CS486: Assignment 3 - Q1 a ~ e

factor.py

```
#!/usr/bin/python
class Factor(object):
        def __init__(self, variables, valueList, probabilities):
                self.valueTable = dict()
                for i in xrange(0,len(variables)):
                         self.valueTable[variables[i]] = valueList[i]
                self.probabilities = probabilities
        def copy(self):
                newFactor = Factor([],[],[])
                newFactor.valueTable = dict(self.valueTable)
                newFactor.probabilities = list(self.probabilities)
                return newFactor
        # function that restricts a variable to some value in a given factor
        @staticmethod
        def restrict(factor, variable, value):
                newFactor = factor.copy()
                indiciesRestricted = list()
                restrictedFactorTable = list()
                restrictedProbabilities = list()
                index = 0
                for val in newFactor.valueTable[variable]:
                         if val == value:
                                 indiciesRestricted.append(index)
                         index += 1
                del newFactor.valueTable[variable]
                remainingVariables = newFactor.valueTable.keys()
                for var in remaining Variables:
                         restrictedValueList = list()
                         for i in xrange(0, len(newFactor.valueTable[var])):
                                 if i in indiciesRestricted:
                                          restrictedValueList.append(newFactor.valueTable[var][i])
                         restrictedFactorTable.append(restrictedValueList)
                for i in xrange(0, len(remainingVariables)):
                         newFactor.valueTable[remainingVariables[i]] = restrictedFactorTable[i]
                for i in xrange(0, len(newFactor.probabilities)):
                         if i in indiciesRestricted:
                                 restrictedProbabilities.append(newFactor.probabilities[i])
                newFactor.probabilities = restrictedProbabilities
                return newFactor
        # function that multiplies two factors
        @staticmethod
        def multiply(factor1, factor2):
                factorVariables1 = factor1.valueTable.keys()
                factorVariables2 = factor2.valueTable.keys()
```

```
newVariables = list()
                for var in factorVariables1:
                        if var in factorVariables2:
                                 commonVariables.append(var)
                                 newVariables.append(var)
                for var in factorVariables1:
                        if var not in newVariables:
                                 newVariables.append(var)
                for var in factorVariables2:
                        if var not in newVariables:
                                 newVariables.append(var)
                newValueList = [[] for i in xrange(len(newVariables))]
                newProbabilities = list()
                for i in xrange(len(factor1.probabilities)):
                        for j in xrange(len(factor2.probabilities)):
                                 isMatched = True
                                 for var in commonVariables:
                                         if factor1.valueTable[var][i] != factor2.valueTable[var][j]:
                                                 isMatched = False
                                                 break
                                 if isMatched:
                                         for k, var in enumerate(newVariables):
                                                 if var in factorVariables1:
newValueList[k].append(factor1.valueTable[var][i])
                                                 else:
newValueList[k].append(factor2.valueTable[var][j])
                                         newProbabilities.append(factor1.probabilities[i] *
factor2.probabilities[j])
                return Factor(newVariables, newValueList, newProbabilities)
        # function that sums out a variable in a given factor
        @staticmethod
        def sumout(factor, variable):
                newFactor = factor.copy()
                if len(newFactor.valueTable.keys()) == 1:
                        return newFactor
                variableDomain = list()
                for val in newFactor.valueTable[variable]:
                        if val not in variableDomain:
                                 variableDomain.append(val)
                del newFactor.valueTable[variable]
                remainingVariables = newFactor.valueTable.keys()
                newValueList = [[] for i in xrange(len(remainingVariables))]
                newProbabilities = list()
                summedRows = list()
                for i in xrange(len(newFactor.probabilities)):
                        if i in summedRows:
                                 continue
```

commonVariables = list()

```
summedProbability = newFactor.probabilities[i]
                        for j in xrange(i+1, len(newFactor.probabilities)):
                                 needSum = True
                                 for var in remaining Variables:
                                         if newFactor.valueTable[var][i] !=
newFactor.valueTable[var][j]:
                                                 needSum = False
                                 if needSum and j not in summedRows:
                                         summedRows.append(j)
                                         summedProbability += newFactor.probabilities[j]
                        for k, var in enumerate(remainingVariables):
                                 newValueList[k].append(newFactor.valueTable[var][i])
                        newProbabilities.append(summedProbability)
                return Factor(remainingVariables, newValueList, newProbabilities)
        # function that normalizes a factor by dividing each entry by the
        # sum of all the entries. This is useful when the factor is a distribution
        @staticmethod
        def normalize(factor):
                newFactor = factor.copy()
                totalSum = 0
                for prob in newFactor.probabilities:
                        totalSum += prob
                for i in xrange(len(newFactor.probabilities)):
                        newFactor.probabilities[i] = newFactor.probabilities[i]/totalSum
                return newFactor
        # function that computes P(queryVariables|evidenceList) by variable elimination
        @staticmethod
        def inference(factorList, queryVariables, orderedListOfHiddenVariables, evidenceList):
                newOrderedListOfHiddenVariables = filter(lambda x: x not in queryVariables and x
not in evidenceList.keys(), orderedListOfHiddenVariables)
                for evidence in evidenceList:
                        restrictedFactorList = list()
                        for factor in factorList:
                                 if evidence in factor.valueTable.keys():
                                         # print
                                         print 'Restrict:',
                                         print evidence
                                         restrictedFactor = Factor.restrict(factor, evidence,
evidenceList[evidence])
                                         for key, val in restrictedFactor.valueTable.items():
                                                 print key, "=>", val
                                         print restrictedFactor.probabilities
                                         restrictedFactorList.append(restrictedFactor)
                                 else:
                                         restrictedFactorList.append(factor)
                        factorList = restrictedFactorList
                for hiddenVariable in newOrderedListOfHiddenVariables:
                        factorListToMultiply = list()
                        for factor in factorList:
```

```
if hiddenVariable in factor.valueTable.keys():
                         factorListToMultiply.append(factor)
        factorList = filter(lambda factor: factor not in factorListToMultiply, factorList)
        if len(factorListToMultiply) > 0:
                # print
                print 'Multiply:',
                print hiddenVariable
                productFactor = reduce(Factor.multiply, factorListToMultiply)
                for key,val in productFactor.valueTable.items():
                         print key, "=>", val
                print productFactor.probabilities
        else:
                continue
        # print
        print 'Sumout:',
        print hiddenVariable
        factorSummedOut = Factor.sumout(productFactor, hiddenVariable)
        for key,val in factorSummedOut.valueTable.items():
                print key, "=>", val
        print factorSummedOut.probabilities
        factorList.append(factorSummedOut)
# print
print 'Multiply Query Variables:'
if len(factorList) > 0:
        output = reduce(Factor.multiply, factorList)
        for key,val in output.valueTable.items():
                print key, "=>", val
        print output.probabilities
# print
print 'Normalize:'
normalizedOutput = Factor.normalize(output)
for key,val in normalizedOutput.valueTable.items():
        print key, "=>", val
print normalizedOutput.probabilities
return normalizedOutput
```

CS486: Assignment 3 - Q2 a

CS486: Assignment 3 - Q2 b~d

*Results are rounded to the 4 decimal places Q2(b)(I)

Query: P(Fraud)

Factors: f₁(Trav), f₂(Fraud,Trav)

Variable Elimination Step:

P(Fraud) $\propto f_7(Trav) = \sum_{Trav} f_1(Trav) f_2(Fraud, Trav)$ Multiply $f_1(Trav)$ and $f_2(Fraud, Trav)$ with the variable Trav

Fraud	Trav	
Т	Т	0.0005
F	Т	0.0495
Т	F	0.0038
F	F	0.9462

Sumout the product with the variable Trav and normalize to $f_7(Trav)$

Fraud	
Т	0.0043
F	0.9957

The prior probability that the current transaction is a fraud is:

P(Fraud = T) = 0.0043*100 = 0.43%

Q2(b)(II)

Query: P(Fraud|FP=T,IP=F,CRP=T)

Factors: f₁(Trav), f₂(Fraud,Trav), f₃(FP,Fraud,Trav), f₄(IP,Fraud,OC), f₅(CRP,OC), f₆(OC)

Variable Elimination Step:

-Restrict Step:

Restrict f₃(FP,Fraud,Trav) by the variable FP into f₇(Fraud,Trav)

Fraud	Trav	
Т	Т	0.9
Т	F	0.1
F	Т	0.9
F	F	0.01

Restrict f₄(IP,Fraud,OC) by the variable IP into f₈(Fraud,OC)

Fraud	ОС	
Т	Т	0.98
Т	F	0.989
F	Т	0.99
F	F	0.999

Restrict $f_5(CRP,OC)$ by the variable CRP into $f_9(OC)$

ОС	
Т	0.1
F	0.001

-Multiply&Sumout Step:

$$\begin{split} & P(\text{Fraud}|\text{FP=T},\text{IP=F},\text{CRP=T}) \propto f_{12}(\text{Fraud}) = f_{10}(\text{Fraud}) \ f_{11}(\text{Fraud}) = \sum_{\text{OC}} f_{6}(\text{OC}) \\ & f_{8}(\text{Fraud},\text{OC}) \ f_{9}(\text{OC}) \ \sum_{\text{Trav}} f_{1}(\text{Trav}) \ f_{2}(\text{Fraud},\text{Trav}) \ f_{7}(\text{Fraud},\text{Trav}) \end{split}$$

$$\begin{split} &f_{10}(\text{Fraud}) = \sum_{\text{Trav}} f_1(\text{Trav}) \ f_2(\text{Fraud},\text{Trav}) \ f_7(\text{Fraud},\text{Trav}) \\ &\text{Multiply } f_1(\text{Trav}), \ f_2(\text{Fraud},\text{Trav}), \ \text{and} \ f_7(\text{Fraud},\text{Trav}) \ \text{with the variable Trav} \end{split}$$

	, ,	
Fraud	Trav	
Т	Т	0.0005
F	Т	0.0446
Т	F	0.0004
F	F	0.0095

Sumout the product with the variable Trav to get $f_{10}(Fraud)$

Fraud	
Т	0.0008
F	0.0540

$$\begin{split} f_{11}(Fraud) &= \sum_{OC} f_6(OC) \ f_8(Fraud,OC) \ f_9(OC) \\ &\text{Multiply } f_6(OC), \ f_8(Fraud,OC), \ and \ f_9(OC) \ with \ the \ variable \ OC \end{split}$$

Fraud	ОС	
Т	Т	0.0588
Т	F	0.0004
F	Т	0.0594

F F 0.0004	
------------	--

Sumout the product with the variable Trav to get $f_{11}(Fraud)$

Fraud	
Т	0.0592
F	0.0598

 $f_{12}(Fraud) = f_{10}(Fraud) * f_{11}(Fraud)$ Multiply Query Variables into $f_{12}(Fraud)$

Fraud	
Т	4.9132348e-05
F	0.0032

-Normalize Step:

Fraud	
Т	0.0150
F	0.9850

The probability that the current transaction is a fraud once we have verified that it is a foreign transaction, but not an internet purchase and that the card holder purchased computer related accessories in the past week is:

$$P(Fraud=T|FP=T,IP=F,CRP=T) = 0.0150 = 1.5\%$$

Q2(c)

Query: P(Fraud|FP=T,IP=F,CRP=T,Trav=T)

Factors: f₁(Trav), f₂(Fraud,Trav), f₃(FP,Fraud,Trav), f₄(IP,Fraud,OC), f₅(CRP,OC), f₆(OC)

Variable Elimination Step:

-Restrict Step:

Restrict f₃(FP,Fraud,Trav) by the variable FP into f₇(Fraud,Trav)

Fraud	Trav	
Т	Т	0.9
Т	F	0.1
F	Т	0.9
F	F	0.01

Restrict $f_4(IP,Fraud,OC)$ by the variable IP into $f_8(Fraud,OC)$

Fraud	ОС	
Т	Т	0.98
Т	F	0.989
F	Т	0.99
F	F	0.999

Restrict $f_5(CRP,OC)$ by the variable CRP into $f_9(OC)$

	0 -
ос	
Т	0.1
F	0.001

Restrict $f_2(Fraud, Trav)$ by the variable Trav into $f_{10}(Fraud)$

ОС	
Т	0.01
F	0.99

Restrict $f_7(Fraud, Trav)$ by the variable Trav into $f_{11}(Fraud)$

ОС	
Т	0.9
F	0.9

-Multiply&Sumout Step:

P(Fraud|FP=T,IP=F,CRP=T,Trav=T) $\propto f_{13}(Fraud) = f_{10}(Fraud) f_{11}(Fraud) \sum_{OC} f_{8}(Fraud,OC) f_{9}(OC)$

$$\begin{split} f_{12}(Fraud,OC) &= \sum_{OC} f_8(Fraud,OC) \ f_9(OC) \\ &\text{Multiply } f_8(Fraud,OC) \ \text{and} \ f_9(OC) \ \text{with the variable OC} \end{split}$$

Fraud	ОС	
Т	Т	0.0588
Т	F	0.0004
F	Т	0.0594
F	F	0.0004

Sumout the product with the variable OC to get f₁₂(Fraud)

Fraud	
Т	0.0592
F	0.0598

 $f_{13}(Fraud) = f_{10}(Fraud) f_{11}(Fraud) f_{12}(Fraud)$ Multiply Query Variables into $f_{12}(Fraud)$

Fraud	
Т	2.6638020000000003e-05
F	0.0026640721800000005

-Normalize Step:

Fraud	
Т	0.0099
F	0.9901

The probability that the current transaction is a fraud once we have verified that it is a foreign transaction, that the card holder purchased computer related accessories in the past week is, and the card holder is on a business trip, but not an internet purchase:

Q2(d)

- -To simplify the problem, let's assume that I can only make a single action prior to the internet purchase to reduce the risk of fraud detection.
- -Then, I can make a computer related purchase with internet prior to the week of the internet purchase via the stolen credit card in order to reduce the risk of fraud detection.
- -To prove that this action could reduce the risk, let's first look at the query with CRP not known.

Query: P(Fraud|IP=T)

Factors: f₁(Trav), f₂(Fraud,Trav), f₃(FP,Fraud,Trav), f₄(IP,Fraud,OC), f₅(CRP,OC), f₆(OC)

Variable Elimination Step:

-Restrict Step:

Restrict $f_4(IP,Fraud,OC)$ by the variable IP into $f_7(Fraud,OC)$

Fraud	OC	
Т	Т	0.02
Т	F	0.011
F	Т	0.01
F	F	0.001

-Multiply&Sumout Step:

P(Fraud|IP=T) $\propto f_{12}(Fraud) = f_9(Fraud) * f_{11}(CRP,Fraud) = \sum_{CRP} \sum_{OC} f_5(CRP,OC) f_6(OC) f_7(Fraud,OC) \sum_{FP} \sum_{Tray} f_1(Tray) f_2(Fraud,Tray) f_3(FP,Fraud,Tray)$

$$\begin{split} f_8(FP,Fraud) &= \sum_{Trav} f_1(Trav) \ f_2(Fraud,Trav) \ f_3(FP,Fraud,Trav) \\ &\text{Multiply } f_1(Trav), \ f_2(Fraud,Trav) \ \text{and} \ f_3(FP,Fraud,Trav) \ \text{with the variable Trav} \end{split}$$

	, ,		
FP	Fraud	Trav	
Т	Т	Т	0.0005
F	Т	Т	5e-05
Т	F	Т	0.0446
F	F	Т	0.0050
Т	Т	F	0.0004
F	Т	F	0.0034
Т	F	F	0.0095

F F	F	0.9367
-----	---	--------

Sumout the product with the variable Trav to get f₈(FP,Fraud)

FP	Fraud	
Т	Т	0.0008
F	Т	0.0035
Т	F	0.0540
F	F	0.9417

 $f_9(Fraud) = \sum_{FP} f_8(FP, Fraud)$

Multiply f_8 (FP,Fraud) (actually no computation needed for the factor as there is only one factor to multiply) with the variable FP

FP	Fraud	
Т	Т	0.0008
F	Т	0.0035
Т	F	0.0540
F	F	0.9417

Sumout the product with the variable FP to get f₉(Fraud)

Fraud	
Т	0.0043
F	0.9957

$$\begin{split} &f_{10}(\text{CRP,Fraud}) = \sum_{\text{OC}} f_5(\text{CRP,OC}) \, f_6(\text{OC}) \, \, f_7(\text{Fraud,OC}) \\ &\text{Multiply } f_5(\text{CRP,OC}), \, f_6(\text{OC}), \, \text{and} \, \, f_7(\text{Fraud,OC}) \, \, \text{with the variable OC} \end{split}$$

CRP	Fraud	ОС	
Т	Т	Т	0.0012
F	Т	Т	0.0108
Т	Т	F	4.4e-06
F	Т	F	0.0044
Т	F	Т	0.0006

F	F	Т	0.0054
Т	F	F	4e-07
F	F	F	0.0004

Sumout the product with the variable OC to get f₁₀(CRP,Fraud)

CRP	Fraud	
Т	Т	0.0012
F	Т	0.0152
Т	F	0.0006
F	F	0.0058

 $f_{11}(Fraud) = \sum_{CRP} f_{10}(CRP,Fraud)$

Multiply $f_{10}(Fraud)$ (actually no computation needed for the factor as there is only one factor to multiply) with the variable CRP

CRP	Fraud	
Т	Т	0.0012
F	Т	0.0152
Т	F	0.0006
F	F	0.0058

Sumout the product with the variable CRP to get f₁₁(Fraud)

Fraud	
Т	0.0164
F	0.0064

 $f_{12}(Fraud) = f_{9}(Fraud) * f_{11}(CRP,Fraud)$ Multiply Query Variables into $f_{12}(Fraud)$

Fraud	
Т	7.052000000000001e-05
F	0.006372480000000001

 Normalize Step 	:
------------------------------------	---

Fraud	

Т	0.0109
F	0.9891

The probability that the current transaction is a fraud once we have verified that it is an internet purchase (the probability that the current transaction stops due to the fraud detection given it was an internet purchase):

$$P(Fraud=T|IP=T) = 0.0109 * 100 = 1.09\%$$

Query: P(Fraud|IP=T,CRP=T)

Factors: f₁(Trav), f₂(Fraud,Trav), f₃(FP,Fraud,Trav), f₄(IP,Fraud,OC), f₅(CRP,OC), f₆(OC)

Variable Elimination Step:

-Restrict Step:

Restrict f₄(IP,Fraud,OC) by the variable IP into f₇(Fraud,OC)

Fraud	ОС	
Т	Т	0.02
Т	F	0.011
F	Т	0.01
F	F	0.001

Restrict f₅(CRP,OC) by the variable CRP into f₈(OC)

ОС	
Т	0.1
F	0.001

-Multiply&Sumout Step:

$$\begin{split} &\mathsf{P}(\mathsf{Fraud}|\mathsf{IP=T}) \propto f_{12}(\mathsf{Fraud}) = f_{10}(\mathsf{Fraud}) * f_{11}(\mathsf{Fraud}) = \sum_{\mathsf{OC}} f_{6}(\mathsf{OC}) \ f_{7}(\mathsf{Fraud},\mathsf{OC}) \ f_{8}(\mathsf{OC}) \\ &\sum_{\mathsf{FP}} \sum_{\mathsf{Trav}} f_{1}(\mathsf{Trav}) \ f_{2}(\mathsf{Fraud},\mathsf{Trav}) \ f_{3}(\mathsf{FP},\mathsf{Fraud},\mathsf{Trav}) \end{split}$$

$$\begin{split} &f_9(\text{FP,Fraud}) = \sum_{\text{Trav}} f_1(\text{Trav}) \ f_2(\text{Fraud,Trav}) \ f_3(\text{FP,Fraud,Trav}) \\ &\text{Multiply } f_1(\text{Trav}), \ f_2(\text{Fraud,Trav}) \ \text{and} \ f_3(\text{FP,Fraud,Trav}) \ \text{with the variable Trav} \end{split}$$

FP	Fraud	Trav	
Т	Т	Т	0.0005
F	Т	Т	5e-05
Т	F	Т	0.0446

F	F	Т	0.0050
Т	Т	F	0.0004
F	Т	F	0.0034
Т	F	F	0.0095
F	F	F	0.9367

Sumout the product with the variable Trav to get f₉(FP,Fraud)

FP	Fraud	
Т	Т	0.0008
F	Т	0.0035
Т	F	0.0540
F	F	0.9417

 $f_{10}(Fraud) = \sum_{FP} f_{9}(FP,Fraud)$

Multiply $f_g(FP,Fraud)$ (actually no computation needed for the factor as there is only one factor to multiply) with the variable FP

FP	Fraud	
Т	Т	0.0008
F	Т	0.0035
Т	F	0.0540
F	F	0.9417

Sumout the product with the variable FP to get f₁₀(Fraud)

Fraud	
Т	0.0043
F	0.9957

$$\begin{split} &f_{11}(\text{CRP,Fraud}) = \sum_{\text{OC}} f_{6}(\text{OC}) \ f_{7}(\text{Fraud,OC}) \ f_{8}(\text{OC}) \\ &\text{Multiply } f_{6}(\text{OC}), \ f_{7}(\text{Fraud,OC}), \ \text{and } f_{8}(\text{OC}) \ \text{with the variable OC} \end{split}$$

Fraud	ОС	
Т	Т	0.0012

Т	F	4.4e-06
F	Т	0.0006
F	F	4e-07

Sumout the product with the variable OC to get f_{11} (Fraud)

Fraud	
Т	0.0012
F	0.0006

 $f_{12}(Fraud) = f_{10}(Fraud) * f_{11}(Fraud)$ Multiply Query Variables into $f_{12}(Fraud)$

Fraud	
Т	5.17892
F	0.0005978182799999999

-Normalize Step:

Fraud	
Т	0.0086
F	0.9914

The probability that the current transaction is a fraud once we have verified that it is an internet purchase and we have made computer related purchase within a week (the probability that the current transaction stops due to the fraud detection given it was an internet purchase and we made the purchase on computer related product within a week):

Therefore, the probability of a fraud gets reduced by this specific action is: 1.09% - 0.86% = 0.23%