2.2 Properties of Point Estimators - Sufficiency and Consistency

Steven Cheung 15 February 2022

Desired Properties of Point Estimators

- unbiasedness
- efficiency (minimal variance)
- sufficiency
- consistency

Recap: Conditional Probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $P(B) \neq 0$ If P(B) > 0, then $P(A \cap B) = P(B)P(A|B)$ P(A) > 0, then $P(A \cap B) = P(A)P(B|A)$

Definition:

Let X_1, \ldots, X_n be a random sample from a probability distribution with unknow parameter θ . Then the statistics $U = u(X_1, \ldots, X_n)$ is said to be <u>sufficient</u> for θ if the conditional p.d.f $f_X(X_1, \ldots, X_n | U = u(x_1, \ldots, x_n))$ (or $pmf\ p_X(X_1, \ldots, X_n | U = u(x_1, \ldots, x_n))$) does not depend on θ for any value of $u(x_1, \ldots, x_n)$.

An estimator $\hat{\theta}$ that is a function of a sufficient statistic for θ is said to be a <u>sufficience estimator</u> of θ

Theorem (Neyman-Fischer Factorization Criteria):

Let $\hat{\theta} = u(X_1, \dots, X_n)$ be a statistic based on the random sample X_1, \dots, X_n .

 $\hat{\theta}$, sufficient statistic for $\theta \Leftrightarrow$ discrete joint pmf $p_X(x_1, \ldots, x_n, \theta)$ can be factored into two non-negative functions.

$$L(\hat{\theta}) = p_X(x_1, \dots, x_n, \theta) = g(u(x_1, \dots, x_n), \theta) \cdot h(x_1, \dots, x_n)$$
for all x_1, \dots, x_n

Definition:

A sequence of random variables X_1, \ldots, X_n , converges in probability to a random variable X if for every $\epsilon > 0$

$$\lim_{n\to\infty} P(|X_n-X|<\epsilon)=1 \Leftrightarrow \lim_{n\to\infty} P(|X_n-X|\geq\epsilon)=0$$
 denoted as $X_n\to^p X$

Definition:

A sequence $\hat{\theta_n} = u(X_1, \dots, X_n)$, $n = 1, 2, 3, \dots$ is said to be <u>consistent sequence of estimators</u> for θ if it converges in probability to θ i.e for $\epsilon > 0$

$$\lim_{n\to\infty} P(|\hat{\theta}_n - \theta| < \epsilon) = 1$$

Consistency means that the probability of our estimator being with some small ϵ -interval of θ can be made as close to one as we liked making sure the sample size of n sufficiently large.

Theorem (Weak Law of Large Numbers):

Let X_1, \ldots, X_n be i.i.d random variables with $E(X_i) = \mu$ and $var(X_i) = \sigma^2 < \infty$. Define $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then for every $\epsilon > 0$

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| < \epsilon) = 1$$

that is, \bar{X}_n converges in probability to μ .