ИНСТИТУТ	Кибернетики			
КАФЕДРА	Высшей математики			
	полное название кафедры			
ДИСЦИПЛИНА	методы математического анализа			
	полное название дисциплины без аббревиатуры			
ВИД УЧЕБНОГО	оценочные средства для промежуточной аттестации			
МАТЕРИАЛА	(лекция; материал к практическим занятиям; контрольно-измерительные материалы к			
	практическим занятиям; оценочные средства для промежуточной аттестации)			
ПРЕПОДАВАТЕЛЬ				
Контакты				
преподавателя				

КАРТОЧКА УЧЕБНОГО МАТЕРИАЛА					
Тест по дисциплине методы математического анализа					
Количество вопросов 31					
Продолжительность тестирования (минут) 45 минут					
Количество попыток на тест 1					
Максимальное количество баллов за тест 50					
Тема 1 — каждый вопрос оценивается максимум в 10 баллов, выборка 7 вопросов Тема 2 — каждый вопрос оценивается максимум в 10 баллов, выборка 7 вопросов Тема 3 — каждый вопрос оценивается максимум в 10 баллов, выборка 7 вопросов Тема 4 — каждый вопрос оценивается максимум в 10 баллов, выборка 5 вопросов Тема 5 — каждый вопрос оценивается максимум в 10 баллов, выборка 5 вопросов					
Все варианты тестовых вопросов относятся к типу «укажите 1 верны ««ответ»					

Вопросы для тестового зачёта (2-й семестр)

В каждый зачётный билет - вариант оценочного задания - должно попасть по одному вопросу из каждой темы (их всего 5). Значит в каждом билете будет по 5 вопросов, выбранных случайным образом из каждой темы.

Тема 1 – каждый вопрос оценивается максимум в 10 баллов, выборка 7 вопросов.

Тема 2 – каждый вопрос оценивается максимум в 10 баллов, выборка 7 вопросов.

Тема 3 – каждый вопрос оценивается максимум в 10 баллов, выборка 7 вопросов.

Тема 4 – каждый вопрос оценивается максимум в 10 баллов, выборка 5 вопросов.

Тема 5 – каждый вопрос оценивается максимум в 10 баллов, выборка 5 вопросов.

Общая продолжительность тестирования 75 минут;

Возможное количество попыток прохождения теста: 1 попытка;

Минимальное количество баллов для успешной сдачи оценочного задания (получение по крайней мере «удовлетворительно») 30 и более баллов.

Шкала оценивания: Менее 30 баллов -- незачёт 30-50 баллов – зачёт

Тема 1. Кратные интегралы.

- 1.1. Интеграл $\iiint_D \ \mathbb{C} \ dx dy dz$, где тело D= $\big\{(x,y,z) \in \emph{\emph{R}}^3 \colon \dots \dots \big\}$, равен :
- 1.2. Интеграл $\iint_D \frac{\partial^2 F(x,y)}{\partial x \partial y} dx dy$, где D={ $(x,y) \in \mathbb{R}^2 : a \le x \le b, c \le y \le d$ } равен:
- 1.3. При переходе к полярным координатам, интеграл $\iint_D F(x,y) \, dx dy$, где D={(x,y)∈ \mathbb{R}^2 :......} запишется в виде:
- 1.4. При переходе к сферическим координатам, интеграл $\iiint_V F(x,y,z) \, dx dy dz$, где V= $\{(x,y,z) \in \pmb{R}^3:\}$ запишется в виде:
- 1.5. Тройной интеграл $\iiint_V \ \pi \ dx dy dz$, где $\mathsf{V} = \left\{ (x,y,z) \in \pmb{R}^3 \colon ... \right\}$ равен:
- 1.6. При переходе к цилиндричесим координатам, интеграл $\iiint_V F(x,y,z) \, dx dy dz$, где V= $\left\{ (x,y,z) \in \pmb{R^3} : \right\}$ запишется в виде:
- 1.7. Интеграл $\iiint_V \frac{\partial^3 F(x,y,z)}{\partial x \partial y \partial z} dx dy dz$, где V={(x,y,z)∈ $\textbf{\textit{R}}^3$: $a \le x \le b$, $c \le y \le d$, $e \le z \le f$ } равен:

Тема 2. Характеристики скалярных полей.

- 2.1. Найти поверхность уровня, проходящую через точку M(?,?,?) для скалярного поля $f=\cdots$
- 2.2. В какой точке градиент поля f=... равен нулю?

- 2.3. Найти единичный вектор нормали к поверхности уровня скалярного поля $\phi = f(x)$.
- 2.4. Вычислить производную скалярного поля u = f(x,y) в точке M(?,?) по направлению к началу координат.
- 2.5. Найти вектор нормали к поверхности z=f(x,y) в точке M(?,?,?).
- 2.6. Определить угол между нормалями к сфере S в точках М (?,?,?) и N (-?,?,?).
- 2.7. Найти градиент скалярного поля u = f(x, y, z) в точке M (?,?,?).

Тема 3. Векторный анализ на плоскости

- 3.1. Вычислить циркуляцию поля $\vec{a}=(?,?)$ вдоль контура Г:... в положительном направлении.
- 3.2 Вычислить циркуляцию поля $\vec{a}=(?,?)$ вдоль контура $\Gamma=\{...\}$ в положительном направлении.
- 3.3. Найти потенциал постоянного поля $\vec{a} = (?,?)$.
- 3.4. Найти потенциал векторного поля $\vec{a} = (?,?)$.
- 3.5. Вычислить криволинейный интеграл 2 рода $\int_{\vec{\Gamma}} \; (\vec{a}\,, d\vec{r}) \;$ вдоль дуги $\vec{\Gamma}$: ... , если $\vec{a} = (?\,,?\,,?\,).$
- 3.6. Используя формулу Грина вычислить интеграл $\oint_{\mathbb{C}} ? dx (?) dy$, где С :....
- 3.7. Используя формулу Грина вычислить интеграл $\oint_{\mathbb{C}} ? dx + ? dy$, где С :...

Тема 4. Формула Остроградского-Гаусса.

- 4.1. Вычислить rot grad f(x, y, z).
- 4.2. Вычислить поток радиуса-вектора $\vec{r} = (x, y, z)$ через замкнутую поверхность \vec{S} , ограничивающую тело, объемом V.

- 4.3. Найти поток вектора $\vec{a}=\frac{\vec{r}}{|\vec{r}|}$, где $\vec{r}=(x,y,z)$, через всю поверхность сферы $S:\dots$ в направлении внешней нормали.
- 4.4. Найти дивергенцию векторного поля $\vec{a}=(?,?,?)$ в точке M(?,?,?).
- 4.5. . Найти дивергенцию градиента скалярного поля u = f(x, y, z) в точке M(....).

Тема 5. Теорема Стокса.

- 5.1. Вычислить **rot** (f(x), g(y), h(z)), где f(x), g(y), h(z) непрерывно дифференцируемые функции.
- 5.2. Вычислить циркуляцию векторного поля $\vec{a} = (?,?,?)$ по контуру $\Gamma = \{\dots \dots\}$.
- 5.3. Найти циркуляцию поля $\vec{a} = (?,?,?)$ по контуру $\Gamma = \{ \}$.
- 5.4. Найти поток векторного поля rot (?,?,?) через поверхность сферы S: ... в направлении внешней нормали.
- 5.5. Вычислить div rot \vec{a} , где \vec{a} = (?,?,?).