IBOB Test Procedure (last rev. 2007/06/11, HC, SM)

- 1. Visually inspect PC board for assembly issues.
 - 1. Check orientations of all of polarized capacitors.
 - 2. Check Pin 1 orientations of all active devices.
 - 3. Check that voltage regulators have correct placement.
 - 4. Check solder and for any visible shorts.
- 2. Record FPGA datecode.
- 3. Install Headers.
 - 1. Set GPIO I/O bank voltage selection at J4 to 2.5V.
 - 2. XAUI reference clock selection headers: use 125.00MHz (see Figure 1); J11/J12 and J13/J14 are horizontal mirror images.

125 MHz Header Configuration

Figure 1: Orientation of J11/J12, J13/J14 header installation for 125MHz XAUI reference clock.

4. Check for cross-rail shorts by probing inter-plane impedances using DMM; GND at J19 is convenient for probe; P4, P5, P6–pin 4 is output of PT regulators. See Figures 2, 3, and 4.

Figure 2: Main power connector J19 pinout.

Figure 3: DC/DC switching regulator P4/P5/P6 pinout.

Figure 4: Voltage probe points.

Typical cross-rail resistances:

	GND	5V	1.5V	1.8V	2.5V	3.3V	A2.5V	A1.8V
GND	X	15kOhm	20Ohm	20kOhm	4.5kOhm	1.5kOhm	3kOhm	1.5kOhm
5V	X	X	20kOhm	60kOhm	15kOhm	20 kOhm	100kOhm	50kOhm
1.5V	X	X	X	20kOhm	4.5kOhm	1.5kOhm	450Ohm	1.5kOhm
1.8V	X	X	X	X	20kOhm	4.5kOhm	6kOhm	4.5kOhm
2.5V	X	X	X	X	X	5kOhm	650Ohm	3MOhm
3.3V	X	X	X	X	X	X	4.5kOhm	3kOhm
A2.5V	X	X	X	X	X	X	X	450Ohm
A1.8V	X	X	X	X	X	X	X	X

5. Set up the voltage source.

- 1. Limit the current to 1A; the idle current of the boards with no fans or attachments should be ~0.3A.
- 6. Board power-up check.
 - 1. Turn on board; loss of magic smoke?
 - 2. Check voltage levels @ regulators, and caps C252 (1.5V), C247 (2.5V), C240 (1.8V), and C241 (2.5V).

7. Install heatsink.

- 1. Turn power supply off.
- 2. Clean surface of FPGA package with rubbing alcohol.
- 3. Attach heatsink—it has double sticky side tape. Primary "channel" or "trough" on heatsink should be parallel to length of board (Figure 5).

Figure 5: IBOB heatsink alignment.

8. Attach cables

- 1. Connect 3-meter XAUI cable between XAUI ports J20 and J21.
- 2. Connect CAT5 cable with custom loopback (labeled loop) to RJ45 port J115.
- 3. Attach Xilinx Parallel IV download cable to J17. Match VREF pin from download pod to VCC pin on IBOB J17.

- 4. Attach serial cable from serial terminal host to J18; RXs should provide cable orientation (marked side is RX).
- 9. Turn on main power supply. Increase current limit to ~3A.
- 10. Run the test suite
 - 1. Connect to the IBOB's serial interface using a serial terminal emulator. If using a Linux machine, **minicom** is suggested. On a Windows machine, two options are available: **HyperTerminal** or **CRT**. The serial terminal settings needed are:
 - *Protocol*: Serial
 - Port: COM1 (varies based on host computer and setup)
 - Baud: 115200 Databits: 8 Parity: None
 - *Stop Bits*: 1
 - Flow Control: none
 - 2. Program the FPGA with the test suite bitstream
 - Run iMPACT
 - Click *Cancel* when asked to create a new project.
 - Select the *Boundary-Scan* mode tab. Right-click and select *Initialize Chain* or type **CTRL-I**. 2 devices should be detected in the boundary scan chain: an *xcf32p* (PROM) and an *xc2vp50* (FPGA).
 - When asked to assign a new .MCS configuration file for the PROM, click Cancel or Bypass.
 - When asked to assign a new .BIT configuration file for the FPGA, select the test suite bitfile.
 - Download the bistream to the FPGA:
 - 1. Right click on Xilinx chip XC2VP50
 - 2. Click Program
 - 3. Make sure *Pulse Prog* is selected
 - 4. Click *OK*
 - When completed successfully, *Done* LED D2 lights.
 - Current draw should be ~1.8A.
 - 3. Serial terminal should display *IBOB*% prompt
- 11. Run the test suite testers in the serial console to test SRAM, Ethernet, XAUI functionality
 - 1. ? gives list of available commands
 - 2. Test the Ethernet
 - Run testmac
 - If *No packet received* something is wrong with Ethernet. When the Ethernet works, you will see a test packet sent and received.
 - 3. Test the SRAM using **sramreset** and **sramrefresh**
 - **sramreset 0** tests the SRAM using a sequential addressing pattern and an LFSR pseudo-random number data pattern.
 - **sramreset 1** tests the SRAM using a sequential addressing pattern and an all-zeros data pattern.
 - **sramreset 2** tests the SRAM using a sequential addressing pattern and an all-ones data pattern.

- **sramrefresh** refreshes the status displays of how many write/readback passes have been completed and the error count.
- 4. Test the XAUI connection running with 125.00MHz reference clock (8Gb/s)
 - Run xauireset 0 xff
 - Refclk display is hardcoded at 156.00 MHz, so ignore. Make sure you see "0's" and not "Link Down" or "No Link"
 - Run **xauirefresh** repeatedly to refresh the test status display.
 - Check to see the link doesn't drop and that it can achieve an error rate of better than 10^-13.
- 5. Test the XAUI connection running with 156.25MHz reference clock (10Gb/s)
 - Turn off board
 - Change headers for 156.25MHz XAUI reference clock (Figure 6)
 - Turn board on and reprogram test suite, rerun XAUI test as above.

156 MHz Header Configuration

Figure 6: Orientation of J11/J12, J13/J14 header installation for 156.25MHz XAUI reference clock.

12. Test Z-DOK connectors

- 1. There are two ways to test the Z-DOKs:
- 2. Run ADC capture scope; tests both Z-DOKs
- 3. Run the pocket spectrometer; tests 1 Z-DOK (J22)
 - Installing a heatsink fan or some other form of active cooling is recommended.
 - Attach iADC Atmel AT84AD001B dual 1-Gsps ADC board to Z-DOK J22
 - Connect 500MHz@0dBm RF signal to ADC clk i SMA input
 - Connect test signal (CW tone < -15dBm or noise through VLF-220MHz filter) to ADC *I*+ SMA input
 - Idle (unprogrammed) current draw with ADC attached should be ~0.8A.
 - Program the FPGA with pocketspec bitstream
 - Pocketspec current draw should be ~3.4A.
 - Run **pocketplot** backend software on Linux host machine to see spectra