MTH 343 Numerical Analysis Lecture 3: Errors, Solutions of Equations in one Variable

Sheikh Abdul Raheem Ali

January 31, 2019

The floating point form is obtained by terminating the mantissa using the following two ways:

- 1. Chopping
- 2. Rounding

Definition 1 (Absolute error) $|true\ value - approximate\ value| = |p - p^*|$

$$\textbf{Definition 2 (Relative error)} \ | \tfrac{true \ value \ - \ approximate \ value}{true \ value} | = | \tfrac{p \ - \ p^*}{p} |$$

(approximate value)
$$p_1 = 1.2$$
, (true value) $p_1^* = 1.2$
$$p_2 = 1000, \ p_2^* = 1000.2$$

absolute error =
$$|1 - 1.2| = 0.2$$

= $|1000 - 1000.2| = 0.2$

rel. error =
$$\left| \frac{1-1.2}{1} \right| = 0.2$$

= $\left| \frac{1000-1000.2}{1000} \right| = 0.0002$

find
$$f(x) = x^3 = 61x^3 + 3.2x + 1.5$$
 at $f(x = 4.71)$

	x	x^2	x^3	$61x^{3}$	3.2x
Exact	4.7	22.1841	104.487111	135.32301	15.072
3-digit chopping	4.7	22.1	104.0	134	15.0
3-digit rounding	4.7	22.2	104	135	15.1

Exact: -14.263899, Chopping: -13.5. Rounding: -13.4

Rel. error: Chopping: 0.0045, Rounding: 0.0025

Figure 1: Visual demonstration of the bisection algorithm. Credits to Luna Hatahet.

Solutions of Equations of one variable

$$0 = x^{3} - 16x$$

$$= x(x^{2} - 16)$$

$$= x(x - 4)(x + 4)$$

$$x = 0, 4, -4$$

$$0 = x^{2} - 4x + 3x - 12$$
$$= x(x-4) + 3(x-4)$$
$$= (x-4)(x-3)$$
$$x = 4,3$$

Next time: Bisection Method (f(x) = 0)

Find the values of x for which f(x) = 0, that is find the points of intersection of f(x) with the x-axis.