BEST AVAILABLE COPY

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: WO 00/63391 (11) International Publication Number: C12N 15/54, 15/82, 9/10, 5/00, C12P **A2** (43) International Publication Date: 26 October 2000 (26.10.00) 17/06 PCT/US00/10368 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, (21) International Application Number: BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, 14 April 2000 (14.04.00) (22) International Filing Date: MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, (30) Priority Data: European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, 15 April 1999 (15.04.99) US 60/129,899 GB, GR, IE, IT, LU, MC, NL, PT, SE). 30 July 1999 (30.07.99) 60/146,461 US **Published** (71) Applicant (for all designated States except US): CALGENE Without international search report and to be republished LLC [US/US]; 1920 Fifth Street, Davis, CA 95616 (US). upon receipt of that report. (72) Inventors; and (75) Inventors/Applicants (for US only): SAVIDGE, Beth [US/US]; 1920 Fifth Street, Davis, CA 95616 (US). LASSNER, Michael, W. [US/US]; 1920 Fifth Street, Davis, CA 95616 (US). WEISS, James, D. [US/US]; 800 N. Lindbergh Blvd., St. Louis, MO 63167 (US). POST-BEITTENMILLER, Dusty [US/US]; 800 N. Lindbergh Blvd., St. Louis, MO 63167 (US).

(54) Title: NUCLEIC ACID SEQUENCES TO PROTEINS INVOLVED IN TOCOPHEROL SYNTHESIS

(74) Agents: SCHWEDLER, Carl, J. et al.; Calgene LLC, 1920

Fifth Street, Davis, CA 95616 (US).

(57) Abstract

Nucleic acid sequences and methods are provided for producing plants and seeds having altered tocopherol content and compositions. The methods find particular use in increasing the tocopherol levels in plants, and in providing desirable tocopherol compositions in a host plant cell.

BNSDOCID: <WO__0063391A2_I_>

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ĒS	Spain	LS	Lesotho	SI ÷	Stovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece ·		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	us	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya .	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NUCLEIC ACID SEQUENCES TO PROTEINS INVOLVED IN TOCOPHEROL SYNTHESIS

5

INTRODUCTION

This application claims the benefit of the filing date of the provisional Application U.S. Serial Number 60/129,899, filed April 15, 1999, and the provisional Application, U.S. Serial Number 60/146,461, filed July 30, 1999.

TECHNICAL FIELD

The present invention is directed to nucleic acid and amino acid sequences and constructs, and methods related thereto.

15

20

25

10

BACKGROUND

Isoprenoids are ubiquitous compounds found in all living organisms. Plants synthesize a diverse array of greater than 22,000 isoprenoids (Connolly and Hill (1992) *Dictionary of Terpenoids*, Chapman and Hall, New York, NY). In plants, isoprenoids play essential roles in particular cell functions such as production of sterols, contributing to eukaryotic membrane architecture, acyclic polyprenoids found in the side chain of ubiquinone and plastoquinone, growth regulators like abscisic acid, gibberellins, brassinosteroids or the photosynthetic pigments chlorophylls and carotenoids. Although the physiological role of other plant isoprenoids is less evident, like that of the vast array of secondary metabolites, some are known to play key roles mediating the adaptative responses to different environmental challenges. In spite of the remarkable diversity of structure and function, all isoprenoids originate from a single metabolic precursor, isopentenyl diphosphate (IPP) (Wright, (1961) *Annu. Rev. Biochem.* 20:525-548; and Spurgeon and Porter, (1981) in <u>Biosynthesis of Isoprenoid Compounds</u>, Porter and Spurgeon eds (John Wiley, New York) Vol. 1, pp1-46).

30

A number of unique and interconnected biochemical pathways derived from the isoprenoid pathway leading to secondary metabolites, including tocopherols, exist in chloroplasts of higher plants. Tocopherols not only perform vital functions in plants, but are

also important from mammalian nutritional perspectives. In plastids, tocopherols account for up to 40% of the total quinone pool.

Tocopherols and tocotrienols (unsaturated tocopherol derivatives) are well known antioxidants, and play an important role in protecting cells from free radical damage, and in the prevention of many diseases, including cardiac disease, cancer, cataracts, retinopathy, Alzheimer's disease, and neurodegeneration, and have been shown to have beneficial effects on symptoms of arthritis, and in anti-aging. Vitamin E is used in chicken feed for improving the shelf life, appearance, flavor, and oxidative stability of meat, and to transfer tocols from feed to eggs. Vitamin E has been shown to be essential for normal reproduction, improves overall performance, and enhances immunocompetence in livestock animals. Vitamin E supplement in animal feed also imparts oxidative stability to milk products.

The demand for natural tocopherols as supplements has been steadily growing at a rate of 10-20% for the past three years. At present, the demand exceeds the supply for natural tocopherols, which are known to be more biopotent than racemic mixtures of synthetically produced tocopherols. Naturally occurring tocopherols are all d-stereomers, whereas synthetic α -tocopherol is a mixture of eight d,l- α -tocopherol isomers, only one of which (12.5%) is identical to the natural d- α -tocopherol. Natural d- α -tocopherol has the highest vitamin E activity (1.49 IU/mg) when compared to other natural tocopherols or tocotrienols. The synthetic α -tocopherol has a vitamin E activity of 1.1 IU/mg. In 1995, the worldwide market for raw refined tocopherols was \$1020 million; synthetic materials comprised 85-88% of the market, the remaining 12-15% being natural materials. The best sources of natural tocopherols and tocotrienols are vegetable oils and grain products. Currently, most of the natural Vitamin E is produced from γ -tocopherol derived from soy oil processing, which is subsequently converted to α -tocopherol by chemical modification (α -tocopherol exhibits the greatest biological activity).

Methods of enhancing the levels of tocopherols and tocotrienols in plants, especially levels of the more desirable compounds that can be used directly, without chemical modification, would be useful to the art as such molecules exhibit better functionality and biovailability.

In addition, methods for the increased production of other isoprenoid derived compounds in a host plant cell is desirable. Furthermore, methods for the production of particular isoprenoid compounds in a host plant cell is also needed.

5

10

15

20

25

5

10

15

20

25

SUMMARY OF THE INVENTION

The present invention is directed to prenyltransferase (PT), and in particular to PT polynucleotides and polypeptides. The polynucleotides and polypeptides of the present invention include those derived from prokaryotic and eukaryotic sources.

Thus, one aspect of the present invention relates to isolated polynucleotide sequences encoding prenyltransferase proteins. In particular, isolated nucleic acid sequences encoding PT proteins from bacterial and plant sources are provided.

Another aspect of the present invention relates to oligonucleotides which include partial or complete PT encoding sequences.

It is also an aspect of the present invention to provide recombinant DNA constructs which can be used for transcription or transcription and translation (expression) of prenyltransferase. In particular, constructs are provided which are capable of transcription or transcription and translation in host cells.

In another aspect of the present invention, methods are provided for production of prenyltransferase in a host cell or progeny thereof. In particular, host cells are transformed or transfected with a DNA construct which can be used for transcription or transcription and translation of prenyltransferase. The recombinant cells which contain prenyltransferase are also part of the present invention.

In a further aspect, the present invention relates to methods of using polynucleotide and polypeptide sequences to modify the tocopherol content of host cells, particularly in host plant cells. Plant cells having such a modified tocopherol content are also contemplated herein.

The modified plants, seeds and oils obtained by the expression of the prenyltransferases are also considered part of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

30

Figure 1 provides an amino acid sequence alignment between ATPT2, ATPT3, ATPT4, ATPT8, and ATPT12 are performed using ClustalW.

Figure 2 provides a schematic picture of the expression construct pCGN10800. Figure 3 provides a schematic picture of the expression construct pCGN10801. Figure 4 provides a schematic picture of the expression construct pCGN10803. Figure 5 provides a schematic picture of the expression construct pCGN10806. Figure 6 provides a schematic picture of the expression construct pCGN10807. Figure 7 provides a schematic picture of the expression construct pCGN10808. Figure 8 provides a schematic picture of the expression construct pCGN10809. Figure 9 provides a schematic picture of the expression construct pCGN10810. Figure 10 provides a schematic picture of the expression construct pCGN10811. Figure 11 provides a schematic picture of the expression construct pCGN10812. Figure 12 provides a schematic picture of the expression construct pCGN10813. Figure 13 provides a schematic picture of the expression construct pCGN10814. Figure 14 provides a schematic picture of the expression construct pCGN10815. Figure 15 provides a schematic picture of the expression construct pCGN10816. Figure 16 provides a schematic picture of the expression construct pCGN10817. Figure 17 provides a schematic picture of the expression construct pCGN10819. Figure 18 provides a schematic picture of the expression construct pCGN10824. Figure 19 provides a schematic picture of the expression construct pCGN10825. Figure 20 provides a schematic picture of the expression construct pCGN10826.

Figure 21 provides an amino acid sequence alignment using ClustalW between the *Synechocystis* sequence knockouts.

Figure 22 provides an amino acid sequence of the ATPT2, ATPT3, ATPT4, ATPT8, and ATPT12 protein sequences from *Arabidopsis* and the slr1736, slr0926, sll1899, slr0056, and the slr1518 amino acid sequences from *Synechocystis*.

Figure 23 provides the results of the enzymatic assay from preparations of wild type Synechocystis strain 6803, and Synechocystis slr1736 knockout.

Figure 24 provides bar graphs of HPLC data obtained from seed extracts of transgenic *Arabidopsis* containing pCGN10822, which provides of the expression of the ATPT2 sequence, in the sense orientation, from the napin promoter. Provided are graphs for alpha, gamma, and delta tocopherols, as well as total tocopherol for 22 transformed lines, as well as a nontransformed (wildtype) control.

Figure 25 provides a bar graph of HPLC analysis of seed extracts from *Arabidopsis* plants transformed with pCGN10803 (35S-ATPT2, in the antisense orientation), pCGN10802

5

10

15

20

25

(line 1625, napin ATPT2 in the sense orientation), pCGN10809 (line 1627, 35S-ATPT3 in the sense orientation), a nontransformed (wt) constrol, and a empty vector transformed control.

5

10

15

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides, *inter alia*, compositions and methods for altering (for example, increasing and decreasing) the tocopherol levels and/or modulating their ratios in host cells. In particular, the present invention provides polynucleotides, polypeptides, and methods of use thereof for the modulation of tocopherol content in host plant cells.

The present invention provides polynucleotide and polypeptide sequences involved in the prenylation of straight chain and aromatic compounds. Straight chain prenyl transferases as used herein comprises sequences which encode proteins involved in the prenylation of straight chain compounds, including, but not limited to, geranyl geranyl pyrophosphate and farnesyl pyrophosphate. Aromatic prenyl transferases, as used herein, comprises sequences which encode proteins involved in the prenylation of aromatic compounds, including, but not limited to, menaquinone, ubiquinone, chlorophyll, and homogentisic acid. The prenyl transferase of the present invention preferably prenylates homogentisic acid.

20

25

The biosynthesis of α-tocopherol in higher plants involves condensation of homogentisic acid and phytylpyrophosphate to form 2-methyl-6 phytylbenzoquinol that can, by cyclization and subsequent methylations (Fiedler et al., 1982, *Planta*, 155: 511-515, Soll et al., 1980, *Arch. Biochem. Biophys.* 204: 544-550, Marshall et al., 1985 *Phytochem.*, 24: 1705-1711, all of which are herein incorporated by reference in their entirety), form various tocopherols. The *Arabidopsis pds2* mutant identified and characterized by Norris *et al.* (1995), is deficient in tocopherol and plastiquinone-9 accumulation. Further genetic and biochemical analysis suggests that the protein encoded by *PDS2* may be responsible for the prenylation of homogentisic acid. This may be a rate limiting step in tocopherol biosynthesis, and this gene has yet to be isolated. Thus, it is an aspect of the present invention to provide polynucleotides and polypeptides involved in the prenylation of homogentisic acid.

30

Isolated Polynucleotides, Proteins, and Polypeptides

A first aspect of the present invention relates to isolated prenyltransferase polynucleotides. The polynucleotide sequences of the present invention include isolated polynucleotides that encode the polypeptides of the invention having a deduced amino acid sequence selected from the group of sequences set forth in the Sequence Listing and to other polynucleotide sequences closely related to such sequences and variants thereof.

The invention provides a polynucleotide sequence identical over its entire length to each coding sequence as set forth in the Sequence Listing. The invention also provides the coding sequence for the mature polypeptide or a fragment thereof, as well as the coding sequence for the mature polypeptide or a fragment thereof in a reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, pro-, or prepro- protein sequence. The polynucleotide can also include non-coding sequences, including for example, but not limited to, non-coding 5' and 3' sequences, such as the transcribed, untranslated sequences, termination signals, ribosome binding sites, sequences that stabilize mRNA, introns, polyadenylation signals, and additional coding sequence that encodes additional amino acids. For example, a marker sequence can be included to facilitate the purification of the fused polypeptide. Polynucleotides of the present invention also include polynucleotides comprising a structural gene and the naturally associated sequences that control gene expression.

The invention also includes polynucleotides of the formula:

$$X-(R_1)_n-(R_2)-(R_3)_n-Y$$

wherein, at the 5' end, X is hydrogen, and at the 3' end, Y is hydrogen or a metal, R₁ and R₃ are any nucleic acid residue, n is an integer between 1 and 3000, preferably between 1 and 1000 and R₂ is a nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from the group set forth in the Sequence Listing and preferably those of SEQ ID NOs: 1, 3, 5, 7, 8, 10, 11, 13-16, 18, 23, 29, 36, and 38. In the formula, R₂ is oriented so that its 5' end residue is at the left, bound to R₁, and its 3' end residue is at the right, bound to R₃. Any stretch of nucleic acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer.

The invention also relates to variants of the polynucleotides described herein that encode for variants of the polypeptides of the invention. Variants that are fragments of the polynucleotides of the invention can be used to synthesize full-length polynucleotides of the invention. Preferred embodiments are polynucleotides encoding polypeptide variants wherein

5

10

15

20

25

5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues of a polypeptide sequence of the invention are substituted, added or deleted, in any combination. Particularly preferred are substitutions, additions, and deletions that are silent such that they do not alter the properties or activities of the polynucleotide or polypeptide.

Further preferred embodiments of the invention that are at least 50%, 60%, or 70% identical over their entire length to a polynucleotide encoding a polypeptide of the invention, and polynucleotides that are complementary to such polynucleotides. More preferable are polynucleotides that comprise a region that is at least 80% identical over its entire length to a polynucleotide encoding a polypeptide of the invention and polynucleotides that are complementary thereto. In this regard, polynucleotides at least 90% identical over their entire length are particularly preferred, those at least 95% identical are especially preferred. Further, those with at least 97% identity are highly preferred and those with at least 98% and 99% identity are particularly highly preferred, with those at least 99% being the most highly preferred.

Preferred embodiments are polynucleotides that encode polypeptides that retain substantially the same biological function or activity as the mature polypeptides encoded by the polynucleotides set forth in the Sequence Listing.

The invention further relates to polynucleotides that hybridize to the above-described sequences. In particular, the invention relates to polynucleotides that hybridize under stringent conditions to the above-described polynucleotides. As used herein, the terms "stringent conditions" and "stringent hybridization conditions" mean that hybridization will generally occur if there is at least 95% and preferably at least 97% identity between the sequences. An example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising 50% formamide, 5x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/milliliter denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0.1x SSC at approximately 65°C. Other hybridization and wash conditions are well known and are exemplified in Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, cold Spring Harbor, NY (1989), particularly Chapter 11.

The invention also provides a polynucleotide consisting essentially of a polynucleotide sequence obtainable by screening an appropriate library containing the complete gene for a polynucleotide sequence set for in the Sequence Listing under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence or

5

10

15

20

25

a fragment thereof; and isolating said polynucleotide sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers as described herein.

As discussed herein regarding polynucleotide assays of the invention, for example, polynucleotides of the invention can be used as a hybridization probe for RNA, cDNA, or genomic DNA to isolate full length cDNAs or genomic clones encoding a polypeptide and to isolate cDNA or genomic clones of other genes that have a high sequence similarity to a polynucleotide set forth in the Sequence Listing. Such probes will generally comprise at least 15 bases. Preferably such probes will have at least 30 bases and can have at least 50 bases. Particularly preferred probes will have between 30 bases and 50 bases, inclusive.

The coding region of each gene that comprises or is comprised by a polynucleotide sequence set forth in the Sequence Listing may be isolated by screening using a DNA sequence provided in the Sequence Listing to synthesize an oligonucleotide probe. A labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to identify members of the library which hybridize to the probe. For example, synthetic oligonucleotides are prepared which correspond to the prenyltransferase EST sequences. The oligonucleotides are used as primers in polymerase chain reaction (PCR) techniques to obtain 5' and 3' terminal sequence of prenyl transferase genes. Alternatively, where oligonucleotides of low degeneracy can be prepared from particular prenyltransferase peptides, such probes may be used directly to screen gene libraries for prenyltransferase gene sequences. In particular, screening of cDNA libraries in phage vectors is useful in such methods due to lower levels of background hybridization.

Typically, a prenyltransferase sequence obtainable from the use of nucleic acid probes will show 60-70% sequence identity between the target prenyltransferase sequence and the encoding sequence used as a probe. However, lengthy sequences with as little as 50-60% sequence identity may also be obtained. The nucleic acid probes may be a lengthy fragment of the nucleic acid sequence, or may also be a shorter, oligonucleotide probe. When longer nucleic acid fragments are employed as probes (greater than about 100 bp), one may screen at lower stringencies in order to obtain sequences from the target sample which have 20-50% deviation (i.e., 50-80% sequence homology) from the sequences used as probe. Oligonucleotide probes can be considerably shorter than the entire nucleic acid sequence encoding an prenyltransferase enzyme, but should be at least about 10, preferably at least about 15, and more preferably at least about 20 nucleotides. A higher degree of sequence

5

10

15

20

25

identity is desired when shorter regions are used as opposed to longer regions. It may thus be desirable to identify regions of highly conserved amino acid sequence to design oligonucleotide probes for detecting and recovering other related prenyltransferase genes. Shorter probes are often particularly useful for polymerase chain reactions (PCR), especially when highly conserved sequences can be identified. (See, Gould, et al., PNAS USA (1989) 86:1934-1938.).

Another aspect of the present invention relates to prenyltransferase polypeptides. Such polypeptides include isolated polypeptides set forth in the Sequence Listing, as well as polypeptides and fragments thereof, particularly those polypeptides which exhibit prenyltransferase activity and also those polypeptides which have at least 50%, 60% or 70% identity, preferably at least 80% identity, more preferably at least 90% identity, and most preferably at least 95% identity to a polypeptide sequence selected from the group of sequences set forth in the Sequence Listing, and also include portions of such polypeptides, wherein such portion of the polypeptide preferably includes at least 30 amino acids and more preferably includes at least 50 amino acids.

"Identity", as is well understood in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as determined by the match between strings of such sequences. "Identity" can be readily calculated by known methods including, but not limited to, those described in Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York (1988); Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M. and Griffin, H.G., eds., Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press (1987); Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., Stockton Press, New York (1991); and Carillo, H., and Lipman, D., SIAM J Applied Math, 48:1073 (1988). Methods to determine identity are designed to give the largest match between the sequences tested. Moreover, methods to determine identity are codified in publicly available programs. Computer programs which can be used to determine identity between two sequences include, but are not limited to, GCG (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); suite of five BLAST programs, three designed for nucleotide sequences queries (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN)

5

10

15

20

25

(Coulson, Trends in Biotechnology, 12: 76-80 (1994); Birren, et al., Genome Analysis, 1: 543-559 (1997)). The BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH, Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol., 215:403-410 (1990)). The well known Smith Waterman algorithm can also be used to determine identity.

Parameters for polypeptide sequence comparison typically include the following:

Algorithm: Needleman and Wunsch, J. Mol. Biol. 48:443-453 (1970)

Comparison matrix: BLOSSUM62 from Hentikoff and Hentikoff, *Proc. Natl. Acad. Sci USA* 89:10915-10919 (1992)

Gap Penalty: 12

5

10

15

20

25

30

Gap Length Penalty: 4

A program which can be used with these parameters is publicly available as the "gap" program from Genetics Computer Group, Madison Wisconsin. The above parameters along with no penalty for end gap are the default parameters for peptide comparisons.

Parameters for polynucleotide sequence comparison include the following:

Algorithm: Needleman and Wunsch, J. Mol. Biol. 48:443-453 (1970)

Comparison matrix: matches = +10; mismatches = 0

Gap Penalty: 50

Gap Length Penalty: 3

A program which can be used with these parameters is publicly available as the "gap" program from Genetics Computer Group, Madison Wisconsin. The above parameters are the default parameters for nucleic acid comparisons.

1, ,

The invention also includes polypeptides of the formula:

$$X-(R_1)_n-(R_2)-(R_3)_n-Y$$

wherein, at the amino terminus, X is hydrogen, and at the carboxyl terminus, Y is hydrogen or a metal, R₁ and R₃ are any amino acid residue, n is an integer between 1 and 1000, and R₂ is an amino acid sequence of the invention, particularly an amino acid sequence selected from the group set forth in the Sequence Listing and preferably those encoded by the sequences provided in SEQ ID NOs: 2, 4, 6, 9, 12, 17, 19-22, 24-28, 30, 32-35, 37, and 39. In the formula, R₂ is oriented so that its amino terminal residue is at the left, bound to R₁, and its carboxy terminal residue is at the right, bound to R₃. Any stretch of amino acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer.

Polypeptides of the present invention include isolated polypeptides encoded by a polynucleotide comprising a sequence selected from the group of a sequence contained in the Sequence Listing set forth herein.

The polypeptides of the present invention can be mature protein or can be part of a fusion protein.

Fragments and variants of the polypeptides are also considered to be a part of the invention. A fragment is a variant polypeptide which has an amino acid sequence that is entirely the same as part but not all of the amino acid sequence of the previously described polypeptides. The fragments can be "free-standing" or comprised within a larger polypeptide of which the fragment forms a part or a region, most preferably as a single continuous region. Preferred fragments are biologically active fragments which are those fragments that mediate activities of the polypeptides of the invention, including those with similar activity or improved activity or with a decreased activity. Also included are those fragments that antigenic or immunogenic in an animal, particularly a human.

Variants of the polypeptide also include polypeptides that vary from the sequences set forth in the Sequence Listing by conservative amino acid substitutions, substitution of a residue by another with like characteristics. In general, such substitutions are among Ala, Val, Leu and Ile; between Ser and Thr; between Asp and Glu; between Asp and Gln; between Lys and Arg; or between Phe and Tyr. Particularly preferred are variants in which 5 to 10; 1 to 5; 1 to 3 or one amino acid(s) are substituted, deleted, or added, in any combination.

Variants that are fragments of the polypeptides of the invention can be used to produce the corresponding full length polypeptide by peptide synthesis. Therefore, these variants can be used as intermediates for producing the full-length polypeptides of the invention.

The polynucleotides and polypeptides of the invention can be used, for example, in the transformation of host cells, such as plant host cells, as further discussed herein.

The invention also provides polynucleotides that encode a polypeptide that is a mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids within the mature polypeptide (for example, when the mature form of the protein has more than one polypeptide chain). Such sequences can, for example, play a role in the processing of a protein from a precursor to a mature form, allow protein transport, shorten or lengthen protein half-life, or facilitate manipulation of the protein in assays or production. It is contemplated

5

10

15

20

25

that cellular enzymes can be used to remove any additional amino acids from the mature protein.

A precursor protein, having the mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide. The inactive precursors generally are activated when the prosequences are removed. Some or all of the prosequences may be removed prior to activation. Such precursor protein are generally called proproteins.

Plant Constructs and Methods of Use

5

10

15

20

25

30

Of particular interest is the use of the nucleotide sequences in recombinant DNA constructs to direct the transcription or transcription and translation (expression) of the prenyltransferase sequences of the present invention in a host plant cell. The expression constructs generally comprise a promoter functional in a host plant cell operably linked to a nucleic acid sequence encoding a prenyltransferase of the present invention and a transcriptional termination region functional in a host plant cell.

A first nucleic acid sequence is "operably linked" or "operably associated" with a second nucleic acid sequence when the sequences are so arranged that the first nucleic acid sequence affects the function of the second nucleic-acid sequence. Preferably, the two sequences are part of a single contiguous nucleic acid molecule and more preferably are adjacent. For example, a promoter is operably linked to a gene if the promoter regulates or mediates transcription of the gene in a cell.

Those skilled in the art will recognize that there are a number of promoters which are functional in plant cells, and have been described in the literature. Chloroplast and plastid specific promoters, chloroplast or plastid functional promoters, and chloroplast or plastid operable promoters are also envisioned.

One set of plant functional promoters are constitutive promoters such as the CaMV35S or FMV35S promoters that yield high levels of expression in most plant organs. Enhanced or duplicated versions of the CaMV35S and FMV35S promoters are useful in the practice of this invention (Odell, et al. (1985) Nature 313:810-812; Rogers, U.S. Patent Number 5,378, 619). In addition, it may also be preferred to bring about expression of the prenyltransferase gene in specific tissues of the plant, such as leaf, stem, root, tuber, seed, fruit, etc., and the promoter chosen should have the desired tissue and developmental specificity.

Of particular interest is the expression of the nucleic acid sequences of the present invention from transcription initiation regions which are preferentially expressed in a plant seed tissue. Examples of such seed preferential transcription initiation sequences include those sequences derived from sequences encoding plant storage protein genes or from genes involved in fatty acid biosynthesis in oilseeds. Examples of such promoters include the 5' regulatory regions from such genes as napin (Kridl *et al.*, *Seed Sci. Res. 1:*209:219 (1991)), phaseolin, zein, soybean trypsin inhibitor, ACP, stearoyl-ACP desaturase, soybean α' subunit of β-conglycinin (soy 7s, (Chen *et al.*, *Proc. Natl. Acad. Sci.*, 83:8560-8564 (1986))) and oleosin.

It may be advantageous to direct the localization of proteins conferring prenyltransferase to a particular subcellular compartment, for example, to the mitochondrion, endoplasmic reticulum, vacuoles, chloroplast or other plastidic compartment. For example, where the genes of interest of the present invention will be targeted to plastids, such as chloroplasts, for expression, the constructs will also employ the use of sequences to direct the gene to the plastid. Such sequences are referred to herein as chloroplast transit peptides (CTP) or plastid transit peptides (PTP). In this manner, where the gene of interest is not directly inserted into the plastid, the expression construct will additionally contain a gene encoding a transit peptide to direct the gene of interest to the plastid. The chloroplast transit peptides may be derived from the gene of interest, or may be derived from a heterologous sequence having a CTP. Such transit peptides are known in the art. See, for example, Von Heijne et al. (1991) Plant Mol. Biol. Rep. 9:104-126; Clark et al. (1989) J. Biol. Chem. 264:17544-17550; della-Cioppa et al. (1987) Plant Physiol. 84:965-968; Romer et al. (1993) Biochem. Biophys. Res Commun. 196:1414-1421; and, Shah et al. (1986) Science 233:478-481.

Depending upon the intended use, the constructs may contain the nucleic acid sequence which encodes the entire prenyltransferase protein, or a portion thereof. For example, where antisense inhibition of a given prenyltransferase protein is desired, the entire prenyltransferase sequence is not required. Furthermore, where prenyltransferase sequences used in constructs are intended for use as probes, it may be advantageous to prepare constructs containing only a particular portion of a prenyltransferase encoding sequence, for example a sequence which is discovered to encode a highly conserved prenyltransferase region.

5

10

15

20

25

The skilled artisan will recognize that there are various methods for the inhibition of expression of endogenous sequences in a host cell. Such methods include, but are not limited to, antisense suppression (Smith, et al. (1988) Nature 334:724-726), co-suppression (Napoli, et al. (1989) Plant Cell 2:279-289), ribozymes (PCT Publication WO 97/10328), and combinations of sense and antisense Waterhouse, et al. (1998) Proc. Natl. Acad. Sci. USA 95:13959-13964. Methods for the suppression of endogenous sequences in a host cell typically employ the transcription or transcription and translation of at least a portion of the sequence to be suppressed. Such sequences may be homologous to coding as well as noncoding regions of the endogenous sequence.

Regulatory transcript termination regions may be provided in plant expression constructs of this invention as well. Transcript termination regions may be provided by the DNA sequence encoding the prenyltransferase or a convenient transcription termination region derived from a different gene source, for example, the transcript termination region which is naturally associated with the transcript initiation region. The skilled artisan will recognize that any convenient transcript termination region which is capable of terminating transcription in a plant cell may be employed in the constructs of the present invention.

Alternatively, constructs may be prepared to direct the expression of the prenyltransferase sequences directly from the host plant cell plastid. Such constructs and methods are known in the art and are generally described, for example, in Svab, et al. (1990) Proc. Natl. Acad. Sci. USA 87:8526-8530 and Svab and Maliga (1993) Proc. Natl. Acad. Sci. USA 90:913-917 and in U.S. Patent Number 5,693,507.

The prenyltransferase constructs of the present invention can be used in transformation methods with additional constructs providing for the expression of other nucleic acid sequences encoding proteins involved in the production of tocopherols, or tocopherol precursors such as homogentisic acid and/or phytylpyrophosphate. Nucleic acid sequences encoding proteins involved in the production of homogentisic acid are known in the art, and include but not are limited to, 4-hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) described for example, by Garcia, et al. ((1999) Plant Physiol. 119(4):1507-1516), mono or bifunctional tyrA (described for example by Xia, et al. (1992) J. Gen Microbiol. 138:1309-1316, and Hudson, et al. (1984) J. Mol. Biol. 180:1023-1051), Oxygenase, 4-hydroxyphenylpyruvate dioxygenase; p-Hydroxyphenylpyruvate dioxygenase; p-Hydroxyphenylpyruvate hydroxylase; p-Hydroxyphenylpyruvate oxidase; p-Hydroxyphenylpyruvic acid hydroxylase; p-Hydroxyphenylpyruvic acid hydroxylase; p-Hydroxyphenylpyruvic acid hydroxylase; p-

5

10

15

20

25

Hydroxyphenylpyruvic hydroxylase; pHydroxyphenylpyruvic oxidase), 4-hydroxyphenylacetate, NAD(P)H:oxygen oxidoreductase (1-hydroxylating); 4-hydroxyphenylacetate 1-monooxygenase, and the like. In addition, constructs for the expression of nucleic acid sequences encoding proteins involved in the production of phytylpyrophosphate can also be employed with the prenyltransferase constructs of the present invention. Nucleic acid sequences encoding proteins involved in the production of phytylpyrophosphate are known in the art, and include, but are not limited to geranylgeranylpyrophosphate synthase (GGPPS), geranylgeranylpyrophosphate reductase (GGH), 1-deoxyxylulose-5-phosphate synthase, 1- deoxy-D-xylolose-5-phosphate reductoisomerase, 4-diphosphocytidyl-2-C-methylerythritol synthase, isopentyl pyrophosphate isomerase.

The prenyltransferase sequences of the present invention find use in the preparation of transformation constructs having a second expression cassette for the expression of additional sequences involved in tocopherol biosynthesis. Additional tocopherol biosynthesis sequences of interest in the present invention include, but are not limited to gamma-tocpherol methyltransferase (Shintani, et al. (1998) Science 282(5396):2098-2100), tocopherol cyclase, and tocopherol methyltransferase.

A plant cell, tissue, organ, or plant into which the recombinant DNA constructs containing the expression constructs have been introduced is considered transformed, transfected, or transgenic. A transgenic or transformed cell or plant also includes progeny of the cell or plant and progeny produced from a breeding program employing such a transgenic plant as a parent in a cross and exhibiting an altered phenotype resulting from the presence of a prenyltransferase nucleic acid sequence.

Plant expression or transcription constructs having a prenyltransferase as the DNA sequence of interest for increased or decreased expression thereof may be employed with a wide variety of plant life, particularly, plant life involved in the production of vegetable oils for edible and industrial uses. Particularly preferred plants for use in the methods of the present invention include, but are not limited to: *Acacia*, alfalfa, aneth, apple, apricot, artichoke, arugula, asparagus, avocado, banana, barley, beans, beet, blackberry, blueberry, broccoli, brussels sprouts, cabbage, canola, cantaloupe, carrot, cassava, cauliflower, celery, cherry, chicory, cilantro, citrus, clementines, coffee, corn, cotton, cucumber, Douglas fir, eggplant, endive, escarole, eucalyptus, fennel, figs, garlic, gourd, grape, grapefruit, honey dew, jicama, kiwifruit, lettuce, leeks, lemon, lime, Loblolly pine, mango, melon, mushroom,

5

10

15

20

25

nectarine, nut, oat, oil palm, oil seed rape, okra, onion, orange, an ornamental plant, papaya, parsley, pea, peach, peanut, pear, pepper, persimmon, pine, pineapple, plantain, plum, pomegranate, poplar, potato, pumpkin, quince, radiata pine, radicchio, radish, raspberry, rice, rye, sorghum, Southern pine, soybean, spinach, squash, strawberry, sugarbeet, sugarcane, sunflower, sweet potato, sweetgum, tangerine, tea, tobacco, tomato, triticale, turf, turnip, a vine, watermelon, wheat, yams, and zucchini.

Most especially preferred are temperate oilseed crops. Temperate oilseed crops of interest

Most especially preferred are temperate oilseed crops. Temperate oilseed crops of interest include, but are not limited to, rapeseed (Canola and High Erucic Acid varieties), sunflower, safflower, cotton, soybean, peanut, coconut and oil palms, and corn. Depending on the method for introducing the recombinant constructs into the host cell, other DNA sequences may be required. Importantly, this invention is applicable to dicotyledyons and monocotyledons species alike and will be readily applicable to new and/or improved transformation and regulation techniques.

Of particular interest, is the use of prenyltransferase constructs in plants to produce plants or plant parts, including, but not limited to leaves, stems, roots, reproductive, and seed, with a modified content of tocopherols in plant parts having transformed plant cells.

For immunological screening, antibodies to the protein can be prepared by injecting rabbits or mice with the purified protein or portion thereof, such methods of preparing antibodies being well known to those in the art. Either monoclonal or polyclonal antibodies can be produced, although typically polyclonal antibodies are more useful for gene isolation. Western analysis may be conducted to determine that a related protein is present in a crude extract of the desired plant species, as determined by cross-reaction with the antibodies to the encoded proteins. When cross-reactivity is observed, genes encoding the related proteins are isolated by screening expression libraries representing the desired plant species. Expression libraries can be constructed in a variety of commercially available vectors, including lambda gt11, as described in Sambrook, et al. (Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

To confirm the activity and specificity of the proteins encoded by the identified nucleic acid sequences as prenyltransferase enzymes, *in vitro* assays are performed in insect cell cultures using baculovirus expression systems. Such baculovirus expression systems are known in the art and are described by Lee, *et al.* U.S. Patent Number 5,348,886, the entirety of which is herein incorporated by reference.

5

10

15

20

25

In addition, other expression constructs may be prepared to assay for protein activity utilizing different expression systems. Such expression constructs are transformed into yeast or prokaryotic host and assayed for prenyltransferase activity. Such expression systems are known in the art and are readily available through commercial sources.

In addition to the sequences described in the present invention, DNA coding sequences useful in the present invention can be derived from algae, fungi, bacteria, mammalian sources, plants, etc. Homology searches in existing databases using signature sequences corresponding to conserved nucleotide and amino acid sequences of prenyltransferase can be employed to isolate equivalent, related genes from other sources such as plants and microorganisms. Searches in EST databases can also be employed. Furthermore, the use of DNA sequences encoding enzymes functionally enzymatically equivalent to those disclosed herein, wherein such DNA sequences are degenerate equivalents of the nucleic acid sequences disclosed herein in accordance with the degeneracy of the genetic code, is also encompassed by the present invention. Demonstration of the functionality of coding sequences identified by any of these methods can be carried out by complementation of mutants of appropriate organisms, such as *Synechocystis*, *Shewanella*, *yeast*, *Pseudomonas*, *Rhodobacteria*, etc., that lack specific biochemical reactions, or that have been mutated. The sequences of the DNA coding regions can be optimized by gene resynthesis, based on codon usage, for maximum expression in particular hosts.

For the alteration of tocopherol production in a host cell, a second expression construct can be used in accordance with the present invention. For example, the prenyltransferase expression construct can be introduced into a host cell in conjunction with a second expression construct having a nucleotide sequence for a protein involved in tocopherol biosynthesis.

The method of transformation in obtaining such transgenic plants is not critical to the instant invention, and various methods of plant transformation are currently available. Furthermore, as newer methods become available to transform crops, they may also be directly applied hereunder. For example, many plant species naturally susceptible to Agrobacterium infection may be successfully transformed via tripartite or binary vector methods of Agrobacterium mediated transformation. In many instances, it will be desirable to have the construct bordered on one or both sides by T-DNA, particularly having the left and right borders, more particularly the right border. This is particularly useful when the construct uses A. tumefaciens or A. rhizogenes as a mode for transformation, although the T-

5

10

15

20

25

DNA borders may find use with other modes of transformation. In addition, techniques of microinjection, DNA particle bombardment, and electroporation have been developed which allow for the transformation of various monocot and dicot plant species.

Normally, included with the DNA construct will be a structural gene having the necessary regulatory regions for expression in a host and providing for selection of transformant cells. The gene may provide for resistance to a cytotoxic agent, e.g. antibiotic, heavy metal, toxin, etc., complementation providing prototrophy to an auxotrophic host, viral immunity or the like. Depending upon the number of different host species the expression construct or components thereof are introduced, one or more markers may be employed, where different conditions for selection are used for the different hosts.

Where Agrobacterium is used for plant cell transformation, a vector may be used which may be introduced into the Agrobacterium host for homologous recombination with T-DNA or the Ti- or Ri-plasmid present in the Agrobacterium host. The Ti- or Ri-plasmid containing the T-DNA for recombination may be armed (capable of causing gall formation) or disarmed (incapable of causing gall formation), the latter being permissible, so long as the vir genes are present in the transformed Agrobacterium host. The armed plasmid can give a mixture of normal plant cells and gall.

In some instances where Agrobacterium is used as the vehicle for transforming host plant cells, the expression or transcription construct bordered by the T-DNA border region(s) will be inserted into a broad host range vector capable of replication in *E. coli* and Agrobacterium, there being broad host range vectors described in the literature. Commonly used is pRK2 or derivatives thereof. See, for example, Ditta, et al., (Proc. Nat. Acad. Sci., U.S.A. (1980) 77:7347-7351) and EPA 0 120 515, which are incorporated herein by reference. Alternatively, one may insert the sequences to be expressed in plant cells into a vector containing separate replication sequences, one of which stabilizes the vector in *E. coli*, and the other in Agrobacterium. See, for example, McBride, et al. (Plant Mol. Biol. (1990) 14:269-276), wherein the pRiHRI (Jouanin, et al., Mol. Gen. Genet. (1985) 201:370-374) origin of replication is utilized and provides for added stability of the plant expression vectors in host Agrobacterium cells.

Included with the expression construct and the T-DNA will be one or more markers, which allow for selection of transformed Agrobacterium and transformed plant cells. A number of markers have been developed for use with plant cells, such as resistance to chloramphenicol, kanamycin, the aminoglycoside G418, hygromycin, or the like. The

5

10

15

20

25

particular marker employed is not essential to this invention, one or another marker being preferred depending on the particular host and the manner of construction.

For transformation of plant cells using Agrobacterium, explants may be combined and incubated with the transformed Agrobacterium for sufficient time for transformation, the bacteria killed, and the plant cells cultured in an appropriate selective medium. Once callus forms, shoot formation can be encouraged by employing the appropriate plant hormones in accordance with known methods and the shoots transferred to rooting medium for regeneration of plants. The plants may then be grown to seed and the seed used to establish repetitive generations and for isolation of vegetable oils.

There are several possible ways to obtain the plant cells of this invention which contain multiple expression constructs. Any means for producing a plant comprising a construct having a DNA sequence encoding the expression construct of the present invention, and at least one other construct having another DNA sequence encoding an enzyme are encompassed by the present invention. For example, the expression construct can be used to transform a plant at the same time as the second construct either by inclusion of both expression constructs in a single transformation vector or by using separate vectors, each of which express desired genes. The second construct can be introduced into a plant which has already been transformed with the prenyltransferase expression construct, or alternatively, transformed plants, one expressing the prenyltransferase construct and one expressing the second construct, can be crossed to bring the constructs together in the same plant.

The nucleic acid sequences of the present invention can be used in constructs to provide for the expression of the sequence in a variety of host cells, both prokaryotic eukaryotic. Host cells of the present invention preferably include monocotyledenous and dicotyledenous plant cells.

In general, the skilled artisan is familiar with the standard resource materials which describe specific conditions and procedures for the construction, manipulation and isolation of macromolecules (e.g., DNA molecules, plasmids, etc.), generation of recombinant organisms and the screening and isolating of clones, (see for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989); Maliga et al., Methods in Plant Molecular Biology, Cold Spring Harbor Press (1995), the entirety of which is herein incorporated by reference; Birren et al., Genome Analysis: Analyzing DNA, 1, Cold Spring Harbor, New York, the entirety of which is herein incorporated by reference).

5

10

15

20

25

Methods for the expression of sequences in insect host cells are known in the art. Baculovirus expression vectors are recombinant insect viruses in which the coding sequence for a chosen foreign gene has been inserted behind a baculovirus promoter in place of the viral gene, e.g., polyhedrin (Smith and Summers, U.S. Pat. No., 4,745,051, the entirety of which is incorporated herein by reference). Baculovirus expression vectors are known in the art, and are described for example in Doerfler, Curr. Top. Microbiol. Immunol. 131:51-68 (1968); Luckow and Summers, Bio/Technology 6:47-55 (1988a); Miller, Annual Review of Microbiol. 42:177-199 (1988); Summers, Curr. Comm. Molecular Biology, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1988); Summers and Smith, A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Ag. Exper. Station Bulletin No. 1555 (1988), the entireties of which is herein incorporated by reference)

Methods for the expression of a nucleic acid sequence of interest in a fungal host cell are known in the art. The fungal host cell may, for example, be a yeast cell or a filamentous fungal cell. Methods for the expression of DNA sequences of interest in yeast cells are generally described in "Guide to yeast genetics and molecular biology", Guthrie and Fink, eds. Methods in enzymology, Academic Press, Inc. Vol 194 (1991) and Gene expression technology", Goeddel ed, Methods in Enzymology, Academic Press, Inc., Vol 185 (1991).

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC, Manassas, VA), such as HeLa cells, Chinese hamster ovary (CHO) cells, baby hamster kidney (BHK) cells and a number of other cell lines. Suitable promoters for mammalian cells are also known in the art and include, but are not limited to, viral promoters such as that from Simian Virus 40 (SV40) (Fiers et al., Nature 273:113 (1978), the entirety of which is herein incorporated by reference), Rous sarcoma virus (RSV), adenovirus (ADV) and bovine papilloma virus (BPV). Mammalian cells may also require terminator sequences and poly-A addition sequences. Enhancer sequences which increase expression may also be included and sequences which promote amplification of the gene may also be desirable (for example methotrexate resistance genes).

Vectors suitable for replication in mammalian cells are well known in the art, and may include viral replicons, or sequences which insure integration of the appropriate sequences encoding epitopes into the host genome. Plasmid vectors that greatly facilitate the construction of recombinant viruses have been described (see, for example, Mackett et al., J Virol. 49:857 (1984); Chakrabarti et al., Mol. Cell. Biol. 5:3403 (1985); Moss, In: Gene

5

10

15

20

25

Transfer Vectors For Mammalian Cells (Miller and Calos, eds., Cold Spring Harbor Laboratory, N.Y., p. 10, (1987); all of which are herein incorporated by reference in their entirety).

The invention now being generally described, it will be more readily understood by reference to the following examples which are included for purposes of illustration only and are not intended to limit the present invention.

EXAMPLES

10

15

20

25

30

5

Example 1: Identification of Prenyltransferase Sequences

PSI-BLAST (Altschul, et al. (1997) Nuc Acid Res 25:3389-3402) profiles were generated for both the straight chain and aromatic classes of prenyltransferases. To generate the straight chain profile, a prenyl-transferase from Porphyra purpurea (Genbank accession 1709766) was used as a query against the NCBI non-redundant protein database. The E. coli enzyme involved in the formation of ubiquinone, ubiA (genbank accession 1790473) was used as a starting sequence to generate the aromatic prenyltransferase profile. These profiles were used to search public and proprietary DNA and protein data bases. In Arabidopsis seven putative prenyltransferases of the straight-chain class were identified, ATPT1, (SEQ ID NO:9), ATPT7 (SEQ ID NO:10), ATPT8 (SEQ ID NO:11), ATPT9 (SEQ ID NO:13), ATPT10 (SEQ ID NO:14), ATPT11 (SEQ ID NO:15), and ATPT12 (SEQ ID NO:16) and five were identified of the aromatic class, ATPT2 (SEQ ID NO:1), ATPT3 (SEQ ID NO:3), ATPT4 (SEQ ID NO:5), ATPT5 (SEQ ID NO:7), ATPT6 (SEQ ID NO:8). Additional prenyltransferase sequences from other plants related to the aromatic class of prenyltransferases, such as soy (SEQ ID NOs: 19-23, the deduced amino acid sequence of SEQ ID NO:23 is provided in SEQ ID NO:24) and maize (SEQ ID NOs:25-29, and 31) are also identified. The deduced amino acid sequence of ZMPT5 (SEQ ID NO:29) is provided in SEQ ID NO:30.

Searches are performed on a Silicon Graphics Unix computer using additional Bioaccellerator hardware and GenWeb software supplied by Compugen Ltd. This software and hardware enables the use of the Smith-Waterman algorithm in searching DNA and protein databases using profiles as queries. The program used to query protein databases is

profilesearch. This is a search where the query is not a single sequence but a profile based on a multiple alignment of amino acid or nucleic acid sequences. The profile is used to query a sequence data set, i.e., a sequence database. The profile contains all the pertinent information for scoring each position in a sequence, in effect replacing the "scoring matrix" used for the standard query searches. The program used to query nucleotide databases with a protein profile is tprofilesearch. Tprofilesearch searches nucleic acid databases using an amino acid profile query. As the search is running, sequences in the database are translated to amino acid sequences in six reading frames. The output file for tprofilesearch is identical to the output file for profilesearch except for an additional column that indicates the frame in which the best alignment occurred.

The Smith-Waterman algorithm, (Smith and Waterman (1981) *supra*), is used to search for similarities between one sequence from the query and a group of sequences contained in the database. E score values as well as other sequence information, such as conserved peptide sequences are used to identify related sequences.

To obtain the entire coding region corresponding to the *Arabidopsis* prenyltransferase sequences, synthetic oligo-nucleotide primers are designed to amplify the 5' and 3' ends of partial cDNA clones containing prenyltransferase sequences. Primers are designed according to the respective *Arabidopsis* prenyltransferase sequences and used in Rapid Amplification of cDNA Ends (RACE) reactions (Frohman *et al.* (1988) *Proc. Natl. Acad. Sci. USA* 85:8998-9002) using the Marathon cDNA amplification kit (Clontech Laboratories Inc, Palo Alto, CA).

Additional BLAST searches are performed using the ATPT2 sequence, a sequence in the class of aromatic prenyl transferases. Additional sequences are identified in soybean libraries that are similar to the ATPT2 sequence. The additional soybean sequence demonstrates 80% identity and 91% similarity at the amino acid sequence.

Amino acid sequence alignments between ATPT2 (SEQ ID NO:2), ATPT3 (SEQ ID NO:4), ATPT4 (SEQ ID NO:6), ATPT8 (SEQ ID NO:12), and ATPT12 (SEQ ID NO:17) are performed using ClustalW (Figure 1), and the percent identity and similarities are provided in Table 1 below.

Table 1:

ATPT2	ATPT3	ATPT4	ATPT8	ATPT12	

5

10

15

20

25

ATPT2 % Identity	12	13	11	15
% similar	25	25	22	32
% Gap	17	20	20	9
ATPT3 % Identity		12	6	22
% similar		29	16	38
% Gap		20	24	14
ATPT4 % Identity			9	14
% similar			18	29
% Gap			26	19
ATPT8 % Identity				7
% similar				19
% Gap				20
ATPT12 % Identity				
% similar				
% Gap				

Example 2: Preparation of Expression Constructs

A plasmid containing the napin cassette derived from pCGN3223 (described in USPN 5,639,790, the entirety of which is incorporated herein by reference) was modified to make it more useful for cloning large DNA fragments containing multiple restriction sites, and to allow the cloning of multiple napin fusion genes into plant binary transformation vectors. An adapter comprised of the self annealed oligonucleotide of sequence

CGCGATTTAAATGGCGCGCCCTGCAGGCGGCCGCCTGCAGGGCGCCCATTTAA AT (SEQ ID NO:40) was ligated into the cloning vector pBC SK+ (Stratagene) after digestion with the restriction endonuclease BssHII to construct vector pCGN7765. Plamids pCGN3223 and pCGN7765 were digested with NotI and ligated together. The resultant vector, pCGN7770, contains the pCGN7765 backbone with the napin seed specific expression cassette from pCGN3223.

The cloning cassette, pCGN7787, essentially the same regulatory elements as pCGN7770, with the exception of the napin regulatory regions of pCGN7770 have been

5

10

replaced with the double CAMV 35S promoter and the tml polyadenylation and transcriptional termination region.

A binary vector for plant transformation, pCGN5139, was constructed from pCGN1558 (McBride and Summerfelt, (1990) Plant Molecular Biology, 14:269-276). The polylinker of pCGN1558 was replaced as a HindIII/Asp718 fragment with a polylinker containing unique restriction endonuclease sites, AscI, PacI, XbaI, SwaI, BamHI, and NotI. The Asp718 and HindIII restriction endonuclease sites are retained in pCGN5139.

A series of turbo binary vectors are constructed to allow for the rapid cloning of DNA sequences into binary vectors containing transcriptional initiation regions (promoters) and transcriptional termination regions.

The plasmid pCGN8618 was constructed by ligating oligonucleotides 5'TCGAGGATCCGCGGCCGCAAGCTTCCTGCAGG-3' (SEQ ID NO:41) and 5'TCGACCTGCAGGAAGCTTGCGGCCGCGGATCC-3' (SEQ ID NO:42) into Sall/XhoIdigested pCGN7770. A fragment containing the napin promoter, polylinker and napin 3'
region was excised from pCGN8618 by digestion with Asp718I; the fragment was bluntended by filling in the 5' overhangs with Klenow fragment then ligated into pCGN5139 that
had been digested with Asp718I and HindIII and blunt-ended by filling in the 5' overhangs
with Klenow fragment. A plasmid containing the insert oriented so that the napin promoter
was closest to the blunted Asp718I site of pCGN5139 and the napin 3' was closest to the
blunted HindIII site was subjected to sequence analysis to confirm both the insert orientation
and the integrity of cloning junctions. The resulting plasmid was designated pCGN8622.

The plasmid pCGN8619 was constructed by ligating oligonucleotides 5'TCGACCTGCAGGAAGCTTGCGGCCGCGGATCC -3' (SEQ ID NO:43) and 5'TCGAGGATCCGCGGCCGCAAGCTTCCTGCAGG-3' (SEQ ID NO:44) into Sall/XhoIdigested pCGN7770. A fragment containing the napin promoter, polylinker and napin 3'
region was removed from pCGN8619 by digestion with Asp718I; the fragment was bluntended by filling in the 5' overhangs with Klenow fragment then ligated into pCGN5139 that
had been digested with Asp718I and HindIII and blunt-ended by filling in the 5' overhangs
with Klenow fragment. A plasmid containing the insert oriented so that the napin promoter
was closest to the blunted Asp718I site of pCGN5139 and the napin 3' was closest to the
blunted HindIII site was subjected to sequence analysis to confirm both the insert orientation
and the integrity of cloning junctions. The resulting plasmid was designated pCGN8623.

5

10

15

20

25

The plasmid pCGN8620 was constructed by ligating oligonucleotides 5'TCGAGGATCCGCGGCCGCAAGCTTCCTGCAGGAGCT -3' (SEQ ID NO:45) and 5'CCTGCAGGAAGCTTGCGGCCGCGGATCC-3' (SEQ ID NO:46) into Sall/SacI-digested
pCGN7787. A fragment containing the d35S promoter, polylinker and tml 3' region was
removed from pCGN8620 by complete digestion with Asp718I and partial digestion with
NotI. The fragment was blunt-ended by filling in the 5' overhangs with Klenow fragment
then ligated into pCGN5139 that had been digested with Asp718I and HindIII and bluntended by filling in the 5' overhangs with Klenow fragment. A plasmid containing the insert
oriented so that the d35S promoter was closest to the blunted Asp718I site of pCGN5139 and
the tml 3' was closest to the blunted HindIII site was subjected to sequence analysis to
confirm both the insert orientation and the integrity of cloning junctions. The resulting
plasmid was designated pCGN8624.

The plasmid pCGN8621 was constructed by ligating oligonucleotides 5'TCGACCTGCAGGAAGCTTGCGGCCGCGGATCCAGCT -3' (SEQ ID NO:47) and 5'GGATCCGCGGCCGCAAGCTTCCTGCAGG-3' (SEQ ID NO:48) into Sall/SacI-digested
pCGN7787. A fragment containing the d35S promoter, polylinker and tml 3' region was
removed from pCGN8621 by complete digestion with Asp718I and partial digestion with
NotI. The fragment was blunt-ended by filling in the 5' overhangs with Klenow fragment
then ligated into pCGN5139 that had been digested with Asp718I and HindIII and bluntended by filling in the 5' overhangs with Klenow fragment. A plasmid containing the insert
oriented so that the d35S promoter was closest to the blunted Asp718I site of pCGN5139 and
the tml 3' was closest to the blunted HindIII site was subjected to sequence analysis to
confirm both the insert orientation and the integrity of cloning junctions. The resulting
plasmid was designated pCGN8625.

The plasmid construct pCGN8640 is a modification of pCGN8624 described above. A 938bp PstI fragment isolated from transposon Tn7 which encodes bacterial spectinomycin and streptomycin resistance (Fling et al. (1985), *Nucleic Acids Research* 13(19):7095-7106), a determinant for E. coli and Agrobacterium selection, was blunt ended with Pfu polymerase. The blunt ended fragment was ligated into pCGN8624 that had been digested with SpeI and blunt ended with Pfu polymerase. The region containing the PstI fragment was sequenced to confirm both the insert orientation and the integrity of cloning junctions.

The spectinomycin resistance marker was introduced into pCGN8622 and pCGN8623 as follows. A 7.7 Kbp AvrII-SnaBI fragment from pCGN8640 was ligated to a 10.9 Kbp

5

10

15

20

25

AvrII-SnaBI fragment from pCGN8623 or pCGN8622, described above. The resulting plasmids were pCGN8641 and pCGN8643, respectively.

The plasmid pCGN8644 was constructed by ligating oligonucleotides 5'-GATCACCTGCAGGAAGCTTGCGGCCGCGGATCCAATGCA-3' (SEQ ID NO:49) and 5'-TTGGATCCGCGGCCGCAAGCTTCCTGCAGGT-3' (SEQ ID NO:50) into BamHI-PstI digested pCGN8640.

Synthetic oligonulceotides were designed for use in Polymerase Chain Reactions (PCR) to amplify the coding sequences of ATPT2, ATPT3, ATPT4, ATPT8, and ATPT12 for the preparation of expression constructs and are provided in Table 2 below.

Table 2:

5

10

Name	Restriction Site	Sequence	SEQ ID NO:
ATPT2	5' NotI	GGATCCGCGCCCCACAATGGAGTC	51
		TCTGCTCTAGTTCT	
ATPT2	3' SseI	GGATCCTGCAGGTCACTTCAAAAAA	52
		GGTAACAGCAAGT	
ATPT3	5' NotI	GGATCCGCGGCCGCACAATGGCGTT	53
		TTTTGGGCTCTCCCGTGTTT	
ATPT3	3' SseI	GGATCCTGCAGGTTATTGAAAACTT	54 .
		CTTCCAAGTACAACT	
ATPT4	5' NotI	GGATCCGCGCCCCACAATGTGGCG	55
		AAGATCTGTTGTT	
ATPT4	3' SseI	GGATCCTGCAGGTCATGGAGAGTAG	56
		AAGGAAGGAGCT	·
ATPT8	5' NotI	GGATCCGCGGCCGCACAATGGTACT	57
		TGCCGAGGTTCCAAAGCTTGCCTCT	
ATPT8	3' SseI	GGATCCTGCAGGTCACTTGTTTCTG	58
	,	GTGATGACTCTAT	
ATPT12	5' NotI	GGATCCGCGGCCGCACAATGACTTC	59 ′ <u>′</u>
		GATTCTCAACACT	
ATPT12	3' SseI	GGATCCTGCAGGTCAGTGTTGCGAT	60
		GCTAATGCCGT	

The coding sequences of ATPT2, ATPT3, ATPT4, ATPT8, and ATPT12 were all amplified using the respective PCR primers shown in Table 2 above and cloned into the TopoTA vector (Invitrogen). Constructs containing the respective prenyltransferase sequences were digested with NotI and Sse8387I and cloned into the turbobinary vectors described above.

The sequence encoding ATPT2 prenyltransferase was cloned in the sense orientation into pCGN8640 to produce the plant transformation construct pCGN10800 (Figure 2). The ATPT2 sequence is under control of the 35S promoter.

The ATPT2 sequence was also cloned in the antisense orientation into the construct pCGN8641 to create pCGN10801 (Figure 3). This construct provides for the antisense expression of the ATPT2 sequence from the napin promoter.

The ATPT2 coding sequence was also cloned in the antisense orientation into the vector pCGN8643 to create the plant transformation construct pCGN10802

The ATPT2 coding sequence was also cloned in the antisense orientation into the vector pCGN8644 to create the plant transformation construct pCGN10803 (Figure 4).

The ATPT4 coding sequence was cloned into the vector pCGN864 to create the plant transformation construct pCGN 10806 (Figure 5). The ATPT2 coding sequence was cloned into the vector pCGN864 to create the plant transformation construct pCGN10807(Figure 6). The ATPT3 coding sequence was cloned into the vector pCGN864 to create the plant transformation construct pCGN10808 (Figure 7). The ATPT3 coding sequence was cloned in the sense orientation into the vector pCGN8640 to create the plant transformation construct pCGN10809 (Figure 8). The ATPT3 coding sequence was cloned in the antisense orientation into the vector pCGN8641 to create the plant transformation construct pCGN10810 (Figure 9). The ATPT3 coding sequence was cloned into the vector pCGN8643 to create the plant transformation construct pCGN10811 (Figure 10). The ATPT3 coding sequence was cloned into the vector pCGN8640 to create the plant transformation construct pCGN10812 (Figure 11). The ATPT4 coding sequence was cloned into the vector pCGN8640 to create the plant transformation construct pCGN10813 (Figure 12). The ATPT4 coding sequence was cloned into the vector pCGN8643 to create the plant transformation construct pCGN10814 (Figure 13). The ATPT4 coding sequence was cloned into the vector pCGN8641 to create the plant transformation construct pCGN10815 (Figure 14). The ATPT4 coding sequence was cloned in the antisense orientation into the vector pCGN8644 to create the plant transformation construct pCGN10816 (Figure 15). The ATPT2 coding sequence was cloned into the vector pCGN???? to create the plant transformation construct pCGN10817 (Figure 16). The ATPT8 coding sequence was cloned in the sense orientation into the vector pCGN8643 to create the plant transformation construct pCGN10819 (Figure 17). The ATPT12 coding sequence was cloned into the vector pCGN8644 to create the plant transformation construct pCGN10824 (Figure 18). The ATPT12 coding sequence was cloned into the vector pCGN8641 to create the plant transformation construct pCGN10825 (Figure 19). The ATPT8 coding sequence was cloned into the vector pCGN8644 to create the plant transformation construct pCGN10826 (Figure 20).

5

10

15

20

25

Example 3: Plant Transformation

Transgenic Brassica plants are obtained by Agrobacterium-mediated transformation as described by Radke et al. (Theor. Appl. Genet. (1988) 75:685-694; Plant Cell Reports (1992) 11:499-505). Transgenic Arabidopsis thaliana plants may be obtained by Agrobacterium-mediated transformation as described by Valverkens et al., (Proc. Nat. Acad. Sci. (1988) 85:5536-5540), or as described by Bent et al. ((1994), Science 265:1856-1860), or Bechtold et al. ((1993), C.R.Acad.Sci, Life Sciences 316:1194-1199). Other plant species may be similarly transformed using related techniques.

Alternatively, microprojectile bombardment methods, such as described by Klein *et al.* (*Bio/Technology 10*:286-291) may also be used to obtain nuclear transformed plants.

15

20

25

10

5

Example 4: Identification of Additional Prenyltransferases

A PSI-Blast profile generated using the *E. coli* ubiA (genbank accession 1790473) sequence was used to analyze the *Synechocystis* genome. This analysis identified 5 open reading frames (ORFs) in the *Synechocystis* genome that were potentially prenyltransferases; slr0926 (annotated as ubiA (4-hydroxybenzoate-octaprenyl transferase, SEQ ID NO:32), sll1899 (annotated as ctaB (cytocrome c oxidase folding protein, SEQ ID NO:33), slr0056 (annotated as g4 (chlorophyll synthase 33 kd subunit, SEQ ID NO:34), slr1518 (annotated as menA (menaquinone biosynthesis protein, SEQ ID NO:35), and slr1736 (annotated as a hypothetical protein of unknown function (SEQ ID NO:36).

To determine the functionality of these ORFs and their involvement, if any, in the biosynthesis of Tocopherols, knockouts constructs were made to disrupt the ORF identified in *Synechocystis*.

Synthetic oligos were designed to amplify regions from the 5' (5'
TAATGTGTACATTGTCGGCCTC (17365') (SEQ ID NO:61) and 5'
GCAATGTAACATCAGAGATTTTGAGACACAACGTGGCTTTCCACAATTCCCCGCA

CCGTC (1736kanpr1)) (SEQ ID NO:62) and 3' (5'-AGGCTAATAAGCACAAATGGGA

(17363') (SEQ ID NO:63) and 5'-

GGTATGAGTCAGCAACACCTTCTTCACGAGGCAGACCTCAGC GGAATTGGTTTAGGTTATCCC (1736kanpr2)) (SEQ ID NO:64) ends of the slr1736 ORF. The 1736kanpr1 and 1736kanpr2 oligos contained 20 bp of homology to the slr1736 ORF with an additional 40 bp of sequence homology to the ends of the kanamycin resistance cassette. Separate PCR steps were completed with these oligos and the products were gel purified and combined with the kanamycin resistance gene from puc4K (Pharmacia) that had been digested with HincII and gel purified away from the vector backbone. The combined fragments were allowed to assemble without oligos under the following conditions: 94°C for 1 min, 55°C for 1 min, 72°C for 1 min plus 5 seconds per cycle for 40 cycles using pfu polymerase in 100ul reaction volume (Zhao, H and Arnold (1997) Nucleic Acids Res. 25(6):1307-1308). One microliter or five microliters of this assembly reaction was then amplified using 5' and 3' oligos nested within the ends of the ORF fragment, so that the resulting product contained 100-200 bp of the 5' end of the Synechocystis gene to be knocked out, the kanamycin resistance cassette, and 100-200 bp of the 3' end of the gene to be knocked out. This PCR product was then cloned into the vector pGemT easy (Promega) to create the construct pMON21681 and used for Synechocystis transformation.

Primers were also synthesized for the preparation of Synechocystis knockout constructs for the other sequences using the same method as described above, with the following primers. The ubiA 5' sequence was amplified using the primers 5'-20 GGATCCATGGTT GCCCAAACCCCATC (SEQ ID NO:65) and 5'-GCAATGTAACATCAGAGA TTTTGAGACACAACG TGGCTTTGGGTAAGCAACAATGACCGGC (SEQ ID NO:66).. The 3' region was amplified using the synthetic oligonucleotide primers 5'-GAATTCTCAAAGCCAGCCCAGTAAC (SEQ ID NO:67) and 5'-GGTATGAGTC AGCAACACCTTCTTCACGAGGCAGACCTCAGCGGGTGCGAAAAGGGTTTTCCC 25 (SEQ ID NO:68). The amplification products were combined with the kanamycin resistance gene from puc4K (Pharmacia) that had been digested with HincII and gel purified away from the vector backbone. The annealed fragment was amplified using 5' and 3' oligos nested within the ends of the ORF fragment (5'-CCAGTGGTTTAGGCTGTGTGGTC (SEQ ID NO:69) and 5'- CTGAGTTGGATGTATTGGATC (SEQ ID NO:70)), so that the resulting 30 product contained 100-200 bp of the 5' end of the Synechocystis gene to be knocked out, the kanamycin resistance cassette, and 100-200 bp of the 3' end of the gene to be knocked out.

5

10

This PCR product was then cloned into the vector pGemT easy (Promega) to create the construct pMON21682 and used for *Synechocystis* transformation.

Primers were also synthesized for the preparation of *Synechocystis* knockout constructs for the other sequences using the same method as described above, with the following primers. The sl11899 5' sequence was amplified using the primers 5'-GGATCCATGGTTACTT CGACAAAAATCC (SEQ ID NO:71) and 5'-GCAATGTAACATCAGAG

ATTTTGAGACACAACGTGGCTTTGCTAGGCAACCGCTTAGTAC (SEQ ID NO:72).

The 3' region was amplified using the synthetic oligonucleotide primers 5'-

10 GAATTCTTAACCCAACAGTAAAGTTCCC (SEQ ID NO:73) and 5'-GGTATGAGTCAGC

construct pMON21679 and used for Synechocystis transformation.

AACACCTTCTCACGAGGCAGACCTCAGCGCCGGCATTGTCTTTTACATG (SEQ ID NO:74). The amplification products were combined with the kanamycin resistance gene from puc4K (Pharmacia) that had been digested with *HincII* and gel purified away from the vector backbone. The annealed fragment was amplified using 5' and 3' oligos nested within the ends of the ORF fragment (5'-GGAACCCTTGCAGCCGCTTC (SEQ ID NO:75) and 5'-GTATGCCCAACTGGTGCAGAGG (SEQ ID NO:76)), so that the resulting product contained 100-200 bp of the 5' end of the *Synechocystis* gene to be knocked out, the kanamycin resistance cassette, and 100-200 bp of the 3' end of the gene to be knocked out. This PCR product was then cloned into the vector pGemT easy (Promega) to create the

Primers were also synthesized for the preparation of *Synechocystis* knockout constructs for the other sequences using the same method as described above, with the following primers. The slr0056 5' sequence was amplified using the primers 5'-

- GGATCCATGTCTGACACACAAAATACCG (SEQ ID NO:77) and 5'GCAATGTAACATCAGAGATTTTGAGACACAACGTGGCTTTCGCCAATACCAGCCA
 CCAACAG (SEQ ID NO:78). The 3' region was amplified using the synthetic
 oligonucleotide primers 5'- GAATTCTCAAAT CCCCGCATGGCCTAG (SEQ ID NO:79)
 and 5'-
- GGTATGAGTCAGCAACACCTTCTTCACGAGGCAGACCTCAGCGGCCTACGGCTTG
 GACGTGTGGG (SEQ ID NO:80). The amplification products were combined with the
 kanamycin resistance gene from puc4K (Pharmacia) that had been digested with *HincII* and
 gel purified away from the vector backbone. The annealed fragment was amplified using 5'

5

15

and 3' oligos nested within the ends of the ORF fragment (5'-CACTTGGATTCCCCTGATCTG (SEQ ID NO:81) and 5'-GCAATACCCGCTTGGAAAACG (SEQ ID NO:82)), so that the resulting product contained 100-200 bp of the 5' end of the *Synechocystis* gene to be knocked out, the kanamycin resistance cassette, and 100-200 bp of the 3' end of the gene to be knocked out. This PCR product was then cloned into the vector pGemT easy (Promega) to create the construct pMON21677 and used for *Synechocystis* transformation.

Primers were also synthesized for the preparation of Synechocystis knockout constructs for the other sequences using the same method as described above, with the following primers. The slr1518 5' sequence was amplified using the primers 5'-10 GGATCCATGACCGAAT CTTCGCCCCTAGC (SEQ ID NO:83) and 5'-GCAATGTAACATCAGAGATTTTGA GACACAACGTGGC TTTCAATCCTAGGTAGCCGAGGCG (SEQ ID NO:84). The 3' region was amplified using the synthetic oligonucleotide primers 5'- GAATTCTTAGCCCAGGCC AGCCCAGCC (SEO ID NO:85) and 5'- GGTATGAGTCAGCAACACCTTCTTCACGA 15 GGCAGACCTCAGCGGGAATTGATTTGTTTAATTACC (SEQ ID NO:86). The amplification products were combined with the kanamycin resistance gene from puc4K (Pharmacia) that had been digested with *HincII* and gel purified away from the vector backbone. The annealed fragment was amplified using 5' and 3' oligos nested within the ends of the ORF fragment (5'-GCGATCGCCATTATCGCTTGG (SEQ ID NO:87) and 5'-20 GCAGACTGGCAATTATCAGTAACG (SEQ ID NO:88)), so that the resulting product contained 100-200 bp of the 5' end of the Synechocystis gene to be knocked out, the kanamycin resistance cassette, and 100-200 bp of the 3' end of the gene to be knocked out. This PCR product was then cloned into the vector pGemT easy (Promega) to create the 25 construct pMON21680 and used for Synechocystis transformation.

B. Transformation of Synechocystis

Cells of *Synechocystis* 6803 were grown to a density of approximately 2x10⁸ cells per ml and harvested by centrifugation. The cell pellet was re-suspended in fresh BG-11 medium (ATCC Medium 616) at a density of 1x10⁹ cells per ml and used immediately for transformation. One-hundred microliters of these cells were mixed with 5 ul of mini prep DNA and incubated with light at 30C for 4 hours. This mixture was then plated onto nylon filters resting on BG-11 agar supplemented with TES pH8 and allowed to grow for 12-18

30

hours. The filters were then transferred to BG-11 agar + TES + 5ug/ml kanamycin and allowed to grow until colonies appeared within 7-10 days (Packer and Glazer, 1988). Colonies were then picked into BG-11 liquid media containing 5 ug/ml kanamycin and allowed to grow for 5 days. These cells were then transferred to Bg-11 media containing 10ug/ml kanamycin and allowed to grow for 5 days and then transferred to Bg-11 + kanamycin at 25ug/ml and allowed to grow for 5 days. Cells were then harvested for PCR analysis to determine the presence of a disrupted ORF and also for HPLC analysis to determine if the disruption had any effect on tocopherol levels.

PCR analysis of the *Synechocystis* isolates for slr1736 and sll1899 showed complete segregation of the mutant genome, meaning no copies of the wild type genome could be detected in these strains. This suggests that function of the native gene is not essential for cell function. HPLC analysis of these same isolates showed that the sll1899 strain had no detectable reduction in tocopherol levels. However, the strain carrying the knockout for slr1736 produced no detectable levels of tocopherol.

The amino acid sequences for the *Synechocystis* knockouts are compared using ClustalW, and are provided in Table 3 below. Provided are the percent identities, percent similarity, and the percent gap. The alignment of the sequences is provided in Figure 21.

Table 3:

5

10

	Slr1736	slr0926	sll1899	slr0056	slr1518
slr1736 %identity	,	14	12	18	11
%similar		29	30	34	26
%gap		8	7	10	5
slr0926 %identity			20	19	14
%similar			39	32	28
%gap			7	9	4
sll1899 %identity	,			17	13
%similar				29	29
%gap				12	9
slr0056 %identity					15
%similar					31
%gap					8

slr1518 %identity	
%similar	
%gap	

Amino acid sequence comparisons are performed using various *Arabidopsis* prenyltransferase sequences and the *Synechocystis* sequences. The comparisons are presented in Table 4 below. Provided are the percent identities, percent similarity, and the percent gap. The alignment of the sequences is provided in Figure 22.

Table 4:

	ATPT2	slr1736	ATPT3	slr0926	ATPT4	sll1899	ATPT12	slr0056	ATPT8	slr1518
ATPT2		29	9	9	8	8	12	9	7	9
		46	23	21	20	20	28	23	21	20
		27	13	28	23	29	11	24	25	24
slr1736			9	13	8	12	13	15	8	10
			19	28	19	28	26	33	21	26
			34	12	34	15	26	10	12	10
АТРТ3				23	11	14	13	10	5	11
				36	26	26	26	21	14	22
				29	21	31	16	30	30	30
					12	20	17	20	11	14
slr0926					24	37	28	33	24	29
					33	12	25	10	11	9 :
			-			18	11	8	6	⁻ 7
ATPT4						33	23	18	16	19
						28	19	32	32	33
				•			13	17	10	12
sll1899							24	30	23	26
							27	13	10	11
								52	8	11
ATPT1				-				66	19	26
2										
								18	25	23

	9	13
slr0056	23	32
	10	8
		7
АТРТ8		23
		7
	·	
slr1518		

4B. Preparation of the slr1737 Knockout

The Synechocystis sp. 6803 slr1737 knockout was constructed by the following method. The GPS™-1 Genome Priming System (New England Biolabs) was used to insert, by a Tn7 Transposase system, a Kanamycin resistance cassette into slr1737. A plasmid from a Synechocystis genomic library clone containing 652 base pairs of the targeted orf (Synechcocystis genome base pairs 1324051 - 1324703; the predicted orf base pairs 1323672 - 1324763, as annotated by Cyanobase) was used as target DNA. The reaction was performed according to the manufacturers protocol. The reaction mixture was then transformed into E. coli DH10B electrocompetant cells and plated. Colonies from this transformation were then screened for transposon insertions into the target sequence by amplifying with M13 Forward and Reverse Universal primers, yielding a product of 652 base pairs plus ~1700 base pairs, the size of the transposon kanamycin cassette, for a total fragment size of ~2300 base pairs. After this determination, it was then necessary to determine the approximate location of the insertion within the targeted orf, as 100 base pairs of orf sequence was estimated as necessary for efficient homologous recombination in Synechocystis. This was accomplished through amplification reactions using either of the primers to the ends of the transposon, Primer S (5' end) or N (3' end), in combination with either a M13 Forward or Reverse primer. That is, four different primer combinations were used to map each potential knockout construct: Primer S – M13 Forward, Primer S – M13 Reverse, Primer N - M13 Forward, Primer N - M13 Reverse. The construct used to transform Synechocystis and knockout slr1737 was determined to consist of a approximately

5

10

15

150 base pairs of slr1737 sequence on the 5' side of the transposon insertion and approximately 500 base pairs on the 3' side, with the transcription of the orf and kanamycin cassette in the same direction. The nucleic acid sequence of slr1737 is provided in SEQ ID NO:38 the deduced amino acid sequence is provided in SEQ ID NO:39.

Cells of *Synechocystis 6803* were grown to a density of ~ 2x10⁸ cells per ml and harvested by centrifugation. The cell pellet was re-suspended in fresh BG-11 medium at a density of 1x10⁹ cells per ml and used immediately for transformation. 100 ul of these cells were mixed with 5 ul of mini prep DNA and incubated with light at 30C for 4 hours. This mixture was then plated onto nylon filters resting on BG-11 agar supplemented with TES ph8 and allowed to grow for 12-18 hours. The filters were then transferred to BG-11 agar + TES + 5ug/ml kanamycin and allowed to grow until colonies appeared within 7-10 days (Packer and Glazer, 1988). Colonies were then picked into BG-11 liquid media containing 5 ug/ml kanamycin and allowed to grow for 5 days. These cells were then transferred to Bg-11 media containing 10ug/ml kanamycin and allowed to grow for 5 days and then transferred to Bg-11 + kanamycin at 25ug/ml and allowed to grow for 5 days. Cells were then harvested for PCR analysis to determine the presence of a disrupted ORF and also for HPLC analysis to determine if the disruption had any effect on tocopherol levels.

PCR analysis of the *Synechocystis* isolates, using primers to the ends of the *slr1737* orf, showed complete segregation of the mutant genome, meaning no copies of the wild type genome could be detected in these strains. This suggests that function of the native gene is not essential for cell function. HPLC analysis of the strain carrying the knockout for *slr1737* produced no detectable levels of tocopherol.

4C. Phytyl Prenyltransferase Enzyme Assays

[3 H] Homogentisic acid in 0.1% H $_3$ PO $_4$ (specific radioactivity 40 Ci/mmol). Phytyl pyrophosphate was synthesized as described by Joo, *et al.* (1973) *Can J. Biochem.* 51:1527. 2-methyl-6-phytylquinol and 2,3-dimethyl-5-phytylquinol were synthesized as described by Soll, *et al.* (1980) *Phytochemistry* 19:215. Homogentisic acid, α , β , δ , and γ -tocopherol, and tocol, were purchased commercially.

The wild-type strain of *Synechocystis* sp. PCC 6803 was grown in BG11 medium with bubbling air at 30°C under 50 μE.m⁻².s⁻¹ fluorescent light, and 70% relative humidity. The growth medium of slr1736 knock-out (potential PPT) strain of this organism was

5

10

15

20

25

supplemented with 25 μ g mL⁻¹ kanamycin. Cells were collected from 0.25 to 1 liter culture by centrifugation at 5000 g for 10 min and stored at -80°C.

Total membranes were isolated according to Zak's procedures with some modifications (Zak, et al. (1999) Eur J. Biochem 261:311). Cells were broken on a French press. Before the French press treatment, the cells were incubated for 1 hour with lysozyme (0.5%, w/v) at 30 °C in a medium containing 7 mM EDTA, 5 mM NaCl and 10 mM Hepes-NaOH, pH 7.4. The spheroplasts were collected by centrifugation at 5000 g for 10 min and resuspended at 0.1 - 0.5 mg chlorophyll·mL⁻¹ in 20 mM potassium phosphate buffer, pH 7.8. Proper amount of protease inhibitor cocktail and DNAase I from Boehringer Mannheim were added to the solution. French press treatments were performed two to three times at 100 MPa. After breakage, the cell suspension was centrifuged for 10 min at 5000g to pellet unbroken cells, and this was followed by centrifugation at 100 000 g for 1 hour to collect total membranes. The final pellet was resuspended in a buffer containing 50 mM Tris-HCL and 4 mM MgCl₂.

Chloroplast pellets were isolated from 250 g of spinach leaves obtained from local markets. Devined leaf sections were cut into grinding buffer (2 1/250 g leaves) containing 2 mM EDTA, 1 mM MgCl₂, 1 mM MnCl₂, 0.33 M sorbitol, 0.1% ascorbic acid, and 50 mM Hepes at pH 7.5. The leaves were homogenized for 3 sec three times in a 1-L blendor, and filtered through 4 layers of mirocloth. The supernatant was then centrifuged at 5000g for 6 min. The chloroplast pellets were resuspended in small amount of grinding buffer (Douce, et al Methods in Chloroplast Molecular Biology, 239 (1982)

Chloroplasts in pellets can be broken in three ways. Chloroplast pellets were first aliquoted in 1 mg of chlorophyll per tube, centrifuged at 6000 rpm for 2 min in microcentrifuge, and grinding buffer was removed. Two hundred microliters of Triton X-100 buffer (0.1% Triton X-100, 50 mM Tris-HCl pH 7.6 and 4 mM MgCl₂) or swelling buffer (10 mM Tris pH 7.6 and 4 mM MgCl₂) was added to each tube and incubated for ½ hour at 4°C. Then the broken chloroplast pellets were used for the assay immediately. In addition, broken chloroplasts can also be obtained by freezing in liquid nitrogen and stored at -80°C for ½ hour, then used for the assay.

In some cases chloroplast pellets were further purified with 40%/ 80% percoll gradient to obtain intact chloroplasts. The intact chloroplasts were broken with swelling buffer, then either used for assay or further purified for envelope membranes with 20.5%/ 31.8% sucrose density gradient (Sol, et al (1980) supra). The membrane fractions were centrifuged at 100 000g for 40 min and resuspended in 50 mM Tris-HCl pH 7.6, 4 mM MgCl₂.

10

15

20

25

Various amounts of [³H]HGA, 40 to 60 μM unlabelled HGA with specific activity in the range of 0.16 to 4 Ci/mmole were mixed with a proper amount of 1M Tris-NaOH pH 10 to adjust pH to 7.6. HGA was reduced for 4 min with a trace amount of solid NaBH₄. In addition to HGA, standard incubation mixture (final vol 1 mL) contained 50 mM Tris-HCl, pH 7.6, 3-5 mM MgCl₂, and 100 μM phytyl pyrophosphate. The reaction was initiated by addition of *Synechocystis* total membranes, spinach chloroplast pellets, spinach broken chloroplasts, or spinach envelope membranes. The enzyme reaction was carried out for 2 hour at 23°C or 30°C in the dark or light. The reaction is stopped by freezing with liquid nitrogen, and stored at -80°C or directly by extraction.

A constant amount of tocol was added to each assay mixture and reaction products were extracted with a 2 mL mixture of chloroform/methanol (1:2, v/v) to give a monophasic solution. NaCl solution (2 mL; 0.9%) was added with vigorous shaking. This extraction procedure was repeated three times. The organic layer containing the prenylquinones was filtered through a 20 m μ filter, evaporated under N₂ and then resuspended in 100 μ L of ethanol.

The samples were mainly analyzed by Normal-Phase HPLC method (Isocratic 90% Hexane and 10% Methyl-t-butyl ether), and use a Zorbax silica column, 4.6 x 250 mm. The samples were also analyzed by Reversed-Phase HPLC method (Isocratic 0.1% H₃PO₄ in MeOH), and use a Vydac 201HS54 C18 column; 4.6 x 250 mm coupled with an All-tech C18 guard column. The amount of products were calculated based on the substrate specific radioactivity, and adjusted according to the % recovery based on the amount of internal standard.

The amount of chlorophyll was determined as described in Arnon (1949) *Plant Physiol.* 24:1. Amount of protein was determined by the Bradford method using gamma globulin as a standard (Bradford, (1976) *Anal. Biochem.* 72:248)

Results of the assay demonstrate that 2-Methyl-6-Phytylplastoquinone is produced in the *Synechocystis* slr1736 knockout preparations. The results of the phytyl prenyltransferase enzyme activity assay for the slr1736 knock out are presented in Figure 23.

30 4D. Complementation of the slr1736 knockout with ATPT2

In order to determine whether ATPT2 could complement the knockout of slr1736 in Synechocystis 6803 a plasmid was constructed to express the ATPT2 sequence from the TAC promoter. A vector, plasmid psl1211, was obtained from the lab of Dr. Himadri Pakrasi of

10

15

20

Washington University, and is based on the plasmid RSF1010 which is a broad host range plasmid (Ng W.-O., Zentella R., Wang, Y., Taylor J-S. A., Pakrasi, H.B. 2000. phrA, the major photoreactivating factor in the cyanobacterium Synechocystis sp. strain PCC 6803 codes for a cyclobutane pyrimidine dimer specific DNA photolyase. Arch. Microbiol. (in press)). The ATPT2 gene was isolated from the vector pCGN10817 by PCR using the following primers. ATPT2nco.pr 5'-CCATGGATTCGAGTAAAGTTGTCGC (SEQ ID NO:89); ATPT2ri.pr-5'-GAATTCACTTCAAAAAAGGTAACAG (SEQ ID NO:90). These primers will remove approximately 112 BP from the 5' end of the ATPT2 sequence, which is thought to be the chloroplast transit peptide. These primers will also add an NcoI site at the 5' end and an EcoRI site at the 3' end which can be used for sub-cloning into subsequent vectors. The PCR product from using these primers and pCGN10817 was ligated into pGEM T easy and the resulting vector pMON21689 was confirmed by sequencing using the m13forward and m13reverse primers. The NcoI/EcoRI fragment from pMON21689 was then ligated with the EagI/EcoRI and EagI/NcoI fragments from psl1211 resulting in pMON21690. The plasmid pMON21690 was introduced into the slr1736 Synechocystis 6803 KO strain via conjugation. Cells of sl906 (a helper strain) and DH10B cells containing pMON21690 were grown to log phase (O.D. 600= 0.4) and 1 ml was harvested by centrifugation. The cell pellets were washed twice with a sterile BG-11 solution and resuspended in 200 ul of BG-11. The following was mixed in a sterile eppendorf tube: 50 ul SL906, 50 ul DH10B cells containing pMON21690, and 100 ul of a fresh culture of the slr1736 Synechocystis 6803 KO strain (O.D. 730 = 0.2-0.4). The cell mixture was immediately transferred to a nitrocellulose filter resting on BG-11 and incubated for 24 hours at 30C and 2500 LUX(50 ue) of light. The filter was then transferred to BG-11 supplemented with 10ug/ml Gentamycin and incubated as above for ~5 days. When colonies appeared, they were picked and grown up in liquid BG-11 + Gentamycin 10 ug/ml. (Elhai, J. and Wolk, P. 1988. Conjugal transfer of DNA to Cyanobacteria. Methods in Enzymology 167, 747-54) The liquid cultures were then assayed for tocopherols by harvesting 1ml of culture by centrifugation, extracting with ethanol/pyrogallol, and HPLC separation. The slr1736 Synechocystis 6803 KO strain, did not contain any detectable tocopherols, while the slr1736 Synechocystis 6803 KO strain transformed with pmon21690 contained detectable alpha tocopherol. A Synechocystis 6803 strain transformed with psl1211(vector control) produced alpha tocopherol as well.

5

10

15

20

25

Example 5: Transgenic Plant Analysis

Arabidopsis plants transformed with constructs for the sense or antisense expression of the ATPT proteins were analyzed by High Pressure Liquid Chromatography (HPLC) for altered levels of total tocopherols, as well as altered levels of specific tocopherols (alpha, beta, gamma, and delta tocopherol).

Extracts of leaves and seeds were prepared for HPLC as follows. For seed extracts, 10 mg of seed was added to 1 g of microbeads (Biospec) in a sterile microfuge tube to which 500 ul 1% pyrogallol (Sigma Chem)/ethanol was added. The mixture was shaken for 3 minutes in a mini Beadbeater (Biospec) on "fast" speed. The extract was filtered through a 0.2 um filter into an autosampler tube. The filtered extracts were then used in HPLC analysis described below.

Leaf extracts were prepared by mixing 30-50 mg of leaf tissue with 1 g microbeads and freezing in liquid nitrogen until extraction. For extraction, 500 ul 1% pyrogallol in ethanol was added to the leaf/bead mixture and shaken for 1 minute on a Beadbeater (Biospec) on "fast" speed. The resulting mixture was centrifuged for 4 minutes at 14,000 rpm and filtered as described above prior to HPLC analysis.

HPLC was performed on a Zorbax silica HPLC column (4.6 mm X 250 mm) with a fluorescent detection, an excitation at 290 nm, an emission at 336 nm, and bandpass and slits. Solvent A was hexane and solvent B was methyl-t-butyl ether. The injection volume was 20 ul, the flow rate was 1.5 ml/min, the run time was 12 min (40°C) using the gradient (Table 5):

Table 5:

25

5

10

15

20

30

35

Time	Solvent A	Solvent B
0 min.	90%	10%
10 min.	90%	10%
11 min.	25%	75%
12 min.	90%	10%

Tocopherol standards in 1% pyrogallol/ ethanol were also run for comparison (alpha tocopherol, gamma tocopherol, beta tocopherol, delta tocopherol, and tocopherol (tocol) (all from Matreya).

Standard curves for alpha, beta, delta, and gamma tocopherol were calculated using Chemstation software. The absolute amount of component x is: Absolute amount of x=

Response_x x RF_x x dilution factor where Response_x is the area of peak x, RF_x is the response factor for component x (Amount_x/Response_x) and the dilution factor is 500 ul. The ng/mg tissue is found by: total ng component/mg plant tissue.

Results of the HPLC analysis of seed extracts of transgenic *Arabidopsis* lines containing pMON10822 for the expression of ATAT2 from the napin promoter are provided in Figure 24.

HPLC analysis results of *Arabidopsis* seed tissue expressing the ATAT2 sequence from the napin promoter (pMON10822) demonstrates an increased level of tocopherols in the seed. Total tocopherol levels are increased as much as 50 to 60% over the total tocopherol levels of non-transformed (wild-type) *Arabidopsis* plants (Figure 24).

Furthermore, increases of particular tocopherols are also increased in transgenic Arabidopsis plants expressing the ATAT2 nucleic acid sequence from the napin promoter. Levels of delta tocopherol in these lines are increased greater than 3 fold over the delta tocopherol levels obtained from the seeds of wild type Arabidopsis lines. Levels of gamma tocopherol in transgenic Arabidopsis lines expressing the ATAT2 nucleic acid sequence are increased as much as about 60% over the levels obtained in the seeds of non-transgenic control lines. Furthermore, levels of alpha tocopherol are increased as much as 3 fold over those obtained from non-transgenic control lines.

Results of the HPLC analysis of seed extracts of transgenic *Arabidopsis* lines containing pMON10803 for the expression of ATAT2 from the enhanced 35S promoter are provided in Figure 25.

All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claim.

5

10

15

20

25

5

10

15

20

25

30

Claims

What is Claimed is:

- 1. An isolated nucleic acid sequence encoding a prenyltransferase.
- 2. An isolated nucleic acid sequence according to Claim 1, wherein said prenyltransferase is selected from the group consisting of straight chain prenyltransferase and aromatic prenyltransferase.
- 3. An isolated DNA sequence according to Claim 1, wherein said nucleic acid sequence is isolated from a eukaryotic cell source.
- 4. An isolated DNA sequence according to Claim 3, wherein said eukaryotic cell source is selected from the group consisting of mammalian, nematode, fungal, and plant cells.
 - 5. The DNA encoding sequence of Claim 4 wherein said prenyltransferase protein is from *Arabidopsis*.
 - 6. The DNA encoding sequence of Claim 5 wherein said prenyltransferase protein is encoded by a sequence selected from the group consisting of the sequences of Figure 1.
 - 7. The DNA encoding sequence of Claim 4 wherein said prenyltransferase protein is from corn.
 - 8. The DNA encoding sequence of Claim 7 wherein said prenyltransferase protein is encoded by a sequence which includes the EST of the sequences of Figure 3.
- 9. The DNA encoding sequence of Claim 4 wherein said prenyltransferase protein is from soybean.
 - 10. The DNA encoding sequence of Claim 9 wherein said prenyltransferase protein is encoded by a sequence which includes the ESTs of the group consisting of the sequences of Figure 2 and Figure 9.
- 11. An isolated DNA sequence according to Claim 1, wherein said nucleic acid sequence is isolated from a prokaryotic cell source.
 - 12. An isolated DNA sequence according to Claim 11, wherein said prokaryotic source is *Synechocystis*.
 - 13. A nucleic acid construct comprising as operably linked components, a transcriptional initiation region functional in a host cell, a nucleic acid sequence encoding prenyltransferase, and a transcriptional termination region.
 - 14. A nucleic acid construct according to Claim 13, wherein said nucleic acid sequence encoding prenyltransferase is obtained from an organism selected from the group consisting of a eukaryotic organism and a prokaryotic organism.

15. A nucleic acid construct according to Claim 14, wherein said nucleic acid sequence encoding prenyltransferase is obtained from a plant source.

- 16. A nucleic acid construct according to Claim 15, wherein said nucleic acid sequence encoding prenyltransferase is obtained from a source selected from the group consisting of *Arabidopsis*, soybean and corn.
- 17. A nucleic acid construct according to Claim 13, wherein said nucleic acid sequence encoding prenyltransferase is obtained from *Synechocystis*.
 - 18. A plant cell comprising the construct of Claim13.
- 19. A method for the alteration of the tocopherol content in a host cell, comprising; transforming said host cell with a construct comprising as operably linked components, a transcriptional initiation region functional in a host cell, a nucleic acid sequence encoding prenyltransferase, and a transcriptional termination region.
- 20. The method according to Claim 19, wherein said host cell is selected from the group consisting of a prokaryotic cell and a eukaryotic cell.
 - 21. The method according to Claim 20, wherein said prokaryotic cell is Synechocystis.
 - 22. The method according to Claim 20, wherein said eukaryotic cell is a plant cell.
- 23. The method according to Claim 22, wherein said plant cell is obtained from a plant selected from the group consisting of *Arabidopsis*, soybean, and corn.
- 24. A method for producing a tocopherol compound of interest in a host cell, said method comprising obtaining a transformed host cell, said host cell having and expressing in its genome:
- a construct having a DNA sequence encoding a prenyltransferase operably linked to a transcriptional initiation region functional in a host cell,

wherein said prenyltransferase is involved in the synthesis of tocopherols.

- 25. The method according to Claim 24, wherein said host cell is selected from the group consisting of a prokaryotic cell and a eukaryotic cell.
 - 26. The method according to Claim 25, wherein said prokaryotic cell is Synechocystis.
 - 27. The method according to Claim 24, wherein said eukaryotic cell is a plant cell.
- 28. The method according to Claim 27, wherein said plant cell is obtained from a plant selected from the group consisting of *Arabidopsis*, soybean, and corn.
- 29. A method for increasing the biosynthetic flux in cell from a host cell toward tocopherol production, said method comprising transforming said host cell with a construct comprising as operably linked components, a transcriptional initiation region functional in a

5

10

15

20

25

host cell, a DNA encoding a prenyltransferase involved in the synthesis of tocopherols, and a transcriptional termination region.

- 30. The method according to Claim 29, wherein said host cell is selected from the group consisting of a prokaryotic cell and a eukaryotic cell.
 - 31. The method according to Claim 30, wherein said prokaryotic cell is Synechocystis.
 - 32. The method according to Claim 30, wherein said eukaryotic cell is a plant cell.
- 33. The method according to Claim 32, wherein said plant cell is obtained from a plant selected from the group consisting of *Arabidopsis*, soybean, and corn.

10

			,			
	59 69 64 64	141 171 137 117 110	224 248 219 190 227	299 314 300 259 294	375 392 390 321 373	
				•• •• •• ••		
*	COMESSIS COMESSIS A-HAHA SALIG SHDHD	180 LLFTGILEA -YMALFGGGCYTGARAGG -VAKSILGM	* ILGTAWSINL ASLLIAMESY CLYARVAND SECTEVAV SELLSYTYSA	360 	* DLSSKTEITSCE CSRKFVSNKWE MOQQLVEEAGL KNK	
80	BRNNLVRP- GFGVGWNYRLIC SDANRVFA- LNVRVPE	*	260 -LFRSFNLGTANSINL RNLGASLLLNFFSY -LASANNVLYAFYXÜP ANAVERGOTAEVAV FYLALGGELLSYTYSA	* * * * * * * * * * * * * * * * * * *		
*	BESTEL BE	* 180 EHTVEGTVLSILSVEBLAVEKVSDISPLLFTGILEA ECMSTAL-AADPGSLPSFKYMALFGGG GTGGTTGT-GNAAISTPGLCYTGA LINWWGNKMSVLAGDELLS	260 SSMPLFWALFMSFM NNYSRVLGA NMLAAGLASAN NSCKAWAV LVMAGHTTPTVFYLALGG	340 MYAHOKED MCRNDYAAĞGYKMI MEVVDOWEK LVNDFKSWEG	* 440 * GGMGMOIGTANTLWARAKSVÄLSSKTEITSCÄ SGOMGMOIGTADLSSGAMCSRKFVSNKWE TELPNÄMSGLLLHRVSNÄMOQQLVEEAGL VRRSRRALIDLTHRVITRÄK IPQEVÄR	re 1
09	SKVVAKP YOVWSKE AKLGITË AKLGITË ILLLMAT LIYESPË	* TVECTVLSTI RMSEAL-AAI GYTHGT-GN RVEGNKMSV WGTVCGAA		THE CASE	420 MISWGHW KMFHNSWELP DNEDWKRS LVALFILPOE	Figure
*	SELECT PORT OF THE PROPERTY OF	40 RFSR STWLLAW /ATS 3VGS	240 JONOSESMAS-FWEGWE JONOSESMACLEASK MOKTYYKTASLE DWWILLEGG-LGEAGE	320 PHIFAMAFMSFFS-WV) BPLYLSGWCWTUV MPAALYFWOMPHFWA RHGVIMAPILFAMEEF RHGVIMAPILFAMEEF	420 VAILVGATSPFIMSKAISVOHM ISGESADLGWOYMASMAAASGOID ATARSFYRDRTWHKARKMFHRSITELP ARNIAARAIGSIPPETDNEDWRRSI	11.13
40	PVTT		220 CENSVNTGIAI CLEMPPOGICE STECRYSMDY CATESPEVITY	* CRPILFTR CSMAPSIV COMMENS CKGGLSD CTLTPDVV	* # # # # # # # # # # # # # # # # # # #	FYSP: 393 FYSP: 431 : 387
*	AGGFCMKKON SENDALLOSOHKELSN SENDARLIPMEREL LAGAAEMFFKR SRVTSVDRVGVLELRN	120 QOPEAFDSNSKQKSFRDSI WIDLYLPEEVRGYAKLARL GÜGHHYARCYWELSK-AKL TEMIHVASLLHDDVL-DDA GĪKG-ASQETNKWKIRLQI 1	VLPLASG LEFTASG LEFTASG LEFTSS -MEITSS VRFIPSG SG	VLHIOTHME WTANK WAANS TSASI MAGOPEF	VEDLOWAY GEGIDASIGEL LESTELYNARAREENA -VGAEDITOL	LLLPFLK
	MAAGG MPERSESALI SVESSELPNE PKLASS HSSRVTSVI	120 KKASWODEAF KKASWODEYE AMELAĞÜGHHY IMELIĞERIHV NOLLĞIKG-A	200 BSDVEED KVNKPY BLDODED TKVDRTKL EFFENSNOSKMKRTML ATANEHLVTGET WYDRDEDAINEPY	AVRAIEMONAF BTINWGALLE GAMPPLLE DOMDETE	DEDO	**************************************
20	LINGSSTLV LITESVSV VYTRESERI MVLAEV LINGVETI	N S S S S S S S S S S S S S S S S S S S	200 GENOTESTO SENOTES VALLATA OTINDWYDR	APMCIMAVF	380 VTL 00 LRE 00 LGE IAYDWG LGKSK VAEGT	TLLLI YLLLI RRKKRVAÖI LASÖ
*	MAFFGLSRVSRRLIKESV MWRRS-VVYRFSSV MVIA	100 SSLLLYEKHKSR SVLEGKEKDDKEKSDG AATATATTG-EIS ESTDIVTSELRVR KVKSQTËDKAPAGG	VVAALMWNIYIVGINOOS ALLERGAGCEINDBL GTMMHAASANSINOOF ALAALKNTEVVALLAT MWSGPCETGYTOTTINDWY	280 BLERWERFALNAMCIED E-EMKEFTFEPPONFEGET LKQLHPINTWGRV LAFEYGRNLGLAFQUI PPIKLKQNGWNGNFA-EG	* 380 • FOTREFSVTLSQKRVFWT: • VGVKSTALREGDNUKLWE: • VALKNCFYMIPLGFIAYDWGLUSSWE: • VDTALEYLGKSKGG: • CGLQSLPVARGTETAKWE: • 6 6 w	460 -MFHWKLFYAEYLLLP GAIHFSGVVLGRSFW- TNSWSGEVKTQRRKKRVAQP
		** ** ** **				
	ATPT2 ATPT3 ATPT4 ATPT8 ATPT12	ATPT2 ATPT3 ATPT4 ATPT8 ATPT8	ATPT2 ATPT3 ATPT4 ATPT8 ATPT2	ATPT2 ATPT3 ATPT4 ATPT8 ATPT2	ATPT2 ATPT3 ATPT4 ATPT8 ATPT12	ATPT2 ATPT3 ATPT4 ATPT8 ATPT12

Figure 2

Figure 3

PCT/US00/10368

Figure 4

Figure 5

PCT/US00/10368

Figure 6

Figure 7

Figure 8

WO 00/63391

Figure 9

Figure 10

Figure 11

WO 00/63391

Figure 12

Figure 13

Figure 14

WO 00/63391

Figure 15

Figure 16

WO 00/63391

Figure 17

Figure 18

Figure 19

Figure 20

80 - 89 - 79	6 4 4 4	140 170 170 138 139 139 63	223 223 233 233 253 253 38 44 138
CDSSKVVAKPKFRNN NPFTKCYPSWNDNYQ	CO L I I	* 140 * 160 * 120 * 120 * 140 * 140 * 140 * 160	4 240 * 240 * 260 AVOAALMANIYIYGENOLEGUETEKVNKPYLPLASGEYSÄNTGIAEGASFSIMSFWLGWIYGSWPLFWALFWSFRUGTAYS-INIPPLR : AWLACLLGNVYIYGENOLEGUETEKINKPNLPLANGDFSIMOGEGUASIAIÄWGLG-LWLGLTVGISLIGTAYSVPPVR : GALLIRGAGCTINDILDOLIDTRADIA SGLIT-PFOGIGFLGIOLIGIGILLGLNWYSKNLGASSHLIVF : GALATSGLGCVNNDLIDTRADIA DEVETKORTLAARA S-VQVGIGVANALAGAGGLAFYLTPLSFWLGASSHLIVF : GTAATASGLGCVNNDLIDTRADIA DEVETKORTLAARA S-VQVGIGVANALAGAGGLAFYLTPLSFWLGASANLAFYLTPLSFWLCVAAVPVIV : TWMIAASANSINOLIEISNISKMKRTMIRRIDPSGRISSVPHANATAGASGACLLAFYLTPLSFWLGASANLAFYNL : MMNSGPCITGYTOTINDWIGHEIDA INEPYRPIESGAISEPEVITOWWULFIGGGGIGILD-WWAGHTTPTVFYLALGGSLISY : MLISGPLATGYTOTINDFURDIA INEPYRPIESGAISPEVITOWWULFIGGGGIGILD-WWAGHTTPTVFYLALGGSLISY : GIAETEMIHVASLIHEDVIDDADTRAGGSGISSVANGENERAGGILARLKNIEWVAGLATRVEHLVTGETM : SAMATIAMINLSWOWEDSTITGIDVRKAHSVVNLTGNRNLVFLIGSSTELLARLKNIEWVAGLATRVEHLVTGETM : A G A GALATIAMINLSWOWEDSTITGIDVRKAHSVVNLTGNRNLVFLIGSSTELLAGUSSSMSWRAQDWTWLEGUS
ATPT2 : SLR1736 : ATPT3 : SLR0926 : ATPT4 : SLR0926 : STLR0926 : STLR1899 : STL1899	STRUCTO: STR0056: ATPT8: SLR1518:	ATPT2 SLR1736: ATPT3: SLR0926: ATPT4: SLL1899: ATPT12: SLR0056: ATPT18:	ATPT2 SLR1736: ATPT3: SLR0926: ATPT4: SLL1899: ATPT12: SLR0056: ATPT8:

igure 22 1

313 218 328 328 300 234 234 31 313	393 304 304 307 307 307	
120 * 140 * IFATAFMSF GWUIAFKDIPDI GCHT - FGIRSFSVTLG-OKR V-TLFILVE WAIAFKDVPDMGCHRO-FKROUGTLOIG-KON IPALSGVC THVYDTIYAHQDK DDIVK WGWKSTALRFG-DNT V-WGATVF WGIPFFMALAHLCRNDYAA-GGYKMISLFFG-OYV - PAALYF WGIPFFWALAHLCRNDYAA-GGYKMISLFDPS V-FALLYF WGIPFFWALALMIKDDYAO-WNVPMIPVIAGEEKT V-TLLYSIAG GIAWVNDFKSVEGERA-GGOSEPWAFG-TET V-TLLYSLAG GIAWVNDFKSVEGERA-GGOSEPWAFG-TET VLAFEYGRNIG AFQIIDDILDFTGTSASIEKGSESDIRHGV TLAFEYGRNIG AFQIIDDILDFTGTSASIEKGSESDIRHGV T-PSVFVGISTAIILFCSHFHQVEDBLA-AKKSPINRLG-TKL	TUMARAKSUDLSSKTETTSCYMTUKEFYAEYLDLPFLK TUMARAKSUDLSSKTETASCYMTUKEFYAEYLDLPFLK TUMARSRDVHLESKTETASRKIVSNKWFGALTFSGVVIGRSFQ- OTGTADLSSGADCSRKIVSNKWFGALTFSGVVIGRSFQ- VIQYIQLSAPTPEP-KIYGQIRGONNIIGFVLAGNLEGWL ALAATAFSFYRDRTMHKARKMTHASILFLPNFNSGLLHRVSND FLVKAWQLKQAFGDRDIARGLRKFSIFYLMNFGCLAMVEDSLPVT VFQFKYFLKDPVKYDNKYQASAQPFLVGGFFNTALASQH TFQDMYFLRNPLENDVKYQASAQPFLVFGMINATGLAIGHAGI ORARELAMEHANLAAAIGSLPETDNEDWRRSRRADIDLTHRVITRN	
FECULDA PATONIA MATHER MATERIA LAGIGIA VLGIAFE	SKTETAS SKTETAS SS SP-KNY- KTMHKA- BDRDIA- FKYDKK- LENDVK- LENDVK- ULAAAAI	308 431 321 321
* 320 * 320 * XARATINOTAFY H-IQTHVFGRPI LFTRP FATAFMSFFF LKR-FSLLAALCILTURGIVINGLEF F-FRIGLGYPPT LIFTR WWW. SKP-LMKRFTFWPQAFLGLTINWGALEG-NTKRASIAPSKNIPPYLSGVCWTI AFP-GARRVFPVPQLWLSIAWGFAVLGS-NSKVTHDLTDATWW-WGAVVCRTPWTI VYT-PLKQLHPINTWWGAVVGAIPPINGS-NAKASCOLTVNSKNI-PAALYFNQU VYTHWLKRHTAQNIVIGGAAGSIPPINGS-NAKASCOLTVNSKNI-FRALIFLWTE INS-APPLKLKQNGWWGNFAEGASYISLPWAGQAFFGTLTDDFWW-TTLLYSIAGI INS-APPLKLKONGWIGNYAMGASYIALPWWAGARFFTLTDFWW-TTLLYSIAGI EITSSTEQRYSMDYYWGKTYYKTASTSNSCKAVANLTGOAENALAFEYGRNLGI EITSSTEQRYSMDYWGKTYYKTASTSNSCKAVANLTGOAENALAFEYGRNLGI EITSSTEGRYSMDYWGKTYYKTASTSNSCKAVANLTGOAENALAFEYGRNLGI TYQGPPFRLGYLGLGELICLTTFGPMAI-AAAYYSQSQSFSWNLGI-PSVFVGISTA	* 400 * 420 VFWTCYTLLOMAYANALWGATSPFIWSKVISWAGHVIDATTLWARAKSVDLSSKTEATS VFRGTÜLLTGCYLAMAEWGEWAAMPLNTAFITVSHLCILAKTLWARSROVHLESKTEATS KLWATGFGTASIGFALSGFSADLGWQYYASIAAASGQLGWOLGTADLSSGADCS GEANGTFFALTIGCEFYLGMÄLMINPLYWISMAAA GKRÄAAVARNCFYNIPPIGFÄAYDWGLTSSWFCESTLLTLAIAATAFSFYRDRTWHKA VSQTWYYSLLVVPFSLLLVYPLQLGILYLAMAETIGGQFLWKAWQLKQAPGDRDA AKWTCYGAIDITQLSVAGYLMASGKPYYALALWALA ARWTCYIMIDVFQAGIAGYLTYVHQQLYATIVITLL	NTIF
ATPT2 SLR1736 ATPT3 SLR0926 ATPT4 SLL1899 ATPT12 SLR0056 ATPT8	ATPT2 SLR1736 ATPT3 SLR0926 ATPT4 SLL1899 ATPT12 SLR0056 ATPT8	ATPT2 SLR1736 ATPT3 SLR0926 ATPT4 SLL1899 ATPT12 SLR056 ATPT8

igure 22 2

Figure 23

Plant line number

Figure 24

Figure 25

SEQUENCE LISTING

5	<110> Calgene LLC	
,	<120> Nucleic Acid Sequences Involved in Tocopherol Synthesis	
10	<130> 17133/00/WO	
	<150> 60/129,899 <151> 1999-04-15	
	<150> 60/146,461	
15	<151> 1999-07-30	
	<160> 94	
20	<170> FastSEQ for Windows Version 4.0	·. ·
	<210> 1	
	<211> 1182	
	<212> DNA	
25	<213> Arabidopsis sp	
2,7	<400> 1	
	atggagtete tgetetetag tiettetett gitteegetg etggigggit tigitggaag	. 60
	aagcagaatc taaagctcca ctctttatca gaaatccgag ttctgcgttg tgattcgagt	120
	aaagttgtcg caaaaccgaa gtttaggaac aatcttgtta ggcctgatgg tcaaggatct	180
30	tcattgttgt tgtatccaaa acataagtcg agatttcggg ttaatgccac tgcgggtcag	240;
	cctgaggctt tcgactcgaa tagcaaacag aagtctttta gagactcgtt agatgcgttt	390
	tacaggtttt ctaggcctca tacagttatt ggcacagtgc ttagcatttt atctgtatct	360
	ttcttagcag tagagaaggt ttctgatata tctcctttac ttttcactgg catcttggag	420
	gctgttgttg cagctctcat gatgaacatt tacatagttg ggctaaatca gttgtctgat	480
35	gttgaaatag ataaggttaa caagccctat cttccattgg catcaggaga atattctgtt	540
	aacaccggca ttgcaatagt agcttccttc tccatcatga gtttctggct tgggtggatt	600
	gttggttcat ggccattgtt ctgggctctt tttgtgagtt tcatgctcgg tactgcatac	660
	totatcaatt tgccactttt acggtggaaa agatttgcat tggttgcagc aatgtgtatc	720
	ctcgctgtcc gagctattat tgttcaaatc gccttttatc tacatattca gacacatgtg	780
40	tttggaagac caatcttgtt cactaggcct cttattttcg ccactgcgtt tatgagcttt	840
	ttctctgtcg ttattgcatt gtttaaggat atacctgata tcgaagggga taagatattc	900
	ggaatccgat cattctctgt aactctgggt cagaaacggg tgttttggac atgtgttaca	960
	ctacttcaaa tggcttacgc tgttgcaatt ctagttggag ccacatctcc attcatatgg	1020
	agcaaagtca tctcggttgt gggtcatgtt atactcgcaa caactttgtg ggctcgagct	1080
45	aagtccgttg atctgagtag caaaaccgaa ataacttcat gttatatgtt catatggaag	1140
	ctcttttatg cagagtactt gctgttacct tttttgaagt ga	1182

<210> 2 <211> 393 <212> PRT 5 <213> Arabidopsis sp <400> 2 Met Glu Ser Leu Leu Ser Ser Ser Leu Val Ser Ala Ala Gly Gly 10 10 Phe Cys Trp Lys Lys Gln Asn Leu Lys Leu His Ser Leu Ser Glu Ile 25 Arg Val Leu Arg Cys Asp Ser Ser Lys Val Val Ala Lys Pro Lys Phe 40 Arg Asn Asn Leu Val Arg Pro Asp Gly Gln Gly Ser Ser Leu Leu Leu 15 55 ..60 Tyr Pro Lys His Lys Ser Arg Phe Arg Val Asn Ala Thr Ala Gly Gln 70 75 Pro Glu Ala Phe Asp Ser Asn Ser Lys Gln Lys Ser Phe Arg Asp Ser 85 90 20 Leu Asp Ala Phe Tyr Arg Phe Ser Arg Pro His Thr Val Ile Gly Thr 100 105 Val Leu Ser Ile Leu Ser Val Ser Phe Leu Ala Val Glu Lys Val Ser 120 125 Asp Ile Ser Pro Leu Leu Phe Thr Gly Ile Leu Glu Ala Val Val Ala 25 135 Ala Leu Met Met Asn Ile Tyr Ile Val Gly Leu Asn Gln Leu Ser Asp 150 155 Val Glu Ile Asp Lys Val Asn Lys Pro Tyr Leu Pro Leu Ala Ser Gly 165 170 30 Glu Tyr Ser Val Asn Thr Gly Ile Ala Ile Val Ala Ser Phe Ser Ile 180 185 Met Ser Phe Trp Leu Gly Trp Ile Val Gly Ser Trp Pro Leu Phe Trp 205 200 -, -, -Ala Leu Phe Val Ser Phe Met Leu Gly Thr Ala Tyr Ser Ile Asn Leu 35 210 215 Pro Leu Leu Arg Trp Lys Arg Phe Ala Leu Val Ala Ala Met Cys Ile 230 235 Leu Ala Val Arg Ala Ile Ile Val Gln Ile Ala Phe Tyr Leu His Ile 245 250 40 Gln Thr His Val Phe Gly Arg Pro Ile Leu Phe Thr Arg Pro Leu Ile 260 265 Phe Ala Thr Ala Phe Met Ser Phe Phe Ser Val Val Ile Ala Leu Phe 280 Lys Asp Ile Pro Asp Ile Glu Gly Asp Lys Ile Phe Gly Ile Arg Ser 45 295

Phe Ser Val Thr Leu Gly Gln Lys Arg Val Phe Trp Thr Cys Val Thr

```
305
                         310
                                              315
                                                                  320
     Leu Leu Gln Met Ala Tyr Ala Val Ala Ile Leu Val Gly Ala Thr Ser
                     325
                                         330
     Pro Phe Ile Trp Ser Lys Val Ile Ser Val Val Gly His Val Ile Leu
5
                 340
                                     345
     Ala Thr Thr Leu Trp Ala Arg Ala Lys Ser Val Asp Leu Ser Ser Lys
                                 360
     Thr Glu Ile Thr Ser Cys Tyr Met Phe Ile Trp Lys Leu Phe Tyr Ala
                             375
                                                  380
10
     Glu Tyr Leu Leu Pro Phe Leu Lys
                         390
     <210> 3
     <211> 1224
15
     <212> DNA
     <213> Arabidopsis sp
     <400> 3
                                                                             60
     atggcgtttt ttgggctctc ccgtgtttca agacggttgt tgaaatcttc cgtctccgta
20
     actocatett etteetetge tettttgeaa teacaacata aateettgte caateetgtg
                                                                          120
     actacccatt acacaaatcc tttcactaag tgttatcctt catggaatga taattaccaa
                                                                            180
     gtatggagta aaggaagaga attgcatcag gagaagtttt ttggtgttgg ttggaattac
                                                                            240
     agattaattt gtggaatgte gtegtettet teggttttgg agggaaagee gaagaaagat
                                                                            3.00
     gataaggaga agagtgatgg tgttgttgtt aagaaagctt cttggataga tttgtattta
                                                                            360
25
     ccagaagaag ttagaggtta tgctaagctt gctcgattgg ataaacccat tggaacttgg
                                                                            420
     ttgcttgcgt ggccttgtat gtggtcgatt gcgttggctg ctgatcctgg aagccttcca
                                                                            480
     agttttaaat atatggettt atttggttge ggageattae ttettagagg tgetggttgt
                                                                            540
     actataaatg atctgcttga tcaggacata gatacaaagg ttgatcgtac aaaactaaga
                                                                            600
     cctatcgcca gtggtctttt gacaccattt caagggattg gatttctcgg gctgcagttg
                                                                            660
30
                                                                            720
     cttttaggct tagggattct tctccaactt aacaattaca gccgtgtttt aggggcttca
                                                                            780
     tetttgttae ttgtetttte etaeceaett atgaagaggt ttacattttg geeteaagee
                                                                            840
     tttttaggtt tgaccataaa ctggggagca ttgttaggat ggactgcagt taaaggaagc
     atageaceat etatigiaet eeetetetat eteteeggag teigeiggae eeitgittat 🦠
                                                                          ...900
     gatactattt atgcacatca ggacaaagaa gatgatgtaa aagttggtgt taagtcaaca
                                                                            960
35
     gcccttagat tcggtgataa tacaaagctt tggttaactg gatttggcac agcatccata
                                                                           1020
                                                                           1080
     ggttttcttg cactttctgg attcagtgca gatctcgggt ggcaatatta cgcatcactg
     gccgctgcat caggacagtt aggatggcaa atagggacag ctgacttatc atctggtgct
                                                                           1140
     gactgcagta gaaaatttgt gtcgaacaag tggtttggtg ctattatatt tagtggagtt
                                                                           1200
     gtacttggaa gaagttttca ataa
                                                                           1224
40
     <210> 4
     <211> 407
     <212> PRT
     <213> Arabidopsis sp
```

3

45

<400> 4

		Ala	Phe	Phe		Leu	Ser	Arg	Val		Arg	Arg	Leu	Leu		Ser
	1				5					10					15	
	Ser	Val	Ser	Val 20	Thr	Pro	Ser	Ser	Ser 25	Ser	Ala	Leu	Leu	Gln 30	Ser	Gln
5	His	Lys	Ser 35	Leu	Ser	Asn	Pro	Val	Thr	Thr	His	Tyr	Thr 45	Asn	Pro	Phe
	Thr	Lys 50		Tyr	Pro	Ser	Trp 55	Asn	Asp	Asn	Tyr	Gln 60	Val	Trp	Ser	Lys
10	_		Glu	Leu	His	Gln		Lys	Phe	Phe			Gly	Trp	Asn	
10	65	_		_		70	_	_		_	75		_			80
	Arg	Leu	Ile	Cys	85 85	Met	Ser	Ser	Ser	Ser 90	Ser	Val	Leu	Glu	95 GIY	Lys
	Pro	Lys	Lys	Asp 100	Asp	Lys	Glu	Lys	Ser 105	Asp	Gly	Val	Val	Val 110	Lys	Lys
15	Ala	Ser	Trp 115	Ile	Asp	Leu	Tyr	Leu 120	Pro	Glu	Glu	Val	Arg 125	Gly	Tyr	Ala
	Lvs	Leu	Ala	Arq	Leu	Asp	Lvs	Pro	Ile	Gly	Thr	Trp	Leu	Leu	Ala	Trp
	_	130		. •		-	135			_		140				_
	Pro		Met	Trp	Ser	Ile	Ala	Leu	Ala	Ala	Asp	Pro	Glv	Ser	Leu	Pro
20	145	-3-				150					155					160
		Phe	Lvs	ጥህጕ	Met	Ala	Len	Phe	Glv	Cvs		Ala	Len	Leu	Len	
			_	_	165					170					175	
	GIŷ	Ala	GIA		Thr	Ile	Asn	Asp		Leu	Asp	Gin	Asp		Asp	Thr
				180					185					190		
25	Lys	Val	Asp 195	Arg	Thr	Lys	Leu	Arg 200	Pro	Ile	Ala	Ser	.Gly 205	Leu	Leu	Thr
	Pro	Phe 210	Gln	Gly	Ile	Gly	Phe 215	Leu	Gly	Leu	Gln	Leu 220	Leu	Leu	Gly	Leu
	Gly		I.e.n	T.e.ii	Gln	Leu		Asn	ጥኒተ	Ser	Ara		Len	Glv	Δla	Ser
30	225		200	200	G111	230			-1-		235	• • • •		013		240
30		T ON	Ť OU	τ ου	1701	Phe		Ф 124	Dro			Luc	7~~	Dho	ωρ~	
	Ser	Dea	пеа	Leu	245	FIIE	Ser	ıyı	F10	250	Mec	цуs	Arg.	IIIC.	255	riic
	(T)	D	C1-	71-		T	C 1	T	mh		2	М	C1	21-		T 011
	TIP	PIO	GIN	260	Pne	Leu	GIY	Leu	265	116	ASII	TIP	GIY	270	ьeu ́	тей
35	Gly	Trp	Thr	Ala	Val	Lys	Gly	Ser	Ile	Ala	Pro	Ser	Ile	Val	Leu	Pro
			275					280					285			
	Leu	Tvr	Leu	Ser	Glv	Val	Cvs	Trp	Thr	Leu	Val	Tvr	asa	Thr	Ile	Tvr
		290			3		295					300	_			-
	Δ1=		Gln.	λαη	Lvc	Glu		Acn	t/⇒1	Lare	17 a 1		1/a1	Laze	Ser	ጥክዮ
40		111'2	GIII	ASP	БУЗ		Asp	пэр	vai	БУЗ		GIY	Vai	БуS	Ser	
40	305	_	_	-,		310	_			_	315	_	m)	-1	51	320
	Ala	Leu	Arg	Pne	G1y 325	Asp	Asn	Thr	гуs	330	Trp	Leu	Thr	GIY	335	GIĀ
	Thr	Ala	Ser	Ile	Gly	Phe	Leu	Aľa	Leu	Ser	Gly	Phe	Ser	Ala	Asp	Leu
				340					345					350		
45	Gly	Trp	Gln	Tyr	Tyr	Ala	Ser	Leu	Ala	Ala	Ala	Ser	Gly	Gln	Leu	Gly
			355					360					365			

```
Trp Gln Ile Gly Thr Ala Asp Leu Ser Ser Gly Ala Asp Cys Ser Arg
                             375
                                                  380
     Lys Phe Val Ser Asn Lys Trp Phe Gly Ala Ile Ile Phe Ser Gly Val
                                              395
                                                                  400
                         390
     385
 5
     Val Leu Gly Arg Ser Phe Gln
                     405
     <210> 5
     <211> 1296
10
     <212> DNA
     <213> Arabidopsis sp
     <400> 5
     atgtggcgaa gatctgttgt ttctcgttta tcttcaagaa tctctgtttc ttcttcgtta
                                                                              60
                                                                             120
     ccaaacccta gactgattcc ttggtcccgc gaattatgtg ccgttaatag cttctcccag
15
     cctccggtct cgacggaatc aactgctaag ttagggatca ctggtgttag atctgatgcc
                                                                             180
                                                                             240
     aatcgagttt ttgccactgc tactgccgcc gctacagcta cagctaccac cggtgagatt
     tcgtctagag ttgcggcttt ggctggatta gggcatcact acgctcgttg ttattgggag
                                                                             300
                                                                             360
     ctttctaaag ctaaacttag tatgcttgtg gttgcaactt ctggaactgg gtatattctg
     ggtacgggaa atgctgcaat tagcttcccg gggctttgtt acacatgtgc aggaaccatg
                                                                             420
20
     atgattgctg catctgctaa ttccttgaat cagatttttg agataagcaa tgattctaag
                                                                             480
                                                                             540
     atgaaaagaa cgatgctaag gccattgcct tcaggacgta ttagtgttcc acacgctgtt
                                                                             600
     gcatgggcta ctattgctgg tgcttctggt gcttgtttgt tggccagcaa gactaatatg
     ttggctgctg gacttgcatc tgccaatctt gtactttatg cgtttgttta tactccgttg
                                                                             660
                                                                             720
     aagcaacttc accctatcaa tacatgggtt ggcgctgttg ttggtgctat cccacccttg
25
     cttgggtggg cggcagcgtc tggtcagatt tcatacaatt cgatgattct tccagctgct
                                                                             780
                                                                             840
     ctttactttt ggcagatacc tcattttatg gcccttgcac atctctgccg caatgattat
                                                                             900
     qcagctggag gttacaagat gttgtcactc tttgatccgt cagggaagag aatagcagca
                                                                             960
     gtggctctaa ggaactgctt ttacatgatc cctctcggtt tcatcgccta tgactggggg
     ttaacctcaa gttggttttg cctcgaatca acacttctca cactagcaat cgctgcaaca
                                                                            1020
30
                                                                            1080
     gcattttcat tctaccgaga ccggaccatg cataaagcaa ggaaaatgtt ccatgccagt
     cttctcttcc ttcctgtttt catgtctggt cttcttctac accgtgtctc taatgataat
                                                                            1140
     cagcaacaac togtagaaga agooggatta acaaattotg tatotggtga agtcaaaact .
                                                                            1200
                                                                            1260
     cagaggcgaa agaaacgtgt ggctcaacct ccggtggctt atgcctctgc tgcaccgttt
                                                                            1296
35
      cctttcctcc cagctccttc cttctactct ccatga
     <210> 6
      <211> 431
      <212> .PRT
40
     <213> Arabidopsis sp
      Met Trp Arg Arg Ser Val Val Tyr Arg Phe Ser Ser Arg Ile Ser Val
                                                               15
       1
                       5
                                          10
      Ser Ser Ser Leu Pro Asn Pro Arg Leu Ile Pro Trp Ser Arg Glu Leu
45
                  20
                                      25
```

	Cys	Ala	Val 35	Asn	Ser	Phe	Ser	Gln 40	Pro	Pro	Val	Ser	Thr 45	Glu	Ser	Thr
	Ala	Lys 50	Leu	Gly	Ile	Thr	Gly 55	Val	Arg	Ser	Asp	Ala 60	Asn	Arg	Val	Phe
5	Ala 65	Thr	Ala	Thr	Ala	Ala 70	Ala	Thr	Ala	Thr	Ala 75	Thr	Thr	Gly	Glu	Ile 80
	Ser	Ser	Arg	Val	Ala 85	Ala	Leu	Ala	Gly	Leu 90	Gly	His	His	Tyr	Ala 95	Arg
10	Cys	Tyr	Trp	Glu 100	Leu	Ser	Lys	Ala	Lys 105	Leu	Ser	Met	Leu	Val	Val	Ala
	Thr	Ser	Gly 115	Thr	Gly	Tyr	Ile	Leu 120	Gly	Thr	Gly	Asn	Ala 125	Ala	Ile	Ser
	Phe	Pro 130	Gly	Leu	Cys	Tyr	Thr 135	Cys	Ala	Gly	Thr	Met 140	Met	Ile	Ala	Ala
15	Ser 145	Ala	Asn	Ser	Leu	Asn 150	Gln	Ile	Phe	Glu	Ile 155	Ser	Asn	Asp	Ser	Lys 160
	Met	Lys	Arg	Thr	Met 165	Leu	Arg	Pro	Leu	Pro 170	Ser	Gly	Arg		Ser 175	Val
20	Pro	His	Ala	Val 180	Ala	Trp	Ala	Thr	Ile 185	Ala	Gly	Ala	Ser	Gly 190	Ala	Cys
	Leu	Leu	Ala 195	Ser	Lys	Thr	Asn	Met 200	Leu	Ala	Ala	Gly	Leu 205	Ala	Ser	Ala
	Asn	Leu 210	Val	Leu	Tyr	Ala	Phe 215	Val	Tyr	Thr	Pro	Leu 220	Lys	Gln	Leu	His
25	Pro 225	Ile	Asn	Thr	Trp	Val 230	Gly	Ala	Val	Val	Gly 235	Ala	Ile	Pro	Pro	Leu 240
	Leu	Gly	Trp	Ala	Ala 245	Ala	Ser	Gly	Gln	Ile 250	Ser	Tyr	Asn	Ser	Met 255	Ile
30	Leu	Pro	Ala	Ala 260	Leu	Tyr	Phe	Trp	Gln 265	Ile	Pro	His	Phe	Met 270	Ala	Leu
	Ala	His	Leu 275	Cys	Arg	Asn	Asp	Туг 280	Ala	Ala	Gly	Gly	Tyr 285	Lys	Met	Leu
	Ser	Leu 290	Phe	Asp	Pro	Ser	Gly 295	Lys	Arg	Ile	Ala	Ala 300	Val	Ala	Leu	Arg
35	Asn 305	Cys	Phe	Tyr	Met	Ile 310	Pro	Leu	Gly	Phe	Ile 315	Ala	Tyr	Asp	Trp	Gly 320
	Leu	Thr	Ser	Ser	Trp 325	Phe	Cys	Leu	Glu	Ser 330	Thr	Leu	Leu	Thr	Leu 335	Ala
40	Ile	Ala	Ala	Thr 340	Ala	Phe	Ser	Phe	Tyr 345	Arg	Asp	Arg	Thr	Met 350	His	Lys
	Ala	Arg	Lys 355	Met	Phe	His	Ala	Ser 360	Leu	Leu	Phe	Leu	Pro 365	Val	Phe	Met
	Ser	Gly 370		Leu	Leu	His	Arg 375	Val	Ser	Asn	Asp	Asn 380	Gln	Gln	Gln	Leu
45	Val 385	Glu	Glu	Ala	Gly	Leu 390	Thr	Asn	Ser	Val	Ser 395	Gly	Glu	Val	Lys	Thr 400

```
Gln Arg Arg Lys Lys Arg Val Ala Gln Pro Pro Val Ala Tyr Ala Ser
                     405
                                          410
     Ala Ala Pro Phe Pro Phe Leu Pro Ala Pro Ser Phe Tyr Ser Pro
                 420
                                      425
                                                          430
 5
     <210> 7
     <211> 479
     <212> DNA
     <213> Arabidopsis sp
10
     <400> 7
     ggaaactccc ggagcacctg tttgcaggta ccgctaacct taatcgataa tttatttctc
                                                                              60
     ttgtcaggaa ttatgtaagt ctggtggaag gctcgcatac catttttgca ttgcctttcg
                                                                             120
     ctatgatcgg gtttactttg ggtgtgatga gaccaggcgt ggctttatgg tatggcgaaa
                                                                             180
15
     acccattttt atccaatgct gcattccctc ccgatgattc gttctttcat tcctatacag
                                                                             240
     gtatcatgct gataaaactg ttactggtac tggtttgtat ggtatcagca agaagcgcgg
                                                                            300
     cgatggcgtt taaccggtat ctcgacaggc attttgacgc gaagaacccg cgtactgcca
                                                                            360
     tccgtgaaat acctgcgggc gtcatatctg ccaacagtgc gctggtgttt acgataggct
                                                                           . 420
     gctgcgtggt attctgggtg gcctgttatt tcattaacac gatctgtttt tacctggcg
                                                                             479
20
     <210> 8
     <211> 551
     <212> DNA
     <213> Arabidopsis sp
25
     <220>
     <221> misc_feature
     <222> (1)...(551)
     <223> n = A,T,C or G
30
     <400> 8
                                                                              60
     ttgtggctta caccttaatg agcatacgcc agnccattac ggctcgttaa tcggcgccat
     ngccggngct gntgcaccgg tagtgggcta ctgcgccgtg accaatcagc ttgatctagc
                                                                            120
     ggctcttatt ctgtttttaa ttttactgtt ctggcaaatg ccgcattttt acgcgatttc
                                                                            180
35
     cattttcagg ctaaaagact tttcagcggc ctgtattccg gtgctgccca tcattaaaga
                                                                            240
     cctgcgctat accaaaatca gcatgctggt ttacgtgggc ttatttacac tggctgctat
                                                                            300
     catgccggcc ctcttagggt atgccggttg gatttatggg atagcggcct taattttagg
                                                                            360
     cttgtattgg ctttatattg ccatacaagg attcaagacc gccgatgatc aaaaatggtc
                                                                            420
     tegtaagatg tttggatett egattttaat cattaceete ttgteggtaa tgatgettgt
                                                                            480
40
     ttaaacttac tgcctcctga agtttatata tcgataattt cagcttaagg aggcttagtg
                                                                            540
                                                                            551
     gttaattcaa t
     <210> 9
     <211> 297
45
     <212> PRT
```

<213> Arabidopsis sp

	<400) ~ 9														
			T.011	Δla	Glu	Val	Pro	Lare	I.au	Δla	Ser	Δla	Δla	Glu	ጥህዮ	Phe
	1	Vul	Deu		5	V 4.1	110	шуз	neu	10	DCI	1114			15	
5		Lvs	Ara	Glv		Gln	Glv	Lvs	Gln		Arσ	Ser	Thr	Ile		Leu
		-7-	9	20			7	_, _	25		5			30		
	Leu	Met	Ala		Ala	Leu	Asn	Val		Val	Pro	Glu	Ala		Ile	Gly
			35					40					45			-
	Glu	Ser	Thr	Asp	Ile	Val	Thr	Ser	Glu	Leu	Arg	Val	Arg	Gln	Arg	Gly
10		50					55					60				
	Ile	Ala	Glu	Ile	Thr	Glu	Met	Ile	His	Val	Ala	Ser	Leu	Leu	His	Asp
	65					70					75					80
	Asp	Val	Leu	Asp	Asp	Ala	Asp	Thr	Arg	Arg	Gly	Val	Gly	Ser	Leu	Asn
					85					90					95	
15	Val	Val	Met	Gly	Asn	Lys	Val	Val	Ala	Leu	Leu-	Ala	Thr	Ala	Val	Glu
				100					105					110		
	His	Leu	Val	Thr	Gly	Glu	Thr	Met	Glu	Ile	Thr	Ser	Ser	Thr	Glu	Gln
			115					120					125			
	Arg		Ser	Met	Asp	Tyr		Met	Gln	Lys	Thr		Tyr	Lys	Thr	Ala
20		130		_		_	135		_ •			140	_	_,		
		Leu	Ile	Ser	Asn	Ser	Cys	Lys	Ala	Val		Val	Leu	Thr	GIY	
	145		G3	77- 7		150	Ŧ		D1	03	155	C 1	3	3	T	160
	Thr	Ата	GIU	vai	165	Val	Leu	Ala	Pne	170	ıyı	GIŸ	Arg	ASII	175	GIY
25	Leu	בומ	Phe	Gln		Ile	A CD	Acn	Tla		Acn	Pho	ጥከዮ	Glv		Sor
23	Dea	AΙα	1110	180	Deu	110	nsp	nsp	185	Dea	nop	1110	****	190		
	Ala	Ser	Leu		Lvs	Gly	Ser	Leu		Asp	Ile	Ara	His		Val	Ile
			195		-4 -	2		200					205	-		
	Thr	Ala	Pro	Ile	Leu	Phe	Ala	Met	Glu	Glu	Phe	Pro	Gln	Leu	Arg	Glu
30		210					215					220				
	Val	Val	Asp	Gln	Val	Glu	Lys	Asp	Pro	Arg	Asn	Val	Asp	Ile	Ala	Leu
	225					230					235					240
	Glu	Tyr	Leu	Gly	-Lys	Ser	Lys	Gly	Ile	Gln	Arg	Ala	Arg	Glu	Leu	Ala
					245					250					255	
35	Met	Glu	His	Ala	Asn	Leu	Ala	Ala	Ala	Ala	Ile	Gly	Ser	Leu	Pro	Glu
				260					265					270		
	Thr	qzA			Asp	Val	Lys		Ser	Arg	Arg	Ala		Ile	Asp	Leu
			275					280					285			
4.0	Thr	•	Arg	Val	Ile	Thr	_	Asn	Lys							
40		290					295									
	<21	0> 1	0													
	<21	1> 5	61					-								
	<21	2 > D	NA													
	_	_		_												

45 <213> Arabidopsis sp

```
<400> 10
                                                                             60
     aagcgcatcc gtcctcttct acgattgccg ccagccgcat gtatggctgc ataaccgacc
     gcccctatcc gctcgcgcc gcggtcgaat tcattcacac cgcgacgctg ctgcatgacg
                                                                            120
     acgtcgtcga tgaaagcgat ttgcgccgcg gccgcgaaag cgcgcataag gttttcggca
                                                                            180
                                                                            240
     atcaggcgag cgtgctcgtc ggcgatttcc ttttctcccg cgccttccag ctgatggtgg
 5
                                                                            300
     aagacggctc gctcgacgcg ctgcgcattc tctcggatgc ctccgccgtg atcgcgcagg
                                                                            360
     qcqaaqtgat gcagctcggc accgcgcgca atcttgaaac caatatgagc cagtatctcg
     atgtgatcag cgcgaagacc gccgcgctct ttgccgccgc ctgcgaaatc ggcccggtga
                                                                            420
                                                                            480
     tggcgaacgc gaaggcggaa gatgctgccg cgatgtgcga atacggcatg aatctcggta
     tcgccttcca gatcatcgac gaccttctcg attacggcac cggcggccac gccgagcttg
10
                                                                            540
                                                                            561
     gcaagaacac gggcgacgat t
     <210> 11
     <211> 966
15
     <212> DNA
     <213> Arabidopsis sp
     <400> 11
                                                                             60
     atggtacttg ccgaggttcc aaagcttgcc tctgctgctg agtacttctt caaaaggggt
20
     qtgcaaggaa aacagtttcg ttcaactatt ttgctgctga tggcgacagc tctgaatgta
                                                                            120
     cgcgttccag aagcattgat tggggaatca acagatatag tcacatcaga attacgcgta
                                                                            180
     aggcaacggg gtattgctga aatcactgaa atgatacacg tcgcaagtct actgcacgat
                                                                            240
                                                                            3.00
     gatgtettgg atgatgeega tacaaggegt ggtgttggtt eettaaatgt tgtaatgggt
                                                                            360
     aacaagatgt cggtattagc aggagacttc ttgctctccc gggcttgtgg ggctctcgct
                                                                            420
25
     gctttaaaga acacagaggt tgtagcatta cttgcaactg ctgtagaaca tcttgttacc
     ggtgaaacca tggaaataac tagttcaacc gagcagcgtt atagtatgga ctactacatg
                                                                            480
     cagaagacat attataagac agcatcgcta atctctaaca gctgcaaagc tgttgccgtt
                                                                            540
     ctcactggac aaacagcaga agttgccgtg ttagcttttg agtatgggag gaatctgggt
                                                                             600
     ttagcattcc aattaataga cgacattctt gatttcacgg gcacatctgc ctctctcgga
                                                                            660
                                                                            720
30
     aagggatcgt tgtcagatat tcgccatgga gtcataacag ccccaatcct ctttgccatg
                                                                            780
     gaagagtttc ctcaactacg cgaagttgtt gatcaagttg aaaaagatcc taggaatgtt
                                                                            840
     gacattgctt tagagtatct tgggaagagc aagggaatac agagggcaag agaattagcc
                                                                            900
     atggaacatg cgaatctagc agcagctgca atcgggtctc tacctgaaac agacaatgaa
                                                                            960
     gatgtcaaaa gatcgaggcg ggcacttatt gacttgaccc atagagtcat caccagaaac
35
                                                                             966
     aagtga
     <210> 12
     <211> 321
     <212> PRT
40
     <213> Arabidopsis sp
     <400> 12
     Met Val Leu Ala Glu Val Pro Lys Leu Ala Ser Ala Ala Glu Tyr Phe
                                                              15
      1
                       5
                                          10
45
     Phe Lys Arg Gly Val Gln Gly Lys Gln Phe Arg Ser Thr Ile Leu Leu
```

30

25

20

	Leu	Met	Ala 35	Thr	Ala	Leu	Asn	Val 40	Arg	Val	Pro	Glu	Ala 45	Leu	Ile	Gly
	Glu	Ser 50	Thr	Asp	Ile	Val	Thr 55	Ser	Glu	Leu	Arg	Val 60	Arg	Gln	Arg	Gly
5	Ile 65	Ala	Glu	Ile	Thr	Glu 70	Met	Ile	His	Val	Ala 75	Ser	Leu	Leu	His	Asp 80
	Asp	Val	Leu	Asp	Asp 85	Ala	Asp	Thr	Arg	Arg 90	Gly	Val	Gly	Ser	Leu 95	Asn
10	Val	Val	Met	Gly 100	Asn	Lys	Met	Ser	Val 105	Leu	Ala	Gly	Asp	Phe 110		Leu
			115	Cys	_			120					125			
		130		Ala			135					140				
15	145			Ser		150					155					160
				Tyr	165					170					175	
20				Val 180					185					190		
			195	Gly	_			200					205			
		210		Phe			215					220				
25	225			Arg		230					235					240
				Pro	245					250					255	
30				Val 260	•				265	_				270		
			275					280					285			Ala
25		290		•			295					300		•	•	Arg
35	Ser 305 Lys	Arg	Arg	Ala	Leu	Ile 310	Asp	Leu	Thr	His	Arg 315	Val	Ile	Thr	Arg	320
	_, 5															

- 40 <210> 13 <211> 621 <212> DNA
- <213> Arabidopsis sp
- 45 <400> 13 getteeteet tegetaatte tegagettee tegateecae egegatetee aactatetea 60

	atcgcttctt	caagcgatcc	aggctcacaa	aactcagact	caatgatctc	tcttagcctt	120
	ggctcattct	ctagcgcgaa	gatcactggc	gccgttatgt	tacctttggc	taagtcatta	180
	gctgcaggct	tacctaactg	ctctgtggac	tgagtgaagt	ccagaatgtc	atcaactact	240
	tgaaaagata	aaccgagatt	cttcccgaac	tgatacattt	gctctgcgac	cttgctttcg	300
5	actttactga	aaattgctgc	tcctttggtg	cttgcagcta	ctaatgaagc	tgtcttgtag	360
	taactcttta	gcatgtagtc	atcaagcttg	acatcacaat	cgaataaact	cgatgcttgc	420
	tttatctcac	cgcttgcaaa	atctttgatc	acctgcaaaa	agataaatca	agattcagac	480
	caaatgttct	ttgtattgag	tagcttcatc	taatctcaga	aaggaatatt	acctgactta	540
	tgagcttaat	gacttcaagg	ttttcgagat	ttgtaagtac	catgatgctt	gagcaacatg	600
10	aaatccccag	ctaatacagc	t			•	621
	<210> 14						
	<211> 741						
	<212> DNA			1			
15	<213> Arabi	dopsis sp			• •		
	<400> 14						
	ggtgagtttt	gttaatagtt	atgagattca	tctatttttg	tcataaaatt	gtttggtttg	60
	gtttaaactc	tgtgtataat	tgcaggaaag	gaaacagttc	atgagctttt	cggcacaaga	120
20	gtagcggtgc	tagctggaga	tttcatgttt	gctcaagcgt	catggtactt	agcaaatctc	180
	gagaatcttg	aagttattaa	gctcatcagt	caggtactta	gttactctta	cattgttttt	240
	ctatgaggtt	gagctatgaa	tctcatttcg	ttgaataatg	ctgtgcctca	aactttttt	300
	catgttttca	ggtgatcaaa	gactttgcaa	gcggagagat	aaagcaggcg	tccagcttat	360
	ttgactgcga	caccaagctc	gacgagtact	tactcaaaag	tttctacaag	acagcctctt	420
25	tagtggctgc	gagcaccaaa	ggagctgcca	ttttcagcag	agttgagcct	gatgtgacag	480
	aacaaatgta	cgagtttggg	aagaatctcg	gtctctcttt	ccagatagtt	gatgatattt	540
	tggatttcac	tcagtcgaca	gagcagctcg	ggaagccagc	agggagtgat	ttggctaaag	600
	gtaacttaac	agcacctgtg	attttcgctc	tggagaggga	gccaaggcta	agagagatca	660
	ttgagtcaaa	gttctgtgag	gcgggttctc	tggaagaagc	gattgaagcg	gtgacaaaag	720
30	gtgggggat	taagagagca	С		•		741
							;
	<210> 15						1. ,
-	<211> 1087	-,;,,,					,
	<212> DNA	ν.			-	÷ -	
35	<213> Arab:	idopsis sp					
		_					
	<400> 15						
	cctcttcagc	caatccagag	gaagaagaga	caactttta	tctttcgtca	agagtctccg	60
			ctctcttctg				120
40			aacgataaca				180
-			aatgcggctc				240
			aggtactctt				300
			gagcttgtgg				360
			cacacaagct				420
45			ggcaagccca				480
			gaactagtgt				540
	Judggettag	Lyacaacyct	gaactagtgt	-944004410			2.3

```
600
     qqaqaaqaca tggcggtttt ggcaggtgat gcactccttg cattggcgtt tgagcacatg
     acggttgtgt cgagtgggtt ggtcgctccc gagaagatga ttcgcgccgt ggttgagctg
                                                                            660
                                                                            720
     gccagggcca tagggactac agggctagtt gctggacaaa tgatagacct agccagcgaa
                                                                            780
     agactgaatc cagacaaggt tggattggag catctagagt tcatccatct ccacaaaacg
                                                                            840
     gcggcattgt tggaggcagc ggcagtttta ggggttataa tgggaggtgg aacagaggaa
 5
                                                                            900
     qaaatcgaaa agcttagaaa gtatgctagg tgtattggac tactgtttca ggttgttgat
                                                                            960
     qacattctcg acgtaacaaa atctactgag gaattgggta agacagccgg aaaagacgta
                                                                           1020
     atggccggaa agctgacgta tccaaggctg ataggtttgg agggatccag ggaagttgca
     gagcacctga ggagagaagc agaggaaaag cttaaagggt ttgatccaag tcaggcggcg
                                                                           1080
                                                                           1087
10
     cctctgg
     <210> 16
     <211> 1164
     <212> DNA
15
     <213> Arabidopsis sp
     <400> 16
                                                                             60
     atgacttcqa ttctcaacac tgtctccacc atccactctt ccagagttac ctccgtcgat
     cgagtcggag tcctctctct tcggaattcg gattccgttg agttcactcg ccggcgttct
                                                                            120
                                                                            180
20
     ggtttctcga cgttgatcta cgaatcaccc gggcggagat ttgttgtgcg tgcggcggag
                                                                            240
     actgatactg ataaagttaa atctcagaca cctgacaagg caccagccgg tggttcaagc
                                                                            300
     attaaccage tteteggtat caaaggagea teteaagaaa etaataaatg gaagattegt
                                                                            360
     cttcagctta caaaaccagt cacttggcct ccactggttt ggggagtcgt ctgtggtgct
                                                                            420
     qctqcttcaq qqaactttca ttggacccca gaggatgttg ctaagtcgat tctttgcatg
                                                                            480
25
     atgatgtctg gtccttgtct tactggctat acacagacaa tcaacgactg gtatgataga
                                                                            540
     gatatcgacg caattaatga gccatatcgt ccaattccat ctggagcaat atcagagcca
     gaggttatta cacaagtctg ggtgctatta ttgggaggtc ttggtattgc tggaatatta
                                                                            600
                                                                            660
     gatgtgtggg cagggcatac cactcccact gtcttctatc ttgctttggg aggatcattg
                                                                            720
     ctatcttata tatactctgc tccacctctt aagctaaaac aaaatggatg ggttggaaat
30
     tttgcacttg qaqcaaqcta tattagtttg ccatggtggg ctggccaagc attgtttggc
                                                                            780
                                                                            840
     acticttacge cagatgttgt tgttctaaca ctcttgtaca gcatagctgg gttaggaata
                                                                            900
     gccattgtta acgacttcaa aagtgttgaa ggagatagag cattaggact tcagtctctc
                                                                            960
     ccagtagctt ttggcaccga aactgcaaaa tggatatgcg ttggtgctat agacattact
                                                                           1020
     cagetttetg ttgeeggata tetattagea tetgggaaac ettattatge gttggegttg
35
                                                                           1080
     gttgctttga tcattcctca gattgtgttc cagtttaaat actttctcaa ggaccctgtc
     aaatacgacg tcaagtacca ggcaagcgcg cagccattct tggtgctcgg aatatttgta
                                                                           1140
                                                                           1164
     acggcattag catcgcaaca ctga
     <210>.17
40
     <211> 387
     <212> PRT
     <213> Arabidopsis sp
     <400> 17
     Met Thr Ser Ile Leu Asn Thr Val Ser Thr Ile His Ser Ser Arg Val
45
```

10

5

	Thr	Ser	Val	Asp 20	Arg	Val	Gly	Val	Leu 25	Ser	Leu	Arg	Asn	Ser 30	Asp	Ser
	Val	Glu	Phe 35	Thr	Arg	Arg	Arg	Ser 40	Gly	Phe	Ser	Thr	Leu 45	Ile	Tyr	Glu
5	Ser	Pro 50	Gly	Arg	Arg	Phe	Val 55	Val	Arg	Ala	Ala	Glu 60	Thr	Asp	Thr	Asp
	Lys 65	Val	Lys	Ser	Gln	Thr 70	Pro	Asp	Lys	Ala	Pro 75	Ala	Gly	Gly	Ser	Ser 80
10	Ile	Asn	Gln	Leu	Leu 85	Gly	Ile	Lys	Gly	Ala 90	Ser	Gln	Glu		Asn 95	Lys
	Trp	Lys	Ile	Arg 100	Leu	Gln	Leu	Thr	Lys 105	Pro	Val	Thr	Trp	Pro 110	Pro	Leu
	Val	Trp	Gly 115	Val	Val	Cys	Gly	Ala 120	Ala	Ala	Ser	Gly	Asn 125	Phe	His	Trp
15	Thr	Pro 130	Glu	Asp	Val	Ala	Lys 135	Ser	Ile	Leu	Cys	.Met 140	Met	Met	Ser	Gly
	Pro 145	Cys	Leu	Thr	Gly	Tyr 150	Thr	Gln	Thr	Ile	Asn 155	Asp	Trp	Tyr	Asp	Arg 160
20			Asp		165					170					175	
			Glu	180					185		-			190		_
			Gly 195					200			_		205			
25		210	Val				215					220				
	225		Ala			230	-				235		_		_	240
30			Leu		245					250					255	
			Phe	260				,	265					270		
2.5			11e 275					280					285		-	
35		290	_	_			295	_				300				Phe
	305		Glu			310				÷	315					320
40		·	Ser		325					330					335	
			,	340					345					350		Phe
45		-	355		_			360			-		365			Ala
45	Ser	Ala 370		Pro	Phe	Leu	Val 375	Leu	Gly	Ile	Phe	Val 380	Thr	Ala	Leu	Ala

```
Ser Gln His
     385
     <210> 18
 5
     <211> 981
     <212> DNA
     <213> Arabidopsis sp
     <400> 18
10
     atgttgttta gtggttcagc gatcccatta agcagcttct gctctcttcc ggagaaaccc
                                                                             60
     cacactette etatgaaact eteteceget geaateegat etteateete atetgeeceg
                                                                            120
     gggtcgttga acttcgatct gaggacgtat tggacgactc tgatcaccga gatcaaccag
                                                                            180
     aagctggatg aggccatacc ggtcaagcac cctgcgggga tctacgaggc tatgagatac
                                                                            240
     tctgtactcg cacaaggcgc caagcgtgcc cctcctgtga tgtgtgtggc ggcctgcgag
                                                                            300
15
     ctcttcggtg gcgatcgcct cgccgctttc cccaccgcct gtgccctaga aatggtgcac
                                                                            360
     geggettegt tgatacaega egaceteece tgtatggaeg aegateetgt gegeagagga
                                                                            420
     aagccatcta accacactgt ctacggctct ggcatggcca ttctcgccgg tgacgccctc
                                                                            480
     ttcccactcg ccttccagca cattgtctcc cacacgcctc ctgaccttgt tccccgagcc
                                                                            540
     accatectea gaeteateae tgagattgee egeactgteg getecaetgg tatggetgea
                                                                            600
20
     ggccagtacg tcgaccttga aggaggtccc tttcctcttt cctttgttca ggagaagaaa
                                                                          660
     ttcggagcca tgggtgaatg ctctgccgtg tgcggtggcc tattgggcgg tgccactgag
                                                                            720
     gatgagetee agagteteeg aaggtaeggg agageegteg ggatgetgta teaggtggte
                                                                            780
     gatgacatca ccgaggacaa gaagaagagc tatgatggtg gagcagagaa gggaatgatg
                                                                            840
     gaaatggcgg aagagctcaa ggagaaggcg aagaaggagc ttcaagtgtt tgacaacaag
                                                                            900
25
     tatggaggag gagacacact tgttcctctc tacaccttcg ttgactacgc tgctcatcga
                                                                            960
     cattttcttc ttcccctctg a
                                                                            981
     <210> 19
     <211> 245
30
     <212> DNA
     <213> GLycine sp
     <400> 19
     geaacatetg ggaetgggtt tgtettgggg agtggtagtg etgttgatet tteggeaett
                                                                             60
35
     tettgeactt gettgggtae catgatggtt getgeatetg etaactettt gaateaggtg
                                                                            120
     tttgagatca ataatgatgc taaaatgaag agaacaagtc gcaggccact accctcagga
                                                                            180
     cgcatcacaa tacctcatgc agttggctgg gcatcctctg ttggattagc tggtacggct
                                                                            240
     ctact
                                                                            245
40
     <210> 20
     <211> 253
     <212> DNA
     <213> Glycine sp
45
     <400> 20
     attggettte caagateatt gggttttett gttgeattea tgaeetteta eteettgggt
                                                                             60
```

	ttggcattgt ccaaggatat	acctgacgtt	gaaggagata	aagagcacgg	cattgattct	120
	tttgcagtac gtctaggtca	gaaacgggca	ttttggattt	gcgtttcctt	ttttgaaatg	180
	gctttcggag ttggtatcct	ggccggagca	tcatgctcac	acttttggac	taaaattttc	240
	acgggtatgg gaa					253
5						
	<210> 21					
	<211> 275					
	<212> DNA					
	<213> Glycine sp					
10						
	<400> 21	·				
	tgatcttcta ctctctgggt	atggcattgt	ccaaggatat	atctgacgtt	aaaggagata	60
	aagcatacgg catcgatact	ttagcgatac	gtttgggtca	aaaatgggta	ttttggattt	120
	gcattatcct ttttgaaatg					180
15	acctttggat taaaattgtc					240
	accaagccaa atctatatac					275
	<210> 22					
	<211> 299					
20	<212> DNA					•
	<213> Glycine sp					
			•			
	<220>					*
	<221> misc_feature		•			
25	<222> (1)(299)		•			
	<223> n = A,T,C or G					
	<400> 22					
	ccanaatang tncatcttng	aaagacaatt	ggcctcttca	acacacaagt	ctgcatgtga	60
30	agaagaggcc aattgtcttt	ccaagatcac	ttatngtggc	tattgtaatc	atgaacttct	120
	tetttgtggg tatggeattg	gcaaaggata	tacctanctg	ttgaaggaga	taaaatatat	180
	ggcattgata cttttgcaat	acgtataggt	caaaaacaag	tattttggat	ttgtattttc	240
	ctttttgaaa ggctttcgga	gtttccctag	tggcaggagc	aacatcttct	agccttggt .	299
35	<210> 23					
	<211> 767					
	<212> DNA					
	<213> Glycine sp					
40	<400> 23					
	gtggaggctg tggttgctgc					60
	tctgatgttg aaatagacaa					120
	tcctttgaaa ctggtgtcac					180
	tgggttgtag gttcatggcc	attattttgg	gccctttttg	taagctttgt	gctaggaact	240
45	gcttattcaa tcaatgtgcc	tctgttgaga	tggaagaggt	ttgcagtgct	tgcagcgatg	300
	tgcattctag ctgttcgggc	agtaatagtt	caacttgcat	ttttccttca	catgcagact	360

5	agct gtat gtta cttt cate tgga	ttett tttgg accet tggag gccaa	gca fitte fitte and a cat fitte fitt	ctgta tccaa ttgaa aaati	agtta atcti aatag tttca agati	at age to get get ge	gcact cagt tatgg ggtct aaaag	tgtti tgtgi gagto tggga gcaaa	t aag t tta c gcd a cad a gct	ggata aggto cctco cgcto ttcga	atac caga ctgg gtgc ataa	aged tggg tggc cate	acation of the control of the contro	tga gtt tgc aat	aggag ctgga atcto tctc	ttcatg gataaa acttgt ccttgt tggttt tttatt	48 54 60 66	0 0 0 0
10	<213	1> 25 2> PF 3> G: 0> 24	RT lycii	ne sj	Þ													
15	Val	Glu	Ala	Val	Val	Ala	Ala	Leu	Phe	Met	Asn	Ile	Tyr	Ile	Val	Gly		
	1				5					10					15			
	Leu	Asn	Gln		Ser	Asp	Val	Glu		Asp	Lys	Ile	Asn		Pro	Tyr		
	Ī.eu	Pro	T.ou	20 Ala	Sar	Gly	Gl.	The same	25	Phe	Gl ₁₁		Gly	30 Val	Thr	Tlo		
20	ncu.	110	35	ALU	Del	GLY	GIU	40	Ser	1110	GIU	1111	45	Vai	1111	116		
	Val	Ala		Phe	Ser	Ile	Leu		Phe	Trp	Leu	Gly		Val	Val	Gly	*, *	
		50					55			-		60	-					
	Ser	Trp	Pro	Leu	Phe	Trp	Ala	Leu	Phe	Val	Ser	Phe	Val	Leu	Gly	Thr	-	
	65					70					75					80		
25	Ala	Tyr	Ser	Ile	Asn	Val	Pro	Leu	Leu	Arg	Trp	Lys	Arg	Phe	Ala	Val		
					85				·	90					95			
	Leu	Ala	Ala		Cys	Ile	Leu	Ala		Arg	Ala	Val	Ile		Gln	Leu		
	3] -	Dho	Dha	100	***	M	01-	m}	105	77 T	m	T	D	110	D	*** 1		
30	Ald	Pne	115	reu	nis	Mec	GIN	120	HIS	Vai	Tyr	rys	125	PIO	Pro	vai		
30	Phe	Ser		Pro	Leu	Ile	Phe		Thr	Ala	Phe	Met		Phe	Phe	Ser		;
		130					135					140					<i>i.</i> ,	
	Val	Val	Ile	Ala	Leu	Phe	Lys	Asp	Ile	Pro	Asp	Ile	Glu	Gly	Asp	Lys_	,	
	145				•	150					155			-	r	160	n vinte	
35	Val	Phe	Gly	Ile	Gln	Ser	Phe	Ser	Val	Cys	Leu	Gly	Gln	Lys	Pro	Val	•	
					165					170					175			
	Phe	Trp	Thr	Cys	Val	Thr	Leu	Leu	Glu	Ile	Ala	Tyr	Gly	Val	Ala	Leu		
				180					185					190				
4.0	Leu	Val		Ala	Ala	Ser	Pro		Leu	Trp	Ser	Lys		Phe	Thr	Gly		
40	Lon	C111	195	77-	17 n l	T ou	71-	200	T10	τ		Dho	205	7 7-	T	Com		
	rea	210	nis	Ala	vai	ьeu	215	ser	11e	Leu	тър	220	nıs	Ala	Lys	ser		
	Val		Leu	Lvs	Ser	Lvs		Ser	Tle	Thr	Ser		Φvr	Met	Phe	Tle		
	225			_,,		230					235		-2-			240		
45		Lys	Leu	Phe	Tyr		Glu	Tyr	Leu	Leu		Pro	Phe	Val	Arg			
					245					250					255			

```
<210> 25
     <211> 360
     <212> DNA
 5
     <213> Zea sp
     <220>
     <221> misc_feature
     <222> (1)...(360)
10
     <223> n = A,T,C or G
     <400> 25
     ggcgtcttca cttgttctgg tcttctcgta tcccctgatg aagaggttca cattttggcc
                                                                             60
     tcaggcttat Cttggcctga cattcaactg gggagcttta ctagggtggg ctgctattaa
                                                                            120
15
     ggaaagcata gaccctgcaa atcatccttc cattgtatac agctggtatt tgttggacgc
                                                                            180
     tggtgtatga tactatatat gcgcatcagg tgtttcgcta tccctacttt catattaatc
                                                                            240
                                                                            300
     cttgatgaag tggccatttc atgttgtcgc ggtggtctta tacttgcata tctccatgca
     tctcaggaca aagangatga cctgaaagta ggagtccaag tccacagctt aagatttggg
                                                                            360
20
     <210> 26
     <211> 299
     <212> DNA
     <213> Zea sp
25
     <220>
     <221> misc_feature
     <222> (1)...(299)
     <223> n = A,T,C or G
30
     <400> 26
     gatggttgca gcatctgcaa ataccctcaa ccaggtgttt gngataaaaa atgatgctaa
                                                                             6Ò
     aatgaaaagg acaatgcgtg ccccctgcca tctggtcgca ttagtcctgc acatgctgcg
                                                                            1'20
     atgtgggcta caagtgttgg agttgcagga acagctttgt tggcctggaa ggctaatggc
                                                                            180
     ttggcagctg ggcttgcagc ttctaatctt gttctgtatg catttgtgta tacgccgttg
                                                                            240
35
     aagcaaatac accetgttaa tacatgggtt ggggcagtcg ttggtgccat cccaccact
                                                                            299
     <210> 27
     <211> 255
     <212> DNA
40
     <213> Zea sp
     <220>
     <221> misc_feature
     <222> (1)...(255)
45
     <223> n = A,T,C or G
```

	<400> 27	
	anacttgcat atctccatgc ntctcaggac aaagangatg acctgaaagt aggtgtcaag	60
	tccacagcat taagatttgg agatttgacc nnatactgna tcagtggctt tggcgcggca	120
	tgcttcggca gcttagcact cagtggttac aatgctgacc ttggttggtg tttagtgtga	180
5	tgcttgagcg aagaatggta tngtttttac ttgatattga ctccagacct gaaatcatgt	240
	tggacagggt ggccc	255
	<210> 28	
	<211> 257	
10	<212> DNA	
	<213> Zea sp	
	<400> 28	
	attgaagggg ataggactct ggggcttcag tcacttcctg ttgcttttgg gatggaaact	60
15	gcaaaatgga tttgtgttgg agcaattgat atcactcaat tatctgttgc aggttaccta	120
	ttgagcaccg gtaagctgta ttatgccctg gtgttgcttg ggctaacaat tcctcaggtg	180
	ttctttcagt tccagtactt cctgaaggac cctgtgaagt atgatgtcaa atatcaggca	240
	agcgcacaac cattctt	257
20	<210> 29	
	<211> 368	
	<212> DNA	
	<213> Zea sp	•
25	<400> 29	
	atccagttgc aaataataat ggcgttcttc tctgttgtaa tagcactatt caaggatata	60
	cctgacatcg aaggggaccg catattcggg atccgatcct tcagcgtccg gttagggcaa	120
	aagaaggtet tttggatetg egttggettg ettgagatgg eetacagegt tgegataetg	180
	atgggageta cetetteetg tttgtggage aaaacageaa ecategetgg ceattecata	240
30	cttgccgcga tcctatggag ctgcgcgcga tcggtggact tgacgagcaa agccgcaata	300
	acgteettet acatgtteat etggaagetg ttetaegegg agtacetget catecetetg	360
	gtgcggtg	369
	· · · · · · · · · · · · · · · · · · ·	- 1-14
35	<210> 30	
33	<211> 122	•
	<212> PRT <213> Zea sp	
	<400> 30	
40	Ile Gln Leu Gln Ile Ile Met Ala Phe Phe Ser Val Val Ile Ala Leu	
	1 5 10 15	
	Phe Lys Asp Ile Pro Asp Ile Glu Gly Asp Arg Ile Phe Gly Ile Arg	
	20 25 30	
45	Ser Phe Ser Val Arg Leu Gly Gln Lys Lys Val Phe Trp Ile Cys Val 35 40 45	
	Gly Leu Leu Glu Met Ala Tyr Ser Val Ala Ile Leu Met Gly Ala Thr	

```
55
                                                  60
         50
     Ser Ser Cys Leu Trp Ser Lys Thr Ala Thr Ile Ala Gly His Ser Ile
     Leu Ala Ala Ile Leu Trp Ser Cys Ala Arg Ser Val Asp Leu Thr Ser
 5
                                          90
                     85
     Lys Ala Ala Ile Thr Ser Phe Tyr Met Phe Ile Trp Lys Leu Phe Tyr
                 100
                                                          110 -
                                      105
     Ala Glu Tyr Leu Leu Ile Pro Leu Val Arg
10
     <210> 31
     <211> 278
     <212> DNA
     <213> Zea sp
15
     <400> 31
                                                                              60
     tattcagcac cacctctcaa gctcaagcag aatggatgga ttgggaactt cgctctgggt
     gcgagttaca tcagcttgcc ctggtgggct ggccaggcgt tatttggaac tcttacacca
                                                                             120
     gatatcattg tcttgactac tttgtacagc atagctgggc tagggattgc tattgtaaat
                                                                             180
20
     gatttcaaga gtattgaagg ggataggact ctggggcttc agtcacttcc tgttgctttt
                                                                           .240
                                                                             278
     gggatggaaa ctgcaaaatg gatttgtgtt ggagcaat
     <210> 32
     <211> 292
25
     <212> PRT
     <213> Symechocystis sp
     <400> 32
     Met Val Ala Gln Thr Pro Ser Ser Pro Pro Leu Trp Leu Thr Ile Ile
30
                                          10
     Tyr Leu Leu Arg Trp His Lys Pro Ala Gly Arg Leu Ile Leu Met Ile
                                                          30
     Pro Ala Leu Trp Ala Val Cys Leu Ala Ala Gln Gly Leu Pro Pro Leu
                                  40
                                                      45
35
     Pro Leu Leu Gly Thr Ile Ala Leu Gly Thr Leu Ala Thr Ser Gly Leu
                              55
                                                  60
     Gly Cys Val Val Asn Asp Leu Trp Asp Arg Asp Ile Asp Pro Gln Val
                          70
                                              75
                                                                   80
     Glu Arg Thr Lys Gln Arg Pro Leu Ala Ala Arg Ala Leu Ser Val Gln
40
                     85
                                          90
     Val Gly Ile Gly Val Ala Leu Val Ala Leu Leu Cys Ala Ala Gly Leu
                 100
                                      105
     Ala Phe Tyr Leu Thr Pro Leu Ser Phe Trp Leu Cys Val Ala Ala Val
             115
                                  120
                                                      125
45
     Pro Val Ile Val Ala Tyr Pro Gly Ala Lys Arg Val Phe Pro Val Pro
                              135
                                                  140
```

Gln Leu Val Leu Ser Ile Ala Trp Gly Phe Ala Val Leu Ile Ser Trp 150 155 Ser Ala Val Thr Gly Asp Leu Thr Asp Ala Thr Trp Val Leu Trp Gly 170 Ala Thr Val Phe Trp Thr Leu Gly Phe Asp Thr Val Tyr Ala Met Ala 5 180 185 Asp Arg Glu Asp Asp Arg Ile Gly Val Asn Ser Ser Ala Leu Phe 200 Phe Gly Gln Tyr Val Gly Glu Ala Val Gly Ile Phe Phe Ala Leu Thr 10 215 Ile Gly Cys Leu Phe Tyr Leu Gly Met Ile Leu Met Leu Asn Pro Leu 235 230 Tyr Trp Leu Ser Leu Ala Ile Ala Ile Val Gly Trp Val Ile Gln Tyr 250 Ile Gln Leu Ser Ala Pro Thr Pro Glu Pro Lys Leu Tyr Gly Gln Ile 15 260 265 Phe Gly Gln Asn Val Ile Ile Gly Phe Val Leu Leu Ala Gly Met Leu 280 285 275 Leu Gly Trp Leu 20 290 <210> 33 <211> 316 <212> PRT 25 <213> Synechocystis sp <400> 33 Met Val Thr Ser Thr Lys Ile His Arg Gln His Asp Ser Met Gly Ala 5 30 Val Cys Lys Ser Tyr Tyr Gln Leu Thr Lys Pro Arg Ile Ile Pro Leu 25 Leu Leu Ile Thr Thr Ala Ala Ser Met Trp Ile Ala Ser Glu Gly Arg 40 Val Asp Leu Pro Lys Leu Leu Ile Thr Leu Leu Gly Gly Thr Leu Ala 35 55 Ala Ala Ser Ala Gln Thr Leu Asn Cys Ile Tyr Asp Gln Asp Ile Asp 70 75 Tyr Glu Met Leu Arg Thr Arg Ala Arg Pro Ile Pro Ala Gly Lys Val 85 40 Gln Pro Arg His Ala Leu Ile Phe Ala Leu Ala Leu Gly Val Leu Ser 100 105 Phe Ala Leu Leu Ala Thr Phe Val Asn Val Leu Ser Gly Cys Leu Ala 120 Leu Ser Gly Ile Val Phe Tyr Met Leu Val Tyr Thr His Trp Leu Lys 45 135 Arg His Thr Ala Gln Asn Ile Val Ile Gly Gly Ala Ala Gly Ser Ile

	145					150					155					160
	Pro	Pro	Leu	Val	Gly 165	Trp	Ala	Ala	Val	Thr 170	Gly	Asp	Leu	Ser	Trp 175	Thr
5	Pro	Trp	Val	Leu 180	Phe	Ala	Leu	Ile	Phe 185	Leu	Trp	Thr	Pro	Pro 190	His	Phe
	Trp	Ala	Leu 195	Ala	Leu	Met	Ile	Lys 200	Asp	Asp	Tyr	Ala	Gln 205	Val	Asn	Val
	Pro	Met 210	Leu	Pro	Val	Ile	Ala 215	Gly	Glu	Glu	Lys	Thr 220	Val	Ser	Gln	Ile
10	Trp 225	Туr	Tyr	Ser	Leu	Leu 230	Val	Val	Pro	Phe	Ser 235	Leu	Leu	Leu	Val	Tyr 240
	Pro	Leu	His	Gln	Leu 245	Gly	Ile	Leu	Tyr	Leu 250	Ala	Ile	Ala	Ile	Ile 255	Leu
15	Gly	Gly	Gln	Phe 260	Leu	Val	Lys	Ala	Trp 265		Leu	Lys	Gln	Ala 270	Pro	Gly
	Asp	Arg	Asp 275	Leu	Ala	Arg	Gly	Leu 280	Phe	Lys	Phe	Ser	Ile 285	Phe	Tyr	Leu
	Met	Leu 290	Leu	Cys	Leu	Ala	Met 295	Val	Ile	Asp	Ser	Leu 300	Pro	Val	Thr	His
20	Gln 305	Leu	Val	Ala	Gln	Met 310	Gly	Thr	Leu	Leu	Leu 315	Gly				
		0> 34														
25		1> 3														
23		2> PI 3> S		посуя	stis	sp										
	<400	0> 34	4													
	Met	Ser	Asp	Thr	Gln	Asn	Thr	Gly	Gln	Asn	Gln	Ala	Lys	Ala	Arg	Gln
30	1				5					10	•				15	
				20	_		Ala		25	_			•	30		
	•		35	*.	•		Lys	40					45	-	₹	
35	Gly	Val 50	Val	Суѕ	Gly	Ala	Ala 55	Ser	Ser	Gly	Gly	Tyr 60	Ile	Trp	Ser	Val
	Glu 65	Asp	Phe	Leu	Lys	Ala 70	Leu	Thr	Cys	Met	Leu 75	Leu	Ser	Gly	Pro	Leu 80
40	Met	Thr	Gly	Tyr	Thr 85	Gln	Thr	Leu	Asn	Asp 90	Phe	Tyr	Asp	Arg	Asp 95	Ile
	Asp	Ala	Ile	Asn 100	Glu	Pro	Tyr	Arg	Pro 105	Ile	Pro	Ser	Gly	Ala 110	Ile	Ser
	Val	Pro	Gln 115	Val	Val	Thr	Gln	Ile 120	Leu	Ile	Leu	Leu	Val 125	Ala	Gly	Ile
45																

		Met	Val	Leu	Thr		Gly	Gly	Ala	Phe		Ala	Tyr	Ile	Tyr	Ser 160
	145	D	D	T	T	150	T	61 -	3	C 1	155	T	C1	2	TT	
	Ala	PIO	PIO	Leu	165	Leu	Lys	GIII	ASII	170	115	Leu	GIY	ASII	175	Ala
5	Leu	Gly	Ala	Ser	Tyr	Ile	Ala	Leu	Pro	Trp	Trp	Ala	Gly	His	Ala	Leu
				180					185					190		
	Phe	Gly	Thr 195	Leu	Asn	Pro	Thr	11e 200	Met	Val	Leu	Thr	Leu 205	Ile	Tyr	Ser
	Leu	Ala	Gly	Leu	Gly	Ile	Ala	Val	Val	Asn	Asp	Phe	Lys	Ser	Val	Glu
10		210					215					220				
	Gly	Asp	Arg	Gln	Leu	Gly	Leu	Lys	Ser	Leu	Pro	Val	Met	Phe	Gly	Ile
	225					230					235					240
	Gly	Thr	Ala	Ala	Trp	Ile	Cys	Val	Ile	Met	Ile	Asp	Val	Phe	Gln	Ala
					245					250					255	
15	Gly	Ile	Ala	Gly 260	Tyr	Leu	Ile	Tyr	Val 265	His	Gln	Gln	Leu	Tyr 270	Ala	Thr
	Ile	Val	Leu		Leu	Leu	Ile	Pro		Ile	Thr	Phe	Gln		Met	Tvr
			275					280					285			
	Phe	Leu		Asn	Pro	Leu	Glu		Asp	Val	Lvs	Tyr	Gln	Ala	Ser	Ala
20		290	5				295				-	300				
	Gln		Phe	Leu	Val	Phe		Met	Leu	Ala	Thr	Gly	Leu	Ala	Leu	Gly
	305					310	-				315	-				320
	His	Ala	Gly	Ile												
25																
	<210)> 3	5													
	<213	1> 3	07													
	<212	2> P	RT													
	<213	3> S	ynecl	hocys	stis	sp										
30																
	<400	0> 3	5													
	Met	Thr	Glu	Ser	Ser	Pro	Leu	Ala	Pro	Ser	Thr	Ala	Pro	Ala	Thr	Arg
	1				. 5					10			_		15	
	Lys	Leu	Trp	Leu	Ala	Ala	Ile	Lys	Pro	Pro	Met	Tyr	Thr	Val	Ala	Val
35				20					25					30		
	Val	Pro	Ile	Thr	Val	Gly	Ser	Ala	Val	Ala	Tyr	Gly	Leu	Thr	Gly	Gln
			35					40					45			
	Trp	His	Gly	Asp	Val	Phe	Thr	Ile	Phe	Leu	Leu	Ser	Ala	Ile	Ala	Ile
		50					55					60				
40	Ile	Ala	Trp	Ile	Asn	Leu	Ser	Asn	Asp	Val	Phe	Asp	Ser	Asp	Thr	Gly
	65					70					75					80
	Ile	Asp	Val	Arg	Lys	Ala	His	Ser	Val	Val	Asn	Leu	Thr	Gly	Asn	Arg
					85			-		90					95	
	Asn	Leu	Val	Phe	Leu	Ile	Ser	Asn	Phe	Phe	Leu	Leu	Ala	Gly	Val	Leu
45				100					105					110		
	Gly	Leu	Met	Ser	Met	Ser	Trp	Arg	Ala	Gln	Asp	Trp	Thr	Val	Leu	Glu

```
115
                                  120
                                                      125
     Leu Ile Gly Val Ala Ile Phe Leu Gly Tyr Thr Tyr Gln Gly Pro Pro
                              135
     Phe Arg Leu Gly Tyr Leu Gly Leu Gly Glu Leu Ile Cys Leu Ile Thr
 5
                          150
                                              155
     Phe Gly Pro Leu Ala Ile Ala Ala Ala Tyr Tyr Ser Gln Ser Gln Ser
                      165
                                          170
     Phe Ser Trp Asn Leu Leu Thr Pro Ser Val Phe Val Gly Ile Ser Thr
                  180
                                      185
10
     Ala Ile Ile Leu Phe Cys Ser His Phe His Gln Val Glu Asp Asp Leu
                                  200
     Ala Ala Gly Lys Lys Ser Pro Ile Val Arg Leu Gly Thr Lys Leu Gly
                              215
                                                  220
     Ser Gln Val Leu Thr Leu Ser Val Val Ser Leu Tyr Leu Ile Thr Ala
15
                          230
                                              235
                                                                   240
     Ile Gly Val Leu Cys His Gln Ala Pro Trp Gln Thr Leu Leu Ile Ile
                      245
                                          250
     Ala Ser Leu Pro Trp Ala Val Gln Leu Ile Arg His Val Gly Gln Tyr
                                      265
                                                          270
20
     His Asp Gln Pro Glu Gln Val Ser Asn Cys Lys Phe Ile Ala Val Asn
             275
                                  280
                                                      285
     Leu His Phe Phe Ser Gly Met Leu Met Ala Ala Gly Tyr Gly Trp Ala
         290
                              295
                                                  300
     Gly Leu Gly
25
     305
     <210> 36
     <211> 927
     <212> DNA
30
     <213> Synechocystis sp
     <400> 36
     atggcaacta tecaagettt ttggegette tecegeeee ataceateat tggtacaact .
                                                                             60
     ctgagcgtct gggctgtgta tctgttaact attctcgggg atggaaactc agttaactcc
                                                                            120
35
     cctgcttccc tggatttagt gttcggcgct tggctggcct gcctgttggg taatgtgtac
                                                                            180
     attgtcggcc tcaaccaatt gtgggatgtg gacattgacc gcatcaataa gccgaatttg
                                                                            240
     cccctagcta acggagattt ttctatcgcc cagggccgtt ggattgtggg actttgtggc
                                                                            300
     gttgcttcct tggcgatcgc ctggggatta gggctatggc tggggctaac ggtgggcatt
                                                                            360
     agtttgatta ttggcacggc ctattcggtg ccgccagtga ggttaaagcg cttttccctg
                                                                            420
40
     ctggcggccc tgtgtattct gacggtgcgg ggaattgtgg ttaacttggg cttatttta
                                                                            480
     ttttttagaa ttggtttagg ttatcccccc actttaataa cccccatctg ggttttgact
                                                                            540
     ttatttatct tagttttcac cgtggcgatc gccattttta aagatgtgcc agatatggaa
                                                                            600
     ggcgatcggc aatttaagat tcaaacttta actttgcaaa tcggcaaaca aaacgttttt
                                                                            660
     cggggaacct taattttact cactggttgt tatttagcca tggcaatctg gggcttatgg
                                                                            720
45
     gcggctatgc ctttaaatac tgctttcttg attgtttccc atttgtgctt attagcctta
                                                                            780
     ctctggtggc ggagtcgaga tgtacactta gaaagcaaaa ccgaaattgc tagttttat
                                                                            840
```

	cagt	ttat	ttt q	ggaag	gctai	tt ti	ttcti	taga	g ta	cttg	ctgt	atc	cctt	ggc	tctg	tggtt	a	900
	ccta	aattt	ctt (ctaa	tacta	at ti	tttta	ag										927
	<210)> 37	7															
5	<211	1> 30	80															
	<212	2> PI	RT															
	<213	3> Sy	ynecl	посу	stis	sp												
	<400)> 31	7															
10	Met	Ala	Thr	Ile	Gln	Ala	Phe	\mathtt{Trp}	Arg	Phe	Ser	Arg	Pro	His	Thr	Ile		
	1				5				-	10					15			
	Ile	Gly	Thr	Thr	Leu	Ser	Val	Trp	Ala	Val	Tyr	Leu	Leu	Thr	Ile	Leu		
				20					25					30				
	Gly	Asp	Gly	Asn	Ser	Val	Asn	Ser	Pro	Ala	Ser	Leu	Asp	Leu	Val	Phe		
15			35					40			٠.		45					
	Gly	Ala	Trp	Leu	Ala	Cys	Leu	Leu	Gly	Asn	Val	Tyr	Ile	Val	Gly	Leu		
		50					55					60						
	Asn	Gln	Leu	Trp	Asp	Val	Asp	Ile	Asp	Arg	Ile	Asn	Lys	Pro	Asn	Leu		
	65					70					75					80		
20	Pro	Leu	Ala	Asn	Gly	Asp	Phe	Ser	Ile	Ala	Gln	Gly	Arg	Trp	Ile	Val	٠, ٠	
					85					90					95			
	Gly	Leu	Cys	Gly	Val	Ala	Ser	Leu	Ala	Ile	Ala	\mathtt{Trp}	Gly	Leu	Gly	Leu		
				100					105					110				•
	Trp	Leu	Gly	Leu	Thr	Val	Gly	Ile	Ser	Leu	Ile	Ile	Gly	Thr	Ala	Tyr		
25			115					120					125					
	Ser	Val	Pro	Pro	Val	Arg	Leu	Lys	Arg	Phe	Ser	Leu	Leu	Ala	Ala	Leu		
		130					135					140						
	Cys	Ile	Leu	Thr	Val	Arg	Gly	Ile	Val	Val	Asn	Leu	Gly	Leu	Phe	Leu		
	145					150					155					160		
30	Phe	Phe	Arg	Ile	Gly	Leu	Gly	Tyr	Pro	Pro	Thr	Leu	Ile	Thr	Pro	Ile		
					165					170					175			
	Trp	Val	Leu	Thr	Leu	Phe	Ile	Leu	Val	Phe	Thr	Val	Ala	Ile	Ala	Ile		1.
	,			180					185					_190				
	Phe	Lys	Asp	Val	Pro	Asp	Met	Glu	Gly	Asp	Arg	Gln	Phe	Lys	Ile	Gln	-	
35			195					200					205					
	Thr	Leu	Thr	Leu	Gln	Ile	Gly	Lys	Gln	Asn	Val	Phe	Arg	Gly	Thr	Leu		
		210					215					220						
	Ile	Leu	Leu	Thr	Gly	Cys	Tyr	Leu	Ala	Met	Ala	Ile	Trp	Gly	Leu	\mathtt{Trp}		
	225					230					235					240		
40	Ala	Ala	Met	Pro	Leu	Asn	Thr	Ala	Phe	Leu	Ile	Val	Ser	His	Leu	Cys		
					245					250					255			
	Leu	Leu	Ala	Leu	Leu	Trp	Trp	Arg	Ser	Arg	Asp	Val	His	Leu	Glu	Ser		
				260				-	265					270				
	Lys	Thr	Glu	Ile	Ala	Ser	Phe	Tyr	Gln	Phe	Ile	Trp	Lys	Leu	Phe	Phe		
45			275					280					285					
	Len	Glu	Тъл-	LOU	7 011	T1	Dro	T OIL	ת ו ת	T 011	m~~	T 011	Dro	A c n	Dho	502		

```
295
                                                  300
         290
     Asn Thr Ile Phe
     305
 5
     <210> 38
     <211> 1092
     <212> DNA
     <213> Synechocystis sp
10
     <400> 38
                                                                              60
     atgaaatttc cgccccacag tggttaccat tggcaaggtc aatcaccttt ctttgaaggt
                                                                             120
     tggtacgtgc gcctgctttt gccccaatcc ggggaaagtt ttgcttttat gtactccatc
     gaaaatcctg ctagcgatca tcattacggc ggcggtgctg tgcaaatttt agggccggct
                                                                             180
     acqaaaaaac aaqaaaatca qqaaqaccaa cttgtttggc ggacatttcc ctcggtaaaa
                                                                             240
15
                                                                             300
     aaattttggg ccagtcctcg ccagtttgcc ctagggcatt ggggaaaatg tagggataac
     aggcaggcga aacccctact ctccgaagaa ttttttgcca cggtcaagga aggttatcaa
                                                                             360
                                                                             420
     atccatcaaa atcagcacca aggacaaatc attcatggcg atcgccattg tcgttggcag
                                                                             480
     ttcaccgtag aaccggaagt aacttggggg agtcctaacc gatttcctcg ggctacagcg
                                                                             540
     ggttggcttt cctttttacc cttgtttgat cccggttggc aaattctttt agcccaaggt
20
     agagegeacg getggetgaa atggeagagg gaacagtatg aatttgacea egeeetagtt
                                                                             600
     tatgccgaaa aaaattgggg tcactccttt ccctcccgct ggttttggct ccaagcaaat
                                                                             660
     tattttcctg accatccagg actgagcgtc actgccgctg gcggggaacg gattgttctt
                                                                             720
                                                                             780
     ggtcgccccg aagaggtagc tttaattggc ttacatcacc aaggtaattt ttacgaattt
     ggcccgggcc atggcacagt cacttggcaa gtagctccct ggggccgttg gcaattaaaa
                                                                             840
25
                                                                             900
     gccagcaatg ataggtattg ggtcaagttg tccggaaaaa cagataaaaa aggcagttta
     gtecacaete ecacegeeca gggettacaa etcaaetgee gagataceae taggggetat
                                                                             960
                                                                            1020
     ttgtatttgc aattgggatc tgtgggtcac ggcctgatag tgcaagggga aacggacacc
     gcggggctag aagttggagg tgattggggt ttaacagagg aaaatttgag caaaaaaca
                                                                            1080
                                                                            1092
     gtgccattct ga
30
     <210> 39
     <211> 363
     <212> PRT
     <213> Synechocystis sp
35
     <400> 39
     Met Lys Phe Pro Pro His Ser Gly Tyr His Trp Gln Gly Gln Ser Pro
                      5
     Phe Phe Glu Gly Trp Tyr Val Arg Leu Leu Leu Pro Gln Ser Gly Glu
40
                                      25
     Ser Phe Ala Phe Met Tyr Ser Ile Glu Asn Pro Ala Ser Asp His His
                                  40
     Tyr Gly Gly Gly Ala Val Gln Ile Leu Gly Pro Ala Thr Lys Lys Gln
         50
                              55
                                                  60
45
     Glu Asn Gln Glu Asp Gln Leu Val Trp Arg Thr Phe Pro Ser Val Lys
                         70
                                              75
                                                                   80
```

	Lys	Phe	Trp	Ala	Ser 85	Pro	Arg	Gln	Phe	Ala 90	Leu	GIY	Hıs	Trp	95	Lys		
	Care	7 ~~	λοπ	λοπ	Arg	C1-	21-	T	Dwa		T 011	C~~	C1.,	C1		Dho		
	Cys	Arg	ASP		Arg	GIII	Ala	гÀг		reu	Leu	ser	GIU		Pne	Pne		
_		1		100			_		105			_		110	~ 1			
5	Ala	Thr		Lys	Glu	GŢĀ	Tyr		Ile	Hıs	GIn	Asn		His	Gin	GIĀ		
			115					120					125					
	Gln	Ile	Ile	His	Gly	Asp	Arg	His	Cys	Arg	Trp	Gln	Phe	Thr	Val	Glu		
		130					135					140						
	Pro	Glu	Val	Thr	\mathtt{Trp}	${\tt Gly}$	Ser	Pro	Asn	Arg	Phe	Pro	Arg	Ala	Thr	Ala		
10	145					150					155			•		160		
	Gly	\mathtt{Trp}	Leu	Ser	Phe	Leu	Pro	Leu	Phe	Asp	Pro	Gly	Trp	Gln	Ile	Leu		
					165					170					175			
	Leu	Ala	Gln	Gly	Arg	Ala	His	Gly	Trp	Leu	Lys	Trp	Gln	Arg	Glu	Gln		
				180					185					190				
15	Tyr	Glu	Phe	Asp	His	Ala	Leu	Val	Tyr.	Ala	Glu	Lys	Asn	Trp	Gly	His		
			195					200	_			_	205	_	_			
	Ser	Phe		Ser	Arg	Trp	Phe		Leu	Gln	Ala	Asn		Phe	Pro	Asp		
		210					215					220						
	His		Glv	Leu	Ser	Val		Ala	Ala	Glv	Glv		Ara	Tle	Val	Len		
20	225		1			230					235	014	9		742	240		`
		Ara	Pro	Glu	Glu		7 J =	Lou	Tlo	Glv		Hic	Hic	Gla	Glaz			
	Cly	mrg	110	GIU	245	Vai	AIG	Беа	116	250	Deu	1113	1113	GIII	255	non		
	Dho	Mar-	C1	Dho	Gly	D===	C1	TT: _	C1		77a 7	mh	m~~	C1 =		71-		
	File	ıyı	GIU	260	GIA	PIO	GTĀ	nis		1111	val	THE	тър		vai	ALA		
25	D		01			01 -	- .	-	265		•			270		**- 7		
25	Pro	Trp		Arg	Trp	Gin	ьеu		Ala	Ser	Asn	Asp		туr	Trp	vaı		
	_	_	275					280		_			285					
	Lys		Ser	GLY	Lys	Thr		Lys	Lys	Gly	Ser		Val	Hıs	Thr	Pro	•-	
		290	_				295					300						
		Ala	Gln	Gly	Leu		Leu	Asn	Cys	Arg	_	Thr	Thr	Arg	Gly	_		
30	305					310					315					320		
	Leu	Tyr	Leu	Gln	Leu	Gly	Ser	Val	Gly	His	Gly	Leu	Ile	Val	Gln	Gly		
					325					330					335			* <u> </u>
	Glu	Thr	Asp	Thr	Ala	Gly	Leu	Glu	Val	Gly	Gly	Asp	Trp	Gly	Leu	Thr	· Lineage	
				340					345					350				
35	Glu	Glu	Asn	Leu	Ser	Lys	Lys	Thr	Val	Pro	Phe							
			355					360										
	<210)> 40)															
	<21	1> 56	5															
40	<212	2> DI	ΝA								٠							
	<213	3 > A1	rtif	ical	Segr	ience	€											
					-													
	<400)> 4()															
				ataa	gcgo	ec et	cacao	acad	a ccc	accto	rcag	aaca	rcaco	at t	taaa	at		56
45				-99	J-3\			, , , , , ;	,:	, :	,9	55-5	, - 50	•		-		
	<210)> 4:	1															

WO 00/63391

PCT/US00/10368

	<211> 32	
	<212> DNA	
	<213> Artifical Sequence	
5	<400> 41	
	tcgaggatec geggeegeaa getteetgea gg	32
	<210> 42	
	<211> 32	
10	<212> DNA	•
	<213> Artifical Sequence	
	<400> 42	
	tcgacctgca ggaagcttgc ggccgcggat cc	32
15		
•	<210> 43	
	<211> 32	
	<212> DNA	
	<213> Artifical Sequence	
20		
	<400> 43	•
	tcgacctgca ggaagcttgc ggccgcggat cc	32
		•
	<210> 44	
25	<211> 32	
	<212> DNA	
	<213> Artifical Sequence	
	<400> 44	
30	tcgaggatcc gcggccgcaa gcttcctgca gg	32
	<210> 45	*.
	<211> 36	مومدي آن د منسي
	<212> DNA	
35	<213> Artifical Sequence	
	<400> 45	
	tcgaggatcc gcggccgcaa gcttcctgca ggagct	36
40	<210> 46	
	<211> 28	
	<212> DNA	
	<213> Artifical Sequence	
45	<400> 46	
	cctgcaggaa gcttgcggcc gcggatcc	28

	<210> 47	
	<211> 36	
	<212> DNA	
5	<213> Artifical Sequence	
	<400> 47	
	tcgacctgca ggaagcttgc ggccgcggat ccagct	36
10	<210> 48	
	<211> 28	
	<212> DNA	
	<213> Artifical Sequence	
15	<400> 48	
10		28
	ggateegegg eegeaagett eetgeagg	26
	<210> 49	
	<211> 39	
20	<212> DNA	÷. *
	<213> Artifical Sequence	
	<400> 49	• ,
	gatcacctgc aggaagcttg cggccgcgga tccaatgca	39
25		
	<210> 50	
	<211> 31	n
	<212> DNA	
	<213> Artifical Sequence	
30		
	<400> 50	•
	ttggatccgc ggccgcaagc ttcctgcagg t	/31
	-010-51	
35	<210> 51	
22	<211> 41	•
	<212> DNA	
	<213> Artifical Sequence	
	<400> 51	
40	ggatccgcgg ccgcacaatg gagtctctgc tctctagttc t	41
	<210> 52	
	<211> 38	
	<212> DNA	
45	<213> Artifical Sequence	

	<400> 52	
	ggatcctgca ggtcacttca aaaaaggtaa cagcaagt	38
	<210> 53	
5	<211> 45	
	<212> DNA	
	<213> Artifical Sequence	
	<400> 53	
10	ggatccgcgg ccgcacaatg gcgttttttg ggctctcccg tgttt	45
	<210> 54	
	<211> 40	
	<212> DNA	
15	<213> Artifical Sequence	
	<400> 54	
	ggateetgea ggttattgaa aaettettee aagtacaaet	40
20	<210> 55	
	<211> 38	
	<212> DNA	
	<213> Artifical Sequence	
25	<400> 55	
	ggatccgcgg ccgcacaatg tggcgaagat ctgttgtt	38
	<210> 56	
	<211> 37	
30	<212> DNA	
	<213> Artifical Sequence	
	<400> 56	:
35	ggateetgea ggteatggag agtagaagga aggaget	37
J J	<210> 57	•
	<211> 50	
	<212> DNA	
	<213> Artifical Sequence	
40		
	<400> 57	
	ggatecgegg eegeacaatg gtaettgeeg aggtteeaaa gettgeetet	50
	<210> 58	
45	<211> 38	
	<212> DNA	

	<213> Artifical Sequence	
	<400> 58	
	ggatectgea ggteacttgt ttetggtgat gaetetat	38
5		
	<210> 59	
	<211> 38	
	<212> DNA	
	<213> Artifical Sequence	
10		
	<400> 59	
	ggateegegg cegeacaatg acttegatte teaacaet	38
	<210> 60	
15	<211> 36	
	<212> DNA	
	<213> Artifical Sequence	
	<400> 60	
20	ggatcctgca ggtcagtgtt gcgatgctaa tgccgt	36
	<210> 61	
	<211> 22	
	<212> DNA	
25	<213> Artifical Sequence	
	<400> 61	
	taatgtgtac attgtcggcc tc	22
3.0	<210> 62	
	<211> 60	
	<212> DNA	<u>,</u>
	<213> Artifical Sequence	
35	<400> 62	
	gcaatgtaac atcagagatt ttgagacaca acgtggcttt ccacaattcc ccgcaccgtc	60
	<210> 63	
	<211> 22	
40	<212> DNA	
	<213> Artifical Sequence	
	<400> 63	
	aggctaataa gcacaaatgg ga	22
45		
	<210	

	<211> 63	
	<212> DNA	
	<213> Artifical Sequence	
_		
5	<400> 64	
	ggtatgagtc agcaacacct tcttcacgag gcagacctca gcggaattgg tttaggttat	60
	ccc	63
	<210> 65	
10	<211> 26	
	<212> DNA	
	<213> Artifical Sequence	
	•	
	<400> 65	
15	ggatccatgg ttgcccaaac cccatc	26
	<210> 66	
	<211> 61	
	<212> DNA	
20	<213> Artifical Sequence	
	<400> 66	
		60
	gcaatgtaac atcagagatt ttgagacaca acgtggcttt gggtaagcaa caatgaccgg	61
25		0.1
23	<210> 67	
	<211> 25	
	<212> DNA	
	<213> Artifical Sequence	
30		
	<400> 67	
	gaatteteaa ageeageeea gtaae	25
		•
	<210> 68	
35	<211> 63	
	<212> DNA	
	<213> Artifical Sequence	
	<400> 68	
40	ggtatgagtc agcaacacct tcttcacgag gcagacctca gcgggtgcga aaagggtttt	60
	ccc	63
	<210> 69	
	<211> 23	
45	<212> DNA	
	<213> Artifical Sequence	

%..

	<400> 69	
	ccagtggttt aggctgtgtg gtc	23
5	<210> 70	
	<211> 21	
	<212> DNA	
	<213> Artifical Sequence	
10	<400> 70	
	ctgagttgga tgtattggat c	21
	<210> 71	
	<211> 28	
15	<212> DNA	
	<213> Artifical Sequence	
	• 10 10 10 10 10 10 10 10 10 10 10 10 10	
	<400> 71	
	ggatccatgg ttacttcgac aaaaatcc	28
20		
	<210> 72	
	<211> 60	
	<212> DNA	
	<213> Artifical Sequence	
25	•	
	<400> 72	
	gcaatgtaac atcagagatt ttgagacaca acgtggcttt gctaggcaac cgcttagtac	60
	<210> 73	
30	<211> 28	
	<212> DNA	
	<213> Artifical Sequence	,
		•
	<400> 73	
35	gaattettaa eecaacagta aagtteee	28
	<210> 74	
	<211> 63	
	<212> DNA	
40	<213> Artifical Sequence	
	-	
	<400> 74	
	ggtatgagtc agcaacacct tottcacgag gcagacctca gcgccggcat tgtottttac	60
	atg	63
45	-	5 5
	<210> 75	

	<211> 20	
	<212> DNA	
	<213> Artifical Sequence	
5	<400> 75	
	ggaacccttg cagccgcttc	20
÷	<210> 76	
	<211> 22	
10	<212> DNA	
	<213> Artifical Sequence	
	<400> 76	
	gtatgcccaa ctggtgcaga gg	22
15		
	<210> 77	
	<211> 28	
	<212> DNA	
	<213> Artifical Sequence	
20		
	<400> 77	
	ggatccatgt ctgacacaca aaataccg	28
	<210> 78	
25	<211> 62	
	<212> DNA	
	<213> Artifical Sequence	
	<400> 78	
30	gcaatgtaac atcagagatt ttgagacaca acgtggcttt cgccaatacc agccaccaac	60
	ag	62
	t.	
	<210> 79	
	<211> 27	
35	<212> DNA	٠.
	<213> Artifical Sequence	
	<400> 79	
	gaatteteaa ateecegeat ggeetag	27
40		
	<210> 80	
	<211> 65	
	<212> DNA	
	<213> Artifical Sequence	
45		
	.400: 00	

	ggtatgagtc agcaacacct tettcaegag geagacetea geggeetaeg gettggaegt	60
	gtggg	65
	<210> 81	
5	<211> 21	
	<212> DNA	
	<213> Artifical Sequence	
	<400> 81	
10	cacttggatt cccctgatct g	21
	<210> 82	
	<211> 21	
	<212> DNA	
15	<213> Artifical Sequence	
	<400> 82	
	gcaatacccg cttggaaaac g	21
20	<210> 83	
	<211> 29	
	<212> DNA	
	<213> Artifical Sequence	•
25	<400> 83	
	ggatccatga ccgaatettc gcccctage	29
	<210> 84	
	<211> 61	
30	<212> DNA	
	<213> Artifical Sequence	
	<400> 84	eres
	gcaatgtaac atcagagatt ttgagacaca acgtggcttt caatcctagg tagccgaggc	60
35	g	. 61
	<210> 85	
	<211> 27	
	<212> DNA	
40	<213> Artifical Sequence	
	<400> 85	
	gaattettag eccaggecag eccagee	27
45	<210> 86	
	<211> 66	

PCT/US00/10368

	<212> DNA	
	<213> Artifical Sequence	
	<400> 86	
5	ggtatgagtc agcaacacct tcttcacgag gcagacctca gcggggaatt gatttgttta	60
	attacc	66
	<210> 87	
	<211> 21	
10	<212> DNA	
	<213> Artifical Sequence	
	<400> 87	
	gcgatcgcca ttatcgcttg g	21
15		
	<210> 88	
	<211> 24	
	<212> DNA	
	<213> Artifical Sequence	
20		
20	<400> 88	
	gcagactggc aattatcagt aacg	24
	geagacoggo abouttongt annig	
	<210> 89	
25	<211> 25	
	<212> DNA	
	<213> Artifical Sequence	
	•	
	<400> 89	
30	ccatggattc gagtaaagtt gtcgc	25
		:
	<210> 90	* 1
	<211× 0	,
	<213> Artifical Sequence	eTetr
35		
	<400> 90	
	gaattcactt caaaaaaggt aacag	
	<210> 91	
40	<211> 4550	
	<212> DNA	
	<213> Arabidopsis sp	
	<400> 91	
45	attitacacc aattigatca citaactaaa ttaattaaat tagatgatta tcccaccata	60
	tttttgagca ttaaaccata aaaccatagt tataagtaac tgttttaatc gaatatgact	120

	cgattaagat	taggaaaaat	ttataaccgg	taattaagaa	aacattaacc	gtagtaaccg	180
	taaatgccga	ttcctccctt	gtctaaaaga	cagaaaacat	atattttatt	ttgccccata	240
	tgtttcactc	tatttaattt	caggcacaat	acttttggtt	ggtaacaaaa	ctaaaaagga	300
	caacacgtga	tacttttcct	cgtccgtcag	tcagattttt	tttaaactag	aaacaagtgg	360
5	caaatctaca	ccacatttt	tgcttaatct	attaacttgt	aagttttaaa	ttcctaaaaa	420
	agtctaacta	attcttctaa	tataagtaca	ttccctaaat	ttcccaaaaa	gtcaaattaa	480
	taattttcaa	aatctaatct	aaatatctaa	taattcaaaa	tcattaaaaa	gacacgcaac	540
	aatgacacca	attaatcatc	ctcgacccac	acaattctac	agttctcatg	ctaaaccata	600
	ttttttgctc	tctgttcctt	caaaatcatt	tcttctctt	ctttgattcc	caaagatcac	660
10	ttctttgtct	ttgatttttg	atttttttc	tctctggcgt	gaaggaagaa	gctttatttc	720
	atggagtctc	tgctctctag	ttcttctctt	gtttccgctg	gtaaatctcg	tccttttctg	780
	gtttcaggtt	ttatttgttg	tttaggtttc	gtttttgtga	ttcagaacca	tacaaaaagt	840
	ttgaactttt	ctgaatataa	aataaggaaa	aagtttcgat	ttttataatg	aattgtttac	900
	tagatcgaag	taggtgacaa	aggttattgt	gtggagaagc	ataatttctg	ggcttgactt	960
15	tgaattttgt	ttctcatgca	tgcaacttat	caatcagctg	gtgggttttg	ttggaagaag	1020
	cagaatctaa	agctccactc	tttatcaggt	tcgttagggt	tttatgggtt	tttgaaatta	1080
	aatactcaat	catcttagtc	tcattattct	attggttgaa	tcacattttc	taatttggaa	1140
	tttatgagac	aatgtatgtt	ggacttagtt	gaagttcttc	tctttggtta	tagttgaagt	1200
	gttactgatg	ttgtttagct	ctttacacca	atatatacac	ccaattttgc	agaaatccga	1260
20	gttctgcgtt	gtgattcgag	taaagttgtc	gcaaaaccga	agtttaggaa	caatcttgtt	1320
	aggcctgatg	gtcaaggatc	ttcattgttg	ttgtatccaa	aacataagtc	gagatttcgg	1380
	gttaatgcca	ctgcgggtca	gcctgaggct	ttcgactcga	atagcaaaca	gaagtctttt	1440
	agagactcgt	tagatgcgtt	ttacaggttt	tctaggcctc	atacagttat	tggcacagtt	1500
	aagtttctct	ttaaaaatgt	aactctttta	aaacgcaatc	tttcagggtt	ttcaaggaga	1560
25	taacattagc	tctgtgattg	gatttgcagg	tgcttagcat	tttatctgta	tctttcttag	1620
	cagtagagaa	ggtttctgat	atatctcctt	tacttttcac	tggcatcttg	gaggtaatga	1680
	atatataaca	cataatgacc	gatgaagaag	atacatttt	ttcgtctctc	tgtttaaaca	1740
	attgggtttt	gttttcaggc	tgttgttgca	gctctcatga	tgaacattta	catagttggg	1800
	ctaaatcagt	tgtctgatgt	tgaaatagat	aaggtaacat	gcaaattttc	ttcatatgag	1860
30	ttcgagagac	tgatgagatt	aatagcagct	agtgcctaga	tcatctctat	gtgggtttt	1920
	gcaggttaac	aagccctatc	ttccattggc	atcaggagaa	tattctgtta	acaccggcat	1980
	tgcaatagta	gcttccttct	ccatcatggt	atggtgccat	tttcacaaaa	tttcaacttt	2040
	tagaattcta	taagttactg	aaatagtttg	ttataaatcg	ttatagagtt	tctggcttgg	. 2100
	gtggattgtt	ggttcatggc	cattgttctg	ggctcttttt	gtgagtttca	tgctcggtac	2160
35			gtaagtttct				2220
	tgcagtttct	agttttaggt	taatgaggtt	ttaataactt	acttctacta	caaacagttg	2280
	ccacttttac	ggtggaaaag	atttgcattg	gttgcagcaa	tgtgtatcct	cgctgtccga	2340
	gctattattg	ttcaaatcgc	cttttatcta	catattcagg	tactaaacca	ttttccttat	2400
	gttttgtagt	tgttttcatc	aaaatcactt	ttatattact	aaagctgtga	aactttgttg	2460
40	•		accaatcttg				2520
			cgttattgca				2580
		_	agtaaagcat		_		2640
		_	cctgatatcg	_		_	2700
			aaacgggtac			_	2760
45			cagaagaaag	_	_		2820
						tctagttgga	2880

```
2940
     gccacatctc cattcatatg gagcaaagtc atctcggtaa caatctttct ttacccatcg
     aaaactcgct aattcatcgt ttgagtggta ctggtttcat tttgttccgt tctgttgatt
                                                                           3000
                                                                           3060
     ttttttcagg ttgtgggtca tgttatactc gcaacaactt tgtgggctcg agctaagtcc
     qttqatctga gtagcaaaac cgaaataact tcatgttata tgttcatatg gaaggttaga
                                                                           3120
                                                                           3180
     ttcgtttata aatagagtct ttactgcctt tttatgcgct ccaatttgga attaaaatag
                                                                           3240
     cctttcagtt tcatcgaatc accattatac tgataaattc tcatttctgc atcagctctt
                                                                           3300
     ttatgcagag tacttgctgt tacctttttt gaagtgactg acattagaag agaagaagat
                                                                           3360
     ggagataaaa gaataagtca tcactatgct tctgttttta ttacaagttc atgaaattag
     gtagtgaact agtgaattag agttttattc tgaaacatgg cagactgcaa aaatatgtca
                                                                           3420
10
     aagatatgaa tttctgttgg gtaaagaagt ctctgcttgg gcaaaatctt aaggttcggt
                                                                           3480
                                                                           3540
     gtgttgatat aatgctaagc gaagaaatcg attctatgta gaaatttccg aaactatgtg
                                                                           3600
     taaacatgtc agaacatctc cattctatat cttcttctgc aagaaagctc tgtttttatc
     acctaaactc tttatctctg tgtagttaag atatgtatat gtacgtgact acattttttt
                                                                           3660
                                                                           3720
     gttgatgtaa tttgcagaac gtatggattt ttgttagaaa gcatgagttc gaaagtatat
15
                                                                           3780
     gtttatatat atggataatt cagacctaac gtcgaagctc acaagcataa attcactact
     atagtttgct ctgtaataga tagttccatt gatgtcttga aactgtacgt aactgcctgg
                                                                           3840
                                                                           3900
     gcgttttgtg gttgatactg actactgagt gttctttgtg agtgttgtaa gtatacaaga
                                                                         3960
     agaagaatat aggctcacgg gaacgactgt ggtggaagat gaaatggaga tcatcacgta
                                                                           4020
     geggetttge caaagacega gteaegateg agtetatgaa gtetttaeag etgetgatta
20
     tgattgacca ttgcttagag acgcattgga atcttactag ggacttgcct gggagtttct
                                                                           4080
     tcaagtacgt gtcagatcat acgatgtagg agatttcacg gctttgatgt gtttgtttgg
                                                                           4140
     agtcacaatg cttaatgggc ttattggccc aataatagct agctcttttg ctttagccgt
                                                                           4200
                                                                           4260
     ttcgtttgtc ccctggtggt gagtattatt agggtatggt gtgaccaaag tcaccagacc
     tagagtgaat ctagtagagt cctagaccat ggtccatggc ttttatttgt aatttgaaaa
                                                                           4320
25
                                                                           4380
     atgaacaatt ctttttgtaa ggaaaacttt tatatagtag acgtttacta tatagaaact
     agttgaacta acttcgtgca attgcataat aatggtgtga aatagagggt gcaaaactca
                                                                           4440
                                                                           4500
     ataaacattt cgacgtacca agagttcgaa acaataagca aaatagattt ttttgcttca
                                                                           4550
     gactaatttg tacaatgaat ggttaataaa ccattgaagc ttttattaat
30
     <210> 92
     <211> 4450
     <212> DNA
     <213> Arabidopsis sp
35
     <400> 92
                                                                             60
     tttaggttac aaaatcaatg atattgcgta tgtcaactat aaaagccaaa agtaaagcct
     cttgtttgac cagaaggtca tgatcattgt atacatacag ccaaactacc tcctggaaga
                                                                            120
     aaagacatgg atcccaaaca acaacaatag cttcttttac aagaaccagt agtaactagt
                                                                            180
     cactaatcta aaagagttaa gtttcagctt ttctggcaat ggctccttga tcatttcaat
                                                                            240
40
     cctgaaggag acccactttg tagcaagacc atgtcctctg tttcacttac agtgtgtctc
                                                                            300
     aaaagtctac ttcaattctt catatatagg ttcctcacac tacagcttca tcctcattcg
                                                                            360
                                                                            420
     ttgacagaga gagagtettt attgaaaact tettecaagt acaactecae taaatataat
                                                                            480
     agcaccaaac cacttgttcg acacaaatct gtacagatat aaaaacacta ttaggttttc
                                                                            540
     caaggcaaat cacataattg gattgtgaaa gagtacaaaa gataaaccca aattttcata
45
                                                                            600
     ctttctactg cagtcagcac cagatgataa gtcagctgtc cctatttgcc atcctaactg
                                                                            660
```

tcctgatgca gcggccagtg atgcgtaata ttgccaccct taatcattag agcgagaaac

WO 00/63391 PCT/US00/10368

	aaaaagaatc	aaaagacagt	aaatggaatt	aggaatcaca	aatgagtcct	tgtaaagttt	720
	attgagtacc	gagatctgca	ctgaatccag	aaagtgcaag	aaaacctatg	gatgctgtgc	780
	caaatccagt	taaccaaagc	tttgtattat	caccgaatct	aagggctgtt	gacttaacac	840
	caacttttac	atcatcttct	ttgtcctgga	gacacaatat	attagacatt	agtccatgga	900
5 ·	aaaaaaatga	tttaacctag	aatatctcaa	aattacttgc	ataaaaactg	aacttgagct	960
	gaaattttgg	gttcgtagct	tgtggcatat	actatttcat	tttcaatggg	ccacaaaggt	1020
	aactttcttt	tctcacttct	gttgcaaacg	ggaagacttt	tatggggcta	actcttcact	1080
	taaagtatag	aaatcagatg	gaaaaggtgg	gagatcaggg	taattttctt	ctttatgatt	1140
	gacaaaagtc	gaacatcgaa	atggatgcat	ttgcatgaga	catgaaacaa	aagctgaaaa	1200
10	agaaatctgt	ggtggtgaag	ctagaaaaag	aaaacaaagc	aagcaatatg	cacacattga	1260
	gattaactac	tttgctactg	gtcataatca	aatagatttt	gaagctaaaa	aataaaaagt	1320
	gaatatacct	gatgtgcata	aatagtatca	taaacaaggg	tccagcagac	tccggagaga	1380
	tagagaggga	gtacaataga	tggtgctatg	cttcctttaa	ctgcagtcca	tcctaacaat	1440
	gctccccagt	ttatggtcaa	acctaaaaag	gcttgaggct	gcaattataa	aaacgaatca	1500
15	atcataagaa	aatcagaaaa	tatataatgt	ctaactttga	gaagccagaa	tagatttaaa	1560
	ttacccaaaa	tgtaaacctc	ttcataagtg	ggtaggaaaa	gacaagtaac	aaagatgaag	1620
	cccctaaaac	acggctgcag	aatatacata	ctgaaatgag	ctcaagtaga	aaagaatttg	1680
	atcacaaaac	taaagacaag	acctgagaac	atatcttcag	aatttgggcc	aactacataa	1740
	gggtgaacca	tatgtgtatg	tgaattttta	aacaaacact	tgcaaatacg	cgactttagg	1800
20	gcaagtaaaa	aatccaaaca	aacctgtaat	tgttaagttg	gagaagaatc	cctaagccta	. 1860
	aaagcaactg	cagcccgaga	aatccaatcc	cttgaaatgg	tgtcaaaaga	ccactggcga	1920
	taggtcttag	ttttgtacga	tcaacctgga	tataaaagaa	atttgtaaga	caacataatc	1980
	taaaacaaaa	caaccataca	aaatcttgag	ctttacatac	aagcaaccca	tctttgttta	2040
	tggaagaatg	aatccagtta	catgaatgct	gtgtatctac	cctaactact	aaacacatat	2100
25	ttcaatcgaa	aaacatattc	caccttcacc	atatctaaca	cctgaagtct	ttcacttttt	2160
	gaacgaagtc	atcagaacat	gcagataagc	tattacccaa	aacagagata	tgactggaaa	2220
	tgttgtcgta	aattgatcca	acatagaaaa	atcaagacca	gttccagatg	tcaaagcaat	. 2280
	aacactttcc	caccatggtt	acagaaacca	tagttacaca	aaacatgttt	cctaaaccaa	2340
	catactaaag	ggatatataa	atttgacatc	actttatcac	cataccataa	gatagcttaa	2400
30	aaacaaactg	acctttgtat	ctatgtcctg	atcaagcaga	tcatttatag	tacaaccagc	2460
	acctctaaga	agtaatgctc	cgcaaccaaa	taaagccata	tatttaaaac	ttggaaggct	2520
	tccaggatca	gcagccaacg	caatcgacct	atacaacaat	gatggagatt	cagagtatcg	2580
	atctatttac	atagetetgg	aactagatcc	atgacgaaac	atggaacatc	gttataatat.	2640
	ctaaagactt	ccaaacagat	tcctgagtaa	gaaacccagt	ggaactatag	tactgtaaca	2700
35	tatataaaat	caaagaaaac	tcaggtttat	agcattatcc	aatcctgatt	tctgccaatc	2760
	cttaaccact	ctcccatgct	atcaaaaacc	tcagctcaag	atcatactac	ctaattgcct	2820
	atgagetett	gggaagatca	ttatggattt	gataactgaa	aaaagtaaca	gagaaatagc	2880
	agactgcaag	aactactcca	aacttctcca	ctgatatgta	tgtagtctaa	caataataaa	2940
	cagacataaa	ttcttttatc	aagcttcaag	agcaagttag	tcagaaaaca	tcacagccaa	3000
40	accaaccagg	aaaacacata	actttatcac	ataaaactaa	atttaatgta	atctgactta	3060
	acataaacca	tcctttggga	cgaaaggaaa	ctatataaac	atgcagtctt	tctttccctc	3120
	agctattctt	tcggatggat	tataatgaat	ctcaaaagtg	aaatgtcttg	attctcagct	3180
	acattactca	aaggcgaaga	taaacttacc	acatacaagg	ccacgcaagc	aaccaagttc	3240
				cataacctct			3300
45	aatctatcca	agaagcttcc	ttaacaacaa	caccatcact	cttctcctta	tcatctttct	3360
	teggetttee	ctccaaaacc	gaagaagacg	acgacattcc	acaaattaat	ctgtaattcc	3420

```
3480
     aaccaacacc aaaaaacttc teetgatgea attetettee tttacteeat aettggtaat
                                                                          3540
     tatcattcca tgaaggataa cacttagtga aaggatttgt gtaatgggta gtcacaggat
                                                                          3600
     tggacaagga tttatgttgt gattgcaaaa gagcagagga agaagatgga gttacggaga
     cggaagattt caacaaccgt cttgaaacac gggagagccc aaaaaacgcc atctttgaga
                                                                          3660
 5
                                                                          3720
     gaaattgttg cctggaagaa acaaagactt gagatttcaa acgtaagtga attcttacga
                                                                          3780
     acgaaagcta acttctcaag agaatcagat tagtgattcc tcaaaaacaa acaaaactat
                                                                          3840
     ctaatttcag tttcgagtga tgaagcctta agaatctaga acctccatgg cgtttctaat
     ctctcagaga taatcgaatt ccttaaacaa tcaaagctta gaaagagaag aacaacaaca
                                                                          3900
                                                                          3960
     acaacaaaaa aaatcagatt aacaaccgac cagagagcaa cgacgacgcc ggcgagaaag
10
     agcacgtcgt ctcggagcaa gacttcttct ccagtaaccc ggatggatcg ttaatgggcc
                                                                          4020
                                                                          4080
     tgtagattat tatatttggg ccgaaacaat tgggtcagca aaaacttggg ggataatgaa
                                                                          4140
     gaaacacgta cagtatgcat ttaggctcca aattaattgg ccatataatt cgaatcagat
     aaactaatca acccctacct tacttatttc tcactgtttt tatttctacc ttagtagttg
                                                                          4200
     aagaaacact tttatttatc ttttcgggac ccaaatttga taggatcggg ccattactca
                                                                          4260
                                                                          4320
15
     tgagcgtcag acacatatta gccttatcag attagtgggg taaggttttt ttaattcggt
     aagaagcaac aatcaatgtc ggagaaatta aagaatctgc atgggcgtgg cgtgatgata
                                                                          4380
                                                                          4440
     tgtgcatatg gagtcagttg ccgatcatat ataactattt ataaactaca tataaagact
                                                                          4450
     actaatagat
20
     <210> 93
     <211> 2850
     <212> DNA
     <213> Arabidopsis sp
25
     <400> 93
     aattaaaatt tqaqcqqtct aaaccattaq accqtttaqa gatccctcca acccaaaata
                                                                            60
     gtcgattttc acgtcttgaa catatattgg gccttaatct gtgtggttag taaagacttt
                                                                           120
     tattggtcaa agaaaaacaa ccatggccca acatgttgat acttttattt aattatacaa
                                                                           180
     gtacccctga attctctgaa atatatttga ttgacccaga tattaatttt aattatcatt
                                                                           240
30
     tcctgtaaaa gtgaaggagt caccgtgact cgtcgtaatc tgaaaccaat ctgttcatat
                                                                           300
                                                                           360
     gatgaagaag tttctctcgt tctcctccaa cgcgtagaaa attctgacgg cttaacgatg
     tggcgaagat ctgttgttta tcgtttctct tcaagaatct ctgtttcttc ttcgttacca
                                                                          420
     aaccotagac tgattoottg gtoocgogaa ttatgtgoog ttaatagott ctoocagoot.
                                                                           480
                                                                           540
     ccggtctcga cggaatcaac tgctaagtta gggatcactg gtgttagatc tgatgccaat
35
     cgagtttttg ccactgctac tgccgccgct acagctacag ctaccaccgg tgagatttcg
                                                                           600
                                                                           660
     tctagagttg cggctttggc tggattaggg catcactacg ctcgttgtta ttgggagctt
                                                                           720
     ccaattgttg gattcttaaa ttctcatttg ttttatggtt gtagtatgct tgtggttgca
                                                                           780
     acttctggaa ctgggtatat tctgggtacg ggaaatgctg caattagctt cccggggctt
                                                                           840
40
                                                                           900
     tgttacacat gtgcaggaac catgatgatt gctgcatctg ctaattcctt gaatcaggtc
     attgaaatgt tgagaagttc ataaatttcg aatccttgtt gtgtttatgt agttgatctt
                                                                           960
     gcttgcttat gtttatgtag ttgaaaagtt taaaaatttc taatccttgg tagttgatct
                                                                          1020
     cgcttgtttg ttttttcatt ttctagattt ttgagataag caatgattct aagatgaaaa
                                                                          1080
     gaacgatgct aaggccattg ccttcaggac gtattagtgt tccacacgct gttgcatggg
                                                                          1140
45
     ctactattgc tggtgcttct ggtgcttgtt tgttggccag caaggtgaat gtttgttttt
                                                                          1200
                                                                          1260
     ttatatgtga tttctttgtt ttatgaatgg gtgattgaga gattatggat ctaaactttt
```

WO 00/63391 PCT/US00/10368

```
gcttccacga caaggttatt gcagactaat atgttggctg ctggacttgc atctgccaat
                                                                          1320
     cttgtacttt atgcgtttgt ttatactccg ttgaagcaac ttcaccctat caatacatgg
                                                                          1380
     gttggcgctg ttgttggtgc tatcccaccc ttgcttgggt aaatttttgt tcctttctt
                                                                          1440
     ctttatttta gcagattctg ttttgttgga tactgctttt aattcaaaat gtagtcatgg
                                                                          1500
     ttcaccaatt ctatgcttat ctattttgtg tgttgtcagg tgggcggcag cgtctggtca
 5
                                                                          1560
     gatttcatac aattcgatga ttcttccagc tgctctttac ttttggcaga tacctcattt
                                                                          1620
     tatggccctt gcacatctct gccgcaatga ttatgcagct ggagggtaag accatatggt
                                                                          1680
     gtcatatgag attagaatgt ctccttccat gtagtgttga tcttgaacta gttcaatttc
                                                                          1740
     gtggaatgat cagagtgtcc tagatagtgt cacagcagtc gacattttag tggctagata
                                                                          1800
10
     atgagttett teegttagag ataaacatte gegaacattg tttccagett cegegaceca
                                                                          1860
     acttctgatt ttgtttcttg gtaccttgtt ttcagttaca agatgttgtc actctttgat
                                                                          1920
     ccgtcaggga agagaatagc agcagtggct ctaaggaact gcttttacat gatccctctc
                                                                          1980
     ggtttcatcg cctatgactg tgagtcttgt agattcatct tttttttgta gtttattgac
                                                                          2040
     tgcattgctg tatctgattt ttgctgttcc ttccaatttt tgtgacaggg gggttaacct
                                                                          2100
15
     caagttggtt ttgcctcgaa tcaacacttc tcacactagc aatcgctgca acagcatttt
                                                                          2160
     cattctaccg agaccggacc atgcataaag caaggaaaat gttccatgcc agtcttctct
                                                                          2220
     tectteetgt ttteatgtet ggtettette tacacegtgt etetaatgat aateageaae
                                                                          2280
     aactcgtaga agaagccgga ttaacaaatt ctgtatctgg tgaagtcaaa actcagaggc
                                                                          2340
     2400
20
     toccagetee tteettetae tetecatgat aacetttaag caagetattg aatttttgga
                                                                         2460
     aacagaaatt aaaaaaaaa tctgaaaagt tcttaagttt aatctttggt taataatgaa
                                                                          2520
     gtggagaacg catacaagtt tatgtatttt ttctcatctc cacataattg tatttttct
                                                                          2580
     ctaagtatgt ttcaaatgat acaaaataca tactttatca attatctgat caaattgatg
                                                                         2640
     aatttttgag ctttgacgtg ttaggtctat ctaataaacg tagtaacgaa tttggttttg
                                                                         2700
25
     gaaatgaaat ccgataaccg atgatggtgt agagttaaac gattaaaccg ggttggttaa
                                                                          2760
     aggtetegag tetegaegge tgeggaaate ggaaaateae gattgaggae tttgagetge
                                                                         2820
                                                                         2850
     cacgaagatg gcgatgaggt tgaaatcaat
     <210> 94
30
     <211> 3660
     <212> DNA
     <213> Arabidopsis sp
     <400> 94
35
     tatttgtatt tttattgtta aattttatga tttcacccgg tatatatcat cccatattaa
                                                                           60
     tattagattt attttttggg ctttatttgg gttttcgatt taaactgggc ccattctgct
                                                                          120
     tcaatgaaac cctaatgggt tttgtttggg ctttggattt aaaccgggcc cattctgctt
                                                                          180
     caatgaaggt cetttgteea acaaaactaa cateegacae aactagtatt geeaagagga
                                                                          240
     tegtgecaca tggcagttat tgaatcaaag geegecaaaa etgtaaegta gacattaett
                                                                          300
40
     atctccggta acggacaacc actcgtttcc cgaaacagca actcacagac tcacaccact
                                                                          360
     ccagtctccg gcttaactac caccagagac gattctctct tccgtcggtt ctatgacttc
                                                                          420
     gatteteaac actgteteca ceatecacte ttecagagtt aceteegteg ategagtegg
                                                                          480
     agtectetet etteggaatt eggatteegt tgagtteact egeeggegtt etggtttete
                                                                          540
     gacgttgatc tacgaatcac ccggtagtta gcattctgtt ggatagattg atgaatgttt
                                                                          600
45
     tettegattt tttttttact gatettgttg tggatetete gtagggegga gatttgttgt
                                                                          660
```

720

gcgtgcggcg gagactgata ctgataaagg tatgattttt tagttgtttt tattttctct

	ctcttcaaaa	ttctctttc	aaacactgtg	gcgtttgaat	ttccgacggc	agttaaatct	780
	cagacacctg	acaaggcacc	agccggtggt	tcaagcatta	accagcttct	cggtatcaaa	840
	ggagcatctc	aagaaactgt	aattttgttc	atctcctcag	aatcttttaa	attatcatat	900
	ttgtggataa	tgatgtgtta	gtttaggaat	tttcctacta	aaggtaatct	cttttgagga	960
5	caagtcttgt	ttttagctta	gaaatgatgt	gaaaatgttg	tttgttagct	aaaaagagtt	1020
	tgttgttata	ttctgtattc	agaataaatg	gaagattcgt	cttcagctta	caaaaccagt	1080
	cacttggcct	ccactggttt	ggggagtcgt	ctgtggtgct	gctgcttcag	gtaatcatac	1140
	gaacctcttt	tggatcatgc	aatactgtac	agaaagtttt	ttcattttcc	ttccaattgt	1200
	ttcttctggc	agggaacttt	cattggaccc	cagaggatgt	tgctaagtcg	attctttgca	1260
10	tgatgatgtc	tggtccttgt	cttactggct	atacacaggt	ctggttttac	acaacaaaaa	1320
	gctgacttgt	tcttattcta	gtgcatttgc	ttggtgctac	aataacctag	acttgtcgat	1380
	ttccagacaa	tcaacgactg	gtatgataga	gatatcgacg	caattaatga	gccatatcgt	1440
	ccaattccat	ctggagcaat	atcagagcca	gaggtaactg	agacagaaca	ttgtgagctt	1500
	ttatctcttt	tgtgattctg	atttctcctt	actccttaaa	atgcaggtta	ttacacaagt	1560
15	ctgggtgcta	ttattgggag	gtcttggtat	tgctggaata	ttagatgtgt	gggtaagttg	1620
	gcccttctga	cattaactag	tacagttaaa	gggcacatca	gatttgctaa	aatcttccct	1680
	tatcaggcag	ggcataccac	tcccactgtc	ttctatcttg	ctttgggagg	atcattgcta	1740
	tcttatatat	actctgctcc	acctcttaag	gtaagtttta	ttcctaactt	ccactctcta	. 1800
	gtgataagac	actccatcca	agttttggag	ttttgaatat	cgatatctga	actgatctca	1860
20	ttgcagctaa	aacaaaatgg	atgggttgga	aattttgcac	ttggagcaag	ctatattagt	1920
	ttgccatggt	aagatatctc	gtgtatcaat	aatatatggc	gttgttctca	tctcattgat	1980
	ttgtttcttg	ctcacttgac	tgataggtgg	gctggccaag	cattgtttgg	cactcttacg	2040
	ccagatgttg	ttgttctaac	actcttgtac	agcatagctg	gggtactctt	ttggcaaacc	2100
	ttttatgttg	cttttttcgt	tatctgttgt	aatatgctct	tgcttcatgt	tgtacctttg	2160
25	tgataatgca	gttaggaata	gccattgtta	acgacttcaa	aagtgttgaa	ggagatagag	2220
	cattaggact	tcagtctctc	ccagtagctt	ttggcaccga	aactgcaaaa	tggatatgcg	2280
	ttggtgctat	agacattact	cagctttctg	ttgccggtat	gtactatcca	ctgtttttgt	2340
	gcagctgtgg	cttctatttc	ttttccttga	tcttatcaac	tggatattca	ccaatggtaa	2400
	agcacaaatt	aatgaagctg	aatcaacaaa	ggcaaaacat	aaaagtacat	tctaatgaaa	2460
30	tgagctaatg	aagaggaggc	atctactttt	atgtttcatt	agtgtgattg	atggattttc	2520
	atttcatgct	tctaaaacaa	gtattttcaa	cagtgtcatg	aaataacaga	acttatatct	2580
	tcatttgtac	ttttactagt	ggatgagtta	cacaatcatt	gttatagaac	caaatcaaag	2640
	gtagagatca	tcattagtat	atgtctattt	tggttgcagg	atatctatta	gcatctggga.	2700
	aaccttatta	tgcgttggcg	ttggttgctt	tgatcattcc	tcagattgtg	ttccaggtaa	2760
35	agacgttaac	agtctcacat	tataattaat	caaattcttg	tcactcgtct	gattgctaca	2820
	ctcgcttcta	taaactgcag	tttaaatact	ttctcaagga	ccctgtcaaa	tacgacgtca	2880
	agtaccaggt	aagtcaactt	agtacacatg	tttgtgttct	tttgaaatat	ctttgagagg	2940
	tctcttaatc	agaagttgct	tgaaacactc	atcttgatta	caggcaagcg	cgcagccatt	3000
	cttggtgctc	ggaatatttg	taacggcatt	agcatcgcaa	cactgaaaaa	ggcgtatttt	3060
40	gatggggttt	tgtcgaaagc	agaggtgttg	acacatcaaa	tgtgggcaag	tgatggcatc	3120
	aactagttta	aaagattttg	taaaatgtat	gtaccgttat	tactagaaac	aactcctgtt	3180
	gtatcaattt	agcaaaacgg	ctgagaaatt	gtaattgatg	ttaccgtatt	tgcgctccat	3240
	ttttgcattt	cctgctcata	tcgaggattg	gggtttatgt	tagttctgtc	acttctctgc	3300
	tttcagaatg	tttttgtttt	ctgtagtgga	ttttaactat	tttcatcact	ttttgtattg	- 3360
45	attctaaaca	tgtatccaca	taaaaacagt	aatatacaaa	aatgatactt	cctcaaactt	3420
	tttataatct	aaatctaaca	actagctagt	aacccaacta	acttcataca	attaatttga	3480

WO 00/63391

PCT/US00/10368

gaaactacaa	agactagact	atacatatgt	tatttaacaa	cttgaaactg	tgttattact	3540
acctgatttt	tttctattct	acagccattt	gatatgctgc	aatcttaaca	tatcaagtct	3600
cacgttgttg	gacacaacat	actatcacaa	gtaagacacg	aagtaaaacc	aaccggcaac	3660

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 October 2000 (26.10.2000)

PCT

English

(10) International Publication Number WO 00/63391 A3

(51) International Patent Classification7: C12N 15/54, 15/82, 9/10, 5/00, C12P 17/06

POST-BEITTENMILLER, Dusty [US/US]; 800 N. Lindbergh Blvd., St. Louis, MO 63167 (US).

(21) International Application Number: PCT/US00/10368

(74) Agent: RAE-VENTER LAW GROUP, P.C.; P.O. Box 60039, Palo Alto, CA 94306 (US).

(22) International Filing Date: 14 April 2000 (14.04.2000)

(81) Designated States (national): AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG. MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN. YU, ZW.

English (25) Filing Language:

> (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(26) Publication Language:

(30) Priority Data: US 60/129,899 15 April 1999 (15.04.1999) 30 July 1999 (30.07.1999) US 60/146,461

Published:

with international search report

(71) Applicant (for all designated States except US): CAL-GENE LLC [US/US]: 1920 Fifth Street. Davis, CA 95616 (US).

> (88) Date of publication of the international search report: 17 January 2002

(72) Inventors; and

For two-letter codes and other abbreviations, refer to the "Guid-

(75) Inventors/Applicants (for US only): SAVIDGE, Beth [US/US]; 1920 Fifth Street, Davis, CA 95616 (US). LASSNER, Michael, W. [US/US]: 1920 Fifth Street, Davis, CA 95616 (US). WEISS, James, D. [US/US]: 800 N. Lindbergh Blvd., St. Louis, MO 63167 (US).

ance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NUCLEIC ACID SEQUENCES TO PROTEINS INVOLVED IN TOCOPHEROL SYNTHESIS

(57) Abstract: Nucleic acid sequences and methods are provided for producing plants and seeds having altered tocopherol content and compositions. The methods find particular use in increasing the tocopherol levels in plants, and in providing desirable tocopherol compositions in a host plant cell.

Interr. ,nal Application No

PCT/US 00/10368 a. classification of subject matter IPC 7 C12N15/54 C12N15/82 C12N9/10 C12N5/00 C12P17/06 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N C12P IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) BIOSIS, WPI Data, EPO-Internal, EMBL C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. DATABASE EMBL [Online] ACCESSION NO: ACOO3673, Х 1-6, 13-16,18 11 December 1997 (1997-12-11) LIN, X., ET AL.: "Arabidopsis thaliana chromosome II section 110 of 255 of the complete sequence. Sequence from clones MSF3, F19F24." XP002153685 nts40740-43320 DATABASE EMBL [Online] X 1-6. ACCESSION NO: ALO35394, 13-16,18 9 February 1999 (1999-02-09) BEVAN, M., ET AL.: "Arabidopsis thaliana DNA chromosome 4, BAC clone F9D16 (ESSAII project)" XP002153686 nts 46219-49152 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report

12 June 2001

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.

Fax: (+31-70) 340-3016

Authorized officer

Maddox, A

1 5. 06. 01

Form PCT/ISA/210 (second sheet) (July 1992)

Interi nal Application No PCT/US 00/10368

· · · · · · · · · · · · · · · · · · ·
Relevant to claim No.
1-6
1-6, 13-16,18
1-6
1-6
1-6, 13-16,18

Interi nal Application No PCT/US 00/10368

		<u> </u>
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; October 1997 (1997-10) OSTER U ET AL: "The G4 gene of Arabidopsis thaliana encodes a chlorophyll synthase of etiolated plants." Database accession no. PREV199800047824 XP002153691 abstract	1-5, 13-16
	& BOTANICA ACTA, vol. 110, no. 5, October 1997 (1997-10), pages 420-423, ISSN: 0932-8629	
X	LOPEZ J ET AL: "Sequence of the bchG gene from Chloroflexus aurantiacus: Relationship between Chlorophyll synthase and other polyprenyltransferases" JOURNAL OF BACTERIOLOGY, WASHINGTON, DC, US, vol. 178, no. 11, 1996, pages 3369-3373, XP002146399 ISSN: 0021-9193 the whole document	1-4
X	DATABASE EMBL [Online] ACCESSION NO: AC004077, 3 February 1998 (1998-02-03) LIN, X., ET AL.: "Arabidopsis thaliana chromosome II section 190 of 255 of the complete sequence. Sequence from clones F13P17, T31E10." XP002169118 /gene="At2g34630" -& DATABASE TREMBL [Online] ACCESSION NO: 064684, 1 August 1998 (1998-08-01) ROUNSLEY S.D., ET AL.: "T31E10.3 PROTEIN" XP002169119 abstract	1-6, 13-16, 18
X	DATABASE EMBL [Online] ACCESSION NO: T44803, 4 February 1995 (1995-02-04) NEWMAN, T. ET AL.: "8066 Lambda-PRL2 Arabidopsis thaliana cDNA clone 124L9T7, mRNA sequence." XP002169120 the whole document	1-5

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Interr inal Application No PCT/US 00/10368

		PC1/US 00/10368
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE EMBL [Online] ACCESSION NO: Z34566, 25 June 1994 (1994-06-25) DESPREZ, T., ET AL.: "A. thaliana transcribed sequence; clone VBVCG03; 5' end; Similar to Cytochrome c554; Chloroflexus aurantiacus." XP002169121 the whole document	1-5
X	ZHU XUFEN ET AL: "Geranylgeranyl pyrophosphate synthase encoded by the newly isolated gene GGPS6 from Arabidopsis thaliana is localized in mitochondria." PLANT MOLECULAR BIOLOGY, vol. 35, no. 3, 1997, pages 331-341, XP002153683 ISSN: 0167-4412 the whole document	1-5, 13-16, 29,30
X	DATABASE EMBL [Online] ACCESSION NO: L40577, 15 April 1995 (1995-04-15) SCOLNIK, P.A., ET AL.: "Arabidopsis thaliana geranylgeranyl pyrophosphate synthase-related protein mRNA, complete cds." XP002153692 the whole document	1-5
X	CHUN P L ET AL: "Identification of a maize endosperm-specific cDNA encoding farnesyl pyrophosphate synthetase" GENE,NL,ELSEVIER BIOMEDICAL PRESS. AMSTERDAM, vol. 171, no. 2, 1 June 1996 (1996-06-01), pages 193-196, XP004042793 ISSN: 0378-1119 the whole document	1-4,7
Ε	EP 1 033 405 A (CERES INC) 6 September 2000 (2000-09-06) see SEQ ID NOS:34834-34836,38169 38171,50712,50713	1-7, 13-16,18
E .	WO 00 68393 A (PIONEER HI-BRED) 16 November 2000 (2000-11-16) see SEQ ID NOS: 1,2,3,4,9-14,21,22,23	1-16, 18-20, 22-25, 27-30, 32,33
	-/	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Interr. ..al Application No PCT/US 00/10368

		PC1/US 00/10368
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	WO 00 14207 A (DU PONT ;MIAO GUO HUA (US); POWELL WAYNE (US); CAHOON REBECCA E (U) 16 March 2000 (2000-03-16) SEQ ID NOS:1,2,5,6,7,8,11 and 12	1-4,7,9
P,X	DATABASE EMBL [Online] ACCESSION NO: AI795655, 7 July 1999 (1999-07-07) WALBOT, V.: "614004H08.x4 614 - root cDNA library from Walbot Lab Zea mays cDNA, mRNA sequence." XP002169131 the whole document	1-4,7
Ρ,Χ	DATABASE EMBL [Online] ACCESSION NO: AI988542, 7 September 1999 (1999-09-07) SHOEMAKER, R., ET AL.: "sd03g09.y1 Gm-c1020 Glycine max cDNA clone GENOME SYSTEMS CLONE ID:Gm-c1020-665 5' similar to TR:064886 O64886 PUTATIVE HEME A:FARNESYLTRANSFERASE.;, mRNA sequence." XP002169132 the whole document	1-4,9
P,X	DATABASE EMBL [Online] ACCESSION NO: AI938569, 3 August 1999 (1999-08-03) SHOEMAKER, R., ET AL.: "sb55ell.yl Gm-c1018 Glycine max cDNA clone GENOME SYSTEMS CLONE ID:Gm-c1018-69 5' similar to TR:064625 064625 F19F24.15 PROTEIN.;, mRNA sequence." XP002169133 the whole document	1-4,9
P,X	DATABASE EMBL [Online] ACCESSION NO: AW306617, 21 January 2000 (2000-01-21) SHOEMAKER R., ET AL.: "se53b09.y1 Gm-c1017 Glycine max cDNA clone GENOME SYSTEMS CLONE ID:Gm-c1017-2610 5' similar to TR:064625 064625 F19F24.15 PROTEIN.; mRNA sequence" XP002169134 the whole document -/	- 1-4,9

Interr. nal Application No PCT/US 00/10368

Category ° Cit	n) DOCUMENTS CONSIDERED TO BE RELEVANT tation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	ration of document, with indication, where appropriate, of the relevant passages	Helevant to claim No.
P,X	DATABASE EMBL [Online] ACCESSION NO:AI748688, 29 June 1999 (1999-06-29) SHOEMAKER R.: "sb60f03.y1 Gm-c1010 Glycine max cDNA clone GENOME SYSTEMS CLONE ID:Gm-c1010-150 5' similar to TR:P73726 P73726 HYPOTHETICAL 34.4 KD PROTEIN.;, mRNA sequence." XP002169135 the whole document	1-4,9
x	DATABASE EMBL [Online] ACCESSION NO: D64006, 30 September 1995 (1995-09-30) TABATA, S., ET AL.: "Synechocystis sp. PCC6803 complete genome, 25/27, 3138604-3270709." XP002169122 nts 90109-90987 -& DATABASE TREMBL [Online] ACCESSION NO:Q55500, 1 November 1996 (1996-11-01) TABATA, S.,: "4-HYDROXYBENZOATE-OCTAPRENYL TRANSFERASE." XP002169123 the whole document	1-4,11,
X	DATABASE EMBL [Online] ACCESSION NO: D13960, 28 March 1996 (1996-03-28) MURATA N.; ET AL.: "Synechocystis sp. genes for heme O synthase and virginiamycin acetyltransferase, complete cds." XP002169124 the whole document -& DATABASE TREMBL [Online] ACCESSION NO: Q55207, 1 November 1996 (1996-11-01) "CYTOSHROME C OXIDASE FOLDING PROTEIN" XP002169125 abstract	1-4,11,

Interr. val Application No PCT/US 00/10368

	A DOCUMENTS CONSIDERED TO BE DELEVANT	PC1/03 00/10308	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	I Botomeron	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to daim No.	
X	DATABASE EMBL [Online] ACCESSION NO: D64001, 30 September 1995 (1995-09-30) TABATA, S., ET AL.: "Synechocystis sp. PCC6803 complete genome, 20/27, 2539000-2644794." XP002169126 nts 3918840162 -& DATABASE TREMBL [Online] ACCESSION NO: Q55145, 1 November 1996 (1996-11-01) TABATA, S.: "CHLOROPHYLL SYNTHASE 33 KDA SUBUNIT." XP002169127 the whole document	1-4,11,	
X	DATABASE EMBL [Online] ACCESSION NO: D90911, 31 October 1996 (1996-10-31) TABATA S.;: "Synechocystis sp. PCC6803 complete genome, 13/27, 1576593-1719643." XP002169128 nts 3323434157 -& DATABASE TREMBL [Online] ACCESSION NO: P73962, 15 July 1998 (1998-07-15) KANEKO, T., ET AL.: "PROBABLE 1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE (EC 2.5.1)" XP002169129 abstract	1-4,11,	
X	DATABASE EMBL [Online] ACCESSION NO: D90909, 31 October 1996 (1996-10-31) TABATA, S.: "Synechocystis sp. PCC6803 complete genome, 11/27, 1311235-1430418." XP002169130 nts 1145312379 and 1243813529 -& DATABASE TREMBL [Online] ACCESSION NO: P73726, 1 February 1997 (1997-02-01) KANEKO, T., ET AL.: "HYPOTHETICAL 34.4 KDA PROTEIN." XP002169263 abstract -& DATABASE TREMBL [Online] ACCESSION NO: P73727, 1 February 1997 (1997-02-01) KANEKO, T., ET AL.: "HYPOTHETICAL 41.5 KDA PROTEIN."	1-4,11,	
	XP002169264 abstract		

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Intern ral Application No
PCT/US 00/10368

C.(Continu	lation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99 07867 A (CALGENE LLC) 18 February 1999 (1999-02-18) page 11, line 19 - line 26	1-4, 13-15, 18-20, 22-25, 27-30, 32,33
X	WO 98 06862 A (SHEWMAKER CHRISTINE K ;CALGENE INC (US)) 19 February 1998 (1998-02-19)	1-4, 13-15, 18,29,
Α	the whole document	30,32,33 19,20, 22-25, 27,28
E	WO 00 61771 A (MONSANTO CO) 19 October 2000 (2000-10-19)	1-4, 13-15, 18-20, 22-25, 27-30, 32,33
	page 81 -page 83 page 106 -page 107	
A	NORRIS S R ET AL: "GENETIC DISSECTION OF CAROTENOID SYNTHESIS IN ARABIDOPSIS DEFINES PLASTOQUINONE AS AN ESSENTIAL COMPONENT OF PHYTOENE DESATURATION" PLANT CELL,US,AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, vol. 7, 1 December 1995 (1995-12-01), pages 2139-2149, XP002041909 ISSN: 1040-4651 the whole document	1-6, 13-16, 18-20, 22-25, 27-30, 32,33
X	KUNTZ, M., ET AL.: "Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum: correlative increase in enzyme activity and transcript level during fruit ripening" THE PLANT JOURNAL, vol. 2, no. 1, 1992, XP002153684 the whole document	1=4, 13-15, 18,29,30
X	US 5 876 964 A (GERSHENZON JONATHAN ET AL) 2 March 1999 (1999-03-02)	1-4, 13-15, 18,29,30
	the whole document	20,23,00
Х	US 5 545 816 A (AUSICH RODNEY L ET AL) 13 August 1996 (1996-08-13)	1-4, 13-15, 18,29,30
	the whole document	
	-/	}

Interr. al Application No PCT/US 00/10368

		PC1/US 00/10368
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	EP 0 763 542 A (TOYOTA MOTOR CO LTD) 19 March 1997 (1997-03-19) the whole document	29,30
X	EP 0 674 000 A (TOYOTA MOTOR CO LTD) 27 September 1995 (1995-09-27) the whole document	29,30
Ρ,Χ	WO 00 01650 A (DCV INC) 13 January 2000 (2000-01-13)	1-4, 13-15, 18,29,30
	the whole document	
Ε	EP 1 063 297 A (KOREA KUMHO PETROCHEM CO LTD) 27 December 2000 (2000-12-27)	1-4, 13-15, 18,29,30
	the whole document	
A	WO 97 27285 A (UNIV ARIZONA) 31 July 1997 (1997-07-31)	19,20, 22-25, 27-30, 32,33
	the whole document	
A	WO 99 04622 A (UNIV NEVADA) 4 February 1999 (1999-02-04)	19,20, 22-25, 27-30,
	the whole document	32,33
X	WO 99 06580 A (BONETTA DARIO ;MCCOURT PETER (CA); GHASSEMIAN MAJID (CA); PERFORMA) 11 February 1999 (1999-02-11) claims 18,19	1-5, 13-16,18
E	WO 00 22150 A (PIONEER HI BRED INT; YALPANI NASSER (US); MEYER TERRY EUCLAIRE (US) 20 April 2000 (2000-04-20) the whole document	1-4, 13=15,18
E	WO 01 21650 A (COLDREN CHRIS ;DU PONT (US); WANG HONG (US); FLINT DENNIS (US); HA) 29 March 2001 (2001-03-29) the whole document	1-4, 13-16,18
	<u>.</u>	

International application No. PCT/US 00/10368

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Inte	ternational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
	Claims 8 and 10 are inconsistent with figs 2,3,and 9, since said figures do not make reference to sequence data. Said claims have been assumed as relating to SEQ ID NOS:19-31 and the prior art search has been made accordingly.
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1. X	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-6,13-16, and 18 all partially

Nucleic acid sequences encoding Arabidopsis aromatic prenyltransferases as defined by SEQ ID NOS:1-6 and constructs based on said sequences.

2. Claims: 1-6,13-16, and 18 all partially.

Nucleic acid sequences encoding Arabidopsis straight chain prenyltransferases as defined by SEQ ID NOS:11,12,16,17 and constructs based on said sequences.

3. Claims: 1-4,13-16 and 18 all partially, and 7 and 8 both completely

Nucleic acid sequences encoding corn prenyltransferases and constructs based on said sequences.

4. Claims: 1-4,13-16, and 18 all partially, and 9 and 10 both completely

Nucleic acid sequences encoding soybean prenyltransferases and constructs based on said sequences.

5. Claims: 1-4,13,14, and 18 all partially, and 11,12, and 17 all completely

Nucleic acid sequences encoding synechocystis prenyltransferases and constructs based on said sequences.

6. Claims: 19-33 all completely

Methods for production of tocopherols, increasing flux to tocopherol production in a host cell by transforming with a prenyltransferase nucleic acid sequence

BNSDOCID: <WO__0063391A3_1_>

Information on patent family members

Intern all Application No PCT/US 00/10368

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
EP 1033405	A	06-09-2000	NONE		
WO 0068393	A	16-11-2000	AU	4498500 A	21-11-2000
WO 0014207	Α	16-03-2000	AU	5812199 A	27-03-2000
WO 9907867	A	18-02-1999	AU CN EP	8900298 A 1275166 T 1002117 A	
WO 9806862	А	19-02-1998	AU BR CN EP	4058497 A 9713462 A 1227609 A 0925366 A	06-03-1998 28-03-2000 01-09-1999 30-06-1999
WO 0061771	A	19-10-2000	AU	4231600 A	14-11-2000
US 5876964	A	02-03-1999	AU EP WO WO	1089099 A 1023436 A 0129188 A 9919460 A	03-05-1999 02-08-2000 26-04-2001 22-04-1999
US 5545816	A	13-08-1996	US CA EP JP WO US US US	5618988 A 2055447 A 0471056 A 5504686 T 9113078 A 5530188 A 5530189 A 5684238 A 5656472 A	08-04-1997 03-09-1991 19-02-1992 22-07-1993 05-09-1991 25-06-1996 25-06-1996 04-11-1997 12-08-1997
EP 0763542	A	19-03-1997	JP DE DE US US	9065878 A 69604994 D 69604994 T 5882909 A 5885810 A 5807725 A	11-03-1997 09-12-1999 27-04-2000 16-03-1999 23-03-1999 15-09-1998
EP 0674000	Α	27-09-1995	JP US	7308193 A 5773273 A	
WO 0001650	Α	13-01-2000	AU EP	4863099 A 1095002 A	24-01-2000 02-05-2001
EP 1063297	Α	27-12-2000	JP 2	001000192 A	09-01-2001
WO 9727285	A	31-07-1997	US AU BR EP JP	6087563 A 1845397 A 9707200 A 0877793 A 11510708 T	11-07-2000 20-08-1997 28-12-1999 18-11-1998 21-09-1999
wo 9904622	Α	04-02-1999	AU EP	8506198 A 1009812 A	16-02-1999 21-06-2000
WO 9906580	Α	11-02-1999	AU EP	8598998 A 1002116 A	22-02-1999 24-05-2000

Information on patent family members

Interr. Ial Application No
PCT/US 00/10368

Patent document cited in search report	Patent document cited in search report		Patent family member(s)		Publication date
WO 9906580	Α		ZA	9806872 A	02-02-1999
WO 0022150	Α	20-04-2000	AU	6290099 A	01-05-2000
WO 0121650	Α	29-03-2001	NONE		

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

DI ACK DODDEDC

DUACK BOKDEKS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURED OR ILLEGIBLE TEXT OR DRAWING
3 SKEWED/SLANTED IMAGES
COLORED OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox