

3. 비정형 증명

Informal Proof

진리표 방식의 한계

- 1. 불 논리연산자에 의해서 의미가 결정되는 주장의 타당성_{validity}를 따지는 데에만 효과적
- 2. 핵 문장의 수가 커지면, 진리표의 크기는 폭발적으로 커질 수 있다.
 - ✓ 핵 문장의 개수 = n
 - ✔ 해당 진리표에서 행의 수 = 2ⁿ (지수적으로 증가)
 - ✓ 계산량이 많아서 실용적이지 못함
- 3. 확장성이 약함
 - ✓ 불 논리연산자로 구성된 문장 해석에만 쓸 수 있다.
 - ✓ 항진적 결과만 알 수 있다.

비정형 증명 Informal Proof

- 진리표의 한계점을 극복
- 증명의 목적
 - ✓ 진리의 발견: 이미 알고 있는 정보를 가지고 새로운 정보를 추출
 - ✓ 의사 소통의 수단: 발견한 진리를 타인에 전달
- 증명은 <u>증명을 쓰는 사람(증명 작가)</u>이 <u>증명을 읽는 사람(증명 독자)</u>을 확신시킬 수 있도록 작성되어야 한다.
- 증명에도 "스타일"이 있다
 - ✓ 증명 작가마다 개성적인 스타일 보유
- 잘 작성된 증명이란?
 - 1) 정확해야 한다
 - 2) 이해하기 쉬워야 한다
 - ▶ 증명 독자가 복잡한 추리 없이 논리 전개를 따라갈 수 있어야 한다.
 - 3) 함축적이어야 한다
 - ▶ 논리전개에서 증명 독자가 논리 전개에서 시간 허비 없이 정보를 많이 얻을 수 있어야 한다.
 - ❖ 2)와 3)은 서로 상반되는 성질을 가지고 있다. 즉, 너무 함축적이면 이해하기 어렵고, 너무 이해하기 쉽게 쓰려다 보면 장황하게 된다. 따라서 증명 독자층 숙련도를 고려하여 적절하게 균형을 맞추는 일이 중요하다.

타당한 논리 전개 절차 Valid Inference Steps

- a=a 또는 P√¬P와 같이 항상 논리적으로 진리인 문장은 증명 과정의 어디에서든 언급해도 괜찮다.
- 아래 세 가지는 너무 자명하기 때문에 비정형 증명에서는 굳이 언 급하지 않고 넘어가는 게 보통이다.
 - 1. 논리곱 제거 규칙 [Conjunction Elimination]
 - ▶ P∧Q에서, P를 유추
 - 2. 논리곱 생성 규칙 [Conjunction Introduction]
 - ▶ P와Q에서,P∧Q를유추
 - 3. 논리합 생성 규칙 [Disjunction Introduction]
 - ▶ P에서, P ∨ Q를 유추

비정형 증명 방식

- 경우별 증명 Proof By Cases
- 간접 증명 Indirect Proof
 - 모순유도 증명 Proof By Contradiction

경우별 증명 Proof by Cases = 논리합 제거 Disjunction Elimination

• $P_1 \vee ... \vee P_n$ 에서 S를 증명하려면,

n개의 경우로 나누어

P₁에서 S를 증명하고,

P,에서 S를 증명하고,

...

P 에서 S를 각각 증명하면 된다.

- P ∨ Q에서 S의 증명전략
 - ✓ S를 증명하는 것이 목표라고 하자.
 - ✓ P ∨ Q를 이미 알고 있다고 하자.
 - ✓ P가 참임을 가정하고 S가 참인지를 증명하고,
 - ✓ Q를 참임을 가정하고 S가 참인지를 증명한다.
 - ✓ P나 Q 중에 하나는 참일 것이므로 S는 사실이다.
- 진리표로는 증명 불가능

경우별 증명의 예1

- 정리定理: b^c이 유리수rational가 되는 무리수irrational b와 c가 존재한다.
- 증명證明
 - $\checkmark \sqrt{2^{1/2}}$ 를 보자. 이 수는 유리수 또는 무리수이다.
 - ✓ 경우1: √2^{√2}가 유리수이다.
 - ➤ b = c = √2 가 존재한다.
 - ✓ 경우2: √2^{√2}가 무리수이다.
 - ightharpoonup b = $\sqrt{2}^{1/2}$, c = $\sqrt{2}$ 를 선택하여 b^c 를 계산하면,
 - \rightarrow b^c = $(\sqrt{2^{1/2}})^{1/2} = \sqrt{2^{(1/2 \cdot 1/2)}} = \sqrt{2^2} = 2$
 - ▶ 이 경우에도 b^c는 유리수이다.

경우별 증명의 예 2

- 정리: Small(c)는 (Cube(c) ∧ Small(c)) ∨ (Tet(c) ∧ Small(c))의 논리적 결과이다.
- 증명
 - ✓ 전제: (Cube(c) ∧ Small(c)) ∨ (Tet(c) ∧ Small(c))
 - ✓ 경우1: Cube(c) ∧ Small(c)
 - ▶ 그러면 당연히 (논리곱 제거 규칙에 의해) Small(c) 성립
 - ✓ 경우2: Tet(c) ∧ Small(c)
 - ▶ 그러면 당연히 (논리곱 제거 규칙에 의해) Small(c) 성립

경우별 증명의 예3

- 정리: (Home(max) ∧ Happy(carl)) ∨ (Home(claire) ∧ Happy(scruffy)) 가 참이라고 가정하고, Happy(carl) ∨ Happy(scruffy)가 참임을 증명하라.
- 증명
 - ✓ 전제가 논리합의 형태이므로
 - ✓ 경우1: Home(max) ∧ Happy(carl)
 - ▶ 그러면 당연히 (논리곱 제거 규칙에 의해) Happy(carl)이 참
 - ➤ 그러면 당연히 (논리합 생성 규칙에 의해) Happy(carl) ∨ Happy(scruffy)가 참
 - ✓ 경우2: Home(claire) ∧ Happy(scruffy)
 - ▶ 그러면 당연히 (논리곱 제거 규칙에 의해) Happy(scruffy)가 참
 - ➤ 그러면 당연히 (논리합 생성 규칙에 의해) Happy(carl) ∨ Happy(scruffy)가 참

경우별 증명의 예 4: 논리학자 부부 이야기

- 쇼핑하느라 정신이 팔려서 쇼핑센터 앞에 불법주차 해 둔 사실을 몇 시간 뒤에야 비로소 깨달은 논리학자 부부
- 남편왈:
 - ✓ 벌금 딱지가 이미 붙어있거나, 운이 좋으면 아직 안 붙어 있겠지.
 - ✓ 경우1: 딱지가 이미 붙어있다면 한 차에 두 장을 떼지는 않지
 - ✓ 경우2: 딱지가 아직 붙어있지 않다면 지난 몇 시간 동안도 붙이지 않았는데 지금부터 몇 분 내에 붙일 확률은 거의 없지
 - ✓ 그러니까 지금 차를 빼러 달려가봤자 소용없어. 천천히 걸어가자.
- 부인왈:
 - ✓ 앞으로 몇 분 이내에 벌금딱지가 받거나, 그렇지 않을 수 있겠지.
 - ✔ 경우1: 몇 분 이내에 딱지를 받는다면, 빨리 뛰어가면 피할 수 있어서 좋지
 - ✓ 경우2: 몇 분 이내에 딱지를 받지 않더라도, 뛰어가면 운동도 되고 준법 정신도 보여줄 수 있어 좋지
 - ✓ 그러니까 빨리 뛰어가자.

간접 증명 Indirect Proof: 모순유도 증명 Proof by Contradiction

- = reductio ad absurdum
 - 귀류법(歸謬法) 배리법(背理法)
- = 논리역 생성 negation introduction
- 증명전략
 - ✓ P₁, ..., P_n 의 전제 하에 ¬S를 증명하는 것이 목표라고 하자.
 - ✓ 일단 S가 참이라고 가정하고 P_1 , ..., P_n 전제로부터 모순(contradiction)을 유도한다.
 - ✓ 그러면 ¬S가 참이라고 결론지을 수 있다.
- 모순: ⊥ = P ∧ ¬P (절대로 참이 될 수 없는 상황)

모순유도 증명의 예 1

- Cube(c) ∨ Dodec(c)이고 Tet(b)라고 가정하면, ¬(b=c) 이다.
- 증명
 - ✓ b=c가 참이라고 가정하고 모순을 유도해보자.
 - ✓ 첫 번째 전제에 의하면 c는 6면체 또는 12면체이다.
 - ✓ c가 6면체인 경우: b=c이므로 b도 6면체이다. 그런데 두번째 전제에 의하면 b는 4면체 이므로 모순이다.
 - ✓ c가 12면체인 경우: b=c이므로 b도 12면체이다. 그런데 두번째 전제에 의하면 b는 4면체이므로 모순이다.
 - ✓ 두 경우 모두 모순이므로 b=c는 거짓임에 틀림없다.

모순유도 증명의 예 2

- √2는 무리수이다.
 - ✓ 힌트1: 유리수는 분수로 나타낼 수 있으며 분자/분모 둘 중 하나는 반드시 홀수이다.
 - ✓ 힌트2: 홀수의 자승은 항상 홀수이다. 따라서 n²가 짝수이면, n도 짝수이다. 따라서 n²이 짝수이면 이 수는 4로 나뉘어진다.

• 증명

- ✓ √2은 유리수라고 가정하고 모순을 유도해보자.
- ✓ 그러면 √2를 p/q로 표시할 수 있으며 p나 q 중에서 최소한 하나는 홀수이다.
- ✓ $\sqrt{2} = p/q$ 의 양변을 제곱하면, $2 = p^2/q^2$ 이고, 따라서 $p^2 = 2q^2$
- ✓ 그러면 p²은 짝수, 따라서 p도 짝수이고 p²는 4로 나뉘어진다.
- ✓ 그러면 2q²는 4로 나뉘어지고, q²는 2로 나뉘어진다.
- ✓ 그러면 q²는 짝수이므로 q도 짝수이다.
- ✓ P와 q가 모두 짝수라는 사실은 p나 q중에서 최소한 하나는 홀수라는 사실과 모순
- ✓ 따라서 √2가 유리수라는 가정은 모순
- ✓ 따라서 √2는 무리수이다.

모순 vs 항진

- 모순contradiction ≡ P ∧ ¬P
- 항진tautology = P ∨ ¬P
- S가 논리적 불가능 = ¬S가 논리적 진리(필연)
- S가 항진 = ¬S가 모순
- P₁,P₂,...,P_n은 TT-모순TT-contradictory이다.
 - ✓ 통합진리표에서 모든 행에 최소한 한 문장은 F가 있다.
 - ✓ 즉, 모두가 참이 되는 경우는 없다.

모순유도 증명의 예 3: 변호사의 변론

- 검찰측에서는 피고가 해장국집 주인을 죽였다고 주장하고 있습니다.
- 검찰측 주장이 맞다고 가정합시다.
- 살해 사건이 오후 5시15분에 일어났다는 검찰측 감식반 증언을 들으셨지요?
- 그런데 5명의 직장 동료의 증언에 의하면 피고는 4시45분에도 직장인 안산 시청에서 일을 하고 있었다는 사실을 아시지요?
- 그렇다면 피고가 직장에서 사건현장으로 30분 이내에 갈 수 있었다는 이야 기가 됩니다.
- 그렇지만 교통 상황이 좋아도 35분 거리인데, 경찰의 교통 기록에 의하면 마침 그날 그 길이 심하게 막혔습니다.
- 따라서 피고는 무죄입니다.

전제가 모순인 주장

- 전제 P_1 , ..., P_n 이 모순이면, 이 전제들은 <mark>일관성이 없다inconsistent</mark> 라고 한다.
- 일관성이 없는 전제로 만들어진 주장은 항상 타당valid하지만, 항상 맞지 않다unsound.

예:

```
Home(max) ∨ Home(claire)
¬Home(max)
¬Home(claire)
—
Home(max) ∧ Happy(carl)
```