

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №6 По дисципление: Информатика Тема: «Работа с системой компьютерной вёрстки ТеХ» Вариант 66

Выполнил: Храбров Артём Алексеевич

Группа: Р3115

Преподаватель: Белокон Юлия Алексеевна

АМ N В. Дальнейшее решение задачи не вызывает принципиальных затруднений, и мы предоставляем это читателям; искомая площадь $S = 4/\sqrt{3}$

Ещё большее внимание требуется при решении задач, в которых геометрическая конфигурация задаётся не числовыми, а буквенными дынными, т. е. в своего рода геометрических задачах с параметрами. В этих задачах (так же, как и в алгебраических задачах с параметрами) и способ решения, и получаемый ответ могут существенно зависеть от соотношений между параметрами, определяющими конфигурацю.

Пусть, например, в разобранной только что задаче секущая плоскость проведена под углом ϕ к плоскости основания, а все остальные числовые данные - те же самые. Тогда в решении следует рассмотреть три случая:

- 1. Точка M лежит на ребре DD_1 ;
- 2. Точка M совпадает с D_1 ;
- pa DD_1 ;

Какой именно из указанных случаев имеет место, зависит от величины угла ϕ , и определить это можно, исходя из сравнения отрезков MD и DD_1 . Независимо от расположения точки M на прямой DD_1 , ясно, что $MD = KD \operatorname{tg} \phi = \operatorname{tg} \phi$. Поэтому указанные случаи определяются условиями:

- 1. $tg \phi < 1$;
- 2. $tg \phi = 1$;
- 3. $tg \phi > 1$;

Таким образом, если $\phi < 45^{\circ}$, то имеет место первый случай (рис. 6), и тогда $S=2/\cos\phi$. Если $\phi>45^{\circ}$, то имеет место третий случай (рис. 7), тогда S = $2/\sin\phi$. Что же касается случая $\phi=45^{\circ}$, то его нужно было бы рассмотреть на специальном чертеже, но фактически можно использовать и любой из имеющихся - так довольно часто бывает при рассмотрении ≪крайних≫ значений; в этом случае $S=2\sqrt{2}$.

Окончательный ответ записывается в виде

$$S = \begin{cases} 2/\cos\phi, \; \text{если}\phi < 45^\circ, \\ 2\sqrt{2}, \; \text{если}\phi = 45^\circ, \\ 2/\sin\phi, \; \text{если}\phi > 45^\circ. \end{cases}$$

Можно, разумеется, включить второй случай в любой из двух других, и записать ответ более компактно.

С аналогичной ситуацией мы встречаемся и в следующей задаче. Правда, окончательный ответ в ней от вида конфигурации не зависит и одинаков для всех значений параметра, однако промежуточные вычисления проводятся по-разному для различных конфигураций. Естественно, что решение, в котором рассмотрены не все геометрически различные случаи, не может считаться полноценным, хотя формально получается правильный ответ.

Задача 5 (МГУ, мехмат, 1970). Шар 3. Точка M лежит на продолжении реб- $paduyca\ r$ касается плоскости P в точке A. Прямая образует с плоскостью Pугол ϕ , пересекает эту плоскость в точке C и касается шара в точке B. Найти длину отрезка AB, если AC = 2r.

> Изобразим конфигурацию, о которой идет речь в условии (рис. 8). Из точки B опустим перпендикуляр BB_1 на плоскость P и проведем отрезок CB_1 ; ясно, что $BCB_1 = \phi$. Далее, OA = OB = r, а CB = CA = 2r по свойству касательных к шару, проведенных из одной точки.

Рис. 6

\oplus	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2