Devoir maison 10 - Géométrie et nombres complexes

Dans l'ensemble du problème on se place dans le plan complexe rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}).$

PARTIE I : Préliminaires

Soient IJK un triangle équilatéral direct non réduit à un point, et Γ son cercle circonscrit.

On note IJ l'arc de cercle de Γ d'extrémités I et J incluses, ne contenant pas le point K.

On note r_1 la rotation de centre I qui transforme J en K.

Soient M un point du plan, et $M_1 = r_1(M)$.

1a. Montrer que $MI + MJ = MM_1 + M_1K$.

Le triangle IJK est équilatéral direct donc r_1 est la rotation de centre I et d'angle $\frac{\pi}{2}$.

Le triangle IMM_1 est donc un triangle équilatéral et $MI = MM_1$

De plus, par conservation des longueurs par une rotation, on a $MJ = M_1K$.

Finalement, on a : $MI + MJ = MM_1 + M_1K$.

b. En déduire que $MI + MJ \ge MK$.

L'inégalité triangulaire dans le triangle MM_1K donne : $MM_1 + M_1K \ge MK$.

Avec le résultat précédent, on a : $MI + MJ \ge MK$.

- **2a.** Montrer que MI + MJ = MK si, et seulement si M_1 appartient au segment [MK]. Cela résulte du cas d'égalité dans l'inégalité triangulaire.
- **b.** Montrer que MI + MJ = MK si, et seulement si M appartient à IJ.

On a MI + MJ = MK si, et seulement si $M_1 \in [MK]$ ce qui équivaut à $(\overrightarrow{MI}, \overrightarrow{MM_1}) = (\overrightarrow{MI}, \overrightarrow{MK}) = \frac{\pi}{3}[2\pi]$ donc à $(\overrightarrow{MI}, \overrightarrow{MK}) = (\overrightarrow{JI}, \overrightarrow{JK})[2\pi]$.

D'après le théorème de l'angle inscrit, ce dernier résultat équivaut à $M \in \widehat{IJ}$.

PARTIE II

Soient a, b et c des réels strictement positifs, et A, B et C les points d'affixes respectives -a, b et ic.

On suppose que la mesure principale de l'angle orienté $(\overrightarrow{CA}, \overrightarrow{CB})$ est dans l'intervalle $0, \frac{2\pi}{3}$.

On note j le nombre complexe $j = e^{\frac{2i\pi}{3}}$.

Soient A', B' et C' les points du plan tels que CBA', ACB' et BAC' soient des triangles équilatéraux directs. On note ω, ω' et ω'' les affixes respectives des vecteurs $\overrightarrow{AA'}, \overrightarrow{BB'}$ et $\overrightarrow{CC'}$.

1a. Calculer $1 + i + i^2$.

j est une racine troisième de l'unité donc $1 + j + j^2 = 0$.

b. Démontrer que $\omega = a - bj^2 - cji$.

Par construction de A' son affixe est $ic + e^{\frac{i\pi}{3}}(b - ic)$.

Par construction de A son affixe est le $\frac{1}{2}$ e $\frac{1}{2}$ e $\frac{1}{2}$.

On a donc : $\omega = ic + e^{\frac{i\pi}{3}}(b - ic) + a = a + ic\underbrace{\left(1 - e^{\frac{i\pi}{3}}\right)}_{.} + be^{\frac{i\pi}{3}} = a - icj - j^2b$.

c. Montrer que $\omega' = \omega j$ et $\omega'' = \omega j^2$.

On a: $\omega' = -a + e^{\frac{i\pi}{3}}(ic + a) - b = a\underbrace{\left(e^{\frac{i\pi}{3}} - 1\right)}_{i} + cie^{\frac{i\pi}{3}} + b = aj - icj^{2} - j^{3}b = j\omega.$

L'autre démonstration est similaire.

d. Justifier que $(\overrightarrow{AA'}, \overrightarrow{BB'}) = \frac{2\pi}{3} [2\pi]$ et que AA' = BB' = CC'. On a $(\overrightarrow{AA'}, \overrightarrow{BB'}) = \arg\left(\frac{\omega'}{\omega}\right) = \arg(j) = \frac{2\pi}{3}[2\pi].$

D'après la question précédente, j étant un nombre complexe de module 1; on a $|\omega| = |\omega'| = |\omega''|$ donc AA' = BB' = CC'.

2a. Montrer que toute droite passant par un point M_0 d'affixe z_0 admet une équation complexe de la

$$u(\overline{z} - \overline{z_0}) - \overline{u}(z - z_0) = 0$$

où $u \in \mathbb{C}$.

Un point M d'affixe z appartient à la droite passant par M_0 d'affixe z_0 et dirigée par $\overrightarrow{u_0}$ d'affixe usi, et seulement si $\overrightarrow{MM_0}$ et $\overrightarrow{u_0}$ sont colinéaires, ce qui équivaut à

$$\frac{z-z_0}{u} = \overline{\left(\frac{z-z_0}{u}\right)} \text{ ce qui \'equivaut \'a } u(\overline{z}-\overline{z_0}) - \overline{u}(z-z_0) = 0.$$

b. Démontrer que les droites (AA'), (BB') et (CC') admettent pour équations respectives :

$$\omega(\overline{z} + a) - \overline{\omega}(z + a) = 0 \qquad (i)$$

$$\omega j(\overline{z} - b) - \overline{\omega} j^2(z - b) = 0$$
 (ii)

$$\omega j^2(\overline{z} + ic) - \overline{\omega} j(z - ic) = 0$$
 (iii)

Dans la forme précédente, pour la droite (AA') on prend $u = \omega$ et $z_0 = -a$;

pour la droite (BB'), on prend $u = \omega' = \omega j$ et $z_0 = b$;

pour
$$(CC')$$
, on prend $u = \omega'' = \omega j^2$ et $z_0 = ic$.

On obtient les résultats attendus.

Montrer que les droites (AA'), (BB') et (CC') sont concourantes en un point F.

On a $(\overrightarrow{AA'}, \overrightarrow{BB'}) = \frac{2\pi}{3} [2\pi]$ donc (AA') et (BB') ne sont pas parallèles. On appelle F leur point d'intersection et z_F son affixe.

En sommant les premiers termes des égalités (i),(ii) et (iii) on obtient pour $z=z_F$:

En sommant les premiers termes des égames (t), (tt) et (ttt) on obtent pour
$$z = \omega(\overline{z_F} + a) - \overline{\omega}(z_F + a) + \omega \mathbf{j}(\overline{z_F} - b) - \overline{\omega}\mathbf{j}^2(z_F - b) + \omega \mathbf{j}^2(\overline{z_F} + \mathbf{i}c) - \overline{\omega}\mathbf{j}(z_F - \mathbf{i}c) = \omega \overline{z_F}(1 + \mathbf{j} + \mathbf{j}^2) + \omega a - \omega \mathbf{j}b + \omega \mathbf{j}^2\mathbf{i}c - \overline{\omega}z_F(1 + \mathbf{j}^2 + \mathbf{j}) - \overline{\omega}a + \overline{\omega}\mathbf{j}^2b + \overline{\omega}\mathbf{j}\mathbf{i}c = \omega(a - \mathbf{j}b + \mathbf{j}^2\mathbf{i}c) - \overline{\omega}(a - \mathbf{j}^2b - \mathbf{j}\mathbf{i}c) = 0$$

$$\omega \underbrace{\left(a - \mathbf{j}b + \mathbf{j}^{2}\mathbf{i}c\right)}_{\bullet} - \overline{\omega} \underbrace{\left(a - \mathbf{j}^{2}b - \mathbf{j}\mathbf{i}c\right)}_{\bullet} = 0$$

Comme z_F vérifie les égalités (i) et (ii) on en déduit qu'il vérifie (iii) donc que F est sur (CC').

PARTIE III

On admet que le point F est situé à l'intérieur du triangle ABC.

1a. Démontrer que $(\overrightarrow{FB}, \overrightarrow{FA'}) = \frac{\pi}{3}[2\pi]$.

$$(\overrightarrow{FB}, \overrightarrow{FA'}) = (\overrightarrow{B'B}, \overrightarrow{AA'}) = \pi + (\overrightarrow{BB'}, \overrightarrow{AA'}) = \pi - \frac{2\pi}{3} = \frac{\pi}{3}[2\pi].$$

b. En déduire que le point F appartient au cercle circonscrit au triangle CBA'. $\left(\overrightarrow{FB}, \overrightarrow{FA'}\right) = \left(\overrightarrow{CB}, \overrightarrow{CA'}\right)[2\pi]$ donc d'après le théorème de l'angle inscrit, F appartient au cercle

circonscrit au triangle CBA', plus précisément $F \in \stackrel{\frown}{BC}$.

Dans la suite on pourra utiliser les résultats établis dans la partie I.

- 2. Soit f l'application définie pour tout point du plan M par f(M) = MA + MB + MC.
 - a. Montrer que f(F) = AA'. D'après la première partie, FB + FC = FA' donc FA + FB + FC = FA + FA' = AA' car $F \in [AA']$.
- **b.** Montrer que pour tout point M du plan , $f(M) \ge AA'$, puis que si M n'appartient pas à la droite (AA') alors f(M) > AA'. Pour tout point M du plan, d'après la partie I, $MB + MC \ge MA'$ donc $f(M) \ge MA + MA' \ge AA'$, la dernière inégalité étant stricte si $M \notin [AA']$.
- c. En déduire que pour tout point M du plan distinct de F, f(M) > AA'. On a vu à la question précédente que si $M \notin [AA']$, alors f(M) > AA'. Si $M \in [AA'] \setminus \{F\}$ alors $M \notin (BB')$ donc $MA + MB + MC \ge MB + MB' > BB'$ et comme BB' = AA' on a le résultat.
- 3. Démontrer que f admet un minimum, atteint en un seul point. On a montré que f(F) = AA' et que pour tout point M distinct de F, f(M) > AA'. On en déduit que f a pour minimum AA' atteint uniquement en F.