Topological Manifolds

Anton Yang

05/06/2024

Manifolds

- An m-manifold is a Hausdorff Space X with a countable basis such that each point x of X has a neighborhood that is homeomorphic with an open subset of \mathbb{R}^m .
- This means that for every point P in X, there is an open neighborhood U of P and a homeomorphism $f:U\to V$, which maps the set U onto an open set $V\subset\mathbb{R}^m$.

FIGURE: 2-Manifolds

REGULAR SPACES

 A topological space X is called regular if points and closed sets can be separated by neighborhoods. That is, for each x ∈ X and closed set B ⊂ X, there exists disjoint open sets U and V such that U contains x and V contains B.

FIGURE: Separation Axiom's Space

PROOF

Prove that every manifold is regular and hence metrizable.

Let X be a m-manifold. Let $x \in X$, let U be a neighborhood of x, and let W be a neighborhood of x, so that there is a homeomorphism $W \to f(W) \subset \mathbb{R}^m$. This means $x \in U \cap W \neq \emptyset$ with $U \cap W \xrightarrow{\sim}_{f|_{U \cap W}} f(U \cap W)$, which the restriction $f(|_{U \cap W})^{-1} = (f^{-1})|_{U \cap W}$. This means that $x \subset U \cap W \subset U$. Since X is a manifold, there exists homeomorphism $f: U \to f(U) \subset \mathbb{R}^m$.

PROOF (CONT.)

Theorem

Let X be a Hausdorff space. Then X is locally compact if and only if given x in X, and given a neighborhood U of x, there is a neighborhood V of x such that \bar{V} is compact and $\bar{V} \subset U$.

 \mathbb{R}^m is a locally compact space since $x \in B_{\epsilon-\delta}(x) \subset B_{\epsilon}(x) \subset U, 0 < \delta < \epsilon$. Therefore, since \mathbb{R}^m is locally compact and X is Hausdorff space, there exists a neighborhood $V \subset f(U)$ of f(x) such that \bar{V} is compact and $f(x) \in \bar{V} \subset f(U)$ by the Theorem.

PROOF (CONT.)

LEMMA

Let X be a topological space. Let one-point sets in X be closed. X is regular is and only if given a point x of X and a neighborhood U of x, there is a neighborhood V of x such that $\bar{V} \subset U$.

We can see that

$$x \in f^{-1}(V) \subset \overline{f^{-1}(V)} \subset f^{-1}(\overline{V}) \subset f^{-1}(f(U)) = U$$
. Since $x \in f^{-1}(V) \subset U$, X is a regular space by the Lemma.

PROOF (CONT.)

THEOREM (URYSOHN METRIZATION THEOREM)

Every regular space X with a countable basis is metrizable.

By definition of m-manifolds, X is a regular space with countable basis, so X is metrizable by Urysohn Metrization Theorem.