Question 5

a) Theoretical/Reasoning

b)

c)	Example	Color	Height	Width	Class
	Α	Red	Short	Thin	NO
	В	Blue	Tall	Fat	YES
	С	Green	Short	Fat	NO
	D	Green	Tall	Thin	YES
	E	Blue	Short	Thin	NO

$$H(Passed) = -\left(\frac{2}{6}\log_2\frac{2}{6} + \frac{4}{6}\log_2\frac{4}{6}\right)$$

$$H(Passed) = -\left(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}\right)$$

$$H(Passed) = \log_2 3 - \frac{2}{3} \approx 0.92$$

$$\begin{split} &H(Passed|GPA) = -\frac{1}{3}(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}) - \frac{1}{3}(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}) - \frac{1}{3}(1\log_21) \\ &H(Passed|GPA) = \frac{1}{3}(1) + \frac{1}{3}(1) + \frac{1}{3}(0) \\ &H(Passed|GPA) = \boxed{\frac{2}{3} \approx 0.66} \end{split}$$

$$\begin{split} &H(Passed|Studied) = -\frac{1}{2}(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}) - \frac{1}{2}(1\log_21)\\ &H(Passed|Studied) = \frac{1}{2}(\log_23 - \frac{2}{3}\\ &H(Passed|Studied) = \boxed{\frac{1}{2}\log_23 - \frac{1}{3} \approx 0.46} \end{split}$$

 \bigstar ANSWER: We want to split first on the variable which maximizes the information gain H(Passed) - H(Passed|A). This is equivalent to minimizing H(Passed|A), so we should split on "Studied?" first.

Question 6

a)

P(A | B,C,E) P(B | D,G) P(C | E,F,H) P(D | G) P(E| G,H) P(F | I) P(G | H) P(H | I) P(I)

b) Using Bayes' theorem, we know that:

 $P ext{ (Location | Observation)} = P ext{ (Observation | Location)} P ext{ (Location)} \ P ext{ (Observation)}.$

c)

- 1. P(C) =
- $P(C|P,S)*P(P)*P(S)+P(C|\sim P,S)*P(\sim P)*P(S)+P(C|P,\sim S)*P(P)*P(\sim S)+P(C|\sim P,\sim S)*P(\sim P)*P(\sim S)\\ = 0.010$
- 2. P(P|C) = P(C|P)*P(P) P(C)
- 3. $P(X|C) = P(X|C)*P(C)+P(X|\sim C)*P(\sim C) = 0.20$
- 4. $P(D|C) = P(D|C)*P(C)+P(D|\sim C)*P(\sim C) = 0.296$