What is claimed is:

1	1.	A method of forming a crystalline polysilicon gate electrode structure on a gate		
2	diele	dielectric, comprising the steps of:		
3		depositing on the gate dielectric polysilicon crystals of substantially a first size; and		
4		contiguously with the crystals of the first size depositing directly thereon additiona		
5	poly	silicon crystals of substantially a second size.		
1	2.	The method according to claim 1, wherein:		
2		the first crystal size is larger than the second crystal size.		
1	3.	The method according to claim 1, wherein:		
2		the first crystal size is smaller than the second crystal size.		
1	4.	A method of forming a crystalline polysilicon gate electrode structure on a gate		
2	diele	dielectric, comprising the step of:		
3		controlling a variation of at least one of temperature, pressure, and flow rate of a		
4	conti	continuous flow of silane or related silicon precursor species while depositing polysilicon		
5	there	therefrom as crystals of correspondingly controlled grain size.		
1	5.	The method according to claim 4, wherein:		
2		the variation is controlled in step-wise manner, to thereby form a multi-region		
3	polyc	polycrystalline silicon deposit comprising regions having crystals of respective grain sizes.		
l	6.	The method according to claim 5, wherein:		
2		crystals deposited in a first region adjacent to the gate dielectric have a first grain		
3	size s	selected to maximize dopant activation near the gate dielectric and a second region that		
1	has c	rystals of a second grain size deposited more distantly from the gate dielectric.		
	7.	A method of forming a polycrystalline silicon structure in which crystal grain size		
2	varie	s as a function of depth, comprising the step of:		

3		controlling a variation of at least one of temperature, pressure, and flow rate of a		
4	silan	silane gas while depositing silicon therefrom, to thereby control the crystal grain size as a		
5	funct	function of depth in the deposited polysilicon structure.		
6	8.	The method according to claim 7, wherein:		
7		the polysilicon structure comprises a plurality of regions having respective grain		
8	sizes			
1	9.	The method according to claim 8, wherein:		
2		the polycrystalline silicon structure is a gate electrode formed on a gate dielectric,		
3	and c	and comprises a first region having a first crystal grain size and a second region formed		
4	there	thereon and having a second grain size,		
5		wherein the first and second grain sizes are selected to maximize dopant activation		
6	in the	in the first region and to achieve a specific resistance in the second region.		
1	10.	The method according to claim 9, further comprising:		
2		a third region formed on the second region and having crystals of a third grain size		
3	to fur	to further tailor the resistance of the gate conductor structure.		
1	11.	The method according to claim 8, wherein:		
2		the electrical resistance of the deposited silicon varies inversely with the controlled		
3	pressi	pressure.		
1	12.	The method according to claim 7, comprising the further step of:		
2		providing a controlled flow of a dopant gas during a selected portion of the step of		
3	depos	depositing polysilicon, to thereby enable selected doping or counter-doping of a portion of		
4	the de	the deposited polysilicon.		
1	13.	The method according to claim 12, wherein:		
2		the dopant gas is selected to provide one of a p-type or an n-type doping during a		
3	final portion of the step of depositing polysilicon.			
	BUR	9-2000-0039-US1 - 9 -		

2		forming a layer rich in carbon atoms at a selected stage of the silicon deposition.	
1	15.	The method according to claim 7, comprising the further step of:	
2		forming a layer of silicon-germanium at a selected stage of the silicon deposition.	
1	16.	The method according to claim 7, wherein:	
2		the variation is controlled to deposit the polysilicon so that the crystal grain size	
3	varies monotonically during the deposition of the polysilicon.		
1	17.	A CMOS transistor comprising a gate conductor formed on a gate dielectric,	
2	wherein the gate conductor comprises a multi-region polycrystalline silicon, comprising:		
3		a first region adjacent the dielectric and comprising silicon crystals of a first grain	
4	size; and		
5		a second region formed contiguously with and over the first region and comprising	
6	silicon crystals of a second grain size.		
1	18.	The CMOS transistor according to claim 17, wherein:	
2		the first and second grain sizes are selected to maximize a dopant activation near the	
3	gate di	ielectric in the first region and to achieve a specific resistance in the second region.	
1	19.	The CMOS transistor according to claim 18, wherein:	
2		an upper portion of the polysilicon structure is consumed by silicide.	
1	20.	The CMOS transistor according to claim 18, further comprising:	
2		a third region formed contiguously with and over the second region, the third region	
3	serving	g to further tailor the resistance of the gate conductor.	
l.	21.	A doped polysilicon resistor structure, comprising:	
2		an insulator; and	

The method according to claim 7, comprising the further step of:

1

14.

- a multi-region polycrystalline silicon conductor structure, comprising regions having silicon crystals of respectively different sizes, formed over the insulator.
- 1 22. The structure according to claim 20, wherein:
- 2 the silicide formation is blocked by a layer of nitride.