Простейшая модель эпидемии

Казаков Александр НПИбд-02-19¹ 23 мая, 2022, Москва, Россия

¹Российский Университет Дружбы Народов

Цели и задачи работы

Цель лабораторной работы

Изучить простейшую модель эпидемии

Задание к лабораторной работе

- 1. Изучить простейшую модель эпидемии
- 2. Построить графики изменения числа особей в каждой из трех групп. Рассмотреть, как будет протекать эпидемия в случае: $I(0) \leq I^*, I(0) > I^*$

лабораторной работы

Процесс выполнения

Задача

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=7823) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0) = 103, А число здоровых людей с иммунитетом к болезни R(0) = 10. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0) = N - I(0) - R(0). Постройте графики изменения числа особей в каждой из трех групп.

Рассмотрите, как будет протекать эпидемия в случае:

- 1. $I(0) \leq I^*$
- 2. $I(0) > I^*$

Первый случай

```
I(0) \le I^*
parameter Real a = 0.01;
parameter Real b = 0.02;
Real S(start = 7710);
Real I(start = 103);
Real R(start = 10);
equation
der(S) = 0:
der(I) = -b * I:
der(R) = b * I;
annotation(experiment(StartTime = 0, StopTime = 500, Interval
```

График изменения числа особей в случае $I(0) \leq I^*$

Figure 1: График изменения числа особей в случае $I(0) \leq I^*$

Второй случай

```
I(0) > I^*
parameter Real a = 0.01;
parameter Real b = 0.02;
Real S(start = 7710);
Real I(start = 103);
Real R(start = 10);
equation
der(S) = -a * S:
der(I) = a * S - b * I;
der(R) = b * I;
annotation(experiment(StartTime = 0, StopTime = 500, Interval
```

График изменения числа особей в случае $I(0)>I^st$

Figure 2: График изменения числа особей в случае $I(0)>I^*$

Итоги

Вывод

Изучена простейшая модель эпидемии, построены графики изменения числа особей.