

信息科学与工程学院

2022-2023 学年第二学期

实验报告

课程名称:	高频电子线路实验与课程设计	
实验名称:	高频功率放大器	

专业班级通信工程 三班学生学号202100120059学生姓名陈潇杰实验时间2023年4月8日

仿真实验部分

1) 集电极电流 IC 与输入信号之间的非线性关系的测量

(1).当输入信号的频率为 4MHz,幅度为 0.7V 时,利用 Multisim 软件的瞬态分析对功率放大器进行分析(注意:设置起始时间为 0.03s,终止时间为 0.030005s,输出变量为 VV3#branch)

(2).当输入信号的幅度增大到 1V 时,设置同(1)

(3).根据(1)(2)中的仿真结果得到对应的结论

答: 随着输入信号幅度的增大,输出幅度也增大

2) 输入与输出信号之间的线性关系

创建如图 4.3.15 所示的仿真电路后,单击"仿真"按钮,用四踪示波器观察输入,输出及发射极信号的波形,并得到相应的结论

输入信号

输出信号

发射极信号

结论: 高频功率放大器的集电极电流成脉冲状, 各频率成分经过 LC 谐振回路选频滤波后输出正弦波。

3)调谐特性的仿真

仿真电路图

改变回路的可变电容 C_1 ,(百分比由大到小变化),观察电流指示和示波器 所测量的输入、输出信号波形。

0	10	20	30	40	50	60	70	80	90
-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13
6	6	7	5	7	4	3	2	7	8

(第一行是可变电容的百分比, 第二行是电流表的示数,单位是 mA)

答:可变电容为 48%时回路谐振,此时电流表示数为-0.933mA.随着 C1 电容增大,电流表示数波动变化。

谐振时波形

4) 负载特性的仿真

仿真电路图

改变回路的可变电阻,用万用表的电压档和示波器观察回路电压随 R1 变化的情况。

答: 当 R1 从小变大时,回路两端的电压变大,输出波形幅度变大发射极电流波形幅度减小,出现凹陷,仿真结果显示,当可变电阻 R1 的百分比为 100 即最大值时,回路两端的电压最大。

5) 放大特性的仿真

电路图如下:

V1/V	0.6	0.7	0.8	0.9	1.0
电流表示	-0.015	-0.134	-0.290	-0.315	-0.353
数/mA					

答: V1 从小到大,发射极电流波形幅度变大,凹陷加深,输入信号波形幅度变大,输出信号波形幅度变大,继续增加 V1 会出现失真

6)调制特性的仿真

改变电源电压 VCC(由小到大变化),用万用表的交流档和示波器观察电路两端电压 V_{cm} 及发射极电流对电源电压 VCC 变化的情况。

VCC/	1	2	3	4	5	6	7	8	9	10
V										
电 压	0.59	1.15	1.71	2.33	2.43	2.43	2.43	2.43	2.43	2.43
表示	1	8	9	6	5	5	5	5	5	5
数/V										

答: V_{cm}随 VCC 增大而增大,到达一定数值时停止增大或者缓慢增大,发射极电流随着 VCC 增大,凹陷消失,幅度增大

实验室操作部分

一、实验目的、实验仪器与实验原理

定验目的:

11.3解丙类高频功率放大器的组成、特点。

137.进一片理解高频谐振功率放大器的工作原理以及负载阻抗、输入激励电压、电源电压等对高频谐振功率放大器工作状态及性能的影响。

(3). 掌握高频谐振功率放大器的调谐、调整方法以及主要质量指标的测量方法。4). 掌握高频谐振功率放大器的设计方法。

实验仪器与设备:

数官双踪东波器、高频毫伏表、万用表,高频信号发生器和实验模块11一高频功率放大器.

实验原理:

高频功率放大器通常工作在两类工作状态,负载为LC谐振回路,以实现选频滤波和阻抗匹配。

1).谐振功率放大器的工作原理:

按照电流导通角的范围可分为甲类、Z类、历类等不同类型的放大器。《越小、700字放大器。》来就高。

大器效字越高。
ic 傳里o+级数展开式为:
ic= Ico + Icim coswt + Icam Coszwt +11、

式中,Ico,Icum,Icum,心Icum分别为集电极电流的直流分量、基波分量以及各高次谐波分量的振幅,与导通角的之间的关系委分别为:

 $\begin{cases}
I_{co} = \frac{1}{2\pi} \int_{-\pi}^{\pi} i c \, d(wt) = i c_{max} d_{o}(\theta) \\
I_{clm} = \frac{1}{\pi} \int_{-\pi}^{\pi} i c \, d \cos wt \, d(wt) = i c_{max} d_{o}(\theta) \\
I_{cnm} = \frac{1}{\pi} \int_{-\pi}^{\pi} i c \cos nwt \, d(wt) = i c_{max} d_{o}(\theta)
\end{cases}$

岁θ=120°时, Icim达到最大值、θ越小, Δ1(θ) 就越大, 效率就越高,但证小, 功率也小。综合考虑, 最佳导通角θ应取 70°~80°·

根据是否了作在饱和区,分为欠压、过压和临界三种工作状态。

- ◎若在任何时刻都工作在放大区,则称为欠压状态。
- ② 若 刚刚进入饱和区的边缘,则称为临界状态
- ③若有部分时间进入饱和区,则 称为 过压状态 .

因欠压效率低,过压失真严重,谐波分量大,所以一般选在临界状态。

临界状态时,

集电极输出功率为 Po=当Icim Vcm=当Icim Rz,其中尽为集电极等效负载电阻。

直流功率为 $P_0 = V_{CL} - I_{CO}$ 效率为 $\int_C = \frac{P_0}{P_0} = \frac{1}{2} \frac{V_{CLm}}{V_{CL}} \frac{I_{Clm}}{I_{Co}} = \frac{1}{2} \frac{3}{9} I(0)$

式中, $= \frac{V_{Cir}}{V_{Cc}}$, 为集电极电源电压利用系数 . $9_1(\theta) = \frac{I_{Cim}}{I_{Co}}$, 为波形系数 . 2) 谐振功率率放大器的 外部特性 :

()负载特性(Vcc, Vbm, VBB 不变)、RI变化。

从灰压到临界状态,icmax略级减小,fr呼不变,Icm和Ico也几乎不变;从临界状态到过压状态,icmax迅速下降,曲线出现凹陷,Icm和Ico也迅速下降。

二、实验内容

2. 实验准备及对电路进行调谐

- (1) 11T01、11T02 插 4MHZ (或 10.7MHZ) 的中周
- (2) 打开稳压电源上电成功。
- (3) 调节 11W01 使 11TP07 处电压调至 5.5V 左右。输入 4MHZ (或 10.7MHZ), 140mVpp 的调频信号
 - (4) 测试 11TP02, 调节 11T01 中周使输出幅度最大, 测试 11TP05, 调节 11T02

使输出幅度最大, 不失真。

(5) 连接 11K02 的 2 位。测试 11TP03, 微调 11T01、02 中周, 使弱过压状态出现。

3、测试电路的工作点

(1) 当不加输入激励电压 时(11IN01 端输入为零),测量功放管 T2 的各 极直流电压 VCO、 VBO、 VEO 及电流 ICO 的值。

V _{c0}	V _{BO}	V _{EO}	I _{co}
5.59V	0	0	0

(2) 加上输入激励电压 vi,使 T2 管的基极输入电压 Vbm=1V 左右时,记下 T2 的各极直流电压 VCO、 VBO、

VEO 及电流 ICO 的值。

V _{c0}	V _{B0}	V _{E0}	I _{co}
5.34V	0	0.05V	5mA

4. 负载特性的测试

在上述实验的基础上,改变负载电阻(调整 11K02 电位器),观察 11TP03 点的电压波形(即发射极电流的波形)。可以观察如图所示的脉冲波形,但欠压时波形幅度比临界时大。并测量三种状态下电流(间接测量法:测量电阻 11R06 两端的直流电压值)和负载回路两端电压的值,填入自行设计的表格内。分析表格并得到相应的结论。根据欠压、临界、过压时负载电阻的大小,计算出临界状态下的功率 Po,PD,ηC。负载接 11K02 的 1 位,电路工作在欠压状态;负载接 11K02 的 3 位,电路工作在过压状态;

临界状态

过压状态

	I _{co}	V
欠压状态	4mA	1.02V
临界状态	5mA	1.52V
过压状态	3mA	1.70V

5、放大特性的测试

调整负载电阻使工作在临界状态,保持 VCC、VBB 不变,改变信号源幅度,即改变激励信号电压 Vbm,观察 11TP03 电压波形。信号源幅度变化时, 应观察到欠压、临界、过压脉冲波形。

(1) 在弱过压状态基础上,逐渐增加输入信号的幅度至 175mVpp 左右,观察过压状态,并绘图。

(2) 恢复弱过压状态,逐渐减小输入信号的幅度至 125mVpp 左右,观察欠压状态,并绘图。

(3) 恢复弱过压状态,信号调至 133mVpp 左右,观察临界状态,并绘图。测量激励信号电压 Vbm 变化引起的电流和负载回路两端电压值的变化,填入自行设计的表格内。

当 V_{bm}增大时,表格如下:

V _i	I _{co}	V_{cm}
125	3mA	0.90V
133	5mA	1.52V
175	9mA	1.74V

6、集电极调制特性的测试

(1) 恢复 140mVpp 左右的弱过压状态,改变电源电压 VCC,观察对放大器 工作状态的影响;

VCC 很小时放大器的工作状态:

VCC 增加时

VCC 继续放大时

VCC 最大值时

(2) 调节 11W01, 使 11TP07 处电压为 8.5V, 观察欠压状态 波形并绘图。

调节 11W01, 使 11TP07 处电压为 4.5V, 观察过压状态并绘图;

(3) 调节 11W01 测量电源电压 VCC 变化引起的电流和负载回路两端电压值 的变化,填入自行设计的表格内。

VCC/V	3	4	5	6	7	8	9	10
I _{co} /mA	2	4	5	6	6	6	6	6
V _{cm} /V	0.92	1.16	1.40	1.64	1.80	1.82	1.86	1.90

分析表格并得到相应的结论,画出集电极调制特性曲线。 注意: VCC 变化间隔为 1V

答:可以得出结论: 随着 VCC 增加, I_{co} 和 V_{cm} 都呈上升趋势

7.思考题:

(1) 对电路进行调制时,用示波器观察输出端的电压波形或用电流表观察集电极电流的大小,输出端的电压波形或电流表读数为何种状态时,才意味着电路谐振?

答: 当输出端的电压波形达到最大且不失真或者电流表读数达到最大值, 电路谐振。

(2) 为何调谐前应将电源电压 VCC 设定为额定值的 1/3~1/2?

答: 为了保护电路, 电路未调谐时, 功率主要在功放管的直流功率上, 容易使功放管烧坏

(3) 电路出现自激现象时,用示波器将观察到何种现象?

答:输出信号会出现震荡,使输出波形失真

(4) 在不改变电路结构的情况下,如何测量直流电流 102?

答: 测量电阻 11R06 两端的直流电压值再计算电流

(5) 分析电路在不加输入激励电压 v1 和加输入激励电压 v1 两种情况下,晶体管 11Q02 的各级直流电压 V_{co} 、 V_{bo} 、 V_{bo} 及直流电流 I_{co} 的值将产生怎样的变化?

答: 在不加激励电压时, 只有直流电和而其他值均为 0, 但是当加上激励电压后, 除 VB0 仍为 0, VC0 和 VE0 及直流电流 IC0 的值均变大

(6) 有几种测量发射极电流 i, 的方法?

答: 1.测量发射极电阻电压, 计算电流。2.将电流表串联在发射极上测量。

8. 实验心得

本次实验,让我从实践角度理解了高频功率放大器的电路结构。学会了如何对高频功率放大器进行调谐。深入了解到丙类高频功率放大器的组成,特点。并且通过实验更深入了解了高频功率放大器的放大特性,负载特性以及集电极调制特性。