

THE EXPERIMENT FOR CRYOGENIC LARGE-APERTURE INTENSITY MAPPING (EXCLAIM)

Giuseppe Cataldo^a, Trevian Jenkins^b, Eric R. Switzer^a, Peter A. R. Ade^c, Christopher J. Anderson^a, Alyssa Barlis^a, Emily M. Barrentine^a, Jeffrey Beemans^d, Nicholas G. Bellis^a, Alberto D. Bolatto^b, Patrick C. Breysse^e, Berhanu T. Bulcha^a, Lee-Roger Chevres-Fernandez^f, Chullee Cho^a, Jake A. Connors^g, Negar Ehsan^a, Thomas Essinger-Hileman^a, Jim Fouquet^h, Jason Glenn^a, Joseph Golecⁱ, James Hays-Wehle^a, Larry A. Hess^a, Amir E. Jahromi^a, Mark O. Kimball^a, Alan J. Kogut^a, Luke N. Lowe^a, Philip Mauskopf^a, Jeffrey McMahon^h, Mona Mirzaei^a, S. Harvey Moseley^j, Jonas Mugge-Durum^b, Omid Noroozian^a, Trevor Oxholm^k, Tatsat Parekh^a, Ue-Li Pen^l, Anthony R. Pullen^e, Maryam Rahmani^a, Mathias M. Ramirez^m, Florian Roselliⁿ, Konrad Shire^b, Gage Siebert^k, Adrian K. Sinclairⁱ, Rachel S. Somerville^o, Ryan Stephensonⁱ, Thomas R. Stevenson^a, Peter Timbie^k, Jared Terminip, Justin Trenkamp^a, Carole Tucker^c, Elijah Visbal^j, Carolyn G. Volpert^a, Edward J. Wollack^a, Shengqi Yang^a, L. Y. Aaron Yung^a

^aNASA Goddard Space Flight Center, Greenbelt, MD, USA; ^bUniversity of Maryland-College Park, MD, USA; ^cCardiff University, Cardiff, UK; ^dLawrence Berkeley National Lab, Berkeley, CA, USA; ^eNew York University, New York, NY, USA; ^fUniversity of Puerto Rico, Mayagüez, PR; ^gNational Institute of Standards and Technology, Boulder, CO, USA; ^hUniversity of Chicago, Chicago, IL, USA; ⁱArizona State University, Tempe, AZ, USA; ^jQuantum Circuits, New Haven, CT, USA; ^kUniversity of Wisconsin-Madison, Madison WI, USA; ^lCanadian Institute for Theoretical Astrophysics, Toronto, CA; ^mUniversity of Arizona, Tucson, AZ, USA; ⁿISAE-SUPAERO, Toulouse, France; ^oCenter for Computational Astrophysics, Flatiron Institute, New York, NY, USA; ^pUniversity of Iowa, Iowa City, IA, USA; ^qIowa State University Ames, IA, USA; ^rUniversity of Toledo, Toledo, OH, USA

I: ABSTRACT

The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a **high-altitude balloon telescope** designed to deepen our understanding of star formation in a cosmological context, shedding light on why the star formation rate declines and breaks away from the cosmological evolution of dark matter for redshifts $z > 2$ [1].

EXCLAIM will operate at 420–540 GHz with a spectral resolution of $R=512$ to measure the integrated line emission from galaxies and the intergalactic medium (IGM), in particular CO and [CII] line emissions from the nearby universe out to redshifts of $z \sim 3.5$. This approach is known as **Intensity Mapping (IM)**, which provides efficient access to large cosmological volumes and redshifts with sensitivity limited by detector noise or photon background, while requiring modest apertures.

The instrument will employ an array of **six superconducting integrated grating-analog spectrometers** (μ -Spec) with superconducting microwave kinetic inductance detectors (MKIDs) in an all-cryogenic telescope (1.7 K) to achieve near background-limited sensitivity.

Here, we present an overview of the EXCLAIM instrument and status, with emphasis on the Attitude Determination & Control System (ADCS) and the thermal system.

II: SCIENCE

EXCLAIM will map the sub-mm emission of redshifted carbon monoxide (CO) as well as singly-ionized carbon ([CII]) lines over redshifts $0 < z < 3.5$, and will also map [CII] lines produced in photodissociation regions (PDRs) in the Milky Way. These line emissions are key tracers of the gas phases in the interstellar medium involved in star-formation processes, but have only preliminary characterization beyond the nearby universe.

Primary Science Questions:

- What factors led to the dramatic decline in star formation after $z \sim 2$ in contrast to dark matter evolution?
- What is the typical abundance, excitation and evolution of the molecular gas which forms stars?
- How well does CO trace H_2 in galaxies?
- Is intensity mapping a viable approach to probe high redshifts?

CO: EXCLAIM will cross-correlate with spectroscopic galaxy redshift catalogs to constrain the total CO line brightness from $0 < z < 0.7$ and potentially out to $z = 1$ with extended BOSS survey releases. This traces the abundance of gas available to form stars.

CII: EXCLAIM will cross-correlate with the BOSS QSO survey from $2.5 < z < 3.5$ to provide a definitive test of CII brightness (shown right) and probe the CII and the star formation rate (SFR) relation [8], determining whether it follows local relations or suggests strong evolution of the average interstellar medium.

CI: EXCLAIM will map neutral carbon emission in the Milky Way, providing data to determine the co-extensiveness of [CII] and CO gas in galactic photodissociation regions (PDRs), and probe existing assumptions about the [CII]/CO intensity ratios.

III: THERMAL DESIGN

- The gondola thermal design must account for:
 - ascent (rapid cooling)
 - daytime float (solar direct and albedo loading)
 - nighttime float (radiative cooling and Earth IR loading)

- REQUIREMENTS:** Electronics and batteries must be maintained between -20°C and $+40^\circ\text{C}$.

- High-fidelity model:** Thermal Desktop
- Low-fidelity models:** Veritrek (upcoming), MATLAB
- Thermal simulations bracket a hot and cold case for operations.
- With conservative estimates of the payload power use, we find that **temperatures are maintained within operating ranges** and require heaters in ascent and nighttime float.

IV: INSTRUMENT OVERVIEW

Cryogenic Balloon-Borne Instrument:

- 29–37 km altitude** at float on either an 11 or 34 million-cubic-foot (MCF) balloon.
- 3500 liters of liquid helium gives **~24 hrs of operation** at 1.7 K at float altitude.
- Adiabatic Demagnetization Refrigerator cools the detectors to 100 mK from the 4.3 K (ground) to 1.7 K (float) helium bath temperature.
- Superfluid He pumps distribute the liquid He to cool the optics.
- μ -Spec** integrates all the elements of a grating spectrometer - the dispersive element, filters, and detectors - **on a single chip** [11,12].
 - Phase delay is introduced by a synthetic grating made of superconducting Nb microstrip lines patterned on both sides of a single-crystal Si substrate [13]. The high index of refraction of Si shrinks the spectrometers, allowing 6 to fit on a 6" wafer. A 2D parallel plate waveguide region in a Rowland circle architecture serves as a spatial beam combiner and focal plane [14]. An order-choosing filter selects the design order.

Heritage:

- From **PIPER** (Primordial Inflation Polarization ExploreR) [15]: gondola, housekeeping electronics, software and ADR designs.
- From **BLAST-TNG** (Balloon-borne Large-Aperture Submillimeter Telescope - The Next Generation) [16]: MKID readout.

EXCLAIM Spectrometer & MKID Parameters

Spectrometer design	μ -Spec, antenna-coupled diffraction-grating analog, Rowland configuration
Number of spectrometers	6
Spectral range	420–540 GHz
Spectrometer grating order	2 (operates over a single order)
Resolving power, $R = \lambda/\Delta\lambda$	512 at 472 GHz (central frequency), 535–505 over the spectral band
Spectrometer efficiency	~23% (from Si lens input to the MKIDs)
Spectrometer materials	Nb planar transmission line, single-crystal Si dielectric
MKIDs per spectrometer	355
MKID materials	20-nm-thick Al microstrip, single-crystal Si dielectric, ground plane Nb
MKID readout band	3.25–3.75 GHz
Detector NEP	$8 \times 10^{-19} \text{ W}/\sqrt{\text{Hz}}$ under typical loading (0.16 fW absorbed at KID)
Operating temperature	100 mK

V: INSTRUMENT & OBSERVING STRATEGY

We **cross-correlate** with the Baryon Oscillation Spectroscopic Survey (BOSS) Stripe 82 for primary science – a reference survey is shown above. Cross-correlation can go wide to access from linear scales up to $k \sim 1 \text{ hMpc}^{-1}$. Several Milky Way regions will map [CII].

Plan for a conventional flight from Texas or New Mexico, as it is well matched to surveys of the BOSS-North/South region, and has simple logistics, high recovery rate, and frequent flight opportunities.

The telescope is an off-axis Gregorian configuration with 90-cm parabolic primary mirror, a 10-cm folding flat and a parabolic secondary mirror, all machined of aluminum. The f/1.5 reflectors feed a single Si lens through a stop. A lenslet feeds a slot antenna on the on-chip spectrometers. The stop controls illumination of the primary and terminates stray light onto blackened cold baffles. The receiver must remain superfluid-tight, so uses indium seals to form a “submarine” with a silicon window [17].

VI: ADCS DESIGN

- Survey strategy:** sinusoidal azimuthal scan to survey rising and setting fields at a fixed elevation of 45°.

Execution:

- A **reaction wheel** (moment of inertia: $30 \text{ kg}\cdot\text{m}^2$, total mass: 75.8 kg) executes the azimuth scan.
- Momentum dumping to the balloon through a rotator** to maintain the reaction motor speed below its saturation due to back electromotive force (EMF).
- Peak torque (35 N·m) and angular rate (144°/s on the reaction wheel) to execute the scan require $<50 \text{ W}$ power (80% efficiency assumed).
- Kollmorgen D063 brushless direct-drive DC motors drive the reaction wheel and rotator. The direct drive simplifies design and operation, eliminates backlash and reduces vibration.

Pointing:

- Offline pointing** (for map production) must have noise $<2\%$ (5") of the optical FWHM to control jitter's impact on the effective angular resolution.
 - Based on **star camera** measurements acquired at the scan turnarounds and tied together by **gyroscope** data, using a **clinometer** to establish tilts.
- Online pointing** (for target survey) must be sufficient to establish the field center ($<1^\circ$) and control the scan speed and total throw to maintain target fields.
 - Kalman filter** and control system use gyroscope and **magnetometer** sensors to refine velocity and position, respectively, as shown here for free oscillation of the gondola on the flight train.

REFERENCES

- [1] Switzer, E., et al. *J. Astron. Telesc. Instrum. Sys.* (2021), submitted.
- [2] Lidz, A., et al. *Astrophys. J.* 741 (2011) 70.
- [3] Popping, G., et al. *Mon. Notices Royal Astron. Soc.*, 461 (2016) 93–110.
- [4] Pullen, A. R., et al., *Proc. SPIE*, 11453 (2020); 114530M.
- [5] Righi, G., et al., *Asym. Astro.* 2 (2013) 15.
- [6] Padmanabhan, H., et al., *ApJ* 802 (2014) 249–254.
- [7] Velliscig, U., et al., *ApJ* 821 (2015) 1010.
- [8] Padmanabhan, H., et al., *ApJ* 821 (2015) 1010.
- [9] Gong, Y., et al., *ApJ* 795 (2014) 1010.
- [10] M. Sivu, et al., *Proc. SPIE*, 11453 (2020); 114530B.
- [11] Cataldo, G., et al., *Proc. SPIE*, 11453 (2020); 114530J.
- [12] Mirzaei, M., et al., *Proc. SPIE*, 11453 (2020); 114530M.
- [13] Patel, A., et al., *IEEE Trans. Appl. Supercond.* 23 (2013) 240040.
- [14] Righi, G., et al., *ApJ* 802 (2014) 249–254.
- [15] Gordis, B., et al., *ApJ* 802 (2014) 249–254.
- [16] Gordis, B., et al., *Proc. SPIE*, 9914 (2016) 99141J.
- [17] Gordon, S., et al., *J. Astron. Instrum.*, 10 (2011) 161003.
- [18] Essinger-Hileman, T., et al., *Proc. SPIE*, 11453 (2020); 114530H.
- [19] Y. Gong, et al., *ApJ* 745 (2012).

ACKNOWLEDGEMENT

We gratefully acknowledge funding provided by the NASA Astrophysics Research and Analysis (APRA) Program.

CURRENT STATUS

The EXCLAIM program began in April 2019 and is in **Phase C** (final design and fabrication) of its life cycle, with system design approaching completion. An engineering flight is expected in 2022 and a science flight in 2023.