Inadequecy Representation in Models of Supercapacitor Batteries

Part II: updates on inadequacy formulation

Danial Faghihi

Institute for Computational Engineering and Sciences (ICES)

The University of Texas at Austin

PECOS Inadequecy Meeting Wednesday Fab 15, 2017

Summary of Models and QoI

High Fidelity (1D) model

$$\frac{\partial \eta}{\partial \tau} = \frac{\partial^2 \eta}{\partial \xi^2}$$

$$\begin{cases} \frac{\partial \eta}{\partial \xi} |_{\xi=0} &= -\frac{\gamma}{1+\gamma} I(\tau) \\ \frac{\partial \eta}{\partial \xi} |_{\xi=1} &= \frac{1}{1+\gamma} I(\tau) \\ \eta |_{\tau=0} &= \eta_0(\xi) \end{cases}$$

Low Fidelity (0D) model

$$\eta_{LF} = \frac{1}{2}I(\tau)\xi^2 - I(\tau)\frac{\gamma}{1+\gamma}\xi + \eta^{avg}(\tau) - \frac{I(\tau)}{6} + \frac{I(\tau)}{2}\frac{\gamma}{1+\gamma}$$

$$\eta^{avg} = \int_0^1 \eta d\xi \Rightarrow \frac{\partial \eta^{avg}}{\partial \tau} = I(\tau)$$

- $\bullet \ \eta(\xi,\tau) = \text{overpotential in electrode}$
- $\gamma = \frac{\kappa}{\sigma}$: conductivity ratio
- ξ, τ : dimensionless distance/time
- \bullet $I(\tau)$: dimensionless current

Quantity of Interest

Potential drop across the system (electrode)

$$V^{\text{elect.}}(\tau) = \frac{1+2\gamma}{1+\gamma}\eta|_{\xi=1}$$
$$-\frac{\gamma}{1+\gamma}\eta|_{\xi=0} - \frac{\gamma}{(1+\gamma)^2}I$$

Inadequacy representation

Auxiliary Stochastic ODE:

$$\frac{\partial \epsilon}{\partial \tau} = -\lambda \epsilon + \alpha \frac{\partial I}{\partial \tau}$$

where λ is a stochastic process with following time evolution:

$$\frac{\partial \lambda}{\partial \tau} = -c(\lambda - \lambda_{mean}) + \beta \frac{\partial W}{\partial \tau}$$

where $W(\tau)$ is a Wiener process.

- The ODE accounts for some of hidden features of HF i.e. the term $\lambda\epsilon$ takes care of the Kernel $\mathcal K$ and the term $\alpha\frac{\partial I}{\partial \tau}$ accounts for discontinuity of I.
- It needs to be trained by HF data i.e. calibrating parameters of inadequacy representation $(\alpha, \beta, c, \lambda_{mean})$.

Problems with deterministic part of the current ODE

- It does not capture the short time behavior after sudden change in current.
- It does not account for a wide range of current frequency.

Figure: Step change current.

Sinusoidal current:

Figure : (a) $I = \sin(50\pi\tau)$. (b) $I = \sin(5\pi\tau)$

Sinusoidal current:

6 / 14

Figure : (a) $I=\sin(50\pi\tau)$. Calibrated parameters: c =56.9962, λ_{mean} =28.0998, α =0.2822; (b) $I=\sin(5\pi\tau)$ Calibrated parameters: c =1834.5, λ_{mean} =11.8, α =0.2395

Closer look at behavior of over potential:

Figure: Step change current.

Closer look at behavior of over potential:

Figure: Step change current when sign of current changes.

Closer look at behavior of over potential:

Stokes's first problem with Neumann boundary condition on the board ...

- when current step changes, at the boundary and short time $\eta_{HF} \propto \sqrt{ au}$.
- ullet since η_{LF} changes rapidly at the boundary, one can conclude $\epsilon \propto \sqrt{ au}$
- from $\epsilon \propto \sqrt{\tau}$ one can infere $\frac{d\epsilon}{d\tau} \propto \frac{1}{\sqrt{\tau}}$

- ullet when current step changes, at the boundary and short time $\eta_{HF} \propto \sqrt{ au}$.
- ullet since η_{LF} changes rapidly at the boundary, one can conclude $\epsilon \propto \sqrt{ au}$
- from $\epsilon \propto \sqrt{\tau}$ one can infere $\frac{d\epsilon}{d\tau} \propto \frac{1}{\sqrt{\tau}}$

From above consideration, we postulated a possible inadequacy representation for short time after step change as:

$$\frac{\partial \epsilon}{\partial \tau} \propto -\frac{\lambda}{\sqrt{\tau}} + \alpha \frac{\partial I}{\partial \tau},$$

- ullet when current step changes, at the boundary and short time $\eta_{HF} \propto \sqrt{ au}.$
- ullet since η_{LF} changes rapidly at the boundary, one can conclude $\epsilon \propto \sqrt{ au}$
- from $\epsilon \propto \sqrt{\tau}$ one can infere $\frac{d\epsilon}{d\tau} \propto \frac{1}{\sqrt{\tau}}$

From above consideration, we postulated a possible inadequacy representation for short time after step change as:

$$\frac{\partial \epsilon}{\partial \tau} \propto -\frac{\lambda}{\sqrt{\tau}} + \alpha \frac{\partial I}{\partial \tau},$$

Does this form works for long time also?

option1:
$$\frac{\partial \epsilon}{\partial \tau} = -\frac{\lambda}{\sqrt{\tau}} + \alpha \frac{\partial I}{\partial \tau}$$

option2:
$$\frac{\partial \epsilon}{\partial \tau} = -\frac{\lambda \epsilon}{\sqrt{\tau}} + \alpha \frac{\partial I}{\partial \tau}$$

option1:
$$\frac{\partial \epsilon}{\partial \tau} = -\frac{\lambda}{\sqrt{\tau}} + \alpha \frac{\partial I}{\partial \tau}$$

option2:
$$\frac{\partial \epsilon}{\partial \tau} = -\frac{\lambda \epsilon}{\sqrt{\tau}} + \alpha \frac{\partial I}{\partial \tau}$$

Figure: (a) change in current with time; (b) two inadequacy options calibrated with HF data.

Inadequacy representation (v.2)

Auxiliary Stochastic ODE:

$$\frac{\partial \epsilon}{\partial \tau} = -\frac{\lambda \epsilon}{\sqrt{\tau - T(\tau)}} + \alpha \frac{\partial I}{\partial \tau}$$

where λ and α are parameters of inadequacy representation.

What is a general form for $T(\tau) \propto I(\tau)$?

- ullet T(au) should be consistent with what we expect in step changes current.
- \bullet In sinusoidal current it seems $T(\tau)$ should take care of lagging time between HF and LF model.

From above consideration, we postulated a possible evolution equation for $T(\tau)$ as:

$$\frac{\partial T}{\partial \tau} = (\tau - T(\tau)) \left| \frac{\partial I}{\partial \tau} \right|$$

$$\frac{\partial T}{\partial \tau} = (\tau - T(\tau)) \left| \frac{\partial I}{\partial \tau} \right|$$

$$\frac{\partial T}{\partial \tau} = (\tau - T(\tau)) \left| \frac{\partial I}{\partial \tau} \right|$$

