

Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals

 ${\sf Tom\ Dupr\'e\ La\ Tour}^1 \qquad {\sf Thomas\ Moreau}^2 \qquad {\sf Mainak\ Jas}^1 \qquad {\sf Alexandre\ Gramfort}^2$

TELECOM ParisTech

¹LTCI, Télécom ParisTech, Université Paris Saclay, Paris, France, ² Parietal, INRIA, Université Paris Saclay, Saclay, France

Code available at: https://alphacsc.github.io

1. Convolutional Sparse Coding (CSC)

Convolutional linear model:

$$X = \sum_{k=1}^{K} z_k * D_k + \mathcal{E}, \qquad \mathcal{E} \sim \mathcal{N}(0, \sigma I)$$

$$(1)$$

with signal $X \in \mathbb{R}^{P \times T}$ (P sensors and T samples), K patterns $D_k \in \mathbb{R}^{P \times L}$ (duration L) and activations $z_k \in \mathbb{R}^{\widetilde{T}}$ such that $\widetilde{T} = T - L + 1$.

2. Z-step: solving for the activations

The Z-step solves (2) or (3) for a fixed dictionary. We solve it using **Greedy Coordinate Descent (GCD)**:

Optimization problem for one coordinate has a close form:

$$z'_k[t] = \max\left(\frac{\beta_k[t] - \lambda}{\|D_k\|_2^2}, 0\right) \tag{4}$$

with $\beta_k[t] = \left[D_k^{\uparrow} * \left(X - \sum_{l=1}^K z_l * D_l + z_k[t]e_t * D_k\right)\right][t].$

• Greedily update coefficient $(k_0, t_0) = \operatorname{argmax} |Z_k[t] - Z_k'[t]|$

Locally Greedy Coordinate Descent (LGCD): [Moreau et al., 2018]

- Select the best coordinate locally, on one of M contiguous segments \mathcal{C}_m : $(k_0,t_0) = \operatorname{argmax} |Z_k[t] Z_k'[t]|$
- For $M=\lfloor\widetilde{T}/(2L-1)\rfloor$, the computational complexity of choosing the coefficient matches the complexity of performing the update.

 $(k,t)\in\mathcal{C}_m$

It is efficient when the updates are weakly dependent and when the solution is sparse.

3. D-step: solving for the atoms

The D-step solves (2) or (3) for a fixed activations. We solve it using **Projected Gradient Decent (PGD)**:

- Separate minimization over $\{u_k\}_k$ and $\{v_k\}_k$.
- ► The step size is set using a Armijo backtracking line-search.

Function and gradients computations:

▶ The gradient relatively to a full atom $D_k = u_k v_k^\top \in \mathbb{R}^{P \times L}$:

$$\nabla_{D_k} E = \sum_{n=1}^N (z_k^n)^\top * \left(X^n - \sum_{l=1}^K z_l^n * D_l \right) = \Phi_k - \sum_{l=1}^K \Psi_{k,l} * D_l ,$$
 (5)

where $\Phi_k \in \mathbb{R}^{P \times L}$ and $\Psi_{k,l} \in \mathbb{R}^{2L-1}$ are constant during a D-step and can be precomputed.

• The gradients relatively to u_k and v_k are obtained using the chain rule:

$$\nabla_{u_k} E = (\nabla_{D_k} E) v_k \in \mathbb{R}^P , \qquad (6)$$

$$\nabla_{v_k} E = u_k^{\mathsf{T}} (\nabla_{D_k} E) \in \mathbb{R}^L , \qquad (7)$$

ightharpoonup E can be computed, up to a constant term C, with the following:

$$E = \sum_{k=1}^{K} u_k^{\top} (\nabla_{D_k} E) v_k + C .$$
 (8)

 \Rightarrow Using this pre-computation helps scaling with the number of channels as the computation are in $\mathcal{O}(P+L)$ instead of $\mathcal{O}(PL)$.

Multivariate CSC

$$\min_{D_k, z_k^n} \sum_{n=1}^N \frac{1}{2} \left\| X^n - \sum_{k=1}^K z_k^n * D_k \right\|_2^2 + \lambda \sum_{k=1}^K \|z_k^n\|_1,$$
 (2) s.t.
$$\|D_k\|_2^2 \le 1 \text{ and } z_k^n \ge 0,$$

Multivariate CSC with rank-1 constraint

$$\min_{u_k, v_k, z_k^n} \sum_{n=1}^{N} \frac{1}{2} \left\| X^n - \sum_{k=1}^{K} z_k^n * (u_k v_k^\top) \right\|_2^2 + \lambda \sum_{k=1}^{K} \left\| z_k^n \right\|_1, \\
\text{s.t.} \quad \|u_k\|_2^2 \le 1 \text{ , } \|v_k\|_2^2 \le 1 \text{ and } z_k^n \ge 0 \text{ .}$$
(3)

← One source in the brain is spread linearly and instantaneously over all sensors. The rank-1 hypothesis is particularly suited for MEG signals.

4. Multivariate speed benchmark

Speed benchmark for univariate-CSC (top) and multivariate-CSC (bottom).

5. Simulated Signals

- ightharpoonup Signals are generated following (1) over P channels.
- Recovered temporal patterns \widehat{v}_k are evaluated using:

$$loss(\widehat{v}) = \min_{s \in \mathfrak{S}(K)} \sum_{k=1}^{K} \min \left(\|\widehat{v}_{s(k)} - v_k\|_2^2, \|\widehat{v}_{s(k)} + v_k\|_2^2 \right) .$$

 \Rightarrow More channels improves the pattern recovery as it disentangling super-imposed patterns.

6. Experimental Signals

Atom learned using the MNE-somatosensory dataset. The learned temporal pattern illustrate mu-waveforms described for instance in [Cole and Voytek, 2017].