In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df=pd.read_csv(r'C:\Users\user\Downloads\4_drug200.csv')
df
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY

195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [3]:

df.head(10)

Out[3]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
5	22	F	NORMAL	HIGH	8.607	drugX
6	49	F	NORMAL	HIGH	16.275	drugY
7	41	М	LOW	HIGH	11.037	drugC
8	60	М	NORMAL	HIGH	15.171	drugY
9	43	М	LOW	NORMAL	19.368	drugY

In [4]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):
#
    Column
                Non-Null Count Dtype
0
                 200 non-null
                                 int64
    Age
1
    Sex
                 200 non-null
                                 object
 2
                 200 non-null
                                 object
    Cholesterol 200 non-null
                                 object
 4
    Na_to_K
                 200 non-null
                                 float64
5
    Drug
                 200 non-null
                                 object
dtypes: float64(1), int64(1), object(4)
memory usage: 9.5+ KB
```

In [5]:

df.describe()

Out[5]:

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

In [6]:

```
df.columns
```

Out[6]:

Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')

In [7]:

sns.pairplot(df)

Out[7]:

<seaborn.axisgrid.PairGrid at 0x21f421f2fd0>

In [8]:

sns.distplot(df['Age'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `d istplot` is a deprecated function and will be removed in a future version. Please adapt you r code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]

<AxesSubplot:xlabel='Age', ylabel='Density'>

In [9]:

```
sns.displot(df["Age"])
```

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x21f42acea30>

In [13]:

```
df1=df[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug']]
```

In [14]:

```
sns.heatmap(df1.corr())
```

Out[14]:

<AxesSubplot:>

In [22]:

```
x=df1[['Age', 'Na_to_K']]
y=df1[['Age']]
```

In [23]:

```
\begin{tabular}{ll} from $$ sklearn.model\_selection $$ import $train\_test\_split$ \end{tabular}
```

```
In [24]:
```

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [25]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)#ValueError: Input contains NaN, infinity or a value too large for dtype('float64')
```

Out[25]:

LinearRegression()

In [26]:

```
print(lr.intercept_)
```

[-2.13162821e-14]

In [27]:

```
coef= pd.DataFrame(lr.coef_)
coef
```

Out[27]:

0 1.0 -9.001289e-18

In [28]:

```
print(lr.score(x_test,y_test))
```

1.0

In [29]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[29]:

<matplotlib.collections.PathCollection at 0x21f446bd7c0>

