Nome: No. Mecanográfico:

Cotações:

$$1-1$$
 $2a-1$ $2b-1$ $2c-0.5$ $3a-1.5$ $3b-0.5$ $4a-0.5$ $4b-1.5$ $4c-2$ $5a-0.5$ $5b-2$

Nota: As respostas às questões 1 e 4b devem ser dadas neste enunciado

1. Preencha a tabela com a representação em 8 bits dos valores indicados nos diferentes formatos de representação. Se o valor não for representável num dado formato coloque uma cruz na respetiva célula.

Decimal	Sinal e módulo	1's complement	2's complement	Excesso-127
+35	00100011	00100011	00100011	10100010
-35	10100011	11011100	11011101	01011100
+255	X	X	X	X
-130	X	X	X	X

2. Um programa em *assembly* utiliza os registos \$s0 e \$s1 para armazenar os valores das variáveis a e b e tem valores intermédios de cálculos nos registos \$t0 e \$t1, quando invoca uma subrotina. Esta subrotina não invoca qualquer outra e utiliza os registos \$t0, \$t1, \$t2, \$s0, \$s1 e \$s2. Represente o estado do *stack*:

\$sp \$ra \$t1 \$t0

Durante exec. Subrot				
\$sp	\$s2			
	\$ s1			
	\$s0			
	\$ra			
	\$ t1			
	\$t0			

¢ _{an}	\$ra
\$sp	\$1a
	\$ t1
	ψt1
	\$t0
	Ψιο

C

Antes de jr \$ra

3. A e B são dois números representados no formato IEEE de vírgula flutuante, precisão simples.

a. Qual a representação de A*B no mesmo formato?

b.

 $1 \overline{0001111111010010110000001} \overline{1001000000000000000000000}$

Normalizar resultado (shift right uma posição e incrementar expoente):

$$Exp(A*B) = Exp(A) + Exp(B) - 127 + 1 = 01111001 + 10001000 - 011111111 + 1 = 10000011$$

Significand(A*B) = 100011111110100101100000011001

Guard bit = 1, Round Bit = 1, Sticky bit = 1

Significand(A*B) = 100011111101001011000001

$A*B = 1\ 10000011\ 000111111101001011000001$

c. Qual o valor de A*B em decimal, sob a forma X*2^Y

$$Y = +4$$

$$X = -(1 + 2^{-4} + 2^{-5} + 2^{-6} + 2^{-7} + 2^{-8} + 2^{-9} + 2^{-11} + 2^{-14} + 2^{-16} + 2^{-17} + 2^{-23}) = -(1 + 2^{-3} - 2^{-9} + 2^{-11} + 2^{-14} + 2^{-16} + 2^{-17} + 2^{-23})$$

4. A figura representa uma implementação do datapath do MIPS, incluindo a indicação da unidade de controle:

- a. Que tipo de datapath está representado na figura? Multi-cycle datapath
- b. Preencha a tabela abaixo com o valor dos sinais de controle na execução do 3º ciclo da instrução beq \$t0, \$t1, target1.

PCWriteCond	1
PCWrite	0
IorD	X
MemRead	0
MemWrite	0
MemtoReg	X
IRWrite	0

PCSource	01
ALUOp	01
ALUSrcB	00
ALUSrcA	1
RegWrite	0
RegDst	X

Nota: A tabela seguinte expressa a lógica de controle da ALU:

ALUOp	Funct field	Desired ALU action
00	XXXXXX	add
01	XXXXXX	subtract
10	100000	add

10	100010	subtract
10	100100	AND
10	100101	OR
10	101010	Set on Less Than

c. O código da instrução beq \$t0, \$t1, target1 é:

000100	01000	01001	11111111111111001

O endereço da instrução é 0x00400140. Qual o endereço da instrução que é executada a seguir quando (\$t0) = (\$t1)?

1111 1111 1111 1111 1111 1111 1110
$$0100_2 = 0xFFFFFE4$$
 $0x00400144 + 0xFFFFFFE4 = 0x00400128$

- a. Que tipo de datapath está representado na figura? Pipeline de 5 andares
- b. Qual o conteúdo do registo EX/MEM quando as instruções no pipeline são:

	sub	\$2 , \$4 , \$3	#	WB	stage
	beq	\$12,\$8,Lab1			
	add	\$14,\$4,\$6			
	SW	\$15 , 100(\$7)			
Lab1:	or	\$13,\$6,\$2			

MEM stage: beq \$12, \$8, Lab1

EX/MEM_WB: RegWrite = 0; MemtoReg = X

EX/MEM_M: Branch = 1; MemRead = 0; MemWrite = 0

EX/MEM AddResult: endereço de or \$13,\$6,\$2

EX/MEM_Zero: 1 se (\$12) = (\$8) senão 0

EX/MEM_ALU Result: (\$12) – (\$8)

EX/MEM_Read Data 2: (\$8)

EX/MEM_Instruction[]: X