Neural Networks:

h(x) = Ø(x) w + b *** Here, we learn the parameters

 $X \rightarrow \emptyset(X)$ linear transformation representation of X in transformation higher spaces $\emptyset(X) = \mathcal{O}(U\vec{X})$ transition function

ReLU: $\mathcal{O}(Z) = \max(Z, 0)$

Universal approximation theorem: Any Function fcx) that maps

is to output is can be learned by Neural Networks.

Layers in Neural Networks

matrix multipliating

Single layer: $\beta(\vec{x}) = \delta(U\vec{x})$ Multiple layers:

 $\phi(\vec{x}) = \sigma(\vec{y} \phi(\vec{x}))$ $\phi'(\vec{x}) = \sigma(\vec{y} \phi''(\vec{x}))$ $\phi(\vec{x}) = \sigma(\vec{x}) \phi''(\vec{x})$

("Deep" layers)

Equivalence between Single-layer newal networks and multiple-layers neural networks: Any function can be learns by both.

-But it turns out that, for single layer, the mostrix U has to be very large.

The multiple layers benefits from exponential effects from multiplying the number of possibities resulted by previous layers.

How Mearal Networks learn?

- Again, let l be any well-defined loss function e.g. $l(h) = \frac{1}{2} \sum_{i=1}^{n} (h(\vec{x_i}) - y_i)^2$

The classifier h has parameters w, U (w, U, c, b for Full)

- Let's use simple Gradient Descent (single layer neural network)

Repeat $(\mathcal{U}_{+1}^{2} \mathcal{U}_{+} - \mathcal{A}_{\partial \mathcal{U}}^{2})$

Bad news: Our optimization is no longer convex like before because non-linear transition function

In fact, the optimation Function is hishly non-convex, meaning there are many local minima.

Leaning with multiple (three) |ayers

$$= l(h) \cdot \sum_{i=1}^{n} l(h(\hat{x}_{i}), y_{i}) = l(h(\hat{x}_{i}) - y_{i})^{2}$$

$$= h(\hat{x}) = \hat{w} \phi(\hat{x}) \longrightarrow \partial l = \sum_{i=1}^{n} (\hat{w} \phi(x) - y_{i}) \phi(x_{i})$$

$$= \phi(x) = \sigma(U\phi(x_{i})) \longrightarrow \partial l = \partial l \partial a \qquad a(x) = U\phi(x_{i})$$

$$= a(x_{i}) \longrightarrow \partial l = \partial l \partial a \qquad a(x_{i}) = U\phi(x_{i})$$

$$= a(x_{i}) \longrightarrow \partial l = \partial l \partial a \qquad \partial a' \qquad \partial u$$

$$= \sigma(u) \otimes (u) \otimes (u) \longrightarrow \partial l = \partial l \partial a \qquad \partial a' \qquad \partial u$$

$$= \sigma(u) \otimes (u) \otimes (u) \longrightarrow \partial l \otimes (u) \otimes (u)$$

$$= \sigma(u) \otimes (u) \otimes (u) \longrightarrow \partial l \otimes (u) \otimes (u)$$

$$= \sigma(u) \otimes (u) \otimes (u) \longrightarrow \partial l \otimes (u) \otimes (u)$$

$$= \sigma(u) \otimes (u) \otimes (u) \longrightarrow \partial l \otimes (u) \otimes (u)$$

$$= \sigma(u) \otimes (u) \otimes (u) \otimes (u)$$

$$= \sigma(u) \otimes (u) \otimes (u) \otimes (u)$$

$$= \sigma(u) \otimes (u)$$

$$= \sigma(u)$$

$$= \sigma(u) \otimes (u)$$

$$= \sigma(u)$$

Convex

noxconvex

- l is convex with reprect to U, U, U' because

Stochastic Gradient Descent (SGD):

- A variation Gradient Descent algorithm for optimization.

- In the original Gradient Descent, we take

Gradient:
$$\nabla l = \sum_{j=1}^{n} \frac{\partial l(h(x_i), y_i)}{\partial w_i}$$

e.g. $l(w) = \frac{1}{2} \sum_{j=1}^{n} \frac{\partial w_i}{\partial w_j}$
 $e.g. l(w) = \frac{1}{2} \sum_{j=1}^{n} \frac{\partial w_j}{\partial w_j}$
 $e.g. l(w) = \frac{1}{2} \sum_{j=1}^{n} \frac{\partial w_j}{\partial w_j}$
 $f = l(w) = l(w)$

-SGD approximate the gradient with only 1 (or m < n) sample

$$\nabla l \approx \frac{\partial L(h(x_i), y_i)}{\partial w}$$
 only single x_i

This means we have one tiny update for each sample

SGD behaves very noisy. It will mostly never lower at the local minima and saddle points where precise optimization methods

Normal Picture of Deep Learning (Graph Representation)

-The picture makes you feel like the network is the brain learning something, but it is definitely not!!!

Compute the Prediction (Forward Propogation):

$$Z_0 = \hat{x}$$

For $d = 1$; 1
 $a_d = U^{d_d} = \frac{1}{2} d_{-1}$
 $Z_d = \int_{-1}^{1} (\alpha_d)$

Return Zd

Gradient update (Backword Propogation)
$$\frac{\hat{S}_{a} \cdot \hat{S}_{a} \cdot \hat{S}_{a}}{\hat{S}_{a} \cdot \hat{S}_{a}} = \frac{\hat{S}_{a} \cdot \hat{S}_{a}}{\hat{S}_{a} \cdot \hat{S}_{a}} = \frac{\hat{S}_{a} \cdot \hat{S}_{a}}{\hat{S}_{a} \cdot \hat{S}_{a}} = \frac{\hat{S}_{a} \cdot \hat{S}_{a} \cdot \hat{S}_{a}}{\hat{S}_{a} \cdot \hat{S}_{a}} = \frac{\hat{S}_{a} \cdot \hat{S}_{a}}{\hat{S}_{a} \cdot \hat{S}_{a}} = \frac{\hat{S}_{a} \cdot \hat{S}_{a} \cdot \hat{S}_{a}}{\hat{S}_{a} \cdot \hat{S}_{a}} = \frac{\hat{S}_{a} \cdot \hat{S}_{a} \cdot \hat{S}_{a}}{\hat{S}_{a} \cdot \hat{S}_{a}} = \frac{\hat{S}_{a} \cdot \hat{S}_{a} \cdot \hat{S}_{a}}{\hat{S}_{a} \cdot \hat{S}_{a}} = \frac{\hat{S}_{a} \cdot \hat{S}_{a}}{\hat{S}_{a}} = \frac{\hat{S}_{a} \cdot \hat{S}_{$$

product: compute elementialse

product

(a) (c) = (a.c)
(b) (d) = (b.d)

of is the gradient of