Analyse et modélisation - Contrôle continu 2

durée 2H. Documents papier autorisés. Smartphone et ordinateurs non autorisés.

Exercice 1. Soit V un espace vectoriel de dimension n sur \mathbb{R} , F un sous-espace vectoriel de V de dimension p, et G un sous-espace vectoriel de V de dimension q.

- ▶ 1) On suppose qu'il existe $f \in \mathcal{L}(V)$ tel que $\mathrm{Ker}(f) = F$, $\mathrm{Im}(f) = G$. Montrer que p+q=n.
 - 2) On suppose que p+q=n. Soit $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ une base de F, que l'on complète en $\mathcal{B}_1=\{\mathbf{u}_1,\ldots,\mathbf{u}_p,\mathbf{u}_{p+1},\ldots,\mathbf{u}_n\}$ pour obtenir une base de V, et soit $\{\mathbf{v}_1,\ldots,\mathbf{v}_q\}$ une base de G, que l'on complète en $\mathcal{B}_2=\{\mathbf{v}_1,\ldots,\mathbf{v}_q,\mathbf{v}_{q+1},\ldots,\mathbf{v}_n\}$ pour obtenir une base de V. Enfin soit $f\in\mathcal{L}(V)$ définie par :

$$f(\mathbf{u}_i) = \begin{cases} 0, & \text{si } i \leq p, \\ \mathbf{v}_{i-p}, & \text{si } i \in \{p+1, \dots, n\}. \end{cases}$$

- \triangleright 2.i) Écrire la matrice de f relativement aux bases \mathcal{B}_1 et \mathcal{B}_2 .
 - 2.ii) Déterminer Ker(f) et Im(f).
 - 3) Déduire de ce qui précède qu'il existe $f \in \mathcal{L}(V)$ tel que $\mathrm{Ker}(f) = F$, $\mathrm{Im}(f) = G$ si et seulement p+q=n.

Exercice 2. Calculer

$$\int_{\gamma} f dl$$

dans les cas suivants :

a) γ est la ligne brisée constituée du segment de droite qui joint les points A=(1,0) et B=(2,1), puis le segment de droite qui joint B à C=(0,3), et

$$f(x,y) = x - y.$$

b) γ est l'arc de cercle de centre l'origine et qui joint les points A=(1,0) et D=(-1,0), et

$$f(x,y) = \operatorname{Arctg}\left(\frac{y}{x}\right)$$
.

Exercice 3. Soit Γ l'ellipse définie par l'équation cartésienne

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

et ω la 1-forme donnée par

$$\omega = ydx - xdy$$
.

- \sim a) Est-ce que la forme ω est exacte?
- **b**) Déterminer des équations paramétriques de Γ , x=x(t), y=y(t), de manière à orienter Γ dans le sens contraire des aiguilles d'une montre.
- ~c) Calculer

$$\int_{\Gamma} \omega$$
.

Exercice 4. On considère le sablier ${\mathcal S}$ paramétré par

$$\begin{cases} x = \cosh(v)\cos(u), \\ y = \cosh(v)\sin(u), \\ z = \sinh(v). \end{cases}$$

où $u \in [0, 2\pi]$ et $v \in]-1, 1[$.

1) Déterminer une fonction F=F(x,y,z) telle que le sablier puisse être paramétré par l'équation

$$F(x, y, z) = 1.$$

- 2) Montrer que tous les points M du sablier ${\mathcal S}$ sont lisses.
- 3) Soit $M_0 \in \mathcal{S}$. Déterminer la normale sortante et le plan tangent à \mathcal{S} au point M_0 .
- 4) Calculer l'aire du sablier, i.e.

$$A(\mathcal{S}) = \iint_{\mathcal{S}} dS.$$