CLAIMS

1

2

3

What is claimed is:

1	1. A method, including:				
2	selecting a memory access group size of about 2 ^N memory banks responsive				
3	to receiving an indication of a change in a protocol type, wherein the group is				
4	selected from a number B of banks, wherein N is associated with the protocol				
5	type, and wherein N is selected so that 2N is less than or equal to about B so that				
6	a plurality of logical addresses associated with the 2 ^N memory banks is mapped				
7	to a plurality of physical addresses associated with the number B of banks.				
1	2. The method of claim 1, wherein the protocol type includes at least a first				
2	operation type different from a second operation type.				

- 3. The method of claim 2, wherein the first operation type includes a single-instruction multiple-data operation type, and wherein the second operation type includes a multiple-instruction multiple-data operation type.
- 4. The method of claim 1, further including:
 selecting a first group size for a first data processing unit different than a
 second group size selected for a second data processing unit, wherein the first
 data processing unit and the second data processing unit are capable of
 addressing the number B of banks.
- 5. The method of claim 1, wherein the indication of a protocol type is selected from one of a hardware indication and a software indication.
- 6. The method of claim 1, wherein the memory access group size is associated with a selected number of access bits.

1	7. The method of claim 1, further including:				
2	configuring a crossbar to operate using the memory access group size				
3	responsive to receiving the indication of the change in the protocol type.				
1	8. An article including a machine-accessible medium having associated				
2	information, wherein the information, when accessed, results in a machine				
3	performing:				
4	selecting a memory access group size of about 2 ^N memory banks responsive				
5	to receiving an indication of a change in a protocol type, wherein the group is				
6	selected from a number B of banks, wherein N is associated with the protocol				
7	type, and wherein N is selected so that 2N is less than or equal to about B so that				
8	a plurality of logical addresses associated with the 2 ^N memory banks is mapped				
9	to a plurality of physical addresses associated with the number B of banks.				
1	9. The article of claim 8, wherein the protocol type is selected from at least one				
2	of a single-instruction multiple-data operation type, a multiple-instruction				
3					
4	multiple-data operation type, and a combination of the single-instruction				
	multiple-data operation type and the multiple-instruction multiple-data operation				
5	type.				
1	10. The article of claim 8, wherein the information, when accessed, results in a				
2	machine performing:				
3	selecting a first memory access group size for a first data processing unit				
4	different than a second memory access group size; and				
5	selecting the second memory access group size for a second data processing				

unit, wherein the first data processing unit and the second data processing unit

are capable of addressing the number B of banks.

6

7

1 1	Αn	annaratus	including:
1 1		apparatus,	moraum _e .

1

2

3

4

5

6

7

1

2

3

4

a selection module to select a memory access group size for at least one data processing unit of about 2^N memory banks responsive to receiving an indication of a change in a protocol type, wherein the group is selected from a number B of banks, wherein N is associated with the protocol type, and wherein N is selected so that 2^N is less than or equal to about B so that a plurality of logical addresses associated with the 2^N memory banks is mapped to a plurality of physical addresses associated with the number B of banks.

8

12. The apparatus of claim 11, further including:

a plurality of data processing units including the at least one data processing units, wherein the plurality of data processing units is capable of addressing the number B of banks.

- 1 13. The apparatus of claim 12, wherein the plurality of data processing units and 2 the number B of banks are included in a single processing element.
- 1 14. The apparatus of claim 12, wherein the memory access group size 2^{N} is 2 selected from a group of numbers including two raised to a positive integer 3 power, including 2, 4, ..., B.
- 1 15. The apparatus of claim 12, further including:
- a hardware address generator to generate an address located in the 2^N 2 3 memory banks.
- 1 16. A system, including:
- a selection module to select a memory access group size of about 2^N memory 2 3 banks responsive to receiving an indication of a change in a protocol type, 4 wherein the group is selected from a number B of banks, wherein N is

5	associated with the protocol type, and wherein N is selected so that 2 ^N is less			
6	than or equal to about B so that a plurality of logical addresses associated with			
7	the 2 ^N memory banks is mapped to a plurality of physical addresses associated			
8	with the number B of banks;			
9	a data processing unit capable of addressing the number B of banks; and			
10	an omnidirectional antenna to transmit data processed by the data processing			
11	unit.			
1	17. The system of claim 16, further including:			
2	a bus to couple the data processing unit to one of the number B of banks.			
1	18. The system of claim 16, further including:			
2	a memory to store a plurality of memory access group sizes indexed to a			
3	corresponding plurality of protocol types.			
1	19. The system of claim 16, further including:			
2	a transceiver to couple a processing element including the data processing			
3	unit to the omnidirectional antenna.			
1	20. An apparatus, including:			
2	a number B of memory banks addressable using a memory access group size			
3	of about 2 ^N memory banks responsive to receiving an indication of a change in a			
4	protocol type, wherein the group is selected from the number B of banks,			
5	wherein N is associated with the protocol type and selected so that 2 ^N is less			
6	than or equal to about B and wherein the protocol type consists of a single-			
7	instruction multiple-data operation type, a multiple-instruction multiple-data			

operation type, and a combination of the single-instruction multiple-data

operation type and the multiple-instruction multiple-data operation type.

8

9

- 1 21. The apparatus of claim 20, wherein the memory access group size is
- 2 reprogrammable and is selectable in software.
- 1 22. The apparatus of claim 20, further including:
- a hardware element to store a plurality of output indications based on a
- 3 corresponding plurality of memory access group sizes and responsive to a
- 4 corresponding plurality of protocol type indications.
- 1 23. A method, including:
- 2 controlling a bandwidth of a memory coupled to a plurality of data
- processing units responsive to a number of data processing units in use so that a
- 4 plurality of logical addresses associated with the memory is mapped to a
- 5 plurality of physical addresses associated with the memory.
- 1 24. The method of claim 23, wherein the number of data processing units in use
- 2 is responsive to an indication provided by an application to be executed.
- 1 25. The method of claim 23, wherein the bandwidth of the memory is associated
- with a selected number of access bits provided by the plurality of data
- 3 processing units.
- 1 26. The method of claim 23, wherein controlling the bandwidth further includes:
- 2 controlling an address mapping function of the memory.