Relationship Between Nutritional composition and Popularity of a Recipe

A Linear Approach

Milad Afrasiabi September 2021 Can nutritional composition of a recipes contribute to its popularity?

Is it possible to explain it using a linear model?

Kim's Lasagna

Servings Per Recipe: 10

Calories: 594.3

	% Daily Value *
Protein: 41.2g	82 %
Carbohydrates: 43.4g	14 %
Dietary Fiber: 4.6g	19 %
Sugars: 9.6g	
Fat: 29.1g	45 %
Saturated Fat: 13.9g	69 %
Cholesterol: 115mg	38 %
Vitamin A lu: 1591.8IU	32 %
Niacin Equivalents: 13.6mg	105 %
Vitamin B6: 0.5mg	30 %
Vitamin C: 18.1mg	30 %
Folate: 95.1mcg	24 %
Coloiuma CAC Frag	CF 0/

Data

- Rating and nutritional information of 1760 dinner recipes extracted using Beautiful soup
- 260 were discarded due to website format irregularities
- Outliers were removed using EDA

• 1472 rows of data were selected for final analysis, 18 original features

Target:

Rating

Original Features:

- Protein
- Carbs
- Fibers
- Sugars
- Fat
- Saturated Fat
- Cholesterol
- Vitamin A
- Niacin
- Vitamin B6
- Vitamin C
- Folate
- Calcium
- Iron
- Magnesium
- Potassium
- Sodium
- Thiamin

Methodology

1800 recipes scrapped, 300 discarded as irregular, outliers removed

Data divided 80/20, train vs. holdout (scikit learn model selection package)

Feature engineering and addition 30 in total

Train data divided to 5 CV groups (using scikit learn KFold package)

OLS, Ridge, LASSO and Elastic Net models fitted and scores averaged

Best models were selected and tested on the holdout set

Model Selection

$$OLS-R^2 = 0.066 \pm 0.048$$

LASSO-R2 =
$$0.063 \pm 0.041$$

Ridge-R2 =
$$0.067 \pm 0.043$$

ElasticN-R² = 0.066 ± 0.042

Results

Average on 5 validation sets:

$$R^2 = 0.059 \pm 0.032$$

Trained on whole data, scored on test:

$$R^2 = 0.059$$

MAE = 0.162

Key Features:

- Protein
- Fat
- Cholesterol

Can nutritional composition of a recipes contribute to its popularity? *Maybe!*

Is it possible to explain it using a linear model? *Hmm...*

Adding non-nutritional features

 Using non-linear models (Decision Trees, Random Forest, etc.)