ECE2 - Concours blanc 1

MATHÉMATIQUES 2-TYPE EDHEC

Exercice 1

On considère la matrice $A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$.

- 1. Le déterminant de A vaut 0 donc A n'est pas inversible.
- 2. On appelle *spectre de* A et on note Sp(A) l'ensemble des réels λ pour lesquels la matrice A λI_2 n'est pas inversible.
 - (a) Soit $\lambda \in \mathbb{R}$. Alors on a :

$$\det(A - \lambda I_2) = \det\left(\begin{pmatrix} 1 - \lambda & 2 \\ 3 & 6 - \lambda \end{pmatrix}\right) = (1 - \lambda)(6 - \lambda) - 6 = \lambda(\lambda - 7).$$

(b) Soit $\lambda \in \mathbb{R}$. Alors λ appartient au spectre de A si et seulement si $A - \lambda I_2$ n'est pas inversible si et seulement si $\det(A - \lambda I_2) = 0$. Ainsi :

$$\lambda \in \operatorname{Sp}(A) \iff \lambda(\lambda - 7) = 0 \iff \lambda = 0 \text{ ou } \lambda = 7.$$

Donc le spectre Sp(A) de A est $\{0,7\}$.

- (c) Soit $X = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{M}_{2,1}(\mathbb{R})$.
 - On a:

$$X \in E_0(A) \iff AX = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{cases} x + 2y &= 0 \\ 3x + 6y &= 0 \end{cases}$$

 $\iff x + 2y = 0 \quad \text{car } L_2 = 3L_1$
 $\iff x = -2y.$

Ainsi:

$$E_0(A) = \left\{ \begin{pmatrix} -2y \\ y \end{pmatrix}; y \in \mathbb{R} \right\} = \text{Vect}\left(\begin{pmatrix} -2 \\ 1 \end{pmatrix} \right).$$

La famille $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$ est une famille génératrice de $E_0(A)$. Comme elle est constituée d'un vecteur non nul, c'est aussi une famille libre. Donc $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$ est une base de $E_0(A)$.

• On a:

$$X \in E_7(A) \iff AX = 7X \iff \begin{cases} x + 2y &= 7x \\ 3x + 6y &= 7y \end{cases}$$

$$\iff \begin{cases} -6x + 2y &= 0 \\ 3x - y &= 0 \end{cases}$$

$$\iff 3x - y = 0 \quad \text{car } L_1 = -3L_2$$

$$\iff y = 3x..$$

Ainsi:

$$E_7(A) = \left\{ \begin{pmatrix} x \\ 3x \end{pmatrix}; x \in \mathbb{R} \right\} = \text{Vect}\left(\begin{pmatrix} 1 \\ 3 \end{pmatrix} \right).$$

La famille $\binom{1}{3}$ est une famille génératrice de $E_7(A)$. Comme elle est constituée d'un vecteur non nul, c'est aussi une famille libre. Donc $\binom{1}{3}$ est une base de $E_7(A)$.

3. • Montrons que f est linéaire. Soit $(M, N) \in \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R})$ et $\lambda \in \mathbb{R}$. On a alors :

$$f(M + \lambda N) = A(M + \lambda N) = AM + \lambda AN = f(M) + \lambda f(N)$$
.

Ainsi : $\forall (M, N) \in \mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R}) \ \forall \lambda \in \mathbb{R}, \quad f(M + \lambda N) = f(M) + \lambda f(N)$. L'application f est donc linéaire.

• C'est évident que f est à valeurs dans $\mathcal{M}_2(\mathbb{R})$ donc c'est bien un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.

4. (a) Soit M = $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. On a:

$$\begin{split} \mathbf{M} \in \ker(f) &\iff \mathbf{A} \mathbf{M} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \iff \begin{pmatrix} a+2c & b+2d \\ 3a+6c & 3b+6d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\ &\iff \begin{cases} a+2c & = & 0 \\ 3a+6c & = & 0 \\ b+2d & = & 0 \\ 3b+6d & = & 0 \end{cases} \\ &\iff \begin{cases} a+2c & = & 0 \\ b+2d & = & 0 \end{cases} \quad \operatorname{car} \mathbf{L}_2 = 3\mathbf{L}_1 \operatorname{et} \mathbf{L}_4 = 3\mathbf{L}_3 \\ &\iff \begin{cases} a & = & -2c \\ b & = & -2d. \end{cases} \end{split}$$

Ainsi

$$\ker(f) = \left\{ \begin{pmatrix} -2c & -2d \\ c & d \end{pmatrix}; (c,d) \in \mathbb{R}^2 \right\} = \left\{ c \begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix}; (c,d) \in \mathbb{R}^2 \right\} = \operatorname{Vect} \left(\begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix} \right).$$

La famille $\begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix}$) est une famille génératrice de $\ker(f)$. Comme elle est constituée de deux vecteurs non colinéaires, c'est aussi une famille libre. Donc $\begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix}$) est une base de $\ker(f)$ et $\dim(\ker(f)) = 2$.

(b) D'après le théorème du rang, on sait que :

$$\dim(\mathcal{M}_2(\mathbb{R})) = \dim(\ker(f)) + \dim(\operatorname{Im}(f)).$$

Autrement dit : $4 = 2 + \dim(\operatorname{Im}(f))$. Ainsi dim $(\operatorname{Im}(f)) = 2$.

(c) Un calcul donne facilement:

•
$$f(E_{1,1}) = \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix};$$

• $f(E_{2,1}) = \begin{pmatrix} 2 & 0 \\ 6 & 0 \end{pmatrix};$
• $f(E_{1,2}) = \begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix};$
• $f(E_{2,2}) = \begin{pmatrix} 0 & 2 \\ 0 & 6 \end{pmatrix}.$

Comme $(E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$ est une base de $\mathcal{M}_2(\mathbb{R})$ on obtient que :

$$\begin{split} \operatorname{Im}(f) &= \operatorname{Vect}\left(f(\mathbf{E}_{1,1}), f(\mathbf{E}_{1,2}), f(\mathbf{E}_{2,1}), f(\mathbf{E}_{2,2})\right) \\ &= \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 6 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & 6 \end{pmatrix}\right) \\ &= \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix}\right). \end{split}$$

La famille $\begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix}$ est une famille génératrice de $\operatorname{Im}(f)$. Comme elle est constituée de deux vecteurs non colinéaires, c'est aussi une famille libre. Donc $\begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix}$ est une base de $\operatorname{Im}(f)$.

5. (a) D'après les questions précédentes on a :

$$\mathcal{B} = (e_1, e_2, e_3, e_4) = \left(\begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix} \right).$$

Montrons que \mathscr{B} est un famille libre. Soit $(\lambda_1, ..., \lambda_4) \in \mathbb{R}^4$. Alors

$$\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 + \lambda_3 e_3 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Longleftrightarrow \begin{cases} -2\lambda_1 + \lambda_3 & = & 0 \\ -2\lambda_2 + \lambda_4 & = & 0 \\ \lambda_1 + 3\lambda_3 & = & 0 \\ \lambda_2 + 3\lambda_4 & = & 0 \end{cases} \Longleftrightarrow \begin{cases} \lambda_3 & = & 2\lambda_1 \\ \lambda_4 & = & 2\lambda_2 \\ 7\lambda_3 & = & 0 \\ 7\lambda_4 & = & 0 \end{cases} \Longleftrightarrow \lambda_1 = \dots = \lambda_4 = 0.$$

Ainsi \mathscr{B} est une famille libre de $\mathscr{M}_2(\mathbb{R})$.

De plus, $Card(\mathcal{B}) = 4 = dim(\mathcal{M}_2(\mathbb{R}))$ donc \mathcal{B} est une base de $\mathcal{M}_2(\mathbb{R})$.

(b) Comme e_1 et e_2 sont dans le noyau de f on sait que $f(e_1) = f(e_2) = 0$. Ainsi les coordonnées de $f(e_1)$ et $f(e_2)$ dans la base \mathcal{B} sont (0,0,0,0).

De plus, un calcul donne:

$$f(e_3) = A \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 21 & 0 \end{pmatrix} = 7e_3$$
 et $f(e_4) = A \begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 7 \\ 0 & 21 \end{pmatrix} = 7e_4$.

Les coordonnées de $f(e_3)$ dans la base \mathcal{B} sont donc (0,0,7,0) et celle de $f(e_4)$ sont (0,0,0,7). Finalement, on obtient :

(c) Soit $\lambda \in \mathbb{R}$. L'endomorphisme $f - \lambda \cdot \mathrm{id}_{\mathscr{M}_2(\mathbb{R})}$ n'est pas inversible si et seulement si $\mathrm{Mat}_{\mathscr{B}}(f - \lambda \cdot \mathrm{id}_{\mathscr{M}_2(\mathbb{R})})$ n'est pas inversible. Or :

Ainsi, $f - \lambda \cdot id_{\mathcal{M}_2(\mathbb{R})}$ n'est pas inversible si et seulement si $-\lambda = 0$ ou $7 - \lambda = 0$. Donc

$$Sp(f) = \{0, 7\}.$$

- (d) On remarque que Sp(f) = Sp(A).
- 6. (a) Soit $\lambda \in Sp(A)$. Cela signifie que $A \lambda I_2$ n'est pas inversible.
 - i. Soit g l'endormorphisme de \mathbb{R}^2 dont la matrice dans la base canonique est $A-\lambda I_2$. Alors g n'est pas bijectif puisque $A-\lambda I_2$ n'est pas inversible. Comme g est un endomorphisme non bijectif d'un espace vectoriel de dimension fini, il n'est donc pas non plus injectif (conséquence du théorème du rang). En particulier, il existe $x \in \mathbb{R}^2 \setminus \{(0,0)\}$ tel que g(x) = 0. Si X est la matrice de x dans la base canonique on a alors :

$$(A - \lambda I_2)X = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

c'est-à-dire $AX = \lambda X$.

De plus, comme *x* est non nul, X est non nul.

ii. Comme $X \in \mathcal{M}_{2,1}(\mathbb{R})$ alors ${}^tX \in \mathcal{M}_{1,2}(\mathbb{R})$. Par conséquent on a bien : X ${}^tX \in \mathcal{M}_2(\mathbb{R})$. Par ailleurs, comme $AX = \lambda X$ on trouve bien :

$$f(X^{t}X) = AX^{t}X = \lambda X^{t}X$$
.

iii. En particulier, on a:

$$(f - \lambda \cdot id_{\mathcal{M}_2(\mathbb{R})})(X^t X) = f(X^t X) - \lambda X^t X = 0_{\mathcal{M}_2(\mathbb{R})}.$$

Ainsi X ${}^t X \in \ker(f - \lambda \cdot \mathrm{id}_{\mathscr{M}_2(\mathbb{R})})$. Or, X étant non nul, X ${}^t X$ est non nul aussi. Ainsi $\ker(f - \lambda \cdot \mathrm{id}_{\mathscr{M}_2(\mathbb{R})}) \neq \{0_{\mathscr{M}_2(\mathbb{R})}\}$ et donc $f - \lambda \cdot \mathrm{id}_{\mathscr{M}_2(\mathbb{R})}$ n'est pas injective donc pas bijective. Par conséquent $\lambda \in \operatorname{Sp}(f)$.

- (b) Soit $\lambda \in \operatorname{Sp}(f)$. Cela signifie que $f \lambda \cdot \operatorname{id}_{\mathcal{M}_2(\mathbb{R})}$ n'est pas inversible (c'est-à-dire non bijectif).
 - i. Comme $f-\lambda \cdot \mathrm{id}_{\mathscr{M}_2(\mathbb{R})}$ est un endomorphisme non bijectif d'un espace vectoriel de dimension fini, il n'est pas injectif. Ainsi, il existe une matrice M non nulle dans son noyau, c'est-à-dire telle que :

$$(f - \lambda \cdot \mathrm{id}_{\mathcal{M}_2(\mathbb{R})})(M) = f(M) - \lambda M = 0_{\mathcal{M}_2(\mathbb{R})}.$$

Ainsi, il existe une matrice non nulle M telle que : $f(M) = \lambda M$.

ii. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ la matrice de la question précédente et notons $C_1 = \begin{pmatrix} x \\ z \end{pmatrix}$, $C_2 = \begin{pmatrix} y \\ t \end{pmatrix}$ les colonnes de M. On sait que :

$$f(M) = \lambda M$$
,

c'est-à-dire:

$$\begin{pmatrix} ax+bz & ay+bt \\ cx+dz & cy+dt \end{pmatrix} = \lambda \begin{pmatrix} x & y \\ z & t \end{pmatrix}.$$

Ainsi:

$$AC_{1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} ax + bz \\ ay + bt \end{pmatrix} = \lambda \begin{pmatrix} x \\ z \end{pmatrix} = \lambda C_{1}$$

et de même $AC_2 = \lambda C_2$.

Or, M étant non nulle, C_1 ou C_2 est non nulle.

- iii. En particulier le système $(A \lambda I_2)X = 0$ d'inconnue $X \in \mathcal{M}_{2,1}(\mathbb{R})$ n'est pas de Cramer. Donc $A \lambda I_2$ n'est pas inversible et $\lambda \in Sp(A)$.
- (c) D'après 6.a) on a : $Sp(A) \subset Sp(f)$. D'après 6.b) on a : $Sp(f) \subset Sp(A)$.

Finalement : Sp(A) = Sp(f).

Exercice 2

(a) Les événements A₀, A₁ et A₂ sont de probabilités non nuls et forment un système complet d'événements. D'après la formule des probabilités totales, on a donc :

$$\begin{split} P(X=1) &= P(A_0)P_{A_0}(X=1) + P(A_1)P_{A_1}(X=1) + P(A_2)P_{A_2}(X=1) \\ &= \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times 1 + \frac{1}{3} \times 0 \\ &= \frac{1}{2}. \end{split}$$

(b) Soit $n \ge 2$. Les événements A_0 , A_1 et A_2 sont de probabilités non nuls et forment un système complet d'événements. D'après la formule des probabilités totales, on a donc :

$${\rm P}({\rm X}=n)={\rm P}({\rm A}_0){\rm P}_{{\rm A}_0}({\rm X}=n)+{\rm P}({\rm A}_1){\rm P}_{{\rm A}_1}({\rm X}=n)+{\rm P}({\rm A}_2){\rm P}_{{\rm A}_2}({\rm X}=n).$$

Or:

- sachant A_0 , X suit la loi géométrique de paramètre $\frac{1}{2}$;
- sachant A₁, X suit la loi certaine égale à 1;
- sachant A2, X suit la loi certaine égale à 0.

D'où, comme $n \ge 2$:

$$\begin{split} \mathbf{P}(\mathbf{X} = n) &= \mathbf{P}(\mathbf{A}_0) \mathbf{P}_{\mathbf{A}_0}(\mathbf{X} = n) + \mathbf{P}(\mathbf{A}_1) \mathbf{P}_{\mathbf{A}_1}(\mathbf{X} = n) + \mathbf{P}(\mathbf{A}_2) \mathbf{P}_{\mathbf{A}_2}(\mathbf{X} = n) \\ &= 0 + \frac{1}{3} \times \frac{1}{2} \left(\frac{1}{2}\right)^{n-1} + 0 \\ &= \frac{1}{3} \left(\frac{1}{2}\right)^n. \end{split}$$

Ainsi: $\forall n \ge 2, P(X = n) = \frac{1}{3} \left(\frac{1}{2}\right)^n$.

(c) Il est clair que $X(\Omega) \subset \mathbb{N}$. Ainsi :

$$\begin{aligned} \mathbf{P}(\mathbf{X} = 0) &= 1 - \mathbf{P}(\mathbf{X} \geqslant 1) \\ &= 1 - \sum_{k=1}^{+\infty} \mathbf{P}(\mathbf{X} = k) \\ &= 1 - \frac{1}{2} - \sum_{k=2}^{+\infty} \frac{1}{3} \left(\frac{1}{2}\right)^k \\ &= \frac{1}{2} - \frac{1}{3} \times \frac{1}{4} \times \frac{1}{1 - \frac{1}{2}} \\ &= \frac{1}{3}. \end{aligned}$$

2. La variable aléatoire X admet une espérance si et seulement si la série $\sum_{k\geqslant 0} k P(X=k)$ converge absolument. Comme il s'agit d'une série à termes positifs, il suffit de montrer qu'elle converge. Or :

$$\forall k \ge 2 \quad kP(X = k) = \frac{1}{3}k\left(\frac{1}{2}\right)^k = \frac{1}{6}k\left(\frac{1}{2}\right)^{k-1}.$$

Comme la série géométrique dérivée d'ordre $1\sum_{k\geqslant 1}k\left(\frac{1}{2}\right)^{k-1}$ converge, on en déduit que la série $\sum_{k\geqslant 0}k$ P(X = k) converge absolument. Ainsi X possède une espérance et :

$$E(X) = \sum_{k=0}^{+\infty} k P(X = k) = 0 + \frac{1}{2} + \frac{1}{6} \sum_{k=2}^{+\infty} k \left(\frac{1}{2}\right)^{k-1} = \frac{1}{2} + \frac{1}{6} \left(\frac{1}{\left(1 - \frac{1}{2}\right)^2} - 1\right) = 1.$$

3. D'après le théorème de transfert la variable aléatoire X(X-1) possède une espérance si et seulement si la série $\sum_{k\geqslant 0} k(k-1)P(X=k)$ converge absolument. Comme il s'agit d'une série à termes positifs, il suffit de montrer qu'elle converge.

Or

$$\forall k \ge 2 \quad k(k-1)P(X=k) = \frac{1}{3}k(k-1)\left(\frac{1}{2}\right)^k = \frac{1}{12}k(k-1)\left(\frac{1}{2}\right)^{k-2}.$$

Comme la série géométrique dérivée d'ordre $2\sum_{k\geqslant 1}k(k-1)\left(\frac{1}{2}\right)^{k-2}$ converge, on en déduit que la série $\sum_{k\geqslant 0}k(k-1)P(X=k)$ converge absolument. Ainsi X(X-1) possède une espérance et :

$$\mathrm{E}(\mathrm{X}(\mathrm{X}-1)) = \sum_{k=0}^{+\infty} k(k-1) \mathrm{P}(\mathrm{X}=k) = 0 + 0 + \frac{1}{12} \sum_{k=2}^{+\infty} k(k-1) \left(\frac{1}{2}\right)^{k-2} = \frac{1}{12} \frac{2}{\left(1-\frac{1}{2}\right)^3} = \frac{4}{3}.$$

Comme les variables X(X-1) et X possèdent une espérance, par linéarité $X^2 = X(X-1) + X$ possède une espérance. En particulier X possède un moment d'ordre 2 donc, d'après la formule de Koenig-Huygens, X possède une variance donnée par :

$$V(X) = E(X^{2}) - E(X)^{2} = E(X(X - 1)) + E(X) - E(X)^{2} = \frac{4}{3}.$$

- 4. Les rôles de X et Y étant parfaitement symétriques, en reprenant la question 1 avec Y on voit que Y a la même loi que X.
- 5. (a) Soit $j \ge 2$.

Il est clair que $[X = 1] \cap [Y = j] \subset [Y = j]$.

Réciproquement, si [Y=j] est réalisé alors le premier face a été obtenu au lancé numéro $j\geqslant 2$ donc le premier lancé a donné un Pile : [X=1] est donc réalisé. Ainsi : $[Y=j]\subset [X=1]\cap [Y=j]$. Finalement, $[X=1]\cap [Y=j]=[Y=j]$ et en particulier :

$$P([X = 1] \cap [Y = j]) = P([Y = j]).$$

- (b) C'est le même raisonnement qu'à la question précédente.
- 6. (a) Les variables X et Y ont pour support $\mathbb N$ donc l'événement [X+Y=0] est réalisé si et seulement si [X=0] et [Y=0]. Or, il est impossible de n'obtenir ni pile et ni face au premier lancé! Donc [X+Y=0] est l'événement impossible.
 - De même, les variables X et Y ont pour support N donc l'événement [X + Y = 2] est réalisé si et seulement si [X = 1] et [Y = 1]. Or, il est impossible d'obtenir pile et face au premier lancé! Donc [X + Y = 2] est l'événement impossible.
 - Soit $k \in \mathbb{N}$ avec k différent de 0 et de 2. Alors :

$$P(X + Y = k) \ge P(X = 1, Y = k - 1) > 0.$$

Ainsi X + Y peut prendre la valeur k.

Finalement, X + Y prend toutes les valeurs entières positives sauf 0 et 2.

(b) On a:

$$\begin{split} P(X+Y=1) &= P\left([X=1,Y=0] \cup [X=0,Y=1]\right) = P(X=1,Y=0) + P(X=0,Y=1) \\ &= P_{[Y=0]}(X=1)P(Y=0) + P_{[X=0]}(Y=1)P(X=0) \\ &= 1 \times \frac{1}{3} + 1 \times \frac{1}{3} = \frac{2}{3}. \end{split}$$

(c) Remarquons que l'événement complémentaire de [X = 1] est [Y = 1] puisque le premier lancé donne soit face soit pile. Ainsi, on obtient pour tout entier naturel n supérieur ou égal à 3:

$$\begin{aligned} [\mathbf{X} + \mathbf{Y} &= n] &= ([\mathbf{X} = 1] \cap [\mathbf{X} + \mathbf{Y} = n]) \cup ([\mathbf{Y} = 1] \cap [\mathbf{X} + \mathbf{Y} = n]) \\ &= ([\mathbf{X} = 1] \cap [1 + \mathbf{Y} = n]) \cup ([\mathbf{Y} = 1] \cap [\mathbf{X} + 1 = n]) \\ &= ([\mathbf{X} = 1] \cap [\mathbf{Y} = n - 1]) \cup ([\mathbf{Y} = 1] \cap [\mathbf{X} = n - 1]). \end{aligned}$$

(d) Soit $n \ge 3$. On déduit de la question précédente :

$$P(X+Y=n) = P([X=1] \cap [Y=n-1]) \cup ([Y=1] \cap [X=n-1]) = P([X=1] \cap [Y=n-1]) + P([Y=1] \cap [X=n-1]).$$

D'après les questions 5, 4 et 1.b on obtient alors :

$$P(X+Y=n) = P([Y=n-1]) + P([X=n-1]) = \frac{1}{3} \left(\frac{1}{2}\right)^{n-1} + \frac{1}{3} \left(\frac{1}{2}\right)^{n-1} = \frac{2}{3} \left(\frac{1}{2}\right)^{n-1}.$$

7. (a) (Bonus) Erreur dans l'énoncé à la ligne 10.

```
piece = grand(1,1,"uin",0,2)
2
3
   if piece == 0 then
        lancer = grand(1,1,"uin",0,1)
4
        while lancer == 0
5
6
            lancer = grand(1,1,"uin",0,1)
7
            x = x + 1
8
        end
9
   else
10
        if piece == 2 then
11
12
13
14
   disp(x)
```

(b) (Bonus) L'erreur dans l'énoncé de la question précédente ne permettait pas de répondre à cette question. Toute tentative a été valorisée.

Exercice 3

1. Un calcul donne:

$$u_0 = 2$$
 ; $u_1 = 3$; $u_2 = \frac{15}{4}$.

2. (a) Soit $n \ge 2$. On a:

$$u_n = \prod_{k=0}^{n} \left(1 + \frac{1}{2^k}\right) = 2 \prod_{k=1}^{n} \left(1 + \frac{1}{2^k}\right).$$

Or pour tout $k \in [1, n] : 1 + \frac{1}{2^k} \ge 1$ donc :

$$u_n \geqslant 2 \prod_{k=1}^n 1 = 2.$$

(b) Soit $n \in \mathbb{N}$. On a:

$$u_{n+1} = \prod_{k=1}^{n+1} \left(1 + \frac{1}{2^k} \right) = \left(1 + \frac{1}{2^{n+1}} \right) \prod_{k=1}^n \left(1 + \frac{1}{2^k} \right) = \left(1 + \frac{1}{2^{n+1}} \right) u_n.$$

Ainsi : $u_{n+1} > u_n$.

On en déduit que la suite (u_n) est croissante.

3. (a) Soit g la fonction définie sur $]-1,+\infty[$ par : $\forall x \in]-1,+\infty[$, $g(x)=\ln(1+x)-x$. La fonction g est dérivable sur $]-1,+\infty[$ et pour tout $x \in]-1,+\infty[$ on a :

$$g'(x) = \frac{1}{1+x} - 1 = \frac{-x}{1+x}$$

Ainsi:

x	-1	0 +∞
Signe de $g'(x)$		+ 0 -
Variations de g		0

En particulier : $\forall x > -1$, $g(x) \le 0$. Ainsi : $\forall x > -1$, $\ln(1+x) \le x$.

(b) Soit $n \in \mathbb{N}$. On a:

$$\ln(u_n) = \ln\left(\prod_{k=0}^n \left(1 + \frac{1}{2^k}\right)\right) = \sum_{k=0}^n \ln\left(1 + \frac{1}{2^k}\right)$$

$$\leq \sum_{k=0}^n \frac{1}{2^k} \quad \text{d'après la question précédente}$$

$$\leq \sum_{k=0}^{+\infty} \frac{1}{2^k} = 2.$$

Ainsi 2 est un majorant de $ln(u_n)$ pour tout entier naturel n.

4. D'après la question précédente et par croissance de la fonction exponentielle on a :

$$\forall n \in \mathbb{N}, \quad u_n \leqslant e^2.$$

Ainsi, la suite (u_n) est croissante et majorée par e^2 . D'après le théorème de la limite monotone, elle converge donc vers un réel $\ell \leq e^2$. De plus, la question 2.a) permet de conclure que $\ell \geq 2$. Ainsi : $\ell \in [2, e^2]$.

5. (a) D'après la question précédente et par continuité de la fonction logarithme sur $[2, e^2]$, la suite $(\ln(u_n))_{n \in \mathbb{N}}$ converge vers $\ln(\ell)$. Or :

$$\forall n \in \mathbb{N}, \quad \ln(u_n) = \sum_{k=0}^n \ln\left(1 + \frac{1}{2^k}\right).$$

Donc la série $\sum_{k \ge 0} \ln \left(1 + \frac{1}{2^k} \right)$ converge et sa somme vaut $\ln(\ell)$.

(b) Soit $n \in \mathbb{N}$, on a:

$$\ln\left(\frac{\ell}{u_n}\right) = \ln(\ell) - \ln(u_n)$$

$$= \sum_{k=0}^{+\infty} \ln\left(1 + \frac{1}{2^k}\right) - \sum_{k=0}^{n} \ln\left(1 + \frac{1}{2^k}\right)$$

$$= \sum_{k=n+1}^{+\infty} \ln\left(1 + \frac{1}{2^k}\right).$$

(c) Soit $n \in \mathbb{N}$. D'après le résultat de la question 3a) on a :

$$\forall k \geqslant n+1, \quad \ln\left(1+\frac{1}{2^k}\right) \leqslant \frac{1}{2^k}.$$

Ainsi:

$$\ln\left(\frac{\ell}{u_n}\right) = \sum_{k=n+1}^{+\infty} \ln\left(1 + \frac{1}{2^k}\right) \leqslant \sum_{k=n+1}^{+\infty} \frac{1}{2^k} = \frac{1}{2^n}.$$

(d) Par décroissance de la fonction $x \mapsto e^{-x}$, l'inégalité de la question précédente donne :

$$\forall n \in \mathbb{N}, \quad \frac{u_n}{\varrho} \geqslant e^{-\frac{1}{2^n}}.$$

Ainsi:

$$\forall n \in \mathbb{N}, \quad -u_n \leqslant -\ell e^{-\frac{1}{2^n}}.$$

Donc:

$$\forall n \in \mathbb{N}, \quad \ell - u_n \leqslant \ell - \ell e^{-\frac{1}{2^n}} = \ell \left(1 - e^{-\frac{1}{2^n}}\right).$$

De plus, par croissance de $(u_n)_{n\in\mathbb{N}}$ on a :

$$\forall n \in \mathbb{N}, \quad 0 \leq \ell - u_n.$$

Finalement : $\forall n \in \mathbb{N}, 0 \leq \ell - u_n \leq \ell \left(1 - e^{-\frac{1}{2^n}}\right)$.

(e) La fonction $h: x \mapsto e^{-x}$ est convexe donc sa courbe représentative est située au dessus de sa tangente au point d'abscisse 0 (d'équation réduite y = -x + 1). On déduit donc :

$$\forall x \in \mathbb{R}, \quad e^{-x} \geqslant -x+1.$$

Ainsi, pour tout réel x, on a : $1 - e^{-x} \le x$.

Avec la question précédente on obtient donc :

$$\forall n \in \mathbb{N}, \quad 0 \leqslant \ell - u_n \leqslant \frac{\ell}{2^n}.$$

Les séries $\sum_{n\geqslant 0} (\ell-u_n)$ et $\sum_{k\geqslant 0} \frac{\ell}{2^n}$ sont à termes positifs et la série $\sum_{k\geqslant 0} \frac{\ell}{2^n}$ est une série géométrique convergente. L'inégalité obtenue permet donc de conclure, par comparaison pour les séries à termes positifs, que la série $\sum_{n\geqslant 0} (\ell-u_n)$ est convergente.

Problème

On considère la fonction f qui à tout réel x associe : $f(x) = \int_0^x \ln(1+t^2) dt$.

On rappelle les inégalités suivantes :

$$0, 6 \le \ln(2) \le 0, 7.$$

Partie 1 : étude de f

- 1. (a) On a : $\forall t \in \mathbb{R}$, $\ln(1+t^2) \ge 0$. Ainsi :
 - si $x \ge 0$, les bornes de l'intégrale étant dans l'ordre croissant, alors $f(x) \ge 0$;
 - si $x \le 0$, les bornes de l'intégrale étant dans l'ordre décroissant, alors $f(x) \le 0$.
 - (b) La fonction f est la primitive s'annulant en 0 de la fonction continue $t\mapsto \ln{(1+t^2)}$. Ainsi, f est de classe C^1 sur $\mathbb R$ et pour tout réel x on a :

$$f'(x) = \ln(1 + x^2).$$

- (c) D'après la question précédente, pour tout réel x on a : $f'(x) \ge 0$. Donc f est croissante sur \mathbb{R} .
- 2. (a) Soit $x \in \mathbb{R}$. En effectuant le changement de variable s = -t, on obtient :

$$f(-x) = \int_0^{-x} \ln(1+t^2) dt = \int_0^x \ln(1+(-s)^2) \times (-1) ds = -f(x).$$

Ainsi f est impaire.

- (b) La fonction f est de classe C^1 et sa dérivée est décroissante sur $]-\infty,0]$ et croissante sur $[0,+\infty[$. Par conséquent :
 - f est concave sur $]-\infty,0]$;
 - f est convexe sur $[0, +\infty[$;
 - f change de concavité en 0 donc sa courbe représentative possède un point d'inflexion en (0, f(0)) = (0, 0).
- 3. (a) On trouve facilement:

$$\forall t \in \mathbb{R}, \quad \frac{t^2}{1+t^2} = 1 - \frac{1}{1+t^2}.$$

(b) Soit $x \in \mathbb{R}$. Les fonctions $u: t \mapsto t$ et $v: t \mapsto \ln(1+t^2)$ sont de classe C^1 sur \mathbb{R} donc par intégration par parties, pour tout réel x, on a :

$$f(x) = \int_0^x u'(t)v(t)dt = [u(t)v(t)]_0^x - \int_0^x u(t)v'(t)dt$$

$$= [t\ln(1+t^2)]_0^x - \int_0^x t \times \frac{2t}{1+t^2}dt$$

$$= x\ln(1+x^2) - 2\int_0^x \frac{t^2}{1+t^2}dt$$

$$= x\ln(1+x^2) - 2\int_0^x \left(1 - \frac{1}{1+t^2}\right)dt$$

$$= x\ln(1+x^2) - 2x - 2\int_0^x \frac{1}{1+t^2}dt$$

$$= x\left(\ln(1+x^2) - 2\right) + 2\int_0^x \frac{1}{1+t^2}dt.$$

4. (a) i. Soit t > 0. Comme $t^2 \le 1 + t^2$ alors par décroissance de la fonction inverse sur \mathbb{R}_+^* on a :

$$\frac{1}{1+t^2} \leqslant \frac{1}{t^2}.$$

ii. Soit $x \ge 1$. D'après la relation de Chasles on a :

$$\int_0^x \frac{1}{1+t^2} dt = \int_0^1 \frac{1}{1+t^2} dt + \int_1^x \frac{1}{1+t^2} dt.$$

Par croissance de l'intégrale et la question précédente, comme $1 \le x$ on obtient :

$$\int_0^x \frac{1}{1+t^2} dt = \int_0^1 \frac{1}{1+t^2} dt + \int_1^x \frac{1}{1+t^2} dt \le \int_0^1 \frac{1}{1+t^2} dt + \int_1^x \frac{1}{t^2} dt.$$

iii. Soit $x \ge 0$.

— Si
$$x \le 1$$
 alors: $\int_0^x \frac{1}{1+t^2} dt \le \int_0^x 1 dt = x \le 1$.

— Si $x \ge 1$ alors d'après la question précédente :

$$\int_0^x \frac{1}{1+t^2} dt \le \int_0^1 \frac{1}{1+t^2} dt + \int_1^x \frac{1}{t^2} dt$$

$$\le 1 + \left[-\frac{1}{t} \right]_1^x$$

$$\le 2 - \frac{1}{x}$$

$$\le 2.$$

Ainsi:
$$\forall x \ge 0$$
, $\int_0^x \frac{1}{1+t^2} dt \le 2$.

iv. La fonction $u: x \mapsto \int_0^x \frac{1}{1+t^2} dt$ est dérivable sur \mathbb{R}_+ et sa dérivée est donnée par :

$$\forall x \in \mathbb{R}_+, \quad u(x) = \frac{1}{1+x^2} > 0.$$

Ainsi u croissante sur \mathbb{R}_+ . D'après la question précédente, elle est aussi majorée. Ainsi, d'après le théorème de la limite monotone, elle possède une limite finie quand x tend vers $+\infty$. Cela signifie que $\int_0^{+\infty} \frac{1}{1+t^2} dt$ est une intégrale convergente.

(b) D'après la question 3.b, pour tout x > 0 on a :

$$f(x) = x \left(\ln(1+x^2) - 2 \right) + 2 \int_0^x \frac{1}{1+t^2} dt.$$

Ainsi:

$$f(x) = x \ln(1+x^2) \left(1 - \frac{2}{\ln(1+x^2)} + \frac{2\int_0^x \frac{1}{1+t^2} dt}{x \ln(1+x^2)} \right).$$

Or : $\lim_{x \to +\infty} \ln(1+x^2) = +\infty$ donc par opérations sur les limites et d'après la question précédente :

$$\lim_{x \to +\infty} \frac{2}{\ln(1+x^2)} = \lim_{x \to +\infty} \frac{2\int_0^x \frac{1}{1+t^2} dt}{x \ln(1+x^2)} = 0.$$

Ainsi:

$$\lim_{x \to +\infty} \left(1 - \frac{2}{\ln(1+x^2)} + \frac{2\int_0^x \frac{1}{1+t^2} dt}{x \ln(1+x^2)} \right) = 1.$$

Finalement, on obtient bien : $f(x) \sim x \ln(1+x^2)$.

(c) Soit x un réel strictement positif, on a :

$$\ln(1+x^2) = \ln\left(x^2\left(1+\frac{1}{x^2}\right)\right) = \ln(x^2) + \ln\left(1+\frac{1}{x^2}\right) = 2\ln(x) + \ln\left(1+\frac{1}{x^2}\right).$$

On en déduit que pour pour x > 1 on a :

$$\ln(1+x^2) = 2\ln(x) \left(1 + \frac{\ln\left(1 + \frac{1}{x^2}\right)}{2\ln(x)} \right)$$

où $\lim_{x \to +\infty} \left(1 + \frac{\ln\left(1 + \frac{1}{x^2}\right)}{2\ln(x)} \right) = 1$. Ainsi $\ln(1 + x^2) \underset{x \to +\infty}{\sim} 2\ln(x)$ et par compatibilité de la relation d'équi-

valence avec le produit :

$$f(x) \underset{+\infty}{\sim} x \ln(x^2 + 1) \underset{+\infty}{\sim} 2x \ln(x).$$

(d) Comme la fonction f est impaire la question précédent permet de conclure que :

$$f(x) = -f(-x) \underset{x \to -\infty}{\sim} -2(-x) \ln(-x) = 2x \ln(-x).$$

- 5. (a) On a vu que f est de classe C^1 sur \mathbb{R} de dérivée $f': x \mapsto \ln(1+x^2)$. Comme f' est une composée de fonctions de classe C^2 sur \mathbb{R} , f' est de classe C^2 sur \mathbb{R} . Ainsi f est de classe C^3 sur \mathbb{R} .
 - (b) On voit facilement que:

$$f(0) = 0$$
 ; $f'(0) = \ln(1 + 0^2) = 0$.

De plus, pour tout réel *x* :

$$f''(x) = \frac{2x}{1+x^2}$$
 ; $f'''(x) = \frac{2(1+x^2)-4x^2}{(1+x^2)^2}$.

D'où:

$$f''(0) = 0$$
 ; $f'''(0) = 2$.

(c) D'après la formule de Taylor-Young à l'ordre 3 donnée dans l'énoncé, on a :

$$f(x) = f(0) + \frac{x^1}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f^{(3)}(0) + \underset{x \to 0}{o}(x^3)$$
$$= \frac{2}{3!}x^3 + \underset{x \to 0}{o}(x^3)$$
$$= \frac{1}{3}x^3 + \underset{x \to 0}{o}(x^3)$$

D'après la caractérisation de la relation d'équivalence on obtient : $f(x) \underset{r \to 0}{\sim} \frac{x^3}{3}$.

Partie 2 : étude d'une suite

On pose $u_0 = 1$, et pour tout entier naturel n non nul, $u_n = \int_0^1 \left(\ln(1+t^2) \right)^n dt$.

6. (a) Oui car

$$\int_0^1 (\ln{(1+t^2)})^0 dt = 1 = u_0.$$

- (b) Il est clair que $u_1 = f(1)$.
- 7. (a) Soit $n \in \mathbb{N}$. Par croissance de la fonction logarithme, on a :

$$\forall t \in [0,1], \quad \ln(1+t^2) \le \ln(2) \le 1.$$

Donc:

$$\forall t \in [0,1], (\ln(1+t^2))^{n+1} \le (\ln(1+t^2))^n.$$

On en déduit donc :

$$u_{n+1} = \int_0^1 \ln(1+t^2)^{n+1} dt \leqslant \int_0^1 (\ln(1+t^2))^n dt = u_n.$$

La suite $(u_n)_{n\in\mathbb{N}}$ est donc décroissante.

- (b) Pour tout $n \in \mathbb{N}$, u_n est l'intégrale d'une fonction positive (et les bornes sont rangées dans l'ordre croissant) donc est positif. Ainsi la suite $(u_n)_{n \in \mathbb{N}}$ est minorée par 0. La suite $(u_n)_{n \in \mathbb{N}}$ est minorée par 0 et décroissante donc d'après le théorème de la limite monotone elle converge.
- 8. (a) Soit $n \in \mathbb{N}$. On reprend l'inégalité établie en 7.a) :

$$\forall t \in [0,1], \quad \ln(1+t^2) \leq \ln(2).$$

Par croissance de la fonction $x \mapsto x^n \operatorname{sur} \mathbb{R}_+$ on en déduit :

$$\forall t \in [0,1], (\ln(1+t^2))^n \leq (\ln(2))^n.$$

En intégrant cette inégalité entre 0 et 1 on obtient, avec la question 7.b:

$$0 \le u_n \le (\ln(2))^n$$
.

(b) Comme $|\ln(2)| < 1$, on sait que : $\lim_{n \to +\infty} (\ln(2))^n = 0$. Par encadrement, on en déduit que la limite de la suite $(u_n)_{n \in \mathbb{N}}$ est 0.

Comme $|\ln(2)| < 1$, on sait que : $\sum_{n \ge 0} (\ln(2))^n$ converge. Par comparaison pour les séries à termes positifs, on en déduit que la série de terme général u_n converge aussi.

9. (a) Soit $n \in \mathbb{N}$. On reprend l'inégalité établie en 7.a) :

$$\forall t \in [0,1], \quad 0 \le \ln(1+t^2) \le \ln(2) < 1.$$

On en déduit donc :

$$\forall t \in [0, 1], \quad 1 - \ln(1 + t^2) \ge 1 - \ln(2) > 0.$$

Ainsi:

$$\forall t \in [0,1], \quad 0 \leq \frac{\left(\ln(1+t^2)\right)^n}{1 - \ln(1+t^2)} dt \leq \frac{\left(\ln(1+t^2)\right)^n}{1 - \ln 2}.$$

En intégrant cette inégalité entre 0 et 1 on obtient :

$$0 \le \int_0^1 \frac{\left(\ln(1+t^2)\right)^n}{1 - \ln(1+t^2)} dt \le \frac{u_n}{1 - \ln 2}.$$

- (b) Comme $\lim_{n\to +\infty} u_n = 0$, par encadrement on en déduit : $\lim_{n\to +\infty} \int_0^1 \frac{\left(\ln(1+t^2)\right)^n}{1-\ln(1+t^2)} dt = 0$.
- (c) Soit *n* un entier naturel non nul. Par linéarité de l'intégrale, on a :

$$\sum_{k=0}^{n-1} u_k = \sum_{k=0}^{n-1} \int_0^1 (\ln(1+t^2))^n dt = \int_0^1 \left(\sum_{k=0}^{n-1} (\ln(1+t^2))^n \right) dt.$$

Or, pour tout $t \in [0,1]$, $\ln(1+t^2) \neq 1$ donc par somme des termes d'une suite géométrique on obtient :

$$\sum_{k=0}^{n-1} u_k = \int_0^1 \left(\sum_{k=0}^{n-1} (\ln{(1+t^2)})^n \right) dt = \int_0^1 \frac{1 - \left(\ln{(1+t^2)} \right)^n}{1 - \ln{(1+t^2)}} dt.$$

(d) Soit $n \in \mathbb{N}$. D'après la question précédente on a :

$$\sum_{k=0}^{n} u_k = \int_0^1 \frac{1 - \left(\ln(1+t^2)\right)^{n+1}}{1 - \ln(1+t^2)} dt = \int_0^1 \frac{1}{1 - \ln(1+t^2)} dt - \int_0^1 \frac{\left(\ln(1+t^2)\right)^n}{1 - \ln(1+t^2)} dt.$$

Donc, d'après 9.b on obtient :

$$\lim_{n \to +\infty} \sum_{k=0}^{n} u_k = \int_0^1 \frac{1}{1 - \ln(1 + t^2)} dt.$$

Ainsi:

$$\sum_{k=0}^{+\infty} u_k = \int_0^1 \frac{1}{1 - \ln(1 + t^2)} dt.$$

• FIN •