Period T:

$$v_{ijT} = u_{ijT}$$

Period T:

$$v_{ijT} = u_{ijT}$$

Period T-1:

$$v_{ijT-1}=u_{ijT-1}+eta\mathbb{E}\max_{k}\left\{u_{ikT}+\epsilon_{ikT}\mid d_{iT-1}=j
ight\}$$

Period T:

$$v_{ijT} = u_{ijT}$$

Period
$$T-1$$
:
$$v_{ijT-1}=u_{ijT-1}+\beta\mathbb{E}\max_{l}\left\{u_{ikT}-+\epsilon_{ikT}-|d_{iT-1}=j\right\}$$

Period
$$T-2$$
:

 $v_{ijT-2} = u_{ijT-2} + \beta \mathbb{E} \max_{k} \{ v_{ikT-1} + \epsilon_{ikT-1} | d_{iT-2} = j \}$

Period *T*:

$$v_{ijT} = u_{ijT}$$

Period T-1:

$$v_{ijT-1} = u_{ijT-1} + \beta \mathbb{E} \max_{i} \left\{ u_{ikT} + \epsilon_{ikT} \mid d_{iT-1} = j \right\}$$

Period T-2:

$$v_{ijT-2} = u_{ijT-2} + \beta \mathbb{E} \max_{k} \left\{ v_{ikT-1} + \epsilon_{ikT-1} | d_{iT-2} = j \right\}$$

General form:

$$v_{ijt} = u_{ijt} + \beta \mathbb{E} \max_{t} \left\{ v_{ikt+1} + \epsilon_{ikt+1} | d_{it} = j \right\}$$

Let $f_{jt}(X_{it+1}|X_{it})$ be transition density for choice j

Let $f_{it}(X_{it+1}|X_{it})$ be transition density for choice j

Example: College major choice

- Choice set: {Physics, Literature, Other}
- X_{it} : GPA, completed courses, job market conditions
- ullet If you choose physics o $extit{GPA}_{i,t+1}$ may go down (due to harsh grading)
- ullet If you choose literature $o extit{GPA}_{i,t+1}$ may go up (due to lenient grading)

Let $f_{it}(X_{it+1}|X_{it})$ be transition density for choice j

Example: College major choice

- Choice set: {Physics, Literature, Other}
- X_{it}: GPA, completed courses, job market conditions
- If you choose physics \rightarrow *GPA*_{i,t+1} may go down (due to harsh grading)
- ullet If you choose literature o $extit{GPA}_{i,t+1}$ may go up (due to lenient grading)

Key insight: Today's major choice changes tomorrow's opportunities

Past choices create path dependence through skill accumulation

$$v_{jt}(X_{it}) = u_{jt}(X_{it}) + \beta \int \mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1} \right\} dF_{jt}(X_{it+1}|X_{it})$$

Let's break down each component:

$$v_{jt}(X_{it}) = u_{jt}(X_{it}) + \beta \int \mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1} \right\} dF_{jt}(X_{it+1}|X_{it})$$

 $v_{jt}(X_{it})$: Conditional value of choosing j today given state X_{it}

$$v_{jt}(X_{it}) = \boxed{u_{jt}(X_{it})} + \beta \int \mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1} \right\} dF_{jt}(X_{it+1}|X_{it})$$

 $u_{it}(X_{it})$: Flow utility today from choosing j

$$v_{jt}(X_{it}) = u_{jt}(X_{it}) + oldsymbol{eta}\int \mathbb{E}_\epsilon \left\{ \max_k v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1}
ight\} dF_{jt}(X_{it+1}|X_{it})$$

 β : Discount factor

$$v_{jt}(X_{it}) = u_{jt}(X_{it}) + \beta \int \mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1} \right\} dF_{jt}(X_{it+1}|X_{it})$$

: Integral over all possible future states
$$X_{it+1}$$

$$v_{jt}(X_{it}) = u_{jt}(X_{it}) + \beta \int \mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1}
ight\} dF_{jt}(X_{it+1}|X_{it})$$

$$\mathbb{E}_{\epsilon}\left\{\max_{k} v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1}\right\}$$
: Expected future value (integrated over pref. shocks)

$$v_{jt}(X_{it}) = u_{jt}(X_{it}) + \beta \int \mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1} \right\} dF_{jt}(X_{it+1}|X_{it})$$

 $dF_{it}(X_{it+1}|X_{it})$: State transition probability (depends on today's choice j)

Also assumes Markov property: future states depend only on current state and choice, not entire past history

Notation: $dF_{jt}(X_{it+1}|X_{it}) = f_{jt}(X_{it+1}|X_{it})dX_{it+1}$ where $f(\cdot)$ is the PDF

$$v_{jt}(X_{it}) = u_{jt}(X_{it}) + \beta \int \mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1} \right\} dF_{jt}(X_{it+1}|X_{it})$$

Note that the integral could turn into a summation if we discretize $F_{jt}\left(\cdot\right)$

What is the formula for
$$\mathbb{E}_{\epsilon}\left\{\max_{k}v_{kt+1}(X_{it+1})+\epsilon_{ikt+1}\right\}$$
? Depends on distr. of ϵ 's

T1EV case:

T1EV case:

$$\mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1} \right\} = \log \left(\sum_{k} \exp \left(v_{kt+1}(X_{it+1}) \right) \right) + \underbrace{c}_{\mathsf{Euler's \ constant}}$$

T1EV case:

$$\mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1} \right\} = \log \left(\sum_{k} \exp \left(v_{kt+1}(X_{it+1}) \right) \right) + \underbrace{c}_{\mathsf{Euler's \ constan}}$$

General GEV case:

T1EV case:

$$\mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1} \right\} = \log \left(\sum_{k} \exp \left(v_{kt+1}(X_{it+1}) \right) \right) + \underbrace{c}_{\mathsf{Euler's \ constan}}$$

General GEV case:

$$\mathbb{E}_{\epsilon} \left\{ \max_{k} v_{kt+1}(X_{it+1}) + \epsilon_{ikt+1} \right\} = \log \left(G \left(\exp \left(v_{kt+1} \left(X_{it+1} \right) \right) \right) \right) + \underbrace{c}_{\mathsf{Euler's \ constant}}$$

Solution method (for any given set of parameter values α):	

• Start at period T: $v_{ijT}(X_{iT}) = u_{ijT}(X_{iT})$

- Start at period T: $v_{ijT}(X_{iT}) = u_{ijT}(X_{iT})$
- Work backwards to period t

- Start at period T: $v_{ijT}(X_{iT}) = u_{ijT}(X_{iT})$
- Work backwards to period t
- Compute value functions at all possible states $\{X_{i\tau}\}_{\tau=t}^T$

- Start at period T: $v_{ijT}(X_{iT}) = u_{ijT}(X_{iT})$
- Work backwards to period t
- Compute value functions at all possible states $\{X_{i au}\}_{ au=t}^T$
 - ullet Period T typically has largest state space (even with Markov assumption)

- Start at period T: $v_{ijT}(X_{iT}) = u_{ijT}(X_{iT})$
- Work backwards to period t
- Compute value functions at all possible states $\{X_{i\tau}\}_{\tau=t}^T$
 - ullet Period ${\mathcal T}$ typically has largest state space (even with Markov assumption)

What we solve for: Policy functions— $Pr(d_{it} = j)$ at all possible states

- Start at period T: $v_{ijT}(X_{iT}) = u_{ijT}(X_{iT})$
- Work backwards to period t
- Compute value functions at all possible states $\{X_{i\tau}\}_{\tau=t}^T$
 - Period T typically has largest state space (even with Markov assumption)

What we solve for: Policy functions— $Pr(d_{it} = j)$ at all possible states

Computational challenge: State space grows with T

Various simplifying assumptions and workarounds can sidestep this challenge