General Topology, Exercises 1

2019 Spring Semester

Youngwan Kim

April 10, 2019

Problem 1. Show that [0,1) is neither close dnor open in \mathbb{R} .

Proof. As int([0,1)) = (0,1) and $\overline{[0,1)} = [0,1]$ thus it is neither close or open in \mathbb{R} .

Problem 2. Let $A = \{0\} \cup \{\frac{1}{n} | n \in \mathbb{N}\}$. Consider A as a subspace of \mathbb{R} . Is it closed or open?

Proof. Consider $\mathbb{R} \setminus A$, which becomes

$$\mathbb{R} \setminus A = (-\infty, 0) \cup \left(\bigcup_{n \in \mathbb{N}} \left(\frac{1}{n+1}, \frac{1}{n} \right) \right) \cup (1.\infty)$$

which is an union of open sets, implying that $\mathbb{R} \setminus A$ is also open. As $\mathbb{R} \setminus A$ is open, A is closed.

Problem 3. Show that for $p \in X$, the singleton $\{p\}$ is closed in X. Also show that a finite subset of X is closed in X.

Proof.

1. The singleton is closed in X.

Consider $q \in X \setminus \{p\}$, then there exists B(q,r) where r = d(p,q) > 0. Then $p \notin B(q,r)$ which implies that $B(q,r) \subset X \setminus \{p\}$. Thus $X \setminus \{p\}$ is open, and $\{p\}$ is thus closed.

2. A finite subset of X is closed in X.

For any finite subset, let it P, it could be expressed as $P = \bigcup_{p \in P} \{p\}$, which is a finite union of closed sets. As any finite subset is such a finite union of closed sets, it is closed.

Problem 4. Let us consider $A = \{0, 1, 2, 3\}$ and $B = \{0, 1\}$ both as subspaces of \mathbb{R} .

- (a) Prove that A is closed in \mathbb{R} .
- (b) Is B open in \mathbb{R} ?
- (c) Is B open in A?
- (d) Find all open subsets of A.

Proof. content...

Problem 5. A set of the form $\{y \in X | d(x,y) \le r\}$ is called a closed ball. Show that a closed ball is a closed set. Is the closed ball $\{y \in X | d(x,y) \le r\}$ always the closure of the open ball B(x,r)?

Proof.

- 1. Closed ball is closed.
- 2. Is it always the closure of the open ball? (No)

Consider \mathbb{R} which is equipped with a discrete metric. The open ball B(0,1) under this metric space is the singleton $\{0\}$. So the closure is, $\overline{B(0,1)} = \{0\} = \{0\}$. Meanwhile the closed ball with the same center and radius gives us, $B'(0,1) = \mathbb{R}$. Thus as this counterexample exists we can say that not always the closed ball becomes the closure of the open ball.

Problem 6. Let $A \subset B \subset X$. Show that $int(A) \subset int(B)$ and $\overline{A} \subset \overline{B}$.

Proof.

2

1. $int(A) \subset int(B)$

Consider $x \in int(A)$ which implies that there exists r > 0 such that $B(x,r) \subset A$. But as $A \subset B$, it is also true that $B(x,r) \subset B$. Thus $x \in int(B)$ holds.

 $2. \ \overline{A} \subset \overline{B}$

Consider $x \in \overline{A}$, which implies that for any r > 0, $B(x,r) \cap A \neq \phi$. Again as $A \subset B$, the previous statement implies that $B(x,r) \cap A \subset B(x,r) \cap B$. Thus $x \in \overline{B}$ also holds.

Problem 7. Let $A \subset Y \subset X$. Show the following:

- (a)
- (b)
- (c)
- (d)