Inhaltsverzeichnis

1	Ges	chichte und Einführung	3											
	1.1	Geschichte	3											
	1.2	Tail call optimization	3											
			3											
		1.2.2 Beispiele	4											
2	Clos	sures	5											
_	2.1		5											
	2.2		5											
			5											
3	Lan	Lambda Kalkül												
	3.1	Bestandteile	6											
	3.2		6											
	3.3	Notation	6											
4	Gle	icheit	7											
	4.1	Gebundene Variablen	7											
		4.1.1 Beispiel	7											
		4.1.2 Freie Variablen	7											
	4.2	Einsetzen in Terme	7											
		4.2.1 Regeln	7											
			8											
	4.3	α -Gleicheit	8											
	4.4	β -Gleicheit	8											
	4.5		8											
5	Mal	cros	9											
	5.1	Booleans und If	9											
	5.2	Zahlen (Church Nummerals)	9											
		5.2.1 Addition	9											
			9											
	5.3	Listen	9											
	5.4	For loop	9											
6	Rek	eursion 1	0											
	6.1	Primitive Rekursion	0											
	6.2	Allgemeine Rekursion	0											
		6.2.1 Fixpunktoperator (Y-Combinator)	0											
7	Lambda Umgebung													
	7.1	Spezielle Umgebungen	1											
	7.2	Auswertung	1											
		7.2.1 Regeln	1											
		7.2.2 Rojenielo	1											

8	λ -Term Auswertung													13												
	8.1	Beispiele: Umgebung																								13

1 Geschichte und Einführung

1.1 Geschichte

- 1. Lambda Kalkül
 - Gleichwertig mit Turing Maschine (kann gleichen Probleme lösen)
 - Universale Turing Maschine (kann alle Turingmaschinen beschreiben)
 - Universale Lambda-Funktion gesucht
- 2. Fortran (Fortran list processing language)
- 3. Fortran M-Expressions (Idee wurde nie implementiert)
- 4. Lisp
 - List processing Alternative zu Turingmaschine: LISP Funktion eval
 - Notation: Programme und Daten können beide als Liste beschrieben werden

Abbildung 1: LISP EVAL vereinfacht

• EVAL ist LISP Interpreter

5. Scheme

- Prototyp für funktionale Programmiersprache
- Versuch, LISP simpler umzusetzen
- Optimized tail recursion (garantiert vom Compiler)

1.2 Tail call optimization

Tailcall Rekursion ist fast so effizient wie **goto** Begehle weil keine neuen Stackframes aufgebaut werden müssen.

1.2.1 Tail recursion

Rekursive Funktion f ist **endrekursiv**, wenn der rekursive Funktionsaufruf die **letzte Aktion zur Berechnung von f** ist.

1.2.2 Beispiele

```
1 // Kein tail call
2 int fact(int x){
3     if(x == 0) return 1;
4     else return fact(x - 1) * x;
5 }

1 // Tail call
2 int fact(int x, int accum=1){
3     if(x == 0) return accum;
4     else return fact(x - 1, x * accum);
5 }
```

 $Optimierung\ m\"{o}glich,\ da\ x\ nicht\ als\ Zwischenergebnis\ gespeichert\\ werden\ muss.$

2 Closures

2.1 Static und Dynamic Scoping

- Static/Lexical Scoping: Struktur des Sourcecodes legt fest welche Variablen gemeint sind.
- Dynamic Scoping: Stack/Programmzustand legt Variablen fest.

2.2 Closure

Jede Scheme-Funktion hat eigene Umbebung für alle Variablen, die im body vorkommen.

Closure = Code + Umgebung

2.2.1 Beispiel

```
1 define (new-account) ;; funktion ohne argumente
      (let ((balance 0))
2
                            ;; lokale variable = 0
3
      (lambda (x)
                             ;; Rückgabe = Funktion erhöht
          balance um x und gibt balance zurpck
          (set! balance (+ balance x))
5
          balance)))
7 (define ferien (new-account))
                         ;; -> 10
8 (ferien 10)
                         ;; -> 20
9 (ferien 10)
11 (define reisen (new-account))
12 (reisen 3)
                         ;; -> 3
13 (ferien 10)
                         ;; -> 30
```

3 Lambda Kalkül

3.1 Bestandteile

- Term (Kodierte Werte und Funktionen)
- Variable
- Funktion
- λ -Abstraktion

3.2 Terme

- Eine Variable ist ein Term
- Sind t und s Terme, so ist ts ein Term (wird auch Anwendung genannt).
- Ist ${\bf t}$ ein Term und ${\bf x}$ eine Variable, dann ist $\lambda x.t$ eine Abstraktion

3.3 Notation

- Linksklammerung: xxx = (xx)x (Rechtsklammerung muss explizit sein)
- Abstraktion mit mehreren Variablen: $\lambda x.\lambda y.\lambda z.t = \lambda xyz.t$

4 Gleicheit

4.1 Gebundene Variablen

- Alle nicht freien Variablen
- können umbennant werden (Solange dadurch keine freien Variablen eingefangen werden)

4.1.1 Beispiel

```
1 inline int f(int x){
2    int i;
3    for(i = 0; i < 10; i++) x=x*x;
4    return x
5 }
6
7 int main(){
8    int x; int i; x=3; i=6;
9    f(x); f(i); f(5);
10    return 0;
11 }</pre>
```

4.1.2 Freie Variablen

Variable x in Term t is freie Variable wenn $x \in FV(t)$ Eine Variable ist element von FV wenn:

• t eine Variable x ist: FV(t) = x

- t eine Anwendung vs ist: $FV(t) = FV(v) \cap FV(s)$
- t eine Abstraktion $\lambda x.s$ ist: $\mathbf{FV(t)} = \mathbf{FV(s)} \setminus \mathbf{x}$

4.2 Einsetzen in Terme

Einsetzen eines Terms s in einen Term t für die Variable x: $\mathbf{t}[\mathbf{x} \leftarrow \mathbf{s}]$

4.2.1 Regeln

- t ist Variable
 - 1. t = x; $x[x \leftarrow s] = s$
 - 2. t = y; $y[x \leftarrow s] = y$ nicht-x-Variable wird nicht ersetzt
- t ist Anwendung pq
 - 1. t = pq; $pq[x \leftarrow s] = p[x \leftarrow s]q[x \leftarrow s]$
- t ist Abstraktion

1.
$$t = \lambda x.r$$
; $\lambda x.r[x \leftarrow s] = \lambda x.r$

2.
$$t = \lambda y.r; y \neq x$$

$$-\ y \notin FV(s) \implies \lambda y.r[x \leftarrow s] = \lambda y.(r[x \leftarrow s])$$

$$-y \in FV(s) \Longrightarrow$$
 Umbenennung der gebundenen Variable: $\lambda y.r = \lambda z.r[y \leftarrow z] \implies (\lambda z.r[y \leftarrow z])[x \leftarrow s]$

4.2.2 Beispiele

- $x[x \leftarrow \lambda z.z] = \lambda z.z$
- $yy[x < -\lambda z.z] = yy$
- $(\lambda z.xy)[x \leftarrow y] = \lambda z.yy$
- $(\lambda z.xy)[x \leftarrow z] = \lambda p.(xy[z \leftarrow p])[x \leftarrow z] = \lambda p.zy$

4.3 α -Gleicheit

$$\lambda x.t = \lambda y.(t[x \leftarrow y]) \text{ (falls y nicht in } FV(t))$$

4.4 β -Gleicheit

$$(\lambda x.t)s = t[x \leftarrow s]$$

4.5 η -Gleicheit

$$(\lambda x.tx) = t \ (falls \ x \ nicht \ in \ FV(t))$$

5 Makros

5.1 Booleans und If

- true: $\lambda xy.x$
- false: $\lambda xy.y$
- if: $\lambda xyz.xyz$
- not: $\lambda x.if x false true$
- and: $\lambda xy.if x y false$

5.2 Zahlen (Church Nummerals)

- $0 = \lambda fx.x$
- $1 = \lambda fx.fx$
- $2 = \lambda fx.f(fx)$
- $n = \lambda f x. f^n x$

5.2.1 Addition

 $\lambda mn.\lambda fx.mf(nfx)$

5.2.2 Multiplikation

 $\lambda mn.\lambda fx.m(nf)x$

5.3 Listen

- cons: λ abc.if c a b
- car: $\lambda p.p$ true
- cdr: $\lambda p.p$ false

5.4 For loop

n f (n = Church Numeral)

6 Rekursion

6.1 Primitive Rekursion

Kann in endlichen Schritten gelöst werden: if, for, listen, etc...

6.2 Allgemeine Rekursion

Nicht ohne Fixpunktoperator möglich

6.2.1 Fixpunktoperator (Y-Combinator)

- **Fixpunkt:** $f = \lambda x.if (< x 2) 1 (+ (f (-x 1)) (f (-x 2)))$
- **Rekursion:** $F = \lambda fx.if (< x 2) 1 (+ (f (-x 1)) (f (-x 2)))$
- f = F f (f ist ein Fixpunkt von F)

Für ein beliebiges **F** ist **YF** ein Fixpunkt: Y = $\lambda g.(\lambda x.g(xx))$ ($\lambda x.g(xx)$)

- 1. YF = $\lambda(g.(\lambda x.g(xx))(\lambda x.g(xx)))$ F
- 2. $(\lambda x.F(xx))(\lambda x.F(xx))$
- 3. $F((\lambda x.F(xx)) (\lambda x.F(xx)))$
- 4. $F((\lambda g.(\lambda x.g(xx)) (\lambda x.g(xx))) F)$

7 Lambda Umgebung

Ist **partielle Abbildung der variablen** in die Terme einer Definitionsmenge (**Domain**)

7.1 Spezielle Umgebungen

- ε ist die leere Umgebung
- Umgebungen mit genau einer Variablen sind Bindungen
 - Schreibweise: $x \to t$, $dom(\phi) = x$, $\phi(x) = t$
 - Komposition $\phi \circ \psi$ (ϕ und ψ sind Umgebungen):

$$* dom(\phi \circ \psi) = dom(\phi) \cup dom(\psi)$$

*

$$(\phi \circ \psi)(x) = \begin{cases} x \in dom(\phi) & \phi(x) \\ sonst & \psi(x) \end{cases}$$

* dom (ϕ) ist endlich und besteht aus Bindungen ψ_i $\phi = \psi_0 \circ \psi_1 \circ \psi_2 \cdots \psi_n$

7.2 Auswertung

Die Auswertung einer Variablen \mathbf{t} in ϕ wird geschrieben $t \downarrow \phi$

7.2.1 Regeln

- 1. Variable x
 - $x \downarrow \phi = \phi(x)$
 - $x \downarrow \phi = x \ (wenn \ x \notin dom(\phi))$
- 2. Anwendung s auf r (rs) sei $p = r \downarrow \phi$ und $q = s \downarrow \phi$

• wenn p die Form
$$\lambda$$
x.u hat so ist $rs \downarrow \phi = u \downarrow [q \leftarrow x] \circ \phi$

- Andernfalls: $rs \downarrow \phi = p \circ q$
- 3. Abstraktion $\lambda x.s$

$$\lambda x.s \downarrow \phi = \lambda z.(s \downarrow (z \leftarrow x) \circ \phi)$$
 Wobei $z \notin FV(s) \cup \bigcup_{y \in dom(\phi)} FV(\phi(y))$

7.2.2 Beispiele

Abbildung 2: Lambda Bindings

8 λ -Term Auswertung

8.1 Beispiele: Umgebung

- $(\lambda x.t)s\downarrow\phi$
 - $-s\downarrow\phi$
 - $-t\downarrow(s\leftarrow x)\circ\phi$
 - $-x \downarrow \phi = x \text{ falls } x \notin dom(\phi)$
- $(\lambda x.t) \downarrow \phi = \lambda x.(t \downarrow \phi)$ falls $x \notin \phi(y)$ für alle $y \in dom(y)$.
- $\lambda mnfx.mf(nfx)$ und $1 = \lambda gy.gy$
 - 1. $((+1)1) \downarrow \varepsilon$
 - 2. $1 \downarrow \varepsilon \rightarrow \lambda g.(\lambda y.gy) \downarrow \varepsilon$
 - 3. $\lambda g.(\lambda y.gy) \downarrow \varepsilon$
 - 4. $\lambda g.((\lambda y.gy)\downarrow \varepsilon)$
 - 5. $\lambda g.\lambda y.(gy\downarrow\varepsilon) = \lambda g.\lambda y.(g\downarrow\varepsilon)(y\downarrow\varepsilon) = 1$
 - 6. $(+1) \downarrow \varepsilon$
 - 7. $\lambda m.(\lambda n f x. m f(n f x)) 1 \downarrow \varepsilon$
 - 8. $\lambda nfx.(mf(nfx) \downarrow [1 \leftarrow m] \circ \varepsilon)$
 - 9. $\lambda n f x.(m \downarrow [1 \leftarrow m] \circ \varepsilon) f(n f x)$
 - 10. $\lambda nfx.1f(nfx)$
 - 11. $(+1)1 \downarrow \varepsilon$