ECONOMICS Lecture 14 Production Theory: Cost

Biwei Chen

Topics

- Output and Cost Functions
- Total, Average, Marginal Costs
- Fixed Costs and Variable Costs
- Short-run and Long-run Costs

This lecture focuses on the costs of doing business, derives cost functions from the production function, distinguishes various kinds of costs, and applies them to firm's production decisions.

The Costs of Production

- Production incurs costs as a result of investing in capital, hiring labor, acquiring materials, paying taxes and fees.
- Lowering costs is an essential task of doing business.
- However, economic cost is different from accounting cost.
- How are they different? Recall the opportunity cost.
- Accounting cost is recorded as past and current expenses for bookkeeping purposes, but sometimes it can be misleading.
- Economic cost requires us to think ahead for current and ongoing events in terms of alternative decisions.
- Highlights: Historical cost is not a cost. No choice, no cost.

The Production Cost: Example

- □ Consider an orchard production, to produce apples, a farmer has planted 100 trees. Each apple tree is \$100. What is the total monetary cost of growing 100 apple trees?
- □ After 5 years, the orchard farmer hires 20 workers to work 8 hours a day to harvest apples. Each worker, on average, can pick 40 apples and is paid \$10 per hour.
 - 1. What is the production cost per day?
 - 2. Is the \$10,000 a cost of production today?
 - 3. Are the apple trees part of production cost today?
 - 4. Would the historical monetary cost \$10,000 matter in making decision on hiring workers today?

Production Cost is Opportunity Cost

- The apple farm production requires two types of input factors.
- The workers are all hourly paid and incur costs as long as they are picking apples. The labor costs are inevitable for a ongoing production. These costs are directly related to output.
- The apple trees were bought many years ago and do not incurred any cost during the harvest. Therefore, the apple trees are not costs today as long as the production is going on.
- The apple trees become costly when the owner wants to change or leave the business. He can sell some or all of his apple trees.
- The opportunity cost of the apple trees today is the market price of the apple trees when the owner sell them right away.

Production Cost and Function

- Cost Function C=F(Q) describes the relationship between total output and its corresponding cost—from Q to C.
- Cost is directly related to the quantity of output.
- Assuming staying in business or continuing production, all the cost is incurred from day-to-day operation and production, e.g, workers' wage, raw materials, energy and electricity.
- Production cost is incurred because decisions regarding employment and output have to be made from day to day.
- Similar to production function, cost function can be modeled in linear or nonlinear equations.

Linear Cost Function: Example

- During the harvest, the apple farm hires 20 workers with each working 8 hours a day to pick up apples. Each worker, on average, can pick 40 apples per hour. Hourly wage is \$10. What is Q(L)?
- What is the total cost of production per day? 20*8*10=\$1,600
- What is the total cost of production per day if L working hours?
- TC=W*L=Function(Q). Q is the quantity of apple produced, which in turn is a function of L: Q=40L. Thus, L=Q/40.
- What is the total cost?TC=W*L=W*(Q/40)
- What is average cost per apple? AC=TC/Q=W/40=\$0.25
- What is the marginal cost? $MC = \Delta TC/\Delta Q = W/40 = \0.25
- Can you draw a graph for TC, AC, MC as a function of Q?

Firms' Cost Functions: MC & AC

Quadratic Cost Function: Example

- Recall the law of diminishing marginal product. What kind of production function could describe this pattern?
- How could we derive its corresponding cost function?
- Let's consider $Q=L^{1/2}$ and derive its cost function C=C(Q).
- $TC=W*L=W*Q^2$ and AC=TC/Q=W*(L/Q)=W/APL=?
- $MC = \Delta TC/\Delta Q = W* (\Delta L/\Delta Q) = W/MPL = ?$
- Can you graph TC, AC and MC? What are their relations?
- To produce additional output: Hire more labor. As L rises, MPL falls...causing W/MPL to rise...causing MC to rise.
- Hence, diminishing marginal product and increasing marginal cost are two sides of the same production process.

Cost Functions: Examples

• Suppose MC=\$2, what are the AC and TC at Q=10?

• Suppose MC=\$2Q, what are the AC and TC at Q=5?

• Suppose $MC=(Q-2)^2+2$, what would be the TC and AC when Q=1 and Q=3.

Marginal Cost and Average Cost

As a firm increases output, the marginal cost will fall initially but rise eventually. Why?

Also note when MC<AC, AC will fall; when MC>AC, AC will rise. MC intersects AC at the bottom of AC. Why?

In the production process, the law of diminishing marginal product governs output progression and the cost structure of the firm.

From Output to Cost Functions

- Given a production function, it is straightforward to derive the cost functions.
- In fact, the output function and cost function are "mirror images" of each other.
- However, the key difference is the input: Q is a function of L but C is function of Q.
- Therefore, C is a function of function of L.

Output and Cost Relation Graph

- Recall three stages of production of the total output.
- Output follows the law of diminishing marginal product.
- Cost follows the law increasing marginal cost.

Application: Tesla's First Gigafactory

Tesla's electric cars, with prices around \$85,000 have been unaffordable for most people. However, in 2017, Tesla will be producing a new "mass market" car, with a starting price of about \$35,000. To achieve such a dramatic reduction in price, the company will rely on scale economies in battery production in its new \$5 billion "Gigafactory" in Nevada. Battery costs are expected to decrease by one-third (to about \$250 per kWh of energy storage), and fall further as production rises.

Application: Tesla's Battery Cost

- The average battery production cost was about \$400 per kWh in 2016. The battery for Tesla's Model 3 has a 50 kWh capacity, which at \$400 per kWh implies a cost of \$20,000 per battery.
- However, that cost can be reduced substantially by producing batteries in large volumes. A high volume of production is the objective of Tesla's Gigafactory.
- Explanation: $K+ \rightarrow MPL+ \rightarrow MC- \rightarrow AC- (second law)$

Fixed Costs and Variable Costs

- **Fixed costs** do not vary with the quantity of output produced. For example, monthly rents to a landlord, full-time workers' wages and benefits, interests paid to the banks. Note that fixed costs is not a constant. It is not actually "fixed." A misnomer.
- For example, the daily cost function TC=100+10Q & FC=100.
- Average fixed cost can be lower if spread among a larger output.
- Historical or sunk cost is not equivalent to fixed cost. Why?
- Variable costs vary with the quantity of output produced, e.g., part-time workers' wages, production materials, and utilities.
- When analyzing firm's decisions in the short- and the long-run, fixed costs are inevitable and incurring in the short-run but avoidable in the long run if the business is closed for good.

Factor Costs: Labor Land Capital

	Work Invest		Lend
Trade	Sell Labor	Sell Capital	Rent Capital
Return/ Income	Wages or Salary	Profit or Dividend Capital Gain (Loss)	Interest
Market	Labor Market	Capital Market	Credit Market

Income is what is earned or received in a given period. There are various terms for income because there are various ways of earning income. Income from employment or self-employment is wages or salary. Deposit accounts, like savings accounts, earn interest, which could also come from lending. Owning stock entitles the shareholder to a dividend, if there is one. Owning a piece of a partnership or a privately held corporation entitles one to a draw. **Income is derived from capital assets.**

Financing Costs: Debt and Equity

	Equity	Debt			
Trade	Buy Capital	Borrow Capital			
Cost/ Expense	Share Profits and Gains	Pay Interest			
Market	Capital Market	Credit Market			

- In corporate finance, buying capital (asset) gives you equity, borrowing capital gives you debt, and both kinds of financing have costs and benefits.
- Financing assets through equity means sharing ownership and whatever gains or losses that brings; financing assets through borrowing (creating debt) means taking on a financial obligation that must be repaid.

Apple Inc. Income Statement

CONDENSED CONSOLIDATED STATEMENTS OF OPERATIONS (Unaudited)

(In millions, except number of shares which are reflected in thousands and per share amounts)

		Three Months Ended		Twelve Months Ended					
	Sep	tember 28, 2019	Sept	September 29, 2018		September 28, 2019		September 29, 2018	
Net sales:									
Products	\$	51,529	\$	52,301	\$	213,883	\$	225,847	
Services		12,511		10,599		46,291		39,748	
Total net sales (1)		64,040		62,900		260,174		265,595	
Cost of sales:									
Products		35,238		34,697		144,996		148,164	
Services		4,489		4,119		16,786		15,592	
Total cost of sales		39,727		38,816		161,782		163,756	
Gross margin	_	24,313		24,084		98,392		101,839	
Operating expenses:									
Research and development		4,110		3,750		16,217		14,236	
Selling, general and administrative		4,578		4,216		18,245		16,705	
Total operating expenses		8,688		7,966		34,462	_	30,941	
Operating income		15,625		16,118		63,930		70,898	
Other income/(expense), net		502		303		1,807		2,005	
Income before provision for income taxes		16,127		16,421		65,737		72,903	
Provision for income taxes		2,441		2,296		10,481		13,372	
Net income	\$	13,686	\$	14,125	\$	55,256	\$	59,531	

Apple Inc. Cash Flow Statement

CONDENSED CONSOLIDATED STATEMENTS OF CASH FLOWS (Unaudited)

(In millions)

		Twelve Months Ended		
		tember 28, 2019	September 29, 2018	
Cash, cash equivalents and restricted cash, beginning balances	\$	25,913	\$ 20,289	
Operating activities:				
Net income		55,256	59,531	
Adjustments to reconcile net income to cash generated by operating activities:				
Depreciation and amortization		12,547	10,903	
Share-based compensation expense		6,068	5,340	
Deferred income tax benefit		(340)	(32,590	
Other		(652)	(444	
Changes in operating assets and liabilities:				
Accounts receivable, net		245	(5,322	
Inventories		(289)	828	
Vendor non-trade receivables		2,931	(8,010	
Other current and non-current assets		873	(423	
Accounts payable		(1,923)	9,175	
Deferred revenue		(625)	(3	
Other current and non-current liabilities		(4,700)	38,449	
Cash generated by operating activities		69,391	77,434	
Cash generated by operating activities		69,391		

Apple Inc. Cash Flow Statement

Investing activities:			
Purchases of marketable securities		(39,630)	(71,356)
Proceeds from maturities of marketable securities		40,102	55,881
Proceeds from sales of marketable securities		56,988	47,838
Payments for acquisition of property, plant and equipment		(10,495)	(13,313)
Payments made in connection with business acquisitions, net		(624)	(721)
Purchases of non-marketable securities		(1,001)	(1,871)
Proceeds from non-marketable securities		1,634	353
Other		(1,078)	(745)
Cash generated by investing activities		45,896	16,066
Financing activities:			
Proceeds from issuance of common stock		781	669
Payments for taxes related to net share settlement of equity awards		(2,817)	(2,527)
Payments for dividends and dividend equivalents		(14,119)	(13,712)
Repurchases of common stock		(66,897)	(72,738)
Proceeds from issuance of term debt, net		6,963	6,969
Repayments of term debt		(8,805)	(6,500)
Repayments of commercial paper, net		(5,977)	(37)
Other		(105)	_
Cash used in financing activities		(90,976)	(87,876)
Increase in cash, cash equivalents and restricted cash		24,311	5,624
Cash, cash equivalents and restricted cash, ending balances	\$	50,224 \$	25,913
Supplemental cash flow disclosure:			
Cash paid for income taxes, net	\$	15,263 \$	10,417
Cash paid for interest	\$	3,423 \$	3,022
https://investor.apple.com/investor-relations/o	default.aspx		
	-		

Direct Cost vs Overhead Cost

- **Direct Cost:** the amount paid as production continues. It changes directly with the quantity of output being produced.
- To start up a business, some initial investment is indispensable. Once in business, the investment is not a direct cost any more.
- However, for book-keeping purposes, accountants record past investment as historical or sunk costs, accounting for depreciation.
- Economists shall NOT focus on historical or accounting costs because the decision maker can change or sell the business.
- Overhead Cost: the amount earned by selling the entire business outright. This is the alternative of staying in business, therefore an economic cost (not a historical or fixed cost).

Short-Run vs Long-Run Costs

- Economic textbooks differentiate short-run and long-run costs by the variability or mobility of production factors.
- In theory, in the short-run, land and capital are assumed to be fixed and labor is variable. Even though some factors are fixed in the short-run, they can still incur costs such as rent and interest.
- Be careful! Fixed costs do not have to be related to capital (e.g., management); variable costs do not have to be related to labor.
- Capital becomes a cost (in the long-run) because the capitalist can adjust or liquidate capital; capital also incurs costs in the short run because interest (or dividend) must be paid regularly if the business is financed by debt (or equity).
- In theory, the key difference between short-run and long-run cost is the opportunity cost of adjusting or liquidating capital, not the time horizon per se. Most textbooks are not clear on this point.

Long-Run Production Costs

- In the long-run, all factors are variable and production decision can be modeled in the K-L coordinate system subject to the principle of cost minimization.
- The cost of land is rent, paid to the landlord.
- The cost of labor is wage, paid to the workers.
- The cost of capital is investment return, paid to the capitalist.
- The long-run cost of production is the sum of all factor costs.
- TC=wL+rK or K=-(w/r)L+TC, where r is the rate of return.
- **Isocost**: a graphical representation of the total cost of production. The idea is similar to the budget constraint.
- Isocost equation: K=-(w/r)L+TC, with a slope of -w/r.

Production: Isocost Lines

An isocost line shows all of the input combinations that yield the same cost. Given wage w=\$10 per hour, Rental r=\$20 per unit, w/r=1/2, the isocost line represents the total costs of production in the long run when all inputs are variable.

Production: Cost Minimization

Mathematically, tangency occurs where the slope of the isocost line is equal to the slope of the isoquant:

$$-\frac{W}{R} = -\frac{MP_L}{MP_K} \to \frac{MP_K}{R} = \frac{MP_L}{W}$$

- Firms minimize costs subject to a given amount of production.
- Cost minimization is achieved by adjusting the capital-labor ratio.
 - Graphically, cost minimization requires tangency between the isoquant associated with the chosen level of production, and the lowest cost isocost line.

Long-Run Production Decision

Isoquants curve shows all possible combinations of inputs that yield the same output. Q=TP=F(K,L)

Isocost curves describe the combination of inputs to production that cost the same amount to the firm. TC=w*L+r*K

In the graph: $TC_2 > TC_1 > TC_0$

Isocost curve C_1 is tangent to isoquant q_1 at A and shows that output q_1 can be produced at minimum cost with labor input L_1 and capital input K_1 .

Production and Technology Advance

Given the same level of output Q, the process of technology advance leads to lower production cost (C2<C1) in the long run.

References

- [1] N. Mankiw, Principles of Microeconomics, 8th edition. Cengage.
- [2] Pindyck & Rubinfeld, Microeconomics, 9th edition. Pearson.
- [3] Goolsbee, Levitt & Syverson, Microeconomics, 3rd edition, Worth
- [4] Apple Inc. Investor Updates: FY 19 Fourth Quarter Results https://investor.apple.com/investor-relations/default.aspx
- [5] Personal Finance Course on GitHub
 - https://saylordotorg.github.io/text_personal-finance/index.html
- [6] Tesla Gigafactory https://www.tesla.com/gigafactory

Videos

201710 Elon Musk's Basic Economics 10:21

https://www.youtube.com/watch?v=h97fXhDN5qE

201903 The True Cost of the iPhone | PolyMatter 12:53

https://www.youtube.com/watch?v=5kZRY5xlP6Y

201903 Why Lyft Is Losing Money | CNBC Explains 7:14

https://www.youtube.com/watch?v=l6V9_azp1W4

201905 How Uber loses money | CNBC Explains 6:04

https://www.youtube.com/watch?v=zyjtRmGUGR4