

Real Circuits:
Transistors and Gates
continued
20 September 2017

I/O characteristics of CMOS inverter

Noise Margin

$$NM_L = V_{IL} - V_{OL}$$

$$NM_H = V_{OH} - V_{IH}$$

Dynamic operation and delays

Power dissipation in CMOS inverter

Using NMOS / PMOS transistors as switches

Passing 1's through NMOS switch Passing 0's through PMOS switch

 $V_{GS} = V_{DD} - V_{A}$ Transistor cuts off if V_{A} rises above $V_{DD} - V_{T}$

 $V_{GS} = 0 - V_{B}$ Transistor cuts off if V_{B} falls below V_{T}

Passing 0's through NMOS switch Passing 1's through PMOS switch

Transistor remains ON V_A is 0

Transistor remains ON V_B equals V_{DD}

Fan-in limitation

Effective channel length = k . L

⇒increased delay increased V_{OI}

This llimits the fan-in

Higher fan-in in CMOS

Fan-out limitation

Simple buffer

$$y = x$$

designed to drive large loads

Tri-state buffer

e

X

 V_{DD}

Transmission Gate

Same truth table as tri-state buffer

Multiplexer

Ex-OR Gate

