Ramakrishna Mission Vivekananda Educational and Research Institute

PO Belur Math, Howrah, West Bengal 711 202 School of Mathematical Sciences Department of Computer Science

MSc BDA : Batch 2022-24, Semester II, MidSem Exam DA311: Time Series

Dr. Sudipta Das

Student Name (in block letters):

Student Roll No:

Signature:

Date: 10 April 2022

Max Marks: 70 Time: 2.25 hrs

Answers must be properly justified to deserve full credits.

1. (6 points) The following figure shows the overlaid time plots of four time series, w(t), x(t), y(t) and z(t) for t = 1, ..., 1000. For which of the four series would it be reasonable to look for a stationary model, after first order differencing of the given series at lag 1? Explain.

- 2. (16 points) Suppose that the series $\{y_t\}$ is modeled by $y_t = \mu_t + x_t$, where $\mu_t = \mu_{t-1} + \epsilon_t$ is not observable and $x_t = \omega_t \theta \omega_{t-1}$. Assume that $\epsilon_t \sim WN(0, \sigma_{\epsilon}^2), \omega_t \sim WN(0, \sigma_{\omega}^2)$, and $Cov(\epsilon_t, \omega_s) = 0$ for all (t, s). Please answer the following questions:
 - (a) (4 points) What is the mean and the variance of y_t ?
 - (b) (2 points) Is y_t stationary?
 - (c) (10 points) If y_t is stationary, what is the autocovariance function of y_t ? Otherwise, suggest an appropriate transformation to induce stationarity in y_t . Then, calculate the mean and autocovariance function of the transformed stationary series.

3. (16 points) Consider the following ARMA(2,1) model

$$Y_t = 1.1Y_{t-1} - 0.24Y_{t-2} + Z_t - 0.2Z_{t-1}$$

where Z_t is white noise $(0, \sigma^2)$.

- (a) (4 points) Show that this process is causal and invertible.
- (b) (12 points) Calculate the ACF of y_t .
- 4. (16 points) For the following MA(1) process

$$X_t = Z_t + \theta Z_{t-1}, t = 0, \pm 1, \dots,$$

the best linear predictor of X_{n+1} based on X_1, \ldots, X_n is $X_{n+1}^{(n)} = \phi_{\mathbf{n}}' \mathbf{X_n}$, where $\phi_{\mathbf{n}}$ satisfies

$$\Gamma_n \phi_{\mathbf{n}} = \gamma_{\mathbf{n}}.$$

(a) (10 points) Show that for $1 \le j < n$,

$$\phi_{n,n-j} = (-\theta)^{-j} (1 + \theta^2 + \dots + \theta^{2j}) \phi_{nn}.$$

- (b) (6 points) Hence, find ϕ_{nn} , that the value at lag n of the partial ACF of this MA(1) process.
- 5. (16 points) Consider the following MA(1) model, where $\{Z_t\} \sim WN(0,1)$:

$$Y_t = Z_t + \theta Z_{t-1}.$$

where $\{Z_t\} \sim WN(0,1)$.

- (a) (8 points) Find the moment estimator of θ .
- (b) (8 points) Find the bias of this estimator.

This exam has total 5 questions, for a total of 70 points and 0 bonus points. Best of luck!!