Marco Casu

▶ Fisica ▶

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Dipartimento di Informatica

Questo documento è distribuito sotto la licenza GNU, è un resoconto degli appunti (eventualmente integrati con libri di testo) tratti dalle lezioni del corso di Fisica per la laurea triennale in Informatica. Se dovessi notare errori, ti prego di segnalarmeli.

INDICE

1	\mathbf{Intr}	roduzione	3
	1.1	Il metodo scientifico	3
	1.2	Spostamento, Velocità e Grandezze Fisiche	5

CAPITOLO

1

INTRODUZIONE

1.1 Il metodo scientifico

La nascita del metodo scientifico è dovuta a Galileo Galilei, se i filosofi greci stabilivano leggi empiriche senza necessariamente dimostrarle, Galileo introdusse una verifica sperimentale a quelle che erano le sue digressioni.

Un **esperimento**, è una verifica sperimentale delle ipotesi, utile a ricavare valori numerici oggettivi per le misure delle grandezze fisiche. L'avvento del cannocchiale permise un osservazione più accurata dei corpi celesti, questi che venivano creduti perfetti, si rivelarono per quello che sono, la Luna con i suoi accavallamenti e "mari", mostrava una conformazione della sua crosta tutto fuorché perfetta. Oltre al già

Figura 1.1: Galileo Galilei

citato cannocchiale, erano necessari ulteriori strumenti per le osservazioni dei corpi celesti, era necessario misurare in maniera precisa ed affidabile lo scorrere del tempo. Misurare il tempo vuol dire confrontare due eventi, ad esempio, il sorgere del sole con il movimento periodico riferito ad un misuratore (come l'orologio).

Galileo per le sue misure realizzò un orologio ad acqua, utilizzando un recipiente nella quale riporre un piccolo foro sul fondo, in modo tale che l'acqua cadesse a gocce a velocità costante, così facendo, lo scorrere del tempo era proporzionale al volume dell'acqua perso dall recipiente.

Una grandezza fisica è un entità alla quale si attribuisce una specifica definizione, utilizzabile per

descrivere un fenomeno fisico, per tali entità devono valere i criteri di uguaglianza e sommabilità.

Uno degli argomenti su cui si soffermò Galileo fu il *moto dei gravi*, in particolare il moto dei corpi in caduta libera. Secondo la fisica aristotelica del tempo, un corpo tanto più pesante era, tanto più rapidamente cadeva.

Galileo fu critico nei riguardi di questa visione, osservò che in realtà, ogni corpo cade verso il suolo con la stessa accellerazione, il motivo per il quale una piuma cade più rapidamente di una sfera di piombo non riguarda la loro massa, bensì la resistenza dell'aria nei confronti del loro materiale e della loro forma. Trovò inoltre che la distanza percorsa durante la caduta di un oggetto è proporzionale al quadrato del tempo impiegato per percorrerla.

Galileo con un esperimento riguardante i piani osservò il seguente fatto : se si lascia scivolare un corpo su un piano inclinato ad altezza h per poi farlo risalire su un altro piano inclinato, questo tendeva a risalire fino alla stessa altezza h.

Figura 1.2: caduta sul piano inclinato

Inoltre, notò che questo fenomeno non è condizionato dal seno dell'angolo del piano, bensì esclusivamente dall'altezza.

Figura 1.3: inclinazioni differenti

Per osservare tale risultato dovette ridurre le azioni spurie dell'attrito dell'aria. Più il percorso era liscio, più l'attrito risultava debole, e più il corpo tendeva ad avvicinarsi all'altezza originale h. Con tale ragionamento ipotizzò che se l'attrito dovesse essere stato nullo, allora il corpo sarebbe tornato precisamente all'altezza h.

Dato questo per vero, riducendo il valore dell'angolo sarebbe stato possibile far percorrere al corpo una distanza maggiore. Se il secondo piano avesse avuto inclinazione nulla, allora il grave avrebbe continuato a muoversi in avanti a velocità costante.

Figura 1.4: inclinazione nulla

Tale principio è noto come **legge d'Inerzia**, eliminando gli attriti, lo stato di moto naturale inalterato di un corpo è quello di moto rettilineo uniforme (a velocità costante) indefinitamente.

Essendo la scienza sempre stata impiegata anche in ambito bellico, Galileo studiò il moto dei proiettili, che fino a quel momento si credeva fosse costantemente orizzontale, fino al momento in cui il proiettile perdeva il suo "impeto" cadendo a terra. Egli si rese conto che i proiettili sono soggetti sia alla forza

Appunti di Fisica 4 Marco Casu

impressa dal colpo (orizzontale), sia a quella verticale impressa verso il basso.

La forza impressa dal colpo gli da una velocità costante, in quanto non è soggetto ad ulteriori accellerazioni orizzontalmente, quella verticale invece provoca un moto uniformemente accellerato, la distanza percorsa in verticale è proporzionale al quadrato del tempo impiegato a percorrerla, la combinazione dei due moti risulta in un arco di parabola.

Galileo, chiamò x la direzione orizzontale, ed y quella verticale, partendo da (x, y) = (0, 0), e sapendo che lo spazio percorso in x è proporzionale ale tempo, mentre quello percorso in y è proporzionale al quadrato del tempo, si ha

$$x = a \cdot t$$
 $y = b \cdot t^2$

Con alcuni passaggi algebrici si trova esattamente la nota equazione della parabola

$$y = \frac{b}{a^2} \cdot x^2$$

1.2 Spostamento, Velocità e Grandezze Fisiche

Il **moto**, è uno dei fenomeni fisici più classici, che necessita di una definizione e rappresentazione formale, è il cambiamento di una posizione rispetto al tempo.

Un classico esempio di sistema di riferimento $\grave{\rm e}$ il piano cartesiano, in cui un punto nello spazio, $\grave{\rm e}$ identificato da tre coordinate

In funzione del tempo t. Può essere rappresentato anche da un vettore posizione $\bar{r}(t)$, descritto dalla lunghezza e dagli angoli rispetto gli assi del piano e la proiezione delle sue componenti, nel caso bi-dimensionale :

Figura 1.5: $\bar{r} = (r, \theta)$

Risulta possibile passare dalle coordinate cartesiane a quelle descritte con l'angolo tramite le seguenti trasformazioni

$$\begin{cases} r\cos(\theta) = x \\ r\sin(\theta) = y \end{cases}$$

Inoltre

$$r^{2}(\cos^{2}(\theta) + \sin^{2}(\theta)) = x^{2} + y^{2}$$
$$r = \sqrt{x^{2} + y^{2}} \qquad \theta = \arctan(y/x)$$

Le componenti di \bar{r} dipendono dal sistema di riferimento. Posso definire uno spostamento nel tempo, tramite il vettore \bar{r} in un istante t, ed il medesimo vettore in un istante $t + \Delta t$, dove Δt rappresenta una variazione temporale. Una volta definiti i vettori $\bar{r}(t)$ e $\bar{r}(t + \Delta t)$, si definisce il **vettore spostamento** come la loro differenza algebrica, ossia $\Delta \bar{r} = \bar{r}(t + \Delta t) - \bar{r}(t)$.

Si vogliono rappresentare i vettori in maniera più formale, rispetto che alla classica notazione $\bar{v} = (x, y, z)$. Si fa uso dei versori

$$\bar{i} = (1,0,0)$$
 $\bar{j} = (0,1,0)$ $\bar{k} = (0,0,1)$

per definire un vettore come somma dei versori scalati con appositi coefficienti, che rappresentano le componenti del vettore :

$$\bar{v} = (x, y, z) = x\bar{i} + y\bar{j} + z\bar{k}$$

Ogni componente della somma è la proiezione del vettore su uno dei tre assi. Si osservi come il vettore spostamente non dipende dal sistema di riferimento.

Il vettore spostamento $\Delta \bar{r}$ varia a sua volta nel tempo, descrivendo quindi il moto di un punto, la **velocità** media di tale spostamento si definisce tramite il rapporto incrementale

$$\frac{\Delta \bar{r}(t)}{\Delta t} = \frac{\bar{r}(t + \Delta t) - \bar{r}(t)}{\Delta t}$$

Si può definire anche la velocità media scalare, se lo spostamento avviene su un percorso già definito, e non è necessaria informazione sulla direzione, è possibile rappresentarlo con uno scalare s(t), e $\frac{\Delta s}{\Delta t}$ rappresenta la velocità media scalare.

La velocità media non è molto precisa come informazione, in quanto non descrive il moto di un corpo (la sua traiettoria) a pieno, si vuole quindi dare una misura di una velocità *istantanea*, si fa quindi tendere a zero la differenza di tempo :

$$\lim_{\Delta t \to 0} \frac{\Delta \bar{r}(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\bar{r}(t + \Delta t) - \bar{r}(t)}{\Delta t}$$

Tale grandezza si denota $\frac{d\bar{r}}{dt}$, è la derivata dello spostamento rispetto al tempo, verrà nominata semplicemente **velocità**, rappresenta lo spostamento istantaneo ed è tangente alla curva dello spostamento. Si definisce anche la velocità scalare $\frac{ds}{dt}$, ed è il modulo della velocità.

Una volta definite delle quantità come spostamento e velocità, è necessario definire delle grandezze fisiche ed introdurre delle unità di misura. Il vettore \bar{r} ha le dimensioni di una lunghezza, la dimensione lunghezza [l] è espressa in metri m, il sistema internazionale definisce

$$(m, kg, s) = (metri, kilogrammi, secondi)$$

La dimensione del tempo [t] è espressa in secondi s. Esistono alcune grandezze dette adimensionali, un esempio sono gli angoli, misurati in gradi o radianti.

La velocità, è una grandezza derivata, essendo un rapporto fra lo spostamento ed il tempo, si misura in metri al secondo : m/s, rappresenta, appunto la distanza in metri percorsa in 1 secondo. Le grandezze possono essere convertite, ad esempio, considerando i kilometri - orari si ha che

$$1^{m/s} = \frac{10^{-3}}{1/3600} k^{m/h} = 10^{-3} \cdot 3600 k^{m/h} = 3.6 k^{m/h}$$

Introduciamo adesso il concetto di **differenziale**, si consideri una generica funzione f(x) in un punto x_0 , ed il suo rapporto incrementale per una variazione dx.

Il segmento denotato $\Delta f(x)$ rappresenta l'incremento effettivo della funzione, e vale $f(x_0 + dx) - f(x_0).$

Definisco ora il **differenziale** di f come una **linearizzazione** della funzione, ossia, si considera nel punto x_0 una retta tangente alla curva di f.

Il differenziale df da una stima dell'incremento, considerando una funzione lineare (in questo caso bidimensionale, una retta).

Denotando con f' la derivata di f si ha

$$df = f' \cdot dx$$

$$\frac{df}{dx} = f'$$

Le funzioni lineari sono più semplici di quelle non lineari, il punto di tale differenziale è che, quando l'incremento dx tende a zero, l'incremento effettivo della funzione e l'incremento "stimato" dato dal differenziale tendono allo stesso valore.

$$\lim_{dx \to 0} f(x_0 + dx) = f(x_0) + f'(x_0) \cdot dx$$