سوال T: در این مسئله، دادهها به صورت $wx_i+\epsilon_i$ مدل شدهاند که در آن ϵ_i نویز گوسی با توزیع $y_i=wx_i+\epsilon_i$ است. بنابراین، احتمال شرطی y_i با توجه به x_i به صورت زیر خواهد بود:

$$P(y_i|x_i, w) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y_i - wx_i)^2}{2}\right)$$

 $D = \{(x_1, y_1), \dots, (x_n, y_n)\}$ چون دادهها مستقل و همتوزیع (i.i.d) هستند، احتمال کل مجموعه داده بود: به صورت ضرب احتمالات تکتک دادهها خواهد بود:

$$P(D|w) = \prod_{i=1}^{n} P(y_i|x_i, w) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y_i - wx_i)^2}{2}\right)$$

برای محاسبه ،log-likelihood لگاریتم احتمال کل را میگیریم:

$$\log P(D|w) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(y_i - wx_i)^2}{2}\right) \right)$$

با سادهسازی، داریم:

$$\log P(D|w) = \sum_{i=1}^{n} \left(-\frac{1}{2} \log(2\pi) - \frac{(y_i - wx_i)^2}{2} \right)$$

$$= -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}(y_i - wx_i)^2$$

چون $\log(2\pi)$ و ثابتها مستقل از w هستند، بیشینه کردن $\log(2\pi)$ با بیشینه کردن عبارت زیر معادل است:

$$\arg\max_{w} \log P(D|w) = \arg\max_{w} -\frac{1}{2} \sum_{i=1}^{n} (y_i - wx_i)^2$$

كه اين معادل است با كمينه كردن مجموع مجذور خطاها:

$$\arg\max_{w} \log P(D|w) = \arg\min_{w} \sum_{i=1}^{n} (y_i - wx_i)^2$$

بنابراین نشان دادیم که بیشینه کردن log-likelihood معادل است با کمینه کردن مجموع مجذور خطا.