

Not to Cry Wolf: Distantly Supervised Multitask Learning in Critical Care

Patrick Schwab¹

Emanuela Keller², Carl Muroi², David J. Mack², Christian Strässle² and Walter Karlen¹

¹Institute of Robotics and Intelligent Systems, ETH Zurich

² Neurocritical Care Unit, University Hospital Zurich

How Can We Help?

The Idea

The Idea

Intracranial Pressure **Smarter Monitoring** (1) Lower degree of urgency, or (2) suppressed

Challenges

- Large amounts of biosignal monitoring data and alarms available
 - But only a limited amount of labelled data
 - Expert labels expensive and time-consuming
- Can we make due with a smaller number of labels?

Semi-supervised Learning

Existing Approaches

- Existing methods to semi-supervised learning in deep networks are roughly:
 - 1. Distant / self / weak supervision
 - e.g. temporal ensembling¹
 - 2. Reconstruction-based objectives
 - e.g. AE, VAE, Ladder Nets
 - 3. Adversarial learning
 - · e.g. Feature Matching GANs, CatGAN, Triple-GAN, ...

Existing Approaches

- Existing methods to semi-supervised learning in deep networks are roughly:
 - 1. Distant / self / weak supervision
 - e.g. temporal ensembling¹
 - 2 Reconstruction-based objectives
 - e.g. AE, VAE, Ladder Nets
 - 3. Adversarial learning
 - e.g. Feature Matching GANs, CatGAN, Triple-GAN, ...

A Unified View

 Reconstruction-based SSL can be viewed as distant supervision where reconstruction is the auxiliary task

A Unified View

- Reconstruction-based SSL can be viewed as distant supervision where reconstruction is the auxiliary task
- Reconstruction is a convenient auxiliary task
 - .. generalises to all kinds of models, input data

A Unified View

- Reconstruction-based SSL can be viewed as distant supervision where reconstruction is the auxiliary task
- Reconstruction is a convenient auxiliary task
 - .. generalises to all kinds of models, input data
- But is it the **best**?

Hypotheses

 Recent empirical successes¹ with specifically engineered auxiliary tasks lead to hypotheses:

- (1) More **"related" auxiliary tasks** might be a better choice than reconstruction
- (2) Using **multiple diverse auxiliary tasks** might be better than just one

1 Oquab et al., 2015; Deriu et al., 2017; Doersch & Zisserman, 2017

Supervised Learning

Supervised Learning

Supervised Learning

DSMT-Net

DSMT-Net

Any Number of Multitask Blocks

So far so good, but ...

- 1 Where could we get a large number of auxiliary tasks from?
- 2 What about potential adverse interactions between gradients from all these auxiliary tasks?

1 - Large-scale Auxiliary Task Selection

- How do we select auxiliary tasks for distant supervision?
 - Identification of relevant features in large feature repository (auto-corr., power spectral densities..)
 - relevant = significant correlation¹ with labels
 - Simple strategies:
 - (1) At **random** out of the relevant set, and
 - (2) in order of **importance**

2 - Combating Adverse Gradient Interactions

- A key issue in end-to-end multitask learning are adverse gradient interactions
- We therefore disentangle training unsupervised and supervised tasks
- Train in alternating fashion in each epoch
 - First unsupervised tasks then supervised tasks
- Similar to alternating training regime in GANs

Evaluation

AUROC @ 12 labels

1,000

Supervised Baselines

DSMT-Nets outperform existing SSL methods

Random outperforms Importance Selection

Preventing Adverse Gradient Interactions Is Key

Conclusion

Conclusion

- We present an approach to semi-supervised learning that ...
 - automatically selects a large set of auxiliary tasks from multivariate time series
 - scales to **hundreds of auxiliary tasks** in a single neural network
 - combats adverse gradient interactions between tasks
- We confirm that adverse gradient interactions and auxiliary task diversity are key in multitask learning.
- We make good progress on a clinically important task.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Questions?

Patrick Schwab

patrick.schwab@hest.ethz.ch

Institute for Robotics and Intelligent Systems
ETH Zurich

Find out more at the poster session (#108, 18.15), and in the paper: Schwab, P., Keller, E., Muroi, C., Mack, D. J., Strässle, C., and Karlen, W. (2018). **Not to Cry Wolf: Distantly Supervised Multitask Learning in Critical Care.**

