Mục lục

Bài tập trắc nghiệm chương 1	1
Tîm hàm tương đương	1
Dùng VCB tính giới hạn	4
Tính giới hạn hàm chứa tham số	8
Quy tắc L'Hôpital	10
Bài tập trắc nghiệm chương 2	13
Tính tích phân suy rộng	13
Định tham số để tích phân hội tụ	20
Bài tập trắc nghiệm chương 3	28
Câu hỏi lý thuyết	28
Tính tổng riêng phần	30
Xét tính hội tụ của chuỗi dương	34
Xét tính hội tụ của chuỗi đan dẫu	35
Xét tính hội tụ của chuỗi đan dấu theo tham số	36
Xét tính hội tụ của 2 chuỗi số	37
Xét tính hội tụ của chuỗi có dấu bất kỳ theo tham số .	42
Bài tập trắc nghiệm chương 4	44
Tîm cực trị tự do	44
Tìm cực trị có điều kiện	46
ĐÁPÁN	50

Bài tập toán cao cấp 1

Bài tập trắc nghiệm chương 1

■ Tìm hàm tương đương

Câu 1. Cho hàm số

$$f(x) = 1 - \cos x + \ln^2(1 + \tan^2 2x) + 2\arcsin^3 x.$$

Khi $x \to 0$, thì

A. $f(x) \sim \frac{x^2}{2}$ C. $f(x) \sim \frac{x}{2}$

B. $f(x) \sim \frac{x^3}{2}$ D. $f(x) \sim -\frac{x^2}{2}$

Câu 2. Cho hàm số

$$f(x) = (\cos 2x - e^x)(x^2 + 1 - \cos x) + x(\cos 3x - \cos x)\ln(1 + e^x - \cos x)$$

Khi $x \to 0$, thì

A. $f(x) \sim -\frac{3x^3}{2}$

B. $f(x) \sim -4x^4$ D. $f(x) \sim \frac{x^3}{2}$

C. $f(x) \sim \frac{3x^3}{2}$

Câu 3. Cho hàm số
$$f(x) = (x^2 + \tan 2x)(1 - \cos 2x) + (e^{2x} - 1)\ln(\cos 4x) + \sqrt[5]{e^x} - 1.$$

Khi $x \to 0$, thì

A. $f(x) \sim \frac{x}{5}$ C. $f(x) \sim -\frac{x}{5}$

B. $f(x) \sim -16x^3$ D. $f(x) \sim 4x^3$

Câu 4. Cho hàm số

$$f(x) = (e^x - 1)^2 \ln(\cos x) + \sqrt{1 + 2\sin^2 x} - 1.$$

Khi $x \to 0$, thì

A. $f(x) \sim x^2$

C. $f(x) \sim -x^2$

B. $f(x) \sim \frac{x^4}{2}$

D. $f(x) \sim -\frac{x^4}{2}$

Câu 5. Cho hàm số

$$f(x) = 1 - \cos x + \ln^2(1 + \sin^2 2x) + 2\arcsin^3 x.$$

Khi $x \to 0$, thì

A.
$$f(x) \sim \frac{x^2}{2}$$

C. $f(x) \sim 2x^3$

B.
$$f(x) \sim 16x^4$$

D. $f(x) \sim -\frac{x^2}{2}$

Câu 6. Cho hàm số

$$f(x) = \ln(1+3x) + \left(\sqrt{1+2\sin x} - 1\right)x + \tan^3 x + x^4.$$

Khi $x \to 0$, thì

A.
$$f(x) \sim x^2$$

C. $f(x) \sim x^3$

B.
$$f(x) \sim 3x$$

D. $f(x) \sim x^4$

Câu 7. Cho hàm số

$$f(x) = \ln(1 + \tan 3x) + (\sqrt{1 + 2\sin x} - 1) \arcsin 2x + x^2$$
.

Khi $x \to 0$, thì

A.
$$f(x) \sim 3x^2$$

B.
$$f(x) \sim \frac{5x^2}{2}$$

D. $f(x) \sim 3x$

C.
$$f(x) \sim \frac{3x^2}{2}$$

D.
$$f(x) \sim 3x$$

Câu 8. Cho hàm số

$$f(x) = \ln(1 + \tan^2 3x) + \sqrt{1 + 6\sin x} - e^x + x^3.$$

Khi $x \to 0$, thì

A.
$$f(x) \sim 9x^2$$

B.
$$f(x) \sim 3x^2$$

C.
$$f(x) \sim 2x$$

D.
$$f(x) \sim \frac{x^2}{2}$$

Câu 9. Cho hàm số

$$f(x) = \ln(\cos 2x) - \arctan(x^2).$$

Khi $x \to 0$, thì

A.
$$f(x) \sim 3x^2$$

C.
$$f(x) \sim -x^2$$

B.
$$f(x) \sim -3x^2$$

D.
$$f(x) \sim x^2$$

Câu 10. Cho hàm số

$$f(x) = \sqrt{\cos x} - \sqrt{\cos 2x} + x \arcsin x.$$

Khi $x \rightarrow 0$, thì

A. $f(x) \sim \frac{7x^2}{4}$ C. $f(x) \sim x^2$

B. $f(x) \sim \frac{3x^2}{2}$ D. $f(x) \sim -\frac{7x^2}{4}$

Câu 11. Cho hàm số

$$f(x) = (x^2 + \tan 2x) (1 - \cos 2x) + (e^{2x} - 1)^2.$$

Khi $x \to 0$, thì

A. $f(x) \sim -4x^2$

B. $f(x) \sim 4x^3$ D. $f(x) \sim 4x^2$

C. $f(x) \sim 2x$

Câu 12. Cho hàm số

$$f(x) = \ln(1 - x^2 + 2x) + \sin x - \arctan^2 x$$
.

Khi $x \to 0$, thì

A. $f(x) \sim -2x^2$ C. $f(x) \sim 3x$

B. $f(x) \sim x^2$ D. $f(x) \sim -4x^2$

Câu 13. Cho hàm số $f(x) = e^{x^2+2x} - \cos x + x^2$. Khi $x \to 0$, thì

A. $f(x) \sim 2x$ C. $f(x) \sim x$

B. $f(x) \sim x^2$ D. $f(x) \sim \frac{3}{5}x^2$

Câu 14. Cho hàm số $f(x) = \sqrt[3]{x+1} - \sqrt[3]{1-x}$. Khi $x \to 0$, thì A. $f(x) \sim \frac{2x}{3}$ B. $f(x) \sim -\frac{2x}{3}$ C. $f(x) \sim 2x$ D. $f(x) \sim -2x$

Câu 15. Cho hàm số $f(x) = \sqrt{x+1} - \sqrt[3]{1-x}$. Khi $x \to 0$, thì A. $f(x) \sim -\frac{x}{6}$ B. $f(x) \sim \frac{5x}{6}$ C. $f(x) \sim -\frac{5x}{6}$ D. $f(x) \sim \frac{x}{6}$

A. $f(x) \sim -\frac{x}{6}$ C. $f(x) \sim -\frac{5x}{6}$

Câu 16. Cho hàm số $f(x) = \sqrt[3]{x+1} - \sqrt{1-x}$. Khi $x \to 0$, thì

A. $f(x) \sim -\frac{x}{6}$ C. $f(x) \sim -\frac{5x}{6}$

B. $f(x) \sim \frac{5x}{6}$ D. $f(x) \sim \frac{x}{4}$

Câu 17. Cho $f(x) = (\cos 2x - 1) (x + \arcsin^2 x)$. Khi $x \to 0$, thì

A. $f(x) \sim 2x^3$

B. $f(x) \sim -2x^2$

C. $f(x) \sim -2x^3$

D. $f(x) \sim 2x^2$

■ Dùng quy tắc ngắt bỏ VCB để tính giới han

Dữ kiện cho 2 câu hỏi sau:

Cho hàm số
$$f(x) = \frac{1 - \cos x - x^3}{\sin^4 x + \tan^2 x}$$

Câu 18. Khi $x \to 0^+$, thì

A.
$$f(x) \sim \frac{1-\cos x}{\tan^2 x}$$

C. $f(x) \sim \frac{1-\cos x}{\sin^4 x}$

B.
$$f(x) \sim \frac{-x^3}{\sin^4 x}$$

D. $f(x) \sim \frac{-x^3}{\tan^2 x}$

Câu 19. Tîm $\lim_{x\to 0} f(x)$.

A.
$$\frac{1}{2}$$

$$D. +\infty$$

Dữ kiên cho 2 câu hỏi sau:

Cho hàm số
$$f(x) = \frac{e^x - \sqrt{\cos x}}{2x + x^2}$$
.

Câu 20. Khi $x \to 0$, thì

A.
$$f(x) \sim \frac{e^x - 1}{2x}$$

B.
$$f(x) \sim \frac{e^x - 1}{x^2}$$

A.
$$f(x) \sim \frac{e^x - 1}{2x}$$

C. $f(x) \sim \frac{1 - \sqrt{\cos x}}{x^2}$

D.
$$f(x) \sim \frac{1-\sqrt{\cos x}}{2x}$$

Câu 21. Tìm $\lim_{x\to 0} f(x)$.

A.
$$\frac{1}{2}$$

B.
$$-\infty$$

C.
$$\frac{1}{4}$$

Dữ kiện cho 2 câu hỏi sau:

Cho hàm số
$$f(x) = \frac{\ln(1+x+x^2) + \sqrt{1+2\sin^2 x} - 1}{e^x - 1 + 2x^2}$$
.

Câu 22. Khi $x \to 0$, thì

A.
$$f(x) \sim \frac{\ln(1+x+x^2)}{e^x - 1}$$

C. $f(x) \sim \frac{\ln(1+x+x^2)}{2x^2}$

B.
$$f(x) \sim \frac{\sqrt{1+2\sin^2 x} - 1}{e^x - 1}$$

D. $f(x) \sim \frac{\sqrt{1+2\sin^2 x} - 1}{2x^2}$

C.
$$f(x) \sim \frac{\ln(1+x+x^2)}{2x^2}$$

D.
$$f(x) \sim \frac{e^{x}-1}{\sqrt{1+2\sin^2 x}-1}$$

Câu 23. Tìm $\lim_{x\to 0} f(x)$.

D.
$$\frac{1}{2}$$

Cho hàm số
$$f(x) = \frac{\ln(\cos x) + \sqrt{1 + 2\sin x} - 1}{\sin 2x + x^2}$$
.

Câu 24. Khi $x \to 0$, thì

A.
$$f(x) \sim \frac{\ln(\cos x)}{x^2}$$

C. $f(x) \sim \frac{\sqrt{1+2\sin x}-1}{\sin 2x}$

B.
$$f(x) \sim \frac{\ln(\cos x)}{\sin 2x}$$

D. $f(x) \sim \frac{\sqrt{1+2\sin x}-1}{x^2}$

Câu 25. Tìm $\lim_{x\to 0} f(x)$.

A.
$$\frac{1}{2}$$

$$C. +\infty$$

C.
$$+\infty$$
 D. $-\frac{1}{2}$

Dữ kiên cho 2 câu hỏi sau:

Cho hàm số
$$f(x) = \frac{\sin^2 3x + e^{x^2} - 1}{\ln(1 + 2x^2) + \sin^2 x}$$
.

Câu 26. Khi
$$x \to 0$$
, thì A. $f(x) \sim \frac{4x^2}{2x^2 + \sin^2 x}$ C. $f(x) \sim \frac{3x^2}{2x^2 + \sin^2 x}$

B.
$$f(x) \sim \frac{x^2}{2x^2 + \sin^2 x}$$

D. $f(x) \sim \frac{10x^2}{2x^2 + \sin^2 x}$

Câu 27. Tìm $\lim_{x\to 0} f(x)$.

A.
$$\frac{10}{3}$$

B.
$$\frac{4}{3}$$

C.
$$\frac{3}{2}$$

D.
$$\frac{1}{3}$$

Dữ kiện cho 2 câu hỏi sau:

Cho hàm số
$$f(x) = \frac{\sin^2 3x - e^{x^2} + 1}{\ln(1 + 2x^2) + \sin^2 x}$$
.

Câu 28. Khi $x \to 0$, thì

A.
$$f(x) \sim \frac{2x^2}{2x^2 + \sin^2 x}$$

C. $f(x) \sim \frac{9x^2}{2x^2 + \sin^2 x}$

B.
$$f(x) \sim \frac{8x^2}{2x^2 + \sin^2 x}$$

D. $f(x) \sim \frac{10x^2}{2x^2 + \sin^2 x}$

C.
$$f(x) \sim \frac{9x^2}{2x^2 + \sin^2 x}$$

D.
$$f(x) \sim \frac{10x^2}{2x^2 + \sin^2 x}$$

Câu 29. Tìm $\lim_{x\to 0} f(x)$.

A.
$$\frac{8}{3}$$

B.
$$\frac{2}{3}$$

Cho hàm số
$$f(x) = \frac{\ln(\cos x) - \sqrt{1 + 2\sin x} + 1}{\sin 2x + 3x^2}$$
.

Câu 30. Khi $x \to 0$, thì

A.
$$f(x) \sim \frac{1 - \sqrt{1 + 2\sin x}}{\sin 2x}$$

C. $f(x) \sim \frac{1 - \sqrt{1 + 2\sin x}}{3x^2}$

B.
$$f(x) \sim \frac{\ln(\cos x)}{\sin 2x}$$

D. $f(x) \sim \frac{\ln(\cos x)}{3x^2}$

Câu 31. Tìm $\lim_{x\to 0} f(x)$.

A.
$$-\frac{1}{6}$$

C.
$$-\frac{1}{2}$$

$$D. -\infty$$

Dữ kiện cho 2 câu hỏi sau:

Cho hàm số
$$f(x) = \frac{\ln(1+x+x^2) - \sqrt{1+2\sin^2 x} + 1}{\tan x + 2x^2}$$

Câu 32. Khi $x \to 0$, thì

A.
$$f(x) \sim \frac{\ln(1+x+x^2)}{\tan x}$$

C. $f(x) \sim \frac{\ln(1+x+x^2)}{2x^2}$

B.
$$f(x) \sim \frac{1 - \sqrt{1 + 2\sin^2 x}}{\tan x}$$

D. $f(x) \sim \frac{1 - \sqrt{1 + 2\sin^2 x}}{2x^2}$

Câu 33. Tìm $\lim_{x\to 0} f(x)$.

B.
$$-\frac{1}{2}$$

C.
$$\frac{1}{2}$$

Dữ kiện cho 2 câu hỏi sau:

Cho hàm số
$$f(x) = \frac{\ln(1 - x - x^3)}{(x^2 + 3x + 4)(\sin 4x - \sin 2x)}$$
.

Câu 34. Khi $x \to 0$, thì

A.
$$f(x) \sim \frac{-x}{8x}$$

C. $f(x) \sim \frac{-x^3}{8x}$

B.
$$f(x) \sim \frac{-x^3}{2x^3}$$

D. $f(x) \sim \frac{-x}{6x^2}$

Câu 35. Tìm $\lim_{x \to 0} f(x)$. A. $-\frac{1}{8}$ B. $-\frac{1}{2}$

A.
$$-\frac{1}{8}$$

B.
$$-\frac{1}{2}$$

D.
$$-\frac{1}{6}$$

Cho hàm số
$$f(x) = \frac{1 - \cos 2x + \ln(1 + x^3)}{\sin^3 x + \tan^2 x}$$
.

Câu 36. Khi $x \to 0$, thì

A.
$$f(x) \sim \frac{1-\cos 2x}{\sin^3 x}$$

A.
$$f(x) \sim \frac{1-\cos 2x}{\sin^3 x}$$

C. $f(x) \sim \frac{\ln(1+x^3)}{\tan^2 x}$

B.
$$f(x) \sim \frac{\ln(1+x^3)}{\sin^3 x}$$

D. $f(x) \sim \frac{1-\cos 2x}{\tan^2 x}$

Câu 37. Tìm $\lim_{x\to 0} f(x)$.

$$A. +\infty$$

Dữ kiện cho 2 câu hỏi sau:

Cho hàm số
$$f(x) = \frac{\sqrt{\cos 2x} - e^{2x}}{x + x^2}$$
.

Câu 38. Khi $x \to 0$, thì

A.
$$f(x) \sim \frac{1 - e^{2x}}{x^2}$$

C.
$$f(x) \sim \frac{1 - e^{2x}}{x}$$

B.
$$f(x) \sim \frac{\sqrt{\cos 2x} - 1}{x}$$

B.
$$f(x) \sim \frac{\sqrt{\cos 2x} - 1}{x}$$

D. $f(x) \sim \frac{\sqrt{\cos 2x} - 1}{x^2}$

Câu 39. Tìm $\lim_{x\to 0} f(x)$.

B.
$$-2$$

$$C. -1$$

Dữ kiện cho 2 câu hỏi sau:

Cho hàm số
$$f(x) = \frac{\ln(1 + x^3 + \tan^2 3x) + 2\arcsin^3 x}{1 - \cos 2x + \sin^3 x}$$
.

Câu 40. Khi $x \to 0$, thì

A.
$$f(x) \sim \frac{\ln(1+x^3+\tan^2 3x)}{\sin^3 x}$$

C. $f(x) \sim \frac{2\arcsin^3 x}{1-\cos 2x}$

C.
$$f(x) \sim \frac{2 \arcsin^3 x}{1 - \cos 2x}$$

B.
$$f(x) \sim \frac{\ln(1+x^3+\tan^2 3x)}{1-\cos 2x}$$

D. $f(x) \sim \frac{2\arcsin^3 x}{\sin^3 x}$

D.
$$f(x) \sim \frac{2\arcsin^3 x}{\sin^3 x}$$

Câu 41. Tìm $\lim_{x\to 0} f(x)$.

$$A. +\infty$$

C.
$$\frac{9}{2}$$

■ Tính giới hạn của hàm chứa tham số

Câu 42. Với số thực k > 0, tính giới hạn

$$\lim_{x \to 0} \frac{\ln(1 + kx + x^2)}{\sin 2x}$$

A. $\frac{k}{4}$

B. $\frac{k}{3}$

C. $\frac{k}{2}$

D. k

Câu 43. Với số thực k > 0, tính giới hạn

$$\lim_{x\to 0} \frac{\ln(\cos kx)}{x(e^{2x}-1)}$$

A. $-\frac{k^2}{4}$

B. $\frac{k}{4}$

C. $-\frac{k^2}{2}$

D. $\frac{k^2}{4}$

Câu 44. Với số thực k > 0, tính giới hạn

$$\lim_{x \to 0} \frac{\cos kx - \sqrt[3]{k^2 x^2 + 1}}{x \arcsin x}$$

A. $\frac{5k^2}{6}$

B. $\frac{-5k^2}{6}$

C. $\frac{k^2}{2}$

D. $-\frac{k^2}{2}$

Câu 45. Với số thực k > 0, tính giới hạn

$$\lim_{x \to 0} \frac{e^{2k^2x} - e^{4k^2x}}{\arctan kx}$$

A. -2k

B. *k*

C. 2k

D. -k

Câu 46. Với số thực k > 0, tính giới hạn

$$\lim_{x \to 0} \frac{\ln(1 + kx^2) + \sqrt[3]{2kx + 1} - 1}{2x + \sin 2x + x^2}$$

A. $\frac{k}{6}$

B. $\frac{5k}{12}$

C. $\frac{-k}{6}$

D. *k*

Câu 47. Với số thực k > 0, tính giới hạn

$$\lim_{x \to 0} \frac{\ln(1 + kx^2) - e^{kx} + 1}{2x + \arcsin 2x + x^2}$$

A. $\frac{k}{4}$

B. -k

C. $\frac{-k}{4}$

D. k

Câu 48. Với số thực k > 0, tính giới hạn

$$\lim_{x \to 0} \frac{\sqrt[3]{3kx + 1} - e^{-kx}}{2x + \arcsin 2x}$$

A. $\frac{k}{2}$

B. $\frac{k}{3}$

C. $\frac{k}{4}$

D.k

Câu 49. Với số thực k > 0, tính giới hạn

$$\lim_{x \to 0} \frac{\sqrt{kx+1} - \sqrt[3]{kx+1}}{\arcsin x + \sin^2 x}$$

A. $-\frac{k}{6}$

B. $\frac{k}{6}$

C. $\frac{k}{2}$

D. *k*

Câu 50. Với số thực k > 0, tính giới hạn

$$\lim_{x \to 0} \frac{\ln(1+kx)\sin^2 x}{\sin 4x(1-\cos kx)}$$

A. $\frac{1}{k}$

B. $\frac{1}{4k}$

C. $\frac{1}{2k}$

D. k

Câu 51. Với số thực k > 0, tính giới hạn

$$\lim_{x \to 0} \frac{\ln(1 + \tan kx)}{\sqrt{2x + 1} + \sin^2(4kx) - 1}$$

A. *k*

B. $\frac{k}{4}$

C. $\frac{1}{4}$

D. -k

Câu 52. Với số thực k > 0, tính giới hạn

$$\lim_{x \to 0} \frac{\sqrt{1 + kx} - \sqrt[3]{1 + kx}}{\arcsin 4x}$$

A. $\frac{k}{4}$

B. $\frac{k}{8}$

C. $\frac{k}{24}$

D. $\frac{-k}{24}$

Câu 53. Với số thực k > 0, tính giới hạn

$$\lim_{x \to 0} \frac{\sqrt{1 + kx} - \sqrt[3]{1 - kx}}{\arcsin 4x + x^2}$$

A. $\frac{k}{4}$

B. $\frac{k}{2}$

C. $\frac{5k}{2^2}$

D. $\frac{-5k}{24}$

Câu 54. Với số thực k > 0, tính giới hạn

$$\lim_{x\to 0} \frac{x^2 + \sin 2x + x \left(e^{kx} - 1\right)}{\ln(1 + kx)}$$

A. $\frac{k}{4}$

B. $\frac{k}{2}$

C. *k*

D. $\frac{2}{k}$

■ Quy tắc L'Hôpital

Câu 55. Tính giới hạn $\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$. A. 1 B. -1 C. 0

D. 2

Câu 56. Tính giới hạn $\lim_{x \to +\infty} \frac{x e^{\frac{x}{2}}}{x + e^x}$.

A. 1

D. 2

Câu 57. Tìm giới hạn $\lim_{x\to 0} \frac{2x - \arcsin 2x}{\ln(1+2x^2)}$.

C. 1

D. $\frac{4}{9}$

Câu 58. Tìm giới hạn $\lim_{x \to 1} \frac{e^{x-1} - e^{1-x}}{1}$

A. 3

D. 0

Câu 59. Tìm giới hạn $\lim_{x\to 0} \frac{x - \arctan x}{x^3}$

A. 0

C. 2

D. $\frac{-1}{3}$

Câu 60. Tìm giới hạn $\lim_{x\to 0} \frac{2\sin x - \sin 2x}{2\tan x - \tan 2x}$ A. 1 B. -1 C. $\frac{1}{2}$

D. $-\frac{1}{2}$

Câu 61. Tính giới hạn $\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$. A. 1 B. 2 C. 0

D. -1

Câu 62. Tìm giới hạn $\lim_{x\to 0} \frac{e^x - 1 - x}{x^2}$.

A. 0

D. 1

Câu 63. Tìm giới hạn $\lim_{x\to 0} \frac{5^x - 4^x}{x^2 + x}$. A. $\ln \frac{6}{5}$ B. $\ln \frac{5}{4}$

D. 0

Câu 64. Tính giới hạn $\lim_{x \to +\infty} \frac{x e^{\frac{x}{2}}}{x + e^x}$. A. 0 B. 2

C. 1

D. -1

Câu 65. Tìm giới hạn $\lim_{x\to 0} \frac{e^{x^3} - 1 - x^3}{\sin^6 x}$.

A. 2

B. 0

C. 1

D. $\frac{1}{2}$

 $2 \tan x - \tan 2x$ Câu 66. Tìm giới hạn lim $x \to 0 \arcsin^3 2x + \ln(1+x^3)$ A. $\frac{2}{9}$ D. 1 **Câu 67.** Tìm giới hạn $\lim_{x \to \infty} \frac{x - \arcsin x}{x}$ D. $\frac{-1}{2}$ A. 1 B. -1**Câu 68.** Tìm giới hạn $\lim_{x\to-\infty} x e^x$ $A. -\infty$ B. 0 $C. +\infty$ D. 1 **Câu 69.** Tìm giới hạn $\lim_{x\to 0^+} x \ln x$ B. ∞ C. 1 A. 0 D. 2 **Câu 70.** Tính giới hạn $\lim_{x\to 0^+} x^2 \ln x$ A. 0 B. 1 C. -1D. 2 **Câu 71.** Tîm $\lim_{x \to \infty} \left(1 + \frac{3x + 2}{2x^2 + x - 1} \right)^{2x}$ A. ∞ B. e^3 C. A. ∞ D. 1 **Câu 72.** Tính $\lim_{x \to \infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{x^2 + 3}$. A. e^{-2} B. e^{-1} D. e^{-3} C. e Câu 73. Tìm $\lim_{x\to\infty} \left(\frac{x^2+x+1}{x^2-x-1}\right)^x$. $C. e^3$ $D. e^2$ A. 1 **Câu 74.** Tính giới hạn $\lim_{x \to +\infty} x^{\frac{1}{x}}$. A. 1 B. -1C.0D. 2 **Câu 75.** Tính giới hạn $\lim_{x \to \infty} x^{\sin x}$. B. -1C.0A. 1 D. 2 **Câu 76.** Tîm giới hạn $\lim_{x\to 0^+} (\sin x)^{\frac{1}{\ln \sin 2x}}$. A. e B. e^2 C. 2 C. $2\sqrt{e}$ D. 1 **Câu 77.** Tìm giới han $\lim_{x\to 0} \left[\cos x + \ln(1+x^2)\right]^{\cot^2 x}$. C. 1 A. \sqrt{e} D. √e

Câu 78. Tìm $\lim_{x\to 0} \left(1 + \tan^2 \sqrt{x}\right)^{\frac{1}{4x}}$

A. \sqrt{e}

C. $\sqrt[4]{e}$

D. ∞

Câu 79. Tìm giới hạn $\lim_{x\to 0^+} (\cot x)^{\ln(1+x^2)}$. A. e B. e^2 C. 2 v

C. $2\sqrt{e}$

D. 1

Câu 80. Tìm giới hạn $\lim_{x \to 2^{-}} (2 - x)^{(x-2)}$. A. e^{-1} B. e^{2} C. e^{-1}

C. e

D. 1

Bài tập trắc nghiệm chương 2

■ Tính tích phân suy rông

Dữ kiện cho 2 câu hỏi sau:

Xét tích phân
$$I = \int_1^{+\infty} \frac{1}{\sqrt{x^5}} dx$$
.

Câu 81. Tính
$$\int_{1}^{a} \frac{1}{\sqrt{x^5}} dx$$
, $a > 1$.

A.
$$-\frac{2}{3}(a^{-3/2}-1)$$

C. $\frac{2}{3}(a^{-3/2}-1)$

B.
$$-\frac{3}{2}(a^{-2/3}-1)$$

D. $-\frac{2}{7}(a^{-7/2}-1)$

Câu 82. Tính *I*.

A.
$$I = -\frac{2}{3}$$
 B. $I = \frac{3}{2}$ C. $I = \frac{2}{3}$ D. $I = \frac{-2}{7}$

B.
$$I = \frac{3}{2}$$

C.
$$I = \frac{2}{3}$$

D.
$$I = \frac{-2}{7}$$

Dữ kiện cho 2 câu hỏi sau:

Xét tích phân
$$I = \int_1^{+\infty} \frac{\mathrm{d}x}{\sqrt[4]{x^3}}$$
.

Câu 83. Tính
$$I = \int_{1}^{a} \frac{dx}{\sqrt[4]{x^3}}, \quad a > 1.$$

A.
$$\frac{1}{4}(a^{\frac{1}{4}}-1)$$

B.
$$-\frac{1}{4}(a^{\frac{1}{4}}-1)$$

C.
$$4(a^{\frac{1}{4}}-1)$$

D.
$$-4(a^{\frac{1}{4}}-1)$$

Câu 84. Tính I.

A.
$$I = \frac{1}{4}$$

B.
$$I = 4$$

$$C. I = +\infty \qquad D. I = 0$$

D.
$$I = 0$$

Dữ kiện cho 2 câu hỏi sau:

Xét tích phân
$$I = \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^5}$$
.

Câu 85. Tính
$$I = \int_{1}^{a} \frac{dx}{x^{5}}, \quad a > 1.$$

A.
$$\frac{-1}{6}(a^{-6}-1)$$

C. $-4(a^{-4}-1)$

B.
$$\frac{1}{6}(a^6 - 1)$$

D. $\frac{-1}{4}(a^{-4} - 1)$

Câu 86. Tính *I*.

A.
$$I = \frac{1}{6}$$

B.
$$I = \frac{1}{4}$$

A.
$$I = \frac{1}{6}$$
 B. $I = \frac{1}{4}$ C. $I = +\infty$ D. $I = 4$

D.
$$I = 4$$

Trang 14

Dữ kiện cho 2 câu hỏi sau:

Xét tích phân
$$I = \int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 1}$$
.

Câu 87. Tính
$$\int_0^a \frac{dx}{x^2 + 1}$$
, $a > 0$.

A. arctan a^2

B.
$$\frac{1}{2} \ln \left| \frac{a-1}{a+1} \right|$$

C. arctan a

D. $\ln (a^2 + 1)$

Câu 88. Tính I.

A.
$$I = 0$$

B.
$$I = \frac{\pi}{2}$$

B.
$$I = \frac{\pi}{2}$$
 C. $I = +\infty$ D. $I = \frac{\pi}{4}$

D.
$$I = \frac{\pi}{4}$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_{0}^{+\infty} \frac{1}{x \ln x} dx$$
.

Câu 89. Tính
$$I = \int_{e}^{a} \frac{1}{x \ln x} dx$$
, $a > e$.

A.
$$\frac{1}{e} - \frac{\ln a}{a}$$

C. $1 - \frac{1}{\ln a}$

B.
$$\ln (\ln a)$$

C.
$$1 - \frac{a}{\ln a}$$

D.
$$1 - \ln a$$

Câu 90. Tính
$$I = \int_{e}^{+\infty} \frac{1}{x \ln x} dx$$
.

A.
$$I = 1$$

B.
$$I = \frac{1}{e}$$

$$C. I = +\infty$$

B.
$$I = \frac{1}{2}$$
 C. $I = +\infty$ D. $I = -\infty$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_{1}^{+\infty} \frac{1}{x\sqrt{\ln x + 1}} dx$$
.

Câu 91. Tính
$$\int_{1}^{a} \frac{1}{x\sqrt{\ln x + 1}} dx$$
, $a > 1$.

A.
$$2(\sqrt{\ln a + 1} - 1)$$

B.
$$\sqrt{\ln a + 1 - \ln a}$$

C.
$$2\sqrt{\ln a}$$

D.
$$2(1 - \sqrt{\ln a + 1})$$

Câu 92. Tính *I*.

$$D. -\infty$$

Cho tích phân
$$I = \int_1^{+\infty} \frac{\mathrm{d}x}{x\sqrt{(\ln x + 1)^5}}$$
.

Câu 93. Tính
$$\int_{1}^{a} \frac{dx}{x\sqrt{(\ln x + 1)^{5}}}, \quad a > 1.$$

A.
$$-\frac{2}{3}\left((\ln a + 1)^{\frac{-3}{2}} - 1\right)$$

B.
$$-\frac{2}{7} \left((\ln a + 1)^{\frac{-7}{2}} - 1 \right)$$

A.
$$-\frac{2}{3}\left((\ln a + 1)^{\frac{-3}{2}} - 1\right)$$
 B. $-\frac{2}{7}\left((\ln a + 1)^{\frac{-7}{2}} - 1\right)$ C. $-\frac{3}{2}\left((\ln a + 1)^{\frac{-3}{2}} - 1\right)$ D. $-\frac{7}{2}\left((\ln a + 1)^{\frac{-7}{2}} - 1\right)$

D.
$$-\frac{7}{2} \left((\ln a + 1)^{\frac{-7}{2}} - 1 \right)$$

Câu 94. Tính *I*.

A.
$$I = \frac{2}{3}$$

B.
$$I = \frac{3}{2}$$

$$C. I = \frac{7}{2}$$

B.
$$I = \frac{3}{2}$$
 C. $I = \frac{2}{7}$ D. $I = \frac{7}{2}$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_0^{+\infty} \frac{2x}{x^2 + 2} dx$$
.

Câu 95. Tính
$$I = \int_0^a \frac{2x}{x^2 + 2} dx$$
, $a > 0$.

A.
$$\ln 2 - \ln(a^2 + 2)$$

B.
$$\ln(a^2 + 2) - \ln 2$$

D. $\frac{1}{2} - \frac{1}{a^2 + 2}$

C. arctan
$$\frac{a}{2}$$

D.
$$\frac{1}{2} - \frac{1}{a^2 + 2}$$

Câu 96. Tính *I*.

A.
$$I = \frac{1}{2}$$

B.
$$I = \frac{\pi}{2}$$

C.
$$I = \infty$$

B.
$$I = \frac{\pi}{2}$$
 C. $I = \infty$ D. $I = -\infty$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_1^2 \frac{dx}{\sqrt[3]{x-1}}$$
.

Câu 97. Tính
$$\int_{a}^{2} \frac{dx}{\sqrt[3]{x-1}}$$
, $1 < a < 2$.

A.
$$1 - \sqrt[3]{a-1}$$

B.
$$\frac{2}{3}(1-\sqrt[3]{(a-1)^2})$$

C.
$$3(1-\sqrt[3]{a-1})$$

D.
$$\frac{3}{2}(1-\sqrt[3]{(a-1)^2})$$

Câu 98. Tính *I*.

A.
$$I = \frac{3}{2}$$
 B. $I = \frac{2}{3}$ C. $I = 3$

B.
$$I = \frac{2}{3}$$

C.
$$I = 3$$

Cho tích phân $I = \int_1^2 \frac{1}{(x-1)^3} dx$.

Câu 99. Tính
$$I = \int_a^2 \frac{1}{(x-1)^3} dx$$
, $1 < a \le 2$.

A.
$$-\frac{1}{2}\left(1 - \frac{1}{(a-1)^2}\right)$$

C. $\frac{1}{2}\left(1 - \frac{1}{(a-1)^2}\right)$

B.
$$2(1-(a-1)^2)$$

D. $\frac{1}{4}(1-(a-1)^2)$

Câu 100. Tính *I*.

A.
$$\frac{1}{4}$$

$$C. +\infty$$

$$D_{\cdot} - \infty$$

Dữ kiên cho 2 câu hỏi sau:

Cho tích phân $I = \int_{0}^{0} e^{x} dx$.

Câu 101. Tính
$$\int_{a}^{0} e^{x} dx$$
, $a < 0$.

A.
$$e^{1-a}$$

B.
$$e^{a} - 1$$

C.
$$1 - e^{a}$$

D.
$$e^{a-1}$$

Câu 102. Tính *I*.

A.
$$I = 0$$

B.
$$I = 1$$

B.
$$I = 1$$
 C. $I = +\infty$ D. $I = -1$

D.
$$I = -1$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân $I = \int_{-\infty}^{0} (2-2x) e^{2x-x^2} dx$.

Câu 103. Tính
$$\int_{a}^{0} (2-2x) e^{2x-x^2} dx$$
, $a < 0$.

A.
$$e^{1-(2a-a^2)}$$

B.
$$e^{2a-a^2}-1$$

C.
$$1 - e^{2a - a^2}$$

B.
$$e^{2a-a^2} - 1$$

D. $e^{(2a-a^2)-1}$

Câu 104. Tính *I*.

A.
$$I = 0$$

B.
$$I = 1$$

B.
$$I = 1$$
 C. -1

$$D. +\infty$$

Cho tích phân
$$I = \int_0^{\frac{\pi}{2}} \frac{\cos x dx}{\sin^2 x}$$
.

Câu 105. Tính
$$\int_{a}^{\frac{\pi}{2}} \frac{\cos x dx}{\sin^{2} x}$$
, $0 < a < \frac{\pi}{2}$.
A. $1 - \frac{1}{\sin a}$ B. $\frac{1}{\sin a} - 1$ C. $1 - \sin^{2} a$ D. $\sin^{2} a - 1$

Câu 106. Tính *I*.

A.
$$I = 1$$

B.
$$I = -1$$

C.
$$I = +\infty$$

B.
$$I = -1$$
 C. $I = +\infty$ D. $I = -\infty$

Dữ kiên cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_0^{\frac{\pi}{2}} \frac{\cos x dx}{\sqrt{\sin x}}$$
.

Câu 107. Tính
$$\int_{a}^{\frac{\pi}{2}} \frac{\cos x dx}{\sqrt{\sin x}}$$
, $0 < a < \frac{\pi}{2}$.
A. $2 - 2\sqrt{\sin a}$ B. $-2 + 2\sqrt{\sin a}$
C. $1 - \sqrt{\sin a}$ D. $-1 + \sqrt{\sin a}$

Câu 108. Tính *I*.

A.
$$I = -2$$
 B. $I = 2$ C. $I = 1$ D. $I = -1$

B.
$$I = 2$$

C.
$$I = 1$$

D.
$$I = -1$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_0^{\frac{\pi}{2}} \frac{\sin x dx}{\cos^2 x}$$

Câu 109. Tính
$$\int_0^a \frac{\sin x dx}{\cos^2 x}$$
, $0 < a < \frac{\pi}{2}$.
A. $1 - \frac{1}{\cos a}$ B. $1 - \cos^2 a$
C. $\frac{1}{\cos a} - 1$ D. $\cos^2 a - 1$

Câu 110. Tính *I*.

A.
$$I = 1$$

B.
$$I = -1$$

C.
$$I = +\infty$$

A.
$$I = 1$$
 B. $I = -1$ C. $I = +\infty$ D. $I = -\infty$

Cho tích phân $I = \int_0^{\frac{\pi}{2}} \frac{\sin x dx}{\sqrt{\cos x}}$.

Câu 111. Tính
$$I = \int_0^a \frac{\sin x dx}{\sqrt{\cos x}}, \quad 0 < a < \frac{\pi}{2}.$$

A.
$$2-2\sqrt{\cos a}$$

C.
$$1 - \sqrt{\cos a}$$

$$0 < a < \frac{\pi}{2}.$$

B.
$$2\sqrt{\cos a} - 2$$

D.
$$\sqrt{\cos a} - 1$$

Câu 112. Tính *I*.

D.
$$-1$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân $I = \int_0^{\frac{\pi}{4}} \frac{1 + \tan^2 x}{\tan x} dx$.

Câu 113. Tính
$$\int_{a}^{\frac{\pi}{4}} \frac{1 + \tan^{2} x}{\tan x} dx$$
, $0 < a < \frac{\pi}{4}$.

A.
$$1 - \tan a$$

B.
$$\tan a - 1$$

$$C. - \ln |\tan a|$$

D.
$$\ln |\tan a|$$

Câu 114. Tính *I*.

A.
$$I = 1$$

B.
$$I = -1$$

B.
$$I = -1$$
 C. $I = -\infty$ D. $I = +\infty$

D.
$$I = +\infty$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân $I = \int_0^{\frac{\pi}{4}} \frac{1 + \tan^2 x}{\tan^4 x} dx$.

Câu 115. Tính $\int_{a}^{\frac{\pi}{4}} \frac{1 + \tan^{2} x}{\tan^{4} x} dx$, $0 < a < \frac{\pi}{4}$.

A.
$$\frac{1}{3} (1 - \tan^3 a)$$

C. 3
$$(1 - \tan^3 a)$$

$$0 < a < \frac{\pi}{4}$$

$$B. \frac{1}{3} \left(1 - \frac{1}{\tan^3 a} \right)$$

D.
$$-\frac{1}{3} \left(1 - \frac{1}{\tan^3 a} \right)$$

Câu 116. Tính *I*.

A.
$$I = 3$$

B.
$$I = +\infty$$

C.
$$I = \frac{1}{3}$$

A.
$$I = 3$$
 B. $I = +\infty$ C. $I = \frac{1}{3}$ D. $I = -\infty$

Cho tích phân
$$I = \int_1^e \frac{\mathrm{d}x}{x \ln^2 x}$$
.

Câu 117. Tính
$$\int_{a}^{e} \frac{dx}{x \ln^{2} x}$$
, $1 < a < e$.

A.
$$-1 + \frac{1}{\ln a}$$

C. $1 - \frac{1}{\ln a}$

B.
$$1 - \ln a$$

D.
$$-1 + \ln a$$

Câu 118. Tính *I*.

A.
$$I = 1$$

B.
$$I = -1$$

C.
$$I = +\infty$$

B.
$$I = -1$$
 C. $I = +\infty$ D. $I = -\infty$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_1^e \frac{dx}{x \ln x}$$
.

Câu 119. Tính
$$\int_{a}^{e} \frac{dx}{x \ln x}$$
, $1 < a < e$.

A.
$$\ln(\ln a)$$

$$B. - \ln(\ln a)$$

C.
$$a \ln a - e$$

D.
$$e - a \ln a$$

Câu 120. Tính *I*.

A.
$$I = e$$

B.
$$I = -\epsilon$$

B.
$$I = -e$$
 C. $I = +\infty$ D. $I = -\infty$

$$D I = -\infty$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_1^e \frac{dx}{x\sqrt{\ln x}}$$
.

Câu 121. Tính
$$\int_a^e \frac{\mathrm{d}x}{x\sqrt{\ln x}}$$
, $1 < a < e$.

A.
$$2\sqrt{\ln a} - 2$$

B.
$$\sqrt{\ln a} - 1$$

C.
$$1 - \sqrt{\ln a}$$

D.
$$2 - 2\sqrt{\ln a}$$

Câu 122. Tính *I*.

A.
$$I = 1$$

B.
$$I = -1$$

C.
$$I = 2$$

A.
$$I = 1$$
 B. $I = -1$ C. $I = 2$ D. $I = -2$

■ Định tham số để tích phân hội tụ

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_3^{+\infty} \frac{x^{\alpha}}{\sqrt{x(x-1)(x-2)}} dx$$
.

Câu 123. Tích phân I cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_{3}^{+\infty} \frac{x^{\alpha}}{x^{3}} dx$$
B. $\int_{3}^{+\infty} \frac{x^{\alpha}}{x} dx$
C. $\int_{3}^{+\infty} \frac{x^{\alpha}}{x^{2}} dx$
D. $\int_{3}^{+\infty} \frac{x^{\alpha}}{\sqrt{x^{3}}} dx$

Câu 124. Tìm tất cả giá trị của để I hội tụ.

A.
$$\alpha < 2$$
 B. $\alpha < \frac{1}{2}$ C. $\alpha < -\frac{1}{2}$ D. $\alpha < 0$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_3^{+\infty} \frac{x^3 - 3x + 5}{x^{\alpha} + 4x^3 + 1} dx$$
, $\alpha > 3$.

Câu 125. Tích phân I cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_{3}^{+\infty} \frac{3x}{x^{\alpha}} dx$$
B.
$$\int_{3}^{+\infty} \frac{5}{x^{\alpha}} dx$$
C.
$$\int_{3}^{+\infty} \frac{x^{3}}{x^{\alpha}} dx$$
D.
$$\int_{3}^{+\infty} \frac{3x}{4x^{3}} dx$$

Câu 126. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\forall \alpha \in \mathbb{R}$$
 B. $\alpha > 2$ C. $\alpha > 3$ D. $\alpha > 4$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_{1}^{+\infty} \frac{(x^2 - 3x + 5)^3}{x^{\alpha} + 4x^5 + 1} dx$$
, $\alpha > 5$.

Câu 127. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_{1}^{+\infty} \frac{x^{6}}{x^{\alpha}} dx$$
B.
$$\int_{1}^{+\infty} \frac{x^{3}}{x^{5}} dx$$
C.
$$\int_{1}^{+\infty} \frac{x^{6}}{x^{5}} dx$$
D.
$$\int_{1}^{+\infty} \frac{x^{3}}{x^{\alpha}} dx$$

Câu 128. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\forall \alpha \in \mathbb{R}$$

$$B. \alpha > 4$$

$$C. \alpha > 7$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_1^{+\infty} \frac{\left(x^2\sqrt{x} - 3x + 1\right)^2}{\left(x^{\alpha} + 4x\sqrt{x} + 1\right)^3} dx$$
, $\alpha > \frac{3}{2}$.

Câu 129. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_{1}^{+\infty} \frac{x^{2} \sqrt{x}}{x^{3\alpha}} dx$$
C.
$$\int_{1}^{+\infty} \frac{x^{5}}{x^{3\alpha}} dx$$

B.
$$\int_{1}^{+\infty} \frac{x^5}{x^{\alpha}} dx$$

C.
$$\int_{1}^{1+\infty} \frac{x^{5}}{x^{3\alpha}} dx$$

D.
$$\int_{1}^{+\infty} \frac{x^{2} \sqrt{x}}{x^{\alpha}} dx$$

Câu 130. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha > 2$$

B.
$$\alpha > 6$$

C.
$$\alpha > \frac{7}{2}$$

D.
$$\alpha > \frac{7}{6}$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_1^{+\infty} \frac{\left(x^2\sqrt{x} - 3x + 1\right)^2}{\left(x^3 + 4x\sqrt{x} + 1\right)^{\alpha}} dx$$
, $\alpha > 0$.

Câu 131. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_{1}^{+\infty} \frac{3x}{x^3} dx$$

B.
$$\int_{1}^{+\infty} \frac{x^{5}}{x^{3\alpha}} dx$$

$$C. \int_{1}^{+\infty} \frac{x^2 \sqrt{x}}{x^{3\alpha}} dx$$

$$D. \int_1^{+\infty} \frac{x^5}{x^3} dx$$

Câu 132. Tìm tất cả giá trị của α để I hội tụ.

B.
$$\alpha > \frac{7}{6}$$

C.
$$\forall \alpha \in \mathbb{R}$$
 D. $\alpha > 2$

D.
$$\alpha > 2$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_1^{+\infty} \frac{x^{\alpha} (3x+1)}{x^3 + 4x\sqrt{x} + 1} dx$$
.

Câu 133. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_{1}^{+\infty} \frac{x^{\alpha+1}}{x^{3}} dx$$
C.
$$\int_{1}^{+\infty} \frac{x^{\alpha}}{x^{3}} dx$$

C.
$$\int_{1}^{1+\infty} \frac{x^{\alpha}}{x^{3}} dx$$

B.
$$\int_{1}^{+\infty} \frac{x^{\alpha}}{x\sqrt{x}} dx$$

D.
$$\int_{1}^{+\infty} \frac{x^{\alpha+1}}{x\sqrt{x}} dx$$

Câu 134. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha < \frac{1}{2}$$

B.
$$\alpha$$
 < 1

C.
$$\alpha$$
 < 2

B.
$$\alpha < 1$$
 C. $\alpha < 2$ D. $\alpha < \frac{-1}{2}$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_{1}^{+\infty} \frac{x^{\alpha} + x}{4x^3 + x^2 + 1} dx$$
, $\alpha > 1$.

Câu 135. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_{1}^{+\infty} \frac{x^{\alpha}}{x^{2}} dx$$

C.
$$\int_{1}^{1+\infty} \frac{x^{\alpha}}{x^{3}} dx$$

B.
$$\int_{1}^{+\infty} \frac{x}{x^3} dx$$

D.
$$\int_{1}^{+\infty} \frac{x}{x^2} dx$$

Câu 136. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha > 2$$

B.
$$\alpha > 1$$

C.
$$1 < \alpha < 2$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_{1}^{+\infty} \frac{x^{\alpha}}{x^{3} + \ln^{5} x} dx$$

Câu 137. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_{1}^{+\infty} \frac{x^{\alpha}}{x^{3}} dx$$
C.
$$\int_{1}^{+\infty} \frac{x^{\alpha}}{\ln^{5} x} dx$$

C.
$$\int_{1}^{1+\infty} \frac{x^{\alpha}}{\ln^{5}x} dx$$

B.
$$\int_{1}^{+\infty} \frac{x^{\alpha}}{x^{8}} dx$$
D.
$$\int_{1}^{+\infty} \frac{x^{\alpha}}{x^{5}} dx$$

D.
$$\int_{1}^{+\infty} \frac{x^{\alpha}}{x^{5}} dx$$

Câu 138. Tìm tất cả giá trị của α để I hội tụ.

B.
$$\alpha$$
 < 7

C.
$$\alpha$$
 < 4

C.
$$\alpha < 4$$
 D. $\alpha < 2$

Cho tích phân
$$I = \int_{1}^{+\infty} \frac{x^{\alpha}}{x^3 + (\ln x + x)^4} dx$$

Câu 139. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_{1}^{+\infty} \frac{x^{\alpha}}{x^{3}} dx$$
C.
$$\int_{1}^{+\infty} \frac{x^{\alpha}}{x^{4}} dx$$

B.
$$\int_{1}^{+\infty} \frac{x^{\tilde{\alpha}}}{\ln^{4} x} dx$$

D.
$$\int_{1}^{+\infty} \frac{x^{\alpha}}{\frac{x^{\alpha}}{\sqrt{7}}} dx$$

Câu 140. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha < 4$$

$$B. \alpha < 6$$

C.
$$\alpha$$
 < 2

D.
$$\alpha < 3$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_0^1 \frac{x^{\alpha}}{\sqrt{x(x+1)(2+x)}} dx$$

Câu 141. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_0^1 \frac{x^{\alpha}}{\sqrt{x^3}} dx$$

B.
$$\int_0^1 \frac{x^{\alpha}}{\sqrt{x}} dx$$

C.
$$\int_0^1 \frac{x^{\alpha}}{x} dx$$

$$D. \int_0^1 \frac{x^{\alpha}}{\sqrt{2+x}} dx$$

Câu 142. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha < -\frac{1}{2}$$

B.
$$\alpha < \frac{1}{2}$$

C.
$$\alpha > -\frac{1}{2}$$
 D. $\alpha > \frac{1}{2}$

D.
$$\alpha > \frac{1}{2}$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_0^1 \frac{x}{\sqrt{x^{\alpha}(x+1)(2-x)}} dx$$

Câu 143. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_0^1 \frac{x}{\sqrt{x^{\alpha+2}}} dx$$

B.
$$\int_0^1 \frac{x}{\sqrt{x^{\alpha+1}}} dx$$

C.
$$\int_0^1 \frac{x}{\sqrt{x^{\alpha}}} dx$$

D.
$$\int_0^1 \frac{x}{\sqrt{x^{\alpha+3}}} dx$$

Câu 144. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha$$
 < 1

B.
$$\alpha$$
 < 2

C.
$$\alpha$$
 < 3

D.
$$\alpha < 4$$

Cho tích phân
$$I = \int_0^1 \frac{x^2}{\sqrt{x^{\alpha}(x+1)(2-x)}} dx$$

Câu 145. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

$$A. \int_0^1 \frac{x^2}{\sqrt{x^{\alpha+2}}} dx$$

B.
$$\int_0^1 \frac{x^2}{\sqrt{x^{\alpha+1}}} dx$$

C.
$$\int_0^1 \frac{x^2}{\sqrt{x^{\alpha}}} dx$$

$$D. \int_0^1 \frac{x^2}{\sqrt{x^{\alpha+3}}} dx$$

Câu 146. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha$$
 < 6

$$B. \alpha < 3$$

C.
$$\alpha$$
 < 5

D.
$$\alpha < 4$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_{1}^{2} \frac{x^{\alpha}}{\sqrt{x(x+1)(2-x)}} dx$$

Câu 147. Tích phân I cùng tính hội tụ với tích phân nào sau đây? A. $\int_{1}^{2} \frac{2^{\alpha}}{\sqrt{x^3}} dx$ B. $\int_{1}^{2} \frac{2^{\alpha}}{\sqrt{(2-x)^3}} dx$

$$A. \int_1^2 \frac{2^{\alpha}}{\sqrt{x^3}} dx$$

B.
$$\int_{1}^{2} \frac{2^{\alpha}}{\sqrt{(2-x)^{3}}} dx$$

$$C. \int_{1}^{2} \frac{x^{\alpha}}{\sqrt{(2-x)}} dx$$

D.
$$\int_{1}^{2} \frac{2^{\alpha}}{\sqrt{2-x}} dx$$

Câu 148. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha < -1$$

B.
$$\alpha < \frac{1}{2}$$

B.
$$\alpha < \frac{1}{2}$$
 C. $\alpha > \frac{1}{2}$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_1^2 \frac{(2-x)^{\alpha}}{\sqrt{x(x+1)(2-x)}} dx$$

Câu 149. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_{1}^{2} \frac{(2-x)^{\alpha}}{\sqrt{x^{3}}} dx$$

B.
$$\int_{1}^{2} \frac{1}{\sqrt{x+1}} dx$$

C.
$$\int_1^2 \frac{x^{\alpha}}{x} dx$$

D.
$$\int_{1}^{2} \frac{(2-x)^{\alpha}}{\sqrt{2-x}} dx$$

Câu 150. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha < 0$$

B.
$$\alpha < -\frac{1}{2}$$

C.
$$\alpha > -\frac{1}{2}$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_0^{\frac{\pi}{2}} \frac{\cos x + \sin x}{\sin^{\alpha} x} dx$$
.

Câu 151. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

$$A. \int_0^{\frac{\pi}{2}} \frac{x^2}{x^{\alpha}} dx$$

B.
$$\int_0^{\frac{\pi}{2}} \frac{1}{x^{\alpha}} dx$$

C.
$$\int_0^{\frac{\pi}{2}} \frac{x}{x^{\alpha}} dx$$

$$D. \int_0^{\frac{\pi}{2}} \frac{x^3}{x^{\alpha}} dx$$

Câu 152. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha < 1$$

$$B. \alpha < 3$$

C.
$$\alpha$$
 < 2

D.
$$\alpha < 4$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_0^{\frac{\pi}{2}} \frac{\cos x + \sin x}{\sqrt[3]{\sin^{\alpha} x}} dx$$

Câu 153. Tích phân I cùng tính hội tụ với tích phân nào sau đây?

$$A. \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt[3]{x^{\alpha}}} dx$$

$$B. \int_0^{\frac{\pi}{2}} \frac{x}{\sqrt[3]{x^{\alpha}}} dx$$

$$C. \int_0^{\frac{\pi}{2}} \frac{x^2}{\sqrt[3]{x^{\alpha}}} dx$$

D.
$$\int_0^{\frac{\pi}{2}} \frac{x^3}{\sqrt[3]{x^{\alpha}}} dx$$

Câu 154. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha < 6$$

B.
$$\alpha < 12$$
 C. $\alpha < 9$

C.
$$\alpha$$
 < 9

D.
$$\alpha$$
 < 3

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân
$$I = \int_0^1 \frac{1 - \cos x}{x^{\alpha}} dx$$
.

Câu 155. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_0^1 \frac{x}{x^{\alpha}} dx$$

B.
$$\int_0^1 \frac{x^3}{x^{\alpha}} dx$$

C.
$$\int_0^1 \frac{x^2}{x^{\alpha}} dx$$

D.
$$\int_0^1 \frac{1}{x^{\alpha}} dx$$

Câu 156. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha$$
 < 2

$$B. \alpha < 3$$

C.
$$\alpha$$
 < 4

D.
$$\alpha$$
 < 1

Dữ kiên cho 2 câu hỏi sau:

Cho tích phân $I = \int_0^1 \frac{\sin x}{x^{\alpha}} dx$.

Câu 157. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_0^1 \frac{x}{x^{\alpha}} dx$$

B.
$$\int_0^1 \frac{x^3}{x^{\alpha}} dx$$

$$C. \int_0^1 \frac{x^2}{x^{\alpha}} dx$$

D.
$$\int_0^1 \frac{1}{x^{\alpha}} dx$$

Câu 158. Tìm tất cả giá trị của α để I hội tụ.

A.
$$\alpha < 1$$

B.
$$\alpha$$
 < 2

C.
$$\alpha$$
 < 3

D.
$$\alpha < 4$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân $I = \int_0^1 \frac{1}{\ln{(1 + x^{\alpha})}} dx$, $\alpha > 0$.

Câu 159. Tích phân *I* cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_{0}^{1} \frac{x}{x^{\alpha}} dx$$

B.
$$\int_0^1 \frac{x^3}{x^{\alpha}} dx$$

C.
$$\int_0^1 \frac{x^2}{x^{\alpha}} dx$$

D.
$$\int_0^1 \frac{1}{x^{\alpha}} dx$$

Câu 160. Tìm tất cả giá trị của α để I hội tụ.

A.
$$0 < \alpha < 3$$

B.
$$0 < \alpha < 2$$

C.
$$0 < \alpha < 1$$
 D. $0 < \alpha < 4$

D.
$$0 < \alpha < 4$$

Dữ kiện cho 2 câu hỏi sau:

Cho tích phân $I = \int_0^1 \frac{x^3}{\ln^{\alpha} (\tan x + 1)} dx$.

Câu 161. Tích phân I cùng tính hội tụ với tích phân nào sau đây?

A.
$$\int_0^1 \frac{x}{x^{\alpha}} dx$$

B.
$$\int_0^1 \frac{x^3}{x^{\alpha}} dx$$

C.
$$\int_0^1 \frac{x^2}{x^{\alpha}} dx$$

$$D. \int_0^1 \frac{1}{x^{\alpha}} dx$$

Câu 162. Tìm tất cả giá trị của α để I hội tụ. A. $\alpha < 2$ B. $\alpha < 3$ C. $\alpha < 4$

 $C. \alpha < 4$

D. α < 1

Bài tập trắc nghiệm chương 3

■ Câu hỏi lý thuyết

Câu 163. Cho chuỗi số dương $\sum_{n=1}^{+\infty} u_n$. Giả sử $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = D$. Trong

điều kiên nào sau đây chuỗi trên hôi tu?

A.
$$0 < D < 2$$

B.
$$D < 1$$

C.
$$D \leq 1$$

D.
$$D > 1$$

Câu 164. Chuỗi số $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ hội tụ khi và chỉ khi

A.
$$\alpha \leq 1$$

B.
$$\alpha > 1$$

C.
$$\alpha \geq 1$$

D.
$$\alpha < 1$$

Câu 165. Cho chuỗi dương $\sum_{n=1}^{\infty} u_n$. Khẳng định nào sau đây đúng?

- A. Nếu $\lim_{n \to +\infty} \sqrt[n]{u_n} < 1$ thì chuỗi hội tụ.

 B. Nếu $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} > 1$ thì chuỗi phân kỳ.

 C. Nếu $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} < 1$ thì chuỗi hội tụ.
- D. Các khẳng định còn lai đều đúng

Câu 166. Cho chuỗi số dương $\sum_{n=1}^{+\infty} u_n$. Giả sử $\lim_{n\to\infty} \sqrt[n]{u_n} = C$. Trong

điều kiên nào sau đây chuôi trên hôi tu?

A.
$$0 < C < 2$$

B.
$$C < 1$$

C.
$$C \leq 1$$

D.
$$C > 1$$

Câu 167. Cho hai chuỗi số dương $\sum_{n=1}^{+\infty} u_n$ và $\sum_{n=1}^{+\infty} v_n$ thỏa: $u_n \leq v_n$ với

mọi n. Mệnh đề nào sau đây đúng?

- A. Nếu $\sum_{n=1}^{+\infty} u_n$ hội tụ thì $\sum_{n=1}^{+\infty} v_n$ cũng hội tụ. B. Nếu $\sum_{n=1}^{+\infty} u_n$ phân kỳ thì $\sum_{n=1}^{+\infty} v_n$ cũng phân kỳ.
- C. $\sum_{n=1}^{+\infty} u_n$ hội tụ khi và chỉ khi $\sum_{n=1}^{+\infty} v_n$ hội tụ.
- D. Các mênh đề trên đều sai.

Câu 168. Cho hai chuỗi số dương: $\sum_{n=1}^{+\infty} u_n$ và $\sum_{n=1}^{+\infty} v_n$ thỏa điều kiện

 $\lim_{n\to +\infty} \frac{u_n}{v_n} = k \in \mathbb{R}$. Tất cả giá trị của k để hai chuỗi này cùng hội tụ hoặc cùng phân kỳ là

- A. k < 1 B. k > 0
- C. k < 2 D. k < 3

Câu 169. Cho hai chuỗi số dương: $\sum_{n=1}^{+\infty} u_n$ và $\sum_{n=1}^{+\infty} v_n$ thỏa điều kiện

 $\lim_{n\to+\infty}\frac{u_n}{v_n}=0$. Mệnh đề nào sau đây đúng?

- A. Nếu $\sum_{n=1}^{+\infty} u_n$ hội tụ thì $\sum_{n=1}^{+\infty} v_n$ hội tụ. B. Nếu $\sum_{n=1}^{+\infty} u_n$ phân kỳ thì $\sum_{n=1}^{+\infty} v_n$ phân kỳ.
- C. $\sum_{n=1}^{+\infty} u_n$ hội tụ khi và chỉ khi $\sum_{n=1}^{+\infty} v_n$ hội tụ.
- D. Các mênh đề trên đều sai.

Câu 170. Cho hai chuỗi số dương: $\sum_{n=1}^{+\infty} u_n$ và $\sum_{n=1}^{+\infty} v_n$ thỏa điều kiện

 $\lim_{n\to+\infty}\frac{u_n}{v_n}=+\infty$. Mệnh đề nào sau đây đúng?

- A. Nếu $\sum_{n=1}^{+\infty} u_n$ hội tụ thì $\sum_{n=1}^{+\infty} v_n$ hội tụ. B. Nếu $\sum_{n=1}^{+\infty} u_n$ phân kỳ thì $\sum_{n=1}^{+\infty} v_n$ phân kỳ. C. $\sum_{n=1}^{+\infty} u_n$ hội tụ khi và chỉ khi $\sum_{n=1}^{+\infty} v_n$ hội tụ.
- D. Các mênh đề trên đều sai.

Câu 171. Cho chuỗi $\sum_{n=1}^{+\infty} u_n$. Mệnh đề nào sau đây đúng?

- A. Nếu $\sum_{n=1}^{+\infty} u_n$ hội tụ thì $\lim_{n \to +\infty} u_n = 0$.
- B. Nếu $\lim_{n\to+\infty}u_n=0$ thì $\sum_{n=1}^{n\to+\infty}u_n$ hội tụ.
- C. Nếu $\sum_{n=1}^{+\infty} u_n$ phân kỳ thì $\lim_{n\to+\infty} u_n = 0$.
- D. Nếu $\lim_{n\to+\infty} u_n = 0$ thì $\sum_{n=1}^{+\infty} u_n$ phân kỳ.

■ Tính tổng riêng phần

Dữ kiện cho 2 câu hỏi sau:

Chuỗi số

$$\sum_{n=1}^{+\infty} \left(\frac{2}{3}\right)^n \equiv \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^3 + \dots + \left(\frac{2}{3}\right)^n + \dots$$

có tổng riêng thứ n là

$$S_n = \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^3 + \dots + \left(\frac{2}{3}\right)^n.$$

Câu 172. Khẳng định nào sau đây là đúng?

A.
$$S_n = 1 - (\frac{2}{3})^n$$

B.
$$S_n = \frac{2}{3} - (\frac{2}{3})^n$$

C.
$$S_n = 3 \left[1 - \left(\frac{2}{3} \right)^n \right]$$

D.
$$S_n = 2 \left[1 - \left(\frac{2}{3} \right)^n \right]$$

Câu 173. Tổng của chuỗi đã cho là

A.
$$S = 1$$

B.
$$S = 2$$

C.
$$S = 3$$

C.
$$S = 3$$
 D. $S = \frac{2}{3}$

Dữ kiện cho 2 câu hỏi sau:

Chuỗi số

$$\sum_{n=1}^{+\infty} \left(\frac{2}{3}\right)^{n-1} \equiv 1 + \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \dots + \left(\frac{2}{3}\right)^{n-1} + \dots$$

có tổng riêng thứ n là

$$S_n = 1 + \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \dots + \left(\frac{2}{3}\right)^{n-1}.$$

Câu 174. Chọn khẳng định đúng

A.
$$S_n = 3 \left[1 - \left(\frac{2}{3} \right)^n \right]$$

B.
$$S_n = 1 - (\frac{2}{3})^n$$

C.
$$S_n = 2 \left[1 - \left(\frac{2}{3} \right)^n \right]$$

B.
$$S_n = 1 - \left(\frac{2}{3}\right)^n$$

D. $S_n = \frac{2}{3} - \left(\frac{2}{3}\right)^n$

Câu 175. Tổng của chuỗi đã cho là

A.
$$S = 1$$

B.
$$S = 2$$

C.
$$S = 3$$

C.
$$S = 3$$
 D. $S = \frac{2}{3}$

Chuỗi số

$$\sum_{n=1}^{+\infty} \left(\frac{3}{5}\right)^n \equiv \frac{3}{5} + \left(\frac{3}{5}\right)^2 + \dots + \left(\frac{3}{5}\right)^n + \dots$$

có tổng riêng thứ n là

$$S_n = \frac{3}{5} + \left(\frac{3}{5}\right)^2 + \dots + \left(\frac{3}{5}\right)^n$$

Câu 176. Chọn khẳng định đúng

A.
$$S_n = \frac{3}{2} \left[1 - \left(\frac{3}{5} \right)^n \right]$$

C.
$$S_n = \frac{2}{3} \left[1 - \left(\frac{3}{5} \right)^n \right]$$

B.
$$S_n = \frac{2}{5} \left[1 - \left(\frac{3}{5} \right)^n \right]$$

D.
$$S_n = \frac{1}{5} \left[1 - \left(\frac{3}{5} \right)^n \right]$$

Câu 177. Tổng của chuỗi đã cho là

A.
$$S = \frac{3}{2}$$

B.
$$S = \frac{1}{5}$$

C.
$$S = \frac{2}{3}$$

C.
$$S = \frac{2}{3}$$
 D. $S = \frac{2}{5}$

Dữ kiện cho 2 câu hỏi sau:

Chuỗi số

$$\sum_{n=1}^{+\infty} \left(\frac{3}{5}\right)^{n-1} \equiv 1 + \frac{3}{5} + \left(\frac{3}{5}\right)^2 + \dots + \left(\frac{3}{5}\right)^{n-1} + \dots$$

có tổng riêng thứ n là

$$S_n = 1 + \frac{3}{5} + \left(\frac{3}{5}\right)^2 + \dots + \left(\frac{3}{5}\right)^{n-1}$$

Câu 178. Chọn khẳng định đúng

A.
$$S_n = \frac{5}{3} \left[1 - \left(\frac{3}{5} \right)^n \right]$$

C.
$$S_n = 5 \left[1 - \left(\frac{3}{5} \right)^n \right]$$

B.
$$S_n = \frac{5}{2} \left[1 - \left(\frac{3}{5} \right)^n \right]$$

D.
$$S_n = \frac{6}{5} \left[1 - \left(\frac{3}{5} \right)^n \right]$$

Câu 179. Tổng của chuỗi đã cho là

A.
$$S = \frac{5}{3}$$

B.
$$S = 5$$

C.
$$S = \frac{6}{5}$$

C.
$$S = \frac{6}{5}$$
 D. $S = \frac{5}{2}$

Chuỗi số

$$\sum_{n=1}^{+\infty} \left(\frac{4}{3}\right)^n \equiv \frac{4}{3} + \left(\frac{4}{3}\right)^2 + \dots + \left(\frac{4}{3}\right)^n + \dots$$

có tổng riêng thứ n là

$$S_n = \frac{4}{3} + \left(\frac{4}{3}\right)^2 + \dots + \left(\frac{4}{3}\right)^n.$$

Câu 180. Chọn khẳng định đúng

A.
$$S_n = 4\left[\left(\frac{4}{3}\right)^n - 1\right]$$

C.
$$S_n = \frac{1}{4} \left[\left(\frac{4}{3} \right)^n - 1 \right]$$

B.
$$S_n = \frac{1}{3} \left[\left(\frac{4}{3} \right)^n - 1 \right]$$

B.
$$S_n = \frac{1}{3} \left[\left(\frac{4}{3} \right)^n - 1 \right]$$

D. $S_n = 4 \left[1 - \left(\frac{4}{3} \right)^n \right]$

Câu 181. Tống của chuỗi đã cho là

A.
$$S = +\infty$$

B.
$$S = 4$$

C.
$$S = \frac{1}{3}$$

C.
$$S = \frac{1}{3}$$
 D. $S = \frac{1}{4}$

Dữ kiện cho 2 câu hỏi sau:

Chuỗi số

$$\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)} \equiv \frac{1}{1.3} + \frac{1}{3.5} + \dots + \frac{1}{(2n-1)(2n+1)} + \dots$$

có tổng riêng thứ n là

$$S_n = \frac{1}{1.3} + \frac{1}{3.5} + \dots + \frac{1}{(2n-1)(2n+1)}.$$

Câu 182. Chọn khẳng định đúng

A.
$$S_n = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right)$$

C.
$$S_n = \frac{1}{3} \left(1 - \frac{1}{2n+1} \right)$$

B.
$$S_n = 1 - \frac{1}{2n+1}$$

D. $S_n = 2 - \frac{1}{2n-1}$

D.
$$S_n = 2 - \frac{1}{2n-1}$$

Câu 183. Tống của chuỗi đã cho là

A.
$$S = \frac{1}{3}$$

B.
$$S = 1$$

C.
$$S = \frac{1}{2}$$
 D. $S = 2$

D.
$$S = 2$$

Chuỗi số

$$\sum_{n=1}^{+\infty} \frac{1}{(3n-2)(3n+1)} \equiv \frac{1}{1.4} + \frac{1}{4.7} + \dots + \frac{1}{(3n-2)(3n+1)} + \dots$$

có tổng riêng thứ n là

$$S_n = \frac{1}{1.4} + \frac{1}{4.7} + \dots + \frac{1}{(3n-2)(3n+1)}$$

Câu 184. Chọn khẳng định đúng

A.
$$S_n = \frac{1}{3} \left(1 - \frac{1}{3n+1} \right)$$

B.
$$S_n = 1 - \frac{1}{3n+1}$$

C.
$$S_n = \frac{2}{3} \left(1 - \frac{1}{3n+1} \right)$$

D.
$$S_n = 1$$
 $3n+1$
D. $S_n = \frac{4}{3} \left[1 - \frac{1}{(3n-2)(3n+1)} \right]$

Câu 185. Tổng của chuỗi đã cho là

A.
$$S = \frac{2}{3}$$

B.
$$S = 1$$

C.
$$S = \frac{1}{3}$$

C.
$$S = \frac{1}{3}$$
 D. $S = \frac{4}{3}$

Dữ kiện cho 2 câu hỏi sau:

Cho chuỗi số

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} \equiv \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} + \dots$$

có tổng riêng thứ n là

$$S_n = \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)}$$

Câu 186. Chọn khẳng định đúng

A.
$$S_n = \frac{1}{2} \left(1 - \frac{1}{n+1} \right)$$

B.
$$S_n = 1 - \frac{1}{n+1}$$

C.
$$S_n = 2 + \frac{1}{n+1}$$

D.
$$S_n = \frac{2}{3} \left[1 + \frac{1}{(n+1)} \right]$$

Câu 187. Tống của chuỗi đã cho là

A.
$$S = \frac{1}{2}$$
 B. $S = \frac{2}{3}$

B.
$$S = \frac{2}{3}$$

C.
$$S = 1$$

C.
$$S = 1$$
 D. $S = 2$

■ Xét tính hôi tu của chuỗi dương

Câu 188. Bằng cách so sánh với chuỗi $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$, mệnh đề nào sau đây

đúng nhất?

A
$$\sum_{n=1}^{+\infty} \frac{n+1}{n}$$
 hội tu

C.
$$\sum_{n=1}^{+\infty} \frac{n^{2}+3}{n(\sqrt{n^{3}}+2)}$$
 hội tụ.

B.
$$\sum_{n=1}^{+\infty} \frac{2n+1}{5n^2+3}$$
 hội tụ.

A.
$$\sum_{n=1}^{+\infty} \frac{n+1}{n^2+3}$$
 hội tụ.

B. $\sum_{n=1}^{+\infty} \frac{2n+1}{5n^2+3}$ hội tụ.

C. $\sum_{n=1}^{+\infty} \frac{n+1}{n(\sqrt{n^3}+2)}$ hội tụ.

D. $\sum_{n=1}^{+\infty} \frac{7n+3}{n(\sqrt{n^5}+1)}$ phân kỳ.

Câu 189. Bằng cách so sánh với chuỗi $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$, mệnh đề nào sau đây

A.
$$\sum_{n=1}^{+\infty} \frac{n+1}{n^2 + \ln n}$$
 hội tụ

A.
$$\sum_{n=1}^{+\infty} \frac{n+1}{n^2 + \ln n}$$
 hội tụ.
B. $\sum_{n=1}^{+\infty} \frac{2n+1}{5n^2 + 3}$ hội tụ.
C. $\sum_{n=1}^{+\infty} \frac{n+1}{n(\sqrt{n^3} + 5)}$ phân kỳ.
D. $\sum_{n=1}^{+\infty} \frac{2n+3}{n^5 + \ln(n+1)}$ hội tụ.

B.
$$\sum_{n=1}^{+\infty} \frac{2n+1}{5n^2+3}$$
 hội tụ.

D.
$$\sum_{n=1}^{+\infty} \frac{2n+3}{n^5 + \ln(n+1)}$$
 hội tụ

Câu 190. Chuỗi
$$\sum_{n=1}^{+\infty} \frac{n^2+2n}{(3n+1)n^{\alpha-1}}$$
 hội tụ khi và chỉ khi A. $\alpha>3$ B. $\alpha<3$ C. $\alpha\geq3$ D. $\alpha\leq3$

A.
$$\alpha > 3$$

B.
$$\alpha < 3$$

C.
$$\alpha \geq 3$$

D.
$$\alpha$$
 < 3

Câu 191. Chuỗi
$$\sum_{n=1}^{+\infty} \frac{n^2 + 2n}{n^3 + n^{\alpha} + 1}$$
 hội tụ khi và chỉ khi

A.
$$\alpha > 1$$

B.
$$\alpha$$
 < 3

C.
$$\alpha \geq 3$$

B.
$$\alpha < 3$$
 C. $\alpha \ge 3$ D. $\alpha > 3$

Câu 192. Chuỗi
$$\sum_{n=1}^{+\infty} \frac{n^2 + 2n}{n^4 + n^\alpha + 1}$$
 hội tụ khi và chỉ khi

A.
$$\alpha > 1$$

1
B. $\alpha < 3$

C.
$$\alpha \in \mathbb{R}$$
 D. $\alpha > 3$

D.
$$\alpha > 3$$

Câu 193. Chuỗi
$$\sum_{n=1}^{+\infty} \frac{n^2 + n^{\alpha} + 2n}{n^4 + 1}$$
 hội tụ khi và chỉ khi

A.
$$\alpha > 1$$

B.
$$\alpha < 3$$

C.
$$\alpha \in \mathbb{R}$$

$$C. \alpha \in \mathbb{R}$$
 $D. \alpha > 3$

Câu 194. Chuỗi
$$\sum_{n=1}^{+\infty} \frac{n^2 + n^{\alpha} + 2}{n^3 + 1}$$
 phân kỳ khi và chỉ khi

A.
$$\alpha > 2$$

B.
$$\alpha < 2$$

B.
$$\alpha < 2$$
 C. $\alpha \in \mathbb{R}$ D. $\nexists \alpha$

Câu 195. Chuỗi
$$\sum_{n=1}^{+\infty} \left(\frac{1}{n^{\alpha-1}} + \frac{2}{n^{3-\beta}} \right)$$
 hội tụ khi và chỉ khi

A.
$$\alpha > 2$$
 và $\beta < 3$

B.
$$\alpha > 1$$
 và $\beta < 3$

C.
$$\alpha$$
 < 2 và β > 2

D.
$$\alpha > 2$$
 và $\beta < 2$

Câu 196. Chuỗi
$$\sum_{n=1}^{+\infty} \left(\frac{1}{n^{\alpha-1}} + 3^n \right)$$
 phân kỳ khi và chỉ khi A. $\alpha > 2$ B. $\alpha < 2$ C. $\alpha > 1$ D. $\alpha \in \mathbb{R}$

Câu 197. Chuỗi
$$\sum_{n=1}^{+\infty} \frac{3}{(q^2+1)^n}$$
 hội tụ khi và chỉ khi

A.
$$q > 1$$

C. $-1 < q < 1$

B.
$$q \neq 0$$

D. $0 < q < \sqrt{2}$

Câu 198. Chuỗi
$$\sum_{n=1}^{+\infty} \frac{2^n + q^{2n}}{9^n}$$
 hội tụ khi và chỉ khi

A.
$$-3 < q < 3$$

B.
$$0 < q < 3$$

C.
$$-2 < q < 2$$

D.
$$q > 3$$

Câu 199. Chuỗi
$$\sum_{n=1}^{+\infty} \left((p+1)^{2n} + q^{2n} \right)$$
 hội tụ khi và chỉ khi

A.
$$0$$

B.
$$-2 và $-1 < q < 1$$$

C.
$$-2 và $0 < q < 1$$$

D.
$$-2 và $-2 < q < 2$$$

■ Xét tính hội tụ của chuỗi đan dấu

Câu 200. Xét chuỗi đan dấu $\sum_{n=1}^{+\infty} \frac{(-1)^n}{3n+1}$. Mệnh đề nào sau đây đúng nhất?

- A. Chuỗi hôi tu tuyết đối theo tiêu chuẩn d'Alembert.
- B. Chuỗi hội tụ theo tiêu chuẩn Leibniz.
- C. Chuỗi hội tụ tuyệt đối theo tiêu chuẩn Cauchy.
- D. Chuỗi hội tụ tuyệt đối theo tiêu chuẩn d'Alembert và Cauchy.

Câu 201. Xét chuỗi đan dấu $\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}+3}$. Mệnh đề nào sau đây đúng nhất?

- A. Chuỗi hội tụ nhưng không hội tụ tuyệt đối.
- B. Chuỗi hội tụ tuyệt đối.
- C. Chuỗi phân kỳ.
- D. Chuỗi phân kỳ theo tiêu chuẩn Leibniz.

Câu 202. Xét chuỗi đan dấu $\sum_{n=1}^{+\infty} (-1)^n \frac{n+1}{n(\sqrt{n^3}+3)}$. Mệnh đề nào sau

đây đúng nhất?

- A. Chuỗi hội tụ nhưng không hội tụ tuyệt đối.
- B. Chuỗi hội tụ tuyệt đối.
- C. Chuỗi phân kỳ.
- D. Chuỗi hội tụ tuyệt đối nhưng phân kỳ.

Câu 203. Xét chuỗi đan dấu $\sum_{n=1}^{+\infty} (-1)^n$ arctan $\left(\frac{n+1}{n+3}\right)$. Mệnh đề nào

sau đây đúng nhất?

- A. Chuỗi hội tụ nhưng không hội tụ tuyệt đối.
- B. Chuỗi hội tụ tuyệt đối.
- C. Chuỗi phân kỳ theo tiêu chuẩn Leibniz.
- D. Chuỗi phân kỳ vì $(-1)^n$ arctan $\left(\frac{n+1}{n+3}\right) \nrightarrow 0$.

Câu 204. Xét chuỗi đan dấu $\sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n}$. Mệnh đề nào sau đây đúng nhất?

- A. Chuỗi bán hội tụ.
- B. Chuỗi hôi tu tuyệt đối.
- C. Chuỗi phân kỳ theo tiêu chuẩn Leibniz.
- D. Chuỗi hội tụ tuyệt đối nhưng phân kỳ.

■ Xét tính hội tụ của chuỗi đan dấu theo tham số

Câu 205. Chuỗi đan dấu $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha-1}}$ hội tụ khi và chỉ khi A. $\alpha > 2$ B. $\alpha < 2$ C. $\alpha > 1$ D. $\alpha \in \mathbb{R}$

Câu 206. Chuỗi đan dấu $\sum_{n=1}^{+\infty} (-1)^n \frac{n^2+1}{n^\alpha+n+2}$ hội tụ khi và chỉ khi A. $\alpha>2$ B. $\alpha<2$ C. $\alpha>1$ D. $\alpha\in\mathbb{R}$

Câu 207. Chuỗi đan dấu $\sum_{n=1}^{+\infty} (-1)^n \frac{n^2+1}{n^3+m^2}$ hội tụ khi và chỉ khi A. m>2 B. m<2 C. m>1 D. $m\in\mathbb{R}$

■ Xét tính hôi tu của 2 chuỗi số

Câu 208. Xét hai chuỗi:
$$S_1 \equiv \sum_{n=1}^{+\infty} \frac{1}{10n+1}$$
, $S_2 \equiv \sum_{n=1}^{+\infty} \frac{1}{\sqrt{n(n+1)}}$.

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 209. Xét hai chuỗi:
$$S_1 \equiv \sum_{n=1}^{+\infty} \frac{2^n}{n}$$
, $S_2 \equiv \sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$. Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 210. Xét hai chuỗi:
$$S_1 \equiv \sum_{n=1}^{+\infty} \frac{1}{(3n-1)^2}$$
, $S_2 \equiv \sum_{n=1}^{+\infty} \frac{\sqrt[3]{n}}{(n+1)\sqrt{n}}$.

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 211. Xét hai chuỗi:
$$S_1 \equiv \sum_{n=1}^{+\infty} \frac{2n-1}{\left(\sqrt{2}\right)^n}$$
, $S_2 \equiv \sum_{n=1}^{+\infty} \frac{2.5.8...(3n-1)}{1.5.9...(4n-3)}$.

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 212. Xét hai chuỗi:
$$S_1 \equiv \sum_{n=1}^{+\infty} \left(\frac{n+1}{2n-1}\right)^n$$
, $S_2 \equiv \sum_{n=1}^{+\infty} \left(\frac{n}{3n-1}\right)^{2n-1}$.

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 213. Xét hai chuỗi:
$$S_1 \equiv \sum_{n=1}^{+\infty} \left(\frac{n+1}{2n-1} \right)^n$$
, $S_2 \equiv \sum_{n=1}^{+\infty} \left(\frac{3n}{n-1} \right)^{2n-1}$.

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 214. Xét hai chuỗi:
$$S_1 \equiv \sum_{n=1}^{+\infty} \frac{1}{n!}, S_2 \equiv \sum_{n=1}^{+\infty} \frac{1}{(n+1)^2 - 1}$$
. Chọn

khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 215. Xét hai chuỗi:
$$S_1 \equiv \sum_{n=1}^{+\infty} \frac{1}{(3n-2)(3n+1)}$$
, $S_2 \equiv \sum_{n=1}^{+\infty} \frac{n^2}{2n^2+1}$.

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 216. Xét hai chuỗi:
$$S_1 \equiv \sum_{n=1}^{+\infty} \frac{n}{n^2 + 1}$$
, $S_2 \equiv \sum_{n=1}^{+\infty} \frac{2n + 1}{(n+1)^2 (n+2)^2}$.

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 217. Xét hai chuỗi:
$$S_1 \equiv \sum_{n=1}^{+\infty} \frac{n!}{2^n+1}, S_2 \equiv \sum_{n=1}^{+\infty} \frac{2^{n-1}}{(n-1)!}$$
. Chọn

khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 218. Xét hai chuỗi:
$$S_1 \equiv \sum_{n=1}^{+\infty} \left(\frac{3n}{3n+1} \right)^n$$
, $S_2 \equiv \sum_{n=1}^{+\infty} \left(\frac{2n+1}{3n+1} \right)^{\frac{n}{2}}$.

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 219. Xét hai chuỗi: $S_1 \equiv \sum_{n=1}^{+\infty} \frac{n^3}{e^n}$, $S_2 \equiv \sum_{n=1}^{+\infty} \frac{2^{n-1}}{n^n}$. Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 220. Xét hai chuỗi: $S_1 \equiv \sum_{n=1}^{+\infty} \frac{1.3.5...(2n-1)}{4.8.12...4n}, S_2 \equiv \sum_{n=1}^{+\infty} \frac{(n!)^2}{(2n)!}.$

Chọn khẳng định đúng.

A. S_1 và S_2 hội tu.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 221. Xét hai chuỗi:

$$S_1 \equiv \sum_{n=1}^{+\infty} \arcsin \frac{1}{\sqrt{n}}, \quad S_2 \equiv \sum_{n=1}^{+\infty} \sin \frac{1}{n^2}.$$

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 222. Xét hai chuỗi:

$$S_1 \equiv \sum_{n=1}^{+\infty} \ln\left(1 + \frac{1}{n}\right), \quad S_2 \equiv \sum_{n=1}^{+\infty} \ln\left(\frac{n^2 + 1}{n^2}\right).$$

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 223. Xét hai chuỗi:

$$S_1 \equiv \sum_{n=2}^{+\infty} \frac{1}{\ln n}, \quad S_2 \equiv \sum_{n=2}^{+\infty} \frac{1}{n \ln n}.$$

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 224. Xét hai chuỗi:

$$S_1 \equiv \sum_{n=2}^{+\infty} \frac{1}{n \ln^2 n}, \quad S_2 \equiv \sum_{n=2}^{+\infty} \frac{1}{n \ln n}.$$

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 225. Xét hai chuỗi:

$$S_1 \equiv \sum_{n=2}^{\infty} \frac{1}{n^2 - n}, \quad S_2 \equiv \sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n+1)}}.$$

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 226. Xét hai chuỗi:

$$S_1 \equiv \sum_{n=2}^{\infty} \frac{1}{\sqrt{n(n+1)(n+2)}}, \quad S_2 \equiv \sum_{n=2}^{\infty} \frac{1}{n \ln n + \sqrt{\ln^3 n}}.$$

Chọn khẳng định đúng.

A. S_1 và S_2 hôi tu.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 227. Xét hai chuỗi:

$$S_1 \equiv \sum_{n=2}^{\infty} \frac{1}{n\sqrt[3]{n} - \sqrt{n}}, \quad S_2 \equiv \sum_{n=2}^{\infty} \frac{\sqrt[3]{n}}{(2n-1)(5\sqrt[3]{n}-1)}.$$

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 228. Xét hai chuỗi:

$$S_1 \equiv \sum_{n=1}^{+\infty} \left(1 - \cos\frac{2}{n}\right), \quad S_2 \equiv \sum_{n=1}^{+\infty} \frac{n!}{n^n}.$$

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hôi tu.

D. S_1 và S_2 phân kỳ.

Câu 229. Xét hai chuỗi:

$$S_1 \equiv \sum_{n=1}^{\infty} \frac{2^n n!}{n^n}, \quad S_2 \equiv \sum_{n=1}^{\infty} \frac{3^n n!}{n^n}.$$

Chọn khẳng định đúng.

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 230. Xét hai chuỗi:

$$S_1 \equiv \sum_{n=1}^{\infty} \frac{3^n n!}{n^n}, \quad S_2 \equiv \sum_{n=1}^{\infty} \left(\frac{2n^2 + 2n + 1}{5n^2 + 2n + 1} \right)^n.$$

Chọn khẳng định đúng

A. S_1 và S_2 hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 và S_2 phân kỳ.

Câu 231. Cho hai chuỗi

$$S_1 \equiv \sum_{n=1}^{+\infty} (-1)^{n-1}, \quad S_2 \equiv \sum_{n=1}^{+\infty} \frac{1}{n} \left(\frac{2}{5}\right)^n.$$

Chọn khẳng định đúng.

A. S_1 , S_2 cùng hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 , S_2 cùng phân kỳ.

Câu 232. Cho hai chuỗi

$$S_1 \equiv \sum_{n=1}^{+\infty} (-1)^n$$
, $S_2 \equiv \sum_{n=1}^{+\infty} \frac{1}{n} \left(\frac{3}{2}\right)^n$.

Chọn khẳng định đúng.

A. S_1 , S_2 cùng hội tụ.

C. S_1 hội tụ, S_2 phân kỳ.

B. S_1 phân kỳ, S_2 hội tụ.

D. S_1 , S_2 cùng phân kỳ.

Câu 233. Cho hai chuỗi

$$S_1 \equiv \sum_{n=2}^{+\infty} \frac{(-1)^{n-1}}{2n-1}, \quad S_2 \equiv \sum_{n=2}^{+\infty} \frac{(-1)^{n-1}}{n^2}.$$

Chọn khẳng định đúng nhất.

A. S_1 , S_2 cùng hội tụ tuyệt đối.

B. S_1 bán hội tụ, S_2 hội tụ tuyệt đối.

C. S_1 , S_2 cùng phân kỳ.

D. S_1 hội tụ tuyệt đối, S_2 bán hội tụ.

Câu 234. Cho hai chuỗi

$$S_1 \equiv \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{n}{6n-5}, \quad S_2 \equiv \sum_{n=2}^{+\infty} (-1)^{n-1} \frac{2n+1}{n(n+1)}.$$

Chọn khẳng định đúng nhất.

A. S_1 , S_2 cùng hội tụ tuyệt đối.

B. S_1 phân kỳ, S_2 bán hội tụ.

C. S_1 hội tụ tuyệt đối, S_2 bán hội tụ.

D. S_1 , S_2 cùng phân kỳ.

Câu 235. Cho hai chuỗi

$$S_1 \equiv \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{n}{2^n}, \quad S_2 \equiv \sum_{n=1}^{+\infty} (-1)^n \frac{n+3}{n\sqrt{n+1}-1}.$$

Chọn khẳng định đúng nhất.

A. S_1 , S_2 cùng hội tụ tuyệt đối.

B. S_1 bán hội tụ, S_2 hội tụ tuyệt đối.

C. S_1 , S_2 cùng phân kỳ.

D. S_1 hội tụ tuyệt đối, S_2 bán hội tụ.

Câu 236. Cho hai chuỗi

$$S_1 \equiv \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{\ln n}{n}, \quad S_2 \equiv \sum_{n=1}^{+\infty} (-1)^{n-1} \tan \frac{1}{n\sqrt{n}}.$$

Chọn khẳng định đúng nhất.

A. S_1 , S_2 cùng hội tụ tuyệt đối.

B. S_1 bán hội tụ, S_2 hội tụ tuyệt đối.

C. S_1 , S_2 cùng phân kỳ.

D. S_1 hội tụ tuyệt đối, S_2 bán hội tụ.

■ Xét tính hội tụ của chuỗi có dấu bất kỳ theo tham số

Câu 237. Chuỗi
$$\sum_{n=1}^{+\infty} \frac{(p^2-4)n^2}{3^n}$$
 hội tụ khi và chỉ khi

A.
$$p < -2$$

B.
$$p < -2 \lor p > 2$$

C.
$$p > 2$$

D.
$$p \in \mathbb{R}$$

Câu 238. Chuỗi số $\sum_{n=1}^{+\infty} \frac{(p^2-1)n^2+5}{2^n}$ hội tụ khi và chỉ khi

A.
$$p < -2$$

B.
$$p < -2 \lor p > 2$$

C.
$$p > 2$$

D.
$$p \in \mathbb{R}$$

Câu 239. Chuỗi $\sum_{n=1}^{+\infty} \frac{pn^3 + n^2}{5^n}$ hội tụ khi và chỉ khi

A.
$$p < -5$$

B.
$$p < -5 \lor p > 5$$

C.
$$p > 5$$

D.
$$p \in \mathbb{R}$$

Câu 240. Chuỗi $\sum_{n=1}^{+\infty} \frac{pn^3 + 2n + 1}{n!}$ hội tụ khi và chỉ khi

A.
$$p < 1$$

B.
$$p < -1 \lor p > 1$$

C.
$$p > 1$$

D.
$$p \in \mathbb{R}$$

Câu 241. Chuỗi
$$\sum_{n=1}^{+\infty} \frac{(p-1)n^3 + n^2 + 1}{n!}$$
 hội tụ khi và chỉ khi A. $p < -2$ B. $p < -2 \lor p > 2$

A.
$$p < -$$
C. $p > 2$

B.
$$p < -2 \lor p > 2$$

D. $p \in \mathbb{R}$

Câu 242. Chuỗi
$$\sum_{n=1}^{+\infty} \left(\frac{pn^2+n+1}{2n^2+3}\right)^n$$
 hội tụ khi và chỉ khi A. $-2 \le p < 2$ B. $-2 C. $-2 D. $-2 \le p \le 2$$$

Câu 243. Chuỗi
$$\sum_{n=1}^{+\infty} \left(\frac{2n^2+n+1}{pn^2+3}\right)^n$$
 hội tụ khi và chỉ khi A. $p \le -2 \lor p \ge 2$ B. $p > 2$ C. $p < -2$ D. $p < -2 \lor p > 2$

Câu 244. Chuỗi
$$\sum_{n=1}^{+\infty} \left(\frac{pn^2+n+1}{2n^3+3}\right)^n$$
 hội tụ khi và chỉ khi A. $-2 \le p < 2$ B. $-2 C. $-2 D. $p \in \mathbb{R}$$$

Bài tập trắc nghiệm chương 4

■ Tìm cưc tri tư do

Dữ kiên cho 3 câu hỏi sau:

Cho
$$f(x;y) = -x^3 + y^3 + 6x^2 - 9x - 3y^2 - 9y$$
.

Câu 245. Khẳng định đúng là

A.
$$df(x; y) = -(x^2 - 4x + 3)dx + (y^2 - 2y - 3)dy$$
.

B.
$$df(x;y) = -3(x^2 - 4x + 3)dx + 3(y^2 - 2y - 3)dy$$
.

C.
$$df(x;y) = (x^2 - 4x - 3)dx + (y^2 - 2y - 3)dy$$
.

D.
$$df(x;y) = 3(x^2 - 4x + 3)dx - 3(y^2 - 2y - 3)dy$$
.

Câu 246. f(x;y) có các điểm dừng là:

A.
$$M_1(3,-1)$$
, $M_2(3,3)$, $M_3(1,-1)$, $M_4(1,3)$.

B.
$$M_1(3;-1)$$
, $M_2(3;3)$, $M_3(1;-1)$, $M_4(-1;3)$.

C.
$$M_1(-3;1)$$
, $M_2(-3;-1)$, $M_3(1;3)$, $M_4(-1;3)$.

D.
$$M_1(3;-1)$$
, $M_2(3;-3)$, $M_3(1;-1)$, $M_4(1;3)$.

Câu 247. Khẳng định nào sau đây là đúng

A.
$$f(x;y)$$
 đạt cực đại tại $(1;-1)$ và đạt cực tiểu tại $(3;-1)$.

B.
$$f(x;y)$$
 đạt cực đại tại $(3;-1)$ và đạt cực tiểu tại $(3;3)$.

C.
$$f(x;y)$$
 đạt cực tiểu tại $(1;3)$ và đạt cực đại tại $(3;3)$.

D.
$$f(x;y)$$
 đạt cực tiểu tại $(1;3)$ và đạt cực đại tại $(3;-1)$.

Dữ kiên cho 3 câu hỏi sau:

Cho
$$f(x; y) = -x^2 + y^3 - 4x - 3y + 2$$
.

Câu 248. Khẳng định đúng là

A.
$$df(x; y) = (2x + 4)dx + (3y^2 - 3)dy$$
.

B.
$$df(x; y) = -(2x + 4)dx + (3y^2 - 3)dy$$
.

C.
$$df(x;y) = (x+2)dx - (y^2-1)dy$$
.

D.
$$df(x; y) = (-x - 2)dx + (y^2 - 1)dy$$
.

Câu 249. f(x;y) có các điểm dừng là

âu 249.
$$f(x; y)$$
 có các điểm dừng là

A.
$$M_1(-2;1)$$
, $M_2(-2;-1)$.
B. $M_1(1;2)$, $M_2(-1;2)$.

C.
$$M_1(1; -2), M_2(-1; -2)$$
.

D.
$$M_1(2;1)$$
, $M_2(2;-1)$.

Câu 250. Khẳng định nào sau đây là đúng?

- A. f(x;y) đạt cực tiểu tại (-2;1).
- B. f(x;y) đạt cực tiểu tại (-2;-1).
- C. f(x; y) đạt cực đại tại (-2; 1).
- D. f(x; y) đạt cực đại tại (-2; -1).

Dữ kiện cho 3 câu hỏi sau:

Cho
$$f(x;y) = -x^3 + y^2 + 3x - 4y + 1$$
.

Câu 251. Khẳng định đúng là

- A. $df(x;y) = (-3x^2 + 3)dx + (2y 4)dy$.
- B. $df(x; y) = (3x^2 3)dx + (2y 4)dy$.
- C. $df(x;y) = (x^2 1)dx + (y 2)dy$.
- D. $df(x; y) = (x^2 1)dx (y 2)dy$.

Câu 252. f(x;y) có các điểm dừng là

- A. $M_1(2;1)$, $M_2(2;-1)$.
- B. $M_1(1;2)$, $M_2(-1;2)$.
- C. $M_1(1;-2)$, $M_2(-1;-2)$.
- D. $M_1(-2;1)$, $M_2(-2;-1)$.

Câu 253. Khẳng định nào sau đây là đúng?

- A. f(x;y) đạt cực đại tại điểm (2;1).
- B. f(x;y) đạt cực đại tại điểm (1;2).
- C. f(x;y) đạt cực tiểu tại điểm (-1;2).
- D. f(x;y) đạt cực tiểu tại điểm (2;-1).

Dữ kiên cho 3 câu hỏi sau:

Cho
$$f(x;y) = -x^3 + y^3 + 6x^2 - 9x - 12y + 4$$
.

Câu 254. Khẳng định đúng là

- A. $df(x; y) = -(x^2 4x + 3)dx + (y^2 4)dy$.
- B. $df(x;y) = -3(x^2 4x + 3)dx + 3(y^2 4)dy$.
- C. $df(x;y) = (x^2 4x 3)dx + (y^2 4)dy$.
- D. $df(x;y) = 3(x^2 4x + 3)dx 3(y^2 4)dy$.

Câu 255. f(x;y) có các điểm dừng là

- A. $M_1(3;2)$, $M_2(3;-2)$, $M_3(1;2)$, $M_4(1;-2)$.
- B. $M_1(3;2)$, $M_2(3;-2)$, $M_3(-1;2)$, $M_4(1;-2)$.
- C. $M_1(-3;2)$, $M_2(-3;-2)$, $M_3(1;2)$, $M_4(1;-2)$.
- D. $M_1(3;2)$, $M_2(3;-2)$, $M_3(1;2)$, $M_4(-1;-2)$.

Câu 256. Khẳng định nào sau đây là đúng?

- A. f(x;y) đạt cực đại tại (3;2) và đạt cực tiểu tại (1; -2).
- B. f(x;y) đạt cực đại tại (-3;-2) và đạt cực tiểu tại (1;-2).
- C. f(x;y) đạt cực tiểu tại (-1;-2) và đạt cực đại tại (3;-2).
- D. f(x;y) đạt cực tiểu tại (1;2) và đạt cực đại tại (3;-2).

Dữ kiện cho 3 câu hỏi sau:

Cho
$$f(x;y) = -x^3 + y^3 + 6x^2 - 9x - 3y^2 - 9y$$
.

Câu 257. Khẳng định đúng là

- A. $df(x; y) = -(x^2 4x + 3)dx + (y^2 2y 3)dy$.
- B. $df(x; y) = -3(x^2 4x + 3)dx + 3(y^2 2y 3)dy$.
- C. $df(x;y) = (x^2 4x 3)dx + (y^2 2y 3)dy$.
- D. $df(x;y) = 3(x^2 4x + 3)dx 3(y^2 2y 3)dy$.

Câu 258. f(x;y) có các điểm dừng là

- A. $M_1(3;-1)$, $M_2(3;3)$, $M_3(1;-1)$, $M_4(1;3)$.
- B. $M_1(3;-1)$, $M_2(3;3)$, $M_3(1;-1)$, $M_4(-1;3)$.
- C. $M_1(-3;1)$, $M_2(-3;-1)$, $M_3(1;3)$, $M_4(-1;3)$.
- D. $M_1(3,-1)$, $M_2(3,-3)$, $M_3(1,-1)$, $M_4(1,3)$.

Câu 259. Khẳng định nào sau đây là đúng?

- A. f(x;y) đạt cực đại tại (1;-1) và đạt cực tiểu tại (3;-1).
- B. f(x;y) đạt cực đại tại (3;-1) và đạt cực tiểu tại (3;3).
- C. f(x;y) đạt cực tiểu tại (1;3) và đạt cực đại tại (3;3).
- D. f(x; y) đạt cực tiểu tại (1; 3) và đạt cực đại tại (3; -1).

■ Tìm cực trị có điều kiện

Dữ kiện cho 3 câu hỏi sau:

Cho z = x + 3y + 2 với điều kiện $10 - x^2 - y^2 = 0$ và hàm Lagrange là $L(x; y) = (x + 3y + 2) + \lambda(10 - x^2 - y^2)$.

Câu 260. L(x;y) có các điểm dừng, thỏa điều kiện đã cho, là:

- A. $M_1(1; -3), M_2(-1; 3)$.
- B. $M_1(1;3), M_2(-1;3)$.
- C. $M_1(1; -3), M_2(3; -1)$.
- D. $M_1(1;3)$, $M_2(-1;-3)$.

Câu 261. Vi phân cấp hai của L(x; y) là

- A. $d^2L(x; y) = -2\lambda dx^2 2\lambda dy^2$.
- B. $d^2L(x;y) = -\lambda dx^2 \lambda dy^2$.
- C. $d^2L(x; y) = 2\lambda dx^2 + 2\lambda dy^2$.
- D. $d^2L(x;y) = \lambda dx^2 + \lambda dy^2$.

Câu 262. Khẳng định nào sau đây là đúng?

- A. z đạt cực đại tại (1; -3) và đạt cực tiểu tại (1; 3).
- B. z đạt cực đại tại (1;3) và đạt cực tiểu tại (1;-3).
- C. z đạt cực đại tại (1;3) và đạt cực tiểu tại (-1;-3).
- D. z đạt cực đại tại (-1; -3) và đạt cực tiểu tại (1; 3).

Dữ kiện cho 3 câu hỏi sau:

Cho $z = 6x^2 + 2y^2$ với điều kiện $2x^2 - 3y^2 - 2 = 0$ và hàm Lagrange là $L(x; y) = 6x^2 + 2y^2 + \lambda(2x^2 - 3y^2 - 2)$.

Câu 263. L(x;y) có các điểm dừng, thỏa điều kiện đã cho, là:

- A. $M_1(0;1)$, $M_2(0;-1)$.
- B. $M_1(0;1)$, $M_2(1;0)$.
- C. $M_1(1;-1)$, $M_2(0;-1)$.
- D. $M_1(1;0)$, $M_2(-1;0)$.

Câu 264. Vi phân cấp hai của L(x; y) là

- A. $d^2L(x; y) = (12 + 4\lambda)dx^2 + (4 6\lambda)dy^2$.
- B. $d^2L(x;y) = (12+4\lambda)dx^2 + 2(4-6\lambda)dy^2$.
- C. $d^2L(x;y) = 2(12+4\lambda)dx^2 + 2(4-6\lambda)dy^2$.
- D. $d^2L(x;y) = (6+2\lambda)dx^2 + (2-3\lambda)dy^2$.

Câu 265. Khẳng định nào sau đây là đúng?

- A. z đạt cực đại tại (1;0) và (-1;0).
- B. z đat cực tiểu tại (1;0) và (-1;0).
- C. z đạt cực đại tại (0; -1) và đạt cực tiểu tại (1; 0).
- D. z đạt cực đại tại (-1;1) và đạt cực tiểu tại (0;-1).

Dữ kiện cho 3 câu hỏi sau:

Cho z=3x+y+2 với điều kiện $x^2+y^2-10=0$ và hàm Lagrange là $L(x;y)=3x+y+2+\lambda(x^2+y^2-10)$.

Câu 266. L(x;y) có các điểm dừng, thỏa điều kiện đã cho, là:

- A. $M_1(3;-1), M_2(-3;1)$.
- B. $M_1(3;1)$, $M_2(3;-1)$.
- C. $M_1(3;1)$, $M_2(-3;-1)$.
- D. $M_1(3;-1), M_2(-3;-1)$.

Câu 267. Vi phân cấp hai của L(x; y) là

- A. $d^2L(x; y) = \lambda dx^2 + \lambda dy^2$.
- B. $d^2L(x; y) = 2\lambda dx^2 + 2\lambda dy^2$.
- C. $d^2L(x; y) = 2\lambda dx^2 + \lambda dy^2$.
- D. $d^2L(x; y) = \lambda dx^2 + 2\lambda dy^2$.

Câu 268. Khẳng định nào sau đây là đúng?

- A. z đạt cực tiểu tại (3;1) và (-3;-1).
- B. z đạt cực đại tại (3;1) và (-3;-1).
- C. z đạt cực đại tại (3,1) và đạt cực tiểu tại (-3,-1).
- D. z đạt cực đại tại (-3, -1) và đạt cực tiểu tại (3, 1).

Dữ kiện cho 3 câu hỏi sau:

Cho $z=4x^2+y^2$ với điều kiện xy+2=0, và hàm Lagrange là $L(x;y)=4x^2+y^2+\lambda(xy+2)$.

Câu 269. L(x;y) có các điểm dừng, thỏa điều kiện đã cho, là:

- A. $M_1(1;-2)$, $M_2(-2;1)$.
- B. $M_1(1; -2), M_2(-1; 2)$.
- C. $M_1(1;-1)$, $M_2(2;-1)$.
- D. $M_1(1;-1)$, $M_2(-2;1)$.

Câu 270. Vi phân cấp hai của L(x; y) là

- A. $d^2L(x; y) = 8dx^2 + 2\lambda dx dy + 2dy^2$.
- B. $d^2L(x;y) = 8dx^2 + \lambda dxdy + 2dy^2$.
- C. $d^2L(x;y) = (8x + \lambda y)dx^2 + (2y + \lambda x)dy^2$.
- D. $d^2L(x;y) = (8x + \lambda y)dx^2 + (y + \lambda x)dy^2.$

Câu 271. Khẳng định nào sau đây là đúng?

- A. f(x;y) đạt cực tiểu tại (1;-2) và (-1;2).
- B. f(x;y) đạt cực đại tại (1;-2) và (-1;2).
- C. f(x;y) đạt cực đại tại (1;-2) và đạt cực tiểu tại (-1;2).
- D. f(x;y) đạt cực đại tại (-1;2) và đạt cực tiểu tại (1;-2).

Dữ kiện cho 3 câu hỏi sau:

Cho $z = x^2 + 4y + 2$ với điều kiện $1 - x^2 - y^2 = 0$ và hàm Lagrange là $L(x; y) = x^2 + 4y + 2 + \lambda(1 - x^2 - y^2)$.

Câu 272. L(x;y) có các điểm dừng, thỏa điều kiện đã cho, là:

- A. $M_1(0;1)$, $M_2(0;-1)$.
- B. $M_1(1;0)$, $M_2(0;-1)$.
- C. $M_1(0;1)$, $M_2(-1;0)$.
- D. $M_1(1;0)$, $M_2(-1;0)$.

Câu 273. Vi phân cấp hai của L(x; y) là

- A. $d^2L(x; y) = (2 2\lambda)dx^2 2\lambda dy^2$.
- B. $d^2L(x; y) = (1 2\lambda)dx^2 2\lambda dy^2$.
- C. $d^2L(x;y) = (1-2\lambda)dx^2 \lambda dy^2$.
- D. $d^2L(x;y) = (1-\lambda)dx^2 \lambda dy^2$.

Câu 274. Khẳng định nào sau đây là đúng?

- A. z đạt cực đại tại (0; -1) và đạt cực tiểu tại (0; 1).
- B. z đat cực đai tại (0;1) và (0;-1).
- C. z đạt cực tiểu tại (0;1) và (0;-1).
- D. z đạt cực đại tại (0;1) và đạt cực tiểu tại (0;-1).

Phụ lục A

ĐÁP ÁN

CHƯƠNG 1

1 A	2 A	3 A	4 A	5 A	6 B	7 D	8 C	9 B
10 A	11 D	12 A	13 A	14 A	15 B	16 B	17 C	18 A
19 A	20 A	21 A	22 A	23 A	24 C	25 A	26 D	27 A
28 B	29 A	30 A	31 C	32 A	33 A	34 A	35 A	36 D
37 D	38 C	39 B	40 B	41 C	42 C	43 A	44 B	45 A
46 A	47 C	48 A	49 B	50 C	51 A	52 C	53 C	54 D
55 D	56 C	57 C	58 B	59 B	60 C	61 B	62 C	63 B
64 A	65 D	66 B	67 C	68 B	69 A	70 A	71 B	72 A
73 D	74 A	75 A	76 A	77 D	78 C	79 D	80 A	

CHƯƠNG 2

81 A	82 C	83 C	84 C	85 D	86 B	87 A	88 B	89 B
90 C	91 A	92 C	93 A	94 A	95 B	96 C	97 D	98 A
99 A	100 C	101 C	102 A	103 C	104 B	105 C	106 C	107 A
108 B	109 A	110 A	111 A	112 C	113 C	114 D	115 C	116 B
117 A	118 C	119 B	120 C	121 D	122 C	123 D	124 B	125 C
126 C	127 A	128 C	129 C	130 A	131 B	132 D	133 A	134 B
135 C	136 C	137 A	138 D	139 C	140 D	141 B	142 C	143 C
144 D	145 C	146 A	147 D	148 A	149 D	150 C	151 A	152 A
153 A	154 A	155 C	156 B	157 A	158 B	159 A	160 C	161 B
162 C								

CHƯƠNG 3

163 A	164 B	165 D	166 B	167 B	168 B	169 B	170 A	171 A
172 D	173 A	174 A	175 C	176 C	177 C	178 B	179 D	180 A
181 A	182 A	183 A	184 A	185 B	186 B	187 C	188 C	189 D
190 A	191 D	192 C	193 B	194 D	195 D	196 D	197 B	198 A
199 B	200 A	201 A	202 B	203 D	204 A	205 C	206 A	207 A
208 D	209 D	210 A	211 A	212 A	213 C	214 A	215 C	216 B
217 B	218 B	219 A	220 A	221 B	222 B	223 D	224 C	225 C
226 C	227 C	228 A	229 B	230 B	231 B	232 D	233 B	234 B
235 A	236 A	237 D	238 D	239 A	240 A	241 A	242 B	243 D
244 D								

CHƯƠNG 4

245 B	246 A	247 D	248 B	249 A	250 D	251 A	252 B	253 C
254 B	255 A	256 D	257 B	258 A	259 D	260 D	261 A	262 C
263 D	264 A	265 B	266 C	267 B	268 C	269 B	270 A	271 A