CS & IT ENGING

Theory of Computation

Lecture No.- 06

Recap of Previous Lecture

Complement **Topic**

minimization of DFA Topic

Topics to be Covered

Topic

Finite Automaton & Regular Languages.

Topic

Pushdown Automata & Context free Languages.

Topic

Turing Machine & Recursive Enumerable Languages.

Topic

Undecidability.

Topic: Deterministic Finite Automata

FORMAL DFA: DFA is defined as

DFA =
$$(Q, \sum, q_0, F, \delta)$$

Q: Finite set of states

 Σ : Input alphabet

q₀: Initial state

F: Set of final states

 δ : Transition function $Q * \Sigma \rightarrow Q$

Topic: Complement of DFA

By interchanging final and non final states we can convert into complement DFA.

Set of all strings ending with a after complement

Set of all string Ending with

MCQ

#Q. Consider the NFA M shown below.

Let the language accepted by M be L. Let L_1 be the language accepted by the NFA M_1 , obtained by changing the accepting state of M to a non-accepting state and by changing the non-accepting state of M to accepting states. Which of the following statements is true?

A
$$L_1 = \{0, 1\}^* - L$$

B
$$L_1 = \{0, 1\}^*$$

$$L_1 = L$$

Topic: DFA Construction

Construct minimal state DFA that accerpts all strings os 0's and 1's where each string ending with 00.

Topic: Minimization of DFA

→ For a given regular language even though many DFA exist but minimal state DFA is unique.

Ex: Complete Language: Σ^*

Topic: Minimization Algorithm

- State equivalence algorithm
- Table filling algorithm

Equivalent States:

Two states q_0 , q_1 are said to be equivalent both δ (q_0 , x) and $\delta(q_2,x)$, \forall $x \in \Sigma^*$ should result either final state or non final state.

$$\delta (q_1, x) = F$$
 $\delta (q_2, x) = F$
NF

Elimination inaccessible states.

inaccessible state:

Any State which is not reachable from dead state is inaccessible state.

- Apply algorithm steps
- Merge single group into one state
- Construct new minimized DFA

Reduce states of following DFA

Step-1: Elimination inaccessible state.

Note: Dead state is different from inaccessible state.

Step:2

State	0	1
A	В	С
В	A	D
F	F	F
(C)	Е	F
①	E	F
(E)	Е	F

Algorithm:

1. $\{A, B, F\} \{C, D, E\}$

2.

3.

Minimized DFA

Consider the following Finite State Automation

Step 1: Eliminate q₃

Step 2:

	a	b
q_0	q_1	q_0
q_1	q ₂	q_1
(q_2)	q_1	q_2

Algorithm step

1.
$$\{q_0\}\{q_1,q_2\}$$

2.
$$\{q_0\}\{q_1,q_2\}$$

Minimum DFA

Minimize given DFA

Topic: Procedure

Step 1: Eliminate

Step 2:

	a	b
q_1	q_1	q_3
q_2	q_0	q_3
$\overline{q_3}$	q_5	q_5
(q_5)	q_5	q_5

Algorithm

1. $\{q_0, q_1\} \{q_3, q_5\}$

2.

Minimum DFA

How many inaccessible states present in given DFA

Quhich of the following Statement is false! a) 243 are equivalent states (b) 1 & 2 are distinguishable " (C) 3 by are distinguishable " (d) Note.

Consider the 5-state DFA M accepting the language $L(M) \subset \text{subset } (0 + 1)$ shown below. For any string $w \in (0 + 1)^*$ let $n_0(w)$ be the number of 0's in w and n₁ (w) be the number of 1/s in w

Which of the following statements is/are FALSE?

- States 2 and 4 are distinguishable in
- States 2 and 5 are distinguishable in $M \rightarrow folse$
- Any string w with $n_0(w) = n_1(w)$ is in $L(M) \rightarrow m_0^2$
- States 3 and 4 are distinguishable in M

Table

#Q. Construct the minimal DFA that accept all binary no divisible by . 5

		0	1	~
7(9	9	20	21	
9	1	92	93	
9	2	9 ₄	%	
9	3	9,	gr	
0	4	4/3	The	

minimization

#Q. Construct the minimal DFA that accept all binary no divisible by . 6

#Q. Construct the minimal DFA that accept all binary no divisible by

$$3 \rightarrow 3$$
 $4 \rightarrow 3$
 $5 \rightarrow 5$
 $6 \rightarrow 3$
 $3 \rightarrow 3$
 $3 \rightarrow 5$
 $6 \rightarrow 3$
 $3 \rightarrow 5$
 $5 \rightarrow 10$
 $10 \rightarrow 10$
 $2 = (5+) = 6$

#Q. Construct the minimal DFA that accept all binary no divisible by

$$12 - \frac{12}{2} = \frac{6}{2} = \frac{3+2}{2} = \frac{5}{5}$$

#Q. Construct the minimal DFA that accept all binary no divisible by

Construct the minimal DFA that accept all strings of a's and b's where

- 1. Each string ending with b.
- Each string start with a and end with b.
- 3. Each string starting and ending with different symbol.
- 4. Each string starting and ending with same symbol.

Construct the minimal DFA that accept all string a's and b's where

- 1. Length of string exactly 4.
- 2. Number of a's length of string atleast 4.
- 3. Length of string atmost 4.
- 4. Length of string divisible by 4.
- Number of a's exactly 5. $\eta + 2 \eta + 2$
 - 6. Number of b's exactly 2.
 - 7. Number of a's divisible by 3.
- 8. Number of b's not divisible by 4.
- 9. Length of the string even.

#Q. Length of string exactly 4.

4-06

#Q. Length of string atmost 4.

atmosk 7-3 (1+2) states

Disposibi

Sunday

@ 10 am

