中級統計学:復習テスト21

	字籍番号	
	2024年12月13日	
	でべての質問に解答しなければ提出とは認めない.正答に修正した上で,復習テス でホチキス止めし,定期試験実施日(1 月 21 日の予定)に提出すること.	、ト 21~26 を順に
	の用語の定義を式または言葉で書きなさい(各 20 字程度). 統計的仮説	
(b)	検定	
(c)	帰無仮説	
(d)	第1種の誤り	
(e)	有意水準	
(f)	検定統計量	
(g)	棄却域	

2.	$\mathrm{N}\left(\mu,\sigma^2 ight)$ から抽出した大きさ n の無作為標本の標本平均を $ar{X}$ とする. σ^2 を既知として次の検定問題を考える.
	$H_0: \mu = 0 \text{vs} H_1: \mu = 1$
	$ar{X}$ の分布を求めなさい.

(b) 検定統計量を与えなさい.

(c) 検定統計量の H_0 の下での分布を導きなさい.

(d) 検定統計量の H_1 の下での分布を導きなさい.

(e) 有意水準5%の検定の棄却域を定めなさい.

解答例

- 1. (a) 母集団分布に関する仮説
 - (b) 統計的仮説の真偽を標本から判定すること
 - (c) とりあえず真と想定する仮説
 - (d) H_0 が真なのに H_0 を棄却する誤り
 - (e) 許容する第1種の誤りの確率
 - (f) 検定に用いる統計量
 - (g) 標本 (検定統計量) の値域で H₀ を棄却する領域
- 2. (a) 期待値の線形性より

$$E(\bar{X}) = E\left(\frac{X_1 + \dots + X_n}{n}\right)$$

$$= \frac{E(X_1 + \dots + X_n)}{n}$$

$$= \frac{E(X_1) + \dots + E(X_n)}{n}$$

$$= \frac{\mu + \dots + \mu}{n}$$

$$= \mu$$

 X_1, \ldots, X_n は独立なので

$$\operatorname{var}(\bar{X}) = \operatorname{var}\left(\frac{X_1 + \dots + X_n}{n}\right)$$

$$= \frac{\operatorname{var}(X_1 + \dots + X_n)}{n^2}$$

$$= \frac{\operatorname{var}(X_1) + \dots + \operatorname{var}(X_n)}{n^2}$$

$$= \frac{\sigma^2 + \dots + \sigma^2}{n^2}$$

$$= \frac{\sigma^2}{n^2}$$

正規分布の線形変換は正規分布なので

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

(b)

$$Z:=\frac{\bar{X}}{\sqrt{\sigma^2/n}}$$

(c) H₀の下で

$$Z \sim N(0,1)$$

(d) H_1 の下で

$$Z = \frac{\bar{X} - 1 + 1}{\sqrt{\sigma^2/n}}$$
$$= \frac{\bar{X} - 1}{\sqrt{\sigma^2/n}} + \frac{1}{\sqrt{\sigma^2/n}}$$
$$\sim N\left(\frac{1}{\sqrt{\sigma^2/n}}, 1\right)$$

(e) 標準正規分布表より H_0 の下で

$$\Pr[Z \geq 1.65] = .05$$

したがって棄却域は $[1.65, \infty)$.