Section 1.A – \mathbb{R}^n and \mathbb{C}^n

subtraction, 1/lpha, division: Let lpha, $eta\in {f C}ullet$ Let -lpha denote the additive inverse of $a_0,\ldots,a_m\in {f F}$ such that α . Thus $-\alpha$ is the unique complex number such that $\alpha + (-\alpha) = 0$ • Subtraction on C is defined by $\beta - \alpha = \dot{\beta} + (-\alpha) \bullet$ For $\alpha \neq 0$, let $1/\alpha$ denote the multiplicative inverse of lpha . Thus 1/lpha is the unique complex number such that lpha(1/lpha)=1 ullet Division on ${f C}$ is defined by $\beta/\alpha = \beta(1/\alpha)$ list, length: Suppose n is a nonnegative integer. A list of length n is an ordered collection of n elfor all $z \in \mathbf{F}$. $\mathcal{P}(\mathbf{F})$ is the set of all polynomials with coefficients in \mathbf{F} .

rounded by parentheses. A list of length n looks like this: (x_1,\ldots,x_n) Two lists are equal if $a_0,a_1,\ldots,a_m\in\mathbf{F}$ with $a_m\neq 0$ such that and only if they have the same length and the same elements in the same order. \mathbf{F}^n is the set of all lists of length n of elements of \mathbf{F} : \mathbf{F}^n

 $\{(x_1, \dots, x_n) : x_j \in \mathbf{F} \text{ for } j = 1, \dots, n\} \text{ For } (x_1, \dots, x_n) \in \mathbf{F}^n$

and
$$j \in \{1, \dots, n\}$$
, we say that x_j is the j th coordinate of (x_1, \dots, x_n) addition in \mathbb{F}^n . If p has degree m , we write deg $p = m$ of m . The polynomial that is identically of is said to have degree m .

 $(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$ Commutativity of addition in \mathbb{F}^n : If $x,y\in \mathbb{F}^n$, then x+y=y+xo: Let o denote the list of length n whose coordinates are all $0:0=(0,\ldots,0)$ *additive inverse in* \mathbb{F}^n : For $x \in \mathbf{F}^n$, the additive inverse of x, denoted -x, is the vector $-x \in \mathbf{F}^n$ such that x + (-x) = 0 In other words, if $x = (x_1, \dots, x_n)$, then

 $-x=(-x_1,\dots,-x_n)$ the only choice of $a_1\dots,s_n$ scalar multiplication in $\mathbb F^n$: The product of a number λ and a vector in $\mathbf F^n$ is computed by multi- $a_1=\dots=a_m=0$ plying each coordinate of the vector by $\lambda:\lambda$ $(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n)$ here The empty list () is also declared to be linearly independent.

 $\lambda \in \mathbf{F}$ and $(x_1, \dots, x_n) \in \mathbf{F}^n$ Section 1.B - Definition of Vector Space

Vector Space: A vector space is a set V along with an addition on V and a scalar multiplication on V

such that the following properties hold: commutativity

$$u \, + \, v \, = \, v \, + \, u \text{ for all } u, \, v \, \in \, V$$

associativity (u + v) + w = u + (v + w) and (ab)v = a(bv) for all signal. $u,v,w\in V$ and all $a,b\in \mathbf{F}$ additive identity there exists an element $0\in V$ such that v+0=v for all $v\in V$ additive inverse for every $v\in V$, there exists $w\in V$ such that v+w=0 multiplicative identity 1v=v for all $v\in V$ distributive properties

$$a(u+v)=au+av$$
 and $(a+b)v=av+bv$ for all $a,b\in {f F}$ and

all $u, v \in V$ vector, point: Elements of a vector space are called vectors or points.

real vector space, complex vector space: • A vector space over R is called a real vector space. • A vector space over C is called a complex vector space.

 \mathbb{F}^S : • If S is a set, then \mathbb{F}^S denotes the set of functions from S to \mathbb{F} • For $f, g \in \mathbb{F}^S$, the sum $f+g\in \mathbf{F}^S$ is the function defined by (f+g)(x)=f(x)+g(x) for all $x \in S \bullet \text{ For } \lambda \in \mathbf{F} \text{ and } f \in \mathbf{F}^S$, the product $\lambda f \in \mathbf{F}^S$ is the function defined by the vector space. The dimension of V (if V is finite-dimensional) is denoted by $\dim V$. $(\lambda f)(x) = \lambda f(x)$ for all $x \in S$ Unique Additive Identity: A vector space has a unique additive identity

Unique additive inverse: Every element in a vector space has a unique additive inverse.

The number o times a vector: 0v = 0 for every $v \in V$

A number times the vector o: a0 = 0 for every $a \in \mathbf{F}$

The number -1 times a vector: (-1)v = -v for every $v \in V$

Section I.C - Subspaces

Subspace: A subset U of V is called a subspace of V if U is also a vector space (using the same addition and scalar multiplication as on V).

Conditions for a subspace: A subset U of V is a subspace of V if and only if U satisfies the following three conditions: additive identity $0 \in U$ closed under addition $u, w \in U$ implies $u+w\in U$ closed under scalar multiplication $a\in \mathbf{F}$ and $u\in U$ implies $au\in U$ sum of subsets: Suppose U_1,\ldots,U_m are subsets of V. The sum of U_1,\ldots,U_m , denoted $U_1+\cdots+U_m$, is the set of all possible sums of elements of U_1,\ldots,U_m More ties: additivity

$$U_1+\cdots+U_m=\left\{u_1+\cdots+u_m:u_1\in U_1,\ldots,u_m\in U_m\right\}$$
 homogeneity

Sum of subspaces is the smalles containing subspace: Suppose U_1,\ldots,U_m are subspaces of $extit{Notation }\mathcal{L}(V,W)$: The set of all linear maps from V to W is denoted $\mathcal{L}(V,W)$ called a direct sum if each element of $U_1 + \cdots + U_m$ can be written in only one way as a sum that $u_1+\cdots+u_m$, where each u_j is in U_j · If $U_1+\cdots+U_m$ is a direct sum, then $U_1\oplus\cdots\oplus U_m$ denotes $U_1+\cdots+U_m$, with the \oplus notation serving as an indication that this is a direct sum.

Condition for a direct sum: Suppose U and W are subspaces of V. Then U+W is a direct sum ad if and only if $U \cap W = \{0\}$

Direct sum of two subspaces: Suppose U and W are subspaces of V. Then U+W is a direct by sum if and only if $U \cap W = \{0\}$

Section 2.A Span and Linear Independence

 v_1, \ldots, v_m , denoted span (v_1, \ldots, v_m) . In other words,

$$\mathrm{span}(v_1, \dots, v_m) = \{a_1v_1 + \dots + a_mv_m : a_1, \dots, a_m \in \mathbf{F}\}\$$

The span of the empty list () is defined to be { 0 } . Span is the smallest containing subspace: The span of a list of vectors in V is the smallest subspace for $u \in U$

of V containing all the vectors in the list. spans: If span (v_1, \ldots, v_m) equals V, we say that v_1, \ldots, v_m spans Vfinite-dimensional vector space: A vector space is called finite-dimensional if some list of vectors in it spans the space.

olynomial over a field F: A function $p:\mathbf{F} o\mathbf{F}$ is called a polynomial with coefficients in \mathbf{F} if whenever T_1 , T_2 , and T_3 are linear maps such that the products make sense (meaning that T_3

$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_m z^m$$

ements (which might be numbers, other lists, or more abstract entities) separated by commas and sur- $\frac{degree \ of \ a \ polynomial}{degree \ of \ a \ polynomial} \cdot A \ polynomial \ p \in \mathcal{P}(\mathbf{F}) \text{ is said to have degree } m \text{ if there exist scalars}$ map on W). distributive properties

$$p(z) = a_0 + a_1 z + \dots + a_m z^m$$

for all $z \in \mathbf{F}$. If p has degree m , we write $\deg p = m$

 $\mathcal{P}_m(\mathbb{F})$: For m a nonnegative integer, $\mathcal{P}_m(\mathbf{F})$ denotes the set of all polynomials with coefficients in ${f F}$ and degree at most m . infinite-dimensional vector space: A vector space is called infinite-dimensional if it is not finite-

linearly independent: \cdot A list v_1,\ldots,v_m of vectors in V is called linearly independent if the only choice of $a_1\ldots , a_m\in \mathbf{F}$ that makes $a_1v_1+\cdots +a_mv_m$ equal o is

Section i.B.—Definition of Vector Space

In other words, a list v_1, \dots, v_m of vectors in V is linearly dependent if there exist $v_1, \dots, v_m = 0$ and only in the $v_1, \dots, v_m = 0$. In other words, a list $v_1, \dots, v_m = 0$ of vectors in V is linearly dependent if there exist $v_1, \dots, v_m = 0$. In other words, a list $v_1, \dots, v_m = 0$ of vectors in $v_1, \dots, v_m = 0$. In other words, a list $v_1, \dots, v_m = 0$ of vectors in $v_2, \dots, v_m = 0$. In other words, a list $v_1, \dots, v_m = 0$ of vectors in $v_2, \dots, v_m = 0$. In other words, a list $v_1, \dots, v_m = 0$ of vectors in $v_2, \dots, v_m = 0$. It is a linearly dependent if there exist $v_2, \dots, v_m = 0$. It is a linearly dependent list in v $\operatorname{span}\left(v_1,\ldots,v_{j-1}
ight)$ (b) if the j^{th} term is removed from v_1,\ldots,v_m , the span of

the remaining list equals span (v_1, \ldots, v_m) Length of linearly independent list \(\left\) length of spanning list: In a finite-dimensional vector space, the length of every linearly independent list of vectors is less than or equal to the length of every spanning list of vectors.

Finite-dimensional subspaces: Every subspace of a finite-dimensional vector space is finite dimen-

asis: A basis of V is a list of vectors in V that is linearly independent and spans V

Criterion for basis: A list v_1, \ldots, v_n of vectors in V is a basis of V if and only if every A map to a smaller dimensional space is not injective: Suppose V and W are finite-dimensional $v \in V$ can be written uniquely in the form $v = a_1v_1 + \cdots + a_nv_n$ where vector spaces such that $\dim V > \dim W$. Then no linear map from V to W is injective. Spanning list contains a basis: Every spanning list in a vector space can be reduced to a basis of the vector spaces such that dim $V < \dim W$. Then no linear map from V to W is surjective. vector space. Linearly independent list extends to a basis: Every linearly independent list of vectors in a finite-variables than equations has nonzero solutions.

dimensional vector space can be extended to a basis of the vector space. Every subspace V is part of a direct sum equal to V.: Suppose V is finite-dimensional and U is more equations thavariables has no solution for some choice of the constant terms. a subspace of V . Then there is a subspace W of V such that $V=U\oplus W$

mension, dim V: The dimension of a finite-dimensional vector space is the length of any basis of elements of \mathbf{F} with m rows and n columns: **Dimension of subspace:** If V is finite-dimensional and U is a subspace of V, then dim U <Linearly independent list of the right length is a basis: Suppose V is finite-dimensional. Then

every linearly independent list of vectors in V with length $\dim V$ is a basis of VSpanning list of the right length is a basis: Suppose V is finite-dimensional. Then every spanning list of vectors in V with length dim V is a basis of V

Dimension of a sum: If U_1 and U_2 are subspaces of a finite-dimensional vector space, then

$$\dim \left(U_1 + U_2 \right) = \dim U_1 + \dim U_2 - \dim \left(U_1 \cap U_2 \right)$$

Section 3.A The Vector Space of Linear Maps

linear map: A linear map from V to W is a function $T:V\to W$ with the following proper

$$T(u\,+\,v)\,=\,T\,u\,+\,T\,v\;{\rm for\,all}\,u\,,\,v\,\in\,V$$

$$T(\lambda v) = \lambda (Tv)$$
 for all $\lambda \in \mathbf{F}$ and all $v \in V$

Sam of subspaces is the smalles containing subspaces (V_1, \dots, V_m are subspaces of V_2, \dots, V_m) is a basis of V_3 denoted by V_3 . Then $U_1 + \dots + U_m$ is the smallest subspace of V_3 . Then $U_1 + \dots + U_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by V_3 . Then $V_4 + \dots + V_m$ is a basis of V_3 denoted by $V_4 + \dots + V_m$ in $V_4 + \dots + V_m$ is a basis of V_3 denoted by $V_4 + \dots + V_m$ in $V_4 + \dots + V_m$ is a basis of $V_4 + \dots + V_m$ in $V_4 + \dots + V_m$

$$Tv_j = w$$

for each $j=1,\ldots,n$

itiona nd scalar multiplication on linear maps: Suppose $S,\,T\in\mathcal{L}(V,W)$ and $\lambda \in \mathbf{F}$. The sum S + T and the product λT are the linear maps from V to W defined

$$(S+T)(v) = Sv + Tv \quad \text{and} \quad (\lambda T)(v) = \lambda (Tv)$$

for all $v \in V$

Span: The set of all linear combinations of a list of vectors v_1, \ldots, v_m in V is called the span of $\mathcal{L}(V,W)$ is a vector space: With the operations of addition and scalar multiplication as defined above, $\mathcal{L}(V, W)$ is a vector space. **Product of Linear Maps:** If $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$, then the product $ST \in \mathcal{L}(U, W)$ is defined by

(ST)(u) = S(Tu)

Algebraic Properties of products of linear maps: associativity

 $(T_1 T_2) T_3 = T_1 (T_2 T_3)$

maps into the domain of T_2 , and T_2 maps into the domain of T_1). identity

$$TI = IT = T$$

whenever $T \in \mathcal{L}(V,W)$ (the first I is the identity map on V, and the second I is the identity

$$\left(S_1+S_2\right)T=S_1T+S_2T\quad\text{and}\quad S\left(T_1+T_2\right)=ST_1+ST_2$$

whenever T, T_1 , $T_2 \in \mathcal{L}(U, V)$ and S, S_1 , $S_2 \in \mathcal{L}(V, W)$ *Linear maps take o to o:* Suppose T is a linear map from V to W. Then T(0)=0Section 3.B Null Spaces and Ranges

will space: For $T \in \mathcal{L}(V,W)$, the null space of T , denoted null T , is the subset of V consisting of those vectors that T maps to o:

$$\operatorname{null} T \,=\, \{v \,\in\, V \,:\, Tv \,=\, 0\}$$

injective: A function $T:V\to W$ is called injective if Tu=Tv implies u=vlinearly dependent: A list of vectors in V is called linearly dependent if it is not linearly independent in T is injective to null space equals $\{0\}$: Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$

range
$$T = \{Tv : v \in V$$

The range is subspace: If $T \in \mathcal{L}(V, W)$, then range T is a subspace of W*trjective:* A function T:V o W is called surfective if its range equals WFundamental Theorem of Linear Maps: Suppose V is finite-dimensional and T $\mathcal{L}(V,W)$. Then range T is finite-dimensional and

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$

A map to a larger dimensional space is not surjective: Suppose V and W are finite-dimensional where c_1, \ldots, c_n are the scalars such that Homogeneous system of linear equations: A homogeneous system of linear equations with more

Inhomogeneous system of linear equations: An inhomogeneous system of linear equations with

for $1 \le k \le p$

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \dots & A_{m,n} \end{pmatrix}$$

The notation $A_{j,k}$ denotes the entry in row j, column k of A. In other words, the first index refers $T \in \mathcal{L}(V)$. Then the following are equivalent: (a) T is invertible; (b) T is injective; (c) Tto the row number and the second index refers to the column number. matrix of a linear map, $\mathcal{M}(T)$: Suppose $T \in \mathcal{L}(V,W)$ and v_1,\ldots,v_n is a basis of V and w_1, \ldots, w_m is a basis of W. The matrix of T with respect to these bases is the m-by-n matrix $\mathcal{M}(T)$ whose entries $A_{i,k}$ are defined by

$$Tv_k = A_{1,k}w_1 + \dots + A_{m,k}w_m$$

If the bases are not clear from the context, then the notation $\mathcal{M}\left(T,\left(v_{1},\ldots,v_{n}\right),\left(w_{1},\ldots,w_{m}\right)\right)$ is used. $\mathbb{F}^{m,n}$: For m and n positive integers, the set of all m-by-n matrices with entries in \mathbf{F} is denoted by $\mathbf{F}^{m,n}$

matrix multiplication: Suppose A is an m- by -n matrix and C is an n-by -p matrix. Then AC is defined to be the m -by-p matrix whose entry in row j , column k , is given by the following equation:

$$(AC)_{j,k} = \sum_{r=1}^n A_{j,r} C_{r,k}$$

In other words, the entry in row j , column k , of AC is computed by taking row j of A and column k of C , multiplying together corresponding entries, and then summing. A_i , A_k : Suppose A is an m-by -n matrix. If $1 \le j \le m$, then denotes the 1- by - n matrix consisting of row j of $A\cdot$ If $1\leq k\leq n$, then A., k denotes the m- by -1 matrix consisting of column k of AEntry of matrix product equals row times column: Suppose A is an m-by-n matrix and C is an n -by- p matrix. Then

$$(AC)_{j,k} = A_{j,.}C_{.,k}$$

for $1 \leq j \leq m$ and $1 \leq k \leq p$ Column of matrix product equals matrix times column: Suppose A is an m- by-n matrix and C is an n -by-p matrix. Then

$$(AC)_{.,k} = AC_{.,k}$$

Linear combination of columns: Suppose A is an m-by-n matrix and c=is an $\,n\,$ -by-1 matrix. Then

$$Ac = c_1 A_{.1} + \dots + c_n A_{.n}$$

In other words, Ac is a linear combination of the columns of A, with the scalars that multiply the columns coming from c.

Section 3.D Invertibility and Isomorphic Vector Spaces invertible, inverse: • A linear may $T \in \mathcal{L}(V, W)$ is called imertible if there exists a linear map $S \in \mathcal{L}(W, V)$ such that ST equals the identity map on V and TS equals the identity map on $W \bullet A$ linear map $S \in \mathcal{L}(W, V)$ satisfying ST = I and TS = I is called an imverse of T (note that the first I is the identity map on V and the second I is the identity map on W). Inverse is unique: An invertible linear map has a unique inverse

 T^{-1} : If T is invertible, then its inverse is denoted by T^{-1} . In other words, if $T \in \mathcal{L}(V,W)$ is invertible, then T^{-1} is the unique element of $\mathcal{L}(W,V)$ such that $T^{-1}T=I$ and $TT^{-1} = I$ Invertibility is equivalent to injectivity and surjectivity: A linear map is invertible if and only if

norphism, isomorphic: • An isomorphism is an invertible linear map. • Two vector spaces are called isomorphic if there is an isomorphism from one vector space onto the other one. Dimension shows whether vector spaces are isomorphic: Two finite-dimensional vector spaces over F are isomorphic if and only if they have the same dimension. $\mathcal{L}(V,W)^{'}$ and $\mathbf{F}^{m,n}$ are isomorphic: Suppose v_1,\ldots,v_n is a basis of V and $w_1\ldots w_m$ is a basis of W Then \mathcal{M} is an isomorphism between $\mathcal{L}(V,W)$ and $\mathbf{F}^{m,n}$ $\dim \mathcal{L}(V,W) = (\dim V)(\dim W)$: Suppose V and W are finite-dimensional. Then L(V, W) is finitedimensional implies the title. matrix of a vector, $\mathcal{M}(v)$: Suppose $v \in V$ and v_1, \ldots, v_n is a basis of V. The matrix of

$$\mathcal{M}(v) = \left(\begin{array}{c} c_1 \\ \vdots \\ c_n \end{array} \right)$$

v with respect to this basis is the n -by-1 matrix

it is injective and surjective.

$$v = c_1 v_1 + \dots + c_n v_n$$

 $\mathcal{M}(T)$ $_{k} = \mathcal{M}(v_{k})$: Suppose $T \in \mathcal{L}(V, W)$ and v_{1}, \ldots, v_{n} is a basis of Vand w_1, \ldots, w_m is a basis of W. Let $1 \le k \le n$. Then the kth column of $\mathcal{M}(T)$, $k \le n$ and $k \le n$. Then the kth column of kth column $\frac{\mathsf{Linear\ maps\ act\ like\ matrix\ multiplication:\ \mathsf{Suppose}\ T}}{v_1,\ldots,v_n} \text{ is\ a basis\ of\ } V \text{ and } w_1,\ldots,w_m \text{ is\ a basis\ of\ } W. \text{ Then }$

$$\mathcal{M}(Tv) = \mathcal{M}(T)\mathcal{M}(v)$$

operator, $\mathcal{L}(V)$: A linear map from a vector space to itself is called an operator. The notation $\mathcal{L}(V)$ denotes the set of all operators on V. In other words, $\mathcal{L}(V) = \mathcal{L}(V, V)$ Injectivity is equivalent to surjectivity in finite dimensions: Suppose V is finite-dimensional and