1. Solution

The sample size, *n*, is 28. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 28 ceil$	7	53.8
Q2	$\lceil 0.5 \times 28 \rceil$	14	57.25
Q3	$\lceil 0.75 \times 28 \rceil$	21	63.46

We determine the IQR.

$$IQR = Q3 - Q1$$

$$= 63.46 - 53.8$$

$$= 9.66$$

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $53.8 - 1.5 \times 9.66$
= 39.31
upper boundary = Q3 + $1.5 \times IQR$
= $63.46 + 1.5 \times 9.66$
= 77.95

We determine the outliers.

outliers =
$$\{78.69, 83.04\}$$

We identify the ends of the whiskers: 50.15 and 73.2. We plot the boxplot.

2. Solution

The sample size, *n*, is 56. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 56 \rceil$	14	68.66
Q2	$\lceil 0.5 \times 56 \rceil$	28	70.24
Q3	$\lceil 0.75 \times 56 \rceil$	42	72.05

We determine the IQR.

$$IQR = Q3 - Q1$$

= 72.05 - 68.66
= 3.39

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $68.66 - 1.5 \times 3.39$
= 63.575
upper boundary = Q3 + $1.5 \times IQR$
= $72.05 + 1.5 \times 3.39$
= 77.135

We determine the outliers.

outliers =
$$\{63.56, 77.14, 77.54\}$$

We identify the ends of the whiskers: 64.37 and 76.14. We plot the boxplot.

