date: thursday, january 25, 2024 Group Actions of the Class Equation G×G-X

Last time: Let X be a G-set, ie. there is a group action $(g,x) \mapsto g \cdot x$ $x \sim y$ if there exists a geG such that $y = g \cdot x$ this is an equivalence relation on Xorbit of $x \in X$: $O_x = \{g \cdot x \mid g \in G\} = \{y \mid x \sim y\} < -\text{equivalence class}$

so if $\mathcal{O}_{x_1,\ldots},\mathcal{O}_{x_s}$ are distinct classes, $X=\mathcal{O}_{x_1}\cup\cdots\cup\mathcal{O}_{x_s}$ is a

partition Def: Fixed point of geG, $X_g = \{x \in X | g \cdot x = x\} \subseteq X$ Stabilizer subgroup of $x \in X$, $G_x = \{g \in G | g \cdot x = x\} \subseteq G$.

Lemma: G_{∞} is a subgroup of GProof'

1) $G_x \neq \emptyset$ since $e \cdot x = x$, so $e \in G_x$. 2) Let $g \in G_x$. So $g \cdot x = x$. So $g \cdot (g \cdot x) = g \cdot x <=> (g \cdot g) \cdot x = g \cdot x <=> x = g \cdot x$.

So of EGx. 3) g,heG_x . Then $(gh)\cdot x = g\cdot (h\cdot x)$ heG_x $= g\cdot x$ geG_x

So gh∈G_x

Q: How many elements in O_{κ} ? Theorem: $|O_x| = \frac{|G|}{|G_x|} = \frac{|G|}{|G|} = \frac{|G|}{|G$

broot, $[G:G_x]$ = # distinct left cosets of G_x . Let Z_{G_x} = set of distinct left cosets = $\{gG_x|g\in G\}$.

Note that if $y \in \mathcal{O}_x$, there exists a geG such that $y = g \cdot x$. Define a map $\Phi \colon \mathcal{O}_x \to \mathcal{L}_{G_x}$ If we show this is a bijection, then $|0x| = |Z_{Gx}|$. The map is surjective, because if $gG_x \in \mathcal{L}$, then $y = g \cdot x \in \mathcal{O}$ and $\Phi(y) = gG_x$. The map is injective because if $\overline{\Psi}(y_1) = g_1 G_x = g_2 G_x = \overline{\Psi}(y_2)$ with $y_1 = g_1 \cdot x$ and $y_2 = g_2 \cdot x$. So there exists $g_1 G_x = g_2 G_x = g_1 G_x = g_2 G_x =$ So $y_2 = g_2 \cdot x = (g_1 g_2) \cdot x$ $= g_1 \cdot (g_2 x)$ $= g_3 \cdot x$ $= g_4 \cdot x$ So I is injective. eq. $X = \{1, 2, 3, 4\}$, $G = \{0, 0, 2\} = \{(1), (12)(34)\}$ and $G \times X -> X$ $(\sigma,i) \mapsto \sigma(i)$ $G_1 = \{ O \in G \mid O(1) = 1 \} = \{ O, \}$ So $|O_1| = \frac{|G|}{|G_4|} = \frac{2}{1} = 2$. $O_{1} = \{O_{1}(1), O_{2}(1)\} = \{1, 2\}$

Observation: If
$$|\mathcal{O}_{x}|=1$$
, then $\{g \cdot x | g \in G\} = \{x\}$. So if X is a G-set, then the set of all fixed points $X_{g} = \{x | g \cdot x = x \text{ for all } g \in G\} = \mathcal{O}_{x} \cup \cdots \cup \mathcal{O}_{x}$, where $|\mathcal{O}_{x_{i}}| = 1$.

Summory: Let X be a G-set, and let $x_1,...,x_n$ be the distinct cosets representatives. Then, $X = O_{x_1} \cup \cdots \cup O_{x_n} \cup O_{x_n} = O_{x_1} \cup \cdots \cup O_{x_n} \cup X_{g}$

$$|O_{i}| > 1$$

$$|O_{x_{i}}| = 1$$

$$|X| = |O_{x_{i}}| + \dots + |O_{x_{s}}| + |X_{g}| = [G \cdot G_{x_{i}}] + \dots + [G \cdot G_{x_{s}}] + |X_{g}|$$

[[G:G_{X3}] | [/]_G[

Class Equation

We specialize these results to the following case: $G \times G \rightarrow G$ (where X=G) Set of fixed points: $Z(G) = \{x \in G \mid gxg^{-1} = x \text{ for all } g \in G\}$ L> This is the center of G (subgroup) $\{y\}_{gx=xg}$ -sometimes called conjugation

The stabilizer subgroup of X: $C(x) = \{g \mid gxg^{-1} = x < = > gx = xg \} < -all things that Commute commute$ with x The orbits of $x \in G$ (called conjugacy classes of x): $O_x = \{g \times g^{-1} | g \in G\}$.

Theorem: Let G be a finite group and consider the group action of conjugation:

G×G->G $(q,x) \mapsto qxq^{-1}$

If $x_1,...,x_n$ are the distinct coset representation of this action, then $G = \mathcal{O}_{x_1} \cup \cdots \cup \mathcal{O}_{x_n}$

Furthermore, if $|\mathcal{O}_{x_n}|, ..., |\mathcal{O}_{x_s}| > 1$ and $|\mathcal{O}_{s+1}| = ... = |\mathcal{O}_n| = 1$, then $|G| = |\mathcal{O}_{x_1}| + \dots + |\mathcal{O}_{x_s}| + |Z(G)|$

$$(*) = [G:C(x_s)] + \cdots + [G:C(x_s)] + |Z(G)|.$$
 Def^a: (*) is the class equation of G.