

#### **Lessons from Surveyor 6:**

Hopping Spacecraft for Low-Cost Surface Mobility on Small Bodies



Niko Romer, Art Chmielewski, Nathan Barba, Nathan Fulmer. March 5, 2019 IEEE 2019 Aerospace Conference





# Why Hop?

- Great scientific value in characterizing multiple regions.
- Travel farther, faster, and cheaper than rovers.
- Two types of hops can be considered:
  - Mechanical
  - Propulsive

## **Hopping Categorized – Mechanical**

| Agency        | Mission    | S/C                   | Year       | Destination   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|---------------|------------|-----------------------|------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|               |            |                       |            |               | <u> Отденение от КА и тодение</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| USSR          | Phobos 2   | PROP-F                | 1988       | Phobos        | STORMENS AND STORM |  |  |  |
| JAXA          | Hayabusa   | MINERVA               | 2005       | Itokawa       | http://cyberneticzoo.com/walking-machines/1983-7-prop-fphobos-hopper-soviet/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| JAXA/<br>DLR  | Hayabusa 2 | MINERVA-<br>II/MASCOT | 2018       | Ryugu         | JAXA HAYABUSA2 MINERVA-II-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| DLR           | Rosetta    | Philae                | 2015       | Comet 67P     | ESA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| NASA          | N/A        | Hedgehog              | In<br>dev. | Many possible | NASA/JPL-Caltech/Stanford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| March 5, 2019 |            |                       |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

#### **Hopping Categorized – Propulsive**



 Chopper (Comet Hopper), NASA Goddard
Discovery Class Proposal for launch in 2016



- Mars Geyser Hopper, NASA Glenn
  - Discovery mission concept

March 5, 2019 6 jpl.nasa.gov



#### **Surveyor Program:**

- Seven Pre-Apollo robotic scouts.
- Program ran from 1966-1968.

LEM

Astronaut Pete Conrad

Surveyor 7

### **Surveyor 6 (1967)**

First (and only until October 2018) successful hop on the surface of another body.

- Soft lander for Lunar Surface
- Dry Mass 300 kg
- ~16kg of excess propellant not used during initial soft landing.
- Engineers performed a "hop experiment."
- 2.5 second fire of ACS thrusters.
- Average thrust 1390 N at +7° pitch.
- Rose 4 m vertically, and translated 2.5 m horizontally.



#### **Surveyor Model**



- We modeled a two-burn hop trajectory using a "Surveyor-like" 300 kg spacecraft.
- Surface curvature is ignored in this model.
- For both models in this study,  $\Delta v$  is the required initial velocity for a distance  $\Delta s$ .

$$\Delta v_{total} = \Delta v_1 + \Delta v_2 = 2\sqrt{\frac{a_g \Delta s}{\sin 2\alpha}}$$

 $a_g$  – gravity  $\Delta v_1$  – initial burn

 $\Delta s$  — distance of hop  $\Delta v_2$  — Retrobraking burn

 $\alpha$  – launch angle

## Jump and Wait – An alternative hopping method



- This method involves rising to an altitude *h* and waiting for the planet or body to rotate underneath the spacecraft.
- Jump and Wait can save some fuel on fast-rotating bodies with low gravity.

$$\Delta v_{total} = 2 \sqrt[3]{\left(\frac{\Delta s a_g^2}{4\omega sin\theta}\right)}$$

 $a_a$  – gravity

 $\theta$  – polar angle

 $\Delta s$  – distance of hop

 $\omega$  – angular rate of rotation

R — mean radius of body

 $r_1, r_2$  — moment arms from rotational axis

h - maximum altitude

### **Comparing Jump-and-wait with Hopping**

To determine when Jump and wait will save fuel on the equator:

$$\sqrt[3]{\frac{\Delta S a_g^2}{4\omega sin\theta}} < \sqrt{\frac{a_g \Delta s}{sin2\alpha}}$$



$$a_g < A\omega^2$$
,  $A = 2^4 \Delta s$ 

 $\Delta s$  – distance of hop  $\omega$  – Angular rate of rotation

#### Example: Hopping on Ceres



# **Comparison of Different Hops on Small Bodies**

|           | Jump and Wait <mark>Surveyor</mark> |                     |                        | Hop requiring less $\Delta V$    |         |          |           |            |
|-----------|-------------------------------------|---------------------|------------------------|----------------------------------|---------|----------|-----------|------------|
| Body      | GM<br>(km^3/s^2)                    | Mean<br>Radius (km) | Planet Gravity (m/s^2) | Period of<br>Rotation<br>(hours) | 1<br>km | 10<br>km | 100<br>km | 1000<br>km |
| Ceres     | 62.63                               | 470                 | 0.284                  | 9.1                              |         |          |           |            |
| 67P       | 6.661E-07                           | 2                   | 1.67E-04               | 12.8                             |         |          |           |            |
| Moon      | 4903                                | 1738                | 1.624                  | 655.7                            |         |          |           |            |
| Triton    | 1428                                | 1353                | 0.779                  | 141.0                            |         |          |           |            |
| Phobos    | 7.112E-04                           | 11                  | 0.006                  | 7.7                              |         |          |           |            |
| Deimos    | 9.850E-05                           | 6                   | 0.003                  | 30.3                             |         |          |           |            |
| Europa    | 3203                                | 1561                | 1.315                  | 85.2                             |         |          |           |            |
| Ganymede  | 9888                                | 2631                | 1.428                  | 171.7                            |         |          |           |            |
| lo        | 5960                                | 1822                | 1.796                  | 42.5                             |         |          |           |            |
| Callisto  | 7179                                | 2410                | 1.236                  | 400.5                            |         |          |           |            |
| Enceladus | 7.203                               | 252                 | 0.113                  | 32.9                             |         |          |           |            |
| Chiron    | 2.669E-01                           | 83                  | 0.039                  | 5.9                              |         |          |           |            |
| Okyrhoe   | 2.722E-03                           | 18                  | 0.008                  | 5.9                              |         |          |           |            |

- Surveyor-like hops are usually more  $\Delta V$ -efficient.
- Surveyor-like hops are better on Ceres until ~450km.
- Low-gravity gravity bodies with high rates of rotation like Phobos, Deimos, and Centaurs are good candidates for Jump and Wait.

March 5, 2019 13 jpl.nasa.gov

#### **Conclusions**

- Hopping both propulsive and mechanical– can increase the science return of landed missions.
- Hopping technique is dictated by the properties of the destination and the hop.
- Surveyor 6's experiment holds valuable lessons for propulsive hops.

### Thank you

#### **Questions**

#### **Acknowledgment**

The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

This pioneering effort could also pave the way towards more sophisticated translations to be used on future spacecraft.

- Surveyor 6 mission report, 1968



jpl.nasa.gov