

OpenSense Training School OS-based nowcasting with pysteps

Introduction to the nowcasting training session

Training instructors:

Jenna Ritvanen (Finnish Meteorological Institute) and Ruben Imhoff (Deltares)

Outline

- When and why to use nowcasting
- Introduction to nowcasting with pysteps
- Nowcasting with OS data
- Setup of this training session

Goal of this training session: To give a "hands-on" experience of using pysteps with conventional radar and OS data

When and why to use nowcasting

Forecasts, warning and action

For short lead times Numerical Weather Prediction models are generally not sufficient

Nowcasting as a fast alternative for the short lead

Statistical extrapolation But no physics involved... Fast! Nowcast for t + 5 Radar data for t = -10 Determine Add Extrapolate Rainfall field movement of to future and stochastic evolution rainfall fields noise blend

Source: Pulkkinen et al., GMD, 2019

The skill of nowcasting

Introduction to nowcasting with pysteps Nowcast for t + 5

Input data

- pysteps uses gridded data as the main input data source
 - Often this consists of radar rainfall data.
- Reading input data from various sources has been implemented in the io.importers module
- To implement your own importers, you can use cookiecutter:
 https://pysteps.readthedocs.io/en/stable/developer_guide/importer_plugins.html_or simply wrap it in an xarray reader.
- The **utils** module contains different methods for converting, transforming, clipping and upsampling the input data
 - Helps you, but also the motion fields and noise generation in pysteps!

Transformations and conversions between units

A typical workflow when using pysteps

Optical Flow and Extrapolation

- Advection (optical flow & extrapolation) is the key component of all pysteps nowcasting methods
- All methods are based on the "Lagrangian persistence" nowcast shown on the right
- Three different types of optical flow methods have been implemented in the motion module:
 - o feature tracking: Lucas-Kanade
 - o variational: VET and Proesmans
 - o spectral: DARTS
- For advection, pysteps implements the backward semi-Lagrangian scheme in the extrapolation module

Deterministic Nowcasts

The main methods implemented in the nowcasts module:			
Method	Pros	Cons	Typical computation time
Extrapola tion	very fast	no prediction of growth or decay of precipitation	< 10 seconds
S-PROG	 for low-intensity precipitation (< 1-2 mm/h) has generally the best skill choose for stratiform events 	inability to preserve the spatial structure of rainfall fields, and particularly convective cells	< 20 seconds
LINDA-D	 the most accurate method for intense precipitation (> 1-2 mm/h) choose for convective events 	slow to compute	might take several minutes

Ensemble Nowcasts

- The main ensemble methods implemented in the nowcasts module are STEPS and LINDA-P
- They model two sources of uncertainty: advection field estimation and Lagrangian growth and decay
- The basic rule for choosing the method:
 - o stratiform events: STEPS
 - o convective events: LINDA-P
- LINDA-P generally produces more realistic ensemble members
- Computation times for the 4-member ensembles shown on the right:
 - o STEPS: ~20 seconds
 - LINDA-P: ~5 minutes

Observations at 2016-09-28 15:50 UTC

First ensemble members

LINDA-P

Nowcast ensemble

Member 3

Member 1

Member 2

Colorbars with several pre-configured scales and for different data units

Longitude-latitude lines with labels

Visualization tools

- Extensive set of visualization tools has been implemented in the visualization module
- Support for multiple layers: basemap, precipitation and motion field:
 - plotting of basemaps by using cartopy
 - guivers and streamlines for advection fields

Verification tools & metrics

- A large number of verification utilities and metrics have been implemented in the verification module
- Functionality
 - creation of verification objects and aggregation from multiple nowcasts
 - plotting of verification results

Metrics

- Deterministic
 - O categorical: CSI, ETS, POD, FAR
 - o continuous: MAE, ME
 - O scale/intensity-based metrics: FSS, intensity-scale
 - radially averaged power spectral density (RAPSD)
- Probabilistic
 - O CRPS
 - reliability diagram
- Ensemble
 - O spread
 - o rank histogram

Examples of verification plots for 30-minute STEPS nowcasts Reliability diagram (+30 min)

Nowcasting with OS data

Rainfall nowcasting with alternative sensors

Schoenmaker, 2022 and current work of Bas Walraven (TU Delft)

Challenges when nowcasting with OS data

- Advection field derivation
- Data consistency
- Can you think of other possible issues when using OS data for nowcasting?
- Request to you: have a close look at the differences in the optical flow fields, processing steps and resulting nowcasts between the various OS products that you are testing today.

Imhoff et al., GRL, 2020

Setup of this training session

Hands-on experience through four exercises

Exercises:

- 1. Check pysteps installation and download example data
- 2. Read, visualize and process input data with pysteps
- 3. Optical flow and extrapolation
 - a) Optional: Advection correction of the gridded rainfall fields for accumulation.
- 4. Creating your first nowcasts with the OS datasets
 - a) Optional: Creating a probabilistic (ensemble) nowcast with the same datasets

Nowcasting-session folder

- [data]
- [exercises]
- [notebooks]
- [presentations]
- **₩** README

Nowcasting-session folder

[data]
[exercises]
[notebooks]
Finally, all presentations of this session can be found in this folder

README

Time to try it out yourself!

Schedule:

- --Introduction to the session (25 minutes)
- Hands on: Getting started with pysteps, read, visualize and process the radar and opportunistic sensing data. (20 minutes)
- Hands on: Optical flow and extrapolation, the base of advection-based nowcasting. (30 minutes)
- Wrap up of the first hands-on sessions. (10 minutes)
- Hands on: Your first nowcasts, using and verifying radar and opportunistic sensing data for nowcasting. Additional, if time allows, creation of ensemble nowcasts. (60 minutes)
- Wrap up and closure. (15 minutes)

No to forget, update opensense_training python package:

```
git add *
git commit -m "day2 changes part 1"
git fetch
git merge origin/main
# A screen will pop up about committing your changes, do the following:
:wq [then press enter]
```