Hierarchical Modelling

Arthur White

Overview

- ▶ We have seen how to fit Bayesian models to data using MCMC
- This is a powerful computational tool that lets us fit a lot of different models in a Bayesian framework
- We are going to look at a simple hierarchical model that is a natural fit in this framework

Statistical models – review

- So far we have looked at
 - Binomial models
 - Normal models
- ► We have seen how to fit these models to data in a Bayesian framework
 - Assign priors to parameters
 - ► Fit using MCMC if needed
 - Interpret and posterior distribution for parameters as needed

Normal distribution - generative model

$$\mu \sim \mathcal{N}(\mu_0, 1/ au_0)$$
 $au \sim \mathcal{G}(\mathsf{a}, \mathsf{b})$ $i = 1, \ldots, \mathsf{n}: y_i \sim \mathcal{N}(\mu, 1/ au)$

▶ Conditional posterior distributions for μ and τ :

$$\mu|y, au \sim \mathcal{N}(\mu_n, 1/ au_n)$$
 $au|y, \mu| \sim \mathcal{G}(a_n, b_n)$

Normal distribution - graph representation

Normal distribution - plate notation

Normal distribution - conditional on au

Normal distribution - conditional on μ

Comparing multiple means

▶ Now suppose we observe data samples from *K* multiple groups:

$$y_1 = y_{1,1}, \dots, y_{n_{1,1}}$$

$$\vdots$$

$$y_K = y_{1,K}, \dots, y_{n_K,K}.$$

We assume that each sample is normally distributed:

$$y_{i,k} \sim \mathcal{N}(\theta_k, 1/\tau_w),$$

for each observation i in each group k.

 \blacktriangleright We assume a common precision (variance) parameter τ across all groups.

Example - schools data

```
##
       school mathscore
## 1157
          58
                 50.94
## 889
          46
                 35.77
## 447
          24
                46.94
          86 64.73
## 1649
## 962
          50
                 41.55
## 1231
          61
                 55.28
```

- We assess exam scores of n = 1993 students from 100 different schools
- ▶ Same context as earlier example but many more schools

Comparing multiple means - data

Comparing multiple groups

We want to compare the performance of the schools, i.e., at the level of population means

$$\theta_1,\ldots,\theta_K$$
.

- We could of course directly compare the sample means $\bar{y_1}, \dots, \bar{y_K}$.
- But we know there is variability in the way that these summary statistics have been collected:
 - ► A student's performance in an exam will vary from day to day;
 - Some students are weaker/stronger than others, so different samples may obtain a somewhat different scores.
- Our comparison needs to take this into account and distinguish between systematic and random variation.

Schools data

Modelling approach

- A classic approach to take here would be to perform a hypothesis test
 - Assume a null model where d = 0 across all groups;
 - Take the variability of the data into account
 - ► If the scores are different enough that statistical significance is achieved ⇒ conclude that a difference exists.
 - Otherwise, if e.g., p > 0.05, fail to reject H_0 and conclude that no real differences can be detected in the data.

Modelling approach

- This approach is well known and called ANOVA (analysis of variance)
- But we can criticise this approach.
- Suppose that p = 0.055. Is this result really so different from p = 0.045?
- ► The intial ANOVA test also only gives an overall result. To compare all groups requires adjustments to avoid catastrophic Type 1 error.
- ▶ It is more flexible to explicitly model these means in a Bayesian framework.

Comparing multiple means - model

- ▶ Let μ be a **population mean**;
- ▶ Let τ_b be precision **between** groups;
- Let θ_k denote **mean** of group k;
- Let τ_w be precision **within** groups; this is common to all groups.

Comparing multiple means - model

► Model the data as follows:

$$\theta_k = \mu + d_k, k = 1, \dots, K$$

- ▶ $d_k \sim \mathcal{N}(0, 1/\tau_b)$ for all k.
- ► Then:

$$y_{i,k} = \mu + d_k + \epsilon_{i,k}, i = 1, \dots, n_k$$

lacksquare $\epsilon_{i,k} \sim \mathcal{N}(0,1/ au_w)$ for all i,k, i.e., noise.

Comparing multiple means - model

- Another way to write this is that we assume that:
- ▶ For k = 1, ..., K:

$$\theta_k \sim \mathcal{N}(\mu, 1/\tau_b);$$

▶ For $i = 1, ..., n_k$:

$$y_{i,k} \sim \mathcal{N}(\theta_k, 1/\tau_w),$$

- These representations are equivalent
- But I prefer the latter representation
 - makes dependency between variables more explicit
 - more parsimonious

Choosing priors

- Let's choose the following priors for this model
 - ▶ $\mu \sim \mathcal{N}(\mu_0, 1/\tau_0)$;
 - $ightharpoonup au_b \sim \mathcal{G}(a,b);$
 - Let $\tau_{\mathsf{w}} \sim \mathcal{G}(\alpha, \beta)$;
- ▶ These choices should be unsurprising at this point
 - see notes on Normal model for details
- We don't need to specify a prior for group means $\theta_1, \ldots, \theta_K$.
- \blacktriangleright μ and au_b act as the "prior" in this case see graph.

Comparing multiple means – graph

Inference

- In practice, we can fit this model using Stan, or other specialist languages.
- ► However it is still instructive to review how to perform inference in this case
- ► So we will outline the key steps

Inference - build the posterior

- Assume for now that μ, τ_b, τ_w are known.
- We have a joint distribution for y and θ of the form:

$$p(y, \theta | \mu, \tau_b, \tau_w) = p(y | \theta, \tau_w) p(\theta | \mu, \tau_b)$$
$$= \prod_{k=1}^K \prod_{i=1}^{n_k} p(y_{i,k} | \theta_k, \tau_w) p(\theta_k | \mu, \tau_b).$$

Building the posterior

We can then construct the full posterior by adding in prior terms for μ, τ_b , and τ_w :

$$p(\theta, \mu, \tau_b, \tau_w | y, \mu_0, \tau_0, a, b, \alpha, \beta)$$

$$\propto p(y, \theta | \mu, \tau_b, \tau_w) p(\mu | \mu_0, \tau_0) p(\tau_b | a, b) p(\tau_w | \alpha, \beta)$$

$$\propto \left\{ \prod_{k=1}^K \prod_{i=1}^{n_k} p(y_{i,k} | \theta_k, \tau_w) \right\} \times \prod_{k=1}^K p(\theta_k | \mu, \tau_b)$$

$$\times p(\mu | \mu_0, \tau_0) p(\tau_b | a, b) p(\tau_w | \alpha, \beta).$$

Note the relationship between the structure of this posterior and the graph on the previous slide.

Conditional distributions — $\boldsymbol{\mu}$

Conditional distributions – μ

► The conditional distribution $p(\mu|\theta, \tau_b)$ for the population mean μ is:

$$p(\mu|\theta, \tau_b, \mu_0, \tau_0) \propto \prod_{k=1}^K p(\theta_k|\mu, \tau_b) p(\mu|\mu_0, \tau_0),$$

- where $p(\theta_k|\mu, \tau_b)$ is a normal distribution, for all k, and $p(\mu|\mu_0, \tau_0)$ is also normal.
- ► Hence $\mu|\theta, \tau_b, \mu_0, \tau_0 \sim \mathcal{N}(\mu_K, 1/\tau_K)$, with

$$\mu_{K} = \frac{K\tau_{b}\bar{\theta} + \tau_{0}\mu_{0}}{K\tau_{b} + \tau_{0}};$$

$$\tau_K = K\tau_b + \tau_0.$$

Conditional distributions – τ_b

Conditional distributions – τ_b

▶ The conditional distribution for the between group precision τ_b is:

$$p(\tau_b|\theta,\mu,a,b) \propto \prod_{k=1}^K p(\theta_k|\mu,\tau_b)p(\tau_b|a,b),$$

- where $p(\theta_k|\mu, \tau_b)$ is a normal distribution, for all k, and $p(\tau_b|a, b)$ is Gamma.
- ▶ Then $\tau_b|\theta,\mu,a,b\sim \mathcal{G}(a_K,b_K)$, with

$$a_K = K/2 + a;$$

$$b_K = \frac{1}{2} \left\{ \sum_{k=1}^K (\theta_k - \mu)^2 \right\} + b.$$

Conditional distributions – θ_k

Conditional distributions – θ_k

▶ The conditional distribution for each θ_k is:

$$p(\theta_k|y,\mu, au_b, au_w) \propto \prod_{i=1}^{n_k} p(y_{ik}|\theta_k au_w) p(\theta_k|\mu, au_b)$$

- where $p(y_{ik}|\theta_k\tau_w)$ and $p(\theta_k|\mu,\tau_b)$ are both normally distributed, for all i and k.
- ► Then $\theta_k|y, \mu, \tau_b, \tau_w \sim \mathcal{N}(\lambda_{n_k}, 1/\gamma_{n_k})$, with

$$\lambda_{n_k} = \frac{n_k \tau_w \bar{y}_k + \tau_b \mu}{n_k \tau_w + \tau_b};$$

$$\gamma_{n_k} = n_k \tau_w + \tau_b.$$

Conditional distributions – τ_w

Conditional distributions – τ_w

lacktriangle The conditional distribution for within group precision au_w is:

$$p(\tau_w|\theta,\alpha,\beta) \propto \prod_{k=1}^{K} \prod_{i=1}^{n_k} p(y_{i,k}|\theta_k,\tau_w) p(\tau_w|\alpha,\beta),$$

 $ightharpoonup p(y_{i,k}|\theta_k, au_w)$ is normal for all i,k, and $p(au_w|lpha,eta)$ is Gamma

$$ightharpoonup \Rightarrow \tau_w | \theta, \alpha, \beta \sim \mathcal{G}(\alpha_n, \beta_n), \text{ with}$$

$$\alpha_n = \sum_{k=1}^K \frac{n_k}{2} + \alpha;$$

$$b_K = 1/2 \left\{ \sum_{k=1}^K \sum_{i=1}^{n_k} (y_{i,k} - \theta_k)^2 \right\} + b.$$

Inference for model

- ▶ Because the conditional distributions are available in all cases, we can update the model using a Gibbs sampler.
- Even if we use a different approach, the conditional distributions of the parameters give us an insight into what we learn from the data.
- The hierarchical structure of the model means that the group means $\theta_1, \ldots, \theta_K$ behave like the "data" for μ and τ_b ;
- ► Conversely, μ and τ_b behave like hyperparameters for each θ_k , even though they are estimated from the data.

Interpreting the model

Note that, when estimating θ_k , the conditional mean λ_{n_k} has the form

$$\lambda_{n_k} = \frac{n_k \tau_w \bar{y}_k + \tau_b \mu}{n_k \tau_w + \tau_b}$$

- lacktriangle So the estimate for θ_k is effectively a weighted combination of elements
 - \bar{y}_k estimated directly from the data and relating explicitly to group k;
 - $ightharpoonup \mu$ indirectly estimated from data across all groups.
- We are **pooling** information across all samples when assessing individual groups.

Interpreting the model

- In this context, μ can be called a **shrinkage** factor.
- ▶ In a full hierarchical model, we "borrow" information between all groups when estimating the parameters of individual groups.
- This is useful when the sample size for some groups is small.

Schools data - global parameters

Schools data - schools means θ

Schools data - θ vs \bar{y}

Conclusion

- We have looked a hierarchical model to compare data from K groups.
 - This is our first "proper" statistical model.
- We estimated the model using Gibbs samplers automatically using Stan:
 - The structure of our model meant that inference was straightforward.
 - ► This structure also lets us pool information across several groups
 - This is helpful when information is limited (sample size is small) for some groups
- ➤ You should be clear on what each parameter in the models represents, and how to interpret the model output.
 - When a model has a lot of parameters we sometimes need to be creative in how we interpret this output.

Extensions

- ▶ It is possible to extend the hierarchy of the model further if the data set has richer structure, for example:
 - schools in regions
 - students in classes
- ► Inference in this case would be very similar to the models we have examined.
- ▶ In fact, in many cases Bayesian inference can be thought of as "mechanical", and there is dedicated software to implement such models as simply as possible.