AMIE configuration guide

Alain B. Giorla

November 13, 2015

This document shows how to write initiation files for AMIE. These files can be used to set up 2D simulations with the $2d_composite$ executable.

This document only presents the basic capabilities of 2d_composite. Advanced features will be described in another guide.

Contents

Lis	st of Tables	2				
1	Syntax	3				
2	Structure	4				
3	Discretization	4				
4	1 Stepping					
5	Sample	6				
6	Inclusions 6.1 Geometry	6 6 10 11				
7	Boundary Conditions	11				
8	Output	13				
9	Export	14				
10	Mechanical behaviours	15				

List of Tables

1	First-level parameters	4
2	Discretization parameters	4
3	Stepping parameters	5
4	Sample parameters	6
5	Inclusions parameters	6
6	Common geometry parameters	7
7	Geometry parameters for circles	7
8	Geometry parameters for extended finite elements circles	7
9	Geometry parameters for space-time extended finite elements circles	7
10	Geometry parameters for ellipses	7
11	Geometry parameters for rectangles	8
12	Geometry parameters for rectangles	8
13	Geometry parameters for gravel-like polygons	8
14	Geometry parameters for crushed-like polygons	9
15	Geometry parameters for crushed-like polygons	9
16	Geometry parameters for Voronoi-generated polygons	9
17	Parameters for the constant size distribution	10
18	Parameters for the Bolome particle size distributions	10
19	Parameters for the Fuller particle size distribution	10
20	Parameters for the file-defined particle size distribution	10
21	Specification types for the file-defined particle size distribution	11
22	Placement parameters	11
23	Boundary condition parameters	12
24	Mechanical conditions	13
25	Bounding box positions	13
26	Output parameters	14
27	List of common output field types	
28	Export parameters	
29	List of common export field types	
30	Behaviour parameters	15

1 Syntax

Each line in the initiation file contains a variable for the AMIE simulation, using the following format:

```
.parameter = value # comment
```

Special characters:

parameter must be a character string which contains no space, dot, @, #, quotes, or brackets of any kind. Each variable must be on its own line.

value can either be a number (using e to express powers of 10) or a character string following the same rule as parameter. Some variables require no value, in which case both the = and the right-hand side can be omitted.

An entire line can be commented using the # character.

All character strings are case-sensitive.

Hierarchy:

The variables are organized using a tree-like hierarchy. The number of leading dots before parameter indicates the level of the current line in the tree. A parameter at level n+1 is attached to the parameter at level n placed directly above (hereafter called its father).

The order in which parameters of the same level and sharing the same father are defined is not relevant. The exception is when a parameter is defined multiple times, in which case only the last definition applies.

Paths and file names:

Several items can be defined using additional files. These files are always defined using the path relative to the folder from which AMIE was called. Folder separators are always "/" even in a Windows environment. As spaces are ignored, files or folders must not include spaces in their name.

Units:

S.I. units are generally used, except for times which are expressed in days. Notably, stresses are in Pascal.

2 Structure

The following first-level parameters must be defined in the initiation file. Some of them are required, as indicated in the Req. column.

	Req.	Description
.define	no	Advanced input parameters (not covered in this guide)
.discretization	yes	Parameters for the finite element mesh
.stepping	yes	Time steps and solver parameters
$.\mathtt{sample}$	yes	Geometry and mechanical behaviour of the matrix
.inclusions	no	Geometry and mechanical behaviour of the inclusions
$. {\tt boundary_conditions}$	yes	External mechanical boundary conditions
.output	no	Tables of average values (strain, stress, etc) at different time steps
.export	no	Mesh files to visualize certain values (strain, stress, etc)

Table 1: First-level parameters

Each of these items are described in a different section of this guide.

3 Discretization

The discretization item defines a parameters that control the mesh density and element type. All its parameters are optional. If a parameter is not found, its default value will be used instead.

$. exttt{discretization}$	Def.	Description
order LINEAR		Order of the shape functions for the finite element discretization.
		In space-time finite elements, the order is automatically set to
		LINEAR_TIME_LINEAR.
sampling_number	4	Number of mesh points on the side of the sample.
sampling_restriction	0	Radius (in meters) below which inclusions are not meshed.

Table 2: Discretization parameters

4 Stepping

The **stepping** item defines parameters required for time-stepping and controls parameters of the solver. All its parameters are optional. If a parameter is not found, its default value will be used instead.

There are four different ways to define the time steps, depending on which parameters are defined. By order of priority:

1. With a direct list of time steps:

```
..list_of_time_steps = 0,1,2,3
```

The right-hand side must be a list of coma-separated values that will be used as the time steps of the simulation. The list must start with 0 and strictly increasing.

.stepping	Def.	Description
first_time_step	1	Value of the first time step in the absolute time scale. This
		is only required if logarithmic is set to TRUE.
list_of_time_steps		List of coma-separated value or path to a text file contain-
		ing the list of time steps written in a single column, starting
		with 0 and containing all instants in increasing order.
logarithmic	FALSE	If this flag is set to TRUE, then the time steps will be spaced
		equally in the logarithmic scale.
$\mathtt{maximum_iterations_per_step}$	256	Maximum number of iterations of the damage algorithm at
		each time step
minimum_time_step	1e-9	Smallest amount of time during which coupled damage and
		visco-elasticity are exactly calculated. Viscous effects are
		ignored below this value.
number_of_time_steps	1	Number of time steps to perform.
solver_precision	1e-8	Precision of the conjugate gradient solver
ssor_iterations	20	Number of SSOR iterations used to stabilize the conjugate
		gradient solver
time_step	1	Value of a time step in day (or in the logarithmic scale if
		logarithmic is set to TRUE).

Table 3: Stepping parameters

2. From an external file:

```
..list_of_time_steps = path/to/time_step_file.txt
```

The values stored in the text file are used for the time steps of the simulation. The file must contain a single column of numbers, starting with 0, and strictly increasing. The file name must contain no coma, otherwise the first option will be detected.

3. Using a logarithmic time step:

```
..logarithmic = TRUE
..first_time_step = 1
..time_step = 1
..number_of_time_steps = 1
```

The simulation will consists in number_of_time_steps time steps, starting with first_time_steps (in days), and separated by time_step (in the logarithmic space).

4. Using a constant time step:

```
..time_step = 1
..number_of_time_steps = 1
```

The simulation will perform number_of_time_steps time steps, each having the same value time_step (in days).

5 Sample

The sample item defines the geometry of the main box in which the simulation is performed as well as its mechanical behaviour. Geometrical parameters are optional (default values will be used if they are not found), but the mechanical behaviour must be defined in the file.

.stepping	Def.	Description
behaviour		A Behaviour object representing the mechanical behaviour of the sample. Be-
		haviours are described in their own section.
center		
x	0	x coordinate of the center of the box.
y	0	y coordinate of the center of the box.
height	0.1	Height of the box $(y \text{ axis})$.
width	0.1	Width of the box $(x \text{ axis})$

Table 4: Sample parameters

6 Inclusions

The inclusions item defines the inclusions embedded in the matrix. Most parameters are optional (default values will be used if not found). Parameters without default values are required.

.inclusions	Def.	Description
behaviour		A Behaviour object representing the mechanical be-
		haviour of the inclusions. Behaviours are described in
		their own section.
geometry	Circular	A Geometry objects which defines basic shape proper-
		ties of the inclusions (see below).
$$ particle_size_distribution	Constant	A Particle Size Distribution object which represents
		the size distribution of the inclusions (see below).
placement		A Placement object defining rules for the random place-
		ment of the inclusions (see below).
copy_grain_behaviour	FALSE	If this is TRUE, then the mechanical behaviour will be
		randomized for each inclusion (but will remain constant
		in each inclusion). Otherwise it is randomized for each
		element in the inclusions.
number		Number of inclusions to generate.
radius_maximum		Maximum radius of the inclusions.
sampling_factor	1	Increases the density of the mesh in the inclusions.
surface_fraction		The fraction of the area of the sample covered by the
		inclusions.

Table 5: Inclusions parameters

6.1 Geometry

The geometry item defines basic properties of the inclusions. It consists into a type and several optional parameters, depending on the actual type of the inclusions. The following list details parameters common for different types of geometry. **Req.** indicates a required parameters (only for geometry types for which this is relevant).

geometry = type	Def.	Description
orientation	0	Default angle of the major axis of the inclusion with the x axis.
orientation_variability	π	Variation of the random distribution of the angle of the major
		axis around its average value.
\dots placement_rotation	0	Maximum angle by which the inclusions can be rotated dur-
		ing the placement. Setting this value higher than 0 can result
		in microstructures in which the inclusions are not oriented as
		defined by orientation and orientation_variability
shape_factor	Req.	Average ratio between major and minor axis of the inclusions.
shape_factor_variability	0	Variation of the random distribution of the shape factor around
		its average value.
vertex	Req.	Average number of vertexes for polygonal inclusions.
vertex_variability	0	Variation of the number of vertexes for polygonal inclusions.

Table 6: Common geometry parameters

The different types available are detailed below:

Circles:

```
..geometry = Circular Def. Description
```

Table 7: Geometry parameters for circles

Alternatively, using extended finite elements (constant radius):

```
..geometry = XFEM Def. Description
```

Table 8: Geometry parameters for extended finite elements circles

And for extended finite elements in space and time (constant radius):

```
..geometry = SpaceTimeXFEM Def. Description
```

Table 9: Geometry parameters for space-time extended finite elements circles

Ellipses:

geometry = Ellipsoidal	Def.	Description
orientation	0	
orientation_variability	π	
placement_rotation	0	
shape_factor	Req.	
shape_factor_variability	0	

Table 10: Geometry parameters for ellipses

Rectangles:

geometry = Rectangular	Def.	Description
orientation	0	
orientation_variability	π	
\dots placement_rotation	0	
shape_factor	Req.	
shape_factor_variability	0	

Table 11: Geometry parameters for rectangles

Regular polygons:

geometry = Polygonal	Def.	Description
orientation	0	
orientation_variability	π	
\dots placement_rotation	0	
vertex	Req.	
vertex_variability	0	

Table 12: Geometry parameters for rectangles

Gravel-like polygons:

geometry = GravelPolygonal	Def.	Description
amplitude_factor	0.9	Controls the regularity of the inclusions.
\dots amplitude_exponent	1.9	Controls the regularity of the inclusions
degree	2	Higher degree may result in rougher surfaces.
orientation	0	
orientation_variability	π	
\dots placement_rotation	0	
vertex	Req.	
\dots vertex_variability	0	

Table 13: Geometry parameters for gravel-like polygons

Crushed-like polygons:

As opposed to other geometries, crushed aggregates already result in inclusions with variable elongations. Therefore, shape_factor_variability is not a parameter of that specific geometry.

<pre>geometry = CrushedPolygonal</pre>	Def.	Description
orientation	0	
\dots orientation_variability	π	
\dots placement_rotation	0	
shape_factor	Req.	
vertex	Req.	
vertex_variability	0	

Table 14: Geometry parameters for crushed-like polygons

Alternatively:

<pre>geometry = CrushedSubtendedPolygonal</pre>	Def.	Description
angle_variability		Variation of the angle between two consecutive
		segments of the polygons.
orientation	0	
orientation_variability	π	
placement_rotation	0	
shape_factor	Req.	
vertex	Req.	
vertex_variability	0	

Table 15: Geometry parameters for crushed-like polygons

Voronoi-generated polygons:

This specific method creates polygons extracted from a Voronoi diagram. The resulting microstructure will NOT be a Voronoi diagram.

geometry = VoronoiPolygonal	Def.	Description
box_width	Req.	Size of the box that is used to generate the Voronoi polygons
		(independent of the size of the sample or the inclusions).
grains	Req.	Number of points used for the Delaunay triangulation upon
		which the Voronoi polygons will be based. This number does
		not correlate with the number of inclusions in the simulation.
		Instead, it dictates the number of different shapes available
		in the distribution.
orientation	0	
orientation_variability	π	
placement_rotation	0	
spacing	Req.	Distance between the points used for the Delaunay triangu-
		lation. That distance is related to box_width and not the
		size of the sample or the inclusions itself.

Table 16: Geometry parameters for Voronoi-generated polygons

6.2 Particle Size Distribution

The particle_size_distribution can either be defined as a pre-generated function, or using a text file. Most distributions have no parameters.

Constant distribution:

This is the default distribution if none is found.

```
..particle_size_distribution = ConstantSizeDistribution Def Description
```

Table 17: Parameters for the constant size distribution

Bolome distribution:

$$ particle_size_distribution	Def	Description
particle_size_distribution = PSDBolomeA		Curve for concrete.
particle_size_distribution = PSDBolomeB		Curve for concrete.
<pre>particle_size_distribution = PSDBolomeC</pre>		Curve for concrete.
particle_size_distribution = PSDBolomeD		Curve for mortar.

Table 18: Parameters for the Bolome particle size distributions

Fuller distribution:

particle_size_distribution = PSDFuller	Def.	Description
exponent	0.5	Defines the slope of the distribution.
radius_minimum	0	Defines the smallest radius in the distribution.

Table 19: Parameters for the Fuller particle size distribution

Distribution from an external file:

This method reads a text file containing the discretized particle size distribution as a two-column table. The first column contains the fraction, the second the radii.

particle_size_distribution = GranuloFromCumulativePSD	Def.	Description
	- 1	3.f. 1; 1; 11 1; ; 1 1; ; 1 ; 1 ; 1 ; C ;
factor	1	Multiplies all radii in the distribution by the same factor.
file_name		Path to the text file containing the particle size distribution.
radius_maximum	-1	Cuts off the distribution above the specified radius (if positive).
radius_minimum	-1	Cuts off the distribution below the specified radius (if positive).
specification		Indicates how to read the file.

Table 20: Parameters for the file-defined particle size distribution

specification indicates if the fraction and radii are defined in increasing or decreasing order. It can be one of the following:

specification =	Description
CUMULATIVE_PERCENT	Radii are sorted by decreasing order, and fractions are expressed in
	percentage, from 100 to 0.
CUMULATIVE_FRACTION	Radii are sorted by decreasing order, and fractions range from 1 to 0.
CUMULATIVE_ABSOLUTE	Radii are sorted by decreasing order, and fractions are in absolute
	value of the volume of aggregate, finishing with 0.
CUMULATIVE_PERCENT_REVERSE	Radii are sorted by increasing order, and fractions are expressed in
	percentage, from 0 to 100.
CUMULATIVE_FRACTION_REVERSE	Radii are sorted by increasing order, and fractions range from 0 to 1.
CUMULATIVE_ABSOLUTE_REVERSE	Radii are sorted by increasing order, and fractions are in absolute value
	of the volume of aggregate, starting with 0.

Table 21: Specification types for the file-defined particle size distribution

6.3 Placement

This item defines how particles are placed in the sample. All parameters are optional. If the geometry properties (center, height and width) are not defined, the inclusions will be placed in the sample of the simulation instead.

placement	Def.	Description
center		
X		x coordinate of the center of the box in which the inclusions are placed.
y		y coordinate of the center of the box in which the inclusions are placed.
\dots height		Height of the box in which the inclusions are placed $(y \text{ axis})$.
\dots random_seed	1	Seed to generate different random microstructures based on the same inclu-
		sions.
\dots spacing	0	Minimum distance between inclusions, or between the inclusions and the edges
		of the placement box.
tries	1000	Number of random tries for the placement.
\dots width		Width of the box in which the inclusions are placed $(x \text{ axis})$

Table 22: Placement parameters

7 Boundary Conditions

The boundary_conditions item contains a list of boundary_condition sub-items. As many boundary_condition subitems can be defined. Each boundary_condition item can have the following parameters. Req indicates required parameters; Others are optional.

boundary_condition	Def.	Description
condition	Req.	Type of boundary condition to apply.
\dots interpolation		Path to a text file containing the value of the boundary condition at
		different instants. The file must be written as a two-column table, with
		the time in the first column and the value in the second. A linear
		interpolation will be carried between the specified points.
point		
x		x coordinate of the node on which the boundary condition is applied.
у		x coordinate of the node on which the boundary condition is applied.
\dots position	Req.	Edge of the sample on which the boundary condition is applied.
\dots restriction		
\dots top_right		
x	1	Maximum x coordinate of the nodes on which the boundary condition
		is applied.
y	1	Maximum y coordinate of the nodes on which the boundary condition
		is applied.
bottom_left		
X	-1	Minimum x coordinate of the nodes on which the boundary condition
		is applied.
· · · · · y	-1	Minimum y coordinate of the nodes on which the boundary condition
		is applied.
rate	0	Rate of the boundary condition to apply. The value will be linear in
		time with the specified rate.
value	0	Value of the boundary condition to apply.

Table 23: Boundary condition parameters

In its basic form, a boundary_condition applies a condition with a constant value on an edge or vertex of the sample defined with position.

Geometric restrictions:

If restriction is defined, the condition will only be applied on the nodes located on the specified position and in the rectangular box defined by the top_right and bottom_left points.

If point is defined, the condition will be applied to the node located on the specified position and closest to point.

If both restriction and point are defined, only restriction will be applied.

Time evolution:

In its basic form, the value of the condition is constant. However, it can be set as linear in time using rate, or use a linear interpolation in time using interpolation.

In case of an interpolation, the boundary condition will be interpolated linearly in-between the specified instants. Therefore, special care must be taken to represent step-wise loadings.

Conditions:

Common mechanical boundary conditions are:

condition =	Description
FIX_ALONG_XI	Fixed horizontal (x) displacements.
FIX_ALONG_ETA	Fixed vertical (y) displacements.
SET_ALONG_XI	Imposed horizontal (x) displacements.
SET_ALONG_ETA	Imposed vertical (y) displacements.
SET_STRESS_XI	Imposed horizontal (x) stress.
SET_STRESS_ETA	Imposed vertical (y) stress.

Table 24: Mechanical conditions

Positions:

Common positions in two dimensions are:

position =	Description
LEFT	Minimum horizontal (x) coordinates.
RIGHT	Maximum horizontal (x) coordinates.
BOTTOM	Minimum vertical (y) coordinates.
TOP	Maximum vertical (y) coordinates.
BOTTOM_LEFT	
TOP_LEFT	
BOTTOM_RIGHT	
TOP_RIGHT	

Table 25: Bounding box positions

In space-time finite elements, these all required the _AFTER suffix (as in LEFT_AFTER, etc).

8 Output

The output of the simulation is exported as a table containing for each time step average values of different fields.

The inclusions, edge and point sub-items can all be defined multiple times (for example to get average strains or stresses in both the matrix and the inclusions).

In the main output item (respectively any of the inclusions, edge and point sub-items) the field sub-item can be defined multiple times.

.output	Def.	Description
instant	NOW	Instant at which the values are extracted. Use AFTER in space-time finite
		elements.
file_name	output	Path to the file in which the results are stored. The file will be overwritten
		at each simulation.
field		Name of the field.
inclusions		Allows to output the average value of some fields over a certain phase.
\dots index	0	Index of the phase over which the average is carried. 0 is the matrix (.sample),
		1 the inclusions (.inclusions).
\dots field		Name of the field.
edge		Allows to output the average value of some fields over an edge of the sample.
\dots position	BOTTOM	Indicates which edge is selected.
\dots field		Name of the field.
point		Finds the local value of some fields at a given point.
x	0	x coordinate where to measure the selected fields.
у	0	y coordinate where to measure the selected fields.
field		Name of the field.

Table 26: Output parameters $\,$

The fields are ordered in the output table in the same order as they are defined in the initiation file. Fields can be any standard AMIE field. The most common are:

field =	Columns	Comments
DISPLACEMENT_FIELD	2	
STRAIN_FIELD	3	
STRAIN_RATE_FIELD	3	
MECHANICAL_STRAIN_FIELD	3	Strain field not accounting for visco-elastic and
		imposed strains
REAL_STRESS_FIELD	3	
EFFECTIVE_STRESS_FIELD	3	Stress field not accounting for the damage
PRINCIPAL_STRAIN_FIELD	2	
PRINCIPAL_STRAIN_RATE_FIELD	2	
PRINCIPAL_MECHANICAL_STRAIN_FIELD	2	
PRINCIPAL_REAL_STRESS_FIELD	2	
PRINCIPAL_STRESS_FIELD	2	
SCALAR_DAMAGE_FIELD	1	
GENERALIZED_VISCOELASTIC_STRAIN_FIELD	variable	Size depends on the viscoelastic model $(3 + 3)$
		for each dashpot in the rheological assembly).

Table 27: List of common output field types

9 Export

The export consists in one mesh file per time step numbered from 1 to the number of time steps in the simulation. Each file describes a series of fields (the same series is used in each file).

.export	Def.	Description
instant	NOW	Instant at which the values are extracted. Use AFTER in space-time finite ele-
		ments.
file_name	export	Basic path to the files in which the results are written. "_i" will be added to
		the name of each file, with i the index of the time step. The files will be
		overwritten at each simulation.
field		Name of the field.

Table 28: Export parameters

The field subitem can be defined multiple times. It can be a field from the list of the output field types (see above), or one of the list below.

field =	Columns	Comments
TWFT_STIFFNESS	1	Value of the 1111 component of the stiffness tensor.
TWFT_VISCOSITY	1	Value of the 1111 component of the viscosity tensor.
TWFT_CRITERION	1	Value of the fracture criterion used to evaluate the damage.

Table 29: List of common export field types

10 Mechanical behaviours

The behaviour items describes the mechanical behaviour of the matrix and the inclusions. It is defined by its type and a certain number of parameters or subitems.

.behaviour	Def.	Description
damage_model		A DamageModel item which indicates which algorithm is
		used to compute the damage.
$ { t fracture_criterion}$		A FractureCriterion items which define the failure surface
		of the material. The material does not fail if the criterion is
		not defined.
plane_type	PLANE_STRESS	Indicates which 2D approximation is used.
poisson_ratio	Req.	The Poisson ratio of the material.
young_modulus	Req.	The Young's modulus of the material.

Table 30: Behaviour parameters