Алгоритм будує обернену матрицю за допомогою LU-розкладання, застосовуючи алгоритм Штрассена для оптимізованого множення матриць. Це надійний метод для квадратних, невироджених матриць і пропонує переваги у продуктивності для великих матриць, балансуючи між складністю між O(n³) і O(n^2.81).

Опис алгоритму:

Алгоритм побудови оберненої матриці за допомогою LU-розкладу базується на розкладанні початкової квадратної матриці A на дві трикутні матриці L (нижня трикутна) та U (верхня трикутна), де A = L·U . Після цього для кожного стовпця одиничної матриці вирішується система рівнянь L·Y = E_i (пряма підстановка) та U·X = Y (зворотна підстановка). Отримані вектори X формують стовпці оберненої матриці A^-1.

Для підвищення ефективності алгоритм використовує алгоритм Штрассена для множення матриць, що знижує кількість операцій порівняно зі стандартним методом.

Кроки алгоритму:

1. Введення розмірності та елементів матриці

- На першому етапі користувач вводить розмірність квадратної матриці n та її елементи. Якщо розмірність матриці n ε непозитивною (тобто n \leq 0), алгоритм завершу ε виконання.

2. Доповнення розмірності до степеня двійки (за потреби)

- Щоб забезпечити коректну роботу алгоритму Штрассена, розмірність матриці може бути доповнена до найближчого більшого степеня двійки. Це дозволяє уникнути проблем з ефективністю під час множення. У випадку доповнення додаються нульові елементи, а після виконання основних операцій зайві елементи видаляються.

3. LU-розкладання

- **Мета:** Розкласти початкову матрицю A на добуток двох матриць: нижньої трикутної L та верхньої трикутної U, де A = L·U.

- Процес:

- Матриця L має одиниці на головній діагоналі.
- Під час розкладання елементи діагоналі матриці U не повинні бути нульовими, щоб уникнути виродженості.
- На кожному кроці виконується підстановка для обчислення елементів матриць L та U з заданих елементів початкової матриці A.

4. Використання алгоритму Штрассена для множення матриць

- Мета: Прискорити множення матриць у процесі обчислень.

- Алгоритм Штрассена:

- Виконує розбиття матриці на підматриці розміром 2 на 2.
- Замість восьми операцій множення, алгоритм виконує сім, що знижує асимптотичну складність множення.

- У випадку невеликих матриць (наприклад, 2 на 2) використовується стандартне множення, що є більш оптимальним для таких розмірів.

5. Знаходження оберненої матриці через систему підстановок

- **Крок 1**: Розв'язання системи рівнянь L•Y = E_i, де E_i є i-тим стовпцем одиничної матриці. Цей етап називається **прямою підстановкою** і знаходить вектор Y.
- **Крок 2**: Розв'язання системи рівнянь U·X = Y для отримання вектора X. Цей етап називається **зворотною підстановкою**.
 - Всі отримані вектори X формують стовпці оберненої матриці А^-1.

Приклад роботи алгоритму (умовний):

- 1. Дано квадратну матрицю А.
- 2. Виконується LU-розкладання, отримуючи матриці L та U.
- 3. Для кожного стовпця одиничної матриці:
 - Виконується пряма підстановка L•Y = E_i
 - Виконується зворотна підстановка U·X = Y
 - Вектор X додається до оберненої матриці.

Додаткові аспекти:

- Алгоритм Штрассена застосовується лише до великих матриць для прискорення обчислень.
- Перевіряється, чи не є елементи діагоналі матриці U близькими до нуля, що є важливим для уникнення чисельних похибок.

Висновок:

Алгоритм обчислення оберненої матриці методом LU-розкладу з використанням алгоритму Штрассена дозволяє ефективно працювати з великими матрицями, забезпечуючи значний приріст продуктивності для розмірів, що є степенем двійки.

Сфера застосування:

Метод LU-розкладу широко застосовується для розв'язання систем лінійних рівнянь, обчислення визначників, обернення квадратних матриць. Його ефективність зростає для великих матриць, особливо коли розмір є степенем двійки. Використання алгоритму Штрассена дозволяє прискорити обчислення для великих розмірів матриць.

Оцінювання складності:

1. LU-розкладання:

- Стандартна складність для квадратної матриці розміром \(n \times n \) становить O(n³).

2. Алгоритм Штрассена:

- Має складність приблизно $O(n^{\log 2} 7)$ ≈ $O(n^{2.81})$, що значно швидше для великих розмірів.

3. Підстановки:

- Пряма та зворотна підстановка мають лінійну складність O(n²).

Загальна оцінка:

Загальна складність обчислення оберненої матриці із використанням алгоритму Штрассена наближається до O(n^2.81). У випадку класичного множення загальна складність дорівнює O(n^3). Алгоритм ефективний для великих матриць і демонструє виграш у швидкодії завдяки алгоритму Штрассена.