Digital Control (SC42095)

Course assessment demands

The depth of knowledge required for each course item below is indicated as follows:

- 1 Overview: gives the background for the theory or extra information.
- 2 Facts: know or understand concepts, notations, definitions, schemes, methods.
- Working knowledge: be able to use definitions, formulas and theorems on given problems. Be able to solve problems of the same kind as in the lectures and exercises.
- 4 Derivation: know and/or be able to derive formulas.

Chapters in the course book by Åström and Wittenmark

1.	Computer Control	1,2
2.	Discrete-time Systems Sampling continuous time statespace models Sampling continuous time statespace models with delays Solution of state-space equations Coordinate transform in statespace models Pulse response Shift operator calculus From state space to pulse transfer function Z-transform, definition and properties Poles and zeros Selection of sampling interval	4 3 3 4 3 4 4 3 3 3 3
3.	Analysis of Discrete-Time Systems Stability definitions Nyquist criterion and bode diagrams Lyapunov method Sensitivity and robustness Controllability and reachability Analysis of simple feedback loops	3 2 4 2 3 3
4.	Pole-Placement Design: a State-Space Approach Control System Design Regulation by State Feedback Observers Output feedback Servo problem	3 3,4 3,4 3,4 3
5.	Pole-Placement Design: a Polynomial Approach A simple design problem Diophantine equation The rest of this chapter	4 2 1

6.	Design: an Overview	1
7.	Process-Oriented Models	
	Computer-controlled systems	3
	Sampling and reconstruction	2,3
	Aliasing	3
	Predictive first-order hold	2
	Modulation model	2
	Frequency response	1
	Pulse-transfer-function formalism	1,2
	Multirate sampling	1
8.	Approximation of Continuous-Time Controllers	
	Approximation based on transfer functions	3,4
	Approximation based on state models	1
	Frequency-response design methods	1
	Digital PID controllers	3,4
9.	Implementation of Digital Controllers	2
11	. Optimal Design Methods: a state-space approach	
	Linear Quadratic control	3
	Prediction and filtering theory	3
	Linear Quadratic Gaussian control	3