Understanding Task Scheduling Algorithms

Kenjiro Taura

Contents

- Introduction
- 2 Work stealing scheduler
- 3 Analyzing execution time
 - Introduction
 - DAG model and greedy schedulers
 - Work stealing schedulers
- Analyzing cache misses of work stealing
- 5 Summary

Contents

- Introduction
- 2 Work stealing scheduler
- 3 Analyzing execution time
 - Introduction
 - DAG model and greedy schedulers
 - Work stealing schedulers
- Analyzing cache misses of work stealing
- 5 Summary

Introduction

- in this part, we study
 - how tasks in task parallel programs are scheduled
 - what can we expect about its performance

Goals

• understand a state-of-the-art scheduling algorithm (work stealing scheduler)

Goals

- understand a state-of-the-art scheduling algorithm (work stealing scheduler)
- execution time (without modeling communication):
 - how much time does a scheduler take to finish a computation?
 - in particular, how close is it to greedy schedulers?

Goals

- understand a state-of-the-art scheduling algorithm (work stealing scheduler)
- execution time (without modeling communication):
 - how much time does a scheduler take to finish a computation?
 - in particular, how close is it to greedy schedulers?
- data access (communication) cost:
 - when a computation is executed in parallel by a scheduler, how much data are transferred (caches ↔ memory, caches ↔ cache)?
 - in particular, how much are they worse (or better) than those of the serial execution?

Contents

- Introduction
- 2 Work stealing scheduler
- Analyzing execution time
 - Introduction
 - DAG model and greedy schedulers
 - Work stealing schedulers
- Analyzing cache misses of work stealing
- **5** Summary

Model of computation

- assume a program performs the following operations
 - $create_{task}(S)$: create a task that performs S
 - wait_tasks: waits for completion of tasks it has created (but has not waited for)

• e.g.,

```
int fib(n) {
   if (n < 2) return 1;
    else {
      int x, y;
      create_task({ x = fib(n - 1); }); // share x
      y = fib(n - 2);
      wait_tasks;
      return x + y;
    }
}</pre>
```

Model of computation

- model an execution as a DAG (directed acyclic graph)
 - node: a sequence of instructions
 - edge: dependency
- assume no other dependencies besides induced by create_task(S) and wait_tasks
- e.g., (note C_1 and C_2 may be subgraphs, not single nodes)

Terminologies and remarks

- a single node in the DAG represents a sequence of instructions performing no task-related operations
- note that a $task \neq a$ single node, but = a sequence of nodes
- we say a node is ready when all its predecessors have finished; we say a task is ready to mean a node of it becomes ready

Work stealing scheduler

- a state of the art scheduler of task parallel systems
- the main ideas invented in 1990:
 - Mohr, Kranz, and Halstead. Lazy task creation: a technique for increasing the granularity of parallel programs. ACM conference on LISP and functional programming.
- originally termed "Lazy Task Creation," but essentially the same strategy is nowadays called "work stealing"

Work stealing scheduler: data structure

- each worker maintains its "ready deque" that contains ready tasks
- the top entry of each ready deque is an executing task

• work-first; when creating a task, the created task gets executed first (before the parent)

- work-first; when creating a task, the created task gets executed first (before the parent)
- LIFO execution order within a worker; without work stealing, the order of execution is as if it were a serial program
 - create_task(S) $\equiv S$
 - wait_tasks ≡ noop

- work-first; when creating a task, the created task gets executed first (before the parent)
- LIFO execution order within a worker; without work stealing, the order of execution is as if it were a serial program
 - create_task(S) $\equiv S$
 - wait_tasks ≡ noop
- FIFO stealing; it partitions tasks at points close to the root of the task tree

- work-first; when creating a task, the created task gets executed first (before the parent)
- LIFO execution order within a worker; without work stealing, the order of execution is as if it were a serial program
 - create_task(S) $\equiv S$
 - wait_tasks ≡ noop
- FIFO stealing; it partitions tasks at points close to the root of the task tree
- it is a practical approximation of a greedy scheduler, in the sense that any ready task can be (eventually) stolen by any idle worker

- describing a scheduler boils down to defining actions on each of the following events
 - (1) create_task
 - (2) a worker becoming idle
 - (3) wait_tasks
 - (4) a task termination
- we will see them in detail

(1) worker W encounters $create_task(S)$:

- (1) worker W encounters create_task(S):
 - lacksquare W pushes S to its deque
 - ② and immediately starts executing S

(2) a worker with empty deque repeats work stealing:

- (2) a worker with empty deque repeats work stealing:
 - lacksquare picks a random worker V as the victim

- (2) a worker with empty deque repeats work stealing:
 - lacktriangledown picks a random worker V as the victim
 - ② steals the task at the bottom of V's deque

(3) a worker W encounters wait_tasks: there are two cases

- (3) a worker W encounters wait_tasks: there are two cases
 - tasks to wait for have finished $\Rightarrow W$ just continues the task

- (3) a worker W encounters wait_tasks: there are two cases
 - \bullet tasks to wait for have finished $\Rightarrow W$ just continues the task

- (3) a worker W encounters wait_tasks: there are two cases
 - \bullet tasks to wait for have finished $\Rightarrow W$ just continues the task
 - ② otherwise \Rightarrow pops the task from its deque (the task is now blocked, and W will start work stealing)

- (3) a worker W encounters wait_tasks: there are two cases
 - \bullet tasks to wait for have finished $\Rightarrow W$ just continues the task
 - ② otherwise \Rightarrow pops the task from its deque (the task is now blocked, and W will start work stealing)

(4) when W encounters the termination of a task T, W pops T from its deque. there are two cases about T's parent P:

- (4) when W encounters the termination of a task T, W pops T from its deque. there are two cases about T's parent P:
 - **1** P has been blocked and now becomes ready again $\Rightarrow W$ enqueues and continues to P

- (4) when W encounters the termination of a task T, W pops T from its deque. there are two cases about T's parent P:
 - **1** P has been blocked and now becomes ready again $\Rightarrow W$ enqueues and continues to P

- (4) when W encounters the termination of a task T, W pops T from its deque. there are two cases about T's parent P:
 - P has been blocked and now becomes ready again $\Rightarrow W$ enqueues and continues to P
 - ② other cases \Rightarrow no particular action; continues to the next task in its deque or starts work stealing if it becomes empty

- (4) when W encounters the termination of a task T, W pops T from its deque. there are two cases about T's parent P:
 - P has been blocked and now becomes ready again $\Rightarrow W$ enqueues and continues to P
 - \odot other cases \Rightarrow no particular action; continues to the next task in its deque or starts work stealing if it becomes empty

- (4) when W encounters the termination of a task T, W pops T from its deque. there are two cases about T's parent P:
 - P has been blocked and now becomes ready again $\Rightarrow W$ enqueues and continues to P
 - ② other cases \Rightarrow no particular action; continues to the next task in its deque or starts work stealing if it becomes empty

- (4) when W encounters the termination of a task T, W pops T from its deque. there are two cases about T's parent P:
 - P has been blocked and now becomes ready again $\Rightarrow W$ enqueues and continues to P
 - ② other cases ⇒ no particular action; continues to the next task in its deque or starts work stealing if it becomes empty

A note about the cost of operations

- with work stealing, the cost of a task creation is cheap, unless its parent is stolen
 - a task gets created
 - 2 the control jumps to the new task
 - 3 when finished, the control returns back to the parent (as it has not been stolen)

A note about the cost of operations

- much like a procedure call, except:
 - the parent and the child each needs a separate stack, as the parent *might be* executed concurrently with the child,
 - as the parent *might be* executed without returning from the child, the parent generally cannot assume callee save registers are preserved
- the net overhead is $\approx 100\text{-}200$ instructions, from task creation to termination

What you must remember when using work stealing systems

- when using (good) work stealing scheduler, don't try to match the number of tasks to the number of processors
 - bad idea 1: create $\approx P$ tasks when you have P processors
 - bad idea 2 (task pooling): keep exactly P tasks all the time and let each grab work
- they are effective with OS-managed threads or processes but not with work stealing schedulers
- remember: keep the granularity of a task above a constant factor of task creation overhead (so the relative overhead is a sufficiently small constant. e.g., 2%)
 - good idea: make the granularity ≥ 5000 cycles

Contents

- Introduction
- 2 Work stealing scheduler
- 3 Analyzing execution time
 - Introduction
 - DAG model and greedy schedulers
 - Work stealing schedulers
- Analyzing cache misses of work stealing
- 5 Summary

Contents

- Introduction
- Work stealing scheduler
- 3 Analyzing execution time
 - Introduction
 - DAG model and greedy schedulers
 - Work stealing schedulers
- Analyzing cache misses of work stealing
- 5 Summary

Analyzing execution time of work stealing

• we analyze execution time of work stealing scheduler in terms of T_1 (total work) and T_{∞} (critical path)

Blumofe et al. Scheduling multithreaded computations by work stealing Journal of the ACM 46(5). 1999.

- due to the random choices of victims, the upper bound is necessarily probabilistic (e.g., $T_P \leq \cdots$ with a probability $\geq \cdots$)
- for mathematical simplicity, we are satisfied with a result about *average (expected)* execution time

Analyzing execution time of work stealing

• the main result: with P processors,

$$E(T_P) \le \frac{T_1}{P} + aT_{\infty},$$

with c a small constant reflecting the cost of a work steal

• remember the greedy scheduler theorem?

$$T_P \le \frac{T_1}{P} + T_{\infty}$$

Contents

- Introduction
- Work stealing scheduler
- 3 Analyzing execution time
 - Introduction
 - DAG model and greedy schedulers
 - Work stealing schedulers
- Analyzing cache misses of work stealing
- 5 Summary

Recap: DAG model

- recall the DAG model of computation
- T_1 : total work (= execution time by a single processor)
- T_{∞} : critical path (= execution time by an arbitrarily many processors)
- T_P : execution time by P processors
- two obvious *lower bounds* of execution time of *any* scheduler:

$$T_P \ge \frac{T_1}{P}$$
 and $T_P \ge T_{\infty}$

or equivalently,

$$T_P \ge \max\left(\frac{T_1}{P}, T_\infty\right)$$

Recap: greedy scheduler

• greedy scheduler: "a worker is never idle, as long as any ready task is left"

• the greedy scheduler theorem: *any greedy scheduler* achieves the following upper bound

$$T_P \leq \frac{T_1}{P} + T_{\infty}$$

• considering both $\frac{T_1}{P}$ and T_{∞} are lower bounds, this shows any greedy scheduler is within a factor of two of optimal

- for the sake of simplifying analysis, assume all nodes take a unit time to execute (longer nodes can be modeled by a chain of unit-time nodes)
- there are P workers
- workers execute in a "lockstep" manner

• in each time step, either of the following happens

- in each time step, either of the following happens
 - (S) there are $\geq P$ ready tasks
 - \Rightarrow each worker executes any ready task (Saturated)

- in each time step, either of the following happens
 - (S) there are $\geq P$ ready tasks
 - \Rightarrow each worker executes any ready task (Saturated)
 - (U) there are $\leq P$ ready tasks
 - \Rightarrow each ready task is executed by any worker (Unsaturated)_{25/51}

- in each time step, either of the following happens
 - (S) there are $\geq P$ ready tasks
 - ⇒ each worker executes any ready task (Saturated)
 - (U) there are $\leq P$ ready tasks
 - \Rightarrow each ready task is executed by any worker (*Unsaturated*)

- there is a path from the start node to the end node, along which a node is always ready (let's call such a path *a ready path*)
 - exercise: prove there is a ready path

- there is a path from the start node to the end node, along which a node is always ready (let's call such a path *a ready path*)
 - exercise: prove there is a ready path
- at *each* step, either of the following must happen

- there is a path from the start node to the end node, along which a node is always ready (let's call such a path *a ready path*)
 - exercise: prove there is a ready path
- at *each* step, either of the following must happen
 - (S) all P workers execute a node, or

- there is a path from the start node to the end node, along which a node is always ready (let's call such a path *a ready path*)
 - exercise: prove there is a ready path
- at *each* step, either of the following must happen
 - (S) all P workers execute a node, or
 - (U) the ready node on the path gets executed

- there is a path from the start node to the end node, along which a node is always ready (let's call such a path *a ready path*)
 - exercise: prove there is a ready path
- at *each* step, either of the following must happen
 - (S) all P workers execute a node, or
 - (U) the ready node on the path gets executed
- (S) happens $\leq T_1/P$ times and (U) $\leq T_{\infty}$ times

- there is a path from the start node to the end node, along which a node is always ready (let's call such a path a ready path)
 - exercise: prove there is a ready path
- at *each* step, either of the following must happen
 - (S) all P workers execute a node, or
 - (U) the ready node on the path gets executed
 - (S) happens $\leq T_1/P$ times and (U) $\leq T_{\infty}$ times
- therefore, the end node will be executed within

$$T_P \leq (T_1/P + T_\infty)$$
 steps

- there is a path from the start node to the end node, along which a node is always ready (let's call such a path *a ready path*)
 - exercise: prove there is a ready path
- at *each* step, either of the following must happen
 - (S) all P workers execute a node, or
 - (U) the ready node on the path gets
 - executed
- (S) happens $\leq T_1/P$ times and (U) $\leq T_{\infty}$ times
- therefore, the end node will be executed within

$$T_P \le (T_1/P + T_\infty)$$
 steps

• note: you can actually prove $T_P \leq (T_1/P + (1-1/P)T_\infty)$ steps

Contents

- Introduction
- Work stealing scheduler
- 3 Analyzing execution time
 - Introduction
 - DAG model and greedy schedulers
 - Work stealing schedulers
- Analyzing cache misses of work stealing
- **5** Summary

What about work stealing scheduler?

- what is the difference between the genuine greedy scheduler and work stealing scheduler?
- the greedy scheduler finds ready tasks with zero delays

What about work stealing scheduler?

- what is the difference between the genuine greedy scheduler and work stealing scheduler?
- the greedy scheduler finds ready tasks with zero delays
- any practically implementable scheduler will inevitably cause some *delays*, from the time a node becomes ready until the time it gets executed

What about work stealing scheduler?

- what is the difference between the genuine greedy scheduler and work stealing scheduler?
- ullet the greedy scheduler finds ready tasks with $zero\ delays$
- any practically implementable scheduler will inevitably cause some *delays*, from the time a node becomes ready until the time it gets executed
- in the work stealing scheduler, the delay is the time to randomly search other workers' deques for ready tasks, without knowing which deques have tasks to steal

Analyzing work stealing scheduler: settings

- a similar setting with greedy scheduler
 - all nodes take a unit time
 - P workers

Analyzing work stealing scheduler: settings

- a similar setting with greedy scheduler
 - all nodes take a unit time
 - P workers
- each worker does the following in each time step
 - its deque is not empty ⇒ executes the node designated by the algorithm
 - its deque is empty ⇒ attempts to steal a node; if it succeeds, the node will be executed in the next step

Analyzing work stealing scheduler: settings

- a similar setting with greedy scheduler
 - all nodes take a unit time
 - P workers
- each worker does the following in each time step
 - its deque is not empty ⇒ executes the node designated by the algorithm
 - its deque is empty ⇒ attempts to steal a node; if it succeeds, the node will be executed in the next step
- remarks on work stealing attempts
 - if the chosen victim has no ready tasks (besides the one executing), an attempt fails
 - when two or more workers choose the same victim, only one can succeed in a single time

The overall strategy of the proof

- in each time step, each processor either executes a node or attempts a steal
- ⇒ if we can estimate the number of steal attempts (succeeded or not), we can estimate the execution time, as:

$$T_P = \frac{T_1 + \text{steal attempts}}{P}$$

• our goal is to estimate the number of steal attempts

Analyzing work stealing scheduler

• similar to the proof of greedy scheduler, consider a ready path (a path from the start node to the end node, along which a node is always ready)

Analyzing work stealing scheduler

- similar to the proof of greedy scheduler, consider a ready path (a path from the start node to the end node, along which a node is always ready)
- the crux is to estimate how many steal attempts are enough to make a "progress" along the ready path

The number of steal attempts: the key observation

 \bullet a task at the bottom of the deque will be stolen by a steal attempt with probability 1/P

The number of steal attempts: the key observation

- ullet a task at the bottom of the deque will be stolen by a steal attempt with probability 1/P
- thus, on average, such a task will be stolen, on average, with P steal attempts, and is executed in the next step you roll a dice, and you'll get the first \square after six rolls

The number of steal attempts: the key observation

- ullet a task at the bottom of the deque will be stolen by a steal attempt with probability 1/P
- thus, on average, such a task will be stolen, on average, with P steal attempts, and is executed in the next step you roll a dice, and you'll get the first \square after six rolls

• we are going to extend the argument to *any* ready task along a ready path, and establish an average number of steal attempts for any ready task to get executed

How many steal attempts to occur for *any* ready task to get executed?

- there are five types of edges
 - (A) create_task \rightarrow child
 - (B) create_task \rightarrow the continuation
 - (C) wait_task \rightarrow the continuation
 - (D) last node of a task → the parent's continuation after the corresponding wait
 - (E) non-task node \rightarrow the continuation

How many steal attempts to occur for *any* ready task to get executed?

• the successor of type (A), (C), (D), and (E) is executed immediately after the predecessor is executed. there are no delays on edges of these types

How many steal attempts to occur for *any* ready task to get executed?

- only the successor of type
 (B) edges may need a steal attempt to get executed
- as has been discussed, once a task is at the bottom of a deque, it needs $\approx P$ steal attempts on average until it gets stolen

How many steal attempts to occur for *any* ready task to get executed?

- note that a successor of a type (B) edge (continuation of a task creation) is not necessarily at the bottom of a deque
- e.g., y cannot be stolen until x has been stolen

How many steal attempts to occur for *any* ready task to get executed?

- stealing such a task requires an accordingly many steal attempts
- e.g., stealing y requires 2P attempts on average (P to steal x and another P to steal y)

When a task becomes stealable?

• in general, in order for the continuation of a create_task (n) to be stolen, continuations of all create_tasks along the path from the start node to n must be stolen

Summary of the proof

Now we have all ingredients to finish the proof the average number of steal attempts to finish the ready path

therefore,

average of
$$T_p \leq \frac{T_1 + PT_{\infty}}{P} = \frac{T_1}{P} + T_{\infty}$$

Summary of the proof

Now we have all ingredients to finish the proof the average number of steal attempts to finish the ready path $\approx P \times$ the length of the ready path

therefore,

average of
$$T_p \le \frac{T_1 + PT_{\infty}}{P} = \frac{T_1}{P} + T_{\infty}$$

Summary of the proof

Now we have all ingredients to finish the proof the average number of steal attempts to finish the ready path $\approx P \times \text{the length of the ready path}$ $< PT_{\infty}$

therefore,

average of
$$T_p \le \frac{T_1 + PT_{\infty}}{P} = \frac{T_1}{P} + T_{\infty}$$

Extensions

• we assumed a steal attempt takes a single time step, but it can be generalized to a setting where a steal attempt takes a time steps,

$$E(T_P) \le \frac{T_1}{P} + aT_{\infty}$$

- we can also probabilistically bound the execution time
- the basis is the probability that a critical node takes cP steal attempts to be executed is $\leq e^{-c}$

• based on this we bound the probability that a path of length l takes ClP steal attempts, for a large enough constant C

Contents

- Introduction
- 2 Work stealing scheduler
- 3 Analyzing execution time
 - Introduction
 - DAG model and greedy schedulers
 - Work stealing schedulers
- Analyzing cache misses of work stealing
- **5** Summary

Analyzing cache misses of work stealing

• we like to know the amount of data transfers between a processor's cache and { main memory, other caches }, under a task parallel scheduler

Analyzing cache misses of work stealing

- we like to know the amount of data transfers between a processor's cache and { main memory, other caches }, under a task parallel scheduler
- in particular, we like to understand how much can it be worse (or better) than its serial execution

An analysis methodology of serial computation

• we have learned how to analyze data transfer between the cache and main memory, in single processor machines

An analysis methodology of serial computation

- we have learned how to analyze data transfer between the cache and main memory, in single processor machines
- the key was to identify "cache-fitting" subcomputations (working set size $\leq C$ words); and

An analysis methodology of serial computation

- we have learned how to analyze data transfer between the cache and main memory, in single processor machines
- the key was to identify "cache-fitting" subcomputations (working set size $\leq C$ words); and
- a cache-fitting subcomputation induces $\leq C$ words data transfers

Minor remarks (data transfer vs. cache misses)

- we hereafter use "a single cache miss" to mean "a single data transfer from/to a cache"
- in real machines, some data transfers do not induce to cache misses due to prefetches
- we say "cache misses" for simplicity

What's different in parallel execution?

• the argument that "cache misses by a cache-fitting subcomputation $\leq C$ " no longer holds in parallel execution

What's different in parallel execution?

- the argument that "cache misses by a cache-fitting subcomputation $\leq C$ " no longer holds in parallel execution
- consider two subcomputations A and B

```
1 create_task({ A });
2 B
```

- assume A and B together fit in the cache
- even so, if A and B are executed on different processors, originally a cache hit in B may miss

What's different in parallel execution?

- so a parallel execution might increase cache misses
- but how much?

 The data locality of work stealing. SPAA '00 Proceedings of the twelfth annual ACM symposium on Parallel algorithms and architectures.

Problem settings

- P processors ($\equiv P$ workers)
- caches are *private* to each processor (no shared caches)
- consider only a single-level cache, with the capacity of C words
- *LRU replacement:* i.e., a cache holds most recently accessed *C* distinct words

The key observation

- we have learned the work stealing scheduler tends to preserve much of the serial execution order
- ⇒ extra cache misses are caused by work stealings
- a work stealing essentially brings a subcomputation to a processor with unknown cache states

The key questions

• key question 1: how many *extra* misses can occur when a subcomputation moves to an unknown cache states?

• key question 2: how many times work stealings happen? (we know an answer)

Roadmap

- (1) bound the number of extra cache misses that occurs each time a node is *drifted* (i.e., executed in a different order with the serial execution)
- (2) we know an upper bound on the number of steals
- (3) from (2), bound the number of drifted nodes
 - combine (1) and (3) to derive an upper bound on the total number of extra cache misses

Extra misses per drifted node

• when caches are LRU, the two cache states converge to an identical state, after no more than C cache misses occur in either cache

• this is because the cache is LRU (holds most recently accessed distinct C words)

 \therefore extra cache misses for each drifted node $\leq C$

A bound on the drifted nodes

- let v a node in the DAG and u the node that would immediately precedes v in the serial execution
- we say v is *drifted* when u and v are not executed consecutively on the same processor

• without a detailed proof, we note:

the number of drifted nodes in the work stealing scheduler $\leq 2 \times the \ number \ of \ steals$

The main result

- the average number of work stealings $\approx PT_{\infty}$
- \Rightarrow the average number of drifted nodes $\approx 2PT_{\infty}$
- \Rightarrow the average number of extra cache misses $\leq 2CPT_{\infty}$
- average execution time

$$T_P \le \frac{T_1}{P} + 2mCT_{\infty},$$

where m is the cost of a single cache miss

Contents

- Introduction
- Work stealing scheduler
- 3 Analyzing execution time
 - Introduction
 - DAG model and greedy schedulers
 - Work stealing schedulers
- Analyzing cache misses of work stealing
- 5 Summary

Summary

- the basics of work stealing scheduler
 - work-first (preserve serial execution order)
 - steal tasks from near the root
- average execution time (without cost of communication)

$$T_P \le \frac{T_1}{P} + T_\infty$$

• with the cost of communication

$$T_P \le \frac{T_1}{P} + 2mCT_{\infty}$$

where mC essentially represents the time to fill the cache