

INFORMATIK 2

FLASH SPEICHER

INHALT

- Flash Speicher
- Geschichte
- Produzenten
- Einsatz
- Funktionsweise
- Architektur
- Vor- und Nachteile

FLASH SPEICHER

- digitale Bausteine
- ▶ Gruppe der EEPROM (Electrically Erasable Programmable Read-only Memory)
- ▶ Flash-EEPROM
- Speichertechnik
- schnell
- wiederverwendbar
- geringer Energieverbrauch
- permanenter Speicher, ohne Energiezufuhr
- blockweise beschreiben und löschen (64, 128, 256, 1024, ... Byte)

GESCHICHTE

- ▶ 1980 von Dr. Fujio Msuoka erfunden
- Name "Flash" von Shoji Ariizumi
- blockweise Löschvorgang erinnert an "Flash" einer Kamera

PRODUZENTEN

- Samsung
- Toshiba
- Western Digital / SanDisk
- SK Hynix
- Micron
- Intel

EINSATZ

- Handy
- USB-Stick

- Speicherkarte (zB. SD-Karte, Micro SD-Karte)
- MP3 Player
- SSD
- Hybrid Festplatte
- BIOS Speicher im Computer

FUNKTIONSWEISE

- Speicherzelle besteht aus speziellem Feldeffekttransistor
 - -> Floating-Gate-Transistor
- Floating-Gate ist gegen Drain, Source und Control-Gate mit einer Oxidschicht isoliert
- Oxidschicht verhindert das Abfließen der Ladung
- permanente Speicherung von Daten in Form von elektronischen Ladungen

FUNKTIONSWEISE (SCHREIBEN)

- hohe positive Spannung am Control-Gate >10 Volt
- Tunnel zwischen Source und Drain öffnet sich
- Drain und Source übertragen Elektronen in das Floating-Gate
- Floating-Gate speichert die Elektronen

FUNKTIONSWEISE (LÖSCHEN)

- hohe negative Spannung am Control-Gate >-10 Volt
- ▶ Tunnel zwischen Drain und Source öffnet sich
- Floating-Gate überträgt Spannung an Source und Drain durch den Tunnel
- Floating-Gate verliert gespeicherte Elektronen
- Oxidschicht nimmt Schaden an

ARCHITEKTUR

- NOR-Flash
- NAND-Flash

- SLC-Flash (Single Level Cell)
- MLC-Flash (Multi Level Cell)
- ▶ TLC-Flash (Tripple Level Cell)

NOR-FLASH

- Speicherzellen Parallel verschaltet
- Architektur erfordert mehr Platz
- komplizierte Fertigung
- fehlerfrei
- teuer
- direkter zugriff auf Speicherzelle -> kurze Zugriffszeit, schnelle Lesezeit
- schreiben und löschen nur Blockweise möglich
- mehr Schreib- und Löschzugriffe
- Einsatz in Microcontrollern und für BIOS in PC's

NAND-FLASH

- Speicherzellen in einer Reihenschaltung
- 2/5 des Flächenbedarfs vom NOR-Flash
- einfache Fertigung
- kostengünstig
- Mehr Speicherplatz als NOR-Flash
- lesen, schreiben und löschen nur in Blöcken möglich
- Einsatz in SSD, USB-Stick, Handy, etc.
- beschädigte Speicherblöcke ab Werk

SLC-, MLC-, TLC-FLASH

Unterschied in der Anzahl an Bits in der Speicherzelle

- Unterschied in der Anzahl der zu unterscheidenden Zustände
- erreicht durch unterschiedliche Spannungsniveaus

	SLC	MLC	TLC
Bit pro Zelle	1 Bit	2 Bit	3 Bit
Speicherbare Zustände	2 (2^1)	4 (2^2)	8 (2^3)
Lebensdauer	ca. 100.000 Schreibvorgänge	ca. 3.000 Schreibvorgänge	1.000 Schreibvorgäng
Fehlerrate	sehr niedring	mittel	sehr hoch
Geschwindigkeit	sehr hoch	niedrig	niedrig
Stromverrbrauch	sehr niedrig	hoch	hoch
Kosten	hoch	niedrig	niedrig

WARUM GEHT EINE FLASH SPEICHERZELLE KAPUTT?

- Floating Gate wird mit einer Spannung von 10-18 Volt geladen (Schreibzugriff)
- Oxidschicht (Isolation) wird überwunden
- Oxidschicht nimmt bei jedem Schreibzugriff Schaden an
- Oxidschicht isoliert nicht mehr
 - –> Elektronen können nicht mehr im Floating-Gate gehalten werden
 - -> Speicherzelle wird unbrauchbar

VORTEILE VON FLASH

- Daten bleiben ohne Energiequelle gespeichert
- geringer Energieverbraucht
- geringe Wärmeentwicklung
- geräuschlos
- unempfindlich gegen Erschütterungen, Magnetfelder und Luftfeuchtigkeit
- kurze Zugriffszeit
- schnelle Lese- und Schreibgeschwindigkeit
- einfaches auslesen des Speichers
- kleine Bauformate möglich
- lange Haltbarkeit der Daten, da keine mechanischen Verschleißteile

NACHTEILE VON FLASH

- hoher Preis
- begrenzte Schreib- bzw. Löschvorgänge
- Speicher muss gelöscht werden, um neu beschrieben zu werden –> beschleunigt Abbau der Isolierschicht
- nur Blockweise beschreib- und löschbar
- eigener Controller wird für Ansteuerung benötigt

DANKE

INFORMATIK 2

NAME: SHIWAM ARORA

MATRIKEL NR: 2270256

PROF. EDELER

20.01.2017