Chapter 5: Elasticity and applications

Jamie Hyder
Discussion section 4

September 19, 2023

Outline

Elasticity is an intuitive concept:

How do consumers change their behavior in response to changing prices or income?

We have different notions of elasticity, namely *price elasticity* and *income elasticity*... we will start by discussing price elasticity.

Price elasticity

We can consider price elasticity of supply and demand

- Price elasticity of demand: how much Q_D for a good responds to a change in the price of that good.
- Price elasticity of supply: how much Q_S for a good responds to a change in the price of that good.

Price Elasticity

A consumer or seller may be price **elastic** or **inelastic** for a particular good:

Elastic:

Quantity demanded/supplied responds a lot to changes in price.

Example: Travel

Inelastic:

Quantity demanded/supplied respond little to changes in price.

Example: Insulin

Elasticity Influences

What factors will influence a good's elasticity?

- Availability of close substitutes: other kinds of trucks, cars, bikes, etc.
- Necessities vs. luxuries: do you need it for work? For fun?
- Market definition: Are we considering the market for Ford F150s? For pickup trucks? For motor vehicles?)
- Time horizon: In the short run, maybe we need a pickup; in the long-run, maybe we retool our lives to accomadate a different car or no car at all

Calculating elasticity

We have a simple equation to find an elasticity:

$$X$$
 Elasticity of $Y = \left| \frac{\% \Delta X}{\% \Delta Y} \right|$

The price elasticity of demand is calculated as follows:

Price elasticity of demand =
$$\left| \frac{\% \Delta Q_D}{\% \Delta P} \right|$$

Calculating Elasticity

First, we need to know how to calculate the percent change of a price or quantity:

If good A used to cost \$10, and now it costs \$14, what is the percentage change?

$$\frac{\text{Change in price}}{\text{Original price}} * 100\% = \frac{\$14 - \$10}{\$10} * 100\% = 40\%$$

In our elasticity formula, we do not need to worry about multiplying by 100%.

Price elasticity of demand

Consider two points along a demand curve:

- A: price is $P_A = 12$ and quantity demanded is $Q_A = 60$
- B: $P_B = 8$ and $Q_B = 80$

We can use our formula to calculate the price elasticity of demand of:

- Moving from A to B
- Moving from B to A

Calculating price elasticity of demand

- **1** Moving from A to B: $P_e = \left| \frac{\frac{80-60}{60}}{\frac{8-12}{12}} \right| = \left| \frac{\frac{1}{3}}{-\frac{1}{3}} \right| = |-1| = 1$
- **2** Moving from B to A: $P_e = |\frac{\frac{60-80}{80}}{\frac{12-8}{8}}| = |\frac{-\frac{1}{4}}{\frac{1}{2}}| = |-\frac{1}{2}| = \frac{1}{2}$

** We get two different price elasticities! What gives?? **

To avoid problems caused by calculating elasticities using different bases (as we saw in the previous example), we can use the midpoint method.

The midpoint method:

Use the average of the two points as the base in percentage calculations:

Price elasticity of demand =
$$\frac{\frac{Q_2-Q_1}{(Q_2+Q_1)/2}}{\frac{P_2-P_1}{(P_2+P_1)/2}}$$

This is the formula we will use in this class!

Using the midpoint method with our previous example:

- $P_A = 12$ and $Q_A = 60$
- $P_B = 8$ and $Q_B = 80$
- What is the new base price?
- What is the new base quantity?
- What is the percent change for quantity demanded?
- What is the percent change for price?

Using the midpoint method with our previous example:

- $P_A = 12$ and $Q_A = 60$
- $P_B = 8$ and $Q_B = 80$
- What is the new base price?
- What is the new base quantity?
- What is the percent change for quantity demanded?
- What is the percent change for price?

Using the midpoint method with our previous example:

- $P_A = 12$ and $Q_A = 60$
- $P_B = 8$ and $Q_B = 80$
- What is the new base price?

- What is the new base quantity?
- What is the percent change for quantity demanded?
- What is the percent change for price?

Using the midpoint method with our previous example:

- $P_A = 12$ and $Q_A = 60$
- $P_B = 8$ and $Q_B = 80$
- What is the new base price?

$$\frac{P_A+P_B}{2}=\frac{12+8}{2}=\$10$$

What is the new base quantity?

What is the percent change for quantity demanded?

$$\frac{80-60}{70}=\frac{2}{7}$$

What is the percent change for price?

Using the midpoint method with our previous example:

- $P_A = 12$ and $Q_A = 60$
- $P_B = 8$ and $Q_B = 80$
- What is the new base price?

$$\frac{P_A+P_B}{2}=\frac{12+8}{2}=\$10$$

What is the new base quantity?

What is the percent change for quantity demanded?

$$\frac{80-60}{70}=\frac{2}{7}$$

- What is the percent change for price?
 - $\frac{12-8}{10} = \frac{2}{5}$

Using the midpoint method with our previous example:

- $P_A = 12$ and $Q_A = 60$
- $P_B = 8$ and $Q_B = 80$
- What is the new base price?

What is the new base quantity?

What is the percent change for quantity demanded?

•
$$\frac{80-60}{70} = \frac{2}{7}$$

What is the percent change for price?

$$\frac{12-8}{10} = \frac{2}{5}$$

Whether we move from A to B or B to A we get $P_e = \frac{2/7}{2/5} = \frac{5}{7}$

We can also calculate the elasticity of demand at a particular point on the demand curve:

Price elasticity of Demand
$$= |\frac{\Delta Q_D}{\Delta P}| \times \frac{P}{Q_D}$$

- ullet $rac{\Delta Q_D}{\Delta P}$ is the reciprocal slope of the demand curve at the point (Q_D,P)
 - (The slope of the demand curve is $\frac{\Delta P}{\Delta Q_D}$)

Let's do an example...

Imagine we are given the following demand equation and point on the curve:

- Demand equation: $P = -\frac{1}{2}Q + 10$
- Point A: $Q_D = 80 P = 8$

What is the price elasticity of demand at point A on the demand curve?

Price elasticity of demand
$$= \frac{1}{|\text{slope}|} \times \frac{P}{Q_D}$$

$$= \frac{1}{|-\frac{1}{2}|} \times \frac{8}{80}$$

$$= |-2| \times \frac{1}{10}$$

$$= |-\frac{1}{5}|$$

$$= \frac{1}{5}$$

Cases of elasticity of demand

Demand might be:

- **Elastic**: price change of $X\% \rightarrow$ demand change greater than X%
 - Elasticity > 1
- Inelastic: price change of $X\% \rightarrow$ demand change less than X%
 - Elasticity < 1
- Unit elastic: price change of $X\% \rightarrow$ demand change of X%
 - Elasticity = 1
- Perfectly inelastic: price change has no impact on demand
 - Elasticity = 0
- Perfectly elastic: small price change has enormous (infinite!) impact on demand
 - This one is tricky...

Let's draw them!

Revenue

The total revenue of a firm depends on the price and quantity sold of their products:

Total revenue =
$$P \times Q$$

So, when a firm increases or decreases their prices P, the associated change in quantity sold Q will determine their change in total revenue.

What does total revenue look like on a graph?

Revenue

In order to determine the change in Q caused by the change in P, we must use the price elasticity of demand...

When demand is inelastic:

If price increases, total revenue increases

When demand is elastic:

If price increases, total revenue decreases

When demand is unit elastic:

Total revenue remains constant when price changes

Revenue

Let's say the price of a coffee at Starbucks initially was P_A , but has just doubled to $P_B = 2 \times P_A$.

How will total revenue change when:

- Demand is elastic: quantity decreases by 75%
- Demand is inelastic: quantity decreases by 25%
- Demand is unit elastic

Different Elasticities

We have focused on the *Price elasticity of demand*, but there are others.

Income elasticity of demand:

- Positive for normal goods, negative for inferior goods
- income elasticity of demand = $\left| \frac{\% \Delta Q_D}{\% \Delta \text{ Income}} \right|$

Cross-price elasticity of demand:

- Positive for substitutes, negative for complements
- CP elasticity of demand = $|\frac{\% \Delta Q_{D1}}{\% \Delta P_2}|$

Price elasticity of supply

We use a very similar formula:

Price elasticity of supply =
$$|\frac{\% \Delta Q_S}{\% \Delta P}|$$

Firms may have supply that is:

- **Elastic**: an X% change in price $\rightarrow > X\%$ change in supply
 - Elasticity > 1
- Inelastic: an X% change in price $\rightarrow < X\%$ change in supply
 - Elasticity < 1
- Unit elastic: an X% change in price $\rightarrow X\%$ change in supply
 - Elasticity = 1
- ullet Perfectly inelastic: any change in price o no change in supply
 - Elasticity = 0
- \bullet Perfectly elastic: any change in price \to enormous change in supply
 - This one is tricky...