VREG_3V3 Block User Guide V02.02

Original Release Date: 12 Jul 2001 Revised: 21 Jul 2003

Semiconductor Products Sector Motorola, Inc

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Revision History

Version Number	Revision Date	Effective Date	Author	Description of Changes
V00.01	12 Apr 2001			Initial version
V00.02	7 June 2001			added additional Register, slight changes to block diagram
V00.03	9 July 2001			updated Figure A1; removing CTRL1, adding VSSR, LVDS/LVIF when not LVDE
V01.00	12 July 2001			adding VREGEN to Table2-1; rewritting of Section 1.3 for better reading; Table A1 Num 3+4 Min value changed. Mode name changed.
V01.01	23 July 2001			Typos
V01.02	04 Oct 2001			Reviewed LVI and LVD functionality
V1.03	19 Oct 2001			updated Appendix A
V1.04	24 Jant 2002			updated Appendix A, updated power description, updated Notes
V1.05	09 Mar 2002			removed LVDE, renamed register CTRL0.
V 1.06	20 Jun 2002			updated electrical spec in Appendix A.1
V 2.01	27 Jun 2002			new rev, minor updates, updated load capacitors
V 2.02	21 Jul 2003			updated 2.2.1 to clearify VDDR usage in bypass mode.

Table of Contents

Sect	ion 1 Introduction
1.1	Overview
1.2	Features
1.3	Modes of Operation
1.4	Block Diagram
Sect	ion 2 Signal Description
2.1	Overview
2.2	Detailed Signal Descriptions
2.2.1	VDDR, VSSR - Regulator Power Input11
2.2.2	VDDA, VSSA - Regulator Reference Supply
2.2.3	VDD, VSS - Regulator Output1 (Core Logic)
2.2.4	VDDPLL, VSSPLL - Regulator Output2 (PLL)
2.2.5	VREGEN - Optional Regulator Enable
Sect	ion 3 Memory Map and Registers
3.1	Overview
3.2	Module Memory Map
3.3	Register Descriptions
3.3.1	VREG_3V3 - Control Register (VREGCTRL)13
Sect	ion 4 Functional Description
4.1	General15
4.2	REG - Regulator Core
4.2.1	Full Performance Mode
4.2.2	Reduced Power Mode
4.3	LVD - Low Voltage Detect15
4.4	POR - Power-On Reset
4.5	LVR - Low Voltage Reset
4.6	CTRL - Regulator Control
Sect	ion 5 Resets
5.1	General17

Block User Guide — S12VREG3V3V2/D V02.02

5.2	Description of Reset Operation	17
5.2.1	Power-On Reset	17
5.2.2	Low Voltage Reset	17
Sect	ion 6 Interrupts	
6.1	General	19
6.2	Description of Interrupt Operation	19
6.2.1	LVI - Low Voltage Interrupt	19

List of Figures

Figure 1-1	VREG_3V3 - Block Diagram	.10
Figure 3-1	VREG_3V3 - Control Register (VREGCTRL)	.13

List of Tables

Table 2-1	VREG_3V3 - Signal Properties	11
Table 3-1	VREG_3V3 - Memory Map	13
Table 5-1	VREG_3V3 - Reset Sources	17
Table 6-1	VREG 3V3 - Interrupt Vectors	19

Section 1 Introduction

1.1 Overview

Block VREG_3V3 is a dual output voltage regulator providing two separate 2.5V (typ) supplies differing in the amount of current that can be sourced. The regulator input voltage range is from 3.3V up to 5V (typ).

1.2 Features

The block VREG_3V3 includes these distinctive features:

- Two parallel, linear voltage regulators
 - Bandgap reference
- Low Voltage Detect (LVD) with Low Voltage Interrupt (LVI)
- Power On Reset (POR)
- Low Voltage Reset (LVR)

1.3 Modes of Operation

There are three modes VREG_3V3 can operate in:

- Full Performance Mode (FPM) (CPU is not in Stop Mode)
 - The regulator is active, providing the nominal supply voltage of 2.5V with full current sourcing capability at both outputs. Features LVD (Low Voltage Detect), LVR (Low Voltage Reset) and POR (Power-On Reset) are available.
- Reduced Power Mode (RPM) (CPU is in Stop Mode)
 - The purpose is to reduce power consumption of the device. The output voltage may degrade to a lower value than in Full Performance Mode, additionally the current sourcing capability is substantially reduced. Only the POR is available in this mode, LVD and LVR are disabled.
- Shutdown Mode
 - Controlled by VREGEN (see device level specification for connectivity of VREGEN).
 - This mode is characterized by minimum power consumption. The regulator outputs are in a high impedance state, only the POR feature is available, LVD and LVR are disabled.
 - This mode must be used to disable the chip internal regulator VREG_3V3, i.e. to bypass the VREG_3V3 to use external supplies.

1.4 Block Diagram

Figure 1-1 shows the function principle of VREG_3V3 by means of a block diagram. The regulator core REG consists of two parallel subblocks, REG1 and REG2, providing two independent output voltages.

Figure 1-1 VREG_3V3 - Block Diagram

10

Section 2 Signal Description

2.1 Overview

Due to the nature of VREG_3V3 being a voltage regulator providing the chip internal power supply voltages most signals are power supply signals connected to pads.

Table 2-1 shows all signals of VREG_3V3 associated with pins.

Name Port **Function Reset State** Pull up VDDR VREG_3V3 power input (positive supply) **VSSR** VREG_3V3 power input (ground) VDDA VREG_3V3 quiet input (positive supply) **VSSA** VREG_3V3 quiet input (ground) VDD VREG_3V3 primary output (positive supply) VSS VREG_3V3 primary output (ground) VDDPLL VREG_3V3 secondary output (positive supply) **VSSPLL** VREG_3V3 secondary output (ground) VREGEN VREG 3V3 (Optional) Regulator Enable (optional)

Table 2-1 VREG_3V3 - Signal Properties

2.2 Detailed Signal Descriptions

Check device level specification for connectivity of the signals.

2.2.1 VDDR, VSSR - Regulator Power Input

Signal VDDR is the power input of VREG_3V3. All currents sourced into the regulator loads flow through this pin. A chip external decoupling capacitor (100nF...220nF, X7R ceramic) between VDDR and VSSR can smoothen ripple on VDDR.

For entering Shutdown Mode pin VDDR should also be tied to ground on devices without VREGEN pin.

2.2.2 VDDA, VSSA - Regulator Reference Supply

Signals VDDA/VSSA which are supposed to be relatively quiet are used to supply the analog parts of the regulator. Internal precision reference circuits are supplied from these signals. A chip external decoupling capacitor (100nF...220nF, X7R ceramic) between VDDA and VSSA can further improve the quality of this supply.

2.2.3 VDD, VSS - Regulator Output1 (Core Logic)

Signals VDD/VSS are the primary outputs of VREG_3V3 that provide the power supply for the core logic. These signals are connected to device pins to allow external decoupling capacitors (100nF...220nF, X7R ceramic).

In Shutdown Mode an external supply at VDD/VSS can replace the voltage regulator.

2.2.4 VDDPLL, VSSPLL - Regulator Output2 (PLL)

Signals VDDPLL/VSSPLL are the secondary outputs of VREG_3V3 that provide the power supply for the PLL and Oscillator. These signals are connected to device pins to allow external decoupling capacitors (100nF...220nF, X7R ceramic).

In Shutdown Mode an external supply at VDDPLL/VSSPLL can replace the voltage regulator.

2.2.5 VREGEN - Optional Regulator Enable

This optional signal is used to shutdown VREG_3V3. In that case VDD/VSS and VDDPLL/VSSPLL must be provided externally. Shutdown Mode is entered with VREGEN being low. If VREGEN is high, the VREG 3V3 is either in Full Performance Mode or in Reduced Power Mode.

For the connectivity of VREGEN see device specification.

NOTE: Switching from FPM or RPM to shutdown of VREG_3V3 and vice versa is not supported while MCU is powered.

Section 3 Memory Map and Registers

3.1 Overview

This section provides a detailed description of all registers accessible in VREG_3V3.

3.2 Module Memory Map

Table 3-1 provides an overview of all used registers.

Table 3-1 VREG_3V3 - Memory Map

Address Offset	Use	Access
\$_00	VREG_3V3 Control Register (VREGCTRL)	R/W

3.3 Register Descriptions

This section describes in address order all the VREG_3V3 registers and their individual bits.

3.3.1 VREG_3V3 - Control Register (VREGCTRL)

The VREGCTRL register allows to separately enable features of VREG_3V3.

Address Offset: \$_00

= Unimplemented or Reserved

Figure 3-1 VREG_3V3 - Control Register (VREGCTRL)

LVDS — Low Voltage Detect Status Bit

This read-only status bit reflects the input voltage. Writes have no effect.

- 1 = Input voltage V_{DDA} is below level V_{LVIA} and FPM.
- $0 = \text{Input voltage V}_{\text{DDA}}$ is above level V_{LVID} or RPM or Shutdown Mode.

LVIE — Low Voltage Interrupt Enable Bit

- 1 = Interrupt will be requested whenever LVIF is set.
- 0 =Interrupt request is disabled.

LVIF — Low Voltage Interrupt Flag

(M) MOTOROLA

Block User Guide — S12VREG3V3V2/D V02.02

LVIF is set to 1 when LVDS status bit changes. This flag can only be cleared by writing a 1. Writing a 0 has no effect. If enabled (LVIE=1), LVIF causes an interrupt request.

- 1 = LVDS bit has changed.
- 0 =No change in LVDS bit .

NOTE: On entering the Reduced Power Mode the LVIF is not cleared by the VREG_3V3.

Section 4 Functional Description

4.1 General

Block VREG_3V3 is a voltage regulator as depicted in **Figure 1-1**. The regulator functional elements are the regulator core (REG), a low voltage detect module (LVD), a power-on reset module (POR) and a low voltage reset module (LVR). There is also the regulator control block (CTRL) which represents the interface to the digital core logic but also handles the operating modes of VREG_3V3.

4.2 REG - Regulator Core

VREG_3V3, respectively its regulator core has two parallel, independent regulation loops (REG1 and REG2) that differ only in the amount of current that can be sourced to the connected loads. Therefore only REG1, providing the supply at VDD/VSS, is explained. The principle is also valid for REG2.

The regulator is a linear series regulator with a bandgap reference in its Full Performance Mode and a voltage clamp in Reduced Power Mode. All load currents flow from input VDDR to VSS or VSSPLL, the reference circuits are connected to VDDA and VSSA.

4.2.1 Full Performance Mode

In Full Performance Mode a fraction of the output voltage (VDD) and the bandgap reference voltage are fed to an operational amplifier. The amplified input voltage difference controls the gate of an output driver which basically is a large NMOS transistor connected to the output.

4.2.2 Reduced Power Mode

In Reduced Power Mode the driver gate is connected to a buffered fraction of the input voltage(VDDR). The operational amplifier and the bandgap are disabled to reduce power consumption.

4.3 LVD - Low Voltage Detect

Subblock LVD is responsible for generating the low voltage interrupt (LVI). LVD monitors the input voltage (V_{DDA} - V_{SSA}) and continuously updates the status flag LVDS.

Interrupt flag LVIF is set whenever status flag LVDS changes its value.

The LVD is available in FPM and is inactive in Reduced Power Mode and Shutdown Mode.

4.4 POR - Power-On Reset

This functional block monitors output VDD. If V_{DD} is below V_{PORD} , signal POR is high, if it exceeds V_{PORD} , the signal goes low. The transition to low forces the CPU in the power-on sequence.

Due to its role during chip power-up this module must be active in all operating modes of VREG_3V3.

4.5 LVR - Low Voltage Reset

Block LVR monitors the primary output voltage V_{DD} . If it drops below the assertion level (V_{LVRA}) signal LVR asserts and when rising above the deassertion level (V_{LVRD}) signal LVR negates again. The LVR function is available only in Full Performance Mode.

4.6 CTRL - Regulator Control

This part contains the register block of VREG_3V3 and further digital functionality needed to control the operating modes. CTRL also represents the interface to the digital core logic.

Section 5 Resets

5.1 General

This section describes how VREG_3V3 controls the reset of the MCU. The reset values of registers and signals are provided in **Section 3 Memory Map and Registers**. Possible reset sources are listed in **Table 5-1**.

Table 5-1 VREG_3V3 - Reset Sources

Reset Source	Local Enable
Power-on Reset	always active
Low Voltage Reset	available only in Full Performance Mode

5.2 Description of Reset Operation

5.2.1 Power-On Reset

During chip power-up the digital core may not work if its supply voltage V_{DD} is below the POR deassertion level (V_{PORD}). Therefore signal POR which forces the other blocks of the device into reset is kept high until V_{DD} exceeds V_{PORD} . Then POR becomes low and the reset generator of the device continues the start-up sequence. The power-on reset is active in all operation modes of VREG_3V3.

5.2.2 Low Voltage Reset

For details on low voltage reset see section 4.5 LVR - Low Voltage Reset.

Section 6 Interrupts

6.1 General

This section describes all interrupts originated by VREG_3V3.

The interrupt vectors requested by VREG_3V3 are listed in **Table 6-1**. Vector addresses and interrupt priorities are defined at MCU level.

Table 6-1 VREG_3V3 - Interrupt Vectors

Interrupt Source	Local Enable
Low Voltage Interrupt (LVI)	LVIE=1; available only in Full Performance Mode

6.2 Description of Interrupt Operation

6.2.1 LVI - Low Voltage Interrupt

In FPM VREG_3V3 monitors the input voltage V_{DDA} . Whenever V_{DDA} drops below level V_{LVIA} the status bit LVDS is set to 1. Vice versa, LVDS is reset to 0 when V_{DDA} rises above level V_{LVID} . An interrupt, indicated by flag LVIF=1, is triggered by any change of the status bit LVDS if interrupt enable bit LVIE=1.

NOTE: On entering the Reduced Power Mode the LVIF is not cleared by the VREG_3V3.

User Guide End Sheet

FINAL PAGE OF 24 PAGES