1. A compact set $E \subset \mathbb{R}^n$ is bounded.

Proof. By contrapositive, suppose E is not bounded. This means that E is not covered by any ball of finite radius. However, all of \mathbb{R}^n , and thus E, will be covered by the sequence of open balls

$$B_n := \{x : |x| < n\}.$$

Any union of a finite subset of these open balls will be an open ball of finite radius, and thus will not cover E. Therefore E is not compact. \square

2. A compact set $E \subset \mathbb{R}^n$ is closed.

Proof. We will prove that the complement of E is open. Consider a point $x \in E$ and a collection of sets

$$G_k := \{y : |y - x| > \frac{1}{k}\}.$$

We can see that $\bigcup_{k=1}^{\infty} G_k = \mathbb{R}^n/x$. Since $x \notin E$, $E \subset \bigcup G_k$, which means G_k is an open cover E. We know that E is compact so it can be covered by finitely many of the G_k . The G_k are ordered by containment $(G_k \subset G_{k+1})$ so E can be covered by exactly one of the G_k , call this set G_l . Now, all of the G_k with indices strictly greater than l have complements that are disjoint from E ($\backslash G_{k+1} \subset \backslash G_k$). The interiors of the complements of the G_k are the open balls $B(x, \frac{1}{k})$. This sequence of open balls for all k > l contains the point x and does not intersect E. The point x was arbitrarily chosen in $\backslash E$. Therefore $\backslash E$ is open, and E by definition is closed. \square

- 3. Let $[a_j, b_j]$ be a nested sequence of nonempty closed intervals in $\mathbb{R} : [a_j, b_j] \supset [a_{j+1}, b_{j+1}]$ for all j. Then $\bigcap_{j=1}^{\infty} [a_j, b_j]$ is non-empty. *Proof.*
- 4. Let $[\mathbf{a_j}, \mathbf{b_j}]$ be a nested sequence of nonempty closed n-cells in $\mathbb{R}^{\times} : [\mathbf{a_j}, \mathbf{b_j}] \supset [\mathbf{a_{j+1}}, \mathbf{b_{j+1}}]$ for all j. Then $\bigcap_{j=1}^{\infty} [\mathbf{a_j}, \mathbf{b_j}]$ is nonempty. *Proof.*
- 5. Any closed n-cell is compact. *Proof.*
- 6. A closed subset F of a compact set K in \mathbb{R}^n is compact. *Proof.*