Paper Review "Towards Sparse Hierarchical Graph Classifiers"

Cangea et al. [1]

Suresh Kumar Choudhary / 20.12.2021

Course: Geometric Data Analysis

Course Instructor: Professor Christoph von Tycowicz

Table of Contents

- 1. Goal of the study
- 2. Related work
- 3. Proposed Model
- 4. Dataset & parameters
- 5. Experimental Results
- 6. Conclusion and Discussion
- 7. Implementation Details
- 8. References

Goal of the study

 Sparse Hierarchical Graph Classification: Predicting a single label for the entire graph

Motivation

 The previous prominent approach to pooling has quadratic memory requirements during training, therefore not scalable to large graphs

Introduction: Graph vs Images

- Arbitrary in size
 Complex topology(no spatial locality)
 Non euclidean
- No fixed node ordering

- Grid (Spatial locality)
- Structured data
- Deep learning designed for grid and sequences

Introduction: Why CNN fails on Graph?

Locality
 Source:GNN[20]

Aggregation

Composition(function of a function)

Introduction: Geometric deep learning

• '

Converting Graphs into Adjacency Matrix

	0	1	2	3	4	5
0	0	1	1	1	1	0
1	1	0	0	1	0	0
2	1	0	0	1	1	1
3	1	1	1	0	0	1
4	1	0	1	0	0	0
5	0	0	1	1	0	0

Converting Graphs into Adjacency Matrix

Not invariant to Node ordering

0	1	2	3	4	5
0	1	1	1	1	0
1	0	0	1	0	0
1	0	0	1	1	1
1	1	1	0	0	1
1	0	1	0	0	0
0	0	1	1	0	0
	0 1 1 1	0 1 1 0 1 0 1 1 1 0	0 1 1 1 0 0 1 0 0 1 1 1 1 0 1	0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0	0 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0

Not applicable to different graph sizes

- 2nd approach: use same approach as in CNN
 - Locality
 - Aggregation
 - Stacking layers (composition)
- How?

- 2nd approach: use same approach as in CNN
 - Locality
 - Aggregation
 - Stacking layers (composition)
- How: using node embedding or graph embedding

- 2nd approach: use same approach as in CNN
 - Locality
 - Aggregation
 - Stacking layers (composition)
- How: using node embedding or graph embedding

Related Work

Paper	Study Focus
Krizhevsky et al. [2]	ImageNet Classification with Deep Convolutional Neural Networks
[4,6,14, 16,17]	Graph convolutional layers
[12-15]	Aggregation of node representations: Global pooling layer
[3-11]	Clusters which coarsen the graph in a hierarchical manner through a fixed and pre-defined cluster assignment
Ying et al. [3]	Soft clustering assignments, learned in a differentiable way (DiffPool)

Model

- Input graphs
- Layers
- Architecture

Model: Input Graphs

- The input graph is represented by:
 - Matrix of node features:

$$X \in R^{N imes F}$$

Adjacency matrix:

$$A \in R^{N imes N}$$

- where N is the number of nodes in the graph and F the number of features for each node.
- A is binary and symmetric.

Model Layers

- Convolutional layer
- Pooling layer
- Readout layer

Model: Convolutional Layer

 The architecture makes use of a mean-pooling propagation rule:

$$MP(X,A) = \sigma(\hat{D}^{-1}\hat{A}X\Theta + \underline{X\Theta'})$$

- Where:
- σ is rectified linear (ReLU) activation function
- $\begin{array}{ll} \circ & \hat{\mathbf{A}} = \mathbf{A} + \mathbf{I_N} \\ \mathbf{A} \\ \text{djacency matrix with inserted self-loops} \\ \circ & \mathbf{D} \text{ is its corresponding degree matrix } \hat{D}_{ii} = \sum_{j} \hat{\mathbf{A}}_{ij} \\ \circ & \mathbf{\Theta}, \mathbf{\Theta}' \in R^{F \times F'} \\ \text{are learnable linear transformations} \end{array}$

Model: Convolution Layers

Model: Pooling Layer

Model: Pooling Layer

 computing a pooled graph, (X', A'), from an input graph (X, A)) can be expressed as follows:

$$ec{y} = rac{ec{X}ec{p}}{||ec{p}||} \quad ec{i} = top - k(ec{y},k) \quad X' = (X \odot tanh(ec{y}))_{ec{i}} \quad A' = A_{ec{i},ec{i}}$$

- Here, ||.|| is the L2 norm, top-k selects the top-k indices from a given input vector,
- broadcasted element wise multiplication
- Vector i is an indexing operation which takes slices at indices specified by vector i.

Model: Pooling Layer

- The hierarchical pooling layer reduces the graph with a pooling ratio, k ∈ (0,1], decreasing the number of nodes in a graph from N to ΓkN1.
- The choice of the nodes to drop is done based on a projection score against a learnable vector, which is also used as gating value.

Model: Readout Layer

- The readout layer flatten the information about the input graph in a fixed-size representation.
- Concatenate the results of a global average pooling and a global max pooling at the end of each conv-pool block.
- Apply a global sum pooling before submitting the information to an MLP to obtain final predictions.

Model: Readout Layer

$$ec{s}^{(l)} = \underbrace{\left(rac{1}{N^{(l)}} \sum_{i=1}^{N^{(l)}} ec{x}_i^{(l)} \middle| | \left(\max_{i=1}^{N^{(l)}} ec{x}_i^{(l)}
ight) ec{s}^{(l)}}_{l=1} ec{s}^{(l)}$$

Predictions = MLP (\vec{s})

- where N is the number of nodes of the graph at layer I
- Vector x_i are the i-th node's feature vector.
- | denotes concatenation

Model: Readout Layer

Model Architecture:

 The presented architecture comprises three conv-pool blocks (in the image they are only two)

Source: Cangea et al. [1]

Experiments: Datasets & Model Parameters

Туре	Dataset	Size	No. of Classes	No. of Feature Layers	Learning Rate	Epochs
Biological	Enzymes	597	6	128	0.0005	100
	Proteins	1113	2	64	0.005	40
	D & D	1178	2	64	0.005	20
Scientific collaboration	Collab	5000	3	128	0.005	30

- Pooling ratio k = 0.8, and used Adam optimizer
- 10-fold cross validation approach is used for evaluation

My implementation:

- Used Pytorch and colab
- Implemented all the layers from scratch
- Replicated the same architecture
- Used the same parameters described in paper
- Tested on enzymes dataset only
- Code can be found at Github [23]

Result: Classification Accuracy in %

		Datasets			Source:Cangea et al.[1]		
	Model	Enzymes	D&D	Collab	Proteins		
Kernel	Graphlet	41.03	74.85	64.66	72.91		
based	Shortest-path	42.32	78.86	59.10	76.43		
basea	1-WL	53.43	74.02	78.61	73.76		
	WL-QA	60.13	79.04	80.74	75.26		
	/ PatchySAN	_	76.27	72.60	75.00		
	GraphSAGE	54.25	75.42	68.25	70.48		
	ECC	53.50	74.10	67.79	72.65		
GNN	Set2Set	60.15	78.12	71.75	74.29		
	SortPool	57.12	79.37	73.76	75.54		
	DiffPool-Det	58.33	75.47	82.13	75.62		
	DiffPool-NoLP	62.67	79.98	75.63	77.42		
	DiffPool	64.23	81.15	75.50	78.10		
	Ours	64.17	78.59	74.54	75.46		

Result: GPU Memory Usage

Paper's method and DiffPool during training

Source:Cangea et al.[1]

Conclusion and Discussion

- Accuracy at most with in range of 1% as state of art algorithm (diffpool)
- State of art (diffpool) requires a quadratic O(kV²) storage complexity to be executed.
- Proposed approach requires only O(V + E) storage complexity.

Conclusion and Discussion

- Accuracy at most with in range of 1% as state of art algorithm (diffpool)
- State of art (diffpool) requires a quadratic O(kV²) storage complexity to be executed.
- Proposed approach requires only O(V + E) storage complexity.
- Hierarchical Graph Pooling with Structure Learning?
- Bridging the Gap Between Spectral and Spatial Domains in Graph Neural Networks?

References

- Towards sparse hierarchical graph classifiers
 C Cangea, P Veličković, N Jovanović, T Kipf, P Liò arXiv preprint arXiv:1811.01287, 2018.
- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.
 Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren,
- 3. Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, Jure Leskovec, Joseph M Antognini, Jascha Sohl-Dickstein, Nima Roohi, Ramneet Kaur, et al. Hierarchical graph representation learning with differentiable pooling. CoRR, 2018

- 4. Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013
- 5. Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks for graphs. In International conference on machine learning, pages 2014–2023, 2016
- 6. Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems, pages 3844–3852, 2016

- 8. Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast geometric deep learning with continuous b-spline kernels. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 869–877, 2018
- 9. Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In Proc. CVPR, volume 1, page 3, 2017.

- 10. Martin Simonovsky and Nikos Komodakis. Dynamic edgeconditioned filters in convolutional neural networks on graphs. In Proc. CVPR, 2017
- 11. Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B Tenenbaum, and Daniel LK Yamins. Flexible neural representation for physics prediction. arXiv preprint arXiv:1806.08047, 2018.
- 12. David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. In Advances in neural information processing systems, pages 2224–2232, 2015.

- 13. Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for structured data. In International Conference on Machine Learning, pages 2702–2711, 2016.
- 14. Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.
- 15. Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B Tenenbaum, and Daniel LK Yamins. Flexible neural representation for physics prediction. arXiv preprint arXiv:1806.08047, 2018

- 16. Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
- 17. Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph Attention Networks. International Conference on Learning Representations, 2018.
- 18. H. Gao, S. Ji Graph u-nets Proceedings of ICML (2019), pp. 2083-2092
- 19.Datasetshttps://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

20.GNN

https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications

- 21. Node computation graph https://www.analyticsvidhya.com/blog/2021/09/getting-started-with-graph-neural-networks/
- 22. degree_matrix https://www.tekportal.net/adjacency/
- 23. Github Account https://github.com/sureshkuc/Freie-Universitat-Berlin/tree/main/GEOMETRIC-DATA-ANALYSIS

Questions?

Thank You