

State Set	Q	q_1, \cdots, q_4
Alphabet	Σ	σ_0, σ_1
Morph probabilities	$\widetilde{\pi}: Q \times \Sigma^{\star} \to [0,1]$	0.4 0.6 0.3 0.7 0.1 0.9 0.7 0.3
Stationary distribution	ø*	$\wp^{\star}P=\wp^{\star}$

State Set	Q	q_1, \cdots, q_4
Alphabet	Σ	σ_0, σ_1
Morph probabilities	$\widetilde{\pi}: Q \times \Sigma^{\star} \to [0,1]$	(0.4 0.6 0.3 0.7 0.1 0.9 0.7 0.3
Stationary distribution	ø*	$\wp^{\star}P = \wp^{\star}$

State Set	Q	q_1, \cdots, q_4
Alphabet	Σ	σ_0, σ_1
Morph probabilities	$\widetilde{\pi}: Q \times \Sigma^{\star} \to [0,1]$	0.4 0.6 0.3 0.7 0.1 0.9 0.7 0.3
Stationary distribution	<i>φ</i> *	$\wp^{\star}P = \wp^{\star}$

State Set	Q	q_1, \cdots, q_4	
Alphabet	Σ	σ_0, σ_1	
Morph probabilities	$\widetilde{\pi}: Q \times \Sigma^{\star} \to [0,1]$	(0.4 0.6) 0.3 0.7 0.1 0.9 0.7 0.3)	
Stationary distribution	ø*	$\wp^{\star}P = \wp^{\star}$	

Algorithm GenESeSS

Algorithm GenESeSS

Algorithm GenESeSS

Algorithm GenESeSS

Algorithm GenESeSS

Algorithm GenESeSS

Algorithm GenESeSS

Estimating Average Immediate Future

$$\phi_{\omega}^{s} = \begin{pmatrix} Pr(\sigma_{0}) \\ Pr(\sigma_{1}) \end{pmatrix}$$
where $\omega = \sigma_{1}\sigma_{1}\sigma_{0}\sigma_{0}$

	11000	11001		
00101001000 1100011001		11001	11001	
010001000000000011 11000 0000100				
001000000010000 11000 100000001				

$$\phi_{\omega}^{s} = \begin{pmatrix} Pr(\sigma_{0}) \\ Pr(\sigma_{1}) \end{pmatrix}$$
where $\omega = \sigma_{1}\sigma_{1}\sigma_{0}\sigma_{0}$

λ	0.750285	0.249715
0	0.700112	0.299888
1	0.901009	0.098990
00	0.699844	0.300156
01	0.899111	0.100889
10	0.700711	0.299289
11	0.918285	0.081715
000	0.699004	0.300996
001	0.898769	0.10123
010	0.701038	0.298962
011	0.917181	0.082819
100	0.701763	0.298237
101	0.899911	0.100089
110	0.697797	0.302203
111	0.930693	0.069306
0000	0.699284	0.300716
0001	0.902025	0.097975

λ	0.750285	0.249715
0	0.700112	0.299888
1	0.901009	0.098990
00	0.699844	0.300156
01	0.899111	0.100889
10	0.700711	0.299289
11	0.918285	0.081715
000	0.699004	0.300996
001	0.898769	0.10123
010	0.701038	0.298962
011	0.917181	0.082819
100	0.701763	0.298237
101	0.899911	0.100089
110	0.697797	0.302203
111	0.930693	0.069306
0000	0.699284	0.300716
0001	0.902025	0.097975

λ	0.750285	0.249715
0	0.700112	0.299888
1	0.901009	0.0989909
00	0.699844	0.300156
01	0.899111	0.100889
10	0.700711	0.299289
11	0.918285	0.0817152
000	0.699004	0.300996
001	0.898769	0.10123
010	0.701038	0.298962
011	0.917181	0.0828194
100	0.701763	0.298237
101	0.899911	0.100089
110	0.697797	0.302203
111	0.930693	0.0693069
0000	0.699284	0.300716
0001	0.902025	0.0979754

λ	0.750285	0.249715
0	0.700112	0.299888
1	0.901009	0.0989909
00	0.699844	0.300156
01	0.899111	0.100889
10	0.700711	0.299289
11	0.918285	0.0817152
000	0.699004	0.300996
001	0.898769	0.10123
010	0.701038	0.298962
011	0.917181	0.0828194
100	0.701763	0.298237
101	0.899911	0.100089
110	0.697797	0.302203
111	0.930693	0.0693069
0000	0.699284	0.300716
0001	0.902025	0.0979754

λ	0.750285	0.249715
0	0.700112	0.299888
1	0.901009	0.0989909
00	0.699844	0.300156
01	0.899111	0.100889
10	0.700711	0.299289
11	0.918285	0.0817152
000	0.699004	0.300996
	0.898769	0.10123
010	0.701038	0.298962
	0.917181	0.0828194
	0.701763	0.298237
101	0.899911	0.100089
110	0.697797	0.302203
111	0.930693	0.0693069
	0.699284	0.300716
0001	0.902025	0.0979754

λ	0.750285	0.249715
0	0.700112	0.299888
1	0.901009	0.0989909
00	0.699844	0.300156
01	0.899111	0.100889
10	0.700711	0.299289
11	0.918285	0.0817152
000	0.699004	0.300996
001	0.898769	0.10123
010	0.701038	0.298962
011	0.917181	0.0828194
100	0.701763	0.298237
101	0.899911	0.100089
110	0.697797	0.302203
111	0.930693	0.0693069
0000	0.699284	0.300716
0001	0.902025	0.0979754

λ	0.750285	0.249715
0	0.700112	0.299888
1	0.901009	0.0989909
00	0.699844	0.300156
01	0.899111	0.100889
10	0.700711	0.299289
11	0.918285	0.0817152
000	0.699004	0.300996
001	0.898769	0.10123
010	0.701038	0.298962
011	0.917181	0.0828194
100	0.701763	0.298237
101	0.899911	0.100089
110	0.697797	0.302203
111	0.930693	0.0693069
0000	0.699284	0.300716
0001	0.902025	0.0979754

λ	0.750285	0.249715
0	0.700112	0.299888
1	0.901009	0.0989909
00	0.699844	0.300156
01	0.899111	0.100889
10	0.700711	0.299289
11	0.918285	0.0817152
000	0.699004	0.300996
001	0.898769	0.10123
010	0.701038	0.298962
011	0.917181	0.0828194
100	0.701763	0.298237
101	0.899911	0.100089
110	0.697797	0.302203
111	0.930693	0.0693069
0000	0.699284	0.300716
0001	0.902025	0.0979754

Estimating Average Immediate Future

0.249715 λ 0.750285 0 0.299888 0.0989909 0.901009 0.699844 00 0.300156 0.899111 01 10 0.700711 0.299289 11 0.0817152 000 0.699004 0.300996 001 0.898769 010 0.701038 0.298962 011 0.917181 100 0.701763 0.298237 101 0.899911 0.100089 0.302203 0.697797 110 0.930693 111 0.699284 0000 0.300716 0001 0.902025 0.0979754

Estimating Average Immediate Future

0.700112	0.299888
0.699844	0.300156
0.700711	0.299289
0.699004	0.300996
0.701038	0.298962
0.701763	0.298237
0.697797	0.302203
0.699284	0.300716
	0.700112 0.901009 0.699844 0.899111 0.700711 0.918285 0.699004 0.898769 0.701038 0.917181 0.701763 0.899911 0.697797 0.930693 0.99284 0.902025

Combining GenESeSS with data smashing

PFSA

Combining GenESeSS with data smashing

PFSA

Generate data

Combining GenESeSS with data smashing

Generate data

Invert

Combining GenESeSS with data smashing

Probably Approximately Correct

How Hard Is It To Learn PFSAs

Time Complexity

Assuming $|s| > |\Sigma|$, the asymptotic time complexity of **GenESeSS** is:

$$\mathcal{T} = O\left(\frac{|s||\Sigma|}{\epsilon}\right)$$

PAC-Learnability

Ergodic, stationary quantized stochastic processes with finite number of causal states has the following property:

For $\epsilon, \eta > 0$, and for every sufficiently long sequence s generated by QSP \mathcal{H} , GenESeSS computes $\mathcal{P}'_{\mathcal{H}}$ as an estimate for $\mathcal{P}_{\mathcal{H}}$ with:

$$Pr(\Theta(\mathcal{P}_{\mathcal{H}}, \mathcal{P}'_{\mathcal{H}}) \leq \epsilon) \geq 1 - \eta$$

Asymptotic runtime is polynomial in $1/\epsilon$, $1/\eta$, |s|, and sample complexity is:

$$|s| = O(C_0^{|Q|} \frac{1}{\epsilon} \log \frac{1}{\eta})$$

Learning Quantized Stochastic Processes

Algorithm GenESeSS

0(0.5)

Learning Quantized Stochastic Processes

Algorithm GenESeSS

1 (0.36)

Predicting Seismic Events

With Both Space & Time Quantization

Validating The Omori-Utsu Law

A. Inferred Self-Model for California (400 mile radius around lat. 36° and long. -120°)

B Increasing probability of no-EQ before & after high-activity state

D. Indirect Validation of Omori-Utsu Law (aftershocks)

D. Indirect Validation of Omori-Utsu Law (foreshocks)

