COVID-19 全球疫情分析与可视化

by 中国科学技术大学 王宇佳

数据来源

- world.csv,全球各国新增确诊,新增死亡数据(截至到4月23号)。来自欧盟开放数据门户: https://data.europa.eu/euodp/en/data/dataset/covid-19-coronavirus-data
- covid-age.csv, 意大利3月19号到4月2号期间确诊病人中的年龄, 性别分布。由 ISS(Istituto superiore della sanità)发布, 英文版见: https://www.kaggle.com/virosky/italy-covid19#covid-age.csv
- Italy-2019.csv, 意大利2019年总人口按照年龄和性别的分布。见: https://www.populationpyramid.net/italy/2019/

摘要

自武汉于2020年1月23日"封城"后,新冠病毒在全世界范围内引起了很多的关注。但是由于各国政府早期重视程度不够高,新冠病毒逐渐在全球范围内传播。截至2020年4月23日,全球总确诊数已达258w。本文将从欧盟开放数据门户每日更新的全球各国疫情数据出发,从全球范围、全球各大洲以及全球各国三个层次来分析从2019年12月31日至2020年4月23日期间的疫情变化。并且,利用多项式回归对4月23日未来10天的全球总确诊数和总死亡数进行预测。最后,本文将以疫情最为严重的国家之一——意大利为例,通过卡方检测来研究新冠病毒是否无差别攻击不同性别与年龄段的人,最后发现病毒更"喜欢"攻击年纪大的人,并且在一些年龄段内,病毒对性别也有不同的"偏爱"。

全球疫情变化

```
import numpy as np
import pandas as pd
import seaborn as sns
import datetime
from scipy import stats
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import statsmodels.stats.multitest as smt
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import PolynomialFeatures
import statsmodels.api as sm
```

```
from jupyterthemes import jtplot
jtplot.reset()
```

%matplotlib inline

导入欧盟开放数据门户提供的数据: world.csv

```
df = pd.read_csv('../data/world.csv')
df
```

	dateRep	day	month	year	cases	deaths	countriesAndTerritories	geold	countryterritoryCode	popD
0	23/04/2020	23	4	2020	84	4	Afghanistan	AF	AFG	37172
1	22/04/2020	22	4	2020	61	1 Afghanistan		AF	AFG	37172
2	21/04/2020	21	4	2020	35	2	2 Afghanistan A		AFG	37172
3	20/04/2020	20	4	2020	88	3	Afghanistan	AF	AFG	37172
4	19/04/2020	19	4	2020	63	0	Afghanistan	AF	AFG	37172
12591	25/03/2020	25	3	2020	0	0	Zimbabwe	ZW	ZWE	14439
12592	24/03/2020	24	3	2020	0	1	Zimbabwe	ZW	ZWE	14439
12593	23/03/2020	23	3	2020	0	0	Zimbabwe	ZW	ZWE	14439
12594	22/03/2020	22	3	2020	1	0	Zimbabwe	ZW	ZWE	14439
12595	21/03/2020	21	3	2020	1	0	Zimbabwe	ZW	ZWE	14439

12596 rows × 11 columns

```
df['date'] = pd.to_datetime(df[['year','month','day']],format='%Y%m%d')
df = df[['date','month','countriesAndTerritories','geoId','cases','deaths','popData2018','continentExp']]
df[df['cases']>0].sort_values(by=['date']).head()
```

	date	month	countriesAndTerritories	geold	cases	deaths	popData2018	continentExp
2577	2019-12-31	12	China	CN	27	0	1.392730e+09	Asia
2574	2020-01-03	1	China	CN	17	0	1.392730e+09	Asia
2572	2020-01-05	1	China	CN	15	0	1.392730e+09	Asia
11554	2020-01-13	1	Thailand	TH	1	0	6.942852e+07	Asia
6319	2020-01-15	1	Japan	JP	1	0	1.265291e+08	Asia

查找境外最早报告确诊的国家和时间:泰国,2020年1月13日

df[(df['countriesAndTerritories']!='China')&(df['cases']>0)].sort_values(by=['date']).head()

	date	month	countriesAndTerritories	geold	cases	deaths	popData2018	continentExp
11554	2020-01-13	1	Thailand	TH	1	0	69428524.0	Asia
6319	2020-01-15	1	Japan	JP	1	0	126529100.0	Asia
11550	2020-01-17	1	Thailand	TH	1	0	69428524.0	Asia
10749	2020-01-20	1	South_Korea	KR	1	0	51635256.0	Asia
12230	2020-01-21	1	United_States_of_America	US	1	0	327167434.0	America

将不同日期所有国家的数据汇总:

```
total = df[['date','cases','deaths']].groupby('date',as_index = False).sum().sort_values(by=['date'])
total['cumsum'] = total['cases'].cumsum() #计算世界总确诊数 (不是累计,而是现存确诊)
total['cumsum_deaths'] = total['deaths'].cumsum() #计算世界总死亡数
total['month'] = pd.DatetimeIndex(total['date']).month
total['diff'] = np.arange(len(total)) #diff为距离中国首次报告的日期(2019年12月31日)的天数
total
```

	date	cases	deaths	cumsum	cumsum_deaths	month	diff
0	2019-12-31	27	0	27	0	12	0
1	2020-01-01	0	0	27	0	1	1
2	2020-01-02	0	0	27	0	1	2
3	2020-01-03	17	0	44	0	1	3
4	2020-01-04	0	0	44	0	1	4
110	2020-04-19	84112	6421	2281632	159511	4	110
111	2020-04-20	74146	5145	2355778	164656	4	111
112	2020-04-21	77274	5195	2433052	169851	4	112
113	2020-04-22	87387	6935	2520439	176786	4	113
114	2020-04-23	67629	6022	2588068	182808	4	114

115 rows × 7 columns

我们可以看出,截至2020年4月23日(距离首例报告114天),全球总确诊人数为2588068人,总死亡人数为182808人。接下来,以diff为横坐标,绘制全球总确诊数、每日新增确诊数、总死亡数以及每日新增死亡数的变化图:

```
fig, ax = plt.subplots(4,1,figsize = (15,24))
sns.barplot(x = "diff", y = "cases", data = total,hue='month',
                 estimator = sum, dodge=False, ci = None, ax=ax[0])
sns.barplot(x = "diff", y = "cumsum", data = total, hue='month',
                 estimator = sum,dodge=False,ci = None, ax=ax[1])
sns.barplot(x = "diff", y = "deaths", data = total, hue='month',
                 estimator = sum,dodge=False,ci = None, ax=ax[2])
sns.barplot(x = "diff", y = "cumsum_deaths", data = total, hue='month',
                 estimator = sum, dodge=False, ci = None, ax=ax[3])
ax[0].set_title('World Daily New Confirmed Cases', fontsize=30)
ax[1].set_title('World Total Confirmed Cases', fontsize=30)
ax[2].set_title('World Daily New Deaths', fontsize=30)
ax[3].set_title('World Total Deaths', fontsize=30)
ax[0].set_ylabel('New Cases', fontsize=15)
ax[1].set_ylabel('Total Cases', fontsize=15)
ax[2].set_ylabel('New Deaths', fontsize=15)
```

```
ax[3].set_ylabel('Total Deaths', fontsize=15)
for i in (0,1,2,3):
          ax[i].set_xticks(np.arange(0,116,5))
          ax[i].set\_xticklabels(labels=np.arange(0,116,5))
          ax[i].set_xlabel('Days since 2019-12-31', fontsize=15)
          ax[i].legend(loc = 2);leg = ax[i].get_legend(); leg.set_title("Month"); labs = leg.texts
          labs[4].set_text("Dec 2019"); labs[0].set_text("Jan 2020")
         labs[1].set_text("Feb 2020"); labs[2].set_text("Mar 2020")
          labs[3].set_text("Apr 2020");
ax[0].annotate("First report (China)", xy=(0, 0), xytext=(5, 20000), fontsize=12,
                                      arrowprops=dict(arrowstyle="fancy",
                                                                        fc="0.6", ec="none",
                                                                         connectionstyle="angle3,angleA=0,angleB=-90"))
ax[0].annotate("First outside report (Thailand)", xy=(13, 0), xytext=(5, 10000),fontsize=12,
                                     arrowprops=dict(arrowstyle="fancy",
                                                                        fc="0.6", ec="none",
                                                                        connectionstyle="angle3,angleA=0,angleB=-90"))
ax[1].annotate("First report (China)", xy=(0, 0), xytext=(5, 500000), fontsize=12,
                                      arrowprops=dict(arrowstyle="fancy",
                                                                        fc="0.6", ec="none",
\label{lem:connectionstyle="angle3,angleA=0,angleB=-90")} $$ ax[1].annotate("First outside report (Thailand)", xy=(13, 0), xytext=(5, 250000), fontsize=12, $$ ax[1].annotate("First outside report (Thailand)", xy=(13, 0), xytext=(5, 250000), fontsize=12, $$ ax[1].annotate("First outside report (Thailand)", xy=(13, 0), xytext=(5, 250000), fontsize=12, $$ ax[1].annotate("First outside report (Thailand)", xy=(13, 0), xytext=(5, 250000), fontsize=12, $$ ax[1].annotate("First outside report (Thailand)", xy=(13, 0), xytext=(5, 250000), fontsize=12, $$ ax[1].annotate("First outside report (Thailand)", xy=(13, 0), xytext=(5, 250000), fontsize=12, $$ ax[1].annotate("First outside report (Thailand)", xy=(13, 0), xytext=(5, 250000), fontsize=12, $$ ax[1].annotate("First outside report (Thailand)", xy=(13, 0), xytext=(5, 250000), fontsize=12, $$ ax[1].annotate("First outside report (Thailand)", xy=(13, 0), xy=(13, 0
                                      arrowprops=dict(arrowstyle="fancy",
                                                                        fc="0.6", ec="none",
                                                                        connectionstyle="angle3,angleA=0,angleB=-90"))
{\tt fig.tight\_layout}()
```


可以看到,全球总确诊数从三月中旬开始快速增长。而全球每日新增确诊数在三月份增速很大,到了四月份增速在0附件波动。全球死亡数和确诊数的变化类似。

全球疫情预测

接下来,本文将采用多项式回归对全球的疫情进行预测。由于我们预测的对象是全球范围,用于训练的数据应该满足各大洲的确诊数大于一定的阈值(例如**100**),这个时候全球才可以认为是作为一个整体。因此,我们需要先求出各大洲确诊数大于**100**的时间。

```
#按各大洲进行统计
continent = df[['date','cases','deaths','continentExp']].groupby(['continentExp','date'],as_index = False).sum()
continent['cumsum'] = continent.groupby(['continentExp']).cumsum().cases
continent['cumsum_deaths'] = continent.groupby(['continentExp']).cumsum().deaths
continent['diff'] = [(i - pd.to_datetime('2019-12-31')).days for i in continent['date'] ]
continent['month'] = [i.month for i in continent['date']]
continent
```

	continentExp	date	cases	deaths	cumsum	cumsum_deaths	diff	month
0	Africa	2019-12-31	0	0	0	0	0	12
1	Africa	2020-01-01	0	0	0	0	1	1
2	Africa	2020-01-02	0	0	0	0	2	1
3	Africa	2020-01-03	0	0	0	0	3	1
4	Africa	2020-01-04	0	0	0	0	4	1
634	Other	2020-02-28	0	0	705	4	59	2
635	Other	2020-02-29	0	2	705	6	60	2
636	Other	2020-03-01	0	0	705	6	61	3
637	Other	2020-03-02	0	0	705	6	62	3
638	Other	2020-03-10	-9	1	696	7	70	3

639 rows × 8 columns

上表中'Other'数据实为日本钻石公主号邮轮的数据,由于它完全与世界隔离,因此我们应该在训练集中将其去掉。

Africa > 0: 2020-02-15 , 46 days after 2019-12-31 Africa > 100: 2020-03-11 , 71 days after 2019-12-31

```
#求各大洲开始时间以及确诊大于100时间
conti = ['Asia','America','Europe','Oceania','Other','Africa'];
t0 = list(str('a') * 6); t100 = list(str('a') * 6)
for i in range(len(conti)):
   t0[i] = continent[(continent['continentExp']==conti[i])&(continent['cumsum']>0)].date.min().strftime('%Y-%m-%d')
    t100[i] = continent[(continent['continentExp']==conti[i])&(continent['cumsum']>100)].date.min().strftime('%Y-%m-%d')
   print(conti[i],'> 0: ',t0[i],', ',
         (pd.to_datetime(t0[i]) - pd.to_datetime('2019-12-31')).days,'days after 2019-12-31')
   print(conti[i],'> 100: ',t100[i],', ',
         (pd.to_datetime(t100[i]) - pd.to_datetime('2019-12-31')).days,'days after 2019-12-31')
   print('\n')
Asia > 0: 2019-12-31 , 0 days after 2019-12-31
Asia > 100: 2020-01-19 , 19 days after 2019-12-31
America > 0: 2020-01-21 , 21 days after 2019-12-31
America > 100: 2020-03-02 , 62 days after 2019-12-31
Europe > 0: 2020-01-25 , 25 days after 2019-12-31
Europe > 100: 2020-02-23 , 54 days after 2019-12-31
Oceania > 0: 2020-01-25 , 25 days after 2019-12-31
Oceania > 100: 2020-03-10 , 70 days after 2019-12-31
Other > 0: 2020-02-05 , 36 days after 2019-12-31
Other > 100: 2020-02-11 , 42 days after 2019-12-31
```

由于轮船解散为3月10日,各大洲确诊数大于100为3月11日,因此我们只需要用3月11日之后的数据进行拟合。3月11日至4月23日一共44个数据点,选择44*80%大约为35个数据为训练集,剩下9个作为验证集。多项式的系数最高设为5,防止因为引入过多的参数而导致过拟合。接下来,我们将依次用2阶到5阶的多项式来对全球确诊数的训练集进行拟合,最后通过预测值在验证集上的均方根误差RMSE和回归系数R^2来选择最好的拟合模型。

```
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import PolynomialFeatures
import statsmodels.api as sm
train = total[total['date']>='2020-03-11'][0:36];
test = total[total['date']>='2020-03-11'][36:]
X_train = train['diff'][:, np.newaxis]; Y_train = train['cumsum'][:, np.newaxis]
X_test = test['diff'][:, np.newaxis]; Y_test = test['cumsum'][:, np.newaxis]
for i in (2,4,5,3):
    \verb"polynomial_features= PolynomialFeatures" (degree=i)
    X_train_poly = polynomial_features.fit_transform(X_train)
   X_test_poly = polynomial_features.fit_transform(X_test)
   model_total = sm.OLS(Y_train, X_train_poly).fit()
   y_train_pred = model_total.predict(X_train_poly)
   y_test_pred = model_total.predict(X_test_poly)
    print('order = ',i,', rmse = ',np.sqrt(mean_squared_error(test['cumsum'],y_test_pred)))
   print('order = ',i,', r2 = ',r2_score(test['cumsum'],y_test_pred))
    print('\n')
model_total.summary()
```

```
order = 2 , rmse = 236081.8860963121
order = 2 , r2 = -0.658153911572323
order = 4 , rmse = 194950.97454227586
order = 4 , r2 = -0.13070764485617348
order = 5 , rmse = 69586.83130315716
order = 5 , r2 = 0.8559366102318076
```

```
order = 3 , rmse = 26140.941946348037
order = 3 , r2 = 0.9796697849443129
```

OLS Regression Results

OL3 Regression Results										
Dep. Variable:	у	R-squared:	0.999							
Model:	OLS	Adj. R-squared:	0.999							
Method:	Least Squares	F-statistic:	2.047e+04							
Date:	Mon, 27 Apr 2020	Prob (F-statistic):	1.35e-52							
Time:	02:46:59	Log-Likelihood:	-393.40							
No. Observations:	36	AIC:	794.8							
Df Residuals:	32	BIC:	801.1							
Df Model:	3									
Covariance Type:	nonrobust									

	coef	std err	t	P> t	[0.025	0.975]
const	2.626e+07	1.85e+06	14.223	0.000	2.25e+07	3e+07
х1	-8.661e+05	6.35e+04	-13.647	0.000	-9.95e+05	-7.37e+05
х2	9067.2970	721.759	12.563	0.000	7597.121	1.05e+04
х3	-28.8530	2.717	-10.620	0.000	-34.387	-23.319

Omnibus:	1.734	Durbin-Watson:	0.317
Prob(Omnibus):	0.420	Jarque-Bera (JB):	1.549
Skew:	-0.385	Prob(JB):	0.461
Kurtosis:	2.337	Cond. No.	5.92e+08

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.92e+08. This might indicate that there are strong multicollinearity or other numerical problems.

可以看到3阶的多项式模型在验证集上的RMSE最小,R^2最大,因此预测效果最好。上面结果中,2阶和4阶的多项式模型在验证集上的回归系数为负数,这说明这两个模型的表现还不如平均值近似。另外,结果中提示"条件数(condition number)太大,可能是由变量之间有很强的关联造成的",这是因为我们采用多变量线性回归的方法来拟合多项式模型,显然,每个变量都是由时间变量t的n次方,因此是强关联的。接下来,画图展示拟合模型和真实数据的重合程度:

```
x = np.arange(70,151,5)[:, np.newaxis]
x_poly = polynomial_features.fit_transform(x)
pred = model_total.predict(x_poly)

fig, ax = plt.subplots(figsize = (15,6))
ax.scatter(X_train ,Y_train,label = 'Train data')
ax.scatter(X_test ,Y_test,label = 'Test data')
ax.plot(x,pred,label = 'Prediction')
ax.set_title('Prediction of World Total Confirmed Cases', fontsize=30)
ax.set_ylabel('Total Cases', fontsize=15)
ax.set_xlabel('Days since 2019-12-31', fontsize=15)
ax.legend()
```

<matplotlib.legend.Legend at 0x1e12c71d888>

Prediction of World Total Confirmed Cases

上图蓝色点为训练集,黄点为验证集,蓝线为3阶多项式模型。我们可以看到,该模型预测距离2019年12月31日大概135天时,总确诊数开始下降。由于传染病模型一般与指数增长有关,多项式模型只能在一定的范围内进行预测。另外,由于上图后期表现的下降行为是3阶多项式函数自身带来的,因此我们将其预测能力限定为10天:

```
#預測未来10天的总确诊数

x = np.arange(115,126)[:, np.newaxis]
x_poly = polynomial_features.fit_transform(x)
total_pred = model_total.predict(x_poly)
total_pred
```

```
array([2694775.12350734, 2768494.19841819, 2840266.16908678,

2909917.91742454, 2977276.32534289, 3042168.27475323,

3104420.647567 , 3163860.32569562, 3220314.19105049,

3273609.12554304, 3323572.01108472])
```

我们可以用同样的方法对全球总死亡人数进行预测:

```
train = total[total['date']>='2020-03-11'][0:36];
test = total[total['date']>='2020-03-11'][36:]
X_train = train['diff'][:, np.newaxis]; Y_train = train['cumsum_deaths'][:, np.newaxis]
X_test = test['diff'][:, np.newaxis]; Y_test = test['cumsum_deaths'][:, np.newaxis]
for i in (5,4,3,2):
    polynomial_features= PolynomialFeatures(degree=i)
    X_train_poly = polynomial_features.fit_transform(X_train)
   X_{test_poly} = polynomial_features.fit_transform(X_{test})
   model_death = sm.OLS(Y_train, X_train_poly).fit()
   y_train_pred = model_death.predict(X_train_poly)
   y_test_pred = model_death.predict(X_test_poly)
    print('order = ',i,', rmse = ',
         np.sqrt(mean_squared_error(test['cumsum_deaths'],y_test_pred)))
    print('order = ',i,', r2 = ',r2_score(test['cumsum_deaths'],y_test_pred))
    print('\n')
model_death.summary()
```

```
order = 5 , rmse = 28217.46205539407
order = 5 , r2 = -2.635847774659255
```

```
order = 4 , rmse = 13361.006478013676
order = 4 , r2 = 0.18483008765771936
```

```
order = 3 , rmse = 8921.404315303826
order = 3 , r2 = 0.6365570605355955
```

```
order = 2 , rmse = 8630.458771862423
order = 2 , r2 = 0.6598757814303161
```

OLS Regression Results

	0 25 11051 0351011 1105											
Dep. Variable:	у	R-squared:	0.999									
Model:	OLS	Adj. R-squared:	0.999									
Method:	Least Squares	F-statistic:	1.340e+04									
Date:	Mon, 27 Apr 2020	Prob (F-statistic):	9.57e-49									
Time:	02:47:09	Log-Likelihood:	-310.34									
No. Observations:	36	AIC:	626.7									
Df Residuals:	33	BIC:	631.4									
Df Model:	2											
Covariance Type:	nonrobust											

	coef	std err	t	P> t	[0.025	0.975]
const	6.892e+05	1.88e+04	36.617	0.000	6.51e+05	7.27e+05
х1	-1.84e+04	429.402	-42.850	0.000	-1.93e+04	-1.75e+04
x2	123.7140	2.423	51.065	0.000	118.785	128.643

Omnibus:	1.811	Durbin-Watson:	0.315
Prob(Omnibus):	0.404	Jarque-Bera (JB):	1.236
Skew:	-0.179	Prob(JB):	0.539
Kurtosis:	2.166	Cond. No.	6.57e+05

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.57e+05. This might indicate that there are strong multicollinearity or other numerical problems.

可以看出,对于死亡人数的预测,2阶多项式模型的效果要好一些。同样,画图展示拟合模型和真实数据的重合程度:

```
x = np.arange(70,151,5)[:, np.newaxis]
x_poly = polynomial_features.fit_transform(x)
pred = model_death.predict(x_poly)

fig, ax = plt.subplots(figsize = (15,6))
ax.scatter(X_train ,Y_train,label = 'Train data')
ax.scatter(X_test ,Y_test,label = 'Test data')
ax.plot(x,pred,label = 'Prediction')
ax.set_title('Prediction of world wotal Deaths', fontsize=30)
ax.set_ylabel('Total deaths', fontsize=15)
ax.set_xlabel('Days since 2019-12-31', fontsize=15)
ax.legend()
```

<matplotlib.legend.Legend at 0x1e12caf3088>

Prediction of World Wotal Deaths

最后,我们将4月23日未来10天的全球总确诊数和全球总死亡数的预测进行汇总:

date	04-24	04-25	04-26	04-27	04-28	04-29	04-30	05-01	05-02	05-03	05-04
world total cases prediction	2694775	2768494	2840266	2909917	2977276	3042168	3104420	3163860	3220314	3273609	3323572
world total deaths prediction	209288	219467	229892	240565	251485	262653	274069	285731	297641	309799	322204

各大洲疫情变化

统计各大洲到4.23号截至报告过病例的国家:

```
Affected countries in Asia:
 ['Afghanistan' 'Bahrain' 'Bangladesh' 'Bhutan' 'Brunei_Darussalam'
 'Cambodia' 'China' 'India' 'Indonesia' 'Iran' 'Iraq' 'Israel' 'Japan'
 'Jordan' 'Kazakhstan' 'Kuwait' 'Kyrgyzstan' 'Laos' 'Lebanon' 'Malaysia'
 'Maldives' 'Mongolia' 'Myanmar' 'Nepal' 'Oman' 'Pakistan' 'Palestine'
 'Philippines' 'Qatar' 'Saudi_Arabia' 'Singapore' 'South_Korea'
 'Sri_Lanka' 'Syria' 'Taiwan' 'Thailand' 'Timor_Leste' 'Turkey'
 'United Arab Emirates' 'Uzbekistan' 'Vietnam' 'Yemen'l
Affected countries in America:
 ['Anguilla' 'Antigua_and_Barbuda' 'Argentina' 'Aruba' 'Bahamas' 'Barbados'
 'Belize' 'Bermuda' 'Bolivia' 'Bonaire, Saint Eustatius and Saba' 'Brazil'
 'British_Virgin_Islands' 'Canada' 'Cayman_Islands' 'Chile' 'Colombia'
 'Costa_Rica' 'Cuba' 'Curaçao' 'Dominica' 'Dominican_Republic' 'Ecuador'
 'El_Salvador' 'Falkland_Islands_(Malvinas)' 'Greenland' 'Grenada'
 'Guatemala' 'Guyana' 'Haiti' 'Honduras' 'Jamaica' 'Mexico' 'Montserrat'
 'Nicaragua' 'Panama' 'Paraguay' 'Peru' 'Puerto_Rico'
 'Saint_Kitts_and_Nevis' 'Saint_Lucia' 'Saint_Vincent_and_the_Grenadines'
 'Sint_Maarten' 'Suriname' 'Trinidad_and_Tobago'
 'Turks_and_Caicos_islands' 'United_States_of_America'
 'United_States_Virgin_Islands' 'Uruguay' 'Venezuela']
```

```
Affected countries in Europe :
 ['Albania' 'Andorra' 'Armenia' 'Austria' 'Azerbaijan' 'Belarus' 'Belgium'
 'Bosnia_and_Herzegovina' 'Bulgaria' 'Croatia' 'Cyprus' 'Czechia'
 'Denmark' 'Estonia' 'Faroe_Islands' 'Finland' 'France' 'Georgia'
 'Germany' 'Gibraltar' 'Greece' 'Guernsey' 'Holy_See' 'Hungary' 'Iceland'
 'Ireland' 'Isle_of_Man' 'Italy' 'Jersey' 'Kosovo' 'Latvia'
 'Liechtenstein' 'Lithuania' 'Luxembourg' 'Malta' 'Moldova' 'Monaco'
 'Montenegro' 'Netherlands' 'North_Macedonia' 'Norway' 'Poland' 'Portugal'
 'Romania' 'Russia' 'San_Marino' 'Serbia' 'Slovakia' 'Slovenia' 'Spain'
 'Sweden' 'Switzerland' 'Ukraine' 'United_Kingdom']
Affected countries in Oceania:
 ['Australia' 'Fiji' 'French_Polynesia' 'Guam' 'New_Caledonia'
 'New_Zealand' 'Northern_Mariana_Islands' 'Papua_New_Guinea']
Affected countries in Africa:
 ['Algeria' 'Angola' 'Benin' 'Botswana' 'Burkina_Faso' 'Burundi' 'Cameroon'
 'Cape_Verde' 'Central_African_Republic' 'Chad' 'Congo' 'Cote_dIvoire'
 'Democratic_Republic_of_the_Congo' 'Djibouti' 'Egypt' 'Equatorial_Guinea'
 'Eritrea' 'Eswatini' 'Ethiopia' 'Gabon' 'Gambia' 'Ghana' 'Guinea'
 'Guinea_Bissau' 'Kenya' 'Liberia' 'Libya' 'Madagascar' 'Malawi' 'Mali'
 'Mauritania' 'Mauritius' 'Morocco' 'Mozambique' 'Namibia' 'Niger'
 'Nigeria' 'Rwanda' 'Sao_Tome_and_Principe' 'Senegal' 'Seychelles'
 'Sierra_Leone' 'Somalia' 'South_Africa' 'South_Sudan' 'Togo'
 'Tunisia' 'Uganda' 'United_Republic_of_Tanzania' 'Zambia' 'Zimbabwe']
```

统计各大洲最先报告病例的时间及国家:

```
First affected country in Asia : China , 2019-12-31 , 0 days

First affected country in America : United_States_of_America , 2020-01-21 , 21 days

First affected country in Europe : France , 2020-01-25 , 25 days

First affected country in Oceania : Australia , 2020-01-25 , 25 days

First affected country in Africa : Egypt , 2020-02-15 , 46 days
```

各大洲疫情画图:

```
a = [(0.0), (21.0), (25.0), (25.0), (46.0)]:
b = [[(0,7500),(0,150000),(0,750),(0,15000)],[(10,7000),(10,140000),(10,700),(10,14000)],
             [(18,7500),(18,150000),(18,750),(18,15000)],[(30,7500),(30,150000),(30,750),(30,15000)],
             [(50,7500),(50,150000),(50,750),(50,15000)]];
c = ['China','U.S.','France','Australia','Egypt'];
d = ['blue','orange','green','red','purple'];
 e = ['cases','cumsum','deaths','cumsum_deaths'];
 f = ['New cases','Total cases','New deaths','Total deaths'];
g = ['Daily New Confirmed Cases of 5 Continents ','Total Confirmed Cases of 5 Continents',
             'Daily New Deaths of 5 Continents', 'Total Deaths of 5 Continents']
 fig, ax = plt.subplots(4,1,figsize = (15,24))
 for j in range(4):
          for i in range(len(conti1)):
                    ax[j].plot(continent[continent['continentExp']==conti1[i]]['diff'],
                                                       continent[continent['continentExp']==conti1[i]][e[j]],
                              label = conti1[i])
                    ax[j]. annotate(c[i], \ xy=a[i], \ xytext=b[i][j], fontsize=12, color=d[i], arrowprops=dict(arrowstyle='fancy', arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=dict(arrowprops=d
                                     fc="0.6", ec="none",connectionstyle="angle3,angleA=0,angleB=-90"))
          ax[i].set_xticks(np.arange(0,116,5))
          ax[j].set_xticklabels(labels=np.arange(0,116,5))
          ax[j].set_xlabel('Days since 2019-12-31', fontsize=15)
          ax[j].set_ylabel(f[j], fontsize=15)
          ax[j].set_title(g[j], fontsize=30)
          ax[j].grid(True); ax[j].legend()
 fig.tight_layout()
```


上图由于美洲数据的量级很大,不能展现量级小一些的大洋洲和非洲的细节,下面单独画出:

```
a = [(0,0),(21,0),(25,0),(25,0),(46,0)];
b = [[(0,7500),(0,150000),(0,750),(0,15000)],[(10,7000),(10,140000),(10,700),(10,14000)],\\
               \big[ (18,7500), (18,150000), (18,750), (18,15000) \big], \big[ (30,200), (30,4000), (30,11), (30,200) \big], \\
              [(50,200),(50,4000),(50,11),(50,200)]];
c = ['China','U.S.','France','Australia','Egypt'];
d = ['blue','orange','green','red','purple'];
e = ['cases','cumsum','deaths','cumsum_deaths'];
f = ['New cases','Total cases','New deaths','Total deaths'];
g = ['Daily New Confirmed Cases in Oceania and Africa ','Total Confirmed Cases in Oceania and Africa',
              'Daily New Deaths in Oceania and Africa','Total Deaths in Oceania and Africa']
 fig, ax = plt.subplots(4,1,figsize = (15,24))
for j in range(4):
           for i in (3,4):
                     ax[j].plot(continent[continent['continentExp']==conti1[i]]['diff'],
                                                         continent[continent['continentExp']==conti1[i]][e[j]],
                                label = conti1[i],color=d[i])
                     ax[j]. annotate (c[i], xy=a[i], xytext=b[i][j], fontsize=12, color=d[i], arrowprops=dict(arrowstyle=' fancy', arrowprops
                                        fc="0.6", ec="none",connectionstyle="angle3,angleA=0,angleB=-90"))
           ax[j].set_xticks(np.arange(0,116,5))
           ax[j].set_xticklabels(labels=np.arange(0,116,5))
           ax[j].set_xlabel('Days since 2019-12-31', fontsize=15)
          ax[j].set_ylabel(f[j], fontsize=15)
           ax[j].set\_title(g[j], fontsize=30)
           ax[j].grid(True); ax[j].legend()
fig.tight_layout()
```


各国疫情变化

计算各个国家的确诊率以及死亡率:

	countriesAndTerritories	cases	deaths	popData2018	rate(%)	death_rate(%)
0	World	2588068	182808	7.748315e+09	0.03	7.06
1	U.S.	842629	46784	3.271674e+08	0.26	5.55
2	Spain	208389	21717	4.672375e+07	0.45	10.42
3	Italy	187327	25085	6.043128e+07	0.31	13.39
4	Germany	148046	5094	8.292792e+07	0.18	3.44
5	U.K.	133495	18100	6.648899e+07	0.20	13.56
6	France	119151	21340	6.698724e+07	0.18	17.91
7	Turkey	98674	2376	8.231972e+07	0.12	2.41
8	Iran	85996	5391	8.180027e+07	0.11	6.27
9	China	83876	4636	1.392730e+09	0.01	5.53
10	Russia	57999	513	1.444780e+08	0.04	0.88
11	Brazil	45757	2906	2.094693e+08	0.02	6.35
12	Belgium	41889	6262	1.142207e+07	0.37	14.95
13	Canada	40179	1974	3.705886e+07	0.11	4.91
14	Netherlands	34842	4054	1.723102e+07	0.20	11.64
15	Switzerland	28186	1216	8.516543e+06	0.33	4.31
16	Portugal	21982	785	1.028176e+07	0.21	3.57
17	India	21393	681	1.352617e+09	0.00	3.18
18	Peru	19250	530	3.198926e+07	0.06	2.75
19	Ireland	16671	769	4.853506e+06	0.34	4.61
20	Sweden	16004	1937	1.018318e+07	0.16	12.10

计算各个国家的(总确诊数,总死亡数,确诊率,死亡率)的前20排名汇总表:

```
country1 = country.drop(0,axis = 0)
rank_c = country1[['countriesAndTerritories','cases']].sort_values(
   by=['cases'],ascending=False).head(20); rank_c.reset_index(drop=True, inplace=True)
rank_d = country1[['countriesAndTerritories','deaths']].sort_values(
   by=['deaths'],ascending=False).head(20); rank_d.reset_index(drop=True, inplace=True)
rank\_r = country1.dropna()[['countriesAndTerritories','rate(\%)']].sort\_values(
   by=['rate(%)'],ascending=False).head(20); rank_r.reset_index(drop=True, inplace=True)
rank_dr = country1.dropna()[['countriesAndTerritories','death_rate(%)']].sort_values(
   by=['death_rate(%)'],ascending=False).head(20); rank_dr.reset_index(drop=True, inplace=True)
rank_r.iloc[0,0] = 'cruise ship'
rank = pd.concat([rank_c, rank_d, rank_r, rank_dr], axis = 1)
rank.index = np.arange(1,21);
rank.columns= ['#Cases','','#Deaths','','Confirmed Rate(%)','','Death Rate(%)','']
#加入世界平均数据
\label{localization} World\_Confirmed\_Rate = np.float64('\{:,.2f\}'.format(100*2588068/7748315400))
World_Death_Rate = np.float64('{:,.2f}'.format(100*182808/2588068))
world = pd.DataFrame(data=[['world',2588068,'world',182808,'world',world_Confirmed_Rate,'world',world_Death_Rate]],
```

```
columns=['#Cases','','#Deaths','','Confirmed Rate(%)','','Death Rate(%)',''])
rank = pd.concat([rank,World]); rank.sort_index(inplace = True)
rank
```

	#Cases	#Cases			Confirmed Rate(%)		Death Rate(%)		
0	World	2588068	World	182808	World	0.03	World	7.06	
1	U.S.	842629	U.S.	46784	cruise ship	23.20	British_Virgin_Islands	20.00	
2	Spain	208389	Italy	25085	San_Marino	1.44	Nicaragua	20.00	
3	Italy	187327	Spain	21717	Andorra	0.94	France	17.91	
4	Germany	148046	France	21340	Holy_See	0.90	Sint_Maarten	16.44	
5	U.K.	133495	U.K.	18100	Luxembourg	0.60	Belgium	14.95	
6	France	119151	Belgium	6262	Iceland	0.50	Northern_Mariana_Islands	14.29	
7	Turkey	98674	Iran	5391	Spain	0.45	Mauritania	14.29	
8	Iran	85996	Germany	5094	Gibraltar	0.39	Algeria	13.81	
9	China	83876	China	4636	Guernsey	0.39	U.K.	13.56	
10	Russia	57999	Netherlands	4054	Faroe_Islands	0.38	Italy	13.39	
11	Brazil	45757	Brazil	2906	Isle_of_Man	0.37	Malawi	13.04	
12	Belgium	41889	Turkey	2376	Belgium	0.37	Bahamas	12.86	
13	Canada	40179	Canada	1974	Ireland	0.34	Antigua_and_Barbuda	12.50	
14	Netherlands	34842	Sweden	1937	Switzerland	0.33	Sweden	12.10	
15	Switzerland	28186	Switzerland	1216	Italy	0.31	Netherlands	11.64	
16	Portugal	21982	Mexico	970	Qatar	0.26	Belize	11.11	
17	India	21393	Portugal	785	U.S.	0.26	Zimbabwe	10.71	
18	Peru	19250	Ireland	769	Monaco	0.25	Guyana	10.45	
19	Ireland	16671	India	681	Jersey	0.24	Spain	10.42	
20	Sweden	16004	Indonesia	635	Liechtenstein	0.22	Suriname	10.00	

计算总确诊数排名前十的国家的疫情变化表:

```
\texttt{temp} = \texttt{df[df['countriesAndTerritories'].isin(list(country.countriesAndTerritories.head(11))+[}
    'United_States_of_America','United_Kingdom'])]
top10 = temp[['date','cases','deaths','countriesAndTerritories']].groupby(['countriesAndTerritories','date'],
                                                                            as_index = False).sum()
\verb|top10['cumsum'| = top10.groupby(['countriesAndTerritories']).cumsum().cases|\\
\verb|top10['cumsum\_deaths'|| = \verb|top10.groupby(['countriesAndTerritories']).cumsum().deaths|| \\
top10['diff'] = [(i - pd.to_datetime('2019-12-31')).days for i in top10['date']]
top10['death\_rate(\%)'] = (100*top10['cumsum\_deaths']/top10['cumsum']).map('\{:,.2f\}'.format).astype('float64')
def converter(x):
    if x == 'United_States_of_America':
        return 'U.S.'
    if x == 'United_Kingdom':
       return 'U.K.'
    else:
        return x
top10['countriesAndTerritories'] = top10['countriesAndTerritories'].apply(converter)
top10.fillna(0,inplace = True)
top10
```

	countriesAndTerritories	date	cases	deaths	cumsum	cumsum_deaths	diff	death_rate(%)
0	China	2019-12-31	27	0	27	0	0	0.00
1	China	2020-01-01	0	0	27	0	1	0.00
2	China	2020-01-02	0	0	27	0	2	0.00
3	China	2020-01-03	17	0	44	0	3	0.00
4	China	2020-01-04	0	0	44	0	4	0.00
1071	U.S.	2020-04-19	32922	1856	735086	38910	110	5.29
1072	U.S.	2020-04-20	24601	1772	759687	40682	111	5.36
1073	U.S.	2020-04-21	28065	1857	787752	42539	112	5.40
1074	U.S.	2020-04-22	37289	2524	825041	45063	113	5.46
1075	U.S.	2020-04-23	17588	1721	842629	46784	114	5.55

1076 rows × 8 columns

确诊数前五的国家以及中国(第九)的疫情画图:

```
a = ['cases','cumsum','deaths','cumsum_deaths','death_rate(%)'];
b = ['New cases','Total cases','New deaths','Total deaths','death_rate(%)'];
c = ['Daily New Confirmed Cases in 6 countries ','Total Confirmed Cases in 6 countries',
'Daily New Deaths in 6 countries', 'Total Deaths in 6 countries', 'Death Rate in 6 countries']
d = [9,1,2,3,4,5]; d1 = ['th, ','st, ','nd, ','rd, ','th, ','th, ']
fig, ax = plt.subplots(5,1,figsize = (15,30))
for j in range(5):
    for i in range(6):
        x = top10[top10['countriesAndTerritories']==country.countriesAndTerritories[d[i]]]['diff']
         y = top10[top10['countriesAndTerritories'] == country.countriesAndTerritories[d[i]]][a[j]] \\
         ax[j].plot(x,y,label = str(d[i]) + d1[i] + country.countriesAndTerritories[d[i]]) \\
     ax[j].set_xticks(np.arange(0,116,5))
    ax[j].set_xticklabels(labels=np.arange(0,116,5))
    ax[j].set_xlabel('Days since 2019-12-31', fontsize=15)
     ax[j].set_ylabel(b[j], fontsize=15)
     ax[j].set_title(c[j], fontsize=30)
    ax[j].grid(True); ax[j].legend()
fig.tight_layout()
```


病毒是否无差别攻击不同性别与年龄?——以意大利为例

本节,我们以疫情最严重的国家之一意大利的数据为样本,分析新冠病毒是否无差别攻击不同的性别和年龄段群体。我们将分两步来进行:

- 1. 利用卡方检测检验分别检验在男性群体和女性群体中,新冠病毒是否无差别攻击各个年龄段
 - 。 原假设H0为: 在男性群体/女性群体中,新冠病毒无差别攻击各个年龄段。
- 2. o 讨论不同的年龄段中,新冠病毒是否无差别攻击不同的性别。由于有多个年龄段,我们不能简单的使用p值来判断是否显著,我们应该采用修正的p值,例如Holm-Bonferroni方法。
 - 。 第i个原假设H0: 在第i个年龄段中,新冠病毒无差别攻击各个性别。

最后我们汇总在哪些年龄段中HO被拒绝了。

计算不同性别不同年龄段的真实数据和原假设H0成立的前提下的期望值:

```
italy_case = pd.read_csv('../data/covid-age.csv',index_col=0) #意大利3月19号到4月2号期间病例样本
italy_pop0 = pd.read_csv('../data/Italy-2019.csv') #意大利真实人口数据
#若HO成立,按照真实人口数据求各个年龄段不同性别的病例的期望值

M_total = italy_pop0.sum().M ; F_total = italy_pop0.sum().F

M_proportion = np.random.randn(10); F_proportion = np.random.randn(10)

for i in range(0,9):

    M_proportion[i] = (italy_pop0.iloc[2*i:2*i+2,:].sum().M)/M_total;
    F_proportion[i] = (italy_pop0.iloc[2*i:2*i+2,:].sum().F)/F_total;

M_proportion[9] = (italy_pop0.iloc[18:,:].sum().M)/M_total;
F_proportion[9] = (italy_pop0.iloc[18:,:].sum().F)/F_total;

italy_agetest = italy_case.iloc[0:10,[0,1,3,5]]

italy_agetest['M_exp'] = [round(M_proportion[i]*italy_agetest['male_cases'].sum()) for i in range(10)]

italy_agetest['F_exp'] = [round(F_proportion[i]*italy_agetest['female_cases'].sum()) for i in range(10)]
```

	age_classes	male_cases	female_cases	total_cases	M_exp	F_exp
0	0-9	381	307	693	5162.0	3803.0
1	10-19	475	454	931	5817.0	4269.0
2	20-29	1919	2531	4530	6216.0	4564.0
3	30-39	3505	3885	7466	7019.0	5419.0
4	40-49	6480	7130	13701	9017.0	7120.0
5	50-59	11149	9706	20975	9100.0	7405.0
6	60-69	11761	6254	18089	6945.0	5923.0
7	70-79	12281	6868	19238	5338.0	4942.0
8	80-89	8553	7644	16252	2802.0	3380.0
9	>90	1374	2973	4356	461.0	928.0

真实数据和期望值画图比较:

```
italy_agetest1 = pd.melt(italy_agetest,id_vars=['age_classes'],value_vars=['male_cases','M_exp'])
italy_agetest2 = pd.melt(italy_agetest,id_vars=['age_classes'],value_vars=['female_cases','F_exp'])
fig, ax = plt.subplots(2,1,figsize = (15,12))
sns.catplot(x='age_classes',y='value',hue='variable',kind='bar',data=italy_agetest1,ax=ax[0])
sns.catplot(x='age_classes',y='value',hue='variable',kind='bar',data=italy_agetest2,ax=ax[1])
ax[0].set_xlabel('Age groups', fontsize=15); ax[1].set_xlabel('Age groups', fontsize=15);
ax[0].set_ylabel('Numbers', fontsize=35); ax[1].set_ylabel('Numbers', fontsize=15);
ax[0].set_title('Male', fontsize=30); ax[1].set_title('Female', fontsize=30);
plt.close(2); plt.close(3); fig.tight_layout()
```


可以看出,不管是男性还是女性,年轻人特别是19岁以下的人不容易感染新冠病毒。另外,在女性当中,50岁到59岁的群体最容易感染新冠病毒。而在男性当中,最容易感染新 冠病毒的群体为70-79岁。

接下来进行卡方检验:

```
chisq,p = stats.chisquare(italy_agetest['male_cases'],f_exp=italy_agetest['M_exp'])
print('chi-square value: ',chisq,'\n','p value: ',p)

chi-square value: 41220.87850967678
p value: 0.0
```

对于男性群体,可以看到H0被拒绝,即: **在男性群体中,新冠病毒不是无差别地攻击不同年龄段的人**

```
chisq,p = stats.chisquare(italy_agetest['female_cases'],f_exp=italy_agetest['F_exp'])
print('chi-square value: ',chisq,'\n','p value: ',p)

chi-square value: 19332.701122620234
p value: 0.0
```

对于女性群体,可以看到H0同样被拒绝,即: 在女性群体中,新冠病毒不是无差别地攻击不同年龄段的人

接下来进行第二步,用卡方检测检验不同年龄段中,新冠病毒是否无差别攻击不同性别的人

第i个原假设H0:在第i个年龄段中,新冠病毒无差别攻击各个性别。

计算不同性别不同年龄段的真实数据和第i个原假设H0成立的前提下的期望值:

```
italy_case = pd.read_csv('../data/covid-age.csv',index_col=0) #意大利3月19号到4月2号期间病例样本
```

```
italy_pop0 = pd.read_csv('../data/Italy-2019.csv') #意大利真实人口数据
#若HO成立,按照真实人口数据求各个年龄段不同性别的病例的期望值
M_proportion = np.random.randn(10); F_proportion = np.random.randn(10)
for i in range(0,9):
    M = (italy_pop0.iloc[2*i:2*i+2,:].sum().M); F = (italy_pop0.iloc[2*i:2*i+2,:].sum().F)
    F_proportion[i] = F/(M+F);
    M_proportion[i] = M/(M+F);

M = (italy_pop0.iloc[18:,:].sum().M); F = (italy_pop0.iloc[18:,:].sum().F);
M_proportion[9] = M/(M+F);
F_proportion[9] = F/(M+F);
italy_sextest = italy_case.iloc[0:10,[0,1,3,5]]
italy_sextest['M_exp'] = [round(M_proportion[i]*italy_sextest['total_cases'][i]) for i in range(10)]
italy_sextest['F_exp'] = [round(F_proportion[i]*italy_sextest['total_cases'][i]) for i in range(10)]
italy_sextest
```

	age_classes	male_cases	female_cases	total_cases	M_exp	F_exp
0	0-9	381	307	693	357.0	336.0
1	10-19	475	454	931	480.0	451.0
2	20-29	1919	2531	4530	2336.0	2194.0
3	30-39	3505	3885	7466	3757.0	3709.0
4	40-49	6480	7130	13701	6817.0	6884.0
5	50-59	11149	9706	20975	10278.0	10697.0
6	60-69	11761	6254	18089	8652.0	9437.0
7	70-79	12281	6868	19238	8808.0	10430.0
8	80-89	8553	7644	16252	6391.0	9861.0
9	>90	1374	2973	4356	1219.0	3137.0

```
#利用Holm-Bonferroni方法计算各个年龄段中改进的p值
chisq,p = np.random.randn(10),np.random.randn(10)
for i in range(len(italy_sextest)):
    f_obs = [italy_sextest.iloc[i,1],italy_sextest.iloc[i,2]]
    f_exp = [italy_sextest.iloc[i,4],italy_sextest.iloc[i,5]]
    chisq[i],p[i] = stats.chisquare(f_obs = f_obs,f_exp=f_exp)
if_reject,adj_p,adj_alpha,alpha = smt.multipletests(p, alpha=0.01, method='holm')
list(zip(italy_sextest['age_classes'],adj_p,if_reject))
```

```
[('0-9', 0.08493763851801121, False),
('10-19', 0.7883908266616757, False),
('20-29', 1.6661578227166538e-28, True),
('30-39', 1.8155260062752706e-06, True),
('40-49', 1.8155260062752706e-06, True),
('50-59', 4.685155190111863e-37, True),
('60-69', 0.0, True),
('70-79', 0.0, True),
('80-89', 1.6163681599012585e-268, True),
('90', 5.24177465290453e-07, True)]
```

上面的结果中,第一列是不同的年龄段,第二列是第i个原假设H0成立的改进的p值,最后一列对应原假设是否被拒绝,其中临界值alpha取为0.01。可以看到,**0-19岁的年龄段中,没有足够的证据拒绝原假设,即没有足够证据表明新冠病毒不会无差别地攻击这个年龄段不同性别的人**,这个年龄段的真实数据和期望值如下图:

<seaborn.axisgrid.FacetGrid at 0x1e12ff55808>

而在大于20岁的人当中,有99%的把握认为新冠病毒会有差别地攻击不同的性别:

<seaborn.axisgrid.FacetGrid at 0x1e12ff5d588>

结论

主要结论:

- 截至2020年4月23日 (距离首例报告114天),全球总确诊人数为2588068人,总死亡人数为182808人,确诊率为0.03%,死亡率为7.06%.
- 本文对全球,各大洲,还有总确诊数前五的国家的疫情变化进行了可视化,并分别统计了总确诊人数,总死亡人数,确诊率,死亡率的前20个国家排名。
- 本文对全球总确诊人数和全球总死亡人数进行了多项式拟合,最后结果为:全球总确诊人数在2020年4月23日附近近似3次增长,而全球总死亡人数在2020年4月23日附近近似3次增长,而全球总死亡人数在2020年4月23日附近近似3次增长,
- 本文以意大利的数据为样本,利用卡方检验分析了新冠病毒是否无差别攻击不同的性别和年龄段群体。最后发现:1.不管是男性群体还是女性群体,新冠病毒都是有差别地攻击不同年龄段的人。年轻人特别是19岁以下的人不容易感染新冠病毒。另外,在女性当中,50岁到59岁的群体最容易感染新冠病毒。而在男性当中,最容易感染新冠病毒的群体为70-79岁。2.在0-19岁的年龄段中,没有足够证据表明新冠病毒不会无差别地攻击这个年龄段不同性别的人,而在大于20岁的人当中,有99%的把握认为新冠病毒会有差别地攻击不同的性别的人群。

最后,希望每个人都能安全地度过此次疫情,人类加油!

import matplotlib.image as mpimg pic = mpimg.imread('战役必胜.jpg'); plt.imshow(pic) plt.axis('off') ; plt.show()

