华理小男孩模板

 王亦凡
 姚远
 王泽宸

 主代码手
 队长
 解题核心

April 17, 2018

Contents

1	数论	
	1.1	指数降幂公式
	1.2	威尔逊定理
	1.3	费马小定理
	1.4	
	1.5	质数表
	1.6	素数函数
	1.7	欧拉函数 3
		1.7.1 递 推求
		1.7.2 单个求
	1.8	莫比乌斯函数
	1.9	逆元 · · · · · · · · · · · · · · · · · · ·
		1.9.1 递推求
		1.9.2 单个求
		- 1 J
2	概率	论 (
	2.1	超几何分布 6
3	数学	
	3.1	矩阵
		3.1.1 矩阵类
		3.1.2 高斯消元
	3.2	整除与剩余
		3.2.1 扩展欧几里得逆元
		3.2.2 中国剩余定理
	3.3	数值计算 11
	3.4	其他
		3.4.1 lucas 定理
		3.4.2 递推求组合数
		3.4.3 单个求组合数
		3.4.4 威佐夫博弈
		3.4.5 FWT
		3.4.6 FFT
		3.4.7 hell 方程

4	图论		15
	4.1	最大团	15
	4.2	图的遍历和连通性	16
			16
			17
			18
			$\frac{10}{19}$
			19 19
	4.3		$\frac{19}{20}$
	4.5		
			20
	4.4	——————————————————————————————————————	20
		72 - 174 - 174	20
		7	21
	4.5	树	23
		4.5.1 prim	23
			23
	4.6	网络流	25
		4.6.1 最大流 Dinic	25
			26
		· · · · · · ·	29
			$\frac{-5}{29}$
	4.7		- 0
	1.1	· ··-	33
		生11.1 左/八週//	oo
			33
5	计管	4.7.2 图解序列	33
5	计算 5.1	4.7.2 图解序列	33 34
5	5.1	4.7.2 图解序列	33 34 34
5	5.1 5.2	4.7.2 图解序列 几何 判断凸包 判断线段是否相交	33 34 34 35
5	5.1 5.2 5.3	4.7.2 图解序列	33 34 34 35 35
5	5.1 5.2 5.3 5.4	4.7.2 图解序列	33 34 34 35 35
5	5.1 5.2 5.3	4.7.2 图解序列	33 34 34 35 35
	5.1 5.2 5.3 5.4 5.5	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 求对称点求交点 终极模板 长次圆	33 34 35 35 37 46
5	5.1 5.2 5.3 5.4 5.5 数据	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 ジス对称点求交点 求对称点求交点 ジ极模板 K次圆 ジス	33 34 35 35 37 46 51
	5.1 5.2 5.3 5.4 5.5 数据 6.1	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 求对称点求交点 终极模板 以別 K次園 な別 结构 手写堆	33 34 35 35 37 46 51
	5.1 5.2 5.3 5.4 5.5 数据 6.1 6.2	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 求对称点求交点 终极模板 区次圆 任次圆 专格 手写堆 左偏树	33 34 34 35 37 46 51 51 52
	5.1 5.2 5.3 5.4 5.5 数据 6.1 6.2 6.3	4.7.2 图解序列 几何 判断凸包	33 34 35 35 37 46 51 52 53
	5.1 5.2 5.3 5.4 5.5 数据 6.1 6.2 6.3 6.4	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 求对称点求交点 终极模板 K次圆 新方侧	33 34 35 35 37 46 51 52 53 54
	5.1 5.2 5.3 5.4 5.5 数据 6.1 6.2 6.3 6.4 6.5	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 求对称点求交点 终极模板 K次圆 结构 手写堆 左偏树 两优先队列模拟堆 线段树 二维线段树	33 34 35 35 37 46 51 52 53 54 57
	5.1 5.2 5.3 5.4 5.5 数据 6.1 6.2 6.3 6.4 6.5 6.6	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 求对称点求交点 终极模板 K次圆 若构 手写堆 左偏树 两优先队列模拟堆 线段树 二维线段树 Treap	33 34 35 35 37 46 51 52 53 54 57
	5.1 5.2 5.3 5.4 5.5 数据 6.1 6.2 6.3 6.4 6.5 6.6 6.7	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 求对称点求交点 终极模板 K次圆 结构 手写堆 左偏树 两优先队列模拟堆 线段树 二维线段树 Treap splay	33 34 35 35 37 46 51 52 53 54 57 61
	5.1 5.2 5.3 5.4 5.5 数据 6.1 6.2 6.3 6.4 6.5 6.6	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 求对称点求交点 终极模板 K次圆 结构 手写堆 左偏树 两优先队列模拟堆 线段树 二维线段树 Treap splay	33 34 35 35 37 46 51 52 53 54 57
	5.1 5.2 5.3 5.4 5.5 数据 6.1 6.2 6.3 6.4 6.5 6.6 6.7	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 求对称点求交点 终极模板 K 次圆 结构 手写堆 左偏树 两优先队列模拟堆 线段树 二维线段树 Treap splay 倍增 LCA	33 34 35 35 37 46 51 52 53 54 57 61
	5.1 5.2 5.3 5.4 5.5 数据 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 求对称点求交点 终极模板 K次圆 结构 手写堆 左偏树 两优先队列模拟堆 线段树 二维线段树 Treap splay 倍增 LCA 主席树	33 34 35 35 37 46 51 52 53 54 57 61 63
	5.1 5.2 5.3 5.4 5.5 数据 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 求对称点求交点 终极模板 K次圆 结构 手写堆 左偏树 两优先队列模拟堆 线段树 工维线段树 Treap splay 倍增 LCA 主席树 树剖	33 34 35 37 46 51 52 53 57 63 64 64
	5.1 5.2 5.3 5.4 5.5 数据 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	4.7.2 图解序列 几何 判断凸包 判断线段是否相交 求对称点求交点 终极模板 K次圆 结构 事写堆 左偏树 两优先队列模拟堆 线段树 工维线段树 Treap splay 倍增 LCA 主席树 树剖 点分治	33 34 35 37 46 51 52 54 57 61 63

	6.14	莫队	8
	6.15	KDtree	8
	6.16	优先队列可删除任意元素的堆	1
	6.17	动态树带 7	1
	6.18	动态树维护后缀自动机 parent 树	1
	6.19	虚树	1
7	字符	· :	2
•	7.1		2
	7.2		- '3
	7.3		'3
	7.4		3 '4
	$7.4 \\ 7.5$		4 5
			_
	7.6		6
	7.7	shift-and	7
8	其他	7	8
	8.1	蔡勒公式 7	8
	8.2	斜率 DP	8
	8.3	最长子序列	8
	8.4	四边形不等式	9
	8.5		9
	8.6		80
	8.7	* ***	88
	8.8		39

数论

1.1 指数降幂公式

$$A^x \equiv A^{x \bmod \phi(p) + \phi(p)} \pmod{p} (x \ge \phi(p))$$

1.2 **威尔逊定理**

$$(p-1)! \equiv -1 \pmod{p}$$

1.3 费马小定理

$$a^p \equiv a \pmod{p}$$

1.4 欧拉定理

$$a^{\phi}(n) \equiv 1 \pmod{n}$$

1.5 质数表

```
const int N = 1000000 + 9;
bool p[N];
int a[N];
int main()

{
  int n;
  cin >> n;
  int cnt = 0;
  for (int i = 0; i <= n; i++) p[i] = true;
  for (int i = 2; i <= n; i++) {</pre>
```

```
if (p[i]) a[cnt++] = i;
for (int j = 0; j < cnt; j++) {
        if (i * a[j] > n) break;
        p[i * a[j]] = false;
        if (i % a[j] == 0) break;
}

cout << cnt << endl;
}</pre>
```

1.6 素数函数

```
#include <bits/stdc++.h>
   typedef long long 11;
   using namespace std;
   ll f[340000],g[340000], n;
   void init(){
       ll i, j, m;
       for(m = 1; m * m <= n; ++m)f[m]=n/m-1;
       for(i=1;i<=m;++i)g[i]=i-1;</pre>
       for(i=2;i<=m;++i){</pre>
            if(g[i]==g[i-1])continue;
10
            for(j=1;j<=min(m-1,n/i/i);++j){</pre>
11
                 if(i*j<m)f[j]-=f[i*j]-g[i-1];</pre>
                 else f[j]-=g[n/i/j]-g[i-1];
13
            }
            for(j=m;j>=i*i;--j)g[j]-=g[j/i]-g[i-1];
15
       }
16
   }
17
   int main()
18
   {
19
       while (cin >> n) {
20
          init();
21
          cout << f[1] << endl;</pre>
        }
23
   }
24
```

1.7 欧拉函数

1.7.1 **递推求**

```
1 // 傻逼写的
2 int phi[MAXN];
```

```
void init() {
       memset(phi, 0, sizeof(phi));
       phi[1] = 1;
       for(int i = 2; i < MAXN; i++) if(!phi[i])</pre>
           for(int j = i; j < MAXN; j += i) {</pre>
                if(!phi[j]) phi[j] = j;
                phi[j] = phi[j] / i * (i - 1);
           }
10
   }
11
   // 聪明人写的
   void init()
14
     for (int i = 2; i < maxb; i++)</pre>
15
       if (f[i] == 0)
16
         for (int j = i; j < maxb; j += i)</pre>
18
           if (f[j] == 0) f[j] = j;
           f[j] = (f[j] / i) * (i - 1);
20
         }
     for (int i = 1; i < maxb; i++)</pre>
22
       f[i] += f[i - 1];
  }
24
   1.7.2 单个求
   11 phi(11 n){
       11 \text{ ans} = n, a = n;
       for(11 i = 2; i * i <= a; i++){
           if(a % i == 0){
                ans = ans / i * (i - 1);
                while(a % i == 0) a /= i;
           }
       if(a > 1) ans = ans / a * (a - 1);
       return ans;
10
  }
11
   1.8 莫比乌斯函数
   int mu[MAXN], prm[MAXN], vis[MAXN];
   void getmu(int n) {
       int sz = 0;
       mu[1] = 1;
```

1.9 逆元

1.9.1 递推求

1.9.2 单个求

用费马小定理

概率论

2.1 超几何分布

超几何分布是统计学上一种离散概率分布。它描述了由有限个物件中抽出 n 个物件,成功抽出指定种类的物件的个数(不归还)例如在有 N 个样本,其中 m 个是不及格的。超几何分布描述了在该 N 个样本中抽出 n 个,其中 k 个是不及格的概率:

$$f(k;n,m,N) = \frac{\binom{m}{k} \binom{N-m}{n-k}}{\binom{N}{n}}$$

数学

3.1 **矩阵**

3.1.1 **矩阵类**

```
#include <bits/stdc++.h>
   using namespace std;
   const int N = 1000, MOD = 1E9 + 7;
   struct Mat
       int a[N][N];
6
       int n, m;
       Mat(int n, int m) : n(n), m(m) {memset(a, 0, sizeof(a
           ));}
       void eye()
9
            memset(a, 0, sizeof(a));
11
            for (int i = 0; i < n; i++) a[i][i] = 1;</pre>
12
13
       void print()
            for (int i = 0; i < n; i++) {</pre>
16
                cout << endl;</pre>
17
                for (int j = 0; j < m; j++)</pre>
                     cout << 'u' << a[i][j];
            }
20
       }
21
22
   };
   Mat mul(Mat A, Mat B)
   {
24
       Mat t(A.n, B.m);
```

```
for (int i = 0; i < A.n; i++)</pre>
26
            for (int j = 0; j < B.m; j++)
27
                 for (int k = 0; k < A.m; k++)
28
                     t.a[i][j] = (t.a[i][j] + A.a[i][k] * B.a[
                         k][j] % MOD) % MOD;
       return t;
30
   }
31
   Mat pow(Mat A, int n)
32
33
       Mat t(A.n, A.m);
34
       t.eye();
35
       while (n > 0) {
36
            if (n % 2) t = mul(t, A);
37
            A = mul(A, A);
38
            n /= 2;
39
40
       return t;
41
   }
42
   int det(Mat A)
43
44
     int cnt = 0, ans = 1, n = A.n;
     for(int i = 0; i < n; i++) {</pre>
46
       for(int j = i+1; j < n; j++) {</pre>
47
          int x = i, y = j;
48
          while(A.a[y][i]) {
49
            int t = A.a[x][i] / A.a[y][i];
50
            for(int k = 0; k < n; k++) {
51
              A.a[x][k] = A.a[x][k] - A.a[y][k]*t;
52
            }
53
            swap(x, y);
55
          if(x != i) {
56
            for(int k = 0; k < n; k++) {
57
              swap(A.a[x][k], A.a[y][k]);
            }
59
            cnt ^= 1;
          }
61
       if(A.a[i][i] == 0) return 0;
63
       else ans *= A.a[i][i];
65
     if(cnt) ans *= -1;
       return ans;
67
   }
68
```

3.1.2 高斯消元

```
double a[MAXN][MAXN];
   double ans[MAXN];
   bool f[MAXN];//自由变量
   int sgn(double x) {return (x > eps) - (x < -eps);}</pre>
   //x 0~equ - 1, y 0~var
   int gauss(int equ, int var) {
       int k = 0, col = 0;
       memset(f, true, sizeof(f));
       for(k = 0; k < equ && col < var; k++, col++) {
q
            int r = k;
10
            for(int i = k + 1; i < equ; i++)</pre>
11
                if(fabs(a[i][col]) > fabs(a[r][col])) r = i;
12
            if(r != k) for(int j = k; j <= var; j++) swap(a[r
               ][j], a[k][j]);
            if(a[k][col] == 0) {k--; continue;}
14
            for(int i = k + 1; i < equ; i++) if(a[i][col]) {</pre>
15
                for(int j = var; j >= col; j--) a[i][j] -= a[
16
                    i][col] / a[k][col] * a[k][j];
            }
17
18
       for(int i = k; i < equ; i++) if(sgn(a[i][col]) != 0)</pre>
19
           return 0;
       if(k < var) {
20
            for(int i = k - 1; i >= 0; i--) {
21
                int cnt = 0, p;
22
                for(int j = 0; j < var; j++)</pre>
23
                    if(sgn(a[i][j]) && f[j])
24
                         cnt++, p = j;
                if(cnt > 1) continue;
26
                double t = a[i][var];
27
                for(int j = 0; j < var; j++)</pre>
                    if(sgn(a[i][j]) && j != p)
                         t -= a[i][j] * ans[j];
30
                ans[p] = t / a[i][p];
31
                f[p] = 0;
32
           }
33
34
       for(int i = var - 1; i >= 0; i--) {
35
            double t = a[i][var];
            for(int j = i + 1; j < var; j++)</pre>
37
                if(sgn(a[i][j]))
38
                    t -= a[i][j] * ans[j];
39
            ans[i] = t / a[i][i];
40
       }
41
```

```
return 1;
43 }
```

3.2 整除与剩余

3.2.1 扩展欧几里得逆元

```
扩展欧几里得
  //ax + by = d, d = gcd(a, b)
  void gcd(ll a , ll b ,ll &d, ll &x,ll &y){
      if(!b) {d = a; x = 1; y = 0; return;}
      else{
          gcd(b, a % b, d, y, x);
          y -= x * (a / b);
          return;
      }
9
  }
10
11
12
  //a在模n下的逆元, a和n互素才有逆元
  ll inv(ll a, ll n) {
      11 d, x, y;
      gcd(a, n, d, x, y);
16
      return d == 1 ? (x + n) % n : -1;
17
18
  3.2.2 中国剩余定理
1 // n个方程 x ≡ a[i](mod m[i]) i = 0..n-1
  ll china(int n, ll *a, ll *m)
  {
3
      11 M = m[0], R = a[0];
4
      for (int i = 1; i < n; i++) {</pre>
5
          11 d = __gcd(M, m[i]);
          11 c = a[i] - R;
          if (c % d) return -1;
          ll k1, k2;
```

extgcd(M,m[i],d,k1, k2); k1 = (c /d * k1) % (m[i]/d);

R = R + k1 * M;M = M / d * m[i];

R % = M;

if (R < 0) R += M;

11

13

15

```
return R;
17
18 }
        数值计算
   3.3
        其他
   3.4
   3.4.1 lucas 定理
  11 qPow (ll a, ll k) {
       ll ans = 1;
       while (k) {
3
           if (k&1)
               ans = (ans * a) % p;
           a = (a * a) % p;
           k /= 2;
       return ans;
9
10
  }
11
   11 C (11 a, 11 b, 11 p) {
12
       if (a < b)
13
           return 0;
14
       if (b > a - b)
           b = a - b;
16
17
       ll up = 1, down = 1;
18
       for (ll i = 0; i < b; i++) {</pre>
           up = up * (a-i) % p;
20
           down = down * (i+1) % p;
21
22
       return up * qPow(down, p-2) % p; // 逆元
23
24
   11 lucas (ll a, ll b, ll p) {
25
       if (b == 0)
26
           return 1;
27
       return C(a%p, b%p, p) * lucas(a/p, b/p, p) % p;
28
  }
   3.4.2 递推求组合数
void calc()
2 {
```

```
for (int i = 0; i < N; i++) {
3
           c[i][0] = c[i][i] = 1;
           for (int j = 1; j < i; j++) {
               c[i][j] = c[i-1][j] + c[i-1][j-1];
           }
       }
  }
  3.4.3 单个求组合数
1 11 C(11 n, 11 m)
2
           11 c = 1;
3
           for (int i = 1; i <= m; i++) {
                   c *= (n - m + i);
                   if (c % i == 0) c /= i;
           return c;
  }
  3.4.4 威佐夫博弈
double gold = (1 + sqrt(5)) / 2;
  if (m == floor(((n - m) * gold))) cout << 'G' << endl;</pre>
      else cout << 'B' << endl;</pre>
  3.4.5 FWT
  //位运算多项式卷积
  void FWT(int *a, int n) {
       for(int d = 1; d < n; d <<=1)</pre>
           for(int m = d<<1, i = 0; i < n; i += m)</pre>
4
               for(int j = 0; j < d; j++) {
                   int x = a[i + j], y = a[i + j + d];
                   a[i + j] = (x + y) \% MOD, a[i + j + d] =
                       (x - y + MOD) \% MOD;
                   //xor:a[i+j]=x+y,a[i+j+d]=(x-y+mod)%mod;
                   //and:a[i+j]=x+y;
9
                   //or:a[i+j+d]=x+y;
10
               }
11
12
  void UFWT(int *a, int n) {
       for(int d = 1; d < n; d <<= 1)</pre>
```

```
for(int m = d<<1, i = 0; i < n; i += m)</pre>
15
                for(int j = 0; j < d; j++) {</pre>
16
                    int x = a[i + j], y = a[i + j + d];
17
                    a[i + j] = (11)(x + y) * inv2 % MOD, a[i
18
                        + j + d] = ((11)(x - y) * inv2 % MOD +
                         MOD) % MOD;
                    //xor:a[i+j]=(x+y)/2,a[i+j+d]=(x-y)/2;
19
                    //and:a[i+j]=x-y;
20
                    //or:a[i+j+d]=y-x;
21
                }
   }
23
   void conv(int *a, int *b, int n) {
24
       FWT(a, n);
25
       FWT(b, n);
26
       for(int i = 0; i < n; i++) a[i] = (ll)a[i] * b[i] %</pre>
27
       UFWT(a, n);
28
  }
29
   3.4.6 FFT
   const double pi = atan(1.0) * 4;
2
   struct complex {
3
            double a, b;
            complex(double aa = 0.0, double bb = 0.0) { a =
5
               aa; b = bb; }
            complex operator +(const complex &e) { return
6
               complex(a + e.a, b + e.b); }
            complex operator -(const complex &e) { return
               complex(a - e.a, b - e.b); }
            complex operator *(const complex &e) { return
               complex(a * e.a - b * e.b, a * e.b + b * e.a);
                }
   };
9
10
   void change(complex * y, long long len) {
11
            long long i, j, k;
^{12}
            for (i = 1, j = len / 2; i < len - 1; i++) {</pre>
13
                    if (i < j) swap(y[i], y[j]);</pre>
                    k = len / 2;
15
                    while (j >= k) {
16
                             j -= k;
17
                             k /= 2;
                    }
19
```

```
if (j < k) j += k;
20
            }
21
   }
22
23
   void fft(complex *y, long long len, long long on) {
24
            change(y, len);
25
            for (int h = 2; h <= len; h <<= 1) {</pre>
26
                     complex wn(cos(-on * 2 * pi / h), sin(-on
27
                          * 2 * pi / h));
                     for (int j = 0; j < len; j += h) {</pre>
28
                              complex w(1, 0);
29
                              for (int k = j; k < j + h / 2; k
30
                                  ++) {
                                       complex u = y[k];
31
                                       complex t = w * y[k + h /
32
                                            2];
                                       y[k] = u + t;
33
                                       y[k + h / 2] = u - t;
34
                                       w = w * wn;
                              }
36
                     }
38
            if (on == -1)
39
                     for (int i = 0; i < len; i++)</pre>
40
                              y[i].a /= len;
41
   }
42
   3.4.7 hell 方程
```

 $x^2 - ny^2 = 1 \ x[i+1] = x[1] * x[i] + n * y[1] * y[i]; \ y[i+1] = x[1] * y[i] + y[1] * x[i]$

图论

4.1 最大团

```
最大团搜索算法
Si = \{vi, vi+1, ..., vn\}
4 mc[i] = MC(Si) = 点集合 Si 的最大团
  MC(V) = mc[1]
  mc[i] = mc[i+1] | mc[i] = mc[i+1] + 1 因为最多增加一个点
  后一种情况发生是在 Si 中找到一个包含vi的团
  所以只要搜 是否在 Si 中有一个包含vi且比当前最大团还大的团
#include <bits/stdc++.h>
  #define rep(i, 1, r) for (int (i) = (1); (i) \leftarrow (r); (i)
  #define log(x) cout << \#x << "_{\sqcup}=_{\sqcup}" << x << endl
#define mem(x, y) memset((x), (y), sizeof(x))
using namespace std;
  int n, ans;
  bool found;
  const int N = 50 + 9;
  int g[N][N];
  int len[N], mc[N], li[N][N];
  void dfs(int sz)
21
      if (len[sz] == 0) {
22
          if (sz > ans) {
23
              ans = sz;
24
              found = true;
          }
      }
```

```
for (int k = 0; k < len[sz] && !found; k++) {
28
            if (sz + len[sz] - k <= ans) break;</pre>
            int i = li[sz][k];
30
            if (sz + mc[i] <= ans) break;</pre>
31
            len[sz+1] = 0;
32
            for (int j = k + 1; j < len[sz]; j++) {</pre>
33
                 if (g[i][li[sz][j]])
                     li[sz+1][len[sz+1]++] = li[sz][j];
35
36
            dfs(sz+1);
       }
38
39
   int max_cluster()
40
41
       mc[n] = ans = 1;
42
       for (int i = n - 1; i; i--) {
43
            found = false;
44
            len[1] = 0;
45
            rep(j, i+1, n) {
                 if (g[i][j]) li[1][len[1]++] = j;
47
            dfs(1);
49
            mc[i] = ans;
50
51
       return ans;
52
   }
53
   int solve()
54
55
        rep(i, 1, n) rep(j, 1, n) scanf("%d", &g[i][j]);
56
       return max_cluster();
57
   }
58
   int main()
59
   {
60
       for (;;) {
61
            scanf("%d", &n);
62
            if (n == 0) break;
            printf("%d\n", solve());
64
        }
   }
66
```

4.2 图的遍历和连通性

4.2.1 割点和桥

int pre[MAXN], iscut[MAXN], dfs_clock = 0;

```
int dfs(int u, int fa) {
  int lowu = pre[u] = ++dfs_clock;
  int child = 0;
  for(int i = 0; i < g[u].size(); i++) {</pre>
  int v = g[u][i];
     if(!pre[v]) {
   child++;
           int lowv = dfs(v, u);
         lowu = min(lowu, lowv);
10
         if(lowv >= pre[u]) iscut[u] = true;
  //if lowv > pre[u] (u, v) is bridge
12
13
14
           else if(pre[v] < pre[u] && v != fa) lowu = min(</pre>
15
               lowu, pre[v]);
16
  if(fa < 0 && child == 1) iscut[u] = false;</pre>
       return lowu;
18
  }
19
  4.2.2 双连通分量
   int dfs(int u, int fa) {
       int lowu = pre[u] = ++dfs_clock;
       int child = 0;
       for(int i = 0; i < g[u].size(); i++) {</pre>
           int v = g[u][i];
           if(!pre[v]) {
               s.push(node(u, v));
               child++;
               int lowv = dfs(v, u);
               lowu = min(lowu, lowv);
10
               if(lowv >= pre[u]) {
11
                   iscut[u] = true;
12
                    bcc[++bcc_cnt].clear();
13
                   for(;;) {
                        node temp = s.top(); s.pop();
15
                            //注意割顶可能包含在多个bcc中,
16
                               bccno不是唯一的标准
                        if(bccno[temp.u] != bcc cnt)
17
                   {bcc[bcc_cnt].push_back(temp.u); bccno[
                       temp.u] = bcc_cnt;}
                        if(bccno[temp.v] != bcc_cnt)
                    {bcc[bcc_cnt].push_back(temp.v); bccno[
20
                       temp.v] = bcc_cnt;}
```

```
if(temp.u == u && temp.v == v) break;
21
                    }
22
                }
23
           }
           else if(pre[v] < pre[u] && v != fa) {
25
                s.push(node(u, v));
                lowu = min(lowu, pre[v]);
27
           }
28
29
       if(fa < 0 && child == 1) iscut[u] = false;</pre>
       return lowu;
31
32
   void find_bcc(int n) {
33
       memset(pre, 0, sizeof(pre));
34
       memset(iscut, false, sizeof(iscut));
35
       memset(bccno, 0, sizeof(bccno));
36
       dfs_clock = bcc_cnt = 0;
37
       for(int i = 1; i <= n; i++) {</pre>
38
           if(!pre[i]) dfs(i, -1);
       }
40
   }
41
         强连通分量
   4.2.3
   int dfs(int u) {
       pre[u] = low[u] = ++dfs_clock;
2
       s.push(u);
       for(int i = 0; i < g[u].size(); i++) {</pre>
           int v = g[u][i];
           if(!pre[v]) {
                dfs(v);
                low[u] = min(low[u], low[v]);
           }
           else if(!sccno[v]) {
10
                low[u] = min(low[u], pre[v]);
11
           }
12
   }
13
   //如果Low[u] == pre[u], 那么它就是这个scc的第一个点
14
       if(low[u] == pre[u]) {
15
            scc_cnt++;
16
           for(;;) {
                int temp = s.top(); s.pop();
18
                sccno[temp] = scc_cnt;
                if(temp == u) break;
20
           }
21
```

```
}
22
  }
  void find_scc(int n) {
24
       memset(pre, 0, sizeof(pre));
       memset(low, 0, sizeof(low));
26
       memset(sccno, 0, sizeof(sccno));
27
       dfs_clock = scc_cnt = 0;
28
       for(int i = 1; i <= n; i++) {</pre>
29
           if(!pre[i]) dfs(i);
30
       }
  }
32
  4.2.4 拓扑排序
  BFS
  判断是否成环
  拓扑排序形成的 ans 的 sz != n 则成环
  4.2.5 2SAT
  //2-sat中不能走的决策往另一个决策连一条边
  int dfs(int u) {
       if(vis[u^1]) return false;
       if(vis[u]) return true;
       s[cnt++] = u;
       vis[u] = 1;
       for(int i = 0; i < g[u].size(); i++) if(!dfs(g[u][i])</pre>
          ) return false;
       return true;
  }
  bool flag = true;
  //一定记得+=2
   for(int i = 2; i <= 2 * n; i+= 2) {
12
       if(!vis[i] && !vis[i + 1]) {
13
           cnt = 0;
14
           if(!dfs(i)) {
15
               while(cnt) vis[s[--cnt]] = 0;
16
               if(!dfs(i + 1)) {flag = false; break;}
17
           }
18
       }
19
  }
```

20

4.3 路径

4.3.1 **非递归欧拉回路**

```
void euler(int u) {
       stack<int> st;
2
       st.push(u);
3
       nxt[st.size()] = -1;
       while(!st.empty()) {
           int a = st.top();
           int i;
           for(i = last[a]; i < 26; i++) if(!vis[a][i]) {</pre>
                vis[a][i] = 1;
                st.push(g[a][i]);
10
                nxt[st.size()] = i;
11
                last[a] = i + 1;
12
                break;
14
           if(i == 26) {
                if(nxt[st.size()] != -1) ans.push_back((char)
16
                    (nxt[st.size()] + 'a'));
                st.pop();
17
           }
18
       }
19
  }
20
```

4.4 匹配

4.4.1 二分图最大匹配

bool used[MAXN];

```
最小点覆盖的点数 = 二分图最大匹配
最大独立集的点数 = 总点数 - 二分图最大匹配
int uN,vN;
vector<int> g[MAXN];
int linker[MAXN];
```

```
bool dfs(int u) {
    for(int i = 0; i < g[u].size(); i++) {
        int v = g[u][i];
        if(!used[v]) {
            used[v]=true;
        if(linker[v] == -1 || dfs(linker[v])) {
            linker[v]=u;
            return true;
    }
}</pre>
```

```
}
13
           }
14
       }
15
       return false;
16
17
   int hungary() {
18
       int res=0;
19
       memset(linker, -1, sizeof(linker));
20
       for(int u=0; u < uN; u++)</pre>
21
           memset(used, 0, sizeof(used));
23
           if(dfs(u)) res++;
24
25
26
       return res;
  }
27
   4.4.2 二分图最优匹配
  struct KM // 二分图最优匹配
2
       int n; //总点数
       vector<int> g[N];
       int g2[N][N];
       void init(int nn)
       {
           n = nn;
           mem(g, 0), mem(g2, 0);
10
       void add_edge(int u, int v, int w)
11
12
           g[u].push_back(v);
13
           g2[u][v] = w;
14
15
       int lx[N], ly[N], match[N], lcheck[N], rcheck[N];
16
       const int INF = INT_MAX;
17
       bool dfs(int u)
18
       {
19
           lcheck[u] = true;
           for (int v : g[u]) {
21
                if (1x[u] + 1y[v] == g2[u][v] && !rcheck[v])
22
                    rcheck[v] = true;
                    if (match[v] == -1 || dfs(match[v])) {
24
                        match[v] = u;
                        return true;
```

26

```
}
27
                 }
28
            }
29
            return false;
       }
31
       void update()
32
33
            int a = INF;
34
            rep(u, 1, n) {
35
                 if (lcheck[u]) {
                     for (int v : g[u]) {
37
                          if (!rcheck[v]) {
38
                              a = min(a, lx[u] + ly[v] - g2[u][
39
                                  v]);
40
                     }
41
                 }
42
            }
43
            rep(i, 1, n) {
                 if (lcheck[i]) lx[i] -= a;
45
                 if (rcheck[i]) ly[i] += a;
            }
47
48
       int calc()
49
50
            rep(i, 1, n) {
51
                 lx[i] = *max_element(g2[i]+1, g2[i]+n+1);
52
                 ly[i] = 0;
53
                 match[i] = -1;
54
            rep(i, 1, n) {
56
                 for (;;) {
57
                     mem(lcheck, 0);
58
                     mem(rcheck, 0);
                     if (dfs(i)) break; else update();
60
                 }
61
62
            int ans = 0;
            rep(i, 1, n) if (\sim match[i]) ans += lx[match[i]] +
64
                 ly[i];
            return ans;
65
       }
   };
67
   int solve(int n, KM &solver)
   {
69
        solver.init(n);
70
```

```
rep(i, 1, n) rep(j, 1, n) {
71
           int x;
72
           scanf("%d", &x);
73
           solver.add_edge(i, j, x);
75
       return solver.calc();
76
   }
77
   int main()
78
79
       KM solver;
80
       int n;
81
       while (~scanf("%d", &n)) printf("%d\n", solve(n,
82
           solver));
83 }
   4.5
        树
   4.5.1 prim
  int cnt = 1, ans = 0;
  priority_queue<edge> pq;
  for(int i = 0; i < g[1].size(); i++) pq.push(g[1][i]);</pre>
   while(!pq.empty()) {
       edge t = pq.top(); pq.pop();
       int v = t.v;
6
       if(p[v] != 1) {
           cnt++; ans += t.w;
           p[v] = 1;
   for(int i = 0; i < g[v].size(); i++) if(p[g[v][i].v] !=</pre>
10
      1) pq.push(g[v][i]);
11
       if(cnt == n) break;
12
  }
13
   4.5.2 曼哈顿最小距离生成树
   struct Edge {
       int u, v, w;
       bool operator < (const Edge& rhs) const {</pre>
           return w < rhs.w;</pre>
       }
  }edges[8 * MAXN];
   struct node {
       int x, y, id;
```

```
bool operator < (const node& rhs) const {</pre>
9
            return x == rhs.x ? y > rhs.y : x > rhs.x;
       }
11
   }nd[MAXN];
   int ecnt, n, k, sz;
   int sq[MAXN];
   int minv[MAXN], pos[MAXN];
   int p[MAXN];
   int lowbit(int x) {return x & -x;}
   void update(int x, int val, int id) {
       while(x) {
19
            if(val < minv[x]) {</pre>
20
                minv[x] = val; pos[x] = id;
21
            }
22
            x -= lowbit(x);
       }
24
   }
25
   int query(int x) {
26
       int ans = 1 << 30, ret = 0;</pre>
27
       while(x <= sz) {</pre>
28
            if(minv[x] < ans) {</pre>
                ans = minv[x]; ret = pos[x];
30
31
            x += lowbit(x);
32
33
       //cout << ans << endl;
34
       return ret;
35
36
   int fp(int x) {return p[x] == x ? x : p[x] = fp(p[x]);}
37
   void addEdge(int u, int v, int w) {
       edges[ecnt++] = (Edge) {u, v, w};
39
   }
40
   void solve() {
41
       for(int dir = 0; dir < 4; dir++) {</pre>
42
            if(dir == 1 || dir == 3)
43
                for(int i = 1; i <= n; i++) swap(nd[i].x, nd[</pre>
44
                    i].y);
            else if(dir == 2)
                for(int i = 1; i <= n; i++) nd[i].x = -nd[i].</pre>
46
                    х;
            sort(nd + 1, nd + n + 1);
47
            for(int i = 1; i <= n; i++) sq[i] = nd[i].y - nd[</pre>
                i].x;
            sort(sq + 1, sq + n + 1);
49
            sz = unique(sq + 1, sq + n + 1) - (sq + 1);
50
```

```
for(int i = 1; i <= sz; i++) {minv[i] = (1 << 30)</pre>
51
                ; pos[i] = 0;}
            for(int i = 1; i <= n; i++) {</pre>
52
                int p = lower_bound(sq + 1, sq + sz + 1, nd[i
53
                    ].y - nd[i].x) - sq;
                int v = query(p);
54
                //cout << p << ' ' << v << endl;
55
                if(v) addEdge(nd[i].id, nd[v].id, abs(nd[i].x
56
                     - nd[v].x) + abs(nd[i].y - nd[v].y));
                update(p, nd[i].x + nd[i].y, i);
            }
58
       }
59
       sort(edges, edges + ecnt);
60
       int cnt = 0;
61
       for(int i = 1; i <= n; i++) p[i] = i;</pre>
       for(int i = 0; i < ecnt; i++) {</pre>
63
            Edge e = edges[i];
64
            int x = fp(e.u), y = fp(e.v);
65
            if(x != y) {
                p[x] = y;
67
                if(++cnt == n - k) {cout << e.w << endl;
                    break;}
                //cout << cnt << endl;</pre>
69
            }
70
       }
71
  }
72
```

4.6 网络流

4.6.1 **最大流** Dinic

```
int bfs(int s, int t) {
       memset(vis, false, sizeof(vis));
       queue<int> q;
       q.push(s);
       vis[s] = true; d[s] = 0;
       while(!q.empty()) {
           int u = q.front(); q.pop();
           for(int i = 0; i < g[u].size(); i++) {</pre>
               Edge e = edges[g[u][i]];
               if(vis[e.v]) continue;//不能再走访问过的点
10
               if(e.cap > e.flow) {
11
                   d[e.v] = d[u] + 1;
12
                   vis[e.v] = true;
13
```

```
q.push(e.v);
14
                }
15
            }
16
       }
17
       return vis[t];
18
   }
19
   int dfs(int u, int a, int t) {
20
       if(a == 0 || u == t) return a;
21
       int flow = 0, f;
22
       for(int &i = cur[u]; i < g[u].size(); i++) {</pre>
            Edge &e = edges[g[u][i]];
24
            if(d[e.v] == d[u] + 1 && (f = dfs(e.v, min(a, e.
25
               cap - e.flow), t)) > 0) {//如果从v走还可以增广
                e.flow += f;
26
                edges[g[u][i]^1].flow -= f;
                flow += f;
28
                a -= f;
29
                if(a == 0) break;
30
            }
       }
32
       return flow;
33
   }
34
   int dinic(int s, int t) {
35
       int flow = 0;
36
       while(bfs(s, t)) {
37
            memset(cur, 0, sizeof(cur));
38
            flow += dfs(s, INF, t);
39
40
       return flow;
41
   }
42
   4.6.2 最大流 ISAP
   struct ISAP {
       struct Edge {
2
         int from, to, cap, flow;
          bool operator < (const Edge& b) {</pre>
            return from < b.from || (from == b.from && to < b</pre>
               .to);
         }
       };
7
9
          int n, m, s, t;
          vector<Edge> edges;
11
```

```
// 邻接表, g[i][j]表示结点i
         vector<int> g[MAXN];
12
            的第i条边在e数组中的序号
                                 // BFS使用
         bool vis[MAXN];
13
                                 // 从起点到i的距离
         int d[MAXN];
14
                                // 当前弧指针
         int cur[MAXN];
                                // 可增广路上的上一条弧
         int p[MAXN];
16
                                // 距离标号计数
         int num[MAXN];
18
         void add_edge(int from, int to, int cap) {
           edges.push_back((Edge){from, to, cap, 0});
20
           edges.push_back((Edge){to, from, 0, 0});
21
           m = edges.size();
22
           g[from].push back(m-2);
23
           g[to].push_back(m-1);
26
         bool BFS() {
27
           memset(vis, 0, sizeof(vis));
           queue<int> Q;
29
           Q.push(t);
30
           vis[t] = 1;
31
           d[t] = 0;
           while(!Q.empty()) {
33
             int x = Q.front(); Q.pop();
             for(int i = 0; i < g[x].size(); i++) {</pre>
35
               Edge& e = edges[g[x][i]^1];
               if(!vis[e.from] && e.cap > e.flow) {
37
                 vis[e.from] = 1;
38
                 d[e.from] = d[x] + 1;
39
                 Q.push(e.from);
40
41
             }
           }
43
           return vis[s];
44
45
46
         void init(int nn) {
           n = nn;
48
             mem(g, 0);
           edges.clear();
50
         }
52
         void ClearFlow() {
           for(int i = 0; i < edges.size(); i++) edges[i].</pre>
54
              flow = 0;
```

```
}
55
          int Augment() {
57
            int x = t, a = inf;
            while(x != s) {
59
              Edge& e = edges[p[x]];
60
              a = min(a, e.cap-e.flow);
              x = edges[p[x]].from;
62
63
            x = t;
            while(x != s) {
              edges[p[x]].flow += a;
66
              edges[p[x]^1].flow -= a;
67
              x = edges[p[x]].from;
68
            }
            return a;
70
          }
71
72
          int max_flow(int s, int t, int need) {
            this -> s = s; this -> t = t;
74
            int flow = 0;
            BFS();
76
            memset(num, 0, sizeof(num));
            for(int i = 0; i < n; i++) num[d[i]]++;</pre>
78
            int x = s;
            memset(cur, 0, sizeof(cur));
80
            while(d[s] < n) {
              if(x == t) {
82
                flow += Augment();
83
                if(flow >= need) return flow;
                x = s;
85
              int ok = 0;
              for(int i = cur[x]; i < g[x].size(); i++) {</pre>
                Edge& e = edges[g[x][i]];
89
                if(e.cap > e.flow && d[x] == d[e.to] + 1) {
                    // Advance
                  ok = 1;
                  p[e.to] = g[x][i];
92
                  cur[x] = i; // 注意
93
                  x = e.to;
                  break;
95
                }
97
              if(!ok) { // Retreat
```

```
int m = n-1; // 初值注意
99
                 for(int i = 0; i < g[x].size(); i++) {</pre>
100
                    Edge& e = edges[g[x][i]];
101
                    if(e.cap > e.flow) m = min(m, d[e.to]);
102
103
                 if(--num[d[x]] == 0) break;
104
                 num[d[x] = m+1]++;
105
                 cur[x] = 0; // 注意
106
                 if(x != s) x = edges[p[x]].from;
107
               }
108
             }
109
             return flow;
110
          }
111
112
          vector<int> Mincut() { // call this after maxflow
             BFS();
114
             vector<int> ans;
115
             for(int i = 0; i < edges.size(); i++) {</pre>
116
               Edge& e = edges[i];
117
               if(!vis[e.from] && vis[e.to] && e.cap > 0) ans.
118
                   push_back(i);
             }
             return ans;
120
          }
121
122
          void Reduce() {
             for(int i = 0; i < edges.size(); i++) edges[i].</pre>
124
                 cap -= edges[i].flow;
          }
125
126
          void print() {
127
             printf("Graph:\n");
             for(int i = 0; i < edges.size(); i++)</pre>
129
               printf("%d->%d,_{\square}%d,_{\square}%d\n", edges[i].from, edges
130
                   [i].to , edges[i].cap, edges[i].flow);
          }
131
        };
132
```

4.6.3 费用流

4.6.4 无源无汇有容量下界网络的可行流

#include <bits/stdc++.h>

```
#define log(x) cout << \#x << "_{\sqcup}=_{\sqcup}" << (x) << endl
   #define mem(x, y) memset((x), (y), sizeof((x)))
   #define rep(i, 1, r) for (int (i) = (1); (i) \leftarrow (r); (i)
      ++)
   using namespace std;
5
   typedef long long 11;
   /*---金牌---*/
   const int N = 200 + 9;
   const int INF = 0x3f3f3f3f;
   const int MAXN = 10*N;
   int low[MAXN*10];
   int n, m;
   struct Dinic
14
       struct Edge
15
16
         int from, to, cap, flow;
17
       };
18
       vector<Edge> edges;
       vector<int> g[MAXN];
20
       void init() {
           mem(g, 0);
22
           edges.clear();
23
24
       void add edge(int from, int to, int cap) {
         edges.push_back((Edge){from, to, cap, 0});
         edges.push_back((Edge){to, from, 0, 0});
         int m = edges.size();
28
         g[from].push_back(m - 2);
         g[to].push_back(m - 1);
30
31
       int s, t;
32
       bool vis[MAXN];
33
       int d[MAXN], cur[MAXN];
       bool BFS()
35
         memset(vis, 0, sizeof(vis));
37
         queue<int> q;
         q.push(s);
39
         d[s] = 0;
         vis[s] = true;
         while (!q.empty()) {
           int x = q.front(); q.pop();
43
           for (int i = 0; i < g[x].size(); i++) {
              Edge& e = edges[g[x][i]];
45
              if (!vis[e.to] && e.cap > e.flow) {
46
```

```
vis[e.to] = true;
47
                 d[e.to] = d[x] + 1;
48
                 q.push(e.to);
49
              }
            }
51
          }
52
          return vis[t];
53
54
       int DFS(int x, int a)
55
          if (x == t || a == 0) return a;
57
          int flow = 0;
58
          int f;
59
          for (int& i = cur[x]; i < g[x].size(); i++) {</pre>
60
            Edge& e = edges[g[x][i]];
            if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, f)))
62
                e.cap - e.flow))) > 0) {
              e.flow += f;
63
              edges[g[x][i]^1].flow -= f;
              flow += f;
65
              a -= f;
              if (a == 0) break;
67
68
69
          return flow;
70
        }
71
       int max_flow(int ss, int tt)
73
            s = ss, t = tt;
74
          int flow = 0;
75
          while (BFS()) {
76
            memset(cur, 0, sizeof(cur));
77
            flow += DFS(s, INF);
78
          }
79
          return flow;
80
81
       void solve(int source, int sink)
82
            max_flow(source, sink);
84
            int sz = g[source].size() - 1;
            bool flag = true;
86
            rep(i, 0, sz) {
                 if (edges[g[source][i]].flow < edges[g[source</pre>
88
                     ][i]].cap) {
                     puts("NO");
89
                     flag = false;
90
```

```
}
91
92
             if (flag) {
93
                 puts("YES");
                 rep(i, 1, m) {
95
                    //log(low[i]);
                      printf("%d\n", edges[i*2+1].cap-edges[i
                          *2+1].flow + low[i]);
                 }
98
            }
        }
100
    };
101
   void solve(Dinic &solver)
102
103
        solver.init();
104
        scanf("%d", &m);
105
        int source = n + 1, sink = n + 2;
106
        // sink -> source cap : inf
107
        solver.add_edge(sink, source, INF);
        int in[N];
109
        mem(in, 0);
110
        mem(low, 0);
111
        rep(i, 1, m) {
112
            int u, v, b, c;
113
             scanf("%d%d%d%d", &u, &v, &b, &c);
114
            low[i] = b; // 流量下界
115
            in[u] -= b;
116
            in[v] += b;
117
            solver.add_edge(u, v, c - b);
118
119
        rep(i, 1, n) {
120
             if (in[i] < 0) {</pre>
121
                 solver.add_edge(i, sink, -in[i]);
122
             } else if (in[i] > 0) {
123
                 solver.add_edge(source, i, in[i]);
124
            }
125
126
        solver.solve(source, sink);
127
128
   int main()
129
130
        Dinic solver;
131
        while (~scanf("%d", &n)) solve(solver);
132
   }
133
```

4.7 其他

4.7.1 层次遍历

每次记录队列当前的 sz 然后在一次循环中只出队 sz 次

4.7.2 **图解序列**

图解序列: 一系列非负整数可以构成一个简单图的度序列

Havel 定理: 对于 n>1, 长度为 n 的整数序列是图解序列当且仅当 d' 是图解序

列, d'是的删除 d 中最大元素 并将紧跟的 个元素减 1 后序列

Chapter 5

计算几何

5.1 判断凸包

```
#include <cstdio>
#include <iostream>
using namespace std;
  const int maxn = 1e8;
   struct P
     int x, y;
   };
  int ccw(P a, P b, P c)
  {
     return (b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y -
11
   }
12
  P a[maxn];
  int main()
     for (;;)
16
17
       int n;
18
       cin >> n;
       if (n == 0) break;
20
       for (int i = 0; i < n; i++)</pre>
         cin >> a[i].x >> a[i].y;
22
       bool flag = true;
       a[n++] = a[0];
       a[n++] = a[1];
       for (int i = 0; i < n - 3; i++)</pre>
```

5.2 判断线段是否相交

```
struct P
     double x, y;
  };
   struct Segment
   {
     P p, q;
  };
  double ccw(P a, P b, P c)
10
      return (b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y)
11
          - a.y);
^{12}
   bool intersects(Segment a, Segment b)
13
   {
14
      if (ccw(a.p, a.q, b.p) * ccw(a.p, a.q, b.q) > 0)
15
          return false;
      if (ccw(b.p, b.q, a.p) * ccw(b.p, b.q, a.q) > 0)
16
          return false;
      return true;
17
  }
```

5.3 求对称点求交点

```
using namespace std;
const double eps = 1e-10;
double add (double a, double b)

if (abs(a + b) < eps * (abs(a) + abs(b))) return 0;
return a + b;
}</pre>
```

```
struct P
   {
     double x, y;
10
     P(){}
     P(double x, double y):x(x),y(y){}
12
     P operator + (P p)
14
       return P(add(x, p.x), add(y, p.y));
15
16
     P operator - (P p)
18
       return P(add(x, -p.x), add(y, -p.y));
19
20
     P operator * (double d)
21
       return P(x * d, y * d);
23
24
   };
25
   double det(P p1, P p2)
27
     return add(p1.x * p2.y, -p1.y * p2.x);
   }
29
   bool g_equal(double a, double b)
31
     if (a > b - eps && a < b + eps) return true;</pre>
     return false;
33
34
   //求p关于p1,p2所成直线的对称点
35
     symmetric_point(P p, P p1, P p2)
37
     //直线与x轴垂直
38
           if (g_equal(p1.x, p2.x)) return P(2 * p1.x - p.x,
39
                p.y);
     double k = (p1.y - p2.y) / (p1.x - p2.x);
40
     if (g_equal(k, 0)) return P(p.x, 2 * p1.y - p.y);
41
     double x = (2*k*k*p1.x + 2*k*p.y - 2*k*p1.y - k*k*p.x +
42
         p.x) / (1 + k * k);
     double y = p.y - (x - p.x) / k;
     return P(x, y);
44
   }
    intersection(P p1, P p2, P q1, P q2)
46
     return p1 + (p2 - p1) * (det(q2 - q1, q1 - p1) / det(q2
48
         - q1, p2 - p1));
49 }
```

5.4 **终极模板**

```
#include <bits/stdc++.h>
  using namespace std;
  struct Point {
       double x, y;
       Point(double x = 0, double y = 0) : x(x), y(y) {}
6
  };
7
  typedef Point Vector;
10
  Vector operator + (Vector A, Vector B) { return Vector(A.
      x + B.x, A.y + B.y; }
  Vector operator - (Vector A, Vector B) { return Vector(A.
      x - B.x, A.y - B.y); }
  Vector operator * (Vector A, double p) { return Vector(A.
      x*p, A.x*p); }
  Vector operator / (Vector A, double p) { return Vector(A.
14
      x/p, A.x/p); }
15
  bool operator < (const Point& a, const Point b) {</pre>
16
       return a.x < b.x || (a.x == b.x && a.y < b.y);
17
18
19
  const double EPS = 1e-10;
20
21
  int dcmp(double x) {
       if(fabs(x) < EPS) return 0;</pre>
23
       else return x < 0 ? -1 : 1;
24
25
  bool operator == (const Point& a, const Point& b) {
27
       return dcmp(a.x-b.x) == 0 \&\& dcmp(a.y-b.y);
28
  }
29
30
  //向量a的极角
  double Angle(const Vector& v) {
32
       return atan2(v.y, v.x);\share\CodeBlocks\templates\
33
          wizard\console\cpp
  }
34
  //向量点积
  double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y
      ; }
```

```
38
  //向量长度\share\CodeBlocks\templates\wizard\console\cpp
  double Length(Vector A) { return sqrt(Dot(A, A)); }
41
  //向量夹角
  double Angle(Vector A, Vector B) { return acos(Dot(A, B)
     / Length(A) / Length(B)); }
44
  //向量叉积
45
  double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B
      .x; }
47
  //三角形有向面积的二倍
  double Area2(Point A, Point B, Point C) { return Cross(B-
49
     A, C-A); }
50
  //向量逆时针旋转rad度(弧度)
51
  Vector Rotate(Vector A, double rad) {
      return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)
53
         +A.y*cos(rad));
  }
54
  //计算向量A的单位法向量。左转90°,把长度归一。调用前确保A
      不是零向量。
  Vector Normal(Vector A) {
      double L = Length(A);
58
      return Vector(-A.y/L, A.x/L);
59
  }
60
61
62
  使用复数类实现点及向量的简单操作
64
  #include <complex>
  typedef complex<double> Point;
  typedef Point Vector;
67
  double Dot(Vector A, Vector B) { return real(conj(A)*B)}
  double Cross(Vector A, Vector B) { return imag(conj(A)*B)
      ;}
  Vector Rotate(Vector A, double rad) { return A*exp(Point
      (0, rad)); }
```

```
*/
74
   * 用直线上的一点p0和方向向量v表示一条指向。直线上的所有点
      P满足P = P0+t*v;
   * 如果知道直线上的两个点则方向向量为B-A, 所以参数方程为A
      +(B-A)*t;
   * 当t 无限制时,
                  该参数方程表示直线。
   * 当t > Ø时, 该参数方程表示射线。
   * 当 0 < t < 1时,
                    该参数方程表示线段。
      */
82
   //直线交点,须确保两直线有唯一交点。
   Point GetLineIntersection(Point P, Vector v, Point Q,
      Vector w) {
      Vector u = P - Q;
85
      double t = Cross(w, u)/Cross(v, w);
      return P+v*t;
87
   }
89
   //点到直线距离
   double DistanceToLine(Point P, Point A, Point B) {
91
      Vector v1 = B - A, v2 = P - A;
      return fabs(Cross(v1, v2) / Length(v1)); //不取绝对
93
         值,得到的是有向距离
   }
94
95
   //点到线段的距离
   double DistanceToSegmentS(Point P, Point A, Point B) {
97
      if(A == B) return Length(P-A);
      Vector v1 = B-A, v2 = P-A, v3 = P-B;
99
      if(dcmp(Dot(v1, v2)) < 0) return Length(v2);</pre>
100
      else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
101
      else return fabs(Cross(v1, v2)) / Length(v1);
103
104
   //点在直线上的投影
105
   Point GetLineProjection(Point P, Point A, Point B) {
      Vector v = B - A;
107
      return A+v*(Dot(v, P-A)/Dot(v, v));
108
   }
109
```

110

```
//线段相交判定,交点不在一条线段的端点
   bool SegmentProperIntersection(Point a1, Point a2, Point
      b1, Point b2) {
       double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2)
113
       double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2)
114
          -b1);
       return dcmp(c1)*dcmp(c2) < 0 \&\& dcmp(c3)*dcmp(c4) <
115
          0;
   }
116
117
   //判断点是否在点段上,不包含端点
118
   bool OnSegment(Point P, Point a1, Point a2) {
119
       return dcmp(Cross(a1-P, a2-P) == 0 && dcmp((Dot(a1-P,
120
           a2-P)) < 0));
121
122
   //计算凸多边形面积
123
   double ConvexPolygonArea(Point *p, int n) {
       double area = 0;
125
       for(int i = 1; i < n-1; i++)</pre>
126
           area += Cross(p[i] - p[0], p[i+1] - p[0]);
127
       return area/2;
   }
129
130
   //计算多边形的有向面积
131
   double PolygonArea(Point *p, int n) {
132
       double area = 0;
133
       for(int i = 1; i < n-1; i++)</pre>
134
           area += Cross(p[i] - p[0], p[i+1] - p[0]);
135
       return area/2;
136
   }
137
138
139
   * Morley定理: 三角形每个内角的三等分线, 相交成的三角形是
140
       等边三角形。
     欧拉定理:设平面图的定点数,边数和面数分别为V,E,F。则V+
141
      F-E = 2;
142
143
   struct Circle {
144
       Point c;
145
```

```
double r;
146
147
       Circle(Point c, double r) : c(c), r(r) {}
148
        //通过圆心角确定圆上坐标
149
       Point point(double a) {
150
            return Point(c.x + cos(a)*r, c.y + sin(a)*r);
151
       }
   };
153
154
   struct Line {
155
       Point p;
156
       Vector v;
157
       double ang;
158
       Line() {}
159
       Line(Point p, Vector v) : p(p), v(v) {}
160
       bool operator < (const Line& L) const {</pre>
161
            return ang < L.ang;</pre>
162
       }
163
   };
164
165
   //直线和圆的交点,返回交点个数,结果存在sol中。
166
   //该代码没有清空sol。
167
   int getLineCircleIntersecion(Line L, Circle C, double& t1
168
       , double& t2, vector<Point>& sol) {
       double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L
169
           .p.y - C.c.y;
       double e = a*a + c*c, f = 2*(a*b + c*d), g = b*b + d*
170
           d - C.r*C.r;
       double delta = f*f - 4*e*g;
171
        if(dcmp(delta) < 0) return 0; //相离
172
       if(dcmp(delta) == 0) {
                                        //相切
173
            t1 = t2 = -f / (2*e);
            sol.push_back(C.point(t1));
175
            return 1;
176
       }
177
       //相交
178
       t1 = (-f - sqrt(delta)) / (2*e); sol.push_back(C.
179
           point(t1));
       t2 = (-f + sqrt(delta)) / (2*e); sol.push_back(C.
180
           point(t2));
       return 2;
181
   }
182
   //两圆相交
184
```

```
int getCircleCircleIntersection(Circle C1, Circle C2,
      vector<Point>& sol) {
       double d = Length(C1.c - C2.c);
186
       if(dcmp(d) == 0) {
           if(dcmp(C1.r - C2.r == 0)) return -1;
                                                     //两圆完
188
               全重合
                                                     //同心
           return 0;
189
               圆, 半径不一样
       if(dcmp(C1.r + C2.r - d) < 0) return 0;
191
       if(dcmp(fabs(C1.r - C2.r) == 0)) return -1;
192
193
                                                     //向量
       double a = Angle(C2.c - C1.c);
194
           C1C2的极角
       double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2*)
195
           C1.r*d));
       //C1C2到C1P1的角
196
       Point p1 = C1.point(a-da), p2 = C1.point(a+da);
197
       sol.push_back(p1);
198
       if(p1 == p2) return 1;
199
       sol.push_back(p2);
200
       return 2;
201
   }
202
203
   const double PI = acos(-1);
204
   //过定点做圆的切线
205
   //过点p做圆C的切线,返回切线个数。v[i]表示第i条切线
206
   int getTangents(Point p, Circle C, Vector* v) {
207
       Vector u = C.c - p;
208
       double dist = Length(u);
209
       if(dist < C.r) return 0;</pre>
210
       else if(dcmp(dist - C.r) == 0) {
           v[0] = Rotate(u, PI/2);
212
           return 1;
       } else {
214
           double ang = asin(C.r / dist);
           v[0] = Rotate(u, -ang);
216
           v[1] = Rotate(u, +ang);
217
           return 2;
218
       }
219
220
   }
221
   //两圆的公切线
222
   //返回切线的个数, -1表示有无数条公切线。
  //a[i], b[i] 表示第i条切线在圆A, 圆B上的切点
```

```
int getTangents(Circle A, Circle B, Point *a, Point *b) {
225
       int cnt = 0;
226
       if(A.r < B.r) {
227
            swap(A, B); swap(a, b);
229
       int d2 = (A.c.x - B.c.x)*(A.c.x - B.c.x) + (A.c.y - B
230
           .c.y)*(A.c.y - B.c.y);
       int rdiff = A.r - B.r;
231
       int rsum = A.r + B.r;
232
       if(d2 < rdiff*rdiff) return 0;</pre>
                                          //内含
233
       double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
234
       if(d2 == 0 && A.r == B.r) return -1; //无限多条切线
235
       if(d2 == rdiff*rdiff) {
                                         //内切一条切线
236
            a[cnt] = A.point(base);
237
            b[cnt] = B.point(base);
            cnt++;
239
            return 1;
240
       }
241
       //有外共切线
       double ang = acos((A.r-B.r) / sqrt(d2));
243
       a[cnt] = A.point(base+ang); b[cnt] = B.point(base+ang
           ); cnt++;
       a[cnt] = A.point(base-ang); b[cnt] = B.point(base-ang
245
           ); cnt++;
       if(d2 == rsum*rsum) { //一条公切线
246
            a[cnt] = A.point(base);
247
            b[cnt] = B.point(PI+base);
            cnt++;
249
       } else if(d2 > rsum*rsum) { //两条公切线
250
            double ang = acos((A.r + B.r) / sqrt(d2));
            a[cnt] = A.point(base+ang); b[cnt] = B.point(PI+
252
               base+ang); cnt++;
            a[cnt] = A.point(base-ang); b[cnt] = B.point(PI+
253
               base-ang); cnt++;
254
       return cnt;
255
   }
256
   typedef vector<Point> Polygon;
258
259
   //点在多边形内的判定
260
   int isPointInPolygon(Point p, Polygon poly) {
261
       int wn = 0;
262
       int n = poly.size();
263
       for(int i = 0; i < n; i++) {</pre>
264
```

```
if(OnSegment(p, poly[i], poly[(i+1)%n])) return
265
              -1; //在边界上
           int k = dcmp(Cross(poly[(i+1)%n]-poly[i], p-poly[
266
              i]));
           int d1 = dcmp(poly[i].y - p.y);
267
           int d2 = dcmp(poly[(i+1)%n].y - p.y);
268
           if(k > 0 \&\& d1 <= 0 \&\& d2 > 0) wn++;
269
           if(k < 0 \&\& d2 <= 0 \&\& d1 > 0) wn++;
270
271
       if(wn != 0) return 1;
                                  //内部
       return 0;
                                  //外部
273
   }
274
275
   //凸包
276
   /*
277
     输入点数组p,
                  个数为p,
                            输出点数组ch。
                                           返回凸包顶点数
278
     不希望凸包的边上有输入点,把两个<= 改成 <
     高精度要求时建议用dcmp比较
     输入点不能有重复点。函数执行完以后输入点的顺序被破坏
281
282
   int ConvexHull(Point *p, int n, Point* ch) {
283
                         //先比较x坐标,再比较y坐标
       sort(p, p+n);
       int m = 0;
285
       for(int i = 0; i < n; i++) {</pre>
286
           while(m > 1 && Cross(ch[m-1] - ch[m-2], p[i]-ch[m
287
              -21) <= 0) m--;
           ch[m++] = p[i];
288
       }
       int k = m;
290
       for(int i = n-2; i >= 0; i++) {
291
           while(m > k && Cross(ch[m-1] - ch[m-2], p[i]-ch[m
292
              -2]) <= 0) m--;
           ch[m++] = p[i];
293
294
       if(n > 1) m--;
295
       return m;
296
   }
297
298
   //用有向直线A->B切割多边形poly,
                                   返回"左侧"。
                                                  如果退
299
      化,可能会返回一个单点或者线段
   //复杂度0(n2);
   Polygon CutPolygon(Polygon poly, Point A, Point B) {
```

```
Polygon newpoly;
302
       int n = poly.size();
303
       for(int i = 0; i < n; i++) {
304
           Point C = poly[i];
           Point D = poly[(i+1)\%n];
306
           if(dcmp(Cross(B-A, C-A)) >= 0) newpoly.push_back(
307
           if(dcmp(Cross(B-A, C-D)) != 0) {
308
                Point ip = GetLineIntersection(A, B-A, C, D-C
309
                if(OnSegment(ip, C, D)) newpoly.push_back(ip)
310
           }
311
       }
312
       return newpoly;
313
314
315
   //半平面交
316
317
   //点p再有向直线L的左边。(线上不算)
318
   bool Onleft(Line L, Point p) {
       return Cross(L.v, p-L.p) > 0;
320
   }
321
322
   //两直线交点,假定交点唯一存在
323
   Point GetIntersection(Line a, Line b) {
324
       Vector u = a.p - b.p;
       double t = Cross(b.v, u) / Cross(a.v, b.v);
326
       return a.p+a.v*t;
327
   }
328
329
   int HalfplaneIntersection(Line* L, int n, Point* poly) {
330
       sort(L, L+n);
                                    //按极角排序
331
332
       int first, last;
                                    //双端队列的第一个元素和
333
           最后一个元素
       Point *p = new Point[n];
                                    //p[i]为q[i]和q[i+1]的交
334
           点
       Line *q = new Line[n];
                                    //双端队列
335
       q[first = last = 0] = L[0]; //队列初始化为只有一个半
336
           平面L[0]
       for(int i = 0; i < n; i++) {</pre>
337
           while(first < last && !Onleft(L[i], p[last-1]))</pre>
               last--;
```

```
while(first < last && !Onleft(L[i], p[first]))</pre>
339
                first++;
            q[++last] = L[i];
340
            if(fabs(Cross(q[last].v, q[last-1].v)) < EPS) {</pre>
                 last--;
342
                 if(Onleft(q[last], L[i].p)) q[last] = L[i];
343
344
            if(first < last) p[last-1] = GetIntersection(q[</pre>
345
                last-1], q[last]);
346
        }
        while(first < last && !Onleft(q[first], p[last-1]))</pre>
347
            last--;
        //删除无用平面
348
        if(last-first <= 1) return 0;</pre>
349
        p[last] = GetIntersection(q[last], q[first]);
350
351
        //从deque复制到输出中
352
        int m = 0;
353
        for(int i = first; i <= last; i++) poly[m++] = p[i];</pre>
        return m;
355
356
   int main() {
357
358
        return 0;
359
   }
360
        K 次圆
   5.5
   #include <bits/stdc++.h>
   #define rep(i, l, r) for (int(i) = (1); (i) \leftarrow (r); (i)
   #define mem(x, y) memset((x), (y), sizeof(x))
   using namespace std;
   const double eps = 1e-8;
   const int N = 1000 + 9;
   const double pi = 3.1415926535;
   double sqr(double x)
   {
        return x * x;
10
11
   int dcmp(double x)
12
13
        if (fabs(x) < eps)
14
            return 0;
15
```

```
else
16
           return x < 0 ? -1 : 1;
17
   }
18
   struct Circle
   {
20
       double x, y, r, angle;
21
       int d;
22
       Circle() {}
23
       Circle(double xx, double yy, double ang = 0, int t =
24
           0)
       {
25
           x = xx;
26
           y = yy;
27
           angle = ang;
28
           d = t;
29
30
       void read()
31
32
            scanf("%lf%lf%lf", &x, &y, &r);
            d = 1;
34
       }
   };
36
   Circle cir[N], tp[N * 2];
   double area[N];
40
   double dis(Circle a, Circle b)
41
   {
42
       return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));
43
   }
44
45
   double cross(Circle p0, Circle p1, Circle p2)
46
   {
47
       return (p1.x - p0.x) * (p2.y - p0.y) - (p1.y - p0.y)
48
           * (p2.x - p0.x);
   }
49
   //圆相交
50
   int CirCrossCir(Circle p1, double r1, Circle p2, double
      r2, Circle &cp1, Circle &cp2)
   {
52
       double mx = p2.x - p1.x, sx = p2.x + p1.x, mx2 = mx *
53
       double my = p2.y - p1.y, sy = p2.y + p1.y, my2 = my *
54
            my;
       double sq = mx2 + my2, d = -(sq - sqr(r1 - r2)) * (sq
55
            - sqr(r1 + r2));
```

```
if (d + eps < 0)
56
            return 0;
57
       if (d < eps)
58
            d = 0;
       else
60
            d = sqrt(d);
       double x = mx * ((r1 + r2) * (r1 - r2) + mx * sx) +
62
           sx * my2;
       double y = my * ((r1 + r2) * (r1 - r2) + my * sy) +
63
           sy * mx2;
       double dx = mx * d, dy = my * d;
64
       sq *= 2;
65
       cp1.x = (x - dy) / sq;
66
       cp1.y = (y + dx) / sq;
67
       cp2.x = (x + dy) / sq;
       cp2.y = (y - dx) / sq;
69
       if (d > eps)
70
            return 2;
71
       else
72
            return 1;
73
   }
   bool circmp(const Circle &u, const Circle &v)
75
   {
76
       return dcmp(u.r - v.r) < 0;</pre>
77
   }
78
79
   bool cmp(const Circle &u, const Circle &v)
80
81
       if (dcmp(u.angle - v.angle))
82
            return u.angle < v.angle;</pre>
83
       return u.d > v.d;
84
   }
85
   //0.5*r*r*(K-sin(K))
   double calc(Circle cir, Circle cp1, Circle cp2)
87
88
       double ans = (cp2.angle - cp1.angle) * sqr(cir.r) -
89
           cross(cir, cp1, cp2) + cross(Circle(0, 0), cp1,
           cp2);
       return ans / 2;
90
   }
91
   void CirUnion(Circle cir[], int n)
93
   {
94
       Circle cp1, cp2;
       sort(cir, cir + n, circmp);
96
       for (int i = 0; i < n; ++i)</pre>
```

```
for (int j = i + 1; j < n; ++j)
98
                 if (dcmp(dis(cir[i], cir[j]) + cir[i].r - cir
                     [j].r) <= 0
                     cir[i].d++;
100
        for (int i = 0; i < n; ++i)</pre>
101
102
             int tn = 0, cnt = 0;
103
            for (int j = 0; j < n; ++j)
104
105
                 if (i == j)
106
                      continue;
107
                 if (CirCrossCir(cir[i], cir[i].r, cir[j], cir
108
                     [j].r,
                                   cp2, cp1) < 2)
109
                      continue;
110
                 cp1.angle = atan2(cp1.y - cir[i].y, cp1.x -
111
                     cir[i].x);
                 cp2.angle = atan2(cp2.y - cir[i].y, cp2.x -
112
                     cir[i].x);
                 cp1.d = 1;
113
                 tp[tn++] = cp1;
114
                 cp2.d = -1;
115
                 tp[tn++] = cp2;
116
                 if (dcmp(cp1.angle - cp2.angle) > 0)
117
                     cnt++;
118
            }
119
            tp[tn++] = Circle(cir[i].x - cir[i].r, cir[i].y,
120
                pi, -cnt);
             tp[tn++] = Circle(cir[i].x - cir[i].r, cir[i].y,
121
                -pi, cnt);
             sort(tp, tp + tn, cmp);
122
            int p, s = cir[i].d + tp[0].d;
123
             for (int j = 1; j < tn; ++j)
124
                 p = s;
126
                 s += tp[j].d;
127
                 area[p] += calc(cir[i], tp[j - 1], tp[j]);
128
            }
        }
130
   }
131
   int n;
132
   void solve()
133
   {
134
        for (int i = 0; i < n; i++) cir[i].read(); // read x</pre>
135
            y r
        mem(area, 0);
136
```

```
CirUnion(cir, n);
137
         for (int i = 1; i <= n; i++)</pre>
138
139
              area[i] -= area[i + 1];
140
              printf("[%d]_{\square}=_{\square}%.3f\n", i, area[i]);
141
         }
142
    }
143
144
    int main()
145
146
         while (~scanf("%d", &n)) solve();
147
148
```

Chapter 6

数据结构

6.1 **手写堆**

```
struct Node
   {
2
       int index;
       int tag;
       int 1;
       bool operator<(Node ano) const</pre>
            return 1!=ano.1?1<ano.1:index>ano.index;
       }
   };
   Node heap[51111];
   int heapsz;
   int a[2<<21]; // 编号为i的在heap的位置
   void swim(int p)
15
            while (p > 1 \&\& heap[p / 2] < heap[p])
            {
17
                swap(a[heap[p].tag],a[heap[p/2].tag]);
                swap(heap[p],heap[p/2]);
19
                p/=2;
            }
21
   }
   void sink(int p)
23
24
       while(p * 2 <= heapsz)</pre>
25
26
            p *= 2;
            if (p+1<=heapsz) p|=heap[p]<heap[p+1];</pre>
```

```
swap(a[heap[p].tag],a[heap[p/2].tag]);
swap(heap[p],heap[p/2]);

}

swap(a[heap[p].tag],a[heap[p/2].tag]);
swap(heap[p],heap[p/2]);
}
```

6.2 **左偏树**

```
#include <bits/stdc++.h>
   #define rep(i, 1, r) for (int (i) = (1); (i) \leftarrow (r); (i)
       ++)
   using namespace std;
   int n,m,ans;
   struct Data{int fa,x,dis,l,r;};
   const int MAXN = 100001;
   Data q[MAXN];
   int find(int x)
   {
       return x==q[x].fa?x:q[x].fa=find(q[x].fa);
10
   }
   int merge(int x,int y)
12
13
       if(!x) return y;
14
       if(!y) return x;
15
       if(q[x].x<q[y].x) swap(x,y);
16
       q[x].r=merge(q[x].r,y);
17
       q[q[x].r].fa=x;
18
       if(q[q[x].1].dis < q[q[x].r].dis) swap(q[x].1,q[x].r);
19
       if(!q[x].r) q[x].dis=0;
       else q[x].dis=q[q[x].r].dis+1;
21
       return x;
22
   }
23
   int pop(int x)
   {
25
       int l=q[x].1,r=q[x].r;
       q[1].fa=1,q[r].fa=r;
27
       q[x].l=q[x].r=q[x].dis=0;
28
       return merge(1,r);
29
   }
30
   void slove()
31
   {
32
       int x,y,u,v,l1,l2;
33
       rep(i, 1, n) {
34
            scanf("%d", &q[i].x);
35
            q[i].fa=i;
36
```

```
q[i].l=q[i].r=q[i].dis=0;
37
        }
       scanf("%d", &m);
39
       rep(i, 1, m) {
            scanf("%d%d", &x, &y);
41
           11=find(x), 12=find(y);
            if(l1 == l2){printf("-1\n");continue;}
            q[11].x/=2;u=pop(11);u=merge(u,11);
44
            q[12].x/=2;v=pop(12);v=merge(v,12);
45
            ans=merge(u,v);
           printf("%d\n",q[ans].x);
47
       }
48
   }
49
   int main()
50
51
       while(~scanf("%d",&n)) slove();
52
  }
53
```

6.3 两优先队列模拟堆

```
最简分数实数逼近
  a1 = 100000, a2 = 1, ans = 100000;
  ll xl = 0, yl = 1, xr = 1, yr = 0, xm, ym;
  while(yl + yr <= 100000) {
       xm = xl + xr;
       ym = yl + yr;
       if(check(xm, ym, a1, a2, kk)) {a1 = xm, a2 = ym;}
       if(get(xm, ym, kk)) {xr = xm, yr = ym;}
       else \{xl = xm, yl = ym;\}
10
   }
11
   struct heap {
       priority_queue<int> p, q;
13
       void init() {
           while(!p.empty()) p.pop();
           while(!q.empty()) q.pop();
16
17
       void add(int x) {p.push(x);}
       void del(int x) {q.push(x);}
19
       int top() {
20
           while(1) {
21
               if(p.empty()) return -INF;
               else if(!q.empty() && p.top() == q.top()) {p.
                  pop(); q.pop();}
```

```
else return p.top();
24
            }
25
       }
26
       int toptwo() {
            int a = top(); del(a);
28
            int b = top(); add(a);
            if(b == -INF) return a == -INF ? a : 0;
30
            else return max(a + b, 0);
31
       }
32
   }
```

6.4 线段树

```
#include <bits/stdc++.h>
using namespace std;
  const int MAXM = 1E6 + 9;
  const int MAXR = 20 + 9;
  const int INF = INT_MAX / 10;
  struct Node
       int setv, addv, sumv, minv, maxv;
       Node()
       {
10
           setv = -1, addv = 0, sumv = 0, minv = 0, maxv =
11
               0;
       }
12
  };
13
  struct Tree
15
       Node tree[4 * MAXM];
16
       int mid(int 1, int r)
17
           return 1 + (r-1) / 2;
19
       }
       void pushdown(int o)
21
           int lc(o*2), rc(o*2+1);
23
           if (tree[o].setv >= 0) {
24
                tree[lc].setv = tree[rc].setv = tree[o].setv;
25
               tree[lc].addv = tree[rc].addv = 0;
26
               tree[o].setv = -1;
27
           if (tree[o].addv) {
                tree[lc].addv += tree[o].addv;
30
```

```
tree[rc].addv += tree[o].addv;
31
                tree[o].addv = 0;
32
           }
33
       }
       void maintain(int o, int l, int r)
35
36
            int lc(o*2), rc(o*2+1);
            if (r > 1) {
38
                tree[o].sumv = tree[lc].sumv + tree[rc].sumv;
39
                tree[o].minv = min(tree[lc].minv, tree[rc].
40
                   minv);
                tree[o].maxv = max(tree[lc].maxv, tree[rc].
41
                   maxv);
42
           if (tree[o].setv >= 0) {
                tree[o].minv = tree[o].maxv = tree[o].setv;
44
                tree[o].sumv = (r-l+1)*tree[o].setv;
45
46
           if (tree[o].addv) {
                tree[o].minv += tree[o].addv;
48
                tree[o].maxv += tree[o].addv;
                tree[o].sumv += (r-l+1) * tree[o].addv;
50
            }
51
52
       void update(int o, int 1, int r, int op, int ql, int
53
           qr, int v)
54
           int lc(o*2), rc(o*2+1);
55
            if (ql <= 1 && qr >= r) {
56
                if (op == 1) tree[o].addv += v;
                else {
58
                    tree[o].setv = v;
59
                    tree[o].addv = 0;
60
                }
            } else {
62
                pushdown(o);
                int m = mid(1, r);
64
                if (ql <= m) update(lc, l, m, op, ql, qr, v);</pre>
                     else maintain(lc, l, m);
                if (qr > m) update(rc, m+1, r, op, ql, qr, v)
66
                    ; else maintain(rc, m+1, r);
            }
           maintain(o, l, r);
68
       Node query(int o, int 1, int r, int q1, int qr)
70
71
```

```
Node res;
72
            int lc(o*2), rc(o*2+1), m(mid(l, r));
73
            maintain(o, 1, r);
            if (ql <= 1 && qr >= r) {
                 res.sumv = tree[o].sumv;
76
                 res.minv = tree[o].minv;
                 res.maxv = tree[o].maxv;
            } else {
79
                 pushdown(o);
80
                Node lres;
                lres.minv = INF, lres.maxv = -INF;
82
                Node rres(lres);
83
                if (q1 <= m) lres = query(lc, l, m, q1, qr);</pre>
84
                    else maintain(lc, l, m);
                if (qr > m) rres = query(rc, m+1, r, ql, qr);
85
                     else maintain(rc, m+1, r);
                 res.sumv = lres.sumv + rres.sumv;
86
                 res.minv = min(lres.minv, rres.minv);
                 res.maxv = max(lres.maxv, rres.maxv);
            }
89
            return res;
        }
91
92
   Tree tree[MAXR];
   void solve(int r, int c, int m)
94
95
        for (int i(1); i <= r; i++) tree[i].tree[1].setv = 0;</pre>
96
        while (m--) {
97
            int op, x1, y1, x2, y2;
98
            scanf("%d%d%d%d%d", &op, &x1, &y1, &x2, &y2);
99
            if (op < 3) {
100
                 int v;
101
                 scanf("%d", &v);
102
                 for (int i(x1); i <= x2; i++) tree[i].update</pre>
103
                    (1, 1, c, op, y1, y2, v);
            } else {
104
                 Node ans;
105
                 ans.sumv = 0, ans.minv = INF, ans.maxv = -INF
                 for (int i(x1); i <= x2; i++) {
107
                     Node res(tree[i].query(1, 1, c, y1, y2));
108
                     ans.sumv += res.sumv;
                     ans.minv = min(ans.minv, res.minv);
110
                     ans.maxv = max(ans.maxv, res.maxv);
111
                 }
112
```

```
printf("%d<sub>\\\</sub>%d\n", ans.sumv, ans.minv, ans.
113
                      maxv);
              }
114
         }
115
    }
116
    int main()
117
118
         //freopen("in", "r", stdin);
119
         int r, c, m;
120
         while (scanf("%d%d%d", &r, &c, &m) != EOF) {
121
              solve(r, c, m);
122
         }
123
    }
124
```

6.5 二维线段树

```
#include <bits/stdc++.h>
  using namespace std;
  const int MAXN = 800 * 4 + 10;
  int mx[MAXN][MAXN], mn[MAXN][MAXN], g[810][810];
   int n;
   void buildy(int xo, int o, int l, int r, int x) {
       if(1 == r) {
           if(x != -1) mx[xo][o] = mn[xo][o] = g[x][1];
           else {
9
               int xlch = xo * 2, xrch = xlch + 1;
10
               mx[xo][o] = max(mx[xlch][o], mx[xrch][o]);
11
               mn[xo][o] = min(mn[xlch][o], mn[xrch][o]);
           }
13
           return;
14
15
       int mid = (1 + r) / 2, 1ch = o * 2, rch = 1ch + 1;
       buildy(xo, lch, l, mid, x);
17
       buildy(xo, rch, mid + 1, r, x);
       mx[xo][o] = max(mx[xo][lch], mx[xo][rch]);
19
       mn[xo][o] = min(mn[xo][lch], mn[xo][rch]);
20
21
   void buildx(int o, int 1, int r) {
22
       if(1 == r) {
23
           buildy(o, 1, 1, n, 1);
^{24}
           return;
25
26
       int mid = (1 + r) / 2, 1ch = o * 2, rch = 1ch + 1;
27
       buildx(lch, l, mid);
28
```

```
buildx(rch, mid + 1, r);
29
       buildy(o, 1, 1, n, -1);
30
  }
31
  void updatey(int xo, int o, int 1, int r, int y, int v) {
       if(1 == r) {
33
           if(v != -1) mn[xo][o] = mx[xo][o] = v;
34
           else {
35
                int xlch = xo * 2, xrch = xlch + 1;
36
                mx[xo][o] = max(mx[xlch][o], mx[xrch][o]);
37
                mn[xo][o] = min(mn[xlch][o], mn[xrch][o]);
           }
39
           return;
40
41
       int mid = (1 + r) / 2, 1ch = 0 * 2, rch = 1ch + 1;
42
       if(y <= mid) updatey(xo, lch, l, mid, y, v);</pre>
       else updatey(xo, rch, mid +1, r, y, v);
44
       mx[xo][o] = max(mx[xo][lch], mx[xo][rch]);
45
       mn[xo][o] = min(mn[xo][lch], mn[xo][rch]);
46
   }
47
   void updatex(int o, int 1, int r, int x, int y, int v) {
48
       if(1 == r) {
49
           updatey(o, 1, 1, n, y, v);
50
           return;
51
52
       int mid = (1 + r) / 2, 1ch = 0 * 2, rch = 1ch + 1;
       if(mid >= x) updatex(lch, l, mid, x, y, v);
54
       else updatex(rch, mid + 1, r, x, y, v);
       updatey(o, 1, 1, n, y, -1);
56
   }
57
   int minv, maxv;
58
   void queryy(int xo, int o, int l, int r, int yl, int yr)
59
       if(yl <= 1 && r <= yr) {
60
           minv = min(minv, mn[xo][o]);
61
           maxv = max(maxv, mx[xo][o]);
62
           return;
63
64
       int mid = (1 + r) / 2, 1ch = o * 2, rch = 1ch + 1;
       if(mid >= yl) queryy(xo, lch, l, mid, yl, yr);
66
       if(mid < yr) queryy(xo, rch, mid + 1, r, yl, yr);</pre>
  }
68
  void queryx(int o, int 1, int r, int x1, int xr, int y1,
      int yr) {
       if(x1 <= 1 && r <= xr) {
70
           queryy(o, 1, 1, n, yl, yr);
71
72
           return;
```

```
}
73
       int mid = (1 + r) / 2, 1ch = o * 2, rch = 1ch + 1;
74
       if(mid >= xl) queryx(lch, l, mid, xl, xr, yl, yr);
75
       if(mid < xr) queryx(rch, mid + 1, r, xl, xr, yl, yr);</pre>
76
   }
77
   int main() {
       int T; scanf("%d", &T);
79
       int cas = 1;
80
       while(T--) {
81
            scanf("%d", &n);
            for(int i = 1; i <= n; i++)</pre>
                for(int j = 1; j <= n; j++)</pre>
84
                    scanf("%d", &g[i][j]);
85
            buildx(1, 1, n);
86
            int q; scanf("%d", &q);
            printf("Case<sub>□</sub>#%d:\n", cas++);
88
           while(q--) {
89
                int x, y, len; scanf("%d%d%d", &x, &y, &len);
90
                int xl = max(1, x - len / 2), xr = min(n, x +
                     len / 2), y1 = max(1, y - len / 2), yr =
                    min(n, y + len / 2);
                minv = 1 \ll 30, maxv = -minv;
92
                queryx(1, 1, n, xl, xr, yl, yr);
93
                int ans = (maxv + minv) / 2;
94
                updatex(1, 1, n, x, y, ans);
95
                printf("%d\n", ans);
96
           }
97
       }
98
  }
99
        Treap
   6.6
   struct node {
           node* ch[2];
2
            int w, sum, v, k;
3
           void maintain() {sum = w + ch[0] -> sum + ch[1] ->
               sum;}
            int cmp(int vv) {return vv == v ? -1 : vv > v;}
5
            bool operator < (const node& rhs) {return k < rhs
               .k;}
       }nd[MAXN *10];
7
       node* null, *rt;
       int ncnt;
       void rot(node*& o, int d) {
10
```

```
node* k = o->ch[d^1]; o->ch[d^1] = k->ch[d]; k->ch[d]
11
            = o;
       //一定先维护o,因为o是k的子节点
12
       o->maintain(); k->maintain();
            o = k;
14
15
       void ins(node*& o, int x) {
16
            if(o == null) {
17
                 o = &nd[ncnt++];
18
                 *o = *null;
                 o->v = x; o->k = rand();
20
                 o->w = 1; o->maintain();
21
            }
22
            else {
23
                 int d = o \rightarrow cmp(x);
                 if(d == -1) \{o->w++; o->sum++;\}
25
                 else {
26
                     ins(o->ch[d], x);
27
                     o->maintain();
                     if(o < o->ch[d]) rot(o, d^1);
29
                 }
            }
31
32
       void del(node*& o, int x) {
33
            if(o == null) return;
34
            int d = o \rightarrow cmp(x);
35
            if(d == -1) {
36
                 if(o->w > 1) {o->w--; o->sum--;}
37
                 else {
38
                     if(o->ch[0] != null && o->ch[1] != null)
39
                         {
                          int dd = o->ch[0] > o->ch[1];
40
                          rot(o, dd);
41
                          del(o->ch[dd], x);
42
43
                     else o = o \rightarrow ch[0] == null ? o \rightarrow ch[1] : o
44
                         ->ch[0];
                 }
46
            else del(o->ch[d], x);
            o->maintain();
48
        int getrk(node* o, int x) {
50
            if(o == null) return 0;
51
            int d = o \rightarrow cmp(x);
52
            if(d == -1) return o->ch[0]->sum + 1;
53
```

```
else {
54
                if(d == 1) return o -> ch[0] -> sum + o -> w +
                    getrk(o->ch[1], x);
                return getrk(o->ch[0], x);
           }
57
       int getkth(node* o, int x) {
            if(o == null) return 0;
60
            int ls = o->ch[0]->sum, cs = o->w;
61
           if(x <= ls) return getkth(o->ch[0], x);
           else if(x > ls && x <= ls + cs) return o \rightarrow v;
           else return getkth(o->ch[1], x - ls - cs);
64
       }
65
       int ans;
66
       //找第一个小于x的数
       void getpre(node* o, int x) {
68
           if(o == null) return;
69
            if(x > o \rightarrow v)  {
70
                ans = o \rightarrow v;
                getpre(o->ch[1], x);
72
            }
            else getpre(o->ch[0], x);
74
       //第一个大于x的数
76
       void getnxt(node* o, int x) {
            if(o == null) return;
            if(x < o\rightarrow v)  {
79
                ans = 0 - v;
80
                getnxt(o->ch[0], x);
81
           }
82
            else getnxt(o->ch[1], x);
83
       }
84
   6.7 splay
   int ch[MAXN][2], fa[MAXN], val[MAXN], sz[MAXN], cnt[MAXN
      ];
   int rt, ncnt;
   void update(int r) \{sz[r] = sz[ch[r][0]] + sz[ch[r][1]] +
        cnt[r];}
   void rot(int x) {
       int y = fa[x], z = fa[y], d = ch[y][1] == x;
       ch[y][d] = ch[x][d^1], fa[ch[y][d]] = y;
       ch[x][d^1] = y; fa[y] = x;
```

```
fa[x] = z;
       if(z) ch[z][ch[z][1] == y] = x;
       update(y);
10
   }
11
   void splay(int r, int tp) {
12
       for(int y, z; (y = fa[r]) != tp; rot(r)) {
13
           z = fa[y];
14
            if(z == tp) continue;
15
           if((ch[z][0] == y) == (ch[y][0] == r)) rot(y);
16
           else rot(r);
       if(!tp) rt = r;
19
       update(r);
20
   }
21
   void ins(int r, int x) {
       int y = 0;
23
       while(r \&\& val[r] != x) \{y = r; r = ch[r][val[r] < x\}
24
           ];}
       if(r) ++cnt[r];
       else {
26
           r = ++ncnt;
           sz[r] = cnt[r] = 1;
           val[r] = x; fa[r] = y;
29
           ch[r][0] = ch[r][1] = 0;
30
           if(y) ch[y][val[y] < x] = r;
       }
32
       splay(r, 0);
33
34
   void get(int v) {
35
       int x = rt; if(!x) return;
36
       while(ch[x][val[x] < v] && val[x] != v) x = ch[x][val
37
           [x] < v];
       splay(x, 0);
38
   }
39
   int getrk(int v) {
40
       get(v);
41
       return sz[ch[rt][0]];
42
   }
43
   int getkth(int x) {
44
       int y = rt, p;
45
       if(x > sz[rt]) return 0;
46
       while(1) {
            p = ch[y][0];
48
            if(sz[p] + cnt[y] < x) {
                x -= sz[p] + cnt[y];
                y = ch[y][1];
```

```
}
52
           else if(sz[p] >= x) y = p;
           else return val[y];
       }
55
  }
56
   int nxt(int x, bool op) {
57
       get(x);
58
       if((val[rt] > x && op) || (val[rt] < x && !op))</pre>
59
          return rt;
       int p = ch[rt][op];
60
       while(ch[p][op^1]) p = ch[p][op^1];
61
       return p;
62
  }
63
  void del(int v) {
64
       int p = nxt(v, 0), s = nxt(v, 1);
       splay(p, 0);
66
       splay(s, p);
67
       p = ch[s][0];
68
       if(cnt[p] > 1) -- cnt[p], splay(p, 0);
       else ch[s][0] = 0;
70
  }
71
        倍增 LCA
  6.8
  void initp() {
       for(int j = 1; (1 << j) <= n; j++)
           for(int i = 1; i <= n; i++) if(p[i][j - 1])//一定
3
              要有这个if
               p[i][j] = p[p[i][j - 1]][j - 1];
  }
5
  int LCA(int u, int v) {
       if(d[u] < d[v]) swap(u, v);
  int lim;
   //确定最大的2^lim不超过d[u]
       for(lim = 0; (1 << lim) <= d[u]; lim++); lim--;</pre>
   int ret = 0;
11
   //把u上升到v相同的高度
12
       for(int i = lim; i >= 0; i--) if(d[u] - (1 << i) >= d
13
          [v]) u = p[u][i];
       if(u == v) return u; //一定要有这个判断
14
       for(int i = lim; i >= 0; i--) if(p[u][i] != p[v][i])
15
          {u = p[u][i]; v = p[v][i];}
       return p[u][0];
16
17
  }
```

6.9 主席树

19

}

```
void build(node* &now, node* &pre, int 1, int r, int x) {
       now = &tn[ncnt++];
       *now = *null;
3
       int mid = (1 + r) / 2;
       if(1 == r) {
           *now = *pre;
           now->val++;
           return;
       if(x <= sq[mid]) {
10
           build(now->ch[0], pre->ch[0], 1, mid, x);
           now->ch[1] = pre->ch[1];
12
           now->maintain();
       }
14
       else {
15
           build(now->ch[1], pre->ch[1], mid + 1, r, x);
16
           now->ch[0] = pre->ch[0];
           now->maintain();
18
       }
  }
20
         树剖
  6.10
  void dfs1(int u, int fa, int dep) {
1
       sz[u] = 1; d[u] = dep; ch[u] = 0; p[u] = fa;
       for(int i = head[u]; i != -1; i = ed[i].next) {
           int v = ed[i].v;
           if(v == fa) continue;
           dfs1(v, u, dep + 1);
           sz[u] += sz[v];
           if(sz[v] > sz[ch[u]]) ch[u] = v;
       }
  }
10
  void dfs2(int u, int rt) {
       idx[u] = id++;
12
       top[u] = rt;
13
       if(ch[u]) dfs2(ch[u], rt);
14
       for(int i = head[u]; i != -1; i = ed[i].next) {
           int v = ed[i].v;
16
           if(v == p[u] || v == ch[u]) continue;
           dfs2(v, v);
18
```

```
}
20
  int ask(int u, int v) {
       int ret = 0;
22
  while(top[u] != top[v]) {
      //一定是top[u]的深度大于等于top[v]
           if(d[top[u]] < d[top[v]]) swap(u, v);
25
           ret = max(ret, query(1, 1, n, idx[top[u]], idx[u
              ]));
           u = p[top[u]];
      }
28
      if(d[u] < d[v]) swap(u, v);
      if(u != v) ret = max(ret, query(1, 1, n, idx[ch[v]],
30
          idx[u]));
       return ret;
31
  }
         点分治
  6.11
  void getsz(int u, int fa) {
       sz[u] = 1; f[u] = 0;
      for(int i = head[u]; i != -1; i = ed[i].next) {
3
           int v = ed[i].v;
           if(v == fa || vis[v]) continue;
           getsz(v, u);
           sz[u] += sz[v];
           f[u] = max(f[u], sz[v]);
      }
  }
10
  //找到最大子树最小的点作为分治的中心
  void getrt(int r, int u, int fa) {
12
      //用父边所连的子树更新f
13
      f[u] = max(f[u], sz[r] - sz[u]);
14
      if(f[u] < minf) {minf = f[u]; rt = u;}
      for(int i = head[u]; i != -1; i = ed[i].next) {
16
           int v = ed[i].v;
           if(v == fa || vis[v]) continue;
18
           getrt(r, v, u);
19
      }
20
21
   int solve(int u) {
22
      minf = n;
23
      getsz(u, 0);
24
      getrt(u, u, 0);
25
      vis[rt] = 1;
26
```

```
int ret = getdp(rt); //分治的结果
for(int i = head[rt]; i != -1; i = ed[i].next) {
    int v = ed[i].v;
    if(!vis[v]) ret = max(ret, solve(v));
}
return ret;
}
```

6.13 **整体二分**

RMQ

6.12

```
Divide_Conquer(Q, AL, AR)
2 //Q是当前处理的操作序列
 //WANT是要求的贡献, CURRENT为已经累计的贡献(记录的是1~AL
    -1内所有修改的贡献)
 //[AL, AR]是询问的答案范围区间
 if AL = AR then
    将Q中所有是询问操作的答案设为AL
 end if
 //我们二分答案,AM为当前的判定答案
 AM = (AL + AR) / 2
10 //Solve是主处理函数,只考虑参数满足判定标准[AL, AM]的修改
    的贡献,因为CURRENT域中已经记录了[1,AL-1]的修改的贡献了
    ,这一步是保证时间复杂度的关键,因为SOLVE只于当前Q的长度
    有关,而不与整个操作序列的长度有线性关系,这保证了主定理
    解出来只多一个Log
 Solve(Q, AL, AM)
 //Solve之后Q中各个参数满足判定标准的修改对询问的贡献被存
    储在ANS数组
 //Q1,Q2为了两个临时数组,用于划分操作序列
  for i = 1 to Length(Q) do
    if (Q[i].WANT <= Q[i].CURRENT + ANS[i]) then</pre>
       //当前已有贡献不小于要求贡献,说明最终答案应当不大
          于判定答案
       向数组Q1末尾添加Q[i]
17
    else
       //当前已有贡献小于要求贡献,说明最终答案应当大于判
         定答案
       //这里是整体二分的关键,把当前贡献累计入总贡献,以
20
         后不再重复统计!
```

```
Q[i].CURRENT = Q[i].CURRENT + ANS[i]
21
           向数组Q2末尾添加Q[i]
22
       end if
23
   end for
   //分治,递归处理
25
   Divide_Conquer(Q1, AL, AM)
   Divide_Conquer(Q2, AM+1, AR)
   以上别人的伪代码 非常清楚
28
29
   带修改的整体二分
30
   void cal(int ql, int qr, int l, int mid) {
31
       for(int i = ql; i <= qr; i++) {</pre>
32
           if(nd[i].k) nd[i].cnt = query(nd[i].r) - query(nd
33
               [i].l - 1);
           else if(nd[i].r <= mid) update(nd[i].l, nd[i].cnt</pre>
34
               );
       }
35
       for(int i = ql; i <= qr; i++) if(nd[i].r <= mid && (!</pre>
36
           nd[i].k)) update(nd[i].l, -nd[i].cnt);
   }
37
   void divide(int ql, int qr, int l, int r) {
       if(1 == r) {
39
           for(int i = ql; i <= qr; i++) if(nd[i].k) ans[nd[</pre>
40
               i].id] = 1;
           return;
41
       }
42
       int mid = (1 + r) / 2;
43
       cal(ql, qr, l, mid);
44
       int p1 = 0, p2 = 0;
45
       for(int i = ql; i <= qr; i++) {</pre>
           if(nd[i].k) {
47
                if(nd[i].cnt >= nd[i].k) t1[++p1] = nd[i];
48
                else {
49
                    nd[i].k -= nd[i].cnt;
                    t2[++p2] = nd[i];
51
                }
           }
53
           else {
                if(nd[i].r <= mid) t1[++p1] = nd[i];
55
                else t2[++p2] = nd[i];
           }
57
       for(int i = 1; i <= p1; i++) nd[ql - 1 + i] = t1[i];</pre>
59
       for(int i = 1; i \leftarrow p2; i++) nd[ql + p1 - 1 + i] = t2
60
           [i];
       if(p1) divide(q1, q1 + p1 - 1, 1, mid);
61
```

```
if(p2) divide(q1 + p1, qr, mid + 1, r);
63 }
  6.14 莫队
  struct qnode {
       int 1, r, id;
       11 a, b;
       bool operator < (const qnode& rhs) const {</pre>
           return dv[1] == dv[rhs.1] ? dv[r] < dv[rhs.r] :</pre>
               dv[1] < dv[rhs.1];</pre>
       }
  }qn[MAXN];
  int bd = (int)sqrt(n);
  for(int i = 1; i <=n; i++) {</pre>
       dv[i] = (i - 1) / bd + 1;
  }
11
  6.15 KDtree
  给 N 个 K 维点, 找这 K 维点里面最近的 M 个点
#include <bits/stdc++.h>
using namespace std;
  const int N = 50080;
  const int K = 5;
  typedef pair<int, int> Pair;
  struct Node
       int x[K], d;
       bool f;
9
       static int k, cd;
10
       void read() {
11
         for (int i = 0; i < k; i++) {</pre>
           cin >> x[i];
13
         }
         f = 0;
15
       }
       bool operator < (Node node) const {</pre>
17
         return x[cd] < node.x[cd];</pre>
       }
19
  };
  int Node::k = 0, Node::cd = 0;
  int mid(int 1, int r)
```

```
{
23
    return 1 + (r - 1) / 2;
24
  }
25
  int dist(Node a, Node b) //算k维的距离
26
27
      int res = 0;
      for(int i = 0;i < Node::k; i++)</pre>
29
          res += (a.x[i] - b.x[i])*(a.x[i] - b.x[i]);
30
      return res;
31
  }
32
  Node a[N];
33
  priority_queue<Pair> pq; // 距离 下标
34
  void build(int 1, int r, int d)
35
36
      if (1 > r) return;
37
      int m = mid(1, r);
38
      Node::cd = d;
39
      nth element(a+l,a+m,a+r+1); //保证第n大的在第n的位置,
40
          类似快排的基准
      //这样就可以保证a[m]是中间的 这样树就可以建的非常平均
41
      a[m].d = d; //这个点的维度是d
42
      if(1 == r) //到了叶节点了
44
          a[m].f = true; //应是是不是叶节点的意思
          return;
47
      build(l, m-1,(d+1)%Node::k); //递归建树
      build(m+1,r, (d+1)%Node::k);
49
  }
  int num;
51
  void fd(int 1, int r, Node tar)
53
      if (1 > r) return;
54
      int m = mid(1, r);
55
      int d = dist(a[m], tar);
56
                     //如果是叶子
      if(a[m].f) {
        if(pq.size() < num) { // 还每找满m个
          pq.push(make_pair(d, m));
59
        } else if(d < pq.top().first) { // 已经找了m个了,要
60
           删了 并且是比当前最远点小
          pq.pop();
61
          pq.push(make_pair(d, m));
62
        }
63
        return;
      }
65
```

```
int t = tar.x[a[m].d] - a[m].x[a[m].d];
66
       // 要调查的点和 这个节点的距离
67
       if(t > 0) { // 右子树
68
          fd(m+1, r, tar); //先在右子树
          if(pq.size() < num) {</pre>
70
            pq.push(make_pair(d, m));
            fd(l,m-1,tar); // 再找左子树
72
          } else {
73
            if(d < pq.top().first) {</pre>
74
              pq.pop();
              pq.push(make_pair(d, m));
            if(pq.top().first > t*t) fd(l,m-1,tar);
78
          }
79
        } else { //
          fd(1,m-1,tar);
81
          if(pq.size() < num) {</pre>
82
            pq.push(make_pair(d, m));
83
            fd(m+1,r,tar);
          } else {
85
            if(pq.top().first > d) {
                pq.pop();
                pq.push(make_pair(d, m));
89
            if (pq.top().first > t*t) fd(m+1,r,tar);
          }
91
       }
92
   }
93
   void solve(int n, int k)
94
95
     Node::k = k;
96
     for (int i = 0; i < n; i++) a[i].read();</pre>
97
     build(0, n-1, 0);
98
     int t;
     cin >> t;
100
     while (t--) {
101
       Node q;
102
       q.read();
       while (!pq.empty()) pq.pop();
104
       cin >> num; // 题目中需要找与q距离最近的num个点
105
       fd(0, n-1, q);
106
       vector<int> ans;
107
       while (!pq.empty()) {
108
          ans.push_back(pq.top().second);
109
          pq.pop();
110
       }
111
```

```
printf("the\_closest\_%d\_points\_are:\n",num);
112
        for(int j = num - 1; j >= 0; j--) {
113
          for(int kk = 0; kk < k; kk++) {
114
             kk == 0? cout << a[ans[j]].x[kk] : cout << '_\_'
                 << a[ans[j]].x[kk];
          }
116
          cout << endl;</pre>
117
118
119
120
   int main()
121
122
      int n, k;
123
      while(cin >> n >> k) solve(n, k);
124
   }
125
```

- 6.16 优先队列可删除任意元素的堆
- 6.17 动态树带
- 6.18 动态树维护后缀自动机 parent 树
- 6.19 虚树

Chapter 7

字符串

7.1 最小表示法

```
#include <cstdio>
#include <algorithm>
3 #include <iostream>
  using namespace std;
   const int maxn = 100010;
  int main()
     int n;
     while (scanf("%d", &n) != EOF)
10
       string s[maxn];
       for (int ii = 0; ii < n; ii++)</pre>
12
13
         string ss;
         cin >> ss;
15
         ss = ss + ss;
         bool flag = false;
17
         int i = 0, j = 1, k = 0, l = ss.size() / 2, p = 0;
         while (i < 1 && j < 1)
19
           k = 0;
21
           while (ss[i + k] == ss[j + k] \&\& k < 1) k++;
           if (k == 1)
23
24
              p = i;
25
              flag = true;
26
              break;
27
           }
```

```
if (ss[i + k] > ss[j + k])
29
             if (i + k + 1 > j) i = i + k + 1; else i = j + k + 1
30
                 1;
           else if (j + k + 1 > i) j = j + k + 1;
31
           else j = i + 1;
32
         }
33
         if (!flag)
34
         if (i < j) p = i; else p = j;
35
         s[ii] = ss.substr(p, 1);
36
       }
       sort(s, s + n);
38
       int ans = 1;
39
       for (int i = 1; i < n; i++)</pre>
40
         if (s[i] != s[i - 1]) ans++;
41
       printf("%d\n", ans);
42
43
   }
44
   7.2 KMP
   void getfail() {
       f[0] = f[1] = 0;
2
       for(int i = 1; i < n; i++) {</pre>
           int j = f[i];
                    //找到与当前后缀匹配的最靠右的前缀的位置
           while(j && c[i] != c[j]) j = f[j];
               f[i + 1] = c[i] == c[j] ? j + 1 : 0;
       }
   }
9
   void findp(char *T, char *P, int* f) {
10
           int n = strlen(T), m = strlen(P);
           int j = 0;
12
           for(int i = 0; i < n; i++) {</pre>
13
                    //如果不匹配就往前找
14
           while(j && P[j] != T[i]) j = f[j];
15
           if(P[j] == T[i]) j++;
16
           if(j == m) printf("%d\n", i - m + 1);
17
           }
18
  }
19
   7.3
        Manacher
int len = strlen(s);
```

```
int n = 1, pre = 0, ans = 0;
  ss[0] = '$';
  for(int i = 0; i < len; i++) {</pre>
     ss[n++] = '#';
     ss[n++] = s[i];
6
  }
  ss[n] = '#';
  for(int i = 1; i < n; i++) {</pre>
  //pre是在i之前半径延伸地最远的点
  //如果pre的区间包含了i,那么i延伸的区间是i向右和i关于pre
     的对称点向左
  延伸的较小值
  if(i 
     pre] + pre - i);
  else p[i] = 1;
  //继续扩展i的回文区间
  while(ss[i - p[i]] == ss[i + p[i]]) ++p[i];
  //用i更新pre
     if(pre + p[pre] < i + p[i]) pre = i;
18
19
  }
```

7.4 AC **自动机**

```
void getfail() {
      queue<int> q;
2
      for(int i = 0; i < 26; i++) if(ch[0][i]) q.push(ch
         [0][i]);
      while(!q.empty()) {
          int rt = q.front(); q.pop();
          for(int i = 0; i < 26; i++) {</pre>
              int u = ch[rt][i];
              if(!u) {ch[rt][i] = ch[fail[rt]][i]; continue
                 ;}
                         //如果本来没有u节点 那么就走失配
9
                             边 从而形成了图
              q.push(u);
10
              int v = fail[rt];
              while(v \&\& !ch[v][i]) v = fail[v];
12
              fail[u] = ch[v][i];
13
                          //Trie中一个节点可能匹配了多个 所
14
                             以还要记录上一个匹配的后缀
              last[u] = val[fail[u]] ? fail[u] : last[fail[
                 u]];
          }
```

```
}
17
   }
   void print(int j) {
19
       if(j) {
20
            printf("%d:∟%d", j, val[j]);
21
            print(last[j]);
22
       }
23
   }
24
   void findp(char * T) {
25
       int len = strlen(T);
       int j = 0;
27
       for(int i = 0; i < n; i++) {</pre>
28
            int x = T[i] - 'a';
29
            while(j && !ch[j][x]) j = fail[j];
30
            j = ch[j][x];
            if(val[j]) print(j);
32
            else if(last[j]) print(last[j]);
       }
34
   }
35
```

7.5 **后缀数组**

```
int sa[MAXN], rk[MAXN], ht[MAXN], cnt[MAXN], t1[MAXN], t2
       [MAXN];
   void getsa(int m) {
       int *x = t1, *y = t2;
3
       for(int i = 0; i < m; i++) cnt[i] = 0;</pre>
       for(int i = 0; i < n; i++) cnt[x[i] = s[i]]++;</pre>
       for(int i = 1; i < m; i++) cnt[i] += cnt[i - 1];</pre>
   for(int i = n - 1; i >= 0; i--) sa[--cnt[x[i]]] = i;
   //sa数组从0到n-1
       for(int k = 1; k *= 2) {
           int p = 0;
10
           //2nd
           for(int i = n - k; i < n; i++) y[p++] = i;
12
           for(int i = 0; i < n; i++) if(sa[i] >= k) y[p++]
13
               = sa[i] - k;
           //1st
14
           for(int i = 0; i < m; i++) cnt[i] = 0;</pre>
15
           for(int i = 0; i < n; i++) cnt[x[y[i]]]++;</pre>
16
           for(int i = 1; i < m; i++) cnt[i] += cnt[i - 1];</pre>
17
           for(int i = n - 1; i >= 0; i--) sa[--cnt[x[y[i
18
               ]]]] = y[i];
           swap(x, y);
19
```

```
p = 1; x[sa[0]] = 0;
20
            for(int i = 1; i < n; i++)</pre>
21
                 x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i]]
22
                    i] + k] == y[sa[i - 1] + k] && sa[i] + k <
                     n && sa[i - 1] + k < n) ? p - 1 : p++;
            if(p >= n) break;
23
            m = p;
^{24}
       }
25
   }
26
   void getheight() {
       int k = 0;
28
       for(int i = 0; i < n; i++) rk[sa[i]] = i;</pre>
29
   for(int i = 0; i < n; i++) {</pre>
30
                     if(rk[i] == 0) continue;
31
            if(k) k--;
32
            int j = sa[rk[i] - 1];
33
            while(s[i + k] == s[j + k] \&\& i + k < n \&\& j + k
                < n) k++;
            ht[rk[i]] = k;
       }
36
   }
```

7.6 后缀自动机

```
//rt = 1
  int ncnt, last, ch[MAXN][26], val[MAXN], par[MAXN];
  int c[MAXN], rk[MAXN];
  void init(int x, int v) {
       memset(ch[x], 0, sizeof(ch[x]));
5
       par[x] = 0; val[x] = v;
6
7
  }
  void add(int x) {
       int p = last, np = ++ncnt;
9
       memset(ch[np], 0, sizeof(ch[np]));
       init(np, val[p] + 1);
11
       while(p && !ch[p][x]) {
12
           ch[p][x] = np;
13
           p = par[p];
14
15
       if(p == 0) par[np] = 1;
16
       else {
^{17}
           int q = ch[p][x];
18
           if(val[p] + 1 == val[q]) par[np] = q;
           else {
20
```

```
int nq = ++ncnt;
21
                memcpy(ch[nq], ch[q], sizeof(ch[q]));
22
                val[nq] = val[p] + 1;
                par[nq] = par[q];
                par[q] = nq;
25
                par[np] = nq;
                while(p && ch[p][x] == q) {
                     ch[p][x] = nq;
28
                     p = par[p];
29
                }
            }
31
32
       last = np;
33
   }
34
   void tsort() {
35
       memset(c, 0, sizeof(c));
36
       for(int i = 1; i <= ncnt; i++) c[val[i]]++;</pre>
37
       for(int i = 1; i <= ncnt; i++) c[i] += c[i - 1];</pre>
38
       for(int i = 1; i <= ncnt; i++) rk[c[val[i]]--] = i;</pre>
39
   }
40
```

7.7 shift-and

Chapter 8

其他

8.1 **蔡勒公式**

8.2 **斜率** DP

8.3 最长子序列

```
bool solve()

int n, k;

scanf("%d%d", &n, &k);

int a[N];

int dp[N];

int g[N];
```

```
rep(i, 1, n) scanf("%d", &a[i]), g[i] = inf;
int ans1 = 0;
rep(i, 1, n) {
    int k = upper_bound(g+1, g+1+n, a[i]) - g;
    dp[i] = k;
    g[k] = a[i];
    ans1 = max(ans1, k);
}
```

8.4 四边形不等式

```
for(int i=2;i<=m+1;++i)</pre>
2
        s[i][n+1]=n;
3
        for(int j=n;j>i;--j)
5
             for(int k=s[i-1][j];k<=s[i][j+1];++k)</pre>
             {
                  LL tmp=dp[i-1][k]+w[k+1][j];
                  cout<<i<<' '<<j<<' '<<k<<' '<<tmp<<endl;</pre>
        //
                  if(tmp<dp[i][j])</pre>
10
                  {
11
                      dp[i][j]=tmp;
12
                      s[i][j]=k;
13
                  }
14
             }
15
        }
16
   }
17
```

8.5 **数位** DP

```
1 //基本上都是这个模板,但是有点慢
2 int dp(int pos, int sum, int lz, int lim) {
3    if(!lim && !lz && d[pos][sum] != -1) return d[pos][
        sum];
4    if(pos == 0) return sum >= 33;
5    int bd = lim ? s[pos] : 1;
6    int res = 0;
7    for(int i = 0; i <= bd; i++) {
8        if(i == 0) {
9        if(lz) res += dp(pos - 1, sum, lz, lim && i == bd);</pre>
```

```
else res += dp(pos - 1, sum + 1, 0, lim && i
10
                    == bd);
            }
11
            else res += dp(pos - 1, sum - 1, 0, lim && i ==
               bd);
13
       if(!lim && !lz) d[pos][sum] = res;
14
       return res;
15
16
   int solve(int x) {
       int cnt = 0;
18
       while(x) {
19
            if(x \& 1) s[++cnt] = 1;
20
            else s[++cnt] = 0;
21
            x /= 2;
22
23
       return dp(cnt, 33, 1, 1);
  }
25
```

8.6 大数

```
#include <cstdio>
#include <cstring>
  #include <cstdlib>
  #include <iostream>
  #include <algorithm>
  using namespace std;
  #define MAXN 9999
  #define MAXSIZE 10
  #define DLEN 4
  class BigNum
12
  {
  private:
      int a[2000];
                    //可以控制大数的位数
      int len;
                    //大数长度
  public:
17
      BigNum(){ len = 1; memset(a,0,sizeof(a)); }
                            //将一个int类型的变量转化为
      BigNum(const int);
         大数
                             //将一个字符串类型的变量转化
      BigNum(const char*);
20
         为大数
```

```
BigNum(const BigNum &); //拷贝构造函数
21
      BigNum & operator = (const BigNum &);
                                         //重载赋值运算
22
         符,大数之间进行赋值运算
      friend istream& operator>>(istream&,
                                           BigNum&);
                                                      //
24
         重载输入运算符
      friend ostream& operator<<(ostream&,</pre>
                                          BigNum&);
                                                      //
25
         重载输出运算符
26
                                              //重载加法
      BigNum operator+(const BigNum &) const;
         运算符,两个大数之间的相加运算
                                              //重载减法
      BigNum operator-(const BigNum &) const;
         运算符,两个大数之间的相减运算
      BigNum operator*(const BigNum &) const;
                                              //重载乘法
29
         运算符,两个大数之间的相乘运算
      BigNum operator/(const int
                                              //重载除法
                                  &) const;
30
         运算符,大数对一个整数进行相除运算
31
                                             //大数的n次
      BigNum operator^(const int &) const;
         方运算
                                             //大数对一个
      int
             operator%(const int
                                 &) const;
         int类型的变量进行取模运算
             operator>(const BigNum & T)const;
                                               //大数和另
      bool
34
          一个大数的大小比较
             operator<(const BigNum & T) const;</pre>
      bool
      bool
             operator==(const BigNum & T) const;
36
             operator>(const int & t)const;
                                               //大数和一
      bool
         个int类型的变量的大小比较
             operator<(const int &t) const;</pre>
      bool
38
      bool
             operator==(const int &t) const;
39
40
      void print();
                         //输出大数
41
  };
42
  bool BigNum::operator==(const BigNum & T) const {
44
      return !(*this > T) && !(T > *this);
45
  }
46
  bool BigNum::operator==(const int &t) const {
      BigNum T = BigNum(t);
48
      return *this == T;
49
50
  bool BigNum::operator<(const BigNum & T) const {</pre>
51
      return T > *this;
52
53
  bool BigNum::operator<(const int &t) const {</pre>
      return BigNum(t) > *this;
```

```
BigNum::BigNum(const int b)
                                     //将一个int类型的变量转化
       为大数
58
       int c,d = b;
59
       len = 0;
60
       memset(a,0,sizeof(a));
61
       while(d > MAXN)
62
63
           c = d - (d / (MAXN + 1)) * (MAXN + 1);
           d = d / (MAXN + 1);
65
           a[len++] = c;
66
67
       a[len++] = d;
68
   }
69
   BigNum::BigNum(const char*s)
                                      //将一个字符串类型的变量
70
      转化为大数
   {
71
       int t,k,index,l,i;
72
       memset(a,0,sizeof(a));
73
       l=strlen(s);
74
       len=1/DLEN;
       if(1%DLEN)
76
           len++;
       index=0;
78
       for(i=1-1;i>=0;i-=DLEN)
80
           t=0;
81
           k=i-DLEN+1;
82
           if(k<0)
83
                k=0;
84
           for(int j=k;j<=i;j++)</pre>
                t=t*10+s[j]-'0';
86
           a[index++]=t;
87
       }
88
   }
89
   BigNum::BigNum(const BigNum & T):len(T.len) //拷贝构造
90
       函数
   {
91
       int i;
92
       memset(a,0,sizeof(a));
       for(i = 0 ; i < len ; i++)
94
           a[i] = T.a[i];
  }
96
```

```
BigNum & BigNum::operator=(const BigNum & n)
                                                         //重载赋值
       运算符,大数之间进行赋值运算
   {
98
        int i;
        len = n.len;
100
        memset(a,0,sizeof(a));
101
        for(i = 0 ; i < len ; i++)</pre>
102
            a[i] = n.a[i];
103
        return *this;
104
105
   istream& operator>>(istream & in,
                                           BigNum & b)
                                                           //重载输
106
       入运算符
107
        char ch[MAXSIZE*4];
108
        int i = -1;
109
        in>>ch;
110
        int l=strlen(ch);
111
        int count=0,sum=0;
112
        for(i=1-1;i>=0;)
113
114
            sum = 0;
115
             int t=1;
116
            for(int j=0;j<4&&i>=0;j++,i--,t*=10)
117
118
                 sum+=(ch[i]-'0')*t;
119
120
            b.a[count]=sum;
            count++;
122
123
        b.len =count++;
124
        return in;
125
126
   }
127
   ostream& operator<<(ostream& out,</pre>
                                                          //重载输
                                           BigNum& b)
128
       出运算符
   {
129
        int i;
130
        cout << b.a[b.len - 1];</pre>
131
        for(i = b.len - 2; i >= 0; i--)
132
133
            cout.width(DLEN);
134
            cout.fill('0');
            cout << b.a[i];</pre>
136
137
        return out;
138
   }
139
```

```
140
   BigNum BigNum::operator+(const BigNum & T) const
                                                               //两个
141
        大数之间的相加运算
142
        BigNum t(*this);
143
        int i,big;
                           //位数
144
        big = T.len > len ? T.len : len;
145
        for(i = 0 ; i < big ; i++)</pre>
146
147
             t.a[i] +=T.a[i];
148
             if(t.a[i] > MAXN)
149
150
                  t.a[i + 1]++;
151
                  t.a[i] -=MAXN+1;
152
             }
153
154
        if(t.a[big] != 0)
155
             t.len = big + 1;
156
        else
157
             t.len = big;
158
        return t;
159
    }
160
   BigNum BigNum::operator-(const BigNum & T) const
                                                               //两个
161
        大数之间的相减运算
162
        int i,j,big;
163
        bool flag;
164
        BigNum t1,t2;
165
        if(*this>T)
166
167
             t1=*this;
168
             t2=T;
169
             flag=0;
170
        }
171
        else
172
        {
173
             t1=T;
174
             t2=*this;
             flag=1;
176
        }
177
        big=t1.len;
178
        for(i = 0 ; i < big ; i++)</pre>
180
             if(t1.a[i] < t2.a[i])
181
182
                  j = i + 1;
183
```

```
while(t1.a[j] == 0)
184
                      j++;
                 t1.a[j--]--;
186
                 while(j > i)
                      t1.a[j--] += MAXN;
188
                 t1.a[i] += MAXN + 1 - t2.a[i];
189
             }
190
             else
191
                 t1.a[i] -= t2.a[i];
192
193
        t1.len = big;
194
        while(t1.a[t1.len - 1] == 0 && t1.len > 1)
195
196
             t1.len--;
197
             big--;
199
        if(flag)
200
             t1.a[big-1]=0-t1.a[big-1];
201
        return t1;
202
    }
203
    BigNum BigNum::operator*(const BigNum & T) const
                                                              //两个
205
        大数之间的相乘运算
206
        BigNum ret;
207
        int i,j,up;
208
        int temp,temp1;
209
        for(i = 0 ; i < len ; i++)</pre>
210
211
             up = 0;
^{212}
             for(j = 0 ; j < T.len ; j++)
213
214
                  temp = a[i] * T.a[j] + ret.a[i + j] + up;
215
                 if(temp > MAXN)
216
                  {
217
                      temp1 = temp - temp / (MAXN + 1) * (MAXN
218
                      up = temp / (MAXN + 1);
                      ret.a[i + j] = temp1;
220
                  }
                 else
222
                      up = 0;
224
                      ret.a[i + j] = temp;
                  }
226
             }
227
```

```
if(up != 0)
228
                 ret.a[i + j] = up;
229
        }
230
        ret.len = i + j;
        while(ret.a[ret.len - 1] == 0 && ret.len > 1)
232
            ret.len--;
233
        return ret;
234
235
   BigNum BigNum::operator/(const int & b) const
                                                        //大数对
236
       一个整数进行相除运算
237
        BigNum ret;
238
        int i,down = 0;
239
        for(i = len - 1 ; i >= 0 ; i--)
240
241
            ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
242
            down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
243
244
        ret.len = len;
245
        while(ret.a[ret.len - 1] == 0 && ret.len > 1)
246
            ret.len--;
247
        return ret;
248
249
                                                       //大数对一
    int BigNum::operator %(const int & b) const
250
       个int类型的变量进行取模运算
251
        int i,d=0;
252
        for (i = len-1; i>=0; i--)
253
254
            d = ((d * (MAXN+1))% b + a[i])% b;
255
256
        return d;
257
   }
258
   BigNum BigNum::operator^(const int & n) const
                                                         //大数的
259
       n次方运算
   {
260
        BigNum t, ret(1);
261
        int i;
        if(n<0)
263
            exit(-1);
264
        if(n==0)
265
            return 1;
        if(n==1)
267
            return *this;
268
        int m=n;
269
        while(m>1)
270
```

```
{
271
             t=*this;
272
             for( i=1;i<<1<=m;i<<=1)</pre>
273
                 t=t*t;
275
             }
276
             m-=i;
277
             ret=ret*t;
278
             if(m==1)
279
                 ret=ret*(*this);
280
281
        return ret;
282
283
   bool BigNum::operator>(const BigNum & T) const
                                                          //大数和
284
       另一个大数的大小比较
285
        int ln;
286
        if(len > T.len)
287
             return true;
        else if(len == T.len)
289
             ln = len - 1;
291
             while(a[ln] == T.a[ln] \&\& ln >= 0)
292
                 ln--;
293
             if(ln >= 0 && a[ln] > T.a[ln])
294
                 return true;
295
             else
                 return false;
297
        }
298
        else
299
             return false;
300
301
                                                         //大数和
   bool BigNum::operator >(const int & t) const
302
        一个int类型的变量的大小比较
   {
303
        BigNum b(t);
304
        return *this>b;
305
   }
306
307
                              //输出大数
   void BigNum::print()
308
309
        int i;
310
        printf("%d", a[len-1]);
311
        for (int i = len-2; i >= 0; --i) {
             printf("%04d", a[i]);
313
314
        }
```

```
puts("");
puts("");
```

8.7 可以重复走的异或路径

```
#include <bits/stdc++.h>
  using namespace std;
   typedef long long ll;
   const int MAXN = 1e5 + 10;
   vector<pair<int, ll> > g[MAXN];
   vector<ll> a;
   int vis[MAXN];
   11 dis[MAXN];
   11 b[60];
   int n, m;
   void dfs(int u, ll d) {
11
       vis[u] = 1;
       dis[u] = d;
13
       for(int i = 0; i < g[u].size(); i++) {</pre>
            int v = g[u][i].first;
15
            if(vis[v]) a.push_back(d^g[u][i].second^dis[v]);
16
            else dfs(v, dis[u]^g[u][i].second);
17
       }
18
   }
19
   int main() {
20
       cin >> n >> m;
21
       for(int i = 1; i <= m; i++) {</pre>
22
            int u, v;
            11 w;
24
            scanf("%d%d%lld", &u, &v, &w);
25
            g[u].push_back(make_pair(v, w));
26
            g[v].push_back(make_pair(u, w));
       }
28
       dfs(1, 0);
       for(int i = 0; i < a.size(); i++) {</pre>
30
            for(int j = 40; j >= 0; j--) {
31
                if(a[i] & (1LL << j)) {</pre>
32
                     if(!b[j]) {b[j] = a[i]; break;}
33
                     else a[i]^=b[j];
34
                }
35
            }
36
       }
37
       ll ans = dis[n];
```

```
for(int i = 40; i >= 0; i--) ans = min(ans, ans^b[i])
;
cout << ans << endl;
41 }</pre>
```

8.8 **最简分数逼近**