Supporting Information

Chirality Control in Enzyme-Catalyzed Dynamic Kinetic Resolution of 1,3-Oxathiolanes

Lei Hu, Yansong Ren and Olof Ramström*

KTH - Royal Institute of Technology, Department of Chemistry, Teknikringen 30, S-10044 Stockholm, Sweden; Email: ramstrom@kth.se

Table of contents

Chiral HPLC of compound 4c	S1
Chiral HPLC of compound 4a	S1
HPLC of racemic mixture of compound 4	S1
¹ H NMR and ¹³ C NMR of compound 9a	S2
¹ H NMR and ¹³ C NMR of compound 9b	S3
¹ H NMR and ¹³ C NMR of compound 4c	S ²
¹ H NMR and ¹³ C NMR of compound 4a	S5
¹ H NMR and ¹³ C NMR of compound 11	Se
NOESY-NMR of compound 11	S7

HPLC of compound 4c

HPLC of compound 4a from CAL B-catalyzed hydrolysis protocol

HPLC of racemic mixture of compound 4

¹H NMR and ¹³C NMR of compound 9a

¹H NMR and ¹³C NMR of compound 9b

¹H NMR and ¹³C NMR of compound 4c

¹H NMR and ¹³C NMR of compound 4a

¹H NMR and ¹³C NMR of compound 11

NOESY-NMR of compound 11

NOE-NMR experiments of compound 11: top) the enlarged 1H NMR spectrum; mid) saturation of H_c ; bottom) saturation of H_d .

Saturation of H_c resulted in no corresponding peak from H_b . Saturation of H_d resulted in a clear signal from H_b , indicating a *cis*-configuration between H_d and H_b . According to the integral of H_a , the signal corresponding to the saturated H_d is sufficiently stronger than that of H_c , indicating a *cis*-configuration between H_d and H_a .