

(3)

SYMMETRISED DYNAMICAN STRUCTURE FACTOR

FROM WELL'S THOSIS

$$S(h,\omega) = 2 S(h,-\omega)$$
system Gloss

System Absorp Broad-7

= Neumas

bunby

WELL DEFLE

$$S(h,\omega) = \exp \left[-\frac{1}{2}\rho + \omega + \frac{h^2 h^2 \rho}{2M}\right] S(h,\omega)$$

ROBERT SAT WE
CALL BROOKS THIS ONE

AWAY CHOICEY

to NEUMas

= 1 = 1 S(h, w)

LIKEWISE SETTLAG WE HAVE

S(h,-w) = 1 phw S(h,-w)

IN SUNTING @ AND @ INTO @ GIVES

1 2 pto S(h, w) = e tothe S(h - w)

So if we plot is symmethic!

NOTE THE EFFECT OF UN-SYMPRETRIES WOULD BE SOMETHING LIKES AS(W)

ري

I.E 0 = 2,5 meV HONCE WE CAN CONCLUDE S AND S WILL NOT LOOK +00 DIFFERONT. FROM
A.A. VAN WELL'S THESIS
OU LIQUID AR

wavelengths of the incident and scattered neutrons (λ_f is proportional to the TOF of the neutron from the sample to the detector), \hbar Planck's constant divided by 2π , m the mass of the neutron, σ_b the bound atom cross section; k and ω are the momentum and energy transfers in units of \hbar :

$$k = k_0 - k_f$$
, $\omega = (E_0 - E_f)/n$. (3)

Here $E_i = \hbar^2 k_i^2/2m$ (i = 0,f) is the energy of the neutron with momentum $\hbar k_i$, and $k_i = |k_i| = 2\pi/\lambda_i$.

 $S(k, \omega)$ satisfies the detailed balance condition

$$S(k,\omega) = e^{\beta\hbar\omega} S(k,-\omega) , \qquad (4)$$

with $\beta = 1/k_B T$, k_B being Boltzmann's constant.

Since liquid argon can in first approximation be considered a classical system, we will present most of our results in the form of the symmetrized dynamic structure factor

$$\widetilde{S}(k,\omega) = \exp\left[-\frac{\hbar^2 k^2 \beta}{8M}\right] S(k,\omega)$$
, (5)

with M the mass of one particle of the system. Eq.(5) gives a quasi-classical approximation of $S(k,\omega)^{(14)}$ that is exact for an ideal gas.

We will also consider the longitudinal current correlation function $C_{\rho}(k,t)$, defined by

$$C_{\ell}(k,t) = -\frac{1}{k^2} \frac{d^2}{dt^2} F(k,t)$$
, (6)

and its frequency spectrum

$$C_{\ell}(k,\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dt \ e^{-i\omega t} C_{\ell}(k,t) = \frac{\omega^2}{k^2} S(k,\omega) . \qquad (7)$$

FOR THE MDMC CODE BETTER TO USE S THAN S

Fhor

A.A. VAN WELL

36_A

77.85

- 18 -

ermined from the

The TOF resolution (for ω =0) of the spectrometer was determined from the elastic scattering of a vanadium sample (see Secs.III.B.2 and IV.C). The relative TOF resolution measured at the detectors (FWHM), $\Delta t/t$, varied from 2.7 % to 3.8 %. This resulted in an absolute frequency resolution, $\Delta \omega$, as shown in Fig.1(b).

Fig. 2. The kinematic region for the experiment. TOF channel numbers, scattered neutron wavelengths, and frequency transfers, are indicated. Crosses represent the aluminium Bragg peaks. The dashed and dashed-dotted lines are the sound "dispersion" curves, $\omega_s = c_s k$, for measurements a and d respectively.