Unconstrained Optimization: Search Directions

AE 6310: Optimization for the Design of Engineered Systems

Spring 2017

Dr. Glenn Lightsey

Lecture Notes Developed By Dr. Brian German

Search Directions

Now that we have discussed how to search along a given line, we need to understand how to choose search directions.

Consider a first-order Taylor series expansion of the function f(x) along a search direction in the neighborhood of the point x_{k-1} (the initial point of our line search):

$$f(\mathbf{x}_{k-1} + \alpha \mathbf{s}_k) = f(\mathbf{x}_{k-1}) + \alpha \mathbf{s}_k^T \nabla f(\mathbf{x}_{k-1})$$

 s_k is the search direction, which is typically chosen to obey $||s_k|| = 1$.

Descent Directions

The rate of change of *f* along the search direction is therefore,

$$\frac{df(\mathbf{x})}{d\alpha} = \mathbf{s}_{k}^{T} \nabla f(\mathbf{x}_{k-1})$$

We typically seek to find a *descent direction*, i.e. one that decreases the value of the objective function for positive α .

The condition for a descent direction is,

$$\frac{df(\mathbf{x})}{d\alpha} = \mathbf{s}_{k}^{T} \nabla f(\mathbf{x}_{k-1}) < 0$$

Descent Directions

We can also write this as

$$\mathbf{s}_{k}^{T} \nabla f(\mathbf{x}_{k-1}) = \|\mathbf{s}_{k}\| \cdot \|\nabla f(\mathbf{x}_{k-1})\| \cos \theta < 0$$

where θ is the angle between the vectors s_k and $\nabla f(x_{k-1})$.

Since the vector norms $\|s_k\|$ and $\|\nabla f(x_{k-1})\|$ are positive, we require $\cos \theta < 0$.

$$\cos \theta < 0 \Rightarrow \pi/2 < \theta < 3\pi/2$$

Descent Directions

We can visualize the situation as follows:

A descent direction forms an acute angle with $-\nabla f(x_{k-1})$.

Steepest Descent Direction

The direction of most rapid decrease in f(x) in a small neighborhood around x_{k-1} can be found through the problem,

$$\min_{\boldsymbol{s_k}} \ \boldsymbol{s_k}^T \nabla f(\boldsymbol{x_{k-1}})$$
 subject to $\|\boldsymbol{s_k}\| = 1$

Since $\mathbf{s}_k^T \nabla f(\mathbf{x}_{k-1}) = \|\mathbf{s}_k\| \cdot \|\nabla f(\mathbf{x}_{k-1})\| \cos \theta$, the problem is solved for the value of \mathbf{s}_k for which $\theta = \pi$ and $\|\mathbf{s}_k\| = 1$:

$$s_{k} = \frac{-\nabla f(x_{k-1})}{\|\nabla f(x_{k-1})\|}$$

Newton Directions

Consider now a *second-order* Taylor series of the form,

$$f(\mathbf{x}_{k-1} + \mathbf{s}_k) = f(\mathbf{x}_{k-1}) + \mathbf{s}_k^T \nabla f(\mathbf{x}_{k-1})$$
$$+ \frac{1}{2} \mathbf{s}_k^T H(\mathbf{x}_{k-1}) \mathbf{s}_k$$

This is a quadratic approximation in the neighborhood of x_{k-1} . Note that α does not appear; this implies that $\alpha = 1$.

If the Hessian is positive definite, we can find a search direction that points directly toward the minimum point of this quadratic approximation.

Newton Directions

To do this, we take the derivative of the function with respect to s_k and set it equal zero,

$$\frac{df(\mathbf{x}_{k-1} + \mathbf{s}_k)}{d\mathbf{s}_k} = \nabla f(\mathbf{x}_{k-1}) + H(\mathbf{x}_{k-1}) \, \mathbf{s}_k = \mathbf{0}$$

We can then solve for s_k to obtain,

$$s_k = -[H(x_{k-1})]^{-1} \nabla f(x_{k-1})$$

This s_k is called the **Newton search direction**.

Newton Directions

When $H(x_{k-1})$ is positive definite, the Newton direction is a descent direction.

When $H(x_{k-1})$ is not positive definite, we can have two problems:

- $* [H(x_{k-1})]^{-1}$ may not exist
- \Leftrightarrow Even if $[H(x_{k-1})]^{-1}$ exists, the Newton direction may not define a descent direction

Algorithms that use Newton's method to determine search directions incorporate ways to modify s_k to deal with these problems.

An advantage of using a Newton direction is that convergence is faster (of second-order). However, the Hessian is expensive to calculate.

A common approach is therefore to approximate the Hessian and then find a quasi-Newton search direction. Quasi-Newton methods are sometimes called "variable metric" methods.

To see how this works, let's begin by creating a first-order Taylor series expansion for the gradient:

$$\nabla f(x_k) = \nabla f(x_{k-1}) + H(x_{k-1})[x_k - x_{k-1}]$$

We can rearrange this equation as,

$$H(\boldsymbol{x_{k-1}})[\boldsymbol{x_k} - \boldsymbol{x_{k-1}}] = \nabla f(\boldsymbol{x_k}) - \nabla f(\boldsymbol{x_{k-1}})$$

This expression is of the form,

$$B_k \boldsymbol{p_{k-1}} = \boldsymbol{y_{k-1}}$$

where B_k is the Hessian (or Hessian-like) matrix and,

$$p_{k-1} = x_k - x_{k-1}$$

$$y_{k-1} = \nabla f(x_k) - \nabla f(x_{k-1})$$

Quasi-newton methods work by developing approximations for $B_k \approx H(x_{k-1})$ by enforcing the relation,

$$B_k \boldsymbol{p_{k-1}} = \boldsymbol{y_{k-1}}$$

that holds for the true Hessian $H(x_{k-1})$.

The approximations typically enforce additional constraints on B_k :

- riangle Symmetry because $H(x_{k-1})$ is symmetric
- **\Leftrightarrow** Low rank of the matrix $[B_k B_{k-1}]$ implies few rows of the Hessian change in each iteration

A common approach for generating the approximation B_k is the Broyden, Fletcher, Goldfarb, Shanno (BFGS) update formula:

$$B_{k+1} = B_k + \frac{(\boldsymbol{y_k} - B_k \boldsymbol{p_k})(\boldsymbol{y_k} - B_k \boldsymbol{p_k})^T}{(\boldsymbol{y_k} - B_k \boldsymbol{p_k})^T \boldsymbol{p_k}}$$

Set $B_1 = I$ (identity matrix) such that the initial search direction is steepest descent.

Once the approximation B_k has been found, we can use it to define the search direction in a similar way that we used the Hessian to define a Newton direction:

Newton direction:

$$s_k = -[H(x_{k-1})]^{-1} \nabla f(x_{k-1})$$

Quasi-Newton direction:

$$\mathbf{s}_{k} = -B_{k}^{-1} \nabla f(\mathbf{x}_{k-1})$$

Since only B_k^{-1} is needed to define the search direction, some methods compute it directly, without the step of computing B_k

Conjugate Directions

Let A be an $n \times n$ symmetric matrix. A set of n vectors (or directions) $\{s_i\}$ is said to be conjugate with respect to the matrix A if,

$$\mathbf{s}_{i}^{T}A\mathbf{s}_{j}=0$$

for all $i \neq j$, i = 1, ..., n, j = 1, ..., n.

Conjugate Directions

Consider a quadratic function: $f(x) = 1/2 x^T A x + b^T x + c$

- \star Draw a line from a point x_a in a direction s.
- These first two lines are parallel. \mathbf{x}_b Draw a 2nd line from a point \mathbf{x}_b in the same direction \mathbf{s} .
- Find the minimum along each line and call these points x_a^* and x_b^*
- ❖ The direction $(x_b^* x_a^*)$ is conjugate to the direction s with respect to the matrix A.

 x_1

Adapted from Rao, S., Engineering Optimization: Theory and Practice, 3rd Edition, Wiley Interscience, 1996.

Conjugate Directions

Note that mutually perpendicular directions (such as the coordinate directions) are conjugate with respect to the identity matrix, I_n .

Conjugate Directions: So What?

The wonder of conjugate directions is the following theorem, quoted from (Rao, 1996), which we state without proof:

Theorem: If a quadratic function $f(x) = 1/2 x^T Ax + b^T x + c$ is minimized sequentially, once along each direction of a set of n mutually conjugate directions, the minimum of the function f(x) will be found at or before the nth step, irrespective of the starting point.

Rao, S., Engineering Optimization: Theory and Practice, 3rd Edition, Wiley Interscience, 1996.

