

Modules - Overview

Lecture overview

Aim of this lecture:

 Give a guideline for successful antenna (system) design

Flow:

- The Problem: Antenna Design for 5G New Radio
- The Solution: Systems Engineering A Brief Introduction
- Applying SE practices to mm-Wave Antenna System Development
- Conclusions

Antenna Integration is a Consequence of Moving Up in Frequency:

Distance between antenna and electronics must be short:

- ~8 dBm @ 30GHz per amplifier for BiCMOS
- Noise Figure:

$$NF_{Sys} = NF_1 + \frac{NF_2 - 1}{G_1} + \frac{NF_3 - 1}{G_1G_2} + \cdots$$

Unit for measuring distances: λ (wavelength)!

Keep distance between antenna and electronics well below one wavelength, i.e. 1-10mm!

So, why is this a problem?

Semiconductor processes and packaging technologies have been optimised for decades to support electronics:

- Highly doped substrates → lossy
- Flip-chip interconnects → chips mounted up-side-down on system PCB
- Moulding compounds optimised for heat dissipation and moisture blockage → lossy encapsulation materials + package resonances

Moreover, we need to overcome the free space path loss:

So, we actually need an antenna system, consisting of

- Antennas,
- Millimeter-wave electronics,
- Power supplies,
- · Control circuitry,
- Feed-networks (RF signals and reference oscillators)...

For a successful design we need to consider

- Antenna requirements,
- Electromagnetic compatibility,
- Power consumption,
- Heat dissipation,
- Tolerances,
- Costs...

Lecture overview

Aim of this lecture:

Give a guideline for successful antenna (system) design

Flow:

- The Problem: Antenna Design for 5G New Radio
- The Solution: Systems Engineering A Brief Introduction
- Applying SE practices to mm-Wave Antenna System Development
- Conclusions

The Solution: Systems Engineering – A Brief Introduction

IEEE Definition:

An interdisciplinary, collaborative approach that derives, evolves, and verifies a life-cycle balanced system solution which satisfies customer expectations and meets public acceptability.

(IEEE P1220, Standard for Application and Management of the Systems Engineering Process, [Final Draft], 26 September 1994.)

European Space Agency:

Systems engineering is the process of designing, developing and verifying a space system as an integrated system able to fulfil the objectives of a mission within acceptable technical and programmatic frames.

(http://www.esa.int/Our Activities/Space Engineering Technology/Systems Engineering incl. cost engineering, July 2018)

Systems engineering consists of two significant disciplines:

- 1. the technical knowledge domain
- 2. systems engineering management

(DEFENSE ACQUISITION UNIV FT BELVOIR, VA, "System Engineering Fundamentals," Defense Technical Information Center (US DoD), 200

A good book: A. Kossiakoff et al., "Systems Engineering – Principles and Practice," 2nd Edition, John Wiley & Sons Inc., 2011

System Decomposition – Hierarchical View

System Decomposition – Functional View Interfaces are critical and must be defined before start of subsystem developments System Sub-System N ◀ Sub-System 1 Sub-System 2

Systems Engineering and Verification¹

Lecture overview

Aim of this lecture:

Give a guideline for successful mm-wave antenna array design and implementation

Flow:

- The Problem of Antenna Integration at mm-Waves
- The Solution: Systems Engineering A Brief Introduction
- Applying SE practices to mm-Wave Antenna System Development
- Conclusions

Lecture overview

Aim of this lecture:

 Give a guideline for successful antenna (system) design

Flow:

- The Problem: Antenna Design for 5G New Radio
- The Solution: Systems Engineering A Brief Introduction
- Applying SE practices to mm-Wave Antenna System Development
- Conclusions

Applying SE Practices to mm-Wave Antenna System Development

Design Requirements and System Architecture

System Detailed Design: "The Fun Stuff"

Validation: Antenna System Characterisation

System Level Architecting – Concept Exploration Feasibility Study

^{*} FCC "Fact Sheet: Spectrum Frontiers Proposal to Identify, Open Up Vast Amounts of New High- Band Spectrum for Next Generation (5G) Wireless Broadband," June 2016.

¹ Based on "White paper: 5G Channel Model for bands up to 100 GHz (Annex)," Dept. of Computer Science, Michigan State University, September 2016

System Level Architecting – Concept Exploration

How to achieve 62 dBm EIRP?

Option 1:

0 dBi

- Only 8dBm availabe
- No (massive) MIMO

 $P_{Tx} > 1500W$

System Level Architecting – Concept Exploration

How to achieve 62 dBm EIRP?

N ≈ 250 elements (6 dBi)

→ 32 dBm Tx Power

Our job!

Applying SE Practices to mm-Wave Antenna System Development

Design Requirements and System Architecture

System Detailed Design: "The Fun Stuff"

Validation: Antenna System Characterisation

Technology Choice

How to successfully design an antenna that can actually be realised (manufactured)?

You need to understand the technology you want to use!

- Electrical parameters (conductivity, permittivity, loss tangent)
- Mechanical parameters (e.g. Young's modulus)
- → Design rules
- Manufacturing process

Array Design Architecture

Array Design Architecture

Coping with manufacturability: Matching

The Actual Antenna Engineering

Things to keep in mind during the design process:

- Antenna requirements
 - impedance, gain, scan range etc.
 - Calibration requirements (!)
- Manufacturability
 - Talk to the manufacturer early in the design phase, as not everything that works in your design tool also works in reality!
 - Take fabrication tolerances into account and test your design for extreme cases
- Testability
 - Make sure that you design your antenna such that it can be characterised in your setup
 - Make sure you can characterise critical parts of your design independently

Outcome of this Design Example

(connector not

Outcome of this Design Example

Outcome of this Design Example

Applying SE Practices to mm-Wave Antenna System Development

Design Requirements and System Definition

System Design: "The Fun Stuff"

Technology Choice

Scaling up the Array Size

Design Review

Validation: Antenna System Characterisation

Prototype inside Anechoic Chamber

Far-Field vs Near-Field Measurements

Radiating near-field

Measured Radiation Patterns

Lecture overview

Aim of this lecture:

 Give a guideline for successful mm-wave antenna array design and implementation

Flow:

- The Problem of Antenna Integration at mm-Waves
- The Solution: Systems Engineering A Brief Introduction
- Applying SE practices to mm-Wave Antenna System Development
- Conclusions

Conclusions

- Be structured
- It's a team effort (Don't be shy to ask/discuss)
- Know your technology/fabrication process
- Think about the measurements while designing
- Take your time
- Have fun

