

Schletter, Inc.		30° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 16.49 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 0.73$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.150 (Proceure)	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.600	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	applied away from the danage.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
T _a =	0.06	$C_{d} = 1.25$	to calculate C _s .

SCHLETTER

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 0.6 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.45 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 0.6 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{O} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{O} \\ 0.362 \text{D} + 0.875 \text{E} & \text{O} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u> Front</u>	<u>Rear</u>	
<u>115.94</u>	<u>5013.26</u>	k
<u>3499.81</u>	4270.44	k
<u>409.83</u>	<u>3161.07</u>	k
<u>0.80</u>	0.30	k
	115.94 3499.81 409.83	115.945013.263499.814270.44409.833161.07

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi **Overturning Check** $M_O = 122264.4 \text{ in-lbs}$ Resisting Force Required = 1852.49 lbs A minimum 132in long x 25in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3087.48 lbs to resist overturning. Minimum Width = <u>25 in</u> in Weight Provided = 4984.38 lbs Sliding 728.80 lbs Force = Friction = Use a 132in long x 25in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 1822.00 lbs Resisting Weight = 4984.38 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 728.80 lbs Cohesion = 130 psf Use a 132in long x 25in wide x 18in tall 22.92 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2492.19 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft

Bearing Pressure

Required Depth =

 $f'_c =$ Length =

0.00 ft

2500 psi

8 in

 $\frac{\text{Ballast Width}}{25 \text{ in}} = \frac{26 \text{ in}}{26 \text{ in}} = \frac{27 \text{ in}}{28 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.08 \text{ ft}) = \frac{4984 \text{ lbs}}{200 \text{ lbs}} = \frac{5383 \text{ lbs}}{200 \text{ lbs}} = \frac{5583 \text{ lbs}}{200 \text{ lbs}}$

ASD LC	1.0D + 1.0S				+ 1.0S 1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in	25 in	26 in	27 in	28 in
F _A	1347 lbs	1347 lbs	1347 lbs	1347 lbs	1068 lbs	1068 lbs	1068 lbs	1068 lbs	1669 lbs	1669 lbs	1669 lbs	1669 lbs	-43 lbs	-43 lbs	-43 lbs	-43 lbs
F _B	1286 lbs	1286 lbs	1286 lbs	1286 lbs	1742 lbs	1742 lbs	1742 lbs	1742 lbs	2135 lbs	2135 lbs	2135 lbs	2135 lbs	-2304 lbs	-2304 lbs	-2304 lbs	-2304 lbs
F _V	208 lbs	208 lbs	208 lbs	208 lbs	1340 lbs	1340 lbs	1340 lbs	1340 lbs	1141 lbs	1141 lbs	1141 lbs	1141 lbs	-1458 lbs	-1458 lbs	-1458 lbs	-1458 lbs
P _{total}	7617 lbs	7816 lbs	8016 lbs	8215 lbs	7794 lbs	7993 lbs	8193 lbs	8392 lbs	8788 lbs	8988 lbs	9187 lbs	9387 lbs	644 lbs	764 lbs	883 lbs	1003 lbs
М	3770 lbs-ft	3770 lbs-ft	3770 lbs-ft	3770 lbs-ft	3030 lbs-ft	3030 lbs-ft	3030 lbs-ft	3030 lbs-ft	4703 lbs-ft	4703 lbs-ft	4703 lbs-ft	4703 lbs-ft	3099 lbs-ft	3099 lbs-ft	3099 lbs-ft	3099 lbs-ft
е	0.49 ft	0.48 ft	0.47 ft	0.46 ft	0.39 ft	0.38 ft	0.37 ft	0.36 ft	0.54 ft	0.52 ft	0.51 ft	0.50 ft	4.81 ft	4.06 ft	3.51 ft	3.09 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft				
f _{min}	242.6 psf	241.7 psf	240.8 psf	239.9 psf	268.0 psf	266.0 psf	264.3 psf	262.6 psf	271.6 psf	269.5 psf	267.6 psf	265.8 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	422.1 psf	414.2 psf	407.0 psf	400.2 psf	412.2 psf	404.7 psf	397.8 psf	391.3 psf	495.4 psf	484.7 psf	474.8 psf	465.6 psf	299.2 psf	162.9 psf	131.4 psf	118.9 psf

Shear key is not required.

Maximum Bearing Pressure = 495 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 25in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_O = 1631.3 \text{ ft-lbs}$

Resisting Force Required = 1566.09 lbs

S.F. = 1.67

Weight Required = 2610.16 lbs

Minimum Width = 25 in in

Weight Provided = 4984.38 lbs

A minimum 132in long x 25in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E			
Width		25 in			25 in		25 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	314 lbs	687 lbs	224 lbs	827 lbs	2213 lbs	757 lbs	123 lbs	201 lbs	34 lbs	
F _V	231 lbs	226 lbs	236 lbs	169 lbs	166 lbs	184 lbs	232 lbs	228 lbs	234 lbs	
P _{total}	6485 lbs	6858 lbs	6395 lbs	6701 lbs	8087 lbs	6631 lbs	1928 lbs	2005 lbs	1838 lbs	
М	902 lbs-ft	892 lbs-ft	918 lbs-ft	670 lbs-ft	674 lbs-ft 720 lbs-ft		902 lbs-ft	888 lbs-ft	906 lbs-ft	
е	0.14 ft	0.13 ft	0.14 ft	0.10 ft	ft 0.08 ft 0.11 ft		0.47 ft	0.44 ft	0.49 ft	
L/6	0.35 ft	0.35 ft	0.35 ft	0.35 ft	0.35 ft 0.35 ft		0.35 ft	0.35 ft	0.35 ft	
f _{min}	169.6 psf	187.2 psf	163.7 psf	208.2 psf	268.2 psf	198.8 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	396.4 psf	411.3 psf	394.4 psf	376.6 psf	437.5 psf	379.9 psf	203.6 psf	203.0 psf	203.1 psf	

Maximum Bearing Pressure = 438 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 25in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 25in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

5		D 01 1
<u>Front Strut</u>		<u>Rear Strut</u>
Maximum Axial Load =	2.692 k	Maximum Axial Load = 3.337 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>36%</u>	Utilization = 45%
<u>Diagonal Strut</u>		
Maximum Axial Load =	2.047 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>28%</u>	

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 48.27 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.965 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.756 \text{ in} \\ \end{array}$

 $0.756 \le 0.965$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 132 \text{ in}$$

$$J = 0.432$$

$$365.174$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$S2 = 1/01.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

$$\varphi F_L = 27.1 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 132$$

$$J = 0.432$$

$$232.229$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S3 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.4$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$k_1Bbr$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$
 $lx = 897074 \text{ mm}^4$
 2.155 in^4
 $y = 41.015 \text{ mm}$

$$Sx = 1.335 \text{ in}^3$$

$$M_{\text{max}}St = 2.788 \text{ k-ft}$$

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 in^3$$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^T$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$
 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(IyJ)/2)})]}$$

$$φF_L = φb[BC-1.6DC]$$

$$φF_L = 29.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 29.2$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\varphi F_L = \varphi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

3.4.16.1 N/A for Weak Direction

16.2

36.9

0.65

40

40

77.3

43.2 ksi

33.3 ksi

40 mm

 $\phi F_L =$

Compression

3.4.9

b/t =16.2 S1 =12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ 31.6 ksi $\phi F_L =$ b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L {= \phi y F c y}$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{by}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{max} = 58.55 \text{ kips}$$

18.1

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \text{ in} \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc} \right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6} \right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2)})}] \end{split}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

$$\phi F_{L} = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 N

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

38.9 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

 $0.621 in^{3}$

1.460 k-ft

27.5 mm

3.4.18

 $M_{max}Wk =$

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

1.460 k-ft

y =

Sx =

 $M_{max}St =$

Compression

3.4.7

$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = \frac{\pi}{\pi} \sqrt{rcy/r}$$

 $S2^* = 1.23671$

$$\phi cc = 0.87952$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S2 = 131.3$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 28.85 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14
$$L_b = 86.60 \text{ in}$$

$$J = 0.942$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.6 \text{ ksi}$$

Weak Axis:

$$L_b = 86.6$$
 $J = 0.942$
 135.148

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.6$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

1.460 k-ft

Compression

 $M_{max}St =$

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$
 $A = 663.99 \text{ mm}^2$

1.03 in²

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

$$L_b = 70.83 \text{ in}$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 30.0 \text{ ksi}$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = \frac{1.6Dp}{46.7}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 70.83$$
 $J = 0.942$
 110.537

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.0$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used 0.0 3.4.16.1 N/A for Weak Direction $\frac{1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt} \Big)^2$ $\frac{1.41.0}{41.0}$ qyFcy 3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$CC = 27.5$$

$$CC = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$X = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7

$$\lambda = 1.63853$$

 $r = 0.81$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$
 $\phi cc = 0.80939$
 $\phi F_L = (\phi cc Fcy)/(\lambda^2)$
 $\phi F_L = 10.5516$ ksi

$\phi F_L = (\phi cc Fcy)/(\lambda^2)$ 3.4.9 b/t =24.5 S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi 24.5 b/t =S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 10.55 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 10.86 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-39.836	-39.836	0	0
2	M14	Υ	-39.836	-39.836	0	0
3	M15	Υ	-39.836	-39.836	0	0
4	M16	Y	-39 836	-39 836	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-60.928	-60.928	0	0
2	M14	٧	-60.928	-60.928	0	0
3	M15	V	-98.014	-98.014	0	0
4	M16	V	-98.014	-98.014	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

_		Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
	1	M13	٧	137.749	137.749	0	0
	2	M14	٧	105.961	105.961	0	0
	3	M15	V	58.278	58.278	0	0
	4	M16	У	58.278	58.278	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Ζ	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	<u>Fa</u>
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	5.	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E				1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	599.861	2	995.079	2	.788	1	.003	1	0	1	0	1
2		min	-765.634	3	-1172.543	3	-38.577	5	232	4	0	1	0	1
3	N7	max	.044	9	1059.711	1	758	12	001	12	0	1	0	1
4		min	124	2	-27.109	5	-315.254	4	614	4	0	1	0	1
5	N15	max	.035	9	2692.165	1	0	10	0	10	0	1	0	1
6		min	-1.448	2	-89.185	3	-299.934	4	593	4	0	1	0	1
7	N16	max	2298.697	2	3284.953	2	0	2	0	11	0	1	0	1
8		min	-2431.593	3	-3856.355	3	-38.309	5	234	4	0	1	0	1
9	N23	max	.047	14	1059.711	1_	13.971	1	.028	1	0	1	0	1
10		min	124	2	3.833	3	-305.14	5	598	4	0	1	0	1
11	N24	max	599.861	2	995.079	2	049	12	0	12	0	1	0	1
12		min	-765.634	3	-1172.543	3	-39.29	5	234	4	0	1	0	1
13	Totals:	max	3496.724	2	9825.325	1	0	10						
14		min	-3962.926	3	-6282.961	3	-1029.826	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	136.622	1	392.302	1	-9.939	12	0	3	.327	1	0	4
2			min	7.471	12	-549.171	3	-200.382	1	011	2	.018	12	0	3
3		2	max	136.622	1	275.068	1	-7.756	12	0	3	.14	4	.572	3
4			min	7.471	12	-386.483	3	-154.193	1	011	2	.007	12	408	1
5		3	max	136.622	1	157.833	1	-5.573	12	0	3	.072	5	.945	3
6			min	7.471	12	-223.795	3	-108.005	1	011	2	05	1	672	1
7		4	max	136.622	1	40.599	1	-3.39	12	0	3	.036	5	1.119	3
8			min	7.471	12	-61.107	3	-61.817	1	011	2	154	1	794	1
9		5	max	136.622	1	101.581	3	-1.206	12	0	3	.004	5	1.094	3
10			min	7.471	12	-76.635	1	-28.578	4	011	2	201	1	772	1
11		6	max	136.622	1	264.268	3	30.56	1	0	3	009	12	.871	3
12			min	3.713	15	-193.87	1	-21.039	5	011	2	192	1	606	1
13		7	max	136.622	1	426.956	3	76.749	1	0	3	007	12	.448	3
14			min	-6.626	5	-311.104	1	-17.661	5	011	2	126	1	298	1
15		8	max	136.622	1	589.644	3	122.937	1	0	3	0	10	.154	1
16			min	-19.172	5	-428.338	1	-14.283	5	011	2	07	4	173	3
17		9	max	136.622	1	752.332	3	169.125	1	0	3	.174	1	.749	1
18			min	-31.719	5	-545.573	1	-10.905	5	011	2	083	5	993	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

19		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
22	19		10	max	136.622	1	915.02	3	215.314	1	.011	2			1.488	_
22	20			min	7.471	12	-662.807	1	-130.288	14	0	3	.017	12	-2.012	3
12	21		11	max	136.622	1	545.573	1	-7.526	12	.011	2	.174	1	.749	1
24	22			min	7.471	12	-752.332	3	-169.125	1	0	3	.006	12	993	3
24	23		12	max	136.622	1	428.338	1	-5.343	12	.011	2	.066	5	.154	1
26				min	7.471	12		3	-122.937	1	0	3	004	1	173	3
26	25		13	max	136.622	1		1	-3.16	12	.011	2	.029	5	.448	3
28				min		12		3				3				
28			14							12	.011	2		15		3
15																
31			15								_					_
16			1													
			16													
34																
35			17													
36			17													
36			10			_		_								•
19 max 136,622 1 549,171 3 200,382 1 .011 2 .327 1 0 1 38 min -48,775 5 -392,302 1 -8,577 5 0 3 .369 1 0 4 40 40 min 3,106 12 427,719 3 -206,123 1 .008 2 .002 12 0 3 41 2 max 59,818 1 293,225 1 -8,017 12 .006 3 .196 4 .447 3 42 min 3,106 12 303,883 3 .159,934 1 008 2 .009 12 -43 1 43 3 max 59,818 1 2303,883 3 .159,934 1 008 2 .009 12 -43 1 43 3 max 59,818 1 175,991 1 -5,834 12 .006 3 .105 5 .743 3 44 min 3,106 12 -180,047 3 -113,746 1 .008 2 .002 2 1 .717 1 45 4 max 59,818 1 58,756 1 -3,651 12 .006 3 .055 5 .887 3 .48 3 .106 12 .160,047 3 -113,746 1 .008 2 .022 1 .717 1 .717 1 .717 .717 .718			10													
38			40									_				
M14			19													
Mathematics Mathematics			-								_					
41		<u>M14</u>	1													
42																
43 3 max 59.818 1 175.991 1 -5.834 12 .006 3 .105 5 .743 3 44 min 3.106 12 -180.047 3 -113.746 1 008 2 022 1 717 1 45 4 max 59.818 1 58.756 1 -3.651 12 .006 3 .055 5 .887 3 46 min 3.106 12 -56.211 3 -67.557 1 008 2 133 1 86 1 47 5 ms 59.818 1 -67.625 3 -1.468 12 .006 3 .009 5 .88 3 48 min 1.292 15 -58.478 1 -41.596 4 008 2 -187 1 -8.6 1 50 min -10.549 5			2													
44 min 3.106 12 -18.047 3 -13.746 1 -0.08 2 -0.22 1 -7.17 1 45 4 max 59.818 1 58.756 1 -3.651 12 .006 3 .055 5 .887 3 46 min 3.106 12 -56.211 3 -67.557 1 .008 2 -133 1 -86 1 47 5 max 59.818 1 67.625 3 -1.468 12 .006 3 .009 5 .88 3 48 min 1.292 15 -58.478 1 -41.596 4 -008 2 -187 1 -86 1 -86 1 49 6 max 59.818 1 191.46 3 24.819 1 .006 3 .007 12 .717 1 51 7 max <td></td> <td></td> <td></td> <td>min</td> <td></td>				min												
45			3	max							.006			5_	.743	3
46				min	3.106	12	-180.047	3	-113.746	1	008	2	022	1	717	•
47 5 max 59.818 1 67.625 3 -1.468 12 .006 3 .009 5 .88 3 48 min 1.292 15 -58.478 1 -41.596 4 008 2 187 1 86 1 49 6 max 59.818 1 191.46 3 24.819 1 .006 3 009 12 .717 1 50 min -10.549 5 -175.712 1 -32.487 5 008 2 185 1 717 1 51 7 max 59.818 1 315.296 3 71.008 1 .006 3 .007 12 .412 3 52 min -23.095 5 -292.947 1 -29.109 5 008 2 186 1 431 1 53 8 max 59.818	45		4	max	59.818	1	58.756	1	-3.651	12	.006	3	.055	5	.887	3
Min 1.292 15 -58.478 1 -41.596 4 008 2 187 1 86 1	46			min	3.106	12	-56.211	3	-67.557	1	008	2	133	1	86	1
Min 1.292 15 -58.478 1 -41.596 4 008 2 187 1 86 1	47		5	max	59.818	1	67.625	3	-1.468	12	.006	3	.009	5	.88	3
49	48				1.292	15	-58.478	1	-41.596	4	008	2	187	1	86	
50 min -10.549 5 -175.712 1 -32.487 5 008 2 185 1 717 1 51 7 max 59.818 1 315.296 3 71.008 1 .006 3 007 12 .412 3 52 min -23.095 5 -292.947 1 -29.109 5 008 2 126 1 431 1 53 8 max 59.818 1 439.132 3 117.196 1 .006 3 0 10 .004 9 54 min -35.641 5 -410.181 1 -25.731 5 008 2 109 4 049 3 55 9 max 59.818 1 562.968 3 163.384 1 .006 3 .16 1 .22.353 5 008 2 134 5 -			6		59.818			3		1	.006	3		12		3
51 7 max 59.818 1 315.296 3 71.008 1 .006 3 007 12 .412 3 52 min -23.095 5 -292.947 1 -29.109 5 008 2 126 1 431 1 53 8 max 59.818 1 439.132 3 117.196 1 .006 3 0 10 .004 9 54 min -35.641 5 -410.181 1 -25.731 5 008 2 109 4 049 3 55 9 max 59.818 1 562.968 3 163.384 1 .006 3 .16 1 .572 1 56 min 3.106 12 -644.65 1 -132.932 14 .006 3 .016 12 -142.5 3 57 11 max 70.521 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						5				5						
52 min -23.095 5 -292.947 1 -29.109 5 008 2 126 1 431 1 53 8 max 59.818 1 439.132 3 117.196 1 .006 3 0 10 .004 9 54 min -35.641 5 -410.181 1 -25.731 5 008 2 109 4 049 3 55 9 max 59.818 1 562.968 3 163.384 1 .006 3 .16 1 .572 1 56 min -48.188 5 -527.415 1 -22.353 5 008 2 -134 5 661 3 57 10 max 83.067 4 686.804 3 209.573 1 .008 2 .388 1 1.288 1 58 11 min 3.106 <td></td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>12</td> <td></td> <td></td>			7					3						12		
53 8 max 59.818 1 439.132 3 117.196 1 .006 3 0 10 .004 9 54 min -35.641 5 -410.181 1 -25.731 5 008 2 109 4 049 3 55 9 max 59.818 1 562.968 3 163.384 1 .006 3 .16 1 .572 1 56 min -48.188 5 -527.415 1 -22.353 5 008 2 .388 1 1.288 1 57 10 max 83.067 4 686.804 3 209.573 1 .008 2 .388 1 1.288 1 59 11 max 70.521 4 527.415 1 -7.265 12 .008 2 .197 4 .572 1 60 min 3.106 12 -439.132 3																
54 min -35.641 5 -410.181 1 -25.731 5 008 2 109 4 049 3 55 9 max 59.818 1 562.968 3 163.384 1 .006 3 .16 1 .572 1 56 min -48.188 5 -527.415 1 -22.353 5 008 2 134 5 661 3 57 10 max 83.067 4 686.804 3 209.573 1 .008 2 .388 1 1.288 1 58 min 3.106 12 -644.65 1 -132.932 14 006 3 .016 12 -1425 3 59 11 max 70.521 4 527.415 1 -7.265 12 .008 2 .197 4 .572 1 60 min 3.106 1			8													_
55 9 max 59.818 1 562.968 3 163.384 1 .006 3 .16 1 .572 1 56 min -48.188 5 -527.415 1 -22.353 5 008 2 134 5 661 3 57 10 max 83.067 4 686.804 3 209.573 1 .008 2 .388 1 1.288 1 58 min 3.106 12 -644.65 1 -132.932 14 006 3 .016 12 -1.425 3 60 min 3.106 12 -562.968 3 -163.384 1 -006 3 .006 12 -661 3 61 12 max 59.818 1 410.181 1 -5.082 12 .008 2 .102 5 .004 9 62 min 3.106 12																
56 min -48.188 5 -527.415 1 -22.353 5 008 2 134 5 661 3 57 10 max 83.067 4 686.804 3 209.573 1 .008 2 .388 1 1.288 1 58 min 3.106 12 -644.65 1 -132.932 14 006 3 .016 12 -1.425 3 59 11 max 70.521 4 527.415 1 -7.265 12 .008 2 .197 4 .572 1 60 min 3.106 12 -562.968 3 -163.384 1 006 3 .006 12 -661 3 61 12 max 59.818 1 410.181 1 -5082 12 .008 2 .001 1 -601 1 -639.188 1 29.947 1			9					_								$\overline{}$
57 10 max 83.067 4 686.804 3 209.573 1 .008 2 .388 1 1.288 1 58 min 3.106 12 -644.65 1 -132.932 14 006 3 .016 12 -1.425 3 59 11 max 70.521 4 527.415 1 -7.265 12 .008 2 .197 4 .572 1 60 min 3.106 12 -562.968 3 -163.384 1 006 3 .006 12 661 3 61 12 max 59.818 1 410.181 1 -5.082 12 .008 2 .102 5 .004 9 62 min 3.106 12 -39.132 3 -117.196 1 .006 3 011 1 .049 63 13 max 59.818 <th< td=""><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			<u> </u>													
58 min 3.106 12 -644.65 1 -132.932 14 006 3 .016 12 -1.425 3 59 11 max 70.521 4 527.415 1 -7.265 12 .008 2 .197 4 .572 1 60 min 3.106 12 -562.968 3 -163.384 1 006 3 .006 12 661 3 61 12 max 59.818 1 410.181 1 -5.082 12 .008 2 .102 5 .004 9 62 min 3.106 12 -439.132 3 -117.196 1 006 3 011 1 -049 3 63 13 max 59.818 1 292.947 1 -2.899 12 .008 2 .052 5 .412 3 64 min 3.106			10			_								_		
59 11 max 70.521 4 527.415 1 -7.265 12 .008 2 .197 4 .572 1 60 min 3.106 12 -562.968 3 -163.384 1 006 3 .006 12 661 3 61 12 max 59.818 1 410.181 1 -5.082 12 .008 2 .102 5 .004 9 62 min 3.106 12 -439.132 3 -117.196 1 006 3 011 1 049 3 63 13 max 59.818 1 292.947 1 -2.899 12 .008 2 .052 5 .412 3 64 min 3.106 12 -315.296 3 -71.008 1 006 3 126 1 431 1 65 14 max 59.8			10													
60 min 3.106 12 -562.968 3 -163.384 1 006 3 .006 12 661 3 61 12 max 59.818 1 410.181 1 -5.082 12 .008 2 .102 5 .004 9 62 min 3.106 12 -439.132 3 -117.196 1 006 3 011 1 049 3 63 13 max 59.818 1 292.947 1 -2.899 12 .008 2 .052 5 .412 3 64 min 3.106 12 -315.296 3 -71.008 1 006 3 126 1 431 1 65 14 max 59.818 1 175.712 1 715 12 .008 2 .006 5 .722 3 66 min 3.106 12			11					- :								
61 12 max 59.818 1 410.181 1 -5.082 12 .008 2 .102 5 .004 9 62 min 3.106 12 -439.132 3 -117.196 1 006 3 011 1 049 3 63 13 max 59.818 1 292.947 1 -2.899 12 .008 2 .052 5 .412 3 64 min 3.106 12 -315.296 3 -71.008 1 006 3 126 1 431 1 65 14 max 59.818 1 175.712 1 715 12 .008 2 .006 5 .722 3 66 min 3.106 12 -191.46 3 -42.476 4 006 3 185 1 717 1 67 15 max 59.818 1 58.478 1 21.369 1 .008 2 009 12 </td <td></td> <td></td> <td>- ' '</td> <td></td> <td>-</td>			- ' '													-
62 min 3.106 12 -439.132 3 -117.196 1 006 3 011 1 049 3 63 13 max 59.818 1 292.947 1 -2.899 12 .008 2 .052 5 .412 3 64 min 3.106 12 -315.296 3 -71.008 1 006 3 126 1 431 1 65 14 max 59.818 1 175.712 1 715 12 .008 2 .006 5 .722 3 66 min 3.106 12 -191.46 3 -42.476 4 006 3 185 1 717 1 67 15 max 59.818 1 58.478 1 21.369 1 .008 2 009 12 .88 3 69 16 max 59.818 </td <td></td> <td></td> <td>12</td> <td></td>			12													
63 13 max 59.818 1 292.947 1 -2.899 12 .008 2 .052 5 .412 3 64 min 3.106 12 -315.296 3 -71.008 1 006 3 126 1 431 1 65 14 max 59.818 1 175.712 1 715 12 .008 2 .006 5 .722 3 66 min 3.106 12 -191.46 3 -42.476 4 006 3 185 1 717 1 67 15 max 59.818 1 58.478 1 21.369 1 .008 2 009 12 .88 3 68 min 3.106 12 -67.625 3 -32.697 5 006 3 187 1 86 1 69 16 max 59.818			12													
64 min 3.106 12 -315.296 3 -71.008 1 006 3 126 1 431 1 65 14 max 59.818 1 175.712 1 715 12 .008 2 .006 5 .722 3 66 min 3.106 12 -191.46 3 -42.476 4 006 3 185 1 717 1 67 15 max 59.818 1 58.478 1 21.369 1 .008 2 009 12 .88 3 68 min 3.106 12 -67.625 3 -32.697 5 006 3 187 1 86 1 69 16 max 59.818 1 56.211 3 67.557 1 .008 2 005 12 .887 3 70 min -6.282 5			40													
65 14 max 59.818 1 175.712 1715 12 .008 2 .006 5 .722 3 66 min 3.106 12 -191.46 3 -42.476 4006 3185 1717 1 67 15 max 59.818 1 58.478 1 21.369 1 .008 2009 12 .88 3 68 min 3.106 12 -67.625 3 -32.697 5006 3187 186 1 69 16 max 59.818 1 56.211 3 67.557 1 .008 2005 12 .887 3 70 min -6.282 5 -58.756 1 -29.319 5006 3133 186 1 71 17 max 59.818 1 180.047 113.746 1 .008 2 0 3 .743 3 72 min -18.829 5 -175.991 1 -25.942 5006 3115 4717 1 73 18 max 59.818 1 303.883 3 159.934 1 .008 2 .145 1 .447 3 <td></td> <td></td> <td>13</td> <td></td>			13													
66 min 3.106 12 -191.46 3 -42.476 4 006 3 185 1 717 1 67 15 max 59.818 1 58.478 1 21.369 1 .008 2 009 12 .88 3 68 min 3.106 12 -67.625 3 -32.697 5 006 3 187 1 86 1 69 16 max 59.818 1 56.211 3 67.557 1 .008 2 005 12 .887 3 70 min -6.282 5 -58.756 1 -29.319 5 006 3 133 1 86 1 71 17 max 59.818 1 180.047 3 113.746 1 .008 2 0 3 .743 3 72 min -18.829 5			4.4													
67 15 max 59.818 1 58.478 1 21.369 1 .008 2 009 12 .88 3 68 min 3.106 12 -67.625 3 -32.697 5 006 3 187 1 86 1 69 16 max 59.818 1 56.211 3 67.557 1 .008 2 005 12 .887 3 70 min -6.282 5 -58.756 1 -29.319 5 006 3 133 1 86 1 71 17 max 59.818 1 180.047 3 113.746 1 .008 2 0 3 .743 3 72 min -18.829 5 -175.991 1 -25.942 5 006 3 115 4 717 1 73 18 max 59.818			14													
68 min 3.106 12 -67.625 3 -32.697 5 006 3 187 1 86 1 69 16 max 59.818 1 56.211 3 67.557 1 .008 2 005 12 .887 3 70 min -6.282 5 -58.756 1 -29.319 5 006 3 133 1 86 1 71 17 max 59.818 1 180.047 3 113.746 1 .008 2 0 3 .743 3 72 min -18.829 5 -175.991 1 -25.942 5 006 3 115 4 717 1 73 18 max 59.818 1 303.883 3 159.934 1 .008 2 .145 1 .447 3 74 min -31.375 5																
69 16 max 59.818 1 56.211 3 67.557 1 .008 2 005 12 .887 3 70 min -6.282 5 -58.756 1 -29.319 5 006 3 133 1 86 1 71 17 max 59.818 1 180.047 3 113.746 1 .008 2 0 3 .743 3 72 min -18.829 5 -175.991 1 -25.942 5 006 3 115 4 717 1 73 18 max 59.818 1 303.883 3 159.934 1 .008 2 .145 1 .447 3 74 min -31.375 5 -293.225 1 -22.564 5 006 3 137 5 43 1			15													
70 min -6.282 5 -58.756 1 -29.319 5 006 3 133 1 86 1 71 17 max 59.818 1 180.047 3 113.746 1 .008 2 0 3 .743 3 72 min -18.829 5 -175.991 1 -25.942 5 006 3 115 4 717 1 73 18 max 59.818 1 303.883 3 159.934 1 .008 2 .145 1 .447 3 74 min -31.375 5 -293.225 1 -22.564 5 006 3 137 5 43 1						-								_		
71			16			1		3						12		
72 min -18.829 5 -175.991 1 -25.942 5 006 3 115 4 717 1 73 18 max 59.818 1 303.883 3 159.934 1 .008 2 .145 1 .447 3 74 min -31.375 5 -293.225 1 -22.564 5 006 3 137 5 43 1						5				5						
73			17	max		1		3						3	.743	
73	72					5		1		5	006	3	115	4		1
74 min -31.375 5 -293.225 1 -22.564 5006 3137 543 1			18			1		3						1	.447	3
						5								5		
			19			1		3		1						1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

70	Member	Sec		Axial[lb]		y Shear[lb]								z-z Mome	
76	NAC.	1	min	-43.922	5	-410.46	1	-19.186	5	006	3	163	5	0	3
77	<u>M15</u>	1	max		5	532.64	2	-10.164	12	.009	2	.369	1	0	2
78			min	-63.143	1	-231.135		-206.087		005	3	.02	12	0	12
79		2	max	79.229	5	379.226	2	-7.98	12	.009	2	.234	4	.242	3
80			min	-63.143	1	-165.578	3	-159.898		005	3	.009	12	<u>557</u>	2
81		3	max	66.683	5	225.812	2	-5.797	12	.009	2	.132	5	.405	3
82			min	-63.143	1_	-100.021	3	-113.71	1_	005	3	022	1	927	2
83		4	max		5	72.398	2	-3.614	12	.009	2	.071	5	.487	3
84			min	-63.143	1	-34.465	3	-67.522	1	005	3	133	1	-1.109	2
85		5	max	41.59	5	31.092	3	-1.431	12	.009	2	.015	5	.489	3
86			min	-63.143	1_	-81.016	2	-50.446	4	005	3	187	1	-1.104	2
87		6	max	29.044	5	96.648	3	24.855	1	.009	2	009	12	.411	3
88			min	-63.143	1	-234.43	2	-41.298	5	005	3	185	1	911	2
89		7	max	16.497	5	162.205	3	71.044	1	.009	2	007	12	.253	3
90			min	-63.143	1	-387.844	2	-37.92	5	005	3	127	1	531	2
91		8	max	3.951	5	227.761	3	117.232	1	.009	2	0	10	.037	2
92			min	-63.143	1	-541.259	2	-34.542	5	005	3	136	4	0	15
93		9	max	-3.518	12	293.318	3	163.42	1	.009	2	.16	1	.792	2
94			min	-63.143	1	-694.673	2	-31.165	5	005	3	171	5	304	3
95		10	max	-3.518	12	358.875	3	209.609	1	.005	3	.388	1	1.735	2
96			min	-63.143	1	-848.087	2	-137.459	14	009	2	.016	12	703	3
97		11	max	564	15	694.673	2	-7.302	12	.005	3	.234	4	.792	2
98			min	-63.143	1	-293.318	3	-163.42	1	009	2	.006	12	304	3
99		12	max	-3.518	12	541.259	2	-5.119	12	.005	3	.129	5	.037	2
100			min	-63.143	1	-227.761	3	-117.232	1	009	2	011	1	0	15
101		13	max	-3.518	12	387.844	2	-2.935	12	.005	3	.068	5	.253	3
102			min	-63.143	1	-162.205	3	-71.044	1	009	2	127	1	531	2
103		14	max	-3.518	12	234.43	2	752	12	.005	3	.011	5	.411	3
104			min	-63.143	1	-96.648	3	-51.356	4	009	2	185	1	911	2
105		15	max	-3.518	12	81.016	2	21.333	1	.005	3	009	12	.489	3
106			min	-66.882	4	-31.092	3	-41.513	5	009	2	187	1	-1.104	2
107		16	max	-3.518	12	34.465	3	67.522	1	.005	3	006	12	.487	3
108			min	-79.428	4	-72.398	2	-38.135	5	009	2	133	1	-1.109	2
109		17	max	-3.518	12	100.021	3	113.71	1	.005	3	0	3	.405	3
110			min	-91.975	4	-225.812	2	-34.758	5	009	2	142	4	927	2
111		18	max	-3.518	12	165.578	3	159.898	1	.005	3	.145	1	.242	3
112			min	-104.521	4	-379.226	2	-31.38	5	009	2	176	5	557	2
113		19	max		12	231.135	3	206.087	1	.005	3	.369	1	0	2
114			min	-117.067	4	-532.64	2	-28.002	5	009	2	212	5	0	5
115	<u>M16</u>	1	max		5	514.84	2	-9.822	12	.009	1	.328	1	0	2
116			min	-146.479	1	-218.531		-200.612		008	3	.017	12	0	3
117		2	max		5	361.426	2	-7.639	12	.009	1	.181	4	.227	3
118				-146.479		-152.974		-154.423		008	3	.007	12	535	2
119		3	max		5	208.012	2	-5.456	12	.009	1	.101	5	.374	3
120				-146.479		-87.417	3	-108.235		008	3	049	1	883	2
121		4	max		5	54.597	2	-3.273	12	.009	1	.054	5	.441	3
122			min		1	-21.861	3	-62.047	1_	008	3	153	1	-1.044	2
123		5	max		5	43.696	3	-1.09	12	.009	1	.011	5	.427	3
124			min		1	-98.817	2	-37.801	4	008	3	201	1	-1.017	2
125		6	max		_5	109.252	3	30.33	1	.009	1	009	12	.334	3
126		-	min	-146.479	1	-252.231	2	-30.12	5	008	3	192	1	802	2
127		7	max		5	174.809	3	76.518	1	.009	1	007	12	.16	3
128				-146.479		-405.645		-26.742	5	008	3	127	1	4	2
129		8	max		5	240.365	3	122.707	1	.009	1	0	10	.189	2
130				-146.479		-559.059	2	-23.364	5	008	3	096	4	093	3
131		9	max		15	305.922	3	168.895	1	.009	1	.173	1	.966	2
132			min	-146.479	1	-712.473	2	-19.987	5	008	3	12	5	427	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
133		10	max	-7.767	12	371.479	3	215.084	1	.008	3	.408	1_	1.931	2
134			min	-146.479	1	-865.887	2	-134.873	14	009	1	.017	12	841	3
135		11	max	-6.929	15	712.473	2	-7.643	12	.008	3	.188	4	.966	2
136			min	-146.479	1	-305.922	3	-168.895	1	009	1	.007	12	427	3
137		12	max	-7.767	12	559.059	2	-5.46	12	.008	3	.093	4	.189	2
138			min	-146.479	1	-240.365	3	-122.707	1	009	1	005	1	093	3
139		13	max	-7.767	12	405.645	2	-3.277	12	.008	3	.044	5	.16	3
140			min	-146.479	1	-174.809	3	-76.518	1	009	1	127	1	4	2
141		14	max	-7.767	12	252.231	2	-1.094	12	.008	3	0	15	.334	3
142			min	-146.479	1	-109.252	3	-42.101	4	009	1	192	1	802	2
143		15	max	-7.767	12	98.817	2	15.858	1	.008	3	009	12	.427	3
144			min	-146.479	1	-43.696	3	-31.151	5	009	1	201	1	-1.017	2
145		16	max	-7.767	12	21.861	3	62.047	1	.008	3	007	12	.441	3
146			min	-146.479	1	-54.597	2	-27.773	5	009	1	153	1	-1.044	2
147		17	max	-7.767	12	87.417	3	108.235	1	.008	3	001	12	.374	3
148			min	-146.479	1	-208.012	2	-24.395	5	009	1	121	4	883	2
149		18	max	-7.767	12	152.974	3	154.423	1	.008	3	.111	1	.227	3
150			min	-146.479	1	-361.426	2	-21.018	5	009	1	136	5	535	2
151		19	max	-7.767	12	218.531	3	200.612	1	.008	3	.328	1	0	2
152			min	-146.522	4	-514.84	2	-17.64	5	009	1	16	5	0	5
153	M2	1	max		1	1.957	4	.629	1	0	12	0	3	0	1
154			min	-1014.41	3	.473	15	-38.097	4	0	4	0	1	0	1
155		2	max	898.989	1	1.871	4	.629	1	0	12	0	1	0	15
156			min	-1014.054	3	.453	15	-38.514	4	0	4	012	4	0	4
157		3	max	899.465	1	1.785	4	.629	1	0	12	0	1	0	15
158			min	-1013.697	3	.432	15	-38.93	4	0	4	025	4	001	4
159		4	max	899.941	1	1.7	4	.629	1	0	12	0	1	0	15
160			min	-1013.34	3	.412	15	-39.346	4	0	4	038	4	002	4
161		5	max		1	1.614	4	.629	1	0	12	0	1	0	15
162			min	-1012.983	3	.392	15	-39.763	4	0	4	05	4	002	4
163		6	max	900.892	1	1.529	4	.629	1	0	12	.001	1	0	15
164			min	-1012.626	3	.372	15	-40.179	4	0	4	063	4	003	4
165		7	max	901.368	1	1.443	4	.629	1	0	12	.001	1	0	15
166			min	-1012.27	3	.352	15	-40.595	4	0	4	076	4	003	4
167		8	max	901.844	1	1.357	4	.629	1	0	12	.001	1	0	15
168			min	-1011.913	3	.332	15	-41.012	4	0	4	09	4	004	4
169		9	max	902.319	1	1.272	4	.629	1	0	12	.002	1	001	15
170			min	-1011.556	3	.312	15	-41.428	4	0	4	103	4	004	4
171		10	max	902.795	1	1.186	4	.629	1	0	12	.002	1	001	15
172			min	-1011.199	3	.292	15	-41.844	4	0	4	116	4	005	4
173		11		903.271	1	1.101	4	.629	1	0	12	.002	1	001	15
174			min	-1010.842	3	.272	15	-42.261	4	0	4	13	4	005	4
175		12	max		1	1.015	4	.629	1	0	12	.002	1	001	15
176			min		3	.246	12	-42.677	4	0	4	144	4	005	4
177		13	max		1	.93	4	.629	1	0	12	.002	1	003	15
178		13	min	-1010.129	3	.213	12	-43.093	4	0	4	158	4	006	4
179		14	max		1	.844	4	.629	1	0	12	.003	1	001	15
180			min	-1009.772	3	.179	12	-43.51	4	0	4	172	4	006	4
181		15		905.174	1	.758	4	.629	1	0	12	.003	1	002	15
182		13	min	-1009.415	3	.146	12	-43.926	4	0	4	186	4	002	4
183		16	max		1	.673	4	.629	1	0	12	.003	1	002	15
184		10	min	-1009.058	3	.113	12	-44.342	4	0	4	2	4	002	4
185		17			1	.604	2	.629	1	0	12	.003	1	002	15
186		17	max min	-1008.701	3	.079	12	-44.759	4	0	4	215	4	002	4
187		18			1	.537	2	.629	1		12	.003	_ 4 _	007	
188		10	max min	-1008.345	3		3	-45.175	4	0	4	229	4		15
		10	_			.046				0				007	-
189		19	шах	907.077	1	.47	2	.629	_ 1_	0	12	.004	_1_	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC y	y-y Mome	LC	z-z Mome	. LC
190			min	-1007.988	3	004	3	-45.592	4	0	4	244	4	007	4
191	M3	1	max	501.131	2	7.8	4	5.911	4	0	12	0	1	.007	4
192			min	-649.373	3	1.843	15	.015	12	0	4	035	4	.002	15
193		2	max	500.961	2	7.035	4	6.448	4	0	12	0	1	.004	4
194			min	-649.501	3	1.664	15	.015	12	0	4	033	4	0	12
195		3	max	500.79	2	6.271	4	6.985	4	0	12	0	1	.002	2
196			min	-649.628	3	1.484	15	.015	12	0	4	03	4	0	3
197		4	max	500.62	2	5.507	4	7.522	4	0	12	0	1	0	15
198			min	-649.756	3	1.304	15	.015	12	0	4	027	4	002	3
199		5	max	500.45	2	4.742	4	8.059	4	0	12	.001	1	0	15
200			min	-649.884	3	1.125	15	.015	12	0	4	024	4	004	6
201		6	max	500.279	2	3.978	4	8.596	4	0	12	.001	1	001	15
202			min	-650.012	3	.945	15	.015	12	0	4	02	4	005	6
203		7	max	500.109	2	3.213	4	9.133	4	0	12	.001	1	002	15
204			min	-650.139	3	.765	15	.015	12	0	4	016	5	007	6
205		8	max	499.939	2	2.449	4	9.67	4	0	12	.001	1	002	15
206			min	-650.267	3	.586	15	.015	12	0	4	013	5	008	6
207		9	max	499.768	2	1.684	4	10.207	4	0	12	.001	1	002	15
208			min	-650.395	3	.406	15	.015	12	0	4	009	5	009	6
209		10	max	499.598	2	.92	4	10.744	4	0	12	.002	1	002	15
210			min	-650.523	3	.226	15	.015	12	0	4	004	5	009	6
211		11	max	499.428	2	.235	2	11.28	4	0	12	.002	1	002	15
212			min	-650.65	3	101	3	.015	12	0	4	0	12	01	6
213		12	max		2	133	15	11.817	4	0	12	.006	4	002	15
214			min	-650.778	3	61	6	.015	12	0	4	0	12	01	6
215		13	max		2	313	15	12.354	4	0	12	.011	4	002	15
216			min	-650.906	3	-1.374	6	.015	12	0	4	0	12	009	6
217		14	max	498.917	2	493	15	12.891	4	0	12	.016	4	002	15
218			min	-651.034	3	-2.139	6	.015	12	0	4	0	12	008	6
219		15	max	498.746	2	672	15	13.428	4	0	12	.021	4	002	15
220			min	-651.161	3	-2.903	6	.015	12	0	4	0	12	007	6
221		16	max		2	852	15	13.965	4	0	12	.027	4	001	15
222			min	-651.289	3	-3.668	6	.015	12	0	4	0	12	006	6
223		17	max	498.406	2	-1.032	15	14.502	4	0	12	.033	4	001	15
224			min	-651.417	3	-4.432	6	.015	12	0	4	0	12	004	6
225		18	max		2	-1.211	15	15.039	4	0	12	.039	4	0	15
226			min	-651.545	3	-5.197	6	.015	12	0	4	0	12	002	6
227		19	max	498.065	2	-1.391	15	15.576	4	0	12	.046	4	0	1
228		1	min	-651.673	3	-5.961	6	.015	12	0	4	0	12	0	1
229	M4	1		1056.644	1	0	1	759	12	0	1	.038	4	0	1
230			min	-28.54	5	0	1	-314.267		0	1	0	12	0	1
231		2		1056.815		0	1	759	12	0	1	.002	4	0	1
232			min	-28.46	5	0	1	-314.415		0	1	0	12	0	1
233		3		1056.985	_	0	1	759	12	0	1	0	12	0	1
234			min	-28.381	5	0	1	-314.562	4	0	1	034	4	0	1
235		4		1057.155	1	0	1	759	12	0	1	0	12	0	1
236			min		5	0	1	-314.71	4	0	1	071	4	0	1
237		5		1057.326		0	1	759	12	0	1	0	12	0	1
238		Ĭ		-28.222	5	0	1	-314.858		0	1	107	4	0	1
239		6		1057.496	1	0	1	759	12	0	1	0	12	0	1
240			min	-28.142	5	0	1	-315.005		0	1	143	4	0	1
241		7		1057.666	1	0	1	759	12	0	1	0	12	0	1
242					5	0	1	-315.153		0	1	179	4	0	1
243		8		1057.837	1	0	1	759	12	0	1	0	12	0	1
244			min	-27.983	5	0	1	-315.3	4	0	1	215	4	0	1
245		9		1058.007	1	0	1	759	12	0	1	<u>213</u> 0	12	0	1
246		9			5	0	1	-315.448		0	1	251	4	0	1
240			1111111	-21.304	J	U		-313.440	4	U		201	+	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1058.177	_1_	0	_1_	759	12	0	_1_	0	12	0	1
248			min	-27.824	5	0	1	-315.596	4	0	1	288	4	0	1
249		11	max	1058.348	<u>1</u>	0	1	759	12	0	1	0	12	0	1
250			min	-27.745	5	0	1	-315.743	4	0	1	324	4	0	1
251		12	max	1058.518	1_	0	1	759	12	0	1	0	12	0	1
252			min	-27.666	5	0	1	-315.891	4	0	1	36	4	0	1
253		13	max	1058.689	1	0	1	759	12	0	1	0	12	0	1
254			min	-27.586	5	0	1	-316.039	4	0	1	396	4	0	1
255		14	max	1058.859	1	0	1	759	12	0	1	001	12	0	1
256			min	-27.507	5	0	1	-316.186	4	0	1	433	4	0	1
257		15		1059.029	1	0	1	759	12	0	1	001	12	0	1
258			min	-27.427	5	0	1	-316.334	4	0	1	469	4	0	1
259		16	max	1059.2	1	0	1	759	12	0	1	001	12	0	1
260			min	-27.348	5	0	1	-316.481	4	0	1	505	4	0	1
261		17	max		1	0	1	759	12	0	1	001	12	0	1
262			min	-27.268	5	Ö	1	-316.629	4	Ö	1	542	4	0	1
263		18	max		1	0	1	759	12	0	1	001	12	0	1
264		1.0	min	-27.189	5	0	1	-316.777	4	0	1	578	4	0	1
265		19	+	1059.711	1	0	1	759	12	0	1	001	12	0	1
266		10	min	-27.109	5	0	1	-316.924	4	0	1	614	4	0	1
267	M6	1		2905.381	1	2.124	2	0	1	0	1	0	4	0	1
268	IVIO		min	-3336.998	3	.304	12	-38.512	4	0	4	0	1	0	1
269		2		2905.857	1	2.058	2	0	1	0	1	0	1	0	12
270			min	-3336.641	3	.271	12	-38.929	4	0	4	013	4	0	2
271		3		2906.332	<u> </u>	1.991	2	0	1	0	1	013	1	0	12
272		3	min	-3336.284	3	.237	12	-39.345	4	0	4	025	4	001	2
273		4		2906.808	<u> </u>	1.924	2	0	1	0	1	0	1	0	12
		4		-3335.928	3	.204	12	-39.761	4	0	4	038	4	002	2
274		5	min		_		2	0	1	_	1		1		
275		5		2907.284 -3335.571	1	1.858			_	0		0		0	12
276		6	min		3	.171	<u>12</u>	-40.178 0	1	0	<u>4</u> 1	051	<u>4</u> 1	003	12
277		6	max	-3335.214	1	1.791		-40.594	4	0		0		0	2
278		7	min		3_4	.13	3			0	4	064	4	003	
279		-		2908.235	1	1.724	2	-41.01	1	0	1_4	0	1	0	12
280			min	-3334.857	3	.08	3		4	0	4	077	4	004	2
281		8		2908.711	1	1.658	2	0	1	0	1	0	1	0	12
282			min	-3334.5	3	.03	3	-41.427	4	0	4	091	4	004	2
283		9		2909.187	1_	1.591	2	0	1	0	1	0	1	0	12
284		10	min	-3334.144	3	02	3	-41.843	4	0	4	104	4	005	2
285		10		2909.663	1_	1.524	2	0	1	0	1	0	1_	0	12
286		4.4	min	-3333.787	3	07	3	-42.259	4	0	4	118	4	005	2
287		11		2910.138	1_	1.458	2	0	1	0	1	0	1	0	3
288		40		-3333.43	3	12	3	-42.676	4	0	4	131	4	006	2
289		12		2910.614	1_	1.391	2	0	1	0	1	0	1	0	3
290			min		3	17	3	-43.092	4	0	4	145	4	006	2
291		13		2911.09	1_	1.324	2	0	1	0	1	0	1	0	3
292			min		3	22	3	-43.508	4	0	4	159	4	007	2
293		14		2911.566	_1_	1.258	2	0	1	0	1	0	1	0	3
294			min		3	27	3	-43.925	4	0	4	174	4	007	2
295		15		2912.041	1_	1.191	2	0	1	0	1	0	1	0	3
296			min		3	32	3	-44.341	4	0	4	188	4	008	2
297		16		2912.517	_1_	1.124	2	0	1	0	1	0	1	0	3
298			min		3	37	3	-44.757	4	0	4	202	4	008	2
299		17		2912.993	_1_	1.057	2	0	1	0	1	0	1	0	3
300			1	-3331.289	3	42	3	-45.174	4	0	4	217	4	008	2
301		18	max	2913.469	_1_	.991	2	0	1	0	1	0	1	0	3
302			min		3	47	3	-45.59	4	0	4	231	4	009	2
303		19	max	2913.944	_1_	.924	2	0	1	0	1	0	1	0	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
304			min	-3330.575	3	52	3	-46.006	4	0	4	246	4	009	2
305	M7	1	max	1994.642	2	7.814	6	5.581	4	0	1	0	1	.009	2
306			min	-2044.86	3	1.834	15	0	1	0	4	036	4	0	3
307		2	max	1994.472	2	7.049	6	6.118	4	0	1	0	1	.006	2
308			min	-2044.988	3	1.655	15	0	1	0	4	033	4	002	3
309		3	max	1994.301	2	6.285	6	6.655	4	0	1	0	1	.004	2
310			min	-2045.116	3	1.475	15	0	1	0	4	03	4	003	3
311		4	max	1994.131	2	5.521	6	7.192	4	0	1	0	1	.002	2
312			min	-2045.243	3	1.295	15	0	1	0	4	028	4	005	3
313		5	max	1993.961	2	4.756	6	7.729	4	0	1	0	1	0	2
314			min	-2045.371	3	1.116	15	0	1	0	4	024	4	006	3
315		6	max	1993.79	2	3.992	6	8.266	4	0	1	0	1	001	15
316			min	-2045.499	3	.936	15	0	1	0	4	021	4	006	3
317		7	max	1993.62	2	3.227	6	8.803	4	0	1	0	1	002	15
318			min	-2045.627	3	.756	15	0	1	0	4	018	4	007	3
319		8	max	1993.45	2	2.463	6	9.34	4	0	1	0	1	002	15
320			min	-2045.754	3	.576	15	0	1	0	4	014	4	008	4
321		9	max	1993.279	2	1.778	2	9.877	4	0	1	0	1	002	15
322			min	-2045.882	3	.301	12	0	1	0	4	01	4	009	4
323		10	max	1993.109	2	1.182	2	10.414	4	0	1	0	1	002	15
324			min	-2046.01	3	054	3	0	1	0	4	006	4	009	4
325		11	max	1992.939	2	.586	2	10.951	4	0	1	0	1	002	15
326			min	-2046.138	3	501	3	0	1	0	4	001	5	01	4
327		12	max	1992.768	2	009	2	11.488	4	0	1	.004	4	002	15
328			min	-2046.265	3	948	3	0	1	0	4	0	1	01	4
329		13	max	1992.598	2	322	15	12.025	4	0	1	.009	4	002	15
330			min	-2046.393	3	-1.395	3	0	1	0	4	0	1	009	4
331		14	max	1992.428	2	502	15	12.562	4	0	1	.014	4	002	15
332			min	-2046.521	3	-2.124	4	0	1	0	4	0	1	008	4
333		15		1992.257	2	681	15	13.099	4	0	1	.019	4	002	15
334			min	-2046.649	3	-2.888	4	0	1	0	4	0	1	007	4
335		16	max	1992.087	2	861	15	13.635	4	0	1	.025	4	001	15
336			min	-2046.776	3	-3.653	4	0	1	0	4	0	1	006	4
337		17	max	1991.917	2	-1.041	15	14.172	4	0	1	.03	4	001	15
338			min	-2046.904	3	-4.417	4	0	1	0	4	0	1	004	4
339		18	max	1991.746	2	-1.22	15	14.709	4	0	1	.036	4	0	15
340			min	-2047.032	3	-5.182	4	0	1	0	4	0	1	002	4
341		19	max	1991.576	2	-1.4	15	15.246	4	0	1	.043	4	0	1
342			min	-2047.16	3	-5.946	4	0	1	0	4	0	1	0	1
343	M8	1	max	2689.099	1	0	1	0	1	0	1	.035	4	0	1
344				-91.484	3	0	1	-302.952	4	0	1	0	1	0	1
345		2		2689.269	1	0	1	0	1	0	1	0	5	0	1
346			min		3	0	1	-303.099	4	0	1	0	1	0	1
347		3	max	2689.44	1	0	1	0	1	0	1	0	1	0	1
348			min	-91.229	3	0	1	-303.247	4	0	1	034	4	0	1
349		4		2689.61	1	0	1	0	1	0	1	0	1	0	1
350			min		3	0	1	-303.395	4	0	1	069	4	0	1
351		5	max		1	0	1	0	1	0	1	0	1	0	1
352				-90.973	3	0	1	-303.542	4	0	1	104	4	0	1
353		6		2689.951	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	-303.69	4	0	1	139	4	0	1
355		7		2690.121	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-303.837	4	0	1	174	4	0	1
357		8		2690.292	1	0	1	0	1	0	1	0	1	0	1
358			min	-90.59	3	0	1	-303.985	4	0	1	208	4	0	1
359		9		2690.462	1	0	1	0	1	0	1	0	1	0	1
360			min		3	0	1	-304.133		0	1	243	4	0	1
000			1111111	00.702				00 1.100				1270		•	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	_LC_
361		10	max	2690.632	1	0	1	0	1	0	1_	0	1	0	1
362			min	-90.335	3	0	1	-304.28	4	0	1	278	4	0	1
363		11	max	2690.803	1	0	1	0	1	0	1	0	1	0	1
364			min	-90.207	3	0	1	-304.428	4	0	1	313	4	0	1
365		12	max	2690.973	1	0	1	0	1	0	1	0	1	0	1
366			min	-90.079	3	0	1	-304.576	4	0	1	348	4	0	1
367		13	max	2691.143	1	0	1	0	1	0	1	0	1	0	1
368			min	-89.951	3	0	1	-304.723	4	0	1	383	4	0	1
369		14	max	2691.314	1	0	1	0	1	0	1	0	1	0	1
370			min	-89.824	3	0	1	-304.871	4	0	1	418	4	0	1
371		15	max	2691.484	1	0	1	0	1	0	1	0	1	0	1
372			min	-89.696	3	0	1	-305.019	4	0	1	453	4	0	1
373		16	max	2691.654	1	0	1	0	1	0	1	0	1	0	1
374			min	-89.568	3	0	1	-305.166	4	0	1	488	4	0	1
375		17	max	2691.825	1	0	1	0	1	0	1	0	1	0	1
376			min	-89.44	3	0	1	-305.314	4	0	1	523	4	0	1
377		18	max	2691.995	1	0	1	0	1	0	1	0	1	0	1
378			min	-89.313	3	0	1	-305.461	4	0	1	558	4	0	1
379		19	max	2692.165	1	0	1	0	1	0	1	0	1	0	1
380			min	-89.185	3	0	1	-305.609	4	0	1	593	4	0	1
381	M10	1		898.513	1	1.9	6	031	12	0	1	0	4	0	1
382				-1014.41	3	.435	15	-38.484	4	0	5	0	3	0	1
383		2	max		1	1.815	6	031	12	0	1	0	10	0	15
384				-1014.054	3	.415	15	-38.9	4	0	5	013	4	0	6
385		3	max	899.465	1	1.729	6	031	12	0	1	0	12	0	15
386				-1013.697	3	.395	15	-39.317	4	Ö	5	025	4	001	6
387		4		899.941	1	1.644	6	031	12	0	1	0	12	0	15
388				-1013.34	3	.375	15	-39.733	4	0	5	038	4	002	6
389		5		900.416	1	1.558	6	031	12	0	1	0	12	0	15
390			min	-1012.983	3	.354	15	-40.15	4	0	5	051	4	002	6
391		6		900.892	1	1.472	6	031	12	0	1	0	12	0	15
392		Ť	min	-1012.626	3	.334	15	-40.566	4	0	5	064	4	003	6
393		7	_	901.368	1	1.387	6	031	12	0	1	0	12	0	15
394				-1012.27	3	.314	15	-40.982	4	0	5	077	4	003	6
395		8	max	901.844	1	1.301	6	031	12	0	1	0	12	0	15
396				-1011.913	3	.294	15	-41.399	4	0	5	091	4	004	6
397		9	max		1	1.216	6	031	12	0	1	0	12	0	15
398		Ť	min	-1011.556	3	.274	15	-41.815	4	0	5	104	4	004	6
399		10		902.795	1	1.13	6	031	12	0	1	0	12	001	15
400			min	-1011.199	3	.254	15	-42.231	4	0	5	118	4	004	6
401		11	max	903.271	1	1.045	6	031	12	0	1	0	12	001	15
402				-1010.842	3	.234	15	-42.648	4	0	5	131	4	005	6
403		12		903.747	1	.959	6	031	12	0	1	0	12	001	15
404				-1010.486	3	.214	15	-43.064	4	0	5	145	4	005	6
405		13		904.222	1	.873	6	031	12	0	1	0	12	001	15
406		'		-1010.129	3	.193	15	-43.48	4	0	5	159	4	005	6
407		14		904.698	1	.804	2	031	12	0	1	0	12	001	15
408		17		-1009.772	3	.173	15	-43.897	4	0	5	173	4	006	6
409		15		905.174	1	.737	2	031	12	0	1	0	12	001	15
410		'	min	-1009.415	3	.146	12	-44.313	4	0	5	188	4	006	6
411		16		905.65	_ <u></u>	.671	2	031	12	0	1	0	12	000 001	15
412		10	min		3	.113	12	-44.729	4	0	5	202	4	006	6
413		17		906.125	<u> </u>	.604	2	031	12	0	1	0	12	000 001	15
414		17		-1008.701	3	.079	12	-45.146	4	0	5	217	4	006	6
415		18		906.601	<u> </u>	.537	2	031	12	0	<u> </u>	0	12	006 001	15
416		10		-1008.345	3	.046	3	-45.562	4	0	5	231	4	006	6
417		19		907.077	<u> </u>	.47	2	031	12	0	<u> </u>	0	12	006 001	15
41/		l 19	шах	301.011		.4/		031	12	U		U	ΙZ	UU I	_ ເວ_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
418			min	-1007.988	3	004	3	-45.978	4	0	5	246	4	007	6
419	M11	1	max	501.131	2	7.756	6	5.734	4	0	1	0	12	.007	6
420			min	-649.373	3	1.814	15	289	1	0	4	036	4	.001	15
421		2	max	500.961	2	6.992	6	6.27	4	0	1	0	12	.004	2
422			min	-649.501	3	1.634	15	289	1	0	4	033	4	0	12
423		3	max	500.79	2	6.227	6	6.807	4	0	1	0	12	.002	2
424			min	-649.628	3	1.455	15	289	1	0	4	03	4	0	3
425		4	max	500.62	2	5.463	6	7.344	4	0	1	0	12	0	2
426			min	-649.756	3	1.275	15	289	1	0	4	027	4	002	3
427		5	max	500.45	2	4.699	6	7.881	4	0	1	0	12	0	15
428			min	-649.884	3	1.095	15	289	1	0	4	024	4	004	4
429		6	max	500.279	2	3.934	6	8.418	4	0	1	0	12	001	15
430			min	-650.012	3	.916	15	289	1	0	4	021	4	006	4
431		7	max	500.109	2	3.17	6	8.955	4	0	1	0	12	002	15
432			min	-650.139	3	.736	15	289	1	0	4	017	4	007	4
433		8	max		2	2.405	6	9.492	4	0	1	0	12	002	15
434			min	-650.267	3	.556	15	289	1	0	4	013	4	008	4
435		9	max	499.768	2	1.641	6	10.029	4	0	1	0	12	002	15
436			min	-650.395	3	.377	15	289	1	0	4	009	4	009	4
437		10	max	499.598	2	.876	6	10.566	4	0	1	0	12	002	15
438			min	-650.523	3	.197	15	289	1	0	4	005	4	01	4
439		11	max		2	.235	2	11.103	4	0	1	0	15	002	15
440			min	-650.65	3	101	3	289	1	0	4	002	1	01	4
441		12	max		2	163	15	11.64	4	0	1	.005	5	002	15
442			min	-650.778	3	653	4	289	1	0	4	002	1	01	4
443		13	max		2	342	15	12.177	4	0	1	.01	5	002	15
444			min	-650.906	3	-1.418	4	289	1	0	4	002	1	009	4
445		14	max		2	522	15	12.714	4	0	1	.015	5	002	15
446			min	-651.034	3	-2.182	4	289	1	0	4	002	1	009	4
447		15	max	498.746	2	702	15	13.251	4	0	1	.02	5	002	15
448			min	-651.161	3	-2.947	4	289	1	0	4	002	1	007	4
449		16	max		2	881	15	13.788	4	0	1	.026	5	001	15
450			min	-651.289	3	-3.711	4	289	1	0	4	002	1	006	4
451		17	max		2	-1.061	15	14.325	4	0	1	.032	5	001	15
452			min	-651.417	3	-4.476	4	289	1	0	4	002	1	004	4
453		18	max		2	-1.241	15	14.862	4	0	1	.038	5	0	15
454			min	-651.545	3	-5.24	4	289	1	0	4	003	1	002	4
455		19	max		2	-1.42	15	15.399	4	0	1	.044	5	0	1
456		1	min	-651.673	3	-6.005	4	289	1	0	4	003	1	0	1
457	M12	1		1056.644	1	0	1	14.398	1	0	1	.036	5	0	1
458				1.533	3	0	1	-305.39	4	0	1	002	1	0	1
459		2		1056.815		0	1	14.398	1	0	1	.002	5	0	1
460			min	1.661	3	0	1	-305.537	4	0	1	0	1	0	1
461		3		1056.985	1	0	1	14.398	1	0	1	.001	1	0	1
462			min	1.788	3	0	1	-305.685	4	0	1	034	4	0	1
463		4		1057.155	1	0	1	14.398	1	0	1	.003	1	0	1
464			min		3	0	1	-305.832	4	0	1	069	4	0	1
465		5		1057.326	1	0	1	14.398	1	0	1	.004	1	0	1
466			min		3	0	1	-305.98	4	0	1	104	4	0	1
467		6		1057.496	1	0	1	14.398	1	0	1	.006	1	0	1
468			min	2.172	3	0	1	-306.128		0	1	139	4	0	1
469		7		1057.666	1	0	1	14.398	1	0	1	.008	1	0	1
470			min	2.3	3	0	1	-306.275		0	1	174	4	0	1
471		8		1057.837		0	1	14.398	1	0	1	.009	1	0	1
472			min	2.427	3	0	1	-306.423	4	0	1	209	4	0	1
473		9		1058.007	_ <u></u>	0	1	14.398	1	0	1	.011	1	0	1
474			min	2.555	3	0	1	-306.571	4	0	1	245	4	0	1
4/4			1111111	2.000	J	U		-300.371	4	U		240	4	U	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1058.177	1	0	1	14.398	1	0	1	.013	1	0	1
476			min	2.683	3	0	1	-306.718	4	0	1	28	4	0	1
477		11	max	1058.348	1	0	1	14.398	1	0	1	.014	1	0	1
478			min	2.811	3	0	1	-306.866	4	0	1	315	4	0	1
479		12	max	1058.518	1	0	1	14.398	1	0	1	.016	1	0	1
480			min	2.938	3	0	1	-307.014	4	0	1	35	4	0	1
481		13	max	1058.689	1	0	1	14.398	1	0	1	.018	1	0	1
482			min	3.066	3	0	1	-307.161	4	0	1	386	4	0	1
483		14	max	1058.859	1	0	1	14.398	1	0	1	.019	1	0	1
484			min	3.194	3	0	1	-307.309	4	0	1	421	4	0	1
485		15		1059.029	1	0	1	14.398	1	0	1	.021	1	0	1
486			min	3.322	3	0	1	-307.456	4	0	1	456	4	0	1
487		16	max	1059.2	1	0	1	14.398	1	0	1	.023	1	0	1
488			min	3.449	3	0	1	-307.604	4	0	1	491	4	0	1
489		17	max	1059.37	1	0	1	14.398	1	0	1	.024	1	0	1
490			min	3.577	3	0	1	-307.752	4	0	1	527	4	0	1
491		18	max	1059.54	1	0	1	14.398	1	0	1	.026	1	0	1
492			min	3.705	3	0	1	-307.899	4	0	1	562	4	0	1
493		19	max	1059.711	1	0	1	14.398	1	0	1	.028	1	0	1
494			min	3.833	3	0	1	-308.047	4	0	1	598	4	0	1
495	M1	1	max		1	549.146	3	48.742	5	0	1	.327	1	0	3
496			min	-8.577	5	-390.964	1	-136.43	1	0	3	108	5	011	2
497		2	max	201.104	1	548.215	3	49.984	5	0	1	.255	1	.196	1
498			min	-8.243	5	-392.205	1	-136.43	1	0	3	082	5	289	3
499		3	max	397.085	3	437.582	1	14.133	5	0	3	.183	1	.393	1
500			min	-232.453	2	-394.656	3	-136.086	1	0	1	056	5	566	3
501		4	max		3	436.342	1	15.375	5	0	3	.111	1	.163	1
502			min	-231.737	2	-395.587	3	-136.086	1	0	1	048	5	358	3
503		5	max	398.16	3	435.101	1	16.616	5	0	3	.039	1	003	15
504			min	-231.021	2	-396.517	3	-136.086	1	0	1	04	5	149	3
505		6	max		3	433.861	1	17.857	5	0	3	002	12	.061	3
506			min	-230.305	2	-397.448	3	-136.086	1	0	1	038	4	307	2
507		7	max	399.234	3	432.62	1	19.099	5	0	3	006	12	.27	3
508			min	-229.589	2	-398.378	3	-136.086		0	1	104	1	528	2
509		8	max	399.771	3	431.38	1	20.34	5	0	3	007	15	.481	3
510			min	-228.872	2	-399.308	3	-136.086		0	1	176	1	753	1
511		9	max		3	38.862	2	65.383	5	0	9	.102	1	.562	3
512			min	-141.993	2	.375	15		1	0	3	148	5	859	1
513		10	max		3	37.622	2	66.625	5	0	9	0	12	.547	3
514			min	-141.277	2	0	15	-105 0/12	1	0	3	115	4	878	2
515		11		416.756		36.381	2	67.866	5	0	9	006	12	.532	3
516				-140.561	2	-1.527	4	-195.942	1	0	3	105	1	897	2
517		12		432.607	3	259.792	3	170.407		0	2	.174	1	.463	3
518				-78.626	10	-497.179	2	-132.892		0	3	232	5	795	2
519		13			3	258.861	3	171.649	5	0	2	.104	1	.326	3
520			min		10	-498.419	2	-132.892		0	3	142	5	533	2
521		14		433.682	3	257.931	3	172.89	5	0	2	.034	1	.19	3
522			min		10	-499.66	2	-132.892		0	3	051	5	278	1
523		15		434.219	3	257	3	174.132		0	2	.04	5	.054	3
524		ľ	min	-76.835	10	-500.9	2	-132.892	1	0	3	037	1	027	1
525		16		434.756	3	256.07	3	175.373	5	0	2	.132	5	.259	2
526			min	-76.238	10	-502.141	2	-132.892		0	3	107	1	081	3
527		17		435.293	3	255.14	3	176.615		0	2	.225	5	.524	2
528			min		10	-503.381	2	-132.892		0	3	177	1	216	3
529		18	max		5	516.585	2	-7.768	12	0	5	.218	5	.264	2
530			min	-201.323	1	-217.662	3	-147.937	4	0	2	251	1	107	3
531		19	max		5	515.344	2	-7.768	12	0	5	.16	5	.008	3
001		10	παλ	17.000		U 10.074		1.700	14			.10		.000	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-200.607	1	-218.593	3	-146.696	4	0	2	328	1_	009	1
533	M5	1	max	430.615	1	1829.933	3	108.52	5	0	1	0	_1_	.022	2
534			min	19.42	12	-1317.419	1	0	1	0	4	252	4	002	3
535		2	max	431.331	1	1829.003	3	109.762	5	0	1	0	_1_	.716	1
536			min	19.778	12	-1318.66	1	0	1	0	4	194	4	967	3
537		3	max	1280.113	3	1351.303	1	77.679	4	0	4	0	1	1.38	1
538			min	-846.048	2	-1283.589	3	0	1	0	1	137	4	-1.894	3
539		4	max	1280.65	3	1350.063	1	78.92	4	0	4	0	1	.668	1
540			min	-845.332	2	-1284.52	3	0	1	0	1	095	4	-1.217	3
541		5	max	1281.187	3	1348.822	1	80.161	4	0	4	0	1	.002	9
542			min	-844.616	2	-1285.45	3	0	1	0	1	053	4	539	3
543		6	max	1281.724	3	1347.582	1	81.403	4	0	4	0	1	.14	3
544			min	-843.9	2	-1286.38	3	0	1	0	1	011	5	781	2
545		7	max	1282.261	3	1346.341	1	82.644	4	0	4	.032	4	.819	3
546			min	-843.183	2	-1287.311	3	0	1	0	1	0	1	-1.467	2
547		8	max		3	1345.101	1	83.886	4	0	4	.076	4	1.498	3
548			min	-842.467	2	-1288.241	3	0	1	0	1	0	1	-2.177	1
549		9		1311.534	3	129.121	2	215.596	4	0	1	0	1	1.725	3
550			min	-664.696	2	.377	15	0	1	0	1	219	4	-2.465	1
551		10		1312.071	3	127.88	2	216.837	4	0	1	0	1	1.671	3
552		10	min	-663.98	2	.002	15	0	1	0	1	105	4	-2.517	2
553		11		1312.608	3	126.64	2	218.079	4	0	1	.009	4	1.618	3
554			min	-663.264	2	-1.32	6	0	1	0	1	0	1	-2.584	2
555		12	+	1341.464	3	837.023	3	251.5	4	0	1	0	1	1.422	3
556		12	min	-485.505	2	-1559.465	2	0	1	0	4	346	4	-2.313	2
557		13			3	836.093	3	252.741	4	0	1	0	1	.98	3
558		13	min	-484.789	2	-1560.705	2	0	1	0	4	213	4	-1.49	2
559		14			3	835.162	3	253.983	4	0	1	213	1	.539	3
		14	max		2	-1561.946		0	1		4		4		1
560		15	min	-484.073			2	255.224	-	0		08		696	
561		15		1343.075	3	834.232 -1563.186	3	0	4	0	1	.055	<u>4</u> 1	.158	2
562		16	min	-483.357	2					0	4	0		004	13
563		16		1343.613	3	833.301 -1564.427	3	256.466	4	0	1	.19	<u>4</u> 1	.983	2
564		47	min	-482.64	2		2	0	<u> </u>	0	4	0		341	3
565		17	max	1344.15	3	832.371	3	257.707	4	0	1	.325	4	1.809	2
566		40	min	-481.924	2	-1565.667	2	0	1	0	4	0	1_4	781	3
567		18	max	-20.01	12	1736.014	2	0	1	0	4	.363	4	.933	2
568		40	min	-430.894	1	-742.432	3	-26.389	5	0	1	0	1_	408	3
569		19	max	-19.652	12	1734.774	2	0	1	0	4	.35	4_	.018	1
570	140	4	min	-430.177	1	-743.362	3	-25.147	5	0	1	0	1_	016	3
571	M9	1	max	200.388	1	549.146	3	136.43	1	0	3	018	12	0	3
572			mın	9.939	12			7.47	12	0	4	327	1_	011	2
573		2	max		1	548.215	3	136.43	1	0	3	014	12	.196	1
574			min	10.297	12	-392.205		7.47	12	0	4	255	1_	289	3
575		3		397.085	3	437.582	1	136.086	1	0	1	01	12	.393	1
576			min	-232.453	2	-394.656	3	7.439	12	0	3	183	1_	566	3
577		4	1	397.622	3	436.342	1	136.086	1	0	1	006	12	.163	1
578			min	-231.737	2	-395.587	3	7.439	12	0	3	111	1_	358	3
579		5	max		3	435.101	1	136.086	1	0	1	002	12	003	15
580				-231.021	2	-396.517	3	7.439	12	0	3	055	4	149	3
581		6		398.697	3	433.861	1	136.086	1	0	1	.032	_1_	.061	3
582			min		2	-397.448	3	7.439	12	0	3	026	5	307	2
583		7	max	399.234	3	432.62	1	136.086	1	0	1	.104	1	.27	3
584			min	-229.589	2	-398.378	3	7.439	12	0	3	005	5	528	2
585		8		399.771	3	431.38	1	136.086	1	0	1	.176	1	.481	3
586			min	-228.872	2	-399.308	3	7.439	12	0	3	.01	12	753	1
587		9		415.682	3	38.862	2	195.942	1	0	3	005	12	.562	3
588				-141.993	2	.382	15	10.539	12	0	9	189	4	859	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Envelope Member Section Forces (Continued)

Mem	nber Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589	10	max	416.219	3	37.622	2	195.942	1	0	3	.001	1	.547	3
590		min	-141.277	2	.008	15	10.539	12	0	9	114	4	878	2
591	11	max	416.756	3	36.381	2	195.942	1	0	3	.105	1	.532	3
592		min	-140.561	2	-1.476	6	10.539	12	0	9	063	5	897	2
593	12	max	432.607	3	259.792	3	223.811	4	0	3	009	12	.463	3
594		min	-78.626	10	-497.179	2	7.026	12	0	2	302	4	795	2
595	13	max	433.144	3	258.861	3	225.052	4	0	3	006	12	.326	3
596		min	-78.029	10	-498.419	2	7.026	12	0	2	184	4	533	2
597	14	max	433.682	3	257.931	3	226.293	4	0	3	002	12	.19	3
598		min	-77.432	10	-499.66	2	7.026	12	0	2	064	4	278	1
599	15	max	434.219	3	257	3	227.535	4	0	3	.055	4	.054	3
600		min	-76.835	10	-500.9	2	7.026	12	0	2	.002	12	027	1
601	16	max	434.756	3	256.07	3	228.776	4	0	3	.176	4	.259	2
602		min	-76.238	10	-502.141	2	7.026	12	0	2	.006	12	081	3
603	17	max	435.293	3	255.14	3	230.018	4	0	3	.297	4	.524	2
604		min	-75.641	10	-503.381	2	7.026	12	0	2	.009	12	216	3
605	18	max	-10.181	12	516.585	2	146.665	1	0	2	.318	4	.264	2
606		min	-201.323	1	-217.662	3	-91.154	5	0	3	.013	12	107	3
607	19	max	-9.823	12	515.344	2	146.665	1	0	2	.328	1	.008	3
608		min	-200.607	1	-218.593	3	-89.913	5	0	3	.017	12	009	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.087	2	.007	3	7.28e-3	2	NC	_1_	NC	1
2			min	786	4	01	3	003	2	-1.114e-3	3	NC	1	NC	1
3		2	max	.001	1	.335	3	.06	1	8.471e-3	2	NC	5	NC	2
4			min	786	4	144	1	03	5	-1.197e-3	3	763.649	3	4568.487	1
5		3	max	.001	1	.615	3	.145	1	9.661e-3	2	NC	5	NC	3
6			min	786	4	326	1	035	5	-1.28e-3	3	421.993	3	1846.802	1
7		4	max	0	1	.785	3	.219	1	1.085e-2	2	NC	5	NC	3
8			min	786	4	43	1	022	5	-1.363e-3	3	331.879	3	1214.787	1
9		5	max	0	1	.824	3	.258	1	1.204e-2	2	NC	15	NC	3
10			min	786	4	441	1	001	5	-1.446e-3	3	316.291	3	1030.506	1
11		6	max	0	1	.736	3	.25	1	1.323e-2	2	NC	5	NC	5
12			min	786	4	362	1	.013	15	-1.528e-3	3	353.818	3	1063.379	1
13		7	max	0	1	.546	3	.198	1	1.442e-2	2	NC	5	NC	3
14			min	786	4	212	1	.019	10	-1.611e-3	3	474.489	3	1348.751	1
15		8	max	0	1	.305	3	.116	1	1.562e-2	2	NC	5	NC	3
16			min	786	4	029	1	.007	10	-1.694e-3	3	836.834	3	2311.35	1
17		9	max	0	1	.147	2	.041	4	1.681e-2	2	NC	4	NC	2
18			min	786	4	.004	15	004	10	-1.777e-3	3	2720.2	3	6394.894	4
19		10	max	0	1	.215	2	.022	3	1.8e-2	2	NC	3	NC	1
20			min	786	4	012	3	015	2	-1.86e-3	3	2076.352	2	NC	1
21		11	max	0	12	.147	2	.035	1	1.681e-2	2	NC	4	NC	2
22			min	786	4	.004	15	024	5	-1.777e-3	3	2720.2	3	8054.048	1
23		12	max	0	12	.305	3	.116	1	1.562e-2	2	NC	5	NC	3
24			min	786	4	029	1	024	5	-1.694e-3	3	836.834	3	2311.35	1
25		13	max	0	12	.546	3	.198	1	1.442e-2	2	NC	5	NC	3
26			min	786	4	212	1	007	5	-1.611e-3	3	474.489	3	1348.751	1
27		14	max	0	12	.736	3	.25	1	1.323e-2	2	NC	5	NC	5
28			min	786	4	362	1	.011	15	-1.528e-3	3	353.818	3	1063.379	1
29		15	max	0	12	.824	3	.258	1	1.204e-2	2	NC	15	NC	3
30			min	787	4	441	1	.02	12	-1.446e-3	3	316.291	3	1030.506	1
31		16	max	0	12	.785	3	.219	1	1.085e-2	2	NC	5	NC	3
32			min	787	4	43	1	.017	12	-1.363e-3	3	331.879	3	1214.787	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	1 C	(n) L/y Ratio	LC	(n) I /z Ratio	IC
33		17	max	0	12	.615	3	.145	1	9.661e-3	2	NC	5	NC	3
34			min	787	4	326	1	.012	12	-1.28e-3	3	421.993	3	1846.802	1
35		18	max	0	12	.335	3	.06	1	8.471e-3	2	NC	5	NC	2
36			min	787	4	144	1	.005	10	-1.197e-3	3	763.649	3	4568.487	1
37		19	max	0	12	.087	2	.007	3	7.28e-3	2	NC	1	NC	1
38			min	787	4	01	3	003	2	-1.114e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.168	3	.006	3	4.337e-3	2	NC	1	NC	1
40			min	578	4	287	2	003	2	-2.967e-3	3	NC	1	NC	1
41		2	max	0	1	.488	3	.042	1	5.236e-3	2	NC	5	NC	2
42			min	578	4	618	1	043	5	-3.642e-3	3	787.58	1	5876.056	5
43		3	max	0	1	.756	3	.118	1	6.134e-3	2	NC	15	NC	3
44			min	578	4	904	1	051	5	-4.317e-3	3	425.225	1	2277.097	1
45		4	max	0	1	.938	3	.19	1	7.032e-3	2	NC	15	NC	3
46			min	578	4	-1.106	1	033	5	-4.992e-3	3	320.802	1	1406.926	1
47		5	max	0	1	1.016	3	.231	1	7.93e-3	2	9108.546	15	NC	3
48			min	578	4	-1.207	1	002	5	-5.666e-3	3	285.569	1	1153.656	1
49		6	max	0	1	.992	3	.229	1	8.828e-3	2	9151.845	15	NC	3
50			min	578	4	-1.208	1	.019	12	-6.341e-3	3	285.274	1	1165.167	1
51		7	max	0	1	.883	3	.183	1	9.727e-3	2	NC	15	NC	3
52			min	578	4	-1.126	1	.017	10	-7.016e-3	3	313.253	1	1455.644	1
53		8	max	0	1	.727	3	.109	1	1.062e-2	2	NC	15	NC	3
54			min	578	4	993	1	.007	10	-7.691e-3	3	371.595	1	2463.966	1
55		9	max	0	1	.578	3	.059	4	1.152e-2	2	NC	15	NC	2
56			min	578	4	863	2	003	10	-8.365e-3	3	455.639	1	4484.265	4
57		10	max	0	1	.509	3	.02	3	1.242e-2	2	NC	5	NC	1
58			min	578	4	807	2	013	2	-9.04e-3	3	507.611	2	NC	1
59		11	max	0	12	.578	3	.033	1	1.152e-2	2	NC	15	NC	2
60			min	578	4	863	2	042	5	-8.365e-3	3	455.639	1	6196.186	5
61		12	max	0	12	.727	3	.109	1	1.062e-2	2	NC	15	NC	3
62			min	578	4	993	1	048	5	-7.691e-3	3	371.595	1	2463.966	
63		13	max	0	12	.883	3	.183	1	9.727e-3	2	NC	15	NC	3
64			min	578	4	-1.126	1	029	5	-7.016e-3	3	313.253	1	1455.644	1
65		14	max	0	12	.992	3	.229	1	8.828e-3	2	9151.485	15	NC	3
66			min	578	4	-1.208	1	.002	15	-6.341e-3	3	285.274	1	1165.167	1
67		15	max	0	12	1.016	3	.231	1	7.93e-3	2	9108.1	15	NC	3
68			min	578	4	-1.207	1	.018	12	-5.666e-3	3	285.569	1	1153.656	1
69		16	max	0	12	.938	3	.19	1	7.032e-3	2	NC	15	NC	3
70			min	578	4	-1.106	1	.015	12	-4.992e-3	3	320.802	1	1406.926	1
71		17	max	0	12	.756	3	.118	1	6.134e-3	2	NC	15	NC	3
72			min	578	4	904	1	.01	12	-4.317e-3	3	425.225	1	2277.097	1
73		18	max	0	12	.488	3	.061	4	5.236e-3	2	NC	5_	NC	2
74			min	578	4	618	1	.003	10	-3.642e-3	3	787.58	1	4305.902	4
75		19	max	0	12	.168	3	.006	3	4.337e-3	2	NC	_1_	NC	1
76			min	578	4	287	2	003	2	-2.967e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.172	3	.006	3	2.557e-3	3	NC	1_	NC	1_
78			min	466	4	286	2	003	2	-4.527e-3	2	NC	1_	NC	1
79		2	max	0	12	.368	3	.042	1	3.145e-3	3	NC	5	NC	2
80			min	466	4	698	2	056	5	-5.468e-3	2	640.175	2	4592.388	
81		3	max	0	12	.537	3	.118	1	3.732e-3	3	NC	15	NC	3
82			min	466	4	-1.047	2	067	5	-6.409e-3	2	347.108	2	2271.201	1
83		4	max	0	12	.659	3	.19	1	4.319e-3	3	NC	15	NC	3
84			min	466	4	-1.287	2	046	5	-7.351e-3	2	263.811	2	1404.147	1
85		5	max	0	12	.724	3	.231	1_	4.907e-3	3	9122.413	<u>15</u>	NC	3
86			min	466	4	-1.397	2	008	5	-8.292e-3	2	237.575	2	1151.631	1
87		6	max	0	12	.731	3	.229	1	5.494e-3	3	9168.679	15	NC	3
88			min	466	4	-1.379	2	.019	12	-9.233e-3	2	241.599		1163.092	
89		7	max	0	12	.691	3	.184	1	6.081e-3	3	NC	15	NC	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	466	4	<u>-1.254</u>	2	.018	10 -1.017e-2	2	272.712	2	1452.542	
91		8	max	0	12	.622	3	.11	1 6.669e-3	3	NC 007.405	<u>15</u>	NC 0.455.00	3
92			min	466	4	<u>-1.068</u>	2	.007	10 -1.112e-2		337.465	2	2455.66	1
93		9	max	0	12	.551	3	.07	4 7.256e-3	3	NC 407.070	<u>15</u>	NC 2020 040	2
94		40	min	466	4	889	2	003	10 -1.206e-2	2	437.972	2	3838.946	4
95		10	max	0	1	.518	3	.018	3 7.843e-3	3	NC FOR SC1	5	NC NC	1
96		4.4	min	466	4	80 <u>5</u>	2	013	2 -1.3e-2	2	508.661	2	NC NC	
97		11	max	0 466	4	.551	3	.034	1 7.256e-3 5 -1.206e-2	3	NC 437.972	<u>15</u> 2	NC	2
98		12	min		1	889	3	<u>054</u>			NC		4890.485 NC	
99		12	max	0 466	4	.622 -1.068	2	.11 062	1 6.669e-3 5 -1.112e-2	2	337.465	<u>15</u> 2	2455.66	3
101		13	min	466 0	1	.691	3	.184	1 6.081e-3	3	NC	15	NC	3
102		13	max min	466	4	-1.254	2	039	5 -1.017e-2		272.712	2	1452.542	1
103		14		466 0	1	.731	3	.229	1 5.494e-3		9168.402	15	NC	3
104		14	max	466	4	-1.379	2	<u>.229</u>	15 -9.233e-3	2	241.599	2	1163.092	1
105		15	min max	466 0	1	<u>-1.379 </u>	3	.231	1 4.907e-3	3	9122.072	15	NC	3
106		15	min	466	4	-1.397	2	.018	12 -8.292e-3		237.575	2	1151.631	1
107		16	max	400 0	1	.659	3	. <u>.018</u> .19	1 4.319e-3	3	NC	15	NC	3
108		10	min	465	4	-1.287	2	.014	12 -7.351e-3		263.811	2	1404.147	1
109		17		465 0	1	.537	3	.118	1 3.732e-3	3	NC	15	NC	3
110		17	max min	465	4	-1.047	2	.01	12 -6.409e-3		347.108	2	2271.201	1
111		18	max	0	1	.368	3	.074	4 3.145e-3	3	NC	5	NC	2
112		10	min	465	4	698	2	.003	10 -5.468e-3		640.175	2	3572.99	4
113		19	max	403 0	1	.172	3	.005	3 2.557e-3	3	NC	1	NC	1
114		19	min	465	4	286	2	003	2 -4.527e-3		NC	1	NC	1
115	M16	1	max	403 0	12	.083	1	.005	3 4.434e-3	3	NC	1	NC	1
116	IVITO		min	153	4	055	3	002	2 -6.379e-3		NC	1	NC	1
117		2	max	0	12	.068	3	.059	1 5.298e-3	3	NC	5	NC	2
118			min	153	4	23	2	044	5 -7.368e-3	_	856.288	2	4601.266	
119		3	max	0	12	.165	3	<u>044</u> .144	1 6.162e-3	3	NC	5	NC	3
120		-	min	153	4	477	2	053	5 -8.357e-3		475.684	2	1853.596	
121		4	max	0	12	.219	3	.219	1 7.025e-3	3	NC	5	NC	3
122		-	min	153	4	62	2	038	5 -9.346e-3		377.793	2	1217.048	
123		5	max	0	12	.221	3	.258	1 7.889e-3	3	NC	5	NC	3
124		-	min	153	4	642	2	01	5 -1.033e-2	1	366.31	2	1030.982	1
125		6	max	0	12	.173	3	.25	1 8.753e-3	3	NC	5	NC	3
126			min	153	4	546	2	.014	15 -1.132e-2	1	423.139	2	1062.242	1
127		7	max	0	12	.086	3	.198	1 9.617e-3	3	NC	5	NC	3
128		-	min	153	4	355	2	.017	12 -1.231e-2	_	608.505	2	1344.074	1
129		8	max	0	12	0	15	.117	1 1.048e-2	3	NC	4	NC	3
130		T .	min		4	12	2	.009	10 -1.33e-2	1	1332 102		2290.078	
131		9	max	0	12	.114	1	.052	4 1.134e-2	3	NC	2	NC	2
132		Ť	min	153	4	111	3	002	10 -1.429e-2	1	4672.95	3	5062.896	
133		10	max	0	1	.201	1	.016	3 1.221e-2	3	NC	4	NC	1
134		1.0	min	153	4	153	3	012	2 -1.528e-2	1	2228.435	1	NC	1
135		11	max	0	1	.114	1	.036	1 1.134e-2	3	NC	2	NC	2
136			min	153	4	111	3	035	5 -1.429e-2	1	4672.95	3	7427.815	
137		12	max	0	1	0	15	.117	1 1.048e-2	3	NC	4	NC	3
138		T	min	152	4	12	2	036	5 -1.33e-2	1	1332.102	2	2290.078	
139		13	max	0	1	.086	3	.198	1 9.617e-3	3	NC	5	NC	3
140		10	min	152	4	355	2	015	5 -1.231e-2	1	608.505	2	1344.074	
141		14	max	0	1	.173	3	.25	1 8.753e-3	3	NC	5	NC	3
142			min	152	4	546	2	.011	15 -1.132e-2	1	423.139	2	1062.242	
143		15	max	0	1	.221	3	.258	1 7.889e-3	3	NC	5	NC	3
144		'	min	152	4	642	2	.018	12 -1.033e-2	1	366.31	2	1030.982	1
145		16	max	.001	1	.219	3	.219	1 7.025e-3	3	NC	5	NC	3
146		10	min	152	4	62	2	.015	12 -9.346e-3		377.793		1217.048	
1 10			1111111	.102	Т	.02	_	.010	12 0.0400 0		511.100		1217.070	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
147		17	max	.001	1	.165	3	.144	1	6.162e-3	3	NC	5	NC	3
148			min	152	4	477	2	.011	12	-8.357e-3	1	475.684	2	1853.596	1
149		18	max	.001	1	.068	3	.068	4	5.298e-3	3	NC	5	NC	2
150			min	152	4	23	2	.005	10	-7.368e-3	1	856.288	2	3879.075	4
151		19	max	.002	1	.083	1	.005	3	4.434e-3	3	NC	1	NC	1
152			min	152	4	055	3	002	2	-6.379e-3	1	NC	1	NC	1
153	M2	1	max	.006	1	.006	2	.011	1	1.638e-3	5	NC	1	NC	2
154			min	007	3	01	3	734	4	-3.041e-4	1_	NC	1	95.286	4
155		2	max	.006	1	.005	2	.01	1	1.75e-3	5	NC	1	NC	2
156			min	006	3	01	3	675	4	-2.865e-4	1	NC	1	103.682	4
157		3	max	.005	1	.004	2	.009	1	1.862e-3	5	NC	1	NC	2
158			min	006	3	01	3	616	4	-2.69e-4	1	NC	1	113.639	4
159		4	max	.005	1	.003	2	.008	1	1.974e-3	5	NC	1	NC	2
160			min	006	3	01	3	557	4	-2.514e-4	1	NC	1	125.56	4
161		5	max	.005	1	.002	2	.007	1	2.086e-3	5	NC	1_	NC	2
162			min	005	3	009	3	5	4	-2.339e-4	1	NC	1	139.994	4
163		6	max	.004	1	.001	2	.006	1	2.198e-3	5	NC	1_	NC	1
164			min	005	3	009	3	444	4	-2.163e-4	1	NC	1	157.694	4
165		7	max	.004	1	0	2	.005	1	2.31e-3	5	NC	1_	NC	1
166			min	005	3	009	3	389	4	-1.988e-4	1	NC	1	179.732	4
167		8	max	.004	1	0	2	.005	1	2.422e-3	5_	NC	_1_	NC	1
168			min	004	3	008	3	337	4	-1.812e-4	1_	NC	1_	207.66	4
169		9	max	.003	1	0	15	.004	1	2.534e-3	5	NC	_1_	NC	1
170			min	004	3	008	3	287	4	-1.637e-4	1_	NC	1_	243.807	4
171		10	max	.003	1	0	15	.003	1	2.646e-3	4	NC	_1_	NC	1
172			min	003	3	007	3	24	4	-1.461e-4	1_	NC	1_	291.792	4
173		11	max	.003	1	0	15	.003	1	2.765e-3	4	NC	_1_	NC	1
174			min	003	3	007	3	19 <u>6</u>	4	-1.286e-4	1_	NC	1_	357.502	4
175		12	max	.002	1	0	15	.002	1	2.883e-3	4	NC	1_	NC	1
176			min	003	3	006	3	1 <u>55</u>	4	-1.11e-4	1_	NC	1_	451.041	4
177		13	max	.002	1	0	15	.002	1	3.002e-3	4_	NC	_1_	NC	1
178			min	002	3	005	3	118	4	-9.347e-5	1_	NC	1_	590.99	4
179		14	max	.002	1	0	15	.001	1	3.12e-3	4_	NC	_1_	NC	1_
180			min	002	3	005	3	086	4	-7.591e-5	1_	NC	1_	814.693	4
181		15	max	.001	1	0	15	0	1	3.238e-3	4	NC	1	NC	1
182			min	002	3	004	3	058	4	-5.836e-5	_1_	NC	1_	1206.854	4
183		16	max	.001	1	0	15	0	1	3.357e-3	_4_	NC	_1_	NC	1
184			min	001	3	003	3	035	4	-4.081e-5	_1_	NC	_1_	1996.289	
185		17	max	0	1	0	15	0	1	3.475e-3	4	NC	_1_	NC	1
186			min	0	3	002	6	017	4	-2.326e-5	_1_	NC	1_	4001.361	4
187		18	max	0	1	0	15	0	1	3.594e-3	_4_	NC	_1_	NC	1
188		1.0	min	0	3	<u>001</u>	6	006	4	-5.708e-6	1	NC NC	1_	NC NC	1
189		19	max	0	1	0	1	0	1	3.712e-3	4_	NC		NC NC	1
190			min	0	1	0	1	0	1	5.249e-7	12	NC	1_	NC	1
191	M3	1_	max	0	1	0	1	0	1	-2.221e-7	12	NC	1	NC NC	1
192			min	0	1	0	1	0	1	-9.348e-4	4_	NC	1_	NC	1
193		2	max	0	3	0	15	.017	4	2.414e-5	1_	NC	1	NC NC	1
194			min	0	2	002	6	0	12	-1.943e-4	5_	NC	1_	NC NC	1
195		3	max	0	3	0	15	.034	4	5.528e-4	4	NC		NC NC	1
196			min	0	2	004	6	0	12	2.776e-6	12	NC	1_	NC NC	1
197		4	max	0	3	001	15	.048	4	1.297e-3	4	NC	1	NC 0074 047	1
198			min	0	2	006	6	0	12	4.275e-6	12	NC NC	1_	8271.217	5
199		5_	max	.001	3	002	15	.062	4	2.04e-3	4	NC	1	NC 7540,004	1
200			min	0	2	008	6	0	12	5.774e-6	<u>12</u>	NC NC	1_	7516.001	5
201		6	max	.002	3	002	15	074	4	2.784e-3	4	NC 0700 000	1_	NC 7400 045	1
202		-	min	001	2	009	6	0	12	7.272e-6		9762.999	6	7483.345	
203		7	max	.002	3	002	15	.086	4	3.528e-3	4	NC	_1_	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	001	2	011	6	0	12	8.771e-6		8400.372	6	8044.139	
205		8	max	.002	3	003	15	.097	4	4.272e-3	4	NC	2	NC	1
206			min	002	2	012	6	0	12	1.027e-5	12		6	9355.99	5
207		9	max	.003	3	003	15	.107	4	5.016e-3	4	NC	3	NC NC	1
208		40	min	002	2	<u>013</u>	6	0	12	1.177e-5	12	7065.844	6	NC NC	1
209		10	max	.003	3	003	15	.117	12	5.76e-3	4	NC 6934 303	3	NC NC	1
210		11	min	002	3	013	6	<u>0</u> .127	4	1.327e-5	12	6831.293 NC	6		1
212			max	.003 002	2	003 013	15	0	12	6.503e-3 1.477e-5	<u>4</u> 12	6822.252	<u>3</u>	NC NC	1
213		12		.002	3	013	15	.136	4	7.247e-3	4	NC	3	NC NC	1
214		12	max min	003	2	003 013	6	0	12	1.627e-5	12	7042.395	6	NC NC	1
215		13	max	.004	3	003	15	.147	4	7.991e-3	4	NC	2	NC	1
216		13	min	003	2	012	6	0	12	1.776e-5	12	7536.584	6	NC	1
217		14	max	.004	3	002	15	.157	4	8.735e-3	4	NC	1	NC	1
218		17	min	003	2	011	6	0	12	1.926e-5	12	8413.925	6	NC	1
219		15	max	.004	3	002	15	.168	4	9.479e-3	4	NC	1	NC	1
220		10	min	003	2	009	6	0	12	2.076e-5	12	9915.438	6	NC	1
221		16	max	.005	3	001	15	.18	4	1.022e-2	4	NC	1	NC	1
222			min	004	2	008	1	0	12	2.226e-5	12	NC	1	NC	1
223		17	max	.005	3	0	15	.194	4	1.097e-2	4	NC	1	NC	1
224			min	004	2	006	1	0	12	2.376e-5	12	NC	1	NC	1
225		18	max	.005	3	0	15	.209	4	1.171e-2	4	NC	1	NC	1
226			min	004	2	004	1	0	12	2.526e-5	12	NC	1	NC	1
227		19	max	.006	3	0	5	.225	4	1.245e-2	4	NC	1	NC	2
228			min	004	2	003	1	0	12	2.676e-5	12	NC	1	9014.597	1
229	M4	1	max	.003	1	.004	2	0	12	1.172e-4	1_	NC	1_	NC	3
230			min	0	5	006	3	225	4	-8.021e-5	5	NC	1_	110.154	4
231		2	max	.002	1	.004	2	0	12	1.172e-4	1_	NC	_1_	NC	3
232			min	0	5	006	3	207	4	-8.021e-5	5	NC	1	119.715	4
233		3	max	.002	1	.004	2	0	12	1.172e-4	_1_	NC	_1_	NC	3
234			min	0	5	005	3	189	4	-8.021e-5	5	NC	1_	131.097	4
235		4	max	.002	1	.003	2	0	12	1.172e-4	_1_	NC	1	NC_	3
236			min	0	5	00 <u>5</u>	3	<u>171</u>	4	-8.021e-5	5_	NC	1_	144.772	4
237		5	max	.002	1	.003	2	0	12	1.172e-4	_1_	NC	1	NC 404 000	3
238			min	0	5	005	3	1 <u>54</u>	4	-8.021e-5	5	NC NC	1_	161.383	4
239		6	max	.002	1	.003	2	0	12	1.172e-4	1_	NC NC	1	NC 404 004	3
240		7	min	0	5	004	2	136	12	-8.021e-5	5	NC NC	1	181.821 NC	2
241		/	max	.002	5	.003	3	0	4	1.172e-4 -8.021e-5	1_	NC NC	1	207.348	
242 243		8	min	.002	1	004 .002	2	12 0	12	1.172e-4	<u>5</u> 1	NC NC	1	NC	2
244		0	max min	0	5	004	3	103	12	-8.021e-5		NC NC	1	239.808	
245		9	max	.001	1	.002	2	<u>103</u> 0	12		1	NC	1	NC	2
246		-	min	0	5	003	3	088	4	-8.021e-5	5	NC	1	281.975	4
247		10	max	.001	1	.002	2	<u>.000</u>	12	1.172e-4	1	NC	1	NC	2
248		10	min	0	5	003	3	073	4	-8.021e-5	5	NC	1	338.187	4
249		11	max	.001	1	.002	2	0	12	1.172e-4	1	NC	1	NC	2
250			min	0	5	003	3	06	4	-8.021e-5	5	NC	1	415.535	4
251		12	max	0	1	.002	2	0	12	1.172e-4	1	NC	1	NC	1
252			min	0	5	002	3	047	4	-8.021e-5	5	NC	1	526.29	4
253		13	max	0	1	.001	2	0	12	1.172e-4	1	NC	1	NC	1
254			min	0	5	002	3	036	4	-8.021e-5	5	NC	1	693.22	4
255		14	max	0	1	.001	2	0	12	1.172e-4	1	NC	1	NC	1
256			min	0	5	002	3	026	4	-8.021e-5	5	NC	1	962.637	4
257		15	max	0	1	0	2	0	12	1.172e-4	1	NC	1	NC	1
258			min	0	5	001	3	017	4	-8.021e-5	5	NC	1	1441.274	4
259		16	max	0	1	0	2	0	12	1.172e-4	1	NC	1	NC	1
260			min	0	5	0	3	01	4	-8.021e-5	5	NC	1	2424.099	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
261		17	max	00	1	00	2	00	12	1.172e-4	_1_	NC	_1_	NC	1
262			min	0	5	0	3	005	4	-8.021e-5	5	NC	1_	5004.324	
263		18	max	0	1	0	2	0	12	1.172e-4	_1_	NC	_1_	NC	1
264			min	0	5	0	3	002	4	-8.021e-5	5	NC	<u>1</u>	NC	1
265		19	max	0	1	0	1	0	1	1.172e-4	_1_	NC	_1_	NC	1
266			min	0	1	0	1	0	1	-8.021e-5	5	NC	1_	NC	1
267	<u>M6</u>	1	max	.02	1	.023	2	0	1	1.75e-3	4	NC	3	NC	1
268			min	022	3	033	3	741	4	0	1_	2981.261	2	94.366	4
269		2	max	.018	1	.021	2	0	1	1.859e-3	4	NC	3	NC	1
270			min	021	3	031	3	<u>681</u>	4	0	1_	3282.744	2	102.682	4
271		3	max	.017	1	.019	2	0	1	1.969e-3	4_	NC	3	NC	1
272			min	02	3	029	3	622	4	0	1_	3648.618	2	112.545	4
273		4	max	.016	1	.017	2	0	1	2.078e-3	_4_	NC	3	NC	1
274			min	019	3	028	3	562	4	0	1_	4097.703	2	124.354	4
275		5	max	.015	1	.015	2	0	1	2.188e-3	_4_	NC	_1_	NC	1
276			min	017	3	026	3	504	4	0	<u>1</u>	4656.485	2	138.652	4
277		6	max	.014	1	.013	2	0	1	2.298e-3	4	NC	_1_	NC	1
278			min	016	3	024	3	448	4	0	1_	5363.194	2	156.188	4
279		7	max	.013	1	.011	2	0	1	2.407e-3	_4_	NC	1_	NC	1
280		_	min	015	3	022	3	393	4	0	_1_	6274.677	2	178.021	4
281		8	max	.012	1	.009	2	0	1	2.517e-3	4	NC	1_	NC	1
282		_	min	014	3	02	3	34	4	0	1_	7478.52	2	205.691	4
283		9	max	.011	1	.008	2	0	1	2.626e-3	4	NC	1_	NC	1
284			min	012	3	019	3	29	4	0	1_	9115.577	2	241.505	4
285		10	max	.01	1	.006	2	0	1	2.736e-3	_4_	NC	_1_	NC	1
286			min	011	3	017	3	242	4	0	1_	NC	1_	289.052	4
287		11	max	.009	1	.005	2	0	1	2.846e-3	_4_	NC	1_	NC	1
288			min	01	3	015	3	198	4	0	_1_	NC	_1_	354.166	4
289		12	max	.008	1	.003	2	0	1	2.955e-3	4_	NC	_1_	NC	1
290			min	009	3	013	3	157	4	0	1_	NC	_1_	446.865	4
291		13	max	.007	1	.002	2	0	1	3.065e-3	4_	NC	_1_	NC	1
292			min	007	3	011	3	119	4	0	1_	NC	1_	585.573	4
293		14	max	.005	1	.001	2	0	1	3.174e-3	4	NC	_1_	NC	1
294			min	006	3	009	3	087	4	0	1_	NC	_1_	807.324	4
295		15	max	.004	1	0	2	0	1	3.284e-3	4_	NC	_1_	NC	1
296			min	005	3	007	3	058	4	0	<u>1</u>	NC	_1_	1196.139	
297		16	max	.003	1	0	2	0	1	3.394e-3	4	NC	_1_	NC	1
298			min	004	3	006	3	035	4	0	_1_	NC	_1_	1979.062	
299		17	max	.002	1	0	2	0	1	3.503e-3	4	NC	_1_	NC	1
300		1.0	min	002	3	004	3	018	4	0	1_	NC	1_	3968.522	4
301		18	max	.001	1	0	2	0	1	3.613e-3		NC	1	NC	1
302		1.0	min	<u>001</u>	3	002	3	006	4	0	1_	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	3.723e-3	4_	NC	1_	NC NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	_1_	NC	1
306		_	min	0	1	0	1	0	1	-9.367e-4	4	NC	1_	NC	1
307		2	max	0	3	0	15	.018	4	0	1	NC	1_	NC	1
308			min	0	2	002	3	0	1	-2.133e-4	4_	NC	_1_	NC	1
309		3	max	.002	3	0	15	.034	4	5.102e-4	4_	NC	1_	NC 0570,000	1
310			min	002	2	005	3	0	1	0	1_	NC	1_	9572.933	4
311		4	max	.003	3	001	15	.048	4	1.234e-3	4	NC	1_	NC	1
312		-	min	003	2	007	3	0	1	0	1_	NC	1_	7491.059	
313		5_	max	.004	3	002	15	.062	4	1.957e-3	4_	NC		NC 0744 000	1
314			min	004	2	009	3	0	1	0	1	NC	1_	6714.828	
315		6	max	.005	3	002	15	.074	4	2.681e-3	4_	NC	_1_	NC 2500 004	1
316			min	005	2	01	3	0	1	0	1_	9862.226	4	6566.221	4
317		7	max	.006	3	003	15	.086	4	3.404e-3	4	NC	1	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318			min	006	2	012	3	0	1	0	<u>1</u>	8479.059	4	6884.544	
319		8	max	.007	3	003	15	.096	4	4.128e-3	4	NC	_1_	NC	1
320			min	007	2	<u>013</u>	3	0	1	0	<u>1</u>	7626.16	4_	7718.498	
321		9	max	.008	3	003	15	.106	4	4.851e-3	4	NC	_1_	NC	1
322		40	min	008	2	<u>014</u>	3	0	1	0	<u>1</u>	7123.508	4_	9338.549	4
323		10	max	.009	3	003	15	.116	4	5.575e-3	4	NC	1	NC	1
324			min	009	2	<u>014</u>	3	0	1	0	1	6883.892	4_	NC	1
325		11	max	.01	3	003	15	.125	4	6.298e-3	4	NC	1_	NC NC	1
326		10	min	01	2	<u>014</u>	3	0	1	0	1_	6872.127	4	NC	1
327		12	max	.011	3	003	15	.135	4	7.022e-3	4_	NC	1_	NC	1
328		40	min	011	2	014	3	0	1	0	1_	7091.564	4_	NC	1
329		13	max	.012	3	003	15	.144	4	7.745e-3	4	NC	1	NC NC	1
330			min	012	2	<u>013</u>	3	0	1	0	1_	7587.119	4_	NC	1
331		14	max	.013	3	003	15	154	4	8.469e-3	4	NC	1_	NC	1
332		4.5	min	012	2	013	3	0	1	0	<u>1</u>	8468.405	4_	NC	1
333		15	max	.014	3	002	15	<u>.165</u>	4	9.192e-3	4	NC	1	NC NC	1
334		40	min	013	2	011	3	0	1	0	1_	9977.777	4_	NC NC	1
335		16	max	.015	3	002	15	.176	4	9.916e-3	4_	NC	1	NC NC	1
336		4-	min	014	2	01	3	0	1	0	1_	NC	1_	NC NC	1
337		17	max	.016	3	001	15	.188	4	1.064e-2	4_	NC	1_	NC NC	1
338		40	min	015	2	008	3	0	1	0	1_	NC	1_	NC NC	1
339		18	max	.017	3	0	15	.202	4	1.136e-2	4	NC	1	NC NC	1
340		40	min	016	2	007	3	0	1	0	1_	NC NC	1_	NC NC	1
341		19	max	.018	3	0	10	.218	4	1.209e-2	4	NC	1_	NC NC	1
342	MO	1	min	017	2	005	3	0	1	0	1	NC NC	1_	NC NC	1
343	<u>M8</u>	1	max	.006	1	.017	2	0	1	0	1_1	NC NC	1_	NC 440,000	1
344			min	0	3	018	3	218	4	-1.881e-4	4	NC NC	1_	113.966	4
345		2	max	.006	1	.016	2	0	1	0	1_1	NC NC	1_	NC 400.007	1
346			min	0	3	017	3	2	4	-1.881e-4	4_	NC	1_	123.867	4
347		3	max	.006	3	.015	2	0 183	1	0	1_1	NC NC	<u>1</u> 1	NC 425 CE2	1
348		1	min	0		016	3		1	-1.881e-4	<u>4</u> 1		1	135.653 NC	1
349		4	max	.005 0	3	.014	3	0	4	0	_	NC NC	1	149.813	
350		-	min		1	015	2	166	1	-1.881e-4	<u>4</u> 1	NC NC	1		1
351		5	max	.005	3	.013		0		0			1	NC	
352 353		6	min	.005	1	<u>014</u> .012	2	<u>149</u>	1	-1.881e-4 0	<u>4</u> 1	NC NC	1	167.013 NC	1
		6	max		3		3	0 132	4	-1.881e-4		NC NC	1	188.175	4
354		7	min	0		013	2		1		4	NC NC	1	NC	
355			max	.004	3	.011	3	0 116	4	0 -1.881e-4	1_1	NC NC	1		4
356		0	min	0		012					4		1	214.606	
357 358		8	max min	.004 0	3	.01 011	3	<u> </u>	1	0 -1.881e-4	<u>1</u> 4	NC NC	<u>1</u> 1	NC 248.215	4
359		9	max	.004	1	.009	2	0	1	0	1	NC NC	1	NC	1
360		٦	min	.004	3	01	3	085	4	-1.881e-4	4	NC NC	1	291.875	4
361		10	max	.003	1	.008	2	<u>065</u> 0	1	0	1	NC NC	1	NC	1
362		10	min	.003	3	009	3	071	4	-1.881e-4	4	NC NC	1	350.077	4
363		11	max	.003	1	.007	2	0	1	0	1	NC	1	NC	1
364			min	0	3	008	3	058	4	-1.881e-4	4	NC	1	430.165	4
365		12	max	.002	1	.006	2	0030	1	0	1	NC	1	NC	1
366		14	min	0	3	007	3	046	4	-1.881e-4	4	NC NC	1	544.843	4
367		13	max	.002	1	.006	2	046 0	1	0	_ 4 _	NC NC	1	NC	1
368		13	min	.002	3	006	3	035	4	-1.881e-4	4	NC NC	1	717.688	4
369		14	max	.002	1	.005	2	<u>035</u> 0	1	0	1	NC	1	NC	1
370		14	min	0	3	005	3	025	4	-1.881e-4	4	NC	1	996.657	4
371		15	max	.001	1	.003	2	<u>025</u> 0	1	0	1	NC	1	NC	1
372		13	min	.001	3	004	3	017	4	-1.881e-4	4	NC	1	1492.273	
373		16	max	.001	1	.003	2	<u>017</u> 0	1	0	_ 4 _	NC NC	1	NC	1
374		10	min	0	3	003	3	01	4	-1.881e-4	4	NC	1	2509.989	
3/4			THILL	U	J	003	J	01	+	1.0016-4	7	INC		2503.303	_+

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

375	Member	Sec 17	max	x [in]	LC 1	y [in] .002	LC 2	z [in]	LC 1	x Rotate [r	LC 1	(n) L/y Ratio	LC 1	(n) L/z Ratio	LC 1
376		17	min	0	3	002	3	005	4	-1.881e-4	4	NC	1	5181.908	_
377		18	max	0	1	0	2	<u>.003</u>	1	0	1	NC	1	NC	1
378		1.0	min	0	3	001	3	001	4	-1.881e-4	4	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		15	min	0	1	0	1	0	1	-1.881e-4	4	NC	1	NC	1
381	M10	1	max	.006	1	.006	2	0	12	1.768e-3	4	NC	1	NC	2
382	IVITO		min	007	3	01	3	741	4	1.717e-5	12	NC	1	94.451	4
383		2	max	.006	1	.005	2	0	12	1.875e-3	4	NC	1	NC	2
384			min	006	3	01	3	681	4	1.618e-5	12	NC	1	102.775	4
385		3	max	.005	1	.004	2	0	12	1.983e-3	4	NC	1	NC	2
386		+ -	min	006	3	01	3	621	4	1.52e-5	12	NC	1	112.648	4
387		4	max	.005	1	.003	2	0	12	2.091e-3	4	NC	1	NC	2
388		+-	min	006	3	01	3	562	4	1.422e-5	12	NC	1	124.469	4
389		5	max	.005	1	.002	2	<u>.502</u>	12	2.198e-3	4	NC	1	NC	2
390		+	min	005	3	009	3	504	4	1.324e-5	12	NC	1	138.781	4
391		6	max	.004	1	.001	2	0	12	2.306e-3	4	NC	1	NC	1
392		1	min	005	3	009	3	447	4	1.225e-5	12	NC	1	156.334	4
393		7	max	.004	1	<u>.009</u>	2	0	12	2.413e-3	4	NC	1	NC	1
394		+ '	min	005	3	009	3	393	4	1.127e-5	12	NC	1	178.19	4
395		8	max	.004	1	009	2	393	12	2.521e-3	4	NC	1	NC	1
396		10	min	004	3	008	3	34	4	1.029e-5	12	NC	1	205.889	4
397		9	max	.003	1	008	2	54 0	12	2.629e-3	4	NC	1	NC	1
398		9	min	004	3	008	3	289	4	9.304e-6	12	NC	1	241.741	4
399		10		.003	1	008 001	2	<u>269</u> 0	12	2.736e-3		NC	1	NC	1
400		10	max min	003	3	007	3	242	4	8.321e-6	<u>4</u> 12	NC NC	1	289.341	4
401		11		.003	1	00 <i>1</i> 002	15	<u>242</u> 0	12	2.844e-3	4	NC	1	NC	1
402		+ ' '	max	003	3	002 007	3	197	4	7.338e-6	12	NC	1	354.529	4
		12	min	.003	1		15	<u>197</u> 0	12	2.951e-3		NC NC	1	NC	1
403		12	max		3	001	3				4		1	447.339	
404		13	min	003 .002	1	006 001	15	<u>156</u> 0	12	6.356e-6 3.059e-3	<u>12</u> 4	NC NC	1	NC	1
406		13	max	002	3	005	3	119	4	5.373e-6	12	NC	1	586.219	4
407		14	min	.002	1	005 001	15	<u>119</u> 0	12	3.167e-3	4	NC NC	+	NC	1
407		14	max min	002	3	001 005	4	087	4	4.39e-6	12	NC NC	1	808.264	4
409		15		.002	1	005 001	15		12	3.274e-3	4	NC NC	1	NC	1
410		15	max min	002	3	001	4	0 058	4	3.407e-6	12	NC NC	1	1197.638	4
411		16	max	.002	1	004	15	<u>056</u> 0	12	3.382e-3	4	NC	1	NC	1
412		10	min	001	3	003	4	035	4	2.424e-6	12	NC	1	1981.812	4
413		17		0	1	<u>003</u> 0	15	_ 035 _	12	3.489e-3	4	NC	+	NC	1
414		17	max	0	3	002	4	018	4	1.441e-6	12	NC NC	1	3974.977	4
415		10	min max		1	•	15	<u>016</u> 0		3.597e-3		NC NC	1	NC	4
416		10	min	0	3	001	4	006	4	4.58e-7	12	NC	1	NC	1
417		19	max	0	1	<u>001</u> 0	1	<u>000</u> 0	1	3.705e-3	4	NC	1	NC	1
418		19	min	0	1	0	1	0	1	-1.184e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	4.723e-6	1	NC	+	NC	1
420	IVI I I	+ '	min	0	1	0	1	0	1	-9.319e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.017	4	-1.277e-6	12	NC	1	NC	1
422			min	0	2	002	4	0	1	-2.059e-4	4	NC	1	NC	1
423		3	max	0	3	<u>002</u> 0	15	.033	4	5.234e-4	5	NC	+	NC	1
424		3	min	0	2	004	4		1	-5.301e-5	1	NC	1	9908.591	
425		4		0	3	004 001	15	<u> </u>	4	1.246e-3	4	NC NC	1	NC	1
426		4	max min	0	2	001 006	4	<u>046</u>	1	-8.188e-5	1	NC NC	1	7795.399	_
427		5	max	.001	3	006 002	15	.061	4	1.972e-3	4	NC NC	1	NC	1
428		J	min	.001	2	002 008	4	0	1	-1.107e-4	1	NC NC	1	7035.043	_
429		6	max	.002	3	008 002	15	.074	4	2.698e-3	4	NC NC	1	NC	1
430		U	min	001	2	002 01	4	<u>.074</u> 0	1	-1.396e-4	1	9483.7	4	6940.274	_
431		7		.002	3	003	15	.085	4	3.424e-3	4	9463.7 NC	_ 4 _	NC	1
401		/	max	.002	J	003	ıΰ	.000	4	J.4246-3	+	INC		INC	<u> </u>

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

432 min 001 2 012 4 0 1 -1.685e-4 1 8178.224 4 433 8 max .002 3 003 15 .096 4 4.15e-3 4 NC 2 434 min 002 2 013 4 001 1 -1.973e-4 1 7373.95 4 435 9 max .003 3 003 15 .106 4 4.876e-3 4 NC 3 436 min 002 2 014 4 002 1 -2.262e-4 1 6902.298 4 437 10 max .003 3 003 15 .116 4 5.602e-3 4 NC 3 438 min 002 2 014 4 002 1 -2.551e-4 1 6681.848 4 439 11 max	7364.625 4 NC 1 8401.255 4 NC 1
434 min 002 2 013 4 001 1 -1.973e-4 1 7373.95 4 435 9 max .003 3 003 15 .106 4 4.876e-3 4 NC 3 436 min 002 2 014 4 002 1 -2.262e-4 1 6902.298 4 437 10 max .003 3 003 15 .116 4 5.602e-3 4 NC 3 438 min 002 2 014 4 002 1 -2.551e-4 1 6681.848 4 439 11 max .003 3 004 15 .125 4 6.328e-3 4 NC 3 440 min 002 2 014 4 003 1 -2.84e-4 1 6680.339 4 441 12 max	8401.255 4 NC 1 NC 1
435 9 max .003 3 003 15 .106 4 4.876e-3 4 NC 3 436 min 002 2 014 4 002 1 -2.262e-4 1 6902.298 4 437 10 max .003 3 003 15 .116 4 5.602e-3 4 NC 3 438 min 002 2 014 4 002 1 -2.551e-4 1 6681.848 4 439 11 max .003 3 004 15 .125 4 6.328e-3 4 NC 3 440 min 002 2 014 4 003 1 -2.84e-4 1 6680.339 4 441 12 max .003 3 003 15 .134 4 7.054e-3 4 NC 3 442 min 003 2 014 4 003 1 -3.128e-4 1 6902.	NC 1
436 min 002 2 014 4 002 1 -2.262e-4 1 6902.298 4 437 10 max .003 3 003 15 .116 4 5.602e-3 4 NC 3 438 min 002 2 014 4 002 1 -2.551e-4 1 6681.848 4 439 11 max .003 3 004 15 .125 4 6.328e-3 4 NC 3 440 min 002 2 014 4 003 1 -2.84e-4 1 6680.339 4 441 12 max .003 3 003 15 .134 4 7.054e-3 4 NC 3 442 min 003 2 014 4 003 1 -3.128e-4 1 6902.314 4 443 13 m	NC 1
437 10 max .003 3 003 15 .116 4 5.602e-3 4 NC 3 438 min 002 2 014 4 002 1 -2.551e-4 1 6681.848 4 439 11 max .003 3 004 15 .125 4 6.328e-3 4 NC 3 440 min 002 2 014 4 003 1 -2.84e-4 1 6680.339 4 441 12 max .003 3 003 15 .134 4 7.054e-3 4 NC 3 442 min 003 2 014 4 003 1 -3.128e-4 1 6902.314 4 443 13 max .004 3 003 15 .144 4 7.78e-3 4 NC 2	NC 1
438 min 002 2 014 4 002 1 -2.551e-4 1 6681.848 4 439 11 max .003 3 004 15 .125 4 6.328e-3 4 NC 3 440 min 002 2 014 4 003 1 -2.84e-4 1 6680.339 4 441 12 max .003 3 003 15 .134 4 7.054e-3 4 NC 3 442 min 003 2 014 4 003 1 -3.128e-4 1 6902.314 4 443 13 max .004 3 003 15 .144 4 7.78e-3 4 NC 2	NC 1
439 11 max .003 3 004 15 .125 4 6.328e-3 4 NC 3 440 min 002 2 014 4 003 1 -2.84e-4 1 6680.339 4 441 12 max .003 3 003 15 .134 4 7.054e-3 4 NC 3 442 min 003 2 014 4 003 1 -3.128e-4 1 6902.314 4 443 13 max .004 3 003 15 .144 4 7.78e-3 4 NC 2	NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1
440 min 002 2 014 4 003 1 -2.84e-4 1 6680.339 4 441 12 max .003 3 003 15 .134 4 7.054e-3 4 NC 3 442 min 003 2 014 4 003 1 -3.128e-4 1 6902.314 4 443 13 max .004 3 003 15 .144 4 7.78e-3 4 NC 2	NC 1 NC 1 NC 1 NC 1 NC 1 NC 1
441 12 max .003 3 003 15 .134 4 7.054e-3 4 NC 3 442 min 003 2 014 4 003 1 -3.128e-4 1 6902.314 4 443 13 max .004 3 003 15 .144 4 7.78e-3 4 NC 2	NC 1 NC 1 NC 1 NC 1 NC 1 NC 1
442 min 003 2 014 4 003 1 -3.128e-4 1 6902.314 4 443 13 max .004 3 003 15 .144 4 7.78e-3 4 NC 2	NC 1 NC 1 NC 1 NC 1 NC 1
443 13 max .004 3003 15 .144 4 7.78e-3 4 NC 2	NC 1 NC 1 NC 1 NC 1
	NC 1 NC 1 NC 1
	NC 1 NC 1
445 14 max .004 3003 15 .154 4 8.506e-3 4 NC 1	NC 1
446 min003 2012 4005 1 -3.706e-4 1 8258.411 4	
447	NC 1
448 min003 201 4006 1 -3.994e-4 1 9737.366 4	NC 1
449 16 max .005 3002 15 .176 4 9.958e-3 4 NC 1	NC 1
450 min004 2008 4006 1 -4.283e-4 1 NC 1	NC 1
451 17 max .005 3002 15 .189 4 1.068e-2 4 NC 1	NC 1
452 min004 2006 4008 1 -4.572e-4 1 NC 1	NC 1
453 18 max .005 3001 15 .203 4 1.141e-2 4 NC 1	NC 1
454 min004 2004 1009 1 -4.86e-4 1 NC 1	NC 1
455 19 max .006 3 0 10 .219 4 1.214e-2 4 NC 1	NC 2
456 min004 2003 101 1 -5.149e-4 1 NC 1	9014.597 1
457 M12 1 max .003 1 .004 2 .01 1 -6.299e-6 12 NC 1	NC 3
458 min 0 3006 3219 4 -1.268e-4 4 NC 1	113.258 4
459 2 max .002 1 .004 2 .009 1 -6.299e-6 12 NC 1	NC 3
460 min 0 3006 3202 4 -1.268e-4 4 NC 1	123.09 4
461 3 max .002 1 .004 2 .008 1 -6.299e-6 12 NC 1	NC 3
462 min 0 3005 3184 4 -1.268e-4 4 NC 1	134.796 4
463 4 max .002 1 .003 2 .008 1 -6.299e-6 12 NC 1	NC 3
464 min 0 3005 3167 4 -1.268e-4 4 NC 1	148.86 4
465 5 max .002 1 .003 2 .007 1 -6.299e-6 12 NC 1	NC 3
466 min 0 3005 3149 4 -1.268e-4 4 NC 1	165.943 4
467 6 max .002 1 .003 2 .006 1 -6.299e-6 12 NC 1	NC 3
468 min 0 3004 3133 4 -1.268e-4 4 NC 1	186.961 4 NC 2
	NC 2 213.214 4
170	NC 2 246.596 4
472 min 0 3004 3101 4 -1.268e-4 4 NC 1 473 9 max .001 1 .002 2 .004 1 -6.299e-6 12 NC 1	NC 2
473 9 IIIAX .001 1 .002 2 .004 1 -0.2996-0 12 NC 1	289.961 4
475 10 max .001 1 .002 2 .003 1 -6.299e-6 12 NC 1	NC 2
476 min 0 3003 3071 4 -1.268e-4 4 NC 1	347.769 4
477	NC 2
478 min 0 3003 3058 4 -1.268e-4 4 NC 1	427.315 4
479 12 max 0 1 .002 2 .002 1 -6.299e-6 12 NC 1	NC 1
480 min 0 3002 3046 4 -1.268e-4 4 NC 1	541.216 4
481 13 max 0 1 .001 2 .002 1 -6.299e-6 12 NC 1	NC 1
482 min 0 3002 3035 4 -1.268e-4 4 NC 1	712.889 4
483	NC 1
484 min 0 3002 3025 4 -1.268e-4 4 NC 1	989.961 4
485	NC 1
486 min 0 3001 3017 4 -1.268e-4 4 NC 1	1482.202 4
487	NC 1
488 min 0 3 0 301 4 -1.268e-4 4 NC 1	2492.968 4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

400	Member	Sec	1	x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		
489		17	max	0	1	0	2	0	1	-6.299e-6	12	NC	1	NC 54.40.574	1
490		10	min	0	3	0	3	005	4	-1.268e-4	4	NC NC	1_	5146.574	4
491		18	max	0	1	0	2	0	1	-6.299e-6	12	NC	1	NC NC	1
492		10	min	0	3	0	3	001	4	-1.268e-4	4	NC NC	1_	NC NC	1
493		19	max	0	1	0	1	0	1	-6.299e-6	12	NC NC	1_	NC NC	1
494	B.4.4	4	min	0	1	0	1	0	1	-1.268e-4	4_	NC NC	1_	NC NC	1
495	M1	1_	max	.007	3	.087	2	.787	4	1.624e-2	1_	NC	1_	NC	1
496			min	003	2	01	3	0	12	-2.445e-2	3	NC	1_	NC	1
497		2	max	.007	3	.041	2	.76	4	9.168e-3	4	NC	3	NC	1
498			min	003	2	003	3	007	1	-1.21e-2	3	2488.914	2	NC	1
499		3	max	.007	3	.011	3	.733	4	1.473e-2	4_	NC	5_	NC	2
500			min	003	2	009	2	011	1	-2.227e-4	_1_	1197.309	2	5752.441	5
501		4	max	.007	3	.035	3	.706	4	1.29e-2	_4_	NC	5	NC	1
502			min	003	2	065	2	01	1	-4.265e-3	3	753.828	2	4128.851	5
503		5	max	.007	3	.066	3	.679	4	1.106e-2	4_	NC	15	NC	1
504			min	003	2	125	2	007	1	-8.408e-3	3	542.848	2	3316.72	5
505		6	max	.007	3	.1	3	.65	4	1.296e-2	<u>1</u>	NC	<u>15</u>	NC	1
506			min	003	2	182	2	003	1	-1.255e-2	3	426.826	2	2830.021	5
507		7	max	.007	3	.132	3	.621	4	1.736e-2	1	NC	15	NC	1
508			min	003	2	234	2	0	12	-1.669e-2	3	358.442	2	2486.831	4
509		8	max	.006	3	.16	3	.591	4	2.175e-2	1	9062.14	15	NC	1
510			min	003	2	274	2	0	12	-2.084e-2	3	318.039	2	2237.994	4
511		9	max	.006	3	.178	3	.559	4	2.414e-2	1	8465.017	15	NC	1
512			min	003	2	3	2	0	1	-2.086e-2	3	297.026	2	2086.475	4
513		10	max	.006	3	.184	3	.525	4	2.556e-2	2	8283.288	15	NC	1
514			min	003	2	309	2	0	12	-1.814e-2	3	290.856	2	2044.529	4
515		11	max	.006	3	.179	3	.488	4	2.769e-2	2	8464.719	15	NC	1
516			min	003	2	3	2	0	12	-1.542e-2	3	298.001	2	2094.915	4
517		12	max	.006	3	.164	3	.449	4	2.685e-2	2	9061.467	15	NC	1
518			min	003	2	273	2	001	1	-1.277e-2	3	321.034	2	2252.052	4
519		13	max	.006	3	.14	3	.407	4	2.155e-2	2	NC	15	NC	1
520		1	min	003	2	23	2	0	1	-1.022e-2	3	365.782	2	2643.336	4
521		14	max	.006	3	.109	3	.361	4	1.625e-2	2	NC	15	NC	1
522			min	003	2	177	2	0	12	-7.668e-3	3	441.448	1	3447.83	4
523		15	max	.005	3	.074	3	.315	4	1.095e-2	2	NC	15	NC	1
524		'	min	003	2	118	2	0	12	-5.117e-3	3	570.425	1	5167.598	_
525		16	max	.005	3	.038	3	.269	4	9.976e-3	4	NC	5	NC	1
526		10	min	003	2	059	2	0	12	-2.566e-3	3	808.933	1	9695.445	
527		17	max	.005	3	.004	3	.226	4	1.115e-2	4	NC	5	NC	1
528		11	min	003	2	005	2	0	12	-1.45e-5	3	1317.988	1	NC	1
529		18	max	.005	3	.042	1	.187	4	1.091e-2	2	NC	4	NC	1
530		10	min	003	2	027	3	0	12	-4.3e-3	3	2790.946	1	NC	1
531		19	max	.005	3	.083	1	.152	4	2.184e-2	2	NC	1	NC	1
532		13	min	002	2	055	3	002	1	-8.746e-3	3	NC	1	NC	1
533	M5	1	max	.022	3	.215	2	.786	4	0	1	NC	1	NC	1
534	IVIO		min	015	2	012	3	0	1	-4.923e-6	4	NC NC	1	NC	1
535		2	max	.022	3	.099	2	.766	4	7.574e-3	4	NC	5	NC	1
536			min	015	2	.001	3	0	1	0	1	1002.627	2	7879.661	4
537		3		.022	3	.034	3	<u> </u>		1.492e-2	4	NC	15	NC	1
		3	max		2		2	0	1		1	473.487			_
538		1	min	015		029				1 2150 2	•		15	4603.7	4
539		4	max	.022	3	.102	3	.713	4	1.215e-2	4	9409.474	<u>15</u>	NC 2552 201	1
540		-	min	015	2	181	2	0	1	0 204 = 2	1_	291.24	2	3552.291	4
541		5	max	.021	3	.195	3	.683	4	9.391e-3	4		15	NC 2050 207	1
542			min	014	2	345	2	0	1	0	1_	205.8	2	3050.387	4
543		6	max	.021	3	.298	3	.652	4	6.627e-3	4	5077.093	<u>15</u>	NC 0740,407	1
544			min	<u>014</u>	2	508	2	0	1	0	1_	159.541		2746.497	
545		7	max	.02	3	.399	3	.62	4	3.863e-3	4_	4202.499	15	NC	_ 1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
546			min	014	2	654	2	0	1	0	1_	132.626	2	2510.376	
547		8	max	.02	3	.483	3	.59	4	1.1e-3	4		<u>15</u>	NC	1
548			min	013	2	<u>771</u>	2	0	1	0	1_		2	2279.346	
549		9	max	.019	3	.537	3	559	4	0	1_		<u>15</u>	NC	1
550		40	min	013	2	846	2	0	1	-3.465e-6	5	108.79	2	2081.891	4
551		10	max	.019	3	.556	3	.525 0	4	0 -3.359e-6	1_		<u>15</u>	NC	1
552		11	min	013 .019	3	87 .542	3	.488	4	0	<u>5</u> 1		<u>2</u> 15	2057.286 NC	1
553 554			max	013	2	845	2	400	1	-3.253e-6	5		2	2118.67	4
555		12	max	.018	3	.495	3	.451	4	7.882e-4	4		<u>2</u> 15	NC	1
556		12	min	013	2	768	2	0	1	0	1		2	2210.322	4
557		13	max	.018	3	.42	3	.408	4	2.771e-3	4		15	NC	1
558		10	min	012	2	644	2	0	1	0	1	135.255	1	2605.054	· ·
559		14	max	.017	3	.325	3	.36	4	4.753e-3	4		. 15	NC	1
560			min	012	2	49	2	0	1	0	1	164.988	1	3634.505	4
561		15	max	.017	3	.22	3	.311	4	6.736e-3	4		15	NC	1
562			min	012	2	323	2	0	1	0	1		1	6603.924	4
563		16	max	.016	3	.112	3	.263	4	8.718e-3	4	9413.589	15	NC	1
564			min	012	2	16	2	0	1	0	1	315.679	1	NC	1
565		17	max	.016	3	.012	3	.219	4	1.07e-2	4	NC	5	NC	1
566			min	012	2	016	2	0	1	0	1	531.373	1	NC	1
567		18	max	.016	3	.103	1	.182	4	5.433e-3	4		5	NC	1
568			min	012	2	075	3	0	1	0	1_	1155.302	1_	NC	1
569		19	max	.016	3	.201	1	.153	4	0	_1_	NC	1_	NC	1
570			min	012	2	1 <u>53</u>	3	0	1	-2.925e-6	4_	NC	1_	NC	1
571	<u>M9</u>	1	max	.007	3	.087	2	.786	4	2.445e-2	3	NC	1_	NC	1
572			min	003	2	01	3	001	1	-1.624e-2	1_		1_	NC	1
573		2	max	.007	3	.041	2	.765	4	1.21e-2	3	NC 0400 044	3_	NC 0004 004	1
574			min	003	2	003	3	0	12	-7.864e-3	1_		2	8024.991	4
575 576		3	max	.007	3	.011	3	.74	12	1.489e-2 -7.989e-6	4		<u>5</u> 2	NC 4650.868	2
576 577		4	min	003 .007	3	009 .035	3	<u>0</u> .712	4	1.167e-2	<u>10</u> 5		5	NC	1
578		4	max min	003	2	065	2	0	12	-4.173e-3	1	753.828	2	3557.678	
579		5	max	.003	3	.066	3	.683	4	8.753e-3	5		 15	NC	1
580		J	min	003	2	125	2	0	12	-8.568e-3	1	542.848	2	3031.635	4
581		6	max	.007	3	.1	3	.652	4	1.255e-2	3		15	NC	1
582			min	003	2	182	2	0	12	-1.296e-2	1		2	2715.74	4
583		7	max	.007	3	.132	3	.621	4	1.669e-2	3		<u>-</u> 15	NC	1
584			min	003	2	234	2	0	1	-1.736e-2	1		2	2480.324	4
585		8	max	.006	3	.16	3	.59	4	2.084e-2	3		<u></u> 15	NC	1
586			min		2	274	2	001		-2.175e-2			2	2263.345	4
587		9	max	.006	3	.178	3	.559	4	2.086e-2	3		15	NC	1
588			min	003	2	3	2	0	12	-2.414e-2	1	297.026	2	2079.626	4
589		10	max	.006	3	.184	3	.525	4	1.814e-2	3	8264.587	15	NC	1
590			min	003	2	309	2	0	1	-2.556e-2	2		2	2045.926	4
591		11	max	.006	3	.179	3	.488	4	1.542e-2	3		<u> 15</u>	NC	1
592			min	003	2	3	2	0	1	-2.769e-2	2		2	2104.178	4
593		12	max	.006	3	.164	3	.45	4	1.277e-2	3_		<u> 15</u>	NC	1
594			min	003	2	273	2	0	12	-2.685e-2	2	321.034	2	2227.35	4
595		13	max	.006	3	14	3	.407	4	1.022e-2	3_		<u>15</u>	NC	1
596		4.1	min	003	2	23	2	0	12	-2.155e-2	2		2	2646.418	
597		14	max	.006	3	.109	3	.36	4	7.668e-3	3		<u>15</u>	NC 0004.00	1
598		4.5	min	003	2	<u>177</u>	2	003	1	-1.625e-2	2		<u>1</u>	3604.36	5
599		15	max	.005	3	.074	3	.311	4	6.337e-3	5		<u>15</u>	NC F000 F74	1
600		10	min	003	2	118	2	006	1	-1.095e-2	2	0.00	1_	5922.571	5
601		16	max	.005	3	.038	3	.264	4	8.54e-3	5		5	NC NC	1
602			min	003	2	059	2	009	1	-5.65e-3	2	808.933	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.005	3	.004	3	.22	4	1.077e-2	4	NC	5	NC	1
604			min	003	2	005	2	01	1	-6.622e-4	1	1317.988	1	NC	1
605		18	max	.005	3	.042	1	.183	4	5.056e-3	5	NC	4	NC	1
606			min	003	2	027	3	007	1	-1.091e-2	2	2790.946	1	NC	1
607		19	max	.005	3	.083	1	.153	4	8.746e-3	3	NC	1	NC	1
608			min	002	2	055	3	0	12	-2.184e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 14-42 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 14-42 Inch Width							
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	,N $\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle extstyle NA} arPhi_{ extstyle ec,Na} arPhi_{ extstyle p,Na} extstyle N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.