Volumes in high-dimensional space

Daniel Hsu

COMS 4772

Simple volumes

▶ In \mathbb{R}^1 , line segment

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

has one-dimensional volume (a.k.a. length) b - a.

Simple volumes

▶ In \mathbb{R}^1 , line segment

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

has one-dimensional volume (a.k.a. length) b - a.

▶ In \mathbb{R}^2 , square

$$[a,b]^2 = \{(x_1,x_2) \in \mathbb{R}^2 : x_1,x_2 \in [a,b]\}$$

has two-dimensional volume (a.k.a. area) $(b-a)^2$.

Simple volumes

▶ In \mathbb{R}^1 , line segment

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

has one-dimensional volume (a.k.a. length) b - a.

▶ In \mathbb{R}^2 , square

$$[a,b]^2 = \{(x_1,x_2) \in \mathbb{R}^2 : x_1,x_2 \in [a,b]\}$$

has two-dimensional volume (a.k.a. area) $(b-a)^2$.

▶ In \mathbb{R}^3 , cube

$$[a,b]^3 = \{(x_1,x_2,x_3) \in \mathbb{R}^3 : x_1,x_2,x_3 \in [a,b]\}$$

has three-dimensional volume (a.k.a. volume) $(b-a)^3$.

2

Hypercube

$$[a,b]^d = \{(x_1,x_2,\ldots,x_d) \in \mathbb{R}^d : x_1,x_2,\ldots,x_d \in [a,b]\}$$

has d-dimensional volume $(b-a)^d$.

Hypercube

$$[a,b]^d = \{(x_1,x_2,\ldots,x_d) \in \mathbb{R}^d : x_1,x_2,\ldots,x_d \in [a,b]\}$$

has d-dimensional volume $(b-a)^d$.

▶ Use vol(A) to denote d-dimensional volume of $A \subseteq \mathbb{R}^d$.

Hypercube

$$[a,b]^d = \{(x_1,x_2,\ldots,x_d) \in \mathbb{R}^d : x_1,x_2,\ldots,x_d \in [a,b]\}$$

has d-dimensional volume $(b-a)^d$.

- ▶ Use vol(A) to denote d-dimensional volume of $A \subseteq \mathbb{R}^d$.
- ▶ For $A \subseteq \mathbb{R}^d$ and $c \ge 0$, let

$$cA := \{c\mathbf{x} : \mathbf{x} \in A\}.$$

Hypercube

$$[a,b]^d = \{(x_1,x_2,\ldots,x_d) \in \mathbb{R}^d : x_1,x_2,\ldots,x_d \in [a,b]\}$$

has d-dimensional volume $(b-a)^d$.

- ▶ Use vol(A) to denote d-dimensional volume of $A \subseteq \mathbb{R}^d$.
- ▶ For $A \subseteq \mathbb{R}^d$ and $c \ge 0$, let

$$cA := \{c\mathbf{x} : \mathbf{x} \in A\}.$$

► Example: if $A = [0,1]^d$, then $cA = [0,c]^d$ and $vol(cA) = c^d$.

Hypercube

$$[a,b]^d = \{(x_1,x_2,\ldots,x_d) \in \mathbb{R}^d : x_1,x_2,\ldots,x_d \in [a,b]\}$$

has d-dimensional volume $(b-a)^d$.

- ▶ Use vol(A) to denote d-dimensional volume of $A \subseteq \mathbb{R}^d$.
- ▶ For $A \subseteq \mathbb{R}^d$ and $c \ge 0$, let

$$cA := \{c\mathbf{x} : \mathbf{x} \in A\}.$$

- Example: if $A = [0,1]^d$, then $cA = [0,c]^d$ and $vol(cA) = c^d$.
- ▶ In general,

$$\operatorname{vol}(cA) = c^d \operatorname{vol}(A)$$
.

Unit ball
$$B^d := \{ x \in \mathbb{R}^d : ||x||_2 \le 1 \}.$$

1. Lengths of most points in B^d are close to one.

Unit ball
$$B^d := \{ x \in \mathbb{R}^d : ||x||_2 \le 1 \}.$$

- 1. Lengths of most points in B^d are close to one.
- 2. Most points in B^d are near the "equator".

Unit ball
$$B^d := \{ x \in \mathbb{R}^d : ||x||_2 \le 1 \}.$$

- 1. Lengths of most points in B^d are close to one.
- 2. Most points in B^d are near the "equator".
- $\lim_{d\to\infty}\operatorname{vol}(B^d)=0.$

Unit ball
$$B^d := \{ x \in \mathbb{R}^d : ||x||_2 \le 1 \}.$$

- 1. Lengths of most points in B^d are close to one.
- 2. Most points in B^d are near the "equator".
- 3. $\lim_{d\to\infty}\operatorname{vol}(B^d)=0.$
 - ▶ By contrast, hypercube $[-1,1]^d$ has volume 2^d .

Length of most points in the unit ball

▶ For $\varepsilon \in (0,1)$, consider $(1-\varepsilon)B^d$ (i.e., ball of radius $1-\varepsilon$).

Length of most points in the unit ball

- ▶ For $\varepsilon \in (0,1)$, consider $(1-\varepsilon)B^d$ (i.e., ball of radius $1-\varepsilon$). ▶ $\operatorname{vol}((1-\varepsilon)B^d) = (1-\varepsilon)^d \operatorname{vol}(B^d)$

Length of most points in the unit ball

- ▶ For $\varepsilon \in (0,1)$, consider $(1-\varepsilon)B^d$ (i.e., ball of radius $1-\varepsilon$).
- $ightharpoonup \operatorname{vol}((1-\varepsilon)B^d) = (1-\varepsilon)^d \operatorname{vol}(B^d)$
- ▶ Therefore

$$(1-\varepsilon)^d \leq e^{-\varepsilon d}$$

fraction of points in B^d have length at most $1 - \varepsilon$.

▶ Let u be a unit vector ("north pole"), and $\varepsilon \in (0,1)$.

- ▶ Let u be a unit vector ("north pole"), and $\varepsilon \in (0,1)$.
- "Equator": $\{ \boldsymbol{x} \in B^d : \langle \boldsymbol{u}, \boldsymbol{x} \rangle = 0 \}$

- ▶ Let u be a unit vector ("north pole"), and $\varepsilon \in (0,1)$.
- "Equator": $\{ \boldsymbol{x} \in B^d : \langle \boldsymbol{u}, \boldsymbol{x} \rangle = 0 \}$
- ▶ "Tropics": $\{ \boldsymbol{x} \in \mathcal{B}^d : -\varepsilon \le \langle \boldsymbol{u}, \boldsymbol{x} \rangle \le \varepsilon \}$

- Let \boldsymbol{u} be a unit vector ("north pole"), and $\varepsilon \in (0,1)$.
- "Equator": $\{ \boldsymbol{x} \in B^d : \langle \boldsymbol{u}, \boldsymbol{x} \rangle = 0 \}$
- ▶ "Tropics": $\{ \boldsymbol{x} \in B^d : -\varepsilon \le \langle \boldsymbol{u}, \boldsymbol{x} \rangle \le \varepsilon \}$
- ▶ Points north of the tropics, $\{ \boldsymbol{x} \in B^d : \langle \boldsymbol{u}, \boldsymbol{x} \rangle > \varepsilon \}$, are within distance $\sqrt{1 \varepsilon^2}$ of $\varepsilon \boldsymbol{u}$.

- Let \boldsymbol{u} be a unit vector ("north pole"), and $\varepsilon \in (0,1)$.
- "Equator": $\{ \boldsymbol{x} \in B^d : \langle \boldsymbol{u}, \boldsymbol{x} \rangle = 0 \}$
- ▶ "Tropics": $\{ \boldsymbol{x} \in B^d : -\varepsilon \le \langle \boldsymbol{u}, \boldsymbol{x} \rangle \le \varepsilon \}$
- ▶ Points north of the tropics, $\{x \in B^d : \langle u, x \rangle > \varepsilon\}$, are within distance $\sqrt{1 \varepsilon^2}$ of εu .
 - ▶ Hence contained in ball of radius $\sqrt{1-\varepsilon^2}$.

- Let \boldsymbol{u} be a unit vector ("north pole"), and $\varepsilon \in (0,1)$.
- "Equator": $\{ \boldsymbol{x} \in B^d : \langle \boldsymbol{u}, \boldsymbol{x} \rangle = 0 \}$
- ▶ "Tropics": $\{ \boldsymbol{x} \in B^d : -\varepsilon \le \langle \boldsymbol{u}, \boldsymbol{x} \rangle \le \varepsilon \}$
- ▶ Points north of the tropics, $\{x \in B^d : \langle u, x \rangle > \varepsilon\}$, are within distance $\sqrt{1 \varepsilon^2}$ of εu .
 - ▶ Hence contained in ball of radius $\sqrt{1-\varepsilon^2}$.
 - ▶ Volume is at most $(1 \varepsilon^2)^{d/2} \operatorname{vol}(B^d)$.

- Let \boldsymbol{u} be a unit vector ("north pole"), and $\varepsilon \in (0,1)$.
- "Equator": $\{ \boldsymbol{x} \in B^d : \langle \boldsymbol{u}, \boldsymbol{x} \rangle = 0 \}$
- ▶ "Tropics": $\{x \in B^d : -\varepsilon \le \langle u, x \rangle \le \varepsilon\}$
- ▶ Points north of the tropics, $\{x \in B^d : \langle u, x \rangle > \varepsilon\}$, are within distance $\sqrt{1 \varepsilon^2}$ of εu .
 - ▶ Hence contained in ball of radius $\sqrt{1-\varepsilon^2}$.
 - ▶ Volume is at most $(1 \varepsilon^2)^{d/2} \operatorname{vol}(B^d)$.
- Similarly, points south of tropics have volume at most $(1 \varepsilon^2)^{d/2} \operatorname{vol}(B^d)$.

- Let \boldsymbol{u} be a unit vector ("north pole"), and $\varepsilon \in (0,1)$.
- "Equator": $\{ \boldsymbol{x} \in B^d : \langle \boldsymbol{u}, \boldsymbol{x} \rangle = 0 \}$
- ▶ "Tropics": $\{ \boldsymbol{x} \in B^d : -\varepsilon \le \langle \boldsymbol{u}, \boldsymbol{x} \rangle \le \varepsilon \}$
- ▶ Points north of the tropics, $\{x \in B^d : \langle u, x \rangle > \varepsilon\}$, are within distance $\sqrt{1 \varepsilon^2}$ of εu .
 - ▶ Hence contained in ball of radius $\sqrt{1-\varepsilon^2}$.
 - ▶ Volume is at most $(1 \varepsilon^2)^{d/2} \operatorname{vol}(B^d)$.
- Similarly, points south of tropics have volume at most $(1 \varepsilon^2)^{d/2} \operatorname{vol}(B^d)$.
- So volume outside tropics is at most

$$2(1-\varepsilon^2)^{d/2}\operatorname{vol}(B^d) \leq 2e^{-\varepsilon^2d/2}\operatorname{vol}(B^d).$$

▶ Consider an orthonormal basis u_1, u_2, \dots, u_d of \mathbb{R}^d .

- ▶ Consider an orthonormal basis u_1, u_2, \ldots, u_d of \mathbb{R}^d .
- ▶ Let T_i be the "tropics" when u_i is the "north pole".

- ▶ Consider an orthonormal basis u_1, u_2, \ldots, u_d of \mathbb{R}^d .
- ▶ Let T_i be the "tropics" when u_i is the "north pole".
- ▶ Volume of points in $\bigcap_{i=1}^{d} T_i$ is

$$\operatorname{vol}\left(\bigcap_{i=1}^{d} T_i\right) \, \geq \, \operatorname{vol}(B^d) - \sum_{i=1}^{d} \operatorname{vol}(T_i^c) \, \geq \, \left(1 - 2de^{-\varepsilon^2 d/2}\right) \operatorname{vol}(B^d) \, .$$

- ▶ Consider an orthonormal basis u_1, u_2, \ldots, u_d of \mathbb{R}^d .
- ▶ Let T_i be the "tropics" when u_i is the "north pole".
- ▶ Volume of points in $\bigcap_{i=1}^{d} T_i$ is

$$\operatorname{vol}\left(\bigcap_{i=1}^{d} T_{i}\right) \geq \operatorname{vol}(B^{d}) - \sum_{i=1}^{d} \operatorname{vol}(T_{i}^{c}) \geq \left(1 - 2de^{-\varepsilon^{2}d/2}\right) \operatorname{vol}(B^{d}).$$

▶ But $\operatorname{vol}\left(\bigcap_{i=1}^{d} T_i\right) = \operatorname{vol}\left([-\varepsilon, \varepsilon]^d\right) = (2\varepsilon)^d$.

7

- ▶ Consider an orthonormal basis $u_1, u_2, ..., u_d$ of \mathbb{R}^d .
- Let T_i be the "tropics" when u_i is the "north pole".
- ▶ Volume of points in $\bigcap_{i=1}^{d} T_i$ is

$$\operatorname{vol}\left(\bigcap_{i=1}^{d} T_{i}\right) \geq \operatorname{vol}(B^{d}) - \sum_{i=1}^{d} \operatorname{vol}(T_{i}^{c}) \geq \left(1 - 2de^{-\varepsilon^{2}d/2}\right) \operatorname{vol}(B^{d}).$$

- ▶ But $\operatorname{vol}\left(\bigcap_{i=1}^{d} T_i\right) = \operatorname{vol}\left([-\varepsilon, \varepsilon]^d\right) = (2\varepsilon)^d$. ▶ If $2de^{-\varepsilon^2 d/2} < 1$, then

$$\operatorname{vol}(B^d) \leq \frac{(2\varepsilon)^d}{1 - 2de^{-\varepsilon^2 d/2}}.$$

- ▶ Consider an orthonormal basis $u_1, u_2, ..., u_d$ of \mathbb{R}^d .
- Let T_i be the "tropics" when u_i is the "north pole".
- ▶ Volume of points in $\bigcap_{i=1}^{d} T_i$ is

$$\operatorname{vol}\left(\bigcap_{i=1}^{d} T_{i}\right) \geq \operatorname{vol}(B^{d}) - \sum_{i=1}^{d} \operatorname{vol}(T_{i}^{c}) \geq \left(1 - 2de^{-\varepsilon^{2}d/2}\right) \operatorname{vol}(B^{d}).$$

- ▶ But $\operatorname{vol}\left(\bigcap_{i=1}^{d} T_i\right) = \operatorname{vol}\left([-\varepsilon, \varepsilon]^d\right) = (2\varepsilon)^d$. ▶ If $2de^{-\varepsilon^2 d/2} \le 1$, then

$$\operatorname{vol}(B^d) \, \leq \, \frac{(2\varepsilon)^d}{1 - 2de^{-\varepsilon^2 d/2}} \, .$$

For $\varepsilon = \sqrt{2 \ln(4d)/d}$, bound is

$$\operatorname{vol}(B^d) \ \leq \ 2 \bigg(\frac{8 \ln(4d)}{d} \bigg)^{d/2} \stackrel{d \to \infty}{\longrightarrow} \ 0 \,.$$