Függvények. 2. rész

2020. október 5.

Valós függvények

A függvény $f: X \to Y$ egyértelmű hozzárendelés.

Feltesszük, hogy $X \subset \mathbb{R}$ és $Y \subset \mathbb{R}$.

Periodicitás

Definíció. Az f függvény PERIODIKUS p periódussal,ha $\forall x, x + p \in D_f$ esetén

$$f(x+p)=f(x).$$

Megjegyzés. Ha egy függvény periodikus *p* periódussal, akkor *p* tetszőleges *egész számú többszöröse* is periódusa lesz.

Példa. $f(x) = \sin(x)$ periodusa?

Polinomok

Definíció. Egy valós együtthatós POLINOM általános alakja:

$$p(x) = a_n x^n + \ldots + a_2 x^2 + a_1 x + a_0, \quad a_k \in \mathbb{R}.$$

Ezekre a polinomokra $D_f = \mathbb{R}$. A polinom FOKA n

- ightharpoonup n=1 esetén $p_1(x)=ax+b$ LINEÁRIS függvény,
- ▶ n = 2 esetén $p_2(x) = ax^2 + bx + c$ KVADRATIKUS függvény.

Definíció. RACIONÁLIS TÖRTFÜGGVÉNY két polinom hányadosa:

$$f(x) = \frac{a_0 + a_1 x + \ldots + a_n x^n}{b_0 + b_1 x + \ldots + b_m x^m}, \quad n, m \in \mathbb{N}.$$

Ha a nevező zérushelyei: H, akkor $D_f = \mathbb{R} \setminus H$.

ALGEBRAI FÜGGVÉNYEK a racionális törtfüggvények inverzei.

Példa. $f(x) = x^n, x \ge 0$

Ennek inverze:

$$f^{-1}(x) = \sqrt[n]{x} = x^{\frac{1}{n}}$$

$$D_{f^{-1}} = \{x : x \ge 0\}.$$

Trigonometrikus függvények

Első definíció ez volt:

A kiterjesztés:

A szögeket radiánban mérjük, nem fokban.

Tangens

Exponenciális függvény

 $f(x) = a^x$, a > 0. Két különböző eset: a > 1 vagy a < 1.

Logaritmus függvény

 $f(x) = \log_a(x)$, a > 1. Az $y = a^x$ exponenciális fv inverze.

A folytonosság értelmezése

<u>Heurisztikusan</u> egy függvény x₀ pontban folytonos:

- \rightarrow ha x_0 -ban picit változtatunk
- ightarrow akkor a függvényérték is *picit változik*, (nincs *ugrás* a gráfban)

Definíció. $f: X \to Y$ valós függvény és $x_0 \in D_f$.

f AZ x_0 -BAN FOLYTONOS, ha $\forall \varepsilon > 0$ hoz $\exists \delta > 0$, melyre

$$\forall x \in D_f, \quad |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

A folytonosság. Szemléletesen

 $\varepsilon > 0$ tetszőleges.

 $f(x_0) = y_0$.

- ▶ y_0 körül veszünk egy $(y_0 \varepsilon, y_0 + \varepsilon)$ vízszintes sávot.
- ► Ekkor $\exists \delta$, legyen az x_0 körüli függőleges sáv $(x_0 \delta, x_0 + \delta)$.
 - → f gráfja a sávok metszetébe esik.

A folytonosság, átfogalmazás.

Definíció. Az f függvény folytonos az $x_0 \in D_f$ pontban,

ha $f(x_0) \forall U$ környezetéhez $\exists V$ környezete x_0 -nak, melyre

$$\forall x \in V, \quad x \in D_f \implies f(x) \in U$$

1. Példa. f(x) = 5x + 3 egy lineáris függvényés $x_0 \in \mathbb{R}$.

Ekkor

$$|f(x) - f(x_0)| = |(5x + 3) - (5x_0 + 3)| = |5(x - x_0)|.$$

Adott $\varepsilon > 0$.

Kérdés: $|f(x) - f(x_0)| < \varepsilon$ mikor teljesül?

$$V$$
álasz: $\delta = \frac{\varepsilon}{5}$ választással,

$$|x-x_0|<\delta=\frac{\varepsilon}{5}\implies |f(x)-f(x_0)|<5\frac{\varepsilon}{5}=\varepsilon.$$

2. *Példa*. Állítás. $f(x) = \sin(x)$ folytonos $\forall x_0 \in \mathbb{R}$ pontban.

Egyrészt $|\sin x| \le |x| \ \forall x \in \mathbb{R}$..

Másrészt egy trigonometrikus azonosság:

$$\sin x - \sin y = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right).$$

Legyen x₀ tetszőleges.Ekkor

$$\begin{aligned} |\sin x - \sin x_0| &= 2 \left| \sin \left(\frac{x - x_0}{2} \right) \cos \left(\frac{x + x_0}{2} \right) \right| &\leq \\ 2 \left| \sin \left(\frac{x - x_0}{2} \right) \right| &\leq \left| 2 \frac{x - x_0}{2} \right| &\leq |x - x_0|. \end{aligned}$$

Így $\forall \varepsilon > 0$ esetén jó választás $\delta = \varepsilon$. Hiszen

$$|x - x_0| < \delta \implies |\sin x - \sin x_0| < \varepsilon$$

3. *Példa*. A korábban látott elemi függvények folytonosak *D* minden pontjában

Szakadás

Definíció. Ha f nem folytonos az $x_0 \in D_f$ pontban, akkor ott SZAKADÁSA van.

Példa.

$$f(x) = sign(x) = \begin{cases} 1 & \text{ha } x > 0 \\ -1 & \text{ha } x < 0 \\ 0 & \text{ha } x = 0 \end{cases}$$

f-nek a 0-ban

szakadása van, ui...

$$f(0) = 0$$
. Legyen $\varepsilon = \frac{1}{2}$. Ekkor $\nexists (-\delta, \delta)$ intervallum, ahol

$$-\frac{\delta}{\delta} < x < \frac{\delta}{\delta} \implies -\frac{1}{2} < f(x) < +\frac{1}{2}.$$

Sorozatfolytonosság

Definíció. Az f függvény SOROZATFOLYTONOS $x_0 \in D_f$ pontban,

ha $\forall (x_n) \subset D_f$ sorozatra, melyre

$$\lim_{n\to\infty}x_n=x_0,$$

teljesül az a tulajdonság, hogy

$$\lim_{n\to\infty}f(x_n)=f(x_0).$$

Folytonosság és sorozatfolytonosság

Tétel. f folytonos x_0 -ban \iff sorozatfolytonos.

Bizonyítás. \Longrightarrow Tegyük fel, hogy f az x_0 -ban folytonos.

 $x_n \to x_0$ tetszőleges sorozat. Belátjuk, hogy $f(x_n) \to f(x_0)$.

 $\varepsilon > 0$ tetszőleges. $\exists \delta > 0$, melyre

$$|x-x_0|<\delta \implies |f(x)-f(x_0)|<\varepsilon.$$

A sorozat konvergenciája miatt ehhez a δ -hoz $\exists N$ küszöbindex:

$$|x_n - x_0| < \delta, \quad \forall n > N.$$

Így ezekre az indexekre $|f(x_n) - f(x_0)| < \varepsilon$ teljesül.

$$\forall \varepsilon > 0 \ \exists \delta > 0$$
, melyre $|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$.

Bizonyítás. \leftarrow Tfh. f az x_0 -ban sorozatfolytonos.

Indirekt módon tegyük fel, hogy *f mégsem* folytonos *x*₀-ban:

$$\longrightarrow \exists \varepsilon > 0$$
, melyre " $\forall \delta$ rossz", azaz

$$\forall \delta > 0$$
-hoz $\exists x \in D_f$: $|x - x_0| < \delta$, mégis $|f(x) - f(x_0)| \ge \varepsilon$.

$$\Rightarrow \delta = \frac{1}{n}$$
-hez is $\exists x_n$, melyre

$$|x_n-x_0|<rac{1}{n}$$
 és $|f(x_n)-f(x_0)|\geq \varepsilon$.

Tekintsük ezt az (x_n) sorozatot: $\lim_{n\to\infty} x_n = x_0$

Mivel
$$|f(x_n) - f(x_0)| \ge \varepsilon$$
, $\forall n$ -re, $f(x_n) \not\to f(x_0)$.

Így az indirekt feltevésünk nem helyes, tehát f az x_0 -ban folytonos.

Példa. Legyen

$$f(x) = \begin{cases} 1, & \text{ha} & x \text{ racionális} \\ -1, & \text{ha} & x \text{ irracionális} \end{cases}.$$

Ez a függvény NEM folytonos.

Valóban, ha
$$x_0$$
 racionális, akkor $x_n := x_0 + \frac{\sqrt{2}}{n}$.

Erre a sorozatra $\lim_{n\to\infty} x_n = x_0$, $f(x_n) \equiv -1$.

Másrészt $f(x_0) = 1$, így nem teljesül a sorozatfolytonosság.

Ha x_0 irracionális, akkor $x_n:x_0$ végtelen tizedestört felírásában

az első n tagot tartalmazó szám. Ekkor

$$\lim_{n\to\infty}x_n=x_0,\qquad \lim_{n\to\infty}f(x_n)=1\neq f(x_0)=-1,$$

a függvény itt sem folytonos.

Határérték

Határérték

Definíció. Az f függvény határértéke x_0 -ban α , ha

 $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre

$$0 < |x - x_0| < \delta$$
 és $x \in D$ \Longrightarrow $|f(x) - \alpha| < \varepsilon$.

Jelölés: $\lim_{x \to x_0} f(x) = \alpha$.

FIGYELEM: A határérték definíciójában $f(x_0)$ nem játszik szerepet. Sőt...

Határérték definíció, szemléletesen

Pontos feltétel

Adott $f: D \to \mathbb{R}$ függvény és $x_0 \in \mathbb{R}$.

Feltesszük, hogy $\exists U = (x_0 - r, x_0 + r)$ környezet, melyre

$$(x_0-r,x_0+r)\setminus\{x_0\}\subset D.$$

Esetleg $x_0 \notin D_f$ is előfordulhat.

Következmény.
$$f:D\to\mathbb{R}$$
 és $x_0\in D$ belső pont. Ekkor f folytonos x_0 -ban $\iff\lim_{x\to x_0}f(x)=f(x_0).$

Példa

$$x_0 = 2 \notin D_f$$
. Vajon $\lim_{x \to 2} f(x) = ?$
 $x \ne 2$ esetén $f(x) = x + 2$. Ezért

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} (x + 2) = 4.$$

Egyoldali határértékek

Jobboldali határérték

Definíció. Az f JOBBOLDALI HATÁRÉRTÉKE x_0 -BAN $\alpha \in \mathbb{R}$

ha $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre

$$x \in D_f$$
, $x_0 < x < x_0 + \delta \implies |f(x) - \alpha| < \varepsilon$.

Ezt így jelöljük:

$$\lim_{\mathsf{x}\to\mathsf{x}_0+}f(\mathsf{x})=\alpha.$$

A jobboldali határérték, rövid jelölés:

$$\lim_{x \to x_0 +} f(x) = f(x_0 + 0).$$

Baloldali határérték

Az textscf baloldali határértéke x_0 -ban $\alpha \in \mathbb{R}$

ha $\forall \varepsilon > 0$ -hoz $\exists \delta > 0$, melyre

$$x \in D_f$$
, $x_0 - \delta < x < x_0 \implies |f(x) - \alpha| < \varepsilon$.

Ezt így jelöljük:

$$\lim_{\mathbf{x}\to\mathbf{x}_0-}f(\mathbf{x})=\alpha.$$

A baloldali határérték, rövid jelölés:

$$\lim_{x \to x_0 -} f(x) = f(x_0 - 0).$$

Egyoldali és kétoldali határértékek

Állítás.

$$\lim_{x\to x_0} f(x) = \alpha$$

$$\lim_{x \to x_0 +} f(x) = \alpha \qquad \text{ és } \qquad \lim_{x \to x_0 -} f(x) = \alpha$$

Egyoldali határértékek

Szakadási helyek osztályozása

ELSŐFAJÚ SZAKADÁS, ha

$$\exists \lim_{x \to x_0 +} f(x) = f(x_0 + 0) < \infty$$

$$\exists \lim_{x \to x_0 -} f(x) = f(x_0 - 0) < \infty$$

Speciális elsőfajú szakadás: MEGSZÜNTETHETŐ a szakadás, ha

$$f(x_0 - 0) = f(x_0 + 0)$$
, azaz $\exists \lim_{x \to x_0} f(x)$, de

$$\lim_{x\to x_0} f(x) \neq f(x_0).$$

Elsőfajú szakadás

Példa megszüntethető és nem megszüntethető szakadásra

Másodfajú szakadás

Definíció. MÁSODFAJÚ a szakadás, ha nem elsőfajú.

