Gruppen-Nr.

Gewindebohrer

Gewindebohrer

A	a) Ar	3. Ameril
Anna throads postsoliting	nerikanische	anische und
	Gewindeart	britische Ge
Acmo (Transara	a) Amerikanische Gewindearten (American Threads)	windearten (I
Anna (Transproprieds) selbstrentrierend	Threads)	3. Amerikanische und britische Gewindearten (Kurzzeichen)
antriorend		

ANPT AMO FPTF P ACME-G ACME-C Dryseal fine taper pipe thread Aeronautical National Form taper Acme threads, general purpose (See also "STUB ACME") Acme inreads, centralizing American. Petrol. Inst. Stand American Standard microscope Metric standard threads, (all except objective threads series taper pipe threads 1:16 "S" threads)

American National extra-fine American National coarse thread American National 16-thread series American National 12-thread series American National 8-thread series National Buttress threads

NC 16N 12 2 ž N BUTT

National gas straight threads American National hose coupling National Gas taper threads National gas outlet threads American National fine thread series thread series (See also "SGT"

NGS S

American Standard straight pipe Dryseal American Standard fuel American Standard straight pipe internal straight pipe threads threads in pipe couplings and firehose coupling threads

NPSC

Dryseal American Standard American Standard straight pipe pipe threads intermediate internal straight threads for loose-fitting mechanical

mechanical joints for hose couplings

threads for loose-fitting

NPS!

NPSH NPSF

American Standard straight pipe American Standard taper pipe joints for fixtures threads for free-fitting mechanical joints with locknuts

XPT

NPSM

NPSI

Dryseal American Standard taper American National thread with American Standard taper pipe pipe threads threads for general use a 0,108p to 0.144p controlled threads for railing joints

NPTR NPTF

Z

114

root radius

Acme (Trapezgewinde) für allgemeine Zwecke Amerik: Standard Mikroskop-Objektiv-Gewinde Acme (Trapezgewinde) selbstzentrierend (s. auch "STUB ACME")

Flugwesen-Rohrgewinde, kegelig

Gewinde d. am. Erdölinst.

Amerik. National Grobgewinde Amerik. National 16-Gang-Gewinde Metrische Standard-Gewinde (ausgenommer Amerik, National 12-Gang-Gewinde Amerik. National 8-Gang-Gewinde Amerik. National Sägezahngewinde rocken dichtendes kegeliges Rohrgewinde, "S"-Gewinde) Feinsteigung kegeliges Rohrgewinde 1:16

Amerikan, National Feingewinde Amerik. National Extra-Feingewinde

Amerik. National Gas-Auslaßgewinde Amerik. National Schlauch-Kupplungs- und Amerik. National Gasgewinde, zylindr. Amerik. Standard-Rohrgewinde, zylindr.. Amerik. National Gasgewinde, kegelig in Rohrkupplungen (m. Dichtmittel) Feuerwehrschlauch-Kupplungsgewinge

Amerik. Standard-(Verbindungs-)Innen-Rohrgewinde, zylindr., trocken dichtend

Amerik. Standard-Rohrgewinde f. mechan

Verbindungen an Schlauchkupplungen

stoffleitungen), zylindr., trocken dichtend

Amerik, Standard-Innen-Rohrgewinde (f. Brenn-

Amerik. Standard-Rohrgewinde, zylindr. f. mechan. Verbindungen m. Abdichtmuttern

S S S

Amerik. Standard-Rohrgewinde, zylindr.

Amerik. Standard-Rohrgewinde, kegelig f. aligem. Gebrauch f. mechan. Befestigungen

Amerik. Standard-Rohrgewinde, kegelig Amerik. National-Gewinde m. einem Kernradius Amerik. Standard-Rohrgewinde, kegelig von 0,108p bis 0,144p (p = Steigung) f. Geländertittings trocken dichtend

PTF-SAE, SHORT ZS Dryseal SAE short taper pipe

PTF-SPL **EXTRA SHORT** threads (See also "SPL-PTF") Dryseal special extra short taper pipe

SPL-PTF SGT Dryseal special taper pipe threads Special gas taper threads to 5 mm incl.

N N N N S STUB ACME Stub Acme threads Unified coarse thread series with a Unified constant-pitch thread Unified fine thread series Unified extra-fine thread series Unified coarse thread series Unified constant-pitch thread-series series with a 0.15011 p to 0.18042 p 0.15011 p to 0.18042 p controlled controlled root radius (rr, root radius (rr)

UNJEF Unified fine thread series with a 0.15011 p to 0.18042 p controlled root radius (rr) root radius (rr)

Unified coarse thread series with Unified threads of special diameters Unified extra-fine thread series with Unified fine thread series-with a Unified miniature thread series a 0.108 p to 0.144 p controlled rr a 0.108 p to 0.144 p controlled rr pitches, or lengths of engagement 0.108 p to 0.144 p controlled rr

American National threads of special diameters, pitches, and length of

PTF-SPI SHORT Dryseal special short taper pipe threads

Surveying instrum, mounting threads . Standard coarse metric threads

£

Unified extra-fine thread series with a 0.15011 p to 0.18042 p controlled

Unified constant-pitch thread series root radius with a 0,108 p to 0.144 p controlled

됬

UNREF UNRF UNRC

Amerik. National-Gewinde m. speziellen Durchmessern, Steigungen und Einschraublängen

Gewinde f. Vermessungsinstrumente Trocken dichtendes Spezial-Rohrgewinde, Metr. Standard-Grobgewinde bis 5 mm einschl. Trocken dichtendes Spezial-Rohrgewinde, Trocken dichtendes SAE-Rohrgewinde, kegelig kegelig, extra kurz (s. auch "SPL-PTF") kegelig, kurz

Einheitsgewinde m. konstanter Steigung Spezial-Gasgewinde, kegelig Einheitsgewinde m. konstanter Steigung Einheits-Extra-Feingewinde Einheits-Grobgewinde Flaches Acme-Gewinde Trocken dichtendes Spezial-Rohrgewinde. Einheits-Feingewinde u. einem Kernradius v. 0,15011 p bis 0,18042p

Einheits-Extra-Feingewinde m. einem Kernradius v. 0,15011 p bis 0,180 42 p

Einheits-Grobgewinde m. einem Kernradius

v. 0,15011 p bis 0,18042 p

Einheits-Feingewinde m. einem Kernradius Einheitsgewinde m. konstanter Steigung u. v. 0,15011 p bis 0,18042 p

Einheits-Grobgewinde m. einem Kernradius einem Kernradius v. 0,108 p bis 0,144 p

Einheits-Extra-Feingewinde m. einem Einheits-Feingewinde m. einem Kernradius v. 0,108 p bis 0,144 p Kernradius v. 0,108 p bis 0,144 p v. 0,108 p bis 0,144 p

Einheitsgewinde m. speziellen Durchmessern, Einheits-Miniaturgewinde Steigungen u. Einschraublängen

b) Britische Gewindearten (British Threads)

British Standard Fine Thread Series British Assoc. Standard Thread Whitworth Standard Spec. Thread British Standard Pipe (Parallel) Thread British Standard Taper Pipe Thread British Standard Whitworth Coarse Thread Series

BSF BSPT BSPP WHIT BA

Britisches Standard-Rohrgewinde, zylindr Britisches Standard-Feingewinde Britisches Standard-Whitworth-Grobgewinde Britisches Association Standard-Gewinde Whitworth Standard-Spezial-Gewinde Britisches Standard-Rohrgewinde, kegelig

Gruppen-Nr.

0,35 0,35 0,5	Stei- =	Metrisches Fei		Gewinde- Nenn-ø	Metrisches	4a. Bohrer- un (Auszug
51 51	Bohrer-Ø bei = Nenn-Ø Stei- minus folg. gung Wert mm	Feingewinde	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	Bohrer-Durchmesser Metrisches ISO-Gewinde	thes Gewinde	4a. Bohrer- und Senkerdurchmesser für Gewinde-Kernlocher (Richtwerte) (Auszug DIN 336 Bl. 1) (Bem. für Klammerwerte s. nächste Seite)
J. 1 1 0 5 10 8	Bohrer-Ø = Nenn-Ø minus folg. Wert mm		22222222222222222222222222222222222222	Gewinde- Nenn-Ø	Metrisches	messer für Gewinde-Kerniocher (Richti (Bem. für Klammerwerte s. nächste Seite)
σω4τοσ	bei Stei- gung		σ. σ	Bohrer-Du Metr ISO-G	ches Gewinde	nächste Seit
0.00400	Bohrer-Ø = Nenn-Ø minus folg. Wert mm		5.5.4.4.3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	Bohrer-Durchmesser Metrisches ISO-Gewinde	le	e)

	ယ	21/2 23/4	2 21/4	15/8 15/8 13/4 17/6	11/6 11/6 13/6	3/ ₄ 7/ ₈	5/8	3/8	1/ ₄ 5/ ₁₆	7/16 7/32	1/ ₈ 5/ ₃₂	1/16 3/32	Gewinde- Nenn-Ø Zoll	Whitworth (nicht met
,	 	57 62	504	4 3 3 5 1 3 5 5 5 5	22,24,5 30,55 5,55	16,5 19,25	10,5 13,5 5	7,9	ეე დე	ນ 4. ວັເບັ	ာ့လည လည်း T	211	Bohrer- Ø mm	Whitworth-Gewinde (nicht mehr genormt)
Bohrer-ø	Gewinde-Nenn-ø	Bohrer-ø	Gewinde-Nenn-Ø	Gewinde-Ke Kegeliges Ro	R 21/2 R 23/4 R 3	R21/4	R11/2	R11/ ₈	R 7/ ₈	R 5/8	70 7 % 1/2	RR 1/4 •	Gewinde- Nenn-Ø Zoll	Whitworth-Rohrgewinde nach DIN 259
29,0	nn-Ø 1"	8,4	nn-Ø 1/8"	Gewinde-Kernlöcher für NPT-Gewinde Kegeliges Rohrgewinde 1:16	73 79 85	57 63	14 A5	35,5	28 30,5	21 24,5	15,25 19	11,8	Bohrer- Ø mm	ohrgewinde N 259
37,75	11/4"	10,8 14,5	1/4" 3/8"	PT-Gewinde			rg 40	Pg 42	Pg 29	Pg 16 Pg 21	Pg 11	Pg 7 Pg 9	Gewinde- Nenn-Ø	Stahlpanzer nach Dl
44,0 56,0	11/2" 2"	17,75 23,0	1/2" 3/4"				၁	52,5	455 5	21,25 27	17,25	11,5 14	Bohrer- Ø mm	Stahlpanzerrohr-Gewinde nach DIN 40430

ng unerläßlich. ntlich liegt die Genauigkeit der gebohrten Kernlöcher und der Kerndurch-r nach dem Gewindeschneiden weit gestreut, weil dies von einer Anzahl von nur Richtwerte, die aber im allgemeinen für fast alle Werkstoffe angewandt n können. Für schwer zerspanbare Werkstoffe ist die vergrößerte Kernlochen abhängig ist, die berücksichtigt werden müssen. Daher sind die genannten

116

Apschaying,

4b. Bohrer-Durchmesser für Gewinde-Kernlöcher (Richtwerte) nach UNIFIED-Gewinde (USA-Norm)

Grobgewinde UNC (NC) = American-National-Coarse-Gewinde

mhagge pay ey to He N Friming & "	tap. & 6 min
いるないないないないとうないないないかられることの	6mm
Nr. 10 Nr. 10 Nr. 10 Nr. 10 Nr. 10	Bezeichnung UNC
56 44 40 44 40 40 40 40 40 40 40 40 40 40	Gangzahl auf 1 Zoll
Nr. 53 Nr. 50 Nr. 47 Nr. 43 Nr. 36 Nr. 29 Nr. 26 Nr. 16 Nr. 16 Nr. 16 Nr. 16 Nr. 7 F Nr. 16 Nr. 7 F 17/32 17/64 17/64 17/64	Bohrer- Φ Zoll Nr./Buchstaben- Lehre
1,51 1,78 1,99 2,26 2,58 2,58 2,71 3,45 3,80 4,50 4,50 4,50 4,50 10,71 10,71 11,30 12,30 13,49 16,67 19,44 22,22 25 28,18	ent- spricht
1,5 1,8 2,05 2,05 2,75 3,5 10,8 10,8 110,8 110,8 110,5 110,5 110,5 110,5 110,5	Normal-φ DIN 338/345 mm

Anmerkung: Für sehr zähe Werkstoffe wie rostfreie Stähle, Bronzen usw. Kernlöcher etwas größer bohren als Tabellenwert.

118

Feingewinde UNF (NF) = American-National-Fine-Gewinde

														•		4.22-											
11/2"	13/8"	11/4"	11/6"	7,	7/8"	3/4"	5/8"	9/16"	1/2"	7/16"	3/8*	5/16#	1/,"	Nr. 12	Nr. 10	Nr. 8			Nr. 4	Nr. 3	Nr. 2	Nr1	Nr. 0			Bezeichnung UNF	
12	75	12	12	12	14	1 6	8	8	20	20	24	24	28	28	32	36	40	44	48	56	64	72	88	, 	1 Zoll	Gangzahi auf	
J.//4"	119/64"	113/64"	1 3/64"	59/64"	13/16"	11/16"	37/64"	33/64"	29/64"	25/64"	Ω		Nr. 3	Nr. 14	Nr. 21	Nr. 29	Nr. 33	Nr. 37	Nr. 42	Nr. 45	Nr. 50	Nr. 53	3/64"		Lehre	→ Zoll Nr./Buchstaben-	Bohrer-Ф
36,11	32,94	29,76	26,59	23,42	20,64	17,46	14,68	13,10	11,51	9,92	8,43	6,91	5,41	4,62	4,04	3,45	2,87	2,64	2,37	2,08	1,78	1,51	1,19	mm		ent- spricht	_
S	မှ မ	29,5	26,5	23,5	20,5	17,5	14,5	12,8	11,5	9,9	g,5	6,9	5,5	4,6	4,1	ည	2,9	2,65	2,4	2,1	1,8 8,1	<u>,</u> 51	1,2	mm		Normal-φ DIN 338/345	

5. Metrisches ISO-Gewinde nach DIN 13, Bl. 1 (Nov. 1969)

Metrisches Gewinde nicht nach ISO: nur für die Übergangszeit

2,6	2.3	1.7	Gewinde- Nenn- durchmesser
0,45	0,40	0,35	Steigung P
2,308	2,040	1,473	Flanken- durchmesser d ₂ = D ₂
2,016	1,780	1,246	Kern- durchmesser d ₁
0,292	0,260	0,227	Gewinde- tiefe t ₁
0,05	0,04	0,04	Rundung R

Bezeichnung lautet dann z. B. M 2,6 f Wird Toleranzklasse fein (f) benötigt, dann ist diese der Bezeichnung zuzufügen. Die Für Gewinde ohne Toleranzangabe gilt Toleranzklasse mittel (m) nach DIN 13 Blatt 15.

Metrisches ISO-Gewinde nach DIN 13, Bl. 1

2,5		2	•	į	<u></u>		1,2	;		_	.	Reihe	1	Gewinde-Nenn- durchmesser d = l	
	2,2		į	1.80		1,4						Reihe 2		e-Nenn- ser d ≕ D	
0,45	0.45	1	2 9	0.35	0,35	0,30	0,10	٥ ي ي	0.25	() = (0 95	U		Stel-	,
2,208	1,908	-1	1 740	1.573	1,373	1,205	1,000	1 038	0,938)	0.838	$d_2 = D_2$	messer	durch-	
1,948	1,648		1 509	1,371	1,170	1,032	0,000	0 893	0,793) -	0.693	ā	_	Kerndurchmesse	
2,013	7.7	2	1.567	1,421	1,221	1,075	1	0.929	0,029	0000	0,729	ō		messer	
0,270	0,2,0	0.376	0,245	0,215	0,215	0,104	2	0,153	,	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0,153	7,	_	Gewindetiefe	!
0,244	3 1	0 944	0,244	0,21 7	0,189	0 0	2 2 2	0,135		2137	0,135	Н,		etiefe	
0,000	0.065	0.065	0,058	0,000	0,0	0,00	0043	0,030	2	0.036	0,036	7	_ -	gung	R _{Ln} .

Fortsetzung

120

Fortsetzung	

Gruppen-Nr.

Gewindebohrer

Abschn./Tab. Gb/5

מחמ	l	0.10
	l	

Gewinde-Nenn- durchmesser d = D	e-Nenn- ser d ≔ D	Stei- gung	Flanken- durch-	Kerndur	Kerndurchmesser	Gewin	Gewindetiefe	Run-
Reihe 1	Reihe 2 (3)	ס	messer d ₂ = D ₂	đ.	ā		<u></u>	ສ ູ່
)								
ω		0,5	2,675	2,387	2,459	0,307	0,271	0,072
	<u>3</u> 5	0,6	3,110	2,764	2,850	0,368	0,325	0,067
4		0,7	3,545	3,141	3,242	0,429	0,379	<u>0,10</u>
	4. U)	0,75	4,013	3,580	3,688	0,460	0,406	0,108
رن ن		0,8	4,480	4,019	4,134	0,491	0,433	0,115
6			5,350	4,773	4,917	0,613	0,541	0,144
	(7)	-	۰-6,350	5,773	5,917	0,613	0,541	0,144
80		1,25	7,188	6,466	6,647	0,767	0,677	0,180
	(9)	1,25	8,188	7,466	7,647	0,767	0,677	0,180
10		5	9,026	8,160	8,376	0,920	0,812	0,217
	(11)	1,5	10,026	9,160	9,376	0,920	0,812	0,217
12		1,75	10,863	9,853	10,106	1,074	0,947	0,253
	14	75	12,701	11,546	11,835	1,227	1,083	0,289
16		Ŋ	14,701	13,546	13,835	1,227	1,083	0,289
	18	2,5	16,376	14,933	15,294	1,534	1,353	0,361
20		2,5	18,376	16,933	17,294	1,534	1,353	0,361
	22	2,5	20,376	18,933	19,294	1,534	1,353	0,361
24		ω	22,051	20,319	20,752	1,840	1,624	0,433
	27	ω	25,051	23,319	23,752	1,840	1,624	0,433
30 ,		<u>ა</u>	27,727	25,706	26,211	2,147	1,894	0,505
	33	<u>છ</u>	30,727	28,706	29,211	2,147	1,894	0,505
36		4	33,402	31,093	31,670	2,454	2,165	0,577
	39	4	36,402	34,093	34,670	2,454	2,165	0,577
42	,	4,5	39,077	36,479	37,129	2,760	2,436	0,650
	45	4.5	42,077	39,479	40,129	2,760	2,436	0,650
48		ග	44,752	41,866	42,587	3,067	2,706	0,722
	52	· GT	48,752	45,866	46,587	3,067	2,706	0,722
56		5,5	52,428	49,252	50,046	3,374	2,977	0,794
	60	5	56,428	53,252	54,046	3,374	2,977	0,794
64		6	60,103	56,639	57,505	3,681	3,248	0,866
	88	ေ့	64,103	60,639	61,505	3,681	3,248	998'0
		,						

Bemerkungen:

1. Die Nenndurchmesser sind in erster Linie der Reihe 1 zu entnehmen. Falls diese Durchmesser nicht genügen, sind die der Reihe 2 und schließlich der Reihe 3 (Werte in Klammern) zu wählen.

2. Für Gewinde ohne Toleranzangabe gilt Toleranzklasse mittel und zwar Toleranzfeld 6 g beim Bolzengewinde und Toleranzfeld 6H beim Muttergewinde. Wird ein anderes zeichnung lautet dann z. B. für ein Bolzengewinde mit dem Toleranzfeld 8 g: M 12~8 g. Toleranzfeld benötigt, so ist der Bezeichnung das Toleranzfeld zuzufügen; die Be-

Gb/6	WIIIGEDOI	9.15
Abschn./ Lai	Cowindobobros	Gruppen-Nr.

6.Metrisches ISO-Feingewinde nach DIN 13, Blatt 12

	M 27	N	N	2	3 1	o N	N) NO	N	N	_4	_		4 -		-	_		_ ـ								4.	ယ		οŅ	3 N					_	d = D	Gewinde- Nenn-
Ī	2,0				-	ა <u>-</u> ე ი		-	טָּיָר		2,0	-	-	JI	יי. יי.	1,25	٦,	<u>.</u>	255	7120		0,75	•		σï			ıω̈́		'nΝ	ゞヽ	้งเ		0 C			ס	Stei- gung
20	26,026 25,701	0,35	<u>3</u> 35	3.02	3 C	700	300	8,70	9,02	9,35	6,70	702	7.35	л (0 С (0 С (0	1 (A) 2 (A) 2 (A)	<u>.</u> .	<u>မှာ</u>	0	7.0	ა - ი ი	υς O C	ក្តីបា	ည္ဟ	<u>ज</u>	<u> </u>	ภ_	0	Š	<u>`</u> Zį	ંડુટ્	၁ွဋ	Ō	4	ijζ		-ω	$d_2 = D_2$	Flanken- durch-
	24,546	5.77	54	216	٥ 7 7	о С л —		700	8,16	8,77	51	6.16	6.77	4 4	10	2,46	77	6	<u>.</u>	4 C	77	၊ၕ	77	စ္ကင္မ	2 6	စ္ကထူ	န္က	9	<u>ლ</u> (30	ρŌ	Ç	ယ္က	(C	200	72	d ₃	Kerndur
	24,835	99	1,83	2,37	291	ים טמ ישר	2 C	2 0	α (16,8	5,83	6,37	16.9	ω α 7	2 (4	64	9	37	ი 4	و م	5.0	7	-0	8	3	א טול	4.0	12	62	7.0	92	20	မ		80.0	78	D ₁	Kerndurchmesser
	1,227		~	· ·		\sim \sim		· N.		,		N			• •		_	N)			11	LOD	_	ന	ъ.	· , , ,	1	٠		_ ,	77 (1	1.3.		K 2 K	1 K 7	1 1 2	h ₃	Gewindetiefe
	1,083	4 2	8	Ξ,	2	ಶ್ವ	1 2	. 6	3 4	4.5	'ຜ	3	21.0	<u> </u>	2 2	57	5	8	87	51.5	7 C	4.0	2	6	6	3,	3 N	38	8		ដូច	50	5	55	50	10	Ŧ	detiefe
	0,289																																				æ	Run- dung
																										٠												

0
S
ő
N
_
<u> </u>

Gewindebohrer

Abschn/Tab. **Gb/6**

\bar{\bar{\bar{\bar{\bar{\bar{\bar{	(1) (2) (3)	Gewinde- Nenn- durchmesser d = D
- <pre>- <pre>- <pre>- <pre>- <pre>- <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>		Stei- gung P
32,026 33,7026 34,7026 34,7026 34,7026 34,7026 34,7026 44,026 44,026 44,026 44,026 44,026 45,7026 46,7026 55,7026 55,7026 55,7026 67,7026 67,7026 67,7026 67,7026	9,35 9,05 8,70	Flanken- durch- messer d ₂ = D ₂
00000000000000000000000000000000000000	8,77 8,16 7,54	Kernduro d ₃
00000000000000000000000000000000000000	7,83 7,83	erndurchmesser d ₃ D ₁
1,227 1,227	ည္လစ္တစ္	Gewin
1,083 1,083	0,541 0,812 1,083	Gewindetiefe h ₃ H ₁
0,2317 0,2319 0,2319 0,2319 0,2319 0,2319 0,2319 0,2319 0,2317	700	Run- dung R

Gewindebohrer

7. Whitworth-Gewinde (nicht mehr genormt)

 $t_1 = 0,64033 h$ = 0,9605 hIJ 0,13733 h 25,4 N

	2
6	3
3	3
3	3

Gev

ω	21/2	21/4	(17/6)	11/2	11/4 13/6	1	7,4	1/2 5/8	3/8 (7/16)	5/16	1/22)	(3/16)	(x/s)	(3/32) (cc/k)	(1/16)	Zoll	Increal	durch-
76,203	63,502 69,853	50,802 57,152	44,452 47,627	38,101 41,977	31,751 34,926	25,401 28,576	19,051 22,226	12,700 15,876	11,113	7,938	6,556 350	4,762	3.969 3.969	2,381	1,587	0	messer	Gewinde-
66,909	55,370 60,558	43,573 49,020	37,946 40,398	32,680 34,771	27,104 29,505	21,335 23,929	15,798 18,611	9,990 12,918	8,789	5,131 331	4,201 4,724	3,407	2,952	1,703	1,045	ď	messer	Kern-
35,161	28,804	14,912 18,873	11,310 12,818	9,388 9,495	5,770 6,837	3,575 4,497	1,960 2,720	0,784 1,311	0,607	0,295	0,138 0.175	0,091	0,068	0,023	0,009	cm²	schnitt	Kern-
4,647	4,066 4,647	3,614 4,066	3,253 3,614	2,711 3,253	2,324 2,711	2,033 2,324	1,627	1,355 1,479	1,162	0,904	0,677	0,677	0,507	0,338	0,270		tiefe	Ge- winde-
0,997	0,872	0,775	0,698 0,775	0,581 0,698	0,498 0,581	0,436 0,498	0,388	0,291	0,249	0,194	0,145	0,145	0,108	0,072	0,058	7		Rundung
71,556	65,205	47,187 53,086	41,199 44,012	35,391 38.024	29,428 32,215	23,368 26,253	20,419	11,345 14,397	9,951	7,034	4,878 5,537	4,084	3,459	2,041	1,315	d ₂	messer	Flanken- durch-
7,257	7,257	6,350 6,350	5,080 5,645	4,233 5,080	3,629 4,233	3,175 3,629	2,540	2,117 2,309	1,814	1,411	1,058	1,058	0,793	0,529	0,423	3"		Steigung
31/2	31/2	41/2	41/2	ഗര	67	7 8	90	5 1 13	140		262	22	83	& c	60	2	1 Zoll	Gangzahl auf

মূমিম

26,441 30,201 33,249

1,814 1,814 1,814 2,309

444

25,279 29,039 31,770

24,117 27,877 30,291

1,162 1,162 1,479

0,249 0,249 0,317

হিচ্ছ

3/8 1/2 5/8)

16,662 20,955 22,911

1,337 1,814 1,814

19 14 14

15,806 19,793 21,749

J4,950 18,631 20,587

0,856 1,162 1,162

0,184 0,249 0,249

 $\pi\pi$

~ ~ ~

9,728 13,157

0,907 1,337

28 19

9,147 12,301

8,566 11,445

0,581 0,856

0,125 0,184

Gewinde-

größe ZoII

durchmesser

Steigung

Gangzahl auf 1 Zoll

durchmesser

durchmesser

Kern-

Gewindetiofe

Rundung

d2 = D2

d1 = D1

ĭ

₩ ¬

Flanken-

Außen-

0 || D

T

Gewindemaße in mm

r = 0,13733 P

P=25,4/z

 $H_1 = 0.64033 P$ H = 0,9605 P Gewindebohrer

8. Whitworth-Rohrgewinde nach DIN 259

Gruppen-Nr.

Abschn./Tab. **Gb/8**

Anmerkung:

(R 3³/4)

105,680

2,309 2,309

105,201 111,551

103,722 110,072

1,479 1,479

0,317 0,317

R31/4)

87,884 93,980 100,330

2,309 2,309 2,309

86,405 92,501 98,851

84,926 91,022 97,372

1,479 1,479 1,479 1,479

0,317 0,317 0,317

(R 21/4) R 21/2 (R 23/4)

65,710 75,184 81,534

2,309 2,309 2,309 2,309

64,231 73,705 80,055

62,752 72,226 78,576

1,479 1,479 1,479

0,317 0,317 0,317 0,317

R 11/2 (R 13/4) R 2

47,803 53,746 59,614

2,309 2,309 2,309

46,324 52,267 58,135

44,845 50,788 56,656

1,479 1,479 1,479 1,479

0,317 0,317 0,317

(R 11/₈) R 11/₄ (R 13/₆)

37,897 41,910 44,323

2,309 2,309 2,309

36,418 40,431 42,844

34,939 38,952 41,365

1,479 1,479 1,479

0,317 0,317 0,317

124

Die Werte der Zahlentafel sind die theoretischen Abmessungen des Gewindes.

Anmerkung:

Die () eingeklammerten Gewinde sind möglichst zu vermeiden.

Die () eingeklammerten Gewinde sind möglichst zu vermeiden. Die Werte der Zahlentafel sind die theoretischen Abmessungen des Gewindes

125

9. Unified-Gewinde (UNC und UNF) Amerikanische Norm ASA B 1.1 – 1960

стиррентит.

Bezeich-nung

Außen-Außen-Ø d = D mm

Gang zahi auf 1 Zol

Steigung h

Flanken- \emptyset $d_2 = D_2$

navey Kern-ø

Boizen	

<u>a</u>	ō	S.	₹4	6	8	
1	= d - 1.08	<u>d</u> 0	216	= 0,14433	0,1082	0,8660
26868)82532 h	19519	_O	38 h	ω	Çī

Grobgewinde UNC (NC) = American-National-Coarse-Gewinde

~	OMM.
4 • ,	
÷ •	
2020cc	•
d ₁ = 0,0	5
,108253 ,144338 ,216506 - 0,649 - 1,082	
253 h 338 h 506 h 1,649519 h 1,082532 h	,

	Feingewinde UNF (NF)
r	UNF
	NF)
	1
	American-National-Fine-Gewinde

3,299 3,404 4,374 4,496 5,237 5,359 6,640 6,782 8,227 8,385 11,143 11,28 11,755 11,162 11,762 11,762 11,323 20,000 20,269 22,804 25,979 26,289 29,164 32,329 35,504 35,814		15,875 18 11,956 16 12,588 12,046 25,400 12 28,575 12 21,17 27,201 31,750 12 21,17 30,376 34,925 38,100 12 21,17 38,700 12 21,17 36,726 Die Werte der Zahlentafeln sind die theoretischen Abmessungen des Gewindes.	12 12 12 12 12 der Zahlen schen Abr	25,205 22,225 14 1,814 25,400 12 2,117 28,575 12 2,117 34,925 38,100 12 2,117 38,100 12 2,117 38,100 12 2,117 38,100 12 2,117 38,100 12 2,117	3/4" 7/8" 1" 11/8" 11/4" 13/8" 11/2"
ωω NNN N	***	1,411 1,588 1,814 2,117 2,117 2,117 2,117 2,117 2,117	22 22	25,400 25,400 28,575 31,750 34,925 38,100	3/4" 7/8" 1" 11/8" 11/4" 13/8" 11/2"
ωω NNN N=====	***	1,411 1,588 1,814 2,117 2,117 2,117 2,117 2,117 2,117	33 33	25,400 25,400 26,876 31,750 34,925 38,100	3/4" 7/8" 1" 11/4" 11/4" 13/8" 11/2"
(4 NNN N = = = =	***	1,411 1,588 1,814 2,117 2,117 2,117 2,117 2,117	5 5 5	22,225 22,225 25,400 28,575 31,750 34,925	3/4" 7/8" 1" 11/8" 11/4" 13/8"
NANA NA		1,411 1,588 1,814 2,117 2,117 2,117 2,117	22	22,225 25,400 28,575 31,750	3/4" 7/8" 1" 11/8" 11/4"
200 00		1,411 1,588 1,814 2,117 2,117		25,400 28,575	3/4" 7/8" 1"
N-1-	18,019 21,046	1,411 1,588 1,814	1	22,225	3/4" 7/8"
	18,019	1,588	; ;	0,000	3/4"
		1,411	16	19050	
	14,958		18	15,875	5/8"
_	13,371	1,411	1 8	14,288	9/16"
	11,874	1,270	20	12,700	1/2"
	0,007		3 !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7/16"
	8 837	1.058	24	9.525	3/8"
	5,761	0,907	2 %	6,350	5/16"
	4,897	706,0	22	5,485	NF. 12
	4,310	0,794	33	4,826	Nr. 10
•	3,708	0,706	36	4,166	N. 8
2,725 2.819	3,094	0,635	4	3,505	Nr. 6
	2,799	0,577	44	3,175	Nr. 5
2,195 2,271	2,502	0,529	48	2,845	Nr. 4
	2,220	0,454	56	2,515	Nr. 3
1,697 1,755	1,928	0,397	64	2,184	Nr. 2
1,135 1,422 1,473	1,318 1,626	0,318 0,353	72 72	1,524 1,854	Z Z - 0
mm mm	mm	am	107 1	111111	
	d₂ = D₂	=	auf	d = D	nung
Bolzen Mutter	Ø	Bungiano	zahl	Ø	Bezeich-

126

1/4"
3/8"
7/16"
7/16"
7/16"
7/8"
9/16"
9/16"
11/8"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/4"
11/

5,524 7,021 8,494 9,934 11,430 12,913 14,376 17,399 20,391 20,391 20,338 22,233 32,174 35,349 41,151 47,135 55,3485 55,3485 55,3485 55,275 55,725 55,725 55,725 55,725 57,275 57,275 597,475

43,876 50,226 55,710 62,060 68,410 74,760 81,110 87,460 93,810

1,524 2,184 2,184 2,185 2,175 3,175 3,175 3,175 3,175 3,175 3,175 3,175 3,175 3,175 3,175 3,175 11,112 11,1

0,397 0,635 0,635 0,635 0,794 1,058 1,158 1,158 1,181

4,793 6,205 7,577 8,887 10,302 11,692 13,043 15,933 15,933 18,763 21,504 24,122 27,297 27,297 29,731

1,941 2,156 2,487 2,683 3,683 4,343 4,978 6,401 7,798 9,144 10,592 11,989 13,386 16,307 16,307 19,177 24,533 27,413 30,353 30,353 30,353 31,528 38,964 44,679 55,6617 62,967 69,317 69,317 69,317 69,317 69,317 69,317 69,317 69,317 69,317 69,317 69,317 69,317 69,317 69,317 69,317

2,990 3,650 4,138 4,798

2,532 3,193 3,528 4,188

1,864 2,065 2,395

Gruppen-Nr.

Gewindebohrer f ür Metrisches ISO-Gewinde

Toleranzen des Gewindeteiles [Maße in mm]

(Auszug aus DIN 802)

stimmt sind. Sie entsprechen dem derzeitigen Stand der Arbeiten im ISO/TC 29. Herstellen von Metrischem ISO-Gewinde ab 1 mm Gewindedurchmesser be-Die in dieser Norm festgelegten Toleranzen gelten für Sewindebohrer, die zum

Kurzzeichen und Benennungen

Bild 1. Maße und Toleranzen am Muttergewinde und am Gewindebohrer Toleranzfeld des Muttergewindes **EAS:** Toleranzfeld des Gewindebohrers

- Muttergewinde
- Ö Nenn-Außendurchmesser
- ō Nenn-Kerndurchmesser
- Nenn-Flankendurchmesser
- Höhe des spitz ausgezogenen Gewindeprofiles
- Gewindesteigung
- ď Toleranz des Kerndurchmessers
- $\mathsf{T}_{\mathsf{D}_2}$ Toleranz des Flankendurchmessers
- α Flankenwinkel

- Gewindebohrer
- Nenn-Flankendurchmesser ($d_2 \equiv D_2$) Nenn-Außendurchmesser (d \equiv D)
- d_{2min} d_{2 max} Größter zulässiger Flankendurchmesser Kleinster zulässiger Flankendurchmesser
- Oberes Abmaß des Flankendurchmessers Unteres Abmaß des Flankendurchmessers
- Gewindesteigung
- Ld2 R = H/6 Nenn-Radius für den Gewindegrund Toleranz des Flankendurchmessers
- T_u/2 Toleranz des Teilflankenwinkels Toleranz des Flankenwinkels Toleranz der Gewindesteigung
- Ŗ Teilflankenwinkel Flankenwinkel

Einführung

gabe März 1966 festgelegten Toleranzen der Flankendurchmesser, Kerndurchmesser und Grundabmaße der Muttergewinde. Grundlage für die Toleranzen der Gewindebohrer sind die in den Vornormen DIN 13 Blatt 32, Ausgabe Juli 1965 und Blatt 44, Aus-

nach DIN 13 Blatt 32 (Vornorm) und Blatt 44 hinzuzurechnen. Die vergrößert worden. in der Toleranzlage H (Grundabmaß Au = Null) dargestellt. Bei Bild 1. In diesem Bild sind die Muttergewinde und Gewindebohren der Muttergewinde und den Toleranzen der Gewindebohrer zeigt Toleranzfelder sind in Bild 1 der deutlicheren Darstellung wegen Eine Übersicht über die Beziehungen zwischen den Toleranzen Toleranzlage G ist beim Flankendurchmesser das Grundabmaß Au

Für Flankendurchmesser der Muttergewinde sind die Toleranzfelder

4 <u>գ</u> 5 G <u>5</u> <u>6</u> **7**H 7G **28**

vorgesehen.

mit Foleranzfeld Gewindebohrer sind nur für die Herstellung von Muttergewinden

<u>4</u> 왚 60

7 **4**G

7G

4H hergestellt werden. gewinde mit Toleranzfeld 5H mit Gewindebohrern für Toleranzfeld qualität hergestellt werden können. Beispielsweise können Muttermit den Werkzeugen für Gewinde der nächst feineren Toleranzfestgelegt worden, weil Gewinde einer gewünschten Toleranz auch

a) Auswahl der Toleranzfelder für Gewindebohrer und empfohlene Anwendung

Н 8	7 H	6 G			7 H
		6 H	5 G	4 G	6 H
			5 H	4 H	4 H
		:felder	der Toleranzfelder	de	angabe
		winden	von Muttergewinden	von	mit Toleranz-
		erstellung	Bestimmt zur Herstellung	Bestin	Gewindebohrer

14a. Gewindemaß-Toleranzen für Fertigschneider: UNIFIED-Gewinde UNC (NC)

123 652

Fertigungstoleranz 2B

13/4	11/4		11%		7/ ₈	3/4	\$/*	1/2	7/14	3/4	5/16	*	Nr. 12	Nr. 10	Nr. 8	Nr. 6	Nr. 5	Nr. 4	Nr. 3	Nr. 2	Z T	Nenn-Ø
30 A	35,23	32,04	28,83	25,64	22,44	19,24	16,05	12,86	11,27	9,65	8,05	6,45	5,56	4,90	4,22	3,55	3,213	2,883	2,54	2,197	1,867	Auß Kleinstmaß
38 46	35,28	32,09	28,88	25,69	22,49	19,29	16,08	12,90	11,30	9,68	8,08	6,48	5,59	4,93	4,24	3,58	3,240	2,903	2,57	2,222	1,892	Außen-Ø Größtmaß hpeyen pr f
35,375	32,200	29,418	26,243	23,401	20,455	17,450	14,427	11,481	9,985	8,545	7,071	5,575	4,823	4,163	3,675	3,015	2,776	2,446	2,184	1,902	1,610	Flanken•Ø Kleinstma8
35,400	32,225	29,444	26,269	23,414	20,467	17,463	14,440	11,494	9,997	, 8,557	7,084	5,588	4,836	4,176	3,688	3,028	2,789	2,459	2,197	1,915	1,623	en-Ø Größtmaß
34,29	31,11	20,52	25,34	22,60	19,76	16,84	13,86	11,02	9,55	8,15	6,73	5,25	4,59	3,96	300	2,89	2,69	2,38	2,14	1,87	1,58	Kern-Φ Größtmaß

von den Arbeitsbedingungen (Werkstoff, Zustand der Maschinen usw.) abhängen. Gewinde innerhalb der Toleranzen 2B liegen. Dieser Wert gilt in der Regel, weil die Maße des Die Gewindemaße der geschliffenen Gewindebohrer sind so bemessen, daß damit hergestellte fertigen Innengewindes nicht allein von den Abmessungen des Gewindebohrers, sondern auch

138

14b. Gewindemaß-Toleranzen für Fertigschneider: UNIFIED-Gewinde UNF (NF)

Gewindebohrer

oruppen-kr.

Abschn./Tob Gb/14b

Fertigungstoleranz 2B

	I																							
Neππ-φ ZoII		Nr. 0	<u>N</u>	Nr. 2	Nr. 3	Nr. 4	Z 51	N. 6	Z 8	Nr. 10	Nr. 12	1/4	5/16	3/8	7/16	1/2 .	5/8	3/ _E	7/,8		11/6	111/4	13/8	11/2
Außı Kleinstmaß		1,547	1,88	2,21	2,53	2,87	3,20	3,544	4,204	4,88	5,55	6,39	8,01	9,60	11,21	12,80	15,99	19,18	22,38	25,57	28,74	31,93	35,10	38,27
Außen-∅ Größtmaß	THE PROPERTY OF THE PROPERTY O	1,585	1,91	2,24	2,56	2,896	3,23	3,57	4,229	4,91	5,575	6,42	8,04	9,63	11,24	12,83	16,02	19,23	22,43	25,60	28,79	31,98	35,15	38,32
→ Kleinstmaß	•	1,331	1,638	1,941	2,233	2,515	2,812	3,106	3,721	4,336	4,923	5,799	7,287	8,875	10,338	11,925	15,009	18,070	21,110	24,089	27,226	30,401	33,576	36,751
Flanken-∲ } Größtmaß		1,344	1,651	1,953	2,245	2,527	2,824	3,119	3,734	4,348	4,935	5,812	7,300	8,887	10,351	11,938	15,022	18,082	21,123	24,102	27,252	30,427	33,602	36,777
Kern-Ø Größlmaß			1,61						6.3	_	_	/3 1	-1	<u>~</u>	10,03	=		- 17	20	23	26	29	ယ္ဟ	36

Gewinde innerhalb der Toleranzen 2B liegen. Dieser Wert gilt in der Regel, weil die Maße des fertigen Innengewindes nicht allein von den Abmessungen des Gewindebohrers, sondern auch von den Arbeitsbedingungen (Werkstoff, Zustand der Maschinen usw.) abhängen. Die Gewindemaße der geschliffenen Gewindebohrer sind so bemessen, daß damit hergestellte