2.10.33

Aditya Appana - EE25BTECH11004

September 8, 2025

Question

Let α, β, γ be distinct real numbers. The points with position vectors $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$, $\beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}$, $\gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$

1. are collinear

3. form a scalene triangle

2. form an equilateral triangle

4. form a right angled triangle

Solution

Let **A** be $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$, **B** be $\beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}$, and **C** be $\gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$.

Then

•
$$\mathbf{A} - \mathbf{B}$$
 is $(\alpha - \beta)\hat{i} + (\beta - \gamma)\hat{j} + (\gamma - \alpha)\hat{k}$

• **B** - **C** is
$$(\beta - \gamma)\hat{i} + (\gamma - \alpha)\hat{j} + (\alpha - \beta)\hat{k}$$

•
$$\mathbf{C} - \mathbf{A}$$
 is $(\gamma - \alpha)\hat{i} + (\alpha - \beta)\hat{j} + (\beta - \gamma)\hat{k}$

Then norms of A - B, B - C, C - A are all equal, and equal to

$$\sqrt{(\alpha - \beta)^2 + (\beta - \gamma)^2 + (\gamma - \alpha)^2}$$

The three points therefore form an equilateral triangle, so option (2) is correct.