DSCI 6001P 数据科学基础 作业4 - 聚类、哈希、数据流

提交截止日期: 12.12 号晚上 24 点之前

提交方式: 电子版发送至 <u>汪远(wy1001@mail.ustc.edu.cn)</u>

邮件主题和 PDF 命名格式: HW4-姓名-学号, 如 HW4-张三-SA24123123

- 1. K-mediods 算法描述:
- a) 首先随机选取一组聚类样本作为中心点集
- b) 每个中心点对应一个簇
- c) 计算各样本点到各个中心点的距离(如欧几里德距离),将样本点放入距离中心点最短的那个簇中
- d) 计算各簇中, 距簇内各样本点距离的绝度误差最小的点, 作为新的中心点
- e) 如果新的中心点集与原中心点集相同,算法终止;如果新的中心点集与原中心点集不完全相同,返回 b)

问题:

- a) 阐述 K-mediods 算法和 K-means 算法相同的缺陷
- b) 阐述 K-mediods 算法相比于 K-means 算法的优势
- c) 阐述 K-mediods 算法相比于 K-means 算法的不足
- d) 思考一个自动确定聚类个数的改进 kmeans 算法,或者说如何确定 kmeans 聚类个数(伪代码或者算法描述)
- 2. 假设数据挖掘的任务是将如下的 8 个点(用(x, y)代表位置)聚类为 3 个簇。

 $A_1(2,10), A_1(2,5), A_3(8,4), B_1(5,8), B_2(7,5), B_3(6,4), C_1(1,2), C_2(4,9)$

距离函数是欧氏距离。假设初始我们选择 A_1 , B_1 和 C_1 分别为每个簇的中心,用 K-均值算法给出:

- (a) 在第一轮执行后的 3 个簇中心。
- (b)最后的3个簇。
- 3. 假设你打算在一个给定的区域分配一些自动取款机 (ATM),使得满足大量约束条件。住宅或工作场所可以被聚类以便每个簇被分配一个 ATM。然而.该聚类可能被两个因素所约束:(1)障碍物对象,即有一些可能影响 ATM 可达性的桥梁、河流和公路。(2)用户指定的其他约束,如每个 ATM 应该能为 10000 户家庭服务。在这两个约束眼树下,怎样修改聚类算法(如 K-均值)来实现高质量的聚类?
- 4. 使用如下表中的相似度矩阵进行单链和全链层次聚类。绘制树状图显示结果,树状图应 清楚地显示合并的次序。

	P1	P2	Р3	P4	Р5
P1	1.00	0. 10	0.41	0. 25	0. 35
P2	0. 10	1.00	0.64	0. 47	0. 98
Р3	0.41	0.64	1.00	0. 44	0.85
P4	0. 25	0. 47	0.44	1. 00	0. 76
P5	0.35	0. 98	0.85	0. 76	1.00

- 5. 设计一种方法,对**无限的**数据流进行有效的朴素贝叶斯分类(即只能扫描数据流一次)。如果想发现这种分类模式的演变(例如,将当前的分类模式与较早的模式进行比较,如与一周以前的模式相比),你有何修改建议?
- 6. 假设一个布隆过滤器的容量为8x10°位,集合中有1 X 10°个元素。如果使用3个哈希函数,试计算误判率。如果使用4个哈希函数呢?
- 7. 假定全集 A 有 n 个元素,随机从中抽取出两个子集 A_1 和 A_2 ,且每个子集都有 m 个元素,求 A_1 和 A_2 两个集合的期望相似度。
- 8. 给定输入流 (b, a, c, a, d, e, a, f, a, d), 计数器个数 k = 3。请逐步写出 Misra- Gries 算法执行的结果。
- 9. 给定数据流 〈 4, 1, 3, 5, 1, 3, 2, 6, 7, 0, 9 〉, 若哈希函数形如 h(x)= (ax + b) mod 8, 其中 a 和 b 是任意给定的常数。假设给定如下哈希函数:
 - (1) $h(x) = (3x + 2) \mod 8$;
 - (2) $h(x) = (7x + 5) \mod 8$;
 - (3) $h(x) = (5x + 3) \mod 8$.

请利用 Count-Min sketch 算法估计频繁项。

https://blog.csdn.net/admondchen/article/details/121694680