Sistemas de Inteligencia Artificial TP3: Redes Neuronales

Equipo

Patrick Dey

Matias Lombardi

Santos Rosati

Ejercicio 1

Introducción

- Perceptrón simple
- Función de activación escalón
- Funciones AND y XOR

AND

XOR

Conclusiones

- El **AND** es un problema linealmente separable ("a ojo" se puede armar una función lineal que separe las 2 categorías)

- Por el contrario, el XOR no lo es. Para separarlo, necesitaríamos 2 rectas

Ejercicio 2

Introducción

- Perceptrón simple
- Función de activación lineal y no lineal

Función de activación lineal

- Capacidad de aprendizaje del problema
- Error: 92.63074 +- 0.00028381439066531

Función de activación no lineal

- Escalar datos de entrada a [-1, 1]
- Capacidad de generalización
- Validación cruzada

Conclusiones

- El dataset obtenido no es aproximable mediante un hiperplano, por lo que se necesita una transformación no lineal (que da mejores resultados)
- Necesitamos un transformación no lineal para poder llegar a todos los puntos
- ¿Cómo elegimos el mejor *Training Set*? Viendo cuál partición dio el error más bajo
- ¿Cómo evaluamos la máxima capacidad de generalización? Elegimos la mejor métrica con la validación cruzada, presentándole el correspondiente Test Set.

Ejercicio 3

Introducción

- Perceptrón Multicapa
- Función de Activación No Lineal

Función XOR

- Propagación de error incremental
- Error: 0.009998568972511807

Par o Impar: Capacidad de aprendizaje

- Se presentan las 10 imágenes
- Esta configuración presenta una buena tasa de aprendizaje
- Error: 0.009999476927264325

Par o Impar: Capacidad de generalización

- Se presentan 2 n° como testeo
- Validación cruzada
- Errores muy similares

Diferenciación de números

- Notar que la arquitectura difiere con respecto a la de la paridad
- Capacidad de aprendizaje Error: 0.009996038542929249

Diferenciación de números

- Capacidad de generalización
- Presentamos 10 variantes de cada n° con ruido. La red calcula la métrica por época
- Métrica: 0.775 +- 0.001025

Conclusiones

- Una arquitectura multicapa con 2 neuronas en una capa oculta, nos permite representar las 2 rectas de separación del **XOR**.
- Predecir números pares no es trivial, no parece haber un correlato entre la estructura del número y su paridad.
- Agregar un poco de ruido no altera mucho la salida, aunque al tratarse de una "imagen" tan chica (tan solo 35 píxeles), un cambio en un píxel puede producir una salida no esperada (si fueran imágenes más grandes, no existiría este problema).

Implementación

https://github.com/srosati/SIA/tree/master/TP3