

TABLE 1 Basic symbols for register Transfers

Tribbel T busic symbols	Tot register transfers
Symbol	Description

Letters and numerals

Parenthesis()

Arrow ←

Comma,

Denotes a register

Denotes a part of resisters

Denotes transfer of information

Separates two microoperations

R2←R1

Examples

MAR,R2

R290-70,R2(L)

R2←R1, R+−R2

Bus and Memory Transfer

Bus systems for four registers

Three state bus buffers

Normal input A Output
$$Y = A$$
 if $C = 1$
High-impedance if $C = 0$

Graphic symbol for 3 state buffers

Bus line with 3 state buffer

Memory Transfer

- The transfer of information from a memory word to the outside environment is called a read operation. Read:
 — DR [AR]
- The transfer of new information to be stored into the memory is called a write operation. R3 ←R1 + R2+ 1

TABLE 3 Arithmetic Microoperations

2's complement the contents of R2 (negate)

Increment the contents of R1 by one

Decrement the contents of R1 by one

R1 plus the 2's complement of R2 (subtraction)

Symbolic designation	Description
$R3 \leftarrow R1 + R2$	Contents of R1 plus R2 transferred to R3
$R3 \leftarrow R1 - R2$	Contents of R1 minus R2 transferred to R3
$R2 \leftarrow \overline{R2}$	Complement the contents of R2 (1's complement)

 $R2 \leftarrow \overline{R2} + 1$

 $R1 \leftarrow R1 + 1$

 $R1 \leftarrow R1 - 1$

 $R3 \leftarrow R1 + \overline{R2} + 1$

Arithmetic micro operations

Binary Adder

Binary Adder-Subtractor

Binary Incrementer

Arithmetic Circuit

TABLE 4 Arithmetic Circuit Function Table

Select		Input				
Sı	So	Cin	Y	$D = A + Y + C_{in}$	Microoperation	
0	0	0	В	D = A + B	Add	
0	0	1	B	D = A + B + 1	Add with carry	
0	1	0	\overline{B}	$D = A + \overline{B}$	Subtract with borrow	
0	1	1	\overline{B}	$D = A + \overline{B} + 1$	Subtract	
1	0	0	0	D = A	Transfer A	
1	0	1	0	D = A + 1	Increment A	
1	1	0	1	D = A - 1	Decrement A	
1	1	1	1	D = A	Transfer A	

Logic Microoperations

- OR
- AND
- Complement
- exclusive-OR

List of Logic Microoperations

TABLE 5 Truth Tables for 16 Functions of Two Variables

x	y	F ₀	F_1	F ₂	F_3	F4	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F_{11}	F_{12}	F ₁₃	F14	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1 1 0 0	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

TABLE 6 Sixteen Logic Microoperations

Boolean function	Microoperation	Name
$F_0 = 0$	<i>F</i> ←0	Clear
$F_1 = xy$	$F \leftarrow A \land B$	AND
$F_2 = xy'$	$F \leftarrow A \wedge \overline{B}$	
$F_3 = x$	$F \leftarrow A$	Transfer A
$F_4 = x'y$	$F \leftarrow \overline{A} \wedge B$	
$F_5 = y$	$F \leftarrow B$	Transfer B
$F_6 = x \oplus y$	$F \leftarrow A \oplus B$	Exclusive-OR
$F_7 = x + y$	$F \leftarrow A \lor B$	OR
$F_8 = (x + y)'$	$F \leftarrow A \lor B$	NOR
$F_9 = (x \oplus y)'$	$F \leftarrow \overline{A \oplus B}$	Exclusive-NOR
$F_{10} = y'$	$F \leftarrow \overline{B}$	Complement B
$F_{11} = x + y'$	$F \leftarrow A \vee \overline{B}$	
$F_{12}=x'$	$F \leftarrow \overline{A}$	Complement A
$F_{13}=x'+y$	$F \leftarrow \overline{A} \lor B$	
$F_{14}=(xy)'$	$F \leftarrow \overline{A \wedge B}$	NAND
$F_{15} = 1$	$F \leftarrow \text{all 1's}$	Set to all 1's

Hardware Implementation

Applications of logic micro operations

- 1. Selective set
- 2. Selective complement
- 3. Selective clear
- 4. Mask
- 5. Insert
- 6. Clear

Shift Microoperations

TABLE 7 Shift Microoperations

Symbolic designation	Description
$R \leftarrow \text{shl } R$	Shift-left register R
$R \leftarrow \operatorname{shr} R$	Shift-right register R
$R \leftarrow \text{cil } R$	Circular shift-left register R
$R \leftarrow \operatorname{cir} R$	Circular shift-right register R
$R \leftarrow ashl R$	Arithmetic shift-left R
$R \leftarrow a s h r R$	Arithmetic shift-right R

Logical Shift Left

Right Logical Shift

Left Arithmetic Shift

Right Arithmetic Shift

