Homework 4

Original 4-Layer Model

The 16 epoch achieves the best model, Test Loss: 0.1283, Test accuracy: 96.60%

Modified 6-Layer Model

The 6-layer model required changes to pooling to be functional. When using 6 layers, the pooling layer shrunk the data to a size of 0 at the 5th layer and crashed the model.

```
RuntimeError: Given input size: (Nx1x1). Calculated output size: (Nx0x0). Output size is too small
```

My solution was to disable pooling for 2 of the layers.

Growing hidden layer size

Continuing from layer 4, the number of channels was doubled in each layer (128 -> 256 -> 512)

The training was much slower than the smaller model, but reached its peak by epoch 13. Beyond that it began overfitting.

There were other attempts at 6-layer models, but this is the one that I will use for the remainder of the modifications.

Data Augmentation

The different augmentations did not significantly affect the results.

Random Affine

The 18 epoch achieves the best model, Test Loss: 0.1074, Test accuracy: 97.40%

Random Vertical Flip

The 15 epoch achieves the best model, Test Loss: 0.2070, Test accuracy: 94.40%

Optimizers and Learning Rates

ADAM and Adagrad preferred a middle-ground learning rate around 0.01

ADAM (Learning Rate 0.05)

The higher learning rate resulted in some underfitting and high variability with the ADAM optimizer.

The 19 epoch achieves the best model, Test Loss: 0.6100, Test accuracy: 81.90%

ADAM (Learning Rate 0.01)

ADAM performed the best at a learning rate of 0.01. No significant under or overfitting was observed.

The 18 epoch achieves the best model, Test Loss: 0.2229, Test accuracy: 94.10%

ADAM (Learning Rate 0.001)

At a learning rate of 0.001, there was slightly more overfitting.

The 18 epoch achieves the best model, Test Loss: 0.4210, Test accuracy: 86.00%

Adagrad (Learning Rate 0.05)

Adagrad had significant overfitting at a learning rate of 0.05.

The 19 epoch achieves the best model, Test Loss: 1.1350, Test accuracy: 68.80%

Adagrad (Learning Rate 0.01)

Adagrad performed best at a learning rate of 0.01 with no significant over or underfitting.

The 18 epoch achieves the best model, Test Loss: 0.2251, Test accuracy: 93.80%

Adagrad (Learning Rate 0.001)

Adagrad was severly overfit at a learning rate of 0.001.

The 20 epoch achieves the best model, Test Loss: 5.3135, Test accuracy: 14.10%

SGD (Learning Rate 0.1)

SGD performed best with higher learning rates. The highest tested was 0.1.

The 20 epoch achieves the best model, Test Loss: 0.0772, Test accuracy: 98.10%

SGD (Learning Rate 0.05)

SGD performed worse the lower the learning rate.

The 19 epoch achieves the best model, Test Loss: 0.3794, Test accuracy: 88.60%

SGD (Learning Rate 0.01)

Below 0.01, SGD began to see significant overfitting.

The 20 epoch achieves the best model, Test Loss: 1.0317, Test accuracy: 71.00%

SGD (Learning Rate 0.001)

At 0.001, SGD was completely overfit and was barely better than random chance.

Other 6-layer experiments

These are the other, less successful 6-layer models.

Shrinking hidden layer size

Starting at layer 4, the number of channels was cut in half in each layer (128 -> 64 -> 32)

The model was underfit on training data, but performed similarly to the 4-layer model on the test data.

The 19 epoch achieves the best model, Test Loss: 0.2276, Test accuracy: 94.20%

No size change

The additional 2 layers did not change the number of channels (128 -> 128 -> 128)

This model was overfit to the training data.

The 20 epoch achieves the best model, Test Loss: 0.2486, Test accuracy: 92.70%

"6"-layer model

This is a mock 6-layer model created by adding 4 more convolutional layers to the 4th layer. It performed almost the same as the best of the actual 6-layer models but I did not include it because it wasn't actually a 6-layer model.

The 16 epoch achieves the best model, Test Loss: 0.1077, Test accuracy: 97.50%