Práctica 6

1. Probar que $\|\cdot\|_1, \|\cdot\|_2$ y $\|\cdot\|_\infty$ definen normas en \mathbb{R}^n , donde

$$||x||_1 = \sum_{i=1}^n |x_i|, \quad ||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2} \quad \text{y} \quad ||x||_\infty = \max_{1 \le i \le n} |x_i|.$$

- **2.** Sea $(E, \|\cdot\|)$ un espacio normado. Probar que se verifican:
 - (a) Las operaciones $+: E \times E \to E$ y $\times: \mathbb{R} \times E \to E$ son continuas.
 - (b) Si $x \in E$ y r > 0, $\overline{B(x,r)} = \overline{B}(x,r)$ (es decir, la clausura de la bola abierta es la bola cerrada).
 - (c) diam(B(x,r)) = 2r.
 - (d) Si $y \in B(x,r)$ entonces para todo $t \in [0,1]$, $tx + (1-t)y \in B(x,r)$ (es decir, la bola es convexa).
- **3.** Sea $(E, \|\cdot\|)$ un espacio normado. Sean $(x_n)_{n\in\mathbb{N}}\subseteq E$ y $x_0\in E$ tales que $\lim_{n\to\infty}x_n=x_0$.

Probar que si definimos $(y_n)_{n\in\mathbb{N}}\subseteq E$ por

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{n},$$

entonces $\lim_{n\to\infty} y_n = x_0$.

- **4.** Sea $(E, \|\cdot\|)$ un espacio normado y $S \subseteq E$ un subespacio (vectorial). Probar que:
 - (a) \overline{S} también es un subespacio.
 - (b) Si $S \neq E$, entonces $S^{\circ} = \emptyset$.
 - (c) Si $\dim(S) < \infty$, entonces S es cerrado.
 - (d) Si S es un hiperplano (o sea: $\exists x \neq 0$ tal que $S \oplus \langle x \rangle = E$), entonces S es o bien denso o bien cerrado en E.
- **5.** Sea $\mathbb{R}_n[t]$ el conjunto de los polinomios de grado menor o igual que n con coeficientes en \mathbb{R} . Consideremos para $p \in \mathbb{R}_n[t]$ las normas

$$||p||_{\infty} = \max_{0 \le t \le 1} |p(t)|$$
 y $||p||_1 = \int_0^1 |p(t)| dt$.

- (a) Probar que $(\mathbb{R}_n[t], \|\cdot\|_{\infty})$ y $(\mathbb{R}_n[t], \|\cdot\|_1)$ son espacios de Banach.
- (b) Probar que ambas normas resultan equivalentes en $\mathbb{R}_n[t]$ para todo $n \in \mathbb{N}$.

- (c) Si $\mathbb{R}[t]$ denota el conjunto de todos los polinomios con coeficientes en \mathbb{R} , probar que ahí las normas $\|\cdot\|_{\infty}$ y $\|\cdot\|_{1}$ no son equivalentes. ¿Hay alguna contradicción con el item anterior, que afirma que las normas son equivalentes para polinomios de grado hasta n para todo $n \in \mathbb{N}$?
- 6. Definimos ℓ^{∞} como el espacio de todas las sucesiones acotadas de números reales:

$$\ell^{\infty} = \left\{ a = (a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} \colon \sup_{n \in \mathbb{N}} |a_n| < +\infty \right\}$$

con la norma

$$||a||_{\infty} = \sup_{n \in \mathbb{N}} |a_n|.$$

- (a) Probar que la bola de ℓ^{∞} no es compacta.
- (b) Probar que no hay ningún conjunto numerable denso en ℓ^{∞} .
- 7. Sean E y F espacios normados. Sea $T:E\to F$ un operador lineal. Probar que son equivalentes:
 - (a) T es continuo en 0.
 - (b) Existe $x_0 \in E$ tal que T es continuo en x_0 .
 - (c) T es continuo.
 - (d) T es uniformemente continuo.
 - (e) Existe M > 0 tal que $||Tx|| \le M||x||$ para todo $x \in M$ (T es acotada).
 - (f) Para todo $A \subseteq E$ acotado, T(A) es acotado.
- **8.** Sean $(E, \|\cdot\|_E), (F, \|\cdot\|_F)$ y sea $T: E \to F$ lineal y continuo. Verificar las siguientes fórmulas:

$$||T|| = \sup_{\|x\|_E \le 1} ||Tx||_F = \sup_{\|x\|_E = 1} ||Tx||_F = \sup_{x \ne 0} \frac{||Tx||_F}{\|x\|_E} = \inf \left\{ M > 0 : ||Tx||_F \le M ||x||_E \right\}.$$

9. Sea $k:[0,1]\times[0,1]\to\mathbb{R}$ continua y sea $K:C([0,1])\to C([0,1])$ dada por

$$(Kf)(x) = \int_0^1 k(x, y) f(y) \, dy.$$

Probar que si consideramos en C([0,1]) la norma infinito definida como $||f||_{\infty} = \max_{0 \le t \le 1} |f(t)|$, entonces K es lineal y continua. Acotar su norma.

- 10. Sea $(\mathbb{R}[t], \|\cdot\|_{\infty})$ el espacio de polinomios definido en el Ejercicio 5. Sea $\delta : \mathbb{R}[t] \to \mathbb{R}[t]$ dado por $(\delta p)(t) = p'(t)$, donde p' denota el derivado de p. Probar que δ es un operador lineal que no es continuo.
- 11. Sea $\mathcal{E}: C([0,1]) \to \mathbb{R}$ definida por $\mathcal{E}f = f(0)$. Probar que si consideramos en C([0,1]) la norma infinito, entonces \mathcal{E} es un funcional lineal continuo.

Continuar'a...