

A new generation of tech specialists

Machine Learning for Assessing Soil Liquefaction Risk in Seismic Zones

by:

Wisam Mohamed

Project Description

- Risk management project
- Directly relevant to SDG 11 (Sustainable Cities and Communities)

Goals and Objectives

- Building a liquefaction prediction model By analyzing historical earthquake data and geotechnical parameters
- Using the model as a helping tool in mitigating the risks associated with liquefaction

REPORT NO: METU/EERC 2023-01

Importance and Rationale

Air

Water

Solid

Where:

 $\sigma\equiv$ Total normal stress(F/A) $\sigma'\equiv$ Effective normal stress $u\equiv$ Pore water pressure

- Liquefaction is the process in which a mass of soil loses its strength and starts to behave like a liquid
- Need?
- Severe damages
- Financial burden

The forms of damage

- Tilting
- Sinking
- Floating
- Lateral movement

IkuoTowhata, GEE, 2008 Springer

Value Propositions

- Field methods: SPT, CPT, shear wave velocity
- Laboratory methods: triaxial test, cyclic direct simple shear test, centrifuge modeling, shake table test.
- Analytical methods
- Numerical methods
- AI methods

Traditional methods

Accuracy is limited (because of the complexity of geological formations)

ML Models

 transformative opportunity to overcome the accuracy challenges

Project Elements

Data Collection

Data Processing

Feature Engineering

Data Normalization

Dataset Splitting

Model Training and Evaluation

Deep Learning Model

Model Deployment and **Monitoring**

Risk Assessment API

Project Development

Table 1 distribution of cases across non-liquefied and liquefied conditions

cases	SPT	CPT	Vs
Non -Liquefied	412	511	505
Liquefied	311	175	585

Model Selection

Table 1 qc1Ncs_MODELs evaluation metrics

	Accuracy (Training)	Precision (Training)			AUC (Training)	Accuracy (Validation)	Precision (Validation)	Recall (Validation)			Accuracy (Test)	Precision (Test)	Recall (Test)	F1 Score (Test)	AUC (Test)
del															
:l_2	0.9108	0.9063	0.9811	0.9422	0.9686	0.7887	0.8033	0.9423	0.8673	0.7753	0.8889	0.9298	0.9298	0.9298	0.9135
:I_3	0.8794	0.8867	0.9599	0.9219	0.9422	0.8028	0.8276	0.9231	0.8727	0.8077	0.8611	0.9123	0.9123	0.9123	0.9404
_12	0.9073	0.9095	0.9717	0.9396	0.9483	0.7746	0.8000	0.9231	0.8571	0.7864	0.8472	0.8966	0.9123	0.9043	0.9193
_13	0.8811	0.8991	0.9458	0.9218	0.9320	0.8028	0.8276	0.9231	0.8727	0.7804	0.8472	0.8966	0.9123	0.9043	0.9263

Model selection

Accuracy (testing)=84.72%

Deployment

Figure 1 user interface for liquefaction prediction

Conclusion and Futurework

- 1. Enhanced Performance:
- Refinement and testing phases significantly improved machine learning models for liquefaction susceptibility prediction using CPT data.
- 2. SPT and Vs Models:
- Deep learning models effectively classify liquefaction potential but show lower accuracy compared to CPT models.
- 3. Future Directions:
- Focus on exploring alternative algorithms and refining deep learning models for SPT and Vs datasets to enhance predictive accuracy and robustness.

