()

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

ΓΙΩΡΓΟΣ ΧΑΤΖΗΛΙΓΟΣ 2° ΕΤΟΣ

3^η Άσκηση

3.1 ΣΥΝΘΕΣΗ – ΜΕΤΡΗΣΗ ΣΗΜΑΤΩΝ

Στόχος: Η σύνθεση σημάτων και η μέτρηση των χαρακτηριστικών τους.

Υλοποίηση: Υλοποιήστε στο breadboard το κύκλωμα του Σχήματος 3.1. Χρησιμοποιήστε το τροφοδοτικό ως πηγή τάσης V=10V, τη μεταβλητή αντίσταση (τρίμερ) των 10K Ω ως διαιρέτη τάσης και πυκνωτές C_s = C_o =100nF.

Σχήμα 3.1: Πειραματική διάταξη σύνθεσης σήματος

Μετρήσεις:

Α) Αρχικά με ρύθμιση του τρίμερ δημιουργήστε στο ακροδέκτη Μ τάση DC V_M =5V. Ακολούθως, συνδέστε στον κόμβο S του κυκλώματος τη γεννήτρια σήματος και δώστε σήμα U_S συχνότητας f_S =1KHz και πλάτους V_S =1V (DC-offset=0). Μετρήστε (με χρήση παλμογράφου / πολυμέτρου) στον κόμβο M τη DC συνιστώσα (V_M) , το πλάτος (V_m) , την RMS τιμή (V_{M-RMS}) και τη συχνότητα (f_M) του σήματος. Επαναλάβετε τις αντίστοιχες μετρήσεις στον κόμβο O.

V _M =	V _m =	V _{M-RMS} =	f _M =
V _O =	V _o =	V _{O-RMS} =	f _O =

B) Με χρήση του τρίμερ μεταβάλετε τη DC τάση στον κόμβο M έτσι ώστε V_M =7V και επαναλάβετε τις προηγούμενες μετρήσεις.

V _M =	V _m =	V _{M-RMS} =	f _M =
V _O =	V _o =	V _{O-RMS} =	f _O =

Γ) Από τη γεννήτρια σήματος μεταβάλετε το πλάτος έτσι ώστε V_s =2V και επαναλάβετε τις προηγούμενες μετρήσεις.

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

V _M =	V _m =	V _{M-RMS} =	f _M =
V _O =	V _o =	V _{O-RMS} =	f _O =

3.2 ΦΟΡΤΙΣΗ-ΑΠΟΦΟΡΤΙΣΗ ΠΥΚΝΩΤΗ ΜΕΣΩ ΑΝΤΙΣΤΑΣΗΣ

Στόχος: Η μελέτη του φαινομένου φόρτισης/αποφόρτισης πυκνωτή μέσω αντίστασης.

Θεωρία: Φόρτιση
$$\upsilon_{C}(t) = V_{CO} \times \left(1 - e^{\frac{-t}{RC}}\right)$$
, αποφόρτιση $\upsilon_{C}(t) = V_{CO} \times e^{\frac{-t}{RC}}$:

όπου R η τιμή της αντίστασης καὶ C η τιμή της χωρητικότητας του πυκνωτή, V_{co} η τελική τάση κατά τη φόρτιση (αρχική τάση κατά την αποφόρτιση) του πυκνωτή και t το χρονικό διάστημα από την έναρξη του φαινομένου. Το γινόμενο R×C είναι η σταθερά χρόνου τ.

Σχήμα 3.2: Πειραματική διάταξη για το RC κύκλωμα

Μετρήσεις:

Α) Ρυθμίστε την αντίσταση του τρίμερ ώστε να είναι ίση με R=5ΚΩ. Μετρήστε στον παλμογράφο τους χρόνους φόρτισης (χρόνος από το 10% μέχρι το 90% της τελικής τιμής) για διάφορες τιμές της χωρητικότητας του πυκνωτή C σύμφωνα με τον πίνακα που ακολουθεί:

R = 5ΚΩ	
C = 100nF	$t_{\phi o \rho \tau} = 1.118 ms$
C = 200nF	$t_{\phi o \rho \tau}$ =2.199ms
C = 300nF	t _{φορτ} =3.3221ms

Ακολούθως, <u>βαθμονομήστε</u> τους άξονες και αποδώστε γραφικά τη σχέση χρόνου φόρτισης – χωρητικότητας.

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

B) Επιλέξτε χωρητικότητα C=300nF και μετρήστε τους χρόνους **αποφόρτισης** (χρόνος από το 90% μέχρι το 10% της αρχικής τιμής) για διάφορες τιμές της αντίστασης R του τρίμερ σύμφωνα με τον πίνακα που ακολουθεί:

C = 300nF	
R = 2ΚΩ	t _{αποφορτ} = 1.2860ms
$R = 4K\Omega$	$t_{\alpha\pi\circ\varphi\circ\rho\tau}$ = 2.6082ms
R = 6ΚΩ	t _{αποφορτ} = 3.9941ms
R = 8ΚΩ	$t_{\alpha\pi\circ\phi\circ\rho\tau} = 5.2401 ms$

Ακολούθως, <u>βαθμονομήστε</u> τους άξονες και αποδώστε γραφικά τη σχέση χρόνου αποφόρτισης – αντίστασης.

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Γ) Επιλέξτε χωρητικότητα C=200nF και αντίσταση R=5KΩ. Με εφαρμογή του ίδιου τετραγωνικού παλμού όπως νωρίτερα, μετρήστε στον παλμογράφο την τάση στα άκρα του πυκνωτή (υc(t)) σε μια τυχαία χρονική στιγμή της φάσης αποφόρτισης η οποία απέχει χρόνο (Δt) από την αρχή του φαινομένου. Με βάση τη μέτρηση και τον τύπο αποφόρτισης υπολογίστε την σταθερά χρόνου τ_μ του RC δικτυώματος. Συγκρίνεται το αποτέλεσμα της μέτρησης τ_μ με τη θεωρητική τιμή τ_θ.

			Θεωρητική τιμή	Τιμή μέτρησης
V _{c0} = 10V	υ _c (t) =3.9782V	Δt =907.021μS	$\tau_{\theta} = R \times C = 1ms$	$\tau_{\mu} = \frac{-\Delta t}{\ln \left(\frac{\upsilon_{C}(t)}{V_{C0}} \right)} =$

 $T\mu = 907,021*10^{-6}/ln(3.9782/10) = 981.8263\mu S$

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

