6. Оператор Гамильтона, уравнение Шрёдингера

Потребность в квантовой механике возникает тогда, когда характерный размер исследуемого объекта становится сравнимым или меньше длины волны де Бройля: $L < \lambda_{\rm B} = \frac{h}{p}$

Это условие означает, что волновые свойства материи начинают играть существенную роль, и классическое описание (через координаты и силы) перестает быть точным

В квантовой механике состояние системы описывается волновой функцией $\psi(\vec{r},t)$, которая содержит полную информацию о системе. Физический смысл имеет не сама ψ , а ее модуль в квадрате:

$$|\psi(\vec{r},t)|^2 = \psi^*(\vec{r},t)\psi(\vec{r},t),$$

который задает плотность вероятности обнаружения частицы в точке \vec{r} в момент времени t

В отличие от классической механики Ньютона, где движение описывается через силы и ускорения, квантовая механика оперирует *операторами* физических величин, действующих на волновые функции.

Для описания различных физических величин вводят соответствующие операторы:

- ullet оператор координаты \hat{x}
- ullet оператор импульса $\hat{oldsymbol{p}}$
- оператор кинетической энергии
- оператор потенциальной энергии
- ullet оператор полной энергии (гамильтониан) \hat{H}

Все эти операторы линейные. Это значит, что для любых констант c_1, c_2 и функций ψ_1, ψ_2 выполняется: $\hat{L}(c_1\psi_1 + c_2\psi_2) = c_1\hat{L}\psi_1 + c_2\hat{L}\psi_2$

Оператор координаты действует как простое умножение на саму координату: $\hat{x}\psi(x) = x\psi(x)$ Оператор потенциальной энергии также представляет собой умножение на соответствующую функцию потенциала: $\hat{U}\psi(x) = U(x,t)\psi(x)$

Оператор импульса: из соотношений де Бройля $p = \hbar k$ и волнового выражения $\psi(x) \sim e^{ikx}$ следует, что $\frac{d\psi}{dx} = ik\psi = \frac{ip}{\hbar}\psi$

Отсюда, действуя на ψ , можно записать оператор импульса как: $\hat{p} = -i\hbar \frac{\partial}{\partial x}$ или в трехмерном случае $\dot{\vec{p}} = -i\hbar \vec{\nabla}$

Оператор кинетической энергии выражается через оператор импульса: $\hat{T} = \frac{\hat{p}^2}{2m} = -\frac{\hbar^2}{2m} \nabla^2$

Теперь можно записать уравнение Шрёдингера. В общем (учитывающем время, то есть временном) виде оно имеет вид:

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + U(\vec{r},t)\psi$$

Здесь первый член $-\frac{\hbar^2}{2m}\nabla^2\psi$ в скобках отвечает за кинетическую энергию, а второй $U(\vec{r},t)\psi$ — за потенциальную. Суммарный оператор называется **гамильтонианом**: $\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + U(\vec{r},t)$ И уравнение принимает компактный вид:

$$i\hbar\frac{\partial\psi}{\partial t}=\hat{H}\psi.$$

Решением этого уравнения является волновая функция ψ , описывающая эволюцию состояния системы во времени

Если состояние можно описать одной функцией ψ , то оно называется чистым состоянием

Далее были сформулированы постулаты квантовой механики:

- 1. **1-ый постулат**: состояние квантовой системы полностью определяется ее волновой функцией $\psi(\vec{r},t)$. Квадрат модуля волновой функции $|\psi|^2$ задает плотность вероятности нахождения системы в данном состоянии
- 2. **2-ой постулат**: каждой физической величине соответствует линейный оператор \hat{A} , действующий в пространстве волновых функций
- 3. **3-ий постулат**: при измерении физической величины можно получить только одно из собственных значений оператора, соответствующего этой величине
- 4. **4-ый постулат**: квадрат модуля волновой функции $\psi(\vec{r},t)$ определяет плотность W вероятности того, что в момент времени $t \geq 0$ частица может быть обнаружена в точке пространства \vec{r}

Если потенциальная энергия не зависит от времени, то волновую функцию можно искать в виде разделения переменных: $\psi(\vec{r},t) = \phi(\vec{r})e^{-\frac{iEt}{\hbar}}$

Подставив это выражение в уравнение Шрёдингера, получаем стационарное уравнение Шрёдингера:

$$-\frac{\hbar^2}{2m}\nabla^2\phi + U(\vec{r})\phi = E\phi.$$

Здесь E — собственное значение гамильтониана, соответствующее энергии данного стационарного состояния

Ех. Одномерный гармонический осциллятор:

Потенциал имеет вид $U(x) = \frac{1}{2}kx^2$ и уравнение Шрёдингера принимает вид:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + \frac{kx^2}{2}\psi = E\psi.$$

Это уравнение имеет дискретные значения энергии:

$$E_n = \hbar\omega\left(n + \frac{1}{2}\right), \qquad n = 0, 1, 2, \dots,$$

где
$$\omega = \sqrt{\frac{k}{m}}$$
 — собственная частота осциллятора

Таким образом, квантовая механика описывает не отдельные траектории частиц, а распределения вероятностей и энергетические уровни, определяемые волновыми функциями и их собственными значениями

Сравним физический величины классической механики и операторы квантовой

Физическая величина	Классическая	Квантовая
Координата	$\vec{r} = (x, y, z)$	$\vec{r} = (x, y, z)$
Импульс	$\vec{p} = (p_x, p_y, p_z)$	$-ih\vec{\nabla} = \left(-ih\frac{\partial}{\partial x}, -ih\frac{\partial}{\partial y}, -ih\frac{\partial}{\partial z}\right)$
Угловой момент	$\vec{L} = [\vec{r} \times \vec{p}] = (yp_x - zp_y, zp_x - xp_z, xp_y - yp_x)$	$-i\hbar\left(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right)$
Энергия (в нерелятивистском приближении)	$E = \frac{p^2}{2m} + U(\vec{r})$	$H = -\frac{\hbar^2}{2m}\nabla^2 + U(\vec{r})$