Lecture 21		
- We are now	at a point in	Au course where
		pieces and
Their relati		Jonnething about
- This course	has basically	been about various
<u>1 D</u>	20	30
functions	functions	functions
ol x	vector fields	vector fiélds
functions	vector fields	vector fields
	curl	Curl
		vector frelds
	functions	div.
		functions

- One aim is to say something about the antidevivatives of Aure operation.

Eg. * When can we find an y st $\nabla y = F$ for a given vector field

* When can we find an A st curl (A) = Ffor a given F?

- We have given some hint, but a full explanation is beyond this course (this is the realm of "topology" and something called "cohomology".)
- Another aim is to generalise the following

 $\frac{Thm}{f(x)} = g(x) + f(x)$ $\int_{a}^{b} g(x) dx = f(b) - f(a)$

Thm (FTC for conservative ufi) If $\nabla \varphi = F$ Ann $\int_{C} F \cdot d\mathbf{r} = Q(Q) - Q(P)$.

- We want statements Eflike: If curl (A)= F que ME de = ... A...? - We will answer this question. Green's Theorem - For Now we stick to 2D world. - If DCIR2 is a region of 2D space denote by DD it boundary - We define an orientation on the closed curve 2D by * If we walk around the boundary in the direction of orientation the region is on our left - This is called the boundary orientation -morselle rang a regen sogenfret A - Recall curl(E) = 0, F, -0, F,.

Thm It F is defined on D, Ahen \$ E.dr = II curl(E) dA Where aD is equifped w/ Au boundary orientation. - The area of Dis . | | | 1 dA - If we Find F st. curl(E)=1 Alun by Green's Ahoren $\oint_{\partial D} E \cdot dr = Area(D).$ - Eg. (0,x), (-y,a), \(\frac{1}{2}(-y,x)\). Flux and Green's theorem - Let F = (-F, +F,) be the vector field orthogonal to E.

Prop curl (E) = div (E) proof stouri(E1) = dif dxF, -dy (-F2) = div (F)

$$\frac{\partial v}{\partial v} = \frac{\partial v}{\partial v} =$$

$$= \iint_{\mathcal{D}} \operatorname{curl}(\underline{F}^{\perp}) dA$$