

Pracownia Fizyczna Zdalna Instytut Fizyki Centrum Naukowo Dydaktyczne

SPRAWOZDANIE Z ĆWICZENIA LABORATORYJNEGO

TEMAT: Wyznaczanie przyspieszenia ziemskiego metodą wahadła matematycznego								
Wydział	Matematyki Stosowanej	Informatyka						
Grupa/Sekcja	2/C	Rok akademicki	2021					
Rok studiów	I	Semestr	2					
Oświadczam, że niniejsze sprawozdanie jest całkowicie moim/naszym dziełem, że żaden								
z fragmentów sprawozdania nie jest zapożyczony z cudzej pracy. Oświadczam, że jestem								
świadoma/świadom odpowiedzialności karnej za naruszenie praw autorskich osób trzecich.								
Lp.	Imię i nazwisko	Podpis						
1.	Grzegorz Koperwas							
2.								
3.								

Ocena poprawności elementów sprawozdania

data	wstęp i cel	struktura		rachunek		zapis	
oceny	ćwiczenia	sprawozdania	obliczenia	niepewności	wykres	końcowy	wnioski

Ocena końcowa

OCENA lub	
LICZBA PUNKTÓW	
DATA	
PODPIS	

1. Wstęp teoretyczny

Celem doświadczenia jest wyznaczenie przyspieszenia grawitacyjnego g poprzez pomiar czasu w jakim wahadło wykona daną ilość cykli w zależności od jego długości.

- Q ciężar
- N naciag

Rysunek 1: Wahadło w stanie największego wychylenia

Wahadło matematyczne składa się z ciężarka, (Na rysunkach 1 oraz 2 oznaczony jest jako kropka), który porusza się po łuku (jego długość to s).

Na potrzeby naszego eksperymentu rozważamy małe drgania wahadła, gdzie $\alpha < 7^{\circ}$, zatem możemy założyć[War]:

$$\sin \alpha \approx \alpha \tag{1}$$

- Q ciężar
- N naciąg

Rysunek 2: Rozkład sił na wahadle

Na rysunku 2 widzimy iż siła $\vec{Q_1}$ jest równoważona przez siłę \vec{N} , zatem siła $\vec{Q_2}$ jest siłą wypadkową.

$$\vec{Q} = m\vec{g}$$

$$|Q_2| = mg\sin\alpha = mg\frac{x}{l}, \quad Z (1.)$$

$$|Q_2| \approx mg\frac{s}{l}$$

Siła $\vec{Q_2}$ jest zwrócona do środka, zatem:

$$Q_2 = -\frac{mg}{l}s$$

Siła ta jest zależna od wychylenia wahadła, zatem jest ona siłą sprężystą[sci] w formie F=-kx, gdzie:

 $k = \frac{mg}{l}, \quad x = s$

Zatem układ wykonuje ruchy harmoniczne, gdzie okres drgań T jest dany wzorem:

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m}{\frac{mg}{l}}} =$$
$$= 2\pi \sqrt{\frac{l}{g}}$$

Następnie wyliczamy z wzoru q:

$$T^2 = 4\pi^2 \cdot \frac{l}{g}$$
$$g = \frac{4l\pi^2}{T^2}$$

Na potrzeby sprawozdania obliczymy g jako nachylenie wykresu liniowego:

$$T^{2} = 4\pi^{2} \cdot \frac{l}{g}$$
$$T^{2}(l) = \frac{4\pi^{2}}{g} \cdot l$$

Gdzie nachylenie wykresu $T^{2}\left(l\right)$ to $\frac{4\pi^{2}}{g}$.

2. Wyniki pomiarów:

Długość wahadła	czas 10 okresów [s] $\pm 0.01s$						
$[cm] \pm 0.5cm$	t_{r1}	t_{r2}	t_{r3}	t_{r4}	t_{r5}		
216,0	29,93	29,68	29,61	30,66	29,68		
193,5	28,08	28,15	28,13	28,59	28,00		
182,5	27,07	26,86	27,06	27,34	26,91		
174,5	26,37	26,25	26,77	26,64	26,52		
155,0	24,71	24,94	24,94	25,68	24,66		
143,0	24,21	23,75	23,74	23,98	23,78		
133,0	23,14	23,14	23,04	24,04	23,23		
115,0	21,28	22,41	21,52	21,29	21,89		
97,5	19,66	19,79	19,54	19,59	19,75		
80,0	17,55	18,06	18,43	17,82	17,84		

Tablica 1: Wyniki pomiarów

Długość wahadła	długość okresu [s] $\pm 0.01s$			Średni okres	Odchylenie	T^2	$u(T^2)$		
$[cm] \pm 0.5cm$	t_1	t_2	t_3	t_4	t_5	$T[s] \pm 0.01s$	Standardowe [s]	$[s^2]$	
216,0	2,99	2,97	2,96	3,07	2,97	2,99	0,022	8,95	0,044
193,5	2,81	2,82	2,81	2,86	2,80	2,82	0,012	7,95	0,024
182,5	2,71	2,69	2,71	2,73	2,69	2,70	0,010	7,32	0,019
174,5	2,64	2,63	2,68	2,66	2,65	2,65	0,011	7,03	0,021
155,0	2,47	2,49	2,49	2,57	2,47	2,50	0,021	6,24	0,042
143,0	2,42	2,38	2,37	2,40	2,38	2,39	0,010	5,71	0,021
133,0	2,31	2,31	2,30	2,40	2,32	2,33	0,021	5,44	0,042
115,0	2,13	2,24	2,15	2,13	2,19	2,17	0,024	4,70	0,049
97,5	1,97	1,98	1,95	1,96	1,98	1,97	0,005	3,87	0,011
80,0	1,76	1,81	1,84	1,78	1,78	1,79	0,017	3,22	0,033

Tablica 2: Przetworzone wyniki pomiarów

3. **Wykres**

Rysunek 3: Wykres T^2 od l

Słupki błędów na wykresie na rysunku 3 są małe¹, należy bardzo przybliżyć sobie widok². Z wykresu odczytujemy:

- $a = 0.042 \frac{s^2}{cm}$; $u(a) = 0.00065 \frac{s^2}{cm}$
- $b = -0.15s^2$; $u(b) = 0.10s^2$

Wnioski: 4.

Według metody g obliczamy ze wzoru:

$$\frac{4\pi^2}{a \cdot 100} = g$$

Zatem dla a = 0.41 dostajemy wartość g = 9.50. Niepewność obliczmy ze wzoru:

$$\frac{g}{a} \cdot u\left(a\right) = u\left(g\right)$$

¹Dla podziałki długości 10cm, niepewność to $\frac{1}{20}$ podziałki, podobnie dla podziałki T^2 , która jest równa $0.4s^2$, gdzie niepewności są rzędu maksymalnie $\frac{1}{10}$ wielkości podziałki. 2 Z powodu ograniczeń w programie Excel spróbuje w następnych sprawozdaniach użyć innego

programu, np. Matplotlib czy Logger Pro.

Zatem u(g) = 0.15. Ostatecznie:

$$g = 9.50 \frac{m}{s^2}$$
; $u(g) = 0.15 \frac{m}{s^2}$

Porównanie z wartościami tablicowymi

 g_f możemy obliczyć ze wzoru[AN13]:

 $g_f \approx 9,780318 \left(1 + 0,0053024 \sin^2 \alpha - 0,0000058 \sin^2 2\alpha\right) - 3,086 \cdot 10^{-6} h$

Gdzie

- $\alpha = 50,36^{\circ}$ szerokość geograficzna miejsca pomiaru
- h = 278m wysokość Gliwic nad poziomem morza.

Dla Gliwic $g_f = 9.81$. Zatem:

$$|g - g_f| = |9.50 - 9.81| = 0.31$$

 $2 \cdot u(g) = 2 \cdot 0.15 = 0.30$
 $0.31 \le 0.30$

Z czego wynika iż wartość otrzymana nie jest zgodna z wartością tablicową.

Możliwe źródła błędów

Głównym źródłem błędów było nieprzykładne mierzenie czasu okresów, lepsza metoda pomiarowa lub większa liczba pomiarów pozwoliłaby na ograniczenie błędów przypadkowych. Zastosowanie metody pomiaru okresu za pomocą kamery i analizy materiału video było by dokładniejsze, mimo teoretycznie mniejszej dokładności $(\frac{1}{30}$ sekundy³ zamiast 0,01 dla stopera zastosowanego w doświadczeniu), pozwoliła by ona wyeliminować błąd wynikający z refleksu prowadzącego doświadczenie.

Literatura

- [AN13] Jadwiga Jaworska Alicja Nawrot, Dorota Karolczak. *Encyklopedia fizyka z astronomią*. GREG, 2013.
- [sci] sciencefacts.net. What is spring force. https://www.sciencefacts.net/spring-force.html. Dostep: 2021-03-15.
- [War] Politechnika Warszawska. Podręcznik Wydziału Fizyki Politechinki Warszawskiej. http://ilf.fizyka.pw.edu.pl/podrecznik/3/5/2. Dostęp: 2021-03-15.

 $^{^3\}mathrm{Dla}$ kamery mogącej nagrywać tylko w 30 klatkach na sekundę