TWAS Analysis of Diversity Outbred Strain RNAseq Data

Dave Bridges

July 7, 2020

Contents

1	Purpose	1
2	Experimental Details	1
3	Raw Data	1
4	Analysis 4.1 Cholesterol Levels	2 2
5	TWAS with Cholesterol Levels for NCD	4
6	TWAS with Cholesterol Levels for HFD 6.1 TWAS Modification by Sex	6 11
7	Comparason with mouse GWAS	11
8	Integrated TWAS Analysis	11
9	Specific Associations 9.1 Bile Acid Metabolism	27 30
10	Session Information	31

1 Purpose

2 Experimental Details

The RNA expression data was downloaded from GSE72759 as a matrix file, and compared with genotypes from the Svenson-183 dataset.

3 Raw Data

```
library(readr) #loads the readr package
expression.filename <- "GSE72759_D0192_RNAseq_UpperQuartileNormalized_n21454genes_forGE0Submission.txt"
expression.data <- read_tsv(expression.filename, show_col_types = F) %>%
    dplyr::rename(ENSEMBL.ID=1)
```

```
genotype.filename <- 'Svenson_183_Svenson_DO-MegaMUGA-calls.csv'</pre>
genotype.data <- read_csv(genotype.filename,</pre>
                            col_types = cols(
  .default = col_character(),
  chr = col_factor(levels=NULL),
  pos = col_double()
))
phenotype.filename <- 'Svenson_HFD_D0_phenotype_V12.csv'</pre>
phenotype.data <- read_csv(phenotype.filename)</pre>
phenotype.data[phenotype.data=='-999999'] <- NA</pre>
mean.expression <-</pre>
  expression.data %>%
  dplyr::select(contains(phenotype.data$mouse.id))%>%
expression.data <-
   expression.data %>%
   filter(mean.expression>10)
```

4 Analysis

Only evaluated gene expression for genes with >10 TPM

4.1 Cholesterol Levels

Regressed cholesterol levels by diet and sex

Table 1: Summary statistics for cholesterol levels at 8 weeks

sex	diet	mean	se	sd	n
F	chow	NA	1.48	NA	225
\mathbf{F}	hf	NA	2.40	NA	198
\mathbf{M}	chow	NA	1.57	NA	224
\mathbf{M}	hf	NA	2.33	NA	193

```
library(broom)
lm(chol2~sex*diet, data=phenotype.data) %>%
  tidy %>%
  kable(caption="Global interactions between sex and diet")
```

Table 2: Global interactions between sex and diet

term	estimate	std.error	statistic	p.value
(Intercept)	78.67	1.88	41.887	0.000
sexM	17.80	2.68	6.648	0.000
diethf	34.64	2.75	12.615	0.000
sexM:diethf	-1.86	3.94	-0.474	0.636

Table 3: Summary statistics for cholesterol levels at 8 weeks

sex	diet	mean	se	sd	n
F	chow	NA	1.48	NA	225
F	hf	NA	2.40	NA	198
\mathbf{M}	chow	NA	1.57	NA	224
M	hf	NA	2.33	NA	193

```
library(broom)
lm(chol2~sex*diet, data=phenotype.data) %>%
  tidy %>%
  kable(caption="Global interactions between sex and diet")
```

Table 4: Global interactions between sex and diet

term	estimate	std.error	statistic	p.value
(Intercept)	78.67	1.88	41.887	0.000
sexM	17.80	2.68	6.648	0.000
diethf	34.64	2.75	12.615	0.000

term	estimate	std.error	statistic	p.value
sexM:diethf	-1.86	3.94	-0.474	0.636

```
chol.lm <- lm(chol2~sex+diet, data=phenotype.data)
chol.lm.hf <- lm(chol2~sex, data=filter(phenotype.data, diet=='hf'))

cholesterol.data.hfd <-
   phenotype.data %>%
     filter(!is.na(chol2)) %>%
   filter(diet=='hf') %>%
   mutate(adj.chol.hf=residuals(chol.lm.hf)+coefficients(chol.lm.hf)['(Intercept)'])
```

5 TWAS with Cholesterol Levels for NCD

```
library("org.Mm.eg.db")
library(purrr)
possible.lm <- possibly(.f = lm, otherwise=NULL) # to catch errors when we only have one sex and a cont
twas.data.ncd <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.ncd$mouse.id))%>%
  pivot_longer(cols=one_of(cholesterol.data.ncd$mouse.id),
               names_to='mouse.id',
               values_to='expression') %>%
  full_join(cholesterol.data.ncd,by='mouse.id') %>%
  dplyr::select(chol2,sex,mouse.id,ENSEMBL.ID,expression) %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol2+sex, data = .x))) %>%
  filter(term=='chol2') %>%
  arrange(p.value)%>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.ncd.all <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.ncd$mouse.id))%>%
  pivot_longer(cols=one_of(cholesterol.data.ncd$mouse.id),
              names_to='mouse.id',
               values_to='expression') %>%
  full_join(cholesterol.data.ncd,by='mouse.id') %>%
  dplyr::select(chol2,sex,mouse.id,ENSEMBL.ID,expression) %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol2+sex, data = .x))) %>%
  filter(term %in% c('chol2', '(Intercept)')) %>%
  dplyr::select(ENSEMBL.ID,term,estimate,std.error) %>%
  pivot_wider(id_cols=ENSEMBL.ID,
              names_from = 'term',
              values_from = c(estimate,std.error)) %>%
  mutate(estimate.rel = estimate_chol2/`estimate_(Intercept)`,
         std.error.rel = std.error_chol2/`estimate_(Intercept)`)
```

```
twas.data.ncd.r2 <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.ncd$mouse.id))%>%
  pivot longer(cols=one of(cholesterol.data.ncd$mouse.id),
               names_to='mouse.id',
               values to='expression') %>%
  full_join(cholesterol.data.ncd,by='mouse.id') %>%
  group by (ENSEMBL.ID) %>%
  group_modify(~ broom::glance(possible.lm(expression ~ chol2+sex, data = .x))) %>%
  arrange(p.value)%>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.ncd.int <-</pre>
  expression.data %>%
  dplyr::select(ENSEMBL.ID, one_of(cholesterol.data.ncd$mouse.id))%>%
  pivot_longer(cols=one_of(cholesterol.data.ncd$mouse.id),
               names_to='mouse.id',
               values_to='expression') %>%
  full_join(cholesterol.data.ncd,by='mouse.id') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol2*sex, data = .x))) %>%
  filter(term=='chol2:sexM') %>%
  arrange(p.value) %>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.ncd$symbol <- mapIds(org.Mm.eg.db,</pre>
                           keys=twas.data.ncd$ENSEMBL.ID,
                           column="SYMBOL",
                           keytype="ENSEMBL"
                           multiVals="first")
twas.data.ncd.int$symbol <- mapIds(org.Mm.eg.db,</pre>
                           keys=twas.data.ncd.int$ENSEMBL.ID,
                           column="SYMBOL",
                           keytype="ENSEMBL",
                           multiVals="first")
twas.data.ncd.all$symbol <- mapIds(org.Mm.eg.db,
                           keys=twas.data.ncd.all$ENSEMBL.ID,
                           column="SYMBOL",
                           keytype="ENSEMBL",
                           multiVals="first")
twas.data.ncd %>%
  head(10) %>%
  kable(caption="Top 10 liver TWAS assocations with cholesterol levels")
```

Table 5: Top 10 liver TWAS assocations with cholesterol levels

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG00000089943 ENSMUSG00000006567		0.279 0.044	$0.067 \\ 0.013$	4.18 3.52	$0.000 \\ 0.001$	$0.000 \\ 0.001$	Ugt1a5 Atp7b

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG00000028412	chol2	0.078	0.023	3.33	0.001	0.001	Slc44a1
ENSMUSG00000024981	chol2	0.326	0.100	3.27	0.002	0.002	Acsl5
ENSMUSG00000025809	chol2	-0.054	0.016	-3.26	0.002	0.002	Itgb1
ENSMUSG00000083863	chol2	1.847	0.572	3.23	0.002	0.002	NA
ENSMUSG00000026238	chol2	-0.078	0.024	-3.20	0.002	0.002	Ptma
ENSMUSG00000049940	chol2	0.048	0.016	3.09	0.003	0.003	Pgrmc2
ENSMUSG00000024066	chol2	0.105	0.034	3.08	0.003	0.003	Xdh
ENSMUSG00000090555	chol2	-1.371	0.446	-3.08	0.003	0.003	Gm8893

```
twas.data.ncd.int %>%
  head(10) %>%
  kable(caption="Top 10 liver TWAS assocations with cholesterol levels that are modified by sex")
```

Table 6: Top 10 liver TWAS assocations with cholesterol levels that are modified by ${\rm sex}$

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
	term	Cotimate	500.01101	Statistic	p.varue	p.auj	- Symbol
ENSMUSG000000	71644chol 2 :sexM	-0.146	0.029	-5.06	0	0	Eef1g
ENSMUSG000000	024120chol 2 :sexM	-0.179	0.040	-4.43	0	0	Lrpprc
ENSMUSG000000	21595chol 2 : $sexM$	-0.112	0.026	-4.29	0	0	Nsun2
ENSMUSG000000	26895chol 2 :sexM	-0.053	0.012	-4.29	0	0	Ndufa8
ENSMUSG000000	10608chol 2 :sexM	-0.069	0.017	-4.15	0	0	Rbm25
ENSMUSG000000	69874chol 2 :sexM	0.221	0.054	4.12	0	0	Irgm2
ENSMUSG000000	34422chol 2 :sexM	0.128	0.031	4.08	0	0	Parp14
ENSMUSG000000	31877chol 2 : $sexM$	-0.081	0.021	-3.85	0	0	Ces2g
ENSMUSG000000	50043chol 2 :sexM	-0.072	0.019	-3.80	0	0	Tmx2
ENSMUSG000000	21610chol 2 :sexM	-0.082	0.022	-3.79	0	0	Clptm1l

6 TWAS with Cholesterol Levels for HFD

```
twas.data.hf <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.hfd$mouse.id))%>%
  pivot_longer(cols=one_of(cholesterol.data.hfd$mouse.id),
```

```
names_to='mouse.id',
               values_to='expression') %>%
  full_join(cholesterol.data.hfd,by='mouse.id') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol2+sex, data = .x))) %>%
  filter(term=='chol2') %>%
  arrange(p.value)%>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.hf.all<-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.hfd$mouse.id))%>%
  pivot_longer(cols=one_of(cholesterol.data.hfd$mouse.id),
               names_to='mouse.id',
               values_to='expression') %>%
  full_join(cholesterol.data.hfd,by='mouse.id') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol2+sex, data = .x))) %>%
  filter(term %in% c('chol2', '(Intercept)')) %>%
  dplyr::select(ENSEMBL.ID,term,estimate,std.error) %>%
  pivot_wider(id_cols=ENSEMBL.ID,
              names_from = 'term',
              values_from = c(estimate,std.error)) %>%
  mutate(estimate.rel = estimate_chol2/`estimate_(Intercept)`*100,
         std.error.rel = std.error_chol2/`estimate_(Intercept)`*100)
twas.data.hf.r2 <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.hfd$mouse.id))%>%
  pivot_longer(cols=one_of(cholesterol.data.hfd$mouse.id),
               names_to='mouse.id',
               values_to='expression') %>%
  full_join(cholesterol.data.hfd,by='mouse.id') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::glance(possible.lm(expression ~ chol2+sex, data = .x))) %>%
  arrange(p.value)%>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.int.hf <-
  expression.data %>%
  dplyr::select(ENSEMBL.ID,one_of(cholesterol.data.hfd$mouse.id))%>%
  pivot_longer(cols=one_of(cholesterol.data.hfd$mouse.id),
               names to='mouse.id',
               values_to='expression') %>%
  full_join(cholesterol.data.hfd,by='mouse.id') %>%
  group_by(ENSEMBL.ID) %>%
  group_modify(~ broom::tidy(possible.lm(expression ~ chol2*sex, data = .x))) %>%
  filter(term=='chol2:sexM') %>%
  arrange(p.value) %>%
  mutate(p.adj=p.adjust(p.value,method="BH"))
twas.data.hf$symbol <- mapIds(org.Mm.eg.db,</pre>
```

```
keys=twas.data.hf$ENSEMBL.ID,
                            column="SYMBOL",
                            keytype="ENSEMBL",
                            multiVals="first")
twas.data.int.hf$symbol <- mapIds(org.Mm.eg.db,</pre>
                            keys=twas.data.int.hf$ENSEMBL.ID,
                            column="SYMBOL",
                            keytype="ENSEMBL",
                            multiVals="first")
twas.data.hf.all$symbol <- mapIds(org.Mm.eg.db,</pre>
                            keys=twas.data.hf.all$ENSEMBL.ID,
                            column="SYMBOL",
                            keytype="ENSEMBL",
                            multiVals="first")
twas.data.hf %>%
 head(10) %>%
 kable(caption="Top 10 liver TWAS a ssocations with cholesterol levels for HFD")
```

Table 7: Top 10 liver TWAS a ssocations with cholesterol levels for HFD

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG00000038	8366 chol2	-0.044	0.014	-3.21	0.002	0.002	Lasp1
ENSMUSG00000054	4469 chol2	0.018	0.006	3.19	0.002	0.002	Lclat1
ENSMUSG00000037	7266 chol2	0.070	0.023	3.10	0.003	0.003	Rsrp1
ENSMUSG00000030	0662 chol2	0.014	0.004	3.07	0.003	0.003	Ipo5
ENSMUSG00000025	5003 chol2	0.309	0.103	3.01	0.003	0.003	Cyp2c39
ENSMUSG00000000	0631 chol2	0.036	0.012	2.94	0.004	0.004	Myo18a
ENSMUSG00000022	2615 chol2	-0.058	0.020	-2.92	0.004	0.004	Tymp
ENSMUSG0000003	1762 chol2	0.165	0.057	2.90	0.005	0.005	Mt2
ENSMUSG00000024	4140 chol2	0.063	0.022	2.88	0.005	0.005	Epas1
ENSMUSG00000079	9012 chol2	0.235	0.082	2.86	0.005	0.005	Serpina3m

```
twas.data.int.hf %>%
head(10) %>%
kable(caption="Top 10 liver TWAS assocations with cholesterol levels that are modified by sex for HFD
```

Table 8: Top 10 liver TWAS assocations with cholesterol levels that are modified by sex for HFD $\,$

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG0000008	87579chol2:sexM	-0.141	0.038	-3.69	0.000	0.000	Hectd2os
ENSMUSG0000000	60407chol 2 :sexM	-0.763	0.222	-3.44	0.001	0.001	Cyp2a12
ENSMUSG000000	18102chol 2 :sexM	-0.084	0.024	-3.44	0.001	0.001	H2bc4
ENSMUSG000000	22010chol 2 :sexM	-0.304	0.091	-3.33	0.001	0.001	Tsc22d1
ENSMUSG0000000	06529chol 2 :sexM	-0.670	0.211	-3.18	0.002	0.002	Itih1
ENSMUSG000000	26405chol 2 :sexM	-0.450	0.149	-3.03	0.003	0.003	C4bp
ENSMUSG000000	37780chol 2 :sexM	-0.119	0.039	-3.03	0.003	0.003	Mbl1

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG00000000000000000000000000000000000		-2.960 -0.326	0.983 0.112	-3.01 -2.91	0.003 0.005	$0.003 \\ 0.005$	Gc C1s1
ENSMUSG000000		0.034	0.012	2.79	0.007	0.007	Aldoa

```
write_csv(twas.data.hf,
          file="HFD TWAS Results.csv")
write_csv(twas.data.int.hf,
          file="HFD TWAS Interaction Results.csv")
twas.data.combined.hf <-</pre>
  left_join(twas.data.hf,
            filter(twas.data.int.hf, p.value<0.05), #only append interaction values when significant
             by=c('ENSEMBL.ID','symbol'),
             suffix = c('_main','_int'))
write csv(twas.data.combined.hf,
          file="HFD TWAS Results - Combined.csv")
sig.twas.data.hf <-
    twas.data.hf %>%
  filter(p.adj<0.05)
sig.twas.data.ncd <-</pre>
  twas.data.ncd %>%
  filter(p.adj<0.05)
sig.twas.data.ncd$symbol %in% sig.twas.data.hf$symbol %>% table
## .
## FALSE TRUE
##
    106
sig.twas.data.ncd$genes %in% sig.twas.data.hf$genes %>% table
## 
library(venneuler)
vd.down.up <- venneuler(c("NCD"=170, "HFHS"=27, "NCD&HFHS"=0))</pre>
vd.down.down <- venneuler(c("NCD"=43, "HFHS"=69, "NCD&HFHS"=0))
vd.all <- venneuler(c("NCD"=dim(sig.twas.data.ncd)[1],</pre>
                      "HFHS"=dim(sig.twas.data.hf)[1],
                      "NCD&HFHS"=intersect(sig.twas.data.hf$symbol,sig.twas.data.ncd$symbol) %% length
plot(vd.down.up)
```


plot(vd.down.down)

plot(vd.all, main="Transcripts Associating with Cholesterol")

Transcripts Associating with Cholesterol

Our analysis identified 113 nominally significant associations between expression of genes and adjusted cholesterol levels on a normal chow diet. Among those, 68 were positively correlated and 68 were negatively correlated with cholesterol levels.

6.1 TWAS Modification by Sex

By modeling the interactions between sex and expression on cholesterol levels, we identified **526** genes where the cholesterol/expression relationship was modified by sex in a nominally significant manner. This included 14 genes where the relationship was stronger in males, and 512 where it was stronger in females.

7 Comparason with mouse GWAS

```
chr11.genes <- c('Znrf3', 'Xbp1', 'Ccdc117', 'Ankrd36', 'Mrps24', 'Urgcp', 'Dbn1', 'Pgam2', 'Polm', 'Ae'
genes.of.interest <- c('Cyp7a1','Fasn','Ldlr','Hmgcr')
twas.data.ncd %>%
  filter(symbol %in% c(chr11.genes,genes.of.interest)) %>%
  kable(caption="Genes in the chromosome 11 interval with liver expression")
```

Table 9: Genes in the chromosome 11 interval with liver expression

ENSEMBL.ID	term	estimate	std.error	statistic	p.value	p.adj	symbol
ENSMUSG00000002741	chol2	-0.014	0.008	-1.699	0.093	0.093	Ykt6
ENSMUSG00000004394	chol2	-0.008	0.006	-1.381	0.170	0.170	Tmed4
ENSMUSG00000041798	chol2	0.055	0.053	1.027	0.307	0.307	Gck
ENSMUSG00000020484	chol2	-0.064	0.079	-0.812	0.419	0.419	Xbp1
ENSMUSG00000021670	chol2	0.050	0.091	0.556	0.580	0.580	Hmgcr
ENSMUSG00000028240	chol2	-0.049	0.138	-0.355	0.724	0.724	Cyp7a1
ENSMUSG00000032193	chol2	-0.004	0.043	-0.090	0.928	0.928	Ldlr
ENSMUSG00000025153	chol2	0.050	0.636	0.078	0.938	0.938	Fasn

8 Integrated TWAS Analysis

```
geom_vline(xintercept = 0, lty=2) +
  geom_label_repel(aes(label=symbol),
                   data = subset(combined.twas.data, abs(estimate_hfd) > 2|abs(estimate_ncd) > 2))
   40 -
   30 -
                                                 Alb
   20 -
estimate_hfd
   10
                                                           Scd1
                                          Serpina1d
                            C3
                                                      Serpina1e
                      Serpina1c
                                              Mup7
                             Mup10
                                              Mup9
                Serpina3k
  -10 -
                                      Mup2
                   -10
                                                         10
                                                                            20
                                          estimate ncd
sig.genes <- filter(combined.twas.data, p.adj_ncd<0.05&p.adj_hfd<0.05) %>% pull(symbol)
ggplot(combined.twas.data.all %>% filter(symbol %in% sig.genes),
       aes(y=estimate.rel_hfd, x=estimate.rel_ncd,
           xmin=estimate.rel_ncd-std.error.rel_ncd,
           xmax=estimate.rel_ncd+std.error.rel_ncd,
           ymin=estimate.rel_hfd-std.error.rel_hfd,
           ymax=estimate.rel_hfd+std.error.rel_hfd )) +
  geom_point() +
  geom_errorbar() +
  geom_errorbarh() +
  geom_hline(yintercept = 0, lty=2) +
  geom_vline(xintercept = 0, lty=2) +
```

geom_text_repel(aes(label=symbol))


```
sig.genes <- filter(combined.twas.data, p.adj_ncd<0.05|p.adj_hfd<0.05) %>% pull(symbol)
ggplot(combined.twas.data.all %>% filter(symbol %in% sig.genes),
       aes(y=estimate.rel_hfd, x=estimate.rel_ncd,
           xmin=estimate.rel_ncd-std.error.rel_ncd,
           xmax=estimate.rel_ncd+std.error.rel_ncd,
           ymin=estimate.rel_hfd-std.error.rel_hfd,
           ymax=estimate.rel_hfd+std.error.rel_hfd )) +
  geom_point() +
  geom_errorbar() +
  geom_errorbarh() +
  geom_smooth() +
  geom_hline(yintercept = 0, lty=2) +
  geom_vline(xintercept = 0, lty=2) +
  xlim(-0.03,0.03) +
  ylim(-0.03,0.03) +
  geom_text_repel(aes(label=symbol)) +
  labs(y="On HFHS Diet (beta)",
      x="On NCD Diet (beta)",
      title="Associations of Liver Transcripts with Cholesterol",
       subtitle="Significant for at least one diet")
```

Associations of Liver Transcripts with Cholesterol Significant for at least one diet

Associations of Liver Transcripts with Cholesterol

Comparason with human GWAS

 $Downloaded\ human\ cholesterol\ associated\ alleles\ from\ https://t2d.hugeamp.org/phenotype.html?phenotype=CHOL$

library(biomaRt) human = useMart("ensembl", dataset = "hsapiens_gene_ensembl") mouse = use-Mart("ensembl", dataset = "mmusculus_gene_ensembl")

mapping.data \leftarrow getLDS(attributes = c("hgnc_symbol"), filters = "hgnc_symbol", values = gwas.data\$Symbol , mart = human, attributesL = c("mgi_symbol"), martL = mouse, uniqueRows=T)

 $gwas.data <- full_join(gwas.data, mapping.data, by = c(`Symbol' = `HGNC.symbol')) \% > \% \ dplyr::filter(!(is.na(MGI.symbol))) \\$

#are gwas alleles enriched in correlation analyses

sig.twas.data <- filter(twas.data, p.value<0.05) #sig.twas.datasymbolMGI.symbol %>% table

combined.twas.data %>% filter(symbol %in% gwas.data\$MGI.symbol) %>% arrange(p.value) %>% head %>% kable(caption="Most significant TWAS association hits that are also nearby GWAS hits")

#checked if a TWAS was a GWAS hit twas.data.matched <- combined.twas.data %>% mutate(hGWAS.match=symbol %in% gwas.data\$MGI.symbol)

with(twas.data.matched, table(hGWAS.match,p.value<0.05)) %>% fisher.test() %>% tidy %>% kable(caption='Fisher test for enrichment of GWAS hits in liver TWAS genes')

glm(hGWAS.match~p.value, data=twas.data.matched, family='binomial') %>% tidy %>% kable(caption="Logistic regression of TWAS values against likilihood of a GWAS hit.")

```
```r
twas.list <- twas.data.ncd %>% arrange(-estimate) %>% pull(estimate)
names(twas.list) <- twas.data.ncd %>% arrange(-estimate) %>% pull(symbol)
twas.list <- sort(twas.list, decreasing = TRUE)</pre>
#twas.list <- twas.list[!(is.na(names(twas.list)))]</pre>
library(clusterProfiler)
go.twas.bp <- gseGO(geneList=twas.list,</pre>
 ont="BP",
 keyType='SYMBOL',
 OrgDb=org.Mm.eg.db,
 pvalueCutoff=0.25,
 verbose=T,
 by='fgsea',
 eps=1E-25)
#enrichement
twas.data.ncd %>%
 filter(p.value<0.05) %>%
 pull(symbol) ->
 twas.sig
go.twas.bp.enrich <- enrichGO(gene=twas.sig,</pre>
 ont="BP",
 keyType='SYMBOL',
 OrgDb=org.Mm.eg.db,
 pvalueCutoff=0.05)
go.twas.bp.enrich.simpl <- simplify(go.twas.bp.enrich,</pre>
 cutoff=0.7,
 by="p.adjust",
 select_fun=min)
library(enrichplot)
dotplot(go.twas.bp.enrich.simpl,
 showCategory=50,
 color='pvalue',
 font.size=8)
```

# Pathway Analyses for NCD



barplot(go.twas.bp.enrich.simpl,font.size=8)



cnetplot(go.twas.bp.enrich.simpl,

```
showCategory=100,
 node_label="gene",
 cex label gene=0.5)
 vitamin biosynthetic process
 vitamin metabolic process
 lysosomal transport
 protein localization to lysosome negative requision of response to endoplasmic reticulum stress cleaterol biosynthetic process
 protein targeting to lysosome primary alcoholicatabolic process
 regulation of cholesterol efflux
 thyroid hormone metabolic process, hormone metabolic process_{panie} hydroxy compound biosynthetic process
negative regulation of amyloid-beta formation
 lipid homeostasis
 mitotic ONA replication
 regulation of lipid storage
 pancreas development
 negative regulation of peptidase activity
 size
pepticlyl-tyrosine dephosphorylation involved in inactivation of protein kinase actively focal adhesion assembly.
 regulation of local adhesion assembly
 monosaccharide biosynthetic process
 regulation of cell-substrate junction assembly
 dicarboxylic acid metabolic process
 regulation of cell-substrate junction organization organic cyclic compound catabolic process aromatic amino acid family catabolic process
 deoxyrbose phosphate catabolic process
 transition metal ion transport
cnetplot(go.twas.bp.enrich.simpl,
 showCategory=100,
 node_label="category",
 cex_label_category=0.5)
```



heatplot(go.twas.bp.enrich.simpl)



library(ggupset)
upsetplot(go.twas.bp.enrich.simpl)



fatty acid metabolic process
small molecule catabolic process
sulfur compound metabolic process
carboxylic acid biosynthetic process
organic acid biosynthetic process
alcohol metabolic process
carboxylic acid catabolic process
nucleoside bisphosphate metabolic process
purine nucleoside bisphosphate metabolic process
ribonucleoside bisphosphate metabolic process







as.data.frame(go.twas.bp) %>% select("Description", "setSize", "enrichmentScore", "NES", "pvalue", "p.adjust kable(caption="NCD GO BP Analysis of TWAS Associations from GSEA")

Table 10: NCD GO BP Analysis of TWAS Associations from GSEA

Description	$\operatorname{setSize}$	${\bf enrichment Score}$	NES	pvalue	p.adjust

```
as.data.frame(go.twas.bp) %>%
write_csv(file="NCD TWAS GO-BP GSEA.csv")
as.data.frame(go.twas.bp.enrich.simpl) %>% select("Description", "GeneRatio", "Count", "pvalue", "p.adjust", kable(caption="NCD GO BP Analysis of TWAS Associations from Enrichment")
```

Table 11: NCD GO BP Analysis of TWAS Associations from Enrichment

•	Description	GeneRatio	Count	pvalue	p.adjust
GO:	sulfur compound metabolic process	13/109	13	0.000	0.000
0006790					
GO:	small molecule catabolic process	13/109	13	0.000	0.000
0044282					
GO:	carboxylic acid biosynthetic process	12/109	12	0.000	0.000
0046394					
GO:	organic acid biosynthetic process	12/109	12	0.000	0.000
0016053					

	Description	GeneRatioCo	ount	pvalue	p.adjust
GO: 0006631	fatty acid metabolic process	14/109	14	0.000	0.000
GO: 0033865	nucleoside bisphosphate metabolic process	8/109	8	0.000	0.000
GO: 0033875	ribonucleoside bisphosphate metabolic process	8/109	8	0.000	0.000
GO: 0034032	purine nucleoside bisphosphate metabolic process	8/109	8	0.000	0.000
GO: 0006066	alcohol metabolic process	11/109	11	0.000	0.000
GO: 0046395	carboxylic acid catabolic process	9/109	9	0.000	0.000
GO: 0019693	ribose phosphate metabolic process	11/109	11	0.000	0.000
GO: 0008202	steroid metabolic process	10/109	10	0.000	0.000
GO: 0043648	dicarboxylic acid metabolic process	6/109	6	0.000	0.000
GO: 0006622	protein targeting to lysosome	4/109	4	0.000	0.000
GO: 0062012	regulation of small molecule metabolic process	10/109	10	0.000	0.000
GO: 0019216	regulation of lipid metabolic process	10/109	10	0.000	0.000
GO: 0071616	acyl-CoA biosynthetic process	4/109	4	0.000	0.000
GO: 0042180	cellular ketone metabolic process	8/109	8	0.000	0.000
GO: 0010876	lipid localization	10/109	10	0.000	0.000
GO: 0009120	deoxyribonucleoside metabolic process	3/109	3	0.000	0.001
GO: 0061462	protein localization to lysosome	4/109	4	0.000	0.001
GO: 0010565	regulation of cellular ketone metabolic process	6/109	6	0.000	0.001
GO: 1901617	organic hydroxy compound biosynthetic process	7/109	7	0.000	0.001
GO: 0009410	response to xenobiotic stimulus	8/109	8	0.000	0.001
GO: 0120254	olefinic compound metabolic process	6/109	6	0.000	0.001
GO: 1905952	regulation of lipid localization	6/109	6	0.000	0.002
GO: 0006695	cholesterol biosynthetic process	4/109	4	0.000	0.002
GO: 0009164	nucleoside catabolic process	3/109	3	0.000	0.003
GO: 1901361	organic cyclic compound catabolic process	9/109	9	0.000	0.003
GO: 0006869	lipid transport	8/109	8	0.000	0.004

	Description	GeneRa	ticCount	pvalue	p.adjust
GO: 0006575	cellular modified amino acid metabolic process	6/109	6	0.000	0.004
GO: 0044262	cellular carbohydrate metabolic process	7/109	7	0.000	0.004
GO: 0010038	response to metal ion	7/109	7	0.000	0.004
GO: 0009264	deoxyribonucleotide catabolic process	3/109	3	0.000	0.004
GO: 0030258	lipid modification	6/109	6	0.000	0.005
GO: 1901658	glycosyl compound catabolic process	3/109	3	0.000	0.005
GO: 0042445	hormone metabolic process	6/109	6	0.000	0.005
GO: 0009072	aromatic amino acid family metabolic process	3/109	3	0.000	0.006
GO: 0042403	thyroid hormone metabolic process	3/109	3	0.000	0.008
GO: 0019439	aromatic compound catabolic process	8/109	8	0.000	0.008
GO: 0010675	regulation of cellular carbohydrate metabolic process	5/109	5	0.000	0.010
GO: 1903573	negative regulation of response to endoplasmic reticulum stress	3/109	3	0.000	0.011
GO: 0055088	lipid homeostasis	5/109	5	0.001	0.013
GO: 0010874	regulation of cholesterol efflux	3/109	3	0.001	0.013
GO: 2001243	negative regulation of intrinsic apoptotic signaling pathway	4/109	4	0.001	0.013
GO: 0005996	monosaccharide metabolic process	6/109	6	0.001	0.013
GO: 0019217	regulation of fatty acid metabolic process	4/109	4	0.001	0.013
GO: 0036473	cell death in response to oxidative stress	4/109	4	0.001	0.013
GO: 0071466	cellular response to xenobiotic stimulus	5/109	5	0.001	0.013
GO: 1990264	peptidyl-tyrosine dephosphorylation involved in inactivation of protein kinase activity	2/109	2	0.001	0.013
GO: 0008631	intrinsic apoptotic signaling pathway in response to oxidative stress	3/109	3	0.001	0.014
GO: 0000041	transition metal ion transport	4/109	4	0.001	0.016
GO: 0034310	primary alcohol catabolic process	2/109	2	0.001	0.017
GO: 0007041	lysosomal transport	4/109	4	0.001	0.019
GO: 0010883	regulation of lipid storage	3/109	3	0.001	0.020
GO: 0044270	cellular nitrogen compound catabolic process	7/109	7	0.001	0.021

	Description	GeneRatio	count	pvalue	p.adjust
GO: 0046700	heterocycle catabolic process	7/109	7	0.001	0.021
GO: 1902969	mitotic DNA replication	2/109	2	0.001	0.021
GO: 0016042	lipid catabolic process	6/109	6	0.002	0.025
GO: 0008654	phospholipid biosynthetic process	5/109	5	0.002	0.025
GO: 0009074	aromatic amino acid family catabolic process	2/109	2	0.002	0.025
GO: 0051893	regulation of focal adhesion assembly	3/109	3	0.002	0.027
GO: 0090109	regulation of cell-substrate junction assembly	3/109	3	0.002	0.027
GO: 0071243	cellular response to arsenic-containing substance	2/109	2	0.002	0.027
GO: 1905039	carboxylic acid transmembrane transport	4/109	4	0.002	0.028
GO: 0016052	carbohydrate catabolic process	4/109	4	0.002	0.028
GO: 0071241	cellular response to inorganic substance	5/109	5	0.002	0.030
GO: 0007584	response to nutrient	3/109	3	0.002	0.030
GO: 0015711	organic anion transport	6/109	6	0.002	0.031
GO: 0150116	regulation of cell-substrate junction organization	3/109	3	0.002	0.031
GO: 0009110	vitamin biosynthetic process	2/109	2	0.003	0.033
GO: 1902430	negative regulation of amyloid-beta formation	2/109	2	0.003	0.033
GO: 0071404	cellular response to low-density lipoprotein particle stimulus	2/109	2	0.003	0.038
GO: 1901657	glycosyl compound metabolic process	3/109	3	0.003	0.038
GO: 0010466	negative regulation of peptidase activity	5/109	5	0.003	0.039
GO: 0031998	regulation of fatty acid beta-oxidation	2/109	2	0.003	0.040
GO: 0090201	negative regulation of release of cytochrome c from mitochondria	2/109	2	0.003	0.040
GO: 0009060	aerobic respiration	4/109	4	0.004	0.041
GO: 0006766	vitamin metabolic process	3/109	3	0.004	0.044
GO: 0050860	negative regulation of T cell receptor signaling pathway	2/109	2	0.004	0.044
GO: 0042326	negative regulation of phosphorylation	6/109	6	0.004	0.045
GO: 0048041	focal adhesion assembly	3/109	3	0.004	0.045

	Description	GeneRaticCo	unt	pvalue	p.adjust
GO:	deoxyribose phosphate catabolic process	2/109	2	0.004	0.045
0046386					
GO:	response to arsenic-containing substance	2/109	2	0.004	0.045
0046685					
GO:	regulation of protein kinase B signaling	4/109	4	0.005	0.047
0051896		2/100			0 0 4 -
GO:	response to oxidative stress	6/109	6	0.005	0.047
0006979	1 1	2 /100	9	0.005	0.040
GO:	pancreas development	3/109	3	0.005	0.049
0031016 GO:	monosaccharide biosynthetic process	3/109	3	0.005	0.049
0046364	monosaccharide biosynthetic process	3/109	0	0.005	0.049
GO:	negative regulation of epidermal growth factor receptor	2/109	2	0.005	0.049
0042059	signaling pathway	2/100	∠	0.000	0.043

```
as.data.frame(go.twas.bp.enrich.simpl) %>%
 write_csv(file="NCD TWAS GO-BP Enrichment.csv")

steroid.enrichment <- as.data.frame(go.twas.bp) %>% filter(ID=='GO:0016126')
```

# 9 Specific Associations

Fbp1 was one of the most highly associated results on NCD.

```
gene <- 'Fbp1'
gene.ens <- filter(twas.data.ncd, symbol==gene) %>% pull(ENSEMBL.ID)
library(ggplot2)
expression.data %>%
 filter(ENSEMBL.ID == gene.ens) %>%
 pivot_longer(cols=c(starts_with('F'),
 starts_with('M')),
 names_to='mouse.id',
 values_to='expression') %>%
 full_join(phenotype.data,by='mouse.id') %>%
 filter(!is.na(diet)) %>%
 ggplot(aes(y=chol2,expression,col=sex)) +
 geom_point() +
 geom_smooth(method='lm',se=F) +
 facet_grid(~diet) +
 labs(y="Cholesterol (mg/dL)",
 x=paste('Expression of ', gene, sep=""))
```





## # A tibble: 1 x 12

r.squ~1 adj.r~2 sigma stati~3 p.value

##

df logLik

AIC

BIC devia~4 df.re~5

#### 9.1 Bile Acid Metabolism

CYP7A1 is the rate limiting step for de novo bile acid biosynthesis

```
gene <- 'Cyp7a1'</pre>
gene.ens <- filter(twas.data.ncd, symbol==gene) %>% pull(ENSEMBL.ID)
expression.data %>%
 filter(ENSEMBL.ID == gene.ens) %>%
 pivot_longer(cols=c(starts_with('F'),
 starts_with('M')),
 names_to='mouse.id',
 values_to='expression') %>%
 full_join(phenotype.data,by='mouse.id') %>%
 filter(!is.na(diet)) %>%
 ggplot(aes(y=chol2,expression,col=sex)) +
 geom_point() +
 geom_smooth(method='lm',se=F) +
 facet_grid(~diet) +
 labs(y="Cholesterol (mg/dL)",
 x=paste('Expression of ', gene, sep=""))
```



```
expression.data %>%
filter(ENSEMBL.ID == gene.ens) %>%
pivot_longer(cols=c(starts_with('F'),
```

Table 12: Summary associations of Cyp7a1 and cholesterol on chow

term	estimate	std.error	statistic	p.value
(Intercept)	76.191	4.881	15.611	0.000
expression	-0.027	0.076	-0.355	0.724
sexM	15.954	4.518	3.531	0.001

Table 13: Summary associations of Cyp7a1 and cholesterol on HFD

term	estimate	std.error	statistic	p.value
(Intercept)	100.060	6.108	16.381	0.000
expression	-0.026	0.103	-0.255	0.799
sexM	13.262	5.565	2.383	0.018

#### 10 Session Information

```
R version 4.2.2 (2022-10-31)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur ... 10.16
##
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
```

```
##
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats4
 stats
 graphics grDevices utils
 datasets methods
[8] base
##
other attached packages:
 [1] ggupset_0.3.0
 enrichplot_1.16.2
 clusterProfiler_4.4.4
[4] ggrepel_0.9.2
 ggplot2_3.4.0
 venneuler_1.1-3
[7] rJava_1.0-6
 purrr_1.0.1
 org.Mm.eg.db_3.15.0
[10] AnnotationDbi_1.58.0
 IRanges_2.30.1
 S4Vectors_0.34.0
[13] Biobase_2.56.0
 BiocGenerics_0.42.0
 broom_1.0.2
[16] readr_2.1.3
 dplyr_1.0.10
 tidyr_1.2.1
[19] knitr_1.41
##
loaded via a namespace (and not attached):
##
 [1] fgsea_1.22.0
 colorspace_2.0-3
 ggtree_3.4.4
##
 [4] ellipsis 0.3.2
 qvalue 2.28.0
 XVector 0.36.0
##
 [7] aplot_0.1.9
 rstudioapi_0.14
 farver_2.1.1
 bit64_4.0.5
 scatterpie_0.1.8
 [10] graphlayouts_0.8.4
[13] fansi_1.0.3
 codetools_0.2-18
 splines_4.2.2
 GOSemSim 2.22.0
[16] cachem 1.0.6
 polyclip_1.10-4
[19] jsonlite 1.8.4
 GO.db 3.15.0
 png_0.1-8
[22] ggforce_0.4.1
 compiler_4.2.2
 httr_1.4.4
[25] backports_1.4.1
 lazyeval_0.2.2
 assertthat_0.2.1
[28] Matrix_1.5-3
 fastmap_1.1.0
 cli_3.6.0
[31] tweenr_2.0.2
 tools_4.2.2
 htmltools_0.5.4
[34] igraph_1.3.5
 gtable_0.3.1
 glue_1.6.2
##
 [37] GenomeInfoDbData_1.2.8 reshape2_1.4.4
 DO.db_2.9
##
 [40] fastmatch_1.1-3
 Rcpp_1.0.9
 vctrs_0.5.1
 [43] Biostrings_2.64.1
 ape_5.6-2
 nlme_3.1-161
 [46] ggraph_2.1.0
 xfun_0.36
 stringr_1.5.0
 [49] lifecycle 1.0.3
 DOSE 3.22.1
 zlibbioc 1.42.0
[52] MASS_7.3-58.1
 scales_1.2.1
 tidygraph_1.2.2
[55] vroom 1.6.0
 hms 1.1.2
 parallel 4.2.2
[58] RColorBrewer_1.1-3
 yaml_2.3.6
 memoise_2.0.1
 [61] gridExtra_2.3
 downloader 0.4
 ggfun_0.0.9
[64] yulab.utils_0.0.6
 stringi_1.7.12
 RSQLite_2.2.20
[67] highr 0.10
 tidytree 0.4.2
 BiocParallel 1.30.4
[70] GenomeInfoDb_1.32.4
 rlang_1.0.6
 pkgconfig_2.0.3
[73] bitops 1.0-7
 evaluate_0.19
 lattice_0.20-45
[76] treeio_1.20.2
 patchwork_1.1.2
 labeling_0.4.2
[79] shadowtext_0.1.2
 bit_4.0.5
 tidyselect_1.2.0
[82] plyr_1.8.8
 R6_2.5.1
 magrittr_2.0.3
[85] magick_2.7.3
 generics_0.1.3
 DBI_1.1.3
##
 [88] pillar_1.8.1
 withr_2.5.0
 mgcv_1.8-41
[91] KEGGREST_1.36.3
 RCurl_1.98-1.9
 tibble_3.1.8
 [94] crayon_1.5.2
 utf8_1.2.2
 tzdb_0.3.0
[97] rmarkdown_2.19
 grid_4.2.2
 viridis_0.6.2
[100] data.table 1.14.6
 blob_1.2.3
 digest_0.6.31
[103] gridGraphics_0.5-1
 munsell_0.5.0
 viridisLite_0.4.1
[106] ggplotify_0.1.0
```