CC1004 - Modelos de Computação Teóricas 9-13

Ana Paula Tomás

Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto

Março 2021

Revisão de noções sobre relações binárias

• Uma relação binária R definida num conjunto A é um subconjunto de $A \times A = \{(a,b) \mid a \in A, b \in A\}.$

Notação: $(x,y) \in R$ pode-se escrever xRy, usando notação infixa.

• $R \subseteq A \times A$ pode gozar ou não das propriedades seguintes:

```
reflexiva: \forall a \in A \ (a,a) \in R.

simétrica: \forall a,b \in A \ (a,b) \in R \Rightarrow (b,a) \in R.

transitiva: \forall a,b,c \in A \ ((a,b) \in R \land (b,c) \in R) \Rightarrow (a,c) \in R.

antissimétrica: \forall a,b \in A \ ((a,b) \in R \land (b,a) \in R) \Rightarrow a = b.
```

- R é uma relação de equivalência sse R é reflexiva, simétrica e transitiva.
- Uma relação de equivalência determina uma **partição** do conjunto A em classes de equivalência, que se denota por A/R. A classe de equivalência de $b \in A$ é o conjunto dos elementos que são equivalentes a b segundo R, ou seja, é $\{a \mid (a,b) \in R\}$. Qualquer elemento pode representar a sua classe.

Revisão de noções sobre relações binárias

- Uma relação binária de A em B é um subconjunto de $A \times B = \{(a, b) \mid a \in A, b \in B\}.$
- Para relações binárias $R \subseteq A \times B$ e $S \subseteq B \times C$, a relação composta $S \circ R = RS = \{(a,c) \mid \exists b \in B \ (a,b) \in R \land (b,c) \in S\}.$

A composição é associativa.

• Para $R \subseteq A \times A$, definimos:

$$R^0 = \mathcal{I} = \{(a, a) \mid a \in A\}.$$

$$R^1 = R = R \circ R^0 = R^0 \circ R$$

$$R^k = R \circ R^{k-1} = R^{k-1} \circ R, \text{ para } k > 1$$

• Para A finito, podemos representar $R \subseteq A \times A$ por um **grafo** G = (V, E), com conjunto de **nós** V = A e conjunto de **ramos** E = R. Para $k \ge 1$, tem-se $(x, y) \in R^k$ sse existe um **percurso** em G do nó X para o nó Y com comprimento X, isto é, com X ramos.

3 / 44

Revisão de noções sobre relações binárias

Para $R \subseteq A \times A$, o fecho de R para uma propriedade P é a menor relação que contém R e goza da propriedade P.

- O fecho reflexivo de $R \in R \cup \mathcal{I}$, com $\mathcal{I} = \{(a, a) \mid a \in A\}$ a relação identidade.
- O fecho simétrico de $R \in R \cup R^{-1}$, sendo $R^{-1} = \{(b, a) \mid (a, b) \in R\}$ a relação inversa de R.
- O fecho transitivo de $R \subseteq A \times A$, denota-se por R^+ . Prova-se que $R^+ = \bigcup_{k \ge 1} R^k$.
 - $(x,y) \in R^+$ sse existe um percurso de x para y no grafo de R.
- O fecho transitivo e reflexivo de $R \subseteq A \times A$, denota-se por R^* e é $R^* = R \cup \mathcal{I} = \bigcup_{k>0} R^k$.
 - $(x,y) \in R^*$ sse x = y ou existe um percurso de x para y no grafo de R.

Seja $A = (S, \Sigma, \delta, s_0, F)$ um autómato finito determinístico.

- Uma configuração é um par (s, x), em que s seria o estado em que o autómato pode estar e x a palavra que está na fita.
- A mudança de configuração num passo é definida formalmente por uma relação binária $\vdash_{\mathcal{A}}$ em $S \times \Sigma^*$ assim:

$$(s,x)\vdash_{\mathcal{A}} (s',x')$$
 sse $x=ax'$ e $s'=\delta(s,a)$, com $a\in\Sigma$

aisquer que sejam os estados $s, s' \in S$ e as palavras $x, x' \in \Sigma^*$.

Por definição, a relação binária $\vdash_{\mathcal{A}}$ é um subconjunto de $(S \times \Sigma^*) \times (S \times \Sigma^*)$

Quando só temos um autómato, podemos escrever simplesmente >

• Como δ é uma função, dado (s,x), com $x \neq \varepsilon$, existe um e um só (s',x') tal que $(s,x) \vdash_{\mathcal{A}} (s',x')$. O autómato é **determinístico**.

$$\forall s \in S \ \forall x \in \Sigma^* \ \forall a \in \Sigma \qquad (s, ax) \vdash_{\mathcal{A}} (\delta(s, a), x)$$

Seja $A = (S, \Sigma, \delta, s_0, F)$ um autómato finito determinístico.

- Uma configuração é um par (s, x), em que s seria o estado em que o autómato pode estar e x a palavra que está na fita.
- A mudança de configuração num passo é definida formalmente por uma relação binária ⊢_A em S × Σ* assim:

$$(s,x) \vdash_{\mathcal{A}} (s',x')$$
 sse $x = ax'$ e $s' = \delta(s,a)$, com $a \in \Sigma$

quaisquer que sejam os estados $s, s' \in S$ e as palavras $x, x' \in \Sigma^*$.

Por definição, a relação binária $\vdash_{\mathcal{A}}$ é um subconjunto de $(S \times \Sigma^*) \times (S \times \Sigma^*)$.

Quando só temos um autómato, podemos escrever simplesmente \vdash . .

• Como δ é uma função, dado (s,x), com $x \neq \varepsilon$, existe um e um só (s',x') tal que $(s,x) \vdash_{\mathcal{A}} (s',x')$. O autómato é **determinístico**.

Seja $A = (S, \Sigma, \delta, s_0, F)$ um autómato finito determinístico.

- Uma configuração é um par (s, x), em que s seria o estado em que o autómato pode estar e x a palavra que está na fita.
- A mudança de configuração num passo é definida formalmente por uma relação binária ⊢_A em S × Σ* assim:

$$(s,x) \vdash_{\mathcal{A}} (s',x')$$
 sse $x = ax'$ e $s' = \delta(s,a)$, com $a \in \Sigma$

quaisquer que sejam os estados $s, s' \in S$ e as palavras $x, x' \in \Sigma^*$.

Por definição, a relação binária $\vdash_{\mathcal{A}}$ é um subconjunto de $(S \times \Sigma^{\star}) \times (S \times \Sigma^{\star})$.

Quando só temos um autómato, podemos escrever simplesmente \vdash . .

• Como δ é uma função, dado (s,x), com $x \neq \varepsilon$, existe um e um só (s',x') tal que $(s,x) \vdash_{\mathcal{A}} (s',x')$. O autómato é **determinístico.**

$$\forall s \in S \ \forall x \in \Sigma^* \ \forall a \in \Sigma$$
 $(s, ax) \vdash_{\mathcal{A}} (\delta(s, a), x)$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Seja $A = (S, \Sigma, \delta, s_0, F)$ um autómato finito determinístico.

$$(s,x) \vdash_{\mathcal{A}}^{2} (s'',x'')$$
 sse $\exists x' \in \Sigma^{*} \exists s' \in S \ (s,x) \vdash_{\mathcal{A}} (s',x') \land (s',x') \vdash_{\mathcal{A}} (s'',x'')$ quaisquer que sejam os estados $s,s' \in S$ e as palavras $x,x' \in \Sigma^{*}$.

- A mudança de configuração em k passos, $\vdash_{\mathcal{A}}^{k}$, com $k \geq 2$, é definida formalmente pela composta $\vdash_{\mathcal{A}}^{k-1} \vdash_{\mathcal{A}}$, que é igual a $\vdash_{\mathcal{A}} \vdash_{\mathcal{A}}^{k-1}$.
- O fecho transitivo e reflexivo da relação ⊢_A, denotado por ⊢_A, representa a relação de mudança de configuração num número finito de passos, possivelmente zero.
- A linguagem reconhecida pelo AFD $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ é

$$\mathcal{L}(\mathcal{A}) = \{x \mid \text{ existe } f \in F \text{ tal que } (s_0, x) \vdash_{\mathcal{A}}^* (f, \varepsilon)\}$$

Seja $A = (S, \Sigma, \delta, s_0, F)$ um autómato finito determinístico.

$$(s,x) \vdash^2_{\mathcal{A}} (s'',x'')$$
 sse $\exists x' \in \Sigma^* \exists s' \in S \ (s,x) \vdash_{\mathcal{A}} (s',x') \land (s',x') \vdash_{\mathcal{A}} (s'',x'')$ quaisquer que sejam os estados $s,s' \in S$ e as palavras $x,x' \in \Sigma^*$.

- A mudança de configuração em k passos, $\vdash_{\mathcal{A}}^{k}$, com $k \geq 2$, é definida formalmente pela composta $\vdash_{\mathcal{A}}^{k-1} \vdash_{\mathcal{A}}$, que é igual a $\vdash_{\mathcal{A}} \vdash_{\mathcal{A}}^{k-1}$.
- O fecho transitivo e reflexivo da relação ⊢_A, denotado por ⊢_A, representa a relação de mudança de configuração num número finito de passos, possivelmente zero.
- A linguagem reconhecida pelo AFD $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ é

$$\mathcal{L}(\mathcal{A}) = \{ x \mid \text{ existe } f \in F \text{ tal que } (s_0, x) \vdash_{\mathcal{A}}^* (f, \varepsilon) \}$$

Seja $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ um autómato finito determinístico.

$$(s,x) \vdash^2_{\mathcal{A}} (s'',x'')$$
 sse $\exists x' \in \Sigma^* \exists s' \in S \ (s,x) \vdash_{\mathcal{A}} (s',x') \land (s',x') \vdash_{\mathcal{A}} (s'',x'')$ quaisquer que sejam os estados $s,s' \in S$ e as palavras $x,x' \in \Sigma^*$.

- A mudança de configuração em k passos, $\vdash_{\mathcal{A}}^{k}$, com $k \geq 2$, é definida formalmente pela composta $\vdash_{\mathcal{A}}^{k-1} \vdash_{\mathcal{A}}$, que é igual a $\vdash_{\mathcal{A}} \vdash_{\mathcal{A}}^{k-1}$.
- O fecho transitivo e reflexivo da relação ⊢_A, denotado por ⊢_A, representa a relação de mudança de configuração num número finito de passos, possivelmente zero.
- A linguagem reconhecida pelo AFD $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ é

$$\mathcal{L}(\mathcal{A}) = \{x \mid \text{ existe } f \in F \text{ tal que } (s_0, x) \vdash_{\mathcal{A}}^{\star} (f, \varepsilon)\}$$

Seja $A = (S, \Sigma, \delta, s_0, F)$ um autómato finito determinístico.

$$(s,x) \vdash_{\mathcal{A}}^{2} (s'',x'')$$
 sse $\exists x' \in \Sigma^{*} \exists s' \in S \ (s,x) \vdash_{\mathcal{A}} (s',x') \land (s',x') \vdash_{\mathcal{A}} (s'',x'')$ quaisquer que sejam os estados $s,s' \in S$ e as palavras $x,x' \in \Sigma^{*}$.

- A mudança de configuração em k passos, $\vdash_{\mathcal{A}}^{k}$, com $k \geq 2$, é definida formalmente pela composta $\vdash_{\mathcal{A}}^{k-1} \vdash_{\mathcal{A}}$, que é igual a $\vdash_{\mathcal{A}} \vdash_{\mathcal{A}}^{k-1}$.
- O fecho transitivo e reflexivo da relação ⊢_A, denotado por ⊢_A, representa a relação de mudança de configuração num número finito de passos, possivelmente zero.
- A linguagem reconhecida pelo AFD $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ é

$$\mathcal{L}(\mathcal{A}) = \{x \mid \text{ existe } f \in F \text{ tal que } (s_0, x) \vdash^{\star}_{\mathcal{A}} (f, \varepsilon)\}$$

Exemplo para AFD

Seja A o AFD de alfabeto $\Sigma = \{a, b\}$.

- abaab $\in \mathcal{L}(A)$ pois $(s_0, abaab) \vdash (s_1, baab) \vdash (s_0, aab) \vdash (s_1, ab) \vdash (s_2, b) \vdash (s_2, \varepsilon)$
- ababa $\notin \mathcal{L}(A)$ pois $(s_0, aba) \vdash (s_1, baba) \vdash (s_0, aba) \vdash (s_0, ba) \vdash (s_0, aba) \vdash (s_0$

Por indução matemática sobre |x| podemos mostrar:

- $\forall x \in \{ab, b\}^* \ \forall y \in \Sigma^* \ (s_0, xy) \vdash^* (s_0, y)$
- $\forall x \in \Sigma^* \ \forall y \in \Sigma^* \ \text{se} \ (s_0, xy) \vdash^* (s_0, y) \ \text{então} \ x \in \{ab, b\}^*$

o que é interessante para concluir que $\mathcal{L}(A) = \mathcal{L}(\{ab,b\}^*\{aa\}\{a,b\}^*)$ é o conjunto das **palavras que têm aa como subpalavra**.

Seja $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ um autómato finito não determinístico.

• Definimos a relação $\vdash_{\mathcal{A}}$ em $2^{S} \times \Sigma^{\star}$ por

$$(E,x) \vdash_{\mathcal{A}} (E',x')$$
 sse $x = ax'$ e $E' = \bigcup_{s \in E} \delta(s,a)$

• A linguagem reconhecida pelo AFND $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ é

$$\mathcal{L}(\mathcal{A}) = \{x \mid \text{ existe } E \in 2^{S} \text{ tal que } (\{s_0\}, x) \vdash_{\mathcal{A}}^{\star} (E, \varepsilon) \text{ e } E \cap F \neq \emptyset\}$$

sendo $\vdash^{\star}_{\mathcal{A}}$ o fecho reflexivo e transitivo de $\vdash_{\mathcal{A}}$.

Noção formal de linguagem aceite por AFND- ε

Seja $\mathcal{A}=(S,\Sigma,\delta,s_0,F)$ um autómato finito não determinístico, com possivelmente transições por ε .

• Definimos a relação $\vdash_{\mathcal{A}}$ em $2^{S} \times \Sigma^{\star}$ por

$$(E,x) \vdash_{\mathcal{A}} (E',x')$$
 sse $x = ax'$ e $E' = Fecho_{\varepsilon}(\bigcup_{s \in Fecho_{\varepsilon}(E)} \delta(s,a))$

A linguagem reconhecida pelo AFND-ε A = (S, Σ, δ, s₀, F) é
 L(A) = {x | existe E ∈ 2^S tal que (Fecho_ε(s₀), x) ⊢_A^{*} (E, ε) e E ∩ F ≠ ∅}
 sendo ⊢_A^{*} o fecho reflexivo e transitivo de ⊢_A.

Exemplo para AFND- ε

Seja A o AFD de alfabeto $\Sigma = \{a, b\}$.

$$Fecho_{\varepsilon}(s_8) = \{s_8, s_9, s_6, s_1, s_4\}$$

- babb $\in \mathcal{L}(A)$ pois
 - $(\{s_8, s_9, s_6, s_1, s_4\}, babb) \vdash (\{s_2, s_5, s_7, s_9, s_6, s_1, s_4\}, abb) \vdash (\{s_3, s_7, s_9, s_6, s_1, s_4\}, bb) \vdash (\{s_2, s_5, s_7, s_9, s_6, s_1, s_4\}, b) \vdash (\{s_2, s_5, s_7, s_9, s_6, s_1, s_4\}, \varepsilon)$
- $aa \notin \mathcal{L}(A)$ pois $(\{s_8, s_9, s_6, s_1, s_4\}, aa) \vdash (\{\}, a) \vdash (\{\}, \varepsilon)$

Sobre o método de conversão baseado em subconjuntos

Com as definições que acabámos de apresentar para $\mathcal{L}(A)$, a correção do AFD A' construído para um AFND ou AFND- ε A pelo método dos subconjuntos, isto é, a prova de que $x \in \mathcal{L}(A)$ sse $x \in \mathcal{L}(A')$, segue trivialmente.

Porquê?

Seja $A = (S, \Sigma, \delta, s_0, F)$ o AF de partida e $A' = (2^S, \Sigma, \delta', s_0', F')$ o AFD que construimos por aplicação do método.

Pelas definições de s_0' e de δ' , podemos mostrar por indução sobre |u| que, para todos $E, E' \in 2^S$ fechados por ε e todos $u, v \in \Sigma^*$ se tem

$$(E, uv) \vdash_{A'}^{\star} (E', v)$$
 se e só se $(E, uv) \vdash_{A}^{\star} (E', v)$

para concluir que

$$(Fecho_{\varepsilon}(s_0), x) \vdash_{A'}^{\star} (E', \varepsilon)$$
 se e só se $(Fecho_{\varepsilon}(s_0), x) \vdash_{A}^{\star} (E', \varepsilon)$, com $x \in \Sigma^{\star}$

Não separamos a conversão para AFNDs pois corresponde à de AFNDs- ε . Num AFND, $Fecho_{\varepsilon}(s_0)=\{s_0\}$ e $Fecho_{\varepsilon}(E)=E$.

Qual é o AFD mínimo para uma linguagem regular L?

Para responder, vamos analisar duas questões:

- O que s\(\tilde{a}\) palavras equivalentes para um AFD A dado? Ou seja, indistingu\(\tilde{v}\) ies para o AFD A?
- Que palavras <u>todos</u> os AFDs que aceitam uma linguagem L dada têm de distinguir para estar corretos?

Por exemplo: Seja L o conjunto das palavras que começam por 0. Esta linguagem é reconhecida pelos dois AFDs seguintes:

Qual é o AFD mínimo para uma linguagem regular L?

Para responder, vamos analisar duas questões:

- O que s\(\tilde{a}\) palavras equivalentes para um AFD A dado? Ou seja, indistingu\(\tilde{v}\) ies para o AFD A?
- Que palavras **todos** os AFDs que aceitam uma linguagem *L* dada têm de distinguir para estar corretos?

Por exemplo: Seja L o conjunto das palavras que começam por 0. Esta linguagem é reconhecida pelos dois AFDs seguintes:

O AFD da esquerda tem mais estados. Distingue, por exemplo, 0 de 01, e o da direita não distingue! Mas, todos os AFDs que aceitem L têm de distinguir ε , 0 e 1. Terão pelo menos 3 estados. Caso contrário, não reconhecem L_{-} $+ \varepsilon$

Seja $A=(S,\Sigma,\delta,s_0,F)$ um AFD. Recordar que δ é uma função de $S\times\Sigma$ em S. Vamos definir uma extensão $\hat{\delta}$ de δ a $S\times\Sigma^{\star}$ assim

$$\hat{\delta}(s,\varepsilon) = s$$
, para todo $s \in S$
 $\hat{\delta}(s,ax) = \hat{\delta}(\delta(s,a),x)$, para todo $s \in S$, $x \in \Sigma^*$ e $a \in \Sigma$.

- $\hat{\delta}(s,x)$ indica o estado a que x leva o AFD A se for consumida a partir de s.
- Seria equivalente definir $\hat{\delta}$ recursivamente à custa de δ por:

$$\begin{array}{lll} \hat{\delta}(s,\varepsilon) & = & s, & \text{para todo } s \in S \\ \hat{\delta}(s,xa) & = & \delta(\,\hat{\delta}(s,x),\,a), & \text{para todo } s \in S,\,x \in \Sigma^* \text{ e } a \in \Sigma \end{array}$$

• **Proposição:** $\hat{\delta}(s,xz) = \hat{\delta}(\hat{\delta}(s,x),z)$, para todo $x,z \in \Sigma^*$ e $s \in S$. Ou seja, depois de consumir xz a partir de s, o AFD A fica no mesmo estado que ficaria se consumisse z a partir do estado $\hat{\delta}(s,x)$.

Seja $A=(S,\Sigma,\delta,s_0,F)$ um AFD. Recordar que δ é uma função de $S\times\Sigma$ em S. Vamos definir uma extensão $\hat{\delta}$ de δ a $S\times\Sigma^{\star}$ assim

$$\hat{\delta}(s,\varepsilon) = s$$
, para todo $s \in S$
 $\hat{\delta}(s,ax) = \hat{\delta}(\delta(s,a),x)$, para todo $s \in S$, $x \in \Sigma^*$ e $a \in \Sigma$.

- $\hat{\delta}(s,x)$ indica o estado a que x leva o AFD A se for consumida a partir de s.
- Seria equivalente definir $\hat{\delta}$ recursivamente à custa de δ por:

$$\begin{array}{lll} \hat{\delta}(s,\varepsilon) & = & s, & \text{para todo } s \in S \\ \hat{\delta}(s,xa) & = & \delta(\,\hat{\delta}(s,x),\,a), & \text{para todo } s \in S,\,x \in \Sigma^{\star} \text{ e } a \in \Sigma. \end{array}$$

• **Proposição:** $\hat{\delta}(s,xz) = \hat{\delta}(\hat{\delta}(s,x),z)$, para todo $x,z \in \Sigma^*$ e $s \in S$. Ou seja, depois de consumir xz a partir de s, o AFD A fica no mesmo estado que ficaria se consumisse z a partir do estado $\hat{\delta}(s,x)$.

Seja $A=(S,\Sigma,\delta,s_0,F)$ um AFD. Recordar que δ é uma função de $S\times\Sigma$ em S. Vamos definir uma extensão $\hat{\delta}$ de δ a $S\times\Sigma^{\star}$ assim

$$\hat{\delta}(s,\varepsilon) = s$$
, para todo $s \in S$
 $\hat{\delta}(s,ax) = \hat{\delta}(\delta(s,a),x)$, para todo $s \in S$, $x \in \Sigma^*$ e $a \in \Sigma$.

- $\hat{\delta}(s,x)$ indica o estado a que x leva o AFD A se for consumida a partir de s.
- Seria equivalente definir $\hat{\delta}$ recursivamente à custa de δ por:

$$\begin{array}{lll} \hat{\delta}(s,\varepsilon) & = & s, & \text{para todo } s \in S \\ \hat{\delta}(s,xa) & = & \delta(\,\hat{\delta}(s,x),\,a), & \text{para todo } s \in S,\,x \in \Sigma^{\star} \text{ e } a \in \Sigma. \end{array}$$

• Proposição: $\hat{\delta}(s,xz) = \hat{\delta}(\hat{\delta}(s,x),z)$, para todo $x,z \in \Sigma^*$ e $s \in S$. Ou seja, depois de consumir xz a partir de s, o AFD A fica no mesmo estado que ficaria se consumisse z a partir do estado $\hat{\delta}(s,x)$.

Quaisquer que sejam $x, y \in \Sigma^*$, se x e y levam o AFD de s_0 a um mesmo estado então xz e yz também levam o AFD de s_0 a um mesmo estado, para todo $z \in \Sigma^*$.

Ou seja, em qualquer AFD $A = (S, \Sigma, \delta, s_0, F)$ tem-se

se
$$\hat{\delta}(s_0,x)=\hat{\delta}(s_0,y)$$
 então $\hat{\delta}(s_0,xz)=\hat{\delta}(s_0,yz)$, para todo $z\in\Sigma^\star$.

Tal implica que, se $\delta(s_0, x) = \delta(s_0, y)$ então, para todo $z \in \Sigma^*$, as palavras xz e yz serão ou ambas aceites ou ambas rejeitadas pelo autómato A. Isto é, sendo L a linguagem que o AFD A reconhece, tem-se:

se
$$\hat{\delta}(s_0,x)=\hat{\delta}(s_0,y)$$
 então $xz\in L\Leftrightarrow yz\in L$, para todo $z\in \Sigma^*$.

$$\hat{\delta}(s_0,x) = \hat{\delta}(s_0,y)$$
 se e só se $xz \in L \Leftrightarrow yz \in L$, para todo $z \in \Sigma^*$.

Quaisquer que sejam $x, y \in \Sigma^*$, se x e y levam o AFD de s_0 a um mesmo estado então xz e yz também levam o AFD de s_0 a um mesmo estado, para todo $z \in \Sigma^*$.

Ou seja, em qualquer AFD $A = (S, \Sigma, \delta, s_0, F)$ tem-se

se
$$\hat{\delta}(s_0,x)=\hat{\delta}(s_0,y)$$
 então $\hat{\delta}(s_0,xz)=\hat{\delta}(s_0,yz)$, para todo $z\in\Sigma^\star$.

Tal implica que, se $\hat{\delta}(s_0, x) = \hat{\delta}(s_0, y)$ então, para todo $z \in \Sigma^*$, as palavras xz e yz serão ou ambas aceites ou ambas rejeitadas pelo autómato A. Isto é, sendo L a linguagem que o AFD A reconhece, tem-se:

se
$$\hat{\delta}(s_0, x) = \hat{\delta}(s_0, y)$$
 então $xz \in L \Leftrightarrow yz \in L$, para todo $z \in \Sigma^*$.

$$\hat{\delta}(s_0,x) = \hat{\delta}(s_0,y)$$
 se e só se $xz \in L \Leftrightarrow yz \in L$, para todo $z \in \Sigma^*$.

Quaisquer que sejam $x, y \in \Sigma^*$, se x e y levam o AFD de s_0 a um mesmo estado então xz e yz também levam o AFD de s_0 a um mesmo estado, para todo $z \in \Sigma^*$.

Ou seja, em qualquer AFD $A = (S, \Sigma, \delta, s_0, F)$ tem-se

se
$$\hat{\delta}(s_0,x)=\hat{\delta}(s_0,y)$$
 então $\hat{\delta}(s_0,xz)=\hat{\delta}(s_0,yz)$, para todo $z\in \Sigma^\star$.

Tal implica que, se $\hat{\delta}(s_0, x) = \hat{\delta}(s_0, y)$ então, para todo $z \in \Sigma^*$, as palavras xz e yz serão ou ambas aceites ou ambas rejeitadas pelo autómato A. Isto é, sendo L a linguagem que o AFD A reconhece, tem-se:

se
$$\hat{\delta}(s_0,x) = \hat{\delta}(s_0,y)$$
 então $xz \in L \Leftrightarrow yz \in L$, para todo $z \in \Sigma^*$.

$$\hat{\delta}(s_0,x) = \hat{\delta}(s_0,y)$$
 se e só se $xz \in L \Leftrightarrow yz \in L$, para todo $z \in \Sigma^*$.

Quaisquer que sejam $x, y \in \Sigma^*$, se x e y levam o AFD de s_0 a um mesmo estado então xz e yz também levam o AFD de s_0 a um mesmo estado, para todo $z \in \Sigma^*$.

Ou seja, em qualquer AFD $A = (S, \Sigma, \delta, s_0, F)$ tem-se

se
$$\hat{\delta}(s_0,x)=\hat{\delta}(s_0,y)$$
 então $\hat{\delta}(s_0,xz)=\hat{\delta}(s_0,yz)$, para todo $z\in \Sigma^\star$.

Tal implica que, se $\hat{\delta}(s_0, x) = \hat{\delta}(s_0, y)$ então, para todo $z \in \Sigma^*$, as palavras xz e yz serão ou ambas aceites ou ambas rejeitadas pelo autómato A. Isto é, sendo L a linguagem que o AFD A reconhece, tem-se:

se
$$\hat{\delta}(s_0, x) = \hat{\delta}(s_0, y)$$
 então $xz \in L \Leftrightarrow yz \in L$, para todo $z \in \Sigma^*$.

$$\hat{\delta}(s_0,x)=\hat{\delta}(s_0,y)$$
 se e só se $xz\in L\Leftrightarrow yz\in L$, para todo $z\in \Sigma^\star$.

Quaisquer que sejam $x, y \in \Sigma^*$, se x e y levam o AFD de s_0 a um mesmo estado então xz e yz também levam o AFD de s_0 a um mesmo estado, para todo $z \in \Sigma^*$.

Ou seja, em qualquer AFD $A = (S, \Sigma, \delta, s_0, F)$ tem-se

se
$$\hat{\delta}(s_0,x)=\hat{\delta}(s_0,y)$$
 então $\hat{\delta}(s_0,xz)=\hat{\delta}(s_0,yz)$, para todo $z\in \Sigma^\star$.

Tal implica que, se $\hat{\delta}(s_0, x) = \hat{\delta}(s_0, y)$ então, para todo $z \in \Sigma^*$, as palavras xz e yz serão ou ambas aceites ou ambas rejeitadas pelo autómato A. Isto é, sendo L a linguagem que o AFD A reconhece, tem-se:

se
$$\hat{\delta}(s_0, x) = \hat{\delta}(s_0, y)$$
 então $xz \in L \Leftrightarrow yz \in L$, para todo $z \in \Sigma^*$.

$$\hat{\delta}(s_0,x)=\hat{\delta}(s_0,y)$$
 se e só se $xz\in L\Leftrightarrow yz\in L$, para todo $z\in \Sigma^\star$.

Corolário do Teorema de Myhill-Nerode

A prova do teorema de Myhill-Nerode, que enunciamos mais à frente, indica-nos como obter o AFD mínimo para uma linguagem regular L.

O conjunto de estados do **AFD mínimo** que reconhece L corresponde ao conjunto das classes de equivalência da relação R_L definida em Σ^* por

$$R_L = \{(x, y) \mid x, y \in \Sigma^* \text{ e } \forall z \in \Sigma^* (xz \in L \Leftrightarrow yz \in L)\}$$

Corolário do Teorema de Myhill-Nerode (AFD mínimo para $L \subseteq \Sigma^*$ regular):

Se L é uma linguagem regular, o conjunto Σ^*/R_L das classes de equivalência de R_L é finito. O **AFD mínimo** para L é $\mathcal{A} = (\Sigma^*/R_L, \Sigma, \delta, [\varepsilon], F)$, com $F = \{[x] \mid x \in L\}$, e $\delta([x], a) = [xa]$, para todo $[x] \in \Sigma^*/R_L$ e todo $a \in \Sigma$, sendo único a menos da designação dos estados.

Corolário do Teorema de Myhill-Nerode

A prova do teorema de Myhill-Nerode, que enunciamos mais à frente, indica-nos como obter o AFD mínimo para uma linguagem regular L.

O conjunto de estados do **AFD mínimo** que reconhece L corresponde ao conjunto das classes de equivalência da relação R_L definida em Σ^* por

$$R_L = \{(x, y) \mid x, y \in \Sigma^* \text{ e } \forall z \in \Sigma^* (xz \in L \Leftrightarrow yz \in L)\}$$

Corolário do Teorema de Myhill-Nerode (AFD mínimo para $L \subseteq \Sigma^*$ regular):

Se L é uma linguagem regular, o conjunto Σ^*/R_L das classes de equivalência de R_L é finito. O **AFD mínimo** para L é $\mathcal{A} = (\Sigma^*/R_L, \Sigma, \delta, [\varepsilon], F)$, com $F = \{[x] \mid x \in L\}$, e $\delta([x], a) = [xa]$, para todo $[x] \in \Sigma^*/R_L$ e todo $a \in \Sigma$, sendo único a menos da designação dos estados.

AFD mínimo para $L = \{x \mid x \text{ começa por } 0\}$, com $\Sigma = \{0, 1, 2\}$?

• Partimos do **estado inicial** $[\varepsilon]$. Vamos analisar as transições e ver se surjem novos estados, sabendo que δ é dada por

$$\delta([x],a)\stackrel{\mathsf{def}}{=} [xa]$$
, para todo $a\in \Sigma$ e $x\in \Sigma^\star$.

O conjunto de **estados finais** é $F = \{ [x] \mid x \in L \}.$

• xR_Ly se e só se $\forall z \in \Sigma^*(xz \in L \Leftrightarrow yz \in L)$. [x] denota a classe de equivalência de x para R_L .

Assim, temos:

- $[\varepsilon]$ é o estado inicial; $[\varepsilon] \notin F$ porque $\varepsilon \notin L$.
- $\delta([\varepsilon], 0) \stackrel{\text{def}}{=} [\varepsilon 0] = [0] \neq [\varepsilon]$, pois $(0, \varepsilon) \notin R_L$, porque $0 \in L$ e $\varepsilon \notin L$. Logo, [0] é um **novo estado** e $[0] \in F$ pois $0 \in L$.

Para ver que $(0,\varepsilon)\notin R_L$, tomamos $z=\varepsilon$ para ter $0\not\in L$ $\not\in L$ 0

AFD mínimo para $L = \{x \mid x \text{ começa por } 0\}$, com $\Sigma = \{0, 1, 2\}$?

• Partimos do **estado inicial** $[\varepsilon]$. Vamos analisar as transições e ver se surjem novos estados, sabendo que δ é dada por

$$\delta([x], a) \stackrel{\text{def}}{=} [xa]$$
, para todo $a \in \Sigma$ e $x \in \Sigma^*$.

O conjunto de **estados finais** é $F = \{ [x] \mid x \in L \}.$

• xR_Ly se e só se $\forall z \in \Sigma^*(xz \in L \Leftrightarrow yz \in L)$. [x] denota a classe de equivalência de x para R_L .

Assim, temos:

- $[\varepsilon]$ é o estado inicial; $[\varepsilon] \notin F$ porque $\varepsilon \notin L$.
- $\delta([\varepsilon], 0) \stackrel{\text{def}}{=} [\varepsilon 0] = [0] \neq [\varepsilon]$, pois $(0, \varepsilon) \notin R_L$, porque $0 \in L$ e $\varepsilon \notin L$. Logo, [0] é um **novo estado** e $[0] \in F$ pois $0 \in L$.

Para ver que $(0,\varepsilon)\notin R_L$, tomamos $z=\varepsilon$ para ter 0 \in L e z \notin L e z e e e

AFD mínimo para $L = \{x \mid x \text{ começa por } 0\}$, com $\Sigma = \{0, 1, 2\}$?

• Partimos do **estado inicial** $[\varepsilon]$. Vamos analisar as transições e ver se surjem novos estados, sabendo que δ é dada por

$$\delta([x], a) \stackrel{\text{def}}{=} [xa]$$
, para todo $a \in \Sigma$ e $x \in \Sigma^*$.

O conjunto de **estados finais** é $F = \{ [x] \mid x \in L \}.$

• xR_Ly se e só se $\forall z \in \Sigma^*(xz \in L \Leftrightarrow yz \in L)$. [x] denota a classe de equivalência de x para R_L .

Assim, temos:

- $[\varepsilon]$ é o estado inicial; $[\varepsilon] \notin F$ porque $\varepsilon \notin L$.
- $\delta([\varepsilon], 0) \stackrel{\text{def}}{=} [\varepsilon 0] = [0] \neq [\varepsilon]$, pois $(0, \varepsilon) \notin R_L$, porque $0 \in L$ e $\varepsilon \notin L$. Logo, [0] é um **novo estado** e $[0] \in F$ pois $0 \in L$.

AFD mínimo para $L = \{x \mid x \text{ começa por } 0\}$, com $\Sigma = \{0, 1, 2\}$?

• Partimos do **estado inicial** $[\varepsilon]$. Vamos analisar as transições e ver se surjem novos estados, sabendo que δ é dada por

$$\delta([x], a) \stackrel{\text{def}}{=} [xa]$$
, para todo $a \in \Sigma$ e $x \in \Sigma^*$.

O conjunto de **estados finais** é $F = \{ [x] \mid x \in L \}.$

• xR_Ly se e só se $\forall z \in \Sigma^*(xz \in L \Leftrightarrow yz \in L)$. [x] denota a classe de equivalência de x para R_L .

Assim, temos:

- $[\varepsilon]$ é o estado inicial; $[\varepsilon] \notin F$ porque $\varepsilon \notin L$.
- $\delta([\varepsilon], 0) \stackrel{\text{def}}{=} [\varepsilon 0] = [0] \neq [\varepsilon]$, pois $(0, \varepsilon) \notin R_L$, porque $0 \in L$ e $\varepsilon \notin L$. Logo, [0] é um novo estado e $[0] \in F$ pois $0 \in L$.

Para ver que $(0,\varepsilon) \notin R_L$, tomamos $z=\varepsilon$ para ter $0z \in L$ $e \not\in Z \notin L$

AFD mínimo para $L = \{x \mid x \text{ começa por } 0\}$, com $\Sigma = \{0, 1, 2\}$?

• Partimos do **estado inicial** $[\varepsilon]$. Vamos analisar as transições e ver se surjem novos estados, sabendo que δ é dada por

$$\delta([x], a) \stackrel{\text{def}}{=} [xa]$$
, para todo $a \in \Sigma$ e $x \in \Sigma^*$.

O conjunto de **estados finais** é $F = \{ [x] \mid x \in L \}.$

• xR_Ly se e só se $\forall z \in \Sigma^*(xz \in L \Leftrightarrow yz \in L)$. [x] denota a classe de equivalência de x para R_L .

Assim, temos:

- $[\varepsilon]$ é o estado inicial; $[\varepsilon] \notin F$ porque $\varepsilon \notin L$.
- $\delta([\varepsilon], 0) \stackrel{\text{def}}{=} [\varepsilon 0] = [0] \neq [\varepsilon]$, pois $(0, \varepsilon) \notin R_L$, porque $0 \in L$ e $\varepsilon \notin L$. Logo, [0] é um **novo estado** e $[0] \in F$ pois $0 \in L$.

Para ver que $(0,\varepsilon) \notin R_L$, tomamos $z = \varepsilon$ para ter $0z \in L$ eaz $\notin L$ \bullet \bullet

AFD mínimo para $L = \{x \mid x \text{ começa por } 0\}$, com $\Sigma = \{0, 1, 2\}$?

• Partimos do **estado inicial** $[\varepsilon]$. Vamos analisar as transições e ver se surjem novos estados, sabendo que δ é dada por

$$\delta([x], a) \stackrel{\text{def}}{=} [xa]$$
, para todo $a \in \Sigma$ e $x \in \Sigma^*$.

O conjunto de **estados finais** é $F = \{ [x] \mid x \in L \}.$

• $xR_L y$ se e só se $\forall z \in \Sigma^*(xz \in L \Leftrightarrow yz \in L)$. [x] denota a classe de equivalência de x para R_L .

Assim, temos:

- $[\varepsilon]$ é o estado inicial; $[\varepsilon] \notin F$ porque $\varepsilon \notin L$.
- $\delta([\varepsilon], 0) \stackrel{\text{def}}{=} [\varepsilon 0] = [0] \neq [\varepsilon]$, pois $(0, \varepsilon) \notin R_L$, porque $0 \in L$ e $\varepsilon \notin L$. Logo, [0] é um **novo estado** e $[0] \in F$ pois $0 \in L$.

Para ver que $(0,\varepsilon) \notin R_L$, tomamos $z = \varepsilon$ para ter $0z \in L$ e $\varepsilon z \notin L$.

AFD mínimo para $L = \{x \mid x \text{ começa por } 0\}$, com $\Sigma = \{0, 1, 2\}$?

• Partimos do **estado inicial** $[\varepsilon]$. Vamos analisar as transições e ver se surjem novos estados, sabendo que δ é dada por

$$\delta([x], a) \stackrel{\text{def}}{=} [xa]$$
, para todo $a \in \Sigma$ e $x \in \Sigma^*$.

O conjunto de **estados finais** é $F = \{ [x] \mid x \in L \}.$

• $xR_L y$ se e só se $\forall z \in \Sigma^*(xz \in L \Leftrightarrow yz \in L)$. [x] denota a classe de equivalência de x para R_L .

Assim, temos:

- $[\varepsilon]$ é o estado inicial; $[\varepsilon] \notin F$ porque $\varepsilon \notin L$.
- $\delta([\varepsilon], 0) \stackrel{\text{def}}{=} [\varepsilon 0] = [0] \neq [\varepsilon]$, pois $(0, \varepsilon) \notin R_L$, porque $0 \in L$ e $\varepsilon \notin L$. Logo, [0] é um **novo estado** e $[0] \in F$ pois $0 \in L$.

Para ver que $(0,\varepsilon) \notin R_L$, tomamos $z = \varepsilon$ para ter $0z \in L$ e $\varepsilon z \notin L$.

Exemplo 1 (cont)

Recordar que $(x,y) \in R_L$ se e só se $\forall z \in \Sigma^*(xz \in L \Leftrightarrow yz \in L)$ quer dizer que

$$(x,y) \notin R_L$$
 se e só se $\exists z \in \Sigma^* (xz \in L \land yz \notin L) \lor (xz \notin L \land yz \in L)$

o que significa que se $(x, y) \notin R_L$, existe alguma palavra z que obriga o AFD mínimo a distinguir [x] de [y], para poder ter $[xz] \neq [yz]$.

- $\delta([\varepsilon], 1) \stackrel{\text{def}}{=} [\varepsilon 1] = [1]$. [1] é um novo estado e [1] $\notin F$. Porquê?
 - [1] \neq [0] pois, como 1 \notin L e 0 \in L, temos (1,0) \notin R_L . Tomamos z=arepsilon
 - $[1] \neq [\varepsilon] \text{ pois, embora } 1 \notin L \text{ e } \varepsilon \notin L \text{, sabemos que } 1z \notin L \text{, para todo } z \in \Sigma^* \text{, c que não \'e verdade para } \varepsilon. \text{ Para } z = 0 \text{, temos } \varepsilon z = \varepsilon 0 = 0 \in L \text{ e } 1z = 10 \notin L.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ● めぬぐ

Recordar que $(x,y) \in R_L$ se e só se $\forall z \in \Sigma^* (xz \in L \Leftrightarrow yz \in L)$ quer dizer que

$$(x,y) \notin R_L$$
 se e só se $\exists z \in \Sigma^* (xz \in L \land yz \notin L) \lor (xz \notin L \land yz \in L)$

o que significa que se $(x, y) \notin R_L$, existe alguma palavra z que obriga o AFD mínimo a distinguir [x] de [y], para poder ter $[xz] \neq [yz]$.

- $\delta([\varepsilon], 1) \stackrel{\text{def}}{=} [\varepsilon 1] = [1]$. [1] é um novo estado e [1] $\notin F$. Porquê?
 - [1] \neq [0] pois, como 1 \notin L e 0 \in L, temos (1,0) \notin R_L . Tomamos $z=\varepsilon$.
 - $[1] \neq [\varepsilon]$ pois, embora $1 \notin L$ e $\varepsilon \notin L$, sabemos que $1z \notin L$, para todo $z \in \Sigma^*$, o que não é verdade para ε . Para z = 0, temos $\varepsilon z = \varepsilon 0 = 0 \in L$ e $1z = 10 \notin L$.

Recordar que $(x,y) \in R_L$ se e só se $\forall z \in \Sigma^* (xz \in L \Leftrightarrow yz \in L)$ quer dizer que

$$(x,y) \notin R_L$$
 se e só se $\exists z \in \Sigma^* (xz \in L \land yz \notin L) \lor (xz \notin L \land yz \in L)$

o que significa que se $(x, y) \notin R_L$, existe alguma palavra z que obriga o AFD mínimo a distinguir [x] de [y], para poder ter $[xz] \neq [yz]$.

• $\delta([\varepsilon], 1) \stackrel{\text{def}}{=} [\varepsilon 1] = [1]$. [1] é um novo estado e [1] $\notin F$. Porquê?

[1] \neq [0] pois, como 1 \notin L e 0 \in L, temos (1,0) \notin R_L. Tomamos $z = \varepsilon$.

 $[1] \neq [\varepsilon]$ pois, embora $1 \notin L$ e $\varepsilon \notin L$, sabemos que $1z \notin L$, para todo $z \in \Sigma^*$, o que não é verdade para ε . Para z = 0, temos $\varepsilon z = \varepsilon 0 = 0 \in L$ e $1z = 10 \notin L$.

Recordar que $(x,y) \in R_L$ se e só se $\forall z \in \Sigma^*(xz \in L \Leftrightarrow yz \in L)$ quer dizer que

$$(x,y) \notin R_L$$
 se e só se $\exists z \in \Sigma^* (xz \in L \land yz \notin L) \lor (xz \notin L \land yz \in L)$

o que significa que se $(x, y) \notin R_L$, existe alguma palavra z que obriga o AFD mínimo a distinguir [x] de [y], para poder ter $[xz] \neq [yz]$.

• $\delta([\varepsilon], 1) \stackrel{\text{def}}{=} [\varepsilon 1] = [1]$. [1] é um **novo estado** e [1] $\notin F$.

Porquê?

[1] \neq [0] pois, como 1 \notin L e 0 \in L, temos (1,0) \notin R_L . Tomamos $z = \varepsilon$.

 $[1] \neq [\varepsilon]$ pois, embora $1 \notin L$ e $\varepsilon \notin L$, sabemos que $1z \notin L$, para todo $z \in \Sigma^*$, o que não é verdade para ε . Para z = 0, temos $\varepsilon z = \varepsilon 0 = 0 \in L$ e $1z = 10 \notin L$.

- $\delta([\varepsilon], 2) \stackrel{\text{def}}{=} [2] = [1]$, porque se tem $2z \notin L$, para todo $z \in \Sigma^*$, à semelhança da palavra 1. Se começar por 1 ou 2, é rejeitada independentemente dos restantes símbolos.
- $\delta([0],0)\stackrel{\text{def}}{=}[00]=[0]$, porque $00z\in L$, para todo $z\in \Sigma^*$, à semelhança da palavra 0. Se começar por 0, é sempre aceite. $\delta([0],1)\stackrel{\text{def}}{=}[01]=[0]$, porque $01z\in L$, para todo $z\in \Sigma^*$. $\delta([0],2)\stackrel{\text{def}}{=}[02]=[0]$, porque $02z\in L$, para todo $z\in \Sigma^*$.
- $\delta([1], 0) = \delta([1], 1) = \delta([1], 2) = [1]$, porque [10] = [11] = [12] = [1]. Notar que $1z \notin L$, $10z \notin L$, $11z \notin L$, $12z \notin L$, para todo $z \in \Sigma^*$.

- $\delta([\varepsilon], 2) \stackrel{\text{def}}{=} [2] = [1]$, porque se tem $2z \notin L$, para todo $z \in \Sigma^*$, à semelhança da palavra 1. Se começar por 1 ou 2, é rejeitada independentemente dos restantes símbolos.
- $\delta([0],0) \stackrel{\text{def}}{=} [00] = [0]$, porque $00z \in L$, para todo $z \in \Sigma^*$, à semelhança da palavra 0. Se começar por 0, é sempre aceite. $\delta([0],1) \stackrel{\text{def}}{=} [01] = [0]$, porque $01z \in L$, para todo $z \in \Sigma^*$. $\delta([0],2) \stackrel{\text{def}}{=} [02] = [0]$, porque $02z \in L$, para todo $z \in \Sigma^*$.
- $\delta([1], 0) = \delta([1], 1) = \delta([1], 2) = [1]$, porque [10] = [11] = [12] = [1]. Notar que $1z \notin L$, $10z \notin L$, $11z \notin L$, $12z \notin L$, para todo $z \in \Sigma^*$.

- δ([ε], 2) ^{def} [2] = [1], porque se tem 2z ∉ L, para todo z ∈ Σ*, à semelhança da palavra 1. Se começar por 1 ou 2, é rejeitada independentemente dos restantes símbolos.
- $\delta([0],0) \stackrel{\text{def}}{=} [00] = [0]$, porque $00z \in L$, para todo $z \in \Sigma^*$, à semelhança da palavra 0. Se começar por 0, é sempre aceite. $\delta([0],1) \stackrel{\text{def}}{=} [01] = [0]$, porque $01z \in L$, para todo $z \in \Sigma^*$. $\delta([0],2) \stackrel{\text{def}}{=} [02] = [0]$, porque $02z \in L$, para todo $z \in \Sigma^*$.
- $\delta([1], 0) = \delta([1], 1) = \delta([1], 2) = [1]$, porque [10] = [11] = [12] = [1]. Notar que $1z \notin L$, $10z \notin L$, $11z \notin L$, $12z \notin L$, para todo $z \in \Sigma^*$.

Exemplo 2

Seja $L = \{x \mid x \text{ tem 00 como subpalavra}\}, \text{ com } \Sigma = \{0, 1\}.$

- Estado inicial: $[\varepsilon]$. Não é estado final porque $\varepsilon \notin L$.
- $\delta([\varepsilon], 0) \stackrel{\text{def}}{=} [0] \neq [\varepsilon]$, porque $\varepsilon 0 \notin L$ e $00 \in L$. [0] é um novo estado e não é final pois $0 \notin L$.
- $\delta([\varepsilon], 1) \stackrel{\text{def}}{=} [1] = [\varepsilon]$, porque $1z \in L$ sse z tem 00 como subpalavra, i.e., $z \in L$ e, analogamente, $\varepsilon z \in L$ sse $z \in L$.
- $\delta([0], 1) \stackrel{\text{def}}{=} [01] = [\varepsilon]$, porque $01z \in L$ sse $z \in L$.
- $\delta([0], 0) \stackrel{\text{def}}{=} [00]$. É um estado novo e é final porque $00 \in L$. Com $z = \varepsilon$, podiamos ver que $(00, 0) \notin R_L$ e $(00, \varepsilon) \notin R_L$.
- $\delta([00], 0) = \delta([00], 1) = [00]$ porque $000z \in L$ sse $z \in \Sigma^*$, à semelhança de 00z e de 001z.

Teorema de Myhill-Nerode

Definições:

Diz-se que uma relação binária R definida em Σ^* é invariante à direita para a concatenação se e só se $\forall x,y \in \Sigma^* \quad \forall z \in \Sigma^* \quad (x R y \Rightarrow xz R yz)$. Uma relação de equivalência é de **índice finito** sse tem um número finito de classes.

Enunciado do Teorema de Myhill-Nerode

As três afirmações seguintes, sobre uma linguagem L de Σ^* , são equivalentes:

- 1 L é aceite por um autómato finito.
- ② L é união de classes de equivalência de alguma relação de equivalência invariante à direita (para a concatenação) e de índice finito.
- **3** A relação de equivalência R_L é de índice finito.

A **caraterização do AFD mínimo para** L resulta da prova que iremos apresentar. Para a prova das três equivalências, basta mostrar que $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$.

Prova do Teorema de Myhill-Nerode

$$(1) \Rightarrow (2)$$

Seja $\mathcal{A}=(S,\Sigma,\delta,s_0,F)$ um AFD que aceita L. Seja $\mathcal{R}_{\mathcal{A}}$ a relação definida em Σ^* por

$$\forall x, y \in \Sigma^{\star} \quad (x R_{\mathcal{A}} y \quad sse \quad \hat{\delta}(s_0, x) = \hat{\delta}(s_0, y))$$

ou seja, xR_Ay sse x e y levam A do estado inicial ao mesmo estado.

- R_A é de equivalência.
- $R_{\mathcal{A}}$ é invariante à direita pois $\forall z \in \Sigma^{\star} \ x \ R_{\mathcal{A}} \ y \Rightarrow \hat{\delta}(s_0, x) = \hat{\delta}(s_0, y) \Rightarrow \hat{\delta}(s_0, xz) = \hat{\delta}(s_0, yz) \Rightarrow xz \ R_{\mathcal{A}} \ yz.$
- R_A é de índice finito. O número de classes de R_A não excede o número de estados de A, sendo |S| se todos os estados de A forem acessíveis de s_0 .
- L é união de classes de R_A . Cada estado final de A que seja acessível de s_0 identifica-se com uma classe de R_A à qual só pertencem palavras reconhecidas pelo autómato (isto é, palavras de L).

Prova do Teorema de Myhill-Nerode

$$(2) \Rightarrow (3)$$

Vamos provar que **se** L é reunião de classes de equivalência de alguma relação R de equivalência, invariante à direita e de índice finito, **então** cada classe C de R está contida em alguma classe de R_L . Tal permite concluir R_L é de índice finito, pois R é de índice finito e o número de classes de R_L não excede o número de classes de R.

Sejam $x, y \in \mathcal{C}$. Como R é invariante à direita e xRy então, qualquer que seja $z \in \Sigma^*$, tem-se xz R yz. Ou seja, xz e yz estão na mesma classe de R.

Como L é união de classes de R, então $xz \in L$ sse $yz \in L$, pois cada classe de R tem ou palavras de L ou palavras de $\Sigma^* \setminus L$.

Como z é qualquer e $xz \in L \Leftrightarrow yz \in L$ então $x R_L y$.

Logo, $x R y \Rightarrow x R_L y$ quaisquer que sejam $x, y \in \Sigma^*$, ou seja, qualquer classe de R está contida em alguma das classes de R_L .

Prova do Teorema de Myhill-Nerode

$$(3) \Rightarrow (1)$$

Dizer que R_L é de índice finito significa que Σ^*/R_L é finito. Defina-se o AFD

$$\mathcal{A} = (\Sigma^*/R_L, \Sigma, [\epsilon], F, \delta)$$

em que o conjunto de estados Σ^*/R_L é o conjunto das classes de R_L , o estado inicial $[\epsilon]$ é a classe da palavra vazia, $F = \{[x] \mid x \in L\}$, e a função δ é dada por

$$\delta([x], a) \stackrel{\text{def}}{=} [xa],$$
 quaisquer que sejam $x \in \Sigma^*$ e $a \in \Sigma$,

onde [x] denota a classe de equivalência de x. Pode concluir-se que $\mathcal{L}(\mathcal{A}) = \mathcal{L}$, pois

$$\hat{\delta}([\epsilon], w) = [w],$$

para todo $w \in \Sigma^*$, o que significa que w é aceite (i.e., $[w] \in F$) sse $w \in L$.

Notar também que δ não depende da escolha do elemento da classe [x] que usamos na definição, pois se $y \in [x]$ então yaR_Lxa . Logo, [xa] = [ya].

Exemplo 2

Seja $L = \mathcal{L}(0^* + 1^*)$ isto é, $L = \{x \in \{0, 1\}^* \mid x \text{ não tem 0's ou não tem 1's}\}$. O conjunto das classes de equivalência de R_L é

$$\frac{\Sigma^{\star}}{R_L} = \{ [\varepsilon], [1], [0], [01] \}$$

sendo

$$\begin{array}{lll} [\varepsilon] & = & \{\epsilon\} \\ [1] & = & \{1^k \mid k \geq 1\} \\ [0] & = & \{0^k \mid k \geq 1\} \\ [01] & = & \{x \in \{0,1\}^* \mid x \text{ tem 0's e tem 1's}\} \end{array}$$

Notar que $L = [\varepsilon] \cup [0] \cup [1]$. O **AFD mínimo para** L é:

Exemplo 3

Seja $L = \mathcal{L}((001)^*)$. Por aplicação do corolário do Teorema de Myhill-Nerode, vamos determinar o AFD mínimo para L.

$$\delta([\varepsilon], 0) = [0] \neq [\varepsilon]$$
 pois $(0, \varepsilon) \notin R_L$ já que $0\underline{01} \in L$ e $\varepsilon\underline{01} \notin L$.
 $\delta([\varepsilon], 1) = [1]$, e $[1] \neq [\varepsilon]$ pois $(1, \varepsilon) \notin R_L$ já que $1\underline{\varepsilon} \notin L$ e $\varepsilon\underline{\varepsilon} \in L$; também $[1] \neq [0]$.

$$\delta([1],1)=[11]=[1]$$
 porque $\forall z\in\Sigma^{\star}\ 1z\notin L$ e também $\forall z\in\Sigma^{\star}\ 11z\notin L$.

$$\delta([1], 0) = [10] = [1]$$
 porque $\forall z \in \Sigma^* \ 10z \notin L$.

$$\delta([0],1) = [01] = [1].$$

$$\delta([0],0)=[00]$$
 um novo estado porque $00\notin[0],\ 00\notin[\varepsilon]$ e $00\notin[1].$

$$\delta([00], 1) = [001] = [\varepsilon]$$
, porque $001z \in L$ se e só se $z \in L$.

$$\delta([00], 0) = [000] = [1]$$
, porque $\forall z \in \Sigma^* \ 000z \notin L$.

Teorema de Myhill-Nerode: ainda sobre $\textcircled{2} \Rightarrow \textcircled{3}$

Seja $\mathcal{A}=(S,\Sigma,\delta,s_0,F)$ um AFD. Vimos que a relação $R_{\mathcal{A}}$ definida em Σ^{\star} por

$$\forall x, y \in \Sigma^* \quad (x R_A y \text{ sse } \hat{\delta}(s_0, x) = \hat{\delta}(s_0, y))$$

satisfaz as condições indicadas em ②. Da prova de ② \Rightarrow ③ , tem-se

se
$$x R_A y$$
 então $x R_L y$.

para $x, y \in \Sigma^*$. Logo, se C_x é classe de x para R_A então $C_x \subseteq [x]$, sendo [x] a classe para R_L . Logo,

$$\#(\Sigma^*/R_L) \leq \#(\Sigma^*/R_A) \leq \#S$$

O número de estados de qualquer AFD que aceita L não é inferior ao número de estados do AFD que definimos como o AFD mínimo que aceita L.

Exemplo 4: $\{a,b\}^* \setminus \{a,b\}$

As classes de equivalência de R_A são

$$\begin{array}{lll} \textbf{C}_{\varepsilon} & = & \{\varepsilon\}, & \textbf{C}_{\textbf{a}} & = & \{\textbf{a}\}, \\ \textbf{C}_{\textbf{b}} & = & \{\textbf{b}\}, & \textbf{C}_{\textbf{aa}} & = & \{\textbf{aa}, \textbf{ab}\}, \\ \textbf{C}_{\textbf{ba}} & = & \{\textbf{ba}, \textbf{bb}\} & \textbf{C}_{\textbf{aaa}} & = & \{x \mid x \in \{\textbf{a}, \textbf{b}\}^{\star}, |x| \geq 3\} \end{array}$$

Para $L = \mathcal{L}(\mathcal{A})$, as classes de equivalência de R_L são $[\varepsilon] = \{\varepsilon\}$, $[\mathbf{a}] = \{\mathbf{a}, \mathbf{b}\}$, $[\mathbf{a}] = \{\mathbf{a}, \mathbf{b}\}^*$, $|\mathbf{x}| \geq 2\}$.

$$L = \mathcal{C}_{\varepsilon} \cup \mathcal{C}_{\mathtt{aa}} \cup \mathcal{C}_{\mathtt{ba}} \cup \mathcal{C}_{\mathtt{aaa}} = [\varepsilon] \cup [\mathtt{aa}]$$

e [aa] = $\mathcal{C}_{aa} \cup \mathcal{C}_{ba} \cup \mathcal{C}_{aaa}$, [a] = $\mathcal{C}_{a} \cup \mathcal{C}_{b}$ e [ε] = $\mathcal{C}_{\varepsilon}$. O AFD mínimo é:

Exemplo 5

O AFD seguinte reconhece $L = \mathcal{L}(00^*1)$.

As classes de equivalência de $R_{\mathcal{A}}$ são

$$\begin{array}{lll} \mathcal{C}_{\varepsilon} & = & \{\varepsilon\} = \{x \mid \hat{\delta}(s_0, x) = s_0\} \\ \mathcal{C}_0 & = & \{0\} = \{x \mid \hat{\delta}(s_0, x) = s_1\} \\ \mathcal{C}_1 & = & \mathcal{L}(1 + 0^* 1(0 + 1)(0 + 1)^*) = \{x \mid \hat{\delta}(s_0, x) = s_3\} \\ \mathcal{C}_{00} & = & \{0^n \mid n \geq 2\} = \{x \mid \hat{\delta}(s_0, x) = s_2\} \\ \mathcal{C}_{001} & = & \mathcal{L} = \{x \mid \hat{\delta}(s_0, x) = s_4\} \end{array}$$

As classes de equivalência de R_L : $[\varepsilon] = \{\varepsilon\}$, $[0] = \{0^n \mid n \in \mathbb{N}\}$, $= \mathcal{C}_0 \cup \mathcal{C}_{00}$, e [001] = L e $[1] = \mathcal{C}_1$.

Existência de linguagens que não são regulares

Pelo teorema de Myhill-Nerode, L é regular se e só se R_L é de índice finito.

Exemplos de linguagens que não são regulares

```
\{0^n1^n\mid n\in\mathbb{N}\} de alfabeto \{0,1\} \{0^n1^n2^n\mid n\in\mathbb{N}\} de alfabeto \{0,1,2\} \{0^n\mid n \text{ primo}\} de alfabeto \{0\}
```

$L = \{0^n 1^n \mid n \in \mathbb{N}\}$ não é regular

Prova (por redução ao absurdo):

Se $L=\{0^n1^n\mid n\in\mathbb{N}\}$ fosse regular, existia um AFD $\mathcal A$ tal que $L=\mathcal L(\mathcal A)$. Seja s_0 o estado inicial de $\mathcal A$. Sejam $n_1,n_2\in\mathbb{N}$ tais que $n_1\neq n_2$. Como $\mathcal A$ é determinístico,

se
$$\hat{\delta}(s_0, 0^{n_1}) = \hat{\delta}(s_0, 0^{n_2})$$
 então $\hat{\delta}(s_0, 0^{n_1} 1^{n_1}) = \hat{\delta}(s_0, 0^{n_2} 1^{n_1})$

o que é absurdo, pois $0^{n_1}1^{n_1} \in L$ mas $0^{n_2}1^{n_1} \notin L$.

Assim, $\forall n_1, n_2 \in \mathbb{N}$ $\hat{\delta}(s_0, 0^{n_1}) = \hat{\delta}(s_0, 0^{n_2})$ se e só se $n_1 = n_2$. Logo, o conjunto de estados não é finito. Portanto \mathcal{A} não existe.

Prova (pelo Teorema de Myhill-Nerode):

Se $n_1 \neq n_2$, as palavras 0^{n_1} e 0^{n_2} estão em classes distintas de R_L pois $0^{n_1} 1^{n_1} \in L$ mas $0^{n_2} 1^{n_1} \notin L$. Logo, R_L não é de índice finito e, portanto, L não é regular.

Minimização de AFDs

Dado um AFD $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$, podemos aplicar o algoritmo de Moore para:

- decidir se A é ou não o AFD mínimo que reconhece $\mathcal{L}(A)$;
- se não for mínimo, obter o AFD mínimo que reconhece $\mathcal{L}(A)$, se \mathcal{A} não for mínimo.

O Algoritmo de Moore vai determinar a relação de equivalência em S definida por:

 $s \equiv s'$ se e só se **não** existe uma palavra $z \in \Sigma^*$ tal que se consumir z a partir de s chega a estado final e se consumir z a partir de s' não chega a estado final, ou vice-versa .

Ou seja, $s \equiv s'$ sse as palavras que levam \mathcal{A} de s_0 a s e as que levam de s_0 a s' são equivalentes segundo $R_{\mathcal{L}(\mathcal{A})}$.

Algoritmo de Moore

- Retirar de S os estados não acessíveis de s_0 . Seja $S' = \{s_0, s_1, \ldots, s_m\}$ o conjunto dos restantes.
- Para representar \equiv , construir uma tabela com os pares (s_i, s_j) , para $0 \le i \le j \le m$. Os símbolos \equiv , X e ? denotam \equiv , $\not\equiv$ e decisão pendente.
- Cada entrada (s_i, s_j) pode ter uma lista de pares pendentes, que aguardam a decisão sobre se $s_i \not\equiv s_j$
- Para preencher a tabela, assinalar com \equiv todas as entradas (s_i, s_i) , para todo i. Para todo (s_i, s_j) , com $s_i \in F \land s_j \notin F$ ou $s_i \notin F \land s_j \in F$, assinalar $s_i \not\equiv s_j$, colocando X em (s_i, s_j) .

Algoritmo de Moore (cont)

- Para $1 \le j \le m$ e $0 \le i < j$, se (s_i, s_j) não contém X, averiguar se já é conhecido que $\delta(s_i, a) \not\equiv \delta(s_j, a)$, para algum $a \in \Sigma$ (para isso, ver se existe X na entrada do par $(\delta(s_i, a), \delta(s_j, a))$.
 - Se, para algum $a \in \Sigma$, já for conhecido que $\delta(s_i, a) \not\equiv \delta(s_j, a)$, registar $s_i \not\equiv s_j$, assinalando (s_i, s_j) com X, e propagar a informação a todos os pares que estiverem na lista de pendentes de (s_i, s_j) . **Propagar** significa assinalar com X cada um dos pares nessa lista e, recursivamente, propagar aos pares que estiverem nas listas de pendentes desses.
 - Se já se sabe que $\delta(s_i, a) \equiv \delta(s_j, a)$, para todo $a \in \Sigma$, isto é, todos já estão marcados com \equiv na tabela, então registar $s_i \equiv s_j$, assinalando a entrada (s_i, s_j) com \equiv .
 - Nas restantes situações, (s_i, s_j) aguardará as decisões para $(\delta(s_i, a), \delta(s_j, a))$, com $a \in \Sigma$: para todos os pares $(\delta(s_i, a), \delta(s_j, a))$ sem marcação \equiv , acrescentar (s_i, s_j) à lista de pendentes de $(\delta(s_i, a), \delta(s_j, a))$ e assinalar a entrada (s_i, s_j) com o símbolo ? (fica pendente).

Algoritmo de Moore (cont)

- Quando todos os pares estiverem analisados, substituir ? por ≡ nas entradas que se mantiverem pendentes (cada entrada que não tem X, corresponde a um par de estados equivalentes).
- O conjunto de estados do AFD mínimo A' equivalente ao AFD A corresponde ao conjunto de classes de equivalência de ≡ (restrita a S' = {s₀, s₁ ..., sտ} ⊆ S). Se [s] denotar a classe do estado s, então a função de transição δ' é dada por δ'([s], a) = [δ(s, a)], para todo a ∈ Σ. O estado inicial de A' é [s₀] e o conjunto de estados finais é F' = {[s] | s ∈ F ∩ S'}.

Aplicação do Algoritmo de Moore

Por aplicação do algoritmo de Moore, vamos averiguar se o AFD representado é mínimo.

A tabela inicial encontra-se acima à direita.

Aplicação do Algoritmo de Moore (cont)

Para os restantes pares, tem-se:

```
(s_0, s_2): s_0 \not\equiv s_2 porque \delta(s_0, a) = s_1 \not\equiv s_5 = \delta(s_2, a). (s_0, s_4): s_0 \not\equiv s_4 porque \delta(s_0, a) = s_1 \not\equiv s_5 = \delta(s_4, a).
```

$$(s_0, s_4)$$
: $s_0 \neq s_4$ porque $o(s_0, a) \equiv s_1 \neq s_5 \equiv o(s_4, a)$.

$$(s_0,s_5)$$
: $s_0\not\equiv s_5$ porque $\delta(s_0,a)=s_1\not\equiv s_5=\delta(s_5,a).$

$$(s_1, s_3)$$
: $\delta(s_1, a) = s_2 = \delta(s_1, b)$ e $\delta(s_3, a) = s_4 = \delta(s_3, b)$.
Fica pendente. Assinalar dependência em (s_2, s_4) .

$$(s_2, s_4)$$
: $s_2 \equiv s_4$ pois $\delta(s_2, \mathbf{a}) = \delta(s_4, \mathbf{a})$ e $\delta(s_2, \mathbf{b}) = \delta(s_4, \mathbf{b})$.

$$(3_2, 3_4)$$
. $3_2 \equiv 3_4$ pois $0(3_2, a) = 0(3_4, a) \in 0(3_2, b) = 0(3_4, b)$

$$(s_2, s_5)$$
: $s_2 \equiv s_5 \text{ pois } \delta(s_2, \mathbf{a}) = \delta(s_5, \mathbf{a}) \in \delta(s_2, \mathbf{b}) = \delta(s_5, \mathbf{b})$.

$$(s_4, s_5)$$
: $s_4 \equiv s_5 \text{ pois } \delta(s_4, a) = \delta(s_5, a) \text{ e } \delta(s_4, b) = \delta(s_5, b)$.

A tabela final (à direita) corresponde à (parte triangular inferior da) matriz da relação =. se substituirmos = por 1 e X por 0.

Aplicação do Algoritmo de Moore (cont)

As classes de eqivalência de ≡ são:

$$\{s_0\}, \{s_1, s_3\}, \{s_2, s_4, s_5\}.$$

O AFD mínimo equivalente ao AFD dado é:

Lema da Repetição para linguagens regulares

Lema da repetição

Qualquer que seja a linguagem de alfabeto Σ , se L é regular então

$$\exists_{n \in \mathbb{Z}^+} \forall_{x \in L} \ |x| \geq n \ \Rightarrow \left(\exists_{u,v,w} \ x = uvw \ \land \ v \neq \varepsilon \ \land \ |uv| \leq n \land \left(\forall_{i \geq 0} \ uv^i w \in L\right)\right)$$

ou seja, existe uma constante $n \in \mathbb{N} \setminus \{0\}$ tal que, se $x \in L \land |x| \ge n$, podemos decompor x como x = uvw, com $|uv| \le n$ e $|v| \ge 1$, e $\forall i \ge 0$ $uv^iw \in L$. Mais ainda, n não excede o número de estados do menor autómato finito que aceita L.

Observação:

- O Teorema de Myhill-Nerode dá uma condição necessária e suficiente para L ser regular. O lema da repetição dá apenas uma condição necessária. Existem linguagens que satisfazem a condição do lema e não são regulares. Por exemplo, $L = \{0^m 1^k 01^k \mid m \geq 1, k \geq 0\} \cup \{1^q 0^r 1^s \mid q, r, s \geq 0\}.$
- As **linguagens finitas** satisfazem trivialmente a condição, para $n = 1 + \max_{x \in L} |x|$.

Lema da Repetição ("Pumping Lemma")

Prova do lema da repetição:

- Seja L uma linguagem regular. Seja $A = (S, \Sigma, \delta, s_0, F)$ um AF com menor número de estados que aceita L. Sem perda de generalidade, **assumimos que** A $\acute{\mathbf{e}}$ um AFND e tomamos n = |S|.
- Seja $x \in L$, tal que $|x| \ge n$. Para processar x, o AFND efetua |x| transições, que envolvem |x| + 1 estados. Repete estados pois |x| + 1 > n.
- Seja s_q o primeiro estado que se repete nessa análise e u o prefixo de x processado até chegar a s_q . Seja v a subpalavra processada desde que sai de s_q até regressar pela primeira vez a s_q . Seja w o resto da palavra.

$$s_0$$
 s_q s_q

- Tem-se x = uvw com $|v| \ge 1$, pois v corresponde ao ciclo, e $|uv| \le n$ pois, caso contrário, no processamento de uv existia um outro ciclo, o que contrariava as condições sobre s_a , u, e v.

- Se L fosse regular, satisfazia a condição do lema da repetição.
- Seja $n \in \mathbb{N}$ qualquer. Se *escolhemos* $x = 0^n 1^n$, temos $x \in L$ e $|x| = 2n \ge n$. Vamos ver que quaisquer que sejam $u, v, w \in \Sigma^*$ tais que x = uvw, $|uv| \le n$ e $v \ne \varepsilon$, tem-se $\exists i \in \mathbb{N} \ uv^i w \notin L$.
- Como $|uv| \le n$ e x = uvw podemos afirmar que $uv = 0^p$ para algum $p \le n$, e como $|v| \ge 1$ temos $p \ne 0$.
- Se tomarmos i=0 a palavra $uv^iw=uw$ não pertence a L porque tem n 1's mas apenas n-|v| 0's.
 - Logo, L não é regular.

- Se L fosse regular, satisfazia a condição do lema da repetição.
- Seja $n \in \mathbb{N}$ qualquer. Se escolhemos $x = 0^n 1^n$, temos $x \in L$ e $|x| = 2n \ge n$. Vamos ver que quaisquer que sejam $u, v, w \in \Sigma^*$ tais que x = uvw, |uv| < n e $v \ne \varepsilon$, tem-se $\exists i \in \mathbb{N} \ uv^i w \notin L$.
- Como $|uv| \le n$ e x = uvw podemos afirmar que $uv = 0^p$ para algum $p \le n$, e como $|v| \ge 1$ temos $p \ne 0$.
- Se tomarmos i=0 a palavra $uv^iw=uw$ não pertence a L porque tem n 1's mas apenas n-|v| 0's.
 - Logo, L não é regular.

- Se L fosse regular, satisfazia a condição do lema da repetição.
- Seja $n \in \mathbb{N}$ qualquer. Se escolhemos $x = 0^n 1^n$, temos $x \in L$ e $|x| = 2n \ge n$. Vamos ver que quaisquer que sejam $u, v, w \in \Sigma^*$ tais que x = uvw, $|uv| \le n$ e $v \ne \varepsilon$, tem-se $\exists i \in \mathbb{N} \ uv^i w \notin L$.
- Como $|uv| \le n$ e x = uvw podemos afirmar que $uv = 0^p$ para algum $p \le n$, e como $|v| \ge 1$ temos $p \ne 0$.
- Se tomarmos i=0 a palavra $uv^iw=uw$ não pertence a L porque tem n 1's mas apenas n-|v| 0's.
 - Logo, L não é regular.

- Se L fosse regular, satisfazia a condição do lema da repetição.
- Seja $n \in \mathbb{N}$ qualquer. Se *escolhemos* $x = 0^n 1^n$, temos $x \in L$ e $|x| = 2n \ge n$. Vamos ver que quaisquer que sejam $u, v, w \in \Sigma^*$ tais que x = uvw, $|uv| \le n$ e $v \ne \varepsilon$, tem-se $\exists i \in \mathbb{N} \ uv^i w \notin L$.
- Como $|uv| \le n$ e x = uvw podemos afirmar que $uv = 0^p$ para algum $p \le n$, e como $|v| \ge 1$ temos $p \ne 0$.
- Se tomarmos i=0 a palavra $uv^iw=uw$ não pertence a L porque tem n 1's mas apenas n-|v| 0's.
 - Logo, L não é regular.

- Se L fosse regular, satisfazia a condição do lema da repetição.
- Seja $n \in \mathbb{N}$ qualquer. Se *escolhemos* $x = 0^n 1^n$, temos $x \in L$ e $|x| = 2n \ge n$. Vamos ver que quaisquer que sejam $u, v, w \in \Sigma^*$ tais que x = uvw, $|uv| \le n$ e $v \ne \varepsilon$, tem-se $\exists i \in \mathbb{N} \ uv^i w \notin L$.
- Como $|uv| \le n$ e x = uvw podemos afirmar que $uv = 0^p$ para algum $p \le n$, e como $|v| \ge 1$ temos $p \ne 0$.
- Se tomarmos i=0 a palavra $uv^iw=uw$ não pertence a L porque tem n 1's mas apenas n-|v| 0's.
 - Logo, L não é regular.

Prova de que $\{0^k1^k \mid k \ge 0\}$ não é regular, pelo lema da repetição:

- Se L fosse regular, satisfazia a condição do lema da repetição.
- Seja $n \in \mathbb{N}$ qualquer. Se *escolhemos* $x = 0^n 1^n$, temos $x \in L$ e $|x| = 2n \ge n$. Vamos ver que quaisquer que sejam $u, v, w \in \Sigma^*$ tais que x = uvw, $|uv| \le n$ e $v \ne \varepsilon$, tem-se $\exists i \in \mathbb{N} \ uv^i w \notin L$.
- Como $|uv| \le n$ e x = uvw podemos afirmar que $uv = 0^p$ para algum $p \le n$, e como $|v| \ge 1$ temos $p \ne 0$.
- Se tomarmos i = 0 a palavra $uv^i w = uw$ não pertence a L porque tem n 1's mas apenas n |v| 0's.

Logo, L não é regular.

Prova de que $\{0^k1^k \mid k \ge 0\}$ não é regular, pelo lema da repetição:

- Se L fosse regular, satisfazia a condição do lema da repetição.
- Seja $n \in \mathbb{N}$ qualquer. Se *escolhemos* $x = 0^n 1^n$, temos $x \in L$ e $|x| = 2n \ge n$. Vamos ver que quaisquer que sejam $u, v, w \in \Sigma^*$ tais que x = uvw, $|uv| \le n$ e $v \ne \varepsilon$, tem-se $\exists i \in \mathbb{N} \ uv^i w \notin L$.
- Como $|uv| \le n$ e x = uvw podemos afirmar que $uv = 0^p$ para algum $p \le n$, e como $|v| \ge 1$ temos $p \ne 0$.
- Se tomarmos i = 0 a palavra $uv^i w = uw$ não pertence a L porque tem n 1's mas apenas n |v| 0's.

Logo, L não é regular.

Prova, pelo lema da repetição, de que $L = \{0^p \mid p \text{ primo}\}$ não é regular:

- Seja n∈N\{0} qualquer. Escolhemos x = 0^M com M > 2n e M primo.
 M existe porque o conjunto de primos é infinito.
- Tem-se $x \in L$ e |x| = M > 2n > n. Seja x = uvw, uma <u>qualquer</u> decomposição de x, tal que $|v| \ge 1$ e $|uv| \le n$. Há que encontrar $i \ge 0$ tal que $uv^iw \notin L$, i.e., tal que $|uv^iw|$ não é primo.
- Mas, $|uv^iw| = |u| + i|v| + |w|$ e, como $|uv| \le n$ implica $|v| \le n$, conclui-se que |uw| = M |v| > n. Então, se se escolher i = |u| + |w| vem

$$|uv^{i}w| = |u| + i|v| + |w| = (|u| + |w|)(1 + |v|)$$

com $1 + |v| \ge 2$ e $|u| + |w| \ge 2$. Logo, (|u| + |w|)(1 + |v|) não é primo. Ou seja, para i = |u| + |v|, tem-se $uv^iw \notin L$.

• Mostrámos que, **dado** n **qualquer**, **existe** $x \in L$ tal que, para toda decomposição de x na forma uvw, com $v \neq \varepsilon$ e $|uv| \leq n$, existe i tal que $uv^iw \notin L$. Portanto, L não satisfaz a condição do Lema da Repetição e por isso não é regular.

Prova, pelo lema da repetição, de que $L = \{0^p \mid p \text{ primo}\}$ não é regular:

- Seja n∈ N \ {0} qualquer. Escolhemos x = 0^M com M > 2n e M primo.
 M existe porque o conjunto de primos é infinito.
- Tem-se $x \in L$ e |x| = M > 2n > n. Seja x = uvw, uma qualquer decomposição de x, tal que $|v| \ge 1$ e $|uv| \le n$. Ha que encontrar $i \ge 0$ tal que $uv^i w \notin L$, i.e., tal que $|uv^i w|$ não é primo.
- Mas, $|uv^iw| = |u| + i|v| + |w|$ e, como $|uv| \le n$ implica $|v| \le n$, conclui-se que |uw| = M |v| > n. Então, se se escolher i = |u| + |w| vem

$$|uv^{i}w| = |u| + i|v| + |w| = (|u| + |w|)(1 + |v|)$$

com $1+|v|\geq 2$ e $|u|+|w|\geq 2$. Logo, (|u|+|w|)(1+|v|) não é primo. Ou seja, para i=|u|+|v|, tem-se $uv^iw\notin L$.

• Mostrámos que, **dado** n **qualquer**, **existe** $x \in L$ tal que, para toda decomposição de x na forma uvw, com $v \neq \varepsilon$ e $|uv| \leq n$, existe i tal que $uv^i w \notin L$. Portanto, L não satisfaz a condição do Lema da Repetição e por isso não é regular.

Prova, pelo lema da repetição, de que $L = \{0^p \mid p \text{ primo}\}$ não é regular:

- Seja $n \in \mathbb{N} \setminus \{0\}$ qualquer. Escolhemos $x = 0^M$ com M > 2n e M primo. M existe porque o conjunto de primos é infinito.
- Tem-se $x \in L$ e |x| = M > 2n > n. Seja x = uvw, uma <u>qualquer</u> decomposição de x, tal que $|v| \ge 1$ e $|uv| \le n$. Há que encontrar $i \ge 0$ tal que $uv^iw \notin L$, i.e., tal que $|uv^iw|$ não é primo.
- Mas, $|uv^iw| = |u| + i|v| + |w|$ e, como $|uv| \le n$ implica $|v| \le n$, conclui-se que |uw| = M |v| > n. Então, se se escolher i = |u| + |w| vem

$$|uv^{i}w| = |u| + i|v| + |w| = (|u| + |w|)(1 + |v|)$$

com $1 + |v| \ge 2$ e $|u| + |w| \ge 2$. Logo, (|u| + |w|)(1 + |v|) não é primo. Ou seja, para i = |u| + |v|, tem-se $uv^iw \notin L$.

Prova, pelo lema da repetição, de que $L = \{0^p \mid p \text{ primo}\}$ não é regular:

- Seja n∈ N \ {0} qualquer. Escolhemos x = 0^M com M > 2n e M primo.
 M existe porque o conjunto de primos é infinito.
- Tem-se $x \in L$ e |x| = M > 2n > n. Seja x = uvw, uma <u>qualquer</u> <u>decomposição</u> de x, tal que $|v| \ge 1$ e $|uv| \le n$. Há que encontrar $i \ge 0$ tal que $uv^iw \notin L$, i.e., tal que $|uv^iw|$ não é primo.
- Mas, $|uv^iw| = |u| + i|v| + |w|$ e, como $|uv| \le n$ implica $|v| \le n$, conclui-se que |uw| = M |v| > n. Então, se se escolher i = |u| + |w| vem

$$|uv^{i}w| = |u| + i|v| + |w| = (|u| + |w|)(1 + |v|)$$

- com $1 + |v| \ge 2$ e $|u| + |w| \ge 2$. Logo, (|u| + |w|)(1 + |v|) não é primo. Ou seja, para i = |u| + |v|, tem-se $uv^iw \notin L$.
- Mostrámos que, **dado** n **qualquer**, **existe** $x \in L$ tal que, para toda decomposição de x na forma uvw, com $v \neq \varepsilon$ e $|uv| \leq n$, existe i tal que $uv^iw \notin L$. Portanto, L não satisfaz a condição do Lema da Repetição e por isso não é regular.

41 / 44

Prova, pelo lema da repetição, de que $L = \{0^p \mid p \text{ primo}\}$ não é regular:

- Seja n∈ N \ {0} qualquer. Escolhemos x = 0^M com M > 2n e M primo.
 M existe porque o conjunto de primos é infinito.
- Tem-se $x \in L$ e |x| = M > 2n > n. Seja x = uvw, uma <u>qualquer</u> <u>decomposição</u> de x, tal que $|v| \ge 1$ e $|uv| \le n$. Há que encontrar $i \ge 0$ tal que $uv^iw \notin L$, i.e., tal que $|uv^iw|$ não é primo.
- Mas, $|uv^iw| = |u| + i|v| + |w|$ e, como $|uv| \le n$ implica $|v| \le n$, conclui-se que |uw| = M |v| > n. Então, se se escolher i = |u| + |w| vem

$$|uv^{i}w| = |u| + i|v| + |w| = (|u| + |w|)(1 + |v|)$$

- com $1 + |v| \ge 2$ e $|u| + |w| \ge 2$. Logo, (|u| + |w|)(1 + |v|) não é primo. Ou seja, para i = |u| + |v|, tem-se $uv^iw \notin L$.
- Mostrámos que, **dado** n **qualquer**, **existe** $x \in L$ tal que, para toda decomposição de x na forma uvw, com $v \neq \varepsilon$ e $|uv| \leq n$, existe i tal que $uv^iw \notin L$. Portanto, L não satisfaz a condição do Lema da Repetição e por isso não é regular.

Prova, pelo lema da repetição, de que $L = \{0^p \mid p \text{ primo}\}$ não é regular:

- Seja n∈ N \ {0} qualquer. Escolhemos x = 0^M com M > 2n e M primo.
 M existe porque o conjunto de primos é infinito.
- Tem-se $x \in L$ e |x| = M > 2n > n. Seja x = uvw, uma <u>qualquer</u> <u>decomposição</u> de x, tal que $|v| \ge 1$ e $|uv| \le n$. Há que encontrar $i \ge 0$ tal que $uv^iw \notin L$, i.e., tal que $|uv^iw|$ não é primo.
- Mas, $|uv^iw| = |u| + i|v| + |w|$ e, como $|uv| \le n$ implica $|v| \le n$, conclui-se que |uw| = M |v| > n. Então, se se escolher i = |u| + |w| vem

$$|uv^{i}w| = |u| + i|v| + |w| = (|u| + |w|)(1 + |v|)$$

com $1 + |v| \ge 2$ e $|u| + |w| \ge 2$. Logo, (|u| + |w|)(1 + |v|) não é primo. Ou seja, para i = |u| + |v|, tem-se $uv^i w \notin L$.

Prova, pelo lema da repetição, de que $L = \{0^p \mid p \text{ primo}\}$ não é regular:

- Seja n∈ N \ {0} qualquer. Escolhemos x = 0^M com M > 2n e M primo.
 M existe porque o conjunto de primos é infinito.
- Tem-se $x \in L$ e |x| = M > 2n > n. Seja x = uvw, uma <u>qualquer</u> <u>decomposição</u> de x, tal que $|v| \ge 1$ e $|uv| \le n$. Há que encontrar $i \ge 0$ tal que $uv^iw \notin L$, i.e., tal que $|uv^iw|$ não é primo.
- Mas, $|uv^iw| = |u| + i|v| + |w|$ e, como $|uv| \le n$ implica $|v| \le n$, conclui-se que |uw| = M |v| > n. Então, se se escolher i = |u| + |w| vem

$$|uv^{i}w| = |u| + i|v| + |w| = (|u| + |w|)(1 + |v|)$$

com $1+|v|\geq 2$ e $|u|+|w|\geq 2$. Logo, (|u|+|w|)(1+|v|) não é primo. Ou seja, para i=|u|+|v|, tem-se $uv^iw\notin L$.

Prova, pelo lema da repetição, de que $L = \{0^p \mid p \text{ primo}\}$ não é regular:

- Seja n∈ N \ {0} qualquer. Escolhemos x = 0^M com M > 2n e M primo.
 M existe porque o conjunto de primos é infinito.
- Tem-se $x \in L$ e |x| = M > 2n > n. Seja x = uvw, uma <u>qualquer</u> <u>decomposição</u> de x, tal que $|v| \ge 1$ e $|uv| \le n$. Há que encontrar $i \ge 0$ tal que $uv^iw \notin L$, i.e., tal que $|uv^iw|$ não é primo.
- Mas, $|uv^iw| = |u| + i|v| + |w|$ e, como $|uv| \le n$ implica $|v| \le n$, conclui-se que |uw| = M |v| > n. Então, se se escolher i = |u| + |w| vem

$$|uv^{i}w| = |u| + i|v| + |w| = (|u| + |w|)(1 + |v|)$$

com $1+|v|\geq 2$ e $|u|+|w|\geq 2$. Logo, (|u|+|w|)(1+|v|) não é primo. Ou seja, para i=|u|+|v|, tem-se $uv^iw\notin L$.

Prova, pelo lema da repetição, de que $L = \{0^p \mid p \text{ primo}\}$ não é regular:

- Seja n∈ N \ {0} qualquer. Escolhemos x = 0^M com M > 2n e M primo.
 M existe porque o conjunto de primos é infinito.
- Tem-se $x \in L$ e |x| = M > 2n > n. Seja x = uvw, uma <u>qualquer</u> <u>decomposição</u> de x, tal que $|v| \ge 1$ e $|uv| \le n$. Há que encontrar $i \ge 0$ tal que $uv^iw \notin L$, i.e., tal que $|uv^iw|$ não é primo.
- Mas, $|uv^iw| = |u| + i|v| + |w|$ e, como $|uv| \le n$ implica $|v| \le n$, conclui-se que |uw| = M |v| > n. Então, se se escolher i = |u| + |w| vem

$$|uv^{i}w| = |u| + i|v| + |w| = (|u| + |w|)(1 + |v|)$$

com $1+|v|\geq 2$ e $|u|+|w|\geq 2$. Logo, (|u|+|w|)(1+|v|) não é primo. Ou seja, para i=|u|+|v|, tem-se $uv^iw\notin L$.

Prova de que $\{0^{k^2} \mid k \ge 0\}$ não é regular, pelo lema da repetição

Dado $n \in \mathbb{Z}^+$, tomamos $x = 0^{(n+1)^2}$. Tem-se $x \in L \land |x| > n$.

Vamos ver que, <u>qualquer</u> que seja a decomposição de x na forma uvw, com $|uv| \le n$ e $v \ne \varepsilon$, existe um $i \in \mathbb{N}$ tal que a $uv^iw \notin L$, o que nos permite conclui que L não é regular. Se escrevermos x = uvw, temos

$$x = 0^{(n+1)^2} = 0^{|u|} 0^{|v|} 0^{(n+1)^2 - |u| - |v|} = uvw$$

Se considerarmos a palavra uv^iw e tomarmos i=0, isto é, se retirarmos v, ficamos com palavra

$$0^{(n+1)^2-|v|}$$

a qual tem $(n+1)^2-|v|$ zeros. Como $|uv|\leq n$ e $v\neq \varepsilon$, então $1\leq |v|\leq n$. Podemos concluir que $(n+1)^2-|v|$ não pode ser um quadrado perfeito, se $1\leq |v|\leq n$, porque

$$n^2 < n^2 + n + 1 = (n+1)^2 - n \le (n+1)^2 - |v| \le (n+1)^2 - 1 < (n+1)^2.$$

Prova de que $\{0^{k^2} \mid k \ge 0\}$ não é regular, pelo lema da repetição

Dado $n \in \mathbb{Z}^+$, tomamos $x = 0^{(n+1)^2}$. Tem-se $x \in L \land |x| > n$. Vamos ver que, <u>qualquer</u> que seja a decomposição de x na forma uvw, com $|uv| \le n$ e $v \ne \varepsilon$, existe um $i \in \mathbb{N}$ tal que a $uv^iw \notin L$, o que nos permite concluir que L não é regular. Se escrevermos x = uvw, temos

$$x = 0^{(n+1)^2} = 0^{|u|} 0^{|v|} 0^{(n+1)^2 - |u| - |v|} = uvw$$

Se considerarmos a palavra uv^iw e tomarmos i=0, isto é, se retirarmos v, ficamos com palavra

$$0^{(n+1)^2-|v|}$$

a qual tem $(n+1)^2-|v|$ zeros. Como $|uv|\leq n$ e $v\neq \varepsilon$, então $1\leq |v|\leq n$. Podemos concluir que $(n+1)^2-|v|$ não pode ser um quadrado perfeito, se $1\leq |v|\leq n$, porque

$$n^2 < n^2 + n + 1 = (n+1)^2 - n \le (n+1)^2 - |v| \le (n+1)^2 - 1 < (n+1)^2.$$

Prova de que $\{0^{k^2} \mid k \ge 0\}$ não é regular, pelo lema da repetição

Dado $n \in \mathbb{Z}^+$, tomamos $x = 0^{(n+1)^2}$. Tem-se $x \in L \land |x| > n$. Vamos ver que, <u>qualquer</u> que seja a decomposição de x na forma uvw, com $|uv| \le n$ e $v \ne \varepsilon$, existe um $i \in \mathbb{N}$ tal que a $uv^iw \notin L$, o que nos permite concluir que L não é regular. Se escrevermos x = uvw, temos

$$x = 0^{(n+1)^2} = 0^{|u|} 0^{|v|} 0^{(n+1)^2 - |u| - |v|} = uvw$$

Se considerarmos a palavra uv^iw e tomarmos i=0, isto é, se retirarmos v, ficamos com palavra

$$0^{(n+1)^2-|v|}$$

a qual tem $(n+1)^2 - |v|$ zeros. Como $|uv| \le n$ e $v \ne \varepsilon$, então $1 \le |v| \le n$. Podemos concluir que $(n+1)^2 - |v|$ não pode ser um quadrado perfeito, se $1 \le |v| \le n$, porque

$$n^2 < n^2 + n + 1 = (n+1)^2 - n \le (n+1)^2 - |v| \le (n+1)^2 - 1 < (n+1)^2.$$

Prova de que $\{0^{k^2} \mid k \ge 0\}$ não é regular, pelo lema da repetição

Dado $n \in \mathbb{Z}^+$, tomamos $x = 0^{(n+1)^2}$. Tem-se $x \in L \land |x| > n$. Vamos ver que, <u>qualquer</u> que seja a decomposição de x na forma uvw, com $|uv| \le n$ e $v \ne \varepsilon$, existe um $i \in \mathbb{N}$ tal que a $uv^iw \notin L$, o que nos permite concluir que L não é regular. Se escrevermos x = uvw, temos

$$x = 0^{(n+1)^2} = 0^{|u|} 0^{|v|} 0^{(n+1)^2 - |u| - |v|} = uvw$$

Se considerarmos a palavra uv^iw e tomarmos i=0, isto é, se retirarmos v, ficamos com palavra

$$0^{(n+1)^2-|v|}$$

a qual tem $(n+1)^2-|v|$ zeros. Como $|uv|\leq n$ e $v\neq \varepsilon$, então $1\leq |v|\leq n$. Podemos concluir que $(n+1)^2-|v|$ não pode ser um quadrado perfeito, se $1\leq |v|\leq n$, porque

$$n^2 < n^2 + n + 1 = (n+1)^2 - n \le (n+1)^2 - |v| \le (n+1)^2 - 1 < (n+1)^2.$$

Aplicação do Teorema de Myhill-Nerode

Prova de que $\{0^{k^2} \mid k \ge 0\}$ não é regular, pelo teorema de Myhill-Nerode

Vamos mostrar que

$$\forall p, q \in \mathbb{N} \quad q > p \Rightarrow (0^{p^2}, 0^{q^2}) \notin \mathcal{R}_L$$

o que permite concluir que $[0^{k^2}] = \{0^{k^2}\}$, qualquer que seja $k \ge 0$, pelo que o conjunto das classes de R_L não é finito e, consequentemente, L não é regular.

Se p < q então $(0^{p^2}, 0^{q^2}) \notin \mathcal{R}_L$, porque existe $z \in \{0\}^*$ tal que $0^{p^2}z \in L$ e $0^{q^2}z \notin L$. Basta tomar $z = 0^{2p+1}$.

Aplicação do Teorema de Myhill-Nerode

Prova de que $\{0^{k^2} \mid k \ge 0\}$ não é regular, pelo teorema de Myhill-Nerode

Vamos mostrar que

$$\forall p, q \in \mathbb{N} \quad q > p \Rightarrow (0^{p^2}, 0^{q^2}) \notin \mathcal{R}_L$$

o que permite concluir que $[0^{k^2}] = \{0^{k^2}\}$, qualquer que seja $k \ge 0$, pelo que o conjunto das classes de R_L não é finito e, consequentemente, L não é regular.

Se p < q então $(0^{p^2}, 0^{q^2}) \notin \mathcal{R}_L$, porque existe $z \in \{0\}^*$ tal que $0^{p^2}z \in L$ e $0^{q^2}z \notin L$. Basta tomar $z = 0^{2p+1}$.

A linguagem $L = \{0^k \mid k \in \mathbb{N}\} \cup \{1^r 0^{p^2} \mid r, p \in \mathbb{N} \setminus \{0\}\}$, de alfabeto $\Sigma = \{0, 1\}$, não é regular e satisfaz a condição do lema da repetição para n = 1.

Prova

De facto, se $x \in L$ e $|x| \ge 1$ então x está num dos dois casos seguintes:

- $x = 00^k$, para algum $k \ge 0$, ou
- $x = 11^s 0^{q^2}$, para algum $s \ge 0$ e algum $q \ge 1$.

Vamos então escolher as decomposições de x como uvw, com $|uv| \le n = 1$ e $v \ne \varepsilon$ tais que $\forall i \in \mathbb{N} \ uv^i w \in L$.

- Para $x = 00^k$, escolhemos $u = \varepsilon$, v = 0, e $w = 0^k$, e temos $uv^i w = 0^{k+i} \in L$.
- Para $x=11^s0^{q^2}$, escolhemos $u=\varepsilon$, v=1, e $w=1^s0^{q^2}$, e vemos que, se $i\geq 1$ ou $s\geq 1$ então $uv^iw\in\{1^r0^{p^2}\mid r,p\in\mathbb{N}\setminus\{0\}\}$, e se i=s=0 então $uv^iw\in\{0\}^*$.

Portanto, L satisfaz a condição do lema para n=1 porque

$$\forall x \in L \ |x| \ge n \Rightarrow \exists u, v, w \ (x = uvw \land v \ne \varepsilon \land |uv| \le 1 \land (\forall i \in \mathbb{N} \ uv^i w \in L))$$

A linguagem $L = \{0^k \mid k \in \mathbb{N}\} \cup \{1^r 0^{p^2} \mid r, p \in \mathbb{N} \setminus \{0\}\}$, de alfabeto $\Sigma = \{0, 1\}$, não é regular e satisfaz a condição do lema da repetição para n = 1.

Prova

De facto, se $x \in L$ e $|x| \ge 1$ então x está num dos dois casos seguintes:

- $x = 00^k$, para algum $k \ge 0$, ou
- $x = 11^s 0^{q^2}$, para algum $s \ge 0$ e algum $q \ge 1$.

Vamos então escolher as decomposições de x como uvw, com $|uv| \le n = 1$ e $v \ne \varepsilon$ tais que $\forall i \in \mathbb{N} \ uv^i w \in L$.

- Para $x = 00^k$, escolhemos $u = \varepsilon$, v = 0, e $w = 0^k$, e temos $uv^i w = 0^{k+i} \in L$.
- Para $x=11^s0^{q^2}$, escolhemos $u=\varepsilon$, v=1, e $w=1^s0^{q^2}$, e vemos que, se $i\geq 1$ ou $s\geq 1$ então $uv^iw\in\{1^r0^{p^2}\mid r,p\in\mathbb{N}\setminus\{0\}\}$, e se i=s=0 então $uv^iw\in\{0\}^*$.

Portanto, L satisfaz a condição do lema para n=1 porque

$$\forall x \in L \ |x| \ge n \Rightarrow \exists u, v, w \ (x = uvw \land v \ne \varepsilon \land |uv| \le 1 \land (\forall i \in \mathbb{N} \ uv^i w \in L))$$

A linguagem $L = \{0^k \mid k \in \mathbb{N}\} \cup \{1^r 0^{p^2} \mid r, p \in \mathbb{N} \setminus \{0\}\}$, de alfabeto $\Sigma = \{0, 1\}$, não é regular e satisfaz a condição do lema da repetição para n = 1.

Prova

De facto, se $x \in L$ e $|x| \ge 1$ então x está num dos dois casos seguintes:

- $x = 00^k$, para algum $k \ge 0$, ou
- $x = 11^s 0^{q^2}$, para algum $s \ge 0$ e algum $q \ge 1$.

Vamos então escolher as decomposições de x como uvw, com $|uv| \le n = 1$ e $v \ne \varepsilon$ tais que $\forall i \in \mathbb{N} \ uv^i w \in L$.

- Para $x = 00^k$, escolhemos $u = \varepsilon$, v = 0, e $w = 0^k$, e temos $uv^i w = 0^{k+i} \in L$.
- Para $x=11^s0^{q^2}$, escolhemos $u=\varepsilon$, v=1, e $w=1^s0^{q^2}$, e vemos que, se $i\geq 1$ ou $s\geq 1$ então $uv^iw\in\{1^r0^{p^2}\mid r,p\in\mathbb{N}\setminus\{0\}\}$, e se i=s=0 então $uv^iw\in\{0\}^*$.

Portanto, L satisfaz a condição do lema para n=1 porque

$$\forall x \in L \ |x| \ge n \Rightarrow \exists u, v, w \ (x = uvw \land v \ne \varepsilon \land |uv| \le 1 \land (\forall i \in \mathbb{N} \ uv^i w \in L))$$

A linguagem $L = \{0^k \mid k \in \mathbb{N}\} \cup \{1^r 0^{p^2} \mid r, p \in \mathbb{N} \setminus \{0\}\}$, de alfabeto $\Sigma = \{0, 1\}$, não é regular e satisfaz a condição do lema da repetição para n = 1.

Prova

De facto, se $x \in L$ e $|x| \ge 1$ então x está num dos dois casos seguintes:

- $x = 00^k$, para algum $k \ge 0$, ou
- $x = 11^s 0^{q^2}$, para algum $s \ge 0$ e algum $q \ge 1$.

Vamos então escolher as decomposições de x como uvw, com $|uv| \le n = 1$ e $v \ne \varepsilon$ tais que $\forall i \in \mathbb{N} \ uv^i w \in L$.

- Para $x = 00^k$, escolhemos $u = \varepsilon$, v = 0, e $w = 0^k$, e temos $uv^i w = 0^{k+i} \in L$.
- Para $x = 11^s 0^{q^2}$, escolhemos $u = \varepsilon$, v = 1, e $w = 1^s 0^{q^2}$, e vemos que, se $i \ge 1$ ou $s \ge 1$ então $uv^i w \in \{1^r 0^{p^2} \mid r, p \in \mathbb{N} \setminus \{0\}\}$, e se i = s = 0 então $uv^i w \in \{0\}^*$.

Portanto, L satisfaz a condição do lema para n=1 porque

$$\forall x \in L \ |x| \ge n \Rightarrow \exists u, v, w \ (x = uvw \land v \ne \varepsilon \land |uv| \le 1 \land (\forall i \in \mathbb{N} \ uv^i w \in L))$$

A linguagem $L = \{0^k \mid k \in \mathbb{N}\} \cup \{1^r 0^{p^2} \mid r, p \in \mathbb{N} \setminus \{0\}\}$, de alfabeto $\Sigma = \{0, 1\}$, não é regular e satisfaz a condição do lema da repetição para n = 1.

Prova

De facto, se $x \in L$ e $|x| \ge 1$ então x está num dos dois casos seguintes:

- $x = 00^k$, para algum $k \ge 0$, ou
- $x = 11^s 0^{q^2}$, para algum $s \ge 0$ e algum $q \ge 1$.

Vamos então escolher as decomposições de x como uvw, com $|uv| \le n = 1$ e $v \ne \varepsilon$ tais que $\forall i \in \mathbb{N} \ uv^i w \in L$.

- Para $x = 00^k$, escolhemos $u = \varepsilon$, v = 0, e $w = 0^k$, e temos $uv^i w = 0^{k+i} \in L$.
- Para $x=11^s0^{q^2}$, escolhemos $u=\varepsilon$, v=1, e $w=1^s0^{q^2}$, e vemos que, se $i\geq 1$ ou $s\geq 1$ então $uv^iw\in\{1^r0^{p^2}\mid r,p\in\mathbb{N}\setminus\{0\}\}$, e se i=s=0 então $uv^iw\in\{0\}^*$.

Portanto, L satisfaz a condição do lema para n=1 porque

$$\forall x \in L \ |x| \ge n \Rightarrow \exists u, v, w \ (x = uvw \land v \ne \varepsilon \land |uv| \le 1 \land (\forall i \in \mathbb{N} \ uv^i w \in L))$$

A linguagem $L = \{0^k \mid k \in \mathbb{N}\} \cup \{1^r 0^{p^2} \mid r, p \in \mathbb{N} \setminus \{0\}\}$, de alfabeto $\Sigma = \{0, 1\}$, não é regular e satisfaz a condição do lema da repetição para n = 1.

Prova

De facto, se $x \in L$ e $|x| \ge 1$ então x está num dos dois casos seguintes:

- $x = 00^k$, para algum $k \ge 0$, ou
- $x = 11^s 0^{q^2}$, para algum $s \ge 0$ e algum $q \ge 1$.

Vamos então escolher as decomposições de x como uvw, com $|uv| \le n = 1$ e $v \ne \varepsilon$ tais que $\forall i \in \mathbb{N} \ uv^i w \in L$.

- Para $x = 00^k$, escolhemos $u = \varepsilon$, v = 0, e $w = 0^k$, e temos $uv^i w = 0^{k+i} \in L$.
- Para $x=11^s0^{q^2}$, escolhemos $u=\varepsilon$, v=1, e $w=1^s0^{q^2}$, e vemos que, se $i\geq 1$ ou $s\geq 1$ então $uv^iw\in\{1^r0^{p^2}\mid r,p\in\mathbb{N}\setminus\{0\}\}$, e se i=s=0 então $uv^iw\in\{0\}^*$.

Portanto, L satisfaz a condição do lema para n=1 porque

$$\forall x \in L \ |x| \ge n \Rightarrow \exists u, v, w \ (x = uvw \land v \ne \varepsilon \land |uv| \le 1 \land (\forall i \in \mathbb{N} \ uv^i w \in L))$$

A linguagem $L = \{0^k \mid k \in \mathbb{N}\} \cup \{1^r 0^{p^2} \mid r, p \in \mathbb{N} \setminus \{0\}\}$, de alfabeto $\Sigma = \{0, 1\}$, não é regular e satisfaz a condição do lema da repetição para n = 1.

Prova

De facto, se $x \in L$ e $|x| \ge 1$ então x está num dos dois casos seguintes:

- $x = 00^k$, para algum $k \ge 0$, ou
- $x = 11^s 0^{q^2}$, para algum $s \ge 0$ e algum $q \ge 1$.

Vamos então escolher as decomposições de x como uvw, com $|uv| \le n = 1$ e $v \ne \varepsilon$ tais que $\forall i \in \mathbb{N} \ uv^i w \in L$.

- Para $x = 00^k$, escolhemos $u = \varepsilon$, v = 0, e $w = 0^k$, e temos $uv^i w = 0^{k+i} \in L$.
- Para $x=11^s0^{q^2}$, escolhemos $u=\varepsilon$, v=1, e $w=1^s0^{q^2}$, e vemos que, se $i\geq 1$ ou $s\geq 1$ então $uv^iw\in\{1^r0^{p^2}\mid r,p\in\mathbb{N}\setminus\{0\}\}$, e se i=s=0 então $uv^iw\in\{0\}^*$.

Portanto, L satisfaz a condição do lema para n=1 porque

$$\forall x \in L \ |x| \ge n \Rightarrow \exists u, v, w \ (x = uvw \land v \ne \varepsilon \land |uv| \le 1 \land (\forall i \in \mathbb{N} \ uv^i w \in L))$$

A linguagem $L = \{0^k \mid k \in \mathbb{N}\} \cup \{1^r 0^{p^2} \mid r, p \in \mathbb{N} \setminus \{0\}\}$, de alfabeto $\Sigma = \{0, 1\}$, não é regular e satisfaz a condição do lema da repetição para n = 1.

Prova

De facto, se $x \in L$ e $|x| \ge 1$ então x está num dos dois casos seguintes:

- $x = 00^k$, para algum $k \ge 0$, ou
- $x = 11^s 0^{q^2}$, para algum $s \ge 0$ e algum $q \ge 1$.

Vamos então escolher as decomposições de x como uvw, com $|uv| \le n = 1$ e $v \ne \varepsilon$ tais que $\forall i \in \mathbb{N} \ uv^i w \in L$.

- Para $x = 00^k$, escolhemos $u = \varepsilon$, v = 0, e $w = 0^k$, e temos $uv^i w = 0^{k+i} \in L$.
- Para $x=11^s0^{q^2}$, escolhemos $u=\varepsilon$, v=1, e $w=1^s0^{q^2}$, e vemos que, se $i\geq 1$ ou $s\geq 1$ então $uv^iw\in\{1^r0^{p^2}\mid r,p\in\mathbb{N}\setminus\{0\}\}$, e se i=s=0 então $uv^iw\in\{0\}^*$.

Portanto, L satisfaz a condição do lema para n=1 porque

$$\forall x \in L \ |x| \ge n \Rightarrow \exists u, v, w \ (x = uvw \land v \ne \varepsilon \land |uv| \le 1 \land (\forall i \in \mathbb{N} \ uv^i w \in L))$$

A linguagem $L = \{0^k \mid k \in \mathbb{N}\} \cup \{1^r 0^{p^2} \mid r, p \in \mathbb{N} \setminus \{0\}\}$, de alfabeto $\Sigma = \{0, 1\}$, não é regular e satisfaz a condição do lema da repetição para n = 1.

Prova

De facto, se $x \in L$ e $|x| \ge 1$ então x está num dos dois casos seguintes:

- $x = 00^k$, para algum $k \ge 0$, ou
- $x = 11^s 0^{q^2}$, para algum $s \ge 0$ e algum $q \ge 1$.

Vamos então escolher as decomposições de x como uvw, com $|uv| \le n = 1$ e $v \ne \varepsilon$ tais que $\forall i \in \mathbb{N} \ uv^i w \in L$.

- Para $x = 00^k$, escolhemos $u = \varepsilon$, v = 0, e $w = 0^k$, e temos $uv^i w = 0^{k+i} \in L$.
- Para $x=11^s0^{q^2}$, escolhemos $u=\varepsilon$, v=1, e $w=1^s0^{q^2}$, e vemos que, se $i\geq 1$ ou $s\geq 1$ então $uv^iw\in\{1^r0^{p^2}\mid r,p\in\mathbb{N}\setminus\{0\}\}$, e se i=s=0 então $uv^iw\in\{0\}^*$.

Portanto, L satisfaz a condição do lema para n=1 porque

$$\forall x \in L \ |x| \ge n \Rightarrow \exists u, v, w \ (x = uvw \land v \ne \varepsilon \land |uv| \le 1 \land (\forall i \in \mathbb{N} \ uv^i w \in L))$$