EJEMPLO 8.6.4 Vector característico generalizado

Sea $A = \begin{pmatrix} 3 & -2 \\ 8 & -5 \end{pmatrix}$. La ecuación característica de A es $\lambda^2 + 2\lambda + 1 = (\lambda + 1)^2 = 0$, de manera que

 $\lambda = -1$ es un valor característico de multiplicidad algebraica 2. Entonces

$$(A - \lambda I)\mathbf{v} = (A + I)\mathbf{v} = \begin{pmatrix} 4 & -2 \\ 8 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Esto lleva al vector característico $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. No existe otro vector característico linealmente independiente. Para encontrar un vector característico generalizado \mathbf{v}_2 se calcula $(A+I)\mathbf{v}_2 = \mathbf{v}_1$ o

 $\begin{pmatrix} 4 & -2 \\ 8 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, lo que da el sistema

$$4x_1 - 2x_2 = 1$$
$$8x_1 - 4x_2 = 2$$

La segunda ecuación es el doble de la primera, por lo que x_2 se puede elegir arbitrariamente y

$$x_1 = \frac{(1+2x_2)}{4}$$
. Por lo tanto, una elección posible para \mathbf{v}_2 es $\mathbf{v}_2 = \begin{pmatrix} \frac{1}{4} \\ 0 \end{pmatrix}$.

La razón para encontrar vectores característicos generalizados está dada en el siguiente teorema.

Teorema 8.6.3

Suponga que A, λ , \mathbf{v}_1 y \mathbf{v}_2 están definidos como en el teorema 8.6.2 y sea C la matriz cuyas columnas son \mathbf{v}_1 y \mathbf{v}_2 . Entonces $C^{-1}AC = J$, donde $J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ es la forma canónica de Jordan de A.

Demostración

Como \mathbf{v}_1 y \mathbf{v}_2 son linealmente independientes, se ve que C es invertible. Después se nota que $AC = A(\mathbf{v}_1, \mathbf{v}_2) = (A\mathbf{v}_1, A\mathbf{v}_2) = (\lambda\mathbf{v}_1, A\mathbf{v}_2)$. Pero de la ecuación (8.6.4), $A\mathbf{v}_2 = \mathbf{v}_1 + \lambda\mathbf{v}_2$, de manera que $AC = (\lambda\mathbf{v}_1, \mathbf{v}_1 + \lambda\mathbf{v}_2)$. Pero $CJ = (\mathbf{v}_1, \mathbf{v}_2) \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = (\lambda\mathbf{v}_1, \mathbf{v}_1 + \lambda\mathbf{v}_2)$. Entonces AC = CJ, lo que significa que $C^{-1}AC = J$ y el teorema queda probado.

EJEMPLO 8.6.5 Forma canónica de Jordan de una matriz de 2×2

En el ejemplo 8.6.4,
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} \frac{1}{4} \\ 0 \end{pmatrix}$. Entonces $C = \begin{pmatrix} 1 & \frac{1}{4} \\ 2 & 0 \end{pmatrix}$, $C^{-1} = -2\begin{pmatrix} 0 & \frac{1}{4} \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} \\ 4 & -2 \end{pmatrix}$

$$C^{-1}AC = \begin{pmatrix} 0 & \frac{1}{2} \\ 4 & -2 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 8 & -5 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{4} \\ 2 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \frac{1}{2} \\ 4 & -2 \end{pmatrix} \begin{pmatrix} -1 & \frac{3}{4} \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} = J$$