HW1 + Simulations FPGA & ASIC

Q1) Code:

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity parity_checker is
   Port ( input : in STD_LOGIC_VECTOR (7 downto 0);
           even parity : buffer STD LOGIC;
          output : out STD_LOGIC_VECTOR (8 downto ∅));
end parity_checker;
architecture DataFlow of parity_checker is
   function even_parity_maker (a1 : in std_logic_vector)
   return std_logic
   is
        variable b1 : STD_LOGIC := '0';
       begin
loop1: for i in a1'range loop
        b1 := a1(i) xor b1;
        end loop;
       return b1;
   end function;
signal preout1 : std_logic_vector(8 downto 0);
signal preout2 : std_logic_vector(8 downto 0);
begin
preout1 <= ('0'&input + 47);</pre>
preout2 <= ('0'&input - 37);</pre>
even_parity <= even_parity_maker(input);</pre>
with even_parity select
                 <= ('0' & preout1(8 downto 1)) when '0',
                      (preout2(7 downto ∅) & '0') when others;
end DataFlow;
 ----- TB ------
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity Parity_checker_TB is
-- Port ();
end Parity_checker_TB;
architecture DataFlow of Parity_checker_TB is
signal input : STD_LOGIC_VECTOR (7 downto 0);
signal even_parity : STD_LOGIC;
signal output : STD_LOGIC_VECTOR (8 downto 0);
component Parity_checker
   Port ( input : in STD_LOGIC_VECTOR (7 downto 0);
          even_parity : buffer STD_LOGIC;
          output : out STD_LOGIC_VECTOR (8 downto ∅));
end component;
begin
UUT1: Parity_checker port map(input,even_parity,output);
input <= b"1100_1010"
        b"1100_1011" after 200 ns,
        b"1010_1010" after 400 ns,
        b"1110_1010" after 600 ns;
end DataFlow;
```

Utilization-synth & synthesis report is as follows:

	-+-		+		+-		+-		+-	
Site Type	į	Used	į	Fixed	i	Prohibited	l	Available	ı	Util9
Slice LUTs*	1	14	ı	0	ı	0	ı –	3750	i	0.37
LUT as Logic	1	14	I	0	I	0	ı	3750	I	0.37
LUT as Memory	1	0	I	0	I	0	I	2400	I	0.00
Slice Registers	1	0	I	0	I	0	ı	7500	I	0.00
Register as Flip Flop	1	0	I	0	I	0		7500	I	0.00
Register as Latch	1	0	I	0	I	0	I	7500	I	0.00
F7 Muxes	1	0	I	0	I	0	I	4000	I	0.00
F8 Muxes	ī	0	ī	0	ı	0	ı	2000	ı	0.00

Detailed	RTL Compo	ne	ent Info :			
+Adde	cs:					
2	Input	9	Bit	Adders	:= 1	
2	Input	8	Bit	Adders	:= 1	
+XORs	:					- 1
8	Input		1 Bit	XOF	Rs :=	1
+Muxes	з:					(
2	Input	9	Bit	Muxes	:= 1	•
Finished	RTL Compo	ne	ent Statist	tics		
						_
Start Par	rt Resourc	e	Summary			
						_
Part Reso	urcee.					
			0.01			
1	(col leng					
BRAMs: 10	(col len	ıgt	th: RAMB18	20 RAME	336 10)
1						

7. Primitive	es 	
+	+ Used	++ Functional Category
OBUF	10	10
LUT6	10	LUT
IBUF	8	10
LUT5	4	LUT
LUT4] 3	LUT

Site Type	i	Used	ï	Fixed	ï	Prohibited	ī	Available	i	Util!
	-+		.+.		.+.		+-		' +-	
Bonded IOB	ī	18	I	0	ī	0	Ī	100	ı	18.0
PHY_CONTROL	I	0	I	0	Ī	0	Ī	2	I	0.0
PHASER_REF	I	0	I	0	Ī	0	Ī	2		0.0
OUT_FIFO	I	0	I	0	Ī	0	Ī	8	ı	0.0
IN_FIFO	I	0	I	0	Ī	0	Ī	8		0.0
IDELAYCTRL	I	0	I	0	Ī	0	Ī	2	I	0.0
IBUFDS	I	0	I	0	Ī	0	Ī	96	I	0.0
PHASER_OUT/PHASER_OUT_PHY	I	0	I	0	Ī	0	I	8	I	0.0
PHASER_IN/PHASER_IN_PHY	I	0	I	0	Ī	0	Ī	8	I	0.0
IDELAYE2/IDELAYE2_FINEDELAY	I	0	I	0	Ī	0	Ī	100	I	0.0
ILOGIC	I	0	I	0	Ī	0	Ī	100	I	0.0
OLOGIC	I	0	I	0	ī	0	ī	100	ı	0.0

RTL Schematic is as follows:

LUT Schematic:

Waveform

Binary:

Name	Value	0.000 ns	200.000 ns	400.000 ns	600.000 ns	800.000 ns
> * input[7:0]	11101010	11001010	11001011	10101010	11101	1010
la even_parity	1					
> W output[8:0]	110001010	001111100	101001100	001101100	11000	1010

Decimal:

Name	Value	0.000 ns	200.000 ns	400.000 ns	600.000 ns	800.000 ns
> 😻 input[7:0]	234	202	203	170	23	4
even_parity	1					
> 💆 output[8:0]	394	124	332	108	39	4

For example, we check the first one:

If "input" is (11001010) $_2$ = (202) $_{10}$ then "evem_parity" should be "0" because the counts of "1" in "11001010" is four ! and "output" should be (202+47)/2 = 124.5 .

Q2) Code:

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity stopwatch is
    Port ( CLK : in STD_LOGIC;
           Async_Reset : in STD_LOGIC;
           Start : in STD_LOGIC;
           CS : BUFFER INTEGER RANGE 0 TO 100;
           S : BUFFER INTEGER RANGE 0 TO 60;
           M : BUFFER INTEGER RANGE 0 TO 60);
end entity;
architecture Behavioral of stopwatch is
process(CLK, Async_Reset)
variable count_internal : integer range 0 to 2 :=0;
if (Async\_reset = '1') then
    CS <= 0;
    S <= 0;
    M <= 0;
elsif (clk'event and clk = '1') then
    if (start = '1') then
        count_internal := count_internal+1;
        if(count_internal=2) then
            count_internal := 1;
            CS <= CS+1;
            if(CS = 99) then
                CS <= 0;
                S <= S+1;
                if(S = 59) then
                    S <= 0;
                     M \leftarrow M+1;
                     if(M = 59) then
                         M <= 0;
report("1 hour !")</pre>
                         severity(Failure);
                    end if;
                end if;
            end if;
        end if;
    end if;
end if;
end process;
end architecture;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity stopwatch_TB is
-- Port ( );
end stopwatch_TB;
architecture Behavioral of stopwatch_TB is
signal CLK : STD_LOGIC:='0';
signal Async_Reset : STD_LOGIC;
signal Start : STD_LOGIC;
signal CS : INTEGER RANGE 0 TO 100;
signal S : INTEGER RANGE 0 TO 60;
signal M : INTEGER RANGE 0 TO 60;
component stopwatch
    Port ( CLK : in STD_LOGIC;
           Async_Reset : in STD_LOGIC;
           Start : in STD_LOGIC;
           CS : BUFFER INTEGER RANGE 0 TO 100;
           S : BUFFER INTEGER RANGE 0 TO 60;
           M : BUFFER INTEGER RANGE 0 TO 60);
end component;
constant period : time :=10 ms;
```

```
begin
DUT: stopwatch port map(CLK,Async_Reset,Start,CS,S,M);
CLK <= not CLK after (period/2);
Async_Reset <= '1','0' after (2*period);
stimulus: process
begin
Start<= '1';
wait for (2*period);
Start<= '0';
wait for (2.25*period);
Start<= '1';
wait;
end process;
end Behavioral;</pre>
```

Utilization-synth & synthesis report is as follows:

	_		-		_		_		_
Site Type	1	Used	† ·	Fixed	1	Prohibited	+ 	Available Util%	1
Slice LUTs*	1	32	1	0	1	0	1	3750 0.85	1
LUT as Logic	I	32	I	0	Ī	0	I	3750 0.85	I
LUT as Memory	I	0	I	0	Ī	0	I	2400 0.00	I
Slice Registers	I	36	I	0	Ī	0	I	7500 0.48	I
Register as Flip Flop	I	36	I	0	Ī	0	I	7500 0.48	I
Register as Latch	Ī	0	Ī	0	Ī	0	I	7500 0.00	Ī
F7 Muxes	Ī	0	Ī	0	Ī	0	I	4000 0.00	Ī
F8 Muxes	Ī	0	Ī	0	Ī	0	I	2000 0.00	I
+	+-		+-	=	+		+		-+

+	m-+-1	Clark Buckle	G ab a	1 3 l
+		Clock Enable	Synchronous	Asynchronous
li	0 1		_	- i
١	0 1	_ i	-	Set
1	0	_ 1	-	Reset
1	0	_ 1	Set	- 1
1	0	_ I	Reset	- 1
1	0	Yes	_	- 1
1	0	Yes	-	Set
1	19	Yes	_	Reset
1	1	Yes	Set	- 1
1	16	Yes	Reset	- 1
+				++

+	+-		+	+		+	+-		-+
Site Type	Ī	Used	Fixed	Ī	Prohibited	Available	Ī	Util%	1
Bonded IOB	-+-	22	+ I 0	-+-	0	100	+	22.00	+
PHY CONTROL	ï	0	1 0		0	1 2	•	0.00	i
PHASER_REF	i	0		i	0	. 2	İ	0.00	i
OUT_FIFO	I	0	0	1	0	l 8	I	0.00	I
IN_FIFO	I	0	0	1	0	8	I	0.00	1
IDELAYCTRL	I	0	0	1	0	2	I	0.00	1
IBUFDS	I	0	0	1	0	96	I	0.00	1
PHASER_OUT/PHASER_OUT_PHY	I	0	0	1	0	8	I	0.00	1
PHASER_IN/PHASER_IN_PHY	I	0	0	Ī	0	8	I	0.00	1
IDELAYE2/IDELAYE2_FINEDELAY	I	0	0	Ī	0	100	I	0.00	1
ILOGIC	I	0	0	1	0	100	I	0.00	1
OLOGIC	I	0	0	Ī	0	100	I	0.00	1
+	+-		+	+		+	+-		-+

1+-		+		+-		+		+		+-		+
l	Site Type	Ī	Used	Ī	Fixed	İ	Prohibited	I	Available	Ī	Util%	
1	BUFGCTRL		1	1	0	1	0	1	16	1	6.25	+
1	BUFIO	I	0	I	0	I	0	I	8	I	0.00	Ī
1	MMCME2_ADV	I	0	I	0	I	0	I	2	I	0.00	I
1	PLLE2_ADV	I	0	I	0	I	0	I	2	I	0.00	I
Ι	BUFMRCE	I	0	I	0	I	0	I	4	I	0.00	I
Ι	BUFHCE	I	0	I	0	I	0	I	24	I	0.00	ı
1	BUFR	I	0	I	0	I	0	I	8	I	0.00	ı
+-		+-		1		+		+		+-		+

```
Detailed RTL Component Info :
+---Adders :
       2 Input
                 17 Bit
                               Adders := 1
       2 Input
                   7 Bit
                               Adders := 1
       2 Input
                   6 Bit
                               Adders := 2
+---Registers :
                              Registers := 1
                     7 Bit
                              Registers := 2
                     6 Bit
+---Muxes :
       2 Input
                   6 Bit
                                Muxes := 2
       2 Input
                   1 Bit
                                Muxes := 3
```

RTL Schematic is as follows:

LUT Schematic:

Waveforms

Q3) Code:

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.std_logic_unsigned.all;
entity frequency_divider is
    Port ( clk : in STD_LOGIC;
           duty_cycle : in STD_LOGIC_VECTOR (3 downto 0);
           clk_out : out STD_LOGIC);
end entity;
architecture Behavioral of frequency_divider is
signal count : integer range 0 to 99 := 0;
begin
    process(clk)
    begin
        if (clk'event and clk='1') then
            if count = 99 then
                count <= 0;
                count <= count + 1;</pre>
            end if;
            if (count < 10*(conv_integer(duty_cycle))) then
                clk_out <= '1';
                clk_out <= '0';
            end if;
        end if;
    end process;
end architecture;
----- TB ------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity frequency_divider_TB is
-- Port ();
end frequency_divider_TB;
architecture Behavioral of frequency_divider_TB is
signal clk : STD LOGIC := '0';
signal duty_cycle : STD_LOGIC_VECTOR (3 downto 0);
signal clk_out : STD_LOGIC;
component frequency_divider
    Port ( clk : in STD_LOGIC;
           duty_cycle : in STD_LOGIC_VECTOR (3 downto 0);
           clk_out : out STD_LOGIC);
end component;
constant period : time := 125 ns;
DUT: frequency_divider port map(CLK,duty_cycle,clk_out);
CLK <= not CLK after (period/2);
stimulus: process
begin
duty_cycle <= x"1";</pre>
wait for (400*period);
duty_cycle <= x"0";</pre>
wait for (400*period);
duty_cycle <= x"9"</pre>
wait for (400*period);
duty_cycle <= x"5"</pre>
wait for (400*period);
duty_cycle <= x"3";</pre>
wait;
end process;
end Behavioral;
```

Utilization-synth & synthesis report is as follows:

+	+- 1	used	+- +-	Fixed	+- +-	Prohibited	+	Available	+- 	 Util%	+
Slice LUTs*	i	11	i	0	i	0	i	3750	I	0.29	ï
LUT as Logic	1	11	I	0	Ī	0	I	3750	I	0.29	Ī
LUT as Memory	1	0	I	0	I	0	I	2400	I	0.00	Ī
Slice Registers	1	8	I	0	Ī	0	I	7500	l	0.11	Ī
Register as Flip Flop	1	8	I	0	Ī	0	I	7500	ı	0.11	I
Register as Latch	1	0	I	0	Ī	0	I	7500	ı	0.00	T
F7 Muxes	1	0	I	0	Ī	0	I	4000	I	0.00	Ī
F8 Muxes	I	0	I	0	I	0	I	2000	I	0.00	I
 			4-		1		4.		٠.		4

Resource	Estimation	Available	Utilization %
LUT	11	3750	0.29
FF	8	7500	0.11
Ю	6	100	6.00
BUFG	1	16	6.25

Detailed RTL Component Info:
+---Adders:
2 Input 7 Bit Adders:= 1
+---Registers:
7 Bit Registers:= 1
1 Bit Registers:= 1

RTL Schematic is as follows:

LUT Schematic:

Waveforms

Product:

1 The default part and product family for the new project:

Default Part: xc7s6cpga196-2

Family: Spartan-7 Package: cpga196 Speed Grade: -2