Intervals, Transformations, and Slope Solution (version 116)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-9, -4) \cup (-2, 4)$
Negative	$(-10, -9) \cup (-4, -2)$
Increasing	$(-10, -5) \cup (-3, -1)$
Decreasing	$(-5, -3) \cup (-1, 4)$
Domain	(-10,4)
Range	(-8,8)

Intervals, Transformations, and Slope Solution (version 116)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=49$ and $x_2=81$. Express your answer as a reduced fraction.

$$\frac{f(81) - f(49)}{81 - 49} = \frac{55 - 91}{81 - 49} = \frac{-36}{32}$$

The greatest common factor of -36 and 32 is 4. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-9}{8}$$

2