NCTU-CS Digital System Lab.

Online Test (11/07)

Data Preparation

Extract LAB data from TA's directory.
 % tar xvf ~2016dlabta02/Online test2.tar

Design Description and Examples

Design this game:

Input:

1. The range of each input data is between 1~63.
2. Each input data appear between 1~31 times randomly.
3. Each input data will be assigned in the random number of cycle.
4. in[5:0] data is valid with in_valid1 high.

O means the end of input.

in_valid1

mode[3:0] 2 8 4 8 3 8 7 8

in_valid2

- 1. mode[3:0] will assign 1~12 randomly in the first continuous 10 cycles.
- 2. mode [3:0] is valid with in_valid2 high.

In **in[5:0]** channel you will receive a large number of inputs in random cycles between each input data. And the total number of them are unknown, but the number range of each input data is 1~63. Each of them may appear 1~31 times. When we assign 0, it means the end of **in[5:0]**. You need to store the different 9 numbers from **in[5:0]** channel and place 9 numbers to positions 1~9 sequentially. Another channel **mode[3:0]** assign the mode 1~12 randomly, and you must accomplish your design by following rule.

Game rule:

In the following graph, there are positions 1~9 and you place different 9 numbers sequentially. Yellow balls are the mode you get from pattern. According to the mode, change the position of each number sequentially. Finally, output the 9 numbers from position 1 to position 9 in continuous 9 cycles.

Ex:

You get 9 different numbers from Pattern: 33, 58, 61, 2, 17, 26, 10, 48, 39 mode = 4, 7

(There are only two mode in this example but Online_test will give you 10 mode!)

Mode = 4

Mode = 7

Output:

33 17 61 2 26 58 10 48 39

You should output 33 17 61 2 26 58 10 48 39 in 9 continuous cycle.

Your goal is to compute these operations by above rules and output the correct answer.

Inputs

- 1. Input data for in[5:0] will be assign in random cycles while in_valid1 is high.
- 2. **Mode[3:0]** will be assign in continuous 10 cycles while in_valid2 is high.
- 3. All inputs will be changed at clock *negative* edge.
- 4. All signals are unsigned integer.

Input Signals	Bit Width	Description
clk	1	clock
rst_n	1	asynchronous active-low reset
in	6	the range of data is 1~63
in_valid1	1	high when in[5:0] is valid
in_valid2	1	high when mode[3:0] is valid
mode	4	Change position of 9 number by rule discuss above. Range: 1~12mode

Outputs

- 1. Your answer should be output at **out[5:0]** in **9 continuous cycle**.
- 2. **out valid** should be low and **out** should be set to zero after initial reset.
- 3. **out valid** should be set to high when output value is valid.
- 4. The latency of your design in each pattern should not be larger than 100 cycles.
- 5. All outputs are synchronized at clock *positive* edge.
- 6. Test pattern will check whether your answer is correct or not at clock **negative edge** when **out valid** is high.

Output Signals	Bit Width	Description
out	6	output result
out_valid	1	high when out is valid

Specifications

- 1. Top module name : Online_test2 (File name : Online_test2.v)
- 2. Input pins: clk, rst_n, in_valid1, in_valid2, in[5:0], mode[3:0].
- 3. Output pins: out_valid, out[5:0].
- 4. **out_valid** should not be raised when **in_valid** is high (when **in** data is transferring).
- 5. It is active-low asynchronous reset.
- 6. The latency of your design in each pattern should not be larger than 100 cycles.
- 7. Grading policy:

Design: 70% Area: 10%

Time: 10%

Question: 10%

Block Diagram

Note

- 1. Simulation step:
 - Put your design in 01_RTL
 - Simulation to check design : ./01_run
 - Show wave to debug: nWave &
 - Go to folder 02 SYN/ and check synthesis: ./01 run_dc
 - Go to folder 03 GATE/ and check s: ./01 run.f
 - Clear up : ./09_clean_up
- 2. Please add your student ID and name to the file name of .v file before upload file on e3 platform:

Online_test2_0556123_陳小明.v

3. Sample waveform:

