

Computer Organization and Software Systems

CONTACT SESSION 2

Dr. Lucy J. Gudino WILP & Department of CS & IS

Today's Class

Contact Hour	List of Topic Title	Text/Ref Book/external resource
3	Performance Assessment MIPS Rate Amdahl's Law	Class Slides
4	Memory Organization Storage Technologies Random Access Memory Disk Storage Solid State Disks Storage Technology Trends	T1, R2

Performance Assessment

BITS Pilani

Pilani Campus

Units

- Kilo- (K) = 1 thousand = 10^3 and 2^{10}
- Mega- (M) = 1 million = 10^6 and 2^{20}
- Giga- (G) = 1 billion = 10^9 and 2^{30}
- Tera- (T) = 1 trillion = 10^{12} and 2^{40}
- Peta- (P) = 1 quadrillion = 10^{15} and 2^{50}
- Exa (E) = 1 quintillion = 10^{18} and 2^{60}

Byte = a unit of storage

- $-1KB = 2^{10} = 1024$ Bytes
- $-1MB = 2^{20} = 1,048,576$ Bytes
- Main memory (RAM) is measured in MB / GB
- Disk storage is measured in GB for small systems,
 TB for large systems.

Examples

Hertz = clock cycles per second (frequency)

- -1MHz = 1,000,000Hz
- Processor speeds are measured in MHz or GHz.

Units...

- Milli- (m) = 1 thousandth = 10^{-3}
- Micro- (μ) = 1 millionth = 10⁻⁶
- Nano- (n) = 1 billionth = 10⁻⁹
- Pico- (p) = 1 trillionth = 10^{-12}
- Femto- (f) = 1 quadrillionth = 10^{-15}

Examples

- Millisecond = 1 thousandth of a second
 - Hard disk drive access times are often 10 to 20 milliseconds.
- Nanosecond = 1 billionth of a second
 - Main memory access times are often 50 to 70 nanoseconds.
- Micron (micrometer) = 1 millionth of a meter
 - Circuits on computer chips are measured in microns.

Important Terms

- Execution time: The total time required for the computer to complete a task, including disk accesses, memory accesses, I/O activities, operating system overhead, CPU execution
- Throughput or bandwidth : number of tasks completed per unit time.

innovate achieve lead

Example

- Do the following changes to a computer system, increase throughput, decrease execution time, or both?
- 1. Replacing the processor in a computer with a faster version
- 2. Adding additional processors of same type to a system, that is, it uses multiple processors for separate tasks

Contd...

 Relationship between Performance and execution time of Computer X

$$Performance_{x} = \frac{1}{Execution time_{x}}$$

 if the performance of X is greater than the performance of Y, we have

$$\frac{1}{\text{Execution time}_{X}} > \frac{1}{\text{Execution time}_{Y}}$$

$$\frac{1}{\text{Execution time}_{Y}} > \frac{1}{\text{Execution time}_{Y}}$$

$$\text{Execution time}_{Y} > \text{Execution time}_{X}$$

Contd...

- Quantitative performance analysis
 - Computer X is "n" times faster than Computer Y

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = n$$

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = \frac{\text{Execution time}_{Y}}{\text{Execution time}_{X}} = n$$

 If performance of X is n times better than Y, then the execution time on Y is n times longer than it is on X

Example

 If computer A runs a program in 10 seconds and computer B runs the same program in 15 seconds, how much faster is A than B?

$$\frac{\text{Performance}_{A}}{\text{Performance}_{B}} = \frac{\text{Execution time}_{B}}{\text{Execution time}_{A}} = n$$

Computer A is therefore 1.5 times faster than B.

CPU performance and its factors

$$\frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = \frac{\text{Execution time}_{Y}}{\text{Execution time}_{X}} = n$$

CPU execution time for a program:

$$\frac{\text{CPU execution time}}{\text{for a program}} = \frac{\text{CPU clock cycles}}{\text{for a program}} \times \text{Clock cycle time}$$

$$\frac{\text{CPU execution time}}{\text{for a program}} = \frac{\text{CPU clock cycles for a program}}{\text{Clock rate}}$$

Example

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz clock. We are trying to help a computer designer build a computer, B, which will run this program in 6 seconds. The designer has determined that a substantial increase in the clock rate is possible, but this increase will affect the rest of the CPU design, causing computer B to require 1.2 times as many clock cycles as computer A for this program. What clock rate should we tell the designer to target?

Execution Time A = 10s

Execution TimeB = 6s

LACCUTION TIMEA - 103

Clock Rate $A = 2 \times 10^9$ Hz

CPU Clock CyclesB = 1.2xClock CycleA

CPU Clock CycleA = ?

Clock Rate B = ?

innovate achieve lead

Instruction Performance

- CPI: Clock cycles Per Instruction
 - Average number of clock cycles per instruction for a program or program fragment.

CPU clock cycles = Instructions for a program × Average clock cycles per instruction

Example

Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program. Which computer is faster for this program and by how much?

Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program. Which computer is faster for this program and by how much?

- k eve lead
- the number of processor clock cycles for each computer CPU clock cycles_A = $I \times 2.0$ CPU clock cycles_B = $I \times 1.2$
- Execution time for each computer Execution time = CPU clock cycles × Clock cycle time Execution time_A = $I \times 2.0 \times 250$ ps = $500 \times I$ ps Execution time_B = $I \times 1.2 \times 500$ ps = $600 \times I$ ps
- Comparison:

CPU performance_A Execution time_B 600 I ps ----- = ---- = 1.2 CPU performance_B Execution time_A 500 I ps

Amdahl's Law

- proposed by Gene Amdahl in 1967
- deals with the potential speedup of a program using multiple processors compared to a single processor

$$Speedup = \frac{Performance after enhancement}{Performance before enhancement} = \frac{Execution time before enhancement}{Execution time after enhancement}$$

Amdahl's Law

$$Speedup = \frac{Performance after enhancement}{Performance before enhancement} = \frac{Execution time before enhancement}{Execution time after enhancement}$$

$$S = \frac{1}{(1-f) + \frac{f}{k}}$$

S=Speedup, f=fraction of time enhancement, k=speedup of the faster component

Amdahl's Law


```
If 90% of a program is speeded up to run 10 times faster f=0.9 and k=10
Overall speedup is 1/(1-0.9)+(0.9/10)=1/(0.1+0.09)=1/(0.19)=5.26
```

```
Making 80% of a program run 20% faster f=0.80 and k=1.2 1/(1-0.8)+(0.8/1.2)= 1/(0.2+0.8/1.2)=1/(0.2+0.66)=1/0.866=1.154
```

Example

On a large system CPU upgrade makes it faster by 50% for INR 10,000. A disk drive upgrade of INR 7000 speeds it up by 150%. Evaluate the speedups? Processes spend 70% in CPU and 30% waiting Disk drives.

Processor upgrade

Disk Drive upgrade

$$f = 0.70, S = \frac{1}{(1 - 0.7) + 0.7/1.5} = 1.304$$

$$f = 0.70, S = \frac{1}{(1 - 0.7) + 0.7/1.5} = 1.304$$
 $f = 0.30, S = \frac{1}{(1 - 0.3) + 0.3/2.5} = 1.219$

30% improvement

22% Improvement

CPU-30 % improvement -faster by 50% ---so 1% increment is INR 10000/30=INR 333

DISK DRIVE- 22% improvement – speeds up 150%---so a 1% increment is INR 7000/22=INR=318

Each 1% of improvement for the processor costs INR333, and for the disk a 1% improvement costs INR318. "Is cost/performance the most important metric?"

Memory Organization

BITS Pilani

Pilani Campus

innovate achieve lead

Semiconductor Memory

Random-Access Memory (RAM)

- Key features
 - RAM is traditionally packaged as a chip.
 - Basic storage unit is normally a cell (one bit per cell).
 - Multiple RAM chips form a memory.
- RAM comes in two varieties:
 - SRAM (Static RAM)
 - DRAM (Dynamic RAM)
- SRAM and DRAM are volatile memories
 - Lose information if powered off.

			s Needs refresh?	Needs EDC?	Cost	Applications
SRAM DRAM	4 to 6 1	1X 10X	No Yes	Maybe Yes	100x 1X	Cache Main memories, frame buffers

innovate achieve lead

Read Only Memory

- Permanent Storage and Nonvolatile Memories
- Read Only Memory Variants:
 - Read-only memory (ROM): programmed during production
 - Programmable ROM (PROM): can be programmed once
 - Erasable PROM (EPROM): can be bulk erased (UV, X-Ray)
 - Electrically erasable PROM (EEPROM): electronic erase capability
 - Flash memory: EEPROMs. with partial (block-level) erase capability
 - Wears out after about 100,000 erasing
- Firmware

Applications

- Storing fonts for printers
- Storing sound data in musical instruments
- Video game consoles
- Implantable Medical devices.
- High definition Multimedia Interfaces(HDMI)
- BIOS chip in computer
- Program storage chip in modem, video card and many electronic gadgets, controllers for disks, network cards,

Memory Read Operation (1)

CPU places address A and then read control signal on the memory bus

Memory Read Operation (2)

Main memory reads A from the memory bus, retrieves word x, and places it on the bus

Memory Read Operation (3)

CPU read word x from the bus and copies it into register R4.

Load operation: MOV R4, A
R4 ← [A]

Memory Write Operation (1)

CPU places address A and WRITE control signal on bus. Main memory reads them and waits for the corresponding data word to arrive.

Memory Write Operation (2)

CPU places data word y on the bus

Memory Write Operation (3)

Main memory reads data word y from the bus and stores it at address A.

Magnetic Disk Drive

Image courtesy of Seagate Technology

Disk Geometry

- Disks consist of platters, each with two surfaces.
- Each surface consists of concentric rings called tracks
- Aligned tracks form a cylinder
- Each track consists of sectors separated by gaps.

Disk Capacity

- Capacity: maximum number of bits that can be stored.
 - Vendors express capacity in units of gigabytes (GB /TB), where 1 GB = 2^{30} Bytes, 1 TB = 2^{40} Bytes,
- Capacity is determined by these technology factors:
 - Recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track.
 - Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment.
 - Areal density (bits/in2): product of recording and track density.

Recording zones

- Modern disks partition tracks into disjoint subsets called recording zones
 - Each track in a zone has the same number of sectors, determined by the circumference of innermost track.
 - Each zone has a different number of sectors/track, outer zones have more sectors/track than inner zones.
 - So we use average number of sectors/track when computing capacity.

Computing Disk Capacity

- Capacity = (# bytes/sector) x (avg. # sectors/track) x
 (# tracks/surface) x (# surfaces/platter) x
 (# platters/disk)
- Example:
 - 512 bytes/sector
 - 300 sectors/track (on average)
 - 20,000 tracks/surface
 - 2 surfaces/platter
 - 5 platters/disk

```
    Capacity = 512 x 300 x 20000 x 2 x 5
    = 30,720,000,000
    = 28.61 GB
```

Disk Operation (Single-Platter View)

Disk Operation (Multi-Platter View)

Disk Access

Need to access a sector colored in blue

Disk Access

Head in position above a track

Disk Access

Rotate the platter in counterclockwise direction

About to read blue sector

After BLUE read

After reading blue sector

Red request scheduled next

Disk Access - Seek

Seek to red's track

Disk Access - Rotational Latency

Wait for red sector to rotate around

Complete read of red

Disk Access - Access Time Components

