Linear Algebra Lecture Notes

Rostyslav Hryniv

Ukrainian Catholic University
Business Analytics and Computer Science Programmes

4th term Spring 2020

Lecture 5. Bases

- Bases in vector spaces
 - Examples and Definition
 - Dimension
- Four subspaces and rank of a matrix
 - Four subspaces
 - Rank of a matrix
- Coordinates and change of basis
 - Coordinate maps
 - Change of basis

- Bases in vector spaces
 - Examples and Definition
 - Dimension
- Four subspaces and rank of a matrix
 - Four subspaces
 - Rank of a matrix
- Coordinates and change of basis
 - Coordinate maps
 - Change of basis

Definition (Basis of a vector space)

A set S of vectors in a vector space V is called a basis of V if
(a) S is linearly independent; (b) S spans V

Example

- The standard vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ form a basis in \mathbb{R}^n
- The functions $1, x, x^2, \dots, x^n$ form a basis of \mathcal{P}_n
- Matrices M_{ij} (1 on ij^{th} place and zeros otherwise) form a basis of $M_{m \times n}(\mathbb{R})$

Example (Another basis for \mathbb{R}^3)

$$\mathbf{v}_1 = (1, 2, 0)^{\top}, \ \mathbf{v}_2 = (2, 1, 0)^{\top}, \ \mathbf{v}_3 = (1, 1, 1)^{\top} \text{ form a basis of } \mathbb{R}^3.$$

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{b} \iff \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

 3×3 matrix is nonsingular \implies solutions for all \mathbf{b} ; only trivial solution for $\mathbf{b} = \mathbf{0}$

Further examples of bases in linear spaces

Any linearly independent vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ in \mathbb{R}^n form its basis

Need to show: $\mathbf{v}_1, \dots, \mathbf{v}_n$ span \mathbb{R}^n

$$c_1\mathbf{v}_1+\cdots+c_n\mathbf{v}_n=\mathbf{b}\iff [\mathbf{v}_1\ldots\mathbf{v}_n]\mathbf{c}=\mathbf{b}$$

The matrix $A = [\mathbf{v}_1 \cdots \mathbf{v}_n]$ is nonsingular $\implies C(A) = \mathbb{R}^n$

Lemma

If $\mathbf{v}_1, \dots, \mathbf{v}_n$ is a basis of a vector space V, then any $\mathbf{x} \in V$ has a unique representation $\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$.

Proof.

yields $\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n = c_1' \mathbf{v}_1 + \dots + c_n' \mathbf{v}_n$ $\mathbf{0} = (c_1 - c_1') \mathbf{v}_1 + \dots (c_n - c_n') \mathbf{v}_n \implies c_i = c_i'$

Definition (Coordinates of **x** in the basis $\mathbf{v}_1, \dots, \mathbf{v}_n$)

The above c_j are the coordinates of **x** in the basis $\mathbf{v}_1, \dots, \mathbf{v}_n$, and (c_1, \dots, c_n) is the corresponding coordinate vector

- Bases in vector spaces
 - Examples and Definition
 - Dimension
- Four subspaces and rank of a matrix
 - Four subspaces
 - Rank of a matrix
- Coordinates and change of basis
 - Coordinate maps
 - Change of basis

Dimension of a space

Definition

Bases

A vector space *V* is called finite-dimensional if it possesses a finite basis; otherwise, *V* is infinite-dimensional

Example

 \mathcal{P}_{∞} is infinite-dimensional.

Theorem

Any two bases of a finite-dimensional **I.v.s.** have the same number of elements

Proof by contradiction:

Assume $\mathbf{u}_1, \dots, \mathbf{u}_n$ is a basis of V and $\{\mathbf{v}_1, \dots, \mathbf{v}_m\} \subset V$, with m > n We show $\mathbf{v}_1, \dots, \mathbf{v}_m$ are linearly dependent,

- i.e., that $\sum_i c_i \mathbf{v}_i = \mathbf{0}$ for a nontrivial $\mathbf{c} = (c_1, \dots, c_m)$:
- write $\mathbf{v}_j = \sum_k a_{jk} \mathbf{u}_k$ and form $A = (a_{jk})_{m \times n}$; then
- $\sum_{j} c_{j} \mathbf{v}_{j} = \sum_{j} c_{j} \sum_{k} a_{jk} \mathbf{u}_{k} = \sum_{k} (\sum_{j} c_{j} a_{jk}) \mathbf{u}_{k} = \sum_{k} (\mathbf{c} A)_{k} \mathbf{u}_{k}$
- can fulfil $\mathbf{c}A = \mathbf{0}$ for a nonzero \mathbf{c} !

(why not *n*?!)

Dimension of a vector space

Definition

The number of elements in any basis of a finite-dimensional vector space V is called the dimension of the space V and is denoted $\dim V$

Example (Dimension of some spaces)

- \bullet \mathbb{R}^n is of dimension n
- $M_{m \times n}(\mathbb{R})$ is of dimension $m \cdot n$
- \mathcal{P}_n is of dimension n+1• the space of diagonal $n \times n$ matrices is of dimension n
- U_n upper-triangular $n \times n$ matrices; dim $U_n = n(n+1)/2$

Theorem (Sufficient conditions for a basis) Assume V is an n-dim. I.v.s. and $S \subset V$ has n elements. Then TFAE:

(a) S is a basis of V; (b) S is linearly independent; (c) ls(S) = V

(b) \implies (c): if $ls(S) \neq V$, can enlarge S keeping linear independence (c) \implies (b): if S were lin. dependent, \exists a proper $S' \subset S$ s.t. ls(S') = V

Warning on dimensions

Remark

Dimension of a **I.v.s.** depends on the field of scalars (\mathbb{R} or \mathbb{C})

Example

Let *V* be a **l.v.s.** $M_{2\times 2}(\mathbb{C})$ of 2×2 matrices with complex entries. Then

- dim V = 4 if the field of constants is \mathbb{C}
- dim V = 8 if the field of constants is \mathbb{R}

What are the corresponding bases in each case?

Example (Quantum computers and Pauli matrices)

In quantum computation, 2 \times 2 Hermitian matrices are of importance.

These are $A \in M_{2\times 2}(\mathbb{C})$ satisfying $A = A^* := A^\top$, ie, $a_{jk} = \overline{a_{kj}}$. Hermitian matrices form a 4-dim subspace of $M_{2\times 2}(\mathbb{C})$ over \mathbb{R} ;

the Pauli matrices $\sigma_1, \sigma_2, \sigma_3$ along the identity I_2 form a basis:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- Bases in vector spaces
 - Examples and Definition
 - Dimension
- Four subspaces and rank of a matrix
 - Four subspaces
 - Rank of a matrix
- Coordinates and change of basis
 - Coordinate maps
 - Change of basis

Four subspaces of a matrix

Any $m \times n$ matrix $A = (a_{ii})_{m \times n}$ is composed of

•
$$m \text{ row vectors}$$

$$\begin{cases} \mathbf{r}_1 &= (a_{11}, a_{12}, \dots, a_{1n}) \\ \dots \\ \mathbf{r}_m &= (a_{m1}, a_{m2}, \dots, a_{mn}) \end{cases}$$

• n column vectors $\mathbf{c}_1 = \begin{pmatrix} a_{11} \\ \dots \\ a_{m1} \end{pmatrix}, \dots, \mathbf{c}_n = \begin{pmatrix} a_{1n} \\ \dots \\ a_{mn} \end{pmatrix}$

Definition

- Column space C(A) of A is the linear span of $\mathbf{c}_1, \dots, \mathbf{c}_n$; $C(A) \subset \mathbb{R}^m$
- Row space R(A) of A is the linear span of $\mathbf{r}_1, \dots, \mathbf{r}_m$; coincides with $C(A^{\top}) \subset \mathbb{R}^n$
- Nullspace N(A) of A is the solution set of $A\mathbf{x} = \mathbf{0}$; $N(A) \subset \mathbb{R}^n$
- Left nullspace $N(A^T)$ of A is the solution set of $\mathbf{y}^T A = \mathbf{0}$; $N(A^T) \subset \mathbb{R}^m$

Dimensions of the four subspaces

Theorem (Dimensions of the four subspaces)

- (i) Dimension of the row space of A is equal to rank(A)
- (ii) Dimension of the nullspace (the nullity) of A is equal to n rank(A)
- (iii) Dimension of the column space of A is equal to rank(A)
- (iv) Dimension of the left nullspace of A is equal to m rank(A)

Proof.

- Reduce A to the row echelon form U using the elementary row transformations
- Each row of *U* is a linear combination of $\mathbf{r}_1(A), \dots, \mathbf{r}_m(A)$
- Each row of A is a linear combination of $\mathbf{r}_1(U), \dots, \mathbf{r}_m(U)$
- $\bullet \implies \mathsf{ls}\{\mathsf{r}_1(A),\ldots,\mathsf{r}_m(A)\} = \mathsf{ls}\{\mathsf{r}_1(U),\ldots,\mathsf{r}_m(U)\}$
- \implies are both of dimension rank(A)
- N(A) = N(U); the latter has dimension n rank(A)

Dimensions of the four subspaces

Example

$$U = \begin{pmatrix} 1 & -2 & 5 & 0 & 3 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- The row space of *U* is spanned by $\mathbf{r}_1(U)$, $\mathbf{r}_2(U)$, $\mathbf{r}_3(U)$
- x_1, x_2, x_4 are pivot variables, x_3 and x_5 are free variables
- The solution set of $U\mathbf{x} = \mathbf{0}$ has parameters x_3 and x_5 :
- $x_3 = 1$ and $x_5 = 0 \implies$ solution $\mathbf{v}_1 = (-11, -3, \frac{1}{1}, 0, 0)$
- $x_3 = 0$ and $x_5 = 1 \implies$ solution $\mathbf{v}_2 = (-3, 0, 0, -2, 1)$
- a general solution is given by $\mathbf{x} = s\mathbf{v}_1 + t\mathbf{v}_2$; corresponds to $x_3 = s$ and $x_5 = t$

Proof (continued).

- transformation $A \sim U$ is made using the elementary row transformations $\implies \exists$ nonsingular B s.t. BA = U
- (usually $B = L^{-1}$ or $B = L^{-1}P$ from the LU-factorization)
- the column space C(U) of U is spanned by the columns with pivots only; thus C(U) is of dimension rank(A)
- observe: $\mathbf{c}_{j}(U) = B\mathbf{c}_{j}(A)$, so that

$$k_1 \mathbf{c}_1(A) + \dots + k_n \mathbf{c}_n(A) = \mathbf{0} \iff k_1 \mathbf{c}_1(U) + \dots + k_n \mathbf{c}_n(U) = \mathbf{0}$$

- thus C(A) and C(U) = BC(A) are of the same dimension rank(A)
- ullet now $\dim(N(A^{ op}))=m-\dim(C(A^{ op}))=m-\operatorname{rank}(A)$ by (ii)

Dimensions of the four subspaces

Hamming error-correcting codes

Task: create auto-correcting encoding system, i.e.,

System able to detect and auto-correct errors in the received signals

- **Input**: 4-bit message **p** over the field GF(2)
- **2 p** encoded into the codeword $\mathbf{c} = G\mathbf{p}$; G is the 7×4 generator
- **3 c** sent through noisy channel and received as $\tilde{\mathbf{c}} = \mathbf{c} + \mathbf{e}$
- error-detection and correction using the check vector Hce

The generator matrix G and check matrix H are given by

$$G^{ op} = egin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 1 \ 0 & 1 & 0 & 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 & 1 & 0 & 0 \ 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}, \qquad H = egin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \ 0 & 1 & 1 & 0 & 0 & 1 & 1 \ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

Question: Why and how this works?

- $\mathbf{c} \in C(G)$ but $C(G) \subset N(H)$, so that $H\tilde{\mathbf{c}} = H\mathbf{c} + H\mathbf{e} = H\mathbf{e}$
- He shows in which of 7 positions (if any) e has 1 and recovers c
- p uniquely recovered from c: the columns of G form a basis of C(G)

- - Examples and Definition
- Four subspaces and rank of a matrix
 - Four subspaces
 - Rank of a matrix
- - Coordinate maps
 - Change of basis

Rank of a matrix

Definition

Rank of a matrix A is the dimension of its column (or row) space

Properties of rank

- For an $m \times n$ matrix A, rank(A) equals dim range(A)

 Indeed, range(A) := $\{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$ is just the column space of A
- for an $n \times k$ matrix B, rank $(AB) \le \text{rank}(A)$ Follows from the fact that the range of AB is contained in that of A
- for an $k \times m$ matrix C, rank $(CA) \le \text{rank}(A)$ Reason: the row space of CA is contained in that of A
- for a non-singular B of size n, the ranks of A and AB coincide Reason: the ranges (column spaces) of A and AB are the same
- for a non-singular C of size m, the ranks of A and CA coincide Reason: the row spaces of A and AB are the same: $A = (AB)B^{-1}$

- - Examples and Definition
 - Dimension
- - Four subspaces
 - Rank of a matrix
- Coordinates and change of basis
 - Coordinate maps
 - Change of basis

Coordinate map

- Fix a basis $S = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ of a vector space V
- every $\mathbf{x} \in V$ gets its unique coordinates (c_1, c_2, \dots, c_n) in basis S: $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$

Definition (Coordinate map $T_S: V \to \mathbb{R}^n$)

 $T_{\mathcal{S}}: \mathbf{x} \mapsto (c_1, c_2, \dots, c_n)^{ op} \in \mathbb{R}^n$

is called the coordinate map of V in the basis S

Definition (Linear maps and isomorphisms)

- Let V and W be linear vector spaces. A mapping $T: V \to W$ is
 - linear if for all $\mathbf{x}, \mathbf{y} \in V$ and all $a, b \in \mathbb{R}$

$$T(a\mathbf{x} + b\mathbf{y}) = aT(\mathbf{x}) + bT(\mathbf{y})$$

an isomorphism of V and W if it is linear, one-to-one, and onto

Definition (Isomorphic linear vector spaces)

Two linear vector spaces V and W are said to be isomorphic if there is an isomorphism $T: V \to W$

Isomorphism to \mathbb{R}^n

Lemma (Properties of T_S)

 T_S is an isomorphism between V and \mathbb{R}^n

Proof.

Bases

 $T_{\rm S}$ is one-to-one:

 $T_{S}(\mathbf{x}) = \mathbf{c}$

 $\mathbf{x} = \sum_{i} c_{i} \mathbf{v}_{i}$

 $T_{\rm S}$ is onto:

 $T_S^{-1}\mathbf{c} = \sum_i c_i \mathbf{v}_i$ is well defined

 T_{S} is linear:

 $\mathbf{x} = \sum_{i} c_{i} \mathbf{v}_{i}, \, \mathbf{y} = \sum_{i} d_{i} \mathbf{v}_{i} \implies a\mathbf{x} + b\mathbf{y} = \sum_{i} (ac_{i} + bd_{i}) \mathbf{v}_{i}$

Corollary

Any two vector spaces of the same dimension are isomorphic

Corollary

Up to isomorphism, \mathbb{R}^n is the only n-dimensional vector space

Example

- $S = (\mathbf{v}_1 = (1, 2, 0)^\top, \mathbf{v}_2 = (1, 2, 0)^\top, \mathbf{v}_3 = (1, 1, 1)^\top)$
- $T_S \mathbf{x} = \mathbf{c} \iff \mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 \iff$

$$\underbrace{\begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}}_{P_{S \to S'}} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

- x_1, x_2, x_3 are coordinates of **x** in the basis $S' = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ c_1, c_2, c_3 are coordinates of **x** in the basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$
- $(1,2,0)^{\top},(2,1,0)^{\top},(1,1,1)^{\top}$ are coordinate vectors of $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$ in the basis $\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3$
- ullet ${f c}\mapsto {f x}$ amounts to matrix multiplication by $P_{{f S} o{f S}'}$
- $\mathbf{x} \mapsto \mathbf{c}$ amounts to matrix multiplication by

$$P_{S'\to S} = (P_{S\to S'})^{-1}$$

- Bases in vector spaces
 - Examples and Definition
 - Dimension
- Four subspaces and rank of a matrix
 - Four subspaces
 - Rank of a matrix
- Coordinates and change of basis
 - Coordinate maps
 - Change of basis

Change of basis

- Assume \mathbf{x} has coordinate vector $\mathbf{c} = T_{\mathcal{S}}(\mathbf{x})$ in basis $\mathcal{S} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$
- Take another basis $S' = (\mathbf{v}'_1, \mathbf{v}'_2, \dots, \mathbf{v}'_n)$; how can one calculate $\mathbf{c}' = T_{S'}(\mathbf{x})$?

Theorem (Change of basis)

$$\mathbf{c}' = P_{S o S'} \mathbf{c}$$

where the transition matrix $P_{S \to S'}$ has columns equal to $T_{S'}(\mathbf{v}_1)$, $T_{S'}(\mathbf{v}_2), \ldots, T_{S'}(\mathbf{v}_n)$ respectively

Proof.

$$\mathbf{c}' := T_{S'}(\mathbf{x}) = T_{S'}\left(\sum_k c_k \mathbf{v}_k\right) = \sum_k c_k T_{S'}(\mathbf{v}_k) = P_{S \to S'}\mathbf{c}$$

Computing the transition matrices in \mathbb{R}^n

- We have an "old" basis $S = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ and a "new" basis $S' = (\mathbf{v}'_1, \mathbf{v}'_2, \dots, \mathbf{v}'_n)$
- Form matrix B whose columns are vector coordinates of \mathbf{v}_k (in the standard basis $S_0 = (\mathbf{e}_1, \dots, \mathbf{e}_n)$
- Form matrix B' whose columns are vector coordinates of \mathbf{v}'_{k} (in the standard basis $S_0 = (\mathbf{e}_1, \dots, \mathbf{e}_n)$
- Use elementary row transformations to get

$$(B' \mid B) \sim (I_n \mid P_{S \rightarrow S'})$$

mnemonic rule:

("new basis" | "old basis")
$$\sim (\mathit{I}_{\mathit{n}} \mid \mathit{P}_{\mathit{S} \rightarrow \mathit{S'}})$$

• the reason: $B' = P_{S' \to S_0}$, so that

$$(B')^{-1}B = (P_{S' \to S_0})^{-1}P_{S \to S_0} = P_{S_0 \to S'}P_{S \to S_0} = P_{S \to S'}$$

Example in \mathbb{R}^2

- Old basis S: $\mathbf{v}_1 = (1, 1)^{\top}, \mathbf{v}_2 = (1, -1)^{\top}$
- new basis S': $\mathbf{v}'_1 = (1,2)^{\top}$, $\mathbf{v}'_2 = (2,-1)^{\top}$
- find the transition matrix $P_{S \rightarrow S'}$:

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & -1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \frac{3}{5} & -\frac{1}{5} \\ 0 & 1 & \frac{1}{5} & \frac{3}{5} \end{pmatrix}$$

• enough to check for $\mathbf{v}_1 \sim (1,0)_{\mathbf{s}}^{\top}$ and $\mathbf{v}_2 \sim (0,1)_{\mathbf{s}}^{\top}$:

$$T_{S}(\mathbf{v}_{1}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \qquad T_{S'}(\mathbf{v}_{1}) = P_{S \to S'} T_{S}(\mathbf{v}_{1}) = \begin{pmatrix} \frac{3}{5} \\ \frac{1}{5} \end{pmatrix}$$
$$\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{3}{5} \mathbf{v}'_{1} + \frac{1}{5} \mathbf{v}'_{2} = \frac{3}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \frac{1}{5} \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$