#### STATS 260 Class 7

Gavin Jaeger-Freeborn

#### 1. Probability Modeling

#### 1.1. Random Variable

a function which maps each outcome of an experiment to a number

*events* 
$$\rightarrow$$
 #'s

#### **Example**

The number of defective items could be 0, 1,..., 10. Thus, X can take on the values 0, 1,..., 10.

$$X = \{0, 1, \dots, 10\}$$

Probability one item is defective is P(X=1)

Probability at least 2 items are defective is  $P(X \ge 1)$ 

#### **Example**

I randomly select a student and ask if they have taken Math 122. For this experiment, I have the random variable Y, which takes on two values: 0 and 1. The random variable Y will take a value of 1, if the answer is "Yes", and will take on a value of 0 if the answer is "No".

$$P(X = 0) \to NO, P(X = 1) \to YES, X\{0, 1, \}$$

#### 1.2. Support

possible values it can take. In the last example question.

$$X = \{0, 1\}$$

#### 1.2.1. Continuous

Support is real numbers

## 1.2.2. Discrete

Support is non real numbers

# 2. Probability Mass Function or Probability Distribution f(X)

$$f(x) = P(X = x)$$

# 2.1. Probability Distribution Table

| X    | 0   | 1    | ••• | 10    |
|------|-----|------|-----|-------|
| f(x) | 0.1 | 0.03 | ••• | 0.005 |

#### **Example**

At a small taco shop, it has been noted that 80% of customers order beef tacos, and the other 20% of customers order veggie tacos. **Three customers** enter the store, and each customer independently orders one taco. Construct the probability distribution table for the random variable X, where **X** is number of veggie tacos ordered by the three customers.

Outcomes {BBB,VBB,BVB,BBV,VVB,VBV,BVV,VVV}

$$X = 0 \rightarrow BBB$$
  
 $X = 1 \rightarrow VBB, BVB, BBV$   
 $X = 2 \rightarrow VVB, VBV, BVV$   
 $X = 3 \rightarrow VVV$   
R.V. X Support of  $X = \{0, 1, 2, 3\}$   
 $f(0) = P(X = D) = P(BBB) = 0.8 \times 0.8 \times 0.8 = 0.512$   
 $f(1) = P(\{VBB, BVB, BBV\})$   
 $= (0.2)(0.8)(0.8) + (0.8)(0.2)(0.8) + (0.8)(0.8)(0.2) = 0.384$   
 $f(2) = P(\{VVB, VBV, BVV\})$   
 $= 3 \times (0.2)(0.2)(0.8) = 0.096$   
 $f(2) = P(\{VVV\})$   
 $= 0.2^3 = 0.003$ 

| X    | 0     | 1     | 2     | 3     |
|------|-------|-------|-------|-------|
| f(x) | 0.512 | 0.384 | 0.096 | 0.008 |

NOTE:

$$\sum_{x} f(x) = 1$$

What is the probability that exactly one veggie taco will be ordered?

$$P(x = 1) = f(1) = 0.384$$

What is the probability that at least two veggie tacos will be ordered?

$$P(X \ge 2) = P(X = 2) + P(X = 3)$$
$$= f(2) + f(3)$$
$$= 0.96 + 0.008 = 0.104$$

Suppose we know that at **least one veggie taco** is ordered. What is the probability that **exactly two veggie tacos** will be ordered?

#### **Conditional Probability**

$$P(X = 2|X \ge 1)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{P(X = 2 \cap X \ge 1)}{P(\ge 1)} = \frac{P(X = 2)}{P(X \ge 1)}$$

| X    | 0     | 1     | 2     | 3     |
|------|-------|-------|-------|-------|
| f(x) | 0.512 | 0.384 | 0.096 | 0.008 |

$$\frac{0.096}{0.384 + 0.096 + 0.008} = \frac{0.096}{0.488} = \frac{12}{61}$$

#### 3. Cumulative Distribution Function F(X) cdf

$$F(X) = P(X \le x)$$

## **Example**

Suppose the random variable X has the following probability distribution:

| X    | 1   | 2    | 3    | 4   | 5   |
|------|-----|------|------|-----|-----|
| f(x) | 0.3 | 0.15 | 0.05 | 0.2 | 0.3 |

Find the cdf for this random variable

$$F(1) = P(X \le 1) = P(X = 1) = 0.3$$

$$F(2) = P(X \le 2) = P(X = 1) + P(X = 2) = f(1) + f(2) = 0.3 + 0.15 = 0.45$$

$$F(3) = P(X \le 3) = Pf(1) + f(2) + f(3) = 0.5$$

$$F(4) = 0.7$$

$$F(5) = 1$$

The easier way is to just add them

| X    | 1   | 2    | 3    | 4   | 5   |
|------|-----|------|------|-----|-----|
| f(x) | 0.3 | 0.15 | 0.05 | 0.2 | 0.3 |
| F(x) | 0.3 | 0.45 | 0.5  | 0.7 | 1   |

$$f(x) \rightarrow F(X)$$

#### 3.1. Properties of a cdf

- F (x) is monotone increasing.
- $\lim_{x \to \infty} F(x) = 0$  and  $\lim_{x \to \infty} F(x) = 1$ .

#### **Explanation**

 $x \rightarrow \infty$ 

 $P(X \le x)$ 

 $X \le x \rightarrow Sample Space$ 

Remember

P(S) = 1

When S is sample space

 $x \rightarrow -\infty$ 

φ is the empty set

 $P(\phi) = 0$ 

- F(x) is right-continuous (continuous at each point x = k where x approaches k from the right)

NOTE: In the previous example, the support for the pmf was x = 1, 2, 3, 4, 5. As we've discussed previously, for any x which is not part of the support (i.e. impossible outcomes), the probability of that value of being observed is zero.

## **Example**

In the previous example, the event X = 3.5 is an impossible event. Therefore,

$$f(3.5) = P(X = 3.5) = 0.$$

However, this does not mean the cdf also has a value of zero :

# Example

$$F(3.5) = P(X \le 3.5)$$

| X    | 1   | 2    | 3   | 4   | 5 |
|------|-----|------|-----|-----|---|
| F(X) | 0.3 | 0.45 | 0.5 | 0.7 | 1 |



#### **Example**

Let the discrete random variable X count the number of classes a randomly selected UVic student is currently taking. The cdf for X is the following.

Remember 
$$F(X) = P(X \le x)$$

- What is the probability that the student is taking no more than 4 classes?

$$P(X \le 4) = F(4) = 0.6$$

- Calculate F(4.5).

$$F(4.5) = F(4) = 0.6$$

- What is the probability that the student is taking at least 3 classes?

$$P(X \ge 3)$$

we can then use the complement of F(3) since  $F(3) = P(x \le 3)$ 

$$P(X \ge 3) = 1 - P(x < 3)$$

$$= 1 - P(x \le 2) = 1 - F(2)$$

$$= 1 - 0.25$$

$$= 0.75$$

- What is the probability that the student is taking exactly 3 classes?

$$P(x \le 3) - P(x \le 2) = F(3) - F(2) = 0.4 - 0.25$$
$$= 0.15$$

- What is the probability that the student is taking at **least 2 but no more than 5** classes?

$$P(x \ge 2) \cap P(x \le 5) = P(2 \le x \le 5)$$
  
 $F(5) = \{1, 2, 3, 4, 5\}, \text{ and } F(1) = \{1\}$   
 $F(5) - F(1) = 0.75 - 0.15 = 0.6$