Examen M2 AMIS Réseaux de neurones

Jérémie Cabessa, 15 décembre 2022

Durée: 2h. Aucune documentation autorisée. Barème indicatif.

Exercice 1 (1 pt)

Expliquer brièvement le phénomène d'overfitting.

Exercice 2 (1 pt)

Décrire brièvement ce que représente le dilemme biais-variance.

Exercice 3 (1 pt)

Décrire brièvement ce qui se passe lorsqu'on entraîne un réseau de neurones par descente de gradient.

Exercice 4 (2 pts)

La solution d'une régression linéaire générale est donnée par: $\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta}}{arg\,min}\,\|\mathbf{X}\boldsymbol{\beta} - \mathbf{y}\|^2 = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}.$

- 1. Donner le développement qui permet de retrouver cette solution.
- 2. Calculer la solution $\hat{\boldsymbol{\beta}}$ associée au dataset suivant: $\left\{ \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, 0 \right), \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, 1 \right), \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, 1 \right), \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, 0 \right) \right\}$.

Exercice 5 (2 pts)

On considère un perceptron modifié comme représenté ci-dessous. Contrairement au perceptron classique, celui-ci prend en compte les carrés des inputs dans son calcul.

- 1. Donner une équation qui décrit la dynamique de ce perceptron.
- 2. (Peut être difficile, ne perdez pas trop de temps...) Donner des valeurs de w_1 , w_2 , w_1' , w_2' et b qui classifient correctement les data du dataset suivant: $\left\{ \left(\begin{bmatrix} -1 \\ -1 \end{bmatrix}, -1 \right), \left(\begin{bmatrix} +1 \\ +1 \end{bmatrix}, -1 \right), \left(\begin{bmatrix} +1 \\ -1 \end{bmatrix}, +1 \right) \right\}$.

Exercice 6 (9 pts, bonus 2 pts)

On considère un réseau de neurones \mathcal{N} dont l'architecture est illustrée ci-dessous. Les poids synaptiques (weights) sont désignés par $\mathbf{W}^{[1]}$, $\mathbf{W}^{[2]}$ et $\mathbf{W}^{[3]}$ et on suppose qu'il n'y a pas de biais (i.e., pas de vecteurs $\mathbf{b}^{[1]}$, $\mathbf{b}^{[2]}$, $\mathbf{b}^{[3]}$). La fonction d'activation σ de chaque neurone est la fonction ReLU définie par $\sigma(x) = \max\{0, x\}$, et également illustrée ci-dessous.

- 1. Donner les équations qui décrivent la dynamique ou "forward pass" de \mathcal{N} .
- 2. Soient $\mathbf{a}^{[0]} := \mathbf{x} \in \mathbb{R}^2$ un vecteur d'input et $\mathbf{a}^{[3]} \in \mathbb{R}$ l'output de \mathcal{N} associée à \mathbf{x} . Donner une seule équation qui exprime $\mathbf{a}^{[3]}$ en fonction de \mathbf{x} , $\mathbf{W}^{[1]}$, $\mathbf{W}^{[2]}$ et $\mathbf{W}^{[3]}$
- 3. Donner le graphe computationnel associé au réseau \mathcal{N} , à savoir, une représentation graphique des opérations qui part de l'input $\mathbf{a}^{[0]} := \mathbf{x}$ pour aboutir à l'output $\mathbf{a}^{[3]}$ (comme dans le cours).

Les variables $\mathbf{z}^{[k]}$, $\mathbf{a}^{[k]}$ et $\mathbf{W}^{[k]}$ seront respectivement représentées par des carrés $\boxed{\mathbf{z}^{[k]}}$, $\boxed{\mathbf{a}^{[k]}}$ et $\boxed{\mathbf{W}^{[k]}}$, les fonctions du type " $\mathbf{W}^{[k]}\mathbf{a}^{[k-1]}$ " par un cercle \times et la fonction σ par un cercle $\boxed{\sigma}$.

- 4. Supposons que les matrices de poids $\mathbf{W}^{[\mathbf{k}]}$ soient uniquement constituées de valeurs k, pour k=1,2,3 (par exemple, la matrice $\mathbf{W}^{[2]}$ est uniquement constituée de 2). Calculer l'output du réseau associé à l'input $\mathbf{x}=\left(\frac{1}{1}\right)$
- 5. Soit la fonction de coût (loss function) définie par $\mathcal{L}(\hat{y},y) = \frac{1}{2}(\hat{y}-y)^2$, où $\hat{y} = \mathbf{a}^{[3]}$ est l'output du réseau et y est la réponse associée à l'input x, respectivement. Supposons également que les composantes de $\mathbf{z}^{[3]}$ sont toutes positives. Calculer le gradient de \mathcal{L} par rapport aux poids de la troisième couche, i.e., $\nabla_{\mathbf{W}^{[3]}}\mathcal{L}(\hat{y},y)$. Votre expression finale dépendra uniquement de $\mathbf{a}^{[3]}$, $\mathbf{a}^{[2]}$ et y.
- 6. Soient $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, y = 107, $\hat{y} = \mathbf{a^{[3]}} = 108$, $\mathbf{a^{[2]}} = \begin{pmatrix} 12 \\ 12 \\ 12 \end{pmatrix}$, $\mathbf{W^{[3]}}$ uniquement constituée de valeurs 3 et $\lambda = 0.001$. Calculer la matrice des poids $\mathbf{W^{[3]}}$ obtenue après une itération de descente de gradient de learning rate λ sur la data (\mathbf{x}, y) .

Si vous n'avez pas réussi la question précédente, supposez que $\nabla_{\mathbf{W}^{[3]}} \mathcal{L}(\hat{y}, y) = \begin{pmatrix} 1296 & 1296 & 1296 \end{pmatrix}$.

7. (Bonus) Calculer le gradient de \mathcal{L} par rapport aux poids de la deuxième couche, i.e., $\nabla_{\mathbf{W}^{[2]}}\mathcal{L}(\hat{y}, y)$.

2