Interface Control Document

R&S®SMW-K503/-K504

Pulse descriptor word (PDW) and timed control descriptor word (TCDW)

Products:

► R&S®SMW200A

R&S® Munich | ICD | Version 2.4 | 01.2024

https://www.rohde-schwarz.com/appnote/1GP133

	Date	Author	Comments
2.4	29.01.2024	R&S Munich	► Add List Mode Timed Control Descriptor Word
			► Add 'Playback from File' Mode
2.3	15.05.2022	R&S Munich	 Correct error in chapter Pulse Descriptor Word Data Content (Body, Payload)
2.2	23.03.2022	R&S Munich	 Correct error in chapter Pulse Descriptor Word Data Content (Header)
2.1	22.12.2021	R&S Munich	► Update of chapter Network Interface Properties
2.0	02.09.2021	R&S Munich	► New ICD structure
			New descriptor word naming: Control PDW → Timed control descriptor word (TCDW)
			▶ Removed RTDATA flag → RSVD
			► New additional PDW format for new features
			► Shaped pulses
			► Burst PDWs
1.5	17.5.2018	R&S Munich	 Added chapter about the relation between streaming rate of ARB snippets and memory usage
			► Changed maximum chirp with for real-time signals (25Bit)
			Updated Appendix2 minimum addressable RAM granularity from 64Samples to 1024 samples
			Added PATH bit inside control PDWs to select affected RF channel
1.4	20.04.17	R&S Munich	► Changed control PDW format. frequency and level changes are now possible simultaneously
1.3	27.02.17	R&S Munich	► Included control PDWs
1.2	18.01.17	R&S Munich	► Changed PDW Format to fixed length
1.1	13.12.16	R&S Munich	 Added appendix for calculation of maximum number of individual waveforms
1.0	09.12.16	R&S Munich	► First draft

Contents

1	Overview	6
1.1 1.2 1.3 1.4	Document Scope Document Overview Further/Reference Documents Abbreviations and Definitions	6
2	R&S Descriptor Word Structure	7
2.1	General Descriptor Word Format Specification	7
2.1.1 2.1.2 2.1.3	General Descriptor Word Data Content Bit and Byte Ordering Criteria	7
2.2	Pulse Descriptor Word (PDW)	
2.2.1 2.2.2 2.2.3 2.2.4	Pulse Descriptor Word Data Content	13
2.3	Timed Control Descriptor Word (TCDW)	16
2.3.1 2.3.2 2.3.3	Timed Control Descriptor Word Data Content Timed Control Descriptor Word Bits Allocation Comparison of Basic and Expert Timed Control Descriptor Word Format	18
3	Timing Requirements	18
3.1 3.2 3.3	Descriptor Word Processing	19
4	Network Interface Properties	21
5	Playback xDWs from File	22
5.1	xDW List File	22
5.1.1 5.1.2	xDW List HeaderxDWs	
5.2 5.3	Container Waveform File	
5.3.1 5.3.2	Address Look-Up HeaderAddress Look-Up Entry	
6	Appendix	25
Α	Examples	25
A.1	Basic PDW	25

A.2	Basic TCDW	26
A.3	Expert PDW	
	Expert TCDW	

List of Tables

TABLE 1: ABBREVIATIONS	7
TABLE 2: GENERAL DESCRIPTOR WORD DATA CONTENT	7
TABLE 3: PDW HEADER STRUCTURE	8
TABLE 4: PDW FLAGS STRUCTURE	9
TABLE 5: PDW BODY STRUCTURE	9
TABLE 6: PDW PARAMS STRUCTURE FOR UNUSED PARAMS FIELD	. 10
TABLE 7: PDW PARAMS STRUCTURE FOR BASIC EDGE SHAPING	
TABLE 8: PDW PAYLOAD STRUCTURE FOR ARB SEGMENTS	
TABLE 9: PDW PAYLOAD STRUCTURE FOR UNMODULATED REAL-TIME SIGNALS	
TABLE 10: PDW PAYLOAD STRUCTURE FOR LINEAR REAL-TIME CHIRPS	. 11
TABLE 11: PDW PAYLOAD STRUCTURE FOR TRIANGULAR REAL-TIME CHIRPS	
TABLE 12: PDW PAYLOAD STRUCTURE FOR BARKER CODED REAL-TIME SIGNALS	
TABLE 13: PDW EXTENSION FLAGS STRUCTURE	. 13
TABLE 14: PDW EXTENSION FIELD STRUCTURE FOR UNUSED EXTENSION FIELDS	
TABLE 15: PDW EXTENSION FIELD STRUCTURE FOR EDGE SHAPING	
TABLE 16: PDW EXTENSION FIELD STRUCTURE FOR BURSTS	
TABLE 17: BITS ALLOCATION OF BASIC PDW	
TABLE 18: BITS ALLOCATION OF EXPERT PDW WITHOUT EXTENSIONS	. 14
TABLE 19: BITS ALLOCATION OF EXPERT PDW WITH EXTENSIONS	. 14
TABLE 20: COMPARISON OF BASIC AND EXPERT PULSE DESCRIPTOR WORD FORMAT	. 14
TABLE 21: OVERVIEW ABOUT RELATION OF MAX. ARB STREAMING RATE, WAVEFORM CLOCK	
RATE, MIN. SEGMENT LENGTH AND MEMORY USAGE	. 15
TABLE 22: TCDW HEADER STRUCTURE	. 16
TABLE 23: TCDW FLAGS STRUCTURE	. 16
TABLE 24: TCDW BODY STRUCTURE FOR FREQUENCY CHANGE	
TABLE 25: TCDW BODY STRUCTURE FOR LEVEL CHANGE	. 17
TABLE 26: TCDW BODY STRUCTURE FOR FREQUENCY AND LEVEL CHANGE	. 17
TABLE 27: TCDW BODY STRUCTURE FOR ARMING	. 17
TABLE 28: TCDW BODY STRUCTURE FOR LIST MODE FREQUENCY CHANGE	. 17
TABLE 29: TCDW BODY STRUCTURE FOR END-OF-FILE	
TABLE 30: BITS ALLOCATION OF BASIC TCDW	. 18
TABLE 31: BITS ALLOCATION OF EXPERT TCDW	. 18
TABLE 32: COMPARISON OF BASIC AND EXPERT TIMED CONTROL DESCRIPTOR WORD FORMAT	18
TABLE 33: MIN. TOA DIFFERENCE OF CONSECUTIVE PDWS	. 19
TABLE 34: ILLUSTRATION OF MIN. TOA DIFFERENCE OF CONSECUTIVE PDWS	. 20
TABLE 35: PULSE DROPPING: PDWS WITH IDENTICAL TOA	. 20
TABLE 36: PULSE DROPPING: TOA OF SUCCESSIVE XDW < TOA OF CURRENT XDW + TON OF	
CURRENT XDW	
TABLE 37: NETWORK INTERFACE PROPERTIES	. 21
TABLE 38: XDW LIST HEADER STRUCTURE	
TABLE 39: ADDRESS LOOK-UP HEADER STRUCTURE	. 24
TABLE 40: ADDRESS LOOK-UP ENTRY STRUCTURE	
TABLE 41: BASIC PDW EXAMPLE TO GENERATE LINEAR FMCW REAL-TIME SIGNAL	
TABLE 42: BASIC TCDW EXAMPLE TO SWITCH INSTRUMENT RF LEVEL AND FREQUENCY	. 26
TABLE 43: EXPERT PDW EXAMPLE TO GENERATE MULTIPLE TRIANGULAR FMCW REAL-TIME	
SIGNALS WITH LINEAR EDGES	
TABLE 44: EXPERT TCDW EXAMPLE TO SWITCH INSTRUMENT RELEVEL AND EREQUENCY	28

1 Overview

Document Scope

The present R&S®SMW-K503/-K504 Interface Control Document contains information on

- the R&S descriptor word format, including pulse descriptor words and timed control descriptor words in basic and expert mode
- Timing requirements and limitations of the real-time control interface
- Properties of the ADV DATA/CTRL network interface

It is intended for use by customers using descriptor words to control the R&S®SMW200A in real-time. The interface control document specifies the interface between the customers hardware used for provision of descriptor words and the R&S®SMW200A ADV DATA/CTRL interface. Additional information on descriptor word processing inside the R&S®SMW200A is provided.

1.2 Document Overview

The present document is organized as follows:

- Chapter 1 is this introduction which provides the scope of the document, further reference and introduces a list of abbreviations and definitions.
- Chapter 2 provides the R&S descriptor word structure, including pulse descriptor words and timed control descriptor words in basic and expert mode
- Chapter 3 provides timing requirements for PDW and TCDW streaming
- Chapter 4 provides information on the network interface

1.3 Further/Reference Documents

- [1] "R&S®SMW-K501/-K502/-K503/-K504/-K315 Extended and Real Time Seguencing, Pulse-on-Pulse Simulation User Manual," Rohde & Schwarz.
- [2] "R&S®SMW200A Vector Signal Generator User Manual," Rohde & Schwarz.
- [3] "Generation of Radar Signals in a Hardware in the Loop (HIL) Environment," Rohde & Schwarz, Application Note.

1.4 Abbreviations and Definitions

The abbreviation "SMW" is used in this document for the Rohde & Schwarz product R&S®SMW200A.

The SMW is a general-purpose vector signal generator with outstanding RF performance. It is capable of generating signals for all main communication, radio and avionic standards and simulating GNSS signals. Equipped with one or more processing/coder boards, the SMW can be turned into a fully-fledged radar simulator for reliable and flexible testing.

Extended Sequencer:

The Extended Sequencer is a firmware application that allows the SMW to generate complex signal sequences in real-time.

Further abbreviations:

PDW	Pulse Descriptor Word
TCDW	Timed Control Descriptor Word
xDW	Descriptor Word

Table 1: Abbreviations

2 R&S Descriptor Word Structure

General Descriptor Word Format Specification

2.1.1 **General Descriptor Word Data Content**

The SMW provides a dedicated interface to receive and process R&S descriptor words. R&S Pulse Descriptor Words (PDW) can be used to generate pulsed signals in real-time or replay pre-calculated waveform segments. R&S Timed Control Descriptor Words (TCDW) can be used to change instrument RF frequency and/or level or re-arm the Extended Sequencer.

Descriptor Word Type	Purpose
	Generate pulsed signals in real-time. Replay pre-calculated waveform segments.
	Control RF parameters. Re-Arm Extended Sequencer.

Table 2: General Descriptor Word Data Content

Descriptor words are transmitted as sequence of bytes. For all descriptor words, their type is determined by flags in the header and flags section. The descriptor word size and content depend on the type.

2.1.1.1 Times

All times are given as number of clock cycles of the internal 2.4 GHz clock signal.

2.1.2 Bit and Byte Ordering Criteria

All data values are encoded using the following bit and byte ordering criteria:

- For numbering, the most significant bit/byte is numbered as bit/byte 0
- For bit/byte ordering, the most significant bit/byte is transmitted first (big-endian)

2.1.3 Reserved and Spare Bits

Reserved and spare bits may be used for evolution, and defined in future updates of this ICD. In order to assure compatibility with future updates, these bits must be set to 0. The same applies for stuffing bits.

2.2 Pulse Descriptor Word (PDW)

Each pulse descriptor word consists of header, flags, body and payload. Depending on the operating mode (basic/expert) and whether a signal is generated in real-time based on the signal description or a precalculated waveform segment, also called ARB segment, is replayed, the content of each part is different. The expert pulse descriptor word format additionally can contain a parameter section or extensions. A mix of formats during a running simulation is not possible. The selection of the desired format can be done locally via the SMW GUI or remotely (SCPI commands).

In this section all PDW components are introduced. The basic and expert pulse descriptor word formats are defined. A comparison of basic and expert pulse descriptor words is provided.

2.2.1 **Pulse Descriptor Word Data Content**

The header and flags section of each PDW contain information about the timing and the content (structure) of the PDW. Information about the RF characteristics of the desired signal are given in the body section. The payload section either addresses a pre-calculated ARB segment or contains information to generate a pulsed signal in real-time. In expert mode, the params section allows to perform basic pulse shaping on real-time generated signals. Or, the extensions section can be used to perform pulse shaping on real-time generated signals and/or generate multiple, identical pulsed signals with a single PDW (bursts).

2.2.1.1 Header

The PDW header section contains the time of arrival (TOA) and flags which define the content of the PDW.

PDW header			48 Bit	56 Bit
Parameter	Data type	Description	Basic	Expert
ТОА	unsigned int	Timestamp relative to scenario start trigger event TOA = (timestamp in seconds) * 2.4e9	44 Bit	52 Bit
SEG	Boolean	Flag that indicates if the PDW is used to address pre-calculated waveform segments or the PDW is used to generate pulsed signals in real-time without a waveform segment 0 = real-time signal 1 = ARB segment	1 Bit	1 Bit
USE_EXTENSION	Boolean	0 = PDW extension block is not used 1 = PDW extension block is used	-	1 Bit
PARAMS	unsigned int	Additional parameters 0 = No params 1 = Use basic edge shaping 2 = RSVD 3 = RSVD	-	2 Bit
RSVD	-	Reserved for future use	3 Bit	-

Table 3: PDW Header Structure

2.2.1.2 Flags

The PDW flags section contains information about the xDW type, phase mode and marker settings.

PDW flags			8 Bit	8 Bit
Parameter	Data type	Description	Basic	Expert
CTRL	Boolean	Indicates whether the descriptor word is a PDW or a TCDW 0 = PDW 1 = TCDW	1 Bit	1 Bit
RSVD	-	Reserved for future use	1 Bit	1 Bit
PHASE_MOD	Boolean	Indicates phase mode 0 = value in PHS field inside PDW body is absolute 1 = value in PHS field inside PDW body is relative to the phase value of the last sample of the previous signal	1 Bit	1 Bit
IGNORE_PDW	Boolean	PDW is ignored (no signal output)	1 Bit	1 Bit
M4	Boolean	Reserved for future use	1 Bit	1 Bit
М3	Boolean	Set Marker 3	1 Bit	1 Bit
M2	Boolean	Set Marker 2	1 Bit	1 Bit
M1	Boolean	Set Marker 1	1 Bit	1 Bit

Table 4: PDW Flags Structure

2.2.1.3 Body

The PDW body section contains offset values for frequency, level and phase relative to the instrument RF settings.

PDW Body	PDW Body			
Parameter	Data type	Description	Basic	Expert
FREQ_OFFSET	int	Frequency offset added to instrument RF frequency. -1 GHz <= frequency_offset <= 1 GHz FREQ_OFFSET= (frequency_offset / 2.4e9) * 2 ³²	32 Bit	32 Bit
LEVEL_OFFSET	unsigned int	Level offset subtracted from instrument RF level. level_offset >= 0 dB LEVEL_OFFSET = 10(-level_offset / 20) * 2 ¹⁵	16 Bit	16 Bit
PHASE_OFFSET	unsigned int	Phase offset 0° <= phase_offset < 360° PHASE_OFFSET = phase_offset/360° * 2 ¹⁶	16 Bit	16 Bit

Table 5: PDW Body Structure

2.2.1.4 Params (only in expert mode)

Depending on the PARAMS bits in the PDW header, this 4 Byte block can be used for basic edge shaping. If USE_EXTENSION is set (USE_EXTENSION = 1), this block has to be omitted completely.

PDW params [PARAMS = 0]			
Parameter Data type Description			Size
STUFFING - Params block unused. Set to 0.		Params block unused. Set to 0.	32 Bit

Table 6: PDW Params Structure for unused Params field

PDW params [PARAMS = 1] (only supported for real-time signals: SEG=0)			32 Bit
Parameter Data type Description			
EDGE_TYPE	unsigned int	Describes rising/falling edge type 0 = Linear 1 = Cosine	3 Bit
MULTIPLIER	Boolean	Multiplier of Rise/Fall time to increase setting range. $0 = x1$ $1 = x8$	1 Bit
RSVD	-	Reserved for future use	6 Bit
RISE_FALL_TIME	unsigned int	Rise/Fall time (first sample to last sample; is added to pulse width) RISE_FALL_TIME = ((Rise/Fall time in seconds) / Multiplier) * 2.4e9	22 Bit

Table 7: PDW Params Structure for basic edge shaping

2.2.1.5 Payload

Depending on the SEG flag settings and the type of real-time signal, different payloads apply.

The payload section either contains the segment index of a pre-calculated waveform or data that describes a real-time signal.

The following types of signals can be generated in real-time and do not require a pre-calculated waveform segment:

- Rectangular pulses with variable pulse width
- Barker codes (R2a, R2b, R3, R4a, R4b, R5, R7, R11, R13)
- Frequency chirps (Up, Down, Triangle)
- Optional edge shaping on real-time pulses

For waveform playback the SEG flag in the PDW HEADER has to be set to '1'.

ARB Segment [S	136 Bit	96 Bit		
Parameter Data type		Description	Basic	Expert
_	unsigned int	Index of the pre-calculated waveform, which was loaded into the SMW memory in advance	24 Bit	24 Bit
RSVD	-	Reserved for future use	112 Bit	72 Bit

Table 8: PDW Payload Structure for ARB segments

For a real-time signal the SEG flag in the PDW HEADER has to be set to '0'.

Real-Time Signa	Real-Time Signal Unmod [SEG = 0 and MOD=0]		136 Bit	96 Bit
Parameter	Data type	Description	Basic	Expert
MOD	unsigned int	Type of modulation 0 = Rectangular pulse	4 Bit	4 Bit
TON	unsigned int	Time on = Pulse width (first sample to last sample) TON = (Time on in seconds) * 2.4e9	44 Bit	44 Bit
RSVD	-	Reserved for future use	88 Bit	48 Bit

Table 9: PDW Payload Structure for unmodulated real-time signals

Real-Time Signa	ıl Linear Chii	rp [SEG = 0 and MOD=1]	136 Bit	96 Bit
Parameter	Data type	Description	Basic	Expert
MOD	unsigned int	Type of modulation 1 = Linear Chirp	4 Bit	4 Bit
RSVD	-	Reserved for future use	19 Bit	3 Bit
TON	unsigned int	Time on = Pulse width (first sample to last sample) TON = (Time on in seconds) * 2.4e9	25 Bit	25 Bit
FREQ_INC	int	Frequency step in Hz/Sample freq_step = (bandwidth in Hz)/ (N_samples – 1) When using edge shaping, N_samples includes rising and falling edges. Without edge shaping, N_samples = TON. FREQ_INC = (freq_step/2.4e9) * 2 ⁶⁴	64 Bit	64 Bit
RSVD	-	Reserved for future use	24 Bit	-

Table 10: PDW Payload Structure for linear real-time chirps

Real-Time Signa	l Triangular	Chirp [SEG = 0 and MOD=2]	136 Bit	96 Bit
Parameter	Data type	Description	Basic	Expert
MOD	unsigned int	Type of modulation 2 = Triangular Chirp	4 Bit	4 Bit
RSVD	-	Reserved for future use	19 Bit	3 Bit
TON	unsigned int	Time on = Pulse width (first sample to last sample) TON = (Time on in seconds) * 2.4e9	25 Bit	25 Bit
FREQ_INC	int	Frequency step in Hz/Sample freq_step = (bandwidth in Hz)/ (N_samples - 1) When using edge shaping, N_samples includes rising and falling edges. Without edge shaping, N_samples = TON. FREQ_INC = (freq_step/2.4e9) * 2 ⁶⁴	64 Bit	64 Bit
RSVD	-	Reserved for future use	24 Bit	-

Table 11: PDW Payload Structure for triangular real-time chirps

Real-Time Signa	al Barker [SE	G = 0 and MOD=3]	136 Bit	96 Bit
Parameter	Data type	Description	Basic	Expert
MOD	unsigned int	Type of modulation 3 = Barker code	4 Bit	4 Bit
CHIP_WIDTH	unsigned int	Chip width of one Barker code chip CHIP_WIDTH = (chip_width in seconds) * 2.4e9 The minimum supported chip width of a barker coded pulse is currently limited to 3.75 ns (CHIP_WIDTH = 9). The total pulse width is determined by the Barker code length times the chip width.	44 Bit	44 Bit
CODE	unsigned int	Code to select the type of Barker code CODE	4 Bit	4 Bit
RSVD	-	Reserved for future use	4 Bit	4 Bit
STUFFING	-	Stuffing bits	16 Bit	16 Bit
RSVD	-	Reserved for future use	64 Bit	24 Bit

Table 12: PDW Payload Structure for Barker coded real-time signals

2.2.1.6 Extension (only in expert mode)

The 20 Byte extension is evaluated if the USE_EXTENSION bit in the header is set to 1. This Block has three extension fields which can be used by setting the corresponding extension flags.

2.2.1.6.1 Extension Flags

The extension flags section allows the user to define the type of extension. Up to three extension fields can be used.

PDW extension flags			16 Bit
Parameter	Data type	Description	Size
FIELD_1_TYPE	unsigned int	Describes type of field 1 0 = Unused 1 = Edge field 2 = Burst field 3-7 = RSVD	3 Bit
FIELD_2_TYPE	unsigned int	Describes type of field 2 0 = Unused 1 = Edge field 2 = Burst field 3-7 = RSVD	3 Bit

FIELD_3_TYPE	int	Describes type of field 3 0 = Unused 1 = Edge field 2 = Burst field 3-7 = RSVD	3 Bit
RSVD	-	Reserved for future use	7 Bit

Table 13: PDW Extension Flags Structure

2.2.1.6.2 Extension Fields

Unused Field [FIELD_x	_TYPE = 0]		48 Bit
Parameter	Data type	Description	Size
STUFFING	-	Fill with 0	48 Bit

Table 14: PDW Extension Field Structure for Unused Extension Fields

Edge Field [FIELD_x_T	YPE = 1] (or	nly supported for real-time signals: SEG=0)	48 Bit
Parameter	Data type	Description	Size
EDGE_TYPE	unsigned int	Describes rising/falling edge type 0 = Linear 1 = Cosine	3 Bit
MULTIPLIER	Boolean	Multiplier of rise/fall time to increase setting range. 0 = x1 1 = x8	1 Bit
RISE_TIME	unsigned int	Rise time (first sample to last sample; is added to pulse width) RISE_TIME = ((Rise time in seconds) / Multiplier) *2.4e9	22 Bit
FALL_TIME	unsigned int	Fall time (first sample to last sample; is added to pulse width) FALL_TIME = ((Fall time in seconds) / Multiplier) *2.4e9	22 Bit

Table 15: PDW Extension Field Structure for Edge Shaping

Burst Field [FIELD_x_T	YPE = 2]		48 Bit
Parameter	Data type	Description	Size
BURST_PRI	unsigned int	Pulse repetition interval (PRI) BURST_PRI = (PRI in seconds) * 2.4e9	32 Bit
BURST_ADD_PULSES	unsigned int	Number of repetitions in addition to the initial signal (real-time signal or ARB segment)	16 Bit

Table 16: PDW Extension Field Structure for Bursts

2.2.2 Pulse Descriptor Word Bits Allocation

The following tables illustrate the PDW bit allocation for basic and expert PDWs without and with extensions.

Header	Flags	Body	Payload	Total (bits)
48	8	64	136	256

Table 17: Bits allocation of basic PDW

Header	Flags	Body	Params	Payload
56	8	64	32	96

Total (bits)	
256	

Table 18: Bits allocation of expert PDW without extensions

Header	Flags	Body	Payload	Extension Flags	Extension 1	Extension 2	Extension 3
56	8	64	96	16	48	48	48

Table 19: Bits allocation of expert PDW with extensions

2.2.3 Comparison of Basic and Expert Pulse Descriptor Word Format

The following table illustrates the differences between basic and expert PDW format. Expert PDW format is recommended.

	Basic mode	Expert mode	
		w/o Extensions	With Extensions
Size	32 Byte	32 Byte	48 Byte
Max. Playtime	~ 2 h	> 520 h (-	~21.5 days)
Min TOA difference of consecutive PDWs • Real-time signals	0.5 µs	0.5 µs	1.0 μs
 ARB segments 	1.0 µs	1.0 µs	1.0 µs
(Basic) Edge shaping	×	(√)	✓
Burst PDWs	×	×	✓

Table 20: Comparison of Basic and Expert Pulse Descriptor Word Format

2.2.4 PDW based ARB segment streaming (rates and memory usage)

To address pre-calculated waveforms with PDWs, ARB segments have to be uploaded to the SMW before starting the simulation. This can be performed via the SMW GUI or remotely with SCPI commands.

A table showing all preloaded segments can be accessed via the SMW GUI.

Segment Index	Filename	Clock Rate	Samples	Length	Path	Info
0	Pulse_10us_1000MHz.wv	1.000 GHz	100000	100.000 µs	/var/user/	Info
1	Pulse_20us_1000MHz.wv	1.000 GHz	100000	100.000 µs	/var/user/	Info
2	Pulse_30us_1000MHz.wv	1.000 GHz	100000	100.000 µs	/var/user/	Info
3	Pulse_30us_500MHz.wv	500.000 MHz	50000	100.000 µs	/var/user/	Info
4	Pulse_30us_50MHz.wv	50.000 MHz	5000	100.000 µs	/var/user/	Info

Figure 1: Pre-calculated segment table view in the SMW200A GUI

Each individual waveform is assigned a segment index (first column) which is used inside the PDW (SEGMENT in PDW payload) to address the respective waveform segment.

All waveforms appended to this list are internally resampled to a common clock rate. A container file is automatically created, which is downloaded to the memory of the coder board. After this, the SMW is ready to receive PDWs with a segment index to select and play a waveform.

In order to reach high PDW streaming rates with ARB segments, the SMW firmware up samples the user waveforms before processing them in hardware to minimize the hardware resampling delay. This in turn leads to a higher memory usage.

The desired ARB streaming rate can be selected in the SMW200A GUI:

Figure 2: Selection of desired ARB Streaming Rate in SMW200A GUI

The selected streaming rate determines the waveform clock rate after resampling and consequently the memory usage. The following table provides an overview about desired ARB segment streaming rate, waveform clock rate, minimum segment length and as an example minimum memory usage for 1000 segments with a lengths of 100 µs each.

ARB Segment Streaming Rate	Waveform Clock Rate	Minimum segment length ¹	Minimum Memory Usage (1000 segments; 100 μs per segment) ²
250 kPDW/s	max(37.5 MHz, highest clock rate of loaded segments)	27.3 μs	15 MByte
500 kPDW/s	max(75 MHz, highest clock rate of loaded segments)	13.7 µs	30 MByte
750 kPDW/s	max(300 MHz, highest clock rate of loaded segments)	3.41 µs	120 MByte
1 MPDW/s	2.4 GHz	427 ns	960 Mbyte

Table 21: Overview about relation of max. ARB streaming rate, waveform clock rate, min. segment length and memory usage

The 24 Bit SEGMENT field inside the R&S PDW theoretically allows to address $2^{24} = 16.777.216$ individual waveforms. The maximum number of segments with minimum segment size is 2 million.2

A mix of real-time PDWs and PDWs which address ARB segments during simulation is supported.

¹ Minimum RAM granularity = 1024 Samples

² Max. Memory size = 2 GSamples (requires SMW-K515)

2.3 Timed Control Descriptor Word (TCDW)

By setting the CTRL flag in the xDW flags section, the user can issue commands such as changing the instrument RF frequency and/or level of the signal generator directly from the descriptor word stream or arm the Extended Sequencer, where otherwise a SCPI command would have been necessary.

By embedding the control commands directly in the descriptor word stream, the start of the frequency or level change procedure can be exactly determined by the TOA.

Mechanical step attenuators for level setting are subject to wear and tear when frequently switched.

2.3.1 **Timed Control Descriptor Word Data Content**

2.3.1.1 Header

The TCDW header section contains the TOA and flags which define the command type.

TCDW header			48 Bit	56 Bit
Parameter	Data type	Description	Basic	Expert
ТОА	unsigned int	Timestamp relative to scenario start trigger event	44 Bit	52 Bit
PATH	Boolean	Specifies RF path which is affected by TCDW 0 = Path A 1 = Path B	1 Bit	1 Bit
CMD	unsigned int	Specifies command type 0 = Frequency change 1 = Level change 2 = Frequency and level change 3 = Arm Extended Sequencer in Trigger Mode 'Armed Auto' (Stop internal counter and set to zero, xDWs in buffer are still available) 4 = List Mode Frequency Change 7 = End of File (EOF; only needed in the Extended Sequencer mode 'Playback from File')	3 Bit	3 Bit

Table 22: TCDW Header Structure

2.3.1.2 Flags

The TCDW flags section contains information about the xDW type.

TCDW flags	16 Bit	8 Bit		
Parameter	Data type	Description	Basic	Expert
CTRL	Boolean	Indicates whether descriptor word is a PDW or a TCDW 0 = PDW 1 = TCDW	1 Bit	1 Bit
RSVD	-	Reserved for future use	15 Bit	7 Bit

Table 23: TCDW Flags Structure

2.3.1.3 Body

The TCDW body section contains values for instrument RF frequency and/or level or list index.

TCDW Body (CMD = 0)				64 Bit
Parameter	Data type	Description	Basic	Expert
FVAL	unsigned int	RF frequency setting of signal generator in Hz	40 Bit	40 Bit
STUFFING	-	Stuffing bits	24 Bit	24 Bit

Table 24: TCDW Body Structure for frequency change

TCDW Body (CMD = 1)							64 Bit	64 Bit	
Parameter	Data type	Descri	Description						Expert
STUFFING	-	Stuffing	bits					40 Bit	40 Bit
LVAL	signed fixed point BCD	RF leve	RF level setting of signal generator in dBm 2 Bit 0 1-7 8-11 12-15 16-23						24 Bit
		Value	Sign 0=pos 1=neg	Integer part	Tenth part	Hundredth part	Unused (Set to 0)		

Table 25: TCDW Body Structure for level change

TCDW Body (CMD = 2)							64 Bit	64 Bit	
Parameter	Data type	Descrip	Description						Expert
FVAL	unsigned int	RF freq	uency s	etting of	signal (generator in	Hz	40 Bit	40 Bit
LVAL	signed fixed point BCD	RF leve	l setting	16-23	24 Bit	24 Bit			
		Value	Sign 0=pos 1=neg	Integer part	Tenth part	Hundredth part	Unused (Set to 0)		

Table 26: TCDW Body Structure for frequency and level change

TCDW Body (CN	TCDW Body (CMD = 3)			64 Bit
Parameter	Data type	Description	Basic	Expert
STUFFING	-	Stuffing bits	40 Bit	40 Bit
STUFFING	-	Stuffing bits	24 Bit	24 Bit

Table 27: TCDW Body Structure for arming

TCDW Body (CN	TCDW Body (CMD = 4)			
Parameter	Data type	Description	Basic	Expert
FVAL	unsigned int	List index of RF frequency	40 Bit	40 Bit
STUFFING	-	Stuffing bits	24 Bit	24 Bit

Table 28: TCDW Body Structure for list mode frequency change

TCDW Body (CMD = 7)			64 Bit	64 Bit
Parameter	Data type	Description	Basic	Expert
STUFFING	-	Stuffing bits	40 Bit	40 Bit
STUFFING	-	Stuffing bits	24 Bit	24 Bit

Table 29: TCDW Body Structure for end-of-file

Timed Control Descriptor Word Bits Allocation

The following tables illustrate the TCDW bit allocation for basic and expert TCDWs.

Header	Flags	Body	Total (bits)
48	16	64	128

Table 30: Bits allocation of basic TCDW

Header	Flags	Body	Fotal bits)
56	8	64	128

Table 31: Bits allocation of expert TCDW

Comparison of Basic and Expert Timed Control Descriptor Word Format

The following table illustrates the differences between basic and expert TCDW format. Expert TCDW format is recommended.

	Basic mode	Expert mode
Size	16 Byte	16 Byte
Max. Playtime	~ 2 h	> 520 h (~21.5 days)

Table 32: Comparison of Basic and Expert Timed Control Descriptor Word Format

3 Timing Requirements

Descriptor Word Processing

A descriptor word arriving at the ADV DATA / CTRL interface is unpacked from the TCP or UDP packet and written to a buffer.

Based on an internal counter that is increased by 1 at a clock rate of 2.4 GHz (resolution of 1/(2.4·10⁹) s) the first xDW in the buffer is processed. The TOA of a descriptor word is given in clock ticks.

In each clock cycle the current counter state t is compared to the TOA of the first descriptor word in the buffer. The following applies:

- counter state = TOA of the next xDW in buffer: xDW is processed. Example: t =10 and TOA = 10
- counter state < TOA of the next xDW in buffer: do nothing. Example: t =10 and TOA = 140

counter state > TOA of the next xDW in buffer: xDW is ignored and removed from the buffer. Example: t =10 and TOA = 5.

Info: Current counter state and buffer level (filled/remain) are indicated in the Statistics tab of the Extended Sequencer.

If the next descriptor word in the buffer is a timed control descriptor word the instrument RF settings specified in the descriptor word are applied or the Extended Sequencer is re-armed at the specified TOA.

If a pre-calculated ARB segment is addressed, the respective segment is loaded from the ARB memory (Max. memory size: 2 GSamples (requires SMW-K515)).

In case the descriptor word contains a signal description, the corresponding I/Q signal is generated in realtime.

A multiplexer interleaves pre-calculated ARB segments and real-time signals. Frequency, phase and/or level offsets are applied as specified in the xDW.

If applicable, the pulse edges are shaped according to the edge parameters in the PDW.

3.2 Minimum TOA difference of consecutive PDWs

The minimum TOA difference applies to the current PDW in relation to the previous PDW.

Basic PDW	Expert PDW w/o Extensions	Expert PDW with Extensions
1.0 µs	1.0 µs	1.0 μs
•	'	1.0 μs 1.0 μs
	1.0 µs	1.0 μs 1.0 μs 0.5 μs

Table 33: Min. TOA difference of consecutive PDWs

The following diagram explains the different restrictions in basic and expert mode for all possible combinations of real-time signals and ARB segments.

Table 34: Illustration of min. TOA difference of consecutive PDWs

3.3 Dropping of Descriptor Words

There are three reasons for a descriptor word getting dropped:

1. Internal counter state > TOA of xDW

If a xDW arrives too late at the ADV DATA/CTRL interface, it is dropped.

2. Two xDWs with identical TOA are received at ADV DATA/CTRL interface

In this case, the xDW that is received first (xDW_1) is processed, the second xDW (xDW_2) is dropped

	TOA	Received	Processing
xDW_1	10	first	executed
xDW_2	10	second	dropped

Table 35: Pulse dropping: PDWs with identical TOA

3. TOA of successive xDW < (TOA of current xDW + (TON + RISE_TIME + FALL_TIME) of current xDW)

<u>or</u>

TOA of successive xDW < (TOA of current xDW + duration of segment addressed by current xDW)

In this case, playback of the successive xDW_2 starts, before the previous pulse (described in xDW 1) is finished. The signal described in xDW 1, even though not finished, is aborted at the TOA of xDW 2 and xDW 2 is executed

	TOA		Aborted at counter state	Processing
xDW_1	10	10	15	aborted
xDW_2	15	10	-	executed

Table 36: Pulse dropping: TOA of successive xDW < TOA of current xDW + TON of current xDW

This is also valid in case xDW_1 addresses a pre-calculated ARB segment. In this case, TON can be replaced by the segment playtime in the formula above.

Note: xDWs have to be sent in the correct order of their TOA. There is no sorting of xDWs according to TOA in the SMW.

Info: The number of executed and dropped xDWs since the last counter reset are indicated in the Statistics tab of the Extended Sequencer in the SMW GUI.

4 Network Interface Properties

Connector designation	ADV DATA/CTRL
Mechanical connector	RJ45
Supported data rates	10/100/1000 Mbit/s
Supported network protocols	TCP, UDP ^{3,4}

Table 37: Network interface properties

TCP

When using TCP to send xDWs to the SMW, it is highly recommended to switch off Nagle's algorithm for the sender, since this algorithm interacts badly with TCP delayed acknowledgments. This can be done by enabling the socket option TCP NODELAY.

UDP

When using UDP to send PDWs to the SMW, it must be considered that the sender application is responsible for fragmenting the PDW data into UDP datagrams of an appropriate size. It is highly recommended to limit the datagram size to a maximum of 512 bytes.

To improve real-time capability, the Address Resolution Protocol (ARP) table of the sender should be up-todate before starting to send UDP datagrams. Otherwise, the first datagram will be possibly sent delayed, since the sender has to send an ARP request and wait for the response to update his ARP table before. This can be done by sending empty UDP datagrams to the SMW DSP. The procedure has to be repeated depending on the ARP table timeout of the sender.

Note: The DSP works reliable with TCP- and UDP-packets with a minimum packet size of 640 Byte and a maximum packet size of 1456 Byte (TCP) and 1468 Byte (UDP) . Sending smaller packets can cause packet loss. It is recommended to send packets of ten PDWs. When sending single PDWs, the packet size has to be artificially increased by sending copies of the PDW and setting the IGNORE PDW flag in the PDW copies.

Using TCP, packet losses are corrected through re-transmissions. If timing restrictions allow for retransmissions, sending PDW copies is not required.

³ Can be selected in the SMW200A GUI

⁴ Packet overhead: TCP: 54 Byte, UDP: 42 Byte

5 Playback xDWs from File

Starting with the firmware version 5.30.047.xx of the SMW, it is possible to play back xDWs from a file that is pre-loaded to the SMW hard disk. Please note, that only the 'Expert' format is supported for xDW playback from file. All features available when streaming expert xDWs via the ADV DATA/CTRL interface, including playback of realtime pulses and ARB snippets, application of frequency, phase, and level offsets, adding modulation on pulses, usage of burst or pulse shaping extensions, RF frequency and level changes using TCDWs can be used during playback from file.

In order to use the 'Playback from File' Mode of the Extended Sequencer three files are required:

- The xDW list file contains all xDWs to be played in chronological order
- The container waveform file contains all ARB snippets, that are addressed by PDWs in the xDW list file
- The address look-up links the index of each ARB snippet to its memory address

Only the xDW list file has to be selected in the SMW GUI. The other files need to be located in the same directory as the xDW list file.

Note: If only realtime pulses are played back from file, the container waveform file and the address look-up file can be omitted. In this case, the WV FILE and the ADR FILE parameter in the xDW list header have to be filled with zeros.

In the following, the structure and content of all three files is described in detail.

5.1 xDW List File

The xDW list file consists of

- a header with information on the version, the waveform container file, the address look-up file and some further parameters
- one or multiple xDWs in the order in which they are to be played back

The xDW list file is in a binary format and has the file ending .ps def.

5.1.1 xDW List Header

The xDW list header contains information about the version, the associated container waveform and address look-up file and the date.

xDW list header				
Parameter	Data type	Description		
TOKEN	unsigned char[3]	Contains 'PDW'	3 Byte	
RSVD	-	Reserved for future use	4 Byte	
WV_FILE	unsigned char[256]	Name of associated container waveform file including file ending ".wv". Fill with zeros, if filename is shorter than 256 Byte.	256 Byte	
ADR_FILE	unsigned char[256]	Name of associated address look-up file including file ending ".ps_adr".	256 Byte	

		Fill with zeros, if filename is shorter than 256 Byte.	
DATE	unsigned char[64]	Date information (Displayed in instrument GUI)	64 Byte
COMMENT	unsigned char[256]	Comment text (Displayed in instrument GUI)	256 Byte
RSVD	-	Reserved for future use	256 Byte

Table 38: xDW List Header Structure

5.1.2 xDWs

Following the header, the xDW list file contains all xDWs in an ICD conform format.

At the end of the file, a TCDW of the type 'EOF' is mandatory. This EOF-TCDW marks the end of the scenario and in case of repetitive playback determines the repetition interval.

Note: Only the 'Expert' format is supported for playback from file.

5.2 Container Waveform File

The container waveform, stored in the container waveform file, consists of all ARB segments, that are addressed by the PDWs in the related xDW list. The container waveform file is a standard R&S waveform file. The I/Q samples of all addressed segments are strung together and inserted in the container waveform. Its structure is illustrated in the following figure:

Figure 3: Container Waveform File Structure

Each segment is addressed by its start and stop address, i.e. the first bit and the last bit of the respective I/Q samples. Start and stop addresses are provided in the address look-up file, which is described next.

The following guidelines have to be followed, when creating a container waveform with one or multiple ARB segments:

- ► The Type tag (mandatory) must be generated as {TYPE: SMU-WV, 0}. This tag identifies the file as a valid R&S waveform and must be the first entry in the waveform file.
- ▶ All segments in the container waveform should be generated at the maximal sample rate of 2.4 GSample/s. Consequently, the tag {CLOCK: 2.4e9} is mandatory.
- ► The LEVEL OFFS tag is mandatory. This tag must be set as {LEVEL OFFS: 0.0,0.0}.
- ► A {SAMPLES: Samples} tag where Samples denotes the total number of I/Q samples in the container waveform in ASCII format is not mandatory but highly recommended.
- ► The {WAVEFORM-Length: #I0Q0I1Q1...IN-1QN-1} tag is mandatory. This tag must be the last one in the file. It contains the actual waveform binary data. Length is related to the number of bytes in a WAVEFORM tag and is calculated as follows: Length = Number of I/Q pairs * 4 (2 bytes per I and 2

bytes per Q value) + 1 byte (the length of the #-sign). I and Q data are 16 bits each, LSB first. Pay attention to the closing curly brace "}" at the end of the data set

A general requirement for each segment is:

- A segment should have minimum length of 128 samples. One sample corresponds to 32 bits (I and Q multiplexed with 16 bits each). If a segment has less than 128 samples, perform zero padding to 128 samples (128 * 32 = 4096 bit).
- If the total sample count of a segment (samples counted at the final sampling rate) is not a multiple of 4096 bit, then do zero padding until the length is a multiple of 4096.

The container waveform file is in a binary format and has the file ending .wv.

Detailed information on the R&S waveform format can be found in the SMW200A User Manual in section 5.7.

5.3 Address Look-Up File

The address look-up table consists of a header and entries for each segment. The address look-up file is in a binary format and has the file ending .ps_adr.

5.3.1 Address Look-Up Header

Address Look-Up File			
Parameter	Data type	Description	
TOKEN	unsigned char[3]	Contains 'ADR'	3 Byte
VERSION	unsigned int	1=	1 Byte
RSVD	-	Reserved for future use	7 Byte

Table 39: Address Look-Up Header Structure

5.3.2 Address Look-Up Entry

Following the address look-up header, there is an address look-up entry for each segment. It assigns a start and stop address to each ARB segment index. The first entry has the index 0.

Address Look-Up Entry 1					
Parameter	Data type	Description			
START_ADR	unsigned int	Start address: bit position of the first bit of an ARB segment in the container waveform. Calculated from number of samples already added to the container waveform. First bit in the container waveform has index 0.	36 Bit		
STUFFING	-	Unused. Set to 0.	4 Bit		
STOP_ADR	unsigned int	Stop address: bit position of the last bit of an ARB segment in the container waveform.	36 Bit		

		Calculated from start address and sample count of the current ARB segment.	
STUFFING	-	Unused. Set to 0.	52 Bit

Table 40: Address Look-Up Entry Structure

- In correspondence to the requirement of 4096 bit alignment for the individual segments, the start address must align with a k*4096 border.
- Stop address for each segment should be at a (n*256) 1 bit border. If this is not the case then the stop address must be rounded up to a (n*256) - 1 bit border.

6 Appendix

A Examples

Basic PDW

Parameter	Parameter Value	Meaning	Binary Data		
PDW Header					
TOA	40000	100 µs			
SEG	0	False	0x0000003a9800		
RSVD	0	-			
PDW Flags					
CTRL	0	False			
RSVD	0	-			
PHASE_MOD	0	Absolute			
IGNORE_PDW	0	False	0x01		
M4	0	-	OXO1		
M3	0	Marker 3 off			
M2	0	Marker 2 off			
M1	1	Marker 1 on			
PDW Body					
FRQ	894784854	-500 MHz			
LEV	6422	6 dB	0xcaaaaaaa40261555		
PHS	461	30°			
PDW Payload					
MOD	linear FMCW = 1	linear FMCW			
RSVD	0	-			
TON	24000	10 µs	0x100000005dc00001234882ef6b75000000		
FREQ_INC	320269318056821	1 GHz / 23999 Sa			
RSVD	0	-			

Table 41: Basic PDW example to generate linear FMCW real-time signal

PDW:

0x0000003a 0x980001ca 0xaaaaaa40 0x26155510 0x0000005d 0xc0000123 0x4882ef6b 0x75000000

A.2 Basic TCDW

Parameter	Parameter Value	Meaning	Bytes			
PDW Header						
TOA	40000	100 µs				
PATH	0	Path A	0,0000003,0003			
СМД	2	Frequency and level change	0x0000003a9802			
PDW Flags						
CTRL	1	True	0x8000			
RSVD	0	-	0x8000			
PDW Body						
FVAL	10900000000	10.9 GHz				
LVAL	7536640	-13 dBm	0x0289b0cd008d0000			

Table 42: Basic TCDW example to switch instrument RF level and frequency

TCDW:

0x0000003a 0x98028000 0x0289b0cd 0x008d0000

A.3 Expert PDW

Parameter	Parameter Value	Meaning	Bytes			
PDW Header	!					
TOA	120000	50 μs	0x00000001d4c04			
SEG	0	False				
USE_EXTENSION	1	True				
PARAMS	0	No params				
PDW Flags						
CTRL	0	False				
RSVD	0	-				
PHASE_MOD	0	Absolute				
IGNORE_PDW	0	False	0x01			
M4	0	-	0x01			
M3	0	Marker 3 off				
M2	0	Marker 2 off				
M1	1	Marker 1 on				
PDW Body						
FRQ	-223696214	-125 MHz				
LEV	23197	3 dB	0xe55555555a9d5555			
PHS	21845	120°				
PDW Payload						
MOD	2	triangular chirp				
RSVD	0	_	0x2000bb8000003803bb0c6860			
TON	48000	20 μs	0x2000bb8000003803bb000860			
FREQ_INC	1588674209888	500 MHz / 62399 Sa				
PDW Extension Flags						
FIELD_1_TYPE	1	Edge field				
FIELD_2_TYPE	2	Burst field	0x2800			
FIELD_3_TYPE	0	Unused	0,2000			
RSVD	0	-				
PDW Extension Fields						
EDGE_TYPE	0	Linear				
MULTIPLIER	0	x1	0x000708001c20			
RISE_TIME	7200	3 µs	0x000708001620			
FALL_TIME	7200	3 µs				
BURST_PRI	192000	80 µs	0x0002ee000009			
BURST_ADD_PULSES	9	9				

STUFFING 0 stuffing 0x00000000000
--

Table 43: Expert PDW example to generate multiple triangular FMCW real-time signals with linear edges

PDW:

0x00000000 0x1d4c0441 0xf2aaaaaa 0x5a9d5555 0x2000bb80 0x00003803 0xbb0c6860 0x28000007 0x08001c20 0x0002ee00 0x00090000 0x00000000

A.4 Expert TCDW

Parameter	Parameter Value	Meaning	Bytes			
PDW Header						
TOA	240000	100 μs				
PATH	0	Path A	0x00000003a9802			
CMD	2	Frequency and level change	0.0000000000000000000000000000000000000			
PDW Flags						
CTRL	1	True	0x80			
RSVD	0	-				
PDW Body						
FVAL	1090000000	10.9 GHz	0x0289b0cd008d0000			
LVAL	-7536640	-13 dBm				

Table 44: Expert TCDW example to switch instrument RF level and frequency

TCDW:

0x00000000 0x3a980280 0x0289b0cd 0x008d0000

Rohde & Schwarz

The Rohde & Schwarz electronics group offers innovative solutions in the following business fields: test and measurement, broadcast and media, secure communications, cybersecurity, monitoring and network testing. Founded more than 80 years ago, the independent company which is headquartered in Munich, Germany, has an extensive sales and service network with locations in more than 70 countries.

www.rohde-schwarz.com

Certified Quality Management ISO 9001

Rohde & Schwarz training

http://www.training.rohde-schwarz.com/

Rohde & Schwarz customer support

www.rohde-schwarz.com/support

