Домашнее задание 6

Дедлайн: 2024-10-21

- 1. Случайная величина X распределена равномерно на $[0;10], Y=X^2$.
 - а) Найдите дисперсию Var(Y), стандартное отклонение σ_Y .
 - б) Найдите $\mathbb{C}ov(X,Y)$, $\mathbb{C}orr(X,Y)$.
 - в) Найдите Cov(6X + 2Y + 7, -2Y + 15), Corr(5 6X, 8 + 9Y), Var(2Y + 7).
 - г) Предложите любую неслучайную функцию h такую, что $\mathbb{C}\mathrm{orr}(h(X),X)=0$, $\mathbb{V}\mathrm{ar}(h(X))>0$.
- 2. Назовём наилучшей линейной аппроксимацией величины Y с помощью величины X функцию вида $\hat{Y}=\alpha+\beta X$, где α и β константы, при которых величина $\mathbb{E}((Y-\hat{Y})^2)$ минимальна.
 - а) Известно, что Cov(X, Y) = 10, Var(X) = 40, найдите β .
 - б) Дополнительно известно, что $\mathbb{E}(Y) = 10$, $\mathbb{E}(X) = 80$, найдите α .

Допустим, что a+bR — наилучшая линейная аппроксимация L с помощью R, а c+dL — наилучшая линейная аппроксимация R с помощью L.

- в) Выразите произведение bd через корреляцию $\mathbb{C}\mathrm{orr}(R,L)$.
- 3. В анализе временных рядов иногда используют концепцию частной корреляции. Частная корреляция между величинами X и Y, очищенными от связи с величиной W, равна обычной корреляции между величинами $X^* = X \alpha W$ и $Y^* = Y \beta W$, где константы α и β находятся из условия некоррелированности X^* с W и некоррелированности Y^* с W.

$$\mathrm{pCorr}(X,Y;W) = \mathbb{C}\mathrm{orr}(X^*,Y^*), \ \mathrm{где} \ \begin{cases} X^* = X - \alpha W, & \mathbb{C}\mathrm{ov}(X^*,W) = 0, \\ Y^* = Y - \beta W, & \mathbb{C}\mathrm{ov}(Y^*,W) = 0. \end{cases}$$

Величины Y_1, Y_2, Y_3 независимы и равномерны на отрезке $[0;1], S_3 = Y_1 + Y_2 + Y_3$. Найдите $\mathbb{C}\mathrm{orr}(Y_1,Y_2)$ и $\mathrm{pCorr}(Y_1,Y_2;S_3)$.