Videy

Completitud de PR

· Queremos prober que R es completo

Recuer ob:

Definición:

Un especio métrico (E,d) se dice completo si tode sucesión de Cauchy es convergente a un punto XEE.

- Si $(x_n)_n$ es de Cauchy, entonces es acotada.
- Si $(x_n)_n$ es de Cauchy y tiene <u>alguna</u> subsucesión convergente, entonces $(x_n)_n$ es convergente.

I dea:

- Si $(x_n)_n$ es una sucesión de Cauchy, entonces es acotada.
- Veremos que toda sucesión acotada en ℝ tiene una subsucesión convergente.
- Entonces, (x_n)_n es de Cauchy y tiene subsucesión convergente.
- $(x_n)_n$ converge.

Proposición

Toda sucesión acotada en $\ensuremath{\mathbb{R}}$ tiene una subsucesión convergente.

Vamos a probar

Proposición

Toda sucesión en $\mathbb R$ tiene una subsucesión monótona.

Recordemos: Las sucesiones monótonas y acotadas convergen.

Luego, si una sucesión es acotada, la subsucesión monótona que tiene también va a ser acotada y por lo tanto, convergente.

Vamos a propos

Proposición

Toda sucesión en $\mathbb R$ tiene una subsucesión monótona.

Uzendo

Definición

Sea $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}$. Decimos que $m \in \mathbb{N}$ es un punto cumbre de $(x_n)_{n \in \mathbb{N}}$ si $\forall n > m$ se tiene $x_n < x_m$.

Sique hacia

Si

$$C = \{ m \in \mathbb{N} : m \text{ es punto cumbre de } (\chi_n)_n \} \subseteq \mathbb{N}$$

Venos e prober

Proposición

Toda sucesión en $\mathbb R$ tiene una subsucesión monótona.

Dem:

$$C = \{ m \in \mathbb{N} : m \text{ ex puto combre de } (\chi_n)_n \} \subseteq \mathbb{N}$$

· A C le puede parar 3 coras:

$$3 C = \phi$$

Suporgo [1]

Afirmo:

·
$$(X_{n_k})_k$$
 subsuc. de $(X_n)_n$ es monótors decreciente.

En electo:

$$\Rightarrow$$
 $\times_{n_{k+1}} \langle \times_{n_k}$

Sez no el elemento más grande de C

$$\Rightarrow$$
 $\alpha_n < \alpha_{n_0} \forall_{n \geqslant n_0}$

 $\exists n_1 > n_0 + 1 / \alpha_{n_1} \geqslant \alpha_{n_0 + 1}$ Pues no+1 & C, pues no era el pto combre més "a la derecha", ano
la anoti debe sermonor à ano
la que le siguer, son
mayorer à igueler en
algún momento, sino serian tembre pto cumbre d zido $\exists n_2 > n_1 + 1 / \alpha_{n_2} \ge \alpha_{n_1 + 1}$ Pres ni+1 & C $\exists n_k > n_{k-1} + 1 / \alpha n_k \geqslant \alpha_{n_{k-1}} + 1$

(ank) k subsuc. Le (an) n monó tons creciente.

y ari construis:

Si pesa 3

Repetimor el argumento de Z

- · Tomo el primer az
- · Como no hay pentos cumbre,

 $\exists n_1 > 1 / \alpha_{n_1} \geqslant \alpha_1$

Como no hay puntos combre,

In2 > n1+1 / an2 > an1+1

y esí sigo construyendo una sucesión monótona creciente

=> (ank) es monó to no oreciente.

Pero cedo ke N, pres $C = \phi = > (\alpha_n)_n = (\alpha_{nk})_k$

Wh

Con esto probemos le completitud de R,

Bonus Track

Rm también es completo.

Dem

Sea
$$(\chi_n)_n \subseteq \mathbb{R}^m$$

Si
$$(\chi_n)_n$$
 er de Cauchy en \mathbb{R}^m

con
$$d(x, y) = ||x - y||_2$$

Como

$$|\chi_n^i - \chi_{n'}^i| \leq |\chi_n - \chi_n^i|$$

$$\Rightarrow$$
 $(\chi_n^i)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ es de Cauchy \forall $1\leq j\leq m$

Cono R es completo

$$\exists \times^{i} \in \mathbb{R} / \chi_{n}^{i} \longrightarrow \chi_{n}^{i}$$

$$=>$$
 $\times = (x^1, x^2, ..., x^m)$ es el l'nite de $(x_n)_n$.