Lecture 11: Binomial and Poisson Random Variables

Chapter 3.3-3.5

Goals for Today

Define

- ► Binomial random variables
- ► Poisson random variables

Binomial Distribution

Binomial Distribution

Step Back... Example of n choose x

Say I give you n=3 balls labeled 1 thru 3. How many different ways can you choose x=2 of them? 3 ways:

Step Back... n choose x in General

Binomial Distribution

Back to Soccer Example

Back to Soccer Example

With n = 5 and p = 0.6, we plot the probability of each of k = 0, ..., 5 wins:

Back to Soccer Example

With n=5 and p=0.6, we plot the probability of each of $k=0,\ldots,5$ wins:

Say you want to count the number of rare events in a large population over a unit of time. Ex:

Say you want to count the number of rare events in a large population over a unit of time. Ex:

▶ # of car accidents at an intersection on a given week

Say you want to count the number of rare events in a large population over a unit of time. Ex:

- ▶ # of car accidents at an intersection on a given week
- ▶ # of ambulance calls on any given day in Burlington

Say you want to count the number of rare events in a large population over a unit of time. Ex:

- # of car accidents at an intersection on a given week
- ▶ # of ambulance calls on any given day in Burlington
- # of soldiers in the Prussian army killed accidentally by horse kick from 1875 to 1894

Say you want to count the number of rare events in a large population over a unit of time. Ex:

- # of car accidents at an intersection on a given week
- ▶ # of ambulance calls on any given day in Burlington
- # of soldiers in the Prussian army killed accidentally by horse kick from 1875 to 1894

The Poisson distribution allows us to model such counts.

Exercise 3.47 on Page 158

A coffee shop serves an average of 75 customers per hour during the morning rush. Let X be the (random) number of customers that the coffee shop serves in one hour at this time of the day.

What is the probability X = 70?

Exercise 3.47 on Page 158

Next Time

Chapter 4: Foundations for Inference

- ▶ Variability in estimates \overline{x} , \widehat{p} , etc.
- ▶ In fact, we can associate a distribution to these estimates