

snail

WWW.etiser.vip

请同学写出题目大意 已知什么求什么

蜗牛从高度为0开始,每秒高度加a,下一秒高度再减b,反复进行,直到高度为h至少几秒?

部分分策略讨论

【数据规模与约定】	测试数据共25组
	1次」が/ 8人 7口 ノフ 4 7 2上

特殊情况	1号、2号数据: a=b
	3号、4号数据: a>=h
0(h)	5号到20号数据: h<=106

0(1)

对于所有数据: b<=a<=10¹⁸, h<=10¹⁸

无解情况

每天上升小于等于下落 x<=y 并且第一天没有成功 x<h

特别大

h特别大

x特别大

y特别大

特别小

h特别小

x特别小

y特别小

刚刚好

刚好到达

刚好无解

 $x==y \mid x==h$

请至少设计3组输入输出 体现易错点

设计数据

输入样例 223

输出样例 forever 输入样例 900 800 1000

输出样例

3

输入样例 11 10 10

输出样例

1

变量类型

用int还是long long

typedef long long 11;

无解情况特判

WWW.etiger.vip

模拟算法

一秒一秒更新高度变化

```
14
         11 t=0;
15
         11 pos=0;
         while(
16  □
17
              if(
18
19
                   pos+=a;
20
              else
21
                   pos-=b;
22
         cout<<t<endl;</pre>
23
```

时间复杂度0(h)

滚动数组

根据时刻的奇偶性确定上或下

```
14
         11 x[2];
15
         x[1]=a;
         x[0]=-b;
16
17
         11 t=0;
18
         ll pos=0;
         while(pos<h){</pre>
19 \Diamond
20
              t++;
21
              pos+=
22
23
         cout<<t<endl;</pre>
         时间复杂度0(h)
```

数学公式

上下上下上下上下上下上下上

识别高度变化的规律

上下交错

上升次数=下降次数+1

数学公式

上下上下上下上下上下上下上

```
9 ll d=a-b;

14 ll g=max(h-a,0LL);

15 ll cnt=ceil(g*1.0/d);

16 ll ans=cnt*2+1;
```

请写出变量的精准含义

d表示每2秒高度上升几厘米

g表示先向上爬a厘米后剩余的距离

cnt表示剩余距离还需要几个2秒的爬行

ans表示总共需要爬几秒

大文编程 etiger.vip

太戈编程

3111

NWW.etiser.vip

大文编形 etiger.vip

费用平摊

请同学写出题目大意 已知什么求什么

己知长度为n的整数序列p[],求有多少个子段和恰为m的倍数?

请同学阅读[数据规模和约定] 识别部分得分点

对于10%数据, m=1。

对于20%数据, m<=2。

对于30%数据, n<=100, 0<=p[i]<=100

对于50%数据, n<=1000。

对于100%数据, n<=200000, m<=1000000, 保证p[i]绝对值均不超过10000。

输入

输出?

5 12 3 5 1 5

15

6 2 2 4 1 8 3 9

9

WWW.etiger.vip

暴力枚举

NWW.etiger.vip

```
10 pvoid solveBF(){
11
         11 ans=0;
         for(ll i=1;i<=n;++i){</pre>
12 \Diamond
13
              11 \text{ sum=0};
              for(ll j=i;j<=n;++j){
14 =
                   sum=(sum+p[j])%m;
15
16
17
18
19
         cout<<ans<<endl;
20
```

请写出时间复杂度 O(n²) WWW.etiger.vip

思考如何加速

连续和/子段和

前缀和做差

子段和为m倍数

2个前缀和 模m同余

WWW.etiser.vip

n=5 m=2

s[]是p[]的前缀和数组

	i=0	i=1	i=2	i=3	i=4	i=5
p[i]	ı	2	4	1	8	3
s[i]	0	2	6	7	15	18
s[i]%m	0	0	0	1	1	0

对s[i]按照除以m的余数进行统计

cnt[x]表示有几个s[i]除以m的余数 恰为x

cnt[0]为4, cnt[1]为2

答案 =
$$4*(4-1)/2 + 2*(2-1)/2 = 7$$

NNN

```
24 pvoid solve(){
        for(ll i=1;i<=n;++i){
25申
            s[i]=s[i-1]+p[i];
26
27
                                        可能有负数参与取模
            cnt[s[i]]++;
28
29
30
                                         s[0]为0参与计数
        ll ans=0;
31
        for(11 r=0;r<m;++r){
32申
                                         能否删除第33行?
            if(cnt[r]<=1)continue;</pre>
33
34
            ans+=
35
36
        cout<<ans<<endl;
37 <sup>L</sup> }
         请写出时间复杂度
              O(n+m)
```

前缀和+同余系计数

```
对于10%数据, m=1。
对于20%数据, m<=2。
对于30%数据, n<=100, 0<=p[i]<=100
对于50%数据, n<=1000。
对于100%数据, n<=200000, m<=1000000, 保证p[i]绝对值均
不超过10000。
```

```
const ll N=200009;
const ll M=1000009;

ll s[N];
ll cnt[M];
```

请设置N和M的大小

大小数据分离 确保部分分

```
38 int main(){
       freopen("share.in","r",stdin);
39
40
       freopen("share.out","w",stdout);
       input();
41
42
       if(n<=2000)
            solveBF();
43
44
       else
45
            solve();
46
       return 0;
```


大文编程 etiger.vip

单词构造

WWW.etiger.vip

输入

输出?

4 5 qonoc ohoho hlaqo mirko qohlaqko

WWW.etiger.vip

请同学写出题目大意已知什么求什么

n*m字符,从左上角到右下角走,可以向下或右,取出走过的字符组成字符串,要求字典序最小。

请同学阅读[数据规模和约定] 识别部分得分点

对于20%数据, m=1。

对于30%数据, n<=100, m<=100。

对于100%数据, n<=2000, m<=2000。

观察发现

首个字母一定是左上角

第二个字母可以二选一,挑字典序小的

按照斜线的方向逐个确定答案字符串

平局时如何处理?

暴力 枚举

枚举每格可走的2种方向: 向右或向下

贪心 变种

平局时维护多个最优候选人

大小数据分离 确保部分分

```
59pint main(){
        freopen("word.in","r",stdin);
60
        freopen("word.out", "w", stdout);
61
        input();
62
        if(m==1)
63
             print();
64
        else if(n+m <=15)
65
             solveBF();
66
67
        else
68
             solve();
69
        return 0;
70 <sup>⊥</sup> }
```

暴力 枚举

枚举每格可走的2种方向: 向右或向下

对所有可能的字符串进行字典序比较


```
16 string ans, word;
17 woid dfs(ll x,ll y){
26 pvoid solveBF(){
        ans=word="";
27
        for(ll i=1;i<=n+m-1;++i){
28 🗦
            ans+='z';
29
30
            word+=' ';
31
32
        dfs(1,1);
33
        cout<<ans<<endl;
```

NWW.etiger.vip

```
16 string ans, word;
17 p void dfs(ll x,ll y){
18
         if(x==n\&\&y==m){
19 
              ans=min(ans,word);
20
21
              return ;
22
         if(x+1 \le n) dfs(x+1,y);
23
24
25 <sup>L</sup> }
```

请写出时间复杂度 O(2^{n+m})

贪心 变种

按照斜线的方向逐个确定答案字符串 平局时维护多个最优候选人

,q-	> Ø	n	0	С
O	h	0	h	0
h	Z	а	q	0
p	i	r	k	0

答案字符串 = q??????

WWW.etiser.vip

答案字符串 = qo??????

WWW.etiger.vip

q	0	n	0	С	
0	h	0	h	0	
h	Z	a	q	0	
р	i	r	k	0	

答案字符串 = qohoaqko

```
bool ok[N][N];
35
                                                                      贪心
36 proid solve(){
37
        ans="";
38
        ok[1][1]=1;
39 ₽
        for(ll step=1;step<=n+m-1;++step){</pre>
40
             char mn='z';
             for(11 x=1;x<=step&&x<=n;++x){</pre>
41 \Rightarrow
42
                 11 y = step + 1 - x;
43
                 if(y>m)continue;
                 if(!ok[x][y])continue;
44
45
                 mn=min(mn,d[x][y]);
46
                                                    请写出时间复杂度
47
             ans+=mn;
48 ₽
             for(11 x=1;x<=step&&x<=n;++x){
                                                           O(nm)
49
                 11 y=step+1-x;
50
                 if(!ok[x][y])continue;
51
52
                 if(d[x][y]!=mn)continue;
53
                 if(x+1 \le n) ok[x+1][y]=1;
54
55
56
57
        cout<<ans<<endl;
58
```

大小数据分离 确保部分分

```
59pint main(){
        freopen("word.in","r",stdin);
60
        freopen("word.out", "w", stdout);
61
        input();
62
        if(m==1)
63
             print();
64
        else if(n+m <=15)
65
             solveBF();
66
67
        else
68
             solve();
69
        return 0;
70 <sup>⊥</sup> }
```

大义编制是 etiger.vip

2720

NWW.etiger.vip

大文编样 etiger.vip

draw

WWW.etiger.vip

请同学写出题目大意已知什么求什么

平面上有一个长方形, 给定n条纵向分割线和m条横向分割线, 得到(n+1)(m+1)个平面方格, 要删掉一些小线段使方格连通, 求删掉线段的最短总长度。

理解核心操作

每次删除小线段 需要连接两个原本不连通的2个区域

原本连通的2个区域之间不需要删除分割线段

请同学阅读[数据规模和约定] 识别部分得分点

【数据规模与约定】

1号数据:保证1<=A,B<=20,0<=n,m<=10

2号数据: 保证0<=n,m<=100

3号数据: 保证m=1

对于所有数据:保证1<=A,B<=1000000000,

0<=n,m<=25000

简化问题 可能启发灵感

```
48 int main(){
        freopen("draw.in","r",stdin);
49
        freopen("draw.out", "w", stdout);
50
51
        input();
52
        if(m==1)
53
            solveM1();
54
        else
55
            solve();
56
        return 0;
```

WWW.etiger.vip

纵向小线段长度	n条dy[1], n条dy[2]	排序: dy[1]<=dy[2]
横向小线段长度	dx[1], dx[2],, dx[n+1]	排序: 从小到大

格子总数	2(n+1)	
原始线段数	3n+1	
要删除的线段数	格子总数-1 = 2(n+1) - 1 = 2n+1	

重大发现 打通左右通道: n条长度dy[1]的小线段可以先删除 n条长度dy[2]的小线段 和 n+1条横向小线段里 挑最短的n+1条删除

```
12 pvoid solveM1(){
13
        dy[1]=y[1];
        dy[2]=b-y[1];
14
        if(dy[1]>dy[2])swap(dy[1],dy[2]);
15
16
        11 ans=dy[1]*n;
17
        x[n+1]=a;
18
        sort(x+1,x+n+2);
        for(ll i=1;i<=n+1;++i) dx[i]=x[i]-x[i-1];
19
        for(ll i=1;i<=n;++i)
20
21
        for(ll i=1;i<=n+1;++i) ans+=dx[i];</pre>
22
23
        cout<<ans<<endl;</pre>
24<sup>1</sup>}
```

时间复杂度O(n)

总结m=1情况的算法

推广到满分算法

打通左右通道

打通上下通道

两个方向分别 贪心挑最短线段

打通左右通道

删除2段纵向小线段

打通上下通道

删除3段横向小线段

完成这批操作后

横向看:存在3个不连通的空间纵向看:存在4个不连通的空间

继续贪心挑最短线段

批量删除2段纵向线段

完成这批操作后

横向看:存在3个不连通的空间纵向看:存在3个不连通的空间

格子总数	2(n+1)	
原始线段数	3n+1	
要删除的线段数	格子总数-1 = 2(n+1) - 1 = 2n+1	

重大发现 打通左右通道: n条长度dy[1]的小线段可以先删除 n条长度dy[2]的小线段 和 n+1条横向小线段里 挑最短的n+1条删除

原始格子数量

$$(n+1)(m+1)$$

原始小线段数量

$$n*(m+1)+m*(n+1)$$

举例:n=2,m=1, 共3*2格, 7边

要删除线段的数量

原始格子数-1 = (n+1)(m+1)-1

留下几条?

原始小线段数量 - 删除线段数量 = n*m

图论建模

每个节点对应什么?

格子

每条边对应什么?

格子间的隔板

联想: 最小生成树

点数太多, 边数太多

Kruskal算法(贪心思路)

批量选边

n=2 纵向分割线数量

m=3 横向分割线数量

cX表示已经批量删除过几批横向线段

cY表示已经批量删除过几批纵向线段

$$cX=1$$

cY=1

完成这批操作后

横向看:存在n+1个不连通的空间

纵向看:存在m+1个不连通的空间

完成这批操作后

横向看:存在n+2-cX个不连通的空间

纵向看:存在m+2-cY个不连通的空间

n=2 纵向分割线数量

m=3 横向分割线数量

cX表示已经批量删除过几批横向线段 cY表示已经批量删除过几批纵向线段

完成这批操作后

横向看:存在n+2-cX个不连通的空间 纵向看:存在m+2-cY个不连通的空间


```
26
       x[n+1]=a;
27
       y[m+1]=b;
       sort(x+1,x+n+2);
28
                             dx[]储存横向小线段长度
       sort(y+1,y+m+2);
29
       for(ll i=1;i<=n+1;++i) dx[i]=x[i]-x[i-1];
30
       for(ll i=1;i<=m+1;++i) dy[i]=y[i]-y[i-1];
31
       sort(dx+1,dx+n+2);
32
                             dy[]储存纵向小线段长度
       sort(dy+1,dy+m+2);
33
```


W.etiser.vip

```
34
        11 ans=dx[1]*m+dy[1]*n;
35
        11 cX=1, cY=1;
        for(ll i=1;i<=n+m;++i){</pre>
36 ∮
             if(cX+1<=n+1&&dx[cX+1]<dy[cY+1]){
37₽
38
                  ++cX;
39
                  ans+=dx[cX]*(m+1-cY);
40
             else{
41 \Diamond
42
                  ++cY;
                  ans+=dy[cY]*(n+1-cX);
43
44
45
```


横向看:存在n+2-cX个不连通的空间

纵向看:存在m+2-cY个不连通的空间

W.etiger.vip

大义编样 etiger.vip

太戈编程

2775

WWW.etiger.vip