

Electronic Filing System (EFS) Data **Electronic Patent Application Submission USPTO** Use Only

EFS ID:

49668

Application ID:

09743818

Title of Invention:

Protease Susceptibility II

First Named Inventor:

Anthony Weiss

Domestic/Foreign Application: Domestic Application

Filing Date:

2001-04-26

Effective Receipt Date:

2003-10-23

Submission Type:

BIO Sequence Filing

Filing Type:

Confirmation number:

8602

Attorney Docket Number:

GHC11USA

Total Fees Authorized:

Digital Certificate Holder: cn=Cathy A. Kodroff,ou=Registered Attorneys,ou=Patent and Trademark

Office,ou=Department of Commerce,o=U.S. Government,c=US

Certificate Message Digest: 79a77c537824f533a91104403ee220ce9152bff7

of PL 3 mg

TRANSMITTAL

Electronic Version v1.1
Spylesheet Version v1.1.0

Title of Invention

Protease Susceptibility II

Application Number:

09/743818

Date:

2001-04-26

First Named Applicant:

Anthony S. Weiss

Confirmation Number:

8602

Attorney Docket Number: GHC11USA

I hereby certify that the use of this system is for OFFICIAL correspondence between patent applicants or their representatives and the USPTO. Fraudulent or other use besides the filing of official correspondence by authorized parties is strictly prohibited, and subject to a fine and/or imprisonment under applicable law.

I, the undersigned, certify that I have viewed a display of document(s) being electronically submitted to the United States Patent and Trademark Office, using either the USPTO provided style sheet or software, and that this is the document(s) I intend for initiation or further prosecution of a patent application noted in the submission. This document(s) will become part of the official electronic record at the USPTO.

Submitted by:	Elec. Sign.	Sign. Capacity
Cathy A. Kodroff Registered Number: 33,980	/cathyakodroff/	Attorney

Documents being submitted

Files

us-bio-seq-trans

GHC11USA-usbios.xml

us-bio-seq-trans.dtd

us-bio-seq-trans.xsl

sequence-listing

sequence.txt

Comments

OIP E

AMINO ACID AND/OR NUCLEOTIDE SEQUENCE LISTING SUBMISSION

Electronic Version v13 Stylesheet Version v01

This is a request for filing the electronic Computer Readable Form copy of a sequence listing via the Electronic Filing System for a patent application under 37 CFR 1.821-1.825 instead of via one of the physical media specified in 37 CFR 1.824(c).

This communication has an attached file which is an electronic copy of the amino acid and/or nucleotide sequence listing for the previously mentioned United States patent application.

The electronic copy submitted herewith is the Computer Readable Form (CRF), as required by 1.821(e).

Any applicable fees associated with the filing of the electronic copy have been paid.

This submission does not go beyond the disclosure of the application as originally filed (i.e., contains no new matter). It may be in addition to an original CRF, filed to comply with the sequence rules.

This submission in electronic form comprises only the CRF of 37 CFR 1.821(e). I acknowledge that I am responsible for all additional requirements of amino acid and/or nucleotide sequence listing submissions as specified in 37 CFR 1.821 - 1.825.

This submission does not go beyond the disclosure of the application as originally filed (i.e., contains no new matter), and/or is in addition to an original CRF filed to comply with the sequence rules. If not made to comply with an originally filed CRF, it is identical to the sequences disclosed in the application as originally filed and/or the paper copy of the sequence listing as originally filed.

I hereby certify that this correspondence is being transmitted to the United States Patent and Trademark Office on the following date: 2003-10-23

Name: Cathy A. Kodroff

Electronic Signature Mark: /CathyAKodroff/

Attachment description:

Attached is a Substitute Sequence Listing. The hard copy and an appropriate extension of time is being supplied with a response to an Office Action dated 08/25/2003.

Compression

_	
anthuara	
software	useo

APP_ID=09743818

O' 13 MIS

SEQUENCE LISTING

<110> Weiss, Anthony S.	
<120> Protease Susceptibility II	
<130> GHC11USA	
<140> US 09/743,818 <141> 2001-04-26	
<150> AU PP4723 <151> 1998-07-17	
<150> PCT/AU99/00580 <151> 1999-07-19	
<160> 105	
<170> PatentIn version 3.2	
<210> 1 <211> 2106 <212> DNA <213> Homo sapiens	
<400> 1 atgggtggcg ttccgggtgc tatcccgggt ggcgttccgg gtggtgtatt ctacccaggc	60
gcgggtctgg gtgcactggg cggtggtgcg ctgggcccgg gtggtaaacc gctgaaaccg	120
gttccaggcg gtctggcagg tgctggtctg ggtgcaggtc tgggcgcgtt cccggcggtt	180
accttecegg gtgetetggt teegggtgge gttgeagaeg eagetgetge gtacaaageg	240
gcaaaggcag gtgcgggtct gggcggggta ccaggtgttg gcggtctggg tgtatctgct	300
ggcgcagttg ttccgcagcc gggtgcaggt gtaaaaccgg gcaaagttcc aggtgttggt	360
ctgccgggcg tatacccggg tggtgttctg ccgggcgcgc gtttcccagg tgttggtgta	420
ctgccgggcg ttccgaccgg tgcaggtgtt aaaccgaagg caccaggtgt aggcggcgcg	480
ttcgcgggta tcccgggtgt tggcccgttc ggtggtccgc agccaggcgt tccgctgggt	540
tacccgatca aagcgccgaa gcttccaggt ggctacggtc tgccgtacac caccggtaaa	600
ctgccgtacg gctacggtcc gggtggcgta gcaggtgctg cgggtaaagc aggctaccca	660
accggtactg gtgttggtcc gcaggctgct gcggcagctg cggcgaaggc agcagcaaaa	720
ttcggcgcgg gtgcagcggg tgttctgccg ggcgtaggtg gtgctggcgt tccgggtgtt	780
ccaggtgcga tcccgggcat cggtggtatc gcaggcgtag gtactccggc ggccgctgcg	840
gctgcggcag ctgcggcgaa agcagctaaa tacggtgcgg cagcaggcct ggttccgggt	900
ggtccaggct tcggtccggg tgttgtaggc gttccgggtg ctggtgttcc gggcgtaggt	960
gttccaggtg cgggcatccc ggttgtaccg ggtgcaggta tcccgggcgc tgcggttcca	1020

APP_ID=09743818 Page 1 of 41

ggtgttgtat ccccggaagc ggcagctaag gctgctgcga aagctgcgaa atacggagct	1080
cgtccgggcg ttggtgttgg tggcatcccg acctacggtg taggtgcagg cggtttccca	1140
ggtttcggcg ttggtgttgg tggcatcccg ggtgtagctg gtgttccgtc tgttggtggc	1200
gtaccgggtg ttggtggcgt tccaggtgta ggtatctccc cggaagcgca ggcagctgcg	1260
gcagctaaag cagcgaagta cggcgttggt actccggcgg cagcagctgc taaagcagcg	1320
gctaaagcag cgcagttcgg actagttccg ggcgtaggtg ttgcgccagg tgttggcgta	1380
gcaccgggtg ttggtgttgc tccgggcgta ggtctggcac cgggtgttgg cgttgcacca	1440
ggtgtaggtg ttgcgccggg cgttggtgta gcaccgggta tcggtccggg tggcgttgcg	1500
gctgctgcga aatctgctgc gaaggttgct gcgaaagcgc agctgcgtgc agcagctggt	1560
ctgggtgcgg gcatcccagg tctgggtgta ggtgttggtg ttccgggcct gggtgtaggt	1620
gcaggggtac cgggcctggg tgttggtgca ggcgttccgg gtttcggtgc tgttccgggc	1680
gcgctggctg ctgcgaaagc ggcgaaatac ggtgcagcgg ttccgggtgt actgggcggt	1740
ctgggtgctc tgggcggtgt tggtatcccg ggcggtgttg taggtgcagg cccagctgca	1800
gctgctgctg cggcaaaggc agcggcgaaa gcagctcagt tcggtctggt tggtgcagca	1860
ggtctgggcg gtctgggtgt tggcggtctg ggtgtaccgg gcgttggtgg tctgggtggc	1920
atcccgccgg cggcggcagc taaagcggct aaatacggtg cagcaggtct gggtggcgtt	1980
ctgggtggtg ctggtcagtt cccactgggc ggtgtagcgg cacgtccggg tttcggtctg	2040
tccccgatct tcccaggcgg tgcatgcctg ggtaaagctt gcggccgtaa acgtaaataa	2100
tgatag	2106
<210> 2 <211> 1992 <212> DNA <213> Homo sapiens	
atgggtggcg ttccgggtgc tgttccgggt ggcgttccgg gtggtgtatt ctacccaggc	60
gcgggtttcg gtgctgttcc gggtggcgtt gcagacgcag ctgctgcgta caaagcggca	120
aaggcaggtg cgggtctggg cggggtacca ggtgttggcg gtctgggtgt atctgctggc	180
gcagttgttc cgcagccggg tgcaggtgta aaaccgggca aagttccagg tgttggtctg	240
ccgggcgtat acccgggttt cggtgctgtt ccgggcgcgc gtttcccagg tgttggtgta	300
ctgccgggcg ttccgaccgg tgcaggtgtt aaaccgaagg caccaggtgt aggcggcgcg	360
ttcgcgggta tcccgggtgt tggcccgttc ggtggtccgc agccaggcgt tccgctgggt	420

APP_ID=09743818 Page 2 of 41

tacccgatca	aagcgccgaa	gcttccaggt	ggctacggtc	tgccgtacac	caccggtaaa	480
ctgccgtacg	gctacggtcc	gggtggcgta	gcaggtgctg	cgggtaaagc	aggctaccca	540
accggtactg	gtgttggtcc	gcaggctgct	gcggcagctg	cggcgaaggc	agcagcaaaa	600
ttcggcgcgg	gtgcagcggg	tttcggtgct	gttccgggcg	taggtggtgc	tggcgttccg	660
ggtgttccag	gtgcgatccc	gggcatcggt	ggtatcgcag	gcgtaggtac	tccggcggcc	720
gctgcggctg	cggcagctgc	ggcgaaagca	gctaaatacg	gtgcggcagc	aggcctggtt	780
ccgggtggtc	caggcttcgg	tccgggtgtt	gtaggcgttc	cgggtttcgg	tgctgttccg	840
ggcgtaggtg	ttccaggtgc	gggcatcccg	gttgtaccgg	gtgcaggtat	cccgggcgct	900
gcgggtttcg	gtgctgtatc	cccggaagcg	gcagctaagg	ctgctgcgaa	agctgcgaaa	960
tacggagctc	gtccgggcgt	tggtgttggt	ggcatcccga	cctacggtgt	aggtgcaggc	1020
ggtttcccag	gtttcggcgt	tggtgttggt	ggcatcccgg	gtgtagctgg	tgttccgtct	1080
gttggtggcg	taccgggtgt	tggtggcgtt	ccaggtgtag	gtatctcccc	ggaagcgcag	1140
gcagctgcgg	cagctaaagc	agcgaagtac	ggcgttggta	ctccggcggc	agcagctgct	1200
aaagcagcgg	ctaaagcagc	gcagttcgga	ctagttccgg	gcgtaggtgt	tgcgccaggt	1260
gttggcgtag	caccgggtgt	tggtgttgct	ccgggcgtag	gtctggcacc	gggtgttggc	1320
gttgcaccag	gtgtaggtgt	tgcgccgggc	gttggtgtag	caccgggtat	cggtccgggt	1380
ggcgttgcgg	ctgctgcgaa	atctgctgcg	aaggttgctg	cgaaagcgca	gctgcgtgca	1440
gcagctggtc	tgggtgcggg	catcccaggt	ctgggtgtag	gtgttggtgt	tccgggcctg	1500
ggtgtaggtg	caggggtacc	gggcctgggt	gttggtgcag	gcgttccggg	tttcggtgct	1560
gttccgggcg	cgctggctgc	tgcgaaagcg	gcgaaatacg	gtgctgttcc	gggtgtactg	1620
ggcggtctgg	gtgctctggg	cggtgttggt	atcccgggcg	gtgttgtagg	tgcaggccca	1680
gctgcagctg	ctgctgcggc	aaaggcagcg	gcgaaagcag	ctcagttcgg	tctggttggt	1740
gcagcaggtc	tgggcggtct	gggtgttggc	ggtctgggtg	taccgggcgt	tggtggtctg	1800
ggtggcatcc	cgccggcggc	ggcagctaaa	gcggctaaat	acggtgcagc	aggtctgggt	1860
ggcgttctgg	gtggtgctgg	tcagttccca	ctgggcggtg	tagcggcacg	tccgggtttc	1920
ggtctgtccc	cgatcttccc	aggcggtgca	tgcctgggta	aagcttgcgg	ccgtaaacgt	1980
aaataatgat	ag					1992

<210> 3 <211> 2210 <212> DNA

APP_ID=09743818 Page 3 of 41

<213> Homo sapiens

<220 <220 <220	1> (CDS (3).	. (22)	01)											
- 5	tcc a			Gly '				Ile 1	ccg (Pro (Pro (47
									gca Ala						95
									gtt Val						143
									ttc Phe						191
_		_	_	-	-	 	-	-	gac Asp	_	_	-			239
									ggg Gly 90						287
									ccg Pro						335
									ctg Leu						383
									ggt Gly						431
									aag Lys						479
									ccg Pro 170						527
									gcg Ala						575
									ctg Leu						623
									gca Ala						671

APP_ID=09743818

		210					215					220				
act Thr	ggt Gly 225	gtt Val	ggt Gly	ccg Pro	cag Gln	gct Ala 230	gct Ala	gcg Ala	gca Ala	gct Ala	gcg Ala 235	gcg Ala	aag Lys	gca Ala	gca Ala	719
					ggt Gly 245											767
					gtt Val											815
					ccg Pro											863
					ggt Gly											911
					gtt Val											959
					gcg Ala 325											1007
					cca Pro											1055
					gcg Ala											1103
ggt Gly	ggc Gly	atc Ile 370	ccg Pro	acc Thr	tac Tyr	ggt Gly	gta Val 375	ggt Gly	gca Ala	ggc Gly	ggt Gly	ttc Phe 380	cca Pro	ggt Gly	ttc Phe	1151
					ggc Gly											1199
					gtt Val 405											1247
					gcg Ala											1295
					gct Ala											1343
					gta Val											1391

APP_ID=09743818 Page 5 of 41

		450					455					460			
														ggc Gly	1439
			-		-		_		_		-	_	_	ggt Gly	1487
														gtt Val 510	1535
			-	_	-	-	-	-		-				atc Ile	1583
			Val											gca Ala	1631
														gct Ala	1679
														gaa Glu	 1727
														cca Pro 590	1775
														gca Ala	1823
-	_		-	_			_		-	_			_	ggt Gly	1871
														gcg Ala	1919
														gca Ala	1967
														ggt Gly 670	2015
														tac Tyr	2063
														cca Pro	2111

APP_ID=09743818 Page 6 of 41

690 695 700

ggc ggt gta gcg gca cgt ccg ggt ttc ggt ctg tcc ccg atc ttc cca 2159
Gly Gly Val Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro
705 710 715

ggc ggt gca tgc ctg ggt aaa gct tgc ggc cgt aaa cgt aaa taatgatag 2210 Gly Gly Ala Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys 720 725 730

<210> 4

<211> 733

<212> PRT

<213> Homo sapiens

<400> 4

Ser Met Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly 1 5 10 15

Val Phe Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu 20 25 30

Gly Pro Gly Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly 35 40 45

Ala Gly Leu Gly Ala Gly Leu Gly Ala Phe Pro Ala Val Thr Phe Pro 50 55 60

Gly Ala Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys 70 75 80

Ala Ala Lys Ala Gly Ala Gly Leu Gly Gly Val Pro Gly Val Gly Gly 85 90 95

Leu Gly Val Ser Ala Gly Ala Val Pro Gln Pro Gly Ala Gly Val
100 105 110

Lys Pro Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly
115 120 125

Gly Val Leu Pro Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro Gly 130 135 140

Val Pro Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly 145 150 155 160

Ala Phe Ala Gly Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro 165 170 175

Gly	Val	Pro	Leu 180	Gly	Tyr	Pro	Ile	Lys 185		Pro	Lys	Leu	Pro 190	Gly	Gly
Tyr	Gly	Leu 195		Tyr	Thr	Thr	Gly 200	Lys	Leu	Pro	Tyr	Gly 205	Tyr	Gly	Pro
Gly	Gly 210	Val	Ala	Gly	Ala	Ala 215	Gly	Lys	Ala	Gly	Tyr 220	Pro	Thr	Gly	Thr
Gly 225	Val	Gly	Pro	Gln	Ala 230	Ala	Ala	Ala	Ala	Ala 235	Ala	Lys	Ala	Ala	Ala 240
Lys	Phe	Gly	Ala	Gly 245	Ala	Ala	Gly	Val	Leu 250		Gly	Val	Gly	Gly 255	Ala
Gly	Val	Pro	Gly 260	Val	Pro	Gly	Ala	Ile 265	Pro	Gly	Ile	Gly	Gly 270	Ile	Ala
Gly	Val	Gly 275	Thr	Pro	Ala	Ala	Ala 280	Ala	Ala	Ala	Ala	Ala 285	Ala	Ala	Lys
Ala	Ala 290	Lys	Tyr	Gly	Ala	Ala 295	Ala	Gly	Leu	Val	Pro 300	Gly	Gly	Pro	Gly
Phe 305	Gly	Pro	Gly	Val	Val 310	Gly	Val	Pro	Gly	Ala 315	Gly	Val	Pro	Gly	Val 320
Gly	Val	Pro	Gly	Ala 325	Gly	Ile	Pro	Val	Val 330	Pro	Gly	Ala	Gly	Ile 335	Pro
Gly	Ala	Ala	Val 340	Pro	Gly	Val	Val	Ser 345	Pro	Glu	Ala	Ala	Ala 350	Lys	Ala
Ala	Ala	Lys 355	Ala	Ala	Lys	Tyr	Gly 360	Ala	Arg	Pro	Gly	Val 365	Gly	Val	Gly
Gly	Ile 370	Pro	Thr	Tyr	Gly	Val 375	Gly	Ala	Gly	Gly	Phe 380	Pro	Gly	Phe	Gly
Val 385	Gly	Val	Gly	Gly	Ile 390	Pro	Gly	Val	Ala	Gly 395	Val	Pro	Ser	Val	Gly 400
Gly	Val	Pro	Gly	Val 405	Gly	Gly	Val	Pro	Gly 410	Val	Gly	Ile	Ser	Pro 415	Glu

Ala Gln Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Val Gly Thr Pro Ala Ala Ala Ala Lys Ala Ala Lys Ala Ala Gln Phe Gly Leu Val Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Ile Gly Pro Gly Gly Val Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala Gln Leu Arg Ala Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala Asp Glu Gly Val Arg Arg Ser Leu Ser Pro Glu Leu Arg Glu Gly Asp Pro Ser Ser Ser Gln His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val Pro Gly Ala Leu Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly Gly Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly Val Val Gly Ala Gly Pro Ala Ala Ala Ala Ala Ala Lys Ala Ala Lys Ala Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu

Gly Gly Leu Gly Val Gly Gly Leu Gly Val Pro Gly Val Gly Gly Leu 660 665 670

Gly Gly Ile Pro Pro Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala 675 680 685

Ala Gly Leu Gly Gly Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly 690 695 700

Gly Val Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly 705 710 715 720

Gly Ala Cys Leu Gly Lys Ala Cys Gly Arg Lys 725 730

<210> 5

<211> 698

<212> PRT

<213> Homo sapiens

<400> 5

Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly Val Phe 1 $$ 5 $$ 10 $$ 15

Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu Gly Pro 20 25 30

Gly Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35 40 45

Leu Gly Ala Gly Leu Gly Ala Phe Pro Ala Val Thr Phe Pro Gly Ala 50 55 60

Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala 65 70 75 80

Lys Ala Gly Ala Gly Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly 85 90 95

Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly Ala Gly Val Lys Pro 100 105 110

Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val 115 120 125

Leu	Pro 130	Gly	Ala	Arg	Phe	Pro 135	Gly	Val	Gly	Val	Leu 140	Pro	Gly	Val	Pro
Thr 145	Gly	Ala	Gly	Val	Lys 150	Pro	Lys	Ala	Pro	Gly 155	Val	Gly	Gly	Ala	Phe 160
Ala	Gly	Ile	Pro	Gly 165	Val	Gly	Pro	Phe	Gly 170	Gly	Pro	Gln	Pro	Gly 175	Val
Pro	Leu	Gly	Tyr 180	Pro	Ile	Lys	Ala	Pro 185	Lys	Leu	Pro	Gly	Gly 190	Tyr	Gly
Leu	Pro	Tyr 195	Thr	Thr	Gly	Lys	Leu 200	Pro	Tyr	Gly	Tyr	Gly 205	Pro	Gly	Gly
Val	Ala 210	Gly	Ala	Ala	Gly	Lys 215	Ala	Gly	Tyr	Pro	Thr 220	Gly	Thr	Gly	Val
Gly 225	Pro	Gln	Ala	Ala	Ala 230	Ala	Ala	Ala	Ala	Lys 235	Ala	Ala	Ala	Lys	Phe 240
Gly	Ala	Gly	Ala	Ala 245	Gly	Val	Leu	Pro	Gly 250	Val	Gly	Gly	Ala	Gly 255	Val
Pro	Gly	Val	Pro 260	Gly	Ala	Ile	Pro	Gly 265	Ile	Gly	Gly	Ile	Ala 270	Gly	Val
Gly	Thr	Pro 275	Ala	Ala	Ala	Ala	Ala 280	Ala	Ala	Ala	Ala	Ala 285	Lys	Ala	Ala
Lys	Tyr 290	Gly	Ala	Ala	Ala	Gly 295	Leu	Val	Pro	Gly	Gly 300	Pro	Gly	Phe	Gly
Pro 305	Gly	Val	Val	Gly	Val 310	Pro	Gly	Ala	Gly	Val 315	Pro	Gly	Val	Gly	Val 320
Pro	Gly	Ala	Gly	Ile 325	Pro	Val	Val	Pro	Gly 330	Ala	Gly	Ile	Pro	Gly 335	Ala
Ala	Val	Pro	Gly 340	Val	Val	Ser	Pro	Glu 345	Ala	Ala	Ala	Lys	Ala 350	Ala	Ala
Lys	Ala	Ala 355	Lys	Tyr	Gly	Ala	Arg 360	Pro	Gly	Val	Gly	Val 365	Gly	Gly	Ile

Pro	Thr 370	Tyr	Gly	Val	_	Ala 375	Gly	Gly	Phe	Pro	Gly 380	Phe	Gly	Val	Gly

- Val Gly Gly Ile Pro Gly Val Ala Gly Val Pro Ser Val Gly Gly Val 385 $390 \hspace{1.5cm} 395 \hspace{1.5cm} 395$
- Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala Gln 405 410 415
- Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Val Gly Thr Pro Ala 420 425 430
- Ala Ala Ala Lys Ala Ala Lys Ala Ala Gln Phe Gly Leu Val 435 440 445
- Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly 450 455 460
- Val Ala Pro Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly 465 470 475 480
- Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Ile Gly Pro Gly 485 490 495
- Gly Val Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala 500 505 510
- Gln Leu Arg Ala Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly 515 520 525
- Val Gly Val Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly 530 540
- Leu Gly Val Gly Ala Gly Val Pro Gly Phe Gly Ala Val Pro Gly Ala 545 550 555 560
- Leu Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly Val 565 570 575
- Leu Gly Gly Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly Val 580 585 590

```
Lys Ala Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly Leu
Gly Val Gly Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile
                   630
                                       635
Pro Pro Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu
                645
                                   650
Gly Gly Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly Val Ala
            660
                                665
Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys
        675
                           680
Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys
    690
                       695
<210> 6
<211> 661
<212> PRT
<213> Homo sapiens
<400> 6
Met Gly Gly Val Pro Gly Ala Val Pro Gly Gly Val Pro Gly Gly Val
                                   10
Phe Tyr Pro Gly Ala Gly Phe Gly Ala Val Pro Gly Gly Val Ala Asp
           20
                               25
Ala Ala Ala Tyr Lys Ala Ala Lys Ala Gly Ala Gly Leu Gly Gly
        35
                           40
                                               45
Val Pro Gly Val Gly Gly Leu Gly Val Ser Ala Gly Ala Val Pro
    50
                       55
Gln Pro Gly Ala Gly Val Lys Pro Gly Lys Val Pro Gly Val Gly Leu
Pro Gly Val Tyr Pro Gly Phe Gly Ala Val Pro Gly Ala Arg Phe Pro
Gly Val Gly Val Leu Pro Gly Val Pro Thr Gly Ala Gly Val Lys Pro
```

APP ID=09743818 Page 13 of 41

105

100

Lys	Ala	Pro 115	Gly	Val	Gly	Gly	Ala 120	Phe	Ala	Gly	Ile	Pro 125	Gly	Val	Gly
Pro	Phe 130	Gly	Gly	Pro	Gln	Pro 135	Gly	Val	Pro	Leu	Gly 140	Tyr	Pro	Ile	Lys
Ala 145	Pro	Lys	Leu	Pro	Gly 150	Gly	Tyr	Gly	Leu	Pro 155	Tyr	Thr	Thr	Gly	Lys
Leu	Pro	Tyr	Gly	Tyr 165	Gly	Pro	Gly	Gly	Val 170	Ala	Gly	Ala	Ala	Gly 175	Lys
Ala	Gly	Tyr	Pro 180	Thr	Gly	Thr	Gly	Val 185	Gly	Pro	Gln	Ala	Ala 190	Ala	Ala
Ala	Ala	Ala 195	Lys	Ala	Ala	Ala	Lys 200	Phe	Gly	Ala	Gly	Ala 205	Ala	Gly	Phe
Gly	Ala 210	Val	Pro	Gly	Val	Gly 215	Gly	Ala	Gly	Val	Pro 220	Gly	Val	Pro	Gly
Ala 225	Ile	Pro	Gly	Ile	Gly 230	Gly	Ile	Ala	Gly	Val 235	Gly	Thr	Pro	Ala	Ala 240
Ala	Ala	Ala	Ala	Ala 245	Ala	Ala	Ala	Lys	Ala 250	Ala	Lys	Tyr	Gly	Ala 255	Ala
Ala	Gly	Leu	Val 260	Pro	Gly	Gly	Pro	Gly 265	Phe	Gly	Pro	Gly	Val 270	Val	Gly
Val	Pro	Gly 275	Phe	Gly	Ala	Val	Pro 280	Gly	Val	Gly	Val	Pro 285	Gly	Ala	Gly
Ile	Pro 290	Val	Val	Pro	Gly	Ala 295	Gly	Ile	Pro	Gly	Ala 300	Ala	Gly	Phe	Gly
Ala 305	Val	Ser	Pro	Glu	Ala 310	Ala	Ala	Lys	Ala	Ala 315	Ala	Lys	Ala	Ala	Lys 320
Tyr	Gly	Ala	Arg	Pro 325	Gly	Val	Gly	Val	Gly 330	Gly	Ile	Pro	Thr	Tyr 335	Gly
Val	Gly	Ala	Gly 340	Gly	Phe	Pro	Gly	Phe 345	Gly	Val	Gly	Val	Gly 350	Gly	Ile

APP_ID=09743818 Page 14 of 41

Pro	Gly	Val 355	Ala	Gly	Val	Pro	Ser 360	Val	Gly	Gly	Val	Pro 365	Gly	Val	Gly
Gly	Val 370	Pro	Gly	Val	Gly	Ile 375	Ser	Pro	Glu	Ala	Gln 380	Ala	Ala	Ala	Ala
Ala 385	Lys	Ala	Ala	Lys	Tyr 390	Gly	Val	Gly	Thr	Pro 395	Ala	Ala	Ala	Ala	Ala 400
Lys	Ala	Ala	Ala	Lys 405	Ala	Ala	Gln	Phe	Gly 410	Leu	Val	Pro	Gly	Val 415	Gly
Val	Ala	Pro	Gly 420	Val	Gly	Val	Ala	Pro 425	Gly	Val	Gly	Val	Ala 430	Pro	Gly
Val	Gly	Leu 435	Ala	Pro	Gly	Val	Gly 440	Val	Ala	Pro	Gly	Val 445	Gly	Val	Ala
Pro	Gly 450	Val	Gly	Val	Ala	Pro 455	Gly	Ile	Gly	Pro	Gly 460	Gly	Val	Ala	Ala
Ala 465	Ala	Lys	Ser	Ala	Ala 470	Lys	Val	Ala	Ala	Lys 475	Ala	Gln	Leu	Arg	Ala 480
Ala	Ala	Gly	Leu	Gly 485	Ala	Gly	Ile	Pro	Gly 490	Leu	Gly	Val	Gly	Val 495	Gly
Val	Pro	Gly	Leu 500	Gly	Val	Gly	Ala	Gly 505	Val	Pro	Gly	Leu	Gly 510	Val	Gly
Ala	Gly	Val 515	Pro	Gly	Phe	Gly	Ala 520	Val	Pro	Gly	Ala	Leu 525	Ala	Ala	Ala
Lys	Ala 530	Ala	Lys	Tyr	Gly	Ala 535	Val	Pro	Gly	Val	Leu 540	Gly	Gly	Leu	Gly
Ala 545	Leu	Gly	Gly	Val	Gly 550	Ile	Pro	Gly	Gly	Val 555	Val	Gly	Ala	Gly	Pro 560
Ala	Ala	Ala	Ala	Ala 565	Ala	Ala	Lys	Ala	Ala 570	Ala	Lys	Ala	Ala	Gln 575	Phe
Gly	Leu	Val	Gly 580	Ala	Ala	Gly	Leu	Gly 585	Gly	Leu	Gly	Val	Gly 590	Gly	Leu

APP_ID=09743818 Page 15 of 41

```
Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro Ala Ala Ala
                            600
        595
Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val Leu Gly
   610
                       615
Gly Ala Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg Pro Gly Phe
                                       635
625
                    630
Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys Ala Cys
                                    650
                645
Gly Arg Lys Arg Lys
          660
<210> 7
<211> 571
<212> PRT
<213> Homo sapiens
<400> 7
Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly Val Phe
               5
                                    10
Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu Gly Pro
Gly Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly
Leu Gly Ala Gly Leu Gly Ala Phe Pro Ala Val Thr Phe Pro Gly Ala
                        55
Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala
                    70
                                        75
65
Lys Ala Gly Ala Gly Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly
                                    90
                85
Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly Ala Gly Val Lys Pro
            100
                              105
                                                    110
Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
                                                125
       115
                            120
```

APP ID=09743818 Page 16 of 41

Leu Pro Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro Gly Val Pro

130 135 140

Thr 145	Gly	Ala	Gly	Val	Lys 150	Pro	Lys	Ala	Pro	Gly 155	Val	Gly	Gly	Ala	Phe 160
Ala	Gly	Ile	Pro	Gly 165	Val	Gly	Pro	Phe	Gly 170	Gly	Pro	Gln	Pro	Gly 175	Val
Pro	Leu	Gly	Tyr 180	Pro	Ile	Lys	Ala	Pro 185	Lys	Leu	Pro	Gly	Gly 190	Tyr	Gly
Leu	Pro	Tyr 195	Thr	Thr	Gly	Lys	Leu 200	Pro	Tyr	Gly	Tyr	Gly 205	Pro	Gly	Gly
Val	Ala 210	Gly	Ala	Ala	Gly	Lys 215	Ala	Gly	Tyr	Pro	Thr 220	Gly	Thr	Gly	Val
Gly 225	Pro	Gln	Ala	Ala	Ala 230	Ala	Ala	Ala	Ala	Lys 235	Ala	Ala	Ala	Lys	Phe 240
Gly	Ala	Gly	Ala	Ala 245	Gly	Val	Leu	Pro	Gly 250	Val	Gly	Gly	Ala	Gly 255	Val
Pro	Gly	Val	Pro 260	Gly	Ala	Ile	Pro	Gly 265	Ile	Gly	Gly	Ile	Ala 270	Gly	Val
Gly	Thr	Pro 275	Ala	Ala	Ala	Ala	Ala 280	Ala	Ala	Ala	Ala	Ala 285	Lys	Ala	Ala
Lys	Tyr 290	Gly	Ala	Ala	Ala	Gly 295	Leu	Val	Pro	Gly	Gly 300	Pro	Gly	Phe	Gly
Pro 305	Gly	Val	Val	Gly	Val 310	Pro	Gly	Ala	Gly	Val 315	Pro	Gly	Val	Gly	Val 320
Pro	Gly	Ala	Gly	Ile 325	Pro	Val	Val	Pro	Gly 330	Ala	Gly	Ile	Pro	Gly 335	Ala
Ala	Val	Pro	Gly 340	Val	Val	Ser	Pro	Glu 345	Ala	Ala	Ala	Lys	Ala 350	Ala	Ala

Pro Thr Tyr Gly Val Gly Ala Gly Gly Phe Pro Gly Phe Gly Val Gly

Lys Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val Gly Val Gly Gly Ile

360

355

365

370 375 380

Val Gly Gly Ile Pro Gly Val Ala Gly Val Pro Ser Val Gly Gly Val 385 390 395 400

Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala Gln 405 410 415

Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Val Gly Thr Pro Ala 420 425 430

Ala Ala Ala Lys Ala Ala Lys Ala Ala Gln Phe Gly Leu Val 435 440 445

Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly 450 455 460

Val Ala Pro Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly 465 470 475 480

Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Ile Gly Pro Gly 485 490 495

Gly Val Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala 500 505 510

Gln Leu Arg Ala Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly 515 520 525

Val Gly Val Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly 530 540

Leu Gly Val Gly Ala Gly Cys Ser Gly Phe Arg Cys Trp Arg Gly Arg 545 550 555 560

Arg Cys Thr Ser Phe Pro Val Ser Arg Thr Ala 565

<210> 8

<211> 9

<212> PRT

<213> Homo sapiens

<400> 8

Lys Ala Pro Gly Val Gly Gly Ala Phe 1

```
<210> 9
<211> 7
<212> PRT
<213> Homo sapiens
<400> 9
Arg Ala Ala Gly Leu Gly
<210> 10
<211> 11
<212> PRT
<213> Homo sapiens
<400> 10
Arg Ser Leu Ser Pro Glu Leu Arg Glu Gly Asp
               5
<210> 11
<211> 9
<212> PRT
<213> Homo sapiens
<400> 11
Lys Ala Ala Lys Ala Gly Ala Gly Leu
1 5
<210> 12
<211> 9
<212> PRT
<213> Homo sapiens
<400> 12
Lys Ala Gly Ala Gly Leu Gly Gly Val
               5
<210> 13
<211> 13
<212> PRT
<213> Homo sapiens
<400> 13
Ala Leu Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala
              5
<210> 14
<211> 11
<212> PRT
```

```
<213> Homo sapiens
<400> 14
Lys Ala Ala Gln Phe Gly Leu Val Pro Gly Val
<210> 15
<211> 11
<212> PRT
<213> Homo sapiens
<400> 15
Lys Ser Ala Ala Lys Val Ala Ala Lys Ala Gln
<210> 16
<211> 9
<212> PRT
<213> Homo sapiens
<400> 16
Arg Ser Leu Ser Pro Glu Leu Arg Glu
        5
<210> 17
<211> 8
<212> PRT
<213> Homo sapiens
<400> 17
Gly Gln Leu Arg Ala Ala Gly
<210> 18
<211> 8
<212> PRT
<213> Homo sapiens
<400> 18
Val Gln Leu Arg Ala Ala Gly
   5
<210> 19
<211> 8
<212> PRT
<213> Homo sapiens
<400> 19
Ile Gln Leu Arg Ala Ala Gly
```

APP ID=09743818

Page 20 of 41

```
1
            5
<210> 20
<211> 8
<212> PRT
<213> Homo sapiens
<400> 20
Leu Gln Leu Arg Ala Ala Gly
1 5
<210> 21
<211> 8
<212> PRT
<213> Homo sapiens
<400> 21
Ala Asn Leu Arg Ala Ala Gly
<210> 22
<211> 8
<212> PRT
<213> Homo sapiens
<400> 22
Ala Gly Leu Arg Ala Ala Gly
<210> 23
<211> 8
<212> PRT
<213> Homo sapiens
<400> 23
Ala Val Leu Arg Ala Ala Gly
<210> 24
<211> 8
<212> PRT
<213> Homo sapiens
<400> 24
Ala Ser Leu Arg Ala Ala Gly
<210> 25
```

<211> 8

```
<212> PRT
<213> Homo sapiens
<400> 25
Ala Gln Gly Arg Ala Ala Gly
<210> 26
<211> 8
<212> PRT
<213> Homo sapiens
<400> 26
Ala Gln Val Arg Ala Ala Gly
1 5
<210> 27
<211> 8
<212> PRT
<213> Homo sapiens
<400> 27
Ala Gln Ile Arg Ala Ala Gly
1 5
<210> 28
<211> 8
<212> PRT
<213> Homo sapiens
<400> 28
Ala Gln Ala Arg Ala Ala Gly
            5
<210> 29
<211> 8
<212> PRT
<213> Homo sapiens
<400> 29
Ala Gln Leu Arg Gly Ala Ala Gly
          5
<210> 30
<211> 8
<212> PRT
<213> Homo sapiens
<400> 30
```

APP ID=09743818 Page 22 of 41

```
Ala Gln Leu Arg Val Ala Ala Gly
<210> 31
<211> 8
<212> PRT
<213> Homo sapiens
<400> 31
Ala Gln Leu Arg Ile Ala Ala Gly
<210> 32
<211> 8
<212> PRT
<213> Homo sapiens
<400> 32
Ala Gln Leu Arg Leu Ala Ala Gly
<210> 33
<211> 8
<212> PRT
<213> Homo sapiens
<400> 33
Ala Gln Leu Arg Ala Gly Ala Gly
<210> 34
<211> 8
<212> PRT
<213> Homo sapiens
<400> 34
Ala Gln Leu Arg Ala Val Ala Gly
1 5
<210> 35
<211> 8
<212> PRT
<213> Homo sapiens
<400> 35
Ala Gln Leu Arg Ala Ile Ala Gly
1 5
<210> 36
```

```
<211> 8
<212> PRT
<213> Homo sapiens
<400> 36
Ala Gln Leu Arg Ala Leu Ala Gly
              5
<210> 37
<211> 8
<212> PRT
<213> Homo sapiens
<400> 37
Ala Gln Leu Arg Ala Ala Gly Gly
<210> 38
<211> 8
<212> PRT
<213> Homo sapiens
<400> 38
Ala Gln Leu Arg Ala Ala Val Gly
<210> 39
<211> 8
<212> PRT
<213> Homo sapiens
<400> 39
Ala Gln Leu Arg Ala Ala Ile Gly
<210> 40
<211> 8
<212> PRT
<213> Homo sapiens
<400> 40
Ala Gln Leu Arg Ala Ala Leu Gly
<210> 41
<211> 8
<212> PRT
<213> Homo sapiens
<400> 41
```

```
Ala Gln Leu Arg Ala Ala Ala Ala
1
<210> 42
<211> 8
<212> PRT
<213> Homo sapiens
<400> 42
Ala Gln Leu Arg Ala Ala Ile
1 5
<210> 43
<211> 8
<212> PRT
<213> Homo sapiens
<400> 43
Ala Gln Leu Arg Ala Ala Val
<210> 44
<211> 8
<212> PRT
<213> Homo sapiens
<400> 44
Ala Gln Leu Arg Ala Ala Leu
             5
<210> 45
<211> 8
<212> PRT
<213> Homo sapiens
<400> 45
Val Gly Gly Ala Leu Ala Ala Ala
          5
<210> 46
<211> 8
<212> PRT
<213> Homo sapiens
<400> 46
Gly Pro Gly Ala Leu Ala Ala Ala
```

5

```
<210> 47
<211> 8
<212> PRT
<213> Homo sapiens
<400> 47
Ile Pro Gly Ala Leu Ala Ala Ala
  5
<210> 48
<211> 8
<212> PRT
<213> Homo sapiens
<400> 48
Leu Pro Gly Ala Leu Ala Ala Ala
  5
<210> 49
<211> 8
<212> PRT
<213> Homo sapiens
<400> 49
Ala Pro Gly Ala Leu Ala Ala Ala
  5
<210> 50
<211> 8
<212> PRT
<213> Homo sapiens
<400> 50
Val Pro Gly Ala Leu Ala Ala Ala
<210> 51
<211> 8
<212> PRT
<213> Homo sapiens
<400> 51
Val Pro Ile Ala Leu Ala Ala Ala
<210> 52
<211> 8
<212> PRT
<213> Homo sapiens
```

```
<400> 52
Val Pro Leu Ala Leu Ala Ala Ala
<210> 53
<211> 8
<212> PRT
<213> Homo sapiens
<400> 53
Val Pro Val Ala Leu Ala Ala Ala
   5
<210> 54
<211> 8
<212> PRT
<213> Homo sapiens
<400> 54
Val Pro Gly Ala Gly Ala Ala Ala
           5
<210> 55
<211> 8
<212> PRT
<213> Homo sapiens
<400> 55
Val Pro Gly Ala Ile Ala Ala
1 5
<210> 56
<211> 8
<212> PRT
<213> Homo sapiens
<400> 56
Val Pro Gly Ala Ala Ala Ala Ala
1 5
<210> 57
<211> 8
<212> PRT
<213> Homo sapiens
<400> 57
Val Pro Gly Ala Val Ala Ala Ala
         5
```

```
<210> 58
<211> 8
<212> PRT
<213> Homo sapiens
<400> 58
Val Pro Gly Ala Leu Gly Ala Ala
<210> 59
<211> 8
<212> PRT
<213> Homo sapiens
<400> 59
Val Pro Gly Ala Leu Ile Ala Ala
<210> 60
<211> 8
<212> PRT
<213> Homo sapiens
<400> 60
Val Pro Gly Ala Leu Leu Ala Ala
<210> 61
<211> 8
<212> PRT
<213> Homo sapiens
<400> 61
Val Pro Gly Ala Leu Val Ala Ala
<210> 62
<211> 8
<212> PRT
<213> Homo sapiens
<400> 62
Val Pro Gly Ala Leu Ala Gly Ala
          5
<210> 63
<211> 8
<212> PRT
<213> Homo sapiens
```

```
<400> 63
Val Pro Gly Ala Leu Ala Ile Ala
1 5
<210> 64
<211> 8
<212> PRT
<213> Homo sapiens
<400> 64
Val Pro Gly Ala Leu Ala Leu Ala
1 5
<210> 65
<211> 8
<212> PRT
<213> Homo sapiens
<400> 65
Val Pro Gly Ala Leu Ala Val Ala
<210> 66
<211> 8
<212> PRT
<213> Homo sapiens
<400> 66
Val Pro Gly Ala Leu Ala Ala Ala
<210> 67
<211> 8
<212> PRT
<213> Homo sapiens
<400> 67
Val Pro Gly Ala Leu Ala Ala Gly
<210> 68
<211> 8
<212> PRT
<213> Homo sapiens
<400> 68
Val Pro Gly Ala Leu Ala Ala Ile
```

```
<210> 69
<211> 8
<212> PRT
<213> Homo sapiens
<400> 69
Val Pro Gly Ala Leu Ala Ala Leu
         5
<210> 70
<211> 8
<212> PRT
<213> Homo sapiens
<400> 70
Val Pro Gly Ala Leu Ala Ala Val
               5
<210> 71
<211> 515
<212> PRT
<213> Homo sapiens
<400> 71
Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly Val Phe
               5
                                   10
Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu Gly Pro
           20
                               25
Gly Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly
       35
Leu Gly Ala Gly Leu Gly Ala Phe Pro Ala Val Thr Phe Pro Gly Ala
                       55
Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Tyr Lys Ala Ala
                   70
                                       75
Lys Ala Gly Ala Gly Leu Gly Gly Val Pro Gly Val Gly Leu Gly
               85
Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly Ala Gly Val Lys Pro
           100
                               105
                                                   110
Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
```

Page 30 of 41

115 120 125

Leu Pro Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro Gly Val Pro 130 135 140

Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala Phe 145 150 155 160

Ala Gly Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val 165 170 175

Pro Leu Gly Tyr Pro Ile Lys Ala Pro Lys Leu Pro Gly Gly Tyr Gly 180 185 190

Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro Gly Gly
195 200 205

Val Ala Gly Ala Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr Gly Val 210 215 220

Gly Pro Gln Ala Ala Ala Ala Ala Ala Ala Lys Ala Ala Lys Phe 225 230 235 240

Gly Ala Gly Ala Gly Val Leu Pro Gly Val Gly Gly Ala Gly Val
245 250 255

Pro Gly Val Pro Gly Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val 260 265 270

Lys Tyr Gly Ala Ala Ala Gly Leu Val Pro Gly Gly Pro Gly Phe Gly 290 295 300

Pro Gly Val Val Gly Val Pro Gly Ala Gly Val Pro Gly Val Gly Val 305 310 315

Pro Gly Ala Gly Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala 325 330 335

Ala Val Pro Gly Val Val Ser Pro Glu Ala Ala Ala Lys Ala Ala Ala 340 345 350

Lys Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val Gly Val Gly Ile

355 360 365

Pro Thr Tyr Gly Val Gly Ala Gly Gly Phe Pro Gly Phe Gly Val Gly 370 375 380

Val Gly Gly Ile Pro Gly Val Ala Gly Val Pro Ser Val Gly Gly Val 385 390 395 400

Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala Gln 405 410 415

Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Val Gly Thr Pro Ala 420 425 430

Ala Ala Ala Lys Ala Ala Lys Ala Ala Gln Phe Gly Leu Val 435 440 445

Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly 450 455 460

Val Ala Pro Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly 465 470 475 480

Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Ile Gly Pro Gly
485
490
495

Gly Val Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala 500 505 510

Gln Leu Arg 515

<210> 72

<211> 49

<212> PRT

<213> Homo sapiens

<400> 72

Ala Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val 1 5 10 15

Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Leu Gly Val
20 25 30

Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala Asp Glu Gly Val Arg 35 40 45 Arg

<210> 73 <211> 171 <212> PRT <213> Homo sapiens <400> 73 Gly Val Arg Arg Ser Leu Ser Pro Glu Leu Arg Glu Gly Asp Pro Ser Ser Ser Gln His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val Pro Gly 20 25 Ala Leu Ala Ala Lys Ala Lys Tyr Gly Ala Ala Val Pro Gly 40 Val Leu Gly Gly Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly 50 55 Val Val Gly Ala Gly Pro Ala Ala Ala Ala Ala Ala Ala Lys Ala Ala 70 Ala Lys Ala Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly 95 Leu Gly Val Gly Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly 120 Leu Gly Gly Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly Val 130 Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala 145 150 155 160 Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys

<210> 74 <211> 183

<212> PRT

\Z12> LIKI

165

```
<213> Homo sapiens
<400> 74
Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val
Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Leu Gly Val
                               25
Gly Ala Gly Val Pro Gly Phe Gly Ala Val Pro Gly Ala Leu Ala Ala
                            40
Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly Gly
    50
                       55
                                            60
Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly Val Val Gly Ala
Gly Pro Ala Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala
Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly Leu Gly Val Gly
Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro Ala
Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val
    130
                       135
                                           140
Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg Pro
                   150
                                       155
Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys
               165
                                   170
Ala Cys Gly Arg Lys Arg Lys
           180
<210> 75
```

<210> 75 <211> 18 <212> PRT <213> bovine tropoelastin <400> 75

Val Pro Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Gly Gly Gly

APP_ID=09743818 Page 34 of 41

```
5
                                10
                                                    15
Ala Phe
<210> 76
<211> 17
<212> PRT
<213> mouse tropoelastin
<400> 76
Val Pro Thr Gly Thr Gly Val Lys Ala Lys Ala Pro Gly Gly Gly Ala
               5
Phe
<210> 77
<211> 18
<212> PRT
<213> bovine elastin
<400> 77
Val Pro Thr Gly Ala Gly Val Lys Pro Lys Ala Gln Val Gly Ala Gly
    5
                              10
Ala Phe
<210> 78
<211> 16
<212> PRT
<213> rat tropoelastin
<400> 78
Val Pro Thr Gly Thr Gly Val Lys Ala Lys Val Pro Gly Gly Gly
              5
                                 10
<210> 79
<211> 15
<212> PRT
<213> chicken tropoelastin
<400> 79
Val Pro Thr Gly Thr Gly Ile Lys Ala Lys Gly Pro Gly Ala Gly
              5
```

APP ID=09743818

<210> 80

```
<211> 17
<212> PRT
<213> mouse tropoelastin
<400> 80
Lys Ala Ala Ala Lys Ala Gln Tyr Arg Ala Ala Gly Leu Gly Ala
                                  10
Gly
<210> 81
<211> 17
<212> PRT
<213> bovine elastin
<400> 81
Lys Ala Ala Ala Lys Ala Gln Phe Arg Ala Ala Gly Leu Pro Ala
                                 10
Gly
<210> 82
<211> 20
<212> PRT
<213> Artificial
<220>
<223> tropoelastin consensus sequence
<220>
<221> MISC_FEATURE <222> (9)..(9)
<223> IS AN AROMATIC OR HYDROPHOBIC RESIDUE
<220>
<221> MISC FEATURE
<222> (16)..(16)
<223> can be either Pro or Gly
<220>
<221> MISC_FEATURE
<222> (19)..(19)
<223> is a hydrophobic residue
<400> 82
Ala Lys Ala Ala Lys Ala Gln Xaa Arg Ala Ala Gly Leu Xaa
               5
                          10 . 15
```

Ala Gly Xaa Pro

20

```
<210> 83
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)..(8)
<223> there is a reduced peptide bond between Arg and Ala
<400> 83
Ala Ala Lys Ala Gln Leu Arg Ala Ala Ala Gly Leu Gly Ala
<210> 84
<211> 14
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)..(8)
<223> there is a reduced peptide bond between Ala and Arg
<400> 84
Ala Gly Leu Gly Ala Ala Ala Arg Leu Gln Ala Lys Ala Ala
<210> 85
<211> 14
<212> PRT
<213> Homo sapiens
<400> 85
Ala Gly Leu Gly Ala Ala Ala Arg Leu Gln Ala Lys Ala Ala
               5
<210> 86
<211> 8
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222>
      (4)..(5)
<223>
      there is a reduced peptide bond between Ala and Leu
<400> 86
```

```
Val Pro Gly Ala Leu Ala Ala Ala
<210> 87
<211> 8
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (4)..(5)
<223> there is a reduced peptide bond between Leu and Ala
<400> 87
Ala Ala Leu Ala Gly Pro Val
<210> 88
<211> 8
<212> PRT
<213> Homo sapiens
<400> 88
Ala Ala Leu Ala Gly Pro Val
1 5
<210> 89
<211> 30
<212> DNA
<213> Artificial
<220>
<223> mutagenic primer
<400> 89
cgggtttcgg tgctgttccg ggcgcgctgg
                                                                   30
<210> 90
<211> 20
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 90
                                                                   20
gggtgttggc gttgcaccag
<210> 91
<211> 20
<212> DNA
```

Page 38 of 41

```
<213> Artificial
<220>
<223> primer
<400> 91
                                                                    20
tgcacctaca acaccgcccg
<210> 92
<211> 20
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 92
                                                                    20
tgcctttgcc ggtttgtacg
<210> 93
<211> 20
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 93
                                                                    20
tccaggtggc tacggtctgc
<210> 94
<211> 21
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 94
                                                                    21
gagtacctac gcctgcgata c
<210> 95
<211> 20
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 95
                                                                    20
ggagtaccaa cgccgtactt
<210> 96
<211> 20
<212> DNA
```

Page 39 of 41

APP_ID=09743818

```
<213> Artificial
 <220>
 <223> primer
 <400> 96
                                                                       20
 gggtgttggc gttgcaccag
 <210> 97
 <211> 20
 <212> DNA
 <213> Artificial
 <220>
 <223> primer
 <400> 97
                                                                       20
 tgcacctaca acaccgcccg
 <210> 98
 <211> 20
 <212> DNA
 <213> Artificial
 <220>
 <223> primer
 <400> 98
                                                                       20
 gcactcacta tagggagacc
 <210> 99
 <211> 20
 <212> DNA
 <213> Artificial
 <220>
 <223> primer
 <400> 99
                                                                       20
 gccaactcag cttcctttcg
 <210> 100
 <211> 20
<212> DNA
<213> Artificial
 <220>
 <223> primer
 <400> 100
                                                                      20
 taatacgact cactataggg
 <210> 101
 <211> 15
 <212> PRT
```

Page 40 of 41

```
<213> Homo sapiens
<400> 101
Val Val Gly Ser Pro Ser Ala Gln Asp Glu Ala Ser Pro Leu Ser
<210> 102
<211> 10
<212> PRT
<213> Homo sapiens
<400> 102
Lys Ala Ala Lys Ala Gly Ala Gly Leu
             5
<210> 103
<211> 12
<212> PRT
<213> Homo sapiens
<400> 103
Ala Leu Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala
<210> 104
<211> 11
<212> PRT
<213> Homo sapiens
<400> 104
Lys Ala Ala Gln Phe Gly Leu Val Pro Gly Val
1 5
<210> 105
<211> 18
<212> PRT
<213> Homo sapiens
<400> 105
Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly Phe Tyr
1 5
                       10
Pro Gly
```

APP_ID=09743818 Page 41 of 41