1. (3 Punkte) Gegeben sei das Alphabet $\Sigma = \{a, b, c\}$ und die Sprache $L = \{a^i b^j c^k \mid i, j, k > 0\}$ Gib eine Grammatik an, die die Sprache L erzeugt.

Lösung: Die Grammatik hat die Variablen $V = \{S, A, B, C\}$ und die Regeln:

 $S \to ABC$

 $A \to a|aA$

 $B \to b|bB$

 $C \to c|cC$

2. (3 Punkte) Gegeben sei das Alphabet $\Sigma = \{a, b, c\}$ und die Sprache $L = \{a^i b^j c^{i+j} \mid i, j \in \mathbb{N}_0, i+j > 0\}$ Gib eine Grammatik an, die die Sprache L erzeugt.

Lösung: Die hat die Variablen $V = \{S, A, B, C\}$ und die Regeln:

 $S \to aSc|B|ac$

 $B \to bBc|bc$

3. (3 Punkte) Gegeben sei das Alphabet $\Sigma = \{0, 1, 2\}$. Gib eine kontextfreie Grammatik für folgende Sprache an: $L = \{0^n 1^{2n} 2^m \mid n, m \ge 0\}$

Lösung: Die Grammatik hat die Variablen $V = \{S, T\}$ und die Regeln:

 $S \rightarrow S2|T$

 $T \to 0T11|\epsilon$

4. (4 Punkte) Gegeben sei das Alphabet $\Sigma = \{a, b, c, d\}$. Es sei L die Sprache aller Wörter, in der a nie neben b, b nie neben c und c nie neben d steht. Gib eine Grammatik an, die die Sprache L erzeugt.

Lösung: Die Grammatik hat die Variablen $V = \{S, A, B, C, D\}$ und die Regeln:

 $S \to A|B|C|D|\epsilon$

 $A \rightarrow a|aA|aC|aD$

 $B \rightarrow b|bB|bD$

 $C \to c |cA| c C$

 $D \rightarrow d|dA|dB|cD$

- 5. (3 Punkte) Beschreibe die Sprache, die durch folgende Grammatik gegeben ist:
 - $\Sigma = \{0, 1, 2\}, V = \{S, A, B\},$ Regeln:
 - $S \to \epsilon |0B|1A|2A$
 - $A \rightarrow 0|0S|1AA|2AA$
 - $B \rightarrow 1S|2S|0BB$.

Lösung: Die Sprache aller Wörter, für die die Anzahl der Nullen gleich der Anzahl der Einsen plus die Anzahl der Zweien ist.