

قضیه تلگان

امیر عباس شایگانی اکمل

یادآوری گراف

$$A_{a} = \begin{bmatrix} -1 & +1 & +1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & +1 & 0 \\ 0 & 0 & -1 & +1 & 0 & +1 \\ +1 & 0 & 0 & 0 & -1 & -1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & +1 & 0 & +1 \end{bmatrix}$$

(b)

قضیه تلکان

- برای تمام شبکه ها اعم از خطی، غیر خطی، متغیر با زمان یا نامتغیر با زمان قابل استفاده است. تفاوت نمی کند مقادیر اعداد، توابع یا فازورها استفاده شوند.
 - تنها محدودیت برای استفاده از قضیه تلگان، فشرده بودن مدار و صدق کردن قوانین KVL و KVL بر ولتاژها و جریان های شاخه ها است.

• رعایت جهت های قراردادی الزامی است.

بیان قضیه تلکان

Tellegen's theorem Consider an arbitrary circuit. Let the digraph \mathcal{G} have b branches. Let us use associated reference directions. Let $\mathbf{i} = (i_1, i_2, \dots, i_b)^T$ be any set of branch currents satisfying KCL for \mathcal{G} and let $\mathbf{v} = (v_1, v_2, \dots, v_b)^T$ be any set of branch voltages satisfying KVL for \mathcal{G} , then

$$\sum_{k=1}^{b} v_k i_k = 0 \qquad \text{or equivalently} \qquad \mathbf{v}^T \mathbf{i} = 0 \tag{7.1}$$

$V^{T}J=(A^{T}e)^{T}J=(e^{T}(A^{T})^{T})J=(e^{T}A)J$ = $e^{T}(AJ)=e(0)=0$

V بردار ولتاژ شاخه ها J بردار جریان شاخه ها e بردار ولتاژ گره ها A ماتریس تلاقی گره با شاخه (مختصر شده)

شاخه	1	۲	٣	٤	٥
ولتاژ (ولت)	17	٩	٣	-٣	٦
جريان (آمپر)	-1	1	٣	-7	-۲
توان	-17	٩	٩	٦	-17

شاخه	١	۲	٣	٤	٥
ولتاژ (ولت)	١٨	_٦	72	١٦	٨
جريان (آمپر)	٦	_٦	-۸	۲	۲
توان	١٠٨	٣٦	-197	747	17

شاخه	١	۲	٣	٤	٥
ولتاژ (ولت)از مثال ۱	17	٩	٣	-٣	7
جریان (آمپر) از مثال ۲	7	-٦	-۸	۲	۲
حاصلضرب ولتاژ در جریان شاخه	٧٢	-08	-72	-7	١٢

شاخه	١	۲	٣	٤	٥
ولتاژ (ولت)از مثال ۲	١٨	-٦	78	١٦	٨
جریان (آمپر) از مثال ۱	-1	١	٣	-۲	-7
حاصلضرب ولتاژ در جریان شاخه	-11	-٦	٧٢	-47	-17

24 In the circuits shown in Fig. P1.24, let v_k and i_k be the branch voltage and current in circuit A and \hat{v}_k and \hat{i}_k be the branch voltage and current in circuit B. The following measurements have been obtained:

$$i_4 = 1 \text{ A}$$
 $\hat{v_s} = 3 \text{ V}$ $v_L = 2 \text{ V}$

Use a particular form of Tellegen's theorem to determine \hat{v}_L , where R_1 , R_2 , and R_3 are unknown resistors satisfying Ohm's law.

$$\sum_{k=1}^{5} v_k j_k = 0 \qquad \sum_{k=1}^{5} \widehat{v_k} \widehat{j_k} = 0$$

$$\sum_{k=1}^{5} v_k j_k = 0 \qquad \sum_{k=1}^{5} \widehat{v_k} \widehat{j_k} = 0 \qquad \sum_{k=1}^{5} v_k \widehat{j_k} = 0$$

$$2(-1) + R_1 i_1 \hat{i}_1 + R_2 i_2 \hat{i}_2 + R_3 i_3 \hat{i}_3 + 2 \frac{\widehat{v_L}}{2}$$

= $3(-1) + R_1 \hat{i}_1 i_1 + R_2 \hat{i}_2 i_2 + R_3 \hat{i}_3 i_3 + \widehat{v_L} 2$

$$\widehat{v_L} = 1$$

یکی از نتایج تلکان

20 Let N be a two-port made of arbitrary interconnections of linear two-terminal linear resistors (i.e., each resistor satisfies Ohm's law: $v_i = R_i i_j$). Consider the following two experiments:

Experiment 1. Drive N with two voltage sources v'_1 and v'_2 and measure the resulting port currents i'_1 and i'_2 , respectively. (See Fig. P1.20.)

Experiment 2. Drive N with two voltage sources v_1'' and v_2'' and measure the resulting port currents i_1'' and i_2'' , respectively.

(a) Prove that the two sets of measurements are related as follows:

$$v_1'i_1'' + v_2'i_2'' = v_1''i_1' + v_2''i_2'$$

این نتیجه برای حالت دائم سینوسی هنگامیکه شبکه N از RLC تشکیل شده باشد نیز معتبر است.

نکته: در حالت دائم سینوسی از فازورهای ولتاژ و جریان استفاده می شود.

امپدانس نقطه تحریک

$$Z(j\omega) = \frac{2P_{\text{ave}} + 4j\omega[(\mathscr{E}_{M}(\omega) - \mathscr{E}_{E}(\omega)]}{|I_{1}|^{2}}$$

 P_{ave} = average power dissipated in the resistors of \mathcal{N}

 \mathcal{E}_{M} = average magnetic energy stored in \mathcal{N}

 \mathscr{C}_E = average *electric* energy stored in $\mathcal N$

نتایج امپدانس نقطه تحریک

COMMENTS

1. As expected Re[$Z(j\omega)$] is $2P_{ave}/|I_1|^2$: The larger the dissipation, the larger the real part of the input impedance. [See also Eq. (5.15) above.] 2. If \mathcal{N} is purely reactive (only L's and C's, no resistors), then $Z(j\omega)$ is purely imaginary; furthermore Im[$Z(j\omega)$] $\stackrel{\triangle}{=} X(j\omega)$ is positive or negative according to whether $\mathscr{C}_M(\omega) > \mathscr{C}_E(\omega)$ or vice versa. [Recall the series RL, $Z = R + j\omega L$, or the series RC circuit, $Z = R - j(1/\omega C)$.]

- 3. Equation (5.38) implies the following facts:
- (a) If \mathcal{N} consists only of passive resistors and/or passive inductors—often called a passive RL circuit—then

$$0 \le \angle Z(j\omega) \le 90^{\circ}$$
 for all real ω 's

(b) If \mathcal{N} consists only of passive resistors and/or passive capacitors—called a passive RC circuit—then

$$-90^{\circ} \le \angle Z(j\omega) \le 0$$
 for all real ω 's

(c) In the general case, if \mathcal{N} has only passive R's, L's, C's, transformers, and gyrators, then

$$-90^{\circ} \le \angle Z(j\omega) \le +90^{\circ}$$
 for all real ω 's

or equivalently

$$\text{Re}[Z(j\omega)] \ge 0$$
 for all real ω 's

4. Similar conclusions hold for $Y(j\omega)$, by duality.