⑩ 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭62-110535

⑤Int Cl.⁴

識別記号

庁内整理番号

④公開 昭和62年(1987)5月21日

B 60 K 41/14 F 16 H 5/40 8108-3D 7331-3J

審査請求 未請求 発明の数 2 (全10頁)

車両駆動系の制御装置

②特 願 昭60-248396

纽出 類 昭60(1985)11月6日

砂発 明 者 所

; 夫 豊田市トヨタ町1番地 トヨタ自動車株式会社内

の出 願 人 トヨタ自動車株式会社

費田市トヨタ町1番地

郊代 理 人 弁理士 高 矢 諭

外2名

M M (

1. 発明の名称

血両駆動系の制御装置

2. 特許請求の範囲

(1) アクセルベダルと独立してエンジントルクを変え得る手段を有したエンジンと、変速比を無 及簡に調整できる無段変速機とを備えた車両駆動 系の初節装置において、

少なくともアクセル間段に関連して目標出力馬 カを求める手段と、

少なくとも該目標出力馬力に関連して前記無及 変速機の目標入力側回転速度を求める手段と、

前記無段変速機の変速比を変化させて、該無段 変速機の実入力側回転速度を前記目標入力側回転 速度にフィードバック制御する手段と、

少なくとも前記目標出力馬力と無及変速機の実 入力 哪回転速度とに関連して目標エンジントルク を求める手段と、

少なくとも該目標エンジントルクと実エンジン 回転速度とに関連して前記エンジントルクを変え 切る手段の目 原値を求める手段と、

エンジントルクを変え得る手段を該目標所にフィードバツク制御する手段と、

を 節えたことを特徴とする 車両 駆 勃 系 の 副 如 装 数。

- (2)前記エンジントルクを変え切る手段が、スロットルアクチュエータであり、前記目標面の対象がスロットル間度である特許精果の範囲第1項記載の車両駆動系の初御装置。
- (3)前記エンジントルクを変え切る手段が、ディーゼルエンジンの燃料吸射ポンプであり、前記目標節の対象が燃用吸引型である特許請求の範囲第1項記載の車両駆動系の制御装置。
- (4) 前記目標出力馬力を、アクセル間度と印速とに関連して求めることを特徴とする特許請求の 範囲第1項~第3項のいずれかに記載の印画駅動 系の制御装置。
- (5) 前記エンジントルクを変え切る手段の目は 例を、自帰エンジントルクと実エンジン回転選及 と無及変速機の回転速度の時間的変化所とに関連

して求めることを特徴とする特許高求の範囲第 1 頃~第 4 項のいずれかに記載の电声駆動系の制御 接震。

(6) アクセルペダルと独立してエンジントルクを変え得る手段を有したエンジンと、変速比を無段階に調整できる無段変速機とを陥えた車両駆動系の制御装置において、

少なくともアクセル間度に関連して目標出力展 力を求める手段と、

少なくとも該目標出力馬力に関連して前記無段変速機の目標入力側回転速度を求める手段と、

該目標入力期回転速度と無段変速機の実出力側回転速度とから無段変速機の目標変速比を求める 手段と、

該目標変速比に無段変速機の実速度比をフィードバツク制御する手段と、

少なくとも前記目標出力馬力と無段変速機の実 入力側回転速度に関連して目標エンジントルクを 求める手段と、

少なくとも該目標エンジントルクと実エンジン

申請の駆動系においてこのような無段変速機構を導入する大きな目的の1つは、 面両を常にエンジン使用域の中の展度感費率の部分で進行させ、 実用感費を改善することであり、既に従来様々の開発がなされている。

【発明が解決しようとする問題点】

しかしながら、従来間示されている技術は、い すれも未だ改良の余地を残しているというのが実 情である。

例えば、特別収59-32642では、車両走行における過級時をも含めて常に最適燃資率のQ

回 転速度 とに 関連して 前記エンジントルクを変え 得る手段の目標値を求める手段と、

エンジントルクを変え得る手段を該目標値にフィードバツク制御する手段と、

を顕えたことを特徴とするIII 両駆動系の制御装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、車両駆動系の制御装置に係り、特に、アクセルペダルと独立してエンジントルクを変え得る手段を有したエンジンと、変速比を無段略に調整できる無段変速機とを備えた車両駆動系の制御装置の改良に関する。

【従来の技術】

和両用自動変速環構の一つとしてベルト等によって駆動される無段変速環構がある。この無段変速環構は一般に、固定プーリ及び可動プーリからなり油圧サーボ装置によって有効怪が可変とされたV型プーリ装置を入力性上及び出力性上にそれれれるし、数V型プーリ装置間に掛取された伝動

図上を走行する方法が間示されているが、この方法では、変速の過級時に出力トルクが不足して走行性能、特に加速性能が悪化するという間頭を有している。

又、特別昭58-39870では、 、特別昭58-39870では方 にはあることを走り、「タントルアクスののでは、「タントルアクスののでは、「タントルが選及のでは、「カンカスののでは、「カンカスのでは、カンカスのでは、「カンカスのでは、カンカスのでは、「カンカスのでは、「カンカスのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンのでは、カンので

一方、特別的58-160661では、その符 許請求の范囲第6項において、変速過費時に出力 馬力を要求馬力となるように制御する方法が開示 されている。この方法によれば、 変速消取時において その出力を所定の間に 設定することができるが、トルクセンサを必須としているため、 システムの 構成が複雑となり、又それだけコスト高となつている。

(発明の目的)

本発明は、このような従来の問題に塩みてなされたもので、トルクセンサみを用いることなるく、 簡単な構成で出力馬力を過渡時においても所定的 に初節することができ、優れた燃質効率と良好な 走行特性とを両立させることのできる収両駆動系 の初御装置を提供することを目的とする。

【周頭点を解決するための手段】

木別1発明は、アクセルペダルと独立してエンシントルクを変え得る手段を有したエンジンを観でまる無段変とのはなった。 変速比を無段階に調整できる無段変とのはといる。 た重両駆動系の糾御装置において、少なくとももアクセル開度に関連して目標出力馬力を求める手段 と、少なくとも該目標出力馬力に関連して開歴無 段変速度の目標入力側回転速度を求める手段と、

る手段と、該目標の変速ののようでは、少なでは、少なでは、の日間では、少なでは、少なでは、の日間では、少なでは、の日間では、少なでは、の日間では、少なでは、の日間では、の日間では、の日間では、の日間では、の日間では、の日間では、の日間では、の日間では、の日間では、の日間では、の日間である。

【作用】

トルクを変え得る手段の目標的を求め、この回標がにエンジントルクを変え得る手段をフィードバックを変え得る手段をフィーられた。 定分 時のみに 初かった たいても 出力 と に ない ため、 内 は で さる。 以 が の で に よ の で に ない ため、 内 は で で る。 が で に ない ため、 内 は で で よ る に ない ため に か で に よ る に ない ため に ない に め に なる。 初 知 を 行 う ことが で きるように なる。

一方、本第2発明においては、前記第1発明では無限な速度の実入力側回転速度を目標入力で開展を選択して、無限な速度の実達度比を目のでは、これに代え、無限な速度の実達度比をしている。 立れにより、無限な速度のフィードバックができまった。 当の回転速度の変変を行うにいる。 当の回転速度の変変を行うになった。 が、、本第1発明と同様な作用を行ることができるようになる。

上記第1、第2発明において、好ましい実施原

はは、前記エンジントルクを変え切る手段が、スロットルアクチュエータであり、前記目標例の対象がスロットル開びとされていることである。

又、好ましい実施態様は、前記エンジントルクを変え得る手段が、ディーゼルエンジンの燃料項 別ポンプであり、前記目標値の対象が燃料項射量 とされていることである。

又、好ましい実施思様は、前記目標出力馬力を、 アクセル開度と車速とに関連して求めるようにす ることである。これにより、目標出力馬力をより 正確に求めることができるようになる。

又、好ましい実施思様は、前記エンジントルクを変え得る手段の目標値を、目標エンジントルクと実エンジン回転速度と無段変速機の回転速度の時間的変化無とに関連して求めるようにすることである。これにより、より適正な目標値を求めることができる。

【实施例】

以下図面を参照して本発明の実施研を詳細に説明する。

又、入力例と出力側において固定プーリ11、 15と可効プーリ12、16との他線方向の配設 は互いに逆とされ、伝効ベルト18が常に入、出 力価6、8に対して直角に掛かるようにしてある。

因定でついていたのは、112のの対応は半径が行うしたがあった。 112のの対応は半径が行うしたがある。 212のの対応がある。 212のの対応がある。 212ののは、112のの対応がある。 212ののは、112のの対応がある。 212ののは、112ののは、112ののは、112ののは、112ののは、112ののは、112ののは、112ののは、112ののは、112ののは、112ののは、112ののは、112ののは、112ののは、112のは、11

出力権8の動力は図示していない前後進切換え

第2図に本発明に係る東西風効系の制御装置の 実施例が適用された自動車用エンジン及び無度変 速機の全体機略を示す。

図において、エンジンE/Gの出力値2はクラッチ機構4を介してベルト駆動式の無段変速機 (以下CVTと称する)に接続されている。

このCVTは、入力他6上、及び出力的8上にそれぞれ固定プーリ11、15、可動プーリ12、16からなるV型プーリ装置10、14を鍛える。入力側固定プーリ11は入力物6に固定され、入力側可動プーリ12は物方向へ移動可能に入力や6の外周にスプライン又はボールペアリング等で設合している。

各可効例アーリ12、16の受圧面積は、入力例>出力例となるように設定されており、該入力例で速度比変更のための強制的な有効径変更ができるようになつている。

用の遊星協事装置、減速用の協事装置、差動協事 装置等を介して駆動論へ伝達される。

一方、アクセルペダルセンサ34は運転者の足35によつて難込まれるアクセルペダル36の間度 & acを検出する。又、エンジンE/Gの吸気スロットルの間度は、アクセルペダル36とは独立したスロットルアクチュエータ19によつて制御される。

入力例及び出力側回転角センサ20、21はそれぞれアーリ11、16の回転角を検出し、その結果回転速度(出力側の回転速度からは卓延V)が検出・換算される。

圧力 初 的 弁 2 4 は、オイルボンブ 2 5 によりリザーバ 2 6 から油路 2 7 を介して送られてくる油圧媒体としてのオイルの 油路 2 8 への選し風を制御することにより、油路 2 9 のライン圧Pしを調圧する。出力側可動プーリ 1 6 の油圧サーボ装置には、油路 2 9 を介してライン圧Pしが供給され

流量制卸弁30は、入力側可動プーリ12への

特開昭62-110535 (5)

オイルの次入・流出爪を制抑する。CVTの速度 比e を一定に維持するためには、心路33と油路 29から分岐するライン圧油路31及びドレン油 路32との接続が断たれる。その結果、入力例可 **動プーリ12の種方向の位置が一定に維持され、** 速度比e も一定に維持される。又、速度比e を切 大させるためには、ライン圧油路31から油路3 3を介して入力側可動プーリ12の油圧サーボ装 取内へオイルを供給するようにする。その結果、 入力側プーリ11、12周の晒付力が増大され、 該入力例アーリ11、12両上における伝動ペル ト18の接触位置が半径方向外方へ移動して速度 比c が増大される。逆に、速度比c を減少させる ためには、入力関可効プーリ12の油圧サーボ装 百内のオイルをドレン油路32を介して大気明へ 引通させて該入力例プーリ11、12周の続付力 を減少させるようにする。

油路33における油圧はライン圧Pし以下であるが、前述のように、入力側可動プーリ12の油圧サーボ装置のピストン受圧面積が出力側可動プ

の制物電圧Vth、Vin、Vout はD/Aコンパータ40からそれぞれ増稿器49、50、51を介して送られる。

第3図(A)はスロットルアクチュエータ19用の増幅2449の入力電圧と出力電流との関係を示し、第3図(B)はスロットルアクチュエータ19の入力電流と吸気スロットル間度との関係を示している。従つて増幅249の入力電圧に比例してスロットル間度が増大する。

第4図(A)は既須利即弁30月の増幅器50の入力電圧と出力電流との関係を示し、第4図(B)は設定制即弁30の入力電流と可動プーリ12の入力側油圧サーボへの改派との関係を示している。従つて増幅器50の入力電流の変化に速度性をは比例する。

第5図(A)は圧力制御弁24月の地橋器51の入力電圧と出力電流との関係を示し、第5図(B)は圧力制御弁24の入力電流とライン圧Pしたの関係を示している。従つて増幅器51の入力電圧の変化に対してライン圧Pしは超形的に変

ーリ 1 6 の油圧サーボ装置のピストン受圧面積よりも大きく設定してあるため、入力側ブーリ 1 1 、1 6 の傾付カよりも大きくすることが可能である。

入力例プーリ11、12の柿付力を設立制御弁30で変化させることによつて該入力例プーリ11、12間における有効径を変化させ、一方、出力例プーリ15、16において入力側の有効径変化に追焼して伝動ペルト18が滑らずにトルク伝達が確保されるような精付力が生じるようにライン圧Pしが圧力制の弁24によつて調圧される。

電子初期装置38は、アドレスデータバス39により互いに接続されているD/Aコンバータ40、入力インターフエイス41、A/Dコンバータ42、CPU43、RAM44、ROM45を含んでいる。アクセルペダルセンサ34のアナログ出力 & acuA/Dコンバータ42へ送られ、回転角センサ20、21のパルスは入力インターフェイス41へ送られる。スロットルアクチュエータ19、変配初脚弁30、及び圧力剝即弁24へ

化する。圧力制御弁24の入力型設が客であつてもライン圧Pしは所定値PL。に維持されるため、所称や電子制御装置38に万一不具合が生じても、可動プーリ12、16の油圧サーボへ所定油圧が供給され、CVTにおける最少限のトルク伝達が確保される。

第1因にこの装置の制御系のプロツク図を示す。 図において、プロツク100はアクセル間度 θ acと重選 V により目標出力協力 P S * を式又はマップによつて求める納度器を示している。

プロック102は目標出力馬力PS。より目に 入力側回転速度Nin。を求める旗質器を示している。この求め方は、例えば第7回に示されるような最適燃質ラインAに設定するとよい。なお、第7回において実験は等燃質率線(g /PS・H)、破験は等馬力率線(PS)を示している。

アロック104は、CVTの実入力側回転速度 Ninが目標入力側回転速度Nin*となるように決 重制加弁30の制御電圧Vinをフィードバック調 置することによつてCVTの速度比eを制御する 初加系を示している。この初加には、例えば(1) 式のような演算式を用いる。

Vin=k (Nin-Nin*) ... (1)

なお、この**別**切に当つて例えば油温等に応じて 補正をし、より精度の高い油口式を用いるように するのは自由である。

プロツク106は、目標出力馬力PS。とCVTの実入力側回転速度Ninとより、目標エンジントルクTe。を式又はマツブにより求める前算器を示している。この演算には、例えば(2)式を用いる。

Te ' = k 2 × PS' / Nin... (2)

プロック108は、目標エンジントルクTc。 と実エンジン回転速度Ne とにより、目標スロットル間度 θ th。を式又はマップによつて計算する 油質器を示している。

プロツク110は、実スロツトル間度 θ thが、 回標スロツトル間度 θ th になるようにスロツトルアクチュエータ19の制御電圧Vthをフィードパツク調整する制御系である。例えば、この制御

するためである。このための修正は、例えば次式で目標エンジントルクTe * を設修えればよい。 Te * = Te * + k 。×d / dt (N in) … (4)

第6図に、上記制御のフローチャートを示す。 まず、ステツブ200においてアクセル隔度θ

ステツブ210においては、日標スロツトル間度

には(3)式を用いるとよい。

 $V th = k_3 \times (\theta th^* - \theta th) \cdots (3)$

なお、前記プロック100において、目標出力 馬力は他の変因、例えば走行路勾配、単重、外部 スイッチ(エコノミーパターン、あるいはパワー パターン等の選択スイッチ)等をパラメータとし て作正・変更してもよい。

又、プロック102において、目標入力例回転速度Nin。は、他の要因、例えば重速、エンジン冷却水温、走行路勾配、単重、外部スイッチ、空燃比等をパラメータとして、修正・変更してもよい

更に、プロック108において、目標スロットル間度θth は、他の要因、例えばエンジン冷却水温、空燃比、あるいはCVTの入力側回転速度の時間的変化负等をバラメータとして修正・変更してもよい。ここにおいて、CVTの入力側回転速度の時間的変化量を考慮するとよいのは、CVTの変速時はエンジンークラッチーCVT入力側の慣性モーメントの影響で、実出力トルクが変化

θ th がステップ 2 0 8 において求められた目標エンジントルク T e で とエンジン回転速度 N e との関数 f 。として求められる。そしてステップ 2 1 2 において、スロットルアクチュエータ 1 9 の制御程圧 V thが式k s (θ th ーθ th) によつて求められる。

この結果、スロットル間度は定常時、過数時を問わず所定額に正しく制御され、エンジンの出力トルクがそれに応じて制御されることになる。

なお、例えばディーゼルエンジン等においては、 前記目標スロットル間度を目標燃料項射弧に置換 えることで本発明の目的をそのまま達成すること ができる。

又、上記実施例では、CVTの入力側回転速度を目標入力側回転速度と比較してフィードバック 初即するようにしていたが(第1発明)、これを CVTの速度比をを目標速度比で、と比較してフィードバック制御するようにしても同様に本発明 の目的が達せられる(第2発明)。この場合、目標速度比を、はNout / Nin* (Nout は無度変

特開昭62-110535 (ア)

速度の出力側回転速度)として求めることができ、 旋立制御弁30の制御電圧Vinはk s (e -e・) として求めることができる。

[発明の効果]

以上説明した通り、木発明によれば、トルクセンサを用いることなく、簡単な構成で定常時及び過程時のいずれにおいても出力トルクを適性に制御することができ、整質向上及び動力性能の向上の両立を図ることができるようになるという要れた効果が得られる。

4.図面の簡単な説明

力特性を示す線図、 第4 図(8) は、同じく次別制部弁の入力とCVTの速度比との 関係を示すり 図の入力を CVTの速度比との 関係を示すり 図の入出力特性を示すり 図の 第5 図(8) は、同じく圧力 別の弁の入力とライン圧との 関係を示すり 図の 係を示すり 図の 第8 図は特別 町 5 8 - 3 9 8 7 0 に 関示されている技術を設明するための、 エンジン回転速度と出力トルクとの 関係を示すり 図である。

E/G…エンジン、

6 … 入力 储、

8 …出力性、

θ ac… アクセル 周度、

∨… 宜速、

Nin···入力朝回転速度、

Ninº ··· 目標入力側回転速度、

PS"…目標出力馬力、

T c · · · · 目 l な エンジントルク、 θ th · · · · · 日 l な スロットル 同 f c 、 e · · · · 変 速 比 、 c · · · · · 目 l な 変 速 比 。

第1図

第 2 図

特開昭 62-110535 (9)

第 6 図

第7図

第 8 図

- (19) Japanese Patent Office (JP)
- (11) Japanese Laid-Open Patent Application No. 62-110535
- (12) Laid-Open Patent Publication (A)
- (51) Int. C1.4: B60K 41/14

F16H 5/40

Identification Code

Internal Reference Numbers:

8108-3D

7331-3J

(43) Laid-Open Date: May 21, 1987

Request for Examination: None

Number of Inventions: 2

(10 Pages in Total)

- (54) Title of the Invention: VEHICLE DRIVE SYSTEM CONTROL DEVICE
- (21) Japanese Patent Application No. 60-248396
- (22) Date Filed: November 6, 1985
- (72) Inventor: Setsuo Tokoro

c/o Toyota Motor Corporation, 1 Toyota-Cho, Toyota-City

- (71) Applicant: Toyota Motor Corporation, 1 Toyota-Cho, Toyota-City
- (74) Agent: Patent Attorney Satoshi Takaya and two others

SPECIFICATION

1. Title of the Invention

VEHICLE DRIVE SYSTEM CONTROL DEVICE

2. Claims

(1) A vehicle drive system control device provided with an engine having an engine torque changing means independent of an accelerator pedal and a continuously variable transmission capable of continuously adjusting a transmission ratio, comprising

a means for obtaining a target output horsepower in relation to at least the degree of acceleration;

a means for obtaining a target continuously variable transmission input-side rotational speed in relation to at least the target output horsepower; a means for feedback control of the actual input-side rotational speed of the continuously variable transmission to the target input-side rotational speed;

a means for obtaining a target engine torque in relation to at least the target output horsepower and the continuously variable transmission;

a means for obtaining a target value for the engine torque changing means in relation to target engine torque and actual engine rotational speed;

and a means for feedback control of the engine torque changing means to the target value.

- (2) The vehicle drive system control device according to Claim 1, wherein the engine torque changing means is a throttle actuator, and the object of the target value is the degree of throttle opening.
- (3) The vehicle drive system control device according to Claim 1, wherein the engine torque changing means is a diesel engine fuel injection pump, and the object of the target value is the amount of injected fuel.
- (4) The vehicle drive system control device according to any of Claims 1 to 3, wherein the target output horsepower is obtained in relation to the degree of acceleration and the vehicle speed.
- (5) The vehicle drive system control device according to any of Claims 1 to 4, wherein the target value of the engine torque changing means is obtained in relation to

the target engine torque, the actual engine rotational speed, and the change over time in the continuously variable transmission rotational speed.

(6) A vehicle drive system control device provided with an engine having an engine torque changing means independent of an accelerator pedal and a continuously variable transmission capable of continuously adjusting a transmission ratio, comprising

a means for obtaining a target output horsepower in relation to at least the degree of acceleration;

a means for obtaining a target continuously variable transmission ratio from the target input-side rotational speed and the continuously variable transmission actual output-side rotational speed;

a means for feedback control to a target transmission ratio of the continuously variable transmission actual speed ratio;

a means for obtaining a target engine torque in relation to at least the target output horsepower and the continuously variable transmission actual input-side rotational speed;

a means for obtaining a target value for the engine torque changing means in relation to at least the target engine torque and the actual engine rotational speed;

and a means for feedback control of the engine torque changing means to the target value.

3. Detailed Description of the Invention

(Industrial Field of Application)

The present invention relates to a vehicle drive system control device, and in particular to an improved vehicle drive system control device provided with an engine having a means for changing engine torque independent of the accelerator pedal, and a continuously variable transmission capable of continuous adjustment of a speed ratio.

Previous Technology

Continuously variable transmissions driven by belts, etc. are one [type] of vehicle automatic transmission. Such continuously variable transmissions generally comprise fixed pulley[s] and movable pulley[s], having on the input shaft and the output shaft,

respectively, V-shaped pulley devices the effective diameters of which can be varied by hydraulic servo devices; the input shaft-side rotation can be continuously changed in speed on the output side thereof and transmitted by a transmission belt extending between these V-shaped pulley devices. Normally, the oil flow on the input side to the hydraulic servo device is changed by a flow control valve; the input-side V-shaped pulley device effective diameter is forcibly changed, while oil pressure in the output-side hydraulic servo device is changed by a pressure control valve, so that torque transfer [sufficient] to prevent slipping of the transmission belt in response to changes in the input-side V-shaped pulley device effective diameter can be effected.

One major object of introducing such continuously variable transmissions in vehicle drive systems is to constantly run the vehicle at an optimal fuel consumption rate within the engine utilization range so as to improve actual vehicle fuel economy. Much development has already occurred.

Problems the Invention Seeks to Resolve

However, the reality is that all of the previously disclosed technologies leave room for improvement.

For example, in Laid Open Patent Application S59-32642, a method is disclosed for constantly running on the optimal fuel consumption rate line, inclusive of transitions in vehicle operation, but this method has problems in that output torque is insufficient during speed change transitions, thus degrading running performance and acceleration performance.

In Laid Open Patent Application S58-39870, a method is disclosed in which running occurs on the optimal fuel economy line under normal conditions and, during speed change transitions, operation is in actuality as shown by the broken line in Fig. 8 due to the slow response of the continuously variable transmission mechanism compared to a throttle actuator, with the result that [the system] departs from the optimal fuel economy line and is superior to the aforementioned Laid Open Patent Application S59-32642. As a result, however, operation with this method during speed change transitions is as shown by the broken line in Fig. 8, and output during speed change transitions

cannot be freely controlled. Therefore this method presents difficulties when one wishes to set a specific output value during speed change transitions.

In Laid Open Patent Application S58-16066, meanwhile, a method for controlling output horsepower such that it attains a required horsepower during speed change transitions is disclosed in Claim 6 thereof. By this method, that output can be set to a specified value during speed change transitions, but the system is made more complex due to the requirement for a torque sensor, resulting in higher costs.

Object of the Invention

The present invention was undertaken in light of such previous problems, and seeks to provide a vehicle drive system control device capable of controlling output horsepower to a specified value even during transitions, using a simple constitution which does not make use of torque sensors, etc., and which can combine superior fuel efficiency and favorable running characteristics.

Means for Resolving Problems

In a vehicle drive system control device provided with an engine having an engine torque changing means independent of an accelerator pedal and a continuously variable transmission capable of continuously adjusting a transmission ratio, the present first invention achieves the above object by comprising a means for obtaining a target output horsepower in relation to at least the degree of acceleration; a means for obtaining a target continuously variable transmission input-side rotational speed in relation to at least the target output horsepower; a means for feedback control of the actual input-side rotational speed of the continuously variable transmission to the target input-side rotational speed; a means for obtaining a target engine torque in relation to at least the target output horsepower and the continuously variable transmission; a means for obtaining a target value for the engine torque changing means in relation to target engine torque and actual engine rotational speed; and a means for feedback control of the engine torque changing means to the target value.

In a vehicle drive system control device provided with an engine having an engine torque changing means independent of an accelerator pedal and a continuously variable

transmission capable of continuously adjusting a transmission ratio, the present second invention achieves the same above object by comprising a means for obtaining a target output horsepower in relation to at least the degree of acceleration; a means for obtaining a target continuously variable transmission input-side rotational speed in relation to at least the target output horsepower; a means for feed back control of the continuously variable transmission actual speed ratio to a target speed change ratio, a means for obtaining a target engine torque in relation to at least the target output horsepower and the continuously variable transmission actual input-side rotational speed, a means for obtaining the target value of an engine torque changing means in relation to at least the target engine torque and the actual engine rotational speed, and a means for feedback control of the engine torque changing means to the target value.

Operation

In the present first invention, a target output horsepower is obtained primarily in relation to the degree of accelerator opening; the continuously variable transmission target input-side rotational speed is obtained in relation to this target output horsepower, and the continuously variable transmission actual input-side rotational speed is fed back to the target input-side rotational speed by changing the continuously variable transmission speed ratio, while the target engine torque is obtained in relation to the target output horsepower and the continuously variable transmission actual input-side rotational speed, the torque changing means target value is obtained in relation to this target engine torque and the actual engine rotational speed, and, by feedback control of the engine torque changing means to this target value, it is possible to freely control the output horsepower not only under normal conditions, but also during speed change transitions. Also, because there is no structural requirement for a torque sensor, the constitution is simplified, and can thus be reduced in cost to that degree. Also, because there are no problems such as control defects due to torque sensor problems, etc., control can be implemented at a corresponding higher level of reliability.

While the continuously variable transmission actual input-side rotational speed is feedback controlled to a target input-side rotational speed in the first invention, in the present second invention the continuously variable transmission actual speed ratio is

feedback controlled to the target speed ratio. By this means, a similar action to that of the first invention can be obtained while causing the element of the output-side rotational speed to be also reflected in the process of continuously variable transmission feedback control.

In a preferred embodiment of the inventions 1 and 2 above, the engine torque changing means is a throttle actuator, and the object of the target value is the degree of throttle opening.

In another preferred embodiment, the engine torque changing means is a diesel engine fuel injection pump, and the object of the target value is the amount of fuel injected.

In another preferred embodiment, the target output horsepower is obtained in relation to the degree of accelerator opening and vehicle speed. The target output horsepower can thus be accurately obtained.

In another preferred embodiment, the target value of the engine torque changing means is obtained in relation to the target engine torque, the actual engine rotational speed, and the amount of change over time in the continuously variable transmission rotational speed. A more accurate target value can thus be obtained.

Embodiments

Below we explain embodiments of the present invention in detail with reference to figures.

Fig. 2 depicts an overview of an automobile engine and continuously variable transmission to which an embodiment vehicle drive system control device of the present invention has been applied.

In the figure, an engine E/G output shaft 2 is connected to a belt drive-type continuously variable transmission (hereafter referred to as "CVT") via a clutch mechanism 4.

V-shaped pulley devices 10, 14 composed of stationary pulleys 11, 15 and movable pulley 12, 16 are provided on an input shaft 6 and an output shaft 8 of the CVT, respectively. The input-side stationary pulley 11 is affixed to the input shaft 6, and the input-side movable pulley 12 is movably engaged to the outer circumference of the input

shaft 6 by a spline, ball bearing, or the like in an axial direction. Similarly, the output-side stationary pulley 15 is affixed to the output shaft 8, and the output-side movable pulley 16 is movably engaged to the outer circumference of the output shaft 8 by a spline, ball bearing, or the like in an axial direction.

The pressure-receiving areas of the respective movable-side pulleys 12, 16 are set so that the surface area of the input-side is larger than the surface area of the output-side. The effective diameter can be forcibly changed on the input side so as to change the speed ratio.

Further, in the axial direction, the stationary pulley 11 and the movable pulley 12 on the input side are arranged opposite to the stationary pulley 15 and the movable pulley 16 on the output side. A drive belt 18 is placed so as to be constantly perpendicular to the input shaft 6 and the output shaft 8.

The opposing surfaces of fixed pulleys 11, 15 and movable pulleys 12, 16 are formed with tapered surfaces such that the distance between them increases in the radially outward direction. The drive belt 18, whose cross section is an isosceles trapezoid, is placed between the input-side V-shaped pulley device 10 and the output-side V-shaped pulley device 14. The radial direction contact positions of the drive belt 18 on the surfaces of the pulleys continuously change in accordance with changes in the clamping force of the respective V-shaped pulley devices 10, 14 stationary and movable pulleys. If the contact positions of the drive belt 18 on the input-side V-shaped pulley device 10 are moved radially outward, the contact positions of the drive belt 18 on the output-side V-shaped pulley device are moved radially inward, and the speed ratio e (= rotational speed Nout of the output shaft 8/rotational speed Nin of the input shaft 6) of the CVT increases. In the reverse case, the speed ratio e decreases.

The output shaft 8 power is transmitted to drive wheels via a planetary gear device for switching between forward and backward movements, a speed reduction gear device, and a differential gear device, etc., which are not shown.

Meanwhile, an accelerator pedal sensor 34 detects the degree of opening θ_{ac} of an accelerator pedal 36 that is depressed by a driver's foot. A throttle actuator 19 which is separate from the accelerator pedal 36 controls the degree of opening of the intake throttle on the engine E/G.

An input-side rotational angle sensor 20 detects the rotational angle of the pulley 11, and an output-side rotational angle sensor 21 detects the rotational angle of the pulley 16. As a result, rotational speeds (vehicle speed V is what is [obtained] from the output side rotational speed) are detected and converted.

A pressure control valve 24 controls the amount of oil – a hydraulic medium sent from a reservoir 26 via a hydraulic line 27 by an oil pump 25 – escaping to a hydraulic line 28, thereby adjusting the line pressure PL on a hydraulic line 29. The line pressure PL is supplied to the output-side movable pulley 16 hydraulic servo device via the oil line 29.

A flow control valve 30 controls the amount of oil flowing into and out of the input-side movable pulley 12. In order to keep the speed ratio e of the CVT constant, contact is stopped between the oil line 33 and the line pressure oil line 31 and drain oil line 32 which branch from the oil line 29. As a result, the position in the axial direction of the input-side movable pulley 12 is kept constant, and the speed ratio e is also kept constant. In order to increase the speed ratio e, oil is supplied from the line pressure oil line 31 through the oil line 33 to the input-side movable pulley 12 hydraulic servo device. Consequently, the clamping force between the input-side pulleys 11, 12 is increased, the contact positions of the drive belt 18 on the surfaces of the input-side pulleys 11, 12 are moved radially outward, and the speed ratio e is increased. Conversely, in order to reduce the speed ratio e, oil in the input-side movable pulley 12 hydraulic servo device is conducted to the atmospheric side via the drain oil line 32, and the clamping force between the input-side pulleys 11, 12 is reduced.

The hydraulic pressure in the hydraulic line 33 is equal to or lower than the line pressure PL, but as described above, the pressure-receiving area of the input-side movable pulley 12 hydraulic servo device piston is set to be larger than the pressure-receiving area of the output-side movable pulley 16 hydraulic servo device piston.

Therefore the clamping force of the input-side pulleys 11, 12 can be made larger than the clamping force of the output-side pulleys 15, 16.

The effective diameter between the input-side pulleys 11, 12 is changed by changing the clamping force of the input-side pulleys 11, 12 by means of the flow control valve 30, while in the output-side pulleys 15, 16, line pressure PL is adjusted by the

pressure control valve 24 so that a clamping force is generated such that torque transmission is ensured without slippage of the drive belt 18 in response to the change in effective diameter of the input-side pulleys.

An electronic control device 38 includes a D/A converter 40, an input interface 41, an A/D converter 42, a CPU 43, a RAM 44, and a ROM 45, which are connected to one another by an address data bus 39. An analog output θ_{ac} from the accelerator pedal sensor 34 is sent to the A/D converter 42, and pulses from the rotational angle sensors 20, 21 are sent to the input interface 41. Control voltages V_{th} , V_{in} and V_{out} to the throttle actuator 19, the flow control valve 30, and the pressure control valve 24, respectively, are sent from the D/A converter 40 via amplifiers 49, 50, and 51, respectively.

Fig. 3(A) shows the relationship between input voltage and output voltage for the throttle actuator 19 amplifier 49. Fig. 3(B) shows the relationship between input current on the throttle actuator 19 and the intake throttle degree of opening. The degree of throttle opening thus increases in proportion to the input voltage of the amplifier 49.

Fig. 4(A) shows the relationship between input voltage and output current of the amplifier 50 for the flow control valve 30. Fig. 4(B) shows the relationship between flow control valve 30 input current and the amount of flow to the movable pulley 12 input-side hydraulic servo. The speed ratio e is therefore proportional to the change in amplifier 50 input current.

Fig. 5(A) shows the relationship between input voltage and output current of the amplifier 51 for the pressure control valve 24. Fig. 5(B) shows the relationship between the input current of the pressure control valve 24 and line pressure PL. Line pressure PL thus changes linearly with respect to changes in the amplifier 51 input voltage. Even if the input current of the value control valve 24 is zero, the line pressure PL is maintained at a predetermined value PL₁. A predetermined hydraulic pressure is thus supplied to the hydraulic servos of the movable pulleys 12, 16, respectively, and minimum torque transmission to the CVT is ensured even in the unlikely case of a wire breakage or a failure in the electronic control device 38.

Fig. 1 shows a block diagram of the control system of this device.

In the figure, block 100 shows a computer for obtaining a target output horsepower PS° from the degree of accelerator opening θ_{ac} and the vehicle speed V, using an equation or a map.

Block 102 shows a computer for obtaining a target input-side rotational speed N_{in}° from the target output horsepower PS°. With this method, the input-side rotational speed may be preferably set, for example, on the optimal fuel consumption line A shown in Fig. 7. In Fig. 7, the solid lines represent equivalent fuel consumption rate lines (g/PS·H), and the broken lines represent equivalent horsepower rate lines (PS).

Block 104 shows a control system that controls the speed ratio e of the CVT by feedback-adjusting a control voltage V_{in} of the flow control valve 30 so that the actual input-side rotational speed N_{in} of the CVT attains the target input-side rotational speed N_{in} °. A calculation, e.g., Equation (1), is used for this control.

$$V_{in} = k_1 (N_{in} - N_{in}^{\circ}) ...(1)$$

In performing this control, one is free to make corrections in accordance with, for example, oil temperature, and to use a more accurate computational formula.

Block diagram 106 shows a computer for obtaining a target engine torque T_e° from the target output horsepower PS° and the actual CVT input-side rotational speed N_{in} , using an equation or map. Equation (2), for example, is used for this calculation.

$$T_e^{\circ} = k_2 \times PS^{\circ}/N_{in}...(2)$$

Block 108 denotes a computer for calculating a target degree of throttle opening θ_{th} ° from the target engine torque T_{s} ° and actual engine rotational speed N_{e} , using an equation or a map.

Block 110 is a control system that feedback-adjusts the throttle actuator 19 control voltage V_{th} so that the actual degree of throttle opening θ_{th} attains the target degree of throttle opening θ_{th} °. Equation (3), for example, can be used for this control.

$$V_{th} = k_3 \times (\theta_{th}^{\circ} - \theta_{th})...(3)$$

In block 100, the target output horsepower may be modified or changed using other factors such as the slope of the running course, the weight of the vehicle, an external switch (a selection switch for an economy mode, a power mode, or the like), or the like as parameters.

In block 102, the target input-side rotational speed N_{in}° may be modified or changed using other factors such as vehicle speed, engine coolant temperature, running course slope, vehicle weight, external switch, air-fuel ratio, or the like as parameters.

Furthermore, in block 108 the target degree of throttle opening θ_{th}° may be modified or changed using other factors such as engine coolant temperature, air-fuel ratio, change over time in CVT input-side rotational speed, or the like as parameters. The change over time in the input-side rotational speed of the CVT should be considered here, since actual output torque changes during CVT gear shifting due to the effect of engine/clutch/CVT input-side inertial moment. To make such a modification, the target engine torque T_e° may be replaced, for example, in the following equation.

$$T_e^{\circ} = T_e^{\circ} + k_4 \times d/dt (N_{in})... (4)$$

Fig. 6 shows a flowchart for the above control.

First, in step 200, degree of accelerator opening θ_{ac} , vehicle speed V, input-side rotational speed N_{in} , engine rotational speed N_e , and degree of throttle opening θ_{th} are read in. Then, in step 202, target output horsepower PS° is obtained as a function f_1 of the degree of accelerator opening θ_{ac} and the vehicle speed V. After that, in step 204, the target input-side rotational speed N_{in} ° is obtained as a function f_2 of the target output horsepower PS° obtained in step 202. In step 206, the control voltage V_{in} of the flow control valve 30 is obtained using the target input-side rotational speed N_{in} ° obtained in step 204 according to the calculation in the equation k_1 ($N_{in} - N_{in}$ °). In step 208, a target engine torque T_e ° is obtained as a function f_3 of the input-side rotational speed N_{in} and the target output horsepower PS°. In step 210, a target degree of throttle opening θ_{th} ° is obtained as a function f_4 of the target engine torque T_e ° and the engine rotational speed N_e obtained in step 208. Then, in step 212, the throttle actuator 19 control voltage V_{th} is obtained by the equation k_3 (θ_{th} ° - θ_{th}).

As a result, the degree of throttle opening is correctly controlled to a predetermined value in both the normal state and the transitional state, and the output torque of the engine is correspondingly controlled.

For example, in a diesel engine or the like, the object of this invention can be achieved directly by substituting a target fuel injection amount for the target degree of throttle opening.

In the above-mentioned embodiment, the CVT input-side rotational speed is compared with a target input-side rotational speed and feedback-controlled (the first invention). However, if the speed ratio e of the CVT is compared with a target speed ratio e° and feedback-controlled, the object of this invention can be achieved in the same manner (the second invention). In this case, the target speed ratio e° can be obtained as N_{out}/N_{in}° (N_{out} represents the output-side rotational speed of the continuously variable transmission). The control voltage V_{in} of the flow control valve 30 can be obtained as k_5 ($e - e^{\circ}$).

Effect of the Invention

As described above, according to this invention excellent effects can be obtained by which output torque can be appropriately controlled in a simple structure both in the normal running state and in transitional states, thus improving both fuel consumption and dynamic performance.

4. Brief Description of the Drawings

Fig. 1 is a block diagram showing the structure of an embodiment of a vehicle drive system control device related to this invention. Fig. 2 is a schematic showing an overall diagram of a vehicle engine and an automatic transmission to which the embodiment is applied. Fig. 3(A) is a line diagram showing input/output characteristics for a throttle actuator amplifier used in the embodiment. Fig. 3(B) is a line diagram showing the relationship between the throttle actuator input and the degree of throttle opening. Fig. 4(A) is a line diagram showing input/output characteristics of a flow control valve amplifier. Fig. 4(B) is a line diagram showing the relationship between the flow control valve input and the CVT speed ratio. Fig. 5(A) is a line diagram showing input/output characteristics of a pressure adjustment valve amplifier. Fig. 5(B) is a line diagram showing the relationship between the pressure control input valve and line pressure. Fig. 6 is a flowchart showing a control routine. Fig. 7 is a line diagram showing the relationship between engine rotational speed and output torque. Fig. 8 is a line diagram showing the relationship between engine rotational speed and output torque in order to explain technology disclosed in Japanese Laid-Open Patent Application No. 58-39870.

E/G...engine

6...input shaft

8...output shaft

 θ_{ac} ...degree of accelerator opening

V...vehicle speed

N_{in}...input-side rotational speed

Nino...target input-side rotational speed

PS°...target output horsepower

Te°...target engine torque

 θ_{th} ...degree of throttle opening

 θ_{th}° ...target degree of throttle opening

e... speed-change ratio

e°...target speed-change ratio

Agent: Satoshi Takaya

Keisuke Matsuyama

Takehiro Makino

Fig. 1

104 CVT control system

110 throttle actuator control system

Fig. 3 (A)

- (1) amplifier 49 output current
- (2) amplifier 49 input current

Fig. 3 (B)

- (1) degree of throttle opening
- (2) throttle actuator 19 input current

Fig. 4 (A)

- (1) amplifier 50 output current
- (2) amplifier 50 input voltage

Fig. 4 (B)

- (1) input to CVT, flow amount to be supplied to hydraulic servo
- (2) flow control valve 30 input current

Fig. 5 (A)

- (1) amplifier 51 output current
- (2) amplifier 51 input voltage

Fig. 5 (B).

- (1) line pressure Pl
- (2) line pressure generating valve 24 input current

Fig. 6

- (1) start
- (2) end
- 200 read θ_{th} , V, N_{in} , N_e and θ_{ac}

Fig. 7

- (1) engine output torque
- (2) equivalent horsepower line (PS)
- (3) equivalent fuel consumption rate line (g/PS·H)
- (4) engine rotational speed

Fig. 8

- (1) engine output torque
- (2) optimal fuel consumption line
- (3) degree of throttle opening 30%
- (4) degree of throttle opening 10%
- (5) engine rotational speed

Certification of Translation

I, Christopher Field, a professional Japanese translator accredited by the American Translators Association, hereby attest that the attached translation from Japanese has been faithfully prepared to the best of my ability.

2. Japanese Laid Open Patent Publication S62-110535

Date: April 26, 2004

By:

Christopher Field 108 Codman Rd.

Lincoln, MA 01773

www.christopherfield.com