

FUNDAMENTOS TEÓRICOS DE LA INFORMÁTICA

Lic. Martin Villarreal

- Definimos que un lenguaje es un subconjunto de Σ* sobre un alfabeto Σ. ¿Como especificamos las cadenas de un lenguaje en particular?
- Las expresiones regulares son una notación formal de la forma que poseen las cadenas de un lenguaje.
- Un lenguaje descripto por una expresión regular se dice que es un lenguaje regular.
- No todos los subconjuntos de Σ* son lenguajes regulares.

 Expresión regular: Las expresiones regulares (ER) sobre un alfabeto Σ son cadenas obtenidas a partir del alfabeto

$$\Sigma \cup \{), (, ., +, *, \lambda, \emptyset)$$

Definidas recursivamente como sigue:

- 1- ∅ es una ER
- 2- λ es una ER
- 3- todo símbolo i∈Σ, es una ER
- 4- si α y β son ER, entonces (α), α . β , α + β , α * son ER
- 5- ninguna otra secuencia de simbolos es una ER

Ej: sea Σ ={a, b} un alfabeto, son expresiones regulares

- **-** λ
- a
- **-** b
- a+b
- a.b
- (a+b).(b.a)
- (a.b.a)*
- (b.a)*.(a.a)*.(b.b)*

 Lenguaje regular: cada expresión regular α sobre un alfabeto Σ describe o representa un lenguaje L(α)⊆Σ*

Este lenguaje se llama lenguaje regular y se define de forma recursiva como sigue:

- 1- si $\alpha=\emptyset$ entonces $L(\alpha)=\emptyset$
- 2- si α = λ entonces L(α)= $\{\lambda\}$
- 3- si α =a y a \in Σ entonces L(α)={a}
- 4- si α y β son ER entonces $L(\alpha+\beta)=L(\alpha)\cup L(\beta)$
- 5- si α y β son ER entonces L(α . β)=L(α).L(β)
- 6- si α es una ER entonces $L(\alpha^*)=(L(\alpha))^*$

Ejemplos:

•Dado Σ = {0, 1} y la ER α = 0*10*, indique cuales son las cadenas de L(α)

$$L(0^*,1,0^*) = L(0^*).L(1).L(0^*)$$

$$= (L(0))^*.L(1).(L(0))^* = \{0\}^*.\{1\}.\{0\}^*$$

$$= \{0^n10^m \mid n,m \ge 0\}$$

Dado = {a, b} y la ER α= (a + b)*a, indique cuales son las cadenas de L(α)

$$L((a + b)*a) = L((a + b)*).L(a)$$

$$= (L(a + b))*.{a} = (L(a) \cup L(b))*. {a}$$

$$= {a,b}*{a}$$

• Expresión regular equivalente: dos expresiones regulares α y β son equivalentes y lo denotamos α = β , si describen el mismo lenguaje, es decir, $L(\alpha)$ = $L(\beta)$.

• Teorema: sean α , β , γ expresiones regulares sobre el alfabeto Σ , entonces:

1-
$$\Diamond \alpha = \alpha \Diamond = \emptyset$$

$$2-\lambda\alpha=\alpha\lambda=\alpha$$

$$5-\alpha+\emptyset=\alpha$$

$$6-\alpha+\alpha=\alpha$$

$$7-\alpha+\beta=\beta+\alpha$$

8-
$$\alpha$$
+(β + γ)=(α + β)+ γ

9-
$$\alpha^* = \alpha^* \alpha^* = (\alpha^*)^*$$

10-
$$\alpha^*=\lambda+\alpha\alpha^*$$

11-
$$\alpha\alpha^*=\alpha^*\alpha$$

12-
$$\alpha(\beta+\gamma)=\alpha\beta+\alpha\gamma$$

13-
$$(\alpha+\beta)y=\alpha y+\beta y$$

14-
$$(\alpha\beta)^*\alpha = \alpha(\beta\alpha)^*$$

15-
$$(\alpha+\beta)^*=(\alpha^*+\beta^*)^*=$$

 $(\alpha^*\beta^*)^*=(\alpha^*\beta)^*\alpha^*$

 Existen muchas equivalencias con respecto a expresiones regulares basadas en las correspondientes igualdades de lenguajes.

Ejemplo: sea $a \in \Sigma$ puede verse que (a + a) = a utilizando los lenguajes que describen

$$L(a + a) = L(a) \cup L(a) = \{a\} \cup \{a\} = \{a\} = L(a)$$

Por lo tanto
$$(a + a) = a$$

Muchas de estas igualdades se pueden demostrar por reasociación por ejemplo

$$\alpha(\beta\alpha)^* = (\alpha\beta)^*\alpha$$
, si $w \in \alpha(\beta\alpha)^*$,

entonces
$$w = \alpha_0(\beta_1 \alpha_1)...(\beta_n \alpha_n)$$

<mark>par</mark>a algún n≥0. Puesto que la concatenación es asociativa, <mark>se p</mark>uede reasociar la expresión

$$\mathbf{w} = (\alpha_0 \beta_1)(\alpha_1 \beta_2) \dots (\alpha_{n-1} \beta_n) \alpha_n$$

De aquí se obtiene que $\alpha(\beta\alpha)^* \subseteq (\alpha\beta)^*\alpha$ o que $L(\alpha(\beta\alpha)^*) \subseteq L((\alpha\beta)^*\alpha)$ de la misma forma se demuestra en sentido inverso con lo que se demuestra la igualdad.

 Para probar igualdades tambien se puede hacer uso de igualdades ya conocidas

Ej:
$$y=\alpha*\beta=(\lambda+\alpha*)\beta$$
 ya que $\alpha*=(\lambda+\alpha*)$
 $=(\lambda+\alpha\alpha*)\beta$
 $=\lambda\beta+\alpha\alpha*\beta$ por (13)
 $=\beta+\alpha\gamma$ por (2)
 $=\alpha\gamma+\beta$ por (7)

lo cual prueba que $y=\alpha*\beta$, implica que $y=\alpha y+\beta$