

Spring 2018 roject Exam Help

https://powcoder.com

Add WeChat powcoder

L12 – Mixture Density Models, EM Algorithm

Mixture Density Models

- Flexible models able to fit lots of densities
- Fit parameters by maximum likelihood. Nonlinear equations require iterative fitting procedure. Standard is Expectation – Maximization (EM).

 *Soft" version of clustering.

 *Project Exam Help

General form is
$$\begin{array}{l} \text{https://powcoder.com} \\ p(x|\Theta) = \sum_{j=1}^{k} \alpha_{j} p(x|j) \\ \text{Add WeChat powcoder} \\ p(x|j) \equiv p(x|\theta_{j}) & \text{are component densities with parameter (vectors)} \theta_{j} \\ \Theta \equiv \left(\alpha_{1},...,\alpha_{k},\,\theta_{1},\,\theta_{k}\right) \\ \alpha_{j} \geq 0, & \sum_{j=1}^{k} \alpha_{j} = 1 & \alpha_{j} & \text{is prior probability for mixture component } j \end{array}$$

Generative Model

Mixture model form
$$p(x|\Theta) = \sum_{j=1}^{k} \alpha_j p(x|j)$$

$$p(x | j) \equiv p(x)\theta_{s} \text{ ignificant projectives with parameter (vectors)} \theta_{j}$$

$$\Theta \equiv (\alpha_{1},...,\alpha_{k}, \theta_{1},...,\theta_{k})$$

$$\alpha_{j} \geq 0, \qquad \sum_{j=1}^{k} \alpha_{j} = 1 \qquad \alpha_{j} \text{ is prior probability for mixture component } j$$

$$\text{Add WeChat powcoder}$$

Generating *x* is a two-fold sampling procedure:

- 1. Pick a component density with probability α_j
- 2. Generate a sample x from $p(x \mid j)$

Mixture Models

Most common example is mixture of Gaussians

$$p(x|\Theta) = \sum_{j=1}^{k} \alpha_{j} \quad p(x|j)$$
with
$$p(x|j) = \frac{1}{\sum_{j=1}^{k} p(x-\mu_{j})^{T}} \exp\left(\frac{-1}{2} (x-\mu_{j})^{T} \sum_{j=1}^{k} (x-\mu_{j})\right)$$

$$https://powcoder.com$$

There's a universal approximation theorem for such mixtures that states that with enough components, a mixture of Gaussians fit by maximum likelihood can arbitrarily closely match any density on a compact subset of Rⁿ.

1. Jonathan Li and Andrew Barron. Mixture Density Estimation, in Solla, Leen, and Mueller (eds.) *Advances in Neural Information Processing Systems* 12, The MIT Press, 2000.

Gaussian Mixture Model

Flexible --- can make lots of shapes!

Fitting Mixture Models

Suppose we have a data set

$$D = \{ x_a, a = 1, ..., N \}$$
 with each x_a a vector in \mathbb{R}^n

we'd like to a sign of the balant Etern Help

so as to maximize the data now fixed thood

$$L(\Theta) = \ln P(D \mid \Theta) = \sum_{a=1}^{N} \ln \left(\sum_{j=1}^{k} \alpha_j \ p(x_a \mid \theta_j) \right)$$

Fitting Mixture Models

The data log likelihood

$$L(\Theta) = \ln P(D | \Theta) = \sum_{a=1}^{N} \ln \left(\sum_{j=1}^{k} \alpha_j \ p(x_a | \theta_j) \right)$$

cannot be maximized in one step --- the maximization equations don't have a closed formsoft the exam Help Instead, use an iterative approach --- the EM algorithm https://powcoder.com

For the moment, rewrite the log-likelihood as (suppressing the mixture form of $p(x)\Theta dd$ WeChat powcoder

$$L(\Theta) = \ln P(D \mid \Theta) = \sum_{a=1}^{N} \ln p(x_a \mid \Theta) = \sum_{a=1}^{N} \ln \left(\sum_{i_a=1}^{k} p(i_a, x_a \mid \Theta) \right)$$

where i_a is the <u>unknown</u> index of the component responsible for generating x_a .

Fitting Mixture Models

Next, we write a lower bound for L. Introduce an average over <u>any</u> probability distribution on the unknown indices i_a , $Q(i_a)$

$$L = \sum_{a=1}^{N} \ln p(x_a \mid \Theta) = \sum_{a=1}^{N} \ln \left\{ \sum_{i_a=1}^{k} p(i_a, x_a \mid \Theta) \right\} = \sum_{a=1}^{N} \ln \left\{ \sum_{i_a=1}^{k} Q(i_a) \frac{p(i_a, x_a \mid \Theta)}{Q(i_a)} \right\}$$

Jensen's inequality signement Project Exam Help

$$L = \sum_{a=1}^{N} \ln \left\{ \sum_{i_{a}=1}^{k} Q(i_{a}) \frac{\text{https://powtoder.com}}{Q(i_{a})} \right\} \geq \sum_{a=1}^{k} \sum_{i_{a}=1}^{k} Q(i_{a}) \ln \frac{p(i_{a}, x_{a})}{Q(i_{a})}$$

$$+ \text{Add WeChat powcoder}$$

$$= \sum_{a=1}^{N} \sum_{i_{a}=1}^{k} Q(i_{a}) \ln p(i_{a}, x_{a}) - \sum_{a=1}^{N} \sum_{i_{a}=1}^{k} Q(i_{a}) \ln Q(i_{a}) \equiv \Gamma(\Theta)$$

The equality holds when $Q(i_a)$ is the posterior distribution on the unknown indices

$$Q(i_a) = p(i_a \mid x_a, \Theta)$$

EM Algorithm

Iterative optimization algorithm: Expectation Maximization (EM) maximizes Γ (which maximizes L). There are multiple optima, EM only finds a <u>local optimum</u>.

Initialize the algorithm to some choice of the parameters. At the n+1th iteration:

https://powcoder.com

E Step: With Θ fixed at $\Theta(n)$, estimate the index distribution as

Add WeChat powcoder

$$Q_{n+1}(i_a) = h_{i,a}(n+1) \equiv p(i|x_a, \Theta(n)) = \frac{\alpha_i(n) \ p(x_a|\theta_i(n))}{\sum_{j=1}^k \alpha_j(n) \ p(x_a|\theta_j(n))}$$

M Step: With $Q = h_{i,a}(n+1)$ fixed, maximize Γ with respect to Θ

$$\Theta(n+1) = \underset{\Theta}{\operatorname{arg\,max}} \Gamma(\Theta, h_{i,a}(n+1)) = \underset{\Theta}{\operatorname{arg\,max}} \sum_{a=1}^{N} \sum_{i=1}^{k} h_{i,a}(n+1) \ln \left(\alpha_{i} \ p(x_{a} \mid \theta_{i})\right)$$

subject to the condition $\sum_{i=1}^{k} \alpha_i P_i$ Project Exam Help https://powcoder.com

This gives

Add WeChat powcoder

$$\alpha_i(n+1) = \frac{1}{N} \sum_{a=1}^{N} h_{ia} = \frac{1}{N} \sum_{a=1}^{N} p(i \mid x_a, \Theta(n))$$

for the α_i i=1,...k

EM

M Step (continued) With $Q = h_{ia}(n+1)$ fixed, maximize $\Gamma(\Theta,h)$ with respect to the θ_i

$$\Theta(n+1) = \underset{\Theta}{\operatorname{arg\,max}} \Gamma(\Theta, h_{i_a}(n+1)) = \underset{\Theta}{\operatorname{arg\,max}} \sum_{i=1}^{N} \sum_{j=1}^{k} h_{i_j}(n+1) \ln \left(\alpha_i p(x_a \mid \theta_i)\right)$$

Maximize Γ with respect to separately, so the above reduces to Γ

$$\theta_{j}(n+1) = \underset{\theta_{j}}{\operatorname{arg\,max}} \sum_{a=1}^{N} h_{j,a}(n+1) \ln \left(\alpha_{j} p(x_{a} | \theta_{j}) \right)$$

Example – Mixture of Gaussians

Component densities
$$p(x | \theta_j) = \frac{1}{\sqrt{(2\pi)^n |\Sigma_i|}} \exp{-\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i)}$$

E-Step
$$h_{a,i}(n+1) = p(i_a | x_a, \Theta(n)) = \frac{\alpha_i(n) p(x_a | \theta_i(n))}{\text{Assignment Project Exam He} p(x_a | \theta_j(n))}$$

M-Step

$$\Sigma_{i}(n+1) = \frac{\sum_{a=1}^{N} h_{i,a}(n+1) \left(x_{a} - \mu_{i}(n+1)\right) \left(x_{a} - \mu_{i}(n+1)\right)^{T}}{\sum_{a} h_{i,a}(n+1)}$$

Gaussian Mixtures

Let's interpret equations for the M-Step

$$\alpha_i(n+1) = \frac{1}{N} \sum_{a=1}^N h_{i,a}(n+1)$$
 New estimate of prior for ith component is the average over the data points of the posteriors for Assignification in the extra Help

$$\mu_i(n+1) = \frac{\sum_{a=1}^{N} h_{i,a}(n+1) \ x_a}{\sum_{a} h_{i,a}(n+1)}$$
 of data points. Weighting is fraction of the data Adpoint x cattributed to component i ,

$$\Sigma_{i}(n+1) = \frac{\sum_{a=1}^{N} h_{i,a}(n+1) \left(x_{a} - \mu_{i}(n+1)\right) \left(x_{a} - \mu_{i}(n+1)\right)^{T}}{\sum_{a} h_{i,a}(n+1)}$$

New covariance is constructed from weighted outer product.

Gaussian Mixture Model

Flexible --- can make lots of shapes!

EM Summary --- Gaussian Mixtures

Initialize parameters

```
Assignment Project Exam Help \alpha_i(0) = 1/k all components equally likely \mu_i(0) = x_i \qquad k \text{ ranktaply. Approximate from training data} \Sigma_i(0) a positive symmetric, positive definite matrix e.g. \sigma^2 I Add WeChat powcoder
```

EM Summary --- Gaussian Mixtures

Iterate

E-Step (estimate posteriors)
$$h_{a,i}(n+1) \equiv p(i_a \mid x_a, \Theta(n)) = \frac{\alpha_i(n) p(x_a \mid \theta_i(n))}{\sum_{j=1}^k \alpha_j(n) p(x_a \mid \theta_j(n))}$$

M-Step

Re-estimate prio Assignment) Project, Exam Help

https://powecoder.com

Re-estimate means

Add WeChathpowooder

Re-estimate covariances

$$\Sigma_{i}(n+1) = \frac{\sum_{a=1}^{N} h_{i,a}(n+1) \left(x_{a} - \mu_{i}(n+1)\right) \left(x_{a} - \mu_{i}(n+1)\right)^{T}}{\sum_{a} h_{i,a}(n+1)}$$

Caveats

In high dimensions *n*, there are loads of covariance matrix elements. Likely to overfit.

Fixes – <u>constrain</u> covariance matrices to have fewer components

Spherically symmetric We Chat power dere identity matrix

Some other clever form (???)

Note that any constraints modify the M-step equations for the covariance --- can you derive the forms?

Caveats

There are regions of the parameter space where the likelihood goes through the roof but the resulting model is bad

One Gaussian wrapped around this one point x'. Let $\mu_i = x'$, and take σ_i^2 to 0.

Assignment Project Exam Help

Then $p(x' \mid \mu_i, \sigma_i^2) \to \infty$ https://powcoder.com
and the likelihood grows without bound. This is

particularly likely in high-dimensions where the average distance between datapoints becomes large.

Regularization (has a grounding in Bayesian priors and MAP estimation). After re-estimation, add a <u>small</u> diagonal matrix to the covariance

$$\Sigma_i(n+1) \rightarrow \Sigma_i(n+1) + \varepsilon I$$

References

- Dempster, Laird, and Rubin. Maximum likelihood from incomplete data via the EM algorithm, *J. Royal Statistical Soc. B*, 39, 1-39, 1977.
- Rener and Warkers Mixture densities, Faximum Religion in the EM algorithm, SIAM Review, 26, 195-239, 1984.
- Ormoneit and Tresp. In Advances in Neural Information Processing Systems 8, The MIT Press, 1996.
 Jonathan Li and Andrew Barron. Mixture Density Estimation, in
- Jonathan Li and Andrew Barron. Mixture Density Estimation, in Solla, Leen, and Mueller (eds.) Advances in Neural Information Processing Systems 12, The MIT Press, 2000.

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

