Universidade do Minho Departamento de Matemática e Aplicações **MIECOM**

Análise Matemática B

— folha 6 — Integrais de Superfície — 2011'12

- 1. Identifique as superfícies S com as seguintes parametrizações:
 - (a) $s(u, v) = (\cos u, \sin u, v), \text{ com } (u, v) \in [0, 2\pi] \times [0, 2];$
 - (b) s(u,v) = (u,v,1-u-v), com $(u,v) \in [0,1] \times [0,1]$;
 - (c) $s(u, v) = (u, v, u^2 + v^2)$, com $(u, v) \in \mathbb{R}^2$;
 - (d) $s(u, v) = (u\cos v, u\sin v, u^2), \text{ com } (u, v) \in [0, +\infty[\times[0, 2\pi[$
 - (e) $s(u, v) = (\cos u \sin v, \sin u \sin v, \cos v), \text{ com } (u, v) \in [0, 2\pi] \times [0, \pi].$
- 2. Encontre uma parametrização para cada uma das seguintes superfícies:
 - (a) Cone de vértice em (0,0,0) e eixo de rotação Oz^+ ;
 - (b) Plano de equação cartesiana 2x y + z = 2;
 - (c) Cone de vértice em (0,0,0) e eixo de rotação Oy^+ .
- 3. Determine as áreas das superfícies (a), (b) e (e) do exercício 1.
- 4. Seja S a semi-esfera $x^2+y^2+z^2=1$, $z\geq 0$ e f(x,y,z)=x. Calcule o valor do integral de superfície $\int\int_S f dS$, utilizando
 - (a) a parametrização apresentada no exercício 1.(e);
 - (b) a parametrização $s(u,v)=(u,v,\sqrt{1-u^2-v^2})$ com $(u,v)\in\{(u,v)\in\mathbb{R}^2:u^2+v^2<1\}.$
- 5. Determine o centro de massa da superfície da semi-esfera homogénea (densidade de massa constante) $x^2 + y^2 + z^2 = 4$.
- 6. Calcule a área da porção do paraboloide $x^2+z^2=2y$ cortado pelo plano y=1.
- 7. Em cada uma das alíneas seguintes, use o teorema de Stokes para provar que os integrais de linha Têm os valores apresentados. Explique qual qual o sentido em que a curva ${\cal C}$ deve ser percorrida.
 - (a) $\int_C \overrightarrow{F} d\overrightarrow{r} = \pi \sqrt{3}$, onde $\overrightarrow{F}(x,y,z) = (y,z,x)$ e C a curva de intersecção da esfera $x^2+y^2+z^2=1$ e o plano x+y+z=0;

- (b) $\int_C \overrightarrow{F} d\overrightarrow{r} = 0$, onde $\overrightarrow{F}(x,y,z) = (y+z,z+x,x+y)$ e C a curva de intersecção do cilíndro $x^2+y^2=2y$ e o plano y=z;
- (c) $\int_C \overrightarrow{F} d\overrightarrow{r} = 0$, onde $\overrightarrow{F}(x,y,z) = (y^2,xy,xz)$ e C a curva de intersecção do cilíndro $x^2+y^2=2y$ e o plano y=z.