Санкт-Петербургский государственный университет

Математическое обеспечение и адмиистрирование информационных систем

Гусев Егор Игоревич Вычислительный практикум Отчет по заданию №6

Преподователь: Т.О. Евдокимова

Содержание

1.	Ссылка на код	3
2.	Постановка задачи	3
3.	Теория	3
4.	Численный эксперимент	4
	4.1. Описание	4
	4.2. Результаты	4

1. Ссылка на код

Код доступен по ссылке на github.

2. Постановка задачи

- 1. Реализовать метод Якоби поиска собственных чисел матрицы
- 2. Протестировать на матрице Гильберта порядка >5
- 3. Проверить, попадают ли найденные числа в область, определённую теоремой Гершгорина

3. Теория

Итерационный процесс метода Якоби представлен формулой $A^{(k+1)} = (H^{(k)})^{\mathrm{T}} A^{(k)} H^{(k)}$, где матрица $H^{(k)}$ называется матрицей вращения Якоби.

На k-й итерации выбирается максимальный по модулю недиагональный элемент $a_{ij}^{(k)}$, для которого определяется матрица $H^{(k)}$, приводящая элемент $a_{ij}^{(k+1)}$ матрицы $A^{(k+1)}$ к нулю.

Угол $\phi^{(k)}$ определяется по формуле

$$\phi^{(k)} = \frac{1}{2} \arctan \frac{2a_{ij}^{(k)}}{a_{ii}^{(k)} - a_{jj}^{(k)}}.$$

Итерационный процесс идет до тех пор, пока максимальный по модулю недиагональный элемент $a_{ij}^{(k)}$ больше заданной точности ε .

В итоге собственные числа матрицы A лежат на диагонали матрицы $A^{(k)}.$

4. Численный эксперимент

4.1 Описание

- 1. Реализуем метод Якоби.
- 2. Проверим первую стратегию выбора оптимального элемента на матрице Гильберта 2x2.
- 3. Проверим вторую стратегию выбора оптимального элемента на матрицах Гильберта с размерами 2x2, 3x3, 6x6.
- 4. Будем варьировать, чтобы установить зависимость между ограничением точности и количеством итераций метода.
- 5. Проверим, что все собственные числа лежат в объединении кругов Гершгорина.

4.2 Результаты

eps	Стратетия с максимальным по модулю с.ч (К-во итераций)	Стратетия с максимальным по модулю с.ч lambda_acc - lambda	Стретия обнуления по порядку (К-во итераций)	Стретия обнуления по порядку lambda_acc - lambda
0 0.000001	7	1.951010e-16	5	4.298829e-07
1 0.000010	6	2.846519e-12	5	4.298829e-07
2 0.000100	6	2.846519e-12	5	4.298829e-07
3 0.001000	5	3.070874e-07	4	7.479139e-07
4 0.010000	5	3.070874e-07	4	7.479139e-07

Рис. 1: Матрица Гильберта 3*3

eps	Стратетия с максимальным по модулю с.ч (К-во итераций)	Стратетия с максимальным по модулю с.ч lambda_acc - lambda	Стретия обнуления по порядку (К-во итераций)	Стретия обнуления по порядку lambda_acc - lambda
0 0.000001	24	3.994223e-11	20	0.000432
1 0.000010	24	3.994223e-11	20	0.000432
2 0.000100	18	2.186581e-07	19	0.000432
3 0.001000	17	1.008748e-04	11	0.006620
4 0.010000	11	8.019429e-03	9	0.008005

Рис. 2: Матрица Гильберта 5*5

eps	Стратетия с максимальным по модулю с.ч (К-во итераций)	Стратетия с максимальным по модулю с.ч lambda_acc - lambda	Стретия обнуления по порядку (К-во итераций)	Стретия обнуления по порядку lambda_acc - lambda
0 0.000001	50	3.020186e-07	42	0.001679
1 0.000010	43	3.048504e-07	38	0.001679
2 0.000100	36	2.100172e-05	16	0.017038
3 0.001000	28	5.833934e-04	15	0.017037
4 0.010000	17	1.782376e-02	13	0.017827

Рис. 3: Матрица Гильберта 7*7

Видно, что стратегия с выбором наибольшего по модулю недиагонального элемента дает лучший результат, однако требует большего числа итераций. Также была успешно проведена проверка принадлежности полученых с.ч. кругам Гершгорина (результат доступен в коде)

eps	Стратетия с максимальным по модулю с.ч (К-во итераций)	Стратетия с максимальным по модулю с.ч lambda_acc - lambda	Стретия обнуления по порядку (К-во итераций)	Стретия обнуления по порядку lambda_acc - lambda
0 0.000001	73	0.000002	59	0.003340
1 0.000010	67	0.000002	22	0.027106
2 0.000100	54	0.000069	20	0.027106
3 0.001000	38	0.001360	19	0.027104
4 0.010000	22	0.027764	17	0.027862

Рис. 4: Матрица Гильберта 9*9