Odabir značajki

Dubinska analiza podataka 4. predavanje

Pripremio: izv. prof. dr. sc. Alan Jović Ak. god. 2023./2024.

Sadržaj

- Uvod u odabir značajki
- Filterske metode
- Metode omotača
- Ugrađene metode
- Hibridne metode

Uvod u odabir značajki

Odabir značajki

- Postupak smanjenja dimenzije (broja varijabli) skupa podataka
- Zadržava se interpretacija značajki, jer se one značajke koje se zadržavaju ne mijenjaju
- Što uobičajeno želimo postići odabirom značajki:
 - zadržati rezultat modeliranja početnog skupa značajki ili ga poboljšati
 - pojednostaviti model radi boljeg razumijevanja
 - smanjiti vrijeme potrebno za izgradnju modela

Primjena

- Iznimno široka primjena u čitavom području znanosti o podacima
- Google Scholar upit "feature selection" vraća preko 1,4 milijuna znanstvenih članaka (usp. "data science" – 1,4 milijun, "data mining" – 4,3 milijuna)
- Najčešća primjena:
 - Područja gdje postoji velik broj značajki i relativno malo primjeraka za učenje (analiza gena, analiza teksta)
 - Kod rješavanja problema gdje se iz sirovih podataka izluči veliki broj potencijalno korisnih značajki (vremenski nizovi, slike, industrijski procesi)
 - Područja gdje je nužno optimirati vrijeme izgradnje i korištenja modela (npr. ugrađeni sustavi, wearables, IoT)

Ciljevi

- Specifični ciljevi odabira značajki
 - 1. Najmanji podskup značajki koji daje bolje rezultate (manju pogrešku) nego početni skup
 - 2. Najmanji podskup značajki koji daje približno jednake rezultate kao početni skup značajki
 - 3. Bilo koji podskup značajki koji daje najbolje rezultate
 - 4. Rangiranje značajki prema važnosti za zadani cilj
 - 5. Odabir točno *k* od početnih *M* značajki takvih da daju najbolji rezultat

Složenost problema

- Iscrpna pretraga za optimalnim podskupom: NP težak problem
 - Pretraga 2^M podskupova značajki, gdje je M broj značajki neizvedivo za veći M (npr. M > 15)
- Postojeći empirijski postupci rješavanja obično rade u polinomnom vremenu
 - Ne garantiraju pronalazak optimalnog podskupa
 - Obično pronalaze lokalni optimum

Vrste primjene odabira značajki

- Odabir značajki radi se za:
 - Nadzirano učenje
 - kriterij je određen s obzirom na odnos vrijednosti značajke prema vrijednosti klase ciljne značajke ili numeričkoj vrijednosti ciljne varijable (za regresijske probleme)
 - Nenadzirano učenje
 - kriterij je određen s obzirom na kompaktnost grupa (klastera)
- Prema dostupnosti značajki, razlikuje se:
 - Odabir značajki nad čitavim skupom značajki
 - Odabir značajki nad djelomičnim skupom značajki (online ili streaming učenje) tema 5. predavanja

Relevantnost i redundantnost značajki

 Četiri tipa značajki u skupu podataka Slabo relevantne, ali neredundantne Snažno relevantne III: Weakly relevant but non-redundant IV: Strongly features relevant features I: Irrelevant features III + IV: Optimal subset II: Weakly relevant and redundant features Irelevantne Slabo relevantne i redundantne

Podjela značajki: L. Yu., H. Liu, Efficient feature selection via analysis of relevance and redundancy, J. Mach. Learn. Res. 5 (Oct. 2004) 1205–1224 Izvor slike: N. AlNuaimi, M. Mehedy Masud, M. Adel Serhani, N. Zaki (2020), "Streaming feature selection algorithms for big data: A survey", New England Journal of Entrepreneurship. Vol. 18 No. 1/2, pp. 115-137.

Terminologija

- Neka je F puni skup značajki skupa podataka dimenzije M, F_i pojedina značajka, C je ciljna značajka, a S_i skup značajki bez F_i : $S_i = F \{F_i\}$
- Značajka F_i je **snažno relevantna** ako i samo ako vrijedi:
 - $P(C|F_i, S_i) \neq P(C|S_i)$ uvjetna distribucija vjerojatnosti ciljne značajke C ako su u skupu značajki i F_i i S_i nije ista uvjetnoj distribuciji vjerojatnosti ako je u skupu značajki samo S_i
 - Snažno relevantna značajka je uvijek bitna za optimalni podskup značajki
- Značajka F_i je **slabo relevantna** ako i samo ako vrijedi:
 - $P(C|F_i, S_i) = P(C|S_i)$, i $\exists S_i' \subset S_i$, takvi da $P(C|F_i, S_i') \neq P(C|S_i')$
 - Slabo relevantna značajka **nije uvijek bitna** za optimalni podskup, ali u nekim situacijama tijekom smanjenja broja značajki može postati bitna

Terminologija

- Značajka F_i je **irelevantna** (nebitna) ako i samo ako vrijedi:
 - $\forall S_i' \subset S_i$, $P(C|F_i, S_i') = P(C|S_i')$
 - Irelevantna značajka nikada nije bitna za optimalni skup značajki
- Neka je $M_i \subset F$ takav da $F_i \notin M_i$. M_i se naziva **Markovljev prekrivač** (engl. *Markov blanket*) značajke F_i ako i samo ako vrijedi:
 - $P(F M_i \{F_i\}, C | F_i, M_i) = P(F M_i \{F_i\}, C | M_i)$
 - Ako razmatramo skup značajki bez Markovljevog prekrivača i značajke F_i te ciljnu klasu, tada je Markovljev prekrivač onaj koji informacijski potpuno prekriva značajku F_i , odnosno distribucija vjerojatnosti u odnosu na ciljnu klasu ne ovisi više o značajki F_i nego samo o Markovljevom prekrivaču

Terminologija

- Može se pokazati da snažno relevantne značajke nemaju svoj Markovljev prekrivač
- Neka je G trenutačni skup značajki dobiven tijekom procesa odabira značajki (može biti manji od F). Značajka F_i je redundantna i može se ukloniti iz skupa G ako i samo ako je slabo relevantna i ima neki Markovljev prekrivač M_i unutar G
- U praksi, Markovljev pokrivač za odabir značajki ne pronalazi se iscrpno prema definiciji već heuristički (kasnije pokazano)

Podjela metoda odabira značajki

- Tablične metode pretpostavljamo da su značajke neovisne jedna od druge
 - Filterski postupci (engl. filter methods)
 - Postupci omotača (engl. wrapper methods)
 - Ugrađeni postupci (engl. embedded methods)
 - Hibridni postupci (engl. hybrid methods)
- Strukturne metode pretpostavljamo da su značajke na neki način povezane jedna s drugom
 - Struktura grafa (engl. *graph structure*), struktura stabla (engl. *tree structure*) ili struktura grupe (engl. *group structure*)
 - S. Yang et al. Feature Grouping and Selection Over an Undirected Graph. KDD. 2012;922-930;
 - J. Liu, J. Ye. Moreau-Yosida regularization for grouped tree structure learning, in: Advances in Neural Information Processing Systems, 2010, pp. 1459–1467

Dva pristupa odabiru značajki

- Određivanje relevantnosti pojedinačnih značajki (univarijatni pristup)
 - Rangiraju se prema nekoj mjeri
 - Uklanjaju se ako ne zadovoljavaju neki postavljeni prag
- Određivanje relevantnosti i redundantnosti podskupa značajki (multivarijatni pristup)
 - Razmatraju se uvijek podskupovi značajki početnog skupa
 - Računa se značaj podskupa, bilo nekom mjerom bilo rezultatima algoritma za klasifikaciju
 - Pronalazak redundantnih značajki provodi se implicitno u postupku

Filterski postupci

Filterski postupci

- Glavna značajka: filterski postupci ne koriste algoritam strojnog učenja da bi napravili odabir značajki
- Filterski postupci definiraju **mjeru** koliko su određena značajka ili skup značajki bitni za opis ciljne značajke
- Razlikuju se filterski postupci koji rade s pojedinačnim značajkama i oni koji rade sa skupovima značajki
 - Za pojedinačne značajke može se odabrati prvih n značajki (ili n% značajki) za daljnju analizu
- Razlikuju se filterski postupci za nadzirano i za nenadzirano učenje
 - U nastavku razmatramo samo za **nadzirano** učenje

Za nenadzirano učenje vidjeti npr. S. Alelyani, J. Tang, and H. Liu, "Feature Selection for Clustering: A Review," in: C. Aggarwal and C. Reddy (eds.), Data Clustering: Algorithms and Applications, CRC Press, 2013.

Filterski postupci za pojedinačne značajke

- Informacijske mjere
 - Informacijska dobit (očekivana zajednička informacija) (engl. information gain, expected mutual information)
 - Simetrična nesigurnost (engl. symmetrical uncertainty)
 - Korelacijski koeficijent (linearni) (engl. correlation coefficient) za regresijske probleme
- Obitelj metoda Relief
- hi-kvadrat, χ^2 (engl. *chi-square*, χ^2) za kategoričke varijable
- Fisherov skor (engl. Fisher's score)
- i dr.
- Većina postupaka za odabir značajki implementirana je u Pythonu u paketu: https://pypi.org/project/ITMO-FS/

Informacijska dobit

- Informacijska dobit za podjelu značajke X prema vrijednostima od značajke Y:
- IG(X|Y) = H(X) H(X|Y), H(X) je entropija značajke X, H(X|Y) je uvjetna entropija značajke X uz poznavanje Y:
 - $H(X) = -\sum_{i} p(x_i) \log_2 p(x_i)$, $p(x_i)$ je apriorna vjerojatnost za sve vrijednosti i od X
 - $H(X|Y) = -\sum_{j} p(x_j) \sum_{i} p(x_i|y_j) \log_2 p(x_i|y_j)$
- Informacijska dobit je simetrična mjera (poredak X i Y nije bitan)
 - U praksi, razmatra se odnos između prediktivne značajke X i ciljne značajke Y
- Vidjeti i: sklearn.feature_selection.mutual_info_classif

Simetrična nesigurnost

- Informacijska dobit favorizira značajke s većim brojem vrijednosti
- Simetrična nesigurnost ograničava vrijednosti informacijske dobiti na interval [0,1]
 - Vrijednost 1 označava potpunu prediktivnost vrijednosti jedne značajke na temelju druge
 - Vrijednost 0 označava neovisnost jedne značajke o drugoj

•
$$SU(X,Y) = 2\left[\frac{IG(X|Y)}{H(X)+H(Y)}\right]$$

- SU za odnos između prediktivne značajke i ciljne naziva se još **C-korelacija**, a SU za odnos između dviju prediktivnih značajki naziva se još **F-korelacija**
- U praksi dokazano jako dobra filterska metoda za rangiranje značajki

Obitelj metoda Relief

- Veći broj sličnih metoda
- Pojedinačno razmatranje i rangiranje značajki, ali uzimaju u obzir ovisnost među prediktivnim značajkama
- Ne razmatraju podskupove značajki nego su temeljeni na najbližim susjedima za određivanje mjere korisnosti pojedinačne značajke
 - Inspiracija: učenje zasnovano na primjercima (engl. instance-based learning)
- Značajke obitelji metoda Relief:
 - nešto složenije (i sporije) od ostalih filterskih metoda, ali načelno točnije
 - ne uklanjaju redundantne značajke iz skupa podataka

Vidjeti: https://gitlab.com/moongoal/sklearn-relief

ReliefF

- Varijanta iskoristiva za **višeklasne** probleme, složenost $O(n^2M)$
- Neka je n broj primjeraka u skupu primjera, M broj značajki, k broj susjeda, a R specifični primjerak
- Mjera težine pojedine značajke W(A) se mijenja iz iteracije u iteraciju prolaskom po svim primjercima i značajkama:

•
$$W(A) = W(A) - \sum_{i=1}^{k} \frac{diff(A,R,H_i)}{n \times k} + \sum_{C \neq class(R)} \sum_{i=1}^{k} \left[\frac{P(C)}{1 - P(class(R))} \times \frac{diff(A,R,M_i(C))}{n \times k} \right]$$

- Pomoću H_i je označen i-ti najbliži pogodak (najbliži primjerak iste klase kao primjerak R koji razmatramo, a pomoću M_i je označen i-ti najbliži promašaj (najbliži primjerak različite klase)
- Razlika diff se računa ovisno o tome je li značajka kategorička ili numerička
 - Za kategoričku razlika je 0 ako se kategorije značajki podudaraju a 1 inače
 - Za numeričku razlika je: $diff(A, I_1, I_2) = \frac{|value(A, I_1) value(A, I_2)|}{\max(A) \min(A)}$

Obitelj metoda Relief

Filterski postupci za podskupove značajki

- Najčešći postupci:
 - mRMR (engl. minimum-Redundancy Maximum-Relevance)
 - FCBF (engl. Fast Correlation-Based Filter)
 - CFS (engl. Correlation-based Feature Selection)
 - Kriterij nekonzistentnosti (engl. Inconsistency Criterion)
 - ...

Redom literatura:

H. Peng, F. Long, C. Ding, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy," IEEE Trans. Pattern Anal. Mach. Intell. 27 (8)(2005) 1226–1238.

L. Yu and H. Liu, "Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution," in: Proc. 20th International Conference on Machine Learning (ICML-2003), Washington DC, USA, AAAI Press, pp. 856–863, 2003.

M. A. Hall, "Correlation-based Feature Subset Selection for Machine Learning". Hamilton, New Zealand, 1998.

H. Liu and R. Setiono, "A Probabilistic Approach to Feature Selection-A Filter Solution," in: Proc. 13th International Conference on Machine Learning (ICML-1996), Bary, Italy, Morgan Kaufmann, pp. 319–327, 1996.

mRMR

- Ideja smanjenja utjecaja redundantnih značajki je da se za odabrani skup razmatraju one značajke koje imaju visoku korelaciju prema ciljnoj značajki i nisku korelaciju prema drugim značajkama
- Formalno, traži se da **skup značajki** F ima maksimalnu relevantnost D i minimalnu redundantnost R, odnosno da razlika D-R bude maksimalna, pri čemu:

•
$$D = \frac{1}{M} \sum_{F_i \in F} IG(F_i | C),$$

•
$$R = \frac{1}{M^2} \sum_{F_i, F_j \in F} IG(F_i | F_j)$$

mRMR

- U praksi, mRMR se provodi inkrementalnim dodavanjem značajke u skup značajki
- Neka već imamo skup F_{m-1} koji se sastoji od nekih m 1 značajki
- Kriterij za dodati m-tu značajku (od preostalog skupa od M m 1) u skup značajki je maksimizacija razlike D – R za preostale značajke u skupu, dakle:

•
$$\max_{F_j \in F - F_{m-1}} \left[IG(F_i | C) - \frac{1}{m-1} \sum_{F_i \in F_{m-1}} IG(F_j | F_i) \right]$$

 Mjera mRMR u praksi se pokazala iznimno dobrom za dobivanje relativno malog skupa (snažno i slabo) relevantnih značajki

FCBF

- Algoritam zasnovan na mjeri SU i približnom Markovljevom prekrivaču
- Za dvije relevantne značajke F_i i F_j $(i \neq j)$, F_j formira približni Markovljev prekrivač za F_i ako i samo ako $SU_{j,c} \geq SU_{i,c}$ i $SU_{i,j} \geq SU_{i,c}$
- Intuitivno, želimo zadržati značajku F_j koja ima više informacije o klasi od F_i što se odnosi na dominantnost SU značajke F_i s ciljnom klasom u odnosu na SU značajke F_i s ciljnom klasom
- Dodatno se koristi heuristika C-korelacije $SU_{i,c}$ kao prag da se ustanovi je li F-korelacija $SU_{i,j}$ dovoljno jaka da se značajka F_i ukloni (jer ako značajke nisu jako informacijski bliske onda je teško govoriti o prekrivanju jedne s drugom)

FCBF

- Algoritam radi tako da se najprije rangiraju značajke filterom SU te se odabere prvih N značajki koje imaju SU veći od nekog unaprijed definiranog praga δ
- Potom se na preostale značajke, redom po rangu, primjenjuje razmatranje približnog Markovljevog prekrivača prema **svim ostalim** niže rangiranim značajkama
- Preostale značajke čine konačni skup odabranih značajki

• Izvor: L. Yu., H. Liu, Efficient feature selection via analysis of relevance and redundancy, J. Mach. Learn. Res. 5 (Oct. 2004) 1205–1224

Postupci omotača

Postupci omotača

- Glavna značajka: koriste algoritam strojnog učenja za evaluaciju određenog podskupa značajki kako bi donijeli odluku o tome je li taj podskup bolji / isti / lošiji od nekog nadskupa
- Algoritam strojnog učenja često nije onaj koji se kasnije koristi za izgradnju modela
 - Preferiraju se brzi algoritmi da evaluiraju više skupova značajki npr. Naivni Bayes, linearni SVM
- U pravilu: sporiji, ali točniji postupci od filtera
- **Problem pretrage skupa značajki** (optimizacijski problem) bitan je i za filterske metode, ali je **još bitniji za postupke omotača**, jer one nemaju neku jednostavnu mjeru važnosti nekog podskupa značajki, već moraju graditi model za svaki podskup

Pretraživanje prostora stanja

- Pretraživanje prostora podskupova značajki može početi od punog skupa ili od praznog skupa i koristiti različite strategije:
 - Slučajno pretraživanje
 - Pohlepno pretraživanje (unaprijedna selekcija ili eliminacija unazad)
 - Slijedna unaprijedna plutajuća selekcija ili eliminacija unazad
 - Dvosmjerna pretraga (istovremena unaprijed i unazad)
 - Evolucijski algoritmi (engl. evolutionary algorithms) npr. **genetski algoritmi** (engl. *genetic algorithms*)
 - Algoritmi rojeva (engl. swarm algorithms), npr. optimizacija rojem čestica (engl. particle swarm optimization), optimizacija kolonijom mrava (engl. ant colony optimization)

Pohlepno pretraživanje

- Engl. greedy search, sinonimi: slijedna unaprijedna selekcija (sequential forward selection) ili slijedna eliminacija unazad (sequential backward elimination), uspon na vrh (engl. hill climbing)
- U svakom koraku pretrage dodaje (ili uklanja) jednu značajku koja najviše poveća točnost algoritma strojnog učenja
- U pretrazi unaprijed ne smanjuje ranije odabrani skup značajki, a u pretrazi unazad ne povećava ranije odabrani skup značajki
- Zaustavlja se izvođenje čim dođe do degradacije točnosti

Slijedna plutajuća selekcija

- Engl. sequential forward floating selection (SFFS) / sequential backward floating selection (SBFS)
- SFFS (SBFS je obrnut):
 - 1. korak: dodaje jednu značajku u skup koja najviše poveća točnost modela strojnog učenja
 - 2. korak: ukloni jednu značajku iz skupa ako bilo koja od njih pri uklanjanju poveća točnost modela (uklanja se uvijek ona čije uklanjanje dovodi do najvećeg povećanja točnosti)
- Korak 2 se ponavlja dok smanjenje broja značajki povećava točnost i potom se ide na korak 1
- Izvođenje se zaustavlja čim korak 1 ne dovodi do povećanja točnosti
- **Upozorenje**: treba pratiti da ne dođe do beskonačnih petlji s dodavanjima i oduzimanjima značajki

Genetski algoritam za odabir značajki

- Najprije se generira populacija (veličine N) na temelju podskupova značajki
- Svaka jedinka označava jedan mogući podskup značajki (od ukupno vrlo velikog broja mogućih podskupova)
- Jedinka se obično prikazuje s M bitova, gdje je M broj značajki, i na početku ima slučajno izabranih k značajki postavljenih na 1 (k može biti manji od M)
- U svakoj iteraciji, sve jedinke se evaluiraju korištenjem modela strojnog učenja
- Primjer uobičajene funkcije dobrote (fitnes funkcije):
 - fitness = W1 x accuracy + W2 x no_zeros, W1 >> W2 (više vrijedi točnost nego mali broj značajki)

Genetski algoritam za odabir značajki

- Sljedeća generacija sastojat će se od više najboljih jedinki (na turniru) a dodatne jedinke dobivaju se križanjem najboljih jedinki, uz mutaciju (uvođenje ili uklanjanje značajki nasumično)
- Postupak završava nakon određenog broja iteracija
- Preduvjeti uspjeha su:
 - Relativno mali broj značajki *M* u skupu podataka
 - Dovoljno velika populacija
 - Pametan izbor operatora križanja, mutacije i vrste selekcije (način provođenja turnira) za nove jedinke
 - Snažni računski resursi
- Genetski algoritmi obično dobro rade ako se prethodno iskoriste filterske metode za eliminaciju velikog broja nebitnih značajki

Ugrađeni postupci

Ugrađeni postupci

- Izbor značajki koji se temelji na nekom algoritmu strojnog učenja
- Unutarnja struktura izgrađenog modela oslikava važnost značajki, bilo zbog broja pojavljivanja određene značajke u modelu ili njezine težine (značaja) u modelu
- Mogu se koristiti za dobivanje rangirane važnosti pojedinačnih značajki prema određenom kriteriju ili samo za dobivanje podskupa bitnih značajki
- Primjeri:
 - Slučajna šuma
 - Logistička regresija s penalizacijom (LASSO, elastic net)
 - Stroj s potpornim vektorima

Odabir značajki kod slučajne šume

- Slučajna šuma gradi se od većeg broja stabala odluke (za detalje vidjeti 6. predavanje)
- U fazi učenja, u svakom čvoru stabla (počevši od korijena) odabire se slučajno jedna značajka po kojoj se grana skup podataka
- Grananje može biti takvo da prouzroči veću ili manju **nečištoću** (engl. *impurity*), pri čemu je grananje čisto (engl. *pure*) ako se njime postigne da u svakom listu postoje samo primjerci jedne klase
- Ideja odabira značajki kod slučajne šume je **uprosječiti u cijeloj šumi koliko svaka značajka smanjuje nečištoću**
 - Značajke koje se nalaze bliže korijenu stabla najčešće više smanjuju nečistoću nego one bliže listovima stabla
- Prednost: brza i jednostavna metoda
- Nedostatci: naglašava važnost numeričkih značajki i kategoričkih s puno vrijednosti, ne uzima u obzir korelaciju značajki može uključiti kao važne značajke i one međusobno visokokorelirane

Vidjeti: sklearn.ensemble.RandomForestClassifier.feature_imporatances_

Hibridni postupci

Hibridni postupci

- Kombiniraju najbolja svojstva filtara i postupaka omotača
- Primjena dvaju ili više različitih postupaka filtara, omotača i ugrađenih postupaka
 - Najčešće najprije primijenjen filtar kako bi značajno smanjili prostor značajki
 - Potom primijenjen postupak omotača kojim se nastoji pronaći optimalni podskup značajki
 - Moguće i drugačije kombinacije
- Nema garancije niti da su filtrom zadržane sve bitne značajke niti da se postupkom omotača dobiva najbolji skup
- U praksi se pokazuju točnijima od filtarskih postupaka i bržima od postupaka omotača

1. primjer hibridnog postupka

- 1. korak: Primijeni ugrađenu metodu (npr. slučajna šuma) i nauči model da bi dobio inicijalni odabrani skup značajki (model treba vratiti određeni skup odabranih značajki), zapamti dobivenu točnost modela
- 2. korak: Primijeni neki postupak filtara (npr. SU) kako bi rangirao odabrani skup značajki
- 3. korak: Ukloni najmanje bitnu značajku po SU-rangu i ponovno nauči model iz 1. koraka na temelju preostalih značajki, zapamti dobivenu točnost
- 4. korak: Provjeri je li uklanjanje značajke iz 3. koraka dovelo do bitnog smanjenja performansi u odnosu na početni model (proizvoljni prag). Ako da, značajka je bitna i ostavi ju u skupu. Nastavi s koracima 3-4 dok se ne isprobaju sve značajke

2. primjer hibridnog postupka

- Prema: Jović et al. 2019 https://www.sciencedirect.com/science/article/abs/pii/S1746809419301636
- 111 ekspertnih značajki varijabilnosti srčanog ritma, klasifikacija subjekata u dvije klase: zdrav ili zatajenje srca
- 1. korak: SU filtar, rangiranje značajki
- 2. korak: Evaluacija podskupova prvih 10%, 20%... 100% rangiranih značajki metodama slučajne šume, SVM-a i drugima, najbolji podskup od 40% značajki zadržan
- 3. korak: Primjena metode omotača s Naivnim Bayesom i SBFS na podskup od 40% značajki, rezultirao s 13 odabranih značajki
- 4. korak: Primjena pohlepne iterativne eliminacije značajki postupak se obustavlja kada dođe do većeg pada točnosti (procjena) rezultiralo samo s 4 značajke za klasifikator slučajne šume
- Rezultati: 111 značajki ACC = 89.8%, 4 značajke ACC = 90.7%

Zaključak

- Odabir značajki važan je problem u znanosti o podacima i inženjerstvu značajki
- Postoje različiti pristupi koji se razlikuju u brzini i kakvoći pronalaska najboljeg rješenja, pri čemu iscrpno pretraživanje najčešće nije moguće
- Filterski postupci ne razmatraju algoritam strojnog učenja, nego daju internu mjeru značajki
- Postupci omotača vrednuju značajke pomoću rezultata algoritma strojnog učenja
- Ugrađeni postupci vrednuju značajke samom strukturom modela strojnog učenja
- Hibridni postupci kombiniraju gornje pristupe i u praksi često daju jako dobre rezultate

