Phy 223 Final Exam formulas

Simple
$$f = \frac{1}{T}$$
, $\omega = 2\pi f$, $\omega = \sqrt{\frac{k}{m}}$, $F = -kx$
Harmonic: $\chi(t) = A\cos(\omega t + \phi)$, $E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$

waves:
$$V = f\lambda$$
 $Y(x,t) = A\cos(Rx - \omega t)$
 $R = \frac{2\pi}{\lambda}$ $V = \sqrt{\frac{\pi}{M}}$, $M = \frac{M}{L}$

Interference $\Delta x = m\lambda$, m = 0, 1, 2, 3, ... constructive $\Delta x = (m+\frac{1}{2})\lambda$, m = 0, 1, 2, 3, ... destructive.

light.
$$n = \frac{c}{v}$$
, $N_a sih \theta_a = n_b sin \theta_b$, $sin \theta_{crit} = \frac{N_b}{N_a}$

$$I = I_0 \cos^2 \phi$$

$$m = -\frac{5}{5} = \frac{hi}{ho}$$

double slit: $\Delta X = dsin\theta = m\lambda$, $m = 0, \pm 1, \pm 2, \pm 3$ constructive $\Delta X = dsin\theta = (m + \frac{1}{2})\lambda$, $m = 0, \pm 1, \pm 2, \pm 3$, destructive

Atomiz
$$K_{max} = hf - \phi$$
, $E = hf$, $h = 6.63 \times 10^{34} \text{ J.s}$

$$E_n = \frac{-13.6eV}{n^2}$$
, $\lambda = \frac{h}{mv}$ $m = 9.1/x 10^{31} kg$
 $1eV = 1.6 \times 10^{19} \text{J}$