

13-16 August, 2001 NDIA Small Arms Conference Little Rock, AR

MEMS Safety and Arming Device for OICW

US Army TACOM ARDEC Fuze Division, AMSTA-AR-CCF-A Adelphi, Maryland 301-394-0754 **Briefer:**

Charles H. Robinson, ME

Co-Authors:

Robert H. Wood, ME

Andrew Bayba, ME

David Hollingsworth (NAWC-CL)

Report Documentation Page		
Report Date 13Aug2001	Report Type N/A	Dates Covered (from to)
Title and Subtitle MEMS Safety and Arming Device for OICW		Contract Number
		Grant Number
		Program Element Number
Author(s) Robinson, Charles H.; Wood, Robert H.; Bayba, Andrew; Hollingsworth, David		Project Number
		Task Number
		Work Unit Number
Performing Organization Name(s) and Address(es) US Army TACOM ARDEC Fuze Division, AMSTA- AR- CCF- A Adelphi, Maryland		Performing Organization Report Number
Sponsoring/Monitoring Agency Name(s) and Address(es) NDIA (National Defense Industrial Association) 211 Wilson Blvd, STE. 400 Arlington, VA 22201-3061		Sponsor/Monitor's Acronym(s)
		Sponsor/Monitor's Report Number(s)
Distribution/Availability Approved for public releas		
~		Symposium, Exhibition & Firing Demonstration document contains color images.
Abstract		
Subject Terms		
Report Classification unclassified		Classification of this page unclassified
Classification of Abstract unclassified		Limitation of Abstract UU
Number of Pages 21		

г

Insertion of MEMS Technology

Incorporate the functions of a conventional mechanical S&A in a single S&A die integrated with a fuze circuit.

A MEMS mechanical S&A is not a "sensor" per se. Rather, its components intrinsically combine both sense and actuate functions in a single unpowered chip.

MEMS S&A Team

- PM Small Arms Customer
- JSSAP Program Sponsor
 - →OICW System Enhancements STO (Tech Base Funding)
- Engineering Development
 - → TACOM ARDEC Fuze Division, technical and project lead
 - → China Lake, explosive train (MSF) development
 - → WECAC, MSF producibility
 - → ARL, engineering and test support
 - → Alliant Technology, test hardware

MEMS Mechanical S&A

Goal - Demonstrate the Feasibility of:

- → MEMS mechanical S&A device for 20-mm OICW weapon system, with
- → A compatible MEMS-scale firetrain (MSF)

Why OICW?

→ Reduce <u>cost</u>, weight, volume of S&A (increase lethality)

Why MEMS? (micro-electro-mechanical systems)

- → Robust in high-G environments---due to scaling laws
- → Economies of high-volume production---via semiconductor industry
- → High-accuracy miniaturization---feature resolution of 0.5 μm (0.02 mil)
- → Readily integrated with fuze electronics---sandwich CMOS with MEMS chip
- → Similar mechanical S&A architecture for many weapon systems
- → Implement design changes via optical mask versus retooling production line

Technical Approach

Concept, design, analysis

- → MEMS "inertial mechanical logic," two *inertial* locks, one *command* lock
- → Map S&A functions to planar domain
- → Firetrain is offshoot of NAWC-CL 'smart detonator" technology

Fabricate MEMS test structures and S&A prototypes

- → Inertial (zig-zag) delays, sliders, springs, locks, latches, anchors, rotors
- → Need "high-aspect-ratio" to transport meaningful amount of energetics
 - LIGA (Deep X-Ray Lithography), 50-200-micron, Nickel features
 - DRIE (<u>Deep Reactive Ion Etching</u>), 80-300-micron, Silicon features
- → Distinct from "low-aspect-ratio" multi-layer processes such as Sandia's

Demonstration Tests:

- → Bench demonstration of a MEMS-scale firetrain
- → Flight demonstration of MEMS S&A hardware in Sept '01

Enabling Technology: MEMS

BAD Things About Conventional Mechanical High-G S&As

- → Large parts count
- → Pick-and-place assembly:
- → Dissimilar materials
- → Lubrication (can denature)
- → Miniature 'clockworks' (shrinking domestic industrial base)
- → Large 'cube' of S&A could be used other ways

GOOD Things about MEMS Mechanical High-G S&As

- → Moving parts fabricated 'in situ' (wafer level assembly)
- → All functional parts of same material (nickel)
- → No lubrication
- → Commonality for use across multiple high-g applications
- → Greatly reduced mass of lead-containing explosives in MSF

Micro-Scale Firetrain per MIL-STD-1316, and Material Selection

High Aspect Ratio

ARDEC

200-μm Nickel

Inertially-Actuated

Surface Micro-Machined

Sandia

2-μm Poly-Si

Electrically Actuated

Zig Zag Inertial Delay Slider Design

- Requirement: 40-ft Drop Safety
- Integrates axial acceleration pulses (e.g. setback) $\rightarrow \Delta V$
- Removes first lock on MEMS arming slider
- Spring resets mass after small inputs
- Design variables:
 - → slider mass
 - → "throw" distance
 - → number of zig-zag (stop/start) "stages"
 - → rack parameters (pitch and depth)
 - → spring stiffness and bias
- First prototype demonstrated in 1996
- Patent no. 5,705,767

Calculated Zig-Zag Slider Motion

(Spring Pre-Bias, 45kG OICW Launch Acceleration)

Calculated Zig-Zag Slider Arming Curve

<08/15/01>

DRIE-Fabricated Silicon Structures Used to Prove out Concepts and Generate Data

<08/15/01>

MEMS Mechanical S&A for OICW

MEMS Mechanical S&A for OICW: Armed

<08/15/01>

p. 13

Technical Issues / Challenges

Micro-Scale Firetrain (MSF)

- → Demonstrated MSF at NAWC-CL using MEMS S&A parts, June 2001
 - Test quantity was 24 units, four times that for the November '00 tests
 - Samples distributed between safe, armed, and partially armed
 - Obtained no detonations when in safe position
 - Armed units detonated
 - Partial-arming tests yielded a first cut on the 50% point (it is near 75% armed)
- → Next steps
 - More firetrain demonstrations next month (Sept '01)
 - Will be in sufficient quantities for a statistical analysis
 - TACOM-ARDEC WECAC investigating economical explosive loading methods for MSF
- → Environmental: MSF has 95% less lead-containing explosives than the M100

Microscale Firetrain (MSF) for MEMS S&A, Preliminary Testing, June 01

Technical Issues / Challenges

MEMS Mechanical S&A for OICW: GETTING PARTS

A. Demonstrated concepts, designs, analyses, properties of structures in silicon

- Defining features and implementing 'mechanical logic" appears viable
- DRIE (silicon) parts delivery later this month, BUT...
 - a. Fabrication cycle time is long (~ 6 months) and yield is low (< 20%)
 - → Pursuing "massively parallel iterations," trying many approaches at once
 - b. 'Stiction': parts don't release or they release and then re-adhere
 - → Developed special process methods to avoid liquid immersion
 - c. Impact testing showed silicon parts vulnerable at high strain rates
 - d. Silicon for demonstrating concepts, need ductile material for functional parts

continued...

Test Patterns to Investigate Silicon Deep-Etch Process Variation

Technical Issues / Challenges

MEMS Mechanical S&A for OICW: GETTING PARTS, continued

- B. Next stage is move to <u>nickel</u> (LIGA) parts for ductility
- C. Anticipate improved MEMS fabrication methods in future
 - Manufacturability based on high-volume "printing" of nickel parts via LIGA "master"
 - With improved firetrain can resort to well-established HAR fabrication techniques
- D. Doing a MEMS S&A cost study for OICW production
 - Consulting high-throughput MEMS manufacturers
 - "Assuming 10M parts using advanced MEMS technology five years from now..."
 - Investigating breakthrough wafer-scale explosive loading techniques for MEMS

SUMMARY

- MEMS Enabling Technology for Fielding of OICW and OCSW
 - → Meet S&A cost and volume (lethality) targets
 - → Revolutionize fuzing for small arms
- Technology Barriers Remain:
 - → "MEMS is an emerging technology" (M. Huff, CNRI MEMS Exchange, July 2001)
 - New fabrication technologies still coming on line
 - Infrastructure is behind the demand curve...judicious prototyping
 - → We will continue to work out the feasibility...
 - → But the next major challenge will producibility.

<08/15/01>

MEMS S&A for OICW

(OICW System Enhancements STO)

p. 20

OICW System Enhancements Technology Readiness Level (TRL) Maturity

Committed To Excellence

<08/15/01>