Bab 1. Himpunan

Daftar Isi

- ✓ 1.1 Himpunan
- ✓ 1.2 Operasi pada Himpunan
- ✓ 1.3 Hukum-hukum Operasi Himpunan
- 1.4 Prinsip Inklusi-Ekslusi

1.1. Himpunan

DEFINISI 1.1

Himpunan adalah suatu kumpulan/koleksi dari objek-objek berbeda. Objek dalam himpunan disebut **elemen**, **entri**, atau **anggota**.

Semua mahasiswa yang terdaftar di sebuah kelas adalah contoh sebuah himpunan. Himpunan umumnya dinyatakan dengan huruf besar seperti A, B, C, dan sebagainya. Sedangkan anggota-anggota himpunan dinyatakan dengan huruf kecil seperti a, b, c, dan sebagainya.

Menuliskan Himpunan

Himpunan dapat dituliskan dalam dua cara:

- Bentuk Enumerasi.
- Bentuk Notasi Pembentuk Himpunan (Set-Builder Notation Form).

A. Bentuk Enumerasi

Cara yang paling umum untuk menuliskan himpunan adalah dengan bentuk enumerasi. Pada bentuk enumerasi elemen-elemen himpunan didaftarkan secara rinci. Kita menuliskan semua elemen himpunan dalam tanda kurung kurawal dan memisahkan penulisan setiap elemennya dengan tanda koma.

Contoh 1.1.1

ullet Himpunan A dari semua bilangan asli antara 1 dan 5 dapat dituliskan dalam bentuk enumerasi seperti berikut:

$$A = \{1, 2, 3, 4, 5\}.$$

ullet Himpunan V dari semua huruf vokal dalam alfabet dapat dituliskan dalam bentuk enumerasi seperti berikut:

$$V = \{a, i, u, e, o\}.$$

• Himpunan O dari bilangan ganjil positif kurang dari 10 dapat dituliskan dalam bentuk enumerasi seperti berikut:

$$O = \{1, 3, 5, 7, 9\}.$$

Ketika terlalu banyak elemen dalam sebuah himpunan untuk dituliskan, kita dapat menggunakan elipses (. . .) untuk pola yang sudah terlihat.

Contoh 1.1.2

ullet Himpunan B adalah himpunan semua bilangan asli dapat dituliskan seperti berikut:

$$B = \{1, 2, 3, 4, 5, 6, \dots\}.$$

ullet Himpunan C adalah himpunan semua bilangan genap positif lebih kecil atau sama demgan 100 dapat dituliskan seperti berikut:

$$C = \{2, 4, 6, 8, 10, 12, \dots, 100\}.$$

ullet Himpunan P dari bilangan bulat positif kurang dari 100 dapat dituliskan seperti berikut:

$$P = \{1, 2, 3, \dots, 99\}.$$

B. Bentuk Notasi Pembentuk Himpunan

Cara lain untuk menuliskan himpunan adalah dengan menggunakan notasi pembentuk himpunan (*set-builder notation*). Bentuk umum dari notasi pembentuk himpunan adalah sebagai berikut:

$$\{x \mid \text{syarat yang harus dipenuhi } x\}$$

Tanda bar vertikal (|) dibaca sebagai "sedemikian sehingga".

Contoh 1.1.3

Berikut adalah contoh-contoh lain penulisan himpunan dengan notasi pembentuk himpunan:

ullet A adalah himpunan bilangan bulat positif yang kurang dari 5. Himpunan A dapat dituliskan dapat dituliskan dengan notasi pembentuk himpunan seperti berikut:

$$A = \{x \mid x \text{ adalah bilangan bulat positif lebih kecil dari 5}\}$$

Notasi di atas dibaca "Himpunan A adalah himpunan dengan elemen semua nilai x sedemikian sehingga x adalah bilangan bulat positif lebih kecil dari 5".

ullet adalah himpunan bilangan asli yang lebih dari 3 dan kurang dari atau sama dengan 15. Himpunan B dituliskan dengan notasi pembentuk himpunan seperti berikut:

$$B = \{x \mid 3 < x \le 15, x \text{ adalah bilangan asli}\}$$

Keanggotaan Himpunan

Untuk menyatakan keanggotaan himpunan kita menggunakan simbol \in . Jika x adalah anggota himpunan A, maka kita menuliskan $x \in A$. Jika x bukan anggota dari himpunan A, maka kita menuliskan $x \notin A$.

Contoh 1.1.4

```
Misal A=\{1,2,3,4\} maka: 1\in A, 2\in A, 3\in A, 4\in A,
```

Himpunan juga dapat mempunyai anggota-anggota yang merupakan himpunan juga.

Contoh 1.1.5

 $5 \notin A$.

```
Himpunan R=\{a,b,\{a,b,c\},\{a,c\}\} memiliki anggota-anggota: a\in R, b\in R, \{a,b,c\}\in R, \{a,c\}\in R.
```

Namun c bukanlah anggota himpunan R, yang dalam notasi dapat dituliskan dengan c
otin R.

Notasi Himpunan-himpunan Khusus

Terdapat sejumlah himpunan-himpunan khusus yang sering digunakan dalam penjabaran matematika. Himpunan-himpunan khusus ini dinotasikan dengan simbol-simbol khusus. Beberapa diantaranya:

- \mathbb{Z} adalah notasi untuk himpunan bilangan bulat yaitu $\mathbb{Z}=\{\dots,-2,-1,0,1,2,\dots\}$.
- $\,\mathbb{N}\,$ adalah notasi untuk himpunan bilangan asli (*natural*) yaitu $\mathbb{N}=\{1,2,3,4,5,6,\dots\}.$
- \mathbb{R} adalah notasi untuk himpunan bilangan riil.
- \mathbb{Q} adalah notasi untuk himpunan bilangan rasional yaitu $\mathbb{Q}=\{\frac{a}{b}\mid a\in\mathbb{Z},b\in\mathbb{Z},b\neq0\}.$
- C adalah notasi untuk himpunan bilangan kompleks.

Menggunakan notasi-notasi himpunan khusus ini penulisan himpunan dengan notasi pembentuk himpunan dapat disederhanakan.

Contoh 1.1.6

ullet A adalah himpunan bilangan bulat positif yang kurang dari 5. Himpunan A dapat dituliskan menjadi seperti berikut:

$$A = \{x \mid x \in \mathbb{N}, x \leq 5\}$$

• B adalah himpunan bilangan asli yang lebih dari 3 dan kurang dari atau sama dengan 15. Himpunan B dituliskan dengan notasi pembentuk himpunan seperti berikut:

$$B = \{x \mid 3 < x \le 15, x \in \mathbb{N}\}$$

Diagram Venn

Diagram Venn adalah diagram yang digunakan untuk menggambarkan himpunan. Dalam diagram Venn, **himpunan semesta** S, yang berisi semua objek-objek yang menjadi perhatian, digambarkan sebagai persegi panjang. Di dalam persegi panjang ini, himpunan digambarkan sebagai daerah oval atau lingkaran dan anggota-anggotanya digambarkan dengan sebuah noktah (titik) yang diberi label.

Gambar 1.1 berikut adalah contoh dari diagram Venn dari himpunan semua huruf vokal V dengan himpunan semesta S yang merupakan himpunan dari semua 26 huruf dalam alfabet.

Gambar 1.1. Diagram Venn dari Himpunan Huruf Vokal V.

Kardinalitas

Kardinalitas dari sebuah himpunan adalah banyaknya anggota dari himpunan tersebut.

DEFINISI 1.2

Misal A adalah sebuah himpunan. **Kardinalitas** dari himpunan A adalah banyaknya elemen dari A . Kardinalitas dari A dinotasikan dengan n(A) atau |A|.

Berikut adalah contoh-contoh kardinalitas dari himpunan.

- Misalkan, $A = \{0, 1, 2, 3\}$, maka |A| = 4.
- ullet Misalkan B adalah himpunan dari huruf-huruf alfabet. Maka, |B|=26.
- Misalkan C adalah himpunan bilangan ganjil positif kurang dari 10. Maka, |C|=5.

Dua himpunan A dan B dikatakan **ekuivalen**, dinotasikan dengan $A \cong B$, jika kardinalitas A sama dengan kardinalitas B, yaitu n(A) = n(B) atau |A| = |B|. Dua himpunan yang sama sudah pasti ekuivalen, tetapi himpunan yang ekuivalen tidak haruslah himpunan yang sama.

Contoh 1.1.8

Misalkan $A=\{1,3,5,7\}$ dan $B=\{a,b,c,d\}$. Karena |A|=|B|=4, maka $A\cong B$.

Himpunan Kosong

Himpunan kosong adalah himpunan yang tidak memiliki anggota. Himpunan kosong dinyatakan dengan simbol \emptyset atau $\{\}$. Kardinalitas dari himpunan kosong adalah nol, yaitu $|\emptyset|=0$. Perlu diperhatikan bahwa himpunan $\{0\}$ bukanlah himpunan kosong, melainkan sebuah himpunan yang mempunyai satu anggota yaitu bilangan nol.

Contoh 1.1.9

Berikut adalah contoh-contoh himpunan kosong:

- $E = \{x \mid x < x\}$. Karena tidak ada x yang memenuhi x < x make |E| = 0.
- $P = \{ \text{Orang Indonesia yang pernah ke bulan} \}$. Karena tidak ada orang Indonesia yang pernah ke bulan, maka |P| = 0.
- $A=\{x\mid x^2=9,x \ {
 m genap}\}$. Karena hanya x yang memenuhi hanya x=-3 atau x=3 dan keduanya tidak genap maka |A|=0.

Himpunan Bagian (Subset)

DEFINISI 1.3

Himpunan A disebut sebagai **himpunan bagian** (subset) dari himpunan B jika setiap elemen dari A merupakan elemen dari B. A himpunan bagian dari B dinotasikan dengan $A\subseteq B$.

Gambar 1.2 berikut mengilustrasikan diagram Venn dari himpunan A yang merupakan himpunan bagian dari himpunan B atau $A\subseteq B$.

Gambar 1.2. Diagram Venn $A \subseteq B$.

Untuk menotasikan suatu himpunan bukan himpunan bagian dari suatu himpunan lain kita menggunakan simbol \nsubseteq . Sebagai contoh jika A bukan himpunan bagian dari B, maka kita menotasikannya dengan $A \nsubseteq B$.

Contoh 1.1.10

Berikut adalah contoh-contoh himpunan yang merupakan himpunan bagian dari himpunan lain dan himpunan yang bukan merupakan himpunan bagian dari himpunan lain:

- Misalkan $A=\{1,2,3,4,5\}$ dan $B=\{1,2,3\}$. Karena semua anggota B terdapat dalam A, maka $B\subseteq A$. Sebaliknya $A\nsubseteq B$, karena $4\in A$ dan $5\in A$ tetapi $4\not\in B$ dan $5\not\in B$.
- Misalkan $G=\{x\mid x \text{ bilangan genap}\}$ dan $H=\{x\mid x \text{ bilangan bulat}\}$. Karena semua bilangan genap adalah bilangan bulat juga, maka $G\subseteq H$. Sebaliknya, $H\nsubseteq G$.
- Misalkan $A=\{a,b,c\}$ dan $B=\{a,b,c\}$. Karena semua anggota A terdapat dalam B maka $A\subseteq B$ dan karena semua anggota B juga terdapat dalam A, maka $B\subseteq A$
- Misalkan $B=\{2,4,5\}$ dan $C=\{2,4,6\}$. Karena tidak semua anggota himpunan B adalah anggota himpunan dari C, maka $B \nsubseteq C$. Begitu juga sebaliknya, karena tidak semua anggota himpunan C adalah anggota dari himpunan B, maka $C \nsubseteq B$.

Dari definisi himpunan bagian, kita dapat mendefinisikan kesamaan dua himpunan.

DEFINISI 1.4

Dua himpunan A dan B disebut sebagai **himpunan yang sama**, dinotasikan dengan A=B, jika dan hanya jika, $A\subseteq B$ dan $B\subseteq A$.

- Misal $A=\{0,1\}$ dan $B=\{x\mid x(x-1)=0\}$. Karena $A\subseteq B$ dan $B\subseteq A$, maka A=B.
- Misal $A=\{3,5,8\}$ dan $B=\{5,3,8\}$. Karena $A\subseteq B$ dan $B\subseteq A$ maka A=B.
- Misal $A=\{3,5,8\}$ dan $B=\{3,8\}$. Karena $B\subseteq A$ tetapi $A\nsubseteq A$, maka $A\neq B$.

Jika kita ingin menekankan bahwa himpunan A adalah subset dari B tetapi $A \neq B$, kita menuliskan $A \subset B$ dan mengatakan bahwa A adalah **himpunan bagian yang sebenarnya** (proper subset) dari B.

Contoh 1.1.12

Himpunan $\{1\}$ dan $\{2,3\}$ adalah *proper subset* dari himpunan $\{1,2,3\}$.

Contoh 1.1.13

Misalkan $A=\{1,2,3\}$ dan $B=\{1,2,3,4,5\}$. Tentukan semua himpunan C sedemikian sehingga $A\subset C$ dan $C\subset B$, yaitu A adalah *proper subset* dari C dan C adalah *proper subset* dari B.

Solusi:

Karena $A \subset C$ maka C harus mengandung semua himpunan dari A dan setidaknya satu elemen bukan elemen A. Dan karena $C \subset B$, maka C sekurang-kurangnya mengandung satu elemen B.

Dengan demikian, $C = \{1, 2, 3, 4\}$ atau $C = \{1, 2, 3, 5\}$.

C tidak boleh mengandung bilangan 4 dan 5 sekaligus karena C adalah *proper subset* dari B.

Himpunan Disjoin (Saling Lepas)

DEFINISI 1.5

Dua himpunan disebut disjoin (saling asing/saling lepas) jika tidak ada elemen yang sama yang dimiliki oleh kedua himpunan tersebut.

Dengan kata lain himpunan A dan himpunan B disebut disjoin jika irisan dari keduanya adalah himpunan kosong. Gambar 1.3 adalah diagram Venn dari dua himpunan disjoin.

Gambar 1.3. Himpunan *A* dan *B* adalah dua himpunan disjoin.

- ullet Himpunan $A=\{4,3\}$ dan himpunan $B=\{2,0\}$ adalah dua himpunan disjoin.
- Himpunan $A=\{x\mid x\in\mathbb{N},\ x<5\}$ dan himpunan $B=\{10,20,30,\dots\}$ adalah dua himpunan disjoin.
- Himpunan $P=\{1,2,3\}$ dan himpunan $Q=\{1,6,7\}$ bukanlah dua himpunan disjoin karena $1\in P$ dan $1\in Q$.

Himpunan Kuasa (Power Set)

DEFINISI 1.6

Misal A adalah sebuah himpunan. **Himpunan kuasa** (**power set**) dari himpunan A adalah sebuah himpunan yang elemen-elemennya merupakan semua himpunan bagian dari A, termasuk himpunan kosong dan himpunan A sendiri. Himpunan kuasa dinotasikan dengan $\mathcal{P}(A)$.

Contoh 1.1.15

Misalkan, $A=\{a,b,c\}$, maka himpunan kuasa dari A adalah

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$$

Himpunan kuasa dari himpunan kosong adalah $\mathcal{P}\{\emptyset\}=\{\emptyset\}$ dan himpunan kuasa dari himpunan $\{\emptyset\}$ adalah $\mathcal{P}(\{\emptyset\})=\{\emptyset,\{\emptyset\}\}$.

Jika A adalah himpunan hingga dengan |A|=n, maka $|\mathcal{P}(A)|=2^n$.

Contoh 1.1.17

Misalkan, $A = \{a, b, c\}$. Berapa kardinalitas dari himpunan kuasa dari A?

Solusi:

Karena |A|=3, maka $|\mathcal{P}|=2^3=8$.

1.2. Operasi pada Himpunan

Seperti halnya operasi pada bilangan seperti penjumlahan, pengurangan, perkalian, dan pembagian, himpunan juga mempunyai operasi-operasi yang dapat dilakukan terhadapnya.

Gabungan (Union)

DEFINISI 1.7

Misal A dan B adalah himpunan. **Gabungan** (**union**) dari A dan B, dinotasikan dengan $A \cup B$, adalah sebuah himpunan yang terdiri dari semua elemen yang merupakan elemen A, atau elemen B, atau keduanya.

Dalam notasi, gabungan himpunan A dan himpunan B didefinisikan sebagai berikut:

$$A \cup B = \{x \mid x \in A \text{ atau } x \in B\}$$

Gambar 1.4 adalah gambar diagram Venn gabungan dari himpunan A dan B. Wilayah $A \cup B$ adalah wilayah yang diwarnai dengan warna kuning.

Gambar 1.4. *A*∪*B* adalah wilayah yang diwarnai.

Diketahui himpunan $A=\{1,2,3,4,5,6\}$, $B=\{1,3,5,7,9\}$, maka $A\cup B=\{1,2,3,4,5,6,7,9\}$.

Irisan (Intersection)

DEFINISI 1.8

Misal A dan B adalah himpunan. **Irisan** (*intersection*) dari A dan B, dinotasikan dengan $A \cap B$, adalah sebuah himpunan yang elemen-elemennya adalah semua elemen yang ada di kedua himpunan A dan B.

Dalam notasi, irisan dari himpunan A dan himpunan B didefiniskan sebagai berikut:

$$A\cap B=\{x\mid x\in A\;\mathrm{dan}\;x\in B\}$$

Gambar 1.5 adalah gambar diagram Venn irisan dari himpunan A dan B. Wilayah $A\cap B$ adalah wilayah yang diwarnai dengan warna kuning.

Gambar 1.5. *A*∩*B* adalah wilayah yang diwarnai.

Diketahui himpunan $A = \{1, 2, 3, 4, 5, 6\}$ dan $B = \{1, 3, 5, 7, 9\}$, maka $A \cap B = \{1, 3, 5\}$.

Selisih (Difference)

DEFINISI 1.9

Misalkan A dan B adalah himpunan. **Selisih** ($\it difference$) dari A dan B, dinotasikan dengan A-B adalah sebuah himpunan yang elemen-elemennya adalah semua elemen A yang bukan elemen B.

Dalam notasi, selisih himpunan A dan himpunan B didefinisikan sebagai berikut:

$$A - B = \{x \mid x \in A \text{ dan } x \notin B\}$$

Gambar 1.6 adalah gambar diagram Venn selisih himpunan A dan B. Wilayah A-B adalah wilayah yang diwarnai dengan warna kuning.

Gambar 1.6. A-B adalah wilayah yang diwarnai.

Diketahui himpunan $A=\{2,3,5,7,9\}$ dan $B=\{0,1,2,4,5,6\}$, maka: a. $A-B=\{3,7,9\}$ b. $B-A=\{0,1,4,6\}$

Komplemen (Complement)

DEFINISI 1.10

Misalkan A adalah sebuah himpunan yang berada di dalam himpunan semesta S. **Komplemen** dari himpunan A, dinotasikan dengan A^c atau dengan \overline{A} , adalah sebuah himpunan yang elemenelemennya adalah semua elemen S yang bukan elemen A.

Dengan kata lain, komplemen dari himpunan A dalam himpunan semesta S adalah himpunan selisih S-A. Dalam notasi, komplemen dari himpunan A didefinisikan sebagai berikut:

$$A^c = \overline{A} = \{x \mid x \in S ext{ dan } x
otin A\}$$

Gambar 1.7 adalah gambar diagram Venn komplemen dari himpunan A. Wilayah A^c adalah wilayah yang diwarnai dengan warna kuning.

Gambar 1.7. Komplemen *A* adalah wilayah yang diwarnai.

Diketahui himpunan semesta $S=\{1,2,3,4,5,6,7,8,9\}$ dan himpunan $A=\{1,3,7,9\}$, maka $A^c=\{2,4,5,6,8\}$.

Selisih Simetri (Symmetric Difference)

DEFINISI 1.11

Misalkan A dan B adalah himpunan. **Selisih simetri** (**symmetric difference**) atau sering juga disebut **beda setangkup** dari himpunan A dan B, dinotasikan dengan $A \oplus B$ adalah sebuah himpunan yang elemen-elemennya terdiri dari elemen himpunan A atau elemen himpunan B tetapi tidak keduanya.

Dalam notasi, selisih simetri dari himpunan A dan himpunan B didefinisikan sebagai berikut:

$$A \oplus B = (A \cup B) - (A \cap B)$$

Gambar 1.8 adalah gambar diagram Venn selisih dari himpunan A dan himpunan B. Wilayah $A\oplus B$ adalah wilayah yang diwarnai dengan warna kuning.

Gambar 1.8. Selisih simeteri dari *A* dan *B* adalah wilayah yang diwarnai.

Diketahui himpunan $A=\{2,3,5,7,9\}$ dan $B=\{0,1,2,4,5,6\}$, maka $A\oplus B=\{0,1,3,4,6,7,9\}$.

Perkalian Kartesian (Cartesian Product)

DEFINISI 1.12

Perkalian kartesian dari dua buah himpunan A dan B, dinotasikan dengan $A \times B$ adalah sebuah himpunan yang anggota-anggotanya adalah semua pasangan berurut dalam bentuk (a,b) dimana $a \in A$ dan $b \in B$.

Dalam notasi, perkalian Kartesian $A \times B$ didefinisikan sebagai berikut:

$$A\times B=\{(a,b)\mid a\in A \ \mathrm{dan} \ b\in B\}$$

Contoh 1.2.6

Anggap $C=\{1,2,3\}$ dan $D=\{a,b\}$, maka: $a. \ C \times D=\{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$ $b. \ D \times C=\{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$ $c. \ C \times C=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$ $d. \ D \times D=\{(a,a),(a,b),(b,a),(b,b)\}$

1.3. Hukum-hukum Operasi Himpunan

Tabel 1.1 berikut menampilkan sejumlah hukum-hukum operasi pada himpunan.

Tabel 1.1. Hukum-hukum Operasi pada Himpunan.

Identitas	Nama
$A \cap S = A$ $A \cap \emptyset = A$	Hukum Identitas
$A \cup S = A$ $A \cup \emptyset = A$	Hukum Dominasi
$A \cup A = A$ $A \cap A = A$	Hukum Idempoten
$(A^c)^c = A$	Hukum Komplementasi
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Hukum Komutatif
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Hukum Asosiatif
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Hukum Distributif
$(A \cap B)^c = A^c \cap B^c$ $(A \cup B)^c = A^c \cup B^c$	Hukum De Morgan
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Hukum Penyerapan
$A \cup A^c = S$ $A \cap A^c = \emptyset$	Hukum Komplemen

Misalkan A, B, dan C adalah himpunan. Tunjukkan

$$(A \cup (B \cap C))^c = (C^c \cup B^c) \cap A^c$$

Solusi:

$$(A \cup (B \cap C))^c = A^c \cap (B \cap C)^c$$
 (dengan hukum De Morgan pertama)
= $A^c \cap (B^c \cup C^c)$ (dengan hukum De Morgan kedua)
= $(B^c \cup C^c) \cap A^c$ (dengan hukum komutatif untuk irisan)
= $(C^c \cup B^c) \cap A^c$ (dengan hukum komutatif untuk gabungan)

1.4. Prinsip Inklusi-Eksklusi

Prinsip inklusi-eksklusi digunakan untuk menghitung banyaknya elemen dari gabungan himpunan-himpunan. Dengan prinsip inklusi-ekslusi banyaknya elemen dari gabungan dua himpunan A dan B dapat dihitung menggunakan rumus

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Contoh 1.4.1

Berapa banyak bilangan bulat antara 1 dan 100 yang habis dibagi 3 atau 5?

Solusi:

A = himpunan bilangan bulat habis dibagi 3.

B = himpunan bilangan bulat habis dibagi 5.

 $A \cap B$ = himpunan bilangan bulat habis dibagi 3 dan 5 (yaitu himpunan bilangan bulat yang habis dibagi oleh Kelipatan Persekutuan Terkecil dari 3 dan 5, yaitu 15).

Maka,

$$|A| = \lfloor 100/3 \rfloor = 33,$$

 $|B| = \lfloor 100/5 \rfloor = 20,$
 $|A \cap B| = |100/15| = 6,$

Sehingga dengan prinsip inklusi-eksklusi,

$$|A \cup B| = |A| + |B| - |A \cap B| = 33 + 20 - 6 = 47.$$

Berarti terdapat 47 buah bilangan yang habis dibagi 3 atau 5.

Untuk tiga buah himpunan A, B, dan C, banyaknya elemen gabungan dari A, B, dan C adalah

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Secara umum, banyaknya elemen gabungan untuk n himpunan, A_1,A_2,\ldots,A_n dapat dihitung menggunakan rumus

$$|A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n+1} |A_i \cap A_j \cap \dots \cap A_n|$$

Dalam pengujian suatu vaksin dari sebuah populasi 1000 orang

- 122 orang mengalami efek samping A
- 88 orang mengalami efek samping B
- 112 orang mengalami efek samping C
- 27 orang mengalami efek samping A dan B
- 29 orang mengalami efek samping A dan C
- 32 orang mengalami efek samping B dan C
- 10 orang mengalami ketiga efek samping

Berapa banyak orang yang tidak mengalami efek samping?

Solusi:

Misal,

A = himpunan orang yang mengalami efek samping A.

B = himpunan orang yang mengalami efek samping B.

 ${\it C}$ = himpunan orang yang mengalami efek samping C.

Maka banyaknya orang yang tidak mengalami efek samping dapat dihitung dengan

$$|(A \cup B \cup C)^c| = |S| - |A \cup B \cup C|$$

Diketahui,

$$|S| = 1000$$
,

$$|A| = 122$$
,

$$|B| = 88$$
,

$$|C| = 112$$
,

$$|A \cap B| = 27$$

$$|A \cap C| = 29$$
,

$$|B \cap C| = 32$$
,

$$|A \cap B \cap C| = 10$$

Dengan prinsip inklusi-eksklusi,

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$
$$= 122 + 88 + 112 - 27 - 29 - 32 + 10 = 244$$

Sehingga,

$$|(A \cup B \cup C)^c| = |S| - |A \cup B \cup C|$$

= 1000 - 244
= 756

Maka terdapat 756 orang yang tidak mengalami efek samping.

Daftar Pustaka

- 1. Rinaldi Munir. 2016. Matematika Diskrit. Bandung, Indonesia. Informatika Bandung.
- 2. Kenneth H. Rosen. 2012. *Discrete Mathematics and Its Applications (Seventh Edition)*. Amerika Serikat. McGraw-Hill.
- 3. Susanna S. Epp. 2018. *Discrete Mathematics with Applications (Fifth Edition)*. Amerika Serikat. Cengage.
- 4. D. Suryadi H.S. 1993. Aljabar Logika & Himpunan. Indonesia. Penerbit Gunadarma.