18MAB 302T- DISCRETE MATHEMATICS FOR ENGINEERS

Question Bank for CT-II (CSE & ECE) <u>UNIT – II</u>

PART-A

1). In how many ways can 8	Indians,4 Americans a	and 4 English mens	can be seated
in a row so all person of	the same nationality s	it together?	

a) 3! 4!8!4! b) 3! 8! c) 3! 4! D) 3! 3! 8! Ans: a

2) A question paper has two A and B each containing 10 questions, if a student has to choose 8 from part A and 5 from part B. In how many ways can he chooses questions?

a) 11340 b) 12750 c) 40 d) 320

Ans: a

3) How many numbers must be selected from the set {1, 2, 3, 4} to guarantee that at least one pair of these numbers add up to 7?

a) 14

b) 5

d) 24

Ans: b

4) In a plane there are 10 points are there out of which 4 points are collinear, then the number of triangles formed is

c) 9

(a) 110 (b) ${}_{10}C_3$ (c) 120 (d) 116

Ans d

5) Among 30 Computer Science students, 15 know JAVA, 12 know C++ and 5 know both. How many students know exactly one of the languages.

(a) 27 (b) 22

(c) 17 (d) 5

Ans: c

6) If there are 5 points inside a square of side length 2, prove that two of the points are within a distance of ----- of each other.

a) $\sqrt{2}$ b) $\sqrt{3}$ c) $\sqrt{5}$ d) $\sqrt{7}$

Ans: a

7) If least common multiple of two numbers is 225 and the highest common factor is 5 then find the numbers when one of the numbers is 25?

(a) 75 (b) 65 (c) 15 (d) 45

Ans: d

8) The LCM of two prime numbers a and b is

(a) a /b (b) ab (c) a+b (d) 1

Ans: b

9) The linear combination of gcd(252, 198) = 18 is?

(a) 252*4 - 198*5 (b) 252*5 - 198*4

(c) 252*5 - 198*2 (d) 252*4 - 198*4

Ans: a

10) In a group of 100 people, several will have birth days in the same month. At least how many must have birth days in the same month

(a) 10 (b) 8

(c) 9

(d) 12

Ans: c

Part-B

- 1. Find the number of different 4-letter words with or without meanings, that can be formed from the letters of the word 'NUMBER'
- 2. Prove that in any group of six people, at least 3 must be mutual friends or at least 3 must be mutual strangers.
- 3. State fundamental theorem of arithmetic.
- 4. If a and b are coprime and a and c are coprime then prove that a and bc are coprime.
- 5. Using Euclid's algorithm, find Greatest common divisor of 540 and 168.

Part-C

6. Find the prime factorization of each of the following integers;

(i)6647 and (ii) 45,500

- 7. 5 balls are to be placed in 3 boxes; each can hold all the 5 balls. In how many different ways can place the balls so that no box is left empty, if
 - (a) balls and boxes are different?
 - (b) balls are identical and boxes are different?
 - (c) balls are different and boxes are identical?
 - (d) Balls as well as boxes are identical?
- 8. If we select 10 points in the interior of an equilateral triangle of side 1, show that there must be at least 2 points whose distance apart is less than 1/3.

- 9. A man hiked for 10 hrs and converted a total distance of 45 km. It is known that he hiked 6 km in the first hour and only 3 km in the last hour. Show that he must have hiked at least 9 km within a certain period of 2 consecutive hours.
- 10. Find the number of integers between 1 and 250 both inclusive that are not divisible by any of the integers 2, 3, 5 and 7.
- 11. Use prime factorization, find the gcd and lcm of (i) (231,1575) and (ii) (337500,21600) verify also that gcd(m,n).lcm(m,n)=mn.

UNIT - III PART-A

- 1. The contra positive of $q \rightarrow p$ is a) $p \rightarrow q$ $b) \neg p \rightarrow \neg q$ c) $\neg q \rightarrow \neg p$ $d)p \rightarrow \neg q$ Ans (b)
- 2. The statement (PVQ) \land (P \rightarrow R) \land (Q \rightarrow R)implies $d)P \wedge O$ Ans (a) a)R b)P
- 3. The dual of $\neg P \rightarrow (P \rightarrow Q)$ is

a)PV(
$$\neg P \land Q$$
) b) $\neg (\neg P) \land (\neg P \land Q)$

$$c)P \rightarrow \neg (P \rightarrow O)$$
 $d)(\neg P \land O) \land \neg P$ Ans (b)

4. Which of the following statement is a contradiction?

a)(
$$P \rightarrow \neg P$$
) $\rightarrow \neg P$ b)($P \rightarrow (P \lor Q)$
c)($\neg Q \rightarrow P$) $\land Q$ d) $PV(P \rightarrow Q)$ Ans (a)

- 5. If p: The sun has set, q: The moon has raised, then symbolically the statement 'The sun has not set or the moon has not risen' is written as (a) $p \land \neg q$ (b) $\neg q \lor p$ (c) $\sim p \land q$ (d) $\sim p \lor \sim q$ Ans (d)
- 6. A compound statement $p \rightarrow q$ is false only when
 - (a) p is true and q is false. (b) p is false but q is true.
 - (c) at least one of p or q is false. (d) both p and q are false.

Ans (a)

- 7. Every conditional statement is equivalent to
 - (a) its contrapositive (b) its inverse (c) its converse (d)only itself Ans (a)
- 8. For all $n \in \mathbb{N} \{1\}$, $7^{2n} = 48n 1$ is divisible by
 - (a) 25 (c) 1234 Ans (d) b) 26 (d)2304
- 9. For each $n \in \mathbb{N}$, the correct statement is

(a)
$$2^n < n$$
 (b) $n^2 > 2^n$ (c) $n^4 < 10^n$ (d) $2^{3n} > 7n + 1$ Ans (c)

10. If matrix $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the

following holds $\forall n \in \mathbb{N}$, (use PMI)

(a)
$$A^n = n \cdot A - (n-1)I$$
 (b) $A^n = 2^{n-1} \cdot A + (n-1)I$

(c)
$$A^n = n \cdot A + (n-1)I$$
 (d) $A^n = 2^{n-1} \cdot A - (n-1)I$ Ans (a)

- 1. Construct the truth table for $\neg q \land (p \rightarrow q) \Rightarrow \neg p$.
- 2. Show that $p \to s$ follows logically from the premises $\neg p \lor q$, $\neg q \lor r$ and $r \rightarrow s$.
- 3. Without using truth table for $P \rightarrow (Q \rightarrow P) \equiv \neg P \rightarrow (P \rightarrow Q)$
- 4. Using truth table prove that (i) $(P \rightarrow (P \lor Q))$ is tautology. (ii) $(\neg P \land \neg Q) \land Q$ is contradiction.
- 5. Prove by mathematical induction, that for all n > 1, $n^3 + 2n$ is a multiple of 3.
- 6. Use mathematical induction to show that $n \geq 2^{n-1}$ for $n \geq 1$.

Part-C

7. Show that $(a \lor b)$ follows logically from the premises

$$p \lor q, (p \lor q) \to \neg r, \neg r \to (s \land \neg t)$$
 and $(s \land \neg t) \to (a \lor b)$

- 8. Prove that the following set of premises is inconsistent. If Rama gets his degree, he will go for a job. If he goes for a job, he will get married soon. If he goes for higher study, he will not get married. Rama gets his degree and goes for higher study.
- 9.Using indirect method of proof, derive $p \rightarrow \neg s$ from the premises $p \rightarrow (q \lor r), q \rightarrow \neg p, s \rightarrow \neg r, p$.
- 10. Prove the implication without using truth table $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$
- 11. Derive $p \to (q \to s)$ using the CP rule (if necessary) from the premises vvv $p \to (q \to r)$ and $q \to (r \to s)$.
- 12. Prove that the premises $p \to (q \to r)$, $s \to (q \land \exists r)$ and $(p \land s)$ are inconsistent.
- 13. Using mathematical induction method

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$

- 14. Use mathematical induction to prove that $8^n 3^n$ is divisible by 5, for $n \ge 1$
- 15. Use mathematical induction to prove that $(3^n + 7^n 2)$ is divisible by 8, for $n \ge 1$.