Électrocinétique – chapitre 6 –

Correction du TD d'application

Impédance équivalente

Déterminer l'impédance complexe équivalente de chacun des dipôles ci-dessous en RSF.

1)

- Réponse -

On commence par convertir le circuit avec les impédances complexes :

$$\diamondsuit \ \underline{Z}_{C_1} = \frac{1}{jC_1\omega};$$

$$\diamondsuit \ \underline{Z}_L = \mathrm{j} L\omega \, ;$$

$$\diamondsuit \ \underline{Z}_{C_2} = \frac{1}{\mathrm{j}C_2\omega}.$$

On peut ensuite déterminer l'impédance équivalente à l'association en parallèle de L et C_2 . Avec les admittances, on a

$$\underline{Y}_{\mathrm{eq},1} = \underline{Y}_{C_2} + \underline{Y}_L \Leftrightarrow \underline{Z}_{\mathrm{eq},1} = \frac{1}{\frac{1}{\underline{Z}_{C_2}} + \frac{1}{\underline{Z}_L}} = \frac{1}{\mathrm{j}C_2\omega + \frac{1}{\mathrm{j}L\omega}} = \frac{\mathrm{j}L\omega}{1 - \omega^2LC_2}$$

Il suffit alors de faire l'association en série de \underline{Z}_{C_1} et de $\underline{Z}_{\text{eq},1}$:

$$\boxed{\underline{Z}_{\rm eq} = \frac{1}{jC_1\omega} + \frac{jL\omega}{1 - \omega^2 LC_2}}$$

Il n'est ici pas nécessaire d'aller plus loin dans le calcul.

2)

- Réponse -

Ici, on utilise que $\underline{Z}_R = R$ et comme précédemment, on effectue l'association en parallèle des R et C de droite avant de faire l'association en série de R et C de gauche avec cette impédance équivalente :

$$\underline{Z}_{\text{eq, 1}} = \frac{1}{\frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_C}} = \frac{1}{\frac{1}{R} + jC\omega} = \frac{R}{1 + jRC\omega}$$

Et on a donc finalement

$$\boxed{\underline{Z}_{\rm eq} = R + \frac{1}{\mathrm{j}C\omega} + \frac{R}{1 + \mathrm{j}RC\omega}}$$

${ m I}$ | Obtention d'une équation différentielle

1) En utilisant les lois de KIRCHHOFF en complexes, montrer que la tension u(t) est solution de l'équation différentielle

$$4\tau^2 \frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + 5\tau \frac{\mathrm{d}u}{\mathrm{d}t} + u(t) = e(t)$$
 avec $\tau = RC$

On nomme les tensions et intensités dans le circuit, et on utilise la loi des nœuds et la loi d'OHM généralisée :

$$\underline{I} = \underline{I_1} + \underline{I_2}$$

$$\Leftrightarrow \frac{1}{R} \underline{U_R} = \frac{1}{\underline{Z_{2C}}} \underline{U'} + \frac{1}{\underline{Z_C}} \underline{U}$$

$$\Leftrightarrow \underline{U_R} = 2jRC\omega\underline{U'} + jRC\omega\underline{U}$$
(6.1)

On utilise ensuite la loi des mailles à droite et à gauche, donnant respectivement :

$$\underline{U'} = \underline{U} + 2R\underline{I_2} = \underline{U} + 2jRC\omega\underline{U} \quad \text{ et } \quad \underline{U_R} = \underline{E} - \underline{U'} = \underline{E} - \underline{U} - 2jRC\omega\underline{U}$$

On regroupe les équations dans (6.1) et on introduit $\tau = RC$:

$$\underline{E} - \underline{U} - 2j\omega\tau\underline{U} = j\omega\tau(\underline{U} + 2j\omega\tau\underline{U}) + j\omega\tau\underline{U}$$

$$\Leftrightarrow \underline{E} = \underline{U} + 5j\omega\tau\underline{U} + 4\tau^2(j\omega)^2\underline{U}$$

En identifiant les puissances de j ω à l'ordre des dérivées pour retourner dans le domaine des représentations réelles, on a donc bien

$$e(t) = u(t) + 5\tau \frac{\mathrm{d}u}{\mathrm{d}t} + 4\tau^2 \frac{\mathrm{d}^2 u}{\mathrm{d}t^2}$$

III Circuit RL série en RSF

On considère le circuit ci-contre en régime sinusoïdal forcé, e(t) où la source de tension impose $e(t) = E\cos(\omega t)$ avec E > 0.

1) Déterminer l'amplitude de u à « très haute » $(\omega \to \infty)$ et « très basse » $(\omega \to 0)$ fréquence.

- Réponse -

Pour les comportements limites, on utilise la modélisation d'une bobine à haute et basse fréquence : étant donné que $\underline{Z}_L=\mathrm{j}L\omega$, pour $\omega\to0$ on a $\underline{Z}_L=0$, et pour $\omega\to\infty$ on a $\underline{Z}_L\to\infty$. On a donc respectivement un fil et un interrupteur ouvert. En effet, l'impédance étant homogène à une résistance, une impédance nulle est semblable à une résistance nulle (un fil), et une impédance infinie est semblable à une résistance infinie (un interrupteur ouvert).

Or, la tension d'un fil est nul, donc

$$u \xrightarrow[\omega \to 0]{} 0$$

Le courant ne peut traverser un interrupteur, donc en faisant la loi des mailles dans le circuit équivalent, on a $u_R = Ri = 0$, et forcément

$$u \xrightarrow[\omega \to \infty]{} E$$

2) Exprimer l'amplitude complexe \underline{U} de u(t) en fonction de $E,\,R,\,L$ et $\omega.$

– Réponse –

Pour cela, on utilise la relation du pont diviseur de tension :

$$\underline{U} = \frac{\underline{Z}_L}{\underline{Z}_L + \underline{Z}_R} E \Leftrightarrow \boxed{\underline{U} = \frac{jL\omega}{R + jL\omega}} E$$

3) Les tensions e et u peuvent-elles être en phase? En opposition de phase? En quadrature de phase? Préciser le cas échéant pour quelle(s) pulsation(s).

——— Réponse –

La phase de e(t) est nulle par construction. On calcule donc la phase de u en prenant l'argument de

son amplitude complexe:

$$\arg(\underline{U}) = \arg(jL\omega E) - \arg(\underline{R} + jL\omega) = \frac{\pi}{2} - \arctan\left(\frac{L\omega}{R}\right)$$

où on peut prendre l'arctangente parce que la partie réelle est positive. Ainsi :

1) Signaux en phase

$$\Leftrightarrow \arg(\underline{U}) = 0 \Leftrightarrow \arctan\left(\frac{L\omega}{R}\right) = \frac{\pi}{2} \Leftrightarrow \underline{\omega \longrightarrow \infty}$$

C'est donc mathématiquement possible et physiquement approchable, mais pas rigoureusement.

2) Signaux en opposition de phase

$$\Leftrightarrow \arg(\underline{U}) = \pi \Leftrightarrow \arctan\left(\frac{L\omega}{R}\right) = -\frac{\pi}{2} \Leftrightarrow \omega \longrightarrow -\infty$$

C'est donc mathématiquement possible, mais **physiquement impossible** : la pulsation est proportionnelle à la fréquence, et une fréquence ne saurait être négative.

3) Signaux en quadrature de phase

$$\Leftrightarrow \arg(\underline{U}) = \frac{\pi}{2} \Leftrightarrow \arctan\left(\frac{L\omega}{R}\right) = 0 \Leftrightarrow \omega = 0$$

C'est donc possible à la fois mathématiquement et physiquement, mais cela correspond à un signal d'entrée qui ne varie pas, c'est-à-dire un régime permanent : la sortie n'oscille donc pas non plus, et est simplement nulle. La quadrature de phase n'a donc pas vraiment de sens ici, la sortie est constamment nulle quand l'entrée est à son maximum.

Lycée Pothier 4/7 MPSI3 – 2024/2025

IV

Exploitation d'un oscillogramme en RSF

On considère le circuit ci-dessous. On pose $e(t) = E_m \cos(\omega t)$ et $u(t) = U_m \cos(\omega t + \varphi)$. La figure ci-dessous représente un oscillogramme réalisé à la fréquence $f = 1,2 \times 10^3 \,\mathrm{Hz}$, avec $R = 1,0 \,\mathrm{k}\Omega$ et $C = 0,10 \,\mathrm{pF}$.

1) Déduire de cet oscillogramme les valeurs expérimentales de E_m , U_m et φ .

- Réponse -

On lit l'amplitude de e(t) à son maximum pour avoir $E_m = 10 \,\mathrm{V}$. On lit l'amplitude de u(t) à son maximum pour avoir $U_m = 6 \,\mathrm{V}$. Pour la phase à l'origine des temps, on regarde le signal à t = 0: on lit $u(0) = U_m \cos(\varphi) = -3 \,\mathrm{V}$, soit

$$\cos(\varphi) = \frac{u(0)}{U_m} \quad \text{avec} \quad \begin{cases} u(0) = -3 \text{ V} \\ U_m = 6 \text{ V} \end{cases}$$

$$\text{A.N.} : \quad \varphi = \frac{2\pi}{3} \text{rad}$$

2) Exprimer U_m et φ en fonction des composants du circuit et de la pulsation ω . Donner l'intervalle d'existence de φ et ses limites. Tracer alors l'allure des deux graphiques $U_m(\omega)$ et $\varphi(\omega)$.

- Réponse

On utilise un pont diviseur de tension pour avoir l'amplitude complexe :

$$\underline{U} = \frac{\underline{Z}_L}{\underline{Z}_R + \underline{Z}_C + \underline{Z}_L} E_m \Leftrightarrow \underline{U} = \frac{1}{\frac{\underline{Z}_R}{\underline{Z}_L} + \frac{\underline{Z}_C}{\underline{Z}_L} + \frac{\underline{Z}_L}{\underline{Z}_L}} E_m$$

$$\Leftrightarrow \underline{U} = \frac{1}{1 + \frac{R}{jL\omega} + \frac{1}{j^2\omega^2CL}} E_m$$

$$\Leftrightarrow \underline{\underline{U}} = \frac{1}{1 - j\frac{R}{L\omega} - \frac{1}{\omega^2LC}} E_m$$

On peut en vérifier l'homogénéité en se souvenant des résultats des chapitres précédents :

$${\omega_0}^2 = \frac{1}{LC} \quad \text{donc} \quad \omega^2 L C \text{ adimensionn\'e} \quad \text{et} \quad \frac{R}{L} = \tau^{-1} \quad \text{donc} \quad \frac{R}{L\omega} \text{ adimensionn\'e}$$

D'une manière générale, on exprimera les résultats de la sorte, avec une fraction dont le numérateur est homogène à la quantité exprimée alors que le dénominateur est adimensionné.

On trouve l'amplitude réelle en prenant le module de cette expression :

$$U_m = |\underline{U}| \Leftrightarrow U_m = \frac{E}{\sqrt{\left(1 - \frac{1}{LC\omega^2}\right)^2 + \frac{R^2}{L^2\omega^2}}}$$

On trouve la phase en en prenant l'argument :

$$\varphi = \arg(\underline{U}) = \arg(\underline{E}) - \arg\left(1 - \frac{1}{LC\omega^2} - j\frac{R}{L\omega}\right) = -\psi$$

Ici, il n'est pas évident de prendre l'arctangente de la tangente : la partie réelle de l'argument calculé n'est pas forcément positif (il l'est si $\omega^2 > \frac{1}{LC}$). Pour faciliter l'étude de l'argument, notons $\psi = \arg\left(1 - \frac{1}{LC\omega^2} - \mathrm{j}\frac{R}{L\omega}\right)$. On alors :

$$\begin{bmatrix} \omega \to 0 \\ \operatorname{Re}(\psi) \to -\infty < 0 \\ \operatorname{Im}(\psi) \to -\infty < 0 \\ \end{bmatrix} \Rightarrow \psi \in \begin{bmatrix} -\pi ; -\frac{\pi}{2} \end{bmatrix}$$

$$\begin{bmatrix} \operatorname{Re}(\psi) \to 1 > 0 \\ \operatorname{Im}(\psi) \to 0 \\ \end{bmatrix} \Rightarrow \psi \in \begin{bmatrix} -\frac{\pi}{2} ; \frac{\pi}{2} \end{bmatrix}$$

On détermine les valeurs limites en étudiant $tan(\psi)$:

$$\tan(\psi) = -\frac{R}{L\omega} \times \frac{1}{1 - \frac{1}{LC\omega^2}} = \frac{RC\omega}{1 - LC\omega^2}$$

$$\omega \to 0$$

$$\tan(\psi) \xrightarrow{\omega \to 0} 0 \Leftrightarrow \psi \xrightarrow{\omega \to 0} -\pi$$

$$\tan(\psi) \xrightarrow{\omega \to \infty} 0 \Leftrightarrow \psi \xrightarrow{\omega \to \infty} 0$$

Ainsi, on a les résultats opposés pour $\varphi = -\psi$:

3) En déduire la valeur numérique de l'inductance L de la bobine.

- Réponse -

Il paraît évidemment plus simple de calculer L à partir de la phase, sachant qu'on a déterminé φ à la première question :

$$LC\omega^2 - 1 = \frac{RC\omega}{\tan(\varphi)} \Leftrightarrow LC\omega^2 = 1 + \frac{RC\omega}{\tan(\varphi)}$$

$$\Leftrightarrow L = \frac{1}{C\omega^2} + \frac{R}{\omega \tan(\varphi)}$$
 avec
$$\begin{cases} C = 0.10 \,\mu\text{F} \\ \omega = 2\pi f \\ f = 1.2 \times 10^3 \,\text{Hz} \\ R = 1 \,\text{k}\Omega \\ \varphi = \frac{2\pi}{3} \text{rad} \end{cases}$$
 A.N. :
$$L = 9.9 \times 10^{-2} \,\text{H}$$

 $- \diamond -$