CS4022D Principles of Programming Languages

Course Overview

Saleena N NIT Calicut

July 30, 2021

Outline

Introduction

Structural Operational Semantics

Lambda Calculus

Type Systems

Extensions to Lambda Calculus

Subtyping

Case studies

Programming Language - Introduction

- Concepts
- Constructs

Programming Language Definition

- Syntax
- Semantics
- ► Type System

Syntax

- Concerned with the structure of the program
- ► Formally specified
- Context Free Grammar / BNF

$$S \rightarrow id = E$$

 $E \rightarrow E + E \mid id$

Semantics

- ▶ In linguistics study of meaning
- Concerned with the meaning of syntactically valid programs
- ▶ Semantics of C language assignment statement: id = E?
 - describes how programs are evaluated / run-time behavior of programs ?

Semantics

- Required by programmers and implementers (writing compiler/interpreter)
- Mostly described informallly
- ► Formal Semantics: Approaches
 - Operational
 - Denotational
 - Axiomatic

Type System

- ► Types in the language and the rules for assigning types to language constructs
- ▶ Typing rule for C language assignment statement: id = E?
- Static checking to avoid certain run time errors
- Static Semantics

Programming Paradigm

- Pattern of problem solving thought
- Functional, Imperative, Logic, Object-oriented
- Functional computation viewed as mathematical function mapping input to output
- Imperative based on the Von Neumann model stored programs, variables - program as a series of commands

Functional Programming

- Lambda Calculus (Alonzo Church) foundation of functional programming
- Original functional programming language LISP developed by John Mc Carthy - theorem proving, rule based systems, earlier AI applications - Scheme is a variant of LISP
- Pure Functional Programming Computation viewed as mathematical function mapping input to output

Structural Operational Semantics (small-step)

- Language of Arithmetic Expression
- ► Formal Semantics introduction
 - Evaluation rules
 - Evaluation Derivation
 - Properties

Lambda Calculus

- Syntax
- Semantics
- Programming in Lambda Calculus

Type Systems

- Language of Typed Arithmetic Expressions
 - Typing rules
 - Typing derivations
- ► Type Safety
- ► Typed Lambda Calculus

Extensions to Lambda Calculus

- Constructs: Let binding, Sequencing
- ▶ Data Structures: Pairs, Tuples, Records, Sums, Variants
- ► Impure features: References
- Exceptions

Subtyping

- Basics
- Subtyping Records, Variants, Functions

Case Studies

► Object Oriented Language