

SOLAR-PUMPED LASER FOR FREE SPACE POWER TRANSMISSION

Ja H. Lee
 NASA Langley Research Center
 Hampton, Virginia 23665

LASER POWER TRANSMISSION

- 0 LASER IS ONLY FEASIBLE SYSTEM FOR LONG RANGE (> 1,000 KM) POWER TRANSMISSION IN SPACE.
- 0 LASER BEAM ACTS AS "SUPER CONDUCTOR" TO DELIVER HIGH GRADE POWER--NEAR ZERO ENTROPY.
- 0 MULTIMISSION SUPPORT POSSIBLE--ECONOMICAL.
- 0 LIGHT WEIGHT SYSTEMS IDENTIFIED--DIRECT SOLAR PUMPED LASERS AND LASER DIODE ARRAYS.

TRANSMITTER/RECEIVER SIZES vs RANGE

LASERS AVAILABLE FOR LASER POWER TRANSMISSION

0 REQUIREMENTS

LASER POWER	> 10 MW	ORBITAL MANEUVERING
	> 1 GW	EARTH-TO-ORBIT LAUNCHING (> 1 TON)
	~ 1 MW	OTHER MISSIONS

PHOTON FLUX	< 2×10^5 W/cm ²	CW
	< 2×10^7 W/cm ²	PULSED (LSD PROP.)

WAVELENGTH	> 10 μ m	THROUGH ATMOSPHERE
	~ 1 μ m	DEPENDS ON THE POWER RECEIVERS IN FREE SPACE

PULSE WIDTH	50 ns - 1 μ s	PLASMA GEN. AND HEATING
EFFICIENCY	HIGH	TRANSMITTER AND RECEIVER

0 GROUND BASED WITH SPACE RELAY

FREE ELECTRON LASER (PULSED), CO ₂ LASER (CW)	
STATE-OF-THE-ARTS:	MULTI-KILOWATT (CW), 500 kJ (PULSED)
SCALING-UP:	POSSIBLE TO MULTI-MW LEVEL.

0 TECHNICAL ISSUES:

MANY ORDERS OF MAGNITUDE UP-SCALING NEEDED
ATMOSPHERIC INTERFERENCE

SPACEBORNE LASER OPTION SHOULD BE CONSIDERED

SPACE-BORNE LASERS FOR POWER TRANSMISSION

0 SOLAR POWERED LASERS

DIRECT SOLAR PUMPED LASERS

IODINE PHOTODISSOCIATION LASER, IBr PHOTODISSOCIATION LASER
SOLID STATE LASERS (Nd³⁺), LIQUID Nd³⁺ LASERS, DYE LASERS

INDIRECT SOLAR PUMPED LASERS

N₂-CO₂ BLACKBODY PUMPED LASER, CO BLACKBODY PUMPED LASER

SOLAR PHOTOVOLTAIC POWERED

ELECTRIC DISCHARGE LASERS (EXCIMER, COPPER, CO₂)
DIODE LASER ARRAYS/DIODE LASER PUMPED LASERS.

0 NUCLEAR POWERED LASERS

DIRECT NUCLEAR-PUMPED LASERS

HIGH EFFICIENCY ELECTRIC DISCHARGE LASERS OR DIODE LASERS

SOLAR PHOTOVOLTAIC ELECTRICALLY PUMPED ONE MW LASER SYSTEMS

		KRF EXCIMER	COPPER VAPOR	DIODE ARRAY	<u>CO₂</u>	REMARKS
LASER WAVELENGTH	μM	0.248	0.510 0.570	0.8	10.6	
INTRINSIC EFFICIENCY	%	10	3	30	13.7	
ELECTRIC EFFICIENCY	%	2.5	1.4	30	5.5	WALL-PLUG EFF.
SOLAR TO LASER EFFICIENCY	%	0.40	0.24	6.0	0.88	
SOLAR POWER COLLECTED	MW	250	412	16.5	113.5	
ELECTRIC POWER FROM PV ARRAY	MW _E	50	82	3.3	22.7	20 PERCENT EFFICIENCY
SOLAR PANEL AREA	m ²	185,185	305,185	12,318	84,444	1.35kW/m ² AMO
THERMAL RADIATED POWER	MW	49	81	2.3	21.7	OTHER THAN SOLAR ARRAY
RADIATOR TEMP./AREA	K/1000m ²	300/21.8 373/27.3 326/14.1	300/107 1770/.057	250/10.4	300/9.8 409/10.8	
TOTAL		63.2	107.057	10.4	20.6	

SOLAR PHOTOVOLTAIC PUMPED ONE MW LASER SYSTEMS

		KRF EXCIMER	COPPER VAPOR	DIODE ARRAY	CO ₂	REMARKS
ELECTRIC EFFICIENCY	%	2.5	1.4	30	5.5	AFTER POWER CONDITIONING
ELECTRIC POWER	MW _E	50	82	3.3	22.7	
SOLAR PANEL AREA, MASS	m ² KG	185,185 166,666	305,185 273,333	12,318 11,000	84,444 76,000	20% EFFICIENCY 300 W/KG (REF. 1)
POWER CONDITIONER	KG	88,000	144,320	5,808	40,120	1.76 KG/kWE (REF. 2)
THERMAL POWER	MW	49	81	2.3	21.7	
RADIATED						
RADIATOR AREA MASS	m ² KG	63,200 170,640	107,057 289,054	10,400 28,080	20,600 55,620	2.7 KG/m ² (REF. 3)
TOTAL MASS	KG	425,306	706,707	44,888	171,740	LASER CAVITY MASS NOT INCLUDED

REF. 1 - E. A. GABRIS AND A. D. SCHNYER, PROC. 22ND IECEC AUG 1987, P. 33

2 - J. A. MARTIN AND L. WEBB, PROC. 22ND IECEC AUG 1987, P. 321

3 - E. P. FRENCH, 15TH IECEC, 1980, P. 394.

2D LASER DIODE ARRAY

1MW LASER DIODE ARRAY SYSTEM

LASER DIODE ARRAY TECHNICAL ISSUES

ADVANTAGES:

- 0 HIGH SYSTEM EFFICIENCY (6%)
- 0 SMALL AND POTENTIALLY LEAST MASSIVE SYSTEM
- 0 NO LASANT FLOW REQUIRED
- 0 REASONABLE LASER WAVELENGTH
- 0 LASER DIODE ARRAY HAS GOOD POWER COUPLING TO SOLAR ARRAY
- 0 LOW WEIGHT/SIZE WASTE HEAT RADIATOR

DISADVANTAGES:

- 0 LOW TEMPERATURE LASER OPERATION REQUIRES LOW T RADIATOR AND HEAT REMOVAL SUBSYSTEM
- 0 VERY TEMPERATURE SENSITIVE
- 0 EFFECTS OF SPACE RADIATION MAY BE SEVERE

TECHNICAL ISSUES:

- 0 PHASE MATCHING ENTIRE LASER ARRAY NOT DEMONSTRATED
- 0 SCALING PRESENT 1-WATT SINGLE DIODES TO 1MW DIODE ARRAY
- 0 ARRAY COOLING WITH HEAT PIPES
- 0 ELECTRICAL DIODE LASER NETWORK

WEIGHT ESTIMATE OF DIODE PUMPED Nd YAG LASER SYSTEM

DIODE LASER EFFICIENCY	= 30%
PUMPING EFFICIENCY	= Nd:YAG LASER OUTPUT/DIODE LASER INPUT
	= 35% (REF.)
ELECTRIC EFFICIENCY	= 10.5%
SOLAR DIODE LASER	= 6%
EFFICIENCY	
OVERALL SYSTEM EFFICIENCY	= .06 X .35 = .021 OR 2.1%
SOLAR POWER COLLECTED	= 1-MW/.021 = 48 MW
ELECTRIC POWER	= 48 MW X .20 = 9.6 MWE 6.72 (THERMAL) + 2.88 MW (LASER)
SOLAR PANEL AREA	35,477 M ²
WEIGHT	32,000 KG 300 WR/RG
POWER CONDITIONING	16,896 KG 1.76 KG/KWE
COOLING POWER	8.6 MW
RADIATOR TEMPERATURE	300 K/350 K
AREA	18,770 M ²
WEIGHT	50,680 KG 2.7 KG/M ²
TOTAL WEIGHT	99,576 KG

COMPARE: 44,888 KG FOR DIODE LASER ARRAY AND
30,270 KG FOR SOLAR IODINE LASER

VARIOUS SOLAR PUMPED GAS LASERS

X = halogen, Y = different halogen atom
 R = complex radical

CHARACTERISTICS OF IDEAL SOLAR PUMPED LASER

Good Solar Utilization

High Quantum/Kinetic Efficiency

Closed Cycle Operation of Lasant Fluid

Low Pumping Threshold

— 20k Solar constants max. con.
 — 2.7 kw/cm²

IODINE LASER KINETICS

ABSORPTION CROSS SECTIONS OF PERFLUOROALKYL IODIDES

SOLAR-PUMPED LASER EXPERIMENT

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

SOLAR SIMULATOR PUMPED IODINE LASER EXPERIMENT

C-89-12835

PROGRESS IN SOLAR LASER POWER

STATUS OF SOLAR-PUMPED IODINE LASER

O KINETICS: LASER MEDIUM C_3F_7I , C_4F_9I
 99 PERCENT RECYCLABLE
 PUMP BAND 250-290 NM NUV
 INTRINSIC EFFICIENCY 21 PERCENT
 EXCITATION MODE PHOTODISSOCIATION TO I^*
 SOLAR-TO-LASER EFFICIENCY 0.2 TO 0.6 PERCENT

O SCALABILITY: PULSED POWER > 2 TW/2 KJ ACHIEVED (MARX-PLANCK INT.)
 CW > 15 W ACHIEVED (WITH SOLAR SIMULATOR)
 SCALING NO THEORETICAL LIMIT, 1 GW LEVEL POSSIBLE
 1MW SYSTEM STUDY COMPLETED

O SOLAR-SIMULATOR PUMPED LASER EXPERIMENT:
 15 W CW, > 250 W PULSED (Q-SWITCHED)
 FLOW, SUBSONIC
 REP. PULSED MOPA UNDER DEVELOPMENT

O R & D ISSUES: LARGE SOLAR UV COLLECTOR
 CHEMICAL REVERSIBILITY
 BEAM PROFILE CONTROL
 FLIGHT EXPERIMENT FOR THERMAL MANAGEMENT/BEAM TRANSMISSION

ONE MEGAWATT IODINE SOLAR PUMPED LASER POWER STATION

ONE MW SOLAR IODINE LASER SYSTEM MASS

COLLECTOR, KG	14,800
RADIATOR, KG	15,470
TOTAL MASS FOR COLLECTOR AND RADIATOR, KG	30,270

OTHER SUBSYSTEMS:

LASER CAVITY

 QUARTZ TUBE, KG 1,860

 LASER CAVITY OPTICS, KG 1,000

 LASER TRANSMISSION OPTICS AND STRUCTURE (27.6 M DIAM.), KG 24,000

GAS FLOW SYSTEM

 COMPRESSOR (2 STAGE), KG 12,700

 TURBINE, KG 12,200

 DUCTS, KG 3,000

$\text{r-C}_4\text{F}_9\text{I}$ STORAGE TANKS (4 EMPTY TANKS), KG 270

ATTITUDE CONTROL SYSTEM (CMG AND FUEL)

 CMG, KG 2,000

 150 KG FUEL/YR, KG 4,500

FLOW AND THERMAL CYCLES OF ONE MW IODINE LASER

OPERATION OF SOLAR PUMPED LASER POWER STATION

C-89-12836

LASER POWER CONVERSION SYSTEMS

<u>SYSTEM</u>	<u>EFFICIENCY</u>
RECEIVER/PHOTOVOLTAIC/BATTERIES	34.0 %
RECEIVER/HEAT/BRAYTON/GENERATOR	34.2 %
RECEIVER/MHD GENERATOR	55.0 %
RECEIVER/PROPULSION (100 % THEORETICAL)	50.0 %

LASER POWER TRANSMISSION APPLICATIONS

- o VERY LOW EARTH ORBIT SATELLITE -- DRAG REDUCTION
- o OTV (LEO TO GEO) -- WEIGHT REDUCTION
- o MARS -- SCIENTIFIC PROBES
- o DEEP SPACE SATELLITE -- PRIME POWER SUPPLY
- o SPACE PROCESSING/MANUFACTURING

C-89-12838

C-89-12839

MILESTONES

0	BEAM TRANSMISSION CHARACTERIZATION	5/88
0	TEST OF MOPA SYSTEM	12/88
0	OTHER GAS LASER ALTERNATIVES Na ₂ , HgBr	12/88
0	Nd ³⁺ LIQUID LASER EVALUATION	6/88
0	SOLID STATE LASER EVALUATION Nd ³⁺ : YAG, Nd ³⁺ : GSGG, Nd ³⁺ : YLF	3/88
0	PREFLIGHT EXPERIMENT GROUND TESTING	3/89
0	FLIGHT EXPERIMENT -- PLAN/DESIGN	?

SUMMARY AND CONCLUSION

- 0 SPACE-BORNE SOLAR-PUMPED LASER SYSTEMS ARE Viable OPTIONS FOR LASERS FOR FREE SPACE POWER TRANSMISSION. PRIME POWER SOURCE, SUN, IS FREE AND THE SYSTEM WITH 1.3- μ M WAVELENGTH IS SUITABLE FOR TRANSMISSION OVER 1000 KM (LEO-GEO DISTANCE).
- 0 SOLAR-PUMPED IODINE LASER SYSTEM HAS SCALABILITY AND LIGHT WEIGHT (30 TONS/MW) SUITABLE FOR SPACE-BASED OPERATION.
- 0 DIODE LASER ARRAYS DRIVEN BY SOLAR PANELS OR SOLAR DYNAMIC GENERATORS COULD BE ANOTHER CANDIDATE FOR THE SPACE-BASED LASER SYSTEM IF BEAM PROFILE CONTROL FOR THE LONG DISTANCE TRANSMISSION IS POSSIBLE.
- 0 IODINE LASER PROGRAM PROGRESSED STEADILY SINCE 1980 AND FLIGHT EXPERIMENT PROPOSED FOR 1990'S.

REFERENCES

1. Kare, J. T. ed.: Proceed. SDIO/DARPA Workshop on Laser Propulsion. Vol. 1, Executive Summary, CONF-860778 LLNL. Nov 1986.
2. De Young, R. J.; Walberg, G. D.; Conway, E. J.; and Jones, L. W.: A NASA High-Power Space-Based Laser Research and Applications Program. NASA SP-464, 1983.
3. Conway, E. J.; De Young, R. J.; Lee, J. H.; Williams, M. D.; and Schuster, G. L.: "Comparison of 1-MW Electrically Driven Lasers for Space Power Transmission Applications," (to be published as NASA TM, 1988).
4. Lee, J. H.; Weaver, W. R.: "A Solar Simulator-Pumped Atomic Iodine Laser," Appl. Phys. Lett.; 39, 137, (1981).
5. Lee, J. H.; Wilson, J. W.; Enderson, T.; Humes, D. H.; Weaver, W. R.; and Tabibi, M.: Opt. Commun., 53, 367, (1985).
6. Wilson, J. W.; and Lee, J. H.: "Modeling of a Solar-Pumped Laser," Virginia J. Sci., 31 34 (1980).
7. De Young, R. J.; Walker, H. G.; Williams, M. D.; Schuster, G. L.; and Conway, E. J.: Preliminary Design and Cost of a 1-Megawatt Solar-Pumped Iodine Laser Space-to-Space Transmission Station, NASA RM-4002. Sept 1987.