# Correção Exercícios Grafos

Para os exercícios sobre "partições" do bipartido e multipartido contidos no arquivo "Bipartido.pdf"

## Grafo bipartido

- Qual é a condição para um grafo bipartido completo K<sub>p\_1,p\_2</sub> ser regular?
- Qual é o menor grau e o maior grau de um grafo bipartido completo  $K_{p\_1,p\_2}$ ?
- Qual é o maior número de arestas possível para um K<sub>p\_1,p\_2</sub> completo e regular?
- Seja G(V,A) um grafo bipartido completo com:
  - 1. |V| = |V1| + |V2| = t vértices;
  - 2. |V1| = |V2|.

Prove que G tem a seguinte quantidade de arestas: t²/4

## Grafo bipartido

Na verdade, você pode ampliar ainda mais a aplicação do conceito e chegar ao grafo "multipartido" completo  $K_{m, n, p, q}$  ....... Onde cada partição apresenta vértices com o grau máximo possível, porém, com adjacências apenas entre partições diferentes;



- Qual é a condição para um grafo multipartido completo  $K_{p\_1,p\_2,p\_3,...p\_i}$  ser regular?
- Qual é o menor grau e o maior grau de um grafo "multipartido" completo  $K_{p\_1,p\_2,p\_3,...p\_i}$ , considerando que as partições têm tamanhos diferentes entre si?
- Qual é o maior número de arestas possível para um  $K_{p\_1,p\_2,p\_3,...p\_i}$  completo e regular?

# Respostas

- Qual é a condição para um grafo bipartido completo  $K_{p1,p2}$  ser regular?
- Seja G(V,E) um grafo bipartido completo:
  - <sup>0</sup> V= V1 U V2, V1  $\cap$  V2 =  $\emptyset$ , |V1|= p1, |V2|=p2,
  - $^{\circ}$  (vi,vj) ∈ E  $\Leftrightarrow$  vi ∈ V1 e vj ∈ V2 ou o contrário vj ∈ V1 e vi ∈ V2,
  - O Sendo um grafo completo:
    - § Cada vi ∈ V1 apresenta o maior grau possível grau(vi) = |V2| (1) e
    - § Cada  $vj \in V2$  apresenta o maior grau possível grau(vj) = |V1| (2);

Além disso, para G ser regular teremos que:

grau(vi) = grau(vj)=constante;

Substituindo em (1) e (2) tem-se

grau(vi) = |V2| = grau(vj) =  $|V1| \Rightarrow |V2|$  = |V1|.

#### Outra forma:

considere G como bipartido completo e regular com |V1|!=|V2|, por exemplo, |V1| > |V2|. Nessa hipótese, os vértices da partição menor possuiriam grau maior do que os vértices da participação maior, o que seria um absurdo pois considerou-se o grafo como regular. Portanto, |V2| = |V1|.

- Qual é o menor e o maior grau de um grafo bipartido completo K<sub>p1,p2</sub>?
- Seja G(V,E) um grafo bipartido completo:
  - o V= V1 U V2, V1  $\cap$  V2 =  $\emptyset$ , |V1|= p1, |V2|=p2,
  - $^{\circ}$  (vi,vj) ∈ E  $\Leftrightarrow$  vi ∈ V1 e vj ∈ V2 ou o contrário vj ∈ V1 e vi ∈ V2,
  - O Trata-se de um grafo bipartido completo:
    - § Cada vi ∈ V1 apresenta o maior grau possível grau(vi) = |V2| (1) e
    - § Cada vj  $\in$  V2 apresenta o maior grau possível grau(vj) = |V1| (2);
  - 1. Caso G seja regular, teremos que  $\Delta$ (Grau máximo) =  $\delta$  (Grau mínimo) conforme deduzido no exercício anterior;
  - 2. Caso não seja regular: |V1| ≠ |V2|:
    - O Seja vi ∈ V1 e |V1| > |V2|:
      - § Conforme (1) grau(vi) = |V2| e δ (Grau mínimo) equivaleria a | V2| (tamanho da menor partição);
      - § Conforme (2) grau(vj) = |V1| e  $\Delta$ (Grau máximo) equivaleria a |V1| (tamanho da maior partição).
    - O Raciocínio similar ocorre para vj ∈ V2 e |V2| > |V1|
- Conclusão:
  - <sup>0</sup> Δ(Grau máximo) = tamanho da Maior partição
  - <sup>ο</sup> δ (Grau mínimo) = Tamanho da Menor partição

V1



|V1| > |V2|

• Qual é o maior número de arestas possível para um  $K_{p1,p2}$  completo e regular?

#### Vimos anteriormente que:

- Grau(vi) = |V1|= |V2|
- O grafo é regular, todos os vértices possuem o mesmo grau e o tamanho das duas partições são iguais.

$$\sum_{v \in V} grau(v) = 2|A| \Rightarrow \sum_{v_i \in V1} grau(v_i) + \sum_{v_j \in V2} grau(v_j) = 2|A| \Rightarrow$$

$$|V1| * |V2| + |V2| * |V1| = 2|A| \Rightarrow$$

$$2 * |V1| * |V2| = 2|A| \Rightarrow$$

$$|A| = |V1| * |V2|$$

Seja G(V,A) um grafo bipartido completo com:

Prove que G tem t<sup>2</sup>/4 arestas

Como 
$$|V1| = |V2|$$
 temos:  $|V1| + |V1| = t$ , assim:  $2|V1| = t$ ,  $e |V1| = t/2$ 

O mesmo pode ser feito para |V2|, repetindo o mesmo processo temos |V2| = t/2

- Do exercício anterior |A| = |V1| \* |V2|, então:
- $|A| = t/2 * t/2 = t^2/4$

### Qual é a condição para um grafo multipartido completo K<sub>p1,p2,p3,...pm</sub> ser regular?

Sendo G(V,A) um grafo multipartido completo com m partições, V=V1 U V2 U V3 U...U Vm, V1 \(\text{V2} \cap \text{V3} \cap \text{Vm} = \varnothing, onde cada vértice apresenta o maior número de adjacências possível (maior grau possível), ou seja, dado um vi \(\in \text{Vi o grau(vi)} = \text{soma dos tamanhos das demais partições:}

$$grau(v_i) = \sum_{V_i \in V - V_i} |V_j|$$

Suponha G seja regular e que Vi seja a única partição de tamanho diferente das *m-1* demais partições de tamanho igual a *t*. Seja Vi a partição de tamanho menor do que as demais |Vi|<*t*:

1. Tomando-se um vértice vi  $\in$  Vi, cujo grau(vi) corresponde à soma dos tamanhos das m-1 partições de tamanho t e maiores do que Vi.

$$grau(v_i) = \sum_{V_i \in V - V_i} |V_j| = (m-1) * t$$

2. Agora tomando vj  $\in$  V-Vi o grau(vj) corresponde à soma dos tamanhos das m-1 partições de tamanho t e maiores do que Vi.

$$grau(v_j) = \sum_{V_w \in V - V_j} |V_w| = (m-2) * t + |V_i|$$

Para G ser regular grau(vi)=grau(vj)  $\rightarrow$  (m-1)t=(m-2)t+|Vi|  $\rightarrow$  |Vi|=t, porém |Vi| < t e, portanto, grau(vi) será maior do que o grau(Vj) uma contradição, pois G foi tomado como regular. Conclusão similar é encontrada fazendo |Vi| > t. Dessa forma, para G ser regular as partições todas têm que apresentar o mesmo tamanho.

 Qual é o menor grau e o maior grau de um grafo "multipartido" completo K<sub>p1,p2,p3,...pm</sub>, considerando que as partições têm tamanhos diferentes entre si?

Seja G(V,A) um grafo multipartido completo com *m* partições, onde:

V=V1 U V2 U V3 U...U Vm, V1
$$n$$
V2 $n$ V3 $n$ Vm =  $\emptyset$ ,

a) Seja um v1 
$$\in$$
 V1 o grau(v1) = soma dos tamarhos das partições maiores; 
$$grau(v_1) = \sum_{V_j \in V - V_1} |V_j| = T 1$$

b) Seja vm 
$$\in$$
 Vm, o grau(vm) = soma dos tamanhos das demais partições  $grau(v_m) = \sum_{V_j \in V - V_m} |V_j| = T 2$ 

De fato T1 > T2

pois grau(vi) é calculado sobre os tamanhos das maiores partições V-V1, ao passo que o grau(vm) exclui a própria Vm, a maior partição, no cômputo de T2, pois grau(vm) á calculado em vj ∈ V-Vm, portanto exclui a maior partição

- Qual é o menor grau e o maior grau de um grafo "multipartido" completo K<sub>p1,p2,p3,...pm</sub>, considerando que as partições têm tamanhos diferentes entre si?
- Ordenando-se das *m* partições pelos seus tamanhos:
  - 1) O vértice de maior grau ocorre na partição de menor tamanho; o menor grau equivale à soma dos tamanhos das demais partições;

Δ(Grau máximo) = T1

2) O vértice de menor grau ocorre na partição de maior tamanho; o maior grau equivale à soma dos tamanhos das demais partições;

 $\delta$  (Grau mínimo) = T2

 Qual é o maior número de arestas possível para um K<sub>p1,p2,p3,...pm</sub> completo e regular?

$$\sum_{v \in V} grau(v) = 2|A| \Rightarrow |V1| * \sum_{V_i \in V - V1} |Vi| + |V2| * \sum_{V_i \in V - V2} |Vi| + ... + |Vm| * \sum_{V_i \in V - Vm} |Vi| = 2|A|$$

Como o grafo é regular, sabemos que as *m* partições têm o mesmo tamanho N, então teremos :

$$\sum_{v \in V} grau(v) = 2|A| \Rightarrow$$

$$N * \sum_{V_i \in V - V1} N + N * \sum_{V_i \in V - V2} N + ... + N * \sum_{V_i \in V - Vm} N = 2|A|$$

$$\Rightarrow N \left(\sum_{V_i \in V - V1} N + \sum_{V_i \in V - V2} N + ... + \sum_{V_i \in V - Vm} N\right) = 2|A| \Rightarrow$$

$$N \left(\sum_{V_i \in V - V1} N + \sum_{V_i \in V - V2} N + ... + \sum_{V_i \in V - Vm} N\right) = 2|A| \Rightarrow |A| = \frac{N^2(m^2 - m)}{2}$$

• 
$$\beta * [\beta * (M-1)] + \beta * [\beta * (M-1)] + ... = 2|A|$$

•

• 
$$\beta(M * (M-1) * \beta) = 2|A|$$

• 
$$\beta^2 M * (M-1) = 2|A|$$

• 
$$\beta^2 M^2 - \beta^2 M = 2 |A|$$

•

• 
$$|A| = (\beta^2 * (M^2 - M))/2$$