

Rozdział 11

wickomiany

Ogólny iloczyn skalarny - Anatru munleyorna

 $\bigvee_{f} \not \models \not \models \not \models \downarrow \downarrow \downarrow \downarrow$ **Definicja 11.1** (lloczyn skalarny to funkcja $\langle \cdot, \cdot \rangle : \mathbb{V}^2 \mapsto \mathbb{F}$ (gdzie $\mathbb V$ jest przestrzenią liniową nad $\mathbb F$) spełniająca warunki:

(SK1) liniowa po pierwszej współrzędnej

arunki: $\langle \vec{u}, \vec{v} \rangle$ (R/C) $\langle \Delta u + \beta u' | v \rangle$ = $\Delta \langle u | v \rangle + \beta \langle u' | v \rangle$

(SK2) symetryczna, tj. $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$; (np. dla $\mathbb{F} = \mathbb{R}$) lub antysymetryczny $\langle \vec{u}, \vec{v} \rangle =$ $\langle \vec{v}, \vec{u} \rangle$ (np. dla $\mathbb{F} = \mathbb{C}$).

 $(SK3)(\overrightarrow{v}, \overrightarrow{v}) > 0 \text{ dla } \overrightarrow{v} \neq \overrightarrow{0}. \quad \overrightarrow{\exists} \neq \overrightarrow{0} > ||\overrightarrow{\exists}|| = |\overrightarrow{\langle} \vee, \vee \overrightarrow{\rangle} > 0$

Przestrzeń liniową, która ma tak określony iloczyn skalarny, nazywamy przestrzenią Euklidesowq (jeśli $\mathbb{F} = \mathbb{R}$) lub unitarnq (jeśli $\mathbb{F} = \mathbb{C}$).

<7,3>= <3,3> = R

Preghtady:

rach. prawo.

 $\vec{\mathcal{U}} = \begin{bmatrix} u_1 \\ i \end{bmatrix} \vec{\mathcal{V}} = \begin{bmatrix} v_2 \\ v_3 \end{bmatrix}$

otandarolowy it. ste.

otandarolowy it. ste. $U = \begin{bmatrix} u_1 \\ \dot{u}_n \end{bmatrix}$ otandarolowy it. ste. $U = \begin{bmatrix} u_1 \\ \dot{u}_n \end{bmatrix}$ $U = \begin{bmatrix} u_1 \\ \dot{u}_n \end{bmatrix}$ otandarolowy it. ste. $U = \begin{bmatrix} u_1 \\ \dot{u}_n \end{bmatrix}$ $U = \begin{bmatrix} u_1 \\ \dot{u}_n \end{bmatrix}$ otandarolowy it. ste. $U = \begin{bmatrix} u_1 \\ \dot{u}_n \end{bmatrix}$ $U = \begin{bmatrix} u_1 \\ \dot{u}_n \end{bmatrix}$ otandarolowy it. ste. $U = \begin{bmatrix} u_1 \\ \dot{u}_n \end{bmatrix}$ $U = \begin{bmatrix} u_1 \\ \dot{u}_n \end{bmatrix}$ otandarolowy it. ste. $U = \begin{bmatrix} u_1 \\ \dot{u}_n \end{bmatrix}$ $U = \begin{bmatrix} u_1 \\ \dot{u}_n \end{bmatrix}$ otandarolowy it. ste.

otandarolowy it. ste. $U = \begin{bmatrix} u_1 \\ \dot{u}_n \end{bmatrix}$ otandarolowy it. ste.

otandarolowy it.

otandarolowy it.

otandarolowy it. ste.

otandarolowy it. ste.

otandarolowy it. ste.

otandarolowy it. ste.

otandarolowy it.

otandarolowy it.

otandarolowy it.

otandarolowy it.

otandaro

 \times , \vee

E[X.Y] Z X(w)Y(w) Pr[w]

Definicja 11.2 (Wektory prostopadłe). Dwa wektory \vec{u} , \vec{v} sa prostopadłe, $gdy \langle \vec{u}, \vec{v} \rangle =$ 0. Zapisujemy to też jako $\vec{u} \perp \vec{v}$.

Definicja 11.3 (Długość i odległość). W przestrzenie Euklidesowej (unitarnej):

 $Norma\ (dlugo\acute{s}\acute{c})\ {
m wektora}\ \vec{v}\ {
m to}\ ||\vec{v}|| = \sqrt{2}$ Odległość między \vec{u} a \vec{v} to norma z $(\vec{u} - \vec{v})$, tj. $||\vec{u} - \vec{v}||$. Przykład 11.4. • Tradycyjny iloczyn skalarny w \mathbb{R}^n , \mathbb{C}^n spełnia te warunki.

• W przestrzeni wielomianów (nad \mathbb{R}) jako iloczyn skalarny można wziąć całkę (po odpowiednim zakresie):

$$\langle u, v \rangle = \int_{I} u(x)v(x)dx$$

• dla zmiennych losowych X,Y iloczynem skalarnym jest $\mathcal{E}[X\cdot Y]$, tj.

$$\langle X, Y \rangle = \sum_{\omega \in \Omega} X(\omega) \cdot Y(\omega) \cdot \mathcal{P}[\omega]$$
.

Lemat 11.5. Jeśli \mathbb{V} jest przestrzenią Euklidesową (unitarną), to:

- $||t\vec{v}|| = |t| \cdot ||\vec{v}||$
- > Ex: 4 (2 x2) (24:) 2. $|\langle \vec{u}, \vec{v} \rangle| \leq ||\vec{u}|| \cdot ||\vec{v}||$ (Nierówność Cauchy-Schwartz); równość \iff są linio $zale\dot{z}ne$
- 3. $\|\vec{u} + \vec{\mathbf{w}}\| \le \|\vec{u}\| + \|\vec{v}\|$ (Nierówność Minkowsky)
- 4. $\|\vec{v}\| \|\vec{w}\| \le \|\vec{v} \vec{w}\|$

Ad 1

$$|| t \vee || = | (2 + \sqrt{1 + \sqrt{2}})^2 = | t \cdot t \cdot (2 + \sqrt{2})^2 = | t \cdot t$$

Ad2

Dla liniouro zaloringeh:
$$\langle v, d \cdot v \rangle = \mathcal{L} \cdot \langle v, v \rangle = \mathcal{L} \cdot ||\vec{v}||^2 \leq ||v|| \cdot ||dv||$$
6 dla nivroleringen
$$= ||v||^2 \cdot |dv|$$

$$0 \le \|u - t \cdot v\|^2 = \angle t v - u, t v - u > = \angle t v, t v > -2 < t v, u > + < u, u >$$

Definicja 11.6. W przestrzeni Euklidesowej (unitarnej) dla wektorów u, v kąt między nimi to jedyne takie $\alpha \in [0, \pi]$, że

$$\cos \alpha = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{u}\| \cdot \|\vec{v}\|}.$$

11.1 Baza ortonormalna

Definicja 11.7 (Układ (baza) ortogonalny, układ (baza) ortonormalny). Układ wektorów $\vec{v}_1, \ldots, \vec{v}_n$ jest *układem ortogonalnym*, jeśli dla $i \neq j$ mamy $\langle \vec{v}_i, \vec{v}_j \rangle = 0$. Jest układem *ortonormalnym*, jeśli dodatkowo $\langle \vec{v}_i, \vec{v}_i \rangle = 1$.

Analogicznie definiujemy bazę ortogonalną i ortonormalną.

To jest w pewnym sensie odpowiednik bazy standardowej w \mathbb{R}^n .

Twierdzenie 11.8. Niech $\mathbb V$ będzie skończenie wymiarową przestrzenią Euklidesową (unitarną). Wtedy $\mathbb V$ ma bazę ortonormalną.

Dowód wynika z bardziej technicznego lematu:

Lemat 11.9. Niech \mathbb{V} będzie skończenie wymiarową przestrzenią Euklidesową (unitarną), niech B będzie niezależnym układem ortogonalnym. Wtedy LIN $(B) = \mathbb{V}$ lubistnieje $\vec{b}' \in \mathbb{V} \setminus B$, taki że $B' = B \cup \{\vec{b}'\}$ jest ortogonalny i niezależny.

Lemat 11.10. Niech \mathbb{V} będzie przestrzenią Euklidesową (unitarną), $\vec{v}_1, \ldots, \vec{v}_n$ bazą ortonormalną a \vec{v} wektorem wyrażanym w tej bazie jako

Lemat 11.11. Niech \mathbb{V} będzie przestrzenią Euklidesową (unitarną). Niech $F: \mathbb{V} \to \mathbb{V}$ będzie przekształceniem linowym, zaś $B = \vec{v}_1, \dots, \vec{v}_n$ bazą ortonormalną. Wtedy

Lemat 11.12. Jeśli $\langle \cdot, \cdot \rangle$ jest iloczynem skalarnym na przestrzeni Euklidesowej (lub unitarnej) \mathbb{V} , $B = b_1, \ldots, b_n$ jest bazą ortonormalną, to

 $\langle \vec{u}, \vec{v} \rangle = \langle \vec{u}, \vec{v} \rangle_{B}$

tj. wartość iloczynu skalarnego $\langle \vec{u}, \vec{v} \rangle$ to standardowy iloczyn skalarny reprezentacji \vec{u} oraz \vec{v} .

W szczególności

 $\|\vec{u}\| = \|(\vec{u})_B\|$ st. of wire

przy czym długość po prawej to zwykła długość wektorów w \mathbb{R}^n (\mathbb{C}^n).

(u)_B. (v)_B

fundige 2 -

 $f,g: \mathbb{V}^2 \to \mathbb{R}$

la limioure p 1,2 mp.

146, b;) = g(6, d) dla bourdey un 6, b; CB < bure.

to f-8

f(u,v) = g(u,v)

u= 2 2: 6; V = 2 B; 6;

f(Z Lili, Z Bi bi) = Z Li Bi ((60,6i)

u, v) = Z 2: B: q(6:16)

flu,v) = glu,v)

Sprawdramy rownosi na parach el. Z B $\langle \vec{6}; \vec{6}; \rangle = 10$ $\vec{c} \neq \vec{6}$

 $(\vec{b}_i)_B \cdot (\vec{b}_i)_B = \vec{E}_i \cdot \vec{E}_i = 1000 + i000$ $\vec{R}^n \quad \vec{R}^n \quad \vec{R}^n$

11.2 Dopełnienie ortogonalne

Definicja 11.13 (Dopełnienie ortogonalne). Niech $U \subseteq \mathbb{V}$ będzie podzbiorem przestrzeni Euklidesowej (lub unitarnej). Wtedy dopełnienie ortogonalne U to:

$$U^{\perp} = \{ \vec{v} \in \mathbb{V} : \forall_{\vec{w} \in U} \ \vec{v} \perp \vec{w} \}$$

Fakt 11.14. Jeśli B jest bazą \mathbb{W} to $\vec{v} \in \mathbb{W}^{\perp}$ wtedy i tylko wtedy, gdy \vec{v} jest prostopadły do każdego wektora z B.

Lemat 11.15. Niech $U\subseteq \mathbb{V}$, gdzie \mathbb{V} jest przestrzenią Euklidesową (lub unitarną). Wtedy

• $U^{\perp} \leq V$ jest przestrzenią liniową; $\overrightarrow{J}, \overrightarrow{J}' \in U^{\perp}$ dowolne $\overrightarrow{u} \in U$ $\langle u, d\overrightarrow{J} \rangle = d \langle \overrightarrow{u}, \overrightarrow{J} \rangle = 0$ • $U \cap (U^{\perp}) \subseteq \{\overrightarrow{0}\};$ $\langle u, v \vee v' \rangle = 2 \langle u, v \rangle + 2 \langle u, v' \rangle = 0 = 0$ • $(U^{\perp})^{\perp} \supseteq U$ $(u^{\perp})^{\perp} \supseteq U$ arbeling $\overrightarrow{u} \in U$ • $(U^{\perp})^{\perp} \supseteq U$ $(u^{\perp})^{\perp} \supseteq U$ arbeling $\overrightarrow{u} \in U$ $(u^{\perp})^{\perp} \supseteq U$

Lemat 11.16. $Je\acute{s}li\ \vec{b}_1,\ldots,\vec{b}_n\ jest\ bazq\ ortonogonalnq\ przestrzeni\ Euklidesowej\ lub$ unitarnej \mathbb{V} , to

 $LIN(\vec{b}_1, \dots, \vec{b}_k)^{\perp} = LIN(\vec{b}_{k+1}, \dots, \vec{b}_n)$.

W szczególności, jeśli $\mathbb{W} \leq \mathbb{V}$ to

 $\frac{\mathbb{Z} \, \mathbb{V} \, to}{\mathsf{n} - \mathsf{l} \cdot \mathsf{n}} = \dim \mathbb{V} - \dim \mathbb{W}. \quad \text{weiny 6 out 61 - 6u}$ $\dim(\mathbb{W}^{\perp}) = \dim \mathbb{V} - \dim \mathbb{W}. \quad \text{we do 6 - out 61 - 6u}$

prortopuelle?

6 ktj: prosto pudly do 641..., 16ke

=> 6 wife LIN(61 ... 60)

LIN(6421--, 6W) < LIN(61, --- 6u) -

Wermy downing VE L/W(62,-164)

mie wprest: 3 & L/W (6 mel, ---, 6 m)

orghi jègo representage w B ma jalvis d₊70

-3 = 5/1. L. dla jele

3 = 5(2) bi

many, ie $\angle i = \angle v, 6i > = 0$ VL6:

Lemat 11.17.	Niech N	I będzie	skończenie-wymiarow	vą przestrzenią	Euklidesową (lub
unitarna) oraz	niech V	$\mathbb{V} < \mathbb{V}$	skończenie-wymiarou Wtedy		
a,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 - 1.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Land ((W+)+)	= n - dem/11/

- $\bullet (\mathbb{W}^{\perp})^{\perp} = \mathbb{W}.$
- WE (W+)
- $dim ((W^{\dagger})^{\perp}) = m dim(W^{\dagger})$ = m (m k) = k = dim (W)

- $\mathbb{W} + \mathbb{W}^{\perp} = \mathbb{V}$
- dla każdego wektora $v \in \mathbb{V}$ reprezentacja $\vec{v} = \vec{w} + \vec{w}_{\perp}$, gdzie $\vec{w} \in \mathbb{W}$ i $\vec{w}_{\perp} \in \mathbb{W}^{\perp}$ jest jedyna.

11.3 Rzuty i rzuty prostopadłe.

Definicja 11.18 (Rzut, rzut prostopadły). Rzutem nazywamy przekształcenie liniowe $P: \mathbb{V} \to \mathbb{V}$ takie że $P^2 = P$. O rzucie P mówimy, że jest rzutem na podprzestrzeń Im P.

Rzut jest rzutem prostopadłym jeśli dla każdego \vec{v} mamy $P(\vec{v}) \perp (\vec{v} - P(\vec{v}))$.

Lemat 11.19. Niech \mathbb{V} będzie przestrzenią Euklidesową (unitarną) i $\mathbb{W} \leq \mathbb{V}$. Rzut prostopadły na W jest zdefiniowany jednoznacznie.

 $Niech\ P: \mathbb{V} \to \mathbb{V}\ bedzie\ rzutem\ prostopadłym\ na\ \mathbb{W}.\ Jeśli\ ec{b}_1,\ldots,ec{b}_k\ jest\ bazą$

ortogonalną \mathbb{W} zaś $\vec{b}_1, \ldots, \vec{b}_n$: przestrzeni \mathbb{V} , to

$$P_{\mathbf{w}}\left(\sum_{i=1}^{n} \alpha_{i} \vec{b}_{i}\right) = \sum_{i=1}^{k} \alpha_{i} \vec{b}_{i}. \in \mathbf{w}$$

Uwaga. Zauważmy, że skoro $\vec{b}_1, \dots, \vec{b}_n$ jest bazą, to to definiuje P na całej przestrzeni

Wniosek 11.20. Dla wektora \vec{v} oraz P — rzutu prostopadłego na \mathbb{W} — para $P(\vec{v})$,

 $\vec{v} - P(\vec{v})$ jest rozkładem \vec{v} na wektory z W, W^{\(\preceq\)}. Pw (v), V-Pw(v) d-d

Yeste rut istnien, to jest zdel. jednomarnie

6_1...bu > bara ortogonalua W 61, ---, 6n - - ll

rut Pjest na IW, ImP=IW

V1, --, Vu Pvi = 6: $P^2 \overrightarrow{\nabla}_i = P \overrightarrow{\delta}_i$

P6;= 6. 14is le

P 7: = 6:

P(6) 1 6- P(6)

 $\underline{O} = \langle P(6_i), \vec{6}_i - P(6_i) \rangle$

 $= \langle P(b_i), b_i \rangle - \langle P(b_i), P(b_i) \rangle$ 11°P(6;)112

= 0 - 11P(6-112 = 0

11P(6;)1=0 => P(6;)=0.

P(\tilde{Z} dibi) = \tilde{Z} dibi - dobre obreslong rut

1° rest na W | $mP \leq W$ 6_{1} - 6_{k} 6_{1} - 6_{k} $W \in W$ $P(\tilde{W}) = \tilde{W}$ mP = W

Algorytm Grama-Schmidta ortonormalizacji bazy

Algorytm 1 Algorytm Gram-Schmidta ortonormalizacji

1: $\vec{v}_1 \leftarrow \frac{\vec{v}_1}{\sqrt{\langle \vec{v}_1, \vec{v}_1 \rangle}}$ V-P(V)

▶ Normowanie

- 2: for $i \leftarrow 2 ... n$ do
 3: $\vec{v_i} \leftarrow \vec{v_i} \sum_{j=1}^{i-1} \langle \vec{v_i}, \vec{v_j} \rangle \vec{v_j}$ and $\vec{v_i} \leftarrow \vec{v_i} \sum_{j=1}^{i-1} \langle \vec{v_i}, \vec{v_j} \rangle \vec{v_j}$ and $\vec{v_i} \leftarrow \vec{v_i} \sum_{j=1}^{i-1} \langle \vec{v_i}, \vec{v_j} \rangle \vec{v_j}$ and $\vec{v_i} \leftarrow \vec{v_i} \sum_{j=1}^{i-1} \langle \vec{v_i}, \vec{v_j} \rangle \vec{v_j}$ and $\vec{v_i} \leftarrow \vec{v_i} \sum_{j=1}^{i-1} \langle \vec{v_i}, \vec{v_j} \rangle \vec{v_j}$ and $\vec{v_i} \leftarrow \vec{v_i} \sum_{j=1}^{i-1} \langle \vec{v_i}, \vec{v_j} \rangle \vec{v_j}$ and $\vec{v_i} \leftarrow \vec{v_i} \sum_{j=1}^{i-1} \langle \vec{v_i}, \vec{v_j} \rangle \vec{v_j}$ and $\vec{v_i} \leftarrow \vec{v_i} \sum_{j=1}^{i-1} \langle \vec{v_i}, \vec{v_j} \rangle \vec{v_j}$ by Odjęcie rzutu na przestrzeń rozpiętą przez $\vec{v_i} + \sum_{j=1}^{i-1} \langle \vec{v_j}, \vec{v_j} \rangle \vec{v_j}$ return Wektory są liniowo zależne.

- $\vec{v}_i \leftarrow \frac{\vec{v}_i}{\sqrt{\langle \vec{v}_i, \vec{v}_i \rangle}}$

▶ Normowanie

Uwaga. Ostatni krok, w którym ortonormalizujemy kolejne wektory, nie jest w zasadzie potrzebny (i możemy dostać bazę ortogonalną), jednak w takim przypadku musimy zmienić odpowiednio wyrażenie na rzut prostopadły.

Twierdzenie 11.21. Jeśli układ na wejściu algorytmu Grama-Schmidta był niezależny, to uzyskane wektory są układem ortonormalnym.

Jeśli układ $\vec{v}_1, \ldots, \vec{v}_i$ był zależny i układ $\vec{v}_1, \ldots, \vec{v}_{i-1}$ był niezależny, to w czasie algorytmu przekształcimy \vec{v}_i na $\vec{0}$.

1) $V_i' \in \text{rurous my prieralg.}$ $V_i' \in \text{rurous my prieralg.}$ $V_1, \dots, V_{i-1} \in \text{uhlad orlonormalmy}$ $L/N(V_1, \dots, V_{i-1}) = L/N(V_1', \dots, V_{i-1}')$ $V_i' \in \text{unions rul.}$ $V_i' \in$

Przykład11.22. Dla standardowego iloczynu skalarnego w \mathbb{R}^4 zortonormalizujemy układ wektorów

$$\{(4,4,-2,0); (1,4,1,0); (5,-4,-7,1)\}$$

i uzupełnimy go do bazy ortonormalnej.

Oznaczmy zadane wektory jako $\vec{v_1}, \vec{v_2}, \vec{v_3}$. Dokonamy ortonormalizacji bazy metodą Grama-Schmidta; niech $\vec{v_1}, \vec{v_2}, \vec{v_3}$ to wektory po tym procesie.

1)
$$v_1$$
 v_2 , $v_1 > = 16 \cdot 16 + v = 36$
 $v_1' = v_1 \cdot \frac{1}{6}$

2) $v_2 - \langle v_1', v_2 \rangle \cdot \hat{v}_1$
 $\frac{1}{6} (4, 4, -2, 0) \cdot (1, 4, 1, 0) = \frac{1}{6} \cdot (4 \cdot 16 \cdot 2) = \frac{1}{6} \cdot 18$
 $v_2 - 3 \cdot v_1' = v_2 - \frac{1}{2} \cdot v_1 = (1, u, 1, 0) - (2, v_1 - 1, 0) = (-1, 2, 2, 0)$
 $v_2' = \left[\frac{1}{3} \cdot (-1, 7, 2, 0)\right]^{u_1 \cdot u_1'} = \sqrt{9}^{u_2 \cdot u_1'} = \sqrt{9}^{u_1'} = \sqrt{9}^{u_1$

$$= (0,0,0,1) \leftarrow at. L$$