Summary | Real Analysis

Introduction— |

 $| \land | \text{ and } | | \lor | \text{ or } | \rightarrow | \text{ then } | \implies | \text{ implies } | \Leftarrow | \text{ implied by } | \iff | \text{ if and only if } |$ $\forall | \text{ for all } | \exists | \text{ there exists } | \sim | \text{ not } |$

Let's take $a \rightarrow b$.

- 1. Contrapositive or transposition: $\sim b
 ightarrow \sim a$. This is equivalent to the original.
- 2. Inverse: $\sim a
 ightarrow \sim b$. Does not depend on the original.
- 3. Converse: b
 ightarrow a . Does not depend on the original.

$$a \rightarrow b \equiv \sim a \lor b \equiv \sim b \rightarrow \sim a$$

Examples

- $oldsymbol{\cdot} \sim orall x P(x) \equiv \exists x \sim P(x)$
- $\cdot \sim \exists x P(x) \equiv \forall x \sim P(x)$
- $\exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$
- $\forall x \forall y P(x,y) \equiv \forall y \forall x P(x,y)$
- $\cdot \exists x \forall y P(x,y) \implies \forall y \exists x P(x,y)$
- $(A \rightarrow C) \land (B \rightarrow C) \equiv (A \lor B) \rightarrow C$

Methods of proofs

- 1. Just proof what should be proven
- 2. Prove the contrapositive.
- 3. Proof by contradiction

Proof by contradiction

Let's say we have to prove: $a \implies b$. We will prove $a \land \sim b$ to be false. Then by proof by contradiction, we can prove $a \implies b$.

Proof of proof by contradiction

$$egin{aligned} a \wedge \sim b &= F \ &\sim (a \wedge \sim b) = \sim F \ &\sim a ee b = T \ &a &\Longrightarrow b \end{aligned}$$

Set theory

Zermelo-Fraenkel set theory with axiom of Choice(ZFC):9 axioms all together is being used here.

Definitions

- $x \in A^{c} \iff x \notin A$
- $x \in A \cup B \iff x \in A \lor x \in B$
- $x \in A \cap B \iff x \in A \land x \in B$
- $A \subset B = \forall x (x \in A \implies x \in B)$
- $A-B=A\cap B^{c}$
- $\bullet \ \ A = B \iff ((\forall z \in A \implies z \in B) \land (\forall z \in B \implies z \in A))$

Required proofs

- $(A \cap B)^c = A^c \cup B^c$
- $(A \cup B)^{\operatorname{c}} = A^{\operatorname{c}} \cap B^{\operatorname{c}}$
- $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $A \subset A \cup B$
- $A \cap B \subset A$

Set of Numbers

Sets of numbers

- Positive integers: $\mathbb{Z}^+ = \{1,2,3,4,\dots\}$.

• Natural integers: $\mathbb{N} = \{0,1,2,3,4,\dots\}$.

- Negative integers: $\mathbb{Z}^- = \{-1, -2, -3, -4, \dots\}$.

• Integers: $\mathbb{Z}=\mathbb{Z}^-\cup\{0\}\cup\mathbb{Z}^+$.

• Rational numbers: $\mathbb{Q}=\left\{rac{p}{q}\Big|q
eq0\land p,q\in\mathbb{Z}
ight\}$.

• Irrational numbers: limits of sequences of rational numbers (which are not rational numbers)

• Real numbers: $\mathbb{R}=\mathbb{Q}^c\cup\mathbb{Q}$.

Complex numbers are not part of the study here.

Continued Fraction Expansion

The process

- · Separate the integer part
- Find the inverse of the remaining part. Result will be greated than 1.
- Repeat the process for the remaining part.

Finite expansion

Take $\frac{420}{69}$ for example.

$$\frac{420}{69} = 6 + \frac{6}{69}$$

$$\frac{420}{69} = 6 + \frac{1}{\frac{69}{6}}$$

$$\frac{420}{69} = 6 + \frac{1}{11 + \frac{3}{6}}$$

$$\frac{420}{69} = 6 + \frac{1}{11 + \frac{1}{2}}$$

As $\frac{420}{69}$ is finite, its continued fraction expansion is also finite. And it can be written as $\frac{420}{69} = [6;11,2]$.

Infinite expansion

For irrational numbers, the expansion will be infinite.

For example π :

$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292 + \cdots}}}}$$

Conintued fraction expansion of π is $[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,\ldots]$.

Field Axioms

Field Axioms of ${\mathbb R}$

 $\mathbb{R}
eq \emptyset$ with two binary operations + and \cdot satisfying the following properties

- 1. Closed under addition: $\forall a,b \in \mathbb{R}; a+b \in \mathbb{R}$
- 2. Commutative: $\forall a,b \in \mathbb{R}; a+b=b+a$
- 3. Associative: $orall a,b,c\in\mathbb{R}; (a+b)+c=a+(b+c)$
- 4. Additive identity: $\exists 0 \in \mathbb{R} \, orall a \in \mathbb{R}; a+0=0+a=a$
- 5. Additive inverse: $\forall a \in \mathbb{R} \, \exists (-a); a+(-a)=(-a)+a=0$
- 6. Closed under multiplication: $\forall a,b \in \mathbb{R}; a \cdot b \in \mathbb{R}$
- 7. Commutative: $\forall a,b \in \mathbb{R}; a \cdot b = b \cdot a$
- 8. Associative: $orall a,b,c\in\mathbb{R}; (a\cdot b)\cdot c=a\cdot (b\cdot c)$
- 9. Multiplicative identity: $\exists 1 \in \mathbb{R} \, orall a \in \mathbb{R}; a \cdot 1 = 1 \cdot a = a$
- 10. Multiplicative inverse: $orall a \in \mathbb{R} \{0\} \, \exists a^-; a \cdot a^- = a^- \cdot a = 1$
- 11. Multiplication is distributive over addition: $a \cdot (b+c) = a \cdot b + a \cdot c$

(i) Field

Any set satisfying the above axioms with two binary operations (commonly + and \cdot) is called a **field**. Written as $(\mathbb{R}, +, \cdot)$ is a **Field**. But $(\mathbb{R}, \cdot, +)$ is not a **field**.

Required proofs

The below mentioned propositions can and should be proven using the above-mentioned axioms. $a,b,c\in\mathbb{R}$.

- $a \cdot 0 = 0$ Hint: Start with a(1+0)
- 1 ≠ 0
- Additive identity ($\mathbf{0}$) is unique
- Multiplicative identity (${f 1}$) is unique
- Additive inverse (-a) is unique for a given $\,a$
- Multiplicative inverse (a^{-1}) is unique for a given a

•
$$a+b=0 \implies b=-a$$

•
$$a+c=b+c \implies a=b$$

•
$$-(a+b) = (-a) + (-b)$$

•
$$-(-a)=a$$

•
$$ac = bc \implies a = b$$

•
$$ab = 0 \implies a = 0 \lor b = 0$$

$$\cdot \ -(ab) = (-a)b = a(-b)$$

•
$$(-a)(-b) = ab$$

$$a \neq 0 \implies (a^{-1})^{-1} = a$$

•
$$a, b \neq 0 \implies ab^{-1} = a^{-1}b^{-1}$$

Field or Not?

	Is field?	Reason (if not)
$(\mathbb{R},+,\cdot)$	True	
$(\mathbb{R},\cdot,+)$	False	Axiom 11 is invalid
$(\mathbb{Z},+,\cdot)$	False	Multiplicative inverse doesn't exist

	Is field?	Reason (if not)
$(\mathbb{Q},+,\cdot)$	True	
$(\mathbb{Q}^c,+,\cdot)$	False	$\sqrt{2}\cdot\sqrt{2} otin\mathbb{Q}^c$
Boolean algebra	False	Additive inverse doesn't exist
$(\{0,1\}, + \bmod 2, \cdot \bmod 2)$	True	
$(\{0,1,2\}, + \bmod 3, \cdot \bmod 3)$	True	
$(\{0,1,2,3\}, + \bmod 4, \cdot \bmod 4)$	False	Multiplicative inverse doesn't exist

Completeness Axiom

Let A be a non empty subset of \mathbb{R} .

- u is the upper bound of A if: $\forall a \in A; a \leq u$
- $oldsymbol{A}$ is bounded above if $oldsymbol{A}$ has an upper bound
- Maximum element of A : $\max A = u$ if $u \in A$ and u is an upper bound of A
- Supremum of $A \, \sup A$, is the smallest upper bound of A
- Maximum is a supremum. Supremum is not necessarily a maximum.
- l is the lower bound of A if: $orall a \in \mathit{A}; a \geq \mathit{l}$
- $oldsymbol{A}$ is bounded below if $oldsymbol{A}$ has a lower bound
- Minimum element of A : $\min A = l$ if $l \in A$ and l is a lower bound of A
- Infimum of A $\inf A$, is the largest lower bound of A
- Minimum is a infimum. Infimum is not necessarily a minimum.

Theorems

Let A be a non empty subset of $\mathbb R.$

- Say u is an upper bound of A . Then $u=\sup A$ iff:

$$\forall \epsilon > 0 \; \exists a \in A; \; a + \epsilon > u$$

- Say l is a lower bound of A . Then $l=\inf A$ iff:

$$\forall \epsilon > 0 \; \exists a \in A; \; a - \epsilon < l$$

Required proofs

- sup(a,b) = b
- inf(a,b) = a

Completeness axioms of real numbers

- ullet Every non empty subset of ${\mathbb R}$ which is bounded above has a supremum in ${\mathbb R}$
- ullet Every non empty subset of ${\mathbb R}$ which is bounded below has a infimum in ${\mathbb R}$

(i) Note

 ${\mathbb Q}$ doesn't have the completeness property.

Completeness axioms of integers

- Every non empty subset of ${\mathbb Z}$ which is bounded above has a maximum
- ullet Every non empty subset of ${\mathbb Z}$ which is bounded below has a minimum

Two important theorems

- $\exists a \ \forall \epsilon > 0, a < \epsilon \implies a \leq 0$
- $\forall \epsilon > 0 \; \exists a, a < \epsilon \implies a \leq 0$

Order Axioms

- Trichotomy: $orall a, b \in \mathbb{R}$ exactly one of these holds: a > b , a = b , a < b
- Transitivity: $\forall a, b, c \in \mathbb{R}; a < b \land b < c \implies a < c$
- Operation with addition: $orall a, b \in \mathbb{R}; a < b \implies a + c < b + c$
- Operation with mutliplication: $\forall a,b,c \in \mathbb{R}; a < b \land 0 < c \implies ac < bc$

Definitions

•
$$a < b \equiv b > a$$

•
$$a \leq b \equiv a \leq b \vee a = b$$

•
$$a \neq b \equiv a < b \lor a > b$$

$$oldsymbol{\cdot} \;\; |x| = egin{cases} x & ext{if } x \geq 0, \ -x & ext{if } x < 0 \end{cases}$$

Triangular inequalities

$$|a| - |b| \le |a + b| \le |a| + |b|$$

 $||a| - |b|| \le |a + b|$

Required proofs

- $\forall a, b, c \in \mathbb{R}; a < b \land c < 0 \implies ac > bc$
- · 1 > 0
- $| \cdot | -|a| \le a \le |a|$
- Triangular inequalities

Theorems

- $\exists a \ \forall \epsilon > 0, \ a < \epsilon \implies a \leq 0$
- $\exists a \ \forall \epsilon > 0, \ 0 \leq a < \epsilon \implies a = 0$

! Caution

 $orall \epsilon > 0 \; \exists a, \, a < \epsilon \implies a \leq 0$ is **not** valid.

Let A be a non-empty subset of $\mathbb R$ which is bounded above and has an upper bound u.

$$u = \sup A \iff \forall \epsilon > 0 \,\exists a \in A, \, a > u - \epsilon$$

Let A be a non-empty subset of $\mathbb R$ which is bounded below and has an lower bound m.

$$m = \inf A \iff orall \epsilon > 0 \, \exists a \in A, \, a < m + \epsilon$$

Relations

Definitions

- Cartesian Product of sets A,B $A imes B = \{(a,b) | a \in A, b \in B\}$
- Ordered pair $(a,b)=\{\{a\},\{a,b\}\}$

Relation

Let $A,B
eq \emptyset$. A relation R:A o B is a non-empty subset of A imes B.

- $aRb \equiv (a,b) \in R$
- Domain of $R \colon dom(R) = A$
- Codomain of $R \colon codom(R) = B$
- Range of R : $ran(R) = \{y | (x,y) \in R\}$
- $ran(R) \subseteq B$
- Pre-range of R : $preran(R) = \{x \, | \, (x,y) \in R\}$
- $preran(R) \subseteq A$
- $R(a) = \{b \mid (a, b) \in R\}$

Everywhere defined

 $oldsymbol{R}$ is everywhere defined

$$\iff A = dom(R) = preran(R)$$

 $\iff \forall a \in A, \ \exists b \in B; \ (a,b) \in R.$

Onto

 $oldsymbol{R}$ is onto

$$\iff B = codom(R) = ran(R)$$

 $\iff \forall b \in B \, \exists a \in A \, (a,b) \in R$

Aka. surjection.

Inverse

Inverse of R: $R^{-1} = \{(b,a) \,|\, (a,b) \in R\}$

Types of relation

one-many

$$\iff \exists a \in A, \exists b_1, b_2 \in B ((a, b_1), (a, b_2) \in R \land b_1 \neq b_2)$$

Not one-many

$$\iff \forall a \in A, \, \forall b_1, b_2 \in B \; ((a,b_1),(a,b_2) \in R \implies b_1 = b_2)$$

many-one

$$\iff \exists a_1,a_2 \in A, \, \exists b \in B \ ((a_1,b),(a_2,b) \in R \, \wedge \, a_1
eq a_2)$$

Not many-one

$$\iff orall a_1, a_2 \in A, \, orall b \in B \; ((a_1,b),(a_2,b) \in R \implies a_1 = a_2)$$

many-many

iff R is **one-many** and **many-one**.

one-one

iff $oldsymbol{R}$ is not one-many and not many-one. Aka. injection.

Bijection

When a relation is **onto** and **one-one**.

Functions

A function $f\colon A o B$ is a relation $f\colon A o B$ which is <u>everywhere defined</u> and <u>not one-many</u>.

• dom(f) = A = preran(f)

Inverse

For a function f:A o B to have its inverse relation $f^{-1}:B o A$ be also a function, we need:

- f is onto
- $m{f}$ is ${\color{red} {\sf not\ many-one}}$ (in other words, $m{f}$ must be ${\color{red} {\sf one-one}}$)

The above statement is true for all unrestricted function $m{f}$ that has an inverse $m{f}^{-1}$:

$$f(f^{-1}(x)) = x = f^{-1}(f(x)) = x$$

Composition

Composition of relations

Let R:A o B and S:B o C are 2 relations. Composition can be defined when $\mathrm{ran}(R)=\mathrm{preran}(S)$.

Say ran(R) = preran(S) = D. Composition of the 2 relations is written as:

$$S \circ R = \{(a,c) \, | \, (a,b) \in R, \, (b,c) \in S, \, b \in D\}$$

Composition of functions

Let f:A o B and g:B o C be 2 functions where f is onto.

$$g\circ f=\{(x,z)\,|\, (x,y)\in f,\, (y,z)\in g,\, y\in B\}=g(f(x))$$

Countability

A set A is countable **iff** $\exists f: A o Z^+$, where f is a one-one function.

Examples

- Countable: Any finite set, \mathbb{Z}, \mathbb{Q}
- Uncountable: $\mathbb R$, Any open/closed intervals in $\mathbb R$.

Transitive property

Say $B\subset A$.

 $A ext{ is countable } \implies B ext{ is countable }$

B is not countable $\implies A$ is not countable

Limits

$$\lim_{x o a}f(x)=L$$
 iff:

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (0 < |x-a| < \delta \implies |f(x)-L| < \epsilon)$$

Defining $\pmb{\delta}$ in terms of a given $\pmb{\epsilon}$ is enough to prove a limit.

One sided limits

$$\lim_{x o a^+}f(x)=L$$
 iff:

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (0 < x - a < \delta \implies |f(x) - L| < \epsilon)$$

$$\lim_{x o a^-}f(x)=L$$
 iff:

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (-\delta < x - a < 0 \implies |f(x) - L| < \epsilon)$$

 $\lim_{x o a}f(x)=L^+$ iff:

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (0 < |x - a| < \delta \implies 0 \le f(x) - L < \epsilon)$$

 $\lim_{x o a}f(x)=L^-$ iff:

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (0 < |x - a| < \delta \implies -\epsilon < f(x) - L \le 0)$$

Limits including infinite

$$\lim_{x o\infty}f(x)=L$$
 iff:

$$orall \epsilon > 0 \; \exists N > 0 \; orall x \; (x > N \implies |f(x) - L| < \epsilon)$$

$$\lim_{x o -\infty}f(x)=L$$
 iff:

$$orall \epsilon > 0 \; \exists N > 0 \; orall x \; (x < -N \implies |f(x) - L| < \epsilon)$$

 $\lim_{x o a}f(x)=\infty$ iff:

$$orall M>0 \; \exists \delta>0 \; orall x \; (0<|x-a|<\delta \implies f(x)>M)$$

 $\lim_{x o a}f(x)=-\infty$ iff:

$$orall M>0 \; \exists \delta>0 \; orall x \; (0<|x-a|<\delta \implies f(x)<-M)$$

Indeterminate forms

- $\cdot \frac{0}{0}$
- $\frac{\infty}{\infty}$
- $\infty \cdot 0$
- $\infty \infty$
- $\cdot \infty^0$
- · 0⁰
- 1∞

Continuity

A function f is continuous at a iff:

$$\lim_{x\to a} f(x) = f(a)$$

$$orall \epsilon > 0 \; \exists \delta > 0 \; orall x \; (|x-a| < \delta \implies |f(x) - f(a)| < \epsilon)$$

One-side continuous

A function $m{f}$ is continuous from right at $m{a}$ iff:

$$\lim_{x o a^+}f(x)=f(a)$$

A function f is continuous from left at a iff:

$$\lim_{x o a^-}f(x)=f(a)$$

Continuous on an open interval

A function f is continuous in (a,b) **iff** f is continuous on every $c\in(a,b)$.

Continuous on a closed interval

A function f is continuous in [a,b] iff f is:

- continuous on every $c \in (a,b)$
- ullet right-continuous at $oldsymbol{a}$
- left-continuous at $m{b}$

Continuity Theorems

Extreme Value Theorem

If $m{f}$ is continuous on $[m{a}, m{b}]$, $m{f}$ has a maximum and a minimum in $[m{a}, m{b}]$.

(i) Proof Hint

Proof is quite hard.

Intermediate Value Theorem

Let f is continuous on [a,b]. If $\exists u$ such that f(a)>u>f(b) or f(a)< u< f(b): $\exists c\in (a,b)$ such that f(c)=u.

(i) Proof Hint

Proof the case when u=0. Otherwise define a new function g(x) such that middle part of the above inequality has a 0 in the place of u.

Sandwich (or Squeeze) Theorem

Let:

ullet For some $\delta>0$: $orall x(0<|x-a|<\delta \implies f(x)\leq g(x)\leq h(x))$

$$oldsymbol{\cdot} \lim_{x o a}f(x)=\lim_{x o a}h(x)=L\in\mathbb{R}$$

Then $\lim_{x o a}g(x)=L$.

(i) Note

Works for any kind of x limits.

"No sudden changes"

Positive

Let f be continuous on a and f(a)>0

$$\implies \exists \delta > 0; \forall x \, (|x-a| < \delta \implies f(x) > 0)$$

 \bigcirc **Proof Hint** To proof this, take $\epsilon = rac{f(a)}{2}$.

Negative

Let f be continuous on a and f(a) < 0

$$\implies \exists \delta > 0; \forall x (|x - a| < \delta \implies f(x) < 0)$$

 \bigcirc **Proof Hint** To proof this, take $\epsilon = -rac{f(a)}{2}$.

Differentiability

A function f is differentiable at a iff:

$$\lim_{x o a}rac{f(x)-f(a)}{x-a}=L\in\mathbb{R}=f'(a)$$

f'(a) is called the derivative of f at a.

One-side differentiable

Left differentiable

A function $m{f}$ is left-differentiable at $m{a}$ iff:

$$\lim_{x o a^-}rac{f(x)-f(a)}{x-a}=L\in\mathbb{R}=f'_-(a)$$

Right differentiable

A function $m{f}$ is right-differentiable at $m{a}$ iff:

$$\lim_{x o a^+}rac{f(x)-f(a)}{x-a}=L\in\mathbb{R}=f'_+(a)$$

Differentiability implies continuity

f is differentiable at $a \implies f$ is continuous at a

 \circlearrowleft **Proof Hint** Use $\delta = min(\delta_1, rac{\epsilon}{1+|f'(a)|})$.

This PDF is saved from https://s1.sahithyan.dev