Optimization Problems

LING 572 Advanced Statistical Methods for NLP January 29, 2019

What is an optimization problem?

- The problem of finding the best solution from all feasible solutions.
- Given a function $f: X \rightarrow \mathbb{R}$, find x0 in X that optimizes f(x).
- f is called
 - an objective function,
 - a loss function or cost function (minimization), or
 - a utility function or fitness function (maximization), etc.
- X is a n-variable vector:
 - discrete (possible values are countable): combinatorial optimization problem
 - continuous: e.g., constrained problems

Components of each optimization problem

- Decision variables X: describe our choices that are under our control.
 - We normally use n to represent the number of decision variables, and x_i
 to represent the i-th decision variable.

Objective function f: the function we wish to optimize

 Constraints: describe the limitations that restrict our choice for decision variables.

Standard form of a continuous optimization problem

$$egin{array}{ll} ext{minimize} & f(x) \ ext{subject to} & g_i(x) \leq 0, \quad i=1,\ldots,m \ h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

 $f(x): \mathbb{R}^n \to \mathbb{R}$ is the objective function to be minimized over the *n*-variable vector x,

 $g_i(x) \leq 0$ are called inequality constraints, and

 $h_i(x) = 0$ are called equality constraints.

convention, the standard form defines a **minimization problem**. A **maximization problem** can be treated ating the objective function.

Common types of optimization problem

- Linear programming (LP) problems:
 - Definition: Both objective function and constraints are linear
 - The problems can be solved in polynomial time.
 - https://en.wikipedia.org/wiki/Linear_programming

- Integer linear programming (ILP) problems:
 - Definition: LP problem in which some or all of the variables are restricted to be integers
 - Often, solving ILP problem is NP-hard.
 - https://en.wikipedia.org/wiki/Integer_programming

Common types of optimization problem (cont'd)

- Quadratic programming (QP):
 - Definition: The objective function is quadratic, and the constraints are linear
 - Solving QP problems is simple under certain conditions
 - https://en.wikipedia.org/wiki/Quadratic_programming

- Convex optimization:
 - Definition: f(x) is a convex function, and X is a convex set.
 - Property: if a local minimum exists, then it is a global minimum.
 - https://en.wikipedia.org/wiki/Convex_optimization

Convex set

A set C is said to be **convex** if, for all x and y in C and all t in the interval (0, 1), the point (1 - t)x + ty also belongs to C

Convex function

Let X be a <u>convex set</u> in a real <u>vector space</u> and let $f: X \to \mathbf{R}$ be a function.

f is called convex if:

$$\forall x_1, x_2 \in X, \forall t \in [0,1]: \qquad f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2).$$

f is called strictly convex if:

$$\forall x_1 \neq x_2 \in X, \forall t \in (0,1): \qquad f(tx_1 + (1-t)x_2) < tf(x_1) + (1-t)f(x_2).$$

Terms

A solution is the assignment of values to all the decision variables

A solution is called feasible if it satisfies all the constraints.

The set of all the feasible solutions forms a feasible region.

 A feasible solution is called optimal if f(x) attains the optimal value at the solution. • If a problem has no feasible solution, the problem itself is called infeasible.

• If the value of the objective function can be infinitely large, the problem is called unbounded.

Linear programming

Linear Programming

 The linear programming method was first developed by Leonid Kantorovich in late 1930s.

Main applications: diet problem, supply problem

A primary method for solving LP is the simplex method.

LP problems can be solved in polynomial time.

An example

Suppose that a farmer has a piece of farm land, say L km², to be planted with either wheat or barley or some combina of the two. The farmer has a limited amount of fertilizer, F kilograms, and pesticide, P kilograms. Every square kilom of wheat requires F_1 kilograms of fertilizer and P_1 kilograms of pesticide, while every square kilometer of barley requires F_2 kilograms of fertilizer and P_2 kilograms of pesticide. Let S_1 be the selling price of wheat per square kilometer, and S_2 the selling price of barley. If we denote the area of land planted with wheat and barley by S_1 and S_2 respectively, then programming by choosing optimal values for S_1 and S_2 . This problem can be expressed with the following ling programming problem in the standard form:

```
Maximize: S_1 \cdot x_1 + S_2 \cdot x_2 (maximize the revenue—revenue is the "objective function") Subject to: x_1 + x_2 \leq L (limit on total area) F_1 \cdot x_1 + F_2 \cdot x_2 \leq F \text{ (limit on fertilizer)} P_1 \cdot x_1 + P_2 \cdot x_2 \leq P \text{ (limit on pesticide)} x_1 \geq 0, x_2 \geq 0 (cannot plant a negative area).
```

Property of LP

The feasible region is convex

- If the feasible region is non-empty and bounded, then
 - optimal solutions exist, and
 - there is an optimal solution that is a corner point
 - → We only need to check the corner points

The most well-known method is called the simplex method.

 $\text{maximize z} = x_1 - 3x_2$

subject to $x_1 + x_2 \le 2$

$$8x_1+x_2\leq 4$$

$$x_1, x_2 \geq 0$$

Feasible region and simplex method

Simplex method:

 Start with a feasible solution, move to another on to increase f(x)

Integer linear programming

Integer programming

• IP is an active research area and there are still many unsolved problems.

IP is more difficult to solve than LP.

- Methods:
 - Branch and Bound
 - Use LP relaxation

Tournament	Assigned Number (i)	Chance of bidding (c)1	Cost (m) ²	Time needed (t) ³	Date ⁴
Greenhill	1	0.4	\$500	3	9/20-9/21
Yale	2	0.3	\$700	4	9/19-9/21
Valley	3	0.5	\$500	3	9/27-9/29
Cypress Bay*	4	0.4	\$600	4	10/10-10/12
Presentation	5	0.5	\$350	3	10/11-10/13
Bronx Science	6	0.3	\$600	3	10/17-10/19
St. Mark's	7	0.5	\$500	3	10/18-10/20
Meadows	8	0.6	\$450	4	10/31-11/2
Apple Valley*	9	0.3	\$300	2	11/7-11/8
Glenbrooks*	10	0.5	\$400	3	11/22-11/24
Alta*	11	0.4	\$500	4	12/4-12/6
Blake	12	0.5	\$450	4	12/19-12/21
College Prep	13	0.4	\$350	3	12/20-12/21
Harvard Westlake	14	0.5	\$400	3	1/3-1/5
Sunvitational	15	0.3	\$600	3	1/11-1/12
Lexington	16	0.4	\$500	3	1/17-1/18
Emory	17	0.5	\$600	4	1/23-1/25
Stanford	18	0.6	\$350	4	2/7-2/9
Berkeley	19	0.4	\$350	3	2/14-2/16
Harvard	20	0.5	\$500	4	2/14-2/16

ecision variables: $x_i = \begin{cases} 1 \\ 0 \end{cases}$

$$x_i = \begin{cases} 1 & \text{if decided to compete at the } i^{\text{th}} \text{ tournament} \\ 0 & \text{otherwise} \end{cases}$$

ejective function:
$$\mathbf{z} = \sum_{i=1}^{n} c_i x_i$$

nstraints:

$$\sum_{i=1}^{n} m_i x_i \le M$$

$$\sum_{i=1}^{n} t_i x_i \le T$$

$$x_1 + x_2, x_4 + x_5, x_6 + x_7, x_{12} + x_{13}, x_{19} + x_{20} \le 1$$

$$\text{maximize z} = \sum_{i=1}^{n} c_i x_i$$

subject to
$$\sum_{i=1}^{n} m_i x_i \leq M$$

$$\sum_{i=1}^n t_i x_i \le T$$

$$0 \le x_i \le 1$$
 for every i

 x_i is an integer for every i

$$x_1 + x_2 \le 1$$

$$x_4 + x_5 \le 1$$

$$x_6 + x_7 \le 1$$

$$x_{12} + x_{13} \le 1$$

$$x_{19} + x_{20} \le 1$$

LP vs. ILP

Summary

- Optimization problems have many real-life applications.
- Common types: LP, IP, ILP, QP, Convex optimization problem
- LP is easy to solve; the most well-known method is the simplex method.
- IP is hard to resolve.
- QP and Convex optimization are used the most in our field.