Ciência de Dados (Big Data Processing and Analytics)

Big Data Analytics – Mineração e Análise de Dados

TRILHA 7 Aprendizado não Supervisionado: Regras de Associação e Filtros de Conteúdo

Parte A

Minerando Regras de Associação

Beer and Nappies. Baby love drinking beers?

Número Exponencial de Regras de Associação

$$N_{rules} = 3^n - 2^{n+1} + 1$$

Métricas e Poda

Suporte

A métrica mais simples é o Suporte e o compartilhamento de transações que contêm um conjunto de itens.

$$Support(X) = rac{freq(X)}{N}$$

$$Support(X o Y) = rac{freq(X \cap Y)}{N}$$

Elevação ou Lift

Ela é uma medida de quão frequente a regra é no domínio das transações.

$$Lift(X
ightarrow Y) = rac{Support(X
ightarrow Y)}{Support(X) imes Support(Y)}$$

Confiança

Esta métrica mede a frequência com que os itens em Y aparecem em transações que contêm X e é dado pela fórmula.

$$Confidence(X
ightarrow Y) = rac{Support(X
ightarrow Y)}{Support(X)}$$

E agora já podemos entender que as regras abaixo são de fato diferentes:

Métricas e Poda: Apriori

Métricas e Poda: Apriori

Candidate 1-Itemsets

Item	Count
Beer	3
Bread	4
Cola	2
Diapers	4

Minimum support count = 3

Candidate 2-Itemsets

Regras de Associação not in scikit-learn

	_	
{Diapers, Milk}	3	
{Bread, Milk}	3	
(Dioda, Diapoloj	U	

Candidate 3-Itemsets

Itemset	Count
{Bread, Diapers, Milk}	2

TRILHA 7 Aprendizado não Supervisionado: Regras de Associação e Filtros de Conteúdo

Parte B

Filtros de Conteúdo para Sistemas de Recomendação

- Sistemas baseados em conteúdo (Content-based filtering)
- Sistemas de filtragem colaborativa (Collaborative filtering)
- Sistemas híbridos (que usam uma combinação dos outros dois)

Filtros Baseados em Conteúdo:

Vizinhos Mais Próximos: User ou Item?

Filtros Baseados em Conteúdo: Vizinhos Mais Próximos Não Supervisionado!

```
from sklearn.neighbors import
# Fit k-nearest neighbors
X = users.drop(columns='ID')
n_neighbors = 3
knn = NearestNeighbors(n_neighbors=n_neighbors+1)
knn.fit(X)
```


