

Functional Dependencies

Content

- Functional Dependency
- Types of Functional dependency

Functional Dependency

 The functional dependency is a relationship that exists between two attributes. It typically exists between the primary key and non-key attribute within a table.

$$X \rightarrow Y$$

The left side of functional dependency is known as a determinant,
 the right side of the production is known as a dependent.

Functional Dependency: Example

- An Employee table with attributes: Emp_Id, Emp_Name, Emp_Address.
- Functional dependency can be written as:
 - $Emp_Id \rightarrow Emp_Name$
- We can say that Emp_Name is functionally dependent on Emp_Id.

Types of Functional dependency

Types of Functional dependency

1. Trivial functional dependency

- A \rightarrow B has trivial functional dependency if B is a subset of A.
- The following dependencies are also trivial like: $A \rightarrow A$, $B \rightarrow B$

2. Non-trivial functional dependency

- A → B has a non-trivial functional dependency if B is not a subset of A.
- When A intersection B is NULL, then $A \rightarrow B$ is called as complete non-trivial.

Types of Functional dependency

Trivial functional dependency Example:

```
Consider a table with two columns Employee_Id and Employee_Name.

{Employee_id, Employee_Name} → Employee_Id is a trivial functional dependency as
```

Also,

Employee_Id \rightarrow Employee_Id and

Employee_Id is a subset of {Employee_Id, Employee_Name}.

Employee_Name \rightarrow Employee_Name

are trivial dependencies too.

Non-trivial functional dependency Example:

- ID \rightarrow Name,
- Name → DOB

THANK YOU

