Symmetric subcategories and good tilting modules

Changchang Xi CNU

November 4, 2021, 10:00-10:50pm FD seminar, Uppsala Univ., Sweden

Main aim: To understand

ullet derived module categories of the endomorphism algebras of **arbitrary good tilting modules** T

or to establish

• a general form of Happel's theorem for not necessarily finitely generated tilting modules

or to describe

• **kernels** of the derived functors $T \otimes_B^{\mathbb{L}} -$

This reports joint works with Hongxing Chen.

Notations

A: ring (algebra) with 1

A-Mod: cat. of all left A-modules

add(M): summands of f. dir. sums of $M \in A$ -Mod

 $\operatorname{Add}(M)$: summands of dir. sums of M

A-Proj: cat. of all left proj. A-modules

 $\mathscr{D}(A)$: (unbounded) derived cat. of A (or A-Mod)

Definition of tilting modules

Back to BGP, APR, Brenner-Butler, HR, Miyashita

Definition (Angeleri-Huegel + Coelho, 2001)

 $_{A}T \in A$ -Mod: n-tilting module if

- $pd_A(T) \leq n$: $P^{\bullet} \longrightarrow T \longrightarrow 0$
- $\operatorname{Ext}_A^i(T,T^{(I)})=0$ for all i>0 and all sets I
- \exists exact seq.: $0 \to {}_{A}A \to T_{0} \to \cdots \to T_{n} \to 0$, $T_{j} \in \operatorname{Add}(T)$
 - good if $T_i \in \operatorname{add}(T)$.
 - *classical* if T: good and f. g. [Brenner-Butler, 1979].

Define $B := \operatorname{End}_A(T)$

Classical tiltings and der. equivalences

Happel's Theorem

Theorem (Happel)

$$_{A}T$$
: class. n -tilt. $\Longrightarrow \mathscr{D}(A) \sim \mathscr{D}(B)$

Happel: f. d. algebras Cline-Parshall-Scott: rings

Note: Classical tilting procedure

- Invariant of derived categories
- No new triangulated categories

Classical tilting and der. equivalences

Example. I: ideal of ring R

$$\begin{pmatrix} R & I & I & I \\ R & R & I & I \\ R & R & R & I \\ R & R & R & R \end{pmatrix} \stackrel{der}{\simeq} \begin{pmatrix} R & R/I & R/I & R/I \\ R/I & R/I & R/I & R/I \\ R/I & R/I & R/I \end{pmatrix}$$

by tilting module of pd ≤ 1 .

Significant roles of tilting modules

- Rickard's Morita theory on derived cat.s motivated by Happel Thm. on tilt. mod.s
- Representation theory of Lie algebras and algebraic groups via quasi-hered. alg.s, [Dlab-Ringel, Ringel]
- Representations of algebras: finitistic dimension conjecture [Angeleri-Huegel + Trlifahj]
- Other fields: Adéle rings in number theory [Crawley-Boevey, Ringel, Chen-Xi]

Results on good tilting modules

Theorem (Bazzoni, Bazzoni-Mantese-Tonolo)

 $_{A}T$: good n-tilt. $\Longrightarrow \exists$ recoll. of trian. cat.s:

$$\operatorname{Ker}(T \otimes_{B}^{\mathbb{L}} -) \longrightarrow \mathscr{D}(B) \xrightarrow{T \otimes_{B}^{\mathbb{L}} -} \mathscr{D}(A)$$

- $\mathscr{D}(A) \sim \mathscr{D}(B)/\mathrm{Ker}(T \otimes_B^{\mathbb{L}} -)$
- $\operatorname{Ker}(T \otimes_B^{\mathbb{L}} -) = 0$ iff T class. \Rightarrow Happel's Thm.

Note: Tilting procedure:

- Different trian. cat.s $(\mathcal{D}(A) \not\sim \mathcal{D}(B))$
- Inf. g. tilting is **NOT** derived invariant

Definition of recollements

Definition (Beilinson-Bernstein-Deligne, 1982)

 \mathcal{D} , \mathcal{D}' , \mathcal{D}'' : trian. cat.s, \mathcal{D} : recollement of \mathcal{D}' and \mathcal{D}'' (or \exists recollement $(\mathcal{D}'', \mathcal{D}, \mathcal{D}')$) if \exists trian. functors i_* and $j^!$:

$$\mathcal{D}'' \xrightarrow{i_* = i_!} \mathcal{D} \xrightarrow{j^! = j^*} \mathcal{D}'$$

- $(1) j! i_* = 0,$
- (2) i_* has left, right adjoints $i^*, i^!$; $j^!$ has left, right adjoints $j_!, j_*$,
- (3) $i_*, j^*, j_!$: fully faithful, and
- (4) \forall object $X \in \mathcal{D}$, \exists two triangles in \mathcal{D} :

$$i_!i^!(X) \longrightarrow X \longrightarrow j_*j^*(X) \longrightarrow i_!i^!(X)[1]$$

$$j_!j^!(X) \longrightarrow X \longrightarrow i_*i^*(X) \longrightarrow j_!j^!(X)[1].$$

• Derived recollements mean recoll.s of der. categories of rings or exact cat.s

Question for arbitrary good tilting modules

KNOWN:

QUESTION:

How to understand $\operatorname{Ker}(T \otimes_B^{\mathbb{L}} -)$ for good tilt. mod.s?

For n=1 case

Theorem (Chen-X., 2012, Proc. Lond. Math. Soc.)

 $_{A}T$: good tilt., proj.dim ≤ 1 , $\Longrightarrow \exists$ homol. ring epi. $B \to C$ and recoll. of der. mod. cat.s:

- $j^! := T \otimes_B^{\mathbb{L}} -, \operatorname{Ker}(j^!) \simeq \mathscr{D}(C).$
- T: class., $\Rightarrow C = 0$, Happel Theorem.
- C: universal localization of B.

Definition of homological ring epimorphisms

Definition

A ring epimorphism $\lambda: R \to S$ is called **homological** if $\operatorname{Tor}_j^R(S,S) = 0$ for j > 0.

Or equivalently, the restriction functor $D(\lambda_*): \mathcal{D}(S) \to \mathcal{D}(R)$ is fully faithful.

[Geigle-Lenzing: J. Algebra 144(1991)273-343]

In the literature:

• D.Yang 2012:

$$\mathscr{D}({\color{red}C}) \stackrel{\checkmark}{\longrightarrow} \mathscr{D}(B) \stackrel{\checkmark}{\longrightarrow} \mathscr{D}(A)$$

C: dg algebra

S.Bazzoni and A.Pavarin 2013:

$$\mathscr{D}(\underline{E}) \xrightarrow{\longleftarrow} \mathscr{D}(A) \xrightarrow{\longleftarrow} \mathscr{D}(B)$$

E: dg algebra

General question

Does the theorem for n = 1 extend to n > 2?

Homological subcategories

Definition

A full trian. subcat. \mathcal{T} of $\mathcal{D}(B)$ is called homological if \exists homol. ring epi $\lambda: B \to C$ s. t. $\mathcal{D}(C) \sim \mathcal{T}$ (as trian. cat.s) by restriction.

Now, the question becomes:

When is $\operatorname{Ker}(T \otimes_B^{\mathbb{L}} -)$ homol. in $\mathscr{D}(B)$?

Criterion for good tilt. to be homological

Theorem (Chen-X. J.Math.Soc.Jap. 71 (2019) 515-554)

 $_{A}T$: good tilt. $B := \operatorname{End}_{A}(T)$. TFAE:

- (1) $\operatorname{Ker}(T \otimes_{B}^{\mathbb{L}} -)$: homol. in $\mathscr{D}(B)$
- (2) $H^i(\operatorname{Hom}_A(P^{\bullet}, A) \otimes_A T) = 0$ for $i \geq 2$

Theorem (continued)

In this case, \exists der. recoll. of der. mod. cat.s of rings

$$\mathscr{D}(C) \longrightarrow \mathscr{D}(B) \longrightarrow \mathscr{D}(A)$$

 P^{\bullet} : proj. resol. of T. C: generalized localization of B at T_B

Definition of generalized localizations

Definition

R: ring,

 Σ : a set of complexes of R-modules

 $\lambda_{\Sigma}:R \to R_{\Sigma}$ hom. of rings is generalized

localization of R at Σ if

- (1) λ_{Σ} : Σ -exact: $\forall P^{ullet} \in \Sigma$, $R_{\Sigma} \otimes_R P^{ullet}$ is exact, and
- (2) λ_{Σ} is univ. Σ -exact.

that is, if $\varphi:R\to S$, Σ -exact hom. of rings, then \exists unique ring hom. $\psi:R_\Sigma\to S$ s.t. $\varphi=\lambda_\Sigma\psi$.

Derived recoll.s for tilting modules

Recall main aim:

For arbitrary good tilting module ${}_AT$, to describe $\operatorname{Ker}(T\otimes^{\mathbb{L}}_B-)$ or to establish a counterpart of Happel's Theorem

Definition of n-symmetric subcategories

 \mathcal{A} : bicompl. abel. cat. (with coprod.s + products).

 \mathcal{E} : full subcat. of \mathcal{A} , $0 \le n \in \mathbb{N}$

Definition

 \mathcal{E} : n-symmetric subcat. of \mathcal{A} if

- \mathcal{E} : closed under ext.s, prod.s + coprod.s.
- For ex. seq.

$$0 \to X \to M_n \to \cdots \to M_1 \to M_0 \to Y \to 0$$
 in \mathcal{A} , there hold $X,Y \in \mathcal{E}$ whenever all $M_i \in \mathcal{E}$.

- Example: $\mathscr{E}=\{X\in B\text{-Mod}\mid \operatorname{Tor}_i^B(T_B,X)=0\ \forall\ i\geq 0\}\ n\text{-symm.}$ if $n=pd(T_B)<\infty$
- n-sym. subcat.s are ex. cat.s

Symmetric subcategories

 ${\mathcal B}$: add. full subcat. of bicompl. abel. cat. ${\mathcal A}$.

- \bullet ${\mathcal B}:$ n-sym. subcat. of ${\mathcal A}\Longrightarrow {\mathcal B}$ ex., thick subcat., (n+1)-sym.
- \mathcal{B}_i : m_i -sym. subcat.s of $\mathcal{A} \Longrightarrow \mathcal{B}_1 \cap \mathcal{B}_2$: $\max\{m_1, m_2\}$ -sym.
- \mathcal{B} : ext. closed, Def.(2) $\Longrightarrow \mathcal{B}$: n-wide subcat. of \mathcal{A} in the sense of Matsui-Nam-Takahashi-Tri-Yen.
- \mathcal{B} : 0-sym. $\iff \mathcal{B}$: Serre subcat. & closed under coprod.s, products $\iff \mathcal{B}$: localizing subcat. closed under products.
- ullet \mathcal{B} : 1-sym. $\Longleftrightarrow \mathcal{B}$: abel. subcat. closed under ext.s, coprod. and products.

Derived categories of exact categories

Given an exact category \mathscr{E} , define

 $\mathcal{D}(\mathscr{E}) = \mathscr{K}(\mathscr{E})/\mathscr{K}_{ac}(\mathscr{E})$: Verdier quotient of $\mathscr{K}(\mathscr{E})$ modulo $\mathscr{K}_{ac}(\mathscr{E})$ of exact complx.s over \mathscr{E}

Theorem (Chen-X., 2021)

 $_{A}T$: good tilt. / ring A, $B := \operatorname{End}(_{A}T)$ $\Longrightarrow \exists n$ -sym. subcat. \mathscr{E} of B-Mod and recoll.

$$\mathscr{D}(\mathscr{E}) \xrightarrow{\mathscr{D}(B)} \mathscr{D}(A)$$

Moreover, this recoll. induces

$$\mathcal{D}^{-}(\mathcal{E}) \xrightarrow{\mathcal{D}^{-}(A)} \mathcal{D}^{-}(A)$$

- $\mathscr{E}:=\{X\in B\operatorname{-Mod}\mid T\otimes_B^{\mathbb{L}}X=0\}: n\text{-sym. subcat. with }n=\operatorname{pd}(T_B)$
- $j! := T \otimes_B^{\mathbb{L}} -$
- $\mathscr{D}^-(\mathscr{E})$: der. cat. of bounded-above complx.s over \mathscr{E}

Comment:

This might be regarded as Happle's Thm for good tilt. mod.s since the 3 categories

$$\mathcal{E}, B\text{-Mod}, A\text{-Mod}$$

are the same kind of categories, namely subcategories of modules over rings

Corollary

TFAE for good tilt. A-mod. T:

- (1) $\operatorname{Ker}(T \otimes_{B}^{\mathbb{L}} -)$: homol. in $\mathscr{D}(B)$
- (2) \mathscr{E} : abel. subcat
- (3) $H^m(\operatorname{Hom}_A(P^{\bullet}, A) \otimes_B T) = 0$ for all $m \geq 2$, P^{\bullet} : proj. resol. of ${}_AT$.
- (4) $(\mathscr{E}, \mathscr{E}^{\perp})$: der. decom. of B-Mod

$$\mathscr{E}^{\perp} := \{Y \in B\text{-}\mathrm{Mod} \mid \mathrm{Ext}^n_B(X,Y) = 0, \forall \; X \in \mathscr{E}, n \geq 0\}.$$

Recall: T is homol. if \exists homol. ring epi. $B \to C$ of rings s.t.

$$\mathscr{D}(C) \xrightarrow{\hspace{1cm}} \mathscr{D}(B) \xrightarrow{T \otimes^{\mathbb{L}_{-}}} \mathscr{D}(A)$$

Definition (Chen-X. Pacific J. Math. 312 (2021))

 \mathcal{A} : abel. cat. \mathcal{B}, \mathcal{C} : full subcat.s of \mathcal{A} .

 $(\mathcal{B},\mathcal{C})$: der. decomposition of \mathcal{A} if

- \mathcal{B}, \mathcal{C} : abel. subcat. of \mathcal{A} , inclusions induce f. fait. functors $\mathscr{D}^b(\mathcal{B}) \to \mathscr{D}^b(\mathcal{A})$ and $\mathscr{D}^b(\mathcal{C}) \to \mathscr{D}^b(\mathcal{A})$, resp.
- $\operatorname{Hom}_{\mathscr{D}^b(\mathcal{A})}(B,C[n])=0$ for $B\in\mathcal{B}$, $C\in\mathcal{C}$ and $n\in\mathbb{Z}$
- For $M^{\bullet} \in \mathcal{D}^b(\mathcal{A})$, \exists triangle

$$B_{M^{\bullet}} \to M^{\bullet} \to C^{M^{\bullet}} \to B_{M^{\bullet}}[1]$$

in $\mathscr{D}^b(\mathcal{A})$ s.t. $B_{M^{\bullet}} \in \mathscr{D}^b(\mathcal{B}), C^{M^{\bullet}} \in \mathscr{D}^b(\mathcal{C}).$

Corollary

A: left coherent ring, ${}_{A}T$: good tilt.,

$$B := \operatorname{End}_A(T) \Longrightarrow$$

∃ recoll. of der. cat.s

$$\mathscr{D}^*(\mathscr{E}) \xrightarrow{} \mathscr{D}^*(B) \xrightarrow{G} \mathscr{D}^*(A)$$

for
$$* \in \{b, +, -, \emptyset\}$$

$$\mathscr{E}$$
: sym. subcat. of B -Mod, $G = T \otimes_B^{\mathbb{L}} -$

Left coher. ring if f. g. left ideals are f. presented

Ideas of proof of the main result

- $i: \mathscr{E} \longrightarrow B\text{-Mod}, \ D(i): \ \mathscr{D}(\mathscr{E}) \longrightarrow \mathscr{D}(B)$
- There is decomposition

$$\mathscr{D}(\mathscr{E}) \xrightarrow{\overline{D(i)}} \operatorname{Ker}(G) \xrightarrow{\kappa} \mathscr{D}(B)$$

• $\overline{D(i)}$: trian. equiv.

Example

Recall:

Definition

R: n-Gorenstein ring if R is comm. noether. of $inj.dim({}_RR)=n$

A: 2-Gorenstein local domain,

 \mathfrak{m} : max. ideal of A, Q: its fraction field, Minimal inj. resol. of A by a result of Bass:

$$0 \to A \xrightarrow{\lambda} Q \xrightarrow{\alpha} \bigoplus_{\mathfrak{p} \in \mathscr{H}_1} E(A/\mathfrak{p}) \xrightarrow{\beta} E(A/\mathfrak{m}) \to 0$$

E(M): inj. envelope of M

 $\mathscr{H}_1 := \{ \mathfrak{p} \triangleleft A \mid \mathfrak{p} \text{ prime ideal with height } 1 \}$

• Known:

$$T':=Q\oplus\bigoplus_{\mathfrak{p}\in\mathscr{H}_1}E(A/\mathfrak{p})\oplus E(A/\mathfrak{m})$$
: 2-tilt.

• Modify this construction: $\emptyset \neq \mathscr{S} \subseteq \mathscr{H}_1$

$$T_2 := E(A/\mathfrak{m})$$

$$T_1 := \bigoplus_{\mathfrak{p} \in \mathscr{S}} E(A/\mathfrak{p})$$

$$T_0 := \alpha^{-1}(T_1 \cap \operatorname{Ker}(\beta))$$

$$T := T_0 \oplus T_1 \oplus T_2$$

$$0 \longrightarrow A \xrightarrow{f_0} T_0 \xrightarrow{f_1} T_1 \xrightarrow{f_2} T_2$$

 f_0 : the inclusion; f_1 : induced by α ; f_2 : restr. of β

Proposition

- (1) \mathscr{S} contains a principal ideal, $\Longrightarrow T$: 2-tilt.
- (2) A: complete, \mathscr{S} consists of f. m. principal ideals of A, \Longrightarrow

$$\operatorname{End}_{A}(T) \simeq \left(\begin{array}{ccc} T_{0} & T_{0} \otimes_{A} B_{1} & T_{0} \otimes_{A} C \\ 0 & B_{1} & B_{1} \\ 0 & 0 & A \end{array} \right)$$

 $B_1 := \operatorname{End}_A(T_1)$, $T_0 = \operatorname{End}_A(T_0)$ and $Q = \operatorname{End}_A(Q)$

$\operatorname{End}_A(T)$ -Mod is identified with category $\mathscr{C}(A,T)$:

Objects:

Complexes
$$X^{\bullet}: 0 \to X^{-2} \to X^{-1} \to X^{0} \to 0$$
 in $\mathscr{C}(A)$,

$$X^{-1} \in B_1$$
-Mod, $X^0 \in T_0$ -Mod,

where B_1 -modules and T_0 -modules regarded as A-modules via given ring homomorphisms θ_{T_1} and f_0 , respectively.

Morphism:

Chain map
$$f^{\bullet} := (f^{-2}, f^{-1}, f^0) : X^{\bullet} \to Y^{\bullet}$$
 in $\mathscr{C}(A)$, $f^{-1} \in \operatorname{Hom}_{B_1}(X^{-1}, Y^{-1})$, $f^0 \in \operatorname{Hom}_{T_0}(X^0, Y^0)$.

 $\mathscr{C}_{\mathrm{ac}}(A,T)$: full exact subcat. of $\mathscr{C}(A,T)$ consisting of all exact complexes.

Example

A: complete, $\mathscr S$ consists of f. m. prin. ideals of A

 \Longrightarrow

- (1) 2-sym. subcat. $\mathscr E$ by T is equ. to $\mathscr C_{\mathrm{ac}}(A,T)$.
- (2) Recoll.

$$\mathscr{D}^*(\mathscr{C}_{\mathrm{ac}}(A,\widetilde{T})) \longrightarrow \mathscr{D}^*(\mathrm{End}_A(\widetilde{T})) \stackrel{G}{\longrightarrow} \mathscr{D}^*(A)$$

$$* \in \{-,\emptyset\}$$
, $G := T \otimes_B^{\mathbb{L}} -$

Questions

Questions:

A: ring, or algebra/field

- (1) Given n, parameterize n-symm. subcat.s of A-Mod.
- (2) Which n-sym. subcat.s of A-Mod can be realised by n-tilt. modules?

that is, under which cond.s on n-sym. subcat. $\mathscr E$ of A-Mod is there an n-til. mod. T_A s. t. $\mathscr E\simeq \{Y\in A\text{-Mod}\mid \operatorname{Tor}_i^A(T_A,Y)=0, \forall\, i\geq 0\}$ as ex. cat.s?

(3) Find methods to construct homological tilting modules, or cotilting modules.

Symmetric subcategories and good tilting modules

Thank you!

November 4, 2021

URL: http://math0.bnu.edu.cn/~ccxi/
[Primary version: arXiv:2106.05514]