La teoria del grafo random ha l'eliminazione debole degli immaginari.

Dimostrazione. Per ogni a tupla finita di elementi di \mathcal{U} , per ω -categoricità $S_{|a|} \subset L$ è finito ed ha la topologia discreta, quindi $\{\operatorname{tp}(a)\}$ e la sua controimmagine tramite la proiezione canonica sono clopen. Da ciò segue che esiste una formula $\psi_a(x) \in L$ tale che per ogni tupla b, si ha $a \equiv b$ se e solo se $\psi_a(b)$.

Siano $\varphi(x,y) \in L$ e a tupla di elementi di \mathcal{U} con |a|=|y|, voglio eliminare debolmente $\varphi(x,a)$.

Scelgo a' tupla di lunghezza minimale per cui esista una formula $\varphi'(x,z)$ tale che $\forall x (\varphi'(x,a') \leftrightarrow \varphi(x,a))$. Se a' è la tupla vuota ho finito, quindi supponiamo $|a'| \geq 1$. Per non appesantire la notazione assumo, senza perdita di generalità, che $\varphi = \varphi'$ e a = a'. Data una tupla b denoto con I_b l'insieme delle sue componenti.

Claim: se c è una tupla della stessa lunghezza di a, con $I_c \neq I_a$, allora $\exists x \neg (\varphi(x, a) \leftrightarrow \varphi(x, c))$.

Dal claim segue che se c è tale che $\forall x(\varphi(x,a) \leftrightarrow \varphi(x,c))$ allora $I_c = I_a$, cioè c deve essere una permutazione delle componenti di a, ma queste sono in numero finito e quindi φ è eliminata debolmente.

Denoto $I = I_a \cap I_c$. Dimostro il claim in quattro passi.

1) Esistono b e b' tali che $\varphi(b,a)$, $\neg \varphi(b',a)$, $b \equiv_I b'$. Non serve ω -categoricità

Supponiamo per assurdo infatti che tali b e b' non esistano: allora $\varphi(b,a)$ sse $\varphi(b',a)$ per ogni $b' \equiv_I b$, cioè esiste una sottotupla propria \bar{a} di a tale che $\varphi(x,a) \leftrightarrow \bigvee_{b \ t.c. \ \varphi(b,a)} \psi_{b,\bar{a}}(x,\bar{a})$, e quest'ultima è una formula per ω -categoricità. Questo contraddice l'assunzione sulla minimalità della lunghezza di a.

2) Costruisco $b'' \equiv_I b$ avente la seguente proprietà: $I_{b''} \cap (I_a \cup I_c) \subseteq I$. Questo dipende solo dal fatto che la chiusura algebrica è banale: aclA=A Per $i=0,\ldots,|b|-1$ pongo $b_i''=b_i$ sse $b_i \in I$. Invece se $b_i \not\in I$, prendo b_i'' in $\mathcal{U} \setminus (I_a \cup I_c) \cap \{u \mid \text{per ogni } v \in I \ r(u,v) \leftrightarrow r(b_i,v)\} \cap \{u \mid \text{per ogni } j < i \ r(u,b_j'') \leftrightarrow r(b_i,b_j)\}$; tale insieme è non vuoto perché \mathcal{U} è un grafo random.

A meno di sostituire b oppure b' con b'' a seconda che valga $\varphi(b'',a)$ oppure $\neg \varphi(b'',a)$ rispettivamente, possiamo supporre che almeno uno tra b e b' abbia la proprietà appena descritta.

3) Costruisco una tupla d tale che $d \equiv_{I_a} b$ e $d \equiv_{I_c} b'$.

Per $i=0,\ldots,|b|-1$ pongo $d_i=b_i$ sse $b_i\in I_a$ e $d_i=b_i'$ sse $b_i'\in I_c$; bisogna controllare che la definizione di d_i sia ben posta nel caso in cui simultaneamente $b_i\in I_a$ e $b_i'\in I_c$: per il punto 2) abbiamo che almeno uno tra b_i e b_i' è in I, per fissare le idee sia $b_i\in I$, ma allora $b_i'=b_i$ perché $b'\equiv_I b$.

Se invece $b_i \not\in I_a$ e $b_i' \not\in I_c$ definisco:

$$\begin{split} V_i &= \big\{ d_j | \ j < i \ \mathrm{e} \ r(b_j, b_i) \big\} \ \cup \ \big\{ u \in I_a \ | \ r(u, b_i) \big\} \ \cup \ \big\{ u \in I_c \ | \ r(u, b_i') \big\} \\ W_i &= \big\{ d_j | \ j < i \ \mathrm{e} \ \neg r(b_j, b_i) \big\} \ \cup \ \big\{ u \in I_a \ | \ \neg r(u, b_i) \big\} \ \cup \ \big\{ u \in I_c \ | \ \neg r(u, b_i') \big\} \\ \mathrm{Si} \ \mathrm{ha} \ V_i \cap W_i &= \varnothing; \ \mathrm{infatti} \ \mathrm{se} \ u \in I \ r(u, b_i) \ \leftrightarrow r(u, b_i'), \ \mathrm{se} \ d_j \in I_c \ \mathrm{allora} \ r(b_j, b_i) \ \leftrightarrow r(d_j, b_i') \\ \mathrm{perch\'e} \ d_j &= b_j' \ \mathrm{e} \ \mathrm{analogamente} \ \mathrm{se} \ d_j \in I_a. \end{split}$$

Sta dimostrando questa proprietà generale (connessa con l'amalgamazione): If $p(x) \in S(A)$ and $q(x) \in S(B)$ and $q \upharpoonright A \cap B$ $(x) = p \upharpoonright A \cap B$ (x) then $p(x) \cup q(x)$ is consistent,

Ora possiamo prendere d_i in $\, \mathcal{U} \setminus (I_a \cup I_c) \, \cap \, \big\{ u \, | \, \operatorname{per ogni} \, v \in V_i \, r(u,v) \big\} \, \cap \,$

- $\cap \ \{u \mid \text{per ogni} \ w \in W_i \ \neg r(u,w)\};$ di nuovo, tale insieme è non vuoto perchè $\mathcal U$ è un grafo random.
- 4) Una tra le tuple b' e d testimonia $\exists x \neg (\varphi(x, a) \leftrightarrow \varphi(x, c))$.

Supponiamo che b' non sia un tale testimone, cioè che valga $\neg \varphi(b',c)$, allora per costruzione vale $\varphi(d,a) \land \neg \varphi(d,c)$.