# Infinite nilpotent covers of squaretiled surfaces

Pat Hooper (City College of New York & CUNY Graduate Center) joint with

Khalid Bou-Rabee (City College of New York & CUNY Graduate Center)

The Extrinsic Primitive Torsion Problem arXiv:1708.02093

## Outline of talk

- 1. Definitions, basic examples, motivating results
- 2. Symmetric square tiled surfaces through cylinders

## **Definitions**

- Let G be a discrete group and S be a surface. A G-cover of S is a regular cover  $\tilde{S} \to S$  with Deck group isomorphic to G.
- Let  $\mu$  be a measure on a G-cover  $\tilde{S}$ , and  $\alpha:G\to\mathbb{R}_{>0}$  be a group homomorphism. Then  $\mu$  is  $\mathit{Maharam}$  if

$$\mu \circ g = \alpha(g)\mu$$
 for all  $g \in G$ .

Theorem (Babillot, Ledrappier-Sarig)

Let  $\tilde{S}$  is a nilpotent-cover of a compact hyperbolic surface and  $h^t:T_1\tilde{S}\to T_1\tilde{S}$  be the horocycle flow. Then the the ergodic horocycle-flow invariant Radon measures are the Maharam measures which are in bijective correspondence with  $Hom(G,\mathbb{R}_{>0})=\{\alpha:G\to\mathbb{R}_{>0}\}$ .

- A square-tiled surface is a cover of  $\mathbb{T}^* = \mathbb{T}^2 \setminus \{0\}$ .
- ullet The straight-line flow in direction heta is

$$F^t_{ heta}:S o S;\; z\mapsto z+e^{i heta} ext{ in local coordinates.}$$

**Theorem** (H) Let  $\tilde{S}$  be a nilpotent-cover of a compact translation surface S which is possibly branched. Assume there are horizontal and vertical affine multitwists  $\phi, \psi: \tilde{S} \to \tilde{S}$  in horizontal and vertical cylinder decompositions and that each cylinder intersects at least two others. Let

$$\Gamma = \langle D(\phi), D(\psi) 
angle = \left\langle \left(egin{array}{cc} 1 & a \ 0 & 1 \end{array}
ight), \left(egin{array}{cc} 1 & 0 \ b & 1 \end{array}
ight) 
ight
angle.$$

Then for all but countably many  $\theta$  in the limit set of  $\Gamma$ , the flow  $F_{\theta}$  is ergodic. Moreover, the locally-finite ergodic invariant Borel measures are the  $\alpha$ -Maharam measures and there is one for each  $\alpha:G\to\mathbb{R}_{>0}$ .

# Symmetric square tiled surfaces through cylinders

**Def.** Let S be a square-tiled surface with covering map  $\pi:S\to\mathbb{T}^*$ . Let  $k\geq 2$ .} We say S is k-periodic if for every non-singular geodesic  $\tilde{\gamma}$  of rational slope in S, the restriction of  $\pi$  to  $\tilde{\gamma}\to\pi(\tilde{\gamma})$  is a finite cover of degree dividing k.

**Prop.** For each integer  $k\geq 2$ , there is a universal k-periodic square-tiled surface  $U_k$ . That is,  $U_k$  is a k-periodic square tiled surface and if S is another one, there is a covering  $U_k\to S$ .



## Normal generators for $P_2$ .



Normal generators for  $P_3$ .



| Vertex    | Generator of P <sub>3</sub> |  |  |
|-----------|-----------------------------|--|--|
| ∞         | $a^3$                       |  |  |
| 0         | $b^3$                       |  |  |
| 1         | $(ab)^3$<br>$(ab^{-1})^3$   |  |  |
| <u>-1</u> | $(ab^{-1})^3$               |  |  |

$$G_3 = F_2/P_3 = F_2/\langle a^3, b^3, (ab)^3, (ab^{-1})^3 
angle.$$

## Normal generators for $P_4$ .



| Vertex        | Generator of P <sub>4</sub> |  |  |
|---------------|-----------------------------|--|--|
| ∞             | $a^4$                       |  |  |
| 0             | $b^4$                       |  |  |
| 1             | $(ab)^4$                    |  |  |
| <b>-</b> 1    | $(ab^{-1})^4$               |  |  |
| 2             | $(a^2b)^4$                  |  |  |
| $\frac{1}{2}$ | $(ab^2)^4$                  |  |  |

## Normal generators for $P_5$ .



Normal generators for  $P_6...$ 



**Open Question:** Are the groups  $P_k$  for  $k \geq 6$  finitely normally generated? Is our countable list of generators minimal?

#### Theorem 1 (H - Bou-Rabee).

The surface  $U_k$  is infinite (equivalently,  $F_2/P_k$  is infinite) if and only if  $k \geq 4$ .

#### Theorem 2 (H - Bou-Rabee).

The group  $G_4=F_2/P_4$  is virtually a torsion-free nilpotent group of dimension 5 and nilpotence class 2. There is a faithful representation  $\tilde{\rho}:F_2/P_4\to SL(9,\mathbb{C})$  determined by

$$ilde{ ilde{
ho}}(a) = diag(1, -1, -i, -i; -1, 1, i, i; 1),$$

$$\tilde{\rho}_4(b) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

**Cor.**  $U_4$  is a torsion-free class 2 nilpotent cover of the *eierlegende Wollmilchsau*, the 8-square surface built associated to the quaterion group.

|   | i  | 1  | -i      | -1 |    |            |    |   |
|---|----|----|---------|----|----|------------|----|---|
| j | -k | -j | k       | j  | -k |            |    |   |
|   |    |    |         |    | k  | <u>-</u> J | -k | _ |
|   | -i | -1 | i<br>-i | 1  | İ  | -1         | -i | 1 |
|   |    |    |         | -j | -k | j          | k  |   |

This surface was found independently by Forni and by Herrlich – Möller – Weitze-Schmithüsen.



The surface  $U_4$  is a  $\mathbb{Z}$ -cover of a  $\mathbb{Z}^4$ -cover of the Wollmilchsau. The deck group  $G_4=F_2/P_4$  is a  $\mathbb{Z}$ -extension of a  $\mathbb{Z}^4$ -extension of the quaternion group.

### Theorem (Fraczek - Schmoll)

Straight-line flow is ergodic in a.e. direction on  $U_4/\mathbb{Z}$ .

There is a decomposition  $Aut(F_2)=Aut_+(F_2)\cup Aut_-(F_2)$ , where signs are assigned to an automorphism depending on the determinant of the image in  $GL(2,\mathbb{Z})=Out(F_2)$ .

**Def.** A representation  $ho:F_2 o GL(m,\mathbb{C})$  is *(oriented) characteristic* if:

1. For every  $\psi \in Aut_+(F_2)$  there is an  $M \in GL(m,\mathbb{C})$  so that

$$M\cdot 
ho\circ \psi^{-1}(g)\cdot M^{-1}=
ho(g)\quad ext{for all }g\in F_2.$$

2. For every  $\psi \in Aut_-(F_2)$  there is an  $M \in GL(m,\mathbb{C})$  so that

$$M\cdot \overline{
ho\circ \psi^{-1}(g)}\cdot M^{-1}=
ho(g)\quad ext{for all }g\in F_2.$$