An introduction to FSim

Qiang Hu, Song Liu

November 14, 2013

Contents

1	Introduction	1
2		2
	2.1 Comparison between two genes	. 2
	2.2 Comparison between gene and GO terms	. 2
3		2
	3.1 Search by gene	. 2
	3.2 Search by GO terms	
	3.3 Search by keywords	
	3.4 Search by gene set	. 4
4	Evaluation	6
5	Visualization	9
	5.1 Heatmap	. 9
	5.2 Wordcloud	. 10
6	Session information	12

1 Introduction

FSim is an R package to search functionally similar (FSim) genes for objective gene, a set of functional keywords or a biological pathway. The function compare the functional relation between genes based on the Gene Ontology annotation. A new algorithm is proposed to analyze the relation between genes based on the GO annotation of genes. Our package is able to search the most functionally similar genes by comparing the GO terms between genes.

> library(FSim)

groupGOTerms: GOBPTerm, GOMFTerm, GOCCTerm environments built.

2 Similar score calculation

2.1 Comparison between two genes

A algorithm is proposed to compare the functionally similarity between two genes. Given two gene IDs, the function calSim can calculate the similar scores based on annotated GO terms in different ontology or terms from "ALL" ontologies. For example, the similarity between human gene "9" and "10" can be calculated as follows.

2.2 Comparison between gene and GO terms

Given a gene and a group of GO terms, the functional relation can also be calculated.

3 Search example

3.1 Search by gene

The function SearchGene can be used to search functionally similar genes for an objective gene. For example, we can use the function to find the most functionally related genes for an objective gene "NAT2" in the GO annotation database.

```
> SearchGene(symbol="NAT2", an.go=an.Hs.egGO, targets="ALL", n=10)
```

	Symbol	${\tt sharedTerms}$	value	ASE	z.value
9	NAT1	4	0.9683222	0.03097859	31.257792
126	ADH1C	3	0.5145827	0.10940881	4.703303
125	ADH1B	3	0.5021795	0.10945535	4.587985
119391	GST02	3	0.4838813	0.10641653	4.547050
130	ADH6	3	0.4850249	0.10940879	4.433144
124	ADH1A	3	0.4167641	0.10793765	3.861156
10380	BPNT1	3	0.3892837	0.10675123	3.646644
127	ADH4	3	0.2792058	0.09823665	2.842175
131	ADH7	3	0.2428469	0.09390942	2.585969
1312	COMT	3	0.2016357	0.08548145	2.358824

The option n is set to 10, then the function return 10 functionally related genes ordered by Z values. The search database can be set by the targets option, which can be "ALL" to search in all GO annotated genes and abso can be a set of customized genes to specify search range. For example, the function between gene "9" and a gene set can be compared d by the option "targets".

```
> SearchGene(gene="9", targets=c("10", "100", "124"),
+ an.go=an.Hs.egGO)
```

	Symbol	${\tt sharedTerms}$	value	ASE	z.value
10	NAT2	4	0.79272288	0.07169913	11.0562406
124	ADH1A	3	0.41676414	0.10793765	3.8611564
100	ADA	2	0.04848653	0.05405582	0.8969715

3.2 Search by GO terms

A group of GO terms can also be used to search functionally related genes. For exmaple,

```
> t1 <- names(get("9", org.Hs.egGO))
> t1
```

```
[1] "GD:0006805" "GD:0044281" "GD:0005829" "GD:0004060"
```

> SearchGene(terms=t1, an.go=an.Hs.egGO, n=5)

	Symbol	${\tt sharedTerms}$	value	ASE	z.value
9	NAT1	4	0.9683222	0.03097859	31.257792
10	NAT2	4	0.7927229	0.07169913	11.056241
119391	GST02	3	0.4838813	0.10641653	4.547050
124	ADH1A	3	0.4167641	0.10793765	3.861156
10380	BPNT1	3	0.3892837	0.10675123	3.646644

3.3 Search by keywords

The function can also be used to analyze the functionally similar genes with a group of biological keywords. For example, we try to search for genes related with function "chromatin remodeling" and "histone binding".

```
> t2 <- SearchTerm(fun=c("chromatin remodeling", "histone binding"))
> t2
```

	GOID	${\tt Ontology}$	Term
1	GD:0006338	BP	chromatin remodeling
2	GO:0031055	BP	chromatin remodeling at centromere
4	GO:0043044	BP	ATP-dependent chromatin remodeling
5	GO:0043156	BP	chromatin remodeling in response to cation stress
3	GO:0031011	CC	Ino80 complex
6	GO:0031493	MF	nucleosomal histone binding
7	GO:0042393	MF	histone binding

Then we select part of the returned GO terms to search function related genes.

```
> SearchGene(terms=t2GOID[c(1,3,6)], an.go=an.Hs.egGO, n=5)
```

```
Symbol sharedTerms
                                 value
                                              ASE
                                                    z.value
6594
       SMARCA1
                         2 0.19106779 0.10368965 1.8426891
                         2 0.11672897 0.08034512 1.4528445
8467
       SMARCA5
56916 SMARCAD1
                         2 0.11354577 0.09762054 1.1631341
6598
       SMARCB1
                         2 0.10045014 0.09250804 1.0858531
10014
         HDAC5
                         1 0.06268819 0.07465530 0.8397018
```

3.4 Search by gene set

In order to search functionally similar genes for a gene set, we need summary the objective gene set to a group of GO terms first. GO over-represent analysis can be used to discover major biological functions for a gene set. The ovreGO integrated functions from topGO can be used to find over-represented GO terms for a gene set. For example, we have a gene set from KEGG database.

```
> library(KEGG.db)
> geneset <- get("hsa00232", KEGGPATHID2EXTID)
> geneset
[1] "10" "1544" "1548" "1549" "1553" "7498" "9"
```

The function ovreGO can be used to find major represent terms. All human genes from KEGG database are used as backgroud.

the algorithm is scoring 310 nontrivial nodes parameters:

 ${\tt test \ statistic: \ fisher : joinFun = union}$

Level 13: 1 nodes to be scored.

Level 12: 5 nodes to be scored.

Level 11: 7 nodes to be scored.

Level 10: 14 nodes to be scored.

```
Level 9: 22 nodes to be scored.
```

Level 8: 29 nodes to be scored.

Level 7: 34 nodes to be scored.

Level 6: 48 nodes to be scored.

Level 5: 66 nodes to be scored.

Level 4: 47 nodes to be scored.

Level 3: 25 nodes to be scored.

Level 2: 11 nodes to be scored.

> BPterms

	GO.ID	Term	${\tt Annotated}$	Significant
1	GD:0006805	xenobiotic metabolic process	128	5
2	GO:0009410	response to xenobiotic stimulus	129	5
3	GO:0071466	cellular response to xenobiotic stimulus	128	5
4	GO:0042737	drug catabolic process	10	2
5	GO:0009403	toxin biosynthetic process	1	1
6	GO:0017144	drug metabolic process	27	2
7	GO:0042738	exogenous drug catabolic process	8	2
8	GO:1900746	$\hbox{regulation of vascular endothelial growt} \\$	1	1
9	GO:0071615	oxidative deethylation	1	1
10	GO:0019748	secondary metabolic process	28	2

Expected result1 wScore Score 0.14 2.5e-07 6.602335 5.148161 1 2 0.14 7.4e-06 5.132325 2.286814 3 0.14 5.0e-05 4.297514 2.872269 4 0.01 0.00023 3.629172 2.484255 0.00 0.00047 3.323665 2.141917 0.03 0.00073 3.133715 1.593601 7 0.01 0.00084 3.076731 2.637198 0.00 0.00098 3.009876 2.736251 8 9 0.00 0.00254 2.594393 2.594393 10 0.03 0.00264 2.578419 1.211618

The results from ovreGO show the most over-represented terms ordered by p values. Top 10 GO terms are used to stand for the major biological functions of the gene set.

```
> SearchGene(terms=BPterms$GO.ID, targets="ALL",
+ an.go=an.Hs.egGO, n=5)
```

 Symbol sharedTerms
 value
 ASE z.value

 1544 CYP1A2
 6 0.2763440 0.08658507 3.191590

```
      1555 CYP2B6
      3 0.2892603 0.10908530 2.651689

      1548 CYP2A6
      3 0.2596739 0.10542761 2.463054

      1559 CYP2C9
      4 0.2281457 0.10100676 2.258718

      1576 CYP3A4
      4 0.2039875 0.09571657 2.131162
```

The returned genes are all from "CYP" gene family because most of the interested gene set are also from this family.

4 Evaluation

The functionally related genes should get higer similar scores as our method proposed. Here we use a set of genes from KEGG pathway to simply evaluate our method. First, we use GO over-represented algorithm to find the major functions of the gene set. Then the over-represented GO terms are used to calculate the similar scores with the gene set and other randomly selected genes using our method.

```
> MFterms <- ovreGO(genes=geneset, allgenes=allgenes,
                    ontology="MF", nterm=10)
Building most specific GOs .....
                                       ( 2798 GO terms found. )
Build GO DAG topology .....
                                       ( 3291 GO terms and 4043 relations. )
                                       (5604 genes annotated to the GO terms.)
Annotating nodes .....
                        -- Parent-Child Algorithm --
                the algorithm is scoring 54 nontrivial nodes
                parameters:
                        test statistic: fisher : joinFun = union
        Level 8:
                        1 nodes to be scored.
        Level 7:
                        2 nodes to be scored.
        Level 6:
                        9 nodes to be scored.
        Level 5:
                        13 nodes to be scored.
        Level 4:
                        14 nodes to be scored.
         Level 3:
                        11 nodes to be scored.
         Level 2:
                        3 nodes to be scored.
> CCterms <- ovreGO(genes=geneset, allgenes=allgenes,
                    ontology="CC", nterm=10)
```

```
Building most specific GOs .....
                                ( 927 GO terms found. )
Build GO DAG topology .....
                                      ( 1129 GO terms and 2200 relations. )
Annotating nodes .....
                                      (5671 genes annotated to the GO terms.)
                        -- Parent-Child Algorithm --
                the algorithm is scoring 34 nontrivial nodes
                parameters:
                        test statistic: fisher : joinFun = union
        Level 11:
                         1 nodes to be scored.
        Level 10:
                         2 nodes to be scored.
        Level 9:
                        4 nodes to be scored.
        Level 8:
                        4 nodes to be scored.
        Level 7:
                        4 nodes to be scored.
        Level 6:
                        2 nodes to be scored.
        Level 5:
                        2 nodes to be scored.
        Level 4:
                        3 nodes to be scored.
        Level 3:
                        6 nodes to be scored.
        Level 2:
                        5 nodes to be scored.
```

> allterms <- c(BPterms\$GO.ID, MFterms\$GO.ID, CCterms\$GO.ID)

The gene set from the pathway is a group of genes related in biological process, molecular function and cellular component, so GO terms from the three ontologies are used. The allterms are the over-represented GO terms to do the comparisons.

```
> score1 <- SearchGene(terms=allterms, targets=geneset,
                       an.go=an.Hs.egGO, ontology="ALL",
+
                       term2ancestor=FALSE)
> score1
      Symbol sharedTerms
                              value
                                           ASE z.value
1548 CYP2A6
                       8 0.48132473 0.09157462 5.256093
1553 CYP2A13
                       4 0.50315919 0.10053025 5.005053
                      12 0.37643401 0.08242933 4.566748
1544 CYP1A2
                       3 0.46774831 0.10900862 4.290930
1549 CYP2A7
                       2 0.22369629 0.14357073 1.558091
        NAT1
```

```
10
        NAT2
                       2 0.18714047 0.13443331 1.392069
                       2 0.07473017 0.07209355 1.036572
7498
         XDH
```

Then we randomly select 100 genes as control group to calculate the similar scores.

```
> set.seed(1)
> ctlgene <- sample(setdiff(allgenes, geneset), 50)</pre>
> score2 <- SearchGene(terms=allterms, targets=ctlgene,
                        an.go=an.Hs.egGO, ontology="ALL",
                        term2ancestor=FALSE)
```

> head(score2)

	Symbol	${\tt sharedTerms}$	value	ASE	z.value
126129	CPT1C	0	0.15454810	0.11321277	1.3651118
23225	NUP210	1	0.13995903	0.11493444	1.2177292
3040	HBA2	1	0.11925483	0.10925182	1.0915592
1080	CFTR	0	0.07690279	0.08371221	0.9186567
8540	AGPS	0	0.10011470	0.12107255	0.8268984
125965	COX6B2	0	0.09894737	0.13672301	0.7237067

```
> pv <- suppressWarnings(ks.test(score1$z.value, score2$z.value))
> pv
```

Two-sample Kolmogorov-Smirnov test

```
data: score1$z.value and score2$z.value
D = 0.9388, p-value = 4.097e-05
alternative hypothesis: two-sided
```

The ks.test shows the two scores are significantly different. The scores from the geneset are significantly higer than the randomly selected genes. A boxplot can be used to show the detailed distribution of the two groups of scores.

```
> boxplot(score1$z.value, score2$z.value,
         names=c("score1", "score2"),
         main=paste("KS test: ", format(pv$p.value, digits=4)))
```

KS test: 4.097e-05

5 Visualization

5.1 Heatmap

Basically, functionally related genes share part of GO terms. The search results only show the number of shared terms. The details can be plotted with heatmap.

```
> res1 <- SearchGene(symbol="NAT2", an.go=an.Hs.egGO,
+ targets="ALL", n=10, plot=TRUE)</pre>
```


5.2 Wordcloud

The GO over-represent analysis return the major biological functions of a gene set. The results can also be visualized by word cloud plot. The function ovreGO can also be used to plot the wordcloud with the option "plot=TRUE".

Level 13: 1 nodes to be scored.

Level 12: 5 nodes to be scored.

Level 11: 7 nodes to be scored.

Level 10: 14 nodes to be scored.

Level 9: 22 nodes to be scored.

Level 8: 29 nodes to be scored.

Level 7: 34 nodes to be scored.

Level 6: 48 nodes to be scored.

Level 5: 66 nodes to be scored.

Level 4: 47 nodes to be scored.

Level 3: 25 nodes to be scored.

Level 2: 11 nodes to be scored.

6 Session information

> sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: x86_64-pc-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] grid parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1]	FSim_0.1.6	reshape2_1.2.2	ggplot2_0.9.3.1
[4]	wordcloud_2.4	RColorBrewer_1.0-5	Rcpp_0.10.6
[7]	vcd_1.3-1	topGO_2.14.0	SparseM_1.03
[10]	graph_1.40.0	KEGG.db_2.10.1	$\operatorname{org.Hs.eg.db}_{-2.10.1}$
[13]	GO.db_2.10.1	RSQLite_0.11.4	DBI_0.2-7
[16]	${\tt AnnotationDbi_1.24.0}$	Biobase_2.22.0	BiocGenerics_0.8.0

loaded via a namespace (and not attached):

[1]	IRanges_1.20.5	MASS_7.3-29	<pre>colorspace_1.2-4</pre>	dichromat_2.0-0
[5]	digest_0.6.3	gtable_0.1.2	labeling_0.2	<pre>lattice_0.20-24</pre>
[9]	munsell_0.4.2	plyr_1.8	proto_0.3-10	scales_0.2.3
[13]	slam_0.1-30	stats4_3.0.2	stringr_0.6.2	tools_3.0.2