SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF PHYSICS

21PYB102J-Semiconductor Physics and Computational Methods

CHAPTER - 3

PART – A

1. An absorbed photon can result in transition between a donor (or acceptor) level and a band in a doped semiconductor called
(A) Band to band transition
(B) Impurity to band transition
(C) Free carrier Transition
(D) Photonic transition
2. The direct band to band absorption and emission can take place only at frequencies for which
photon energy
(A) $h\gamma > Eg$
(B) $h\gamma < Eg$
(C) $h\gamma = Eg$
(D) $h\gamma = 0$
3 is the process where the energy due to recombination is dissipated as photons.
(A) Radiative transition
(B) Non-radiative transition
(C) Absorption
(D) Radiation
4. The process is in which the electron-hole pairs are created and recombined
radiatively.
(A) Luminescence
(B) Photon emission
(C) Phonon emission
(D) Radiation.
5. The average velocity acquired by the electrons in a particular direction during the presence of
electric field is called
(A) Relaxation time
(B) Drift velocity
(C) Collision time
(D) Diffusion current
6. The maximum voltage generated across the terminals of solar cell when they are kept open is
called
(A) Short circuit voltage
(B) Open circuit voltage
(C) Fill factor
(D) Drift Voltage.

7. The photons of energy value that of the band gap values do not get absorbed in photovoltaic cell. (A) Greater than (B) Less than (C) Nearly equal than (D) Zero
 8. An absorbed photon can result in upward transition of electron from valence band to conduction band is called (A) Band to band transition (B) Impurity to band transition (C) Free carrier Transition (D) Photonic transition
9. The direct band to band absorption and emission can take place only at wave length for which photon energy (A) $\lambda_g = \lambda$ (B) $\lambda_g < \lambda$ (C) $\lambda_g > \lambda$ (D) $\lambda_g = 0$
 10 is the process where the excess energy due to recombination is usually imported to phonons and dissipated as heat. (A) Radiative transition (B) Non-radiative transition (C) absorption (D) Radiation.
11. The radiative recombination of electron-hole pair created by injection of photons is called (A) Photoluminescence (B) Photon emission (C) Phonon emission (D) Radiation
12. The maximum current flows in solar cell when its P-side & N-side terminal are shorted, such a current is called (A) Drift current (B) Diffuse current (C) Short-circuit current (D) Alternative current
 13 is the process of radiative recombination of electron–hole pairs created by electron bombardment. (A) Photoluminescence (B) photon emission (C) Phonon emission (D) Cathodoluminescence
14. The band to band transition (inter-band transition) occurs in(A) Direct band gap semiconductors(B) Indirect band gap semiconductors

(C) Metal – semiconductors (D) Superconductors
 15. The impurity to band transition occurs in (A) Direct band gap semiconductors (B) Indirect band gap semiconductors (C) Metal - semiconductors (D) Superconductors
 16. The does not require any external energy for process to take place. (A) Stimulated emission (B) Spontaneous emission (C) Stimulated absorption (D) Stimulated radiation.
17. The process where upper energy level is more populated than lower energy level is called (A) Stimulated emission (B) Spontaneous emission (C) Population inversion (D) Temperature inversion.
 18. The light amplification is achieved by from an atomic or molecular system. (A) Spontaneous emission (B) Stimulated emission (C) Time inversion (D) Temperature inversion
19. The sun light can be converted to electricity due to the (A) Photovoltaic effect (B) Compton effect (C) Raman effect (D) Zeeman Effect.
 20. The ratio of the maximum power that can be extracted from a solar cell to the ideal power is called (A) Short circuit voltage (B) Open circuit voltage (C) Fill factor (D) Drift Voltage.
21. The open circuit voltage of a solar cell increases with (A) Increase in bandgap (B) Decrease in band gap (C) Increase of in holes (D) Decrease in holes
. 22. The ratio between spontaneous and stimulated emission coefficients is called (A) Lorenz number (B) Lorentz coefficient (C) Absorption coefficient (D) Einstein's coefficient

 23 is the process where the energy due to recombination is dissipated as photons (A) Radiative transition (B) Non-radiative transition (C) Absorption (D) Radiation
24. Efficiency of single crystalline Silicone is about (A) 14 – 17 (B) 1-7 (C) 13 – 15 (D) 5 – 7
25. Which one of the following is related to this expression? $W_{abs} = \frac{2\pi}{\hbar} \langle f H_{int} i\rangle ^2 \ \delta(E_f-E_i-\hbar\omega)$
 (A) Joint density of states (B) Fermi's Golden Rule (C) Energy density (D) Fermi Energy
26. Fill factor of PV cell equal to (A) (I mp)/(I SC. VOC) (B) (I mp. Vmp)/(I SC. VOC) (C) (Vmp)/(I SC) (D) (I mp. Vmp)/(VOC)
27. The semiconductor material for which the lowest energy absorption takes place is : (A)GaAs (B)Silicon (C)GaSb (D)Germanium
28. Optical processes directly involveabsorption and emission (A) electron (B) proton (C) photon (D) neutron
29. Commercially used solar cells are made of (A) Aluminum (B) Germanium (C) Silicon (D) Cadmium
30. When light shines on a solar cell the current flows in thedirection to that of the generated voltage. (A) Same (B) Opposite (C) Negative (D) None of the above

- 31. The current density of a photo voltaic cell ranges from _____
- (A) $10 20 \text{ mA/cm}^2$
- (B). $40 50 \text{ mA/cm}^2$
- (C). $20 40 \text{ mA/cm}^2$
- (D). $60 100 \text{ mA/cm}^2$

PART-B

- 1. Discuss how photon interactions affect the bulk semiconductors.
- 2. Describe about the optical recombination process.
- 3. Explain the optical absorption and emission process in semiconductors using band diagram.
- 4. Distinguish between spontaneous emission and stimulated emission.
- 5. Write notes on optical loss.
- 6. Write notes on optical gain.
- 7. What happens to the bands when we illuminate a light on PN junction diode under forward bias?
- 8. Discuss about the parameters affecting efficiency of a Photovoltaic cell.
- 9. Explain photovoltaic effect and their working principles?
- 10. Explain photovoltaic effect using band diagram?
- 11. Write the applictions of Photovoltaic effect?
- 12. Discuss the efficiency of solar cell with I-V diagram?

PART - C

- 1. Derive an expression for spontanious emission rate and of radiation.
- 2. Explain about the transition rates in optical process.
- 3. Explain about the joint density of states in a optical materials.
- 4. Explain about the density of states of photons.
- 5. Define Photovoltaic effect. Discuss about the application of photovoltaic effect. Write notes on the efficiency of Photovoltaic cell.
- 6. (i)Explain optical absorption and emission process? (ii) Discuss about recombination process and its application?
- 7. Determination of efficiency of a Photovoltaic cell and write the any five applications of photovoltaic cell.

Numericals

1. Determine the Open-Circuit Voltage V_{oc} of the solar cell, if Saturation Current $(I_s) = 1x10^{-10}$ A, Light Generated Current $(I_L) = 0.5$ A, Ideality Factor (n) = 1, and Temperature (T) = 300 K

Solution:

$$V_{0C} = \frac{nkT}{q} \ln(1 + \frac{I_L}{I_S}) = \frac{1x1.38x10^{-23}x300}{1.61x10^{-19}} \ln(1 + \frac{0.5}{1x10^{-10}})$$

$$= 0.57V$$

2. Determine the Fill Factor FF of the solar cell, if Short-Circuit Current (I_{sc}) = 2.75 A, Open-Circuit Voltage (V_{oc}) = 0.6V, Current at Maximum Power (I_m) = 2 A and Voltage at Maximum Power (V_m) = 0.5V

$$FF = \frac{I_m V_m}{I_{sc} V_{oc}} = \frac{2 \times 0.5}{2.75 \times 0.6} = 0.606$$

3. Determine the Conversion Efficiency η of the solar cell, if Short-Circuit Current (I_{sc}) = 3.5A, Open-Circuit Voltage (V_{oc}) = 0.6V, Fill Factor (FF) = 0.7 and Input Power (P_{in}) = 10W Solution:

$$\eta = \frac{I_{sc}V_{oc}FF}{P_{in}} \times 100\%$$
$$= \frac{3.5x0.6x0.7}{10} \times 100\% = 14.7\%$$