Project: Predictive Analytics Capstone

Complete each section. When you are ready, save your file as a PDF document and submit it here: https://coco.udacity.com/nanodegrees/nd008/locale/en-us/versions/1.0.0/parts/7271/project

Task 1: Determine Store Formats for Existing Stores

1. What is the optimal number of store formats? How did you arrive at that number? The optimal number store formats are 3.

The optimal number of store formats is 3. This is because it has high median values within both the AR and CH index and smaller spread, showing compactness. We can get this through using the K-Centroids diagnosis tool on Alteryx.

2. How many stores fall into each store format?

Format 1: 23 Stores

Format 2: 29 Stores Format 3: 33 Stores

Using the K-Centroids Cluster Analysis tool using the same configuration as we used in K-Centroids Diagnostics tool:

Summary Report of the K-Means Clustering Solution Store_Cluster

Solution Summary

Call:

Report

 $stepFlexclust(scale(model.matrix(\sim -1 + Pct_Dry_Grocery + Pct_Dairy + Pct_Frozen_Food + Pct_Meat + Pct_Produce + Pct_Floral + Pct_Deli + Pct_Bakery + Pct_General_Merchandise, the.data)), k = 3, nrep = 10, FUN = kcca, family = kccaFamily("kmeans"))$

Cluster Information:

Cluster	Size	Ave Distance	Max Distance	Separation
1	23	2.320539	3.55145	1.874243
2	29	2.540086	4.475132	2.118708
3	33	2.115045	4.9262	1.702843

Convergence after 12 iterations.

Sum of within cluster distances: 196.83135.

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

Based on the summary report of the K-Means Clustering solution, considering the percentage of sales by category of each store, cluster 1 sells more in general merchandise; cluster 2 sells more in produce and floral; and cluster 3 sells more in deli and meat; etc.

	Pct_Dry_Grocery	Pct_Dalry	Pct_Frozen_Food	Pct_Meat	Pct_Produce	Pct_Floral	Pct_Dell
1	0.327833	-0.761016	-0.389209	-0.086176	-0.509185	-0.301524	-0.23259
2	-0.730732	0.702609	0.345898	-0.485804	1.014507	0.851718	-0.554641
3	0.413669	-0.087039	-0.032704	0.48698	-0.53665	-0.538327	0.64952
	Pct_Bakery	Pct_General_Merchandise					
1	-0.894261	1.208516					
2	0.396923	-0.304862					
3	0.274462	-0.574389					

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

Task 2: Formats for New Stores

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)

Since we must predict the clusters for the stores, so it is a classification problem and we have more than 2 classes to predict. So, we will use Decision Tree, Random Forest and Boosting. Using the workflow above, we get the statistics:

Model Comparison Report					
Fit and error measures					
Model	Accuracy	F1	Accuracy_1	Accuracy_2	Accuracy_3
Forest_Model	0.8235	0.8426	0.7500	1.0000	0.7778
Decision Tree	0.7059	0.7685	0.7500	1.0000	0.5556
Boosted_Model	0.8235	0.8889	1.0000	1.0000	0.6667
Model: model names in the current comparison. Accuracy: overall accuracy, number of correct predictions of all classes divided by total sample number. Accuracy_(class name): accuracy of Class [class name] is defined as the number of cases that are correctly predicted to be Class [class name] divided by the total number of case that actually belong to Class [class name], this measure is also known as recall. AUC: area under the ROC curve, only available for two-class classification. F1: F1 score, 2 * precision * recall / (precision + recall). The precision measure is the percentage of actual members of a class that were predicted to be in that class divided by the total number of cases predicted to be in that class. In situations where there are three or more classes, average precision and average recall values across classes are used to calculate the F1 score.					

Based on the results of the model comparison, we can clearly decide that the **Boosting algorithm** is producing the best model as it had high accuracy of 82.35% and max F1 score of 0.8889. Hence, we will use the Boosting algorithm to make the prediction.

Use the above created model to predict the clusters for the new stores:

	Actual_1	Actual_2	Actual_3
Predicted_1	4	0	1
Predicted_2	0	4	
Predicted_3	0	0	1
onfusion matrix of Decision Tree			
	Actual_1	Actual_2	Actual_:
Predicted_1	3	0	
Predicted_2	0	4	
Predicted_3	1	0	
onfusion matrix of Forest_Model			
	Actual_1	Actual_2	Actual_
Predicted_1	3	0	
Predicted_2	0	4	
Predicted_3	1	0	

2. What format do each of the 10 new stores fall into? Please fill in the table below.

Store Number	Segment
S0086	3
S0087	2
S0088	1
S0089	2
S0090	2
S0091	1
S0092	2
S0093	1
S0094	2
S0095	2

So, there are 3 stores in cluster 1, 6 stores in cluster 2 and 1 store in cluster 3.

Task 3: Predicting Produce Sales

1. What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?

For existing stores, I used both the ETS and ARIMA models to find the best solution. For predicting the aggregate produce for the existing stores, I plotted the Decomposition plots to understand the trend, seasonality, and error. Looking at the three plots below, it is apparent that there exists seasonality and the error appears to decrease over time. Since the trend curve slopes upward after a period, I will not use that. So, I will have seasonality multiplicatively, trend as none, and remainder multiplicatively giving an ETS (M, N, M).

We can see in the decomposition plot above there is no trend, seasonal is multiplicative and error is multiplicative. After comparing the results against the holdout sample, the ETS(M,N,M) performs better against the ARIMA(1,0,0) (1,1,0) model.

Accuracy Measures:

Model	ME	RMSE	MAE	MPE	MAPE	MASE
ARIMA_100_110						
ETS_MNM	-21581.13	663707.2	553511.5	-0.0437	2.5135	0.3257

2. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

For Existing Stores - Workflow:

For Existing Stores - Forecast plot:

For New Stores - Workflow:

For New Stores – Individual Forecast plot: Cluster 1:

Cluster 2:

Cluster 3:

Forecast Table:

Period	New Stores	Existing Stores
Jan 16	2,587,451	21,539,936
Feb 16	2,477,353	20,413,771
Mar 16	2,913,185	24,325,953
Apr 16	2,775,746	22,993,466
May 16	3,150,867	26,691,951
Jun 16	3,188,922	26,989,964
July 16	3,214,746	26,948,631
Aug 16	2,866,349	24,091,579
Sep 16	2,538,727	20,523,492
Oct 16	2,488,148	20,011,749
Nov 16	2,595,270	21,177,435
Dec 16	2,573,397	20,855,799

Tableau Visualisation:

Produce Sales Forecasting for Existing and New Stores

Before you submit

Please check your answers against the requirements of the project dictated by the rubric. Reviewers will use this rubric to grade your project.