LAB 2: Phân tích thuật toán

1 Phân tích độ phức tạp thời gian của thuật toán

1.1

- a. n^2
 - (a) Khi tăng gấp đôi kích thước đầu vào:

$$\frac{(2n)^2}{n^2} = 4$$

- \Rightarrow Thuật toán chạy chậm hơn 4 lần.
- (b) Khi tăng kích thước đầu vào thêm 1:

$$\frac{(n+1)^2}{n^2} = 1 + \frac{2}{n} + \frac{1}{n^2}$$

Với n lớn $\rightarrow 1 \Rightarrow$ Không đáng kể.

- b. n^{3}
 - (a) Khi tăng gấp đôi kích thước đầu vào:

$$\frac{(2n)^3}{n^3} = 8$$

- \Rightarrow Thuật toán chạy chậm hơn 8 lần.
- (b) Khi tăng kích thước đầu vào thêm 1:

$$\frac{(n+1)^3}{n^3} = 1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3}$$

Với nlớn $\rightarrow 1 \Rightarrow$ Không đáng kể.

- c. $100n^2$
 - (a) Khi tăng gấp đôi kích thước đầu vào:

$$\frac{(100(2n))^2}{100n^2} = 4$$

 \Rightarrow Thuật toán chạy chậm hơn 4 lần.

(b) Khi tăng kích thước đầu vào thêm 1:

$$\frac{100(n+1)^2}{n^2} = 100 + \frac{200}{n} + \frac{100}{n^2}$$

Với n lớn $\rightarrow 1 \Rightarrow$ Không đáng kể.

- d. $n \log n$
 - (a) Khi tăng gấp đôi kích thước đầu vào:

$$\frac{(2n)\log(2n)}{n\log n} = 2 + \frac{2\log 2}{\log n}$$

Với n lớn $\rightarrow 2 \Rightarrow$ Thuật toán chạy chậm hơn **gần 2 lần**.

(b) Khi tăng kích thước đầu vào thêm 1:

$$\frac{(n+1)\log(n+1)}{n\log n} = 1 + \frac{\log(n+1)}{\log n} + \frac{1}{n\log n}$$

Với n lớn $\rightarrow 1 \Rightarrow$ Không đáng kể.

- e. 2^{n}
 - (a) Khi tăng gấp đôi kích thước đầu vào:

$$\frac{2^{2n}}{2^n} = 2^n$$

Với n lớn \rightarrow rất lớn \Rightarrow Thuật toán chạy chậm hơn **rất nhiều lần**.

(b) Khi tăng kích thước đầu vào thêm 1:

$$\frac{2^{n+1}}{2^n} = 2$$

 \Rightarrow Thuật toán chạy chậm hơn 2 lần.

1.2

a. Phát biểu định nghĩa chính thức của ký pháp Big-O:

$$\exists c > 0, n_0 > 0 \text{ sao cho } T(n) \leq c \cdot f(n), \quad \forall n \geq n_0.$$

b. Cho f(n) và g(n) là các hàm số dương. Sử dụng định nghĩa cơ bản của ký pháp Big-O, chứng minh rằng:

$$\max(f(n), g(n)) = O(f(n) + g(n)).$$

Chứng minh: Với mọi n, ta có:

$$\max(f(n), g(n)) \le f(n) + g(n).$$

Do đó, $\exists c > 0$ sao cho:

$$\max(f(n), g(n)) \le c \cdot (f(n) + g(n)).$$

Theo định nghĩa:

$$\max(f(n), g(n)) = O(f(n) + g(n)).$$

c. Chứng minh rằng mệnh đề sau là vô nghĩa: "Thời gian chạy của thuật toán A ít nhất là $O(n^2)$ ".

Linear search có thời gian chạy O(n) không phải là $O(n^2)$.

1.3

a. Chứng minh hoặc phản bác mệnh đề sau:

$$2^{n+1} = O(2^n)$$

Chứng minh: Ta có:

$$2^{n+1} = 2 \cdot 2^n \le c \cdot 2^n$$
, với $c = 2, n_0 = 1$.

 \Rightarrow **dpcm**.

b. Chứng minh hoặc phản bác mệnh đề sau:

$$2^{2n} = O(2^n)$$

Phản bác: Ta có:

$$2^{2n} = (2^n)^2 \gg c \cdot 2^n$$
, với mọi $c > 0$, $n_0 > 0$.

- ⇒ Khác hoàn toàn.
- c. Chứng minh hoặc phản bác mệnh đề sau: Nếu f(n) = O(g(n)) thì

$$\log f(n) = O(\log g(n)), \quad \text{với giả thiết } f(n) > 1, g(n) > 1.$$

Chứng minh: Theo định nghĩa Big-O, ta có:

$$f(n) \le c \cdot g(n), \quad \forall n \ge n_0.$$

Lấy log hai vế, ta được:

$$\log f(n) \le \log (c \cdot g(n))$$

$$\Leftrightarrow \log f(n) = \log c + \log g(n)$$

$$\Leftrightarrow \log f(n) \le c' \cdot \log g(n)$$

với
$$c' = \log c + 1$$
, $n > n_0$.

- \Rightarrow dpcm.
- d. Chứng minh hoặc phản bác mệnh đề sau: Nếu f(n) = O(g(n)) và $g(n) \ge 1$ thì

$$2^{f(n)} = O(2^{g(n)}).$$

 $Ph \mathring{a} n \ b \mathring{a} c$: Giả sử $f(n)=2n, \ g(n)=n.$ Khi đó:

$$f(n) = O(g(n)) \quad \text{và} \quad g(n) \geq 1.$$

Mà:

$$2^{f(n)}=2^n\ll 2^{2n}\quad \text{v\'oi mọi }c>0,\, n>n_0.$$

⇒ Khác hoàn toàn.

1.4

Sắp xếp theo thứ tự tăng dần theo tốc độ tăng trưởng (growth rate) của các hàm sau:

a.
$$f_1(n) = n + 10; f_2(n) = \sqrt{2n}; f_3(n) = n^2 \log(n); f_4(n) = n^{2.5}; f_5(n) = 10^n; f_6(n) = 100^n.$$

Sắp xếp:

$$f_1(n) = O(n)$$

$$f_2(n) = O(\sqrt{n})$$

$$f_3(n) = O(n^2 \log(n))$$

$$f_4(n) = O(n^{2.5})$$

$$f_5(n) = O(10^n)$$

$$f_6(n) = O(100^n)$$

$$\Rightarrow f_2(n) < f_1(n) < f_3(n) < f_4(n) < f_5(n) < f_6(n)$$

b.
$$g_1(n) = n(\log n)^3$$
; $g_2(n) = n^{4/3}$; $g_3(n) = 2^n$; $g_4(n) = n^{\log(n)}$; $g_5(n) = 2^{2n}$.

Phân tích:

- So sánh
$$g_1(n) = n(\log n)^3$$
 và $g_2(n) = n^{4/3}$:

$$\lim_{n \to \infty} \frac{n(\log n)^3}{n^{4/3}} \stackrel{L}{=} 0.$$

$$\Rightarrow g_1(n) < g_2(n).$$

- So sánh
$$g_2(n) = n^{4/3}$$
 và $g_3(n) = 2^n$:

$$\lim_{n \to \infty} \frac{n^{4/3}}{2^n} = 0.$$

$$\Rightarrow g_2(n) < g_3(n).$$

– So sánh
$$g_3(n) = 2^n$$
 và $g_4(n) = n^{\log n}$:

$$\lim_{n \to \infty} \frac{2^n}{n^{\log n}} = \lim_{n \to \infty} 2^{n - (\log n)^2} = \infty.$$

$$\Rightarrow g_3(n) > g_4(n)$$
.

- So sánh
$$g_3(n) = n^{\log n}$$
 và $g_5(n) = 2^{2n}$:

$$\lim_{n \to \infty} \frac{n^{\log n}}{2^{2n}} = \lim_{n \to \infty} 2^{(\log n)^2 - 2n} = 0.$$

$$\Rightarrow g_3(n) < g_5(n)$$
.

– So sánh
$$g_1(n) = n(\log n)^3$$
 và $g_4(n) = n^{\log n}$:

$$\lim_{n \to \infty} \frac{n(\log n)^3}{n^{\log n}} = \lim_{n \to \infty} n^{1 - \log n} (\log n)^3 = 0.$$

$$\Rightarrow g_1(n) < g_4(n).$$

- So sánh
$$g_4(n) = n^{\log n}$$
 và $g_2(n) = n^{4/3}$:

$$\lim_{n\to\infty}\frac{n^{\log n}}{n^{4/3}}=\lim_{n\to\infty}n^{\log n-4/3}=\infty.$$

$$\Rightarrow g_4(n) > g_2(n).$$

Kết luận:

$$g_1(n) < g_2(n) < g_4(n) < g_3(n) < g_5(n)$$

1.5

Sử dụng Master Theorem để giải các phương trình đệ quy sau:

a.
$$T(n) = 2T(\frac{n}{2}) + n$$

b.
$$T(n) = 3T\left(\frac{n}{2}\right) + n$$

c.
$$T(n) = 4T(\frac{n}{2}) + n^2$$

d.
$$T(n) = T\left(\frac{n}{2}\right) + n$$

e.
$$T(n) = 2T(\frac{n}{2}) + 1$$

f.
$$T(n) = 3T(\frac{n}{3}) + n$$

Gợi ý: Xác định rõ các tham số a, b, và f(n) trước khi áp dụng Master Theorem. Nếu Master Theorem không áp dụng được, sử dụng phương pháp thế. Ta có Master Theorem: <math>T(n) = aT(n/b) + f(n) với $a \ge 1$ và b > 1.

a.
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$a = 2, \quad b = 2, \quad f(n) = n.$$

Ta có:

$$n^{\log_b a} = n^{\log_2 2} = n.$$

Do đó, theo trường hợp 2 của Master Theorem:

$$T(n) = \Theta(n \log n).$$

b.
$$T(n) = 3T\left(\frac{n}{2}\right) + n$$

$$a = 3, \quad b = 2, \quad f(n) = n.$$

Ta có:

$$n^{\log_b a} = n^{\log_2 3} \approx n^{1.585}$$

Do đó, theo trường hợp 1 của Master Theorem:

$$\Rightarrow f(n) = O(n^{\log_b a - \epsilon})$$
với $\epsilon \approx 0.585.$

c.
$$T(n) = 4T(\frac{n}{2}) + n^2$$

$$a = 4$$
, $b = 2$, $f(n) = n^2$.

Ta có:

$$n^{\log_b a} = n^{\log_2 4} = n^2$$
.

Do đó, theo trường hợp 2 của Master Theorem:

$$T(n) = \Theta(n^2 \log n).$$

d.
$$T(n) = T\left(\frac{n}{2}\right) + n$$

e.
$$T(n) = 2T(\frac{n}{2}) + 1$$

f.
$$T(n) = 3T\left(\frac{n}{3}\right) + n$$