Flux

Idea:

The flux of a Vector field \vec{F} through a surface S is defined as

$$\iint_S \vec{F} \cdot \vec{n} \mathrm{d}S$$

where \vec{n} is the unit normal vector of that surface

There's no 3D version of it, because 3D objects have infinite normal vectors.

Geometric Intuition

The amount of the vector field flowing through the surface.

Surface Living in 3D

<u>Mapping > From 2D to 3D</u>: Surface S is given by $\vec{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$

Unit normal is $\frac{\vec{r}_u \times \vec{r}_v}{|\vec{r}_u \times \vec{r}_v|}$

$$\iint_S ec{F} \cdot ec{n} \mathrm{d}S = \iint_S ec{F} \cdot rac{ec{r}_u imes ec{r}_v}{|ec{r}_u imes ec{r}_v|} \mathrm{d}S$$

Also, $\mathrm{d}S = |ec{r}_u imes ec{r}_v| \mathrm{d}u \mathrm{d}v$, so

$$\iint_S ec{F} \cdot ec{n} \mathrm{d}S = \iint_D ec{F} \cdot rac{ec{r}_u imes ec{r}_v}{\left| ec{r}_u imes ec{r}_v
ight|} (\left| ec{r}_u imes ec{r}_v
ight| \mathrm{d}u \mathrm{d}v) = \iint_D ec{F} \cdot (ec{r}_u imes ec{r}_v) \mathrm{d}u \mathrm{d}v$$