1 Кольца, тела, поля. Делители нуля. Тело кватернионов

Определение 1.1 (Кольцо). Кольцо - алгебра сигнатуры

$$(+^{(2)},0^{(0)},-^{(1)},\cdot^{(2)})$$

обладающее свойствами:

1.
$$(a+b) + c = a + (b+c)$$

$$2. \ a+0=a$$

3.
$$a + (-a) = 0$$

4.
$$a + b = b + a$$

$$5. \ a(b+c) = ab + ac$$

Определение 1.2 (Ассоциативное кольцо). Кольцо с ассоциативностью умножения (ab)c = a(bc)

Определение 1.3 (Кольцо с единицей). Кольцо, в котором существует элемент 1, такой что $a \cdot 1 = 1 \cdot a = a$

Определение 1.4 (Коммутативное кольцо). Кольцо с коммутативностью умножения ab=ba

Определение 1.5 (Кольцо с делением). Если для любого элемента кольца $a\ (a \neq 0)$) существует b: ab=1, то такое кольцо называется кольцом с делением

Определение 1.6 (Тело). Тело - ассоциативное, коммутативное кольцо с делением

Определение 1.7 (Поле). Поле - ассоциативное, коммутативное кольцо с делением и единицей

Пример 1.1 (Примеры колец).

Теорема 1.1. Для любых элементов кольца a,b справедливы следующие утверждения:

1.
$$a0 = 0a = 0$$

2.
$$(-a)b = a(-b) = -(ab)$$

Доказательство. а

Следствие 1.1. B кольце c 1 ноль необратим.

Определение 1.8 (Делитель нуля). Пусть $a \cdot b = 0$ $a, b \neq 0$, тогда a - левый делитель нуля, b - правый делитель нуля.

Пример 1.2 (Пример делителей нуля).

Теорема 1.2. Делители нуля необратимы

Доказательство.

Определение 1.9 (Идемпотент кольца). Такие элементы кольца, для которых выполняется $a=a^2$

Теорема 1.3. Идемпотенты - делители нуля

Доказательство.

Определение 1.10 (Тело кватернионов).

Определение 1.11 (Подкольцо).

Теорема 1.4. Пусть S - подмножество кольца $(R,+,\circ)$, тогда $(S,+,\circ)$ - подкольцо $(R,+,\circ)$ тогда и только тогда когда

- 1. $S \neq \emptyset$
- $2. \ \forall x, y \in S : x + (-y) \in S$
- 3. $\forall x, y \in S : x \circ y \in S$

ДОКАЗАТЕЛЬСТВО. Необходимое условие выполняется по определению кольпа.

Достаточное условие:

По ?? и условиям 1 и 2 (S,+) является группой, то есть замкнута по сложению, ассоциативна, имеет нейтральный по сложению и обратный по сложению. По условию 3 (S,\circ) замкнута. Так как $S\subset R$, то на S выполняются дистрибутивность и коммутативность.

Следовательно
$$(S,+,\circ)$$
 - кольцо.