Algoritmizace

Algoritmy teorie čísel

THE CLASSIC WORK NEWLY UPDATED AND REVISED

The Art of Computer Programming

VOLUME 2

Seminumerical Algorithms Third Edition

DONALD E. KNUTH

Co bylo minule

- Co je to algoritmus?
- Jak budeme algoritmy popisovat?
- Jak budeme ověřovat jejich správnost?
- Jak změřit efektivitu algoritmu?

Co bylo minule

Jsou dány rovnoramenné váhy a *n* kuliček. Navrhněte algoritmus, který najde

- 1 nejtěžší kuličku na co nejmenší počet vážení
- ② nejtěžší i nejlehčí kuličku s použitím nejvýše $3\lfloor n/2 \rfloor$ vážení, přesněji
 - $3\lfloor n/2 \rfloor$ pro *n* liché
 - $3\lfloor n/2 \rfloor$ -2 pro *n* sudé

optimální!

3 druhou nejtěžší kuličku s použitím nejvýše $n-2+\lceil \log_2 n \rceil$ vážení.

Co bylo minule

Navrhněte algoritmus, který setřídí n zadaných kuliček $a_1, ..., a_n$ od nejlehčí po nejtěžší.

```
for j in range(1,n):
    for i in range(1,n-j+1):
        if a[i] těžší než a[i+1]:
            vyměň a[i] ↔ a[i+1]
    # j nejtěžších kuliček
    # je na svých místech
```

Asymptotická notace

Funkce f(n) je třídy O(g(n)), pokud $\exists c > 0$ a $n_0 > 0$ tak,

Paul Bachmann (1894) Edmund Landau (1909)

že $0 \le f(n) \le c \cdot g(n)$ pro každé $n \ge n_0$.

Asymptotická notace

Funkce f(n) je třídy $\Omega(g(n))$, Donald Knuth (1976) pokud $\exists c > 0$ a $n_0 > 0$ tak, že $0 \le c \cdot g(n) \le f(n)$ pro každé $n \ge n_0$.

Asymptotická notace

Funkce f(n) je třídy $\Theta(g(n))$, pokud f(n) je funkcí O(g(n)) a současně f(n) je funkcí $\Omega(g(n))$.

Asymptotická notace – zápis

- (a) formální $f(n) \in O(g(n))$
- ⓑ praktický f(n) = O(g(n))

Co znamená
$$f(n) = f(n/2) + O(n)$$
?

Existuje
$$g(n) = O(n)$$
 taková, že

$$f(n) = f(n/2) + g(n)$$

Problém \(\)

Dokažte nebo vyvraťte:

Pro každou dvojici funkcí f,g: N→R⁺ platí

- 1 Pokud f(n)=O(g(n)), pak g(n)=O(f(n))
- ② Pokud f(n)=O(g(n)), pak $2^{f(n)}=O(2^{g(n)})$
- 3 Pokud f(n)=O(g(n)), pak $g(n)=\Omega(f(n))$
- **4** $f(n) = O(f(n)^2)$

Spektrum časové složitosti

```
\Theta(1) (např. je číslo liché / sudé?)
```

```
\Theta(\log n) (binární vyhledávání)
```

```
\Theta(n) (nalezení minima / maxima)
```

```
\Theta(n \log n) (HeapSort, MergeSort)
```

```
\Theta(n^2) (BubbleSort, InsertSort)
```

 $\Theta(n^3)$ (násobení matic dle definice)

pracují v polynomiálně omezeném čase

```
\Theta(2^n)
```

$$\Theta(n!)$$

. . .

pracují v exponenciálním čase

algoritmicky nerozhodnutelné

Jak měřit délku vstupu?

 $a_1, a_2, ..., a_n$

graf

n = počet prvků posloupnosti

n = počet vrcholů

m = počet hran

matice

přirozené číslo N $n = |\log_2 N| + 1$

$$n = |\log_2 N| + 1$$

Co bude dnes

- Testování prvočíselnosti
- Určení největšího společného dělitele
- Výpočet hodnoty polynomu
- Nevody mezi číselnými soustavami
- Rychlé umocňování

Test prvočíselnosti

```
Vstup: přirozené číslo N > 1
Výstup: True pokud N je prvočíslo
```

False je-li N číslo složené

```
def prvocislo(n):
    for d in range(2,n):
        if n % d == 0:
            return False
        return True
```

Test prvočíselnosti

- Protože délka vstupu $n = \lfloor \log_2 N \rfloor + 1$, algoritmus má ve skutečnosti exponenciální časovou složitost!
- Diskuze: zrychlení "hrubé síly"
 - stačí prověřit dělitele $\leq \sqrt{N}$
 - stačí se omezit na lichá čísla

Test prvočíselnosti – složitost

Složitost problému určení prvočíselnosti čísla N

- Agrawal, Kayal, Saxena (2002)
 - $\tilde{O}(\log^{12} N)$
- Pomerance, Lenstra (2005)
 - $\tilde{O}(\log^6 N)$
- **Definice.** Funkce f(n) je třídy $\tilde{O}(g(n))$, pokud $\exists k \in \mathbb{N}$ tak, že f(n) je třídy $O(g(n) \cdot \log^k g(n))$.

Generování prvočísel

<u>Vstup</u>: přirozené číslo N > 1

<u>Výstup</u>: všechna prvočísla z {2,3,...,*N*}

Eratosthenovo síto

Eratosthenés z Kyrény

řecký matematik, astronom, geograf

276 – 195/194 př.n.l.

** Idea. Pro každé vygenerované prvočíslo lze vyloučit všechny jeho násobky $\leq N$.

Erastothenovo síto

```
def sito0(n):
    prvocisla = []
    ie prv = [False,False]+[True]*(n-1)
    for p in range(2,n+1):
        if je prv[p]:
            prvocisla.append(p)
            for i in range(2*p,n+1,p):
                je prv[i] = False
     return prvocisla
```

Erastothenovo síto – zrychlení

Vylepšení

- ① Stačí "prosívat" od p² místo 2 · p
 - násobky $k \cdot p$ pro k < p již byly vyškrtnuty dříve

```
def sito(n):
    prvocisla = []
    je prv = [False, False] + [True] * (n-1)
    for p in range(2,n+1):
        if je prv[p]:
            prvocisla.append(p)
            for i in range(p**2,n+1,p):
                 je prv[i] = False
    return prvocisla
```

Erastothenovo síto – vylepšení

- **Vylepšení**
- ② je_prv[] nemusí evidovat sudá čísla!
 - úspora paměti i času

Generování prvočísel – složitost

$$\lozenge$$
 # prvočísel $\leq N \approx \frac{N}{\ln N}$

- ① Hrubá síla $O(N^{3/2})$
- (2) Erastothenovo síto
 - O(N/2 + N/3 + N/5 + ...)
 - = $O(N \log \log N)$ (Franz Mertens, 1874)

Největší společný dělitel

Problém

- jsou dána přirozená čísla x a y
- určete jejich největší společný dělitel NSD(x,y)

Algoritmy

- 1 Hrubá síla
 - $NSD(x,y) = \max\{d \in \{1,2,\ldots,\min\{x,y\}\} \mid d \mid x \text{ a } d \mid y\}$
 - postupně prověřit kandidáty od největšího

Největší společný dělitel

Problém

- jsou dána přirozená čísla x a y
- určete jejich největší společný dělitel NSD(x,y)

Algoritmy

- 2 Prvočíselný rozklad
 - Věta. Každé přirozené číslo >1 lze jednoznačně rozložit na součin prvočísel.
- ightharpoonup Příklad: NSD(30, 24) = ?
 - $30 = 2 \cdot 3 \cdot 5$
 - $24 = 2 \cdot 2 \cdot 2 \cdot 3$
 - $NSD(30, 24) = 2 \cdot 3 = 6$

Největší společný dělitel

Na Problém

- jsou dána (kladná) přirozená čísla x a y
- určete jejich největší společný dělitel NSD(x,y)

Algoritmy

3 Euklidův algoritmus

Eukleidés / Euklides / Euklid / Εὐκλείδης

- řecký matematik, 325 260 př. n. 1
- Alexandria (Egypt)
- základy geometrie, teorie čísel
- Základy / Στοιχεῖα
 - » "nejúspěšnější matematické dílo", 13 knih

Euklidův algoritmus

Pozorování. Pro přirozená čísla x > y platí: $d \mid x \text{ a } d \mid y \iff d \mid x - y \text{ a } d \mid y$

Proč?

- \bigcirc Důsledek. NSD(x,y) = NSD(x-y,y) pro x > y.
- **Příklad**

$$NSD(30,24) = ?$$

= $NSD(6,24) = NSD(24,6)$
= $NSD(18,6)$
= $NSD(12,6)$
= $NSD(6,6) = 6$

Euklidův algoritmus

```
def euklid0(x,y):
    while x != y:
        if x > y:
            x -= y
        else:
            y -= x
    return x
```

Správnost Euklidova algoritmu

konečnost

- » invariant cyklu: x,y > 0
- \Rightarrow tedy i x+y>0
- » po provedení těla **while**-cyklu se *x*+*y* sníží alespoň o 1
- » po nejvýše *x*+*y* iteracích **while**-cyklu výpočet skončí

4日と4日と4日と4日と ほ めんご

Euklidův algoritmus

```
def euklid0(x,y):
    while x != y:
        if x > y:
            x -= y
        else:
            y -= x
    return x
```

Správnost Euklidova algoritmu

- částečná správnost
 - » invariant cyklu: viz **Důsledek**
 - $\gg NSD(x,x)=x$

Euklidův algoritmus – zrychlení

Příklad

$$NSD(27,21) = NSD(21,6)$$
= $NSD(15,6)$
= $NSD(9,6)$
= $NSD(6,3)$
= $NSD(3,3) = 3$

zbytek po celočíselném dělení

 $21 \mod 6 = 3$

- * Idea. Opakované odečítání lze nahradit zbytkem po celočísleném dělení!
- Důsledek. $NSD(x, y) = NSD(y, x \mod y)$ pro (kladná) přirozená čísla x, y.

Euklidův algoritmus - finální verze

```
def euklid(x,y):
    while y > 0:
        x,y = y,x % y
    return x
```

Příklad

```
NSD(27,21) = NSD(21,6)
= NSD(6,3)
= NSD(3,0) = 3
```

Euklidův algoritmus – složitost

```
def euklid(x,y):
    while y > 0:
        x,y = y,x % y
    return x
```

- Počet iterací těla **while**-cyklu je nejvýše $\log_2 x + \log_2 y + 1$.
- Půkaz Důkaz
 - x = y: jen jedna iterace
 - x < y: hodnoty se vymění
 - $x > y : x \cdot y$ se zmenší alespoň o polovinu

Euklidův algoritmus – složitost

Důkaz

Případ x > y podrobněji:

- $x \mod y \le \min\{y-1, x-y\} < \frac{x}{2}$
- $y \cdot x \mod y < \frac{x \cdot y}{2}$

Buďte $x^{(i)}$, $y^{(i)}$ hodnoty proměnných x,y po provedení i-té iterace těla **while**-cyklu, pak

$$\bullet \ x^{(i)} \cdot y^{(i)} < \frac{x \cdot y}{2^i}$$

Není-li *i*-tá iterace poslední, pak $x^{(i)} > y^{(i)} > 0$, čili

- $2 \le x^{(i)} \cdot y^{(i)} < \frac{x \cdot y}{2^i}$
- $i + 1 < \log_2(x \cdot y) = \log_2 x + \log_2 y$

Euklidův algoritmus – složitost

```
def euklid(x,y):
    while y > 0:
        x,y = y,x % y
    return x
```

v průměrném případě nejvýše

dělení.

$$\frac{12\ln 2}{\pi^2}\ln n\approx 0.5842\log_2 n$$

◆□▶ ◆□▶ ◆豆▶ ◆豆 ◆のQ@

Problémy

- ① Srovnejte složitost Euklidova algoritmu se složitostí algoritmu výpočtu NSD pomocí rozkladu na prvočinitele.
- 2 Navrhněte efektivní algoritmus výpočtu nejmenšího společného násobku dvou zadaných přirozených čísel.

Vyhodnocení polynomu

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

- polynom stupně *n*
- s koeficienty a_n , a_{n-1} , ..., a_1 , a_0
- $p(x) = 5x^3 + 10x + 1$
- p(2) = 61

Přímý výpočet

• $\Theta(n^2)$ operací

Vyhodnocení polynomu

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

- polynom stupně *n*
- s koeficienty a_n , a_{n-1} , ..., a_1 , a_0
- $p(x) = 5x^3 + 10x + 1$
- p(2) = 61

Hornerovo schéma

• William George Horner (1819)

$$p(x) = (\dots((a_n x + a_{n-1})x + a_{n-2})x + \dots + a_1)x + a_0$$

• $\Theta(n)$ operací

Hornerovo schéma

koeficienty polynomu jako hodnota typu list

```
def horner(a,x):
    h = 0
    for i in range(len(a)):
        h = h*x + a[i]
    return h
```

Převody mezi číselnými soustavami

Desítková soustava

•
$$4321 = 4 \cdot 10^3 + 3 \cdot 10^2 + 2 \cdot 10 + 1$$

Číselná soustava o základu b

- řetězec $a_n a_{n-1} \dots a_1 a_0$, kde $0 \le a_i < b$
- $a_n \cdot b^n + a_{n-1} \cdot b^{n-1} + \dots + a_1 \cdot b + a_0$

* Příklad: převod z binární soustavy

použijeme Hornerovo schéma

$$10111_{2} = 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2 + 1$$

$$= (((1 \cdot 2 + 0) \cdot 2 + 1) \cdot 2 + 1) \cdot 2 + 1$$

$$= 23$$

číslo v binární soustavě zadané jako hodnota typu str

```
cislice = '01'
def bin2int(bin):
    = 0
  for i in range(len(bin)):
      = n * 2 + cislice.index(bin[i])
  return
```

Příklad: převod (dekadického) čísla 23 do binární soustavy

$$23 = (((1 \cdot 2 + 0) \cdot 2 + 1) \cdot 2 + 1) \cdot 2 + 1$$

$$= 10111_{2}$$

Cifru nejnižšího řádu obdržíme jako zbytek po dělení 2

* Příklad: převod (dekadického) čísla 23 do binární soustavy

$$23 = (((1 \cdot 2 + 0) \cdot 2 + 1) \cdot 2 + 1) \cdot 2 + 1$$

$$= 10111_{2}$$

Celočíselně vydělíme 2

39

* Příklad: převod (dekadického) čísla 23 do binární soustavy

$$23 = (((1 \cdot 2 + 0) \cdot 2 + 1) \cdot 2 + 1) \cdot 2 + 1$$

$$= 10111_{2}$$

Další cifru obdržíme opět jako zbytek po dělení 2

Příklad: převod (dekadického) čísla 23 do binární soustavy

$$23 = (((1 \cdot 2 + 0) \cdot 2 + 1) \cdot 2 + 1) \cdot 2 + 1$$
$$= 10111_2$$

$$23 \mod 2 = 1$$

$$11 \mod 2 = 1$$

$$5 \mod 2 = 1$$

$$2 \mod 2 = 0$$

$$1 \mod 2 = 1$$

$$23 \text{ div } 2 = 11$$

$$11 \text{ div } 2 = 5$$

$$5 \text{ div } 2 = 2$$

$$2 \text{ div } 2 = 1$$

1 div
$$2 = 0$$

přirozené číslo hodnota typu int

```
def int2bin(n):
    bin = []
    while n > 0:
           .append(cislice[n % 2])
        n //= 2
    return ''.join(reversed(bin))
```

Problémy

③ Zobecněte funkce bin2int a int2bin tak, aby prováděly konverzi z / do libovolné číselné soustavy o základu b, $2 \le b \le 16$.

Je-li b > 10, chybějící cifry reprezentujte velkými písmeny ze začátku abecedy, tj.

A, B, C, D, E, F.

Problém

- je dáno (velké) přirozené číslo N a hodnota X
- určete X^N

Přímočaře z definice

- $X^N = X \cdot X \cdot \dots \cdot X$
- N 1 násobení
- exponenciální čas!

Problém

- je dáno (velké) přirozené číslo N a hodnota X
- určete X^N

Imitace převodu do binární soustavy

- $X^{16} = (((X^2)^2)^2)^2$
- jen 4 násobení namísto 15!
- je-li *N* mocninou 2, lze použít opakované umocňování
- co když *N* není mocninou 2?

- \rightarrow Jak spočítat X^{13} ?
 - převod exponentu N do binární soustavy

•
$$13_{10} = (1101)_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$

$$= 2^3 + 2^2 + 2^0 = 8 + 4 + 1$$

•
$$X^{13} = X^8 \cdot X^4 \cdot X$$

$$mocnina = 1 X^{(1)} = X$$

mocnina = mocnina
$$\cdot X^{(1)}$$
 $X^{(2)} = X^{(1)} \cdot X^{(1)} \# = X^2$

$$X^{(3)} = X^{(2)} \cdot X^{(2)} \# = X^4$$

mocnina = mocnina
$$\cdot X^{(3)}$$
 $X^{(4)} = X^{(3)} \cdot X^{(3)} \# = X^{(3)}$

mocnina = mocnina
$$\cdot X^{(4)}$$
 # = $X \cdot X^4 \cdot X^8$

```
def mocnina(x, n):
    mocnina = 1
   while n > 0:
        if n % 2 == 1:
            mocnina *= x
        x_n = x*x_n // 2
    return mocnina
```

Pozorování. Algoritmus rychlého umocňování vypočte X^N pomocí nejvýše $2\lfloor \log_2 N \rfloor + 2$ násobení.