Universidad de la República Facultad de Ingeniería - IMERL

Cálculo Diferencial e Integral en Varias Variables Mayo 2022

I PARCIAL-SOLUCIÓN – 04 MAYO DE 2022

1. Respuestas: Verdadero - Falso.

Puntajes: 1 punto si la respuesta es correcta, -1 punto si la respuesta es incorrecta, 0 punto por no contestar. Indique sus respuestas (V/F) en los casilleros correspondientes.

- (1) Sea $a_n \neq 0$ para todo $n \geq 1$. Si $\sum_{n=1}^{+\infty} a_n$ converge entonces $\sum_{n=1}^{+\infty} \frac{1}{a_n}$ converge también. **FALSO**
- (2) Si z es un numero complejo entonces $z\overline{z} = Re(z) + Im(z)$ FALSO
- (3) Si $a \neq 0$, entonces la función f(z) = az transforma el cuadrado con vértices (0,0), (1,0), (0,1) y (1,1) en otro cuadrado. **VERDADERO**
- (4) Si y_1 e y_2 son soluciones de la misma ecuación diferencial entonces $4y_1 2022y_2$ es solución también de la ecuación diferencial. **FALSO**
- (5) Si $(a_n)_{n\geq 1}$ es una sucesión acotada entonces $(a_n)_{n\geq 1}$ es convergente.**FALSO**
- (6) Si $f: [n_0, +\infty) \to \mathbb{R}$ y $a_n = f(n)$ entonces $\sum_{n=n_0}^{+\infty} a_n$ e $\int_{n_0}^{+\infty} f(x) dx$ se comportan de la misma manera.
- (7) Si z_0 es raiz de un polinomio P tal que P(0) = i entonces $P(z_0) + P(\overline{z_0}) = 0$. FALSO
- (8) Si z_0 es un complejo tal que $Re(z_0) = 0$ entonces $e^{z_0} = e^{Im(z_0)}$ FALSO
- (9) Sea $a_n \neq 0$ para todo $n \geq 1$. Si $(a_n)_{n \geq 1}$ no converge entonces $(\frac{1}{a_n})_{n \geq 1}$ converge **FALSO**
- (10) Si $f: \mathbb{R} \to \mathbb{R}$ es continua y $\int_a^{+\infty} f(x)dx$ converge entonces $\int_b^{+\infty} f(x)dx$ converge para todo $b \ge a$. **VERDADERO**

Respuesta: Múltiple Opción

1. Considera el siguiente número complejo:

$$z_0 = \frac{1}{i + \frac{1}{i + \frac{1}{1+i}}}$$

La forma binómica de z_0 es igual a:

- A. 1.
- B. i.
- C. -1
- D. -i

Respuesta correcta: 1

Notar $\frac{1}{1+i} = \frac{1}{2}(1-i)$. Por lo tanto

$$\frac{1}{i + \frac{1}{1+i}} = 1 - i$$

$$i + \frac{1}{i + \frac{1}{1+i}} = 1$$

$$\frac{1}{i + \frac{1}{i + \frac{1}{1+i}}} = 1$$

2. El número complejo $z = \frac{\sqrt{3}}{2} + \frac{1}{2}i$ es la raíz sexta de un cierto complejo, las otras cinco raíces son:

A.
$$i, -i, \frac{\sqrt{3}}{2} - \frac{1}{2}i, -\frac{\sqrt{3}}{2} + \frac{1}{2}i, -\frac{\sqrt{3}}{2} - \frac{1}{2}i$$

B.
$$2i$$
, $-2i$, $\frac{\sqrt{3}}{2} - \frac{1}{2}i$, $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$, $-\frac{\sqrt{3}}{2} - \frac{1}{2}i$

C.
$$i, -i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{\sqrt{3}}{2} + \frac{1}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

D. $i, -i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{\sqrt{3}}{2} - \frac{1}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i$

D.
$$i, -i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{\sqrt{3}}{2} - \frac{1}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Respuesta correcta:

Recordar que dado $z = r(cos(\theta) + sen(\theta)i)$, las raíces sextas de z vienen dadas por

$$z_k = r^{1/6} (\cos(\frac{\theta + 2k\pi}{6}) + sen(\frac{\theta + 2k\pi}{6})i)$$

con $k=0,\cdots,5$. Sabemos que $z=\frac{\sqrt{3}}{2}+\frac{1}{2}i$ es una de tales raíces, por lo tanto podemos deducir el valor correspondiente de r y θ . Al calcular las restantes obtenemos:

$$i, -i, \frac{\sqrt{3}}{2} - \frac{1}{2}i, -\frac{\sqrt{3}}{2} + \frac{1}{2}i, -\frac{\sqrt{3}}{2} - \frac{1}{2}i.$$

3. Consideremos la sucesión de números reales $(a_n)_{n\geq 1}$ que satisface la relación

$$a_{n+1} = \sqrt{\frac{{a_n}^2 + 2}{a_n + 2}}$$

y tal que $a_1 = 7$.

Entonces:

A. $(a_n)_{n\geq 1}$ es monótona decreciente y tiene límite $\neq 1$.

B. $(a_n)_{n\geq 1}$ es monótona decreciente y tiene límite 1.

C. $(a_n)_{n>1}^n$ no es ni creciente ni decreciente, pero converge a 1.

D. $(a_n)_{n\geq 1}$ es monótona creciente y no está acotada superiormente.

Respuesta correcta: $(a_n)_{n>1}$ es monótona decreciente y tiene límite 1.

Hay que probar que está acotada inferiormente por 1 y es decreciente. Para ver que está acotada por 1 se usa inducción $a_1=7>1$, $a_{n+1}\geq 1\Leftrightarrow \sqrt{\frac{\left(a_n\right)^2+2}{a_n+2}}\geq 1\Leftrightarrow \frac{\left(a_n\right)^2+2}{a_n+2}\geq 1\Leftrightarrow \left(a_n\right)^2\geq a_n\Leftrightarrow a_n(a_n-1)\geq 0$. Lo cual pasa por hipótesis. Es monótona decreciente: $a_{n+1}\leq a_n\Leftrightarrow \sqrt{\frac{\left(a_n\right)^2+2}{a_n+2}}\leq a_n\Leftrightarrow \frac{\left(a_n\right)^2+2}{a_n+2}\leq a_n\Leftrightarrow a_n^2+2\leq a_n^2$

4. Sea $m = \sum_{n=0}^{\infty} 2^{-n}$. Entonces la serie:

$$\sum_{n=1}^{+\infty} \sin^m \left(\frac{1}{n}\right)$$

- A. Converge.
- B. Oscila.
- C. Diverge.
- D. $m = +\infty$, por lo que la serie que se define luego no existe.

Respuesta Correcta: Converge

La primera serie es geométrica, y su resultado vale:

$$m = \sum_{n=0}^{+\infty} 2^{-n} = \sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n = \frac{1}{1 - \frac{1}{2}} = 2$$

Es importante recordar que el resultado de la última igualdad vale porque el índice inferior de la suma es n = 0.

Luego la última serie resulta:

$$\sum_{n=0}^{+\infty} \sin^2\left(\frac{1}{n}\right)$$

Como $\sin(u) \sim u$ cuando $u \to 0$, $\sin(1/n) \sim 1/n$ cuando $n \to +\infty$, y puntualmente: $\sin^2(1/n) \sim \frac{1}{n^2}$.

Por otro lado, $\sin^2\left(\frac{1}{n}\right)$ es una sucesión de términos positivos, por lo que utilizando el criterio del equivalente, la serie converge.

5. Considere la siguiente serie:

$$\sum_{n=2}^{+\infty} \frac{2}{2n+n^2}$$

Entonces:

A. La serie converge a $\frac{5}{6}$.

- B. La serie converge a $\frac{3}{2}$.
- C. La serie converge a $\frac{1}{2}$.
- D. La serie diverge.

Respuesta Correcta: La serie converge a $\frac{5}{6}.$

El término general lo podemos reescribir como $\frac{2}{2n+n^2} = \frac{2}{(2+n)n} = \frac{1}{n} - \frac{1}{n+2}$, por lo que la serie es $\sum_{n=2}^{+\infty} \frac{1}{n} - \frac{1}{n+2}$. El convergente n-ésimo de la serie es $S_n = \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{5} + \frac{1}{4} - \frac{1}{6} + \cdots + \frac{1}{n} - \frac{1}{n+2}$, que es una suma geométrica en dónde sólo sobreviven los dos primeros términos que suman y los dos últimos que restan, o sea que $S_n = \frac{1}{2} + \frac{1}{3} - \frac{1}{n+1} - \frac{1}{n+2}$ $\sum_{n=2}^{+\infty} \frac{1}{n} - \frac{1}{n+2} = \lim_{n \to \infty} S_n = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}.$

6. La rapidez con que cierto medicamento se disemina en el flujo sanguíneo se rige por la ecuación diferencial

$$x'(t) = A - Bx(t), \quad x(0) = 0,$$

donde A y B son constantes positivas. La función x(t) describe la concentración del medicamento en el flujo sanguíneo en un instante cualquiera t.

- A. $\lim_{t\to +\infty} x(t) = \frac{A}{B}$ y el tiempo que tarda la concentración en alcanzar la mitad de este valor límite
- B. $\lim_{t\to +\infty} x(t) = \frac{A}{B}$ y el tiempo que tarda la concentración en alcanzar la mitad de este valor límite
- C. $\lim_{t\to +\infty} x(t) = \frac{A}{B}$ y el tiempo que tarda la concentración en alcanzar la mitad de este valor límite
- es $t = \frac{1}{B} \log \left(\frac{2(A-B)}{A} \right)$.

 D. $\lim_{t \to +\infty} x(t) = \frac{B}{A}$ y el tiempo que tarda la concentración en alcanzar la mitad de este valor límite es $t = \log(2)$.

Respuesta Correcta: $\lim_{t\to\infty} x(t) = \frac{A}{B}$ y el tiempo que tarda la concentración en alcanzar la mitad de este valor límite es $t=\frac{\log(2)}{B}$.

Notar que la solución del problema es $x(t) = \frac{A}{B} (1 - e^{-Bt})$. Por lo tanto al tomar el límite cuando t tiende a infinito vemos que da $\frac{A}{B}$. Finalmente al igualar la solución con la mitad de este valor, observamos que el momento donde ocurre es $\frac{\log(2)}{R}$.

7. Sea E_1 la ecuación diferencial de segundo órden homogénea, lineal y de coeficientes constantes, tal que $y(x) = 3e^x \cos(2x)$ es solución.

Se le llama $y_2(x)$ a la solución de E_1 con las condiciones iniciales: $\begin{cases} E_1 \\ y(0) = 0 \end{cases}$ y'(0) = 2

¿Cuánto vale $y_2(\pi/2)$?

- A. 0.
- B. e.
- C. e^2 .
- D. Ninguna de las anteriores.

Respuesta Correcta: La respuesta correcta es 0.

E1 tiene la forma: y'' + ay' + by = 0. Las raíces de la ecuación característica $\lambda^2 + a\lambda + b = 0$ describen la forma de la solución. En particular, $3e^x cos(2x)$ es solución siempre y cuando las raíces sean $\lambda = 1 \pm 2i$. Esto implica que la solución general a la ecuación diferencial E1 es

$$y(x) = Ae^x cos(2x) + Be^x sen(2x)$$

Imponiendo condiciones iniciales se puede resolver la solución al problema completo $(y_2(x))$, y luego evaluar.

- y(0) = A = 0
- $y'(0) = 2B = 2 \Rightarrow B = 1$

Entonces $y_2(x) = e^x sen(2x)$, por lo que al evaluar resulta: $y_2(\pi/2) = e^{\pi/2} sen(\pi) = 0$

8. Sea $(a_n)_{n\geq 1}$ una sucesión de términos positivos $(a_n>0,\,\forall n)$. Además sabemos que:

 $(a_{2n})_{n\geq 1}$ es monótona creciente y acotada. $(a_{2n+1})_{n\geq 1}$ no converge y es acotada.

Considere las siguientes afirmaciones:

- I) $(a_n)_{n\geq 1}$ no puede converger.
- II) $(a_{2n+1})_{n\geq 1}$ tiene una subsucesión convergente.
- III) $(a_{4n})_{n>1}$ es necesariamente convergente.
- IV) $(a_{3n})_{n>1}$ no puede converger.

Entonces:

- A. I, II y III son verdaderas y IV es falsa.
- B. Todas son verdaderas.
- C. I y II son verdaderas, III y IV son falsas.
- D. Solamente I es verdadera.

Respuesta correcta: I, II y III son verdaderas y IV es falsa.

9. Sea $\alpha \in \mathbb{R}$. La integral impropia

$$\int_{0}^{+\infty} \frac{e^{\frac{1}{x+1}} - 1}{(x^2 - \ln(1+x^2))^{\alpha}} dx$$

- (a) Converge solamente para todo α con $0 < \alpha < 1/4$.
- (b) Converge para todo α con $0 < \alpha < 1/2$.
- (c) Converge para todo α con $1 < \alpha$.
- (d) No converge únicamente si $\alpha < 0$.

Respuesta Correcta: La integral anterior es una integral mixta por lo que la separamos en dos:

$$\int_{0}^{+\infty} \frac{e^{\frac{1}{x+1}} - 1}{(x^2 - \ln(1+x^2))^{\alpha}} dx = \int_{0}^{1} \frac{e^{\frac{1}{x+1}} - 1}{(x^2 - \ln(1+x^2))^{\alpha}} dx + \int_{1}^{+\infty} \frac{e^{\frac{1}{x+1}} - 1}{(x^2 - \ln(1+x^2))^{\alpha}} dx$$

siendo el primer sumando I_1 una integral impropia de segunda especie (en x=0) y el segundo sumando I_2 una integral impropia de primera especie.

- Cuando $x \to 0$ entonces $\frac{e^{\frac{1}{x+1}}-1}{(x^2-\ln(1+x^2))^{\alpha}} \sim \frac{e-1}{\left(\left(\frac{x^2}{2}\right)^2\right)^{\alpha}} = \frac{4^{\alpha}(e-1)}{x^{4\alpha}}$. Como $\int_0^1 \frac{1}{x^{4\alpha}} dx$ converge cuando $4\alpha < 1$ es decir $\alpha < 1/4$, deducimos que I_1 converge si $\alpha < 1/4$.
- Cuando $x \to +\infty$ entonces $\frac{e^{\frac{1}{x+1}}-1}{(x^2-\ln(1+x^2))^{\alpha}} \sim \frac{\frac{1}{x-1}}{(x^2)^{\alpha}} \sim \frac{1}{x^{2\alpha+1}}$. Como $\int_{1}^{+\infty} \frac{1}{x^{2\alpha+1}} dx$ converge cuando $2\alpha + 1 > 1$ es decir $\alpha > 0$, deducimos que I_2 converge si $\alpha > 0$.

Concluimos que la integral mixta converge para todo α con $0 < \alpha < 1/4$. 10. Si $f : \mathbb{R} - \{-1\} \to \mathbb{R}$ dada por $f(x) = \frac{2x - 3}{(x^2 + 4)(x + 1)}$, consideramos la siguiente integral impropia

$$\int_0^{+\infty} f(x)dx$$

Entonces:

- A. Converge y lo hace a $\frac{\pi}{4}$.
- B. Converge y lo hace a $\frac{\pi}{4} \log 2$.
- C. No converge.
- D. Converge y lo hace a $\frac{\pi}{2}$.

Respuesta Correcta: Converge y lo hace a $\frac{\pi}{4} - \log 2$.

Notemos primero que el integrando puede escribirse como:

$$\frac{2x-3}{(x^2+4)(x+1)} = \frac{x+1}{x^2+4} - \frac{1}{x+1}.$$

La integral a calcular es:

$$\int_0^{+\infty} \left(\frac{x+1}{x^2+4} - \frac{1}{x+1} \right) dx.$$

Para hallar una primitiva del primer sumando, separamos la fracción e integramos término a término:

$$\int \frac{t+1}{t^2+4} dt = \int \frac{t}{t^2+4} dt + \int \frac{1}{x^2+4} dx = \frac{1}{2} \log(x^2+4) + \frac{1}{2} \arctan(\frac{x}{2}) + C.$$

Para el segundo,

$$\int \frac{1}{x+1} = \log(x+1) + C.$$

La integral entre 0 e $+\infty$ se obtiene evaluando entre 0 y p y tomando límite con $p \to +\infty$:

$$\int_0^{+\infty} \frac{2x-3}{(x^2+4)(x+1)} dx = \lim_{p \to +\infty} \int_0^p \frac{2x-3}{(x^2+4)(x+1)} = \lim_{p \to +\infty} \left(\frac{1}{2} \arctan\left(\frac{p}{2}\right) + \frac{1}{2} \log\left(p^2+4\right) - \log\left(p+1\right) - \frac{1}{2} \log(4) \right) = \frac{\pi}{4} - \log 2.$$