Global QCQP Solver

Chuwen

October 25, 2021

QCQP

Recall QCQP:

Maximize
$$x^T Q x + q^T x$$

s.t. $x^T A_i x + a_i^T x \le b_i$ (1)
 $0 \le x \le e$

We apply "Many-Small-Cone" (MSC) relaxation.

EMSC

Recall the decomposition by eigenvalue decomposition,

$$Q = V_0 \Lambda_0 V_0^T, A_i = V_i \Lambda_i V_i^T$$

Maximize
$$y_0^T \lambda_0 + q^T x$$

s.t. $V_i z_i = x$ $i = 0, ..., m$ (2)
 $y_i^T \lambda_i + a_i^T x \le b_i$ $i = 1, ..., m$ (3)
 $y_i = z_i \circ z_i$ $i = 0, ..., m$ (4)

$$y_i = z_i \circ z_i \qquad \qquad i = 0, ..., m \tag{4}$$

Relax (4) to conic constraint, $\forall j, y_{ij} \geq z_{ii}^2$

Related Research

- ► See Luo et al. 2021, Luo et al. 2017
- ► This is exactly our previous MSC. (very weak)
- ► Also proved $v^{\text{Shor}} > v^{\text{MSC}}$

$$\begin{aligned} \text{Minimize}: \quad & x^T Q^+ x + q^T x - \sum_{i=1}^r s_i \\ \text{s.t.} \quad & Cx - t = 0, x \in \mathcal{F}, t \in [I, u], \\ & t_i^2 \leq s_i, \quad s_i \leq (I_i + u_i) \ t_i - I_i u_i, \quad i = 1, \dots, r \\ & \sum_{i=1}^r \frac{s_i}{\hat{\lambda}_i} \leq \bar{u}^T x \end{aligned}$$

- ▶ Once could see $v^{\rm Shor} > v^{\rm MSC}$
- ightharpoonup ? $v^{
 m Shor} > v^{
 m EMSC} > v^{
 m MSC}$

EMSC

Rewrite: $x^TQx + q^Tx$

$$\lambda_+^T y_+ + q^T x + \left(\lambda_{\mathsf{max}} e - \lambda_-\right)^T y_- - \lambda_{\mathsf{max}} \|z_-\|^2$$

- $y_{-}^T e = ||z_{-}||^2 \le x^T x \le x^T e$, which is very weak
- ightharpoonup dominated by λ_{\max}