## **Midterm Correction**

## Nam: Fung Cho Mau

1. This question is about atomic spectra and energy levels.

Diagram 1 below shows part of the emission line spectrum of atomic hydrogen. The wavelengths of the principal lines in the visible region of the spectrum are shown.

Diagram 2 shows some of the principal energy levels of atomic hydrogen.



-13.6

(a) Name the spectral series shown in diagram 1.

(b) Show, by calculation, that the energy of a photon of red light of wavelength 656 nm is 1.9 eV.

$$E = \frac{hc}{\lambda} = \frac{1.24 \times 10^{-6}}{656 \times 10^{-9}} = 1.9ev$$
 (3)

- (b) On diagram 2, draw arrows to represent
  - (i) the electron transition that gives rise to the red line (label this arrow R). (1)
  - (ii) a possible electron transition that gives rise to the blue line (label this arrow B).

(1) (Total 6 marks) **2.** This question is about the radioactive decay of potassium-40.

A nucleus of the nuclide  $^{40}_{19}$  K (potassium-40) decays to a stable nucleus of the nuclide  $^{40}_{18}$  Ar (argon-40).

(a) State the names of the **two** particles emitted in this decay.

$${}_{19}^{40}K = {}_{18}^{40}Ar + {}_{1}^{0}e + V \tag{2}$$

(b) A sample of the isotope potassium-40 initially contains  $1.5 \times 10^{16}$  atoms. On average, 16 nuclei in this sample of the isotope undergo radioactive decay every minute.

Deduce that the decay constant for potassium-40 is  $1.8 \times 10^{-17}$  s<sup>-1</sup>.

$$\frac{16}{1.5 \times 10^{16}} \div 60 = 1.8 \times 10^{-17} \tag{3}$$

(c) Determine the half-life of potassium-40.

$$T_{\frac{1}{2}} = \frac{In2}{\lambda} = \frac{0.69}{1.8 \times 10^{-19}} = 3.83 \times 10^{16}$$

(1) (Total 6 marks)

**3.** This question is about particle physics.

A neutron can decay into a proton, an electron and an antineutrino according to the reaction

$$n \rightarrow p + e + v_e$$
.

(a) Deduce the value of the electric charge of the antineutrino.

(b) State whether a proton is a baryon or a lepton.

| (b)        | State the name of the fundamental interaction (force) that is responsible for this decay.                                                                          | (1)          |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|            | Weak Force                                                                                                                                                         |              |
| (c)        | State how an antineutrino differs from a neutrino.                                                                                                                 |              |
|            | Neutrino has a left spin-direction while Antineutrino has a right spin-direction.                                                                                  |              |
|            | (Total 4 m                                                                                                                                                         | (1)<br>arks) |
|            |                                                                                                                                                                    |              |
| Nucl       | ear binding energy and nuclear decay                                                                                                                               |              |
| (a)        | State what is meant by a <i>nucleon</i> , giving an example of two nucleons.                                                                                       |              |
|            |                                                                                                                                                                    | (2)          |
| <u>(b)</u> | Explain what a nucleon is made of and what force holds it together. Include a description of the exchange particle that mediates the interaction between nucleons. |              |
|            | Nucleons are made of protons and neutrons and gluon holds it together.                                                                                             |              |
|            | Gluon is a kind of force interaction that stick these particles together like glue.                                                                                | (2)          |
| (c)        | Define what is meant by the <i>mass defect</i> of a nucleus.  Mass defect is when the neclues are declaying, they will loose power and mass                        | (1)          |
| (d)        | Define what is meant by the <i>binding energy</i> of a nucleus.                                                                                                    |              |
|            | Binding energy is the energy it used during the decay process.                                                                                                     | (1)          |

4.

## (In this part of the exam I got them all right, so no corrections have to be made.)

The graph below shows the variation with nucleon (mass) number of the binding energy per nucleon.



| (-) | processes.                                                                       |     |
|-----|----------------------------------------------------------------------------------|-----|
|     |                                                                                  |     |
|     |                                                                                  |     |
|     |                                                                                  |     |
|     |                                                                                  | (3) |
| (c) | Use the graph to explain why there is an abundance of iron (Fe) in the universe. |     |
|     |                                                                                  |     |
|     |                                                                                  |     |
|     |                                                                                  |     |
|     |                                                                                  |     |
|     |                                                                                  |     |

**(2)** 

| (d)   | A sample of carbon-11 has an initial mass of $4.0 \times 10^{-15}$ kg. Carbon-11 has a half-life of approximately 20 minutes. Calculate the mass of carbon-11 remaining after one hour has elapsed. |             |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|       |                                                                                                                                                                                                     |             |
|       |                                                                                                                                                                                                     |             |
|       |                                                                                                                                                                                                     | (2)         |
| (e)   | Uranium-238, $^{238}_{92}$ U, undergoes $\alpha$ -decay to form an isotope of thorium. Write down the nuclear equation for this decay.                                                              |             |
|       |                                                                                                                                                                                                     | (2)         |
|       | (Total 11 ma                                                                                                                                                                                        | (2)<br>rks) |
|       |                                                                                                                                                                                                     |             |
| mi .  |                                                                                                                                                                                                     |             |
| Inis  | question is about a proton.                                                                                                                                                                         |             |
| The p | proton is made out of three quarks.                                                                                                                                                                 |             |
| (a)   | Explain why the three quarks in the proton do not violate the Pauli exclusion principle.                                                                                                            |             |
|       | The three quarks in the proton is not in the same location, and two of the quarks are spinning upwards compare to different direction of other quark.                                               | (2)         |
|       |                                                                                                                                                                                                     |             |
| (b)   | Quarks have spin $\frac{1}{2}$ . Explain how it is possible for the proton to also have spin $\frac{1}{2}$ .                                                                                        |             |
|       | When the three quarks connect to each other, and then have spin1/2 in the same direction. Because proton can have a spin of 1/2                                                                     | (2)         |
|       | (Total 4 ma                                                                                                                                                                                         | (2)<br>rks) |

5.

6. Which **one** of the following correctly gives the number of electrons, protons and neutrons in a neutral atom of the nuclide  $^{65}_{29}$  Cu?

|    | Number of electrons | Number of protons | Number of neutrons |
|----|---------------------|-------------------|--------------------|
| A. | 65                  | 29                | 36                 |
| B. | 36                  | 36                | 29                 |
| C. | 29                  | 29                | 65                 |
| D. | 29                  | 29                | 36                 |

**(1)** 

7. The unified mass unit is defined as

- A. the mass of one neutral atom of  ${}^{12}_{6}$  C.
- B.  $\frac{1}{12}$  of the mass of one neutral atom of  ${}^{12}_{6}$ C.
- C.  $\frac{1}{6}$  of the mass of one neutral atom of  ${}^{12}_{6}$ C.
- D. the mass of the nucleus of  ${}^{12}_{6}$  C.

(1)

**8.** Which of the following provides evidence for the existence of atomic energy levels?

- A. The absorption line spectra of gases
- B. The existence of isotopes of elements
- C. Energy release during fission reactions
- D. The scattering of  $\alpha$  -particles by a thin metal film

Jackie Fung.

The 21/40

53%



Diagram 1 below shows part of the emission line spectrum of atomic hydrogen. The wavelengths of the principal lines in the visible region of the spectrum are shown.

Diagram 2 shows some of the principal energy levels of atomic hydrogen.







-13.6 -

Name the spectral series shown in diagram 1.

(1)

Show, by calculation, that the energy of a photon of red light of wavelength 656 nm is 1.9



(3)

On diagram 2, draw arrows to represent

- the electron transition that gives rise to the red line (label this arrow R). (i)
- a possible electron transition that gives rise to the blue line (label this arrow B). (ii)

(Total 6 marks)

This question is about the radioactive decay of potassium-40. State the names of the two particles emitted in this decay. A = Aoetin A sample of the isotope potassium-40 initially contains  $1.5 \times 10^{16}$  atoms. On average, 16 nuclei in this sample of the isotope undergo radioactive decay every minute. (b) Deduce that the decay constant for potassium-40 is  $1.8 \times 10^{-17} \text{ s}^{-1}$ .

16 per minus =  $16 \times 60 = 960$  per seconds (3) Determine the half-life of potassium-40.  $\frac{1}{2} = \frac{1}{1.8} \times \frac{10}{1.8} \times \frac{10}{1.8} \times \frac{10}{10}$ (Total 6 marks) This question is about particle physics. 3. A neutron can decay into a proton, an electron and an antineutrino according to the reaction  $n \rightarrow p + e + v_e$ . Deduce the value of the electric charge of the antineutrino. Negative Zero (1) State whether a proton is a baryon or a lepton. Proton is a too baryon

|     | (6)    | State the name of the fundamental interaction (force) that is responsible for this decay.                                            |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------|
|     |        | collision kinetic force                                                                                                              |
|     |        | weak force.                                                                                                                          |
| ,   | (0)    | State how an antineutrino differs from a neutrino.  Antineutrino is negative charge where neutrino is partive.  (1)  (Total 4 marks) |
|     |        | opposite lepton (Total 4 marks)                                                                                                      |
|     |        |                                                                                                                                      |
| 4.  | Nucle  | ear binding energy and nuclear decay                                                                                                 |
|     | Lest . | State what is meant by a <u>nucleon</u> , giving an example of two nucleons.                                                         |
|     |        | Necleon is the two particles located in the center of atom                                                                           |
|     |        | Named neutron and proton                                                                                                             |
|     |        | (2)                                                                                                                                  |
|     |        | Explain what a nucleon is made of and what force holds it together. Include a description                                            |
|     | (6)    | Calca exchange narricle that inculates the many                                                                                      |
| -1  |        | nucleon is made of small mothers neutron and protons, the binding.                                                                   |
| Nlu | ons    | energy keeps them together. Even though next neutron has no change                                                                   |
|     |        | and proton is positives, the particles interat with eacher offer so they  don't move away.                                           |
|     |        | don't move away.                                                                                                                     |
|     | SOT    | Define what is meant by the mass defect of a nucleus.                                                                                |
|     |        | Mass differ of a nucleus is to decrease the number of product                                                                        |
|     |        | proton and neutrons                                                                                                                  |
|     |        | Energy 5 stored in the necleus are declay they will loose power and mass (1)                                                         |
|     | •      |                                                                                                                                      |
|     | (0)    | Define what is meant by the binding energy of a nucleus.                                                                             |
|     |        | The force of attraction the held the neutron and protons together                                                                    |
|     |        |                                                                                                                                      |
|     |        | Energy is stored in the nucleus in that assemble.                                                                                    |
|     |        |                                                                                                                                      |

The graph below shows the variation with nucleon (mass) number of the binding energy per nucleon.



10

(2)

| A sample of carbon-11 has an initial mass of $4.0 \times 10^{-15}$ kg. Carbon-11 has a half-life of approximately 20 minutes. Calculate the mass of carbon-11 remaining after one hour has elapsed. $\frac{60}{20} = 3$ $4.0 \times [0^{-15} \times (\frac{1}{2})^3 = 5 \times 10^{-16} \text{ kg}$ | /                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Uranium-238, $\frac{^{238}}{^{92}}$ U, undergoes $\alpha$ -decay to form an isotope of thorium. Write down the nuclear equation for this decay. $\frac{^{238}}{^{238}}$ U = $\frac{^{234}}{^{92}}$ H + $\frac{^{4}}{^{2}}$ He HUMHHMMM                                                              | (2)                                      |
| (Tota                                                                                                                                                                                                                                                                                               | (2)<br>l 11 marks)                       |
| This question is about a proton.  The proton is made out of three quarks.  Explain why the three quarks in the proton do not violate the Pauli exclusion principles.  Because H is a femino.                                                                                                        | ple.<br>(2)                              |
| Quarks have spin \(\frac{1}{2}\). Explain how it is possible for the proton to also have sp  Proton is a atomatic sequences. It is possible for it to  have \(\frac{1}{2}\) Spin and normal spin.                                                                                                   | $\sin \frac{1}{2}$ . (2) (Total 4 marks) |

Which **one** of the following correctly gives the number of electrons, protons and neutrons in a neutral atom of the nuclide  $^{65}_{29}$  Cu ?

| Number of electrons | Number of protons | Number of neutrons |
|---------------------|-------------------|--------------------|
|                     | - BAR UN X C TRUE | 36                 |
| 65                  | 29                |                    |
| 36                  | 36                | 29                 |
| 29                  | 29                | 65                 |
| 29                  | 29                | 36                 |

(1)



- A. the mass of one neutral atom of  $^{12}_{6}$ C.
- (B.)  $\frac{1}{12}$  of the mass of one neutral atom of  ${}^{12}_{6}$  C.
- C.  $\frac{1}{6}$  of the mass of one neutral atom of  ${}^{12}_{6}$ C.
- D. the mass of the nucleus of  ${}_{6}^{12}$  C.

(1)

Which of the following provides evidence for the existence of atomic energy levels?

- (A.) The absorption line spectra of gases
- P. The existence of isotopes of elements
- C. Energy release during fission reactions
- D. The scattering of  $\alpha$  -particles by a thin metal film