(1)

TLC: Rf 0.46 (0.46) (0.46);

NMR (CD₃OD) : δ 7.50 (d, J = 8.7 Hz, 2H), 7.39 (dd, J = 8.7, 7.5 Hz, 2H), 7.17 (t, J = 7.5 Hz, 1H), 7.09-7.00 (m, 4H), 4.30 (brs, 2H), 4.08 (d, J = 1.2 Hz, 1H), 4.04 (m, 1H), 3.74-3.36 (m, 5H), 3.16 (m, 1H), 2.55 -2.33 (m, 2H), 2.32-2.09 (m, 2H), 2.04 (m, 1H), 1.84-1.61 (m, 5H), 1.53-1.12 (m, 7H), 1.04-0.86 (m, 5H).

実施例55(2)

(3R*) -1-ブチル-2, 5-ジオキソ-3-((1S*) -1-ヒドロ
 10 キシ-1-シクロヘキシルメチル) -9-(1, 4-ベンゾジオキサン-6-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・塩酸塩

 $TLC: R f = 0.41 (D \Box \Box \pi \lambda \Delta : \forall D \Box \neg \lambda = 10:1);$

NMR (CD₃OD) : δ 7.04 (d, J = 2.1 Hz, 1H), 6.97 (dd, J = 8.1, 2.1 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 4.26 (s, 4H), 4.21 (s, 2H), 4.07 (d, J = 1.2 Hz, 1H), 4.01 (m, 1H), 3.70-3.34 (m, 5H), 3.16 (m, 1H), 2.53-2.32 (m, 2H), 2.31-2.08 (m, 2H), 2.03 (m, 1H), 1.84-1.60 (m, 5H), 1.52-1.12 (m, 7H), 1.04-0.85 (m, 5H) $_{\circ}$

5

10

15

20

実施例55(3)

TLC: Rf 0.31 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 7.61-7.44 (m, 5H), 4.31 (s, 2H), 4.19-4.06 (m, 2H), 3.73 (m, 1H), 3.66-3.52 (m, 4H), 3.26 (m, 1H), 2.62-2.48 (m, 2H), 2.45-2.30 (m, 7H), 2.19 (m, 1H), 2.04 (m, 1H), 1.84-1.63 (m, 5H), 1.54-1.12 (m, 7H), 1.05-0.86 (m, 5H).

実施例 5 6

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - ((1S) - 1 - ヒドロキシ - 2 - メチルプロピル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.08 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 4.15 (d, J = 2.0 Hz, 1H), 3.96 (dt, J = 13.0, 4.0 Hz, 1H), 3.71 (dt, J = 13.0, 4.0 Hz, 1H), 3.57-3.47 (m, 1H), 3.40-3.34 (m, 2H), 3.23-3.12 (m, 2H), 2.47-2.30 (m, 2H), 2.25-1.98 (m, 3H), 1.79-1.66 (m, 1H), 1.52-1.28 (m, 3H), 1.07-0.94 (m, 9H);

比旋光度: [α]_D-13.8 (c1.00、メタノール)。

実施例57(1)~57(4)

15 実施例56で製造した化合物と相当するアルデヒド化合物を用いて、実施 例10と同様の操作をし、以下に示した本発明化合物を得た。

実施例57(1)

ン・2塩酸塩

TLC: Rf 0.43 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.61-7.43 (m, 5H), 4.32 (s, 2H), 4.16 (d, J = 2.1 Hz, 1H), 4.12-3.99 (m, 1H), 3.90-3.72 (m, 1H), 3.64-3.44 (m, 3H), 3.30-3.12 (m, 1H), 3.20 (dd, J = 9.3, 2.1 Hz, 1H), 2.60-2.30 (m, 9H), 2.24-2.10 (m, 1H), 2.10-1.95 (m, 1H), 1.78-1.60 (m, 1H), 1.54-1.30 (m, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.96 (t, J = 6.9 Hz, 3H).

10 実施例57(2)

5

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - ((1S) - 1 - ヒドロキシ - 2 - メチルプロピル) - 9 - (4 - フェニルオキシフェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

15 TLC: R f 0.51 (クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.52 (d, J = 8.7 Hz, 2H), 7.43-7.36 (m, 2H), 7.21-7.14 (m, 1H), 7.10-7.00 (m, 4H), 4.33 (s, 2H), 4.14 (d, J = 2.1 Hz, 1H), 4.06-3.92 (m, 1H), 3.81-3.66 (m, 1H), 3.58-3.40 (m, 3H), 3.30-3.10 (m, 1H), 3.19 (dd, J = 9.6, 2.1 Hz, 1H), 2.53-2.37 (m, 2H), 2.37-2.18 (m, 1H), 2.18-2.08 (m, 1H), 2.06-1.95 (m, 1H), 1.78-1.60 (m, 1H), 1.50-1.26 (m, 3H), 0.99 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H).

実施例57(3)

5

(3S) - 1 - ブチル - 2, 5 - ジオキソ - 3 - ((1S) - 1 - ヒドロキ10 シー 2 - メチルプロピル) -9 - (1, 4 - ベンゾジオキサン - 6 - イルメチル) -1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC:Rf 0.43 (クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.06 (d, J = 2.1 Hz, 1H), 6.98 (dd, J = 8.1, 2.1 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 4.26 (s, 4H), 4.23 (s, 2H), 4.13 (d, J = 2.4 Hz, 1H), 4.02-3.87 (m, 1H), 3.77-3.62 (m, 1H), 3.57-3.35 (m, 3H), 3.28-3.08 (m, 1H), 3.19 (dd, J = 9.6, 2.4 Hz, 1H), 2.51-2.35 (m, 2H), 2.35-2.18 (m, 1H), 2.17-2.05 (m, 1H), 2.05-1.90 (m, 1H), 1.80-1.58 (m, 1H), 1.50-1.26 (m, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H) $_{\circ}$

20

実施例57(4)

5

10

(3S) -1 - \overline{J} - 1 -

TLC: Rf 0.35 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.53 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 9.0 Hz, 2H), 7.10-7.00 (m, 4H), 4.33 (s, 2H), 4.14 (d, J = 2.1 Hz, 1H), 4.06-3.92 (m, 1H), 3.81-3.66 (m, 1H), 3.58-3.40 (m, 3H), 3.25-3.10 (m, 1H), 3.19 (dd, J = 9.6, 2.1 Hz, 1H), 2.95 (s, 3H), 2.54-2.37 (m, 2H), 2.37-2.22 (m, 1H), 2.18-2.08 (m, 1H), 2.08-1.92 (m, 1H), 1.78-1.60 (m, 1H), 1.50-1.28 (m, 3H), 0.99 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.5 Hz, 3H) $_{\circ}$

15 実施例 5 8

TLC: Rf 0.08 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 4.15 (d, J = 2.0 Hz, 1H), 3.96 (dt, J = 13.0, 4.0 Hz, 1H), 3.71 (dt, J = 13.0, 4.0 Hz, 1H), 3.57-3.47 (m, 1H), 3.40-3.34 (m, 2H), 3.23-3.12 (m, 2H), 2.47-2.30 (m, 2H), 2.25-1.98 (m, 3H), 1.79-1.66 (m, 1H), 1.52-1.28 (m, 3H), 1.07-0.94 (m, 9H) ;

比旋光度: $[\alpha]_D + 13.9$ (c 1.00、メタノール)。

実施例59(1)~59(4)

15 実施例58で製造した化合物と相当するアルデヒド化合物を用いて、実施 例10と同様の操作をし、以下に示した本発明化合物を得た。

実施例59(1)

10

(3R) -1-ブチル-2, 5-ジオキソ-3-((1R) -1-ヒドロキ 20 シ-2-メチルプロピル) -9-(3, 5-ジメチル-1-フェニルピラゾ ール-4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカ

ン・2塩酸塩

TLC: Rf 0.43 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.61-7.43 (m, 5H), 4.32 (s, 2H), 4.16 (d, J = 2.1 Hz, 1H), 4.12-3.99 (m, 1H), 3.90-3.72 (m, 1H), 3.64-3.44 (m, 3H), 3.30-3.12 (m, 1H), 3.20 (dd, J = 9.3, 2.1 Hz, 1H), 2.60-2.30 (m, 9H), 2.24-2.10 (m, 1H), 2.10-1.95 (m, 1H), 1.78-1.60 (m, 1H), 1.54-1.30 (m, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.96 (t, J = 6.9 Hz, 3H).

10 実施例59(2)

5

(3R) -1-ブチル-2, 5-ジオキソ-3-((1R) -1-ヒドロキシ-2-メチルプロピル) -9-(4-フェニルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5. 5] ウンデカン・塩酸塩

15 TLC: Rf 0.51 (クロロホルム: メタノール=10:1);

NMR (CD₃OD) : δ 7.52 (d, J = 8.7 Hz, 2H), 7.43-7.36 (m, 2H), 7.21-7.14 (m, 1H), 7.10-7.00 (m, 4H), 4.33 (s, 2H), 4.14 (d, J = 2.1 Hz, 1H), 4.06-3.92 (m, 1H), 3.81-3.66 (m, 1H), 3.58-3.40 (m, 3H), 3.30-3.10 (m, 1H), 3.19 (dd, J = 9.6, 2.1 Hz, 1H), 2.53-2.37 (m, 2H), 2.37-2.18 (m, 1H), 2.18-2.08 (m, 1H), 2.06-1.95 (m, 1H), 1.78-1.60 (m, 1H), 1.50-1.26 (m, 3H), 0.99 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H).

<u>実施例59(3)</u>

5

(3R) -1 - ブチルー2, 5 - ジオキソー3 - ((1R) - 1 - ヒドロキ 2 - 2 - メチルプロピル) - 9 - (1, 4 - ベンゾジオキサン - 6 - イルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.43 (クロロホルム:メタノール=10:1);

NMR (CD₃OD): δ 7.06 (d, J = 2.1 Hz, 1H), 6.98 (dd, J = 8.1, 2.1 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 4.26 (s, 4H), 4.23 (s, 2H), 4.13 (d, J = 2.4 Hz, 1H), 4.02-3.87 (m, 1H), 3.77-3.62 (m, 1H), 3.57-3.35 (m, 3H), 3.28-3.08 (m, 1H), 3.19 (dd, J = 9.6, 2.4 Hz, 1H), 2.51-2.35 (m, 2H), 2.35-2.18 (m, 1H), 2.17-2.05 (m, 1H), 2.05-1.90 (m, 1H), 1.80-1.58 (m, 1H), 1.50-1.26 (m, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H)。

20

実施例59(4)

5

10

(3R) -1 - $\overline{)}$ - 1 -

TLC: Rf 0.35 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.53 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 9.0 Hz, 2H), 7.10-7.00 (m, 4H), 4.33 (s, 2H), 4.14 (d, J = 2.1 Hz, 1H), 4.06-3.92 (m, 1H), 3.81-3.66 (m, 1H), 3.58-3.40 (m, 3H), 3.25-3.10 (m, 1H), 3.19 (dd, J = 9.6, 2.1 Hz, 1H), 2.95 (s, 3H), 2.54-2.37 (m, 2H), 2.37-2.22 (m, 1H), 2.18-2.08 (m, 1H), 2.08-1.92 (m, 1H), 1.78-1.60 (m, 1H), 1.50-1.28 (m, 3H), 0.99 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.5 Hz, 3H).

15 実施例60

(3R) -1 - $\overline{)}$ - 1 -

(2R*, 3S*) -N-(t-ブチルオキシカルボニル) -2-アミノ-3-ヒドロキシ-3-シクロヘキシルプロパン酸の代わりに、(2R, 3S) <math>-N-(t-ブチルオキシカルボニル) -2-アミノ-3-ヒドロキシ-4-メチルペンタン酸を用いて、実施例53→実施例54と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC: Rf 0.51 (クロロホルム: メタノール: 酢酸=10:2:1); NMR (CD₃OD): δ 4.08 (d, J = 1.5 Hz, 1H), 4.02 (dt, J = 12.6, 3.9 Hz, 1H), 3.70-3.00 (m, 6H), 2.50-2.10 (m, 4H), 1.80-1.60 (m, 2H), 1.55-1.35 (m, 3H), 1.02 (d, J = 6.6 Hz, 3H), 0.99 (t, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H);

比旋光度: $[\alpha]_{D}$ +21.2 (c 1.00、メタノール)。

実施例61(1)~61(3)

実施例60で製造した化合物と相当するアルデヒド化合物を用いて、実施 15 例10と同様の操作をし、以下に示した本発明化合物を得た。

<u>実施例61(1)</u>

5

10

(3R) -1-ブチル-2, 5-ジオキソ-3-((1S) -1-ヒドロキシ-2-メチルプロピル) -9-(3, 5-ジメチル-1-フェニルピラゾ -ル-4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン・2塩酸塩

TLC: Rf 0.44 (0.44);

NMR (CD₃OD): δ 7.64-7.46 (m, 5H), 4.32 (s, 2H), 4.19-4.06 (m, 1H), 4.10 (d, J = 1.5 Hz, 1H), 3.80-3.53 (m, 4H), 3.51 (dd, J = 10.2, 1.5 Hz, 1H), 3.40-3.20 (m, 1H), 2.70-2.30 (m, 9H), 2.23-2.10 (m, 1H), 1.83-1.60 (m, 2H), 1.53-1.30 (m, 3H), 1.02 (d, J = 6.6 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H).

実施例61(2)

5

(3R) - 1 - ブチル - 2, 5 - ジオキソ - 3 - ((1S) - 1 - ヒドロキ 10 シー2 - メチルプロピル) - 9 - (1, 4 - ベンゾジオキサン - 6 - イルメ チル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・塩酸塩

TLC: Rf 0.44 (クロロホルム: メタノール=10:1);

NMR (CD₃OD) : δ 7.06 (d, J = 2.1 Hz, 1H), 6.98 (dd, J = 8.1, 2.1 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 4.26 (s, 4H), 4.23 (s, 2H), 4.08 (d, J = 1.5 Hz, 1H), 4.08-3.96

(m, 1H), 3.72-3.35 (m, 4H), 3.49 (dd, J = 10.2, 1.5 Hz, 1H), 3.28-3.08 (m, 1H), 2.55-2.35 (m, 2H), 2.35-2.18 (m, 1H), 2.18-2.08 (m, 1H), 1.82-1.62 (m, 2H), 1.52-1.25 (m, 3H), 1.01 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H).

5

10

15

実施例61(3)

(3R) -1 - \overline{J} - 1 -

TLC: Rf 0.42 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.53 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 9.0 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 7.03 (d, J = 9.0 Hz, 2H), 4.33 (s, 2H), 4.13-4.00 (m, 1H), 4.09 (d, J = 1.5 Hz, 1H), 3.75-3.62 (m, 1H), 3.62-3.39 (m, 3H), 3.49 (dd, J = 10.5, 1.5 Hz, 1H), 3.26-3.12 (m, 1H), 2.95 (s, 3H), 2.56-2.37 (m, 2H), 2.37-2.20 (m, 1H), 2.20-2.10 (m, 1H), 1.82-1.63 (m, 2H), 1.50-1.30 (m, 3H), 1.01 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H).

20 実施例62

(3S) -1 - $\overline{)}$ -1 - 2 $\overline{)}$ 5 - $\overline{)}$ $\overline{)}$ - 1 -

5 (2 R*, 3 S*) -N-(t-ブチルオキシカルボニル) -2-アミノー3-ヒドロキシ-3-シクロヘキシルプロパン酸の代わりに、(2 S, 3 R) -N-(t-ブチルオキシカルボニル) -2-アミノ-3-ヒドロキシ-4-メチルペンタン酸を用いて、実施例53→実施例54と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC: Rf 0.51 (クロロホルム: メタノール: 酢酸=10:2:1);
NMR (CD₃OD): δ 4.08 (d, J = 1.5 Hz, 1H), 4.02 (dt, J = 12.6, 3.9 Hz, 1H),
3.70-3.00 (m, 6H), 2.50-2.10 (m, 4H), 1.80-1.60 (m, 2H), 1.55-1.35 (m, 3H), 1.02 (d, J = 6.6 Hz, 3H), 0.99 (t, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H);

比旋光度: [α]_n-23.4 (c1.00、メタノール)。

15

実施例63(1)~63(3)

実施例62で製造した化合物と相当するアルデヒド化合物を用いて、実施例10と同様の操作をし、以下に示した本発明化合物を得た。

20 実施例63(1)

(3S) -1 - \overline{J} - 1 -

TLC: Rf 0.44 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD): δ 7.64-7.46 (m, 5H), 4.32 (s, 2H), 4.19-4.06 (m, 1H), 4.10 (d, J = 1.5 Hz, 1H), 3.80-3.53 (m, 4H), 3.51 (dd, J = 10.2, 1.5 Hz, 1H), 3.40-3.20 (m, 1H), 2.70-2.30 (m, 9H), 2.23-2.10 (m, 1H), 1.83-1.60 (m, 2H), 1.53-1.30 (m, 3H), 1.02 (d, J = 6.6 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H).

実施例63(2)

5

10

(3S) -1-ブチル-2, 5-ジオキソ-3-((1R) -1-ヒドロキシ-2-メチルプロピル) -9-(1, 4-ベンゾジオキサン-6-イルメ
 15 チル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

TLC:Rf 0.44(クロロホルム:メタノール=10:1);

NMR (CD₃OD) : δ 7.06 (d, J = 2.1 Hz, 1H), 6.98 (dd, J = 8.1, 2.1 Hz, 1H), 6.92 (d, J = 8.1 Hz, 1H), 4.26 (s, 4H), 4.23 (s, 2H), 4.08 (d, J = 1.5 Hz, 1H), 4.08-3.96 (m, 1H), 3.72-3.35 (m, 4H), 3.49 (dd, J = 10.2, 1.5 Hz, 1H), 3.28-3.08 (m, 1H), 2.55-2.35 (m, 2H), 2.35-2.18 (m, 1H), 2.18-2.08 (m, 1H), 1.82-1.62 (m, 2H), 1.52-1.25 (m, 3H), 1.01 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H).

10 実施例63(3)

(3 S) -1 - $\overline{)}$ - 1 -

15

5

TLC: Rf 0.42 (クロロホルム: メタノール= 10:1);

NMR (CD₃OD) : δ 7.53 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 9.0 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 7.03 (d, J = 9.0 Hz, 2H), 4.33 (s, 2H), 4.13-4.00 (m, 1H), 4.09 (d, J = 1.5 Hz, 1H), 3.75-3.62 (m, 1H), 3.62-3.39 (m, 3H), 3.49 (dd, J = 10.5, 1.5 Hz, 1H), 3.26-3.12 (m, 1H), 2.95 (s, 3H), 2.56-2.37 (m, 2H), 2.37-2.20 (m, 1H), 2.20-2.10 (m, 1H), 1.82-1.63 (m, 2H), 1.50-1.30 (m, 3H), 1.01 (d, J = 6.6 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H).

実施例64

5

10 (3S) -2, 5-ジオキソ-3-(3-ベンジルオキシカルボニルアミノプロピル) <math>-9-(2-フェニルエチル)-1, 4, 9-トリアザスピロ[5.5] ウンデカン・塩酸塩

参考例 2 で合成した樹脂(3)、N-(2-7) エニルエチル)-4-ピペ 15 リドン、2、4、6-トリメトキシベンジルアミンおよび $N^{\alpha}-$ (t-ブチル オキシカルボニル) $-N^{\alpha}-$ (ベンジルオキシカルボニル)-L-オルニチンを用いて、参考例 $9 \rightarrow$ 参考例 $1 \ 0 \rightarrow$ 実施例 $1 \ 0 \rightarrow$ と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC: Rf 0.33 (クロロホルム: メタノール= 10:1);

20 NMR (DMSO- d_6): δ 10.80 - 10.00 (m, 1H), 8.65 - 8.45 (m, 1H), 8.33 (s, 1H),

7.50 - 7.20 (m, 10H), 5.01 (s, 2H), 4.01 (m, 1H), 3.70 - 3.45 (m, 3H), 3.45 - 3.20 (m, 3H), 3.15 - 2.90 (m, 4H), 2.50 - 2.30 (m, 2H), 2.10 - 1.90 (m, 1H), 1.87 - 1.60 (m, 3H), 1.60 - 1.35 (m, 2H).

5 実施例65

(3S) - 1 - メチル - 2, 5 - ジオキソ - 3 - (3 - ベンジルオキシカル ボニルアミノプロピル) <math>- 9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン・酢酸塩

10 参考例2で合成した樹脂(3)、N-(2-フェニルエチル)-4-ピペリドン、メチルアミンおよびN°-(t-ブチルオキシカルボニル)-N°-(ベンジルオキシカルボニル)-L-オルニチンを用いて、実施例19と同様の操作をし、以下の物性値を有する本発明化合物を得た。

TLC: Rf 0.36 (クロロホルム: メタノール= 10:1);

15 MS (ESI, Pos., 40 V) : 493 (M + H)^+ ;

HPLC条件:F;

HPLC保持時間: 3.36分。

実施例66

 $(3S) - 1 - \vec{j} + \vec{j} + \vec{j} = 2$

- (4-フェニルオキシフェニルメチル) - 9-オキシド-1, 4, 9-トリアザスピロ[5.5]ウンデカン

実施例40(90)で製造した化合物(104mg)のアセトン(4m1) 7 溶液に、水(1m1)、炭酸水素ナトリウム(210mg)、オキソン(6 15mg)(商品名)を加えた。反応混合物を室温で1時間攪拌した。反応 混合物を酢酸エチルで希釈し、飽和炭酸水素ナトリウム水溶液、飽和塩化ナ トリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥し、濃縮した。残渣 を分取用薄層クロマトグラフィー(クロロホルム:メタノール=30:1、 20:1)によって精製し、以下の物性値を有する本発明化合物(73mg)

TLC: Rf 0.50 (0.50) (0.5

を得た。

15

NMR (CDCl₃) : δ 7.49 (dt, J = 8.7, 2.1 Hz, 2H), 7.36 (ddt, J = 8.7, 7.2, 2.1 Hz, 2H), 7.14 (tt, J = 7.2, 1.2 Hz, 1H), 7.04 (dq, J = 8.7, 1.2 Hz, 2H), 7.01 (dt, J = 8.7, 2.1 Hz, 2H), 5.82 (brs, 1H), 4.32 (s, 2H), 4.07-3.85 (m, 3H), 3.55-3.46 (m, 2H), 3.19-2.97 (m, 4H), 2.02-1.49 (m, 11H), 1.48-1.12 (m, 6H), 1.08-0.90 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H).

実施例67(H32-1)~67(H34-15)

20 参考例2で製造した樹脂(3)、相当する4-ピペリドン誘導体、相当す

るアミン誘導体、相当するアミノ酸誘導体、および相当するアルデヒド誘導体を用いて、実施例23と同様の操作をし、以下の表32A-1~34A-2に化合物名を示し、表32B-1~34B-3に構造式を示した本発明化合物を得た。また、それらの本発明化合物の物性値を、以下の表32C-1 ~34C-1に示した。

<u>表32A-1</u>

実施例番号	化合物名
67 (H32-1)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ベンジルー $9-$ ($4-$ メトキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H32-2)	1 - ブチル - 2, 5 - ジオキソ - 3 - ベンジル - 9 - (1, 4 - ベンゾジオキサン - 6 - イルメチル) - 1, 4, 9 - トリア ザスピロ [5. 5] ウンデカン
67 (H32-3)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ベンジルー $9-$ ($4-$ フェニルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H32-4)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ベンジル $-9-$ ($4-$ ベンジルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H32-5)	1 - ブチル - 2, 5 - ジオキソ - 3 - ベンジル - 9 - (3, 5 - ジメチル - 1 - フェニルピラゾール - 4 - イルメチル) - 1, 4, 9 - トリアザスピロ [5. 5] ウンデカン
67 (H32-6)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ベンジルー $9-$ ($2-$ フェニルイミダゾールー $4-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H32-7)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ ベンジル $-9-(4-$ メトキシフェニルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H32-8)	1-(2-メトキシエチル)-2,5-ジオキソー3-ベンジルー9-(1,4-ベンゾジオキサンー6-イルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン
67 (H32-9)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ ベンジル $-9-(4-$ フェニルオキシフェニルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

<u>表32A-2</u>

実施例番号	化合物名
67 (H32-10)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ ベンジル $-9-(4-$ ベンジルオキシフェニルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H32-11)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ ベンジル $-9-(3,5-$ ジメチル $-1-$ フェニルピラゾール $-4-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H32-12)	1-(2-メトキシエチル $)-2$, $5-$ ジオキソ $-3-$ ベンジル $-9-(2-$ フェニルイミダゾール $-4-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H32-13)	1-ベンジル-2, $5-ジオキソ-3-ベンジル-9-(4-メトキシフェニルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン$
67 (H32-14)	$1 - \text{1} - \text{2} - \text{2} - \text{3} -$
67 (H32-15)	$1 - \text{1} - \text{2} + \text{1} - \text{2} + \text{2} - \text{2} - \text{2} + \text{2} - \text{2} -$
67 (H32-16)	$1 - \text{1} - \text{2} - \text{2} - \text{3} -$
67 (H32-17)	$1 - \text{1} - \text{2} + \text{1} - \text{2} + \text{1} - \text{2} - \text{2} + \text{1} - \text{2} + \text{2} - \text{2} -$
67 (H32-18)	$1 - \langle x \rangle = 0$ $1 - \langle x \rangle =$

表32A-3

実施例番号	化合物名
67 (H32-19)	(3S) - 1 - 7 + 7 - 2, $5 - 9 + 7 + 7 - 3 - (4 - 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7$
67 (H32-20)	(3S) - 1 - 7 + 7 - 2, $5 - 9 + 7 - 3 - 4 - 7 + 7 - 5 - 7 + 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7$
67 (H32-21)	(3R) - 1 - 7 + 7 - 2, $5 - 9 + 7 - 3 - 4 - 7 + 7 - 7 + 7 - 7 + 7 + 7 + 7 + 7 + 7$
67 (H32-22)	(3R) - 1 - 7 + 7 - 2, $5 - 9 + 7 + 7 - 3 - 4 - 7 + 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7$
67 (H32-23)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ ($4-$ クロロフェニル) チオフェン $-2-$ イルメ チル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H32-24)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($5-$ ($4-$ メトキシフェニル) チオフェン $-2-$ イル メチル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン

<u>表33A-1</u>

実施例番号	化合物名
67 (H33-1)	1-(2-)ロロフェニルメチル) -2 , $5-$ ジオキソ $-3-$ (2-メチルプロピル) $-9-(4-$ フェニルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H33-2)	1-(2-7)ルオロフェニルメチル) -2 , $5-ジ$ オキソ -3 $-(2-$ メチルプロピル) $-9-(4-$ フェニルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H33-3)	1 - (2 - h y z y z z z z z z z z z z z z z z z z
67 (H33-4)	1-シクロプロピルメチル-2,5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン
67 (H33-5)	1-(2, 2-i)メチルプロピル) $-2, 5-i$ ジオキソ $-3-(2-i)$ メチルプロピル) $-9-(4-i)$ エニルオキシフェニルメチル) $-1, 4, 9-i$ リアザスピロ $[5.5]$ ウンデカン
67 (H33-6)	$1 - (\mathcal{F} $ オフェン $ - 2 - \mathcal{T} $ ルメチル $) - 2$ $, 5 - \mathcal{Y} $ オキソ $ - 3 - (2 - \mathcal{Y} $ チルプロピル $) - 9 - (4 - \mathcal{T} $ エニルオキシフェニルメチル $) - 1$ $, 4$ $, 9 - $ トリアザスピロ $[5.5]$ ウンデカン
67 (H33-7)	1-(フラン-2-イルメチル)-2,5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン
67 (H33-8)	1-((2E)-2-ブテニル)-2,5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン

<u>表33A-2</u>

実施例番号	化合物名
67 (H33-9)	1-(2-メトキシエチル)-2,5-ジオキソ-3-(2-メチルプロピル)-9-(5-エチルチオフェン-2-イルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン
67 (H33-10)	1-(2-7) エニルオキシエチル) -2 , $5-3$ オキソ $-3-(2-3)$ (2-3) カー $(2-3)$ カー $(3-3)$ カー $(3-3)$ カー $(3-3)$ カー $(3-3)$ カンデカン
67 (H33-11)	$1 - (\mathcal{F} $ オフェンー $2 - \mathcal{I} $ ルメチル) -2 , $5 - \mathcal{Y} $ オキソー $3 - \mathcal{Y} $ クロヘキシルメチルー $9 - (2 - \mathcal{I} $ ロロー $4 - \mathcal{I} $ といった フェニルメチル) -1 , 4 , $9 - \mathcal{I} $ り アザスピロ $[5.5]$ ウンデカン
67 (H33-12)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-(2-$ クロロー $4-$ ヒドロキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H33-13)	$1 - (\mathcal{F} \times \mathcal{F} \times \mathcal$
67 (H33-14)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($4-$ ヒドロキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H33-15)	1-(FT) -2 -2 -1 -1 -1 -1 -1 -1 -1 -1
67 (H33-16)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($2-$ クロロ $-4-$ ヒドロキシフェニルメチル) -1 , 4, $9-$ トリアザスピロ $[5.5]$ ウンデカン

<u>表33A-3</u>

実施例番号	化合物名
67 (H33-17)	$1-(\mathcal{F} x) + 2 - 2 - 4 + 2 + 2 - 2 - 4 + 2 + 2 - 2 - 4 + 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2$
67 (H33-18)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) $-9-$ ($4-$ ヒドロキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

<u>表34A-1</u>

実施例番号	化合物名
67 (H34-1)	(3S) - 1 - ブチル - 2, $5 - ジオキソ - 3 - ((1S) - 1 - メチルプロピル) - 9 - (4 - フェニルオキシフェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
67 (H34-2)	(3S) - 1 - ブチル - 2, $5 - ジオキソ - 3 - ((1S) - 1 - メチルプロピル) - 9 - (1, 4 - ベンゾジオキサン - 6 - イルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
67 (H34-3)	(3S) - 1 - (2 - メトキシエチル) - 2, 5 - ジオキソー3 - ((1S) - 1 - メチルプロピル) - 9 - (4 - フェニルオキシフェニルメチル) - 1, 4,9 - トリアザスピロ[5.5] ウンデカン
67 (H34-4)	(3S) - 1 - (2 - メトキシエチル) - 2, 5 - ジオキソー3 - ((1S) - 1 - メチルプロピル) - 9 - (1, 4 - ベンゾジオキサン - 6 - イルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン
67 (H34-5)	(3S)-1-ブチル -2 , $5-$ ジオキソ $-3-$ (シクロヘキシルメチルオキシメチル) $-9-$ (4-フェニルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H34-6)	(3S) - 1 - 7 + 7 - 2, $5 - 7 + 7 - 3 - (7 + 7 - 2)$ $5 - 7 + 7 - 3 - (7 + 7 - 2)$ $5 - 7 + 7 - 3 - (7 + 7 - 2)$ $5 - 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 - 3 - (7 + 7 - 2)$ $- 7 + 7 + 7 - 2$ $- 7 + 7 + 7 + 7$ $- 7 + 7 + 7$
67 (H34-7)	$(3S) - 1 - (2 - \lambda + \lambda$

<u>表34A-2</u>

実施例番号	化合物名
67 (H34-8)	$(3S) - 1 - (2 - \lambda + \lambda$
67 (H34-9)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($4-$ クロロ -1 , $3-$ ベンゾジオキソラン $-5-$ イル メチル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
67 (H34-10)	1-(2-メトキシエチル)-2,5-ジオキソー3-(2-メチルプロピル)-9-(4-クロロ-1,3-ベンゾジオキソラン-5-イルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン
67 (H34-11)	1-(3-メチル $-2-$ ブテニル $)-2$, $5-$ ジオキソ $-3-$ (2-メチルプロピル $)-9-$ (4-フェニルオキシフェニルメチル $)-1$, 4, $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H34-12)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-(($2E$) $-3-$ フェニル $-2-$ プロペニル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H34-13)	1-プチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-$ 9 $-$ ((2E) $-3-$ フェニル $-2-$ プロペニル) -1 , 4, $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H34-14)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (キノリン $-3-$ イルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
67 (H34-15)	1-(3-メチル $-2-$ ブテニル $)-2$, $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-(1,4-$ ベンゾジオキサン $-6-$ イルメチル $)-1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

<u>表 32B-1</u>

実施例番号	R ¹	R ²	R ³	R⁴	R ⁵
67(H32-1)	H ₃ C-O	CH ₃	Н	X.	н
67(H32-2)	× ×	CH ₃	Н	X _i	Н
67(H32-3)		CH ₃	Н	X ₁	Н
67(H32-4)	o	CH ₃	Н	X _s	Н
67 (H32-5)	H ₃ C CH ₃	CH ₃	н	X	Н
67(H32-6)	N X	CH ₃	Н	X-	Н

表 32 B - 2

実施例番号	R ¹	R ²	R ³	R⁴	R ⁵
67(H32-7)	H ₃ C-O	CH ₃	Н	X-	Н
67(H32-8)	o	CH ₃	Н	X ₁	Ι
67(H32-9)		CH ₃	Н	X,	Н
67(H32-10)	₹ ×	CH ₃	н	X ₄	Н
67(H32-11)	N CH ₃	CH ₃	Ħ	X,	Н
67(H32-12)	N N X	CH ₃	н	X	Н

表 32 B - 3

実施例番号	R ¹	R ²	R ³	R⁴	R ⁵
67(H32-13)	н ₃ с-о — х	× _z	н	X	н
67(H32-14)	~ X	X ₂	Н	X,	Н
67(H32-15)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X ₂	н	X _i —	н
67(H32-16)	~ ×	X ₂	Н	X	Н
67(H32-17)	H ₃ C CH ₃	X ₂	Н	X	Н
67(H32-18)	N N X	X ₂	Н	X	Н
67(H32-19)		CH ₃	Н	0-сн ₃	н

表 32 B - 4

実施例番号	R ¹	R ²	R ³	R ⁴	R ⁵
67(H32-20)	H ₃ C—CH ₃ —X ₁	CH ₃	Н	O-CH3	Н
67(H32-21)		CH ₃	Н	X	Н
67(H32-22)	H³C—CH³	CH ₃	н	X,	Н
67 (H32-23)	CI S X	CH ₃	Н	X;————————————————————————————————————	Н
67 (H32-24)	CH ₃	CH ₃	Ħ	X,————————————————————————————————————	Н

<u>表 33 B - 1</u>

実施例番号	R ¹	R ²	R ³	R ⁴	R ⁵
67(H33-1)	~ ×	CI—X ₂	н	X ₄ ——CH ₃	Н
67(H33-2)	-x	F—X ₂	Н	X ₄ CH ₃	Н
67(H33-3)	×	F X ₂	н	X ₄ —CH ₃	Н
67(H33-4)		X ₂	н	H_3C CH_3	н
67(H33-5)	~ ×	H ₃ C CH ₃ CH ₃	н	X ₄ ——CH ₃	Н
67(H33-6)		S X ₂	Н	X ₄ ——CH ₃	Н

<u>表 33 B - 2</u>

実施例番号	R ¹	R ²	R ³	R ⁴	R ⁵
67(H33-7)	X X	O X ₂	Н	X ₄ — CH ₃	Н
67(H33-8)	~	CH ₃	н	X ₃ — CH ₃	Н
67(H33-9)	H ₃ C S —X	CH ₃	н	X ₄ ——CH ₃	Н
67(H33-10)	~		Н	X ₄ ——CH ₃	Н
67(H33-11)	HO CI	s x	Ι	x,—	Н
67(H33-12)	HO CI	CH ₃	Н	x,	Н
67(H33-13)	HOX,	S X ₂	н	X	Н

表 33B-3

実施例番号	R ¹	R ²	R ³	R ⁴	R^5
67(H33-14)	HOX,	CH ₃	Н	X _i	Н
67(H33-15)	HO CI	S	Н	H ₃ C CH ₃	Н
67(H33-16)	HO CI	CH ₃	н	H ₃ C CH ₃	Н
67(H33-17)	но	S X	н	X_4 CH_3	Н
67(H33-18)	HOX,	CH ₃	Н	X_4 CH_3	Н

<u>表 34B-1</u>

実施例番号	R ¹	R ²	R ³	R ⁴	R ⁵
67(H34-1)	o X	CH ₃	H	X;·····〈 CH ₃	Ŧ
67(H34-2)	o x	CH ₃	н	Z _i ······CH ₃	Н
67(H34-3)	o X	CH ₃	н.	ĊH³ CH³	Н
67(H34-4)	o ~	CH ₃	Ι	CH ₃	н
67(H34-5)		CH ₃	Н	X ₁	н

<u>表 34 B - 2</u>

実施例番号	R ¹	R ²	R ³	R ⁴	R ⁵
67(H34-6)	×	CH ₃	I	x,	н
67(H34-7)		CH ₃	Н	x,	Н
67 (H34-8)	o ~	CH ₃	Н	x,	Н
67(H34-9)	o cı	CH ₃	Н	H ₃ C X ₄ ——CH ₃	Н
67(H34-10)	o cı	CH ₃	Н	H ₃ C CH ₃	Н
67(H34-11)		H ₃ C — CH ₃	Н	X,————————————————————————————————————	Н

表 34 B - 3

実施例番号	R ¹	R ²	R ³	R ⁴	R ⁵
67(H34-12)		CH ₃	I	X,———CH ₃	Н
67(H34-13)		CH ₃	н	X	Н
67(H34-14)	N_X	CH ₃	н	X ₄	Н
67(H34-15)	x,	H,C—CH, X,	Н	X4	Н

表32C-1

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
67 (H32-1)	F	3.42	450 (M + H) ⁺ , 121.	ESI (Pos., 40 V)
67 (H32-2)	F	3.40	478 (M + H) ⁺ , 149.	ESI (Pos., 40 V)
67 (H32-3)	F	3.72	512 (M + H) ⁺ , 183.	ESI (Pos., 40 V)
67 (H32-4)	F	3.71	526 (M + H) ⁺ , 197.	ESI (Pos., 40 V)
67 (H32-5)	F	3.42	514 (M + H) ⁺ , 303, 185.	ESI (Pos., 40 V)
67 (H32-6)	F	3.31	486 (M + H) ⁺ .	ESI (Pos., 40 V)
67 (H32-7)	F	3.27	452 (M + H) ⁺ , 121.	ESI (Pos., 40 V)
67 (H32-8)	F	3.27	480 (M + H) ⁺ , 149.	ESI (Pos., 40 V)
67 (H32-9)	F	3.55	514 (M + H) ⁺ , 339, 183.	ESI (Pos., 40 V)
67 (H32-10)	F	3.58	528 (M + H) ⁺ , 339, 197.	ESI (Pos., 40 V)
67 (H32-11)	F	3.29	516 (M + H) ⁺ , 185.	ESI (Pos., 40 V)
67 (H32-12)	F	3.12	488 (M + H) ⁺ .	ESI (Pos., 40 V)
67 (H32-13)	F	3.47	484 (M + H) ⁺ , 303, 121.	ESI (Pos., 40 V)
67 (H32-14)	F	3.47	512 (M + H) ⁺ , 303, 148.	ESI (Pos., 40 V)
67 (H32-15)	F	3.73	546 (M + H) ⁺ , 183.	ESI (Pos., 40 V)
67 (H32-16)	F	3.75	560 (M + H) ⁺ , 197.	ESI (Pos., 40 V)
67 (H32-17)	F	3.49	548 (M + H) ⁺ , 303, 185.	ESI (Pos., 40 V)
67 (H32-18)	F	3.33	520 (M + H) ⁺ , 404.	ESI (Pos., 40 V)
67 (H32-19)	F	3.52	456 (M + H) ⁺ .	ESI (Pos., 40 V)
67 (H32-20)	F	3.29	416 (M + H) ⁺ .	ESI (Pos., 40 V)
67 (H32-21)	F	3.49	456 (M + H) ⁺ .	ESI (Pos., 40 V)
67 (H32-22)	F	3.31	416 (M + H) ⁺ .	ESI (Pos., 40 V)
67 (H32-23)	F	3.78	502 (M + H) ⁺ , 206.	ESI (Pos., 40 V)
67 (H32-24)	F	3.69	498 (M + H) ⁺ , 279, 203.	ESI (Pos., 40 V)

<u>表33C-1</u>

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
67 (H33-1)	F	3.78	546 (M + H) ⁺ , 183.	ESI (Pos., 40 V)
67 (H33-2)	F	3.75	530 (M + H) ⁺ , 183.	ESI (Pos., 40 V)
67 (H33-3)	F	3.84	580 (M + H) ⁺ .	ESI (Pos., 40 V)
67 (H33-4)	F	3.66	476 (M + H) ⁺ , 339, 183.	ESI (Pos., 40 V)
67 (H33-5)	F	3.80	492 (M + H) ⁺ , 183.	ESI (Pos., 40 V)
67 (H33-6)	F	3.73	518 (M + H) ⁺ , 183.	ESI (Pos., 40 V)
67 (H33-7)	F	3.67	502 (M + H) ⁺ , 182.	ESI (Pos., 40 V)
67 (H33-8)	F	3.67	476 (M + H) ⁺ , 183.	ESI (Pos., 40 V)
67 (H33-9)	F	3.36	422 (M + H) ⁺ , 298, 125.	ESI (Pos., 40 V)
67 (H33-10)	F	3.80	542 (M + H) ⁺ , 183.	ESI (Pos., 40 V)
67 (H33-11)	F	3.44	515 (M + H) ⁺ .	ESI (Pos., 20 V)
67 (H33-12)	F	3.44	476 (M + H) ⁺ .	ESI (Pos., 20 V)
67 (H33-13)	F	3.38	$482 (M + H)^{+}$.	ESI (Pos., 20 V)
67 (H33-14)	F	3.36	442 (M + H) ⁺ .	ESI (Pos., 20 V)
67 (H33-15)	F	3.26	476 (M + H) ⁺ .	ESI (Pos., 20 V)
67 (H33-16)	F	3.22	436 (M + H) ⁺ .	ESI (Pos., 20 V)
67 (H33-17)	F	3.20	$442 (M + H)^{+}$.	ESI (Pos., 20 V)
67 (H33-18)	F	3.15	402 (M + H) ⁺ .	ESI (Pos., 20 V)

<u>表34C-1</u>

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
67 (H34-1)	F	3.71	478 (M + H) ⁺ , 279, 183.	ESI (Pos., 40 V)
67 (H34-2)	F	3.42	444 (M + H) ⁺ , 149.	ESI (Pos., 40 V)
67 (H34-3)	F	3.55	480 (M + H) ⁺ , 183.	ESI (Pos., 40 V)
67 (H34-4)	F	3.23	446 (M + H) ⁺ , 149.	ESI (Pos., 40 V)
67 (H34-5)	F	3.9	$548 (M + H)^{+}$.	ESI (Pos., 40 V)
67 (H34-6)	F	3.65	514 (M + H) ⁺ , 279, 149.	ESI (Pos., 40 V)
67 (H34-7)	F	3.76	550 (M + H) ⁺ , 183.	ESI (Pos., 40 V)
67 (H34-8)	F	3.49	516 (M + H) ⁺ , 149.	ESI (Pos., 40 V)
67 (H34-9)	F	3.47	464 (M + H) ⁺ .	ESI (Pos., 40 V)
67 (H34-10)	F	3.31	466 (M + H) ⁺ .	ESI (Pos., 40 V)
67 (H34-11)	F	3.73	490 (M + H) ⁺ , 279, 183.	ESI (Pos., 40 V)
67 (H34-12)	F	3.55	412 (M + H) ⁺ , 117.	ESI (Pos., 40 V)
67 (H34-13)	F	3.72	452 (M + H) ⁺ , 379. 279, 117.	ESI (Pos., 40 V)
67 (H34-14)	F	3.44	477 (M + H) ⁺ , 404, 345.	ESI (Pos., 40 V)
67 (H34-15)	F	3.64	496 (M + H) ⁺ , 279, 149.	ESI (Pos., 40 V)

実施例68(H35-1)~68(H35-61)

5

<u>表35A-1</u>

実施例番号	化合物名
68 (H35-1)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($2-$ クロロー $4-$ ($2-$ (N , $N-$ ジエチルアミノ) エチルオキシ) フェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-2)	$1 - (\mathcal{F} $ オフェン $ - 2 - \mathcal{I} $ ルメチル $) - 2$ $, 5 - \mathcal{I} $ オキソ $ - 3 - \mathcal{I} $ クロヘキシルメチル $ - 9 - (4 - (2 - (N, N - \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}$
68 (H35-3)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (4 $-$ (2 $-$ (N, N $-$ ジエチルアミノ) エチルオキシ) フェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-4)	1-(チオフェン-2-イルメチル)-2,5-ジオキソ-3-(2-メチルプロピル)-9-(2-クロロ-4-(2-(N,N-ジエチルアミノ) エチルオキシ) フェニルメチル)-1,4,9-トリアザスピロ[5.5] ウンデカン
68 (H35-5)	1-ブチルー2, $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9- ($2-$ クロロー $4-$ ($2-$ ($N, N-$ ジエチルアミノ) エチルオキシ)フェニルメチル)-1, $4, 9-$ トリアザスピロ [$5. 5$] ウンデカン
68 (H35-6)	$1 - (\mathcal{F} \mathcal{A} \mathcal{J} \mathcal{L} \mathcal{L} \mathcal{J} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{J} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} L$
68 (H35-7)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $ 9-$ ($4-$ ($2-$ (N , $N-$ ジエチルアミノ) エチルオキシ) フェニルメチル) $ 1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

表35A-2

実施例番号	化合物名
68 (H35-8)	$1 - (\mathcal{F} $ オフェン $ - 2 - \mathcal{I} $ ルメチル $) - 2$ $, 5 - \mathcal{Y} $ オキソ $ - 3 - \mathcal{Y} $ クロヘキシルメチル $ - 9 - (2 - \mathcal{I} $ クロロ $ - 4 - \mathcal{I} $ トキシフェニルメチル $) - 1$ $, 4$ $, 9 - \mathcal{I} $ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-9)	1-プチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($2-$ クロロー $4-$ メトキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-10)	$1 - (\mathcal{F} $ オフェン $ - 2 - 4 $ ル $) - 2$ $, 5 - \mathcal{F} $ オキソ $ - 3 $ $- \mathcal{F} $ カウロヘキシルメチル $ - 9 - (4 - \mathcal{F})$ カンデカン $- 1$ $, 4$ $, 9 - \mathcal{F} $ リアザスピロ $[5.5]$ ウンデカン
68 (H35-11)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-$ 9 $-$ (4 $-$ メトキシフェニルメチル) $-$ 1, 4, 9 $-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-12)	1-(FT) (チオフェンー $2-(T)$ (カー $2-(T)$ (カー $2-(T)$) $1-(T)$ (カー
68 (H35-13)	1-ブチルー 2 , $5-$ ジオキソー $3 (2-$ メチルプロピル) $ 9 (2-$ クロロー $4-$ メトキシフェニルメチル) $ 1$, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-14)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($4-$ メトキシフェニルメチル) -1 , 4 , $9-$ トリア ザスピロ[5 . 5] ウンデカン
68 (H35-15)	1 - (F + T) + T + T + T + T + T + T + T + T +

<u>表35A-3</u>

実施例番号	化合物名
68 (H35-16)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (2-クロロ $-4-$ エトキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-17)	1 - (F + 7) + 2 - 2 - 7 + 7 + 7 + 7 - 2 - 9 - 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7
68 (H35-18)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-$ 9 $-$ (4 $-$ エトキシフェニルメチル) $-$ 1, 4, 9 $-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-19)	1 - (F + T) + (T + T) +
68 (H35-20)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($2-$ クロロ $-4-$ エトキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
68 (H35-21)	1 - (F + T) +
68 (H35-22)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($4-$ エトキシフェニルメチル) -1 , 4 , $9-$ トリア ザスピロ[5 . 5] ウンデカン
68 (H35-23)	1 - (FT) + (F

<u>表35A-4</u>

実施例番号	化合物名
68 (H35-24)	$1 - \vec{\mathcal{J}} \mathcal{F} \mathcal{N} - 2$, $5 - \vec{\mathcal{J}} \mathcal{J} \mathcal{F} \mathcal{N} - 3 - \vec{\mathcal{J}} \mathcal{J} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{A} \mathcal{F} \mathcal{N} \mathcal{J} \mathcal{F} \mathcal{N} - 9 - (2 - \mathcal{J} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{D} \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} A$
68 (H35-25)	$1 - (\mathcal{F} $ オフェン $ - 2 - 7 \mathcal{V} $ メチル $) - 2$ $, 5 - \mathcal{V} $ オキソ $ - 3 - \mathcal{V} $ クロヘキシルメチル $ - 9 - (4 - \mathcal{V} $ 口ピルオキシフェニルメチル $) - 1$ $, 4$ $, 9 - \mathcal{V} $ り で $, 5$ $, 5$ $, 5$ $, 5$ $, 7$ $, 7$ $, 7$ $, 7$ $, 7$ $, 7$ $, 7$ $, 7$ $, 7$ $, 8$ $, 9$ $, $
68 (H35-26)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($4-$ プロピルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-27)	$1 - (\mathcal{F} $ オフェンー $2 - \mathcal{I} $ ルメチル) -2 , $5 - \mathcal{Y} $ オキソー $3 - (2 - \mathcal{I} $ チルプロピル) $-9 - (2 - \mathcal{I} $ ロロー $4 - \mathcal{I} $ ロピル オキシフェニルメチル) -1 , 4 , $9 - \mathcal{I}$ トリアザスピロ [5.5] ウンデカン
68 (H35-28)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $-$ 9 $-$ ($2-$ クロロー $4-$ プロピルオキシフェニルメチル) $-$ 1, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-29)	$1 - (\mathcal{F} $ オフェンー $2 - \mathcal{I} $ ルメチル) -2 , $5 - \mathcal{Y} $ オキソー $3 - (2 - \mathcal{I} $ チルプロピル) $-9 - (4 - \mathcal{I} $ ロピルオキシフェニルメチル) -1 , 4 , $9 - \mathcal{I} $ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-30)	$1 - (\mathcal{F} $ オフェン $ - 2 - \mathcal{I} $ ルメチル) $ - 2$ $, 5 - \mathcal{Y} $ オキソ $ - 3 - \mathcal{Y} $ クロヘキシルメチル $ - 9 - (2 - \mathcal{I} $ ロロ $ - 4 - \mathcal{I} $ ソプロピルオキシフェニルメチル) $ - 1$ $, 4$ $, 9 - \mathcal{Y} $ り ブデカン
68 (H35-31)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($2-$ クロロー $4-$ イソプロピルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

<u>表35A-5</u>

実施例番号	化合物名
68 (H35-32)	1-(f+7) (チオフェン $-2-7$ ルメチル) -2 , $5-ジオキソ-3$ $-シクロヘキシルメチル-9-(4-7) プロピルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン$
68 (H35-33)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($4-$ イソプロピルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-34)	$1 - (\mathcal{F} \pi \mathcal{T} \pi \mathcal$
68 (H35-35)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) $-$ 9 $-$ ($2-$ クロロー $4-$ イソプロピルオキシフェニルメチル) $-$ 1, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-36)	$1 - (\mathcal{F} $ オフェンー $2 - \mathcal{I} $ ルメチル) -2 , $5 - \mathcal{S} $ オキソー $3 - (2 - \mathcal{I} $ チルプロピル) $-9 - (4 - \mathcal{I} $ ソプロピルオキシフェニルメチル) -1 , 4 , $9 - \mathcal{I}$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-37)	1-ブチルー2, $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9- ($4-$ イソプロピルオキシフェニルメチル)-1, 4 , $9-$ トリアザスピロ [5 . 5] ウンデカン
68 (H35-38)	1-(牙オフェン-2-イルメチル)-2,5-ジオキソ-3-シクロヘキシルメチル-9-(2-クロロ-4-(シクロプロピルメチルオキシ)フェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン

<u>表35A-6</u>

実施例番号	化合物名
68 (H35-39)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($2-$ クロロー $4-$ (シクロプロピルメチルオキシ)フェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-40)	$1 - (\mathcal{F} $ オフェン $ - 2 - \mathcal{I} $ ルメチル $) - 2$ $, 5 - \mathcal{Y} $ オキソ $ - 3 - \mathcal{Y} $ クロペキシルメチル $ - 9 - (4 - (\mathcal{Y} $ クロプロピルメチル オキシ $)$ フェニルメチル $) - 1$ $, 4$ $, 9 - \mathcal{Y} $ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-41)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-$ 9 $-$ (4 $-$ (シクロプロピルメチルオキシ)フェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-42)	1-(5+7) $-2-7$ -2 -2 -2 -2 -2 -2 -2 -2
68 (H35-43)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($2-$ クロロ $-4-$ (シクロプロピルメチルオキシ)フェニルメチル) -1 , 4 , $9-$ トリアザスピロ[5 . 5] ウンデカン
68 (H35-44)	$1 - (\mathcal{F} $ オフェン $ - 2 - \mathcal{T} $ ルメチル $) - 2$ $, 5 - \mathcal{Y} $ オキソ $ - 3 - (2 - \mathcal{Y} $ チルプロピル $) - 9 - (4 - (\mathcal{Y} $ クロプロピルメチルオキシ $)$ フェニルメチル $) - 1$ $, 4$ $, 9 - $ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-45)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($4-$ (シクロプロピルメチルオキシ)フェニルメチル) -1, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

<u>表35A-7</u>

実施例番号	化合物名
68 (H35-46)	$1 - (\mathcal{F} $ オフェン $ - 2 - \mathcal{I} $ ルメチル $) - 2$ $, 5 - \mathcal{Y} $ オキソ $ - 3 - \mathcal{Y} $ クロヘキシルメチル $ - 9 - (2 - \mathcal{I} $ クロロ $ - 4 - \mathcal{Y} $ クロブチルオキシフェニルメチル $) - 1$ $, 4$ $, 9 - \mathcal{Y} $ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-47)	1-ブチルー 2 , $5-$ ジオキソー $3-$ シクロヘキシルメチルー $9-$ ($2-$ クロロー $4-$ シクロブチルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-48)	$1 - (\mathcal{F} $ オフェン $ - 2 - 4 $ ルメチル $) - 2$ $, 5 - \mathcal{Y} $ オキソ $ - 3 $ $- \mathcal{Y} $ カンデーカン
68 (H35-49)	1 - (ff) + (f
68 (H35-50)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-$ 9 $-$ ($2-$ クロロ $-4-$ シクロペンチルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-51)	$1 - (\mathcal{F} $ オフェンー $2 - \mathcal{I} $ ルメチル) -2 , $5 - \mathcal{Y} $ オキソー $3 - \mathcal{Y} $ カクロペキシルメチルー $9 - (4 - \mathcal{Y} $ クロペンチルオキシフェニルメチル) -1 , 4 , $9 - \mathcal{Y} $ り で \mathbf{I} プランデカン
68 (H35-52)	1-プチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ (4-シクロペンチルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-53)	$1 - (\mathcal{F} x) - 2 - 2 - 4 \mathcal{N} x \mathcal{F} \mathcal{N}) - 2 , 5 - \mathcal{S} x \mathcal{F} x \mathcal{N} - 3 - (2 - \mathcal{S} x \mathcal{F} \mathcal{N} x \mathcal{N}) - 9 - (2 - \mathcal{S} x \mathcal{N} x $

<u>表35A-8</u>

実施例番号	化合物名
68 (H35-54)	1-ブチル -2 , $5-$ ジオキソ $-3-$ ($2-$ メチルプロピル) -9-($2-$ クロロ $-4-$ シクロペンチルオキシフェニルメチル) -1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-55)	1 - (F + T) + (T + T) +
68 (H35-56)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($4-$ シクロペンチルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン
68 (H35-57)	$1 - (\mathcal{F} \pi \mathcal{T} \pi \mathcal$
68 (H35-58)	1-ブチル -2 , $5-$ ジオキソ $-3-$ シクロヘキシルメチル $-9-$ ($2-$ クロロ $-4-$ (テトラヒドロピラン $-4-$ イルオキシ)フェニルメチル) -1 , 4 , $9-$ トリアザスピロ[5 . 5]ウンデカン
68 (H35-59)	1-(FTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
68 (H35-60)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9- ($4-$ シクロブチルオキシフェニルメチル)- 1 , 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン
68 (H35-61)	1-ブチルー 2 , $5-$ ジオキソー $3-$ ($2-$ メチルプロピル) -9-($4-$ (テトラヒドロピラン- $4-$ イルオキシ)フェニルメチル)-1, 4 , $9-$ トリアザスピロ $[5.5]$ ウンデカン

<u>表 35 B - 1</u>

実施例番号	R ¹	R ²	R ³	R⁴	R ⁵
68(H35-1)	CH ₃	CH ₃	Ħ	X ₄	Ħ
68(H35-2)	CH ₃ CH ₃	S X	I	X ₄ —	Н
68(H35-3)	CH ₃ CH ₃	CH₃ X₂	Ħ	X	Н
68(H35-4)	CH ₃ CH ₃ CH ₃ CH ₃ X	S X	н	H ₃ C CH ₃	I

<u>表 35 B - 2</u>

実施例番号	R ¹	R ²	R ³	R ⁴	R^5
68 (H35-5)	CH ₃ CH ₃	CH ₃	Ξ	H ₃ C CH ₃	н
68(H35-6)	CH, CH,	s X ₂	H	H ₃ C CH ₃	н
68(H35-7)	CH ₃ CH ₃	CH ₃	Н	H ₃ C CH ₃	Н
68(H35-8)	CH ₃	s X	Н	X4	н
68(H35-9)	CH ₃	CH ₃	Н	X4	Н

表 35 B - 3

実施例番号	R ¹	R ²	R ³	R ⁴	R ⁵
68(H35-10)	CH ₃	S X ₂	Н	x,	Н
68(Ḥ35-11)	CH ₃	CH ₃	Ħ	x ₄	н
68(H35-12)	CH ₃	S X ₂	Ħ	H ₃ C CH ₃	Н
68(H35-13)	CH ₃	CH ₃	I	H ₃ C CH ₃	Н
68(H35-14)	CH ₃	CH ₃	Н	H ₃ C CH ₃	Н
68(H35-15)	O CI X,	S X	н	X ,—	Н

表 35 B - 4

実施例番号	R ¹	R ²	R ³	R ⁴	R ⁵
68(H35-16)	O CI	CH ₃	н	X ₁	Н
68(H35-17)	H ₃ C O X	s x	Н	X ₄	Н
68(H35-18)	H ₃ C O X	CH ₃	н	X ₄	Н
68 (H35-19)	O CI	S X ₂	Н	H ₃ C CH ₃	Н
68(H35-20)	O CI	CH ₃	Н	H ₃ C CH ₃	Н

表 35 B - 5

実施例番号	R ¹	R ²	R ³	R ⁴	R ⁵
68(H35-21)	H,C O X	s X	Ħ	H ₃ C CH ₃	H
68(H35-22)	H,C O	CH ₃	н	H ₃ C CH ₃	Н
68(H35-23)	H ² C X	S X	Н	X ₄	Н
68(H35-24)	d X	CH ₃	Н	X	Н
68(H35-25)	H,C	s X	Н	X4	Н

表 35 B - 6

実施例番号	R ¹	R ²	R ³	R ⁴	R^5
68(H35-26)	H ₃ C	CH ₃	H	X	Н
68(H35-27)	H ₃ C—O	x x	Н	X_4 CH_3	Н
68(H35-28)	H ₃ C— O O X	CH ₃	н	H ₃ C CH ₃	Н
68(H35-29)	н _у с	s X	Н	H ₃ C CH ₃	Н
68(H35-30)	H ₃ C CH ₃ O CH ₃ C	S X ₂	н	X ₁	н

表 35B-7

実施例番号	R ¹	R ²	R ³	R⁴	R ⁵
68(H35-31)	H ₃ C CH ₃ CI X	CH ₃	π .	X ₄	н
68 (H35-32)	CH ₃ C	s X	н	X ₄	н
68 (H35-33)	CH ₃ C CH ₃	CH ₃	н	X ,	Н
68(H35-34)	H ₃ C CH ₃ O X	S X	Н	H_3C CH_3	Н
68 (H35-35)	H ₃ C CH ₃ O CH ₃ C	CH ₃	Н	H ₃ C CH ₃	Н

<u>表 35 B - 8</u>

実施例番号	R ¹	R ²	R ³	R⁴	R ⁵
68(H35-36)	H ₃ C CH ₃	s x	Н	H ₃ C CH ₃	н
68(H35-37)	H ₃ C CH ₃	CH ₃	Н	H ₃ C CH ₃	н
68(H35-38)	O X	s x	Н	X ₄	Н
68(H35-39)	o X	CH ₃	H	X .	Н
68(H35-40)	o X	S X ₂	Н	x,—	H

<u>表 35B-9</u>

実施例番号	R ¹	R ²	R ³	R ⁴	R ⁵
68(H35-41)	o x	CH ₃	H	X ₁	Н
68(H35-42)	o Q X	s X	Н	H ₃ C CH ₃	н
68(H35-43)	x g	CH ₃	I	H ₃ C CH ₃	Н
68(H35-44)	X	S X ₂	н	X_4 C CH_3	Н
68(H35-45)	o X	CH ₃	Н	H ₃ C CH ₃	Н

表 35B-10

実施例番号	R ¹	R ²	R ³	R ⁴	R ⁵
68 (H35-46)	o Ca	s X	н	X4	Н
68 (H35-47)	CI X	CH ₃	н	X ₃	Н
68 (H35-48)	×	s x	Н	X	Н
68 (H35-49)	a x	S X	Н	X	н
68(H35-50)	o CI X	CH ₃	Н	X ₄	Н

<u>表 35 B - 11</u>

実施例番号	R ¹	R ²	R^3	R⁴	R ⁵
68(H35-51)	Q Q X	S X ₂	Ŧ	X ₄	Н
68(H35-52)	X X	CH ₃	Н	X ₄	н
68(H35-53)	Q X	S X	Н	H ₃ C CH ₃	н
68(H35-54)	Q X	CH ₃	Н	X_4 C CH_3	н
68(H35-55)	→ ¬×	S X ₂	Н	H ₃ C CH ₃	Н

表 35 B - 12

実施例番号	R ¹	R ²	R ³	R ⁴	R ⁵
68(H35-56)	> -x	CH ₃	Н	X ₄ ——CH ₃	Н
68(H35-57)	o x	s X	Н	X ₄	Н
68 (H35-58)	° X	CH ₃	Н	X ₄	Н
68(H35-59)	o X	S X ₂	н	X_4 C CH_3	Н
68(H35-60)	o X	CH ₃	Н	H ₃ C CH ₃	Н

<u>表 35 B - 13</u>

実施例番号	R ¹	R ²	R ³	R ⁴	R⁵
68(H35-61)	O X	CH ₃	Н	H_3C CH_3	н

表35C-1

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
68 (H35-1)	F	3.31	575 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-2)	F	3.24	581 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-3)	F	3.22	541 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-4)	F	3.11	575 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-5)	F	3.11	534 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-6)	F	3.09	540 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-7)	F	3.05	$501 (M + H)^{+}$.	ESI (Pos., 20 V)
68 (H35-8)	F	3.57	530 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-9)	F	3.57	$548 (M + H)^{+}$.	ESI (Pos., 20 V)
68 (H35-10)	F	3.51	496 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-11)	F	3.49	$456 (M + H)^{+}$.	ESI (Pos., 20 V)
68 (H35-12)	F	3.40	$490 (M + H)^{+}$.	ESI (Pos., 20 V)
68 (H35-13)	F	3.36	450 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-14)	F	3.29	415 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-15)	F	3.66	544 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-16)	F	3.64	504 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-17)	F	3.58	$510 (M + H)^{+}$.	ESI (Pos., 20 V)
68 (H35-18)	F	3.59	469 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-19)	F	3.47	504 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-20)	F	3.45	463 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-21)	F	3.40	470 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-22)	F	3.38	430 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-23)	F	3.76	558 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-24)	F	3.74	518 (M + H)⁺.	ESI (Pos., 20 V)
68 (H35-25)	F	3.68	524 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-26)	F	3.66	484 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-27)	F	3.58	518 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-28)	F	3.57	478 (M + H) ⁺ .	ESI (Pos., 20 V)

表35C-2

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
68 (H35-29)	F	3.51	484 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-30)	F	3.71	558 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-31)	F	3.70	$518 (M + H)^{+}$.	ESI (Pos., 20 V)
68 (H35-32)	F	3.66	524 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-33)	F	3.64	484 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-34)	F	3.55	518 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-35)	F	3.52	478 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-36)	F	3.48	484 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-37)	F	3.45	444 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-38)	F	3.71	570 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-39)	F	3.72	530 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-40)	F	3.66	536 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-41)	F	3.64	496 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-42)	F	3.55	530 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-43)	F	3.53	490 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-44)	F	3.48	496 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-45)	F	3.47	456 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-46)	F	3.78	570 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-47)	F	3.77	530 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-48)	F	3.54	557 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-49)	F	3.81	584 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-50)	F	3.83	545 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-51)	F	3.74	550 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-52)	F	3.74	510 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-53)	F	3.64	544 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-54)	F	3.65	504 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-55)	F	3.57	510 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-56)	F	3.57	470 (M + H) ⁺ .	ESI (Pos., 20 V)

表35C-3

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
68 (H35-57)	F	3.53	600 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-58)	F	3.59	560 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-59)	F	3.42	560 (M + H) ⁺ .	ESI (Pos., 20 V)
68 (H35-60)	F	3.66	456 (M + H) ⁺ , 279, 161.	ESI (Pos., 40 V)
68 (H35-61)	F	3.45	486 (M + H) ⁺ , 369, 191.	ESI (Pos., 40 V)

実施例69 (H36-1)~69 (H36-24)_

実施例 14で製造した化合物の代わりに、相当するアミン誘導体と相当する酸クロライド誘導体を用いて、実施例 22 と同様の操作をし、以下の表 36 A $- 1 \sim 36$ A - 4 に化合物名を示し、表 36 B $- 1 \sim 36$ B - 5 に構造 式を示した本発明化合物を得た。また、それらの本発明化合物の物性値を、以下の表 36 C - 1 に示した。

<u>表36A-1</u>

実施例番号	化合物名
69 (H36-1)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - ((2 - フェニルフェニル) カルボニルアミノメチル) - 9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
69 (H36-2)	(3S) - 1 - プロピル- 2, $5 - ジオキソ- 3 - ((3 - フェニルフェニル) カルボニルアミノメチル) - 9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
69 (H36-3)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - ((4 - フェニルフェニル) カルボニルアミノメチル) - 9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
69 (H36-4)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - ((2 - フェニルフェニル) アセチルアミノメチル) - 9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
69 (H36-5)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - ((3 - 7) + 2 - 2)$ $(3S) - 1 - 3$ $(3S) - 3$
69 (H36-6)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - ((4 - フェニルフェニル) アセチルアミノメチル) - 9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
69 (H36-7)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (2 - (2 - フェニルフェニル) カルボニルアミノエチル) - 9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$

<u>表36A-2</u>

実施例番号	化合物名
69 (H36-8)	(3S) - 1 - プロピル- 2, $5 - ジオキソ- 3 - (2 - (3 - フェニルフェニル) カルボニルアミノエチル) - 9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
69 (H36-9)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (2 - (4 - フェニルフェニル) カルボニルアミノエチル) - 9 - (2 - フェニルエチル) - 1$, 4 , $9 - トリアザスピロ [5.5] ウンデカン$
69 (H36-10)	(3S) - 1 - プロピル-2, $5 - ジオキソ-3 - (2 - (2 - フェニルフェニル) アセチルアミノエチル) -9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
69 (H36-11)	$(3S) - 1 - プロピル - 2$, $5 - \Im + \Im - 3 - (2 - (3 - 7 + 3 - 1 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2$
69 (H36-12)	(3S) - 1 - プロピル-2, $5 - ジオキソ-3 - (2 - (4 - フェニルフェニル) アセチルアミノエチル) -9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
69 (H36-13)	$(3S) - 1 - \mathcal{C}$ ロピル -2 , $5 - \mathcal{C}$ オキソ $-3 - (3 - (2 - \mathcal{C}))$ カルボニルアミノプロピル) $-9 - (2 - \mathcal{C})$ - フェニルエチル) -1 , 4 , $9 - \mathcal{C}$ リンデカン
69 (H36-14)	(3S) - 1 - プロピル - 2, 5 - ジオキソ - 3 - (3 - (3 - 7) - 7) - 7 - 7 - 7 - 7 - 7 - 7 - 7 -

<u>表36A-3</u>

実施例番号	化合物名
69 (H36-15)	$(3S) - 1 - \mathcal{C} \square $
69 (H36-16)	$(3S) - 1 - プロピル - 2$, $5 - \Im + \Im - 3 - (3 - (2 - 7 + 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3$
69 (H36-17)	$(3S) - 1 - プロピル - 2$, $5 - \Im + \Im - 3 - (3 - (3 - 2))$ $- \Im + \Im + \Im + 2$ $- 3 - (3 - 2)$ $- \Im + 2$ $- 3 - (3 - 2)$ $- 3 - (3$
69 (H36-18)	(3S) - 1 - プロピル- 2, $5 - ジオキソ- 3 - (3 - (4 - フェニルフェニル) アセチルアミノプロピル) - 9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン$
69 (H36-19)	(3S) - 1 - プロピル - 2, $5 - ジオキソ - 3 - (4 - (2 - 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7$
69 (H36-20)	$(3S) - 1 - プロピル - 2$, $5 - \Im + \Im - 3 - (4 - (3 - 7 + 3 - 1 - 2 - 7 + 3 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2$
69 (H36-21)	$(3S) - 1 - プロピル - 2$, $5 - \Im + 3 - (4 - (4 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 - 7 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$

<u>表36A-4</u>

実施例番号	化合物名
69 (H36-22)	$(3S) - 1 - プロピル- 2$, $5 - \Im 3 + \Im 3 - (4 - (2 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - $
69 (H36-23)	$(3S) - 1 - プロピル - 2$, $5 - \Im + 3 - (4 - (3 - 7 + 3 - 1 + 3 $
69 (H36-24)	$(3S) - 1 - プロピル - 2$, $5 - \Im + \Im - 3 - (4 - (4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - $

表 36 B - 1

実施例番号	R ³	R ⁴	R ⁵
69(H36-1)	н	X ₄ ····· O	Н
69 (H36-2)	H	X ₄ ······	н
69 (H36-3)	Н	X ₄ ·····\ HN	н
69(H36-4)	н	X ₄ ·····\ O	н
69(H36-5)	Н	X ₄ ·····\ HN	H
69(H36-6)	Н	X ₄	Н

表 36 B - 2

$$\begin{array}{c|c} & H_3C \\ & O \\ & O \\ & N - NH \\ & R^4 \end{array}$$

実施例番号	R ³	R ⁴	R ⁵
69(H36-7)	н	X ₄ ·····	н
69(H36-8)	н	X ₄ ······	Н
69(H36-9)	п	X ₄ ······\	н
69 (H36-10)	н	X ₄	Н
69(H36-11)	Н	X ₄ ·····\	н
69(H36-12)	Ħ	X ₄ ·····	Н
69(H36-13)	Н	X ₄ ·····	Н

表 36B-3

$$\begin{array}{c|c} & H_3C \\ \hline & O \\ \hline & (CH_2)_2 - N \\ \hline & O \\ \hline & NH \\ & R^4 \\ \end{array}$$

実施例番号	R ³	R⁴	R ⁵
69(H36-14)	Н	X ₄ ·····\	Н
69(H36-15)	Н	X ₄ ·····\	н
69(H36-16)	н	X ₄ ·····\	н
69(H36-17)	H	X ₄ ······	Н

表 36 B - 4

$$\begin{array}{c|c} & H_3C \\ & & O \\ & & N \\ & & N \\ & & N \\ & & R^4 \end{array}$$

実施例番号	R ³	R⁴	R ⁵
69(H36-18)	Н	HN—O	Н
69(H36-19)	Ħ	X ₄ ······ O NH	I
69 (H36-20)	н	X ₄ ·····\	Н
69(H36-21)	Н	X ₄ ······	н
69(H36-22)	Н	X ₄ ·····	Н

<u>表 36 B - 5</u>

$$\begin{array}{c|c} & H_3C \\ \hline & O \\ \hline & N \\ \hline & N \\ \hline & N \\ \hline & R^3 \\ R^4 \\ \end{array}$$

実施例番号	R ³	R ⁴	R ⁵
69(H36-23)	н	X ₄ ······	н
69(H36-24)	Н	X ₄ ·····	Н

<u>表36C-1</u>

実施例 番号	HPLC 条件	保持時間 (分)	Mass データ	Mass 条件
69 (H36-1)	F	3.38	539 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-2)	F	3.47	539 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-3)	F	3.47	539 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-4)	F	3.45	553 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-5)	F	3.44	553 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-6)	F	3.44	553 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-7)	F	3.40	553 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-8)	F	3.49	553 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-9)	F	3.49	553 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-10)	F	3.47	567 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-11)	F	3.49	567 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-12)	F	3.49	567 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-13)	F	3.36	567 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-14)	F	3.47	567 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-15)	F	3.47	567 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-16)	F	3.45	581 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-17)	F	3.47	581 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-18)	F	3.47	581 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-19)	F	3.40	581 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-20)	F	3.49	581 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-21)	F	3.43	581 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-22)	F	3.47	595 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-23)	F	3.49	595 (M + H) ⁺ .	ESI (Pos., 20 V)
69 (H36-24)	F	3.49	595 (M + H) ⁺ .	ESI (Pos., 20 V)

[製剤例]

製剤例1

以下の各成分を常法により混合した後打錠して、一錠中に50mgの活性 成分を含有する錠剤100錠を得た。

5 ・9-((3,5-ジメチル-1-フェニル)-4-ピラゾリル)メチル)
 -2,5-ジオキソ-3-(2-メチル-1-プロピル)-1-プロピル
 -1,4,9-トリアザスピロ[5.5]ウンデカン・二塩酸塩

----5.0 g

・カルボキシメチルセルロースカルシウム(崩壊剤)

----0.2 g

10 ・ステアリン酸マグネシウム (潤滑剤)

----0.1 g

・微結晶セルロース

----4.7 g

製剤例2

15

以下の各成分を常法により混合した後、溶液を常法により滅菌し、5m1 ずつアンプルに充填し、常法により凍結乾燥し、1アンプル中20mgの活 性成分を含有するアンプル100本を得た。

・9-((3,5-ジメチル-1-フェニル)-4-ピラゾリル)メチル)
 -2,5-ジオキソ-3-(2-メチル-1-プロピル)-1-プロピル
 -1,4,9-トリアザスピロ[5.5]ウンデカン・二塩酸塩

----2.0 g

20 ・マンニトール

---- 20 g

・蒸留水

----500m l

請求の範囲

1. 一般式(I)

- ₅ [式中、R¹は、
 - (1) 水素原子、
 - (2) C1~18アルキル基、
 - (3) C2~18アルケニル基、
 - (4) C2~18アルキニル基、
- 10 (5) $-COR^6$,
 - (6) $-CONR^7R^8$,
 - $(7) COOR^9$
 - $(8) SO_2R^{10}$
 - (9) $-COCOOR^{11}$,
- 15 $(10) CONR^{12}COR^{13}$
 - (11) Cyc1、または
 - (12) 任意に選ばれた $1 \sim 5$ 個の(a) ハロゲン原子、(b) CONR 7 R 8 、
 - (c) $-COOR^{9}$, (d) $-OR^{14}$, (e) $-SR^{15}$, (f) $-NR^{16}R^{17}$, (g) $-NR^{18}COR^{19}$, (h) $-SO_{2}NR^{20}R^{21}$, (i) $-OCOR^{22}$, (j) $-NR^{23}SO_{2}$
- 20 R^{24} , (k) $-NR^{25}COOR^{26}$, (l) $-NR^{27}CONR^{28}R^{29}$, (m) Cyc1,
 - (n)ケト基、(o) -N $(SO_2R^{24})_2$ によって置換された $C1\sim 18$ アルキル基、 $C2\sim 18$ アルケニル基、または $C2\sim 18$ アルキニル基を表わし、

(基中、R⁶~R⁹、R¹¹~R²¹、R²³、R²⁵およびR²⁷~R²⁹はそれぞれ

独立して、

- (1)水素原子、
- (2) C1~8アルキル基、
- (3) C 2~8 アルケニル基、
- 5 (4) C 2~8 アルキニル基、
 - (5) Cyc1、または
 - (6)任意に選ばれた1~5個の(a) Cyc1、(b)ハロゲン原子、(c)-OR³⁰、
 - (d) $-SR^{31}$, (e) $-NR^{32}R^{33}$, (f) $-COOR^{34}$, (g) $-CONR^{35}R^{36}$,
 - $(h) NR^{37}COR^{38}$, $(i) NR^{39}SO_2R^{40}$, $(j) N(SO_2R^{40})_2$ l = 1
- 10 って置換された $C1\sim8$ アルキル基、 $C2\sim8$ アルケニル基、または $C2\sim8$ アルキニル基を表わすか、

 $R^7 \ge R^8$ 、 $R^{20} \ge R^{21}$ 、 $R^{28} \ge R^{29}$ は一緒になって、1) $C^2 = 6$ アルキレン基、2) - ($C^2 = 6$ アルキレン基) - O - ($C^2 = 6$ アルキレン基) - 、

- $3) (C2 \sim 6 アルキレン基) S (C2 \sim 6 アルキレン基) 、または$
- 4) $-(C2\sim6$ アルキレン基) $-NR^{195}-(C2\sim6$ アルキレン基)- を表わし(基中、 R^{195} は、水素原子、 $C1\sim8$ アルキル基、フェニル基、またはフェニル基によって置換された $C1\sim8$ アルキル基を表わす。)、

R¹⁰、R²²、R²⁴およびR²⁶はそれぞれ独立して、

- (1) C 1~8 アルキル基、
- 20 (2) C 2~8 アルケニル基、
 - (3) C 2~8 アルキニル基、
 - (4) C y c 1、または
 - (5)任意に選ばれた $1 \sim 5$ 個の(a) Cyc1、(b)ハロゲン原子、(c) $-OR^{30}$ 、
 - (d) $-SR^{31}$, (e) $-NR^{32}R^{33}$, (f) $-COOR^{34}$, (g) $-CONR^{35}R^{36}$,
- 25 (h) $-NR^{37}COR^{38}$ 、(i) $-NR^{39}SO_2R^{40}$ 、(j) $-N(SO_2R^{40})_2$ によって置換された $C1\sim8$ アルキル基、 $C2\sim8$ アルケニル基、または $C2\sim$

8アルキニル基を表わし、

(基中、 $R^{30} \sim R^{37}$ および R^{39} はそれぞれ独立して、水素原子、 $C1 \sim 8$ アルキル基、Cyc1、またはCyc1によって置換された $C1 \sim 8$ アルキル基を表わすか、

5 R³⁵とR³⁶は一緒になって、1) C 2~6アルキレン基、2) - (C 2~6アルキレン基) - を表わし(基中、R¹⁹⁶は、水素原子、C 1~8アルキル基、フェニル基、またはフェニル基によって置換されたC 1~8アルキル基を表わす。)、

 R^{38} および R^{40} はそれぞれ独立して、 $C1\sim8$ アルキル基、Cyc1、またはCyc1によって置換された $C1\sim8$ アルキル基を表わす。)

Cyc1は、 $C3\sim15$ の単環、二環、または三環式(縮合またはスピロ) 炭素環、または $1\sim4$ 個の窒素原子、 $1\sim3$ 個の酸素原子および/または $1\sim3$ 個の硫黄原子を含む $3\sim15$ 員の単環、二環、または三環式(縮合また

ただし、Cyc1は $1\sim5$ 個の R^{51} によって置換されていてもよく、 R^{51} は、

(1) C 1 ~ 8 アルキル基、

はスピロ)複素環を表わす。

- 20 (2) C 2~8アルケニル基、
 - (3) C 2~8アルキニル基、
 - (4)ハロゲン原子、
 - (5) ニトロ基、

- (6) トリフルオロメチル基、
- 25 (7)トリフルオロメトキシ基、
 - (8) ニトリル基、

- (9) ケト基、
- (10) Cyc2
- $(11) OR^{52}$
- $(12) S R^{53}$
- 5 $(13) N R^{54} R^{55}$,
 - $(14) COOR^{56}$
 - $(15) CONR^{57}R^{58}$
 - $(16) NR^{59}COR^{60}$,
 - $(17) SO_2NR^{61}R^{62}$
- 10 $(18) OCOR^{63}$
 - $(19) NR^{64}SO_2R^{65}$,
 - $(20) NR^{66}COOR^{67}$
 - $(21) NR^{68}CONR^{69}R^{70}$
 - $(22) B (OR^{71})_{2}$
- 15 $(23) SO_2 R^{72}$
 - $(24) N (SO_2 R^{72})_2$, s.t.
- (25)任意に選ばれた 1~5個の(a)ハロゲン原子、(b) Cyc2、(c) OR⁵
 ²、(d) SR⁵³、(e) NR⁵⁴R⁵⁵、(f) COOR⁵⁶、(g) CONR⁵⁷R
 ⁵⁸、(h) NR⁵⁹COR⁶⁰、(i) SO₂NR⁶¹R⁶²、(j) OCOR⁶³、(k)

 20 NR⁶⁴SO₂R⁶⁵、(l) NR⁶⁶COOR⁶⁷、(m) NR⁶⁸CONR⁶⁹R⁷
 ⁰、(n) B (OR⁷¹)₂、(o) SO₂R⁷²、(p) N (SO₂R⁷²)₂によって置換されたC1~8アルキル基、C2~8アルケニル基、C2~8アルキニル基を表わす。)

(基中、R⁵²~R⁶²、R⁶⁴、R⁶⁶およびR⁶⁸~R⁷¹はそれぞれ独立して、
 1)水素原子、2)C1~8アルキル基、3)C2~8アルケニル基、4)C2~8
 アルキニル基、5)Cyc2、または6)Cyc2、-OR⁷³、-COOR⁷⁴、

 $-NR^{75}R^{76}$ によって置換された $C1\sim8$ アルキル基、 $C2\sim8$ アルケニル 基、C2~8アルキニル基を表わすか、

 R^{57} と R^{58} 、 R^{61} と R^{62} 、 R^{69} と R^{70} は一緒になって、1) $C2 \sim 6$ アルキ レン基、2) - (C 2 ~ 6 アルキレン基) - O - (C 2 ~ 6 アルキレン基) - 、

 $3)-(C2\sim6$ アルキレン基)-S-(C2 ~6 アルキレン基)-、または 5 4) $-(C2\sim6$ アルキレン基) $-NR^{197}-(C2\sim6$ アルキレン基) - を表 わし(基中、R¹⁹⁷は、水素原子、C1~8アルキル基、フェニル基、または フェニル基によって置換された C1~8アルキル基を表わす。)、

 R^{63} 、 R^{65} 、 R^{67} および R^{72} はそれぞれ独立して、1) $C1 \sim 8$ アルキル基、

10 2) C 2 ~ 8 アルケニル基、3) C 2 ~ 8 アルキニル基、4) C y c 2、または 5) Cyc2、-OR⁷³、-COOR⁷⁴、-NR⁷⁵R⁷⁶によって置換されたC1 ~8アルキル基、C2~8アルケニル基、C2~8アルキニル基を表わし、 (基中、 $R^{73} \sim R^{76}$ はそれぞれ独立して、水素原子、 $C1 \sim 8$ アルキル基、 Cvc2、またはCvc2によって置換された $C1\sim8$ アルキル基を表わ す。)

Cvc2はCvc1と同じ意味を表わす。

ただし、Cyc2は1~5個のR⁷⁷によって置換されていてもよく、R ⁷⁷は、

- 1) C 1 ~ 8 アルキル基、
- 2)ハロゲン原子、 20

- 3) ニトロ基、
- 4) トリフルオロメチル基、
- 5) トリフルオロメトキシ基、
- 6) ニトリル基、
- 7) O R $^{7.8}$ 25
 - 8) $-NR^{79}R^{80}$,

- 9) $COOR^{81}$,
- $10) SR^{82}$
- $11) CONR^{83}R^{84}$
- 12) C 2~8アルケニル基、
- 5 13) C 2~8アルキニル基、
 - 14) ケト基、
 - 15) Cyc6,
 - 16) $-NR^{161}COR^{162}$,
 - 17) $SO_2 N R^{163} R^{164}$.
- 10 18) $OCOR^{165}$,
 - 19) $-NR^{166}SO_2R^{167}$,
 - $20) NR^{168}COOR^{169}$
 - 21) $-NR^{170}CONR^{171}R^{172}$.
 - 22) $SO_2 R^{173}$,
- 15 23) $-N (SO_2R^{167})_2$
 - 24) 任意に選ばれた $1 \sim 5$ 個の (a) ハロゲン原子、 (b) O R 78 、 (c) N R 79 R 80 、 (d) C O O R 81 、 (e) S R 82 、 (f) C O N R 83 R 84 、 (g) ケト基、 (h) C y c 6、 (i) N R 161 C O R 162 、 (j) S O $_2$ N R 163 R 164 、 (k) C O R 165 、 (l) N R 166 S O $_2$ R 167 、 (m) N R 168 C O O R 169 、 (n) -
- 20 NR 170 CONR 171 R 172 、(o) -SO $_2$ R 173 、(p) -N (SO $_2$ R 167) $_2$ に よって置換されたC1 \sim 8アルキル基、C2 \sim 8アルケニル基、C2 \sim 8アルキニル基を表わす。)

(基中、R⁷⁸~R⁸⁴、R¹⁶¹~R¹⁶⁴、R¹⁶⁶、R¹⁶⁸およびR¹⁷⁰~R¹⁷²はそれぞれ独立して、(a)水素原子、(b) C 1~8アルキル基、(c) C 2~8ア ルケニル基、(d) C 2~8アルキニル基、(e) C y c 6、(f) C y c 6、−OR 1⁷⁴、−COOR 1⁷⁵、−NR¹⁷⁶R¹⁷⁷、−CONR 1⁷⁸R¹⁷⁹によって置換

された $C1\sim8$ アルキル基、 $C2\sim8$ アルケニル基、 $C2\sim8$ アルキニル基 を表わすか、

R⁸³とR⁸⁴、R¹⁶³とR¹⁶⁴、R¹⁷¹とR¹⁷²は一緒になって、1) C 2~6アルキレン基、2) - (C 2~6アルキレン基) -O-(C 2~6アルキレン基)
5 -、3) - (C 2~6アルキレン基) -S-(C 2~6アルキレン基) -、または 4) - (C 2~6アルキレン基) -NR¹⁹⁸-(C 2~6アルキレン基)
-を表わし(基中、R¹⁹⁸は、水素原子、C 1~8アルキル基、フェニル基、またはフェニル基によって置換されたC 1~8アルキル基を表わす。)、R¹⁶⁵、R¹⁶⁷、R¹⁶⁹およびR¹⁷³はそれぞれ独立して、(a) C 1~8アルキル基、(b) C 2~8アルケニル基、(c) C 2~8アルキニル基、(d) C y c 6、または(e) C y c 6、-OR¹⁷⁴、-COOR¹⁷⁵、-NR¹⁷⁶R¹⁷⁷、-CONR¹⁷⁸R¹⁷⁹によって置換されたC 1~8アルキル基、C 2~8アルケニル

(基中、 $R^{174} \sim R^{177}$ はそれぞれ独立して、1)水素原子、2) $C 1 \sim 8$ アルキ ル基、3) C y c 6 、または 4) C y c 6 によって置換された $C 1 \sim 8$ アルキル 基を表わすか、

基、C2~8アルキニル基を表わす。)

換されたC1~8アルキル基を表わす。)、

20

25

 R^{178} と R^{179} は一緒になって、1) C^{2} 2~6Pルキレン基、2) - (C^{2} 2~6Pルキレン基) - O - (C^{2} 2~6Pルキレン基) - 、3) - (C^{2} 2~6Pルキレン基) - S - (C^{2} 2~6Pルキレン基) - 、または4) - (C^{2} 2~6Pルキレン基) - N R^{199} - (C^{2} 2~6Pルキレン基) - を表わし (基中、 R^{199} は、水素原子、 C^{1} 2~8Pルキル基、フェニル基、またはフェニル基によって置

Cyc6は、 $C3\sim8$ の単環式炭素環または $1\sim4$ 個の窒素原子、 $1\sim2$ 個の酸素原子および/または $1\sim2$ 個の硫黄原子を含む $3\sim8$ 員の単環式複素環を表わす。

ただし、Cyc6は1~5個のR¹⁸⁰によって置換されていてもよく、

R¹⁸⁰は、

- (1) C1~8アルキル基、
- (2)ハロゲン原子、
- (3) ニトロ基、
- 5 (4)トリフルオロメチル基、
 - (5)トリフルオロメトキシ基、
 - (6) ニトリル基、
 - $(7) OR^{181}$
 - $(8) N R^{182} R^{183}$
- 10 (9) $COOR^{184}$,
 - $(10) SR^{185}$, $\pm k$
 - (11) CONR¹⁸⁶R¹⁸⁷を表わし

(基中、 $R^{181} \sim R^{187}$ はそれぞれ独立して、1)水素原子、2) $C 1 \sim 8$ アルキル基、3) フェニル基、または 4) フェニル基によって置換された $C 1 \sim 8$ アルキル基を表わすか、

 R^{182} と R^{183} 、 R^{186} と R^{187} は一緒になって、1) C^{2} C^{2}

20 中、 R^{200} は、水素原子、 $C1\sim8$ アルキル基、フェニル基、フェニル基によって置換された $C1\sim8$ アルキル基を表わす。)。)、

R²は、

- (1) 水素原子、
- (2) C1~8アルキル基、
- 25 (3) C2~8アルケニル基、
 - (4) C2~8アルキニル基、

- $(5) OR^{90}$
- (6) Cyc3、または
- (7) 任意に選ばれた $1 \sim 5$ 個の (a) ハロゲン原子、(b) $-OR^{90}$ 、(c) $-SR^{91}$ 、(d) $-NR^{92}R^{93}$ 、(e) $-COOR^{94}$ 、(f) $-CONR^{95}R^{96}$ 、(g) -N $-SO_2NR^{99}R^{100}$ 、(i) $-OCOR^{101}$ 、(j) $-NR^{102}SO_2R^{103}$ 、(k) $-NR^{104}COOR^{105}$ 、(l) $-NR^{106}CONR^{107}R^{108}$ 、(m) $-SO_2NR^{104}$ COOR $-SO_2R^{103}$ Coordinates (a) $-SO_2R^{103}$ Coordinates (b) $-SO_2R^{103}$ Coordinates (b) $-SO_2R^{103}$ Coordinates (c) $-SO_2R^{103}$ Coordin
- 10 (基中、R⁹⁰~R¹⁰⁰、R¹⁰²、R¹⁰⁴およびR¹⁰⁶~R¹⁰⁸はそれぞれ独立して、1)水素原子、2)C1~8アルキル基、3)C2~8アルケニル基、4)C2~8アルキニル基、5)Cyc3、または6)Cyc3によって置換されたC1~8アルキル基、C2~8アルケニル基、C2~8アルキニル基を表わすか、
- 15 R⁹⁵とR⁹⁶、R⁹⁹とR¹⁰⁰、R¹⁰⁷とR¹⁰⁸は一緒になって、1) C 2~6アルキレン基、2) (C 2~6アルキレン基) -O-(C 2~6アルキレン基) -、3) (C 2~6アルキレン基) -S-(C 2~6アルキレン基) -、または 4) (C 2~6アルキレン基) -NR²⁰¹-(C 2~6アルキレン基) -を表わし(基中、R²⁰¹は、水素原子、C 1~8アルキル基、フェニル基、
- 20 またはフェニル基によって置換された $C1\sim8$ アルキル基を表わす。)、 R^{101} 、 R^{103} および R^{105} はそれぞれ独立して、I) $C1\sim8$ アルキル基、2) $C2\sim8$ アルケニル基、3) $C2\sim8$ アルキニル基、または 4) Cyc3 または Cyc3 によって置換された $C1\sim8$ アルキル基、 $C2\sim8$ アルケニル基、 $C2\sim8$ アルキニル基を表わし、
- 25 Cyc3はCyc1と同じ意味を表わす。 ただし、Cyc3は $1\sim5$ 個の R^{109} によって置換されていてもよく、

R¹⁰⁹はR⁵¹と同じ意味を表わす。) R³およびR⁴はそれぞれ独立して、

- (1) 水素原子、
- (2) C1~8アルキル基、
- 5 (3) C2~8アルケニル基、
 - (4) C2~8アルキニル基、
 - $(5) COOR^{120}$
 - (6) $-CONR^{121}R^{122}$,
 - (7) Cyc4、または
- 10 (8) 任意に選ばれた 1~5個の(a) ハロゲン原子、(b) ニトリル基、(c) C y c 4、(d) COOR 120、(e) CONR 121 R 122、(f) OR 123、(g) SR 124、(h) NR 125 R 126、(i) NR 127 COR 128、(j) SO₂ NR 129 R 130、(k) OCOR 131、(l) NR 132 SO₂ R 133、(m) NR 134 COR 135、(n) NR 136 CONR 137 R 138、(o) S S R 139、(p) NHC(= NH) NHR 140、(q) ケト基、(r) NR 145 CONR 146 COR 147、(s) N(SO₂ R 133)。 によって置換された C 1~8 アルキル基、C 2~8 アルケニル基、または C 2~8 アルキニル基を表わし、

(基中、R¹²⁰~R¹³⁰、R¹³²、R¹³⁴、R¹³⁶~R¹³⁸、R¹⁴⁵およびR¹⁴ %はそれぞれ独立して、1)水素原子、2) C 1~8 アルキル基、3) C 2~8 アル 20 ケニル基、4) C 2~8 アルキニル基、5) C y c 4、または 6) C y c 4、ハロゲン原子、−OR¹⁴⁸、−SR¹⁴⁹、−COOR¹⁵⁰、または−NHCOR¹⁴ ¹によって置換されたC 1~8 アルキル基、C 2~8 アルチニル基を表わすか、

 R^{121} と R^{122} 、 R^{129} と R^{130} 、 R^{137} と R^{138} は一緒になって、1) C^{2} 20 アルキレン基、2) - (C^{2} 2~6アルキレン基) - O - (C^{2} 2~6アルキレン基) - S - (C^{2} 2~6アルキレン基) - 、3) - (C^{2} 2~6アルキレン基) - S - (C^{2} 2~6アルキレン基) - 、

または 4) $-(C2\sim6$ アルキレン基) $-NR^{202}-(C2\sim6$ アルキレン基) - を表わし(基中、 R^{202} は、水素原子、 $C1\sim8$ アルキル基、フェニル基、フェニル基によって置換された $C1\sim8$ アルキル基を表わす。)、

 R^{131} 、 R^{133} 、 R^{135} 、 R^{139} および R^{147} はそれぞれ独立して、1) $C1\sim 8$ アルキル基、2) $C2\sim 8$ アルケニル基、3) $C2\sim 8$ アルキニル基、4) Cyc 4、または5) Cyc 4、ハロゲン原子、 $-OR^{148}$ 、 $-SR^{149}$ 、 $-COOR^{150}$ 、または $-NHCOR^{141}$ によって置換された $C1\sim 8$ アルケニル基、 $C2\sim 8$ アルケニル基、 $C2\sim 8$ アルケニル基を表わし、

 R^{140} は、水素原子、 $-COOR^{142}$ 、または $-SO_2R^{143}$ を表わし、

10 (基中、R¹⁴¹~R¹⁴³はそれぞれ独立して、1) C 1~8アルキル基、2) C 2 ~8アルケニル基、3) C 2~8アルキニル基、4) C y c 4、または5) C y c 4によって置換されたC1~8アルキル基、C2~8アルケニル基、C2~8アルキニル基を表わし、

 $R^{148} \sim R^{150}$ はそれぞれ独立して、1) 水素原子、2) C 1 ~ 8 アルキル基、3) 15 C 2 ~ 8 アルケニル基、4) C 2 ~ 8 アルキニル基、5) C y c 4、または 6) C y c 4によって置換されたC 1 ~ 8 アルキル基、C 2 ~ 8 アルケニル基、C 2 ~ 8 アルキニル基を表わし、

Сус4はСус1と同じ意味を表わす。

5

ただし、Cyc4は1~5個のR¹⁴⁴によって置換されていてもよく、

20 R^{144} は R^{51} と同じ意味を表わす。)を表わすか R^{3} と R^{4} は一緒になって、

(基中、 R^{190} および R^{191} はそれぞれ独立して、 R^{3} または R^{4} と同じ意味を表わす。)を表わし、

R⁵は、

- (1) 水素原子、
- (2) C1~8アルキル基、
- (3) Cvc5、または
- 5 (4) Cyc5によって置換されたC1~8アルキル基を表わす。

(基中、Сус5はСус1と同じ意味を表わす。

ただし、Cyc5は1~5個のR¹⁶⁰によって置換されていてもよく、

R 160 は R 51 と同じ意味を表わす。)]

で示されるトリアザスピロ[5.5]ウンデカン誘導体、それらの四級アン

- 10 モニウム塩、それらのN-オキシドまたはそれらの非毒性塩。
 - 2. 請求の範囲1に記載の一般式(I)中、R³およびR⁴が水素原子である請求の範囲1記載の化合物。
- 15 3. 請求の範囲1に記載の一般式(I)中、R³が水素原子、

R⁴が

- (1) C1~8アルキル基、
- (2) C2~8アルケニル基、
- (3) C2~8アルキニル基、
- 20 (4) $-COOR^{120}$,
 - $(5) CONR^{121}R^{122}$
 - (6) Cyc4、または
 - (7)任意に選ばれた $1 \sim 5$ 個の(a)ハロゲン原子、(b)ニトリル基、(c) C y
 - c 4, (d) $COOR^{120}$, (e) $CONR^{121}R^{122}$, (f) OR^{123} , (g) -
- 25 SR^{124} , (h) $-NR^{125}R^{126}$, (i) $-NR^{127}COR^{128}$, (j) $-SO_2NR^1$ $^{29}R^{130}$, (k) $-OCOR^{131}$, (l) $-NR^{132}SO_2R^{133}$, (m) $-NR^{134}C$

OOR 135 、(n) $-NR^{136}CONR^{137}R^{138}$ 、(o) $-S-SR^{139}$ 、(p) -N HC (=NH) NHR^{140} 、(q) ケト基、(r) $-NR^{145}CONR^{146}COR^{14}$ 7 、(s) -N (SO_2R^{133}) $_2$

(すべての記号は請求の範囲1記載と同じ意味を表わす。)によって置換さ れたC1~8アルキル基、C2~8アルケニル基、またはC2~8アルキニ ル基である請求の範囲1記載の化合物。

- **4.** 請求の範囲1記載の一般式(I)中、R³およびR⁴がそれぞれ独立して、
- 10 (1) C1~8アルキル基、
 - (2) C2~8アルケニル基、
 - (3) C2~8アルキニル基、
 - $(4) COOR^{120}$
 - $(5) CONR^{121}R^{122}$

 7 , (s) -N (SO₂R¹³³) ₂

15 (6) Cyc4、 または

20

25

(7) 任意に選ばれた $1 \sim 5$ 個の (a) ハロゲン原子、(b) ニトリル基、(c) C y c 4、(d) - C O O R 120 、(e) - C O N R 121 R 122 、(f) - O R 123 、(g) - S R 124 、(h) - N R 125 R 126 、(i) - N R 127 C O R 128 、(j) - S O $_2$ N R 129 R 130 、(k) - O C O R 131 、(l) - N R 132 S O $_2$ R 133 、(m) - N R 134 C O O R 135 、(n) - N R 136 C O N R 137 R 138 、(o) - S - S R 139 、(p) - N H C (= N H) N H R 140 、(q) \sim F \rightarrow E, (r) - N R 145 C O N R 146 C O R 146

(すべての記号は請求の範囲1記載と同じ意味を表わす。)によって置換されたC1~8アルキル基、C2~8アルケニル基、またはC2~8アルキニル基である請求の範囲1記載の化合物。

5. 請求の範囲1記載の一般式(I)中、R³とR⁴が一緒になって、

(基中、すべての記号は請求の範囲1記載と同じ意味を表わす。)である請求の範囲1記載の化合物。

5

15

6. 化合物が

- (1) 9-(3, 5-ジメチル-1-フェニルピラゾール-4-イルメチル)
 -2, 5-ジオキソ-3-(2-メチル-1-プロピル) -1-プロピルー
 1, 4, 9-トリアザスピロ [5, 5] ウンデカン、
- 10 (2) 9-(1, 4-ベンゾジオキサン-6-イルメチル) -1-ブチル-3
 -シクロヘキシルメチル-2, 5-ジオキソ-1, 4, 9-トリアザスピロ
 [5.5] ウンデカン、

 - (4) 1-ブチル-3-(2-メチル-1-プロピル)-2, 5-ジオキソ-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5. 5] ウンデカン、
- (5) (3S) -2, 5-ジオキソ-3-(2-メチルプロピル) -9-(6
 20 -フェニルヘキシル) -1-プロピル-1, 4, 9-トリアザスピロ [5.
 5] ウンデカン、
 - (6) (3R) 2, 5 ジオキソ 3 (2 メチルプロピル) 9 (6 フェニルヘキシル) 1 プロピル 1, 4, 9 トリアザスピロ [5.5] ウンデカン、

(7) 1ーブチルー9ー((3,5ージメチルー1ーフェニル)ー4ーピラゾリル)メチル)ー2,5ージオキソー3ー(2ーメチルー1ープロピル)ー1,4,9ートリアザスピロ[5.5]ウンデカン、

- (8) 1-ブチル-3-シクロヘキシルメチル-2, 5-ジオキソ-9-(4
 5 -フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5.5]
 ウンデカン、
 - (9) 9-(1, 4-ベンゾジオキサン-6-イルメチル) -1-ブチル-3
 -(2-メチル-1-プロピル) -2, 5-ジオキソー1, 4, 9-トリアザスピロ [5. 5] ウンデカン、
- 10 (10) 9-(4-ベンジルオキシフェニルメチル)-1-ブチル-2,5-ジオキソ-3-(2-メチル-1-プロピル)-1,4,9-トリアザスピロ[5.5]ウンデカン、
 - (11) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(6-フェニルヘキシル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、

- (12) (3S) 1 (2 メチルプロピル) 2, 5 ジオキソ 3 (4 (N ベンジルオキシカルボニル) アミノブチル) <math>- 9 (2 フェニル エチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- (13) (3S) -1-プロピル-2, 5-ジオキソ-3-(4-(N-ベン
- 20 ジルオキシカルボニル) アミノブチル) -9-(2-7) エニルエチル) -1, 4, 9- トリアザスピロ [5.5] ウンデカン、

- 1, 4, 9-トリアザスピロ[5.5]ウンデカン、
- 5 (17) (3S) -1-プロピル-2, 5-ジオキソ-3-(4-(N-ベンジルオキシカルボニル)アミノブチル)-9-(4-フェニルブチル)-1,
 4, 9-トリアザスピロ[5, 5]ウンデカン、
 - (18) (3R) 1 プロピル 2, 5 ジオキソ 3 (4 (N ベンジルオキシカルボニル) アミノブチル) <math>-9 (4 フェニルブチル) 1,
- 10 4, 9-トリアザスピロ[5.5]ウンデカン、
 - (19) (3S) 1 ベンジル 2, 5 ジオキソ 3 (2 メチルプロピル) 9 ベンジル 1, 4, 9 トリアザスピロ[5.5] ウンデカン、
 - (20) (3R) 1 ベンジル 2, 5 ジオキソ 3 (2 メチルプロピル) 9 ベンジル 1, 4, 9 トリアザスピロ[5.5] ウンデカン、
- (21) (3S) -1-プロピル-2, 5-ジオキソ-3-(4-(N-ベンジルオキシカルボニル)アミノブチル)-9-(2-(2-フェニル-5-メチルオキサゾール-4-イル)エチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン、
 - (22) (3S) -1 プロピル-2, 5 ジオキソ-3 (4 (N (2
- 25 (24) $1 \mathcal{C}_1 \mathcal{C}_2 \mathcal{C}_2 \mathcal{C}_3 \mathcal{C}_3 \mathcal{C}_4 \mathcal{C}_4 \mathcal{C}_4 \mathcal{C}_5 \mathcal{C}_5$

5] ウンデカン、

10

15

- 5 (26) 1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9 (4 アリルオキシフェニルメチル) -1, 4, 9 トリアザスピロ[5.5] ウンデカン、

 - (28) (3R) 1 プロピル 9 (3, 5 ジメチル 1 フェニルピラゾール 4 イルメチル) 2, 5 ジオキソ 3 (2 メチル 1 プロピル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
 - (29) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-
- (30) 1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 ベンジルオキシカルボニル-1, 4, 9 トリアザスピロ [5. 5] ウンデカン、

フェニルメチルー1. 4. 9 – トリアザスピロ「5. 5] ウンデカン、

- (31) 1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-ベ20 ンジルオキシカルボニル-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (32) $1 \langle x \rangle = 2$, $5 \langle x \rangle = 3 \langle x \rangle = 2 \langle$

ン、

- 5 (35) 1-(1-)メチルプロピル) -2, 5-ジオキソ-3-(2-)メチルプロピル) -9-(4-)フェニルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (36) 1-(2-メチルブチル)-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリ
- 10 アザスピロ[5.5]ウンデカン、
 - (37) 1-(2-メチルプロピル)-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- (38) 1-(2-ジメチルアミノエチル)-2,5-ジオキソ-3-(2-15 メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン、
 - (39) 1-(2-メトキシエチル)-2, 5-ジオキソ-3-(2-メチル プロピル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ <math>[5.5] ウンデカン、
- 20 (40) 1-(2-メチルチオエチル)-2,5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1,4,9-トリアザスピロ「5.5]ウンデカン、
 - (41) 1-ベンジル-2, 5-ジオキソ-3-(2-メチルプロピル)-9 -(1, 4-ベンゾジオキサン-6-イルメチル)-1, 4, 9-トリアザ
- 25 スピロ [5.5] ウンデカン、
 - (42) 1 $\cancel{42}$ $\cancel{5}$ $\cancel{5}$ + $\cancel{5}$ +

-(4-ベンジルオキシフェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン、

- (43) 1 ベンジル 2, 5 ジオキソ 3 (2 メチルプロピル) 9 (3, <math>5 ジメチル 1 フェニルピラゾール 4 イルメチル) 1,
- 5 4, 9-トリアザスピロ [5.5] ウンデカン、

- (44) 1-(3-メチルフェニルメチル)-2,5-ジオキソ-3-(2-メチルプロピル)-9-(1,4-ベンゾジオキサン-6-イルメチル) 1,4,9-トリアザスピロ[5.5]ウンデカン、
 - (45) 1 $(3 \lambda + \mu)$ 2, $5 \beta + \nu$ $3 (2 \mu)$
- 10 メチルプロピル) -9-(3,5-ジメチル-1-フェニルピラゾール-4 -イルメチル) -1,4,9-トリアザスピロ[5.5] ウンデカン、
 - (46) 1-(1-メチルブチル)-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- 15 (47) 1 (3 メチルブチル) 2, 5 ジオキソ 3 (2 メチルプロピル) 9 (4 フェニルオキシフェニルメチル) 1, 4, 9 トリアザスピロ[5.5]ウンデカン、
 - (48) 1-(2-メトキシフェニルメチル)-2, 5-ジオキソ-3-(2-メチルプロピル)-9-((3,5-ジメチル-1-フェニル)-4-ピラゾリル)メチル)-1,4,9-トリアザスピロ[5.5]ウンデカン、
- (49) 1-(3-メトキシフェニルメチル)-2,5-ジオキソ-3-(2
 -メチルプロピル)-9-((3,5-ジメチル-1-フェニル)-4-ピラゾリル)メチル)-1,4,9-トリアザスピロ[5,5]ウンデカン、
 - (50) 1 $(2 \lambda + \mu)$ $(2 \lambda + \mu)$
- 25 メチルプロピル) -9-(3,5-ジメチル-1-フェニルピラゾール-4 イルメチル) -1,4,9-トリアザスピロ[5.5] ウンデカン、

- (52) 1 ブチル 2, 5 ジオキソ 3 シクロヘキシルメチル 9 (5
- 5 -エチルチオフェン-2-イルメチル)-1,4,9-トリアザスピロ[5.5] ウンデカン、
- 10 (54) (3S) -1-ブチル-2, 5-ジオキソ-3-((1R) -1-ヒ ドロキシ-2-メチルプロピル) -9-(4-フェニルオキシフェニルメチ ル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、
 - (55) (3R) 1 7 + 7 2, 5 7 + 7 3 ((1S) 1 1 1)5 - 7 + 7 - 2 - 7 + 7 - 1 - 1
- 15 ル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (56) (3S) -1-プロピル-2, 5-ジオキソ-3-(4-(N-ベンジルオキシカルボニル) アミノブチル) -9-アリルオキシカルボニル-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- 20 ジルオキシカルボニル)アミノブチル)-1,4,9-トリアザスピロ[5.5]ウンデカン、
 - (58) 1 プロピル 2, 5 ジオキソ 3 (2 メチルプロピル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
 - (59) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-1,
- 25 4, 9-トリアザスピロ[5.5]ウンデカン、

9-トリアザスピロ[5.5]ウンデカン、

- - (63) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9 (1-(1, 4-ベンゾジオキサン-6-イル) エチル)-1, 4, 9-トリアザスピロ[5.5] ウンデカン、
 - (64) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(1-(4-フェニルオキシフェニル) エチル)-1, 4, 9-トリアザスピロ <math>[5.5] ウンデカン、
- (65) 1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9 (1
 15 (1, 4 ベンゾジオキサン-6 イル) エチル) 1, 4, 9 トリア ザスピロ [5.5] ウンデカン、
 - (66) (3S) -1 プロピル-2, 5 ジオキソ-3 (4- (N-ベン ジルオキシカルボニル) アミノブチル) -9 アリル-1, 4, 9 トリア ザスピロ [5.5] ウンデカン、
- 20 (67) (3S) -1-プロピル-2, 5-ジオキソ-3-(4-アミノブチル) -9-フェニルエチル-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- 25 1, 4, 9ートリアザスピロ[5.5]ウンデカン、
 - (69) ヨウ化 1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル

-9-メチル-9-(1-(1, 4-ベンゾジオキサン-6-イル) エチル) -1, 4, -ジアザ-9-アゾニアスピロ [5. 5] ウンデカン、

5

20

- (71) (3.S) 3 (4 (N ベンジルオキシカルボニル) アミノブチル) 2, 5 ジオキソー9 (2 オキソー2 フェニルエチル) 1 プロピルー1, 4, 9 トリアザスピロ[5, 5]ウンデカン、
- (72) (3S) -1-(2-メチルプロピル) -2, 5-ジオキソ-3-メ10 チル-9-アリルオキシカルボニル-1, 4, 9-トリアザスピロ[5.5]ウンデカン、
 - (73) (3S) 1 (2 メチルプロピル) 2, 5 ジオキソ 3 メ チル -9 (2 フェニルエチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 15 (74) (3S) -1-(2-メチルプロピル) -2, 5-ジオキソ-3-(4
 -(N-ベンジルオキシカルボニル) アミノブチル) -9-(2-フェニルエチル) -1, 4, 9-トリアザスピロ [5, 5] ウンデカン、
 - (75) (3S) 1 (1 ベンジルピペリジン- 4 イル) 2, 5 ジ オキソー 3 メチル 9 (2 フェニルエチル) 1, 4, 9 トリアザ
 - (76) (3S) 1 (1 ベンジルピペリジン- 4 イル) 2, 5 ジ オキソー 3 (4 (N ベンジルオキシカルボニル) アミノブチル) 9 (2 フェニルエチル) 1, 4, 9 トリアザスピロ <math>[5.5] ウンデカン、

スピロ[5.5]ウンデカン、

[5.5] ウンデカン、

(78) (3S) - 1 - (2, 2 - ジフェニルプロピル) - 2, 5 - ジオキソ -3 - (4 - (N - ベンジルオキシカルボニル) アミノブチル) - 9 - (2 - フェニルエチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン、

- 5 (79) (3S) -1 プロピル-2, 5 ジオキソ-3 (4 ベンジルオキシフェニルメチル) -9 (2 フェニルエチル) -1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 10 1, 4, 9 -
 - (81) (3S) 1 プロピル 2, 5 ジオキソ 3 (4 (ベンジルカルボニルアミノ) ブチル) <math>- 9 (2, 2 ジメチルプロピル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
 - (82) (3S) 1 プロピル 2, 5 ジオキソ 3 (4 (ベンジルカルボニルアミノ) ブチル) <math>-9 (3 フェニルプロパノイル) 1, 4,
- 15 カルボニルアミノ) ブチル) 9 (3 フェニルプロパノイ) 9 - トリアザスピロ [5.5] ウンデカン、
 - (83) (3S) 1 プロピル 2, 5 ジオキソ 3 (4 (ベンジルカルボニルアミノ) プチル) <math>- 9 ベンゼンスルホニル 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 25 9-トリアザスピロ[5.5]ウンデカン、
 - (86) (3S) -1-プロピル-2, 5-ジオキソ-3-(4-ベンゼンス

ルホニルアミノブチル)-9-(2-7)ェニルエチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、

- (88) (3S) -1 ブチル -2, 5 ジオキソ -3 (4 \checkmark トキシフェ ニルメチル) <math>-9 シクロヘキシルメチル -1, 4, 9 + 1 -
- (89) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-10 (2-(4-クロロフェニル) チオフェン-5-イルメチル)-1, 4, 9
 - トリアザスピロ[5.5]ウンデカン、

5

- (90) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(2-(4-メトキシフェニル) チオフェン-<math>5-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- 15 (91) 1-((2E)-ブテニル)-2,5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン、
 - (92) 1-(7)-2-4ルメチル) -2, 5-3オキソー3-(2-4) チルプロピル) -9-(4-7)エニルオキシフェニルメチル) -1, 4, 9-10 -11 -12 -13 -14 -
 - (93) 1-(チオフェン-2-イルメチル)-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン、
- (94) 1-シクロプロピルメチル-2, 5-ジオキソ-3-(2-メチルプ
 25 ロピル) -9-(4-フェニルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5, 5] ウンデカン、

(95) 1-(2-7)ルオロフェニルメチル) -2, 5-3 オキソー3-(2-7) オチルプロピル) -9-(4-7) エニルオキシフェニルメチル) -1, 4, 9- トリアザスピロ [5.5] ウンデカン、

- (96) 1-(3-メチル-2-ブテニル)-2, 5-ジオキソ-3-(2-5)
 5 メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ「5.5]ウンデカン、
 - (97) 1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル) -9- (キノリン-3-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- 10 (98) 1-ブチルー2, 5-ジオキソー3-(ベンジルオキシカルボニルメチル) -9-(4-フェニルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (99) 1-(3-メチル-2-ブテニル)-2, 5-ジオキソ-3-シクロ ヘキシルメチル-9-(1, 4-ベンゾジオキサン-6-イルメチル)-1,
- 15 4, 9-トリアザスピロ[5.5]ウンデカン、
 - (100) $1 \vec{j}$ チルー 2, $5 \vec{j}$ オキソー $3 \hat{j}$ クロヘキシルメチルー $9 ((2 E) 3 7 \pi \pi) 2 7 \pi \pi$ 1, 4, 9μ 1 1 1 2 3 -
 - (101) (3S) -1-ブチル-2, 5-ジオキソ-3-(1, 1-ジメチル
- 20 エチル)-9-(4-7) エチル)-1,4,9-トリアザスピロ[5.5] ウンデカン、

[5.5] ウンデカン、

10

- 5 (105) 1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9 (4 メチルチアゾール-2 イルメチル) 1, 4, 9 トリアザスピロ [5. 5] ウンデカン、
 - (106) 1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル)-9-(5-メチルチアゾールー2-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- (108) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチ 15 ル-9-(1, 4-ベンゾジオキサン-6-イルメチル) -1, 4, 9-ト リアザスピロ [5, 5] ウンデカン、
- 20 (110) (3S) -1-ブチル-2, 5-ジオキソ-3-((1S)-1-メ チルプロピル) -9-(4-フェニルオキシフェニルメチル) -1, 4, 9 -トリアザスピロ[5.5] ウンデカン、
 - (111) 1-(2-ブチニル)-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (112) $1 (2 \vec{7} + \vec{7} + \vec{7}) 2, 5 \vec{7} + \vec{7}$

N-9-(1, 4-ベンゾジオキサン-6-イルメチル)-1, 4, 9-トリアザスピロ <math>[5.5] ウンデカン、

(113) $1 - \text{$^{\circ}$} \text{$$

5

- (114) 1-(3-)++>7エニルメチル) -2, 5-ジオキソ-3-(ベンジルオキシメチル) <math>-9-(3, 5-ジメチル-1-7エニルピラゾール-4-(7)イルメチル) -1, 4, 9-(7)
- (115) (3R) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
- 10 ル) -9-(4-フェニルオキシフェニルメチル) -1, 4, 9-トリアザ スピロ [5.5] ウンデカン、
 - (116) (3S) -1 $\overline{)}$ 1 $\overline{)}$ 1
- - (118) $1 \mathcal{I} \mathcal{I$
- (120) (3R) -1-ブチル-2, 5-ジオキソ-3-(1-メチルプロピ
 25 ル) -9-(1, 4-ベンゾジオキサン-6-イルメチル) -1, 4, 9 トリアザスピロ [5.5] ウンデカン、

(121) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(5-フェニルメチルチオフェン-2-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、

- (122) 1 ブチル- 2, 5 ジオキソ- 3 シクロヘキシルメチル- 9 (2
 5 フェニルメチルチオフェン- 5 イルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
 - (123) (3R) 1 ブチル 2, 5 ジオキソ 3 (2, 2 ジメチル プロピル) -9 (1, 4 ベンゾジオキサン 6 イルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 10 (124) (3S) -1-ブチル-2, 5-ジオキソ-3-(2, 2-ジメチル プロピル) -9-(1, 4-ベンゾジオキサン-6-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (125) (3R) -1-(2-ブチニル)-2, 5-ジオキソ-3-(2, 2-ジメチルプロピル) <math>-9-(4-フェニルオキシフェニルメチル)-1,
- 15 4、9-トリアザスピロ「5.5] ウンデカン、
 - (126) (3S) -1-(2-ブチニル) -2, 5-ジオキソ-3-(2, 2-ジメチルプロピル) -9-(4-フェニルオキシフェニルメチル) -1,
 4, 9-トリアザスピロ [5. 5] ウンデカン、
 - (127) $1 \overline{y} + \overline{y} 2$, $5 \overline{y} + \overline{y} + 3 \overline{y} + 2$
- 20 4 ベンゾジオキサン-6-イルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン、
- 25 (129) 1 777 + 7 2, 5 777 + 7 3 (3 777 + 7

アザスピロ[5.5]ウンデカン、

- 5 (131) 1 ブチル-2, 5 ジオキソ-3 (3 シクロヘキシルプロピル)
 -9 (3, 5 ジメチル-1 フェニルピラゾール-4 イルメチル) 1, 4, 9 トリアザスピロ [5, 5] ウンデカン、
 - (132) 1 7 + 7 2, 5 7 + 7 3 (2 1 + 7 -
 - (133) 1-(2-ブチニル)-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(3, <math>5-ジメチル-1-フェニルピラゾール-4-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (134) 1-(2-ブチニル)-2, 5-ジオキソ-3-シクロヘキシルメチ
- 15 ル-9-(3, 5-ジメチル-1-フェニルピラゾール-4-イルメチル)-1, 4, 9-トリアザスピロ [5. 5] ウンデカン、
- 20 (136) 1 ブチル- 2, 5 ジオキソ- 3 (2 メチルプロピル) 9 (2 フェニルオキシピリジン- 3 イルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 25 ロ[5.5]ウンデカン、

10

-メチルベンゾモルホリン-7-イルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン、

(139) $1 - \vec{J} + \vec{J$

- - (142) 1 -ブチルー2, 5 -ジオキソー3 -(2 -メチルプロピル) -9 (2 -(3, 5 -ジメチルピラゾールー1 -イル) -5 -メトキシフェニルメチル) -1, 4, 9 -トリアザスピロ [5. 5] ウンデカン、
- 15 (143) 1 -ブチルー2, 5 -ジオキソー3 -シクロヘキシルメチルー9 -(2 (3, 5 -ジメチルピラゾールー1 -イル) -5 -メトキシフェニルメチル) -1, 4, 9 -トリアザスピロ [5. 5] ウンデカン、
 - (144) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-
 - (3, 5-ジエチル-1-(4-クロロフェニル) ピラゾール-4-イルメ
- 20 チル)-1,4,9-トリアザスピロ[5.5]ウンデカン、
 - (145) 1 -ブチルー 2, 5 -ジオキソー 3 -シクロヘキシルメチルー 9 -(3, 5 -ジエチルー 1 -(4 クロロフェニル) ピラゾールー 4 -イルメチル) -1, 4, 9 -トリアザスピロ [5.5] ウンデカン、
 - (146) 1 -ブチルー2, 5 -ジオキソー3 -(2 -メチルプロピル) -9 -
- 25 (6-フェニルオキシピリジン-3-イルメチル) -1, 4, 9-トリアザ スピロ「5.5] ウンデカン、

(148) 1 - ブチル-2, 5 - ジオキソ-3 - (2 - メチルプロピル) - 9 - (1, 3 - ベンゾジオキソラン - 5 - イルメチル) - 1, 4, 9 - トリアザスピロ [5, 5] ウンデカン、

5

- 10 (150) 1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9-(2 ヒドロキシ-4-メトキシフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン、

 - (152) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-(N, N-ジフェニルアミノ) フェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- (153) 1 ブチル- 2, 5 ジオキソ- 3 シクロヘキシルメチル- 9 (4
 20 (N, N-ジフェニルアミノ) フェニルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 25 (155) (3S) -1 (2 ブチニル) -2, 5 ジオキソ-3 (2 メチルプロピル) -9 (3, 5 ジメチル-1 フェニルピラゾール-4 -

イルメチル) -1, 4, 9-トリアザスピロ [5. 5] ウンデカン、

- (157) 1ーブチルー2, 5ージオキソー3ー(2ーメチルプロピル)ー9ー
 (3, 5ージメチルー1ー(4ーメチルフェニル)ピラゾールー4ーイルメチル)ー1, 4, 9ートリアザスピロ[5. 5]ウンデカン、
- 10 -1, 4, 9-トリアザスピロ[5.5]ウンデカン、
 - (159) $1 \vec{J} + \vec{J} + \vec{J} = 0$ $1 \vec{J} = 0$
 - (3, 5-i)メチルー1-(4-i)ロロフェニル)ピラゾールー4-iルメーチル)-1, 4, 9-iリアザスピロ[5, 5]ウンデカン、
 - (160) $1 \vec{J} + \vec{J} + \vec{J} = 0$ (160) $1 \vec{J} + \vec{J} = 0$ (170) $1 \vec{J} = 0$ (
- 15 5-ジメチル-1-(4-クロロフェニル) ピラゾール-4-イルメチル)-1,4,9-トリアザスピロ[5.5] ウンデカン、
 - (161) 1-7 チルー 2, 5-9 オキソー 3-(2-8 チルプロピル) -9-(3,5-9 メチルー 1-(4-8) リフルオロメチルフェニル) ピラゾール -4-4 ルメチル) -1, 4, 9-8 リアザスピロ [5.5] ウンデカン、
- 20 (162) $1 \vec{j} + \vec$
 - (163) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-
 - (3,5-ジエチルー1-フェニルピラゾールー4ーイルメチル)-1,4,
- 25 9-トリアザスピロ[5.5]ウンデカン、

5-ジェチル-1-フェニルピラゾール-4-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、

- (165) 1 -ブチルー2, 5 -ジオキソー3 -シクロヘキシルメチルー9 -(2 -フェニルチアゾールー4 -イルメチル) -1, 4, 9 -トリアザスピロ[5].
- 5 51 ウンデカン、

20

ンデカン、

- (166) 1 ブチル 2, 5 ジオキソ 3 (2 メチルプロピル) 9 (2 フェニルチアゾール 4 イルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- (167) 1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 10 (2 (1, 4 ベンゾジオキサン-2 イル) チアゾール-4 イルメチル) 1, 4, 9 トリアザスピロ [5, 5] ウンデカン、
 - (168) 1-ブチルー2, 5-ジオキソー3-(2-メチルプロピル) -9-(4-トリフルオロメチルー2-(モルホリン-1-イル) チアゾール-5-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- 15 (169) 1ーブチルー2, 5ージオキソー3ー(テトラヒドロピランー4ーイルルメチル)ー9ー(3, 5ージメチルー1ーフェニルピラゾールー4ーイルメチル)ー1, 4, 9ートリアザスピロ[5.5]ウンデカン、
 - (170) 1-ブチル-2, 5-ジオキソ-3-(テトラヒドロピラン-4-イルメチル)-9-(1, 4-ベンゾジオキサン-6-イルメチル)-1, 4,
- (171) $1 \vec{j} + \vec{j$

9-トリアザスピロ[5.5]ウンデカン、

(172) 1-ブチル-2, 5-ジオキソ-3-(2-シクロヘキシルエチル)
 25 -9-(3, 5-ジメチル-1-フェニルピラゾール-4-イルメチル) 1, 4, 9-トリアザスピロ[5, 5] ウンデカン、

(173) 1 - ブチル-2, 5 - ジオキソ-3 - (2 - シクロヘキシルエチル)
 -9 - (1, 4 - ベンゾジオキサン - 6 - イルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン、

- (174) (3 R) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチ
 5 ル-9-(3, 5-ジメチル-1-フェニルピラゾール-4-イルメチル)
 -1, 4, 9-トリアザスピロ [5, 5] ウンデカン、
 - (175) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9- (4-メチル-2-フェニルチアゾール-5-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- 10 (176) 1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 (2 (チオフェン-1 イル) チアゾール-4 イルメチル) 1, 4,
 9 トリアザスピロ [5.5] ウンデカン、

- (177) 1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 (2 (ピリジン-4 イル) チアゾール-4 イルメチル) 1, 4, 9
 トリアザスピロ [5.5] ウンデカン、
- (178) $1 \vec{J} + \vec{J} + \vec{J} 2$, $5 \vec{J} + \vec{J} + \vec{J} 3 \vec{J} + \vec{J}$
- (179) 1 ブチル 2, 5 ジオキソ 3 シクロヘキシルメチル 9 (3,
- 20 5-ジメトキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (180) 1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 (5 (ピリジン-2 イル) フラン-2 イルメチル) 1, 4, 9 トリアザスピロ[5.5] ウンデカン、
- 25 (181) 1 ブチル 2, 5 ジオキソ 3 (2 メチルプロピル) 9 (5 (ピリジン 3 イル) フラン 2 イルメチル) 1, 4, 9 ト

リアザスピロ[5.5]ウンデカン、

- (182) 1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 (4 (3, 5 ジメチルピラゾール-1 イル) フェニルメチル) 1,
 4. 9 トリアザスピロ [5. 5] ウンデカン、
- 5 (183) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-(5-クロロピリジン-3-イルオキシ)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン、
 - (184) 1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 (4 (ピリミジン-2 イルオキシ) フェニルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- (186) 1-(2-)チニル) -2, 5-ジオキソ-3-(2-メチルプロピ 15 ル) -9-(3, 5-ジメチル-1-(4-メチルフェニル) ピラゾールー 4-イルメチル) -1, 4, 9-トリアザスピロ「5, 5] ウンデカン、
 - (187) (3R) 1 (2 ブチニル) 2, 5 ジオキソ 3 シクロヘキシルメチル 9 (3, 5 ジメチル 1 フェニルピラゾール 4 イルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 20 (188) 1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 (4 (4 ヒドロキシフェニルオキシ) フェニルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
 - (189) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-(ピリジン-2-イル) フェニルメチル)-1, 4, 9-トリアザス
- 25 ピロ[5.5]ウンデカン、

10

(190) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-

(191) $1 - \overline{J} + \overline{J$

- (192) 1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 (4 (ピラジン-2 イルオキシ) フェニルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- (193) 1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 10 (4 (4 カルボキシフェニル) フェニルメチル) 1, 4, 9 トリア ザスピロ [5.5] ウンデカン、
- 15 (195) 1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 (4 (ピリジン-2 イルオキシ) フェニルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- (196) 1 -ブチルー2, 5 -ジオキソー3 -シクロヘキシルメチルー9 -(ナフタレンー2 -イルメチル) -1, 4, 9 -トリアザスピロ[5.5] ウン 20 デカン、
 - (197) 1 777 + 7 2, 5 577 + 7 3 577 + 57
- (198) 1ーブチルー2, 5ージオキソー3ー(2ーメチルプロピル)-9 25 (4-(4-カルボキシフェニルオキシ)フェニルメチル)-1, 4, 9 トリアザスピロ[5.5]ウンデカン、

(199) 1 -ブチルー2, 5 -ジオキソー3 -(2 -メチルプロピル) -9 -(5 -(ピリジンー4 -イル) フランー2 -イルメチル) -1, 4, 9 -トリアザスピロ [5.5] ウンデカン、

- (200) 1 −ブチル− 2, 5 −ジオキソ− 3 −シクロペンチルメチル− 9 − (4
 5 −フェニルオキシフェニルメチル) − 1, 4, 9 − トリアザスピロ [5.5]
 ウンデカン、
 - (201) (3R) 1 ブチル 2, 5 ジオキソ 3 (2, 2 ジメチル プロピル) -9 (4 フェニルオキシフェニルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 10 (202) (3S) -1-ブチル-2, 5-ジオキソ-3-(2, 2-ジメチル プロピル) -9-(4-フェニルオキシフェニルメチル) -1, 4, 9-ト リアザスピロ [5.5] ウンデカン、
 - (203) $1 \overline{J} + \overline{J$

- (205) (3S) -1-(テトラヒドロフラン-2-イルメチル) -2, 5-20
 ジオキソ-3-フェニルメチル-9-(4-フェニルブチル) -1, 4, 9
 -トリアザスピロ[5.5] ウンデカン、
 - (206) (3S) -1 2 2 3 3 (3 (ベンジルオキシカルボニルアミノ) プロピル) 9 (2 -
- 25 (207) 1 ブチル- 2, 5 ジオキソ- 3 (カルボキシメチル) 9 (4 - フェニルオキシフェニルメチル) - 1, 4, 9 - トリアザスピロ [5.5]

ウンデカン、

10

25

- 5 (209) 1-(3-ヒドロキシプロピル)-2,5-ジオキソ-3-(2-メチルプロピル)-9-(4-フェニルオキシフェニルメチル)-1,4,9
 -トリアザスピロ[5.5]ウンデカン、
 - (210) 1-(2-E)ドロキシブチル)-2, 5-ジオキソ-3-(2-メチルプロピル) <math>-9-(4-7)エニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (211) 1 -ブチルー2, 5 -ジオキソー3 -シクロヘキシルメチルー9 -(4 -アミノフェニルメチル) -1, 4, 9 -トリアザスピロ[5.5] ウンデカン、
- (212) 1 −ブチル− 2, 5 −ジオキソ− 3 −シクロヘキシルメチル− 9 − (4
 15 − (フェニルカルボニルアミノ) フェニルメチル) − 1, 4, 9 − トリアザスピロ [5.5] ウンデカン、
 - (213) $1 \vec{\jmath} + \vec{\jmath} + \vec{\jmath} + \vec{\jmath} = 2$, $5 \vec{\jmath} + \vec{\jmath} + \vec{\jmath} = 3 \vec{\jmath} + \vec{\jmath}$
- - (216) (3S) -1-ブチル-2, 5-ジオキソ-3-ヒドロキシメチル-

1, 4, 9-トリアザスピロ[5.5]ウンデカン、

リアザスピロ「5.5]ウンデカン、

- 5 (218) (3S) -1-ブチル-2, 5-ジオキソ-3-ヒドロキシメチル-9-(3, 5-ジメチル-1-フェニルピラゾール-4-イルメチル) -1,
 4, 9-トリアザスピロ[5.5] ウンデカン、
- (220) $1 \vec{j}$ チルー 2 , $5 \vec{j}$ オキソー $3 \vec{j}$ クロヘキシルメチルー $9 (4 \vec{j}$ エチルアミノエチルオキシ)フェニルメチル) -1 , 4 , $9 \vec{j}$
 - (221) 1 \vec{J} + \vec{J}
- 15 (2-ジメチルアミノエチルオキシ)フェニルメチル)-1,4,9-ト リアザスピロ[5.5]ウンデカン、
- 20 (223) 1 (チオフェン-2-イルメチル) 2, 5 ジオキソ-3 シクロペキシルメチル-9 (4 シクロプロピルメチルオキシフェニルメチル) 1, 4, 9 トリアザスピロ [5, 5] ウンデカン、
- 25 ピロ[5.5]ウンデカン、

10

(225) 1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-

 $(4-\nu)$ 0 ロプロピルメチルオキシフェニルメチル) -1, 4, 9-1 リア ザスピロ [5.5] ウンデカン、

- (226) 1 -ブチルー2, 5 -ジオキソー3 -シクロヘキシルメチルー9 -(4 (ジメチルアミノ) フェニルメチル) -1, 4, 9 -トリアザスピロ [5.
- 5 5] ウンデカン、
- (228) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
 10 ル) -9-ベンジルオキシカルボニル-1, 4, 9-トリアザスピロ[5.
 5] ウンデカン、
 - (229) (3S) -1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) -1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- - フェニルメチル)ピラゾール-3-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- (231) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-ジメチルアミノフェニルメチル) -1, 4, 9-トリアザ
 20 スピロ「5.5] ウンデカン、
 - (232) (3S) -1 ブチル -2 , 5 ジオキソ -3 (2 メチルプロピル) <math>-9 (4 ジェチルアミノフェニルメチル) <math>-1 , 4 , 9 トリアザスピロ [5.5] ウンデカン、
- (233) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
 25 ル) -9-(4-シクロヘキシルオキシフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン、

(234) (3S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1

- (235) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
 5 ル) -9-(4-(4-メトキシフェニルオキシ) フェニルメチル) -1,
 4.9-トリアザスピロ「5.5] ウンデカン、
 - (236) (3S) -1 $\overline{)}$ 1 $\overline{)}$ 1
- 10 (237) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-(2-メチルプロピル) フェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- 15 4, 9-トリアザスピロ[5.5]ウンデカン、

 - (240) $(3S) 1 \vec{j} + \vec{j}$
- 20 ル) -9-(2-7)ルオロフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (241) (3S) -1 $\overline{)}$ 1 $\overline{)}$ 1
- 25 (242) (3S) $-1 \vec{j} + \vec{$

- [5.5] ウンデカン、
- ル) -9-(2-)ロロフェニルメチル) -1, 4, 9-トリアザスピロ[5.
- 5] ウンデカン、
- 5 (244) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
 - ル) 9 (4 クロロフェニルメチル) 1, 4, 9 トリアザスピロ [5.
 - 51 ウンデカン、
 - (245) $(3S) 1 \vec{J} + \vec{J} + \vec{J} + \vec{J} = (2 \vec{J} + \vec{J}$
 - (3-9-(3-0) (3-0)
- 10 5] ウンデカン、

 - ル) -9-(3-メチル-4-メトキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (247) $(3S) 1 \vec{7} + \vec{$
- 15 ル) 9 (7 メトキシ-1, 3 ベンゾジオキソラン 5 イルメチル) - 1, 4, 9 - トリアザスピロ [5, 5] ウンデカン、
 - (248) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
 - ル) -9-(4-7ェニルチオフェニルメチル) -1, 4, 9-トリアザス ピロ [5.5] ウンデカン、
- (249) $(3S) 1 \vec{7} + \vec{$
 - (2-3)ル) (2-3) (2-3) (2-3) (2-3) (2-3) (3-3) (
 - 5] ウンデカン、

 - (3-3) (3-
- 25 5] ウンデカン、

ル) -9-(4-メチルフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、

- (253) (3S) -1 $\overline{)}$ 1 $\overline{)}$ 1
- (254) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
 10 ル) -9-(4-(2-ヒドロキシエチルオキシ) フェニルメチル) -1,
 4, 9-トリアザスピロ[5.5] ウンデカン、
- 15 (256) (3S) 1 ブチル- 2, 5 ジオキソ- 3 (2 メチルプロピル) 9 (4 トリフルオロメチルオキシフェニルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- (257) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(3-メチル-5-クロロ-1-フェニルピラゾール-4-イル20 メチル) -1, 4, 9-トリアザスピロ「5. 5] ウンデカン、

- 5 (261) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-(5-メチルピリジン-2-イルオキシ) フェニルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、
 - (262) (3S) 1 ブチル- 2, 5 ジオキソ- 3 (2 メチルプロピル) 9 (4 (6 メチルピリジン- 1 オキシド- 3 イルオキシ)
- 7ェニルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、
 (263) (3S) -1-プチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(1-(2-メチルプロピルオキシカルボニル) インドール-5-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、
 - (264) (3S) 1 ブチル 2, 5 ジオキソ 3 (2 メチルプロピ
- 15 ル) 9 (2 フェニル 5 メチルオキサゾール 4 イルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 20 (266) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-(6-メチルピリジン-3-イルオキシ) フェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (267) (3S) -1 $\overline{)}$ 1 $\overline{)}$ 1

-4-7ルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、

(268) (3S)-1-ブチル-2,5-ジオキソ-3-(2-メチルプロピ

ル) -9-(3,5-i)メチル-1-(l) ピリジン-2-i ル) ピラゾール-4-i ルンデカン、-1,4,9-i リンデカン、

- (269) (3S) -1 $\overline{)}$ 1 $\overline{)}$ 1
- 5 ルー4ーイルメチル) -1, 4, 9ートリアザスピロ[5.5]ウンデカン、(270) (3S) -1ーブチルー2, 5ージオキソー3ー(2ーメチルプロピル) -9ー(4-(2ーカルボキシエチル)フェニルメチル) -1, 4, 9ートリアザスピロ[5.5]ウンデカン、
- - (272) (3S) -1 $\overline{)}$ 1 $\overline{)}$ 1
- フェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、(273) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-(2-カルボキシ-1-エテニル) フェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- (274) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
 20 ル) -9-(4-(4-(2-カルボキシ-1-エテニル) フェニルオキシ) フェニルメチル) -1, 4, 9-トリアザスピロ [5. 5] ウンデカン、
- 25 (276) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル)-9-(4-(4-アミノスルホニルフェニルオキシ)フェニルメチル)

- -1, 4, 9-トリアザスピロ[5.5]ウンデカン、
- (277) (3 S) -1 $\overline{)}$ 1 $\overline{)}$ 1 -
- 5 (278) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(3, 5-ジメチル-1-(2, 4-ジフルオロフェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、
 - (279) (3S)-1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
- 10 ル) -9-(4-(ピロリジン-1-イルメチル) フェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (280) (3S) -1 \overline{J} \overline{J} -
- 15 ピロ「5.5]ウンデカン、

- (281) (3 S) -1 $\overline{)}$ 1 $\overline{)}$ 1 -
- - (283) (3 S) 1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 (4 (ジメチルアミノメチル) フェニルメチル) 1, 4, 9
 -トリアザスピロ [5.5] ウンデカン、
 - (284) (3S) -1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピ

ル) -9-(3,5-ジメチル-1-(4-(2-ジメチルアミノエチルアミノスルホニル) フェニル) ピラゾール-4-イルメチル) <math>-1,4,9-トリアザスピロ [5.5] ウンデカン、3

- (285) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
 5 ル) -9-(3-(4-ヒドロキシフェニル)フェニルメチル) -1, 4, 9-トリアザスピロ「5.5]ウンデカン、
- (287) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(3, 5-ジメチル-1-(キノキサリン-2-イル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、(288) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-フェニルカルボニルフェニルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、
 - (289) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(3, 5-ジメチル-1-(4-(N-(2-ヒドロキシエチル) -N-メチルアミノスルホニル) フェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ [5. 5] ウンデカン、
- 20 (290) (3S) -1-7FN-2, 5-57F+7-3-(2-7F) -1-7F -1-7F
- 25 4, 9-トリアザスピロ [5.5] ウンデカン、 (292) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ

ル) -9-(4-(モルホリン-4-イルメチル) フェニルメチル) -1, 4, 9-トリアザスピロ <math>[5.5] ウンデカン、

- (293) (3S) 1 ブチル 2, 5 ジオキソ 3 (2 メチルプロピル) 9 (4 (4 メチルピペラジン 1 イルメチル) フェニルメチ
- 5 ル) -1, 4, 9-トリアザスピロ [5. 5] ウンデカン、3

 - (295) $(3S) 1 \vec{7} + \vec{$
- 10 ル) -9-(3, 5-ジメチル-1-シクロヘキシルピラゾール-4-イルメチル) <math>-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (296) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
 - ル) -9-(4-(3-カルボキシフェニルオキシ)フェニルメチル) <math>-1,
 - 4, 9-トリアザスピロ[5.5]ウンデカン、
- 15 (297) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピル) -9-(4-(ピペリジン-1-イルメチル) フェニルメチル) -1,
 4, 9-トリアザスピロ [5, 5] ウンデカン、
 - (298) $(3S) 1 \vec{J} + \vec{J} + \vec{J} = 2$, $5 \vec{J} + \vec{J} + \vec{J} = 3 (2 \vec{J} + \vec{J} +$
 - ル) -9-(3,5-ジメチル-1-(4-(ピロリジン-1-イルスルホ
- 20 ニル)フェニル) ピラゾールー4ーイルメチル) -1, 4, 9ートリアザス ピロ「5. 5] ウンデカン、
 - (299) (3S) 1 ブチル 2, 5 ジオキソ 3 (2 メチルプロピル) 9 (2, 3 ジヒドロベンゾフラン 5 イルメチル) 1, 4,
 - 9-トリアザスピロ「5.5]ウンデカン、

スルホニル)フェニル)ピラゾールー4ーイルメチル)ー1,4,9ートリアザスピロ[5.5]ウンデカン、

- (301) (3S) -1 $\overline{)}$ 1 $\overline{)}$ + 1 1 + 1
- 5 9-トリアザスピロ[5.5]ウンデカン、

- (303) $(3S) 1 \vec{7} + \vec{$
- 10 ル) -9-(4-(4-)) フェニル メチル) -1, 4, 9- トリアザスピロ [5.5] ウンデカン、
 - (304) (3 S) -1 $\overline{)}$ 1 $\overline{)}$ 1 -
- 15 (305) (3 S) 1 ブチル- 2, 5 ジオキソ- 3 (2 メチルプロピル) 9 (4 (ビス (メチルスルホニル) アミノ) フェニルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、

 - (307) (3 S) -1 $\overline{)}$ -1 $\overline{)}$ -1 2 -
- (308) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
 25 ル) -9-(4-(メチルスルホニルアミノ)フェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン、

- (310) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ
- 5 ル) -9-(4-(4-)メチルアミノカルボニルフェニルオキシ)フェニルメチル)-1, 4, 9-トリアザスピロ「5, 5] ウンデカン、
- 10 (312) (3 S) 1 ブチル- 2, 5 ジオキソ- 3 (2 メチルプロピル) 9 (3 (4 カルボキシフェニル) フェニルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、

15

25

ウンデカン、

- (314) (3 S) -1 $\overline{)}$ 1 $\overline{)}$ 1 -
- - (316) (3 S) -1 ブチル-2, 5 ジオキソ-3 (2 メチルプロピル) 9 (4 7 =) 1 + 1 + 1 + 1 + 4 + 1
 - (317) (3S) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピ

ル) -9-(4-ジメチルアミノカルボニルフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、

- 10 9-トリアザスピロ[5.5]ウンデカン、
- (322) (3S) 1 7 + 7 2, 5 7 + 7 3 7 + 7 4, 5 7 + 7 1 7 + 7 1, 15 7 + 7 1 1 1 1 1 1, 15 1 1 1 1 1 1, 15 1 1 1 1 1, 15 1 1 1 1 1, 15 1 1 1 1, 15 1 1 1, 15 1 1 1, 15 1 1 1, 15 1 1
 - 5] ウンデカン、

- 25 5] ウンデカン、

N-9-(4-2)クロヘキシルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、

(327) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-メトキシ-3-ヒドロキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、

5

- - (330) (3 S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9 (3 メチルフェニルメチル) -1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 15 (331) (3 S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-メチルフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - - (333) (3 S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル 9 (3 (2 メチルプロピル) フェニルメチル) 1, 4, 9 リアザスピロ [5.5] ウンデカン、
- (334) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチ
 25 ル-9-(3-ブチルフェニルメチル) -1, 4, 9-トリアザスピロ[5.
 5] ウンデカン、

(335) (3 S) -1 - $\overline{)}$ - 1 - $\overline{)}$ - 1 -

- (336) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチ
 5 ル-9-(4-メトキシ-3-フルオロフェニルメチル) -1, 4, 9-トリアザスピロ「5.5] ウンデカン、
- 10 (338) (3S) -1-ブチル-2, 5-ジオキソー3-シクロヘキシルメチル-9-(2-ヒドロキシー3-メチルフェニルメチル) -1, 4, 9-トリアザスピロ[5.5]ウンデカン、
 - (339) (3 S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル <math>) -1, 4, 9 トリアザスピロ [5.
- 15 5] ウンデカン、
 - (340) (3 S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル ル-9 (7 メトキシ-1, 3 ベンゾジオキソラン-5 イルメチル) -1, 4, 9 トリアザスピロ [5.5] ウンデカン、
 - (341) (3S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチ
- 20 ル-9-(3-メチル-4-メトキシフェニルメチル)-1,4,9-トリ アザスピロ[5.5]ウンデカン、
 - (342) (3 S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9 (4 (4 フルオロフェニルオキシ) フェニルメチル) -1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 25 (343) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-トリフルオロメトキシフェニルメチル) -1, 4, 9-トリ

アザスピロ[5.5]ウンデカン、

10

(344) (3 S) -1 - ブチル-2, 5 - ジオキソ-3 - シクロヘキシルメチル-9 - (3 - メチル-5 - クロロ-1 - フェニルピラゾール-4 - イルメチル) -1, 4, 9 - トリアザスピロ [5.5] ウンデカン、

- 5 (345) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(2, 3-ジメチル-5-オキソ-1-フェニルピラゾリン-4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、
 - (346) (3 S) -1 ブチル -2, 5 ジオキソ -3 シクロヘキシルメチル -9 (1 (2 メチルプロピルオキシカルボニル) インドール -5 イルメチル) -1, 4, 9 トリアザスピロ [5. 5] ウンデカン、
- (347) (3 S) -1 $\overline{)}$ 1 $\overline{)}$ 1 -
- (349) (3 S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-(4-メチルスルホニルアミノフェニルオキシ)フェニルメ
 20 チル) -1, 4, 9-トリアザスピロ [5, 5] ウンデカン、

(352) (3 S) -1 - ブチルー 2, 5 - ジオキソー 3 - シクロヘキシルメチル - 9 - (4 - (テトラヒドロピラン - 4 - イルオキシ) フェニルメチル) - 1, 4, 9 - トリアザスピロ [5. 5] ウンデカン、

- (353) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチ
 5 ル-9-(6-フェニルピリジン-3-イルメチル) -1, 4, 9-トリア ザスピロ「5.5] ウンデカン、

-4-イルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン、

(357) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-(2-カルボキシエチル)フェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン、

- 25 (360) (3S) $-1 \vec{j} + \vec{$

ェニル) ピラゾールー4ーイルメチル) -1, 4, 9 - トリアザスピロ [5.5] ウンデカン、

- (362) (3 S) -1 \overline{J} $\overline{J$
- - (364) (3S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9 (4 (4 アミノカルボニルフェニルオキシ) フェニルメチル)
- 15 -1, 4, 9-トリアザスピロ[5.5]ウンデカン、
 - - (366) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチ
- 20 N-9-(3, 5-i) 5-i N-9-(3, 5-i) N-9-(3, 5-
- 25 ン、

5

- 5 フェニル) ピラゾールー4ーイルメチル) -1, 4, 9ートリアザスピロ[5.5] ウンデカン、

-4-7 (1) -4 (2) -4 (3) -4 (4) -4 (5) -4 (5) -4 (7) -4 (7) -4 (7) -4 (7) -4 (7) -4 (7) -4 (7) -4 (7) -4 (7) -4 (7) -4 (7) -4 (8) -4 (9) -4 (10) -4

(276) (39)-1-ブチル-9 5-ジオキソ-3-シカロヘキシルメチ

25

(376) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチ

(377) (3 S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(3, 5-ジメチル-1-(4-メチルアミノスルホニルフェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、

5

- (378) (3 S) -1 ブチルー 2, 5 ジオキソー 3 シクロヘキシルメチルー 9 (1, 3, 5 トリメチルピラゾールー 4 イルメチル) 1, 4, 9 トリアザスピロ [5. 5] ウンデカン、
- 10 (379) (3 S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル ル-9 (4 (モルホリン-4 イルメチル) フェニルメチル)-1, 4, 9 トリアザスピロ [5.5] ウンデカン、

 - (382) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチ
- 20 \mathcal{N} $\mathcal{N$
 - (383) (3S) 1 7 + 7 2, 5 7 + 7 3 7 + 7 4, 5 7 + 7 4, 5 7 + 7 4, 5 7 + 7 4, 5 7 + 7 4, 5 7 + 7 7 + 7 7 7, 5 7 + 7 7 + 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7 7, 5 7 + 7 7 7 7, 5 7 + 7 7 7, 5 7 + 7 7 7 7, 5 7 + 7 7 7, 5 7 + 7 7 7, 5 7 + 7 7 7, 5 7 + 7 7 7, 5 7 + 7 7 7, 5 7 + 7, 5 7 + 7 7, 5 7 + 7
- 25 (384) (3S) $-1 \vec{J} + \vec{$

- チル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、
- (385) (3 S) -1 $\overline{)}$ 1 $\overline{)}$ 1 -
- 5 (386) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-(ピペリジン-1-イルメチル) フェニルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、
 - (387) (3S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9 (3, 5 ジメチル-1 (4 (ピロリジン-1 - 1
- 10 ル) フェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、
- 15 (389) (3 S) -1 ブチルー2, 5 ジオキソー3 シクロヘキシルメチル ルー9 (4 (4 カルボキシフェニルオキシ) フェニルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
 - (390) (3 S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9 (3, 5 ジメチル-1 (4 (2 ヒドロキシエチルアミノス
- 20 ルホニル) フェニル) ピラゾールー4ーイルメチル) -1, 4, 9ートリア ザスピロ [5.5] ウンデカン、
- 25 リアザスピロ [5.5] ウンデカン、3
 - (392) $(3S) 1 \vec{j} + \vec{j}$

N-9-(4-(1-E)+v-1-v-1-v-1) フェニルメチル) フェニルメチル) -1, 4, 9-Fリアザスピロ [5.5] ウンデカン、

- (394) (3 S) -1 $\overline{)}$ 1 $\overline{)}$ 1 -
- (395) (3 S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチ
 10 ル-9-(4-(3-カルボキシフェニルメチルオキシ) フェニルメチル) -1, 4, 9-トリアザスピロ [5, 5] ウンデカン、
- 15 (397) (3 S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9 (3 (3 ヒドロキシフェニル) フェニルメチル) -1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- (398) (3 S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9 (4 (メチルスルホニルアミノ) フェニルメチル) -1, 4, 9 20 トリアザスピロ [5.5] ウンデカン、
 - (399) (3 S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル 9 (6 (4 メトキシフェニル) ピリジン-3 イルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、

- (402) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチ
 5 ル-9-(4-ビス(メチルスルホニル)アミノフェニルメチル)-1, 4, 9-トリアザスピロ「5.5]ウンデカン、
 - (403) (3S) 1 ブチル 2, 5 ジオキソ 3 シクロヘキシルメチル 9 (3 (4 カルボキシフェニル) フェニルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- - (405) (3S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9 (4 (4 メチルチオフェニルオキシ) フェニルメチル) -1,
- 15 4, 9-トリアザスピロ[5, 5]ウンデカン、
 - (406) (3S) -1-ブチル-2, 5-ジオキソ-3-シクロヘキシルメチル-9-(4-(4-(2-ジメチルアミノエチルアミノカルボニル) フェニルオキシ)フェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - - (408) (3S) -1 ブチル-2, 5 ジオキソ-3 シクロヘキシルメチル-9 (4 (ジメチルアミノカルボニル) フェニルメチル) -1, 4,
 - 25 9-トリアザスピロ[5.5]ウンデカン、
 - (409) $(3S) 1 \vec{j} + \vec{$

N-9-(4-7) (4-7

- (410) 1 -ブチルー2, 5 -ジオキソー3 -(1 -ヒドロキシー2 -メチル プロピル) -9 -(1, 4 -ベンゾジオキサン-6 -イルメチル) -1, 4, 9 -トリアザスピロ [5. 5] ウンデカン、
- (411) (Z) -1 $\overline{)}$ 1 $\overline{)}$ $\overline{)}$ $\overline{)}$ 1 $\overline{)}$ $\overline{)}$ 1 $\overline{)}$ $\overline{)}$ 1 $\overline{)}$ $\overline{)}$
- (412) (3S) -1-ブチル-2, 5-ジオキソ-3-((1R)-1-ヒ
 10 ドロキシエチル) -9-(4-フェニルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (413) (Z) -1-ブチル-2, 5-ジオキソ-3-エチリデン-9-(4-フェニルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5. 5] ウンデカン、
- 15 (414) (Z) -1-ブチル-2, 5-ジオキソ-3-(2-メチルプロピリデン) -9-(4-フェニルオキシフェニルメチル) -1, 4, 9-トリアザスピロ「5.5] ウンデカン、
- 20 4, 9-トリアザスピロ[5.5]ウンデカン、

- 5 (419) (3 R*) -1-ブチル-2, 5-ジオキソ-3-((1 R*) -1-ヒドロキシ-2-メチルプロピル) -9-(6-フェニルオキシピリジン-3-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (420) (3 R^*) -1 ブチル-2, 5 ジオキソ-3 ((1 R^*) -1 ヒドロキシ-2 メチルプロピル) -9 (4 (4 メチルフェニルオキ
- 10 シ)フェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、(421) (3 R*) -1-ブチル-2, 5-ジオキソ-3-((1 R*) -1-ヒドロキシ-2-メチルプロピル) -9-(4-シクロヘキシルオキシフェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- (422) (3 R*) -1-ブチル-2, 5-ジオキソ-3-((1 R*) -1 15 ヒドロキシ-2-メチルプロピル) -9-(4-(テトラヒドロピラン-4-イルオキシ) フェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- (425) (3 R*) -1-ブチル-2, 5-ジオキソ-3-((1 R*) -1 25 ヒドロキシ-2-メチルプロピル) -9-(3, 5-ジメチル-1-(4-メチルフェニル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザス

ピロ[5.5]ウンデカン、

(426) (3R*) - 1 - ブチル - 2, 5 - ジオキソ - 3 - ((1R*) - 1 - ヒドロキシ - 2 - メチルプロピル) - 9 - (3 - メチル - 5 - クロロ - 1 - フェニルピラゾール - 4 - イルメチル) - 1, 4,9 - トリアザスピロ[5.

5 51 ウンデカン、

15

10 (428) (3 R*) -1-ブチル-2, 5-ジオキソ-3-((1 R*) -1-ヒドロキシ-2-メチルプロピル) -9-(3, 5-ジメチル-1-(ピリ ジン-2-イル) ピラゾール-4-イルメチル) -1, 4, 9-トリアザス ピロ [5.5] ウンデカン、

カルボキシフェニル)ピラゾール-4-イルメチル)-1,4,9-トリア ザスピロ「5.5]ウンデカン、

(430) (3 R^*) -1 - ブチル-2, 5 - ジオキソ-3 - ((1 R^*) -1 - ヒドロキシ-1 - シクロヘキシルメチル) -9 - ベンジルオキシカルボニル

20 -1, 4, 9-トリアザスピロ [5.5] ウンデカン、

(431) (3R*) - 1 - ブチル - 2, 5 - ジオキソ - 3 - ((1R*) - 1 - ヒドロキシ - 1 - シクロヘキシルメチル) - 1, 4, 9 - トリアザスピロ[5.5] ウンデカン、

(432) $(3 R^*) - 1 - \vec{\jmath} \mathcal{F} \mathcal{V} - 2$, $5 - \vec{\jmath} \mathcal{J} \mathcal{F} \mathcal{V} - 3 - ((1 R^*) - 1 - 1 - 1 - 1)$

25 ヒドロキシー1-シクロヘキシルメチル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、

(433) (3R*) - 1 - ブチル- 2, 5 - ジオキソ- 3 - ((1R*) - 1 - ヒドロキシ- 1 - シクロヘキシルメチル) <math>-9 - (3, 5 - ジメチル- 1 - フェニルピラゾール- 4 - イルメチル) <math>-1, 4, 9 - トリアザスピロ [5.5] ウンデカン、

- 5 (434) (3 R*) -1-ブチル-2, 5-ジオキソ-3-((1 R*) -1-ヒドロキシ-1-シクロヘキシルメチル) -9-(4-イソプロピルフェニ ルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (435) (3R*) 1 ブチル 2, 5 ジオキソ 3 ((1R*) 1 -ヒドロキシ-1 - シクロヘキシルメチル) -9 - (4 - (6 - メチルピリジ
- 10 $\lambda = 3 4$ ルオキシ)フェニルメチル)-1, 4, 9 6リアザスピロ [5.5] ウンデカン、

- (436) $(3R^*) 1 ブチル 2$, $5 ジオキソ 3 ((1R^*) 1 ヒドロキシ 1 シクロヘキシルメチル) 9 (3, 5 ジメチル 1 (4 フルオロフェニル) ピラゾール 4 イルメチル) 1, 4, 9 トリアザスピロ <math>[5.5]$ ウンデカン、
- 20 (438) (3 R*) -1-ブチル-2, 5-ジオキソ-3- ((1 R*) -1-ヒドロキシ-1-シクロヘキシルメチル) -9- (4-(4-フルオロフェ ニルオキシ) フェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウ ンデカン、

ロ[5.5]ウンデカン、

- (440) (3R*) 1 (2 ブチニル) 2, 5 ジオキソ 3 ((1R*) 1 ヒドロキシ 1 シクロヘキシルメチル) 9 アリルオキシカルボニル 1 、4 、9 トリアザスピロ [5 、5] ウンデカン、
- 5 (441) (3 R*) -1-(2-ブチニル) -2, 5-ジオキソ-3-((1 R*) -1-ヒドロキシ-1-シクロヘキシルメチル) -1, 4, 9-トリア ザスピロ [5.5] ウンデカン、
 - (442) (3R*) 1 (2 ブチニル) 2, 5 ジオキソ-3 ((1R*) 1 ヒドロキシ-1 シクロヘキシルメチル) <math>-9 (3, 5 ジメ
- 10 チルー1-フェニルピラゾールー4-イルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、

 - (444) (3 R*) -1-(2-ブチニル)-2, 5-ジオキソ-3-((1 R*)-1-ヒドロキシ-1-シクロヘキシルメチル)-9-(4-イソプロピルフェニルメチル)-1, 4, 9-トリアザスピロ[5.5]ウンデカン、(445) (3 R*)-1-(2-ブチニル)-2, 5-ジオキソ-3-((1
- 20 R^*) -1-ヒドロキシ-1-シクロヘキシルメチル)-9-(4-フェニルオキシフェニルメチル)-1, 4, 9-トリアザスピロ [5.5] ウンデカン、
- (446) (3 R*) -1-(2-ブチニル) -2, 5-ジオキソ-3-((1 R*) -1-ヒドロキシ-1-シクロヘキシルメチル) -9-(4-(4-メ
 25 チルフェニルオキシ) フェニルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、

(447) (3R*) -1 - (2-7)(3-1) -2, 5-5)(1 R^*) -1-ヒドロキシ-1-シクロヘキシルメチル) -9-(1.4-ベン $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$ $_{7}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$ ウンデカン、

- (448) $(3R*) -1 (2 \vec{7} + \vec{7} + \vec{7}) -2, 5 \vec{7} + \vec{7}$ 5 ロ[5.5]ウンデカン、
 - (449) $(3R*) 1 (2 \vec{7} + \vec{7} + \vec{7}) 2, 5 \vec{7} + \vec{$ R^*) -1-ヒドロキシ-2-メチルプロピル) -9-(3,5-ジメチルー
- 1-(4-メチルフェニル)ピラゾール-4-イルメチル)-1,4,9-10 トリアザスピロ「5.5]ウンデカン、
 - (450) (3R*) -1 (2-77+1) -2, 5-57+1-3-((1)ェニルオキシ)フェニルメチル)-1, 4, 9-トリアザスピロ[5, 5] ウンデカン、
 - (451) $(3R*) -1 (2-7) + 2 \cdot 5 3 + 1 3 (1)$ R^*) -1 - ヒドロキシー 2 - メチルプロピル) -9 - (1, 4 - ベンゾジオ キサン-6-イルメチル)-1,4,9-トリアザスピロ[5,5]ウンデ カン、

15

- (452) $(3R^*) 1 (2 \vec{J} + \vec{J}$ 20 ェニルメチル)-1. 4. 9 - トリアザスピロ [5. 5] ウンデカン、
 - (453) $(3R*) 1 (2 \vec{J} + \vec{J$
- R^*) -1 ヒドロキシー 2 メチルプロピル) -9 (4 フェニルオキシ フェニルメチル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、

ヒドロキシー1-シクロヘキシルメチル)-9-ベンジル-1,4,9-ト リアザスピロ[5.5]ウンデカン、

- (455) (3R*) 1 ブチル-2, 5 ジオキソ-3 ((1S*) 1 ヒドロキシ-1 シクロヘキシルメチル) 1, 4, 9 トリアザスピロ[5].
- 5 5 1 ウンデカン、
 - (456) (3R*) 1 プチル 2, 5 ジオキソ 3 ((1S*) 1 ヒドロキシ 1 シクロヘキシルメチル) 9 (4 フェニルオキシフェニルメチル) 1, 4, 9 トリアザスピロ [5. 5] ウンデカン、
 - (457) (3 R*) -1-ブチル-2, 5-ジオキソ-3-((1 S*) -1-
- 15 5] ウンデカン、
 - (459) (3S) 1 ブチル 2, 5 ジオキソ 3 ((1S) 1 ヒドロキシ 2 メチルプロピル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- - (461) (3S) -1 $\overline{)}$ -1 $\overline{)}$ -1 - -1 -
- 25 ル) -1, 4, 9-トリアザスピロ[5.5] ウンデカン、
 - (462) $(3S) 1 \vec{J} + \vec{J} + \vec{J} = 0$ $(1S) 1 \vec{J} = 0$

- - (464) (3R) 1 ブチル 2, 5 ジオキソ 3 ((1R) 1 ヒドロキシ 2 メチルプロピル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 10 (465) (3R) -1-ブチル-2, 5-ジオキソ-3-((1R)-1-ヒ ドロキシ-2-メチルプロピル) -9-(3, 5-ジメチル-1-フェニル ピラゾール-4-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウ ンデカン、
- (466) (3R) 1 ブチル 2, 5 ジオキソ 3 ((1R) 1 ヒ15 ドロキシ - 2 - メチルプロピル) - 9 - (4 - フェニルオキシフェニルメチル) - 1, 4, 9 - トリアザスピロ [5, 5] ウンデカン、
 - (467) (3R) 1 ブチル 2, 5 ジオキソ 3 ((1R) 1 ヒ ドロキシ 2 メチルプロピル) 9 (1, 4 ベンゾジオキサン <math>- 6 1 イルメチル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- (469) (3R) -1-ブチル-2, 5-ジオキソ-3-((1S)-1-ヒ
 25 ドロキシ-2-メチルプロピル)-1, 4, 9-トリアザスピロ[5.5]
 ウンデカン、

(470) (3R) - 1 - ブチル - 2, 5 - ジオキソ - 3 - ((1S) - 1 - ヒ ドロキシ - 2 - メチルプロピル) - 9 - (3, <math>5 - ジメチル - 1 - フェニル ピラゾール - 4 - イルメチル) - 1, 4, 9 - トリアザスピロ [5.5] ウンデカン、

- 5 (471) (3 R) -1-ブチル-2, 5-ジオキソ-3-((1 S) -1-ヒ ドロキシ-2-メチルプロピル) -9-(1, 4-ベンゾジオキサン-6-イルメチル) -1, 4, 9-トリアザスピロ [5.5] ウンデカン、
 - (472) (3R) 1 ブチル 2, 5 ジオキソ 3 ((1S) 1 ヒ ドロキシ 2 メチルプロピル) 9 (4 (4 メチルスルホニルアミ
- 10 ノフェニルオキシ)フェニルメチル)-1,4,9-トリアザスピロ[5.5]ウンデカン、
 - (473) (3S) 1 ブチル 2, 5 ジオキソ 3 ((1R) 1 ヒドロキシ 2 メチルプロピル) 1, 4, 9 トリアザスピロ [5.5] ウンデカン、
- 15 (474) (3S) -1 $\overline{)}$ 1
- (475) (3S) -1-ブチル-2, 5-ジオキソ-3-((1R)-1-ヒ
 20 ドロキシ-2-メチルプロピル) -9-(1, 4-ベンゾジオキサン-6-イルメチル) -1, 4, 9-トリアザスピロ [5, 5] ウンデカン、
 - (476) (3S) -1-ブチル-2, 5-ジオキソ-3-((1R) -1-ヒドロキシ-2-メチルプロピル) -9-(4-(4-メチルスルホニルアミノフェニルオキシ) フェニルメチル) -1, 4, 9-トリアザスピロ[5.
- 25 5] ウンデカン、
 - (477) (3S) -2, 5-ジオキソ-3-(3-ベンジルオキシカルボニル

アミノプロピル) -9-(2-7) エニルエチル) -1 , 4 , 9- トリアザスピロ [5.5] ウンデカン、

それらの四級アンモニウム塩、それらのN-オキシドまたはそれらの非毒性 10 塩である請求の範囲1記載の化合物。

- 7. 請求の範囲1に記載の一般式(I)で示されるトリアザスピロ[5.
- 5] ウンデカン誘導体、それらの四級アンモニウム塩、それらのN-オキシドまたはそれらの非毒性塩を有効成分として含有する医薬組成物。

15

5

- 8. 請求の範囲1に記載の一般式(I)で示されるトリアザスピロ[5.
- 5] ウンデカン誘導体、それらの四級アンモニウム塩、それらのN-オキシドまたはそれらの非毒性塩を有効成分として含有するケモカイン/ケモカイン受容体作用の制御剤。

- 9. 請求の範囲1に記載の一般式(I)で示されるトリアザスピロ[5.
- 5] ウンデカン誘導体、それらの四級アンモニウム塩、それらのN-オキシドまたはそれらの非毒性塩を有効成分として含有する喘息、アトピー性皮膚炎、蕁麻疹、アレルギー性気管支肺アスペルギルス症、アレルギー性好酸球
- 25 性胃腸症、腎炎、腎症、肝炎、関節炎、慢性関節リウマチ、乾癬、鼻炎、結 膜炎、虚血再灌流傷害の抑制、多発性硬化症、潰瘍性大腸炎、急性呼吸窮迫

症候群、細菌感染に伴うショック、糖尿病、自己免疫疾患の治療、移植臓器 拒絶反応、免疫抑制、癌転移予防、後天性免疫不全症候群の予防および/ま たは治療剤。

配列表

SEQUENCE LISTING

<110> ONO PHARMACEUTICAL CO., LTD.

<120> Triazaspiro [5.5] undecane derivatives and medicament containing the derivative as active ingredient

<130> ONF-3569PCT

<150> JP 11-344967

<151> 1999-12-03

<150> JP 2000-18673

<151> 2000-01-27

<150> JP 2000-27968

<151> 2000-02-04

<150> JP 2000-147882

<151> 2000-05-19

<160> 2

<170> PatentIn Ver. 2.1

<210> 1

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Forward primer
hCCR5Xbal

<400> 1

agctagtcta gatccgttcc cctacaagaa actctcc

37

<210> 2

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Revese primer hCCR5Xbal

<400> 2

agctagtcta gagtgcacaa ctctgactgg gtcacca

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/08517

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D 471/10, A61K 31/499, 31/5377, A61P 29/00, 11/06, 17/00, 17/04, 37/08, 13/12, 1/16, 19/02, 29/00, 17/06, 27/16, 27/14, 9/10, 1/04, 11/00, 9/02, 3/10, 37/06, 35/04 According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D 471/10, A61K 31/499, 31/5377, A61P 29/00, 11/06, 17/00, 17/04, 37/08, 13/12, 1/16, 19/02, 29/00, 17/06, 27/16, 27/14, 9/10, 1/04, 11/00, 9/02, 3/10, 37/06, 35/04						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), CAOLD (STN), REGISTRY (STN)						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
A	WO, 98/25605, A1 (MERCK & CO., 18 June, 1998 (18.06.98), Cited in the present application & US, 5962462, A		1-9			
A	WO, 97/11940, A1 (ELI LILY AND 03 April, 1997 (03.04.97), Cited in the present application & CA, 2233204, A & EP, 85486 & NZ, 320963, A & JP, 11-53	on; Claims 59, A	1-9			
A	EP, 268868, A2 (SPOFA SPOJENE E ZDRAVOTNICKOU VYROBU), 01 June, 1988 (01.06.88), Full text & BE, 897843, A1 & GB, 21278 & AT, 8303366, A & SE, 83053 & CS, 231227 B1	307, A1	1-9			
A	GB, 2127807, A1 (SPOFA SPOJENE ZDRAVOTNICKOU VYROBU), 18 April, 1984 (18.04.84),	PODNIKY PRO	1-9			
Further	documents are listed in the continuation of Box C.	See patent family annex.				
"A" docume consider "E" earlier of date "L" docume cited to special docume means docume than the	categories of cited documents: int defining the general state of the art which is not red to be of particular relevance document but published on or after the international filing int which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) int referring to an oral disclosure, use, exhibition or other int published prior to the international filing date but later epriority date claimed ctual completion of the international search ebruary, 2001 (14.02.01)	"X" document of particular relevance; the considered novel or cannot be consider step when the document is taken alone document of particular relevance; the considered to involve an inventive step combined with one or more other such combination being obvious to a person document member of the same patent f	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family e of mailing of the international search report 27 February, 2001 (27.02.01)			
	ailing address of the ISA/ nese Patent Office	Authorized officer				
Facsimile No.		Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/08517

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
3-5	Full text & BE, 897843, A1 & CS, 231227, B1 & AT, 8303366, A & SE, 8305157, A & CH, 655929, A & FR, 2533919, A1 & JP, 59-89671, A2 & DE, 3335891, A1	
A	Blazickova, S. et al., 'Immunomodulatory characteristics of synthetic cyclic dipeptides' Int. J. Immunother. (1994), Vol.10, No.3, pp.89-93, Discussion	1-9

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

国際調査報告 国際出願番号 PCT/JP00/08517 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl⁷ CO7D 471/10, A61K 31/499, 31/5377, A61P 29/00, 11/06, 17/00, 17/04, 37/08, 13/12, 1/16, 19/02, 29/00, 17/06, 27/16, 27/14, 9/10, 1/04, 11/00, 9/02, 3/10, 37/06, 35/04 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. $C1^7$ CO7D 471/10, A61K 31/499, 31/5377, A61P 29/00, 11/06, 17/00, 17/04, 37/08, 13/12, 1/16, 19/02, 29/00, 17/06, 27/16, 27/14, 9/10, 1/04, 11/00, 9/02, 3/10, 37/06, 35/04 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

CAPLUS (STN), CAOLD (STN), REGISTRY (STN)

関連オスレ製められる文献

	し. 関連する	里すると認められる又厭				
	引用文献の		関連する			
	カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号			
	A	WO, 98/25605, A1 (MERCK & CO., INC.),	1-9			
		18.6月.1998(18.06.98),本願で引用,請求の範囲参照				
		& US, 5962462, A	·			
		WO 07/11040 A1 /DIT LTLY AND COMPANY)				
-	A	WO, 97/11940, A1 (ELI LILY AND COMPANY),	1-9			
ı		3.4月.1997(03.04.97),本願で引用,請求の範囲参照				
ı		& CA, 2233204, A & EP, 854869, A & NZ, 320963, A				
ı		& JP, 11-512723, A				

▼ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 国際調査報告の発送日 27.02.01 14.02.01 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 9639 日本国特許庁(ISA/JP) 新留 豊 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3452

C(続き).			
引用文献の カテゴリー*	 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
A	EP, 268868, A2 (SPOFA SPOJENE PODNIKY PRO ZDRAVOTNICKOU VYROBU), 1.6月.1988 (01.06.88), 全文参照 & BE, 897843, A1 & GB, 2127807, A1 & AT, 8303366, A & SE, 8305157, A & CS, 231227 B1	1-9	
A	GB, 2127807, A1 (SPOFA SPOJENE PODNIKY PRO ZDRAVOTNICKOU VYROBU), 18.4月.1984 (18.04.84), 全文参照 & BE, 897843, A1 & CS, 231227, B1 & AT, 8303366, A & SE, 8305157, A & CH, 655929, A & FR, 2533919, A1 & JP, 59-89671, A2 & DE, 3335891, A1	1-9	
A	Blazickova, S., et al., 'Immunomodulatory characteristics of synthetic cyclic dipeptides' Int. J. Immunother. (1994), Vol. 10, No. 3, p. 89-93, Discussion 参照	1-9	