Reg. No

B.Tech. / M.Tech. (Integrated) DEGREE EXAMINATION, MAY 2024

Third Semester

21MAB201T - TRANSFORMS AND BOUNDARY VALUE PROBLEMS

(For the candidates admitted during the academic year 2022-2023 onwards)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours

Max. Marks: 75

PART - A $(20 \times 1 = 20 \text{ Marks})$

Answer all Questions

Marks BL CO

2

I

1

1. Form the PDE by eliminating the arbitrary constants from $z = ax^2 + by^2$.

$$^{(A)} 2z = qx + py$$

(B)
$$2z = qx - py$$

$$^{(C)} 2z = px + qy$$

$$^{(D)} 2z = px - qy$$

2 Find the particular integral of $(D^2 + 5DD' - 6D'^2)z = e^{(2x+2y)}$

$$(A) \frac{xe^{(2x+2y)}}{14}$$

(B)
$$e^{(2x+2y)}$$

(C)
$$\frac{xe^{(2x+2y)}}{24}$$

(D)
$$\frac{e^{(2x+2y)}}{24}$$

What is the complementary function of $(D^2 - 5DD' + 6D'^2)z = x + y$?

(A)
$$\varphi_1(y - 5x) + \varphi_2(y - x)$$

(B)
$$\varphi_1(y+2x) + \varphi_2(y+3x)$$

(C)
$$\varphi_1(y-2x) + \varphi_2(y-3x)$$

(D)
$$\varphi_1(y + 5x) + \varphi_2(y + x)$$

4. Write the complete integral of $z = ax + by + \frac{a^2}{2} - \frac{b^2}{2}$?

(A)
$$z = px + qy + \frac{p^2}{2} + \frac{q^2}{2}$$

(A)
$$z = px + qy + \frac{p^2}{2} + \frac{q^2}{2}$$
 (B) $z = px + qy + 2p^2 - 2q^2$

$$z = px + qy + 2p^2 + 2q^2$$

(C)
$$z = px + qy + 2p^2 + 2q^2$$
 (D) $z = px + qy + \frac{p^2}{2} - \frac{q^2}{2}$

5. Find the Fourier coefficient a_n of the function $f(x) = \begin{cases} -1, & -\pi < x < 0 \\ 1, & 0 < x < \pi \end{cases}$

(D)
$$\frac{2}{\pi}$$

The Fourier constant a_0 of the function $f(x) = |x|, -\pi < x < \pi$ is

1 2 2

^(A). 2π

(B) $\frac{\pi}{2}$

(C) 4π

(D) π

7. The Fourier series of $f(x) = x^2$, $-\pi < x < \pi$ is given by $x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} cosnx$

2

2

3

Find $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$

(A) $\frac{\pi^2}{12}$

(B) $\frac{\pi^2}{2}$

(C) $\frac{\pi^2}{4}$

(D) $\frac{\pi^2}{16}$

8. The Root Mean square value of the function f(x) = 3x, (0, l) is

 $^{(A)}\sqrt{(3l)}$

B) $\frac{l}{\sqrt{2}}$

(C) l√3

(D) $\frac{l}{3}$

(A) increasing

(B) zero

(C) decreasing

(D) constant

10. If u(x,t) is the temperature function, then the heat flow equation at steady state is given by $\frac{1}{2}$

 $\frac{d^2u}{dx^2} = 0$

 $\frac{du}{dx} = 0$

 $\frac{(C)}{dt^2} = 0$

 $_{u}^{(D)}\frac{du}{dt}=0$

For the given PDE $x f_{xx} + y f_{yy} = 0$, x < 0, y < 0 find $B^2 - 4AC$

(A) > 0

 $^{(B)} = 0$

(C) < 0

(D) ≤ 0

- When the ends of a rod are non-zero for one-dimensional heat flow equation the temperature function u(x,t) is modified as the sum of steady state and transient state temperatures. The transient part of solution is one which
- 2 3

- (A) increases with increase of time
- (B) decreases with increase of time.
- (C) decreases with decrease of time
- (D) increases with decrease of time
- Let f(x) and g(x) be two functions defined in the interval $(-\infty, \infty)$ Then the convolutions of the functions f(x) and g(x) is
- (A) $f * g = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)g(x-t)dt$ (B) $f * g = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(t)g(x-t)dt$
- (C) $f * g = \frac{1}{\sqrt{2\pi}} \int_0^\infty f(x)g(x-t)dt$ (D) $f * g = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty f(t)g(x-t)dt$
- If F(s) is the Fourier transform of f(x) then the Fourier transform of f(x-k) is 14.
 - (A) $e^{-kis}F(s)$

(B) $e^{kis}F(s)$

 $(C)_{e^{ks}F(s)}$

- $^{(D)}_{\rho^{-ks}F(s)}$
- Find F(f(2x)) if F(s) is the Fourier transform of f(x).
 - $(A) \frac{1}{3}F\left(\frac{2}{s}\right)$

 $\frac{1}{s}F\left(\frac{2}{s}\right)$

(C) $\frac{1}{2}F\left(\frac{s}{2}\right)$

- (D) $\frac{1}{5}F\cdot\left(\frac{5}{2}\right)$
- If F(s) is the Fourier transform of f(x) then $F\left[\int_a^x f(x)dx\right] =$
- 2 4

 $(A) \frac{F(s)}{-is}$

(B) $\frac{F(s)}{is}$

(C) $\underline{F(s)}$

 $Z^{-1}\left(\frac{a^{11}}{n!}\right) = ----.$

2

 $(A) e^{a/z}$

(B) $e^{-a/z}$

 $(C) e^{z/a}$

(D) $e^{-z/a}$

$$(-z)^k \frac{d^k}{dz^k} F(z) = ----$$

$$^{(A)}Z(n^{-k}f(n))$$

^(B)
$$Z(n^{2k}f(n))$$

$$Z(n^k f(n))$$

(D)
$$Z(n^{-2k}f(n))$$

19. The inverse Z transform of $\frac{z}{1-z} + \frac{2z}{(z-2)^2}$ is

(A)
$$1+n.2^n$$
, $n=0,1,2,...$

(A)
$$1+n.2^n$$
, $n=0,1,2,...$ (B) $-1+n.2^n$, $n=0,1,2,...$

(C)
$$-1 + n2^{-n}$$
, $n = 0,1,2,...$ (D) $1 + n2^{-n}$, $n = 0,1,2,...$

(D)
$$1 + n2^{-n}$$
, $n = 0,1,2,...$

Using Z transform find $Z(y_n)$ given $y_{n+1} + 5y_n = 0$ and $y_0 = -1$

5

$$(A) \frac{2z}{z-5}$$

(B)
$$\frac{-z}{z+5}$$

(C)
$$\frac{z}{z-5}$$

(D)
$$\frac{z}{z+5}$$

PART - B $(5 \times 8 = 40 \text{ Marks})$ Answer all Questions

Marks BL CO

21. (a) Solve
$$(D^2 - 6DD' + 5D'^2)z = e^{x+y} + xy$$

- Find the general solution of (4z 5y)p + (5x 3z)q = 3y 4x
- 22. (a) Find the Fourier series to represent $f(x) = x^2 - 2$ in -2 < x < 2. Hence find the sum of the series at x = 0.

2

(OR)

(b) Compute the first 2 harmonics of the Fourier series of f(x) given by the following table.

Х	0	$\pi/3$	$2\pi/3$	π	4π/3	$5\pi/3$
f(x)	1.0	1.4	1.9	1.7	1.5	1.2

23. (a) If a string of length l is initially at rest in equilibrium position and each point of it is given the velocity $v_0 sin\left(\frac{\pi x}{t}\right)$, 0 < x < l, determine the transverse displacement y(x,t).

8 3

Find the solution to the equation $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$ that satisfies the conditions

(i)
$$u$$
 is finite as $t \to \infty$ (ii) $u(0,t) = 0$, $t > 0$ (iii) $u(l,t) = 0$, $t > 0$

(ii)
$$u(0,t) = 0, t > 0$$

(iii)
$$u(1,t) = 0, t > 0$$

(iv)
$$u(x,0) = \begin{cases} x, & 0 \le x \le l/2 \\ l-x, & l/2 \le x \le l \end{cases}$$

Find the Fourier transform of
$$f(x) = \begin{cases} 1 - x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$

Hence find
$$\int_0^\infty \frac{\sin s - s \cos s}{s^3} \cos \left(\frac{s}{2}\right) ds$$
 (OR)

- (b) Find the Fourier cosine transform of $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$
- 25. (a) Find the inverse Z transform of $\frac{z}{z^2+2z+1}$ by long division method. (OR)
 - (b) Find $Z^{-1}\left[\frac{z^3}{(z-1)^2(z-2)}\right]$ by residue method.

- 26. A rod of length 20 cm has its ends A and B kept at $30^{\circ}C$ and $90^{\circ}C$ respectively until steady state conditions prevail. If the temperature at each end is then suddenly reduced to $0^{\circ}C$ and maintained so, find the temperature u(x,t) at a distance x from A at time t.
- 27. Using Z transform, solve $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$ with $y_0 = 0$, $y_1 = 1$.

Marks BL

CO