Laboratorio de Cálculo Numérico Valores propios con QR Dr. Zeferino Parada

1. Introducción

Teorema. Sea $A \in \mathbb{R}^{mxn}$ tal que $m \leq n$ y rango(A) = m entonces existen matrices $Q \in \mathbb{R}^{mxm}$ y $R \in \mathbb{R}^{mxn}$ tales que

a.
$$A = QR$$
.

b.-
$$Q^TQ = I_m$$
.

 \mathbf{c} - R es triangular superior.

A la conclusión (a) se le denomina la factorización QR de la matriz A.

Ejercicio. Sea $A \in \mathbb{R}^{nxn}$ y considere una factorización QR de A entonces las matrices A = QR y $A_+ = RQ$ comparten los mismos valores propios.

Definición. Decimos que $H \in \mathbb{R}^{nxn}$ es una matriz superior de Hessenberg si y sólo si $H_{i,j} = 0$ para $j = 1, 2, \ldots, i - 2$.

Es decir H es superior de Hessenberg si y sólo si H es triangular superior y las entradas $H_{i, i-1}$ pueden ser distintas de cero.

Ejemplos

$$H = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ -1 & 2 & 3 & 4 & 5 \\ 0 & -1 & 3 & 4 & 5 \\ 0 & 0 & -1 & 4 & 5 \\ 0 & 0 & 0 & -1 & 5 \end{pmatrix}, \quad \hat{H} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ -1 & 2 & 3 & 4 & 5 \\ 0 & -1 & 3 & 4 & 5 \\ \hline 0 & 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & -1 & 5 \end{pmatrix}$$

Teorema. Para cada $A \in \mathbb{R}^{nxn}$ existen matrices $H, Q \in \mathbb{R}^{nxn}$ tales que H es superior de Hessenberg, Q es ortogonal y $Q^TAQ = H$.

2. Valores Propios con iteración QR

- 1. Sea $A \in \mathbb{R}^{nxn}$
- 2. Calcula una matriz $H \in \mathbb{R}^{nxn}$ superior de Hessenberg tal que $\sigma(A) = \sigma(H)$.
- 3. Defina H_0 y $k \leftarrow 0$.
- 4. Para k = 0, 12, ..., hacer
 - a) $H_k = Q_k R_k$ factorización QR.
 - b) $H_{k+1} \leftarrow R_k Q_k$.
 - c) $k \leftarrow k + 1$.

Fin

5. Fin

3. Prueba

Escriba el código en Matlab:

```
% scriptvpqr.m
% Calcula los valores propios de una matriz
\% superior de Hessenberg.
n = 10;
A = rand(n);
[Q,R] = qr(A);
                 \% haremos nuestra factorización QR
V = diag(1:n);
A = Q' * V * Q;
                 \% valores propios de A son 1, 2, \ldots, 10
H = hess(A);
for k = 1:100
   [Q,R] = qr(H);
   H = R * Q;
end
  H % escribir H en la pantalla
\% H final es triangular superior con diagonal 1, 2, ..., 10
```