Tópico

FLUJO DE CARGA: BRANCH FLOW

Mar 2019

AUTORES:

ERIK ALVAREZ JEFFERSON CHÁVEZ

UNIVERSIDADE ESTADUAL DE CAMPINAS

DSEE – Departamento de Sistemas de Energia Elétrica

Modelo Branch Flow: Diagrama

Ω_b	Conjunto de barras	r_{ij}	Resistencia serie del circuito ij
Ω_l	Conjunto de circuitos	x_{ij}	Reactancia serie del circuito ij
V_i^{sqr}	Magnitud de la tensión al cuadrado en la barra \emph{i}	b_{ij}^{shl}	Susceptancia shunt en el circuito ij
$ heta_i$	Ángulo de fase en la barra $m{i}$	a_{ij}	Relación de transformación en el circuito ij
g_i^{sh}	Conductancia shunt en la barra \emph{i}	$arphi_{ij}$	Ángulo de desfase en el circuito ij
b_i^{sh}	Susceptancia shunt en la barra $m{i}$	g_{ij}	Conductancia serie del circuito ij
P_i^g	Potencia activa generada en la barra $m{i}$	b_{ij}	Susceptancia serie del circuito ij
Q_i^g	Potencia reactiva generada en la barra $m{i}$	z_{ij}^2	Impedancia del circuito ij
P_i^d	Potencia activa demandada en la barra \emph{i}		
Q_i^d	Potencia reactiva demandada en la barra $m{i}$		
P_{ij}	Flujo de potencia activa en el circuito ij		
Q_{ij}	Flujo de potencia reactiva en el circuito ij		
I_{ij}^{sqr}	Magnitud de la corriente en el circuito ij		

Modelo Branch Flow: Ecuaciones (1/5)

• Del diagrama mostrado, se puede deducir las ecuaciones de balance de potencia:

$$P_{i}^{g} - P_{i}^{d} + \sum_{ji \in \Omega_{l}} P_{ji} - \sum_{ij \in \Omega_{l}} (P_{ij} + r_{ij}I_{ij}^{2}) + g_{i}^{sh}V_{i}^{2} = 0; \ \forall i \in \Omega_{b}$$
 (1)

$$\begin{aligned} Q_{i}^{g} - Q_{i}^{d} + \sum_{ji \in \Omega_{l}} \left(Q_{ji} + b_{ji}^{shl} V_{i}^{2} \right) - \sum_{ij \in \Omega_{l}} \left(Q_{ij} - b_{ij}^{shl} V_{i}^{2} + x_{ij} I_{ij}^{2} \right) \\ + b_{i}^{sh} V_{i}^{2} &= 0; \ \forall i \in \Omega_{b} \end{aligned} \tag{2}$$

- Donde, $r_{ij}I_{ij}^2 \& x_{ij}I_{ij}^2$ son las pérdidas de potencia activa y reactiva del circuito ij.
- La diferencia de tensiones en el circuito ij, es definido mediante la sgte. ecuación:

$$a_{ij}\overrightarrow{V_i} - \overrightarrow{V_j} = \overrightarrow{I_{ij}}(r_{ij} + \mathbf{j}x_{ij}) \,\forall ij \in \Omega_l$$
 (3)

• Donde $\overrightarrow{I_{ii}}$ en el nodo j, puede ser calculado usando la siguiente ecuación:

$$\overrightarrow{I_{ij}} = \left(\frac{P_{ij} + Q_{ij}}{\overrightarrow{V_i}}\right)^{\hat{}} \forall ij \in \Omega_l \tag{4}$$

Modelo Branch Flow: Ecuaciones (2/5)

• Sustituyendo (4) en (3), se tiene:

$$(a_{ij}\overrightarrow{V_i} - \overrightarrow{V_i})\overrightarrow{V_i}^* = (P_{ij} - \boldsymbol{j}Q_{ij})(r_{ij} + \boldsymbol{j}x_{ij}); \ \forall ij \in \Omega_l$$
 (5)

- Si se considera que:
 - $V_i e^{\mathbf{j}(\theta_i + \varphi_{ij})} = V_i (\cos(\theta_i + \varphi_{ij}) + \mathbf{j}\sin(\theta_i + \varphi_{ij}))$
 - $V_j e^{\mathbf{j}\theta_j} = V_j (\cos \theta_j + \mathbf{j} \sin \theta_j)$
 - $\theta_{ij} = \theta_i \theta_j$
- Entonces (5) puede ser reescrita como sigue:

$$a_{ij}V_iV_j[\cos(\theta_{ij} + \varphi_{ij}) + \boldsymbol{j}\sin(\theta_{ij} + \varphi_{ij})] - V_j^2$$

= $(P_{ij} - \boldsymbol{j}Q_{ij})(r_{ij} + \boldsymbol{j}x_{ij}); \forall ij \in \Omega_l$

• Separando en parte real e imaginaria se tiene:

$$a_{ij}V_iV_j\cos(\theta_{ij} + \varphi_{ij}) = V_j^2 + (r_{ij}P_{ij} + x_{ij}Q_{ij}); \ \forall ij \in \Omega_l$$

$$a_{ij}V_iV_i\sin(\theta_{ij} + \varphi_{ij}) = x_{ij}P_{ij} - r_{ij}Q_{ij}; \ \forall ij \in \Omega_l$$
(8)

(6)

Modelo Branch Flow: Ecuaciones (3/5)

• Sumando los cuadrados de (7) y (8), y aplicando la formula trigonométrica $(\sin(\theta_{ij} + \varphi_{ij}))^2 + (\cos(\theta_{ij} + \varphi_{ij}))^2 = 1$, se tiene:

$$\left[a_{ij}^{2}V_{i}^{2}-2\left(r_{ij}P_{ij}+x_{ij}Q_{ij}\right)\right]V_{j}^{2}-z_{ij}^{2}\left(P_{ij}^{2}+Q_{ij}^{2}\right)-V_{j}^{4}=0;\;\forall ij\in\Omega_{l} \tag{9}$$

- Se nota que:
 - Se ha eliminado la diferencia angular entre las tensiones $(heta_{ij})$
 - Es un polinomio de cuarto grado que calcula la diferencia de las tensiones en el circuito ij
 - De esta forma, es posible obtener la magnitud de la tensión del ultimo nodo (V_j) en términos de la del nodo inicial (V_i) , el flujo de potencia activa (P_{ij}) , el flujo de potencia reactiva (Q_{ij}) .

Modelo Branch Flow: Ecuaciones (4/5)

- Por ultimo, es posible representar (9) a través de dos ecuaciones de segundo grado, entonces se tiene:
- De (4), la magnitud del flujo de corriente es mostrado en:

$$I_{ij}^{2} = \frac{P_{ij}^{2} + Q_{ij}^{2}}{V_{i}^{2}} ; \forall ij \in \Omega_{l}$$
 (10)

• Simplificando (9) a través de (10), se tiene:

$$a_{ij}^2 V_i^2 - 2(r_{ij} P_{ij} + x_{ij} Q_{ij}) - z_{ij}^2 I_{ij}^2 - V_j^2 = 0 ; \forall ij \in \Omega_l$$
 (11)

- Entonces, se nota que:
 - Así como en (9), se ha eliminado la diferencia angular entre las tensiones (θ_{ij})
 - ullet Es un polinomio de segundo grado que calcula la diferencia de las tensiones en el circuito ij
 - De esta forma, es posible obtener la magnitud de la tensión del ultimo nodo (V_j) en términos de la del nodo inicial (V_i) , el flujo de potencia activa (P_{ij}) , el flujo de potencia reactiva (Q_{ij}) .

Modelo Branch Flow: Ecuaciones (5/5)

 $\forall i \in \Omega_h$

$$P_i^g - P_i^d + \sum_{i \in \mathcal{Q}} P_{ji} - \sum_{i \in \mathcal{Q}} (P_{ij} + r_{ij}I_{ij}^2) + g_i^{sh}V_i^2 = 0$$

$$Q_i^g - Q_i^d + \sum_{ij \in \Omega_I} (Q_{ji} + b_{ji}^{shl} V_i^2)$$

$$\forall i \in \Omega_b$$

$$-\sum_{i,j\in\Omega} (Q_{ji} - b_{ji}^{shl}V_i^2 + x_{ij}I_{ij}^2) + b_i^{sh}V_i^2 = 0$$

$$a_{ij}^2 V_i^2 - 2(r_{ij} P_{ij} + x_{ij} Q_{ij}) - z_{ij}^2 I_{ij}^2 - V_j^2 = 0$$

$$a_{ij}V_i - z(r_{ij}r_{ij} + x_{ij}Q_{ij}) - z_{ij}r_{ij} - v_j$$

$$a_{ij}V_iV_j \sin(\theta_{ij} + \varphi_{ij}) = x_{ij}P_{ij} - r_{ij}Q_{ij}$$

$$\forall ij \in \Omega_l$$

$$\forall ij \in \Omega_l$$

 $V_i^2 I_{ii}^2 = P_{ii}^2 + Q_{ii}^2$

NLP para FC-AC en Branch Flow

- Con las ecuaciones anteriores, es posible calcular el punto de operación en régimen permanente de un SEE.
- Se puede notar que en el *Branch Flow*, las magnitudes de las corrientes en los circuitos (I_{ij}) y de las tensiones en los nodos (V_i) , aparecen solo en las formas (I_{ij}^2) y (V_i^2) , respectivamente.
- Teniendo ello, es conveniente considerar las siguiente cambios en las variables:

$$I_{ij}^{sqr} = I_{ij}^2 \& V_i^{sqr} = V_i^2$$

- Donde:
 - $I_{ij}^{sqr} \ge 0$ $V_i^{sqr} \ge 0$

Modelo Branch Flow: Formulación

$$\min_{g} \sum_{i \in \Omega_b \mid Tb_i = 3} P_i^g$$

$$P_{i}^{g} - P_{i}^{d} + \sum_{ji \in \Omega_{I}} P_{ji} - \sum_{ij \in \Omega_{I}} \left(P_{ij} + r_{ij} I_{ij}^{sqr} \right) + g_{i}^{sh} V_{i}^{sqr} = 0$$

 $\forall i \in \Omega_h$

$$Q_{i}^{g} - Q_{i}^{d} + \sum_{ji \in \Omega_{I}} (Q_{ji} + b_{ji}^{shl} V_{i}^{sqr}) - \sum_{ij \in \Omega_{I}} (Q_{ji} - b_{ji}^{shl} V_{i}^{sqr} + x_{ij} I_{ij}^{sqr}) + b_{i}^{sh} V_{i}^{sqr} = 0$$

$$ji \in \Omega_l \qquad ij \in \Omega_l$$

$$2(r \cdot P \cdot + r \cdot Q \cdot) - z^2 \cdot L^{sqr} - V^{sqr} = 0$$

$$a_{ij}^{2}V_{i}^{sqr} - 2(r_{ij}P_{ij} + x_{ij}Q_{ij}) - z_{ij}^{2}I_{ij}^{sqr} - V_{j}^{sqr} = 0$$

$$a_{ij}^{2}V_{i}^{sqr} - 2(r_{ij}P_{ij} + x_{ij}Q_{ij}) - z_{ij}^{2}I_{ij}^{sqr} - V_{j}^{sqr} = 0$$

$$a_{ij}\sqrt{V_{i}^{sqr}}\sqrt{V_{j}^{sqr}}\sin(\theta_{ij} + \varphi_{ij}) = x_{ij}P_{ij} - r_{ij}Q_{ij}$$

$$V_j^{sqr} I_{ij}^{sqr} = P_{ij}^2 + Q_{ij}^2$$
$$I_{ij}^{sqr} \ge 0 \; ; V_i^{sqr} \ge 0$$

$$P_i^g = P_i^{g0}; \forall i \in \Omega_b | Tb_i = 2$$

o
$$Tb_i = 3$$

$$\begin{vmatrix} V_i = V_i^g ; \forall i \in \Omega_b | Tb_i = 2 \circ Tb_i = 3 \\ \theta_i = \theta_i^0 : \forall i \in \Omega_b | Tb_i = 3 \end{vmatrix}$$

Modelo Branch Flow: Comentarios

- El modelo resultante es de tipo NLP.
- El **Branch Flow Model**, es exacto.
- Se nota que, las ultimas dos restricciones de las ecuaciones del *Branch Flow* son *no lineales*, debido a que contienen términos cuadráticos, producto de variables y un termino trigonométrico.
- Implemente el modelo del *Branch Flow*. ©

