CS3570 Introduction to Multimedia Technology

Homework #4

Due: 11:59pm, 2025/05/16

1. Bézier curve (30%)

You are given 1 raster image (bg.png) and 1 path object (Bézier curve, extracted as **N points**); your objective is to draw the points and the Bézier curves.

- a. (20%) Plot two sets of cubic Bézier curves with different detail levels, along with their N control points, onto the provided background image bg.png. Each set contains (N-1)/3 cubic Bézier curves connected end-to-end, outlining the subject in the image. Color the low-detail curve in color cyan and the high-detail curve in color magenta. Save the resulting image as **1a.png**.
 - I. for low detail curve: $t = \{0, 0.25, 0.5, 0.75, 1.0\}$; for high detail curve: $t = \{0, 0.001, 0.002, ..., 1.0\}$.
 - II. Discuss how you implement the Bézier curve and the differences between high and low-detail curves.
- b. (10%) Scale up the image and the curves by 4, then plot and save it as **1b.png**.
 - I. bg.png is scaled using Nearest-neighbor interpolation.
 - II. First, scale the N points, then draw the curve (using the settings of the high-detail curve)

2. 3D Models (50%)

In this section, you will implement the translation and rotation of the 3D model <u>bunny.obj</u> and experiment with different illumination settings on a textured 3D surface. Here, we use <u>Plotly</u>, a Python graphing library, to render 3D graphics.

- a. (15%) Shift the center of the bunny to (0, 0, 0) and save the figure as **2a.png**. Center is defined as $[(\max(x) + \min(x)) / 2, (\max(y) + \min(y)) / 2, (\max(z) + \min(z)) / 2]$ where x, y, z are the vertices of the object.
- b. (20%) Based on (a), implement the rotation matrix to rotate the bunny to face the screen(like the following example). Discuss how you implement the rotation and save the 3D figure as **2b.png**.

- c. (15%) You are given a spherical surface with a moon texture. Render the surface under different illumination settings by varying the <u>ambient</u> strength k_a , <u>diffuse</u> strength k_d , and <u>specular</u> strength k_s in the following settings. (Please do not modify the given lighting position in the code):
 - I. $(k_a, k_d, k_s) = (0.3, 0.3, 0.05)$ and $(k_a, k_d, k_s) = (0.8, 0.3, 0.05)$
 - II. $(k_a, k_d, k_s) = (0.3, 0.4, 0.05)$ and $(k_a, k_d, k_s) = (0.3, 0.95, 0.05)$
 - III. $(k_a, k_d, k_s) = (0.3, 0.8, 0.3)$ and $(k_a, k_d, k_s) = (0.3, 0.8, 0.5)$

Plot the result for each condition with **2 subplots** and discuss the difference between each pair of settings. Results are saved as **2c_1.png**, **2c_2.png**, **2c_3.png**, respectively. You can refer to the following link for more information.

plotly lighting reference: https://plotly.com/python/v3/3d-surface-lighting/

3. Report (20%)

- 1. Bézier Curve
 - Describe how you implement the Bézier curve.
 - Discuss the differences between high and low-detail curves.
- 2. 3D Models
 - Describe how you implement the rotation in 2(b).
 - Discuss the difference in each pair of lighting settings.

Reminder

- You are not allowed to import any library in your Jupyter Notebook file except for those we provide.
- Your code must display and output your results to enable us to verify its correctness.
- Please follow the instructions in the Jupyter Notebook and complete the parts marked as "TODO".
- Please include your report in the Jupyter Notebook using markdown.
- Please compress your code, input images, and result images in a zip file named HW4 {StudentID}.zip and upload it to eeclass.
- Homework should be submitted before the announced due time. Scores of late submissions will be reduced by 20% per day.
- If you encounter any problems or have questions, please post them on eeclass.
- Please follow the file structure below:

