Student Online Teaching Advice Notice

- ► The materials and content presented within this session are intended solely for use in a context of teaching and learning at Trinity.
- ► Any session recorded for subsequent review is made available solely for the purpose of enhancing student learning.
- Students should not edit or modify the recording in any way, nor disseminate it for use outside of a context of teaching and learning at Trinity.
- Please be mindful of your physical environment and conscious of what may be captured by the device camera and microphone during videoconferencing calls.
- ▶ Recorded materials will be handled in compliance with Trinity's statutory duties under the Universities Act, 1997 and in accordance with the University's policies and procedures.
- ► Further information on data protection and best practice when using videoconferencing software is available at https://www.tcd.ie/info_compliance/data-protection/

CS7GV2: Mathematics of Light and Sound

Lecture #4: Simulation

Fergal Shevlin, Ph.D.

School of Computer Science and Statistics, Trinity College Dublin

October 30, 2020

▶ For a quadratic polynomial $f(x) = ax^2 + bx + c$, the roots (zero-crossings) are found with the well-known formula,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4 \ ac}}{2 \ a}$$

- In science and engineering it's more-often-than-not the case that problems do not have neat *closed-form* or *analytical* solutions except in very specific circumstances.
- What can we do about it? Approximation, iteration. For example, the "method of bisection" for root finding: guess where a root might be; keep halving the length of an interval around it such that f(x) has different signs at the start and the end.
- ► Such solutions often described as *numerical methods* because they use numbers (and computers) versus *analytical methods* which use symbols (and thinking.)

For a quadratic polynomial $f(x) = ax^2 + bx + c$, the roots (zero-crossings) are found with the well-known formula.

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2 \text{ a}}.$$

- In science and engineering it more-often-than-not the case that problems do not have neat closed-form or analytical solutions except in very specific circumstances.
- What can we do about it? Approximation, iteration. For example, the "method of bisection" for root finding: guess where a root might be; keep halving the length of an interval around it such that f(x) has different signs at the start and the end.
- Such solutions often described as *numgers* methods becalled they use numbers (and computers) versus *analytical methods* which use symbols (and thinking.)

For a quadratic polynomial $f(x) = \underline{a}x^2 + \underline{b}x + \underline{c}$, the roots (zero-crossings) are found with the well-known formula.

$$(x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4 ac}}{2 a})$$

- In science and engineering it's more-often-than-not the case that problems do not have neat *closed-form* or *analytical* solutions except in very specific circumstances.
- What can we do about it? Approximation iteration. For example the method f(x) bisection" for root finding: guess where a root might be; keep halving the length of an interval around it such that f(x) has different signs at the start and the end.
- Such solutions often described as *numerical methods* because they use analytical methods which use symbols (and chinking.)

For a quadratic polynomial $f(x) = ax^2 + bx + c$, the roots (zero-crossings) are found with the well-known formula,

$$x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4 \ ac}}{2 \ a}.$$

- In science and engineering it's more-often-than-not the case that problems do not have neat *closed-form* or *analytical* solutions except in very specific circumstances.
- ▶ What can we do about it? Approximation, iteration. For example, the "method of bisection" for root finding: guess where a root might be; keep halving the length of an interval around it such that f(x) has different signs at the start and the end.
- ► Such solutions often described as *numerical methods* because they use numbers (and computers) versus *analytical methods* which use symbols (and thinking.)

For a quadratic polynomial $f(x) = ax^2 + bx + c$, the roots (zero-crossings) are found with the well-known formula, $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- In science and engineering it's more-often-than-not the case that problems do not have neat *closed-form* or *analytical* solutions except in very specific circumstances.
- What can we do about it? Approximation feration For example, the "<u>method of bisection</u>" for root finding: guess where a root might be; keep halving the length of an interval around it such that f(x) has different signs at the start and the end.
- ► Such solutions often described as *numerical methods* because they use numbers (and computers) versus *analytical methods* which use symbols (and thinking.)

For a quadratic polynomial $f(x) = ax^2 + bx + c$, the roots (zero-crossings) are found with the well-known formula,

- In science and engineering it's more-often-than-not the case that problems do not have neat *closed-form* or *analytical* solutions except in very specific circumstances.
- What can we do about it? Approximation, iteration. For example, the "method of bisection" for root finding: guess where a root might be; keep halving the length of an interval around it such that f(x) has different signs at the start and the end.
- Such solutions often described as numerical methods because they use numbers (and computers) versus analytical methods which use symbols (and thinking.)

Wave Motion

▶ We've seen that wave motion is described by the second order PDE known as the wave equation,

$$\left(\frac{\partial^2 u(x,t)}{\partial t^2}\right) = \underline{c}^2 \left(\frac{\partial^2 u(x,t)}{\partial x^2}\right)$$

► We've seen a *closed-form* solution for wave propagation,

$$u(x,t) = R\cos(kx - \omega t) + (1 - R)\cos(kx + \omega t)$$

- ► This is perfect when there are no constraints. For example, light in a homogeneous medium, a wave on an infinitely long string (no end points,) or a sound in a huge volume of air.
- ▶ But the closed-form solution doesn't tell us, for example, how a string plucked in a particular way is going to move: https://tinyurl.com/y4ncymx7.

Wave Motion

We've seen that wave motion is described by the second order PDE known as the wave equation,

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2}.$$

We've seen a closed-form solution for wave propagation,

- This is perfect when there are no constraints. For example, light in a homogeneous medium, a wave on an infinitely long string (no end points,) or a sound in a huge volume of air.
- ▶ But the closed-form solution doesn't tell us, for example, how a string plucked in a particular way is going to move: https://tinyurl.com/y4ncymx7.

Wave Motion

We've seen that wave motion is described by the second order PDE known as the wave equation.

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \, \frac{\partial^2 u(x,t)}{\partial x^2}.$$

▶ We've seen a *closed-form* solution for wave propagation,

$$u(x,t) = R\cos(kx - \omega t) + (1 - R)\cos(kx + \omega t).$$

- This is perfect when there are no constraints. For example, light in a homogeneous medium, a wave on an infinitely long string (no end points,) or a sound in a huge volume of air.

Vave Motion

We've seen that wave motion is described by the second order PDE known as the wave equation.

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2}.$$

▶ We've seen a *closed-form* solution for wave propagation,

$$\sqrt{u(x,t)} = R\cos(kx - \omega t) + (1 - R)\cos(kx + \omega t).$$

- ▶ This is perfect when there are no constraints. For example, light in a homogeneous medium, a wave on an infinitely long string (no end points,) or a sound in a huge volume of air.
- ▶ But the closed-form solution doesn't tell us, for example, how a string plucked in a particular way is going to move: https://invurl.com/y4ncymx7.

- When there are <u>specific constraints</u> (also known as conditions,) there is usually no alternative but to <u>simulate</u> wave motion in an <u>iterative</u> way.
- ► Iterative means doing more-or-less the same sequence of calculations again and again.
- Usually the current iteration's calculations use results calculated in the previous iteration(s.)
- An iterative simulation can never be perfect. Error is inevitable, for example, because descretization is required.
- ▶ Error is typically cumulative so the results become less correct at each iteration.
- There are lots of nice interactive simulations of wave motions available, for example: https://tinyurl.com/2xrsrz and https://tinyurl.com/mtwczmj

- ▶ When there are specific constraints (also known as conditions,) there is usually no alternative but to *simulate* wave motion in an *iterative* way.
- ▶ Iterative means doing more-or-less the same sequence of calculations again and again.
- Usually the current iteration's calculations use results calculated in the previous iteration(s.)
- An iterative simulation can never be perfect. Error is inevitable, for example, because descretization is required.
- ▶ Error is typically cumulative so the results become less correct at each iteration.
- There are lots of nice interactive simulations of wave motions available, for example: https://tinyurl.com/2xrsrz and https://tinyurl.com/mtwczmj.

- ▶ When there are specific constraints (also known as conditions,) there is usually no alternative but to *simulate* wave motion in an *iterative* way.
- ▶ Iterative means doing more-or-less the same sequence of <u>calculations again</u> and again.
- Usually the current iteration's calculations use results calculated in the previous iteration(s.)
- An iterative simulation can never be perfect. Error is inevitable, for example, because descretization is required.
- ▶ Error is typically cumulative so the results become less correct at each iteration.
- There are lots of nice interactive simulations of wave motions available, for example: https://tinyurl.com/2xrsrz and https://tinyurl.com/mtwczmj.

- ▶ When there are specific constraints (also known as conditions,) there is usually no alternative but to *simulate* wave motion in an *iterative* way.
- ▶ Iterative means doing more-or-less the same sequence of calculations again and again.
- Usually the current iteration's calculations use results calculated in the previous iteration(s.)
- An iterative simulation can never be perfect. Error is inevitable, for example, because descretization is required.
- ▶ Error is typically cumulative so the results become less correct at each iteration.
- There are lots of nice interactive simulations of wave motions available, for example: https://tinyurl.com/2xrsrz and https://tinyurl.com/mtwczmj.

- ▶ When there are specific constraints (also known as conditions,) there is usually no alternative but to *simulate* wave motion in an *iterative* way.
- ▶ Iterative means doing more-or-less the same sequence of calculations again and again.
- Usually the current iteration's calculations use results calculated in the previous iteration(s.)
- An iterative simulation can never be perfect. Error is inevitable, for example, because descretization is required.
- ► Error is typically cumulative so the results become less correct at each iteration.
- There are lots of nice interactive simulations (+%) ve motions svall blogged example: https://tinyurl.com/2xrsrz and https://tsfarcocch/mtwczmj.

- ▶ When there are specific constraints (also known as conditions,) there is usually no alternative but to *simulate* wave motion in an *iterative* way.
- ▶ Iterative means doing more-or-less the same sequence of calculations again and again.
- Usually the current iteration's calculations use results calculated in the previous iteration(s.)
- An iterative simulation can never be perfect. Error is inevitable, for example, because descretization is required.
- ▶ Error is typically cumulative so the results become less correct at each iteration.
- There are lots of nice interactive simulations of wave motions available, for example: https://tinyurl.com/2xrsrz and https://tinyurl.com/mtwczmj.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- ► The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- Approaches like this in general are called finite element methods for the approximate solution of boundary value problems with partial differential equations.
- Advantages: can deal with complex geometries and different materials.
- Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- Approaches like this in general are called finite element methods for the approximate solution of boundary value problems with partial differential equations.
- Advantages: can deal with complex geometries and different materials.
- Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

- ➤ Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- ► The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- Approaches like this in general are called finite element methods for the approximate solution of boundary value problems with partial differential equations.
- Advantages: can deal with complex geometries and different materials.
- Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called <u>finite difference time</u> domain (FDTD.)
- Approaches like this in general are called finite element methods for the approximate solution of boundary value problems with partial differential equations.
- Advantages: can deal with complex geometries and different materials
- Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- ► The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- Approaches like this in general are called *finite element methods* for the approximate solution of *boundary value problems* with *partial differential equations*.
- Advantages: can deal with complex geometries and different materials.
- Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- ► The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- Approaches like this in general are called finite element methods for the approximate solution of boundary value problems with partial differential equations.
- ▶ Advantages: can deal with complex geometries and different materials.
- Disadvantages: can be very computationally intensive which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

- Solve Maxwell's equations to find local wave characteristics at many discrete volumes of space at successive steps in time.
- ► The results for one discrete volume are used in the calculation of the characteristics of its neighbors.
- One of the most used techniques (e.g. in MEEP) is called finite difference time domain (FDTD.)
- Approaches like this in general are called finite element methods for the approximate solution of boundary value problems with partial differential equations.
- ▶ Advantages: can deal with complex geometries and different materials.
- Disadvantages: can be very <u>computationally intensive</u> which limits the spatial accuracy or the temporal duration, cf. weather forecasting.

Initial and Boundary Conditions

▶ To simulate a specific solution for u(x,t) described by the wave equation,

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \otimes [0,L], \ t \in [0,T],$$

for a string of length L over a time period T, we need:

ightharpoonup two *initial conditions* at time t=0,

$$u(x,0) = I(x), \quad x \in [0, \frac{\partial}{\partial t}u(x,0) = 0, \quad x \in [0, L]$$

where I(x) specifies the initial shape of the string,

ightharpoonup and two boundary conditions at distances x=0 and x=L,

$$u(0, t) = 0, \quad t \in [0, T]$$

 $u(L, t) = 0, \quad t \in [0, T]$

Initial and Boundary Conditions

ightharpoonup To simulate a specific solution for u(x,t) described by the wave equation,

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad x \in [0,L], \ t \in [0,T],$$

for a string of length over a time period T, we need: $U(2^{1},0)$

two initial conditions at time t=0,

where I(x) specifies the initial shape of the string,

ightharpoonup and two boundary conditions at distances x=0 and x=L,

$$u(0, t) = 0, \quad t \in [0, T]$$

 $u(L, t) = 0, \quad t \in [0, T]$

₩nitial and Boundary Conditions

▶ To simulate a specific solution for u(x,t) described by the wave equation,

$$\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad x \in [0,L], \ t \in [0,T],$$

for a string of length L over a time period T, we need: y=0 (x,t)

two initial conditions at time t = 0, u(x,0) = 0

$$u(x,0)=I(x), \quad x\in [0,L]$$

$$u(x,0) = I(x), \quad x \in [0,L]$$

$$\frac{\partial}{\partial t}u(x,0) = 0, \quad x \in [0,L]$$

where I(x) specifies the initial shape of the string,

$$u(0,t) = 0, \quad t \in [0,T]$$

 $u(L,t) = 0, \quad t \in [0,T]$

Computer operations take a finite amount of time to complete so there can't be infinitely many time steps in the simulation.

The time period [0, T] has to be descretized, e.g. into intervals of equal duration Δt ,

$$t_i = i \ \Delta t, \quad i = 0, \dots N_t \ (ext{where} \ N_t = T/\Delta t.)$$

Computer memory is finite so there can't be infinitely many distances in the simulation.

The length [0, L] have to be descretized, e.g. into intervals of equal distance Δx_i $x_i = i \Delta x_i$, $i = 0, ..., N_x$ (where $N_x = L/\Delta x_x$.)

Computer operations take a finite amount of time to complete so there can't be infinitely many time steps in the simulation.

The time period [0, T] has to be descretized, e.g. into intervals of equal duration

$$t_i = i \Delta t, \quad i = 0, \dots N_t \text{ (where } N_t = T \Delta t)$$

► Computer operations take a finite amount of time to complete so there can't be infinitely many time steps in the simulation.

The time period [0, T] has to be descretized, e.g. into intervals of equal duration Δt ,

$$t_i = i \Delta t$$
, $i = 0, ... N_t$ (where $N_t = T/\Delta t$.)

Computer memory is finite so there can't be infinitely many distances in the simulation.

The length [0, L] have to be descretized, e.g. into intervals of equal distance Δx_i $x_i = j \Delta x, \quad j = 0, \dots N_x$ (where $N_x = L/\Delta x$.)

► Computer operations take a finite amount of time to complete so there can't be infinitely many time steps in the simulation.

The time period [0, T] has to be descretized, e.g. into intervals of equal duration Δt .

$$(t_i =)i \Delta t, \quad i = 0, \dots N_t \text{ (where } N_t = T/\Delta t.)$$

Computer memory is finite so there can't be infinitely many distances in the simulation. 20x 2

The length [0, L] have to be descretized, e.g. into intervals of equal distance Δx ,

$$(x_j) = j \Delta x, \quad j = 0, \dots N_x \text{ (where } N_x = L/\Delta x.)$$

Solution mesh

► The discrete points in space and time can be visualized as a two-dimensional mesh (or net.)

↓ ←

- The solution for wave height $u(x_j, t_i)$ at each mesh point is found using already-calculated solutions at neighbouring mesh points . . .
- \triangleright ... except for certain exterior mesh points whose values have been specified through the initial conditions, i.e. I(x).

Solution mesh

 The discrete points in space and time can be visualized as a two-dimensional mesh (or net.)

- The solution for wave height $u(x_j, t_i)$ at each mesh point is found using already-calculated solutions at neighbouring mesh points . . .
- \triangleright ... except for certain exterior mesh points whose values have been specified through the initial conditions, i.e. I(x).

Solution mesh

► The discrete points in space and time can be visualized as a two-dimensional mesh (or net.)

- ▶ The solution for wave height $u(x_j, t_i)$ at each mesh point is found using already-calculated solutions at neighbouring mesh points . . .
- \triangleright ... except for certain exterior mesh points whose values have been specified through the initial conditions, i.e. I(x).

Discretization of equations

▶ *Initial condition*. Use the centered first difference approximation of the first derivative.

$$\frac{\partial}{\partial t}u(x_j,t_i) \approx \frac{u_j^{i+1} - u_j^{i-1}}{2\Delta t} \tag{2}$$

Note division by $2\Delta t$ because the difference is between values of u(x, t) separated by two time intervals.

Discretization of equations

► Wave equation. Use the symmetric second difference approximation of the second derivative.

$$\frac{u(x_{j}, t_{i+1}) - 2 u(x_{j}, t_{i}) + u(x_{j}, t_{i-1})}{\Delta t^{2}} \approx \frac{u(x_{j+1}, t_{i}) - 2 u(x_{j}, t_{i}) + u(x_{j-1}, t_{i})}{\Delta x^{2}}.$$

Alternative notation can be used to make the parameters more obvious,

$$\frac{u_j^{i+1} - 2u_j^i + u_j^{i-1}}{\Delta t^2} \approx c^2 \frac{u_{j+1}^i - 2u_j^i + u_{j-1}^i}{\Delta x^2}, \qquad (1)$$

Initial condition. Use the centered first difference approximation of the first derivative,

$$\frac{\partial}{\partial t}u(x_j,t_i) \approx \frac{u_j^{i+1} - u_j^{i-1}}{2\Delta t} \tag{2}$$

Note division by $2\Delta t$ because the difference is between values of u(x, t) separated by two time intervals.

Discretization of equations

► Wave equation. Use the symmetric second difference approximation of the second derivative,

$$\frac{u(x_j, t_{i+1}) - 2 u(x_j, t_i) + u(x_j, t_{i-1})}{\Delta t^2} \approx c^2 \frac{u(x_{j+1}, t_i) - 2 u(x_j, t_i) + u(x_{j-1}, t_i)}{\Delta x^2}.$$

Alternative notation can be used to make the parameters more obvious,

$$\frac{u_j^{i+1} - 2u_j^i + u_j^{i-1}}{\Delta t^2} \approx c^2 \frac{u_{j+1}^i - 2u_j^i + u_{j-1}^i}{\Delta x^2},\tag{1}$$

Initial condition. Use the centered first difference approximation of the first derivative,

$$\frac{\partial}{\partial t}u(x_j,t_i)\approx \frac{u_j^{i+1}-u_j^{i-1}}{2\Delta t} \tag{2}$$

Note division by $2\Delta t$ because the difference is between values of u(x, t) separated by two time intervals.

Initial Conditions

▶ Using approximation (2), initial condition $\frac{\partial}{\partial t}u(x_j,0)=0$ means,

$$u_j^{i-1} = u_j^{i+1}, \quad j = 0, \dots, N_x. \quad i = 0.$$

► The intial condition of shape is simply,

$$u_j^0 = I(x_j), \quad j = 0, \ldots, N_x.$$

Initial Conditions

▶ Using approximation (2), initial condition $\frac{\partial}{\partial t}u(x_j,0)=0$ means,

$$u_j^{i-1} = u_j^{i+1}, \quad j = 0, \dots, N_x. \quad i = 0.$$

► The intial condition of shape is simply,

$$u_j^0 = I(x_j), \quad j = 0, \ldots, N_x.$$

Formulae

Iterative Simulation Algorithm

- 1. Initialize $u_i^0 = I(x_j)$ for $j = 0, ... N_x$.
- 2. Compute u_i^1 and set $u_i^1 = 0$ for the boundary points i = 0 and $i = N_x$, for $i=1,\ldots N-1$
- 3. For each time level $i=1,\ldots N_t-1$ 3.1 find u_j^{i+1} for $j=1,\ldots N_x-1$.

