

Теория вероятностей и статистика в Машинном Обучении

СЛУЧАЙНЫЕ СОБЫТИЯ

- 1. КОМБИНАТОРИКА
- 2. Определение вероятности
- 3. Условные вероятности. Формула Байеса.

Комбинаторика

<u>Комбинаторика</u> — это раздел математики, изучающий расположения объектов в соответствии со специальными правилами и методы подсчета числа всех возможных способов, которыми эти расположения могут быть совершены.

Задачи, в которых необходимо подсчитывать число возможных способов совершения каких либо действий - к о м б и н а m о р н ы е.

<u>Терминология</u>: размещения

перестановки

сочетания

Правило суммы и правило произведения

Правило суммы. Пусть требуется выполнить одно из каких-либо т действий, взаимно исключающих друг друга. Если первое действие можно выполнить $n_{_1}$ способами, второе действие — $n_{_2}$ способами и так до т-го действия, которое можно выполнить $n_{_m}$ способами, то выполнить од но и з этих т действий можно $n_{_1}+n_{_2}+\cdots+n_{_m}$ способами.

Правило произведения. Пусть требуется выполнить какие-либо т действий. Если первое действие можно выполнить $n_{_1}$ способами, второе действие — $n_{_2}$ способами и так до т-го действия, которое можно выполнить $n_{_m}$ способами, то все т действий могут быть выполнены $n_{_1}n_{_2}\cdots n_{_m}$ способами.

Задачи на правило суммы

На столе лежат 3 яблока и 7 груш разных сортов. Сколькими способами можно взять один фрукт?

Задачи на правило произведения

Известно, что из города A до города B можно добраться по одной из 3 дорог. При этом из города B до города C можно добраться по одной из 4 дорог. Сколько существует способов добраться из города A в город C, проходя через город B?

3*4=12

Формулы комбинаторики

Комбинации без повторений

Рассмотрим некоторое множество S, состоящее из n различных элементов. Пусть $1 \le k \le n$. Назовем множество, состоящее из k элементов, упо рядоченным, если каждому элементу этого множества поставлено в соответствие число от 1 до k, причем различным элементам множества соответствуют разные числа.

Pазмещениями из n элементов nо k называются упорядоченные подмножества множества S, состоящие из k различных элементов и отличающиеся друг от друга составом элементов или порядком их расположения.

Размещения

Число размещений из n элементов по k равно

$$A_n^k = \frac{n!}{(n-k)!} = n(n-1)(n-2)\cdots(n-k+1)$$

Группы с одинаковым набором элементов расположенных в разном порядке считаются разными.

1. Дано 4 предмета, размещения по 2 позициям:

$$A^{2}_{4} = \frac{4!}{(4-2)!} = \frac{24}{2} = 12$$

2. Дано 4 цвета, размещения по 3 позициям:

$$A^{3}_{4} = \frac{4!}{(4-3)!} = \frac{24}{1} = 24$$

Размещения (варианты размещения четырех предметов по трем ячейкам)

Перестановки

Перестановками из n элементов называются размещения из n элементов по n, т. е. упорядоченные подмножества множества S, состоящие из всех элементов данного множества и отличающиеся друг от друга только порядком их расположения.

Число перестановок из п элементов равно

$$P_n = n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1.$$

Сочетания

Сочетаниями из n элементов по k называются подмножества множества S, состоящие из k различных элементов и отличающиеся друг от друга только составом элементов.

Число сочетаний из n элементов по k равно

$$C_n^k = \frac{A_n^k}{P_k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k(k-1)(k-2)\cdots3\cdot2\cdot1}.$$

При этом $C_n^k = C_n^{n-k}$ $(0 \leqslant k \leqslant n)$.

$$C_n^k = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)![n-(n-k)]!} = C_n^{n-k}$$
.

$$C^{3}_{4} = \frac{4!}{3!(4-3)!} = \frac{24}{6} = 4$$

Сочетания (неупорядоченные размещения)

Число сочетаний из n по k – это число способов, которыми можно из n предметов выбрать k, порядок которых неважен.

Комбинации с повторениями

Размещения с повторениями

Pазмещениями с повторениями из n элементов по k называются упорядоченные подмножества множества S, состоящие из k элементов, среди которых могут оказаться одинаковые, и отличающиеся друг от друга составом элементов или порядком их расположения.

Число размещений с повторениями из n элементов по k равно $\tilde{A}^k_n = n^k$.

Число размещений с повторениями из 3 элементов по 2: 3²=9

Перестановки с повторениями

Число перестановок с повторениями:

$$\overline{P}_n(n_1, n_2, ..., n_k) = \frac{n!}{n_1! n_2! ... n_k!}$$

Перестановками с повторениями называются соединения из генеральной совокупности, каждое из которых содержит n элементов, среди которых элемент al повторяется nl pas,

а2 повторяется n2 раз,

an повторяется nk раз

$$n1 + n2 + ... + nk = n$$

и которые отличаются друг от друга только порядком расположения различных элементов.

$$\overline{P}_{3=2+1} = \frac{3!}{2! \cdot 1!} = \frac{6}{2} = 3$$

Сочетания с повторениями

Сочетаниями с повторениями из n элементов по k называются подмножества множества S, состоящие из k элементов, среди которых могут оказаться одинаковые, и отличающиеся друг от друга только составом элементов.

Число сочетаний с повторениями из п элементов по k равно

$$ilde{C}_n^k = C_{n+k-1}^k = rac{(n+k-1)!}{k!(n-1)!} = rac{(n+k-1)(n+k-2)\cdots n}{k(k-1)(k-2)\cdots 3\cdot 2\cdot 1}.$$

$$C_{2}^{3} = \frac{(5-1)!}{3!(2-1)!} = \frac{4!}{6} = 4$$

Задача. В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

$$\overline{C}_4^7 = C_{7+4-1}^7 = C_{10}^7 = \frac{10!}{7!3!} = 120$$

Треугольник Паскаля

n k	0	1	2	3	4	5	6	7	8
	C_0^0								
1	C_1^0	C 1							
2	C_2^0	C_2^1	C_2^2						
		_	C_3^2	C 3					
4	C 4	C 1 4	C 2 4	C 3 4	C 4 4				
5	C 5	C 1 5	C 2 5	C 3 5	C 4 5	C 5			
6	C 6	C 1 6	C 2 6	C 3 6	C 4 6	C 6	C 6		
7	C 7	C 1 7	C 2 7	C 3	C 4 7	C 5	C ⁶ ₇	C 7	
8	C 8	C 1 8	C 2	C 3	C 4 8	C 5	C 8	C 7 8	C 8

$\mathbf{n}_{\parallel}^{\mathbf{k}}$	0	1	2	3	4	5	6	7	8	9
0	1									
1	1	1								
2	1	2	1							
3	1	3	3	1						
4	1	4	6	4	1					
5	1	5	10	10	5	1				
6	1	6	15	20	15	6	1			
7	1	7	21	35	35	21	7	1		
8	1	8	28	56	70	56	28	8	1	
9	1	9	36	84	136	136	84	36	9	1

Сводка формул

Решение комбинаторных задач

