TP MAPLE 5 : Algèbre linéaire : Réduction¹

Exercice 1. Etude d'un opérateur linéaire

Pour une matrice $M \in \mathcal{M}_n(\mathbb{K})$,

$$f_M: X \in \mathcal{M}_n(\mathbb{K}) \mapsto XM - MX \in \mathcal{M}_n(\mathbb{K}).$$

- 1. Ecrivez une procédure Matf qui prend en entrée une matrice M de taille $n \times n$ et qui renvoie la matrice de taille $n^2 \times n^2$ de f_M dans la base canonique.
- 2. Calculez les valeurs propres de f_A et de f_B . Conjecturez une relation entre les valeurs propres de M et celles de f_M .
- 3. Testez la validité de votre conjecture pour R et H avec des valeurs approchées.

$$A = \left(\begin{array}{cc} 1 & 2 \\ 4 & 8 \end{array}\right), \ B = \left(\begin{array}{cc} 1 & -5 \\ 5 & 1 \end{array}\right)$$

Soient R_1 , R_2 des matrices aléatoires de tailles 5×7 et 7×5 , et $R = R2 \times R1$. $H = (h_{i,j})$ de taille 10×10 avec $h_{i,j} = \frac{1}{i+j}$.

Exercice 2. Un endomorphisme sur l'espace des polynômes

Soit $Q \in \mathbb{R}[X]$ avec $\deg Q \leq 2$ et $d \geq 2$. On pose :

$$\begin{array}{cccc} \Phi_Q: & \mathbb{R}_d[X] & \longrightarrow & \mathbb{R}_d[X] \\ & P & \mapsto & X^d P\left(\frac{1}{X}\right) + P(x+1) + QP^{''}. \end{array}$$

- 1. Vérifier que Φ_Q est bien définie et linéaire.
- 2. Ecrivez une procédure qui prend d, Q en entrée et qui renvoie la matrice de Φ_Q dans la base des $(X^n)_n$.
- 3. Testez votre procédure pour $d \in \{2, 3\}, Q \in \{0, X\}$ et vérifiez le résultat.
- 4. Calculez une valeur approchée des éléments propres de Φ_Q avec d=4 et $Q=X^2+X+1$.

Exercice 3. Etude de quelques endomorphismes

- 1. Soit $M_1 = \begin{pmatrix} 4 & -1 \\ 4 & 0 \end{pmatrix}$. Calculez les éléments propres de M_1 . M_1 est-elle diagonalisable? Trouvez une base dans laquelle est triangle supérieure, puis trouvez une base dans laquelle M_1 est triangulaire supérieure et dans laquelle le coefficient surdiagonal est 1.
- 2. Soit $M_1=\left(\begin{array}{cc} 35 & -116 \\ 10 & -33 \end{array}\right)$. Calculez mes éléments propres de M_2 . M_2 est diagonalisable dans $\mathbb C$? dans $\mathbb R$?

Trouvez une base dans laquelle M_2 est de la forme $\begin{pmatrix} a\cos\theta & -a\sin\theta \\ a\sin\theta & a\cos\theta \end{pmatrix}$.

3. Soit
$$M_1 = \begin{pmatrix} 3 & 0 & -1 & 0 \\ -1 & 2 & 0 & 1 \\ 0 & 0 & 3 & 0 \\ -1 & -1 & -1 & 4 \end{pmatrix}$$
 et $M_4 = \begin{pmatrix} 2 & -3 & -2 & -2 \\ 0 & 4 & 1 & 1 \\ 1 & 2 & 4 & 1 \\ 0 & -1 & -1 & 2 \end{pmatrix}$.

- (a) Calculez les éléments propres de M_3 et M_4 . Sont-elles diagonalisables ? Peut-on conclure que M_3 et M_4 sont semblables ?
- (b) On appelle e_1 et e_3 deux vecteurs propres indépendants de M_3 . Trouver deux vecteurs e_2 et e_4 tels que $M_3e_2=3e_2+e_1$ et $M_3e_4=3e_4+e_3$ (voir LinearSolve) et montrer que (e_1,e_2,e_3,e_4) est une base de \mathbb{R}^4 . Que vaut la matrive de M_3 dans cette base? Que vaut le polynôme minimal de M_3 ?

¹le corrigé sera mis en ligne à l'adresse http://www.lsta.upmc.fr/doct/patra/, un imprimé peut être obtenu sur simple demande.

- (c) On appelle f_1 et f_4 deux vecteurs propres indépendants de M_4 . Trouver un vecteur f_2 tel que $M_4f_2=3f_2+f_i$ et un vecteur f_3 tel que $M_4f_3=3f_3+f_2$, où i=1 ou 4. Si besoin, échangez f_1 et f_4 de sorte que i=1. Montrer que (f_1,f_2,f_3,f_4) est une base de \mathbb{R}^4 . Que vaut la matrice de M_4 dans cette base ? Que vaut le polynôme minimal de M_4 ?
- (d) M_3 et M_4 sont-elles semblables ?