

Competitive Algorithm Design and Practice Longest Increasing Sub-sequence 2014/03/19

Yi Long, Lu (mike199250)

mike199250@gmail.com

http://myweb.ncku.edu.tw/~f74991073/20140319_DP.zip
Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan

Longest Increasing Sub-sequence

- Find a sub-sequence of a given sequence in which the sub-sequence's elements are in sorted order, lowest to highest.
- And the sub-sequence is as long as possible.

								 						16
0	8	4	12	2	10	6	14	9	5	13	3	Ш	7	15

An increasing sub-sequence:

The longest one:

- Naïve solutions:
 - For every sub-sequence, check if it is LIS.
- Time-complexity:
 - Every sub-sequence, $O(2^N)$.
 - For each sub-sequence checking needs O(N).
 - Total: O(N*2N)

- Observation:
- If 1 2 3 4 5 6 7 8 9 x y z
- is LIS ended at z,
- then
 1
 2
 3
 4
 5
 6
 X
 Y
- must be LIS ended at y

- What do we want to know?
 - The LIS ended at index k, i.e. LIS[k]
- How can we get that?
 - Find the previous number with longest LIS.
 - LIS[k] =
 max(1, LIS[i]+1) for i<k & num[i] < num[k]</pre>

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS																

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	I															

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	1															

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	Т	1														

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	I	2														

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	1	2														

													13			
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	-1	2	П													

			3													
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	I	2	2													

LIS	
-----	--

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	1	2	2													

	S
--	---

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	1	2	2	I												

				4												
num	0	8	4	12	2	10	6	14	-1	9	5	13	3	11	7	15
LIS		2	2	2												

				4												
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	Т	2	2	3												

			_										13			
num	0	8	4	12	2	10	6	14	-1	9	5	13	3	11	7	15
LIS	1	2	2	3												

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	П	7	15
LIS	1	2	2	3												

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	Т	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

- Time-complexity:
 - For each element find the previous longest LIS.
 - Every element, O(N)
 - Each element, check previous elements, O(N)
 - Total: $O(N*N) \Rightarrow O(N^2)$
- Space-complexity:
 - Additional LIS array, O(N)


```
/* file name: LIS.c */
     #include <stdio.h>
 2
 3
     int num[17]={0,0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
 4
     int LIS[17];
 5
     void Find LIS()
    □ {
          int i,j;
 8
                                           Process returned 0 (0x0)
                                                                     execution time: 0.049 s
          for (i=1;i<=16;i++)
 9
                                           Press any key to continue.
10
              LIS[i]=1;
11
              for (j=1; j<i; j++)
12
                  if(num[j]<num[i] && LIS[j]+1>LIS[i])
13
                      LIS[i]=LIS[j]+1;
14
15
16
     int main()
17
    □ {
18
          int i;
19
          Find LIS();
20
21
         printf("num:");
          for(i=1;i<=16;i++)printf("%3d",num[i]);</pre>
22
         printf("\nLIS:");
23
          for (i=1;i<=16;i++)printf("%3d",LIS[i]);
24
25
          putchar('\n');
          return 0;
26
27
```

28

POJ 2533

- Sometimes we need to output a solution too, but how?
- 1. Find the number backwards.
 - Assume ans=length of LIS
 - Find k such that LIS[k]=ans.
 - Then from index 1~k find i such that
 LIS[i] = LIS[k]-1 && num[i] < num[k], and so on</pre>
- 2. Additional array pre[].
 - pre[k] = i such thatLIS[i] = LIS[k]-1 && num[i] < num[k]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15
LIS	Τ	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6
pre	П	Т	Т	2	Т	2	5	4	11	7	3	10	5	10	7	14

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15
LIS	1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6
pre	Т	1	T	2	Т	2	5	4	11	7	3	10	5	10	7	14

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	П	7	15
LIS	Т	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6
pre	Т	1	Т	2	Т	2	5	4	П	7	3	10	5	10	7	14

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	П	7	15
LIS	1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6
pre	T	1	Т	2	Т	2	5	4	П	7	3	10	5	10	7	14

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	1	9	5	13	3	П	7	15
LIS	Τ	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6
pre	Т	Т	T	2	Т	2	5	4	П	7	3	10	5	10	7	14

														14		
num	0	8	4	12	2	10	6	14		9	5	13	3	П	7	15
LIS	Τ	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6
pre	Т	Т	1	2	Т	2	5	4	П	7	3	10	5	10	7	14

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14		9	5	13	3	П	7	15
LIS		2	2	3	2	3	3	4	2	4	3	5	3	5	4	6
pre	П	Т	Т	2	Т	2	5	4	П	7	3	10	5	10	7	14

• Sometimes O(N²) is too slow.....

- If LIS[x] = LIS[y](mean-while x>=y)
- For some z that LIS[z] = LIS[x]+1
 We can append z after either x or y to form LIS, by the way y might be smaller!
- That is, for LIS[] = k we can memorize just one number, the smaller one, y.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	Т	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	-1	9	5	13	3	11	7	15
LIS	I	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

								8								
num	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15
LIS	Т	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

								8								
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	П	7	15
LIS	1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

								8								
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	11	7	15
LIS	1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

								8								
num	0	8	4	12	2	10	6	14	1	9	5	13	3	11	7	15
LIS	П	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

						6										
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	П	7	15
LIS	-1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

								8								
num	0	8	4	12	2	10	6	14	-1	9	5	13	3	11	7	15
LIS	1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

								8								
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	11	7	15
LIS	1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

				4												
num	0	8	4	12	2	10	6	14		9	5	13	3	Ш	7	15
LIS	1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	11	7	15
LIS	1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	-1	9	5	13	3	11	7	15
LIS	1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	-1	9	5	13	3	11	7	15
LIS	1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

								8								
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	П	7	15
LIS	Т	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	-1	9	5	13	3	П	7	15
LIS	1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

acm International Collegiate Programming Contest

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	-1	9	5	13	3	11	7	15
LIS	-1	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

acm International Collegiate Programming Contest

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
num	0	8	4	12	2	10	6	14	Т	9	5	13	3	Ш	7	15
LIS	Т	2	2	3	2	3	3	4	2	4	3	5	3	5	4	6

 There will be some ordering, so we can use binary-search to find LIS[k], then update the array.

- Find the best place it can be, and update
- It`s greedy!

