

__16____квітня _____20_24__ р.

Тема: Розв'язування типових вправ з теми «Рівність геометричних фігур. Перша та друга ознаки рівності трикутників»

Мета:

- Навчальна: закріпити знання, отримані на попередніх уроках;
- Розвиваюча: розвивати вміння аналізувати отримані знання, правильно користуватися креслярським приладдям;
- Виховна: виховувати інтерес до вивчення точних наук;

Компетенції:

- математичні
- комунікативні

Тип уроку: закріплення знань;

Обладнання: конспект, презентація, мультимедійне обладнання;

Хід уроку

І. Організаційний етап

- Привітання
- Перевірка присутніх на уроці
- Перевірка виконання д/з
- Налаштування на роботу

II. Актуалізація опорних знань

- Які трикутники називаються рівними?
- Сформулюйте першу ознаку рівності трикутників
- Сформулюйте другу ознаку рівності трикутників
- Рівність яких елементів випливає із рівності $\triangle ABC = \triangle MNV$?

• Знайдіть невідомий відрізок *х*

III. Розв'язування задач

№1

Доведіть, що а) $\Delta AOB = \Delta DOC$; б) $\Delta ABM = \Delta CBM$; в) $\Delta ACB = \Delta ACD$; г) $\Delta ABC = \Delta ADC$

Розв'язок:

а)
$$BO = OC$$
 $AO = OD$ $AOB = \Delta DOC$ $AO = OD$ $AOB = \Delta COD$ (як вертикальні) $AOB = \Delta DOC$ рівності трикутників

б)
$$BM$$
 — спільна сторона $AM = MC$ $AM = MC$ $BMA = ∠BMC = 90°$ $ABM = ΔCBM$ → за першою ознакою рівності трикутників

в)
$$AB = AD$$
 $ACB = \Delta ACD$ $AC -$ спільна сторона $\angle BAC = \angle DAC$ \rightarrow за першою ознакою рівності трикутників

$$BC = AD$$
 $AC -$ спільна сторона $\angle BCA = \angle DAC$ \rightarrow за першою ознакою рівності трикутників

.No2

Доведіть, що а) $\Delta ABC = \Delta ADC$; б) $\Delta AOB = \Delta COD$; в) $\Delta ABD = \Delta CBD$; г) $\Delta ABM = \Delta ACN$; $\Delta NBO = \Delta MCO$

Розв'язок:

в)
$$\angle ABD = \angle CBD \\ \angle BDA = \angle BDC \\ BD - \text{спільна сторона} \end{vmatrix} \rightarrow \text{ 3а другою ознакою }$$
 рівності трикутників

г) Розглянемо трикутники $\triangle ABM$ і $\triangle ACN$:

$$\angle ANC = 180^{\circ} - \angle BNC$$
 $\angle AMB = 180^{\circ} - \angle BMC$
 $\angle BNC = \angle BMC \ (за\ умовою)$
 $\rightarrow \angle ANC = \angle AMB$
 $\angle A - \text{спільний}$
 $AN = AM$
 $\angle ANC = \angle AMB$
 $\rightarrow \text{ за\ другою\ ознакою}$
 $\rightarrow \text{ рівності\ трикутників}$

Розглянемо трикутники ΔNBO і ΔMCO :

$$AB = AC \ (mak \ як \ \Delta ABM = \Delta ACN)$$
 $AN = AM \ (за \ умовою)$
 $NB = AB - AN$
 $MC = AC - AM$
 $MC = AC - AM$
 $MB = MC$
 $MBO = \Delta MCO$
 $MBO = \Delta MCO$
 $MB = MC$
 $MBO = \Delta MCO$
 $MBO = \Delta MCO$

№3

Ha рисунку AC = BD, $\angle CAD = \angle BDA$. Доведіть, що:

NB = MC

 $\angle CDB$

 $\angle C$

Дано:

$$AC = BD$$

$$\angle CAD = \angle BDA$$

Довести:

1)
$$\angle B = \angle C$$

2)
$$\angle BAC = \angle CDB$$

Доведення:

Розглянемо трикутники *ABC* і *DCA*:

$$AD$$
 — спільна сторона $AC = BD$ $AC = BD$ $AC = BD$ $AC = BDA$ $AC = BDA$ $AC = BDA$ $ABC = ADCA$ $AC = BDA$ $AC = BDA$ $ABC = ADCA$ $AC = BDA$ $AC = BDA$ $ABC = ADCA$ $AC = ADCA$ AC

$$\angle BAD = \angle CDA$$
 $pівних$ $mрикутників$ ABC і DCA) $\angle CAD = \angle BDA$ $\angle BAC = \angle BAD - \angle CAD$ $\angle CDB = \angle CDA - \angle BDA$

Доведено. №4

Чи можна стверджувати, що коли дві сторони і кут одного трикутника дорівнюють двом сторонам і куту іншого трикутника, то такі трикутники рівні? Обґрунтуйте, подавши схематичні малюнки.

Відповідь: Ні, так як кут має лежати між рівними сторонами цих трикутників.

№5

 $\Delta ABM = \Delta CBN$. Доведіть, що $\Delta ABN = \Delta CBM$

Дано:

 $\Delta ABM = \Delta CBN$

Довести:

 $\Delta ABN = \Delta CBM$

Доведення:

Так як $\triangle ABM = \triangle CBN$, то в них рівні відповідні сторони і кути, отже:

$$AB = BC, AM = NC, \angle A = \angle C$$

Розглянемо трикутники *ABN* і *CBM*:

MN – спільний відрізок для *AN* і *CM*:

$$AN = AM + MN$$
 $AN = CM$ $CM = CN + MN$ $AM = NC$ $AN = CM$ $AN = CM$ $AN = CM$ $AM = CM$ $AM = NC$ $AN = CM$ AN

$$egin{array}{c|c} AB = BC \\ \angle A = \angle C \\ AN = CM \end{array} \rightarrow egin{array}{c} \Delta ABN = \Delta CBM \\ \exists a \ nep шою \ o \exists hako io \\ pi в ho cmi \ mp и кут h и к i в \end{array}$$

Доведено

1)

2)

На рисунку $\angle BAC = \angle NVM$, $\angle AMN = \angle VCB$, AM = VC. Доведіть, що:

 ΔVNM

VB

Дано:

$$\angle BAC = \angle NVM$$

$$\angle AMN = \angle VCB$$

$$AM = VC$$

Довести:

- 1) $\Delta ABC = \Delta VNM$
- 2) AN = VB

Доведення:

Розглянемо трикутники *ABC* i *VNM*:

$$\angle BCA = 180^{\circ} - \angle VCB$$
 $\angle BCA = \angle NMV$ $\angle NMV = 180^{\circ} - \angle AMN$ \rightarrow (від рівних кутів віднімаємо рівні кути)

$$\angle BCA = \angle NMV$$
 $\angle BAC = \angle NVM$ \rightarrow за другою ознакою рівності трикутників

Розглянемо трикутники *AMN* і *VCB*

$$\Delta ABC = \Delta VNM \rightarrow MN = CB$$
 (як відповідні сторони рівних трикутників)

$$AM = CV$$
 $MN = CB$
 $\angle AMN = \angle VCB$
 \Rightarrow за першою ознакою рівності трикутників

$$\Delta AMN = \Delta VCB \rightarrow AN = VB$$
 (як відповідні сторони рівних трикутників)

Доведено

IV. Підсумок уроку

- Дати відповідь на запитання учнів
- Індивідуальна робота з учнями, що не зрозуміли матеріал

Домашнє завдання: Дано відрізок AD. В одній півплощині відносно прямої AD лежать точки B і C такі, що $\angle BAD = \angle CDA$, $\angle BAC = \angle CDB$. Знайдіть довжини відрізків AC і CD, якщо AB = 5 см, BD = 6 см