Modelowanie Matematyczne - Projekt 1

Bartłomiej Krawczyk, 310774

Zadanie 1 - Sieć przepływowa

W centrum dyspozytorskim planuje się dostawy węgla z określonych kopalń do elektrowni. Rozważana jest możliwość dostaw węgla kamiennego z trzech kopalń A, B, C do trzech elektrowni F, G, H za pomocą sieci kolejowej z dwoma stacjami pośrednimi D i E.

- Jednostkowe koszty transportowe i przepustowości na poszczególnych odcinkach wynoszą (skierowanie łuku jest od wiersza do kolumny):
 - koszt:

	D	E	F	G	Η
A	3	6	-	-	-
В	6	3	-	-	-
\mathbf{C}	4	5	-	-	-
D	-	2	5	7	3
\mathbf{E}	-	-	5	4	2

przepustowość:

	D	Е	F	G	Н
A	8	10	-	-	-
В	10	13	-	-	-
\mathbf{C}	10	8	-	-	-
D	-	20	16	6	10
E	-	-	7	4	2

- Zdolności wydobywcze kopalń wynoszą (w tys. ton): $W_A = 10, W_B = 13, W_C = 22.$
- Średnie zużycie dobowe węgla przez elektrownie wynosi (w tys. ton): $Z_F = 15, Z_G = 10, Z_H = 10.$

Zadanie polega na wyznaczeniu planu codziennych dostaw węgla zaspokajający zapotrzebowania elektrowni i minimalizujący sumaryczne koszty transportu. W tym celu należy: - sformułować i narysować model sieciowy (sieć przepływową); Określić jaki problem na tej sieci należy rozwiązać (należy nazwać problem do rozwiązania, nie algorytm) - znaleźć jak najlepsze rozwiązanie (dowolną metodą ręcznie lub algorytmicznie) - zapisać odpowiadające zadanie programowania liniowego

Ponadto, należy sprawdzić, gdzie w sieci transportowej występuje wąskie gardło, które stanowiłoby ograniczenie w przypadku zwiększonego zapotrzebowania ze strony elektrowni (koszty transportu należy pominąć). W tym celu należy znaleźć przekrój o jak najmniejszej przepustowości; jaką informację niesie przepustowość wybranego przekroju?

Sformułować i narysować model sieciowy (sieć przepływową); Określić jaki problem na tej sieci należy rozwiązać

Problemem, który należy rozwiązać jest problem najtańszego przepływu.

Zapotrzebowanie dobowe wszystkich elektrowni wynosi $F_{zadane} = Z_F + Z_G + Z_H = 35$, zatem zadany przepływ to 35 jednostek (tys. ton).

Należy znaleźć przepływ ze źródła s do ujścia t o zadanej wielkości F_{zadane} i minimalnym sumarycznym koszcie.

Figure 1: TODO

Znaleźć jak najlepsze rozwiązanie.

Najlepsze rozwiązanie znalezione algorytmicznie prowadzi do kosztu równego 296.

from to	s	A	В	С	D	Е	F	G	Н	t
s	0	8	13	14	0	0	0	0	0	0
A	0	0	0	0	8	0	0	0	0	0
В	0	0	0	0	4	9	0	0	0	0
С	0	0	0	0	10	4	0	0	0	0
D	0	0	0	0	0	0	8	6	8	0
E	0	0	0	0	0	0	7	4	2	0
F	0	0	0	0	0	0	0	0	0	15
G	0	0	0	0	0	0	0	0	0	10
Н	0	0	0	0	0	0	0	0	0	10

from to	\mathbf{s}	A	В	С	D	E	F	G	Η	t
t	0	0	0	0	0	0	0	0	0	0

Figure 2: TODO

Zapisać odpowiadające zadanie programowania liniowego.

Zbiory

- $V = \{s, A, B, C, D, E, F, G, H, t\}$ zbiór wszystkich węzłów sieci przepływowej,
- $U = V \setminus \{s, t\}$ zbiór węzłów sieci przepływowej z wyłączeniem źródła s i ujścia t,
- $E \subset V \times V$ zbiór łuków dostępnych w danej sieci przepływowej.

$$V = \{s, A, B, C, D, E, F, G, H, t\}$$

$$U = \{A, B, C, D, E, F, G, H\}$$

$$E = \{(A, D), (A, E),$$

$$(B, D), (B, E),$$

$$(C, D), (C, E),$$

$$(D, E), (D, F), (D, G), (D, H),$$

$$(E, F), (E, G), (E, H)\}$$

Parametry

- $F_{zadane} = 35$ całkowite zapotrzebowanie dobowe węgla (w tys. ton).
- c_{uv} $dla(u,v) \in E$ przepustowość ustalona dla każdego łuku rozpoczynającego się w węźle u i kończącego się w węźle v. W przypadku $(u,v) \notin E$ przyjmujemy $c_{uv} = 0$,

• d_{uv} $dla(u,v) \in E$ - koszt ustalony dla każdego łuku rozpoczynającego się w węźle u i kończącego się w węźle v. W przypadku $(u,v) \notin E$ przyjmujemy $d_{uv} = 0$.

$$c_{AD} = 8, c_{AE} = 10$$

$$c_{BD} = 10, c_{BE} = 13$$

$$c_{CD} = 10, c_{CE} = 8$$

$$c_{DE} = 20, c_{DF} = 16, c_{DG} = 6, c_{DH} = 10$$

$$c_{EF} = 7, c_{EG} = 4, c_{EH} = 2$$

$$c_{sA} = 10, c_{sB} = 13, c_{sC} = 22$$

$$c_{Ft} = 15, c_{Gt} = 10, c_{Ht} = 10$$

$$d_{AD} = 3, d_{AE} = 6$$

$$d_{BD} = 6, d_{BE} = 3$$

$$d_{CD} = 4, d_{CE} = 5$$

$$d_{DE} = 2, d_{DF} = 5, d_{DG} = 7, d_{DH} = 3$$

$$d_{EF} = 5, d_{EG} = 4, d_{EH} = 2$$

Zmienne decyzyjne

- f_{uv} $dla(u,v) \in E$ przepływ przez łuk rozpoczynający się w węźle u i kończącego się w węźle v,
- D zmienna pomocnicza całkowity koszt wszystkich przepływów.

Funkcja oceny

• min(D) - minimalizujemy całkowity koszt wszystkich przepływów.

Ograniczenia

• Przepływ nie może być negatywny:

$$\forall (u,v) \in E : f_{uv} \geq 0$$

• Całkowity koszt jest sumą kosztu wszystkich przepływów:

$$D = \sum_{(u,v)\in E} d_{uv} f_{uv}$$

• Ze źródła s wypływa F_{zadane} jednostek:

$$\sum_{z \in V} f_{sz} = F_{zadane}$$

• Suma wpływających jednostek i wypływających z danego węzła powinna być równa (wyjątkiem jest źródło s i ujście t):

$$\forall v \in U : \sum_{z \in V} f_{vz} = \sum_{u \in V} f_{uv}$$

• Przepływ przez dany łuk nie może przekroczyć maksymalnego przepływu:

$$\forall (u,v) \in E : f_{uv} < c_{uv}$$

4

Ponadto, należy sprawdzić, gdzie w sieci transportowej występuje wąskie gardło, które stanowiłoby ograniczenie w przypadku zwiększonego zapotrzebowania ze strony elektrowni (koszty transportu należy pominąć). W tym celu należy znaleźć przekrój o jak najmniejszej przepustowości; jaką informację niesie przepustowość wybranego przekroju?

Zbiory

- $V = \{s, A, B, C, D, E, F, G, H, t\}$ zbiór wszystkich węzłów sieci przepływowej,
- $U = V \setminus \{s, t\}$ zbiór węzłów sieci przepływowej z wyłączeniem źródła s i ujścia t,
- $E \subset V \times V$ zbiór łuków dostępnych w danej sieci przepływowej.

Parametry

• c_{uv} $dla(u,v) \in E$ - przepustowość ustalona dla każdego łuku rozpoczynającego się w węźle u i kończącego się w węźle v. W przypadku $(u,v) \notin E$ przyjmujemy $c_{uv} = 0$. Przepustowość ma te same wartości co w poprzednim zadaniu z wyjątkiem przepustowości:

$$c_{Ft} = \infty, c_{Gt} = \infty, c_{Ht} = \infty$$

Zmienne decyzyjne

Dzielimy wierzchołki na dwa rozłączne zbiory S i T. Zakładamy, że $s \in S$ i $t \in T$.

- d_{uv} $dla(u,v) \in E$ zmienna oznaczająca przynależność łuku do przekroju. Równa 1 gdy $u \in S$ i $v \in T$ (łuk należy do przekroju), w przeciwnym wypadku 0.
- z_{uv} $dlav \in V$ zmienna oznaczająca przynależność wierzchołka do zbioru S. Równa 1 gdy $v \in S$, a 0 w przeciwnym przypadku.

Funkcja oceny

• $min(\sum_{(u,v)\in E} c_{uv}d_{uv})$ - minimalizujemy całkowitą przepustowość łuków należących do przekroju.

Ograniczenia

• Zmienna pomocnicza d_{uv} nie może być negatywna:

$$\forall (u, v) \in E : d_{uv} \ge 0$$

• Wierzchołek s z definicji należy do S:

$$z_s = 1$$

• Wierzchołek t z definicji należy do T, więc nie należy do S:

$$z_t = 0$$

• Dla każdego nie terminalnego węzła u, v, jeśli u należy do podziału S i v należy do podziału T, to łuk (u, v) jest liczony do przekroju $(d_{uv} \ge 1)$:

$$\forall (u, v) \in E, u \neq s, v \neq t : d_{uv} - z_u + z_v \ge 0$$

Wynik

Maksymalna wyliczona algorytmicznie przepustowość sieci jest równa 41 (tys. ton). Przekrojem o najmniejszej przepustowości jest przekrój: $\{(s, A), (s, B), (C, D), (C, E)\}$.

Pomimo możliwości wydobywczej wszystkich kopalń równej 45 tysięcy ton, przez sieci kolejowe nie jesteśmy w stanie dostarczyć więcej niż maksymalna przepustowość (41 tysięcy ton).

Figure 3: TODO

Zadanie 2 - Zadanie przydziału

1. Planowanie realizacji portfela przy ograniczonych kompetencjach

Softwarehouse posiada portfel projektów oznaczonych 1-6 oraz zespoły programistyczne oznaczone A-F. Poniża tabela przedstawia kompetencje zespołów, gdzie "-" oznacza brak kompetencji zespołu do realizacji danego projektu. Kompetencje zespołów:

projekt zespół	A	В	С	D	Е	F
1	X	-	X	X	-	X
2	-	X	X	-	X	-
3	X	X	-	X	-	-
4	-	X	X	-	X	-
5	X	-	X	X	-	X
6	X	-	-	-	X	Χ

Należy dokonać przydziału zespołów programistycznych do poszczególnych projektów, przy założeniu, że jeden zespół może realizować tylko jeden projekt, a jeden projekt może być realizowany przez tylko jeden zespół. W tym celu:

- narysować model sieciowy problemu
- określić jaki problem należy rozwiązać i znaleźć ręcznie rozwiązanie
- na podstawie rozwiązania modelu sieciowego określić przydział zespołów do projektów

8

Figure 4: TODO

Każdy łuk ma maksymalną przepustowość równą ${f 1}.$

Określić jaki problem należy rozwiązać i znaleźć ręcznie rozwiązanie

Problem do rozwiązania w tym zadaniu to zadanie maksymalnego skojarzenia (przydziału).

- Przydzielamy projekty do zespołów
- Każdy projekt wymaga jednego zespołu
- Każdy zespół może realizować maksymalnie jeden projekt

Rozwiązanie znalezione ręcznie:

projekt zespół	A	В	С	D	E	F
1	X	-	-	-	-	-
2	-	-	X	-	-	-
3	-	X	-	-	-	-
4	-	-	-	-	X	-
5	-	-	-	X	-	-
6	-	-	-	-	-	Χ

Figure 5: TODO

Na podstawie rozwiązania modelu sieciowego określić przydział zespołów do projektów

projekt	zespół
1	A
2	\mathbf{C}
3	В
4	\mathbf{E}
5	D
6	F

2. Minimalizacja kosztów realizacji projektów

Zakładamy, że firma wynajmuje zespoły do realizacji projektów. Koszty wynajmu są podane w poniższej tabeli. Koszty wykonywania projektów przez poszczególne zespoły:

projekt zespół	A	В	С	D	Е	F
1	15	-	14	9	-	12
2	-	12	16	-	10	-
3	11	14	-	12	-	-
4	-	16	11	-	12	-
5	13	-	17	13	-	15
6	11	-	-	-	16	18

Należy dokonać przydziału zespołów programistycznych do projektów tak, aby minimalizować koszty najmu zespołów. Ograniczenia dotyczące jednego zespołu i jednego projektu pkt. 2.1 dalej obowiązują. W tym celu: - narysować model sieciowy problemu - określić jaki problem należy rozwiązać na tym modelu sieciowym - spróbować znaleźć jak najlepsze rozwiązanie

12

Figure 6: TODO

Każdy łuk ma maksymalną przepustowość równą 1.

Określić jaki problem należy rozwiązać na tym modelu sieciowym

Problemem do rozwiązania jest zadanie najtańszego skojarzenia.

- Przydzielamy projekty do zespołów
- Każdy projekt wymaga jednego z zespołów
- Każdy zespół może realizować tylko jeden projekt
- Trzeba zrealizować wszystkie projekty
- Każdy zespół realizujący projekt ma ustaloną cenę za realizację tego projektu

Spróbować znaleźć jak najlepsze rozwiązanie

Ā	В	С	D	Е	F	
1	-	-	-	9	-	_
2	-	-	-	-	10	-
3	-	14	-	-	-	-
4	-	-	11	-	-	-
5	-	-	-	-	-	15
6	11	-	-	-	-	-

Najlepszym znalezionym algorytmicznie rozwiązaniem jest przydział o koszcie całkowitym 70:

3. Minimalizacja terminu realizacji puli projektów

Załóżmy teraz, że dane podane w tabeli 2 to czasy (w miesiącach) realizacji projektów przez poszczególne zespoły. Ograniczenia dotyczące jednego zespołu i jednego projektu pkt. 2.1 dalej obowiązują. Zaproponować model programowania liniowego minimalizujący termin realizacji całego portfela projektów (jest to termin zdeterminowany przez najdłużej wykonywany projekt).

Zbiory

- $V = \{s, 1, 2, 3, 4, 5, 6, A, B, C, D, E, F, t\}$ zbiór wszystkich węzłów sieci przepływowej,
- $U = V \setminus \{s,t\}$ zbiór węzłów sieci przepływowej z wyłączeniem źródła s i ujścia t,
- $E \subset V \times V$ zbiór łuków dostępnych w danej sieci przepływowej.

$$V = \{s, 1, 2, 3, 4, 5, 6, A, B, C, D, E, F, t\}$$

$$U = \{1, 2, 3, 4, 5, 6, A, B, C, D, E, F\}$$

$$E = \{(s, 1), (s, 2), (s, 3), (s, 4), (s, 5), (s, 6),$$

$$(1, A), (1, C), (1, D), (1, F),$$

$$(2, B), (2, C), (2, E),$$

$$(3, A), (3, B), (3, D),$$

$$(4, B), (4, C), (4, E),$$

$$(5, A), (5, C), (5, D), (5, F),$$

$$(6, A), (6, E), (6, F),$$

$$(A, t), (B, t), (C, t), (D, t), (E, t), (F, t), \}$$

Parametry

- $F_{zadane} = 6$ ilość projektów każdy musi być zrealizowany.
- $c_{uv} = 1$ $dla(u, v) \in E$ przepustowość ustalona dla każdego łuku rozpoczynającego się w węźle u i kończącego się w węźle v. W przypadku $(u, v) \notin E$ przyjmujemy $c_{uv} = 0$,
- d_{uv} $dla(u,v) \in E$ czas realizacji (w miesiącach) ustalony dla każdego łuku rozpoczynającego się w węźle u i kończącego się w węźle v. W przypadku $(u,v) \notin E$ przyjmujemy $d_{uv} = 0$.

$$\begin{split} c_{s1} &= 1, c_{s2} = 1, c_{s3} = 1, c_{s4} = 1, c_{s5} = 1, c_{s6} = 1, \\ c_{1A} &= 1, c_{1C} = 1, c_{1D} = 1, c_{1F} = 1, \\ c_{2B} &= 1, c_{2C} = 1, c_{2E} = 1, \\ c_{3A} &= 1, c_{3B} = 1, c_{3D} = 1, \\ c_{4B} &= 1, c_{4C} = 1, c_{4E} = 1, \\ c_{5A} &= 1, c_{5C} = 1, c_{5D} = 1, c_{5F} = 1, \\ c_{6A} &= 1, c_{6E} = 1, c_{6F} = 1, \\ c_{At} &= 1, c_{Bt} = 1, c_{Ct} = 1, c_{Dt} = 1, c_{Et} = 1, c_{Ft} = 1 \end{split}$$

$$d_{s1} &= 0, d_{s2} = 0, d_{s3} = 0, d_{s4} = 0, d_{s5} = 0, d_{s6} = 0, \\ d_{1A} &= 15, d_{1C} = 14, d_{1D} = 9, d_{1F} = 12, \\ d_{2B} &= 12, d_{2C} = 16, d_{2E} = 10, \\ d_{3A} &= 11, d_{3B} = 14, d_{3D} = 12, \\ d_{4B} &= 16, d_{4C} = 11, d_{4E} = 12, \\ d_{5A} &= 13, d_{5C} = 17, d_{5D} = 13, d_{5F} = 15, \\ d_{6A} &= 11, d_{6E} = 16, d_{6F} = 18, \\ d_{At} &= 0, d_{Bt} = 0, d_{Ct} = 0, d_{Dt} = 0, d_{Et} = 0, d_{Ft} = 0, \end{split}$$

Zmienne decyzyjne

- f_{uv} $dla(u,v) \in E$ przepływ przez łuk rozpoczynający się w węźle u i kończącego się w węźle v,
- D zmienna pomocnicza całkowity czas realizacji.

Funkcja oceny

• min(D) - minimalizujemy całkowity całkowity czas realizacji.

Ograniczenia

Projekt w całości może być realizowany tylko przez jeden zespół - przepływ jest liczbą całkowitą z przedziału [0; 1]:

$$\forall (u, v) \in E : f_{uv} \in \{0, 1\}$$

• Całkowity czas realizacji jest większy lub równy poszczególnym czasom realizacji projektów:

$$\forall (u, v) \in E : D \ge d_{uv} f_{uv}$$

• Zespoły muszą zrealizować F_{zadane} projektów - ze źródła s wypływa F_{zadane} jednostek:

$$\sum_{z \in V} f_{sz} = F_{zadane}$$

• Suma wpływających jednostek i wypływających z danego węzła powinna być równa (wyjątkiem jest źródło s i ujście t):

$$\forall v \in U : \sum_{z \in V} f_{vz} = \sum_{u \in V} f_{uv}$$

• Przepływ przez dany łuk nie może przekroczyć maksymalnego przepływu:

$$\forall (u, v) \in E : f_{uv} \le c_{uv}$$

Wynik

Rozwiązaniem algorytmicznym otrzymujemy przydział prowadzący do realizacji w przeciągu 14 miesięcy:

projekt / zespół	A	В	С	D	Е	F
1	-	-	-	-	-	X
2	-	-	-	-	X	-
3	-	X	-	-	-	-
4	-	-	X	-	-	-
5	-	-	-	X	-	-
6	X	-	-	-	-	-

projekt	zespół	czas realizacji
1	F	12
2	\mathbf{E}	10
3	В	14
4	\mathbf{C}	11
5	D	13
6	A	11

Zadanie 3

Pewna firma FMCG planuje sprzedaż jednego produktu. Produkt jest dostarczany do 8 punktów sprzedaży. Na podstawie danych historycznych (lub prognozowanych) utworzony tzw. plan bazowy dostaw opisujący ilości produktu, które były (powinny być) dostarczane do każdego punktu. Jest on następujący:

punkt	1	2	3	4	5	6	7	8
ilość	240	385	138	224	144	460	198	200

Jednak ze względu na akcje marketingowe oraz różnego rodzaju umowy/ustalenia z handlowcami tego produktu wprowadzono różnego rodzaju modyfikacje ww. planu bazowego w formie zagregowanych ograniczeń eksperckich: 1. Suma towaru dostarczonego do punktów 1, 3, 8 ma być przynajmniej o 12% większa niż planie bazowym. 2. Suma towaru dostarczonego do punktów 3, 5 ma być przynajmniej o 7% mniejsza niż w planie bazowym. 3. Ilość towaru dostarczonego do punktu 3 ma stanowić przynajmniej 80% towaru dostarczonego do punktu 7.

Zakładając, że sumaryczna wielkość sprzedaży produktu we wszystkich punktach nie może zostać zmieniona, należy zaplanować wielkość sprzedaży w poszczególnych punktach minimalizującą względne odchylenie (upewnij się, że dobrze rozumiesz "względne odchylenie") od planu bazowego (a dokładnie - wartość bezwzględną względnego odchylenia). Ponieważ jest 8 względnych odchyleń (kryteriów), należy sformułować własną funkcję celu, która jest sumą ważoną dwóch składników: 1) maksymalnego względnego odchylenia pośród 8 odchyleń, 2) sumy wszystkich względnych odchyleń.

Należy zamodelować powyższy problem w postaci zadania programowania liniowego.

Zbiory

- $P = \{1, 2, 3, 4, 5, 6, 7, 8\}$ zbiór wszystkich punktów sprzedaży,
- $\mathbb N$ zbiór liczb naturalnych.

Parametry

- $b_p dlap \in P$ plan bazowy dostaw opisujący ilość, która powinna być dostarczana do punktu p,
- c_1 waga maksymalnego względnego odchylenia pośród 8 odchyleń,
- c_2 waga sumy wszystkich względnych odchyleń.

$$b_1 = 240, b_2 = 385, b_3 = 138, b_4 = 224,$$

 $b_5 = 144, b_6 = 460, b_7 = 198, b_8 = 200$

Zmienne decyzyjne

- x_p dla $p \in P$ planowana ilość do dostarczenia do punktu p,
- y_p dla $p \in P$ odchylenie planowanej wartości od bazowej, która powinna być dostarczona do punktu p,
- y_p^+ dla $p \in P$ zmienna pomocnicza. Reprezentuje dodatnią część zmiennej y_p . Dla $y_p < 0$ $y_p^+ = 0$,
- y_p^P dla $p \in P$ zmienna pomocnicza. Reprezentuje ujemną część zmiennej y_p . Dla $y_p > 0$ $y_p^- = 0$,
- y_{max} zmienna pomocnicza. Wartość większa lub równa od wartości bezwzględnych odchyłek $|y_p|$ każdego z punktów $p \in P$,
- y_{sum} zmienna pomocnicza. Równa jest sumie względnych odchyleń od wszystkich planów bazowych punktów $p \in P$.

Funkcja oceny

• $min(c_1y_{max}+c_2y_{sum})$ - minimalizujemy sumę ważoną dwóch składników: y_{max} i y_{sum} .

Ograniczenia

• Dostarczana ilość produktów nie może być ujemna:

$$\forall p \in P : x_n > 0$$

• Produkty są nie podzielne:

$$\forall p \in P : x_p \in \mathbb{N}$$

• Odchylenie od planowanej ilości bazowej to różnica ilości planowanej i bazowej:

$$\forall p \in P : y_p = x_p - b_p$$

• Odchyłka dodatnia nie może być ujemna:

$$\forall p \in P : y_p^+ \ge 0$$

• Odchyłka ujemna nie może być ujemna:

$$\forall p \in P : y_n^- \geq 0$$

• Odchylenie możemy zapisać jako różnice odchyłek:

$$\forall p \in P : y_p = y_p^+ - y_p^-$$

• Maksymalne odchylenie jest większe równe wartości bezwzględnej każdego z odchyleń:

$$\forall p \in P : y_{max} \ge y_p^+ + y_p^-$$

• Suma względnych odchyleń jest równa sumie wartości bezwględnych każdego z odchyleń:

$$y_{sum} = \sum_{p \in P} y_p^+ + y_p^-$$

• Suma towaru dostarczonego do punktów 1, 3, 8 ma być przynajmniej o 12% większa niż w planie bazowym:

$$x_1 + x_3 + x_8 \ge 1.2(b_1 + b_3 + b_8)$$

• Suma towaru dostarczonego do punktów 3,5 ma być przynajmniej o 7% mniejsza niż w planie bazowym:

$$x_3 + x_5 \le 0.93(b_3 + b_5)$$

• Ilość towaru dostarczonego do punktu 3 ma stanowić przynajmniej 80% towaru dostarczonego do punktu 7:

$$x_3 > 0.8x_7$$

• Sumaryczna wielkość sprzedaży produktu we wszystkich punktach nie może zostać zmieniona:

$$\sum_{p \in P} x_p = \sum_{p \in P} b_p$$

Wyniki

Wyniki dla podanego zadania prawie nie zależą od przyjętych wag w funkcji oceny.

Dla przyjętego $c_1=1, c_2=0.001$ - preferujemy minimalizację maksymalnego względnego odchylenia nad minimalizacją sumy odchyleń. Otrzymujemy w rezultacie plan o maksymalnym odchyleniu $y_{max}=30$ i sumie odchyleń równej $y_{sum}=140$.

punkt	1	2	3	4	5	6	7	8
bazowy plan plan odchylenie	270	358	148	224	114	460		230

Dla przyjętego $c_1=0.001, c_2=1$ - preferujemy minimalizację sumy względnych odchyleń nad minimalizacją maksymalnego względnego odchylenia. Otrzymujemy w rezultacie taki sam plan - o maksymalnym odchyleniu $y_{max}=30$ i sumie odchyleń równej $y_{sum}=140$.

punkt	1	2	3	4	5	6	7	8
bazowy plan plan odchylenie	270		138 148 10	224		460	198 185 -13	200 230 30