

Aarhus University Department of Engineering 2017

## Thesis

## Title of project



## observation

Dennis Larsen Daniela Popovici 11671 201503243



#### Aarhus University Department of Engineering

 $\begin{array}{c} Finlandsgade \ 22 \\ 8200 \ Aarhus \ N \end{array}$ 

#### Project title:

Project Title has to be here

#### **Project:**

Master's thesis

#### Project period:

January 2017 - June 2017

#### Projekt group:

Do we have a number?

#### Group members:

11671 – Dennis Larsen 201503243 – Daniela Popovici

#### Supervisor:

Henrik Karstoft

Total page numbers: ?? Finished 06-06-2017

## Contents

| _ | 11101          | roduction                                        |
|---|----------------|--------------------------------------------------|
| 2 | The            | eoretical Background and State of the Art        |
|   | 2.1            | Theoretical Background in Reinforcement Learning |
|   | 2.2            | Previous Research                                |
|   |                | 2.2.1 Atari 2013                                 |
|   |                | 2.2.2 Go 2016                                    |
|   |                | 2.2.3 A3C 2016                                   |
|   |                | 2.2.4 Framework 2017                             |
| 3 | $\mathbf{Pro}$ | ject Framework                                   |
|   | 3.1            | Convolution Neural Networks                      |
|   | 3.2            | Recurrent Neural Networks                        |
|   |                | 3.2.1 Long Short Term Memory                     |

## Chapter 1

## Introduction

Getting in touch with the most promising and hottest topic in artificial intelligence represents a challenge  $\,$ 

To be continued...

## Chapter 2

# Theoretical Background and State of the Art

### 2.1 Theoretical Background in Reinforcement Learning

Reinforcement learning is an approach in artificial intelligence for goal-directed learning from interaction, which makes it different from the other approaches in machine learning.

#### 2.2 Previous Research

. . .

2.2.1 Atari 2013

. . .

2.2.2 Go 2016

...

2.2.3 A3C 2016

• • •

2.2.4 Framework 2017

• • •

## Chapter 3

# Project Framework

This project is about learning a car or robot to control and navigate it self. This should be done so the robot don't hit walls or obstacles. To do this a system is created. This system is created as inspiration from [1] Can be seen on Figure 3.1.



Figure 3.1: The block diagram of the system

#### 3.1 Convolution Neural Networks

CNN is here

## 3.2 Recurrent Neural Networks

...

 $3.2.1 \quad {\bf Long~Short~Term~Memory}$ 

...

# Bibliography

[1] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, "Asynchronous methods for deep reinforcement learning," *CoRR*, vol. abs/1602.01783, 2016. [Online]. Available: http://arxiv.org/abs/1602.01783