Evolutionary paleoecology and the biology of extinction

Peter D Smits

Committee on Evolutionary Biology, University of Chicago

January 3, 2014

Introduction and theory

Brachiopods, environmental preference, and extinction

Ecology and survival in Cenozoic mammals

Community connectedness in Cenozoic mammals

Introduction and theory

Brachiopods, environmental preference, and extinction

Ecology and survival in Cenozoic mammals

Community connectedness in Cenozoic mammals

Framework

Questions

- Why do certain taxa go extinct while others do not?
- ▶ How is emergence "formed?" When should it be invoked?
- Is extinction risk taxon-age independent?
- When should we expect global, regional, or local processes to dominate?

Evolutionary paleoecology

... the consequences of distinct ecological factors on differential rate dynamics, particularly rates of faunal turnover and diversification.

(Kitchell 1985 Paleobiology)

 $ecological\ interactions \rightarrow macroevolution$

Emergent properties

(Grantham 1995 Ann. Rev. Ecol. Syst.)

Species level

Trait that cannot be reduced to organismal level

Product of one or more traits/factors

Range size

Large range size means lower origination and extinction rates than small range size.

Range size is emergent

Probability of survival

Survival function

$$S(t) = P(T > t)$$

- ightharpoonup T: survival time (≥ 0)
- ▶ t: specified time

Theoretical S(t):

$\hat{S}(t)$ in practice:

(Kleinbaum and Klein 2012)

Instantaneous potential of failure (extinction)

Hazard function ≡ conditional failure rate

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

Van Valen's observation of survival

Law of Constant Extinction

Definition

Extinction risk in a given adaptive zone is taxon-age independent.

(Van Valen 1973 Evol. Theory)

translation: hazard is constant with respect to time (exponential)

$$h(t) = \lambda \iff S(t) = \exp^{-\lambda t}$$

Brachiopods and mammals: a comparison

brachiopods

- ► Permian (~ 47 My)
- marine
- Australasia
- global warming
- sessile

mammals

- ► Cenozoic (~ 65 My)
- terrestrial
- North America, Europe,
 South America
- global cooling
- motile

Series of related questions

- generic level survival in brachiopods
 - effect of ecological traits (emergence)
 - distribution of survival
- specific level survival in mammals
 - generic versus specific survival
 - anagenesis/species:genus simulation
 - distribution of survival
- community connectedness in mammals
 - global versus regional versus local scale processes

Introduction and theory

Brachiopods, environmental preference, and extinction

Ecology and survival in Cenozoic mammals

Community connectedness in Cenozoic mammals

Traits relating to environment and range size

- substrate affinity
 - physical, chemical
 - availability
- habitat preference
 - energetics
 - availability
- affixing strategy
 - energetics
 - optimality

Substrate affinity

- carbonates, clastics, mixed
- lithology/deposition environment
- Pharenozoic decrease in carbonates:clastics

Habitat preference

- on-shore, off-shore, none
- sea-level and energetics
- Pharenozoic decrease in on-shore:off-shore

Affixing strategy

- pedunculate, reclining, cementing
- pedunculate:on-shore, reclining:off-shore
- environmental energetics

Assigning substrate and habitat

Probability of assignment

$$P(H_1|E) = \frac{P(E|H_1)P(H_1)}{P(E|H_1)P(H_1) + P(E|H_2)P(H_2)}$$

(Simpson and Harnik 2009 Paleobiology)

Models

Preliminary results

Introduction and theory

Brachiopods, environmental preference, and extinction

Ecology and survival in Cenozoic mammals

Community connectedness in Cenozoic mammals

Ecological traits

- dietary category
 - energetics
 - availability
- locomotor category
 - availability
 - dispersal
- body size
 - energetics
 - ▶ home range size

Predictions: dietary category

Predictions: locomotor category

Predictions: body size

Methodology

Biases to survival: a simulation study

Introduction and theory

Brachiopods, environmental preference, and extinction

Ecology and survival in Cenozoic mammals

Community connectedness in Cenozoic mammals

Community connectedness

Definition

The degree to which localities are composed of endemic versus cosmopolitan taxa, and how similar this ratio is across localities.

Average relative number of endemics

$$E = \frac{\sum_{i=1}^{L} \frac{u_i}{n_i}}{L}$$

- L: number of localities
- u: number of taxa unique to a locality
- n: number of taxa at a locality
- ▶ 0 ≤ *E* ≤ 1

Average relative occupancy per taxon

$$Occ = \frac{\sum_{i=1}^{N} \frac{I_i}{L}}{N}$$

- ▶ N: total number of taxa
- I: number of localities a taxon occurs at
- L: number of localities
- ▶ 0 ≤ *Occ* ≤ 1

Biogeographic connectedness

$$BC = \frac{O - N}{LN - N}$$

- O: number of occurrences
- N: total number of taxa
- L: number of localities
- ▶ 0 ≤ *BC* ≤ 1

L = 3, N = 9, O = 27BC = 1

(Sidor et al. 2013 PNAS)

Code length

Global versus regional versus local scale processes

Global predictions

Expectations: dietary category

Expectations: locomotor category

Community connectedness of North America

Community connectedness of Europe

Community connectedness of South America

Methodology

- biogeographic network
 - ▶ taxa: species
 - ▶ locality: 2x2 equal—area map projection grid
- 2 My intervals
- ▶ PBDB, NOW, museum (FMNH, AMNH), compilations

Preliminary results

Summary of proposed research

Questions

- Why do certain taxa go extinct while others do not?
- ▶ How is emergence "formed?" When should it be invoked?
- Is extinction risk taxon—age independent?
- When should we expect global, regional, or local processes to dominate?

Acknowledgements

Committee

- Kenneth D. Angielczyk (co-advisor)
- Michael J. Foote (co-advisor)
- P. David Polly
- Richard H. Ree

Discussion

- David Bapst, Megan Boatright, Ben Frable, Colin Kyle, Darcy Ross, Liz Sander
- John Alroy, Graeme Lloyd, Carl Simpson, Graham Slater

