AZTEKAS: a hydrodynamic GPL code Version1.0

Generated by Doxygen 1.8.13

Contents

1	AZTEKAS: a hydrodynamic GPL code	1
2	2 Class Index	3
	2.1 Class List	. 3
3	B File Index	5
	3.1 File List	. 5
4	Class Documentation	7
	4.1 der_gauge_ Struct Reference	. 7
	4.2 eos_ Struct Reference	. 7
	4.3 flx_ Struct Reference	. 7
	4.4 gauge_Struct Reference	. 8
	4.5 grid_Struct Reference	. 8
	4.6 lim_ Struct Reference	. 8
	4.6.1 Detailed Description	. 9
	4.7 vec Struct Reference	. 9

ii CONTENTS

5	File	Docume	entation	11
	5.1	alloc.c	File Reference	. 11
		5.1.1	Detailed Description	. 11
		5.1.2	Function Documentation	. 11
			5.1.2.1 Allocate_Array()	. 11
	5.2	auxfun	nc.c File Reference	. 12
		5.2.1	Detailed Description	. 12
	5.3	bound_	_cond.c File Reference	. 12
		5.3.1	Detailed Description	. 12
		5.3.2	Function Documentation	. 13
			5.3.2.1 Outflow()	. 13
			5.3.2.2 Periodic()	. 13
			5.3.2.3 Reflection()	. 13
	5.4	EOS/ed	eos.c File Reference	. 13
		5.4.1	Detailed Description	. 13
	5.5	flux.c F	File Reference	. 14
		5.5.1	Detailed Description	. 14
	5.6	HD/fve	ector.c File Reference	. 14
		5.6.1	Detailed Description	. 14
	5.7	HD/gve	ector.c File Reference	. 14
		5.7.1	Detailed Description	. 15
	5.8	HD/hve	ector.c File Reference	. 15
		5.8.1	Detailed Description	. 15
	5.9	RHD/q2	q2uvector.c File Reference	. 15
		5.9.1	Detailed Description	. 15
	5.10	HD/qve	ector.c File Reference	. 16
		5.10.1	Detailed Description	. 16
	5.11	Header	ers/boundaries.h File Reference	. 16
		5.11.1	Detailed Description	. 16
		5.11.2	Function Documentation	. 16

CONTENTS

	5.11.2.1 Outflow()	17
	5.11.2.2 Periodic()	17
	5.11.2.3 Reflection()	17
5.12	Headers/const.h File Reference	17
	5.12.1 Detailed Description	17
5.13	Headers/io.h File Reference	18
	5.13.1 Detailed Description	18
5.14	Headers/limiters.h File Reference	18
	5.14.1 Detailed Description	19
5.15	Headers/macros.h File Reference	19
	5.15.1 Detailed Description	20
5.16	Headers/main.h File Reference	20
	5.16.1 Detailed Description	21
	5.16.2 Function Documentation	21
	5.16.2.1 Allocate_Array()	21
5.17	input.c File Reference	21
	5.17.1 Detailed Description	22
5.18	integration.c File Reference	22
	5.18.1 Detailed Description	22
5.19	main.c File Reference	22
	5.19.1 Detailed Description	22
5.20	output.c File Reference	23
	5.20.1 Detailed Description	23
5.21	restart.c File Reference	23
	5.21.1 Detailed Description	23
5.22	timestep.c File Reference	23
	5.22.1 Detailed Description	23
Index		25
HIUUK		

Chapter 1

AZTEKAS: a hydrodynamic GPL code

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http-://www.gnu.org/licenses/.

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

der_gauge	
eos	
$flx_ \ \ldots \ldots \ldots \ldots \ldots \ldots$	
gauge	
grid	
lim	
vec	

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

alloc.c	
Essential allocation functions for aztekas	11
auxfunc.c	
Helpful functions for aztekas	12
bound_cond.c	
Standard boundary conditions. Outflow, Periodic and Reflection	12
flux.c	
Numerical flux computing and implementation	14
input.c	
Important input parameters for aztekas	21
integration.c	
Main function for the time integration in the conservative variables ${f Q}$	22
main.c	
Main file of aztekas	22
output.c	
Output functions: ASCII and Binary	23
restart.c	00
Functions to restart from a given file	23
timestep.c	00
Time-step calculation	23
EOS/eos.c	40
Equation of state	13 14
HD/fvector.c	14
HD/hyector.c	15
HD/qvector.c	15
Function that converts Primitives to Conservative variables (HD)	16
Headers/boundaries.h	10
Boundary condition functions definitions	16
Headers/const.h	
Physical and numerical constants	17
Headers/io.h	• •
Input and output function and variable definitions	18
Headers/limiters.h	
Reconstruction variables and functions definitions	1.9

6 File Index

Headers/macros.h
Macros definitios for aztekas
Headers/main.h
Main function, headers and variable declaration
Headers/matrix.h
Headers/ mesh.h
Headers/ mod.h
Headers/ physics.h
RHD/q2uvector.c
Function that convert from Conservative to Primitives (RHD)

Chapter 4

Class Documentation

4.1 der_gauge_ Struct Reference

Public Attributes

- double dlapse [3]
- double **dbeta** [3][3]
- double dgam [3][3][3]

The documentation for this struct was generated from the following file:

· Headers/mesh.h

4.2 eos_ Struct Reference

Public Attributes

- double e
- double cs
- double h

The documentation for this struct was generated from the following file:

· Headers/physics.h

4.3 flx_Struct Reference

Public Attributes

- double up [eq+1]
- double um [eq+1]
- double qp [eq+1]
- double qm [eq+1]
- double **fp** [eq+1]
- double fm [eq+1]
- double **lp**
- double Im

The documentation for this struct was generated from the following file:

· Headers/physics.h

8 Class Documentation

4.4 gauge_Struct Reference

Public Attributes

- double x [4]
- · double lapse
- double **beta_con** [3]
- double gamma_con [3][3]
- double dety

The documentation for this struct was generated from the following file:

· Headers/mesh.h

4.5 grid_Struct Reference

Public Attributes

- · double time
- double * X1
- double * X1p
- double * X1m
- double * X2
- double * X2p
- double * X2m
- double * X3
- double * X3p
- double * X3m
- double * S1p
- double * S1m
- double * S2p
- double * S2m
- double * S3p
- double * S3m

The documentation for this struct was generated from the following file:

· Headers/mesh.h

4.6 lim_ Struct Reference

#include <limiters.h>

Public Attributes

- double ux1p [2 *eq]
- double ux1m [2 *eq]
- double sx1 [2 *eq]
- double ux2p [2 *eq]
- double **ux2m** [2 *eq]
- double sx2 [2 *eq]
- double ux3p [2 *eq]
- double ux3m [2 *eq]
- double sx3 [2 *eq]
- double ux [2 *eq]

4.6.1 Detailed Description

The structure \lim contains vectors in which the reconstructed variables of U in each cell are stored.

The documentation for this struct was generated from the following file:

· Headers/limiters.h

4.7 vec_ Struct Reference

Public Attributes

- double A [(eq+1) *(eq+1)]
- double S [eq+1]
- double **Fp** [eq+1]
- double Fm [eq+1]
- double **Gp** [eq+1]
- double Gm [eq+1]
- double **Hp** [eq+1]
- double Hm [eq+1]

The documentation for this struct was generated from the following file:

· Headers/physics.h

10 Class Documentation

Chapter 5

File Documentation

5.1 alloc.c File Reference

Essential allocation functions for aztekas.

```
#include "main.h"
```

Functions

- void Allocate_Array ()
- void New_Size ()

5.1.1 Detailed Description

Essential allocation functions for aztekas.

Author

Alejandro Aguayo-Ortiz

5.1.2 Function Documentation

5.1.2.1 Allocate_Array()

```
void Allocate_Array ( )
```

This function allocates the space in memory for all the vectors used in *aztekas*.

5.2 auxfunc.c File Reference

Helpful functions for aztekas.

```
#include "main.h"
```

Functions

- int MxV (double *M, double *V, double *L)
- void RoundGen (double *num)
- void Scalar_Contraction_Range1 (double *scalar, double *cov, double *con)
- void Raise_Index_Range1 (double *con, double *cov, gauge_ *local_grid)
- void Low_Index_Range1 (double *cov, double *con, gauge_ *local_grid)
- void Low_Index_Range2 (double **diag, double **con, gauge_ *local_grid)
- void CheckSimParameters ()

5.2.1 Detailed Description

Helpful functions for aztekas.

Author

Alejandro Aguayo-Ortiz

5.3 bound_cond.c File Reference

Standard boundary conditions. Outflow, Periodic and Reflection.

```
#include "main.h"
```

Functions

- void Outflow (double *B)
- void Reflection (double *B)
- void Periodic (double *B)

5.3.1 Detailed Description

Standard boundary conditions. Outflow, Periodic and Reflection.

Author

Alejandro Aguayo-Ortiz

5.3.2 Function Documentation

5.3.2.1 Outflow()

```
void Outflow ( \label{eq:condition} \mbox{double} \ * \ B \ )
```

The function Outflow(), receives the vector solution as an parameter **B**. It fills the value of the ghost cells in the specified direction using the value of the last computed cell of the domain.

5.3.2.2 Periodic()

```
void Periodic ( \mbox{double} \ * \ \mbox{\it B} \ )
```

The function **Periodic()**, receives the vector solution as an parameter **B**. It fills the value of the ghost cells with the values of the correspondent other side of the domain.

5.3.2.3 Reflection()

```
void Reflection ( \mbox{double} \ * \ \mbox{\it B} \ )
```

The function **Reflection()**, receives the vector solution as an parameter **B**. It fills the value of the ghost cells in the specified direction using the value of the mirrored cells, and for the velocity it changes sign.

5.4 EOS/eos.c File Reference

Equation of state.

```
#include "main.h"
```

Functions

• void **EoS** (eos_ *eos, double *u, gauge_ local_grid)

5.4.1 Detailed Description

Equation of state.

Author

Alejandro Aguayo-Ortiz

5.5 flux.c File Reference

Numerical flux computing and implementation.

```
#include "main.h"
```

Functions

```
    int Flux1D (vec_*v, lim_*l, int *l)
    int Flux2D (vec_*v, lim_*l, int *l)
    int Flux3D (vec_*v, lim_*l, int *l)
```

• int **HII** (double *F, flx_ *f, int x)

• int **HIIc** (double *F, flx_ *f, int x)

5.5.1 Detailed Description

Numerical flux computing and implementation.

Author

Alejandro Aguayo-Ortiz

The functions receives as an argument the structures **vec_** and **lim_** and the integer vector **I**. The structures carries the values of the Numerical Fluxes, e.g. $\mathbf{Fp} = \mathcal{F}_{i+1/2}$.

5.6 HD/fvector.c File Reference

```
#include "main.h"
```

Functions

• void **Prim2FluxF** (double *f, double *v, double *u, gauge_ local_grid)

5.6.1 Detailed Description

Author

Alejandro Aguayo-Ortiz

5.7 HD/gvector.c File Reference

```
#include "main.h"
```

Functions

• void Prim2FluxG (double *f, double *v, double *u, gauge_ local_grid)

5.7.1 Detailed Description

Author

Alejandro Aguayo-Ortiz

5.8 HD/hvector.c File Reference

```
#include "main.h"
```

Functions

• void **Prim2FluxH** (double *f, double *v, double *u, gauge_local_grid)

5.8.1 Detailed Description

Author

Alejandro Aguayo-Ortiz

5.9 RHD/q2uvector.c File Reference

Function that convert from Conservative to Primitives (RHD).

```
#include "main.h"
```

Functions

• int Cons2Prim (double *u, double *q)

5.9.1 Detailed Description

Function that convert from Conservative to Primitives (RHD).

Author

Alejandro Aguayo-Ortiz

5.10 HD/qvector.c File Reference

Function that converts Primitives to Conservative variables (HD).

```
#include "main.h"
```

Functions

• void **Prim2Cons** (double *q, double *u, gauge_ local_grid)

5.10.1 Detailed Description

Function that converts Primitives to Conservative variables (HD).

Author

Alejandro Aguayo-Ortiz

5.11 Headers/boundaries.h File Reference

Boundary condition functions definitions.

Functions

- void Outflow (double *B)
- void Periodic (double *B)
- void Reflection (double *B)

5.11.1 Detailed Description

Boundary condition functions definitions.

Author

Alejandro Aguayo-Ortiz

5.11.2 Function Documentation

5.11.2.1 Outflow()

```
void Outflow ( \label{eq:condition} \mbox{double} \; * \; \mathcal{B} \; )
```

The function Outflow(), receives the vector solution as an parameter **B**. It fills the value of the ghost cells in the specified direction using the value of the last computed cell of the domain.

5.11.2.2 Periodic()

```
void Periodic ( double * B )
```

The function **Periodic()**, receives the vector solution as an parameter **B**. It fills the value of the ghost cells with the values of the correspondent other side of the domain.

5.11.2.3 Reflection()

```
void Reflection ( double *\ B )
```

The function **Reflection()**, receives the vector solution as an parameter **B**. It fills the value of the ghost cells in the specified direction using the value of the mirrored cells, and for the velocity it changes sign.

5.12 Headers/const.h File Reference

Physical and numerical constants.

Macros

- #define **G_cgs** 6.67408e-08
- #define **M_sol_cgs** 1.98855e-33
- #define **R_sol_cgs** 6.957e-10
- #define K_B_cgs 1.3806488e-16
- #define **mH_cgs** 1.66e-24
- #define **c_cgs** 3e+10
- #define **G_cgs_earth** 4*(3.14159265358979323846)*(3.14159265358979323846)
- #define yr_cgs 3.14e+07

5.12.1 Detailed Description

Physical and numerical constants.

Author

Alejandro Aguayo-Ortiz

5.13 Headers/io.h File Reference

Input and output function and variable definitions.

Functions

- int PrintValues (double *tprint, double *dtprint, int *itprint)
- int **Output1** (int *itprint)
- int Output2 (int *itprint)
- int Output3 (int *itprint)
- int Output1_bin (int *itprint)
- int Output2_bin (int *itprint)
- int Output3_bin (int *itprint)
- · void Restart ()
- · void Restart Bin ()
- int Read_Parameters_File (char const *paramfile_name)
- int User_Parameters (char const *paramfile_name)

Variables

- int binary
- · int check_param
- · int restart simulation
- int restart_filecount
- char paramfile_name [50]
- char outputdirectory [50]
- char outputfile [50]
- char restartfile [50]

5.13.1 Detailed Description

Input and output function and variable definitions.

Author

Alejandro Aguayo-Ortiz

5.14 Headers/limiters.h File Reference

Reconstruction variables and functions definitions.

Classes

• struct lim_

Functions

- double Limiter (double A, double B, int r)
- · double Godunov (double A, double B)
- double Maxmod (double A, double B)
- double Minmod (double A, double B)
- double Mc (double A, double B)
- double **Superbee** (double A, double B)
- double Weno5 (double v1, double v2, double v3, double v4, double v5)
- int Reconst1D (double *u, lim_ *I, int *I)
- int Reconst2D (double *u, lim_ *I, int *I)
- int Reconst3D (double *u, lim_ *I, int *I)

5.14.1 Detailed Description

Reconstruction variables and functions definitions.

Author

Alejandro Aguayo-Ortiz

5.15 Headers/macros.h File Reference

Macros definitios for aztekas.

Macros

- #define **MIN**(a, b) (((a)<(b))?(a):(b))
- #define **MAX**(a, b) (((a)>(b))?(a):(b))
- #define TRUE 1
- #define FALSE 0
- #define HD 0
- #define RHD 1
- #define IDEAL 0
- #define **DUST** 1
- #define STIFF 2
- #define CARTESIAN 0
- #define CYLINDRICAL 1
- #define SPHERICAL 2
- #define UNIFORM 0
- #define LOGMESH 1
- #define **HLL** 0
- #define HLLC 1
- #define STANDARD 0
- #define PVRS 1
- #define GODUNOV 0
- #define MINMOD 1
- #define MC 2
- #define SUPERBEE 3
- #define WENO5 4
- #define RHO 0
- #define PRE 1
- #define VX1 2
- #define VX2 3
- #define VX3 4

Detailed Description 5.15.1

Macros definitios for aztekas.

Author

Alejandro Aguayo-Ortiz

5.16 Headers/main.h File Reference

Main function, headers and variable declaration.

Functions

- void Allocate_Array ()
- · void New_Size ()
- · void Initial ()
- int **Boundaries** (double *B)
- · void Integration ()
- int **RK1D** (double *u, double *q, double *q1, double *q2, int order)
- int **RK2D** (double *u, double *q, double *q1, double *q2, int order)
- int **RK3D** (double *u, double *q, double *q1, double *q2, int order)
- int Flux1D (vec_ *v, lim_ *l, int *l)
- int Flux2D (vec_ *v, lim_ *I, int *I)
- int Flux3D (vec_ *v, lim_ *l, int *l)
- int HII (double *F, flx_ *f, int x)
- int **HIIc** (double *F, flx_ *f, int x)
- int AMATRIX1D (double *u, vec_ *v, int *l)
- int **AMATRIX2D** (double *u, vec_ *v, int *I)
- int **AMATRIX3D** (double *u, vec_ *v, int *I)
- int **VECTOR** (int pm, char flux, lim_ *I, flx_ *f, int *I)
- int MxV (double *M, double *V, double *L)
- void RoundGen (double *num)
- void CheckSimParameters ()

Variables

- · double * U0
- double * U
- double * **U1**
- double * **U2**
- double * **U3**
- double * Q
- · double * Q1
- double * Q2
- double * Q3
- · double start
- · double delta
- · double K
- int Nx1 int Nx2
- · int Nx3
- double x1max
- double x2max
- double x3max
- · double x1min
- · double x2min
- double x3min

5.16.1 Detailed Description

Main function, headers and variable declaration.

Author

Alejandro Aguayo-Ortiz

#include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<omp.h>

#include"physics.h"

#include"boundaries.h" #include"limiters.h"

#include"const.h" #include"macros.h" #include"io.h" #include"user_param.h"

NAN int CHECK_NAN;

/* Define pointers

5.16.2 Function Documentation

5.16.2.1 Allocate_Array()

```
void Allocate_Array ( )
```

This function allocates the space in memory for all the vectors used in aztekas.

5.17 input.c File Reference

Important input parameters for aztekas.

```
#include "main.h"
```

Functions

• int Read_Parameters_File (char const *paramfile_name)

Variables

• FILE * paramfile

5.17.1 Detailed Description

Important input parameters for aztekas.

Author

Emilio Tejeda

5.18 integration.c File Reference

Main function for the time integration in the conservative variables $\mathbf{Q}. \\$

```
#include "main.h"
```

Functions

• void Integration ()

5.18.1 Detailed Description

Main function for the time integration in the conservative variables ${\bf Q}.$

Author

Alejandro Aguayo-Ortiz

5.19 main.c File Reference

Main file of aztekas.

```
#include "main.h"
```

Functions

• int main (int argc, char *argv[])

5.19.1 Detailed Description

Main file of aztekas.

Author

Alejandro Aguayo-Ortiz.

5.20 output.c File Reference

Output functions: ASCII and Binary.

#include "main.h"

Functions

• int PrintValues (double *tprint, double *dtprint, int *itprint)

5.20.1 Detailed Description

Output functions: ASCII and Binary.

Authors

Alejandro Aguayo-Oritz and Emilio Tejeda

5.21 restart.c File Reference

Functions to restart from a given file.

```
#include "main.h"
```

Functions

- · void Restart ()
- void Restart_Bin ()

5.21.1 Detailed Description

Functions to restart from a given file.

Author

Emilio Tejeda

5.22 timestep.c File Reference

Time-step calculation.

```
#include "main.h"
```

Functions

• double TimeStep ()

5.22.1 Detailed Description

Time-step calculation.

Author

Alejandro Aguayo-Ortiz

Index

alloc.c, 11
Allocate_Array, 11 Allocate_Array
alloc.c, 11
main.h, 21
auxfunc.c, 12
bound_cond.c, 12 Outflow, 13 Periodic, 13 Reflection, 13 boundaries.h Outflow, 16 Periodic, 17 Reflection, 17
der_gauge_, 7
EOS/eos.c, 13 eos_, 7
flux.c, 14 flx_, 7
gauge_, 8 grid_, 8
HD/fvector.c, 14 HD/gvector.c, 14 HD/hvector.c, 15 HD/qvector.c, 16 Headers/boundaries.h, 16 Headers/const.h, 17 Headers/io.h, 18 Headers/limiters.h, 18 Headers/macros.h, 19 Headers/main.h, 20
input.c, 21 integration.c, 22
lim_, 8
main.c, 22 main.h Allocate_Array, 21
Outflow bound_cond.c, 13 boundaries.h, 16

output.c, 23

```
Periodic
bound_cond.c, 13
boundaries.h, 17

RHD/q2uvector.c, 15
Reflection
bound_cond.c, 13
boundaries.h, 17
restart.c, 23

timestep.c, 23

vec_, 9
```