Plamedi Luis

J +2774-934-9868 — ■ plamedi.luis11@gmail.com — In linkedin.com/in/plamedi-luis-385353160 — ☐ github.com/Kapongoboy

Summary — Plamedi is an Electronic Engineering graduate from the University of Pretoria with a strong passion for embedded platforms and the software industry. A quick learner with a thirst for knowledge, he thrives on challenges and continuously seeks opportunities to expand his expertise.

Proficient in C/C++, Python, Rust, and Linux, he is also expanding his knowledge of Java through courses. He has hands-on experience in embedded systems development and has collaborated on team-based university projects, including the digital filtering module on a digital transceiver, GPU device programming for a Non-Intrusive Monitoring System, and wire-based UART communication in VHDL for the NLFSR with Chaos Generator.

Plamedi gained industry exposure as a QA intern at *AEC Electronics*, where he tested and repaired electronic detonators and utility devices (*BO-01, CT-01, CI-01, etc.*) to ensure reliability and performance.

Skills

Languages C/C++, Python, Rust, VHDL, SQL, Machine Learning PyTorch, Tensorflow, Tinygrad, CUDA, TypeScript, MATLAB, Octave Roboflow
 Web HTML, CSS, React, Flask, Supabase, NextJS misc Automation, Data Structures, Research Tools Linux, Git, Github, OrCAD, LTSpice, Simulink

Projects

Autonomous robot vacuum cleaner with computer vision

- Main platform was the Odroid N2+, using UART to communicate to an STM32F429I-DISC1.
- STM32CubeMX used for initial C code generation for STM32F429I-DISC1.
- arm-none-eabi-gcc used to compile the STM32's program using make.
- st-link (provides st-flash) was used to flash the embedded device.
- openocd and gdb were used for live debugging the STM32F429I-DISC1 on a Linux host device (EndeavourOS).
 Non-intrusive monitoring system
- Yolov3-Tiny was implemented in CUDA/C++ running on the Nvidia Jetson Nano embedded platform.
- The main program was written in Python and communicated with the detector program through UNIX sockets and shared memory.
- An OSNet CNN was implemented for re-identification feature extraction in Python (NumPY).
- Libfreenect was used to interface with the Microsoft Xbox Kinect sensors (for RGB-D image capture).

NLFSR with chaos generator

- DE0-Nano-SoC development board programmed with VHDL ran the main NLFSR operations.
- Quartus-prime used for programming FPGA platform.
- ModelSim-Intel used for FPGA system simulation and verification.
- 16-bit synced data communication between platform and host device to enable testing and verification.

Modulated morse-code transceiver

- Two STM32F429I-DISC1 were used, for transmission and reception.
- STM32CubeMX used for initial C code generation.
- ARM CMSIS-DSP library used for FFT functions.
- STM32 HAL used for graphics programming of ILI9341 (tft lcd driver).
- ADC/DAC functionality setup using STM32CubeMX.

Line following robot

- 8-bit PIC18F45K22 microprocessor programmed using PIC assembly.
- Initial setup of peripherals and clocks done through MPLABX graphical pin-out interface.
- Interfaced with external EEPROM IC for expanded persistent storage.

Respiratory sensor system

- 8-bit PIC18F45K22 microprocesser programmed with PIC C.
- MPLAB Code Configurator (MCC) used for initial C code generation.
- MPLAB XC8 compiler used on Windows host device.
- All algorithms interacting with hardware interfaced using PIC HAL.

Education

University of Pretoria

Bachelor of Engineering in Electronic Engineering

QA Intern

December 2022 - February 2023

AEC Electronics

- Executed comprehensive manual testing procedures for the CT-01, CI-01, BO-01 and other products using in house test jigs according to design specifications.
- Reviewed and optimized testing protocols to enhance efficiency and effectiveness, including submitting a report for the update of a historic products test specification.
- Collaborated with repair teams to diagnose and address defects using oscilloscopes, multi-meters and debuggers. As well as working hands on to re-solder and repair light physical defects.
- Maintained meticulous records of test results and device histories, streamlining future audits, and storing data categorically and efficiently.