1. Let ABC be a triangle. Show that if $\sum \sqrt{a+h_b} = \sum \sqrt{a+h_c}$ (cyclic sums), then ABC is isosceles.

Solution: If $x = \sin A$, etc., suppose x > y > z > 0 for contradiction (we can't have two angles sum to π , so sin is effectively "injective" here); we get $\sum \sqrt{x + xy} = \sum \sqrt{x + xz}$, so

$$0 = \sum \sqrt{x+y}(\sqrt{x} - \sqrt{y}) = (\sqrt{x} - \sqrt{y})(\sqrt{x+y} - \sqrt{z+x}) + (\sqrt{y} - \sqrt{z})(\sqrt{y+z} - \sqrt{z+x}),$$

whence $(\sqrt{x} + \sqrt{y})(\sqrt{x+y} + \sqrt{z+x}) = (\sqrt{y} + \sqrt{z})(\sqrt{y+z} + \sqrt{z+x})$. But using x > y > z, this is clearly impossible.

2. Prove that if t is a positive integer, then there exists a positive integer n > 1 such that gcd(n, t) = 1 and none of the numbers $n^k + t$ $(k \ge 1)$ are perfect powers.

Solution: Suppose $p \mid t+1$ for some prime p and let $\ell = v_p(t+1)$. Now take $n = (1 + mp^{\ell+1}t)^{\ell}$ for large m, noting that $n^k + t$ must be a dth power for some $d \mid \ell$ in order to be a perfect power at all.

3. Suppose ABCD is a parallelogram. Consider circles w_1, w_2 with w_1 tangent to segments AB, AD and w_2 tangent to segments BC, CD. Suppose circle w_3 is tangent to lines AD, DC and externally tangent to w_1, w_2 ; prove there exists a circle w_4 tangent o lines AB, BC and externally tangent to w_1, w_2 .

Solution: Let x = AB = CD, y = AD = BC, $\alpha = A/2 = C/2$, and $\beta = B/2 = D/2$ so that $\alpha + \beta = 90^{\circ}$. WLOG assume w_3 is "inside" the parallelogram (other is analogous). It's easy to see $\sqrt{y} = \sqrt{r_A \cot \alpha} + \sqrt{r_D \tan \alpha}$ and $\sqrt{x} = \sqrt{r_C \cot \alpha} + \sqrt{r_D \tan \alpha}$ and that r_B exists iff $\sqrt{x} = -\sqrt{r_a \cot \alpha} + \sqrt{r_B \tan \alpha}$ and $\sqrt{y} = -\sqrt{r_C \cot \alpha} + \sqrt{r_B \tan \alpha}$ are compatible, which is clear.

4. Points A, B are on a circle ω with center O. Let C be the circumcenter of $\triangle AOB$, and ℓ be a line passing through C such that the angle between ℓ and OC is $\pi/3$. Let ℓ intersect AA, BB at M, N, respectively. Suppose $(CAM) \cap (CBN) = P$, $(CAM) \cap \omega = Q$, and $(CBN) \cap \omega = R$. Prove that $OP \perp OR$.

Solution: Angle chase to get that $\angle BOQ = \angle AOR = 60^{\circ}$ under some orientation (basically just find $\angle AQC$ and then $\angle BQC$). It's easy to angle chase that P lies on (OAB), so phantom P' such that $\angle QOP' = \angle P'OR$ and trivially get isosceles trapezoids, which must be cyclic.

5. Find all integer numbers x, y such that $(y^3 + xy - 1)(x^2 + x - y) = (x^3 - xy + 1)(y^2 + x - y)$.

Solution: When expressions like $x^2 + x - y$ have small absolute value, we can do finite case check. Otherwise, divide both sides by $x^2 + x - y$ and $y^2 + x - y$ and do some trivial inequalities (triangle inequality helps). Also exists harder problem on AoPS thread.

6. Suppose p is an odd prime. We call the polynomial $f(x) = \sum_{j=0}^{n} a_j x^j$ with integer coefficients i-remainder if

$$\sum_{p-1|j,j>0} a_j \equiv i \pmod{p}.$$

Prove that $\{f(0), \ldots, f(p-1)\}$ is a complete residue system modulo p if and only if polynomials $f(x)^k$ for $1 \le k \le p-2$ are 0-remainder and $f(x)^{p-1}$ is 1-remainder.

Solution: Rewrite the *i*-remainder condition in terms of $f(0) + \cdots + f(p-1) \pmod{p}$, and use Newton sums.

7. Let O be the circumcenter of the acute triangle ABC. Suppose points A', B', C' are on sides BC, CA, AB such that $(AB'C') \cap (BC'A') \cap (CA'B') = O$. Let ℓ_a be the radical axis of the circle centered at B' with radius B'C and the circle centered at C' with radius C'B. (Define ℓ_b, ℓ_c analogously.) Prove that ℓ_a, ℓ_b, ℓ_c form a triangle with orthocenter H.

Solution: This is killed by spiral similarity about O and the observation that some point $A_1 \in BC$ lies on the radical axis ℓ_a (it turns out this is isogonal conjugates-ish, i.e. (A'B'C') meets BC at A_1). Noting that O is the orthocenter of A'B'C' helps to complex bash. Basically, if a'/m = 2r, etc. (some complex r), then $r + \overline{r} = 1$, and we compute $x = \frac{a(1-r)+r(b+c)}{1-r}$ where XYZ is the triangle formed by the ℓ_a .

8. A piece begins at the origin of the coordinate plane. Two players, A and B, play the following game. In A's turn, A marks a lattice point in the first quadrant that the piece is not on. In B's turn, B moves the piece up to k times, where a move is defined as moving the piece from (x,y) to (x+1,y) or (x,y+1), as long as the lattice point that the piece moves onto is not marked. They then proceed to alternate turns, with A playing first. If B cannot move the piece, A wins. For what values of k can A win?

Solution: This is a special case of Conway's Angel problem for which A (the devil) can always win.

The idea is to reduce solution sets, where ultimately we'll need B to be at (x, y) while (x + 1, y) and (x, y + 1) are both unavailable. The "most obvious" way to guarantee this, i.e. to make sure that when B is at some (x, y), all of the (x + i, y + j) are unavailable for $i, j \ge 0$ and i + j = r (some $r \ge 1$), does not directly work if we try to get consecutive things on some fixed line x + y = T.

The next dumbest thing, however, does work: we want to gradually narrow down the choices on this fixed line x+y=T (call this L) depending on the remaining possible locations of B (note that if B is at (x,y), then it can only go to (x',y') later with $x'\geq x$ and $y'\geq y$). Hence we'll want to do this iteratively, checking at certain points where B is and letting A mark the remaining possible points between consecutive checks. The most natural way to do this is uniformly; for example, if we have m moves before the first check, then B can move up to the line x+y=mk but no further, and we'll let A mark things at $(x,y)\in L$ with $x\equiv 0\pmod{\lceil T/m\rceil}$. The idea is that we'll want to do $\lceil T/m\rceil$ checks to make sure B cannot get past L. Of course, if m is too small, our checking gets little done, and if m is too large, B will pass L before we even finish checking once (for instance, we need $m\leq T/k$ for the first time).

Let $M = \lceil T/m \rceil$ and suppose that B is at $x_i + y_i = r_i$ at the i^{th} checkpoint $(i \ge 0)$ and A responds by making $m_i \le 2 + (T - r_i)/M$ marks at the positions $(x,y) \in L$ with $x \equiv i \pmod{M}$ and $x \ge x_i, y \ge y_i$. Now suppose for contradiction that $r_n \ge T$ for n minimal; since we must not have finished marking all residues \pmod{M} in order for B to have passed L between the $(n-1)^{th}$ and n^{th} checkpoints, we have $1 \le n \le M$ (otherwise, everything would've been marked between the 0^{th} and M^{th} checkpoints before B passed L). Since $r_i - r_{i-1} \le km_{i-1} \le 2k + k(T - r_{i-1})/M$ for $i \ge 1$ (note that $r_0 = 0$), this means that $r_{n-1} + 2k + k(T - r_{n-1})/M \ge r_n \ge T$. Setting c = k/M (let's choose M and T large enough so that 0 < c < 1), we get $r_{n-1} \ge T - \frac{2k}{1-c}$, and by a simple induction with geometric series we get $0 = r_0 \ge T - 2k((1-c)^{-n} + \cdots + (1-c)^{-1})$, so fixing some 0 < c < 1 and taking T sufficiently large, we get a contradiction.

9. For any given positive integer n, show that there are infinitely many triples of pairwise coprime positive integers (x, y, z) such that $nx^2 + y^3 = z^4$.

Solution: Use the standard norm trick. If $y^3=(z^2-x\sqrt{n})(z^2+x\sqrt{n})$, then it's natural to set $y=u^2-nv^2$ to get $z^2=u(u^2+3nv^2)$ and $x=3u^2v+nv^3$. It's then convenient to set $u=w^2$ so we want $w^4+3nv^2=t^2$. Using norms again, if $w=\alpha^2-\beta^2(3n)$, we want $u=(\alpha^2-(3n)\beta^2)^2$ and $v=4\alpha\beta(\alpha^2+(3n)\beta^2)$ (we have $t=\alpha^4+6\alpha^2\beta^2(3n)+\beta^4(3n)^2$). We make α odd, β even, and $\alpha \perp 3n\beta$ to get the coprimality stuff. If we fix β and take α large then we'll get $u^2>nv^2$ as u is quartic in α and v is only cubic.

10. Let A, B be finite sets of real numbers and $x \in A + B$ be an element. Show that $|A \cap (x - B)| \le |A - B|^2/|A + B|$.

Solution: It suffices to show that $|A + B|^2 \ge |X| \cdot |A - B|$, where $X = A \cap B$. But $|A + B|^2 \ge |A + X| \cdot |B + X|$, and every difference $d \in A - B$ appears as (a + x) - (b + x) at least |X| times.

11. Let ABCD be a convex tangential quadrilateral such that $\angle ABC + \angle ADC < 180^{\circ}$ and $\angle ABD + \angle ACB = \angle ACD + \angle ADB$. Prove that one of the diagonals of quadrilateral ABCD bisects the other.

Solution: Invert about A to get that $AB \cdot CD = AD \cdot BC$, and use the tangential condition to get symmetrical stuff.

12. Find the maximum possible number of kings on a 12×12 chess table so that each king attacks exactly one of the other kings (a king attacks only the squares that have a common point with the square he sits on).

Solution: Pair up the kings, and note that each pair borders at least 6 "grid" points, while no two pairs can share any grid points. This gets a bound of $13^2/6$, so there are at most 28 pairs. The construction is not hard using this intuition.