Question	Scheme	Marks
1	$[\pm (2k+6)]^2 - 4 \times k \times 16$ $4k^2 - 40k + 36 = 0$ $ \rightarrow \{4\}(k-1)(k-9)\{=0\} \rightarrow k = \dots$ $k = 1,9$	M1 dM1 M1 A1 [4]
Total 4 mark		l 4 marks

Mark	Notes
M1	Allow working on expression, equation or any inequality for all M marks
	Applies $b^2 - 4ac = [\pm (2k+6)]^2 - 4 \times k \times 16$ and might be seen embedded in an attempt at the
	quadratic formula.
dM1	Forms a 3TQ in <i>k</i> by attempting to expand and collect the like terms.
M1	Attempts to solve their 3TQ in k to find at least one real value of k by any correct method
	(See General Principles). Condone labelling their k as x for this method mark.
	If there is no method shown, (use of a calculator) then the $3TQ$ must be correct and both k
	values must be fully correct ($k = 1, k = 9$) for evidence for this mark.
A1	For $k = 1$, 9 selected as their final answers. (Extra inequality answers for k must be rejected)

Question	Scheme	Marks
1 ALT I (Via	$k(x-\frac{k+3}{k})^2 - \frac{(k+3)^2}{k} + 16$	M1
completing Square)	$16 - \frac{(k+3)^2}{k} = 0 \to k^2 - 10k + 9 = 0$	dM1 M1
	$(k-1)(k-9) = 0 \rightarrow k = \dots$ k=1,9	A1 [4]
Total 4 marks		4 marks

Mark	Notes
M1	Attempts to complete the square for $kx^2 - (2k+6)x + 16$ (See General Principles)
	Similarly, divides both sides of the given quadratic equation by k first, then attempts to complete the square: $(x - \frac{k+3}{k})^2 - \frac{(k+3)^2}{k^2} + \frac{16}{k}$
	W W
dM1	Sets the y coordinate of their turning point to be zero (= 0 can be implied) attempts to
	expand and collect like terms.
M1	Solves their 3TQ or polynomial to find at least one real value of <i>k</i> by any correct method (See General Principles)
	If there is no method shown, (use of a calculator) then their 3TQ must be correct and both k
	values must be fully correct $(k=1, k=9)$ for evidence for this mark.
A1	For $k = 1, 9$ only

Question	Scheme	Marks
1 ALT II (Via	$\alpha + \beta = \pm \frac{2k+6}{k}, \alpha \times \beta = \frac{16}{k} \longrightarrow \left\{ \alpha + \alpha = \pm \frac{2k+6}{k}, \alpha \times \alpha = \frac{16}{k} \right\}$	M1
sum and product of roots)	$\left(\frac{k+3}{k}\right)^2 = \frac{16}{k} \to k^2 - 10k + 9 = 0$ $(k-1)(k-9) \{=0\} \to k = \dots$	dM1 M1
	k=1, 9	A1
		[4]
	Total	4 marks

Mark	Notes
M1	For:
	$\alpha + \beta = \pm \frac{2k+6}{k}, \alpha \times \beta = \frac{16}{k} \to \left\{ \alpha + \alpha = \pm \frac{2k+6}{k}, \alpha \times \alpha = \frac{16}{k} \right\}$
dM1	Uses the fact that the quadratic equation has equal roots $\alpha = \beta$, sets up a correct equation in k , expands, collects like terms to form a 3TQ (or a Cubic equation)
	e.g. $\left(\frac{2k+6}{2k}\right)^2 = \frac{16}{k} \to 4k^3 - 40k^2 + 36k = 0 \text{ or } 4k^2 - 40k + 36 = 0$
M1	Solves their 3TQ or Cubic equation to find at least one real value of k by any correct method
	(See General Principles)
	If there is no method shown, (use of a calculator) then their 3TQ or Cubic must be correct
	and both k values must be fully correct ($k = 1, k = 9$) for evidence for this mark.
A1	For $k = 1, 9$ only

ALT III: (Via differentiation)

M1: Differentiates $kx^2 - (2k+6)x + 16$ with respect to x to achieve a linear expression

dM1: Sets their derivative to 0, solves for x and substitutes x back to $kx^2 - (2k+6)x + 16 = 0$ to form a 3TQ.

M1A1 same as ALT II

$$\rightarrow k = \dots$$

Send to review if not sure