Ausbreitung und Eindämmung von Epidemien

Zeitplan

10:00 Uhr	Theorie I
11:30 Uhr	Pause (15min)
11:45 Uhr	Praxisblock I Theorie II Praxisblock II
13:15 Uhr	Pause (45min)
14:00 Uhr	Freies Arbeiten Diskussion
15:20 Uhr	Umfrage/ Evaluation

Motivation

SARS- CoV-2 in Deutschland

(Stand: 31.8.21)

bestätigte Fälle: ca. 4 Mio.

bestätigte Todesfälle: ca. 90000

Ziel: Erkennen und Eindämmen von Epidemien

Bild: Statista

SIR-Modell

William Ogilvy Kermack

1927: A contribution to the mathematical theory of epidemics I

Bild: Link.Springer

Bevölkerung N

Suszeptibel

Gesund, aber nicht immun

Infizierend/ Infektiös

Übertragen die Krankheit Resistent

Genesen, Immun

S+I+R=N=Konstant

Übergänge

Gesund, abernicht immun

Infektiös

Übertragen die Krankheit

Resistent

Genesen, Immun

Der Zufluss

Annahme:
Perfekt
gemischter
Kontaktkreis,
Verhältnis von
S,I,R wie in
Bevölkerung

Suszeptibel Infektiös Resistent

Der Zufluss

Infektiöser trifft z.B. M= 3 Personen pro Tag

Was muss passieren, damit sich ein **S**uszeptibler ansteckt?

SuszeptibelInfektiösResistent

Der Zufluss

Was muss passieren, damit sich ein **S** ansteckt?

- Treffen zwischen I & S
 - → Wahrscheinlichkeit

$$M \cdot \frac{S}{N}$$

 \rightarrow Wahrscheinlichkeit \mathcal{X}

Übergänge

Gesund, aber nicht immun

Infektiös

Übertragen die Krankheit

Resistent

Genesen, Immun

Der Abfluss

Was muss passieren, damit ein Infizierter nicht mehr infektiös ist?

Der Abfluss

Was muss passieren, damit ein Infizierter nicht mehr infektiös ist?

- Er muss genesen oder isoliert werden
 - Wahrscheinlichkeit, resistent zu werden, liegt bei γ=1/τ
 - im Durchschnitt ist dann jeder τ Tage krank

Vollständiges SIR-Modell

$$S(t+1)=S(t)-Zufluss$$

 $I(t+1)=I(t)+Zufluss-Abfluss$
 $R(t+1)=R(t)+Abfluss$

Vollständiges SIR-Modell

Suszeptibel

Gesund, aber nicht immun

Infektiös

Übertragen die Krankheit

Resistent

Genesen, Immun

$$I(t+1) = I(t) + \beta \cdot \frac{S(t)}{N} \cdot I(t) - \gamma \cdot I(t)$$

$$R(t+1) = R(t) + \gamma \cdot I(t)$$

Vergleich

Zeitlicher Verlauf der Infizierten

Normiertes SIR-Modell

Notation:

$$s(t) = \frac{S(t)}{N} \qquad i(t) = \frac{I(t)}{N} \qquad r(t) = \frac{R(t)}{N}$$

Normierung über Division mit N:

Zufluss:
$$z = \frac{Z}{N}$$

Abfluss:
$$a = \frac{A}{N}$$

Normiertes SIR-Modell

Notation:

$$s(t) = \frac{S(t)}{N} \qquad i(t) = \frac{I(t)}{N} \qquad r(t) = \frac{R(t)}{N}$$

Normierung über Division mit N:

Zufluss:
$$z = \frac{Z}{N} = -\beta \cdot \frac{S}{N} \cdot \frac{I}{N} = -\beta \cdot s \cdot i$$

Abfluss:
$$a = \frac{A}{N} = \gamma \cdot \frac{I}{N} = \gamma \cdot i$$

Normiertes SIR-Modell

$$s(t+1) = s(t) - \beta \cdot s(t) \cdot i(t)$$

$$i(t+1) = i(t) + \beta \cdot s(t) \cdot i(t) - \gamma \cdot i(t)$$

$$r(t+1) = r(t) + \gamma \cdot i(t)$$

Begründe:

$$r(t+1) = 1 - s(t+1) - i(t+1)$$

Beweis für Richtigkeit

Setzen wir einfach mal ein:

$$\begin{split} &r(t+1)\\ &=1-s(t+1)-i(t+1)\\ &=1-\left[s(t)-\beta\cdot s(t)\cdot i(t)\right]-\left[i(t)+\beta\cdot s(t)\cdot i(t)-\gamma\cdot i(t)\right]\\ &=1-s(t)+\beta\cdot s(t)\cdot i(t)-i(t)-\beta\cdot s(t)\cdot i(t)+\gamma\cdot i(t) \end{split}$$

Beweis für Richtigkeit

Setzen wir einfach mal ein:

$$\begin{split} & r(t+1) \\ &= 1 - s(t+1) - i(t+1) \\ &= 1 - [s(t) - \beta \cdot s(t) \cdot i(t)] - [i(t) + \beta \cdot s(t) \cdot i(t) - \gamma \cdot i(t)] \\ &= 1 - s(t) + \beta \cdot s(t) \cdot i(t) - i(t) - \beta \cdot s(t) \cdot i(t) + \gamma \cdot i(t) \\ &= 1 - s(t) - i(t) + \gamma \cdot i(t) \\ &= r(t) + \gamma \cdot i(t) \end{split}$$

Wichtige Größen

- Gesamtanteil aller Erkrankten ν_i:
 - Alle Infizierten aufsummiert und mit y multipliziert (keine Mehrfachzählung)
- 7-Tage-Inzidenz :
 - Alle Infizierten, die sich in einer Woche pro 100.000 Personen neu infiziert haben
 - Zufluss aus einer Woche pro 100.000

Praktikumsblock I

Logt euch im Computer ein.
 Passwort: startstart

Bearbeitet Blatt 6

 Hinweise zum Öffnen & Verwenden der Programme siehe Anleitung

Zeit:

Epidemischer Verlauf

SIR- Modell: zeitliche Entwicklung einer unkontrollierte Epidemie

Erkläre mit Hilfe der Gleichung: $i(t+1)=i(t)+\beta\cdot s(t)\cdot i(t)-\gamma\cdot i(t)$

Exponentielles Wachstum

- Viele S infizieren sich
- Wenig I genesen

$$i(t+1)=i(t)+\beta\cdot s(t)\cdot i(t)-\gamma\cdot i(t)$$

Exponentielles Wachstum

- Viele S infizieren sich
- Wenig I genesen

Maximum

- Immer weniger S,
 Wahrscheinlichkeit S
 zu treffen sinkt
- Gleichzeitig genesen I

$$i(t+1)=i(t)+\beta\cdot s(t)\cdot i(t)-\gamma\cdot i(t)$$

$$i(t+1)=i(t)+\beta\cdot s(t)\cdot i(t)-\gamma\cdot i(t)$$

Exponentielles Wachstum

- Viele S infizieren sich
- Wenig I genesen

Maximum

- Immer weniger S,
 Wahrscheinlichkeit S
 zu treffen sinkt
- Gleichzeitig genesen I

Abklingen der Epidemie

- Kaum S mehr da
- Zufluss immer kleiner
- Abfluss überwiegt

Welche Kontrollmaßnahmen zur Eindämmung kennt ihr?

Reduktion d. Infektionsrate

Zeitliche Begrenzung durch Einsatzmittel/ Ressourcen E

Infektionsrate wird abgesenkt auf

$$\beta_E = \text{reduce} \cdot \beta$$

Beginn der Maßnahme bei nlockdown.

Ende wird berechnet über: $n_{\text{lockdown, end}} = n_{\text{lockdown}} + \frac{E}{\beta - \beta_E}$

Übergang von S nach R

Jeden Tag wird ein Teil der **S**uszeptiblen immunisiert/ resistent.

Annahmen:

- Immunisierung wirkt sofort und zu 100%
- ist von Ressourcen unabhängig
- Übergangsrate zeitlich konstant

Ab dem Tag nvacc werden jeden Tag α Prozent der Suszeptiblen immunisiert

Übergang von S nach R

Ab dem Tag nvacc werden jeden Tag α Prozent der Suszeptiblen immunisiert

$$s(t+1) = s(t) - \beta \cdot s(t) \cdot i(t) - \alpha \cdot s(t)$$
$$i(t+1) = i(t) + \beta \cdot s(t) \cdot i(t) - \gamma \cdot i(t)$$
$$r(t+1) = r(t) + \gamma \cdot i(t) + \alpha \cdot s(t)$$

Nutzen

Um die Maßnahmen evaluieren zu können, definieren wir uns den Nutzen:

Die Anzahl/ der Anteil der Menschen, der sich durch die Maßnahme nicht mehr infizieren wird.

Nutzen =
$$v_i^0 - v_i^+$$

Gesamtanteil der Erkrankten ohne Eingriff v_io Gesamtanteil der Erkrankten mit Eingriff v_i+

Praktikumsblock II

• Ggf. Login über: startstart

• Bearbeitet Blatt 11 und 14

• Zeit:

Bild: Trueffelpix- Fotolia

Diskussion

2025

Forscher entdecken in Deutschland neuen, höchst ansteckenden Erreger

Wie geht ihr vor?