EE2025 INDEPENDENT PROJECT

G.YASHWANTH NAIK(EE18BTECH11017)
P.AASHRITH(EE18BTECH11035)

In this problem we considered $E_b = \frac{T}{2}(\frac{n}{k})$

CHANNEL CODE 1: It's a rate 1/2 linear code with n=8 k=4.

CHANNEL CODE 2: It's a rate 1/3 repetition code.

CHANNEL CODE 3: It's a rate 1/3 linear code with n=12 k=4.

1.Simulating the communication for different values of the noise variance and channel codes

1.1 For Channel-1

variance	BER	No of error bits
20	0.09	10865
12	0.034	4185
7	0.0059	715
5	0.001025	123

fig(1): Variance = 20

fig(2): Variance = 12

fig(3): Variance = 7

fig(4): Variance = 5

1.2 For Second Channel

VARIANCE	BER	NO.of Error bits
20	0.0484	5813
12	0.01653	1984
7	0.0026	312
5	0.000575	69

Fig(5): Variance = 20

fig(6): Variance = 12

Fig(7): Variance = 7

Fig(8): Variance = 5

1.3 For Third Channel Code:

VARIANCE	BER	NO.of Error Bits
20	0.049	5927
12	0.0112	1349
7	0.0009	116
5	9.16x 10 ⁻⁵	11

Fig(9): Variance = 20

Fig(10): Variance= 12

Fig(11):Variance = 7

Fig(12): Variance = 5

2.Simulating the communication for different values of the $\frac{E_b}{N_o}$ (dB) and channel codes

2.1 For Channel Code 1:

$\frac{E_b}{N_o}$	BER	No.of Error bits
-2	0.1900	22810
0	0.12030	14437
2	0.0591	7094
4	0.0200	2411
6	0.00345	415

Fig(13): $\frac{E_b}{N_o}$ =-2dB

Fig(14): $\frac{E_b}{N_o} = 0$ dB

Fig(15): $\frac{E_b}{N_o}$ = 2dB

Fig(16): $\frac{E_b}{N_o}$ = 4dB

Fig(17): $\frac{E_b}{N_o}$ = 6dB

2.2 For Channel Code 2

$\frac{E_b}{N_o}$	BER	No.of Error bits
-2	0.165	19907
0	0.111	13423
2	0.06122	7347
4	0.02624	3149
6	0.0077	928

Fig(18): $\frac{E_b}{N_o}$ = -2dB

Fig(19): $\frac{E_b}{N_o}$ = 0dB

Fig(20): $\frac{E_b}{N_o}$ = 2dB

Fig(21): $\frac{E_b}{N_o}$ = 4dB

Fig(22): $\frac{E_b}{N_o}$ = 6dB

2.3 For Channel Code 3

$\frac{E_b}{N_o}$	BER	No.of Error bits
-2	0.2066	24797
0	0.137	16529
2	0.0696	8356
4	0.0234	2816
6	0.004116	494

Fig(23): $\frac{E_b}{N_o}$ = -2dB

Fig(23): $\frac{E_b}{N_o}$ = 0dB

Fig(24): $\frac{E_b}{N_o}$ = 2dB

Fig(25): $\frac{E_b}{N_o}$ = 4dB

Fig(26): $\frac{E_b}{N_o}$ = 6dB

2.4 Without Channel Code and $\frac{n}{k} = 2$

$\frac{E_b}{N_o}$	BER	No.of Error bits
-2	0.2128	25546
0	0.15885	19062
2	0.1034	12417
4	0.0555	6667
6	0.0230	2765

2.5 Without Channel Code and $\frac{n}{k} = 3$

$\frac{E_b}{N_o}$	BER	No.of Error bits
-2	0.2588	31064
0	0.206	24783
2	0.150	18047
4	0.0974	11697
6	0.0521	6252

For $\frac{n}{k} = 2$

From the values in tables 2.1 and 2.4 we can observe that because of channel coding there is a huge decrease in bit error rate and no.of error bits.

For $\frac{n}{k} = 3$

From the values in tables 2.3, 2.2 and 2.5 we can observe that because of channel coding there is a huge decrease in bit error rate and no.of error bits.

3.Plots of BER vs $\frac{E_b}{N_o}$ for different channel codes

3.1 For Channel Code 1:

3.2 For Channel Code 2:

3.3 For Channel Code 3:

