Rapport du Devoir 3

Alexandre Dewilde

February 18, 2021

1 Le circuit

Figure 1: Le circuit pour ce devoir

2 Calculs

2.1 Simplification du circuit

Avant de se précipiter dans les calculs on peut simplifier le circuit ce qui simplifira les calculs

- \bullet Les résistances R_6 et R_7 sont en série, on peut donc les sommer on a $R_{eq(6,7)}=20$
- On a maintenant $R_{eq(6,7)}$ et R_5 en //, leur résistances équivalente est égal à $\left(\frac{1}{20} + \frac{1}{20}\right)^{-1} = 10$
- Et finalement on a R_4 en série avec $R_{eq(5,6,7)}$, leurs resistance équivalente vaut donc 10 + 10 = 20Le circuit donne donc :

Figure 2: Circuit simplifié

2.2 Calcul de la résistance équivalente

Pour cette étape, il faut court-circuiter les sources de voltage et rendre les sources de courants en circuit ouvert

Figure 3: Circuit avec les sources de tensions court circuité et source de courant ouvert

On calcule la résistance équivalente des 2 résistance en //

Figure 4: Circuit simplifier

Il ne faut plus que les sommer, on obtient alors $R_{eq}=19\,$

2.3 Calcul de la tension de Thévenin

Pour calculer la tension de thévenin, il faut calculer la tension aux bornes a et b, et la méthode des noeuds dans ce cas est une option.

On commence donc par tracer le sens des courants et des tensions.

Figure 5: Circuit avec le sens des tensions et courants tracés

On peut maintenant chercher les équations pour trouver V_0 et V_1 qui permettront de calculer la tension de thévenin

On a donc:

$$\begin{cases} 5+1 = \frac{V_0 - V_1}{5} \\ 6 = \frac{V_1 - 10}{5} + \frac{V_1}{20} \end{cases}$$

à partir de là on trouve facilement V_1 gràce à la seconde équations qui vaut 32V, et on peut facilement subsituer V_0 qui vaut 62V

Et maintenant pour trouver la tension de Thévenin il suffit de sommer V_0 et U_{R1} car ceux-ci sont en // avec les bornes a et b.

Et la tension de R1 est facilement trouvé car l'on connait le courant (5A) qui y passe ainsi que la résistance (10 Ω), on a donc $U(R1) = 5A \cdot 10\Omega = 50V$

On trouve donc 50V + 62V = 112V

La tension de Thévenin vaut 112V

Figure 6: équivalent de Thévenin

2.4 Equivalent de Norton

L'équivalent de Norton est très simple à trouver une fois la tension de thévenin trouvé, on trouve le courant par $V_t = R_{eq} \cdot I_n$ donc ont en déduit que le courant de Norton vaut

$$112V = 19\Omega \cdot I_n \tag{1}$$

$$I_n = \frac{112}{19} \approx 5.8947A \tag{2}$$

Figure 7: équivalent de Norton

3 Résultats de LTSpice

3.1 Ajout d'une résistance dans le circuit

Lorsque l'on ajoute une résistance de 1Ω aux bornes de a et b comme ceci :

Figure 8: Le cricuit avec l'ajout d'une résistance de 1Ω

LTSpice nous donnes un voltage de 5.6V et un courant de 5.6A

Figure 9: Tensions au bornes de a et b avec l'ajout de la résistance

		_
I(R8):	5.6	device_current

Figure 10: Courant passant entre les bornes a et b après ajout d'une résistance de 1Ω

3.2 Ajout d'une résistance dans l'équivalent de Thévenin

Si on ajoute aussi une résistance de 1Ω avec l'equivalent de Thévenin comme ceci LTspice donne aussi une tension de $5.6~\rm V$ et toujours un courant de $5.6~\rm A$

Operating Point			
V(n001): V(p001): I(R2):	112 5.6 5.6	voltage voltage device_current	

Figure 12: Résultat après l'ajout d'une résistante de 1Ω dans l'équivalent de Thévenin

Figure 11: équivalent de thévenin avec l'ajout d'une résistance de 1Ω

3.3 Ajout d'une résistance dans l'équivalent de Norton

Et pour finir avec l'équivalent de Norton, lorsqu'on ajoute une résistance de 1Ω comme ceci :

Figure 13: équivalent de Norton avec l'ajout d'une résistance de 1Ω

LTspice nous donne les résultats suivants :

Figure 14: Résultat de la tension aux bornes de a, b dans l'équivalent de Norton

Figure 15: Résultat du courant dans l'équivalent de Norton

Les 3 résultats se concordent.

4 Conclusion

Les résultats des simulations donnent les valeurs correctes suites aux calculs, les tensions entre les résistance ajoutés sotn les mê entre chaque équivalences et aux bornes de a et b, on peut donc en conclure que les calculs sont correctes.