结果分析报告

一、数据分析

训练集	样本数	占比(总样本)	类数	占比(总类)	
样本总数 738793		100%	3150	100%	
出现次数小于2	出现次数小于 10 4062		474	15%	
出现次数小于 10			1269	40.20%	
出现次数小于 20			1683	53.40%	
测试集	样本数	占比(总样本)	类数	占比(总类)	
测试集 样本总数	样本数 13421	占比(总样本) 100%	类数 1670	占比(总类) 100%	
			- T		
样本总数	13421	100%	1670	100%	

训练集总词数 (去重)	232165
测试集总词数 (去重)	9987

二、构建数据集

方法一:

- 1. 用 jieba (精确模式) 对训练集和测试进行分词;
- 2. 使用 collection 中的 Counter 包进行词频统计;
- 3. 分别在完整训练集和处理训练集(去掉出现次数小于 2 的样本)中,通过选择出现频率最高的前 1、3、5、7 万个词作为特征维度,然后构建 TF-IDF 词频矩阵;

方法二:

- 1. 将训练集和测试集中的样本,按单个字符分开;
- 2. 去掉样本中的数字,构建 TF-IDF 词频矩阵; (738793,4884)
- 3. 利用随机森林对词频矩阵中的特征按重要性进行排序,构造一个1000维度的数据集;

三、预测

主要采用了三个模型: 随机森林、支持向量机(批量拟合)、Kmeans 聚类思想(计算相似性)。

(1) 如下为利用方法一构建的数据集,在三个模型上的表现:

model	dimension	accuracy	traing time
RandomForest	10000	0.368	15 min
	10000_2	0.368	20 min
	30000	0.422	25 min
	30000_2	0.419	24 min
	50000	0.434	16 min
	50000_2	0.432	30 min
	70000	0.4367	18 min
	70000_2	0.438	33 min
SVM_partial_fit	10000	0.32	
	10000_2	0.32	
	30000	0.37	
	30000_2	0.38	
	50000	0.4	
	50000_2	0.4	
	70000	0.39	
	70000_2	0.39	
Kmeans(计算相似性)	10000	0.248	3h 37min
	30000	0.318	1h 36min
	70000	0.37	3h

注: '10000_2'表示去掉训练集中,出现次数少于 2 次的样本点后,选取词频最高的前 10000 个构造词频矩阵。

错误样本原因:

- 1. 从下表可知,测试集中有大约 30%的词不存在于训练集中;
- 2. 在使用随机森林训练时,受限于内存容量,决策树的个数只能设置为 10, 常见一般要设置 100 以上
- 3. 模型超参数设置可能并未达到最优

训练集词频前 K 万个与测试集中重复的词,占测试集总词数(去重)的比重

词频	占比 (测试集)
训练集词频前1万与测试集的重复词	41.30%
训练集词频前 2 万与测试集的重复词	54.30%
训练集词频前 3 万与测试集的重复词	60.72%
训练集词频前 4 万与测试集的重复词	64.65%
训练集词频前5万与测试集的重复词	67.53%

训练集词频前 6 万与测试集的重复词	69.06%
训练集词频前7万与测试集的重复词	70.41%
训练集词频前8万与测试集的重复词	71.27%
训练集词频前9万与测试集的重复词	72.76%
训练集词频前 10 万与测试集的重复词	72.89%
训练集词频前 12 万与测试集的重复词	73.30%
训练集词频前 14 万与测试集的重复词	73.61%
训练集词频前 16 万与测试集的重复词	73.94%
训练集词频前 18 万与测试集的重复词	74.28%
训练集词频前 20 万与测试集的重复词	74.77%
训练集词频前 22 万与测试集的重复词	75.23%
训练集所以词与测试集的重复词	74.44%

(2) 如下为利用方法二构建的数据集,在三个模型上的表现:

RandomForest	4884	n_estimator = 12	max_depth = NONE	0.467	10 min 05
	1000	n_estimator = 15	max_depth = NONE	0.459	8 min 46
SVM_partial_fit	4884			0.35	
	1000			0.33	
Kmean(计算相似性)	4884			0.34	
	1000			0.27	

代码说明:

任务 1\Task1\code\data 该目录对应初始数据集

任务 1\Task1\code\Task1_1\class_analyse.py 作用为数据分析

任务 1\Task1\code\Task1_1\main.py 里面包含如下 5 个方法 用于方法一构建的数据集

#Load_Original_Traindata_Testdata_Cut_and_Save() # 分词并保存

Make_Stop_Words_and_Save(dimensions=70000) # 选择停用词(总词减去前 n 个最高频率的词)

#Load_Stop_Words() # 载入停用词

Make_Train_and_Test_Tf_Idf_and_Save() # 构建词频矩阵并且保存

Load_Traindata_Testdata_with_Tfidf(filename) # 载入 TF-IDF

train_by_RandForest(filename) # 随机森林 模型 # train_by_partial_SGD(filename)# 支持向量机 模型

任务 1\Task1\code\Task1_2\kmeans.py # 计算相似性 模型 任务 1\Task1\code\Task1_1_1|single_word.py 用于方法二构建的数据集