## PARTIE A



PARTIE B

**1. a.** Les fonctions f et g sont dérivables sur  $\mathbb{R}$  et pour tout réel x on a  $f'(x) = e^x$  et  $g'(x) = -(-e^{-x})$ .

Le coefficient directeur de la tangente à la courbe  $\mathcal{C}_f$  au point A est égal à f'(a), ainsi  $f'(a) = e^a$ .

- **b.** De même le coefficient directeur de la tangente à la courbe  $\mathscr{C}_g$  au point B est égal à g'(b) donc  $g'(b) = e^{-b}$ .
- **c.** Si les deux tangentes sont communes alors le coefficient directeur de leurs équations réduites sont égaux, soit :

$$f'(a) = g'(b) \iff e^a = e^{-b} \iff b = -a.$$

**2.** Une équation réduite de la tangente à la courbe  $\mathscr{C}_f$  au point A est égale à :

$$y - e^a = e^a(x - a) \iff y = xe^a + e^a(1 - a).$$

Une équation réduite de la tangente à la courbe  $\mathcal{C}_g$  au point B est égale à :

$$y - (1 - e^{-b}) = e^{-b}(x - b) \iff y = xe^{-b} + 1 - e^{-b} - be^{-b}.$$

Ou en remplaçant -b par a:

$$y = xe^{a} + 1 - e^{a} + ae^{a} \iff y = xe^{a} + 1 + e^{a}(a - 1).$$

Si les deux tangentes sont communes, leurs équations réduites sont les mêmes. On a déjà vu l'égalité des coefficients directeurs. Les ordonnées à l'origine sont aussi les mêmes soit :

$$e^{a}(1-a) = 1 + e^{a}(a-1) \iff e^{a}(2-2a) = 1 \iff 2(a-1)e^{a} + 1 = 0.$$

Donc a est solution de l'équation dans  $\mathbb{R}$ :

$$2(x-1)e^x + 1 = 0.$$

## PARTIE C

**1. a.** En  $-\infty$ , nous avons une forme indéterminée du type «  $\infty \times 0$  », on change donc d'écriture.  $\forall x \in \mathbb{R}, \ \varphi(x) = 2xe^x - e^x + 1$ .

On sait que  $\lim_{x\to -\infty} \mathrm{e}^x = 0$  et  $\lim_{x\to -\infty} x \mathrm{e}^x = 0$  d'après le cours, d'où par somme de limite :  $\lim_{x\to -\infty} \varphi(x) = 1$ .

La droite d'équation y=1 est asymptote horizontale à la courbe représentative de  $\varphi$  au voisinage de  $-\infty$ .

On a  $\lim_{x \to +\infty} (x-1) = +\infty$  et  $\lim_{x \to +\infty} e^x = +\infty$ , d'où par somme de limites :  $\lim_{x \to +\infty} \varphi(x) = +\infty$ .

**b.**  $\varphi$  est dérivable sur  $\mathbb{R}$  et pour tout réel x,

$$\varphi'(x) = 2e^x + 2(x-1)e^x = 2xe^x$$
.

Comme, quel que soit  $x \in \mathbb{R}$ ;  $e^x > 0$ , le signe de  $\varphi'(x)$  est celui de x.

Donc sur  $]-\infty$ ;  $0[, \varphi'(x) < 0]$ : la fonction est décroissante sur cet intervalle et sur ]0;  $+\infty[$ ,  $\varphi'(x) > 0$ : la fonction  $\varphi$  est croissante sur cet intervalle. D'où le tableau de variations :

c.

| x                      | $-\infty$ | α        | 0  | β | +∞ |
|------------------------|-----------|----------|----|---|----|
| Signe de $\varphi'(x)$ |           | <u>:</u> | 0  | + |    |
| variations de $arphi$  | 1         | 0        | -1 | 0 | +∞ |

**2. a.** Sur  $]-\infty$ ; 0] la fonction  $\varphi$  est continue et strictement décroissante .  $0 \in [-1; 1]$  intervalle image de l'intervalle  $]-\infty$ ; 0] par la fonction  $\varphi$ . D'après le corollaire du théorème des valeurs intermédiaires, il existe un réel unique  $\alpha$  de  $]-\infty$ ; 0] tel que  $\varphi(\alpha)=0$ .

Le même raisonnement sur l'intervalle  $[0; +\infty[$  montre qu'il existe un réel unique de cet intervalle  $\beta$  tel que  $\varphi(\beta)=0$ .

Donc l'équation  $\varphi(x) = 0$  admet exactement deux solutions dans  $\mathbb{R}$ .

**b.** La calculatrice donne successivement :

$$\varphi(-2) \simeq 0.18 \text{ et } \varphi(-1) \simeq -0.47, \text{ donc } -2 < \alpha < -1;$$
  
 $\varphi(-1,7) \simeq 0.013 \text{ et } \varphi(-1,6) \simeq -0.05, \text{ donc } -1.7 < \alpha < -1.6;$   
 $\varphi(-1,68) \simeq 0.001 \text{ et } \varphi(-1.67) \simeq -0.005, \text{ donc } -1.68 < \alpha < -1.67;$   
 $\varphi(-1,679) \simeq 0.00041 \text{ et } \varphi(-1.678) \simeq -0.0002, \text{ donc } -1.679 < \alpha < -1.678.$ 

**Conclusion**: au centième près  $\alpha \simeq -1,68$ .

De la même façon on obtient  $\beta \simeq 0,77$ .

## PARTIE D

1. Le coefficient directeur de la tangente en E à  $\mathscr{C}_f$  est  $\mathrm{e}^{\alpha}$ .

Le coefficient directeur de la droite (EF) est :  $\frac{1 - e^{\alpha} - e^{\alpha}}{-\alpha - \alpha} = \frac{1 - 2e^{\alpha}}{-2\alpha}.$ 

Or  $\alpha$  est solution de l'équation :  $2(x-1)e^x + 1 = 0$ , autrement dit

 $2(\alpha-1)e^{\alpha}+1=0 \iff 2\alpha e^{\alpha}=2e^{\alpha}-1, \text{ d'où en revenant au coefficient directeur de la droite}$  (EF) :  $\frac{1-2e^{\alpha}}{-2\alpha}=\frac{-2\alpha e^{\alpha}}{-2\alpha}=e^{\alpha}$ 

**Conclusion**: la droite (EF) est bien la tangente à la courbe  $\mathscr{C}_f$  au point d'abscisse  $\alpha$  et la tangente à la courbe  $\mathscr{C}_g$  au point d'abscisse  $-\alpha$ .

**2.** Le coefficient directeur de la tangente à la courbe  $\mathscr{C}_g$  au point d'abscisse  $-\alpha$  est  $e^{-(-\alpha)}=e^{\alpha}$ .

On a vu dans la question précédente que la droite (EF) a pour coefficient directeur  $e^{\alpha}$  et contient le point F.

**Conclusion** : la droite (EF) est la tangente à la courbe  $\mathscr{C}_g$  au point d'abscisse  $-\alpha$ .