Formules Mathématiques

Production Solaire Pps(t):

Ensembles (Production Solaire):

$$T = \{1, ..., 35 \ 040\}$$
: Périodes de 15 minutes pour chaque jour de l'année ($\Delta t = 0.25 \ h$)
 $N_{ps} = \{0, ..., n_{ps}\}$: Nombre des panneaux solaires (1.1)

Paramètres (Production Solaire):

= 100 : Irradiation solaire a condition STC (W/m²)

 $k_{ps} = -0.38$: Coefficient de température $P_{ps}^{STC} = 327$: Puissance nominale des panneaux solaires à condition STC (W) (1.2)

 $T_{ps}^{STC} = 25$: Température à condition STC (°C)

 $T_{ps}^{NOCT} = 45$: Température d'opération de la cellule à condition STC (°C)

Rendement - Efficacité des panneaux solaires (%) = 20

 $G_{ps}(t)$: Radiation dans chaque $t \in T(W/m^2)$

 $T^{c}(t)$: Température cellule dans chaque $t \in T({}^{\circ}C)$ (1.3)

 $T^a(t)$: Température ambiante dans chaque $t \in T({}^oC)$

$$P_{ps}(n_{ps}, t)$$
: Puissance des panneaux $n_{ps} \in N_{ps}$, pendant la période $t \in T(W)$ (1.4)

Contraintes (Production Solaire):

$$P_{ps}(t) = \eta_{ps} \cdot P_{ps}^{STC} \frac{G_{ps}(t)}{G_{ps}^{STC}} \left[1 + k_{ps} (T^c(t) - T_{ps}^{STC}) \right]$$
(1.5)

$$T^{c}(t) = T^{a}(t) + \frac{T_{ps}^{NOCT} - T_{ps}^{STC}}{G_{ps}^{STC}} * G_{ps}(t)$$
(1.6)

^{*}STC (Standard Test Conditions)

Production Éolienne Pwt(t):

Ensembles (Production Éolienne):

$$T = \{1, ..., 35\ 040\}$$
: Périodes de 15 minutes pour chaque jour de l'année ($\Delta t = 0.25h$)
 $N_{wt} = \{0, ..., n_{wt}\}$: Nombre des générateurs éoliennes (2.1)

Paramètres (Production Éolienne):

: Coefficient de puissance, dans le meilleur des cas, CP≈ 0.59

= 7 000 : Puissance nominale générateur éolienne (W)

 $S_{wt} = 2.35$: Surface du flux d'air, mesurée dans un plan perpendiculaire à la

direction de la vitesse du vent (m²)

 $V_{wt}^{dem} = 3$: Vitesse de démarrage (m/s) $V_{wt}^{nom} = 10$: Vitesse nominale du vent (m/s) $V_{wt}^{arr} = 50$: Vitesse d'arrête (m/s) (2.2)

 $\eta_{wt} = 0.8$: Rendement - Efficacité des turbines éolienne (%)

= 1.2 : La masse volumique de l'air (kg/ m³) ρ_a

 $V_{wt}(t)$: Vitesse du vent dans le période de temp $t \in T(m/s)$ (2.3)

 $P_{wt}(n_{wt},t)$: Puissance des générateurs éolienne $n_{wt} \in N_{wt}$, pendant la période $t \in T(W)$ (2.4)

Contraintes (Production Éolienne):

$$P_{wt}(t) = \begin{cases} V_{wt}(t) < V_{dem} & P_{wt}(t) = 0 \\ V_{wt}^{dem} \le V_{wt}(t) \le V_{wt}^{nom} & P_{wt}(t) = \eta_{wt} * \left(\frac{1}{2} \cdot \rho_a \cdot S_{wt} \cdot V_{wt}^{3}(t) \cdot CP_{wt}\right) \\ V_{wt}^{nom} \le V_{wt}(t) \le V_{wt}^{arr} & P_{wt}(t) = P_{wt}^{nom} \\ V_{wt}^{arr} \le V_{wt}(t) & P_{wt}(t) = 0 \end{cases}$$
(2.5)

3

Consommation du Réseau de Distribution Pres(t) :

Ensembles (Réseau de Distribution) :

$$T = \{1, ..., 35\,040\}$$
: Périodes de 15 minutes pour chaque jour de l'année ($\Delta t = 0.25\,h$) (3.1)

Paramètres (Réseau de Distribution) :

Tarif D

$$P_{TD}^{max} = 50$$
 : Puissance maximale que le consommateur peut avoir avec le tarif D (kW) (3.2)

$$\pi_{TD}^{en1} = 0.0670$$
 : Prix de l'énergie pour les premiers 40 kWh d'un mois avec le tarif D (\$CAD/kWh)

$$\pi_{TD}^{en2} = 0.1034$$
: Prix de l'énergie après les 40 kWh de consommation d'un mois avec (3.3)

le tarif D (\$CAD/kWh)

$$\pi_{TD}^{acc} = 0.4481$$
 : Frais d'accès au réseau pour chaque jour (\$CAD/kWh)

Crédit hivernal

: Matrice des points critiques :

$$M_{CH}^{HP}(t) = \begin{cases} 0 \\ 1 \end{cases}$$
 1 indique qu'HQ a mentionné que c'est un point hivernal, 0 que ce n'en (3.4) est pas un.

$$\pi_{CH}^{ene} = 0.5513$$
 : Prix de l'énergie pour le kilowattheure d'énergie effacée (\$CAD/kWh), la diminution devrai être plus de 2 kilowattheures (3.5)

$$P_{res}(t)$$
: Puissance du Réseau de Distribution, pendant la période $t \in T(W)$ (3.6)

Contraintes (Réseau de Distribution) :

$$\sum_{t=1}^{T} HP_{CH}(t) \Delta t = 100$$

$$Dur\'ee maximale des \'ev\'enements par p\'eriode d'hiver (heures)$$

$$0 \le P_{res}(t) \le P_{TD}^{max}$$

$$(3.7)$$

Véhicules Électriques Pve(t):

(4.4)

Ensembles (Véhicules Électriques):

= $\{1, ..., 35, 040\}$: Périodes de 15 minutes pour chaque jour de l'année ($\Delta t = 0.25 h$)

Nombre des véhicules électriques (qui fonctionnent comment (4.1) $N_{ve} = \{0, ..., n_{ve}\}$

batterie)

Paramètres (Véhicules Électriques) :

 EV_{ve} =40~000: Capacité de la batterie du véhicule électrique (Wh)

 $P_{ve}^{ch,max}$ = 10000: Puissance de charge maximale de la batterie du véhicule électrique

(Wh)

 $P_{ve}^{dch,max}$ = 10000: Puissance de décharge maximale de la batterie du véhicule

électrique (Wh)

 SOC_{ve}^{max} (4.2)= 80: État maximal de la batterie du véhicule électrique (%)

 SOC_{ve}^{min} =20: État minimum de la batterie du véhicule électrique (%)

 SOC_{ve}^{soh} =50: État souhaite minimum de la batterie du véhicule électrique (%)

 η_{ve}^{ch} *= 90* : Efficacité de la charge de la batterie de l'onduleur η_{ve}^{dch} = 90 : Efficacité de décharge de la batterie de l'onduleur

 $= \begin{cases} 0 & : & \textit{Matrice d'état de connexion des véhicules électriques:} \\ 1 & : & \textit{Indiano un étal de la politique de la poli$

1 indique un état occupé, 0 un état libre.

 $=\zeta$: État de la batterie du véhicule électrique au moment du arrive \forall $SOC_{ve}(t_{arrive})$ (4.3)

 $n_{ve} \in N_{ve}$ (%), [Aléatoire Gaussienne]

État de la batterie du véhicule électrique au moment du départ ∀ $SOC_{ve}(t_{départ})$

 $n_{ve} \in N_{ve}$ (%)

 $\delta_{ve}^{ch}(\mathbf{n}_{ve},t) \ = \left\{ \begin{matrix} 1 & \acute{e}tat\ charge \\ 0 & sinon \end{matrix} \right.$: On/off pour la charge de la batterie du véhicule

électrique à $n_{ve} \in N_{ve}$, $t \in T$.

 $\delta_{ve}^{dch}(\mathbf{n}_{ve},t) = \begin{cases} 1 & \text{\'etat decharge} \\ 0 & \text{sinon} \end{cases} : \begin{array}{l} \textit{On/off param\`etre binaire pour la d\'echarge de la} \\ \textit{batterie du v\'ehicule \'electrique \'a } \\ \textit{n_{ve}} \in \textit{N_{ve}}, \ t \in \textit{T} \end{cases}$

Variables Décisionnelles (Véhicules Électriques) :

: Puissance de charge de la batterie du véhicule électrique $n_{ve} \in N_{ve}$ $P_{ve}^{ch}(\mathbf{n}_{ve},t)$

pendant la période $t \in T(W)$

 $P_{ve}^{dch}(\mathbf{n}_{ve},t)$: Puissance de décharge de la batterie du véhicule électrique $n_{ve} \in N_{ve}$, (4.5)

pendant la période $t \in T(W)$

 $SOC_{ve}(n_{ve},t)$: État de charge de la batterie du véhicule électrique $n_{ve} \in N_{ve}$, pendant la

période t ∈ T(%)

Contraintes (Véhicules Électriques) :

Seulement si $M_{ve}^{con}(t) = 1$

$$SOC_{ve}(t + \Delta t) = SOC_{ve}(t) + \left(\eta_{ve}^{ch} \cdot P_{ve}^{ch}(t) - \frac{P_{ve}^{dch}(t)}{\eta_{ve}^{dch}}\right) \Delta t$$

$$(4.6)$$

$$\delta_{ve}^{ch}(\mathbf{n}_{ve},t) = 1$$
 $Si M_{CH}^{HP}(t) = 0$ $\delta_{ve}^{dch}(\mathbf{n}_{ve},t) = 1$ $Si M_{CH}^{HP}(t) = 1$ (4.7)

$$\delta_{ve}^{dch}(\mathbf{n}_{ve},t) + \delta_{ve}^{dch}(\mathbf{n}_{ve},t) \leq 1$$

$$0 \le P_{ve}^{ch}(\mathbf{n}_{ve}, t) \le \frac{P_{ve}^{ch, max}}{\eta_{ve}^{ch}} * \delta_{ve}^{ch}(\mathbf{n}_{ve}, t)$$
(4.8)

$$0 \leq P_{ve}^{dch}(\mathbf{n}_{ve},t) \leq \eta_{ve}^{dch}.P_{ve}^{dch,max}.\delta_{ve}^{dch}(\mathbf{n}_{ve},t)$$

$$SOC_{ve}^{min} \leq SOC_{ve}(n_{ve}, t) \leq SOC_{ve}^{max}$$

$$SOC_{ve}^{min} \le SOC_{ve}(n_{ve}, t_{arrive}) \le SOC_{ve}^{max}$$
(4.9)

$$SOC_{ve}^{soh} \leq SOC_{ve}(\mathbf{n}_{ve}, t_{d\acute{e}part}) \leq SOC_{ve}^{max}$$

Batteries Pbat(t):

Ensembles (Batteries):

$$T = \{1, ..., 35\ 040\}$$
: Périodes de 15 minutes pour chaque jour de l'année ($\Delta t = 0.25\ h$)
 $N_{bat} = \{0, ..., n_{bat}\}$: Nombre des batteries (5.1)

Paramètres (Batteries):

= 19200Capacité de la batterie (Wh) E_{bat}

 $P_{bat}^{ch,max}$ = 10000Puissance de charge maximale de la batterie (Wh)

 $P_{bat}^{dch,max}$ = 10000: Puissance de décharge maximale de la batterie (Wh)

 SOC_{bat}^{max} =80: État maximal de la batterie (%) (5.2)

 SOC_{bat}^{min} =20: État minimum de la batterie (%)

 η_{bat}^{ch} = 90: Efficacité de la charge de la batterie de l'onduleur η_{bat}^{dch} = 90: Efficacité de décharge de la batterie de l'onduleur

$$SOC_{bat}(t_0) = SOC_{bat}^{max}$$
: État de la batterie au moment $t=0 \ \forall \ n_{ve} \in N_{ve} \ (\%)$ (5.3)

 $\delta_{bat}^{ch}(\mathbf{n}_{bat},t) = \left\{ \begin{matrix} 1 & \textit{état charge} \\ 0 & \textit{sinon} \end{matrix} \right.$: On/off paramètre binaire pour la charge de la

batterie à $n_{bat} \in N_{bat}$, $t \in T$.

(5.4)On/off paramètre binaire pour la décharge de la $\delta_{bat}^{dch}(\mathbf{n}_{bat},t) = \begin{cases} 1 & \text{\'etat decharge} \\ 0 & \text{\it sinon} \end{cases}$

batterie à $n_{bat} \in N_{bat}$, $t \in T$.

Variables Décisionnelles (Batteries) :

 $P_{bat}^{ch}(\mathbf{n}_{bat},t)$: Puissance de charge de la batterie à $n_{bat} \in N_{bat}$ $t \in T(W)$

 $P_{bat}^{dch}(\mathbf{n}_{bat},t)$: Puissance de décharge de la batterie à $n_{bat} \in N_{bat}$, $t \in T(W)$ (5.5)

 $SOC_{bat}(n_{bat}, t)$: État de charge de la batterie à $n_{bat} \in N_{bat}$, $t \in T(\%)$

Contraintes (Batteries):

$$SOC_{bat}(t + \Delta t) = SOC_{bat}(t) + \left(\eta_{bat}^{ch} \cdot P_{bat}^{ch}(t) - \frac{P_{bat}^{dch}(t)}{\eta_{bat}^{dch}}\right) \Delta t$$
(5.6)

$$\delta_{bat}^{ch}(n_{bat},t) = 1$$
 $Si M_{CH}^{HP}(t) = 0$
 $\delta_{bat}^{dch}(n_{bat},t) = 1$
 $Si M_{CH}^{HP}(t) = 1$
(5.7)

$$\delta_{bat}^{dch}(\mathbf{n}_{bat}, t) + \delta_{bat}^{dch}(\mathbf{n}_{bat}, t) \le 1 \tag{5.8}$$

$$0 \leq P_{bat}^{ch}(\mathbf{n}_{bat}, t) \leq \frac{P_{bat}^{ch,max}}{\eta_{bat}^{ch}} \cdot \delta_{bat}^{ch}(\mathbf{n}_{bat}, t)$$

$$0 \leq P_{bat}^{dch}(\mathbf{n}_{bat}, t) \leq \eta_{bat}^{dch} \cdot P_{bat}^{dch,max} * \delta_{bat}^{dch}(\mathbf{n}_{bat}, t)$$

$$SOC_{bat}^{min} \leq SOC_{bat}(\mathbf{n}_{ve}, t) \leq SOC_{bat}^{max}$$

$$(5.9)$$

Demande des Habitations $P_{dem}(t)$:

Ensembles (Demande des habitations):

 $T = \{1, ..., 35\,040\}$: Périodes de 15 minutes pour chaque jour de l'année

 $(\Delta t=0.25 h)$

 $N_{dem} = \{0, ..., n_{dem}\}$: Nombre des habitations (demande)

 $N_{anc} = \{0, ..., n_{anc}\}$: Nombre des appareils non contrôlables (éclairage,

réfrigérateurs, cuisinière électrique, téléviseur, les ordinateurs

et autres)

 $N_{ac} = \{0, ..., n_{ac}\}$: Nombre des appareils contrôlables (HVAC: Chauffage,

ventilation et de climatisation, WH : Chauffe-eau et DCH:

Douche)

Paramètres (Demande des habitations) :

 $P_{anc}(t)$ Puissance de consommation d'énergie des appareils no contrôlables (w) $P_{ac}(t)$ Puissance de consommation d'énergie des appareils contrôlables (w) (6.2)

Appareils Contrôlables

Chauffage, ventilation et de climatisation (HVAC)

* HVAC (Heating, Ventilation, and Air Conditioning)

Paramètres (HVAC) :

 $C_{it} = 3.6$: Capacité thermique (kWh/°C)

 $P_{cha}^{nom} = 3000$: Puissance nominale chauffage (W)

 $P_{cha}^{m2} = 60$: Puissance chauffage pour mètre carre (W/m²)

 $R_{it} = 4$: Resistance thermique (°C/kW)

 $T_{cha}^{sou} = 20$: Température souhaitée avec le chauffage (°C) $T_{cli}^{sou} = 14$: Température souhaitée avec la climatisation (°C) (6.3)

 $Zm_{tem} = 2$: Zone morte de la température de consigne (°C)

 $\alpha_{hvac} = e^{\left(\overline{R_{it}.C_{it}}\right)}$: Inertie thermique HVAC

 $\eta_{cha} = 90$: Rendement - Efficacité de chauffage (%) $\eta_{cli} = 90$: Rendement - Efficacité de climatisation (%)

 $T_{hvac}(t_0) = T^a(t)$: Température initiale des habitations au moment $t=0 \ \forall \ t \in T({}^{\circ}C)$ (6.4)

 $S_{hab}(n_{dem})$: Surface de chaque habitation (m²)

 $T^a(t)$: Température ambiante dans chaque $t \in T({}^{\circ}C)$

(6.5)

 $\delta_{cha}(\mathbf{n}_{dem},t) = \begin{cases} 1 \text{ \'etat alume} & : & \textit{Param\`etre binaire on/off pour le fonctionnement du} \\ 0 & \textit{sinon} & : & \textit{chauffage \`a $n_{dem} \in N_{dem}$, $t \in T$.} \end{cases}$ $\delta_{cli}(\mathbf{n}_{dem},t) = \begin{cases} 1 \text{ \'etat alume} \\ 0 & \textit{sinon} \end{cases} : & \textit{Param\`etre binaire on/off pour le fonctionnement de}$ $\delta_{cli}(\mathbf{n}_{dem},t) = \begin{cases} 1 \text{ \'etat alume} \\ 0 & \textit{sinon} \end{cases} : & \textit{Param\`etre binaire on/off pour le fonctionnement de}$ $\delta_{cli}(\mathbf{n}_{dem},t) = \begin{cases} 1 \text{ \'etat alume} \\ 0 & \textit{sinon} \end{cases} : & \textit{Param\'etre binaire on/off pour le fonctionnement de}$ $\delta_{cli}(\mathbf{n}_{dem},t) = \begin{cases} 1 \text{ \'etat alume} \\ 0 & \textit{sinon} \end{cases} : & \textit{Param\'etre binaire on/off pour le fonctionnement de}$ $\delta_{cli}(\mathbf{n}_{dem},t) = \begin{cases} 1 \text{ \'etat alume} \\ 0 & \textit{sinon} \end{cases} : & \textit{Param\'etre binaire on/off pour le fonctionnement de}$ $\delta_{cli}(\mathbf{n}_{dem},t) = \begin{cases} 1 \text{ \'etat alume} \\ 0 & \textit{sinon} \end{cases} : & \textit{Param\'etre binaire on/off pour le fonctionnement de}$ $\delta_{cli}(\mathbf{n}_{dem},t) = \begin{cases} 1 \text{ \'etat alume} \\ 0 & \textit{sinon} \end{cases} : & \textit{Param\'etre binaire on/off pour le fonctionnement de}$ $\delta_{cli}(\mathbf{n}_{dem},t) = \begin{cases} 1 \text{ \'etat alume} \\ 0 & \textit{sinon} \end{cases} : & \textit{Param\'etre binaire on/off pour le fonctionnement de}$

Variables Décisionnelles (Demande des HVAC) :

 $T_{hvac}(t)$: Température contrôle des habitations dans chaque $t \in T$ (°C) $P_{cha}(n_{dem}, t)$: Puissance de consommation d'énergie de chauffage $n_{dem} \in N_{dem}, t \in T$ (6.7) $P_{cli}(n_{dem}, t)$: Puissance de consommation d'énergie de climatisation $n_{dem} \in N_{dem}, t \in T$ (w)

Contraintes (Demande des HVAC):

$$T_{hvac}(t + \Delta t) = \alpha_{hvac} \cdot T_{hvac}(t) + (1 - \alpha_{hvac}) \left[T^{a}(t) - \left(R_{it} \cdot \eta_{cli} \cdot P_{cli}(t) \right) \delta_{cli}(t) + \left(-R_{it} \cdot \eta_{cha} \cdot P_{cha}(t) \right) \delta_{cha}(t) \right]$$

$$(6.8)$$

$$\begin{split} & \delta_{cha}(\mathbf{n}_{dem},t) + \delta_{clim}(\mathbf{n}_{dem},t) \leq 1 \\ & 0 \leq P_{cha}(\mathbf{n}_{dem},t) \leq \eta_{cha}.P_{cha}^{nom} \\ & 0 \leq P_{cli}(\mathbf{n}_{dem},t) \leq \eta_{cli}.P_{cli}^{nom} \end{split} \tag{6.9}$$

 $T_{cha}^{sou} - Zm_{tem} \le T_{HVAC}(t) \le T_{cha}^{sou} + Zm_{tem}$: Point de consigne du thermostat dans l'hiver $T_{cli}^{sou} - Zm_{tem} \le T_{HVAC}(t) \le T_{cli}^{sou} + Zm_{tem}$: Point de consigne du thermostat dans l'été

Hypothèses

- (1) Il y a un seul espace conditionné espace climatisé ;
- (2) aucun stockage thermique indépendant n'est relié à l'équipement CVC principal;
- (3) le contrôle de l'humidité est négligé contrôle de l'humidité est négligé ;
- (4) les sources de chaleur internes de l'équipement sont négligées ;
- (5) le contrôle de l'humidité est négligé dans tout l'espace.

Modèle de chauffe-eau (EWH)

 $C_{eau} = 4.2157$: La chaleur spécifique de l'eau (kJ/kg. °C) $P_{ewh}^{max} = 3\,900$: Consommation électrique maximale de l'EWH (w) $P_{ewh}^{min} = 1\,500$: Consommation électrique maximale de l'EWH (w) $R_{ewh} = 0.3472$: L'isolation thermique (m². °C h/kJ) S_{ewh} = 2.28: La surface du réservoir $(h=1.2 \text{ m et } r=0.5 \text{ m}) (m^2)$ T_{eau}^{sou} = 37: Température souhaitée avec le chauffe-eau (°C)

= 0.2356: Capacité du réservoir d'eau $(h=1.2 \text{ m et } r=0.5 \text{ m}) \text{ } (m^3)$ V_{ewh}

 $Zce_{tem} = 2$: Zone morte de la température de consigne chauffage-eau (°C)

= 1000: La masse volumique de l'eau (kg/m³) ρ_{eau}

 $D_{eau}(t)$: La demande en eau $\forall t \in T(m^3/\Delta t h)$

$$T^{hab}(t)$$
 : La température ambiante de l'habitation (°C) (6.12)

 $T_{eau}^{in}(t)$: La température de l'eau froide entrante (°C)

$$T_{ewh}(t_0) = T_{eau}^{in}(t)$$
: Température initiale de chauffe-eau au moment $t=0 \ \forall \ t \in T$ (°C) (6.13)

 C_{mt} : Masse thermique équivalente (k / /°C) $= \rho_{eau} V_{ewh} C_{eau}$

$$\alpha_{ewh} = e^{\left(\frac{-2L}{F_{ewh}(t).C_{mt}}\right)}$$
 : Inertie thermique EWH (6.14)

 $\alpha_{ewh} = e^{\left(\frac{-\Delta t}{F_{ewh}(t).C_{mt}}\right)}$ $E_{ewh} = \frac{S_{ewh}}{R_{ewh}}$ Le rapport de la surface à la résistance thermique du réservoir

$$F_{ewh}(t) = \frac{1}{G_{ewh}(t) + E_{ewh}}$$

$$G_{ewh}(t) = \rho_{eau} \cdot C_{eau} \cdot D_{eau}(t)$$

$$Q_{ewh}(t) = 3.4121 \cdot 10^{3} \cdot P_{ewh}(t)$$
(6.15)

Variables Décisionnelles (Demande d'EWH) :

$$T_{ewh}(t)$$
 : La température de l'eau chaude à l'intérieur du réservoir EWH, $t \in T$ (°C)
$$P_{ewh}(n_{dem},t) : Puissance de consommation d'énergie de chauffage-eau $n_{dem} \in N_{dem}, t \in T$ (6.16)$$

Contraintes (Demande d'EWH):

$$T_{ewh}(t) = \alpha_{ewh}.T_{ewh}(t - \Delta t) + (1 - \alpha_{ewh})[E_{ewh}.F_{ewh}(t).T^{hab}(t) + G_{ewh}(t).F_{ewh}(t).T^{in}_{eau}(t) + Q_{ewh}(t).F_{ewh}(t)]$$
(6.17)

$$P_{ewh}^{min} \le P_{ewh}(\mathbf{n}_{dem}, t) \le P_{ewh}^{max} \tag{6.18}$$

$$T_{eau}^{sou} - Zce_{tem} \le T_{ewh}(t) \le T_{eau}^{sou} + Zce_{tem}$$
 : Point de consigne du thermostat chauffe-eau (6.19)

Demande Totale des Habitations P_{dem}(t)

$$\begin{split} P_{dem}(\mathbf{n}_{dem},t) &= \sum_{\mathbf{n}_{dem=1}}^{N_{dem}} \sum_{t=1}^{T} [P_{anc}(\mathbf{n}_{dem},n_{anc},t) + P_{ac}(\mathbf{n}_{dem},n_{anc},t)] \\ P_{dem}(\mathbf{n}_{dem},t) &= \sum_{\mathbf{n}_{dem=1}}^{N_{dem}} \sum_{t=1}^{T} [P_{anc}(\mathbf{n}_{dem},n_{anc},t)] + P_{cha}(\mathbf{n}_{dem},t) + P_{cli}(\mathbf{n}_{dem},t) \\ &+ P_{ewh}(\mathbf{n}_{dem},t) \end{split}$$
 (6.20)

Autres contraintes et fonction objective

Ensembles Générales:

$$T = \{1, ..., 35\ 040\}$$
: Périodes de 15 minutes pour chaque jour de l'année
$$(\Delta t = 0.25\ h)$$

$$\vdots$$
 Ensemble de toutes les variables
$$(7.1)$$

Paramètres Générales :

$$\pi_{TD}^{en1} = 0.0670$$
 : Formule (3.3)

 $\pi_{CH}^{ene} = 0.5513$: Formule (3.5)

 π_{bat}^{deg} : Coûts de dégradation associés à batteries

 π_{ve}^{deg} : Coûts de dégradation associés à véhicules électriques (\$/w) (7.2)

 $W_{c} = 0.8$: Facteur de pondération du coût (1/\$)

 $W_{it} = 0.1$: π_{u}^{deg} : $\pi_$

Variables Décisionnelles (Global) :

 $P_{CH}(t)$: La consommation s'est arrêtée pendant la période de crédit d'hiver (w) $T^{it}(t)$: Temps d'inconfort dû à l'écart par rapport à l'objectif pour l'appareil a à $t \in T$ (h) $T^{id}(t)$: Température d'inconfort due à l'écart par rapport à la température de consigne de l'appareil a à $t \in T$ (°C) $\Delta P_{BAL}(t)$: Balance de puissance du système, $t \in T$ (w)

$$\beta_{CH}(n_{dem},t) = \begin{cases} 1 & : \text{ Variable binaire on/off pour si l'habitation } n_{dem} \text{ accepte le crédit} \\ \text{hivernal a } t \in T. \end{cases}$$
 (7.4)

Conservation du débit :

$$\begin{split} \Delta \, P_{BAL}(t) &= P_{ve}^{ch}(n_{ve},t) + P_{bat}^{ch}(n_{bat},t) + P_{dem}(n_{dem},t) = P_{ps}(n_{ps},t) + P_{wt}(n_{wt},t) \\ &\quad + P_{res}(n_{dem},t) + P_{ve}^{dch}(n_{ve},t) + P_{bat}^{dch}(n_{bat},t) \end{split} \tag{7.5}$$

$$0 \leq \Delta \, P_{BAL}(t)$$

^{*} C'est-à-dire qu'aucune énergie n'est vendue au réseau.

Fonction Objective

$$\min_{\Xi} w_{c} \left[\sum_{t=1}^{T} \pi_{TD}^{en1}(t) \cdot P_{res}(t) - \sum_{t=1}^{T} \beta_{CH}(n_{dem}, t) \cdot \pi_{CH}^{ene}(t) \cdot P_{CH}(t) \right. \\
+ \pi_{ve}^{deg} \sum_{t=1}^{T} \sum_{n_{ve}=0}^{N_{ve}} \left(P_{ve}^{ch}(n_{ve}, t) + P_{ve}^{dch}(n_{ve}, t) \right) \\
+ \pi_{bat}^{deg} \sum_{t=1}^{T} \sum_{n_{bat}=0}^{N_{bat}} \left(P_{bat}^{ch}(n_{ve}, t) + P_{bat}^{dch}(n_{ve}, t) \right) \right] + w_{it} \sum_{t=1}^{T} \sum_{n_{ac}=1}^{N_{ac}} T^{it}(t) \\
+ w_{id} \sum_{t=1}^{T} \sum_{n_{ce}=1}^{N_{ac}} T^{id}(t) \tag{7.6}$$

Contraintes Générales:

$$0 \le P_{res}(n_{dem}, t) \le P_{TD}^{max} \tag{7.7}$$

* C'est-à-dire qu'aucune énergie n'est vendue au réseau.