

Dynamic Planet C – ANSWER KEY

2018 Regional Tournament

- --- NOT FOR STUDENTS ---
- --- NOT FOR STUDENTS ---

Total Points Possible: 102

Tea	m Number:	School Name:	KEY	KEY	
Mu	Iltiple Choice [2 pt each]				
1.	According to the plate tecton	ic theory, most	new crust	is formed as the result of:	
	A. plate convergenceB. deposition of sediments aC. extrusion of lava from theD. volcanism at mid-ocea	e liquid outer co	_		
2.	2is the state of gravitational equilibrium between Earth's crust and mantle such that the crust "floats" at an elevation that depends on its thickness and density.				
	A. IsostasyB. EustasyC. StaticotasyD. Glacioisostasy				
3.	Information about the interio	r of the Earth co	omes pred	ominantly from:	
	A. the composition of manga B. the distribution of plate to C. seismic waves D. glacial ice cores		ies		
4.	Which of the following is NO1 spreading rates?	r a valid method	d of derivir	ng absolute plate	
	A. Hot spotsB. GPSC. Isostatic reboundD. Magnetic reversals				
5.	Who is generally considered t today?	to be the father	of seafloo	spreading as we know it	
	A. Alfred WegnerB. Andrija MohorovičićC. Harry HessD. Arthur Holmes				
6.	Who first proposed the idea o	of continental dr	ift?		
	A. Harry Hess B. Arthur Holmes				

C. Marie TharpD. Alfred Wegner

Team Nu	mber:	School Name:	KEY	KEY
	first suggested that the reference the Earth's current	_		lges record and
B. F C. ⊢	Alfred Wegner Frederick Vine & Drumi Harry Hess Andrija Mohorovičić	mond Mathews		
8. Whei	n did the supercontinent	Pangaea begin to	break apart?	
B. a C. a	bout 10,000 years ago bout 10 million years ago bout 200 million years bout 570 million years ag	s ago		
9. What	t force is responsible for i	normal faulting in	rocks?	
B. T C. S	Compression Tension Shearing Vertical subsidence			
10. Wh	at force is responsible for	reverse faulting	in rocks?	
B. T C. S	Compression Tension Shearing Vertical subsidence			
A. 1 B. 5 C. 7	50%	age of all earthqu	akes occur at pla	te boundaries?
12. At v	what type of plate bounda	ary do shallow-fo	cus earthquakes c	occur?
B. d C. t	convergent livergent ransform all of these			
	npressive stresses, andes ociated with	-	deep-focus earth	nquakes are

Team Number:	School Name:	KEY	KEY
A. subduction zones B. continent/continent cond C. spreading centers D. transform boundaries	vergence		
14. What is the east coast of t	he United States	s an exampl	e of?
 A. Active continental marging B. Convergent plate bound C. Divergent plate boundar D. Passive continental m E. Transform plate boundar 	ary ry nargin		
15. What type of plate bounda	ry results in the	formation o	of volcanic island arcs?
A. Ocean/Ocean Convergent B. Ocean/Ocean Divergent C. Ocean/Continent Convergent D. Ocean/Continent Divergent E. None of the Above	rgent		
16. Near which type of bounda	ary would you ex	spect to find	hydrothermal vents?
 A. Passive Continental Mar B. Ocean/Continent Converge C. Ocean/Ocean Diverge D. Ocean/Continent Diverg E. None of the Above 	rgent ent		
17. Horst and graben topograp	ohy is dominated	l by what ki	nd of fault?
A. NormalB. ReverseC. ThrustD. Strike-slip			
18. Which sea is an example o	f rifting forming	an incipient	cocean?
A. Baltic SeaB. Bering SeaC. English ChannelD. Red Sea			
19. Melange deposits are asso	ciated with	·	

Team Number:	School Name:	<u>KEY</u>	KEY
A. divergent plate boundarB. subduction zonesC. transform plate boundarD. all of these			
20. Lines on the seafloor that o	connect rocks of	the same a	ge are called:
A. isogradsB. isotopesC. isochronsD. isostasy			
21. Where do the magnetic ve	ctors of oceanic	crust plung	e at the steepest angles?
A. Near the polesB. Near the equatorC. At about 30° latitudeD. At about 60° latitude			
22. What is the estimated aver	rage speed of ma	antle conve	ction?
A. 20 mm/yrB. 40 mm/yrC. 20 m/yrD. 1 m/yr			
23. What is the Earth's geothe	rmal gradient in	the upper o	crust?
 A. 1 °C/km B. 10 °C/km C. 25 °C/km D. 40 °C/km 			
24. Tiny crystals of iron-rich m directional signature of Ear of about 580 °C. M heated above this point.	rth's magnetic fie	eld when th	•
A. Boiling PointB. Curie PointC. Mathews PointD. Hess Point			

Feam Number: School Name:	KEY	KEY
---------------------------	-----	-----

- 25. The image below is a photograph of the Sidling hill roadcut in western Maryland. What type of geologic fold can be seen in this image?
 - A. Anticline
 - **B.** Syncline
 - C. Slump
 - D. Dome

Fill in the Blank [2 pts each]

- 26. Thrust faults are reverse faults that develop at a very low angle.
- 27. Plates slide past one another along <u>Transform</u> boundaries.
- 28. The seafloor also has huge, flat, deep areas where sediments have buried the rough volcanic terrain that was created at mid-ocean ridges. These places are called **abvssal plains**.

Team Number:	School Name:	KEY	KEY

True or False [2 pts each]

- 29. Today magnetic North is in the reverse direction as geographic North. (TRUE/**FALSE**)
- 30. Hypsometry is the measurement of sea-floor elevation relative to sea level. (TRUE/**FALSE**)
- 31. The Alleghenian orogeny led to the formation of the Pangaea supercontinent. **(TRUE**/FALSE)

Comparing the continental and oceanic crust:

- 32. Continental crust is younger than oceanic crust. (TRUE/**FALSE**)
- 33. Oceanic crust is more dense than continental crust. (**TRUE**/FALSE)
- 34. Continental crust is thicker than oceanic crust. (**TRUE**/FALSE)
- 35. Continental crust contains a higher percentage of mafic minerals than oceanic crust. (TRUE/**FALSE**)

Diagram

36. Label the layers of the Earth on the diagram below. On the left-hand side of the diagram, label the 5 layers that are defined based on how resistant materials are to flowing or shearing (i.e. how the layer moves). On the right-hand side of the diagram, label the 3 layers of the Earth defined based on what kind of rocks and minerals it's made of. [1pt each]

Dynamical structure of Earth

Compositional structure of Earth

- A. Lithosphere
- B. Asthenosphere
- C. Mesosphere
- D. Liquid Outer Core [also accept answer: Outer core]
- E. Solid Inner Core [also accept answer: Inner core]
- F. Crust
- G. Mantle
- H. Core

Computation

37. Use the Age map of oceanic crust (Above) for this question. Assuming that the Atlantic Ocean began forming 120 million years ago, and has been spreading steadily ever since, calculate the FULL seafloor spreading rate at the equator near the Romanche Fracture Zone. (Give your answer in units of cm/year.) [6 pts]

0.33 cm/yr

38. The Mayflower landed on Plymouth rock roughly 400 years ago. Using the rate of seafloor spreading you calculated in the previous question, estimate how much wider the Atlantic Ocean is now than it was when the first pilgrims arrived in Plymouth. [6 pts]

132 cm wider now

Team Number:	School Name:	KEY	KEY	
20. Coologist Dator Bird calcula	stad that the Ear	eth/a lithaanha	ero is boing both cros	.+

39. Geologist Peter Bird calculated that the Earth's lithosphere is being both created and destroyed at a rate of about 3.4 km²/yr. At this rate, and given that the Earth's surface area is about 510,000,000 km² how long would it take to recycle the Earth's entire lithosphere? [6 pts]

150,000,000 years

40. If typical mantle rock contains 0.05 weight percent potassium, while a typical granite contains 4 weight percent potassium, what is the minimum amount of mantle rock that would have to be differentiated (for example, through partial melting and fractional crystallization) to create 10 kg of granite? [6 pts]

800 kg

Tie-Breakers

- 41. At any given time, about how many volcanoes are erupting on Earth on average? [1pt]
 - A. 2
 - B. 20
 - C. 200
 - D. 2,000
- 42. What type of plate boundary formed the Tibetan plateau? [1pt]
 - A. Ocean/Ocean Convergent
 - B. Ocean/Continent Convergent
 - C. Continent/Continent Convergent
 - D. Continent/Continent Divergent
 - E. None of the Above
- 43. Name the three orbital parameters with Milankovitch cycles.

[1pt for each]

Eccentricity, Axial Tilt Precession