PREDICATE LOGIC DERIVATIONS FOR UNIT 6 ANSWERS for 19-38

Multi-Place Predicates

19. $\forall x \forall y \forall z (F(xy) \land F(yz) \rightarrow F(xz))$. $\sim \forall x \forall y \sim F(xy)$. $\forall x \forall y (F(xy) \rightarrow F(yx)) :: \exists x F(xx)$

1 S I	$\frac{1}{1000}$ $\exists x F(xx)$		
2	$\exists x \sim \forall y \sim F(xy)$	pr2 QN	TO DO WITHOUT QN SEE BELOW
3	$\sim \forall y \sim F(iy)$	2 ei	Use EI asap. New variable.
4	$\exists y \sim F(iy)$	3 QN	
5	~~F(ik)	4 ei	Use EI asap. New variable.
6	F(ik)	5 dn	
7	$\forall y(F(iy) \rightarrow F(yi))$	pr3 ui	match 6
8	$F(ik) \rightarrow F(ki)$	7 ui	match 6
9	F(ki)	6 8 mp	
10	$\forall y \forall z (F(iy) \land F(yz) \rightarrow F(iz))$	pr1 ui	match 6 & 9
11	$\forall z (F(ik) \land F(kz) \rightarrow F(iz))$	10 ui	match 6 & 9
12	$F(ik) \wedge F(ki) \rightarrow F(ii)$	11 ui	match 6 & 9
13	$F(ik) \wedge F(ki)$	6 9 adj	
14	F(ii)	12 13 mp	
15	$\exists x F(xx)$	14 eg	match show line
16		15 dd	

If you aren't using QN, you could start as follows:

20. $\forall x \exists y \sim (G(xy) \land H(xy)) :: \forall x (\sim \forall y G(xy) \lor \sim \forall y H(xy))$

```
1
       Show \forall x (\sim \forall y G(xy) \lor \sim \forall y H(xy))
2
             Show \sim \forall y G(xy) \lor \sim \forall y H(xy)
                                                                                    show instantiation of 1
3
                  \sim (\sim \forall y G(xy) \lor \sim \forall y H(xy))
                                                                ass id
4
                                                                3 dm
                  \forall y G(xy) \land \forall y H(xy)
5
                  \exists y \sim (G(xy) \wedge H(xy))
                                                                pr1 ui
                                                                                    match 4
6
                                                                                    New variable.
                                                                5 ei
                  \sim(G(xi) \wedge H(xi))
7
                                                                6 dm
                  \sim G(xi) \lor \sim H(xi)
8
                                                                4 sl
                  \forall xG(xy)
9
                  G(xi)
                                                                8 ui
                                                                                    match 7
10
                  \sim G(xi)
                                                                9 dn
                                                                7 10 mtp
11
                  \sim H(xi)
12
                                                                5 sr
                  \forall y H(xy)
13
                  H(xi)
                                                                12 ui
                                                                                    match 11
14
                                                                11 13 id
15
                                                                2 ud
```

21. $\forall x(Ax \rightarrow \forall yL(xy))$. $\forall y((Cy \land L(yy)) \lor \sim By)$. $\therefore \exists x(Ax \lor Bx) \rightarrow \exists xL(xx)$

```
1
       Show \exists x(Ax \lor Bx) \rightarrow \exists xL(xx)
2
            \exists x (Ax \lor Bx)
                                                              ass cd
3
                                                                                 Use EI asap. New variable.
            Ai v Bi
                                                              2 ei
4
            Ai \rightarrow \forall y L(iy)).
                                                              pr1 ui
                                                                                 match 3
5
                                                              pr2 ui
                                                                                 match 3
            (Ci \wedge L(ii)) \vee \sim Bi
6
            Show L(ii)
7
                 ~L(ii)
                                                              ass id
8
                                                              7 eg
                 \exists y \sim L(iy)
9
                                                              8 qn
                 \sim \forall y L(iy)
10
                 ~Ai
                                                              9 4 mt
11
                 Bi
                                                              10 3 mtp
12
                                                              11 dn 5 mtp
                 Ci \wedge L(ii)
13
                                                              12 sr
                 L(ii)
14
                                                              7 13 id
                                                              6 eg cd
15
            \exists x L(xx)
```

$22. \ \ \, \forall x \exists y (Gx \rightarrow L(xy)). \ \ \, \forall z (\sim Fz \vee Gz). \ \, \forall x (Cx \vee \sim \exists y L(yx)). \ \ \, \therefore \forall x (Fx \rightarrow \exists y (Cy \wedge L(xy)))$

1 S	$how \ \forall x(Fx \to \exists y(Cy \land L(xy)))$	_	
2	Show $Fx \to \exists y (Cy \land L(xy))$	_	Show line 1 is \forall , so show instantiation for UD
3	Fx	ass cd	Show line 2 is \rightarrow so assume ant. for CD
4	$\exists y(Gx \to L(xy))$	pr1 ui x/x	Instantiate pr1 to match 2 (x in 1^{st} place of L(xy))
5	$Gx \rightarrow L(xi)$	4 ei i/y	Instantiate 4 to arbitrary term, i.
6	~Fx ∨ Gx	pr2 ui x/z	Instantiate pr2 using x for x to match 3
7	~~Fx	3 dn	
8	Gx	7 3 mtp	
9	L(xi)	5 8 mp	
10	Ci ∨ ~∃yL(yi)	pr3 ui i/x	instantiate pr3 to match 9 (i in 2nd place of L(yi))
11	∃yL(yi)	9 eg y/x	generalize 9 to match 10
12	~~∃yL(yi)	11 dn	
13	Ci	10 12 mtp	
14	$Ci \wedge L(xi)$	13 9 adj	
15	$\exists y(Cy \land L(xy))$	14 eg cd	generalize 14 to match cons. of 2
16		2 ud	

$23. \ \ \, \forall x \forall y (B(xy) \to A(yx)). \ \ \, \forall x \exists y (Fy \land B(yx)). \ \ \, \exists x (Fx \lor Hx) \to \forall x (Fx \to Hx). \ \ \, \therefore \forall x (Gx \to \exists y (A(xy) \land Hy))$

1	Show $\forall x(Gx \rightarrow \exists y(A(xy) \land Hy)$		
2	Show $Gx \to \exists y (A(xy) \land Hy)$	_	
3	Gx	ass cd	
4	$\exists y(Fy \land B(yx))$	pr2 ui	Pr1 relates B and A. You will need an 'x' in
			the A term, so you will need one in the B term.
5	$Fi \wedge B(ix)$	4 ei	Use EI asap. New variable.
6	Fi	5 sl	
7	B(ix)	5 sr	
8	$\forall y(B(iy) \rightarrow A(yi))$	pr1 ui	match 7
9	$B(ix) \rightarrow A(xi)$	8 ui	match 7
10	A(xi)	7 9 mp	
11	Fi ∨ Hi	6 add	
12	$\exists x(Fx \vee Hx)$	11 eg	match pr3 antecedent
13	$\forall x(Fx \rightarrow Hx)$	12 pr3 mp	
14	$Fi \rightarrow Hi$	13 ui	match 6
15	Hi	6 14 mp	
16	A(xi) ∧ Hi	10 15 adj	
17	$\exists y(A(xy) \land Hy)$	16 eg	match show line
18		17 cd	
19		2 ud	

24. $\therefore \ \forall x \exists y \forall z (A(xz) \land \sim B(zy)) \rightarrow \exists x (\sim A(xx) \Longleftrightarrow B(xx))$

1 Sho	$\forall x \exists y \forall z (A(xz) \land \sim B(zy)) \rightarrow \exists x (\sim A(xx) \leftrightarrow B(xx))$	_	
2	$\forall x \exists y \forall z (A(xz) \land \sim B(zy))$	ass cd	
3	$\exists y \forall z (A(xz) \land \sim B(zy))$	2 ui	nothing to match
4	$\forall z (A(xz) \land \sim B(zi))$	3 ei	new variable
5	$A(xi) \wedge \sim B(ii)$	4 ui	match second term in B
6	$\exists y \forall z (A(iz) \land \sim B(zy))$	2 ui	repeat 3-5 to get terms in A to match terms in B
7	$\forall z(A(iz) \land \sim B(zk))$	6 ei	New variable.
8	$A(ii) \wedge \sim B(ik)$	7 ui	match first term in A
9	~B(ii)	5 sr	
10	A(ii)	8 sl	
11	$A(ii) \vee B(ii)$	10 add	(or show: $\sim A(ii) \rightarrow B(ii)$)
12	$\sim A(ii) \rightarrow B(ii)$	11 cdj	
13	\sim B(ii) $\vee \sim$ A(ii)	9 add	(or show: $B(ii) \rightarrow \sim A(ii)$)
14	$B(ii) \rightarrow \sim A(ii)$	13 cdj	
15	$\sim A(ii) \leftrightarrow B(ii)$	12 14 cb	
16	$\exists x (\sim A(xx) \leftrightarrow B(xx))$	15 eg	match show line
17		16 cd	

25. $\exists x \forall y (L(yx) \rightarrow \forall z B(xyz). \ \forall y (\exists x B(xyy) \rightarrow \forall z H(yz)). \ \forall y \exists x H(xy) \rightarrow \sim \exists x \exists y G(xy).$ $\therefore \sim \exists x \forall y (L(xy) \land G(yx))$

1 S	$how \sim \exists x \forall y (L(xy) \wedge G(yx))$		
2	$\exists x \forall y (L(xy) \land G(yx))$	ass id	
3	\forall y(L(iy) \wedge G(yi))	2 ei	Use EI asap. New variable.
4	$\forall y(L(yk) \rightarrow \forall zB(kyz).$	pr1 ei	Use EI asap. New variable.
5	$L(ik) \wedge G(ki)$	3 ui	match 4
6	$L(ki) \rightarrow \forall zB(kiz)$	4 ui	match 3
7	L(ik)	5 sl	
8	∀zB(kiz)	6 7 mp	
9	$\exists x B(xii) \rightarrow \forall z H(iz)$	pr2 ui	match 8
10	B(kii)	8 ui	match 9
11	∃xB(xii)	10 eg	match 9
12	∀zH(iz)	9 11 mp	*alternate strategy:
13	G(ki)	5 sr	$\frac{\text{Show}}{\text{Show}} \forall y \exists x H(xy)$
14	∃yG(ky)	13 eg	$\frac{\text{Show}}{\text{JxH(xy)}}$
15	$\exists x \exists y G(xy)$	14 eg	H(iy) 12 ui
16	$\sim \exists x \exists y G(xy)$	15 dn	$\exists x H(xy)$ eg dd
17	$\sim \forall y \exists x H(xy)$	16 pr3 mt	ud
18	$\exists y \sim \exists x H(xy)$	17 qn	·
19	~∃xH(xj)	18 ei	new variable
20	$\forall x \sim H(xj)$	19 qn	
21	~H(ij)	20 ui	match 12
22	H(ij)	12 ui 21 id	match 21

26. $\exists x \forall y (Hx \land L(xy))$. $\forall x (Gx \land \forall y L(yx))$. $\exists y \forall x (Gx \land Hy \land L(xy) \land L(yx)) \rightarrow \sim \exists z (Fz \land Gz)$. $\therefore \forall x (Fz \rightarrow \sim Gz)$

```
1
        \frac{\text{Show}}{\text{Show}} \forall z (Fz \rightarrow \sim Gz)
2
               Show Fz \rightarrow \sim Gz
                                                                                                  show instantiation of 1 for UD
3
                      Fz
                                                                             ass cd
4
                                                                             pr1 ei
                                                                                                  Use EI asap. New variable.
                       \forall y(Hi \wedge L(iy))
5
                      Gi \wedge \forall y L(yi)
                                                                             pr2 ui
                                                                                                  match 4
6
                      Show \forall x(Gi \land Hi \land L(xi) \land L(ix))
                                                                                                  set up UD asap. Match 4 & 5.
7
                              Hi \wedge L(ix)
                                                                             4 ui
                                                                                                  match show line 6
8
                              \forall yL(yi)
                                                                             5 sr
9
                              L(xi)
                                                                             8 ui
                                                                                                  match 7
                                                                             5 sl 7 sr adj
10
                              Gi ∧ Hi
                                                                             10 9 adj
11
                              Gi \wedge Hi \wedge L(xi)
12
                                                                             11 7 sr adj
                                                                                                  this is an instantiation of 6
                              Gi \wedge Hi \wedge L(xi) \wedge L(ix)
                                                                             12 ud
13
14
                      \exists y \forall x (Gy \land Hy \land L(xy) \land L(yx))
                                                                             6 eg
                                                                                                  match pr3
15
                      \sim \exists z (Fz \wedge Gz)
                                                                             14 pr3 mp
16
                       \forall z \sim (Fz \wedge Gz)
                                                                             15 QN
                                                                             16 ui
17
                      \sim(Fz \wedge Gz)
                                                                                                  match 3
                      \simFz \vee \simGz
                                                                             17 dm
18
19
                      ~~Fx
                                                                             3 dn
20
                       ~Gz
                                                                             18 19 mtp cd
                                                                             2 ud
21
```

27. $\exists x(Ax \land \forall yH(xy))$. $\forall x(Ax \to Fx)$. $\exists xFx \to \forall y\forall z(By \land H(zz) \to G(yz))$. $\therefore \forall x(Bx \to \exists y(Fy \land G(xy)))$

```
1
         Show \forall x(Bx \rightarrow \exists y(Fy \land G(xy)))
2
               Show Bx \rightarrow \exists y(Fy \land G(xy))
3
                     Bx
                                                                              ass cd
4
                                                                             pr1 ei
                                                                                             Use EI asap. New variable.
                     Ai \wedge \forall yH(iy)
5
                     Αi
                                                                              4 sl
6
                                                                             pr2 ui
                                                                                             match 5
                     Ai \rightarrow Fi
7
                                                                              5 6 mp
                     Fi
8
                                                                              7 eg
                                                                                             match pr3
                     \exists xFx
9
                                                                              8 pr3 mp
                     \forall y \forall z (By \land H(zz) \rightarrow G(yz))
                     \forall z (Bx \land H(zz) \rightarrow G(xz))
10
                                                                              9 ui
                                                                                             match 3: Bx
11
                     Bx \wedge H(ii) \rightarrow G(xi)
                                                                              10 ui
                                                                                             match 4: \forall y H(iy)
12
                     \forall y H(iy)
                                                                              4 sr
13
                     H(ii)
                                                                              12 ui
                                                                                             match 11
14
                     Bx \wedge H(ii)
                                                                              3 13 adj
15
                                                                              11 14 mp
                     G(xi)
                                                                              7 15 adj
16
                     Fi \wedge G(xi)
17
                                                                              16 eg
                                                                                             match show line
                     \exists y (Fy \land G(xy))
18
                                                                              17 cd
19
                                                                              2 ud
```

28. $\forall x(Ax \to \exists y(Gy \land F(xy))) \to \forall xC(xa)$. $\forall x(\sim Ax \lor Bx)$. $\forall x(Bx \to Gx)$. $\therefore \forall y \forall z(Gy \to F(zy)) \to \exists xC(xx)$

1	She	₩∀	′y∀z(C	$Gy \to F(zy) \to \exists x C(xx)$		
2		$\forall y \forall z (Gy \rightarrow F(zy))$		ass cd		
3		Sho	w ∀x	$(Ax \to \exists y (Gy \land F(xy)))$		show antecedent of pr1
4			Shov	$\forall Ax \rightarrow \exists y(Gy \land F(xy))$		show instantiation of 3 for ud
5				Ax	ass cd	
6				\sim Ax \vee Bx	pr2 ui	match 5
7				~~Ax	5 dn	
8				Bx	6 7 mtp	
9				$Bx \to Gx$	pr3 ui	match 8
10				Gx	8 9 mp	
11				$\forall z(Gx \rightarrow F(zx))$	2 ui	match 10
12				$Gx \to F(xx)$	11 ui	match show line 4
13				F(xx)	10 12 mp	
14				$Gx \wedge F(xx)$	10 14 adj	
15				$\exists y (Gy \land F(xy))$	14 eg	match show line 4
16					15 cd	
17			-		3 ud	
18		$\forall x$	$\overline{C(xa)}$		3 pr1 mp	
19		C(a	aa)		18 ui	match show line 1 (both terms in C
20		∃x(C(xx)		19 eg cd	are the same)

29. $\exists x \exists y L(xy) \rightarrow \forall x \forall y \forall z (L(xy) \land L(yz) \rightarrow L(xz))$. $\therefore \forall x \forall y (L(xy) \rightarrow \sim L(yx)) \leftrightarrow \sim \exists x L(xx)$

30. $\forall x \exists y (Ax \land By)$. $\exists x (Ax \land Bx) \rightarrow \exists x \forall y H(a(x)y)$. $\therefore \exists x H(xx)$

```
1
       \frac{\text{Show}}{\text{Show}} \exists x H(xx)
2
                                                    pr1 ui
                                                                     nothing to match. Use any variable.
            \exists y (Ax \wedge By)
3
            Ax \wedge Bi
                                                    2 ei
                                                                     new variable
4
                                                                     match 3
            \exists y(Ai \land By)
                                                    2 ui
5
                                                    4 ei
                                                                     new variable
            Ai \wedge Bk
6
            Bi
                                                    3 sr
7
            Ai
                                                    5 sl
8
                                                    6 7 adj
            Ai \wedge Bi
9
                                                    8 eg
                                                                     match pr2
            \exists x(Ax \wedge Bx)
10
                                                    9 pr2 mp
            \exists x \forall y H(a(x)y)
                                                    10 ei
                                                                     new variable
11
            \forall y H(a(m)y)
                                                                     match first term in 11
12
            H(a(m)a(m))
                                                    11 ui
13
            \exists x H(xx)
                                                    12 eg
                                                                     match show line
14
                                                    13 dd
```

31. $\forall x \forall y (Fx \rightarrow \exists z G(zy)) \rightarrow \forall x \exists y \forall z H(xyz)$. $\exists x \forall y (H(xyy) \rightarrow \forall z \sim B(xz))$. $\therefore \forall x (\exists z Fz \rightarrow G(bx)) \rightarrow \sim \forall y B(yy)$

```
1
        Show \forall x (\exists z Fz \rightarrow G(bx)) \rightarrow \sim \forall y B(yy)
2
              \forall x (\exists z Fz \rightarrow G(bx))
                                                                         ass cd
3
                                                                                             show antecedent of pr1
              \frac{\text{Show}}{\text{Show}} \forall x \forall y (Fx \rightarrow \exists z G(zy))
4
                   Show \forall y(Fx \rightarrow \exists zG(zy))
5
                          Show Fx \rightarrow \exists z G(zy)
6
                                Fx
7
                                                                         2 ui
                                                                                             match show line 5
                                \exists zFz \rightarrow G(by)
8
                                \exists zFz
9
                                G(by)
10
                                                                         9 eg dd
                                                                                             match show line 5
                                \exists zG(zy)
                                                                         5 ud
11
12
                                                                         4 ud
                                                                         3 pr1 mp
              \forall x \exists y \forall z H(xyz)
13
14
                                                                         pr2 ei
                                                                                             new variable
              \forall y(H(iyy) \rightarrow \forall z \sim B(iz))
15
                                                                         13 ui
                                                                                             match 14
              \exists y \forall z H(iyz)
                                                                         15 ei
16
                                                                                             new variable
              \forallzH(ikz)
                                                                         14 ui
                                                                                             match 16
17
              H(ikk) \rightarrow \forall z \sim B(iz)
18
                                                                          16 ui
                                                                                             match 17
              H(ikk)
19
                                                                          17 18 mp
              \forall z \sim B(iz)
20
              ~B(ii)
                                                                         19 ui
                                                                                             match other term in B to match show line
                                                                                             match show line
21
                                                                         20 eg
              \exists y \sim B(yy)
22
                                                                         21 qn cd
              \sim \forall y B(yy)
```

 $32. \ \exists x \forall y \exists z (B(xyz) \rightarrow C(yzx)). \ \exists x \exists y \exists z C(xyz) \rightarrow \exists x \forall y L(a(x)y) \therefore \ \forall x \exists y \forall z B(xyz) \rightarrow \exists x L(xa(x))$

1	Show $\forall x \exists y \forall z B(xyz) \rightarrow \exists x L(xa(x))$		
2	$\forall x \exists y \forall z B(xyz)$	ass cd	
3	$\forall y \exists z (B(iyz) \rightarrow C(yzi))$	pr1 ei	new variable
4	∃y∀zB(iyz)	2 ui	match 3
5	∀zB(ikz)	4 ei	new variable
6	$\exists z (B(ikz) \rightarrow C(kzi))$	3 ui	match 5
7	$B(ikm) \rightarrow C(kmi)$	6 ei	new variable
8	B(ikm)	5 ui	match 7
9	C(kmi)	7 8 mp	
10	∃zC(kmz)	9 eg	match pr2
11	∃y∃zC(kyz)	10 eg	match pr2
12	$\exists x \exists y \exists z C(xyz)$	11 eg	match pr2
13	$\exists x \forall y L(a(x)y)$	12 pr2 mp	
14	\forall yL(a(o)y)	13 ei	new variable
15	L(a(o)a(a(o)))	14 ui	match first term in consequent of show line 1.
16	$\exists x L(xa(x))$	15 eg cd	match consequent of show line 1

33. $\forall x \exists y \sim (Fx \lor Gy)$. $\exists x (Fx \leftrightarrow Gx) \rightarrow \forall x \exists y \forall z L(xyz) :: \exists x \exists y L(xyy)$

1 5	Show $\exists x \exists y L(xyy)$		
2	$\overline{\text{Show}} \exists x (Fx \leftrightarrow Gx)$	_	We need to show $\exists x(Fx \leftrightarrow Gx)$ to use with pr2
3	$\exists y \sim (Fx \vee Gy)$	pr1 ui	
4	\sim (Fx \vee Gk)	3 ei	instantiate to NEW term
5	~Fx ∧ ~Gk	4 dm	If we had ~Fk or ~Gx it would be easy to show 2
6	$\exists y \sim (Fk \vee Gy)$	pr1 ui	instantiate pr1 again using k for x to get ~Fk
7	\sim (Fk \vee Gm)	6 ei	instantiate to NEW term
8	~Fk ∧~Gm	7 dm	Now we have \sim Fk to use with \sim Gk to show Fk \leftrightarrow Gk
9	~Gk	5 s	
10	~Fk	8 s	
11	∼Gk ∨ Fk	9 add	
12	$Gk \rightarrow Fk$	11 cdj	
13	∼Fk ∨ Gk	10 add	
14	$Fk \rightarrow Gk$	13 cdj	
15	$Fk \leftrightarrow Gk$	12 14 cb	
16	$\exists x(Fx \leftrightarrow Gx)$	15 eg x/k dd	generalize 15 to match 2
17	$\forall x \exists y \forall z L(xyz)$	2 pr2 mp	
18	∃y∀zL(xyz)	17 ui x/x	instantiate 17 using any term
19	∀zL(xiz)	18 ei i/y	instantiate 18 to NEW term
20	L(xii)	19 ui i/z	instantiate 19 to same variable as 19 to match conc.
21	$\exists y L(xyy)$	20 eg y/i	generalize 20 to match conc.
22	$\exists x \exists y L(xyy)$	21 eg x/x dd	generalize 21 to match conc.

34. $\forall x \exists y \forall z (B(xyz) \rightarrow G(xy) \land \sim G(yz))$. $\forall x \forall y \forall z (G(xy) \land \sim G(zx) \rightarrow H(yz))$ $\therefore \exists x \forall y \forall z B(xyz) \rightarrow \exists x (H(xx) \land \sim G(xx))$

1		_	
2	$\exists x \forall y \forall z B(xyz)$	ass cd	now we need $\sim G(kk)$
3	$\forall y \forall z B(iyz)$	2 ei	new variable
4	$\exists y \forall z (B(iyz) \rightarrow (G(iy) \land \sim G(yz))$	pr1 ui	
5	$\forall z(B(ikz) \rightarrow G(ik) \land \sim G(kz))$	4 ei	new variable
6	∀zB(ikz)	3 ui	match 5
7	$\forall y \forall z (G(iy) \land \sim G(zi) \rightarrow H(yz))$	pr2 ui	match 5
8	$\forall z(G(ik) \land \sim G(zi) \rightarrow H(kz))$	7 ui	match 5
9	$G(ik) \land \sim G(ki) \rightarrow H(kk)$	8 ui	match goal $\exists x(H(xx) \land$
10	$B(iki) \rightarrow (G(ik) \land \sim G(ki))$	5 ui	match 9
11	B(iki)	6 ui	match 10
12	$G(ik) \wedge \sim G(ki)$	10 11 cd	
13	H(kk)	9 12 mp	one half of the goal: H(kk)
14	$B(ikk) \rightarrow G(ik) \land \sim G(kk)$	5 ui	
15	B(ikk)	6 ui	
16	$G(ik) \wedge \sim G(kk)$	14 15 mp	
17	$\sim G(kk)$	16 sr	
18	$H(kk) \wedge \sim G(kk)$	13 17 adj	
19	$\exists x(H(xx) \land \sim G(xx))$	18 eg cd	

35. $\therefore \forall x \exists y \sim (Fy \lor \forall z G(zx)) \rightarrow \exists y \exists x \sim (\sim G(yx) \rightarrow Fx)$

1 Show	$\forall x \exists y \sim (Fy \lor \forall z G(zx)) \to \exists y \exists x \sim (\sim G(yx) \to Fx)$	_	
2	$\forall x \exists y \sim (Fy \vee \forall z G(zx))$	ass cd	
3	$\exists y \sim (Fy \lor \forall z G(zx))$	2 ui	nothing to match.
4	\sim (Fi $\vee \forall$ zG(zx))	3 ei	new variable
5	$\exists y \sim (Fy \lor \forall z G(zi))$	2 ui	match 4
6	\sim (Fk $\vee \forall$ zG(zi))	5 ei	new variable
7	\sim Fi $\wedge \sim \forall zG(zx)$	4 dm	
8	\sim Fk $\land \sim \forall zG(zi)$	6 dm	
9	~Fi	7 sl	
10	$\sim \forall z G(zi)$	8 sr	
11	$\exists z \sim G(zi)$	10 qn	
12	~G(mi)	11 ei	new variable
13	$\sim G(mi) \land \sim Fi$	12 9 adj	
14	$\sim (\sim G(mi) \rightarrow Fi)$	13 nc	
15	$\exists x \sim (\sim G(mx) \to Fx)$	14 eg	match show line
16	$\exists y \exists x \sim (\sim G(yx) \to Fx)$	15 eg	match show line
17		16 cd	

36. $\exists x \forall y \forall z (A(a(x)y) \land B(b(y)z)). \ \forall x \forall y (A(xx) \land B(yy) \rightarrow C(xy)). \ \therefore \ \exists x \exists y C(xy)$

1	Show $\exists x \exists y C(xy)$		
2	$\forall y \forall z (A(a(i)y) \land B(b(y)z))$	pr1 ei	new variable
3	$\forall z (A(a(i)a(i)) \land B(b(a(i))z))$	2 ui	match first term to match pr2: A(xx) the second term must be the same as the first.
4	$\forall y (A(a(i)a(i)) \land B(yy) \rightarrow C(a(i)y))$	pr2 ui	match 3
5	$A(a(i)a(i)) \wedge B(b(a(i))b(a(i)))$	3 ui	match first term to match pr2: B(yy) the second term must be the same as the first.
6	$A(a(i)a(i)) \land B(b(a(i))b(a(i))) \rightarrow C(a(i)b(a(i)))$	4 ui	match 5
7	C(a(i)b(a(i)))	5 6 mp	
8	$\exists y C(a(i)y)$	7 eg	
9	$\exists x \exists y C(xy)$	8 eg dd	

37. $\therefore \exists x \forall y L(b(x)yb(y)) \rightarrow \exists x L(xxb(x))$

1	Show $\exists x \forall y L(b(x)yb(y)) \rightarrow \exists x L(xxb(x))$		
2	$\exists x \forall y L(b(x)yb(y))$	ass cd	Show 1 is \rightarrow so assume ant
3	$\forall y L(b(k)yb(y))$	2 ei k/x	New term
4	L(b(k)b(k)b(b(k)))	3 ui b(k)/y	Instantiate y to b(k) to match first term so that it matches the consequent.
5	$\exists x L(xxb(x))$	$4 \operatorname{eg} x/b(k)$	-
6		5 cd	

38. $\forall x I(a(x)x)$. $\forall x \forall y \forall z (I(xy) \land I(yz) \rightarrow I(xz))$. $\therefore \forall x I(a(a(a(x)))a(x))$

1 S	$\frac{\text{how}}{\text{how}} \forall x I(a(a(a(x)))a(x))$		
2	Show $I(a(a(a(x))) a(x))$		Show 1 is \forall , show
			instance
3	I(a(a(x)) a(x))	pr1 ui	Use ui, making 2 nd
		a(x)/x	term match 2 nd term of
			line 2
4	$I(a(a(a(x))) \ a(a(x)))$	pr1 ui	use ui again, making
		a(a(x))/x	the 2 nd term of 4 match
			the 1 st term of 3
5	$\forall y \forall z (I(a(a(a(x)))y) \land I(yz) \rightarrow I(a(a(a(x)))z))$	pr1 ui	USE UI three times on
6	$\forall z (I(a(a(a(x)))a(a(x))) \land I(a(a(x))z) \rightarrow I(a(a(a(x)))z))$	4 ui	pr2 so that 3 and 4 form
7	$I(a(a(a(x)))a(a(x))) \wedge I(a(a(x))a(x)) \rightarrow I(a(a(a(x)))a(x))$	5 ui	the antecedent and 2 is
			the consequent.
8	$I(a(a(a(x)))a(a(x))) \wedge I(a(a(x))a(x))$	2 3 adj	
9	I(a(a(a(x)))a(x))	6 7 mp, dd	
10		2 ud	