Math 548

Portfolio Assignment 1

Name: Gianluca Crescenzo

Problem 1. Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be an orthogonal projection to the 2-dimensional plane P spanned by the vectors $\vec{v} = (2,0,1,0)$ and $\vec{w} = (-1,0,2,0)$.

- (1) Find (with proof) all the eigenvalues and eigenvectors, along with their geometric and algebraic multiplicities.
- (2) Find the matrix T with respect to the standard basis. Is this matrix diagonalizable? Why or why not?

Proof. (1) Since T is a projection onto P, note that for any vector $v \in \mathbb{R}^4$, we have that $T(v) \in P$. Since T acts as the identity map on any vector in P, it must be the case that $T^2(v) = T(v)$. Let w be an eigenvector of T. Since $T^2(v) = T(v)$ for all $v \in \mathbb{R}^4$, we get:

$$T(w) = \lambda w,$$

$$T(w) = T^{2}(w) = \lambda^{2}w.$$

It must be the case that $\lambda^2 = \lambda$; i.e., $\lambda = 0$ or $\lambda = 1$.

Problem 2.