ASSIGNMENT 3

QUESTION 1

b)

FD's would be {A -> B, B -> C, C -> D, D -> A}

c)

1) Closure:

 $AB+=\{A, B\}$

 $A += \{A, B\}$ it means $A \rightarrow B$

 $B+=\{B,A\}$ it means $B\rightarrow A$

2) Answer

2) FD's

 $AC \rightarrow E$

 $AC \rightarrow B$

 $AC \rightarrow D$

FD's could be $\{A \rightarrow B, B \rightarrow A,$

 $CB \rightarrow D$

 $CD \rightarrow A$

 $CD \rightarrow E$

 $AC \rightarrow B$

 $AB \rightarrow C$

 $BC \rightarrow A$

 $C \rightarrow ABD, D \rightarrow ABC$

QUESTION 2

R(A,B,C,D,E) project on FD S(A,B,C)

c) $AB \rightarrow D$, $AC \rightarrow E$, $BC \rightarrow D$, $D \rightarrow A$, $E \rightarrow B$

1) Closure

 $A += \{A\}$

 $B+=\{B\}$

 $C += \{C\}$

 $AB += \{A,B,D\}$

AC+={A,C,E,B,D} candidate key

CB+={C,B,D,A,E} candidate key

3) Answer

 $\{AC \rightarrow B, CD \rightarrow A\}$

2) FD'c

JFDS	
	A→B
	∧ →C

 $B \rightarrow C$

d) $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$, $D \rightarrow E$, $E \rightarrow A$

1) Closure

A+={A,B,C,D,E} candidate key

B+={B,C,D,E,A} candidate key

 $C += \{C,D,E,A\}$

AB+={A,B,C,D,E} candidate key

AC+={A,C,B,D,E} candidate key

BC+={B,C,D,E,A} candidate key

3) Answer

 $\{A \rightarrow B, B \rightarrow C, AC \rightarrow B, AB \rightarrow C, BC \rightarrow A\}$

```
Noémi Lemonnier
#40001085
```

QUESTION 3 g) R1:= $\rho_{PC1}(PC)$ $R2:=\rho_{PC2}(PC)$ R3:= R1 ⋈_(PC1.speed=PC2.speed AND PC1.ram=PC2.ram) AND PC1.model< PC2.model R2 $R4:=\pi_{PC1.model,PC2.model}(R3)$ i) R1:= $\pi_{\text{model, speed}}(PC)$ R2:= $\pi_{\text{model, speed}}(\text{Laptop})$ R3:=R1 ∪ R2 R4:= $\rho_{R4(model2,speed2)}(R3)$ R5:= $\pi_{\text{model, speed}}$ (R3 $\bowtie_{\text{(speed < speed 2)}}$ R4) R6 := R3 - R5R7:= π_{maker} (R6 \bowtie Product) j) R1:= $\pi_{\text{maker, speed}}$ (Product \bowtie PC) R2:= $\rho_{R2(maker2, speed2)}(R1)$ R3:= $\rho_{R3(maker3, speed3)}(R1)$ R4:=R1 ⋈ (maker=maker2 AND speed<>speed2) R2 R5:=R4 ⋈ (maker=maker3 AND speed<>speed3 AND speed3<>speed2) R3 $R6:=\pi_{maker}(R5)$ k) R1:= $\pi_{\text{maker,model}}$ (Product \bowtie PC) R2:= $\rho_{R2(maker2, model2)}(R1)$ R3:= $\rho_{R3(maker3, model3)}(R1)$ R4:= $\rho_{R4(maker4, model4)}(R1)$ R5:= R1 \bowtie (maker=maker2 AND model<>model2) R2 R6:= R3 M (maker=maker3 AND model3<>model2 AND model3<>model) R5

QUESTION 4

 $R8:=\pi_{maker}(R7)$

aj

Please see attached document "FindingKeyCandidate.xls"

The candidate keys are: ICEG, GCEI, IEGH, IBEG

b)

No because of CD \rightarrow A and GHB \rightarrow AB. CD and GHB are not part of any superkey and same for A and AB.

 $R7 := R4 \bowtie (maker=maker4 \text{ AND } (model4=model \text{ OR } model4=model2 \text{ OR } model4=model3))R6$

c)

1) put FD's in simple forms

 $F = \{CD \rightarrow A, EC \rightarrow H, GHB \rightarrow AB, C \rightarrow D, EG \rightarrow A, H \rightarrow B, BE \rightarrow CD, EC \rightarrow B\}$

Decomposition to break not singleton FD's RHS:

F= {CD \rightarrow A, EC \rightarrow H, GHB \rightarrow A, GHB \rightarrow B, C \rightarrow D, EG \rightarrow A, H \rightarrow B, BE \rightarrow C, BE \rightarrow D, EC \rightarrow B}

2) Remove redundancy in the FDs

 $CD \rightarrow A$ where $C^+=\{C,D\}$ and $D^+=\{D\}$ so eliminate D and get $C \rightarrow A$

 $EC \rightarrow H$ where $C^+=\{C,D\}$ and $E^+=\{E\}$ no redundancy;

GHB \rightarrow A where G+={G} and H+={HB} and B+={B} so eliminate B and get GH \rightarrow A

GHB \rightarrow B where G⁺={G} and H⁺={HB} and B⁺={B} is redundant so we can remove it because of H \rightarrow B

C→D <u>no redundancy</u>;

 $EG \rightarrow A$ where $E^+=\{E\}$ and $G^+=\{G\}$ no redundancy;

 $H \rightarrow B$ no redundancy;

 $BE \rightarrow C$ where $B^+=\{B\}$ and $E^+=\{E\}$ no redundancy;

BE \rightarrow D where B+={B} and E+={E} no redundancy;

 $EC \rightarrow B$ where $E^+=\{E\}$ and $C^+=\{C,D\}$ no redundancy;

 $F = \{C \rightarrow A, EC \rightarrow H, GH \rightarrow A, C \rightarrow D, EG \rightarrow A, H \rightarrow B, BE \rightarrow C, BE \rightarrow D, EC \rightarrow B\}$

3) Remove redundancy of FDs

 $C \rightarrow A$ where $C^+=\{C,D\}$ so no redundancy;

 $EC \rightarrow H$ where $EC^+=\{C,D,A,E,B\}$ so no redundancy;

 $GH \rightarrow A$ where $GH^+=\{G,H,B\}$ so no redundancy;

 $C \rightarrow D$ no redundancy:

EG \rightarrow A where EG $^+$ ={E,G} so <u>no redundancy</u>;

 $H \rightarrow B$ no redundancy:

 $BE \rightarrow C$ where $BE^+=\{B,E,D\}$ so no redundancy:

 $BE \rightarrow D$ where $BE^+=\{B,E,C\}$ so no redundancy;

EC \rightarrow B where EC+={E,C,D,A,H,B} so this is redundant and we can remove it.

 $F = \{C \rightarrow A, EC \rightarrow H, GH \rightarrow A, C \rightarrow D, EG \rightarrow A, H \rightarrow B, BE \rightarrow C, BE \rightarrow D\}$

d)

 $R1(A,B,C) A^{+}=\{A\} B^{+}=\{B\} C^{+}=\{C,D,A\}$

R2(C,D,E) C+={C,D,A} D+={D} E+={E}

 $R3(C, G,H,I) C^{+}=\{C,D,A\} G^{+}=\{G\} H^{+}=\{H,B\} I^{+}=\{I\}$

R1 \cup R2 \cup R3 provides all FDs and it is lossless as R1 \cap R2 = {C,D,A} R2 \cap R3 = {C,D,A} R1 \cap R3 = {C,D,A,B} which is FD's CD \rightarrow A

e)

1) Closure of attributes

A+= A B+= B C+= C, D, A D+= D AB+= A, B AC+= A, C, D AD+=A, D BC+=B, C, D, A

BD+=B, D DC+=D, C, A

2) Projection

A→B	B→D
A→C	€ > Ð
A→D	AB→C
B→C	AB→D
AC→B	$AC \rightarrow D$
AD → B	AD → C
BC→ A	BD→A
BC→ D	BD→C
CD→ A	CD → B

3) Answer

 $\{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow C, B \rightarrow D, AB \rightarrow C, AB \rightarrow D, AC \rightarrow B, B \rightarrow C, AC \rightarrow B, AD \rightarrow B, AD \rightarrow C, BD \rightarrow A, BD \rightarrow C, CD \rightarrow B\}$

QUESTION 5

a)

<i></i>)			
A	В	С	
X	candidate key	X	

So any key should have B

BNCF: No because no superkey

<u>3NF</u>: No because C \rightarrow A 1)C is not a candidate key or superkey. or 2) A should be a subset of B (in their closure)

2NF: AB→C partial dependency

1NF: YES.

b)

1) find candidate keys

1) IIIIa carraraace nego	ballatate heye		
A	В	С	
X	candidate key	X	

It is not a BCNF because it is not a 3NF and because of $C \rightarrow A$ and $A \rightarrow C$ which makes the LHS not a superkey.

1) To make it 3NF:

S1(A,B) FD's A \rightarrow B, B \rightarrow A S2(B,C) FD's B \rightarrow C, C \rightarrow A 2) To make it BCNF

S1(A, B) FD's A \rightarrow B, B \rightarrow A S3(B, C) FD's B \rightarrow C, B \rightarrow A

c) I think it is better to decompose it in BNCF as it is easier to use them and see that it is lossless and preserved functional dependency.

QUESTION 6

a)

1) put FD's in simple forms
F= {Ship→Capacity, ShipDate→Cargo, CargoCapacity→Value}
Nothing to decompose as all FD's RHS are singleton

2) Remove redundancy in the FDs

Ship → Capacity no redundancy;

ShipDate \rightarrow Cargo where Ship+={Ship, Capacity} Date+={Date} <u>no redundancy</u>; CargoCapacity \rightarrow Value where Cargo+={Cargo} Capacity+={Capacity} <u>no redundancy</u>;

3) Remove redundancy of FDs

Ship → Capacity no redundancy;

ShipDate \rightarrow Cargo where ShipDate $^+$ ={Ship, Capacity, Date} \underline{no} redundancy CargoCapacity \rightarrow Value where CargoCapacity $^+$ ={Cargo, Capacity} \underline{no} redundancy

 $F = \{Ship \rightarrow Capacity, ShipDate \rightarrow Cargo, CargoCapacity \rightarrow Value\}$

b)

R1(Ship, Capacity) Ship +={Ship, Capacity} Capacity +={Capacity} R2(Ship, Date, Cargo, Value) Ship+={Ship, Capacity} Date+={Date} Cargo+={Cargo} Value+={Value}

R1 \cup R2 provides all FDs and it is lossless as R1 \cap R2 = {Ship, Capacity} which is FD's Ship \rightarrow Capacity.

c)

R1(Cargo, Capacity, Value) Cargo⁺={Cargo} Capacity ⁺={Capacity} Value⁺={Value} R2(Ship, Capacity) Ship⁺={Ship, Capacity} Capacity ⁺={Capacity} R2(Ship, Date, Cargo) Ship⁺={Ship, Capacity} Date⁺={Date} Cargo⁺={Cargo}

 $R1 \cup R2 \cup R3$ provides all FDs and it is not lossless as $R1 \cap R2 = \{Capacity\}$ $R2 \cap R3 = \{Ship\} R1 \cap R3 = \{Cargo\} as Ship \rightarrow Capacity but none gives the rest$