CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (currently amended): A compound represented by formula I:

$$R^2$$
 R^3
 Q
 Q
 R^4
 Q
 Q

wherein

 \mathbf{R}^1 is selected from the group consisting of H, halogen, (C_{1-4}) alkyl, $O(C_{1-6})$ alkyl, and haloalkyl;

 R_2 is H or (C_{1-4}) alkyl;

 \mathbb{R}^3 is H or (C_{1-4}) alkyl;

 \mathbf{R}^4 is (C_{1-4}) alkyl, (C_{1-4}) alkyl (C_{3-7}) cycloalkyl, or (C_{3-7}) cycloalkyl; and

Q is a fused phenyl-5 or 6-membered saturated heterocycle having one to two heteroatoms selected from O and N, said **Q** is selected from the group consisting of:

R⁷ R⁷

a) wherein one of **E** and **G** is C(O) and the other is NR^5 wherein R^5 is selected from the group consisting of H, hydroxy and (C_{1-4}) alkyl unsubstituted or substituted with pyridinylmethyl, (pyridinyl-N-oxide)methyl or $C(O)OR^6$ wherein R^6

is H or (C_{1-4}) alkyl; and each \mathbb{R}^7 is independently H, Me or Et; or

b) wherein **E** is NR⁸ wherein R⁸ is H, (C₁₋₄)alkyl unsubstituted or substituted with C(O)OR⁹ wherein R⁹ is H or (C₁₋₄)alkyl; or

c) wherein **D** and **G** are NR^{10} wherein each R^{10} is independently H or (C_{1-4}) alkyl unsubstituted or substituted with $C(O)OR^{11}$ wherein R^{11} is H or (C_{1-4}) alkyl; or

d) wherein one of **L**, **M**, **Y** and **Z** is NR^{12} wherein R^{12} is H, (C_{1-4}) alkyl unsubstituted or substituted with $C(O)OR^{12x}$ wherein R^{12x} is H or (C_{1-4}) alkyl; one of the remaining positions of **L**, **M**, **Y** and **Z** adjoining the NR^{12} is C(O); and the remaining two positions are each $CR^{13}R^{13}$ wherein each R^{13} is independently H, Me or Et; or

e) wherein three adjoining positions of **L**, **M**, **Y** and **Z** (namely **L-M-Y** or **M-Y-Z**) represent NR^{14} -C(O)-O- or $-NR^{15}$ -C(O)- NR^{16} — wherein R^{14} , R^{15} and R^{16} each represents H or (C_{1-4}) alkyl unsubstituted or substituted with C(O)O R^{17} wherein R^{17} is H or (C_{1-4}) alkyl; and the remaining position of **L**, or **Z** is $CR^{18}R^{18}$ wherein each R^{18} is H, Me or Et;

or a pharmaceutically acceptable salt, or prodrug thereof.

Claim 2 (currently amended): The compound according to claim 1, wherein \mathbf{R}^1 is

selected from: H, Cl, F, (C_{1-4}) alkyl and CF_3 ; \mathbf{R}^2 and \mathbf{R}^3 is each independently H or Me; \mathbf{R}^4 is ethyl or cyclopropyl; and

Q is selected from:

$$N-R^5$$
 or R^5 wherein R^5 is H, hydroxy, CH_3 or (4-

pyridinyl)methyl;

$$N-Me$$
 $N-CMe_3$
 Me
 $N-CMe$
 $N-CMe$

or CH₂C(O)OH,

or **Q** is further selected from:

$$R^{18}$$
 R^{18} R

CH₂C(O)OH and each \mathbb{R}^{18} is independently H or Me₂. More preferably, \mathbb{R}^{14} is H or CH₂C(O)OH and each \mathbb{R}^{18} is H,

or Q is further selected from:

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein R¹⁵ is H, Me or CH₂C(O)OH and

 \mathbf{R}^{16} is H, Me or CH₂C(O)OH. More preferably, \mathbf{R}^{15} is H or CH₂ and \mathbf{R}^{16} is H, CH₃ or CH₂-C(O)OH.

Claim 3 (original): The compound according to claim 2, wherein \mathbb{R}^1 is H, Cl, F or Me; \mathbb{R}^2 is H; \mathbb{R}^3 is Me; \mathbb{R}^4 is ethyl; and \mathbb{Q} is selected from:

$$N-R^5$$

wherein **R**⁵ is H, hydroxy or (4-pyridinyl)methyl;

N-Me N-Me or
$$R^{18}$$
 R^{18} R^{18}

wherein \mathbf{R}^{14} is H or

 $CH_2C(O)OH$ and each \mathbf{R}^{18} is H,

or

$$R^{15}$$
 or R^{15} R^{16} R^{16}

wherein \mathbf{R}^{15} is H or CH₃ and \mathbf{R}^{16} is H, CH₃

or CH₂ C(O)OH.

Claim 4 (original): The compound according to claim 3, wherein **Q** is selected from:

Claim 5 (original): The compound according to claim 4, wherein \mathbb{R}^1 is H, \mathbb{R}^2 is H, \mathbb{R}^3 is Me, \mathbb{R}^4 is ethyl and \mathbb{Q} is selected from:

Claim 6 (currently amended): A pharmaceutical composition for the treatment or prevention of HIV infection, comprising a compound of formula I according to claim 1, or a pharmaceutically acceptable salt, or prodrug thereof, and a pharmaceutically acceptable carrier.

Claim 7 (currently amended): A method for the treatment or prevention of HIV infection, comprising administering to a patient an HIV inhibiting amount of a compound of formula I according to claim 1, or a pharmaceutically acceptable salt, or

- 6 -

prodrug thereof.

Claim 8 (currently amended): A method for the treatment or prevention of HIV infection, comprising administering to a patient an HIV inhibiting amount of a pharmaceutical composition, according to claim 6.

Claim 9 (cancelled)

Claim 10 (currently amended): A method for preventing perinatal transmission of HIV11-HIV-1 from mother to baby, comprising administering a compound of formula I according to claim 1, to the mother before giving birth.

Claim 11 (cancelled)

Claim 12 (original): A process for producing a compound of formula I according to claim 1, comprising steps of:

- coupling a compound of formula 2:

wherein R^1 , R^2 , R^3 and R^4 are as defined in claim 1;

with a phenolic derivative selected from:

HO
$$\stackrel{\mathsf{R}^7}{=}_{\mathsf{G}}^{\mathsf{R}^7}$$
 wherein one of **E** and **G** is C(O) and the other is N**R**^{5A}

wherein one of **E** and **G** is C(O) and the other is N**R**^{5A} wherein \mathbf{R}^{5A} is a N-protecting group, hydroxy or (C₁₋₄)alkyl unsubstituted or substituted with pyridylmethyl, (pyridinyl-N-oxide) methyl or C(O)O**R**^{6A} wherein \mathbf{R}^{6A} is a carboxy protecting group or (C₁₋₄)alkyl; and each \mathbf{R}^7 is independently H, Me or Et.

b) wherein **E** is NR^{8A} wherein R^{8A} is a N-protecting group, (C_{1-4}) alkyl unsubstituted or substituted with $C(O)OR^{9A}$ wherein R^{9A} is a carboxy protecting group or (C_{1-4}) alkyl; or

$$HO \longrightarrow G$$

c) wherein **D** and **G** each independently is NR^{10A} wherein R^{10A} is a N-protecting group or (C_{1-4}) alkyl unsubstituted or substituted with $C(O)OR^{11A}$ wherein R^{11A} is a carboxy protecting group or (C_{1-4}) alkyl;

d) wherein one of **L**, **M**, **Y** and **Z** is NR^{12A} wherein NR^{12A} is a N-protecting group, (C_{1-4}) alkyl unsubstituted or substituted with $C(O)OR^{12y}$ wherein R^{12y} is a carboxy protecting group or (C_{1-4}) alkyl; one of the remaining positions of **L**, **M**, **Y** and **Z** adjoining the NR^{12A} is C(O); and the remaining two positions are each $CR^{13}R^{13}$ wherein each R^{13} is independently H, Me or Et; or

e) wherein three adjoining positions of **L**, **M**, **Y** and **Z** (namely **L-M-Y** or **M-Y-Z**) represent -NR¹⁴-C(O)-O- or -NR¹⁵-C(O)- NR¹⁶- wherein R¹⁴, R¹⁵ and R¹⁶ are as defined in claim 1, and the remaining position of **L** or **Z** is CR¹⁸R¹⁸ wherein each R¹⁸ is as defined in claim 1; and, if required,

- removing any protective groups in a mixture of aqueous base or aqueous acid in a co-solvent, to obtain the corresponding compound of formula I.

Claim 13 (cancelled)

Claim 14 (cancelled)

Claim 15 (cancelled)