2. Impédance

- a) Association des dipôles en série et en parallèle
- Une résistance en série avec une bobine

$$-\mathbb{W}^{R}$$
 \mathbb{Z} \mathbb{Z}

Impédance sous forme cartésienne : $\underline{Z} = Z_R + Z_L = R + j\omega L$

Admittance sous forme cartésienne :
$$\underline{Y} = \frac{1}{Z} = \frac{R - j\omega L}{R^2 + (\omega L)^2} = \frac{R}{R^2 + (\omega L)^2} - j\frac{\omega L}{R^2 + (\omega L)^2}$$

Evolution du module et de l'angle de l'impédance en fonction de ω :

Module et angle	$\omega o 0$	$\omega o \infty$
$\left \underline{Z}\right = \sqrt{R^2 + (\omega L)^2}$	$\lim_{\omega \to 0} \underline{Z} = R$	$\lim_{\omega \to \infty} \underline{Z} = \infty$
$\angle \underline{Z} = \tan^{-1} \frac{\omega L}{R}$	$\lim_{\omega \to 0} \angle \underline{Z} = \tan^{-1} 0 = 0$	$\lim_{\omega \to \infty} \angle \underline{Z} = \tan^{-1} \infty = \pi/2$

• Une résistance en série avec un condensateur

$$\mathbb{W}^{R}$$
 $\stackrel{C}{=}$ $\frac{\mathbb{Z}}{\mathbb{Z}}$ \mathbb{Z}

Impédance sous forme cartésienne : $\underline{Z} = Z_R + Z_C = R + \frac{1}{j\omega C} = R - j\frac{1}{\omega C}$

Admittance sous forme cartésienne :
$$\underline{Y} = \frac{1}{\underline{Z}} = \frac{1}{R - j\frac{1}{\omega C}} = \frac{R + j\frac{1}{\omega C}}{R^2 + \left(\frac{1}{\omega C}\right)^2} = \frac{R}{R^2 + \left(\frac{1}{\omega C}\right)^2} + j\frac{\frac{1}{\omega C}}{R^2 + \left(\frac{1}{\omega C}\right)^2} = \frac{R(\omega C)^2}{(R\omega C)^2 + 1} + j\frac{\omega C}{(R\omega C)^2 + 1}$$

Evolution du module et de l'angle de l'impédance en fonction de ω :

Module et angle	$\omega o 0$	$\omega o \infty$	
$\left \underline{Z}\right = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$	$\lim_{\omega \to 0} \left \underline{Z} \right = \infty$	$\lim_{\omega \to \infty} \underline{Z} = R$	
$\angle \underline{Z} = \tan^{-1} \left(-\frac{1}{\omega RC} \right)$	$\lim_{\omega \to 0} \angle \underline{Z} = \tan^{-1}(-\infty) = -\pi/2$	$\lim_{\omega \to \infty} \angle \underline{Z} = \tan^{-1} 0 = 0$	

• Une bobine en série avec un condensateur

Impédance sous forme cartésienne : $\underline{Z} = Z_L + Z_C = j\omega L + \frac{1}{j\omega C} = j\left(\omega L - \frac{1}{\omega C}\right)$

Admittance sous forme cartésienne :
$$\underline{Y} = \frac{1}{\underline{Z}} = \frac{1}{j\left(\omega L - \frac{1}{\omega C}\right)} = -j\frac{1}{\omega L - \frac{1}{\omega C}} = -j\frac{\omega C}{\omega^2 L C - 1}$$

Evolution du module et de l'angle de l'impédance en fonction de ω :

Module et angle	$\omega o 0$	$\omega o \infty$
$\left \underline{ \underline{Z} } = \left \omega L - \frac{1}{\omega C} \right $	$\lim_{\omega \to 0} \underline{Z} = \infty$	$\lim_{\omega \to \infty} \underline{Z} = \infty$
$= \tan^{-1} \left(\frac{\omega L - \frac{1}{\omega C}}{0} \right)$	$\lim_{\omega \to 0} \angle \underline{Z} = \tan^{-1}(-\infty) = -\pi/2$	$\lim_{\omega \to \infty} \angle \underline{Z} = \tan^{-1}(\infty) = \pi/2$

• Une résistance en parallèle avec une bobine

Impédance sous forme cartésienne :
$$\underline{Z} = Z_R || Z_L = \frac{Z_R Z_L}{Z_R + Z_L} = \frac{R(j\omega L)}{R + j\omega L} = \frac{j\omega R L (R - j)}{R^2 + (\omega L)^2} = \frac{R(\omega L)^2}{R^2 + (\omega L)^2} + j\frac{R^2\omega L}{R^2 + (\omega L)^2}$$

Admittance sous forme cartésienne : $\underline{Y} = Y_R || Y_L = Y_R + Y_L = \frac{1}{R} + \frac{1}{j\omega L} = \frac{1}{R} - j\frac{1}{\omega L}$

Evolution du module et de l'angle de l'impédance en fonction de ω :

Module et angle	$\omega o 0$	$\omega o \infty$	
$\left \underline{Z}\right = \frac{\omega RL}{\sqrt{R^2 + (\omega L)^2}}$	$\lim_{\omega \to 0} \left \underline{Z} \right = 0$	$\lim_{\omega \to \infty} \underline{Z} = R$	
D	$\lim_{\omega \to 0} \angle \underline{Z} = \tan^{-1} \infty = \pi/2$	$\lim_{\omega \to \infty} \angle \underline{Z} = \tan^{-1} 0 = 0$	

• Une résistance en parallèle avec un condensateur

Impédance sous forme cartésienne :
$$\underline{Z} = Z_R || Z_C = \frac{Z_R Z_C}{Z_R + Z_C} = \frac{R \left(\frac{1}{j\omega C}\right)}{R + \frac{1}{j\omega C}} = \frac{R}{1 + j\omega RC} = \frac{R(1 - j\omega RC)}{1 + (\omega RC)^2} = \frac{R}{1 + (\omega RC)^2} = \frac{R}{1 + (\omega RC)^2} - j\frac{\omega R^2 C}{1 + (\omega RC)^2}$$

Admittance sous forme cartésienne : $\underline{Y} = Y_R || Y_C = Y_R + Y_C = \frac{1}{R} + j\omega C$

Evolution du module et de l'angle de l'impédance en fonction de ω :

Module et angle	$\omega o 0$	$\omega o \infty$	
$\left \underline{Z}\right = \frac{R}{\sqrt{1 + (\omega RC)^2}}$	$\lim_{\omega \to 0} \left \underline{Z} \right = R$	$\lim_{\omega \to \infty} \underline{Z} = 0$	
$\angle \underline{Z} = \tan^{-1}(-\omega RC)$	$\lim_{\omega \to 0} \angle \underline{Z} = \tan^{-1} 0 = 0$	$\lim_{\omega \to \infty} \angle \underline{Z} = \tan^{-1}(-\infty) = -\pi/2$	

• Une bobine en parallèle avec un condensateur

Impédance sous forme cartésienne :
$$\underline{Z} = Z_L || Z_C = \frac{Z_L Z_C}{Z_L + Z_C} = \frac{j\omega L \left(\frac{1}{j\omega C}\right)}{j\omega L + \frac{1}{j\omega C}} = j\frac{\omega L}{1 - \omega^2 LC}$$

Admittance sous forme cartésienne :
$$\underline{Y} = Y_L || Y_C = Y_L + Y_C = \frac{1}{j\omega L} + j\omega C = j\left(\omega C - \frac{1}{\omega L}\right)$$

Evolution du module et de l'angle de l'impédance en fonction de ω :

Module et angle	$\omega o 0$	$\omega o \infty$
$\left \underline{Z} \right = \left \frac{\omega L}{1 - \omega^2 LC} \right $	$\lim_{\omega \to 0} \underline{Z} = 0$	$\lim_{\omega \to \infty} \underline{Z} = 0$
$= \tan^{-1} \left(\frac{\omega C - \frac{1}{\omega L}}{0} \right)$	$\lim_{\omega \to 0} \angle \underline{Z} = \tan^{-1}(\infty) = \pi/2$	$\lim_{\omega \to \infty} \angle \underline{Z} = \tan^{-1}(-\infty) = -\pi/2$

Afin de tracer le module et l'angle de l'impédance en fonction de ω , nous définissons une variable intermédiaire, appelée ω_0 , de sort qu'à cette pulsation la partie réelle de l'impédance devient soit égale à la partie imaginaire de l'impédance :

$$R = |X| \rightarrow \omega = \omega_0$$

Association	ω	Module	Angle
	$\omega_0 = \frac{R}{L}$	$\left \underline{ \underline{Z} } = R \sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2} \right $	$\angle \underline{Z} = \tan^{-1} \left(\frac{\omega}{\omega_0} \right)$
R⊕L	$\omega \to 0$ $\omega = \omega_0$ $\omega \to \infty$	$\begin{aligned} \left \underline{Z} \right &= R \\ \left \underline{Z} \right &= \sqrt{2}R \\ \left \underline{Z} \right &\to \infty \end{aligned}$	$\angle \underline{Z} = 0$ $\angle \underline{Z} = \frac{\pi}{4}$ $\angle \underline{Z} = \frac{\pi}{2}$
	$\omega_0 = \frac{1}{RC}$	$\left \underline{Z}\right = R\sqrt{1 + \left(\frac{\omega_0}{\omega}\right)^2}$	$\angle \underline{Z} = \tan^{-1}\left(-\frac{\omega_0}{\omega}\right)$
R⊕C	$ \begin{array}{c} \omega \to 0 \\ \omega = \omega_0 \\ \omega \to \infty \end{array} $	$\begin{aligned} & \left \underline{Z} \right \to \infty \\ & \left \underline{Z} \right = \sqrt{2}R \\ & \left \underline{Z} \right = 0 \end{aligned}$	$\angle \underline{Z} = -\frac{\pi}{2}$ $\angle \underline{Z} = -\frac{\pi}{4}$ $\angle \underline{Z} = 0$
	$\omega_0 = \frac{1}{\sqrt{LC}} \underline{Z} = \omega L \left \left[1 - \left(\frac{\omega_0}{\omega} \right)^2 \right] \right .$		$\angle \underline{Z} = \tan^{-1} \left(\frac{\omega L \left[1 - \left(\frac{\omega_0}{\omega} \right)^2 \right]}{0} \right)$
L⊕C	$ \begin{array}{c} \omega \to 0 \\ \omega = \omega_0 \\ \omega \to \infty \end{array} $	$\begin{aligned} & \underline{Z} \to \infty \\ & \underline{Z} = 0 \\ & \underline{Z} \to \infty \end{aligned}$	$\angle \underline{Z} = -\frac{\pi}{2}$ $\angle \underline{Z} \rightarrow \text{Indéfinie}$ $\angle \underline{Z} = \frac{\pi}{2}$
	$\omega_0 = \frac{R}{L}$	$\left \underline{Z}\right = R \frac{\frac{\omega}{\omega_0}}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}}$	$\angle \underline{Z} = \tan^{-1} \left(\frac{\omega_0}{\omega} \right)$
R L	$\begin{array}{c} \omega \to 0 \\ \omega = \omega_0 \\ \omega \to \infty \end{array}$	$\begin{aligned} \underline{Z} &= 0\\ \underline{Z} &= R/\sqrt{2}\\ \underline{Z} &= R \end{aligned}$	$\angle \underline{Z} = \frac{\pi}{2}$ $\angle \underline{Z} = \frac{\pi}{4}$ $\angle \underline{Z} = 0$
	$\omega_0 = \frac{1}{RC}$	$\left \underline{Z} \right = \frac{R}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}}$	$\angle \underline{Z} = \tan^{-1} \left(-\frac{\omega}{\omega_0} \right)$
R C	$ \begin{array}{c} \omega \to 0 \\ \omega = \omega_0 \\ \omega \to \infty \end{array} $	$\begin{aligned} \underline{Z} &= R \\ \underline{Z} &= R/\sqrt{2} \\ \underline{Z} &= 0 \end{aligned}$	$\angle \underline{Z} = 0$ $\angle \underline{Z} = -\frac{\pi}{4}$ $\angle \underline{Z} = -\frac{\pi}{2}$
	$\omega_0 = \frac{1}{\sqrt{LC}}$	$\left \underline{Z}\right = \frac{\omega L}{\left 1 - \left(\frac{\omega}{\omega_0}\right)^2\right }$	$\angle \underline{Z} = \tan^{-1} \left(\frac{\omega C \left[1 - \left(\frac{\omega_0}{\omega} \right)^2 \right]}{0} \right)$
L C	$ \begin{array}{c} \omega \to 0 \\ \omega = \omega_0 \\ \omega \to \infty \end{array} $	$\begin{aligned} \underline{Z} &= 0 \\ \underline{Z} &\to \infty \\ \underline{Z} &= 0 \end{aligned}$	$\angle \underline{Z} = \frac{\pi}{2}$ $\angle \underline{Z} \rightarrow \text{Indéfinie}$ $\angle \underline{Z} = -\frac{\pi}{2}$

Pour $R = 1 \Omega$:

2. Impédance

b) On applique une tension $u(t) = U_{max} \cos(\omega t)$ (avec $U_{max} = 10$ V) aux bornes d'un circuit constitué d'une résistance de 2Ω en série avec une bobine d'inductance 1mH.

Pour des fréquences égales à 100Hz puis 1kHz :

• Déterminer l'expression de l'intensité du courant sous la forme :

$$\underline{I} = I_{max} \cos(\omega t - \varphi)$$

- Représenter le diagramme vectoriel des tensions et de l'intensité.
- Calculer la puissance moyenne reçue par le circuit.

D'après l'énoncer nous étudions le circuit RC série suivant :

La tension appliquée u(t) est de la forme :

$$u(t) = U_{max} \cos(\omega t)$$

Soit l'équivalent complexe :

$$\underline{U} = U_{max}$$

Le circuit RC série est équivalent à une impédance complexe \underline{Z} de la forme :

$$Z = R + jL\omega$$

En exprimant l'impédance sous la forme exponentielle : $\underline{Z} = |\underline{Z}|e^{j\varphi}$

Avec
$$|\underline{Z}| = \sqrt{R^2 + (L\omega)^2}$$
 et $\varphi = \angle \underline{Z} = \tan^{-1}\left(\frac{\omega L}{R}\right)$

D'après la loi d'Ohm généralisée (en convention récepteur) :

$$\underline{U} = Z\underline{I}$$

Avec \underline{I} le phaseur de l'intensité du courant i(t).

D'où:

$$\underline{I} = \frac{\underline{U}}{Z}$$

En remplaçant dans l'équation \underline{U} et Z:

$$\underline{I} = \frac{U_{max}}{|\underline{Z}|e^{j\varphi}} = \frac{U_{max}}{|\underline{Z}|}e^{-j\varphi} = \frac{U_{max}}{\sqrt{R^2 + (L\omega)^2}}e^{-j\left(\tan^{-1}\left(\frac{\omega L}{R}\right)\right)}$$

Avec
$$I_{max} = \left| \underline{I} \right| = \frac{U_{max}}{\left| \underline{Z} \right|} = \frac{U_{max}}{\sqrt{R^2 + (L\omega)^2}} \text{ et } \angle \underline{I} = -\varphi = -\tan^{-1}\left(\frac{\omega L}{R}\right)$$

Applications numériques

 $U_{max}=10 \text{V}, R=2 \hat{\Omega}, L=1 \text{mH}$ Rappel : $\omega=2\pi f$

	f(Hz)	$\omega(rad.s^{-1})$	$\underline{Z}(\Omega)$	$\varphi(rad)$	$I_{max}(A)$	$\angle \underline{I}(rad)$
	100	614	2.09	0.3	4.77	-0.3
T	1000	6141	6.59	1.26	1.52	-1.26

Représenter le diagramme vectoriel des tensions et de l'intensité

$$u(t) = 10\cos(\omega t)$$

$$i(t) = 4,77\cos(\omega t - 0,3)$$

$$u(t) = 10\cos(\omega t)$$

$$i(t) = 1,52\cos(\omega t - 1,26)$$

Calcul de la puissance reçue par le circuit

Rappel:

Valeur efficace de la tension : $U = U_{max}/\sqrt{2}$ Valeur efficace de l'intensité : $I = I_{max}/\sqrt{2}$

Puissance active : $P = UI \cos(\varphi)$ Puissance réactive : $Q = UI \sin(\varphi)$

Puissance complexe : $\underline{S} = P + jQ = UIe^{j\varphi}$

Puissance apparente : $\overline{S} = \sqrt{P^2 + Q^2}$

f(Hz)	U(V)	I(A)	φ (rad)	P(W)	Q(VAR)	S(VA)
100	7.07	3.37	0,3	22,76	7,04	23,82
1000	7.07	1.07	1.26	2.31	7,2	7.56

2. Impédance

c) Reprendre les questions de l'exercice b) avec un circuit constitué d'une résistance de 100Ω en parallèle avec un condensateur de capacité $5\mu F$.

Le circuit précédent devient :

La tension appliquée u(t) est de la forme :

$$u(t) = U_{max} \cos(\omega t)$$

Soit l'équivalent complexe :

$$\underline{U} = U_{max}$$

Le circuit RC parallèle est équivalent à une admittance complexe \underline{Y} de la forme :

$$\underline{Y} = \frac{1}{R} + jC\omega = \frac{1+jRC}{R}$$

En exprimant l'admittance sous la forme exponentielle : $\underline{Y} = |\underline{Y}|e^{-j\varphi}$

Avec
$$|\underline{Y}| = \frac{1}{R}\sqrt{1 + (RC\omega)^2}$$
 et $\varphi = -\angle \underline{Y} = -\tan^{-1}(RC\omega)$

$$\underline{Y} = \frac{1}{R} \sqrt{1 + (RC\omega)^2} e^{j \tan^{-1}(RC\omega)}$$

Sachant que : $\underline{Z} = 1/\underline{Y}$

En exprimant l'impédance sous la forme exponentielle : $\underline{Z} = |\underline{Z}|e^{j\varphi}$

Avec
$$|\underline{Z}| = \frac{R}{\sqrt{1 + (RC\omega)^2}}$$
 et $\varphi = \angle \underline{Z} = \tan^{-1}(RC\omega)$

D'après la loi d'Ohm généralisée (en convention récepteur) :

$$\underline{U} = \underline{Z}\underline{I}$$
 ou $\underline{I} = \underline{Y}\underline{U}$

En remplaçant dans l'équation \underline{U} et \underline{Y} :

$$\underline{I} = U_{max} |\underline{Y}| e^{-j\varphi} = \frac{U_{max}}{R} \sqrt{1 + (RC\omega)^2} e^{j \tan^{-1}(RC\omega)}$$
Avec $I_{max} = |\underline{I}| = U_{max} |\underline{Y}| = \frac{U_{max}}{R} \sqrt{1 + (RC\omega)^2}$ et $\angle \underline{I} = -\varphi = \tan^{-1}(RC\omega)$

Applications numériques

 $U_{max}=10\mathrm{V}, R=100\Omega$, $C=5\mu\mathrm{F}$

Rappel : $\omega = 2\pi f$

	f(Hz)	$\omega(rad.s^{-1})$	<u>Y</u> (S)	$-\varphi(rad)$	$I_{max}(A)$	$\angle \underline{I}(rad)$
	100	614	0.0105	0.304	0.104	0.304
Ī	1000	6141	0.0330	1.262	0.330	1.262

Représenter le diagramme vectoriel des tensions et de l'intensité

$$u(t) = 10\cos(\omega t)$$

 $i(t) = 0.104\cos(\omega t + 0.304)$

$$u(t) = 10\cos(\omega t)$$

 $i(t) = 0.330\cos(\omega t + 1.262)$

Calcul de la puissance reçue par le circuit

Rappel:

Valeur efficace de la tension : $U = U_{max}/\sqrt{2}$ Valeur efficace de l'intensité : $I = I_{max}/\sqrt{2}$

Puissance active : $P = UI \cos(\varphi)$ Puissance réactive : $Q = UI \sin(\varphi)$

Puissance complexe : $\underline{S} = P + jQ = UIe^{j\varphi}$

Puissance apparente : $S = \sqrt{P^2 + Q^2}$

f(Hz)	U(V)	I(A)	φ (rad)	P(mW)	Q(VAR)	S(VA)
100	7.07	0.073	-0.304	0,49	-0.154	0,516
1000	7.07	0.233	-1.262	0,5	-1,57	1,647

Éléments de correction

2. Impédance

d) On considère le circuit ci-dessous.

- Si *u* et *i* sont en phase, que peut-on en déduire concernant l'impédance équivalente du circuit.
- Quelle valeur faut-il donner à la capacité C pour que *u* et *i* soient en phase indépendamment de la fréquence ?
- Quelle est alors la valeur de l'impédance équivalente du circuit ?

Si u et i sont en phase : $\Im{\{\underline{Z}\}=0}$

Calcul de l'expression de la capacité C pour que u et i soient en phase indépendamment de la fréquence :

Soit l'impédance équivalente parcourue par le courant i et soumise à la tension u:

$$\underline{Z} = (R + j L \omega) / / (R + \frac{1}{j C \omega})$$

$$Z = \frac{\left(R + j L \omega\right) \cdot \left(R + \frac{1}{j C \omega}\right)}{\left(2R + j L \omega + \frac{1}{j C \omega}\right)}$$

$$Z = \frac{\left(R^2 + \frac{L}{C}\right) + j R \cdot \left(L \omega - \frac{1}{C \omega}\right)}{\left(2R + j\left(L \omega - \frac{1}{C \omega}\right)\right)}$$

$$\mathbf{Z} = \frac{[(\mathbf{R}^2 + \frac{\mathbf{L}}{\mathbf{C}}) + j \, \mathbf{R} \cdot (\mathbf{L} \, \omega - \frac{1}{\mathbf{C} \, \omega})] \cdot (2\mathbf{R} - j(\mathbf{L} \, \omega - \frac{1}{\mathbf{C} \, \omega}))}{4\mathbf{R}^2 + (\mathbf{L} \, \omega - \frac{1}{\mathbf{C} \, \omega})^2}$$

$$\underline{Z} = \frac{[(R^2 + \frac{L}{C}) \cdot (2R) + R \cdot (L\omega - \frac{1}{C\omega})^2] + j[2R^2 \cdot (L\omega - \frac{1}{C\omega}) - (R^2 + \frac{L}{C}) \cdot (L\omega - \frac{1}{C\omega})]}{4R^2 + (L\omega - \frac{1}{C\omega})^2}$$

 $\Im(\underline{Z})$ si:

$$[2R^{2} \cdot (L\omega - \frac{1}{C\omega}) - (R^{2} + \frac{L}{C}) \cdot (L\omega - \frac{1}{C\omega})] = 0$$

$$(2R^2 - R^2 - \frac{L}{C}) \cdot (L\omega - \frac{1}{C\omega}) = 0$$

Soit:

$$\begin{cases} (L\omega - \frac{1}{C\omega}) = 0 \Rightarrow C = \frac{1}{L\omega^2} \\ (R^2 - \frac{L}{C}) = 0 \Rightarrow C = \frac{L}{R^2} \end{cases}$$

Avec la première solution, l'expression de l'impédance devient :

$$Z = \frac{\left(R^2 + \frac{L}{C}\right) \cdot (2R)}{2R^2}$$

soit:

$$\overline{Z = \frac{(R^2 + L\omega^2)}{2R}}$$
 cette expression dépend de la fréquence

Avec la seconde solution l'expression de l'impédance devient :

$$\underline{Z} = \frac{\left[\left(R^2 + \frac{L}{C} \right) \cdot (2R) + R \cdot \left(L \omega - \frac{1}{C \omega} \right)^2 \right]}{4R^2 + \left(L \omega - \frac{1}{C \omega} \right)^2}$$

$$\underline{Z} = \frac{[(2R^{2}) \cdot (2R) + R \cdot (L\omega - \frac{1}{C\omega})^{2}]}{4R^{2} + (L\omega - \frac{1}{C\omega})^{2}}$$

 $\boxed{Z=R}$ cette expression de l'impédance est indépendante de la fréquence

On retiendra donc la solution de C suivante :

$$C = \frac{L}{R^2}$$

3. Diviseurs.

a)

Si l'on souhaite qu'un moteur à courant alternatif monophasé tourne, une solution consiste à faire circuler deux courants en quadrature (déphasés de 90°) dans deux bobinages distincts.

On suppose que les deux bobinages sont identiques et assimilables à des circuits RL série.

On propose de connecter un condensateur en série avec un des deux bobinages, comme indiqué sur la figure cicontre.

- Le courant i_2 sera-t-il en avance ou en retard sur le courant i_1 ? Montrer alors que l'on peut écrire la relation suivante : $\frac{\underline{I}_1}{\underline{I}_2} = -j \, \mathbf{k}$
- En utilisant le diviseur de courant, exprimer en fonction de R et de L la capacité C du condensateur permettant de vérifier la relation précédente.
- Que vaut alors le facteur k.

Le i_1 sera en retard de 90° sur i_2 donc le courant i_2 sera en avance de 90° sur i_1 .

soit:

$$\underline{I}_1 = k \underline{I}_2 e^{-j\frac{\pi}{2}} = -j k \underline{I}_2$$

D'après le pont diviseur de courant :

$$\frac{\mathbf{I}_{1}}{\mathbf{I}_{2}} = \frac{\left(\mathbf{R} + j\mathbf{L}\boldsymbol{\omega} + \frac{1}{j\mathbf{C}\boldsymbol{\omega}}\right)}{\left(\mathbf{R} + j\mathbf{L}\boldsymbol{\omega}\right)}$$

$$\frac{\mathbf{I}_{1}}{\mathbf{I}_{2}} = \frac{\left(\mathbf{R} + j\mathbf{L}\boldsymbol{\omega} + \frac{1}{j\mathbf{C}\boldsymbol{\omega}}\right) \cdot \left(\mathbf{R} - j\mathbf{L}\boldsymbol{\omega}\right)}{\left(\mathbf{R}^{2} + (\mathbf{L}\boldsymbol{\omega})^{2}\right)}$$

$$\frac{\mathbf{I}_{1}}{\mathbf{I}_{2}} = \frac{(\mathbf{R} + j(\mathbf{L}\omega - \frac{1}{\mathbf{C}\omega})) \cdot (\mathbf{R} - j\mathbf{L}\omega)}{\mathbf{R}^{2} + (\mathbf{L}\omega)^{2}}$$

$$\frac{\mathbf{I}_{1}}{\mathbf{I}_{2}} = \frac{\left(\left(\mathbf{R}^{2} + \left(\mathbf{L}\,\boldsymbol{\omega} - \frac{1}{\mathbf{C}\,\boldsymbol{\omega}}\right) \cdot \mathbf{L}\,\boldsymbol{\omega}\right) + j\,\mathbf{R}\left[\left(\mathbf{L}\,\boldsymbol{\omega} - \frac{1}{\mathbf{C}\,\boldsymbol{\omega}}\right) - \mathbf{L}\,\boldsymbol{\omega}\right]\right)}{\mathbf{R}^{2} + \left(\mathbf{L}\,\boldsymbol{\omega}\right)^{2}}$$

$$\frac{\underline{I}_{1}}{\underline{I}_{2}} = \frac{\left(R^{2} + \left(L\omega - \frac{1}{C\omega}\right) \cdot L\omega - j\frac{R}{C\omega}\right)}{R^{2} + \left(L\omega\right)^{2}}$$

$$\frac{\mathbf{I}_{1}}{\mathbf{I}_{2}} = \frac{\left(\mathbf{R}^{2} + \left(\mathbf{L}\,\boldsymbol{\omega} - \frac{1}{\mathbf{C}\,\boldsymbol{\omega}}\right) \cdot \mathbf{L}\,\boldsymbol{\omega} - j\,\frac{\mathbf{R}}{\mathbf{C}\,\boldsymbol{\omega}}\right)}{\mathbf{R}^{2} + \left(\mathbf{L}\,\boldsymbol{\omega}\right)^{2}}$$

soit en annulant la partie réelle

$$R^2 + (L\omega - \frac{1}{C\omega}) \cdot L\omega = 0$$

$$\boxed{C = \frac{L}{R^2 + (L \omega)^2}}$$

Par identification de la partie imaginaire à -k:

$$k = \frac{\frac{R}{C\omega}}{R^2 + (L\omega)^2}$$

$$k = \frac{R}{L \omega}$$

b)

On alimente un récepteur d'impédance $\underline{Z}_2 = 25 \, \mathrm{e}^{j\pi/3}$ par une ligne ayant une résistance égale à 1Ω et une réactance égale à 0.5Ω .

- Si la tension *u* a pour valeur efficace 240V, utiliser le diviseur de tension pour calculer la valeur efficace de la tension aux bornes du récepteur.
- Calculer le déphasage de la tension u par rapport à la tension aux bornes du récepteur.

Valeur efficace : $U = \frac{U_{\text{max}}}{\sqrt{(2)}}$

D'après le principe du pont diviseur de tension, la tension aux bornes de \mathbb{Z}_2 s'exprime par :

$$\underline{\mathbf{U}}_{2} = \frac{\underline{\mathbf{Z}}_{2}}{\mathbf{R} + j \mathbf{L} \boldsymbol{\omega} + \mathbf{Z}_{2}} \cdot \underline{\mathbf{U}}$$

En choisissant pour la tension u un déphasage nul, on obtient :

$$\underline{\mathbf{U}}_{2} = \frac{\underline{\mathbf{Z}}_{2}}{\mathbf{R} + j \mathbf{L} \omega + \mathbf{Z}_{2}} \cdot \mathbf{U} \sqrt{(2)}$$

$$\boxed{ \underline{\mathbf{U}_{2}} = 25 \frac{e^{j\pi/3}}{R + j \, \text{L} \, \omega + 25 \, e^{j\pi/3}} \cdot \mathbf{U} \, \sqrt{(2)} }$$

AN:

$$\underline{\mathbf{U}_{2}} = \frac{25 \,\mathrm{e}^{j\pi/3}}{1 + j \,0.5 + 25 \,\mathrm{e}^{j\pi/3}} \cdot 240 \,\sqrt{(2)}$$

$$\underline{\mathbf{U}_2} = 327,11 \,\mathrm{e}^{j\theta,0238}$$

Valeur efficace

$$U_2 = \frac{327,11}{\sqrt{(2)}} = 231,3 \text{ V}$$

Le déphasage de la tension u par rapport à la tension aux bornes du récepteur est l'opposé de la phase de u2, soit :

| \[\overline{\Phi} = -1,36^\circ | \] (-0,0238 rad)

4. Puissances.

a) On applique une tension sinusoïdale d'amplitude maximale 100V à un circuit linéaire. L'intensité maximale du courant est alors égale à 20A, le courant est retardé de 40° par rapport à la tension.

Calculer les puissances actives et réactive absorbées par le circuit.

$$P = U I \cos(\phi)$$

$$Q = U I \sin(\phi)$$

AN: Puissance active: P = 766W / Puissance réactive: Q = 642.8 VAR

Suite correction exo 4:

b- On applique bornes des circuits suivants une tension de valeur efficace 110V et de fréquence 60Hz.

1^{er} cas : Résistor et bobine en série

L'impédance équivalente du dipôle équivalent est : $\underline{Z} = R + jL\omega = 10 + j18,85$

La valeur efficace du courant est trouvée par la relation $\underline{I} = \frac{\underline{U}}{\underline{Z}}$ qui conduit à $I_{eff} = \frac{U_{eff}}{|\underline{Z}|} = 5,16A$

Puisque
$$\underline{U} = \underline{ZI}$$
 alors $\varphi_U = \arg(\underline{Z}) + \varphi_I$

$$\varphi = \varphi_U - \varphi_I = \arg(\underline{Z}) = \arctan(1,885) = 1,083 \text{ rad}$$

On trouve alors pour les puissances active et réactive : P = 266 W et Q = 501 VAR

2^{ème} cas : Résistor et condensateur en série

L'impédance équivalente du dipôle équivalent est : $\underline{Z} = R + \frac{1}{iC\omega} = 10 - j6,63$

$$I_{eff} = \frac{U_{eff}}{|\underline{Z}|}$$
 = 9,17A et $\varphi = \varphi_U - \varphi_I = \arg(\underline{Z}) = \arctan(-0.663)$ =-0,5855 rad

On trouve alors pour les puissances active et réactive : P = 841 W et Q = -557 VAR

3ème cas: Résistor et bobine en parallèle

Pour des composants en parallèle, il est plus facile de travailler avec des admittances.

L'admittance du dipôle équivalent est :
$$\underline{Y} = \frac{1}{R} + \frac{1}{iL\omega} = 0,1 - j0,0531$$

Puisque
$$\underline{U} = \frac{\underline{I}}{\underline{Y}}$$
 alors $\varphi_U = -\arg(\underline{Y}) + \varphi_I$

$$\varphi = \varphi_{IJ} - \varphi_{I} = -\arg(Y) = \arctan(0.531) = 0.4841 \text{ rad}$$

On trouve alors pour les puissances active et réactive : P = 1210 W et Q = 642 VAR

4^{ème} cas : Résistor et condensateur en parallèle

Pour des composants en parallèle, il est plus facile de travailler avec des admittances.

L'admittance du dipôle équivalent est :
$$\underline{Y} = \frac{1}{R} + jC\omega = 0.1 + j0.15$$

Puisque
$$\underline{U} = \frac{\underline{I}}{\underline{Y}}$$
 alors $\varphi_U = -\arg(\underline{Y}) + \varphi_I$

$$\varphi = \varphi_U - \varphi_I = -\arg(Y) = -\arctan(1,5) = -0.9828 \text{ rad}$$

On trouve alors pour les puissances active et réactive : P = 1210 W et Q = -1815 VAR