A Level Maths - S2 Sam Robbins 13SE

<u>Distribution Overview</u>

	${\rm Uniform}({\rm Continuous})$	Binomial(Discrete)	Poisson(Discrete)	Normal(Continuous)	CRVs(Continuous)
Notation	$\mathcal{U}(a,b)$	B(n,p)	$P_o(\lambda)$	$\mathcal{N}(\mu,\sigma^2)$	$f(x) = \begin{cases} f(x), & \text{for } a \le x \le b \\ 0, & \text{otherwise} \end{cases}$
Parameters	a= Start value b= End value	n= Number of trials p= Probability of success	λ = Mean number of occurrences in the time period	μ = Mean σ = Standard Deviation	a= Start value b= End value
PDF or PMF	$f(x) = \begin{cases} \frac{1}{b-a}, & \text{for } a \le x \le b \\ 0, & \text{otherwise} \end{cases}$	$f(r) = \begin{cases} \binom{n}{r} p^r (1-p)^{n-r}, & \text{for } 0 \le r \le n \\ 0, & \text{otherwise} \end{cases}$	$f(r) = \begin{cases} \frac{e^{-\lambda} \lambda^k}{k!}, & \text{for } 0 \le r \le n \\ 0, & \text{otherwise} \end{cases}$	Don't need to know	Given in question or: $\frac{dy}{dx}F(x)$
CDF	$f(x) = \begin{cases} 0, & \text{for } x < a \\ \frac{x-a}{b-a}, & \text{for } a \le x < b \\ 1, & \text{for } x \ge b \end{cases}$	Use tables	Use tables	$z = \frac{x - \mu}{\sigma}$ Then use tables	$F(x) = \int_{a}^{x} f(x)dx$
Mean	$rac{1}{2}(a+b)$	np	λ	μ	$\int_{a}^{b} x f(x) dx$
Variance	$rac{1}{12}(b-a)^2$	np(1-p)	λ	σ^2	$\int_{a}^{b} x f(x) dx$ $\int_{a}^{b} x^{2} f(x) dx - \mu^{2}$
Median	$rac{1}{2}(a+b)$	Don't need to know	Don't need to know	μ	Where F(x)=0
Mode	Any Value	Don't need to know	Don't need to know	μ	Where $f'(x) = 0$
\approx Binomial	No	N/A	Check using inverse	$P = 1 - \frac{\sigma^2}{\mu}$ $n = \frac{\mu}{P}$	No
≈ Poisson	No	Where $\mathbf{p} < 0.1$ and $\mathbf{n} > 50$ $X \sim B(n, p) \approx Y \sim P_o(np)$	N/A	Where $\mu \approx \sigma^2$ and $\mu > 10$ $\mathcal{N}(n, p) \approx X \sim P_o(n \ or \ p)$	No
≈ Normal	No	Where n > 10 and P < 0.5 $X \sim B(n,p) \approx \mathcal{N}(np,np(1-p))$ Don't forget continuity correction	Where $\lambda > 10$ $X \sim P_o(\lambda) \approx \mathcal{N}(\lambda, \lambda)$ Don't forget continuity correction	N/A	No