Medios de transmisión

Adaptación

¿Dónde estamos en el modelo?

APLICACIÓN
TRANSPORTE
RED
ENLACE
FÍSICA

- Comenzamos de abajo hacia arriba.
- Iniciando en la capa física

Medios de transmisión

- Señal: variación en el tiempo de un fenómeno físico (voltaje, corriente, luz) con un propósito específico.
- Señales digitales
 - Toma valores discretos
- Señales análogas
 - Toma valores en un rango continuo
- Nos interesa saber qué medios usamos para enviar las señales

Alcance de la capa física

- Objetivo: transmisión de bits puros a través de canal.
- ¿Qué señales eléctricas se deben usar para representar un uno (1) y un cero (0)?
- ¿Cuántos nanosegundos debe durar un bit?

- ¿Cómo se establece la conexión inicial y cómo se interrumpe cuando terminan?
- ¿Cuántos pines tiene el conector de red y para qué sirve cada uno?
- Aspectos de diseño físico
 - Interfaz eléctrica, mecánica y temporización.

- Dos cables de cobre aislados (1mm)
- Trenzados en forma helicoidal
- Se pueden usar para transmitir información analógica o digital
- Ancho de banda (en Hz) depende del grosor del cable
- Logran buena tasa de Mbps/s
- Cada estándar define cuales pares se usan para qué propósito
 - Ethernet a 100 Mbps: usa solo dos de los cuatro pares
 - Uno para cada dirección (RX, TX)
 - Ethernet 1000 Mbps: usa los cuatro pares full dúplex

• Par trenzado (estándares de la industria)

Tecnología	Velocidad de transmisión	Tipo de cable	Distancia máxima	Topología
10Base5	10 Mbit/s	Coaxial grueso	500 m	Bus (Conector AUI)
10Base2	10 Mbit/s	Coaxial delgado	185 m	Bus (Conector T)
10BaseT	10 Mbit/s	Par Trenzado	100 m	Estrella (Hub o Switch)
10BaseF	10 Mbit/s	Fibra óptica	2000 m	Estrella (Hub o Switch)
100BaseT4	100 Mbit/s	Par Trenzado (categoría 3UTP)	100 m	Estrella. Half Duplex (hub) y Full Duplex (switch)
100BaseTX	100 Mbit/s	Par Trenzado (categoría 5UTP)	100 m	Estrella. Half Duplex (hub) y Full Duplex (switch)
100BaseFX	100 Mbit/s	Fibra óptica	2000 m	No permite el uso de hubs
1000BaseT	1000 Mbit/s	Par Trenzado (categoría 5e ó 6UTP)	100 m	Estrella. Full Duplex (switch)
1000BaseTX	1000 Mbit/s	Par Trenzado (categoría 6UTP)	100 m	Estrella. Full Duplex (switch)
1000BaseSX	1000 Mbit/s	Fibra óptica (multimodo)	550 m	Estrella. Full Duplex (switch)
1000BaseLX	1000 Mbit/s	Fibra óptica (monomodo)	5000 m	Estrella. Full Duplex (switch)
10GBaseT	10000 Mbit/s	Par Trenzado (categoría 6a ó 7UTP)	100 m	
10GBaseLR	10000 Mbit/s	Fibra óptica (monomodo)	10000 m	
10GBaseSR	10000 Mbit/s	Fibra óptica (multimodo)	300 m	

Tanalagía

Estándar Ethernet

- Cableado
 - Conectores
 - Long. Max.
 - Topología
- Señalización
- Formatos de trama (enlace)
- 802.3

- Par trenzado
 - Conectores
 - Conector 8P8C
 - Estándar RJ45: 8P8C + No. De hilos + Orden de los hilos
 - Cable cruzado
 - Cable directo
 - Normas: T-568A y T-568B

- Par trenzado
 - T568-A

RJ-45 Pin	Wire Color (T568A)	Wire Diagram (T568A)	10BASE-T 100BASE-T	1000BASE-T Signal
1	White/Green		Transmit+	BI_DA+
2	Green		Transmit-	BI_DA-
3	White/Orange		Receive+	BI_DB+
4	Blue		Unused	BI_DC+
5	White/Blue		Unused	BI_DC-
6	Orange		Receive-	BI_DB-
7	White/Brown		Unused	BI_DD+
8	Brown		Unused	BI_DD-

- Par trenzado
 - T568-B

RJ-45 Pin	Wire Color (T568B)	Wire Diagram (T568B)	10BASE-T 100BASE-T	1000BASE-T Signal
1	White/Orange		Transmit+	BI_DA+
2	Orange		Transmit-	BI_DA-
3	White/Green		Receive+	BI_DB+
4	Blue		Unused	BI_DC+
5	White/Blue		Unused	BI_DC-
6	Green		Receive-	BI_DB-
7	White/Brown		Unused	BI_DD+
8	Brown		Unused	BI_DD-

Medios de transmisión guiados

- Cable directo: T568A T568A
 - DTE a DCE
 - DCE a DTE
 - Ejemplos:
 - Host a switche.
 - Enrutador a switche.
 - Ambos extremos con el mismo estándar. P. Ej.: T568A
 - Se usa ponchadora. No hay que "pelar" los hilos individuales.
 - Al ponchar, el hilo queda haciendo contacto con el pin del conector

- Cable cruzado: T568A T568B
 - DTE a DTE
 - DCE a DCE
 - Ejemplos:
 - Switche a switche.
 - Concentrador a concentrador
 - Host a host
 - Concentrador a switche
 - Enrutador directo a host.
 - Se usa ponchadora. No hay que "pelar" los hilos individuales.

- ¿Por qué usar cable cruzado?
 - Pares definidos 100 BASE TX
 - 1 & 3 2 & 6 (ver tablas de uso de los pines)
 - Cada hilo en el par es un medio tipo SIMPLEX
 - La señal cruza el cable solo en una dirección.
 - Se necesita medio FULL-DÚPLEX
 - Se separan hilos para cada dirección
 - Unos pares de hilos en una dirección
 - Otros pares de hilos en dirección opuesta
 - Hilos 1 & 2 → TX+ & TX-

- Hilos 3 & 6 → RX+ & RX-
- Por eso se organiza en: 1 & 3 − 2 & 6
- El flujo siempre de un par RX a un par TX.
- Una tarjeta de red (NIC)
 - MDI (Media Dependent Interface)
 - TX: par 2, pines 1 & 2.
 - RX: par 3, pines 3 & 6.
 - MDI-X (Media Dependent Interface Crossover)
 - TX: par 3, pines 3 & 6.
 - RX: par 2, pines 1 & 2

- ¿Por qué usar cable cruzado?
- Caso 1: de PC a PC
 - Ambos PC tiene NICs
 - Cada NIC
 - TX: par 2.
 - RX: par 3.
 - Sin cruzar las señales en los pines, las señales colisionan.

- Par trenzado:
 - ¿Por qué usar cable cruzado?
 - Caso 2: de host a switch a host
 - Switch usa especificación MDI-X
 - Se usa cable directo porque el switche incorpora el cruzado de las señales.

- ¿Por qué usar cable cruzado?
- Caso 3: de host a switche a switche a host
 - Switche usa especificación MDI-X.
 - Dos switches usan los mismos pares para TX y RX por lo que se requiere cruzar la señal entre los pines.
 - Los hosts al final transmiten de forma consistente entre los elementos intermedios.
 - De un par TX a un par RX

- Par trenzado (cont.):
 - ¿Por qué usar cable cruzado?
 - Caso 4: enrutadores
 - Usan especificación MDI
 - Caso 5: concentradores
 - Usan especificación MDI-X
 - Caso 6: tarjetas Auto MDI-X
 - Realizan el cruzado de señales de manera automática
 - No se requiere cable cruzado
 - No todas las tarjetas soportan esta característica (100 BASE-TX)

- Se usa siempre el cable directo para cualquier conexión Auto MDI-X
- Las partes determinan dinámicamente si necesitan invertir los pares TX y RX
- Opcional en especificación 100 BASE T
- Requerido para 1000 Gbps Ethernet
 - 1000 BASE-T
 - UTP 5e+
 - 250 Mbps/par

- Par trenzado (cont.):
 - Código de colores para el conector 8P8C.

- Par trenzado (cont.)
 - Tipos
 - UTP: Sin protección adicional más que el sellado de PVC.
 - Bastante común en instalaciones.
 - **STP:** Protección de cada par + malla protectora.
 - Exteriores, más costoso.
 - Uso en áreas de niveles altos de interferencia electromagnética.
 - Más difícil de instalar.
 - Requiere aterrizaje de aislamiento en cada extremo.

- FTP: No hay apantallamiento individual de los pares, se añade protección global.
 - Precio intermedio.

- Especificación Ethernet
 - Cableado: Terminología .* BASE-T.*
 - Cómo son usados los hilos dentro del cable
 - ¿Cuáles para transmitir?
 - ¿Cuáles para recibir?
 - ¿Cómo transmitir las señales?
 - ¿Qué voltajes?
 - Especificación 100 BASE-T
 - El **Número** → Indica Mbps (Megabits por segundo)
 - 100 Mbps → 100,000,000 bits/s

- 100,000,000 → 12.5 MBps (Megabytes por segundo)
- Fast Ethernet → (100 Mbps)
- La palabra BASE → Señalización banda base.
 - No hay modulación de la señal.
 - Se transmiten en su frecuencia original.
- Letra -T → Par trenzado (Twisted pair)
 - -SR (F.O Short Range)
 - -LR (F.O Long Range)

- Especificación Gigabit Ethernet
 - Usa los 4 pares (se usan los 8 hilos)
 - Se requiere cruzar los 8 hilos en un cable cruzado.
 - Sin embargo, Auto MDI-X es obligatorio en Gigabit Ethernet

- Especificación Gigabit Ethernet (cont.)
 - 1000 BASE-TX
 - Dos pares dedicados a TX
 - Dos pares dedicados a RX
 - Requiere cable UTP categoría 6
 - No muy popular cuando se tiene cableado 5e.
 - Costoso actualizar todo el cableado a 6

• 1000 BASE-T

- Usa los 4 pares al mismo tiempo en modo full-dúplex
- Cada par puede ser usado para RX y TX al mismo tiempo.
- Funciona en UTP categoría 5e.

Cable coaxial

- Mejor blindaje, mayor ancho de banda.
- Mayor velocidad y mayor distancia.
 - Anchos de banda del orden los GHz.
 - Mas rígido
 - Mas costoso
- Dos tipos comúnmente usados:
 - 50 Ohms. -> Transmisión digital
 - 70 Ohms. > Transmisión analógica.
- Usado ampliamente en redes MAN.

Coaxial (HFC)

- Luz es onda electromagnética posee tres propiedades: reflexión, refracción y difracción.
- Transmisión de datos usando F.O se basa en el principio de refracción de la luz.
 - Depende del material (índice de refracción)
- Cuando la luz pasa de un medio a otro, el rayo se refracta (dobla) en el límite de los medios

- Sistema de transmisión de datos con fibra óptica con tres componentes.
 - Fuente de luz (LED o LÁSER) que convierte la energía eléctrica en pulsos de luz.
 - Fibra óptica que transporta los pulsos de luz.
 - Fotodetector que convierte los pulsos de luz en energía eléctrica.
 - Para operar en full-dúplex requiere el mismo sistema en sentido contrario o multiplexión WDM.

 α_1 : Ángulo de incidencia

 β_1 : Ángulo con el que emerge el rayo de luz

 $\alpha_3 >$ ángulo crítico: la luz regresa al sílice

Rayo de luz que incide con un ángulo mayor o igual al ángulo crítico queda atrapado dentro del medio

- Se construye a partir de vidrio o plásticos altamente puros.
- Los materiales con dieléctricos por tanto no conducen electricidad.
- Permite múltiples tipos de tráfico: voz, datos, video.
- Se utiliza transmisión principalmente digital.

- Dependiendo del diámetro del núcleo se clasifican en:
 - Monomodo: Núcleo diámetro entre 8 y 10.5 μm (micrón, micra) + revestimiento de 125 μm
 - No tiene degradación de la señal
 - Baja dispersión
 - Empleada en transmisiones a largas distancias: 100 Gbps ~ 100Km
 - 400 Km con láser de alta densidad.
 - De más cuidado

- Mas costosa
- Fibra típica 10/125 μm
- La luz se propaga en "línea recta", un solo camino, un solo modo.
- Mayor velocidad.
- Se emite luz con LASER

- Dependiendo del diámetro del núcleo se clasifican en:
 - Multimodo: Núcleo diámetro alrededor de 62.5 μm (micrón, micra) + revestimiento de 125 μm.
 - Mas económica
 - Menor distancia < 2 Km
 - La luz sigue diferentes caminos o modos.
 - Todos los haces no llegan a la vez.
 - Se emite luz con LED o LASER
 - Fibras típicas:

- 62.5/125 μm.
- 50/125 μm.
- Soporta Gigabit Ethernet

- Número de fibras ópticas en el cable.
 - Dependen de la intención de uso del cable.
 - Incrementa el tamaño del cable, la capacidad y el costo.
 - Tres categorías:
 - Cable de fibra simplex
 - Un solo hilo de fibra dentro de él.
 - Hay que conservar la polaridad en ambos extremos de la conexión: TX con TX – RX con RX.

- Cable de fibra dúplex
 - Dos hilos de fibra RX/TX.
- Cable de fibra multifibra → Varios hilos de fibra.
- Para transmitir datos se requieren dos hilos de F.O.: Uno RX y otro TX.

- Fibra óptica
 - Conectores

Conector SC Dúplex

Conector LC Dúplex

Conector SC Simplex

Conector LC Simplex

- Fibra óptica
 - Conectores

Medios de transmisión guiados

• Fibra óptica

- Conexión a switch de datos
 - Se requiere transceiver externo o módulo SFP (Small Form Factor Pluggable)
 - Debe tenerse presente:
 - Fibra monomodo
 - Fibra multimodo
 - Tipo de conector
 - 1 Gbps
 - 10 gbps
 - El switch debe soportar las velocidades.

Transceiver SFP mini-gbic con entrada LC a 1Gbps

Transceiver de F.O a UTP

- Hasta el siglo XVIII fenómenos eléctricos y magnéticos no tenían explicación. Eran una simple atracción.
- En 1864 James Clerk Maxwell crea teoría electromagnética.
- Heinrich Hertz genera y recibe ondas en 1887.
- Marconi las usa en el primer telégrafo inalámbrico en 1.899.
- En la actualidad se utilizan en múltiples aplicaciones: TV, Radio, Celulares, Controles remotos, etc.

- No requieren medio material/físico para propagar señales
- Emisor irradia su señal en varias direcciones (omnidireccional)
 - También los hay direccionales usando antenas parabólicas
- Existen potenciales receptores de la señal
- Señales cercanas que usen la misma frecuencia interfieren en el receptor, se necesita un uso coordinado del medio.
 - Administrar el espectro electromagnético
- Espectro electromagnético
 - Dividir el espacio en bandas o rangos de frecuencia en las que las características de las ondas son similares

- Las ondas de radio, microondas, las infrarrojas y la luz se pueden usar para transmisión de información.
- Los rayos ultravioleta, los rayos X y los rayos gamma son de mayor frecuencia pero difíciles de producir y modular. Además son perjudiciales para los seres vivos.

- No se pueden emitir señales de ciertas frecuencias:
 - Luz ultravioleta, rayos X y rayos gamma son de alta frecuencia
 - No se propagan bien entre edificios
 - Peligrosas para los seres vivos
 - Regulaciones gubernamentales
- Mayor frecuencia → Potencial mayor ancho de banda
 - Transiciones de la señal
 - Potencia de la señal
- Sensibles a la seguridad

WiFi funciona en la banda ISM (Industriales, Científicas y Médicas)

- Los gobiernos usualmente regulan porciones del espectro para
 - AM, FM, TV, Telefonía Móvil
 - Comunicaciones militares
 - Comunicaciones gubernamentales
 - Comunicaciones marítimas
- Banda ISM no necesita licencia gubernamental

Protocolo	Descripción
802.11 Legacy	Velocidades teóricas de 1 Mbps y 2 Mbps.
802.11a	Banda de 5 GHz, usa OFDM. 54 Mbps ~ 20 Mbps debido a corrección de errores. 12 canales sin solapa. 8 Infraestructura y 4 Ad-hoc.
802.11b	Banda de 2.4 GHz. Usa CSMA/CA. 11 Mbps $^{\sim}$ 5.0 Mbps en TCP y $^{\sim}$ 7.1 Mbps en UDP. Susceptible a interferencias de otros dispositivos.
802.11c	Conexión inalámbrica de dos redes diferentes. Una versión modificada del 802.11d
802.11d	Adiciona restricciones regulatorias.
802.11e	Entornos públicos, empresariales y de hogar. Añade QoS, soporte multimedia inalámbrica. Aplicaciones en tiempo real. Requerimientos de aplicaciones con garantías de QoS
802.11f	Específicamente para proveedores de AP. Garantizar compatibilidad. Cambiar de ESS.
802.11g	Banda de 2.4 GHz. 54 Mbps $^{\sim}$ 22 Mbps. Compatible con 802.11b. Entornos mixtos degradan calidad. Potencia para 50Km. 802.11g+ \rightarrow 108 Mbps, protocolos propietarios.

Protocolo	Descripción
802.11h	Coexistencia con sistemas de radares o satélites. Opción de manipular frecuencia y potencia de transmisión.
802.11i	Seguridad: TKIP y AES implementados en WPA2.
802.11j	Equivalente a 802.11h en Japón.
802.11k	Valorar recursos de radiofrecuencia, optimizar transmisiones Implementación basada en software.
802.11n	600 Mbps (capa física). MIMO: Varios canales a la vez, varias antenas. Trabaja en las bandas de 2.4 GHz y 5 GHz. Futuro 802.11ac → 1Gbps.
802.11p	5.9 GHz – 6.20 GHz comunicaciones de corto alcance. Intercambio de datos entre vehículos en una infraestructura de carretera.
802.11r	Identificación de protocolos de seguridad cuando hay transición entre nodos. Logrando retardo de 50ms> VoIP.
802.11v	Configuración remota de dispositivos cliente. Gestión remota: posicionamiento, ahorro de energía, temporización, coexistencia.
802.11w	Mejorar la capa de control de acceso al medio. Mejorar seguridad protocolos de autenticación y codificación.

• Throughput – 802.11g (UDP)

• Throughput – 802.11n (UDP)

throughut envelope with 802.11n (40MHz Channelwidth)

Fuente: https://en.wikipedia.org/wiki/Wireless_LAN

Otros temas

- Radiotransmisión
- Telefonía celular
- Microondas
- Infrarrojos
- Señalización óptica (laser unidireccional)
- Satélites de comunicación

Referencias

- Wetherall, David J. *Computer Networks 2-5 Limits*. https://www.youtube.com/watch?v=PKDVX7Rf2tg
- Tanenbaum A., and Wetherall D. *Redes De Computadoras* 5th ed., Pearson Educación, México, 2012.