

General Purpose Transistors

NPN Silicon

2N3903, 2N3904

Features

• Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter - Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	I _C	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Indicates Data in addition to JEDEC Requirements.

MARKING DIAGRAMS

x = 3 or 4
 Y = Year
 WW = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

2N3903, 2N3904

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

	Symbol	Min	Max	Unit		
OFF CHARACTER	RISTICS					
Collector – Emitter	Breakdown Voltage (Note 2) (I _C = 1.0 mAdc, I _B = 0)	V _{(BR)CEO}	40	_	Vdc
Collector - Base B	reakdown Voltage (I _C = 10 μAdc, I _E = 0)		V _{(BR)CBO}	60	-	Vdc
Emitter-Base Bre	eakdown Voltage (I _E = 10 μAdc, I _C = 0)		V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Curre	nt (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		I _{BL}	_	50	nAdc
Collector Cutoff Cu	urrent (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		I _{CEX}	-	50	nAdc
ON CHARACTER	ISTICS			1	•	· I
DC Current Gain ((I _C = 0.1 mAdc, V _C (I _C = 1.0 mAdc, V _C	CE = 1.0 Vdc)	2N3903 2N3904 2N3903	h _{FE}	20 40 35	- - -	_
$(I_C = 10 \text{ mAdc}, V_C)$ $(I_C = 50 \text{ mAdc}, V_C)$	·	2N3904 2N3903 2N3904 2N3903		70 50 100 30	150 300	
(I _C = 100 mAdc, V		2N3904 2N3903 2N3904		60 15 30	- - -	
Collector – Emitter $(I_C = 10 \text{ mAdc}, I_B = (I_C = 50 \text{ mAdc}, I_B = 10 \text{ mAdc})$			V _{CE(sat)}	- -	0.2 0.3	Vdc
Base – Emitter Sat $(I_C = 10 \text{ mAdc}, I_B = 10 \text{ mAdc}, I_B = 10 \text{ mAdc})$			$V_{BE(sat)}$	0.65 -	0.85 0.95	Vdc
SMALL-SIGNAL	CHARACTERISTICS					
Current – Gain – B (I _C = 10 mAdc, V _C	andwidth Product E = 20 Vdc, f = 100 MHz)	2N3903 2N3904	f _T	250 300	- -	MHz
Output Capacitano	ce (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	-	4.0	pF
Input Capacitance	(V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	-	8.0	pF
Input Impedance (I _C = 1.0 mAdc, V _C	_{CE} = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ
Voltage Feedback (I _C = 1.0 mAdc, V _C	Ratio _{CE} = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10-
Small–Signal Current Gain ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)		2N3903 2N3904	h _{fe}	50 100	200 400	-
Output Admittance	e (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{oe}	1.0	40	μmhos
Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω , f = 1.0 kHz) 2N3903 2N3904			NF	_ _	6.0 5.0	dB
SWITCHING CHA	RACTERISTICS					
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc,		t _d	-	35	ns
Rise Time	I _C = 10 mAdc, I _{B1} = 1.0 mAdc)		t _r	-	35	ns
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_C = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	2N3903 2N3904	t _s	<u> </u>	175 200	ns
Fall Time			t _f	_	50	ns

^{2.} Pulse Test: Pulse Width ≤ 300 μs; Duty Cycle ≤ 2%.

ORDERING INFORMATION

Device	Package	Shipping [†]
2N3903RLRM	TO-92	2000 / Ammo Pack
2N3904	TO-92	5000 Units / Bulk
2N3904G	TO-92 (Pb-Free)	5000 Units / Bulk
2N3904RLRA	TO-92	2000 / Tape & Reel
2N3904RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3904RLRM	TO-92	2000 / Ammo Pack
2N3904RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N3904RLRP	TO-92	2000 / Ammo Pack
2N3904RLRPG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N3904RL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3904ZL1	TO-92	2000 / Ammo Pack
2N3904ZL1G	TO-92 (Pb-Free)	2000 / Ammo Pack

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*} Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

^{*} Total shunt capacitance of test jig and connectors

Figure 2. Storage and Fall Time Equivalent Test Circuit

2N3903, 2N3904

TYPICAL TRANSIENT CHARACTERISTICS

Figure 3. Capacitance

Figure 4. Charge Data

Figure 5. Turn - On Time

Figure 6. Rise Time

Figure 7. Storage Time

Figure 8. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

Figure 9.

Figure 10.

h PARAMETERS

Figure 11. Current Gain

Figure 12. Output Admittance

Figure 13. Input Impedance

Figure 14. Voltage Feedback Ratio

2N3903, 2N3904

TYPICAL STATIC CHARACTERISTICS

Figure 15. DC Current Gain

Figure 16. Collector Saturation Region

Figure 17. "ON" Voltages

Figure 18. Temperature Coefficients

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

DATE 09 MAR 2007

STRAIGHT LEAD **BULK PACK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

BENT LEAD TAPE & REEL AMMO PACK

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS				
DIM	MIN	MAX			
Α	4.45	5.20			
В	4.32	5.33			
С	3.18	4.19			
D	0.40	0.54			
G	2.40	2.80			
J	0.39	0.50			
K	12.70				
N	2.04	2.66			
P	1.50	4.00			
R	2.93				
V	3.43				

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolle	'	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except		
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226)		PAGE 1 OF 3	

TO-92 (TO-226) CASE 29-11

ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN
2.	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	STYLE 8: PIN 1. 2. 3.	DRAIN GATE SOURCE & SUBSTRATE	PIN 1.	BASE 1		CATHODE
2.	ANODE CATHODE & ANODE CATHODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	PIN 1.	ANODE 1	PIN 1.	EMITTER COLLECTOR BASE	PIN 1. 2.	
2.	ANODE GATE	PIN 1. 2.	COLLECTOR BASE	PIN 1. 2.	ANODE CATHODE	PIN 1. 2.	GATE	2.	NOT CONNECTED
2.	COLLECTOR	PIN 1. 2.	SOURCE GATE DRAIN	STYLE 23: PIN 1. 2. 3.	GATE SOURCE DRAIN	STYLE 24: PIN 1. 2. 3.	EMITTER COLLECTOR/ANODE CATHODE	STYLE 25: PIN 1. 2. 3.	MT 1 GATE
	V _{CC}	PIN 1. 2.	MT	STYLE 28: PIN 1. 2.	CATHODE ANODE GATE	STYLE 29: PIN 1. 2.		PIN 1. 2.	DRAIN
	GATE	PIN 1. 2.		STYLE 33: PIN 1. 2. 3.	RETURN	2.			

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolle	'
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	' '
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 3

DOCUMENT	NUMBER:
08 V S B 42022	R

PAGE 3 OF 3

ISSUE	REVISION	DATE
AM	ADDED BENT-LEAD TAPE & REEL VERSION. REQ. BY J. SUPINA.	09 MAR 2007

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application of use of any product or circuit, and specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death. associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

<u>2N3904CTA 2N3904NLBU 2N3903RLRM 2N3904 2N3904G 2N3904RL1 2N3904RL1G 2N3904RLRA</u> 2N3904RLRAG 2N3904RLRM 2N3904RLRMG 2N3904RLRP 2N3904RLRPG 2N3904ZL1 2N3904ZL1G 2N3903