Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка платформы для фотограмметрического контроля

Выполнила: Руководитель: Дегтярева Алиса Андреевна, гр. 7303 Заславский Марк Маркович, к.т.н., доцент

Цель и задачи

Актуальность:

- Строительный контроль включает в себя задачу оценки соблюдения технологии постройки объекта, от точности получаемых данных зависит безопасность людей
- Высокая погрешность при ручном расчете, дополнительные денежные и временные ресурсы при использовании LIDAR

Цель: разработка платформы для контроля строительства с использованием технологий фотограмметрии

Задачи:

- 1. Изучить существующие способы вычисления объема и линейных размеров трехмерных моделей
- 2. Разработать алгоритмы, позволяющие вычислить по трехмерной модели объем объекта, линейные размеры объекта, оценить погрешность вычислений
- 3. Разработать платформу для строительного контроля
- 4. Провести оценку точности алгоритмов из п.2

Задача 1. Способы вычисления геометрических характеристик моделей

Вычисление объема: тетраэдры через начало координат и полигоны модели

$$V_{i} = \frac{1}{6} \left(-x_{i3} y_{i2} z_{i1} + x_{i2} y_{i3} z_{i1} + x_{i3} y_{i1} z_{i2} - x_{i1} y_{i3} z_{i2} - x_{i2} y_{i1} z_{i3} + x_{i1} y_{i2} z_{i3} \right)$$

$$V_{total} = \sum_{i} V_{i}$$

 $(x_{i1}y_{i1}z_{i1}), (x_{i2}y_{i2}z_{i2}), (x_{i3}y_{i3}z_{i3})$ – точки полигона в порядке их расположения

Вычисление линейных размеров: расстояния между крайними точками в продольном, поперечном и вертикальном направлении

Задача 2. Разработка алгоритмов. Подготовка облака точек

- 1. Нахождение плоскостей горизонта
- 2. Удаление шумов над и под плоскостями горизонта
- 3. Построение ограничивающих плоскостей
- 4. Поворот ограничивающих плоскостей
- 5. Сдвиг ограничивающих плоскостей

Рисунок 2 – Подготовка трехмерной модели 1 – исходная модель, 2 – подготовленная модель

Задача 2. Разработка алгоритмов. Вычисление объемов

- 1. Через плоскость тегов
- 2. С использованием триангуляции Делоне:
 - Через выпуклую оболочку
 - Через тетраэдры триангуляции

Рисунок 3 — Триангуляция Делоне в трехмерном пространстве

Рисунок 4 – Выпуклая оболочка триангуляции Делоне

Задача 2. Разработка алгоритмов. Вычисление линейных размеров. Погрешность

Линейные размеры: размеры внешнего ограничивающего тела

Рисунок 5 – Внешнее ограничивающее тело

Погрешность: разница между фактическими и вычисленными данными (расстояния между тегами, высота объекта)

$$\delta = \frac{d - d_{\mathcal{I}}}{d_{\mathcal{I}}} * 100\%$$

d — расстояние между парой тегов в модели, $d_{\mathcal{I}}$ — фактическое расстояние между парой тегов

Задача 3. Разработка платформы

- Консольное приложение
- Вычисление объема, линейных размеров, оценка погрешности
- Генерация моделей (Meshroom)/работа с готовыми моделями
- Настройка параметров обрезки модели

Рисунок 6 – Сценарии использования

Задача 4. Оценка точности вычисления объема, линейных размеров, погрешности

1. Тестирование с построением модели (объем + размеры)

- Эксперимент 1 (8 фотографий): 7 из 10 запусков
- Эксперимент 2 (6 фотографий): 7 из 10 запусков

2. Тестирование без построения модели

- Эксперимент 3 (объемы + размеры): 8 из 10 запусков
- Эксперимент 4 (погрешность): вычисленная погрешность и фактическая погрешность отличаются на 3,7%

Заключение

Выводы по задачам:

- 1. Изучены существующие способы вычисления характеристик моделей: объем суммарный объем тетраэдров через полигоны и начало координат, линейные размеры расстояния между крайними точками модели в разных направлениях
- 2. Разработаны алгоритмы для вычисления объема и линейных размеров модели и оценки погрешности, а также для подготовки модели к данным вычислениям (удаление шумов, поиск положения ограничивающих плоскостей)
- 3. Разработана платформа для контроля строительства на основе алгоритмов из п.2.
- 4. Проведен эксперимент с построением модели (7 успешных запусков из 10), эксперимент без построения модели (8 успешных запусков из 10), эксперимент с оценкой погрешности (вычисленная погрешность и фактическая погрешность отличаются на 3,7%.)

Направление дальнейших исследований – разработка платформы для мониторинга процесса строительства, увеличение количества вычисляемых характеристик

9

Апробация работы

- «Обзор инструментов фотограмметрии с точки зрения пригодности для решения задач строительного контроля» // Научно-технический семинар кафедры МОЭВМ СПбГЭТУ «ЛЭТИ», 2021
- Репозиторий проекта https://github.com/moevm/bsc_degtyareva

Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка платформы для фотограмметрического контроля

Выполнила: Руководитель: Дегтярева Алиса Андреевна, гр. 7303 Заславский Марк Маркович, к.т.н., доцент

Запасные слайды

Подготовка объекта к фотограмметрии

- 4-8 камер
- Использование CCTags: насыщение снимков, вычисление коэффициента размера

Рисунок 7 – Конфигурации камер и тегов

Алгоритм поиска плоскости горизонта

```
вычислить_плоскости_горизонта():
    точка_плоскости=вычислить_среднее(координаты_тегов)
    нормаль_плоскости=вычислить_нормаль_методом_наименьших_квадратов(коорди
наты_тегов)
    отдаленные_точки=отсортировать_точки_модели_в_порядке_отдаления_от_плоск
ости_горизонта(точки_модели)
    самые_дальние_точки=выбрать_самые_дальние_точки(отдаленные_точки,
процент_отдаленных_точек)
    точка_противоположной_плоскости=вычислить_среднее(самые_дальние_точки)
    точка_противоположной_плоскости=ориентировать_от_цента(точка_плоскости)
    точка_противоположной_плоскости=ориентировать_от_центра(точка_противоположной_плоскости)
вернуть нормаль, точка_плоскости, точка_противоположной_плоскости
```

Алгоритм удаления шумов

```
убрать_шумы():
     точки в плоскости=[]
     пока плоскость не достигла точки остановки:
          точки_в_плоскости.добавить( вычислить_точки_близкие_к_плоскости(
плоскость_противоположная_горизонту,точки_модели))
          новая плоскость=сдвинуть плоскость(
плоскость противоположная горизонту, единичный сдвиг * номер итерации)
     номер итерации=индекс_максимального_значения(точки в плоскости)
     плоскость противоположная горизонту = сдвинуть плоскость(
плоскость противоположная горизонту, единичный сдвиг * номер итерации)
     точки модели=отбросить_точки_вектора_которых_сонаправленны_нормали_
плоскости (плоскость горизонта, точки модели)
     точки_модели=отбросить_точки_вектора_которых_сонаправленны_нормали_
плоскости (плоскость противоположная горизонту, точки модели)
```

Пример модели с удалением шумов

Рисунок 8 – Удаление шумов

Построение ограничивающих плоскостей

Рисунок 9 – Построение ограничивающих плоскостей

Алгоритм построения ограничивающих плоскостей

```
построить_ограничивающие_плоскости():
      вектор А=вектор_через_точки(контрольные_теги)
      нормаль контрольной плоскости=перпендикулярный вектор (вектор А,
нормаль плоскости горизонта)
      точка контрольной плоскости=вычислить_среднее(контрольные теги)
      контрольная_плоскость=[нормаль_контрольной_плоскости, точка_контрольной_плоскости]
      точка_противоположной_контрольной_плоскости=самая_дальняя_точка_от_плоскости(контрол
ьная плоскость, теги)
      противоположная_контрольная_плоскость=[нормаль_контрольной_плоскости,
точка противоположной контрольной плоскости]
      плоскость_Р=[вектор_А, точка_контрольной плоскости]
      точка_боковой_плоскости=самая_дальняя_точка_от_плоскости(плоскость_Р, теги)
      боковая плоскость=[вектор А, плоскости]
      точка противоположной боковой плоскости=самая_дальняя_точка_от_плоскости(боковая пло
скость, теги)
      противоположная боковая плоскость=[вектор А, точка противоположной боковой плоскости]
      для каждой плоскости:
            корректировать_нормаль(плоскость)
      вернуть плоскости
```

Пример модели, обрезанной по ограничивающим плоскостям

Рисунок 10 – Модель, обрезанная по ограничивающим плоскостям

Алгоритм поворота ограничивающих плоскостей

Алгоритм поворота каждой ограничивающей плоскости

```
повернуть_каждую_ограничивающую_плоскость():
     для каждой плоскости:
          центр объекта=вычислить центр(
точки пересечения плоскости с перпендикулярными)
          точки модели=[]
          для угла от 0 до 45:
                плоскость=повернуть_плоскость(плоскость, угол * единичный поврот,
центр объекта)
                точки модели.добавить(
количество_точек_внутри_ограничивающей_фигуры(плоскость, точки модели)
          угол=индекс_минимального_значения(точки модели)
          плоскость=повернуть_плоскость(плоскость, угол * единичный поврот,
центр объекта)
     вернуть плоскости
```

Примеры моделей, где требуется повернуть ограничивающие плоскости

Рисунок 11 – Модель, где требуется повернуть все ограничивающие плоскости

Рисунок 12 – Модель, где требуется повернуть некоторые ограничивающие плоскости

Пример модели с повернутыми ограничивающими плоскостями

Рисунок 13 – Поворот ограничивающих плоскостей модели

Алгоритм сдвига ограничивающих плоскостей с расчетом количества точек в плоскости горизонта

```
сдвинуть_ограничивающие_плоскости_через_процент_точек():
    для каждой плоскости:
              индекс=0
              предыдущее количество точек = 0
              пока плоскость не достигла точки остановки:
                        новая плоскость=сдвинуть_плоскость(плоскость, единичный сдвиг *
номер итерации)
              внешние точки=выделить_внешние_точки(плоскость, точки модели)
              внешние_точки=выделить_точки_лежащие_в_плоскости( плоскость_горизонта,
внешние точки)
              текущее количество точек=количество(внешние точки)
              если предыдущее количество точек != 0:
                        процент разницы=(предыдущее количество точек-
текущее количество точек)*100/предыдущее количество точек
                        если процент разницы <= заданный процент:
                                  индекс = номер итерации
                                 прервать_цикл
              предыдущее количество точек=текущее количество точек
              новая плоскость=сдвинуть_плоскость(плоскость, единичный сдвиг * индекс)
    вернуть новые плоскости
```

Алгоритм сдвига ограничивающих плоскостей с вычислением расстояний

```
сдвинуть_ограничивающие_плоскости_через_вычисление_расстояний():
      для каждой плоскости:
            расстояния = []
            пока плоскость не достигла точки остановки:
                  новая плоскость=сдвинуть_плоскость(плоскость, единичный сдвиг *
номер итерации)
                  внешние точки=выделить_внешние_точки(плоскость, точки модели)
                  дальняя точка=найти_дальнюю_точку(плоскость горизонта, внешние точки)
                  расстояния. добавить (расстояние (плоскоть_горизонта, дальняя_точка))
            ненулевые_расстояния=отфильтровать_массив(расстояния, расстояние!=0)
            наименьшее_расстояние=наименьшее_значение(ненулевые расстояния)
            индекс=0
            для каждого расстояния из расстояний:
                  если расстояние = 0:
                        следующая_итерация
                  процент разницы = (расстояние-
наименьшее расстояние)*100/наименьшее расстояние
                  если процент разницы >= заданный процент:
                        индекс = номер итерации
                        прервать_цикл
```

новая_плоскость=**сдвинуть_плоскость**(плоскость, единичный_сдвиг * индекс) **вернуть** новые плоскости

25

Пример модели со сдвинутыми ограничивающими плоскостями

Рисунок 14 – Сдвиг ограничивающих плоскостей модели

Алгоритмы вычисления объемов

```
объем через ограничивающие плоскости():
 крайние точки=вычислить_точки_пересечения(ограничивающие плоскости)
 крайние точки=спроецировать на плоскость (крайние точки, плоскость горизонта)
 новые полигоны=вычислить_полигоны(крайние точки)
 точки модели. добавить (крайние точки)
 полигоны модели. добавить (новые полигоны)
 объем=0
 для каждого полигона:
       объем=объем+вычислить объем тетраэдра(полигон)
 вернуть объем
объем через выпуклую оболочку():
 тетраэдры триангуляции=триангуляция_делоне(точки модели)
 выпуклая_оболочка_триангуляции=выпуклая_оболочка(тетраэдры_триангуляции)
 объем=0
 для каждого полигона в выпуклой оболочке:
       объем=объем+вычислить_объем_тетраэдра(полигон)
    вернуть объем
объем_через_тетраэдры_триангуляции():
 тетраэдры триангуляции=триангуляция_делоне(точки модели)
 объем=0
 для каждого тетраэдра в выпуклой оболочке:
       объем=объем+вычислить_объем_тетраэдра(тетраэдр)
 вернуть объем
```

Алгоритмы построения ограничивающих тел и вычисления линейных размеров

внутреннее_ограничивающее_тело():

точки=**вычислить_точки_пересечения**(ограничивающие_плоскости)
точки=**спроецировать_на_плоскость**(точки, плоскость_горизонта)
нижние_точки=**спроецировать_на_плоскость**(точки,плоскость_противоположная_плоскости
_горизонта)

вернуть точки, нижние_точки

Внешнее ограничивающее тело строится следующим образом: выбираются точки внутреннего ограничивающего тела, лежащие в плоскости горизонта. Далее построения происходят также, как в случае с построением ограничивающих плоскостей, с той разницей, что вместо тегов вычисления выполняются над этими точками, а в качестве контрольных тегов выбираются две соседние точки.

линейные размеры():

длина=**вычислить_расстояние**(боковая_плоскость_внешнего_тела_1, противоположная_боковая_плоскость_тела_1)

ширина=**вычислить_расстояние**(боковая_плоскость_внешнего_тела_2, противоположная_боковая_плоскость_тела_2)

высота=**вычислить_расстояние**(верхняя_плоскость_внешнего_тела,нижняя_плоскость_внеш него тела)

	TagsPlane Convex Hull		Triangulation	Parallelepipe d	Длина	Глубина	Ширина				
№ запуска		Фактичес	кие объемы, м	^3	Фактические размеры, м			Расстановк	а Оценк	Оценка модели	
-	0,441 0,441		0,441 0,506		1,500	1,500 0,225 1,50		маркеров			
	E	Зычислен	ные объемы, м	и^3	Вычислен	Вычисленные размеры, м					
1	0,448	0,439	0,439	0,536	1,470	0,250	1,460	успешно	ешно есть замечания		
2	0,448	0,424	0,424	0,528	1,450	0,250	1,460	успешно есть замеч		амечания	
3	0,462	0,466	0,466	0,558	1,480	0,260	1,470	успешно	без за	мечаний	
4	0,450	0,418	0,418	0,531	1,450	0,250	1,450	успешно	есть з	амечания	
5	0,443	0,400	0,400	0,512	1,440	0,250	1,430	успешно	есть за	амечания	
6	0,459	0,421	0,421	0,530	1,450	0,250	1,450	успешно	без за	мечаний	
7	0,454	0,418	0,418	0,510	1,460	0,250	1,420	успешно	без за	мечаний	
8	0,456	0,432	0,432	0,538	1,470	0,250	1,450	успешно без замеч		амечаний	
9	0,454	0,404	0,404	0,515	1,430	0,250	1,460	успешно	без за	без замечаний	
10	0,456	0,415	0,415	0,531	1,450	0,250	1,450	успешно	без за	без замечаний	
№ запуска		Относи	тельная погре	шность каждо	го эксперимен	ıта, %		Качество вычисления объема		і объема	
1	1,497	0,544	0,544	5,889	2,000	11,111	2,667%	б Фактический объем		и, м^3	
2	1,655	3,855	3,855	4,407	3,333	11,111	2,667%	Минимум	Среднее	Максимум	
3	4,739	5,760	5,760	10,198	1,333	15,556	2,000%	0,426	0,441	0,456	
4	2,132	5,193	5,193	4,862	3,333	11,111	3,333%	Допустимая погрешн		ость, %	
5	0,363	9,365	9,365	1,107	4,000	11,111	4,667%	-3,401%	- x -	3,401%	
6	3,991	4,626	4,626	4,743	3,333	11,111	3,333%	Кол-во входящих в допустиму погрешность		пустимую	
7	2,834	5,329	5,329	0,751	2,667	11,111	5,333%	7	ИЗ	10	
8	3,492	2,041	2,041	6,304	2,000	11,111	3,333%				
9	2,902	8,458	8,458	1,739	4,667	11,111	2,667%				
10	3,356	5,828	5,828	4,881	3,333	11,111	3,333%				
Минимальная	0,363	0,544	0,544	0,751	1,333	11,111	2,000%				
Средняя	2,696	5,100	5,100	4,488	3,000	11,556	3,333%				
Максимальная	4,739	9,365	9,365	10,198	4,667	15,556	5,333%			29	

	TagsPlane Convex Hull Фактические об		Triangula Parallelepi tion ped		Длина	Глубина	Ширина	Расстановк	a		
№ запуска				Фактические размеры, м			Оцен	Оценка модели			
	0,441	0,441	0,441 0,506		1,500	0,225 1,500		маркеров			
		сленные с				енные разі					
1	0,449	0,524	0,524	0,695	1,690	0,280	1,490	успешно	есть з	есть замечания	
2	0,455	0,438	0,438	0,537	1,450	0,250	1,460	успешно	есть з	есть замечания	
3	0,434	0,508	0,508	0,574	1,500	0,250	1,500	успешно	есть з	амечания	
4	0,470	0,458	0,458	0,539	1,440	0,250	1,480	успешно	без за	амечаний	
5	0,452	0,445	0,455	0,544	1,470	0,250	1,470	успешно	есть з	амечания	
6	0,450	0,461	0,461	0,547	1,470	0,250	1,480	успешно	есть з	амечания	
7	0,446	0,457	0,457	0,544	1,460	0,250	1,480	успешно	есть з	амечания	
8	0,448	0,464	0,464	0,544	1,470	0,250	1,450	успешно	есть з	есть замечания	
9	0,467	0,456	0,456	0,544	1,470	0,250	1,470	успешно	ешно есть замеча		
10	ошибка	ошибка	ошибка	ошибка	ошибка	ошибка	ошибка	ошибка	есть з	есть замечания	
№ запуска	От	носительн	ая погреш	ность кажд	ого экспер	имента, %		Качество	вычислени	вычисления объема	
1	1,882	18,707	18,707	37,273	12,667	24,444	0,667%	% Фактический об ^о		объем, м^3	
2	3,107	0,680	0,680	6,146	3,333	11,111	2,667%	Минимум	Среднее	Максимум	
3	1,565	15,170	15,170	13,439	0,000	11,111	0,000%	0,426	0,441	0,456	
4	6,508	3,923	3,923	6,561	4,000	11,111	1,333%	Допустимая погрешнос		ность, %	
5	2,540	0,930	3,197	7,411	2,000	11,111	2,000%	-3,401%	- x -	3,401%	
6	1,950	4,580	4,580	8,162	2,000	11,111	1,333%	Кол-во входящих в допустим погрешность		,	
7	1,179	3,515	3,515	7,431	2,667	11,111	1,333%	7	ИЗ	10	
8	1,587	5,147	5,147	7,569	2,000	11,111	3,333%				
9	5,896	3,333	3,333	7,569	2,000	11,111	2,000%				
10	ошибка	ошибка	ошибка	ошибка	ошибка	ошибка	ошибка				
Минимальная	1,179	0,680	0,680	6,146	0,000	11,111	0,000				
Средняя	2,913	6,221	6,473	11,285	3,407	12,593	1,630				
Максимальная	6,508	18,707	18,707	37,273	12,667	24,444	3,333				

30

<u> </u>												
	Объем, м ³				- Линейные размеры, м			Фактический объем, м ^з		Фактические линейные размеры, м		
№ запуска	TagsPlan e	Convex Hull	Triangulati on	Параллел епипед	Длина	Глубина	Ширина	Объект	Параллел епипед		Фактичес кая глубина	Фактичес кая ширина
1	0,283	0,363	0,363	0,426	1,670	0,150	1,670	0,158	0,191	1,500	0,085	1,500
2	0,286	0,315	0,315	0,358	1,500	0,160	1,540	0,222	0,248	1,500	0,110	1,500
3	0,257	0,291	0,291	0,317	1,500	0,140	1,560	0,252	0,304	1,500	0,135	1,500
4	0,434	0,508	0,508	0,574	1,500	0,250	1,500	0,515	0,615	1,500	0,274	1,500
5	0,454	0,410	0,410	0,516	1,440	0,250	1,450	0,441	0,506	1,500	0,225	1,500
6	0,452	0,445	0,455	0,544	1,470	0,250	1,470	0,441	0,506	1,500	0,225	1,500
7	0,450	0,461	0,461	0,547	1,470	0,250	1,480	0,441	0,506	1,500	0,225	1,500
8	0,446	0,457	0,457	0,544	1,460	0,250	1,480	0,441	0,506	1,500	0,225	1,500
9	0,012	0,026	0,024	0,030	0,380	0,300	0,260	0,028	0,031	0,385	0,300	0,265
10	0,363	-	-	0,484	1,450	0,230	1,440	0,358	0,506	1,500	0,225	1,500
№ запуска	Относительная погрешность каждого эксперимента, % Допустимая і					мая погреш	Входит в допустимую погрешность		тимую			
1	79,114	129,747	129,747	123,037	11,333	76,471	11,333	3,165		нет		
2	28,829	41,892	41,892	44,355	0,000	45,455	2,667	11,306		нет		
3	2,167	15,683	15,683	4,276	0,000	3,704	4,000	13,536		да		
4	15,646	1,263	1,263	6,667	0,000	8,592	0,000	2,041		да		
5	2,948	7,029	7,029	1,996	4,000	11,111	3,333	3,401		да		
6	2,540	0,930	3,197	7,411	2,000	11,111	2,000	3,401		да		
7	1,950	4,580	4,580	8,162	2,000	11,111	1,333	3,401		да		
8	1,179	3,515	3,515	7,431	2,667	11,111	1,333	3,401		да		
9	57,143	7,143	14,286	3,226	1,299	0,000	1,887	7,857		да		
10	1,397	-	-	4,348	3,333	2,222	4,000	5,028		Д	а	

Фактический объем,	Вычисленный объем,	Фактическая	Вычисленная		
м^3	м^3	погрешность, %	погрешность, %		
0,1530,164	0,213	3940	41		