Name: Mahmoud Mousatat Date of Birth: 05.11.2001

.....

Explanation of the Game:

Eloise and Abelard play the following game in numbers:

- Positions are integers from 1 to 05 + 11 + 2001 = 2017, players move in turns.
- Moves for both players are (+ n) where n is min(2001, 2017 p) where p is the current position.
- A player wins and the play stops as soon as the player moves to the final position (2017)

Solution:

- 1. In general, a finite game of two players A and B is a tuble G = (PA, PB, MA, MB, FA, FB), where:
 - a. PA and PB, are disjoint finite sets of positions for A and B,
 - b. $MA \subseteq PA \times (PA \cup PB)$ and $MB \subseteq PB \times (PA \cup PB)$ are admissible moves of A and B,
 - c. $FA \subseteq (PA \cup PB)$ and $FB \subseteq (PA \cup PB)$ are disjoint final positions (where A and B won already respectively).

Thus, in our Game depending on fixed initial position we can say:

$$PEloise = \{initial + (n), initial + (n * 3),, min(intial + (n * k), 2017)\}, where$$
$$initial = The start point,$$
$$k \in [integer of ((2017 - initial) / n), integer of ((2017 - initial) / n) - 1], where k is odd.$$

$$PAlbert = P / PEloise$$
, $where P = \{initial + n,, min(initial + (n * w), 2017)\}$, $w \in N$
 $MEloise \subseteq PEloise \times PAlbert$ and $MAlbert \subseteq PAlbert \times PEloise$

 $FEloise \subseteq PEloise \ and \ FAlbert \subseteq PAlbert$

But, we already know that on fixed initial position:

$$MEloise = \{[PEloise^{(i)}, PAlbert^{(i)}]\}, where i \in N.$$

And we can represent it as:

$$MEloise = \{[PEloise^{(i)}, min(PEloise^{(i)} + n, 2017)]\}, where i \in N.$$

Same way we can represent:

```
MAlbert = \{[min(PEloise^{(i)} + n, 2017), min(PEloise^{(i)} + 2n, 2017)]\}, where i \in N \} If FEloise = \{2017\} then FAlbert = \{\emptyset\} and vise versa.
```

- 2. In general, a player A has a winning strategy against set of players lets call them B in a position p iff
 - either p is a final position.
 - or A has a move $(p, q) \in MA$ that leads to a position q such that:
 - *q* is not a final position
 - any move $(q, r) \in Mi$ from player i where $i \in B$ leads to a position r where A has a winning strategy in that position.

- 3. game G = (PA, PB, MA, MB, FA, FB) can be solved on behalf of Eloise on base of the following observation: the set WA where Eloise has a winning strategy is the least set of positions that satisfies the following equation:
- $X = FA \cup \{p \in PA \setminus F : \exists q((p, q) \in MA \& q \in X)\} \cup \{p \in PB \setminus F : \forall q((p, q) \in MB \ then \ q \in X)\} \ where \ F = FA \cup FB$ The computation:

$$XEloise = \{2017\} \cup \{2017 - 2001,..., 2016\} \cup \{2017 - 2001,..., 2016\}$$
 where $F = 2017$ $XEloise = \{16, 17, 18, ..., 2017\}$

Which mean X is a set of winning positions for Eloise which is: final position adding to it all the winning positions that come from the winning positions of X.

- 4. *XAlbert* = *P/Xeloise where P* = {1, 2, 3, 4,, 2017} ={1,....,15} As the set if moves *n* ∈ [2001] then there is only one way to move and all these initial position are already winning position for Albert, however any move from this position to position + n will lead to winning position for the other component and as Eloise start the first move, Albert will win.
- 5. We can imagine the situation of Albert choosing the initial position as he is making a move to this position then the turn will go to Eloise, in the skitch below: S1 refers to the situation where Albert choosed the initial point from the range [1,...,15]. S2 refers to the situation where Albert choosed the initial point from the range [16,...,2016].

S3 refers to the situation where Albert choosed [2017] as initial point. Extensive form:

NOTATION:

Let G be a play in a game in the normal form of players A, B, etc. Let π be the payoff function that maps every play $S = (sA, sB, \dots)$ of the game (where sA, sB, ... are strategies of the players A, B, etc.) into vector of the payoffs in this play π (S) = (πA (S) : πB (S) : ...). For any play $S = (sA, sB, \dots)$ and any strategy sX' of a player X in A, B, etc., let SX:sX' be result of X playing sX' instead of sX in S (while all other players do not change their strategies).

6- In general, a play S = (sA, sB, ...) is Pareto optimal, if there is no any play S' such that $\pi(S') \ge \pi(S)$ holds componentwise and $\pi(S') \ge \pi(S)$ for some player S' of the game.

From the definition: s1=(-1,1) and s2=(1,-1) and s3=(1,-1) are All Pareto optimal Because:

 π albert (-1,1)=1> π albert(AI,BJ) π eloise (1,-1)=1> π eloise(AI,BJ)

Which mean s1 and s2 ans s3 cannot be better off without making another player worse. 7-Nash equilibria: A play S = (sA, sB, ...) is acceptable for a player X in A, B, etc., if πX (S) $\geq \pi X$ (SX:sX') for any legal strategy sX' of the player X.

From the definition: s1=(-1,1) is Nash equilibria because it let $(\pi \text{albert } (-1,1)=1) \ge (\pi \text{albert} (1,-1)=-1)$, and $\pi \text{eloise } (-1,1)=-1$ is the only and biggest result of moves that eloise can make.

Which mean albert will not like to change the result, holding all other decisions constant 8- As the moves of Eloise is depend on the initial position that Albert choose, we can write the normal form as:

Albert Eloise	Initial 1 +2017-Position	Initial 2	initial3
Eloise move is always depend on Albert moves	-1	1	1

- -1 mean Albert win and Eloise lose
- 1 mean Eloise win and Albert lose

Or we can make the normal form in this way:

Albert	Initial1 +2017-Position	Initial2	Initial3
Eloise			
+2001	(-1,1)	Not a play	Not a play
+2017-Postion	Not a play	(1,-1)	Not a play

Position	Not a play	Not a play	(1,-1)
----------	------------	------------	--------

(-1,1) means Eloise win and get 1 and Albert lose and get -1

(1,-1) means Albert win and get -1 and Eloise lose and get 1