Université de Lorraine Analyse complexe

TD 5: Formule de Cauchy, principe du maximum

Exercice 1. Soit f une fonction entière. Montrer qu'elle est constante si l'une des conditions suivantes est satisfaite :

- 1. Il existe m > 0 tel que $\forall z \in \mathbb{C}, |f(z)| > m$.
- 2. L'image de f est incluse dans \mathbb{H} , le demi-plan supérieur.
- 3. L'image de f n'est pas dense dans \mathbb{C} .
- 4. L'image de f est incluse dans $\mathbb{C} \setminus \mathbb{R}_-$.

Exercice 2. [Fonctions à croissance polynomiale] Soit f une fonction entière. On suppose qu'il existe $d \ge 0$, $M \in \mathbb{R}$ et $R \in \mathbb{R}_+^*$ tels que pour tout z de module $\ge R$, on ait $|f(z)| \le M|z|^d$. Montrer que f est un polynôme de degré $\le d$.

Exercice 3. Soit $f: \overline{\mathbb{D}} \to \mathbb{C}$ continue et holomorphe sur \mathbb{D} .

- 1. Montrer que pour tout $z \in \mathbb{D}$, on a $f(z) = \frac{1}{2i\pi} \int_{\mathscr{C}(0,1)} \frac{f(w)}{w-z} dw$.
- 2. La question précédente montre que si f est nulle sur le cercle unité, elle est nulle dans le disque. Montrer que si' l'on suppose seulement que f est nulle sur un arc du cercle unité, alors f est nulle.

Exercice 4. [Principe « du minimum »] Soit $U \subseteq \mathbb{C}$ un ouvert connexe et $f \in \mathcal{O}(U)$. Montrer que si |f| admet un minimum strictement positif en $z_0 \in U$, alors la fonction f est constante.

Exercice 5. Soit $U \subseteq \mathbb{C}$ un ouvert et $f \in \mathcal{O}(U)$. On suppose que pour tout $z \in U$, on a $|\operatorname{Im}(f(z))| = 2 |\operatorname{R\'e}(f(z))|$. Que peut-on dire de f?

Exercice 6. Soit $f: \overline{\mathbb{D}} \to \mathbb{C}$ continue et holomorphe sur \mathbb{D} . On suppose qu'il existe M > 0 (resp. N > 0) tel que si z est de module un et partie imaginaire positive (resp. négative), alors $|f(z)| \le M$ (resp. $\le N$). Montrer que $|f(0)| \le \sqrt{MN}$.

Exercice 7. [Lemme de Schwarz] Soit $f: \mathbb{D} \to \mathbb{D}$ une fonction holomorphe s'annulant en zéro à l'ordre $\leq d$.

- 1. Montrer que pour tout $z \in \mathbb{D}$, $|f(z)| \le |z|^d$.
- 2. Montrer que s'il existe $z \in \mathbb{D}^*$ tel que $|f(z)| = |z|^d$, alors il existe $\theta \in \mathbb{R}$ tel que pour tout $z \in \mathbb{D}$, $f(z) = e^{i\theta}z^d$.

Exercice 8. [Biholomorphismes du disque] Pour tout $a \in \mathbb{D}$, on considère l'application

$$\phi_a: \mathbb{C} \setminus 1/\bar{a} \to \mathbb{C}, z \mapsto \frac{z-a}{1-\bar{a}z}.$$

Montrer qu'elle se restreint en un biholomorphisme de \mathbb{D} . Montrer que toutes les applications biholomorphes de \mathbb{D} dans lui-même sont de la forme

$$z\mapsto e^{i\theta}\phi_a(z),$$

avec $a \in \mathbb{D}$ et $\theta \in \mathbb{R}$.

Exercice 9. 1. Calculer les intégrales suivantes :

(a)
$$I_1 = \int_{C(0,2)} \frac{z^3 - iz + 1}{z - i} dz$$
,
(b) $I_2 = \int_{C(2,2)} \frac{z^3 - iz + 1}{z - i} dz$,
(c) $I_3 = \int_{C(0,2)} \frac{\sin(z)\cos(z)}{3z - \pi} dz$,
(d) $I_4 = \int_{C(2i,1)} \frac{e^{z^2}}{z^3(z - 2i)} dz$.

2. Calculer
$$\int_{C(1,\frac{1}{2})} \frac{e^z}{(z-1)(z+1)} dz$$
 et $\int_{C(-1,\frac{1}{2})} \frac{e^z}{(z-1)(z+1)} dz$. En déduire $\int_{C(0,2)} \frac{e^z}{z^2-1} dz$.

3. Déterminer les racines du polynôme $P(z) = z^2 + (1-i)z - i$. Puis calculer $\int_{C(0,2)} \frac{z-1}{z^2 + (1-i)z - i} dz$.

Exercice 10. 1. Calculer les intégrales suivantes :

(a)
$$I_1 = \int_{C(0,2)} \frac{z^3 - i}{(z - 1)^2} dz$$
,
(b) $I_2 = \int_{C(0,1)} \frac{e^z}{z^3} dz$,
(c) $I_3 = \int_{C(i,5)} \frac{ze^{iz}}{(1 + z)^3} dz$,
(d) $I_4 = \int_{C(0,1)} \frac{\cos(z)}{z^3(z - 2)} dz$.

2. Calculer les intégrales $\int_{C(i,\frac{1}{2})} \frac{iz^3 - 3}{(z - i)^2 (z + i)^2} dz \text{ et } \int_{C(-i,\frac{1}{2})} \frac{iz^3 - 3}{(z - i)^2 (z + i)^2} dz.$ En déduire $\int_{C(0,2)} \frac{iz^3 - 3}{(z - i)^2 (z + i)^2} dz.$

Exercice 11. [Transformé de Fourier d'une Gaussienne] Soit $a \in \mathbb{R}_+^*$. Notons $G_a : \mathbb{R} \to \mathbb{R}$ l'application définie par $G_a(t) = e^{-at^2}$. La transformé de Fourier de G_a est l'application $\widehat{G}_a : \mathbb{R} \to \mathbb{C}$ définie par

$$\widehat{G}_a(\xi) = \int_{-\infty}^{+\infty} e^{-at^2} e^{-i\xi t} dt.$$

Nous admettrons que $\widehat{G}_a(0) = \int_{-\infty}^{+\infty} e^{-at^2} dt = \sqrt{\frac{\pi}{a}}$. (Intégrale de Gauss, se renseigner sur le sujet et lire une preuve, par exemple celle avec les coordonnées polaires.)

- 1. Montrer que pour tout $\xi \in \mathbb{R}$, $\widehat{G}_a(\xi) = e^{-\frac{\xi^2}{4a}} I_a(\xi)$ où $I_a(\xi) = \int_{-\infty}^{+\infty} e^{-a(t+i\frac{\xi}{2a})^2} dt$.
- 2. Nous allons maintenant montrer que $I_a(\xi) = \sqrt{\frac{\pi}{a}}$ pour tout $\xi \in \mathbb{R}$. On considère la fonction $f : \mathbb{C} \to \mathbb{C}$ définie par

$$f(z) = e^{-az^2} \quad \forall z \in \mathbb{C}.$$

Pour tout $R \in \mathbb{R}_+^*$, on considère le chemin $\gamma^R = \gamma_1^R \vee \gamma_2^R \vee \gamma_3^R \vee \gamma_4^R$ représenté graphiquement ci-dessous.

- (a) Calculer $\int_{\gamma^R} f(z) dz$ pour tout $R \in \mathbb{R}_+^*$.
- (b) Montrer que $\int_{\gamma_1^R} f(z) dz \to \sqrt{\frac{\pi}{a}}$ quand $R \to +\infty$.
- (c) Montrer que $\int_{\gamma_3^R} f(z)dz \to -I_a(\xi)$ quand $R \to +\infty$.
- (d) Montrer que pour $j \in \{2,4\}$, $\int_{\gamma_j^R} f(z) dz \to 0$ quand $R \to +\infty$.
- (e) Conclure.