

AUTHOR

kyle wodehouse

PUBLISHED February 14, 2025

grabbing the fit parameters from the paper sandler references and quickly plotting the curve

also note that the equations from the paper are given in the form

 $\Delta_{ ext{mix}} H = x(1-x) \left(h_0 + h_1(1-2x) + h_2(1-2x)^2
ight)$

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
def DeltaH_mix(x2, params):
   h0, h1, h2 = params
   return x2 * (1 - x2) * (h0 + h1 * (1 - 2*x2) + h2 * (1 - 2*x2)**2)
params_dict = {
    'H': (230, 578, 409),
    'F': (-1984, 1483, 1169),
   'Cl': (-2683, 929, 970),
    'Br': (-3087, 356, 696),
    'I': (-4322, -161, 324)
}
fig, ax = plt.subplots(figsize=(10,8), dpi=500)
for name in params_dict.keys():
   x = np.linspace(0,1,1000)
   y = DeltaH_mix(x, params_dict[name])
   ax.plot(x, y, label=name)
ax.legend()
ax.grid()
ax.set(xlim=(0,1), xlabel='x_{C_6F_5Y}', ylabel='\Delta_{mix} \{H\}');
```


 $rac{d}{dx_2}\Delta H_{
m mix} = (1-2x_2)(h_0+h_1(1-2x_2)+h_2(1-2x_2)^2) + x_2(1-x_2)(-2h_1-4h_2(1-2x_2))$

Cl

```
term1 = (1 - 2*x2) * (h0 + h1 * (1 - 2*x2) + h2 * (1 - 2*x2)**2)
                  term2 = x2 * (1 - x2) * (-2 * h1 - 4 * h2 * (1 - 2*x2))
                   return term1 + term2
fig, ax = plt.subplots(figsize=(10,8), dpi=500)
colors = plt.cm.tab10(np.linspace(0, 1, 5))
for color, name in zip(colors, params_dict.keys()):
                  x = np.linspace(0,1,1000)
                  y = d_DeltaH_mix(x, params_dict[name])
                  ax.plot(x, y, label=name, color=color)
ax.legend()
ax.grid()
ax.set(xlim=(0,1), xlabel='$x_{C_6F_5Y}$', ylabel='$\Delta_{mix} {H}$', title='plot of delta_{mix} {H}$', 
                                                                                                                                                                                              plot of derivatives
             4000
```


- x: mole fraction C6F5Y (float or nparray) - params: the h0, h1, h2 fit parameters (tuple)

returns the difference between the partial molar properties and molar properties

```
- (1) difference for benzene
- (2) difference for the C6F5Y
```

return (delta_mix - x * derivative, delta_mix + (1 - x) * derivative)

```
benzenes, c6f5ys = [], []
for mixture, params in zip(['H', 'F', 'Cl', 'Br', 'I'], params_dict.keys()):
   diff_benzene, diff_c6f5 = differences(composition, params_dict[params])
```

 $derivative = d_DeltaH_mix(x, (h0, h1, h2))$ $delta_mix = DeltaH_mix(x, (h0, h1, h2))$

returns:

composition = 0.333

h0, h1, h2 = params

benzenes.append(diff_benzene) c6f5ys.append(diff_c6f5) df = pd.DataFrame({'composition':composition, 'Y':['H', 'F', 'Cl', 'Br', 'I'], 'benzene difference': benzenes,

'C6F5Y difference':c6f5ys})

composition = 0.667benzenes, c6f5ys = [], []for mixture, params in zip(['H', 'F', 'Cl', 'Br', 'I'], params_dict.keys()): diff_benzene, diff_c6f5 = differences(composition, params_dict[params]) benzenes.append(diff_benzene) c6f5ys.append(diff_c6f5)

df2 = pd.DataFrame({'composition':composition, 'Y':['H', 'F', 'Cl', 'Br', 'I'], 'benzene difference': benzenes, 'C6F5Y difference':c6f5ys}) df = pd.concat([df, df2])

Υ Br CI F

composition

df.pivot(index='composition', columns='Y')['benzene difference']

0.667 -1424.003857 -1200.267830 -836.973728 127.043932 -1994.638285	0.333	-199.082911	-17.835391	184.271225	177.887603	-473.017385
	0.667	-1424.003857	-1200.267830	-836.973728	127.043932	-1994.638285
	0.667	-1424.003857	-1200.267830	-836.973728	127.043932	-1994.638285

Н

-35.929454

-413.459347

ı

0.667

benzene differences!!

df.pivot(index='composition', columns='Y')['C6F5Y difference']

-361.496370

Υ	Br	CI	F	н	I
composition					
0.333	-1529.168499	-1474.700279	-1275.061265	-43.700907	-1947.077871

-364.328594

|--|--|

-330.776461