MDL - TD3 30/01/2024

Exercise 1: Depth vs. expressivity of ReLU networks

We want to show that any MLP $\mathbb{R}^d \to \mathbb{R}$ with ReLU activation function represents a piece-wise linear continuous function, and that any piece-wise linear function $\mathbb{R}^d \to \mathbb{R}$ with n pieces can be represented by an MLP with depth at most $\lceil \log(n+1) \rceil + 1$.

- **Q1:** Construct a 2-layered NN f such that $f(x, y) = \max(x, y)$.
- **Q2:** For $f_1, ..., f_N$ functions that can each be represented by k_i -layered neural networks, show that $f = \max(f_1, ..., f_N)$ can be represented as a neural network with depth at most $\max(k_1, ..., k_N) + \log_2(N) + 1$.
- **Q3:** Conclude that any continuous piece-wise linear function f on \mathbb{R} with n pieces can be expressed as a MLP with depth at most $\lceil \log_2(n+1) \rceil + 1$. Hint: there exist $s_1, \ldots, s_K \in \mathbb{R}$ and $(f_{i,k})_{1 \leq i \leq n, 1 \leq k \leq K}$ linear functions such that $f = \sum_{k=1}^K \max(f_{1,k}, \ldots, f_{n,K})$.

Exercise 2: Approximation of real functions

Let $\sigma(x) = \max(0, x)$ for any $x \in \mathbb{R}$. We want to prove that any continuous function $f : \mathbb{R} \to \mathbb{R}$ can be approximated on any compact set, at any given precision, by a 2-layered neural net (1 hidden layer) with activation function σ .

- **Q4:** Approximate with a precision $\varepsilon > 0$ the function $f(x) = x^2/2$ on [0,1].
- **Q5:** Approximate with a precision $\varepsilon > 0$ the function $f(x) = x^n/2$ on [0,1] for any $n \in \mathbb{N}$.
- **Q6:** Approximate any continuous function on [0, 1] by an MLP.
- **Q7:** If $f:[0,1]\to\mathbb{R}$ is L-Lisphitz, how many neurons are required for a given precision $\varepsilon>0$?