

Řídící systém linky na plnění a zátkování láhví Semestrální práce z předmětu KIV/TI

Martin Soukup A20B0558P Jan Vandlíček A21B0640P

Obsah

1	Zadání	2
2	Analýza úlohy 2.1 Princip fungování	
3	Automatový model 3.1 Grafický model plnící linky 3.2 Popis vstupních signálů a stavů . 3.2.1 Tabulky vstupních signálů . 3.2.2 Tabulka stavů . 3.2.3 Přechodový graf .	6 6 6
4	Implementace	8
5	Uživatelská příručka	9
6	Závěr	10

Zadání

Navrhněte řídící systém linky na plnění a zátkování láhví. Pásový dopravník se pohybuje krok za krokem a přenáší prázdné láhve, které jsou plněny a pak zátkovány na dvou různých pracovních místech. Láhve nepřicházejí na pás zcela pravidelně, a tak některé láhve mohou chybět (některá místa na pásu mohou být prázdná). Vzdálenost mezi láhvemi odpovídá jednomu kroku, vzdálenosti jsou označeny zarážkami umístěnými na dopravníku. Zařízení umožňuje v každé z obou pracovních míst detekovat přítomnost nebo nepřítomnost láhve. V každém kroku se vykoná jeden pracovní cyklus, plnění a zátkování probíhá paralelně, a to pouze jestliže je láhev přítomna v pracovním místě.

VSTUPNÍ SIGNÁLY:

KP ... příkaz k posunu pásu o krok dopředu (od operátora či z jiného systému)

KPP ... signál konec posunu pásu o krok dopředu

LPS ... láhev přítomna (nepřítomna) v plnící stanici

LZS ... láhev přítomna (nepřítomna) v zátkovací stanici

KPL ... konec plnění KZT ... konec zátkování

ŘÍDICÍ SIGNÁLY:

K ... krok pásu dopředu

 $P \dots plnit$

Z ... zátkovat

Analýza úlohy

Pro správné řešení zadané úlohy je potřeba si nejdříve uvědomit, jak bude samotný systém za na zátkování láhví fungovat a jak bude fungování tohoto systému vyřešeno.

2.1 Princip fungování

Předpokládejme, že zadaný systém linky na plnění a zátkování láhví bude fungovat na tomto principu:

- 1. Linka se bude skládat z pásového dopravníku, na kterém se budou nacházet zarážky pro jednotlivé láhve, dále z dvou pracovních míst, plnící a zátkovací stanice.
- 2. Jednotlivé zarážky na pásovém dopravníku budou označovat vzdálenost mezi láhvemi, tato vzdálenost se zároveň bude rovnat jednomu kroku dopravníku.
- 3. Systém dokáže detekovat přítomnost nebo nepřítomnost láhví na obou pracovních místech.
- 4. V každém kroku plnící a zátkovací linky se vykoná právě jeden pracovní cyklus, plnění a zátkování bude probíhat paralelně pokud je láhev přítomna v pracovním místě.

2.2 Teorie realizování

Pro realizaci systému plnící a zátkovací linky je potřeba realizovat přechodový graf.

- Přechodová tabulka slouží k určení akce, která se bude provádět při přechodu z jednoho stavu do druhého.
- Transformační tabulka slouží k určení stavu, do kterého se pomocí přechodové funkce přístroj přesune.
- Výstupní tabulka slouží k určení výstupní akce v daném stavu a přechodu.

Celý systém linky bude realizován jako automat, kde za pomocí těchto tabulek a pomocí proměnných, které budou sloužit k uchování informací o předchozím dění, bude vytvořen systém, který bude funkčně splňovat reálný systém plnící a zátkovací linky.

Automatový model

V našem automatovém modelu jsme počítali s osmi možnými vstupy od uživatele, vstupní signály (aktivní): signál pro krok pásu, po kterém by se měl pás posunout o krok dopředu (a), signál pro konec posunu pásu (b), signál pro konec plnění láhví (c), signál pro konec zátkování láhví (d) a vstupní hladinové signály (pasivní): plnící i zátkovací stanice je obsazena (0), láhev je pouze v plnící stanici (1), obsazena je pouze zátkovací stanice (2), plnící i zátkovací stanice je prázdná (3).

3.1 Grafický model plnící linky

3.2 Popis vstupních signálů a stavů

3.2.1 Tabulky vstupních signálů

Vstupní signály

Zkratka	Název	Popis	Druh
KP	Krok pásu	Příkaz k posunu pásu o krok dopředu (od operátora či z jiného systému)	Aktivní
KPP	Konec posunu pásu	Signál konec posunu pásu o krok dopředu	Aktivní
$_{ m LPS}$	Láhev v plnící stanici	Láhev přítomna (nepřítomna) v plnicí stanici	Pasivní
LZS	Láhev v zátkovací stanici	Láhev přítomna (nepřítomna) v zátkovací stanici	Pasivní
KPL	Konec plnění	Konec plnění	Aktivní
KZT	Konec zátkování	Konec zátkování	Aktivní

Řídící signály

Zkratka	Popis
K	Spusť krok pásu dopředu
P	Spusť plnění
\mathbf{Z}	Spusť zátkování

3.2.2 Tabulka stavů

Popis stavů

Číslo	Popis
0	Vstupní stav po zapnutí systému
1	Výchozí stav, ve kterém se načtou hladinové signály
2	Na lince je přítomna láhev na plnění i zátkování
3	Plnění bylo ukončeno dříve než zátkování
4	Zátkování bylo ukončeno dříve než plnění
5	Na lince je přítomna láhev pouze na plnění
6	Na lince je přítomna láhev pouze na zátkování

3.2.3 Přechodový graf

Implementace

Zdrojový kód programu je napsán ve vysokoúrovňovém programovacím jazyce Python. Jednotlivé vstupy a signály jsou výčtové typy (enumy). O inicializaci předchodové a výstupní tabulky, změnu stavů, jednotlivých výpisů a dalších akcí se postarají jednoduché metody. Po spuštění programu se inicializují tabulky a na základě uživatelského vstupu program vyhodnotí další akce.

Uživatelská příručka

Program je napsán v jazyce Python verze 3.9.10, ke spuštění je tedy třeba mít nainstalovaný jazyk Python verze minimálně 3.9.10. Program je možné spustit jak na zařízení s operačním systémem Windows, tak MacOS, a to pomocí příkazové řádky. V případě OS Windows nebo na zařízení s MacOS pomocí terminálu.

V prostředí OS Windows se pomocí příkazu cd přesuneme do adresáře, kde je soubor s programem uložen a následně spustíme příkazem $python\ plnici_linka.py$.

Na zařízeních s operačním systémem MacOS použijeme příkaz ve formátu $python < cesta\ do\ adresáře,\ kde$ $je\ soubor\ uložen > /plnici_linka.py.$

Závěr

Zadání semestrální práce z předmětu KIV/TI na téma logického řízení s konkrétní problematikou řízení plnící linky nám přišlo velmi zřetelné, což nám velmi ulehčilo práci na jeho implementaci. S využitím programovacího jazyka Python se nám povedlo vytvořit program řešící funkčnost zátkovací a plnící linky láhví velmi efektivně, co se výpočetní složitosti i časové náročnosti z naší strany týká. Jediné úskalí, které si pro nás plnící linka připravila, bylo v případě přechodové a výstupní tabulky, kdy jsme byli nuceni založit speciální stav, v němž je potřeba použít externí algoritmus. Na jeho základě je poté rozhodnuto, který stav a výstupní akce bude zavolána.