Defintion

ring_def

Ring - A *ring* is a set R with two binary operations called + *addition* and \times *multiplication* such that

- 1. (R, +) is an abelian group.
- 2. \times is associative, that is, $(a \times b) \times c = a \times (b \times c), \forall a, b, c \in R$.
- 3. Multiplication distributes over addition, that is, $(a+b) \times c = a \times c + b \times c$ and $a \times (b+c) = a \times b + a \times c, \forall a,b,c \in R$.

Special Properties

- If multiplication is commutative, we say that *R* is a *commutative ring*.
- I there exists a $1 \in R$ such that $1 \times a = a \times 1 = a, \forall a \in R$, then R is a ring with identity.

Special Rings

division_ring_def

Division Ring - Let R be a nontrivial ring with identity. If every $a \in R \setminus \{0\}$ has a multiplicative inverse, then R is a *division ring*.

• A commutative division ring is a field.

Propositions

Proposition: Let R be a ring.

- 1. For all $a \in R, 0a = a0 = 0$.
- 2. For all $a, b \in R, (-a)b = a(-b) = -(ab)$.
- 3. For all $a, b \in R, (-a)(-b) = ab$.
- 4. Let $1 \in R$, then 1 is unique.
- 5. Let $1 \in R$, then a = (-1)a.

Element Properties

zero_divisor_def

Zero Divisor - Let R be a ring. An element $a \in R$ is a zero divisor if $a \neq 0$ and there exists a $b \in R$ such that ab = 0 or ba = 0.

unit_def

Unit - Let R be a nontrivial ring with identity. An element $u \in R$ is a *unit* in R if there exists some $v \in R$ such that uv = vu = 1. The set of units in R is R^{\times} .

 R^{\times} forms a group under multiplication.

More Speicial Rings

integral_domain_def

Integral Domains - A nontrivial commutative ring with no <u>zero divisors</u> is an *integral domain*.

Examples

- $(\mathbb{Z},+,\times),(\mathbb{Q},+,\times),(\mathbb{R},+,\times)$, and $(\mathbb{C},+,\times)$ under standard addition and multiplication are all commutative rings with identity.
- The set of matrices under standard matrix addition and multiplication is a noncommutative ring with identity.
- $(2\mathbb{Z},+,\times)$ under standard addition and multiplication is a commutative ring without identity.
- $(\mathbb{Q},+,\times),(\mathbb{R},+,\times)$, and $(\mathbb{C},+,\times)$ are all fields.
- The ring of real quaternions is a division ring that is not a field.