Aristos & Grigora: Efficient MoE Collective Communication and Pipelining

Notation	Description
H(x, y)	Heaviside Function $H(x)$, where $H(0) = y$ following [Con23]
k	Number of experts selected during token routing, $k \in \mathbb{N}$ see top_k in [Sha+17; FZS22]
X	Set of all experts
N	Set of all nodes, $N \subset \mathbb{Z}^+$
J_n	Set of all ranks in node $n, J_n \subset \mathbb{Z}^+$
W	World of workers, note $ N \cdot J_n = W > 0$
ε	Optimism factor, $\varepsilon \in \{0, \ldots, W -1\} \subset \mathbb{Z}^+, \forall w \in W \ \varepsilon_w = \varepsilon$
G_j^n	Worker with rank j in node n
X_j^n	Set of experts hosted on $G_i^n, X_i^n \subseteq X$
ϕ	Tensor mapping G_i^n tokens T to experts $X' \subseteq X$, $\phi \in \mathbb{R}^{ T \times k}$
S	Sharding specification tensor mapping X to $W'\subseteq W$

Table 1: Notation

```
Algorithm 1: Aristos executed by each G_i^n
```

```
Data: Q: a blocking task FIFO queue
   Require: X_i^n, S, \phi, \varepsilon, |W|
1 begin
 2
       G_{\phi} \leftarrow \mathbf{GetWorkers}(\phi, S)
 3
       \mu \leftarrow |G_{\phi}| + H(|X_i^n|, 0) \cdot (|W| - 1)
 4
                                                                    // Upper bound for tasks
        flag \leftarrow \textbf{False}
 5
       W' \leftarrow S.W'
 6
       if G_i^n \in G_{\phi} then
 7
 8
            \mu \leftarrow \mu + 1
           \xi \leftarrow \xi + 1
 9
       end if
10
11
       // Send token slices to corresponding workers
       broadcast(shouldProcess, \phi, G_{\phi})
12
       while Q.timeout == False and \mu > 0 do
13
            if flag == False and \xi == 0 then
14
                Q.ActivateCountdown()
15
                flag \leftarrow \mathbf{True}
16
            end if
17
            t \leftarrow Q.\mathbf{take}()
18
            if t.processed == True then
19
20
                PostProcessing(\phi, t)
                \xi \leftarrow \xi - 1
21
                \mu \leftarrow \mu - 1
22
            else if t.shouldProcess == True then
23
                \theta = \mathbf{ExpertProcessing}(t.\tau, X_i^n)
24
                Send<sup>†</sup>(processed, \theta, t.workers)
25
                W' \leftarrow W' - t.workers
26
                \mu \leftarrow \mu - 1
27
       end while
28
       if \epsilon > 0 and Q.timeout == True then
29
            broadcast(processed, W')
31
       end if
32 end
```

Notation	Description
\overline{W}	Set of multi-node, distributed workers, $ W > 0$
g	Subset of workers, $g \subseteq G$, $g = (V_q, E_q)$
${\cal G}$	Set of all g , note $1 \leq \mathcal{G} \leq V $
i, j	Workers $i, j \in W$
α_{ij}	α cost between i and j , $\alpha \in \mathbb{R}^+$ See [Sol16] for an overview
eta_{ij}	β cost between i and j , $\beta \in \mathbb{R}^+$
$G^{"}$	Graph adjacency matrix where $G[i,j]=(\alpha_{ij},\beta_{ij})$ and $G=(V,E),V=W$
m_{j}	Memory capacity available for experts on worker j
$\mathcal{X}^{"}$	Set of all experts. For valid groups $g^* \in \mathcal{G}$, $\sum_{j \in V_{\sigma^*}} m_j \geq \mathcal{X} $
$\pi(g)$	Expert compute cost of group g
f_x	Floating-point operations for computing <i>x</i> [Nar+21]
\mathcal{F}_{i}	$Actual ext{ FLOPS of worker } j$
$egin{array}{c} \mathcal{F}_j \ \mathcal{C}_j \end{array}$	Communication cost for worker j
$T_{\rho}(n)$	Time for all-reduce on n processes, see [Rab04; TRG05]

Table 2: Notation for *Grigora*

Grigora

Inputs

W, G, F_j $\forall j \in W$, f_x $\forall x \in \mathcal{X}$, d_{ij} $\forall i,j \in W$, η : frequency of using an edge

$$\gamma(\omega) = \frac{(2+r) \cdot L \cdot B}{i \cdot \omega \cdot b},$$

where r: activation re-computation amount [Nar+21], L: num of layers, B: global batch, i: MoE layer frequency [Lie+24], b: mini-batch and ω : effective world size, fixed as W below but varies later.

Objective

$$\min_{g \in \mathcal{G}} T_g, \quad \text{where } T_g = \gamma(\omega) \left(\pi(g) + \max_{j \in V_g} C_j \right) + T_\rho(|\mathcal{G}|)$$
 (1)

We derive local optima for Equation 1 using a novel deterministic graph partitioning algorithm reminiscent of Kruskal's classical MST algorithm [Wik24]. We do not yet have a tight bound, but a loose analysis shows that Grigora runs in $\mathcal{O}(n^3)$ time. We reiterate T_g below, clarifying $\pi(g)$, and \mathcal{C} . We define T_ρ per the worst case latency complexity of [Rab04]

$$T(g) = \gamma(\omega) \left(\frac{\sum_{x \in \mathcal{X}} f_x}{\sum_{j \in g} \mathcal{F}_j} + \max_{i \in V_g} \sum_{(i,j) \in E_g} \eta(\alpha_{ij} + \frac{d}{|V_g|} \beta_{ij}) \right) + 2(|\mathcal{G}| - 1) \left(\alpha^* + d \frac{\beta^*}{|\mathcal{G}|} \right)$$
 (2)

where $\forall a,b \in \mathcal{G}$, $\alpha^* = \max\{\alpha_{ab}\}$ and $\beta^* = \max\{\beta_{ab}\}$. Below is how we implement T(g) in code.

$$\frac{T(g)}{\gamma(\omega)} = \frac{\sum_{X \in \mathcal{X}} f_x}{\sum_{j \in g} \mathcal{F}_j} + \max_{i \in V_g} \sum_{(i,j) \in E_g} \eta(\alpha_{ij} + \frac{d}{|V_g|} \beta_{ij}) + \frac{2(|\mathcal{G}| - 1)}{\gamma(\omega)} \left(\alpha^* + d \frac{\beta^*}{|\mathcal{G}|}\right)$$
(3)

References

- [Rab04] Rolf Rabenseifner. "Optimization of Collective Reduction Operations". In: Computational Science ICCS 2004. Ed. by Marian Bubak, Geert Dick van Albada, Peter M. A. Sloot, and Jack Dongarra. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 1–9. ISBN: 978-3-540-24685-5. URL: https://link.springer.com/content/pdf/10.1007/978-3-540-24685-5_1.pdf.
- [TRG05] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. "Optimization of Collective Communication Operations in MPICH". In: *The International Journal of High Performance Computing Applications* 19.1 (2005), pp. 49–66. DOI: 10.1177/1094342005051521. eprint: https://doi.org/10.1177/1094342005051521. URL: https://doi.org/10.1177/1094342005051521.
- [Sol16] Edgar Solomonik. CS 598: Communication Cost Analysis of Algorithms Lecture 1: Course motivation and overview; collective communication. 2016. URL: https://solomonik.cs.illinois.edu/teaching/cs598%5C_fall2016/lectures/lec1.pdf.
- [Sha+17] Noam Shazeer et al. "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer". In: CoRR abs/1701.06538 (2017). arXiv: 1701.06538. url: http://arxiv.org/abs/1701.06538.
- [Nar+21] Deepak Narayanan et al. "Efficient large-scale language model training on GPU clusters using megatron-LM". In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. SC '21. St. Louis, Missouri, Association for Computing Machinery, 2021. ISBN: 9781450384421. DOI: 10.1145/3458817. 3476209. URL: https://doi.org/10.1145/3458817.3476209.
- [FZS22] William Fedus, Barret Zoph, and Noam Shazeer. "Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity". In: *Journal of Machine Learning Research* 23.120 (2022), pp. 1–39. URL: http://jmlr.org/papers/v23/21-0998.html.
- [Con23] PyTorch Contributors. *Torch.heaviside*. 2023. url: https://pytorch.org/docs/stable/generated/torch.heaviside.html.
- [Lie+24] Opher Lieber et al. Jamba: A Hybrid Transformer-Mamba Language Model. 2024. arXiv: 2403.1987 [cs.CL].
- [Wik24] Wikipedia contributors. Kruskal's algorithm Wikipedia, The Free Encyclopedia. [Online; accessed 6-May-2024]. 2024. url: https://en.wikipedia.org/w/index.php?title=Kruskal%27s_algorithm&oldid=1221098161.