From Exact Computation to Geometric Interpretation:

$$\dot{x} = \sin(x)$$
 where $\dot{x} = dx$
 $\dot{x}(0) = x_0$

$$\frac{dx}{\sin(x)} = dt \qquad \text{or} \qquad \int_{x_0}^{x} \frac{du}{\sin(u)} = \int_{0}^{x} ds = t$$

ho So if
$$\int \frac{du}{\sin(u)} = C - \ln|\csc(x) + \cot(x)|$$

$$\int_{x_0}^{x_0} \frac{du}{\sin(u)} = \int_{x_0}^{x_0} \left| \frac{\csc(x_0) + \cot(x_0)}{\csc(x) + \cot(x)} \right| = f$$

but so what?

So wisee, while we do not know the exact details wisee that as $t \to \infty$, we move away from the points $x_n = \pm 2\eta \pi + 6\omega a s ds$ the points $x_n = \pm (2\eta + 1)\pi$. So without really doing much of anything, we get

We call these points of which $\dot{x} = 0$ fixed points

Fixed Point o

For $\dot{x} = f(x)$, any point x_* o $f(x_*) = 0$

So we see everything is organized around those fixed soints which sepel (x=±2nii) and those which attract (x = ± (2n+1)ii)

We call the plot a "phase portrait". x>01 x>0 Let x=x2-/_ So fixed points: X = 1/ phase portait; -i repellant/unstable i attractive/stable

$$\frac{1}{1} = Q$$

$$\frac{1}{1} = Q$$

Charge:
$$Q = Q(f)$$

Current: $I = Q$

or
$$\dot{Q} = -\frac{Q}{RC} + \frac{V_o}{R}$$

Method of Integrating Factors

$$\dot{x} + p(t) \times = f(t)$$

Let $G(t) = e^{-\int_{t}^{t} f(s) ds} - G = pG$

Lo $G\dot{x} + pxG = f(t)G(t)$

Lo $X(t)G(t) - X(t_0) = \int_{t_0}^{t} f(t)G(t_0) dt_0$

or: $X(t) = X_0 e^{-\int_{t_0}^{t} f(s) ds} + e^{-\int_{t_0}^{t} f(s) ds} \int_{t_0}^{t} f(t_0) e^{\int_{t_0}^{t} f(s) ds} dt_0$

$$\dot{Q} + \frac{1}{RC} \dot{Q} = \frac{V_o}{R}$$

$$f = \frac{1}{RC}; \quad f = \frac{V_o}{R}$$

$$\int_{0}^{t} \frac{f(s) \, ds}{r} = e^{t/RC}$$

Lo
$$Q(t) = Q_0 e^{-t/RC} + e^{-t/RC} \int_0^t \frac{v_0}{R} e^{tt/RC} du$$

$$= Q_0 e^{-t/RC} + \frac{v_0}{R} (RC) e^{-t/RC} / e^{t/RC} - ||^2$$

$$= Q_0 e^{-t/RC} + v_0 C (|-e^{-t/RC}|)$$
So, olsoy why?

Now we know something physical!

time scale for decay! RC

Characterizes shape

$$Now$$
: $Q = \frac{V_o}{R} - \frac{Q}{RC}$,

$$\frac{V_o}{R} - \frac{Q_*}{RC} = 0$$

$$L_A Q_* = V_o C$$

So shase plane certainly tells us about the attractive fixed point, but not RC.

 $Q(t) = Q_{s} \tilde{Q}(t)$ no units i.e. noy-dimensionalized units of charge

t/ts = units of time

For t, we have the rule ."

 $\frac{d}{dt} = \frac{d}{d\tau} \frac{d\tau}{d\tau} = \frac{1}{t_s} \frac{d}{d\tau}$

ODE Becomes

 $\frac{Q_g}{t_c} \frac{d\tilde{Q}}{d\tilde{T}} = \frac{V_o}{R} - \frac{Q_g}{RC} \tilde{Q}$

 $\frac{dQ}{dT} = \frac{t_s R_0}{Q_0 R} - \frac{t_s}{RC} Q$

Let to= RC, $Q_3 = CV_0$ $\frac{d\tilde{Q}}{d\tilde{\tau}} = 1 - \tilde{Q}$ non-dimensional form! though not always the $\ln \tilde{Q}(T) = \tilde{Q}_{o}C^{-T} + 1 - C^{-T}$ $Q(t) = Q_s \tilde{Q}(t/t_s)$ = Q0e^{-t/RC} + CV0(1-e^{-t/RC}) So nothing has changed But if we plot the phase plane for Q(T) = know ts = RC physical

Qs = CVo dimensions