APSC 101 Study Notes

Nathan Lui

Contents

1. Professional Skills / Working in a team	3
1.1. Tuckerman's Stage of Development	3
1.1.1. Important Notes	3
1.1.2. Good vs Bad Norming	3
1.2. Conflict Management	3
1.3. Equity Diversion Inclusion (EDI)	4
1.4. Biases	4
1.5. 5 Keys to an effective team	4
2. Risk Management	5
2.1. Definition	5
2.1.1. Risk Sources	5
2.1.2. Risk vs Hazard	5
2.1.3. Control Hierarchy for Safety Hazards	5
3. Drawings (tbd)	6
4. Feedback	7
4.1. 7 Cs (recap)	7
4.2. 3x3 Feedback Model	7
5. Systems Thinking (covered in APSC100, will be tested again in 101)	8
6. Life Cycle Thinking	9
6.1. Life Cycle Stages	9
6.2. Life Cycle Assessment (LCA)	9
6.2.1. Challenges with LCA	10
6.3. Streamlined Life Cycle Assessment (SLCA)	10
6.3.1. Usage of SLCA	11
6.3.2. Benefits of SLCA	11

1. Professional Skills / Working in a team

1.1. Tuckerman's Stage of Development

4 Stages: Forming, Storming, Norming, Performing

Tuckman's Stages of Team Development

1.1.1. Important Notes

- relationships within members get BETTER over time
 - ▶ this includes storming, as team members are more willing to speak their minds
- conflict occurs at all stages

1.1.2. Good vs Bad Norming

- Good norming is healthy
- Bad norming -> team disfunction
 - e.g. one team member routinely misses meetings and team does nothing

1.2. Conflict Management

Conflict Management Styles

(Achieving others' needs)

- • Avoiding good when tensions high
 - Accommodating good when the issue matters more to the other party
 - Competing good when issue is self-critical and immediate

- Compromising good if time is short and relationships/problem must be balanced
- Collaborating when you have time to work towards finding the ideal solution for everyone
- Good teams change their style as situation demands

1.3. Equity Diversion Inclusion (EDI)

Equity: Everyone has same opportunities and outcomes

Diversity: recognizing and valuing different background, identity, experiences, and different points of view

1.4. Biases

Implicit biases: subconcious stereotypes about groups, learned through what we seeMicroaggressions: small, subtle, or indirect discriminatory actions or statementsStereotype threat: when people feel concerned about conforming to a stereotype for a group they belong to

Allyship: acting to support those facing discrimination in or underrepresented groups

- Reactive allyship: in response to an incident of bias (e.g. team member steps in to defend another)
- Proactive allyship: when someone actively engages to make marginalised individuals feel more included and respected

1.5. 5 Keys to an effective team

- Dependability
- Structure & clarity
- Meaning
- Impact
- Psychological safety [most important]

Does not depend on skills of team members.

2. Risk Management

2.1. Definition

 $Risk = Severity \times Likelihood$

2.1.1. Risk Sources

Preventable: controllable

Strategic: taken for possibility of greater reward

External: outside of control

2.1.2. Risk vs Hazard

Risk: possibility of harm, consequences, or damage

Hazard: capacity of equipment, material, or processes to cause harm

2.1.3. Control Hierarchy for Safety Hazards

3. Drawings (tbd)

4. Feedback

4.1. 7 Cs (recap)

Clear - easy to follow, easy to understand

Correct - Factually accurate, prepared according to professional standard

Concise - Brief, efficient

Concrete - Detailed, vivid, and specific. Main point is clearly evident

Complete - includes info relevant to the audience, conveys what audience should do

Courteous - polite and respectful, geuine and sincere

Considerate - empathetic and mindful, prepared with receiver in mind

4.2. 3x3 Feedback Model

Sender

Clear consistent, unambiguous speech and body language

Courteous polite and respectful tone, language, and body language

Considerate time and method of feedback considers the receiver

Message

Concrete descriptive, specific, and non-judgmental; focuses on receiver

Complete includes observations, impacts, suggestions, and follow up

Considerate is empathetic and relevant to the receiver

Receiver

Clear consistent, unambiguous speech and body language

Courteous receptive; polite and respectful tone, language, and body language

Complete acknowledge the feedback; ask for clarification

5. Systems Thinking (covered in APSC100, will be tested again in 101)

6. Life Cycle Thinking

Life cycle thinking: accounting for all impacts of a product or process across all stages of its life cycle

6.1. Life Cycle Stages

At product end of life, the following options are ranked most desirable to least desirable

- 1. **Reuse:** reuse the product in its current state, upcycle unwanted products to products of higher quality or value, or repurpose the product to a new use
- 2. **Recycle:** process the raw materials in the product and produce something new
- 3. **Recovery:** extracting as much energy or material from product as possible before disposing of it

Another is **reduce**, which is to change behaviours as a society to reduce what we consume and use.

6.2. Life Cycle Assessment (LCA)

• systematic evaluation of the impacts of energy and material inputs and outputs for a product/process across all life cycle stages

1. Goal Definition and Scope

- System boundary: a description of what elements are included or not included in an LCA
- Functional units: a reference measure of performance to use as a baseline in comparing options

Possible functional unit: 100 million lumen-hours of light

	Incandescent	CFL	LED
Life (hrs)	1,000	8,500	50,000
Brightness (lumens)	900	900	800
Number of bulbs*	111.1	13.1	2.5

^{*100} million lumen-hours

1. Inventory Analysis

2. Impact Assessment

· impacts of each material and energy flow are quantified

3. Interpretation

• systematically review work of each stage as new information comes in

6.2.1. Challenges with LCA

- Detailed knowledge of material and energy flows required
- Impacts must be known and quantified
- Focuses on environmental impacts
- · difficult to use early in design process

6.3. Streamlined Life Cycle Assessment (SLCA)

- for each criterion and for each life cycle stage, evaluate performance of product/process on a qualitative scale
 - e.g. "very poor" to "very good" or "significant negative impact" to "significant benefit"

results usually tabulated in SLCA Matrix

Life Stage	Raw materials	Production	Distribution	Use	End of life
Resources used	1	2	4	0	4
Waste generated	2	2	3	0	2
Energy used	3	2	3	0	4
Public health	3	3	3	0	4

- values in matrix then summed to determined environmentally responible product rating $(R_{\rm ERP})$
 - equivalent to score in WDM if all weights were 1

6.3.1. Usage of SLCA

- 1. use $R_{\mbox{\footnotesize ERP}}$ to benchmark performance against other products
- 2. use SLCA ratings to determine areas of greatest negative impact

6.3.2. Benefits of SLCA

- SLCA faster, easier, less expensive to complete
 - ▶ SLCA takes days, LCA can take months
- SLCA qualitative (easier to use with criteria which are more difficult to quantify), but also makes results **less precise**
- SLCA suitable for any stage of design process (especially early where potential influence on design decisions is greatest)
 - ► LCA suitable for existing products / very late in design process (where precise assessment of impact is required)