Varianten des Theorems von Kirchberger

Tim Baumann

TopMath-Frühlingsschule in Oberschönenfeld

4. März 2014

Theorem (Kirchberger)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Hyperebene trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Hyperebene trennbar sind.

Theorem (Kirchberger)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Hyperebene trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Hyperebene trennbar sind.

Übersicht

1 Trennung durch Sphären

2 Trennung durch Zylinder

Trennung durch Parallelotope

Sei $p \in \mathbb{E}^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{x \in \mathbf{E}^n \mid ||x - p|| = \alpha\}$$

Sphäre mit Radius α um den Punkt p.

Sei $p \in E^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathbf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Definition

Seien A und B Teilmengen von E^n .

Die Sphäre $S_{\alpha}(p)$ trennt A und B streng, wenn gilt:

$$\forall a \in A : \|p - a\| < \alpha$$

$$\forall b \in B : \|p - a\| > \alpha$$

Sei $p \in \mathbb{E}^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathbf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Definition

Seien A und B Teilmengen von E^n .

Die Sphäre $S_{\alpha}(p)$ trennt A und B streng, wenn gilt:

$$\forall a \in A : \|p - a\| < \alpha$$
 und

$$\forall b \in B : \|p - a\| > \alpha$$

Sei $p \in \mathbb{E}^n$ und $\alpha > 0$. Dann heißt

$$S_{\alpha}(p) := \{ x \in \mathbf{E}^n \mid ||x - p|| = \alpha \}$$

Sphäre mit Radius α um den Punkt p.

Definition

Seien A und B Teilmengen von E^n .

Die Sphäre $S_{\alpha}(p)$ trennt A und B streng, wenn gilt:

$$\bigcirc$$
 A B

$$\forall a \in A : \|p - a\| < \alpha$$
 oder und

$$\forall b \in B : \|p - a\| > \alpha$$

$$\forall a \in A : ||p - a|| > \alpha$$
 und

$$\forall b \in B : \|p - a\| < \alpha$$

Theorem (Kirchberger)

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Hyperebene streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Hyperebene streng trennbar sind.

Theorem (Kirchberger')

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+2 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Theorem (Kirchberger')

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

Theorem (Kirchberger')

Seien P und Q nichtleere, kompakte Teilmengen von E^n . Dann sind P und Q genau dann durch eine Sphäre streng trennbar, wenn für jede Menge $T \subset E^n$ mit maximal n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

1 Bette E^n wie üblich in den E^{n+1} ein.

- **1** Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.

- **1** Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.
- **3** Betrachte die stereographische Projektion $\phi : \mathbb{E}^n \to S$.

- **1** Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.
- **3** Betrachte die stereographische Projektion $\phi : \mathbb{E}^n \to S$.

- **1** Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.
- **3** Betrachte die stereographische Projektion $\phi : \mathbb{E}^n \to S$.
- **③** Seien $P, Q \subset E^n$ nichtleer und kompakt sodass für jede Menge $T \subset E^n$ mit maximal n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.

- **1** Bette E^n wie üblich in den E^{n+1} ein.
- ② Sei $p \in E^n$ und $S \subset E^{n+1}$ eine Sphäre, die in p tangential zu E^n ist.
- **3** Betrachte die stereographische Projektion $\phi : \mathbb{E}^n \to S$.
- Seien $P, Q \subset E^n$ nichtleer und kompakt sodass für jede Menge $T \subset E^n$ mit maximal n+3 Punkten die Mengen $P \cap T$ und $Q \cap T$ durch eine Sphäre streng trennbar sind.
- **5** Seien P' und Q' die (kompakten) Bilder von P bzw. Q unter ϕ .

Behauptung: P' und Q' können durch eine Hyperebene $H_0 \subset E^{n+1}$ streng getrennt werden.

6 Sei $T \subset S \subset \mathbb{E}^{n+1}$ eine Menge mit höchstens n+3 Punkten.

- **3** Sei $T \subset S \subset E^{n+1}$ eine Menge mit höchstens n+3 Punkten.
- Nach Voraussetzung werden die Urbilder $\phi^{-1}(T \cap P') = \phi^{-1}(T) \cap P$ und $\phi^{-1}(T \cap Q') = \phi^{-1}(T) \cap Q$ durch eine Sphäre streng getrennt.

- **6** Sei $T \subset S \subset \mathbb{E}^{n+1}$ eine Menge mit höchstens n+3 Punkten.
- Nach Voraussetzung werden die Urbilder $\phi^{-1}(T \cap P') = \phi^{-1}(T) \cap P$ und $\phi^{-1}(T \cap Q') = \phi^{-1}(T) \cap Q$ durch eine Sphäre streng getrennt.
- \odot Die stereogr. Projektion der Sphäre ist ein Kreis auf S (Kreistreue).

- **3** Sei $T \subset S \subset E^{n+1}$ eine Menge mit höchstens n+3 Punkten.
- Nach Voraussetzung werden die Urbilder $\phi^{-1}(T \cap P') = \phi^{-1}(T) \cap P$ und $\phi^{-1}(T \cap Q') = \phi^{-1}(T) \cap Q$ durch eine Sphäre streng getrennt.
- lacktriangle Die stereogr. Projektion der Sphäre ist ein Kreis auf S (Kreistreue).
- $oldsymbol{0}$ Der Kreis auf S ist der Schnitt von S mit einer Hyperebene H.

- **3** Sei $T \subset S \subset \mathbf{E}^{n+1}$ eine Menge mit höchstens n+3 Punkten.
- Nach Voraussetzung werden die Urbilder $\phi^{-1}(T \cap P') = \phi^{-1}(T) \cap P$ und $\phi^{-1}(T \cap Q') = \phi^{-1}(T) \cap Q$ durch eine Sphäre streng getrennt.
- ullet Die stereogr. Projektion der Sphäre ist ein Kreis auf S (Kreistreue).
- **9** Der Kreis auf S ist der Schnitt von S mit einer Hyperebene H.
- **10** Da H dann $T \cap P'$ und $T \cap Q'$ streng trennt, folgt die Behauptung nach dem Satz von Kirchberger.

① Sei $\alpha \in \mathbb{E}^{n+1}$ und $b \in \mathbb{R}$, sodass $\langle \alpha, p \rangle < b$ für alle $p \in P'$ und $\langle \alpha, q \rangle > b$ für alle $q \in Q'$.

- ① Sei $\alpha \in \mathbb{E}^{n+1}$ und $b \in \mathbb{R}$, sodass $\langle \alpha, p \rangle < b$ für alle $p \in P'$ und $\langle \alpha, q \rangle > b$ für alle $q \in Q'$.
- ② Da P' und Q' kompakt sind, gibt es $\epsilon > 0$ mit $\langle \alpha, p \rangle \leq b \epsilon$ für alle $p \in P'$ und $\langle \alpha, q \rangle \geq b + \epsilon$ für alle $q \in Q'$.

- Sei α ∈ Eⁿ⁺¹ und b ∈ ℝ, sodass ⟨α, p⟩ < b für alle p ∈ P' und ⟨α, q⟩ > b für alle q ∈ Q'.
 Da P' und Q' kompakt sind, gibt es ϵ > 0 mit ⟨α, p⟩ ≤ b − ϵ für alle
- ② Da P' und Q' kompakt sind, gibt es $\epsilon>0$ mit $\langle \alpha,p\rangle\leq b-\epsilon$ für alle $p\in P'$ und $\langle \alpha,q\rangle\geq b+\epsilon$ für alle $q\in Q'$.
- Somit können wir annehmen, dass H_0 den Nordpol der Sphäre S nicht schneidet.

- Sei α ∈ Eⁿ⁺¹ und b ∈ ℝ, sodass ⟨α, p⟩ < b für alle p ∈ P' und ⟨α, q⟩ > b für alle q ∈ Q'.
 Da P' und Q' kompakt sind, gibt es ε > 0 mit ⟨α, p⟩ < b − ε für al
- ② Da P' und Q' kompakt sind, gibt es $\epsilon > 0$ mit $\langle \alpha, p \rangle \leq b \epsilon$ für alle $p \in P'$ und $\langle \alpha, q \rangle \geq b + \epsilon$ für alle $q \in Q'$.
- Somit können wir annehmen, dass H₀ den Nordpol der Sphäre S nicht schneidet.
- **4** Der Schnitt $H_0 \cap S$ ist ein Kreis und $\phi^{-1}(H_0 \cap S)$ trennt P und Q.

Übersicht

Trennung durch Sphären

2 Trennung durch Zylinder

Trennung durch Parallelotope

Sei $A \subset \mathbb{E}^n$ und $F \subset \mathbb{E}^n$ ein k-dimensionaler Unterraum. Dann heißt

$$Z = A + F = \{a + f \mid a \in A, f \in F\}$$

von A und F erzeugter k-Zylinder.

Übersicht

Trennung durch Sphären

- 2 Trennung durch Zylinder
- 3 Trennung durch Parallelotope

TODO