

AD-A194 348

CORRELATIONS BETWEEN WETTABILITY AND STRUCTURE IN
MONOLAYERS OF ALKANETHIOLS ADSORBED ON GOLD(U) HARVARD
UNIV CAMBRIDGE MASS DEPT OF CHEMISTRY C D BAIN ET AL.

1/1

UNCLASSIFIED

MAY 88 TR-7 N88014-85-K-8898

F/G 7/4

NL

WIC FILE W8

AD-A194 348

CORRELATIONS BETWEEN WETTABILITY AND STRUCTURE
IN MONOLAYERS OF ALKANETHIOLS ADSORBED ON GOLD

Colin D. Bain and George M. Whitesides*
Department of Chemistry
Harvard University
Cambridge MA 02138

Technical Report No. 7 (May 1988)

Interim Technical Report

(Accepted for publication in J. Am. Chem. Soc.)

PREPARED FOR DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 Wilson Boulevard
Arlington VA 22209

DEPARTMENT OF THE NAVY
Office of Naval Research, Code 1130P
800 North Quincy Street
Arlington VA 22217-5000

ARPA Order No.: NR 356-856
Contract No.: N00014-85-K-0898
Effective Date: 85 September 01
Expiration Date: 88 August 31

Principal Investigator: George M. Whitesides
(617) 495-9430

The views and conclusions in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

DTIC
ELECTE
MAY 25 1988
S H C D

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution unlimited

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION Unclassified		1b RESTRICTIVE MARKINGS	
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited	
2b DECLASSIFICATION/DOWNGRADING SCHEDULE			
4 PERFORMING ORGANIZATION REPORT NUMBER(S) Technical Report #7		5 MONITORING ORGANIZATION REPORT NUMBER(S)	
6a NAME OF PERFORMING ORGANIZATION Harvard University	6b OFFICE SYMBOL (If applicable)	7a NAME OF MONITORING ORGANIZATION Office of Naval Research	
6c ADDRESS (City, State, and ZIP Code) Office of Sponsored Research Polyoke Center, Fourth Floor Cambridge MA 02138-4993		7b ADDRESS (City, State, and ZIP Code) Code 11130P 800 North Quincy Street Arlington VA 22217-5000	
8a NAME OF FUNDING/SPONSORING ORGANIZATION ONR/DARPA	8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
8c ADDRESS (City, State, and ZIP Code) 800 North Quincy Street Arlington VA 22217-5000		10 SOURCE OF FUNDING NUMBERS	
		PROGRAM ELEMENT NO 85-K-0898	PROJECT NO NR 356-856
		TASK NO	WORK UNIT ACCESSION
11 TITLE (Include Security Classification) "Correlations between Wettability and Structure in Monolayers of Alkanethiols Adsorbed on Gold"			
12 PERSONAL AUTHOR(S) Colin D. Bain and George M. Whitesides			
13a TYPE OF REPORT Interim	13b TIME COVERED FROM _____ TO _____	14 DATE OF REPORT (Year, Month, Day) May 1988	15 PAGE COUNT 10
16 SUPPLEMENTARY NOTATION			
17 COSATI CODES		18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)	
FIELD	GROUP	SUB-GROUP	monolayer wettability self-assembly XPS gold ellipsometry films
19 ABSTRACT (Continue on reverse if necessary and identify by block number)			
<p>Long-chain alkanethiols adsorb onto gold from solution and form monolayers. Coadsorption of HS(CH₂)₁₁OH and HS(CH₂)₂₁CH₃ from ethanolic solutions of varying composition generates monolayers, the wettability of which is correlated closely with the composition of the monolayer. Adsorption of the longer chain thiol is preferred over the short chain, and formation of monolayers comprising predominantly one component is favored over mixed monolayers containing both component thiols.</p>			
20 DISTRIBUTION AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21 ABSTRACT SECURITY CLASSIFICATION	
22a NAME OF RESPONSIBLE INDIVIDUAL Kenneth J. Wynne		22b TELEPHONE (Include Area Code)	22c OFFICE SYMBOL

**Correlations between Wettability and Structure in Monolayers of
Alkanethiols Adsorbed on Gold¹**

Colin D. Bain² and George M. Whitesides*

Department of Chemistry,

Harvard University,

Cambridge, MA 02138

Abstract

Long-chain alkanethiols adsorb onto gold from solution and form monolayers. Coadsorption of HS(CH₂)₁₁OH and HS(CH₂)₂₁CH₃ from ethanolic solutions of varying composition generates monolayers, the wettability of which is correlated closely with the composition of the monolayer. Adsorption of the longer-chain thiol is preferred over the short chain, and formation of monolayers comprising predominantly one component is favored over mixed monolayers containing both component thiols.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes _____	
Dist	Avail and/or Special
A-1	

Long-chain thiols ($\text{HS(CH}_2\text{)}_n\text{X}$) adsorb from solution onto gold surfaces and form well-packed, ordered, oriented monolayers.^{3,4} The sulfur coordinates strongly to the gold, the polymethylene chains are all-trans and tilted ~20–30° from the normal to the surface,^{4,5} and the tail group, X, is the predominant group exposed at the monolayer/liquid or monolayer/air interface.⁶ Coadsorption of two or more thiols differing in tail group or chain length provides a flexible system for varying the chemistry and structure of the surface in a controlled and pre-determined way.⁷ In this paper we use monolayers comprising a mixture of $\text{HS(CH}_2\text{)}_{11}\text{OH}$ (represented as $\text{HSC}_{10}\text{CH}_2\text{OH}$) to emphasize the two important variables: chain length and tail group) and $\text{HS(CH}_2\text{)}_{21}\text{CH}_3$ ($\text{HSC}_{21}\text{CH}_3$) on gold to demonstrate a relationship between the microscopic structure of the surface and the wettability of the monolayer (Figure 1). This work is part of a program of physical-organic chemistry designed to relate atomic-level structure of a surface to macroscopic physical properties such as wetting and adhesion.⁸

Monolayers were formed by immersing gold-mirror substrates (prepared by evaporation of gold onto chromium-primed, polished silicon wafers) in solutions of the thiols in degassed ethanol for 12 hours⁹ at room temperature.⁶ The composition of the monolayer was controlled by varying the ratio $R = [\text{HSC}_{10}\text{CH}_2\text{OH}]/[\text{HSC}_{21}\text{CH}_3]$ in solution, with the total concentration of thiols held constant at 1 mM. We used two independent techniques, optical ellipsometry and X-ray photoelectron spectroscopy (XPS), to measure the composition of the monolayer. Since the two thiols differ in chain length, the relative thickness obtained from ellipsometry and from the peak area of gold¹⁰ in XPS reflects this composition. Similarly, the difference in tail groups allows us to calculate the surface concentration of $\text{HSC}_{10}\text{CH}_2\text{OH}$ from the peak area of oxygen. The advancing contact angles (θ_a) of water and hexadecane (HD) provide useful measures of wettability. Since the pure methyl-terminated monolayer is hydrophobic ($\theta_a(\text{H}_2\text{O}) = 114^\circ$, $\theta_a(\text{HD}) = 48^\circ$), and the alcohol-terminated monolayer is hydrophilic ($\theta_a(\text{H}_2\text{O}) = \theta_a(\text{HD}) \approx 0^\circ$),

contact angles are very sensitive to the composition of the monolayer and the structure of the surface.

Figure 2 plots the ellipsometric thickness, contact angles of water and hexadecane, and XPS peak areas of gold and oxygen against R.¹¹ Here we note two salient features of these graphs: a detailed discussion will be deferred to a subsequent paper. First, ellipsometry and XPS peak areas indicate a dramatic change in the composition of the monolayer over a narrow range of solution composition, R = 7 - 20. This change in the composition of the monolayer is closely correlated with a sharp increase in the hydrophilicity and oleophilicity of the surface as measured by the advancing contact angles of water and hexadecane, respectively.¹² Thus the structure of the surface on a microscopic scale is clearly and directly linked to the wettability of the monolayer, an important macroscopic quantity. Second, the inflection in the curves occurs, not at R = 1, but at R ≈ 11.^{13,14} This difference between solution and surface compositions is a general feature of competitive adsorption experiments.¹⁵ In this experiment, Van der Waals forces between close-packed hydrocarbon chains favour adsorption of the longer-chain thiol.

We attempted to model the composition of the monolayer by a simple equilibrium expression (Eq. 1) between the solution and the surface (dotted curve in Figure 2, upper graph)

where the equilibrium constant $K_{\text{eq}} = 11$, *independent* of solution concentration. Clearly the observed data do not follow this simple expression: the two components of the monolayer do not act independently, and may act cooperatively to minimize the free energy. Monolayers composed predominantly of the long-chain methyl-terminated thiol HSC₂₁CH₃ (maximizing the chain-packing interactions) or the short-chain hydroxy-terminated thiol HSC₁₀CH₂OH (maximizing H-bonding both with the solvent and within the monolayer)

are preferred over monolayers containing a mixture of the thiols.¹⁶ The data do not, however, take the form of step functions in R, which would be expected thermodynamically if the formation of macroscopic islands were favored.¹⁷ Over a narrow range of R it is possible to form intermediate monolayers containing both thiols; the exact structure of these monolayers is not clear, but the data are consistent with a model in which the two components segregate into small clusters on the surface. These monolayers provide a model system for studying the wettability of complex structures, and for examining how polar groups interact to minimize their energy in a non-polar environment.¹⁸

Mixed monolayers of thiols on gold allow us to engineer ordered, two-dimensional systems with Å-level control over thickness and structure, and with chemical control over wettability. Synthetic variation of the tail groups and chain lengths provides great flexibility in the design of the interfacial structures and gives these systems wide applicability in the physical, biological and medical sciences.

Acknowledgement. We are grateful to R. Nuzzo and M. Wrighton for helpful discussions.

References and Notes

- ¹ Supported in part by the Office of Naval Research and the Defense Advanced Projects Research Agency.
- XPS spectra were obtained using facilities obtained through the DARPA/URI and maintained in the Harvard University Materials Research Laboratory.
- ² IBM Pre-Doctoral Fellow in Physical Chemistry 1985-86.
- ³ Nuzzo, R. G.; Allara D. L. *J. Am. Chem. Soc.* 1983, 105, 4481-4483; Strong, L.; Whitesides, G. M. *Langmuir* in press.
- ⁴ Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. *J. Am. Chem. Soc.* 1987, 109, 3559-3568.
- ⁵ Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. unpublished results.
- ⁶ Bain, C. D.; Troughton, E. B.; Tao, Y.-T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. manuscript in preparation.
- ⁷ Bain, C. D.; Whitesides, G. M. *Science* in press.
- ⁸ Troughton, E. B.; Bain, C. D.; Whitesides, G. M.; Nuzzo, R. G.; Allara, D. L.; Porter, M. D. *Langmuir* 1988, 4, 000-000; Holmes-Farley, S. R.; Reamey, R. H.; McCarthy, T. J.; Deutch, J.; Whitesides, G. M. *Langmuir* 1985, 1, 725-40; Holmes-Farley, S. R.; Whitesides, G. M. *Langmuir* 1986, 2, 266-281; Holmes-Farley, S. R.; Whitesides, G. M. *Langmuir* 1987, 3, 62-75; Holmes-Farley, S. R.; Reamey, R. H.; Nuzzo, R. G.; McCarthy, T. J.; Whitesides, G. M. *Langmuir* 1987, 3, 799-815; Holmes-Farley, S. R.; Bain, C. D.; Whitesides, G. M. *Langmuir* in press.
- ⁹ For pure thiols, initial monolayer formation is very rapid (~few seconds) with limiting properties reached after a few hours.
- ¹⁰ The intensity of the photoelectron peak decreases exponentially with the thickness of the monolayer due to inelastic scattering of the photoelectrons (Briggs, D.; Seah, M. P. *Practical Surface Analysis*; Wiley: Chichester, 1983).

¹¹ We prefer logR to the mole fraction, χ , as the abscissa because $kT\log R$ is related to the Gibbs free energy and hence this choice of axis highlights thermodynamic contributions to the adsorption process.

¹² Hexadecane and water interact predominantly by dispersion and polar forces, respectively. The detailed inferences from the contact angle data and comparisons with other monolayer systems will be discussed in a subsequent paper.

¹³ The ellipsometric thickness yields a value of $R(\chi_{1/2}) = 11$ where $\chi_{1/2} = 1:1$ ratio of the two thiols in the monolayer. XPS peak areas yield $R(\chi_{1/2}) = 10-12$ depending on the model used to analyze the data.

¹⁴ The monolayer system had not quite reached equilibrium when these measurements were made. Over a period of two weeks $R(\chi_{1/2})$ slowly increased to $R \approx 14$.

¹⁵ Bain, C. D.; Whitesides, G. M. unpublished results.

¹⁶ Despite being enthalpically disfavored, some HSC_2CH_3 is incorporated into the $HSC_{10}CH_2OH$ monolayer even at large R (and vice versa) due to the favorable entropy of mixing.

¹⁷ We believe that adsorption of thiols onto gold is controlled to a large extent by thermodynamics, although kinetics also play a role, as evinced by the slow change in the monolayer composition with time after the initial, rapid adsorption.

¹⁸ Israelachvili, J. N. *Intermolecular and Surface Forces*; Academic: New York, 1985.

FIGURE CAPTIONS

Figure 1. Schematic illustrations of monolayer structures: pure $\text{HS}(\text{CH}_2)_{11}\text{OH}$ (A); pure $\text{HS}(\text{CH}_2)_{21}\text{CH}_3$ (B); monolayer containing a mixture of the two thiols (C).

Figure 2. Monolayers formed by the adsorption of mixtures of $\text{HS}(\text{CH}_2)_{11}\text{OH}$ and $\text{HS}(\text{CH}_2)_{21}\text{CH}_3$ onto gold from solution. The abscissa represents the ratio, $R = [\text{HS}(\text{CH}_2)_{11}\text{OH}]/[\text{HS}(\text{CH}_2)_{21}\text{CH}_3]$ in *solution*. Squares and circles represent data from two separate experiments. Upper Figure: ellipsometric thickness. The solid curve is a fit to the data. The dotted curve represents the theoretical thicknesses for $K_{\text{eq}} = 11$ (see text for definition). Middle Figure: advancing contact angles of water (open symbols) and hexadecane (HD) (solid symbols) obtained by the sessile drop technique. Lower Figure: areas of the $\text{Au } 4f_{7/2}$ (open symbols) and $\text{O } 1s$ peaks (solid symbols) obtained by XPS. The vertical scale is arbitrary. Data were collected on a SSX-100 X-ray photoelectron spectrometer (Surface Science Instruments) with a monochromatized $\text{Al K}\alpha$ source, 100 eV pass energy, and 1-mm X-ray spot. The peaks were fitted using a symmetrical 90% Gaussian/ 10% Lorentzian profile.

B

Key

CONTRACT DATA REQUIREMENTS LIST
INSTRUCTIONS FOR DISTRIBUTION
ARPA/CNR

MINIMUM DISTRIBUTION OF TECHNICAL REPORTS

<u>ADDRESSEE</u>	DCDAAD <u>CODE</u>	<u>NUMBER OF COPIES</u>	
		<u>UNCLASSIFIED/UNLIMITED</u>	<u>UNCLASSIFIED/LIMITED AND CLASSIFIED</u>
Director, Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, Virginia 22209 ATTN: Program Management	EX1241	2	2
Scientific Officer Administrative Contracting Officer	N00014 N66016	3 1	3 1
Director, Naval Research Laboratory, ATTN: Code 2627 Washington, D. C. 20375	N00173	6	1
Defense Technical Information Center Bldg. 3, Cameron Station Alexandria, Virginia 22314	S47031	12	2

Xerox available original
except full legible reproduction

One (1) copy of each technical report resulting from work performed in the area of tactical technology shall be sent to:

TACTEC	DCDAAD CODE
Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201	79986

MINIMUM DISTRIBUTION OF REPORTS WHICH ARE NOT TECHNICAL REPORTS

<u>ADDRESSEE</u>	DCDAAD <u>CODE</u>	<u>NUMBER OF COPIES</u>	
		<u>UNCLASSIFIED/UNLIMITED</u>	<u>UNCLASSIFIED/LIMITED AND CLASSIFIED</u>
Director, Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, Virginia 22209 ATTN: Program Management	EX1241	2	2
Scientific Officer Administrative Contracting Officer	N00014 N66016	3 1	3 1

If the Scientific Officer directs, the Contractor shall make additional distribution of technical reports and such other reports as may be specified by the Scientific Officer in accordance with a supplemental distribution list provided by the Scientific Officer.

1/1113/87/2

ABSTRACTS DISTRIBUTION LIST, 356B

Professor T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Kurt Baum
Fluorochem, Inc.
680 S. Ayon Avenue
Azuza, California 91702

Dr. Ulrich W. Suter
Department of Chemical and Engineering
Massachusetts Institute of Technologies
Room E19-628
Cambridge, MA 02139-4309

Dr. William Bailey
Department of Chemistry
University of Maryland
College Park, Maryland 20742

Dr. J.C.H. Chien
Department of Polymer Science and
Engineering
University of Massachusetts
Amherst, MA 01003

~~Professor G. Whitesides~~
~~Department of Chemistry~~
~~Harvard University~~
~~Cambridge, Massachusetts 02138~~

Dr. K. Paciorek
Ultrasystems, Inc.
P.O. Box 19605
Irvine, California 92715

Dr. Ronald Archer
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Professor D. Seyferth
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Professor J. Moore
Department of Chemistry
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. V. Percec
Department of Macromolecular
Science
Case Western Reserve University
Cleveland, Ohio 44106

Dr. Gregory Girolami
Department of Chemistry
University of Illinois
Urbana-Champagne, IL 61801

Dr. Ted Walton
Chemistry Division
Code 6120
Naval Research Lab
Washington D.C. 20375-5000

Professor Warren T. Ford
Department of Chemistry
Oklahoma State University
Stillwater, OK 74078

Professor H. K. Hall, Jr.
Department of Chemistry
The University Arizona
Tucson, Arizona 85721

Dr. Fred Wudl
Department of Chemistry
University of California
Santa Barbara, CA 93106

Professor Kris Matjaszewski
Department of Chemistry
Carnegie-Mellon University
4400 Fifth Avenue
Pittsburgh, PA 15213

Professor Richard Schrock
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139

1/1113/87/2

ABSTRACTS DISTRIBUTION LIST, 356B

Professor A. G. MacDiarmid
Department of Chemistry
University of Pennsylvania
Philadelphia, Pennsylvania 19174

Dr. E. Fischer, Code 2853
Naval Ship Research and
Development Center
Annapolis, Maryland 21402

Professor H. Allcock
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Professor R. Lenz
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01002

Professor G. Wnek
Department of Chemistry
Rensselaer Polytechnic Institute
Troy, NY 12181

Professor C. Allen
Department of Chemistry
University of Vermont
Burlington, Vermont 05401

Dr. Ivan Caplan
DTNSRDC
Code 0125
Annapolis, MD 21401

Dr. R. Miller
Almaden Research Center
650 Harry Road K91B801
San Jose, CA 95120

Dr. William B. Moniz
Chemistry Division
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard M. Laine
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

Dr. L. Buckley
Naval Air Development Center
Code 6063
Warminster, Pennsylvania 18974

Dr. James McGrath
Department of Chemistry
Virginia Polytechnic Institute
Blacksburg, Virginia 24061

Dr. Geoffrey Lindsay
Chemistry Division
Naval Weapons Center
China Lake, California 93555

Professor J. Salamone
Department of Chemistry
University of Lowell
Lowell, Massachusetts 01854

Dr. J. Griffith
Naval Research Laboratory
Chemistry Section, Code 6120
Washington, D. C. 20375-5000

Professor T. Katz
Department of Chemistry
Columbia University
New York, New York 10027

Dr. Christopher K. Ober
Department of Materials Science
and Engineering
Cornell University
Ithaca, New York 14853-1501

END

DATED

FILM

8-88

Dr. J.