Dummit & Foote Ch. 3.2: More on Cosets and Lagrange's Theorem

Scott Donaldson

Oct. 2023

Let G be a group.

1. (10/1/23)

Which of the following are permissible orders of subgroups of a group of order 120: 1, 2, 5, 7, 9, 15, 60, 240? For each permissible order give the corresponding index.

Proof. From Lagrange's theorem, the order of a subgroup of a group of order 120 must divide 120. Then the permissible orders for subgroups are $1 = \frac{120}{120}$, $2 = \frac{120}{60}$, $5 = \frac{120}{24}$, $15 = \frac{120}{8}$, and $60 = \frac{120}{2}$. For each of these orders the index is given by the corresponding denumerator.

2. (10/2/23)

Prove that the lattice of subgroups of S_3 below is correct (i.e., prove that it contains all subgroups of S_3 and that their pairwise joins and intersections are correctly drawn).

Proof. The symmetric group S_3 contains 6 elements. By Lagrange's theorem, its proper subgroups must have order 2 or 3. Each of the subgroups in the lattice above have order 2 or 3, so there are no smaller or larger subgroups not depicted above.

From Corollary 10, a subgroup of order 2 must be isomorphic to Z_2 , that is, cyclic and generated by a single element of order 2. The three subgroups generated by the three elements of order 2 (the 2-cycles of S_3) are depicted above. Similarly, a subgroup of order 3 must be isomorphic to Z_3 and generated by a single element of order 3. The subgroup generated by (1,2,3) contains (1,3,2), so there is only a single subgroup of order 3.

Next, again by Lagrange's Theorem, a subgroup of two different containing groups must have an order that divides the order of both of the containing groups. First consider a subgroup of order 2 and a subgroup of order 3. Only 1 divides 2 and 3, so the intersection must be the identity. Similarly, if a subgroup of order 2 and a subgroup of order 3 are contained in a larger group, then that group's order must have both 2 and 3 as divisors. The smallest integer for which this is possible is 6, which is the order of all of S_3 .

Finally, consider a pair of subgroups of order 2. Their intersection is either the identity or else they are the same subgroup. Their join must have even order, but 4 does not divide 6 and any larger even number exceeds the order of S_3 . Thus their join is all of S_3 . This concludes the proof that the lattice of subgroups of S_3 is correct.

3. (10/2/23)

Prove that the lattice of subgroups of Q_8 below is correct.

Proof. The group Q_8 has order $8 = 2^3$, so by Lagrange's theorem its proper subgroups must have order 2 or 4. We will start from the bottom and work toward the top: There is only one element of order 2 in Q_8 , -1, and the cyclic subgroup generated by it is in the lattice.

For each of i, j, and k, $\langle -1 \rangle$ is contained in the subgroup generated by them (ex. $\langle i \rangle = \{\pm 1, \pm i\}$) and there are no intermediate subgroups, since there is no divisor of 4 that is strictly greater than 2. At this point, every element of Q_8 is represented, so there are no cyclic subgroups missing. We might ask if there is a subgroup of order 4 missing. If so, it cannot be cyclic, and from Ch. 1.1, Exercise 36, it must be isomorphic to V_4 . However, V_4 contains three elements of order 2, and Q_8 only has one, so there is no subgroup of Q_8 isomorphic to V_4 .

Finally, the join of any of the subgroups generated by i, j, or k must contain strictly more than 4 elements and its order must divide 8. Then any of their joins must have order 8, that is, be all of Q_8 .

4. (10/3/23)

Show that if |G| = pq for some primes p and q (not necessarily distinct) then either G is abelian or Z(G) = 1.

Proof. We will show, equivalently, that if |Z(G)| > 1, then G is abelian.

Let $x \in Z(G)$. From Corollary 9, the order of x divides |G| = pq. If |x| = pq, then $G = \langle x \rangle$ and so is abelian. Suppose without loss of generality that |x| = p. Now since the center of a group is a subgroup, we must have $\langle x \rangle \leq Z(G)$. If there exists a $y \in Z(G), y \notin \langle x \rangle$, then the order of Z(G) exceeds p and must divide pq, then it must be all of G and hence G is abelian. So suppose $Z(G) = \langle x \rangle$.

The center of a group is normal in that group, so G/Z(G) is well-defined. Since |Z(G)| = p, it has q cosets in G; that is, the quotient group G/Z(G) has prime order q and is thus isomorphic to Z_q , hence cyclic. From Ch. 3.1, Exercise 36., G is thus abelian.

5. (10/4/23)

Let H be a subgroup of G and fix some element $g \in G$.

(a) Prove that gHg^{-1} is a subgroup of G of the same order as H.

Proof. By definition elements of gHg^{-1} can be written in the form ghg^{-1} for some $h \in H$, so let $gh_1g^{-1}, gh_2g^{-1} \in gHg^{-1}$. Then we have:

$$(gh_1g^{-1})(gh_2g^{-1})^{-1} = gh_1g^{-1}gh_2^{-1}g_1 = gh_1h_2^{-1}g^{-1} \in gHg^{-1},$$

so gHg^{-1} fulfills the subgroup criterion and is thus a subgroup of G.

Next, let $\varphi_g: H \to gHg^{-1}$ be defined by $\varphi_g(h) = ghg^{-1}$ for all $h \in H$. This map is injective by the cancellation laws: $gh_1g^{-1} = gh_2g^{-1}$ implies that $h_1 = h_2$. It is also surjective: Let $x \in gHg^{-1}$. By definition $x = ghg^{-1}$ for some $h \in H$, so $\varphi_g(h) = x$. Therefore φ_g is a bijection, and so H and gHg^{-1} have the same order.

(b) Deduce that if $n \in \mathbb{Z}^+$ and H is the unique subgroup of G of order n then $H \subseteq G$.

Suppose that H is the unique subgroup of order n in G. Then for all $g \in G$, we must have $gHg^{-1} = H$ (it cannot be any other subgroup, because $|gHg^{-1}| = |H| = n$ and there is no other subgroup of order n in G). It follows that H is normal in G.

6. (10/4/23)

Let $H \leq G$ and let $g \in G$. Prove that if the right coset of Hg equals some left coset of H in G then it equals the left coset gH and g must be in $N_G(H)$.

Proof. Suppose Hg = xH for some $x \in G$. Now $g \in Hg$, so we must also have $g \in xH$. Then g = xh for some $h \in H$. It follows that $x = gh^{-1}$. So $Hg = xH = (gh^{-1})H = gH$, which in turns implies that $gHg^{-1} = H$. Therefore $g \in N_G(H)$.

7. (10/5/23)

Let $H \leq G$ and define a relation \sim on G by $a \sim b$ if and only if $b^{-1}a \in H$. Prove that \sim is an equivalence relation and describe the equivalence class of each $a \in G$. Use this to prove Proposition 4.

Proof. Let $a, b, c \in G$. We have $a \sim a$, because $a^{-1}a = 1 \in H$. If $a \sim b$, then we have $b^{-1}a \in H$. Now $b \sim a = a^{-1}b = (b^{-1}a)^{-1} \in H$, since H is closed under inverses, so $a \sim b$ implies that $b \sim a$ (and the logic holds in reverse). Finally, if $a \sim b$ and $b \sim c$, then $b^{-1}a, c^{-1}b \in H$. Then their product, $c^{-1}bb^{-1}a = c^{-1}a$, is an element of H, which implies $a \sim c$. The relation \sim is reflexive, symmetric, and transitive, therefore it is an equivalence relation.

Let $a \in G$ and let b lie in the left coset aH, so b = ah for some $h \in H$. Then $b^{-1}a = (ah)^{-1}a = h^{-1}a^{-1}a = h^{-1} \in H$, so $a \sim b$. This implies that aH is a subset of the equivalence class of a. And, if we have $a \sim b$, then $b^{-1}a \in H$, so $b^{-1}a = h$ for some $h \in H$. It follows that $b = ah^{-1} \in aH$, so the equivalence class of a is a subset of aH. Since each is contained in the other, the equivalence class of a under \sim is the left coset aH.

Now Proposition 4 states that:

- The set of left cosets of H in G form a partition of G.
- For all $a, b \in G$, aH = bH if and only if $b^{-1}a \in H$.
- In particular, aH = bH if and only if a and b are representatives of the same coset.

Since the equivalence class of a under \sim is exactly the left coset aH and equivalence classes partition a set, the left cosets of H in G partition G. The proof for the remaining items follows directly from the proof above that $a \sim b \iff b^{-1}a \in H \iff b \in aH$.

8. (10/6/23)

Prove that if H and K are finite subgroups of G whose orders are relatively prime then $H \cap K = 1$.

Proof. Let $H, K \leq G$ be finite subgroups whose orders are relatively prime. Let $x \in H \cap K$, so $x \in H$ and $x \in K$. From Corollary 9, the order of x divides the orders of both H and K. Since |H| and |K| are relatively prime, the order of x must be 1, therefore x = 1. It follows that $H \cap K = 1$.

9. (10/12/23)

This exercise outlines a proof of Cauchy's Theorem due to James McKay (Another proof of Cauchy's group theorem, Amer. Math. Monthly, 66(1959), p. 119). Let G be a finite group and let p be a prime dividing |G|. Let S denote the set of p-tuples of elements of G the product of whose coordinates is 1:

$$S = \{(x_1, x_2, ..., x_p) \mid x_1 x_2 ... x_p = 1\}.$$

(a) Show that S has $|G|^{p-1}$ elements, hence has order divisible by p.

Proof. Construct an element of S coordinate by coordinate. There are |G| choices for the first element x_1 . There are again |G| choices for the second element x_2 . We proceed similarly until the final element, which must satisfy the constraint that the product of all coordinates is 1. Therefore the final element must be equal to $(x_1x_2...x_{p-1})^{-1}$. We have freely chosen p-1 coordinates from among |G| possibilities; therefore $|S| = |G|^{p-1}$. \square

Define the relation \sim on \mathcal{S} by letting $\alpha \sim \beta$ if β is a cyclic permutation of α .

(b) Show that a cyclic permutation of S is again an element of S.

Proof. Since $\alpha \sim \beta$ implies that β is a cyclic permutation of α , we have

$$\alpha = (x_1, x_2, ..., x_p) \Rightarrow \beta = (x_{1+n}, x_{2+n}, ..., x_{p+n}),$$

where the subscripts of elements of β are taken mod p (although wrapping from 1 to p, rather than 0 to p-1).

The product of the coordinates of α is:

$$1 = \prod \alpha = x_1 x_2 ... x_p$$

$$= (x_1 ... x_n)(x_{n+1} ... x_p)$$

$$= (x_{n+1} ... x_p)(x_1 ... x_n) \text{ (if } ab = 1, \text{ then } ab = ba)$$

$$= (x_{1+n} ... x_{p-n+n})(x_{(p-n+1)+n} ... x_{p+n})$$

$$= x_{1+n} ... x_{p+n} = \prod \beta,$$

and so the product of β 's coordinates is 1, making it an element of \mathcal{S} . \square

(c) Prove that \sim is an equivalence relation on \mathcal{S} .

Proof. Let $\alpha, \beta, \gamma \in \mathcal{S}$. The relation \sim is:

- Reflexive: Let $\alpha = (x_1, x_2, ..., x_p)$. Then $x_i = x_{i+0}$ for all coordinates x_i , so α is a cyclic permutation of itself, and therefore $\alpha \sim \alpha$.
- Symmetric: Let $\alpha \sim \beta$, α, β indexed by x, y respectively. Since β is a cyclic permutation of α , we have $y_i = x_{i+n}$ for all $i \in \{1, ..., p\}$ for some $n \in \mathbb{Z}$. It follows that $x_i = y_{i+(p-n)}$ (subscripts mod p wrapping from 1 to p), so α is also a cyclic permutation of β , and therefore $\beta \sim \alpha$.
- Transitive: Let $\alpha \sim \beta$ and $\beta \sim \gamma$, with α, β as above and γ indexed by z. We have $y_i = x_{i+n}$ and $z_i = y_{i+k}$ for some $k, n \in \mathbb{Z}$. It follows that $z_i = x_{i+k+n}$, which implies that γ is a cyclic permutation of α , so $\alpha \sim \gamma$.

Therefore \sim is an equivalence relation on \mathcal{S} .

(d) Prove that an equivalence class contains a single element if and only if it is of the form (x, x, ..., x) with $x^p = 1$.

Proof. First, let $\alpha = (x, ..., x)$ and let $\alpha \sim \beta$. Then β is a cyclic permutation of α . Since α consists of a single, repeated coordinate value, we must have $\beta = (x, ..., x) = \alpha$. Therefore the equivalence class of α consists only of itself.

Next, let $\alpha \in \mathcal{S}$ and suppose that the equivalence class of α under \sim consists only of α . Suppose $\alpha = (x_1, x_2, ..., x_p)$. Let β be a cyclic permutation of α shifted by 1: $\beta = (x_2, x_3..., x_p, x_1)$. Now β is in the equivalence class of α , but we must have $\beta = \alpha$, so $x_{i+1} = x_i$ for all x_i . It follows that $x_2 = x_1, x_3 = x_2 = x_1$, and so every value is equal to x_1 . Then we have $\alpha = (x_1, ..., x_1)$, which is of the form (x, ..., x), and by definition we must have $x^p = 1$.

(e) Prove that every equivalence class has order 1 or p (this uses the fact that p is a prime). Deduce that $|G|^{p-1} = k + pd$, where k is the number of classes of size 1 and d is the number of classes of size p.

Proof. From (d), if $\alpha = (x, ..., x)$ for some $x \in G$, its equivalence class has order 1.

Let $\alpha = (x_1, x_2, ..., x_p)$. Then there are exactly p members in the equivalence class of α , and they are the cyclic permutations of α shifted by 0, 1, 2, ..., p-1, respectively. For example, the n-th member of the equivalence class is $(x_{1+n}, x_{2+n}, ..., x_{p+n})$.

The equivalence classes of the elements of S partition S. Suppose there are k equivalence classes of order 1, and d equivalence classes of order p. From (a), the order of S is $|G|^{p-1}$. Then we have $|G|^{p-1} = k + pd$.

(f) Since $\{(1,1,...,1)\}$ is an equivalence class of size 1, conclude from (e) that there must be a nonidentity element x in G with $x^p = 1$, i.e., G contains an element of order p.

Proof. From (e), we have $|G|^{p-1}=k+pd$ for some $k,d\geq 0$. From (a), p divides the order of $\mathcal{S}=|G|^{p-1}$, so we can write ps=k+pd for some s>0. Then k=ps-pd=p(s-d), and so p divides k. Because p is prime, this implies that k>1, so there are at least two elements whose equivalence classes have size 1. We already know that one is the identity; therefore there must be some element $\alpha\in\mathcal{S}, \alpha\neq(1,...,1)$ whose equivalence class under \sim has size 1. From (d), $\alpha=(x,...,x)$ for some $x\in G$, and we thus have $x^p=1$, which implies that |x|=p.

10. (11/2/23)

Suppose H and K are subgroups of finite index in the (possibly infinite) group G with |G:H|=m and |G:K|=n. Prove that l.c.m. $(m,n) \leq |G:H\cap K| \leq mn$. Deduce that if m and n are relatively prime then $|G:H\cap K|=|G:H|\cdot |G:K|$.

Proof. Let $g \in G$. Now $H \cap K$ is a subgroup of G, so the left cosets of it partition G. Consider the left coset:

$$g(H \cap K) = \{gx \mid x \in H \cap K\} = \{gx \mid x \in H\} \cap \{gx \mid x \in K\} = gH \cap gK.$$

Since |G:H|=m, there are m unique left cosets of H in G, and similarly there are n unique left cosets of K in G. Then there are most mn unique intersections of a left coset of H with a left coset of K. It follows that there are at most mn left cosets of $H \cap K$ in G, and so $|G:H \cap K| \leq mn$.

Since we now know that $H \cap K$ has finite index in G, it must also have finite index in H and K, respectively. Let $|H:H\cap K|=r$. Then there are r unique cosets of $H\cap K$ in H and m cosets of H in G. We have:

$$H = \bigcup_{i=1}^{r} h_i(H \cap K) \text{ for some } h_1, ..., h_r \in H, \text{ and}$$

$$G = \bigcup_{j=1}^{m} g_j H \text{ for some } g_1, ..., g_m \in G, \text{ therefore}$$

$$G = \bigcup_{j=1}^{m} g_j \Big(\bigcup_{i=1}^{r} h_i(H \cap K)\Big),$$

a partition of G into mr unique cosets of $H \cap K$, so the index of H in G divides the index of $H \cap K$ in G. An identical proof shows the same is true for K. Since m and n divide $|G:H \cap K|$, it must be no less than the least common multiple of the two. Therefore l.c.m. $(m,n) \leq |G:H \cap K| \leq mn$.

Note that if m and n are relatively prime, then their least common multiple is their product, in which case $|G:H\cap K|=|G:H|\cdot |G:K|$.

11. (11/2/23)

Let $H \leq K \leq G$. Prove that $|G:H| = |G:K| \cdot |K:H|$ (do not assume G is finite).

Proof. The proof in Exercise 10 above generalizes to this case. Since we can partition G into |G:K| cosets of K and K into |K:H| cosets of H, there are $|G:K| \cdot |K:H|$ unique cosets of H in G, and so $|G:H| = |G:K| \cdot |K:H|$. \square

12. (10/16/23)

Let $H \leq G$. Prove that the map $x \mapsto x^{-1}$ sends each left coset of H in G onto a right coset of H and gives a bijection between the set of left cosets and the set of right cosets of H in G (hence the number of left cosets of H in G equals the number of right cosets).

Proof. Let $\varphi: G \to G$ be defined by $\varphi(x) = x^{-1}$ for all $x \in G$. Consider:

$$\varphi(xH) = \{\varphi(xh) \mid h \in H\} = \{(xh)^{-1} \mid h \in H\} = \{h^{-1}x^{-1} \mid h \in H\} = Hx^{-1},$$

so φ maps left cosets of H onto right cosets of H.

Further, considering φ as a map from left cosets of H to right cosets of H, it is a bijection.

Toward injectivity, suppose that $\varphi(xH) = \varphi(yH)$ for some $x, y \in G$, and let $z \in xH$. Then $\varphi(z) = z^{-1} = hy^{-1}$, because $z \in xH$ and $\varphi(xH) = \varphi(yH)$. Inverting both sides, we obtain $z = (hy^{-1})^{-1} = yh^{-1} \in yH$, and so $xH \subseteq yH$. The same logic shows that $yH \subseteq xH$, so we must have xH = yH, and therefore φ is injective.

It is also surjective: Letting Hx be a right coset of H, by definition we have $\varphi(x^{-1}H) = Hx$. It is therefore a bijection, and so there are an equal number of left cosets and right cosets of H in G.

13. (10/16/23)

Fix any labelling of the vertices of a square and use this to identify D_8 as a subgroup of S_4 . Prove that the elements of D_8 and $\langle (1,2,3) \rangle$ do not commute in S_4 .

Proof. Label the vertices of a square starting at the upper-left corner and going clockwise 1, 2, 3, 4. We can assign to the generators r, s of D_8 the permutations $(1, 2, 3, 4), (2, 4) \in S_4$, respectively.

To show that the elements of D_8 and $\langle (1,2,3) \rangle$ do not commute, we note that:

$$(1,2,3) \cdot s = (1,2,3)(2,4) = (1,2,4,3)$$
, and $s \cdot (1,2,3) = (2,4)(1,2,3) = (1,4,2,3)$,

so s does not commute with $(1,2,3) \in S_4$. Therefore D_8 and $\langle (1,2,3) \rangle$ are not commuting subgroups of S_4 .

14. (10/17/23)

Prove that S_4 does not have a normal subgroup of order 8 or a normal subgroup of order 3.

Proof. From Corollary 10, a subgroup of order 3 is isomorphic to Z_3 , hence cyclic. So, without loss of generality, consider $\langle (1,2,3) \rangle \leq S_4$. Consider the conjugate of (1,2,3) by (1,2)(3,4):

$$(1,2)(3,4) \cdot (1,2,3) \cdot (1,2)(3,4) = (1,4,2),$$

which is not an element of $\langle (1,2,3) \rangle$. Therefore there is an element of S_4 that does not normalize $\langle (1,2,3) \rangle$ and, by isomorphism, any subgroup of order 3, so S_4 does not contain any normal subgroups of order 3.

Next, let $X \leq S_4$ with |X| = 8 and suppose that $X \leq S_4$. From Cauchy's Theorem, X contains an element of order 2, which may be either a single 2-cycle or a pair of disjoint 2-cycles. We will consider each case individually:

- Without loss of generality, suppose that $(1,2) \in X$. Because X is normal in S_4 , the conjugate element $(1,2,3) \cdot (1,2) \cdot (1,3,2) = (2,3)$ must lie in X. Because X is closed, the product $(1,2) \cdot (2,3) = (1,2,3)$ must lie in X, a contradiction since (from Corollary 9) a subgroup of order 8 contains no elements of order 3. Thus X is not normal in S_4 .
- Similarly, suppose that $(1,2)(3,4) \in X$. Again, the conjugate $(1,2,3) \cdot (1,2)(3,4) \cdot (1,3,2) = (1,4,3,2)$ must lie in X. So the product $(1,2)(3,4) \cdot (1,4,3,2) = (1,3)$ must lie in X. Then, since X contains a 2-cycle, it must contain an element of order 3, a contradiction. Thus X is again not normal in S_4 .

This concludes the proof that S_4 contains no normal subgroups of order 8 or order 3.

15. (10/19/23)

Let $G = S_n$ and for fixed $i \in \{1, 2,, n\}$ let G_i be the stabilizer of i. Prove that $G \cong S_{n-1}$.

Proof. From Ch. 2.2, Exercise 8., we have defined a bijection $\varphi: G_i \to S_{n-1}$ defined on a permutation $\sigma \in G_i$ and an element $m \in \{1, 2, ..., n\}$ it permutes:

$$\varphi(\sigma)(m) = \begin{cases} \sigma(m) & \text{if } \sigma(m) \le i \\ \sigma(m) - 1 & \text{if } \sigma(m) > i \end{cases}.$$

For $\sigma_1, \sigma_2 \in G_i$ and $m \in \{1, ..., n\}$, let $\sigma_2(m) = k$ and $\sigma_1(k) = p$. Let us consider the different cases for k and p.

1. $k \leq i, p \leq i$. Then:

$$(\sigma_1 \circ \sigma_2)(m) = \sigma_1(\sigma_2(m)) = \sigma_1(k) = p \le i$$
, which implies that
$$\varphi(\sigma_1 \circ \sigma_2)(m) = (\sigma_1 \circ \sigma_2)(m) = p.$$

Also:

$$\begin{split} \sigma_2(m) &= k \leq i \Rightarrow \varphi(\sigma_2(m)) = \sigma_2(m) = k, \text{ and} \\ \sigma_1(k) &= p \leq i \Rightarrow \varphi(\sigma_1(k)) = \sigma_1(k) = p, \text{ so} \\ & (\varphi(\sigma_1) \circ \varphi(\sigma_2))(m) = \varphi(\sigma_1) \big(\varphi(\sigma_2)(m) \big) \\ &= \varphi(\sigma_1) \big(\sigma_2(m) \big) \\ &= \varphi(\sigma_1)(k) = \sigma_1(k) = p, \end{split}$$

thus $\varphi(\sigma_1 \circ \sigma_2) = \varphi(\sigma_1) \circ \varphi(\sigma_2)$.

2. $k > i, p \le i$. As above, we have $(\sigma_1 \circ \sigma_2)(m) = p \le i$, which implies that $\varphi(\sigma_1 \circ \sigma_2)(m) = p$. Also:

$$\sigma_2(m) = k > i \Rightarrow \varphi(\sigma_2)(m) = \sigma_2(m) - 1 = k - 1.$$

Now note that, in the permutation $\varphi(\sigma_1)$, all values greater than or equal to i have been decremented by 1, so we have $\varphi(\sigma_1)(k-1) = \sigma_1(k) = p$. It follows that:

$$(\varphi(\sigma_1) \circ \varphi(\sigma_2))(m) = \varphi(\sigma_1) (\varphi(\sigma_2)(m))$$
$$= \varphi(\sigma_1)(k-1)$$
$$= \sigma_1(k) = p,$$

thus $\varphi(\sigma_1 \circ \sigma_2) = \varphi(\sigma_1) \circ \varphi(\sigma_2)$.

3. $k \leq i, p > i$. Then $(\sigma_1 \circ \sigma_2)(m) = p > i$, which implies that $\varphi(\sigma_1 \circ \sigma_2)(m) = (\sigma_1 \circ \sigma_2)(m) = p - 1$. As in the first case, $\varphi(\sigma_2)(m) = \sigma_2(m) = k$. So:

$$(\varphi(\sigma_1) \circ \varphi(\sigma_2))(m) = \varphi(\sigma_1) (\varphi(\sigma_2)(m))$$

$$= \varphi(\sigma_1)(k)$$

$$= \sigma_1(k) - 1 = p - 1,$$

thus $\varphi(\sigma_1 \circ \sigma_2) = \varphi(\sigma_1) \circ \varphi(\sigma_2)$.

4. k > i, p > i. As above, we have $\varphi(\sigma_1 \circ \sigma_2)(m) = p - 1$. As in the second case, we have $\varphi(\sigma_2)(m) = k - 1$; however, $\sigma_1(k) = p > i$, so $\varphi(\sigma_1(k-1)) = \sigma_1(k) - 1 = p - 1$. Then:

$$(\varphi(\sigma_1) \circ \varphi(\sigma_2))(m) = \varphi(\sigma_1) (\varphi(\sigma_2)(m))$$
$$= \varphi(\sigma_1)(k-1)$$
$$= \sigma_1(k-1) - 1 = p - 1,$$

thus $\varphi(\sigma_1 \circ \sigma_2) = \varphi(\sigma_1) \circ \varphi(\sigma_2)$.

This exhaustively shows that for all $\sigma_1, \sigma_2 \in G_i$, the equation $\varphi(\sigma_1 \circ \sigma_2) = \varphi(\sigma_1) \circ \varphi(\sigma_2)$ holds in S_{n-1} . Thus φ is an isomorphism, and so $G_i \cong S_{n-1}$. \square

16. (10/19/23)

Use Lagrange's Theorem in the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ to prove Fermat's Little Theorem: if p is a prime then $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$.

Proof. Recall that the order of the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is equal to the number of positive integers n for which n < p and n is relatively prime to p. Since p is prime, this is p-1.

For any $\overline{a} \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, the order of \overline{a} must divide p-1, and in particular, we have $\overline{a}^{p-1} = 1$. It follows that $\overline{a}^p = \overline{a}$. If $\overline{a} \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ is a representative of some $a \in \mathbb{Z}$, we then conclude that $a^p \equiv a \pmod{p}$.

17. (10/19/23)

Let p be a prime and let n be a positive integer. Find the order of \overline{p} in $(\mathbb{Z}/(p^n-1)\mathbb{Z})^{\times}$ and deduce that $n \mid \varphi(p^n-1)$ (here φ is Euler's function).

Proof. The order of $(\mathbb{Z}/(p^n-1)\mathbb{Z})^{\times}$ is equal to the number of positive integers k for which $k < p^n - 1$ and k is relatively prime to $p^n - 1$, that is, $\varphi(p^n - 1)$.

Now $p^n = (p^n - 1) + 1 \equiv 1 \pmod{p^n - 1}$. For all non-negative k < n, we have $p^k < p^n$, so n is the smallest positive integer for which $p^n \equiv 1 \pmod{p^n - 1}$, which implies that $|\overline{p}| = n$. It follows that n divides $\varphi(p^n - 1)$, the order of $(\mathbb{Z}/(p^n - 1)\mathbb{Z})^{\times}$.

18. (11/3/23)

Let G be a finite group, let H be a subgroup of G and let $N \subseteq G$. Prove that if |H| and |G:N| are relatively prime then $H \subseteq N$.

Proof. Toward contradiction, suppose that there exists an $h \in H, h \notin N$. The cyclic group $\langle hN \rangle$ is a subgroup of G/N, so its order divides |G/N| = |G:N|. Also, because for all $i,j \in \{0,...,|h|-1\}$, $h^iN = h^jN$ implies $h^i = h^j,\langle hN \rangle$ has order equal to |h|, so |h| divides |G:N|. Now since |H| and |G:N| are relatively prime and |h| divides both, we must have |h| = 1, which implies that h is the identity, and so lies in N, a contradiction.

Therefore for all $h \in H$, we must have $h \in N$, and so $H \leq N$.

19. (3/22/24)

Prove that if N is a normal subgroup of the finite group G and (|N|, |G:N|) = 1 then N is the unique subgroup of G of order |N|.

Proof. Suppose that |N| = k and |G| = mk with k, m relatively prime. Let $A \leq G$ and suppose that |A| = |N| = k.

Since $A \leq N_G(N) = G$, AN is a subgroup of G. Then |AN| must divide mk. Since m and k are relatively prime, |AN| divides only one of either m or k. Also, since $N \leq AN \leq G$, |N| = k divides |AN|. We cannot have k dividing |AN| and |AN| dividing m, therefore |AN| both divides and is divided by k, so it must be equal to k.

Now if there exists $a \in A$ such that $a \notin N$, then we would have |AN| > k. However, because |AN| = k, we must therefore have A = N. We conclude that N is the unique subgroup of G of order k.

20. (3/21/24)

If A is an abelian group with $A \subseteq G$ and B is any subgroup of G prove that $A \cap B \triangleleft AB$.

Proof. Given $x \in A \cap B$, $g \in AB$, it suffices to show that $gxg^{-1} \in A \cap B$, or equivalenty that $gxg^{-1} \in A$ and $gxg^{-1} \in B$. Because $x \in A$ and $A \subseteq G$ (therefore $A \subseteq AB$) we already have $gxg^{-1} \in A$.

To show that gxg^{-1} also lies in B, from Corollary 15, we note that since $B \leq N_G(A) = G$, AB is a subgroup of G. And from Corollary 14, since AB is a subgroup, it follows that AB = BA. Write g = ba for some $a \in A, b \in B$. Then:

$$gxg^{-1} = (ba)x(ba)^{-1} = baxa^{-1}b^{-1} = \underbrace{baa^{-1}xb^{-1}}_{A \text{ is abelian and } x \in A} = \underbrace{bxb^{-1} \in B}_{x \in B},$$

and so $gxg^{-1} \in B$. Therefore $gxg^{-1} \in A \cap B$ for all $x \in A \cap B$, $g \in AB$, and so $A \cap B \leq AB$.

21. (3/19/24)

Prove that \mathbb{Q} has no proper subgroups of finite index. Deduce that \mathbb{Q}/\mathbb{Z} has no proper subgroups of finite index.

Proof. We will first prove the more general case that a divisible abelian group has no proper subgroups of finite index, and then deduce that both \mathbb{Q} and \mathbb{Q}/\mathbb{Z} have no proper subgroups of finite index.

Let A be a divisible abelian group and let $B \leq A$. Since A is abelian, all subgroups are normal, so the quotient group A/B is well-defined. From Chapter 3.1, Exercise 15, A/B is also divisible. From Chapter 2.4, Exercise 19(b), no finite groups are divisible, so $|A:B| = |A/B| = \infty$.

Since \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are both divisible abelian groups, they therefore have no proper subgroups of finite index.

22. (3/22/24)

Use Lagrange's Theorem in the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ to prove *Euler's Theorem*: $a^{\varphi(n)} \equiv 1 \mod n$ for every integer a relatively prime to n, where φ denote's Euler's φ -function.

Proof. Given $n \geq 2$, the order of $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is $\varphi(n)$, the number of positive integers less than or equal to n and relatively prime to n.

Let $a \in \mathbb{Z}$ and consider $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. From Corollary 9, $\overline{a}^{|(\mathbb{Z}/n\mathbb{Z})^{\times}|} = \overline{a}^{\varphi}(n) = \overline{1}$. Therefore $a^{\varphi(n)} \equiv 1 \mod n$.