Prüfung Differentialgleichungen 1 (Melenk) 25.2.2021

Matrikelnr.:	Familienname:
Platznr.:	Vorname:

1:	2:	3:	4:	5:	Summe:

Bemerkungen:

- 1) Unterlagen sind nicht erlaubt.
- 2) Taschenrechner mit einzeiligem Display (keine Graphik) sind erlaubt.
- 3) Insgesamt können 25 Punkte erreicht werden.
- 4) Berechnungen und Ergebnisse müssen nachvollziehbar sein. Besser zu viel als zu wenig hinschreiben.

- 1. (4 Punkte) Geben Sie die Lösung der Differentialgleichung $2t^2y'=t^2+y^2$ mit Anfangsbedingung y(1)=-1 an.
- 2. (5 Punkte) Sei

$$\mathbf{A} = \left(\begin{array}{rrr} -1 & -2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -3 \end{array} \right)$$

- a) Bestimmen Sie ein reelles Fundamentalsystem von $y'(t) = \mathbf{A}y(t)$.
- b) Begründen Sie, warum die Ruhelage $y^* = 0$ stabil ist.
- c) Lösen Sie die inhomogene Gleichung

$$y' = \mathbf{A}y + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} .$$

- d) Bei Differentialgleichungen der Form $y' = \mathbf{A}y$, kann man die Stabilität des Ursprungs auch mittels einer Ljapunovfunktion der Form $V(y) = y^T \mathbf{P} y$ zeigen. Zeigen Sie, dass für normale Matrizen $\mathbf{A} \in \mathbb{R}^{d \times d}$, deren Spektrum in der linken Halbebene ist, die Wahl $\mathbf{P} = I_d$ (I_d ist die $d \times d$ Einheitsmatrix) auf eine Ljapunovfunktion führt.
- 3. (6 Punkte) Betrachten Sie das System

$$x' = y - (x^{2} + y^{2} - 1)x,$$

$$y' = -x - (x^{2} + y^{2} - 1)y,$$

- a) Bestimmen Sie die Ruhelagen. Sind diese stabil? Begründen Sie.
- b) Skizzieren Sie das Phasenportrait.
- c) Zeigen Sie, dass für $R_1 < 1 < R_2$ die Kreisringe $\{(x,y) \mid R_1^2 \le x^2 + y^2 \le R_2^2\}$ invariante Menge sind.
- d) Zeigen Sie, dass die Lösungen für beliebigen Startwert global in der Zeit existieren.
- e) Falls es periodische Lösungen gibt, geben Sie diese an. Begründen Sie, dass Sie alle periodischen Lösungen angegeben haben.

Bitte umdrehen!

4. (5 Punkte)

a) Zeigen Sie folgende Variante des Gronwall-Lemmas: Se
i $\alpha \in \mathbb{R}$ und erfülle v die Ungleichung

$$v'(t) \le \alpha v(t), \qquad t \in [0, T].$$

Dann gilt $v(t) \leq v(0)e^{\alpha t}$ auf [0, T].

b) Erfülle $f \in C^1(\mathbb{R}^2)$ die einseitige Lipschitzbedingung

$$(f(t,y) - f(t,z))(y-z) \le \alpha |y-z|^2 \qquad \forall (t,y), (t,z) \in \mathbb{R}^2$$

Zeigen Sie, dass für die Lösungen y_{y_0} , y_{y_1} der Anfangswertprobleme y' = f(t, y) mit Startwerten $y_{y_0}(0) = y_0$ und $y_{y_1}(0) = y_1$ gilt:

$$|y_{y_0}(t) - y_{y_1}(t)| \le |y_0 - y_1|e^{\alpha t} \quad \forall t > 0.$$

5. (5 Punkte) Gegeben ist der Differentialoperator

$$y \mapsto Ly = -\frac{d}{dx}(x\frac{d}{dx}y)$$

mit den Randbedingungen y(1) = 0 und y'(2) = 0.

- a) Bestimmen Sie ein Fundamentalsystem der Differentialgleichung Ly = 0.
- b) Bestimmen Sie die Greensche Funktion von L zu diesen Randbedingungen und dem Intervall (1,2)
- c) Ändern Sie die Randbedingung auf: y(1) = 0, $y(2) (2 \ln 2)y'(2) = 0$. Können Sie das Randwertproblem Ly = f für jedes stetige f lösen? Begründen Sie.