

Periodic Table of the Elements

1	18	$\mathop{He}_{\text{helium}\atop\text{4.0026}}^2$	$\stackrel{\text{O}}{\text{Ne}}_{\stackrel{\text{D}}{\text{Neon}}}$	$\mathop{\rm Ar}_{\mathop{\sf argon}\atop {\it 39.8775}}^{\it 39}$	36 4 <i>p</i> Kr krypton 83.798	54 2.60 5p Xe xenon 131.29	$\mathop{Rn}\limits_{\tiny{radon}\atop{(222)}}$	$\mathop{\rm Oganesson}_{\text{(294)}}$
1.20 1.41 1.20 1.41 1.42			3.98 F Huorine 18.998	$\prod_{\text{chlorine}}^{3.16} 3\rho$	2.96 Br bromine 79.904	2.66 5 <i>p</i> I iodine 126.9	$\mathop{At}_{\text{astatine}\atop (210)}$	$\prod_{(294)}^{7p}$
1.20 1.8 1.20 1.8 1.20 1.8 1.20 1.8 1.20 1.8 1.20 1.20 1.8 1.20 1.20 1.8 1.20		16	2p	2.58 S sulfur 32.0675	2.55 4 <i>p</i> Se selenium 78.971	$\prod_{\text{tellurium}}^{2.1} _{5p}$	2.0 PO solonium (209)	$\frac{7p}{\mathbf{LV}}$
1.20 1.20		31	N 3.04 nitrogen 14.007	2.19 3 <i>p</i> P nosphorus 30.974	2.18 4 <i>p</i> AS arsenic 74.922	Sb antimony	2.02 Bi bis muth 208.98	$\stackrel{^{7p}}{\mathrm{Mc}}_{{}^{\mathrm{oscovium}}_{(290)}}$
1 200 14 15 15 15 15 15 15 15		41	6 2.55 C carbon 12.0105	Silicon 28.085	Ge germanium 72.63	50 1.96 Sn tin tin 118.71	82 1.8 Pb lead 207.2	F1 erovium (289)
1 2.00 14 1.50		13		1.61 A1 aluminium 26.982	31 1.81 Ga gallium 69.723	49 1.78 Indium 114.82	1.62 T1 thallium 204.385	$\mathop{\mathrm{Nh}}_{\text{nihonium}}$
1 220 18				12	1.65 Zn zinc 65.38	Cd Cadmium 112.41	$_{^{1.9}}^{\text{1.9}}$	$\mathop{\mathrm{Coperniciun}}^2_{{\scriptscriptstyle{(285)}}}$
1 2.00 13 13 13 13 13 13 13				F	29 1.90 Cu copper 63.546	47 1.93 Agsilver 107.87	79 2.54 Au gold 196.97	$\mathop{Rg}_{\text{roentgeniur}}$
1 2.20 13				OL	28 1.91 Ni nickel 58.693	46 2.20 Pd palladiur 106.42	$\Pr_{\text{platinur}}^{2.28}$	DS 62 darmstadtium (281)
1 220 13				б	Cobalt 58.933	Rh rhodium 102.91	$\sum_{\substack{1.2 \ ext{iridium} \ 192.22}}$	$\overset{\text{6d}}{\operatorname{Mt}}_{\overset{\text{meitnerium}}{(278)}}$
1					- 47 - 52	$ ho_{ m uthenium}^{2.2}$	2.2 OS osmium 190.23	108 69 HS hassium (269)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			mber ectronegativity sied subshell ment name d atomic weighti	L	$\stackrel{25}{M} \stackrel{1.55}{m}_{anganes}$	$\prod_{\substack{\text{technetium} \\ (97)}}^{43}$	$\mathop{Re}_{{}^{\text{rhenium}}}$	$\mathop{Bh}\limits_{\text{bohrium}\atop(270)}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Z: atomic nuu X: Pauling el ss: last occup Sy: symbol element: eler saw: standan	9	24 Chr	2.16 MO	74 2.36 W tungsten 183.84	$^{ m 56}_{ m seaborgiun}$
1 2.20 15			$S_{\mathbf{y}}^{\times}$ element saw	ن	1.63 V	1.6 NE niobiur 92.906	$\overset{1.5}{\mathrm{Ta}}$	$\mathop{Db}_{\text{dubnium}}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			E	4	1.54 T1 titanium 47.867	40 1.33 Z X zirconium 91.224	$\mathop{\rm Hif}_{178.49}^{1.3}$	$\mathop{Rf}_{\text{rutherfordium}}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				m	SC Scandium scandium 44.956	39 1.22 Y yttrium 88.906	* Ianthanides	
Group 1 1 2.20 Hydrogen 1.008 3 0.98 1 Li lithium 6.9675 11 0.93 19 0.82 K Potassium 9.928 3 0.82 R R R R R S S S Caesium 132.91 87 F Francium (223)			$\mathop{Be}_{\text{beryllium}}^{\text{4}}$	${ m Mg}_{ m 24.3055}$	1.00 Ca calcium 40.078	Sr Strontium	0.89 Ba barium 137.33	$\mathop{Ra}\limits^{\text{0.9}}_{\text{radium}}$
L 0 & 4 10 10 .	Group 1	1 2.20 1s H hydrogen 1.008	3 0.98 Li lithium 6.9675	11 0.93 Na sodium 22.99	19 0.82 K potassium 39.098	Rb Rb rubidium 85.468	55 0.79 $ CS $ caesium 132.91	$F_{rancium}$

£	<i>p</i> 99
4f 71 1.27 4 Lu Lutetium 174.97	$\frac{103}{Lr}$ lawrencium (266)
$\sum_{\text{ytterbium}\atop{173.05}}^{70}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Frank 1.25 4 Temporary 1.25 4 Temporary 1.08.93	5f 101 1.3 5f Md mendelevium (258)
68 1.24 4f 69 F 69 E 6	$\stackrel{\text{1.0}}{Fm}_{\stackrel{\text{fermium}}{(257)}}$
67 1.23 4f 68 HOlmium 164.93	1.3 5f ES nsteinium (252)
66 1.22 4f 67 Dy dysprosium 162.5	$Cf = \begin{array}{c c} 28 & 1.3 & 5f & 99 \\ \hline Cf & & \\ \hline californium & ei \\ (251) & & \end{array}$
$\begin{array}{c c} \text{65} & \text{4f} & \text{66} \\ \hline T \\ \text{terbium} \\ \text{158.93} & \text{4} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{matrix} \textbf{64} & \textbf{1.2} & \textbf{4f} & \textbf{65} \\ \textbf{Gd} & & \\ \textbf{gadolinium} & \textbf{157.25} \end{matrix} $	$\mathop{Cm}_{{\scriptscriptstyle{(247)}}}^{96}$
$\begin{array}{c c} \text{63} & \text{4}f & \text{64} \\ \hline \textbf{E}\textbf{U} \\ \text{europium} \\ \text{151.96} \end{array}$	$\mathop{\mathrm{Am}}_{{}^{\mathrm{inericium}}}$
62 1.17 4f 63 Sm samarium 150.36	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\Pr_{\text{promethium}}^{4f}$	$N_{\text{neptunium}\atop{(237)}}$
60 1.14 4f 61 Nd neodymium F 144.24	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbf{Pr}	91 1.5 5 <i>f</i> Pa protactinium 231.04
La Cerium praseodymium reedymi 140.91 144.22	c Th Phorium thorium pp. 232.04
$\sum_{\substack{La\\ \text{lanthanum}\\138.91}}$	$\mathop{Ac}\limits_{\text{actinium}\atop(227)}$
*	* *

†Standard atomic weights (average terrestrial atomic weight) taken from the Commission on Isotopic Abundances and Atomic Weights (http://www.ciaaw.org/abridged-atomic-weights.htm). If CIAAW indicates a range for the standard atomic weight of an element, I used the arithmetic mean of the boundaries of the range. Elements with atomic weight in parentheses (e.g., Francium (223)) have no known stable isotopes and it is therefore impossible to provide a standard atomic weight. For these elements, the mass of a representative isotope is provided.

'Indicates an anomalous (Àufbau rule-breaking) ground state electron configuration. Inspired by Ivan Griffin's EffX Periodic Table. BfEXcode is released under the MIT open source license. Final product (this Table) is released under creative commons attribution/share-alike copyright terms. ©G© 2019. Paul N. Danese

Abbreviations:

• atm: atmosphere

• g, mg: gram, milligram

• K: Kelvin

• L, mL: liter, milliliter

• M: Molar / molarity

• mmHg: millimeters of mercury

• mol: mole

Moles, conversion, pH, and other stuff:

• 1 mole =
$$6.0221 \times 10^{23}$$
 things

• Kelvin =
$${}^{\circ}C + 273.15$$

•
$$pH = -1 \times log[H_3O^+]$$

•
$$1000 \, mL = 1 \, L$$

•
$$1000 g = 1 kg$$

•
$$1 \, \text{mL} = 1 \, \text{cm}^3$$

• density =
$$\frac{\text{mass}}{\text{volume}}$$

Concentration equations:

•
$$\%(m/m) = \frac{mass \text{ of solute}}{mass \text{ of solution}} \times 100$$

•
$$\%(v/v) = \frac{volume \ of \ solute}{volume \ of \ solution} \times 100$$

•
$$\%(m/v) = \frac{mass \ of \ solute \ in \ grams}{volume \ of \ solution \ in \ mL} \times 100$$

• Molarity =
$$\frac{\text{number of moles of solute}}{\text{number of Liters of solution}}$$

Gas equations:

• Boyle's Law: $P_1V_1 = P_2V_2$

• Charles's Law:
$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

• Gay-Lussac's Law: $\frac{P_1}{T_1} = \frac{P_2}{T_2}$

• Combined gas Law:
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

• Avogadro's Law: $\frac{V_1}{n_1} = \frac{V_2}{n_2}$

• Universal gas constant:
$$R = \frac{0.0821 Latm}{mol K}$$

• Ideal gas Law: PV = nRT