

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. REPORT DATE (DD-MM-YYYY) July 2015	2. REPORT TYPE Briefing Charts	3. DATES COVERED (From - To) July 2015-August 2015		
4. TITLE AND SUBTITLE IWetting properties of polysiloxane networks modified in situ with fluoroalkyl-substituted linear and POSS cage structures (Briefing Charts)			5a. CONTRACT NUMBER In-House	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Raymond Campos, Sean Ramirez, Joseph Mabry			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER Q0BG	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQRP 10 E. Saturn Blvd. Edwards AFB, CA93524-7680			8. PERFORMING ORGANIZATION REPORT NO.	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQR 5 Pollux Drive Edwards AFB CA 93524-7048			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S) AFRL-RQ-ED-VG-2015-291	
12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for Public Release; Distribution Unlimited.				
13. SUPPLEMENTARY NOTES Briefing Charts presented at 250th ACS National Meeting; Boston, MA; 16-20 August 2015. PA#15439.				
14. ABSTRACT Briefing Charts				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 38	19a. NAME OF RESPONSIBLE PERSON Joseph Mabry
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	19b. TELEPHONE NO <i>(include area code)</i> 661-275-5857	

Wetting properties of polysiloxane networks modified in situ with fluoroalkyl-substituted linear and POSS cage structures

Raymond Campos, Sean M. Ramirez,
and Joesph M. Mabry

August 17, 2015

ACS National Conference

Paradigms for low energy surfaces

Crystalline surfaces

- Immobilized chemical moieties with low polarizability (e.g. fluorine)
 $\text{CF} > \text{CF}_2 > \text{CF}_3 > \text{SF}_5$
- High crystallinity to prevent surface reorganization when in contact with liquids, biofouling sources, etc.

Extreme liquid repellency when combined with surface roughness and re-entrant geometry

“liquid-like” surfaces

- low energy barriers between metastable states
- Metal oxide surfaces and liquid-infused materials (e.g. SLIPS)

Fluorine content not required to repel low surface tension liquids?

Low CA hysteresis despite lower contact angle values

Surface modification of PDMS/siloxane networks

- Primarily oxide formation via O₂ plasma, UV/ozone, etc. and subsequent functionalization
- Functional PDMS (e.g. residual vinyl groups in network)
- Functional silsesquioxane networks

Properties of Fluorodecyl₈T₈ POSS

Extremely low surface energy

Surface migration in polymers

Surface responsive behavior

Enabling....

Superomniphobic fabrics via dip-coating

Choi *et al.*, Ang. Chem., 2009

**Transparent
Omniphobicity**

Golovin *et al.*, Ang. Chem., 2013

**Extreme
Omniphobicity**

Pan *et al.*, JACS., 2012

Oil/water emulsion gravity seperation

Kota *et al.*, JACS., 2012

Surface Energy of Fluorodecyl₈T₈ POSS

fluorodecyl₈T₈ POSS

5.5 mN/m (Zisman analysis)*

8.8 – 10.2 mN/m (Girafalco-Good analysis)*

Zisman analysis
(only alkane probing liquids used)

	Fluorodecyl T_8 , R = $-(CH_2)_2-(CF_2)_7-CF_3$
	Fluoroctyl T_8 , R = $-(CH_2)_2-(CF_2)_5-CF_3$
	Fluorohexyl T_8 , R = $-(CH_2)_2-(CF_2)_3-CF_3$
	Fluoropropyl T_8 , R = $-(CH_2)_2-CF_3$
	Hexafluoro-i-butyl T_8 , R = $-CH_2-CH(CF_3)_2$
	Fluorodecyl Q_4 , R = $-(CH_2)_2-(CF_2)_7-CF_3$
	Fluorodecyl M2, R = $-(CH_2)_2-(CF_2)_7-CF_3$

*Chhatre, S. S.; Guardado, J. O.; Moore, B. M.; Haddad, T. S.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E., Fluoroalkylated Silicon-Containing Surfaces-Estimation of Solid-Surface Energy. *ACS Applied Materials and Interfaces* 2010, 2 (12), 3544-3554.

Surface Energy of Fluorodecyl₈T₈ POSS

fluorodecyl₈T₈ POSS

5.5 mN/m (Zisman analysis)*
8.8 - 10.2 mN/m (Girafalco-Good analysis)*

Why?

Polytetrafluoroethylene
 $\text{CF}_3-(\text{CF}_2)_n-\text{CF}_3$

18 - 20 mN/m (Zisman analysis)

CF₃ monolayer

6.7 mN/m (Zisman analysis)

*Chhatre, S. S.; Guardado, J. O.; Moore, B. M.; Haddad, T. S.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E., Fluoroalkylated Silicon-Containing Surfaces-Estimation of Solid-Surface Energy. *ACS Applied Materials and Interfaces* 2010, 2 (12), 3544-3554.

Fluorodecyl₈T₈ POSS

Rotate ~ 90°

Image displaying the helical conformation of fluorodecyl substituents in the solid state packing of fluorodecyl₈T₈ POSS

3 x 2 array of fluorodecyl8T8 POSS cages displaying a lamella-type packing

Distribution A: Approved for public release; distribution is unlimited.

Campos, R., Haddad T. S., et al., *Langmuir* **2011**, *27* (16), 10206-10215.

Distribution A: Approved for public release; distribution is unlimited.

m-helix
 p-helix

Distribution A: Approved for public release; distribution is unlimited.

Helical crystal packing of fluoroalkyl-substituted urea

Helical crystal packing of fluoroalkyl-substituted urea

Functional Fluorodecyl POSS Compounds Enabled by Incompletely Condensed Intermediate

Scheme 1. Synthesis of Incompletely Condensed Fluoroalkyl Silsesquioxane^a

^a Conditions: All reactions were performed in C_6F_6 at 25 °C. ^b CF_3SO_3H , 75 min; ^c NBu_4HSO_4 , 30 min; ^d $(CF_3)_2CH_2OH/H_2O$ (10:1), 12 h.

Ramirez, S. M., Diaz, Y. J., Campos, R., Stone, R. L., Haddad, T. S., Mabry, J. M. *JACS*, **2011**, 133, 20084.

Distribution A: Approved for public release; distribution is unlimited.

^{29}Si NMR Spectra of fluorodecyl POSS disilanol Intermediates and Product

Ramirez, S. M., Diaz, Y. J., Campos, R., Stone, R. L., Haddad, T. S., Mabry, J. M. *JACS*, 2011, 133, 20084.

Distribution A: Approved for public release; distribution is unlimited.

ORTEP representations of Fluorodecyl POSS Disilanol crystal structure

Ramirez, S. M., Diaz, Y. J., Campos, R., Stone, R. L., Haddad, T. S., Mabry, J. M. *JACS*, 2011, 133, 20084.

F-POSS cage dimer side & top views

Side view

Counter-clockwise (M)

Counter-clockwise (M)

Clockwise (P)

Clockwise (P)

Counter-clockwise (M)

Clockwise (P)

A view from the top

F-POSS cage dimer (fluoroalkyl side chains shown as golden spheres):
2 intermolecular OH...O - bonds that hold dimer structure together

F-POSS cage array: 3 dimers (6 cages) – top view

F-POSS cage “zigzag” array (16 cages) – top view

Functional Fluorodecyl POSS Synthesis from Incompletely Condensed Fluorodecyl POSS

Ramirez, S. M., Diaz, Y. J., Campos, R., Stone, R. L., Haddad, T. S., Mabry, J. M. *JACS*, **2011**, *133*, 20084.

Distribution A: Approved for public release; distribution is unlimited.

Fluorodecyl₈T₈D₁(methyl, vinyl) POSS

Vinyl F-POSS

F-POSS Grafting to PDMS via Hydrosilylation

1, 5, 10, 20, 44 wt%

Vinyl: silane, 1:32, 1:8, 1:4, 1:2, 1:1

Complete Conversion at 10 wt% F-POSS:

^{29}Si NMR Spectra

Incomplete Conversion at \geq 20 wt% F-POSS: ^1H NMR Spectra

F-POSS PDMS Amphiphile Aggregation

Crude rxn. mix.
4:1 C_6F_6 :hexanes

Surface Wetting of Fluorodecyl POSS -PDMS Amphiphiles

Pure fluorodecyl₈T₈ POSS: Water $\theta_{adv}/\theta_{rec} = 124^\circ/116^\circ$
Hexadecane $\theta_{adv}/\theta_{rec} = 80^\circ/61^\circ$

F-POSS PDMS Amphiphile Aggregation: Dynamic Light Scattering

PDMS (1000 cSt)
0.001 M, 25 C

CDCI3
0.001 M, 25 C

AK225
0.001 M, 25 C

Thermal Stability of FPOSS-PDMS Micelles

5 wt% FPOSS-PDMS

In fluorinated matrix

Surface Wetting of Fluorodecyl POSS-Enchained PDMS Elastomers

Pure fluorodecyl₈T₈ POSS: Water $\theta_{adv}/\theta_{rec} = 124^\circ/116^\circ$
Hexadecane $\theta_{adv}/\theta_{rec} = 80^\circ/61^\circ$

Surface modification of highly crosslinked siloxane networks

ethanol $\Theta_{\text{stat}} / \Theta_{\text{adv}} / \Theta_{\text{rec}} = 8.9$

22.88 ± 2.46
0

isopropanol completely wets and spreads

$\theta_{\text{adv}} / \theta_{\text{rec}} (\circ)$

Water	$99.5 \pm 0.6 / 93.2 \pm 0.5$
Hexadecane	$33.6 \pm 0.3 / 28.9 \pm 0.3$
Heptane	$<5 / 0$
methanol	$29.3 \pm 0.5 / 18.3 \pm 2.4$

Surface modification of highly crosslinked siloxane networks

$\theta_{\text{adv}} / \theta_{\text{rec}} (\circ)$

Water	$99.5 \pm 0.6 / 93.2 \pm 0.5$
Hexadecane	$33.6 \pm 0.3 / 28.9 \pm 0.3$
Heptane	$<5 / 0$
methanol	$29.3 \pm 0.5 / 18.3 \pm 2.4$

Surface modification of highly crosslinked siloxane networks

isopropanol $\Theta_{\text{stat}} / \Theta_{\text{adv}} / \Theta_{\text{rec}} = 54.35 \pm 4.41$
 70.94 ± 1.05
 40.5 ± 0.86

ethanol $\Theta_{\text{stat}} / \Theta_{\text{adv}} / \Theta_{\text{rec}} = 60.588 \pm 7.62$
 73.97 ± 1.0075
 41.4 ± 1.2725

	$\theta_{\text{adv}} / \theta_{\text{rec}} (\circ)$
Water	$116.5 \pm 0.3 / 102 \pm 1.1$
Hexadecane	$76.3 \pm 0.5 / 62 \pm 1.0$
Heptane	$56.1 \pm 0.9 / 39.2 \pm 1.2$
methanol	$75.2 \pm 0.9 / 49.9 \pm 1.5$

Surface modification of highly crosslinked siloxane networks

$\theta_{adv} / \theta_{rec}$ (°)

Water	$116.5 \pm 0.3 / 102 \pm 1.1$
Hexadecane	$76.3 \pm 0.5 / 62 \pm 1.0$
Heptane	$56.1 \pm 0.9 / 39.2 \pm 1.2$
methanol	$75.2 \pm 0.9 / 49.9 \pm 1.5$

What about “liquid-like” surfaces and post-cure surface modification?

.....

Post-cure surface modification of highly crosslinked siloxane networks with silane-term oligo(dimethylsiloxane)

Post-cure surface modification of highly crosslinked siloxane networks with silane-term oligo(dimethylsiloxane)

$\theta_{\text{adv}} / \theta_{\text{rec}}$ ($^\circ$)

Water	$110.7 \pm 0.3 / 89.4 \pm 0.5$
Hexadecane	$47.8 \pm 0.4 / 17.5 \pm 0.7$
Heptane	$7.3 \pm 1.9 / 0$
methanol	$40.8 \pm 0.4 / 35.5 \pm 0.6$

$\theta_{\text{adv}} / \theta_{\text{rec}}$ ($^\circ$)

Water	$99.5 \pm 0.6 / 93.2 \pm 0.5$
Hexadecane	$33.6 \pm 0.3 / 28.9 \pm 0.3$
Heptane	$<5 / 0$
methanol	$29.3 \pm 0.5 / 18.3 \pm 2.4$