Bob's gym routine - Hard

Input file: standard input
Output file: standard output

Time limit: 3 seconds Memory limit: 256 megabytes

The only difference between the easy and hard version of the problem is the size of the constraints.

Bob has decided to maintain a healthy lifestyle and has started going to the gym. His gym instructor is very strict and makes him do a rigorous workout. There are N poles spread across the gym, where the i^{th} pole is located at coordinate (x_i, y_i) . The gym instructor has asked Bob to run around three such poles. Bob is exhausted and wanted to choose a set of three poles with the minimum perimeter.

Could you help Bob find the minimum perimeter?

Input

The first line contains an integer N ($3 \le N \le 200000$) — the number of poles.

This is followed by N lines, each containing two integer x_i and y_i ($-10^9 \le x_i, y_i \le 10^9$) — the coordinates of the i^{th} pole.

You may assume that each point is distinct.

Output

Print a single real number d where d is the minimum perimeter.

Answers within an absolute error of 10^{-6} will be accepted

Note: Degenerate triangles — triangles with zero area — are ok.

Examples

standard input	standard output
4	6.650281539873
0 0	
0 3	
3 0	
1 1	
3	4.00000000000
0 0	
0 1	
0 2	
1 5	