# 1 Representing Markov chains

#### 1.1 Definition

A (discrete-time) Markov chain is a stochastic process for which the joint distribution of N consecutive samples  $\mathbf{z} = (z_1, \dots, z_N)^{\top}$  factorizes as:

$$p(\mathbf{z}) = p(z_1) \prod_{n=2}^{N} p(z_n | z_{n-1}),$$
 (1)

## 1.2 Graphical and Matrix Representation

When  $z_n$  is discrete, i.e  $z_n \in \mathcal{S}$  and  $|\mathcal{S}| \leq \aleph_0^{-1}$ , the transition probabilities  $p(z_n|z_{n-1})$  of the Markov chain is often represented as a graph or a matrix.

For instance, if we have  $z_n \in \{a, b, c\}$ , the transition matrix is given by:

$$\mathbf{T} = \begin{bmatrix} p(z_n = a|z_{n-1} = a) & p(z_n = b|z_{n-1} = a) & p(z_n = c|z_{n-1} = a) \\ p(z_n = a|z_{n-1} = b) & p(z_n = b|z_{n-1} = a) & p(z_n = c|z_{n-1} = b) \\ p(z_n = a|z_{n-1} = c) & p(z_n = b|z_{n-1} = c) & p(z_n = c|z_{n-1} = c) \end{bmatrix}, \quad (2)$$

and the corresponding graph representation is given in Fig. 1.



Figure 1: Graphical representation of a Markov chain.  $t_{ij}$  is the element of **T** at the *i*th row and *j*th column.

Whereas the graph conveniently represents the possible trajectories in the state-space, the transition matrix  $\mathbf{T}$  allows to express state marginalization as a matrix-vector multiplication. For instance:

$$p(z_n) = \sum_{i \in \{a,b,c\}} p(z_{n-1} = i, z_n)$$
(3)

$$= \sum_{i \in \{a,b,c\}} p(z_n | z_{n-1} = i) p(z_{n-1} = i)$$
(4)

$$\mathbf{v}_n = \mathbf{T}\mathbf{v}_{n-1} \tag{5}$$

<sup>&</sup>lt;sup>1</sup>This notation is a little bit pedantic but necessary in order to include Markov chains with countably infinite states (as defined in the Dirichlet-process HMM for instance).

, where:

$$\mathbf{v}_n = \begin{bmatrix} p(z_n = a) \\ p(z_n = b) \\ p(z_n = c) \end{bmatrix}. \tag{6}$$

Equation (5) is the "core" operation of many Markov chains related algorithm such as forward-backward (for training models) and viterbi (for decoding speech). For Markov chains that have a large number of states, this operation is problematic as its complexity is quadratic in the number of states:  $\mathcal{O}(2D^2)$  where D is the number of states. The rest of the document describes how to exploit the structure of the Markov chains to decrease the complexity of this operation.

### 1.3 Compact graphical form

In many application, the transition probabilities have some structure allowing to represent the Markov chain in a more compact manner. For instance, let's consider the following transition probabilities:

$$p(z_n = j | z_{n-1} = i) = \begin{cases} \gamma + \nu_i \delta_j & \text{if } i = a \text{ and } j = b \\ \nu_i \delta_j & \text{otherwise.} \end{cases}$$
 (7)

Defined in this way, this Markov chain has  $2 \cdot 3 + 1 = 7$  parameters instead of  $3 \cdot 3 = 9$  in the general case. The graphical representation of this constrained Markov chain is shown in Fig. 2.



Figure 2: Graphical representation of a constrained Markov chain. The filled node is a "phony" state equivalent of the *epsilon-arc* in the WFST framework.

### 1.4 Efficient marginalization

In many applications, we would like to use the structure of the Markov chain to efficiently marginalize over a state. The formula in (5) can be prohibitive to evaluate if the state-space is large. The idea is to use the constraints of the Markov chain to efficiently calculate the matrix-vector product.

In our particular example, observe that the transition matrix can be written as:

$$\mathbf{T} = \mathbf{S} + \boldsymbol{\nu} \boldsymbol{\delta}^{\top}, \tag{8}$$

where:

$$\mathbf{S} = \begin{bmatrix} 0 & \gamma & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \boldsymbol{\nu} = \begin{bmatrix} \nu_a \\ \nu_b \\ \nu_c \end{bmatrix} \boldsymbol{\delta} = \begin{bmatrix} \delta_a \\ \delta_b \\ \delta_c \end{bmatrix}. \tag{9}$$

Consequently, we have:

$$\mathbf{T}\mathbf{v}_{n-1} = (\mathbf{S} + \boldsymbol{\nu}\boldsymbol{\delta}^{\top})\mathbf{v}_{n-1},\tag{10}$$

and using the associativity and the distributive properties of the addition and multiplication we re-write it as:

$$\mathbf{T}\mathbf{v}_{n-1} = \mathbf{S}\mathbf{v}_{n-1} + \boldsymbol{\nu}(\boldsymbol{\delta}^{\top}\mathbf{v}_{n-1}). \tag{11}$$

Calculating the matrix-vector product following the operation order of (11), the complexity reduces to:  $\mathcal{O}(2Q+2D)$  where Q is the number of non-zero elements in  $\mathbf{S}$ .

**Remark:** in the general case, it is easy to show that:

$$\mathbf{T} = \mathbf{S} + \sum_{k}^{K} \boldsymbol{\nu}_{k} \boldsymbol{\delta}_{k}^{\top}, \tag{12}$$

where K is the number of "phony" states in the graphical representation of the Markov chain<sup>23</sup>.

<sup>&</sup>lt;sup>2</sup>Here, I assume that there is no looping path starting from a "phony" state that does not contain a "real" state. This constraint is necessarly met in practice.

 $<sup>^3</sup>$ The factorization in (12) is not unique.