

QDU Team Profile

CIKM 2019 EComm Al Efficient User Interests Retrieval

Chuanyu Xue

Pre-final Year Student at Qingdao University, achieved top 3 rankings in three data mining competitions

Zhuoran Zhang

Algorithm Engineer in Spring Airlines, achieved top 10 rankings in many data mining competitions

Shunyao Wu

Assistant Professor at Qingdao University, achieved top 2 rankings in three data mining competitions

Problem Understanding

Task:

Predict the top-k preferred item from a large-scale item set for each user, under the liner complexity constraint.

Evaluation Metrics:

$$Recall 50(u) = \frac{|P_u \cap (G_u - H_u)|}{|G_u - H_u|}$$

 P_u is recommendation set, G_u is ground truth, H_u is historical item set.

Given Dataset:

The training dataset has three files, including user behavior file, user profile file and item information file.

CIKM 2019 EComm Al Efficient User Interests Retrieval

Some important points

- 1. Users' behavior types
- 2. Time effect
- 3. Category / Brand of items
- 4. Popularity of items

Data Split

CIKM 2019 EComm Al Efficient User Interests Retrieval

Implicit Feedback

Previous PV will be more preferred, Previous BUY will be less preferred.

Recent behaviors will have more influence

CIKM 2019 EComm Al Efficient User Interests Retrieval

Implicit Feedback

$$V_{u,i} = \max(s_{pv}x_{u,i}, s_{fav}x_{u,i}, s_{cart}x_{u,i}, s_{buy}x_{u,i})$$

$$T_{u,i} = 1 - \left(\frac{D_{\max} - D_{u,i} + 1}{D_{\max} - D_{\min} + 1}\right)$$

$$R_{u,i} = T_{u,i} * V_{u,i}$$

 $x_{u,i}$ is the behavior of user u to item i, s_{pv} , s_{fav} , s_{cart} , s_{buy} are weights of different behaviors, $D_{u,i}$: timestamp of behavior ($D_{u,i} = day + hour \% 24$)

CIKM 2019 EComm Al Efficient User Interests Retrieval

Popularity of items

Popular items will be more preferred

Basic Idea of Recommendation

CIKM 2019 EComm Al Efficient User Interests Retrieval

- An Advanced Similarity for Item CF
- Parallel Algorithm and Data Structure for Efficient Matching

- A Distribution-Free Test of Independence for Feature Selection
- Liner and Power Model weighting method

Matching

CIKM 2019 EComm Al Efficient User Interests Retrieval

Main Process

Matching

CIKM 2019 EComm Al Efficient User Interests Retrieval

Association Rules

Confidence
$$(a,b) = P(b|a) = \frac{|U_a \cap U_b|}{|U_a|}$$

TF-IDF

$$w_u = \frac{1}{\log(I_u) + 1}$$

Inactive users have more influence

Advanced Similarity for Item-CF:

$$Similarity(a,b) = \frac{\sum_{u \in U} w_u \delta(a,b)}{\sum_{u \in U_a} w_u}$$

$$\delta(i,j) = \begin{cases} 1, & i \in I_u \text{ and } j \in I_u \\ 0, & else \end{cases}, \text{ when } w_u \to 1, \text{ Confidence}(a,b) = \text{Similarity}(a,b)$$

Matching

CIKM 2019 EComm Al Efficient User Interests Retrieval

 Parallel Algorithm for Similarity Matrix Generation

 Data Structure for Efficient Retrieval

Hash with only 430K values

CIKM 2019 EComm Al Efficient User Interests Retrieval

Main Process

CIKM 2019 EComm Al **Efficient User Interests Retrieval**

Feature Engineering

- Item Features
 1. Statistic Values of item's ratings
 2. Timestamps of item's ratings
 3. Frequency of item
 4. Rank of item

Category/Shop/Brand(item-set) Features

1. Statistic Values of item-set's ratings
2. Timestamps of item-set's ratings
3. Frequency of item-set
4. Size of item-set

User Interaction Features
 User's ratings on item-set
 Timestamps of user's ratings on item-set
 User's different behaviors on item-set

Similarity Features
 1. Item's similarity
 2. Rank of item's similarity

CIKM 2019 EComm AI Efficient User Interests Retrieval

Feature Selection

- > MV Test: Mean Variance Test (JASA 2015)
- Distribution free test of Independence (https://github.com/ChuanyuXue/MVTest)
- \triangleright Mean Variance Index (X: a continuous r.v.; Y: a categorical one):

$$MV(X|Y) = E_X[Var_Y(F(X|Y))]$$
 where $F(x|Y) = P(X \le x|Y)$

> Testing hypothesis:

$$H_0: F_r(x) = F(x)$$
 for any x and $r=1,...,R$
 $H_1: F_r(x) \neq F(x)$ for some x and $r=1,...,R$
 $where, F(x) = P(X \le x), F_r(x) = P(X \le x | Y = y_r)$

> Test statistic:

$$T_n = n\widehat{MV}(X|Y)$$

= $\sum_{r=1}^R \sum_{i=1}^n \widehat{p_r} * [\widehat{F_r}(X_i) - \widehat{F}(X_i)]^2$

CIKM 2019 EComm Al Efficient User Interests Retrieval

Model Averaging

- 3 steps
- > Step 1: averaging lightgbm and catboost with Harmonic Mean
- > Step 2: averaging lightgbm and catboost with Geometric Mean
- > Step 3: Harmonic Mean * 0.5 + Geometric Mean * 0.5

Conclusion

CIKM 2019 EComm AI Efficient User Interests Retrieval

Team	The Qualification		
QDU	0.02645 + 6.5%		
聪明恬恬傻歪歪	0.02553 + 2.8%		
去网吧里偷耳机	0.02543 + 2.4%		
山有木兮	0.02516 + 1.2%		
北方的郎	0.02484 baseline		

[1] Y. Huang et al. Tencentrec: Real-time stream recommendation in practice.

Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. 2015: 227-238.

[2] H. Cui et al. Model-free feature screening for ultrahigh dimensional discriminant analysis. *Journal of the American Statistical Association*. 2015, 110(510): 630-641.

[3] H. Cui et al. A Distribution-Free Test of Independence and Its Application to Variable Selection. *arXiv* preprint arXiv:1801.10559, 2018.

Thank You

← Contact me

CIKM 2019 EComm Al Efficient User Interests Retrieval

Category / Shop of items

Observed Categories will be more preferred Observed Shops will be less preferred

CIKM 2019 EComm Al Efficient User Interests Retrieval

User-to-Item

User historical behaviors:

Item	Apple	Banana	Football
Behavior	4.1	2.2	0.9

➤ Similarity Hash set:

Item	Item(Similarity)	Item(Similarity)	Item(Similarity)
Apple	Pineapple(0.9)	Pear(0.6)	Peach(0.4)
Banana	Mango(0.8)	Lemon(0.3)	
Football	Basketball(0.9)	Baseball(0.5)	

Generated Candidates:

Top(500)(Pineapple(4.1 * 0.9), Pear(4.1 * 0.6),)

CIKM 2019 EComm Al Efficient User Interests Retrieval

Ranking

User's Ground Truth in 16days

Item	Pineapple	Pear	Bicycle	Burger
			2.0,0.0	2000.

User's retrievaled items in 16days

14	D:	D	N 4	1
ltem	Pineapple	Pear	Mango	Lemon

User's training samples

CIKM 2019 EComm Al Efficient User Interests Retrieval

Model Weighting

$$result_{liner} = \frac{1}{(\frac{0.5}{result_{lgb}} + \frac{0.5}{result_{catb}})}$$

$$result_{power} = \sqrt{result_{lgb}^{0.5} * result_{catb}^{0.5}}$$

$$result = 0.5 * result_{liner} + 0.5 * result_{power}$$

where, $result_{lgb}$ is result of LightGBM model, $result_{catb}$ is result of Catboost model,

CIKM 2019 EComm Al Efficient User Interests Retrieval

MV Test

- \triangleright Lemma 1. MV(X|Y) = 0 if and only if X and Y are statistically independent.
- > Test of Independence:

 H_0 : X and Y are statistically indep.

 H_1 : X and Y are not statistically indep.

 $H_0: F_r(x) = F(x)$ for any x and r=1,...,R $H_1: F_r(x) \neq F(x)$ for some x and r=1,...,R