Burning season emissions of reactive nitrogen from fires in subtropical southern Africa determined with TROPOMI and IASI

with Martin Van Damme, Lieven Clarisse, Christine Wiedinmyer, Killian Murphy, & Guido van der Werf

Reactive Nitrogen Emissions from Fires

Reactive nitrogen emissions affect local air quality and regional climate

Reactive Nitrogen Emissions in Bottom-up Inventories

Reactive Nitrogen Emissions in Bottom-up Inventories

Reactive Nitrogen Emissions in Southern Africa

Monthly bottom-up June-October 2019 emissions

Mostly savanna fires. Some tropical forest fires.

Apply all 3 inventories to **GE** S-Chem to compare to IASI for NH₃ and TROPOMI for NO₂

Very different ozone production efficiencies (OPEs): GFAS more sensitive to NO_x than others.

According to **GE** S-Chem, FINN OPE > GFED OPE, as far more VOCs and CO than others:

FINN: 108 Tg CO and 13 Tg C for 21 NMVOCs **GFED**: 82 Tg CO and 2 Tg C for 13 NMVOCs

Evaluation of Inventories with Satellite Observations

R: 0.93

NMB: -21%

NO₂ vertical column densities for Jun-Oct 2019

NMB: 14%

Far more NO_x

forests in FINN

from tropical

(fuel load)

[10¹⁵ molecules cm⁻²]

GC: GEOS-Chem
GE
S
Chem

GFED and GFAS NO₂ spatially similar, but >50% difference due to emission factors

Low emissions in Malawi, as spread of fire suppressed by dense population

20°S

Evaluation of Inventories with Satellite Observations

NH₃ vertical column densities for Jul-Oct 2019 [10¹⁵ molecules cm⁻²]

IASI with GEOS-Chem prior:

Anthropogenic NH₃ in the Lake Ukerewe Basin

Fire NH₃ in Angola that no inventory reproduces

GEOS-Chem:

IASI NH₃ in Dec-Feb

June excluded, as no inventories consistent with IASI observations (R < 0.5)

Evaluation of Inventories with Satellite Observations

NH₃ vertical column densities for Jul-Oct 2019 [10¹⁵ molecules cm⁻²]

IASI with GEOS-Chem prior:

GEOS-Chem:

June excluded, as no inventories consistent with IASI observations (R < 0.5)

Top-down Emissions with Best Performing Inventories

Mass-balance approach: convert satellite columns to 24-h monthly emissions using **GE** S-Chem

Uses GFAS for NO_x , FINN for NH_3 if biomass burning > 50% total

Distribution normal for NO_x, long-tailed for NH₃

Individual inventories correlate NO_x and NH_3 (R > 0.8), but top-down is not (R < 0.4)

Emissions peak in similar month to bottom-up: July and August for NO_x and August in NH₃

Observationally constrained OPE of 13 $Tg O_3 per Tg NO$

Concluding Remarks

Top-down approach could be further refined with more complex inverse modelling methods or with iteration. Regardless, highlights the large disparities between top-down and bottom-up emissions.

Inventories collocate NH₃ and NO_x emissions (smouldering and flaming fires), but these are mostly separate in the top-down estimates

With current biomass burning inventory architecture, could use FINN approach for smouldering fire emissions of NH_3 , VOCs, CO, organic aerosols and methane and GFAS or GFED approach for flaming fire emissions of NO_x , black carbon and CO_2

Choice of emission factors remains an issue

Need independent observations. Ideally in National Parks, to validate GEOS-Chem and satellite observations of fire pollution

These till be crucial to confidently use future geostationary 30-minute resolution Sentinel-4 observations of NH₃ and CO (both markers of smouldering fires)

Invited contribution in review in RSC's Environmental Science: Atmospheres journal