Date: 13/05/2024

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY

M.SC(IT)- INTEGRATED- SEMESTER I- EXAMINATION -SUMMER-2024

Subject Code: 1310502

Instructions:

Subject Name: Mathematics-I Time: 02:30 PM TO 05:00 PM

1. Attempt all questions.

2. Make Suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.4. Use of simple calculators and non-programmable scientific calculators are permitted.			
Q.1	(a)	$\lim_{x \to \frac{\pi}{2} (\tan x)^{\sin 2x}}$	03
	(b)	Evaluate 2 Solve the linear equation by Gauss Elimination Method: x + y + 2z = 9; $2x + 4y - 3z = 1$; $3x + 6y - 5z = 0$	04
	(c)	$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 2 \\ -1 & 2 & 1 \end{bmatrix}.$	07
		Find the inverse of the matrix	
Q.2	(a)	$A = \begin{bmatrix} 5 & 4 \\ 1 & 0 \end{bmatrix}$	03
	(b)	Find the Eigen values of A and A^{-1} , where $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ Verify Cayley – Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$	04
	(c)	$A = \begin{bmatrix} 0 & -2 & 2 \\ 1 & 2 & 0 \end{bmatrix}$	07
		Is the matrix diagonalizable?	
	(c)	Solve the differential equation: $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - 3y = x^2 \log x.$	07
Q.3	(a)	Verify Rolle's theorem for the function $f(x) = x^2-4x+6$ in the interval [2,4], and find c if possible.	03
	(b) (c)	Solve by Cramer's rule: $x - 3y + z = 2$; $3x + y + z = 6$; $5x + y + 3z = 3$ Find the minimum values of x^2yz^3 subject to the condition $2x+y+3z=6$ using Lagrange's method of undetermined multipliers.	04 07
Q.3	(a)	Verify mean value theorem for the function $f(x) = x^3 - 9x^2 + 12x - 6$ in the interval [0,4] and find c if possible.	03
	(b) (c)	Find the extreme values of $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ Solve $(D^2-4D+3)y = e^x cos2x$	04 07
Q.4	(a) (b) (c)	Solve $9yy' + 4x = 0$ Solve $(x^3 + 3xy^2)dx + (3x^2y + y^3)dy = 0$ Solve the differential equation $(D^2-4D+4)y = cos2x$ OR	03 04 07
Q.4	(a)	Solve the differential equation $(x^2+y^2+3)dx-2xydy=0$	03

- **(b)** Solve $(4x^2D^2+16xD+9)y=0$ **04**
- (c) Solve the differential equation $y''-3y'+2y=e^x$ using the method of variation of parameters.
- - (b) $\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = (x y)(y z)(z x)$ Show that $\begin{vmatrix} 1 & x & z^2 \\ 1 & z & z^2 \end{vmatrix}$
 - (c) $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence, find the matrix represented by $A^8-5A^7+7A^6-3A^5+A^4-5A^3+8A^2-2A+I$.
- Q.5 (a) $\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$ Verify that OR
 - (b) 5x 7y + z = 11 6x 8y z = 15Solve by Cramer's rule 3x + 2y 6z = 7
 - (c) $A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ Show that the matrix $A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ is diagonalizable. Hence find matrix P such that $P^{-1}AP$ is a diagonal matrix.

03