Type: MCQ

- Q1. Which one of the following grammar generates the Language $L = \{a^i b^j | i \neq j\}$?. (0.5)
 - 1.S → AC | CB
 - $C \rightarrow aCb \mid a \mid b$
 - $A \rightarrow aA \mid \lambda$
 - $B \rightarrow Bb \mid \lambda$
 - 2. S \rightarrow aS | Sb | a | b
 - 3. S \rightarrow AC | CB
 - $C \rightarrow aCB \mid \lambda$
 - $A \rightarrow aA \mid \lambda$
 - $B \rightarrow Bb \mid \lambda$
 - 4. ** S → AC | CB
 - $C \rightarrow aCB \mid \lambda$
 - $A \rightarrow aA \mid a$
 - $B \rightarrow Bb \mid b$
- Q2. Language L given by the graph is . (0.5)

- 1. L = $\{x \in \{0, 1\}^* \mid x \text{ ends in 1 and does not contain substring 01}\}$
- 2. ** L = { $x \in \{0, 1\}^*$ | x ends in 1 and does not contain substring 00}
- 3. L = { $x \in \{0, 1\}^* \mid x \text{ ends in 1 and contain substring 11}}$
- 4. L = $\{x \in \{0, 1\}^* \mid x \text{ ends in 1 and does not contain substring 10}\}$
- Q3. Determine the sum of minimum and maximum number of final states for a DFA having 'P' states. (0.5)
 - 1. F
 - 2. ** P+1
 - 3. P-1
 - 4. P+2
- Q4. Predict the minimum number of states required in an Automaton to accept the following language. L = $\{w \mid w \text{ ends with } 00\}$.
 - 1. 3
 - 2. 2
 - 3. 4
 - 4. ** Cannot be said

Q5. In the λ -NFA, M = ({q0, q1, q2, q3}, {a}, δ, q0, {q3}) where 'S' is given in the transition table below, what is the minimum length of string to reach to the final state?

	λ	a	
qo	{q ₁ }	Ø	
q_1	{q ₂ }	Ø	
q_2	Ø	$\{q_2, q_3\}$	
q_3	Ø	Ø] <mark>(0</mark>

- 1. 0
- 2. 2
- 3. ** 1
- 4. 3

Q6. Given the λ -NFA. What are the states reachable when 'a' is read? (0.5)

- 1. {q0,q1,q2,q3,q4,q5,q6,q7}
- 2. ** {q1,q2,q3,q4,q6,q7}
- 3. $\{q1,q2,q3,q7\}$
- 4. {q3}

Q7. Which one of the following are NOT equivalent regular expressions? (0.5)

- 1. (01+10)*01 and ((01)*+(10)*)*01
- 2. (01+10)(11)* and (01(11)*+10(11)*)
- 3. ((01)*+(10)*)* and ((01)*(10)*)*
- 4. **((01)*+(10)*)(11)* and (01(11)*+10(11)*)*

Q8. Identify the regular expression (**RE**) that accepts all base 3 numbers 'b' such that b%3=1.

(0.5)

- 1. (0+1+2)*0
- 2. ****** (0 + 1 + 2)* 1
- 3. (0+1+2)*2
- 4. (0+1+2)*22

Q9. Identify the incorrect statement. For all regular languages: (0.5)

- 1. A corresponding regular expression can be obtained.
- 2. A left linear grammar can be written.
- 3. A nondeterministic automaton can be drawn.

- 4. ** None of the mentioned
- Q10. Which among the following cannot be accepted by a regular grammar? (0.5)
 - 1. L is a set of numbers divisible by 2
 - 2. ** L is a set of 0ⁿ 1ⁿ
 - 3. L is a set of string with odd number of 0
 - 4. L is a set of binary complement

Type: DES

Q11. Apply the principles of DFA and draw the DFA with 5 states for the languagge accepting strings

i)ending with "0110" over the input alphabet $\Sigma = \{0, 1\}$ 1

ii)starting with "00" or "11" over the input alphabet $\Sigma = \{0, 1\}$. (3)

Solun: i) 1.5 M ii) 1.5 M Total -3 Marks

Q12. Show that the L= $\{vwv:v,w \in \{a,b\}^*, |v|=2\}$ is regular. (3)

Solu:

This the DFA .[Students can consider v as a or b, or a itself ,If corresponding DFA is drawn or Regular expression is given or Regular Grammar is given ,then full marks can be awarded]

Q0→VQ1

Q1→vQ2

Q1→wQ1

Q2→wQ1

Q2→vQ2

Qo→Intitial state ,Q2→Final State .

[Each steps 0.5 marks for grammar can be considered Or else if grammar is correct with less steps or correct Regular expression is given then also marks can be awarded.]

Q13. Reduce the Automaton given that q1 is the start state and q6 is the final state.

δ	О	1	
\mathbf{q}_1	\mathbf{q}_2	\mathbf{q}_3	
\mathbf{q}_2	\mathbf{q}_4	\mathbf{q}_{5}	
\mathbf{q}_3	\mathbf{q}_{6}	\mathbf{q}_7	
q_4	\mathbf{q}_4	\mathbf{q}_{5}	
\mathbf{q}_{5}	\mathbf{q}_{6}	\mathbf{q}_7	
q_6	q_4	q_5	
\mathbf{q}_7	\mathbf{q}_{6}	q_7	<mark>. (3</mark>)
			\ - A

Solun:.

δ	O	1
\mathbf{q}_1	\mathbf{q}_2	\mathbf{q}_3
\mathbf{q}_2	\mathbf{q}_4	\mathbf{q}_{5}
\mathbf{q}_3	q 6	\mathbf{q}_{7}
\mathbf{q}_4	\mathbf{q}_4	\mathbf{q}_{5}
\mathbf{q}_{5}	\mathbf{q}_{6}	\mathbf{q}_{7}
\mathbf{q}_{6}	\mathbf{q}_4	\mathbf{q}_{5}
\mathbf{q}_7	q 6	\mathbf{q}_{7}

- 1 Mark for the table and marking final states.
- 1 Mark for distinguishable states
- 1 Mark for Minimized automata after merging states

Q14. For the NFA given in figure, Give the transition table for the equivalent DFA using Subset Construction Method

Solun:

1 mark for the table generation. 2 mark for the transitions.

Q15. Find a left linear grammar for the language generated by the grammar given below where 'S' is the start symbol. Write all the steps.

 $B\rightarrow 0S | 1A | \lambda$

 $C\rightarrow 0B | 1C | \lambda . (4)$

Solun:

Step 1: Draw corresponding DFA

Step 2: Reverse DFA

Step 3: Obtain RLG from reversed DFA

Step 4: Obtain LLG from RLG

Q16. Derive a regular expression for the given generalised transition graph using reduction of states method

Solun:

4 steps 0.5 each

Q17. Prove that the following language is not regular. $L = \{a^{n!} : n >= 1\} \Sigma = \{a\}$ (3)

Solun: (String =1M ,Pumping Lemma =1M,Contracdiction =1M)

Use the Pumping Lemma. Assume for contradiction that L is a regular language. Since L is infinite. We can apply the Pumping Lemma. Let m be the integer in the Pumping Lemma. Pick a string w such

that: $\mathbf{w} \in \mathbf{L}$, length $|\mathbf{w}| >= \mathbf{m}$, we pick $\mathbf{w} = \mathbf{a}^{m}$

Write
$$a^{m!} = x \ y \ z$$

From the Pumping Lemma

it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^{m!} = \underbrace{a...aa...aa...aa...aa...aa...a}_{x y y z}$$

Thus:
$$y = a^k$$
, $1 \le k \le m$

$$x \ y \ z = a^{m!} \qquad \qquad y = a^k, \quad 1 \le k \le m$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \underbrace{a...aa...aa...aa...aa...aa...aa...aa}_{x y y y} \in L$$

Thus:
$$a^{m!+k} \in L$$

$$x y z = a^{m!} \qquad y = a^k, \ 1 \le k \le m$$

From the Pumping Lemma: $x y^i z \in L$

$$i = 0, 1, 2, ...$$

Thus: $x y^2 z \in L$

$$a^{m!+k} \in L$$
 $1 \le k \le m$

Since: $L = \{a^{n!} : n \ge 0\}$

There must exist p such that:

$$m! + k = p!$$

Therefore: Our assumption that L is a regular language is not true.

Conclusion: L is not a regular language

Q18.(i) Show that the grammar is ambiguous. Consider string w= 0101011

. (2)

Solu: Two Leftmost Derivations:

Two Leftmost Derivations:

- (1) S→01S1
 - →010A11
 - →0101S11
 - →0101011
- (2) S→01S1
 - →0101S11
 - →0101011

There are two different leftmost derivative hence the language is ambiguous.

Q18.(ii) Find context free grammar for the following language with $n \ge 0$ and $m \ge 0$

i.
$$L = \{a^n b^m : 2n \le m \le 3n\}$$
 . (2)

Solun: