Introduction to Cryptography: Homework 8

November 17, 2021

Requirements about the delivery of this assignment:

- Submit a pdf-document via Brightspace;
- Make sure that you write both name and student number on all documents (not only in the file name).

Deadline: Monday, November 29, 17:00 sharp!

Grading: You can score a total of 100 points for the hand-in assignments. To get full points, please explain all answers clearly and verify computations, e.g., concerning inverses.

Exercises:

- 1. **Brightspace quiz.** Make the Brightspace quiz on groups, "Practicing with groups". Go to Activities -> Quizzes. [You can attempt the quiz as often as you would like/need.]
- 2. **Subgroups.** Consider the group $(\mathbb{Z}/37\mathbb{Z})^*$.
 - (a) Compute $\#(\mathbb{Z}/37\mathbb{Z})^*$.
 - (b) Let $A = \{0, 1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34, 36\}$. Is A a subgroup of $(\mathbb{Z}/37\mathbb{Z})^*$?
 - (c) Let $B = \{1, 5, 14, 17, 25\}$. Is B a subgroup of $(\mathbb{Z}/37\mathbb{Z})^*$?
 - (d) Let $C = \{10, 11, 27, 36\}$. Is C a subgroup of $(\mathbb{Z}/37\mathbb{Z})^*$?
 - (e) Let $D = \{1, 7, 9, 10, 12, 16, 26, 33, 34\}$. Is D a subgroup of $(\mathbb{Z}/37\mathbb{Z})^*$?
 - (f) Consider the prime-order subgroups of $(\mathbb{Z}/37\mathbb{Z})^*$. What possible orders do they have?
- 3. Euclidean algorithm.
 - (a) Compute gcd(5,23) using the Euclidean algorithm.
 - (b) Compute integers x, y such that $5x + 23y = \gcd(5, 23)$.
 - (c) Take the equation from (b) and take both sides modulo 23. What remains?
 - (d) What can you say about the multiplicative inverse of 5 modulo 23?
 - (e) Solve the equation $5z + 3 \equiv 17 \pmod{23}$ for z.
 - (f) Compute integers a, b such that 5a + 23b = 17.
- 4. Modular inverses. We consider the group $(\mathbb{Z}/31\mathbb{Z})^*$.
 - (a) What is the inverse of 2 modulo 31? Verify your answer.
 - (b) Compute the inverse of 13 modulo 31 using Fermat's Little Theorem and Square-and-Multiply. Verify your answer.
 - (c) What is the inverse of 26 modulo 31? Verify your answer. [Use (a) and (b).]

Hand in assignment:

1. (60 points) Orders of elements and modular exponentiation.	Consider the integer 1061. Consider
the groups $\mathbb{Z}/1061\mathbb{Z} = (\mathbb{Z}/1061\mathbb{Z}, +)$ and $(\mathbb{Z}/1061\mathbb{Z})^* = (\mathbb{Z}/1061\mathbb{Z})$	$(\{0\}, \times)).$

(a) Is 1061 a prime number?	2 pt
(b) Let a be an element in $\mathbb{Z}/1061\mathbb{Z}$. What values can the order of a attain?	6 pt
(c) Let g be an element in $(\mathbb{Z}/1061\mathbb{Z})^*$. What values can the order of g attain?	20 pt
(d) What is the multiplicative order of 112 modulo 1061? [Hint: Start small.]	24 pt
(e) Show how 112^{38481} modulo 1061 can be computed very efficiently using (c).	10 pt
2. (40 points) Modular groups. Consider the set $\mathbb{Z}/23\mathbb{Z}$. We consider the group $(\mathbb{Z}/23\mathbb{Z} \setminus \{0\}, \times)$.	
(a) List all elements of the cyclic subgroup generated by 6, i.e., $\langle 6 \rangle$.	20 pt
(b) What is the order of 6 in $((\mathbb{Z}/23\mathbb{Z}) \setminus \{0\}, \times)$?	4 pt
(c) What is the inverse of 6 in $((\mathbb{Z}/23\mathbb{Z})\setminus\{0\},\times)$?	8 pt
(d) Find the smallest positive x such that $6^x = 3 \pmod{23}$. This x is called the discrete logarith $d\log_6(3)$ in $((\mathbb{Z}/23\mathbb{Z}) \setminus \{0\}, \times)$.	hm 8 pt