计算机组成原理

第十六讲

刘松波

哈工大计算学部 模式识别与智能系统研究中心

第6章 计算机的运算方法

- 6.1 无符号数和有符号数
- 6.2 数的定点表示和浮点表示
- 6.3 定点运算
- 6.4 浮点四则运算
- 6.5 算术逻辑单元

二、浮点表示

6.2

$$N = S \times r^{j}$$
 浮点数的一般形式 S 尾数 j 阶码 r 基数 (基值) 计算机中 r 取 2、4、8、16 等 当 $r = 2$ $N = 11.0101$ $\checkmark = 0.110101 \times 2^{10}$ 规格化数 $= 1.10101 \times 2^{1}$ $= 1101.01 \times 2^{-10}$ $\checkmark = 0.00110101 \times 2^{100}$

计算机中 S 小数、可正可负 i 整数、可正可负

6.2

1. 浮点数的表示形式

 $S_{\rm f}$ 代表浮点数的符号

n 其位数反映浮点数的精度

m 其位数反映浮点数的表示范围

j_t和 m 共同表示小数点的实际位置

2. 浮点数的表示范围

6.2

上溢 阶码 > 最大阶码

下溢 阶码 < 最小阶码 按 机器零 处理

最大负数

$$-2^{-(2^{m}-1)} \times 2^{-n}$$
 $-2^{-15} \times 2^{-10}$

设
$$m=4$$
 $n=10$

设机器数字长为 24 位, 欲表示±3万的十进制数, 试问在保证数的最大精度的前提下, 除阶符、数符各取1 位外, 阶码、尾数各取几位?

解:
$$2^{14} = 16384$$
 $2^{15} = 32768$

: 如果是定点数15 位二进制数可反映 ±3 万之间的十进制数

$$2^{15} \times 0.\times \times \times \cdots \times \times \times \times \\ m = 4, 5, 6, \cdots$$

满足 最大精度 可取 m = 4, n = 18

3. 浮点数的规格化形式

6.2

r=2 尾数最高位为 1

r=4 尾数最高 2 位不全为 0 基数不同,浮点数的

r=8 尾数最高 3 位不全为 0 规格化形式不同

4. 浮点数的规格化

r=2 左规 尾数左移 1 位,阶码减 1

右规 尾数右移1位,阶码加1

r=4 左规 尾数左移 2 位,阶码减 1

右规 尾数右移 2 位,阶码加 1

r=8 左规 尾数左移 3 位,阶码减 1

右规 尾数右移 3 位, 阶码加 1

基数 r 越大,可表示的浮点数的范围越大基数 r 越大,浮点数的精度降低

例如: 设m=4, n=10, r=2

6.2

尾数规格化后的浮点数表示范围

最大负数
$$2^{-1111} \times (-0.100000000) = -2^{-15} \times 2^{-1} = -2^{-16}$$

最小负数
$$2^{+1111} \times (-0.1111111111)$$
 = $-2^{15} \times (1-2^{-10})$ $10 \uparrow 1$

三、举例

6.2

例 6.13 将 + 19/128 写成二进制定点数、浮点数及在定点机和浮点机中的机器数形式。其中数值部分均取 10 位,数符取 1 位,浮点数阶码取 5 位(含1位阶符)。

解: 设 $x = + \frac{19}{128}$

二进制形式

x = 0.0010011

定点表示

x = 0.0010011000

浮点规格化形式 $x = 0.1001100000 \times 2^{-10}$

定点机中

 $[x]_{\mathbb{R}} = [x]_{\mathbb{A}} = [x]_{\mathbb{R}} = 0.0010011000$

浮点机中

 $[x]_{\text{ff}} = 1,0010; 0.1001100000$

 $[x]_{36} = 1, 1110; 0.1001100000$

 $[x]_{\bowtie} = 1,1101; 0.1001100000$

例 6.14 将 -58 表示成二进制定点数和浮点数, 6.2 并写出它在定点机和浮点机中的三种机器数及阶码为移码、尾数为补码的形式(其他要求同上例)。

解: 设x = -58

二进制形式

定点表示

x = -111010

x = -00001111010

浮点规格化形式 $x = -(0.1110100000) \times 2^{110}$

定点机中

 $[x]_{\text{@}} = 1,0000111010$

 $[x]_{3} = 1, 1111000110$

 $[x]_{\overline{\bowtie}} = 1, 1111000101$

浮点机中

 $[x]_{\text{@}} = 0,0110; 1.1110100000$

 $[x]_{\nmid h} = 0,0110; 1.0001100000$

 $[x]_{\mathbf{x}} = 0,0110; 1.0001011111$

 $[x]_{\text{M}8, \text{E}} = 1,0110; 1.0001100000$

例 6.15 写出对应下图所示的浮点数的补码 6.2 形式。设 n = 10, m = 4, 阶符、数符各取 1位。

0,1111; 1.000000001

 $-2^{15}\times(1-2^{-10})$

2022最小负数

- 当浮点数尾数为0时,不论其阶码为何值 按机器零处理
- 当浮点数阶码等于或小于它所表示的最小数时,不论尾数为何值,按机器零处理

如
$$m=4$$
 $n=10$

当阶码和尾数都用补码表示时,机器零为

$$\times, \times \times \times \times;$$
 0.00 ··· 0

(阶码 =
$$-16$$
) 1, 0 0 0 0; $\times . \times \times$ ··· ×

当阶码用移码,尾数用补码表示时,机器零为 0,0000; 0.00 ··· 0

2022/8有利于机器中"判0"电路的实现

四、IEEE 754 标准

6.2

尾数为规格化表示

非"0"的有效位最高位为"1"(隐含)

	符号位 S	阶码	尾数	总位数
短实数	1	8	23	32
长实数	1	11	52	64
临时实数	1	15	64	80

2022/8/24

6.3 定点运算

一、移位运算

1. 移位的意义

15 m = 1500 cm

小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

。在计算机中,移位与加减配合,能够实现乘除运算

2. 算术移位规则

符号位不变

	码制	添补代码
正数	原码、补码、反码	0
	原码	0
	补码	左移添0
火教	个	右移添1
	反 码	1

2022/8/24

例6.16

6.3

设机器数字长为 8 位(含 1 位符号位),写出 A = +26时,三种机器数左、右移一位和两位后的表示形式及对应的真值,并分析结果的正确性。

解:
$$A = +26 = +11010$$
 则 $[A]_{\mathbb{R}} = [A]_{\mathbb{A}} = [A]_{\mathbb{R}} = 0,0011010$

移位操作	机 器 数 [A] _原 =[A] _补 =[A] _反	对应的真值
移位前	0,0011010	+26
左移一位	0,0110100	+52
左移两位	0,1101000	+104
右移一位	0,0001101	+13
右移两位	0,0000110	+6

例6.17

设机器数字长为8位(含1位符号位),写出 A=-26时,三种机器数左、右移一位和两位后的表 示形式及对应的真值,并分析结果的正确性。

解:

$$A = -26 = -11010$$

原码

移位操作	机器数	对应的真值
移位前	1,0011010	-26
左移一位	1,011010 <mark>0</mark>	- 52
左移两位	1,1101000	-104
右移一位	1, <mark>0</mark> 001101	- 13
右移两位	1,0000110	-6

补码

移位操作	机器数	对应的真值
移位前	1,1100110	-26
左移一位	1,1001100	- 52
左移两位	1,0011000	-104
右移一位	1,1110011	- 13
右移两位	1,1111001	-7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	-26
左移一位	1,1001011	- 52
左移两位	1,0010111	- 104
右移一位	1,1110010	- 13
右移两位	1,1111001	-6

3. 算术移位的硬件实现

6.3

- (a)真值为正
- (b)负数的原码
- (c) 负数的补码
- (d)负数的反码

←丢1 出错

出错

正确

正确

→丢1 影响精度

影响精度

影响精度

正确

4. 算术移位和逻辑移位的区别

6.3

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

逻辑右移 高位添 0, 低位移丢

例如 01010011

逻辑左移 10100110 逻辑

算术左移 00100110

逻辑右移

算术右移

01011001

10110010

11011001 (补码)

高位1移丢

 C_y 0 1 0 1 0 0 1 1

0

10100110