Задачи по висша алгебра

Задача 1. За кои цели числа b частното $\frac{11b+5}{5b+7}$ също e цяло?

Задача 2. Докажете, че за всяко $n \in \mathbb{N}$ числото $2^{3^n} + 1$ се дели на 3^{n+1} , но не се дели на 3^{n+2} .

Задача 3. Решете уравнението 198x + 164y = 10 в цели числа.

Задача 4. Решете ребуса HOC*HOC=AБАНОС, където на еднаквите букви отговарят еднакви цифри, а на различните букви - различни цифри.

Задача 5. Нека p u q ca pазлични <math>npocmu числа. Докажете, че $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.

Задача 6. Намерете всички нечетни прости числа p, такива че $15^{\frac{p-1}{2}} \equiv 12 \pmod{p}$.

Задача 7. *Решете уравнението* $\varphi(n) = 12$.

Задача 8. Нека $A = \{(a,b,c) \in \mathbb{R}^3 \mid ac \neq 0\}$. Въвеждаме операция $\circ: A \times A \to A$, оперделена от

 $(a_1, b_1, c_1) \circ (a_2, b_2, c_2) = (a_1 a_2, a_1 b_2 + b_1 c_2, c_1 c_2).$

Докажете, че A е група относно \circ и $H = \{(a,b,c) \in A \mid a=c\}$ е подгрупа на A.

Задача 9. Нека $G = \mathbb{Q} \setminus \{\frac{1}{7}\}$. Въвеждаме операцията $*: G \times G \to G$, с равенството a*b = a+b-7ab. Докажете, че (G,*) е група.

Hамерете a * a * a * ... * a, където има n onepayuu *.

Задача 10. В множеството \mathbb{R}^2 въвеждаме операция \oplus по правилото:

$$(a,b) \oplus (c,d) = (a+c,be^{-c}+de^{-a})$$

Докажете, че (\mathbb{R}^2,\oplus) е група.

Задача 11. Нека $H = \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a,b \in \mathbb{Z}_3, \ (a,b) \neq (0,0) \}.$

Докажете, че Н е циклична група относно умножението на матрици.

Задача 12. $Heкa\ A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\ u\ B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$

Означаваме с $G = \langle A, B \rangle$ подгрупата на $GL_2(\mathbb{R})$, породена от матриците A и B. Намерете реда на G, както и редовете на всичките ѝ елементи.

Колко различни подгрупи има G?

Задача 13. Докажете, че групите $\mathbb{Z}_{143} \times \mathbb{Z}_7$ и $\mathbb{Z}_{13} \times \mathbb{Z}_{77}$ са изоморфни. Кои са подгрупите и факторгрупите на тази група?

Задача 14. Намерете всички възможни стойности на реда на елемент от симетричната група S_8 .

Задача 15. Нека G е група и H е подгрупа. Въвеждаме бинарна \sim релация над G:

$$a \sim b \Leftrightarrow a^{-1}b \in H$$

Докажете, че $\sim e$ релация на еквивалентност. Намерете класовете на еквивалентност по тази релация.

Задача 16. Намерете центъра Z на групата на кватернионите Q_8 . Кои са съседните класове на Q_8 по Z? Напишете таблицата за умножение на съседни класове. На коя група е изоморфна факторгрупата Q_8/Z ?

Задача 17. Нека $G = \{(a, b, c) \in \mathbb{R}^3 \mid ab \neq 0\}$. Въвеждаме операция в G по правилото

$$(a_1, b_1, c_1) \cdot (a_2, b_2, c_2) = (a_1 a_2, b_1 b_2, a_1 c_2 + c_1 b_2)$$

Нека $H = \{(a, b, c) \in G \mid a = 1\}$ и $K = \{(a, b, c) \in G \mid a = b\}$. Докажете, че G е неабелева група, $H \triangleleft G$, $K \triangleleft G$ и $G/H \cong \mathbb{R}^* \cong G/K$.

Задача 18. Нека $M = \mathbb{R} \cup \{+\infty\}$. В M въвеждаме операции \oplus $u \odot$ така: $x \oplus y = \min(x,y)$ $u \ x \odot y = x + y$.

Kou om аксиомите за пръстен са изпълнени в (M, \oplus, \odot) ?

Задача 19. Нека $F = \{f : \mathbb{R} \to \mathbb{R} \mid f$ — непрекъсната $\}$. Разглеждаме и подмножествата $A = \{f \in F \mid f(0) = 0\}, \ B = \{f \in F \mid f(0) = 1\} \ u \ C = \{f \in F \mid f(0) = f(1) = 0\}.$

Да се докаже, че F е пръстен относно поточковите операции събиране и умножение на функции. Кои от подмножествата A, B, C са подпръстени на M?

Задача 20. Нека $(R, +, \cdot)$ е пръстен с единица 1. Въвеждаме нови операции \oplus и \odot в R по правилата $x \oplus y = x + y - 1$ и $x \odot y = x + y - x \cdot y$.

Докажете, че (R, \oplus, \odot) е пръстен, изоморфен на $(R, +, \cdot)$.

Задача 21. Нека p е просто число и $R_p = \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a,b \in \mathbb{Z}_p \}$. Докажете, че R_p е комутативен пръстен c единица относно обичайните операции c матрици. Покажете още, че R_3 е поле, а R_5 не е поле.

Задача 22. Нека $R_1 = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{Q} \}$ и $R_2 = \{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b \in \mathbb{Q} \}$. Кои от следните са изполнени:

- $R_1 < M_2(\mathbb{Q}), R_1 \lhd M_2(\mathbb{Q});$
- $R_2 < M_2(\mathbb{Q}), R_2 \lhd M_2(\mathbb{Q});$
- $R_2 < R_1, R_2 \lhd R_1$.

Задача 23. Нека $I=(9+\sqrt{95})\lhd \mathbb{Z}[\sqrt{95}]$ е главният идеал, породен от $9+\sqrt{95}$. Докажете, че $I=\{a+b\sqrt{95}\ |\ a,b\in \mathbb{Z}:\ 14/(b+3a)\}\ u\ \mathbb{Z}[\sqrt{95}]/I\cong \mathbb{Z}_{14}$.

Задача 24. Нека $R=\{\begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \mid a,c,d\in\mathbb{Z}\}$ и p е просто число. Разглеждаме подмно-

жеествата I и J на R определени c $I=\{\begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \in R \,|\, p/a\}$ и $I=\{\begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \in R \,|\, p/a,\, p/d\}.$ Докажате, че I и J са идеали на R и $R/I\cong \mathbb{Z}_p$ е поле, а $R/J\cong \mathbb{Z}_p\times \mathbb{Z}_p$ не е поле.

Задача 25. Нека $K = \{f \mid f : \mathbb{R} \to \mathbb{R}\}, M = \{f \in K \mid f(0) = 0\} \ u \ N = \{f \in K \mid f(0) = f(1) = 0\}.$ Докажете, че $M \lhd K, N \lhd K, K/M$ е поле, а K/N не е поле.

Задача 26. Нека $R = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a,b \in \mathbb{Q} \}$. Докажете, че R е пръстен и намерете всички идеали и факторпръстени на R.

Задача 27. Нека $I=360\mathbb{Z} \lhd \mathbb{Z}$. Да означим $J=\{k\in \mathbb{Z} \mid \exists n\in \mathbb{N}: k^n\in I\}$. Докажете, че $J\lhd \mathbb{Z}$ и намерете \mathbb{Z}/J .

Задача 28. Нека $f,g\in\mathbb{R}[x]$, като $f=x^4+x^3-5x^2+3x+8,\ g=x^3+2x^2-4x-5.$ Намерете (f,g), както и полиноми $u,v\in\mathbb{R}[x]$, такива че (f,g)=fu+gv.

Задача 29. Докажете, че факторпръстенът $\mathbb{Z}_3[x]/(x^3 + \overline{2}x + \overline{1})$ е поле. Пресметнете $(\overline{2}x^2 + 1)(x^2 + x + \overline{1})^{-1}$ в това поле.

Задача 30. Намерете полином f от трета степен c реални коефициенти със следните свойства:

- f дава остатък -3x-10 при деление c полинома x^2+1 ;
- За корените x_1 , x_2 , x_3 на f е изпълнено $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = 1$ и $\frac{1}{x_1^2} + \frac{1}{x_2^2} + \frac{1}{x_3^2} = 19$.

Задача 31. Нека $f(x) = x^4 - 8x^3 + 22x^2 + px + 16 \in \mathbb{R}[x]$. Намерете p, ако за корените x_1, x_2, x_3, x_4 на f е в сила равенството $x_1 + x_2 + x_3 = x_4$.

Задача 32. За кои $\lambda \in \mathbb{C}$ полиномът $g = x^4 - x^3 + \lambda x^2 - x - 6 \in \mathbb{C}[x]$ има два противо-положни корена?

Задача 33. За кои стойности на p и q полиномът $f=x^4+2px^3+qx+1\in\mathbb{C}[x]$ има трикратен корен?

Задача 34. Представете сумата $\frac{x_1}{x_2+x_3} + \frac{x_2}{x_1+x_3} + \frac{x_3}{x_1+x_2}$ чрез елементарните симетрични полиноми σ_1 , σ_2 , σ_3 .

Задача 35. Нека x_1, x_2, x_3 са корените на полинома $f = x^3 + px + q$. Намерете $x_1^5 + x_2^5 + x_3^5$.

Задача 36. Нека $x_1,\ x_2,\ x_3$ са корените на полинома $f=x^3+px+q,$ като $f(1)\neq 0.$ Изразете чрез p и q сумата $\sum_{i=1}^3 \frac{x_i}{(1-x_i)^2}.$

Задача 37. Нека $f = x^4 + x^3 - 4x^2 - 5x - 5$. Разложете f на неразложими над полето F полиноми, където:

a)
$$F = \mathbb{C}$$
 6) $F = \mathbb{R}$ 6) $F = \mathbb{Q}$

Задача 38. Докажете, че полиномът $x^4 + 2x^3 + 3x^2 + 4x + 5$ е неразложим над \mathbb{Q} .

Задача 39. Нека $I = \{ f \in \mathbb{Z}[x] : 10/f(0) \}$. Докажете, че $I \lhd \mathbb{Z}[x]$ и намерете $\mathbb{Z}[x]/I$.