Systems Design

Systems Analysis & Design

Author: Eng. Carlos Andrés Sierra, M.Sc.

cavirguezs@udistrital.edu.co

Lecturer Computer Engineering School of Engineering Universidad Distrital Francisco José de Caldas

2025-I

Outline

Requirements Engineering

2 Design & Process

Outline

Requirements Engineering

2 Design & Process

- Stakeholders are individuals or groups who have an interest in the success of a project.
- Shareholders are individuals or groups who have an ownership interest in a company.
- Stakeholders can be internal or external to a company. For example, customers, employees, suppliers, and regulators are external stakeholders.
- **Shareholders** are internal to a company. For example, investors, owners, and managers are internal stakeholders.

- Stakeholders are individuals or groups who have an interest in the success of a project.
- **Shareholders** are individuals or groups who have an ownership interest in a company.
- Stakeholders can be internal or external to a company. For example, customers, employees, suppliers, and regulators are external stakeholders.
- **Shareholders** are internal to a company. For example, investors, owners, and managers are internal stakeholders.

Systems Analysis & Design

- Stakeholders are individuals or groups who have an interest in the success of a project.
- Shareholders are individuals or groups who have an ownership interest in a company.
- Stakeholders can be internal or external to a company. For example, customers, employees, suppliers, and regulators are external stakeholders.
- **Shareholders** are internal to a company. For example, investors, owners, and managers are internal stakeholders.

- Stakeholders are individuals or groups who have an interest in the success of a project.
- Shareholders are individuals or groups who have an ownership interest in a company.
- Stakeholders can be internal or external to a company. For example, customers, employees, suppliers, and regulators are external stakeholders.
- **Shareholders** are internal to a company. For example, investors, owners, and managers are internal stakeholders.

Requirements

- Requirements are statements that describe the features, functions, and constraints of a system.
- Requirements are used to communicate the needs of stakeholders to developers.
- Requirements are used to guide the design, development, and testing of a system.

Requirements

- Requirements are statements that describe the features, functions, and constraints of a system.
- Requirements are used to communicate the needs of stakeholders to developers.
- Requirements are used to guide the design, development, and testing of a system.

Requirements

- Requirements are statements that describe the features, functions, and constraints of a system.
- Requirements are used to communicate the needs of stakeholders to developers.
- Requirements are used to guide the design, development, and testing of a system.

User Stories

- User stories are short, simple descriptions of a feature or function of a system.
- They are written from the perspective of the user and describe what the user wants to achieve.
- They are used to capture the requirements of a system in a simple and understandable way.

User Stories: Format Example

User Story

Title:	Priority:	Estimate:
User Story:		
As a [description of user], I want [functionality] so that [benefit].		
Acceptance Criteria:		
Given [how things begin]		
When [action taken]		
Then [outcome of taking action]		

=ProductPlan

What is Requirements Engineering?

- Requirements engineering is the process of eliciting, analyzing, specifying, validating, and managing the requirements of a system.
- It is a critical activity in the systems development lifecycle that ensures that the system meets the needs of its users.
- It is a collaborative process that involves stakeholders from different backgrounds and perspectives.

What is Requirements Engineering?

- Requirements engineering is the process of eliciting, analyzing, specifying, validating, and managing the requirements of a system.
- It is a critical activity in the systems development lifecycle that ensures that the system meets the needs of its users.
- It is a collaborative process that involves stakeholders from different backgrounds and perspectives.

What is Requirements Engineering?

- Requirements engineering is the process of eliciting, analyzing, specifying, validating, and managing the requirements of a system.
- It is a critical activity in the systems development lifecycle that ensures that the system meets the needs of its users.
- It is a collaborative process that involves stakeholders from different backgrounds and perspectives.

User Centered Design(UCD)

- User-centered design (UCD) is an iterative design process that focuses on understanding the needs, preferences, and behaviors of users.
- UCD is a collaborative process that involves users in the design and development of a system.
- UCD is used to create systems that are usable, efficient, and satisfying to users.

Ing. C.A. Sierra, M.Sc. (UD FJC)

Requirements Engineering Process

The **requirements engineering** process consists of the following activities:

- Gathering requirements.
- Analyzing requirements.
- Validating requirements.
- Verifying requirements.
- Documenting requirements.
- Managing requirements.
- Communicating requirements.

Gathering Requirements

- Gathering requirements is the process of collecting and documenting the needs of stakeholders.
- It involves interviewing stakeholders, conducting surveys, and observing users to understand their requirements.
- It is a collaborative process that involves stakeholders from different backgrounds and perspectives.

Gathering Requirements

- Gathering requirements is the process of collecting and documenting the needs of stakeholders.
- It involves interviewing stakeholders, conducting surveys, and observing users to understand their requirements.
- It is a collaborative process that involves stakeholders from different backgrounds and perspectives.

Gathering Requirements

- Gathering requirements is the process of collecting and documenting the needs of stakeholders.
- It involves interviewing stakeholders, conducting surveys, and observing users to understand their requirements.
- It is a collaborative process that involves stakeholders from different backgrounds and perspectives.

Clients are not always right

Dear Santa, How are you? I'm good. Here is what I want for Christmas antto://www.amazon.com 9P/product/80032HV60 Mrek=59_hps_bw_g21_

Analyzing Requirements

- Analyzing requirements is the process of examining and understanding the requirements of a system.
- It involves identifying dependencies, conflicts, and inconsistencies in the requirements.
- It is a critical activity that ensures that the requirements are complete, consistent, and correct.

Analyzing Requirements

- Analyzing requirements is the process of examining and understanding the requirements of a system.
- It involves identifying dependencies, conflicts, and inconsistencies in the requirements.
- It is a critical activity that ensures that the requirements are complete, consistent, and correct.

Analyzing Requirements

- Analyzing requirements is the process of examining and understanding the requirements of a system.
- It involves identifying dependencies, conflicts, and inconsistencies in the requirements.
- It is a critical activity that ensures that the requirements are complete, consistent, and correct.

Documenting Requirements

- **Documenting** requirements is the process of writing and organizing the requirements of a system.
- It involves creating documents, diagrams, and models that describe the requirements in a clear and concise way.
- It is a collaborative process that involves stakeholders from different backgrounds and perspectives.

14 / 33

Documenting Requirements

- Documenting requirements is the process of writing and organizing the requirements of a system.
- It involves creating documents, diagrams, and models that describe the requirements in a clear and concise way.
- It is a collaborative process that involves stakeholders from different backgrounds and perspectives.

Documenting Requirements

- **Documenting** requirements is the process of writing and organizing the requirements of a system.
- It involves creating documents, diagrams, and models that describe the requirements in a clear and concise way.
- It is a collaborative process that involves stakeholders from different backgrounds and perspectives.

Everyone hates to write Documentation

Validating Requirements

- Validating requirements is the process of ensuring that the requirements are correct and complete.
- It involves reviewing the requirements with stakeholders to verify that they meet their needs.
- It is a collaborative process that involves stakeholders from different backgrounds and perspectives.

Validating Requirements

- Validating requirements is the process of ensuring that the requirements are correct and complete.
- It involves reviewing the requirements with stakeholders to verify that they meet their needs.
- It is a collaborative process that involves stakeholders from different backgrounds and perspectives.

Validating Requirements

- Validating requirements is the process of ensuring that the requirements are correct and complete.
- It involves reviewing the requirements with stakeholders to verify that they meet their needs.
- It is a collaborative process that involves stakeholders from different backgrounds and perspectives.

NOT Clear Understanding of Requirements

My dad told me his password is: MickeyMinnieGoofyDonaldPlutoHuey LouieDeweyDublin.

Because he was told his password had to contain 8 characters and at least one Capital.

Verifying Requirements

- **Verifying** requirements is the process of ensuring that the requirements are correctly implemented in the system.
- It involves testing the system to verify that it meets the requirements
- It is a critical activity that ensures that the system meets the needs o

Verifying Requirements

- **Verifying** requirements is the process of ensuring that the requirements are correctly implemented in the system.
- It involves testing the system to verify that it meets the requirements.
- It is a critical activity that ensures that the system meets the needs or its users

Verifying Requirements

- **Verifying** requirements is the process of ensuring that the requirements are correctly implemented in the system.
- It involves testing the system to verify that it meets the requirements.
- It is a critical activity that ensures that the system meets the needs of its users.

Typical Mistakes when Testing

Disturbing Chinese calorie app...

が カシューナッツ

(cashew)

ジャムパン

(Pomeranian) 1個

327

V-Model inn SDLC

Outline

Requirements Engineering

2 Design & Process

Conceptual Design

- Once the initial set of requirements are defined, the next step is to create a conceptual design of the system.
- Conceptual Design is a high-level design that defines the structure and behavior of the system. It is achieved by the recognition of the appropriates components, connections, and responsabilities.
- The conceptual design is used to communicate the vision of the system to stakeholders and to guide the development of the system

Conceptual Design

- Once the initial set of requirements are defined, the next step is to create a conceptual design of the system.
- Conceptual Design is a high-level design that defines the structure and behavior of the system. It is achieved by the recognition of the appropriates components, connections, and responsabilities.
- The conceptual design is used to communicate the vision of the system to stakeholders and to guide the development of the system.

Process Definition

- A Process is a series of steps or actions taken to achieve a particular end.
- Processes are used to organize and manage work.

Workflows

- A Workflow is a series of tasks that are performed in a specific order to achieve a goal.
- Workflows are used to automate and optimize business processes.
- Workflows can be sequential, parallel, conditional, or repetitive.

Process Models

- A Process Model is a representation of a process that shows the sequence of steps and the relationships between them.
- Process models are used to analyze, design, and improve processes.
- Examples of process models include flowcharts, data flow diagrams, activity diagrams, business process model and notation (BPMN), petri nets, state diagrams, among others.

System Schema Example: Company Structure

Causal Loops

- A Causal Loop is a diagram that shows the relationships between different variables in a system.
- Causal loops are used to analyze and understand the dynamics of a system.
- Causal loops can be positive or negative.

Causal Loops

- A Causal Loop is a diagram that shows the relationships between different variables in a system.
- Causal loops are used to analyze and understand the dynamics of a system.
- Causal loops can be positive or negative.

System Schema Example: Processing Pipeline

Business Process Model and Notation (BPMN)

Technical Design

- Once the conceptual design of the system is defined, the next step is to create a technical design of the system.
- Technical Design is a detailed design that defines the architecture, components, and interfaces of the system.
- The **technical design** is used to guide the development of the system and to communicate the implementation details to developers.

Technical Design

- Once the conceptual design of the system is defined, the next step is to create a technical design of the system.
- Technical Design is a detailed design that defines the architecture, components, and interfaces of the system.
- The **technical design** is used to guide the development of the system and to communicate the implementation details to developers.

Systems Design applied to Software Architectures

Outline

Requirements Engineering

2 Design & Process

Thanks!

Questions?

Repo: https://github.com/EngAndres/ud-public/tree/main/courses/systems-analysis

