

FACULTAD DE INGENIERÍA

Capítulo II

ECUACIONES DIFERENCIALES LINEALES ORDINARIAS DE ORDEN SUPERIOR

Si $a_n(x)$, $a_{n-1}(x)$... $a_1(x)$ y $a_0(x)$ son funciones con dominio común, una ecuación de la forma:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + a_{n-2}(x)\frac{d^{n-2}y}{dx^{n-2}} + ... + a_1(x)\frac{dy}{dx} + a_0y = R(x)$$

Es una ecuación diferencial lineal de orden n.

Si R(x) = 0 recibe el nombre de Ecuación diferencial homogénea o incompleta.

Si $R(x) \neq 0$ es no homogénea.

 $a_n(x)$, $a_{n-1}(x)$... $a_1(x)$ y $a_0(x)$ pueden ser funciones o constantes.

> ECUACIONES DIFERENCIALES LINEALES ORDINARIAS DE SEGUNDO ORDEN

Ecuación diferencial lineal de segundo orden es de la forma:

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = R(x)$$

En forma más sencilla podemos escribirla como: y''(x) + P(x) y'(x) + Q(x) y = R(x)

Esta es la definición de una ecuación lineal de segundo orden, si es homogénea, la escribimos como:

$$y''(x) + P(x) y'(x) + Q(x) y = 0$$

Para entender las características de la solución general comenzaremos por definir independencia lineal

y luego veremos un teorema que nos permitirá relacionar esta definición con la solución de la ecuación.

INDEPENDENCIA LINEAL DE FUNCIONES:

Dadas dos funciones $y_1(x)$ e $y_2(x)$, decimos que **son linealmente dependientes si y solo** si una de ellas es múltiplo constante de la otra, es decir

$$y_1 = k y_2$$
 o $\frac{y_1}{y_2} = \frac{k \cdot y_2}{y_2} = k$ el cociente entre ellas da una constante

En caso contrario se dicen linealmente independiente

UNIVERSIDAD DE MENDOZA

FACULTAD DE INGENIERÍA

Ejemplo 1:

Sean $y_1(x) = x$ e $y_2(x) = 4x$, dos funciones cualesquiera

Para ver si son linealmente dependientes o no, hacemos el cociente entre ellas:

$$\frac{y_1}{y_2} = \frac{x}{4x} = \frac{1}{4}$$

Son linealmente dependientes porque el cociente dio una constante

Ejemplo2:

Si $y_1(x) = \operatorname{sen} x \quad e \quad y_2(x) = \cos x$

El cociente $\frac{\text{senx}}{\text{cosx}} = \mathbf{tg} \ \mathbf{x} \neq \mathbf{cte}$ es una función por lo tanto son linealmente independientes (debemos notar que si invertimos el orden del cociente su resultado seguirá siendo una constante o una función.)

1. ECUACIÓN DIFERENCIAL LINEAL DE 2° ORDEN HOMOGÉNEA

Solución general

Sean $y_1(x)$ e $y_2(x)$ dos soluciones linealmente independientes de la ecuación homogénea:

y''(x) + P(x) y'(x) + Q(x) y = 0 con P(x) y Q(x) continuas en un intervalo I.

Si y(x) es una solución cualquiera de la ecuación, entonces existen números c_1 y c_2 tales que:

$$y(x) = c_1y_1(x) + c_2y_2(x) \quad \forall x \in I$$

El teorema afirma que cuando hemos encontrado dos soluciones linealmente independientes de la ecuación homogénea, la solución general es la combinación lineal de dichas funciones.

IMPORTANTE:

FACULTAD DE INGENIERÍA

Ciclo lectivo 2022

Recordemos que la solución de una ecuación diferencial, contiene tantas constantes como lo indica su orden, por eso en la solución general aparecen c₁ y c

Ejemplo:

Dada la ecuación diferencial y'' - 4y = 0

Verificar que las funciones $y_1(x) = e^{2x} e y_2(x) = e^{-2x}$ son linealmente independientes y solución de la ecuación diferencial.

Verificamos si $y_1 = e^{2x}$ es solución de la ecuación diferencial: y''(x) - 4y = 0 $y_1 = e^{2x}$ $y''_1 = 2e^{2x}$ $y''_1 = 4e^{2x}$

 $4e^{2x} - 4e^{2x} = 0$ verifica, por lo tanto es solución.

Para $y_2(x) = e^{-2x}$ tenemos.

$$y'_2 = -2 e^{-2x}$$

 $y''_2 = -2$ (-2) $e^{-2x} = 4 e^{-2x}$ reemplazamos en la ecuación $4e^{2x} - 4e^{2x} = 0$ verifica.

Debemos determinar la independencia lineal, para ello hacemos el cociente:

$$\frac{y_1(x)}{y_2(x)} = \frac{e^{2x}}{e^{-2x}} = e^{4x} \neq cte$$

Las funciones e ^{2x} y e ^{-2x} son soluciones linealmente independientes de la ecuación diferencial.

Según el teorema $y(x) = c_1 e^{2x} + c_2 e^{-2x}$ es la solución general

Cualquier otra solución deberá ser combinación lineal de ellas

$$y = c_1 e^{2x} + c_2 e^{-2x}$$
 $y' = 2 c_1 e^{2x} - 2 c_2 e^{-2x}$ $y'' = 4 c_1 e^{2x} + 4 c_2 e^{-2x}$

Reemplazando en la ED verifica

$$y'' - 4 y = 0$$

$$4c_1e^{2x} + 4c_2e^{-2x} - 4(c_1e^{2x} + c_2e^{-2x}) = 0$$

UNIVERSIDAD DE MENDOZA

FACULTAD DE INGENIERÍA

I. ECUACIÓN DIFERENCIAL HOMOGÉNEA CON COEFICIENTES CONSTANTES

Dada la ecuación diferencial y''(x) + p y'(x) + q y = 0donde P(x) = p = cte. y Q(x) = q = cte.

queremos hallar su solución general, sabemos que por tratarse de una ecuación de segundo orden estará formada por la suma de dos funciones linealmente independientes. Para encontrar estas funciones vamos a tener en cuenta la solución de la ecuación lineal homogénea de primer orden que sabemos es la función exponencial, y la proponemos como solución de la ecuación de segundo orden.

Proponemos como solución $y = k e^{mx}$ donde m es un número real cualquiera.

Si en verdad es la solución debería verificar la ecuación diferencial homogénea.

Reemplazamos
$$y = k e^{mx}$$
 $y' = k m e^{mx}$ $y'' = k m^2 e^{mx}$ en la ED $(k m^2 e^{mx}) + p (k m e^{mx}) + q (k e^{mx}) = 0$

Sacamos $k e^{mx}$ factor común $k e^{mx} (m^2 + p m + q) = 0$

Para que se verifique la igualdad, deberá ser $m^2 + p m + q = 0$ dado que $k e^{mx} \neq 0$ por ser la solución propuesta.

 $m^2 + p m + q = 0$ es una ecuación de segundo grado llamada ecuación característica, y las soluciones de ella nos dan los valores m₁ y m₂, que serían los exponentes de la solución propuesta $y_1 = k e^{m_1 x}$ $y_2 = k e^{m_2 x}$

Si tenemos en cuenta que la ecuación caracteríatica es una cuadrática, entonces sabemos que las soluciones posibles son:

- a) Raíces reales distintas
- b) Raíces reales iguales
- c) Raíces complejas conjugadas

El tema ahora es analizar si esas soluciones son o no linealmente independientes

a) RAÍCES REALES DISTINTAS:

$$m^2 + p m + q = 0$$
 sus soluciones son $m1 \neq m2$

Reemplazamos cada una de las raíces en la solución propuesta

$$\mathbf{y_1} = c_1 e^{m_1 x}$$

UNIVERSIDAD DE MENDOZA

FACULTAD DE INGENIERÍA

$$y_2 = c_2 e^{m_2 x}$$

$$\frac{c_1 e^{m_1}}{c_2 e^{m_2}} = c e^{(m_1 - m_2)x} \neq cte \quad \text{ y}_1 \text{ e y}_2 \text{ son linealmente independientes}.$$

la solución general será la suma de estas dos funciones,

y = c₁e^m1x + c₂e^m2x Solución general para raíces distintas

Ejemplo 1:

Hallar la solución general de la ecuación diferencial y" -3y' + 2y = 0

- 1) La ecuación característica correspondiente a esta ecuación es m² –3m + 2 = 0 cuyas raíces son m_1 = 2 y m_2 = 1
- 2) Las soluciones son $y_1 = c_1 e^{2x}$ e $y_2 = c_2 e^x$
- 3) Hacemos el cociente $\frac{c_1e^{2x}}{c_2e^x} = ce^x$ verificamos su independencia lineal
- 4) La solución general es de la forma: $y = c_1 e^{2x} + c_2 e^x$ solución general para raíces distintas

b) RAÍCES REALES IGUALES:

$$m^2 + p m + q = 0$$
 sus soluciones son $m1 = m 2$

Para comprender mejor este punto, veremos primero un ejemplo.

Ejemplo 1:

Hallar la solución general de la ecuación diferencial y'' - 6y' + 9y = 0

1) Ecuación característica asociada a la ecuación es: m² –6m + 9 = 0 cuyas raíces son:

 m_1 = 3 y m_2 = 3 tenemos raíces repetidas o coincidentes.

- 2) Las soluciones serían $y_1 = c_1 e^{3x}$ e $y_2 = c_2 e^{3x}$
- 3) Hacemos el cociente $\frac{c_1e^{3x}}{c_2e^{3x}} = c$ nos da una constante por lo tanto hay

dependencia lineal

Sabemos que la solución de la ecuación es la combinación de dos funciones linealmente independientes, y en este caso tenemos solo una solución.

UNIVERSIDAD DE MENDOZA

Ciclo lectivo 2022

FACULTAD DE INGENIERÍA

Para que el cociente nos dé distinto de constante una de las funciones tendría que estar multiplicada por una función que llamaremos g(x) , para que sean linealmente independientes es decir:

$$\frac{g(x)e^{3x}}{e^{3x}} = g(x)$$

Cálculo de la solución general para raíces repetidas: (solos)

Proponemos como solución $y = g(x)e^{3x}$ y la reemplazamos en la ecuación diferencial.

$$y = g \cdot e^{3x}$$

$$y' = g' \cdot e^{3x} + 3g \cdot e^{3x}$$

$$y'' = g'' \cdot e^{3x} + 3g' \cdot e^{3x} + 9g \cdot e^{3x} = g'' \cdot e^{3x} + 6g' \cdot e^{3x} + 9g \cdot e^{3x}$$

Reemplazamos en ED y'' - 6y' + 9y = 0

$$(g''.e^{3x} + 6 g'.e^{3x} + 9 g.e^{3x}) - 6.(g'.e^{3x} + 3 g.e^{3x}) + 9.g.e^{3x} = 0$$

Sacamos e 3x factor común:

$$e^{3x}[g'' + 6 g' + 9 g - 6 g' - 18 g + 9 g] = 0$$

Nos queda que $e^{3x}[g''(x)] = 0$ por lo tanto g''(x)=0

Si g''(x) es cero, entonces g'(x)=k integrando g' $\int \mathbf{g}'(\mathbf{x}) d\mathbf{x} = \int \mathbf{k} d\mathbf{x} = \mathbf{k} \, \mathbf{x}$

Su solución es de la forma g(x) = k x, (vamos a considerar que k = 1) reemplazamos g(x) en la solución propuesta y obtenemos: $y_1 = x e^{3x}$

La solución general entonces es $y = C_1 \times e^{3x} + C_2 e^{3x}$

Ejemplo 2:

Hallar la solución general de la ecuación diferencial y'' - 4y' + 4y = 0

- 1) Ecuación característica asociada a la ecuación es: m² –4m + 4 = 0 cuyas raíces son:
 - m_1 = 2 y m_2 = 2 tenemos raíces repetidas o coincidentes.
- 2) Las soluciones serían $y_1 = c_1 e^{2x}$ e $y_2 = c_2 x e^{2x}$

Hacemos el cociente para ver si son linealmente independientes

$$\frac{C_1 e^{2x}}{C_2 \times e^{2x}} = C x^{-1}$$

no da una constante por lo tanto hay independencia lineal

La solución general es: $y = C_1 e^{2x} + C_2 x e^{2x}$

c) Raíces complejas conjugadas:

$$m_1 = a + jb$$
 y $m_2 = a - jb$

Si las raíces son complejas conjugadas, corresponde al caso de raíces distintas.

La solución general tiene la forma

$$y = C_1 e^{(a+bj)x} + C_2 e^{(a-bj)x}$$

 $y = C_1 e^{ax} e^{(bj)x} + C_2 e^{ax} e^{(-bj)x}$ A

Como la solución es la suma de funciones reales linealmente independientes, se trabaja sobre la exponencial que es compleja. teniendo en cuenta las fórmulas de Euler:

$$e^{bx j} = \cos bx + j \operatorname{sen} bx$$

 $e^{-bx j} = \cos bx - j \operatorname{sen} bx$

Reemplazando en A y agrupando nos queda:

y= c₁ e^{ax} cos(bx) + c₂ e^{ax} sen(bx) solución general para raíces complejas conjugadas

Cada una de las soluciones planteadas son linealmente independientes ya que su cociente da tg(bx)

Ejemplo:

Hallar la solución general de la ecuación diferencial y" – 4'y +5y = 0

1) Ecuación característica asociada a la ecuación es: m² –4m + 5 = 0 cuyas raíces son

 $m_1=2+j$ y $m_2=2-j$ tenemos raíces complejas conjugadas.

Es decir a = 2 (parte real) b=1 (parte imaginaria)

FACULTAD DE INGENIERÍA

Ciclo lectivo 2022

2) Las solución general es

$$y=c_1 e^{ax} cos(bx) + c_2 e^{ax} sen(bx)$$

reemplazando a y b nos queda

$$y = c_1 e^{2x} \cos x + c_2 e^{2x} \sin x$$

Resumiendo todo lo visto

Solución general de la ED Lineal de 2do orden

$$V = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

raíces distintas

$$V = C_1 X e^{mx} + C_2 e^{mx}$$

raíces repetidas.

$$y = c_1 e^{ax} \cos(bx) + c_2 e^{ax} \sin(bx)$$
 raíces complejas conjugadas