Asynchronous Fault Diagnosis of Discrete-Event Systems With **Partially Observable Outputs**

Deguang Wang, Xi Wang Member, IEEE, and Zhou He

The proofs of the following lemmas are omitted because they follow directly from the definitions of $\hat{\mathcal{D}}_{oc}^{l_o^o}$ and $\hat{\mathcal{D}}_{dc}^{l_o^o}$

Lemma 1. For any path $p = q_{-1} \stackrel{l^0}{\xrightarrow{\circ}} q_0 \stackrel{l^1}{\xrightarrow{\circ}} q_1 \cdots q_{k-1} \stackrel{l^k}{\xrightarrow{\circ}}$ $q_k \cdots q_n \xrightarrow{l_o^{n+1}} q_k$ in $\hat{\mathcal{D}}_{oc}^{l_o^0}$ ending with a cycle, The following

1) $\kappa(q_j) = \kappa(q_r)$ for any $j, r \in [k, n]$;

10

11

13

20

21

2) There exists a path $\bar{p} = \bar{q}_0 \xrightarrow{\sigma_1} \bar{q}_1 \xrightarrow{\sigma_2} \bar{q}_2 \cdots \bar{q}_{b-1} \xrightarrow{\sigma_b}$ $\bar{q}_b \cdots \bar{q}_c \xrightarrow{\sigma_c} \hat{q}_b$ in $\hat{\mathbf{G}}$ such that $O(\lambda(\bar{q}_0\bar{q}_1 \cdots \bar{q}_c\bar{q}_b)) =$ $l_o^0 l_o^1 \cdots l_o^n l_o^k$ and $Q_p \subseteq Q_{\bar{p}}$, where Q_p and $Q_{\bar{p}}$ are the set of states composed of paths p and \bar{p} , respectively.

In a cycle, all states correspond to the same condition, which is either normal or F_i $(i \in [1, m])$, owing to the assumption that all failure modes are permanent. We know that $\hat{\mathcal{D}}_{oc}^{\ell_o}$ is defined on the basis of $\hat{\mathcal{D}}_{dm}^{l_o^0}$ and $\hat{\mathcal{D}}_{dm}^{l_o^0}$ derives from G. Thus, there exists a transition path \bar{p} in G corresponding to the indication path p in $\hat{\mathcal{D}}_{oc}^{l_o^o}$.

Lemma 2. For any path $p = (q_{-1}, q_{-1}) \xrightarrow{l_o^0} (q_0^1, q_0^2) \xrightarrow{l_o^1}$ $(q_1^1, q_1^2) \cdots (q_{k-1}^1, q_{k-1}^2) \xrightarrow{l_o^k} (q_k^1, q_k^2) \cdots (q_n^1, q_n^2) \xrightarrow{l_o^{n+1}}$ (q_k^1,q_k^2) (k < n) in $\hat{\mathcal{D}}_{dc}^{l_o^0}$ ending with a cycle, the following

1) There exist a path p_{noc}^1 in $\hat{\mathcal{D}}_{\text{noc}}$ and a path p_{foc}^2 in $\hat{\mathcal{D}}_{\text{foc}}$ ending with cycles, namely, $p_{\text{noc}}^1 = q_{-1} \xrightarrow{l_0^0} q_0^1 \xrightarrow{l_0^1} q_1^1$ $\cdots q_{k-1}^1 \xrightarrow{l_o^k} q_k^1 \cdots q_n^1 \xrightarrow{l_o^{n+1}} q_k^1 \text{ and } p_{\text{foc}}^2 = q_{-1} \xrightarrow{l_o^0} q_0^2$ $\begin{array}{c} \stackrel{l_o^1}{\longrightarrow} q_1^2 \, \cdots \, q_{k-1}^2 \stackrel{l_o^k}{\longrightarrow} q_k^2 \, \cdots \, q_n^2 \stackrel{l_o^{n+1}}{\longrightarrow} q_k^2; \\ \text{2)} \ \kappa(q_j^1) \, = \, \kappa(q_r^1) \, = \, N \ \text{and} \ \kappa(q_j^2) \, = \, \kappa(q_r^2) \ \text{for any } j, \end{array}$

Based on Lemmas 1 and 2. the proof of Theorem 1 is shown as follows.

Proof. (only if): Suppose G is F_i -asynchronously diagnosable w.r.t. $l_o^0 \in \Lambda_o$, but there exists a cycle $cl = (q_k^1, q_k^2) \xrightarrow{l_o^{k+1}}$ $(q_{k+1}^1,q_{k+1}^2) \cdots (q_n^1,q_n^2) \xrightarrow{l_o^{n+1}} (q_k^1,q_k^2) \ (k < n) \text{ in } \hat{\mathcal{D}}_{dc}^{l_o^0} \text{ such that } \kappa(q_j^2) = F_i \ (i \in [1,m], j \in [k,n]).$

Since $\hat{\mathcal{D}}_{dc}^{l_o^o}$ is reachable, there exists a path p in $\hat{\mathcal{D}}_{dc}^{l_o^o}$ ending with the cycle cl, i.e., $p=(q_{-1},q_{-1})\stackrel{l_0^0}{\stackrel{\circ}{\sim}}(q_0^1,q_0^2)\stackrel{l_0^1}{\stackrel{\circ}{\sim}}$

D. Wang is with the School of Electrical Engineering, Guizhou Guiyang 550025, China (e-mail: dgwang@gzu.edu.cn, wdeguang1991@163.com).

X. Wang is with the School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China. (e-mail: wangxi@xidian.edu.cn).

Z. He is with the School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China. (hezhouxidian@gmail.com).

 $\begin{array}{cccc} (q_1^1,q_1^2)\cdots(q_{k-1}^1,q_{k-1}^2) & \xrightarrow{l_o^k} & (q_k^1,q_k^2) & \cdots & (q_n^1,q_n^2) & \xrightarrow{l_o^{n+1}} \\ (q_k^1,q_k^2). & \text{Based on Lemma 2, we know that there exist one} \\ & \text{path } p_{\text{n}oc}^1 & \text{in } \hat{\mathcal{D}}_{\text{n}oc} & \text{and one path } p_{\text{f}oc}^2 & \text{in } \hat{\mathcal{D}}_{\text{f}oc} & \text{ending with cycles,} \\ \end{array}$ namely, $p_{\text{noc}}^1 = q_{-1} \xrightarrow{l_o^0} q_0^1 \xrightarrow{l_o^1} q_1^1 \cdots q_{k-1}^1 \xrightarrow{l_o^k} q_k^1 \cdots q_n^1 \xrightarrow{l_o^{n+1}}$ q_k^1 and $p_{toc}^2 = q_{-1} \xrightarrow{l_o^0} q_0^2 \xrightarrow{l_o^1} q_1^2 \cdots q_{k-1}^2 \xrightarrow{l_o^k} q_k^2 \cdots q_n^2$ $\xrightarrow[]{l_o^{n+1}} q_k^2 \text{ with } \kappa(q_j^1) = \kappa(q_r^1) = 0 \text{ and } \kappa(q_j^2) = \kappa(q_r^2) = i \text{ for any } j, \ r \in [k,n]. \text{ Further from Lemma 1, we know that for } 1$ the path p_{foc}^2 there exists a path $\bar{p}^2 = \bar{q}_0^2 \xrightarrow{\sigma_1^2} \bar{q}_1^2 \xrightarrow{\sigma_2^2} \bar{q}_2^2 \cdots$ $\bar{q}_{b-1}^2 \xrightarrow{\sigma_b^2} \bar{q}_b^2 \cdots \bar{q}_c^2 \xrightarrow{\sigma_c^2} \bar{q}_b^2 \text{ in } \mathbf{G} \text{ such that } O(\lambda(\bar{q}_0^2 \bar{q}_1^2 \cdots \bar{q}_c^2 \bar{q}_b^2))$

 $= l_o^{10} l_o^{1} \cdots l_o^{n} l_o^{k} \text{ and } Q_{p_{\text{foc}}^2} \subseteq Q_{\bar{p}^2}.$ Let $Q_e(q, n')$ denote the set of state estimations calculated after the occurrence of n' events from state q. Suppose the state estimation $x_{0e} \in \mathcal{Q}_e(\bar{q}_s^2, 0)$ $(s \in [1, b])$, where \bar{q}_s^2 $(\kappa(\bar{q}_s^2) =$ F_i) is the first faulty state in the path \bar{p}^2 , is given. When the system evolves along the path \bar{p}^2 , there exists a state estimation $x_e^{n''} \in \mathcal{Q}_e(\bar{q}_s^2, n'') \ (n'' = d + m_2 * k_2, \ d = b - s, \ \text{and} \ m_2 = s$ c-b+1 is the length of $\bar{q}_b^1\cdots \bar{q}_c^1$) such that $q_k^1\in x_e^{n''}$ and $q_k^2 \in x_e^{n''}$ for any nonnegative integer k_2 . Then $\mathbf{D}(x_e^{n'}) = -1$. Since **G** is asynchronously diagnosable w.r.t. l_o^0 , there exists an integer N_i such that for any $x_e^{n'} \in \mathcal{Q}(q_s^2, n'), x_e^{n'} \subseteq Q_{F_i}$ holds for $n' \geq N_i$. We choose an integer k_2 such that $n'' \geq N_i$. Then we have that $x_e^{n''} \subseteq Q_{F_i}$, i.e., $\mathbf{D}(x_e^{n''}) = i$, which leads to a contraction. So the necessity holds.

51

70

(if): Suppose for every cycle $cl = (q_k^1, q_k^2) \xrightarrow{l_o^{k+1}}$ $(q_{k+1}^1,q_{k+1}^2) \cdots (q_n^1,q_n^2) \xrightarrow{l_o^{n+1}} (q_k^1,q_k^2) \ (k < n) \ \text{in} \ \hat{\mathcal{D}}_{dc}^{l_o^0}, \ \text{we}$ have $\kappa(q_j^1) = \kappa(q_j^2) = N \ (j \in [k,n])$. From the second clause of Lemma 2, we can infer that for any $q^d = (q^1, q^2)$ in $\hat{\mathcal{D}}_{dc}^{l_o^o}$, q^d is not contained in a loop if $\kappa(q^1) \neq \kappa(q^2)$, which further implies that for any state sequence $q_1^d q_2^d \cdots q_k^d$ in $\hat{\mathcal{D}}_{dc}^{l_o^0}$ with $q_r^d = (q_r^1, q_r^2) \ (r \in [1, k]) \ \text{if} \ \kappa(q_r^1) \neq \kappa(q_r^2), \text{ then the length of}$ this state sequence is finite, which is less than the number of states in $\hat{\mathcal{D}}_{dc}^{l_o}$.

Suppose the state estimation $x_{0e} \in \mathcal{Q}_e(q_{F_i}, 0) \ (i \in [1, m])$ is given when the system first reaches the fault state q_{F_i} $(\kappa(q_{F_i}) = F_i)$. For any $x_e^{n'} \in \mathcal{Q}_e(q_{F_i}, n')$ with n' > 0 $|\hat{Q}_d| \times (|Q|-1)$, we claim that $\mathbf{D}(x_e^{n'}) = i$. After n transitions from state q_{F_i} , we have the state sequence $s = q_{F_i} q_{F_i}^1 \cdots q_{F_i}^n$ with the observed output sequence $O(\lambda(s))$ $(n'' = |O(\lambda(s))|)$. From above, for any state $q^d \in \hat{Q}_d$ that can be reached from (q_{-1},q_{-1}) in $\hat{\mathcal{D}}_{dc}^{l_o^o}$, we have that for any state sequence starting from q^d , a state $\hat{q}^d = (\hat{q}^1, \hat{q}^2) \in \hat{Q}_d$ with $\kappa(\hat{q}^1) = \kappa(\hat{q}^2)$ can be reached within $|\hat{Q}_d| - 1$ transitions. This implies that for any $n'' > |\hat{Q}_d| - 1$ and $x_e^{n''} \in \mathcal{Q}_e(q_{F_i}, n'')$, we have that $\mathcal{D}(x_e^{n''}) = i$. From the assumption in Remark 2, each observed output can be followed by at most |Q|-1unobserved outputs. It follows that for the above state sequence

s, $n' \leq (n''+1) \times (|Q|-1)$, i.e., $n'' \geq n'/(|Q|-1)-1$. So if $n' > |\hat{Q}_d| \times (|Q|-1)$, then $n'' \geq n'/(|Q|-1)-1 > |\hat{Q}_d|-1$, establishing our claim. Note that we have assumed implicitly that |Q| > 1; otherwise if |Q| = 1, then from the assumption of no path cycles, no transition labeled by a failure event exists, so that the system is trivially diagnosable. Based on Definition 9, we can conclude that G is diagnosable w.r.t, l_o^0 . So the sufficiency also holds.