Lecture No. 9

Introduction To Statistics, Statistics And Probability

Dr. Shabbir Ahmad

Assistant Professor,
Department of Mathematics,
COMSATS University
Islamabad, Wah Campus

Measures of Skewness and

Kurtosis

Shape of the Distribution (Graphical Representation)

In this lecture

- Shape of the Distribution
- Measures of the Shape
- Symmetry and Skewness
- Tests of Skewness and Measures of Skewness
- Kurtosis and Measures of Kurtosis

Shape of the Distribution

- ❖ The shape of the distribution provides information about the central tendency and variability of measurements.
- Three common shapes of distributions are:

Normal: bell-shaped curve; symmetrical

Skewed: non-normal; non-symmetrical; can be positively or negatively skewed

Multimodal: has more than one peak (mode)

- ❖ Normal Distribution is symmetrical & bell-shaped; often called "bell-shaped curve"
- ❖ When a variable's distribution is *non-symmetrical*, it is *skewed*. This means that the mean is not in the center of the distribution.

Normal Distribution

Positively Skewed Distribution:

Negatively Skewed Distribution

Bimodal Distribution

Measures of the Shape

There are three measures of shape:

- **☐** Skewness
 - Absence of symmetry
 - > Extreme values in one side of a distribution
- **□** Kurtosis
 - > Peakedness of a distribution
- ☐ Box and Whisker Plots
 - Graphic display of a distribution
 - Reveals skewness

Symmetry and Skewness

- A frequency distribution is said to be symmetrical if the frequencies are equally distributed on both the sides of central value. In a symmetrical distribution, there is only one mode and the values of mean, median and mode are equal. This is called symmetry.
- Skewness is the lack of symmetry in a distribution around some central value (mean, median or mode). It is thus the degree of asymmetry.
- Skewness is the measure of the shape of a nonsymmetrical distribution.
- Two sets of data can have the same mean & SD but different skewness.
- Two types of skewness are:

Positive skewness

Negative skewness

Skewness

Negatively Skewed

Symmetric (Not Skewed) **Positively Skewed**

Skewness

(Relative Locations for Measures of Central Tendency)

Dr. Shabbir Ahmad

Tests of Skewness

In order to ascertain whether a distribution is skewed or not the following tests may be applied. Skewness is present if:

- The values of mean, median and mode do not coincide.
- When the data are plotted on a graph they do not give the normal bell shaped form i.e. when cut along a vertical line through the center the two halves are not equal.

Measures of Skewness

1.Karl Pearson coefficient of skewness

Coefficient of skewness =
$$\frac{Mean - Mode}{Standard\ Deviation}$$

OR

Coefficient of skewness =
$$\frac{3(Mean - Median)}{Standard\ Deviation}$$

2. Bowley's quartiles coefficient of skewness

Quartile Coefficient of skewness =
$$\frac{Q_1 + Q_3 - 2Q_2}{Q_3 - Q_1}$$

3. Pearson's moment's coefficient of skewness

Moment Coefficient of skewness = $\frac{m_3^2}{m_2^3}$

First moment ratio also denoted by b_1

Key to Interpret Skewness:

The coefficient of skewness give positive result for positively skewed distribution and negative result for negatively skewed.

This measure is always zero for a symmetrical distribution.

Example 1. Find the Karl Pearson coefficient of skewness in given data 3, 7, 7, 7, 8, 8, 8, 18. Solution.

X	$(X-\overline{X})^2$
3	26.11
7	1.23
7	1.23
7	1.23
7	1.23
8	0.012
8	0.012
8	0.012
18	97.81
$\sum X = 73$	$\sum (X - \bar{X})^2 = 128.87$

$$Mean = \bar{X} = \frac{\sum X}{n} = \frac{73}{9}$$

$$Mean = \overline{X} = 8.11$$

Mode is the most repeated value in data

$$Mode = 7$$

$$S.D = \sqrt{\frac{\sum (X - \overline{X})^2}{n}} = \sqrt{\frac{128.87}{9}}$$

$$S.D = 3.78$$

Coefficient of skewness =
$$\frac{Mean - Mode}{Standard Deviation}$$

Coefficient of skewness =
$$\frac{8.11 - 7}{3.78} = \frac{1.11}{3.78}$$

Coefficient of skewness = 0.29365

Example 2: let suppose we calculate the first quartile is 15, second quartile is 52 and third quartiles is 80, by Bowley quartiles coefficient of skewness calculate the coefficient of Skewness. **Solution.**

Coefficient of skewness =
$$\frac{Q_1 + Q_3 - 2Q_2}{Q_3 - Q_1} = \frac{15 + 80 - 2(52)}{80 - 15}$$

Coefficient of skewness =
$$\frac{-9}{65}$$

Coefficient of skewness = -0.14

As the value of skewness is less than zero, the data is negatively skewed.

Example 3: Lecture 18 and 19, example 1, we calculate the first four moments about mean such as $m_1 = 0$, $m_2 = 4.67$, $m_3 = 0$, $m_4 = 32.67$, using Pearson's moment's coefficient of skewness to find the coefficient of skewness.

Solution.

Coefficient of skewness =
$$b_1 = \frac{m_3^2}{m_2^3} = \frac{(0)^2}{(4.67)^2}$$

Coefficient of skewness =
$$b_1 = 0$$

As the skewness is equal to zero, the distribution is symmetrical.

Kurtosis

Kurtosis is the degree of peakedness of a distribution usually taken as relative to normal distribution.

- •A distribution having a relatively high peak is called leptokurtic.
- A distribution having which is flat-topped is called platykurtic.
- ■The normal distribution which is neither very peak nor very flat-topped is called mesokurtic.

Measures of Kurtosis

❖ Measure of kurtosis based on the fourth moments about mean and second moments about mean.

Moments coefficient of kurtosis =
$$b_2 = \frac{m_4}{m_2^2}$$

- \Box if $b_2 > 3$, the distribution is leptokurtic
- \Box *if* $b_2 < 3$, *the distribution is* platykurtic
- \Box *if* $b_2 = 3$, *the distribution is* mesokurtic

Example 1. Lecture 20, example 1, we calculate the first four moments about mean such as $m_1=0$, $m_2=4.6, m_3=0, m_4=32.67$, find the kurtosis.

Solution.

Moments coefficient of kurtosis =
$$b_2 = \frac{m_4}{m_2^2} = \frac{32.67}{(4.67)^2}$$

Moments coefficient of kurtosis = $b_2 = 1.50$

As b_2 <3, the distribution is platykurtic.

ANY QUESTION