#### (19) World Intellectual Property Organization International Bureau



### . – T CORRE ENERGE E CONTROL EN EL BONC BONC EL EL FA TRE BONC EL EL BONC BONC EL BONC DE CONTROL DE REFERENCE

(43) International Publication Date 4 November 2004 (04.11.2004)

**PCT** 

## (10) International Publication Number WO 2004/094671 A2

(51) International Patent Classification<sup>7</sup>:

C12Q 1/68

(21) International Application Number:

PCT/US2004/012788

(22) International Filing Date: 22 April 2004 (22.04.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/464,586 22 April 2003 (22.04.2003) US 60/464,588 22 April 2003 (22.04.2003) US

(71) Applicants (for all designated States except US): COLEY PHARMACEUTICAL GmbH [DE/DE]; Elisabeth-Selbert-Strasse 9, D-40764 Langenfeld (DE). COLEY PHARMACEUTICAL GROUP, INC. [US/US]; 93 Worcester Street, Suite 101, Wellesley, MA 02481 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): VOLLMER, Jörg [DE/DE]; Kohlrauschweg 24, D-40591 Duesseldorf (DE).

JURK, Marion [DE/DE]; Klosterstr. 4, D-41540 Dornagel (DE). LIPFORD, Grayson, B. [GB/US]; 38 Bates Road, Watertown, MA 02472 (US). SCHETTER, Christian [DE/DE]; Oerkhaushof 35, D-40723 Hilden (DE). FORSBACH, Alexandra [DE/DE]; Raiffeisenstrasse N°1, D-40764 Rantingen (DE). KRIEG, Arthur, M. [US/US]; 173 Winding River Road, Wellesley, MA 02482 (US).

- (74) Agent: TREVISAN, Maria, A.; Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, 7W
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: METHODS AND PRODUCTS FOR IDENTIFICATION AND ASSESSMENT OF TLR LIGANDS



(57) Abstract: The invention provides in part novel screening methods and compositions for identifying and distinguishing between candidate immunomodulatory compounds. The invention further provides methods for assessing biological activity of composition containing a known TLR ligand. These latter methods can be used for quality assessment and selection of various lots of test compositions, including pharmaceutical products for clinical use.



2004/094671 A2

#### WO 2004/094671 A2



GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

-1-

# METHODS AND PRODUCTS FOR IDENTIFICATION AND ASSESSMENT OF TLR LIGANDS

#### Background of the Invention

5

10

15

20

25

30

Nucleic acids with immunostimulatory activity have been identified. The first recognized immunostimulatory motif was the CpG motif in which at least the C of the dinucleotide was unmethylated. It has been postulated that mammalian subjects recognize the unmethylated dinucleotide as being of bacterial origin, and thus mount a heightened immune response following exposure. The ensuing immune response includes both cell mediated and humoral aspects. Since the discovery of the CpG immunostimulatory motif, other immunostimulatory motifs have also been identified including the poly-T and T-rich motifs, the TG motif and the poly-G motif. In some instances, immunostimulation has also been observed in response to exposure to methylated CpG motifs and motif-less nucleic acids having phosphorothioate backbone linkages.

The responses induced by immunostimulatory nucleic acids are varied and can include production and secretion of cytokines, chemokines, and other growth factors. The nucleic acids can induce a heightened immune stimulation regardless of whether an antigen is also introduced to the subject. Identification of new motifs as well as of subtle differences between response profiles of different nucleic acids oftentimes can be laborious, and a high throughput system for screening nucleic acids for their ability to be immunostimulatory as well as to determine the profile of responses they induce would be useful.

#### **Summary of the Invention**

The invention provides in its broadest sense screening methods and tools for identification and discrimination of immunomodulatory molecules and assessment and standardization of samples containing known immunomodulatory molecules. The immunomodulatory molecules can be immunostimulatory or immunoinhibitory, and most preferably are Toll-like receptor (TLR) ligands.

In one aspect, the invention provides a screening method for identifying TLR agonists.

The method comprises contacting a cell line endogenously expressing at least one TLR with a test compound and measuring a test level of TLR signaling activity, wherein a positive test level is indicative of a TLR agonist (i.e., an immunostimulatory compound). The positive test

-2-

level may be apparent without referring to a control. Preferably, however, it is determined relative to a control (i.e., the TLR signaling activity from a reference compound).

5

10

15

20

25

30

In some embodiments, the reference compound is a compound that induces no response (i.e., a zero response) or a minimal response. In this case, a test level that is greater than the reference level is indicative of a compound with TLR signaling activity. More preferably, the reference compound is a compound that induces a positive response (i.e., a non-zero response) and that is immunostimulatory. These reference compounds are referred to herein as negative and positive reference compounds, respectively. If the reference compound is immunostimulatory (i.e., a positive reference compound), a non-zero test level that is lower than the reference level is still indicative of an immunostimulatory test compound. In this latter embodiment, the test compound is less immunostimulatory than the reference compound (for that particular readout), but it is nonetheless immunostimulatory given the non-zero response induced. There may be one or more concurrent or consecutive assays with a negative reference compound, a positive reference compound, or both. The reference may also be a standard curve or data generated previously.

In a related aspect, the screening method involves exposing the same cell to a positive reference compound and a test compound in order to identify a test compound that inhibits the immunostimulatory response of the positive reference compound (i.e., a TLR antagonist or an immunoinhibitory compound).

In still a related aspect, the screening method involves exposing the same cells to a positive reference compound and a test compound in order to identify a test compound that enhances the immunostimulatory response of the positive reference compound (i.e., an enhancer).

In both of these latter aspects, the assay requires a co-incubation of the positive reference compound, the test compound and the cells. Separate assays with positive reference compound alone and optionally negative reference compound alone are usually also performed.

The positive reference compound is a known TLR ligand. Non-limiting examples include but are not limited to TLR3 ligands, TLR7 ligands, TLR8 ligands and TLR9 ligands. In some embodiments, the positive reference compound is an immunostimulatory nucleic acid. In some embodiments, the positive reference compound is a CpG nucleic acid, a poly-T nucleic acid, a T-rich nucleic acid or a poly-G nucleic acid. Another example of a positive

10

15

20

25

30

reference compound is a nucleic acid comprising a backbone that contains at least one phosphorothicate linkage.

It has been further discovered according to the invention that the RPMI 8226 cell line expresses TLR7 and responds to the imidazoquinoline compound R-848 (Resiquimod) which is known to signal through TLR7 and TLR8. Accordingly, the screening method can be performed using RPMI 8226, Raji or RAMOS cells and an imidazoquinoline compound such as R-848 or R-847 (Imiquimod) as the positive reference compound.

In one embodiment, the test compound is a nucleic acid such as but not limited to a DNA, an RNA and a DNA/RNA hybrid. The test compound may be a nucleic acid that does not comprise motif selected from the group consisting of a CpG motif, a poly-T motif, a Trich motif and a poly-G motif. The test compound may be a nucleic acid that comprises a phosphorothioate backbone linkage. In another embodiment, the test compound is a non-nucleic acid small molecule. The non-nucleic acid small molecule may be derived from a molecular library. In other embodiments, the test compound comprises amino acids, carbohydrates such as polysaccharides. It may be a hormone or a lipid or contain moieties derived therefrom. In other embodiments, the test compounds are putative ligands for TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10 or TLR11.

In one embodiment, the cell is a RPMI 8226 cell, a Raji cell, a RAMOS cell, a THP-1 cells, a Nalm cell or a KG-1 cell and the TLR is TLR9. In another embodiment, the cell is a RPMI 8226 cell, a Raji cell or a RAMOS cell and the TLR is TLR7. In yet another embodiment, the cell is a KG-1 cell, a Nalm cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cell, a Hep-2 cells, a A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell and the TLR is TLR3.

In another embodiment, the cell is an RPMI 8226 cell and the TLR is TLR7 or TLR9. In still another embodiment, the cell is a Raji cell and the TLR is TLR9, TLR7 or TLR3.

Depending upon the embodiment, the TLR signaling activity may be measured or detected in a number of ways. In one embodiment, the TLR signaling activity is measured by cytokine, chemokine, or growth factor secretion. The cytokine secretion may be selected from the group consisting of IL-6 secretion, IL-10 secretion, IL-12 secretion, IFN-α secretion and TNF-α secretion, but is not so limited. The chemokine secretion may be IP-10 secretion or IL-8 secretion, but is not so limited.

In another embodiment, the TLR signaling activity is measured by antibody secretion. The antibody secretion may be IgM secretion, but is not limited to this antibody subtype.

10

15

20

25

30

In another embodiment, the TLR signaling activity is measured by phosphorylation. The total level of phosphorylation in the cell or the level of phosphorylation of particular factors in the cell may be measured. These factors are preferably signaling factors and can be selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, Jun, c-fos, and subunits of NF-kB, but are not so limited.

In still a further embodiment, the TLR signaling activity is measured by cell surface marker expression. In one embodiment, the TLR signaling activity is measured by an increase in cell surface marker expression. Examples of cell surface markers to be analyzed include CD71, CD86, HLA-DR, CD80, HLA Class I, CD54 and CD69. In other embodiments, the TLR signaling activity is measured by a decrease in cell surface marker expression. Cell surface marker expression can be determined using flow cytometry. TLR signaling activity can also be measured by protein production (e.g., by Western blot).

In another embodiment, the TLR signaling activity is measured by gene expression. Gene expression profiles may be determined using Northern blot analysis or RT-PCR that uses mRNA or total RNA as a starting material. The gene expression of interest may be that of the chemokines and cytokines and cell surface molecules recited above. Gene expression analysis can be performed using microarray techniques.

In yet another embodiment, the TLR signaling activity is measured by cell proliferation. Cell proliferation assays can be measured in a number of ways including but not limited to <sup>3</sup>H-thymidine incorporation.

In one embodiment, the cell is an RPMI 8226 cell and TLR signaling is indicated by expression of a marker such as CD71, CD86 and/or HLA-DR or by expression, production or secretion of a factor such as IL-8, IL-10, IP-10 and/or TNF-α. Preferably, in this latter embodiment, the RPMI 8226 cell is unmodified. In another embodiment, the cell is a Raji cell and the TLR signaling is indicated by IL-6 or IFN-α2 expression, production or secretion. In yet another embodiment, the cell is a RAMOS cell and the TLR signaling is indicated by CD80 cell surface expression.

TLR signaling activity can be measured via a native readout or an artificial readout or both. A native readout is one that does not rely on introduction of a reporter construct into the cell of interest.

The cell line may be used in a modified or unmodified form. In one embodiment, the cell line is transfected with a reporter construct. The transfection may be transient or stable. The reporter construct generally comprises a promoter, a coding sequence and a

10

15

20

25

30

polyadenylation signal. The coding sequence may comprise a reporter sequence selected from the group consisting of an enzyme (e.g., luciferase, alkaline phosphatase,  $\beta$ -galactosidase, chloramphenicol acetyltransferase (CAT), secreted alkaline phosphatase, etc.), a bioluminescence marker (e.g., green fluorescent protein (GFP, U.S. Patent No. 5,491,084), etc.), a surface-expressed molecule (e.g., CD25), a secreted molecule (e.g., IL-8, IL-12 p40, TNF- $\alpha$ , etc.), and other detectable protein sequences known to those of skill in the art. Preferably, the coding sequence encodes a protein, the level or activity of which can be quantified, with preferably a wide linear range.

In some embodiments, the promoter is a promoter that is responsive to TLR signaling pathways (i.e., a "TLR responsive promoter"). In some embodiments, the promoter contains a binding site for a transcription factor activated upon CpG nucleic acid exposure, such as for example NF-κB. In other embodiments, the promoter contains a binding site for a transcription factor that is activated by a positive reference compound other than CpG nucleic acids. The transcription factor binding site may be selected from the group consisting of a NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE, as well as others known to those of skill in the art.

In another embodiment, the promoter contains a functional promoter element from an IL-1 gene, an IL-6 gene, an IL-8 gene, an IL-10 gene, an IL-12 p40 gene, an IFN- $\alpha$ 1 gene, an IFN- $\alpha$ 4 gene, an IFN- $\beta$  gene, an IFN- $\gamma$  gene, a TNF- $\alpha$ 6 gene, an IP-9 gene, an IP-10 gene, a RANTES gene, an ITAC gene, a MCP-1 gene, an IGFBP4 gene, a CD54 gene, a CD69 gene, a CD71 gene, a CD80 gene, a CD86 gene, a HLA-DR gene, and a HLA class I gene.

The TLR responsive promoter may be a TLR1 responsive promoter, a TLR2 responsive promoter, a TLR3 responsive promoter, a TLR4 responsive promoter, a TLR5 responsive promoter, a TLR6 responsive promoter, a TLR7 responsive promoter, a TLR8 responsive promoter, a TLR9 responsive promoter, a TLR10 responsive promoter or a TLR11 responsive promoter.

In these latter embodiments, the cell line may be transfected with a reporter construct having a promoter derived from a particular cytokine, chemokine, or cell surface marker, and a unique reporter coding sequence conjugated thereto. In this way, the readout from a particular reporter construct is a surrogate readout for cytokine, chemokine, or cell surface marker readout. Measuring readout from the reporter coding sequences described herein is in

10

15

20

25

30

some instances easier than measuring cytokine or chemokine secretion, or upregulation of a cell surface marker.

In these latter embodiments, the cell line may be transfected with a number of reporter constructs each having a promoter derived from a particular cytokine, chemokine, or cell surface marker, and a unique distinguishable coding sequence conjugated thereto. In these embodiments, multiple readouts are possible from one screen. In other embodiments, multiple native readouts are also possible from one screen.

In a related embodiment, the cell may be further transfected with a nucleic acid that codes for a TLR polypeptide or a fragment thereof. Preferably, the TLR is one that is not endogenously expressed by the cell. As an example, if the cell is an RPMI 8226 cell which has been shown to express TLR7 and TLR9 according to the invention, then it may be modified to express TLRs other than these (e.g., TLR8) in some embodiments. In this aspect, the RPMI 8226 cell is responsive to TLR8 ligands. In preferred embodiments, the TLR is a human TLR (i.e., hTLR).

In another aspect, the invention provides an RPMI 8226 cell transfected with a TLR nucleic acid. In still another embodiment, the TLR nucleic acid is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR8, TLR10 and TLR11. The encoded TLRs nucleic acids can derive from human or non-human sources. Examples of non-human sources include, but are not limited to, murine, bovine, canine, feline, ovine, porcine, and equine species. Other species include chicken and fish, e.g., aquaculture species. The TLR nucleic acids can also include chimeric sequences consisting of domains originating from different species. In preferred embodiments, the TLR is a human TLR.

In still another aspect, the invention provides kits including the cells lines (e.g., the RPMI 8226 cell line), the reporter constructs and/or expression constructs described above, and instructions for use.

Other aspects of the invention provide methods for analyzing the biological activity of individual lots of material containing previously identified specific TLR ligands (i.e., specific compounds which are ligands for a particular TLR) intended for use as, or for use in the preparation of, pharmaceutical compositions. The methods permit a qualitative and, importantly, a quantitative assessment of biological activity of individual lots of TLR ligands, pre-formulation as well as post-formulation. Such methods are useful in the manufacture and validation of pharmaceutical compositions containing, as an active agent, at least one specific ligand of at least one specific TLR. The specific TLR can be any known TLR, including

-7-

without limitation TLR3, TLR7, TLR8 and TLR9. The specific TLR ligand is an isolated TLR ligand, either found in nature or synthetic (not found in nature), including in particular certain nucleic acid molecules and small molecules. Nucleic acid molecules that are specific TLR ligands include synthetic and naturally-occurring oligonucleotides having specific base sequence motifs. Furthermore, specific TLR ligands include both agonists and antagonists of specific TLR.

5

10

15

20

25

30

These methods are to be distinguished from test procedures and acceptance criteria for new drug substances and new drug products which are classified as chemical substances. Unlike the afore-mentioned test procedures and acceptance criteria, the methods of the instant invention deal specifically with characterizing drug substances and drug products which are classified as oligonucleotides. Oligonucleotides are explicitly excluded in ICH Topic Q6A Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances, Step 4 – Consensus Guideline: 6 October 1999, § 1.3.

Further still, the methods of the instant invention are to be distinguished from test procedures and acceptance criteria for biotechnological/biological products. Unlike the aforementioned test procedures and acceptance criteria, the methods of the invention deal specifically with characterizing biotechnological/biological products which are classified as DNA products. DNA products are explicitly excluded in ICH Harmonised Tripartite Guideline Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products, Step 4 – 10 March 1999, § 1.3.

In one aspect, the invention provides a method for quality assessment of a test composition containing a known TLR ligand. The method according to this aspect of the invention involves measuring a reference activity of a reference composition comprising a known TLR ligand, wherein the known TLR ligand is a nucleic acid molecule; measuring a test activity of a test composition comprising the known TLR ligand; and comparing the test activity to the reference activity. In one embodiment the method further involves the step of selecting the test composition if the test activity falls within a predetermined range of variance about the reference activity.

In one embodiment, the reference composition is a first production lot of a pharmaceutical composition comprising the known TLR ligand, and the test composition is a second production lot of a pharmaceutical composition comprising the known TLR ligand. This embodiment is particularly useful as a method for developing and applying acceptance criteria for finished pharmaceutical products containing a known TLR ligand.

-8-

In another embodiment, the reference composition is a first in-process lot of a composition comprising the known TLR ligand, and the test composition is a second in-process lot of a composition comprising the known TLR ligand. This embodiment is particularly useful as a method for developing and applying acceptance criteria for raw materials and/or other in-process materials containing a known TLR ligand bound for use in a pharmaceutical product.

5

10

15

20

25

30

In one embodiment according to this aspect of the invention, measuring the reference activity involves contacting the reference composition with an isolated cell expressing a TLR responsive to the known TLR ligand, and measuring the test activity involves contacting the test composition with the isolated cell expressing the TLR responsive to the known TLR ligand. Further, in one embodiment the isolated cell expressing the TLR responsive to the known TLR ligand includes an expression vector for the TLR responsive to the known TLR ligand. Such expression vector, and likewise for any expression vector according to the instant invention, can be introduced into the cell using any suitable method.

In one embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand naturally expresses the TLR responsive to the known TLR ligand. Such a cell can be naturally occurring or it can be a cell line, provided the cell does not include an expression vector introduced into the cell for the purpose of artificially inducing the cell to express or overexpress the TLR.

In one particular embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is RPMI 8226. In another embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is Raji, RAMOS, Nalm, THP-1 or KG-1 and the TLR is TLR9. In another embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is RPMI 8226, Raji or RAMOS and the TLR is TLR7. In yet another embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is a KG-1 cell, a Nalm cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cell, a Hep-2 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell and the TLR is TLR3.

Further according to this aspect of the invention, in one embodiment measuring the reference activity and measuring the test activity each comprises measuring signaling activity mediated by a TLR responsive to the known TLR ligand. As described in greater detail elsewhere herein, TLR signaling involves a series of intracellular signaling events. These signaling events give rise to various downstream products, including certain transcription

10

15

20

25

30

factors (e.g., NF-κB and AP-1), cytokines, chemokines, etc., which can affect the activity of certain gene promoters. For example, in one embodiment the signaling activity is activity of a reporter gene or reporter construct under the control of a NF-κB response element.

In other embodiments, the signaling activity is activity of a reporter gene or reporter construct under the control of an interferon-stimulated response element (ISRE); an IFN- $\alpha$  promoter; an II- $\beta$  promoter.

In one embodiment, the known TLR ligand is an immunostimulatory nucleic acid. An immunostimulatory nucleic acid can include, without limitation, a CpG nucleic acid. In another embodiment, the known TLR ligand is an immunoinhibitory nucleic acid. When the known TLR ligand is a TLR antagonist (e.g., an immunoinhibitory oligonucleotide), the method according to this aspect of the invention can further involve measuring the reference activity of the reference composition and measuring the test activity of the test composition, each performed in the presence of a known immunostimulatory TLR ligand.

In various embodiments, the known TLR ligand is a ligand for a particular TLR. Thus in one embodiment the known TLR ligand is a TLR9 ligand. More specifically, in one embodiment the known TLR ligand is a CpG nucleic acid.

In one embodiment, the known TLR ligand is a TLR3 ligand. Such a ligand can include, for example, a double-stranded RNA or a homolog thereof.

In one embodiment, the known TLR ligand is a TLR7 ligand. In one embodiment the known TLR ligand is a TLR8 ligand.

The invention provides in another aspect a method for quality assessment of a test lot of a pharmaceutical product containing a known TLR9 ligand. The method according to this aspect of the invention involves measuring a reference activity of a reference lot of a pharmaceutical product comprising a known TLR9 ligand, wherein the known TLR9 ligand is a nucleic acid molecule; measuring a test activity of a test lot of a pharmaceutical product comprising the known TLR9 ligand; comparing the test activity to the reference activity; and rejecting the test lot if the test activity falls outside of a predetermined range of variance about the reference activity.

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TGT CGT TTT GTC GTT-3' (SEQ ID NO:1).

10

15

20

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TGA CGT TTT GTC GTT-3' (SEQ ID NO:139).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TGT CGT TTT TTT CGA-3' (SEQ ID NO:140).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT CGT CGT TTC GTC GTT-3' (SEQ ID NO:141).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT CGT CGT TTT GTC GTT-3' (SEQ ID NO:142).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TTC GGT CGT TTT-3' (SEQ ID NO:143).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TTC GTG CGT TTT T-3' (SEQ ID NO:144).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TCG GCG GCC GCC GCC G-3' (SEQ ID NO:145).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TC\_G TTT TAC\_GGC GCC\_GTG CCG-3' (SEQ ID NO:146), wherein every internucleoside linkage is phosphorothioate except for those indicated by "\_\_", which are phosphodiester.

Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention.

25

10

15

20

25

30

Fig. 1 is a bar graph showing cell surface expression of various markers by RPMI 8226 24 hours and 48 hours following stimulation with CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), LPS and IL-1.

Fig. 2 is a bar graph showing IL-8 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.

Fig. 3 is a bar graph showing IL-6 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.

Fig. 4 is a bar graph showing IP-10 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.

Fig. 5 is a bar graph showing IL-10 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.

Fig. 6 is a dose response curve showing fold induction of IL-8 production 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1) and non-CpG nucleic acid (SEQ ID NO: 2). The EC<sub>50</sub> for CpG nucleic acid is 19 nM and the EC<sub>50</sub> for non-CpG nucleic acid is 263 nM.

Fig. 7 is a bar graph showing NF-κB activation in RPMI 8226 transfected transiently with a NF-κB-luciferase reporter gene construct as a function of cell density and nucleic acid amount transfected, following exposure to CpG nucleic acid (SEQ ID NO: 1), LPS and TNF-α. NF-κB activation is measured by luciferase activity.

Fig. 8 is a bar graph showing RT-PCR results from RNA isolated from RPMI 8226 using gene specific primers for TLR7, TLR8 and TLR9 genes.

Fig. 9 is a dose response curve showing IP-10 production induced by SEQ ID NO: 1, and inhibition thereof in the presence of SEQ ID NO: 151, a immunoinhibitory nucleic acid.

Fig. 10 is a bar graph showing the results of a TLR9 RT-PCR analysis of a number of cell lines.

Fig. 11 is a bar graph showing the results of a TLR7 RT-PCR analysis of a number of cell lines.

Fig. 12 is a bar graph showing the results of a TLR3 RT-PCR analysis of a number of cell lines.

Fig. 13 is a bar graph showing the results of a TLR3, TLR7, TLR8 and TLR9 RT-PCR analysis of the Raji cell line.

Fig. 14 is a graph showing IL-6 production by the Raji cell line upon stimulation with various ODN (SEQ ID NO:1; SEQ ID NO:154; SEQ ID NO:158; SEQ ID NO:160; SEQ ID NO:161).

Fig. 15 is a bar graph showing IL-6 production of the Raji cell line upon stimulation with poly I:C and R-848.

Fig. 16 is a bar graph showing IFN-o2 production by the Raji cell line upon stimulation with CpG ODN (SEQ ID NO: 1), R-848 and poly I:C.

Fig. 17 is a bar graph showing CD80 expression (by flow cytometry) by the RAMOS cell line upon stimulation with CpG ODN (SEQ ID NO: 1) and non-CpG ODN (SEQ ID NO: 2).

Fig. 18A is a bar graph showing the induction of NF-κB by 293 fibroblast cells transfected with human TLR9 in response to exposure to various stimuli, including CpG-ODN, GpC-ODN, LPS, and medium.

Fig. 18B is a bar graph showing the amount of IL-8 produced by 293 fibroblast cells transfected with human TLR9 in response to exposure to various stimuli, including CpG-ODN, GpC-ODN, LPS, and medium.

Fig. 19 is a bar graph showing the induction of NF-κB-luc produced by stably transfected 293-mTLR9 cells in response to exposure to various stimuli, including CpG-ODN, methylated CpG-ODN (Me-CpG-ODN), GpC-ODN, LPS and medium.

Fig. 20 is a bar graph showing the induction of NF-κB-luc produced by stably transfected 293-hTLR9 cells in response to exposure to various stimuli, including CpG-ODN, methylated CpG-ODN (Me-CpG-ODN), GpC-ODN, LPS and medium.

Fig. 21 is a series of gel images depicting the results of reverse transcriptase-polymerase chain reaction (RT-PCR) assays for murine TLR9 (mTLR9), human TLR9 (hTLR9), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in untransfected control 293 cells, 293 cells transfected with mTLR9 (293-mTLR9), and 293 cells transfected with hTLR9 (293-hTLR9).

30

25

10

15

20

It is to be understood that the Figures are not required for enablement of the invention.

10

30

SEQ ID NO:1 is the nucleotide sequence of an immunostimulatory nucleic acid (TLR9 ligand).

SEQ ID NO:2 is the nucleotide sequence of a non-CpG nucleic acid.

SEQ ID NO:3 is the nucleotide sequence of human TLR2 cDNA (U88878).

SEQ ID NO:4 is the amino acid sequence of human TLR2 protein (AAC34133).

SEQ ID NO:5 is the nucleotide sequence of murine TLR2 cDNA (AF165189).

SEQ ID NO:6 is the amino acid sequence of murine TLR2 protein (NP\_036035).

SEQ ID NO:7 is the nucleotide sequence of human TLR3 cDNA (NM\_003265).

SEQ ID NO:8 is the amino acid sequence of human TLR3 protein (NP\_003256).

SEO ID NO:9 is the nucleotide sequence of murine TLR3 cDNA (AF355152).

SEQ ID NO:10 is the amino acid sequence of murine TLR3 protein (AAK26117).

SEQ ID NO:11 is the nucleotide sequence of human TLR4 cDNA (U88880).

SEQ ID NO:12 is the nucleotide sequence of human TLR4 cDNA transcript variant 4 (NM 138557).

15 SEQ ID NO:13 is the nucleotide sequence of human TLR4 cDNA transcript variant 2 (NM\_138556).

SEQ ID NO:14 is the nucleotide sequence of human TLR4 cDNA transcript variant 1 (NM 138554).

SEQ ID NO:15 is the nucleotide sequence of human TLR4 cDNA transcript variant 3 (NM 003266).

SEQ ID NO:16 is the amino acid sequence of human TLR4 protein isoform A (NP 612564).

SEQ ID NO:17 is the amino acid sequence of human TLR4 protein isoform B (NP 612566).

SEQ ID NO:18 is the amino acid sequence of human TLR4 protein isoform C (NP 003257).

SEQ ID NO:19 is the amino acid sequence of human TLR4 protein isoform D (NP\_612567).

SEQ ID NO:20 is the nucleotide sequence of murine TLR4 cDNA (NM\_021297).

SEQ ID NO:21 is the nucleotide sequence of murine TLR4 mRNA (AF185285).

SEQ ID NO:22 is the nucleotide sequence of murine TLR4 mRNA (AF110133).

SEQ ID NO:23 is the amino acid sequence of murine TLR4 protein (AAD29272).

SEQ ID NO:24 is the amino acid sequence of murine TLR4 protein (AAF04278).

SEQ ID NO:25 is the nucleotide sequence of human TLR5 cDNA (AB060695). SEQ ID NO:26 is the amino acid sequence of human TLR5 protein (BAB43558). SEO ID NO:27 is the amino acid sequence of human TLR5 protein (O60602). SEQ ID NO:28 is the amino acid sequence of human TLR5 protein (AAC34136). SEQ ID NO:29 is the nucleotide sequence of murine TLR5 cDNA (AF186107). 5 SEQ ID NO:30 is the amino acid sequence of murine TLR5 protein (AAF65625). SEO ID NO:31 is the nucleotide sequence of human TLR7 cDNA (AF240467). SEQ ID NO:32 is the nucleotide sequence of human TLR7 cDNA (AF245702). SEO ID NO:33 is the nucleotide sequence of human TLR7 cDNA (NM\_016562). SEQ ID NO:34 is the amino acid sequence of human TLR7 protein (AAF60188). 10 SEO ID NO:35 is the amino acid sequence of human TLR7 protein (AAF78035). SEQ ID NO:36 is the amino acid sequence of human TLR7 protein (NP\_057646). SEO ID NO:37 is the amino acid sequence of human TLR7 protein (Q9NYK1). SEQ ID NO:38 is the nucleotide sequence of murine TLR7 cDNA (AY035889). SEQ ID NO:39 is the nucleotide sequence of murine TLR7 splice variant 15 (NM\_133211). SEO ID NO:40 is the nucleotide sequence of murine TLR7 splice variant (AF334942). SEQ ID NO:41 is the amino acid sequence of murine TLR7 protein (AAK62676). SEQ ID NO:42 is the amino acid sequence of murine TLR7 protein (AAL73191). SEQ ID NO:43 is the amino acid sequence of murine TLR7 protein (AAL73192). 20 SEO ID NO:44 is the amino acid sequence of murine TLR7 protein (NP\_573474). SEQ ID NO:45 is the amino acid sequence of murine TLR7 protein (P58681). SEQ ID NO:46 is the nucleotide sequence of human TLR8 cDNA (AF245703). SEO ID NO:47 is the nucleotide sequence of human TLR8 cDNA (AF246971). SEQ ID NO:48 is the nucleotide sequence of human TLR8 cDNA (NM\_138636). 25 SEQ ID NO:49 is the nucleotide sequence of human TLR8 cDNA (NM\_016610). SEQ ID NO:50 is the amino acid sequence of human TLR8 protein (AAF78036). SEO ID NO:51 is the amino acid sequence of human TLR8 protein (AAF64061). SEQ ID NO:52 is the amino acid sequence of human TLR8 protein (Q9NR97). SEQ ID NO:53 is the amino acid sequence of human TLR8 protein (NP\_619542). 30 SEQ ID NO:54 is the amino acid sequence of human TLR8 protein (NP\_057694). SEQ ID NO:55 is the nucleotide sequence of murine TLR8 cDNA (AY035890). SEQ ID NO:56 is the nucleotide sequence of murine TLR8 cDNA (NM\_133212).

10

15

20

25

30

SEQ ID NO:57 is the amino acid sequence of murine TLR8 protein (AAK62677). SEQ ID NO:58 is the amino acid sequence of murine TLR8 protein (NP\_573475). SEQ ID NO:59 is the amino acid sequence of murine TLR8 protein (P58682). SEQ ID NO:60 is the nucleotide sequence of human TLR9 cDNA (AF245704). SEQ ID NO:61 is the nucleotide sequence of human TLR9 cDNA (AB045180). SEQ ID NO:62 is the amino acid sequence of human TLR9 protein (AAF78037). SEO ID NO:63 is the amino acid sequence of human TLR9 protein (AAF72189). SEO ID NO:64 is the amino acid sequence of human TLR9 protein (AAG01734). SEO ID NO:65 is the amino acid sequence of human TLR9 protein (AAG01735). SEQ ID NO:66 is the amino acid sequence of human TLR9 protein (AAG01736). SEO ID NO:67 is the amino acid sequence of human TLR9 protein (BAB19259). SEQ ID NO:68 is the nucleotide sequence of murine TLR9 cDNA (AF348140). SEQ ID NO:69 is the nucleotide sequence of murine TLR9 cDNA (AB045181). SEQ ID NO:70 is the nucleotide sequence of murine TLR9 cDNA (AF314224). SEQ ID NO:71 is the nucleotide sequence of murine TLR9 cDNA (NM\_031178). SEQ ID NO:72 is the amino acid sequence of murine TLR9 protein (AAK29625). SEO ID NO:73 is the amino acid sequence of murine TLR9 protein (AAK28488). SEQ ID NO:74 is the amino acid sequence of murine TLR9 protein (BAB19260). SEO ID NO:75 is the amino acid sequence of murine TLR9 protein (NP 112455). SEO ID NO:76 is the nucleotide sequence of human TLR10 cDNA (AF296673). SEO ID NO:77 is the amino acid sequence of human TLR10 protein (AAK26744). SEQ ID NO:78 is the nucleotide sequence of human TLR6 cDNA (AB020807). SEQ ID NO:79 is the nucleotide sequence of human TLR6 mRNA (NM\_006068). SEQ ID NO:80 is the amino acid sequence of human TLR6 protein (BAA78631). SEO ID NO:81 is the amino acid sequence of human TLR6 protein (NP\_006059). SEQ ID NO:82 is the amino acid sequence of human TLR6 protein (Q9Y2C9). SEQ ID NO:83 is the nucleotide sequence of murine TLR6 cDNA (AB020808). SEQ ID NO:84 is the nucleotide sequence of murine TLR6 cDNA (NM\_011604). SEQ ID NO:85 is the nucleotide sequence of murine TLR6 cDNA (AF314636). SEQ ID NO:86 is the amino acid sequence of murine TLR6 protein (BAA78632). SEQ ID NO:87 is the amino acid sequence of murine TLR6 protein (AAG38563). SEO ID NO:88 is the amino acid sequence of murine TLR6 protein (NP 035734). SEQ ID NO:89 is the amino acid sequence of murine TLR6 protein (Q9EPW9).

SEQ ID NO:90 is the nucleotide sequence of a consensus sequence for NF-kB p50 subunit.

SEQ ID NO:91 is the nucleotide sequence of a consensus sequence for NF-kB p65 subunit.

5 SEQ ID NO:92 is the nucleotide sequence of an example of an NF-κB p65 subunit binding site.

SEQ ID NO:93 is the nucleotide sequence of an example of a murine CREB binding site.

SEQ ID NO:94 is the nucleotide sequence of an example of a murine AP-1 binding

10 site.

15

20

25

30

site.

SEQ ID NO:95 is the nucleotide sequence of an example of a murine AP-1 binding

SEQ ID NO:96 is the nucleotide sequence of an example of an ISRE.

SEO ID NO:97 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:98 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:99 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:100 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:101 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:102 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:103 is the nucleotide sequence of an example of an SRE.

SEQ ID NO:104 is the nucleotide sequence of an example of an SRE.

SEQ ID NO:105 is the nucleotide sequence of an example of an SRE.

SEQ ID NO:106 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:107 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:108 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:109 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:110 is the nucleotide sequence of an example of a GAS.

SEQ ID NO:111 is the nucleotide sequence of a p53 binding site consensus sequence.

SEQ ID NO:112 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:113 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:114 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:115 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:116 is the nucleotide sequence of an example of a p53 binding site.

10

15

20

25

SEQ ID NO:117 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:118 is the nucleotide sequence of an example of a TARE (TNF- $\alpha$  response element).

SEQ ID NO:119 is the nucleotide sequence of an example of an SRF binding site.

SEQ ID NO:120 is the nucleotide sequence of an example of an SRF binding site.

SEQ ID NO:121 is the nucleotide sequence of the -620 to +50 promoter region of IFN-04.

SEQ ID NO:122 is the nucleotide sequence of the -140 to +9 promoter region of IFN- $\alpha$ 1.

SEQ ID NO:123 is the nucleotide sequence of the -140 to +9 promoter region of IFN- $\alpha$ 1 (point mutation, AL353732).

SEQ ID NO:124 is the nucleotide sequence of the -280 to +20 promoter region of IFN- $\beta$ .

SEQ ID NO:125 is the nucleotide sequence of the -397 to +5 promoter region of human RANTES (AB023652).

SEQ ID NO:126 is the nucleotide sequence of the -751 to +30 promoter region of human IL-12 p40.

SEQ ID NO:127 is the nucleotide sequence of the -250 to +30 promoter region of human IL-12 p40.

SEQ ID NO:128 is the nucleotide sequence of the -288 to +7 promoter region of human IL-6.

SEQ ID NO:129 is the nucleotide sequence of the IL-6 gene promoter from -1174 to +7 (M22111).

SEQ ID NO:130 is the nucleotide sequence of the -734 to +44 promoter region derived from human IL-8.

SEQ ID NO:131 is the nucleotide sequence of the -162 to 44 promoter region of human IL-8.

SEQ ID NO:132 is the nucleotide sequence of the -615 to +30 promoter region of human TNF- $\alpha$ .

SEQ ID NO:133 is the nucleotide sequence of a promoter region of human TNF-β. SEQ ID NO:134 is the nucleotide sequence of the -875 to +97 promoter region of human IP-10.

10

15

20

SEQ ID NO:135 is the nucleotide sequence of the -219 to +114 promoter region of human CXCL11 (IP-9).

SEQ ID NO:136 is the nucleotide sequence of the full length promoter region of human CXCL11 (IP-9).

SEQ ID NO:137 is the nucleotide sequence of the -289 to +217 promoter region of IGFBP4 (Insulin growth factor binding protein 4).

SEQ ID NO:138 is the nucleotide sequence of the full length promoter region of IGFBP4.

SEO ID NO:139 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:140 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:141 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:142 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:143 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:144 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:145 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:146 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:147 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

SEQ ID NO:148 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

SEQ ID NO:149 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

, SEQ ID NO:150 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

25 SEQ ID NO:151 is the nucleotide sequence of an immunoinhibitory nucleic acid.

SEQ ID NO:152 is the nucleotide sequence of a sense primer for human TLR3.

SEQ ID NO:153 is the nucleotide sequence of an antisense primer for human TLR3.

SEQ ID NO:154 is the nucleotide sequence of a GpC nucleic acid.

SEQ ID NO:155 is the nucleotide sequence of a CpG ODN.

30 SEQ ID NO:156 is the nucleotide sequence of a GpC ODN.

SEQ ID NO:157 is the nucleotide sequence of a Me-CpG ODN.

SEO ID NO:158 is the nucleotide sequence of a TLR9 ligand.

SEQ ID NO:159 is the nucleotide sequence of a TLR9 ligand.

10

15

20

25

30

SEQ ID NO:160 is the nucleotide sequence of a TLR9 ligand. SEQ ID NO:161 is the nucleotide sequence of a TLR9 ligand.

#### **Detailed Description of the Invention**

In its broadest sense, the invention relates to screening methods and tools to be used to identify and discriminate between newly discovered immunomodulatory molecules and to compare and standardize compositions of known immunomodulatory molecules. The immunomodulatory molecules are preferably TLR ligands.

Thus, the invention is based in part on the discovery that cell lines expressing endogenous TLR respond to TLR ligands in a manner similar to the response of peripheral blood mononuclear cells (PBMC). PBMC respond to immunomodulatory TLR ligands by modulating one or more parameters including gene expression, cell surface marker expression, cytokine and/or chemokine production and secretion, cell cycle status, phosphorylation status, and the like. TLR ligands can be categorized and distinguished based on the cellular changes they induce (i.e., their induction profiles). The ability of a TLR ligand to provide therapeutic or prophylactic benefit to a subject depends on its induction profile. The ability to screen new TLR ligands for a panel of response indicators or parameters allows for rapid discrimination and categorization of TLR ligands. Moreover, the similarity between the cell line responses and those observed after in vivo administration of the TLR ligand indicates that the cell lines are suitable predictors of in vivo activity. The use of in vitro propagated cell lines additionally overcomes the variability encountered when using freshly isolated PBMC.

The TLR ligands identified according to the invention therefore can be used therapeutically or prophylactically in a more patient- or disorder-specific manner. The invention allows for the tailoring of TLR ligands for particular patients or disorders.

The invention identifies a number of cell lines that can be used to identify TLR ligands based on endogenous TLR expression such as TLR3, TLR7 and TLR9 expression. As an example, the invention is premised in part on the discovery of TLR9 expression in a number of cell lines including RPMI 8226, Raji, RAMOS, THP-1, Nalm-6 and KG-1. Cell lines RPMI 8226, Raji and RAMOS have been determined to express TLR7 according to the invention. Cell lines KG-1 cell, a Nalm cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cells, a A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell have been discovered to express TLR3 according to the invention.

10

15

25

30

It is further premised in part on the discovery that RPMI 8226 cells respond to the imidazoquinoline compound R-848. Consistent with this latter finding, it was also discovered that RPMI 8226 cells express TLR7.

The invention in other aspects provides for screening methods and tools for verifying and standardizing compositions containing known TLR ligands. These compositions may be for example commercial production lots to be used in a clinical setting. Accordingly, the invention provides methods for standardizing lots of known TLR ligands prior to distribution and use clinically. In this way, production processes can be observed and controlled and substandard production lots can be identified and eliminated prior to shipment.

The methods of the instant invention can be used at any step in the preparation and production of clinical material, i.e., pharmaceutical product. In particular, the methods will find use in characterizing or validating raw materials, in-process materials, finished product materials (e.g., pre-release materials), and post-production materials (e.g., post-release materials). The methods can also be used to validate existing process methods, as well as to validate new or changed process methods used in the production of the pharmaceutical product.

#### 20 Screening Assays Generally

The screening assays provided herein may be used to identify immunomodulatory agents. Immunomodulatory agents are agents that either stimulate or inhibit immune responses in a subject. Accordingly, as used herein, immunomodulation embraces both immunostimulation and immunoinhibition.

The screening methods are used to identify TLR agonists and antagonists. The methods can also be used to identify compounds that enhance the immunostimulation induced by a TLR agonist. This latter set of compounds is referred to herein as "enhancers". A TLR agonist is a compound that stimulates TLR signaling activity. A TLR antagonist is a compound that inhibits TLR signaling activity. Agonists are generally referred to herein as immunostimulatory compounds because stimulation of TLR is associated with immune stimulation. Antagonists are generally referred to herein as immunoinhibitory compounds because inhibition of TLR is associated with immune inhibition. TLR antagonists include compounds that reduce (or eliminate completely) the immunostimulation induced by a TLR

- 21 -

agonist. In some embodiments, the agonists, antagonists and enhancers are TLR ligands (i.e., they bind to a TLR). In other embodiments, the test compounds with agonist, antagonist or enhancer activity may act downstream or upstream of the TLR-TLR ligand interaction.

An "immunostimulatory compound" as used herein refers to a natural or synthetic compound that characteristically induces a TLR-mediated response when contacted with a suitable functional TLR polypeptide. In one embodiment the immunostimulatory compound is a natural or synthetic compound that induces a TLR-mediated response when contacted with a cell that naturally or artificially expresses a suitable functional TLR polypeptide. Depending on the aspect of the invention, the cell may be an experimental cell or a primary cell such as a PBMC.

Examples of immunostimulatory compounds include the following immunostimulatory nucleic acids, which are discussed in further detail below:

5

10

25

30

|    | 5'-TCGTCGTTTTGTCGTTTTGTCGTT-3'    | (SEQ ID NO:1)   |
|----|-----------------------------------|-----------------|
|    | 5'-TCGTCGTTTTGACGTTTTGTCGTT-3'    | (SEQ ID NO:139) |
| 15 | 5'-TCGTCGTTTTGTCGTTTTTTTCGA-3'    | (SEQ ID NO:140) |
|    | 5'-TCGTCGTTTCGTCGTTTCGTCGTT-3'    | (SEQ ID NO:141) |
|    | 5'-TCGTCGTTTCGTCGTTTTGTCGTT-3'    | (SEQ ID NO:142) |
|    | 5'-TCGTCGTTTTTCGGTCGTTTT-3'       | (SEQ ID NO:143) |
|    | 5'-TCGTCGTTTTTCGTGCGTTTTT-3'      | (SEQ ID NO:144) |
| 20 | 5'-TCGTCGTTTTCGGCGGCCGCCG-3'      | (SEQ ID NO:145) |
|    | 5'-TCGTC_GTTTTAC_GGCGCC_GTGCCG-3' | (SEQ ID NO:146) |

Imidazoquinolines are immune response modifiers thought to induce expression of several cytokines including interferons (e.g., IFN- $\alpha$  and IFN- $\beta$ ), TNF- $\alpha$  and some interleukins (e.g., IL-1, IL-6 and IL-12) as well as chemokines (e.g., IP-10 and IL-8). Imidazoquinolines are capable of stimulating a Th1 immune response, as evidenced in part by their ability to induce increases in IgG2a levels. Imidazoquinoline agents reportedly are also capable of inhibiting production of Th2 cytokines such as IL-4, IL-5, and IL-13. Some of the cytokines induced by imidazoquinolines are produced by macrophages and dendritic cells. Some species of imidazoquinolines have been reported to increase NK cell lytic activity and to stimulate B cells proliferation and differentiation, thereby inducing antibody production and secretion. Imidazoquinoline mimics can also be tested using the screening methods.

10

15

20

25

30

An "immunoinhibitory compound" as used herein refers to a natural or synthetic compound that characteristically inhibits a TLR-mediated response when contacted with a suitable functional TLR polypeptide. In one embodiment the immunoinhibitory compound is a natural or synthetic compound that inhibits a TLR-mediated response when contacted with a cell that naturally or artificially expresses a suitable functional TLR polypeptide.

In addition to the immunoinhibitory nucleic acids disclosed elsewhere herein, immunoinhibitory compounds and TLR antagonists encompass certain small molecules (chloroquine, quinacrine, 9-aminoacridines and 4-aminoquinolines, and derivatives thereof) described by Macfarlane and colleagues in U.S. Pat. 6,221,882; U.S. Pat. 6,399,630; U.S. Pat. 6,479,504; U.S. Pat. 6,521,637; and published U.S. Pat. application 2002/0151564, the contents of all of which are hereby incorporated by reference in their entirety.

The invention provides in part methods and tools that utilize cell lines, in modified or unmodified form, as surrogates for PBMC. Immunomodulation by TLR ligands can be assessed using one or preferably more parameters including but not limited to cytokine and chemokine secretion, upregulation of cell surface markers, changes in cell proliferation, phosphorylation changes, and the like. These parameters may be native readouts or artificial readouts as described herein.

The cellular response to immunostimulatory nucleic acids by the cell lines described herein (e.g., RPMI 8226, Raji, RAMOS, and the like) so resembles that of PBMC that these cells can be used to identify and differentiate between immunomodulatory compounds based on the extent of the induced response and the particular profile of that response. The invention provides a number of cell lines each with a particular endogenous TLR expression profile, as described herein.

The cell lines can be used to identify immunomodulatory compounds with particular response profiles. As an example, the cell lines can be used to identify molecules that are mimics to known TLR ligands. The cell lines can also be used to identify TLR ligands that trigger some but not necessarily all of the responses induced by known TLR ligands. For example, the cell line can be used to distinguish between compounds based on individual or group cytokine or chemokine secretion, or based on upregulation of one, a subset or all cell surface markers. As an example, in some therapeutic instances, it may be desirable to use a compound that induces the secretion of relatively high levels of chemokine such as IP-10, yet induces only relatively low levels of one or more other factors. The screening methods of the invention allow for the identification of such a compound with this type of induction profile.

- 23 -

It is to be understood that the screening method also can be used to determine effective amounts of known and newly identified immunomodulatory compounds. For example, the  $EC_{50}$  value of a TLR ligand for the production of a particular cytokine or chemokine can be determined, thereby facilitating comparison between different nucleic acids.

5

10

15

20

25

30

Generally, these assays require the incubation of cells with a reference compound and a test compound, and an analysis of the readout. Depending on the embodiment, the same cells are exposed to the reference compound and the test compound. An example of this latter embodiment is a screening assay for compounds that enhance the immunostimulatory effects of a TLR agonist. Another example is a screening assay for compounds that inhibit the immunostimulatory effects of a TLR agonist. In both examples, the reference compound is a positive reference compound (i.e., it is itself immunostimulatory).

In other embodiments, particularly those directed at identifying immunostimulatory compounds, separate aliquots from the same cell line (or from the same freshly harvested cell population) are exposed to either the reference compound or the test compound, and the readouts from each are measured and compared to the other. If the reference compound is a negative reference compound (i.e., it is inert and neither immunostimulatory nor immunoinhibitory), then any test level that is greater than the reference level is indicative of a test compound that has at least some immunostimulatory capacity. Generally, the negative reference compound is used to set background levels of immunostimulation or immunoinhibition observed in the absence of the test compound. If the reference compound is a positive reference compound (i.e., it is immunostimulatory), then it is possible to compare and contrast the induction profile of the test compound to that of the reference compound.

In some instances, separate reference assays individually containing a positive and a negative reference compound are performed alongside the test assay. For example, if the test assay is a screen for an immunostimulatory TLR ligand, then reference assays can be a positive reference assay (in which the reference compound is immunostimulatory), a negative reference assay (in which the reference compounds is immunologically inert or neutral), or both. A test compound is defined as immunostimulatory if it induces a response greater than that of the negative reference compound. The level and profile of the immunostimulatory response can be compared to the level and profile induced by the positive reference compound. It is to be understood that a test compound that induces a level of immunostimulation less than that of the positive reference compound may still be considered immunostimulatory according to the invention. Modifications to these screening assays for a

desired readout will be apparent to those of ordinary skill in the are based on the teachings provided herein.

5

10

15

20

25

30

If the test assay is a screen for an immunoinhibitory TLR ligand, then the assay may generally involve co-incubation of the test compound and a positive reference compound. The control assay may include co-incubation of the negative and positive reference compounds. As used herein, co-incubation embraces simultaneous or consecutive addition of the reference and test compounds. The test compound may be added before or after the positive reference compound. An immunoinhibitory test compound may be identified by a diminution of the immunostimulatory response induced by the positive reference compound when in the presence of the test compound. If the level of the response is less in the presence of the test compound, this indicates that the test compound is capable of interfering with the immunostimulatory effects of the positive reference compound. As an example, simultaneous or consecutive addition of a putative immunoinhibitory test compound can reduce the amount of cytokines or chemokines secreted by cells in response to the positive reference compound alone, indicating an inhibition of the immunostimulatory effects of the positive reference compound.

The reference immunoinhibitory compound can be used at one or more concentrations in conjunction with a selected or constant concentration of reference immunostimulatory compound. Under proper conditions, the immunostimulatory effect of the reference immunostimulatory compound will be less in the presence of the immunoinhibitory substance than in the absence of the immunoinhibitory substance. Furthermore, under proper conditions, the immunostimulatory effect of the reference immunostimulatory compound will decrease with increasing concentration of the immunoinhibitory substance.

The breadth of response by the cell line to immunomodulatory compounds, and its facile manipulation, allows for the identification of novel compounds. The cell line allows the rapid discovery of such compounds given that is lends itself to high throughput screening methods such as those provided herein. These methods and compositions are described in greater detail below. The invention therefore provides screening methods that utilize cell lines that either endogenous express TLRs such as the RPMI 8226 cell line as well as cell lines that have been modified to express TLRs. The invention further provides compositions that comprise such cell lines.

The verification and standardization methods of the invention generally involve assays in which an isolated cell expressing a functional TLR is contacted with each of two

compositions, each composition containing a known ligand for the TLR. One composition is a reference composition, and the assay using the reference composition yields a reference activity. The second composition is a test composition, and the assay using the test composition yields a test activity. The two contacting steps can be performed on separate cells that are alike, and typically will be performed on separate populations of cells that are alike. For example, the separate cells or the separate populations of cells can be drawn from a single population of cells. In typical usage according to this embodiment, the reference and test activities are measured essentially concurrently, although the use of historical reference activity is also contemplated by the methods of the invention. As an alternative, the two contacting steps can be performed on a single cell or on a single population of cells, usually in an essentially concurrent manner when it is desirable to have competition between reference and test compositions. In one embodiment the known TLR ligand is a nucleic acid molecule.

5

10

15

20

25

30

The assays of the invention are performed under specific conditions so that comparison can be made between reference and test activities or levels. The results of the comparison can be used as a basis upon which to accept or reject the test material as suitable for its intended use.

The biological characterization of the reference composition will generally entail a series of biological activity measurements of the reference composition using a single assay under defined conditions in order to define a range of inter-test variance. The range of intertest variance so obtained using reference composition can be used to define an acceptable range of variance within which a subsequent test measurement must fall in order to satisfy quality standards. Such a range of acceptable variance can serve as a basis for developing predetermined range of variance about the reference activity, i.e., acceptance criteria for a particular test composition or test lot. For example, a particular reference composition can be assayed under defined conditions in a number of independent measurements and found to yield a result expressed as  $100 \pm 5$  units of activity. Under this same example, a subsequent test measurement of a test composition performed using the same assay and defined conditions is found to yield 97 units of activity. The activity of the test composition under this example thus yielded a result that falls within the normal range of inter-test variance observed for the reference composition. Accordingly, the test material under this example could be selected on the basis of the test activity falling within a predetermined range of variance about the reference activity. In short, the test material can be deemed acceptable

- 26 -

provided the test activity falls within a predetermined range of activity that is related to the activity of the reference material.

In one embodiment, the methods of the invention provide for comparison between a reference lot of a particular TLR ligand and a test lot of the same particular TLR ligand. Such comparison is useful for quality control assessment of the test lot of material, also referred to herein as validation, e.g., product validation. Such comparison is also useful for process validation.

5

10

15

20

25

30

In another embodiment, the methods of the invention provide for comparison between a reference lot of a particular TLR ligand and a test lot of a different TLR ligand. In a simple example, where a test TLR ligand (T) is expected to have little or no activity characteristic of reference TLR ligand (R), comparison can be made between T and R to confirm the lack of R-like activity possessed by T. In a more complex example, where a test TLR ligand (C) is capable of exerting two different effects, wherein each effect is characteristic of one of two different classes of TLR ligand and is best characterized by one of two different reference TLR ligands (A and B), the test TLR ligand (C) can be compared with either of the two reference TLR ligands (A or B). In this second example, test composition C could be found, for example, to possess 50 percent A-like activity compared with reference A and 70 percent B-like activity compared with reference B. Test composition C could thus independently meet or fail to meet predetermined standards for each of A-like activity and B-like activity. Such comparison is also useful for quality control assessment of the test lot of material, e.g., product validation. Of course test TLR ligand C can alternatively or additionally be compared against reference TLR ligand C, as described in the preceding paragraph.

To facilitate the methods of the invention, certain conditions for carrying out the assays are standardized and used for measurements of both reference activity and test activity. In this way direct comparison between reference activity and test activity can be made readily. Conditions that can be standardized and used in this manner can include, without limitation, readout, temperature, media characteristics, duration (time between introduction of reference composition or test composition and activity measurement), methods of sampling, etc. In some embodiments the methods of the invention can be at least partially automated in order to increase throughput and/or to reduce inter-test variability. For example, robotic devices and workstations with the capacity to dispense and/or sample fluids in a set or programmable fashion are now well known in the art and can be used in performing the methods of the instant invention.

In one embodiment a standard curve of reference composition activity is employed. Typically the standard curve is generated by selecting conditions including concentration of the reference composition such that the dose-response curve is essentially linear (and the slope is non-zero) over a range of concentrations that includes the effective concentration at which activity is 50 percent of maximum (EC50). In one embodiment the standard curve spans a range of concentrations defined by EC50  $\pm$  1 log concentration, e.g.,  $1 \times 10^{-7}$  M  $- 1 \times 10^{-5}$  M, where EC50 is  $1 \times 10^{-6}$  M. In another embodiment the standard curve spans a broader range of concentrations defined by EC50  $\pm$  2 log concentration, e.g.,  $1 \times 10^{-8}$  M  $- 1 \times 10^{-4}$  M, where EC50 is  $1 \times 10^{-6}$  M. In yet another embodiment the standard curve spans a narrower range of concentrations defined by EC50  $\pm$  0.5 log concentration, e.g.,  $3.16 \times 10^{-7}$  M  $- 3.16 \times 10^{-6}$  M, where EC50 is  $1 \times 10^{-6}$  M. The foregoing embodiments are intended to be exemplary and not limiting in any way. One of skill in the art will be able to select, for a given reference composition and without undue experimentation, an appropriate range of concentrations about some middle value in order to generate an essentially linear standard curve with a non-zero slope.

5

10

15

20

25

30

In one embodiment a non-linear standard curve of reference and test composition activity is employed. The standard curve can be generated by selecting conditions including concentrations of the reference composition such that the dose-response curve is sigmoidal and the EC50 value can be determined. Comparison of reference and test activity can be done by comparing, e.g., the EC50 values of both curves. Concentration range is chosen to yield a complete sigmoidal response, e.g., concentration should include EC50  $\pm$  3 log concentration or EC50  $\pm$  4 log concentration. In the case of testing an inhibitory compound the value determined would be the IC50, i.e., concentration where inhibition of the stimulatory signal is half-maximal.

The methods of the invention can be adapted to be automated or at least partially automated methods, as well as to parallel array or high throughput format methods. For example, the assays can be set up using multiwell plates in which cells are dispensed in individual wells and reagents are added in a systematic manner using a multiwell delivery device suited to the geometry of the multiwell plate. Manual and robotic multiwell delivery devices suitable for use in a high throughput screening assay are known by those skilled in the art. Each well or array element can be mapped in a one-to-one manner to a particular test condition, such as the test compound. Readouts can also be performed in this multiwell array, preferably using a multiwell plate reader device or the like. Examples of such devices are

known in the art and are available through commercial sources. Sample and reagent handling can be automated to further enhance the throughput capacity of the screening assay, such that dozens, hundreds, thousands, or even millions of parallel assays can be performed in a day or in a week. Fully robotic systems are known in the art for applications such as generation and analysis of combinatorial libraries of synthetic compounds. See, for example, U.S. Pat. Nos. 5,443,791 and 5,708,158.

#### Cell lines

10

15

20

25

30

The screening methods may use experimental cells. As used herein, an experimental cell is a non-primary cell (i.e., it is not a cell that has been recently harvested from a subject). It excludes, for example, freshly harvested PBMCs. An experimental cell includes a cell from a cell line such as the RPMI 8226 cell line.

In certain embodiments, the cell naturally expresses a functional TLR. In one embodiment relating to the verification and standardization aspects of the invention, the cell may be a PBMC, preferably a PBMC freshly harvested from a subject.

Cells that would be suitable for identification of TLR agonists, antagonists or enhancers according to the invention may possess one or more particular attributes. These attributes include but are not limited to being of human origin, being an immortalized stable cell line, endogenously expressing at least one functional TLR or a combination of functional TLRs, having intact signaling mechanisms, having intact uptake mechanisms, being able to upregulate cytokines, chemokines or cell surface markers, deriving from normal human B cells or from myeloma or B cell leukemia, deriving from human plasmacytoid and myeloid dendritic cells, and readily activatable by TLR ligands such as TLR7 ligands, TLR8 ligands or TLR9 ligands such as CpG nucleic acids or nucleic acids having other immunostimulatory sequence motifs or small molecules such as imidazoquinoline compounds.

In some embodiments, the cell line is the Raji cell line which expresses TLR3, TLR7 and TLR9. This latter cell line secretes, for example, IL-6 and IFN-α2 upon CpG nucleic acid exposure. In other embodiments, the cell line is RPMI 8226 which expresses TLR7 and TLR9. Upon CpG nucleic acid exposure, this cell line expresses, produces and/or secretes IL-8, IL-10, IP-10 and TNF-α. It also expresses at its cell surface CD86, HLA-DR and CD71. In yet other embodiments, the cell line is the RAMOS cell line which expresses TLR3, TLR7 and TLR9. This cell line at least induces CD80 cell surface expression in response to CpG nucleic acid exposure.

10

15

20

25

30

The cell lines have been observed to respond in a concentration dependent manner to TLR ligands such as but not limited to CpG nucleic acids and some non-CpG nucleic acids including T-rich nucleic acids, poly-T nucleic acids and poly-G nucleic acids. The highest responses have been observed using CpG nucleic acids.

The screening methods employ a variety of cell lines as shown in the Examples. These include A549 (human lung carcinoma, ATCC CCL-185), BeWo (human choriocarcinoma, ATCC CCL-98), HeLa (human cervix carcinoma, ATCC CCL-2), Hep-2 (human cervix carcinoma, ATCC CCL-23), KG-1 (human acute myeloid leukemia, ATCC CCL-246), MUTZ-3 (human acute myelomonocytic leukemia, German Collection of Cell lines and Microorganisms (DSZM) ACC-295), Nalm-6 (human B cell precursor leukemia, DSZM ACC-128), NK-92 (human Natural killer cell line, ATCC CRL-2407), NK-92 MI (IL-2 independent human Natural killer cell line, ATCC CRL-2408), Raji (human B lymphocyte Burkitt's lymphoma, ATCC CCL-86), RAMOS (B lymphocyte Burkitt's lymphoma, ATCC CRL-1596), RPMI 8226 (human B lymphocyte multiple myeloma, ATCC CCL-155), THP-1 (human acute monocytic leukemia, ATCC TIB 202), U937 (human lymphoma, ATCC CRL-1593.2) and Jurkat (human T cell leukemia, ATCC TIB 152).

As shown in the Examples, each of the afore-mentioned cell lines has a particular endogenous TLR expression profile which dictates its suitability in a particular screening assay.

A cell that artificially expresses a functional TLR can be a cell that does not express the functional TLR but for a transfected TLR expression vector. For example, human 293 fibroblasts (ATCC CRL-1573) do not express TLR7, TLR8 or TLR9, and they express very little TLR3. As described in the examples below, such cells can be transiently or stably transfected with suitable expression vector (or vectors) so as to yield cells that do express TLR3, TLR7, TLR8, TLR9, or any combination thereof. Alternatively, a cell that artificially expresses a functional TLR can be a cell that expresses the functional TLR at a significantly higher level with the TLR expression vector than it does without the TLR expression vector. Transfected cells are considered modified cells, as used herein.

A cell that artificially expresses an expression or reporter construct is preferably stably transfected.

The RPMI 8226 cell line is a human multiple myeloma cell line. The cell line was established from the peripheral blood of a 61 year old man at the time of diagnosis for multiple myeloma (IgG lambda type). RPMI 8226 was previously reported as responsive to CpG nucleic acids as evidenced by the production and secretion of IL-6 protein and production of IL-12p40 mRNA. (Takeshita et al. (2000), Eur. J. Immunol. 30, 108-116, and Takeshita et al. (2000) Ibid. 30, 1967-1976) Takeshita et al. however used the cell line solely to study promoter constructs in order to identify transcription factor binding sites important for CpG nucleic acid signaling. It is now known according to the invention that the cell line produces a number of other chemokines and cytokines including IL-8, IL-10 and IP-10. It has also been discovered according to the invention that the cell line responds to immunostimulatory nucleic acids by upregulating cell surface expression of particular markers. Many of these markers, including CD71, CD86 and HLA-DR, are similarly upregulated in PBMCs exposed to immunostimulatory nucleic acids. This has been observed using flow cytometric analysis of the cell line following CpG nucleic acid exposure. In other aspects of the invention, the cell line can be used in similar screening assays that involve secretion of IL-6, IL-12 and/or TNF-α.

It has recently been discovered that R-848 mediates its immunostimulatory effects via other TLR family members, namely TLR7 and TLR8. TLR7 has previously been found expressed on human B cells. It has now also been discovered according to the invention that RPMI 8226 expresses TLR9 as well as TLR7, thus making it a suitable cell line for identifying immunostimulatory nucleic acid and/or imidazoquinoline (e.g., R-848) mimics or other small molecules that also signal through TLR7 and/or TLR9. Incubation of RPMI 8226 cells with the imidazoquinoline R-848 (Resiquimod) induces for example IL-8, IL-10 and IP-10 production.

25

30

10

15

20

#### **Known TLR Ligands**

Ligands for many but not all of the TLRs have been described. For instance, it has been reported that TLR1 and TLR2 signals in response to peptidoglycan and lipopeptides. Yoshimura A et al. (1999) J. Immunol 163:1-5; Brightbill HD et al. (1999) Science 285:732-6; Aliprantis AO et al. (1999) Science 285:736-9; Takeuchi O et al. (1999) Immunity 11:443-51; Underhill DM et al. (1999) Nature 401:811-5. TLR4 has been reported to signal in response to lipopolysaccharide (LPS). Hoshino K et al. (1999) J. Immunol 162:3749-52; Poltorak A et al. (1998) Science 282:2085-8; Medzhitov R et al. (1997) Nature 388:394-7. Bacterial

10

20

25

30

flagellin has been reported to be a natural ligand for TLR5. Hayashi F et al. (2001) *Nature* 410:1099-1103. TLR6, in conjunction with TLR2, has been reported to signal in response to proteoglycan. Ozinsky A et al. (2000) *Proc Natl Acad Sci USA* 97:13766-71; Takeuchi O et al. (2001) *Int Immunol* 13:933-40.

TLR9 is a receptor for CpG DNA. Hemmi H et al. (2000) Nature 408:740-5. Other TLR9 ligands are described herein under "Immunostimulatory Nucleic Acids". Certain imidazoquinoline compounds having antiviral activity are ligands of TLR7 and TLR8. Imidazoquinolines are potent synthetic activators of immune cells with antiviral and antitumor properties. R-848 is a ligand for human TLR7 and TLR8. Jurk M et al. (2002) Nat Immunol 3:499. Ligands of TLR3 include poly(I:C) and double-stranded RNA (dsRNA). Alexopoulou et a. (2001) Nature 413:732-738. For purposes of this invention, poly(I:C) and double-stranded RNA (dsRNA) are classified as oligonucleotide molecules. TLR3 may have a role in host defense against viruses.

#### 15 Reference and Test Compounds

A test and/or reference compound can be a nucleic acid such as an oligonucleotide or a polynucleotide, an oligopeptide, a polypeptide, a lipid such as a lipopolysaccharide, a carbohydrate such as an oligosaccharide or a polysaccharide, or a small molecule.

Alternatively, these compounds may also comprise or be synthesized from elements such as amino acids, carbohydrates, hormones, lipids, organic molecules, and the like.

Small molecules in general include naturally occurring, synthetic, and semisynthetic organic and organometallic compounds with molecular weight less than about 2.5 kDa. Examples of small molecules include most drugs, subunits of polymeric materials, and analogs and derivatives thereof.

Some specific examples of small molecules include the imidazoquinolines. As used herein, an imidazoquinolines include imidazoquinoline amines (imidazoquinolinamines), imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, and 1,2 bridged imidazoquinoline amines. These compounds have been described in U.S. Pat. Nos. 4,689,338; 4,929,624; 5,238,944; 5,266,575; 5,268,376; 5,346,905; 5,352,784; 5,389,640; 5,395,937; 5,482,936; 5,494,916; 5,525,612; 6,039,969 and 6,110,929. Particular species of imidazoquinoline agents include resiquimod (R-848; S-28463; 4-amino-2 ethoxymethyl-α,α-dimethyl-1*H*-imidazo[4,5-c]quinoline-1-ethanol); and imiquimod (R-837; S-26308; 1-(2-methylpropyl)-1*H*-imidazo[4,5-c]quinoline-4-amine). Further examples of specific small

WO 2004/094671

5

10

15

20

25

30

PCT/US2004/012788

molecules include 4-aminoquinoline and derivatives thereof, 9-aminoacridine and derivatives thereof, and additional compounds disclosed in U.S. Pat. Nos. 6,221,882; 6,399,630; 6,479,504; and 6,521,637; and published U.S. Pat. Application No. 2002/0151564 A1, the entire contents of which are hereby incorporated by reference.

- 32 -

The test and reference compounds may be formulated for pharmaceutical use or not. For example, a test compound not formulated for pharmaceutical use can be a compound (e.g., a lot or batch of the compound) under evaluation for possible use in preparing a pharmaceutical formulation of the compound.

A reference compound, as used herein, is a compound having a known activity in the presence of a TLR. The reference compound may stimulate TLR signaling (and is therefore regarded as a positive reference compound), or it may be inert in the presence of a TLR (and is therefore regarded as a negative reference compound). If it is a positive reference compound, it need not be the best known stimulator of TLR signaling (i.e., it is possible that other reference compounds and even test compounds will stimulate TLR signaling to a greater extent). The readout of the screening assay may simply be stated relative to the level of signaling that occurs in the presence of the reference compound. Preferably, the reference compound is analyzed prior to the screening assay in order to determine its level of activity on a TLR. In some aspects of the invention, the reference compound and the test compound will be assayed separately (i.e., in separate wells); in other aspects, the reference compound and the test compound will be assayed together (i.e., in the same well). These latter aspects are designed to measure the ability of a test compound to modulate the activity of the reference compound. The activity of the test compound and the reference compound combined (i.e., when assayed together in the same well) may be the same as that of the positive reference compound alone, indicating at a minimum that the test compound is not inhibitory; or it may be less than that of the positive reference compound, indicating at a minimum that it is inhibitory to the effect of the reference compound; or it may be additive or synergistic possibly indicating that the test compound is an enhancer. The effect of an enhance may be due to its ability to stimulate TLR signaling independently of the positive reference compound.

A "reference composition" as used herein refers to a composition that includes a reference compound and optionally another agent, e.g., a pharmaceutically acceptable carrier and/or another biologically active agent. A reference compound may be an immunostimulatory compound or it may be an immunoinhibitory compound.

10

15

20

25

30

As discussed further below, in some aspects of the invention the reference compositions include both finished products, e.g., finished pharmaceutical products, as well as raw materials and other in-process materials used for the preparation of such finished products, all of which contain a known TLR ligand. As used herein, a "production lot" shall refer to a batch or lot of a completed product prepared for release as clinical material, e.g., a pharmaceutical product. As used herein, an "in-process lot" shall refer to a batch or lot of unfinished product that is prepared in the course of making a production lot; an "in-process lot" shall also refer to a batch or lot of raw material provided for use in the production of a production lot.

In some aspects of the invention, the reference compositions of the invention are highly characterized in terms of their chemical, physical, and biological properties. A reference composition will be a specific composition previously determined to have a specific activity, or range of specific activity, of the particular known TLR ligand present in the composition. As used herein, "specific activity" refers to an amount of activity per unit mass or per unit volume of the reference composition as a whole, as determined using a defined assay under defined conditions. In one embodiment the reference composition is a representative sample of a particular lot or batch of a specific TLR ligand. In one embodiment the reference composition is a representative sample of a particular lot or batch of a specific TLR ligand formulated for pharmaceutical use, e.g., a sterile solution of the TLR ligand at a determined concentration or activity.

At least the following parameters are typically very well defined for a given reference composition: chemical formula of the active ingredient TLR ligand (e.g., nucleobase sequence and type of backbone of a nucleic acid; structural formula of a small molecule); concentration; diluent composition; and purity. Such parameters as purity and concentration can be determined using any appropriate physicochemical method, e.g., optical spectroscopy including absorbance at one or more specified wavelengths; nuclear magnetic resonance (NMR) spectroscopy; mass spectrometry (MS), including matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS); melting point; specific gravity; chromatography including as appropriate high pressure liquid chromatography (HPLC), one-and two-dimensional polyacrylamide gel electrophoresis (PAGE), capillary electrophoresis, and the like; as well as other methods known to those of skill in the art.

Reference compositions can also be very well characterized in terms of their biological activity, independent of the methods of the invention, although the methods of the

15

20

25

30

invention generally include such characterization, at least in part. A reference composition can be very well characterized in terms of its biological activity by characterizing, both qualitatively and quantitatively, the response by sensitive cells to the reference composition under defined conditions. For example, a reference composition can be a specific CpG oligonucleotide such as SEQ ID NO:1 which in a specific assay and under specific conditions of temperature, concentration, duration of contact between the CpG oligonucleotide and a population of TLR9-expressing cells, and particular readout, reliably yields a specific result or range of results. Results can be expressed in any suitable manner, but can include results expressed on a per-cell basis, e.g., picograms of particular cytokine per cell per hour of contact with the reference composition. Reference compositions can be very well characterized in terms of their biological activity according to one or more parameters, for example, according to their capacity to induce each of a plurality of cytokines.

The methods of the invention also involve measurement of a test activity of a test composition containing a known TLR ligand. A "test composition" as used herein refers to a composition that includes a test compound and optionally another agent, e.g., a pharmaceutically acceptable carrier and/or another biologically active agent. A test compound can be an immunostimulatory compound or it can be an immunosinhibitory compound. In some aspects of the invention, the test compound is a known TLR ligand. Test compositions of the invention may comprise known TLR agonist or TLR antagonist compounds, generally but not necessarily nominally the same as the reference compositions against which comparison is to be made according to some aspects of the invention. Thus test compositions may encompass immunostimulatory compounds, immunoinhibitory compounds, known TLR ligands, finished pharmaceutical products, and raw materials and other in-process materials used for the preparation of such finished products.

Unlike a reference composition, a test composition is not characterized at all, or is only partially characterized, or is not as well characterized as the reference composition, in terms of its chemical, physical, or (most particularly) biological properties. The methods of the invention permit further characterization of the test composition by comparison with a reference composition. In some aspects, a test composition will be a specific composition previously determined to be a ligand of a specific TLR. In one embodiment the test composition is a representative sample of a particular lot or batch of a particular lot or batch of

- 35 -

a specific TLR ligand formulated for pharmaceutical use, e.g., a sterile solution of the TLR ligand at a determined concentration or activity.

#### Immunostimulatory and Immunoinhibitory Nucleic Acids

5

10

15

20

25

30

Nucleic acids useful as reference compounds and as test compounds in the methods of the invention include single- and double-stranded natural and synthetic nucleic acids, including those with phosphodiester, stabilized, and chimeric backbones. Also encompassed are at least the following classes of nucleic acids, which are described in detail below: immunostimulatory CpG nucleic acids (CpG nucleic acids), including but not limited to types A, B, and C; immunostimulatory non-CpG nucleic acids, including without limitation methylated CpG nucleic acids, T-rich nucleic acids, TG-motif nucleic acids, CpI motif nucleic acids, and poly-G nucleic acids; and immunoinhibitory nucleic acids. Nucleic acids useful as reference compounds and as test compounds in the methods of the invention also include nucleic acids with modified backbones, including "soft" and "semi-soft" oligonucleotides as described herein. As will be appreciated from the descriptions below, certain of these various classes of nucleic acids can coexist in a given nucleic acid molecule.

A "nucleic acid" as used herein with respect to test compounds and reference compounds used in the methods of the invention, shall refer to any polymer of two or more individual nucleoside or nucleotide units. Typically individual nucleoside or nucleotide units will include any one or combination of deoxyribonucleosides, ribonucleosides, deoxyribonucleotides, and ribonucleotides. The individual nucleotide or nucleoside units of the nucleic acid can be naturally occurring or not naturally occurring. For example, the individual nucleotide units can include deoxyadenosine, deoxycytidine, deoxyguanosine, thymidine, and uracil. In addition to naturally occurring 2'-deoxy and 2'-hydroxyl forms, individual nucleosides also include synthetic nucleosides having modified base moieties and/or modified sugar moieties, e.g., as described in Uhlmann E et al. (1990) Chem Rev 90:543-84. The linkages between individual nucleotide or nucleoside units can be naturally occurring or not naturally occurring. For example, the linkages can be phosphodiester, phosphorothioate, phosphorodithioate, phosphoramidate, as well as peptide linkages and other covalent linkages, known in the art, suitable for joining adjacent nucleoside or nucleotide units. The linkages can also be mixed in a single polymer (e.g., a semi-soft backbone). The nucleic acid test compounds and nucleic acid reference compounds typically range in size from 3-4 units to a few tens of units, e.g., 18-40 units.

10

15

20

25

30

In some embodiments the nucleic acids are oligonucleotides made up of 2 to about 100 nucleotides, and more typically 4 to about 40 nucleotides. Oligonucleotides composed exclusively of deoxynucleotides are termed oligodeoxyribonucleotides or, equivalently, oligodeoxynucleotides (ODN).

A CpG nucleic acid is an immunostimulatory nucleic acid which contains a cytosine-guanine (CG) dinucleotide, the C residue of which is unmethylated. The effects of CpG nucleic acids on immune modulation have been described extensively in U.S. Pat. Nos. 6,194,388; 6,207,646; 6,214,806; 6,218,371; 6,239,116; and 6,339,068; and published patent applications, such as PCT/US95/01570 (WO 96/02555); PCT/US98/04703 (WO 98/40100); and PCT/US99/09863 (WO 99/56755). The entire contents of each of these patents and published patent applications is hereby incorporated by reference. The entire immunostimulatory nucleic acid can be unmethylated or portions can be unmethylated, but at least the C of the 5'-CG-3' must be unmethylated. The CpG nucleic acid sequences of the invention include, without limitation, those broadly described above as well as those disclosed in U.S. Pat. Nos. 6,207,646 and 6,239,116.

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTGTCGTTTTGTCGTT-3' (SEQ ID NO:1).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTGACGTTTTGTCGTT-3' (SEQ ID NO:139).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTTTTCGA-3' (SEQ ID NO:140).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTCGTCGTTTGTCGTTCGTTCGTCGTT-3' (SEQ ID NO:141).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTCGTCGTTTTGTCGTT-3' (SEQ ID NO:142).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTTCGGTCGTTTT-3' (SEQ ID NO:143).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTTCGTGCGTTTTTT-3' (SEQ ID NO:144).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTCGGCGGCCGCCG-3' (SEQ ID NO:145).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTC GTTTTAC GGCGCC GTGCCG-3' (SEQ ID NO:146).

10

15

20

25

30

The oligonucleotides described by SEQ ID NOs: 1, 139-145 are fully stabilized phosphorothioate backbone ODN. The oligonucleotide of SEQ ID NO:146 has a chimeric backbone in which all internucleoside linkages are phosphorothioate except for those indicated by "\_", which are phosphodiester.

CpG nucleic acids have been further classified by structure and function into at least the following three types, all of which are intended to be encompassed within the methods of the instant invention: Type B CpG nucleic acids such as SEQ ID NO:1 include the earliest described CpG nucleic acids and characteristically activate B cells but do not induce or only weakly induce expression of IFN-a. Type B nucleic acids are described in U.S. Patents 6,194,388; 6,207,646; 6,214,806; 6,218,371; 6,239,116; and 6,339,068. Type A CpG nucleic acids, described in published international application PCT/US00/26527 (WO 01/22990), incorporate a CpG motif, include a hybrid phosphodiester/phosphorothioate backbone, and characteristically induce plasmacytoid dendritic cells to express large amounts of IFN- $\alpha$  but do not activate or only weakly activate B cells. Type C oligonucleotides incorporate a CpG, include a chimeric backbone, include a GC-rich palindromic or nearly-palindromic region, and are capable of both activating B cells and inducing expression of IFN- $\alpha$ . These have been described, for example, in copending U.S. Pat. application Ser. No. 10/224,523, filed August 19, 2002. Exemplary sequences of A, B and C class nucleic acids are described in the afore-mentioned references, patents and patent applications, the entire contents of which are hereby incorporated by reference herein.

In other embodiments of the invention, a non-CpG nucleic acid is used. A non-CpG nucleic acid is an immunostimulatory nucleic acid which either does not have a CpG motif in its sequence, or has a CpG motif which contains a methylated C residue. In some instances, the non-CpG nucleic acid may still be immunostimulatory by virtue of its having other immunostimulatory motifs such as those described herein and known in the art. In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid. In some instances the non-CpG nucleic acid is still immunostimulatory despite methylation of the C of the CpG motif, even without having another non-CpG immunostimulatory motif described herein and known in the art.

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-TZGTZGTTTTGTZGTTTTGTZGTT-3' (SEQ ID NO:147), wherein Z represents 5-methylcytosine.

10

15

20

25

30

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-TZGTZGZTGTZTZZGZTTZTTZTTGZZ-3' (SEQ ID NO:148), wherein Z represents 5-methylcytosine.

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-GZGTTTGZTZTTZTTGZG-3' (SEQ ID NO:149), wherein Z represents 5-methylcytosine.

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-GZZZAAGZTGGZATZZGTZA-3' (SEQ ID NO:150), wherein Z represents 5-methylcytosine.

Non-CpG nucleic acids include T-rich immunostimulatory nucleic acids. The T-rich immunostimulatory nucleic acids include those disclosed in published PCT patent application PCT/US00/26383 (WO 01/22972), the entire contents of which are incorporated herein by reference. In some embodiments, T-rich nucleic acids 24 bases in length are used. A T-rich nucleic acid is a nucleic acid which includes at least one poly T sequence and/or which has a nucleotide composition of greater than 25% T nucleotide residues. A nucleic acid having a poly-T sequence includes at least four Ts in a row, such as 5'-TTTT-3'. In some embodiments the T-rich nucleic acid includes more than one poly T sequence. In important embodiments, the T-rich nucleic acid may have 2, 3, 4, or more poly T sequences, such as SEQ ID NO:1.

Non-CpG nucleic acids also include poly-G immunostimulatory nucleic acids. A variety of references describe the immunostimulatory properties of poly-G nucleic acids. Pisetsky DS et al. (1993) *Mol Biol Reports* 18:217-221; Krieger M et al. (1994) *Ann Rev Biochem* 63:601-637; Macaya RF et al. (1993) *Proc Natl Acad Sci USA* 90:3745-3749; Wyatt JR et al. (1994) *Proc Natl Acad Sci USA* 91:1356-1360; Rando and Hogan, 1998, In Applied Antisense Oligonucleotide Technology, Krieg and Stein, eds., pp. 335-352; Kimura Y et al. (1994) *J Biochem (Tokyo)* 116:991-994.

The immunostimulatory nucleic acids of the invention can also be those which do not possess CpG, methylated CpG, T-rich, or poly-G motifs.

Exemplary immunostimulatory nucleic acid sequences include but are not limited to those immunostimulatory sequences described and listed in U.S. Non-Provisional Pat. Application No. 09/669,187, filed on September 25, 2000, and in corresponding published PCT patent application PCT/US00/26383 (WO 01/22972).

Immunoinhibitory nucleic acids have been described in Lenert P et al. (2001)

Antisense Nucleic Acid Drug Dev 11:247-56 and in Stunz L et al. (2002) Eur J Immunol

10

15

20

25

30

32:1212-22. These inhibitory phosphorothioate ODN (S-ODN) differ from stimulatory S-ODN by having 2-3 G substitutions in the central motif. As inhibitory S-ODN did not directly interfere with the NF-κB DNA binding but prevented CpG-induced NF-κB nuclear translocation of p50, p65, and c-Rel and blocked p105, IκBα, and IκBβ degradation, Lenert et al. suggested that the putative target of immunoinhibitory ODN would lie upstream of inhibitory kinase (IKK) activation. Stunz et al. reported that replacing GCGTT or ACGTT with GCGGG or ACGGG converted a stimulatory 15-mer ODN into an inhibitory ODN. All inhibitory ODN had three consecutive G, and a fourth G increased inhibitory activity, but a deazaguanosine substitution to prevent planar stacking did not affect activity. Inhibitory ODN blocked apoptosis protection and cell-cycle entry induced by stimulatory ODN, but not that induced by lipopolysaccharide, anti-CD40 or anti-IgM+IL-4. ODN-driven up-regulation of cyclin D(2), c-Myc, c-Fos, c-Jun and Bcl(XL) and down-regulation of cyclin kinase inhibitor p27(kip1) were all blocked by inhibitory ODN. Stunz et al. also reported that interference with uptake of stimulatory ODN did not account for the inhibitory effects of the immunoinhibitory nucleic acids.

In one embodiment the immunoinhibitory nucleic acid has a base sequence provided by 5'-TCCTGGCGGGAAGT-3' (SEQ ID NO:151).

Immunoinhibitory nucleic acids have also been described in U.S. Pat. No. 6,194,388, issued to Krieg et al. The immunoinhibitory oligonucleotides disclosed by Krieg et al. are oligonucleotides with GCG trinucleotides at or near the ends of the oligonucleotide and are represented by the formula 5'GCGX<sub>n</sub>GCG 3' in which X is a nucleotide and n is an integer between 0 and 50.

The nucleic acids used as either test or reference compounds can be double-stranded or single-stranded. They can be deoxyribonucleotide (DNA) or ribonucleotide (RNA) molecules. Generally, double-stranded molecules are more stable in vivo, while single-stranded molecules have increased immune activity. Thus in some the nucleic acid is single-stranded and in other embodiments the nucleic acid is double-stranded. In certain embodiments, while the nucleic acid is single-stranded, it is capable of forming secondary and tertiary structures (e.g., by folding back on itself, or by hybridizing with itself either throughout its entirety or at select segments along its length). Accordingly, while the primary structure of such a nucleic acid may be single-stranded, its higher order structures may be double- or triple-stranded.

For facilitating uptake into cells, the nucleic acids are preferably in the range of 6 to 100 bases in length. However, nucleic acids of any size equal to or greater than 6 nucleotides (even many kb long) are capable of inducing an immune response. Preferably the nucleic acid is in the range of between 8 and 100 and in some embodiments between 8 and 50 or 8 and 30 nucleotides in size.

5

10

15

20

25

30

The terms "nucleic acid" and "oligonucleotide" are used interchangeably to mean multiple nucleotides (i.e., molecules comprising a sugar (e.g., ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g., cytosine (C), thymine (T) or uracil (U)) or a substituted purine (e.g., adenine (A) or guanine (G)). As used herein, the terms "nucleic acid" and "oligonucleotide" refer to oligoribonucleotides as well as oligodeoxyribonucleotides. The terms "nucleic acid" and "oligonucleotide" shall also include polynucleosides (i.e., a polynucleotide minus the phosphate) and any other organic base containing polymer. Nucleic acid molecules can be obtained from existing nucleic acid sources (e.g., genomic or cDNA), but are preferably synthetic (e.g., produced by nucleic acid synthesis).

The terms "nucleic acid" and "oligonucleotide" also encompass nucleic acids or oligonucleotides with substitutions or modifications, such as in the bases and/or sugars. For example, they include nucleic acids having backbone sugars that are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 2' position and other than a phosphate group or hydroxy group at the 5' position. Thus modified nucleic acids may include a 2'-O-alkylated ribose group. In addition, modified nucleic acids may include sugars such as arabinose or 2'-fluoroarabinose instead of ribose. Thus the nucleic acids may be heterogeneous in backbone composition thereby containing any possible combination of polymer units linked together such as peptide-nucleic acids (which have an amino acid backbone with nucleic acid bases). Other examples are described in more detail below.

The immunostimulatory and immunoinhibitory nucleic acids can encompass various chemical modifications and substitutions, in comparison to natural RNA and DNA, involving a phosphodiester internucleoside bridge, a β-D-ribose unit and/or a natural nucleoside base (adenine, guanine, cytosine, thymine, uracil). Examples of chemical modifications are known to the skilled person and are described, for example, in Uhlmann E et al. (1990) *Chem Rev* 90:543; "Protocols for Oligonucleotides and Analogs" Synthesis and Properties & Synthesis and Analytical Techniques, S. Agrawal, Ed, Humana Press, Totowa, USA 1993; Crooke ST et al. (1996) *Annu Rev Pharmacol Toxicol* 36:107-129; and Hunziker J et al. (1995) *Mod Synth* 

20

25

30

Methods 7:331-417. An oligonucleotide according to the invention may have one or more modifications, wherein each modification is located at a particular phosphodiester internucleoside bridge and/or at a particular  $\beta$ -D-ribose unit and/or at a particular natural nucleoside base position in comparison to an oligonucleotide of the same sequence which is composed of natural DNA or RNA.

For example, the oligonucleotides may comprise one or more modifications and wherein each modification is independently selected from:

- a) the replacement of a phosphodiester internucleoside bridge located at the 3' and/or the 5' end of a nucleoside by a modified internucleoside bridge,
- 10 b) the replacement of phosphodiester bridge located at the 3' and/or the 5' end of a nucleoside by a dephospho bridge,
  - c) the replacement of a sugar phosphate unit from the sugar phosphate backbone by another unit,
  - d) the replacement of a  $\beta$ -D-ribose unit by a modified sugar unit, and
- e) the replacement of a natural nucleoside base by a modified nucleoside base.
   More detailed examples for the chemical modification of an oligonucleotide are as follows.

The oligonucleotides may include modified internucleotide linkages, such as those described in (a) or (b) above. These modified linkages may be partially resistant to degradation (e.g., are stabilized). A "stabilized oligonucleotide molecule" shall mean an oligonucleotide that is relatively resistant to *in vivo* degradation (e.g., via an exo- or endonuclease) resulting from such modifications. Oligonucleotides having phosphorothicate linkages, in some embodiments, may provide maximal activity and protect the oligonucleotide from degradation by intracellular exo- and endo-nucleases.

A phosphodiester internucleoside bridge located at the 3' and/or the 5' end of a nucleoside can be replaced by a modified internucleoside bridge, wherein the modified internucleoside bridge is for example selected from phosphorothioate, phosphorodithioate,  $NR^1R^2$ -phosphoramidate, boranophosphate,  $\alpha$ -hydroxybenzyl phosphonate, phosphate-(C<sub>1</sub>-C<sub>21</sub>)-O-alkyl ester, phosphate-[(C<sub>6</sub>-C<sub>12</sub>)aryl-(C<sub>1</sub>-C<sub>21</sub>)-O-alkyl]ester, (C<sub>1</sub>-C<sub>8</sub>)alkylphosphonate and/or (C<sub>6</sub>-C<sub>12</sub>)arylphosphonate bridges, (C<sub>7</sub>-C<sub>12</sub>)- $\alpha$ -hydroxymethyl-aryl (e.g., disclosed in WO 95/01363), wherein (C<sub>6</sub>-C<sub>12</sub>)aryl, (C<sub>6</sub>-C<sub>20</sub>)aryl and (C<sub>6</sub>-C<sub>14</sub>)aryl are optionally substituted by halogen, alkyl, alkoxy, nitro, cyano, and where R<sup>1</sup> and R<sup>2</sup> are, independently of each other, hydrogen, (C<sub>1</sub>-C<sub>18</sub>)-alkyl, (C<sub>6</sub>-C<sub>20</sub>)-aryl, (C<sub>6</sub>-C<sub>14</sub>)-aryl-(C<sub>1</sub>-C<sub>8</sub>)-alkyl, preferably hydrogen,

10

15

20

25

30

(C<sub>1</sub>-C<sub>8</sub>)-alkyl, preferably (C<sub>1</sub>-C<sub>4</sub>)-alkyl and/or methoxyethyl, or R<sup>1</sup> and R<sup>2</sup> form, together with the nitrogen atom carrying them, a 5-6-membered heterocyclic ring which can additionally contain a further heteroatom from the group O, S and N.

The replacement of a phosphodiester bridge located at the 3' and/or the 5' end of a nucleoside by a dephospho bridge (dephospho bridges are described, for example, in Uhlmann E and Peyman A in "Methods in Molecular Biology", Vol. 20, "Protocols for Oligonucleotides and Analogs", S. Agrawal, Ed., Humana Press, Totowa, 1993, Chapter 16, pp. 355 ff), wherein a dephospho bridge is for example selected from the dephospho bridges formacetal, 3'-thioformacetal, methylhydroxylamine, oxime, methylenedimethyl-hydrazo, dimethylenesulfone and/or silyl groups.

A sugar phosphate unit (i.e., a β-D-ribose and phosphodiester internucleoside bridge together forming a sugar phosphate unit) from the sugar phosphate backbone (i.e., a sugar phosphate backbone is composed of sugar phosphate units) can be replaced by another unit, wherein the other unit is for example suitable to build up a "morpholino-derivative" oligomer (as described, for example, in Stirchak EP et al. (1989) *Nucleic Acids Res* 17:6129-41), that is, e.g., the replacement by a morpholino-derivative unit; or to build up a polyamide nucleic acid ("PNA"; as described for example, in Nielsen PE et al. (1994) *Bioconjug Chem* 5:3-7), that is, e.g., the replacement by a PNA backbone unit, e.g., by 2-aminoethylglycine. The oligonucleotide may have other carbohydrate backbone modifications and replacements, such as peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), and oligonucleotides having backbone sections with alkyl linkers or amino linkers. The alkyl linker may be branched or unbranched, substituted or unsubstituted, and chirally pure or a racemic mixture.

A β-ribose unit or a β-D-2'-deoxyribose unit can be replaced by a modified sugar unit, wherein the modified sugar unit is for example selected from β-D-ribose, α-D-2'-deoxyribose, L-2'-deoxyribose, 2'-F-arabinose, 2'-O-(C<sub>1</sub>-C<sub>6</sub>)alkyl-ribose, preferably 2'-O-(C<sub>1</sub>-C<sub>6</sub>)alkyl-ribose is 2'-O-methylribose, 2'-O-(C<sub>2</sub>-C<sub>6</sub>)alkenyl-ribose, 2'-[O-(C<sub>1</sub>-C<sub>6</sub>)alkyl-O-(C<sub>1</sub>-C<sub>6</sub>)alkyl]-ribose, 2'-NH<sub>2</sub>-2'-deoxyribose, β-D-xylo-furanose, α-arabinofuranose, 2,4-dideoxy-β-D-erythro-hexo-pyranose, and carbocyclic (described, for example, in Froehler J (1992) *Am Chem Soc* 114:8320) and/or open-chain sugar analogs (described, for example, in Vandendriessche et al. (1993) *Tetrahedron* 49:7223) and/or bicyclosugar analogs (described, for example, in Tarkov M et al. (1993) *Helv Chim Acta* 76:481).

In some embodiments the sugar is 2'-O-methylribose, particularly for one or both nucleotides linked by a phosphodiester or phosphodiester-like internucleoside linkage.

In some embodiments, the nucleic acids may be soft or semi-soft nucleic acids. A soft nucleic acid is an immunostimulatory nucleic acid having a partially stabilized backbone, in which phosphodiester or phosphodiester-like internucleotide linkages occur only within and immediately adjacent to at least one internal pyrimidine -purine dinucleotide (YZ). Preferably YZ is YG, a pyrimidine-guanosine (YG) dinucleotide. The at least one internal YZ dinucleotide itself has a phosphodiester or phosphodiester-like internucleotide linkage. A phosphodiester or phosphodiester-like internucleotide linkage occurring immediately adjacent to the at least one internal YZ dinucleotide can be 5', 3', or both 5' and 3' to the at least one internal YZ dinucleotide.

10

15

20

25

30

In particular, phosphodiester or phosphodiester-like internucleotide linkages involve "internal dinucleotides". An internal dinucleotide in general shall mean any pair of adjacent nucleotides connected by an internucleotide linkage, in which neither nucleotide in the pair of nucleotides is a terminal nucleotide, i.e., neither nucleotide in the pair of nucleotides is a nucleotide defining the 5' or 3' end of the nucleic acid. Thus a linear nucleic acid that is n nucleotides long has a total of n-1 dinucleotides and only n-3 internal dinucleotides. Each internucleotide linkage in an internal dinucleotide is an internal internucleotide linkage. Thus a linear nucleic acid that is n nucleotides long has a total of n-1 internucleotide linkages and only n-3 internal internucleotide linkages. The strategically placed phosphodiester or phosphodiester-like internucleotide linkages, therefore, refer to phosphodiester or phosphodiester-like internucleotide linkages positioned between any pair of nucleotides in the nucleic acid sequence. In some embodiments the phosphodiester or phosphodiester-like internucleotide linkages are not positioned between either pair of nucleotides closest to the 5' or 3' end.

Preferably a phosphodiester or phosphodiester-like internucleotide linkage occurring immediately adjacent to the at least one internal YZ dinucleotide is itself an internal internucleotide linkage. Thus for a sequence  $N_1$  YZ  $N_2$ , wherein  $N_1$  and  $N_2$  are each, independent of the other, any single nucleotide, the YZ dinucleotide has a phosphodiester or phosphodiester-like internucleotide linkage, and in addition (a)  $N_1$  and Y are linked by a phosphodiester or phosphodiester-like internucleotide linkage when  $N_1$  is an internal nucleotide, (b) Z and  $N_2$  are linked by a phosphodiester or phosphodiester-like internucleotide linkage when  $N_2$  is an internal nucleotide, or (c)  $N_1$  and Y are linked by a phosphodiester or

10

15

20

25

30

phosphodiester-like internucleotide linkage when  $N_1$  is an internal nucleotide and Z and  $N_2$  are linked by a phosphodiester or phosphodiester-like internucleotide linkage when  $N_2$  is an internal nucleotide.

Soft nucleic acids according to the instant invention are believed to be relatively susceptible to nuclease cleavage compared to completely stabilized nucleic acids. Without meaning to be bound to a particular theory or mechanism, it is believed that soft nucleic acids of the invention are cleavable to fragments with reduced or no immunostimulatory activity relative to full-length soft nucleic acids. Incorporation of at least one nuclease-sensitive internucleotide linkage, particularly near the middle of the nucleic acid, is believed to provide an "off switch" which alters the pharmacokinetics of the nucleic acid so as to reduce the duration of maximal immunostimulatory activity of the nucleic acid. This can be of particular value in tissues and in clinical applications in which it is desirable to avoid injury related to chronic local inflammation or immunostimulation, e.g., the kidney.

A semi-soft nucleic acid is an immunostimulatory nucleic acid having a partially stabilized backbone, in which phosphodiester or phosphodiester-like internucleotide linkages occur only within at least one internal pyrimidine-purine (YZ) dinucleotide. Semi-soft nucleic acids generally possess increased immunostimulatory potency relative to corresponding fully stabilized immunostimulatory nucleic acids. Due to the greater potency of semi-soft nucleic acids, semi-soft nucleic acids may be used, in some instances, at lower effective concentations and have lower effective doses than conventional fully stabilized immunostimulatory nucleic acids in order to achieve a desired biological effect.

It is believed that the foregoing properties of semi-soft nucleic acids generally increase with increasing "dose" of phosphodiester or phosphodiester-like internucleotide linkages involving internal YZ dinucleotides. Thus it is believed, for example, that generally for a given nucleic acid sequence with five internal YZ dinucleotides, an nucleic acid with five internal phosphodiester or phosphodiester-like YZ internucleotide linkages is more immunostimulatory than an nucleic acid with four internal phosphodiester or phosphodiester-like YG internucleotide linkages, which in turn is more immunostimulatory than an nucleic acid with three internal phosphodiester or phosphodiester-like YZ internucleotide linkages, which in turn is more immunostimulatory than an nucleic acid with two internal phosphodiester or phosphodiester-like YZ internucleotide linkages, which in turn is more immunostimulatory than an nucleic acid with one internal phosphodiester or phosphodiester-like YZ internucleotide linkage. Importantly, inclusion of even one internal phosphodiester or

- 45 -

phosphodiester-like YZ internucleotide linkage is believed to be advantageous over no internal phosphodiester or phosphodiester-like YZ internucleotide linkage. In addition to the number of phosphodiester or phosphodiester-like internucleotide linkages, the position along the length of the nucleic acid can also affect potency.

5 .

10

15

20

25

30

The soft and semi-soft nucleic acids will generally include, in addition to the phosphodiester or phosphodiester-like internucleotide linkages at preferred internal positions, 5' and 3' ends that are resistant to degradation. Such degradation-resistant ends can involve any suitable modification that results in an increased resistance against exonuclease digestion over corresponding unmodified ends. For instance, the 5' and 3' ends can be stabilized by the inclusion thereof at least one phosphate modification of the backbone. In a preferred embodiment, the at least one phosphate modification of the backbone at each end is independently a phosphorothioate, phosphorodithioate, methylphosphonate, or methylphosphorothioate internucleotide linkage. In another embodiment, the degradation-resistant end includes one or more nucleotide units connected by peptide or amide linkages at the 3' end.

A phosphodiester internucleotide linkage is the type of linkage characteristic of nucleic acids found in nature. The phosphodiester internucleotide linkage includes a phosphorus atom flanked by two bridging oxygen atoms and bound also by two additional oxygen atoms, one charged and the other uncharged. Phosphodiester internucleotide linkage is particularly preferred when it is important to reduce the tissue half-life of the nucleic acid.

A phosphodiester-like internucleotide linkage is a phosphorus-containing bridging group that is chemically and/or diastereomerically similar to phosphodiester. Measures of similarity to phosphodiester include susceptibility to nuclease digestion and ability to activate RNAse H. Thus for example phosphodiester, but not phosphorothioate, nucleic acids are susceptible to nuclease digestion, while both phosphodiester and phosphorothioate nucleic acids activate RNAse H. In a preferred embodiment the phosphodiester-like internucleotide linkage is boranophosphate (or equivalently, boranophosphonate) linkage. U.S. Patent No. 5,177,198; U.S. Patent No. 5,859,231; U.S. Patent No. 6,160,109; U.S. Patent No. 6,207,819; Sergueev et al., (1998) J Am Chem Soc 120:9417-27. In another preferred embodiment the phosphodiester-like internucleotide linkage is diasteromerically pure Rp phosphorothioate. It is believed that diasteromerically pure Rp phosphorothioate is more susceptible to nuclease digestion and is better at activating RNAse H than mixed or diastereomerically pure Sp phosphorothioate. Stereoisomers of CpG nucleic acids are the subject of co-pending U.S.

active when tested at later time points.

5

10

15

20

25

30

patent application 09/361,575 filed July 27, 1999, and published PCT application PCT/US99/17100 (WO 00/06588). It is to be noted that for purposes of the instant invention, the term "phosphodiester-like internucleotide linkage" specifically excludes phosphorodithioate and methylphosphonate internucleotide linkages.

As described above the soft and semi-soft nucleic acids of the invention may have phosphodiester like linkages between C and G. One example of a phosphodiester-like linkage is a phosphorothioate linkage in an Rp conformation. Nucleic acid p-chirality can have apparently opposite effects on the immune activity of a CpG nucleic acid, depending upon the time point at which activity is measured. At an early time point of 40 minutes, the R<sub>p</sub> but not the S<sub>p</sub> stereoisomer of phosphorothioate CpG nucleic acid induces JNK phosphorylation in mouse spleen cells. In contrast, when assayed at a late time point of 44 hr, the S<sub>p</sub> but not the R<sub>p</sub> stereoisomer is active in stimulating spleen cell proliferation. This difference in the kinetics and bioactivity of the R<sub>p</sub> and S<sub>p</sub> stereoisomers does not result from any difference in cell uptake, but rather most likely is due to two opposing biologic roles of the p-chirality. First, the enhanced activity of the Rp stereoisomer compared to the Sp for stimulating immune cells at early time points indicates that the Rp may be more effective at interacting with the CpG receptor, TLR9, or inducing the downstream signaling pathways. On the other hand, the faster degradation of the Rp PS-nucleic acids compared to be more biologically

A surprisingly strong effect is achieved by the p-chirality at the CpG dinucleotide itself. In comparison to a stereo-random CpG nucleic acid the congener in which the single CpG dinucleotide was linked in Rp was slightly more active, while the congener containing an Sp linkage was nearly inactive for inducing spleen cell proliferation.

Nucleic acids also include substituted purines and pyrimidines such as C-5 propyne pyrimidine and 7-deaza-7-substituted purine modified bases. Wagner RW et al. (1996) *Nat Biotechnol* 14:840-4. Purines and pyrimidines include but are not limited to adenine, cytosine, guanine, and thymine, and other naturally and non-naturally occurring nucleobases, substituted and unsubstituted aromatic moieties.

A modified base is any base which is chemically distinct from the naturally occurring bases typically found in DNA and RNA such as T, C, G, A, and U, but which share basic chemical structures with these naturally occurring bases. The modified nucleoside base may be, for example, selected from hypoxanthine, uracil, dihydrouracil, pseudouracil, 2-thiouracil,

20

4-thiouracil, 5-aminouracil, 5-(C<sub>1</sub>-C<sub>6</sub>)-alkyluracil, 5-(C<sub>2</sub>-C<sub>6</sub>)-alkenyluracil, 5-(C<sub>2</sub>-C<sub>6</sub>)-alkynyluracil, 5-(hydroxymethyl)uracil, 5-chlorouracil, 5-fluorouracil, 5-bromouracil, 5-hydroxycytosine, 5-(C<sub>1</sub>-C<sub>6</sub>)-alkylcytosine, 5-(C<sub>2</sub>-C<sub>6</sub>)-alkenylcytosine, 5-(C<sub>2</sub>-C<sub>6</sub>)-alkynylcytosine, 5-chlorocytosine, 5-fluorocytosine, 5-bromocytosine, N<sup>2</sup>-dimethylguanine,
2,4-diamino-purine, 8-azapurine, a substituted 7-deazapurine, preferably 7-deaza-7-substituted and/or 7-deaza-8-substituted purine, 5-hydroxymethylcytosine, N4-alkylcytosine, e.g., N4-ethylcytosine, 5-hydroxydeoxycytidine, 5-hydroxymethyldeoxycytidine, N4-alkyldeoxycytidine, e.g., N4-ethyldeoxycytidine, 6-thiodeoxyguanosine, and deoxyribonucleosides of nitropyrrole, C5-propynylpyrimidine, and diaminopurine e.g., 2,6-diaminopurine, inosine, 5-methylcytosine, 2-aminopurine, 2-amino-6-chloropurine, hypoxanthine or other modifications of a natural nucleoside bases. This list is meant to be exemplary and is not to be interpreted to be limiting.

Modified cytosines include but are not limited to 5-substituted cytosines (e.g., 5-methyl-cytosine, 5-fluoro-cytosine, 5-chloro-cytosine, 5-bromo-cytosine, 5-iodo-cytosine, 5-hydroxy-cytosine, 5-hydroxymethyl-cytosine, 5-difluoromethyl-cytosine, and unsubstituted or substituted 5-alkynyl-cytosine), 6-substituted cytosines, N4-substituted cytosines (e.g., N4-ethyl-cytosine), 5-aza-cytosine, 2-mercapto-cytosine, isocytosine, pseudo-isocytosine, cytosine analogs with condensed ring systems (e.g., N,N'-propylene cytosine or phenoxazine), and uracil and its derivatives (e.g., 5-fluoro-uracil, 5-bromo-uracil, 5-bromo-uracil, 4-thio-uracil, 5-hydroxy-uracil, 5-propynyl-uracil). In another embodiment, the cytosine base is substituted by a universal base (e.g., 3-nitropyrrole, P-base), an aromatic ring system (e.g., fluorobenzene or difluorobenzene) or a hydrogen atom (dSpacer).

Modified guanines include but are not limited to 7-deazaguanine,

7-deaza-7-substituted guanine (such as 7-deaza-7-(C2-C6)alkynylguanine),

7-deaza-8-substituted guanine, hypoxanthine, N2-substituted guanines (e.g., N2-methylguanine), 5-amino-3-methyl-3H,6H-thiazolo[4,5-d]pyrimidine-2,7-dione, 2,6-diaminopurine,

2-aminopurine, purine, indole, adenine, substituted adenines (e.g., N6-methyl-adenine, 8-oxoadenine) 8-substituted guanine (e.g., 8-hydroxyguanine and 8-bromoguanine), and

6-thioguanine. In another embodiment, the guanine base is substituted by a universal base (e.g., 4-methyl-indole, 5-nitro-indole, and K-base), an aromatic ring system (e.g., benzimidazole or dichloro-benzimidazole, 1-methyl-1H-[1,2,4]triazole-3-carboxylic acid amide) or a hydrogen atom (dSpacer).

WO 2004/094671

PCT/US2004/012788

For use in the instant invention, the oligonucleotide reference compounds and test compounds can be synthesized *de novo* using any of a number of procedures well known in the art, for example, the β-cyanoethyl phosphoramidite method (Beaucage SL et al. (1981) *Tetrahedron Lett* 22:1859), or the nucleoside H-phosphonate method (Garegg et al. (1986) *Tetrahedron Lett* 27:4051-4; Froehler BC et al. (1986) *Nucleic Acids Res* 14:5399-407; Garegg et al (1986) *Tetrahedron Lett* 27:4055-8; Gaffney et al. (1988) *Tetrahedron Lett* 29:2619-22). These chemistries can be performed by a variety of automated nucleic acid synthesizers available in the market. These oligonucleotides are referred to as synthetic oligonucleotides. An isolated oligonucleotide generally refers to an oligonucleotide which is separated from components which it is normally associated with in nature. As an example, an isolated oligonucleotide may be one which is separated from a cell, from a nucleus, from mitochondria or from chromatin.

- 48 -

Modified backbones such as phosphorothioates can be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries. Aryl-and alkyl-phosphonates can be made, e.g., as described in U.S. Pat. No. 4,469,863; and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. Pat. No. 5,023,243 and European Pat. No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described (e.g., Uhlmann E et al. (1990) *Chem Rev* 90:544; Goodchild J (1990) *Bioconjugate Chem* 1:165).

#### TLR expression

5

10

15

20

25

30

The cell lines can be used in their native state without any modification. For example, in the case of the RPMI 8226 cell line, it can be used to identify compounds that signal through at least TLR9 and/or TLR7. In other instances, however, the cell line can be modified to express a TLR that it does not naturally express. In still other instances, the cell to be used in the screening method may express one or more endogenous TLR and yet still be manipulated to express an additional TLR different from those it endogenously expresses. The cell may also be manipulated in order to increase or decrease the level of TLR that it endogenously expresses. The cells may be stably or transiently transfected.

A cell that does not naturally express a protein or polypeptide, but is genetically manipulated to do so is referred to as ectopically expressing the protein or polypeptide.

15

20

25

30

The basic screening method remains the same regardless of which TLR is expressed by the cell. However, the reference compound and the readout may vary depending upon the TLR(s) expressed. In the most simple aspect, the screening method is used to identify a compound that signals through a TLR such as for example TLR9. In this case, the positive reference compound may be an immunostimulatory compound already known to act through TLR9 (e.g., CpG nucleic acid).

The methods of the invention involve, in part, contacting a functional TLR with a test composition. A functional TLR is a full-length TLR protein or a fragment thereof capable of inducing or inhibiting a signal in response to interaction with its ligand. Generally the functional TLR will include at least a TLR ligand-binding fragment of the extracellular domain of the full-length TLR and at least a fragment of a TIR domain capable of interacting with another Toll homology domain-containing polypeptide, e.g., MyD88. In various embodiments the functional TLR is a full-length TLR selected from TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, and TLR10.

To date, there are eleven TLRs known. Nucleic acid and amino acid sequences for ten currently known human TLRs are available from public databases such as GenBank. Similarly, nucleic acid and amino acid sequences for various TLRs from numerous non-human species are also available from public databases including GenBank. For example, nucleic acid and amino acid sequences for human TLR9 (hTLR9) can be found as GenBank accession numbers AF245704 (coding region spanning nucleotides 145-3243) (SEQ ID NO: 60) and AAF78037 (SEQ ID NO: 62), respectively. Nucleic acid and amino acid sequences for murine TLR9 (mTLR9) can be found as GenBank accession numbers AF348140 (coding region spanning nucleotides 40-3138) (SEQ ID NO: 68) and AAK29625 (SEQ ID NO: 72), respectively.

Nucleic acid and amino acid sequences for human TLR8 (hTLR8) can be found as GenBank accession numbers AF245703 (coding region spanning nucleotides 49-3174) (SEQ ID NO: 46) and AAF78036 (SEQ ID NO: 50), respectively. Nucleic acid and amino acid sequences for murine TLR8 (mTLR8) can be found as GenBank accession numbers AY035890 (coding region spanning nucleotides 59-3157) (SEQ ID NO: 55) and AAK62677 (SEQ ID NO: 57), respectively.

Nucleic acid and amino acid sequences for human TLR7 (hTLR7) can be found as GenBank accession numbers AF240467 (coding region spanning nucleotides 135-3285) (SEQ ID NO: 31) and AAF60188 (SEQ ID NO: 34), respectively. Nucleic acid and amino acid

10

15

20

25

30

sequences for murine TLR7 (mTLR7) can be found as GenBank accession numbers AY035889 (coding region spanning nucleotides 49-3201) (SEQ ID NO: 38) and AAK62676 (SEQ ID NO: 41), respectively.

Nucleic acid and amino acid sequences for human TLR3 (hTLR3) can be found as GenBank accession numbers NM\_003265 (coding region spanning nucleotides 102-2816) (SEQ ID NO: 7) and NP\_003256 (SEQ ID NO: 8), respectively. Nucleic acid and amino acid sequences for murine TLR3 (hTLR3) can be found as GenBank accession numbers AF355152 (coding region spanning nucleotides 44-2761) (SEQ ID NO: 9) and AAK26117 (SEQ ID NO: 10), respectively.

Nucleic acid and amino acid sequences for human TLR1 (hTLR1) can be found as GenBank accession numbers NM\_003263 and NP\_003254, respectively. Nucleic acid and amino acid sequences for murine TLR1 (mTLR1) can be found as GenBank accession numbers NM\_030682 and NP\_109607, respectively.

The functional TLR also is not limited to native TLR polypeptides. As used herein, a native TLR is one that is naturally occurring. The TLR may be a non-native (or non-naturally occurring TLR). An example is a chimeric TLR having an extracellular domain and the cytoplasmic domain derived from TLRs from different species. Such chimeric TLR polypeptides can include, for example, a human TLR extracellular domain and a murine TLR cytoplasmic domain. In alternative embodiments, such chimeric TLR polypeptides can include chimerae created with different TLR splice variants or allotypes.

#### TLR Signaling Pathways

The screening methods provided by the invention measure TLR signaling activity. TLR signaling activity is activity that results from interaction of a TLR with a TLR ligand. TLR signaling can be measured in a number of ways including but not limited to interaction between a TLR and a protein or factor (such as an adaptor protein), interaction between downstream proteins or factors (such as an adaptor protein) with each other, activation of nuclear factors such as transcription factors or transcription complexes, up- or downregulation of genes, phosphorylation or dephosphorylation of proteins or factors in the signaling cascade, expression, production and/or secretion of cytokines and/or chemokines, changes in cell cycle status, up- or down-regulation of cell surface marker expression, and the like. Those of ordinary skill in the art are familiar with assays for measuring these latter

events including but not limited to gel shift assays, immunoprecipitations, phosphorylation status analysis of proteins, Northern analysis, RT-PCR analysis, etc.

The following is an exemplary TLR signaling pathway or cascade. It is to be understood that this is meant to be illustrative and that different factors may be involved in the signaling of particular TLR. One TLR signaling pathway is known to use the cytoplasmic Toll/IL-1 receptor (TIR) homology domain, present in all TLRs. This domain interacts (e.g., binds to) and thereby transduces a signal to a similar domain on an adapter protein (e.g., MyD88). This type of interaction is referred to as a like: like interaction of TIR domains. This interaction is followed by an another interaction between the adapter protein and a kinase, through their respective "death domains". In the case of at least TLR4 signaling, the kinase then interacts with tumor necrosis factor (TNF) receptor-associated factor-6 (TRAF6). Medzhitov R et al., Mol Cell 2:253 (1998); Kopp EB et al., Curr Opin Immunol 11:15 (1999). After TRAF6, two sequential kinase activation steps lead to phosphorylation of the inhibitory protein I kappa B and its dissociation from NF-kB. The first kinase is a mitogen-activated kinase kinase kinase (MAPKKK) known as NIK, for NF-kB-inducing kinase. The target of this kinase is another kinase made up of two chains, called I kappa B kinase  $\alpha$  (IKK  $\alpha$ ) and I kappa B kinase  $\beta$  (IKK  $\beta$ ), that together form a heterodimer of IKK $\alpha$ IKK $\beta$ , which phosphorylates I kappa B. NF-κB translocates to the nucleus to activate genes with kappa B binding sites in their promoters and enhancers such as the genes encoding IL-6, IL-8, the p40 subunit of IL-12, and the costimulatory molecule CD86. The signaling mechanisms of TLRs are not limited to this pathway; other signaling pathways exist and can be used in the screening readouts of the methods provided herein.

10

15

20

25

30

The screening assays employ a number of readouts (or parameters). The readouts can be native readouts. A native readout is one that does not rely on introduction of a reporter construct into the cell of interest. The readouts can be artificial. An artificial readout is one that relies on introduction of a reporter construct into the cell of interest. Examples of both are provided herein. In still other embodiments, a given assay may measure one or more native readouts and one or more artificial readouts. Each readout whether native or artificial is related to signaling pathways that ensue after TLR engagement with a ligand.

Each cell line described herein will be associated with a particular set of native readouts which the invention seeks to determine in the screening assays provided. As an example, the response of the RPMI 8226 cell line to an immunomodulatory molecule can be assessed in terms of native readouts such as CD71 expression, CD86 expression, HLA-DR

10

15

20

25

30

expression, IL-8 expression, IL-8 production, IL-8 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IP-10 expression, IP-10 production, IP-10 secretion, TNF-α expression, TNF-α production and TNF-α secretion. RAMOS response can be assessed, inter alia, by CD80 cell surface expression. Raji response can be assessed, inter alia, by IL-6 secretion.

As described in greater detail herein, the cell line can be used in an unmodified form. In one respect, an unmodified cell line will naturally respond to a TLR ligand through a native readout system. For example, an RPMI 8226 cell exposed to an immunostimulatory TLR ligand may increase expression of IP-10 from the native gene locus. Alternatively, the cell line may be modified to contain a reporter construct that acts as a surrogate for the IP-10 gene locus. For example, the reporter construct may contain the TLR responsive promoter elements that are naturally found in the native IP-10 locus operably linked to a reporter coding sequence that encodes a gene product that is detectable and quantifiable. The structure and variability of suitable reporter constructs will be discussed in greater detail herein.

Readouts typically include the induction of a gene under control of a specific promoter such as a NF-κB promoter. The gene under the control of the NF-κB promoter can be a gene which naturally includes an NF-κB promoter or it can be a gene in a construct in which an NF-κB promoter has been inserted. Endogenous genes and transfected constructs which include the NF-κB promoter include but are not limited to IL-8, IL-12 p40, NF-κB-luc, IL-12 p40-luc, and TNF-luc.

Increases in cytokine levels can result from increased production, increased stability, increased secretion, or any combination of the forgoing, of the cytokine in response to the TLR-mediated signaling. Cytokines generally include, without limitation, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-11, IL-12, IL-13, IL-15, IL-18, IFN-α, IFN-β, IFN-γ, TNF-α, GM-CSF, G-CSF, M-CSF. Th1 cytokines include but are not limited to IL-2, IFN-γ, and IL-12. Th2 cytokines include but are not limited to IL-10.

Increases in chemokine levels can result from increased production, increased stability, increased secretion, or any combination of the forgoing, of the chemokine in response to the TLR-mediated signaling. Chemokines of particular significance in the invention include but are not limited to CCL5 (RANTES), CXCL9 (Mig), CXCL10 (IP-10), CXCL11 (I-TAC), IL-8, and MCP-1.

TLR signaling activity can also be measured by phosphorylation, such as total cellular phosphorylation or phosphorylation of specific factors such as but not limited to IRAK, ERK, MyD88, TRAF6, p38, NF-kB subunits, c-Jun and c-Fos.

TLR signaling activity can be measured by changes in gene expression. The expression of CD71, CD86, CD80, CD69, CD54, HLA-DR, HLA class I, IL-6, IL-8, IL-10, IP-9, IP-10, IFN-α, TNF-α, and the like can be assessed as a measure of TLR signaling activity. Gene expression analysis may be performed using microarray techniques.

TLR signaling activity can also be measured by cell proliferation status or changes thereto.

TLR signaling activity can also be measured by cell surface marker expression such as the cell surface expression of markers such as but not limited to CD71, CD86, HLA-DR, CD80, HLA class I, CD54 and CD69.

TLR signaling activity can also be measured by antibody secretion such as but not limited to IgM secretion.

15

20

25

30

5

10

#### Reporter and Expression Constructs

The cells can be manipulated by the introduction of expression and/or reporter constructs. The expression constructs preferably comprise a TLR coding sequence, as described above. The reporter constructs can be used as surrogate measures of native TLR signaling activity. These reporter constructs are intended to substitute for the "native" readouts capable with the cell line. In order to act as substitutes, the reporter constructs include a promoter element derived from a gene known to be modulated following TLR engagement with a TLR ligand. The reporter construct further includes a coding sequence linked to the promoter. The coding sequence is usually that of a reporter (i.e., a protein that is detectable or quantifiable).

The reporter construct generally includes a promoter, a coding sequence and a polyadenylation signal. These nucleic acids shall include, as necessary, 5' non-transcribing and 5' non-translating sequences involved with the initiation of transcription and translation, respectively, such as a TATA box, capping sequence, CAAT sequence, in addition to promoter elements that are responsive to TLR signaling. The nucleic acid constructs may optionally include enhancer sequences or upstream activator sequences as desired.

The promoter in the reporter construct will include a TLR responsive promoter element, and will therefore be regarded as a TLR responsive promoter. As used herein, a

TLR responsive promoter is a promoter having an activity that is modulated (i.e., either activated or inhibited) by signaling through a TLR (e.g., by TLR interaction with its ligand). In order to be modulated by TLR signaling, the promoter contains sites that are bound by transcription factors modulated by TLR signaling. The factors may be activated or inhibited by TLR signaling. Activation of the transcription factor includes increases in the activity of the transcription factor per se, increases in its ability to interact with other factors or with DNA that serve to increase its activity, and increases in its transcription and translation (i.e., increased mRNA and protein levels of the transcription factor). Conversely, inhibition of the transcription factor includes decreases in the activity of the transcription factor per se, decreases in its ability to interact with other factors or with DNA that serve to decrease its activity, and decreases in its transcription and translation (i.e., decreased mRNA and protein levels of the transcription factor). The effect on the transcription factor is usually the downstream result of other interactions in the signaling pathway. The expression of coding sequences linked to such promoters will therefore be modulated by TLR signaling events, and it is the level of expression of these coding sequences that can be used as a readout of TLR signaling in the screening methods provided herein.

The TLR responsive promoter may comprise a transcription factor binding site selected from the group consisting of a NF-kB binding site, an AP-1 binding site, a CRE, a SRE, an interferon-stimulated response element (ISRE), a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE, among others. These binding sites and their sequences are known in the art. Below is a exemplary list of these sequences.

W = A or T, R = A or G, Y = C or T

25 NF-κB Binding site:

10

15

20

35

Consensus p50 subunit 5' GGGGATYCCC 3' (SEQ ID NO:90)

30 Consensus p65 subunit 5' GGGRNTTTCC 3' (SEQ ID NO:91)

Example of p65 subunit binding site 5' AGT TGA GGG GAC TTT CCC AGG C 3' (SEQ ID NO:92)

CREB Binding site:

5'AGA GAT TGC CTG ACG TCA GAG AGC TAG 3' (SEQ ID NO:93)

- 55 -

```
AP-1 Binding site:
             5'- CGC TTG ATG AGT CAG CCG GAA -3' (SEQ ID NO:94)
             5'- CGC ATG AGT CAG ACA -3' (SEQ ID NO:95)
5
    ISRE:
             5'- TGCAGAAGTGAAACTGAGG-3' (SEQ ID NO:96)
             5'- AGAACGAAACA-3' (SEQ ID NO:97)
             5'- GAGAAGTGAAAGTGG-3' (SEQ ID NO:98)
             5'- TAAGAACATGAAACTGAA-3' (SEQ ID NO:99)
             5'- ATGAAACTGAAAGTA-3' (SEQ ID NO:100)
10
             5'- TGAAAACCGAAAGCGC-3' (SEQ ID NO:101)
             5'- AGAAATGGAAAGT-3' (SEQ ID NO:102)
     SRE
15
             5'- TCACCCCAC-3' (SEQ ID NO:103)
             5'- CTCACCCCAC-3' (SEQ ID NO:104)
             5'- GCCACCCTAC-3' (SEQ ID NO:105)
     NFAT:
20
             5'- TATGAAACAGTTTTTCC -3' (SEQ ID NO:106)
             5'- AGGAAACTC -3' (SEQ ID NO:107)
             5'- ARGARATTCC -3' (SEQ ID NO:108)
             5'- CCAGTTGAGCCAGAGA -3' (SEQ ID NO:109)
     GAS:
25
             5'- CTTTCAGTTTCATATTACTCTAAATCCATT -3' (SEQ ID NO:110)
     p53 Binding Site:
             p53 Consensus site:
30
             5'- RRRCWWGYYY -3' (SEQ ID NO:111)
             Examples of p53 binding sites:
              5'- AGGCATGCCT -3' (SEQ ID NO:112)
              5'- GGGCTTGCCC -3' (SEQ ID NO:113)
35
              5'- GGGCTTGCTT -3' (SEQ ID NO:114)
              5'- GCCTGGACTTGCC -3' (SEQ ID NO:115)
              5'- GGACATGCCCGGGCATGTCC -3' (SEQ ID NO:116)
              5'- GTAGCATTAGCCCAGACATGTCC -3' (SEQ ID NO:117)
40
     TARE (TNF-\alpha response element):
     e.g. from the COL1A1 promoter
                 5'GAGGTATGCAGACAAGAGTCAGAGTTTCCCCTTGAA 3' (SEQ ID
     NO:118)
45
     SRF
                 5'- CCWWWWWWGG-3' (SEQ ID NO:119)
                 5'- CCAAATAAGGC -3' (SEQ ID NO:120)
```

10

15

20

25

30

The TLR responsive promoter element can be derived from the promoter of a naturally occurring (i.e., an endogenous) gene that is activated or inhibited by TLR signaling (such as the IL-6 gene, the IL-8 gene, the IL-10 gene, the IL-12 p40 gene, the IP-9 gene, the IP-10 gene, the type 1 IFN gene, the IFN- $\alpha$ 4 gene, the IFN- $\beta$ 6 gene, the TNF- $\alpha$ 6 gene, the TNF- $\alpha$ 6 gene, the RANTES gene, the ITAC gene, the IGFBP4 gene, the CD54 gene, the CD69 gene, the CD71 gene, the CD80 gene, the CD86 gene, the HLA-DR gene, the HLA class I gene, and the like). The afore-mentioned genes are genes that are known to be activated in response to TLR interaction with its ligand.

Suitable promoter regions are described in the Examples. Briefly, the upstream (5') – 620 to +50 promoter region of IFN- $\alpha$ 4 or the upstream (5') –140 to +9 promoter region of IFN- $\alpha$ 1 can be used. In one embodiment, the IFN- $\alpha$ 4 sequence is cloned into the *SmaI* site of the pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') promoter region of IFN- $\alpha$ 4.

The promoter can also be the upstream (5') –280 to +20 promoter region of IFN- $\beta$ .

The promoter can also be the upstream (5') –397 to +5 promoter region of RANTES. In one embodiment, the RANTES promoter sequence is cloned into the NheI site (filled in with Klenow) of the pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') –397 to +5 promoter region of RANTES.

The promoter can also be the upstream truncated (-250 to +30) and full length (-860 to +30) promoter regions derived from human IL-12 p40 genomic DNA. In one embodiment, the truncated IL-12 p40 promoter was cloned as a KpnI-XhoI insert into pβgal-Basic (Promega) resulting in an expression vector that includes a β gal gene under the control of the upstream (5') -250 to +30 promoter region of human IL-12 p40. In another embodiment, the full length IL-12 p40 promoter was cloned as a KpnI-XhoI insert into pβgal-Basic (Promega) resulting in an expression vector that includes a β gal gene under the control of the upstream (5') -751 to +30 promoter region of human IL-12 p40. In another embodiment, the truncated -250 to +30 promoter region of human IL-12 p40 was cloned into the pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') -250 to +30 promoter region of human IL-12 p40. In yet another embodiment, the full length IL-12 p40 promoter of human IL-12 p40 was cloned into the

15

20

25

30

pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') -751 to +30 promoter region of human IL-12 p40.

The promoter can also be the upstream (5') -288 to +7 promoter region derived from human IL-6 genomic DNA. The promoter can also be derived from the full-length promoter region of the IL-6 gene from -1174 to +7 (Accession No M22111, SEQ ID NO:129).

The promoter can also be the upstream (5') -734 to +44 or the upstream (5') -162 to +44 promoter region derived from human IL-8 genomic DNA. Mukaida N et al. (1989) J Immunol 143:1366-71.

The promoter can also be derived from the -615 to +30 promoter region of human 10 TNF- $\alpha$ .

The promoter can also be derived from a promoter region of human TNF- $\beta$ .

The promoter can also be derived from the -875 to +97 promoter region of human IP
10.

The promoter can also be derived from the -219 to +114 promoter region of human CXCL11 (IP9). The promoter can also be derived from the full length (-934 to +114) promoter region of human CXCL11 (IP9).

The promoter can also be derived from the -289 to +217 promoter region of human IGFBP4 (Insulin growth factor binding protein 4). The promoter can also be derived from the full length (-836 to +217) promoter region of human IGFBP4.

The promoter response element generally will be present in multiple copies, e.g., as tandem repeats. For example, in one reporter construct, coding sequence for luciferase is under control of an upstream 6X tandem repeat of NF-kB response element. In another example, an ISRE-luciferase reporter construct useful in the invention is available from Stratagene (catalog no. 219092) and includes a 5x ISRE tandem repeat joined to a TATA box upstream of a luciferase reporter gene.

The reporter construct coding sequence is preferably any nucleotide sequence that codes for a protein capable of detection or quantification. The protein can be an enzyme (e.g., luciferase, alkaline phosphatase, β-galactosidase, chloramphenicol acetyltransferase (CAT), secreted alkaline phosphatase, etc.), a bioluminescence marker (e.g., green fluorescent protein (GFP, U.S. Pat. No. 5,491,084), etc.), blue fluorescent protein (BFP, e.g., U.S. Pat. No. 6,486,382), etc.), a surface-expressed molecule (e.g., CD25, CD80, CD86), a secreted molecule (e.g., IL-1, IL-6, IL-8, IL-12 p40, TNF-α), a hapten or antigen, and other detectable protein products known to those of skill in the art. For assays relying on enzyme activity

readout, substrate can be supplied as part of the assay, and detection can involve measurement of chemiluminescence, fluorescence, color development, incorporation of radioactive label, drug resistance, or other marker of enzyme activity. For assays relying on surface expression of a molecule, detection can be accomplished using flow cytometry (FACS) analysis or functional assays. Secreted molecules can be assayed using enzyme-linked immunosorbent assay (ELISA) or bioassays. Many of these and other suitable readout systems are well known in the art and are commercially available. Preferably, the coding sequence encodes a protein having a level or an activity that is quantifiable, preferably with a wide linear range.

5

10

15

20

25

30

The expression construct coding sequence is preferably a TLR coding sequence derived from the sequences listed herein. Preferably, the expression construct promoter is a constitutive promoter, although in some embodiments it may be inducible. Those of ordinary skill in the art are familiar with such promoters.

As used herein, a coding sequence and the regulatory sequences (such as promoters) are said to be operably linked when they are covalently linked in such a way as to place the expression or transcription and/or translation of the coding sequence under the influence or control of the regulatory sequence. Two DNA sequences are said to be operably linked if induction of a promoter in the 5' regulatory sequence results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequence, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a regulatory sequence would be operably linked to a coding sequence if the gene expression sequence were capable of effecting transcription of that coding sequence such that the resulting transcript is translated into the desired protein or polypeptide.

Methods for nucleic acid introduction into cells are known in the art.

The nucleic acid may be delivered to the cells alone or in association with a vector. In its broadest sense, a vector is any vehicle capable of facilitating the transfer of the nucleic acid to the cells so that the reporter can be expressed. The vector generally transports the nucleic acid to the cells with reduced degradation relative to the extent of degradation that would result in the absence of the vector. In general, the vectors useful in the invention include, but are not limited to, plasmids, phagemids, viruses, other vehicles derived from viral or bacterial sources that have been manipulated by the insertion or incorporation of the antigen nucleic acid sequences. Viral vectors are a preferred type of vector and include, but are not limited

to, nucleic acid sequences from the following viruses: retrovirus, such as Moloney murine leukemia virus, Harvey murine sarcoma virus, murine mammary tumor virus, and Rous sarcoma virus; adenovirus, adeno-associated virus; SV40-type viruses; polyoma viruses; Epstein-Barr viruses; papilloma viruses; herpes virus; vaccinia virus; polio virus; and RNA virus such as a retrovirus. One can readily employ other vectors not named but known in the art.

Preferred viral vectors are based on non-cytopathic eukaryotic viruses in which non-essential genes have been replaced with the gene of interest. Non-cytopathic viruses include retroviruses, the life cycle of which involves reverse transcription of genomic viral RNA into DNA with subsequent proviral integration into host cellular DNA. Retroviruses have been approved for human gene therapy trials. Most useful are those retroviruses that are replication-deficient (i.e., capable of directing synthesis of the desired proteins, but incapable of manufacturing an infectious particle). Such genetically altered retroviral expression vectors have general utility for the high-efficiency transduction of genes *in vivo*. Standard protocols for producing replication-deficient retroviruses (including the steps of incorporation of exogenous genetic material into a plasmid, transfection of a packaging cell lined with plasmid, production of recombinant retroviruses by the packaging cell line, collection of viral particles from tissue culture media, and infection of the target cells with viral particles) are provided in Kriegler, M., Gene Transfer and Expression, A Laboratory Manual W.H.

Freeman C.O., New York (1990) and Murray, E.J. Methods in Molecular Biology, vol. 7, Humana Press, Inc., Cliffton, New Jersey (1991).

10

15

20

25

30

A preferred virus for certain applications is the adeno-associated virus, a double-stranded DNA virus. The adeno-associated virus can be engineered to be replication -deficient and is capable of infecting a wide range of cell types and species. It further has advantages such as, heat and lipid solvent stability; high transduction frequencies in cells of diverse lineages, including hemopoietic cells; and lack of superinfection inhibition thus allowing multiple series of transductions. Reportedly, wild-type adeno-associated virus manifest some preference for integration sites into human cellular DNA, thereby minimizing the possibility of insertional mutagenesis and variability of inserted gene expression characteristic of retroviral infection. In addition, wild-type adeno-associated virus infections have been followed in tissue culture for greater than 100 passages in the absence of selective pressure, implying that the adeno-associated virus genomic integration is a relatively stable event. The adeno-associated virus can also function in an extrachromosomal fashion.

10

15

20

25

30

Recombinant adeno-associated viruses that lack the replicase protein apparently lack this integration sequence specificity.

Other vectors include plasmid vectors. Plasmid vectors have been extensively described in the art and are well-known to those of skill in the art. See e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989. In the last few years, plasmid vectors have been found to be particularly advantageous for delivering genes to cells *in vivo* because of their inability to replicate within and integrate into a host genome. These plasmids, however, having a promoter compatible with the host cell, can express a peptide from a gene operatively encoded within the plasmid. Some commonly used plasmids include pBR322, pUC18, pUC19, pRc/CMV, SV40, and pBlueScript. Other plasmids are well-known to those of ordinary skill in the art. Additionally, plasmids may be custom designed using restriction enzymes and ligation reactions to remove and add specific fragments of DNA.

In general, the vectors useful in the invention are divided into two classes: biological vectors and chemical/physical vectors. Biological vectors and chemical/physical vectors are useful in the delivery and/or uptake of reporter constructs of the invention.

Most biological vectors are used for delivery of nucleic acids and thus would be most appropriate in the delivery of nucleic acids.

As used herein, a "chemical/physical vector" refers to a natural or synthetic molecule, other than those derived from bacteriological or viral sources, capable of delivering the reference and test compound.

A preferred chemical/physical vector of the invention is a colloidal dispersion system. Colloidal dispersion systems include lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system of the invention is a liposome. Liposomes are artificial membrane vessels which are useful as a delivery vector in vivo or in vitro. It has been shown that large unilamellar vessels (LUV), which range in size from 0.2 - 4.0 µm can encapsulate large macromolecules. RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, et al., Trends Biochem. Sci., (1981) 6:77).

Liposomes may be targeted to a particular tissue by coupling the liposome to a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein. Ligands which may be useful for targeting a liposome to an immune cell include, but are not limited to, intact or fragments of molecules which interact with immune cell specific receptors and molecules,

such as antibodies, which interact with the cell surface markers of immune cells. Such ligands may easily be identified by binding assays well known to those of skill in the art. In still other embodiments, the liposome may be targeted to the cancer by coupling it to a one of the immunotherapeutic antibodies discussed earlier. Additionally, the vector may be coupled to a nuclear targeting peptide, which will direct the vector to the nucleus of the host cell.

Lipid formulations for transfection are commercially available from QIAGEN, for example, as EFFECTENE<sup>TM</sup> (a non-liposomal lipid with a special DNA condensing enhancer) and SUPERFECT<sup>TM</sup> (a novel acting dendrimeric technology).

Liposomes are commercially available from Gibco BRL, for example, as LIPOFECTIN<sup>TM</sup> and LIPOFECTACE<sup>TM</sup>, which are formed of cationic lipids such as N-[1-(2, 3 dioleyloxy)-propyl]-N, N, N-trimethylammonium chloride (DOTMA) and dimethyl dioctadecylammonium bromide (DDAB). Methods for making liposomes are well known in the art and have been described in many publications. Liposomes also have been reviewed by Gregoriadis, G. in *Trends in Biotechnology*, (1985) 3:235-241. In some preferred embodiments, the method of choice for delivering DNA (for transfection) to the cells is electroporation, particularly where a stably transfected cell line is sought.

The present invention is further illustrated by the following Examples, which in no way should be construed as further limiting.

20

25

30

5

10

15

#### **Examples**

# Example 1. Biological Activity of Production Lot of CpG ODN (SEQ ID NO:1) Assayed Using Cells Stably Transfected with hTLR9 Expression Vector

CpG ODN (SEQ ID NO:1) is currently in preclinical and clinical trials for a number of clinical applications. SEQ ID NO:1 has been discovered to induce signaling through TLR9. In order to assess different lots of clinical material, the methods of the invention are employed, using a highly characterized lot of SEQ ID NO:1 as a reference.

In a TLR9 assay, the CpG-non-responsive human embryonal kidney cell line HEK293 (e.g., ATCC CRL-1573) was stably transfected with a hTLR9 expression construct and found to express full-length human TLR9 constitutively. The cells also contained a genomic copy of a reporter construct with a 6x NF-kB binding site and a luciferase gene reporter cassette. Incubation of the cells with CpG ODN (SEQ ID NO:1) activates NF-kB driven expression of luciferase, while incubation with medium alone (negative control) does not. The cells are

10

15

25

30

then lysed and activity of the luciferase protein determined by its catalytic activity of luciferin oxidation which is measured in a luminometer. Results are expressed as fold induction above medium control.

Assay set-up includes a reference standard material which is highly pure and well characterized. The reference material is used to create a standard curve within a defined range where the dose-response curve is linear (e.g., in the range of the EC50 value for SEQ ID NO:1, 70-100 nM). The test material is dissolved for testing and assayed at a defined concentration. Activity of the test material is calculated using the standard curve of the reference material. Quality of the tested material is deemed acceptable if activity of the test material compared to activity of the reference material falls within predetermined limits.

# Example 2. Biological Activity of Production Lot of CpG ODN (SEQ ID NO:1) Assayed Using RPMI 8226 Cells

The assay of Example 1 is performed using RPMI 8226 cells (ATCC CCL-155) in place of the stably transfected HEK cells of Example 1. RPMI 8226 cells naturally express human TLR9. The cells are stably transfected with a 6x NF-kB-luciferase reporter construct. It is to be understood that the assay could also be carried out by measuring a native readout such as IL-10 secretion.

#### 20 Example 3. Expression Vectors for Human TLR3 (hTLR3) and Murine TLR3 (mTLR3)

To create an expression vector for human TLR3, human TLR3 cDNA was amplified by the polymerase chain method (PCR) from a cDNA made from human 293 cells using the primers 5'-GAAACTCGAGCCACCATGAGACAGACTTTGCCTTGTATCTAC-3' (sense, SEQ ID NO:152) and 5'-GAAAGAATTCTTAATGTACAGAGTTTTTGGATCCAAG-3' (antisense, SEQ ID NO:153). The primers introduce *XhoI* and *EcoRI* restriction endonuclease sites at their 5' ends for use in subsequent cloning into the expression vector. The resulting amplification product fragment was cloned into pGEM-T Easy vector (Promega), isolated, cut with *XhoI* and *EcoRI* restriction endonucleases, ligated into an *XhoI/EcoRI*-digested pcDNA3.1 expression vector (Invitrogen). The insert was fully sequenced and translated into protein. The cDNA sequence corresponds to the published cDNA sequence for hTLR3, available as GenBank accession no. NM\_003265 (SEQ ID NO:7). The open reading frame codes for a protein 904 amino acids long, having the sequence corresponding to GenBank accession no. NP\_003256 (SEQ ID NO:8).

Corresponding nucleotide and amino acid sequences for murine TLR3 (mTLR3) are known. The nucleotide sequence of mTLR3 cDNA has been reported as GenBank accession no. AF355152 (SEQ ID NO:9), and the amino acid sequence of mTLR3 has been reported as GenBank accession no. AAK26117 (SEQ ID NO:10).

5

15

20

30

#### Example 4. Reconstitution of TLR3 Signaling in 293 Fibroblasts

Human TLR3 cDNA and murine TLR3 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the *EcoR*I site. The resulting expression vectors mentioned above were transfected into CpG-DNA non-responsive human 293 fibroblast cells (ATCC, CRL-1573) using the calcium phosphate method. Utilizing a "gain of function" assay it was possible to reconstitute human TLR3 (hTLR3) and murine TLR3 (mTLR3) signaling in 293 fibroblast cells.

Since NF-κB activation is central to the IL-1/TLR signal transduction pathway (Medzhitov R et al. (1998) *Mol Cell* 2:253-8; Muzio M et al. (1998) *J Exp Med* 187:2097-101), in a first set of experiments human 293 fibroblast cells were transfected with hTLR3 alone or co-transfected with hTLR3 and an NF-κB-driven luciferase reporter construct.

Likewise, in a second set of experiments, 293 fibroblast cells were transfected with hTLR3 alone or co-transfected with hTLR3 and an IFN- $\alpha$ 4-driven luciferase reporter construct (described in Example 8 below).

In a third group of experiments, 293 fibroblast cells were transfected with hTLR3 alone or co-transfected with hTLR3 and a RANTES-driven luciferase reporter construct (described in Example 14 below).

## 25 Example 5. Reconstitution of TLR7 Signaling

Methods for cloning murine and human TLR7 have been described in pending U.S. Pat. Application No. 09/954,987 and corresponding published PCT application PCT/US01/29229 (WO 02/22809), both filed September 17, 2001, the contents of which are incorporated herein by reference. Human TLR7 cDNA and murine TLR7 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR7 (hTLR7) and murine TLR7 (mTLR7) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors

- 64 -

mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

### **Example 6. Reconstitution of TLR8 Signaling**

Methods for cloning murine and human TLR8 have been described in pending U.S. Pat. Application No. 09/954,987 and corresponding published PCT application PCT/US01/29229 (WO 02/22809), both filed September 17, 2001, the contents of which are incorporated by reference. Human TLR8 cDNA and murine TLR8 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR8 (hTLR8) and murine TLR8 (mTLR8) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

15

20

25

30

10

5

### Example 7. Reconstitution of TLR9 Signaling in 293 Fibroblasts

Methods for cloning murine and human TLR9 have been described in pending U.S. Pat. Application No. 09/954,987 and corresponding published PCT application PCT/US01/29229 (WO 02/22809), both filed September 17, 2001, the contents of which are incorporated by reference. Human TLR9 cDNA and murine TLR9 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR9 (hTLR9) and murine TLR9 (mTLR9) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

To generate stable clones expressing human TLR9, murine TLR9, or either TLR9 with the NF-κB-luc reporter plasmid, 293 cells were transfected in 10 cm plates (2x10<sup>6</sup> cells/plate) with 16 μg of DNA and selected with 0.7 mg/ml G418 (PAA Laboratories GmbH, Cölbe, Germany). Clones were tested for TLR9 expression by RT-PCR, for example as shown in Fig. 21. The clones were also screened for IL-8 production or NF-κB-luciferase activity after stimulation with ODN. Four different types of clones were generated.

PCT/US2004/012788

- 65 -

293-hTLR9-luc:

expressing human TLR9 and 6x NF-kB-luciferase reporter

293-mTLR9-luc:

expressing murine TLR9 and 6x NF-kB-luciferase reporter

293-hTLR9:

expressing human TLR9

293-mTLR9:

expressing murine TLR9

5

15

20

30

Human 293 fibroblast cells were transiently transfected with hTLR9 and a 6x NF-κB-luciferase reporter plasmid (NF-κB-luc, kindly provided by Patrick Baeuerle, Munich, Germany) (Fig. 18A) or with hTLR9 alone (Fig. 18B). After stimulus with CpG-ODN (2μM, TCGTCGTTTTGTCGTTT, SEQ ID NO:1), GpC-ODN (2μM,

TGCTGCTTTTGTGCTT, SEQ ID NO:154), LPS (100 ng/ml) or media, NF-κB activation by luciferase readout (8h, Fig. 18A) or IL-8 production by ELISA (48h, Fig. 18B) was monitored. Results are representative of three independent experiments. Fig. 18 shows that cells expressing hTLR9 responded to CpG-DNA but not to LPS.

Human 293 fibroblast cells were transiently transfected with mTLR9 and the NF-κB-luc construct. Similar data was obtained for IL-8 production (not shown). Thus expression of TLR9 (human or mouse) in 293 cells results in a gain of function for CpG DNA stimulation similar to hTLR4 reconstitution of LPS responses.

Figs. 19 and 20 demonstrate the responsiveness of a stable 293-mTLR9-luc and 293-hTLR9-luc clones after stimulation with CpG-ODN (2μM, SEQ ID NO:1), GpC-ODN (2μM, SEQ ID NO:154), Me-CpG-ODN (2μM; TZGTZGTTTTGTZGTTTTGTZGTT, Z = 5-methylcytidine, SEQ ID NO:147), LPS (100 ng/ml) or media, as measured by monitoring NF-κB activation. Similar results were obtained utilizing IL-8 production with the stable clones. These results demonstrate that CpG-DNA non-responsive cell lines can be stably genetically complemented with TLR9 to become responsive to CpG DNA in a motif-specific manner

25 manner.

#### Example 8. Method of Making IFN-α4 Reporter Vector

A number of reporter vectors may be used in the practice of the invention. Some of the reporter vectors are commercially available, e.g., the luciferase reporter vectors pNF-kB-Luc (Stratagene) and pAP1-Luc (Stratagene). These two reporter vectors place the luciferase gene under control of an upstream (5') promoter region derived from genomic DNA for NF-kB or AP1, respectively. Other reporter vectors can be constructed following standard

10

15

20

25

30

methods using the desired promoter and a vector containing a suitable reporter, such as luciferase,  $\beta$ -galactosidase ( $\beta$ -gal), chloramphenicol acetyltransferase (CAT), and other reporters known by those skilled in the art. Following are some examples of reporter vectors constructed for use in the present invention.

IFN- $\alpha 4$  is an immediate-early type 1 IFN. Sequence-specific PCR products for the – 620 to +50 promoter region of IFN- $\alpha 4$  were derived from genomic DNA of human 293 cells and cloned into the *SmaI* site of the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') –620 to +50 promoter region of IFN- $\alpha 4$ . The sequence of the –620 to +50 promoter region of IFN- $\alpha 4$  is provided as SEQ ID NO:121.

#### Example 9. Method of Making IFN-a1 Reporter Vector

IFN- $\alpha$ 1 is a late type 1 IFN. Sequence-specific PCR products for the -140 to +9 promoter region of IFN- $\alpha$ 1 were derived from genomic DNA of human 293 cells and cloned into *Sma*I site of the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -140 to +9 promoter region of IFN- $\alpha$ 1. A sequence of the -140 to +9 promoter region of IFN- $\alpha$ 1 is provided as SEQ ID NO:122.

#### Example 10. Method of Making IFN-β Reporter Vector

IFN- $\beta$  is an immediate-early type 1 IFN. The –280 to +20 promoter region of IFN- $\beta$  was derived from the pUCβ26 vector (Algarté M et al. (1999) *J Virol* 73:2694-702) by restriction at *EcoR*I and *Taq*I sites. The 300 bp restriction fragment was filled in by Klenow enzyme and cloned into *Nhe*I-digested and filled in pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') –280 to +20 promoter region of IFN- $\beta$ . A sequence of the –280 to +20 promoter region of IFN- $\beta$  is provided as SEQ ID NO:123.

# Example 11. Method of Making Human IL-6 Reporter Vectors

Reporter constructs are made using the -285 to +7 promoter region derived from human IL-6 genomic DNA. (Takeshita et al. Eur. J. Immunol. 2000. 30: 108–116.) In one reporter construct the IL-6 promoter region is cloned as a *KpnI-XhoI* insert into pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of

- 67 -

an upstream (5') -288 to +7 promoter region derived from human IL-6 genomic DNA. A sequence of the -288 to +7 promoter region of human IL-6 is provided as SEQ ID NO:128.

The promoter can also be derived from the full-length promoter region of the IL-6 gene from -1174 to +7 (GenBank Accession No M22111) as shown below as SEQ ID NO:129.

#### Example 12. Method of Making Human IL-8 Reporter Vectors

Reporter constructs have been made using a -546 to +44 and a truncated -133 to +44 promoter region derived from human IL-8 genomic DNA. Mukaida N et al. (1989) *J Immunol* 143:1366-71. In each reporter construct the IL-8 promoter region was cloned as a *KpnI-XhoI* insert into pGL3-Basic Vector (Promega). One of the resulting expression vectors includes a luciferase gene under control of an upstream (5') -546 to +44 promoter region derived from human IL-8 genomic DNA. Another of the resulting expression vectors includes a luciferase gene under control of an upstream (5') -133 to +44 promoter region derived from human IL-8 genomic DNA.

The promoter can also be the upstream (5') -734 to +44 or the upstream (5') -162 to +44 promoter region derived from human IL-8 genomic DNA. Mukaida N et al. (1989) *J Immunol* 143:1366-71. A sequence of the -734 to +44 promoter region derived from human IL-8 is provided below as SEQ ID NO: 130.

) 20

25

30

5

10

15

#### Example 13. Method of Making Human IL-12 p40 Reporter Vectors

Reporter constructs have been made using truncated (-250 to +30, SEQ ID NO:127) and full length (-751 to +30, SEQID NO:126) promoter regions derived from human IL-12 p40 genomic DNA. (Takeshita et al. Eur. J. Immunol. 2000. 30: 108–116.) In one reporter construct the truncated IL-12 p40 promoter was cloned as a *KpnI-XhoI* insert into pβgal-Basic (Promega). The resulting expression vector includes a β gal gene under control of an upstream (5') –250 to +30 promoter region of human IL-12 p40. In a second reporter construct the full length IL-12 p40 promoter was cloned as a *KpnI-XhoI* insert into pβgal-Basic (Promega). The resulting expression vector includes a β gal gene under control of an upstream (5') –751 to +30 promoter region of human IL-12 p40. In a third reporter construct the truncated –250 to +30 promoter region of human IL-12 p40 was cloned into the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') –250 to +30 promoter region of human IL-12 p40. In a

25

30

fourth reporter construct the full length IL-12 p40 promoter of human IL-12 p40 was cloned into the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -751 to +30 promoter region of human IL-12 p40. A sequence of the -751 to +30 promoter region of human IL-12 p40 is provided as SEQ ID NO: 126.

# Example 14. Method of Making RANTES Reporter Vector

Transcription of the chemokine RANTES is believed to be regulated at least in part by IRF3 and by NF-κB. Lin R et al. (1999) J Mol Cell Biol 19(2):959-66; Genin P et al. (2000) J 10 Immunol 164:5352-61. A 483 bp sequence-specific PCR product including the -397 to +5 promoter region of RANTES was derived from genomic DNA of human 293 cells, restricted with PstI and cloned into pCAT-Basic Vector (Promega) using HindIII (filled in with Klenow) and PstI sites (filled in). The -397 to +5 promoter region of RANTES was then isolated from the resulting RANTES/chloramphenicol acetyltransferase (CAT) reporter 15 plasmid by restriction with BgIII and SalI, filled in with Klenow enzyme, and cloned into the NheI site (filled in with Klenow) of the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -397 to +5 promoter region of RANTES. Comparison of the insert sequence -397 to +5 of Genin P et al. (2000) J Immunol 164:5352-61 and GenBank accession no. AB023652 (SEQ ID NO:125) 20 revealed two point deletions (at positions 105 and 273 of SEQ ID NO:125) which do not create new restriction sites. A sequence of the -397 to +5 promoter region of RANTES is provided as SEQ ID NO:125.

# Example 15. RT-PCR Analysis of Cell Lines for TLR Expression

TLR expression was determined using total RNA of cells prepared by standard methods (QIAGEN). RNA was transcribed to cDNA using AMV Reverse Transcriptase (Roche). Quantitative PCR was performed with TLR-gene specific primer sets using a LightCycler Instrument (Roche). Controls for genomic DNA impurities were performed by a similar PCR method using RNA (but without reverse transciptase).

A variety of cell lines was screened for their expression of TLR3, 7, 8 and 9. These cell lines are A549 (human lung carcinoma), BeWo (human choriocarcinoma), HeLa (human cervix carcinoma), Hep-2 (human cervix carcinoma), KG-1 (human acute myeloid leukemia), MUTZ-3 (human acute myelomonocytic leukemia), Nalm-6 (human B cell precursor

10

15

20

25

leukemia), NK-92 (human Natural killer cell line), NK-92 MI (human Natural killer cell line, IL-2 independent), Raji (human Burkitt's lymphoma, B lymphocyte), RAMOS (Burkitt's lymphoma, B lymphocyte), RPMI 8226 (human multiple myeloma, B lymphocyte), THP-1 (human acute monocytic leukemia), U937 (human lymphoma) and Jurkat (human T cell leukemia).

All B cell lines express, as determined by Real Time-PCR (RT-PCR), endogenous TLR9. In addition, all lines except NALM co-express TLR7. Nevertheless, none of the other cell lines appeared to express TLR7, whereas low TLR9 expression on the mRNA level was observed for KG-1 and THP-1. TLR3 appeared to be expressed in most of these cell lines, with the highest mRNA levels for example in the NK cell lines (e.g., NK-92).

Raji cells contain high levels of TLR9 mRNA and low levels of TLR3 and TLR7 mRNA suggesting high expression of TLR9 protein and lower levels of TLR3 and TLR7 protein.

These results indicate that the cell lines expressing TLR9 can be used to screen potential new TLR9 ligands (CpG ODN, etc.), cell lines expressing TLR7 to screen potential new TLR7 ligands (ORN (oligoribonucleotides), small molecules, etc.), and cell lines expressing both receptors may be used to screen for "hybrid" TLR7 and 9 agonists. In addition, cell lines lacking TLR8 expression (i.e., all cell lines tested) can be used to confirm the specificity of a TLR7 versus a TLR8 ligand (i.e., the latter should not be able to stimulate TLR7-expressing cells). In contrast, cell lines expressing TLR3 (e.g., Raji cells) may be used to screen for potential new TLR3 ligands (dsRNA, etc.).

#### Example 16. Screening of Various Cell Lines for Responses to TLR Ligands

Except where otherwise indicated, the following general methods were used. Cells were plated at  $5 \times 10^5$ /ml in 48 well plates in RPMI medium with 10% FBS. Stimulation was performed by addition of the oligonucleotides or other compounds diluted to the test concentrations in TE. Cells were incubated for 24 or 48h and the supernatants were taken to analyse for the presence of cytokines or chemokines.

The TLR ligands used are as follows:

30 TLR3: Poly I:C

TLR7, TLR8: R-848.

TLR9:

T\*C\*C\*A\*G\*G\*A\*C\*T\*T\*C\*T\*C\*T\*C\*A\*G\*G\*T\*T (SEQ ID NO: 2);

15

25

Increased expression of cell surface markers was determined using cells stimulated as described above and then stained with different monoclonal antibody combinations specific for the cell surface markers. Analysis of the cells was performed by flow cytometry.

Changes in reporter gene activity were determined using cells transfected with a NF- $\kappa$ B reporter construct (Stratagene) and a  $\beta$ -galactosidase reporter control plasmid (Invitrogen) using electroporation. For NF- $\kappa$ B analysis, a 5 $\kappa$  NF- $\kappa$ B-Luciferase Vector (Stratagene) was used. The amount of DNA transfected as well as cell concentration was varied. Stimulation was performed 24h after transfection. Cells were stimulated with the indicated amounts of ODN, R-848, LPS, TNF- $\alpha$ , or IL-1  $\beta$  for the indicated incubation times. Cell extracts were prepared by lysing the cells in 100  $\mu$ l reporter lysis buffer (Promega) using the freeze-thaw method. All data were normalized for  $\beta$ -galactosidase expression.

20 Stimulation indices were calculated in reference to luciferase activity of medium without addition of ODN.

Stimulation of the Raji cell line with a TLR9 ligand (CpG ODN), a TLR3 ligand (poly I:C) or a TLR7 ligand (R-848) results in the ligand-specific secretion of cytokines. Figs. 14 and 15 show IL-6 production of Raji cells upon stimulation with ODN, poly I:C or R-848. Fig. 16 shows IFN-o2 production of Raji cells upon stimulation with ODN, poly I:C or R-848. In all assays, cells were incubated with Na-Butyrate for 48h before stimulation with TLR ligands. CpG stimulation of the RAMOS cell lines can result in the CpG-specific upregulation of cell surface markers such as CD80, as shown in Fig. 17.

# 30 Example 17. Inhibition of a Positive Reference Compound Response with an Inhibitory Test Compound

Inhibition of CpG mediated chemokine production was determined using RPMI 8226 cells incubated with increasing amounts of SEQ ID NO:1 in the presence of an

WO 2004/094671 PCT/US2004/012788

- 71 -

immunoinhibitory ODN (SEQ ID NO: 151). IP-10 production was measured 24h later by ELISA (Fig. 9).

## **Equivalents**

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by examples provided, since the examples are intended as a single illustration of one aspect of the invention and other functionally equivalent embodiments are within the scope of the invention. Various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims. The advantages and objects of the invention are not necessarily encompassed by each embodiment of the invention.

All references, patents and patent publications that are recited in this application are incorporated in their entirety herein by reference.

15

5

10

We claim:

10

15

25

## **Claims**

1. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting an RPMI 8226 cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the TLR signaling activity is selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-8 expression, IL-8 production, IL-10 expression, IL-10 production, IL-10 secretion, IP-10 expression, IP-10 production, IP-10 secretion, TNF-α expression, TNF-α production and TNF-α secretion.

2. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of an immunostimulatory compound, and

wherein the cell is a Raji cell, a RAMOS cell, a Nalm cell, a THP-1 cell, or a KG-20 1 cell.

- 3. The method of claim 1 or 2, wherein the test level is positive relative to a reference level determined by contacting the cell with a reference compound and measuring a reference TLR signaling activity.
- 4. The method of claim 3, wherein the reference compound is a positive reference compound
- 5. The method of claim 4, wherein the positive reference compound is selected from the group consisting of an immunostimulatory nucleic acid and an imidazoquinoline compound.

- 6. The method of claim 3, wherein the reference compound is a negative reference compound.
- 7. The method of claim 6, wherein the negative reference compound is medium alone.
  - 8. The method of claim 5, wherein the immunostimulatory nucleic acid is selected from the group consisting of a CpG nucleic acid, a T-rich nucleic acid, a poly-T nucleic acid and a poly-G nucleic acid.

- 9. The method of claim 5, wherein the imidazoquinoline compound is selected from the group consisting of R-848 and R-847.
- 10. The method of claim 1 or 2, wherein the test compound is a nucleic acid.
  - 11. The method of claim 10, wherein the nucleic acid does not comprise a motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a poly-G motif.

- 12. The method of claim 10, wherein the nucleic acid comprises a phosphorothioate backbone linkage.
- 13. The method of claim 10, wherein the nucleic acid is a DNA, an RNA or 25 a DNA-RNA hybrid.
  - 14. The method of claim 1 or 2, wherein the test compound is a non-nucleic acid small molecule.
- 30 15. The method of claim 1 or 2, wherein the test compound comprises an amino acid, a carbohydrate, a lipid, or a hormone.
  - 16. The method of claim 15, wherein the carbohydrate is a polysaccharide.

20

- 17. The method of claim 1 or 2, wherein the test compound is derived from a molecular library.
- 5 18. The method of claim 1, wherein the cell is transfected with a nucleic acid.
  - 19. The method of claim 18, wherein the nucleic acid encodes a TLR or a reporter construct.
  - The method of claim 2, wherein the cell is transfected with a nucleic acid.
- The method of claim 20, wherein the nucleic acid encodes a TLR or a reporter construct.
  - 22. The method of claim 19 or 21, wherein the TLR is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.
    - 23. The method of claim 22, wherein the TLR is a human TLR.
- 24. The method of claim 19 or 21, wherein the reporter construct is selected from the group consisting of a luciferase reporter construct, a β-galactosidase reporter construct, a chloramphenical acetyltransferase reporter construct, a green fluorescent protein reporter construct, and a secreted alkaline phosphatase construct.
  - 25. The method of claim 19 or 21, wherein the reporter construct comprises a TLR responsive promoter.
  - 26. The method of claim 25, wherein the TLR responsive promoter comprises a transcription factor binding site selected from the group consisting of a NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an

IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.

- The method of claim 25, wherein the TLR responsive promoter is a
  promoter region selected from the group consisting of an IL-1 promoter region, an IL-6 promoter region, an IL-8 promoter region, an IL-10 promoter region, an IL-12 p40 promoter region, an IFN-α1 promoter region, an IFN-α4 promoter region, an IFN-β promoter region, an IFN-γ promoter region, a TNF-α promoter region, a TNF-β promoter region, an IP-9 promoter region, an IP-10 promoter region, a RANTES promoter region, an ITAC promoter region, a
  MCP-1 promoter region, an IGFBP4 promoter region, a CD54 promoter region, a CD69 promoter region, a CD71 promoter region, a CD80 promoter region, a CD86 promoter region, a HLA-DR promoter region, and a HLA class I promoter region.
  - 28. The method of claim 18 or 20, wherein the cell is stably transfected.

15

- 29. The method of claim 1 or 2, wherein the TLR signaling activity is measured by cytokine secretion or chemokine secretion.
- 30. The method of claim 1, wherein the TLR signaling activity is selected
   20 from the group consisting of IL-8 secretion, IL-10 secretion, IP-10 secretion and TNF-α secretion.
  - 31. The method of claim 2, wherein the TLR signaling activity is selected from the group consisting of IL-6 expression, IL-6 production, IL-6 secretion, IL-8 expression, IL-8 production, IL-8 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IP-10 expression, IP-10 production, IP-10 secretion, IL-12 expression, IL-12 production, IL-12 secretion, TNF-α expression, TNF-α production and TNF-α secretion.
- 32. The method of claim 2, wherein the TLR signaling activity is measured by phosphorylation.
  - 33. The method of claim 32, wherein phosphorylation is total cellular phosphorylation.

34. The method of claim 32, wherein phosphorylation is phosphorylation of a factor selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, NFkB subunits, c-Jun and c-Fos.

5

- 35. The method of claim 1 or 2, wherein the TLR signaling activity is measured by gene expression.
- 36. The method of claim 1, wherein the TLR signaling activity is measured by gene expression selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-8 expression, IL-10 expression, IP-10 expression, and TNF-α expression.
- 37. The method of claim 35, wherein TLR signaling activity is measured by microarray techniques.
  - 38. The method of claim 2, wherein the TLR signaling activity is measured by cell proliferation.
- 20 39. The method of claim 1 or 2, wherein TLR signaling activity is measured by cell surface marker expression.
  - 40. The method of claim 1, wherein TLR signaling activity is measured by cell surface expression of CD71, CD86 or HLA-DR.

25

41. The method of claim 2, wherein TLR signaling activity is measured by CD71 cell surface expression, CD86 cell surface expression, HLA-DR cell surface expression, CD80 cell surface expression, HLA class I cell surface expression, CD54 cell surface expression and CD69 cell surface expression.

30

42. The method of claim 2, wherein TLR signaling activity is measured by antibody secretion.

- 43. The method of claim 42, wherein the antibody secretion is IgM secretion.
- 44. A composition comprising
  an RPMI 8226 cell stably transfected with a nucleic acid encoding a TLR
  5 polypeptide, or a fragment thereof.
  - 45. The composition of claim 44, further comprising a reporter construct comprising a promoter and a reporter sequence wherein the promoter is a TLR responsive promoter.

15

- 46. The composition of claim 45, wherein the TLR responsive promoter comprises a nucleic acid sequence selected from the group consisting of an NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.
- 47. The composition of claim 45, wherein the reporter sequence is selected from the group consisting of a luciferase sequence, a  $\beta$ -galactosidase sequence, a green fluorescent protein sequence, a secreted alkaline phosphatase sequence and a chloramphenicol transferase sequence.
- 48. The composition of claim 44, wherein the TLR polypeptide or fragment thereof is a human TLR polypeptide or fragment thereof.
- 25 49. The composition of claim 44, wherein the TLR polypeptide or fragment thereof is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.
- 50. The composition of claim 44, wherein the TLR polypeptide or fragment thereof is a human TLR polypeptide.
  - 51. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

25

contacting an cell that ectopically expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

- wherein the cell that ectopically expresses a TLR is selected from the group consisting of RPMI 8226, RAMOS, Raji, Nalm, THP-1, KG-1 and 293 HEK.
  - 52. The method of claim 51, wherein the test level is positive relative to a reference level determined by contacting the cell with a reference compound and measuring a reference TLR signaling activity.
    - 53. The method of claim 52, wherein the reference compound is a positive reference compound.
- 15 54. The method of claim 53, wherein the positive reference compound is selected from the group consisting of an immunostimulatory nucleic acid and an imidazoquinoline compound.
- 55. The method of claim 54, wherein the immunostimulatory nucleic acid is selected from the group consisting of a CpG nucleic acid, a T-rich nucleic acid, a poly-T nucleic acid and a poly-G nucleic acid.
  - 56. The method of claim 54, wherein the imidazoquinoline compound is selected from the group consisting of R-848 and R-847.
  - 57. The method of claim 52, wherein the reference compound is negative reference compound.
- 58. The method of claim 57, wherein the negative reference compound is medium alone.
  - 59. The method of claim 51, wherein the test compound is a nucleic acid.

- 60. The method of claim 59, wherein the nucleic acid does not comprise a motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a poly-G motif.
- 5 61. The method of claim 59, wherein the nucleic acid comprises a phosphorothicate backbone linkage.

- 62. The method of claim 59, wherein the nucleic acid is a DNA, an RNA, or a DNA-RNA hybrid.
- 63. The method of claim 51, wherein the test compound is a non-nucleic acid small molecule.
- 64. The method of claim 51, wherein the test compound comprises an amino acid, a carbohydrate, a lipid, or a hormone.
  - 65. The method of claim 64, wherein the carbohydrate is a polysaccharide.
- The method of claim 51, wherein the test compound is derived from a molecular library.
  - 67. The method of claim 51, wherein the TLR signaling activity is selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-6 expression, IL-6 production, IL-6 secretion, IL-8 expression, IL-8 production, IL-8 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IL-12 expression, IL-12 production, IL-12 production, IL-12 secretion, IP-10 expression, IP-10 production, IP-10 secretion, TNF- $\alpha$  expression, TNF- $\alpha$  production and TNF- $\alpha$  secretion.
- The method of claim 51, wherein the TLR is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.
  - 69. The method of claim 51, wherein the TLR is a human TLR.

- 70. The method of claim 51, wherein the cell is transfected with a reporter construct.
- 71. The method of claim 70, wherein the reporter construct is selected from the group consisting of a luciferase reporter construct, a β-galactosidase reporter construct, a chloramphenical acetyltransferase reporter construct, a green fluorescent protein reporter construct, and a secreted alkaline phosphatase construct.
- 72. The method of claim 71, wherein the TLR signaling activity is measured by luciferase expression, β-galactosidase expression, chloramphenicol expression, acetyltransferase expression, green fluorescent protein expression, alkaline phosphatase expression and alkaline phosphatase secretion.
- 73. The method of claim 71, wherein the reporter construct comprises a TLR responsive promoter.
  - 74. The method of claim 25 or 73, wherein the TLR responsive promoter is a TLR1 responsive promoter, a TLR2 responsive promoter, a TLR3 responsive promoter, a TLR4 responsive promoter, a TLR5 responsive promoter, a TLR6 responsive promoter, a TLR7 responsive promoter, a TLR8 responsive promoter, a TLR9 responsive promoter and a TLR10 responsive promoter.
  - 75. The method of claim 73, wherein the TLR responsive promoter comprises a transcription factor binding site selected from the group consisting of an NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.
- 76. The method of claim 73, wherein the TLR responsive promoter is a promoter region selected from the group consisting of an IL-1 promoter region, an IL-6 promoter region, an IL-8 promoter region, an IL-10 promoter region, an IL-12 p40 promoter region, an IFN-α1 promoter region, an IFN-α4 promoter region, an IFN-β promoter region, an IFN-γ promoter region, a TNF-β promoter region, an IP-9 promoter

region, an IP-10 promoter region, a RANTES promoter region, an ITAC promoter region, a MCP-1 promoter region, an IGFBP4 promoter region, a CD54 promoter region, a CD69 promoter region, a CD71 promoter region, a CD80 promoter region, a CD86 promoter region, a HLA-DR promoter region, and a HLA class I promoter region.

- 77. The method of claim 51, wherein the cell is stably transfected with a TLR nucleic acid.
- 78. The method of claim 70, wherein the cell is stably transfected with the reporter construct.
  - 79. The method of claim 51, wherein the TLR signaling activity is measured by cytokine secretion or chemokine secretion.
- 15 80. The method of claim 79, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-8 secretion, TNF- $\alpha$  secretion, IL-10 secretion and IP-10 secretion.
- 81. The method of claim 79, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-6 secretion and IL-12 secretion.
  - 82. The method of claim 51, wherein the TLR signaling activity is measured by phosphorylation.
- 25 83. The method of claim 82, wherein phosphorylation is total cellular phosphorylation.
- 84. The method of claim 82, wherein phosphorylation is phosphorylation of a factor selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, NF-κB subunits, c-Jun and c-Fos.
  - 85. The method of claim 51, wherein the TLR signaling activity is measured by gene expression.

86. The method of claim 85, wherein the gene expression is selected from the group consisting of IL-8 expression, IL-10 expression, IP-10 expression, CD71 expression, CD86 expression and HLA-DR expression.

5

- 87. The method of claim 85, wherein the gene expression is selected from the group consisting of IL-6 expression, IL-12 expression and TNF- $\alpha$  expression.
- 88. The method of claim 51, wherein the TLR signaling activity is measured by microarray techniques.
  - 89. The method of claim 51, wherein the TLR signaling activity is measured by cell proliferation.
- 15 90. The method of claim 51, wherein the TLR signaling activity is measured by cell surface marker expression.
  - 91. The method of claim 90, wherein the cell surface marker expression is selected from the group consisting of CD71 cell surface expression, CD86 cell surface expression and HLA-DR cell surface expression.
  - 92. The method of claim 90, wherein the cell surface marker expression is selected from the group consisting of CD80 cell surface expression, HLA class I cell surface expression, CD54 cell surface expression and CD69 cell surface expression.

25

- 93. The method of claim 51, wherein the TLR signaling activity is measured by antibody secretion.
- 94. The method of claim 93, wherein the antibody secretion is IgM 30 secretion.
  - 95. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

5 wherein a test level that is less than a reference level is indicative of test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a RPMI 8226 cell, a RAMOS cell, a Raji cell, a THP-1 cell, a Nalm cell and a KG-1 cell.

- 10 96. The method of claim 95, wherein the positive reference compound is selected from the group consisting of an immunostimulatory nucleic acid and an immunostimulatory imidazoquinoline compound.
- 97. The method of claim 96, wherein the immunostimulatory nucleic acid is selected from the group consisting of a CpG nucleic acid, a T-rich nucleic acid, a poly-T nucleic acid and a poly-G nucleic acid.
  - 98. The method of claim 96, wherein the imidazoquinoline compound is selected from the group consisting of R-848 and R-847.
    - 99. The method of claim 95, wherein the test compound is a nucleic acid.
- 100. The method of claim 99, wherein the nucleic acid does not comprise a motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a poly-G motif.
  - 101. The method of claim 99, wherein the nucleic acid comprises a phosphorothioate backbone linkage.
- 30 102. The method of claim 99, wherein the nucleic acid is a DNA, an RNA or a DNA-RNA hybrid.

- 103. The method of claim 95, wherein the test compound is a non-nucleic acid small molecule.
- The method of claim 95, wherein the test compound comprises an amino acid, a carbohydrate, a lipid, or a hormone.
  - The method of claim 104, wherein the carbohydrate is a polysaccharide.
- 10 106. The method of claim 95, wherein the test compound is derived from a molecular library.
  - The method of claim 95, wherein the experimental cell is transfected with a nucleic acid.
  - The method of claim 107, wherein the nucleic acid encodes a TLR or a reporter construct.
- The method of claim 108, wherein the TLR is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.
  - 110. The method of claim 108, wherein the TLR is a human TLR.
- 111. The method of claim 108, wherein the reporter construct is selected
  25 from the group consisting of a luciferase reporter construct, a β-galactosidase reporter construct, a chloramphenical acetyltransferase reporter construct, a green fluorescent protein reporter construct, and a secreted alkaline phosphatase construct.
- 112. The method of claim 111, wherein the TLR signaling activity is selected from the group consisting of luciferase expression, β-galactosidase expression, chloramphenical acetyltransferase expression, green fluorescent protein expression, alkaline phosphatase expression and alkaline phosphatase secretion.

- 113. The method of claim 108, wherein the reporter construct comprises a TLR responsive promoter.
- 114. The method of claim 113, wherein the TLR responsive promoter comprises a transcription factor binding site selected from the group consisting of an NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.
- 115. The method of claim 113, wherein the TLR responsive promoter is a promoter region selected from the group consisting of an IL-1 promoter region, an IL-6 promoter region, an IL-8 promoter region, an IL-10 promoter region, an IL-12 p40 promoter region, an IFN-α1 promoter region, an IFN-α4 promoter region, an IFN-β promoter region, an IFN-γ promoter region, a TNF-α promoter region, a TNF-β promoter region, an IP-9 promoter region, an IP-10 promoter region, a RANTES promoter region, an ITAC promoter region, a MCP-1 promoter region, an IGFBP4 promoter region, a CD54 promoter region, a CD69 promoter region, a CD71 promoter region, a CD80 promoter region, a CD86 promoter region, a HLA-DR promoter region, and a HLA class I promoter region.
- 20 116. The method of claim 113, wherein the TLR responsive promoter is selected from the group consisting of a TLR1 responsive promoter, TLR2 responsive promoter, a TLR3 responsive promoter, a TLR4 responsive promoter, a TLR5 responsive promoter, a TLR6 responsive promoter, a TLR7 responsive promoter, a TLR8 responsive promoter, a TLR9 responsive promoter and a TLR10 responsive promoter.
  - The method of claim 107, wherein the cell is stably transfected with the nucleic acid.
- The method of claim 95, wherein the TLR signaling activity is measured by cytokine secretion or chemokine secretion.

- 119. The method of claim 118, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-6 secretion, IL-12 secretion and TNF- $\alpha$  secretion.
- 5 120. The method of claim 118, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-8 secretion, IL-10 secretion and IP-10 secretion.
- 121. The method of claim 95, wherein the TLR signaling activity is measured by phosphorylation.
  - The method of claim 121, wherein phosphorylation is total cellular phosphorylation.
- 15 123. The method of claim 122, wherein phosphorylation is phosphorylation of a factor selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, NF-kB subunits, c-Jun and c-Fos.
- 124. The method of claim 95, wherein the TLR signaling activity is measured by gene expression.
  - 125. The method of claim 124, wherein the gene expression is selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-8 expression, IL-10 expression and IP-10 expression.
  - 126. The method of claim 124, wherein the gene expression is selected from the group consisting of IL-6 expression, IL-12 expression and TNF- $\alpha$  expression.
- The method of claim 95, wherein the TLR signaling activity is measured by microarray techniques.
  - 128. The method of claim 95, wherein the TLR signaling activity is measured by cell proliferation.

- 129. The method of claim 95, wherein the TLR signaling activity is measured by cell surface marker expression.
- 5 130. The method of claim 129, wherein the cell surface marker expression is selected from the group consisting of CD71 cell surface expression, CD86 cell surface expression and HLA-DR MHC class II cell surface expression.
- 131. The method of claim 129, wherein the cell surface marker expression is selected from the group consisting of CD80 cell surface expression, HLA class I cell surface expression, CD54 cell surface expression and CD69 cell surface expression.
  - 132. The method of claim 95, wherein the TLR signaling activity is measured by antibody secretion.

133. The method of claim 132, wherein the antibody secretion is IgM secretion.

- The method of claim 95, wherein the cell is contacted to the positive reference compound and the test compound simultaneously.
  - 135. The method of claim 95, wherein the cell is contacted to the positive reference compound prior to contact with the test compound.
- 25 136. The method of claim 95, wherein the cell is contacted to the test compound prior to contact with the positive reference compound.
  - 137. A method for quality assessment of a test composition containing a known Toll like receptor (TLR) ligand, comprising:
- measuring a reference activity of a reference composition comprising a known TLR ligand, wherein the known TLR ligand is a nucleic acid molecule; measuring a test activity of a test composition comprising the known TLR ligand; and

comparing the test activity to the reference activity.

138. The method of claim 137, further comprising selecting the test composition if the test activity falls within a predetermined range of variance about the reference activity.

5

139. The method of claim 1, wherein the reference composition is a first production lot of a pharmaceutical composition comprising the known TLR ligand, and wherein the test composition is a second production lot of a pharmaceutical composition comprising the known TLR ligand.

10

140. The method of claim 137, wherein the reference composition is a first in-process lot of a composition comprising the known TLR ligand, and wherein the test composition is a second in-process lot of a composition comprising the known TLR ligand.

15

141. The method of claim 137, wherein the measuring the reference activity comprises contacting the reference composition with an isolated cell expressing a TLR responsive to the known TLR ligand, and wherein the measuring the test activity comprises contacting the test composition with the isolated cell expressing a TLR responsive to the known TLR ligand.

20

142. The method of claim 141, wherein the isolated cell expressing the TLR responsive to the known TLR ligand comprises an expression vector for the TLR responsive to the known TLR ligand.

- 143. The method of claim 141, wherein the isolated cell expressing the TLR responsive to the known TLR ligand naturally expresses the TLR responsive to the known TLR ligand.
- The method of claim 141, wherein the isolated cell expressing the TLR responsive to the known TLR ligand is RPMI 8226.

- 145. The method of claim 137, wherein the measuring the reference activity and the measuring the test activity each comprise measuring signaling activity mediated by a TLR responsive to the known TLR ligand.
- 5 146. The method of claim 145, wherein the signaling activity is activity of a reporter construct under control of NF-κB response element.
  - 147. The method of claim 145, wherein the signaling activity is activity of a reporter construct under control of interferon-stimulated response element (ISRE).
  - 148. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IFN- $\alpha$  promoter.
- The method of claim 145, wherein the signaling activity is activity of a
   reporter gene under control of an IFN-β promoter.
  - 150. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IL-6 promoter.
- 20 151. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IL-8 promoter.
  - 152. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IL-12 p40 promoter.
  - 153. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of a RANTES promoter.
- The method of claim 137, wherein the known TLR ligand is a TLR9 ligand.
  - 155. The method of claim 137, wherein the known TLR ligand is a TLR3 ligand.

30 NO:1).

|                                                                                | 156.                                                                                  | The method of claim 137, wherein the known TLR ligand is a TLR7                                                                                                                                     |  |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ligand.                                                                        |                                                                                       |                                                                                                                                                                                                     |  |
| ligand.                                                                        | 157.                                                                                  | The method of claim 137, wherein the known TLR ligand is a TLR8                                                                                                                                     |  |
| immunos                                                                        | 158.<br>timulatory                                                                    | The method of claim 137, wherein the known TLR ligand is an nucleic acid.                                                                                                                           |  |
| nucleic a                                                                      | 159.<br>cid.                                                                          | The method of claim 137, wherein the known TLR ligand is a CpG                                                                                                                                      |  |
| immunoi                                                                        | 160.<br>nhibitory                                                                     | The method of claim 137, wherein the known TLR ligand is an nucleic acid.                                                                                                                           |  |
|                                                                                | 161.                                                                                  | A method for quality assessment of a test lot of a pharmaceutical                                                                                                                                   |  |
| product o                                                                      | containing                                                                            | a known TLR9 ligand, comprising:                                                                                                                                                                    |  |
|                                                                                | mea                                                                                   | suring a reference activity of a reference lot of a pharmaceutical product                                                                                                                          |  |
| comprisi                                                                       | comprising a known TLR9 ligand, wherein the known TLR9 ligand is a nucleic acid       |                                                                                                                                                                                                     |  |
| molecule                                                                       | ;                                                                                     |                                                                                                                                                                                                     |  |
| measuring a test activity of a test lot of a pharmaceutical product comprising |                                                                                       |                                                                                                                                                                                                     |  |
| the know                                                                       | the known TLR9 ligand; comparing the test activity to the reference activity; and     |                                                                                                                                                                                                     |  |
|                                                                                |                                                                                       |                                                                                                                                                                                                     |  |
|                                                                                | rejecting the test lot if the test activity falls outside of a predetermined range of |                                                                                                                                                                                                     |  |
| variance                                                                       | about the                                                                             | reference activity.                                                                                                                                                                                 |  |
|                                                                                | 162.                                                                                  | The method of claim 161, wherein the known TLR9 ligand is an                                                                                                                                        |  |
| oligonuc                                                                       |                                                                                       | mprising a base sequence TCGTCGTTTTGTCGTTTTGTCGTT (SEQ ID                                                                                                                                           |  |
|                                                                                | immunos nucleic a immunoi product c comprisi molecule the know                        | ligand.  157. ligand.  158. immunostimulatory  159. nucleic acid.  160. immunoinhibitory  161. product containing mea comprising a know molecule; mea the known TLR9 li com reje variance about the |  |

- 163. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTGACGTTTTGTCGTT-3' (SEQ ID NO:139).
- 5 164. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTTTTTCGA-3' (SEQ ID NO:140).
- 165. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTCGTCGTTTTCGTCGTTT-3' (SEQ ID NO:141).
  - 166. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTCGTCGTTTTGTCGTT-3' (SEQ ID NO:142).
  - 167. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTTCGGTCGTTTTT-3' (SEQ ID NO:143).
  - 168. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTTCGTGCGTTTTT-3' (SEQ ID NO:144).
- 25 169. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTCGGCGGCCGCCG-3' (SEQ ID NO:145).
- 170. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTC\_GTTTTAC\_GGCGCC\_GTGCCG-3' (SEQ ID NO:146), wherein every internucleoside linkage is phosphorothioate except for those indicated by "\_", which are phosphodiester.

15

25

171. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the cell is a Raji cell, a RAMOS cell, a Nalm cell, a THP-1 cell, or a KG-1 cell, and the TLR is TLR9.

172. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the cell is a Raji cell or a RAMOS cell, and the TLR is TLR7.

- 173. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising
- contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the cell is a Raji cell, a RAMOS cell, a KG-1 cell, a Nalm-6 cell, a Jurkat cell, a Hela cell, a Hep-2 cell, an A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell, and the TLR is TLR3.

- 174. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising
- contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

wherein a test level that is less than a reference level is indicative of a test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a RPMI 8226 cell, a RAMOS cell, a Raji cell, a THP-1 cell, a Nalm cell and a KG-1 cell, and the TLR is TLR9.

5

175. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

wherein a test level that is less than a reference level is indicative of a test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a RPMI 8226 cell, a

15 RAMOS cell and a Raji cell, and the TLR is TLR7.

175. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

wherein a test level that is less than a reference level is indicative of a test compound that is a TLR antagonist, and

25

20

wherein the cell is selected from the group consisting of a Raji cell, a RAMOS cell, a KG-1 cell, a Nalm-6 cell, a Jurkat cell, a Hela cell, a Hep-2 cell, an A549 cell, a Bewo cell, an NK-92 cell and an NK-92 MI cell, and the TLR is TLR3.

176. A screening method for identifying an enhancer of a Toll-like receptor 30 (TLR) agonist, comprising

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity, and

15

contacting a cell with the positive reference compound and a test compound and measuring a test level of TLR signaling activity,

wherein the positive reference compound is a TLR agonist, and a test level that is greater than the reference level is indicative of a test compound that is an enhancer of a TLR agonist.

- 177. The method of claim 176, wherein the positive reference compound is an immunostimulatory nucleic acid.
- 10 178. The method of claim 176, wherein the positive reference compound is an imidazoquinoline compound.
  - 180. The method of claim 176, wherein the cell is selected from the group consisting of a KG-1 cell, a Nalm-6 cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cell, an A549 cell, a Bewo cell, an NK-92 cell and an NK-92 MI cell, and the TLR is TLR3.
- 181. The method of claim 176, wherein the cell is selected from the group consisting of a KG-1 cell, a Nalm-6 cell, a Raji cell, an RPMI 8226 cell, a RAMOS cell, and a 20 THP-1 cell, and the TLR is TLR9.
  - 182. The method of claim 176, wherein the cell is selected from the group consisting of a Raji cell, an RPMI 8226 cell and a RAMOS cell, and the TLR is TLR7.
- 25 183. The method of claim 1, wherein the TLR is TLR7 or TLR9.
  - 184. The method of claim 172-175 or 176, wherein the cell is unmodified.



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)





Fig. 6



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)



Fig. 9





SUBSTITUTE SHEET (RULE 26)



RELATIVE COPY NUMBER TLR3 SUBSTITUTE SHEET (RULE 26)





Fig. 14

SUBSTITUTE SHEET (RULE 26)





Fig. 17
SUBSTITUTE SHEET (RULE 26)

14/15



Fig. 18A



Fig. 18B

WO 2004/094671 PCT/US2004/012788





(FOLD INDUCTION)

Fig. 19

# 293-hTLR9



NFkB-luc (FOLD INDUCTION)

Fig. 20



SUBSTITUTE SHEET (RULE 26)

# SEQUENCE LISTING

| <110>                            | COLEY PHARMACEUTICAL GMbH COLEY PHARMACEUTICAL GROUP INC.             |     |
|----------------------------------|-----------------------------------------------------------------------|-----|
| <120>                            | METHODS AND PRODUCTS FOR IDENTIFICATION AND ASSESSMENT OF TLR LIGANDS |     |
| <130>                            | C1041.70024WO00                                                       |     |
|                                  | not yet assigned 2004-04-22                                           |     |
|                                  | US 60/464,586<br>2003-04-22                                           |     |
|                                  | US 60/464,588<br>2003-04-22                                           |     |
| <160>                            | 161                                                                   |     |
| <170>                            | PatentIn version 3.2                                                  |     |
| <210><br><211><br><212><br><213> | 24                                                                    |     |
| <220>                            | •                                                                     |     |
| <223>                            | oligonucleotide                                                       |     |
| <400><br>tcgtcgt                 | 1<br>Ettt gtcgttttgt cgtt                                             | 24  |
| <210><br><211><br><212><br><213> | 20                                                                    |     |
| <220>                            |                                                                       |     |
| <223>                            | oligonucleotide                                                       |     |
| <400><br>tccagga                 | 2<br>actt ctctcaggtt                                                  | 20  |
| <210><211><212><213>             | 3<br>2600<br>DNA<br>Homo sapiens                                      |     |
| <400>                            | 3                                                                     |     |
|                                  | aaag gagacctata gtgactccca ggagctctta gtgaccaagt gaaggtacct           | 60  |
|                                  |                                                                       | 120 |
| cactgga                          | acaa tgccacatac tttgtggatg gtgtgggtct tgggggtcat catcagcctc           | 180 |
| tccaage                          | gaag aateeteeaa teaggettet etgtettgtg acegeaatgg tatetgeaag           | 240 |

| 200    | 22222777+  | cacaactet  | taaaaastaa  | ctccattcca | gatotttaaa | aacsactasa |
|--------|------------|------------|-------------|------------|------------|------------|
| 300    |            |            |             |            | gatctttaaa |            |
| 360    |            |            |             |            | acaacaggat |            |
| 420    | ttcttttct  | tagaggaaga | attaacacaa  | atccaatgga | tggtgctgac | ctccaggctc |
| 480    | tttatcgtct | acttatctaa | tcctataatt  | tttagactta | gtcttgaaca | tccctgggca |
| 540    | tccttacaaa | tactgggaaa | ttcttaaact  | ttctttaaca | agcccctttc | tcctggttca |
| 600    | gagagtggga | tgcaaatcct | ctcacaaaat  | tttttctcat | aaacatctct | accctagggg |
| 660    | cttccttgag | ctggacttac | aaagattttg  | gattcaaaga | ccttcactaa | aatatggaca |
| 720    | gaagtcaatt | caaaaagttt | agctatgagc  | agatctacag | ttgatgcttc | gaacttgaga |
| 780    | ggagatttt  | ttttactgct | aagcagcata  | ccttcatatg | gtcatctgat | cagaacgtaa |
| 840    | ggacactttc | atactgattt | gaactgcgag  | ggaatgtttg | caagttccgt | gtagatgtta |
| 900    | tacatttaga | ttaaaaagtt | aattcattga  | tggtgaaaca | aactatccac | catttttcag |
| 960    | tcagatttct | aacttttgaa | caggttatga  | aagtttgttt | tcaccgatga | aatgtgaaaa |
| 1020   | ttttagagca | gagttggtaa | accettaatg  | tgatgactgt | aattagagtt | ggattgttag |
| 1080   | ccggaggctg | cgttaacaat | aaagtggaaa  | agatccaggt | acagagttat | tctgataatg |
| 1140   | tacagaaaga | tatattcact | ctgagcactt  | attttatgat | ggttttactt | catattccaa |
| 1200   | actttcacaa | ttccttgttt | gtttttctgg  | aaacagtaaa | tcacagtaga | gttaaaagaa |
| 1260   | agaatacttg | tgatggttga | agtgaaaatt  | cttggatctc | cattagaata | catttaaaat |
| 1320   | aaggcaaaat | ctttaatttt | tctctacaaa  | tgcctggccc | cctgtgagga | aaaaattcag |
| 1380   | cttgactaac | ctctgaaaaa | actttgctca  | aaccggagag | cattggaaaa | catttggcat |
| . 1440 | gccagaaaag | cttgtcagtg | atgcctgaaa  | ttttcattct | gtaagaatag | attgatatca |
| 1500   | cattcccaag | taacaggctg | atacacagtg  | cagcacacga | tgaacttatc | atgaaatatt |
| 1560   | gaatttgccg | tattttcttt | aatctcaatt  | tagcaacaac | ttttagatgt | acactggaaa |
| 1620   | tgcctccctc | ctctaccaga | aagttgatga  | ttccagaaat | aactttatat | caactcaaag |
| 1680   | ttctaaggag | taactacgtt | aggaatgcaa  | gaaaatcagt | tactagtatt | ttacccatgt |
| 1740   | cttcatttgc | gtggcaataa | ttggaagctg  | actgaagact | catttcacac | caacttgact |
| 1800   | cttgattgat | tggccaaagt | cagcaagcac  | cactcaggag | tcctctcctt | tcctgtgaat |
| 1860   | ggttcaggat | gtggccagca | tcccatgtgc  | tgactctcca | attacctgtg | tggccagcaa |
| 1920   | gtgctgtgct | tgtctggcat | acagcactgg. | atgtcacagg | cggtgtcgga | gtccgcctct |
| 1980   | cctgtggtat | gtttccatgg | ctgtgccacc  | cacgggggtc | tgatcctgct | ctgttcctgc |
| 2040   | tcccagcagg | ccaggaaagc | aaaaggaagc  | gctccaggcc | tgtgggcctg | atgaaaatga |
| 2100   | ggtggagaac | atgcctactg | agtgagcggg  | tgtttcttac | atgatgcatt | aacatctgct |

| cttatggtcc | aggagctgga | gaacttcaat | cccccttca  | agttgtgtct | tcataagcgg | 2160 |
|------------|------------|------------|------------|------------|------------|------|
| gacttcattc | ctggcaagtg | gatcattgac | aatatcattg | actccattga | aaagagccac | 2220 |
| aaaactgtct | ttgtgctttc | tgaaaacttt | gtgaagagtg | agtggtgcaa | gtatgaactg | 2280 |
| gacttctccc | atttccgtct | ttttgaagag | aacaatgatg | ctgccattct | cattcttctg | 2340 |
| gagcccattg | agaaaaaagc | cattccccag | cgcttctgca | agctgcggaa | gataatgaac | 2400 |
| accaagacct | acctggagtg | gcccatggac | gaggctcagc | gggaaggatt | ttgggtaaat | 2460 |
| ctgagagctg | cgataaagtc | ctaggttccc | atatttaaga | ccagtctttg | tctagttggg | 2520 |
| atctttatgt | cactagttat | agttaagttc | attcagacat | aattatataa | aaactacgtg | 2580 |
| gatgtaccgt | catttgagga |            |            |            |            | 2600 |

<211> 784

<212> PRT

<213> Homo sapiens

<400> 4

Met Pro His Thr Leu Trp Met Val Trp Val Leu Gly Val Ile Ile Ser 1 5 10 15

Leu Ser Lys Glu Glu Ser Ser Asn Gln Ala Ser Leu Ser Cys Asp Arg 20 25 30

Asn Gly Ile Cys Lys Gly Ser Ser Gly Ser Leu Asn Ser Ile Pro Ser 35 40 45

Gly Leu Thr Glu Ala Val Lys Ser Leu Asp Leu Ser Asn Asn Arg Ile 50 60

Thr Tyr Ile Ser Asn Ser Asp Leu Gln Arg Cys Val Asn Leu Gln Ala 65 70 75 80

Leu Val Leu Thr Ser Asn Gly Ile Asn Thr Ile Glu Glu Asp Ser Phe 85 90 95

Ser Ser Leu Gly Ser Leu Glu His Leu Asp Leu Ser Tyr Asn Tyr Leu 100 105 110

Ser Asn Leu Ser Ser Ser Trp Phe Lys Pro Leu Ser Ser Leu Thr Phe 115 120 125

Leu Asn Leu Leu Gly Asn Pro Tyr Lys Thr Leu Gly Glu Thr Ser Leu 130 135 140

Phe Ser His Leu Thr Lys Leu Gln Ile Leu Arg Val Gly Asn Met Asp 145 150 155 160

Thr Phe Thr Lys Ile Gln Arg Lys Asp Phe Ala Gly Leu Thr Phe Leu 165 170 175

Glu Glu Leu Glu Ile Asp Ala Ser Asp Leu Gln Ser Tyr Glu Pro Lys 180 185 190

# WO 2004/094671 - 4 - PCT/US2004/012788

Ser Leu Lys Ser Ile Gln Asn Val Ser His Leu Ile Leu His Met Lys 200 Gln His Ile Leu Leu Leu Glu Ile Phe Val Asp Val Thr Ser Ser Val 215 Glu Cys Leu Glu Leu Arg Asp Thr Asp Leu Asp Thr Phe His Phe Ser 230 Glu Leu Ser Thr Gly Glu Thr Asn Ser Leu Ile Lys Lys Phe Thr Phe Arg Asn Val Lys Ile Thr Asp Glu Ser Leu Phe Gln Val Met Lys Leu 265 Leu Asn Gln Ile Ser Gly Leu Leu Glu Leu Glu Phe Asp Asp Cys Thr 280 Leu Asn Gly Val Gly Asn Phe Arg Ala Ser Asp Asn Asp Arg Val Ile 295 Asp Pro Gly Lys Val Glu Thr Leu Thr Ile Arg Arg Leu His Ile Pro 310 Arg Phe Tyr Leu Phe Tyr Asp Leu Ser Thr Leu Tyr Ser Leu Thr Glu 330 Arg Val Lys Arg Ile Thr Val Glu Asn Ser Lys Val Phe Leu Val Pro 345 Cys Leu Leu Ser Gln His Leu Lys Ser Leu Glu Tyr Leu Asp Leu Ser Glu Asn Leu Met Val Glu Glu Tyr Leu Lys Asn Ser Ala Cys Glu Asp Ala Trp Pro Ser Leu Gln Thr Leu Ile Leu Arg Gln Asn His Leu Ala Ser Leu Glu Lys Thr Gly Glu Thr Leu Leu Thr Leu Lys Asn Leu Thr Asn Ile Asp Ile Ser Lys Asn Ser Phe His Ser Met Pro Glu Thr Cys 425 Gln Trp Pro Glu Lys Met Lys Tyr Leu Asn Leu Ser Ser Thr Arg Ile His Ser Val Thr Gly Cys Ile Pro Lys Thr Leu Glu Ile Leu Asp Val Ser Asn Asn Asn Leu Asn Leu Phe Ser Leu Asn Leu Pro Gln Leu Lys Glu Leu Tyr Ile Ser Arg Asn Lys Leu Met Thr Leu Pro Asp Ala Ser 490 Leu Leu Pro Met Leu Leu Val Leu Lys Ile Ser Arg Asn Ala Ile Thr 505

Thr Phe Ser Lys Glu Gln Leu Asp Ser Phe His Thr Leu Lys Thr Leu

515 520 Glu Ala Gly Gly Asn Asn Phe Ile Cys Ser Cys Glu Phe Leu Ser Phe 535 Thr Gln Glu Gln Ala Leu Ala Lys Val Leu Ile Asp Trp Pro Ala Asn Tyr Leu Cys Asp Ser Pro Ser His Val Arg Gly Gln Gln Val Gln 570 Asp Val Arg Leu Ser Val Ser Glu Cys His Arg Thr Ala Leu Val Ser Gly Met Cys Cys Ala Leu Phe Leu Leu Ile Leu Leu Thr Gly Val Leu Cys His Arg Phe His Gly Leu Trp Tyr Met Lys Met Met Trp Ala Trp Leu Gln Ala Lys Arg Lys Pro Arg Lys Ala Pro Ser Arg Asn Ile Cys 635 Tyr Asp Ala Phe Val Ser Tyr Ser Glu Arg Asp Ala Tyr Trp Val Glu Asn Leu Met Val Gln Glu Leu Glu Asn Phe Asn Pro Pro Phe Lys Leu Cys Leu His Lys Arg Asp Phe Ile Pro Gly Lys Trp Ile Ile Asp Asn Ile Ile Asp Ser Ile Glu Lys Ser His Lys Thr Val Phe Val Leu Ser 690 Glu Asn Phe Val Lys Ser Glu Trp Cys Lys Tyr Glu Leu Asp Phe Ser His Phe Arg Leu Phe Glu Glu Asn Asn Asp Ala Ala Ile Leu Ile Leu Leu Glu Pro Ile Glu Lys Lys Ala Ile Pro Gln Arg Phe Cys Lys Leu Arg Lys Ile Met Asn Thr Lys Thr Tyr Leu Glu Trp Pro Met Asp Glu 760 Ala Gln Arg Glu Gly Phe Trp Val Asn Leu Arg Ala Ala Ile Lys Ser 775 <210> <211> 2824 <212> DNA <213> murine

<400> 5

gecececatg gecatatggg caceggggag eggeggetgg aggaetecta ggeteetggg 60
caggeggtea catggeagaa gatgtgteeg caateatagt ttetgatggt gaaggttgga 120
eggeagtete tgegaeetag aagtggaaaa gatgtegtte aaggaggtge ggaetgtte 180

| cttctgacca<br>tctggagcat | ggatcttgtt<br>ccgaattgca | tctgagtgta<br>tcaccggtca | ggggcttcac<br>gaaaacaact | ttctctgctt<br>taccgaaacc | ttcgttcatc<br>tcagacaaag | 240<br>300 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| cgtcaaatct               | cagaggatgc               | tacgagetet               | ttggctcttc               | tggatcttgg               | tggccataac               | 360        |
| agtcctcttc               | agcaaacgct               | gttctgctca               | ggagtetetg               | tcatgtgatg               | cttctggggt               | 420        |
| gtgtgatggc               | cgctccaggt               | ctttcacctc               | tattccctcc               | ggactcacag               | cagccatgaa               | 480        |
| aagccttgac               | ctgtctttca               | acaagatcac               | ctacattggc               | catggtgacc               | tccgagcgtg               | 540        |
| tgcgaacctc               | caggttctga               | ttttgaagtc               | cagcagaatc               | aatacaatag               | agggagacgc               | 600        |
| cttttattct               | ctgggcagtc               | ttgaacattt               | ggatttgtct               | gataatcacc               | tatctagttt               | 660        |
| atcttcctcc               | tggttcgggc               | ccctttcctc               | tttgaaatac               | ttaaacttaa               | tgggaaatcc               | 720        |
| ttaccagaca               | ctgggggtaa               | catcgctttt               | tcccaatctc               | acaaatttac               | aaaccctcag               | 780        |
| gataggaaat               | gtagagactt               | tcagtgagat               | aaggagaata               | gattttgctg               | ggctgacttc               | 840        |
| tctcaatgaa               | cttgaaatta               | aggcattaag               | tctccggaat               | tatcagtccc               | aaagtctaaa               | 900        |
| gtcgatccgc               | gacatccatc               | acctgactct               | tcacttaagc               | gagtctgctt               | tcctgctgga               | 960        |
| gatttttgca               | gatattctga               | gttctgtgag               | atatttagaa               | ctaagagata               | ctaacttggc               | 1020       |
| caggttccag               | ttttcaccac               | tgcccgtaga               | tgaagtcagc               | tcaccgatga               | agaagctggc               | 1080       |
| attccgaggc               | teggttetea               | ctgatgaaag               | ctttaacgag               | ctcctgaagc               | tgttgcgtta               | 1140       |
| catcttggaa               | ctgtcggagg               | tagagttcga               | cgactgtacc               | ctcaatgggc               | tcggcgattt               | 1200       |
| caacccctcg               | gagtcagacg               | tagtgagcga               | gctgggtaaa               | gtagaaacag               | tcactatccg               | 1260       |
| gaggttgcat               | atcccccagt               | tctatttgtt               | ttatgacctg               | agtactgtct               | attccctcct               | 1320       |
| ggagaaggtg               | aagcgaatca               | cagtagagaa               | cagcaaggtc               | ttcctggttc               | cctgctcgtt               | 1380       |
| ctcccagcat               | ttaaaatcat               | tagaattett               | agacctcagc               | gaaaatctga               | tggttgaaga               | 1440       |
| atatttgaag               | aactcagcct               | gtaagggagc               | ctggccttct               | ctacaaacct               | tagttttgag               | 1500       |
| ccagaatcat               | ttgagatcaa               | tgcaaaaaac               | aggagagatt               | ttgctgactc               | tgaaaaacct               | 1560       |
| gacctccctt               | gacatcagca               | ggaacacttt               | tcatccgatg               | cccgacaget               | gtcagtggcc               | 1620       |
| agaaaagatg               | cgcttcctga               | atttgtccag               | tacagggatc               | cgggtggtaa               | aaacgtgcat               | 1680       |
| tcctcagacg               | ctggaggtgt               | tggatgttag               | taacaacaat               | cttgactcat               | tttctttgtt               | 1740       |
| cttgcctcgg               | ctgcaagagc               | tctatatttc               | cagaaataag               | ctgaaaacac               | tcccagatgc               | 1800       |
| ttcgttgttc               | cctgtgttgc               | tggtcatgaa               | aatcagagag               | aatgcagtaa               | gtactttctc               | 1860       |
| taaagaccaa               | cttggttctt               | ttcccaaact               | ggagactctg               | gaagcaggcg               | acaaccactt               | 1920       |
| tgtttgctcc               | tgcgaactcc               | tatcctttac               | tatggagacg               | ccagctctgg               | ctcaaatcct               | 1980       |
| ggttgactgg               | ccagacagct               | acctgtgtga               | ctctccgcct               | cgcctgcacg               | gccacaggct               | 2040       |
| tcaggatgcc               | cggccctccg               | tcttggaatg               | tcaccaggct               | gcactggtgt               | ctggagtctg               | 2100       |

| ctgtgccctt | ctcctgttga | tcttgctcgt | aggtgccctg | tgccaccatt | tccacgggct | 2160 |
|------------|------------|------------|------------|------------|------------|------|
| gtggtacctg | agaatgatgt | gggcgtggct | ccaggccaag | aggaagccca | agaaagctcc | 2220 |
| ctgcagggac | gtttgctatg | atgcctttgt | ttcctacagt | gagcaggatt | cccattgggt | 2280 |
| ggagaacctc | atggtccagc | agctggagaa | ctctgacccg | ccctttaagc | tgtgtctcca | 2340 |
| caagcgggac | ttcgttccgg | gcaaatggat | cattgacaac | atcatcgatt | ccatcgaaaa | 2400 |
| gagccacaaa | actgtgttcg | tgctttctga | gaacttcgta | cggagcgagt | ggtgcaagta | 2460 |
| cgaactggac | ttctcccact | tcaggctctt | tgacgagaac | aacgacgcgg | ccatccttgt | 2520 |
| tttgctggag | cccattgaga | ggaaagccat | tccccagcgc | ttctgcaaac | tgcgcaagat | 2580 |
| aatgaacacc | aagacctacc | tggagtggcc | cttggatgaa | ggccagcagg | aagtgttttg | 2640 |
| ggtaaatctg | agaactgcaa | taaagtccta | ggttctccac | ccagttcctg | acttccttaa | 2700 |
| ctaaggtctt | tgtgacacaa | actgtaacaa | agtttataag | taacatagaa | ttgtattatt | 2760 |
| gaggatatta | actatgggtt | ttgtcttgaa | tactgttata | taaatatgtg | acatcaggct | 2820 |
| ttag       |            |            |            |            |            | 2824 |

<211> . 784

<212> PRT

<213> murine

<400> 6

Met Leu Arg Ala Leu Trp Leu Phe Trp Ile Leu Val Ala Ile Thr Val 1 5 10 15

Leu Phe Ser Lys Arg Cys Ser Ala Gln Glu Ser Leu Ser Cys Asp Ala 20 25 30

Ser Gly Val Cys Asp Gly Arg Ser Arg Ser Phe Thr Ser Ile Pro Ser 35 40 45

Gly Leu Thr Ala Ala Met Lys Ser Leu Asp Leu Ser Phe Asn Lys Ile 50 55 60

Thr Tyr Ile Gly His Gly Asp Leu Arg Ala Cys Ala Asn Leu Gln Val 65 70 75 80

Leu Ile Leu Lys Ser Ser Arg Ile Asn Thr Ile Glu Gly Asp Ala Phe 85 90 95

Tyr Ser Leu Gly Ser Leu Glu His Leu Asp Leu Ser Asp Asn His Leu 100 105 110

Ser Ser Leu Ser Ser Ser Trp Phe Gly Pro Leu Ser Ser Leu Lys Tyr 115 120 125

Leu Asn Leu Met Gly Asn Pro Tyr Gln Thr Leu Gly Val Thr Ser Leu 130 135 140

### WO 2004/094671 - 8 - PCT/US2004/012788

Phe Pro Asn Leu Thr Asn Leu Gln Thr Leu Arq Ile Gly Asn Val Glu 150 Thr Phe Ser Glu Ile Arg Arg Ile Asp Phe Ala Gly Leu Thr Ser Leu Asn Glu Leu Glu Ile Lys Ala Leu Ser Leu Arg Asn Tyr Gln Ser Gln Ser Leu Lys Ser Ile Arg Asp Ile His His Leu Thr Leu His Leu Ser 200 Glu Ser Ala Phe Leu Leu Glu Ile Phe Ala Asp Ile Leu Ser Ser Val 215 Arg Tyr Leu Glu Leu Arg Asp Thr Asn Leu Ala Arg Phe Gln Phe Ser 230 Pro Leu Pro Val Asp Glu Val Ser Ser Pro Met Lys Lys Leu Ala Phe 250 Arg Gly Ser Val Leu Thr Asp Glu Ser Phe Asn Glu Leu Leu Lys Leu 265 Leu Arg Tyr Ile Leu Glu Leu Ser Glu Val Glu Phe Asp Asp Cys Thr Leu Asn Gly Leu Gly Asp Phe Asn Pro Ser Glu Ser Asp Val Val Ser Glu Leu Gly Lys Val Glu Thr Val Thr Ile Arg Arg Leu His Ile Pro 315 Gln Phe Tyr Leu Phe Tyr Asp Leu Ser Thr Val Tyr Ser Leu Leu Glu Lys Val Lys Arg Ile Thr Val Glu Asn Ser Lys Val Phe Leu Val Pro Cys Ser Phe Ser Gln His Leu Lys Ser Leu Glu Phe Leu Asp Leu Ser Glu Asn Leu Met Val Glu Glu Tyr Leu Lys Asn Ser Ala Cys Lys Gly 375 Ala Trp Pro Ser Leu Gln Thr Leu Val Leu Ser Gln Asn His Leu Arg Ser Met Gln Lys Thr Gly Glu Ile Leu Leu Thr Leu Lys Asn Leu Thr Ser Leu Asp Ile Ser Arg Asn Thr Phe His Pro Met Pro Asp Ser Cys Gln Trp Pro Glu Lys Met Arg Phe Leu Asn Leu Ser Ser Thr Gly Ile 440 Arg Val Val Lys Thr Cys Ile Pro Gln Thr Leu Glu Val Leu Asp Val Ser Asn Asn Asn Leu Asp Ser Phe Ser Leu Phe Leu Pro Arg Leu Gln

- 465 470 475 Glu Leu Tyr Ile Ser Arg Asn Lys Leu Lys Thr Leu Pro Asp Ala Ser 485 490
- Leu Phe Pro Val Leu Leu Val Met Lys Ile Arg Glu Asn Ala Val Ser
- Thr Phe Ser Lys Asp Gln Leu Gly Ser Phe Pro Lys Leu Glu Thr Leu 520
- Glu Ala Gly Asp Asn His Phe Val Cys Ser Cys Glu Leu Leu Ser Phe
- Thr Met Glu Thr Pro Ala Leu Ala Gln Ile Leu Val Asp Trp Pro Asp 550 555
- Ser Tyr Leu Cys Asp Ser Pro Pro Arg Leu His Gly His Arg Leu Gln
- Asp Ala Arg Pro Ser Val Leu Glu Cys His Gln Ala Ala Leu Val Ser
- Gly Val Cys Cys Ala Leu Leu Leu Leu Leu Leu Val Gly Ala Leu 600
- Cys His His Phe His Gly Leu Trp Tyr Leu Arg Met Met Trp Ala Trp 615
- Leu Gln Ala Lys Arg Lys Pro Lys Lys Ala Pro Cys Arg Asp Val Cys
- Tyr Asp Ala Phe Val Ser Tyr Ser Glu Gln Asp Ser His Trp Val Glu 650
- Asn Leu Met Val Gln Gln Leu Glu Asn Ser Asp Pro Pro Phe Lys Leu 660
- Cys Leu His Lys Arg Asp Phe Val Pro Gly Lys Trp Ile Ile Asp Asn 680
- Ile Ile Asp Ser Ile Glu Lys Ser His Lys Thr Val Phe Val Leu Ser
- Glu Asn Phe Val Arg Ser Glu Trp Cys Lys Tyr Glu Leu Asp Phe Ser
- His Phe Arg Leu Phe Asp Glu Asn Asn Asp Ala Ala Ile Leu Val Leu
- Leu Glu Pro Ile Glu Arg Lys Ala Ile Pro Gln Arg Phe Cys Lys Leu
- Arg Lys Ile Met Asn Thr Lys Thr Tyr Leu Glu Trp Pro Leu Asp Glu
- Gly Gln Gln Glu Val Phe Trp Val Asn Leu Arg Thr Ala Ile Lys Ser

<211> 3029 <212> DNA

<213> Homo sapiens gcggccgcgt cgacgaaatg tctggatttg gactaaagaa aaaaggaaag gctagcagtc 60 atccaacaga atcatgagac agactttgcc ttgtatctac ttttggggggg gccttttgcc 120 ctttgggatg ctgtgtgcat cctccaccac caagtgcact gttagccatg aagttgctga 180 ctgcagccac ctgaagttga ctcaggtacc cgatgatcta cccacaaaca taacagtgtt 240 gaacettace cataateaac teagaagatt accageegee aactteacaa ggtatageea 300 qctaactagc ttggatgtag gatttaacac catctcaaaa ctggagccag aattgtgcca 360 gaaacttccc atgttaaaag ttttgaacct ccagcacaat gagctatctc aactttctga 420 taaaacettt geettetgea egaatttgae tgaacteeat eteatgteea aeteaateea 480 gaaaattaaa aataatccct ttgtcaagca gaagaattta atcacattag atctgtctca 540 taatggettg teatetacaa aattaggaac teaggtteag etggaaaate tecaagaget 600 tctattatca aacaataaaa ttcaagcgct aaaaagtgaa gaactggata tctttgccaa 660 ttcatcttta aaaaaattag agttgtcatc gaatcaaatt aaagagtttt ctccagggtg 720 ttttcacgca attggaagat tatttggcct ctttctgaac aatgtccagc tgggtcccag 780 ccttacagag aagctatgtt tggaattagc aaacacaagc attcggaatc tgtctctgag 840 taacagccag ctgtccacca ccagcaatac aactttcttg ggactaaagt ggacaaatct 900 cactatgete gatettteet acaacaactt aaatgtggtt ggtaacgatt cetttgettg 960 gcttccacaa ctagaatatt tcttcctaga gtataataat atacagcatt tgttttctca 1020 ctctttgcac gggcttttca atgtgaggta cctgaatttg aaacggtctt ttactaaaca 1080 aagtatttcc cttgcctcac tccccaagat tgatgatttt tcttttcagt ggctaaaatg 1140 tttggagcac cttaacatgg aagataatga tattccaggc ataaaaagca atatgttcac 1200 aggattgata aacctgaaat acttaagtet atecaactee tttacaagtt tgcgaacttt 1260 gacaaatgaa acatttgtat cacttgctca ttctccctta cacatactca acctaaccaa 1320 gaataaaatc tcaaaaatag agagtgatgc tttctcttgg ttgggccacc tagaagtact 1380 tgacctgggc cttaatgaaa ttgggcaaga actcacaggc caggaatgga gaggtctaga 1440 aaatattttc gaaatctatc tttcctacaa caagtacctg cagctgacta ggaactcctt 1500 tgccttggtc ccaagccttc aacgactgat gctccgaagg gtggccctta aaaatgtgga 1560 tagetetect teaceattee ageetetteg taacttgace attetggate taageaacaa 1620 caacatagcc aacataaatg atgacatgtt ggagggtctt gagaaactag aaattctcga 1680 tttgcagcat aacaacttag cacggctctg gaaacacgca aaccctggtg gtcccattta 1740 tttcctaaag ggtctgtctc acctccacat ccttaacttg gagtccaacg gctttgacga

1800

| gatcccagtt gaggtcttca aggatttatt tgaactaaag atcatcgatt taggattgaa taatttaaac acacttccag catctgtctt taataatcag gtgtctctaa agtcattgaa | 1860<br>1920 |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ccttcagaag aatctcataa catccgttga gaagaaggtt ttcgggccag ctttcaggaa                                                                   | 1980         |
| cctgactgag ttagatatgc gctttaatcc ctttgattgc acgtgtgaaa gtattgcctg                                                                   | 2040         |
| gtttgttaat tggattaacg agacccatac caacatccct gagctgtcaa gccactacct                                                                   | 2100         |
| ttgcaacact ccacctcact atcatgggtt cccagtgaga ctttttgata catcatcttg                                                                   | 2160         |
| caaagacagt gccccctttg aactcttttt catgatcaat accagtatcc tgttgatttt                                                                   | 2220         |
| tatctttatt gtacttctca tccactttga gggctggagg atatcttttt attggaatgt                                                                   | 2280         |
| ttcagtacat cgagttcttg gtttcaaaga aatagacaga cagacagaac agtttgaata                                                                   | 2340         |
| tgcagcatat ataattcatg cctataaaga taaggattgg gtctgggaac atttctcttc                                                                   | 2400         |
| aatggaaaag gaagaccaat ctctcaaatt ttgtctggaa gaaagggact ttgaggcggg                                                                   | 2460         |
| tgtttttgaa ctagaagcaa ttgttaacag catcaaaaga agcagaaaaa ttatttttgt                                                                   | 2520         |
| tataacacac catctattaa aagacccatt atgcaaaaga ttcaaggtac atcatgcagt                                                                   | 2580         |
| tcaacaaget attgaacaaa atetggatte cattatattg gtttteettg aggagattee                                                                   | 2640         |
| agattataaa ctgaaccatg cactctgttt gcgaagagga atgtttaaat ctcactgcat                                                                   | 2700         |
| cttgaactgg ccagttcaga aagaacggat aggtgccttt cgtcataaat tgcaagtagc                                                                   | 2760         |
| acttggatcc aaaaactctg tacattaaat ttatttaaat attcaattag caaaggagaa                                                                   | 2820         |
| actttctcaa tttaaaaagt tctatggcaa atttaagttt tccataaagg tgttataatt                                                                   | 2880         |
| tgtttattca tatttgtaaa tgattatatt ctatcacaat tacatctctt ctaggaaaat                                                                   | 2940         |
| gtgtctcctt atttcaggcc tatttttgac aattgactta attttaccca aaataaaaca                                                                   | 3000         |
| tataagcacg caaaaaaaaa aaaaaaaaa                                                                                                     | 3029         |

<211> 904

<212> PRT

<213> Homo sapiens

<400> 8

Met Arg Gln Thr Leu Pro Cys Ile Tyr Phe Trp Gly Gly Leu Leu Pro 1 5 10 15

Phe Gly Met Leu Cys Ala Ser Ser Thr Thr Lys Cys Thr Val Ser His 20 25 30

Glu Val Ala Asp Cys Ser His Leu Lys Leu Thr Gln Val Pro Asp Asp 35 40 45

Leu Pro Thr Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu Arg 50 55 60

Arg Leu Pro Ala Ala Asn Phe Thr Arg Tyr Ser Gln Leu Thr Ser Leu

65 70 75 Asp Val Gly Phe Asn Thr Ile Ser Lys Leu Glu Pro Glu Leu Cys Gln Lys Leu Pro Met Leu Lys Val Leu Asn Leu Gln His Asn Glu Leu Ser Gln Leu Ser Asp Lys Thr Phe Ala Phe Cys Thr Asn Leu Thr Glu Leu 120 His Leu Met Ser Asn Ser Ile Gln Lys Ile Lys Asn Asn Pro Phe Val Lys Gln Lys Asn Leu Ile Thr Leu Asp Leu Ser His Asn Gly Leu Ser Ser Thr Lys Leu Gly Thr Gln Val Gln Leu Glu Asn Leu Gln Glu Leu Leu Leu Ser Asn Asn Lys Ile Gln Ala Leu Lys Ser Glu Glu Leu Asp Ile Phe Ala Asn Ser Ser Leu Lys Lys Leu Glu Leu Ser Ser Asn Gln Ile Lys Glu Phe Ser Pro Gly Cys Phe His Ala Ile Gly Arg Leu Phe 210 215 Gly Leu Phe Leu Asn Asn Val Gln Leu Gly Pro Ser Leu Thr Glu Lys Leu Cys Leu Glu Leu Ala Asn Thr Ser Ile Arg Asn Leu Ser Leu Ser Asn Ser Gln Leu Ser Thr Thr Ser Asn Thr Thr Phe Leu Gly Leu Lys Trp Thr Asn Leu Thr Met Leu Asp Leu Ser Tyr Asn Asn Leu Asn Val 275 280 Val Gly Asn Asp Ser Phe Ala Trp Leu Pro Gln Leu Glu Tyr Phe Phe Leu Glu Tyr Asn Asn Ile Gln His Leu Phe Ser His Ser Leu His Gly 310 315 Leu Phe Asn Val Arg Tyr Leu Asn Leu Lys Arg Ser Phe Thr Lys Gln Ser Ile Ser Leu Ala Ser Leu Pro Lys Ile Asp Asp Phe Ser Phe Gln Trp Leu Lys Cys Leu Glu His Leu Asn Met Glu Asp Asn Asp Ile Pro Gly Ile Lys Ser Asn Met Phe Thr Gly Leu Ile Asn Leu Lys Tyr Leu 370 375 Ser Leu Ser Asn Ser Phe Thr Ser Leu Arg Thr Leu Thr Asn Glu Thr 390 395 Phe Val Ser Leu Ala His Ser Pro Leu His Ile Leu Asn Leu Thr Lys

### WO 2004/094671 - 13 - PCT/US2004/012788

405 410 Asn Lys Ile Ser Lys Ile Glu Ser Asp Ala Phe Ser Trp Leu Gly His 425 Leu Glu Val Leu Asp Leu Gly Leu Asn Glu Ile Gly Gln Glu Leu Thr Gly Gln Glu Trp Arg Gly Leu Glu Asn Ile Phe Glu Ile Tyr Leu Ser Tyr Asn Lys Tyr Leu Gln Leu Thr Arg Asn Ser Phe Ala Leu Val Pro Ser Leu Gln Arg Leu Met Leu Arg Arg Val Ala Leu Lys Asn Val Asp 490 Ser Ser Pro Ser Pro Phe Gln Pro Leu Arg Asn Leu Thr Ile Leu Asp 500 505 Leu Ser Asn Asn Asn Ile Ala Asn Ile Asn Asp Asp Met Leu Glu Gly 520 Leu Glu Lys Leu Glu Ile Leu Asp Leu Gln His Asn Asn Leu Ala Arg 535 Leu Trp Lys His Ala Asn Pro Gly Gly Pro Ile Tyr Phe Leu Lys Gly 555 Leu Ser His Leu His Ile Leu Asn Leu Glu Ser Asn Gly Phe Asp Glu 570 Ile Pro Val Glu Val Phe Lys Asp Leu Phe Glu Leu Lys Ile Ile Asp 585 Leu Gly Leu Asn Asn Leu Asn Thr Leu Pro Ala Ser Val Phe Asn Asn Gln Val Ser Leu Lys Ser Leu Asn Leu Gln Lys Asn Leu Ile Thr Ser Val Glu Lys Lys Val Phe Gly Pro Ala Phe Arg Asn Leu Thr Glu Leu Asp Met Arg Phe Asn Pro Phe Asp Cys Thr Cys Glu Ser Ile Ala Trp 650 Phe Val Asn Trp Ile Asn Glu Thr His Thr Asn Ile Pro Glu Leu Ser Ser His Tyr Leu Cys Asn Thr Pro Pro His Tyr His Gly Phe Pro Val Arg Leu Phe Asp Thr Ser Ser Cys Lys Asp Ser Ala Pro Phe Glu Leu Phe Phe Met Ile Asn Thr Ser Ile Leu Leu Ile Phe Ile Phe Ile Val Leu Leu Ile His Phe Glu Gly Trp Arg Ile Ser Phe Tyr Trp Asn Val Ser Val His Arg Val Leu Gly Phe Lys Glu Ile Asp Arg Gln Thr Glu

740 750 745 Gln Phe Glu Tyr Ala Ala Tyr Ile Ile His Ala Tyr Lys Asp Lys Asp 760 Trp Val Trp Glu His Phe Ser Ser Met Glu Lys Glu Asp Gln Ser Leu Lys Phe Cys Leu Glu Glu Arg Asp Phe Glu Ala Gly Val Phe Glu Leu 790 Glu Ala Ile Val Asn Ser Ile Lys Arg Ser Arg Lys Ile Ile Phe Val Ile Thr His His Leu Leu Lys Asp Pro Leu Cys Lys Arg Phe Lys Val 825 His His Ala Val Gln Gln Ala Ile Glu Gln Asn Leu Asp Ser Ile Ile Leu Val Phe Leu Glu Glu Ile Pro Asp Tyr Lys Leu Asn His Ala Leu 855 Cys Leu Arg Arg Gly Met Phe Lys Ser His Cys Ile Leu Asn Trp Pro 870 Val Gln Lys Glu Arg Ile Gly Ala Phe Arg His Lys Leu Gln Val Ala 885 890 Leu Gly Ser Lys Asn Ser Val His 900 <210> 9 <211> 3310 <212> DNA <213> murine <400> 9 tagaatatga tacagggatt gcacccataa tctgggctga atcatgaaag ggtgttcctc 60 ttatctaatg tactcctttg ggggactttt gtccctatgg attcttctgg tgtcttccac 120 aaaccaatgc actgtgagat acaacgtagc tgactgcagc catttgaagc taacacacat 180 acctgatgat cttccctcta acataacagt gttgaatctt actcacaacc aactcaqaaq 240 attaccacct accaacttta caagatacag ccaacttgct atcttggatg caggatttaa 300

ctccatttca aaactggagc cagaactgtg ccaaatactc cctttgttga aagtattgaa

cetgcaacat aatgagetet etcagattte tgateaaace tttgtettet geacgaacet

gacagaactc gatctaatgt ctaactcaat acacaaaatt aaaagcaacc ctttcaaaaa

ccagaagaat ctaatcaaat tagatttgtc tcataatggt ttatcatcta caaagttggg

aacgggggtc caactggaga acctccaaga actgctctta gcaaaaaata aaatccttgc

gttgcgaagt gaagaacttg agtttcttgg caattcttct ttacgaaagt tggacttgtc

atcaaatcca cttaaagagt tctccccggg gtgtttccag acaattggca agttattcgc

360

420

480

540

600

660

720

|            | aacaacgccc<br>agcatccaga |            |            |            |            | 780<br>840 |
|------------|--------------------------|------------|------------|------------|------------|------------|
| gagcactttc | tctgggctga               | agtggacaaa | tctcacccag | ctcgatcttt | cctacaacaa | 900        |
| cctccatgat | gtcggcaacg               | gttccttctc | ctatctccca | agcctgaggt | atctgtctct | 960        |
| ggagtacaac | aatatacagc               | gtctgtcccc | tcgctctttt | tatggactct | ccaacctgag | 1020       |
| gtacctgagt | ttgaagcgag               | catttactaa | gcaaagtgtt | tcacttgctt | cacatcccaa | 1080       |
| cattgacgat | ttttcctttc               | aatggttaaa | atatttggaa | tatctcaaca | tggatgacaa | 1140       |
| taatattcca | agtaccaaaa               | gcaatacctt | cacgggattg | gtgagtctga | agtacctaag | 1200       |
| tctttccaaa | actttcacaa               | gtttgcaaac | tttaacaaat | gaaacatttg | tgtcacttgc | 1260       |
| tcattctccc | ttgctcactc               | tcaacttaac | gaaaaatcac | atctcaaaaa | tagcaaatgg | 1320       |
| tactttctct | tggttaggcc               | aactcaggat | acttgatctc | ggccttaatg | aaattgaaca | 1380       |
| aaaactcagc | ggccaggaat               | ggagaggtct | gagaaatata | tttgagatct | acctatccta | 1440       |
| taacaaatac | ctccaactgt               | ctaccagttc | ctttgcattg | gtccccagcc | ttcaaagact | 1500       |
| gatgctcagg | agggtggccc               | ttaaaaatgt | ggatatctcc | ccttcacctt | teegeeetet | 1560       |
| tcgtaacttg | accattctgg               | acttaagcaa | caacaacata | gccaacataa | atgaggactt | 1620       |
| gctggagggt | cttgagaatc               | tagaaatcct | ggattttcag | cacaataact | tagccaggct | 1680       |
| ctggaaacgc | gcaaaccccg               | gtggtcccgt | taatttcctg | aaggggctgt | ctcacctcca | 1740       |
| catcttgaat | ttagagtcca               | acggcttaga | tgaaatccca | gtcggggttt | tcaagaactt | 1800       |
| attcgaacta | aagagcatca               | atctaggact | gaataactta | aacaaacttg | aaccattcat | 1860       |
| ttttgatgac | cagacatete               | taaggtcact | gaacctccag | aagaacctca | taacatctgt | 1920       |
| tgagaaggat | gttttcgggc               | cgccttttca | aaacctgaac | agtttagata | tgcgcttcaa | 1980       |
| tccgttcgac | tgcacgtgtg               | aaagtatttc | ctggtttgtt | aactggatca | accagaccca | 2040       |
| cactaatatc | tttgagctgt               | ccactcacta | cctctgtaac | actccacatc | attattatgg | 2100       |
| cttccccctg | aagcttttcg               | atacatcatc | ctgtaaagac | agcgccccct | ttgaactcct | 2160       |
| cttcataatc | agcaccagta               | tgctcctggt | ttttatactt | gtggtactgc | tcattcacat | 2220       |
| cgagggctgg | aggatctctt               | tttactggaa | tgtttcagtg | catcggattc | ttggtttcaa | 2280       |
| ggaaatagac | acacaggctg               | agcagtttga | atatacagcc | tacataattc | atgcccataa | 2340       |
| agacagagac | tgggtctggg               | aacatttctc | cccaatggaa | gaacaagacc | aatctctcaa | 2400       |
| attttgccta | gaagaaaggg               | actttgaagc | aggcgtcctt | ggacttgaag | caattgttaa | 2460       |
| tagcatcaaa | agaagccgaa               | aaatcatttt | cgttatcaca | caccatttat | taaaagaccc | 2520       |
| tctgtgcaga | agattcaagg               | tacatcacgc | agttcagcaa | gctattgagc | aaaatctgga | 2580       |
| ttcaattata | ctgattttc                | tccagaatat | tccagattat | aaactaaacc | atgcactctg | 2640       |

| tttgcgaaga | ggaatgttta | aatctcattg | catcttgaac | tggccagttc | agaaagaacg | 2700 |
|------------|------------|------------|------------|------------|------------|------|
| gataaatgcc | tttcatcata | aattgcaagt | agcacttgga | tctcggaatt | cagcacatta | 2760 |
| aactcatttg | aagatttgga | gtcggtaaag | ggatagatcc | aatttataaa | ggtccatcat | 2820 |
| gaatctaagt | tttacttgaa | agttttgtat | atttatttat | atgtatagat | gatgatatta | 2880 |
| catcacaatc | caatctcagt | tttgaaatat | ttcggcttat | ttcattgaca | tctggtttat | 2940 |
| tcactccaaa | taaacacatg | ggcagttaaa | aacatcctct | attaatagat | tacccattaa | 3000 |
| ttcttgaggt | gtatcacagc | tttaaagggt | tttaaatatt | tttatataaa | taagactgag | 3060 |
| agttttataa | atgtaatttt | ttaaaactcg | agtcttactg | tgtagctcag | aaaggcctgg | 3120 |
| aaattaatat | attagagagt | catgtcttga | acttatttat | ctctgcctcc | ctctgtctcc | 3180 |
| agagtgttgc | ttttaagggc | atgtagcacc | acacccagct | atgtacgtgt | gggattttat | 3240 |
| aatgctcatt | tttgagacgt | ttatagaata | aaagataatt | gcttttatgg | tataaggcta | 3300 |
| cttgaggtaa |            |            |            |            |            | 3310 |

<211> 905

<212> PRT

<213> murine

<400> 10

Met Lys Gly Cys Ser Ser Tyr Leu Met Tyr Ser Phe Gly Gly Leu Leu 1 5 10 15

Ser Leu Trp Ile Leu Leu Val Ser Ser Thr Asn Gln Cys Thr Val Arg 20 25 30

Tyr Asn Val Ala Asp Cys Ser His Leu Lys Leu Thr His Ile Pro Asp 35 40 45

Asp Leu Pro Ser Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu 50 55 60

Arg Arg Leu Pro Pro Thr Asn Phe Thr Arg Tyr Ser Gln Leu Ala Ile 65 70 75 80

Leu Asp Ala Gly Phe Asn Ser Ile Ser Lys Leu Glu Pro Glu Leu Cys 85 90 95

Gln Ile Leu Pro Leu Leu Lys Val Leu Asn Leu Gln His Asn Glu Leu 100 105 110

Ser Gln Ile Ser Asp'Gln Thr Phe Val Phe Cys Thr Asn Leu Thr Glu 115 120 125

Leu Asp Leu Met Ser Asn Ser Ile His Lys Ile Lys Ser Asn Pro Phe 130 135 140

Lys Asn Gln Lys Asn Leu Ile Lys Leu Asp Leu Ser His Asn Gly Leu 145 150 155 160

### WO 2004/094671 - 17 - PCT/US2004/012788

- Ser Ser Thr Lys Leu Gly Thr Gly Val Gln Leu Glu Asn Leu Gln Glu 165 170 175
- Leu Leu Ala Lys Asn Lys Ile Leu Ala Leu Arg Ser Glu Glu Leu 180 185 190
- Glu Phe Leu Gly Asn Ser Ser Leu Arg Lys Leu Asp Leu Ser Ser Asn 195 200 205
- Pro Leu Lys Glu Phe Ser Pro Gly Cys Phe Gln Thr Ile Gly Lys Leu 210 215 220
- Phe Ala Leu Leu Leu Asn Asn Ala Gln Leu Asn Pro His Leu Thr Glu 225 230 235 235
- Lys Leu Cys Trp Glu Leu Ser Asn Thr Ser Ile Gln Asn Leu Ser Leu 245 250 255
- Ala Asn Asn Gln Leu Leu Ala Thr Ser Glu Ser Thr Phe Ser Gly Leu 260 265 270
- Lys Trp Thr Asn Leu Thr Gln Leu Asp Leu Ser Tyr Asn Asn Leu His 275 280 285
- Asp Val Gly Asn Gly Ser Phe Ser Tyr Leu Pro Ser Leu Arg Tyr Leu 290 295 300
- Ser Leu Glu Tyr Asn Asn Ile Gln Arg Leu Ser Pro Arg Ser Phe Tyr 305 310 315 320
- Gly Leu Ser Asn Leu Arg Tyr Leu Ser Leu Lys Arg Ala Phe Thr Lys 325 330 335
- Gln Ser Val Ser Leu Ala Ser His Pro Asn Ile Asp Asp Phe Ser Phe 340 345 350
- Gln Trp Leu Lys Tyr Leu Glu Tyr Leu Asn Met Asp Asp Asn Asn Ile 355 360 365
- Pro Ser Thr Lys Ser Asn Thr Phe Thr Gly Leu Val Ser Leu Lys Tyr 370 375 380
- Leu Ser Leu Ser Lys Thr Phe Thr Ser Leu Gln Thr Leu Thr Asn Glu 385 390 395 400
- Thr Phe Val Ser Leu Ala His Ser Pro Leu Leu Thr Leu Asn Leu Thr 405 410 415
- Lys Asn His Ile Ser Lys Ile Ala Asn Gly Thr Phe Ser Trp Leu Gly
  420 425 430
- Gln Leu Arg Ile Leu Asp Leu Gly Leu Asn Glu Ile Glu Gln Lys Leu 435 440 445
- Ser Gly Gln Glu Trp Arg Gly Leu Arg Asn Ile Phe Glu Ile Tyr Leu 450 455 460
- Ser Tyr Asn Lys Tyr Leu Gln Leu Ser Thr Ser Ser Phe Ala Leu Val 465 470 475 480
- Pro Ser Leu Gln Arg Leu Met Leu Arg Arg Val Ala Leu Lys Asn Val

# WO 2004/094671 - 18 - PCT/US2004/012788

| Asp        | Ile        | Ser        | Pro<br>500 | 485<br>Ser | Pro        | Phe        | Arg        | Pro<br>505 | 490<br>Leu | Arg        | Asn        | Leu        | Thr<br>510 | 495<br>Ile | Leu        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asp        | Leu        | Ser<br>515 | Asn        | Asn        | Asn        | Ile        | Ala<br>520 | Asn        | Ile        | Asn        | Glu        | Asp<br>525 | Leu        | Leu        | Glu        |
| Gly        | Leu<br>530 | Glu        | Asn        | Leu        | Glu        | Ile<br>535 | Leu        | qaA        | Phe        | Gln        | His<br>540 | Asn        | Asn        | Leu        | Ala        |
| Arg<br>545 | Leu        | Trp        | Lys        | Arg        | Ala<br>550 | Asn        | Pro        | Gly        | Gly        | Pro<br>555 | Val        | Asn        | Phe        | Leu        | Lys<br>560 |
| Gly        | Leu        | Ser        | His        | Leu<br>565 | His        | Ile        | Leu        | Asn        | Leu<br>570 | Glu        | Ser        | Asn        | Gly        | Leu<br>575 | Asp        |
| Glu        | Ile        | Pro        | Val<br>580 | Gly        | Val        | Phe        | Lys        | Asn<br>585 | Leu        | Phe        | Glu        | Leu        | Lys<br>590 | Ser        | Ιlε        |
| Asn        | Leu        | Gly<br>595 | Leu        | Asn        | Asn        | Leu        | Asn<br>600 | Lys        | Leu        | Glu        | Pro        | Phe<br>605 | Ile        | Phe        | Asp        |
| Asp        | Gln<br>610 | Thr        | Ser        | Leu        | Arg        | Ser<br>615 | Leu        | Asn        | Leu        | Gln        | Lys<br>620 | Asn        | Leu        | Ile        | Thr        |
| Ser<br>625 | Val        | Glu        | ГÀЗ        | Asp        | Val<br>630 | Phe        | Gly        | Pro        | Pro        | Phe<br>635 | Gln        | Asn        | Leu        | Asn        | Ser<br>640 |
| Leu        | Asp        | Met        | Arg        | Phe<br>645 | Asn        | Pro        | Phe        | Asp        | Сув<br>650 | Thx        | Сув        | Glu        | Ser        | Ile<br>655 | Ser        |
| Trp        | Phe        | Val        | Asn<br>660 | Trp        | Ile        | Asn        | Gln        | Thr<br>665 | His        | Thr        | Asn        | Ile        | Phe<br>670 | Glu        | Leu        |
| Ser        | Thr        | His<br>675 | Tyr        | Leu        | Сув        | Asn        | Thr<br>680 | Pro        | His        | His        | Tyr        | Tyr<br>685 | Gly        | Phe        | Pro        |
| Leu        | Lys<br>690 | Leu        | Phe        | Asp        | Thr        | Ser<br>695 | Ser        | Сув        | Lys        | Asp        | Ser<br>700 | Ala        | Pro        | Phe        | Glu        |
| Leu<br>705 | Leu        | Phe        | Ile        | Ile        | Ser<br>710 | Thr        | Ser        | Met        | Leu        | Leu<br>715 | Val        | Phe        | Ile        | Leu        | Val<br>720 |
| Val        | Leu        | Leu        | Ile        | His<br>725 | Ile        | Glu        | Gly        | Trp        | Arg<br>730 | Ile        | Ser        | Phe        | Tyr        | Trp<br>735 | Asn        |
| Val        | Ser        | Val        | His<br>740 | Arg        | Ile        | Leu        | Gly        | Phe<br>745 | Lys        | Glu        | Ile        | Asp        | Thr<br>750 | Gln        | Ala        |
| Glu        | Gln        | Phe<br>755 | Glu        | Tyr        | Thr        | Ala        | Tyr<br>760 | Ile        | Ile        | His        | Ala        | His<br>765 | Lys        | Asp        | Arg        |
| Asp        | Trp<br>770 | Val        | Trp        | Glu        | His        | Phe<br>775 | Ser        | Pro        | Met        | Glu        | Glu<br>780 | Gln        | Asp        | Gln        | Ser        |
| Leu<br>785 | Lys        | Phe        | Cys        | Leu        | Glu<br>790 | Glu        | Arg        | Asp        | Phe        | Glu<br>795 | Ala        | Gly        | Val        | Leu        | Gly<br>800 |
| Leu        | Glu        | Ala        | Ile        | Val<br>805 | Asn        | Ser        | Ile        | Lys        | Arg<br>810 | Ser        | Arg        | ГÀа        | Ile        | Ile<br>815 | Phe        |
| Val        | Ile        | Thr        | His        | His        | Leu        | Leu        | Lvs        | Asp        | Pro        | Len        | Cvs        | Ara        | Ara        | Phe        | Lvs        |

WO 2004/094671 - 19 - PCT/US2004/012788

|     |     |     | 820 |     |             |             |     | 825 |     |     |     |     | 830 |     |     |
|-----|-----|-----|-----|-----|-------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Val | His | His | Ala | Val | ${\tt Gln}$ | ${\tt Gln}$ | Ala | Ile | Glu | Gln | Asn | Leu | qaA | Ser | Ile |
|     |     | 835 |     |     |             |             | 840 |     |     |     |     | 845 |     |     |     |

Ile Leu Ile Phe Leu Gln Asn Ile Pro Asp Tyr Lys Leu Asn His Ala 850 855 860

Leu Cys Leu Arg Arg Gly Met Phe Lys Ser His Cys Ile Leu Asn Trp 865 870 875 888

Pro Val Gln Lys Glu Arg Ile Asn Ala Phe His His Lys Leu Gln Val 885 890 895

Ala Leu Gly Ser Arg Asn Ser Ala His 900 905

<210> 11 <211> 3811 <212> DNA

<213> Homo sapiens

<400> 11

acagggccac tgctgctcac agaagcagtg aggatgatgc caggatgatg tctgcctcgc 60 gcctggctgg gactctgatc ccagccatgg ccttcctctc ctgcgtgaga ccagaaagct 120 gggagccctg cgtggagact tggccctaaa ccacacagaa gagctggcat gaaacccaga 180 gettteagae teeggageet eageeettea eeeegattee attgettett getaaatget 240 gccgttttat cacggaggtg gttcctaata ttacttatca atgcatggag ctgaatttct 300 acaaaatccc cgacaacctc cccttctcaa ccaagaacct ggacctgagc tttaatcccc 360 tgaggcattt aggcagctat agcttcttca gtttcccaga actgcaggtg ctggatttat 420 ccaggtgtga aatccagaca attgaagatg gggcatatca gagcctaagc cacctctcta 480 ccttaatatt gacaggaaac cccatccaga gtttagccct gggagccttt tctggactat 540 caagtttaca gaagctggtg gctgtggaga caaatctagc atctctagag aacttcccca 600 ttggacatct caaaactttg aaagaactta atgtggctca caatcttatc caatctttca 660 aattacctga gtatttttct aatctgacca atctagagca cttggacctt tccagcaaca 720 agattcaaag tatttattgc acagacttgc gggttctaca tcaaatgccc ctactcaatc 780 tetetttaga eetgteeetg aaceetatga aetttateea aeeaggtgea tttaaagaaa 840 ttaggcttca taagctgact ttaagaaata attttgatag tttaaatgta atgaaaactt 900 gtattcaagg tetggctggt ttagaagtcc atcgtttggt tctgggagaa tttagaaatg 960 aaggaaactt ggaaaagttt gacaaatctg ctctagaggg cctgtgcaat ttgaccattg 1020 aagaattccg attagcatac ttagactact acctcgatga tattattgac ttatttaatt 1080 gtttgacaaa tgtttcttca ttttccctgg tgagtgtgac tattgaaagg gtaaaagact 1140 tttcttataa tttcggatgg caacatttag aattagttaa ctgtaaattt ggacagtttc 1200

| ccacattgaa | actcaaatct | ctcaaaaggc | ttactttcac | ttccaacaaa | ggtgggaatg | 1260 |
|------------|------------|------------|------------|------------|------------|------|
| ctttttcaga | agttgatcta | ccaagccttg | agtttctaga | tctcagtaga | aatggcttga | 1320 |
| gtttcaaagg | ttgctgttct | caaagtgatt | ttgggacaac | cagcctaaag | tatttagatc | 1380 |
| tgagcttcaa | tggtgttatt | accatgagtt | caaacttctt | gggcttagaa | caactagaac | 1440 |
| atctggattt | ccagcattcc | aatttgaaac | aaatgagtga | gttttcagta | ttcctatcac | 1500 |
| tcagaaacct | catttacctt | gacatttctc | atactcacac | cagagttgct | ttcaatggca | 1560 |
| tcttcaatgg | cttgtccagt | ctcgaagtct | tgaaaatggc | tggcaattct | ttccaggaaa | 1620 |
| acttccttcc | agatatcttc | acagagctga | gaaacttgac | cttcctggac | ctctctcagt | 1680 |
| gtcaactgga | gcagttgtct | ccaacagcat | ttaactcact | ctccagtctt | caggtactaa | 1740 |
| atatgagcca | caacaacttc | ttttcattgg | atacgtttcc | ttataagtgt | ctgaactccc | 1800 |
| tccaggttct | tgattacagt | ctcaatcaca | taatgacttc | caaaaaacag | gaactacagc | 1860 |
| attttccaag | tagtctagct | ttcttaaatc | ttactcagaa | tgactttgct | tgtacttgtg | 1920 |
| aacaccagag | tttcctgcaa | tggatcaagg | accagaggca | gctcttggtg | gaagttgaac | 1980 |
| gaatggaatg | tgcaacacct | tcagataagc | agggcatgcc | tgtgctgagt | ttgaatatca | 2040 |
| cctgtcagat | gaataagacc | atcattggtg | tgtcggtcct | cagtgtgctt | gtagtatctg | 2100 |
| ttgtagcagt | tctggtctat | aagttctatt | ttcacctgat | gcttcttgct | ggctgcataa | 2160 |
| agtatggtag | aggtgaaaac | atctatgatg | cctttgttat | ctactcaagc | caggatgagg | 2220 |
| actgggtaag | gaatgagcta | gtaaagaatt | tagaagaagg | ggtgcctcca | tttcagctct | 2280 |
| gccttcacta | cagagacttt | attcccggtg | tggccattgc | tgccaacatc | atccatgaag | 2340 |
| gtttccataa | aagccgaaag | gtgattgttg | tggtgtccca | gcacttcatc | cagagccgct | 2400 |
| ggtgtatctt | tgaatatgag | attgctcaga | cctggcagtt | tctgagcagt | cgtgctggta | 2460 |
| tcatcttcat | tgtcctgcag | aaggtggaga | agaccctgct | caggcagcag | gtggagctgt | 2520 |
| accgccttct | cagcaggaac | acttacctgg | agtgggagga | cagtgtcctg | gggcggcaca | 2580 |
| tcttctggag | acgactcaga | aaagccctgc | tggatggtaa | atcatggaat | ccagaaggaa | 2640 |
| cagtgggtac | aggatgcaat | tggcaggaag | caacatctat | ctgaagagga | aaaataaaaa | 2700 |
| cctcctgagg | catttcttgc | ccagctgggt | ccaacacttg | ttcagttaat | aagtattaaa | 2760 |
| tgctgccaca | tgtcaggcct | tatgctaagg | gtgagtaatt | ccatggtgca | ctagatatgc | 2820 |
| agggctgcta | atctcaagga | gcttccagtg | cagagggaat | aaatgctaga | ctaaaataca | 2880 |
| gagtcttcca | ggtgggcatt | tcaaccaact | cagtcaagga | acccatgaca | aagaaagtca | 2940 |
| tttcaactct | tacctcatca | agttgaataa | agacagagaa | aacagaaaga | gacattgttc | 3000 |
| ttttcctgag | tcttttgaat | ggaaattgta | ttatgttata | gccatcataa | aaccattttg | 3060 |

| gtagttttga ctgaactggg tgttcacttt ttcctttttg attgaataca atttaaattc | 3120 |
|-------------------------------------------------------------------|------|
| tacttgatga ctgcagtcgt caaggggctc ctgatgcaag atgccccttc cattttaagt | 3180 |
| ctgtctcctt acagaggtta aagtctaatg gctaattcct aaggaaacct gattaacaca | 3240 |
| tgctcacaac catcctggtc attctcgaac atgttctatt ttttaactaa tcaccctga  | 3300 |
| tatattttta tttttatata tccagttttc attttttac gtcttgccta taagctaata  | 3360 |
| tcataaataa ggttgtttaa gacgtgcttc aaatatccat attaaccact atttttcaag | 3420 |
| gaagtatgga aaagtacact ctgtcacttt gtcactcgat gtcattccaa agttattgcc | 3480 |
| tactaagtaa tgactgtcat gaaagcagca ttgaaataat ttgtttaaag ggggcactct | 3540 |
| tttaaacggg aagaaaattt ccgcttcctg gtcttatcat ggacaatttg ggctataggc | 3600 |
| atgaaggaag tgggattacc tcaggaagtc accttttctt gattccagaa acatatgggc | 3660 |
| tgataaaccc ggggtgacct catgaaatga gttgcagcag atgtttattt ttttcagaac | 3720 |
| aagtgatgtt tgatggacct atgaatctat ttagggagac acagatggct gggatccctc | 3780 |
| ccctgtaccc ttctcactga caggagaact a                                | 3811 |

<211> 2845

<212> DNA

<213> Homo sapiens

<400> 12

ceteteacce titageccag aactgetitg aatacaccaa tigetgtggg geggetegag 60 gaagagaaga caccagtgcc tcagaaactg ctcggtcaga cggtgatagc gagccacgca 120 ttcacagggc cactgctgct cacagaagca gtgaggatga tgccaggatg atgtctgcct 180 cgcgcctggc tgggactctg atcccagcca tggccttcct ctcctgcgtg agaccagaaa 240 gctgggagcc ctgcgtggag gtgtgaaatc cagacaattg aagatggggc atatcagagc 300 ctaagccacc tctctacctt aatattgaca ggaaacccca tccagagttt agccctggga 360 gccttttctg gactatcaag tttacagaag ctggtggctg tggagacaaa tctagcatct 420 ctagagaact tccccattgg acatctcaaa actttgaaag aacttaatgt ggctcacaat 480 cttatccaat ctttcaaatt acctgagtat ttttctaatc tgaccaatct agagcacttg 540 gacctttcca gcaacaagat tcaaagtatt tattgcacag acttgcgggt tctacatcaa 600 atgcccctac tcaatctctc tttagacctg tccctgaacc ctatgaactt tatccaacca 660 ggtgcattta aagaaattag gcttcataag ctgactttaa gaaataattt tgatagttta 720 aatgtaatga aaacttgtat tcaaggtctg gctggtttag aagtccatcg tttggttctg 780 ggagaattta gaaatgaagg aaacttggaa aagtttgaca aatctgctct agagggcctg 840

| 900<br>960 | cgatgatatt<br>tgtgactatt | actactacct<br>ccctggtgag | gcatacttag<br>tcttcatttt | attccgatta<br>gacaaatgtt | ccattgaaga<br>ttaattgttt | tgcaatttga<br>attgacttat |
|------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 1020       | agttaactgt               | atttagaatt               | ggatggcaac               | ttataatttc               | aagacttttc               | gaaagggtaa               |
| 1080       | tttcacttcc               | aaaggcttac               | aaatctctca               | attgaaactc               | agtttcccac               | aaatttggac               |
| 1140       | tctagatctc               | gccttgagtt               | gatctaccaa               | ttcagaagtt               | ggaatgcttt               | aacaaaggtg               |
| 1200       | gacaaccagc               | gtgattttgg               | tgttctcaaa               | caaaggttgc               | gcttgagttt               | agtagaaatg               |
| 1260       | cttcttgggc               | tgagttcaaa               | gttattacca               | cttcaatggt               | tagatctgag               | ctaaagtatt               |
| 1320       | gagtgagttt               | tgaaacaaat               | cattccaatt               | ggatttccag               | tagaacatct               | ttagaacaac               |
| 1380       | tcacaccaga               | tttctcatac               | taccttgaca               | aaacctcatt               | tatcactcag               | tcagtattcc               |
| 1440       | aatggctggc               | aagtcttgaa               | tccagtctcg               | caatggcttg               | atggcatctt               | gttgctttca               |
| 1500       | cttgaccttc               | agctgagaaa               | atcttcacag               | ccttccagat               | aggaaaactt               | aattctttcc               |
| 1560       | ctcactctcc               | cagcatttaa               | ttgtctccaa               | actggagcag               | ctcagtgtca               | ctggacctct               |
| 1620       | gtttccttat               | cattggatac               | aacttctttt               | gagccacaac               | tactaaatat               | agtetteagg               |
| 1680       | gacttccaaa               | atcacataat               | tacagtetea               | ggttcttgat               | actccctcca               | aagtgtctga               |
| 1740       | tcagaatgac               | taaatcttac               | ctagctttct               | tccaagtagt               | tacagcattt               | aaacaggaac               |
| 1800       | gaggcagctc               | tcaaggacca               | ctgcaatgga               | ccagagtttc               | cttgtgaaca               | tttgcttgta               |
| 1860       | catgcctgtg               | ataagcaggg               | acaccttcag               | ggaatgtgca               | ttgaacgaat               | ttggtggaag               |
| 1920       | ggtcctcagt               | ttggtgtgtc               | aagaccatca               | tcagatgaat               | atatcacctg               | ctgagtttga               |
| 1980       | cctgatgctt               | tctattttca               | gtctataagt               | agcagttctg               | tatctgttgt               | gtgcttgtag               |
| 2040       | tgttatctac               | atgatgcctt               | gaaaacatct               | tggtagaggt               | gcataaagta               | cttgctggct               |
| 2100       | agaaggggtg               | agaatttaga               | gagctagtaa               | ggtaaggaat               | atgaggactg               | tcaagccagg               |
| 2160       | cattgctgcc               | ccggtgtggc               | gactttattc               | tcactacaga               | agctctgcct               | cctccatttc               |
| 2220       | gtcccagcac               | ttgttgtggt               | cgaaaggtga               | ccataaaagc               | atgaaggttt               | aacatcatcc               |
| 2280       | gcagtttctg               | ctcagacctg               | tatgagattg               | tatctttgaa               | gccgctggtg               | ttcatccaga               |
| 2340       | cctgctcagg               | tggagaagac               | ctgcagaagg               | cttcattgtc               | ctggtatcat               | agcagtcgtg               |
| 2400       | ggaggacagt               | acctggagtg               | aggaacactt               | ccttctcagc               | agctgtaccg               | cagcaggtgg               |
| 2460       | tggtaaatca               | ccctgctgga               | ctcagaaaag               | ctggagacga               | ggcacatctt               | gtcctggggc               |
| 2520       | atctatctga               | aggaagcaac               | tgcaattggc               | gggtacagga               | aaggaacagt               | tggaatccag               |
| 2580       | cacttgttca               | ctgggtccaa               | tcttgcccag               | ctgaggcatt               | taaaaacctc               | agaggaaaaa               |
| 2640       | gtaattccat               | ctaagggtga               | aggccttatg               | gccacatgtc               | attaaatgct               | gttaataagt               |
| 2700       | gggaataaat               | ccagtgcaga               | caaggagctt               | ctgctaatct               | atatgcaggg               | ggtgcactag               |
| 2760       | caaggaaccc               | ccaactcagt               | ggcatttcaa               | cttccaggtg               | aatacagagt               | gctagactaa               |

| atgacaaaga aagtcattto                                     | aactcttacc | tcatcaagtt | gaataaagac | agagaaaaca | 2820 |
|-----------------------------------------------------------|------------|------------|------------|------------|------|
| gaaaaaaaaa aaaaaaaaaa                                     | aaaaa      |            |            |            | 2845 |
| <210> 13<br><211> 3767<br><212> DNA<br><213> Homo sapiens |            |            |            |            |      |
| <400> 13 cctctcaccc tttagcccag                            | aactgctttg | aatacaccaa | ttgctgtggg | gcggctcgag | 60   |
| gaagagaaga caccagtgcc                                     | tcagaaactg | ctcggtcaga | cggtgatagc | gagccacgca | 120  |
| ttcacagggc cactgctgct                                     | cacagaagca | gtgaggatga | tgccaggatg | atgtctgcct | 180  |
| cgcgcctggc tgggactctg                                     | atcccagcca | tggccttcct | ctcctgcgtg | agaccagaaa | 240  |
| getgggagee etgegtggag                                     | acttggccct | aaaccacaca | gaagagctgg | catgaaaccc | 300  |
| agagetttea gaeteeggag                                     | cctcagccct | tcaccccgat | tccattgctt | cttgctaaat | 360  |
| gctgccgttt tatcacggag                                     | gtgtgaaatc | cagacaattg | aagatggggc | atatcagagc | 420  |
| ctaagccacc tctctacctt                                     | aatattgaca | ggaaacccca | tccagagttt | agccctggga | 480  |
| gccttttctg gactatcaag                                     | tttacagaag | ctggtggctg | tggagacaaa | tctagcatct | 540  |
| ctagagaact tccccattgg                                     | acatctcaaa | actttgaaag | aacttaatgt | ggctcacaat | 600  |
| cttatccaat ctttcaaatt                                     | acctgagtat | ttttctaatc | tgaccaatct | agagcacttg | 660  |
| gacctttcca gcaacaagat                                     | tcaaagtatt | tattgcacag | acttgcgggt | tctacatcaa | 720  |
| atgcccctac tcaatctctc                                     | tttagacctg | tccctgaacc | ctatgaactt | tatccaacca | 780  |
| ggtgcattta aagaaattag                                     | gcttcataag | ctgactttaa | gaaataattt | tgatagttta | 840  |
| aatgtaatga aaacttgtat                                     | tcaaggtctg | gctggtttag | aagtccatcg | tttggttctg | 900  |
| ggagaattta gaaatgaagg                                     | aaacttggaa | aagtttgaca | aatctgctct | agagggcctg | 960  |
| tgcaatttga ccattgaaga                                     | attccgatta | gcatacttag | actactacct | cgatgatatt | 1020 |
| attgacttat ttaattgttt                                     | gacaaatgtt | tcttcatttt | ccctggtgag | tgtgactatt | 1080 |
| gaaagggtaa aagacttttc                                     | ttataatttc | ggatggcaac | atttagaatt | agttaactgt | 1140 |
| aaatttggac agtttcccac                                     | attgaaactc | aaatctctca | aaaggcttac | tttcacttcc | 1200 |
| aacaaaggtg ggaatgcttt                                     | ttcagaagtt | gatctaccaa | gccttgagtt | tctagatctc | 1260 |
| agtagaaatg gcttgagttt                                     | caaaggttgc | tgttctcaaa | gtgattttgg | gacaaccagc | 1320 |
| ctaaagtatt tagatctgag                                     | cttcaatggt | gttattacca | tgagttcaaa | cttcttgggc | 1380 |
| ttagaacaac tagaacatct                                     | ggatttccag | cattccaatt | tgaaacaaat | gagtgagttt | 1440 |
| tcagtattcc tatcactcag                                     | aaacctcatt | taccttgaca | tttctcatac | tcacaccaga | 1500 |

| gttgctttca<br>aattctttcc | atggcatctt<br>aggaaaactt | caatggcttg<br>ccttccagat | tccagtctcg<br>atcttcacag | aagtettgaa<br>agetgagaaa | aatggctggc<br>cttgaccttc | 1560<br>1620 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| ctggacctct               | ctcagtgtca               | actggagcag               | ttgtctccaa               | cagcatttaa               | ctcactctcc               | 1680         |
| agtcttcagg               | tactaaatat               | gagccacaac               | aacttcttt                | cattggatac               | gtttccttat               | 1740         |
| aagtgtctga               | actccctcca               | ggttcttgat               | tacagtctca               | atcacataat               | gacttccaaa               | 1800         |
| aaacaggaac               | tacagcattt               | tccaagtagt               | ctagctttct               | taaatcttac               | tcagaatgac               | 1860         |
| tttgcttgta               | cttgtgaaca               | ccagagtttc               | ctgcaatgga               | tcaaggacca               | gaggcagctc               | 1920         |
| ttggtggaag               | ttgaacgaat               | ggaatgtgca               | acaccttcag               | ataagcaggg               | catgcctgtg               | 1980         |
| ctgagtttga               | atatcacctg               | tcagatgaat               | aagaccatca               | ttggtgtgtc               | ggtcctcagt               | 2040         |
| gtgcttgtag               | tatctgttgt               | agcagttctg               | gtctataagt               | tctattttca               | cctgatgctt               | 2100         |
| cttgctggct               | gcataaagta               | tggtagaggt               | gaaaacatct               | atgatgcctt               | tgttatctac               | 2160         |
| tcaagccagg               | atgaggactg               | ggtaaggaat               | gagctagtaa               | agaatttaga               | agaaggggtg               | 2220         |
| cctccatttc               | agctctgcct               | tcactacaga               | gactttattc               | ccggtgtggc               | cattgctgcc               | 2280         |
| aacatcatcc               | atgaaggttt               | ccataaaagc               | cgaaaggtga               | ttgttgtggt               | gtcccagcac               | 2340         |
| ttcatccaga               | gccgctggtg               | tatctttgaa               | tatgagattg               | ctcagacctg               | gcagtttctg               | 2400         |
| agcagtcgtg               | ctggtatcat               | cttcattgtc               | ctgcagaagg               | tggagaagac               | cctgctcagg               | 2460         |
| cagcaggtgg               | agctgtaccg               | ccttctcagc               | aggaacactt               | acctggagtg               | ggaggacagt               | 2520         |
| gtcctggggc               | ggcacatctt               | ctggagacga               | ctcagaaaag               | ccctgctgga               | tggtaaatca               | 2580         |
| tggaatccag               | aaggaacagt               | gggtacagga               | tgcaattggc               | aggaagcaac               | atctatctga               | 2640         |
| agaggaaaaa               | taaaaacctc               | ctgaggcatt               | tcttgcccag               | ctgggtccaa               | cacttgttca               | 2700         |
| gttaataagt               | attaaatgct               | gccacatgtc               | aggccttatg               | ctaagggtga               | gtaattccat               | 2760         |
| ggtgcactag               | atatgcaggg               | ctgctaatct               | caaggagctt               | ccagtgcaga               | gggaataaat               | 2820         |
| gctagactaa               | aatacagagt               | cttccaggtg               | ggcatttcaa               | ccaactcagt               | caaggaaccc               | 2880         |
| atgacaaaga               | aagtcatttc               | aactcttacc               | tcatcaagtt               | gaataaagac               | agagaaaaca               | 2940         |
| gaaagagaca               | ttgttctttt               | cctgagtctt               | ttgaatggaa               | attgtattat               | gttatagcca               | 3000         |
| tcataaaacc               | attttggtag               | ttttgactga               | actgggtgtt               | cactttttcc               | tttttgattg               | 3060         |
| aatacaattt               | aaattctact               | tgatgactgc               | agtcgtcaag               | gggctcctga               | tgcaagatgc               | 3120         |
| cccttccatt               | ttaagtctgt               | ctccttacag               | aggttaaagt               | ctagtggcta               | attcctaagg               | 3180         |
| aaacctgatt               | aacacatgct               | cacaaccatc               | ctggtcattc               | tcgagcatgt               | tctatttttt               | 3240         |
| aactaatcac               | ccctgatata               | tttttattt                | tatatatcca               | gttttcattt               | ttttacgtct               | 3300         |
| tgcctataag               | ctaatatcat               | aaataaggtt               | gtttaagacg               | tgcttcaaat               | atccatatta               | 3360         |
| accactattt               | ttcaaggaag               | tatggaaaag               | tacactctgt               | cactttgtca               | ctcgatgtca               | 3420         |

| ttccaaagtt                                       | attgcctact     | aagtaatgac | tgtcatgaaa | gcagcattga | aataatttgt | 3480 |
|--------------------------------------------------|----------------|------------|------------|------------|------------|------|
| ttaaaggggg                                       | cactctttta     | aacgggaaga | aaatttccgc | ttcctggtct | tatcatggac | 3540 |
| aatttgggct                                       | agaggcagga     | aggaagtggg | atgacctcag | gaggtcacct | tttcttgatt | 3600 |
| ccagaaacat                                       | atgggctgat     | aaacccgggg | tgacctcatg | aaatgagttg | cagcagaagt | 3660 |
| ttatttttt                                        | cagaacaagt     | gatgtttgat | ggacctctga | atctctttag | ggagacacag | 3720 |
| atggctggga                                       | tccctcccct     | gtacccttct | cactgccagg | agaacta    |            | 3767 |
| <210> 14<br><211> 381<br><212> DNA<br><213> Home | 4<br>o sapiens |            |            |            |            |      |
| <400> 14                                         | tttaggggag     | 220t00ttto | 2040       | <b></b>    |            |      |
|                                                  | tttagcccag     |            |            |            |            | 60   |
|                                                  | caccagtgcc     |            |            |            |            | 120  |
|                                                  | cactgctgct     |            |            |            |            | 180  |
| cgcgcctggc                                       | tgggactctg     | atcccagcca | tggccttcct | ctcctgcgtg | agaccagaaa | 240  |
| gctgggagcc                                       | ctgcgtggag     | gtggttccta | atattactta | tcaatgcatg | gagctgaatt | 300  |
| tctacaaaat                                       | ccccgacaac     | ctccccttct | caaccaagaa | cctggacctg | agctttaatc | 360  |
| ccctgaggca                                       | tttaggcagc     | tatagcttct | tcagtttccc | agaactgcag | gtgctggatt | 420  |
| tatccaggtg                                       | tgaaatccag     | acaattgaag | atggggcata | tcagagccta | agccacctct | 480  |
| ctaccttaat                                       | attgacagga     | aaccccatcc | agagtttagc | cctgggagcc | ttttctggac | 540  |
| tatcaagttt                                       | acagaagctg     | gtggctgtgg | agacaaatct | agcatctcta | gagaacttcc | 600  |
| ccattggaca                                       | tctcaaaact     | ttgaaagaac | ttaatgtggc | tcacaatctt | atccaatctt | 660  |
| tcaaattacc                                       | tgagtatttt     | tctaatctga | ccaatctaga | gcacttggac | ctttccagca | 720  |
| acaagattca                                       | aagtatttat     | tgcacagact | tgcgggttct | acatcaaatg | cccctactca | 780  |
| atctctcttt                                       | agacctgtcc     | ctgaacccta | tgaactttat | ccaaccaggt | gcatttaaag | 840  |
| aaattaggct                                       | tcataagctg     | actttaagaa | ataattttga | tagtttaaat | gtaatgaaaa | 900  |
| cttgtattca                                       | aggtctggct     | ggtttagaag | tccatcgttt | ggttctggga | gaatttagaa | 960  |
| atgaaggaaa                                       | cttggaaaag     | tttgacaaat | ctgctctaga | gggcctgtgc | aatttgacca | 1020 |
|                                                  | ccgattagca     |            |            |            |            | 1080 |
| attgtttgac                                       | aaatgtttct     | tcattttccc | tggtgagtgt | gactattgaa | agggtaaaag | 1140 |
|                                                  | taatttcgga     |            |            |            |            | 1200 |

ttcccacatt gaaactcaaa tctctcaaaa ggcttacttt cacttccaac aaaggtggga 1260

|            | agaagttgat<br>aggttgctgt |            |            |            |            | 1320<br>1380 |
|------------|--------------------------|------------|------------|------------|------------|--------------|
| atctgagctt | caatggtgtt               | attaccatga | gttcaaactt | cttgggctta | gaacaactag | 1440         |
| aacatctgga | tttccagcat               | tccaatttga | aacaaatgag | tgagttttca | gtattcctat | 1500         |
| cactcagaaa | cctcatttac               | cttgacattt | ctcatactca | caccagagtt | gctttcaatg | 1560         |
| gcatcttcaa | tggcttgtcc               | agtctcgaag | tcttgaaaat | ggctggcaat | tctttccagg | 1620         |
| aaaacttcct | tccagatatc               | ttcacagagc | tgagaaactt | gaccttcctg | gacctctctc | 1680         |
| agtgtcaact | ggagcagttg               | tctccaacag | catttaactc | actctccagt | cttcaggtac | 1740         |
| taaatatgag | ccacaacaac               | ttcttttcat | tggatacgtt | tccttataag | tgtctgaact | 1800         |
| ccctccaggt | tcttgattac               | agtctcaatc | acataatgac | ttccaaaaaa | caggaactac | 1860         |
| agcattttcc | aagtagtcta               | gctttcttaa | atcttactca | gaatgacttt | gcttgtactt | 1920         |
| gtgaacacca | gagtttcctg               | caatggatca | aggaccagag | gcagctcttg | gtggaagttg | 1980         |
| aacgaatgga | atgtgcaaca               | ccttcagata | agcagggcat | gcctgtgctg | agtttgaata | 2040         |
| tcacctgtca | gatgaataag               | accatcattg | gtgtgtcggt | cctcagtgtg | cttgtagtat | 2100         |
| ctgttgtagc | agttctggtc               | tataagttct | attttcacct | gatgcttctt | gctggctgca | 2160         |
| taaagtatgg | tagaggtgaa               | aacatctatg | atgcctttgt | tatctactca | agccaggatg | 2220         |
| aggactgggt | aaggaatgag               | ctagtaaaga | atttagaaga | aggggtgcct | ccatttcagc | 2280         |
| tetgeettea | ctacagagac               | tttattcccg | gtgtggccat | tgctgccaac | atcatccatg | 2340         |
| aaggtttcca | taaaagccga               | aaggtgattg | ttgtggtgtc | ccagcacttc | atccagagcc | 2400         |
| gctggtgtat | ctttgaatat               | gagattgctc | agacctggca | gtttctgagc | agtcgtgctg | 2460         |
| gtatcatctt | cattgtcctg               | cagaaggtgg | agaagaccct | gctcaggcag | caggtggagc | 2520         |
| tgtaccgcct | tctcagcagg               | aacacttacc | tggagtggga | ggacagtgtc | ctggggcggc | 2580         |
| acatcttctg | gagacgactc               | agaaaagccc | tgctggatgg | taaatcatgg | aatccagaag | 2640         |
| gaacagtggg | tacaggatgc               | aattggcagg | aagcaacatc | tatctgaaga | ggaaaaataa | 2700         |
| aaacctcctg | aggcatttct               | tgcccagctg | ggtccaacac | ttgttcagtt | aataagtatt | 2760         |
| aaatgctgcc | acatgtcagg               | ccttatgcta | agggtgagta | attccatggt | gcactagata | 2820         |
| tgcagggctg | ctaatctcaa               | ggagcttcca | gtgcagaggg | aataaatgct | agactaaaat | 2880         |
| acagagtctt | ccaggtgggc               | atttcaacca | actcagtcaa | ggaacccatg | acaaagaaag | 2940         |
| tcatttcaac | tcttacctca               | tcaagttgaa | taaagacaga | gaaaacagaa | agagacattg | 3000         |
| ttcttttcct | gagtcttttg               | aatggaaatt | gtattatgtt | atagccatca | taaaaccatt | 3060         |
| ttggtagttt | : tgactgaact             | gggtgttcac | tttttccttt | ttgattgaat | acaatttaaa | 3120         |
| ttctacttga | tgactgcagt               | cgtcaagggg | ctcctgatgc | aagatgccc  | ttccatttta | 3180         |

WO 2004/094671 - 27 - PCT/US2004/012788

| agtctgtctc cttacagagg | ttaaagtcta | gtggctaatt | cctaaggaaa | cctgattaac | 3240 |
|-----------------------|------------|------------|------------|------------|------|
| acatgctcac aaccatcctg | gtcattctcg | agcatgttct | attttttaac | taatcacccc | 3300 |
| tgatatattt ttattttat  | atatccagtt | ttcattttt  | tacgtcttgc | ctataagcta | 3360 |
| atatcataaa taaggttgtt | taagacgtgc | ttcaaatatc | catattaacc | actatttttc | 3420 |
| aaggaagtat ggaaaagtac | actctgtcac | tttgtcactc | gatgtcattc | caaagttatt | 3480 |
| gcctactaag taatgactgt | catgaaagca | gcattgaaat | aatttgttta | aagggggcac | 3540 |
| tcttttaaac gggaagaaaa | tttccgcttc | ctggtcttat | catggacaat | ttgggctaga | 3600 |
| ggcaggaagg aagtgggatg | acctcaggag | gtcacctttt | cttgattcca | gaaacatatg | 3660 |
| ggctgataaa cccggggtga | cctcatgaaa | tgagttgcag | cagaagttta | ttttttcag  | 3720 |
| aacaagtgat gtttgatgga | cctctgaatc | tctttaggga | gacacagatg | gctgggatcc | 3780 |
| ctcccctgta cccttctcac | tgccaggaga | acta       |            |            | 3814 |

<210> 15

<211> 3934 <212> DNA

<213> Homo spaiens

<400> 15

cctctcaccc tttagcccag aactgctttg aatacaccaa ttgctgtggg gcggctcgag 60 gaagagaaga caccagtgcc tcagaaactg ctcggtcaga cggtgatagc gagccacgca 120 ttcacagggc cactgctgct cacagaagca gtgaggatga tgccaggatg atgtctgcct 180 cgcgcctggc tgggactctg atcccagcca tggccttcct ctcctgcgtg agaccagaaa 240 gctgggagcc ctgcgtggag acttggccct aaaccacaca gaagagctgg catgaaaccc 300 agagetttea gaeteeggag eeteageeet teaceeegat teeattgett ettgetaaat 360 gctgccgttt tatcacggag gtggttccta atattactta tcaatgcatg gagctgaatt 420 tctacaaaat ccccgacaac ctccccttct caaccaagaa cctggacctg agctttaatc 480 ccctgaggca tttaggcagc tatagcttct tcagtttccc agaactgcag gtgctggatt 540 tatccaggtg tgaaatccag acaattgaag atggggcata tcagagccta agccacctct 600 ctaccttaat attgacagga aaccccatcc agagtttagc cctgggagcc ttttctggac 660 tatcaagttt acagaagctg gtggctgtgg agacaaatct agcatctcta gagaacttcc 720 ccattggaca totcaaaact ttgaaagaac ttaatgtggc tcacaatctt atccaatctt 780 tcaaattacc tgagtatttt tctaatctga ccaatctaga gcacttggac ctttccagca 840 acaagattca aagtatttat tgcacagact tgcgggttct acatcaaatg cccctactca 900 atctctcttt agacctgtcc ctgaacccta tgaactttat ccaaccaggt gcatttaaag 960

|            |            |            |            | tagtttaaat<br>ggttctggga |            | 1020<br>1080 |
|------------|------------|------------|------------|--------------------------|------------|--------------|
| atgaaggaaa | cttggaaaag | tttgacaaat | ctgctctaga | gggcctgtgc               | aatttgacca | 1140         |
| ttgaagaatt | ccgattagca | tacttagact | actacctcga | tgatattatt               | gacttattta | 1200         |
| attgtttgac | aaatgtttct | tcattttccc | tggtgagtgt | gactattgaa               | agggtaaaag | 1260         |
| acttttctta | taatttcgga | tggcaacatt | tagaattagt | taactgtaaa               | tttggacagt | 1320         |
| ttcccacatt | gaaactcaaa | tctctcaaaa | ggcttacttt | cacttccaac               | aaaggtggga | 1380         |
| atgctttttc | agaagttgat | ctaccaagcc | ttgagtttct | agatctcagt               | agaaatggct | 1440         |
| tgagtttcaa | aggttgctgt | tctcaaagtg | attttgggac | aaccagccta               | aagtatttag | 1500         |
| atctgagctt | caatggtgtt | attaccatga | gttcaaactt | cttgggctta               | gaacaactag | 1560         |
| aacatctgga | tttccagcat | tccaatttga | aacaaatgag | tgagttttca               | gtattcctat | 1620         |
| cactcagaaa | cctcatttac | cttgacattt | ctcatactca | caccagagtt               | gctttcaatg | 1680         |
| gcatcttcaa | tggcttgtcc | agtctcgaag | tcttgaaaat | ggctggcaat               | tctttccagg | 1740         |
| aaaacttcct | tccagatatc | ttcacagagc | tgagaaactt | gaccttcctg               | gacctctctc | 1800         |
| agtgtcaact | ggagcagttg | tctccaacag | catttaactc | actctccagt               | cttcaggtac | 1860         |
| taaatatgag | ccacaacaac | ttcttttcat | tggatacgtt | tccttataag               | tgtctgaact | 1920         |
| ccctccaggt | tcttgattac | agtctcaatc | acataatgac | ttccaaaaaa               | caggaactac | 1980         |
| agcattttcc | aagtagtcta | gctttcttaa | atcttactca | gaatgacttt               | gcttgtactt | 2040         |
| gtgaacacca | gagtttcctg | caatggatca | aggaccagag | gcagctcttg               | gtggaagttg | 2100         |
| aacgaatgga | atgtgcaaca | ccttcagata | agcagggcat | gcctgtgctg               | agtttgaata | 2160         |
| tcacctgtca | gatgaataag | accatcattg | gtgtgtcggt | cctcagtgtg               | cttgtagtat | 2220         |
| ctgttgtagc | agttctggtc | tataagttct | attttcacct | gatgcttctt               | gctggctgca | 2280         |
| taaagtatgg | tagaggtgaa | aacatctatg | atgcctttgt | tatctactca               | agccaggatg | 2340         |
| aggactgggt | aaggaatgag | ctagtaaaga | atttagaaga | aggggtgcct               | ccatttcagc | 2400         |
| tctgccttca | ctacagagac | tttattcccg | gtgtggccat | tgctgccaac               | atcatccatg | 2460         |
| aaggtttcca | taaaagccga | aaggtgattg | ttgtggtgtc | ccagcacttc               | atccagagcc | 2520         |
| gctggtgtat | ctttgaatat | gagattgctc | agacctggca | gtttctgagc               | agtcgtgctg | 2580         |
| gtatcatctt | cattgtcctg | cagaaggtgg | agaagaccct | gctcaggcag               | caggtggagc | 2640         |
| tgtaccgcct | tctcagcagg | aacacttacc | tggagtggga | ggacagtgtc               | ctggggcggc | 2700         |
| acatcttctg | gagacgactc | agaaaagccc | tgctggatgg | taaatcatgg               | aatccagaag | 2760         |
| gaacagtggg | tacaggatgc | aattggcagg | aagcaacatc | tatctgaaga               | ggaaaaataa | 2820         |
| aaacctcctg | aggcatttct | tgcccagctg | ggtccaacac | ttgttcagtt               | aataagtatt | 2880         |

| aaatgctgcc | acatgtcagg | ccttatgcta | agggtgagta | attccatggt | gcactagata | 2940 |
|------------|------------|------------|------------|------------|------------|------|
| tgcagggctg | ctaatctcaa | ggagcttcca | gtgcagaggg | aataaatgct | agactaaaat | 3000 |
| acagagtctt | ccaggtgggc | atttcaacca | actcagtcaa | ggaacccatg | acaaagaaag | 3060 |
| tcatttcaac | tcttacctca | tcaagttgaa | taaagacaga | gaaaacagaa | agagacattg | 3120 |
| ttcttttcct | gagtcttttg | aatggaaatt | gtattatgtt | atagccatca | taaaaccatt | 3180 |
| ttggtagttt | tgactgaact | gggtgttcac | tttttccttt | ttgattgaat | acaatttaaa | 3240 |
| ttctacttga | tgactgcagt | cgtcaagggg | ctcctgatgc | aagatgcccc | ttccatttta | 3300 |
| agtctgtctc | cttacagagg | ttaaagtcta | gtggctaatt | cctaaggaaa | cctgattaac | 3360 |
| acatgctcac | aaccatcctg | gtcattctcg | agcatgttct | attttttaac | taatcacccc | 3420 |
| tgatatattt | ttatttttat | atatccagtt | ttcatttttt | tacgtcttgc | ctataagcta | 3480 |
| atatcataaa | taaggttgtt | taagacgtgc | ttcaaatatc | catattaacc | actatttttc | 3540 |
| aaggaagtat | ggaaaagtac | actctgtcac | tttgtcactc | gatgtcattc | caaagttatt | 3600 |
| gcctactaag | taatgactgt | catgaaagca | gcattgaaat | aatttgttta | aagggggcac | 3660 |
| tcttttaaac | gggaagaaaa | tttccgcttc | ctggtcttat | catggacaat | ttgggctaga | 3720 |
| ggcaggaagg | aagtgggatg | acctcaggag | gtcacctttt | cttgattcca | gaaacatatg | 3780 |
| ggctgataaa | cccggggtga | cctcatgaaa | tgagttgcag | cagaagttta | tttttttcag | 3840 |
| aacaagtgat | gtttgatgga | cctctgaatc | tctttaggga | gacacagatg | gctgggatcc | 3900 |
| ctcccctgta | cccttctcac | tgccaggaga | acta       |            |            | 3934 |

<211> 839

<212> PRT

<213> Homo sapiens

<400> 16

Met Met Ser Ala Ser Arg Leu Ala Gly Thr Leu Ile Pro Ala Met Ala 1 5 10 15

Phe Leu Ser Cys Val Arg Pro Glu Ser Trp Glu Pro Cys Val Glu Val 20 25 30

Val Pro Asn Ile Thr Tyr Gln Cys Met Glu Leu Asn Phe Tyr Lys Ile 35 40 45

Pro Asp Asn Leu Pro Phe Ser Thr Lys Asn Leu Asp Leu Ser Phe Asn 50 55 60

Pro Leu Arg His Leu Gly Ser Tyr Ser Phe Phe Ser Phe Pro Glu Leu 65 70 75 80

Gln Val Leu Asp Leu Ser Arg Cys Glu Ile Gln Thr Ile Glu Asp Gly

# WO 2004/094671 - 30 - PCT/US2004/012788

- Ala Tyr Gln Ser Leu Ser His Leu Ser Thr Leu Ile Leu Thr Gly Asn 100 105 110
- Pro Ile Gln Ser Leu Ala Leu Gly Ala Phe Ser Gly Leu Ser Ser Leu 115 120 125
- Gln Lys Leu Val Ala Val Glu Thr Asn Leu Ala Ser Leu Glu Asn Phe 130 140
  - Pro Ile Gly His Leu Lys Thr Leu Lys Glu Leu Asn Val Ala His Asn 145 150 155 160
  - Leu Ile Gln Ser Phe Lys Leu Pro Glu Tyr Phe Ser Asn Leu Thr Asn 165 170 175
  - Leu Glu His Leu Asp Leu Ser Ser Asn Lys Ile Gln Ser Ile Tyr Cys 180 185 190
  - Thr Asp Leu Arg Val Leu His Gln Met Pro Leu Leu Asn Leu Ser Leu 195 200 205
  - Asp Leu Ser Leu Asn Pro Met Asn Phe Ile Gln Pro Gly Ala Phe Lys 210 215 220
  - Glu Ile Arg Leu His Lys Leu Thr Leu Arg Asn Asn Phe Asp Ser Leu 225 230 235 240
  - Asn Val Met Lys Thr Cys Ile Gln Gly Leu Ala Gly Leu Glu Val His
    245 250 255
  - Arg Leu Val Leu Gly Glu Phe Arg Asn Glu Gly Asn Leu Glu Lys Phe 260 265 270
  - Asp Lys Ser Ala Leu Glu Gly Leu Cys Asn Leu Thr Ile Glu Glu Phe 275 280 285
  - Arg Leu Ala Tyr Leu Asp Tyr Tyr Leu Asp Asp Ile Ile Asp Leu Phe 290 295 300
  - Asn Cys Leu Thr Asn Val Ser Ser Phe Ser Leu Val Ser Val Thr Ile 305 310 315 320
  - Glu Arg Val Lys Asp Phe Ser Tyr Asn Phe Gly Trp Gln His Leu Glu 325 330 335
  - Leu Val Asn Cys Lys Phe Gly Gln Phe Pro Thr Leu Lys Leu Lys Ser 340 345
  - Leu Lys Arg Leu Thr Phe Thr Ser Asn Lys Gly Gly Asn Ala Phe Ser 355 360
  - Glu Val Asp Leu Pro Ser Leu Glu Phe Leu Asp Leu Ser Arg Asn Gly 370 375 380
  - Leu Ser Phe Lys Gly Cys Cys Ser Gln Ser Asp Phe Gly Thr Thr Ser 385 390 395 400
  - Leu Lys Tyr Leu Asp Leu Ser Phe Asn Gly Val Ile Thr Met Ser Ser 405 410 415
  - Asn Phe Leu Gly Leu Glu Glu Leu Glu His Leu Asp Phe Gln His Ser

# WO 2004/094671 - 31 - PCT/US2004/012788

425 Asn Leu Lys Gln Met Ser Glu Phe Ser Val Phe Leu Ser Leu Arg Asn 440 Leu Ile Tyr Leu Asp Ile Ser His Thr His Thr Arg Val Ala Phe Asn 455 Gly Ile Phe Asn Gly Leu Ser Ser Leu Glu Val Leu Lys Met Ala Gly 475 Asn Ser Phe Gln Glu Asn Phe Leu Pro Asp Ile Phe Thr Glu Leu Arg 490 Asn Leu Thr Phe Leu Asp Leu Ser Gln Cys Gln Leu Glu Gln Leu Ser 505 Pro Thr Ala Phe Asn Ser Leu Ser Ser Leu Gln Val Leu Asn Met Ser 520 His Asn Asn Phe Phe Ser Leu Asp Thr Phe Pro Tyr Lys Cys Leu Asn 535 Ser Leu Gln Val Leu Asp Tyr Ser Leu Asn His Ile Met Thr Ser Lys 550 Lys Gln Glu Leu Gln His Phe Pro Ser Ser Leu Ala Phe Leu Asn Leu 565 570 Thr Gln Asn Asp Phe Ala Cys Thr Cys Glu His Gln Ser Phe Leu Gln Trp Ile Lys Asp Gln Arg Gln Leu Leu Val Glu Val Glu Arg Met Glu 600 Cys Ala Thr Pro Ser Asp Lys Gln Gly Met Pro Val Leu Ser Leu Asn 615 Ile Thr Cys Gln Met Asn Lys Thr Ile Ile Gly Val Ser Val Leu Ser 630 635 Val Leu Val Val Ser Val Val Ala Val Leu Val Tyr Lys Phe Tyr Phe His Leu Met Leu Leu Ala Gly Cys Ile Lys Tyr Gly Arg Gly Glu Asn Ile Tyr Asp Ala Phe Val Ile Tyr Ser Ser Gln Asp Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Pro Phe Gln Leu Cys Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile Ile His Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val Val Ser Gln His Phe Ile Gln Ser Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu Ser Ser Arg Ala Gly Ile Ile Phe

755 760 Ile Val Leu Gln Lys Val Glu Lys Thr Leu Leu Arg Gln Gln Val Glu

Leu Tyr Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Ser

Val Leu Gly Arg His Ile Phe Trp Arg Arg Leu Arg Lys Ala Leu Leu 810

Asp Gly Lys Ser Trp Asn Pro Glu Gly Thr Val Gly Thr Gly Cys Asn 825

Trp Gln Glu Ala Thr Ser Ile 835

<210> 17

<211> 782 <212> PRT

<213> Homo sapiens

<400> 17

Met Lys Pro Arg Ala Phe Arg Leu Arg Ser Leu Ser Pro Ser Pro Arg

Phe His Cys Phe Leu Leu Asn Ala Ala Val Leu Ser Arg Arg Cys Glu

Ile Gln Thr Ile Glu Asp Gly Ala Tyr Gln Ser Leu Ser His Leu Ser

Thr Leu Ile Leu Thr Gly Asn Pro Ile Gln Ser Leu Ala Leu Gly Ala

Phe Ser Gly Leu Ser Ser Leu Gln Lys Leu Val Ala Val Glu Thr Asn

Leu Ala Ser Leu Glu Asn Phe Pro Ile Gly His Leu Lys Thr Leu Lys

Glu Leu Asn Val Ala His Asn Leu Ile Gln Ser Phe Lys Leu Pro Glu 105

Tyr Phe Ser Asn Leu Thr Asn Leu Glu His Leu Asp Leu Ser Ser Asn 120

Lys Ile Gln Ser Ile Tyr Cys Thr Asp Leu Arg Val Leu His Gln Met

Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn Phe 145 155

Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr Leu

Arg Asn Asn Phe Asp Ser Leu Asn Val Met Lys Thr Cys Ile Gln Gly

Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg Asn 200

#### - 33 -WO 2004/094671 PCT/US2004/012788

- Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu Cys 215 Asn Leu Thr Ile Glu Glu Phe Arg Leu Ala Tyr Leu Asp Tyr Tyr Leu 230 Asp Asp Ile Ile Asp Leu Phe Asn Cys Leu Thr Asn Val Ser Ser Phe 245 250 Ser Leu Val Ser Val Thr Ile Glu Arg Val Lys Asp Phe Ser Tyr Asn Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln Phe 280 Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser Asn 295 Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu Phe 310 315 Leu Asp Leu Ser Arg Asn Gly Leu Ser Phe Lys Gly Cys Cys Ser Gln 330 Ser Asp Phe Gly Thr Thr Ser Leu Lys Tyr Leu Asp Leu Ser Phe Asn 345 Gly Val Ile Thr Met Ser Ser Asn Phe Leu Gly Leu Glu Gln Leu Glu His Leu Asp Phe Gln His Ser Asn Leu Lys Gln Met Ser Glu Phe Ser Val Phe Leu Ser Leu Arg Asn Leu Ile Tyr Leu Asp Ile Ser His Thr His Thr Arg Val Ala Phe Asn Gly Ile Phe Asn Gly Leu Ser Ser Leu Glu Val Leu Lys Met Ala Gly Asn Ser Phe Gln Glu Asn Phe Leu Pro Asp Ile Phe Thr Glu Leu Arg Asn Leu Thr Phe Leu Asp Leu Ser Gln 440 Cys Gln Leu Glu Gln Leu Ser Pro Thr Ala Phe Asn Ser Leu Ser Ser
- Leu Gln Val Leu Asn Met Ser His Asn Asn Phe Phe Ser Leu Asp Thr 475
- Phe Pro Tyr Lys Cys Leu Asn Ser Leu Gln Val Leu Asp Tyr Ser Leu
- Asn His Ile Met Thr Ser Lys Lys Gln Glu Leu Gln His Phe Pro Ser 505
- Ser Leu Ala Phe Leu Asn Leu Thr Gln Asn Asp Phe Ala Cys Thr Cys
- Glu His Gln Ser Phe Leu Gln Trp Ile Lys Asp Gln Arg Gln Leu Leu

ï

Val Glu Val Glu Arg Met Glu Cys Ala Thr Pro Ser Asp Lys Gln Gly
545 550 555 560

Met Pro Val Leu Ser Leu Asn Ile Thr Cys Gln Met Asn Lys Thr Ile
565 570 575

Ile Gly Val Ser Val Leu Ser Val Leu Val Val Ser Val Val Ala Val 580 585 590

Leu Val Tyr Lys Phe Tyr Phe His Leu Met Leu Leu Ala Gly Cys Ile 595 600 605

Lys Tyr Gly Arg Gly Glu Asn Ile Tyr Asp Ala Phe Val Ile Tyr Ser 610 615 620

Ser Gln Asp Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu Glu 625 630 635 640

Glu Gly Val Pro Pro Phe Gln Leu Cys Leu His Tyr Arg Asp Phe Ile 645 650 655

Pro Gly Val Ala Ile Ala Ala Asn Ile Ile His Glu Gly Phe His Lys 660 665 670

Ser Arg Lys Val Ile Val Val Ser Gln His Phe Ile Gln Ser Arg 675 680 685

Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu Ser 690 695 700

Ser Arg Ala Gly Ile Ile Phe Ile Val Leu Gln Lys Val Glu Lys Thr 705 710 715 720

Leu Leu Arg Gln Gln Val Glu Leu Tyr Arg Leu Leu Ser Arg Asn Thr 725 730 735

Tyr Leu Glu Trp Glu Asp Ser Val Leu Gly Arg His Ile Phe Trp Arg
740 745 750

Arg Leu Arg Lys Ala Leu Leu Asp Gly Lys Ser Trp Asn Pro Glu Gly 755 760 765

Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr Ser Ile 770 775 780

<210> 18

<211> 799

<212> PRT

<213> Homo sapiens

<400> 18

Met Glu Leu Asn Phe Tyr Lys Ile Pro Asp Asn Leu Pro Phe Ser Thr 1 5 10 15

Lys Asn Leu Asp Leu Ser Phe Asn Pro Leu Arg His Leu Gly Ser Tyr
20 25 30

Ser Phe Phe Ser Phe Pro Glu Leu Gln Val Leu Asp Leu Ser Arg Cys 35 40 45

# WO 2004/094671 - 35 - PCT/US2004/012788

- Glu Ile Gln Thr Ile Glu Asp Gly Ala Tyr Gln Ser Leu Ser His Leu 50 60 Ser Thr Leu Ile Leu Thr Gly Asn Pro Ile Gln Ser Leu Ala Leu Gly
- Ala Phe Ser Gly Leu Ser Ser Leu Gln Lys Leu Val Ala Val Glu Thr
- Asn Leu Ala Ser Leu Glu Asn Phe Pro Ile Gly His Leu Lys Thr Leu 100 105 110
- Lys Glu Leu Asn Val Ala His Asn Leu Ile Gln Ser Phe Lys Leu Pro 115 120 125
- Glu Tyr Phe Ser Asn Leu Thr Asn Leu Glu His Leu Asp Leu Ser Ser 130 140
- Asn Lys Ile Gln Ser Ile Tyr Cys Thr Asp Leu Arg Val Leu His Gln 145 150 155 160
- Met Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn 165 170 175
- Phe Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr 180 185 190
- Leu Arg Asn Asn Phe Asp Ser Leu Asn Val Met Lys Thr Cys Ile Gln
  195 200 205
- Gly Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg 210 215 220
- Asn Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu 225 230 235 240
- Cys Asn Leu Thr Ile Glu Glu Phe Arg Leu Ala Tyr Leu Asp Tyr Tyr 245 250 255
- Leu Asp Asp Ile Ile Asp Leu Phe Asn Cys Leu Thr Asn Val Ser Ser 260 265 270
- Phe Ser Leu Val Ser Val Thr Ile Glu Arg Val Lys Asp Phe Ser Tyr 275 280 285
- Asn Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln 290 295 300
- Phe Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser 305 310 315 320
- Asn Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu 325 330 335
- Phe Leu Asp Leu Ser Arg Asn Gly Leu Ser Phe Lys Gly Cys Cys Ser 340 345 350
- Gln Ser Asp Phe Gly Thr Thr Ser Leu Lys Tyr Leu Asp Leu Ser Phe
- Asn Gly Val Ile Thr Met Ser Ser Asn Phe Leu Gly Leu Glu Gln Leu

# WO 2004/094671 - 36 - PCT/US2004/012788

375 Glu His Leu Asp Phe Gln His Ser Asn Leu Lys Gln Met Ser Glu Phe 390 395 Ser Val Phe Leu Ser Leu Arg Asn Leu Ile Tyr Leu Asp Ile Ser His Thr His Thr Arg Val Ala Phe Asn Gly Ile Phe Asn Gly Leu Ser Ser 425 Leu Glu Val Leu Lys Met Ala Gly Asn Ser Phe Gln Glu Asn Phe Leu 440 Pro Asp Ile Phe Thr Glu Leu Arg Asn Leu Thr Phe Leu Asp Leu Ser 455 Gln Cys Gln Leu Glu Gln Leu Ser Pro Thr Ala Phe Asn Ser Leu Ser 470 475 Ser Leu Gln Val Leu Asn Met Ser His Asn Asn Phe Phe Ser Leu Asp 490 Thr Phe Pro Tyr Lys Cys Leu Asn Ser Leu Gln Val Leu Asp Tyr Ser 505 Leu Asn His Ile Met Thr Ser Lys Lys Gln Glu Leu Gln His Phe Pro 520 Ser Ser Leu Ala Phe Leu Asn Leu Thr Gln Asn Asp Phe Ala Cys Thr 535 Cys Glu His Gln Ser Phe Leu Gln Trp Ile Lys Asp Gln Arg Gln Leu 550 Leu Val Glu Val Glu Arg Met Glu Cys Ala Thr Pro Ser Asp Lys Gln 570 Gly Met Pro Val Leu Ser Leu Asn Ile Thr Cys Gln Met Asn Lys Thr Ile Ile Gly Val Ser Val Leu Ser Val Leu Val Val Ser Val Val Ala Val Leu Val Tyr Lys Phe Tyr Phe His Leu Met Leu Leu Ala Gly Cys 615 Ile Lys Tyr Gly Arg Gly Glu Asn Ile Tyr Asp Ala Phe Val Ile Tyr Ser Ser Gln Asp Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Pro Phe Gln Leu Cys Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile Ile His Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val Val Ser Gln His Phe Ile Gln Ser 695 Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu 705 710 715 720 Ser Ser Arg Ala Gly Ile Ile Phe Ile Val Leu Gln Lys Val Glu Lys 725 730 735

Thr Leu Leu Arg Gln Gln Val Glu Leu Tyr Arg Leu Leu Ser Arg Asn 740 745 750

Thr Tyr Leu Glu Trp Glu Asp Ser Val Leu Gly Arg His Ile Phe Trp
755 760 765

Arg Arg Leu Arg Lys Ala Leu Leu Asp Gly Lys Ser Trp Asn Pro Glu 770 780

Gly Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr Ser Ile 785 790 795

<210> 19

<211> 639

<212> PRT

<213> Homo sapiens

<400> 19

Met Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn 1 5 10 15

Phe Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr 20 25 30

Leu Arg Asn Asn Phe Asp Ser Leu Asn Val Met Lys Thr Cys Ile Gln 35 40 45

Gly Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg
50 55 60

Asn Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu 65 70 75 80

Cys Asn Leu Thr Ile Glu Glu Phe Arg Leu Ala Tyr Leu Asp Tyr Tyr 85 90 95

Leu Asp Asp Ile Ile.Asp Leu Phe Asn Cys Leu Thr Asn Val Ser Ser 100 105 110

Phe Ser Leu Val Ser Val Thr Ile Glu Arg Val Lys Asp Phe Ser Tyr 115 120 125

Asn Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln 130 135 140

Phe Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser 145 150 155 160

Asn Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu 165 170 175

Phe Leu Asp Leu Ser Arg Asn Gly Leu Ser Phe Lys Gly Cys Cys Ser 180 185 190

Gln Ser Asp Phe Gly Thr Thr Ser Leu Lys Tyr Leu Asp Leu Ser Phe 195 200 205

# WO 2004/094671 - 38 - PCT/US2004/012788

- Asn Gly Val Ile Thr Met Ser Ser Asn Phe Leu Gly Leu Glu Gln Leu 210 215 220
- Glu His Leu Asp Phe Gln His Ser Asn Leu Lys Gln Met Ser Glu Phe 225 230 235 240
- Ser Val Phe Leu Ser Leu Arg Asn Leu Ile Tyr Leu Asp Ile Ser His 245 250 255
- Thr His Thr Arg Val Ala Phe Asn Gly Ile Phe Asn Gly Leu Ser Ser 260 265 270
- Leu Glu Val Leu Lys Met Ala Gly Asn Ser Phe Gln Glu Asn Phe Leu 275 280 285
- Pro Asp Ile Phe Thr Glu Leu Arg Asn Leu Thr Phe Leu Asp Leu Ser 290 295 300
- Gln Cys Gln Leu Glu Gln Leu Ser Pro Thr Ala Phe Asn Ser Leu Ser 305 310 315 320
- Ser Leu Gln Val Leu Asn Met Ser His Asn Asn Phe Phe Ser Leu Asp 325 330 335
- Thr Phe Pro Tyr Lys Cys Leu Asn Ser Leu Gln Val Leu Asp Tyr Ser 340 345 350
- Leu Asn His Ile Met Thr Ser Lys Lys Gln Glu Leu Gln His Phe Pro 355 360 365
- Ser Ser Leu Ala Phe Leu Asn Leu Thr Gln Asn Asp Phe Ala Cys Thr 370 380
- Cys Glu His Gln Ser Phe Leu Gln Trp Ile Lys Asp Gln Arg Gln Leu 385 390 395 400
- Leu Val Glu Val Glu Arg Met Glu Cys Ala Thr Pro Ser Asp Lys Gln 405 410 415
- Gly Met Pro Val Leu Ser Leu Asn Ile Thr Cys Gln Met Asn Lys Thr 420 425 430
- Ile Ile Gly Val Ser Val Leu Ser Val Leu Val Val Ser Val Val Ala 435 440 445
- Val Leu Val Tyr Lys Phe Tyr Phe His Leu Met Leu Leu Ala Gly Cys 450 455 460
- Ile Lys Tyr Gly Arg Gly Glu Asn Ile Tyr Asp Ala Phe Val Ile Tyr 465 470 475 480
- Ser Ser Gln Asp Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu 485 490 495
- Glu Glu Gly Val Pro Pro Phe Gln Leu Cys Leu His Tyr Arg Asp Phe 500 505 510
- Ile Pro Gly Val Ala Ile Ala Ala Asn Ile Ile His Glu Gly Phe His 515 520 525
- Lys Ser Arg Lys Val Ile Val Val Val Ser Gln His Phe Ile Gln Ser

WO 2004/094671 - 39 - PCT/US2004/012788

| Arg<br>545 | 530<br>Trp | Суз | Ile        | Phe        | Glu<br>550 | 535<br>Tyr | Glu | Ile        | Ala        | Gln<br>555 | 540<br>Thr | Trp      | Gln        | Phe        | Leu<br>560 |
|------------|------------|-----|------------|------------|------------|------------|-----|------------|------------|------------|------------|----------|------------|------------|------------|
| Ser        | Ser        | Arg | Ala        | Gly<br>565 | Ile        | Ile        | Phe | Ile        | Val<br>570 | Leu        | Gln        | Lys<br>, | Väl        | Glu<br>575 | Lys        |
| Thr        | Leu        | Leu | Arg<br>580 | Gln        | Gln        | Val        | Glu | Leu<br>585 | Tyr        | Arg        | Leu        | Leu      | Ser<br>590 | Arg        | Asn        |

Thr Tyr Leu Glu Trp Glu Asp Ser Val Leu Gly Arg His Ile Phe Trp

Arg Arg Leu Arg Lys Ala Leu Leu Asp Gly Lys Ser Trp Asn Pro Glu 610 615 620

Gly Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr Ser Ile 625 630 635

<210> 20 <211> 3866 <212> DNA <213> murine

<400> 20

ctggttgcag aaaatgccag gatgatgcct ccctggctcc tggctaggac tctgatcatg 60 gcactgttct tctcctgcct gacaccagga agcttgaatc cctgcataga ggtagttcct 120 aatattacct accaatgcat ggatcagaaa ctcagcaaag tccctgatga cattccttct 180 tcaaccaaga acatagatct gagcttcaac cccttgaaga tcttaaaaaag ctatagcttc 240 tccaattttt cagaacttca gtggctggat ttatccaggt gtgaaattga aacaattgaa 300 gacaaggcat ggcatggctt acaccacctc tcaaacttga tactgacagg aaaccctatc 360 cagagttttt ccccaggaag tttctctgga ctaacaagtt tagagaatct ggtggctgtg 420 gagacaaaat tggcctctct agaaagcttc cctattggac agcttataac cttaaagaaa 480 ctcaatgtgg ctcacaattt tatacattcc tgtaagttac ctgcatattt ttccaatctg 540 acquacctag tacatgtgga tctttcttat aactatattc aaactattac tgtcaacgac 600 ttacagtttc tacgtgaaaa tccacaagtc aatctctctt tagacatgtc tttgaaccca 660 attgacttca ttcaagacca agcctttcag ggaattaagc tccatgaact gactctaaga 720 ggtaatttta atagctcaaa tataatgaaa acttgccttc aaaacctggc tggtttacac 780 gtccatcggt tgatcttggg agaatttaaa gatgaaagga atctggaaat ttttgaaccc 840 tctatcatgg aaggactatg tgatgtgacc attgatgagt tcaggttaac atatacaaat 900 gatttttcag atgatattgt taagttccat tgcttggcga atgtttctgc aatgtctctg 960 gcaggtgtat ctataaaata tctagaagat gttcctaaac atttcaaatg gcaatcctta 1020 tcaatcatta gatgtcaact taagcagttt ccaactctgg atctaccctt tcttaaaagt 1080

| ttgactttaa<br>agctatctag | ctatgaacaa<br>atcttagtag | agggtctatc<br>aaatgcactg | agttttaaaa<br>agctttagtg | aagtggccct<br>gttgctgttc | accaagtctc<br>ttattctgat | 1140<br>1200 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| ttgggaacaa               | acagcctgag               | acacttagac               | ctcagcttca               | atggtgccat               | cattatgagt               | 1260         |
| gccaatttca               | tgggtctaga               | agagctgcag               | cacctggatt               | ttcagcactc               | tactttaaaa               | 1320         |
| agggtcacag               | aattctcagc               | gttcttatcc               | cttgaaaagc               | tactttacct               | tgacatctct               | 1380         |
| tatactaaca               | ccaaaattga               | cttcgatggt               | atatttcttg               | gcttgaccag               | tctcaacaca               | 1440         |
| ttaaaaatgg               | ctggcaattc               | ttţcaaagac               | aacacccttt               | caaatgtctt               | tgcaaacaca               | 1500         |
| acaaacttga               | cattcctgga               | tctttctaaa               | tgtcaattgg               | aacaaatatc               | ttggggggta               | 1560         |
| tttgacaccc               | tccatagact               | tcaattatta               | aatatgagtc               | acaacaatct               | attgtttttg               | 1620         |
| gattcatccc               | attataacca               | gctgtattcc               | ctcagcactc               | ttgattgcag               | tttcaatcgc               | 1680         |
| atagagacat               | ctaaaggaat               | actgcaacat               | tttccaaaga               | gtctagcctt               | cttcaatctt               | 1740         |
| actaacaatt               | ctgttgcttg               | tatatgtgaa               | catcagaaat               | tcctgcagtg               | ggtcaaggaa               | 1800         |
| cagaagcagt               | tcttggtgaa               | tgttgaacaa               | atgacatgtg               | caacacctgt               | agagatgaat               | 1860         |
| acctccttag               | tgttggattt               | taataattct               | acctgttata               | tgtacaagac               | aatcatcagt               | 1920         |
| gtgtcagtgg               | tcagtgtgat               | tgtggtatcc               | actgtagcat               | ttctgatata               | ccacttctat               | 1980         |
| tttcacctga               | tacttattgc               | tggctgtaaa               | aagtacagca               | gaggagaaag               | catctatgat               | 2040         |
| gcatttgtga               | tctactcgag               | tcagaatgag               | gactgggtga               | gaaatgagct               | ggtaaagaat               | 2100         |
| ttagaagaag               | gagtgccccg               | ctttcacctc               | tgccttcact               | acagagactt               | tattcctggt               | 2160         |
| gtagccattg               | ctgccaacat               | catccaggaa               | ggcttccaca               | agagccggaa               | ggttattgtg               | 2220         |
| gtagtgtcta               | gacactttat               | tcagagccgt               | tggtgtatct               | ttgaatatga               | gattgctcaa               | 2280         |
| acatggcagt               | ttctgagcag               | ccgctctggc               | atcatcttca               | ttgtccttga               | gaaggttgag               | 2340         |
| aagtccctgc               | tgaggcagca               | ggtggaattg               | tatcgccttc               | ttagcagaaa               | cacctacctg               | 2400         |
| gaatgggagg               | acaatcctct               | ggggaggcac               | atcttctgga               | gaagacttaa               | aaatgcccta               | 2460         |
| ttggatggaa               | aagcctcgaa               | tcctgagcaa               | acagcagagg               | aagaacaaga               | aacggcaact               | 2520         |
| tggacctgag               | gagaacaaaa               | ctctggggcc               | taaacccagt               | ctgtttgcaa               | ttaataaatg               | 2580         |
| ctacagetea               | cctggggctc               | tgctatggac               | cgagagccca               | tggaacacat               | ggctgctaag               | 2640         |
| ctatagcatg               | gaccttaccg               | ggcagaagga               | agtagcactg               | acaccttcct               | ttccaggggt               | 2700         |
| atgaattacc               | taactcggga               | aaagaaacat               | aatccagaat               | ctttaccttt               | aatctgaagg               | 2760         |
| agaagaggct               | aaggcctagt               | gagaacagaa               | aggagaacca               | gtcttcactg               | ggccttttga               | 2820         |
| atacaagcca               | tgtcatgttc               | tgtgtttcag               | ttgctttaga               | agagtattga               | tagtttcaac               | 2880         |
| tgaactgaac               | ggtttcttac               | tttccctttt               | ttctactgaa               | tgcaatatta               | aatagctctt               | 2940         |
| tttgagaggt               | cttcattcca               | atttcatctt               | ccattttatg               | tcattttctt               | ttcttttttg               | 3000         |

| tttttatcta | attctataag | aaatatgatt | gatacacgct | cacagatagc | ctggccaatc | 3060 |
|------------|------------|------------|------------|------------|------------|------|
| ctaagaatgc | tatatttatt | aaatacaatt | cctagtatac | ttttactttt | ataaattcag | 3120 |
| ttatcgtttt | tcatgccttg | actataaact | aatatcataa | ataagattgt | tacaggtatg | 3180 |
| ctaagaaggc | ccatatttga | ctataatttt | ttaagaaagt | atataaaata | tactttgtca | 3240 |
| tattgtcact | gaatgtcatt | cttaagttat | tacctaagtt | atggatgtca | cagagtcagt | 3300 |
| gttaaaaata | atttggttga | tagaaatatt | tttaatcagg | agggaaaagt | ggagaggggt | 3360 |
| gcaggaacag | aaatcatgat | ttcatcattt | attcttgatt | tttccggaag | ttcacatagc | 3420 |
| tgaatgacaa | gactacatat | gctgcaactg | atgttccttc | tcatcaagga | tactctctga | 3480 |
| acttgagaac | attttgggga | ggaagaaagg | tctaacatcc | ttttccttca | tcattctcat | 3540 |
| ttctggacat | gccttgtgag | atggatcaat | gttgggagta | cacatttctg | ctttcacctt | 3600 |
| atttcagtca | gcatgaacac | tgaatatata | atgtcatttc | acagtgtgtg | tgtgttgtgt | 3660 |
| atgtacatat | atgaacctgt | acatgtgttt | aagtttaaag | agaaaatagt | gtacagagca | 3720 |
| ggtgtatatt | tgtgataggg | ctttaaatag | ttgagctaat | tcagaaaagt | atggaggttt | 3780 |
| cttggtaaac | caaaccaaaa | gtagaatcat | tacaagatct | aacaataaaa | attttgaaaa | 3840 |
| aaaaaaaaa  | aaaaaaaaa  | aaaaaa     |            |            |            | 3866 |

<211> 2520

<212> DNA

<213> murine

<400> 21

atgatgeete eetggeteet ggetaggaet etgateatgg eactgiteit etectgeetg 60 acaccaggaa gcttgaatcc ctgcatagag gtagttccta atattaccta ccaatgcatg 120 gatcagaaac tcagcaaagt ccctgatgac attccttctt caaccaagaa catagatctg 180 agettcaacc cettgaagat ettaaaaage tatagettet eeaatttte agaacttcag 240 tggctggatt tatccaggtg tgaaattgaa acaattgaag acaaggcatg gcatggctta 300 caccacctct caaacttgat actgacagga aaccctatcc agagtttttc cccaggaagt 360 ttctctggac taacaagttt agagaatctg gtggctgtgg agacaaaatt ggcctctcta 420 gaaagettee etattggaca gettataace ttaaagaaac teaatgtgge teacaatttt 480 atacattcct gtaagttacc tgcatatttt tccaatctga cgaacctagt acatgtggat 540 ctttcttata actatattca aactattact gtcaacgact tacagtttct acgtgaaaat 600 ccacaagtca atctctcttt agacatatct ttgaacccaa ttgacttcat tcaagaccaa 660 gcctttcagg gaattaagct ccatgaactg actctaagag gtaattttaa tagctcaaat 720

|            | cttgccttca<br>atgaaaggaa |            |            |            |            | 780<br>840 |
|------------|--------------------------|------------|------------|------------|------------|------------|
| gatgtgacca | ttgatgagtt               | caggttaaca | tatacaaatg | atttttcaga | tgatattgtt | 900        |
| aagttccatt | gcttggcgaa               | tgtttctgca | atgtctctgg | caggtgtatc | tataaaatat | 960        |
| ctagaagatg | ttcctaaaca               | tttcaaatgg | caatccttat | caatcattag | atgtcaactt | 1020       |
| aagcagtttc | caactctgga               | tctacccttt | cttaaaagtt | tgactttaac | tatgaacaaa | 1080       |
| gggtctatca | gttttaaaaa               | agtggcccta | ccaagtctca | gctatctaga | tcttagtaga | 1140       |
| aatgcactga | gctttagtgg               | ttgctgttct | tattctgatt | tgggaacaaa | cagcctgaga | 1200       |
| cacttagacc | tcagcttcaa               | tggtgccatc | attatgagtg | ccaatttcat | gggtctagaa | 1260       |
| gagctgcagc | acctggattt               | tcagcactct | actttaaaaa | gggtcacaga | attctcagcg | 1320       |
| ttcttatccc | ttgaaaagct               | actttacctt | gacatctctt | atactaacac | caaaattgac | 1380       |
| ttcgatggta | tatttcttgg               | cttgaccagt | ctcaacacat | taaaaatggc | tggcaattct | 1440       |
| ttcaaagaca | acaccctttc               | aaatgtcttt | gcaaacacaa | caaacttgac | attcctggat | 1500       |
| ctttctaaat | gtcaattgga               | acaaatatct | tggggggtat | ttgacaccct | ccatagactt | 1560       |
| caattattaa | atatgagtca               | caacaatcta | ttgtttttgg | attcatccca | ttataaccag | 1620       |
| ctgtattccc | tcagcactct               | tgattgcagt | ttcaatcgca | tagagacatc | taaaggaata | 1680       |
| ctgcaacatt | ttccaaagag               | tctagccttc | ttcaatctta | ctaacaattc | tgttgcttgt | 1740       |
| atatgtgaac | atcagaaatt               | cctgcagtgg | gtcaaggacc | agaagcagtt | cttggtgaat | 1800       |
| gttgaacaaa | tgacatgtgc               | aacacctgta | gagatgaata | cctccttagt | gttggatttt | 1860       |
| aataattcta | cctgttatat               | gtacaagaca | atcatcagtg | tgtcagtggt | cagtgtgatt | 1920       |
| gtggtatcca | ctgtagcatt               | tctgatatac | cacttctatt | ttcacctgat | acttattgct | 1980       |
| ggctgtaaaa | agtacagcag               | aggagaaagc | atctatgatg | catttgtgat | ctactcgagt | 2040       |
| cagaatgagg | actgggtgag               | aaatgagctg | gtaaagaatt | tagaagaagg | agtgccccgc | 2100       |
| tttcacctct | gccttcacta               | cagagacttt | attcctggtg | tagccattgc | tgccaatatc | 2160       |
| atccaggaag | gcttccacaa               | gagccggaag | gttattgtgg | tagtgtctag | acactttatt | 2220       |
| cagagccgtt | ggtgtatctt               | tgaatatgag | attgctcaaa | catggcagtt | tctgagcagc | 2280       |
| cactctggca | tcatcttcat               | tgtccttgag | aaggttgaga | agtccctgct | gaggcagcag | 2340       |
| gtggaattgt | atcgccttct               | tagcagaaac | acctacctgg | aatgggagga | caatcctctg | 2400       |
| gggaggcaca | tcttctggag               | aagacttaaa | aatgccctat | tggatggaaa | agcctcgaat | 2460       |
| cctgagcaaa | cagcagagga               | agaacaagaa | acggcaactt | ggacctgagg | agaaccgcgg | 2520       |

<210> 22 <211> 3866 <212> DNA <213> murine

<400> 22 ctggttgcag aaaatgccag gatgatgcct ccctggctcc tggctaggac tctgatcatg 60 gcactgttct tctcctgcct gacaccagga agcttgaatc cctgcataga ggtagttcct 120 aatattacct accaatgcat ggatcagaaa ctcagcaaag tccctgatga cattccttct 180 tcaaccaaga acatagatct gagcttcaac cccttgaaga tcttaaaaag ctatagcttc 240 tccaattttt cagaacttca gtggctggat ttatccaggt gtgaaattga aacaattgaa 300 gacaaggcat ggcatggctt acaccacctc tcaaacttqa tactgacagg aaaccctatc 360 cagagttttt ccccaggaag tttctctgga ctaacaagtt tagagaatct ggtggctgtg 420 gagacaaaat tggcctctct agaaagcttc cctattggac agcttataac cttaaagaaa 480 ctcaatgtgg ctcacaattt tatacattcc tgtaagttac ctgcatattt ttccaatctg 540 acgaacctag tacatgtgga tctttcttat aactatattc aaactattac tgtcaacgac 600 ttacagtttc tacgtgaaaa tccacaagtc aatctctctt tagacatgtc tttgaaccca 660 attgacttca ttcaagacca agcctttcag ggaattaagc tccatgaact gactctaaga 720 ggtaatttta atageteaaa tataatgaaa acttgeette aaaacetgge tggtttacae 780 gtccatcggt tgatcttggg agaatttaaa gatgaaagga atctggaaat ttttgaaccc 840 tctatcatgg aaggactatg tgatgtgacc attgatgagt tcaggttaac atatacaaat 900 gatttttcag atgatattgt taagttccat tgcttggcga atgtttctgc aatgtctctg 960 gcaggtgtat ctataaaata tctagaagat gttcctaaac atttcaaatg gcaatcctta 1020 tcaatcatta gatgtcaact taagcagttt ccaactctgg atctaccctt tcttaaaagt 1080 ttgactttaa ctatgaacaa agggtctatc agttttaaaa aagtggccct accaagtctc 1140 agctatctag atcttagtag aaatgcactg agctttagtg gttgctgttc ttattctgat 1200 ttgggaacaa acagcctgag acacttagac ctcagcttca atggtgccat cattatgagt 1260 gccaatttca tgggtctaga agagctgcag cacctggatt ttcagcactc tactttaaaa 1320 agggtcacag aattetcage gttettatee ettgaaaage taetttaeet tgacatetet 1380 tatactaaca ccaaaattga cttcgatggt atatttcttg gcttgaccag tctcaacaca 1440 ttaaaaatgg ctggcaattc tttcaaagac aacacccttt caaatgtctt tgcaaacaca 1500 acaaacttga catteetgga tetttetaaa tgteaattgg aacaaatate ttggggggta 1560 tttgacaccc tccatagact tcaattatta aatatgagtc acaacaatct attgtttttg 1620 gattcatccc attataacca gctgtattcc ctcagcactc ttgattgcag tttcaatcgc 1680 atagagacat ctaaaggaat actgcaacat tttccaaaga gtctagcctt cttcaatctt 1740

|            | ctgttgcttg<br>tcttggtgaa |            |            |            |            | 1800<br>1860 |
|------------|--------------------------|------------|------------|------------|------------|--------------|
| acctccttag | tgttggattt               | taataattct | acctgttata | tgtacaagac | aatcatcagt | 1920         |
| gtgtcagtgg | tcagtgtgat               | tgtggtatcc | actgtagcat | ttctgatata | ccacttctat | 1980         |
| tttcacctga | tacttattgc               | tggctgtaaa | aagtacagca | gaggagaaag | catctatgat | 2040         |
| gcatttgtga | tctactcgag               | tcagaatgag | gactgggtga | gaaatgagct | ggtaaagaat | 2100         |
| ttagaagaag | gagtgccccg               | ctttcacctc | tgccttcact | acagagactt | tattcctggt | 2160         |
| gtagccattg | ctgccaacat               | catccaggaa | ggcttccaca | agagccggaa | ggttattgtg | 2220         |
| gtagtgtcta | gacactttat               | tcagagccgt | tggtgtatct | ttgaatatga | gattgctcaa | 2280         |
| acatggcagt | ttctgagcag               | ccgctctggc | atcatcttca | ttgtccttga | gaaggttgag | 2340         |
| aagtccctgc | tgaggcagca               | ggtggaattg | tatcgccttc | ttagcagaaa | cacctacctg | 2400         |
| gaatgggagg | acaatcctct               | ggggaggcac | atcttctgga | gaagacttaa | aaatgcccta | 2460         |
| ttggatggaa | aagcctcgaa               | tcctgagcaa | acagcagagg | aagaacaaga | aacggcaact | 2520         |
| tggacctgag | gagaacaaaa               | ctctggggcc | taaacccagt | ctgtttgcaa | ttaataaatg | 2580         |
| ctacagctca | cctggggctc               | tgctatggac | cgagagccca | tggaacacat | ggctgctaag | 2640         |
| ctatagcatg | gaccttaccg               | ggcagaagga | agtagcactg | acaccttcct | ttccaggggt | 2700         |
| atgaattacc | taactcggga               | aaagaaacat | aatccagaat | ctttaccttt | aatctgaagg | 2760         |
| agaagaggct | aaggcctagt               | gagaacagaa | aggagaacca | gtcttcactg | ggccttttga | 2820         |
| atacaagcca | tgtcatgttc               | tgtgtttcag | ttgctttaga | agagtattga | tagtttcaac | 2880         |
| tgaactgaac | ggtttcttac               | tttccctttt | ttctactgaa | tgcaatatta | aatagctctt | 2940         |
| tttgagaggt | cttcattcca               | atttcatctt | ccattttatg | tcattttctt | ttcttttttg | 3000         |
| tttttatcta | attctataag               | aaatatgatt | gatacacgct | cacagatagc | ctggccaatc | 3060         |
| ctaagaatgc | tatatttatt               | aaatacaatt | cctagtatac | ttttactttt | ataaattcag | 3120         |
| ttatcgtttt | tcatgccttg               | actataaact | aatatcataa | ataagattgt | tacaggtatg | 3180         |
| ctaagaaggc | ccatatttga               | ctataatttt | ttaagaaagt | atataaaata | tactttgtca | 3240         |
| tattgtcact | gaatgtcatt               | cttaagttat | tacctaagtt | atggatgtca | cagagtcagt | 3300         |
| gttaaaaata | atttggttga               | tagaaatatt | tttaatcagg | agggaaaagt | ggagaggggt | 3360         |
| gcaggaacag | aaatcatgat               | ttcatcattt | attcttgatt | tttccggaag | ttcacatagc | 3420         |
| tgaatgacaa | gactacatat               | gctgcaactg | atgttccttc | tcatcaagga | tactctctga | 3480         |
| acttgagaac | attttgggga               | ggaagaaagg | tctaacatcc | ttttccttca | tcattctcat | 3540         |
| ttctggacat | gccttgtgag               | atggatcaat | gttgggagta | cacatttctg | ctttcacctt | 3600         |
| atttcagtca | gcatgaacac               | tgaatatata | atgtcatttc | acagtgtgtg | tgtgttgtgt | 3660         |

| atgtacatat | atgaacctgt | acatgtgttt | aagtttaaag | agaaaatagt | gtacagagca | 3720 |
|------------|------------|------------|------------|------------|------------|------|
| ggtgtatatt | tgtgataggg | ctttaaatag | ttgagctaat | tcagaaaagt | atggaggttt | 3780 |
| cttggtaaac | caaaccaaaa | gtagaatcat | tacaagatct | aacaataaaa | attttgaaaa | 3840 |
| aaaaaaaaa  | aaaaaaaaa  | aaaaaa     |            |            |            | 3866 |
|            |            |            |            |            |            |      |

<211> 835

<212> PRT

<213> murine

<400> 23

Met Met Pro Pro Trp Leu Leu Ala Arg Thr Leu Ile Met Ala Leu Phe 1 5 10 15

Phe Ser Cys Leu Thr Pro Gly Ser Leu Asn Pro Cys Ile Glu Val Val 20 25 30

Pro Asn Ile Thr Tyr Gln Cys Met Asp Gln Lys Leu Ser Lys Val Pro 35 40 45

Asp Asp Ile Pro Ser Ser Thr Lys Asn Ile Asp Leu Ser Phe Asn Pro 50 55

Leu Lys Ile Leu Lys Ser Tyr Ser Phe Ser Asn Phe Ser Glu Leu Gln 65 70 75 80

Trp Leu Asp Leu Ser Arg Cys Glu Ile Glu Thr Ile Glu Asp Lys Ala 85 90 95

Trp His Gly Leu His His Leu Ser Asn Leu Ile Leu Thr Gly Asn Pro 100 105 110

Ile Gln Ser Phe Ser Pro Gly Ser Phe Ser Gly Leu Thr Ser Leu Glu 115 120 125

Asn Leu Val Ala Val Glu Thr Lys Leu Ala Ser Leu Glu Ser Phe Pro 130 135 140

Ile Gly Gln Leu Ile Thr Leu Lys Lys Leu Asn Val Ala His Asn Phe 145 150 155 160

Ile His Ser Cys Lys Leu Pro Ala Tyr Phe Ser Asn Leu Thr Asn Leu 165 170 175

Val His Val Asp Leu Ser Tyr Asn Tyr Ile Gln Thr Ile Thr Val Asn 180 185 190

Asp Leu Gln Phe Leu Arg Glu Asn Pro Gln Val Asn Leu Ser Leu Asp 195 200 205

Met Ser Leu Asn Pro Ile Asp Phe Ile Gln Asp Gln Ala Phe Gln Gly 210 215 220

Ile Lys Leu His Glu Leu Thr Leu Arg Gly Asn Phe Asn Ser Ser Asn 225 230 235 240

# WO 2004/094671 - 46 - PCT/US2004/012788

Ile Met Lys Thr Cys Leu Gln Asn Leu Ala Gly Leu His Val His Arg Leu Ile Leu Gly Glu Phe Lys Asp Glu Arg Asn Leu Glu Ile Phe Glu 265 Pro Ser Ile Met Glu Gly Leu Cys Asp Val Thr Ile Asp Glu Phe Arg Leu Thr Tyr Thr Asn Asp Phe Ser Asp Asp Ile Val Lys Phe His Cys 295 Leu Ala Asn Val Ser Ala Met Ser Leu Ala Gly Val Ser Ile Lys Tyr Leu Glu Asp Val Pro Lys His Phe Lys Trp Gln Ser Leu Ser Ile Ile Arg Cys Gln Leu Lys Gln Phe Pro Thr Leu Asp Leu Pro Phe Leu Lys Ser Leu Thr Leu Thr Met Asn Lys Gly Ser Ile Ser Phe Lys Lys Val Ala Leu Pro Ser Leu Ser Tyr Leu Asp Leu Ser Arg Asn Ala Leu Ser 375 Phe Ser Gly Cys Cys Ser Tyr Ser Asp Leu Gly Thr Asn Ser Leu Arg 390 His Leu Asp Leu Ser Phe Asn Gly Ala Ile Ile Met Ser Ala Asn Phe 410 Met Gly Leu Glu Glu Leu Gln His Leu Asp Phe Gln His Ser Thr Leu 420 425 Lys Arg Val Thr Glu Phe Ser Ala Phe Leu Ser Leu Glu Lys Leu Leu 440 Tyr Leu Asp Ile Ser Tyr Thr Asn Thr Lys Ile Asp Phe Asp Gly Ile Phe Leu Gly Leu Thr Ser Leu Asn Thr Leu Lys Met Ala Gly Asn Ser Phe Lys Asp Asn Thr Leu Ser Asn Val Phe Ala Asn Thr Thr Asn Leu Thr Phe Leu Asp Leu Ser Lys Cys Gln Leu Glu Gln Ile Ser Trp Gly Val Phe Asp Thr Leu His Arg Leu Gln Leu Leu Asn Met Ser His Asn

Asn Leu Leu Phe Leu Asp Ser Ser His Tyr Asn Gln Leu Tyr Ser Leu

Ser Thr Leu Asp Cys Ser Phe Asn Arg Ile Glu Thr Ser Lys Gly Ile

Leu Gln His Phe Pro Lys Ser Leu Ala Phe Phe Asn Leu Thr Asn Asn

570 Ser Val Ala Cys Ile Cys Glu His Gln Lys Phe Leu Gln Trp Val Lys 585 Glu Gln Lys Gln Phe Leu Val Asn Val Glu Gln Met Thr Cys Ala Thr 600 Pro Val Glu Met Asn Thr Ser Leu Val Leu Asp Phe Asn Asn Ser Thr 615 Cys Tyr Met Tyr Lys Thr Ile Ile Ser Val Ser Val Val Ser Val Ile Val Val Ser Thr Val Ala Phe Leu Ile Tyr His Phe Tyr Phe His Leu 650 Ile Leu Ile Ala Gly Cys Lys Lys Tyr Ser Arg Gly Glu Ser Ile Tyr Asp Ala Phe Val Ile Tyr Ser Ser Gln Asn Glu Asp Trp Val Arg Asn 680 Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Arg Phe His Leu Cys 695 Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile 710 715 Ile Gln Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val Val Ser 725 Arg His Phe Ile Gln Ser Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu Ser Ser Arg Ser Gly Ile Ile Phe Ile Val Leu Glu Lys Val Glu Lys Ser Leu Leu Arg Gln Gln Val Glu Leu Tyr 775 Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Asn Pro Leu

Gly Arg His Ile Phe Trp Arg Arg Leu Lys Asn Ala Leu Leu Asp Gly

Lys Ala Ser Asn Pro Glu Gln Thr Ala Glu Glu Glu Glu Glu Thr Ala

Thr Trp Thr 835

<210> 24 <211> 835 <212> PRT

<213> murine

<400> 24

Met Met Pro Pro Trp Leu Leu Ala Arg Thr Leu Ile Met Ala Leu Phe

# WO 2004/094671 - 48 - PCT/US2004/012788

Phe Ser Cys Leu Thr Pro Gly Ser Leu Asn Pro Cys Ile Glu Val Val 20 25 30

Pro Asn Ile Thr Tyr Gln Cys Met Asp Gln Lys Leu Ser Lys Val Pro 35 40 45

Asp Asp Ile Pro Ser Ser Thr Lys Asn Ile Asp Leu Ser Phe Asn Pro 50 55 60

Leu Lys Ile Leu Lys Ser Tyr Ser Phe Ser Asn Phe Ser Glu Leu Gln 65 70 75 80

Trp Leu Asp Leu Ser Arg Cys Glu Ile Glu Thr Ile Glu Asp Lys Ala 85 90 95

Trp His Gly Leu His His Leu Ser Asn Leu Ile Leu Thr Gly Asn Pro 100 105 110

Ile Gln Ser Phe Ser Pro Gly Ser Phe Ser Gly Leu Thr Ser Leu Glu 115 120 125

Asn Leu Val Ala Val Glu Thr Lys Leu Ala Ser Leu Glu Ser Phe Pro 130 135 140

Ile Gly Gln Leu Ile Thr Leu Lys Lys Leu Asn Val Ala His Asn Phe 145 150 155 160

Ile His Ser Cys Lys Leu Pro Ala Tyr Phe Ser Asn Leu Thr Asn Leu 165 170 175

Val His Val Asp Leu Ser Tyr Asn Tyr Ile Gln Thr Ile Thr Val Asn 180 185 190

Asp Leu Gln Phe Leu Arg Glu Asn Pro Gln Val Asn Leu Ser Leu Asp 195 200 205

Ile Ser Leu Asn Pro Ile Asp Phe Ile Gln Asp Gln Ala Phe Gln Gly 210 215 220

Ile Lys Leu His Glu Leu Thr Leu Arg Gly Asn Phe Asn Ser Ser Asn 225 230 235 240

Ile Met Lys Thr Cys Leu Gln Asn Leu Ala Gly Leu His Ile His Arg
245 250 255

Leu Ile Leu Gly Glu Phe Lys Asp Glu Arg Asn Leu Glu Ile Phe Glu 260 265 270

Pro Ser Ile Met Glu Gly Leu Cys Asp Val Thr Ile Asp Glu Phe Arg 275 280 285

Leu Thr Tyr Thr Asn Asp Phe Ser Asp Asp Ile Val Lys Phe His Cys 290 295 300

Leu Ala Asn Val Ser Ala Met Ser Leu Ala Gly Val Ser Ile Lys Tyr 305 310 315 320

Leu Glu Asp Val Pro Lys His Phe Lys Trp Gln Ser Leu Ser Ile Ile 325 330 335

Arg Cys Gln Leu Lys Gln Phe Pro Thr Leu Asp Leu Pro Phe Leu Lys

# WO 2004/094671 - 49 - PCT/US2004/012788

340 345 350 Ser Leu Thr Leu Thr Met Asn Lys Gly Ser Ile Ser Phe Lys Lys Val 360 Ala Leu Pro Ser Leu Ser Tyr Leu Asp Leu Ser Arg Asn Ala Leu Ser Phe Ser Gly Cys Cys Ser Tyr Ser Asp Leu Gly Thr Asn Ser Leu Arg 395 His Leu Asp Leu Ser Phe Asn Gly Ala Ile Ile Met Ser Ala Asn Phe 410 Met Gly Leu Glu Leu Gln His Leu Asp Phe Gln His Ser Thr Leu 425 Lys Arq Val Thr Glu Phe Ser Ala Phe Leu Ser Leu Glu Lys Leu Leu 440 Tyr Leu Asp Ile Ser Tyr Thr Asn Thr Lys Ile Asp Phe Asp Gly Ile 455 Phe Leu Gly Leu Thr Ser Leu Asn Thr Leu Lys Met Ala Gly Asn Ser 470 Phe Lys Asp Asn Thr Leu Ser Asn Val Phe Ala Asn Thr Thr Asn Leu 485 490 Thr Phe Leu Asp Leu Ser Lys Cys Gln Leu Glu Gln Ile Ser Trp Gly 505 Val Phe Asp Thr Leu His Arg Leu Gln Leu Leu Asn Met Ser His Asn 520 Asn Leu Leu Phe Leu Asp Ser Ser His Tyr Asn Gln Leu Tyr Ser Leu 535 Ser Thr Leu Asp Cys Ser Phe Asn Arg Ile Glu Thr Ser Lys Gly Ile 550 555 Leu Gln His Phe Pro Lys Ser Leu Ala Phe Phe Asn Leu Thr Asn Asn Ser Val Ala Cys Ile Cys Glu His Gln Lys Phe Leu Gln Trp Val Lys 585 Asp Gln Lys Gln Phe Leu Val Asn Val Glu Gln Met Thr Cys Ala Thr 600 Pro Val Glu Met Asn Thr Ser Leu Val Leu Asp Phe Asn Asn Ser Thr 615 Cys Tyr Met Tyr Lys Thr Ile Ile Ser Val Ser Val Val Ser Val Ile Val Val Ser Thr Val Ala Phe Leu Ile Tyr His Phe Tyr Phe His Leu Ile Leu Ile Ala Gly Cys Lys Lys Tyr Ser Arg Gly Glu Ser Ile Tyr Asp Ala Phe Val Ile Tyr Ser Ser Gln Asn Glu Asp Trp Val Arg Asn

685 680 675 Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Arg Phe His Leu Cys 695 700 Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile Ile Gln Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val Val Ser Arg His Phe Ile Gln Ser Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu Ser Ser His Ser Gly Ile Ile Phe Ile Val Leu Glu Lys Val Glu Lys Ser Leu Leu Arg Gln Gln Val Glu Leu Tyr 775 Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Asn Pro Leu 790 Gly Arg His Ile Phe Trp Arg Arg Leu Lys Asn Ala Leu Leu Asp Gly Lys Ala Ser Asn Pro Glu Gln Thr Ala Glu Glu Glu Gln Glu Thr Ala 825 Thr Trp Thr 835 <210> 25 <211> 3431 DNA <213> Homo sapiens <400> 25 ggcttatagg gctcgagcgg ccgcccgggc aggtatagaa ttcagcggcc gctgaattct 60 agggttttca ggagcccgag cgagggcgcc gcttttgcgt ccgggaggag ccaaccgtgg 120 cgcaggcggc gcggggaggc gtcccagagt ctcactctgc cgcccaggct ggactgcagt 180 gacacaatct cggctgactg caaccactgc ctccagggtt caagcgattc tcttgcctca 240 gcctcccaag tagctgggat tacagattga tgttcatgtt cctggcacta ctacaagatt 300 catactcctg atgctactga caacgtggct tctccacagt caccaaacca gggatgctat 360 actggacttc cctactctca tetgetecag ecceetgace ttatagttge ecagetttee 420 tggcaattga ctttgcccat caatacacag gatttagcat ccagggaaga tgtcggagcc 480 tcagatgtta attttctaat tgagaatgtt ggcgctgtcc gaacctggag acagaaaaac 540 aaaaagteet tteteetgat teaceaaaaa ataaaataet gaetaeeate aetgtgatga 600 gatteetata gteteaggaa etgaagtett taaacaacca gggaccetet geecetagaa 660

taagaacata ctagaagtcc cttctgctag gacaacgagg atcatgggag accacctgga

720

| ccttctccta<br>tgatggccga | ggagtggtgc<br>atagcctttt | tcatggccgg<br>atcgtttctg | tcctgtgttt<br>caacctcacc | ggaatteett<br>caggteece | cctgctcctt<br>aggtcctcaa | 780<br>8 <b>4</b> 0 |
|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|--------------------------|---------------------|
| caccactgag               | aggeteetge               | tgagcttcaa               | ctatatcagg               | acagtcactg              | cttcatcctt               | 900                 |
| cccctttctg               | gaacagctgc               | agctgctgga               | gctcgggagc               | cagtataccc              | ccttgactat               | 960                 |
| tgacaaggag               | gccttcagaa               | acctgcccaa               | ccttagaatc               | ttggacctgg              | gaagtagtaa               | 1020                |
| gatatacttc               | ttgcatccag               | atgcttttca               | gggactgttc               | catctgtttg              | aacttagact               | 1080                |
| gtatttctgt               | ggtctctctg               | atgctgtatt               | gaaagatggt               | tatttcagaa              | atttaaaggc               | 1140                |
| tttaactcgc               | ttggatctat               | ccaaaaatca               | gattcgtagc               | ctttaccttc              | atccttcatt               | 1200                |
| tgggaagttg               | aattccttaa               | agtccataga               | tttttcctcc               | aaccaaatat              | tccttgtatg               | 1260                |
| tgaacatgag               | ctcgagcccc               | tacaagggaa               | aacgctctcc               | ttttttagcc              | tcgcagctaa               | 1320                |
| tagcttgtat               | agcagagtct               | cagtggactg               | gggaaaatgt               | atgaacccat              | tcagaaacat               | 1380                |
| ggtgctggag               | atactagatg               | tttctggaaa               | tggctggaca               | gtggacatca              | caggaaactt               | 1440                |
| tagcaatgcc               | atcagcaaaa               | gccaggcctt               | ctctttgatt               | cttgcccacc              | acatcatggg               | 1500                |
| tgccgggttt               | ggcttccata               | acatcaaaga               | tcctgaccag               | aacacatttg              | ctggcctggc               | 1560                |
| cagaagttca               | gtgagacacc               | tggatctttc               | acatgggttt               | gtcttctccc              | tgaactcacg               | 1620                |
| agtctttgag               | acactcaagg               | atttgaaggt               | tctgaacctt               | gcctacaaca              | agataaataa               | 1680                |
| gattgcagat               | gaagcatttt               | acggacttga               | caacctccaa               | gttctcaatt              | tgtcatataa               | 1740                |
| ccttctgggg               | gaactttaca               | gttcgaattt               | ctatggacta               | cctaaggtag              | cctacattga               | 1800                |
| tttgcaaaag               | aatcacattg               | caataattca               | agaccaaaca               | ttcaaattcc              | tggaaaaatt               | 1860                |
| acagaccttg               | gatctccgag               | acaatgctct               | tacaaccatt               | cattttattc              | caagcatacc               | 1920                |
| cgatatcttc               | ttgagtggca               | ataaactagt               | gactttgcca               | aagatcaacc              | ttacagcgaa               | 1980                |
| cctcatccac               | ttatcagaaa               | acaggctaga               | aaatctagat               | attctctact              | ttcttctacg               | 2040                |
| ggtacctcat               | ctccagattc               | tcattttaaa               | tcaaaatcgc               | tteteeteet              | gtagtggaga               | 2100                |
| tcaaacccct               | tcagagaatc               | ccagcttaga               | acagetttte               | cttggagaaa              | atatgttgca               | 2160                |
| acttgcctgg               | gaaactgagc               | tctgttggga               | tgtttttgag               | ggactttctc              | atcttcaagt               | 2220                |
| tctgtatttg               | aatcataact               | atcttaattc               | ccttccacca               | ggagtattta              | gccatctgac               | 2280                |
| tgcattaagg               | ggactaagcc               | tcaactccaa               | caggctgaca               | gttctttctc              | acaatgattt               | 2340                |
| acctgctaat               | ttagagatcc               | tggacatatc               | caggaaccag               | ctcctagctc              | ctaatcctga               | 2400                |
| tgtatttgta               | tcacttagtg               | tcttggatat               | aactcataac               | aagttcattt              | gtgaatgtga               | 2460                |
| acttagcact               | tttatcaatt               | ggcttaatca               | caccaatgtc               | actatagctg              | ggcctcctgc               | 2520                |
| agacatatat               | tgtgtgtacc               | ctgactcgtt               | ctctggggtt               | tccctcttct              | ctctttccac               | 2580                |
| ggaaggttgt               | gatgaagagg               | aagtcttaaa               | gtccctaaag               | ttctcccttt              | tcattgtatg               | 2640                |

| cactgtcact | ctgactctgt | tcctcatgac | catcctcaca | gtcacaaagt | tccggggctt | 2700 |
|------------|------------|------------|------------|------------|------------|------|
| ctgttttatc | tgttataaga | cagcccagag | actggtgttc | aaggaccatc | cccagggcac | 2760 |
| agaacctgat | atgtacaaat | atgatgccta | tttgtgcttc | agcagcaaag | acttcacatg | 2820 |
| ggtgcagaat | gctttgctca | aacacctgga | cactcaatac | agtgaccaaa | acagattcaa | 2880 |
| cctgtgcttt | gaagaaagag | actttgtccc | aggagaaaac | cgcattgcca | atatccagga | 2940 |
| tgccatctgg | aacagtagaa | agatcgtttg | tcttgtgagc | agacacttcc | ttagagatgg | 3000 |
| ctggtgcctt | gaagccttca | gttatgccca | gggcaggtgc | ttatctgacc | ttaacagtgc | 3060 |
| tctcatcatg | gtggtggttg | ggtccttgtc | ccagtaccag | ttgatgaaac | atcaatccat | 3120 |
| cagaggcttt | gtacagaaac | agcagtattt | gaggtggcct | gaggatetee | aggatgttgg | 3180 |
| ctggtttctt | cataaactct | ctcaacagat | actaaagaaa | gaaaaagaaa | agaagaaaga | 3240 |
| caataacatt | ccgttgcaaa | ctgtagcaac | catctcctaa | tcaaaggagc | aatttccaac | 3300 |
| ttatctcaag | ccacaaataa | ctcttcactt | tgtatttgca | ccaagttatc | attttggggt | 3360 |
| cctctctgga | ggttttttt  | ttctttttgc | tactatgaaa | acaacataaa | tctctcaatt | 3420 |
| ttcgtatcaa | a          |            |            |            |            | 3431 |

<211> 858

<212> PRT

<213> Homo sapiens

<400> 26

Met Gly Asp His Leu Asp Leu Leu Cly Val Val Leu Met Ala Gly 1 5 10 15

Pro Val Phe Gly Ile Pro Ser Cys Ser Phe Asp Gly Arg Ile Ala Phe 20 25 30

Tyr Arg Phe Cys Asn Leu Thr Gln Val Pro Gln Val Leu Asn Thr Thr 35 40 45

Glu Arg Leu Leu Leu Ser Phe Asn Tyr Ile Arg Thr Val Thr Ala Ser 50 60

Ser Phe Pro Phe Leu Glu Gln Leu Gln Leu Glu Leu Gly Ser Gln 65 70 75 80

Tyr Thr Pro Leu Thr Ile Asp Lys Glu Ala Phe Arg Asn Leu Pro Asn 85 90 95

Leu Arg Ile Leu Asp Leu Gly Ser Ser Lys Ile Tyr Phe Leu His Pro 100 105 110

Asp Ala Phe Gln Gly Leu Phe His Leu Phe Glu Leu Arg Leu Tyr Phe 115 120 125

Cys Gly Leu Ser Asp Ala Val Leu Lys Asp Gly Tyr Phe Arg Asn Leu

| <b>Lys</b><br>145 | 130<br>Ala | Leu        | Thr        | Arg        | Leu<br>150 | 135<br>Asp | Leu        | Ser        | Lys        | Asn<br>155 | 140<br>Gln | Ile        | Arg        | Ser        | Leu<br>160 |
|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Tyr               | Leu        | His        | Pro        | Ser<br>165 | Phe        | Gly        | Lys        | Leu        | Asn<br>170 | Ser        | Leu        | ГÀЗ        | Ser        | Ile<br>175 | Asp        |
| Phe               | Ser        | Ser        | Asn<br>180 | Gln        | Ile        | Phe        | Leu        | Val<br>185 | Cys        | Glu        | His        | Glu        | Leu<br>190 | Glu        | Pro        |
| Leu               | Gln        | Gly<br>195 | Lys        | Thr        | Leu        | Ser        | Phe<br>200 | Phe        | Ser        | Leu        | Ala        | Ala<br>205 | Asn        | Ser        | Leu        |
| Tyr               | Ser<br>210 | Arg        | Val        | Ser        | Val        | Asp<br>215 | Trp        | Gly        | Lys        | Сув        | Met<br>220 | Asn        | Pro        | Phe        | Arg        |
| Asn<br>225        | Met        | Val        | Leu        | Glu        | Ile<br>230 | Leu        | Asp        | Val        | Ser        | Gly<br>235 | Asn        | Gly        | Trp        | Thr        | Val<br>240 |
|                   |            |            |            | 245        |            |            |            |            | 250        | Ser        |            |            |            | 255        |            |
| Ser               | Leu        | Ile        | Leu<br>260 | Ala        | His        | His        | Ile        | Met<br>265 | Gly        | Ala        | Gly        | Phe        | Gly<br>270 | Phe        | His        |
|                   |            | 275        |            |            |            |            | 280        |            |            | Ala        | _          | 285        |            | _          |            |
|                   | 290        |            |            |            |            | 295        |            |            |            | Phe        | 300        |            |            |            |            |
| Ser<br>305        | Arg        | Val        | Phe        | Glu        | Thr<br>310 | Leu        | Lys        | Asp        | Leu        | Lys<br>315 | Val        | Leu        | Asn        | Leu        | Ala<br>320 |
| Tyr               | Asn        | Lys        | Ile        | Asn<br>325 | Lys        | Ile        | Ala        | Asp        | Glu<br>330 | Ala        | Phe        | Tyr        | Gly        | Leu<br>335 | Asp        |
| Asn               | Leu        | Gln        | Val<br>340 | Leu        | Asn        | Leu        | Ser        | Tyr<br>345 | Asn        | Leu        | Leu        | Gly        | Glu<br>350 | Leu        | Tyr        |
| Ser               | Ser        | Asn<br>355 | Phe        | Tyr        | Gly        | Leu        | Pro<br>360 | Lys        | Val        | Ala        | Tyr        | 11e<br>365 | Asp        | Leu        | Gln        |
| ГÀа               | Asn<br>370 | His        | Ile        | Ala        | Ile        | Ile<br>375 | Gln        | Asp        | Gln        | Thr        | Phe<br>380 | Lys        | Phe        | Leu        | Glu        |
| 185<br>385        | Leu        | Gln        | Thr        | Leu        | Asp<br>390 | Leu        | Arg        | qaA        | Asn        | Ala<br>395 | Leu        | Thr        | Thr        | Ile        | His<br>400 |
| Phe               | Ile        | Pro        | Ser        | Ile<br>405 | Pro        | Asp        | Ile        | Phe        | Leu<br>410 | Ser        | Gly        | Asn        | Lys        | Leu<br>415 | Val        |
| Thr               | Leu        | Pro        | Lys<br>420 | Ile        | Asn        | Leu        | Thr        | Ala<br>425 | Asn        | Leu        | Ile        | His        | Leu<br>430 | Ser        | Glu        |
| Asn               | Arg        | Leu<br>435 | Glu        | Asn        | Leu        | Asp        | Ile<br>440 | Leu        | Tyr        | Phe        | Leu        | Leu<br>445 | Arg        | Val        | Pro        |
| His               | Leu<br>450 | Gln        | Ile        | Leu        | Ile        | Leu<br>455 | Asn        | Gln        | Asn        | Arg        | Phe<br>460 | Ser        | Ser        | Cys        | Ser        |

Gly Asp Gln Thr Pro Ser Glu Asn Pro Ser Leu Glu Gln Leu Phe Leu

#### WO 2004/094671 - 54 - PCT/US2004/012788

470 475 Gly Glu Asn Met Leu Gln Leu Ala Trp Glu Thr Glu Leu Cys Trp Asp 490 Val Phe Glu Gly Leu Ser His Leu Gln Val Leu Tyr Leu Asn His Asn 505 Tyr Leu Asn Ser Leu Pro Pro Gly Val Phe Ser His Leu Thr Ala Leu 520 Arg Gly Leu Ser Leu Asn Ser Asn Arg Leu Thr Val Leu Ser His Asn 535 Asp Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg Asn Gln Leu 550 555 Leu Ala Pro Asn Pro Asp Val Phe Val Ser Leu Ser Val Leu Asp Ile 570 565 Thr His Asn Lys Phe Ile Cys Glu Cys Glu Leu Ser Thr Phe Ile Asn 585 Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly Pro Pro Ala Asp Ile Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val Ser Leu Phe Ser Leu Ser Thr Glu Gly Cys Asp Glu Glu Glu Val Leu Lys Ser Leu Lys Phe Ser Leu Phe Ile Val Cys Thr Val Thr Leu Thr Leu Phe Leu Met Thr Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys Phe Ile Cys Tyr Lys Thr Ala Gln Arg Leu Val Phe Lys Asp His Pro Gln Gly Thr Glu Pro Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe Ser Ser Lys Asp Phe Thr Trp Val Gln Asn Ala Leu Leu Lys His Leu Asp Thr Gln Tyr Ser Asp Gln Asn Arg Phe Asn Leu Cys Phe Glu Glu Arg Asp Phe Val Pro Gly Glu Asn Arg Ile Ala Asn Ile Gln Asp Ala Ile Trp Asn Ser Arg Lys Ile Val Cys Leu Val Ser Arg His Phe Leu Arg Asp Gly Trp Cys Leu Glu Ala Phe Ser Tyr Ala Gln Gly Arg Cys Leu Ser Asp Leu Asn 775 Ser Ala Leu Ile Met Val Val Val Gly Ser Leu Ser Gln Tyr Gln Leu Met Lys His Gln Ser Ile Arg Gly Phe Val Gln Lys Gln Gln Tyr Leu

810 Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu His Lys Leu

Ser Gln Gln Ile Leu Lys Lys Glu Lys Glu Lys Lys Lys Asp Asn Asn

Ile Pro Leu Gln Thr Val Ala Thr Ile Ser

<210> 27

<211> 858 <212> PRT

<213> Homo sapiens

<400> 27

Met Gly Asp His Leu Asp Leu Leu Cly Val Val Leu Met Ala Gly

Pro Val Phe Gly Ile Pro Ser Cys Ser Phe Asp Gly Arg Ile Ala Phe 25

Tyr Arg Phe Cys Asn Leu Thr Gln Val Pro Gln Val Leu Asn Thr Thr 40

Glu Arg Leu Leu Ser Phe Asn Tyr Ile Arg Thr Val Thr Ala Ser 55

Ser Phe Pro Phe Leu Glu Gln Leu Gln Leu Glu Leu Gly Ser Gln

Tyr Thr Pro Leu Thr Ile Asp Lys Glu Ala Phe Arg Asn Leu Pro Asn 90

Leu Arg Ile Leu Asp Leu Gly Ser Ser Lys Ile Tyr Phe Leu His Pro

Asp Ala Phe Gln Gly Leu Phe His Leu Phe Glu Leu Arg Leu Tyr Phe 120

Cys Gly Leu Ser Asp Ala Val Leu Lys Asp Gly Tyr Phe Arg Asn Leu 135

Lys Ala Leu Thr Arg Leu Asp Leu Ser Lys Asn Gln Ile Arg Ser Leu

Tyr Leu His Pro Ser Phe Gly Lys Leu Asn Ser Leu Lys Ser Ile Asp

Phe Ser Ser Asn Gln Ile Phe Leu Val Cys Glu His Glu Leu Glu Pro

Leu Gln Gly Lys Thr Leu Ser Phe Phe Ser Leu Ala Ala Asn Ser Leu

Tyr Ser Arg Val Ser Val Asp Trp Gly Lys Cys Met Asn Pro Phe Arg

Asn Met Val Leu Glu Ile Val Asp Val Ser Gly Asn Gly Trp Thr Val 230

# WO 2004/094671 - 56 - PCT/US2004/012788

- Asp Ile Thr Gly Asn Phe Ser Asn Ala Ile Ser Lys Ser Gln Ala Phe 245 250 255
- Ser Leu Ile Leu Ala His His Ile Met Gly Ala Gly Phe Gly Phe His 260 265 270
- Asn Ile Lys Asp Pro Asp Gln Asn Thr Phe Ala Gly Leu Ala Arg Ser 275 280 285
- Ser Val Arg His Leu Asp Leu Ser His Gly Phe Val Phe Ser Leu Asn 290 295 300
- Ser Arg Val Phe Glu Thr Leu Lys Asp Leu Lys Val Leu Asn Leu Ala 305 310 315
- Tyr Asn Lys Ile Asn Lys Ile Ala Asp Glu Ala Phe Tyr Gly Leu Asp 325 330 335
- Asn Leu Gln Val Leu Asn Leu Ser Tyr Asn Leu Leu Gly Glu Leu Cys 340 345 350
- Ser Ser Asn Phe Tyr Gly Leu Pro Lys Val Ala Tyr Ile Asp Leu Gln 355 360 365
- Lys Asn His Ile Ala Ile Ile Gln Asp Gln Thr Phe Lys Phe Leu Glu 370 375 380
- Lys Leu Gln Thr Leu Asp Leu Arg Asp Asn Ala Leu Thr Thr Ile His 385 390 395 400
- Phe Ile Pro Ser Ile Pro Asp Ile Phe Leu Ser Gly Asn Lys Leu Val 405 410 415
- Thr Leu Pro Lys Ile Asn Leu Thr Ala Asn Leu Ile His Leu Ser Glu 420 425 430
- Asn Arg Leu Glu Asn Leu Asp Ile Leu Tyr Phe Leu Leu Arg Val Pro 435 440 445
- His Leu Gln Ile Leu Ile Leu Asn Gln Asn Arg Phe Ser Ser Cys Ser 450 455 460
- Gly Asp Gln Thr Pro Ser Glu Asn Pro Ser Leu Glu Gln Leu Phe Leu 465 470 475 480
- Gly Glu Asn Met Leu Gln Leu Ala Trp Glu Thr Glu Leu Cys Trp Asp 485 490 495
- Val Phe Glu Gly Leu Ser His Leu Gln Val Leu Tyr Leu Asn His Asn 500 505 510
- Tyr Leu Asn Ser Leu Pro Pro Gly Val Phe Ser His Leu Thr Ala Leu 515 520 525
- Arg Gly Leu Ser Leu Asn Ser Asn Arg Leu Thr Val Leu Ser His Asn 530 540
- Asp Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg Asn Gln Leu 545 550 555
- Leu Ala Pro Asn Pro Asp Val Phe Val Ser Leu Ser Val Leu Asp Ile

565 570 Thr His Asn Lys Phe Ile Cys Glu Cys Glu Leu Ser Thr Phe Ile Asn 585 Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly Pro Pro Ala Asp Ile 600 Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val Ser Leu Phe Ser Leu 615 Ser Thr Glu Gly Cys Asp Glu Glu Glu Val Leu Lys Ser Leu Lys Phe 630 635 Ser Leu Phe Ile Val Cys Thr Val Thr Leu Thr Leu Phe Leu Met Thr 650 Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys Phe Ile Cys Tyr Lys Thr Ala Gln Arg Leu Val Phe Lys Asp His Pro Gln Gly Thr Glu Pro 680 Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe Ser Ser Lys Asp Phe Thr Trp Val Gln Asn Ala Leu Leu Lys His Leu Asp Thr Gln Tyr Ser Asp Gln Asn Arg Phe Asn Leu Cys Phe Glu Glu Arg Asp Phe Val Pro Gly Glu Asn Arg Ile Ala Asn Ile Gln Asp Ala Ile Trp Asn Ser Arg Lys Ile Val Cys Leu Val Ser Arg His Phe Leu Arg Asp Gly Trp Cys Leu Glu Ala Phe Ser Tyr Ala Gln Gly Arg Cys Leu Ser Asp Leu Asn Ser Ala Leu Ile Met Val Val Val Gly Ser Leu Ser Gln Tyr Gln Leu Met Lys His Gln Ser Ile Arg Gly Phe Val Gln Lys Gln Gln Tyr Leu

Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu His Lys Leu

Ser Gln Gln Ile Leu Lys Lys Glu Lys Glu Lys Lys Lys Asp Asn Asn

Ile Pro Leu Gln Thr Val Ala Thr Ile Ser 850 855

<210> 28

<211> 365

<212> PRT

<213> Homo sapiens

<400> 28

# WO 2004/094671 - 58 - PCT/US2004/012788

Cys Trp Asp Val Phe Glu Gly Leu Ser His Leu Gln Val Leu Tyr Leu 1 5 10 15

Asn His Asn Tyr Leu Asn Ser Leu Pro Pro Gly Val Phe Ser His Leu 20 25 30

Thr Ala Leu Arg Gly Leu Ser Leu Asn Ser Asn Arg Leu Thr Val Leu 35 40 45

Ser His Asn Asp Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg 50 55 60

Asn Gln Leu Leu Ala Pro Asn Pro Asp Val Phe Val Ser Leu Ser Val 65 70 75 80

Leu Asp Ile Thr His Asn Lys Phe Ile Cys Glu Cys Glu Leu Ser Thr 85 90 95

Phe Ile Asn Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly Pro Pro 100 105 110

Ala Asp Ile Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val Ser Leu 115 120 125

Phe Ser Leu Ser Thr Glu Gly Cys Asp Glu Glu Glu Val Leu Lys Ser 130 135 140

Leu Lys Phe Ser Leu Phe Ile Val Cys Thr Val Thr Leu Thr Leu Phe 145 150 155 160

Leu Met Thr Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys Phe Ile 165 170 175

Cys Tyr Lys Thr Ala Gln Arg Leu Val Phe Lys Asp His Pro Gln Gly 180 185 190

Thr Glu Pro Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe Ser Ser 195 200 205

Lys Asp Phe Thr Trp Val Gln Asn Ala Leu Leu Lys His Leu Asp Thr 210 215 220

Gln Tyr Ser Asp Gln Asn Arg Phe Asn Leu Cys Phe Glu Glu Arg Asp 225 230 235 240

Phe Val Pro Gly Glu Asn Arg Ile Ala Asn Ile Gln Asp Ala Ile Trp
245 250 255

Asn Ser Arg Lys Ile Val Cys Leu Val Ser Arg His Phe Leu Arg Asp 260 265 270

Gly Trp Cys Leu Glu Ala Phe Ser Tyr Ala Gln Gly Arg Cys Leu Ser 275 280 285

Asp Leu Asn Ser Ala Leu Ile Met Val Val Val Gly Ser Leu Ser Gln
290 295 300

Tyr Gln Leu Met Lys His Gln Ser Ile Arg Gly Phe Val Gln Lys Gln 305 310 315 320

Gln Tyr Leu Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu

- 59 -WO 2004/094671 PCT/US2004/012788

325 330 His Lys Leu Ser Gln Gln Ile Leu Lys Lys Glu Lys Glu Lys Lys Lys 345

Asp Asn Asn Ile Pro Leu Gln Thr Val Ala Thr Ile Ser 360 355

<210> 29 <211> 4286

<212> DNA

<213> murine

<400> 29

ttgaaatctc acagcccggt tggttgcagt gacccacttc gttgaacata ttcttcctaa 60 tcctagtact ttcaatttgc tctattccct ggtgtctatg catttaaatc gactatgggg 120 ccattettee ttgaaccace acagaagaca ttagetetet gggateettg ttaatttttt 180 ctcctcttac atagcaccta cgcttggaac atatgccaga cacatctgtg agacacccct 240 tgccgctgca gctcatggat ggatgctgag ttcccccacg caccacactt cagcaggtgg 300 gtgtatttct gcttcacatt atactcccac acggccatgc atgtcaggca tggagcaggc 360 tcataaccca cttaattaag gtgatcatat cagatccttt atcaagatgc atagagtgct 420 caqtgcctgt actatgatct cggatctttg ggagatgggc tagatagagt ctgggacaga 480 atacagcaga gaaaccgata tgtttattgt ccgatcatca gctaagcttc tgggagctag 540 600 qaatqqqqct ccttqqatqa acagaagtaa aaatgcctcg tctttatqac tttcaacttc cctcagcagg tctggaatgg gtgaacaaac actgcctgcg tgggtgataa atagcctctt 660 tttgctgctt gtttgctgct tttatggttc tgggagggaa cctagaacct agcacatgct 720 780 agacaagtcc tctagcactg agctatctcc ccagcttgga tgaaatatct gtaaagtact ggtgcccgtg tgtaaaatat gcaccattaa gtgttcaaga agaaaagact gggcatttct 840 gttccaccaa gacaagaaga atctgccagc agaatgtttg cgcagtcatt tgagcaaagg 900 qqtccaaqgg acagtaccct ccagtgctgg ggacccatgt gccgagcctc aggctgtgat 960 qtqqtqttqt ttttaattct ctcttttccc ataggatcat ggcatgtcaa cttgacttgc 1020 tcataggtgt gatcttcatg gccagcccg tgttggtaat atctccctgt tcttcagacg 1080 gcaggatagc ctttttccga ggctgtaacc tcacccagat tccctggatc ctcaatacta 1140 ccactgagag gctcctgctc agcttcaact atatcagtat ggtggttgcc acatcatttc 1200 cacteetgga geggeteeag ttgetggage tggggaceea gtatgetaac ttgaceattg 1260 gtccaggggc tttcagaaac ctgcccaatc ttaggatctt ggacttgggc caaagccaga 1320 togaagtott gaatogagat, gootttoaag gtotgoocca totottggaa ottoggotgt 1380 tttcctgtgg actctccagt gctgtgttaa gtgacggtta cttcagaaat ctatattcat 1440

| tagctegett agacétatet ggeaaccaga tteacageet eegeeteeat tetteattee gggaactgaa tteettaage gaegtaaatt ttgettteaa eeaaatatte aetatatgtg | 1500<br>1560 |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|
| aagatgaact cgagcetetg cagggcaaaa cactgtettt etttggeete aaattaacta                                                                   | 1620         |
| agctgttcag cagagtctct gtgggctggg agacatgcag gaaccccttc agaggcgtga                                                                   | 1680         |
| ggctagaaac tctagatctt tctgaaaatg gctggacggt ggacatcaca aggaacttca                                                                   | 1740         |
| gcaacatcat ccagggaagc cagatttcct ctttgattct taaacaccac atcatgggtc                                                                   | 1800         |
| ctggctttgg cttccagaac atcagagatc ctgaccagag cacatttgcc agcctggcca                                                                   | 1860         |
| gaagttcggt gctgcaactg gacctttcgc acggctttat cttctccttg aatcctcgac                                                                   | 1920         |
| tgtttgggac actgaaggat ttgaagatgc tgaaccttgc cttcaacaag ataaacaaga                                                                   | 1980         |
| ttggagagaa tgccttttat gggcttgaca gcctccaggt tctcaatcta tcctataatc                                                                   | 2040         |
| ttttggggga actctataat tccaacttct atgggcttcc tagagtagcc tacgttgacc                                                                   | 2100         |
| ttcaaaggaa ccacattggg atcattcaag accaaacatt cagattatta aaaacgttac                                                                   | 2160         |
| aaaccttaga teteegtgae aatgetetta aggeeattgg ttttatteea ageatacaga                                                                   | 2220         |
| tggtcctcct gggaggcaat aagctggtcc atttgccaca catccacttt actgccaact                                                                   | 2280         |
| tcctagagtt atctgaaaac aggctagaaa acctgtccga cctctacttc ctcctgcgag                                                                   | 2340         |
| teccecaget ccagtitete atettgaate agaategeet tiegteatge aaggeageee                                                                   | 2400         |
| acactccctc ggagaaccca agcttagaac agcttttcct tacagagaat atgctgcagc                                                                   | 2460         |
| tggcctggga gaccggcctc tgttgggatg tttttcaagg cctttcccgc ctccagattc                                                                   | 2520         |
| tttacctgag taataactac cttaatttcc ttccacctgg gatatttaac gacctggttg                                                                   | 2580         |
| cattacggat gcttagtctt agtgctaaca agctgaccgt gctctctccg ggcagtttac                                                                   | 2640         |
| ctgctaattt agagattctc gacatatcta gaaatcagct tttgtgtcct gaccctgctt                                                                   | 2700         |
| tgttttcttc gcttcgtgtt ttggacataa ctcataacga gttcgtctgc aactgtgaac                                                                   | 2760         |
| ttagcacttt tatctcctgg ctcaaccaaa ccaacgtcac cctgttcggc tctcctgcag                                                                   | 2820         |
| acgtgtattg catgtaccct aactcactgc tagggggctc cctctacaac atatccaccg                                                                   | 2880         |
| aagactgcga tgaagaggaa gccatgcggt ccctaaagtt ttcccttttc atcctgtgca                                                                   | 2940         |
| cggtcacttt gactctattc ctcgtcatca cccttgtagt cataaagttc cggggaatct                                                                   | 3000         |
| gtttcctgtg ctataagacc atccagaagc tggtgttcaa ggacaaggtc tggagtttgg                                                                   | 3060         |
| aacctggtgc atatagatat gatgcctact tctgcttcag cagcaaagac tttgaatggg                                                                   | 3120         |
| cacagaatgc tttgctcaaa cacctggatg ctcactacag ttcccgaaac aggctcaggc                                                                   | 3180         |
| tatgctttga agaaagagac ttcattccgg gggaaaacca tatctccaac atccaggcgg                                                                   | 3240         |
| ctgtctgggg cagcaggaag acggtgtgtc tagtgagcag acacttcctg aaggatggtt                                                                   | 3300         |
| ggtgcctgga ggccttcagg tatgcccaga gccggagtct gtctgacctc aagagcattc                                                                   | 3360         |

| tcatcgtggt | ggtggtggga | tegetgtece | agtatcagct | gatgagacat | gagaccatca | 3420 |
|------------|------------|------------|------------|------------|------------|------|
| gagggtttct | gcaaaagcaa | cagtacttga | ggtggcctga | agacctccag | gatgttggct | 3480 |
| ggtttctcga | taaactctcc | ggatgcattc | taaaggaaga | aaaaggaaag | aaaagaagca | 3540 |
| gttccatcca | gttgcgaacc | atagcaacca | tttcctagca | ggagcgcctc | ctagcagaag | 3600 |
| tgcaagcatc | gtagataact | ctccacgctt | tatccgcaca | gccgctgggg | gtccttccct | 3660 |
| ggagtcattt | ttctgacaat | gaaaacaaca | ccaatctctt | gatttttcat | gtcaacaggg | 3720 |
| agctttgtct | tcactgtttt | ccaaatggaa | agtaagaggt | ccagaaagct | gcctctaagg | 3780 |
| gctctcacct | gccattgatg | tcctttcagg | cccaatgaca | tggtttccct | ccatcctatt | 3840 |
| gcgtactgtc | tgctacccag | gtggcaagag | caccttggga | gaagttacag | gcagcttcat | 3900 |
| gctttctgtg | ctgttcagtt | caaaagcagg | tgccttgaga | atcctgaatt | caagcactct | 3960 |
| gtagaacatg | gacagacaag | atgggtcctt | ctctggccat | aggcatgagg | gccagttgct | 4020 |
| gaggactgct | ctcactacac | ctaagtgcac | aagtgataag | aagttggaca | gatagacaga | 4080 |
| tagcagcagt | cccattgctg | tagccagaat | gcacttattt | cctgttctga | ccctgcaggc | 4140 |
| ccagcttttg | gggaccacag | ccatgttctg | cacgggacct | ctcaacctgg | cattcatgcc | 4200 |
| ctttcacgac | ttagcaccgg | cctgcccttc | tttcttcccc | acaactatac | aagagctgtt | 4260 |
| gcaaccactg | aaaaaaaaa  | aaaaaa     |            |            |            | 4286 |

<211> 859

<212> PRT

<213> murine

<400> 30

Met Ala Cys Gln Leu Asp Leu Leu Ile Gly Val Ile Phe Met Ala Ser 1 5 10 15

Pro Val Leu Val Ile Ser Pro Cys Ser Ser Asp Gly Arg Ile Ala Phe 20 25 30

Phe Arg Gly Cys Asn Leu Thr Gln Ile Pro Trp Ile Leu Asn Thr Thr 35 40 45

Thr Glu Arg Leu Leu Ser Phe Asn Tyr Ile Ser Met Val Val Ala 50 55 60

Thr Ser Phe Pro Leu Leu Glu Arg Leu Gln Leu Leu Glu Leu Gly Thr 65 70 75 80

Gln Tyr Ala Asn Leu Thr Ile Gly Pro Gly Ala Phe Arg Asn Leu Pro 85 90 95

Asn Leu Arg Ile Leu Asp Leu Gly Gln Ser Gln Ile Glu Val Leu Asn 100 105 110

- Arg Asp Ala Phe Gln Gly Leu Pro His Leu Leu Glu Leu Arg Leu Phe 115 120 125
- Ser Cys Gly Leu Ser Ser Ala Val Leu Ser Asp Gly Tyr Phe Arg Asn 130 135 140
- Leu Tyr Ser Leu Ala Arg Leu Asp Leu Ser Gly Asn Gln Ile His Ser 145 150 155 160
- Leu Arg Leu His Ser Ser Phe Arg Glu Leu Asn Ser Leu Ser Asp Val 165 170 175
- Asn Phe Ala Phe Asn Gln Ile Phe Thr Ile Cys Glu Asp Glu Leu Glu 180 185 190
- Pro Leu Gln Gly Lys Thr Leu Ser Phe Phe Gly Leu Lys Leu Thr Lys 195 200 205
- Leu Phe Ser Arg Val Ser Val Gly Trp Glu Thr Cys Arg Asn Pro Phe 210 215 220
- Arg Gly Val Arg Leu Glu Thr Leu Asp Leu Ser Glu Asn Gly Trp Thr 225 230 235 240
- Val Asp Ile Thr Arg Asn Phe Ser Asn Ile Ile Gln Gly Ser Gln Ile 245 250 255
- Ser Ser Leu Ile Leu Lys His His Ile Met Gly Pro Gly Phe Gly Phe 260 265 270
- Gln Asn Ile Arg Asp Pro Asp Gln Ser Thr Phe Ala Ser Leu Ala Arg 275 280 285
- Ser Ser Val Leu Gln Leu Asp Leu Ser His Gly Phe Ile Phe Ser Leu 290 295 300
- Asn Pro Arg Leu Phe Gly Thr Leu Lys Asp Leu Lys Met Leu Asn Leu 305 310 315
- Ala Phe Asn Lys Ile Asn Lys Ile Gly Glu Asn Ala Phe Tyr Gly Leu 325 330 335
- Asp Ser Leu Gln Val Leu Asn Leu Ser Tyr Asn Leu Leu Gly Glu Leu 340 345 350
- Tyr Asn Ser Asn Phe Tyr Gly Leu Pro Arg Val Ala Tyr Val Asp Leu 355 360 365
- Gln Arg Asn His Ile Gly Ile Ile Gln Asp Gln Thr Phe Arg Leu Leu 370 375 380
- Lys Thr Leu Gln Thr Leu Asp Leu Arg Asp Asn Ala Leu Lys Ala Ile 385 390 395 400
- Gly Phe Ile Pro Ser Ile Gln Met Val Leu Leu Gly Gly Asn Lys Leu 405 410 415
- Val His Leu Pro His Ile His Phe Thr Ala Asn Phe Leu Glu Leu Ser 420 425 430
- Glu Asn Arg Leu Glu Asn Leu Ser Asp Leu Tyr Phe Leu Leu Arg Val

440 435 445 Pro Gln Leu Gln Phe Leu Ile Leu Asn Gln Asn Arg Leu Ser Ser Cys 455 Lys Ala Ala His Thr Pro Ser Glu Asn Pro Ser Leu Glu Gln Leu Phe Leu Thr Glu Asn Met Leu Gln Leu Ala Trp Glu Thr Gly Leu Cys Trp 490 Asp Val Phe Gln Gly Leu Ser Arg Leu Gln Ile Leu Tyr Leu Ser Asn Asn Tyr Leu Asn Phe Leu Pro Pro Gly Ile Phe Asn Asp Leu Val Ala 520 Leu Arg Met Leu Ser Leu Ser Ala Asn Lys Leu Thr Val Leu Ser Pro Gly Ser Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg Asn Gln 550 Leu Leu Cys Pro Asp Pro Ala Leu Phe Ser Ser Leu Arg Val Leu Asp 565 570 Ile Thr His Asn Glu Phe Val Cys Asn Cys Glu Leu Ser Thr Phe Ile 585 Ser Trp Leu Asn Gln Thr Asn Val Thr Leu Phe Gly Ser Pro Ala Asp 600 Val Tyr Cys Met Tyr Pro Asn Ser Leu Leu Gly Gly Ser Leu Tyr Asn 615 Ile Ser Thr Glu Asp Cys Asp Glu Glu Glu Ala Met Arg Ser Leu Lys Phe Ser Leu Phe Ile Leu Cys Thr Val Thr Leu Thr Leu Phe Leu Val 650 Ile Thr Leu Val Val Ile Lys Phe Arg Gly Ile Cys Phe Leu Cys Tyr Lys Thr Ile Gln Lys Leu Val Phe Lys Asp Lys Val Trp Ser Leu Glu Pro Gly Ala Tyr Arg Tyr Asp Ala Tyr Phe Cys Phe Ser Ser Lys Asp Phe Glu Trp Ala Gln Asn Ala Leu Leu Lys His Leu Asp Ala His Tyr 715 Ser Ser Arg Asn Arg Leu Arg Leu Cys Phe Glu Glu Arg Asp Phe Ile Pro Gly Glu Asn His Ile Ser Asn Ile Gln Ala Ala Val Trp Gly Ser Arg Lys Thr Val Cys Leu Val Ser Arg His Phe Leu Lys Asp Gly Trp

Cys Leu Glu Ala Phe Arg Tyr Ala Gln Ser Arg Ser Leu Ser Asp Leu

WO 2004/094671 - 64 - PCT/US2004/012788

|     | 770 |     |     |     |     | 775 |     |     |     |     | 780 |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lys | Ser | Ile | Leu | Ile | Val | Val | Val | Val | Gly | Ser | Leu | Ser | Gln | Tyr | Gln |
| 785 |     |     |     |     | 790 |     |     |     |     | 795 |     |     |     |     | 800 |

Leu Met Arg His Glu Thr Ile Arg Gly Phe Leu Gln Lys Gln Gln Tyr 805 810 815

Leu Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu Asp Lys 820 825 830

Leu Ser Gly Cys Ile Leu Lys Glu Glu Lys Gly Lys Lys Arg Ser Ser 835 840 845

Ser Ile Gln Leu Arg Thr Ile Ala Thr Ile Ser 850 855

<210> 31

<211> 3373

<212> DNA

<213> Homo sapiens

<400> 31

agetggetag egtttaaaeg ggeeetetag aetegagegg eegegaatte aetagtgatt 60 cacctctcat gctctgctct cttcaaccag acctctacat tccattttgg aagaagacta 120 aaaatggtgt ttccaatgtg gacactgaag agacaaattc ttatcctttt taacataatc 180 ctaatttcca aactccttgg ggctagatgg tttcctaaaa ctctgccctg tgatgtcact 240 300 ctggatgttc caaagaacca tgtgatcgtg gactgcacag acaagcattt gacagaaatt 360 cctqqaqqta ttcccacqaa caccacqaac ctcaccctca ccattaacca cataccagac atctccccaq cqtcctttca cagactggac catctggtag agatcgattt cagatgcaac 420 tqtqtaccta ttccactggg gtcaaaaaac aacatgtgca tcaagaggct gcagattaaa 480 cccagaagct ttagtggact cacttattta aaatcccttt acctggatgg aaaccagcta 540 ctagagatac cgcagggcct cccgcctagc ttacagcttc tcagccttga ggccaacaac 600 atcttttcca tcagaaaaga gaatctaaca gaactggcca acatagaaat actctacctg 660 ggccaaaact gttattatcg aaatccttgt tatgtttcat attcaataga gaaagatgcc 720 ttcctaaact tgacaaagtt aaaagtgctc tccctgaaag ataacaatgt cacagccgtc 780 cctactgttt tgccatctac tttaacagaa ctatatctct acaacaacat gattgcaaaa 840 900 atccaagaag atgattttaa taacctcaac caattacaaa ttcttgacct aagtggaaat tqccctcqtt qttataatgc cccatttcct tgtgcgccgt gtaaaaataa ttctccccta 960 cagatocotg taaatgottt tgatgogotg acagaattaa aagttttacg totacacagt 1020 aactctcttc agcatgtgcc cccaagatgg tttaagaaca tcaacaaact ccaggaactg 1080 gatctgtccc aaaacttctt ggccaaagaa attggggatg ctaaatttct gcattttctc 1140 cccaqcctca tccaattgga tctgtctttc aattttgaac ttcaggtcta tcgtgcatct 1200

| atga | atctat   | cacaagcatt   | ttcttcactg | aaaagcctga | aaattctgcg | gatcagagga | 1260 |
|------|----------|--------------|------------|------------|------------|------------|------|
| tate | gtcttta  | aagagttgaa   | aagctttaac | ctctcgccat | tacataatct | tcaaaatctt | 1320 |
| gaag | gttcttg  | atcttggcac   | taactttata | aaaattgcta | acctcagcat | gtttaaacaa | 1380 |
| ttta | aaaagac  | tgaaagtcat   | agatetttea | gtgaataaaa | tatcaccttc | aggagattca | 1440 |
| agto | gaagttg  | gcttctgctc   | aaatgccaga | acttctgtag | aaagttatga | accccaggtc | 1500 |
| ctgg | gaacaat  | tacattattt   | cagatatgat | aagtatgcaa | ggagttgcag | attcaaaaac | 1560 |
| aaag | gaggctt  | ctttcatgtc   | tgttaatgaa | agctgctaca | agtatgggca | gaccttggat | 1620 |
| ctaa | agtaaaa  | atagtatatt   | ttttgtcaag | tcctctgatt | ttcagcatct | ttctttcctc | 1680 |
| aaat | tgcctga  | atctgtcagg   | aaatctcatt | agccaaactc | ttaatggcag | tgaattccaa | 1740 |
| ccti | ttagcag  | agctgagata   | tttggacttc | tccaacaacc | ggcttgattt | actccattca | 1800 |
| aca  | gcatttg  | aagagcttca   | caaactggaa | gttctggata | taagcagtaa | tagccattat | 1860 |
| ttt  | caatcag  | aaggaattac   | tcatatgcta | aactttacca | agaacctaaa | ggttctgcag | 1920 |
| aaa  | ctgatga  | tgaacgacaa   | tgacatctct | tcctccacca | gcaggaccat | ggagagtgag | 1980 |
| tct  | cttagaa  | ctctggaatt   | cagaggaaat | cacttagatg | ttttatggag | agaaggtgat | 2040 |
| aac  | agatact  | tacaattatt   | caagaatctg | ctaaaattag | aggaattaga | catctctaaa | 2100 |
| aat  | tccctaa  | gtttcttgcc   | ttctggagtt | tttgatggta | tgcctccaaa | tctaaagaat | 2160 |
| ctc  | tctttgg  | ccaaaaatgg   | gctcaaatct | ttcagttgga | agaaactcca | gtgtctaaag | 2220 |
| aac  | ctggaaa  | ctttggacct   | cagccacaac | caactgacca | ctgtccctga | gagattatcc | 2280 |
| aac  | tgttcca  | gaagcctcaa   | gaatctgatt | cttaagaata | atcaaatcag | gagtctgacg | 2340 |
| aag  | tattttc  | tacaagatgc   | cttccagttg | cgatatctgg | atctcagctc | aaataaaatc | 2400 |
| cag  | atgatcc  | aaaagaccag   | cttcccagaa | aatgtcctca | acaatctgaa | gatgttgctt | 2460 |
| ttg  | catcata  | atcggtttct   | gtgcacctgt | gatgctgtgt | ggtttgtctg | gtgggttaac | 2520 |
| cat  | acggagg  | tgactattcc   | ttacctggcc | acagatgtga | cttgtgtggg | gccaggagca | 2580 |
| cac  | aagggcc  | aaagtgtgat   | ctccctggat | ctgtacacct | gtgagttaga | tctgactaac | 2640 |
| ctg  | attctgt  | tctcactttc   | catatctgta | tctctcttc  | tcatggtgat | gatgacagca | 2700 |
| agt  | cacctct  | atttctggga   | tgtgtggtat | atttaccatt | tctgtaaggc | caagataaag | 2760 |
| 999  | tatcago  | gtctaatatc   | accagactgt | tgctatgatg | cttttattgt | gtatgacact | 2820 |
| aaa  | gacccag  | g ctgtgaccga | gtgggttttg | gctgagctgg | tggccaaact | ggaagaccca | 2880 |
| aga  | gagaaac  | : attttaattt | atgtctcgag | gaaagggact | ggttaccagg | gcagccagtt | 2940 |
|      |          | : tttcccagag |            |            |            |            | 3000 |
| aag  | ıtatgcaa | agactgaaaa   | tttaagata  | gcattttact | tgtcccatca | gaggctcatg | 3060 |

| gatgaaaaag | ttgatgtgat | tatcttgata | tttcttgaga | agccttttca | gaagtccaag | 3120 |
|------------|------------|------------|------------|------------|------------|------|
| ttcctccagc | tccggaaaag | gctctgtggg | agttctgtcc | ttgagtggcc | aacaaacccg | 3180 |
| caagctcacc | catacttctg | gcagtgtcta | aagaacgccc | tggccacaga | caatcatgtg | 3240 |
| gcctatagtc | aggtgttcaa | ggaaacggtc | tagaatcgaa | ttcccgcggc | cgccactgtg | 3300 |
| ctggatatct | gcagaattcc | accacactgg | actagtggat | ccgagctcgg | taccaagctt | 3360 |
| aagtttaaac | cgc        |            |            |            |            | 3373 |

<211> 3416

<212> DNA

<213> Homo sapiens

<400> 32

tecagatata ggateaetee atgecateaa gaaagttgat getattggge eeateteaag 60 ctgatcttgg cacctctcat gctctgctct cttcaaccag acctctacat tccattttgg 120 aagaagacta aaaatggtgt ttccaatgtg gacactgaag agacaaattc ttatcctttt 180 taacataatc ctaatttcca aactccttgg ggctagatgg tttcctaaaa ctctgccctg 240 tgatgtcact ctggatgttc caaagaacca tgtgatcgtg gactgcacag acaagcattt 300 gacagaaatt cctggaggta ttcccacgaa caccacgaac ctcaccctca ccattaacca 360 cataccagac atctccccag cgtcctttca cagactggac catctggtag agatcgattt 420 cagatgcaac tgtgtaccta ttccactggg gtcaaaaaac aacatgtgca tcaagaggct 480 gcagattaaa cccagaagct ttagtggact cacttattta aaatcccttt acctggatgg 540 aaaccagcta ctagagatac cgcagggcct cccgcctagc ttacagcttc tcagccttga 600 ggccaacaac atcttttcca tcagaaaaga gaatctaaca gaactggcca acatagaaat 660 actctacctg ggccaaaact gttattatcg aaatccttgt tatgtttcat attcaataga 720 gaaagatgcc ttcctaaact tgacaaagtt aaaagtgctc tccctgaaag ataacaatgt 780 cacageegte cetactgttt tgecatetae tttaacagaa etatatetet acaacaacat 840 gattgcaaaa atccaagaag atgattttaa taacctcaac caattacaaa ttcttgacct 900 aagtggaaat tgccctcgtt gttataatgc cccatttcct tgtgcgccgt gtaaaaataa 960 ttctccccta cagatccctg taaatgcttt tgatgcgctg acagaattaa aagttttacg 1020 tctacacagt aactctcttc agcatgtgcc cccaagatgg tttaagaaca tcaacaaact 1080 ccaggaactg gatctgtccc aaaacttctt ggccaaagaa attggggatg ctaaatttct 1140 gcattttctc cccagcctca tccaattgga tctgtctttc aattttgaac ttcaqqtcta 1200 togtgcatct atgaatctat cacaagcatt ttcttcactg aaaagcctga aaattctgcg 1260

| gatcagagga<br>tcaaaatctt | tatgtcttta<br>gaagttcttg | aagagttgaa<br>atcttggcac | aagctttaac<br>taactttata | ctctcgccat<br>aaaattgcta | tacataatct<br>acctcagcat | 1320<br>1380 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| gtttaaacaa               | tttaaaagac               | tgaaagtcat               | agatctttca               | gtgaataaaa               | tatcaccttc               | 1440         |
| aggagattca               | agtgaagttg               | gettetgete               | aaatgccaga               | acttctgtag               | aaagttatga               | 1500         |
| accccaggtc               | ctggaacaat               | tacattattt               | cagatatgat               | aagtatgcaa               | ggagttgcag               | 1560         |
| attcaaaaac               | aaagaggctt               | ctttcatgtc               | tgttaatgaa               | agctgctaca               | agtatgggca               | 1620         |
| gaccttggat               | ctaagtaaaa               | atagtatatt               | ttttgtcaag               | tcctctgatt               | ttcagcatct               | 1680         |
| ttettteete               | aaatgcctga               | atctgtcagg               | aaatctcatt               | agccaaactc               | ttaatggcag               | 1740         |
| tgaattccaa               | cctttagcag               | agttgagata               | tttggacttc               | tccaacaacc               | ggcttgattt               | 1800         |
| actccattca               | acagcatttg               | aagagcttca               | caaactggaa               | gttctggata               | taagcagtaa               | 1860         |
| tagccattat               | tttcaatcag               | aaggaattac               | tcatatgcta               | aactttacca               | agaacctaaa               | 1920         |
| ggttctgcag               | aaactgatga               | tgaacgacaa               | tgacatctct               | tcctccacca               | gcaggaccat               | 1980         |
| ggagagtgag               | tctcttagaa               | ctctggaatt               | cagaggaaat               | cacttagatg               | ttttatggag               | 2040         |
| agaaggtgat               | aacagatact               | tacaattatt               | caagaatctg               | ctaaaattag               | aggaattaga               | 2100         |
| catctctaaa               | aattccctaa               | gtttcttgcc               | ttctggagtt               | tttgatggta               | tgcctccaaa               | 2160         |
| tctaaagaat               | ctctctttgg               | ccaaaaatgg               | gctcaaatct               | ttcagttgga               | agaaactcca               | 2220         |
| gtgtctaaag               | aacctggaaa               | ctttggacct               | cagccacaac               | caactgacca               | ctgtccctga               | 2280         |
| gagattatcc               | aactgttcca               | gaagccacaa               | gaatctgatt               | cttaagaata               | atcaaatcag               | 2340         |
| gagtccgacg               | aagtattttc               | tacaagatgc               | cttccagttg               | cgatatctgg               | atctcagctc               | 2400         |
| aaataaaatc               | cagatgatcc               | aaaagaccag               | cttcccagaa               | aatgtcctca               | acaatctgaa               | 2460         |
| gatgttgctt               | ttgcatcata               | atcggtttct               | gtgcacctgt               | gatgctgtgt               | ggtttgtctg               | 2520         |
| gtgggttaac               | catacggagg               | tgactattcc               | ttacctggcc               | acagatgtga               | cttgtgtggg               | 2580         |
| gccaggagca               | cacaagggcc               | aaagtgtgat               | ctccctggat               | ctgtacacct               | gtgagttaga               | 2640         |
| tctgactaac               | ctgattctgt               | tctcactttc               | catatctgta               | tetetette                | tcatggtgat               | 2700         |
| gatgacagca               | agtcacctct               | atttctggga               | tgtgtggtat               | atttaccatt               | tctgtaaggc               | 2760         |
| caagataaag               | gggtatcagc               | gtctaatatc               | accagactgt               | tgctatgatg               | cttttattgt               | 2820         |
| gtatgacact               | aaagacccag               | ctgtgaccga               | gtgggttttg               | gctgagctgg               | tggccaaact               | 2880         |
| ggaagaccca               | agagagaaac               | attttaattt               | atgtctcgag               | gaaagggact               | ggttaccagg               | 2940         |
| gcagccagtt               | ctggaaaacc               | tttcccagag               | catacagctt               | agcaaaaaga               | cagtgtttgt               | 3000         |
| gatgacagac               | aagtatgcaa               | agactgaaaa               | ttttaagata               | gcattttact               | tgtcccatca               | 3060         |
| gaggctcatg               | gatgaaaaag               | ttgatgtgat               | tatcttgata               | tttcttgaga               | agccctttca               | 3120         |
| gaagtccaag               | ttcctccagc               | tccggaaaag               | gctctgtggg               | agttctgtcc               | ttgagtggcc               | 3180         |

| aacaaacccg | caagctcacc | catacttctg | gcagtgtcta | aagaacgccc | tggccacaga | 3240 |
|------------|------------|------------|------------|------------|------------|------|
| caatcatgtg | gcctatagtc | aggtgttcaa | ggaaacggtc | tagcccttct | ttgcaaaaca | 3300 |
| caactgccta | gtttaccaag | gagaggcctg | gctgtttaaa | ttgttttcat | atatatcaca | 3360 |
| ccaaaagcgt | gttttgaaat | tcttcaagaa | atgagattgc | ccatatttca | ggggag     | 3416 |

<211> 3418

<212> DNA

<213> Homo spaiens

<400> 33

actocagata taggatoact coatgocato aagaaagttg atgotattgg goocatotoa 60 agetgatett ggeacetete atgetetget etetteaace agacetetae attecatttt 120 ggaagaagac taaaaatggt gtttccaatg tggacactga agagacaaat tcttatcctt 180 tttaacataa tootaattto caaactoott ggggctagat ggtttootaa aactotgooc 240 tgtgatgtca ctctggatgt tccaaagaac catgtgatcg tggactgcac agacaagcat 300 ttgacagaaa ttcctggagg tattcccacg aacaccacga acctcaccct caccattaac 360 cacataccag acatetecce agegteettt cacagactgg accatetggt agagategat 420 ttcagatgca actgtgtacc tattccactg gggtcaaaaa acaacatgtg catcaagagg . 480 ctgcagatta aacccagaag ctttagtgga ctcacttatt taaaatccct ttacctqqat 540 ggaaaccagc tactagagat accgcagggc ctcccgccta gcttacagct tctcagcctt 600 gaggocaaca acatetttte cateagaaaa gagaatetaa cagaactgge caacatagaa 660 atactctacc tgggccaaaa ctgttattat cgaaatcctt gttatgtttc atattcaata 720 gagaaagatg ccttcctaaa cttgacaaag ttaaaagtgc tctccctgaa agataacaat 780 gtcacagccg tccctactgt tttgccatct actttaacag aactatatct ctacaacaac 840 atgattgcaa aaatccaaga agatgatttt aataacctca accaattaca aattcttgac 900 ctaagtggaa attgccctcg ttgttataat gccccatttc cttgtgcgcc gtgtaaaaat 960 aattctcccc tacagatccc tgtaaatgct tttgatgcgc tgacagaatt aaaagtttta 1020 cgtctacaca gtaactctct tcagcatgtg cccccaagat ggtttaagaa catcaacaaa 1080 ctccaggaac tggatctgtc ccaaaacttc ttggccaaag aaattgggga tqctaaattt 1140 etgcatttte tecceageet catecaattg gatetgtett teaattttga aetteaggte 1200 tategtgeat ctatgaatet ateacaagea ttttetteac tgaaaageet gaaaattetg 1260 cggatcagag gatatgtctt taaagagttg aaaagcttta acctctcgcc attacataat 1320 etteaaaate ttgaagttet tgatettgge actaaettta taaaaattge taaceteage 1380

| atgtttaaac aatttaaaag<br>tcaggagatt caagtgaagt | actgaaagtc<br>tggcttctgc | atagatcttt<br>tcaaatgcca | cagtgaataa<br>gaacttctgt | aatatcacct<br>agaaagttat | 1440<br>1500 |
|------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| gaaccccagg tcctggaaca                          | attacattat               | ttcagatatg               | ataagtatgc               | aaggagttgc               | 1560         |
| agattcaaaa acaaagaggc                          | ttctttcatg               | tctgttaatg               | aaagctgcta               | caagtatggg               | 1620         |
| cagacettgg atetaagtaa                          | aaatagtata               | ttttttgtca               | agtcctctga               | ttttcagcat               | 1680         |
| ctttctttcc tcaaatgcct                          | gaatctgtca               | ggaaatctca               | ttagccaaac               | tcttaatggc               | 1740         |
| agtgaattcc aacctttagc                          | agagctgaga               | tatttggact               | tctccaacaa               | ccggcttgat               | 1800         |
| ttactccatt caacagcatt                          | tgaagagctt               | cacaaactgg               | aagttctgga               | tataagcagt               | 1860         |
| aatagccatt attttcaatc                          | agaaggaatt               | actcatatgc               | taaactttac               | caagaaccta               | 1920         |
| aaggttctgc agaaactgat                          | gatgaacgac               | aatgacatct               | cttcctccac               | cagcaggacc               | 1980         |
| atggagagtg agtctcttag                          | aactctggaa               | ttcagaggaa               | atcacttaga               | tgttttatgg               | 2040         |
| agagaaggtg ataacagata                          | cttacaatta               | ttcaagaatc               | tgctaaaatt               | agaggaatta               | 2100         |
| gacateteta aaaatteeet                          | aagtttcttg               | ccttctggag               | tttttgatgg               | tatgcctcca               | 2160         |
| aatctaaaga atctctcttt                          | ggccaaaaat               | gggctcaaat               | ctttcagttg               | gaagaaactc               | 2220         |
| cagtgtctaa agaacctgga                          | aactttggac               | ctcagccaca               | accaactgac               | cactgtccct               | 2280         |
| gagagattat ccaactgttc                          | cagaagcctc               | aagaatctga               | ttcttaagaa               | taatcaaatc               | 2340         |
| aggagtctga cgaagtattt                          | tctacaagat               | gccttccagt               | tgcgatatct               | ggatctcagc               | 2400         |
| tcaaataaaa tccagatgat                          | ccaaaagacc               | agcttcccag               | aaaatgtcct               | caacaatctg               | 2460         |
| aagatgttgc ttttgcatca                          | taatcggttt               | ctgtgcacct               | gtgatgctgt               | gtggtttgtc               | 2520         |
| tggtgggtta accatacgga                          | ggtgactatt               | ccttacctgg               | ccacagatgt               | gacttgtgtg               | 2580         |
| gggccaggag cacacaaggg                          | ccaaagtgtg               | atctccctgg               | atctgtacac               | ctgtgagtta               | 2640         |
| gatctgacta acctgattct                          | gttctcactt               | tccatatctg               | tatctctctt               | tctcatggtg               | 2700         |
| atgatgacag caagtcacct                          | ctatttctgg               | gatgtgtggt               | atatttacca               | tttctgtaag               | 2760         |
| gccaagataa aggggtatca                          | gcgtctaata               | tcaccagact               | gttgctatga               | tgcttttatt               | 2820         |
| gtgtatgaca ctaaagaccc                          | agctgtgacc               | gagtgggttt               | tggctgagct               | ggtggccaaa               | 2880         |
| ctggaagacc caagagagaa                          | acattttaat               | ttatgtctcg               | 'aggaaaggga              | ctggttacca               | 2940         |
| gggcagccag ttctggaaaa                          | cctttcccag               | agcatacagc               | ttagcaaaaa               | gacagtgttt               | 3000         |
| gtgatgacag acaagtatgc                          | aaagactgaa               | aattttaaga               | tagcatttta               | cttgtcccat               | 3060         |
| cagaggetea tggatgaaaa                          | agttgatgtg               | attatcttga               | tatttcttga               | gaagcccttt               | 3120         |
| cagaagtcca agttcctcca                          | gctccggaaa               | aggctctgtg               | ggagttctgt               | ccttgagtgg               | 3180         |
| ccaacaaacc cgcaagctca                          | cccatacttc               | tggcagtgtc               | taaagaacgc               | cctggccaca               | 3240         |
| gacaatcatg tggcctatag                          | tcaggtgttc               | aaggaaacgg               | tctagccctt               | ctttgcaaaa               | 3300         |

cacaactgcc tagtttacca aggagaggcc tggctgttta aattgttttc atatataca caccaaaagc gtgttttgaa attcttcaag aaatgagatt gcccatattt caggggag

<210> 34

<211> 1049 <212> PRT

<213> Homo sapiens

<400> 34

Met Val Phe Pro Met Trp Thr Leu Lys Arq Gln Ile Leu Ile Leu Phe

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro 55

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile 70

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe 90

Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys 105

Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr

Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 135

Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile

Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile 170

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro

Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu 245 250

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro

#### WO 2004/094671 - 71 - PCT/US2004/012788

260 265 270 Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala 280 Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 295 Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp 310 315 Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu 325 His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu 345 Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu 375 Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His 455 Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys 470 475 Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln 485 490 Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp 505 Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu 535 Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr 550 Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn 570 Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile

### WO 2004/094671 - 72 - PCT/US2004/012788

600 Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu 615 Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn 630 Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp 650 Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly 665 Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys 680 Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu 695 Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn 710 Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu His His Asn Arg 775 Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly 810 Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly 870 Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu 900 Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser

940 Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys

950 955

Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln 965

Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu

Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys 1000

Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1015

Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025 1030

Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1045

<210> 35

<211> 1049

<212> PRT

<213> Homo sapiens

<400> 35

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe

Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys

Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr

Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 135

Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150

Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile 165 170

# WO 2004/094671 - 74 - PCT/US2004/012788

- Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser 180 185 190
- Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val 195 200 205
- Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro 210 215 220
- Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile 225 230 235 240
- Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu 245 250 255
- Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro
- Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala 275 280 285
- Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 295 300
- Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp 305 310 315 320
- Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu 325 330 335
- His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu 340 345 350
- Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser 355 360 365
- Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu 370 375 380
- Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu 385 390 395 400
- Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met 405 410 415
- Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys 420 425 430
- Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala 435 440 445
- Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His
  450 455 460
- Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys 465 470 475 480
- Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln
  485 490 495
- Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp

#### WO 2004/094671 - 75 - PCT/US2004/012788

500 505 Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu 520 Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr 550 555 Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn 570 Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr 585 Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile 600 Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu 615 Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn Arg Tyr Leu Gln Leu Phe Lys Asn Leu Lys Leu Glu Glu Leu Asp 650 Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly 665 Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys 680 Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu 695 Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn 710 715 Cys Ser Arg Ser His Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg 730 725 Ser Pro Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu 745 Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu His His Asn Arg Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Val Asn His Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser 835 840 845 7al Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tvr

Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe 850 855 860

Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly 865 870 875 880

Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val 885 890 895

Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu 900 905 910

Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu 915 920 925

Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser 930 935 940

Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys 945 950 955 960

Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln 965 970 975

Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu 980 985 990

Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys 995 1000 1005

Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1010 1015 1020

Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025 1030 1035

Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1040 1045

<210> 36

<211> 1049

<212> PRT

<213> Homo spaiens

<400> 36

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe 1 5 10 15

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile 65 70 75 80

## WO 2004/094671 - 77 - PCT/US2004/012788

- Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe 85 90 95
- Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys 100 105 110
- Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr 115 120 125
- Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140
- Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160
- Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile 165 170 175
- Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser 180 185 190
- Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val 195 200 205
- Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro 210 215 220
- Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile 225 230 235 240
- Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu 245 250 255
- Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro 260 265 270
- Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala 275 280 285
- Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 295 300
- Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp 305 310 315 320
- Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu 325 330 335
- His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu 340 345
- Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser 355 360 365
- Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu 370 380
- Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu 385 390 395 400
- Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met

405 415 410 Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys 425 Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His 455 Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln 490 Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu 520 Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu 535 Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu His Ser Thr 550 Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn 565 Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr 585 Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu 615 Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn 625 Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp 650 Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly 660 665 Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys 680 Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu 695 Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn 710 715 Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg

Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu

740 745 750

Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro 755 760 765

Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu His His Asn Arg 770 775 780

Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His 785 790 795 800

Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly 805 810 815

Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr 820 825 830

Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser 835 840 845

Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe 850 855 860

Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly 865 870 875

Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val 885 890 895

Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu 900 905 910

Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu 915 920 925

Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser 930 935 940

Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys 945 950 955 960

Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln 965 970 975

Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu 980 985 990

Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys 995 1000 1005

Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1010 1015 1020

Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025 1030 1035

Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1040 1045

<210> 37

<211> 1049

<212> PRT

- <213> Homo sapiens <400> 37
- Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe 1 5 10 15
- Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys 20 25 30
- Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile 35 40 45
- Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro 50 55 60
- Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile 65 70 75 80
- Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe 85 90 95
- Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys
  100 105 110
- Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr 115 120 125
- Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140
- Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160
- Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile 165 . 170 175
- Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser 180 185 190
- Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val 195 200 205
- Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro 210 215 220
- Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile 225 230 235 240
- Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu 245 250 255
- Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro 260 265 270
- Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala 275 280 285
- Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 295 300
- Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp 305 310 315 320

# WO 2004/094671 - 81 - PCT/US2004/012788

Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu 325 330 335

His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu 340 345 350

Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser 355 360 365

Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu 370 375 380

Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu 385 390 395 400

Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met
405 410 415

Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys 420 425 430

Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala 435 440 445

Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His
450 455 460

Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys 465 . 470 . 475 . 480

Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln 485 490 495

Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp 500 505 510

Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu 515 520 525

Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu 530 540

Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr 545 550 555 560

Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn 565 570 575

Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr 580 585 590

Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile 595 600 605

Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu 610 615 620

Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn 625 630 635 640

Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp

645 650 655

Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly
660 665 670

Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys 675 680 685

Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu 690 695 700

Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn 705 710 715 720

Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg 725 730 735

Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu 740 745 750

Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro 755 760 765

Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu His His Asn Arg
770 780

Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His 785 790 795 800

Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly 805 810 815

Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr 820 825 830

Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser 835 840 845

Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe 850 855 860

Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly 865 870 875

Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val 885 890 895

Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu 900 905 910

Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu 915 920 925

Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser 930 935 940

Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys 945 950 955 960

Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln 965 970 975

Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu

WO 2004/094671 - 83 - PCT/US2004/012788

980 985 990

Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys
995 1000 1005

Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1010 1015 1020

Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025 1030 1035

Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1040 1045

<210> 38 <211> 3243 <212> DNA <213> murine

<400> 38

attetectee accagacete ttgatteeat tttgaaagaa aactgaaaat ggtgtttteg 60 atgtggacac ggaagagaca aattttgatc tttttaaata tgctcttagt ttctagagtc 120 tttgggtttc gatggtttcc taaaactcta ccttgtgaag ttaaagtaaa tatcccagag 180 gcccatgtga tcgtggactg cacagacaag catttgacag aaatccctga gggcattccc 240 actaacacca ccaatcttac ccttaccatc aaccacatac caagcatctc tccagattcc 300 ttccgtaggc tgaaccatct ggaagaaatc gatttaagat gcaattgtgt acctgttcta 360 ctggggtcca aagccaatgt gtgtaccaag aggctgcaga ttagacctgg aagctttagt 420 ggactetetg acttaaaage cetttacetg gatggaaace aacttetgga gataceacag 480 qatctqccat ccaqcttaca tcttctgagc cttgaggcta acaacatctt ctccatcacg 540 aaggagaatc taacagaact ggtcaacatt gaaacactct acctgggtca aaactgttat 600 tatcgaaatc cttgcaatgt ttcctattct attgaaaaag atgctttcct agttatgaga 660 aatttqaaqq ttctctcact aaaagataac aatgtcacag ctgtccccac cactttgcca 720 780 cctaatttac tagagctcta tctttataac aatatcatta agaaaatcca agaaaatgat 840 tttaataacc tcaatgagtt gcaagttctt gacctaagtg gaaattgccc tcgatgttat aatgtcccat atccgtgtac accgtgtgaa aataattccc ccttacagat ccatgacaat 900 gctttcaatt cattgacaga attaaaagtt ttacgtttac acagtaattc tcttcagcat 960 gtgccccaa catggtttaa aaacatgaga aacctccagg aactagacct ctcccaaaac 1020 tacttggcca gagaaattga ggaggccaaa tttttgcatt ttcttcccaa ccttgttgag 1080 ttggattttt ctttcaatta tgagctgcag gtctaccatg catctataac tttaccacat 1140 tcactctctt cattggaaaa cttgaaaatt ctgcgtgtca aggggtatgt ctttaaagag 1200 ctgaaaaact ccagtctttc tgtattgcac aagcttccca ggctggaagt tcttgacctt 1260

|            | tcataaaaat<br>tttcagtgaa |            |            |            |            | 1320<br>1380 |
|------------|--------------------------|------------|------------|------------|------------|--------------|
| tgtcctaatg | ctcaaacttc               | tgtagaccgt | catgggcccc | aggtccttga | ggccttacac | 1440         |
| tatttccgat | acgatgaata               | tgcacggagc | tgcaggttca | aaaacaaaga | gccaccttct | 1500         |
| ttcttgcctt | tgaatgcaga               | ctgccacata | tatgggcaga | ccttagactt | aagtagaaat | 1560         |
| aacatatttt | ttattaaacc               | ttctgatttt | cagcatcttt | cattcctcaa | atgcctcaac | 1620         |
| ttatcaggaa | acaccattgg               | ccaaactctt | aatggcagtg | aactctggcc | gttgagagag | 1680         |
| ttgcggtact | tagacttctc               | caacaaccgg | cttgatttac | tctactcaac | agcctttgaa | 1740         |
| gagctccaga | gtcttgaagt               | tctggatcta | agtagtaaca | gccactattt | tcaagcagaa | 1800         |
| ggaattactc | acatgctaaa               | ctttaccaag | aaattacggc | ttctggacaa | actcatgatg | 1860         |
| aatgataatg | acatctctac               | ttcggccagc | aggaccatgg | aaagtgactc | tcttcgaatt | 1920         |
| ctggagttca | gaggcaacca               | tttagatgtt | ctatggagag | ccggtgataa | cagatacttg | 1980         |
| gacttcttca | agaatttgtt               | caatttagag | gtattagata | tctccagaaa | ttccctgaat | 2040         |
| tccttgcctc | ctgaggtttt               | tgagggtatg | ccgccaaatc | taaagaatct | ctccttggcc | 2100         |
| aaaaatgggc | tcaaatcttt               | cttttgggac | agactccagt | tactgaagca | tttggaaatt | 2160         |
| ttggacctca | gccataacca               | gctgacaaaa | gtacctgaga | gattggccaa | ctgttccaaa | 2220         |
| agtctcacaa | cactgattct               | taagcataat | caaatcaggc | aattgacaaa | atattttcta | 2280         |
| gaagatgctt | tgcaattgcg               | ctatctagac | atcagttcaa | ataaaatcca | ggtcattcag | 2340         |
| aagactagct | tcccagaaaa               | tgtcctcaac | aatctggaga | tgttggtttt | acatcacaat | 2400         |
| cgctttcttt | gcaactgtga               | tgctgtgtgg | tttgtctggt | gggttaacca | tacagatgtt | 2460         |
| actattccat | acctggccac               | tgatgtgact | tgtgtaggtc | caggagcaca | caaaggtcaa | 2520         |
| agtgtcatat | cccttgatct               | gtatacgtgt | gagttagatc | tcacaaacct | gattctgttc | 2580         |
| tcagtttcca | tatcatcagt               | cctctttctt | atggtagtta | tgacaacaag | tcacctcttt | 2640         |
| ttctgggata | tgtggtacat               | ttattattt  | tggaaagcaa | agataaaggg | gtatcagcat | 2700         |
| ctgcaatcca | tggagtcttg               | ttatgatgct | tttattgtgt | atgacactaa | aaactcagct | 2760         |
| gtgacagaat | gggttttgca               | ggagctggtg | gcaaaattgg | aagatccaag | agaaaaacac | 2820         |
| ttcaatttgt | gtctagaaga               | aagagactgg | ctaccaggac | agccagttct | agaaaacctt | 2880         |
| tcccagagca | tacagctcag               | caaaaagaca | gtgtttgtga | tgacacagaa | atatgctaag | 2940         |
| actgagagtt | ttaagatggc               | attttatttg | tctcatcaga | ggctcctgga | tgaaaaagtg | 3000         |
| gatgtgatta | tcttgatatt               | cttggaaaag | cctcttcaga | agtctaagtt | tcttcagctc | 3060         |
| aggaagagac | tctgcaggag               | ctctgtcctt | gagtggcctg | caaatccaca | ggctcaccca | 3120         |
| tacttctggc | agtgcctgaa               | aaatgccctg | accacagaca | atcatgtggc | ttatagtcaa | 3180         |

| atgttcaagg                             | aaacagtcta | gctctctgaa | gaatgtcacc | acctaggaca | tgccttgaat | 3240 |
|----------------------------------------|------------|------------|------------|------------|------------|------|
| cga                                    |            |            |            |            |            | 3243 |
| <210> 39 <211> 374 <212> DNA <213> mur |            |            |            |            |            |      |
| <400> 39<br>gagctcaaag                 | gctctgcgag | tctcggtttt | ctgttgcctt | ctctctgtct | cagaggactc | 60   |
|                                        | accactctat |            |            |            |            | 120  |
|                                        | tctctgactc |            |            |            |            | 180  |
|                                        | tggtgttttc |            |            |            |            | 240  |
|                                        | tttctagagt |            |            |            | •          | 300  |
| gttaaagtaa                             | atatcccaga | ggcccatgtg | atcgtggact | gcacagacaa | gcatttgaca | 360  |
| gaaatccctg                             | agggcattcc | cactaacacc | accaatctta | cccttaccat | caaccacata | 420  |
| ccaagcatct                             | ctccagattc | cttccgtagg | ctgaaccatc | tggaagaaat | cgatttaaga | 480  |
| tgcaattgtg                             | tacctgttct | actggggtcc | aaagccaatg | tgtgtaccaa | gaggctgcag | 540  |
| attagacctg                             | gaagctttag | tggactctct | gacttaaaag | ccctttacct | ggatggaaac | 600  |
| caacttctgg                             | agataccaca | ggatctgcca | tccagcttac | atcttctgag | ccttgaggct | 660  |
| aacaacatct                             | tctccatcac | gaaggagaat | ctaacagaac | tggtcaacat | tgaaacactc | 720  |
| tacctgggtc                             | aaaactgtta | ttatcgaaat | ccttgcaatg | tttcctattc | tattgaaaaa | 780  |
| gatgctttcc                             | tagttatgag | aaatttgaag | gttctctcac | taaaagataa | caatgtcaca | 840  |
| gctgtcccca                             | ccactttgcc | acctaattta | ctagagctct | atctttataa | caatatcatt | 900  |
|                                        | aagaaaatga |            |            |            |            | 960  |
|                                        | ctcgatgtta |            |            |            |            | 1020 |
| cccttacaga                             | tccatgacaa | tgctttcaat | tcattgacag | aattaaaagt | tttacgttta | 1080 |
| cacagtaatt                             | ctcttcagca | tgtgccccca | acatggttta | aaaacatgag | aaacctccag | 1140 |
| gaactagacc                             | tctcccaaaa | ctacttggcc | agagaaattg | aggaggccaa | atttttgcat | 1200 |
| tttcttccca                             | accttgttga | gttggatttt | tctttcaatt | atgagctgca | ggtctaccat | 1260 |
| gcatctataa                             | ctttaccaca | ttcactctct | tcattggaaa | acttgaaaat | tctgcgtgtc | 1320 |
|                                        | tctttaaaga |            |            |            |            | 1380 |
|                                        | ttcttgacct |            |            |            |            | 1440 |
|                                        | aaaacctcaa |            |            |            |            | 1500 |

| gagtcaagag aagttggctt ttgtcctaat gctcaaactt ctgtagaccg tcatgggccc caggtccttg aggccttaca ctatttccga tacgatgaat atgcacggag ctgcaggttc | 1560<br>1620 |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|
| aaaaacaaag agccaccttc tttcttgcct ttgaatgcag actgccacat atatgggcag                                                                   | 1680         |
| accttagact taagtagaaa taacatattt tttattaaac cttctgattt tcagcatctt                                                                   | 1740         |
| tcattcctca aatgcctcaa cttatcagga aacaccattg gccaaactct taatggcagt                                                                   | 1800         |
| gaactctggc cgttgagaga gttgcggtac ttagacttct ccaacaaccg gcttgattta                                                                   | 1860         |
| ctctactcaa cagcctttga agagctccag agtcttgaag ttctggatct aagtagtaac                                                                   | 1920         |
| agccactatt ttcaagcaga aggaattact cacatgctaa actttaccaa gaaattacgg                                                                   | 1980         |
| cttctggaca aactcatgat gaatgataat gacatctcta cttcggccag caggaccatg                                                                   | 2040         |
| gaaagtgact ctcttcgaat tctggagttc agaggcaacc atttagatgt tctatggaga                                                                   | 2100         |
| gccggtgata acagatactt ggacttcttc aagaatttgt tcaatttaga ggtattagat                                                                   | 2160         |
| atctccagaa attccctgaa ttccttgcct cctgaggttt ttgagggtat gccgccaaat                                                                   | 2220         |
| ctaaagaatc tctccttggc caaaaatggg ctcaaatctt tcttttggga cagactccag                                                                   | 2280         |
| ttactgaagc atttggaaat tttggacctc agccataacc agctgacaaa agtacctgag                                                                   | 2340         |
| agattggcca actgttccaa aagtctcaca acactgattc ttaagcataa tcaaatcagg                                                                   | 2400         |
| caattgacaa aatattttct agaagatgct ttgcaattgc gctatctaga catcagttca                                                                   | 2460         |
| aataaaatcc aggtcattca gaagactagc ttcccagaaa atgtcctcaa caatctggag                                                                   | 2520         |
| atgttggttt tacatcacaa tcgctttctt tgcaactgtg atgctgtgtg gtttgtctgg                                                                   | 2580         |
| tgggttaacc atacagatgt tactattcca tacctggcca ctgatgtgac ttgtgtaggt                                                                   | 2640         |
| ccaggagcac acaaaggtca aagtgtcata tcccttgatc tgtatacgtg tgagttagat                                                                   | 2700         |
| ctcacaaacc tgattctgtt ctcagtttcc atatcatcag tcctctttct tatggtagtt                                                                   | 2760         |
| atgacaacaa gtcacctctt tttctgggat atgtggtaca tttattattt ttggaaagca                                                                   | 2820         |
| aagataaagg ggtatcagca tctgcaatcc atggagtctt gttatgatgc ttttattgtg                                                                   | 2880         |
| tatgacacta aaaactcagc tgtgacagaa tgggttttgc aggagctggt ggcaaaattg                                                                   | 2940         |
| gaagatccaa gagaaaaaca cttcaatttg tgtctagaag aaagagactg gctaccagga                                                                   | 3000         |
| cagccagttc tagaaaacct ttcccagagc atacagctca gcaaaaagac agtgtttgtg                                                                   | 3060         |
| atgacacaga aatatgctaa gactgagagt tttaagatgg cattttattt gtctcatcag                                                                   | 3120         |
| aggeteetgg atgaaaaagt ggatgtgatt atettgatat tettggaaaa geetetteag                                                                   | 3180         |
| aagtotaagt ttottoagot caggaagaga ototgoagga gototgtoot tgagtggoot                                                                   | 3240         |
| gcaaatccac aggeteacec atacttetgg cagtgeetga aaaatgeeet gaccacagae                                                                   | 3300         |
| aatcatgtgg cttatagtca aatgttcaag gaaacagtct agctctctga agaatgtcac                                                                   | 3360         |
| cacctaggac atgccttggt acctgaagtt ttcataaagg tttccataaa tgaaggtctg                                                                   | 3420         |

| aatttttcct aaca | agttgtc atggctcaga | ttggtgggaa | atcatcaata | tatggctaag | 3480 |
|-----------------|--------------------|------------|------------|------------|------|
| aaattaagaa ggg  | gagactg atagaagata | atttctttct | tcatgtgcca | tgctcagtta | 3540 |
| aatatttccc ctag | gctcaaa tctgaaaaac | tgtgcctagg | agacaacaca | aggctttgat | 3600 |
| ttatctgcat acaa | attgata agagccacac | atctgccctg | aagaagtact | agtagtttta | 3660 |
| gtagtagggt aaaa | aattaca caagctttct | ctctctctga | tactgaactg | taccagagtt | 3720 |
| caatgaaata aaag | gcccaga gaacttc    |            |            |            | 3747 |

<210> 40

3449

<213> murine

<400> 40 gegagteteg gttttetgtt geettetete tgteteagag gaeteeatet atagaaceae 60 tctatgcctt caagaaagat gtccttggct cccttctcag gatgatcctg gcctatctct 120 gactctcttc tcctccacca gacctcttga ttccattttg aaagaaaact gaaaatggtg 180 ttttcgatgt ggacacggaa gagacaaatt ttgatctttt taaatatgct cttagtttct 240 agagtetttg ggtttegatg gttteetaaa actetacett gtgaagttaa agtaaatate 300 ccagaggccc atgtgatcgt ggactgcaca gacaagcatt tgacagaaat ccctgagggc 360 atteccaeta acaccaecaa tettaccett accateaace acataccaag cateteteca 420 gattccttcc gtaggctgaa ccatctggaa gaaatcgatt taagatgcaa ttgtgtacct 480 gttctactgg ggtccaaagc caatgtgtgt accaagaggc tgcagattag acctggaagc 540 tttagtggac tctctgactt aaaagccctt tacctggatg gaaaccaact tctggagata 600 ccacaggate tgccatccag ettacatett etgageettg aggetaacaa catettetee 660 atcacgaagg agaatctaac agaactggtc aacattgaaa cactctacct gggtcaaaac 720 tgttattatc gaaatccttg caatgtttcc tattctattg aaaaagatgc tttcctagtt 780 atgagaaatt tgaaggttct ctcactaaaa gataacaatg tcacagctgt ccccaccact 840 ttgccaccta atttactaga getetatett tataacaata teattaagaa aatecaagaa 900 aatgatttta ataacctcaa tgagttgcaa gttcttgacc taagtggaaa ttgccctcga 960 tgttataatg tcccatatcc gtgtacaccg tgtgaaaata attccccctt acagatccat. 1020 gacaatgctt tcaattcatt gacagaatta aaagttttac gtttacacag taattctctt 1080 cagcatgtgc ccccaacatg gtttaaaaac atgagaaacc tccaggaact agacctctcc 1140 caaaactact tggccagaga aattgaggag gccaaatttt tgcattttct tcccaacctt 1200 gttgagttgg atttttcttt caattatgag ctgcaggtct accatgcatc tataacttta 1260

| ccacattcac tctcttcatt<br>aaagagctga aaaactccag | ggaaaacttg<br>tctttctgta | aaaattctgc<br>ttgcacaagc | gtgtcaaggg<br>ttcccaggct | gtatgtcttt<br>ggaagttctt | 1320<br>1380 |
|------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| gaccttggca ctaacttcat                          | aaaaattgct               | gacctcaaca               | tattcaaaca               | ttttgaaaac               | 1440         |
| ctcaaactca tagacctttc                          | agtgaataag               | atatctcctt               | cagaagagtc               | aagagaagtt               | 1500         |
| ggcttttgtc ctaatgctca                          | aacttctgta               | gaccgtcatg               | ggccccaggt               | ccttgaggcc               | 1560         |
| ttacactatt tccgatacga                          | tgaatatgca               | cggagctgca               | ggttcaaaaa               | caaagagcca               | 1620         |
| ccttctttct tgcctttgaa                          | tgcagactgc               | cacatatatg               | ggcagacctt               | agacttaagt               | 1680         |
| agaaataaca tatttttat                           | taaaccttct               | gattttcagc               | atctttcatt               | cctcaaatgc               | 1740         |
| ctcaacttat caggaaacac                          | cattggccaa               | actcttaatg               | gcagtgaact               | ctggccgttg               | 1800         |
| agagagttgc ggtacttaga                          | cttctccaac               | aaccggcttg               | atttactcta               | ctcaacagcc               | 1860         |
| tttgaagagc tccagagtct                          | tgaagttctg               | gatctaagta               | gtaacagcca               | ctattttcaa               | 1920         |
| gcagaaggaa ttactcacat                          | gctaaacttt               | accaagaaat               | tacggcttct               | ggacaaactc               | 1980         |
| atgatgaatg ataatgacat                          | ctctacttcg               | gccagcagga               | ccatggaaag               | tgactctctt               | 2040         |
| cgaattctgg agttcagagg                          | caaccattta               | gatgttctat               | ggagagccgg               | tgataacaga               | 2100         |
| tacttggact tcttcaagaa                          | tttgttcaat               | ttagaggtat               | tagatatete               | cagaaattcc               | 2160         |
| ctgaattcct tgcctcctga                          | ggtttttgag               | ggtatgccgc               | caaatctaaa               | gaatctctcc               | 2220         |
| ttggccaaaa atgggctcaa                          | atctttcttt               | tgggacagac               | tccagttact               | gaagcatttg               | 2280         |
| gaaattttgg acctcagcca                          | taaccagctg               | acaaaagtac               | ctgagagatt               | ggccaactgt               | 2340         |
| tccaaaagtc tcacaacact                          | gattcttaag               | cataatcaaa               | tcaggcaatt               | gacaaaatat               | 2400         |
| tttctagaag atgctttgca                          | attgcgctat               | ctagacatca               | gttcaaataa               | aatccaggtc               | 2460         |
| attcagaaga ctagcttccc                          | agaaaatgtc               | ctcaacaatc               | tggagatgtt               | ggttttacat               | 2520         |
| cacaatcgct ttctttgcaa                          | ctgtgatgct               | gtgtggtttg               | tctggtgggt               | taaccataca               | 2580         |
| gatgttacta ttccatacct                          | ggccactgat               | gtgacttgtg               | taggtccagg               | agcacacaaa               | 2640         |
| ggtcaaagtg tcatatccct                          | tgatctgtat               | acgtgtgagt               | tagateteae               | aaacctgatt               | 2700         |
| ctgttctcag tttccatatc                          | atcagtcctc               | tttcttatgg               | tagttatgac               | aacaagtcac               | 2760         |
| ctctttttct gggatatgtg                          | gtacatttat               | tatttttgga               | aagcaaagat               | aaaggggtat               | 2820         |
| cagcatctgc aatccatgga                          | gtcttgttat               | gatgctttta               | ttgtgtatga               | cactaaaaac               | 2880         |
| tcagctgtga cagaatgggt                          | tttgcaggag               | ctggtggcaa               | aattggaaga               | tccaagagaa               | 2940         |
| aaacacttca atttgtgtct                          | agaagaaaga               | gactggctac               | caggacagcc               | agttctagaa               | 3000         |
| aacctttccc agagcataca                          | gctcagcaaa               | aagacagtgt               | ttgtgatgac               | acagaaatat               | 3060         |
| gctaagactg agagttttaa                          | gatggcattt               | tatttgtctc               | atcagaggct               | cctggatgaa               | 3120         |
| aaagtggatg tgattatctt                          | gatattcttg               | gaaaagcctc               | ttcagaagtc               | taagtttctt               | 3180         |

| cagctcagga | agagactctg | caggagetet | gtccttgagt | ggcctgcaaa | tccacaggct | 3240 |
|------------|------------|------------|------------|------------|------------|------|
| cacccatact | tetggeagtg | cctgaaaaat | gccctgacca | cagacaatca | tgtggcttat | 3300 |
| agtcaaatgt | tcaaggaaac | agtctagctc | tctgaagaat | gtcaccacct | aggacatgcc | 3360 |
| ttggtacctg | aagttttcat | aaaggtttcc | ataaatgaag | gtctgaattt | ttcctaacag | 3420 |
| ttgtcatggc | tcagattggt | gggaaatca  |            |            |            | 3449 |

<210> 41

<211> 1050

<212> PRT

<213> murine

<400> 41

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu 1 5 10 15

Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile 65 70 75 80

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu 85 90 95

Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys
100 105 110

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp 115 120 125

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr 165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser 180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val 195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro 210 215 220

Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile

230 235 Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 245 Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro 260 Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser 280 Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 295 Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 310 315 Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu 325 330 His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu 345 Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser 360 Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile 410 Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser 500 Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser

565 570 Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe 585 Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp 600 Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile 615 Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu 650 Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu 680 Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile 695 Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala 710 715 Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile 725 730 Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr 745 Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe 760 Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn 775 Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val 810 Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys 875 Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile

Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu

900 905 910

Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys 915 920 925

Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu 930 935 940

Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln 945 950 955 960

Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His 965 970 975

Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu 980 985 990

Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 995 1000 1005

Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1010 1015 1020

Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1025 1030 1035

His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val 1040 1045 1056

<210> 42

<211> 1050

<212> PRT

<213> murine

<400> 42

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu 1 5 10 15

Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro 50 55

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile 65 70 75 80

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu
85 90 95

Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys
100 105 110

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp 115 120 125

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

# WO 2004/094671 - 93 - PCT/US2004/012788

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val 200 Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro 215 Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile 230 Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 250 Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 315 Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser 360 Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu

Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile 415

Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys 420

Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala 445

Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His 450 455 460

Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys

465 470 475 480
Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly
485 490 495

Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser 500 505 510

Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn 515 520 525

Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu 530 540

Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser 545 550 555 560

Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser 565 570 575

Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe 580 585 590

Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp 595 600 605

Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile 610 615 620

Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp 625 630 635 640

Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu 645  $\cdot$  650 655

Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu 660 665 670

Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu 675 680 685

Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile 690 695 700

Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala 705 710 715 720

Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile
725 730 735

Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr 740 745 750

Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe 755 760 765

Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn 770 780

Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn 785 790 795 800

His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val

Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr 820 825 830

Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile 835 840 845

Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe 850 855 860

Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys 865 870 875 880

Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile 885 890 895

Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu 900 905 910

Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys 915 920 925

Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu 930 935 940

Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln 945 950 955 960

Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His 965 970 975

Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu 980 985 990

Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 995 1000 1005

Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1010 1015 1020

Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1025 1030 1035

His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val

<210> 43

<211> 1050

<212> PRT

<213> murine

<400> 43

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu 1 5 10 15

Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile

- Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro 50 55 60
- Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile 65 70 75 80
- Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu 85 90 95
- Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys
  100 105 110
- Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp 115 120 125
- Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140
- Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160
- Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr 165 170 175
- Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser 180 185 190
- Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val 195 200 205
- Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro 210 215 220
- Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile 225 230 235 240
- Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 245 250 255
- Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro 260 265 270
- Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser 275 280 285
- Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 295 300
- Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 305 310 315 320
- Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu 325 330 335
- His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu 340 345 350
- Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser 355 360 365
- Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu

# WO 2004/094671 - 97 - PCT/US2004/012788

375 370 380 Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu 395 Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser 500 505 Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn 520 Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu 535 Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser 550 555 Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser 565 570 Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe 585 Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp 600 Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu 650 Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala

- 705 710 715 720
  Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile
  725 730 735
- Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr
  740 745 750
- Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe
  755 760 765
- Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn 770 780
- Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn 785 790 795 800
- His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val 805 810 815
- Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr 820 825 830
- Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile 835 840 845
- Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe 850 855 860
- Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys 865 870 875 885
- Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile 885 890 895
- Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu 900 905 910
- Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys 915 920 925
- Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu 930 935 940
- Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln 945 950 955 960
- Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His 965 970 975
- Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu 980 985 990
- Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 995 1000 1005
- Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1010 1015 1020
- Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1025 1030 1035
- His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val

1040 1045 1050

<210> 44

<211> 1050

<212> PRT

<213> murine

<400> 44

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu 1 5 10 15

Asn Met Leu Leu Val Ser.Arg Val Phe Gly Phe Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile 65 70 75 80

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu 85 90 95

Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys 100 105 110

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp 115 120 125

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr 165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser 180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val 195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro 210 215 220

Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile 225 230 235 240

Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 245 250 255

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro 260 265 270

Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser 275 280 285

Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu 330 His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser . 505 Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn 520 Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser 550 555 Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp

Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile

# WO 2004/094671 - 101 - PCT/US2004/012788

615 620 . 610 Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp 635 Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu 665 Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile 730 Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr 740 745 Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe 760 Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn 775 Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn 790 795 His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr 825 Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile 890 Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln 945 950 955 960 Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His 965 970 975

Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu 980 985 990

Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 995 1000 1005

Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1010 1015 1020

Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1025 1030 1035

His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val 1040 1045 1056

<210> 45

<211> 1050

<212> PRT

<213> murine

<400> 45

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu 1 5 10 15

Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile 65 70 75 80

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu 85 90 95

Arg Cys Asn Cys Val Pro Val Leu Gly Ser Lys Ala Asn Val Cys
100 105 110

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp 115 120 125

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr 165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser 180 185 190

# WO 2004/094671 - 103 - PCT/US2004/012788

- Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val 195 200 205
- Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro 210 215 220
- Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile 225 230 235 240
- Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 245 250 255
- Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro 260 265 270
- Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser 275 280 285
- Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 295 300
- Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 305 310 315 320
- Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phè Leu 325 330 335
- His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu 340 345 350
- Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser 355 360 365
- Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu 370 380
- Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu 385 390 395 400
- Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile 405 410 415
- Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys 420 425 430
- Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala 435 440 445
- Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His 450 455 460
- Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys 465 470 475 480
- Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly
  485 490 495
- Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser 500 505 510
- Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn

520 525 Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu 540 Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser 550 Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser 570 Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu 650 Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu 665 Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe 760 Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn 785 795 His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr 820 Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe

WO 2004/094671 - 105 - PCT/US2004/012788

| Phe                          | 850<br>Trp     | A en                      | Met        | Tran       | ጥረታ           | 855<br>Tle     | LL T.T.        | There      | Dho          | (Thomas    | 860        | חות           | T           | Tlo        | Tara            |            |
|------------------------------|----------------|---------------------------|------------|------------|---------------|----------------|----------------|------------|--------------|------------|------------|---------------|-------------|------------|-----------------|------------|
| 865                          | 117            | Asp                       | Mec        | тър        | 870           | 7.10           | TÄT            | īĀī        | rne          | 875        | тув        | Ala           | тув         | 116        | 880<br>TAR      |            |
| Gly                          | 'Tàr           | Gln                       | His        | Leu<br>885 | Gln           | Ser            | Met            | Glu        | Ser<br>890   | Сув        | Tyr        | Asp           | Ala         | Phe<br>895 | Ile             |            |
| Val                          | Tyr            | Asp                       | Thr<br>900 | ГÀЗ        | Asn           | Ser            | Ala            | Val<br>905 | Thr          | Glu        | Trp        | Val           | Leu<br>910  | Gln        | Glu             |            |
| Leu                          | Val            | Ala<br>915                | Lys        | Leu        | Glu           | Asp            | Pro<br>920     | Arg        | Glu          | Lys        | His        | Phe<br>925    | Asn         | Leu        | Cys             |            |
| Leu                          | Glu<br>930     | Glu                       | Arg        | Asp        | Trp           | Leu<br>935     | Pro            | Gly        | Gln          | Pro        | Val<br>940 | Leu           | Glu         | Asn        | Leu             |            |
| Ser<br>945                   | Gln            | Ser                       | Ile        | Gln        | Leu<br>950    | Ser            | Lys            | Lys        | Thr          | Val<br>955 | Phe        | Val           | Met         | Thr        | Gln<br>960      |            |
| ГÀЗ                          | Tyr            | Ala                       | ГÀв        | Thr<br>965 | Glu           | Ser            | Phe            | Lys        | Met<br>970   | Ala        | Phe        | Tyr           | Leu         | Ser<br>975 | His             |            |
| Gln                          | Arg            | Leu                       | Leu<br>980 | qaA        | Glu           | Lys            | Val            | Asp<br>985 | Val          | Ile        | Ile        | Leu           | Ile<br>990  | Phe        | Leu             |            |
| Glu                          | Lys            | Pro<br>995                | Leu        | Gln        | Lys           | Ser            | Lys<br>1000    |            | e Lev        | ı Glr      | ı Lev      | Arg<br>100    |             | /s Ai      | rg Leu          |            |
| Cys                          | Arg<br>1010    |                           | : Sei      | : Val      | l Lev         | 101            |                | p Pr       | CA OT        | a As       |            | o 0<br>120    | ln A        | Ala F      | lis             |            |
| Pro                          | Tyr<br>1025    |                           | Trp        | Glr        | а Сув         | Lev<br>103     |                | /s As      | an Al        | a Le       |            | ır 1<br>35    | hr A        | Asp A      | Asn             |            |
| His                          | Val<br>1040    |                           | а Туз      | : Sei      | Glr           | Met<br>104     |                | ne Ly      | /s Gl        | u Th       |            | 1<br>)50      |             |            |                 |            |
| <210<br><210<br><210<br><210 | l> 3<br>2> I   | 16<br>3311<br>DNA<br>Homo | sapi       | iens       |               |                |                |            |              |            |            |               |             |            |                 |            |
| <400<br>ttc1                 |                | i6<br>ctg d               | etgca      | agtt       | a cg          | gaat           | gaaa           | a aat      | taga         | ıaca       | acag       | jaaac         | at c        | ggaaa      | acatg           | 60         |
| ttc                          | ettea          | agt o                     | gtca       | atgo       | et ga         | ccts           | catt           | : ttc      | ctgo         | taa        | tato       | tggt          | tc o        | etgte      | gagtta          | 120        |
| tgc                          | gccga          | aag a                     | aaat       | tttt       | c ta          | gaag           | ctat           | cct        | tgtg         | jatg       | agaa       | aaag          | ca a        | aatg       | gactca          | 180        |
| gtta                         | attgo          | cag a                     | gtgo       | cagca      | a to          | gtcg           | jacta          | a cag      | gaag         | jttc       | ccca       | aacg          | gt <u>s</u> | gggca      | aatat           | 240        |
| gtga                         | acada          | ac t                      | agac       | ctat       | c to          | rataa          | tttc           | ato        | acac         | aca        | taac       | gaat          | ga a        | tcat       | ttcaa           | 300        |
| aaa                          |                |                           | -          |            |               | ,              |                |            |              | Juou       | -          | J             | · j ·       |            |                 |            |
| 999                          |                | aaa a                     |            |            |               |                |                |            |              |            |            | _             | _           |            | cagaac          | 360        |
|                              | etgea          |                           | tcto       | cacta      | aa aa         | ıtaaa          | itcta          | a aac      | caca         | ıacc       | ccaa       | tgta          | ca g        | gcaco      | cagaac<br>accta | 360<br>420 |
| ggaa                         | etgea<br>aated | eeg g                     | tata       | cacta      | na aa<br>ccaa | itaaa<br>iatgg | itcta<br>jette | a aac      | caca<br>atca | ıacc       | ccaa       | tgta<br>Iggca | ca s        | gcaco      | _               |            |

|            | gacttataaa<br>agaaaactaa |            |            |            |            | 600<br>660 |
|------------|--------------------------|------------|------------|------------|------------|------------|
| ttgctatcac | tatctttcaa               | ttctctttca | cacgtgccac | ccaaactgcc | aagctcccta | 720        |
| cgcaaacttt | ttctgagcaa               | cacccagatc | aaatacatta | gtgaagaaga | tttcaaggga | 780        |
| ttgataaatt | taacattact               | agatttaagc | gggaactgtc | cgaggtgctt | caatgcccca | 840        |
| tttccatgcg | tgccttgtga               | tgġtggtgct | tcaattaata | tagatcgttt | tgcttttcaa | 900        |
| aacttgaccc | aacttcgata               | cctaaacctc | tctagcactt | ccctcaggaa | gattaatgct | 960        |
| gcctggttta | aaaatatgcc               | tcatctgaag | gtgctggatc | ttgaattcaa | ctatttagtg | 1020       |
| ggagaaatag | cctctggggc               | atttttaacg | atgetgeece | gcttagaaat | acttgacttg | 1080       |
| tcttttaact | atataaaggg               | gagttatcca | cagcatatta | atatttccag | aaacttctct | 1140       |
| aaacttttgt | ctctacgggc               | attgcattta | agaggttatg | tgttccagga | actcagagaa | 1200       |
| gatgatttcc | agcccctgat               | gcagcttcca | aacttatcga | ctatcaactt | gggtattaat | 1260       |
| tttattaagc | aaatcgattt               | caaacttttc | caaaatttct | ccaatctgga | aattatttac | 1320       |
| ttgtcagaaa | acagaatatc               | accgttggta | aaagataccc | ggcagagtta | tgcaaatagt | 1380       |
| tcctctttc  | aacgtcatat               | ccggaaacga | cgctcaacag | attttgagtt | tgacccacat | 1440       |
| tcgaactttt | atcatttcac               | ccgtccttta | ataaagccac | aatgtgctgc | ttatggaaaa | 1500       |
| gccttagatt | taagcctcaa               | cagtattttc | ttcattgggc | caaaccaatt | tgaaaatctt | 1560       |
| cctgacattg | cctgtttaaa               | tctgtctgca | aatagcaatg | ctcaagtgtt | aagtggaact | 1620       |
| gaattttcag | ccattcctca               | tgtcaaatat | ttggatttga | caaacaatag | actagacttt | 1680       |
| gataatgcta | gtgctcttac               | tgaattgtcc | gacttggaag | ttctagatct | cagctataat | 1740       |
| tcacactatt | tcagaatagc               | aggcgtaaca | catcatctag | aatttattca | aaatttcaca | 1800       |
| aatctaaaag | ttttaaactt               | gagccacaac | aacatttata | ctttaacaga | taagtataac | 1860       |
| ctggaaagca | agtccctggt               | agaattagtt | ttcagtggca | atcgccttga | cattttgtgg | 1920       |
| aatgatgatg | acaacaggta               | tatctccatt | ttcaaaggtc | tcaagaatct | gacacgtctg | 1980       |
| gatttatccc | ttaataggct               | gaagcacatc | ccaaatgaag | cattccttaa | tttgccagcg | 2040       |
| agtctcactg | aactacatat               | aaatgataat | atgttaaagt | tttttaactg | gacattactc | 2100       |
| cagcagttcc | ctcgtctcga               | gttgcttgac | ttacgtggaa | acaaactact | ctttttaact | 2160       |
| gatagcctat | ctgactttac               | atcttccctt | cggacactgc | tgctgagtca | taacaggatt | 2220       |
| teccacetae | cctctggctt               | tctttctgaa | gtcagtagtc | tgaagcacct | cgatttaagt | 2280       |
| tccaatctgc | taaaaacaat               | caacaaatcc | gcacttgaaa | ctaagaccac | caccaaatta | 2340       |
| tctatgttgg | aactacacgg               | aaaccccttt | gaatgcacct | gtgacattgg | agatttccga | 2400       |
| agatggatgg | atgaacatct               | gaatgtcaaa | attcccagac | tggtagatgt | catttgtgcc | 2460       |

| agtcctgggg | atcaaagagg | gaagagtatt | gtgagtctgg | agctgacaac | ttgtgtttca | 2520 |
|------------|------------|------------|------------|------------|------------|------|
| gatgtcactg | cagtgatatt | atttttcttc | acgttcttta | tcaccaccat | ggttatgttg | 2580 |
| gctgccctgg | ctcaccattt | gttttactgg | gatgtttggt | ttatatataa | tgtgtgttta | 2640 |
| gctaaggtaa | aaggctacag | gtctctttcc | acatcccaaa | ctttctatga | tgcttacatt | 2700 |
| tcttatgaca | ccaaagatgc | ctctgttact | gactgggtga | taaatgagct | gcgctaccac | 2760 |
| cttgaagaga | gccgagacaa | aaacgttctc | ctttgtctag | aggagagga  | ttgggacccg | 2820 |
| ggattggcca | tcatcgacaa | cctcatgcag | agcatcaacc | aaagcaagaa | aacagtattt | 2880 |
| gttttaacca | aaaaatatgc | aaaaagctgg | aactttaaaa | cagcttttta | cttggctttg | 2940 |
| cagaggctaa | tggatgagaa | catggatgtg | attatattta | tcctgctgga | gccagtgtta | 3000 |
| cagcattctc | agtatttgag | gctacggcag | cggatctgta | agagctccat | cctccagtgg | 3060 |
| cctgacaacc | cgaaggcaga | aggcttgttt | tggcaaactc | tgagaaatgt | ggtcttgact | 3120 |
| gaaaatgatt | cacggtataa | caatatgtat | gtcgattcca | ttaagcaata | ctaactgacg | 3180 |
| ttaagtcatg | atttcgcgcc | ataataaaga | tgcaaaggaa | tgacatttct | gtattagtta | 3240 |
| tctattgcta | tgtaacaaat | tatcccaaaa | cttagtggtt | taaaacaaca | catttgctgg | 3300 |
| cccacagttt | t          |            |            |            |            | 3311 |

<211> 3367

<212> DNA

<213> Homo spaiens

<400> 47 ctcctgcata gagggtacca ttctgcgctg ctgcaagtta cggaatgaaa aattagaaca 60 acagaaacgt ggttctcttg acacttcagt gttagggaac atcagcaaga .cccatcccag 120 gagacettga aggaageett tgaaagggag aatgaaggag teatetttge aaaatagete 180 ctgcagcctg ggaaaggaga ctaaaaagga aaacatgttc cttcagtcgt caatgctgac 240 ctgcattttc ctgctaatat ctggttcctg tgagttatgc gccgaagaaa atttttctag 300 aagctatcct tgtgatgaga aaaagcaaaa tgactcagtt attgcagagt gcagcaatcg 360 tcgactacag gaagttcccc aaacggtggg caaatatgtg acagaactag acctgtctga 420 taatttcatc acacacataa cgaatgaatc atttcaaggg ctgcaaaatc tcactaaaat 480 aaatctaaac cacaacccca atgtacagca ccagaacgga aatcccggta tacaatcaaa 540 tggcttgaat atcacagacg gggcattcct caacctaaaa aacctaaggg agttactgct 600 tgaagacaac cagttacccc aaataccctc tggtttgcca gagtctttga cagaacttag 660 tctaattcaa aacaatatat acaacataac taaagagggc atttcaagac ttataaactt 720

| gaaaaatctc<br>agaagatgga | tatttggcct<br>gtatttgaaa | ggaactgcta<br>cgctgacaaa | ttttaacaaa<br>tttggagttg | gtttgcgaga<br>ctatcactat | aaactaacat<br>ctttcaattc | 780<br>840 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| tctttcacac               | gtgtcaccca               | aactgccaag               | ctccctacgc               | aaacttttc                | tgagcaacac               | 900        |
| ccagatcaaa               | tacattagtg               | aagaagattt               | caagggattg               | ataaatttaa               | cattactaga               | 960        |
| tttaagcggg               | aactgtccga               | ggtgcttcaa               | tgccccattt               | ccatgcgtgc               | cttgtgatgg               | 1020       |
| tggtgcttca               | attaatatag               | atcgttttgc               | ttttcaaaac               | ttgacccaac               | ttcgatacct               | 1080       |
| aaacctctct               | agcacttccc               | tcaggaagat               | taatgctgcc               | tggtttaaaa               | atatgcctca               | 1140       |
| tctgaaggtg               | ctggatcttg               | aattcaacta               | tttagtggga               | gaaatagcct               | ctggggcatt               | 1200       |
| tttaacgatg               | ctgccccgct               | tagaaatact               | tgacttgtct               | tttaactata               | taaaggggag               | 1260       |
| ttatccacag               | catattaata               | tttccagaaa               | cttctctaaa               | cctttgtctc               | tacgggcatt               | 1320       |
| gcatttaaga               | ggttatgtgt               | tccaggaact               | cagagaagat               | gatttccagc               | ccctgatgca               | 1380       |
| gcttccaaac               | ttatcgacta               | tcaacttggg               | tattaatttt               | attaagcaaa               | tcgatttcaa               | 1440       |
| acttttccaa               | aatttctcca               | atctggaaat               | tatttacttg               | tcagaaaaca               | gaatatcacc               | 1500       |
| gttggtaaaa               | gatacccggc               | agagttatgc               | aaatagttcc               | tcttttcaac               | gtcatatccg               | 1560       |
| gaaacgacgc               | tcaacagatt               | ttgagtttga               | cccacattcg               | aacttttatc               | atttcacccg               | 1620       |
| tcctttaata               | aagccacaat               | gtgctgctta               | tggaaaagcc               | ttagatttaa               | gcctcaacag               | 1680       |
| tattttcttc               | attgggccaa               | accaatttga               | aaatcttcct               | gacattgcct               | gtttaaatct               | 1740       |
| gtctgcaaat               | agcaatgctc               | aagtgttaag               | tggaactgaa               | ttttcagcca               | ttcctcatgt               | 1800       |
| caaatatttg               | gatttgacaa               | acaatagact               | agactttgat               | aatgctagtg               | ctcttactga               | 1860       |
| attgtccgac               | ttggaagttc               | tagatctcag               | ctataattca               | cactatttca               | gaatagcagg               | 1920       |
| cgtaacacat               | catctagaat               | ttattcaaaa               | tttcacaaat               | ctaaaagttt               | taaacttgag               | 1980       |
| ccacaacaac               | atttatactt               | taacagataa               | gtataacctg               | gaaagcaagt               | ccctggtaga               | 2040       |
| attagttttc               | agtggcaatc               | gccttgacat               | tttgtggaat               | gatgatgaca               | acaggtatat               | 2100       |
| ctccattttc               | aaaggtctca               | agaatctgac               | acgtctggat               | ttatccctta               | ataggctgaa               | 2160       |
| gcacatccca               | aatgaagcat               | tccttaattt               | gccagcgagt               | ctcactgaac               | tacatataaa               | 2220       |
| tgataatatg               | , ttaaagtttt             | ttaactggac               | attactccag               | cagtttcctc               | gtctcgagtt               | 2280       |
| gcttgactta               | cgtggaaaca               | aactactctt               | tttaactgat               | agcctatctg               | actttacatc               | 2340       |
| ttcccttcgg               | acactgctgc               | tgagtcataa               | caggatttcc               | cacctaccct               | ctggctttct               | 2400       |
| ttctgaagtc               | agtagtctga               | agcacctcga               | tttaagttcc               | aatctgctaa               | aaacaatcaa               | 2460       |
| caaatccgca               | ı cttgaaacta             | agaccaccac               | caaattatct               | atgttggaac               | tacacggaaa               | 2520       |
| cccctttgaa               | tgcacctgtg               | acattggaga               | tttccgaaga               | tggatggatg               | aacatctgaa               | 2580       |
| tgtcaaaatt               | cccagactgg               | tagatgtcat               | ttgtgccagt               | cctggggatc               | aaagagggaa               | 2640       |

| gagtattgtg | agtctggagc | taacaacttg | tgtttcagat | gtcactgcag | tgatattatt | 2700 |
|------------|------------|------------|------------|------------|------------|------|
| tttcttcacg | ttctttatca | ccaccatggt | tatgttggct | gccctggctc | accatttgtt | 2760 |
| ttactgggat | gtttggttta | tatataatgt | gtgtttagct | aagataaaag | gctacaggtc | 2820 |
| totttccaca | teccaaaett | tctatgatgc | ttacatttct | tatgacacca | aagatgcctc | 2880 |
| tgttactgac | tgggtgaťaa | atgagctgcg | ctaccacctt | gaagagagcc | gagacaaaaa | 2940 |
| cgttctcctt | tgtctagagg | agagggattg | ggacccggga | ttggccatca | tcgacaacct | 3000 |
| catgcagagc | atcaaccaaa | gcaagaaaac | agtatttgtt | ttaaccaaaa | aatatgcaaa | 3060 |
| aagctggaac | tttaaaacag | ctttttactt | ggctttgcag | aggctaatgg | atgagaacat | 3120 |
| ggatgtgatt | atatttatcc | tgctggagcc | agtgttacag | cattctcagt | atttgaggct | 3180 |
| acggcagcgg | atctgtaaga | gctccatcct | ccagtggcct | gacaacccga | aggcagaagg | 3240 |
| cttgttttgg | caaactctga | gaaatgtggt | cttgactgaa | aatgattcac | ggtataacaa | 3300 |
| tatgtatgtc | gattccatta | agcaatacta | actgacgtta | agtcatgatt | tcgcgccata | 3360 |
| ataaaga    |            |            |            |            |            | 3367 |

<211> 4211

<212> DNA

<213> Homo spaiens

<400> 48

ctcctgcata gagggtacca ttctgcgctg ctgcaagtta cggaatgaaa aattagaaca 60 acagaaacat ggaaaacatg ttccttcagt cgtcaatgct gacctgcatt ttcctgctaa 120 tatctggttc ctgtgagtta tgcgccgaag aaaatttttc tagaagctat ccttgtgatg 180 agaaaaagca aaatgactca gttattgcag agtgcagcaa tcgtcgacta caggaagttc 240 cccaaacggt gggcaaatat gtgacagaac tagacctgtc tgataatttc atcacacaca 300 360 taacgaatga atcatttcaa gggctgcaaa atctcactaa aataaatcta aaccacaacc ccaatgtaca gcaccagaac ggaaatcccg gtatacaatc aaatggcttg aatatcacag 420 480 acggggcatt cctcaaccta aaaaacctaa gggagttact gcttgaagac aaccagttac cccaaatacc ctctggtttg ccagagtctt tgacagaact tagtctaatt caaaacaata 540 tatacaacat aactaaagag ggcatttcaa gacttataaa cttgaaaaat ctctatttgg 600 cctggaactg ctattttaac aaagtttgcg agaaaactaa catagaagat ggagtatttg 660 aaacgctgac aaatttggag ttgctatcac tatctttcaa ttctctttca cacgtgccac 720 ccaaactgcc aagctcccta cgcaaacttt ttctgagcaa cacccagatc aaatacatta 780 gtgaagaaga tttcaaggga ttgataaatt taacattact agatttaagc gggaactgtc 840

| cgaggtgctt<br>tagatcgttt | caatgcccca<br>tgcttttcaa | tttccatgcg<br>aacttgaccc | tgeettgtga<br>aacttegata | tggtggtgct<br>cctaaacctc | tcaattaata<br>tctagcactt | 900<br>960 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| ccctcaggaa               | gattaatgct               | gcctggttta               | aaaatatgcc               | tcatctgaag               | gtgctggatc               | 1020       |
| ttgaattcaa               | ctatttagtg               | ggagaaatag               | cctctggggc               | atttttaacg               | atgctgcccc               | 1080       |
| gcttagaaat               | acttgacttg               | tcttttaact               | atataaaggg               | gagttatcca               | cagcatatta               | 1140       |
| atatttccag               | aaacttctct               | aaacttttgt               | ctctacgggc               | attgcattta               | agaggttatg               | 1200       |
| tgttccagga               | actcagagaa               | gatgatttcc               | agcccctgat               | gcagcttcca               | aacttatcga               | 1260       |
| ctatcaactt               | gggtattaat               | tttattaagc               | aaatcgattt               | caaacttttc               | caaaatttct               | 1320       |
| ccaatctgga               | aattatttac               | ttgtcagaaa               | acagaatatc               | accgttggta               | aaagataccc               | 1380       |
| ggcagagtta               | tgcaaatagt               | tcctctttc                | aacgtcatat               | ccggaaacga               | cgctcaacag               | 1440       |
| attttgagtt               | tgacccacat               | tcgaactttt               | atcatttcac               | ccgtccttta               | ataaagccac               | 1500       |
| aatgtgctgc               | ttatggaaaa               | gccttagatt               | taagcctcaa               | cagtattttc               | ttcattgggc               | 1560       |
| caaaccaatt               | tgaaaatctt               | cctgacattg               | cctgtttaaa               | tctgtctgca               | aatagcaatg               | 1620       |
| ctcaagtgtt               | aagtggaact               | gaattttcag               | ccattcctca               | tgtcaaatat               | ttggatttga               | 1680       |
| caaacaatag               | actagacttt               | gataatgcta               | gtgctcttac               | tgaattgtcc               | gacttggaag               | 1740       |
| ttctagatct               | cagctataat               | tcacactatt               | tcagaatagc               | aggcgtaaca               | catcatctag               | 1800       |
| aatttattca               | aaatttcaca               | aatctaaaag               | ttttaaactt               | gagccacaac               | aacatttata               | 1860       |
| ctttaacaga               | taagtataac               | ctggaaagca               | agtccctggt               | agaattagtt               | ttcagtggca               | 1920       |
| atcgccttga               | cattttgtgg               | aatgatgatg               | acaacaggta               | tatctccatt               | ttcaaaggtc               | 1980       |
| tcaagaatct               | gacacgtctg               | gatttatccc               | ttaataggct               | gaagcacatc               | ccaaatgaag               | 2040       |
| cattccttaa               | tttgccagcg               | agtctcactg               | aactacatat               | aaatgataat               | atgttaaagt               | 2100       |
| tttttaactg               | gacattactc               | cagcagtttc               | ctcgtctcga               | gttgcttgac               | ttacgtggaa               | 2160       |
| acaaactact               | ctttttaact               | gatagcctat               | ctgactttac               | atcttccctt               | cggacactgc               | 2220       |
| tgctgagtca               | taacaggatt               | tcccacctac               | cctctggctt               | tctttctgaa               | gtcagtagtc               | 2280       |
| tgaagcacct               | cgatttaagt               | tccaatctgc               | taaaaacaat               | caacaaatcc               | gcacttgaaa               | 2340       |
| ctaagaccac               | caccaaatta               | tctatgttgg               | aactacacgg               | aaaccccttt               | gaatgcacct               | 2400       |
| gtgacattgg               | agatttccga               | agatggatgg               | atgaacatct               | gaatgtcaaa               | attcccagac               | 2460       |
| tggtagatgt               | catttgtgcc               | agtcctgggg               | atcaaagagg               | gaagagtatt               | gtgagtctgg               | 2520       |
| agctaacaac               | ttgtgtttca               | gatgtcactg               | cagtgatatt               | atttttcttc               | acgttcttta               | 2580       |
| tcaccaccat               | ggttatgttg               | gctgccctgg               | ctcaccattt               | gttttactgg               | gatgtttggt               | 2640       |
| ttatatataa               | tgtgtgttta               | gctaaggtaa               | aaggctacag               | gtctctttcc               | acatcccaaa               | 2700       |
| ctttctatga               | . tgcttacatt             | tcttatgaca               | ccaaagatgc               | ctctgttact               | gactgggtga               | 2760       |

| taaatgagct | gcgctaccac | cttgaagaga | gccgagacaa | aaacgttctc | ctttgtctag | 2820 |
|------------|------------|------------|------------|------------|------------|------|
| aggagaggga | ttgggatccg | ggattggcca | tcatcgacaa | cctcatgcag | agcatcaacc | 2880 |
| aaagcaagaa | aacagtattt | gttttaacca | aaaaatatgc | aaaaagctgg | aactttaaaa | 2940 |
| cagcttttta | cttggctttg | cagaggctaa | tggatgagaa | catggatgtg | attatattta | 3000 |
| tcctgctgga | gccagtgtta | cagcattctc | agtatttgag | gctacggcag | cggatctgta | 3060 |
| agagctccat | cctccagtgg | cctgacaacc | cgaaggcaga | aggcttgttt | tggcaaactc | 3120 |
| tgagaaatgt | ggtcttgact | gaaaatgatt | cacggtataa | caatatgtat | gtcgattcca | 3180 |
| ttaagcaata | ctaactgacg | ttaagtcatg | atttcgcgcc | ataataaaga | tgcaaaggaa | 3240 |
| tgacatttct | gtattagtta | tctattgcta | tgtaacaaat | tatcccaaaa | cttagtggtt | 3300 |
| taaaacaaca | catttgctgg | cccacagttt | ttgagggtca | ggagtccagg | cccagcataa | 3360 |
| ctgggtcctc | tgctcagggt | gtctcagagg | ctgcaatgta | ggtgttcacc | agagacatag | 3420 |
| gcatcactgg | ggtcacactc | atgtggttgt | tttctggatt | caattcctcc | tgggctattg | 3480 |
| gccaaaggct | atactcatgt | aagccatgcg | agcctctccc | acaaggcagc | ttgcttcatc | 3540 |
| agagctagca | aaaaagagag | gttgctagca | agatgaagtc | acaatctttt | gtaatcgaat | 3600 |
| caaaaaagtg | atatctcatc | actttggcca | tattctattt | gttagaagta | aaccacaggt | 3660 |
| cccaccagct | ccatgggagt | gaccacctca | gtccagggaa | aacagctgaa | gaccaagatg | 3720 |
| gtgagctctg | attgcttcag | ttggtcatca | actattttcc | cttgactgct | gtcctgggat | 3780 |
| ggcctgctat | cttgatgata | gattgtgaat | atcaggaggc | agggatcact | gtggaccatc | 3840 |
| ttagcagttg | acctaacaca | tettettte  | aatatctaag | aacttttgcc | actgtgacta | 3900 |
| atggtcctaa | tattaagctg | ttgtttatat | ttatcatata | tctatggcta | catggttata | 3960 |
| ttatgctgtg | gttgcgttcg | gttttattta | cagttgcttt | tacaaatatt | tgctgtaaca | 4020 |
| tttgacttct | aaggtttaga | tgccatttaa | gaactgagat | ggatagcttt | taaagcatct | 4080 |
| tttacttctt | accattttt  | aaaagtatgc | agctaaattc | gaagcttttg | gtctatattg | 4140 |
| ttaattgcca | ttgctgtaaa | tcttaaaatg | aatgaataaa | aatgtttcat | tttacaaaaa | 4200 |
| aaaaaaaaa  | a          |            |            |            |            | 4211 |

<211> 3468

<212> DNA

<213> Homo sapiens

<400> 49

ctcctgcata gagggtacca ttctgcgctg ctgcaagtta cggaatgaaa aattagaaca 60
acagaaacat ggttctcttg acacttcagt gttagggaac atcagcaaga cccatcccag 120

| gagacettga<br>etgeageetg | aggaagcctt<br>ggaaaggaga | tgaaagggag<br>ctaaaaagga | aatgaaggag<br>aaacatgttc | tcatctttgc<br>cttcagtcgt | aaaatagctc<br>caatgctgac | 180<br>240 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| ctgcattttc               | ctgctaatat               | ctggttcctg               | tgagttatgc               | gccgaagaaa               | atttttctag               | 300        |
| aagctatcct               | tgtgatgaga               | aaaagcaaaa               | tgactcagtt               | attgcagagt               | gcagcaatcg               | 360        |
| tcgactacag               | gaagttcccc               | aaacggtggg               | caaatatgtg               | acagaactag               | acctgtctga               | 420        |
| taatttcatc               | acacacataa               | cgaatgaatc               | atttcaaggg               | ctgcaaaatc               | tcactaaaat               | 480        |
| aaatctaaac               | cacaacccca               | atgtacagca               | ccagaacgga               | aatcccggta               | tacaatcaaa               | 540        |
| tggcttgaat               | atcacagacg               | gggcattcct               | caacctaaaa               | aacctaaggg               | agttactgct               | 600        |
| tgaagacaac               | cagttacccc               | aaataccctc               | tggtttgcca               | gagtctttga               | cagaacttag               | 660        |
| tctaattcaa               | aacaatatat               | acaacataac               | taaagagggc               | atttcaagac               | ttataaactt               | 720        |
| gaaaaatctc               | tatttggcct               | ggaactgcta               | ttttaacaaa               | gtttgcgaga               | aaactaacat               | 780        |
| agaagatgga               | gtatttgaaa               | cgctgacaaa               | tttggagttg               | ctatcactat               | ctttcaattc               | 840        |
| tctttcacac               | gtgccaccca               | aactgccaag               | ctccctacgc               | aaacttttc                | tgagcaacac               | 900        |
| ccagatcaaa               | tacattagtg               | aagaagattt               | caagggattg               | ataaatttaa               | cattactaga               | 960        |
| tttaagcggg               | aactgtccga               | ggtgcttcaa               | tgccccattt               | ccatgcgtgc               | cttgtgatgg               | 1020       |
| tggtgcttca               | attaatatag               | atcgttttgc               | ttttcaaaac               | ttgacccaac               | ttcgatacct               | 1080       |
| aaacctctct               | agcacttccc               | tcaggaagat               | taatgctgcc               | tggtttaaaa               | atatgcctca               | 1140       |
| tctgaaggtg               | ctggatcttg               | aattcaacta               | tttagtggga               | gaaatagcct               | ctggggcatt               | 1200       |
| tttaacgatg               | ctgccccgct               | tagaaatact               | tgacttgtct               | tttaactata               | taaaggggag               | 1260       |
| ttatccacag               | catattaata               | tttccagaaa               | cttctctaaa               | cttttgtctc               | tacgggcatt               | 1320       |
| gcatttaaga               | ggttatgtgt               | tccaggaact               | cagagaagat               | gatttccagc               | ccctgatgca               | 1380       |
| gcttccaaac               | ttatcgacta               | tcaacttggg               | tattaatttt               | attaagcaaa               | tcgatttcaa               | 1440       |
| acttttccaa               | aatttctcca               | atctggaaat               | tatttacttg               | tcagaaaaca               | gaatatcacc               | 1500       |
| gttggtaaaa               | gatacccggc               | agagttatgc               | aaatagttcc               | tcttttcaac               | gtcatatccg               | 1560       |
| gaaacgacgc               | tcaacagatt               | ttgagtttga               | cccacattcg               | aacttttatc               | atttcacccg               | 1620       |
| tcctttaata               | aagccacaat               | gtgctgctta               | tggaaaagcc               | ttagatttaa               | gcctcaacag               | 1680       |
| tattttcttc               | attgggccaa               | accaatttga               | aaatcttcct               | gacattgcct               | gtttaaatct               | 1740       |
| gtctgcaaat               | agcaatgctc               | aagtgttaag               | tggaactgaa               | ttttcagcca               | ttcctcatgt               | 1800       |
| caaatatttg               | gatttgacaa               | acaatagact               | agactttgat               | aatgctagtg               | ctcttactga               | 1860       |
| attgtccgac               | : ttggaagttd             | tagatctcag               | ctataattca               | cactatttca               | gaatagcagg               | 1920       |
| cgtaacacat               | catctagaat               | ttattcaaaa               | tttcacaaat               | ctaaaagttt               | taaacttgag               | 1980       |
| ccacaacaac               | atttatactt               | taacagataa               | gtataacctg               | gaaagcaagt               | ccctggtaga               | 2040       |

| attagttttc | agtggcaatc | gccttgacat | tttgtggaat | gatgatgaca              | acaggtatat | 2100 |
|------------|------------|------------|------------|-------------------------|------------|------|
| ctccattttc | aaaggtctca | agaatctgac | acgtctggat | ttatccctta              | ataggctgaa | 2160 |
| gcacatccca | aatgaagcat | tccttaattt | gccagcgagt | ctcactgaac              | tacatataaa | 2220 |
| tgataatatg | ttaaagtttt | ttaactggac | attactccag | cagtttcctc              | gtctcgagtt | 2280 |
| gcttgactta | cgtggaaaca | aactactctt | tttaactgat | agcctatctg              | actttacatc | 2340 |
| ttcccttcgg | acactgctgc | tgagtcataa | caggatttcc | cacctaccct              | ctggctttct | 2400 |
| ttctgaagtc | agtagtctga | agcacctcga | tttaagttcc | aatctgctaa              | aaacaatcaa | 2460 |
| caaatccgca | cttgaaacta | agaccaccac | caaattatct | atgttggaac              | tacacggaaa | 2520 |
| cccctttgaa | tgcacctgtg | acattggaga | tttccgaaga | tggatggatg              | aacatctgaa | 2580 |
| tgtcaaaatt | cccagactgg | tagatgtcat | ttgtgccagt | cctggggatc              | aaagagggaa | 2640 |
| gagtattgtg | agtctggagc | taacaacttg | tgtttcagat | gtcactgcag <sup>°</sup> | tgatattatt | 2700 |
| tttcttcacg | ttctttatca | ccaccatggt | tatgttggct | gecetggete              | accatttgtt | 2760 |
| ttactgggat | gtttggttta | tatataatgt | gtgtttagct | aaggtaaaag              | gctacaggtc | 2820 |
| tctttccaca | tcccaaactt | tctatgatgc | ttacatttct | tatgacacca              | aagatgcctc | 2880 |
| tgttactgac | tgggtgataa | atgagctgcg | ctaccacctt | gaagagagcc              | gagacaaaaa | 2940 |
| cgttctcctt | tgtctagagg | agagggattg | ggatccggga | ttggccatca              | tcgacaacct | 3000 |
| catgcagagc | atcaaccaaa | gcaagaaaac | agtatttgtt | ttaaccaaaa              | aatatgcaaa | 3060 |
| aagctggaac | tttaaaacag | ctttttactt | ggctttgcag | aggctaatgg              | atgagaacat | 3120 |
| ggatgtgatt | atatttatcc | tgctggagcc | agtgttacag | cattctcagt              | atttgaggct | 3180 |
| acggcagcgg | atctgtaaga | gctccatcct | ccagtggcct | gacaacccga              | aggcagaagg | 3240 |
| cttgttttgg | caaactctga | gaaatgtggt | cttgactgaa | aatgattcac              | ggtataacaa | 3300 |
| tatgtatgtc | gattccatta | agcaatacta | actgacgtta | agtcatgatt              | tcgcgccata | 3360 |
| ataaagatgc | aaaggaatga | catttctgta | ttagttatct | attgctatgt              | aacaaattat | 3420 |
| cccaaaactt | agtggtttaa | aacaacacat | ttgctggccc | acagtttt                |            | 3468 |

<211> 1041

<212> PRT

<213> Homo sapiens

<400> 50

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe Leu 1 5 10 15

Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe Ser Arg 20 25 30

#### WO 2004/094671 - 114 - PCT/US2004/012788

Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile Ala Glu 35 40 45

Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly Lys Tyr 50 55

Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn 65 70 75 80

Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His
85 90 95

Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln Ser Asn 100 105 110

Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn Leu Arg 115 120 125

Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser Gly Leu 130 135 140

Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn 145 150 155 160

Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr 165 170 175

Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile 180 185 190

Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu 195 200 205

Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu 210 215 220

Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu 225 230 235 240

Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn 245 250 255

Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly 260 265 270

Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln 275 280 285

Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala 290 295 300

Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe 305 310 315

Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu 325 330 335

Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser

Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser

## WO 2004/094671 - 115 - PCT/US2004/012788

360 355 Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu 375 Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn 410 Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro . 425 Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln 440 Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala 470 475 Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe Ile 485 490 Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu 505 Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala 520 Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe 535 Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val Leu Asp 550 Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His 570 Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu Ser Lys 600 Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp Asn Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr

695 700 Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser 710 His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser 725 730 Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn 745 Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met Leu Glu 760 Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg 775 Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp 790 Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser 810 Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe 935 Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile 970 Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu 985 Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro 1000 Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu

Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile

1025 1030 1035 Lys Gln Tyr

1040

<210> 51

<211> 1059

<212> PRT

<213> Homo sapiens

<400> 51

Met Lys Glu Ser Ser Leu Gln Asn Ser Ser Cys Ser Leu Gly Lys Glu
1 5 10 15

Thr Lys Lys Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile 20 25 30

Phe Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe 35 40 45

Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile 50 55 60

Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly 65 70 75 80

Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile 85 90 95

Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu 100 105 110

Asn His Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln
115 120 125

Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn 130 135 140

Leu Arg Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser 145 150 155 160

Gly Leu Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile 165 170 175

Tyr Asn Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn 180 185 190

Leu Tyr Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr 195 200 205

Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu 210 215 220

Ser Leu Ser Phe Asn Ser Leu Ser His Val Ser Pro Lys Leu Pro Ser 225 230 235 240

Ser Leu Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser 245 250 255

Glu Glu Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser 260 265 270

# WO 2004/094671 - 118 - PCT/US2004/012788

- Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys 275 280 285
- Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu 290 295 300
- Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile 305 310 315 320
- Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu 325 330 335
- Glu Phe Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr 340 345 350
- Met Leu Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys 355 360 365
- Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Pro 370 375 380
- Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu 385 390 395 400
- Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr 405 410 415
- Ile Asn Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe 420 425 430
- Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile 435 440 445
- Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser 450 455 460
- Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp 465 470 475 480
- Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln 485 490 495
- Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe 500 505 510
- Phe Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu 515 520 525
- Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe 530 540
- Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu 545 550 555 560
- Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val 565 570 575
- Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr 580 585 590
- His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn

600 605 Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu 615 Ser Lys Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp Asn Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile 665 Pro Asn Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His 680 Ile Asn Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln 695 Phe Pro Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe 715 Leu Thr Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu 730 Leu Ser His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val 870 Cys Leu Ala Lys Ile Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr 905 Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp 920 Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu

of their it is their wheel them to the

930 935

Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr 945 950 955 960

Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr 965 970 975

Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val 980 985 990

Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu 995 1000 1005

Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro 1010 1015 1020

Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn 1025 1030 1035

Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val 1040 1045 1050

Asp Ser Ile Lys Gln Tyr 1055

<210> 52

<211> 1041

<212> PRT

<213> Homo sapiens

<400> 52

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe Leu 1 5 10 15

Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe Ser Arg 20 25 30

Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile Ala Glu 35 40 45

Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly Lys Tyr 50 55 60

Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn 65 70 75 80

Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His 85 90 95

Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln Ser Asn 100 105 110

Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn Leu Arg 115 120 125

Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser Gly Leu 130 135 140

Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn 145 150 155 160

## WO 2004/094671 - 121 - PCT/US2004/012788

Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu 200 Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu 215 Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu 230 235 Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly 265 Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln 280 Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala 295 Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe 310 315 Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu 330 Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser 345 Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser 360 Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe Ile

490 485 Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu 505 . Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala 520 Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe 535 Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu Ser Lys 600 Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp 615 Asn Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn 630 635 Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn 650 645 Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn 665 Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro 680 Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr 695 Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Ser His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser 730 Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg

Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser 805 810 815

Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe

Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp

820 825 830
Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala
835 840 845

His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu 850 855

Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr 865 870 875 880

Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp 885 890 895

Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn 900 905 910

Val Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile ' 915 920 925

Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe 930 935 940

Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe 945 950 955 960

Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile 965 970 975

Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu 980 985 990

Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro 995 1000 1005

Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu 1010 1015 1020

Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile
1025 1030 1035

Lys Gln Tyr 1040

<210> 53

<211> 1041

<212> PRT

<213> Homo sapiens

<400> 53

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe Leu 1 5 10 15

Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe Ser Arg

Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile Ala Glu 35 40 45

Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly Lys Tyr 50 55 60

## WO 2004/094671 - 124 - PCT/US2004/012788

Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His 90 Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln Ser Asn 105 Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn Leu Arg 120 Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser Gly Leu 135 Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn 150 155 Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr 170 Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln 280 Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu 325 330 Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser 345 Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser 360 365 Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn

### WO 2004/094671 - 125 - PCT/US2004/012788

390 385 395 Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn 410 Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln 440 Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala 470 475 Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala 520 Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe 535 Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val Leu Asp 550 Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His 570 565 Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser 585 580 His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu Ser Lys 600 Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp 615 Asn Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn 665 Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser

#### WO 2004/094671 - 126 - PCT/US2004/012788

730 725 Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn 745 Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met Leu Glu 760 Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg 775 Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp 790 Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser 810 Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala 840 His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe 935 Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile Phe Ile Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro 1000 Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu

1015

1030

Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile

1035

Lys Gln Tyr 1040

<211> 1059

<212> PRT

<213> Homo sapiens

<400> 54

Met Lys Glu Ser Ser Leu Gln Asn Ser Ser Cys Ser Leu Gly Lys Glu 1 5 10 15

Thr Lys Lys Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile 20 25 30

Phe Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe 35 40 45

Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile 50 55 60

Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly 65 70 75 80

Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile 85 90 95

Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu 100 105 110

Asn His Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln 115 120 125

Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn 130 135 140

Leu Arg Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser 145 150 155 160

Gly Leu Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile 165 170 175

Tyr Asn Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn 180 185 190

Leu Tyr Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr 195 200 205

Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu 210 215 220

Ser Leu Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser 225 230 235 240

Ser Leu Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser 245 250 255

Glu Glu Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser 260 265 270

Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys 275 280 285

### WO 2004/094671 - 128 - PCT/US2004/012788

- Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu 290 295 300
- Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile 305 310 315 320
- Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu 325 330 335
- Glu Phe Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr 340 345 350
- Met Leu Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys 355 360 365
- Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu 370 375 380
- Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu 385 390 395 400
- Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr
  405 410 415
- Ile Asn Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe 420 425 430
- Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile 435 440 445
- Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser 450 455 460
- Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp 465 470 475 480
- Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln 485 490 495
- Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe 500 505 510
- Phe Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu 515 520 525
- Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe 530 540
- Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu 545 550 555 560
- Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val 565 570 575
- Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr 580 585 590
- His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn 595 600 605
- Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu

615 620 Ser Lys Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile 630 635 Leu Trp Asn Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile 665 Pro Asn Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln 695 700 Phe Pro Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu 740 Val Ser Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr 760 Ile Asn Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met 775 Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp 790 795 Phe Arg Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu 805 810 Val Asp Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile 825 Val Ser Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr 890 Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr

945 950 955 960 Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr 965 970 975

Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val 980 985 990

Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu 995 1000 1005

Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro 1010 1015 1020

Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn 1025 1030 1035

Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val 1040 1045 1050

Asp Ser Ile Lys Gln Tyr 1055

<210> 55

<211> 3220

<212> DNA

<213> murine

<400> 55

attcagagtt ggatgttaag agagaaacaa acgttttacc ttcctttgtc tatagaacat 60 ggaaaacatg ccccctcagt catggattet gacgtgcttt tgtctgctgt cctctggaac 120 cagtgccatc ttccataaag cgaactattc cagaagctat ccttgtgacg agataaggca 180 caactccctt gtgattgcag aatgcaacca tcgtcaactg catgaagttc cccaaactat 240 aggcaagtat gtgacaaaca tagacttgtc agacaatgcc attacacata taacqaaaqa 300 gtcctttcaa aagctgcaaa acctcactaa aatcgatctg aaccacaatg ccaaacaaca 360 gcacccaaat gaaaataaaa atggtatgaa tattacagaa ggggcacttc tcagcctaag 420 aaatctaaca gttttactgc tggaagacaa ccagttatat actatacctg ctgggttgcc 480 tgagtctttg aaagaactta gcctaattca aaacaatata tttcaggtaa ctaaaaacaa 540 cacttttggg cttaggaact tggaaagact ctatttgggc tggaactqct attttaaatq 600 taatcaaacc tttaaggtag aagatggggc atttaaaaat cttatacact tgaaggtact 660 ctcattatct ttcaataacc ttttctatgt gcccccaaa ctaccaagtt ctctaaggaa 720 actttttctg agtaatgcca aaatcatgaa catcactcag gaagacttca aaggactgga 780 aaatttaaca ttactagatc tgagtggaaa ctgtccaagg tgttacaatg ctccatttcc 840 ttgcacacct tgcaaggaaa actcatccat ccacatacat cctctggctt ttcaaagtct 900 cacccaactt ctctatctaa acctttccag cacttccctc aggacgattc cttctacctg 960 gtttgaaaat ctgtcaaatc tgaaggaact ccatcttgaa ttcaactatt tagttcaaga 1020

| aattgcctcg | ggggcatttt | taacaaaact | acccagttta | caaatccttg | atttgtcctt | 1080 |
|------------|------------|------------|------------|------------|------------|------|
| caactttcaa | tataaggaat | atttacaatt | tattaatatt | tcctcaaatt | tctctaagct | 1140 |
| tcgttctctc | aagaagttgc | acttaagagg | ctatgtgttc | cgagaactta | aaaagaagca | 1200 |
| tttcgagcat | ctccagagtc | ttccaaactt | ggcaaccatc | aacttgggca | ttaactttat | 1260 |
| tgagaaaatt | gatttcaaag | ctttccagaa | tttttccaaa | ctcgacgtta | tctatttatc | 1320 |
| aggaaatcgc | atagcatctg | tattagatgg | tacagattat | tcctcttggc | gaaatcgtct | 1380 |
| tcggaaacct | ctctcaacag | acgatgatga | gtttgatcca | cacgtgaatt | tttaccatag | 1440 |
| caccaaacct | ttaataaagc | cacagtgtac | tgcttatggc | aaggccttgg | atttaagttt | 1500 |
| gaacaatatt | ttcattattg | ggaaaagcca | atttgaaggt | tttcaggata | tegeetgett | 1560 |
| aaatctgtcc | ttcaatgcca | atactcaagt | gtttaatggc | acagaattct | cctccatgcc | 1620 |
| ccacattaaa | tatttggatt | taaccaacaa | cagactagac | tttgatgata | acaatgcttt | 1680 |
| cagtgatctt | cacgatctag | aagtgctgga | cctgagccac | aatgcacact | atttcagtat | 1740 |
| agcaggggta | acgcaccgtc | taggatttat | ccagaactta | ataaacctca | gggtgttaaa | 1800 |
| cctgagccac | aatggcattt | acaccctcac | agaggaaagt | gagctgaaaa | gcatctcact | 1860 |
| gaaagaattg | gttttcagtg | gaaatcgtct | tgaccatttg | tggaatgcaa | atgatggcaa | 1920 |
| atactggtcc | atttttaaaa | gtctccagaa | tttgatacgc | ctggacttat | catacaataa | 1980 |
| ccttcaacaa | atcccaaatg | gagcattcct | caatttgcct | cagagcctcc | aagagttact | 2040 |
| tatcagtggt | aacaaattac | gtttctttaa | ttggacatta | ctccagtatt | ttcctcacct | 2100 |
| tcacttgctg | gatttatcga | gaaatgagct | gtattttcta | cccaattgcc | tatctaagtt | 2160 |
| tgcacattcc | ctggagacac | tgctactgag | ccataatcat | ttctctcacc | taccctctgg | 2220 |
| cttcctctcc | gaagccagga | atctggtgca | cctggatcta | agtttcaaca | caataaagat | 2280 |
| gatcaataaa | tcctccctgc | aaaccaagat | gaaaacgaac | ttgtctattc | tggagctaca | 2340 |
| tgggaactat | tttgactgca | cgtgtgacat | aagtgatttt | cgaagctggc | tagatgaaaa | 2400 |
| tctgaatatc | acaattccta | aattggtaaa | tgttatatgt | tccaatcctg | gggatcaaaa | 2460 |
| atcaaagagt | atcatgagcc | tagatctcac | gacttgtgta | tcggatacca | ctgcagctgt | 2520 |
| cctgttttc  | ctcacattcc | ttaccacctc | catggttatg | ttggctgctc | tggttcacca | 2580 |
| cctgttttac | tgggatgttt | ggtttatcta | tcacatgtgc | tctgctaagt | taaaaggcta | 2640 |
| caggacttca | tccacatccc | aaactttcta | tgatgcttat | atttcttatg | acaccaaaga | 2700 |
| tgcatctgtt | actgactggg | taatcaatga | actgcgctac | caccttgaag | agagtgaaga | 2760 |
| caaaagtgtc | ctcctttgtt | tagaggagag | ggattgggat | ccaggattac | ccatcattga | 2820 |
| taacctcatg | cagagcataa | accagagcaa | gaaaacaatc | tttgttttaa | ccaagaaata | 2880 |

| tgccaagagc | tggaacttta | aaacagcttt | ctacttggcc | ttgcagaggc | taatggatga | 2940 |
|------------|------------|------------|------------|------------|------------|------|
| gaacatggat | gtgattattt | tcatcctcct | ggaaccagtg | ttacagtact | cacagtacct | 3000 |
| gaggcttcgg | cagaggatct | gtaagagctc | -          | tggcccaaca | atcccaaagc | 3060 |
| agaaaacttg | ttttggcaaa | gtctgaaaaa | tgtggtcttg | actgaaaatg | attcacggta | 3120 |
| tgacgatttg | tacattgatt | ccattaggca | atactagtga | tgggaagtca | cgactctgcc | 3180 |
| atcataaaaa | cacacagctt | ctccttacaa | tgaaccgaat |            |            | 3220 |

<211> 3220

<212> DNA

<213> murine

<400> 56

attcagagtt ggatgttaag agagaaacaa acgttttacc ttcctttgtc tatagaacat 60 ggaaaacatg cccctcagt catggattct gacgtgcttt tgtctgctgt cctctggaac 120 cagtgccatc ttccataaag cgaactattc cagaagctat ccttgtgacg agataaggca 180 caactccctt gtgattgcag aatgcaacca tcgtcaactg catgaagttc cccaaactat 240 aggcaagtat gtgacaaaca tagacttgtc agacaatgcc attacacata taacgaaaga 300 gtcctttcaa aagctgcaaa acctcactaa aatcgatctg aaccacaatg ccaaacaaca 360 gcacccaaat gaaaataaaa atggtatgaa tattacagaa ggggcacttc tcagcctaag 420 aaatctaaca gttttactgc tggaagacaa ccagttatat actatacctg ctgggttgcc 480 tgagtctttg aaagaactta gcctaattca aaacaatata tttcaggtaa ctaaaaacaa 540 cacttttggg cttaggaact tggaaagact ctatttgggc tggaactgct attttaaatg 600 taatcaaacc tttaaggtag aagatggggc atttaaaaat cttatacact tgaaggtact 660 ctcattatct ttcaataacc ttttctatgt gccccccaaa ctaccaagtt ctctaaggaa 720 actttttctg agtaatgcca aaatcatgaa catcactcag gaagacttca aaggactgga 780 aaatttaaca ttactagatc tgagtggaaa ctgtccaagg tgttacaatg ctccatttcc 840 ttgcacacct tgcaaggaaa actcatccat ccacatacat cctctggctt ttcaaagtct 900 cacccaactt ctctatctaa acctttccag cacttccctc aggacgattc cttctacctg 960 gtttgaaaat ctgtcaaatc tgaaggaact ccatcttgaa ttcaactatt tagttcaaga 1020 aattgcctcg ggggcatttt taacaaaact acccagttta caaatccttg atttgtcctt 1080 caactttcaa tataaggaat atttacaatt tattaatatt tcctcaaatt tctctaagct 1140 tcgttctctc aagaagttgc acttaagagg ctatgtgttc cgagaactta aaaagaagca 1200 tttcgagcat ctccagagtc ttccaaactt ggcaaccatc aacttgggca ttaactttat 1260

| tgagaaaatt<br>aggaaatcgc | gatttcaaag<br>atagcatctg | ctttccagaa<br>tattagatgg | tttttccaaa<br>tacagattat | ctcgacgtta<br>tcctcttggc | tctatttatc<br>gaaatcgtct | 1320<br>1380 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| tcggaaacct               | ctctcaacag               | acgatgatga               | gtttgatcca               | cacgtgaatt               | tttaccatag               | 1440         |
| caccaaacct               | ttaataaagc               | cacagtgtac               | tgcttatggc               | aaggccttgg               | atttaagttt               | 1500         |
| gaacaatatt               | ttcattattg               | ggaaaagcca               | atttgaaggt               | tttcaggata               | tegeetgett               | 1560         |
| aaatctgtcc               | ttcaatgcca               | atactcaagt               | gtttaatggc               | acagaattct               | cctccatgcc               | 1620         |
| ccacattaaa               | tatttggatt               | taaccaacaa               | cagactagac               | tttgatgata               | acaatgcttt               | 1680         |
| cagtgatctt               | cacgatctag               | aagtgctgga               | cctgagccac               | aatgcacact               | atttcagtat               | 1740         |
| agcaggggta               | acgcaccgtc               | taggatttat               | ccagaactta               | ataaacctca               | gggtgttaaa               | 1800         |
| cctgagccac               | aatggcattt               | acaccctcac               | agaggaaagt               | gagctgaaaa               | gcatctcact               | 1860         |
| gaaagaattg               | gttttcagtg               | gaaatcgtct               | tgaccatttg               | tggaatgcaa               | atgatggcaa               | 1920         |
| atactggtcc               | atttttaaaa               | gtctccagaa               | tttgatacgc               | ctggacttat               | catacaataa               | 1980         |
| ccttcaacaa               | atcccaaatg               | gagcattcct               | caatttgcct               | cagagcctcc               | aagagttact               | 2040         |
| tatcagtggt               | aacaaattac               | gtttctttaa               | ttggacatta               | ctccagtatt               | ttcctcacct               | 2100         |
| tcacttgctg               | gatttatcga               | gaaatgagct               | gtattttcta               | cccaattgcc               | tatctaagtt               | 2160         |
| tgcacattcc               | ctggagacac               | tgctactgag               | ccataatcat               | ttctctcacc               | taccctctgg               | 2220         |
| cttcctctcc               | gaagccagga               | atctggtgca               | cctggatcta               | agtttcaaca               | caataaagat               | 2280         |
| gatcaataaa               | tectecetge               | aaaccaagat               | gaaaacgaac               | ttgtctattc               | tggagctaca               | 2340         |
| tgggaactat               | tttgactgca               | cgtgtgacat               | aagtgatttt               | cgaagctggc               | tagatgaaaa               | 2400         |
| tctgaatatc               | acaattccta               | aattggtaaa               | tgttatatgt               | tccaatcctg               | gggatcaaaa               | 2460         |
| atcaaagagt               | atcatgagcc               | tagatctcac               | gacttgtgta               | tcggatacca               | ctgcagctgt               | 2520         |
| cctgttttc                | ctcacattcc               | ttaccacctc               | catggttatg               | ttggctgctc               | tggttcacca               | 2580         |
| cctgttttac               | tgggatgttt               | ggtttatcta               | tcacatgtgc               | tctgctaagt               | taaaaggcta               | 2640         |
| caggacttca               | tccacatccc               | aaactttcta               | tgatgcttat               | atttcttatg               | acaccaaaga               | 2700         |
| tgcatctgtt               | actgactggg               | taatcaatga               | actgcgctac               | caccttgaag               | agagtgaaga               | 2760         |
| caaaagtgtc               | ctcctttgtt               | tagaggagag               | ggattgggat               | ccaggattac               | ccatcattga               | 2820         |
| taacctcatg               | cagagcataa               | accagagcaa               | gaaaacaatc               | tttgttttaa               | ccaagaaata               | 2880         |
| tgccaagago               | : tggaacttta             | aaacagcttt               | ctacttggcc               | ttgcagaggc               | taatggatga               | 2940         |
| gaacatggat               | gtgattattt               | tcatcctcct               | ggaaccagtg               | ttacagtact               | cacagtacct               | 3000         |
| gaggettegg               | g cagaggatct             | gtaagagcto               | catcctccag               | tggcccaaca               | atcccaaagc               | 3060         |
| agaaaactt                | ttttggcaaa               | gtctgaaaaa               | tgtggtcttg               | actgaaaatg               | attcacggta               | 3120         |
| tgacgattt                | , tacattgatt             | ccattaggca               | atactagtga               | tgggaagtca               | cgactctgcc               | 3180         |

atcataaaaa cacacagctt ctccttacaa tgaaccgaat

3220

<210> 57 <211> 1032 <212> PRT

<213> murine

<400> 57

Met Glu Asn Met Pro Pro Gln Ser Trp Ile Leu Thr Cys Phe Cys Leu

Leu Ser Ser Gly Thr Ser Ala Ile Phe His Lys Ala Asn Tyr Ser Arg

Ser Tyr Pro Cys Asp Glu Ile Arg His Asn Ser Leu Val Ile Ala Glu 40

Cys Asn His Arg Gln Leu His Glu Val Pro Gln Thr Ile Gly Lys Tyr 55

Val Thr Asn Ile Asp Leu Ser Asp Asn Ala Ile Thr His Ile Thr Lys 75

Glu Ser Phe Gln Lys Leu Gln Asn Leu Thr Lys Ile Asp Leu Asn His 90.

Asn Ala Lys Gln Gln His Pro Asn Glu Asn Lys Asn Gly Met Asn Ile 105

Thr Glu Gly Ala Leu Leu Ser Leu Arg Asn Leu Thr Val Leu Leu Leu 120

Glu Asp Asn Gln Leu Tyr Thr Ile Pro Ala Gly Leu Pro Glu Ser Leu 135

Lys Glu Leu Ser Leu Ile Gln Asn Asn Ile Phe Gln Val Thr Lys Asn 150 145

Asn Thr Phe Gly Leu Arg Asn Leu Glu Arg Leu Tyr Leu Gly Trp Asn

Cys Tyr Phe Lys Cys Asn Gln Thr Phe Lys Val Glu Asp Gly Ala Phe

Lys Asn Leu Ile His Leu Lys Val Leu Ser Leu Ser Phe Asn Asn Leu

Phe Tyr Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu

Ser Asn Ala Lys Ile Met Asn Ile Thr Gln Glu Asp Phe Lys Gly Leu

Glu Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr

Asn Ala Pro Phe Pro Cys Thr Pro Cys Lys Glu Asn Ser Ser Ile His 265

## WO 2004/094671 - 135 - PCT/US2004/012788

Ile His Pro Leu Ala Phe Gln Ser Leu Thr Gln Leu Leu Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Thr Ile Pro Ser Thr Trp Phe Glu Asn 295 Leu Ser Asn Leu Lys Glu Leu His Leu Glu Phe Asn Tyr Leu Val Gln 310 Glu Ile Ala Ser Gly Ala Phe Leu Thr Lys Leu Pro Ser Leu Gln Ile 325 330 Leu Asp Leu Ser Phe Asn Phe Gln Tyr Lys Glu Tyr Leu Gln Phe Ile 345 Asn Ile Ser Ser Asn Phe Ser Lys Leu Arg Ser Leu Lys Lys Leu His 360 Leu Arg Gly Tyr Val Phe Arg Glu Leu Lys Lys Lys His Phe Glu His Leu Gln Ser Leu Pro Asn Leu Ala Thr Ile Asn Leu Gly Ile Asn Phe Ile Glu Lys Ile Asp Phe Lys Ala Phe Gln Asn Phe Ser Lys Leu Asp 410 Val Ile Tyr Leu Ser Gly Asn Arg Ile Ala Ser Val Leu Asp Gly Thr Asp Tyr Ser Ser Trp Arg Asn Arg Leu Arg Lys Pro Leu Ser Thr Asp Asp Asp Glu Phe Asp Pro His Val Asn Phe Tyr His Ser Thr Lys Pro Leu Ile Lys Pro Gln Cys Thr Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Asn Ile Phe Ile Ile Gly Lys Ser Gln Phe Glu Gly Phe Gln Asp Ile Ala Cys Leu Asn Leu Ser Phe Asn Ala Asn Thr Gln Val Phe Asn Gly Thr Glu Phe Ser Ser Met Pro His Ile Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe Asp Asn Asn Ala Phe Ser Asp Leu His Asp Leu Glu Val Leu Asp Leu Ser His Asn Ala His Tyr Phe Ser Ile Ala Gly Val Thr His Arg Leu Gly Phe Ile Gln Asn Leu Ile Asn 565 570 Leu Arg Val Leu Asn Leu Ser His Asn Gly Ile Tyr Thr Leu Thr Glu 585

Glu Ser Glu Leu Lys Ser Ile Ser Leu Lys Glu Leu Val Phe Ser Gly

595 600 605
Asn Arg Leu Asp His Leu Trp Asn Ala Asn Asp Gly Lys Tyr Trp Ser
610 615 620

Ile Phe Lys Ser Leu Gln Asn Leu Ile Arg Leu Asp Leu Ser Tyr Asn 625 630 635 640

Asn Leu Gln Gln Ile Pro Asn Gly Ala Phe Leu Asn Leu Pro Gln Ser 645 650 655

Leu Gln Glu Leu Leu Ile Ser Gly Asn Lys Leu Arg Phe Phe Asn Trp 660 665 670

Thr Leu Leu Gln Tyr Phe Pro His Leu His Leu Leu Asp Leu Ser Arg 675 680 685

Asn Glu Leu Tyr Phe Leu Pro Asn Cys Leu Ser Lys Phe Ala His Ser 690 695 700

Leu Glu Thr Leu Leu Leu Ser His Asn His Phe Ser His Leu Pro Ser 705 710 715 720

Gly Phe Leu Ser Glu Ala Arg Asn Leu Val His Leu Asp Leu Ser Phe 725 730 735

Asn Thr Ile Lys Met Ile Asn Lys Ser Ser Leu Gln Thr Lys Met Lys 740 745 750

Thr Asn Leu Ser Ile Leu Glu Leu His Gly Asn Tyr Phe Asp Cys Thr
755 760 765

Cys Asp Ile Ser Asp Phe Arg Ser Trp Leu Asp Glu Asn Leu Asn Ile 770 780

Thr Ile Pro Lys Leu Val Asn Val Ile Cys Ser Asn Pro Gly Asp Gln 785 790 . 795 800

Lys Ser Lys Ser Ile Met Ser Leu Asp Leu Thr Thr Cys Val Ser Asp 805 810 815

Thr Thr Ala Ala Val Leu Phe Phe Leu Thr Phe Leu Thr Thr Ser Met 820 825 830

Val Met Leu Ala Ala Leu Val His His Leu Phe Tyr Trp Asp Val Trp 835 840 845

Phe Ile Tyr His Met Cys Ser Ala Lys Leu Lys Gly Tyr Arg Thr Ser 850 855 860

Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys 865 870 875 880

Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu 885 890 895

Glu Glu Ser Glu Asp Lys Ser Val Leu Leu Cys Leu Glu Glu Arg Asp 900 905 910

Trp Asp Pro Gly Leu Pro Ile Ile Asp Asn Leu Met Gln Ser Ile Asn 915 920 925

Gln Ser Lys Lys Thr Ile Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser

#### - 137 -WO 2004/094671 PCT/US2004/012788

935 940 Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp 950 955

Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln 970

Tyr Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile 985

Leu Gln Trp Pro Asn Asn Pro Lys Ala Glu Asn Leu Phe Trp Gln Ser 1000

Leu Lys Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asp Asp 1015

Leu Tyr Ile Asp Ser Ile Arg Gln Tyr

<210> 58

<211> 1032 <212> PRT <213> murine

<400> 58

Met Glu Asn Met Pro Pro Gln Ser Trp Ile Leu Thr Cys Phe Cys Leu

Leu Ser Ser Gly Thr Ser Ala Ile Phe His Lys Ala Asn Tyr Ser Arg

Ser Tyr Pro Cys Asp Glu Ile Arg His Asn Ser Leu Val Ile Ala Glu 40

Cys Asn His Arg Gln Leu His Glu Val Pro Gln Thr Ile Gly Lys Tyr

Val Thr Asn Ile Asp Leu Ser Asp Asn Ala Ile Thr His Ile Thr Lys 75

Glu Ser Phe Gln Lys Leu Gln Asn Leu Thr Lys Ile Asp Leu Asn His

Asn Ala Lys Gln Gln His Pro Asn Glu Asn Lys Asn Gly Met Asn Ile

Thr Glu Gly Ala Leu Leu Ser Leu Arg Asn Leu Thr Val Leu Leu Leu

Glu Asp Asn Gln Leu Tyr Thr Ile Pro Ala Gly Leu Pro Glu Ser Leu 135

Lys Glu Leu Ser Leu Ile Gln Asn Asn Ile Phe Gln Val Thr Lys Asn

Asn Thr Phe Gly Leu Arg Asn Leu Glu Arg Leu Tyr Leu Gly Trp Asn 170

Cys Tyr Phe Lys Cys Asn Gln Thr Phe Lys Val Glu Asp Gly Ala Phe 180

## WO 2004/094671 - 138 - PCT/US2004/012788

- Lys Asn Leu Ile His Leu Lys Val Leu Ser Leu Ser Phe Asn Asn Leu 195 200 205
- Phe Tyr Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu 210 215 220
- Ser Asn Ala Lys Ile Met Asn Ile Thr Gln Glu Asp Phe Lys Gly Leu 225 230 235 240
- Glu Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr 245 250 255
- Asn Ala Pro Phe Pro Cys Thr Pro Cys Lys Glu Asn Ser Ser Ile His 260 265 270
- Ile His Pro Leu Ala Phe Gln Ser Leu Thr Gln Leu Leu Tyr Leu Asn 275 280 285
- Leu Ser Ser Thr Ser Leu Arg Thr Ile Pro Ser Thr Trp Phe Glu Asn 290 295 300
- Leu Ser Asn Leu Lys Glu Leu His Leu Glu Phe Asn Tyr Leu Val Gln 305 310 315 320
- Glu Ile Ala Ser Gly Ala Phe Leu Thr Lys Leu Pro Ser Leu Gln Ile 325 330 335

}

- Leu Asp Leu Ser Phe Asn Phe Gln Tyr Lys Glu Tyr Leu Gln Phe Ile 340 345 350
- Asn Ile Ser Ser Asn Phe Ser Lys Leu Arg Ser Leu Lys Lys Leu His 355 360 365
- Leu Arg Gly Tyr Val Phe Arg Glu Leu Lys Lys Lys His Phe Glu His 370 380
- Leu Gln Ser Leu Pro Asn Leu Ala Thr Ile Asn Leu Gly Ile Asn Phe 385 390 395 400
- Ile Glu Lys Ile Asp Phe Lys Ala Phe Gln Asn Phe Ser Lys Leu Asp 405 410 415
- Val Ile Tyr Leu Ser Gly Asn Arg Ile Ala Ser Val Leu Asp Gly Thr 420 425 430
- Asp Tyr Ser Ser Trp Arg Asn Arg Leu Arg Lys Pro Leu Ser Thr Asp 435 440, 445
- Asp Asp Glu Phe Asp Pro His Val Asn Phe Tyr His Ser Thr Lys Pro 450 455 460
- Leu Ile Lys Pro Gln Cys Thr Ala Tyr Gly Lys Ala Leu Asp Leu Ser 465 470 475 480
- Leu Asn Asn Ile Phe Ile Ile Gly Lys Ser Gln Phe Glu Gly Phe Gln 485 490 495
- Asp Ile Ala Cys Leu Asn Leu Ser Phe Asn Ala Asn Thr Gln Val Phe 500 505 510
- Asn Gly Thr Glu Phe Ser Ser Met Pro His Ile Lys Tyr Leu Asp Leu

### WO 2004/094671 - 139 - PCT/US2004/012788

520 525 Thr Asn Asn Arg Leu Asp Phe Asp Asp Asn Asn Ala Phe Ser Asp Leu 535 His Asp Leu Glu Val Leu Asp Leu Ser His Asn Ala His Tyr Phe Ser Ile Ala Gly Val Thr His Arg Leu Gly Phe Ile Gln Asn Leu Ile Asn Leu Arg Val Leu Asn Leu Ser His Asn Gly Ile Tyr Thr Leu Thr Glu Glu Ser Glu Leu Lys Ser Ile Ser Leu Lys Glu Leu Val Phe Ser Gly 600 Asn Arg Leu Asp His Leu Trp Asn Ala Asn Asp Gly Lys Tyr Trp Ser Ile Phe Lys Ser Leu Gln Asn Leu Ile Arg Leu Asp Leu Ser Tyr Asn 635 630 Asn Leu Gln Gln Ile Pro Asn Gly Ala Phe Leu Asn Leu Pro Gln Ser 645 Leu Gln Glu Leu Leu Ile Ser Gly Asn Lys Leu Arg Phe Phe Asn Trp Thr Leu Leu Gln Tyr Phe Pro His Leu His Leu Leu Asp Leu Ser Arg 680 Asn Glu Leu Tyr Phe Leu Pro Asn Cys Leu Ser Lys Phe Ala His Ser Leu Glu Thr Leu Leu Leu Ser His Asn His Phe Ser His Leu Pro Ser 705 Gly Phe Leu Ser Glu Ala Arg Asn Leu Val His Leu Asp Leu Ser Phe 730 Asn Thr Ile Lys Met Ile Asn Lys Ser Ser Leu Gln Thr Lys Met Lys 745 Thr Asn Leu Ser Ile Leu Glu Leu His Gly Asn Tyr Phe Asp Cys Thr 760 Cys Asp Ile Ser Asp Phe Arg Ser Trp Leu Asp Glu Asn Leu Asn Ile Thr Ile Pro Lys Leu Val Asn Val Ile Cys Ser Asn Pro Gly Asp Gln 795 Lys Ser Lys Ser Ile Met Ser Leu Asp Leu Thr Thr Cys Val Ser Asp Thr Thr Ala Ala Val Leu Phe Phe Leu Thr Phe Leu Thr Thr Ser Met 825 Val Met Leu Ala Ala Leu Val His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr His Met Cys Ser Ala Lys Leu Lys Gly Tyr Arg Thr Ser 850 855 860

Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys 865 870 875 880

Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu 885 890 895

Glu Glu Ser Glu Asp Lys Ser Val Leu Leu Cys Leu Glu Glu Arg Asp 900 905 910

Trp Asp Pro Gly Leu Pro Ile Ile Asp Asn Leu Met Gln Ser Ile Asn 915 920 925

Gln Ser Lys Lys Thr Ile Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser 930 935 940

Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp 945 950 955 960

Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln 965 970 975

Tyr Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile 980 985 990

Leu Gln Trp Pro Asn Asn Pro Lys Ala Glu Asn Leu Phe Trp Gln Ser 995 1000 1005

Leu Lys Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asp Asp 1010 1015 1020

Leu Tyr Ile Asp Ser Ile Arg Gln Tyr 1025 1030

<210> 59

<211> 1032

<212> PRT

<213> murine

<400> 59

Met Glu Asn Met Pro Pro Gln Ser Trp Ile Leu Thr Cys Phe Cys Leu 1 5 10 15

Leu Ser Ser Gly Thr Ser Ala Ile Phe His Lys Ala Asn Tyr Ser Arg 20 25 30

Ser Tyr Pro Cys Asp Glu Ile Arg His Asn Ser Leu Val Ile Ala Glu 35 40

Cys Asn His Arg Gln Leu His Glu Val Pro Gln Thr Ile Gly Lys Tyr 50 55 60

Val Thr Asn Ile Asp Leu Ser Asp Asn Ala Ile Thr His Ile Thr Lys
65 70 75 80

Glu Ser Phe Gln Lys Leu Gln Asn Leu Thr Lys Ile Asp Leu Asn His 85 90 95

Asn Ala Lys Gln Gln His Pro Asn Glu Asn Lys Asn Gly Met Asn Ile 100 105 110

## WO 2004/094671 - 141 - PCT/US2004/012788

等于我们的原则,我们们也是我们的一个人的。

Thr Glu Gly Ala Leu Leu Ser Leu Arg Asn Leu Thr Val Leu Leu Leu Glu Asp Asn Gln Leu Tyr Thr Ile Pro Ala Gly Leu Pro Glu Ser Leu 135 Lys Glu Leu Ser Leu Ile Gln Asn Asn Ile Phe Gln Val Thr Lys Asn 150 155 Asn Thr Phe Gly Leu Arg Asn Leu Glu Arg Leu Tyr Leu Gly Trp Asn Cys Tyr Phe Lys Cys Asn Gln Thr Phe Lys Val Glu Asp Gly Ala Phe 185 Lys Asn Leu Ile His Leu Lys Val Leu Ser Leu Ser Phe Asn Asn Leu 200 Phe Tyr Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu 215 Ser Asn Ala Lys Ile Met Asn Ile Thr Gln Glu Asp Phe Lys Gly Leu Glu Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Thr Pro Cys Lys Glu Asn Ser Ser Ile His Ile His Pro Leu Ala Phe Gln Ser Leu Thr Gln Leu Leu Tyr Leu Asn 280 Leu Ser Ser Thr Ser Leu Arg Thr Ile Pro Ser Thr Trp Phe Glu Asn 295 Leu Ser Asn Leu Lys Glu Leu His Leu Glu Phe Asn Tyr Leu Val Gln 310 315 Glu Ile Ala Ser Gly Ala Phe Leu Thr Lys Leu Pro Ser Leu Gln Ile 330 325 Leu Asp Leu Ser Phe Asn Phe Gln Tyr Lys Glu Tyr Leu Gln Phe Ile 345 Asn Ile Ser Ser Asn Phe Ser Lys Leu Arg Ser Leu Lys Lys Leu His Leu Arg Gly Tyr Val Phe Arg Glu Leu Lys Lys Lys His Phe Glu His Leu Gln Ser Leu Pro Asn Leu Ala Thr Ile Asn Leu Gly Ile Asn Phe Ile Glu Lys Ile Asp Phe Lys Ala Phe Gln Asn Phe Ser Lys Leu Asp 410 Val Ile Tyr Leu Ser Gly Asn Arg Ile Ala Ser Val Leu Asp Gly Thr

Asp Tyr Ser Ser Trp Arg Asn Arg Leu Arg Lys Pro Leu Ser Thr Asp

440 445 435 Asp Asp Glu Phe Asp Pro His Val Asn Phe Tyr His Ser Thr Lys Pro 455 Leu Ile Lys Pro Gln Cys Thr Ala Tyr Gly Lys Ala Leu Asp Leu Ser 470 Leu Asn Asn Ile Phe Ile Ile Gly Lys Ser Gln Phe Glu Gly Phe Gln 490 Asp Ile Ala Cys Leu Asn Leu Ser Phe Asn Ala Asn Thr Gln Val Phe 505 Asn Gly Thr Glu Phe Ser Ser Met Pro His Ile Lys Tyr Leu Asp Leu 520 Thr Asn Asn Arg Leu Asp Phe Asp Asn Asn Ala Phe Ser Asp Leu 535 His Asp Leu Glu Val Leu Asp Leu Ser His Asn Ala His Tyr Phe Ser 555 550 Ile Ala Gly Val Thr His Arg Leu Gly Phe Ile Gln Asn Leu Ile Asn 570 Leu Arg Val Leu Asn Leu Ser His Asn Gly Ile Tyr Thr Leu Thr Glu 585 Glu Ser Glu Leu Lys Ser Ile Ser Leu Lys Glu Leu Val Phe Ser Gly Asn Arg Leu Asp His Leu Trp Asn Ala Asn Asp Gly Lys Tyr Trp Ser 615 Ile Phe Lys Ser Leu Gln Asn Leu Ile Arg Leu Asp Leu Ser Tyr Asn 635 Asn Leu Gln Gln Ile Pro Asn Gly Ala Phe Leu Asn Leu Pro Gln Ser 650 Leu Gln Glu Leu Leu Ile Ser Gly Asn Lys Leu Arg Phe Phe Asn Trp 660 665 Thr Leu Leu Gln Tyr Phe Pro His Leu His Leu Leu Asp Leu Ser Arg

Asn Glu Leu Tyr Phe Leu Pro Asn Cys Leu Ser Lys Phe Ala His Ser 690

Leu Glu Thr Leu Leu Leu Ser His Asn His Phe Ser His Leu Pro Ser 710

Gly Phe Leu Ser Glu Ala Arg Asn Leu Val His Leu Asp Leu Ser Phe 725 730 735

Asn Thr Ile Lys Met Ile Asn Lys Ser Ser Leu Gln Thr Lys Met Lys 740 745 750

Thr Asn Leu Ser Ile Leu Glu Leu His Gly Asn Tyr Phe Asp Cys Thr 755 760 765

Cys Asp Ile Ser Asp Phe Arg Ser Trp Leu Asp Glu Asn Leu Asn Ile

to the control of the

| mh sa                        | 770          | D                         | •          | T 011      | 570 J      | 775          | T7_ 7       | <b>~</b> 1 | <b>a</b>   | _          | 780        |              | <b>~</b> 7 | •          | <b>~</b> 1 |
|------------------------------|--------------|---------------------------|------------|------------|------------|--------------|-------------|------------|------------|------------|------------|--------------|------------|------------|------------|
| 785                          | TTE          | Pro                       | ГÀв        | ьеи        | 790        | Asn          | vai         | 11e        | Cys        | Ser<br>795 | Asn        | Pro          | Gly        | Asp        | 800        |
| Lys                          | Ser          | Lys                       | Ser        | Ile<br>805 | Met        | Ser          | Leu         | Asp        | Leu<br>810 | Thr        | Thr        | Сув          | Val        | Ser<br>815 | Asp        |
| Thr                          | Thr          | Ala                       | Ala<br>820 | Val        | Leu        | Phe          | Phe         | Leu<br>825 | Thr        | Phe        | Leu        | Thr          | Thr<br>830 | Ser        | Met        |
| Val                          | Met          | Leu<br>835                | Ala        | Ala        | Leu        | Val          | His<br>840  | His        | Leu        | Phe        | Tyr        | Trp<br>845   | Asp        | Val        | Trp        |
| Phe                          | Ile<br>850   | Tyr                       | His        | Met        | Cys        | Ser<br>855   | Ala         | ГÀЗ        | Leu        | Lys        | Gly<br>860 | Tyr          | Arg        | Thr        | Ser        |
| Ser<br>865                   | Thr          | Ser                       | Gln        | Thr        | Phe<br>870 | Tyr          | Asp         | Ala        | Tyr        | Ile<br>875 | Ser        | Tyr          | Asp        | Thr        | Lys        |
| Asp                          | Ala          | Ser                       | Val        | Thr<br>885 | qaA        | Trp          | Val         | Ile        | Asn<br>890 | Glu        | Leu        | Arg          | Tyr        | His<br>895 | Leu        |
| Glu                          | Glu          | Ser                       | Glu<br>900 | Asp        | ГÀЗ        | Ser          | Val         | Leu<br>905 | Leu        | Cys        | Leu        | Glu          | Glu<br>910 | Arg        | Asp        |
| Trp                          | Asp          | Pro<br>915                | Gly        | Leu        | Pro        | Ile          | Ile<br>920  | Asp        | Asn        | Leu        | Met        | Gln<br>925   | Ser        | Ile        | Asn        |
| Gln                          | Ser<br>930   | Lys                       | Lys        | Thr        | Ile        | Phe<br>935   | Val         | Leu        | Thr        | Lys        | Lys<br>940 | Tyr          | Ala        | Lys        | Ser        |
| Trp<br>945                   | Asn          | Phe                       | Lys        | Thr        | Ala<br>950 | Phe          | Tyr         | Leu        | Ala        | Leu<br>955 | Gln        | Arg          | Leu        | Met        | Asp<br>960 |
| Glu                          | Asn          | Met                       | Asp        | Val<br>965 | Ile        | Ile          | Phe         | Ile        | Leu<br>970 | Leu        | Glu        | Pro          | Val        | Leu<br>975 | Gln        |
| Tyr                          | Ser          | Gln                       | Tyr<br>980 | Leu        | Arg        | Leu          | Arg         | Gln<br>985 | Arg        | Ile        | Сув        | Lys          | Ser<br>990 | Ser        | Ile        |
| Leu                          | Gln          | Trp<br>995                | Pro        | Asn        | Asn        | Pro          | Lys<br>1000 |            | a Glu      | ı Ası      | ı Leı      | 1 Phe<br>100 |            | ap GI      | ln Ser     |
| Leu                          | Lys<br>1010  |                           | n Vai      | l Vai      | l Let      | 1 Thi<br>10: |             | lu As      | sn As      | sp Se      |            | rg :<br>020  | Cyr 1      | Asp A      | /ab        |
| Leu                          | Tyr<br>102   |                           | e Ası      | o Se:      | r Ile      | 103          |             | ln Ty      | ſτ         |            |            |              |            |            |            |
| <210<br><210<br><210<br><210 | 1> :<br>2> 1 | 50<br>3352<br>DNA<br>Homo | sap        | iens       |            |              |             |            |            |            |            |              |            |            |            |
| <40<br>agg                   |              | 60<br>tat a               | aaaa       | atcti      | ta c       | ttcci        | tctai       | : tci      | ctg        | agcc       | gct        | gctgo        | cc (       | ctgt       | ggaag      |

ggacctcgag tgtgaagcat ccttccctgt agctgctgtc cagtctgccc gccagaccct

ctggagaagc ccctgcccc cagcatgggt ttctgccgca gcgccctgca cccgctgtct

60

120

180

| 240<br>300 |            | tgggtacctt<br>actggctgtt |            |            |            |            |
|------------|------------|--------------------------|------------|------------|------------|------------|
| 360        | cttgtcctcc | ccagcctttc               | ggcaatgtca | agcaccccgt | tetecatgge | gtgcccact  |
| 420        | gcggcatctc | tgcccagcct               | tttgcccacc | tgattctgac | accacctcca | aaccgcatcc |
| 480        | ctgccacatg | tgcacttccc               | ctcagcccca | gccggttggc | ggaactgccc | aacctcaagt |
| 540        | cctgagctac | aagagctaaa               | cccaccctgg | cttggctgtg | ccagcacctt | accatcgagc |
| 600        | cctcagccat | tatccctgtc               | aaatccctca | tgcgctgccc | tgactgtgcc | aacaacatca |
| 660        | gcgcttccta | tgcatgccct               | ctcgccggcc | ctctgccagc | tgatgctaga | accaacatcc |
| 720        | ggtggccccg | aggcactgga               | ccctgcaggc | ttacaagaac | gcaactgtta | ttcatggacg |
| 780        | caacctcact | tcaagtacaa               | cacctgtcac | caacctcacc | ttggcctggg | ggtgccctcc |
| 840        | caaccgcatc | tgttgtccta               | gagtatctgc | ttccagcctg | gcaacctgcc | gtggtgcccc |
| 900        | cgatgtgggc | tgcgtgtgct               | ctgaccgccc | cctggccaat | cgcctgagga | gtcaaactgg |
| 960        | tcgtcacttc | tggagtgccc               | aacccctgca | ccacgctccc | gccgctgcga | ggaaattgcc |
| 1020       | ggtgttgaag | ttgaaggcct               | ctgagccgtc | cttcagccac | atcccgatac | ccccagctac |
| 1080       | cctccgagtg | ggctgggaaa               | tggttccgtg | gaatgccagt | tctcctggct | gacagttctc |
| 1140       | cttccagggc | aaaccaaggc               | tgcatcacta | cctctacaaa | gtgagaactt | ctggacctga |
| 1200       | gtcctttgcc | aaaagagggt               | ttcaattacc | taacctgtcc | tgcgcaagct | ctaacacagc |
| 1260       | ggacatgcac | tgaaggagct               | ctggtcgccc | cttcgggagc | tggccccttc | cacctgtctc |
| 1320       | cctgcccatg | cactggcccg               | acgctccggc | cgatgagacc | tccgctcact | ggcatcttct |
| 1380       | catcttcagg | cccagctcgg               | atcaaccagg | gatgaacttc | tgcgtctgca | ctccagactc |
| 1440       | agcttcggag | gcatcagcgg               | tcggacaacc | cgtggacctg | gcctgcgcta | gccttccctg |
| 1500       | gcctggggac | tctggctgca               | ggggagaagg | ggcagatgga | ccatggggga | ctgacagcca |
| 1560       | ctgcagcacc | tcaggcccaa               | tctgaagact | cactcccage | ccccagtgga | cttgctccgg |
| 1620       | ggagatgttt | ccgtgcagcc               | aacctggtga | gtcacggaac | ccttggatct | ctcaacttca |
| 1680       | gcaggcagtc | actgcatctc               | ctgagccaca | gtgcctgcgc | cgcacctgca | gcccagctct |
| 1740       | ccgcaataag | tagacctgtc               | ctgcaggtgc | gctgaccggt | agttcctgcc | aatggctccc |
| 1800       | cctggacctc | gactggaggc               | gagctaccgc | ctcattcacg | accacgagca | ctggacctct |
| 1860       | cttcgtggct | acaacttcag               | ggcgtgggcc | tggcatgcag | gccagccctt | agctacaaca |
| 1920       | ccaagtgtcc | acatccacag               | gcccacaaca | cctcagcctg | ccctgcgcca | cacctgcgca |
| 1980       | actgggccat | gcggcaatgc               | ctggacttca | getgegggee | gcagtacgtc | cagcagctct |
| 2040       | tttgatctgg | gcctgagcgg               | ttcttccaag | ctatctgcac | agggagacct | atgtgggccg |
| 2100       | caacctcccc | aaaccctgcg               | ctcctgcccc | cctgcacacc | cccagaaccg | ctggacttgt |

| aagagcctac | aggtgctgcg | tctccgtgac | aattacctgg | ccttctttaa | gtggtggagc | 2160 |
|------------|------------|------------|------------|------------|------------|------|
| ctccacttcc | tgcccaaact | ggaagteete | gacctggcag | gaaaccggct | gaaggccctg | 2220 |
| accaatggca | gcctgcctgc | tggcacccgg | ctccggaggc | tggatgtcag | ctgcaacagc | 2280 |
| atcagcttcg | tggcccccgg | cttcttttcc | aaggccaagg | agctgcgaga | gctcaacctt | 2340 |
| agcgccaacg | ccctcaagac | agtggaccac | tcctggtttg | ggcccctggc | gagtgccctg | 2400 |
| caaatactag | atgtaagcgc | caaccctctg | cactgcgcct | gtggggcggc | ctttatggac | 2460 |
| ttcctgctgg | aggtgcaggc | tgccgtgccc | ggtctgccca | gccgggtgaa | gtgtggcagt | 2520 |
| ccgggccagc | tccagggcct | cagcatcttt | gcacaggacc | tgcgcctctg | cctggatgag | 2580 |
| gccctctcct | gggactgttt | cgccctctcg | ctgctggctg | tggctctggg | cctgggtgtg | 2640 |
| cccatgctgc | atcacctctg | tggctgggac | ctctggtact | gcttccacct | gtgcctggcc | 2700 |
| tggcttccct | ggcgggggcg | gcaaagtggg | cgagatgagg | atgccctgcc | ctacgatgcc | 2760 |
| ttcgtggtct | tcgacaaaac | gcagagcgca | gtggcagact | gggtgtacaa | cgagcttcgg | 2820 |
| gggcagctgg | aggagtgccg | tgggcgctgg | gcactccgcc | tgtgcctgga | ggaacgcgac | 2880 |
| tggctgcctg | gcaaaaccct | ctttgagaac | ctgtgggcct | cggtctatgg | cagccgcaag | 2940 |
| acgctgtttg | tgctggccca | cacggaccgg | gtcagtggtc | tettgegege | cagcttcctg | 3000 |
| ctggcccagc | agcgcctgct | ggaggaccgc | aaggacgtcg | tggtgctggt | gatcctgagc | 3060 |
| cctgacggcc | geegeteeeg | ctacgtgcgg | ctgcgccagc | gcctctgccg | ccagagtgtc | 3120 |
| ctcctctggc | cccaccagcc | cagtggtcag | cgcagcttct | gggcccagct | gggcatggcc | 3180 |
| ctgaccaggg | acaaccacca | cttctataac | cggaacttct | gccagggacc | cacggccgaa | 3240 |
| tagccgtgag | ccggaatcct | gcacggtgcc | acctccacac | tcacctcacc | tctgcctgcc | 3300 |
| tggtctgacc | ctcccctgct | cgcctccctc | accccacacc | tgacacagag | ca         | 3352 |

<210> 61

<211> 3257

<212> DNA

<213> Homo sapiens

<400> 61

ccgctgctgc ccctgtggga agggacctcg agtgtgaagc atccttccct gtagctgctg 60
tccagtctgc ccgccagacc ctctggagaa gcccctgccc cccagcatgg gtttctgccg 120
cagcgccctg cacccgctgt ctctcctggt gcaggccatc atgctggcca tgaccctggc 180
cctgggtacc ttgcctgcct tcctaccctg tgagctccag ccccacggcc tggtgaactg 240
caactggctg ttcctgaagt ctgtgccca cttctccatg gcagcacccc gtggcaatgt 300
caccagcctt tccttgtcct ccaaccgcat ccaccacctc catgattctg actttgccca 360

|            |            | tcaacctcaa<br>tgaccatcga |            |            |              | 420<br>480 |
|------------|------------|--------------------------|------------|------------|--------------|------------|
| ggaagagcta | aacctgagct | acaacaacat               | catgactgtg | cctgcgctgc | ccaaatccct   | 540        |
| catatccctg | tccctcagcc | ataccaacat               | cctgatgcta | gactctgcca | gcctcgccgg   | 600        |
| cctgcatgcc | ctgcgcttcc | tattcatgga               | cggcaactgt | tattacaaga | acccctgcag   | 660        |
| gcaggcactg | gaggtggccc | cgggtgccct               | ccttggcctg | ggcaacctca | cccacctgtc   | 720        |
| actcaagtac | aacaacctca | ctgtggtgcc               | ccgcaacctg | ccttccagcc | tggagtatct   | 780        |
| gctgttgtcc | tacaaccgca | tcgtcaaact               | ggegeetgag | gacctggcca | atctgaccgc   | 840        |
| cctgcgtgtg | ctcgatgtgg | gcggaaattg               | ccgccgctgc | gaccacgctc | ccaacccctg   | 900        |
| catggagtgc | cctcgtcact | tcccccagct               | acatcccgat | accttcagcc | acctgagccg   | 960        |
| tcttgaaggc | ctggtgttga | aggacagttc               | tctctcctgg | ctgaatgcca | gttggttccg   | 1020       |
| tgggctggga | aacctccgag | tgctggacct               | gagtgagaac | ttcctctaca | aatgcatcac   | 1080       |
| taaaaccaag | gccttccagg | gcctaacaca               | gctgcgcaag | cttaacctgt | ccttcaatta   | 1140       |
| ccaaaagagg | gtgtcctttg | cccacctgtc               | tetggeeest | tccttcggga | gcctggtcgc   | 1200       |
| cctgaaggag | ctggacatgc | acggcatctt               | cttccgctca | ctcgatgaga | ccacgctccg   | 1260       |
| gccactggcc | cgcctgccca | tgctccagac               | tctgcgtctg | cagatgaact | tcatcaacca   | 1320       |
| ggcccagctc | ggcatcttca | gggccttccc               | tggcctgcgc | tacgtggacc | tgtcggacaa   | 1380       |
| ccgcatcagc | ggagcttcgg | agctgacagc               | caccatgggg | gaggcagatg | gaggggagaa   | 1440       |
| ggtctggctg | cagcctgggg | accttgctcc               | ggccccagtg | gacactccca | gctctgaaga   | 1500       |
| cttcaggccc | aactgcagca | ccctcaactt               | caccttggat | ctgtcacgga | acaacctggt   | 1560       |
| gaccgtgcag | ccggagatgt | ttgcccagct               | ctcgcacctg | cagtgcctgc | gcctgagcca . | 1620       |
| caactgcatc | tcgcaggcag | tcaatggctc               | ccagttcctg | ccgctgaccg | gtctgcaggt   | 1680       |
| gctagacctg | tcccacaata | agctggacct               | ctaccacgag | cactcattca | cggagctacc   | 1740       |
| acgactggag | gccctggacc | tcagctacaa               | cagccagccc | tttggcatgc | agggcgtggg   | 1800       |
| ccacaacttc | agcttcgtgg | ctcacctgcg               | caccctgcgc | cacctcagcc | tggcccacaa   | 1860       |
| caacatccac | agccaagtgt | cccagcagct               | ctgcagtacg | tegetgeggg | ccctggactt   | 1920       |
| cagcggcaat | gcactgggcc | atatgtgggc               | cgagggagac | ctctatctgc | acttcttcca   | 1980       |
| aggcctgagc | ggtttgatct | ggctggactt               | gtcccagaac | cgcctgcaca | ccctcctgcc   | 2040       |
| ccaaaccctg | cgcaacctcc | ccaagagcct               | acaggtgctg | cgtctccgtg | acaattacct   | 2100       |
| ggccttcttt | aagtggtgga | gcctccactt               | cctgcccaaa | ctggaagtcc | tcgacctggc   | 2160       |
| aggaaaccag | ctgaaggccc | tgaccaatgg               | cagcctgcct | gctggcaccc | ggctccggag   | 2220       |
| gctggatgtc | agctgcaaca | gcatcagctt               | cgtggccccc | ggcttctttt | ccaaggccaa   | 2280       |

| ggagetgega gageteaace | ttagcgccaa | cgccctcaag | acagtggacc | actcctggtt | 2340 |
|-----------------------|------------|------------|------------|------------|------|
| tgggcccctg gcgagtgccc | tgcaaatact | agatgtaagc | gccaaccctc | tgcactgcgc | 2400 |
| ctgtggggcg gcctttatgg | acttcctgct | ggaggtgcag | gctgccgtgc | ccggtctgcc | 2460 |
| cagccgggtg aagtgtggca | gtccgggcca | gctccagggc | ctcagcatct | ttgcacagga | 2520 |
| cctgcgcctc tgcctggatg | aggccctctc | ctgggactgt | ttegecetet | cgctgctggc | 2580 |
| tgtggctctg ggcctgggtg | tgcccatgct | gcatcacctc | tgtggctggg | acctctggta | 2640 |
| ctgcttccac ctgtgcctgg | cctggcttcc | ctggcggggg | cggcaaagtg | ggcgagatga | 2700 |
| ggatgccctg ccctacgatg | ccttcgtggt | cttcgacaaa | acgcagagcg | cagtggcaga | 2760 |
| ctgggtgtac aacgagctto | gggggcagct | ggaggagtgc | cgtgggcgct | gggcactccg | 2820 |
| cctgtgcctg gaggaacgcg | actggctgcc | tggcaaaacc | ctctttgaga | acctgtgggc | 2880 |
| ctcggtctat ggcagccgca | agacgctgtt | tgtgctggcc | cacacggacc | gggtcagtgg | 2940 |
| tetettgege gecagettee | tgctggccca | gcagcgcctg | ctggaggacc | gcaaggacgt | 3000 |
| cgtggtgctg gtgatcctga | gccctgacgg | ccgccgctcc | cgctacgtgc | ggctgcgcca | 3060 |
| gcgcctctgc cgccagagtg | tectectetg | gccccaccag | cccagtggtc | agcgcagctt | 3120 |
| ctgggcccag ctgggcatgg | ccctgaccag | ggacaaccac | cacttctata | accggaactt | 3180 |
| ctgccaggga cccacggccg | aatagccgtg | agccggaatc | ctgcacggtg | ccacctccac | 3240 |
| actcacctca cctctgc    |            |            |            |            | 3257 |

<210> 62

<211> 1032 <212> PRT

<213> Homo sapiens

<400> 62

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu

Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn

Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp

Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp

Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met

105 110 100 Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu 120 Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser 135 Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser 150 155 Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu 230 Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg 250 Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe 260 265 Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly 280 Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe 295 Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu 310 315 Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu 330 Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu 375

Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly
405 410 415

Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met

Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu
420 425 430

Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Gly Glu Lys Val Trp Leu

## WO 2004/094671 - 149 - PCT/US2004/012788

440 Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu 455 Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser 470 475 Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser 490 His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu 520 Ser Arg Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser 585 Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn 600 Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe 615 Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu 630 His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln 650 645 Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Arg 680 Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg 695 Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe 715 710 Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu 770 775 780
Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser 785 790 795 800

Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp 805 810 815

Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val 820 825 830

Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His 835 840 845

Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp 850 855 860

Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln 865 870 875 886

Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu 885 890 895

Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp 900 905 910

Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr 915 920 925

Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 930 940

Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 945 950 955 960

Asp Arg Lys Asp Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg 965 970 975

Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 980 985 990

Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln 995 1000 1005

Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg 1010 1015 1020

Asn Phe Cys Gln Gly Pro Thr Ala Glu 1025 1030

<210> 63

<211> 1032

<212> PRT

<213> Homo sapiens

<400> 63

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln 1 5 10 15

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 20 25 30

#### WO 2004/094671 - 151 - PCT/US2004/012788

- Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu 35 40 45
- Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn 50 55 60
- Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp 65 70 75 80
- Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp
  85 90 95
- Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met 100 105 110
- Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu 115 120 125
- Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser 130 140
- Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser 145 150 155 160
- Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly 165 170 175
- Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro 180 185 190
- Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr 195 . 200 205
- Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr 210 215 220
- Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu 225 230 235 240
- Ala Asn. Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg 245 250 255
- Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe 260 265 270
- Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly 275 280 285
- Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe 290 295 300
- Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu 305 310 315
- Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu 325 330 335
- Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala 340 345 350
- His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu

# WO 2004/094671 - 152 - PCT/US2004/012788

360 Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu 375 Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met 390 Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly 410 Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu 420 425 Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Glu Lys Val Trp Leu Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu 455 Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser 470 475 Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser 485 490 His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu Ser His Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser 585 Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser 660 665 Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Gln Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg

690 695 700

Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe 705 710 715 720

Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala 725 730 735

Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu 740 745 750

Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala 755 760 765

Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu 770 775 780

Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser 785 790 795 800

Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp 805 810 815

Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val 820 825 830

Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His 835 840 845

Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp 850 855 860

Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln 865 870 875 880

Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu 885 890 895

Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp 900 905 910

Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr 915 920 925

Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 930 935 940

Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 945 950 955 960

Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg 965 970 975

Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 980 985 990

Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln

Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg 1010 1015 1020

Asn Phe Cys Gln Gly Pro Thr Ala Glu

1025

1030

<210> 64

<211> 333

<212> PRT

<213> Homo sapiens

<400> 64

Met Pro Met Lys Trp Ser Gly Trp Arg Trp Ser Trp Gly Pro Ala Thr 1 5 10 15

His Thr Ala Leu Pro Pro Pro Gln Gly Phe Cys Arg Ser Ala Leu His 20 25 30

Pro Leu Ser Leu Leu Val Gln Ala Ile Met Leu Ala Met Thr Leu Ala 35 40 45

Leu Gly Thr Leu Pro Ala Phe Leu Pro Cys Glu Leu Gln Pro His Gly 50 55 60

Leu Val Asn Cys Asn Trp Leu Phe Leu Lys Ser Val Pro His Phe Ser 65 70 75 80

Met Ala Ala Pro Arg Gly Asn Val Thr Ser Leu Ser Leu Ser Ser Asn 85 90 95

Arg Ile His His Leu His Asp Ser Asp Phe Ala His Leu Pro Ser Leu 100 105 110

Arg His Leu Asn Leu Lys Trp Asn Cys Pro Pro Val Gly Leu Ser Pro 115 120 125

Met His Phe Pro Cys His Met Thr Ile Glu Pro Ser Thr Phe Leu Ala 130 135 140

Val Pro Thr Leu Glu Glu Leu Asn Leu Ser Tyr Asn Asn Ile Met Thr 145 150 155 160

Val Pro Ala Leu Pro Lys Ser Leu Ile Ser Leu Ser Leu Ser His Thr
165 170 175

Asn Ile·Leu Met Leu Asp Ser Ala Ser Leu Ala Gly Leu His Ala Leu 180 185 190

Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys Arg 195 200 205

Gln Ala Leu Glu Val Ala Pro Gly Ala Leu Leu Gly Leu Gly Asn Leu 210 215 220

Thr His Leu Ser Leu Lys Tyr Asn Asn Leu Thr Val Val Pro Arg Asn 225 230 235 240

Leu Pro Ser Ser Leu Glu Tyr Leu Leu Leu Ser Tyr Asn Arg Ile Val 245 250 255

Lys Leu Ala Pro Glu Asp Leu Ala Asn Leu Thr Ala Leu Arg Val Leu 260 265 270

Asp Val Gly Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys 275 280 285 Met Glu Cys Pro Arg His Phe Pro Gln Leu His Pro Asp Thr Phe Ser 290 295 300

His Leu Ser Arg Leu Glu Gly Leu Val Leu Lys Asp Ser Ser Leu Ser 305 310 315 320

Trp Leu Asn Ala Ser Trp Phe Arg Gly Leu Gly Asn Leu 325 330

<210> 65

<211> 216

<212> PRT

<213> Homo sapiens

<400> 65

Met Leu Tyr Ser Ser Cys Lys Ser Arg Leu Leu Asp Ser Val Glu Gln 1 5 10 15

Asp Phe His Leu Glu Ile Ala Lys Lys Gly Phe Cys Arg Ser Ala Leu 20 25 30

His Pro Leu Ser Leu Leu Val Gln Ala Ile Met Leu Ala Met Thr Leu
35 40 45

Ala Leu Gly Thr Leu Pro Ala Phe Leu Pro Cys Glu Leu Gln Pro His 50 55 60

Gly Leu Val Asn Cys Asn Trp Leu Phe Leu Lys Ser Val Pro His Phe 65 70 75 80

Ser Met Ala Ala Pro Arg Gly Asn Val Thr Ser Leu Ser Leu Ser Ser 85 90 95

Asn Arg Ile His His Leu His Asp Ser Asp Phe Ala His Leu Pro Ser 100 105 110

Leu Arg His Leu Asn Leu Lys Trp Asn Cys Pro Pro Val Gly Leu Ser 115 120 125

Pro Met His Phe Pro Cys His Met Thr Ile Glu Pro Ser Thr Phe Leu 130 135 140

Ala Val Pro Thr Leu Glu Glu Leu Asn Leu Ser Tyr Asn Asn Ile Met 145 150 155 160

Thr Val Pro Ala Leu Pro Lys Ser Leu Ile Ser Leu Ser Leu Ser His
165 170 175

Thr Asn Ile Leu Met Leu Asp Ser Ala Ser Leu Ala Gly Leu His Ala 180 185 190

Leu Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys 195 200 205

Arg Gln Ala Leu Glu Val Ala Pro

<211> 117 <212> PRT <213> Homo sapiens

<400> 66

Met Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala

Phe Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp

Leu Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly

Asn Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His

Asp Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys 75 70

Trp Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His 90

Met Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu 100 105

Leu Asn Leu Ser Tyr 115

<210> 67

<211> 1032

<212> PRT

<213> Homo sapiens

<400> 67

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu

Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn

Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp

Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp

Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met

Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu 120

#### WO 2004/094671 - 157 - PCT/US2004/012788

- Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly
  165 170 175
- Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro 180 185 190
- Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr 195 200 205
- Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr 210 215 220
- Leu Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu 225 230 235 240
- Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg 245 250 255
- Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe 260 265 270
- Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly 275 280 285
- Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe 290 295 300
- Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu 305 310 315
- Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu 325 330 335
- Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala 340 345 350
- His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu 355 360 365
- Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu 370 375 380
- Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met 385 390 395 400
- Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly 405 410 415
- Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu 420 425 430
- Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Gly Glu Lys Val Trp Leu 435 440 445
- Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu

460 455 Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser 475 Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser 490 His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val 505 Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu Ser His Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu 535 Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly 550 Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr 570 Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn 600 Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Gln 680 Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg 695 Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala 730 Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu 740 Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu

Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser

790 785 795 Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp 805 810 Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His 840 Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln 870 875 Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 935 Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 950 Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg 970 Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 985 Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln 1000 Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg 1015 1020 1010 Asn Phe Cys Gln Gly Pro Thr Ala Glu 1025 1030 <210> 68 <211> 3200 <212> DNA <213> murine <400> 68 60 tqtcaqaqqq agcctcggga gaatcctcca tctcccaaca tggttctccg tcgaaggact ctgcacccct tgtccctcct ggtacaggct gcagtgctgg ctgagactct ggccctgggt 120 accetgeetg cettectace etgtgagetg aageeteatg geetggtgga etgeaattgg 180 240 ctgttcctga agtctgtacc ccgtttctct gcggcagcat cctgctccaa catcaccegc

ctctccttga tctccaaccg tatccaccac ctgcacaact ccgacttcgt ccacctgtcc

300

| aacctgegge | agctgaacct | caagtggaac | tgtccaccca | ctggccttag | cccctgcac  | 360  |
|------------|------------|------------|------------|------------|------------|------|
| ttctcttgcc | acatgaccat | tgagcccaga | accttcctgg | ctatgcgtac | actggaggag | 420  |
| ctgaacctga | gctataatgg | tatcaccact | gtgccccgac | tgcccagctc | cctggtgaat | 480  |
| ctgagcctga | gccacaccaa | catcctggtt | ctagatgcta | acagcctcgc | cggcctatac | 540  |
| agcctgcgcg | ttctcttcat | ggacgggaac | tgctactaca | agaacccctg | cacaggagcg | 600  |
| gtgaaggtga | ccccaggcgc | cctcctgggc | ctgagcaatc | tcacccatct | gtctctgaag | 660  |
| tataacaacc | tcacaaaggt | gccccgccaa | ctgccccca  | gcctggagta | cctcctggtg | 720  |
| tcctataacc | tcattgtcaa | gctggggcct | gaagacctgg | ccaatctgac | ctcccttcga | 780  |
| gtacttgatg | tgggtgggaa | ttgccgtcgc | tgcgaccatg | ccccaatcc  | ctgtatagaa | 840  |
| tgtggccaaa | agteceteca | cctgcaccct | gagaccttcc | atcacctgag | ccatctggaa | 900  |
| ggcctggtgc | tgaaggacag | ctctctccat | acactgaact | cttcctggtt | ccaaggtctg | 960  |
| gtcaacctct | cggtgctgga | cctaagcgag | aactttctct | atgaaagcat | caaccacacc | 1020 |
| aatgcctttc | agaacctaac | ccgcctgcgc | aagctcaacc | tgtccttcaa | ttaccgcaag | 1080 |
| aaggtatcct | ttgcccgcct | ccacctggca | agttccttca | agaacctggt | gtcactgcag | 1140 |
| gagctgaaca | tgaacggcat | cttcttccgc | tcgctcaaca | agtacacgct | cagatggctg | 1200 |
| gccgatctgc | ccaaactcca | cactctgcat | cttcaaatga | acttcatcaa | ccaggcacag | 1260 |
| ctcagcatct | ttggtacctt | ccgagccctt | cgctttgtgg | acttgtcaga | caatcgcatc | 1320 |
| agtgggcctt | caacgctgtc | agaagccacc | cctgaagagg | cagatgatgc | agagcaggag | 1380 |
| gagctgttgt | ctgcggatcc | tcacccagct | ccactgagca | cccctgcttc | taagaacttc | 1440 |
| atggacaggt | gtaagaactt | caagttcacc | atggacctgt | ctcggaacaa | cctggtgact | 1500 |
| atcaagccag | agatgtttgt | caatctctca | cgcctccagt | gtcttagcct | gagccacaac | 1560 |
| tccattgcac | aggctgtcaa | tggctctcag | ttcctgccgc | tgactaatct | gcaggtgctg | 1620 |
| gacctgtccc | ataacaaact | ggacttgtac | cactggaaat | cgttcagtga | gctaccacag | 1680 |
| ttgcaggccc | tggacctgag | ctacaacagc | cagcccttta | gcatgaaggg | tataggccac | 1740 |
| aatttcagtt | ttgtggccca | tctgtccatg | ctacacagcc | ttagcctggc | acacaatgac | 1800 |
| attcataccc | gtgtgtcctc | acatctcaac | agcaactcag | tgaggtttct | tgacttcagc | 1860 |
| ggcaacggta | tgggccgcat | gtgggatgag | gggggccttt | atctccattt | cttccaaggc | 1920 |
| ctgagtggcc | tgctgaagct | ggacctgtct | caaaataacc | tgcatatcct | ccggccccag | 1980 |
| aaccttgaca | acctccccaa | gagcctgaag | ctgctgagcc | tccgagacaa | ctacctatct | 2040 |
| ttctttaact | ggaccagtct | gtccttcctg | cccaacctgg | aagtcctaga | cctggcaggc | 2100 |
| aaccagctaa | aggccctgac | caatggcacc | ctgcctaatg | gcaccctcct | ccagaaactg | 2160 |

| 4 | gatgtcagca | gcaacagtat | cgtctctgtg | gtcccagcct | tcttcgctct | ggcggtcgag | 2220 |
|---|------------|------------|------------|------------|------------|------------|------|
|   | ctgaaagagg | tcaacctcag | ccacaacatt | ctcaagacgg | tggatcgctc | ctggtttggg | 2280 |
|   | cccattgtga | tgaacctgac | agttctagac | gtgagaagca | accctctgca | ctgtgcctgt | 2340 |
| , | ggggcagcct | tcgtagactt | actgttggag | gtgcagacca | aggtgcctgg | cctggctaat | 2400 |
| , | ggtgtgaagt | gtggcagccc | cggccagctg | cagggccgta | gcatcttcgc | acaggacctg | 2460 |
|   | cggctgtgcc | tggatgaggt | cctctcttgg | gactgctttg | gcctttcact | cttggctgtg | 2520 |
|   | gccgtgggca | tggtggtgcc | tatactgcac | catctctgcg | gctgggacgt | ctggtactgt | 2580 |
|   | tttcatctgt | gcctggcatg | gctacctttg | ctggcccgca | gccgacgcag | cgcccaagct | 2640 |
|   | ctcccctatg | atgccttcgt | ggtgttcgat | aaggcacaga | gcgcagttgc | ggactgggtg | 2700 |
|   | tataacgagc | tgcgggtgcg | gctggaggag | cggcgcggtc | gccgagccct | acgcttgtgt | 2760 |
| • | ctggaggacc | gagattggct | gcctggccag | acgctcttcg | agaacctctg | ggcttccatc | 2820 |
|   | tatgggagcc | gcaagactct | atttgtgctg | gcccacacgg | accgcgtcag | tggcctcctg | 2880 |
|   | cgcaccagct | teetgetgge | tcagcagcgc | ctgttggaag | accgcaagga | cgtggtggtg | 2940 |
|   | ttggtgatcc | tgcgtccgga | tgeecacege | tecegetatg | tgcgactgcg | ccagcgtctc | 3000 |
|   | tgccgccaga | gtgtgctctt | ctggccccag | cagcccaacg | ggcagggggg | cttctgggcc | 3060 |
|   | cagctgagta | cagccctgac | tagggacaac | cgccacttct | ataaccagaa | cttctgccgg | 3120 |
|   | ggacctacag | cagaatagct | cagagcaaca | gctggaaaca | gctgcatctt | catgcctggt | 3180 |
|   | tcccgagttg | ctctgcctgc |            |            |            |            | 3200 |

<210> 69

<211> 3471

<212> DNA

<213> murine

<400> 69 tgaaagtgtc acttcctcaa ttctctgaga gaccctggtg tggaacatca ttctctgccg 60 cccagtttgt cagagggagc ctcgggagaa tcctccatct cccaacatgg ttctccgtcg 120 180 aaggactetg cacccettgt ceeteetggt acaggetgea gtgetggetg agactetgge cctgggtacc ctgcctgcct tcctaccctg tgagctgaag cctcatggcc tggtggactg 240 caattggctg ttcctgaagt ctgtaccccg tttctctgcg gcagcatcct gctccaacat 300 caccegecte teettgatet ecaacegtat ecaecacetg cacaacteeg acttegteea 360 cctgtccaac ctgcggcagc tgaacctcaa gtggaactgt ccacccactg gccttagccc 420 cctgcacttc tcttgccaca tgaccattga gcccagaacc ttcctggcta tgcgtacact 480 540 ggaggagctg aacctgagct ataatggtat caccactgtg ccccgactgc ccagctccct

| ggtgaatctg<br>cctatacagc | agcctgagcc<br>ctgcgcgttc | acaccaacat<br>tcttcatgga | cctggttcta<br>cgggaactgc | gatgctaaca<br>tactacaaga | gcctcgccgg<br>acccctgcac | 600<br>660 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| aggagcggtg               | aaggtgaccc               | caggcgccct               | cctgggcctg               | agcaatctca               | cccatctgtc               | 720        |
| tctgaagtat               | aacaacctca               | caaaggtgcc               | ccgccaactg               | cccccagcc                | tggagtacct               | 780        |
| cctggtgtcc               | tataacctca               | ttgtcaagct               | ggggcctgaa               | gacctggcca               | atctgacctc               | 840        |
| ccttcgagta               | cttgatgtgg               | gtgggaattg               | ccgtcgctgc               | gaccatgccc               | ccaatccctg               | 900        |
| tatagaatgt               | ggccaaaagt               | ccctccacct               | gcaccctgag               | accttccatc               | acctgagcca               | 960        |
| tctggaaggc               | ctggtgctga               | aggacagctc               | tctccataca               | ctgaactctt               | cctggttcca               | 1020       |
| aggtctggtc               | aacctctcgg               | tgctggacct               | aagcgagaac               | tttctctatg               | aaagcatcaa               | 1080       |
| ccacaccaat               | gcctttcaga               | acctaacccg               | cctgcgcaag               | ctcaacctgt               | ccttcaatta               | 1140       |
| ccgcaagaag               | gtatcctttg               | cccgcctcca               | cctggcaagt               | tccttcaaga               | acctggtgtc               | 1200       |
| actgcaggag               | ctgaacatga               | acggcatctt               | cttccgctcg               | ctcaacaagt               | acacgctcag               | 1260       |
| atggctggcc               | gatctgccca               | aactccacac               | tctgcatctt               | caaatgaact               | tcatcaacca               | 1320       |
| ggcacagctc               | agcatctttg               | gtaccttccg               | agecettege               | tttgtggact               | tgtcagacaa               | 1380       |
| tcgcatcagt               | gggccttcaa               | cgctgtcaga               | agccacccct               | gaagaggcag               | atgatgcaga               | 1440       |
| gcaggaggag               | ctgttgtctg               | cggatcctca               | cccagctcca               | ctgagcaccc               | ctgcttctaa               | 1500       |
| gaacttcatg               | gacaggtgta               | agaacttcaa               | gttcaccatg               | gacctgtctc               | ggaacaacct               | 1560       |
| ggtgactatc               | aagccagaga               | tgtttgtcaa               | tctctcacgc               | ctccagtgtc               | ttagcctgag               | 1620       |
| ccacaactcc               | attgcacagg               | ctgtcaatgg               | ctctcagttc               | ctgccgctga               | ctaatctgca               | 1680       |
| ggtgctggac               | ctgtcccata               | acaaactgga               | cttgtaccac               | tggaaatcgt               | tcagtgagct               | 1740       |
| accacagttg               | caggccctgg               | acctgagcta               | caacagccag               | ccctttagca               | tgaagggtat               | 1800       |
| aggccacaat               | ttcagttttg               | tgacccatct               | gtccatgcta               | cagagcctta               | gcctggcaca               | 1860       |
| caatgacatt               | catacccgtg               | tgtcctcaca               | tctcaacagc               | aactcagtga               | ggtttcttga               | 1920       |
| cttcagcggc               | aacggtatgg               | gccgcatgtg               | ggatgagggg               | ggcctttatc               | tccatttctt               | 1980       |
| ccaaggcctg               | agtggcctgc               | tgaagctgga               | cctgtctcaa               | aataacctgc               | atatcctccg               | 2040       |
| gccccagaac               | cttgacaacc               | tccccaagag               | cctgaagctg               | ctgagcctcc               | gagacaacta               | 2100       |
| cctatctttc               | tttaactgga               | ccagtctgtc               | cttcctaccc               | aacctggaag               | tcctagacct               | 2160       |
| ggcaggcaac               | cagctaaagg               | ccctgaccaa               | tggcaccctg               | cctaatggca               | ccctcctcca               | 2220       |
| gaaactcgat               | gtcagtagca               | acagtatcgt               | ctctgtggtc               | ccagccttct               | tegetetgge               | 2280       |
| ggtcgagctg               | aaagaggtca               | acctcagcca               | caacattctc               | aagacggtgg               | atcgctcctg               | 2340       |
| gtttgggccc               | attgtgatga               | acctgacagt               | tctagacgtg               | agaagcaacc               | ctctgcactg               | 2400       |
| tgcctgtggg               | gcagccttcg               | tagacttact               | gttggaggtg               | cagaccaagg               | tgcctggcct               | 2460       |

WO 2004/094671 - 163 - PCT/US2004/012788

| ggctaatggt | gtgaagtgtg | gcagccccgg | ccagctgcag | ggccgtagca | tcttcgcgca | 2520 |
|------------|------------|------------|------------|------------|------------|------|
| ggacctgcgg | ctgtgcctgg | atgaggtcct | ctcttgggac | tgctttggcc | tttcactctt | 2580 |
| ggctgtggcc | gtgggcatgg | tggtgcctat | actgcaccat | ctctgcggct | gggacgtctg | 2640 |
| gtactgtttt | catctgtgcc | tggcatggct | acctttgctg | gcccgcagcc | gacgcagcgc | 2700 |
| ccaaactctc | ccttatgatg | ccttcgtggt | gttcgataag | gcacagagcg | cagttgccga | 2760 |
| ctgggtgtat | aacgagctgc | gggtgcggct | ggaggagcgg | cgcggtcgcc | gagccctacg | 2820 |
| cttgtgtctg | gaggaccgag | attggctgcc | tggccagacg | ctcttcgaga | acctctgggc | 2880 |
| ttccatctat | gggagccgca | agactctatt | tgtgctggcc | cacacggacc | gcgtcagtgg | 2940 |
| cctcctgcgc | accagcttcc | tgctggctca | gcagcgcctg | ttggaagacc | gcaaggacgt | 3000 |
| ggtggtgttg | gtgatcctgc | gtccggatgc | ccaccgctcc | cgctatgtgc | gactgcgcca | 3060 |
| gcgtctctgc | cgccagagtg | tgctcttctg | gccccagcag | cccaacgggc | aggggggctt | 3120 |
| ctgggcccag | ctgagtacag | ccctgactag | ggacaaccgc | cacttctata | accagaactt | 3180 |
| ctgccgggga | cctacagcag | aatagctcag | agcaacagct | ggaaacagct | gcatcttcat | 3240 |
| gcctggttcc | cgagttgctc | tgcctgcctt | gatatgtatt | actacaccgc | tatttggcaa | 3300 |
| gtgcgcaata | tatgctacca | agccaccagg | cccacggagc | aaaggttggc | agtaaagggt | 3360 |
| agțtttcttc | ccatgcatct | ttcaggagag | tgaagataga | caccagaccc | acacagaaca | 3420 |
| ggactggagt | tcattctctg | ccctccacc  | ccactttgcc | tgtctctgta | t          | 3471 |

<210> 70

<211> 3340

<212> DNA

<213> murine

<400> 70

tetetgagag accetggtgt ggaacateat tetetgeege ceagtttgte agagggagee 60 tcgggagaat cctccatctc ccaacatggt tctccgtcga aggactctgc accccttgtc 120 cctcctggta caggctgcag tgctggctga gactctggcc ctgggtaccc tgcctgcctt 180 cctaccctgt gagctgaagc ctcatggcct ggtggactgc aattggctgt tcctgaagtc 240 tgtaccccgt ttctctgcgg cagcatcctg ctccaacatc acccgcctct ccttgatctc 300 360 caaccgtatc caccacctgc acaactccga cttcgtccac ctgtccaacc tgcggcagct gaacctcaag tggaactgtc cacccactgg ccttagcccc ctgcacttct cttgccacat 420 gaccattgag cccagaacct tcctggctat gcgtacactg gaggagctga acctgagcta 480 taatggtatc accactgtgc cccgactgcc cagetccctg gtgaatctga gcctgagcca 540 caccaacatc ctggttctag atgctaacag cctcgccggc ctatacagcc tgcgcgttct 600

| cttcatggac<br>aggcgccctc | gggaactgct<br>ctgggcctga | actacaagaa<br>gcaatctcac | cccctgcaca<br>ccatctgtct | ggagcggtga<br>ctgaagtata | aggtgacccc<br>acaacctcac | 660<br>720 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| aaaggtgccc               | cgccaactgc               | ccccagcct                | ggagtacctc               | ctggtgtcct               | ataacctcat               | 780        |
| tgtcaagctg               | gggcctgaag               | acctggccaa               | tctgacctcc               | cttcgagtac               | ttgatgtggg               | 840        |
| tgggaattgc               | cgtcgctgcg               | accatgcccc               | caatccctgt               | atagaatgtg               | gccaaaagtc               | 900        |
| cctccacctg               | caccctgaga               | ccttccatca               | cctgagccat               | ctggaaggcc               | tggtgctgaa               | 960        |
| ggacagctct               | ctccatacac               | tgaactcttc               | ctggttccaa               | ggtctggtca               | acctctcggt               | 1020       |
| gctggaccta               | agcgagaact               | ttctctatga               | aagcatcaac               | cacaccaatg               | cctttcagaa               | 1080       |
| cctaacccgc               | ctgcgcaagc               | tcaacctgtc               | cttcaattac               | cgcaagaagg               | tatcctttgc               | 1140       |
| ccgcctccac               | ctggcaagtt               | ccttcaagaa               | cctggtgtca               | ctgcaggagc               | tgaacatgaa               | 1200       |
| cggcatcttc               | ttccgctcgc               | tcaacaagta               | cacgctcaga               | tggctggccg               | atctgcccaa               | 1260       |
| actccacact               | ctgcatcttc               | aaatgaactt               | catcaaccag               | gcacagctca               | gcatctttgg               | 1320       |
| taccttccga               | gcccttcgct               | ttgtggactt               | gtcagacaat               | cgcatcagtg               | ggccttcaac               | 1380       |
| gctgtcagaa               | gccacccctg               | aagaggcaga               | tgatgcagag               | caggaggagc               | tgttgtctgc               | 1440       |
| ggatcctcac               | ccagctccac               | tgagcacccc               | tgcttctaag               | aacttcatgg               | acaggtgtaa               | 1500       |
| gaacttcaag               | ttcaccatgg               | acctgtctcg               | gaacaacctg               | gtgactatca               | agccagagat               | 1560<br>'. |
| gtttgtcaat               | ctctcacgcc               | tccagtgtct               | tagcctgagc               | cacaactcca               | ttgcacaggc               | 1620       |
| tgtcaatggc               | tctcagttcc               | tgccgctgac               | taatctgcag               | gtgctggacc               | tgtcccataa               | 1680       |
| caaactggac               | ttgtaccact               | ggaaatcgtt               | cagtgagcta               | ccacagttgc               | aggccctgga               | 1740       |
| cctgggctac               | aacagccagc               | cctttagcat               | aaagggtata               | ggccacaatt               | tcagttttgt               | 1800       |
| ggcccatctg               | tccatgctac               | acagccttag               | cctggcacac               | aatgacattc               | atacccgtgt               | 1860       |
| gtcctcacat               | ctcaacagca               | actcagtgag               | gtttcttgac               | ttcagcggca               | acggtatggg               | 1920       |
| ccgcatgtgg               | gatgagggg                | gcctttatct               | ccatttcttc               | caaggcctga               | gtggcctgct               | 1980       |
| gaagctggac               | ctgtctcaaa               | ataacctgca               | tatcctccgg               | ccccagaacc               | ttgacaacct               | 2040       |
| ccccaagagc               | ctgaagctgc               | tgagcctccg               | agacaactac               | ctatctttct               | ttaactggac               | 2100       |
| cagtctgtcc               | ttcctgccca               | acctggaagt               | cctagacctg               | gcaggcaacc               | agctaaaggc               | 2160       |
| cctgaccaat               | ggcaccctgc               | ctaatggcac               | cctcctccag               | aaactggatg               | tcagcagcaa               | 2220       |
| cagtatcgtc               | tetgtggtee               | cagccttctt               | cgctctggcg               | gtcgagctga               | aagaggtcaa               | 2280       |
| cctcagccac               | aacattctca               | agacggtgga               | tegeteetgg               | tttgggccca               | ttgtgatgaa               | 2340       |
| cctgacagtt               | ctagacgtga               | gaagcaaccc               | tctgcactgt               | gcctgtgggg               | cagccttcgt               | 2400       |
| agacttactg               | ttggaggtgc               | agaccaaggt               | gcctggcctg               | gctaatggtg               | tgaagtgtgg               | 2460       |
| cagccccggc               | cagctgcagg               | gccgtagcat               | cttcgcacag               | gacctgcggc               | tgtgcctgga               | 2520       |

| tgaggtcctc | tcttgggact | gctttggcct | ttcactcttg | gctgtggccg | tgggcatggt | 2580 |
|------------|------------|------------|------------|------------|------------|------|
| ggtgcctata | ctgcaccatc | tctgcggctg | ggacgtctgg | tactgttttc | atctgtgcct | 2640 |
| ggcatggcta | cctttgctgg | cccgcagccg | acgcagcgcc | caagctctcc | cctatgatgc | 2700 |
| cttcgtggtg | ttcgataagg | cacagagege | agttgcggac | tgggtgtata | acgagctgcg | 2760 |
| ggtgcggctg | gaggggcggc | gcggtcgccg | agccctacgc | ttgtgtctgg | aggaccgaga | 2820 |
| ttggctgcct | ggccagacgc | tcttcgagaa | cctctgggct | tccatctatg | ggagccgcaa | 2880 |
| gactctattt | gtgctggccc | acacggaccg | cgtcagtggc | ctcctgcgca | ccagcttcct | 2940 |
| gctggctcag | cagegeetgt | tggaagaccg | caaggacgtg | gtggtgttgg | tgatcctgcg | 3000 |
| tccggatgcc | caccgctccc | gctatgtgcg | actgcgccag | cgtctctgcc | gccagagtgt | 3060 |
| gctcttttgg | ccccagcagc | ccaacgggca | ggggggcttc | tgggcccagc | tgagtacagc | 3120 |
| cctgactagg | gacaaccgcc | acttctataa | ccagaacttc | tgccggggac | ctacagcaga | 3180 |
| atagctcaga | gcaacagctg | gaaacagctg | catcttcatg | cctggttccc | gagttgctct | 3240 |
| gcctgccttg | ctctgtctta | ctacaccgct | atttggcaag | tgcgcaatat | atgctaccaa | 3300 |
| gccaccgggc | ccacggagca | aaggttggct | gtaaagggta |            |            | 3340 |

<210> 71

<211> 3471

<212> DNA

<213> murine

<400> 71

tgaaagtgtc acttcctcaa ttctctgaga gaccctggtg tggaacatca ttctctgccg 60 cccagtttgt cagagggagc ctcgggagaa tcctccatct cccaacatgg ttctccgtcg 120 aaggactctg caccccttgt ccctcctggt acaggctgca gtgctggctg agactctggc 180 cctgggtacc ctgcctgcct tcctaccctg tgagctgaag cctcatggcc tggtggactg 240 caattggctg ttcctgaagt ctgtaccccg tttctctgcg gcagcatcct gctccaacat 300 caccegecte teettgatet ecaacegtat ceaecacetg cacaacteeg aettegteea 360 cctgtccaac ctgcggcagc tgaacctcaa gtggaactgt ccacccactg gccttagccc 420 cctgcacttc tcttgccaca tgaccattga gcccagaacc ttcctggcta tgcgtacact 480 ggaggagctg aacctgagct ataatggtat caccactgtg ccccgactgc ccagctccct 540 ggtgaatctg agcctgagcc acaccaacat cctggttcta gatgctaaca gcctcgccgg 600 cctatacagc ctgcgcgttc tcttcatgga cgggaactgc tactacaaga acccctgcac 660 aggageggtg aaggtgacce caggegeect cetgggeetg ageaatetea eccatetgte 720 totgaagtat aacaacctca caaaggtgcc ccgccaactg ccccccagcc tggagtacct 780

| cctggtgtcc<br>ccttcgagta | tataacctca<br>cttgatgtgg | ttgtcaagct<br>gtgggaattg | ggggcctgaa<br>ccgtcgctgc | gacctggcca<br>gaccatgccc | atctgacctc<br>ccaatccctg | 840<br>900 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| tatagaatgt               | ggccaaaagt               | ccctccacct               | gcaccctgag               | accttccatc               | acctgagcca               | 960        |
| tctggaaggc               | ctggtgctga               | aggacagctc               | tctccataca               | ctgaactctt               | cctggttcca               | j050       |
| aggtctggtc               | aacctctcgg               | tgctggacct               | aagcgagaac               | tttctctatg               | aaagcatcaa               | 1080       |
| ccacaccaat               | gcctttcaga               | acctaacccg               | cctgcgcaag               | ctcaacctgt               | ccttcaatta               | 1140       |
| ccgcaagaag               | gtatcctttg               | cccgcctcca               | cctggcaagt               | tccttcaaga               | acctggtgtc               | 1200       |
| actgcaggag               | ctgaacatga               | acggcatctt               | cttccgctcg               | ctcaacaagt               | acacgctcag               | 1260       |
| atggctggcc               | gatctgccca               | aactccacac               | tctgcatctt               | caaatgaact               | tcatcaacca               | 1320       |
| ggcacagctc               | agcatctttg               | gtaccttccg               | agcccttcgc               | tttgtggact               | tgtcagacaa               | 1380       |
| tegcateagt               | gggccttcaa               | cgctgtcaga               | agccacccct               | gaagaggcag               | atgatgcaga               | 1440       |
| gcaggaggag               | ctgttgtctg               | cggatcctca               | cccagctcca               | ctgagcaccc               | ctgcttctaa               | 1500       |
| gaacttcatg               | gacaggtgta               | agaacttcaa               | gttcaccatg               | gacctgtctc               | ggaacaacct               | 1560       |
| ggtgactatc               | aagccagaga               | tgtttgtcaa               | tctctcacgc               | ctccagtgtc               | ttagcctgag               | 1620       |
| ccacaactcc               | attgcacagg               | ctgtcaatgg               | ctctcagttc               | ctgccgctga               | ctaatctgca               | 1680       |
| ggtgctggac               | ctgtcccata               | acaaactgga               | cttgtaccac               | tggaaatcgt               | tcagtgagct               | 174,0      |
| accacagttg               | caggccctgg               | acctgagcta               | caacagccag               | ccctttagca               | tgaagggtat               | 1800       |
| aggccacaat               | ttcagttttg               | tgacccatct               | gtccatgcta               | cagagcctta               | gcctggcaca               | 1860       |
| caatgacatt               | catacccgtg               | tgtcctcaca               | tctcaacagc               | aactcagtga               | ggtttcttga               | 1920       |
| cttcagcggc               | aacggtatgg               | gccgcatgtg               | ggatgagggg               | ggcctttatc               | tccatttctt               | 1980       |
| ccaaggcctg               | agtggcctgc               | tgaagctgga               | cctgtctcaa               | aataacctgc               | atatcctccg               | 2040       |
| gccccagaac               | cttgacaacc               | tccccaagag               | cctgaagctg               | ctgagcctcc               | gagacaacta               | 2100       |
| cctatctttc               | tttaactgga               | ccagtctgtc               | cttcctaccc               | aacctggaag               | tcctagacct               | 2160       |
| ggcaggcaac               | cagctaaagg               | ccctgaccaa               | tggcaccctg               | cctaatggca               | ccctcctcca               | 2220       |
| gaaactcgat               | gtcagtagca               | acagtatcgt               | ctctgtggtc               | ccagccttct               | tegetetgge               | 2280       |
| ggtcgagctg               | aaagaggtca               | acctcagcca               | caacattctc               | aagacggtgg               | atcgctcctg               | 2340       |
| gtttgggccc               | attgtgatga               | acctgacagt               | tctagacgtg               | agaagcaacc               | ctctgcactg               | 2400       |
| tgcctgtggg               | gcagccttcg               | tagacttact               | gttggaggtg               | cagaccaagg               | tgcctggcct               | 2460       |
| ggctaatggt               | gtgaagtgtg               | gcagccccgg               | ccagctgcag               | ggccgtagca               | tettegegea               | 2520       |
| ggacctgcgg               | ctgtgcctgg               | atgaggtcct               | ctcttgggac               | tgctttggcc               | tttcactctt               | 2580       |
| ggctgtggcc               | gtgggcatgg               | tggtgcctat               | actgcaccat               | ctctgcggct               | gggacgtctg               | 2640       |
| gtactgtttt               | catctgtgcc               | tggcatggct               | acctttgctg               | gcccgcagcc               | gacgcagcgc               | 2700       |

| ccaaactctc | ccttatgatg | ccttcgtggt | gttcgataag | gcacagagcg | cagttgccga | 2760 |
|------------|------------|------------|------------|------------|------------|------|
| ctgggtgtat | aacgagctgc | gggtgcggct | ggaggagcgg | cgcggtcgcc | gagccctacg | 2820 |
| cttgtgtctg | gaggaccgag | attggctgcc | tggccagacg | ctcttcgaga | acctctgggc | 2880 |
| ttccatctat | gggagccgca | agactctatt | tgtgctggcc | cacacggacc | gcgtcagtgg | 2940 |
| cctcctgcgc | accagcttcc | tgctggctca | gcagcgcctg | ttggaagacc | gcaaggacgt | 3000 |
| ggtggtgttg | gtgatcctgc | gtccggatgc | ccaccgctcc | cgctatgtgc | gactgcgcca | 3060 |
| gcgtctctgc | cgccagagtg | tgctcttctg | gccccagcag | cccaacgggc | aggggggctt | 3120 |
| ctgggcccag | ctgagtacag | ccctgactag | ggacaaccgc | cacttctata | accagaactt | 3180 |
| ctgccgggga | cctacagcag | aatagctcag | agcaacagct | ggaaacagct | gcatcttcat | 3240 |
| gcctggttcc | cgagttgctc | tgcctgcctt | gctctgtctt | actacaccgc | tatttggcaa | 3300 |
| gtgcgcaata | tatgctacca | agccaccagg | cccacggagc | aaaggttggc | agtaaagggt | 3360 |
| agttttcttc | ccatgcatct | ttcaggagag | tgaagataga | caccagaccc | acacagaaca | 3420 |
| ggactggagt | tcattctctg | ccctccacc  | ccactttgcc | tgtctctgta | t          | 3471 |

<210> 72 <211> 1032 <212> PRT

<213> murine

<400> 72

Met Val Leu Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 25 ·

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ala Ser Cys Ser Asn

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser

# WO 2004/094671 - 168 - PCT/US2004/012788

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala 155 Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly 170 Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro 185 Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr 200 Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr 215 Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu 230 Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg 250 Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser 260 Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly 280 Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe 295 Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu 310 Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala Leu Arq Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Glu Glu Glu

Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser

Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu

455

#### WO 2004/094671 - 169 - PCT/US2004/012788

470 475 Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp 520 Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu 535 Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe 550 555 Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser 570 Met Leu His Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val 585 Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr 665 Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn 680 Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu 695 Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala 710 715 Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly 760 Ala Ala Phe Val Asp Leu Leu Glu Val Gln Thr Lys Val Pro Gly 775 Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser 385 390 395 400 Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala 405 410 415

Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr 420 425 430

Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Glu Glu 435 440 445

Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser 450 455 460

Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu 465 470 475 480

Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu 485 490 495

Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala 500 505 510

Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp 515 520 525

Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu 530 535 540

Leu Pro Gln Leu Gln Ala Leu Asp Leu Gly Tyr Asn Ser Gln Pro Phe 545 . 550 555 560

Ser Ile Lys Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser 565 570 575

Met Leu His Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val 580 585 590

Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly
595 600 605

Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe 610 615 620

Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn 625 630 635 640

Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu 645 650 655

Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr 660 665 670

Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn 675 680 685

Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu 690 695 700

Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala
705 710 715 720

Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn

725 730 735

Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn
740 745 750

Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly
755 760 765

Ala Ala Phe Val Asp Leu Leu Leu Glu Val Gln Thr Lys Val Pro Gly
770 780

Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg
785 790 795 800

Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser 805 810 815

Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val 820 825 830

Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe 835 840 845

His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser 850 855 860

Ala Gln Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln 865 870 875 880

Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu 885 890 895 .

Gly Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp 900 905 910

Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr 915 920 925

Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 930 935 940

Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 945 950 955 960

Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala His 965 970 975

Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 980 985 990

Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln 995 1000 1005

Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln 1010 1015 1020

Asn Phe Cys Arg Gly Pro Thr Ala Glu 1025 1030

<210> 74

<211> 1032

<212> PRT

<213> murine <400> 74

Met Val Leu Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln
5 10 15

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 20 25 30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu 35 40 45

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ser Cys Ser Asn 50 55 60

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn 65 70 75 80

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp 85 90 95

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met
100 105 110

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu 115 120 125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser 130 135 140

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala 145 150 155 160

Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly 165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro 180 185 190

Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr 195 200 205

Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr 210 215 220

Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu 225 235 240

Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser 260 265 270

Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly 275 280 285

Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe 290 295 300

Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu 305 310 315 320

## WO 2004/094671 - 175 - PCT/US2004/012788

Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu
325 330 335

Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala 340 345 350

Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu 355 360 365

Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu 370 375 380

Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met 385 390 395 400

Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala
405 410 415

Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr 420 425 430

Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Gln Glu Glu 435 440 445

Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser 450 455 460

Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu 465 470 475 480

Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu 485 490 495

Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala 500 505 510

Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp 515 520 525

Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu 530 535 540

Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe 545 550 555 560

Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Thr His Leu Ser 565 570 575

Met Leu Gln Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val 580 585 590

Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly 595 600 605

Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe 610 615 620

Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn 625 630 635 640

Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu

645 650 Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr 665 Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn 680 Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu 695 Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn 730 Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly Ala Ala Phe Val Asp Leu Leu Glu Val Gln Thr Lys Val Pro Gly 775 Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg 795 Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser 810 Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val 825 Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser 855 Ala Gln Thr Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu 890 Glu Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr 920 Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala His

Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val

990 985 Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln 1000

Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln

Asn Phe Cys Arg Gly Pro Thr Ala Glu

<210> 75 <211> 1032 <212> PRT <213> murine

<400> 75

Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 25

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu 40

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ala Ser Cys Ser Asn

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp 90

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met 105

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu 120

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala 155

Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly

Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro

Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr

Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr

Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu 230

# WO 2004/094671 - 178 - PCT/US2004/012788

- Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg 245 250 255
- Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser 260 265 270
- Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly 275 280 285
- Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe 290 295 300
- Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu 305 310 315 320
- Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu 325 330 335
- Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala 340 345 350
- Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu 355 360 365
- Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu 370 375 380
- Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met 385 390 395 400
- Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala
  405 410 415
- Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr 420 425 430
- Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Glu Glu 435 440 445
- Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser 450. 455 460
- Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu 465 470 475 480
- Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu 485 490 495
- Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala 500 505 510
- Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp 515 520 525
- Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu 530 535 540
- Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe 545 550 555
- Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Thr His Leu Ser

## WO 2004/094671 - 179 - PCT/US2004/012788

er and a deal of the first that the first and the

565 570 Met Leu Gln Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val 585 Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe 615 Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu 650 Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu 695 Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala 710 715 Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn 725 730 Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn 745 Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly 760 Ala Ala Phe Val Asp Leu Leu Leu Glu Val Gln Thr Lys Val Pro Gly 775 Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser Ala Gln Thr Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu Glu Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp

|     |     |            | 900 |     |     |     |         | 905 |     |     |     |            | 910 |     |     |
|-----|-----|------------|-----|-----|-----|-----|---------|-----|-----|-----|-----|------------|-----|-----|-----|
| Trp | Leu | Pro<br>915 | Gly | Gln | Thr | Leu | Phe 920 | Glu | Asn | Leu | Trp | Ala<br>925 | Ser | Ile | Tyr |

Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 930 935 940

Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 945 950 955 960

Asp Arg Lys Asp Val Val Leu Val Ile Leu Arg Pro Asp Ala His
965 970 975

Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 980 985 990

Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln 995 1000 1005

Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln 1010 1015 1020

Asn Phe Cys Arg Gly Pro Thr Ala Glu 1025 1030

<210> 76

<211> 3002

<212> DNA

<213> Homo sapiens

<400> 76

gtggcttggt attcactggc aggtttcaga catttagatc tttcttttaa tgactaacac 60 catgcctatc tgtggagaag ctggcaacat gtcacacctg gaaattgttt ttcaacatta 120 atactattat ttggcagtaa tccagattgc ttttgccacc aacctgaaqa catatagagg 180 cagaaggaca ggaataattc tatttgtttc ctgttttgaa acttccatct gtaaggctat 240 caaaaggaga tgtgagagag ggtattgagt ctggcctgac aatgcagttc ttaaaccaaa 300 ggtccattat gcttctcctc tctgagaatc ctgacttacc tcaacaacgg agacatggca 360 cagtagecag ettggagaet teteagecaa tgetetgaga teaagtegaa gacecaatat 420 acagggtttt gagctcatct tcatcattca tatgaggaaa taagtggtaa aatccttgga 480 aatacaatga gactcatcag aaacatttac atattttgta gtattgttat gacagcagag 540 ggtgatgctc cagagctgcc agaagaaagg gaactgatga ccaactgctc caacatgtct 600 ctaagaaagg ttcccgcaga cttgacccca gccacaacga cactggattt atcctataac 660 ctcctttttc aactccagag ttcagatttt cattctgtct ccaaactgag agttttgatt 720 ctatgccata acagaattca acagctggat ctcaaaacct ttgaattcaa caaggagtta 780 agatatttag atttgtctaa taacagactg aagagtgtaa cttggtattt actggcaggt 840 ctcaggtatt tagatctttc ttttaatgac tttgacacca tgcctatctg tgaggaagct 900

| ggcaacatgt<br>ttccagaaaa | cacacctgga<br>ttgctcatct | aatcctaggt<br>gcatctaaat | ttgagtgggg<br>actgtcttct | caaaaataca<br>taggattcag | aaaatcagat<br>aactcttcct | 960<br>1020 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------|
| cattatgaag               | aaggtagcct               | gcccatctta               | aacacaacaa               | aactgcacat               | tgttttacca               | 1080        |
| atggacacaa               | atttctgggt               | tcttttgcgt               | gatggaatca               | agacttcaaa               | aatattagaa               | 1140        |
| atgacaaata               | tagatggcaa               | aagccaattt               | gtaagttatg               | aaatgcaacg               | aaatcttagt               | 1200        |
| ttagaaaatg               | ctaagacatc               | ggttctattg               | cttaataaag               | ttgatttact               | ctgggacgac               | 1260        |
| cttttcctta               | tcttacaatt               | tgtttggcat               | acatcagtgg               | aacactttca               | gatccgaaat               | 1320        |
| gtgacttttg               | gtggtaaggc               | ttatcttgac               | cacaattcat               | ttgactactc               | aaatactgta               | 1380        |
| atgagaacta               | taaaattgga               | gcatgtacat               | ttcagagtgt               | tttacattca               | acaggataaa               | 1440        |
| atctatttgc               | ttttgaccaa               | aatggacata               | gaaaacctga               | caatatcaaa               | tgcacaaatg               | 1500        |
| ccacacatgc               | ttttcccgaa               | ttatcctacg               | aaattccaat               | atttaaattt               | tgccaataat               | 1560        |
| atcttaacag               | acgagttgtt               | taaaagaact               | atccaactgc               | ctcacttgaa               | aactctcatt               | 1620        |
| ttgaatggca               | ataaactgga               | gacactttct               | ttagtaagtt               | gctttgctaa               | caacacaccc               | 1680        |
| ttggaacact               | tggatctgag               | tcaaaatcta               | ttacaacata               | aaaatgatga               | aaattgctca               | 1740        |
| tggccagaaa               | ctgtggtcaa               | tatgaatctg               | tcatacaata               | aattgtctga               | ttctgtcttc               | 1800        |
| aggtgcttgc               | ccaaaagtat               | tcaaatactt               | gacctaaata               | ataaccaaat               | ccaaactgta               | 1860        |
| cctaaagaga               | ctattcatct               | gatggcctta               | cgagaactaa               | atattgcatt               | taattttcta               | 1920        |
| actgatctcc               | ctggatgcag               | tcatttcagt               | agactttcag               | ttctgaacat               | tgaaatgaac               | 1980        |
| ttcattctca               | gcccatctct               | ggattttgtt               | cagagctgcc               | aggaagttaa               | aactctaaat               | 2040        |
| gcgggaagaa               | atccattccg               | gtgtacctgt               | gaattaaaaa               | atttcattca               | gcttgaaaca               | 2100        |
| tattcagagg               | tcatgatggt               | tggatggtca               | gattcataca               | cctgtgaata               | ccctttaaac               | 2160        |
| ctaaggggaa               | ttaggttaaa               | agacgttcat               | ctccacgaat               | tatcttgcaa               | cacagetetg               | 2220        |
| ttgattgtca               | ccattgtggt               | tattatgcta               | gttctggggt               | tggctgtggc               | cttctgctgt               | 2280        |
| ctccactttg               | atctgccctg               | gtatctcagg               | atgctaggtc               | aatgcacaca               | aacatggcac               | 2340        |
| agggttagga               | aaacaaccca               | agaacaactc               | aagagaaatg               | tccgattcca               | cgcatttatt               | 2400        |
| tcatacagtg               | aacatgattc               | tctgtgggtg               | aagaatgaat               | tgatccccaa               | tctagagaag               | 2460        |
| gaagatggtt               | ctatcttgat               | ttgcctttat               | gaaagctact               | ttgaccctgg               | caaaagcatt               | 2520        |
| agtgaaaata               | ttgtaagctt               | cattgagaaa               | agctataagt               | ccatctttgt               | tttgtctccc               | 2580        |
| aactttgtcc               | agaatgagtg               | gtgccattat               | gaattttact               | ttgcccacca               | caatctcttc               | 2640        |
| catgaaaatt               | ctgatcatat               | aattcttatc               | ttactggaac               | ccattccatt               | ctattgcatt               | 2700        |
| cccaccaggt               | atcataaact               | gaaagctctc               | ctggaaaaaa               | aagcatactt               | ggaatggccc               | 2760        |
| aaggataggc               | gtaaatgtgg               | gcttttctgg               | gcaaaccttc               | gagctgctat               | taatgttaat               | 2820        |

| gtattagcca | ccagagaaat | gtatgaactg | cagacattca | cagagttaaa | tgaagagtct | 2880 |
|------------|------------|------------|------------|------------|------------|------|
| cgaggttcta | caatctctct | gatgagaaca | gattgtctat | aaaatcccac | agtccttggg | 2940 |
| aagttgggga | ccacatacac | tgttgggatg | tacattgata | caacctttat | gatggcaatt | 3000 |
| tg         |            |            |            |            |            | 3002 |
|            |            |            |            |            |            |      |

<210> 77.

<211> 811

<212> PRT

<213> Homo sapiens

<400> 77

Met Arg Leu Ile Arg Asn Ile Tyr Ile Phe Cys Ser Ile Val Met Thr 1 5 10 15

Ala Glu Gly Asp Ala Pro Glu Leu Pro Glu Glu Arg Glu Leu Met Thr 20 25 30

Asn Cys Ser Asn Met Ser Leu Arg Lys Val Pro Ala Asp Leu Thr Pro 35 40 45

Ala Thr Thr Leu Asp Leu Ser Tyr Asn Leu Leu Phe Gln Leu Gln 50 55 60

Ser Ser Asp Phe His Ser Val Ser Lys Leu Arg Val Leu Ile Leu Cys 65 70 75 80

His Asn Arg Ile Gln Gln Leu Asp Leu Lys Thr Phe Glu Phe Asn Lys 85 90 95

Glu Leu Arg Tyr Leu Asp Leu Ser Asn Asn Arg Leu Lys Ser Val Thr
100 105 110

Trp Tyr Leu Leu Ala Gly Leu Arg Tyr Leu Asp Leu Ser Phe Asn Asp 115 120 125

Phe Asp Thr Met Pro Ile Cys Glu Glu Ala Gly Asn Met Ser His Leu 130 135 140

Glu Ile Leu Gly Leu Ser Gly Ala Lys Ile Gln Lys Ser Asp Phe Gln 145 150 155 160

Lys Ile Ala His Leu His Leu Asn Thr Val Phe Leu Gly Phe Arg Thr 165 170 175

Leu Pro His Tyr Glu Glu Gly Ser Leu Pro Ile Leu Asn Thr Thr Lys 180 185 190

Leu His Ile Val Leu Pro Met Asp Thr Asn Phe Trp Val Leu Leu Arg 195 200 205

Asp Gly Ile Lys Thr Ser Lys Ile Leu Glu Met Thr Asn Ile Asp Gly
210 215 220

Lys Ser Gln Phe Val Ser Tyr Glu Met Gln Arg Asn Leu Ser Leu Glu 225 230 235 240

# WO 2004/094671 - 183 - PCT/US2004/012788

- Asn Ala Lys Thr Ser Val Leu Leu Leu Asn Lys Val Asp Leu Leu Trp 245 250 255
- Asp Asp Leu Phe Leu Ile Leu Gln Phe Val Trp His Thr Ser Val Glu 260 265 270
- His Phe Gln Ile Arg Asn Val Thr Phe Gly Gly Lys Ala Tyr Leu Asp 275 280 285
- His Asn Ser Phe Asp Tyr Ser Asn Thr Val Met Arg Thr Ile Lys Leu 290 295 300
- Glu His Val His Phe Arg Val Phe Tyr Ile Gln Gln Asp Lys Ile Tyr 305 310 315 320
- Leu Leu Thr Lys Met Asp Ile Glu Asn Leu Thr Ile Ser Asn Ala 325 330 335
- Gln Met Pro His Met Leu Phe Pro Asn Tyr Pro Thr Lys Phe Gln Tyr 340 345 350
- Leu Asn Phe Ala Asn Asn Ile Leu Thr Asp Glu Leu Phe Lys Arg Thr 355 360 365
- Ile Gln Leu Pro His Leu Lys Thr Leu Ile Leu Asn Gly Asn Lys Leu 370 375 380
- Glu Thr Leu Ser Leu Val Ser Cys Phe Ala Asn Asn Thr Pro Leu Glu 385 390 395 400
- His Leu Asp Leu Ser Gln Asn Leu Leu Gln His Lys Asn Asp Glu Asn 405 410 415
- Cys Ser Trp Pro Glu Thr Val Val Asn Met Asn Leu Ser Tyr Asn Lys 420 425 430
- Leu Ser Asp Ser Val Phe Arg Cys Leu Pro Lys Ser Ile Gln Ile Leu 435 440 445
- Asp Leu Asn Asn Asn Gln Ile Gln Thr Val Pro Lys Glu Thr Ile His 450 455 460
- Leu Met Ala Leu Arg Glu Leu Asn Ile Ala Phe Asn Phe Leu Thr Asp 465 470 475 480
- Leu Pro Gly Cys Ser His Phe Ser Arg Leu Ser Val Leu Asn Ile Glu 485 490 495
- Met Asn Phe Ile Leu Ser Pro Ser Leu Asp Phe Val Gln Ser Cys Gln 500 505 510
- Glu Val Lys Thr Leu Asn Ala Gly Arg Asn Pro Phe Arg Cys Thr Cys 515 520 525
- Glu Leu Lys Asn Phe Ile Gln Leu Glu Thr Tyr Ser Glu Val Met Met 530 535 540
- Val Gly Trp Ser Asp Ser Tyr Thr Cys Glu Tyr Pro Leu Asn Leu Arg 545 550 555 560
- Gly Ile Arg Leu Lys Asp Val His Leu His Glu Leu Ser Cys Asn Thr

570 565 Ala Leu Leu Ile Val Thr Ile Val Val Ile Met Leu Val Leu Gly Leu 585 Ala Val Ala Phe Cys Cys Leu His Phe Asp Leu Pro Trp Tyr Leu Arg 600 Met Leu Gly Gln Cys Thr Gln Thr Trp His Arg Val Arg Lys Thr Thr 615 Gln Glu Gln Leu Lys Arg Asn Val Arg Phe His Ala Phe Ile Ser Tyr Ser Glu His Asp Ser Leu Trp Val Lys Asn Glu Leu Ile Pro Asn Leu 650 Glu Lys Glu Asp Gly Ser Ile Leu Ile Cys Leu Tyr Glu Ser Tyr Phe Asp Pro Gly Lys Ser Ile Ser Glu Asn Ile Val Ser Phe Ile Glu Lys 680 Ser Tyr Lys Ser Ile Phe Val Leu Ser Pro Asn Phe Val Gln Asn Glu 695 Trp Cys His Tyr Glu Phe Tyr Phe Ala His His Asn Leu Phe His Glu 715 Asn Ser Asp His Ile Ile Leu Ile Leu Leu Glu Pro Ile Pro Phe Tyr 730 Cys Ile Pro Thr Arg Tyr His Lys Leu Lys Ala Leu Leu Glu Lys Lys 745 Ala Tyr Leu Glu Trp Pro Lys Asp Arg Arg Lys Cys Gly Leu Phe Trp 760 Ala Asn Leu Arg Ala Ala Ile Asn Val Asn Val Leu Ala Thr Arg Glu 775 Met Tyr Glu Leu Gln Thr Phe Thr Glu Leu Asn Glu Glu Ser Arg Gly Ser Thr Ile Ser Leu Met Arg Thr Asp Cys Leu 805

<210> 78
<211> 2760
<212> DNA
<213> Homo sapiens

<220>
<221> misc\_feature
<222> (2529)..(2529)
<223> n is a, c, g, or t

<400> 78
aagaatttgg actcatatca agatgctctg aagaagaaca accctttagg atagccactg 60
caacatcatg accaaagaca aagaacctat tgttaaaagc ttccattttg tttgccttat 120

|            | gttggaacca<br>ggtcttattc |              |              |            |              | 180<br>240 |
|------------|--------------------------|--------------|--------------|------------|--------------|------------|
| tatgtctcag | aactacatcg               | ctgagcttca   | ggtctctgac   | atgagctttc | tatcagagtt   | 300        |
| gacagttttg | agactttccc               | ataacagaat   | ccagctactt   | gatttaagtg | ttttcaagtt   | 360        |
| caaccaggat | ttagaatatt               | tggatttatc   | tcataatcag   | ttgcaaaaga | tatcctgcca   | 420        |
| tcctattgtg | agtttcaggc               | atttagatct   | ctcattcaat   | gatttcaagg | ccctgcccat   | 480        |
| ctgtaaggaa | tttggcaact               | tatcacaact   | gaatttcttg   | ggattgagtg | ctatgaagct   | 540        |
| gcaaaaatta | gatttgctgc               | caattgctca   | cttgcatcta   | agttatatcc | ttctggattt   | 600        |
| aagaaattat | tatataaaag               | aaaatgagac   | agaaagtcta   | caaattctga | atgcaaaaac   | 660        |
| ccttcacctt | gtttttcacc               | caactagttt   | attcgctatc   | caagtgaaca | tatcagttaa   | 720        |
| tactttaggg | tgcttacaac               | tgactaatat   | taaattgaat   | gatgacaact | gtcaagtttt   | 780        |
| cattaaattt | ttatcagaac               | tcaccagagg   | tccaacctta   | ctgaatttta | ccctcaacca   | 840        |
| catagaaacg | acttggaaat               | gcctggtcag   | agtctttcaa   | tttctttggc | ccaaacctgt   | 900        |
| ggaatatctc | aatatttaca               | atttaacaat   | aattgaaagc   | attcgtgaag | aagattttac   | 960        |
| ttattctaaa | acgacattga               | aagcattgac   | aatagaacat   | atcacgaacc | aagtttttct   | 1020       |
| gttttcacag | acagctttgt               | acaccgtgtt   | ttctgagatg   | aacattatga | tgttaaccat   | 1080       |
| ttcagataca | ccttttatac               | acatgctgtg   | tcctcatgca   | ccaagcacat | tcaagttttt   | 1140       |
| gaactttacc | cagaacgttt               | tcacagatag   | tatttttgaa   | aaatgttcca | cgttagttaa   | 1200       |
| attggagaca | cttatcttac               | aaaagaatgg   | attaaaagac   | cttttcaaag | taggtctcat   | 1260       |
| gacgaaggat | atgccttctt               | tggaaatact   | ggatgttagc   | tggaattctt | tggaatctgg   | 1320       |
| tagacataaa | gaaaactgca               | cttgggttga   | gagtatagtg   | gtgttaaatt | tgtcttcaaa   | 1380       |
| tatgcttact | gactctgttt               | tcagatgttt   | acctcccagg   | atcaaggtac | ttgatcttca   | 1440       |
| cagcaataaa | ataaagagcg               | ttcctaaaca   | agtcgtaaaa   | ctggaagctt | tgcaagaact   | 1500       |
| caatgttgct | ttcaattctt               | taactgacct   | tcctggatgt   | ggcagcttta | gcagcctttc   | 1560       |
| tgtattgato | : attgatcaca             | attcagtttc   | ccacccatcg   | gctgatttct | tccagagctg   | 1620       |
| ccagaagato | g aggtcaataa             | aagcagggga   | . caatccattc | caatgtacct | gtgagctaag   | 1680       |
| agaatttgto | aaaaatatag               | accaagtato   | aagtgaagtg   | ttagagggct | ggcctgattc   | 1740       |
| ttataagtgt | gactacccag               | aaagttatag   | aggaagccca   | ctaaaggact | ttcacatgtc   | 1800       |
| tgaattatco | tgcaacataa               | ctctgctgat   | cgtcaccato   | ggtgccacca | tgctggtgtt   | 1860       |
| ggctgtgact | gtgacctccc               | : tctgcatcta | cttggatctg   | ccctggtato | : tcaggatggt | 1920       |
| gtgccagtgg | g acccagacto             | : ggcgcagggc | : caggaacata | cccttagaag | aactccaaag   | 1980       |
| aaacctcca  | g tttcatgctt             | : ttatttcata | tagtgaacat   | gattctgcct | gggtgaaaag   | 2040       |

| tgaattggta ccttacctag | aaaaagaaga   | tatacagatt | tgtcttcatg | agaggaactt | 2100 |
|-----------------------|--------------|------------|------------|------------|------|
| tgtccctggc aagagcattg | tggaaaatat   | catcaactgc | attgagaaga | gttacaagtc | 2160 |
| catctttgtt ttgtctccca | actttgtcca   | gagtgagtgg | tgccattacg | aactctattt | 2220 |
| tgcccatcac aatctctttc | atgaaggatc   | taataactta | atcctcatct | tactggaacc | 2280 |
| cattccacag aacagcattc | ccaacaagta   | ccacaagctg | aaggctctca | tgacgcagcg | 2340 |
| gacttatttg cagtggccca | aggagaaaag   | caaacgtggg | ctcttttggg | ctaacattag | 2400 |
| agccgctttt aatatgaaat | taacactagt   | cactgaaaac | aatgatgtga | aatcttaaaa | 2460 |
| aaatttagga aattcaactt | aagaaaccat   | tatttacttg | gatgatggtg | aatagtacag | 2520 |
| togtaagtna ctgtctggag | g gtgcctccat | tatcctcatg | ccttcaggaa | agacttaaca | 2580 |
| aaaacaatgt ttcatctgg  | g gaactgagct | aggcggtgag | gttagcctgc | cagttagaga | 2640 |
| cagcccagtc tcttctggt  | taatcattat   | gtttcaaatt | gaaacagtct | cttttgagta | 2700 |
| aatgctcagt ttttcagct  | ctctccactc   | tgettteeca | aatggattct | gttggtgaag | 2760 |

<210> 79

<211> 2753

<212> DNA

<213> Homo sapiens

<400> 79 agaatttgga ctcatatcaa gatgctctga agaagaacaa ccctttagga tagccactgc 60 aacatcatga ccaaagacaa agaacctatt gttaaaaagct tccattttgt ttgccttatg 120 atcataatag ttggaaccag aatccagttc tccgacggaa atgaatttgc agtagacaag 180 tcaaaaagag gtcttattca tgttccaaaa gacctaccgc tgaaaaccaa agtcttagat 240 atgtctcaga actacatcgc tgagcttcag gtctctgaca tgagctttct atcagagttg 300 acagttttga gactttccca taacagaatc cagctacttg atttaagtgt tttcaagttc 360 420 aaccaqqatt taqaatattt ggatttatct cataatcagt tgcaaaagat atcctgccat cctattgtga gtttcaggca tttagatctc tcattcaatg atttcaaggc cctgcccatc 480 tgtaaggaat ttggcaactt atcacaactg aatttcttgg gattgagtgc tatgaagctg 540 caaaaattag atttgctgcc aattgctcac ttgcatctaa gttatatcct tctggattta 600 agaaattatt atataaaaga aaatgagaca gaaagtctac aaattctgaa tgcaaaaacc 660 cttcaccttg tttttcaccc aactagttta ttcgctatcc aagtgaacat atcagttaat 720 780 ; actttagggt gcttacaact gactaatatt aaattgaatg atgacaactg tcaagttttc attaaatttt tatcagaact caccagaggt tcaaccttac tgaattttac cctcaaccac 840 ataqaaacga cttggaaatg cctggtcaga gtctttcaat ttctttggcc caaacctgtg 900

|            | atatttacaa<br>cgacattgaa |            |            |            |            | 960<br>1020 |
|------------|--------------------------|------------|------------|------------|------------|-------------|
| ttttcacaga | cagetttgta               | caccgtgttt | tctgagatga | acattatgat | gttaaccatt | 1080        |
| tcagatacac | cttttataca               | catgctgtgt | cctcatgcac | caagcacatt | caagtttttg | 1140        |
| aactttaccc | agaacgtttt               | cacagatagt | atttttgaaa | aatgttccac | gttagttaaa | 1200        |
| ttggagacac | ttatcttaca               | aaaaaatgga | ttaaaagacc | ttttcaaagt | aggtctcatg | 1260        |
| acgaaggata | tgccttcttt               | ggaaatactg | gatgttagct | ggaattcttt | ggaatctggt | 1320        |
| agacataaag | aaaactgcac               | ttgggttgag | agtatagtgg | tgttaaattt | gtcttcaaat | 1380        |
| atgcttactg | actctgtttt               | cagatgttta | cctcccagga | tcaaggtact | tgatcttcac | 1440        |
| agcaataaaa | taaagagcgt               | tcctaaacaa | gtcgtaaaac | tggaagcttt | gcaagaactc | 1500        |
| aatgttgctt | tcaattcttt               | aactgacctt | cctggatgtg | gcagctttag | cagcctttct | 1560        |
| gtattgatca | ttgatcacaa               | ttcagtttcc | cacccatcgg | ctgatttctt | ccagagctgc | 1620        |
| cagaagatga | ggtcaataaa               | agcaggggac | aatccattcc | aatgtacctg | tgagctaaga | 1680        |
| gaatttgtca | aaaatataga               | ccaagtatca | agtgaagtgt | tagagggctg | gcctgattct | 1740        |
| tataagtgtg | actacccaga               | aagttataga | ggaagcccac | taaaggactt | tcacatgtct | 1800        |
| gaattatcct | gcaacataac               | tctgctgatc | gtcaccatcg | gtgccaccat | gctggtgttg | 1860        |
| gctgtgactg | tgacctccct               | ctgcatctac | ttggatctgc | cctggtatct | caggatggtg | 1920        |
| tgccagtgga | cccagactcg               | gcgcagggcc | aggaacatac | ccttagaaga | actccaaaga | 1980        |
| aacctccagt | ttcatgcttt               | tatttcatat | agtgaacatg | attctgcctg | ggtgaaaagt | 2040        |
| gaattggtac | cttacctaga               | aaaagaagat | atacagattt | gtcttcatga | gaggaacttt | 2100        |
| gtccctggca | agagcattgt               | ggaaaatatc | atcaactgca | ttgagaagag | ttacaagtcc | 2160        |
| atctttgttt | tgtctcccaa               | ctttgtccag | agtgagtggt | gccattacga | actctatttt | 2220        |
| gcccatcaca | atctctttca               | tgaaggatct | aataacttaa | tcctcatctt | actggaaccc | 2280        |
| attccacaga | acagcattcc               | caacaagtac | cacaagctga | aggeteteat | gacgcagcgg | 2340        |
| acttatttgc | agtggcccaa               | ggagaaaagc | aaacgtgggc | tettttggge | taacattaga | 2400        |
| gccgctttta | atatgaaatt               | aacactagtc | actgaaaaca | atgatgtgaa | atcttaaaaa | 2460        |
| aatttaggaa | attcaactta               | agaaaccatt | atttacttgg | atgatggtga | atagtacagt | 2520        |
| _          | tgtctggagg               |            |            |            |            | 2580        |
|            | tcatctgggg               |            |            |            |            | 2640        |
| -          | cttctggttt               |            |            |            |            | 2700        |
| atgctcagtt | tttcagctcc               | tctccactct | gctttcccaa | atggattctg | ttg        | 2753        |

<210> 80

<211> 796

<212> PRT <213> Homo sapiens

<400> 80

Met Thr Lys Asp Lys Glu Pro Ile Val Lys Ser Phe His Phe Val Cys

Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp Gly Asn

Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val Pro Lys

Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn Tyr Ile

Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu Thr Val

Leu Arg Leu Ser His Asn Arg Ile Gln Leu Leu Asp Leu Ser Val Phe

Lys Phe Asn Gln Asp Leu Glu Tyr Leu Asp Leu Ser His Asn Gln Leu

Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu Asp Leu 120

Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe Gly Asn

Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu Gln Lys

Leu Asp Leu Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile Leu Leu

Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser Leu Gln

Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr Ser Leu

Phe Ala Ile Gln Val Asn Ile Ser Val Asn Thr Leu Gly Cys Leu Gln

Leu Thr Asn Ile Lys Leu Asn Asp Asp Asn Cys Gln Val Phe Ile Lys

Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Phe Thr Leu 250

Asn His Ile Glu Thr Thr Trp Lys Cys Leu Val Arg Val Phe Gln Phe 265

Leu Trp Pro Lys Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile

# WO 2004/094671 - 189 - PCT/US2004/012788

Ile Glu Ser Ile Arq Glu Glu Asp Phe Thr Tyr Ser Lys Thr Thr Leu 295 Lys Ala Leu Thr Ile Glu His Ile Thr Asn Gln Val Phe Leu Phe Ser 310 315 Gln Thr Ala Leu Tyr Thr Val Phe Ser Glu Met Asn Ile Met Met Leu 330 Thr Ile Ser Asp Thr Pro Phe Ile His Met Leu Cys Pro His Ala Pro 345 Ser Thr Phe Lys Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser 360 Ile Phe Glu Lys Cys Ser Thr Leu Val Lys Leu Glu Thr Leu Ile Leu 375 Gln Lys Asn Gly Leu Lys Asp Leu Phe Lys Val Gly Leu Met Thr Lys 395 Asp Met Pro Ser Leu Glu Ile Leu Asp Val Ser Trp Asn Ser Leu Glu 410 405 Ser Gly Arg His Lys Glu Asn Cys Thr Trp Val Glu Ser Ile Val Val Leu Asn Leu Ser Ser Asn Met Leu Thr Asp Ser Val Phe Arg Cys Leu Pro Pro Arg Ile Lys Val Leu Asp Leu His Ser Asn Lys Ile Lys Ser Val Pro Lys Gln Val Val Lys Leu Glu Ala Leu Gln Glu Leu Asn Val Ala Phe Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ser Phe Ser Ser Leu Ser Val Leu Ile Ile Asp His Asn Ser Val Ser His Pro Ser Ala Asp Phe Phe Gln Ser Cys Gln Lys Met Arg Ser Ile Lys Ala Gly Asp Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Glu Phe Val Lys Asn Ile Asp Gln Val Ser Ser Glu Val Leu Glu Gly Trp Pro Asp Ser Tyr Lys 555 Cys Asp Tyr Pro Glu Ser Tyr Arg Gly Ser Pro Leu Lys Asp Phe His Met Ser Glu Leu Ser Cys Asn Ile Thr Leu Leu Ile Val Thr Ile Gly 585 Ala Thr Met Leu Val Leu Ala Val Thr Val Thr Ser Leu Cys Ile Tyr 600 Leu Asp Leu Pro Trp Tyr Leu Arg Met Val Cys Gln Trp Thr Gln Thr

WO 2004/094671 615 Arg Arg Arg Ala Arg Asn Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu 630 635 Gln Phe His Ala Phe Ile Ser Tyr Ser Glu His Asp Ser Ala Trp Val 645 Lys Ser Glu Leu Val Pro Tyr Leu Glu Lys Glu Asp Ile Gln Ile Cys Leu His Glu Arg Asn Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile 680 Ile Asn Cys Ile Glu Lys Ser Tyr Lys Ser Ile Phe Val Leu Ser Pro 695 Asn Phe Val Gln Ser Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His 715 His Asn Leu Phe His Glu Gly Ser Asn Asn Leu Ile Leu Ile Leu Leu 730 Glu Pro Ile Pro Gln Asn Ser Ile Pro Asn Lys Tyr His Lys Leu Lys 745 Ala Leu Met Thr Gln Arg Thr Tyr Leu Gln Trp Pro Lys Glu Lys Ser Lys Arg Gly Leu Phe Trp Ala Asn Ile Arg Ala Ala Phe Asn Met Lys 775 Leu Thr Leu Val Thr Glu Asn Asn Asp Val Lys Ser 790 <210> 81 <211> 796 <212> PRT <213> Homo sapiens <400> 81 Met Thr Lys Asp Lys Glu Pro Ile Val Lys Ser Phe His Phe Val Cys

Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp Gly Asn

Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val Pro Lys

Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn Tyr Ile

Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu Thr Val

Leu Arg Leu Ser His Asn Arg Ile Gln Leu Leu Asp Leu Ser Val Phe 90

Lys Phe Asn Gln Asp Leu Glu Tyr Leu Asp Leu Ser His Asn Gln Leu 105 100

### WO 2004/094671 - 191 - PCT/US2004/012788

- Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu Asp Leu 115 120 125
- Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe Gly Asn 130 135 140
- Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu Gln Lys 145 150 155 160
- Leu Asp Leu Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile Leu Leu 165 170 175
- Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser Leu Gln 180 185 190
- Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr Ser Leu
  195 200 205
- Phe Ala Ile Gln Val Asn Ile Ser Val Asn Thr Leu Gly Cys Leu Gln 210 215 220
- Leu Thr Asn Ile Lys Leu Asn Asp Asp Asn Cys Gln Val Phe Ile Lys 225 230 235
- Phe Leu Ser Glu Leu Thr Arg Gly Ser Thr Leu Leu Asn Phe Thr Leu 245 250 255
- Asn His Ile Glu Thr Thr Trp Lys Cys Leu Val Arg Val Phe Gln Phe 260 265 270
- Leu Trp Pro Lys Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile 275 280 285
- Ile Glu Ser Ile Arg Glu Glu Asp Phe Thr Tyr Ser Lys Thr Thr Leu 290 295 300
- Lys Ala Leu Thr Ile Glu His Ile Thr Asn Gln Val Phe Leu Phe Ser 305 310 315 320
- Gln Thr Ala Leu Tyr Thr Val Phe Ser Glu Met Asn Ile Met Met Leu 325 330 335
- Thr Ile Ser Asp Thr Pro Phe Ile His Met Leu Cys Pro His Ala Pro 340 345 350
- Ser Thr Phe Lys Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser 355 360 365
- Ile Phe Glu Lys Cys Ser Thr Leu Val Lys Leu Glu Thr Leu Ile Leu 370 375 380
- Gln Lys Asn Gly Leu Lys Asp Leu Phe Lys Val Gly Leu Met Thr Lys 385 390 395
- Asp Met Pro Ser Leu Glu Ile Leu Asp Val Ser Trp Asn Ser Leu Glu 405 410 415
- Ser Gly Arg His Lys Glu Asn Cys Thr Trp Val Glu Ser Ile Val Val 420 425 430
- Leu Asn Leu Ser Ser Asn Met Leu Thr Asp Ser Val Phe Arg Cys Leu

Pro Pro Arg Ile Lys Val Leu Asp Leu His Ser Asn Lys Ile Lys Ser 450 455 460

Val Pro Lys Gln Val Val Lys Leu Glu Ala Leu Gln Glu Leu Asn Val 465 470 475 480

Ala Phe Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ser Phe Ser Ser 485 490 495

Leu Ser Val Leu Ile Ile Asp His Asn Ser Val Ser His Pro Ser Ala 500 505 510

Asp Phe Phe Gln Ser Cys Gln Lys Met Arg Ser Ile Lys Ala Gly Asp 515 520 525

Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Glu Phe Val Lys Asn Ile 530 535 540

Asp Gln Val Ser Ser Glu Val Leu Glu Gly Trp Pro Asp Ser Tyr Lys 545 550 555 560

Cys Asp Tyr Pro Glu Ser Tyr Arg Gly Ser Pro Leu Lys Asp Phe His 565 570 575

Met Ser Glu Leu Ser Cys Asn Ile Thr Leu Leu Ile Val Thr Ile Gly 580 585 590

Ala Thr Met Leu Val Leu Ala Val Thr Val Thr Ser Leu Cys Ile Tyr 595 600 605

Leu Asp Leu Pro Trp Tyr Leu Arg Met Val Cys Gln Trp Thr Gln Thr 610 615 620

Arg Arg Arg Ala Arg Asn Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu 625 630 635 640

Gln Phe His Ala Phe Ile Ser Tyr Ser Glu His Asp Ser Ala Trp Val 645 650 655

Lys Ser Glu Leu Val Pro Tyr Leu Glu Lys Glu Asp Ile Gln Ile Cys 660 665 670

Leu His Glu Arg Asn Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile 675 680 685

Ile Asn Cys Ile Glu Lys Ser Tyr Lys Ser Ile Phe Val Leu Ser Pro 690 695 700

Asn Phe Val Gln Ser Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His 705 710 715 720

His Asn Leu Phe His Glu Gly Ser Asn Asn Leu Ile Leu Ile Leu Leu 725 730 735

Glu Pro Ile Pro Gln Asn Ser Ile Pro Asn Lys Tyr His Lys Leu Lys
740 745 750

Ala Leu Met Thr Gln Arg Thr Tyr Leu Gln Trp Pro Lys Glu Lys Ser

Lys Arg Gly Leu Phe Trp Ala Asn Ile Arg Ala Ala Phe Asn Met Lys

775 Leu Thr Leu Val Thr Glu Asn Asn Asp Val Lys Ser 790

<210> 82 . <211> 796 . <212> PRT . <213> Homo sapiens

<400> 82

Met Thr Lys Asp Lys Glu Pro Ile Val Lys Ser Phe His Phe Val Cys

Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp Gly Asn

Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val Pro Lys 40

Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn Tyr Ile

Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu Thr Val 70

Leu Arg Leu Ser His Asn Arg Ile Gln Leu Leu Asp Leu Ser Val Phe

Lys Phe Asn Gln Asp Leu Glu Tyr Leu Asp Leu Ser His Asn Gln Leu

Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu Asp Leu 120

Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe Gly Asn 130

Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu Gln Lys

Leu Asp Leu Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile Leu Leu 170

Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser Leu Gln

Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr Ser Leu

Phe Ala Ile Gln Val Asn Ile Ser Val Asn Thr Leu Gly Cys Leu Gln

Leu Thr Asn Ile Lys Leu Asn Asp Asp Asn Cys Gln Val Phe Ile Lys 235

Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Phe Thr Leu 250

Asn His Ile Glu Thr Thr Trp Lys Cys Leu Val Arg Val Phe Gln Phe 265 260

# WO 2004/094671 - 194 - PCT/US2004/012788

- Leu Trp Pro Lys Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile 275 280 285
- Ile Glu Ser Ile Arg Glu Glu Asp Phe Thr Tyr Ser Lys Thr Thr Leu 290 295 300
- Lys Ala Leu Thr Ile Glu His Ile Thr Asn Gln Val Phe Leu Phe Ser 305 310 315 320
- Gln Thr Ala Leu Tyr Thr Val Phe Ser Glu Met Asn Ile Met Met Leu 325 330 335
- Thr Ile Ser Asp Thr Pro Phe Ile His Met Leu Cys Pro His Ala Pro 340 345 350
- Ser Thr Phe Lys Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser 355 360 365
- Ile Phe Glu Lys Cys Ser Thr Leu Val Lys Leu Glu Thr Leu Ile Leu 370 375 380
- Gln Lys Asn Gly Leu Lys Asp Leu Phe Lys Val Gly Leu Met Thr Lys 385 390 395 400
- Asp Met Pro Ser Leu Glu Ile Leu Asp Val Ser Trp Asn Ser Leu Glu 405 410 415
- Ser Gly Arg His Lys Glu Asn Cys Thr Trp Val Glu Ser Ile Val Val 420 425 430
- Leu Asn Leu Ser Ser Asn Met Leu Thr Asp Ser Val Phe Arg Cys Leu 435 440 445
- Pro Pro Arg Ile Lys Val Leu Asp Leu His Ser Asn Lys Ile Lys Ser 450 455 460
- Val Pro Lys Gln Val Val Lys Leu Glu Ala Leu Gln Glu Leu Asn Val 465 470 475 480
- Ala Phe Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ser Phe Ser Ser 485 490 495
- Leu Ser Val Leu Ile Ile Asp His Asn Ser Val Ser His Pro Ser Ala 500 505 510
- Asp Phe Phe Gln Ser Cys Gln Lys Met Arg Ser Ile Lys Ala Gly Asp 515 520 525
- Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Glu Phe Val Lys Asn Ile 530 535 540
- Asp Gln Val Ser Ser Glu Val Leu Glu Gly Trp Pro Asp Ser Tyr Lys 545 550 555
- Cys Asp Tyr Pro Glu Ser Tyr Arg Gly Ser Pro Leu Lys Asp Phe His 565 570 575
- Met Ser Glu Leu Ser Cys Asn Ile Thr Leu Leu Ile Val Thr Ile Gly 580 585 590
- Ala Thr Met Leu Val Leu Ala Val Thr Val Thr Ser Leu Cys Ile Tyr

| Leu                      | Asp<br>610 | 595<br>Leu                | Pro        | Trp        | Tyr        | Leu<br>615 | Arg        | Met        | Val        | Cys        | Gln<br>620 | Trp        | Thr        | Gln        | Thr        |     |     |
|--------------------------|------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|-----|
| Arg<br>625               | Arg        | Arg                       | Ala        | Arg        | Asn<br>630 | Ile        | Pro        | Leu        | Glu        | Glu<br>635 | Leu        | Gln        | Arg        | Asn        | Leu<br>640 |     |     |
| Gln                      | Phe        | His                       | Ala        | Phe<br>645 | Ile        | Ser        | Tyr        | Ser        | Glu<br>650 | His        | Asp        | Ser        | Ala        | Trp<br>655 | Val        |     |     |
| Lys                      | Ser        | Glu                       | Leu<br>660 | Val        | Pro        | Tyr        | Leu        | Glu<br>665 | Lys        | Glu        | Asp        | Ile        | Gln<br>670 | Ile        | Cys        |     |     |
| Leu                      | His        | Glu<br>675                | Arg        | Asn        | Phe        | Val        | Pro<br>680 | Gly        | Lys        | Ser        | Ile        | Val<br>685 | Glu        | Asn        | Ile        |     |     |
| Ile                      | Asn<br>690 | Cys                       | Ile        | Glu        | Lys        | Ser<br>695 | .Tyr       | ГÀв        | Ser        | Ile        | Phe<br>700 | Val        | Leu        | Ser        | Pro        |     |     |
| Asn<br>705               | Phe        | Val                       | Gln        | Ser        | Glu<br>710 | Trp        | Суз        | His        | Tyr        | Glu<br>715 | Leu        | Tyr        | Phe        | Ala        | His<br>720 |     |     |
| His                      | Asn        | Leu                       | Phe        | His<br>725 | Glu        | Gly        | Ser        | Asn        | Asn<br>730 | Leu        | Ile        | Leu        | Ile        | Leu<br>735 | Leu        |     |     |
| Glu                      | Pro        | Ile                       | Pro<br>740 | Gln        | Asn        | Ser        | Ile        | Pro<br>745 | Asn        | Lys        | Tyr        | His        | Lys<br>750 | Leu        | Lys        |     |     |
| Ala                      | Leu        | Met<br>755                |            | Gln        | Arg        | Thr        | Tyr<br>760 | Leu        | Gln        | Trp        | Pro        | Lys<br>765 |            | Lys        | Ser        |     |     |
| Lys                      | Arg<br>770 | Gly                       | Leu        | Phe        | Trp        | Ala<br>775 |            | Ile        | Arg        | Ala        | Ala<br>780 |            | Asn        | Met        | Lys        |     |     |
| Ьeu<br>785               |            | Leu                       | Val        | Thr        | Glu<br>790 |            | Asn        | Asp        | Val        | Lys<br>795 |            |            |            |            |            |     |     |
| <21<br><21<br><21<br><21 | 1><br>2>   | 83<br>2604<br>DNA<br>muri |            |            |            |            |            |            |            |            |            |            |            |            |            |     |     |
| <40<br>aag               |            | 83<br>aat                 | gctg       | tgaa       | .ga a      | .tggt      | aaag       | t co       | ctct       | ggga       | . tag      | cctc       | tgc        | aaca       | tgagcc     |     | 60  |
| aag                      | acag       | aaa                       | acco       | atcg       | tg g       | ggag       | tttc       | c ac       | tttg       | tttg       | cgo        | cctg       | gcc        | ttaa       | tagtcg     | 1   | 20  |
| gaa                      | gcat       | gac                       | cccg       | ttct       | ct a       | atga       | actt       | g ag       | tcta       | tggt       | aga        | ctat       | tca        | aaca       | ggaacc     | 1   | .80 |
| tta                      | ctca       | tgt                       | cccc       | aaag       | ac c       | tgcc       | acca       | ıa ga      | acaa       | aago       | cct        | gagt       | ctg        | tctc       | aaaact     | 2   | 40  |
| cta                      | tato       | tga                       | gctt       | cgga       | itg d      | ctga       | tato       | a go       | tttc       | tgto       | aga        | gctg       | jaga       | gtto       | tgagac     | 3   | 00  |
| tct                      | .ccca      | caa                       | cagg       | gatac      | gg a       | gcct       | tgat       | t to       | catg       | tatt       | ctt        | gtto       | aat        | cagg       | gacttag    | . 3 | 60  |
| aat                      | acct       | gga                       | tgto       | ctcac      | ac a       | atco       | gtts       | jc aa      | aaca       | tete       | ttg        | gctgc      | cct        | atgg       | cgagcc     | 4   | 20  |
| tga                      | ıggca      | itct                      | agad       | ctct       | ca t       | tcaa       | atgad      | t tt       | gate       | tact       | gc:        | tgtg       | gtgt       | aagg       | gaatttg    | 4   | 80  |

gcaacctgac gaagctgact ttcctgggat taagtgctgc caagttccga caactggatc

540

| tgctcccagt<br>taaaaggcgg | tgctcacttg<br>ggaaacagaa | catctaagct gagtcttcaga | gcattcttct<br>ttcccaatac | ggacttagtg<br>caccgttctc | agtcatcata<br>catttggtct | 600<br>660 |
|--------------------------|--------------------------|------------------------|--------------------------|--------------------------|--------------------------|------------|
| ttcatccaaa               | tagcttgttc               | tetgttcaag             | tgaacatgtc .             | tgtaaacgct               | ttaggacatt               | 720        |
| tacaactgag               | taatattaaa               | ttgaatgatg             | aaaactgtca               | aaggttaatg               | acatttttat               | 780        |
| cagaactcac               | cagaggtcca               | accttattga             | atgtgaccct               | ccagcacata               | gaaacaacct               | 840        |
| ggaagtgctc               | ggttaaactt               | ttccaattct             | tttggccccg               | accggtggag               | tacctcaata               | 900        |
| tttacaactt               | aacgataact               | gagagaatcg             | acagggaaga               | atttacttac               | tcggagacag               | 960        |
| cactgaagtc               | actgatgata               | gagcacgtca             | aaaaccaagt               | gttcctcttt               | tcaaaggagg               | 1020       |
| cgctatactc               | ggtgtttgct               | gagatgaaca             | tcaagatgct               | ctctatctca               | gacacccctt               | 1080       |
| tcatccacat               | ggtgtgcccg               | ccatccccaa             | gctcatttac               | atttctgaac               | tttacccaga               | 1140       |
| atgttttac                | tgacagtgtt               | tttcaaggct             | gttccacctt               | aaagagattg               | cagacactta               | 1200       |
| tcttacaaag               | gaatggtttg               | aagaactttt             | ttaaagtagc               | tctcatgact               | aagaatatgt               | 1260       |
| cctctctgga               | aactttggat               | gttagtttga             | attctttgaa               | ctctcatgca               | tatgacagga               | 1320       |
| catgcgcctg               | ggctgagagc               | atattggtgt             | tgaatttgtc               | ttcgaatatg               | cttacaggct               | 1380       |
| ctgtcttcag               | g atgcttacct             | cccaaggtca             | aggtccttga               | ccttcacaac               | aacaggataa               | 1440       |
| tgagcatcco               | taaagatgtc               | acccacctgc             | aggctttgca               | ggaactcaat               | gtagcatcca               | 1500       |
| actccttaac               | tgaccttcct               | gggtgtgggg             | ccttcagcag               | cctttctgtg               | ctggtcatcg               | 1560       |
| accataacto               | c agtttcccat             | ccctctgagg             | atttcttcca               | gagctgtcag               | aatattagat               | 1620       |
| ccctaacag                | c gggaaacaac             | ccattccaat             | gcacatgtga               | gctgagggac               | tttgtcaaga               | 1680       |
| acataggct                | g ggtagcaaga             | gaagtggtgg             | agggctggcc               | tgactcttac               | aggtgtgact               | 1740       |
| acccagaaa                | g ctctaaggga             | actgcactga             | gggacttcca               | catgtctcca               | ctgtcctgtg               | 1800       |
| atactgttc                | t gctgactgtc             | accategggg             | ccactatgct               | ggtgctggct               | gtcactgggg               | 1860       |
| ctttcctct                | g tctctacttt             | gacctgccct             | ggtatgtgag               | g gatgctgtgt             | cagtggacac               | 1920       |
| agaccaggc                | a cagggccagg             | g cacatcccct           | : tagaggaact             | ccagagaaac               | ctccagttcc               | 1980       |
| atgcttttg                | t ctcatacagt             | gagcatgatt             | ctgcctgggt               | gaagaacgaa               | ttactaccca               | 2040       |
| acctagaga                | a agatgacato             | c cgggtttgcc           | tccatgagag               | g gaactttgto             | : cctggcaaga             | 2100       |
| gcattgtgg                | a gaacatcat              | c aatttcatto           | g agaagagtta             | a caaggccato             | : tttgtgctgt             | 2160       |
| ctccccact                | t catccagagi             | t gagtggtgco           | attatgaact               | t ctattttgcc             | catcataatc               | 2220       |
| tcttccatg                | a aggetetga              | t aacttaatco           | c tcatcttgc              | t ggaacccatt             | ctacagaaca               | 2280       |
| acattccca                | g tagatacca              | c aagctgcggg           | g ctctcatgg              | c acageggaet             | tacttggaat               | 2340       |
|                          |                          |                        |                          |                          | t tcatttatta             | 2400       |
| tgaagttag                | c cttagtcaa              | t gaggatgat            | g tgaaaactt              | g aaacttgggf             | t ttctaactta             | 2460       |

WO 2004/094671 - 197 - PCT/US2004/012788

| ataaactgtc | aacctgggct | ctcatgaaca | ctgtggtttt | cagttcctac | ctggaggtac | 2520 |
|------------|------------|------------|------------|------------|------------|------|
| ttctgttgtg | gtgtcttagt | ttgctctgtg | cttatgataa | ataacatgtt | tagaagtagt | 2580 |
| ttatgaaggt | gctaagttca | ttaa       |            |            |            | 2604 |

<210> 84

<211> 2604

<212> DNA

<213> murine

<400> 84

aagtaaaaat getgtgaaga atggtaaagt ceetetggga tageetetge aacatgagee 60 aagacagaaa acccatcgtg gggagtttcc actttgtttg cgccctggcc ttaatagtcg 120 gaagcatgac cccgttctct aatgaacttg agtctatggt agactattca aacaggaacc 180 240 ttactcatgt ccccaaagac ctgccaccaa gaacaaaagc cctgagtctg tctcaaaact 300 ctatatctqa qcttcggatg cctgatatca gctttctgtc agagctgaga gttctgagac tctcccacaa caggatacgg agccttgatt tccatgtatt cttgttcaat caggacttag 360 aatacctgga tgtctcacac aatcggttgc aaaacatctc ttgctgccct atggcgagcc 420 tgaggcatct agacctctca ttcaatgact ttgatgtact gcctgtgtgt aaggaatttg 480 gcaacctgac gaagctgact ttcctgggat taagtgctgc caagttccga caactggatc 540 tgctcccagt tgctcacttg catctaagct gcattcttct ggacttagtg agtcatcata 600 660 taaaaggcgg ggaaacagaa agtcttcaga ttcccaatac caccgttctc catttggtct 720 ttcatccaaa tagcttgttc tctgttcaag tgaacatgtc tgtaaacgct ttaggacatt tacaactgag taatattaaa ttgaatgatg aaaactgtca aaggttaatg acatttttat 780 840 cagaactcac cagaggtcca accttattga atgtgaccct ccagcacata gaaacaacct ggaagtgctc ggttaaactt ttccaattct tttggccccg accggtggag tacctcaata 900 960 tttacaactt aacgataact gagagaatcg acagggaaga atttacttac tcggagacag cactgaagtc actgatgata gagcacgtca aaaaccaagt gttcctcttt tcaaaggagg 1020 cgctatactc ggtgtttgct gagatgaaca tcaagatgct ctctatctca gacacccctt 1080 tcatccacat ggtgtgcccg ccatccccaa gctcatttac atttctgaac tttacccaga 1140 atgtttttac tgacagtgtt tttcaaggct gttccacctt aaagagattg cagacactta 1200 tottacaaag gaatggtttg aagaactttt ttaaagtagc totcatgact aagaatatgt 1260 cctctctgga aactttggat gttagtttga attctttgaa ctctcatgca tatgacagga 1320 catgcgcctg ggctgagagc atattggtgt tgaatttgtc ttcgaatatg cttacaggct 1380 ctgtcttcag atgcttacct cccaaggtca aggtccttga ccttcacaac aacaggataa 1440

WO 2004/094671 - 198 - PCT/US2004/012788

| tgagcatccc<br>actccttaac | taaagatgtc<br>tgaccttcct | acccacctgc<br>gggtgtgggg | aggetttgea<br>cetteageag | ggaactcaat<br>cctttctgtg | gtagcatcca<br>ctggtcatcg | 1500<br>1560 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| accataactc               | agtttcccat               | ccctctgagg               | atttcttcca               | gagctgtcag               | aatattagat               | 1620         |
| ccctaacagc               | gggaaacaac               | ccattccaat               | gcacatgtga               | gctgagggac               | tttgtcaaga               | 1680         |
| acataggctg               | ggtagcaaga               | gaagtggtgg               | agggctggcc               | tgactcttac               | aggtgtgact               | 1740         |
| acccagaaag               | ctctaaggga               | actgcactga               | gggacttcca               | catgtctcca               | ctgtcctgtg               | 1800         |
| atactgttct               | gctgactgtc               | accatcgggg               | ccactatgct               | ggtgctggct               | gtcactgggg               | 1860         |
| ctttcctctg               | tetetaettt               | gacctgccct               | ggtatgtgag               | gatgctgtgt               | cagtggacac               | 1920         |
| agaccaggca               | cagggccagg               | cacatcccct               | tagaggaact               | ccagagaaac               | ctccagttcc               | 1980         |
| atgcttttgt               | ctcatacagt               | gagcatgatt               | ctgcctgggt               | gaagaacgaa               | ttactaccca               | 2040         |
| acctagagaa               | agatgacatc               | cgggtttgcc               | tccatgagag               | gaactttgtc               | cctggcaaga               | 2100         |
| gcattgtgga               | gaacatcatc               | aatttcattg               | agaagagtta               | caaggccatc               | tttgtgctgt               | 2160         |
| ctccccactt               | catccagagt               | gagtggtgcc               | attatgaact               | ctattttgcc               | catcataatc               | 2220         |
| tcttccatga               | aggctctgat               | aacttaatcc               | tcatcttgct               | ggaacccatt               | ctacagaaca               | 2280         |
| acattcccag               | tagataccac               | aagctgcggg               | ctctcatggc               | acagcggact               | tacttggaat               | 2340         |
| ggcctactga               | gaagggcaaa               | cgtgggctgt               | tttgggccaa               | ccttagagct               | tcatttatta               | 2400         |
| tgaagttagc               | cttagtcaat               | gaggatgatg               | tgaaaacttg               | aaacttgggt               | ttctaactta               | 2460         |
| ataaactgtc               | aacctgggct               | ctcatgaaca               | ctgtggtttt               | cagttcctac               | ctggaggtac               | 2520         |
| ttctgttgtg               | gtgtcttagt               | ttgctctgtg               | cttatgataa               | ataacatgtt               | tagaagtagt               | 2580         |
| ttatgaaggt               | gctaagttca               | ttaa                     |                          |                          |                          | 2604         |

<210> 85

<211> 2421

<212> DNA

<213> murine

<400> 85 atggtaaagt ccctctggga tagcctctgc aacatgagcc aagacagaaa acccatcgtg 60 gggagtttcc actttgtttg cgccctggcc ttaatagtcg gaagcatgac cccgttctct 120 180 aatgaacttg agtctatggt agactattca aacaggaacc ttactcatgt ccccaaagac ctgccaccaa gaacaaaagc cctgagtctg tctcaaaact ctatatctga gcttcggatg 240 cctgatatca gctttctgtc agagctgaga gttctgagac tctcccacaa caggatacgg 300 agcettgatt tecatgtatt ettgtteaat caggaettag aatacetgga tgteteacae 360 aatcggttgc aaaacatctc ttgctgccct atggcgagcc tgaggcatct agacctctca 420 480 ttcaatgact ttgatgtact gcctgtgtgt aaggaatttg gcaacctgac gaagctgact

| ttcctgggat<br>catctaagct | taagtgctgc<br>gcattcttct | aaagttccga<br>ggacttagtg | caactggatc<br>agttatcata | tgctcccagt<br>taaaaggcgg | tgctcacttg<br>ggaaacagaa | 540<br>600 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| agtcttcaga               | ttcccaatac               | caccgttctc               | catttggtct               | ttcatccaaa               | tagcttgttc               | 660        |
| tctgttcaag               | tgaacatgtc               | tgtaaacgct               | ttaggacatt               | tacaactgag               | taatattaaa               | 720        |
| ttgaatgatg               | aaaactgtca               | aaggttaatg               | acatttttat               | cagaactcac               | cagaggtcca               | 780        |
| accttattga               | atgtgaccct               | ccagcacata               | gaaacaacct               | ggaagtgctc               | ggttaaactt               | 840        |
| ttccaattct               | tttggccccg               | accggtggag               | tacctcaata               | tttacaactt               | aacgataact               | 900        |
| gagagaatcg               | acagggaaga               | atttacttac               | tcggagacag               | cactgaagtc               | actgatgata               | 960        |
| gagcacgtca               | aaaaccaagt               | gttcctcttt               | tcaaaggagg               | cgctatactc               | ggtgtttgct               | 1020       |
| gagatgaaca               | tcaagatgct               | ctctatctca               | gacacccctt               | tcatccacat               | ggtgtgcccg               | 1080       |
| ccatccccaa               | gctcatttac               | atttctgaac               | tttacccaga               | atgtttttac               | tgacagtgtt               | 1140       |
| tttcaaggct               | gttccacctt               | aaagagattg               | cagacactta               | tcttacaaag               | gaatggtttg               | 1200       |
| aagaactttt               | ttaaagtagc               | tctcatgact               | aagaatatgt               | cctctctgga               | aactttggat               | 1260       |
| gttagtttga               | attctttgaa               | ctctcatgca               | tatgacagga               | catgcgcctg               | ggctgagagc               | 1320       |
| atattggtgt               | tgaatttgtc               | ttcgaatatg               | cttacaggct               | ctgtcttcag               | atgcttacct               | 1380       |
| cccaaggtca               | aggtccttga               | ccttcacaac               | aacaggataa               | tgagcatccc               | taaagatgtc               | 1440       |
| acccacctgc               | aggctttgca               | ggaactcaat               | gtagcatcca               | actccttaac               | tgaccttcct               | 1500       |
| gggtgtgggg               | ccttcagcag               | cctttctgtg               | ctggtcatcg               | accataactc               | agtttcccat               | 1560       |
| ccctctgagg               | atttcttcca               | gagctgtcag               | aatattagat               | ccctaacagc               | gggaaacaac               | 1620       |
| ccattccaat               | gcacatgtga               | gctgagggac               | tttgtcaaga               | acataggctg               | ggtagcaaga               | 1680       |
| gaagtggtgg               | agggctggcc               | tgactcttac               | aggtgtgact               | acccagaaag               | ctctaaggga               | 1740       |
| actgcactga               | gggacttcca               | catgtctcca               | ctgtcctgtg               | atactgttct               | gctgactgtc               | 1800       |
| accatcgggg               | ccactatgct               | ggtgctggct               | gtcactgggg               | ctttcctctg               | tctctacttt               | 1860       |
| gacctgccct               | ggtatgtgag               | gatgctgtgt               | cagtggacac               | agaccaggca               | cagggccagg               | 1920       |
| cacatcccct               | : tagaggaact             | ccagagaaac               | ctccagttcc               | atgcttttgt               | ctcatacagt               | 1980       |
| gagcatgatt               | . ctgcctgggt             | gaagaacgaa               | ttactaccca               | acctagagaa               | agatgacatc               | 2040       |
| cgggtttgcc               | tccatgagag               | gaactttgtc               | cctggcaaga               | gcattgtgga               | gaacatcatc               | 2100       |
| aatttcatto               | g agaagagtta             | caaggccatc               | tttgtgctgt               | ctccccactt               | catccagagt               | 2160       |
| gagtggtgco               | attatgaact               | ctattttgcc               | catcataatc               | tcttccatga               | aggctctgat               | 2220       |
| aacttaatco               | tcatcttgct               | ggaacccatt               | ctacagaaca               | acattcccag               | tagataccac               | 2280       |
| aagctgcggg               | g ctctcatggc             | acageggaet               | tacttggaat               | ggcctactga               | gaagggcaaa               | 2340       |
| cgtgggctgt               | tttgggccaa               | ccttagagct               | tcatttatta               | tgaagttago               | cttagtcaat               | 2400       |

gaggatgatg tgaaaacttg a

2421

<210> 86

<211> 806

<212> PRT

<213> murine

<400> 86

Met Val Lys Ser Leu Trp Asp Ser Leu Cys Asn Met Ser Gln Asp Arg 1 5 10 15

Lys Pro Ile Val Gly Ser Phe His Phe Val Cys Ala Leu Ala Leu Ile 20 25 30

Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu Glu Ser Met Val Asp 35 40 45

Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys Asp Leu Pro Pro Arg 50 55 60

Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile Ser Glu Leu Arg Met 65 70 75 80

Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val Leu Arg Leu Ser His 85 90 95

Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe Leu Phe Asn Gln Asp 100 105 110

Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu Gln Asn Ile Ser Cys 115 120 125

Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu Ser Phe Asn Asp Phe 130 140

Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn Leu Thr Lys Leu Thr 145 150 155 160

Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln Leu Asp Leu Leu Pro 165 170 175

Val Ala His Leu His Leu Ser Cys Ile Leu Leu Asp Leu Val Ser His 180 185 190

His Ile Lys Gly Gly Glu Thr Glu Ser Leu Gln Ile Pro Asn Thr Thr 195 200 205

Val Leu His Leu Val Phe His Pro Asn Ser Leu Phe Ser Val Gln Val 210 215 220

Asn Met Ser Val Asn Ala Leu Gly His Leu Gln Leu Ser Asn Ile Lys 225 230 235 240

Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr Phe Leu Ser Glu Leu 245 250 255

Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu Gln His Ile Glu Thr 260 265 270

### WO 2004/094671 - 201 - PCT/US2004/012788

2 - 20 Carl 10

- Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe Phe Trp Pro Arg Pro 275 280 285
- Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile Thr Glu Arg Ile Asp 290 295 300
- Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu Lys Ser Leu Met Ile 305 310 315 320
- Glu His Val Lys Asn Gln Val Phe Leu Phe Ser Lys Glu Ala Leu Tyr 325 330 335
- Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu Ser Ile Ser Asp Thr 340 345 350
- Pro Phe Ile His Met Val Cys Pro Pro Ser Pro Ser Ser Phe Thr Phe 355 360 365
- Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Val Phe Gln Gly Cys 370 375 380
- Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu Gln Arg Asn Gly Leu 385 390 395 400
- Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys Asn Met Ser Ser Leu 405 410 415
- Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp 420 425 430
- Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val Leu Asn Leu Ser Ser 435 440 445
- Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys 450 455 460
- Val Leu Asp Leu His Asn Asn Arg Ile Met Ser Ile Pro Lys Asp Val 465 470 475 480
- Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val Ala Ser Asn Ser Leu 485 490 495
- Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val 500 505 510
- Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser 515 520 525
- Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys 530 535 540
- Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg 545 550 555 560
- Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg Cys Asp Tyr Pro Glu 565 570 575
- Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser 580 585 590
- Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly Ala Thr Met Leu Val

595 600 605

Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp
610 615 620

Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr Arg His Arg Ala Arg 625 630 635 640

His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe 645 650 655

Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu 660 665 670

Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys Leu His Glu Arg Asn 675 680 685

Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Phe Ile Glu 690 695 700

Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro His Phe Ile Gln Ser 705 710 715 720

Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His 725 730 735

Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Leu Glu Pro Ile Leu Gln 740 745 750

Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln 755 760 765

Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly Lys Arg Gly Leu Phe
770 780

Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys Leu Ala Leu Val Asn 785 790 795 800

Glu Asp Asp Val Lys Thr 805

<210> 87

<211> 806

<212> PRT

<213> murine

<400> 87

Met Val Lys Ser Leu Trp Asp Ser Leu Cys Asn Met Ser Gln Asp Arg 1 5 10 15

Lys Pro Ile Val Gly Ser Phe His Phe Val Cys Ala Leu Ala Leu Ile 20 25 30

Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu Glu Ser Met Val Asp 35 40 45

Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys Asp Leu Pro Pro Arg 50 55 60

Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile Ser Glu Leu Arg Met 65 70 75 80

#### WO 2004/094671 - 203 - PCT/US2004/012788

- Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val Leu Arg Leu Ser His 90 95

  Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe Leu Phe Asn Gln Asp 100 100 100 100 100 100 100
- Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu Gln Asn Ile Ser Cys 115 120 125
- Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu Ser Phe Asn Asp Phe 130 135 140
- Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn Leu Thr Lys Leu Thr 145 150 155 160
- Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln Leu Asp Leu Leu Pro 165 170 175
- Val Ala His Leu His Leu Ser Cys Ile Leu Leu Asp Leu Val Ser Tyr 180 185 190
- His Ile Lys Gly Gly Glu Thr Glu Ser Leu Gln Ile Pro Asn Thr Thr 195 200 205
- Val Leu His Leu Val Phe His Pro Asn Ser Leu Phe Ser Val Gln Val 210 215 220
- Asn Met Ser Val Asn Ala Leu Gly His Leu Gln Leu Ser Asn Ile Lys 225 230 235 240
- Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr Phe Leu Ser Glu Leu 245 250 255
- Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu Gln His Ile Glu Thr 260 265 270
- Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe Phe Trp Pro Arg Pro 275 280 285
- Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile Thr Glu Arg Ile Asp 290 295 300
- Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu Lys Ser Leu Met Ile 305 310 315 320
- Glu His Val Lys Asn Gln Val Phe Leu Phe Ser Lys Glu Ala Leu Tyr 325 330 335
- Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu Ser Ile Ser Asp Thr 340 345 350
- Pro Phe Ile His Met Val Cys Pro Pro Ser Pro Ser Ser Phe Thr Phe 355 360 365
- Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Val Phe Gln Gly Cys
- Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu Gln Arg Asn Gly Leu 385 390 395 400
- Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys Asn Met Ser Ser Leu

Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp 420 425 430

Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val Leu Asn Leu Ser Ser 435 440 445

Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys 450 455 460

Val Leu Asp Leu His Asn Asn Arg Ile Met Ser Ile Pro Lys Asp Val 465 470 475 480

Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val Ala Ser Asn Ser Leu 485 490 495

Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val 500 505 510

Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser 515 520 525

Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys 530 540

Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg 545 550 555 560

Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg Cys Asp Tyr Pro Glu 565 570 575

Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser 580 585 590

Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly Ala Thr Met Leu Val 595 600 605

Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp 610 615 620

Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr Arg His Arg Ala Arg 625 630 635 640

His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe 645 650 655

Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu 660 670

Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys Leu His Glu Arg Asn 675 680 685

Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Phe Ile Glu 690 695 700

Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro His Phe Ile Gln Ser 705 710 715 720

Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His
725 730 735

Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Glu Pro Ile Leu Gln

740 745 750 Asn Asn Tle Pro Ser Arg Tvr His Lvs Leu Arg Ala Leu Met Ala

Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln 755 760 765

Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly Lys Arg Gly Leu Phe 770 775 780

Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys Leu Ala Leu Val Asn 785 790 795 800

Glu Asp Asp Val Lys Thr 805

<210> 88

<211> 806

<212> PRT

<213> murine

<400> 88

Met Val Lys Ser Leu Trp Asp Ser Leu Cys Asn Met Ser Gln Asp Arg 1 5 10 15

Lys Pro Ile Val Gly Ser Phe His Phe Val Cys Ala Leu Ala Leu Ile 20 25 30

Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu Glu Ser Met Val Asp 35 40 45

Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys Asp Leu Pro Pro Arg 50 55 60

Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile Ser Glu Leu Arg Met 65 70 75 80

Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val Leu Arg Leu Ser His 85 90 95

Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe Leu Phe Asn Gln Asp 100 105 110

Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu Gln Asn Ile Ser Cys 115 120 125

Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu Ser Phe Asn Asp Phe 130 135 140

Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn Leu Thr Lys Leu Thr 145 150 155 160

Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln Leu Asp Leu Pro 165 170 175

Val Ala His Leu His Leu Ser Cys Ile Leu Leu Asp Leu Val Ser His 180 185 190

His Ile Lys Gly Gly Glu Thr Glu Ser Leu Gln Ile Pro Asn Thr Thr 195 200 205

Val Leu His Leu Val Phe His Pro Asn Ser Leu Phe Ser Val Gln Val 210 215 220

- Asn Met Ser Val Asn Ala Leu Gly His Leu Gln Leu Ser Asn Ile Lys 225 230 235 240
- Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr Phe Leu Ser Glu Leu 245 250 255
- Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu Gln His Ile Glu Thr 260 265 270
- Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe Phe Trp Pro Arg Pro 275 280 285
- Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile Thr Glu Arg Ile Asp 290 295 300
- Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu Lys Ser Leu Met Ile 305 310 315 320
- Glu His Val Lys Asn Gln Val Phe Leu Phe Ser Lys Glu Ala Leu Tyr 325 330 335
- Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu Ser Ile Ser Asp Thr 340 345 350
- Pro Phe Ile His Met Val Cys Pro Pro Ser Pro Ser Ser Phe Thr Phe 355 360 365
- Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Val Phe Gln Gly Cys 370 375 380
- Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu Gln Arg Asn Gly Leu 385 390 395 400
- Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys Asn Met Ser Ser Leu 405 410 415
- Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp 420 425 430
- Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val Leu Asn Leu Ser Ser 435 440 445
- Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys 450 455 460
- Val Leu Asp Leu His Asn Asn Arg Ile Met Ser Ile Pro Lys Asp Val 465 470 475 480
- Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val Ala Ser Asn Ser Leu 485 490 495
- Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val 500 505 510
- Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser 515 520 525
- Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys 530 540
- Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg

545 550 555 560

Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg Cys Asp Tyr Pro Glu

565 570 575

Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser 580 585 590

Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly Ala Thr Met Leu Val 595 600 605

Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp 610 615 620

Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr Arg His Arg Ala Arg 625 630 635 640

His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe 645 650 655

Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu 660 665 670

Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys Leu His Glu Arg Asn 675 680 685

Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Phe Ile Glu 690 695 700

Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro His Phe Ile Gln Ser 705 710 715 720

Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His 725 730 735

Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Leu Glu Pro Ile Leu Gln 740 745 750

Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln
755 760 765

Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly Lys Arg Gly Leu Phe 770 780

Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys Leu Ala Leu Val Asn 785 790 795 800

Glu Asp Asp Val Lys Thr

<210> 89

<211> 795

<212> PRT

<213> murine

<400> 89

Met Ser Gln Asp Arg Lys Pro Ile Val Gly Ser Phe His Phe Val Cys
1 5 10 15

Ala Leu Ala Leu Ile Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu 20 25 30

# WO 2004/094671 - 208 - PCT/US2004/012788

Glu Ser Met Val Asp Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys Asp Leu Pro Pro Arg Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile Ser Glu Leu Arg Met Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val Leu Arg Leu Ser His Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe Leu Phe Asn Gln Asp Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu Gln Asn Ile Ser Cys Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu 120 Ser Phe Asn Asp Phe Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn Leu Thr Lys Leu Thr Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln Leu Asp Leu Leu Pro Val Ala His Leu His Leu Ser Cys Ile Leu Leu Asp Leu Val Ser Tyr His Ile Lys Gly Glu Thr Glu Ser Leu Gln Ile Pro Asn Thr Thr Val Leu His Leu Val Phe His Pro Asn Ser Leu 200 Phe Ser Val Gln Val Asn Met Ser Val Asn Ala Leu Gly His Leu Gln Leu Ser Asn Ile Lys Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu Gln His Ile Glu Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe Phe Trp Pro Arg Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile Thr Glu Arg Ile Asp Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu 295 Lys Ser Leu Met Ile Glu His Val Lys Asn Gln Val Phe Leu Phe Ser Lys Glu Ala Leu Tyr Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu 325 Ser Ile Ser Asp Thr Pro Phe Ile His Met Val Cys Pro Pro Ser Pro

Ser Ser Phe Thr Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser

355 360 365

Val Phe Gln Gly Cys Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu
370 375 380

Gln Arg Asn Gly Leu Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys 385 390 395 400

Asn Met Ser Ser Leu Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn 405 410 415

Ser His Ala Tyr Asp Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val 420 425 430

Leu Asn Leu Ser Ser Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu 435 440 445

Pro Pro Lys Val Lys Val Leu Asp Leu His Asn Asn Arg Ile Met Ser 450 455 460

Ile Pro Lys Asp Val Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val 465 470 475 480

Ala Ser Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser 485 490 495

Leu Ser Val Leu Val Ile Asp His Asn Ser Val Ser His Pro Ser Glu 500 505 510

Asp Phe Phe Gln Ser Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn 515 520 525

Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile 530 535 540

Gly Trp Val Ala Arg Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg 545 550 555 560

Cys Asp Tyr Pro Glu Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His 565 570 575

Met Ser Pro Leu Ser Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly
580 585 590

Ala Thr Met Leu Val Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr 595 600 605

Phe Asp Leu Pro Trp Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr 610 620

Arg His Arg Ala Arg His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu 625 630 635 640

Gln Phe His Ala Phe Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val
645 650 655

Lys Asn Glu Leu Leu Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys
660 665 670

Leu His Glu Arg Asn Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile
675 680 685

Ile Asn Phe Ile Glu Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro

700 695 His Phe Ile Gln Ser Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His 715 710 His Asn Leu Phe His Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Leu 725 Glu Pro Ile Leu Gln Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly 760 Lys Arg Gly Leu Phe Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys 780 775 Leu Ala Leu Val Asn Glu Asp Asp Val Lys Thr 790 <210> 90 <211> 10 <212> DNA <213> artificial sequence <220> <223> consensus p50 subunit <220> <221> misc\_feature <222> (7) ... (7) <223> N = c or t<400> 90 10 ggggatnccc <210> 91 <211> 10 <212> DNA <213> artificial sequence <220> <223> consensus p65 subunit <220> <221> misc\_feature <222> (4)..(4) <223> N = a or g <220> <221> misc\_feature <222> (5)..(5) <223> N = a, c, g, or t <400> 91 10 gggnntttcc

<400> 96

| <211>   | 22                      |    |
|---------|-------------------------|----|
| <212>   | DNA                     |    |
| <213>   | artificial sequence     |    |
|         |                         |    |
| <220>   |                         |    |
|         |                         |    |
| <223>   | consensus subunit       |    |
|         |                         |    |
| <400>   | 92                      |    |
| agttgag | gggg actttcccag gc      | 22 |
|         |                         |    |
|         |                         |    |
| <210>   | 93                      |    |
| <211>   |                         |    |
| <212>   | DNA                     |    |
| <213>   | artificial sequence     |    |
|         |                         |    |
| <220>   |                         |    |
|         |                         |    |
| <223>   | CREB binding site       |    |
|         |                         |    |
| <400>   | 93                      | ~~ |
| agagat  | tgcc tgacgtcaga gagctag | 27 |
|         |                         |    |
|         |                         |    |
| <210>   |                         |    |
| <211>   | 21                      |    |
| <212>   | DNA                     |    |
| <213>   | artificial sequence     |    |
|         |                         |    |
| <220>   |                         |    |
|         |                         |    |
| <223>   | AP-1 binding site       |    |
|         | '                       |    |
| <400>   | 94                      |    |
| cgcttg  | atga gtcagccgga a       | 21 |
| -       |                         |    |
|         |                         |    |
| <210>   | 95                      |    |
| <211>   | 15                      |    |
| <212>   |                         |    |
|         | artificial sequence     |    |
|         |                         |    |
| <220>   |                         |    |
|         |                         |    |
| <223>   | AP-1 binding site       |    |
|         |                         |    |
| <400>   | 95                      |    |
| cgcato  | agtc agaca              | 15 |
|         |                         |    |
|         |                         |    |
| <210>   | 96                      |    |
| <211>   | 19                      |    |
| <212>   | DNA                     |    |
| <213>   | artificial sequence     |    |
|         |                         |    |
| <220>   |                         |    |
|         |                         |    |
| <223>   | ISRE                    |    |
| = -     |                         |    |
|         |                         |    |

<223> ISRE

| wo 2                             | 2004/094671       |          | - 213 - | PCT/US2004/012788 |
|----------------------------------|-------------------|----------|---------|-------------------|
|                                  | 101<br>cga aagcgc |          |         | 16                |
| <210><br><211><br><212><br><213> | 13                | sequence |         |                   |
| <220>                            |                   |          |         |                   |
| <223>                            | ISRE              |          |         |                   |
|                                  | 102<br>ggaa agt   |          |         | 13                |
| <210><211><212><212><213>        | 9                 | sequence |         |                   |
| <220>                            |                   |          |         |                   |
| <223>                            | SRE               |          |         |                   |
| <400><br>tcaccc                  |                   |          |         | 9                 |
| <210> <211> <212> <213>          | 10                | sequence |         |                   |
| <220>                            |                   |          |         |                   |
| <223>                            | SRE               |          |         |                   |
| <400><br>ctcacc                  | 104<br>ccac       |          |         | 10                |
| <210><br><211><br><212><br><213> | 10<br>DNA         | sequence |         |                   |
| <220>                            |                   |          |         |                   |
| <223>                            | SRE               |          |         |                   |
| <400><br>gccaco                  |                   |          |         | 10                |

<210> 106 <211> 17 <212> DNA

<213> artificial sequence

<220> <223> NFAT <400> 106 17 tatgaaacag ttttcc <210> 107 <211> 9 <212> DNA <213> artificial sequence <220> <223> NFAT <400> 107 9 aggaaactc <210> 108 <211> 10 <212> DNA <213> artificial sequence <220> <223> NFAT <220> <221> misc\_feature
<222> (2)..(2)
<223> N = a or g <220> <221> misc\_feature
<222> (5)..(5)
<223> N = a or g <400> 108 10 anganattcc <210> 109 <211> 16 <212> DNA <213> artificial sequence <220> <223> NFAT <400> 109 16 ccagttgagc cagaga <210> 110 <211> 30 <212> DNA <213> artificial sequence <220>

<210> 114

| 223>            | GAS                     |     |
|-----------------|-------------------------|-----|
| 400>            | 110                     |     |
|                 |                         | 30  |
|                 |                         |     |
|                 |                         |     |
| :210>           |                         |     |
|                 | 10                      |     |
| 212>            |                         |     |
| :213>           | artificial sequence     |     |
| :220>           |                         |     |
| .220>           |                         |     |
| :223>           | p53 consensus site      |     |
|                 |                         |     |
| :220>           |                         |     |
|                 | misc_feature            |     |
|                 | (1)(3)                  |     |
| (223>           | N = a or g              |     |
| <220>           |                         |     |
|                 | misc_feature            |     |
|                 | (5)(6)                  |     |
| <223>           | N = a or t              |     |
|                 |                         |     |
| <220>           |                         |     |
|                 | misc_feature            |     |
|                 | (8)(10)                 |     |
| <223>           | N = c or t              |     |
| <400>           | 111                     |     |
| nncnn           |                         | 10  |
|                 |                         |     |
|                 |                         |     |
|                 | 112                     |     |
| <211>           | 10                      |     |
| <212><br><213>  | DNA artificial sequence |     |
| (213)           | altilitial sequence     |     |
| <220>           |                         |     |
|                 |                         |     |
| <223>           | p53 consensus site      |     |
| -400-           | 112                     |     |
| <400><br>aggcat | 112                     | 10  |
| aggeae          | 9000                    |     |
|                 |                         |     |
| <210>           | 113                     |     |
| <211>           | 10                      |     |
| <212>           | DNA                     |     |
| <213>           | artificial sequence     |     |
| <220>           |                         |     |
|                 |                         |     |
| <223>           | p53 consensus site      |     |
|                 |                         |     |
|                 | 113                     | 7.0 |
| gggctt          | gccc                    | 10  |
|                 |                         |     |
|                 |                         |     |

| WO 20   | 004/094671                  | - 216 - | PCT/US2004/012788 |
|---------|-----------------------------|---------|-------------------|
| <211>   | 10                          |         |                   |
| <212>   |                             |         | •                 |
|         | artificial sequence         |         |                   |
|         | aronnout bequence           |         |                   |
| <220>   |                             |         |                   |
| <223>   | p53 consensus site          | •       |                   |
| <400>   | 114                         |         |                   |
| gggctt  |                             |         | 10                |
| 333000  | ,                           |         | 10                |
| <210>   | 115                         |         |                   |
| <211>   |                             |         |                   |
| <212>   |                             |         |                   |
|         | artificial sequence         |         | •                 |
| 12137   | arcificial sequence         |         |                   |
| <220>   |                             |         |                   |
| <223>   | p53 consensus site          |         |                   |
| <400>   | 115                         |         |                   |
|         | actt gcc                    |         | 13                |
| 500055  | 200 goo                     |         | 13                |
| <210>   | 116                         |         |                   |
| <211>   |                             |         |                   |
| <212>   |                             |         |                   |
|         | artificial sequence         |         |                   |
| ~2257   | arcificial sequence         |         |                   |
| <220>   |                             |         |                   |
| <223>   | p53 consensus site          |         |                   |
| <400>   | 116                         |         |                   |
|         | gccc gggcatgtcc             |         | 20                |
|         |                             |         | 20                |
| <210>   | 117                         |         |                   |
| <211>   | 23                          |         |                   |
| <212>   | DNA                         |         |                   |
| <213>   | artificial sequence         |         |                   |
| <220>   | <del>-</del>                |         |                   |
|         |                             |         |                   |
| <223>   | p53 consensus site          |         |                   |
| <400>   | 117                         |         |                   |
| gtagcat | tag cccagacatg tcc          |         | 23                |
|         |                             |         |                   |
| <210>   | 118                         |         |                   |
| <211>   | 36                          |         |                   |
| <212>   |                             |         |                   |
| <213>   | artificial sequence         |         |                   |
| <220>   | -                           |         |                   |
| ~~~     |                             |         |                   |
| <223>   | TARE                        |         |                   |
| <400>   | 118                         |         |                   |
| gaggtat | gca gacaagagtc agagtttccc c | ettgaa  | 36                |

WO 2004/094671 - 217 - PCT/US2004/012788

| <210>                                   | 119     |              |            |             |            |            |     |
|-----------------------------------------|---------|--------------|------------|-------------|------------|------------|-----|
| <211>                                   | 10      |              |            |             |            |            |     |
|                                         | DNA     |              |            |             |            |            |     |
|                                         |         | ficial seque | ance       |             |            |            |     |
| <213 <i>&gt;</i>                        | arc.    | riciar seque | 31100      |             |            |            |     |
| <220>                                   |         |              |            |             |            |            |     |
|                                         |         |              |            |             |            |            |     |
| <223>                                   | SRF     |              |            |             |            |            |     |
|                                         |         |              |            |             |            |            |     |
| <220>                                   |         |              |            |             |            |            |     |
|                                         |         | _feature     |            |             |            |            |     |
| <222>                                   |         |              |            |             |            |            |     |
| <223>                                   | N = 3   | a or t       |            |             |            |            |     |
|                                         |         |              |            |             |            |            |     |
| <400>                                   | 119     |              |            |             |            |            | 10  |
| ccnnnn                                  | ngg     |              |            |             |            |            | 10  |
|                                         |         | •            |            |             |            |            |     |
| <210>                                   | 120     |              |            |             |            |            |     |
| <211>                                   | 11      |              |            |             |            |            |     |
| <212>                                   |         |              |            |             |            |            |     |
| <213>                                   |         | ficial sequ  | ence       |             |            |            |     |
| 52137                                   | artı    | riciar sequ  | CIICC      |             |            |            |     |
| <220>                                   |         |              |            |             |            |            |     |
| \220>                                   |         |              |            |             |            |            |     |
| <223>                                   | SRF     |              |            |             |            |            |     |
|                                         |         |              |            |             |            |            |     |
| <400>                                   | 120     |              |            |             |            | •          |     |
| ccaaat                                  | aaqq    | С            |            |             |            |            | 11  |
| • • • • • • • • • • • • • • • • • • • • |         |              |            |             |            |            |     |
|                                         |         |              |            |             |            |            |     |
| <210>                                   | 121     |              |            |             |            |            |     |
| <211>                                   | 670     |              |            |             |            |            |     |
| <212>                                   | DNA     |              |            |             |            |            |     |
| <213>                                   |         | sapiens      |            |             |            |            |     |
|                                         | -       |              |            | v           |            |            |     |
| <400>                                   | 121     |              |            |             |            |            |     |
| agaaaa                                  | attt    | taaaaaatta   | ttcattcata | tttttaggag  | ttttgaatga | ttggatatgt | 60  |
| _                                       |         |              |            |             |            |            |     |
| aattat                                  | attc    | atattattaa   | tgtgtatcta | tatagatttt  | tattttgcat | atgtactttg | 120 |
|                                         |         |              |            | 1 to - E-to |            |            | 100 |
| atacaa                                  | aatt    | tacatgaaca   | aattacacta | aaagttattc  | cacaaatata | Cttattaaat | 180 |
|                                         |         |              |            |             | taagttttgt | atcattctt  | 240 |
| taagtt                                  | aaat    | gtcaatagct   | tttaaactta | aactttagtt  | Laacttttcc | gccaccccc  | 240 |
|                                         |         | aaaagagcaa   | actttataat | ttttatctqt  | gaagtagagg | tatacqtaat | 300 |
| actttg                                  | gaaca   | aaaayaycaa   | accetgeage | cccaccige   | 3443443433 |            |     |
| atacat                                  | eaat    | agatatgcca   | aatctgtgtt | attaaaattt  | catgaagatt | tcaattagaa | 360 |
| acacac                                  | aaac    | agacacgcca   | aaccogogo  |             |            | _          |     |
| aaaaat                                  | acca    | taaaaggctt   | tgagtgcagg | tqaaaaatag  | gcaatgatga | aaaaaaatga | 420 |
| aaaaaa                                  | Juoou   | Juduunggere  | -3-5-55    | , ,         |            |            |     |
| aaaact                                  | tttt    | aaacacatgt   | agagagtgcg | taaagaaagc  | aaaaacagag | atagaaagta | 480 |
| aaaact                                  | ,,,,,,, |              | 5-5 5 5 5  | 5 5         |            |            |     |
| caacta                                  | agga    | atttagaaaa   | tggaaattag | tatgttcact  | atttaagacc | tatgcacaga | 540 |
|                                         |         |              |            |             |            |            |     |
| qcaaaq                                  | gtctt   | cagaaaacct   | agaggccgaa | gttcaaggtt  | atccatctca | agtagcctag | 600 |
|                                         |         |              |            |             |            |            |     |
| caatat                                  | tttgc   | aacatcccaa   | tggccctgtc | cttttcttta  | ctgatggccg | tgctggtgct | 660 |
|                                         | -       |              |            |             |            |            |     |
| andat:                                  |         |              |            |             |            |            | 67  |

| 2210> 122<br>2211> 207<br>2212> DNA<br>2213> Homo sapiens                      |     |
|--------------------------------------------------------------------------------|-----|
| <400> 122<br>aggttctctg aaggcettge tteetgeaga tgeettaaat agggaacata etgattteea | 60  |
| ctttcttaat gcttctggac catttccatt tctgtttttg ctttccttct taactcttta              | 120 |
| catgagttta gagccgtgtt tctcaaatga tgggctagca cgcgtaagag ctcggtacct              | 180 |
| atcgatagag aaatgttctg gcacctg                                                  | 207 |
| <210> 123<br><211> 161<br><212> DNA<br><213> Homo sapiens                      |     |
| <400> 123 aggttctctg aaggctttgc ttcctgcaga tgccttaaat agggaacata ctgatttcca    | 60  |
| ctttcttaat gcttctggac cactttccat ttctgttttt gctttccttc ttgaactctt              | 120 |
| tacatgagtt tagagccgtg tttctcaacc attttgtttt t                                  | 161 |
| <210> 124<br><211> 300<br><212> DNA<br><213> Homo sapiens                      |     |
| ttctcaggtc gtttgctttc ctttgctttc tcccaagtct tgttttacaa tttgctttag              | 60  |
| tcattcactg aaactttaaa aaacattaga aaacctcaca gtttgtaaat ctttttccct              | 120 |
| attatatata tcataagata ggagcttaaa taaagagttt tagaaactac taaaatgtaa              | 180 |
| atgacatagg aaaactgaaa gggagaagtg aaagtgggaa attcctctga atagagagag              | 240 |
| gaccatetea tataaatagg ceataceeae ggagaaagga cattetaaet geaacettte              | 300 |
| <210> 125 <211> 401 <212> DNA <213> Homo sapiens                               |     |
| <400> 125 gatctgtaat gaataagcag gaactttgaa gactcagtga ctcagtgagt aataaagact    | 60  |
| cagtgacttc tgatcctgtc ctaactgcca ctccttgttg tcccaagaaa gcggcttcct              | 120 |
| gctctctgag gaggacccct tccctggaag gtaaaactaa ggatgtcagc agagaaattt              | 180 |
| ttccaccatt ggtgcttggt caaagaggaa actgatgagc tcactctaga tgagagagca              | 240 |
| gtgagggaga gacagagact cgaatttccg gagctatttc agttttcttt tccgttttgt              | 300 |

gagtacctat gagcacagga tgtgcacata tttgagtctt attagtggta cacgcagttt 180 tatcatctcc ccaggtctgt gtctgtatga aatgtgcatg ggtgtgtgtg tgcacgcgtg tqttcccact cggggaatgt ggggagaggt gcatggagcc aagatgggtg gtaaatagta 240 300 tgtttctgaa attaaaggac taatgtggag gaaggcgccc cagatgtact aaaccctttg cetteatete atectetetg aettgggaag aaccaggatt ttgtttttaa geeettggge 360 420 atacagttgt tccatcccga catgaactca gcctcccgtc tgaccgcccc ttggccttcc ttetteeteg atetgtggaa eccagggaat etgeetagtg etgteteeaa geacettgge 480 catgatgtaa acccagagaa attagcatct ccatctcctt ccttattccc cacccaaaag 540 tcatttcctc ttagttcatt acctgggatt ttgatgtcta tgttccctcc tcgttattga 600 tacacacaca gagagagaca aacaaaaaag gaacttcttg aaattccccc agaaggtttt 660 gagagttgtt ttcaatgttg caacaagtca gtttctagtt taagtttcca tcagaaagga 720 gtagagtata taagttccag taccagcaac agcagcagaa gaaacaacat ctgtttcagg 780 781 g

<210> 127

<211> 277

<212> DNA

<213> Homo sapiens

c400> 127
gcatctccat ctccttcctt attcccacc caaaagtcat ttcctcttag ttcattacct 60
gggattttga tgtctatgtt ccctcctcgt tattgataca cacacagaga gagacaaaca 120
aaaaaggaac ttcttgaaat tcccccagaa ggttttgaga gttgtttca atgttgcaac 180
aagtcagttt ctagtttaag tttccatcag aaaggagtag agtatataag ttccagtacc 240
agcaacagca gcagaagaaa caacatctgt ttcaggg 277

<210> 128

<211> 305

<212> DNA

<213> Homo sapiens

<400> 128

| WO 2004/0               | 94671                    |            | - 220 -    |            | PCT/US20   | 04/012788 |
|-------------------------|--------------------------|------------|------------|------------|------------|-----------|
|                         | caagtgctga<br>cgctagcctc |            |            |            |            | 60<br>120 |
| tgcgatgcta              | aaggacgtca               | ttgcacaatc | ttaataaggt | ttccaatcag | ccccacccgc | 180       |
| tetggeecea              | ccctcaccct               | ccaacaaaga | tttatcaaat | gtgggatttt | cccatgagtc | 240       |
| tcaatattag              | agtctcaacc               | cccaataaat | ataggactgg | agatgtctct | gaggctcatt | 300       |
| ctgcc                   |                          |            |            |            |            | 305       |
|                         | 1<br>o sapiens           |            |            |            |            |           |
| <400> 129<br>cctgcaagag | acaccatcct               | gaggggaaga | gggcttctga | accagcttga | cccaataaga | 60        |
| aattcttggg              | tgccgacggg               | gacagcagat | tcagagccta | gagccgtgcc | tgcgtccgta | 120       |
| gtttccttct              | agcttctttt               | tgatttcaaa | tcaagactta | cagggagagg | gagcgataaa | 180       |
| cacaaactct              | gcaagatgcc               | acaaggteet | cctttgacat | ccccaacaaa | gaaggtgagt | 240       |
| agtaatctcc              | ccctttctgc               | cctgaaccaa | gtggcttcag | taagtttcag | ggctccagga | 300       |
| gacctgggca              | tgcaggtgcc               | gatgaaacag | tggtgaagag | actcagtggc | agtggcagtg | 360       |
| gggagagcac              | tcgcagcaca               | ggcaaacctc | tggcacaaga | gcaaagtcct | cactggagga | 420       |
| ttcccaaggg              | tcacttggga               | gagggcaggc | agcagccaac | ctcctctaag | tgggctgaag | 480       |
| caggtgaaga              | aatggcagaa               | gacgcggtgg | tggcaaaaag | gagtcacaca | ctccacctgg | 540       |
| agacgccttg              | aagtaactgc               | acgaaatttg | agggtggcca | ggcagttcta | caacagccgc | 600       |

ctcacaggga gagccagaac acagcaagaa ctcagatgac tggtagtatt accttcttca

taatcccagg cttggggggc tgcgatggag tcagaggaaa ctcagttcag aacatctttg

gtttttacaa tacaaattaa ctggaacgct aaattctagc ctgttaatct ggtcactgaa

aaaaaaaaaa tttttttt ttcaaaaaac atagctttag cttattttt ttttctcttt

gtaaaacttc gtgcatgact tcagctttac tcttgtcaag acatgccaag tgctgagtca

ctaataaaga aaaaagaagt aaaggaagag tggttctgct tcttagcgct agcctcaatg

acgacctaag ctgcactttt ccccctagtt gtgtcttgcg atgctaaagg acgtcattgc

acaatettaa taaggtttee aateageeee accegetetg geeecaceet caceeteeaa

caaagattta tcaaatgtgg gattttccca tgagtctcaa tattagagtc tcaaccccca

ataaatatag gactggagat gtctctgagg ctcattctgc c

660

720

780

840

900

960

1020

1080

1140

1181

<210> 130 <211> 778 <212> DNA WO 2004/094671 - 221 - PCT/US2004/012788

| <213> Homo sapiens<br><400> 130                                             |     |
|-----------------------------------------------------------------------------|-----|
| ctaccacttg tetattetge tatatagtea gteettacat tgetttette ttetgataga           | 60  |
| ccaaactctt taaggacaag tacctagtct tatctatttc tagatccccc acattactca           | 120 |
| gaaagttact ccataaatgt ttgtggaact gatttctatg tgaagacatg tgccccttca           | 180 |
| ctctgttaac tagcattaga aaaacaaatc ttttgaaaag ttgtagtatg cccctaagag           | 240 |
| cagtaacagt tectagaaac tetetaaaat gettagaaaa agatttattt taaattaeet           | 300 |
| ccccaataaa atgattggct ggcttatctt caccatcatg atagcatctg taattaactg           | 360 |
| aaaaaaaata attatgccat taaaagaaaa tcatccatga tcttgttcta acacctgcca           | 420 |
| ctctagtact atatctgtca catggtctat gataaagtta tctagaaata aaaaagcata           | 480 |
| caattgataa ttcaccaaat tgtggagctt cagtatttta aatgtatatt aaaattaaat           | 540 |
| tattttaaag atcaaagaaa actttcgtca tactccgtat ttgataagga acaaatagga           | 600 |
| agtgtgatga ctcaggtttg ccctgagggg atgggccatc agttgcaaat cgtggaattt           | 660 |
| cctctgacat aatgaaaaga tgagggtgca taagttctct agtagggtga tgatataaaa           | 720 |
| agccaccgga gcactccata aggcacaaac tttcagagac agcagagcac acaagctt             | 778 |
| <210> 131 <211> 207 <212> DNA <213> Homo sapiens <400> 131                  |     |
| actccgtatt tgataaggaa caaataggaa gtgtgatgac tcaggtttgc cctgagggga           | 60  |
| tgggccatca gttgcaaatc gtggaatttc ctctgacata atgaaaagat gagggtgcat           | 120 |
| aagtteteta gtagggtgat gatataaaaa gecaceggag caeteeataa ggcacaaaet           | 180 |
| ttcagagaca gcagagcaca caagctt                                               | 207 |
| <210> 132 <211> 645 <212> DNA <213> Homo sapiens                            |     |
| <400> 132 gggggtgatt tcactccccg gggctgtccc aggcttgtcc ctgctacccg cacccagcct | 60  |
| ttcctgaggc ctcaagcctg ccaccaagcc cccagctcct tctccccgca gggcccaaac           | 120 |
| acaggeetea ggaeteaaca cagettttee etecaaeece gttttetete eeteaaegga           | 180 |
| ctcagctttc tgaagcccct cccagttcta gttctatctt tttcctgcat cctgtctgga           | 240 |
| agttagaagg aaacagacca cagacctggt ccccaaaaga aatggaggca ataggttttg           | 300 |
| aggggcatgg ggacggggtt cagcctccag ggtcctacac acaaatcagt cagtggccca           | 360 |

WO 2004/094671 - 222 - PCT/US2004/012788

| gaagaccccc<br>ttgtgtgtcc | ctcggaatcg<br>ccaactttcc | gagcagggag<br>aaatccccgc | gatggggagt<br>ccccgcgatg | gtgaggggta<br>gagaagaaac | tccttgatgc<br>cgagacagaa | 420<br>480 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| ggtgcagggc               | ccactaccgc               | ttcctccaga               | tgagctcatg               | ggtttctcca               | ccaaggaagt               | 540        |
| tttccgctgg               | ttgaatgatt               | ctttccccgc               | cctcctctcg               | ccccagggac               | atataaaggc               | 600        |
| agttgttggc               | acacccagcc               | agcagacgct               | ccctcagcaa               | ggaca                    |                          | 645        |
|                          | o sapiens                |                          |                          |                          |                          |            |
| <400> 133<br>gcctgtactc  | agccaagggt               | gcagagatgt               | tatatatgat               | tgctcttcag               | ggaaccgggc               | 60         |
| ctccagctca               | caccccagct               | gctcaaccac               | ctcctctctg               | aattgactgt               | cccttctttg               | 120        |
| gaactctagg               | cctgacccca               | ctccctggcc               | ctcccagccc               | acgattcccc               | tgacccgact               | 180        |
| ccctttccca               | . gaactcagtc             | gcctgaaccc               | ccagcctgtg               | gttctctcct               | aggcctcagc               | 240        |
| ctttcctgcc               | tttgactgaa               | acagcagtat               | cttctaagcc               | ctgggggctt               | ccccgggccc               | 300        |
| cagccccgac               | : ctagaacccg             | cccgctgcct               | gccacgctgc               | cactgccgct               | tcctctataa               | 360        |
| agggacctga               | gegteeggge               | ccaggggctc               | cgcacagcag               | gtgaggctct               | cctgccccat               | 420        |
| ctccttggg                | tgecegtget               | tegtgetttg               | gactacc                  |                          |                          | 457        |
|                          | 3<br>A<br>no sapiens     |                          |                          |                          |                          |            |
| <400> 134<br>gcagcaaato  | ı<br>c agaatggcag        | tttgattcat               | ggtgctgaga               | ctggaggttc               | ctctgctgta               | 60         |
| ggctcagaat               | t atgtctaago             | aattgaggaa               | tgtctcagaa               | aacgtggggc               | tagtgtgcca               | 120        |
| tatttatct                | g caaagccatt             | ttecetecet               | . aattctgatt             | ggataagggc               | attacagttg               | 180        |
| acttagcaa                | a acctgctggc             | : tgttcctggg             | gaagtcccat               | gttgcagact               | cgaaggtatt               | 240        |
| atttattgt                | a gcctccaagt             | : tacggaattt             | : ccctctgctc             | : ctctttttt              | ggtaatagtg               | 300        |
| aattaggtt                | t cactttccaa             | aacatgaact               | gtttcttgaa               | aaaaagaact               | tcattgcata               | 360        |
| tagaaaaaa                | a caaaggttgo             | aatccattct               | : aactataatg             | g ctttttctca             | acacttaaac               | 420        |
| ttttacagt                | t actttcagag             | g gttattttt              | : aaaatatccc             | cagtaataga               | aatttttcat               | 480        |
| cctttatag                | g taaacctaat             | tttttggtaa               | a cagcaagttg             | tgcctgatta               | ttagaacagt               | 540        |
| gatttacct                | g gacagtecto             | cttgatcaa                | a tactataaag             | , taataggact             | ggcctgcttt               | 600        |
|                          | <i>3 3</i> · <i>3</i>    |                          |                          |                          |                          |            |
| _                        | a aagatetgga             | a actggcaagt             |                          | : tcaataaatg             |                          | 660        |

WO 2004/094671 - 223 - PCT/US2004/012788

| gctcatttgg                                                                                                                     | gtatctgatt                                                                                                                             | tgtggtgtgt                                                                                                                                      | taaaacaagt                                                        | ttcacgtctt                                                                                                   | atagcagtcc                                             | 780                                                         |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| ctgaatgaaa                                                                                                                     | acatcataag                                                                                                                             | atggtatcta                                                                                                                                      | gaatggtgtg                                                        | agaaaaggat                                                                                                   | tcatagctat                                             | 840                                                         |
| cctagggtta                                                                                                                     | ttgtaaaaaa                                                                                                                             | caaagggtgc                                                                                                                                      | tttttgagga                                                        | aatgaattta                                                                                                   | aaagcggggg                                             | 900                                                         |
| ggcacgcata                                                                                                                     | gagacagacc                                                                                                                             | ttgggaaagt                                                                                                                                      | agcttgagac                                                        | agaagggaaa                                                                                                   | caggttgatt                                             | 960                                                         |
| tacgatgggg                                                                                                                     | ttc                                                                                                                                    |                                                                                                                                                 |                                                                   |                                                                                                              |                                                        | 973                                                         |
| <210> 135 <211> 333 <212> DNA <213> Home                                                                                       | o sapiens                                                                                                                              |                                                                                                                                                 |                                                                   |                                                                                                              |                                                        |                                                             |
| <400> 135<br>gctaccttaa                                                                                                        | gaaggctggt                                                                                                                             | taccatctgg                                                                                                                                      | gttttcacag                                                        | tgctttcaca                                                                                                   | ttcttatcac                                             | 60                                                          |
| tttcaacact                                                                                                                     | actgcaaata                                                                                                                             | ggaagggaca                                                                                                                                      | gtaacattta                                                        | gaagagaaca                                                                                                   | aaacagaaac                                             | 120                                                         |
| tcttggaagc                                                                                                                     | aggaaaggtg                                                                                                                             | catgactcaa                                                                                                                                      | agagggaaat                                                        | tcctgtgcca                                                                                                   | taaaaggatt                                             | 180                                                         |
| gctggtgtat                                                                                                                     | aaaatgctct                                                                                                                             | atatatgcca                                                                                                                                      | attatcaatt                                                        | tcctttcatg                                                                                                   | ttcagcattt                                             | 240                                                         |
| ctactccttc                                                                                                                     | caagaagagc                                                                                                                             | agcaaagctg                                                                                                                                      | aagttagcag                                                        | cagcagcacc                                                                                                   | agcagcaaca                                             | 300                                                         |
| acaaaaaca                                                                                                                      | aacatgagtg                                                                                                                             | tgaagggcat                                                                                                                                      | ggc                                                               |                                                                                                              |                                                        | 333                                                         |
| gcaaaaaaaca                                                                                                                    |                                                                                                                                        | 3 333                                                                                                                                           |                                                                   |                                                                                                              |                                                        |                                                             |
| <210> 136 <211> 104 <212> DNA                                                                                                  | 8                                                                                                                                      | 5 333                                                                                                                                           |                                                                   |                                                                                                              |                                                        |                                                             |
| <210> 136 <211> 104 <212> DNA <213> Hom <400> 136                                                                              | 8<br>o sapiens                                                                                                                         |                                                                                                                                                 | cagccactgt                                                        | gggcgcctga                                                                                                   | ccaaacagca                                             | 60                                                          |
| <210> 136<br><211> 104<br><212> DNA<br><213> Hom<br><400> 136<br>ggtgaccaag                                                    | 8<br>o sapiens<br>aatgtgagca                                                                                                           | agcccaggca                                                                                                                                      |                                                                   |                                                                                                              |                                                        | 60<br>120                                                   |
| <210> 136 <211> 104 <212> DNA <213> Hom <400> 136 ggtgaccaag ctaaatttgt                                                        | 8<br>o sapiens<br>aatgtgagca<br>gtgggacatg                                                                                             | agcccaggca<br>atcccagagg                                                                                                                        | cagccactgt                                                        | cacccctcaa                                                                                                   | cgagtggcgt                                             |                                                             |
| <210> 136 <211> 104 <212> DNA <213> Hom <400> 136 ggtgaccaag ctaaatttgt ggcatggagt                                             | 8 o sapiens aatgtgagca gtgggacatg                                                                                                      | agcccaggca<br>atcccagagg<br>ccaaggtcaa                                                                                                          | cagccactgt<br>tgtgtggctt                                          | cacccctcaa                                                                                                   | cgagtggcgt<br>agaaaagggt                               | 120                                                         |
| <210> 136 <211> 104 <212> DNA <213> Hom <400> 136 ggtgaccaag ctaaatttgt ggcatggagt agggacaaac                                  | 8 o sapiens aatgtgagca gtgggacatg tactgaatct                                                                                           | agcccaggca<br>atcccagagg<br>ccaaggtcaa<br>agagaaggca                                                                                            | cagccactgt<br>tgtgtggctt<br>acaggccctc                            | caccctcaa<br>aaattcatca<br>agcaacgtcc                                                                        | cgagtggcgt<br>agaaaagggt<br>tgctgccatg                 | 120<br>180                                                  |
| <210> 136 <211> 104 <212> DNA <213> Hom <400> 136 ggtgaccaag ctaaatttgt ggcatggagt agggacaaac aggaaagcag                       | 8 o sapiens aatgtgagca gtgggacatg tactgaatct atctgtacca                                                                                | agcccaggca<br>atcccagagg<br>ccaaggtcaa<br>agagaaggca                                                                                            | cagccactgt<br>tgtgtggctt<br>acaggccctc<br>ggaggagctg              | caccecteaa<br>aaatteatea<br>agcaacgtee<br>geetataatg                                                         | cgagtggcgt agaaaagggt tgctgccatg aaagctttgc            | 120<br>180<br>240                                           |
| <210> 136 <211> 104 <212> DNA <213> Hom <400> 136 ggtgaccaag ctaaatttgt ggcatggagt agggacaaac aggaaagcag aagaaagcag aaaataaaat | 8 o sapiens aatgtgagca gtgggacatg tactgaatct atctgtacca ctgccaagaa                                                                     | agcccaggca<br>atcccagagg<br>ccaaggtcaa<br>agagaaggca<br>ggactgagcc<br>taaagtaata                                                                | cagccactgt tgtgtggctt acaggccctc ggaggagctg                       | caccctcaa aaattcatca agcaacgtcc gcctataatg                                                                   | cgagtggcgt agaaaagggt tgctgccatg aaagctttgc ataaaataaa | 120<br>180<br>240<br>300                                    |
| <210> 136 <211> 104 <212> DNA <213> Hom <400> 136 ggtgaccaag ctaaatttgt ggcatggagt agggacaaac aggaaagcag aaaataaaat            | 8 o sapiens aatgtgagca gtgggacatg tactgaatct atctgtacca ctgccaagaa aaatataaaa                                                          | agcccaggca<br>atcccagagg<br>ccaaggtcaa<br>agagaaggca<br>ggactgagco<br>taaagtaata                                                                | cagccactgt tgtgtggctt acaggccctc ggaggagctg cctgccatct aaattaaatt | caccctcaa aaattcatca agcaacgtcc gcctataatg aaatttaaaa                                                        | cgagtggcgt agaaaagggt tgctgccatg aaagctttgc ataaaataaa | 120<br>180<br>240<br>300<br>360                             |
| <210> 136 <211> 104 <212> DNA <213> Hom <400> 136 ggtgaccaag ctaaatttgt ggcatggagt agggacaaac aggaaagcag aaaataaaat            | 8 o sapiens aatgtgagca gtgggacatg tactgaatct atctgtacca ctgccaagaa aaatataaaa ataaaatata                                               | agcccaggca<br>atcccagagg<br>ccaaggtcaa<br>agagaaggca<br>ggactgagco<br>taaagtaata<br>taaagtaaaa                                                  | cagccactgt tgtgtggctt acaggccctc ggaggagctg cctgccatct aaattaaatt | cacccctcaa aaattcatca agcaacgtcc gcctataatg aaatttaaaa tgcaaaacaa caggtaaaaa                                 | cgagtggcgt agaaaagggt tgctgccatg aaagctttgc ataaaataaa | 120<br>180<br>240<br>300<br>360<br>420                      |
| <210> 136 <211> 104 <212> DNA <213> Hom <400> 136 ggtgaccaag ctaaatttgt ggcatggagt agggacaaac aggaaagcag aaaataaaat            | 8 o sapiens aatgtgagca gtgggacatg tactgaatct atctgtacca ctgccaagaa aaatataaaa ataaaatata acacagggaaa atctggtgtgt                       | agcccaggca<br>atcccagagg<br>ccaaggtcaa<br>agagaaggca<br>ggactgagco<br>taaagtaata<br>taaagtaaaa<br>cttctttagg                                    | cagccactgt tgtgtggctt acaggccctc ggaggagctg cctgccatct aaattaaatt | caccctcaa aaattcatca agcaacgtcc gcctataatg aaatttaaaa tgcaaaacaa caggtaaaaa                                  | cgagtggcgt agaaaagggt tgctgccatg aaagctttgc ataaaataaa | 120<br>180<br>240<br>300<br>360<br>420<br>480               |
| <210> 136 <211> 104 <212> DNA <213> Hom <400> 136 ggtgaccaag ctaaatttgt ggcatggagt agggacaaac aggaaagcag aaaataaaat            | 8 o sapiens aatgtgagca gtgggacatg tactgaatct atctgtacca ctgccaagaa aaatataaaa ataaaatata acacagggaaa atctggtgtc                        | agcccaggca atcccagagg ccaaggtcaa agagaaggca ggactgagcc taaagtaata taaagtaaaa cttctttagg aaataatata                                              | cagccactgt tgtgtggctt acaggccctc ggaggagctg cctgccatct aaattaaatt | cacccctcaa aaattcatca agcaacgtcc gcctataatg aaatttaaaa tgcaaaacaa caggtaaaaa attataagag                      | cgagtggcgt agaaaagggt tgctgccatg aaagctttgc ataaaataaa | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| <210> 136 <211> 104 <212> DNA <213> Hom <400> 136 ggtgaccaag ctaaatttgt ggcatggagt agggacaaac aggaaagcag aaaataaaat            | so sapiens autgtgagca gtgggacatg tactgaatct atctgtacca ctgccaagaa aaatataaaa ataaaatata acacagggaaa atctggtgtc gtgagataaca gggtgggtgaa | agcccaggca atcccagagg ccaaggtcaa agagaaggca agagaaggca ggactgagcc taaagtaata taaagtaaaa cttctttagg aaataatata aaaaaaagct aaggaccaaaa aagtagtcca | cagccactgt tgtgtggctt acaggccctc ggaggagctg cctgccatct aaattaaatt | caccctcaa aaattcatca agcaacgtcc gcctataatg aaatttaaaa tgcaaaacaa caggtaaaaa attataagag ttattttgta agtcttcctc | cgagtggcgt agaaaagggt tgctgccatg aaagctttgc ataaaataaa | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600 |

| acactactgc                                         | aaataggaag            | ggacagtaac   | atttagaaga   | gaacaaaaca  | gaaactcttg   | 840  |
|----------------------------------------------------|-----------------------|--------------|--------------|-------------|--------------|------|
| gaagcaggaa                                         | aggtgcatga            | ctcaaagagg   | gaaattcctg   | tgccataaaa  | ggattgctgg   | 900  |
| tgtataaaat                                         | gctctatata            | tgccaattat   | caatttcctt   | tcatgttcag  | catttctact   | 960  |
| ccttccaaga                                         | agagcagcaa            | agctgaagtt   | agcagcagca   | gcaccagcag  | caacagcaaa   | 1020 |
| aaacaaacat                                         | gagtgtgaag            | ggcatggc     |              |             |              | 1048 |
| <210> 137 <211> 504 <212> DNA <213> Hom            | o sapiens             |              |              |             |              |      |
| <400> 137                                          | gcagcagccc            | cttggcttcc   | cttctccctt   | gcctcccctc  | cggggctccg   | 60   |
|                                                    | actctgggcg            |              |              |             |              | 120  |
|                                                    | tttcagatgc            |              |              |             |              | 180  |
|                                                    | gcctctccct            |              |              |             |              | 240  |
|                                                    | gtggccaggg            |              |              |             |              | 300  |
|                                                    | gecetegee             |              |              |             |              | 360  |
| cgcctcggcg                                         | gccaggcttg            | ctccctccgg   | cacgcctgct   | aacttcccc   | gctacgtccc   | 420  |
|                                                    |                       |              |              |             | tccaggagcg   | 480  |
|                                                    | g ccgccgtgtg          |              |              |             |              | 504  |
| <210> 138 <211> 104 <212> DNA <213> Hore <400> 138 | 12<br>A<br>no sapiens |              |              |             |              |      |
| gatcacaaca                                         |                       | tacacaatga   | ttacaaggaa   | tggtgcccca  | ctggagttgt   | 60   |
| tcaacgcaaa                                         | a acttgcacat          | tgcaagtggc   | aatctcccag   | gcctgcctcd  | ctccacgagt   | 120  |
| gggtctgaat                                         | t gggcctgaga          | ggcaaacato   | : caagaaggag | gaagaggct   | ggcggcacct   | 180  |
| ccctccccg                                          | g gagttctgct          | gattccatct   | : tggggaagca | gggtggacca  | a gggcccaaat | 240  |
| gegeeetgg                                          | g gagattgcgg          | gggcgggaga   | ggttgcaagg   | ggcaagtgg   | aagagcctgt   | 300  |
| taacgtctt                                          | a gggcctccag          | g geetttetgt | gcccctagct   | gtgcctgta   | getttacccc   | 360  |
| acctcagga                                          | g gcttggtcto          | cageggttga   | a ggctggaago | accggggtg   | ggtggaaagg   | 420  |
| gctctgtcc                                          | a ggaagaccg           | g atccgcagag | g ccgggagtc  | gggctagga:  | a gtccctttct | 480  |
| cggtgggag                                          | a ctgaggccg           | c cttggcggg  | g cgggacgaga | a ctcctccga | g gtcgggaaag | 540  |
| ggggccccg                                          | c agcagcccc           | t tggcttccc  | tetecettge   | c ctcccctcc | g gggeteeggt | 600  |

| teagaggeae tetgggegee tgetacaget tecaaactge geegetteet tetteggeag | 660  |
|-------------------------------------------------------------------|------|
| aaaaggactt tcagatgcgg cggcggcggc ggcggcgact caggacagcg cccctcccc  | 720  |
| taacggccgc ctctccctct ccccctcgcc cgccccggct cccccacctc tgggaaggcg | 780  |
| ctgggggtgt ggccagggac cggtataaag tccgggggag ccggtcccgg gcagccgctc | 840  |
| agccccctgc ccctcgccgc ccgccgcctg cctgggccgg gccgaggatg cggcgcagcg | 900  |
| cctcggcggc caggettgct ccctccggca cgcctgctaa cttcccccgc tacgtccccg | 960  |
| ttcgcccgcc gggccgcccc gtctccccgc gccctccggg tcgggtcctc caggagcgcc | 1020 |
| aggegetgee geegtgtgee et                                          | 1042 |
| <210> 139 <211> 24 <212> DNA <213> artificial sequence <220>      |      |
| <223> Immunostimulatory nucleic acid                              |      |
| <400> 139 tcgtcgtttt gacgttttgt cgtt .                            | 24   |
| <210> 140<br><211> 24<br><212> DNA<br><213> artificial sequence   |      |
| <223> Immunostimulatory nucleic acid                              |      |
| <400> 140<br>tegtegtttt gtegtttttt tega                           | 24   |
| <210> 141<br><211> 24<br><212> DNA<br><213> artificial sequence   |      |
| <220>                                                             |      |
| <223> Immunostimulatory nucleic acid                              |      |
| <400> 141<br>tcgtcgtttc gtcgtttcgt cgtt                           | 24   |
| <210> 142<br><211> 24<br><212> DNA<br><213> artificial sequence   |      |

And the second of the indicates and property of the expectation of the property of the expectation of the second of

```
<213> artificial sequence
<220>
      Immunostimulatory nucleic acid
<223>
<220>
<221> misc_feature
<222> (2)..(2)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (5)..(5)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (13)..(13)
<223> N = 5-methylcytosine
<220>
<221> misc_feature <222> (21)..(21)
<223> N = 5-methylcytosine
<400> 147
tngtngtttt gtngttttgt ngtt
<210> 148
<211>
       27
<212> DNA
<213> artificial sequence
<220>
<223> Immunostimulatory nucleic acid
<220>
<221> misc_feature
<222> (2)..(2)
<223> N = 5-methylcytosine
 <220>
 <221> misc_feature
 <222> (5)..(5)
 <223> N = 5-methylcytosine
 <220>
 <221> misc_feature
 <222> (7)..(7)
 <223> N = 5-methylcytosine
 <220>
 <221> misc_feature
 <222> (11)..(11)
 <223> N = 5-methylcytosine
 <220>
 <221> misc_feature
 <222> (13)..(14)
 <223> N = 5-methylcytosine
```

```
<220>
<221> misc_feature
<222> (16)..(16)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (19)..(19)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (22)..(22)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (26)..(27)
<223> N = 5-methylcytosine
<400> 148
tngtngntgt ntnngnttnt tnttgnn
<210> 149
<211> 21
<212> DNA
<213> artificial sequence
<220>
<223> Immunostimulatory nucleic acid
<220>
<221> misc_feature <222> (2)..(2)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (8)..(8)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
 <222> (10)..(10)
 <223> N = 5-methylcytosine
 <220>
 <221> misc_feature
 <222> (13)..(13)
 <223> N = 5-methylcytosine
 <220>
 <221> misc_feature
 <222> (16)..(16)
 <223> N = 5-methylcytosine
 <220>
 <221> misc_feature <222> (20)..(20)
```

ത്രം പ്രത്യം പ്രത്യം വരുന്നു. പ്രത്യാത്ത് ത്രിന്നെക്കെ പ്രത്യക്ക് അംഗ്രത്ത് വ്യക്തിയുന്ന വരുന്നു. വരുന്നു വരുന

```
<223> N = 5-methylcytosine
<400> 149
                                                                          21
gngtttgntn ttnttnttgn g
<210> 150
<211> 20
<212> DNA
<213> artificial sequence
<220>
<223> Immunostimulatory nucleic acid
<220>
<221> misc_feature
<222> (2)..(4)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (8) .. (8)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (12)..(12)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (15)..(16)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (19)..(19)
<223> N = 5-methylcytosine
<400> 150
                                                                           20
gnnnaagntg gnatnngtna
 <210> 151
 <211> 15
 <212> DNA
 <213> artificial sequence
 <220>
 <223> Immunostimulatory nucleic acid
 <400> 151
                                                                           15
 tcctggcggg gaagt
 <210> 152
 <211> 42
 <212> DNA
 <213> artificial sequence
 <220>
```

| WO 200         | 04/094671                                | PCT/US2004/012788 |
|----------------|------------------------------------------|-------------------|
| <400>          | 152                                      |                   |
|                | cgag ccaccatgag acagactttg ccttgtatct ac | 42                |
|                |                                          |                   |
| <210>          |                                          |                   |
| <211><br><212> |                                          |                   |
| <213>          |                                          |                   |
| <220>          |                                          |                   |
| <223>          | Oligonucleotide                          |                   |
| <400>          | 153                                      |                   |
| gaaaga         | attc ttaatgtaca gagtttttgg atccaag       | 37                |
|                |                                          |                   |
| <210><br><211> |                                          |                   |
| <212>          |                                          |                   |
| <213>          | artificial sequence                      |                   |
| <220>          |                                          |                   |
| <223>          | Immunostimulatory nucleic acid           |                   |
| <400>          |                                          |                   |
| tgctgc         | tttt gtgcttttgt gctt                     | 24                |
|                |                                          |                   |
| <210><br><211> |                                          |                   |
| <212>          |                                          |                   |
| <213>          |                                          |                   |
| <220>          |                                          | •                 |
| <223>          | Immunostimulatory nucleic acid           |                   |
|                |                                          |                   |
| <400>          | 155<br>acgt teetgatget                   |                   |
|                |                                          | 20                |
| <210>          | 156                                      |                   |
| <211>          | 20                                       |                   |
| <212><br><213> | DNA artificial sequence                  |                   |
|                | artificial sequence                      |                   |
| <220>          |                                          |                   |
| <223>          | Immunostimulatory nucleic acid           |                   |
| <400>          | 156                                      |                   |
| tccatg         | agct tcctgatgct                          | 20                |
| <210>          | 157                                      |                   |
| <211>          | 20                                       |                   |
| <212><br><213> | DNA artificial sequence                  |                   |
|                |                                          |                   |

| WO 200                           | 4/094671                                            | PCT/US2004/012788 |
|----------------------------------|-----------------------------------------------------|-------------------|
| <223>                            | Immunostimulatory nucleic acid                      |                   |
| <222>                            | <pre>misc_feature (8)(8) N = 5-methylcytosine</pre> |                   |
| <400><br>tccatga                 | 157<br>angt teetgatget                              | 20                |
| <210><br><211><br><212><br><213> |                                                     |                   |
| <220>                            |                                                     |                   |
| <223>                            | Immunostimulatory nucleic acid                      |                   |
| <400><br>tcgtcgt                 | 158<br>Ettt eggegegege eg                           | 22                |
| <210><br><211><br><212><br><213> | 21                                                  |                   |
| <220>                            |                                                     | •                 |
| <223>                            | Immunostimulatory nucleic acid                      |                   |
| <400><br>ggggacg                 | 159<br>gacg tegtgggggg g                            | 21                |
| <210><br><211><br><212><br><213> | 22<br>DNA                                           |                   |
| <220>                            |                                                     |                   |
| <223>                            | Immunostimulatory nucleic acid                      |                   |
| <400><br>tgctgct                 | 160<br>Ettt cggcggccgc cg                           | 22                |
| <210><br><211><br><212><br><213> | 161<br>21<br>DNA<br>artificial sequence             |                   |
| <220>                            |                                                     |                   |
| <223>                            | Immunostimulatory nucleic acid                      |                   |
| <400><br>ggggago                 | 161<br>eagc tgctgggggg g                            | 21                |

## CORRECTED VERSION

## (19) World Intellectual Property Organization International Bureau





(43) International Publication Date 4 November 2004 (04.11.2004)

**PCT** 

## (10) International Publication Number WO 2004/094671 A2

(51) International Patent Classification<sup>7</sup>:

C12Q 1/68

(21) International Application Number:

PCT/US2004/012788

(22) International Filing Date: 22 April 2004 (22.04.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/464,586 22 April 2003 (22.04.2003) 60/464,588 22 April 2003 (22.04.2003)

- (71) Applicants (for all designated States except US): COLEY PHARMACEUTICAL GmbH [DE/DE]; Elisabeth-Selbert-Strasse 9, D-40764 Langenfeld (DE). COLEY PHARMACEUTICAL GROUP, INC. [US/US]; 93 Worcester Street, Suite 101, Wellesley, MA 02481 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): VOLLMER, Jörg [DE/DE]; Kohlrauschweg 24, D-40591 Duesseldorf (DE).

JURK, Marion [DE/DE]; Klosterstr. 4, D-41540 Dornagel (DE). LIPFORD, Grayson, B. [GB/US]; 38 Bates Road, Watertown, MA 02472 (US). SCHETTER, Christian [DE/DE]; Oerkhaushof 35, D-40723 Hilden (DE). FORSBACH, Alexandra [DE/DE]; Raiffeisenstrasse Nº1, D-40764 Rantingen (DE). KRIEG, Arthur, M. [US/US]; 173 Winding River Road, Wellesley, MA 02482 (US).

- (74) Agent: TREVISAN, Maria, A.; Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT. AU. AZ. BA. BB. BG. BR. BW. BY. BZ. CA. CH. CN. CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: METHODS AND PRODUCTS FOR IDENTIFICATION AND ASSESSMENT OF TLR LIGANDS



(57) Abstract: The invention provides in part novel screening methods and compositions for identifying and distinguishing between candidate immunomodulatory compounds. The invention further provides methods for assessing biological activity of composition containing a known TLR ligand. These latter methods can be used for quality assessment and selection of various lots of test compositions, including pharmaceutical products for clinical use.

2004/094671 A2

GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Published:

 without international search report and to be republished upon receipt of that report (48) Date of publication of this corrected version:

27 January 2005

(15) Information about Correction:

see PCT Gazette No. 04/2005 of 27 January 2005, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

# METHODS AND PRODUCTS FOR IDENTIFICATION AND ASSESSMENT OF TLR LIGANDS

### **Background of the Invention**

5

10

15

20

25

30

Nucleic acids with immunostimulatory activity have been identified. The first recognized immunostimulatory motif was the CpG motif in which at least the C of the dinucleotide was unmethylated. It has been postulated that mammalian subjects recognize the unmethylated dinucleotide as being of bacterial origin, and thus mount a heightened immune response following exposure. The ensuing immune response includes both cell mediated and humoral aspects. Since the discovery of the CpG immunostimulatory motif, other immunostimulatory motifs have also been identified including the poly-T and T-rich motifs, the TG motif and the poly-G motif. In some instances, immunostimulation has also been observed in response to exposure to methylated CpG motifs and motif-less nucleic acids having phosphorothioate backbone linkages.

The responses induced by immunostimulatory nucleic acids are varied and can include production and secretion of cytokines, chemokines, and other growth factors. The nucleic acids can induce a heightened immune stimulation regardless of whether an antigen is also introduced to the subject. Identification of new motifs as well as of subtle differences between response profiles of different nucleic acids oftentimes can be laborious, and a high throughput system for screening nucleic acids for their ability to be immunostimulatory as well as to determine the profile of responses they induce would be useful.

## Summary of the Invention

The invention provides in its broadest sense screening methods and tools for identification and discrimination of immunomodulatory molecules and assessment and standardization of samples containing known immunomodulatory molecules. The immunomodulatory molecules can be immunostimulatory or immunoinhibitory, and most preferably are Toll-like receptor (TLR) ligands.

In one aspect, the invention provides a screening method for identifying TLR agonists.

The method comprises contacting a cell line endogenously expressing at least one TLR with a test compound and measuring a test level of TLR signaling activity, wherein a positive test level is indicative of a TLR agonist (i.e., an immunostimulatory compound). The positive test

**10**.

15

20

25

30

level may be apparent without referring to a control. Preferably, however, it is determined relative to a control (i.e., the TLR signaling activity from a reference compound).

In some embodiments, the reference compound is a compound that induces no response (i.e., a zero response) or a minimal response. In this case, a test level that is greater than the reference level is indicative of a compound with TLR signaling activity. More preferably, the reference compound is a compound that induces a positive response (i.e., a non-zero response) and that is immunostimulatory. These reference compounds are referred to herein as negative and positive reference compounds, respectively. If the reference compound is immunostimulatory (i.e., a positive reference compound), a non-zero test level that is lower than the reference level is still indicative of an immunostimulatory test compound. In this latter embodiment, the test compound is less immunostimulatory than the reference compound (for that particular readout), but it is nonetheless immunostimulatory given the non-zero response induced. There may be one or more concurrent or consecutive assays with a negative reference compound, a positive reference compound, or both. The reference may also be a standard curve or data generated previously.

In a related aspect, the screening method involves exposing the same cell to a positive reference compound and a test compound in order to identify a test compound that inhibits the immunostimulatory response of the positive reference compound (i.e., a TLR antagonist or an immunoinhibitory compound).

In still a related aspect, the screening method involves exposing the same cells to a positive reference compound and a test compound in order to identify a test compound that enhances the immunostimulatory response of the positive reference compound (i.e., an enhancer).

In both of these latter aspects, the assay requires a co-incubation of the positive reference compound, the test compound and the cells. Separate assays with positive reference compound alone and optionally negative reference compound alone are usually also performed.

The positive reference compound is a known TLR ligand. Non-limiting examples include but are not limited to TLR3 ligands, TLR7 ligands, TLR8 ligands and TLR9 ligands. In some embodiments, the positive reference compound is an immunostimulatory nucleic acid. In some embodiments, the positive reference compound is a CpG nucleic acid, a poly-T nucleic acid, a T-rich nucleic acid or a poly-G nucleic acid. Another example of a positive

reference compound is a nucleic acid comprising a backbone that contains at least one phosphorothicate linkage.

5

10

15

20

25

30

It has been further discovered according to the invention that the RPMI 8226 cell line expresses TLR7 and responds to the imidazoquinoline compound R-848 (Resiquimod) which is known to signal through TLR7 and TLR8. Accordingly, the screening method can be performed using RPMI 8226, Raji or RAMOS cells and an imidazoquinoline compound such as R-848 or R-847 (Imiquimod) as the positive reference compound.

In one embodiment, the test compound is a nucleic acid such as but not limited to a DNA, an RNA and a DNA/RNA hybrid. The test compound may be a nucleic acid that does not comprise motif selected from the group consisting of a CpG motif, a poly-T motif, a Trich motif and a poly-G motif. The test compound may be a nucleic acid that comprises a phosphorothioate backbone linkage. In another embodiment, the test compound is a non-nucleic acid small molecule. The non-nucleic acid small molecule may be derived from a molecular library. In other embodiments, the test compound comprises amino acids, carbohydrates such as polysaccharides. It may be a hormone or a lipid or contain moieties derived therefrom. In other embodiments, the test compounds are putative ligands for TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10 or TLR11.

In one embodiment, the cell is a RPMI 8226 cell, a Raji cell, a RAMOS cell, a THP-1 cells, a Nalm cell or a KG-1 cell and the TLR is TLR9. In another embodiment, the cell is a RPMI 8226 cell, a Raji cell or a RAMOS cell and the TLR is TLR7. In yet another embodiment, the cell is a KG-1 cell, a Nalm cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cells, a A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell and the TLR is TLR3.

In another embodiment, the cell is an RPMI 8226 cell and the TLR is TLR7 or TLR9. In still another embodiment, the cell is a Raji cell and the TLR is TLR9, TLR7 or TLR3.

Depending upon the embodiment, the TLR signaling activity may be measured or detected in a number of ways. In one embodiment, the TLR signaling activity is measured by cytokine, chemokine, or growth factor secretion. The cytokine secretion may be selected from the group consisting of IL-6 secretion, IL-10 secretion, IL-12 secretion, IFN- $\alpha$  secretion and TNF- $\alpha$  secretion, but is not so limited. The chemokine secretion may be IP-10 secretion or IL-8 secretion, but is not so limited.

In another embodiment, the TLR signaling activity is measured by antibody secretion. The antibody secretion may be IgM secretion, but is not limited to this antibody subtype.

10

15

20

25

30

In another embodiment, the TLR signaling activity is measured by phosphorylation. The total level of phosphorylation in the cell or the level of phosphorylation of particular factors in the cell may be measured. These factors are preferably signaling factors and can be selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, Jun, c-fos, and subunits of NF-kB, but are not so limited.

In still a further embodiment, the TLR signaling activity is measured by cell surface marker expression. In one embodiment, the TLR signaling activity is measured by an increase in cell surface marker expression. Examples of cell surface markers to be analyzed include CD71, CD86, HLA-DR, CD80, HLA Class I, CD54 and CD69. In other embodiments, the TLR signaling activity is measured by a decrease in cell surface marker expression. Cell surface marker expression can be determined using flow cytometry. TLR signaling activity can also be measured by protein production (e.g., by Western blot).

In another embodiment, the TLR signaling activity is measured by gene expression. Gene expression profiles may be determined using Northern blot analysis or RT-PCR that uses mRNA or total RNA as a starting material. The gene expression of interest may be that of the chemokines and cytokines and cell surface molecules recited above. Gene expression analysis can be performed using microarray techniques.

In yet another embodiment, the TLR signaling activity is measured by cell proliferation. Cell proliferation assays can be measured in a number of ways including but not limited to <sup>3</sup>H-thymidine incorporation.

In one embodiment, the cell is an RPMI 8226 cell and TLR signaling is indicated by expression of a marker such as CD71, CD86 and/or HLA-DR or by expression, production or secretion of a factor such as IL-8, IL-10, IP-10 and/or TNF-α. Preferably, in this latter embodiment, the RPMI 8226 cell is unmodified. In another embodiment, the cell is a Raji cell and the TLR signaling is indicated by IL-6 or IFN-α2 expression, production or secretion. In yet another embodiment, the cell is a RAMOS cell and the TLR signaling is indicated by CD80 cell surface expression.

TLR signaling activity can be measured via a native readout or an artificial readout or both. A native readout is one that does not rely on introduction of a reporter construct into the cell of interest.

The cell line may be used in a modified or unmodified form. In one embodiment, the cell line is transfected with a reporter construct. The transfection may be transient or stable. The reporter construct generally comprises a promoter, a coding sequence and a

polyadenylation signal. The coding sequence may comprise a reporter sequence selected from the group consisting of an enzyme (e.g., luciferase, alkaline phosphatase, β-galactosidase, chloramphenicol acetyltransferase (CAT), secreted alkaline phosphatase, etc.), a bioluminescence marker (e.g., green fluorescent protein (GFP, U.S. Patent No. 5,491,084), etc.), a surface-expressed molecule (e.g., CD25), a secreted molecule (e.g., IL-8, IL-12 p40, TNF-α, etc.), and other detectable protein sequences known to those of skill in the art. Preferably, the coding sequence encodes a protein, the level or activity of which can be quantified, with preferably a wide linear range.

In some embodiments, the promoter is a promoter that is responsive to TLR signaling pathways (i.e., a "TLR responsive promoter"). In some embodiments, the promoter contains a binding site for a transcription factor activated upon CpG nucleic acid exposure, such as for example NF-kB. In other embodiments, the promoter contains a binding site for a transcription factor that is activated by a positive reference compound other than CpG nucleic acids. The transcription factor binding site may be selected from the group consisting of a NF-kB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE, as well as others known to those of skill in the art.

10

15

20

25

30

In another embodiment, the promoter contains a functional promoter element from an IL-1 gene, an IL-6 gene, an IL-8 gene, an IL-10 gene, an IL-12 p40 gene, an IFN- $\alpha$ 1 gene, an IFN- $\alpha$ 4 gene, an IFN- $\beta$  gene, an IFN- $\gamma$ 9 gene, a TNF- $\alpha$ 9 gene, a TNF- $\beta$ 9 gene, an IP-9 gene, an IP-10 gene, a RANTES gene, an ITAC gene, a MCP-1 gene, an IGFBP4 gene, a CD54 gene, a CD69 gene, a CD71 gene, a CD80 gene, a CD86 gene, a HLA-DR gene, and a HLA class I gene.

The TLR responsive promoter may be a TLR1 responsive promoter, a TLR2 responsive promoter, a TLR3 responsive promoter, a TLR4 responsive promoter, a TLR5 responsive promoter, a TLR6 responsive promoter, a TLR7 responsive promoter, a TLR8 responsive promoter, a TLR9 responsive promoter, a TLR10 responsive promoter or a TLR11 responsive promoter.

In these latter embodiments, the cell line may be transfected with a reporter construct having a promoter derived from a particular cytokine, chemokine, or cell surface marker, and a unique reporter coding sequence conjugated thereto. In this way, the readout from a particular reporter construct is a surrogate readout for cytokine, chemokine, or cell surface marker readout. Measuring readout from the reporter coding sequences described herein is in

15

20

25

30

some instances easier than measuring cytokine or chemokine secretion, or upregulation of a cell surface marker.

In these latter embodiments, the cell line may be transfected with a number of reporter constructs each having a promoter derived from a particular cytokine, chemokine, or cell surface marker, and a unique distinguishable coding sequence conjugated thereto. In these embodiments, multiple readouts are possible from one screen. In other embodiments, multiple native readouts are also possible from one screen.

In a related embodiment, the cell may be further transfected with a nucleic acid that codes for a TLR polypeptide or a fragment thereof. Preferably, the TLR is one that is not endogenously expressed by the cell. As an example, if the cell is an RPMI 8226 cell which has been shown to express TLR7 and TLR9 according to the invention, then it may be modified to express TLRs other than these (e.g., TLR8) in some embodiments. In this aspect, the RPMI 8226 cell is responsive to TLR8 ligands. In preferred embodiments, the TLR is a human TLR (i.e., hTLR).

In another aspect, the invention provides an RPMI 8226 cell transfected with a TLR nucleic acid. In still another embodiment, the TLR nucleic acid is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR8, TLR10 and TLR11. The encoded TLRs nucleic acids can derive from human or non-human sources. Examples of non-human sources include, but are not limited to, murine, bovine, canine, feline, ovine, porcine, and equine species. Other species include chicken and fish, e.g., aquaculture species. The TLR nucleic acids can also include chimeric sequences consisting of domains originating from different species. In preferred embodiments, the TLR is a human TLR.

In still another aspect, the invention provides kits including the cells lines (e.g., the RPMI 8226 cell line), the reporter constructs and/or expression constructs described above, and instructions for use.

Other aspects of the invention provide methods for analyzing the biological activity of individual lots of material containing previously identified specific TLR ligands (i.e., specific compounds which are ligands for a particular TLR) intended for use as, or for use in the preparation of, pharmaceutical compositions. The methods permit a qualitative and, importantly, a quantitative assessment of biological activity of individual lots of TLR ligands, pre-formulation as well as post-formulation. Such methods are useful in the manufacture and validation of pharmaceutical compositions containing, as an active agent, at least one specific ligand of at least one specific TLR. The specific TLR can be any known TLR, including

WO 2004/094671 PCT/US2004/012788

-7-

without limitation TLR3, TLR7, TLR8 and TLR9. The specific TLR ligand is an isolated TLR ligand, either found in nature or synthetic (not found in nature), including in particular certain nucleic acid molecules and small molecules. Nucleic acid molecules that are specific TLR ligands include synthetic and naturally-occurring oligonucleotides having specific base sequence motifs. Furthermore, specific TLR ligands include both agonists and antagonists of specific TLR.

5

10

15

20

25

These methods are to be distinguished from test procedures and acceptance criteria for new drug substances and new drug products which are classified as chemical substances.

Unlike the afore-mentioned test procedures and acceptance criteria, the methods of the instant invention deal specifically with characterizing drug substances and drug products which are classified as oligonucleotides. Oligonucleotides are explicitly excluded in ICH Topic Q6A Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances, Step 4 – Consensus Guideline: 6 October 1999, § 1.3.

Further still, the methods of the instant invention are to be distinguished from test procedures and acceptance criteria for biotechnological/biological products. Unlike the aforementioned test procedures and acceptance criteria, the methods of the invention deal specifically with characterizing biotechnological/biological products which are classified as DNA products. DNA products are explicitly excluded in ICH Harmonised Tripartite Guideline Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products, Step 4 – 10 March 1999, § 1.3.

In one aspect, the invention provides a method for quality assessment of a test composition containing a known TLR ligand. The method according to this aspect of the invention involves measuring a reference activity of a reference composition comprising a known TLR ligand, wherein the known TLR ligand is a nucleic acid molecule; measuring a test activity of a test composition comprising the known TLR ligand; and comparing the test activity to the reference activity. In one embodiment the method further involves the step of selecting the test composition if the test activity falls within a predetermined range of variance about the reference activity.

In one embodiment, the reference composition is a first production lot of a

pharmaceutical composition comprising the known TLR ligand, and the test composition is a
second production lot of a pharmaceutical composition comprising the known TLR ligand.

This embodiment is particularly useful as a method for developing and applying acceptance
criteria for finished pharmaceutical products containing a known TLR ligand.

10

15

20

25

In another embodiment, the reference composition is a first in-process lot of a composition comprising the known TLR ligand, and the test composition is a second in-process lot of a composition comprising the known TLR ligand. This embodiment is particularly useful as a method for developing and applying acceptance criteria for raw materials and/or other in-process materials containing a known TLR ligand bound for use in a pharmaceutical product.

In one embodiment according to this aspect of the invention, measuring the reference activity involves contacting the reference composition with an isolated cell expressing a TLR responsive to the known TLR ligand, and measuring the test activity involves contacting the test composition with the isolated cell expressing the TLR responsive to the known TLR ligand. Further, in one embodiment the isolated cell expressing the TLR responsive to the known TLR ligand includes an expression vector for the TLR responsive to the known TLR ligand. Such expression vector, and likewise for any expression vector according to the instant invention, can be introduced into the cell using any suitable method.

In one embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand naturally expresses the TLR responsive to the known TLR ligand. Such a cell can be naturally occurring or it can be a cell line, provided the cell does not include an expression vector introduced into the cell for the purpose of artificially inducing the cell to express or overexpress the TLR.

In one particular embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is RPMI 8226. In another embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is Raji, RAMOS, Nalm, THP-1 or KG-1 and the TLR is TLR9. In another embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is RPMI 8226, Raji or RAMOS and the TLR is TLR7. In yet another embodiment, the isolated cell expressing the TLR responsive to the known TLR ligand is a KG-1 cell, a Nalm cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cell, a Hep-2 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell and the TLR is TLR3.

Further according to this aspect of the invention, in one embodiment measuring the reference activity and measuring the test activity each comprises measuring signaling activity mediated by a TLR responsive to the known TLR ligand. As described in greater detail elsewhere herein, TLR signaling involves a series of intracellular signaling events. These signaling events give rise to various downstream products, including certain transcription

10

15

20

25

30

factors (e.g., NF-kB and AP-1), cytokines, chemokines, etc., which can affect the activity of certain gene promoters. For example, in one embodiment the signaling activity is activity of a reporter gene or reporter construct under the control of a NF-kB response element.

In other embodiments, the signaling activity is activity of a reporter gene or reporter construct under the control of an interferon-stimulated response element (ISRE); an IFN-α promoter; an IFN-β promoter; an IL-6 promoter; an IL-8 promoter; an IL-12 p40 promoter; a RANTES promoter; an IL-10 promoter or an IP-10 promoter.

In one embodiment, the known TLR ligand is an immunostimulatory nucleic acid. An immunostimulatory nucleic acid can include, without limitation, a CpG nucleic acid. In another embodiment, the known TLR ligand is an immunoinhibitory nucleic acid. When the known TLR ligand is a TLR antagonist (e.g., an immunoinhibitory oligonucleotide), the method according to this aspect of the invention can further involve measuring the reference activity of the reference composition and measuring the test activity of the test composition, each performed in the presence of a known immunostimulatory TLR ligand.

In various embodiments, the known TLR ligand is a ligand for a particular TLR. Thus in one embodiment the known TLR ligand is a TLR9 ligand. More specifically, in one embodiment the known TLR ligand is a CpG nucleic acid.

In one embodiment, the known TLR ligand is a TLR3 ligand. Such a ligand can include, for example, a double-stranded RNA or a homolog thereof.

In one embodiment, the known TLR ligand is a TLR7 ligand. In one embodiment the known TLR ligand is a TLR8 ligand.

The invention provides in another aspect a method for quality assessment of a test lot of a pharmaceutical product containing a known TLR9 ligand. The method according to this aspect of the invention involves measuring a reference activity of a reference lot of a pharmaceutical product comprising a known TLR9 ligand, wherein the known TLR9 ligand is a nucleic acid molecule; measuring a test activity of a test lot of a pharmaceutical product comprising the known TLR9 ligand; comparing the test activity to the reference activity; and rejecting the test lot if the test activity falls outside of a predetermined range of variance about the reference activity.

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TGT CGT TTT GTC GTT-3' (SEQ ID NO:1).

10

15

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TGA CGT TTT GTC GTT-3' (SEQ ID NO:139).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TGT CGT TTT TTT CGA-3' (SEQ ID NO:140).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT CGT CGT TTC GTC GTT-3' (SEQ ID NO:141).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT CGT CGT TTT GTC GTT-3' (SEQ ID NO:142).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TTC GGT CGT TTT-3' (SEQ ID NO:143).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TTC GTG CGT TTT T-3' (SEQ ID NO:144).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TCG TTT TCG GCG GCC GCC GCC G-3' (SEQ ID NO:145).

In one embodiment according to this aspect of the invention, the known TLR9 ligand is an oligonucleotide having a base sequence provided by 5'-TCG TC\_G TTT TAC\_GGC GCC\_GTG CCG-3' (SEQ ID NO:146), wherein every internucleoside linkage is phosphorothioate except for those indicated by "\_\_", which are phosphodiester.

Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention.

15

20

25

Fig. 1 is a bar graph showing cell surface expression of various markers by RPMI 8226 24 hours and 48 hours following stimulation with CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), LPS and IL-1.

Fig. 2 is a bar graph showing IL-8 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.

Fig. 3 is a bar graph showing IL-6 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.

Fig. 4 is a bar graph showing IP-10 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.

Fig. 5 is a bar graph showing IL-10 production by RPMI 8226 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1), non-CpG nucleic acid (SEQ ID NO: 2), R-848 and LPS.

Fig. 6 is a dose response curve showing fold induction of IL-8 production 24 hours after exposure to CpG nucleic acid (SEQ ID NO: 1) and non-CpG nucleic acid (SEQ ID NO: 2). The EC<sub>50</sub> for CpG nucleic acid is 19 nM and the EC<sub>50</sub> for non-CpG nucleic acid is 263 nM.

Fig. 7 is a bar graph showing NF-κB activation in RPMI 8226 transfected transiently with a NF-κB-luciferase reporter gene construct as a function of cell density and nucleic acid amount transfected, following exposure to CpG nucleic acid (SEQ ID NO: 1), LPS and TNF-α. NF-κB activation is measured by luciferase activity.

Fig. 8 is a bar graph showing RT-PCR results from RNA isolated from RPMI 8226 using gene specific primers for TLR7, TLR8 and TLR9 genes.

Fig. 9 is a dose response curve showing IP-10 production induced by SEQ ID NO: 1, and inhibition thereof in the presence of SEQ ID NO: 151, a immunoinhibitory nucleic acid.

Fig. 10 is a bar graph showing the results of a TLR9 RT-PCR analysis of a number of cell lines.

Fig. 11 is a bar graph showing the results of a TLR7 RT-PCR analysis of a number of cell lines.

Fig. 12 is a bar graph showing the results of a TLR3 RT-PCR analysis of a number of cell lines.

10

15

20

25

Fig. 13 is a bar graph showing the results of a TLR3, TLR7, TLR8 and TLR9 RT-PCR analysis of the Raji cell line.

Fig. 14 is a graph showing IL-6 production by the Raji cell line upon stimulation with various ODN (SEQ ID NO:1; SEQ ID NO:154; SEQ ID NO:158; SEQ ID NO:160; SEQ ID NO:159; SEQ ID NO:161).

Fig. 15 is a bar graph showing IL-6 production of the Raji cell line upon stimulation with poly I:C and R-848.

Fig. 16 is a bar graph showing IFN-o2 production by the Raji cell line upon stimulation with CpG ODN (SEQ ID NO: 1), R-848 and poly I:C.

Fig. 17 is a bar graph showing CD80 expression (by flow cytometry) by the RAMOS cell line upon stimulation with CpG ODN (SEQ ID NO: 1) and non-CpG ODN (SEQ ID NO: 2).

Fig. 18A is a bar graph showing the induction of NF-κB by 293 fibroblast cells transfected with human TLR9 in response to exposure to various stimuli, including CpG-ODN, GpC-ODN, LPS, and medium.

Fig. 18B is a bar graph showing the amount of IL-8 produced by 293 fibroblast cells transfected with human TLR9 in response to exposure to various stimuli, including CpG-ODN, GpC-ODN, LPS, and medium.

Fig. 19 is a bar graph showing the induction of NF-κB-luc produced by stably transfected 293-mTLR9 cells in response to exposure to various stimuli, including CpG-ODN, methylated CpG-ODN (Me-CpG-ODN), GpC-ODN, LPS and medium.

Fig. 20 is a bar graph showing the induction of NF-κB-luc produced by stably transfected 293-hTLR9 cells in response to exposure to various stimuli, including CpG-ODN, methylated CpG-ODN (Me-CpG-ODN), GpC-ODN, LPS and medium.

Fig. 21 is a series of gel images depicting the results of reverse transcriptase-polymerase chain reaction (RT-PCR) assays for murine TLR9 (mTLR9), human TLR9 (hTLR9), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in untransfected control 293 cells, 293 cells transfected with mTLR9 (293-mTLR9), and 293 cells transfected with hTLR9 (293-hTLR9).

30

It is to be understood that the Figures are not required for enablement of the invention.

10

20

30

SEQ ID NO:1 is the nucleotide sequence of an immunostimulatory nucleic acid (TLR9 ligand).

SEQ ID NO:2 is the nucleotide sequence of a non-CpG nucleic acid.

SEQ ID NO:3 is the nucleotide sequence of human TLR2 cDNA (U88878).

SEQ ID NO:4 is the amino acid sequence of human TLR2 protein (AAC34133).

SEQ ID NO:5 is the nucleotide sequence of murine TLR2 cDNA (AF165189).

SEQ ID NO:6 is the amino acid sequence of murine TLR2 protein (NP\_036035).

SEQ ID NO:7 is the nucleotide sequence of human TLR3 cDNA (NM\_003265).

SEQ ID NO:8 is the amino acid sequence of human TLR3 protein (NP\_003256).

SEQ ID NO:9 is the nucleotide sequence of murine TLR3 cDNA (AF355152).

SEQ ID NO:10 is the amino acid sequence of murine TLR3 protein (AAK26117).

SEQ ID NO:11 is the nucleotide sequence of human TLR4 cDNA (U88880).

SEQ ID NO:12 is the nucleotide sequence of human TLR4 cDNA transcript variant 4 (NM\_138557).

SEQ ID NO:13 is the nucleotide sequence of human TLR4 cDNA transcript variant 2 (NM\_138556).

SEQ ID NO:14 is the nucleotide sequence of human TLR4 cDNA transcript variant 1 (NM\_138554).

SEQ ID NO:15 is the nucleotide sequence of human TLR4 cDNA transcript variant 3 (NM 003266).

SEQ ID NO:16 is the amino acid sequence of human TLR4 protein isoform A (NP 612564).

SEQ ID NO:17 is the amino acid sequence of human TLR4 protein isoform B (NP 612566).

25 SEQ ID NO:18 is the amino acid sequence of human TLR4 protein isoform C (NP\_003257).

SEQ ID NO:19 is the amino acid sequence of human TLR4 protein isoform D (NP\_612567).

SEQ ID NO:20 is the nucleotide sequence of murine TLR4 cDNA (NM\_021297).

SEQ ID NO:21 is the nucleotide sequence of murine TLR4 mRNA (AF185285).

SEO ID NO:22 is the nucleotide sequence of murine TLR4 mRNA (AF110133).

SEQ ID NO:23 is the amino acid sequence of murine TLR4 protein (AAD29272).

SEO ID NO:24 is the amino acid sequence of murine TLR4 protein (AAF04278).

SEO ID NO:25 is the nucleotide sequence of human TLR5 cDNA (AB060695). SEQ ID NO:26 is the amino acid sequence of human TLR5 protein (BAB43558). SEQ ID NO:27 is the amino acid sequence of human TLR5 protein (O60602). SEQ ID NO:28 is the amino acid sequence of human TLR5 protein (AAC34136). SEQ ID NO:29 is the nucleotide sequence of murine TLR5 cDNA (AF186107). 5 SEO ID NO:30 is the amino acid sequence of murine TLR5 protein (AAF65625). SEQ ID NO:31 is the nucleotide sequence of human TLR7 cDNA (AF240467). SEQ ID NO:32 is the nucleotide sequence of human TLR7 cDNA (AF245702). SEO ID NO:33 is the nucleotide sequence of human TLR7 cDNA (NM\_016562). SEQ ID NO:34 is the amino acid sequence of human TLR7 protein (AAF60188). 10 SEO ID NO:35 is the amino acid sequence of human TLR7 protein (AAF78035). SEQ ID NO:36 is the amino acid sequence of human TLR7 protein (NP\_057646). SEQ ID NO:37 is the amino acid sequence of human TLR7 protein (Q9NYK1). SEQ ID NO:38 is the nucleotide sequence of murine TLR7 cDNA (AY035889). SEQ ID NO:39 is the nucleotide sequence of murine TLR7 splice variant 15 (NM 133211). SEQ ID NO:40 is the nucleotide sequence of murine TLR7 splice variant (AF334942). SEQ ID NO:41 is the amino acid sequence of murine TLR7 protein (AAK62676). SEQ ID NO:42 is the amino acid sequence of murine TLR7 protein (AAL73191). SEQ ID NO:43 is the amino acid sequence of murine TLR7 protein (AAL73192). 20 SEQ ID NO:44 is the amino acid sequence of murine TLR7 protein (NP 573474). SEQ ID NO:45 is the amino acid sequence of murine TLR7 protein (P58681). SEQ ID NO:46 is the nucleotide sequence of human TLR8 cDNA (AF245703). SEQ ID NO:47 is the nucleotide sequence of human TLR8 cDNA (AF246971). SEQ ID NO:48 is the nucleotide sequence of human TLR8 cDNA (NM\_138636). 25 SEQ ID NO:49 is the nucleotide sequence of human TLR8 cDNA (NM\_016610). SEQ ID NO:50 is the amino acid sequence of human TLR8 protein (AAF78036). SEQ ID NO:51 is the amino acid sequence of human TLR8 protein (AAF64061). SEQ ID NO:52 is the amino acid sequence of human TLR8 protein (Q9NR97). SEQ ID NO:53 is the amino acid sequence of human TLR8 protein (NP\_619542). 30 SEQ ID NO:54 is the amino acid sequence of human TLR8 protein (NP\_057694). SEQ ID NO:55 is the nucleotide sequence of murine TLR8 cDNA (AY035890). SEQ ID NO:56 is the nucleotide sequence of murine TLR8 cDNA (NM\_133212).

SEQ ID NO:57 is the amino acid sequence of murine TLR8 protein (AAK62677). SEO ID NO:58 is the amino acid sequence of murine TLR8 protein (NP 573475). SEQ ID NO:59 is the amino acid sequence of murine TLR8 protein (P58682). SEO ID NO:60 is the nucleotide sequence of human TLR9 cDNA (AF245704). 5 SEQ ID NO:61 is the nucleotide sequence of human TLR9 cDNA (AB045180). SEQ ID NO:62 is the amino acid sequence of human TLR9 protein (AAF78037). SEQ ID NO:63 is the amino acid sequence of human TLR9 protein (AAF72189). SEQ ID NO:64 is the amino acid sequence of human TLR9 protein (AAG01734). SEQ ID NO:65 is the amino acid sequence of human TLR9 protein (AAG01735). SEO ID NO:66 is the amino acid sequence of human TLR9 protein (AAG01736). 10 SEQ ID NO:67 is the amino acid sequence of human TLR9 protein (BAB19259). SEQ ID NO:68 is the nucleotide sequence of murine TLR9 cDNA (AF348140). SEQ ID NO:69 is the nucleotide sequence of murine TLR9 cDNA (AB045181). SEO ID NO:70 is the nucleotide sequence of murine TLR9 cDNA (AF314224). SEQ ID NO:71 is the nucleotide sequence of murine TLR9 cDNA (NM 031178). 15 SEO ID NO:72 is the amino acid sequence of murine TLR9 protein (AAK29625). SEQ ID NO:73 is the amino acid sequence of murine TLR9 protein (AAK28488). SEQ ID NO:74 is the amino acid sequence of murine TLR9 protein (BAB19260). SEQ ID NO:75 is the amino acid sequence of murine TLR9 protein (NP 112455). SEQ ID NO:76 is the nucleotide sequence of human TLR10 cDNA (AF296673). 20 SEQ ID NO:77 is the amino acid sequence of human TLR10 protein (AAK26744). SEQ ID NO:78 is the nucleotide sequence of human TLR6 cDNA (AB020807). SEQ ID NO:79 is the nucleotide sequence of human TLR6 mRNA (NM 006068). SEQ ID NO:80 is the amino acid sequence of human TLR6 protein (BAA78631). 25 SEQ ID NO:81 is the amino acid sequence of human TLR6 protein (NP 006059). SEQ ID NO:82 is the amino acid sequence of human TLR6 protein (Q9Y2C9). SEO ID NO:83 is the nucleotide sequence of murine TLR6 cDNA (AB020808). SEQ ID NO:84 is the nucleotide sequence of murine TLR6 cDNA (NM 011604). SEQ ID NO:85 is the nucleotide sequence of murine TLR6 cDNA (AF314636). 30 SEQ ID NO:86 is the amino acid sequence of murine TLR6 protein (BAA78632). SEQ ID NO:87 is the amino acid sequence of murine TLR6 protein (AAG38563). SEQ ID NO:88 is the amino acid sequence of murine TLR6 protein (NP 035734). SEQ ID NO:89 is the amino acid sequence of murine TLR6 protein (Q9EPW9).

SEQ ID NO:90 is the nucleotide sequence of a consensus sequence for NF- $\kappa B$  p50 subunit.

SEQ ID NO:91 is the nucleotide sequence of a consensus sequence for NF-kB p65 subunit.

5 SEQ ID NO:92 is the nucleotide sequence of an example of an NF-κB p65 subunit binding site.

SEQ ID NO:93 is the nucleotide sequence of an example of a murine CREB binding site.

SEQ ID NO:94 is the nucleotide sequence of an example of a murine AP-1 binding

10 site.

15

25

30

site.

SEQ ID NO:95 is the nucleotide sequence of an example of a murine AP-1 binding

SEQ ID NO:96 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:97 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:98 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:99 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:100 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:101 is the nucleotide sequence of an example of an ISRE.

SEO ID NO:102 is the nucleotide sequence of an example of an ISRE.

SEQ ID NO:103 is the nucleotide sequence of an example of an SRE.

SEO ID NO:104 is the nucleotide sequence of an example of an SRE.

SEQ ID NO:105 is the nucleotide sequence of an example of an SRE.

SEO ID NO:106 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:107 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:108 is the nucleotide sequence of an example of an NFAT binding site.

SEQ ID NO:109 is the nucleotide sequence of an example of an NFAT binding site.

SEO ID NO:110 is the nucleotide sequence of an example of a GAS.

SEO ID NO:111 is the nucleotide sequence of a p53 binding site consensus sequence.

SEQ ID NO:112 is the nucleotide sequence of an example of a p53 binding site.

SEO ID NO:113 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:114 is the nucleotide sequence of an example of a p53 binding site.

SEO ID NO:115 is the nucleotide sequence of an example of a p53 binding site.

SEO ID NO:116 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:117 is the nucleotide sequence of an example of a p53 binding site.

SEQ ID NO:118 is the nucleotide sequence of an example of a TARE (TNF- $\alpha$ response element).

5

10

15

20

25

SEQ ID NO:119 is the nucleotide sequence of an example of an SRF binding site.

SEQ ID NO:120 is the nucleotide sequence of an example of an SRF binding site.

SEQ ID NO:121 is the nucleotide sequence of the -620 to +50 promoter region of IFN-α4.

SEQ ID NO:122 is the nucleotide sequence of the -140 to +9 promoter region of IFN- $\alpha 1$ .

SEQ ID NO:123 is the nucleotide sequence of the -140 to +9 promoter region of IFN- $\alpha$ l (point mutation, AL353732).

SEQ ID NO:124 is the nucleotide sequence of the -280 to +20 promoter region of IFN- $\beta$ .

SEO ID NO:125 is the nucleotide sequence of the -397 to +5 promoter region of human RANTES (AB023652).

SEO ID NO:126 is the nucleotide sequence of the -751 to +30 promoter region of human IL-12 p40.

SEQ ID NO:127 is the nucleotide sequence of the -250 to +30 promoter region of human IL-12 p40.

SEQ ID NO:128 is the nucleotide sequence of the -288 to +7 promoter region of human IL-6.

SEQ ID NO:129 is the nucleotide sequence of the IL-6 gene promoter from -1174 to +7 (M22111).

SEO ID NO:130 is the nucleotide sequence of the -734 to +44 promoter region derived from human IL-8.

SEQ ID NO:131 is the nucleotide sequence of the -162 to 44 promoter region of human IL-8.

SEQ ID NO:132 is the nucleotide sequence of the -615 to +30 promoter region of human TNF-α.

30 SEQ ID NO:133 is the nucleotide sequence of a promoter region of human TNF- $\beta$ . SEO ID NO:134 is the nucleotide sequence of the -875 to +97 promoter region of human IP-10.

10

15

20

25

SEQ ID NO:135 is the nucleotide sequence of the -219 to +114 promoter region of human CXCL11 (IP-9).

SEQ ID NO:136 is the nucleotide sequence of the full length promoter region of human CXCL11 (IP-9).

SEQ ID NO:137 is the nucleotide sequence of the -289 to +217 promoter region of IGFBP4 (Insulin growth factor binding protein 4).

SEQ ID NO:138 is the nucleotide sequence of the full length promoter region of IGFBP4.

SEO ID NO:139 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:140 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:141 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:142 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:143 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:144 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:145 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:146 is the nucleotide sequence of an immunostimulatory nucleic acid.

SEQ ID NO:147 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

SEQ ID NO:148 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

SEQ ID NO:149 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

SEQ ID NO:150 is the nucleotide sequence of an immunostimulatory methylated CpG nucleic acid.

SEO ID NO:151 is the nucleotide sequence of an immunoinhibitory nucleic acid.

SEQ ID NO:152 is the nucleotide sequence of a sense primer for human TLR3.

SEQ ID NO:153 is the nucleotide sequence of an antisense primer for human TLR3.

SEQ ID NO:154 is the nucleotide sequence of a GpC nucleic acid.

SEO ID NO:155 is the nucleotide sequence of a CpG ODN.

30 SEQ ID NO:156 is the nucleotide sequence of a GpC ODN.

SEO ID NO:157 is the nucleotide sequence of a Me-CpG ODN.

SEO ID NO:158 is the nucleotide sequence of a TLR9 ligand.

SEQ ID NO:159 is the nucleotide sequence of a TLR9 ligand.

10

15

20

25

30

SEQ ID NO:160 is the nucleotide sequence of a TLR9 ligand. SEQ ID NO:161 is the nucleotide sequence of a TLR9 ligand.

## **Detailed Description of the Invention**

In its broadest sense, the invention relates to screening methods and tools to be used to identify and discriminate between newly discovered immunomodulatory molecules and to compare and standardize compositions of known immunomodulatory molecules. The immunomodulatory molecules are preferably TLR ligands.

Thus, the invention is based in part on the discovery that cell lines expressing endogenous TLR respond to TLR ligands in a manner similar to the response of peripheral blood mononuclear cells (PBMC). PBMC respond to immunomodulatory TLR ligands by modulating one or more parameters including gene expression, cell surface marker expression, cytokine and/or chemokine production and secretion, cell cycle status, phosphorylation status, and the like. TLR ligands can be categorized and distinguished based on the cellular changes they induce (i.e., their induction profiles). The ability of a TLR ligand to provide therapeutic or prophylactic benefit to a subject depends on its induction profile. The ability to screen new TLR ligands for a panel of response indicators or parameters allows for rapid discrimination and categorization of TLR ligands. Moreover, the similarity between the cell line responses and those observed after in vivo administration of the TLR ligand indicates that the cell lines are suitable predictors of in vivo activity. The use of in vitro propagated cell lines additionally overcomes the variability encountered when using freshly isolated PBMC.

The TLR ligands identified according to the invention therefore can be used therapeutically or prophylactically in a more patient- or disorder-specific manner. The invention allows for the tailoring of TLR ligands for particular patients or disorders.

The invention identifies a number of cell lines that can be used to identify TLR ligands based on endogenous TLR expression such as TLR3, TLR7 and TLR9 expression. As an example, the invention is premised in part on the discovery of TLR9 expression in a number of cell lines including RPMI 8226, Raji, RAMOS, THP-1, Nalm-6 and KG-1. Cell lines RPMI 8226, Raji and RAMOS have been determined to express TLR7 according to the invention. Cell lines KG-1 cell, a Nalm cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cells, a A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell have been discovered to express TLR3 according to the invention.

10

15

25

30

It is further premised in part on the discovery that RPMI 8226 cells respond to the imidazoquinoline compound R-848. Consistent with this latter finding, it was also discovered that RPMI 8226 cells express TLR7.

The invention in other aspects provides for screening methods and tools for verifying and standardizing compositions containing known TLR ligands. These compositions may be for example commercial production lots to be used in a clinical setting. Accordingly, the invention provides methods for standardizing lots of known TLR ligands prior to distribution and use clinically. In this way, production processes can be observed and controlled and substandard production lots can be identified and eliminated prior to shipment.

The methods of the instant invention can be used at any step in the preparation and production of clinical material, i.e., pharmaceutical product. In particular, the methods will find use in characterizing or validating raw materials, in-process materials, finished product materials (e.g., pre-release materials), and post-production materials (e.g., post-release materials). The methods can also be used to validate existing process methods, as well as to validate new or changed process methods used in the production of the pharmaceutical product.

### 20 Screening Assays Generally

The screening assays provided herein may be used to identify immunomodulatory agents. Immunomodulatory agents are agents that either stimulate or inhibit immune responses in a subject. Accordingly, as used herein, immunomodulation embraces both immunostimulation and immunoinhibition.

The screening methods are used to identify TLR agonists and antagonists. The methods can also be used to identify compounds that enhance the immunostimulation induced by a TLR agonist. This latter set of compounds is referred to herein as "enhancers". A TLR agonist is a compound that stimulates TLR signaling activity. A TLR antagonist is a compound that inhibits TLR signaling activity. Agonists are generally referred to herein as immunostimulatory compounds because stimulation of TLR is associated with immune stimulation. Antagonists are generally referred to herein as immunoinhibitory compounds because inhibition of TLR is associated with immune inhibition. TLR antagonists include compounds that reduce (or eliminate completely) the immunostimulation induced by a TLR

10

25

30

agonist. In some embodiments, the agonists, antagonists and enhancers are TLR ligands (i.e., they bind to a TLR). In other embodiments, the test compounds with agonist, antagonist or enhancer activity may act downstream or upstream of the TLR-TLR ligand interaction.

An "immunostimulatory compound" as used herein refers to a natural or synthetic compound that characteristically induces a TLR-mediated response when contacted with a suitable functional TLR polypeptide. In one embodiment the immunostimulatory compound is a natural or synthetic compound that induces a TLR-mediated response when contacted with a cell that naturally or artificially expresses a suitable functional TLR polypeptide. Depending on the aspect of the invention, the cell may be an experimental cell or a primary cell such as a PBMC.

Examples of immunostimulatory compounds include the following immunostimulatory nucleic acids, which are discussed in further detail below:

| ,  | 5'-TCGTCGTTTTGTCGTTTTGTCGTT-3'    | (SEQ ID NO:1)   |
|----|-----------------------------------|-----------------|
|    | 5'-TCGTCGTTTTGACGTTTTGTCGTT-3'    | (SEQ ID NO:139) |
| 15 | 5'-TCGTCGTTTTGTCGTTTTTTTCGA-3'    | (SEQ ID NO:140) |
|    | 5'-TCGTCGTTTCGTCGTTTCGTCGTT-3'    | (SEQ ID NO:141) |
|    | 5'-TCGTCGTTTCGTCGTTTTGTCGTT-3'    | (SEQ ID NO:142) |
|    | 5'-TCGTCGTTTTTCGGTCGTTTT-3'       | (SEQ ID NO:143) |
|    | 5'-TCGTCGTTTTTCGTGCGTTTTT-3'      | (SEQ ID NO:144) |
| 20 | 5'-TCGTCGTTTTCGGCGGCCGCCG-3'      | (SEQ ID NO:145) |
|    | 5'-TCGTC_GTTTTAC_GGCGCC_GTGCCG-3' | (SEQ ID NO:146) |

Imidazoquinolines are immune response modifiers thought to induce expression of several cytokines including interferons (e.g., IFN-α and IFN-β), TNF-α and some interleukins (e.g., IL-1, IL-6 and IL-12) as well as chemokines (e.g., IP-10 and IL-8). Imidazoquinolines are capable of stimulating a Th1 immune response, as evidenced in part by their ability to induce increases in IgG2a levels. Imidazoquinoline agents reportedly are also capable of inhibiting production of Th2 cytokines such as IL-4, IL-5, and IL-13. Some of the cytokines induced by imidazoquinolines are produced by macrophages and dendritic cells. Some species of imidazoquinolines have been reported to increase NK cell lytic activity and to stimulate B cells proliferation and differentiation, thereby inducing antibody production and secretion. Imidazoquinoline mimics can also be tested using the screening methods.

10

15

20

25

30

An "immunoinhibitory compound" as used herein refers to a natural or synthetic compound that characteristically inhibits a TLR-mediated response when contacted with a suitable functional TLR polypeptide. In one embodiment the immunoinhibitory compound is a natural or synthetic compound that inhibits a TLR-mediated response when contacted with a cell that naturally or artificially expresses a suitable functional TLR polypeptide.

In addition to the immunoinhibitory nucleic acids disclosed elsewhere herein, immunoinhibitory compounds and TLR antagonists encompass certain small molecules (chloroquine, quinacrine, 9-aminoacridines and 4-aminoquinolines, and derivatives thereof) described by Macfarlane and colleagues in U.S. Pat. 6,221,882; U.S. Pat. 6,399,630; U.S. Pat. 6,479,504; U.S. Pat. 6,521,637; and published U.S. Pat. application 2002/0151564, the contents of all of which are hereby incorporated by reference in their entirety.

The invention provides in part methods and tools that utilize cell lines, in modified or unmodified form, as surrogates for PBMC. Immunomodulation by TLR ligands can be assessed using one or preferably more parameters including but not limited to cytokine and chemokine secretion, upregulation of cell surface markers, changes in cell proliferation, phosphorylation changes, and the like. These parameters may be native readouts or artificial readouts as described herein.

The cellular response to immunostimulatory nucleic acids by the cell lines described herein (e.g., RPMI 8226, Raji, RAMOS, and the like) so resembles that of PBMC that these cells can be used to identify and differentiate between immunomodulatory compounds based on the extent of the induced response and the particular profile of that response. The invention provides a number of cell lines each with a particular endogenous TLR expression profile, as described herein.

The cell lines can be used to identify immunomodulatory compounds with particular response profiles. As an example, the cell lines can be used to identify molecules that are mimics to known TLR ligands. The cell lines can also be used to identify TLR ligands that trigger some but not necessarily all of the responses induced by known TLR ligands. For example, the cell line can be used to distinguish between compounds based on individual or group cytokine or chemokine secretion, or based on upregulation of one, a subset or all cell surface markers. As an example, in some therapeutic instances, it may be desirable to use a compound that induces the secretion of relatively high levels of chemokine such as IP-10, yet induces only relatively low levels of one or more other factors. The screening methods of the invention allow for the identification of such a compound with this type of induction profile.

It is to be understood that the screening method also can be used to determine effective amounts of known and newly identified immunomodulatory compounds. For example, the EC<sub>50</sub> value of a TLR ligand for the production of a particular cytokine or chemokine can be determined, thereby facilitating comparison between different nucleic acids.

5

10

15

20

25

30

Generally, these assays require the incubation of cells with a reference compound and a test compound, and an analysis of the readout. Depending on the embodiment, the same cells are exposed to the reference compound and the test compound. An example of this latter embodiment is a screening assay for compounds that enhance the immunostimulatory effects of a TLR agonist. Another example is a screening assay for compounds that inhibit the immunostimulatory effects of a TLR agonist. In both examples, the reference compound is a positive reference compound (i.e., it is itself immunostimulatory).

In other embodiments, particularly those directed at identifying immunostimulatory compounds, separate aliquots from the same cell line (or from the same freshly harvested cell population) are exposed to either the reference compound or the test compound, and the readouts from each are measured and compared to the other. If the reference compound is a negative reference compound (i.e., it is inert and neither immunostimulatory nor immunoinhibitory), then any test level that is greater than the reference level is indicative of a test compound that has at least some immunostimulatory capacity. Generally, the negative reference compound is used to set background levels of immunostimulation or immunoinhibition observed in the absence of the test compound. If the reference compound is a positive reference compound (i.e., it is immunostimulatory), then it is possible to compare and contrast the induction profile of the test compound to that of the reference compound.

In some instances, separate reference assays individually containing a positive and a negative reference compound are performed alongside the test assay. For example, if the test assay is a screen for an immunostimulatory TLR ligand, then reference assays can be a positive reference assay (in which the reference compound is immunostimulatory), a negative reference assay (in which the reference compounds is immunologically inert or neutral), or both. A test compound is defined as immunostimulatory if it induces a response greater than that of the negative reference compound. The level and profile of the immunostimulatory response can be compared to the level and profile induced by the positive reference compound. It is to be understood that a test compound that induces a level of immunostimulation less than that of the positive reference compound may still be considered immunostimulatory according to the invention. Modifications to these screening assays for a

10

15

20

25

30

desired readout will be apparent to those of ordinary skill in the are based on the teachings provided herein.

If the test assay is a screen for an immunoinhibitory TLR ligand, then the assay may generally involve co-incubation of the test compound and a positive reference compound. The control assay may include co-incubation of the negative and positive reference compounds. As used herein, co-incubation embraces simultaneous or consecutive addition of the reference and test compounds. The test compound may be added before or after the positive reference compound. An immunoinhibitory test compound may be identified by a diminution of the immunostimulatory response induced by the positive reference compound when in the presence of the test compound. If the level of the response is less in the presence of the test compound, this indicates that the test compound is capable of interfering with the immunostimulatory effects of the positive reference compound. As an example, simultaneous or consecutive addition of a putative immunoinhibitory test compound can reduce the amount of cytokines or chemokines secreted by cells in response to the positive reference compound alone, indicating an inhibition of the immunostimulatory effects of the positive reference compound.

The reference immunoinhibitory compound can be used at one or more concentrations in conjunction with a selected or constant concentration of reference immunostimulatory compound. Under proper conditions, the immunostimulatory effect of the reference immunostimulatory compound will be less in the presence of the immunoinhibitory substance than in the absence of the immunoinhibitory substance. Furthermore, under proper conditions, the immunostimulatory effect of the reference immunostimulatory compound will decrease with increasing concentration of the immunoinhibitory substance.

The breadth of response by the cell line to immunomodulatory compounds, and its facile manipulation, allows for the identification of novel compounds. The cell line allows the rapid discovery of such compounds given that is lends itself to high throughput screening methods such as those provided herein. These methods and compositions are described in greater detail below. The invention therefore provides screening methods that utilize cell lines that either endogenous express TLRs such as the RPMI 8226 cell line as well as cell lines that have been modified to express TLRs. The invention further provides compositions that comprise such cell lines.

The verification and standardization methods of the invention generally involve assays in which an isolated cell expressing a functional TLR is contacted with each of two

compositions, each composition containing a known ligand for the TLR. One composition is a reference composition, and the assay using the reference composition yields a reference activity. The second composition is a test composition, and the assay using the test composition yields a test activity. The two contacting steps can be performed on separate cells that are alike, and typically will be performed on separate populations of cells that are alike. For example, the separate cells or the separate populations of cells can be drawn from a single population of cells. In typical usage according to this embodiment, the reference and test activities are measured essentially concurrently, although the use of historical reference activity is also contemplated by the methods of the invention. As an alternative, the two contacting steps can be performed on a single cell or on a single population of cells, usually in an essentially concurrent manner when it is desirable to have competition between reference and test compositions. In one embodiment the known TLR ligand is a nucleic acid molecule.

5

10

15

20

25

30

The assays of the invention are performed under specific conditions so that comparison can be made between reference and test activities or levels. The results of the comparison can be used as a basis upon which to accept or reject the test material as suitable for its intended use.

The biological characterization of the reference composition will generally entail a series of biological activity measurements of the reference composition using a single assay under defined conditions in order to define a range of inter-test variance. The range of intertest variance so obtained using reference composition can be used to define an acceptable range of variance within which a subsequent test measurement must fall in order to satisfy quality standards. Such a range of acceptable variance can serve as a basis for developing predetermined range of variance about the reference activity, i.e., acceptance criteria for a particular test composition or test lot. For example, a particular reference composition can be assayed under defined conditions in a number of independent measurements and found to yield a result expressed as  $100 \pm 5$  units of activity. Under this same example, a subsequent test measurement of a test composition performed using the same assay and defined conditions is found to yield 97 units of activity. The activity of the test composition under this example thus yielded a result that falls within the normal range of inter-test variance observed for the reference composition. Accordingly, the test material under this example could be selected on the basis of the test activity falling within a predetermined range of variance about the reference activity. In short, the test material can be deemed acceptable

provided the test activity falls within a predetermined range of activity that is related to the activity of the reference material.

In one embodiment, the methods of the invention provide for comparison between a reference lot of a particular TLR ligand and a test lot of the same particular TLR ligand. Such comparison is useful for quality control assessment of the test lot of material, also referred to herein as validation, e.g., product validation. Such comparison is also useful for process validation.

10

15

20

25

30

In another embodiment, the methods of the invention provide for comparison between a reference lot of a particular TLR ligand and a test lot of a different TLR ligand. In a simple example, where a test TLR ligand (T) is expected to have little or no activity characteristic of reference TLR ligand (R), comparison can be made between T and R to confirm the lack of R-like activity possessed by T. In a more complex example, where a test TLR ligand (C) is capable of exerting two different effects, wherein each effect is characteristic of one of two different classes of TLR ligand and is best characterized by one of two different reference TLR ligands (A and B), the test TLR ligand (C) can be compared with either of the two reference TLR ligands (A or B). In this second example, test composition C could be found, for example, to possess 50 percent A-like activity compared with reference A and 70 percent B-like activity compared with reference B. Test composition C could thus independently meet or fail to meet predetermined standards for each of A-like activity and B-like activity. Such comparison is also useful for quality control assessment of the test lot of material, e.g., product validation. Of course test TLR ligand C can alternatively or additionally be compared against reference TLR ligand C, as described in the preceding paragraph.

To facilitate the methods of the invention, certain conditions for carrying out the assays are standardized and used for measurements of both reference activity and test activity. In this way direct comparison between reference activity and test activity can be made readily. Conditions that can be standardized and used in this manner can include, without limitation, readout, temperature, media characteristics, duration (time between introduction of reference composition or test composition and activity measurement), methods of sampling, etc. In some embodiments the methods of the invention can be at least partially automated in order to increase throughput and/or to reduce inter-test variability. For example, robotic devices and workstations with the capacity to dispense and/or sample fluids in a set or programmable fashion are now well known in the art and can be used in performing the methods of the instant invention.

10

15

20

25

30

In one embodiment a standard curve of reference composition activity is employed. Typically the standard curve is generated by selecting conditions including concentration of the reference composition such that the dose-response curve is essentially linear (and the slope is non-zero) over a range of concentrations that includes the effective concentration at which activity is 50 percent of maximum (EC50). In one embodiment the standard curve spans a range of concentrations defined by EC50  $\pm$  1 log concentration, e.g.,  $1 \times 10^{-7}$  M  $- 1 \times 10^{-5}$  M, where EC50 is  $1 \times 10^{-6}$  M. In another embodiment the standard curve spans a broader range of concentrations defined by EC50  $\pm$  2 log concentration, e.g.,  $1 \times 10^{-8}$  M  $- 1 \times 10^{-4}$  M, where EC50 is  $1 \times 10^{-6}$  M. In yet another embodiment the standard curve spans a narrower range of concentrations defined by EC50  $\pm$  0.5 log concentration, e.g.,  $3.16 \times 10^{-7}$  M  $- 3.16 \times 10^{-6}$  M, where EC50 is  $1 \times 10^{-6}$  M. The foregoing embodiments are intended to be exemplary and not limiting in any way. One of skill in the art will be able to select, for a given reference composition and without undue experimentation, an appropriate range of concentrations about some middle value in order to generate an essentially linear standard curve with a non-zero slope.

In one embodiment a non-linear standard curve of reference and test composition activity is employed. The standard curve can be generated by selecting conditions including concentrations of the reference composition such that the dose-response curve is sigmoidal and the EC50 value can be determined. Comparison of reference and test activity can be done by comparing, e.g., the EC50 values of both curves. Concentration range is chosen to yield a complete sigmoidal response, e.g., concentration should include EC50  $\pm$  3 log concentration or EC50  $\pm$  4 log concentration. In the case of testing an inhibitory compound the value determined would be the IC50, i.e., concentration where inhibition of the stimulatory signal is half-maximal.

The methods of the invention can be adapted to be automated or at least partially automated methods, as well as to parallel array or high throughput format methods. For example, the assays can be set up using multiwell plates in which cells are dispensed in individual wells and reagents are added in a systematic manner using a multiwell delivery device suited to the geometry of the multiwell plate. Manual and robotic multiwell delivery devices suitable for use in a high throughput screening assay are known by those skilled in the art. Each well or array element can be mapped in a one-to-one manner to a particular test condition, such as the test compound. Readouts can also be performed in this multiwell array, preferably using a multiwell plate reader device or the like. Examples of such devices are

known in the art and are available through commercial sources. Sample and reagent handling can be automated to further enhance the throughput capacity of the screening assay, such that dozens, hundreds, thousands, or even millions of parallel assays can be performed in a day or in a week. Fully robotic systems are known in the art for applications such as generation and analysis of combinatorial libraries of synthetic compounds. See, for example, U.S. Pat. Nos. 5,443,791 and 5,708,158.

# Cell lines

5

10

15

20

25

30

The screening methods may use experimental cells. As used herein, an experimental cell is a non-primary cell (i.e., it is not a cell that has been recently harvested from a subject). It excludes, for example, freshly harvested PBMCs. An experimental cell includes a cell from a cell line such as the RPMI 8226 cell line.

In certain embodiments, the cell naturally expresses a functional TLR. In one embodiment relating to the verification and standardization aspects of the invention, the cell may be a PBMC, preferably a PBMC freshly harvested from a subject.

Cells that would be suitable for identification of TLR agonists, antagonists or enhancers according to the invention may possess one or more particular attributes. These attributes include but are not limited to being of human origin, being an immortalized stable cell line, endogenously expressing at least one functional TLR or a combination of functional TLRs, having intact signaling mechanisms, having intact uptake mechanisms, being able to upregulate cytokines, chemokines or cell surface markers, deriving from normal human B cells or from myeloma or B cell leukemia, deriving from human plasmacytoid and myeloid dendritic cells, and readily activatable by TLR ligands such as TLR7 ligands, TLR8 ligands or TLR9 ligands such as CpG nucleic acids or nucleic acids having other immunostimulatory sequence motifs or small molecules such as imidazoquinoline compounds.

In some embodiments, the cell line is the Raji cell line which expresses TLR3, TLR7 and TLR9. This latter cell line secretes, for example, IL-6 and IFN-α2 upon CpG nucleic acid exposure. In other embodiments, the cell line is RPMI 8226 which expresses TLR7 and TLR9. Upon CpG nucleic acid exposure, this cell line expresses, produces and/or secretes IL-8, IL-10, IP-10 and TNF-α. It also expresses at its cell surface CD86, HLA-DR and CD71. In yet other embodiments, the cell line is the RAMOS cell line which expresses TLR3, TLR7 and TLR9. This cell line at least induces CD80 cell surface expression in response to CpG nucleic acid exposure.

10

15

20

The cell lines have been observed to respond in a concentration dependent manner to TLR ligands such as but not limited to CpG nucleic acids and some non-CpG nucleic acids including T-rich nucleic acids, poly-T nucleic acids and poly-G nucleic acids. The highest responses have been observed using CpG nucleic acids.

The screening methods employ a variety of cell lines as shown in the Examples. These include A549 (human lung carcinoma, ATCC CCL-185), BeWo (human choriocarcinoma, ATCC CCL-98), HeLa (human cervix carcinoma, ATCC CCL-2), Hep-2 (human cervix carcinoma, ATCC CCL-23), KG-1 (human acute myeloid leukemia, ATCC CCL-246), MUTZ-3 (human acute myelomonocytic leukemia, German Collection of Cell lines and Microorganisms (DSZM) ACC-295), Nalm-6 (human B cell precursor leukemia, DSZM ACC-128), NK-92 (human Natural killer cell line, ATCC CRL-2407), NK-92 MI (IL-2 independent human Natural killer cell line, ATCC CRL-2408), Raji (human B lymphocyte Burkitt's lymphoma, ATCC CCL-86), RAMOS (B lymphocyte Burkitt's lymphoma, ATCC CRL-1596), RPMI 8226 (human B lymphocyte multiple myeloma, ATCC CCL-155), THP-1 (human acute monocytic leukemia, ATCC TIB 202), U937 (human lymphoma, ATCC CRL-1593.2) and Jurkat (human T cell leukemia, ATCC TIB 152).

As shown in the Examples, each of the afore-mentioned cell lines has a particular endogenous TLR expression profile which dictates its suitability in a particular screening assay.

A cell that artificially expresses a functional TLR can be a cell that does not express the functional TLR but for a transfected TLR expression vector. For example, human 293 fibroblasts (ATCC CRL-1573) do not express TLR7, TLR8 or TLR9, and they express very little TLR3. As described in the examples below, such cells can be transiently or stably transfected with suitable expression vector (or vectors) so as to yield cells that do express 25 TLR3, TLR7, TLR8, TLR9, or any combination thereof. Alternatively, a cell that artificially expresses a functional TLR can be a cell that expresses the functional TLR at a significantly higher level with the TLR expression vector than it does without the TLR expression vector. Transfected cells are considered modified cells, as used herein.

A cell that artificially expresses an expression or reporter construct is preferably stably 30 transfected.

The RPMI 8226 cell line is a human multiple myeloma cell line. The cell line was established from the peripheral blood of a 61 year old man at the time of diagnosis for multiple myeloma (IgG lambda type). RPMI 8226 was previously reported as responsive to CpG nucleic acids as evidenced by the production and secretion of IL-6 protein and production of IL-12p40 mRNA. (Takeshita et al. (2000), Eur. J. Immunol. 30, 108-116, and Takeshita et al. (2000) Ibid. 30, 1967-1976) Takeshita et al. however used the cell line solely to study promoter constructs in order to identify transcription factor binding sites important for CpG nucleic acid signaling. It is now known according to the invention that the cell line produces a number of other chemokines and cytokines including IL-8, IL-10 and IP-10. It has also been discovered according to the invention that the cell line responds to immunostimulatory nucleic acids by upregulating cell surface expression of particular markers. Many of these markers, including CD71, CD86 and HLA-DR, are similarly upregulated in PBMCs exposed to immunostimulatory nucleic acids. This has been observed using flow cytometric analysis of the cell line following CpG nucleic acid exposure. In other aspects of the invention, the cell line can be used in similar screening assays that involve secretion of IL-6, IL-12 and/or TNF- $\alpha$ 

It has recently been discovered that R-848 mediates its immunostimulatory effects via other TLR family members, namely TLR7 and TLR8. TLR7 has previously been found expressed on human B cells. It has now also been discovered according to the invention that RPMI 8226 expresses TLR9 as well as TLR7, thus making it a suitable cell line for identifying immunostimulatory nucleic acid and/or imidazoquinoline (e.g., R-848) mimics or other small molecules that also signal through TLR7 and/or TLR9. Incubation of RPMI 8226 cells with the imidazoquinoline R-848 (Resiquimod) induces for example IL-8, IL-10 and IP-10 production.

25

30

20

5

10

15

# Known TLR Ligands

Ligands for many but not all of the TLRs have been described. For instance, it has been reported that TLR1 and TLR2 signals in response to peptidoglycan and lipopeptides. Yoshimura A et al. (1999) JImmunol 163:1-5; Brightbill HD et al. (1999) Science 285:732-6; Aliprantis AO et al. (1999) Science 285:736-9; Takeuchi O et al. (1999) Immunity 11:443-51; Underhill DM et al. (1999) Nature 401:811-5. TLR4 has been reported to signal in response to lipopolysaccharide (LPS). Hoshino K et al. (1999) J Immunol 162:3749-52; Poltorak A et al. (1998) Science 282:2085-8; Medzhitov R et al. (1997) Nature 388:394-7. Bacterial

10

20

25

30

flagellin has been reported to be a natural ligand for TLR5. Hayashi F et al. (2001) *Nature* 410:1099-1103. TLR6, in conjunction with TLR2, has been reported to signal in response to proteoglycan. Ozinsky A et al. (2000) *Proc Natl Acad Sci USA* 97:13766-71; Takeuchi O et al. (2001) *Int Immunol* 13:933-40.

TLR9 is a receptor for CpG DNA. Hemmi H et al. (2000) *Nature* 408:740-5. Other TLR9 ligands are described herein under "Immunostimulatory Nucleic Acids". Certain imidazoquinoline compounds having antiviral activity are ligands of TLR7 and TLR8. Imidazoquinolines are potent synthetic activators of immune cells with antiviral and antitumor properties. R-848 is a ligand for human TLR7 and TLR8. Jurk M et al. (2002) *Nat Immunol* 3:499. Ligands of TLR3 include poly(I:C) and double-stranded RNA (dsRNA). Alexopoulou et a. (2001) Nature 413:732-738. For purposes of this invention, poly(I:C) and double-stranded RNA (dsRNA) are classified as oligonucleotide molecules. TLR3 may have a role in host defense against viruses.

# 15 Reference and Test Compounds

A test and/or reference compound can be a nucleic acid such as an oligonucleotide or a polynucleotide, an oligopeptide, a polypeptide, a lipid such as a lipopolysaccharide, a carbohydrate such as an oligosaccharide or a polysaccharide, or a small molecule.

Alternatively, these compounds may also comprise or be synthesized from elements such as amino acids, carbohydrates, hormones, lipids, organic molecules, and the like.

Small molecules in general include naturally occurring, synthetic, and semisynthetic organic and organometallic compounds with molecular weight less than about 2.5 kDa. Examples of small molecules include most drugs, subunits of polymeric materials, and analogs and derivatives thereof.

Some specific examples of small molecules include the imidazoquinolines. As used herein, an imidazoquinolines include imidazoquinoline amines (imidazoquinolinamines), imidazopyridine amines, 6.7-fused cycloalkylimidazopyridine amines, and 1.2 bridged imidazoquinoline amines. These compounds have been described in U.S. Pat. Nos. 4.689.338; 4.929.624; 5.238.944; 5.266.575; 5.268.376; 5.346.905; 5.352.784; 5.389.640; 5.395.937; 5.482.936; 5.494.916; 5.525.612; 6.039.969 and 6.110.929. Particular species of imidazoquinoline agents include resiquimod (R-848; S-28463; 4-amino-2 ethoxymethyl- $\alpha.\alpha$ dimethyl-1.H-imidazo[4,5-c]quinoline-1-ethanol); and imiquimod (R-837; S-26308; 1-(2-methylpropyl)-1.H-imidazo[4,5-c]quinoline-4-amine). Further examples of specific small

molecules include 4-aminoquinoline and derivatives thereof, 9-aminoacridine and derivatives thereof, and additional compounds disclosed in U.S. Pat. Nos. 6,221,882; 6,399,630; 6,479,504; and 6,521,637; and published U.S. Pat. Application No. 2002/0151564 A1, the entire contents of which are hereby incorporated by reference.

The test and reference compounds may be formulated for pharmaceutical use or not. For example, a test compound not formulated for pharmaceutical use can be a compound (e.g., a lot or batch of the compound) under evaluation for possible use in preparing a pharmaceutical formulation of the compound.

5

10

15

20

25

30

A reference compound, as used herein, is a compound having a known activity in the presence of a TLR. The reference compound may stimulate TLR signaling (and is therefore regarded as a positive reference compound), or it may be inert in the presence of a TLR (and is therefore regarded as a negative reference compound). If it is a positive reference compound, it need not be the best known stimulator of TLR signaling (i.e., it is possible that other reference compounds and even test compounds will stimulate TLR signaling to a greater extent). The readout of the screening assay may simply be stated relative to the level of signaling that occurs in the presence of the reference compound. Preferably, the reference compound is analyzed prior to the screening assay in order to determine its level of activity on a TLR. In some aspects of the invention, the reference compound and the test compound will be assayed separately (i.e., in separate wells); in other aspects, the reference compound and the test compound will be assayed together (i.e., in the same well). These latter aspects are designed to measure the ability of a test compound to modulate the activity of the reference compound. The activity of the test compound and the reference compound combined (i.e., when assayed together in the same well) may be the same as that of the positive reference compound alone, indicating at a minimum that the test compound is not inhibitory; or it may be less than that of the positive reference compound, indicating at a minimum that it is inhibitory to the effect of the reference compound; or it may be additive or synergistic possibly indicating that the test compound is an enhancer. The effect of an enhance may be due to its ability to stimulate TLR signaling independently of the positive reference compound.

A "reference composition" as used herein refers to a composition that includes a reference compound and optionally another agent, e.g., a pharmaceutically acceptable carrier and/or another biologically active agent. A reference compound may be an immunostimulatory compound or it may be an immunoinhibitory compound.

10

15

20

25

30

As discussed further below, in some aspects of the invention the reference compositions include both finished products, e.g., finished pharmaceutical products, as well as raw materials and other in-process materials used for the preparation of such finished products, all of which contain a known TLR ligand. As used herein, a "production lot" shall refer to a batch or lot of a completed product prepared for release as clinical material, e.g., a pharmaceutical product. As used herein, an "in-process lot" shall refer to a batch or lot of unfinished product that is prepared in the course of making a production lot; an "in-process lot" shall also refer to a batch or lot of raw material provided for use in the production of a production lot.

In some aspects of the invention, the reference compositions of the invention are highly characterized in terms of their chemical, physical, and biological properties. A reference composition will be a specific composition previously determined to have a specific activity, or range of specific activity, of the particular known TLR ligand present in the composition. As used herein, "specific activity" refers to an amount of activity per unit mass or per unit volume of the reference composition as a whole, as determined using a defined assay under defined conditions. In one embodiment the reference composition is a representative sample of a particular lot or batch of a specific TLR ligand. In one embodiment the reference composition is a representative sample of a particular lot or batch of a specific TLR ligand formulated for pharmaceutical use, e.g., a sterile solution of the TLR ligand at a determined concentration or activity.

At least the following parameters are typically very well defined for a given reference composition: chemical formula of the active ingredient TLR ligand (e.g., nucleobase sequence and type of backbone of a nucleic acid; structural formula of a small molecule); concentration; diluent composition; and purity. Such parameters as purity and concentration can be determined using any appropriate physicochemical method, e.g., optical spectroscopy including absorbance at one or more specified wavelengths; nuclear magnetic resonance (NMR) spectroscopy; mass spectrometry (MS), including matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS); melting point; specific gravity; chromatography including as appropriate high pressure liquid chromatography (HPLC), one-and two-dimensional polyacrylamide gel electrophoresis (PAGE), capillary electrophoresis, and the like; as well as other methods known to those of skill in the art.

Reference compositions can also be very well characterized in terms of their biological activity, independent of the methods of the invention, although the methods of the

invention generally include such characterization, at least in part. A reference composition can be very well characterized in terms of its biological activity by characterizing, both qualitatively and quantitatively, the response by sensitive cells to the reference composition under defined conditions. For example, a reference composition can be a specific CpG oligonucleotide such as SEQ ID NO:1 which in a specific assay and under specific conditions of temperature, concentration, duration of contact between the CpG oligonucleotide and a population of TLR9-expressing cells, and particular readout, reliably yields a specific result or range of results. Results can be expressed in any suitable manner, but can include results expressed on a per-cell basis, e.g., picograms of particular cytokine per cell per hour of contact with the reference composition. Reference compositions can be very well characterized in terms of their biological activity according to one or more parameters, for example, according to their capacity to induce each of a plurality of cytokines.

5

10

15

20

25

30

The methods of the invention also involve measurement of a test activity of a test composition containing a known TLR ligand. A "test composition" as used herein refers to a composition that includes a test compound and optionally another agent, e.g., a pharmaceutically acceptable carrier and/or another biologically active agent. A test compound can be an immunostimulatory compound or it can be an immunoinhibitory compound. In some aspects of the invention, the test compound is a known TLR ligand. Test compositions of the invention may comprise known TLR agonist or TLR antagonist compounds, generally but not necessarily nominally the same as the reference compositions against which comparison is to be made according to some aspects of the invention. Thus test compositions may encompass immunostimulatory compounds, immunoinhibitory compounds, known TLR ligands, finished pharmaceutical products, and raw materials and other in-process materials used for the preparation of such finished products.

Unlike a reference composition, a test composition is not characterized at all, or is only partially characterized, or is not as well characterized as the reference composition, in terms of its chemical, physical, or (most particularly) biological properties. The methods of the invention permit further characterization of the test composition by comparison with a reference composition. In some aspects, a test composition will be a specific composition previously determined to be a ligand of a specific TLR. In one embodiment the test composition is a representative sample of a particular lot or batch of a particular lot or batch of

a specific TLR ligand formulated for pharmaceutical use, e.g., a sterile solution of the TLR ligand at a determined concentration or activity.

### Immunostimulatory and Immunoinhibitory Nucleic Acids

5

10

15

20

25

30

Nucleic acids useful as reference compounds and as test compounds in the methods of the invention include single- and double-stranded natural and synthetic nucleic acids, including those with phosphodiester, stabilized, and chimeric backbones. Also encompassed are at least the following classes of nucleic acids, which are described in detail below: immunostimulatory CpG nucleic acids (CpG nucleic acids), including but not limited to types A, B, and C; immunostimulatory non-CpG nucleic acids, including without limitation methylated CpG nucleic acids, T-rich nucleic acids, TG-motif nucleic acids, CpI motif nucleic acids, and poly-G nucleic acids; and immunoinhibitory nucleic acids. Nucleic acids useful as reference compounds and as test compounds in the methods of the invention also include nucleic acids with modified backbones, including "soft" and "semi-soft" oligonucleotides as described herein. As will be appreciated from the descriptions below, certain of these various classes of nucleic acids can coexist in a given nucleic acid molecule.

A "nucleic acid" as used herein with respect to test compounds and reference compounds used in the methods of the invention, shall refer to any polymer of two or more individual nucleoside or nucleotide units. Typically individual nucleoside or nucleotide units will include any one or combination of deoxyribonucleosides, ribonucleosides, deoxyribonucleotides, and ribonucleotides. The individual nucleotide or nucleoside units of the nucleic acid can be naturally occurring or not naturally occurring. For example, the individual nucleotide units can include deoxyadenosine, deoxycytidine, deoxyguanosine, thymidine, and uracil. In addition to naturally occurring 2'-deoxy and 2'-hydroxyl forms, individual nucleosides also include synthetic nucleosides having modified base moieties and/or modified sugar moieties, e.g., as described in Uhlmann E et al. (1990) Chem Rev 90:543-84. The linkages between individual nucleotide or nucleoside units can be naturally occurring or not naturally occurring. For example, the linkages can be phosphodiester, phosphorothioate, phosphorodithioate, phosphoramidate, as well as peptide linkages and other covalent linkages, known in the art, suitable for joining adjacent nucleoside or nucleotide units. The linkages can also be mixed in a single polymer (e.g., a semi-soft backbone). The nucleic acid test compounds and nucleic acid reference compounds typically range in size from 3-4 units to a few tens of units, e.g., 18-40 units.

10

15

20

25

30

In some embodiments the nucleic acids are oligonucleotides made up of 2 to about 100 nucleotides, and more typically 4 to about 40 nucleotides. Oligonucleotides composed exclusively of deoxynucleotides are termed oligodeoxyribonucleotides or, equivalently, oligodeoxynucleotides (ODN).

A CpG nucleic acid is an immunostimulatory nucleic acid which contains a cytosine-guanine (CG) dinucleotide, the C residue of which is unmethylated. The effects of CpG nucleic acids on immune modulation have been described extensively in U.S. Pat. Nos. 6,194,388; 6,207,646; 6,214,806; 6,218,371; 6,239,116; and 6,339,068; and published patent applications, such as PCT/US95/01570 (WO 96/02555); PCT/US98/04703 (WO 98/40100); and PCT/US99/09863 (WO 99/56755). The entire contents of each of these patents and published patent applications is hereby incorporated by reference. The entire immunostimulatory nucleic acid can be unmethylated or portions can be unmethylated, but at least the C of the 5'-CG-3' must be unmethylated. The CpG nucleic acid sequences of the invention include, without limitation, those broadly described above as well as those disclosed in U.S. Pat. Nos. 6,207,646 and 6,239,116.

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTGTCGTTTTGTCGTT-3' (SEQ ID NO:1).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTGACGTTTTGTCGTT-3' (SEQ ID NO:139).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTTTCGA-3' (SEQ ID NO:140).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTCGTCGTTTCGTCGTTT-3' (SEQ ID NO:141).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTCGTCGTTTTGTCGTT-3' (SEQ ID NO:142).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTTCGGTCGTTTTT-3' (SEQ ID NO:143).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTTCGTGCGTTTTT-3' (SEQ ID NO:144).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTCGTTTTCGGCGGCCGCCG-3' (SEQ ID NO:145).

In one embodiment the CpG nucleic acid has a base sequence provided by 5'-TCGTC GTTTTAC GGCGCC GTGCCG-3' (SEQ ID NO:146).

10

15

20

25

30

The oligonucleotides described by SEQ ID NOs: 1, 139-145 are fully stabilized phosphorothioate backbone ODN. The oligonucleotide of SEQ ID NO:146 has a chimeric backbone in which all internucleoside linkages are phosphorothioate except for those indicated by "\_", which are phosphodiester.

CpG nucleic acids have been further classified by structure and function into at least the following three types, all of which are intended to be encompassed within the methods of the instant invention: Type B CpG nucleic acids such as SEQ ID NO:1 include the earliest described CpG nucleic acids and characteristically activate B cells but do not induce or only weakly induce expression of IFN-a. Type B nucleic acids are described in U.S. Patents 6,194,388; 6,207,646; 6,214,806; 6,218,371; 6,239,116; and 6,339,068. Type A CpG nucleic acids, described in published international application PCT/US00/26527 (WO 01/22990), incorporate a CpG motif, include a hybrid phosphodiester/phosphorothioate backbone, and characteristically induce plasmacytoid dendritic cells to express large amounts of IFN- $\alpha$  but do not activate or only weakly activate B cells. Type C oligonucleotides incorporate a CpG, include a chimeric backbone, include a GC-rich palindromic or nearly-palindromic region, and are capable of both activating B cells and inducing expression of IFN- $\alpha$ . These have been described, for example, in copending U.S. Pat. application Ser. No. 10/224,523, filed August 19, 2002. Exemplary sequences of A, B and C class nucleic acids are described in the afore-mentioned references, patents and patent applications, the entire contents of which are hereby incorporated by reference herein.

In other embodiments of the invention, a non-CpG nucleic acid is used. A non-CpG nucleic acid is an immunostimulatory nucleic acid which either does not have a CpG motif in its sequence, or has a CpG motif which contains a methylated C residue. In some instances, the non-CpG nucleic acid may still be immunostimulatory by virtue of its having other immunostimulatory motifs such as those described herein and known in the art. In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid. In some instances the non-CpG nucleic acid is still immunostimulatory despite methylation of the C of the CpG motif, even without having another non-CpG immunostimulatory motif described herein and known in the art.

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-TZGTZGTTTTGTZGTTTTGTZGTT-3' (SEQ ID NO:147), wherein Z represents 5-methylcytosine.

10

15

20

25

30

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-TZGTZGZTGTZTZZGZTTZTTZTTGZZ-3' (SEQ ID NO:148), wherein Z represents 5-methylcytosine.

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-GZGTTTGZTZTTZTTGZG-3' (SEQ ID NO:149), wherein Z represents 5-methylcytosine.

In one embodiment the non-CpG nucleic acid is a methylated CpG nucleic acid having a base sequence provided by 5'-GZZZAAGZTGGZATZZGTZA-3' (SEQ ID NO:150), wherein Z represents 5-methylcytosine.

Non-CpG nucleic acids include T-rich immunostimulatory nucleic acids. The T-rich immunostimulatory nucleic acids include those disclosed in published PCT patent application PCT/US00/26383 (WO 01/22972), the entire contents of which are incorporated herein by reference. In some embodiments, T-rich nucleic acids 24 bases in length are used. A T-rich nucleic acid is a nucleic acid which includes at least one poly T sequence and/or which has a nucleotide composition of greater than 25% T nucleotide residues. A nucleic acid having a poly-T sequence includes at least four Ts in a row, such as 5'-TTTT-3'. In some embodiments the T-rich nucleic acid includes more than one poly T sequence. In important embodiments, the T-rich nucleic acid may have 2, 3, 4, or more poly T sequences, such as SEQ ID NO:1.

Non-CpG nucleic acids also include poly-G immunostimulatory nucleic acids. A variety of references describe the immunostimulatory properties of poly-G nucleic acids. Pisetsky DS et al. (1993) *Mol Biol Reports* 18:217-221; Krieger M et al. (1994) *Ann Rev Biochem* 63:601-637; Macaya RF et al. (1993) *Proc Natl Acad Sci USA* 90:3745-3749; Wyatt JR et al. (1994) *Proc Natl Acad Sci USA* 91:1356-1360; Rando and Hogan, 1998, In Applied Antisense Oligonucleotide Technology, Krieg and Stein, eds., pp. 335-352; Kimura Y et al. (1994) *J Biochem (Tokyo)* 116:991-994.

The immunostimulatory nucleic acids of the invention can also be those which do not possess CpG, methylated CpG, T-rich, or poly-G motifs.

Exemplary immunostimulatory nucleic acid sequences include but are not limited to those immunostimulatory sequences described and listed in U.S. Non-Provisional Pat. Application No. 09/669,187, filed on September 25, 2000, and in corresponding published PCT patent application PCT/US00/26383 (WO 01/22972).

Immunoinhibitory nucleic acids have been described in Lenert P et al. (2001)

Antisense Nucleic Acid Drug Dev 11:247-56 and in Stunz L et al. (2002) Eur J Immunol

10

15

20

25

30

32:1212-22. These inhibitory phosphorothioate ODN (S-ODN) differ from stimulatory S-ODN by having 2-3 G substitutions in the central motif. As inhibitory S-ODN did not directly interfere with the NF-κB DNA binding but prevented CpG-induced NF-κB nuclear translocation of p50, p65, and c-Rel and blocked p105, IκBα, and IκBβ degradation, Lenert et al. suggested that the putative target of immunoinhibitory ODN would lie upstream of inhibitory kinase (IKK) activation. Stunz et al. reported that replacing GCGTT or ACGTT with GCGGG or ACGGG converted a stimulatory 15-mer ODN into an inhibitory ODN. All inhibitory ODN had three consecutive G, and a fourth G increased inhibitory activity, but a deazaguanosine substitution to prevent planar stacking did not affect activity. Inhibitory ODN blocked apoptosis protection and cell-cycle entry induced by stimulatory ODN, but not that induced by lipopolysaccharide, anti-CD40 or anti-IgM+IL-4. ODN-driven up-regulation of cyclin D(2), c-Myc, c-Fos, c-Jun and Bcl(XL) and down-regulation of cyclin kinase inhibitor p27(kip1) were all blocked by inhibitory ODN. Stunz et al. also reported that interference with uptake of stimulatory ODN did not account for the inhibitory effects of the immunoinhibitory nucleic acids.

In one embodiment the immunoinhibitory nucleic acid has a base sequence provided by 5'-TCCTGGCGGGAAGT-3' (SEQ ID NO:151).

Immunoinhibitory nucleic acids have also been described in U.S. Pat. No. 6,194,388, issued to Krieg et al. The immunoinhibitory oligonucleotides disclosed by Krieg et al. are oligonucleotides with GCG trinucleotides at or near the ends of the oligonucleotide and are represented by the formula 5'GCGX<sub>n</sub>GCG 3' in which X is a nucleotide and n is an integer between 0 and 50.

The nucleic acids used as either test or reference compounds can be double-stranded or single-stranded. They can be deoxyribonucleotide (DNA) or ribonucleotide (RNA) molecules. Generally, double-stranded molecules are more stable in vivo, while single-stranded molecules have increased immune activity. Thus in some the nucleic acid is single-stranded and in other embodiments the nucleic acid is double-stranded. In certain embodiments, while the nucleic acid is single-stranded, it is capable of forming secondary and tertiary structures (e.g., by folding back on itself, or by hybridizing with itself either throughout its entirety or at select segments along its length). Accordingly, while the primary structure of such a nucleic acid may be single-stranded, its higher order structures may be double- or triple-stranded.

10

15

20

25

30

For facilitating uptake into cells, the nucleic acids are preferably in the range of 6 to 100 bases in length. However, nucleic acids of any size equal to or greater than 6 nucleotides (even many kb long) are capable of inducing an immune response. Preferably the nucleic acid is in the range of between 8 and 100 and in some embodiments between 8 and 50 or 8 and 30 nucleotides in size.

The terms "nucleic acid" and "oligonucleotide" are used interchangeably to mean multiple nucleotides (i.e., molecules comprising a sugar (e.g., ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g., cytosine (C), thymine (T) or uracil (U)) or a substituted purine (e.g., adenine (A) or guanine (G)). As used herein, the terms "nucleic acid" and "oligonucleotide" refer to oligoribonucleotides as well as oligodeoxyribonucleotides. The terms "nucleic acid" and "oligonucleotide" shall also include polynucleosides (i.e., a polynucleotide minus the phosphate) and any other organic base containing polymer. Nucleic acid molecules can be obtained from existing nucleic acid sources (e.g., genomic or cDNA), but are preferably synthetic (e.g., produced by nucleic acid synthesis).

The terms "nucleic acid" and "oligonucleotide" also encompass nucleic acids or oligonucleotides with substitutions or modifications, such as in the bases and/or sugars. For example, they include nucleic acids having backbone sugars that are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 2' position and other than a phosphate group or hydroxy group at the 5' position. Thus modified nucleic acids may include a 2'-O-alkylated ribose group. In addition, modified nucleic acids may include sugars such as arabinose or 2'-fluoroarabinose instead of ribose. Thus the nucleic acids may be heterogeneous in backbone composition thereby containing any possible combination of polymer units linked together such as peptide-nucleic acids (which have an amino acid backbone with nucleic acid bases). Other examples are described in more detail below.

The immunostimulatory and immunoinhibitory nucleic acids can encompass various chemical modifications and substitutions, in comparison to natural RNA and DNA, involving a phosphodiester internucleoside bridge, a β-D-ribose unit and/or a natural nucleoside base (adenine, guanine, cytosine, thymine, uracil). Examples of chemical modifications are known to the skilled person and are described, for example, in Uhlmann E et al. (1990) *Chem Rev* 90:543; "Protocols for Oligonucleotides and Analogs" Synthesis and Properties & Synthesis and Analytical Techniques, S. Agrawal, Ed, Humana Press, Totowa, USA 1993; Crooke ST et al. (1996) *Annu Rev Pharmacol Toxicol* 36:107-129; and Hunziker J et al. (1995) *Mod Synth* 

20

25

30

Methods 7:331-417. An oligonucleotide according to the invention may have one or more modifications, wherein each modification is located at a particular phosphodiester internucleoside bridge and/or at a particular  $\beta$ -D-ribose unit and/or at a particular natural nucleoside base position in comparison to an oligonucleotide of the same sequence which is composed of natural DNA or RNA.

For example, the oligonucleotides may comprise one or more modifications and wherein each modification is independently selected from:

- a) the replacement of a phosphodiester internucleoside bridge located at the 3' and/or the 5' end of a nucleoside by a modified internucleoside bridge,
- 10 b) the replacement of phosphodiester bridge located at the 3' and/or the 5' end of a nucleoside by a dephospho bridge,
  - c) the replacement of a sugar phosphate unit from the sugar phosphate backbone by another unit,
  - d) the replacement of a β-D-ribose unit by a modified sugar unit, and
- the replacement of a natural nucleoside base by a modified nucleoside base.
   More detailed examples for the chemical modification of an oligonucleotide are as follows.

The oligonucleotides may include modified internucleotide linkages, such as those described in (a) or (b) above. These modified linkages may be partially resistant to degradation (e.g., are stabilized). A "stabilized oligonucleotide molecule" shall mean an oligonucleotide that is relatively resistant to *in vivo* degradation (e.g., via an exo- or endonuclease) resulting from such modifications. Oligonucleotides having phosphorothicate linkages, in some embodiments, may provide maximal activity and protect the oligonucleotide from degradation by intracellular exo- and endo-nucleases.

A phosphodiester internucleoside bridge located at the 3' and/or the 5' end of a nucleoside can be replaced by a modified internucleoside bridge, wherein the modified internucleoside bridge is for example selected from phosphorothioate, phosphorodithioate, NR<sup>1</sup>R<sup>2</sup>-phosphoramidate, boranophosphate, α-hydroxybenzyl phosphonate, phosphate-(C<sub>1</sub>-C<sub>21</sub>)-O-alkyl ester, phosphate-[(C<sub>6</sub>-C<sub>12</sub>)aryl-(C<sub>1</sub>-C<sub>21</sub>)-O-alkyl]ester, (C<sub>1</sub>-C<sub>8</sub>)alkylphosphonate and/or (C<sub>6</sub>-C<sub>12</sub>)arylphosphonate bridges, (C<sub>7</sub>-C<sub>12</sub>)-α-hydroxymethyl-aryl (e.g., disclosed in WO 95/01363), wherein (C<sub>6</sub>-C<sub>12</sub>)aryl, (C<sub>6</sub>-C<sub>20</sub>)aryl and (C<sub>6</sub>-C<sub>14</sub>)aryl are optionally substituted by halogen, alkyl, alkoxy, nitro, cyano, and where R<sup>1</sup> and R<sup>2</sup> are, independently of each other, hydrogen, (C<sub>1</sub>-C<sub>18</sub>)-alkyl, (C<sub>6</sub>-C<sub>20</sub>)-aryl, (C<sub>6</sub>-C<sub>14</sub>)-aryl-(C<sub>1</sub>-C<sub>8</sub>)-alkyl, preferably hydrogen,

10

15

20

25

30

 $(C_1-C_8)$ -alkyl, preferably  $(C_1-C_4)$ -alkyl and/or methoxyethyl, or  $R^1$  and  $R^2$  form, together with the nitrogen atom carrying them, a 5-6-membered heterocyclic ring which can additionally contain a further heteroatom from the group O, S and N.

The replacement of a phosphodiester bridge located at the 3' and/or the 5' end of a nucleoside by a dephospho bridge (dephospho bridges are described, for example, in Uhlmann E and Peyman A in "Methods in Molecular Biology", Vol. 20, "Protocols for Oligonucleotides and Analogs", S. Agrawal, Ed., Humana Press, Totowa, 1993, Chapter 16, pp. 355 ff), wherein a dephospho bridge is for example selected from the dephospho bridges formacetal, 3'-thioformacetal, methylhydroxylamine, oxime, methylenedimethyl-hydrazo, dimethylenesulfone and/or silyl groups.

A sugar phosphate unit (i.e., a β-D-ribose and phosphodiester internucleoside bridge together forming a sugar phosphate unit) from the sugar phosphate backbone (i.e., a sugar phosphate backbone is composed of sugar phosphate units) can be replaced by another unit, wherein the other unit is for example suitable to build up a "morpholino-derivative" oligomer (as described, for example, in Stirchak EP et al. (1989) *Nucleic Acids Res* 17:6129-41), that is, e.g., the replacement by a morpholino-derivative unit; or to build up a polyamide nucleic acid ("PNA"; as described for example, in Nielsen PE et al. (1994) *Bioconjug Chem* 5:3-7), that is, e.g., the replacement by a PNA backbone unit, e.g., by 2-aminoethylglycine. The oligonucleotide may have other carbohydrate backbone modifications and replacements, such as peptide nucleic acids with phosphate groups (PHONA), locked nucleic acids (LNA), and oligonucleotides having backbone sections with alkyl linkers or amino linkers. The alkyl linker may be branched or unbranched, substituted or unsubstituted, and chirally pure or a racemic mixture.

A β-ribose unit or a β-D-2'-deoxyribose unit can be replaced by a modified sugar unit, wherein the modified sugar unit is for example selected from β-D-ribose, α-D-2'-deoxyribose, L-2'-deoxyribose, 2'-F-arabinose, 2'-O-(C<sub>1</sub>-C<sub>6</sub>)alkyl-ribose, preferably 2'-O-(C<sub>1</sub>-C<sub>6</sub>)alkyl-ribose is 2'-O-methylribose, 2'-O-(C<sub>2</sub>-C<sub>6</sub>)alkenyl-ribose, 2'-[O-(C<sub>1</sub>-C<sub>6</sub>)alkyl-O-(C<sub>1</sub>-C<sub>6</sub>)alkyl]-ribose, 2'-NH<sub>2</sub>-2'-deoxyribose, β-D-xylo-furanose, α-arabinofuranose, 2,4-dideoxy-β-D-erythro-hexo-pyranose, and carbocyclic (described, for example, in Froehler J (1992) *Am Chem Soc* 114:8320) and/or open-chain sugar analogs (described, for example, in Vandendriessche et al. (1993) *Tetrahedron* 49:7223) and/or bicyclosugar analogs (described, for example, in Tarkov M et al. (1993) *Helv Chim Acta* 76:481).

WO 2004/094671 PCT/US2004/012788

In some embodiments the sugar is 2'-O-methylribose, particularly for one or both nucleotides linked by a phosphodiester or phosphodiester-like internucleoside linkage.

In some embodiments, the nucleic acids may be soft or semi-soft nucleic acids. A soft nucleic acid is an immunostimulatory nucleic acid having a partially stabilized backbone, in which phosphodiester or phosphodiester-like internucleotide linkages occur only within and immediately adjacent to at least one internal pyrimidine -purine dinucleotide (YZ). Preferably YZ is YG, a pyrimidine-guanosine (YG) dinucleotide. The at least one internal YZ dinucleotide itself has a phosphodiester or phosphodiester-like internucleotide linkage. A phosphodiester or phosphodiester-like internucleotide linkage occurring immediately adjacent to the at least one internal YZ dinucleotide can be 5', 3', or both 5' and 3' to the at least one internal YZ dinucleotide.

10

15

20

25

30

In particular, phosphodiester or phosphodiester-like internucleotide linkages involve "internal dinucleotides". An internal dinucleotide in general shall mean any pair of adjacent nucleotides connected by an internucleotide linkage, in which neither nucleotide in the pair of nucleotides is a terminal nucleotide, i.e., neither nucleotide in the pair of nucleotides is a nucleotide defining the 5' or 3' end of the nucleic acid. Thus a linear nucleic acid that is n nucleotides long has a total of n-1 dinucleotides and only n-3 internal dinucleotides. Each internucleotide linkage in an internal dinucleotide is an internal internucleotide linkage. Thus a linear nucleic acid that is n nucleotides long has a total of n-1 internucleotide linkages and only n-3 internal internucleotide linkages. The strategically placed phosphodiester or phosphodiester-like internucleotide linkages, therefore, refer to phosphodiester or phosphodiester or phosphodiester-like internucleotide linkages positioned between any pair of nucleotides in the nucleic acid sequence. In some embodiments the phosphodiester or phosphodiester-like internucleotide linkages are not positioned between either pair of nucleotides closest to the 5' or 3' end.

Preferably a phosphodiester or phosphodiester-like internucleotide linkage occurring immediately adjacent to the at least one internal YZ dinucleotide is itself an internal internucleotide linkage. Thus for a sequence  $N_1$  YZ  $N_2$ , wherein  $N_1$  and  $N_2$  are each, independent of the other, any single nucleotide, the YZ dinucleotide has a phosphodiester or phosphodiester-like internucleotide linkage, and in addition (a)  $N_1$  and Y are linked by a phosphodiester or phosphodiester-like internucleotide linkage when  $N_1$  is an internal nucleotide, (b) Z and  $N_2$  are linked by a phosphodiester or phosphodiester-like internucleotide linkage when  $N_2$  is an internal nucleotide, or (c)  $N_1$  and Y are linked by a phosphodiester or

- 44 -

phosphodiester-like internucleotide linkage when  $N_1$  is an internal nucleotide and Z and  $N_2$  are linked by a phosphodiester or phosphodiester-like internucleotide linkage when  $N_2$  is an internal nucleotide.

5

10

15

20

25

30

Soft nucleic acids according to the instant invention are believed to be relatively susceptible to nuclease cleavage compared to completely stabilized nucleic acids. Without meaning to be bound to a particular theory or mechanism, it is believed that soft nucleic acids of the invention are cleavable to fragments with reduced or no immunostimulatory activity relative to full-length soft nucleic acids. Incorporation of at least one nuclease-sensitive internucleotide linkage, particularly near the middle of the nucleic acid, is believed to provide an "off switch" which alters the pharmacokinetics of the nucleic acid so as to reduce the duration of maximal immunostimulatory activity of the nucleic acid. This can be of particular value in tissues and in clinical applications in which it is desirable to avoid injury related to chronic local inflammation or immunostimulation, e.g., the kidney.

A semi-soft nucleic acid is an immunostimulatory nucleic acid having a partially stabilized backbone, in which phosphodiester or phosphodiester-like internucleotide linkages occur only within at least one internal pyrimidine-purine (YZ) dinucleotide. Semi-soft nucleic acids generally possess increased immunostimulatory potency relative to corresponding fully stabilized immunostimulatory nucleic acids. Due to the greater potency of semi-soft nucleic acids, semi-soft nucleic acids may be used, in some instances, at lower effective concentations and have lower effective doses than conventional fully stabilized immunostimulatory nucleic acids in order to achieve a desired biological effect.

It is believed that the foregoing properties of semi-soft nucleic acids generally increase with increasing "dose" of phosphodiester or phosphodiester-like internucleotide linkages involving internal YZ dinucleotides. Thus it is believed, for example, that generally for a given nucleic acid sequence with five internal YZ dinucleotides, an nucleic acid with five internal phosphodiester or phosphodiester-like YZ internucleotide linkages is more immunostimulatory than an nucleic acid with four internal phosphodiester or phosphodiester-like YG internucleotide linkages, which in turn is more immunostimulatory than an nucleic acid with three internal phosphodiester or phosphodiester-like YZ internucleotide linkages, which in turn is more immunostimulatory than an nucleic acid with two internal phosphodiester or phosphodiester-like YZ internucleotide linkages, which in turn is more immunostimulatory than an nucleic acid with one internal phosphodiester or phosphodiester-like YZ internucleotide linkage. Importantly, inclusion of even one internal phosphodiester or

phosphodiester-like YZ internucleotide linkage is believed to be advantageous over no internal phosphodiester or phosphodiester-like YZ internucleotide linkage. In addition to the number of phosphodiester or phosphodiester-like internucleotide linkages, the position along the length of the nucleic acid can also affect potency.

5 .

10

15

20

25

30

The soft and semi-soft nucleic acids will generally include, in addition to the phosphodiester or phosphodiester-like internucleotide linkages at preferred internal positions, 5' and 3' ends that are resistant to degradation. Such degradation-resistant ends can involve any suitable modification that results in an increased resistance against exonuclease digestion over corresponding unmodified ends. For instance, the 5' and 3' ends can be stabilized by the inclusion thereof at least one phosphate modification of the backbone. In a preferred embodiment, the at least one phosphate modification of the backbone at each end is independently a phosphorothioate, phosphorodithioate, methylphosphonate, or methylphosphorothioate internucleotide linkage. In another embodiment, the degradation-resistant end includes one or more nucleotide units connected by peptide or amide linkages at the 3' end.

A phosphodiester internucleotide linkage is the type of linkage characteristic of nucleic acids found in nature. The phosphodiester internucleotide linkage includes a phosphorus atom flanked by two bridging oxygen atoms and bound also by two additional oxygen atoms, one charged and the other uncharged. Phosphodiester internucleotide linkage is particularly preferred when it is important to reduce the tissue half-life of the nucleic acid.

A phosphodiester-like internucleotide linkage is a phosphorus-containing bridging group that is chemically and/or diastereomerically similar to phosphodiester. Measures of similarity to phosphodiester include susceptibility to nuclease digestion and ability to activate RNAse H. Thus for example phosphodiester, but not phosphorothioate, nucleic acids are susceptible to nuclease digestion, while both phosphodiester and phosphorothioate nucleic acids activate RNAse H. In a preferred embodiment the phosphodiester-like internucleotide linkage is boranophosphate (or equivalently, boranophosphonate) linkage. U.S. Patent No. 5,177,198; U.S. Patent No. 5,859,231; U.S. Patent No. 6,160,109; U.S. Patent No. 6,207,819; Sergueev et al., (1998) J Am Chem Soc 120:9417-27. In another preferred embodiment the phosphodiester-like internucleotide linkage is diasteromerically pure Rp phosphorothioate. It is believed that diasteromerically pure Rp phosphorothioate is more susceptible to nuclease digestion and is better at activating RNAse H than mixed or diastereomerically pure Sp phosphorothioate. Stereoisomers of CpG nucleic acids are the subject of co-pending U.S.

10

15

20

25

30

active when tested at later time points.

patent application 09/361,575 filed July 27, 1999, and published PCT application PCT/US99/17100 (WO 00/06588). It is to be noted that for purposes of the instant invention, the term "phosphodiester-like internucleotide linkage" specifically excludes phosphorodithioate and methylphosphonate internucleotide linkages.

As described above the soft and semi-soft nucleic acids of the invention may have phosphodiester like linkages between C and G. One example of a phosphodiester-like linkage is a phosphorothioate linkage in an Rp conformation. Nucleic acid p-chirality can have apparently opposite effects on the immune activity of a CpG nucleic acid, depending upon the time point at which activity is measured. At an early time point of 40 minutes, the R<sub>p</sub> but not the S<sub>P</sub> stereoisomer of phosphorothioate CpG nucleic acid induces JNK phosphorylation in mouse spleen cells. In contrast, when assayed at a late time point of 44 hr, the S<sub>P</sub> but not the R<sub>p</sub> stereoisomer is active in stimulating spleen cell proliferation. This difference in the kinetics and bioactivity of the R<sub>p</sub> and S<sub>P</sub> stereoisomers does not result from any difference in cell uptake, but rather most likely is due to two opposing biologic roles of the p-chirality. First, the enhanced activity of the Rp stereoisomer compared to the Sp for stimulating immune cells at early time points indicates that the Rp may be more effective at interacting with the CpG receptor, TLR9, or inducing the downstream signaling pathways. On the other hand, the faster degradation of the Rp PS-nucleic acids compared to the Sp results in a much shorter duration of signaling, so that the Sp PS-nucleic acids appear to be more biologically

A surprisingly strong effect is achieved by the p-chirality at the CpG dinucleotide itself. In comparison to a stereo-random CpG nucleic acid the congener in which the single CpG dinucleotide was linked in Rp was slightly more active, while the congener containing an Sp linkage was nearly inactive for inducing spleen cell proliferation.

Nucleic acids also include substituted purines and pyrimidines such as C-5 propyne pyrimidine and 7-deaza-7-substituted purine modified bases. Wagner RW et al. (1996) *Nat Biotechnol* 14:840-4. Purines and pyrimidines include but are not limited to adenine, cytosine, guanine, and thymine, and other naturally and non-naturally occurring nucleobases, substituted and unsubstituted aromatic moieties.

A modified base is any base which is chemically distinct from the naturally occurring bases typically found in DNA and RNA such as T, C, G, A, and U, but which share basic chemical structures with these naturally occurring bases. The modified nucleoside base may be, for example, selected from hypoxanthine, uracil, dihydrouracil, pseudouracil, 2-thiouracil,

20

4-thiouracil, 5-aminouracil, 5-(C<sub>1</sub>-C<sub>6</sub>)-alkyluracil, 5-(C<sub>2</sub>-C<sub>6</sub>)-alkenyluracil, 5-(hydroxymethyl)uracil, 5-chlorouracil, 5-fluorouracil, 5-bromouracil, 5-hydroxycytosine, 5-(C<sub>1</sub>-C<sub>6</sub>)-alkylcytosine, 5-(C<sub>2</sub>-C<sub>6</sub>)-alkenylcytosine, 5-(C<sub>2</sub>-C<sub>6</sub>)-alkynylcytosine, 5-chlorocytosine, 5-fluorocytosine, 5-bromocytosine, N<sup>2</sup>-dimethylguanine,
2,4-diamino-purine, 8-azapurine, a substituted 7-deazapurine, preferably 7-deaza-7-substituted and/or 7-deaza-8-substituted purine, 5-hydroxymethylcytosine, N4-alkylcytosine, e.g., N4-ethylcytosine, 5-hydroxydeoxycytidine, 5-hydroxymethyldeoxycytidine, N4-alkyldeoxycytidine, e.g., N4-ethyldeoxycytidine, 6-thiodeoxyguanosine, and deoxyribonucleosides of nitropyrrole, C5-propynylpyrimidine, and diaminopurine e.g., 2,6-diaminopurine, inosine, 5-methylcytosine, 2-aminopurine, 2-amino-6-chloropurine, hypoxanthine or other modifications of a natural nucleoside bases. This list is meant to be exemplary and is not to be interpreted to be limiting.

Modified cytosines include but are not limited to 5-substituted cytosines (e.g., 5-methyl-cytosine, 5-fluoro-cytosine, 5-chloro-cytosine, 5-bromo-cytosine, 5-iodo-cytosine, 5-hydroxymethyl-cytosine, 5-difluoromethyl-cytosine, and unsubstituted or substituted 5-alkynyl-cytosine), 6-substituted cytosines, N4-substituted cytosines (e.g., N4-ethyl-cytosine), 5-aza-cytosine, 2-mercapto-cytosine, isocytosine, pseudo-isocytosine, cytosine analogs with condensed ring systems (e.g., N,N'-propylene cytosine or phenoxazine), and uracil and its derivatives (e.g., 5-fluoro-uracil, 5-bromo-uracil, 5-bromo-uracil, 4-thio-uracil, 5-hydroxy-uracil, 5-propynyl-uracil). In another embodiment, the cytosine base is substituted by a universal base (e.g., 3-nitropyrrole, P-base), an aromatic ring system (e.g., fluorobenzene or difluorobenzene) or a hydrogen atom (dSpacer).

Modified guanines include but are not limited to 7-deazaguanine,

7-deaza-7-substituted guanine (such as 7-deaza-7-(C2-C6)alkynylguanine),

7-deaza-8-substituted guanine, hypoxanthine, N2-substituted guanines (e.g., N2-methylguanine), 5-amino-3-methyl-3H,6H-thiazolo[4,5-d]pyrimidine-2,7-dione, 2,6-diaminopurine,

2-aminopurine, purine, indole, adenine, substituted adenines (e.g., N6-methyl-adenine, 8-oxoadenine) 8-substituted guanine (e.g., 8-hydroxyguanine and 8-bromoguanine), and

6-thioguanine. In another embodiment, the guanine base is substituted by a universal base (e.g., 4-methyl-indole, 5-nitro-indole, and K-base), an aromatic ring system (e.g., benzimidazole or dichloro-benzimidazole, 1-methyl-1H-[1,2,4]triazole-3-carboxylic acid amide) or a hydrogen atom (dSpacer).

10

15

20

25

30

For use in the instant invention, the oligonucleotide reference compounds and test compounds can be synthesized *de novo* using any of a number of procedures well known in the art, for example, the  $\beta$ -cyanoethyl phosphoramidite method (Beaucage SL et al. (1981) *Tetrahedron Lett* 22:1859), or the nucleoside H-phosphonate method (Garegg et al. (1986) *Tetrahedron Lett* 27:4051-4; Froehler BC et al. (1986) *Nucleic Acids Res* 14:5399-407; Garegg et al (1986) *Tetrahedron Lett* 27:4055-8; Gaffiney et al. (1988) *Tetrahedron Lett* 29:2619-22). These chemistries can be performed by a variety of automated nucleic acid synthesizers available in the market. These oligonucleotides are referred to as synthetic oligonucleotides. An isolated oligonucleotide generally refers to an oligonucleotide which is separated from components which it is normally associated with in nature. As an example, an isolated oligonucleotide may be one which is separated from a cell, from a nucleus, from mitochondria or from chromatin.

Modified backbones such as phosphorothioates can be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries. Aryl-and alkyl-phosphonates can be made, e.g., as described in U.S. Pat. No. 4,469,863; and alkylphosphotriesters (in which the charged oxygen moiety is alkylated as described in U.S. Pat. No. 5,023,243 and European Pat. No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described (e.g., Uhlmann E et al. (1990) *Chem Rev* 90:544; Goodchild J (1990) *Bioconjugate Chem* 1:165).

#### TLR expression

The cell lines can be used in their native state without any modification. For example, in the case of the RPMI 8226 cell line, it can be used to identify compounds that signal through at least TLR9 and/or TLR7. In other instances, however, the cell line can be modified to express a TLR that it does not naturally express. In still other instances, the cell to be used in the screening method may express one or more endogenous TLR and yet still be manipulated to express an additional TLR different from those it endogenously expresses. The cell may also be manipulated in order to increase or decrease the level of TLR that it endogenously expresses. The cells may be stably or transiently transfected.

A cell that does not naturally express a protein or polypeptide, but is genetically manipulated to do so is referred to as ectopically expressing the protein or polypeptide.

10

15

20

25

30

The basic screening method remains the same regardless of which TLR is expressed by the cell. However, the reference compound and the readout may vary depending upon the TLR(s) expressed. In the most simple aspect, the screening method is used to identify a compound that signals through a TLR such as for example TLR9. In this case, the positive reference compound may be an immunostimulatory compound already known to act through TLR9 (e.g., CpG nucleic acid).

The methods of the invention involve, in part, contacting a functional TLR with a test composition. A functional TLR is a full-length TLR protein or a fragment thereof capable of inducing or inhibiting a signal in response to interaction with its ligand. Generally the functional TLR will include at least a TLR ligand-binding fragment of the extracellular domain of the full-length TLR and at least a fragment of a TIR domain capable of interacting with another Toll homology domain-containing polypeptide, e.g., MyD88. In various embodiments the functional TLR is a full-length TLR selected from TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, and TLR10.

To date, there are eleven TLRs known. Nucleic acid and amino acid sequences for ten currently known human TLRs are available from public databases such as GenBank. Similarly, nucleic acid and amino acid sequences for various TLRs from numerous non-human species are also available from public databases including GenBank. For example, nucleic acid and amino acid sequences for human TLR9 (hTLR9) can be found as GenBank accession numbers AF245704 (coding region spanning nucleotides 145-3243) (SEQ ID NO: 60) and AAF78037 (SEQ ID NO: 62), respectively. Nucleic acid and amino acid sequences for murine TLR9 (mTLR9) can be found as GenBank accession numbers AF348140 (coding region spanning nucleotides 40-3138) (SEQ ID NO: 68) and AAK29625 (SEQ ID NO: 72), respectively.

Nucleic acid and amino acid sequences for human TLR8 (hTLR8) can be found as GenBank accession numbers AF245703 (coding region spanning nucleotides 49-3174) (SEQ ID NO: 46) and AAF78036 (SEQ ID NO: 50), respectively. Nucleic acid and amino acid sequences for murine TLR8 (mTLR8) can be found as GenBank accession numbers AY035890 (coding region spanning nucleotides 59-3157) (SEQ ID NO: 55) and AAK62677 (SEQ ID NO: 57), respectively.

Nucleic acid and amino acid sequences for human TLR7 (hTLR7) can be found as GenBank accession numbers AF240467 (coding region spanning nucleotides 135-3285) (SEQ ID NO: 31) and AAF60188 (SEQ ID NO: 34), respectively. Nucleic acid and amino acid

10

15

20

25

30

sequences for murine TLR7 (mTLR7) can be found as GenBank accession numbers AY035889 (coding region spanning nucleotides 49-3201) (SEQ ID NO: 38) and AAK62676 (SEQ ID NO: 41), respectively.

Nucleic acid and amino acid sequences for human TLR3 (hTLR3) can be found as GenBank accession numbers NM\_003265 (coding region spanning nucleotides 102-2816) (SEQ ID NO: 7) and NP\_003256 (SEQ ID NO: 8), respectively. Nucleic acid and amino acid sequences for murine TLR3 (hTLR3) can be found as GenBank accession numbers AF355152 (coding region spanning nucleotides 44-2761) (SEQ ID NO: 9) and AAK26117 (SEQ ID NO: 10), respectively.

Nucleic acid and amino acid sequences for human TLR1 (hTLR1) can be found as GenBank accession numbers NM\_003263 and NP\_003254, respectively. Nucleic acid and amino acid sequences for murine TLR1 (mTLR1) can be found as GenBank accession numbers NM\_030682 and NP\_109607, respectively.

The functional TLR also is not limited to native TLR polypeptides. As used herein, a native TLR is one that is naturally occurring. The TLR may be a non-native (or non-naturally occurring TLR). An example is a chimeric TLR having an extracellular domain and the cytoplasmic domain derived from TLRs from different species. Such chimeric TLR polypeptides can include, for example, a human TLR extracellular domain and a murine TLR cytoplasmic domain. In alternative embodiments, such chimeric TLR polypeptides can include chimerae created with different TLR splice variants or allotypes.

#### TLR Signaling Pathways

The screening methods provided by the invention measure TLR signaling activity. TLR signaling activity is activity that results from interaction of a TLR with a TLR ligand. TLR signaling can be measured in a number of ways including but not limited to interaction between a TLR and a protein or factor (such as an adaptor protein), interaction between downstream proteins or factors (such as an adaptor protein) with each other, activation of nuclear factors such as transcription factors or transcription complexes, up- or down-regulation of genes, phosphorylation or dephosphorylation of proteins or factors in the signaling cascade, expression, production and/or secretion of cytokines and/or chemokines, changes in cell cycle status, up- or down-regulation of cell surface marker expression, and the like. Those of ordinary skill in the art are familiar with assays for measuring these latter

WO 2004/094671

5

10

15

20

25

30

events including but not limited to gel shift assays, immunoprecipitations, phosphorylation status analysis of proteins, Northern analysis, RT-PCR analysis, etc.

The following is an exemplary TLR signaling pathway or cascade. It is to be understood that this is meant to be illustrative and that different factors may be involved in the signaling of particular TLR. One TLR signaling pathway is known to use the cytoplasmic Toll/IL-1 receptor (TIR) homology domain, present in all TLRs. This domain interacts (e.g., binds to) and thereby transduces a signal to a similar domain on an adapter protein (e.g., MyD88). This type of interaction is referred to as a like; like interaction of TIR domains. This interaction is followed by an another interaction between the adapter protein and a kinase, through their respective "death domains". In the case of at least TLR4 signaling, the kinase then interacts with tumor necrosis factor (TNF) receptor-associated factor-6 (TRAF6). Medzhitov R et al., Mol Cell 2:253 (1998); Kopp EB et al., Curr Opin Immunol 11:15 (1999). After TRAF6, two sequential kinase activation steps lead to phosphorylation of the inhibitory protein I kappa B and its dissociation from NF-kB. The first kinase is a mitogen-activated kinase kinase (MAPKKK) known as NIK, for NF-kB-inducing kinase. The target of this kinase is another kinase made up of two chains, called I kappa B kinase  $\alpha$  (IKK  $\alpha$ ) and I kappa B kinase  $\beta$  (IKK  $\beta$ ), that together form a heterodimer of IKK $\alpha$ :IKK $\beta$ , which phosphorylates I kappa B. NF-κB translocates to the nucleus to activate genes with kappa B binding sites in their promoters and enhancers such as the genes encoding IL-6, IL-8, the p40 subunit of IL-12, and the costimulatory molecule CD86. The signaling mechanisms of TLRs are not limited to this pathway; other signaling pathways exist and can be used in the screening readouts of the methods provided herein.

The screening assays employ a number of readouts (or parameters). The readouts can be native readouts. A native readout is one that does not rely on introduction of a reporter construct into the cell of interest. The readouts can be artificial. An artificial readout is one that relies on introduction of a reporter construct into the cell of interest. Examples of both are provided herein. In still other embodiments, a given assay may measure one or more native readouts and one or more artificial readouts. Each readout whether native or artificial is related to signaling pathways that ensue after TLR engagement with a ligand.

Each cell line described herein will be associated with a particular set of native readouts which the invention seeks to determine in the screening assays provided. As an example, the response of the RPMI 8226 cell line to an immunomodulatory molecule can be assessed in terms of native readouts such as CD71 expression, CD86 expression, HLA-DR

10

15

20

25

30

expression, IL-8 expression, IL-8 production, IL-8 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IP-10 expression, IP-10 production, IP-10 secretion, TNF- $\alpha$  expression, TNF- $\alpha$  production and TNF- $\alpha$  secretion. RAMOS response can be assessed, inter alia, by CD80 cell surface expression. Raji response can be assessed, inter alia, by IL-6 secretion.

As described in greater detail herein, the cell line can be used in an unmodified form. In one respect, an unmodified cell line will naturally respond to a TLR ligand through a native readout system. For example, an RPMI 8226 cell exposed to an immunostimulatory TLR ligand may increase expression of IP-10 from the native gene locus. Alternatively, the cell line may be modified to contain a reporter construct that acts as a surrogate for the IP-10 gene locus. For example, the reporter construct may contain the TLR responsive promoter elements that are naturally found in the native IP-10 locus operably linked to a reporter coding sequence that encodes a gene product that is detectable and quantifiable. The structure and variability of suitable reporter constructs will be discussed in greater detail herein.

Readouts typically include the induction of a gene under control of a specific promoter such as a NF-κB promoter. The gene under the control of the NF-κB promoter can be a gene which naturally includes an NF-κB promoter or it can be a gene in a construct in which an NF-κB promoter has been inserted. Endogenous genes and transfected constructs which include the NF-κB promoter include but are not limited to IL-8, IL-12 p40, NF-κB-luc, IL-12 p40-luc, and TNF-luc.

Increases in cytokine levels can result from increased production, increased stability, increased secretion, or any combination of the forgoing, of the cytokine in response to the TLR-mediated signaling. Cytokines generally include, without limitation, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-10, IL-11, IL-12, IL-13, IL-15, IL-18, IFN-α, IFN-β, IFN-γ, TNF-α, GM-CSF, G-CSF, M-CSF. Th1 cytokines include but are not limited to IL-2, IFN-γ, and IL-12. Th2 cytokines include but are not limited to IL-10.

Increases in chemokine levels can result from increased production, increased stability, increased secretion, or any combination of the forgoing, of the chemokine in response to the TLR-mediated signaling. Chemokines of particular significance in the invention include but are not limited to CCL5 (RANTES), CXCL9 (Mig), CXCL10 (IP-10), CXCL11 (I-TAC), IL-8, and MCP-1.

10

15

20

25

30

TLR signaling activity can also be measured by phosphorylation, such as total cellular phosphorylation or phosphorylation of specific factors such as but not limited to IRAK, ERK, MyD88, TRAF6, p38, NF-kB subunits, c-Jun and c-Fos.

TLR signaling activity can be measured by changes in gene expression. The expression of CD71, CD86, CD80, CD69, CD54, HLA-DR, HLA class I, IL-6, IL-8, IL-10, IP-9, IP-10, IFN-α, TNF-α, and the like can be assessed as a measure of TLR signaling activity. Gene expression analysis may be performed using microarray techniques.

TLR signaling activity can also be measured by cell proliferation status or changes thereto.

TLR signaling activity can also be measured by cell surface marker expression such as the cell surface expression of markers such as but not limited to CD71, CD86, HLA-DR, CD80, HLA class I, CD54 and CD69.

TLR signaling activity can also be measured by antibody secretion such as but not limited to IgM secretion.

# Reporter and Expression Constructs

The cells can be manipulated by the introduction of expression and/or reporter constructs. The expression constructs preferably comprise a TLR coding sequence, as described above. The reporter constructs can be used as surrogate measures of native TLR signaling activity. These reporter constructs are intended to substitute for the "native" readouts capable with the cell line. In order to act as substitutes, the reporter constructs include a promoter element derived from a gene known to be modulated following TLR engagement with a TLR ligand. The reporter construct further includes a coding sequence linked to the promoter. The coding sequence is usually that of a reporter (i.e., a protein that is detectable or quantifiable).

The reporter construct generally includes a promoter, a coding sequence and a polyadenylation signal. These nucleic acids shall include, as necessary, 5' non-transcribing and 5' non-translating sequences involved with the initiation of transcription and translation, respectively, such as a TATA box, capping sequence, CAAT sequence, in addition to promoter elements that are responsive to TLR signaling. The nucleic acid constructs may optionally include enhancer sequences or upstream activator sequences as desired.

The promoter in the reporter construct will include a TLR responsive promoter element, and will therefore be regarded as a TLR responsive promoter. As used herein, a

10

15

20

35

TLR responsive promoter is a promoter having an activity that is modulated (i.e., either activated or inhibited) by signaling through a TLR (e.g., by TLR interaction with its ligand). In order to be modulated by TLR signaling, the promoter contains sites that are bound by transcription factors modulated by TLR signaling. The factors may be activated or inhibited by TLR signaling. Activation of the transcription factor includes increases in the activity of the transcription factor per se, increases in its ability to interact with other factors or with DNA that serve to increase its activity, and increases in its transcription and translation (i.e., increased mRNA and protein levels of the transcription factor). Conversely, inhibition of the transcription factor includes decreases in the activity of the transcription factor per se, decreases in its ability to interact with other factors or with DNA that serve to decrease its activity, and decreases in its transcription and translation (i.e., decreased mRNA and protein levels of the transcription factor). The effect on the transcription factor is usually the downstream result of other interactions in the signaling pathway. The expression of coding sequences linked to such promoters will therefore be modulated by TLR signaling events, and it is the level of expression of these coding sequences that can be used as a readout of TLR signaling in the screening methods provided herein.

The TLR responsive promoter may comprise a transcription factor binding site selected from the group consisting of a NF-kB binding site, an AP-1 binding site, a CRE, a SRE, an interferon-stimulated response element (ISRE), a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE, among others. These binding sites and their sequences are known in the art. Below is a exemplary list of these sequences.

25 NF-κB Binding site:

Consensus p50 subunit 5' GGGGATYCCC 3' (SEQ ID NO:90)

30 Consensus p65 subunit 5' GGGRNTTTCC 3' (SEQ ID NO:91)

W = A or T, R = A or G, Y = C or T

Example of p65 subunit binding site 5' AGT TGA GGG GAC TTT CCC AGG C 3' (SEQ ID NO:92)

CREB Binding site:
5'AGA GAT TGC CTG ACG TCA GAG AGC TAG 3' (SEQ ID NO:93)

- 55 -

```
AP-1 Binding site:
             5'- CGC TTG ATG AGT CAG CCG GAA -3' (SEQ ID NO:94)
             5'- CGC ATG AGT CAG ACA -3' (SEQ ID NO:95)
    ISRE:
5
             5'- TGCAGAAGTGAAACTGAGG-3' (SEQ ID NO:96)
             5'- AGAACGAAACA-3' (SEQ ID NO:97)
             5'- GAGAAGTGAAAGTGG-3' (SEQ ID NO:98)
             5'- TAAGAACATGAAACTGAA-3' (SEQ ID NO:99)
             5'- ATGAAACTGAAAGTA-3' (SEQ ID NO:100)
10
             5'- TGAAAACCGAAAGCGC-3' (SEQ ID NO:101)
             5'- AGAAATGGAAAGT-3' (SEQ ID NO:102)
    SRE
             5'- TCACCCCAC-3' (SEQ ID NO:103)
15
             5'- CTCACCCCAC-3' (SEQ ID NO:104)
             5'- GCCACCCTAC-3' (SEQ ID NO:105)
    NFAT:
             5'- TATGAAACAGTTTTTCC -3' (SEQ ID NO:106)
20
             5'- AGGAAACTC -3' (SEQ ID NO:107)
             5'- ARGARATTCC -3' (SEQ ID NO:108)
             5'- CCAGTTGAGCCAGAGA -3' (SEQ ID NO:109)
25
     GAS:
             5'- CTTTCAGTTTCATATTACTCTAAATCCATT -3' (SEQ ID NO:110)
    p53 Binding Site:
30
             p53 Consensus site:
             5'- RRRCWWGYYY -3' (SEQ ID NO:111)
             Examples of p53 binding sites:
             5'- AGGCATGCCT -3' (SEQ ID NO:112)
             5'- GGGCTTGCCC -3' (SEQ ID NO:113)
35
             5'- GGGCTTGCTT -3' (SEQ ID NO:114)
             5'- GCCTGGACTTGCC -3' (SEQ ID NO:115)
             5'- GGACATGCCCGGGCATGTCC-3' (SEQ ID NO:116)
             5'- GTAGCATTAGCCCAGACATGTCC -3' (SEQ ID NO:117)
40
     TARE (TNF-\alpha response element):
     e.g. from the COL1A1 promoter
                5'GAGGTATGCAGACAAGAGTCAGAGTTTCCCCTTGAA 3' (SEQ ID
     NO:118)
45
     SRF
                 5'- CCWWWWWWGG -3' (SEQ ID NO:119)
                5'- CCAAATAAGGC -3' (SEQ ID NO:120)
```

The TLR responsive promoter element can be derived from the promoter of a naturally occurring (i.e., an endogenous) gene that is activated or inhibited by TLR signaling (such as the IL-6 gene, the IL-8 gene, the IL-10 gene, the IL-12 p40 gene, the IP-9 gene, the IP-10 gene, the type 1 IFN gene, the IFN- $\alpha$ 4 gene, the IFN- $\beta$  gene, the TNF- $\alpha$ 6 gene, the TNF- $\beta$ 7 gene, the RANTES gene, the ITAC gene, the IGFBP4 gene, the CD54 gene, the CD69 gene, the CD71 gene, the CD80 gene, the CD86 gene, the HLA-DR gene, the HLA class I gene, and the like). The afore-mentioned genes are genes that are known to be activated in response to TLR interaction with its ligand.

Suitable promoter regions are described in the Examples. Briefly, the upstream (5') -620 to +50 promoter region of IFN-\alpha4 or the upstream (5') -140 to +9 promoter region of IFN- $\alpha 1$  can be used. In one embodiment, the IFN- $\alpha 4$  sequence is cloned into the SmaI site of the pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') promoter region of IFN- $\alpha$ 4.

The promoter can also be the upstream (5') –280 to +20 promoter region of IFN-β.

15

The promoter can also be the upstream (5') -397 to +5 promoter region of RANTES. In one embodiment, the RANTES promoter sequence is cloned into the NheI site (filled in with Klenow) of the pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') -397 to +5 promoter region of RANTES.

20

25

30

5

10

The promoter can also be the upstream truncated (-250 to +30) and full length (-860 to +30) promoter regions derived from human IL-12 p40 genomic DNA. In one embodiment, the truncated IL-12 p40 promoter was cloned as a KpnI-XhoI insert into pβgal-Basic (Promega) resulting in an expression vector that includes a  $\beta$  gal gene under the control of the upstream (5') -250 to +30 promoter region of human IL-12 p40. In another embodiment, the full length IL-12 p40 promoter was cloned as a KpnI-XhoI insert into pβgal-Basic (Promega) resulting in an expression vector that includes a  $\beta$  gal gene under the control of the upstream (5') -751 to +30 promoter region of human IL-12 p40. In another embodiment, the truncated -250 to +30 promoter region of human IL-12 p40 was cloned into the pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') -250 to +30 promoter region of human IL-12 p40. In yet another embodiment, the full length IL-12 p40 promoter of human IL-12 p40 was cloned into the

10

15

20

25

30

pGL3-Basic Vector (Promega) resulting in an expression vector that includes a luciferase gene under the control of the upstream (5') -751 to +30 promoter region of human IL-12 p40.

The promoter can also be the upstream (5') -288 to +7 promoter region derived from human IL-6 genomic DNA. The promoter can also be derived from the full-length promoter region of the IL-6 gene from -1174 to +7 (Accession No M22111, SEQ ID NO:129).

The promoter can also be the upstream (5') -734 to +44 or the upstream (5') -162 to +44 promoter region derived from human IL-8 genomic DNA. Mukaida N et al. (1989) *J Immunol* 143:1366-71.

The promoter can also be derived from the -615 to +30 promoter region of human TNF- $\alpha$ .

The promoter can also be derived from a promoter region of human TNF- $\beta$ .

The promoter can also be derived from the -875 to +97 promoter region of human IP-10.

The promoter can also be derived from the -219 to +114 promoter region of human CXCL11 (IP9). The promoter can also be derived from the full length (-934 to +114) promoter region of human CXCL11 (IP9).

The promoter can also be derived from the -289 to +217 promoter region of human IGFBP4 (Insulin growth factor binding protein 4). The promoter can also be derived from the full length (-836 to +217) promoter region of human IGFBP4.

The promoter response element generally will be present in multiple copies, e.g., as tandem repeats. For example, in one reporter construct, coding sequence for luciferase is under control of an upstream 6X tandem repeat of NF-kB response element. In another example, an ISRE-luciferase reporter construct useful in the invention is available from Stratagene (catalog no. 219092) and includes a 5x ISRE tandem repeat joined to a TATA box upstream of a luciferase reporter gene.

The reporter construct coding sequence is preferably any nucleotide sequence that codes for a protein capable of detection or quantification. The protein can be an enzyme (e.g., luciferase, alkaline phosphatase, β-galactosidase, chloramphenicol acetyltransferase (CAT), secreted alkaline phosphatase, etc.), a bioluminescence marker (e.g., green fluorescent protein (GFP, U.S. Pat. No. 5,491,084), etc.), blue fluorescent protein (BFP, e.g., U.S. Pat. No. 6,486,382), etc.), a surface-expressed molecule (e.g., CD25, CD80, CD86), a secreted molecule (e.g., IL-1, IL-6, IL-8, IL-12 p40, TNF-α), a hapten or antigen, and other detectable protein products known to those of skill in the art. For assays relying on enzyme activity

10

15

20

25

30

readout, substrate can be supplied as part of the assay, and detection can involve measurement of chemiluminescence, fluorescence, color development, incorporation of radioactive label, drug resistance, or other marker of enzyme activity. For assays relying on surface expression of a molecule, detection can be accomplished using flow cytometry (FACS) analysis or functional assays. Secreted molecules can be assayed using enzyme-linked immunosorbent assay (ELISA) or bioassays. Many of these and other suitable readout systems are well known in the art and are commercially available. Preferably, the coding sequence encodes a protein having a level or an activity that is quantifiable, preferably with a wide linear range.

The expression construct coding sequence is preferably a TLR coding sequence derived from the sequences listed herein. Preferably, the expression construct promoter is a constitutive promoter, although in some embodiments it may be inducible. Those of ordinary skill in the art are familiar with such promoters.

As used herein, a coding sequence and the regulatory sequences (such as promoters) are said to be operably linked when they are covalently linked in such a way as to place the expression or transcription and/or translation of the coding sequence under the influence or control of the regulatory sequence. Two DNA sequences are said to be operably linked if induction of a promoter in the 5' regulatory sequence results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequence, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a regulatory sequence would be operably linked to a coding sequence if the gene expression sequence were capable of effecting transcription of that coding sequence such that the resulting transcript is translated into the desired protein or polypeptide.

Methods for nucleic acid introduction into cells are known in the art.

The nucleic acid may be delivered to the cells alone or in association with a vector. In its broadest sense, a vector is any vehicle capable of facilitating the transfer of the nucleic acid to the cells so that the reporter can be expressed. The vector generally transports the nucleic acid to the cells with reduced degradation relative to the extent of degradation that would result in the absence of the vector. In general, the vectors useful in the invention include, but are not limited to, plasmids, phagemids, viruses, other vehicles derived from viral or bacterial sources that have been manipulated by the insertion or incorporation of the antigen nucleic acid sequences. Viral vectors are a preferred type of vector and include, but are not limited

10

15

20

25

30

to, nucleic acid sequences from the following viruses: retrovirus, such as Moloney murine leukemia virus, Harvey murine sarcoma virus, murine mammary tumor virus, and Rous sarcoma virus; adenovirus, adeno-associated virus; SV40-type viruses; polyoma viruses; Epstein-Barr viruses; papilloma viruses; herpes virus; vaccinia virus; polio virus; and RNA virus such as a retrovirus. One can readily employ other vectors not named but known in the art.

Preferred viral vectors are based on non-cytopathic eukaryotic viruses in which non-essential genes have been replaced with the gene of interest. Non-cytopathic viruses include retroviruses, the life cycle of which involves reverse transcription of genomic viral RNA into DNA with subsequent proviral integration into host cellular DNA. Retroviruses have been approved for human gene therapy trials. Most useful are those retroviruses that are replication-deficient (i.e., capable of directing synthesis of the desired proteins, but incapable of manufacturing an infectious particle). Such genetically altered retroviral expression vectors have general utility for the high-efficiency transduction of genes *in vivo*. Standard protocols for producing replication-deficient retroviruses (including the steps of incorporation of exogenous genetic material into a plasmid, transfection of a packaging cell lined with plasmid, production of recombinant retroviruses by the packaging cell line, collection of viral particles from tissue culture media, and infection of the target cells with viral particles) are provided in Kriegler, M., Gene Transfer and Expression, A Laboratory Manual W.H. Freeman C.O., New York (1990) and Murray, E.J. Methods in Molecular Biology, vol. 7, Humana Press, Inc., Cliffton, New Jersey (1991).

A preferred virus for certain applications is the adeno-associated virus, a double-stranded DNA virus. The adeno-associated virus can be engineered to be replication -deficient and is capable of infecting a wide range of cell types and species. It further has advantages such as, heat and lipid solvent stability; high transduction frequencies in cells of diverse lineages, including hemopoietic cells; and lack of superinfection inhibition thus allowing multiple series of transductions. Reportedly, wild-type adeno-associated virus manifest some preference for integration sites into human cellular DNA, thereby minimizing the possibility of insertional mutagenesis and variability of inserted gene expression characteristic of retroviral infection. In addition, wild-type adeno-associated virus infections have been followed in tissue culture for greater than 100 passages in the absence of selective pressure, implying that the adeno-associated virus genomic integration is a relatively stable event. The adeno-associated virus can also function in an extrachromosomal fashion.

10

15

20

25

30

Recombinant adeno-associated viruses that lack the replicase protein apparently lack this integration sequence specificity.

Other vectors include plasmid vectors. Plasmid vectors have been extensively described in the art and are well-known to those of skill in the art. See e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989. In the last few years, plasmid vectors have been found to be particularly advantageous for delivering genes to cells *in vivo* because of their inability to replicate within and integrate into a host genome. These plasmids, however, having a promoter compatible with the host cell, can express a peptide from a gene operatively encoded within the plasmid. Some commonly used plasmids include pBR322, pUC18, pUC19, pRc/CMV, SV40, and pBlueScript. Other plasmids are well-known to those of ordinary skill in the art. Additionally, plasmids may be custom designed using restriction enzymes and ligation reactions to remove and add specific fragments of DNA.

In general, the vectors useful in the invention are divided into two classes: biological vectors and chemical/physical vectors. Biological vectors and chemical/physical vectors are useful in the delivery and/or uptake of reporter constructs of the invention.

Most biological vectors are used for delivery of nucleic acids and thus would be most appropriate in the delivery of nucleic acids.

As used herein, a "chemical/physical vector" refers to a natural or synthetic molecule, other than those derived from bacteriological or viral sources, capable of delivering the reference and test compound.

A preferred chemical/physical vector of the invention is a colloidal dispersion system. Colloidal dispersion systems include lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system of the invention is a liposome. Liposomes are artificial membrane vessels which are useful as a delivery vector *in vivo* or *in vitro*. It has been shown that large unilamellar vessels (LUV), which range in size from 0.2 - 4.0 µm can encapsulate large macromolecules. RNA, DNA and intact virions can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley, et al., *Trends Biochem. Sci.*, (1981) 6:77).

Liposomes may be targeted to a particular tissue by coupling the liposome to a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein. Ligands which may be useful for targeting a liposome to an immune cell include, but are not limited to, intact or fragments of molecules which interact with immune cell specific receptors and molecules,

WO 2004/094671 PCT/US2004/012788

- 61 -

such as antibodies, which interact with the cell surface markers of immune cells. Such ligands may easily be identified by binding assays well known to those of skill in the art. In still other embodiments, the liposome may be targeted to the cancer by coupling it to a one of the immunotherapeutic antibodies discussed earlier. Additionally, the vector may be coupled to a nuclear targeting peptide, which will direct the vector to the nucleus of the host cell.

Lipid formulations for transfection are commercially available from QIAGEN, for example, as EFFECTENE<sup>TM</sup> (a non-liposomal lipid with a special DNA condensing enhancer) and SUPERFECT<sup>TM</sup> (a novel acting dendrimeric technology).

Liposomes are commercially available from Gibco BRL, for example, as LIPOFECTIN<sup>TM</sup> and LIPOFECTACE<sup>TM</sup>, which are formed of cationic lipids such as N-[1-(2, 3 dioleyloxy)-propyl]-N, N, N-trimethylammonium chloride (DOTMA) and dimethyl dioctadecylammonium bromide (DDAB). Methods for making liposomes are well known in the art and have been described in many publications. Liposomes also have been reviewed by Gregoriadis, G. in *Trends in Biotechnology*, (1985) 3:235-241. In some preferred embodiments, the method of choice for delivering DNA (for transfection) to the cells is electroporation, particularly where a stably transfected cell line is sought.

The present invention is further illustrated by the following Examples, which in no way should be construed as further limiting.

20

25

30

5

10

15

#### **Examples**

## Example 1. Biological Activity of Production Lot of CpG ODN (SEQ ID NO:1) Assayed Using Cells Stably Transfected with hTLR9 Expression Vector

CpG ODN (SEQ ID NO:1) is currently in preclinical and clinical trials for a number of clinical applications. SEQ ID NO:1 has been discovered to induce signaling through TLR9. In order to assess different lots of clinical material, the methods of the invention are employed, using a highly characterized lot of SEQ ID NO:1 as a reference.

In a TLR9 assay, the CpG-non-responsive human embryonal kidney cell line HEK293 (e.g., ATCC CRL-1573) was stably transfected with a hTLR9 expression construct and found to express full-length human TLR9 constitutively. The cells also contained a genomic copy of a reporter construct with a 6x NF-κB binding site and a luciferase gene reporter cassette. Incubation of the cells with CpG ODN (SEQ ID NO:1) activates NF-κB driven expression of luciferase, while incubation with medium alone (negative control) does not. The cells are

10

15

25

30

then lysed and activity of the luciferase protein determined by its catalytic activity of luciferin oxidation which is measured in a luminometer. Results are expressed as fold induction above medium control.

Assay set-up includes a reference standard material which is highly pure and well characterized. The reference material is used to create a standard curve within a defined range where the dose-response curve is linear (e.g., in the range of the EC50 value for SEQ ID NO:1, 70-100 nM). The test material is dissolved for testing and assayed at a defined concentration. Activity of the test material is calculated using the standard curve of the reference material. Quality of the tested material is deemed acceptable if activity of the test material compared to activity of the reference material falls within predetermined limits.

## Example 2. Biological Activity of Production Lot of CpG ODN (SEQ ID NO:1) Assayed Using RPMI 8226 Cells

The assay of Example 1 is performed using RPMI 8226 cells (ATCC CCL-155) in place of the stably transfected HEK cells of Example 1. RPMI 8226 cells naturally express human TLR9. The cells are stably transfected with a 6x NF-kB-luciferase reporter construct. It is to be understood that the assay could also be carried out by measuring a native readout such as IL-10 secretion.

#### 20 Example 3. Expression Vectors for Human TLR3 (hTLR3) and Murine TLR3 (mTLR3)

To create an expression vector for human TLR3, human TLR3 cDNA was amplified by the polymerase chain method (PCR) from a cDNA made from human 293 cells using the primers 5'-GAAACTCGAGCCACCATGAGACAGACTTTGCCTTGTATCTAC-3' (sense, SEQ ID NO:152) and 5'-GAAAGAATTCTTAATGTACAGAGTTTTTGGATCCAAG-3' (antisense, SEQ ID NO:153). The primers introduce *XhoI* and *EcoRI* restriction endonuclease sites at their 5' ends for use in subsequent cloning into the expression vector. The resulting amplification product fragment was cloned into pGEM-T Easy vector (Promega), isolated, cut with *XhoI* and *EcoRI* restriction endonucleases, ligated into an *XhoI/EcoRI*-digested pcDNA3.1 expression vector (Invitrogen). The insert was fully sequenced and translated into protein. The cDNA sequence corresponds to the published cDNA sequence for hTLR3, available as GenBank accession no. NM\_003265 (SEQ ID NO:7). The open reading frame codes for a protein 904 amino acids long, having the sequence corresponding to GenBank accession no. NP\_003256 (SEQ ID NO:8).

Corresponding nucleotide and amino acid sequences for murine TLR3 (mTLR3) are known. The nucleotide sequence of mTLR3 cDNA has been reported as GenBank accession no. AF355152 (SEQ ID NO:9), and the amino acid sequence of mTLR3 has been reported as GenBank accession no. AAK26117 (SEQ ID NO:10).

5

10

15

20

30

## Example 4. Reconstitution of TLR3 Signaling in 293 Fibroblasts

Human TLR3 cDNA and murine TLR3 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the *EcoR*I site. The resulting expression vectors mentioned above were transfected into CpG-DNA non-responsive human 293 fibroblast cells (ATCC, CRL-1573) using the calcium phosphate method. Utilizing a "gain of function" assay it was possible to reconstitute human TLR3 (hTLR3) and murine TLR3 (mTLR3) signaling in 293 fibroblast cells.

Since NF-κB activation is central to the IL-1/TLR signal transduction pathway (Medzhitov R et al. (1998) *Mol Cell* 2:253-8; Muzio M et al. (1998) *J Exp Med* 187:2097-101), in a first set of experiments human 293 fibroblast cells were transfected with hTLR3 alone or co-transfected with hTLR3 and an NF-κB-driven luciferase reporter construct.

Likewise, in a second set of experiments, 293 fibroblast cells were transfected with hTLR3 alone or co-transfected with hTLR3 and an IFN- $\alpha$ 4-driven luciferase reporter construct (described in Example 8 below).

In a third group of experiments, 293 fibroblast cells were transfected with hTLR3 alone or co-transfected with hTLR3 and a RANTES-driven luciferase reporter construct (described in Example 14 below).

#### 25 Example 5. Reconstitution of TLR7 Signaling

Methods for cloning murine and human TLR7 have been described in pending U.S. Pat. Application No. 09/954,987 and corresponding published PCT application PCT/US01/29229 (WO 02/22809), both filed September 17, 2001, the contents of which are incorporated herein by reference. Human TLR7 cDNA and murine TLR7 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR7 (hTLR7) and murine TLR7 (mTLR7) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors

mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

## **Example 6. Reconstitution of TLR8 Signaling**

Methods for cloning murine and human TLR8 have been described in pending U.S. Pat. Application No. 09/954,987 and corresponding published PCT application PCT/US01/29229 (WO 02/22809), both filed September 17, 2001, the contents of which are incorporated by reference. Human TLR8 cDNA and murine TLR8 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR8 (hTLR8) and murine TLR8 (mTLR8) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

15

20

25

30

10

5

## Example 7. Reconstitution of TLR9 Signaling in 293 Fibroblasts

Methods for cloning murine and human TLR9 have been described in pending U.S. Pat. Application No. 09/954,987 and corresponding published PCT application PCT/US01/29229 (WO 02/22809), both filed September 17, 2001, the contents of which are incorporated by reference. Human TLR9 cDNA and murine TLR9 cDNA in pT-Adv vector (from Clontech) were individually cloned into the expression vector pcDNA3.1(-) from Invitrogen using the EcoRI site. Utilizing a "gain of function" assay it was possible to reconstitute human TLR9 (hTLR9) and murine TLR9 (mTLR9) signaling in CpG-DNA non-responsive human 293 fibroblasts (ATCC, CRL-1573). The expression vectors mentioned above were transfected into 293 fibroblast cells using the calcium phosphate method.

To generate stable clones expressing human TLR9, murine TLR9, or either TLR9 with the NF-κB-luc reporter plasmid, 293 cells were transfected in 10 cm plates (2x10<sup>6</sup> cells/plate) with 16 μg of DNA and selected with 0.7 mg/ml G418 (PAA Laboratories GmbH, Cölbe, Germany). Clones were tested for TLR9 expression by RT-PCR, for example as shown in Fig. 21. The clones were also screened for IL-8 production or NF-κB-luciferase activity after stimulation with ODN. Four different types of clones were generated.

293-hTLR9-luc:

expressing human TLR9 and 6x NF-kB-luciferase reporter

293-mTLR9-luc:

expressing murine TLR9 and 6x NF-kB-luciferase reporter

293-hTLR9:

expressing human TLR9

293-mTLR9:

expressing murine TLR9

5

10

15

20

25

30

Human 293 fibroblast cells were transiently transfected with hTLR9 and a 6x NF-κB-luciferase reporter plasmid (NF-κB-luc, kindly provided by Patrick Baeuerle, Munich, Germany) (Fig. 18A) or with hTLR9 alone (Fig. 18B). After stimulus with CpG-ODN (2μM, TCGTCGTTTTGTCGTTT, SEQ ID NO:1), GpC-ODN (2μM,

TGCTGCTTTTGTGCTTT, SEQ ID NO:154), LPS (100 ng/ml) or media, NF-κB activation by luciferase readout (8h, Fig. 18A) or IL-8 production by ELISA (48h, Fig. 18B) was monitored. Results are representative of three independent experiments. Fig. 18 shows that cells expressing hTLR9 responded to CpG-DNA but not to LPS.

Human 293 fibroblast cells were transiently transfected with mTLR9 and the NF-κB-luc construct. Similar data was obtained for IL-8 production (not shown). Thus expression of TLR9 (human or mouse) in 293 cells results in a gain of function for CpG DNA stimulation similar to hTLR4 reconstitution of LPS responses.

Figs. 19 and 20 demonstrate the responsiveness of a stable 293-mTLR9-luc and 293-hTLR9-luc clones after stimulation with CpG-ODN (2μM, SEQ ID NO:1), GpC-ODN (2μM, SEQ ID NO:154), Me-CpG-ODN (2μM; TZGTZGTTTTGTZGTTTTGTZGTT, Z = 5-methylcytidine, SEQ ID NO:147), LPS (100 ng/ml) or media, as measured by monitoring NF-κB activation. Similar results were obtained utilizing IL-8 production with the stable clones. These results demonstrate that CpG-DNA non-responsive cell lines can be stably genetically complemented with TLR9 to become responsive to CpG DNA in a motif-specific manner.

## Example 8. Method of Making IFN-04 Reporter Vector

A number of reporter vectors may be used in the practice of the invention. Some of the reporter vectors are commercially available, e.g., the luciferase reporter vectors pNF-kB-Luc (Stratagene) and pAP1-Luc (Stratagene). These two reporter vectors place the luciferase gene under control of an upstream (5') promoter region derived from genomic DNA for NF-kB or AP1, respectively. Other reporter vectors can be constructed following standard

10

15

20

25

30

methods using the desired promoter and a vector containing a suitable reporter, such as luciferase,  $\beta$ -galactosidase ( $\beta$ -gal), chloramphenicol acetyltransferase (CAT), and other reporters known by those skilled in the art. Following are some examples of reporter vectors constructed for use in the present invention.

IFN- $\alpha$ 4 is an immediate-early type 1 IFN. Sequence-specific PCR products for the – 620 to +50 promoter region of IFN- $\alpha$ 4 were derived from genomic DNA of human 293 cells and cloned into the *Sma*I site of the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') –620 to +50 promoter region of IFN- $\alpha$ 4. The sequence of the –620 to +50 promoter region of IFN- $\alpha$ 4 is provided as SEQ ID NO:121.

### Example 9. Method of Making IFN-a1 Reporter Vector

IFN- $\alpha$ 1 is a late type 1 IFN. Sequence-specific PCR products for the -140 to +9 promoter region of IFN- $\alpha$ 1 were derived from genomic DNA of human 293 cells and cloned into *Sma*I site of the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -140 to +9 promoter region of IFN- $\alpha$ 1. A sequence of the -140 to +9 promoter region of IFN- $\alpha$ 1 is provided as SEQ ID NO:122.

## Example 10. Method of Making IFN-β Reporter Vector

IFN- $\beta$  is an immediate-early type 1 IFN. The –280 to +20 promoter region of IFN- $\beta$  was derived from the pUCβ26 vector (Algarté M et al. (1999) *J Virol* 73:2694-702) by restriction at *EcoRI* and *TaqI* sites. The 300 bp restriction fragment was filled in by Klenow enzyme and cloned into *NheI*-digested and filled in pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') –280 to +20 promoter region of IFN- $\beta$  is provided as SEQ ID NO:123.

## Example 11. Method of Making Human IL-6 Reporter Vectors

Reporter constructs are made using the -285 to +7 promoter region derived from human IL-6 genomic DNA. (Takeshita et al. Eur. J. Immunol. 2000. 30: 108–116.) In one reporter construct the IL-6 promoter region is cloned as a *KpnI-XhoI* insert into pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of

WO 2004/094671 PCT/US2004/012788

- 67 -

an upstream (5') -288 to +7 promoter region derived from human IL-6 genomic DNA. A sequence of the -288 to +7 promoter region of human IL-6 is provided as SEQ ID NO:128.

The promoter can also be derived from the full-length promoter region of the IL-6 gene from -1174 to +7 (GenBank Accession No M22111) as shown below as SEQ ID NO:129.

## Example 12. Method of Making Human IL-8 Reporter Vectors

Reporter constructs have been made using a -546 to +44 and a truncated -133 to +44 promoter region derived from human IL-8 genomic DNA. Mukaida N et al. (1989) *J Immunol* 143:1366-71. In each reporter construct the IL-8 promoter region was cloned as a *KpnI-XhoI* insert into pGL3-Basic Vector (Promega). One of the resulting expression vectors includes a luciferase gene under control of an upstream (5') -546 to +44 promoter region derived from human IL-8 genomic DNA. Another of the resulting expression vectors includes a luciferase gene under control of an upstream (5') -133 to +44 promoter region derived from human IL-8 genomic DNA.

The promoter can also be the upstream (5') -734 to +44 or the upstream (5') -162 to +44 promoter region derived from human IL-8 genomic DNA. Mukaida N et al. (1989) J Immunol 143:1366-71. A sequence of the -734 to +44 promoter region derived from human IL-8 is provided below as SEQ ID NO: 130.

20

25

30

5

10

15

#### Example 13. Method of Making Human IL-12 p40 Reporter Vectors

Reporter constructs have been made using truncated (-250 to +30, SEQ ID NO:127) and full length (-751 to +30, SEQID NO:126) promoter regions derived from human IL-12 p40 genomic DNA. (Takeshita et al. Eur. J. Immunol. 2000. 30: 108–116.) In one reporter construct the truncated IL-12 p40 promoter was cloned as a *KpnI-XhoI* insert into pβgal-Basic (Promega). The resulting expression vector includes a  $\beta$  gal gene under control of an upstream (5') –250 to +30 promoter region of human IL-12 p40. In a second reporter construct the full length IL-12 p40 promoter was cloned as a *KpnI-XhoI* insert into pβgal-Basic (Promega). The resulting expression vector includes a  $\beta$  gal gene under control of an upstream (5') –751 to +30 promoter region of human IL-12 p40. In a third reporter construct the truncated –250 to +30 promoter region of human IL-12 p40 was cloned into the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') –250 to +30 promoter region of human IL-12 p40. In a

10

15

20

25

30

fourth reporter construct the full length IL-12 p40 promoter of human IL-12 p40 was cloned into the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') -751 to +30 promoter region of human IL-12 p40. A sequence of the -751 to +30 promoter region of human IL-12 p40 is provided as SEQ ID NO: 126.

## **Example 14. Method of Making RANTES Reporter Vector**

Transcription of the chemokine RANTES is believed to be regulated at least in part by IRF3 and by NF-kB. Lin R et al. (1999) *J Mol Cell Biol* 19(2):959-66; Genin P et al. (2000) *J Immunol* 164:5352-61. A 483 bp sequence-specific PCR product including the –397 to +5 promoter region of RANTES was derived from genomic DNA of human 293 cells, restricted with *Pst*I and cloned into pCAT-Basic Vector (Promega) using *Hind*III (filled in with Klenow) and *Pst*I sites (filled in). The –397 to +5 promoter region of RANTES was then isolated from the resulting RANTES/chloramphenical acetyltransferase (CAT) reporter plasmid by restriction with *BgI*II and *SaI*I, filled in with Klenow enzyme, and cloned into the *NheI* site (filled in with Klenow) of the pGL3-Basic Vector (Promega). The resulting expression vector includes a luciferase gene under control of an upstream (5') –397 to +5 promoter region of RANTES. Comparison of the insert sequence –397 to +5 of Genin P et al. (2000) *J Immunol* 164:5352-61 and GenBank accession no. AB023652 (SEQ ID NO:125) revealed two point deletions (at positions 105 and 273 of SEQ ID NO:125) which do not create new restriction sites. A sequence of the –397 to +5 promoter region of RANTES is provided as SEQ ID NO:125.

## Example 15. RT-PCR Analysis of Cell Lines for TLR Expression

TLR expression was determined using total RNA of cells prepared by standard methods (QIAGEN). RNA was transcribed to cDNA using AMV Reverse Transcriptase (Roche). Quantitative PCR was performed with TLR-gene specific primer sets using a LightCycler Instrument (Roche). Controls for genomic DNA impurities were performed by a similar PCR method using RNA (but without reverse transcriptase).

A variety of cell lines was screened for their expression of TLR3, 7, 8 and 9. These cell lines are A549 (human lung carcinoma), BeWo (human choriocarcinoma), HeLa (human cervix carcinoma), Hep-2 (human cervix carcinoma), KG-1 (human acute myeloid leukemia), MUTZ-3 (human acute myelomonocytic leukemia), Nalm-6 (human B cell precursor

10

15

20

leukemia), NK-92 (human Natural killer cell line), NK-92 MI (human Natural killer cell line, IL-2 independent), Raji (human Burkitt's lymphoma, B lymphocyte), RAMOS (Burkitt's lymphoma, B lymphocyte), RPMI 8226 (human multiple myeloma, B lymphocyte), THP-1 (human acute monocytic leukemia), U937 (human lymphoma) and Jurkat (human T cell leukemia).

All B cell lines express, as determined by Real Time-PCR (RT-PCR), endogenous TLR9. In addition, all lines except NALM co-express TLR7. Nevertheless, none of the other cell lines appeared to express TLR7, whereas low TLR9 expression on the mRNA level was observed for KG-1 and THP-1. TLR3 appeared to be expressed in most of these cell lines, with the highest mRNA levels for example in the NK cell lines (e.g., NK-92).

Raji cells contain high levels of TLR9 mRNA and low levels of TLR3 and TLR7 mRNA suggesting high expression of TLR9 protein and lower levels of TLR3 and TLR7 protein.

These results indicate that the cell lines expressing TLR9 can be used to screen potential new TLR9 ligands (CpG ODN, etc.), cell lines expressing TLR7 to screen potential new TLR7 ligands (ORN (oligoribonucleotides), small molecules, etc.), and cell lines expressing both receptors may be used to screen for "hybrid" TLR7 and 9 agonists. In addition, cell lines lacking TLR8 expression (i.e., all cell lines tested) can be used to confirm the specificity of a TLR7 versus a TLR8 ligand (i.e., the latter should not be able to stimulate TLR7-expressing cells). In contrast, cell lines expressing TLR3 (e.g., Raji cells) may be used to screen for potential new TLR3 ligands (dsRNA, etc.).

#### Example 16. Screening of Various Cell Lines for Responses to TLR Ligands

Except where otherwise indicated, the following general methods were used.

Cells were plated at 5 x 10<sup>5</sup>/ml in 48 well plates in RPMI medium with 10% FBS. Stimulation was performed by addition of the oligonucleotides or other compounds diluted to the test concentrations in TE. Cells were incubated for 24 or 48h and the supernatants were taken to analyse for the presence of cytokines or chemokines.

The TLR ligands used are as follows:

30 TLR3: Poly I:C

TLR7, TLR8: R-848

TLR9:

T\*C\*C\*A\*G\*G\*A\*C\*T\*T\*C\*T\*C\*T\*C\*A\*G\*G\*T\*T (SEQ ID NO: 2);

15

20

25

addition of ODN.

Increased expression of cell surface markers was determined using cells stimulated as described above and then stained with different monoclonal antibody combinations specific for the cell surface markers. Analysis of the cells was performed by flow cytometry.

Changes in reporter gene activity were determined using cells transfected with a NF- $\kappa$ B reporter construct (Stratagene) and a  $\beta$ -galactosidase reporter control plasmid (Invitrogen) using electroporation. For NF- $\kappa$ B analysis, a 5 $\kappa$  NF- $\kappa$ B-Luciferase Vector (Stratagene) was used. The amount of DNA transfected as well as cell concentration was varied. Stimulation was performed 24h after transfection. Cells were stimulated with the indicated amounts of ODN, R-848, LPS, TNF- $\alpha$ , or IL-1  $\beta$  for the indicated incubation times. Cell extracts were prepared by lysing the cells in 100  $\mu$ l reporter lysis buffer (Promega) using the freeze-thaw method. All data were normalized for  $\beta$ -galactosidase expression. Stimulation indices were calculated in reference to luciferase activity of medium without

Stimulation of the Raji cell line with a TLR9 ligand (CpG ODN), a TLR3 ligand (poly I:C) or a TLR7 ligand (R-848) results in the ligand-specific secretion of cytokines. Figs. 14 and 15 show IL-6 production of Raji cells upon stimulation with ODN, poly I:C or R-848. Fig. 16 shows IFN-c2 production of Raji cells upon stimulation with ODN, poly I:C or R-848. In all assays, cells were incubated with Na-Butyrate for 48h before stimulation with TLR ligands. CpG stimulation of the RAMOS cell lines can result in the CpG-specific upregulation of cell surface markers such as CD80, as shown in Fig. 17.

# 30 Example 17. Inhibition of a Positive Reference Compound Response with an Inhibitory Test Compound

Inhibition of CpG mediated chemokine production was determined using RPMI 8226 cells incubated with increasing amounts of SEQ ID NO:1 in the presence of an

immunoinhibitory ODN (SEQ ID NO: 151). IP-10 production was measured 24h later by ELISA (Fig. 9).

### **Equivalents**

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by examples provided, since the examples are intended as a single illustration of one aspect of the invention and other functionally equivalent embodiments are within the scope of the invention. Various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims. The advantages and objects of the invention are not necessarily encompassed by each embodiment of the invention.

All references, patents and patent publications that are recited in this application are incorporated in their entirety herein by reference.

15

10

5

We claim:

10

15

25

#### **Claims**

1. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting an RPMI 8226 cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the TLR signaling activity is selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-8 expression, IL-8 production, IL-10 expression, IL-10 production, IL-10 secretion, IP-10 expression, IP-10 production, IP-10 secretion, TNF- $\alpha$  expression, TNF- $\alpha$  production and TNF- $\alpha$  secretion.

2. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of an immunostimulatory compound, and

wherein the cell is a Raji cell, a RAMOS cell, a Nalm cell, a THP-1 cell, or a KG-20 1 cell.

- 3. The method of claim 1 or 2, wherein the test level is positive relative to a reference level determined by contacting the cell with a reference compound and measuring a reference TLR signaling activity.
- 4. The method of claim 3, wherein the reference compound is a positive reference compound
- 5. The method of claim 4, wherein the positive reference compound is selected from the group consisting of an immunostimulatory nucleic acid and an imidazoquinoline compound.

- 6. The method of claim 3, wherein the reference compound is a negative reference compound.
- 7. The method of claim 6, wherein the negative reference compound is medium alone.
  - 8. The method of claim 5, wherein the immunostimulatory nucleic acid is selected from the group consisting of a CpG nucleic acid, a T-rich nucleic acid, a poly-T nucleic acid and a poly-G nucleic acid.

- 9. The method of claim 5, wherein the imidazoquinoline compound is selected from the group consisting of R-848 and R-847.
- The method of claim 1 or 2, wherein the test compound is a nucleic acid.
  - 11. The method of claim 10, wherein the nucleic acid does not comprise a motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a poly-G motif.

- 12. The method of claim 10, wherein the nucleic acid comprises a phosphorothicate backbone linkage.
- 13. The method of claim 10, wherein the nucleic acid is a DNA, an RNA or 25 a DNA-RNA hybrid.
  - 14. The method of claim 1 or 2, wherein the test compound is a non-nucleic acid small molecule.
- 30 15. The method of claim 1 or 2, wherein the test compound comprises an amino acid, a carbohydrate, a lipid, or a hormone.
  - 16. The method of claim 15, wherein the carbohydrate is a polysaccharide.

20

- 17. The method of claim 1 or 2, wherein the test compound is derived from a molecular library.
- 5 18. The method of claim 1, wherein the cell is transfected with a nucleic acid.
  - 19. The method of claim 18, wherein the nucleic acid encodes a TLR or a reporter construct.
  - The method of claim 2, wherein the cell is transfected with a nucleic acid.
- The method of claim 20, wherein the nucleic acid encodes a TLR or a reporter construct.
  - 22. The method of claim 19 or 21, wherein the TLR is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.
    - 23. The method of claim 22, wherein the TLR is a human TLR.
- 24. The method of claim 19 or 21, wherein the reporter construct is selected from the group consisting of a luciferase reporter construct, a β-galactosidase reporter construct, a chloramphenical acetyltransferase reporter construct, a green fluorescent protein reporter construct, and a secreted alkaline phosphatase construct.
  - 25. The method of claim 19 or 21, wherein the reporter construct comprises a TLR responsive promoter.
  - 26. The method of claim 25, wherein the TLR responsive promoter comprises a transcription factor binding site selected from the group consisting of a NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an

IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.

- 27. The method of claim 25, wherein the TLR responsive promoter is a promoter region selected from the group consisting of an IL-1 promoter region, an IL-6 promoter region, an IL-8 promoter region, an IL-10 promoter region, an IL-12 p40 promoter region, an IFN-α1 promoter region, an IFN-α4 promoter region, an IFN-β promoter region, an IFN-γ promoter region, a TNF-α promoter region, a TNF-β promoter region, an IP-9 promoter region, an IP-10 promoter region, a RANTES promoter region, an ITAC promoter region, a MCP-1 promoter region, an IGFBP4 promoter region, a CD54 promoter region, a CD69 promoter region, a CD71 promoter region, a CD80 promoter region, a CD86 promoter region, a HLA-DR promoter region, and a HLA class I promoter region.
  - 28. The method of claim 18 or 20, wherein the cell is stably transfected.

- 29. The method of claim 1 or 2, wherein the TLR signaling activity is measured by cytokine secretion or chemokine secretion.
- 30. The method of claim 1, wherein the TLR signaling activity is selected
   20 from the group consisting of IL-8 secretion, IL-10 secretion, IP-10 secretion and TNF-α secretion.
- 31. The method of claim 2, wherein the TLR signaling activity is selected from the group consisting of IL-6 expression, IL-6 production, IL-6 secretion, IL-8
   25 expression, IL-8 production, IL-8 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IP-10 expression, IP-10 production, IP-10 secretion, IL-12 expression, IL-12 production, IL-12 secretion, TNF-α expression, TNF-α production and TNF-α secretion.
- 32. The method of claim 2, wherein the TLR signaling activity is measured by phosphorylation.
  - 33. The method of claim 32, wherein phosphorylation is total cellular phosphorylation.

34. The method of claim 32, wherein phosphorylation is phosphorylation of a factor selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, NFkB subunits, c-Jun and c-Fos.

5

- 35. The method of claim 1 or 2, wherein the TLR signaling activity is measured by gene expression.
- 36. The method of claim 1, wherein the TLR signaling activity is measured by gene expression selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-8 expression, IL-10 expression, IP-10 expression, and TNF-α expression.
- 37. The method of claim 35, wherein TLR signaling activity is measured by microarray techniques.
  - 38. The method of claim 2, wherein the TLR signaling activity is measured by cell proliferation.
- 20 39. The method of claim 1 or 2, wherein TLR signaling activity is measured by cell surface marker expression.
  - 40. The method of claim 1, wherein TLR signaling activity is measured by cell surface expression of CD71, CD86 or HLA-DR.

25

41. The method of claim 2, wherein TLR signaling activity is measured by CD71 cell surface expression, CD86 cell surface expression, HLA-DR cell surface expression, CD80 cell surface expression, HLA class I cell surface expression, CD54 cell surface expression and CD69 cell surface expression.

30

42. The method of claim 2, wherein TLR signaling activity is measured by antibody secretion.

WO 2004/094671 PCT/US2004/012788

- 77 -

- 43. The method of claim 42, wherein the antibody secretion is IgM secretion.
- 44. A composition comprising
  an RPMI 8226 cell stably transfected with a nucleic acid encoding a TLR
  polypeptide, or a fragment thereof.
  - 45. The composition of claim 44, further comprising a reporter construct comprising a promoter and a reporter sequence wherein the promoter is a TLR responsive promoter.

10

15

- 46. The composition of claim 45, wherein the TLR responsive promoter comprises a nucleic acid sequence selected from the group consisting of an NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.
- 47. The composition of claim 45, wherein the reporter sequence is selected from the group consisting of a luciferase sequence, a  $\beta$ -galactosidase sequence, a green fluorescent protein sequence, a secreted alkaline phosphatase sequence and a chloramphenicol transferase sequence.
  - 48. The composition of claim 44, wherein the TLR polypeptide or fragment thereof is a human TLR polypeptide or fragment thereof.
- 25 49. The composition of claim 44, wherein the TLR polypeptide or fragment thereof is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.
- 50. The composition of claim 44, wherein the TLR polypeptide or fragment thereof is a human TLR polypeptide.
  - 51. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

25

contacting an cell that ectopically expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the cell that ectopically expresses a TLR is selected from the group consisting of RPMI 8226, RAMOS, Raji, Nalm, THP-1, KG-1 and 293 HEK.

- 52. The method of claim 51, wherein the test level is positive relative to a reference level determined by contacting the cell with a reference compound and measuring a reference TLR signaling activity.
- 53. The method of claim 52, wherein the reference compound is a positive reference compound.
- 15 54. The method of claim 53, wherein the positive reference compound is selected from the group consisting of an immunostimulatory nucleic acid and an imidazoquinoline compound.
- 55. The method of claim 54, wherein the immunostimulatory nucleic acid is selected from the group consisting of a CpG nucleic acid, a T-rich nucleic acid, a poly-T nucleic acid and a poly-G nucleic acid.
  - 56. The method of claim 54, wherein the imidazoquinoline compound is selected from the group consisting of R-848 and R-847.
  - 57. The method of claim 52, wherein the reference compound is negative reference compound.
- The method of claim 57, wherein the negative reference compound is medium alone.
  - 59. The method of claim 51, wherein the test compound is a nucleic acid.

WO 2004/094671 PCT/US2004/012788

- 79 -

- 60. The method of claim 59, wherein the nucleic acid does not comprise a motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a poly-G motif.
- 5 61. The method of claim 59, wherein the nucleic acid comprises a phosphorothioate backbone linkage.

10

- 62. The method of claim 59, wherein the nucleic acid is a DNA, an RNA, or a DNA-RNA hybrid.
- 63. The method of claim 51, wherein the test compound is a non-nucleic acid small molecule.
- 64. The method of claim 51, wherein the test compound comprises an amino acid, a carbohydrate, a lipid, or a hormone.
  - 65. The method of claim 64, wherein the carbohydrate is a polysaccharide.
- The method of claim 51, wherein the test compound is derived from a molecular library.
  - 67. The method of claim 51, wherein the TLR signaling activity is selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-6 expression, IL-6 production, IL-6 secretion, IL-8 expression, IL-8 production, IL-8 secretion, IL-10 expression, IL-10 production, IL-10 secretion, IL-12 expression, IL-12 production, IL-12 secretion, IP-10 expression, IP-10 production, IP-10 secretion, TNF- $\alpha$  expression, TNF- $\alpha$  production and TNF- $\alpha$  secretion.
- 68. The method of claim 51, wherein the TLR is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.
  - 69. The method of claim 51, wherein the TLR is a human TLR.

- 70. The method of claim 51, wherein the cell is transfected with a reporter construct.
- 71. The method of claim 70, wherein the reporter construct is selected from the group consisting of a luciferase reporter construct, a β-galactosidase reporter construct, a chloramphenical acetyltransferase reporter construct, a green fluorescent protein reporter construct, and a secreted alkaline phosphatase construct.
- 72. The method of claim 71, wherein the TLR signaling activity is measured by luciferase expression, β-galactosidase expression, chloramphenical expression, acetyltransferase expression, green fluorescent protein expression, alkaline phosphatase expression and alkaline phosphatase secretion.
- 73. The method of claim 71, wherein the reporter construct comprises a TLR responsive promoter.
- 74. The method of claim 25 or 73, wherein the TLR responsive promoter is a TLR1 responsive promoter, a TLR2 responsive promoter, a TLR3 responsive promoter, a TLR4 responsive promoter, a TLR5 responsive promoter, a TLR6 responsive promoter, a TLR7 responsive promoter, a TLR8 responsive promoter, a TLR9 responsive promoter and a TLR10 responsive promoter.
  - 75. The method of claim 73, wherein the TLR responsive promoter comprises a transcription factor binding site selected from the group consisting of an NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.
- 76. The method of claim 73, wherein the TLR responsive promoter is a promoter region selected from the group consisting of an IL-1 promoter region, an IL-6 promoter region, an IL-8 promoter region, an IL-10 promoter region, an IL-12 p40 promoter region, an IFN-α1 promoter region, an IFN-α4 promoter region, an IFN-β promoter region, an IFN-γ promoter region, a TNF-α promoter region, a TNF-β promoter region, an IP-9 promoter

region, an IP-10 promoter region, a RANTES promoter region, an ITAC promoter region, a MCP-1 promoter region, an IGFBP4 promoter region, a CD54 promoter region, a CD69 promoter region, a CD71 promoter region, a CD80 promoter region, a CD86 promoter region, a HLA-DR promoter region, and a HLA class I promoter region.

5

- 77. The method of claim 51, wherein the cell is stably transfected with a TLR nucleic acid.
- 78. The method of claim 70, wherein the cell is stably transfected with the reporter construct.
  - 79. The method of claim 51, wherein the TLR signaling activity is measured by cytokine secretion or chemokine secretion.
- 15 80. The method of claim 79, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-8 secretion, TNF- $\alpha$  secretion, IL-10 secretion and IP-10 secretion.
- 81. The method of claim 79, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-6 secretion and IL-12 secretion.
  - 82. The method of claim 51, wherein the TLR signaling activity is measured by phosphorylation.
- 25 83. The method of claim 82, wherein phosphorylation is total cellular phosphorylation.
  - 84. The method of claim 82, wherein phosphorylation is phosphorylation of a factor selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, NF-κB subunits, c-Jun and c-Fos.
    - 85. The method of claim 51, wherein the TLR signaling activity is measured by gene expression.

86. The method of claim 85, wherein the gene expression is selected from the group consisting of IL-8 expression, IL-10 expression, IP-10 expression, CD71 expression, CD86 expression and HLA-DR expression.

5

- 87. The method of claim 85, wherein the gene expression is selected from the group consisting of IL-6 expression, IL-12 expression and TNF- $\alpha$  expression.
- 88. The method of claim 51, wherein the TLR signaling activity is measured by microarray techniques.
  - 89. The method of claim 51, wherein the TLR signaling activity is measured by cell proliferation.
- 15 90. The method of claim 51, wherein the TLR signaling activity is measured by cell surface marker expression.
- 91. The method of claim 90, wherein the cell surface marker expression is selected from the group consisting of CD71 cell surface expression, CD86 cell surface expression and HLA-DR cell surface expression.
  - 92. The method of claim 90, wherein the cell surface marker expression is selected from the group consisting of CD80 cell surface expression, HLA class I cell surface expression. CD54 cell surface expression and CD69 cell surface expression.

- 93. The method of claim 51, wherein the TLR signaling activity is measured by antibody secretion.
- 94. The method of claim 93, wherein the antibody secretion is IgM 30 secretion.
  - . 95. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

25

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

wherein a test level that is less than a reference level is indicative of test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a RPMI 8226 cell, a RAMOS cell, a Raji cell, a THP-1 cell, a Nalm cell and a KG-1 cell.

- 10 96. The method of claim 95, wherein the positive reference compound is selected from the group consisting of an immunostimulatory nucleic acid and an immunostimulatory imidazoquinoline compound.
- 97. The method of claim 96, wherein the immunostimulatory nucleic acid is selected from the group consisting of a CpG nucleic acid, a T-rich nucleic acid, a poly-T nucleic acid and a poly-G nucleic acid.
  - 98. The method of claim 96, wherein the imidazoquinoline compound is selected from the group consisting of R-848 and R-847.
    - 99. The method of claim 95, wherein the test compound is a nucleic acid.
  - 100. The method of claim 99, wherein the nucleic acid does not comprise a motif selected from the group consisting of a CpG motif, a poly-T motif, a T-rich motif and a poly-G motif.
    - 101. The method of claim 99, wherein the nucleic acid comprises a phosphorothioate backbone linkage.
- 30 102. The method of claim 99, wherein the nucleic acid is a DNA, an RNA or a DNA-RNA hybrid.

- The method of claim 95, wherein the test compound is a non-nucleic acid small molecule.
- The method of claim 95, wherein the test compound comprises an amino acid, a carbohydrate, a lipid, or a hormone.
  - 105. The method of claim 104, wherein the carbohydrate is a polysaccharide.
- 10 106. The method of claim 95, wherein the test compound is derived from a molecular library.
  - The method of claim 95, wherein the experimental cell is transfected with a nucleic acid.
  - 108. The method of claim 107, wherein the nucleic acid encodes a TLR or a reporter construct.
- 109. The method of claim 108, wherein the TLR is selected from the group consisting of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9 and TLR10.
  - 110. The method of claim 108, wherein the TLR is a human TLR.
- 111. The method of claim 108, wherein the reporter construct is selected
  25 from the group consisting of a luciferase reporter construct, a β-galactosidase reporter construct, a chloramphenical acetyltransferase reporter construct, a green fluorescent protein reporter construct, and a secreted alkaline phosphatase construct.
- 112. The method of claim 111, wherein the TLR signaling activity is selected from the group consisting of luciferase expression, β-galactosidase expression, chloramphenical acetyltransferase expression, green fluorescent protein expression, alkaline phosphatase expression and alkaline phosphatase secretion.

WO 2004/094671 PCT/US2004/012788

- 85 -

- 113. The method of claim 108, wherein the reporter construct comprises a TLR responsive promoter.
- 114. The method of claim 113, wherein the TLR responsive promoter

  5 comprises a transcription factor binding site selected from the group consisting of an NF-κB binding site, an AP-1 binding site, a CRE, a SRE, an ISRE, a GAS, an ATF2 binding site, an IRF3 binding site, an IRF7 binding site, an NFAT binding site, a p53 binding site, an SRF binding site, and a TARE.
- 115. The method of claim 113, wherein the TLR responsive promoter is a promoter region selected from the group consisting of an IL-1 promoter region, an IL-6 promoter region, an IL-8 promoter region, an IL-10 promoter region, an IL-12 p40 promoter region, an IFN-α1 promoter region, an IFN-α4 promoter region, an IFN-β promoter region, an IFN-γ promoter region, a TNF-α promoter region, a TNF-β promoter region, an IP-9 promoter region, an IP-10 promoter region, a RANTES promoter region, an ITAC promoter region, a MCP-1 promoter region, an IGFBP4 promoter region, a CD54 promoter region, a CD69 promoter region, a CD71 promoter region, a CD80 promoter region, a CD86 promoter region, a HLA-DR promoter region, and a HLA class I promoter region.
- 20 116. The method of claim 113, wherein the TLR responsive promoter is selected from the group consisting of a TLR1 responsive promoter, TLR2 responsive promoter, a TLR3 responsive promoter, a TLR4 responsive promoter, a TLR5 responsive promoter, a TLR6 responsive promoter, a TLR7 responsive promoter, a TLR8 responsive promoter, a TLR9 responsive promoter and a TLR10 responsive promoter.
  - The method of claim 107, wherein the cell is stably transfected with the nucleic acid.
- 118. The method of claim 95, wherein the TLR signaling activity is measured by cytokine secretion or chemokine secretion.

- 119. The method of claim 118, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-6 secretion, IL-12 secretion and TNF- $\alpha$  secretion.
- 5 120. The method of claim 118, wherein the cytokine secretion or chemokine secretion is selected from the group consisting of IL-8 secretion, IL-10 secretion and IP-10 secretion.
- The method of claim 95, wherein the TLR signaling activity is measured by phosphorylation.
  - 122. The method of claim 121, wherein phosphorylation is total cellular phosphorylation.
- 15 123. The method of claim 122, wherein phosphorylation is phosphorylation of a factor selected from the group consisting of IRAK, ERK, MyD88, TRAF6, p38, NF-κB subunits, c-Jun and c-Fos.
- The method of claim 95, wherein the TLR signaling activity is measured by gene expression.
  - 125. The method of claim 124, wherein the gene expression is selected from the group consisting of CD71 expression, CD86 expression, HLA-DR expression, IL-8 expression, IL-10 expression and IP-10 expression.
  - 126. The method of claim 124, wherein the gene expression is selected from the group consisting of IL-6 expression, IL-12 expression and TNF- $\alpha$  expression.
- The method of claim 95, wherein the TLR signaling activity is measured by microarray techniques.
  - 128. The method of claim 95, wherein the TLR signaling activity is measured by cell proliferation.

- 129. The method of claim 95, wherein the TLR signaling activity is measured by cell surface marker expression.
- 5 130. The method of claim 129, wherein the cell surface marker expression is selected from the group consisting of CD71 cell surface expression, CD86 cell surface expression and HLA-DR MHC class II cell surface expression.
- 131. The method of claim 129, wherein the cell surface marker expression is selected from the group consisting of CD80 cell surface expression, HLA class I cell surface expression, CD54 cell surface expression and CD69 cell surface expression.
  - 132. The method of claim 95, wherein the TLR signaling activity is measured by antibody secretion.
  - 133. The method of claim 132, wherein the antibody secretion is IgM secretion.
- The method of claim 95, wherein the cell is contacted to the positive reference compound and the test compound simultaneously.
  - 135. The method of claim 95, wherein the cell is contacted to the positive reference compound prior to contact with the test compound.
- 25 136. The method of claim 95, wherein the cell is contacted to the test compound prior to contact with the positive reference compound.
  - 137. A method for quality assessment of a test composition containing a known Toll like receptor (TLR) ligand, comprising:
- measuring a reference activity of a reference composition comprising a known TLR ligand, wherein the known TLR ligand is a nucleic acid molecule;

measuring a test activity of a test composition comprising the known TLR ligand; and comparing the test activity to the reference activity.

一点以下的基本公司。接着企业的考点。一点以下的基本的基本的基本的基本的基本的。

138. The method of claim 137, further comprising selecting the test composition if the test activity falls within a predetermined range of variance about the reference activity.

5

139. The method of claim 1, wherein the reference composition is a first production lot of a pharmaceutical composition comprising the known TLR ligand, and wherein the test composition is a second production lot of a pharmaceutical composition comprising the known TLR ligand.

10

140. The method of claim 137, wherein the reference composition is a first in-process lot of a composition comprising the known TLR ligand, and wherein the test composition is a second in-process lot of a composition comprising the known TLR ligand.

15

141. The method of claim 137, wherein the measuring the reference activity comprises contacting the reference composition with an isolated cell expressing a TLR responsive to the known TLR ligand, and wherein the measuring the test activity comprises contacting the test composition with the isolated cell expressing a TLR responsive to the known TLR ligand.

20

142. The method of claim 141, wherein the isolated cell expressing the TLR responsive to the known TLR ligand comprises an expression vector for the TLR responsive to the known TLR ligand.

25

143. The method of claim 141, wherein the isolated cell expressing the TLR responsive to the known TLR ligand naturally expresses the TLR responsive to the known TLR ligand.

The method of claim 141, wherein the isolated cell expressing the TLR

The method of claim 141, wh responsive to the known TLR ligand is RPMI 8226.

- 145. The method of claim 137, wherein the measuring the reference activity and the measuring the test activity each comprise measuring signaling activity mediated by a TLR responsive to the known TLR ligand.
- 5 146. The method of claim 145, wherein the signaling activity is activity of a reporter construct under control of NF-κB response element.
  - 147. The method of claim 145, wherein the signaling activity is activity of a reporter construct under control of interferon-stimulated response element (ISRE).
  - 148. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IFN-α promoter.
- The method of claim 145, wherein the signaling activity is activity of a
   reporter gene under control of an IFN-β promoter.
  - 150. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IL-6 promoter.
- 20 151. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IL-8 promoter.
  - 152. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of an IL-12 p40 promoter.
  - 153. The method of claim 145, wherein the signaling activity is activity of a reporter gene under control of a RANTES promoter.
- The method of claim 137, wherein the known TLR ligand is a TLR9 ligand.
  - 155. The method of claim 137, wherein the known TLR ligand is a TLR3 ligand.

10

25

30

| ligand.    | 156.                | The method of claim 137, wherein the known TLR ligand is a TLR7           |
|------------|---------------------|---------------------------------------------------------------------------|
| ligand.    | 157.                | The method of claim 137, wherein the known TLR ligand is a TLR8           |
| immunost   | 158.<br>imulatory r | The method of claim 137, wherein the known TLR ligand is an nucleic acid. |
| nucleic ac | 159.<br>eid.        | The method of claim 137, wherein the known TLR ligand is a CpG            |

- 160. The method of claim 137, wherein the known TLR ligand is an immunoinhibitory nucleic acid.
  - 161. A method for quality assessment of a test lot of a pharmaceutical product containing a known TLR9 ligand, comprising:

measuring a reference activity of a reference lot of a pharmaceutical product

comprising a known TLR9 ligand, wherein the known TLR9 ligand is a nucleic acid

molecule;

measuring a test activity of a test lot of a pharmaceutical product comprising the known TLR9 ligand;

comparing the test activity to the reference activity; and rejecting the test lot if the test activity falls outside of a predetermined range of variance about the reference activity.

162. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence TCGTCGTTTTGTCGTTTGTCGTT (SEQ ID NO:1).

15

20

- 163. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTGACGTTTTGTCGTT-3' (SEQ ID NO:139).
- 5 164. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTTTTCGA-3' (SEQ ID NO:140).
- - 166. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTCGTCGTTTTGTCGTT-3' (SEQ ID NO:142).
  - 167. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTTCGGTCGTTTTT-3' (SEQ ID NO:143).
  - 168. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTTCGTGCGTTTTT-3' (SEQ ID NO:144).
- 25 169. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTCGTTTTCGGCGGCCGCCG-3' (SEQ ID NO:145).
- 170. The method of claim 161, wherein the known TLR9 ligand is an oligonucleotide comprising a base sequence 5'-TCGTC\_GTTTTAC\_GGCGCC\_GTGCCG-3' (SEQ ID NO:146), wherein every internucleoside linkage is phosphorothioate except for those indicated by "\_", which are phosphodiester.

10

15

20

25

171. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the cell is a Raji cell, a RAMOS cell, a Nalm cell, a THP-1 cell, or a KG-1 cell, and the TLR is TLR9.

172. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the cell is a Raji cell or a RAMOS cell, and the TLR is TLR7.

- 173. A screening method for identifying agonists of Toll-like receptor (TLR) signaling activity, comprising
- contacting a cell that expresses a TLR with a test compound and measuring a test level of TLR signaling activity,

wherein a test level that is positive is indicative of a test compound that is a TLR agonist, and

wherein the cell is a Raji cell, a RAMOS cell, a KG-1 cell, a Nalm-6 cell, a Jurkat cell, a Hela cell, a Hep-2 cell, an A549 cell, a Bewo cell, an NK-92 cell or an NK-92 MI cell, and the TLR is TLR3.

- 174. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising
- contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

wherein a test level that is less than a reference level is indicative of a test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a RPMI 8226 cell, a RAMOS cell, a Raji cell, a THP-1 cell, a Nalm cell and a KG-1 cell, and the TLR is TLR9.

5

10

15

20

25

175. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

wherein a test level that is less than a reference level is indicative of a test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a RPMI 8226 cell, a RAMOS cell and a Raji cell, and the TLR is TLR7.

175. A screening method for identifying antagonists of Toll-like receptor (TLR) signaling activity, comprising

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity,

contacting the cell with the positive reference compound and a test compound, and measuring a test level of TLR signaling activity,

wherein a test level that is less than a reference level is indicative of a test compound that is a TLR antagonist, and

wherein the cell is selected from the group consisting of a Raji cell, a RAMOS cell, a KG-1 cell, a Nalm-6 cell, a Jurkat cell, a Hela cell, a Hep-2 cell, an A549 cell, a Bewo cell, an NK-92 cell and an NK-92 MI cell, and the TLR is TLR3.

176. A screening method for identifying an enhancer of a Toll-like receptor 30 (TLR) agonist, comprising

contacting a cell with a positive reference compound and measuring a reference level of TLR signaling activity, and

5

20

contacting a cell with the positive reference compound and a test compound and measuring a test level of TLR signaling activity,

wherein the positive reference compound is a TLR agonist, and a test level that is greater than the reference level is indicative of a test compound that is an enhancer of a TLR agonist.

- 177. The method of claim 176, wherein the positive reference compound is an immunostimulatory nucleic acid.
- 10 178. The method of claim 176, wherein the positive reference compound is an imidazoquinoline compound.
- 180. The method of claim 176, wherein the cell is selected from the group consisting of a KG-1 cell, a Nalm-6 cell, a Raji cell, a RAMOS cell, a Jurkat cell, a Hela cell, a Hep-2 cell, an A549 cell, a Bewo cell, an NK-92 cell and an NK-92 MI cell, and the TLR is TLR3.
  - 181. The method of claim 176, wherein the cell is selected from the group consisting of a KG-1 cell, a Nalm-6 cell, a Raji cell, an RPMI 8226 cell, a RAMOS cell, and a THP-1 cell, and the TLR is TLR9.
    - 182. The method of claim 176, wherein the cell is selected from the group consisting of a Raji cell, an RPMI 8226 cell and a RAMOS cell, and the TLR is TLR7.
- 25 183. The method of claim 1, wherein the TLR is TLR7 or TLR9.
  - 184. The method of claim 172-175 or 176, wherein the cell is unmodified.



SUBSTITUTE SHEET (RULE 26)



**SUBSTITUTE SHEET (RULE 26)** 



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)





Fig. 6



**SUBSTITUTE SHEET (RULE 26)** 



**SUBSTITUTE SHEET (RULE 26)** 



Fig. 9







SUBSTITUTE SHEET (RULE 26)





Fig. 14

13/15





Fig. 17
SUBSTITUTE SHEET (RULE 26)

14/15



Fig. 18A



Fig. 18B

15/15



Fig. 19

293-hTLR9



NFkB-luc (FOLD INDUCTION)

Fig. 20



Fig. 21

**SUBSTITUTE SHEET (RULE 26)** 

## SEQUENCE LISTING

|                                  | $\cdot$                                                               |     |
|----------------------------------|-----------------------------------------------------------------------|-----|
| <110>                            | COLEY PHARMACEUTICAL GMbH COLEY PHARMACEUTICAL GROUP INC.             |     |
| <120>                            | METHODS AND PRODUCTS FOR IDENTIFICATION AND ASSESSMENT OF TLR LIGANDS |     |
| <130>                            | C1041.70024WO00                                                       |     |
|                                  | not yet assigned 2004-04-22                                           |     |
|                                  | US 60/464,586<br>2003-04-22                                           |     |
|                                  | US 60/464,588<br>2003-04-22                                           |     |
| <160>                            | 161                                                                   |     |
| <170>                            | PatentIn version 3.2                                                  |     |
| <210><br><211><br><212><br><213> | 24                                                                    |     |
| <220>                            | •                                                                     |     |
| <223>                            | oligonucleotide                                                       |     |
|                                  | 1<br>tttt gtcgttttgt cgtt                                             | 24  |
| <210><br><211><br><212><br><213> | 20                                                                    |     |
| <220>                            |                                                                       |     |
| <223>                            | oligonucleotide                                                       |     |
| <400><br>tccagg                  | 2<br>actt ctctcaggtt                                                  | 20  |
| <210><211><211><212><213>        | 3<br>2600<br>DNA<br>Homo sapiens                                      |     |
| <400><br>ggatcc                  | 3<br>aaag gagacctata gtgactccca ggagctctta gtgaccaagt gaaggtacct      | 60  |
| gtgggg                           | ctca ttgtgcccat tgctctttca ctgctttcaa ctggtagttg tgggttgaag           | 120 |
|                                  |                                                                       | 180 |
| tccaaq                           | gaag aatootogaa toaggottot otgtottgtg acoggaatgg tatotgcaag 2         | 240 |

| ggcagctcag | gatctttaaa | ctccattccc | tcagggctca  | cagaagctgt | aaaaagcctt | 300  |
|------------|------------|------------|-------------|------------|------------|------|
| gacctgtcca | acaacaggat | cacctacatt | agcaacagtg  | acctacagag | gtgtgtgaac | 360  |
| ctccaggctc | tggtgctgac | atccaatgga | attaacacaa  | tagaggaaga | ttcttttct  | 420  |
| tccctgggca | gtcttgaaca | tttagactta | tcctataatt  | acttatctaa | tttatcgtct | 480  |
| tcctggttca | agcccctttc | ttctttaaca | ttcttaaact  | tactgggaaa | tccttacaaa | 540  |
| accctagggg | aaacatctct | tttttctcat | ctcacaaaat  | tgcaaatcct | gagagtggga | 600  |
| aatatggaca | ccttcactaa | gattcaaaga | aaagattttg  | ctggacttac | cttccttgag | 660  |
| gaacttgaga | ttgatgcttc | agatctacag | agctatgagc  | caaaaagttt | gaagtcaatt | 720  |
| cagaacgtaa | gtcatctgat | ccttcatatg | aagcagcata  | ttttactgct | ggagatttt  | 780  |
| gtagatgtta | caagttccgt | ggaatgtttg | gaactgcgag  | atactgattt | ggacactttc | 840  |
| catttttcag | aactatccac | tggtgaaaca | aattcattga  | ttaaaaagtt | tacatttaga | 900  |
| aatgtgaaaa | tcaccgatga | aagtttgttt | caggttatga  | aacttttgaa | tcagatttct | 960  |
| ggattgttag | aattagagtt | tgatgactgt | acccttaatg  | gagttggtaa | ttttagagca | 1020 |
| tctgataatg | acagagttat | agatccaggt | aaagtggaaa  | cgttaacaat | ccggaggctg | 1080 |
| catattccaa | ggttttactt | attttatgat | ctgagcactt  | tatattcact | tacagaaaga | 1140 |
| gttaaaagaa | tcacagtaga | aaacagtaaa | gtttttctgg  | ttccttgttt | actttcacaa | 1200 |
| catttaaaat | cattagaata | cttggatctc | agtgaaaatt  | tgatggttga | agaatacttg | 1260 |
| aaaaattcag | cctgtgagga | tgcctggccc | tctctacaaa  | ctttaatttt | aaggcaaaat | 1320 |
| catttggcat | cattggaaaa | aaccggagag | actttgctca  | ctctgaaaaa | cttgactaac | 1380 |
| attgatatca | gtaagaatag | ttttcattct | atgcctgaaa  | cttgtcagtg | gccagaaaag | 1440 |
| atgaaatatt | tgaacttatc | cagcacacga | atacacagtg  | taacaggctg | cattcccaag | 1500 |
| acactggaaa | ttttagatgt | tagcaacaac | aatctcaatt  | tattttcttt | gaatttgccg | 1560 |
| caactcaaag | aactttatat | ttccagaaat | aagttgatga  | ctctaccaga | tgcctccctc | 1620 |
| ttacccatgt | tactagtatt | gaaaatcagt | aggaatgcaa  | taactacgtt | ttctaaggag | 1680 |
| caacttgact | catttcacac | actgaagact | ttggaagctg  | gtggcaataa | cttcatttgc | 1740 |
| tcctgtgaat | tcctctcctt | cactcaggag | cagcaagcac  | tggccaaagt | cttgattgat | 1800 |
| tggccagcaa | attacctgtg | tgactctcca | tcccatgtgc  | gtggccagca | ggttcaggat | 1860 |
| gtccgcctct | cggtgtcgga | atgtcacagg | acagcactgg. | tgtctggcat | gtgctgtgct | 1920 |
| ctgttcctgc | tgatcctgct | cacgggggtc | ctgtgccacc  | gtttccatgg | cctgtggtat | 1980 |
| atgaaaatga | tgtgggcctg | gctccaggcc | aaaaggaagc  | ccaggaaagc | tcccagcagg | 2040 |
| aacatctgct | atgatgcatt | tgtttcttac | agtgagcggg  | atgcctactg | ggtggagaac | 2100 |

| cttatggtcc | aggagctgga | gaacttcaat | cccccttca  | agttgtgtct | tcataagcgg | 2160 |
|------------|------------|------------|------------|------------|------------|------|
| gacttcattc | ctggcaagtg | gatcattgac | aatatcattg | actccattga | aaagagccac | 2220 |
| aaaactgtct | ttgtgctttc | tgaaaacttt | gtgaagagtg | agtggtgcaa | gtatgaactg | 2280 |
| gacttctccc | atttccgtct | ttttgaagag | aacaatgatg | ctgccattct | cattcttctg | 2340 |
| gagcccattg | agaaaaaagc | cattccccag | cgcttctgca | agctgcggaa | gataatgaac | 2400 |
| accaagacct | acctggagtg | gcccatggac | gaggctcagc | gggaaggatt | ttgggtaaat | 2460 |
| ctgagagctg | cgataaagtc | ctaggttccc | atatttaaga | ccagtctttg | tctagttggg | 2520 |
| atctttatgt | cactagttat | agttaagttc | attcagacat | aattatataa | aaactacgtg | 2580 |
| gatgtaccgt | catttgagga |            |            |            |            | 2600 |

<210> 4

<211> 784

<212> PRT

<213> Homo sapiens

ભાગ તેલા મુક્તિ કા એક્ટિકે કે વિદેશ કેલ્પીએ એવી અસ્તિકે કરતી છે. તાલા માટે છે. આ માટે છે. એક કરતી કે વિકેટી ઉચ્ચે 🔉

<400> 4

Met Pro His Thr Leu Trp Met Val Trp Val Leu Gly Val Ile Ile Ser 1 5 10 15

Leu Ser Lys Glu Glu Ser Ser Asn Gln Ala Ser Leu Ser Cys Asp Arg
20 25 30

Asn Gly Ile Cys Lys Gly Ser Ser Gly Ser Leu Asn Ser Ile Pro Ser 35 40 45

Gly Leu Thr Glu Ala Val Lys Ser Leu Asp Leu Ser Asn Asn Arg Ile 50 55 60

Thr Tyr Ile Ser Asn Ser Asp Leu Gln Arg Cys Val Asn Leu Gln Ala 65 70 75 80

Leu Val Leu Thr Ser Asn Gly Ile Asn Thr Ile Glu Glu Asp Ser Phe 85 90 95

Ser Ser Leu Gly Ser Leu Glu His Leu Asp Leu Ser Tyr Asn Tyr Leu 100 105 110

Ser Asn Leu Ser Ser Ser Trp Phe Lys Pro Leu Ser Ser Leu Thr Phe 115 120 125

Leu Asn Leu Leu Gly Asn Pro Tyr Lys Thr Leu Gly Glu Thr Ser Leu 130 135 140

Phe Ser His Leu Thr Lys Leu Gln Ile Leu Arg Val Gly Asn Met Asp 145 150 155 160

Thr Phe Thr Lys Ile Gln Arg Lys Asp Phe Ala Gly Leu Thr Phe Leu 165 170 175

Glu Glu Leu Glu Ile Asp Ala Ser Asp Leu Gln Ser Tyr Glu Pro Lys 180 185 190

Ser Leu Lys Ser Ile Gln Asn Val Ser His Leu Ile Leu His Met Lys Gln His Ile Leu Leu Leu Glu Ile Phe Val Asp Val Thr Ser Ser Val 215 Glu Cys Leu Glu Leu Arg Asp Thr Asp Leu Asp Thr Phe His Phe Ser Glu Leu Ser Thr Gly Glu Thr Asn Ser Leu Ile Lys Lys Phe Thr Phe Arg Asn Val Lys Ile Thr Asp Glu Ser Leu Phe Gln Val Met Lys Leu Leu Asn Gln Ile Ser Gly Leu Leu Glu Leu Glu Phe Asp Asp Cys Thr Leu Asn Gly Val Gly Asn Phe Arg Ala Ser Asp Asn Asp Arg Val Ile Asp Pro Gly Lys Val Glu Thr Leu Thr Ile Arg Arg Leu His Ile Pro Arg Phe Tyr Leu Phe Tyr Asp Leu Ser Thr Leu Tyr Ser Leu Thr Glu 330 Arg Val Lys Arg Ile Thr Val Glu Asn Ser Lys Val Phe Leu Val Pro Cys Leu Leu Ser Gln His Leu Lys Ser Leu Glu Tyr Leu Asp Leu Ser 360 Glu Asn Leu Met Val Glu Glu Tyr Leu Lys Asn Ser Ala Cys Glu Asp Ala Trp Pro Ser Leu Gln Thr Leu Ile Leu Arg Gln Asn His Leu Ala Ser Leu Glu Lys Thr Gly Glu Thr Leu Leu Thr Leu Lys Asn Leu Thr Asn Ile Asp Ile Ser Lys Asn Ser Phe His Ser Met Pro Glu Thr Cys 420 425 Gln Trp Pro Glu Lys Met Lys Tyr Leu Asn Leu Ser Ser Thr Arg Ile 440 His Ser Val Thr Gly Cys Ile Pro Lys Thr Leu Glu Ile Leu Asp Val Ser Asn Asn Asn Leu Asn Leu Phe Ser Leu Asn Leu Pro Gln Leu Lys Glu Leu Tyr Ile Ser Arg Asn Lys Leu Met Thr Leu Pro Asp Ala Ser Leu Leu Pro Met Leu Leu Val Leu Lys Ile Ser Arg Asn Ala Ile Thr 505 Thr Phe Ser Lys Glu Gln Leu Asp Ser Phe His Thr Leu Lys Thr Leu

|            |            | 515                      |            |            |                   |            | 520        |            |                   |             |            | 525        |            |            |            |  |
|------------|------------|--------------------------|------------|------------|-------------------|------------|------------|------------|-------------------|-------------|------------|------------|------------|------------|------------|--|
| Glu        | Ala<br>530 | Gly                      | Gly        | Asn        | Asn               | Phe<br>535 | Ile        | Суѕ        | Ser               | Сув         | Glu<br>540 | Phe        | Leu        | Ser        | Phe        |  |
| Thr<br>545 | Gln        | Glu                      | Gln        | Gln        | Ala<br>550        | Leu        | Ala        | Lys        | Val               | Leu<br>555  | Ile        | Asp        | Trp        | Pro        | Ala<br>560 |  |
| Asn        | Tyr        | Leu                      | Сув        | Asp<br>565 | Ser               | Pro        | Ser        | His        | <b>Val</b><br>570 | Arg         | Gly        | Gln        | Gln        | Val<br>575 | Gln        |  |
| Asp        | Val        | Arg                      | Leu<br>580 | Ser        | Val               | Ser        | Glu        | Cys<br>585 | His               | Arg         | Thr        | Ala        | Leu<br>590 | Val        | Ser        |  |
| Gly        | Met        | Сув<br>595               | Cys        | Ala        | Leu               | Phe        | Leu<br>600 | Leu        | Ile               | Leu         | Leu        | Thr<br>605 | Gly        | Val        | Leu        |  |
| СЛа        | His<br>610 | Arg                      | Phe        | His        | Gly               | Leu<br>615 | Trp        | Tyr        | Met               | ГÀЗ         | Met<br>620 | Met        | Trp        | Ala        | Trp        |  |
| Leu<br>625 | Gln        | Ala                      | Lys        | Arg        | <b>Lys</b><br>630 | Pro        | Arg        | Lys        |                   | Pro<br>-635 | Ser        | Arg        | Asn        | Ile        | Сув<br>640 |  |
| Tyr        | Asp        | Ala                      | Phe        | Val<br>645 | Ser               | Tyr        | Ser        | Glu        | Arg<br>650        | Asp         | Ala        | Tyr        | Trp        | Val<br>655 | Glu        |  |
| Asn        | Leu        | Met                      | Val<br>660 | Gln        | Glu               | Leu        | Glu        | Asn<br>665 | Phe               | Asn         | Pro        | Pro        | Phe<br>670 | ГÀЗ        | Leu        |  |
| Сув        | Leu        | His<br>675               | Lys        | Arg        | qaA               | Phe        | Ile<br>680 | Pro        | Gly               | Lys         | Trp        | Ile<br>685 | Ile        | Asp        | Asn        |  |
| Ile        | Ile<br>690 | Asp                      | Ser        | Ile        | Glu               | Lys<br>695 | Ser        | His        | Lys               | Thr         | Val<br>700 | Phe        | Val        | Leu        | Ser        |  |
| Glu<br>705 | Asn        | Phe                      | Val        | Lys        | Ser<br>710        | Glu        | Trp        | Cys        | Lys               | Tyr<br>715  | Glu        | Leu        | Asp        | Phe        | Ser<br>720 |  |
| His        | Phe        | Arg                      | Leu        | Phe<br>725 |                   | Glu        | Asn        | Asn        | Asp<br>730        | Ala         | Ala        | Ile        | Leu        | Ile<br>735 | Leu        |  |
| Leu        | Glu        | Pro                      | Ile<br>740 | Glu        | Lys               | ГÀЗ        | Ala        | Ile<br>745 | Pro               | Gln         | Arg        | Phe        | Сув<br>750 | Lys        | Leu        |  |
| Arg        | Lys        | Ile<br>755               |            | Asn        | Thr               | Lys        | Thr<br>760 |            | Leu               | Glu         | Trp        | Pro<br>765 |            | Asp        | Glu        |  |
| Ala        | Gln<br>770 |                          | Glu        | Gly        | Phe               | Trp<br>775 |            | Asn        | Leu               | Arg         | Ala<br>780 |            | Ile        | Lys        | Ser        |  |
| <21        | 1><br>2>   | 5<br>2824<br>DNA<br>muri |            |            |                   |            |            |            |                   |             |            |            |            |            | ·          |  |
| <40<br>gcc |            | 5<br>atg                 | gcca       | tatg       | gg c              | accg       | ggga       | g cg       | gcgg              | ctgg        | agg        | acto       | cta        | ggct       | cctggg     |  |
| cag        | gcgg       | rtca                     | catg       | gcag       | aa g              | atgt       | gtco       | gca        | atca              | tagt        | tto        | tgat       | ggt        | gaag       | gttgga     |  |
|            |            |                          |            |            |                   |            |            |            |                   |             |            |            |            |            | tgtttc     |  |

60

120

180

| cttctgacca<br>tctggagcat | ggatcttgtt<br>ccgaattgca | tctgagtgta<br>tcaccggtca | ggggcttcac<br>gaaaacaact | ttctctgctt<br>taccgaaacc | ttcgttcatc<br>tcagacaaag | 240<br>300 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| cgtcaaatct               | cagaggatgc               | tacgagctct               | ttggctcttc               | tggatcttgg               | tggccataac               | 360        |
| agtcctcttc               | agcaaacgct               | gttctgctca               | ggagtctctg               | tcatgtgatg               | cttctggggt               | 420        |
| gtgtgatggc               | cgctccaggt               | ctttcacctc               | tattccctcc               | ggactcacag               | cagccatgaa               | 480        |
| aagccttgac               | ctgtctttca               | acaagatcac               | ctacattggc               | catggtgacc               | tccgagcgtg               | 540        |
| tgcgaacctc               | caggttctga               | ttttgaagtc               | cagcagaatc               | aatacaatag               | agggagacgc               | 600        |
| cttttattct               | ctgggcagtc               | ttgaacattt               | ggatttgtct               | gataatcacc               | tatctagttt               | 660        |
| atcttcctcc               | tggttcgggc               | ccctttcctc               | tttgaaatac               | ttaaacttaa               | tgggaaatcc               | 720        |
| ttaccagaca               | ctgggggtaa               | catcgctttt               | tcccaatctc               | acaaatttac               | aaaccctcag               | 780        |
| gataggaaat               | gtagagactt               | tcagtgagat               | aaggagaata               | gattttgctg               | ggctgacttc               | 840        |
| tctcaatgaa               | cttgaaatta               | aggcattaag               | teteeggaat               | tatcagtccc               | aaagtctaaa               | 900        |
| gtcgatccgc               | gacatccatc               | acctgactct               | tcacttaagc               | gagtctgctt               | tcctgctgga               | 960        |
| gatttttgca               | gatattctga               | gttctgtgag               | atatttagaa               | ctaagagata               | ctaacttggc               | 1020       |
| caggttccag               | ttttcaccac               | tgcccgtaga               | tgaagtcagc               | tcaccgatga               | agaagctggc               | 1080       |
| attccgaggc               | tcggttctca               | ctgatgaaag               | ctttaacgag               | ctcctgaagc               | tgttgcgtta               | 1140       |
| catcttggaa               | ctgtcggagg               | tagagttcga               | cgactgtacc               | ctcaatgggc               | tcggcgattt               | 1200       |
| caacccctcg               | gagtcagacg               | tagtgagcga               | gctgggtaaa               | gtagaaacag               | tcactatccg               | 1260       |
| gaggttgcat               | atcccccagt               | tctatttgtt               | ttatgacctg               | agtactgtct               | attccctcct               | 1320       |
| ggagaaggtg               | aagcgaatca               | cagtagagaa               | cagcaaggtc               | ttcctggttc               | cctgctcgtt               | 1380       |
| ctcccagcat               | ttaaaatcat               | tagaattctt               | agacctcagc               | gaaaatctga               | tggttgaaga               | 1440       |
| atatttgaag               | aactcagcct               | gtaagggagc               | ctggccttct               | ctacaaacct               | tagttttgag               | 1500       |
| ccagaatcat               | ttgagatcaa               | tgcaaaaaac               | aggagagatt               | ttgctgactc               | tgaaaaacct               | 1560       |
| gacctccctt               | gacatcagca               | ggaacacttt               | tcatccgatg               | cccgacagct               | gtcagtggcc               | 1620       |
| agaaaagatg               | cgcttcctga               | atttgtccag               | tacagggatc               | cgggtggtaa               | aaacgtgcat               | 1680       |
| tcctcagacg               | ctggaggtgt               | tggatgttag               | taacaacaat               | cttgactcat               | tttctttgtt               | 1740       |
| cttgcctcgg               | ctgcaagagc               | tctatatttc               | cagaaataag               | ctgaaaacac               | tcccagatgc               | 1800       |
| ttcgttgttc               | cctgtgttgc               | tggtcatgaa               | aatcagagag               | aatgcagtaa               | gtactttctc               | 1860       |
| taaagaccaa               | cttggttctt               | ttcccaaact               | ggagactctg               | gaagcaggcg               | acaaccactt               | 1920       |
| tgtttgctcc               | tgcgaactcc               | tatcctttac               | tatggagacg               | ccagctctgg               | ctcaaatcct               | 1980       |
| ggttgactgg               | ccagacagct               | acctgtgtga               | ctctccgcct               | cgcctgcacg               | gccacaggct               | 2040       |
| tcaggatgcc               | cggccctccg               | tcttggaatg               | tcaccaggct               | gcactggtgt               | ctggagtctg               | 2100       |

ান গোটা বাহুলো ভাল পালী কেনেলেনে ইচ্ছাইনিকীকৈ কিনিটা

and the second of the control of the second of the second

programmer in the second of the research of the programmer with the second of the first for the energy

etgtgeeett eteetgttga tettgetegt aggtgeeetg tgeeaceatt teeaeggget 2160 gtggtacctg agaatgatgt gggcgtggct ccaggccaag aggaagccca agaaagctcc 2220 ctgcagggac gtttgctatg atgcctttgt ttcctacagt gagcaggatt cccattgggt 2280 ggagaacctc atggtccagc agctggagaa ctctgacccg ccctttaagc tgtgtctcca 2340 caaqcqqqac ttcgttccgg gcaaatggat cattgacaac atcatcgatt ccatcgaaaa 2400 gagccacaaa actgtgttcg tgctttctga gaacttcgta cggagcgagt ggtgcaagta 2460 cgaactggac ttctcccact tcaggctctt tgacgagaac aacgacgcgg ccatccttgt , 2520 tttgctggag cccattgaga ggaaagccat tccccagcgc ttctgcaaac tgcgcaagat 2580 aatgaacacc aagacctacc tggagtggcc cttggatgaa ggccagcagg aagtgttttg 2640 qqtaaatctq aqaactgcaa taaagtccta ggttctccac ccagttcctg acttccttaa 2700 2760 ctaaggtott tgtgacacaa actgtaacaa agtttataag taacatagaa ttgtattatt 2820 gaggatatta actatgggtt ttgtcttgaa tactgttata taaatatgtg acatcaggct 2824 ttag

<210> 6 <211> 784 <212> PRT <213> murine

<400> 6

Met Leu Arg Ala Leu Trp Leu Phe Trp Ile Leu Val Ala Ile Thr Val 1 5 10 15

Leu Phe Ser Lys Arg Cys Ser Ala Gln Glu Ser Leu Ser Cys Asp Ala 20 25 30

Ser Gly Val Cys Asp Gly Arg Ser Arg Ser Phe Thr Ser Ile Pro Ser 35 40 45

Gly Leu Thr Ala Ala Met Lys Ser Leu Asp Leu Ser Phe Asn Lys Ile 50 55 60

Thr Tyr Ile Gly His Gly Asp Leu Arg Ala Cys Ala Asn Leu Gln Val 65 70 75 80

Leu Ile Leu Lys Ser Ser Arg Ile Asn Thr Ile Glu Gly Asp Ala Phe 85 90 95

Tyr Ser Leu Gly Ser Leu Glu His Leu Asp Leu Ser Asp Asn His Leu
100 105 110

Ser Ser Leu Ser Ser Ser Trp Phe Gly Pro Leu Ser Ser Leu Lys Tyr 115 120 125

Leu Asn Leu Met Gly Asn Pro Tyr Gln Thr Leu Gly Val Thr Ser Leu 130 135 140

Phe Pro Asn Leu Thr Asn Leu Gln Thr Leu Arg Ile Gly Asn Val Glu Thr Phe Ser Glu Ile Arg Arg Ile Asp Phe Ala Gly Leu Thr Ser Leu Asn Glu Leu Glu Ile Lys Ala Leu Ser Leu Arg Asn Tyr Gln Ser Gln Ser Leu Lys Ser Ile Arg Asp Ile His His Leu Thr Leu His Leu Ser 200 Glu Ser Ala Phe Leu Leu Glu Ile Phe Ala Asp Ile Leu Ser Ser Val Arg Tyr Leu Glu Leu Arg Asp Thr Asn Leu Ala Arg Phe Gln Phe Ser Pro Leu Pro Val Asp Glu Val Ser Ser Pro Met Lys Lys Leu Ala Phe 245 Arg Gly Ser Val Leu Thr Asp Glu Ser Phe Asn Glu Leu Leu Lys Leu Leu Arq Tyr Ile Leu Glu Leu Ser Glu Val Glu Phe Asp Asp Cys Thr 285 Leu Asn Gly Leu Gly Asp Phe Asn Pro Ser Glu Ser Asp Val Val Ser Glu Leu Gly Lys Val Glu Thr Val Thr Ile Arg Arg Leu His Ile Pro 315 . Gln Phe Tyr Leu Phe Tyr Asp Leu Ser Thr Val Tyr Ser Leu Leu Glu 330 Lys Val Lys Arq Ile Thr Val Glu Asn Ser Lys Val Phe Leu Val Pro 340 345 Cys Ser Phe Ser Gln His Leu Lys Ser Leu Glu Phe Leu Asp Leu Ser 360 Glu Asn Leu Met Val Glu Glu Tyr Leu Lys Asn Ser Ala Cys Lys Gly 375 Ala Trp Pro Ser Leu Gln Thr Leu Val Leu Ser Gln Asn His Leu Arg Ser Met Gln Lys Thr Gly Glu Ile Leu Leu Thr Leu Lys Asn Leu Thr Ser Leu Asp Ile Ser Arg Asn Thr Phe His Pro Met Pro Asp Ser Cys 425 Gln Trp Pro Glu Lys Met Arg Phe Leu Asn Leu Ser Ser Thr Gly Ile Arg Val Val Lys Thr Cys Ile Pro Gln Thr Leu Glu Val Leu Asp Val 455 Ser Asn Asn Asn Leu Asp Ser Phe Ser Leu Phe Leu Pro Arg Leu Gln

PCT/US2004/012788 WO 2004/094671

| 465<br>Glu | Leu        | Tyr        | Ile        | Ser<br>485 | 470<br>Arg | Asn        | Lys        | Leu        | Lys<br>490 | 475<br>Thr | Leu        | Pro        | Asp        | Ala<br>495 | 480<br>Ser |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu        | Phe        | Pro        | Val<br>500 | Leu        | Leu        | Val        | Met        | Lys<br>505 | Ile        | Arg        | Glu        | Asn        | Ala<br>510 | Val        | Ser        |
| Thr        | Phe        | Ser<br>515 | Гуз        | Asp        | Gln        | Leu        | Gly<br>520 | Ser        | Phe        | Pro        | Lys        | Leu<br>525 | Glu        | Thr        | Leu        |
| Glu        | Ala<br>530 | Gly        | Asp        | Asn        | His        | Phe<br>535 | Val        | Cys        | Ser        | Сув        | Glu<br>540 | Leu        | Leu        | Ser        | Phe        |
| Thr<br>545 | Met        | Glu        | Thr        | Pro        | Ala<br>550 | Leu        | Ala        | Gln        | Ile        | Leu<br>555 | Val        | Asp        | Trp        | Pro        | Asp<br>560 |
| Ser        | Tyr        | Leu        | Сув        | Asp<br>565 | Ser        | Pro        | Pro        | Arg        | Leu<br>570 | His        | Gly        | His        | Arg        | Leu<br>575 | Gln        |
| Asp        | Ala        | Arg        | Pro<br>580 | Ser        | Val        | Leu        | Glu        | Cys<br>585 | His        | Gln        | Ala        | Ala        | Leu<br>590 | Val        | Ser        |
| Gly        | Val        | Сув<br>595 | Сув        | Ala        | Leu        | Leu        | Бец<br>600 | Leu        | Ile        | Leu        | Leu        | Val<br>605 | Gly        | Ala        | Leu        |
| Cys        | His<br>610 | His        | Phe        | His        | Gly        | Leu<br>615 | Trp        | Tyr        | Leu        | Arg        | Met<br>620 | Met        | Trp        | Ala        | Trp        |
| Leu<br>625 | Gln        | Ala        | Lys        | Arg        | Lys<br>630 | Pro        | Lys        | ГÀЗ        | Ala        | Pro<br>635 | Cys        | Arg        | Asp        | Val        | Cys<br>640 |
| Tyr        | Asp        | Ala        | Phe        | Val<br>645 | Ser        | Tyr        | Ser        | Glu        | Gln<br>650 | Asp        | Ser        | His        | Trp        | Val<br>655 | Glu        |
| Asn        | Leu        | Met        | Val<br>660 | Gln        | Gln        | Leu        | Glu        | Asn<br>665 | Ser        | Asp        | Pro        | Pro        | Phe<br>670 | ГÀЗ        | Leu        |
| Cys        | Leu        | His<br>675 | Lys        | Arg        | qaA        | Phe        | Val<br>680 | Prọ        | Gly        | ГÀв        | Trp        | Ile<br>685 | Ile        | Asp        | Asn        |
| Ile        | Ile<br>690 | Asp        | Ser        | Ile        | Glu        | Lys<br>695 | Ser        | His        | ГÀЗ        | Thr        | Val<br>700 | Phe        | Val        | Leu        | Ser        |
| 705        |            |            |            |            | Ser<br>710 |            |            |            |            | 715        |            |            |            |            | 720        |
|            |            |            |            | 725        |            |            |            |            | 730        |            |            |            |            | 735        |            |
|            |            |            | 740        |            |            |            |            | 745        |            |            |            |            | 750        |            | Leu        |
| _          |            | 755        |            |            |            |            | 760        |            |            |            |            | 765        |            |            | Glu        |
| Gly        | Gln<br>770 |            | Glu        | . Val      | Phe        | Trp<br>775 |            | Asn        | Leu        | Arg        | Thr<br>780 |            | Ile        | Lys        | Ser        |

<210> 7 <211> 3029 <212> DNA

<213> Homo sapiens gcggccgcgt cgacgaaatg tctggatttg gactaaagaa aaaaggaaag gctagcagtc 60 atccaacaqa atcatgagac agactttgcc ttgtatctac ttttggggggg gccttttgcc 120 ctttgggatq ctgtgtgcat cctccaccac caagtgcact gttagccatg aagttgctga 180 240 ctgcagccac ctgaagttga ctcaggtacc cgatgatcta cccacaaaca taacagtgtt 300 quacettace cataateaac teagaagatt accageegee aactteacaa ggtatageea 360 gctaactagc ttggatgtag gatttaacac catctcaaaa ctggagccag aattgtgcca qaaacttccc atqttaaaag ttttgaacct ccagcacaat gagctatctc aactttctga 420 taaaacettt geettetgea egaatttgae tgaacteeat eteatgteea acteaateea 480 540 qaaaattaaa aataatccct ttgtcaagca gaagaattta atcacattag atctgtctca 600 taatggcttg tcatctacaa aattaggaac tcaggttcag ctggaaaatc tccaagagct 660 tctattatca aacaataaaa ttcaagcgct aaaaagtgaa gaactggata tctttgccaa ttcatcttta aaaaaattag agttgtcatc gaatcaaatt aaagagtttt ctccagggtg 720 ttttcacgca attggaagat tatttggcct ctttctgaac aatgtccagc tgggtcccag 780 840 ccttacagag aagctatgtt tggaattagc aaacacaagc attcggaatc tgtctctgag taacaqccaq ctgtccacca ccagcaatac aactttcttg ggactaaagt ggacaaatct 900 cactatgctc gatctttcct acaacaactt aaatgtggtt ggtaacgatt cctttgcttg 960 qcttccacaa ctagaatatt tcttcctaga gtataataat atacagcatt tgttttctca 1020 ctctttgcac gggcttttca atgtgaggta cctgaatttg aaacggtctt ttactaaaca 1080 aagtatttcc cttgcctcac tccccaagat tgatgatttt tcttttcagt ggctaaaatg 1140 tttqqaqcac cttaacatqq aaqataatqa tattccaqqc ataaaaaqca atatqttcac 1200 aggattgata aacctgaaat acttaagtet atecaactee tttacaagtt tgegaacttt 1260 gacaaatgaa acatttgtat cacttgctca ttctccctta cacatactca acctaaccaa 1320 gaataaaatc tcaaaaatag agagtgatgc tttctcttgg ttgggccacc tagaagtact 1380 tgacctgggc cttaatgaaa ttgggcaaga actcacaggc caggaatgga gaggtctaga 1440 aaatattttc gaaatctatc tttcctacaa caagtacctg cagctgacta ggaactcctt 1500 tgccttggtc ccaagccttc aacgactgat gctccgaagg gtggccctta aaaatgtgga 1560 tagetetect teaceattee ageetetteg taacttgace attetggate taageaacaa 1620 caacatagcc aacataaatg atgacatgtt ggagggtctt gagaaactag aaattctcga 1680 tttgcagcat aacaacttag cacggctctg gaaacacgca aaccctggtg gtcccattta 1740 tttcctaaag ggtctgtctc acctccacat ccttaacttg gagtccaacg gctttgacga 1800

|            | gaggtcttca |            |            |            |            | 1860 |
|------------|------------|------------|------------|------------|------------|------|
| taatttaaac | acacttccag | catctgtctt | taataatcag | gtgtctctaa | agtcattgaa | 1920 |
| ccttcagaag | aatctcataa | catccgttga | gaagaaggtt | ttcgggccag | ctttcaggaa | 1980 |
| cctgactgag | ttagatatgc | gctttaatcc | ctttgattgc | acgtgtgaaa | gtattgcctg | 2040 |
| gtttgttaat | tggattaacg | agacccatac | caacatccct | gagctgtcaa | gccactacct | 2100 |
| ttgcaacact | ccacctcact | atcatgggtt | cccagtgaga | ctttttgata | catcatcttg | 2160 |
| caaagacagt | gccccctttg | aactctttt  | catgatcaat | accagtatcc | tgttgatttt | 2220 |
| tatctttatt | gtacttctca | tccactttga | gggctggagg | atatcttttt | attggaatgt | 2280 |
| ttcagtacat | cgagttcttg | gtttcaaaga | aatagacaga | cagacagaac | agtttgaata | 2340 |
| tgcagcatat | ataattcatg | cctataaaga | taaggattgg | gtctgggaac | atttctcttc | 2400 |
| aatggaaaag | gaagaccaat | ctctcaaatt | ttgtctggaa | gaaagggact | ttgaggcggg | 2460 |
| tgtttttgaa | ctagaagcaa | ttgttaacag | catcaaaaga | agcagaaaaa | ttatttttgt | 2520 |
| tataacacac | catctattaa | aagacccatt | atgcaaaaga | ttcaaggtac | atcatgcagt | 2580 |
| tcaacaagct | attgaacaaa | atctggattc | cattatattg | gttttccttg | aggagattcc | 2640 |
| agattataaa | ctgaaccatg | cactctgttt | gcgaagagga | atgtttaaat | ctcactgcat | 2700 |
| cttgaactgg | ccagttcaga | aagaacggat | aggtgccttt | cgtcataaat | tgcaagtagc | 2760 |
| acttggatcc | aaaaactctg | tacattaaat | ttatttaaat | attcaattag | caaaggagaa | 2820 |
| actttctcaa | tttaaaaagt | tctatggcaa | atttaagttt | tccataaagg | tgttataatt | 2880 |
| tgtttattca | tatttgtaaa | tgattatatt | ctatcacaat | tacatctctt | ctaggaaaat | 2940 |
| gtgtctcctt | atttcaggcc | tatttttgac | aattgactta | attttaccca | aaataaaaca | 3000 |
| tataagcacg | caaaaaaaa  | aaaaaaaa   |            |            |            | 3029 |

<210> 8

<211> 904

<212> PRT

<213> Homo sapiens

<400> 8

Met Arg Gln Thr Leu Pro Cys Ile Tyr Phe Trp Gly Gly Leu Leu Pro 1 5 10 15

Phe Gly Met Leu Cys Ala Ser Ser Thr Thr Lys Cys Thr Val Ser His 20 25 30

Glu Val Ala Asp Cys Ser His Leu Lys Leu Thr Gln Val Pro Asp Asp 35 40 45

Leu Pro Thr Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu Arg 50 55 60

Arg Leu Pro Ala Ala Asn Phe Thr Arg Tyr Ser Gln Leu Thr Ser Leu

| 65<br>Asp Val Gly  | Phe Asn<br>85  | 70<br>Thr Ile  | Ser Ly        | s Leu<br>90   | 75<br>Glu Pi  | ro Glu        | Leu Cyr<br>95 | 80<br>s Gln  |
|--------------------|----------------|----------------|---------------|---------------|---------------|---------------|---------------|--------------|
| Lys Leu Pro        | Met Leu<br>100 | Lys Val        | Leu As        |               | Gln H         | is Asn        | Glu Le        | ı Ser        |
| Gln Leu Ser<br>115 | Asp Lys        | Thr Phe        | Ala Ph<br>120 | e Cys         | Thr As        | sn Leu<br>125 | Thr Gl        | ı Leu        |
| His Leu Met<br>130 | Ser Asn        | Ser Ile<br>135 | -             | s Ile         | -             | sn Asn<br>40  | Pro Ph        | e Val        |
| Lys Gln Lys<br>145 | Asn Leu        | Ile Thr        | Leu As        | sp Leu        | Ser H:<br>155 | is Asn        | Gly Le        | Ser<br>160   |
| Ser Thr Lys        | Leu Gly<br>165 |                | Val Gl        | n Leu<br>170  | Glu A         | sn Leu        | Gln Gl        |              |
| Leu Leu Ser        | Asn Asn<br>180 | Lys Ile        | Gln Al        |               | Lys S         | er Glu        | Glu Le        | u Asp        |
| Ile Phe Ala<br>195 | Asn Ser        | Ser Lev        | Lys Ly<br>200 | s Leu         | Glu L         | eu Ser<br>205 | Ser As        | n Gln        |
| Ile Lys Glu<br>210 | Phe Ser        | Pro Gly<br>215 | _             | ne His        |               | le Gly<br>20  | Arg Le        | u Phe        |
| Gly Leu Phe<br>225 | Leu Asr        | Asn Val<br>230 | . Gln Le      | eu Gly        | Pro Se<br>235 | er Leu        | Thr Gl        | u Lys<br>240 |
| Leu Cys Leu        | Glu Leu<br>245 |                | Thr Se        | er Ile<br>250 | Arg A         | sn Leu        | Ser Le<br>25  |              |
| Asn Ser Gln        | Leu Ser<br>260 | Thr Thr        | Ser As<br>26  |               | Thr P         | he Leu        | Gly Le<br>270 | u Lys        |
| Trp Thr Asn<br>275 |                | Met Leu        | Asp Le        | eu Ser        | Tyr A         | sn Asn<br>285 | Leu As        | n Val        |
| Val Gly Asn<br>290 | Asp Ser        | Phe Ala<br>295 | _             | eu Pro        |               | eu Glu<br>00  | Tyr Ph        | e Phe        |
| Leu Glu Tyr<br>305 | Asn Asr        | lle Glr<br>310 | His Le        | eu Phe        | Ser H<br>315  | is Ser        | Leu Hi        | s Gly<br>320 |
| Leu Phe Asn        | Val Arg        | -              | ı Asn Le      | eu Lys<br>330 | Arg S         | er Phe        | Thr Ly        |              |
| Ser Ile Ser        | Leu Ala<br>340 | Ser Lev        | Pro Ly<br>34  | •             | Asp A         | sp Phe        | Ser Ph        | e Gln        |
| Trp Leu Lys<br>355 | -              | Glu His        | Leu As<br>360 | sn Met        | Glu A         | sp Asn<br>365 | Asp Il        | e Pro        |
| Gly Ile Lys<br>370 | Ser Asr        | Met Phe        |               | ly Leu        |               | sn Leu<br>80  | Lys Ty        | r Leu        |
| Ser Leu Ser<br>385 | Asn Ser        | Phe Thi        | Ser Le        | eu Arg        | Thr L<br>395  | eu Thr        | Asn Gl        | u Thr<br>400 |
| Phe Val Ser        | Leu Ala        | His Ser        | Pro Le        | eu His        | Ile L         | eu Asn        | Leu Th        | r Lys        |

12/231

| Asn        | Lys        | Ile        |            | 405<br>Lys | Ile        | Glu        | Ser        |            | 410<br>Ala | Phe        | Ser        | Trp        | Leu<br>430 | 415<br>Gly | His        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu        | Glu        | Val        | 420<br>Leu | qaA        | Leu        | Gly        | Leu        | 425<br>Asn | Glu        | Ile        | Gly        | Gln        | Glu        | Leu        | Thr        |
|            |            | 435        |            |            |            |            | 440        |            |            |            |            | 445        |            |            |            |
| Gly        | Gln<br>450 | Glu        | Trp        | Arg        | Gly        | Leu<br>455 | Glu        | Asn        | Ile        | Phe        | Glu<br>460 | Ile        | Tyr        | Leu        | Ser        |
| Tyr<br>465 | Asn        | Lys        | Tyr        | Leu        | Gln<br>470 | Leu        | Thr        | Arg        | Asn        | Ser<br>475 | Phe        | Ala        | Leu        | Val        | Pro<br>480 |
| Ser        | Leu        | Gln        | Arg        | Leu<br>485 | Met        | Leu        | Arg        | Arg        | Val<br>490 | Ala        | Leu        | Lys        | Asn        | Val<br>495 | Asp        |
| Ser        | Ser        | Pro        | Ser<br>500 | Pro        | Phe        | Gln        | Pro        | Leu<br>505 | Arg        | Asn        | Leu        | Thr        | Ile<br>510 | Leu        | Asp        |
| Leu        | Ser        | Asn<br>515 | Asn        | Asn        | Ile        | Ala        | Asn<br>520 | Ile        | Asn        | Asp        | Asp        | Met<br>525 | Leu        | Glu        | Gly        |
| Leu        | Glu<br>530 | Lys        | Leu        | Glu        | Ile        | Leu<br>535 | Asp        | Leu        | Gln        | His        | Asn<br>540 | Asn        | Leu        | Ala        | Arg        |
| Leu<br>545 | Trp        | Lys        | His        | Ala        | Asn<br>550 | Pro        | Gly        | Gly        | Pro        | Ile<br>555 | Tyr        | Phe        | Leu        | Ьув        | Gly<br>560 |
| Leu        | Ser        | His        | Leu        | His<br>565 | Ile        | Leu        | Asn        | Leu        | Glu<br>570 | Ser        | Asn        | Gly        | Phe        | Asp<br>575 | Glu        |
| Ile        | Pro        | Val        | Glu<br>580 | Val        | Phe        | Lys        | Asp        | Leu<br>585 | Phe        | Glu        | Leu        | ГÀЗ        | Ile<br>590 | Ile        | Asp        |
| Leu        | Gly        | Leu<br>595 | Asn        | Asn        | Leu        | Asn        | Thr<br>600 | Leu        | Pro        | Ala        | Ser        | Val<br>605 | Phe        | Asn        | Asn        |
| Gln        | Val<br>610 |            | Leu        | Lys        | Ser        | Leu<br>615 | Asn        | Leu        | Gln        | Lys        | Asn<br>620 | Leu        | Ile        | Thr        | Ser        |
| Val<br>625 |            | Lys        | ГЛЗ        | Val        | Phe<br>630 | Gly        | Pro        | Ala        | Phe        | Arg<br>635 | Asn        | Leu        | Thr        | Glu        | Leu<br>640 |
| Asp        | Met        | Arg        | Phe        | Asn<br>645 |            | Phe        | Asp        | Сув        | Thr<br>650 | Сув        | Glu        | Ser        | Ile        | Ala<br>655 | Trp        |
| Phe        | Val        | Asn        | Trp<br>660 |            | Asn        | Glu        | Thr        | His<br>665 |            | Asn        | Ile        | Pro        | Glu<br>670 |            | Ser        |
| Ser        | His        | Tyr<br>675 |            | Сув        | Asn        | Thr        | Pro<br>680 |            | His        | Tyr        | His        | Gly<br>685 |            | Pro        | Val        |
| Arg        | Leu<br>690 |            | Asp        | Thr        | Ser        | Ser<br>695 |            | Ьys        | Asp        | Ser        | Ala<br>700 |            | Phe        | Glu        | Leu        |
| Phe<br>705 |            | Met        | : Ile      | a Asr      | 710        |            | ·Ile       | Leu        | Leu        | 715        |            | Ile        | Phe        | Ile        | Val<br>720 |
| Let        | . Leu      | ı Ile      | His        | 725        |            | Gly        | Trp        | Arg        | 730        |            | Phe        | Tyr        | Trp        | 735        | Val        |
| Ser        | . Val      | His        | arç        | y Val      | Leu        | Gly        | Phe        | . Lys      | Glu        | ıle        | : Asp      | Arg        | Gln        | Thr        | Glu        |

750 740 Gln Phe Glu Tyr Ala Ala Tyr Ile Ile His Ala Tyr Lys Asp Lys Asp Trp Val Trp Glu His Phe Ser Ser Met Glu Lys Glu Asp Gln Ser Leu Lys Phe Cys Leu Glu Glu Arg Asp Phe Glu Ala Gly Val Phe Glu Leu Glu Ala Ile Val Asn Ser Ile Lys Arg Ser Arg Lys Ile Ile Phe Val Ile Thr His His Leu Leu Lys Asp Pro Leu Cys Lys Arg Phe Lys Val 825 His His Ala Val Gln Gln Ala Ile Glu Gln Asn Leu Asp Ser Ile Ile 840 Leu Val Phe Leu Glu Glu Ile Pro Asp Tyr Lys Leu Asn His Ala Leu 855 Cys Leu Arg Arg Gly Met Phe Lys Ser His Cys Ile Leu Asn Trp Pro Val Gln Lys Glu Arg Ile Gly Ala Phe Arg His Lys Leu Gln Val Ala Leu Gly Ser Lys Asn Ser Val His 900 <210> 9 3310 <211> DNA <212> <213> murine <400> 9 taqaatatqa tacaqqqatt qcacccataa tctgggctga atcatgaaag ggtgttcctc 60 ttatctaatq tactcctttq qqqqactttt gtccctatgg attcttctgg tgtcttccac 120 180 aaaccaatgc actgtgagat acaacgtagc tgactgcagc catttgaagc taacacacat acctgatgat cttccctcta acataacagt gttgaatctt actcacaacc aactcagaag 240 300 attaccacct accaacttta caagatacag ccaacttgct atcttggatg caggatttaa ctccatttca aaactggagc cagaactgtg ccaaatactc cctttgttga aagtattgaa 360 cctgcaacat aatgagctct ctcagatttc tgatcaaacc tttgtcttct gcacgaacct 420 gacagaactc gatctaatgt ctaactcaat acacaaaatt aaaagcaacc ctttcaaaaa 480 ccaqaaqaat ctaatcaaat tagatttgtc tcataatggt ttatcatcta caaagttggg 540 aacgggggtc caactggaga acctccaaga actgctctta gcaaaaaata aaatccttgc 600

660

720

gttgcgaagt gaagaacttg agtttcttgg caattcttct ttacgaaagt tggacttgtc

atcaaatcca cttaaagagt tctccccggg gtgtttccag acaattggca agttattcgc

|            | aacaacgccc<br>agcatccaga |            |            |            |            | 780<br>840 |
|------------|--------------------------|------------|------------|------------|------------|------------|
| gagcactttc | tctgggctga               | agtggacaaa | tctcacccag | ctcgatcttt | cctacaacaa | 900        |
| cctccatgat | gtcggcaacg               | gttccttctc | ctatctccca | agcctgaggt | atctgtctct | 960        |
| ggagtacaac | aatatacagc               | gtetgteece | tegetetttt | tatggactct | ccaacctgag | 1020       |
| gtacctgagt | ttgaagcgag               | catttactaa | gcaaagtgtt | tcacttgctt | cacatcccaa | 1080       |
| cattgacgat | ttttcctttc               | aatggttaaa | atatttggaa | tatctcaaca | tggatgacaa | 1140       |
| taatattcca | agtaccaaaa               | gcaatacctt | cacgggattg | gtgagtctga | agtacctaag | 1200       |
| tctttccaaa | actttcacaa               | gtttgcaaac | tttaacaaat | gaaacatttg | tgtcacttgc | 1260       |
| tcattctccc | ttgctcactc               | tcaacttaac | gaaaaatcac | atctcaaaaa | tagcaaatgg | 1320       |
| tactttctct | tggttaggcc               | aactcaggat | acttgatctc | ggccttaatg | aaattgaaca | 1380       |
| aaaactcagc | ggccaggaat               | ggagaggtct | gagaaatata | tttgagatct | acctatccta | 1440       |
| taacaaatac | ctccaactgt               | ctaccagttc | ctttgcattg | gtccccagcc | ttcaaagact | 1500       |
| gatgctcagg | agggtggccc               | ttaaaaatgt | ggatatctcc | ccttcacctt | teegeeetet | 1560       |
| tcgtaacttg | accattctgg               | acttaagcaa | caacaacata | gccaacataa | atgaggactt | 1620       |
| gctggagggt | cttgagaatc               | tagaaatcct | ggattttcag | cacaataact | tagccaggct | 1680       |
| ctggaaacgc | gcaaaccccg               | gtggtcccgt | taatttcctg | aaggggctgt | ctcacctcca | 1740       |
| catcttgaat | ttagagtcca               | acggcttaga | tgaaatccca | gtcggggttt | tcaagaactt | 1800       |
| attcgaacta | aagagcatca               | atctaggact | gaataactta | aacaaacttg | aaccattcat | 1860       |
| ttttgatgac | cagacatctc               | taaggtcact | gaacctccag | aagaacctca | taacatctgt | 1920       |
| tgagaaggat | gttttcgggc               | cgccttttca | aaacctgaac | agtttagata | tgcgcttcaa | 1980       |
| tccgttcgac | tgcacgtgtg               | aaagtatttc | ctggtttgtt | aactggatca | accagaccca | 2040       |
| cactaatatc | tttgagctgt               | ccactcacta | cctctgtaac | actccacatc | attattatgg | 2100       |
| cttccccctg | aagcttttcg               | atacatcatc | ctgtaaagac | agcgccccct | ttgaactcct | 2160       |
| cttcataatc | agcaccagta               | tgctcctggt | ttttatactt | gtggtactgc | tcattcacat | 2220       |
| cgagggctgg | aggatctctt               | tttactggaa | tgtttcagtg | catcggattc | ttggtttcaa | 2280       |
| ggaaatagac | acacaggctg               | agcagtttga | atatacagcc | tacataattc | atgcccataa | 2340       |
| agacagagac | tgggtctggg               | aacatttctc | cccaatggaa | gaacaagacc | aatctctcaa | 2400       |
| attttgccta | gaagaaaggg               | actttgaagc | aggcgtcctt | ggacttgaag | caattgttaa | 2460       |
| tagcatcaaa | agaagccgaa               | aaatcatttt | cgttatcaca | caccatttat | taaaagaccc | 2520       |
| tctgtgcaga | agattcaagg               | tacatcacgc | agttcagcaa | gctattgagc | aaaatctgga | 2580       |
| ttcaattata | ctgattttc                | tccagaatat | tccagattat | aaactaaacc | atgcactctg | 2640       |

PCT/US2004/012788 WO 2004/094671

| tttgcgaaga | ggaatgttta | aatctcattg | catcttgaac | tggccagttc | agaaagaacg | 2700 |
|------------|------------|------------|------------|------------|------------|------|
| gataaatgcc | tttcatcata | aattgcaagt | agcacttgga | tctcggaatt | cagcacatta | 2760 |
| aactcatttg | aagatttgga | gtcggtaaag | ggatagatcc | aatttataaa | ggtccatcat | 2820 |
| gaatctaagt | tttacttgaa | agttttgtat | atttatttat | atgtatagat | gatgatatta | 2880 |
| catcacaatc | caatctcagt | tttgaaatat | ttcggcttat | ttcattgaca | tctggtttat | 2940 |
| tcactccaaa | taaacacatg | ggcagttaaa | aacatcctct | attaatagat | tacccattaa | 3000 |
| ttcttgaggt | gtatcacagc | tttaaagggt | tttaaatatt | tttatataaa | taagactgag | 3060 |
| agttttataa | atgtaatttt | ttaaaactcg | agtcttactg | tgtagctcag | aaaggcctgg | 3120 |
| aaattaatat | attagagagt | catgtcttga | acttatttat | ctctgcctcc | ctctgtctcc | 3180 |
| agagtgttgc | ttttaagggc | atgtagcacc | acacccagct | atgtacgtgt | gggattttat | 3240 |
| aatgctcatt | tttgagacgt | ttatagaata | aaagataatt | gcttttatgg | tataaggcta | 3300 |
| cttgaggtaa |            |            |            |            |            | 3310 |

<210> 10 <211> 905 <212> PRT

<213> murine

<400> 10

Met Lys Gly Cys Ser Ser Tyr Leu Met Tyr Ser Phe Gly Gly Leu Leu 5

Ser Leu Trp Ile Leu Leu Val Ser Ser Thr Asn Gln Cys Thr Val Arg

Tyr Asn Val Ala Asp Cys Ser His Leu Lys Leu Thr His Ile Pro Asp

Asp Leu Pro Ser Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu

Arg Arg Leu Pro Pro Thr Asn Phe Thr Arg Tyr Ser Gln Leu Ala Ile

Leu Asp Ala Gly Phe Asn Ser Ile Ser Lys Leu Glu Pro Glu Leu Cys

Gln Ile Leu Pro Leu Leu Lys Val Leu Asn Leu Gln His Asn Glu Leu 100

Ser Gln Ile Ser Asp'Gln Thr Phe Val Phe Cys Thr Asn Leu Thr Glu 120

Leu Asp Leu Met Ser Asn Ser Ile His Lys Ile Lys Ser Asn Pro Phe

Lys Asn Gln Lys Asn Leu Ile Lys Leu Asp Leu Ser His Asn Gly Leu 155 150

Ser Ser Thr Lys Leu Gly Thr Gly Val Gln Leu Glu Asn Leu Gln Glu 165 170 175

- Leu Leu Leu Ala Lys Asn Lys Ile Leu Ala Leu Arg Ser Glu Glu Leu 180 185 190
- Glu Phe Leu Gly Asn Ser Ser Leu Arg Lys Leu Asp Leu Ser Ser Asn 195 200 205
- Pro Leu Lys Glu Phe Ser Pro Gly Cys Phe Gln Thr Ile Gly Lys Leu 210 215 220
- Phe Ala Leu Leu Leu Asn Asn Ala Gln Leu Asn Pro His Leu Thr Glu 225 230 235 240
- Lys Leu Cys Trp Glu Leu Ser Asn Thr Ser Ile Gln Asn Leu Ser Leu 245 250 255
- Ala Asn Asn Gln Leu Leu Ala Thr Ser Glu Ser Thr Phe Ser Gly Leu 260 265 270
- Lys Trp Thr Asn Leu Thr Gln Leu Asp Leu Ser Tyr Asn Asn Leu His
  275 280 285
- Asp Val Gly Asn Gly Ser Phe Ser Tyr Leu Pro Ser Leu Arg Tyr Leu 290 295 300
- Ser Leu Glu Tyr Asn Asn Ile Gln Arg Leu Ser Pro Arg Ser Phe Tyr 305 310 315 320
- Gly Leu Ser Asn Leu Arg Tyr Leu Ser Leu Lys Arg Ala Phe Thr Lys 325 330 335
- Gln Ser Val Ser Leu Ala Ser His Pro Asn Ile Asp Asp Phe Ser Phe 340 345 350
- Gln Trp Leu Lys Tyr Leu Glu Tyr Leu Asn Met Asp Asp Asn Asn Ile 355 360 365
- Pro Ser Thr Lys Ser Asn Thr Phe Thr Gly Leu Val Ser Leu Lys Tyr 370 375 380
- Leu Ser Leu Ser Lys Thr Phe Thr Ser Leu Gln Thr Leu Thr Asn Glu 385 390 395 400
- Thr Phe Val Ser Leu Ala His Ser Pro Leu Leu Thr Leu Asn Leu Thr 405 410 415
- Lys Asn His Ile Ser Lys Ile Ala Asn Gly Thr Phe Ser Trp Leu Gly 420 425 430
- Gln Leu Arg Ile Leu Asp Leu Gly Leu Asn Glu Ile Glu Gln Lys Leu 435 440 445
- Ser Gly Gln Glu Trp Arg Gly Leu Arg Asn Ile Phe Glu Ile Tyr Leu 450 455 460
- Ser Tyr Asn Lys Tyr Leu Gln Leu Ser Thr Ser Ser Phe Ala Leu Val 465 470 475 480
- Pro Ser Leu Gln Arg Leu Met Leu Arg Arg Val Ala Leu Lys Asn Val

485 490 Asp Ile Ser Pro Ser Pro Phe Arg Pro Leu Arg Asn Leu Thr Ile Leu 505 Asp Leu Ser Asn Asn Asn Ile Ala Asn Ile Asn Glu Asp Leu Leu Glu 520 Gly Leu Glu Asn Leu Glu Ile Leu Asp Phe Gln His Asn Asn Leu Ala Arg Leu Trp Lys Arg Ala Asn Pro Gly Gly Pro Val Asn Phe Leu Lys Gly Leu Ser His Leu His Ile Leu Asn Leu Glu Ser Asn Gly Leu Asp 570 Glu Ile Pro Val Gly Val Phe Lys Asn Leu Phe Glu Leu Lys Ser Ile Asn Leu Gly Leu Asn Asn Leu Asn Lys Leu Glu Pro Phe Ile Phe Asp Asp Gln Thr Ser Leu Arg Ser Leu Asn Leu Gln Lys Asn Leu Ile Thr Ser Val Glu Lys Asp Val Phe Gly Pro Pro Phe Gln Asn Leu Asn Ser 625 Leu Asp Met Arg Phe Asn Pro Phe Asp Cys Thr Cys Glu Ser Ile Ser 650 Trp Phe Val Asn Trp Ile Asn Gln Thr His Thr Asn Ile Phe Glu Leu 660 665 Ser Thr His Tyr Leu Cys Asn Thr Pro His His Tyr Tyr Gly Phe Pro 680 Leu Lys Leu Phe Asp Thr Ser Ser Cys Lys Asp Ser Ala Pro Phe Glu 695 Leu Leu Phe Ile Ile Ser Thr Ser Met Leu Leu Val Phe Ile Leu Val Val Leu Leu Ile His Ile Glu Gly Trp Arg Ile Ser Phe Tyr Trp Asn Val Ser Val His Arg Ile Leu Gly Phe Lys Glu Ile Asp Thr Gln Ala Glu Gln Phe Glu Tyr Thr Ala Tyr Ile Ile His Ala His Lys Asp Arg Asp Trp Val Trp Glu His Phe Ser Pro Met Glu Glu Gln Asp Gln Ser 775 Leu Lys Phe Cys Leu Glu Glu Arg Asp Phe Glu Ala Gly Val Leu Gly Leu Glu Ala Ile Val Asn Ser Ile Lys Arg Ser Arg Lys Ile Ile Phe 810 Val Ile Thr His His Leu Leu Lys Asp Pro Leu Cys Arg Arg Phe Lys

820 825 830
Val His His Ala Val Gln Gln Ala Ile Glu Gln Asn Leu Asp Ser Ile
835 840 845

Ile Leu Ile Phe Leu Gln Asn Ile Pro Asp Tyr Lys Leu Asn His Ala 850 855 860

Leu Cys Leu Arg Arg Gly Met Phe Lys Ser His Cys Ile Leu Asn Trp 865 870 875 880

Pro Val Gln Lys Glu Arg Ile Asn Ala Phe His His Lys Leu Gln Val 885 890 895

Ala Leu Gly Ser Arg Asn Ser Ala His 900 905

<210> 11 <211> 3811 <212> DNA

<213> Homo sapiens

<400> 11 acagggccac tgctgctcac agaagcagtg aggatgatgc caggatgatg tctgcctcgc 60 gcctggctgg gactctgatc ccagccatgg ccttcctctc ctgcgtgaga ccagaaagct 120 gggagccctg cgtggagact tggccctaaa ccacacagaa gagctggcat gaaacccaga 180 getttcagac tccggagcct cagcccttca ccccgattcc attgcttctt gctaaatgct 240 gccgttttat cacggaggtg gttcctaata ttacttatca atgcatggag ctgaatttct 300 acaaaateee egacaacete eeetteteaa ecaagaacet ggacetgage tttaateeee 360 tgaggcattt aggcagctat agcttcttca gtttcccaga actgcaggtg ctggatttat 420 ccaggtgtga aatccagaca attgaagatg gggcatatca gagcctaagc cacctctcta 480 ccttaatatt gacaggaaac cccatccaga gtttagccct gggagccttt tctggactat 540 caagtttaca gaagctggtg gctgtggaga caaatctagc atctctagag aacttcccca 600 ttggacatct caaaactttg aaagaactta atgtggctca caatcttatc caatctttca 660 aattacctga gtatttttct aatctgacca atctagagca cttggacctt tccagcaaca 720 agattcaaag tatttattgc acagacttgc gggttctaca tcaaatgccc ctactcaatc 780 tetetttaga cetgteeetg aaceetatga aetttateea aecaggtgea tttaaagaaa 840 ttaggettea taagetgaet ttaagaaata attttgatag tttaaatgta atgaaaaett 900 gtattcaagg tctggctggt ttagaagtcc atcgtttggt tctgggagaa tttagaaatg 960 aaggaaactt ggaaaagttt gacaaatctg ctctagaggg cctgtgcaat ttgaccattg 1020 aagaatteeg attageatae ttagaetaet acetegatga tattattgae ttatttaatt 1080 gtttgacaaa tgtttcttca ttttccctgg tgagtgtgac tattgaaagg gtaaaagact 1140 tttcttataa tttcggatgg caacatttag aattagttaa ctgtaaattt ggacagtttc 1200

| ccacattgaa | actcaaatct   | ctcaaaaggc | ttactttcac | ttccaacaaa | ggtgggaatg | 1260 |
|------------|--------------|------------|------------|------------|------------|------|
| ctttttcaga | agttgatcta   | ccaagccttg | agtttctaga | tctcagtaga | aatggcttga | 1320 |
| gtttcaaagg | ttgctgttct   | caaagtgatt | ttgggacaac | cagcctaaag | tatttagatc | 1380 |
| tgagcttcaa | tggtgttatt   | accatgagtt | caaacttctt | gggcttagaa | caactagaac | 1440 |
| atctggattt | ccagcattcc   | aatttgaaac | aaatgagtga | gttttcagta | ttcctatcac | 1500 |
| tcagaaacct | catttacctt   | gacatttctc | atactcacac | cagagttgct | ttcaatggca | 1560 |
| tcttcaatgg | cttgtccagt   | ctcgaagtct | tgaaaatggc | tggcaattct | ttccaggaaa | 1620 |
| acttccttcc | agatatcttc   | acagagctga | gaaacttgac | cttcctggac | ctctctcagt | 1680 |
| gtcaactgga | gcagttgtct   | ccaacagcat | ttaactcact | ctccagtctt | caggtactaa | 1740 |
| atatgagcca | caacaacttc   | ttttcattgg | atacgtttcc | ttataagtgt | ctgaactccc | 1800 |
| tccaggttct | tgattacagt   | ctcaatcaca | taatgacttc | caaaaaacag | gaactacagc | 1860 |
| attttccaag | tagtctagct   | ttcttaaatc | ttactcagaa | tgactttgct | tgtacttgtg | 1920 |
| aacaccagag | tttcctgcaa   | tggatcaagg | accagaggca | gctcttggtg | gaagttgaac | 1980 |
| gaatggaatg | tgcaacacct   | tcagataagc | agggcatgcc | tgtgctgagt | ttgaatatca | 2040 |
| cctgtcagat | gaataagacc   | atcattggtg | tgtcggtcct | cagtgtgctt | gtagtatctg | 2100 |
| ttgtagcagt | tctggtctat   | aagttctatt | ttcacctgat | gcttcttgct | ggctgcataa | 2160 |
| agtatggtag | aggtgaaaac   | atctatgatg | cctttgttat | ctactcaagc | caggatgagg | 2220 |
| actgggtaag | gaatgagcta   | gtaaagaatt | tagaagaagg | ggtgcctcca | tttcagctct | 2280 |
| gccttcacta | cagagacttt   | attcccggtg | tggccattgc | tgccaacatc | atccatgaag | 2340 |
| gtttccataa | aagccgaaag   | gtgattgttg | tggtgtccca | gcacttcatc | cagagccgct | 2400 |
| ggtgtatctt | tgaatatgag   | attgctcaga | cctggcagtt | tctgagcagt | cgtgctggta | 2460 |
| tcatcttcat | tgtcctgcag   | aaggtggaga | agaccctgct | caggcagcag | gtggagctgt | 2520 |
| accgccttct | cagcaggaac   | acttacctgg | agtgggagga | cagtgtcctg | gggcggcaca | 2580 |
| tettetggag | acgactcaga   | aaagccctgc | tggatggtaa | atcatggaat | ccagaaggaa | 2640 |
| cagtgggtac | aggatgcaat   | tggcaggaag | caacatctat | ctgaagagga | aaaataaaaa | 2700 |
| cctcctgagg | catttcttgc   | ccagctgggt | ccaacacttg | ttcagttaat | aagtattaaa | 2760 |
| tgctgccaca | tgtcaggcct   | tatgctaagg | gtgagtaatt | ccatggtgca | ctagatatgc | 2820 |
| agggctgcta | . atctcaagga | gcttccagtg | cagagggaat | aaatgctaga | ctaaaataca | 2880 |
| gagtetteca | . ggtgggcatt | tcaaccaact | cagtcaagga | acccatgaca | aagaaagtca | 2940 |
| tttcaactct | tacctcatca   | agttgaataa | agacagagaa | aacagaaaga | gacattgttc | 3000 |
| ttttcctgag | tcttttgaat   | ggaaattgta | ttatgttata | gccatcataa | aaccattttg | 3060 |

gtagttttga ctgaactggg tgttcacttt ttcctttttg attgaataca atttaaattc 3120 tacttgatga ctgcagtcgt caaggggctc ctgatgcaag atgccccttc cattttaagt 3180 ctgtctcctt acagaggtta aagtctaatg gctaattcct aaggaaacct gattaacaca 3240 tgctcacaac catcctggtc attctcgaac atgttctatt ttttaactaa tcaccctga 3300 tatattttta tttttatata tccagttttc atttttttac gtcttgccta taagctaata 3360 tcataaataa qqttqtttaa gacgtqcttc aaatatccat attaaccact atttttcaag 3420 qaaqtatqqa aaaqtacact ctgtcacttt gtcactcgat gtcattccaa agttattgcc 3480 tactaagtaa tgactgtcat gaaagcagca ttgaaataat ttgtttaaag ggggcactct 3540 tttaaacggg aagaaaattt ccgcttcctg gtcttatcat ggacaatttg ggctataggc 3600 atgaaqqaaq tgggattacc tcaggaagtc accttttctt gattccagaa acatatgggc 3660 tgataaaccc ggggtgacct catgaaatga gttgcagcag atgtttattt ttttcagaac 3720 aagtgatgtt tgatggacct atgaatctat ttagggagac acagatggct gggatccctc 3780 3811 ccctgtaccc ttctcactga caggagaact a

<210> 12

<211> 2845

<212> DNA

<213> Homo sapiens

<400> 12

60 cctctcaccc tttagcccag aactgctttg aatacaccaa ttgctgtggg gcggctcgag 120 gaagagaaga caccagtgcc tcagaaactg ctcggtcaga cggtgatagc gagccacgca ttcacagggc cactgctgct cacagaagca gtgaggatga tgccaggatg atgtctgcct 180 240 cgcgcctggc tgggactctg atcccagcca tggccttcct ctcctgcgtg agaccagaaa gctgggagcc ctgcgtggag gtgtgaaatc cagacaattg aagatggggc atatcagagc 300 ctaagccacc tctctacctt aatattgaca ggaaacccca tccagagttt agccctggga 360 gccttttctg gactatcaag tttacagaag ctggtggctg tggagacaaa tctagcatct 420 ctagagaact tccccattgg acatctcaaa actttgaaag aacttaatgt ggctcacaat 480 cttatccaat ctttcaaatt acctgagtat ttttctaatc tgaccaatct agagcacttg 540 gacctttcca gcaacaagat tcaaagtatt tattgcacag acttgcgggt tctacatcaa 600 atgecectae teaatetete tttagaeetg teeetgaace etatgaaett tatecaacea 660 ggtgcattta aagaaattag gcttcataag ctgactttaa gaaataattt tgatagttta 720 aatgtaatga aaacttgtat tcaaggtctg gctggtttag aagtccatcg tttggttctg 780 ggagaattta gaaatgaagg aaacttggaa aagtttgaca aatctgctct agagggcctg 840

| tgcaatttga<br>attgacttat | ccattgaaga<br>ttaattgttt | attccgatta<br>gacaaatgtt | gcatacttag<br>tcttcatttt | actactacct<br>ccctggtgag | cgatgatatt<br>tgtgactatt | 900<br>960 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| gaaagggtaa               | aagacttttc               | ttataatttc               | ggatggcaac               | atttagaatt               | agttaactgt               | 1020       |
| aaatttggac               | agtttcccac               | attgaaactc               | aaatctctca               | aaaggcttac               | tttcacttcc               | 1080       |
| aacaaaggtg               | ggaatgcttt               | ttcagaagtt               | gatctaccaa               | gccttgagtt               | tctagatctc               | 1140       |
| agtagaaatg               | gcttgagttt               | caaaggttgc               | tgttctcaaa               | gtgattttgg               | gacaaccagc               | 1200       |
| ctaaagtatt               | tagatctgag               | cttcaatggt               | gttattacca               | tgagttcaaa               | cttcttgggc               | 1260       |
| ttagaacaac               | tagaacatct               | ggatttccag               | cattccaatt               | tgaaacaaat               | gagtgagttt               | 1320       |
| tcagtattcc               | tatcactcag               | aaacctcatt               | taccttgaca               | tttctcatac               | tcacaccaga               | 1380       |
| gttgctttca               | atggcatctt               | caatggcttg               | tccagtctcg               | aagtcttgaa               | aatggctggc               | 1440       |
| aattctttcc               | aggaaaactt               | ccttccagat               | atcttcacag               | agctgagaaa               | cttgaccttc               | 1500       |
| ctggacctct               | ctcagtgtca               | actggagcag               | ttgtctccaa               | cagcatttaa               | ctcactctcc               | 1560       |
| agtcttcagg               | tactaaatat               | gagccacaac               | aacttctttt               | cattggatac               | gtttccttat               | 1620       |
| aagtgtctga               | actccctcca               | ggttcttgat               | tacagtctca               | atcacataat               | gacttccaaa               | 1680       |
| aaacaggaac               | tacagcattt               | tccaagtagt               | ctagctttct               | taaatcttac               | tcagaatgac               | 1740       |
| tttgcttgta               | cttgtgaaca               | ccagagtttc               | ctgcaatgga               | tcaaggacca               | gaggcagctc               | 1800       |
| ttggtggaag               | ttgaacgaat               | ggaatgtgca               | acaccttcag               | ataagcaggg               | catgcctgtg               | 1860       |
| ctgagtttga               | atatcacctg               | tcagatgaat               | aagaccatca               | ttggtgtgtc               | ggtcctcagt               | 1920       |
| gtgcttgtag               | tatctgttgt               | agcagttctg               | gtctataagt               | tctattttca               | cctgatgctt               | 1980       |
| cttgctggct               | gcataaagta               | tggtagaggt               | gaaaacatct               | atgatgcctt               | tgttatctac               | 2040       |
| tcaagccagg               | atgaggactg               | ggtaaggaat               | gagctagtaa               | agaatttaga               | agaaggggtg               | 2100       |
| cctccatttc               | agctctgcct               | tcactacaga               | gactttattc               | ccggtgtggc               | cattgctgcc               | 2160       |
| aacatcatcc               | atgaaggttt               | ccataaaagc               | cgaaaggtga               | ttgttgtggt               | gtcccagcac               | 2220       |
| ttcatccaga               | geegetggtg               | tatctttgaa               | tatgagattg               | ctcagacctg               | gcagtttctg               | 2280       |
| agcagtcgtg               | ctggtatcat               | cttcattgtc               | ctgcagaagg               | tggagaagac               | cctgctcagg               | 2340       |
| cagcaggtgg               | agctgtaccg               | ccttctcago               | aggaacactt               | acctggagtg               | ggaggacagt               | 2400       |
| gtcctggggc               | ggcacatctt               | ctggagacga               | . ctcagaaaag             | ccctgctgga               | tggtaaatca               | 2460       |
| tggaatccag               | aaggaacagt               | . gggtacagga             | . tgcaattggc             | aggaagcaac               | atctatctga               | 2520       |
| agaggaaaaa               | taaaaacctc               | : ctgaggcatt             | tettgeecag               | ctgggtccaa               | cacttgttca               | 2580       |
| gttaataagt               | : attaaatgct             | gccacatgto               | aggccttatg               | ctaagggtga               | gtaattccat               | 2640       |
| ggtgcactag               | g atatgcaggg             | ctgctaatct               | : caaggagctt             | ccagtgcaga               | gggaataaat               | 2700       |
| gctagactaa               | a aatacagagt             | : cttccaggtg             | ggcatttcaa               | ccaactcagt               | caaggaaccc               | 2760       |

atgacaaaga aagtcatttc aactcttacc tcatcaagtt gaataaagac agagaaaaca 2820 2845 gaaaaaaaaa aaaaaaaaaa aaaaa <210> 13 <211> 3767 <212> DNA <213> Homo sapiens <400> 13 cctctcaccc tttagcccag aactgctttg aatacaccaa ttgctgtggg gcggctcgag 60 gaagagaaga caccagtgcc tcagaaactg ctcggtcaga cggtgatagc gagccacgca 120 ttcacagggc cactgctgct cacagaagca gtgaggatga tgccaggatg atgtctgcct 180 cgcgcctggc tgggactctg atcccagcca tggccttcct ctcctgcgtg agaccagaaa 240 qctqqqaqcc ctqcqtqqaq acttqqccct aaaccacaca gaagagctgg catgaaaccc 300 agagetttea gaeteeggag ceteageeet teaceeegat teeattgett ettgetaaat 360 gctgccgttt tatcacggag gtgtgaaatc cagacaattg aagatggggc atatcagagc 420 ctaagccacc tototacctt aatattgaca ggaaacccca tocagagttt agccctggga 480 gccttttctg gactatcaag tttacagaag ctggtggctg tggagacaaa tctagcatct 540 600 ctagagaact tececattgg acateteaaa actttgaaag aacttaatgt ggeteacaat cttatccaat ctttcaaatt acctgagtat ttttctaatc tgaccaatct agagcacttg 660 gacctttcca gcaacaagat tcaaagtatt tattgcacag acttgcgggt tctacatcaa 720 atgcccctac tcaatctctc tttagacctg tccctgaacc ctatgaactt tatccaacca 780 840 qqtqcattta aagaaattag gcttcataag ctgactttaa gaaataattt tgatagttta aatqtaatqa aaacttqtat tcaaqqtctg gctggtttag aagtccatcg tttggttctg 900 ggagaattta gaaatgaagg aaacttggaa aagtttgaca aatctgctct agagggcctg 960 tgcaatttga ccattgaaga attccgatta gcatacttag actactacct cgatgatatt 1020 attgacttat ttaattgttt gacaaatgtt tetteatttt eeetggtgag tgtgactatt 1080 qaaaqqqtaa aagacttttc ttataatttc ggatggcaac atttagaatt agttaactgt 1140 aaatttggac agtttcccac attgaaactc aaatctctca aaaggcttac tttcacttcc 1200 aacaaaggtg ggaatgettt tteagaagtt gatetaecaa geettgagtt tetagatete 1260 agtagaaatg gettgagttt caaaggttge tgtteteaaa gtgattttgg gacaaceage 1320 ctaaagtatt tagatotgag ottoaatggt gttattacca tgagttoaaa cttottgggo 1380 ttaqaacaac tagaacatct ggatttccag cattccaatt tgaaacaaat gagtgagttt 1440 tcagtattcc tatcactcag aaacctcatt taccttgaca tttctcatac tcacaccaga 1500

| gttgctttca atggcatett caatggettg tecagteteg aagtettgaa aatggetgge aattetttee aggaaaaett eetteeagat atetteacag agetgagaaa ettgaeette | 1560<br>1620 |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ctggacctct ctcagtgtca actggagcag ttgtctccaa cagcatttaa ctcactctcc                                                                   | 1680         |
| agtetteagg tactaaatat gageeacaae aacttettt cattggatae gttteettat                                                                    | 1740         |
| aagtgtctga actccctcca ggttcttgat tacagtctca atcacataat gacttccaaa                                                                   | 1800         |
| aaacaggaac tacagcattt tccaagtagt ctagctttct taaatcttac tcagaatgac                                                                   | 1860         |
| tttgcttgta cttgtgaaca ccagagtttc ctgcaatgga tcaaggacca gaggcagctc                                                                   | 1920         |
| ttggtggaag ttgaacgaat ggaatgtgca acaccttcag ataagcaggg catgcctgtg                                                                   | 1980         |
| ctgagtttga atatcacctg tcagatgaat aagaccatca ttggtgtgtc ggtcctcagt                                                                   | 2040         |
| gtgcttgtag tatctgttgt agcagttctg gtctataagt tctattttca cctgatgctt                                                                   | 2100         |
| cttgctggct gcataaagta tggtagaggt gaaaacatct atgatgcctt tgttatctac                                                                   | 2160         |
| tcaagccagg atgaggactg ggtaaggaat gagctagtaa agaatttaga agaaggggtg                                                                   | 2220         |
| cctccatttc agctctgcct tcactacaga gactttattc ccggtgtggc cattgctgcc                                                                   | 2280         |
| aacatcatcc atgaaggttt ccataaaagc cgaaaggtga ttgttgtggt gtcccagcac                                                                   | 2340         |
| ttcatccaga gccgctggtg tatctttgaa tatgagattg ctcagacctg gcagtttctg                                                                   | 2400         |
| agcagtcgtg ctggtatcat cttcattgtc ctgcagaagg tggagaagac cctgctcagg                                                                   | 2460         |
| cagcaggtgg agctgtaccg ccttctcagc aggaacactt acctggagtg ggaggacagt                                                                   | 2520         |
| gteetgggge ggeacatett etggagaega eteagaaaag eeetgetgga tggtaaatea                                                                   | 2580         |
| tggaatccag aaggaacagt gggtacagga tgcaattggc aggaagcaac atctatctga                                                                   | 2640         |
| agaggaaaaa taaaaacctc ctgaggcatt tcttgcccag ctgggtccaa cacttgttca                                                                   | 2700         |
| gttaataagt attaaatgct gccacatgtc aggccttatg ctaagggtga gtaattccat                                                                   | 2760         |
| ggtgcactag atatgcaggg ctgctaatct caaggagctt ccagtgcaga gggaataaat                                                                   | 2820         |
| gctagactaa aatacagagt cttccaggtg ggcatttcaa ccaactcagt caaggaaccc                                                                   | 2880         |
| atgacaaaga aagtcatttc aactcttacc tcatcaagtt gaataaagac agagaaaaca                                                                   | 2940         |
| gaaagagaca ttgttctttt cctgagtctt ttgaatggaa attgtattat gttatagcca                                                                   | 3000         |
| tcataaaacc attttggtag ttttgactga actgggtgtt cactttttcc tttttgattg                                                                   | 3060         |
| aatacaattt aaattetaet tgatgaetge agtegteaag gggeteetga tgeaagatge                                                                   | 3120         |
| cccttccatt ttaagtctgt ctccttacag aggttaaagt ctagtggcta attcctaagg                                                                   | 3180         |
| aaacctgatt aacacatgct cacaaccatc ctggtcattc tcgagcatgt tctattttt                                                                    | 3240         |
| aactaatcac ccctgatata tttttatttt tatatatcca gttttcattt ttttacgtct                                                                   | 3300         |
| tgcctataag ctaatatcat aaataaggtt gtttaagacg tgcttcaaat atccatatta                                                                   | 3360         |
| accactattt ttcaaggaag tatggaaaag tacactctgt cactttgtca ctcgatgtca                                                                   | 3420         |

ttccaaagtt attgcctact aagtaatgac tgtcatgaaa gcagcattga aataatttgt 3480
ttaaaggggg cactctttta aacgggaaga aaatttccgc ttcctggtct tatcatggac 3540
aatttgggct agaggcagga aggaagtggg atgacctcag gaggtcacct tttcttgatt 3600
ccagaaacat atgggctgat aaacccgggg tgacctcatg aaatgagttg cagcagaagt 3660
ttatttttt cagaacaagt gatgtttgat ggacctctga atctctttag ggagacacag 3720
atggctggga tccctcccct gtacccttct cactgccagg agaacta 3767

<210> 14

<211> 3814

<212> DNA <213> Homo sapiens

<400> 14

cctctcaccc tttagcccag aactgctttg aatacaccaa ttgctgtggg gcggctcgag 60 qaaqaqaaqa caccagtgcc tcagaaactg ctcggtcaga cggtgatagc gagccacgca 120 ttcacagggc cactgctgct cacagaagca gtgaggatga tgccaggatg atgtctgcct 180 cgcgcctggc tgggactctg atcccagcca tggccttcct ctcctgcgtg agaccagaaa 240 gctgggagcc ctgcgtggag gtggttccta atattactta tcaatgcatg gagctgaatt 300 totacaaaat coccqacaac ctccccttct caaccaagaa cctggacctg agctttaatc 360 ccctgaggca tttaggcagc tatagcttct tcagtttccc agaactgcag gtgctggatt 420 tatccaggtg tgaaatccag acaattgaag atggggcata tcagagccta agccacctct 480 ctaccttaat attgacagga aaccccatcc agagtttagc cctgggagcc ttttctggac 540 tatcaagttt acagaagctg gtggctgtgg agacaaatct agcatctcta gagaacttcc 600 ccattggaca tctcaaaact ttgaaagaac ttaatgtggc tcacaatctt atccaatctt 660 tcaaattacc tgagtatttt tctaatctga ccaatctaga gcacttggac ctttccagca 720 780 acaagattca aagtatttat tgcacagact tgcgggttct acatcaaatg cccctactca atctctcttt agacctgtcc ctgaacccta tgaactttat ccaaccaggt gcatttaaag 840 aaattaggct tcataagctg actttaagaa ataattttga tagtttaaat gtaatgaaaa 900 cttgtattca aggtctggct ggtttagaag tccatcgttt ggttctggga gaatttagaa 960 1020 atgaaggaaa cttggaaaag tttgacaaat ctgctctaga gggcctgtgc aatttgacca ttgaagaatt ccgattagca tacttagact actacctcga tgatattatt gacttattta 1080 attqtttqac aaatgtttct tcattttccc tggtgagtgt gactattgaa agggtaaaag 1140 acttttctta taatttcgga tggcaacatt tagaattagt taactgtaaa tttggacagt 1200 1260 ttcccacatt qaaactcaaa tctctcaaaa ggcttacttt cacttccaac aaaggtggga

|            | agaagttgat<br>aggttgctgt |            |            |            |            | 1320<br>1380 |
|------------|--------------------------|------------|------------|------------|------------|--------------|
| atctgagctt | caatggtgtt               | attaccatga | gttcaaactt | cttgggctta | gaacaactag | 1440         |
| aacatctgga | tttccagcat               | tccaatttga | aacaaatgag | tgagttttca | gtattcctat | 1500         |
| cactcagaaa | cctcatttac               | cttgacattt | ctcatactca | caccagagtt | gctttcaatg | 1560         |
| gcatcttcaa | tggcttgtcc               | agtctcgaag | tcttgaaaat | ggctggcaat | tctttccagg | 1620         |
| aaaacttcct | tccagatatc               | ttcacagagc | tgagaaactt | gaccttcctg | gacctctctc | 1680         |
| agtgtcaact | ggagcagttg               | tctccaacag | catttaactc | actctccagt | cttcaggtac | 1740         |
| taaatatgag | ccacaacaac               | ttcttttcat | tggatacgtt | tccttataag | tgtctgaact | 1800         |
| ccctccaggt | tcttgattac               | agtctcaatc | acataatgac | ttccaaaaaa | caggaactac | 1860         |
| agcattttcc | aagtagtcta               | gctttcttaa | atcttactca | gaatgacttt | gcttgtactt | 1920         |
| gtgaacacca | gagtttcctg               | caatggatca | aggaccagag | gcagctcttg | gtggaagttg | 1980         |
| aacgaatgga | atgtgcaaca               | ccttcagata | agcagggcat | gcetgtgetg | agtttgaata | 2040         |
| tcacctgtca | gatgaataag               | accatcattg | gtgtgtcggt | cctcagtgtg | cttgtagtat | 2100         |
| ctgttgtagc | agttctggtc               | tataagttct | attttcacct | gatgcttctt | gctggctgca | 2160         |
| taaagtatgg | tagaggtgaa               | aacatctatg | atgcctttgt | tatctactca | agccaggatg | 2220         |
| aggactgggt | aaggaatgag               | ctagtaaaga | atttagaaga | aggggtgcct | ccatttcagc | 2280         |
| tctgccttca | ctacagagac               | tttattcccg | gtgtggccat | tgctgccaac | atcatccatg | 2340         |
| aaggtttcca | taaaagccga               | aaggtgattg | ttgtggtgtc | ccagcacttc | atccagagcc | 2400         |
| gctggtgtat | ctttgaatat               | gagattgctc | agacctggca | gtttctgagc | agtcgtgctg | 2460         |
| gtatcatctt | cattgtcctg               | cagaaggtgg | agaagaccct | gctcaggcag | caggtggagc | 2520         |
| tgtaccgcct | tctcagcagg               | aacacttacc | tggagtggga | ggacagtgtc | ctggggcggc | 2580         |
| acatcttctg | gagacgactc               | agaaaagccc | tgctggatgg | taaatcatgg | aatccagaag | 2640         |
| gaacagtggg | tacaggatgc               | aattggcagg | aagcaacatc | tatctgaaga | ggaaaaataa | 2700         |
| aaacctcctg | aggcatttct               | tgcccagctg | ggtccaacac | ttgttcagtt | aataagtatt | 2760         |
| aaatgctgcc | acatgtcagg               | ccttatgcta | agggtgagta | attccatggt | gcactagata | 2820         |
| tgcagggctg | ctaatctcaa               | ggagcttcca | gtgcagaggg | aataaatgct | agactaaaat | 2880         |
| acagagtctt | ccaggtgggc               | atttcaacca | actcagtcaa | ggaacccatg | acaaagaaag | 2940         |
| tcatttcaac | tcttacctca               | tcaagttgaa | taaagacaga | gaaaacagaa | agagacattg | 3000         |
| ttetttteet | gagtcttttg               | aatggaaatt | gtattatgtt | atagccatca | taaaaccatt | 3060         |
| ttggtagttt | tgactgaact               | gggtgttcac | tttttccttt | ttgattgaat | acaatttaaa | 3120         |
| ttctacttga | tgactgcagt               | cgtcaagggg | ctcctgatgc | aagatgcccc | ttccatttta | 3180         |

3240 agtotgtoto ottacagagg ttaaagtota gtggotaatt ootaaggaaa cotgattaac acatgctcac aaccatcctg gtcattctcg agcatgttct atttttaac taatcacccc 3300 tgatatattt ttatttttat atatccagtt ttcatttttt tacgtcttgc ctataagcta 3360 atatcataaa taaggttgtt taagacgtgc ttcaaatatc catattaacc actatttttc 3420 aaggaagtat ggaaaagtac actctgtcac tttgtcactc gatgtcattc caaagttatt 3480 gcctactaag taatgactgt catgaaagca gcattgaaat aatttgttta aagggggcac 3540 tcttttaaac gggaagaaaa tttccgcttc ctggtcttat catggacaat ttgggctaga 3600 ggcaggaagg aagtgggatg acctcaggag gtcacctttt cttgattcca gaaacatatg 3660 ggctgataaa cccggggtga cctcatgaaa tgagttgcag cagaagttta ttttttcag 3720 aacaagtgat gtttgatgga cctctgaatc tctttaggga gacacagatg gctgggatcc 3780 3814 ctcccctgta cccttctcac tgccaggaga acta

15 <210> <211> 3934

<212> DNA

<213> Homo spaiens

<400> 15

60 cctctcaccc tttagcccag aactgctttg aatacaccaa ttgctgtggg gcggctcgag gaagagaaga caccagtgcc tcagaaactg ctcggtcaga cggtgatagc gagccacgca 120 180 ttcacagggc cactgctgct cacagaagca gtgaggatga tgccaggatg atgtctgcct cgcgcctggc tgggactctg atcccagcca tggccttcct ctcctgcgtg agaccagaaa 240 gctgggagcc ctgcgtggag acttggccct aaaccacaca gaagagctgg catgaaaccc 300 agagetttea gaeteeggag ceteageeet teaceeegat tecattgett ettgetaaat 360 gctgccgttt tatcacggag gtggttccta atattactta tcaatgcatg gagctgaatt 420 tctacaaaat ccccgacaac ctccccttct caaccaagaa cctggacctg agctttaatc 480 ccctgaggca tttaggcagc tatagcttct tcagtttccc agaactgcag gtgctggatt 540 tatccaggtg tgaaatccag acaattgaag atggggcata tcagagccta agccacctct 600 ctaccttaat attgacagga aaccccatcc agagtttagc cctgggagcc ttttctggac 660 720 tatcaagttt acagaagctg gtggctgtgg agacaaatct agcatctcta gagaacttcc ccattggaca tctcaaaact ttgaaagaac ttaatgtggc tcacaatctt atccaatctt 780 tcaaattacc tgagtatttt tctaatctga ccaatctaga gcacttggac ctttccagca 840 acaagattca aagtatttat tgcacagact tgcgggttct acatcaaatg cccctactca 900 atctctcttt agacctgtcc ctgaacccta tgaactttat ccaaccaggt gcatttaaag 960

Control of the State of the State of

aaattaggct tcataagctg actttaagaa ataattttga tagtttaaat gtaatgaaaa 1020 cttgtattca aggtctggct ggtttagaag tccatcgttt ggttctggga gaatttagaa 1080 atgaaggaaa cttggaaaag tttgacaaat ctgctctaga gggcctgtgc aatttgacca 1140 ttgaagaatt ccgattagca tacttagact actacctcga tgatattatt gacttattta 1200 attgtttgac aaatgtttct tcattttccc tggtgagtgt gactattgaa agggtaaaag 1260 acttttctta taatttcgga tggcaacatt tagaattagt taactgtaaa ttttggacagt 1320 ttcccacatt gaaactcaaa tctctcaaaa ggcttacttt cacttccaac aaaggtggga 1380 atgettttte agaagttgat etaccaagee ttgagtttet agateteagt agaaatgget 1440 tgagtttcaa aggttgctgt tctcaaagtg attttgggac aaccagccta aagtatttag 1500 atctgagett caatggtgtt attaccatga gttcaaactt cttgggetta gaacaactag 1560 aacatctgga tttccagcat tccaatttga aacaaatgag tgagttttca gtattcctat 1620 cactcagaaa cctcatttac cttgacattt ctcatactca caccagagtt gctttcaatg 1680 gcatcttcaa tggcttgtcc agtctcgaag tcttgaaaat ggctggcaat tctttccagg 1740 aaaacttcct tccagatatc ttcacagagc tgagaaactt gaccttcctg gacctctctc 1800 agtgtcaact ggagcagttg tctccaacag catttaactc actctccagt cttcaggtac 1860 taaatatgag ccacaacaac ttcttttcat tggatacgtt tccttataag tqtctqaact 1920 ccctccaggt tcttgattac agtctcaatc acataatgac ttccaaaaaa caqqaactac 1980 agcattttcc aagtagtcta gctttcttaa atcttactca gaatgacttt gcttgtactt 2040 gtgaacacca gagtttcctg caatggatca aggaccagag gcagctcttg gtggaagttg 2100 aacgaatgga atgtgcaaca ccttcagata agcagggcat gcctgtgctg agtttgaata 2160 tcacctgtca gatgaataag accatcattg gtgtgtcggt cctcagtgtg cttgtagtat 2220 ctgttgtagc agttctggtc tataagttct attttcacct gatgcttctt gctqqctqca 2280 taaagtatgg tagaggtgaa aacatctatg atgcctttgt tatctactca agccaggatg 2340 aggactgggt aaggaatgag ctagtaaaga atttagaaga aggggtgcct ccatttcagc 2400 tetgeettea etacagagae tttatteeeg gtgtggeeat tgetgeeaac atcatecatg 2460 aaggtttcca taaaagccga aaggtgattg ttgtggtgtc ccagcacttc atccagagcc 2520 gctggtgtat ctttgaatat gagattgctc agacctggca gtttctgagc agtcgtgctg 2580 gtatcatctt cattgtcctg cagaaggtgg agaagaccct gctcaggcag caggtggagc 2640 tgtaccgcct tctcagcagg aacacttacc tggagtggga ggacagtgtc ctqqqqcqqc 2700 acatettetg gagacgaete agaaaageee tgetggatgg taaateatgg aateeagaag 2760 gaacagtggg tacaggatgc aattggcagg aagcaacatc tatctgaaga ggaaaaataa 2820 aaacctcctg aggcatttct tgcccagctg ggtccaacac ttgttcagtt aataagtatt 2880

Control of Control of the Set ASSAME (And Assault)

aaatgctgcc acatgtcagg ccttatgcta agggtgagta attccatggt gcactagata 2940 3000 tgcagggctg ctaatctcaa ggagcttcca gtgcagaggg aataaatgct agactaaaat acagagtett ccaggtggge atttcaacca actcagtcaa ggaacccatg acaaagaaag 3060 tcatttcaac tcttacctca tcaagttgaa taaagacaga gaaaacagaa agagacattg 3120 ttcttttcct gagtcttttg aatggaaatt gtattatgtt atagccatca taaaaccatt 3180 ttggtagttt tgactgaact gggtgttcac tttttccttt ttgattgaat acaatttaaa 3240 ttctacttga tgactgcagt cgtcaagggg ctcctgatgc aagatgcccc ttccatttta 3300 agtotgtoto ottacagagg ttaaagtota gtggotaatt ootaaggaaa ootgattaac 3360 acatgeteae aaceateetg gteatteteg ageatgttet attttttaae taateaeeee 3420 tgatatattt ttatttttat atatccagtt ttcatttttt tacgtcttgc ctataagcta 3480 atatcataaa taaggttgtt taagacgtgc ttcaaatatc catattaacc actattttc 3540 aaggaagtat ggaaaagtac actotgtcac tttgtcactc gatgtcattc caaagttatt 3600 gcctactaag taatgactgt catgaaagca gcattgaaat aatttgttta aagggggcac 3660 tcttttaaac gggaagaaaa tttccgcttc ctggtcttat catggacaat ttgggctaga 3720 ggcaggaagg aagtgggatg acctcaggag gtcacctttt cttgattcca gaaacatatg 3780 ggctgataaa cccggggtga cctcatgaaa tgagttgcag cagaagttta tttttttcag 3840 3900 aacaagtgat gtttgatgga cctctgaatc tctttaggga gacacagatg gctgggatcc 3934 ctccctgta cccttctcac tgccaggaga acta

<210> 16

<211> 839

<212> PRT

<213> Homo sapiens

na kirakan bigiri da kabupatén na matra kitan kabupatén kabupatèn kabupatén kabupatèn kabupatèn Kabupatèn Kabu

<400> 16

Met Met Ser Ala Ser Arg Leu Ala Gly Thr Leu Ile Pro Ala Met Ala 1 5 10 15

Phe Leu Ser Cys Val Arg Pro Glu Ser Trp Glu Pro Cys Val Glu Val 20 25 30

Val Pro Asn Ile Thr Tyr Gln Cys Met Glu Leu Asn Phe Tyr Lys Ile 35 40 45

Pro Asp Asn Leu Pro Phe Ser Thr Lys Asn Leu Asp Leu Ser Phe Asn 50. 55 60

Pro Leu Arg His Leu Gly Ser Tyr Ser Phe Phe Ser Phe Pro Glu Leu 65 70 75 80

Gln Val Leu Asp Leu Ser Arg Cys Glu Ile Gln Thr Ile Glu Asp Gly 85 90 95

Ala Tyr Gln Ser Leu Ser His Leu Ser Thr Leu Ile Leu Thr Gly Asn Pro Ile Gln Ser Leu Ala Leu Gly Ala Phe Ser Gly Leu Ser Ser Leu Gln Lys Leu Val Ala Val Glu Thr Asn Leu Ala Ser Leu Glu Asn Phe 135 Pro Ile Gly His Leu Lys Thr Leu Lys Glu Leu Asn Val Ala His Asn Leu Ile Gln Ser Phe Lys Leu Pro Glu Tyr Phe Ser Asn Leu Thr Asn 170 Leu Glu His Leu Asp Leu Ser Ser Asn Lys Ile Gln Ser Ile Tyr Cys Thr Asp Leu Arg Val Leu His Gln Met Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn Phe Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr Leu Arg Asn Asn Phe Asp Ser Leu 225 230 235 Asn Val Met Lys Thr Cys Ile Gln Gly Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg Asn Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu Cys Asn Leu Thr Ile Glu Glu Phe 280 Arg Leu Ala Tyr Leu Asp Tyr Tyr Leu Asp Asp Ile Ile Asp Leu Phe 295 Asn Cys Leu Thr Asn Val Ser Ser Phe Ser Leu Val Ser Val Thr Ile 315 Glu Arg Val Lys Asp Phe Ser Tyr Asn Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln Phe Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser Asn Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu Phe Leu Asp Leu Ser Arg Asn Gly 375 Leu Ser Phe Lys Gly Cys Cys Ser Gln Ser Asp Phe Gly Thr Thr Ser 390 Leu Lys Tyr Leu Asp Leu Ser Phe Asn Gly Val Ile Thr Met Ser Ser 410 Asn Phe Leu Gly Leu Glu Glu Leu Glu His Leu Asp Phe Gln His Ser

430 425 Asn Leu Lys Gln Met Ser Glu Phe Ser Val Phe Leu Ser Leu Arg Asn 440 Leu Ile Tyr Leu Asp Ile Ser His Thr His Thr Arg Val Ala Phe Asn 455 Gly Ile Phe Asn Gly Leu Ser Ser Leu Glu Val Leu Lys Met Ala Gly 470 475 Asn Ser Phe Gln Glu Asn Phe Leu Pro Asp Ile Phe Thr Glu Leu Arg 490 485 Asn Leu Thr Phe Leu Asp Leu Ser Gln Cys Gln Leu Glu Gln Leu Ser 505 500 Pro Thr Ala Phe Asn Ser Leu Ser Ser Leu Gln Val Leu Asn Met Ser 520 His Asn Asn Phe Phe Ser Leu Asp Thr Phe Pro Tyr Lys Cys Leu Asn Ser Leu Gln Val Leu Asp Tyr Ser Leu Asn His Ile Met Thr Ser Lys 555 Lys Gln Glu Leu Gln His Phe Pro Ser Ser Leu Ala Phe Leu Asn Leu Thr Gln Asn Asp Phe Ala Cys Thr Cys Glu His Gln Ser Phe Leu Gln 585 Trp Ile Lys Asp Gln Arg Gln Leu Leu Val Glu Val Glu Arg Met Glu Cys Ala Thr Pro Ser Asp Lys Gln Gly Met Pro Val Leu Ser Leu Asn 615 Ile Thr Cys Gln Met Asn Lys Thr Ile Ile Gly Val Ser Val Leu Ser 635 Val Leu Val Val Ser Val Val Ala Val Leu Val Tyr Lys Phe Tyr Phe 650 His Leu Met Leu Leu Ala Gly Cys Ile Lys Tyr Gly Arg Gly Glu Asn 665 Ile Tyr Asp Ala Phe Val Ile Tyr Ser Ser Gln Asp Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Pro Phe Gln Leu Cys Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile Ile His Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val Val Ser Gln His Phe Ile Gln Ser Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu Ser Ser Arg Ala Gly Ile Ile Phe

755 760 765

Ile Val Leu Gln Lys Val Glu Lys Thr Leu Leu Arg Gln Gln Val Glu
770 775 780

Leu Tyr Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Ser 785 790 795 800

Val Leu Gly Arg His Ile Phe Trp Arg Arg Leu Arg Lys Ala Leu Leu 805 810 815

Asp Gly Lys Ser Trp Asn Pro Glu Gly Thr Val Gly Thr Gly Cys Asn 820 825 830

Trp Gln Glu Ala Thr Ser Ile 835

<210> 17

<211> 782

<212> PRT

<213> Homo sapiens

<400> 17

Met Lys Pro Arg Ala Phe Arg Leu Arg Ser Leu Ser Pro Ser Pro Arg 1 5 10 15

Phe His Cys Phe Leu Leu Asn Ala Ala Val Leu Ser Arg Arg Cys Glu 20 25 30

Ile Gln Thr Ile Glu Asp Gly Ala Tyr Gln Ser Leu Ser His Leu Ser 35 40 45

Thr Leu Ile Leu Thr Gly Asn Pro Ile Gln Ser Leu Ala Leu Gly Ala 50 55 60

Phe Ser Gly Leu Ser Ser Leu Gln Lys Leu Val Ala Val Glu Thr Asn 65 70 75 80

Leu Ala Ser Leu Glu Asn Phe Pro Ile Gly His Leu Lys Thr Leu Lys 85 90 95

Glu Leu Asn Val Ala His Asn Leu Ile Gln Ser Phe Lys Leu Pro Glu 100 105 110

Tyr Phe Ser Asn Leu Thr Asn Leu Glu His Leu Asp Leu Ser Ser Asn 115 120 125

Lys Ile Gln Ser Ile Tyr Cys Thr Asp Leu Arg Val Leu His Gln Met 130 135 140

Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn Phe 145 150 155 160

Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr Leu 165 170 175

Arg Asn Asn Phe Asp Ser Leu Asn Val Met Lys Thr Cys Ile Gln Gly 180 185 190

Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg Asn 195 200 205

32/231

વારો માના માર્ચામાં મુખ્ય કે હોય કે અનુ મોલાવા માટા મારા એ જિલ્લો કે જિલ્લો કરે હોઈ છે. મારા મારા મારા મારા મા

Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu Cys Asn Leu Thr Ile Glu Glu Phe Arg Leu Ala Tyr Leu Asp Tyr Tyr Leu 230 Asp Asp Ile Ile Asp Leu Phe Asn Cys Leu Thr Asn Val Ser Ser Phe Ser Leu Val Ser Val Thr Ile Glu Arg Val Lys Asp Phe Ser Tyr Asn Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln Phe 280 Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser Asn Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu Phe 315 Leu Asp Leu Ser Arg Asn Gly Leu Ser Phe Lys Gly Cys Cys Ser Gln Ser Asp Phe Gly Thr Thr Ser Leu Lys Tyr Leu Asp Leu Ser Phe Asn Gly Val Ile Thr Met Ser Ser Asn Phe Leu Gly Leu Glu Gln Leu Glu His Leu Asp Phe Gln His Ser Asn Leu Lys Gln Met Ser Glu Phe Ser Val Phe Leu Ser Leu Arg Asn Leu Ile Tyr Leu Asp Ile Ser His Thr His Thr Arg Val Ala Phe Asn Gly Ile Phe Asn Gly Leu Ser Ser Leu Glu Val Leu Lys Met Ala Gly Asn Ser Phe Gln Glu Asn Phe Leu Pro Asp Ile Phe Thr Glu Leu Arg Asn Leu Thr Phe Leu Asp Leu Ser Gln 440 Cys Gln Leu Glu Gln Leu Ser Pro Thr Ala Phe Asn Ser Leu Ser Ser 455 Leu Gln Val Leu Asn Met Ser His Asn Asn Phe Phe Ser Leu Asp Thr 465 Phe Pro Tyr Lys Cys Leu Asn Ser Leu Gln Val Leu Asp Tyr Ser Leu Asn His Ile Met Thr Ser Lys Lys Gln Glu Leu Gln His Phe Pro Ser Ser Leu Ala Phe Leu Asn Leu Thr Gln Asn Asp Phe Ala Cys Thr Cys 520 Glu His Gln Ser Phe Leu Gln Trp Ile Lys Asp Gln Arg Gln Leu Leu

535 Val Glu Val Glu Arg Met Glu Cys Ala Thr Pro Ser Asp Lys Gln Gly 550· 555 Met Pro Val Leu Ser Leu Asn Ile Thr Cys Gln Met Asn Lys Thr Ile Ile Gly Val Ser Val Leu Ser Val Leu Val Val Ser Val Val Ala Val Leu Val Tyr Lys Phe Tyr Phe His Leu Met Leu Leu Ala Gly Cys Ile Lys Tyr Gly Arg Gly Glu Asn Ile Tyr Asp Ala Phe Val Ile Tyr Ser Ser Gln Asp Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Pro Phe Gln Leu Cys Leu His Tyr Arg Asp Phe Ile 650 Pro Gly Val Ala Ile Ala Ala Asn Ile Ile His Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val Val Ser Gln His Phe Ile Gln Ser Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu Ser Ser Arg Ala Gly Ile Ile Phe Ile Val Leu Gln Lys Val Glu Lys Thr Leu Leu Arg Gln Gln Val Glu Leu Tyr Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Ser Val Leu Gly Arg His Ile Phe Trp Arg Arg Leu Arg Lys Ala Leu Leu Asp Gly Lys Ser Trp Asn Pro Glu Gly Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr Ser Ile 775 <210> 18 <211> 799 <212> PRT <213> Homo sapiens <400> 18 Met Glu Leu Asn Phe Tyr Lys Ile Pro Asp Asn Leu Pro Phe Ser Thr 10 Lys Asn Leu Asp Leu Ser Phe Asn Pro Leu Arg His Leu Gly Ser Tyr

Ser Phe Phe Ser Phe Pro Glu Leu Gln Val Leu Asp Leu Ser Arg Cys

and an the color of the first and a section measures and the first properties for the section of the section of

Glu Ile Gln Thr Ile Glu Asp Gly Ala Tyr Gln Ser Leu Ser His Leu Ser Thr Leu Ile Leu Thr Gly Asn Pro Ile Gln Ser Leu Ala Leu Gly Ala Phe Ser Gly Leu Ser Ser Leu Gln Lys Leu Val Ala Val Glu Thr Asn Leu Ala Ser Leu Glu Asn Phe Pro Ile Gly His Leu Lys Thr Leu 105 100 Lys Glu Leu Asn Val Ala His Asn Leu Ile Gln Ser Phe Lys Leu Pro 120 Glu Tyr Phe Ser Asn Leu Thr Asn Leu Glu His Leu Asp Leu Ser Ser 135 Asn Lys Ile Gln Ser Ile Tyr Cys Thr Asp Leu Arg Val Leu His Gln 155 Met Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn Phe Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr Leu Arg Asn Asn Phe Asp Ser Leu Asn Val Met Lys Thr Cys Ile Gln 200 Gly Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg Asn Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu Cys Asn Leu Thr Ile Glu Glu Phe Arg Leu Ala Tyr Leu Asp Tyr Tyr Leu Asp Asp Ile Ile Asp Leu Phe Asn Cys Leu Thr Asn Val Ser Ser Phe Ser Leu Val Ser Val Thr Ile Glu Arg Val Lys Asp Phe Ser Tyr 280 Asn Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln 295

Phe Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser 305 310 315 320

Asn Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu 325 330 335

Phe Leu Asp Leu Ser Arg Asn Gly Leu Ser Phe Lys Gly Cys Cys Ser 340 345 350

Gln Ser Asp Phe Gly Thr Thr Ser Leu Lys Tyr Leu Asp Leu Ser Phe 355 360 365

Asn Gly Val Ile Thr Met Ser Ser Asn Phe Leu Gly Leu Glu Gln Leu

ranger en kangaran di kangangkan di kangang bangan di kangang bangan di kangang kangang kangan di Kangang Kang

|            | His        | Leu        | Asp        | Phe        |            | His        | Ser               | Asn        | Leu        | _                 | Gln        | Met        | Ser        | Glu        |            |
|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|-------------------|------------|------------|------------|------------|------------|
| 385        |            |            |            |            | 390        |            |                   |            |            | 395               |            |            |            |            | 400        |
| Ser        | Val        | Phe        | Leu        | Ser<br>405 | Leu        | Arg        | Asn               | Leu        | Ile<br>410 | Tyr               | Leu        | Asp        | Ile        | Ser<br>415 | His        |
| Thr        | His        | Thr        | Arg<br>420 | Val        | Ala        | Phe        | Asn               | Gly<br>425 | Ile        | Phe               | Asn        | Gly        | Leu<br>430 | Ser        | Ser        |
| Leu        | Glu        | Val<br>435 | Leu        | Lys        | Met        | Ala        | Gly<br>440        | Asn        | Ser        | Phe               | Gln        | Glu<br>445 | Asn        | Phe        | Leu        |
| Pro        | Asp<br>450 | Ile        | Phe        | Thr        | Glu        | Leu<br>455 | Arg               | Asn        | Leu        | Thr               | Phe<br>460 | Leu        | Asp        | Leu        | Ser        |
| Gln<br>465 | Cys        | Gln        | Leu        | Glu        | Gln<br>470 | Leu        | Ser               | Pro        | Thr        | Ala<br>475        | Phe        | Asn        | Ser        | Leu        | Ser<br>480 |
| Ser        | Leu        | Gln        | Val        | Leu<br>485 | Asn        | Met        | Ser               | His        | Asn<br>490 | Asn               | Phe        | Phe        | Ser        | Leu<br>495 | qaA        |
| Thr        | Phe        | Pro        | Tyr<br>500 | Lys        | Сув        | Leu        | Asn               | Ser<br>505 | Leu        | Gln               | Val        | Leu        | Asp<br>510 | Tyr        | Ser        |
| Leu        | Asn        | His<br>515 | Ile        | Met        | Thr        | Ser        | <b>Lys</b><br>520 | Lys        | Ģln        | Glu               | Leu        | Gln<br>525 | His        | Phe        | Pro        |
| Ser        | Ser<br>530 | Leu        | Ala        | Phe        | Leu        | Asn<br>535 | Leu               | Thr        | Gln        | Asn               | Asp<br>540 | Phe        | Ala        | Cys        | Thr        |
| Cys<br>545 | Glu        | His        | Gln        | Ser        | Phe<br>550 | Leu        | Gln               | Trp        | Ile        | <b>Lys</b><br>555 | Asp        | Gln        | Arg        | Gln        | Leu<br>560 |
| Leu        | Val        | Glu        | Val        | Glu<br>565 | Arg        | Met        | Glu               | Сув        | Ala<br>570 | Thr               | Pro        | Ser        | Asp        | Lуs<br>575 | Gln        |
| Gly        | Met        | Pro        | Val<br>580 | Leu        | Ser        | Leu        | Asn               | Ile<br>585 | Thr        | Сув               | Gln        | Met        | Asn<br>590 | Lys        | Thr        |
| Ile        | Ile        | Gly<br>595 | Val        | Ser        | Val        | Leu        | Ser<br>600        | Val        | Leu        | Val               | Val        | Ser<br>605 | Val        | Val        | Ala        |
| Val        | Leu<br>610 | Val        | Tyr        | Lys        | Phe        | Tyr<br>615 | Phe               | His        | Leu        | Met               | Leu<br>620 | Leu        | Ala        | Gly        | Сув        |
| Ile<br>625 | Lys        | Tyr        | Gly        | Arg        | Gly<br>630 | Glu        | Asn               | Ile        | Tyr        | Asp<br>635        | Ala        | Phe        | Val        | Ile        | Tyr<br>640 |
| Ser        | Ser        | Gln        | Asp        | Glu<br>645 | Asp        | Trp        | Val               | Arg        | Asn<br>650 | Glu               | Leu        | Val        | Lys        | Asn<br>655 | Leu        |
| Glu        | Glu        | Gly        | Val<br>660 | Pro        | Pro        | Phe        | Gln               | Leu<br>665 | Cys        | Leu               | His        | Tyr        | Arg<br>670 | Asp        | Phe        |
| Ile        | Pro        | Gly<br>675 | Val        | Ala        | Ile        | Ala        | Ala<br>680        | Asn        | Ile        | Ile               | His        | Glu<br>685 | Gly        | Phe        | His        |
| Lys        | Ser<br>690 | Arg        | Lys        | Val        | Ile        | Val<br>695 | Val               | Val        | Ser        | Gln               | His<br>700 | Phe        | Ile        | Gln        | Ser        |
| Arg        | Trp        | Сув        | Ile        | Phe        | Glu        | Tyr        | Glu               | Ile        | Ala        | Gln               | Thr        | Trp        | Gln        | Phe        | Leu        |

36/231

705 710 715 720 Ser Ser Arg Ala Gly Ile Ile Phe Ile Val Leu Gln Lys Val Glu Lys 725 730 735

S. Signification of the second control of the second secon

Thr Leu Leu Arg Gln Gln Val Glu Leu Tyr Arg Leu Leu Ser Arg Asn 740 745 750

Thr Tyr Leu Glu Trp Glu Asp Ser Val Leu Gly Arg His Ile Phe Trp
755 760 765

Arg Leu Arg Lys Ala Leu Leu Asp Gly Lys Ser Trp Asn Pro Glu
770 780

Gly Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr Ser Ile 785 790 795

<210> 19

<211> 639

<212> PRT

<213> Homo sapiens

<400> 19

Met Pro Leu Leu Asn Leu Ser Leu Asp Leu Ser Leu Asn Pro Met Asn 1 5 10 15

Phe Ile Gln Pro Gly Ala Phe Lys Glu Ile Arg Leu His Lys Leu Thr 20 25 30

Leu Arg Asn Asn Phe Asp Ser Leu Asn Val Met Lys Thr Cys Ile Gln 35 40 45

Gly Leu Ala Gly Leu Glu Val His Arg Leu Val Leu Gly Glu Phe Arg 50 55 60

Asn Glu Gly Asn Leu Glu Lys Phe Asp Lys Ser Ala Leu Glu Gly Leu 65 70 75 80

Cys Asn Leu Thr Ile Glu Glu Phe Arg Leu Ala Tyr Leu Asp Tyr Tyr 85 90 95

Leu Asp Asp Ile Ile Asp Leu Phe Asn Cys Leu Thr Asn Val Ser Ser 100 105 110

Phe Ser Leu Val Ser Val Thr Ile Glu Arg Val Lys Asp Phe Ser Tyr 115 120 125

Asn Phe Gly Trp Gln His Leu Glu Leu Val Asn Cys Lys Phe Gly Gln 130 135 140

Phe Pro Thr Leu Lys Leu Lys Ser Leu Lys Arg Leu Thr Phe Thr Ser 145 150 155 160

Asn Lys Gly Gly Asn Ala Phe Ser Glu Val Asp Leu Pro Ser Leu Glu
165 170 175

Phe Leu Asp Leu Ser Arg Asn Gly Leu Ser Phe Lys Gly Cys Cys Ser 180 185 190

Gln Ser Asp Phe Gly Thr Thr Ser Leu Lys Tyr Leu Asp Leu Ser Phe 195 200 205

Asn Gly Val Ile Thr Met Ser Ser Asn Phe Leu Gly Leu Glu Gln Leu Glu His Leu Asp Phe Gln His Ser Asn Leu Lys Gln Met Ser Glu Phe 230 Ser Val Phe Leu Ser Leu Arg Asn Leu Ile Tyr Leu Asp Ile Ser His 250 Thr His Thr Arg Val Ala Phe Asn Gly Ile Phe Asn Gly Leu Ser Ser 265 Leu Glu Val Leu Lys Met Ala Gly Asn Ser Phe Gln Glu Asn Phe Leu Pro Asp Ile Phe Thr Glu Leu Arg Asn Leu Thr Phe Leu Asp Leu Ser 295 Gln Cys Gln Leu Glu Gln Leu Ser Pro Thr Ala Phe Asn Ser Leu Ser 315 Ser Leu Gln Val Leu Asn Met Ser His Asn Asn Phe Phe Ser Leu Asp 330 Thr Phe Pro Tyr Lys Cys Leu Asn Ser Leu Gln Val Leu Asp Tyr Ser Leu Asn His Ile Met Thr Ser Lys Lys Gln Glu Leu Gln His Phe Pro Ser Ser Leu Ala Phe Leu Asn Leu Thr Gln Asn Asp Phe Ala Cys Thr 375 Cys Glu His Gln Ser Phe Leu Gln Trp Ile Lys Asp Gln Arg Gln Leu Leu Val Glu Val Glu Arg Met Glu Cys Ala Thr Pro Ser Asp Lys Gln Gly Met Pro Val Leu Ser Leu Asn Ile Thr Cys Gln Met Asn Lys Thr Ile Ile Gly Val Ser Val Leu Ser Val Leu Val Val Ser Val Val Ala Val Leu Val Tyr Lys Phe Tyr Phe His Leu Met Leu Leu Ala Gly Cys 455 Ile Lys Tyr Gly Arg Gly Glu Asn Ile Tyr Asp Ala Phe Val Ile Tyr 475 Ser Ser Gln Asp Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Pro Phe Gln Leu Cys Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile Ile His Glu Gly Phe His 520 Lys Ser Arg Lys Val Ile Val Val Val Ser Gln His Phe Ile Gln Ser

and the contraction of the contr

530 535 540 Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu 545 550 555 560

त्र न पश्चित्र के अवस्थान कर्म के अधिक प्रकृति के अधिक एक किस्तार के एक प्रकृति के विकास करें हैं। एक अस्तार स

Ser Ser Arg Ala Gly Ile Ile Phe Ile Val Leu Gln Lys Val Glu Lys 565 570 575

Thr Leu Leu Arg Gln Gln Val Glu Leu Tyr Arg Leu Leu Ser Arg Asn 580 585 590

Thr Tyr Leu Glu Trp Glu Asp Ser Val Leu Gly Arg His Ile Phe Trp 595 600 605

Arg Arg Leu Arg Lys Ala Leu Leu Asp Gly Lys Ser Trp Asn Pro Glu 610 615 620

Gly Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr Ser Ile 625 630 635

<210> 20

<211> 3866

<212> DNA

<213> murine

<400> 20

ctggttgcag aaaatgccag gatgatgcct ccctggctcc tggctaggac tctgatcatg 60 gcactgttct tctcctgcct gacaccagga agcttgaatc cctgcataga ggtagttcct 120 aatattacct accaatgcat ggatcagaaa ctcagcaaag tccctgatga cattccttct 180 tcaaccaaqa acataqatct gagettcaac ceettgaaga tettaaaaaag etatagette 240 tccaattttt cagaacttca gtggctggat ttatccaggt gtgaaattga aacaattgaa 300 360 gacaaggcat ggcatggctt acaccacctc tcaaacttga tactgacagg aaaccctatc cagaqttttt ccccaggaag tttctctgga ctaacaagtt tagagaatct ggtggctgtg 420 480 qaqacaaaat tggcctctct agaaagcttc cctattggac agcttataac cttaaagaaa ctcaatqtqq ctcacaattt tatacattcc tgtaagttac ctgcatattt ttccaatctg 540 acgaacctag tacatgtgga tctttcttat aactatattc aaactattac tgtcaacgac 600 ttacagtttc tacgtgaaaa tccacaagtc aatctctctt tagacatgtc tttgaaccca 660 attqacttca ttcaagacca agcctttcag ggaattaagc tccatgaact gactctaaga 720 qqtaatttta ataqctcaaa tataatgaaa acttgccttc aaaacctggc tggtttacac 780 qtccatcqqt tqatcttqqq aqaatttaaa qatgaaaqga atctggaaat ttttgaaccc 840 tctatcatgg aaggactatg tgatgtgacc attgatgagt tcaggttaac atatacaaat 900 gatttttcag atgatattgt taagttccat tgcttggcga atgtttctgc aatgtctctg 960 qcaqqtgtat ctataaaata tctagaagat gttcctaaac atttcaaatg gcaatcctta 1020 tcaatcatta gatgtcaact taagcagttt ccaactctgg atctaccctt tcttaaaagt 1080

| ttgactttaa<br>agctatctag | ctatgaacaa<br>atcttagtag | agggtctatc<br>aaatgcactg | agttttaaaa<br>agctttagtg | aagtggccct<br>gttgctgttc | accaagtctc<br>ttattctgat | 1140<br>1200 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| ttgggaacaa               | acagcctgag               | acacttagac               | ctcagcttca               | atggtgccat               | cattatgagt               | 1260         |
| gccaatttca               | tgggtctaga               | agagctgcag               | cacctggatt               | ttcagcactc               | tactttaaaa               | 1320         |
| agggtcacag               | aattctcagc               | gttcttatcc               | cttgaaaagc               | tactttacct               | tgacatctct               | 1380         |
| tatactaaca               | ccaaaattga               | cttcgatggt               | atatttcttg               | gcttgaccag               | tctcaacaca               | 1440         |
| ttaaaaatgg               | ctggcaattc               | ttţcaaagac               | aacacccttt               | caaatgtctt               | tgcaaacaca               | 1500         |
| acaaacttga               | cattcctgga               | tctttctaaa               | tgtcaattgg               | aacaaatatc               | ttggggggta               | 1560         |
| tttgacaccc               | tccatagact               | tcaattatta               | aatatgagtc               | acaacaatct               | attgtttttg               | 1620         |
| gattcatccc               | attataacca               | gctgtattcc               | ctcagcactc               | ttgattgcag               | tttcaatcgc               | 1680         |
| atagagacat               | ctaaaggaat               | actgcaacat               | tttccaaaga               | gtctagcctt               | cttcaatctt               | 1740         |
| actaacaatt               | ctgttgcttg               | tatatgtgaa               | catcagaaat               | tcctgcagtg               | ggtcaaggaa               | 1800         |
| cagaagcagt               | tcttggtgaa               | tgttgaacaa               | atgacatgtg               | caacacctgt               | agagatgaat               | 1860         |
| acctccttag               | tgttggattt               | taataattct               | acctgttata               | tgtacaagac               | aatcatcagt               | 1920         |
| gtgtcagtgg               | tcagtgtgat               | tgtggtatcc               | actgtagcat               | ttctgatata               | ccacttctat               | 1980         |
| tttcacctga               | tacttattgc               | tggctgtaaa               | aagtacagca               | gaggagaaag               | catctatgat               | 2040         |
| gcatttgtga               | tctactcgag               | tcagaatgag               | gactgggtga               | gaaatgagct               | ggtaaagaat               | 2100         |
| ttagaagaag               | gagtgccccg               | ctttcacctc               | tgccttcact               | acagagactt               | tattcctggt               | 2160         |
| gtagccattg               | ctgccaacat               | catccaggaa               | ggcttccaca               | agagccggaa               | ggttattgtg               | 2220         |
| gtagtgtcta               | gacactttat               | tcagagccgt               | tggtgtatct               | ttgaatatga               | gattgctcaa               | 2280         |
| acatggcagt               | ttctgagcag               | ccgctctggc               | atcatcttca               | ttgtccttga               | gaaggttgag               | 2340         |
| aagtccctgc               | tgaggcagca               | ggtggaattg               | tatcgccttc               | ttagcagaaa               | cacctacctg               | 2400         |
| gaatgggagg               | acaatcctct               | ggggaggcac               | atcttctgga               | gaagacttaa               | aaatgcccta               | 2460         |
| ttggatggaa               | aagcctcgaa               | tcctgagcaa               | acagcagagg               | aagaacaaga               | aacggcaact               | 2520         |
| tggacctgag               | gagaacaaaa               | ctctggggcc               | taaacccagt               | ctgtttgcaa               | ttaataaatg               | 2580         |
| ctacagctca               | cctggggctc               | tgctatggac               | cgagagccca               | tggaacacat               | ggctgctaag               | 2640         |
| ctatagcatg               | gaccttaccg               | ggcagaagga               | agtagcactg               | acaccttcct               | ttccaggggt               | 2700         |
| atgaattacc               | taactcggga               | aaagaaacat               | aatccagaat               | ctttaccttt               | aatctgaagg               | 2760         |
| agaagaggct               | aaggcctagt               | gagaacagaa               | aggagaacca               | gtcttcactg               | ggccttttga               | 2820         |
| atacaagcca               | tgtcatgttc               | tgtgtttcag               | ttgctttaga               | agagtattga               | tagtttcaac               | 2880         |
| tgaactgaac               | ggtttcttac               | tttccctttt               | ttctactgaa               | tgcaatatta               | aatagctctt               | 2940         |
| tttgagaggt               | cttcattcca               | atttcatctt               | ccattttatg               | tcattttctt               | ttcttttttg               | 3000         |

to provide the state of the contraction of the state of t

3060 tttttatcta attctataag aaatatgatt gatacacgct cacagatagc ctggccaatc ctaagaatqc tatatttatt aaatacaatt cctagtatac ttttactttt ataaattcag 3120 3180 ttatcgtttt tcatgccttg actataaact aatatcataa ataagattgt tacaggtatg ctaaqaaqqc ccatatttga ctataatttt ttaagaaagt atataaaata tactttgtca 3240 tattgtcact gaatgtcatt cttaagttat tacctaagtt atggatgtca cagagtcagt 3300 qttaaaaata atttggttga tagaaatatt tttaatcagg agggaaaagt ggagaggggt 3360 qcaqqaacaq aaatcatgat ttcatcattt attcttgatt tttccggaag ttcacatagc 3420 tgaatgacaa gactacatat getgeaactg atgtteette teateaagga taetetetga 3480 3540 acttgagaac attttgggga ggaagaaagg tctaacatcc ttttccttca tcattctcat ttctggacat gccttgtgag atggatcaat gttgggagta cacatttctg ctttcacctt 3600 3660 atgtacatat atgaacctgt acatgtgttt aagtttaaag agaaaatagt gtacagagca 3720 ggtgtatatt tgtgataggg ctttaaatag ttgagctaat tcagaaaagt atggaggttt 3780 cttggtaaac caaaccaaaa gtagaatcat tacaagatct aacaataaaa attttgaaaa 3840 3866 aaaaaaaaa aaaaaaaaa aaaaaa

<210> 21

<211> 2520

<212> DNA

<213> murine

<400> 21 atgatgcctc cctggctcct ggctaggact ctgatcatgg cactgttctt ctcctgcctg 60 acaccaggaa gettgaatee etgeatagag gtagtteeta atattaeeta ecaatgeatg 120 gatcagaaac tcagcaaagt ccctgatgac attccttctt caaccaagaa catagatctg 180 agetteaace cettgaagat ettaaaaage tatagettet eeaatttte agaactteag 240 tggctggatt tatccaggtg tgaaattgaa acaattgaag acaaggcatg gcatggctta 300 360 caccacctct caaacttgat actgacagga aaccctatcc agagtttttc cccaggaagt ttctctggac taacaagttt agagaatctg gtggctgtgg agacaaaatt ggcctctcta 420 480 gaaagcttcc ctattggaca gcttataacc ttaaagaaac tcaatgtggc tcacaatttt atacattcct gtaagttacc tgcatatttt tccaatctga cgaacctagt acatgtggat 540 ctttcttata actatattca aactattact gtcaacgact tacagtttct acgtgaaaat 600 ccacaagtca atctctcttt agacatatct ttgaacccaa ttgacttcat tcaagaccaa 660 gcctttcagg gaattaagct ccatgaactg actctaagag gtaattttaa tagctcaaat 720

| WO 2004/094671 PCT/US2004            |                  |               |            |            |            |  |  |  |
|--------------------------------------|------------------|---------------|------------|------------|------------|--|--|--|
| ataatgaaaa cttgo<br>gaatttaaag atgaa |                  |               |            |            | 780<br>840 |  |  |  |
| gatgtgacca ttgat                     | tgagtt caggttaad | a tatacaaatg  | atttttcaga | tgatattgtt | 900        |  |  |  |
| aagttccatt gcttg                     | ggcgaa tgtttctgo | ea atgtctctgg | caggtgtatc | tataaaatat | 960        |  |  |  |
| ctagaagatg ttcct                     | taaaca tttcaaato | gg caatccttat | caatcattag | atgtcaactt | 1020       |  |  |  |
| aagcagtttc caact                     | tctgga tctacccti | t cttaaaagtt  | tgactttaac | tatgaacaaa | 1080       |  |  |  |
| gggtctatca gtttt                     | taaaaa agtggccct | a ccaagtctca  | gctatctaga | tcttagtaga | 1140       |  |  |  |
| aatgcactga gcttt                     | tagtgg ttgctgttd | t tattctgatt  | tgggaacaaa | cagcctgaga | 1200       |  |  |  |
| cacttagacc tcago                     | cttcaa tggtgccai | c attatgagtg  | ccaatttcat | gggtctagaa | 1260       |  |  |  |
| gagetgeage acete                     | ggattt tcagcacto | ct actttaaaaa | gggtcacaga | attctcagcg | 1320       |  |  |  |
| ttcttatccc ttgaa                     | aaagct actttacct | t gacatetett  | atactaacac | caaaattgac | 1380       |  |  |  |
| ttcgatggta tatti                     | tcttgg cttgaccag | yt ctcaacacat | taaaaatggc | tggcaattct | 1440       |  |  |  |
| ttcaaagaca acac                      | cctttc aaatgtct  | t gcaaacacaa  | caaacttgac | attcctggat | 1500       |  |  |  |
| ctttctaaat gtcaa                     | attgga acaaatato | et tggggggtat | ttgacaccct | ccatagactt | 1560       |  |  |  |
| caattattaa atato                     | gagtca caacaatc  | a ttgtttttgg  | attcatccca | ttataaccag | 1620       |  |  |  |
| ctgtattccc tcago                     | cactct tgattgcag | gt ttcaatcgca | tagagacatc | taaaggaata | 1680       |  |  |  |
| ctgcaacatt ttcca                     | aaagag tctagccti | c ttcaatctta  | ctaacaattc | tgttgcttgt | 1740       |  |  |  |
| atatgtgaac atcag                     | gaaatt cctgcagto | gg gtcaaggacc | agaagcagtt | cttggtgaat | 1800       |  |  |  |
| gttgaacaaa tgaca                     | atgtgc aacacctgt | a gagatgaata  | cctccttagt | gttggatttt | 1860       |  |  |  |
| aataattcta cctgt                     | ttatat gtacaagad | ca atcatcagtg | tgtcagtggt | cagtgtgatt | 1920       |  |  |  |
| gtggtatcca ctgta                     | agcatt tctgatata | ac cacttetatt | ttcacctgat | acttattgct | 1980       |  |  |  |
| ggctgtaaaa agtad                     | cagcag aggagaaaq | gc atctatgatg | catttgtgat | ctactcgagt | 2040       |  |  |  |
| cagaatgagg actgo                     | ggtgag aaatgagct | g gtaaagaatt  | tagaagaagg | agtgccccgc | 2100       |  |  |  |
|                                      |                  |               |            |            |            |  |  |  |

<210> 22 <211> 3866

tttcacctct gccttcacta cagagacttt attcctggtg tagccattgc tgccaatatc

atccaggaag gcttccacaa gagccggaag gttattgtgg tagtgtctag acactttatt

cagagecgtt ggtgtatett tgaatatgag attgeteaaa catggeagtt tetgageage

cactctggca tcatcttcat tgtccttgag aaggttgaga agtccctgct gaggcagcag

gtggaattgt atcgccttct tagcagaaac acctacctgg aatgggagga caatcctctg

gggaggcaca tcttctggag aagacttaaa aatgccctat tggatggaaa agcctcgaat

cctgagcaaa cagcagagga agaaccagaa acggcaactt ggacctgagg agaaccgcgg

2160

2220

2280

2340

2400

2460

2520

<212> DNA <213> murine

แรม แบบเทคโดย แบบเทคโดยให้เหมือนที่เหมือนหลัง และหมือนหลัง และเมาะหมาย ผู้หมาให้เมื่อเหมาให้ ผีสามหมาย แบบมาการกระบั

60 ctggttgcag aaaatgccag gatgatgcct ccctggctcc tggctaggac tctgatcatg gcactgttct tctcctgcct gacaccagga agcttgaatc cctgcataga ggtagttcct 120 aatattacct accaatgcat ggatcagaaa ctcagcaaag tccctgatga cattccttct 180 tcaaccaaga acatagatct gagcttcaac cccttgaaga tcttaaaaaag ctatagcttc 240 tccaattttt cagaacttca gtggctggat ttatccaggt gtgaaattga aacaattgaa 300 gacaaggcat ggcatggctt acaccacctc tcaaacttga tactgacagg aaaccctatc 360 cagagttttt ccccaggaag tttctctgga ctaacaagtt tagagaatct ggtggctgtg 420 gagacaaaat tggcctctct agaaagcttc cctattggac agcttataac cttaaagaaa 480 ctcaatgtgg ctcacaattt tatacattcc tgtaagttac ctgcatattt ttccaatctg 540 acgaacctag tacatgtgga tctttcttat aactatattc aaactattac tgtcaacgac 600 ttacagtttc tacgtgaaaa tccacaagtc aatctctctt tagacatgtc tttgaaccca 660 attgacttca ttcaagacca agcctttcag ggaattaagc tccatgaact gactctaaga 720 ggtaatttta atagctcaaa tataatgaaa acttgccttc aaaacctggc tggtttacac 780 gtccatcggt tgatcttggg agaatttaaa gatgaaagga atctggaaat ttttgaaccc 840 900 tctatcatgg aaggactatg tgatgtgacc attgatgagt tcaggttaac atatacaaat gatttttcag atgatattgt taagttccat tgcttggcga atgtttctgc aatgtctctg 960 gcaggtgtat ctataaaata tctagaagat gttcctaaac atttcaaatg gcaatcctta 1020 tcaatcatta gatgtcaact taagcagttt ccaactctgg atctaccctt tcttaaaagt 1080 ttgactttaa ctatgaacaa agggtctatc agttttaaaa aagtggccct accaagtctc 1140 agctatctag atcttagtag aaatgcactg agctttagtg gttgctgttc ttattctgat 1200 ttgggaacaa acagcctgag acacttagac ctcagcttca atggtgccat cattatgagt 1260 gccaatttca tgggtctaga agagctgcag cacctggatt ttcagcactc tactttaaaa 1320 agggtcacag aattotcago gttottatoo ottgaaaago taotttacot tgacatotot 1380 tatactaaca ccaaaattga cttcgatggt atatttcttg gcttgaccag tctcaacaca 1440 ttaaaaatgg ctggcaattc tttcaaagac aacacccttt caaatgtctt tgcaaacaca 1500 acaaacttga cattcctgga tctttctaaa tgtcaattgg aacaaatatc ttggggggta 1560 tttgacaccc tccatagact tcaattatta aatatgagtc acaacaatct attgtttttg 1620 gattcatccc attataacca gctgtattcc ctcagcactc ttgattgcag tttcaatcgc 1680 atagagacat ctaaaggaat actgcaacat tttccaaaga gtctagcctt cttcaatctt 1740

actaacaatt ctgttgcttg tatatgtgaa catcagaaat tcctgcagtg ggtcaaggaa 1800 cagaagcagt tcttggtgaa tgttgaacaa atgacatgtg caacacctgt agagatgaat 1860 acctccttag tgttggattt taataattct acctgttata tgtacaagac aatcatcagt 1920 gtgtcagtgg tcagtgtgat tgtggtatcc actgtagcat ttctgatata ccacttctat 1980 tttcacctga tacttattgc tggctgtaaa aagtacagca gaggagaaag catctatgat 2040 gcatttgtga tctactcgag tcagaatgag gactgggtga gaaatgagct ggtaaagaat 2100 ttagaagaag gagtgccccg ctttcacctc tgccttcact acagagactt tattcctggt 2160 gtagccattg ctgccaacat catccaggaa ggcttccaca agagccggaa ggttattgtg 2220 gtagtgtcta gacactttat tcagagccgt tggtgtatct ttgaatatga gattgctcaa 2280 acatggcagt ttctgagcag ccgctctggc atcatcttca ttgtccttga gaaggttgag 2340 aagtccctgc tgaggcagca ggtggaattg tatcgccttc ttagcagaaa cacctacctg 2400 gaatgggagg acaatcctct ggggaggcac atcttctgga gaagacttaa aaatgcccta 2460 ttggatggaa aagcctcgaa tcctgagcaa acagcagagg aagaacaaga aacggcaact 2520 tggacctgag gagaacaaaa ctctggggcc taaacccagt ctgtttgcaa ttaataaatq 2580 ctacagetea cetggggete tgetatggae egagageeea tggaacacat ggetgetaag 2640 ctatagcatg gaccttaccg ggcagaagga agtagcactg acaccttcct ttccaggggt 2700 atgaattacc taactcggga aaagaaacat aatccagaat ctttaccttt aatctgaagg 2760 agaagagget aaggeetagt gagaacagaa aggagaacca gtetteactg ggeettttga 2820 atacaagcca tgtcatgttc tgtgtttcag ttgctttaga agagtattga tagtttcaac 2880 tgaactgaac ggtttcttac tttccctttt ttctactgaa tqcaatatta aataqctctt 2940 tttgagaggt cttcattcca atttcatctt ccattttatg tcattttctt ttctttttq 3000 tttttatcta attctataag aaatatgatt gatacacgct cacagatagc ctggccaatc 3060 ctaagaatgc tatatttatt aaatacaatt cctagtatac ttttactttt ataaattcag 3120 ttatcgtttt tcatgccttg actataaact aatatcataa ataagattgt tacaggtatg 3180 ctaagaaggc ccatatttga ctataatttt ttaagaaagt atataaaata tactttgtca 3240 tattgtcact gaatgtcatt cttaagttat tacctaagtt atggatgtca cagagtcagt 3300 gttaaaaata atttggttga tagaaatatt tttaatcagg agggaaaagt ggagaggggt 3360 gcaggaacag aaatcatgat ttcatcattt attcttgatt tttccggaag ttcacatagc 3420 tgaatgacaa gactacatat gctgcaactg atgttccttc tcatcaagga tactctctga 3480 acttgagaac attttgggga ggaagaaagg tctaacatcc ttttccttca tcattctcat 3540 ttctggacat gccttgtgag atggatcaat gttgggagta cacatttctg ctttcacctt 3600 3660

atgtacatat atgaacctgt acatgtgttt aagtttaaag agaaaatagt gtacagagca 3720 ggtgtatatt tgtgataggg ctttaaatag ttgagctaat tcagaaaagt atggaggttt 3780 cttggtaaac caaaccaaaa gtagaatcat tacaagatct aacaataaaa attttgaaaa 3840 aaaaaaaaaa aaaaaaaa aaaaaaa 3866

<210> 23 <211> 835

<211> 033

<213> murine

<400> 23

Met Met Pro Pro Trp Leu Leu Ala Arg Thr Leu Ile Met Ala Leu Phe 1 5 10 15

Phe Ser Cys Leu Thr Pro Gly Ser Leu Asn Pro Cys Ile Glu Val Val
20 25 30

Pro Asn Ile Thr Tyr Gln Cys Met Asp Gln Lys Leu Ser Lys Val Pro 35 40 45

Asp Asp Ile Pro Ser Ser Thr Lys Asn Ile Asp Leu Ser Phe Asn Pro 50 55 60

Leu Lys Ile Leu Lys Ser Tyr Ser Phe Ser Asn Phe Ser Glu Leu Gln 65 70 75 80

Trp Leu Asp Leu Ser Arg Cys Glu Ile Glu Thr Ile Glu Asp Lys Ala 85 90 95

Trp His Gly Leu His His Leu Ser Asn Leu Ile Leu Thr Gly Asn Pro 100 105 110

Ile Gln Ser Phe Ser Pro Gly Ser Phe Ser Gly Leu Thr Ser Leu Glu 115 120 125

Asn Leu Val Ala Val Glu Thr Lys Leu Ala Ser Leu Glu Ser Phe Pro 130 135 140

Ile Gly Gln Leu Ile Thr Leu Lys Lys Leu Asn Val Ala His Asn Phe 145 150 155 160

Ile His Ser Cys Lys Leu Pro Ala Tyr Phe Ser Asn Leu Thr Asn Leu 165 170 175

Val His Val Asp Leu Ser Tyr Asn Tyr Ile Gln Thr Ile Thr Val Asn 180 185 190

Asp Leu Gln Phe Leu Arg Glu Asn Pro Gln Val Asn Leu Ser Leu Asp 195 200 205

Met Ser Leu Asn Pro Ile Asp Phe Ile Gln Asp Gln Ala Phe Gln Gly 210 215 220

Ile Lys Leu His Glu Leu Thr Leu Arg Gly Asn Phe Asn Ser Ser Asn 225 230 235 240

Ile Met Lys Thr Cys Leu Gln Asn Leu Ala Gly Leu His Val His Arg Leu Ile Leu Gly Glu Phe Lys Asp Glu Arg Asn Leu Glu Ile Phe Glu Pro Ser Ile Met Glu Gly Leu Cys Asp Val Thr Ile Asp Glu Phe Arg Leu Thr Tyr Thr Asn Asp Phe Ser Asp Asp Ile Val Lys Phe His Cys Leu Ala Asn Val Ser Ala Met Ser Leu Ala Gly Val Ser Ile Lys Tyr Leu Glu Asp Val Pro Lys His Phe Lys Trp Gln Ser Leu Ser Ile Ile Arg Cys Gln Leu Lys Gln Phe Pro Thr Leu Asp Leu Pro Phe Leu Lys Ser Leu Thr Leu Thr Met Asn Lys Gly Ser Ile Ser Phe Lys Lys Val Ala Leu Pro Ser Leu Ser Tyr Leu Asp Leu Ser Arg Asn Ala Leu Ser Phe Ser Gly Cys Cys Ser Tyr Ser Asp Leu Gly Thr Asn Ser Leu Arg His Leu Asp Leu Ser Phe Asn Gly Ala Ile Ile Met Ser Ala Asn Phe 410 Met Gly Leu Glu Leu Gln His Leu Asp Phe Gln His Ser Thr Leu 425 Lys Arq Val Thr Glu Phe Ser Ala Phe Leu Ser Leu Glu Lys Leu Leu 440 Tyr Leu Asp Ile Ser Tyr Thr Asn Thr Lys Ile Asp Phe Asp Gly Ile 455 Phe Leu Gly Leu Thr Ser Leu Asn Thr Leu Lys Met Ala Gly Asn Ser Phe Lys Asp Asn Thr Leu Ser Asn Val Phe Ala Asn Thr Thr Asn Leu 490 Thr Phe Leu Asp Leu Ser Lys Cys Gln Leu Glu Gln Ile Ser Trp Gly Val Phe Asp Thr Leu His Arg Leu Gln Leu Leu Asn Met Ser His Asn 520 Asn Leu Leu Phe Leu Asp Ser Ser His Tyr Asn Gln Leu Tyr Ser Leu 530 Ser Thr Leu Asp Cys Ser Phe Asn Arg Ile Glu Thr Ser Lys Gly Ile 555 Leu Gln His Phe Pro Lys Ser Leu Ala Phe Phe Asn Leu Thr Asn Asn

्यां । इ.स. १ वर्षा व्यवस्थात । इ.स. १ १६० वर्षा व्यवस्थात ।

565 570 Ser Val Ala Cys Ile Cys Glu His Gln Lys Phe Leu Gln Trp Val Lys 585 Glu Gln Lys Gln Phe Leu Val Asn Val Glu Gln Met Thr Cys Ala Thr 600 Pro Val Glu Met Asn Thr Ser Leu Val Leu Asp Phe Asn Asn Ser Thr 615 Cys Tyr Met Tyr Lys Thr Ile Ile Ser Val Ser Val Val Ser Val Ile 630 635 Val Val Ser Thr Val Ala Phe Leu Ile Tyr His Phe Tyr Phe His Leu Ile Leu Ile Ala Gly Cys Lys Lys Tyr Ser Arg Gly Glu Ser Ile Tyr Asp Ala Phe Val Ile Tyr Ser Ser Gln Asn Glu Asp Trp Val Arg Asn Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Arg Phe His Leu Cys Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile Ile Gln Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val Val Ser Arg His Phe Ile Gln Ser Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala Gln Thr Trp Gln Phe Leu Ser Ser Arg Ser Gly Ile Ile Phe Ile Val Leu Glu Lys Val Glu Lys Ser Leu Leu Arg Gln Gln Val Glu Leu Tyr 775 Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Asn Pro Leu Gly Arg His Ile Phe Trp Arg Arg Leu Lys Asn Ala Leu Leu Asp Gly Lys Ala Ser Asn Pro Glu Gln Thr Ala Glu Glu Glu Glu Glu Thr Ala Thr Trp Thr 835 <210> 24 <211> 835 <212> PRT <213> murine

<400> 24

र कराया (८.६) विद्वार के अभैद्रीयक्षण्या कराअक द्वित्वेता

Met Met Pro Pro Trp Leu Leu Ala Arg Thr Leu Ile Met Ala Leu Phe 1 5 10 15

Phe Ser Cys Leu Thr Pro Gly Ser Leu Asn Pro Cys Ile Glu Val Val Pro Asn Ile Thr Tyr Gln Cys Met Asp Gln Lys Leu Ser Lys Val Pro Asp Asp Ile Pro Ser Ser Thr Lys Asn Ile Asp Leu Ser Phe Asn Pro Leu Lys Ile Leu Lys Ser Tyr Ser Phe Ser Asn Phe Ser Glu Leu Gln Trp Leu Asp Leu Ser Arg Cys Glu Ile Glu Thr Ile Glu Asp Lys Ala Trp His Gly Leu His His Leu Ser Asn Leu Ile Leu Thr Gly Asn Pro Ile Gln Ser Phe Ser Pro Gly Ser Phe Ser Gly Leu Thr Ser Leu Glu Asn Leu Val Ala Val Glu Thr Lys Leu Ala Ser Leu Glu Ser Phe Pro 135 Ile Gly Gln Leu Ile Thr Leu Lys Lys Leu Asn Val Ala His Asn Phe Ile His Ser Cys Lys Leu Pro Ala Tyr Phe Ser Asn Leu Thr Asn Leu Val His Val Asp Leu Ser Tyr Asn Tyr Ile Gln Thr Ile Thr Val Asn Asp Leu Gln Phe Leu Arg Glu Asn Pro Gln Val Asn Leu Ser Leu Asp Ile Ser Leu Asn Pro Ile Asp Phe Ile Gln Asp Gln Ala Phe Gln Gly 215 Ile Lys Leu His Glu Leu Thr Leu Arg Gly Asn Phe Asn Ser Ser Asn 230 Ile Met Lys Thr Cys Leu Gln Asn Leu Ala Gly Leu His Ile His Arg 245 250 Leu Ile Leu Gly Glu Phe Lys Asp Glu Arg Asn Leu Glu Ile Phe Glu Pro Ser Ile Met Glu Gly Leu Cys Asp Val Thr Ile Asp Glu Phe Arg Leu Thr Tyr Thr Asn Asp Phe Ser Asp Asp Ile Val Lys Phe His Cys 295 Leu Ala Asn Val Ser Ala Met Ser Leu Ala Gly Val Ser Ile Lys Tyr 305 Leu Glu Asp Val Pro Lys His Phe Lys Trp Gln Ser Leu Ser Ile Ile 330

Arg Cys Gln Leu Lys Gln Phe Pro Thr Leu Asp Leu Pro Phe Leu Lys

345 350 Ser Leu Thr Leu Thr Met Asn Lys Gly Ser Ile Ser Phe Lys Lys Val Ala Leu Pro Ser Leu Ser Tyr Leu Asp Leu Ser Arg Asn Ala Leu Ser 375 Phe Ser Gly Cys Cys Ser Tyr Ser Asp Leu Gly Thr Asn Ser Leu Arg His Leu Asp Leu Ser Phe Asn Gly Ala Ile Ile Met Ser Ala Asn Phe 405 Met Gly Leu Glu Glu Leu Gln His Leu Asp Phe Gln His Ser Thr Leu 425 Lys Arg Val Thr Glu Phe Ser Ala Phe Leu Ser Leu Glu Lys Leu Leu 440 Tyr Leu Asp Ile Ser Tyr Thr Asn Thr Lys Ile Asp Phe Asp Gly Ile 455 Phe Leu Gly Leu Thr Ser Leu Asn Thr Leu Lys Met Ala Gly Asn Ser 470 Phe Lys Asp Asn Thr Leu Ser Asn Val Phe Ala Asn Thr Thr Asn Leu 490 Thr Phe Leu Asp Leu Ser Lys Cys Gln Leu Glu Gln Ile Ser Trp Gly Val Phe Asp Thr Leu His Arg Leu Gln Leu Leu Asn Met Ser His Asn Asn Leu Leu Phe Leu Asp Ser Ser His Tyr Asn Gln Leu Tyr Ser Leu Ser Thr Leu Asp Cys Ser Phe Asn Arg Ile Glu Thr Ser Lys Gly Ile Leu Gln His Phe Pro Lys Ser Leu Ala Phe Phe Asn Leu Thr Asn Asn 570 Ser Val Ala Cys Ile Cys Glu His Gln Lys Phe Leu Gln Trp Val Lys Asp Gln Lys Gln Phe Leu Val Asn Val Glu Gln Met Thr Cys Ala Thr Pro Val Glu Met Asn Thr Ser Leu Val Leu Asp Phe Asn Asn Ser Thr 615

Cys Tyr Met Tyr Lys Thr Ile Ile Ser Val Ser Val Val Ser Val Ile

Val Val Ser Thr Val Ala Phe Leu Ile Tyr His Phe Tyr Phe His Leu
645
650

Ile Leu Ile Ala Gly Cys Lys Lys Tyr Ser Arg Gly Glu Ser Ile Tyr 660 665 670

Asp Ala Phe Val Ile Tyr Ser Ser Gln Asn Glu Asp Trp Val Arg Asn

| 675 680 685 Glu Leu Val Lys Asn Leu Glu Glu Gly Val Pro Arg Phe His Leu Cys 690 695 700 |     |
|-----------------------------------------------------------------------------------------|-----|
| Leu His Tyr Arg Asp Phe Ile Pro Gly Val Ala Ile Ala Ala Asn Ile<br>705 710 715 720      |     |
| Ile Gln Glu Gly Phe His Lys Ser Arg Lys Val Ile Val Val Ser 725 730 735                 |     |
| Arg His Phe Ile Gln Ser Arg Trp Cys Ile Phe Glu Tyr Glu Ile Ala 740 745 750             |     |
| Gln Thr Trp Gln Phe Leu Ser Ser His Ser Gly Ile Ile Phe Ile Val<br>755 760 765          |     |
| Leu Glu Lys Val Glu Lys Ser Leu Leu Arg Gln Gln Val Glu Leu Tyr<br>770 775 780          |     |
| Arg Leu Leu Ser Arg Asn Thr Tyr Leu Glu Trp Glu Asp Asn Pro Leu 785 790 795 800         |     |
| Gly Arg His Ile Phe Trp Arg Arg Leu Lys Asn Ala Leu Leu Asp Gly 805 810 815             |     |
| Lys Ala Ser Asn Pro Glu Gln Thr Ala Glu Glu Glu Glu Glu Thr Ala<br>820 825 830          |     |
| Thr Trp Thr<br>835                                                                      |     |
| <210> 25 <211> 3431 <212> DNA <213> Homo sapiens                                        |     |
| <400> 25 ggcttatagg getegagegg cegeeeggge aggtatagaa tteageggee getgaattet              | 60  |
| agggttttca ggagcccgag cgagggcgcc gcttttgcgt ccgggaggag ccaaccgtgg                       | 120 |
| cgcaggcggc gcggggaggc gtcccagagt ctcactctgc cgcccaggct ggactgcagt                       | 180 |
| gacacaatet eggetgaetg caaccaetge etceagggtt caagegatte tettgeetca                       | 240 |
| gcctcccaag tagctgggat tacagattga tgttcatgtt cctggcacta ctacaagatt                       | 300 |
| catactcctg atgctactga caacgtggct tctccacagt caccaaacca gggatgctat                       | 360 |
| actggacttc cctactctca tctgctccag cccctgacc ttatagttgc ccagctttcc                        | 420 |
| tggcaattga ctttgcccat caatacacag gatttagcat ccagggaaga tgtcggagcc                       | 480 |
| tcagatgtta attttctaat tgagaatgtt ggcgctgtcc gaacctggag acagaaaaac                       | 540 |
| aaaaagtcct ttctcctgat tcaccaaaaa ataaaatact gactaccatc actgtgatga                       | 600 |
| gattcctata gtctcaggaa ctgaagtctt taaacaacca gggaccctct gcccctagaa                       | 660 |
| taagaacata ctagaagtcc cttctgctag gacaacgagg atcatgggag accacctgga                       | 720 |

rang mang panggang p

cettetecta ggagtggtge teatggeegg teetgtgttt ggaatteett eetgeteett 780 tgatggccga atagcctttt atcgtttctg caacctcacc caggtccccc aggtcctcaa 840 caccactgag aggeteetge tgagetteaa etatateagg acagteactg etteateett 900 cccctttctg gaacagctgc agctgctgga gctcgggagc cagtataccc ccttgactat 960 tgacaaggag gccttcagaa acctgcccaa ccttagaatc ttggacctgg gaagtagtaa 1020 gatatactic tigcatccag atgctttica gggactgttc catctgttig aacttagact 1080 gtatttctgt ggtctctctg atgctgtatt gaaagatqqt tatttcaqaa atttaaagqc 1140 tttaactcgc ttggatctat ccaaaaatca gattcgtagc ctttaccttc atccttcatt 1200 tgggaagttg aattccttaa agtccataga tttttcctcc aaccaaatat tccttgtatg 1260 tgaacatgag ctcgagcccc tacaagggaa aacgctctcc ttttttagcc tcgcagctaa 1320 tagettgtat ageagagtet eagtggaetg gggaaaatgt atgaacceat teagaaacat 1380 ggtgctggag atactagatg tttctggaaa tggctggaca gtggacatca caggaaactt 1440 tagcaatgcc atcagcaaaa gccaggcctt ctctttgatt cttgcccacc acatcatggg 1500 1560 cagaagttca gtgagacacc tggatctttc acatgggttt gtcttctccc tgaactcacg 1620 agtetttgag acacteaagg atttgaaggt tetgaacett geetacaaca agataaataa 1680 gattgcagat gaagcatttt acggacttga caacctccaa gttctcaatt tgtcatataa 1740 ccttctgggg gaactttaca gttcgaattt ctatggacta cctaaggtag cctacattga 1800 tttgcaaaag aatcacattg caataattca agaccaaaca ttcaaattcc tggaaaaatt 1860 acagacettg gateteegag acaatgetet tacaaceatt cattttatte caageatace 1920 cgatatette ttgagtggca ataaactagt gactttgcca aagatcaace ttacagegaa 1980 cctcatccac ttatcagaaa acaggctaga aaatctagat attctctact ttcttctacq 2040 ggtacctcat ctccagattc tcattttaaa tcaaaatcgc ttctcctcct gtagtggaga 2100 tcaaacccct tcagagaatc ccagcttaga acagcttttc cttggagaaa atatgttqca 2160 acttgcctgg gaaactgage tetgttggga tgtttttgag ggactttctc atcttcaagt 2220 tetgtatttg aatcataact atettaatte cettecacea ggagtattta gecatetgae 2280 tgcattaagg ggactaagcc tcaactccaa caggctgaca gttctttctc acaatgattt 2340 acctgctaat ttagagatcc tggacatatc caggaaccag ctcctagctc ctaatcctga 2400 tgtatttgta tcacttagtg tcttggatat aactcataac aagttcattt gtgaatgtga 2460 acttagcact tttatcaatt ggcttaatca caccaatgtc actatagctg ggcctcctgc 2520 agacatatat tgtgtgtacc ctgactcgtt ctctgggggtt tccctcttct ctctttccac 2580 ggaaggttgt gatgaagagg aagtcttaaa gtccctaaag ttctcccttt tcattgtatg 2640

| cactgtcact | ctgactctgt | tcctcatgac | catcctcaca | gtcacaaagt | tccggggctt | 2700 |
|------------|------------|------------|------------|------------|------------|------|
| ctgttttatc | tgttataaga | cagcccagag | actggtgttc | aaggaccatc | cccagggcac | 2760 |
| agaacctgat | atgtacaaat | atgatgccta | tttgtgcttc | agcagcaaag | acttcacatg | 2820 |
| ggtgcagaat | gctttgctca | aacacctgga | cactcaatac | agtgaccaaa | acagattcaa | 2880 |
| cctgtgcttt | gaagaaagag | actttgtccc | aggagaaaac | cgcattgcca | atatccagga | 2940 |
| tgccatctgg | aacagtagaa | agatcgtttg | tcttgtgagc | agacacttcc | ttagagatgg | 3000 |
| ctggtgcctt | gaagccttca | gttatgccca | gggcaggtgc | ttatctgacc | ttaacagtgc | 3060 |
| tctcatcatg | gtggtggttg | ggtccttgtc | ccagtaccag | ttgatgaaac | atcaatccat | 3120 |
| cagaggcttt | gtacagaaac | agcagtattt | gaggtggcct | gaggatetee | aggatgttgg | 3180 |
| ctggtttctt | cataaactct | ctcaacagat | actaaagaaa | gaaaaagaaa | agaagaaaga | 3240 |
| caataacatt | ccgttgcaaa | ctgtagcaac | catctcctaa | tcaaaggagc | aatttccaac | 3300 |
| ttatctcaag | ccacaaataa | ctcttcactt | tgtatttgca | ccaagttatc | attttggggt | 3360 |
| cctctctgga | ggttttttt  | ttctttttgc | tactatgaaa | acaacataaa | tctctcaatt | 3420 |
| ttcgtatcaa | a          |            |            |            |            | 3431 |

<210> 26

<211> 858

<212> PRT

<213> Homo sapiens

<400> 26

Met Gly Asp His Leu Asp Leu Leu Gly Val Val Leu Met Ala Gly 1 5 10 15

Pro Val Phe Gly Ile Pro Ser Cys Ser Phe Asp Gly Arg Ile Ala Phe 20 25 30

Tyr Arg Phe Cys Asn Leu Thr Gln Val Pro Gln Val Leu Asn Thr Thr 35 40 45

Glu Arg Leu Leu Ser Phe Asn Tyr Ile Arg Thr Val Thr Ala Ser 50 55 60

Ser Phe Pro Phe Leu Glu Gln Leu Gln Leu Glu Leu Gly Ser Gln 65 70 75 80

Tyr Thr Pro Leu Thr Ile Asp Lys Glu Ala Phe Arg Asn Leu Pro Asn 85 90 95

Leu Arg Ile Leu Asp Leu Gly Ser Ser Lys Ile Tyr Phe Leu His Pro 100 105 110

Asp Ala Phe Gln Gly Leu Phe His Leu Phe Glu Leu Arg Leu Tyr Phe
115 120 125

Cys Gly Leu Ser Asp Ala Val Leu Lys Asp Gly Tyr Phe Arg Asn Leu

135 Lys Ala Leu Thr Arg Leu Asp Leu Ser Lys Asn Gln Ile Arg Ser Leu 150 155 Tyr Leu His Pro Ser Phe Gly Lys Leu Asn Ser Leu Lys Ser Ile Asp 170 Phe Ser Ser Asn Gln Ile Phe Leu Val Cys Glu His Glu Leu Glu Pro 185 Leu Gln Gly Lys Thr Leu Ser Phe Phe Ser Leu Ala Ala Asn Ser Leu 200 Tyr Ser Arg Val Ser Val Asp Trp Gly Lys Cys Met Asn Pro Phe Arg 215 Asn Met Val Leu Glu Ile Leu Asp Val Ser Gly Asn Gly Trp Thr Val 230 235 Asp Ile Thr Gly Asn Phe Ser Asn Ala Ile Ser Lys Ser Gln Ala Phe 250 Ser Leu Ile Leu Ala His His Ile Met Gly Ala Gly Phe Gly Phe His Asn Ile Lys Asp Pro Asp Gln Asn Thr Phe Ala Gly Leu Ala Arg Ser Ser Val Arg His Leu Asp Leu Ser His Gly Phe Val Phe Ser Leu Asn Ser Arg Val Phe Glu Thr Leu Lys Asp Leu Lys Val Leu Asn Leu Ala 315 Tyr Asn Lys Ile Asn Lys Ile Ala Asp Glu Ala Phe Tyr Gly Leu Asp Asn Leu Gln Val Leu Asn Leu Ser Tyr Asn Leu Leu Gly Glu Leu Tyr Ser Ser Asn Phe Tyr Gly Leu Pro Lys Val Ala Tyr Ile Asp Leu Gln Lys Asn His Ile Ala Ile Ile Gln Asp Gln Thr Phe Lys Phe Leu Glu Lys Leu Gln Thr Leu Asp Leu Arg Asp Asn Ala Leu Thr Thr Ile His Phe Ile Pro Ser Ile Pro Asp Ile Phe Leu Ser Gly Asn Lys Leu Val 410 Thr Leu Pro Lys Ile Asn Leu Thr Ala Asn Leu Ile His Leu Ser Glu 425 Asn Arg Leu Glu Asn Leu Asp Ile Leu Tyr Phe Leu Leu Arg Val Pro 440 His Leu Gln Ile Leu Ile Leu Asn Gln Asn Arg Phe Ser Ser Cys Ser Gly Asp Gln Thr Pro Ser Glu Asn Pro Ser Leu Glu Gln Leu Phe Leu

| 465<br>Gly Gl | u Asn        | Met        | Leu<br>485 | 470<br>Gln | Leu        | Ala        | Trp        | Glu<br>490 | 475<br>Thr | Glu        | Leu        | Сув        | Trp<br>495 | 480<br>Asp |
|---------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Val Ph        | e Glu        | Gly<br>500 | Leu        | Ser        | His        | Leu        | Gln<br>505 | Val        | Leu        | Tyr        | Leu        | Asn<br>510 | His        | Asn        |
| Tyr Le        | u Asn<br>515 | Ser        | Leu        | Pro        | Pro        | Gly<br>520 | Val        | Phe        | Ser        | His        | Leu<br>525 | Thr        | Ala        | Leu        |
| Arg Gl        | _            | Ser        | Leu        | Asn        | Ser<br>535 | Asn        | Arg        | Leu        | Thr        | Val<br>540 | Leu        | Ser        | His        | Asn        |
| Asp Le<br>545 | u Pro        | Ala        | Asn        | Leu<br>550 | Glu        | Ile        | Leu        | Asp        | Ile<br>555 | Ser        | Arg        | Asn        | Gln        | Leu<br>560 |
| Leu Al        | a Pro        | Asn        | Pro<br>565 | Asp        | Val        | Phe        | Val        | Ser<br>570 | Leu        | Ser        | Val        | Leu        | Asp<br>575 | Ile        |
| Thr Hi        | s Asn        | Lys<br>580 | Phe        | Ile        | Cys        | Glu        | Сув<br>585 | Glu        | Leu        | Ser        | Thr        | Phe<br>590 | Ile        | Asn        |
| Trp Le        | u Asn<br>595 |            | Thr        | Asn        | Val        | Thr<br>600 | Ile        | Ala        | Gly        | Pro        | Pro<br>605 | Ala        | Asp        | Ile        |
| Tyr Cy<br>61  |              | Tyr        | Pro        | Asp        | Ser<br>615 | Phe        | Ser        | Gly        | Val        | Ser<br>620 | Leu        | Phe        | Ser        | Leu        |
| Ser Th        | r Glu        | Gly        | Cys        | Asp<br>630 | Glu        | Glu        | Glu        | Val        | Leu<br>635 | Lys        | Ser        | Leu        | Lys        | Phe<br>640 |
| Ser Le        | u Phe        | Ile        | Val<br>645 | Cys        | Thr        | Val        | Thr        | Leu<br>650 | Thr        | Leu        | Phe        | Leu        | Met<br>655 | Thr        |
| Ile Le        | u Thr        | Val<br>660 | Thr        | Lys        | Phe        | Arg        | Gly<br>665 | Phe        | Суѕ        | Phe        | Ile        | Сув<br>670 | Tyr        | Lys        |
| Thr Al        | a Gln<br>675 |            | Leu        | Val        | Phe        | 680        | Asp        | His        | Pro        | Gln        | Gly<br>685 | Thr        | Glu        | Pro        |
| Asp Me        |              | Lys        | Tyr        | Asp        | Ala<br>695 | Tyr        | Leu        | Cys        | Phe        | Ser<br>700 | Ser        | Lys        | Asp        | Phe        |
| Thr Tr<br>705 | p Val        | Gln        | Asn        | Ala<br>710 | Leu        | Leu        | Lys        | His        | Leu<br>715 | Asp        | Thr        | Gln        | Tyr        | Ser<br>720 |
| Asp Gl        | n Asn        | Arg        | Phe<br>725 | Asn        | Leu        | Cys        | Phe        | Glu<br>730 | Glu        | Arg        | Asp        | Phe        | Val<br>735 | Pro        |
| Gly Gl        | u Asn        | Arg<br>740 | Ile        | Ala        | Asn        | Ile        | Gln<br>745 | Ąsp        | Ala        | Ile        | Trp        | Asn<br>750 | Ser        | Arg        |
| Lys Il        | e Val<br>755 |            | Leu        | Val        | Ser        | Arg<br>760 | His        | Phe        | Leu        | Arg        | Asp<br>765 | Gly        | Trp        | Cys        |
| Leu Gl<br>77  |              | Phe        | Ser        | Tyr        | Ala<br>775 | Gln        | Gly        | Arg        | Сув        | Leu<br>780 | Ser        | Asp        | Leu        | Asn        |
| Ser Al<br>785 | a Leu        | Ile        | Met        | Val<br>790 | Val        | Val        | Gly        | Ser        | Leu<br>795 | Ser        | Gln        | Tyr        | Gln        | Leu<br>800 |
| Met Ly        | s His        | Gln        | Ser        | Ile        | Arg        | Gly        | Phe        | Val        | Gln        | Lys        | Gln        | Gln        | Tyr        | Leu        |

54/231

805 810 Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu His Lys Leu

Ser Gln Gln Ile Leu Lys Lys Glu Lys Glu Lys Lys Lys Asp Asn Asn 840

Ile Pro Leu Gln Thr Val Ala Thr Ile Ser 855

<210> 27

<211> 858

<212> PRT <213> Homo sapiens

<400> 27

Met Gly Asp His Leu Asp Leu Leu Leu Gly Val Val Leu Met Ala Gly

Pro Val Phe Gly Ile Pro Ser Cys Ser Phe Asp Gly Arg Ile Ala Phe

Tyr Arg Phe Cys Asn Leu Thr Gln Val Pro Gln Val Leu Asn Thr Thr

Glu Arg Leu Leu Ser Phe Asn Tyr Ile Arg Thr Val Thr Ala Ser

Ser Phe Pro Phe Leu Glu Gln Leu Gln Leu Glu Leu Gly Ser Gln

Tyr Thr Pro Leu Thr Ile Asp Lys Glu Ala Phe Arg Asn Leu Pro Asn

Leu Arg Ile Leu Asp Leu Gly Ser Ser Lys Ile Tyr Phe Leu His Pro

Asp Ala Phe Gln Gly Leu Phe His Leu Phe Glu Leu Arg Leu Tyr Phe 120

Cys Gly Leu Ser Asp Ala Val Leu Lys Asp Gly Tyr Phe Arg Asn Leu

Lys Ala Leu Thr Arg Leu Asp Leu Ser Lys Asn Gln Ile Arg Ser Leu

Tyr Leu His Pro Ser Phe Gly Lys Leu Asn Ser Leu Lys Ser Ile Asp 170

Phe Ser Ser Asn Gln Ile Phe Leu Val Cys Glu His Glu Leu Glu Pro 185

Leu Gln Gly Lys Thr Leu Ser Phe Phe Ser Leu Ala Ala Asn Ser Leu 200

Tyr Ser Arg Val Ser Val Asp Trp Gly Lys Cys Met Asn Pro Phe Arg

Asn Met Val Leu Glu Ile Val Asp Val Ser Gly Asn Gly Trp Thr Val 230

55/231

and the figure of the first of the second second

٠.

Asp Ile Thr Gly Asn Phe Ser Asn Ala Ile Ser Lys Ser Gln Ala Phe Ser Leu Ile Leu Ala His His Ile Met Gly Ala Gly Phe Gly Phe His Asn Ile Lys Asp Pro Asp Gln Asn Thr Phe Ala Gly Leu Ala Arg Ser Ser Val Arg His Leu Asp Leu Ser His Gly Phe Val Phe Ser Leu Asn Ser Arg Val Phe Glu Thr Leu Lys Asp Leu Lys Val Leu Asn Leu Ala 315 Tyr Asn Lys Ile Asn Lys Ile Ala Asp Glu Ala Phe Tyr Gly Leu Asp Asn Leu Gln Val Leu Asn Leu Ser Tyr Asn Leu Leu Gly Glu Leu Cys Ser Ser Asn Phe Tyr Gly Leu Pro Lys Val Ala Tyr Ile Asp Leu Gln Lys Asn His Ile Ala Ile Ile Gln Asp Gln Thr Phe Lys Phe Leu Glu 375 Lys Leu Gln Thr Leu Asp Leu Arg Asp Asn Ala Leu Thr Thr Ile His Phe Ile Pro Ser Ile Pro Asp Ile Phe Leu Ser Gly Asn Lys Leu Val 410 Thr Leu Pro Lys Ile Asn Leu Thr Ala Asn Leu Ile His Leu Ser Glu 425 Asn Arg Leu Glu Asn Leu Asp Ile Leu Tyr Phe Leu Leu Arg Val Pro 440 His Leu Gln Ile Leu Ile Leu Asn Gln Asn Arg Phe Ser Ser Cys Ser 455 Gly Asp Gln Thr Pro Ser Glu Asn Pro Ser Leu Glu Gln Leu Phe Leu 470 Gly Glu Asn Met Leu Gln Leu Ala Trp Glu Thr Glu Leu Cys Trp Asp 490 Val Phe Glu Gly Leu Ser His Leu Gln Val Leu Tyr Leu Asn His Asn 500 Tyr Leu Asn Ser Leu Pro Pro Gly Val Phe Ser His Leu Thr Ala Leu 520 Arg Gly Leu Ser Leu Asn Ser Asn Arg Leu Thr Val Leu Ser His Asn 535 530 Asp Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg Asn Gln Leu 550 555

Leu Ala Pro Asn Pro Asp Val Phe Val Ser Leu Ser Val Leu Asp Ile

and the second of the second o

565 570 575

Thr His Asn Lys Phe Ile Cys Glu Cys Glu Leu Ser Thr Phe Ile Asn
580 585 590

Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly Pro Pro Ala Asp Ile 595 600 605

Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val Ser Leu Phe Ser Leu 610 615 620

Ser Thr Glu Gly Cys Asp Glu Glu Glu Val Leu Lys Ser Leu Lys Phe 625 630 635 640

Ser Leu Phe Ile Val Cys Thr Val Thr Leu Thr Leu Phe Leu Met Thr 645 650 655

Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys Phe Ile Cys Tyr Lys
660 665 670

Thr Ala Gln Arg Leu Val Phe Lys Asp His Pro Gln Gly Thr Glu Pro 675 680 685

Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe Ser Ser Lys Asp Phe 690 695 700

Thr Trp Val Gln Asn Ala Leu Leu Lys His Leu Asp Thr Gln Tyr Ser 715 710 715 720

Asp Gln Asn Arg Phe Asn Leu Cys Phe Glu Glu Arg Asp Phe Val Pro 725 730 735

Gly Glu Asn Arg Ile Ala Asn Ile Gln Asp Ala Ile Trp Asn Ser Arg 740 745 750

Lys Ile Val Cys Leu Val Ser Arg His Phe Leu Arg Asp Gly Trp Cys
755 760 765

Leu Glu Ala Phe Ser Tyr Ala Gln Gly Arg Cys Leu Ser Asp Leu Asn 770 775 780

Ser Ala Leu Ile Met Val Val Val Gly Ser Leu Ser Gln Tyr Gln Leu 785 790 795 800

Met Lys His Gln Ser Ile Arg Gly Phe Val Gln Lys Gln Gln Tyr Leu 805 810 815

Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu His Lys Leu 820 825 830

Ser Gln Gln Ile Leu Lys Lys Glu Lys Glu Lys Lys Lys Asp Asn Asn 835 840 845

Ile Pro Leu Gln Thr Val Ala Thr Ile Ser 850 855

<210> 28

<211> 365

<212> PRT

<213> Homo sapiens

<400> 28

Cys Trp Asp Val Phe Glu Gly Leu Ser His Leu Gln Val Leu Tyr Leu Asn His Asn Tyr Leu Asn Ser Leu Pro Pro Gly Val Phe Ser His Leu Thr Ala Leu Arg Gly Leu Ser Leu Asn Ser Asn Arg Leu Thr Val Leu 40 Ser His Asn Asp Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg Asn Gln Leu Leu Ala Pro Asn Pro Asp Val Phe Val Ser Leu Ser Val Leu Asp Ile Thr His Asn Lys Phe Ile Cys Glu Cys Glu Leu Ser Thr Phe Ile Asn Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly Pro Pro Ala Asp Ile Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val Ser Leu Phe Ser Leu Ser Thr Glu Gly Cys Asp Glu Glu Glu Val Leu Lys Ser 135 Leu Lys Phe Ser Leu Phe Ile Val Cys Thr Val Thr Leu Thr Leu Phe Leu Met Thr Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys Phe Ile 170 Cys Tyr Lys Thr Ala Gln Arg Leu Val Phe Lys Asp His Pro Gln Gly 180 185 Thr Glu Pro Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe Ser Ser 200 205 Lys Asp Phe Thr Trp Val Gln Asn Ala Leu Leu Lys His Leu Asp Thr 215 Gln Tyr Ser Asp Gln Asn Arg Phe Asn Leu Cys Phe Glu Glu Arg Asp Phe Val Pro Gly Glu Asn Arg Ile Ala Asn Ile Gln Asp Ala Ile Trp 250 Asn Ser Arg Lys Ile Val Cys Leu Val Ser Arg His Phe Leu Arg Asp Gly Trp Cys Leu Glu Ala Phe Ser Tyr Ala Gln Gly Arg Cys Leu Ser 280 Asp Leu Asn Ser Ala Leu Ile Met Val Val Val Gly Ser Leu Ser Gln 295 Tyr Gln Leu Met Lys His Gln Ser Ile Arg Gly Phe Val Gln Lys Gln Gln Tyr Leu Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu

325 330 335

His Lys Leu Ser Gln Gln Ile Leu Lys Lys Glu Lys Glu Lys Lys Lys

340 345 350

Asp Asn Asn Ile Pro Leu Gln Thr Val Ala Thr Ile Ser 355 360 365

<210> 29 <211> 4286 <212> DNA

murine

<400> 29

<213>

60 ttqaaatctc acaqcccqqt tggttgcagt gacccacttc gttgaacata ttcttcctaa tcctagtact ttcaatttgc tctattccct ggtgtctatg catttaaatc gactatgggg 120 ccattettee ttgaaccace acagaagaca ttagetetet gggateettg ttaattttt 180 ctcctcttac atagcaccta cgcttggaac atatgccaga cacatctgtg agacacccct 240 tgccgctgca gctcatggat ggatgctgag ttcccccacg caccacactt cagcaggtgg 300 gtgtatttct gcttcacatt atactcccac acggccatgc atgtcaggca tggagcaggc 360 tcataaccca cttaattaag gtgatcatat cagatccttt atcaagatgc atagagtgct 420 cagtgcctgt actatgatct cggatctttg ggagatgggc tagatagagt ctgggacaga 480 atacagcaga gaaaccgata tgtttattgt ccgatcatca gctaagcttc tgggagctag 540 600 gaatggggct ccttggatga acagaagtaa aaatgcctcg tctttatgac tttcaacttc 660 cctcagcagg tctggaatgg gtgaacaaac actgcctgcg tgggtgataa atagcctctt tttgctgctt gtttgctgct tttatggttc tgggagggaa cctagaacct agcacatgct 720 780 agacaagtcc tctagcactg agctatctcc ccagcttgga tgaaatatct gtaaagtact ggtgcccgtg tgtaaaatat gcaccattaa gtgttcaaga agaaaagact gggcatttct 840 900 qttccaccaa qacaagaaga atctgccagc agaatgtttg cgcagtcatt tgagcaaagg ggtccaaggg acagtaccct ccagtgctgg ggacccatgt gccgagcctc aggctgtgat 960 gtggtgttgt ttttaattct ctcttttccc ataggatcat ggcatgtcaa cttgacttgc 1020 tcataggtgt gatcttcatg gccagccccg tgttggtaat atctccctgt tcttcagacg 1080 gcaggatage ettttccga ggetgtaace teacceagat teectggate etcaatacta 1140 ccactgagag gctcctgctc agcttcaact atatcagtat ggtggttgcc acatcatttc 1200 cactcctgga gcggctccag ttgctggagc tggggaccca gtatgctaac ttgaccattg 1260 gtccaggggc tttcagaaac ctgcccaatc ttaggatctt ggacttgggc caaagccaga 1320 1380 tequagetett gaategagat geettteaag gtetgeecca tetettggaa etteggetgt tttcctgtgg actctccagt gctgtgttaa gtgacggtta cttcagaaat ctatattcat 1440

rate bright on a et al met a arrivere a fill a gradie a branchi de la fille en la restata ha a est branchet e d Hanne en en el met a en el companyone en el companyon de la companyon de la companyon de la companyon de la co

| tagctcgctt<br>gggaactgaa | agacctatct<br>ttccttaagc | ggcaaccaga<br>gacgtaaatt | ttcacagcct<br>ttgctttcaa | ccgcctccat<br>ccaaatattc | tcttcattcc<br>actatatgtg | 1500<br>1560 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| aagatgaact               | cgagcctctg               | cagggcaaaa               | cactgtcttt               | ctttggcctc               | aaattaacta               | 1620         |
| agctgttcag               | cagagtctct               | gtgggctggg               | agacatgcag               | gaaccccttc               | agaggcgtga               | 1680         |
| ggctagaaac               | tctagatctt               | tctgaaaatg               | gctggacggt               | ggacatcaca               | aggaacttca               | 1740         |
| gcaacatcat               | ccagggaagc               | cagatttcct               | ctttgattct               | taaacaccac               | atcatgggtc               | 1800         |
| ctggctttgg               | cttccagaac               | atcagagatc               | ctgaccagag               | cacatttgcc               | agcetggeea               | 1860         |
| gaagttcggt               | gctgcaactg               | gacctttcgc               | acggctttat               | cttctccttg               | aatcctcgac               | 1920         |
| tgtttgggac               | actgaaggat               | ttgaagatgc               | tgaaccttgc               | cttcaacaag               | ataaacaaga               | 1980         |
| ttggagagaa               | tgccttttat               | gggcttgaca               | gcctccaggt               | tctcaatcta               | tcctataatc               | 2040         |
| ttttggggga               | actctataat               | tccaacttct               | atgggcttcc               | tagagtagcc               | tacgttgacc               | 2100         |
| ttcaaaggaa               | ccacattggg               | atcattcaag               | accaaacatt               | cagattatta               | aaaacgttac               | 2160         |
| aaaccttaga               | tctccgtgac               | aatgctctta               | aggccattgg               | ttttattcca               | agcatacaga               | 2220         |
| tggtcctcct               | gggaggcaat               | aagctggtcc               | atttgccaca               | catccacttt               | actgccaact               | 2280         |
| tcctagagtt               | atctgaaaac               | aggctagaaa               | acctgtccga               | cctctacttc               | ctcctgcgag               | 2340         |
| tcccccagct               | ccagtttctc               | atcttgaatc               | agaatcgcct               | ttcgtcatgc               | aaggcagccc               | 2400         |
| acactccctc               | ggagaaccca               | agcttagaac               | agcttttcct               | tacagagaat               | atgctgcagc               | 2460         |
| tggcctggga               | gaccggcctc               | tgttgggatg               | tttttcaagg               | cctttcccgc               | ctccagattc               | 2520         |
| tttacctgag               | taataactac               | cttaatttcc               | ttccacctgg               | gatatttaac               | gacctggttg               | 2580         |
| cattacggat               | gcttagtctt               | agtgctaaca               | agctgaccgt               | gctctctccg               | ggcagtttac               | 2640         |
| ctgctaattt               | agagattctc               | gacatatcta               | gaaatcagct               | tttgtgtcct               | gaccctgctt               | 2700         |
| tgttttcttc               | gcttcgtgtt               | ttggacataa               | ctcataacga               | gttcgtctgc               | aactgtgaac               | 2760         |
| ttagcacttt               | tateteetgg               | ctcaaccaaa               | ccaacgtcac               | cctgttcggc               | tetectgcag               | 2820         |
| acgtgtattg               | catgtaccct               | aactcactgc               | tagggggctc               | cctctacaac               | atatccaccg               | 2880         |
| aagactgcga               | tgaagaggaa               | gccatgcggt               | ccctaaagtt               | ttcccttttc               | atcctgtgca               | 2940         |
| cggtcacttt               | gactctattc               | ctcgtcatca               | cccttgtagt               | cataaagttc               | cggggaatct               | 3000         |
| gtttcctgtg               | ctataagacc               | atccagaagc               | tggtgttcaa               | ggacaaggtc               | tggagtttgg               | 3060         |
| aacctggtgc               | atatagatat               | gatgcctact               | tctgcttcag               | cagcaaagac               | tttgaatggg               | 3120         |
| cacagaatgo               | tttgctcaaa               | cacctggatg               | ctcactacag               | ttcccgaaac               | aggctcaggc               | 3180         |
| tatgctttga               | agaaagagac               | ttcattccgg               | gggaaaacca               | tatctccaac               | atccaggcgg               | 3240         |
| ctgtctgggg               | cagcaggaag               | acggtgtgtc               | tagtgagcag               | acacttcctg               | aaggatggtt               | 3300         |
| ggtgcctgga               | ggeetteagg               | tatgcccaga               | gccggagtct               | gtctgacctc               | aagagcattc               | 3360         |

tcatcqtqqt qqtqqtggga tcgctgtccc agtatcagct gatgagacat gagaccatca 3420 gagggtttct gcaaaagcaa cagtacttga ggtggcctga agacctccag gatgttggct 3480 ggtttctcga taaactctcc ggatgcattc taaaggaaga aaaaggaaag aaaagaagca 3540 gttccatcca gttgcgaacc atagcaacca tttcctagca ggagcgcctc ctagcagaag 3600 tgcaaqcatc gtagataact ctccacgctt tatccgcaca gccgctgggg gtccttccct 3660 qqaqtcattt ttctgacaat gaaaacaaca ccaatctctt gatttttcat gtcaacaggg 3720 agetttqtct teactgtttt ccaaatggaa agtaagaggt ccagaaagct gcctctaagg 3780 gctctcacct gccattgatg tcctttcagg cccaatgaca tggtttccct ccatcctatt 3840 gcgtactgtc tgctacccag gtggcaagag caccttggga gaagttacag gcagcttcat 3900 gctttctgtg ctgttcagtt caaaagcagg tgccttgaga atcctgaatt caagcactct 3960 gtagaacatg gacagacaag atgggtcctt ctctggccat aggcatgagg gccagttgct 4020 gaggactgct ctcactacac ctaagtgcac aagtgataag aagttggaca gatagacaga 4080 tagcagcagt cccattgctg tagccagaat gcacttattt cctgttctga ccctgcaggc 4140 ccaqcttttq qqqaccacag ccatgttctg cacgggacct ctcaacctgg cattcatgcc 4200 ctttcacqac ttaqcaccgg cctgcccttc tttcttcccc acaactatac aagagctgtt 4260 4286 qcaaccactg aaaaaaaaaa aaaaaa

<210> 30

<211> 859

<212> PRT

<213> murine

<400> 30

Met Ala Cys Gln Leu Asp Leu Leu Ile Gly Val Ile Phe Met Ala Ser 1 5 10 15

Pro Val Leu Val Ile Ser Pro Cys Ser Ser Asp Gly Arg Ile Ala Phe 20 25 30

Phe Arg Gly Cys Asn Leu Thr Gln Ile Pro Trp Ile Leu Asn Thr Thr 35 40 45

Thr Glu Arg Leu Leu Leu Ser Phe Asn Tyr Ile Ser Met Val Val Ala 50 55 60

Thr Ser Phe Pro Leu Leu Glu Arg Leu Gln Leu Leu Glu Leu Gly Thr 65 70 75 80

Gln Tyr Ala Asn Leu Thr Ile Gly Pro Gly Ala Phe Arg Asn Leu Pro 85 90 95

Asn Leu Arg Ile Leu Asp Leu Gly Gln Ser Gln Ile Glu Val Leu Asn 100 105 110

The second second

Arg Asp Ala Phe Gln Gly Leu Pro His Leu Leu Glu Leu Arg Leu Phe Ser Cys Gly Leu Ser Ser Ala Val Leu Ser Asp Gly Tyr Phe Arg Asn 135 Leu Tyr Ser Leu Ala Arg Leu Asp Leu Ser Gly Asn Gln Ile His Ser Leu Arg Leu His Ser Ser Phe Arg Glu Leu Asn Ser Leu Ser Asp Val 170 Asn Phe Ala Phe Asn Gln Ile Phe Thr Ile Cys Glu Asp Glu Leu Glu Pro Leu Gln Gly Lys Thr Leu Ser Phe Phe Gly Leu Lys Leu Thr Lys Leu Phe Ser Arg Val Ser Val Gly Trp Glu Thr Cys Arg Asn Pro Phe Arg Gly Val Arg Leu Glu Thr Leu Asp Leu Ser Glu Asn Gly Trp Thr Val Asp Ile Thr Arg Asn Phe Ser Asn Ile Ile Gln Gly Ser Gln Ile 250 Ser Ser Leu Ile Leu Lys His His Ile Met Gly Pro Gly Phe Gly Phe 265 Gln Asn Ile Arg Asp Pro Asp Gln Ser Thr Phe Ala Ser Leu Ala Arg 280 Ser Ser Val Leu Gln Leu Asp Leu Ser His Gly Phe Ile Phe Ser Leu 295 Asn Pro Arg Leu Phe Gly Thr Leu Lys Asp Leu Lys Met Leu Asn Leu 305 315 310 Ala Phe Asn Lys Ile Asn Lys Ile Gly Glu Asn Ala Phe Tyr Gly Leu 330 Asp Ser Leu Gln Val Leu Asn Leu Ser Tyr Asn Leu Leu Gly Glu Leu Tyr Asn Ser Asn Phe Tyr Gly Leu Pro Arg Val Ala Tyr Val Asp Leu Gln Arg Asn His Ile Gly Ile Ile Gln Asp Gln Thr Phe Arg Leu Leu Lys Thr Leu Gln Thr Leu Asp Leu Arg Asp Asn Ala Leu Lys Ala Ile 390 395 Gly Phe Ile Pro Ser Ile Gln Met Val Leu Leu Gly Gly Asn Lys Leu Val His Leu Pro His Ile His Phe Thr Ala Asn Phe Leu Glu Leu Ser 425 Glu Asn Arg Leu Glu Asn Leu Ser Asp Leu Tyr Phe Leu Leu Arg Val

the and the transfer of the second se

440 Pro Gln Leu Gln Phe Leu Ile Leu Asn Gln Asn Arg Leu Ser Ser Cys Lys Ala Ala His Thr Pro Ser Glu Asn Pro Ser Leu Glu Gln Leu Phe Leu Thr Glu Asn Met Leu Gln Leu Ala Trp Glu Thr Gly Leu Cys Trp Asp Val Phe Gln Gly Leu Ser Arg Leu Gln Ile Leu Tyr Leu Ser Asn Asn Tyr Leu Asn Phe Leu Pro Pro Gly Ile Phe Asn Asp Leu Val Ala Leu Arg Met Leu Ser Leu Ser Ala Asn Lys Leu Thr Val Leu Ser Pro Gly Ser Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg Asn Gln 555 Leu Leu Cys Pro Asp Pro Ala Leu Phe Ser Ser Leu Arg Val Leu Asp 570 Ile Thr His Asn Glu Phe Val Cys Asn Cys Glu Leu Ser Thr Phe Ile Ser Trp Leu Asn Gln Thr Asn Val Thr Leu Phe Gly Ser Pro Ala Asp Val Tyr Cys Met Tyr Pro Asn Ser Leu Leu Gly Gly Ser Leu Tyr Asn Ile Ser Thr Glu Asp Cys Asp Glu Glu Glu Ala Met Arg Ser Leu Lys Phe Ser Leu Phe Ile Leu Cys Thr Val Thr Leu Thr Leu Phe Leu Val Ile Thr Leu Val Val Ile Lys Phe Arg Gly Ile Cys Phe Leu Cys Tyr Lys Thr Ile Gln Lys Leu Val Phe Lys Asp Lys Val Trp Ser Leu Glu 685 680 Pro Gly Ala Tyr Arg Tyr Asp Ala Tyr Phe Cys Phe Ser Ser Lys Asp 695 Phe Glu Trp Ala Gln Asn Ala Leu Leu Lys His Leu Asp Ala His Tyr 705 Ser Ser Arg Asn Arg Leu Arg Leu Cys Phe Glu Glu Arg Asp Phe Ile Pro Gly Glu Asn His Ile Ser Asn Ile Gln Ala Ala Val Trp Gly Ser Arg Lys Thr Val Cys Leu Val Ser Arg His Phe Leu Lys Asp Gly Trp Cys Leu Glu Ala Phe Arg Tyr Ala Gln Ser Arg Ser Leu Ser Asp Leu

770 775 780

Lys Ser Ile Leu Ile Val Val Val Gly Ser Leu Ser Gln Tyr Gln
785 790 795 800

Leu Met Arg His Glu Thr Ile Arg Gly Phe Leu Gln Lys Gln Gln Tyr 805 810 815

Leu Arg Trp Pro Glu Asp Leu Gln Asp Val Gly Trp Phe Leu Asp Lys 820 825 830

Leu Ser Gly Cys Ile Leu Lys Glu Glu Lys Gly Lys Lys Arg Ser Ser 835 840 845

Ser Ile Gln Leu Arg Thr Ile Ala Thr Ile Ser 850 855

<210> 31 <211> 3373 <212> DNA

<213> Homo sapiens

<400> 31

agetggetag egtttaaaeg ggeeetetag aetegagegg eegegaatte aetagtqatt 60 cacctctcat gctctgctct cttcaaccag acctctacat tccattttgg aagaagacta 120 aaaatggtgt ttccaatgtg gacactgaag agacaaattc ttatcctttt taacataatc 180 ctaatttcca aactccttgg ggctagatgg tttcctaaaa ctctgccctg tgatgtcact 240 ctggatgttc caaagaacca tgtgatcgtg gactgcacag acaagcattt gacagaaatt 300 cctggaggta ttcccacgaa caccacgaac ctcaccctca ccattaacca cataccagac 360 atctccccag cgtcctttca cagactggac catctggtag agatcgattt cagatgcaac 420 tgtgtaccta ttccactggg gtcaaaaaac aacatgtgca tcaagaggct gcagattaaa 480 cccagaagct ttagtggact cacttattta aaatcccttt acctggatgg aaaccagcta 540 ctagagatac cgcagggcct cccgcctagc ttacagcttc tcagccttga ggccaacaac 600 atcttttcca tcagaaaaga gaatctaaca gaactggcca acatagaaat actctacctg 660 ggccaaaact gttattatcg aaatccttgt tatgtttcat attcaataga gaaagatgcc 720 ttcctaaact tgacaaagtt aaaagtgctc tccctgaaag ataacaatgt cacagccgtc 780 cctactgttt tgccatctac tttaacagaa ctatatctct acaacaacat gattgcaaaa 840 atccaagaag atgattttaa taacctcaac caattacaaa ttcttgacct aagtggaaat 900 tgccctcgtt gttataatgc cccatttcct tgtgcgccgt gtaaaaataa ttctccccta 960 cagatccctg taaatgcttt tgatgcgctg acagaattaa aagttttacg tctacacagt 1020 aactetette ageatgtgee eecaagatgg tttaagaaca teaacaaact eeaggaactg 1080 gatctgtccc aaaacttctt ggccaaagaa attggggatg ctaaatttct gcattttctc 1140 cccagcctca tccaattgga tctgtctttc aattttgaac ttcaggtcta tcgtgcatct 1200

1260 atquatctat cacaaqcatt ttcttcactg aaaaqcctga aaattctgcg gatcagagga tatgtcttta aagagttgaa aagctttaac ctctcgccat tacataatct tcaaaaatctt 1320 gaagttettg atettggcae taaetttata aaaattgeta aceteageat gtttaaacaa 1380 tttaaaaqac tqaaagtcat agatctttca gtgaataaaa tatcaccttc aggagattca 1440 agtgaaqttq gcttctgctc aaatgccaga acttctgtag aaagttatga accccaggtc 1500 ctggaacaat tacattattt cagatatgat aagtatgcaa ggagttgcag attcaaaaac 1560 aaagaggctt ctttcatgtc tgttaatgaa agctgctaca agtatgggca gaccttggat 1620 ctaagtaaaa atagtatatt ttttgtcaag tcctctgatt ttcagcatct ttctttcctc 1680 aaatgcctga atctgtcagg aaatctcatt agccaaactc ttaatggcag tgaattccaa 1740 cctttagcag agctgagata tttggacttc tccaacaacc ggcttgattt actccattca 1800 acagcatttg aagagcttca caaactggaa gttctggata taagcagtaa tagccattat 1860 tttcaatcag aaggaattac tcatatgcta aactttacca agaacctaaa ggttctgcag 1920 aaactgatga tgaacgacaa tgacatctct tcctccacca gcaggaccat ggagagtgag 1980 totottagaa ototggaatt cagaggaaat cacttagatg ttttatggag agaaggtgat 2040 2100 aacaqatact tacaattatt caagaatctg ctaaaattag aggaattaga catctctaaa aattooctaa gtttottgoo ttotggagtt tttgatggta tgootcoaaa totaaagaat 2160 ctctctttqq ccaaaaatgg gctcaaatct ttcagttgga agaaactcca gtgtctaaag 2220 2280 aacctggaaa ctttggacct cagccacaac caactgacca ctgtccctga gagattatcc aactqttcca qaaqcctcaa gaatctgatt cttaagaata atcaaatcag gagtctgacg 2340 2400 aaqtattttc tacaagatgc cttccagttg cgatatctgg atctcagctc aaataaaatc cagatgatcc aaaagaccag cttcccagaa aatgtcctca acaatctgaa gatgttgctt 2460 ttqcatcata atcqqtttct qtqcacctgt gatgctgtgt ggtttgtctg gtgggttaac 2520 catacggagg tgactattcc ttacctggcc acagatgtga cttgtgtggg gccaggagca 2580 cacaagggcc aaagtgtgat ctccctggat ctgtacacct gtgagttaga tctgactaac 2640 2700 ctgattctgt tctcactttc catatctgta tctctctttc tcatggtgat gatgacagca agtcacctct atttctggga tgtgtggtat atttaccatt tctgtaaggc caagataaag 2760 2820 gggtatcagc gtctaatatc accagactgt tgctatgatg cttttattgt gtatgacact aaagacccag ctgtgaccga gtgggttttg gctgagctgg tggccaaact ggaagaccca 2880 agagagaaac attttaattt atgtctcgag gaaagggact ggttaccagg gcagccagtt 2940 ctggaaaacc tttcccagag catacagctt agcaaaaaga cagtgtttgt gatgacagac 3000 aagtatgcaa agactgaaaa ttttaagata gcattttact tgtcccatca gaggctcatg 3060

المرجعة أنبوها فيمهي فالحراط فللحاص الرحم وداري الحارب والمحاري جار

| gatgaaaaag | ttgatgtgat | tatcttgata | tttcttgaga | agccttttca | gaagtccaag | 3120 |
|------------|------------|------------|------------|------------|------------|------|
| ttcctccagc | tccggaaaag | gctctgtggg | agttetgtee | ttgagtggcc | aacaaacccg | 3180 |
| caagctcacc | catacttctg | gcagtgtcta | aagaacgccc | tggccacaga | caatcatgtg | 3240 |
| gcctatagtc | aggtgttcaa | ggaaacggtc | tagaatcgaa | ttcccgcggc | cgccactgtg | 3300 |
| ctggatatct | gcagaattcc | accacactgg | actagtggat | ccgagctcgg | taccaagett | 3360 |
| aagtttaaac | cgc        |            | •          |            |            | 3373 |
|            |            |            |            |            |            |      |

<210> 32

<211> 3416

<212> DNA

<213> Homo sapiens

<400> 32

tccagatata ggatcactcc atgccatcaa gaaagttgat gctattgggc ccatctcaag 60 ctgatcttgg cacctctcat gctctgctct cttcaaccag acctctacat tccattttgg 120 aagaagacta aaaatggtgt ttccaatgtg gacactgaag agacaaattc ttatcctttt 180 taacataatc ctaatttcca aactccttgg ggctagatgg tttcctaaaa ctctgccctg 240 tgatgtcact ctggatgttc caaagaacca tgtgatcgtg gactgcacag acaagcattt 300 gacagaaatt cctggaggta ttcccacgaa caccacgaac ctcaccctca ccattaacca 360 cataccagac atctccccag cgtcctttca cagactggac catctggtag agatcgattt 420 cagatgcaac tgtgtaccta ttccactggg gtcaaaaaac aacatgtgca tcaagaggct 480 gcagattaaa cccagaagct ttagtggact cacttattta aaatcccttt acctggatgg 540 aaaccagcta ctagagatac cgcagggcct cccgcctagc ttacagcttc tcagccttga 600 ggccaacaac atcttttcca tcagaaaaga gaatctaaca gaactggcca acatagaaat 660 acticacity ggccaaaact gttattateg aaatcettgt tatgttteat atteaataga 720 gaaagatgcc ttcctaaact tgacaaagtt aaaagtgctc tccctgaaag ataacaatgt 780 cacagoogto cotactgttt tgccatctac tttaacagaa ctatatctct acaacaacat 840 gattgcaaaa atccaagaag atgattttaa taacctcaac caattacaaa ttcttgacct 900 aagtggaaat tgccctcgtt gttataatgc cccatttcct tgtgcgccgt gtaaaaataa 960 ttctccccta cagatccctg taaatgcttt tgatgcgctg acagaattaa aagttttacg 1020 totacacagt aactototto agoatgtgcc cocaagatgg tttaagaaca tcaacaaact 1080 ccaggaactg gatctgtccc aaaacttctt ggccaaagaa attggggatg ctaaatttct 1140 gcattttctc cccagcctca tccaattgga tctgtctttc aattttgaac ttcaggtcta 1200 tegtgeatet atgaatetat cacaageatt ttetteaetg aaaageetga aaattetgeg 1260

் நாட்டிய கொளியே இருக்கு இருக்கு இருக்கு இருக்கு மான்ற நார்க்கு இருக்கு இருக்கு கூறுக்கு கொளியில் இருக்கு கொளி இருக்கு நார்கள்

gatcagagga tatgtcttta aagagttgaa aagctttaac ctctcgccat tacataatct 1320 tcaaaatctt gaagttcttg atcttggcac taactttata aaaattgcta acctcagcat 1380 gtttaaacaa tttaaaagac tgaaagtcat agatctttca gtgaataaaa tatcaccttc 1440 aggagattca agtgaagttg gcttctgctc aaatgccaga acttctgtag aaagttatga 1500 accccaqqtc ctggaacaat tacattattt cagatatgat aagtatgcaa ggagttgcag 1560 attcaaaaac aaagaggett ettteatgte tgttaatgaa agetgetaca agtatgggea 1620 1680 qaccttqqat ctaaqtaaaa atagtatatt ttttgtcaag tcctctgatt ttcagcatct 1740 ttctttcctc aaatgcctga atctgtcagg aaatctcatt agccaaactc ttaatggcag tgaattccaa cctttagcag agttgagata tttggacttc tccaacaacc ggcttgattt 1800 actccattca acagcatttg aagagcttca caaactggaa gttctggata taagcagtaa 1860 tagccattat tttcaatcag aaggaattac tcatatgcta aactttacca agaacctaaa 1920 ggttctgcag aaactgatga tgaacgacaa tgacatctct tcctccacca gcaggaccat 1980 2040 ggagagtgag tetettagaa etetggaatt cagaggaaat caettagatg ttttatggag agaaggtgat aacagatact tacaattatt caagaatctg ctaaaattag aggaattaga 2100 2160 catctctaaa aattccctaa gtttcttgcc ttctggagtt tttgatggta tgcctccaaa 2220 tctaaaqaat ctctctttgg ccaaaaatgg gctcaaatct ttcagttgga agaaactcca gtgtctaaag aacctggaaa ctttggacct cagccacaac caactgacca ctgtccctga 2280 gagattatcc aactgttcca gaagccacaa gaatctgatt cttaagaata atcaaatcag 2340 gagtccgacg aagtattttc tacaagatgc cttccagttg cgatatctgg atctcagctc 2400 aaataaaatc cagatgatcc aaaagaccag cttcccagaa aatgtcctca acaatctgaa 2460 gatgttgctt ttgcatcata atcggtttct gtgcacctgt gatgctgtgt ggtttgtctg 2520 gtgggttaac catacggagg tgactattcc ttacctggcc acagatgtga cttgtgtggg 2580 gccaggagca cacaagggcc aaagtgtgat ctccctggat ctgtacacct gtgagttaga 2640 tetgactaac etgattetgt teteacttte catatetgta tetetette teatggtgat 2700 gatgacagca agtcacctct atttctggga tgtgtggtat atttaccatt tctgtaaggc 2760 caagataaag gggtatcagc gtctaatatc accagactgt tgctatgatg cttttattgt 2820 gtatgacact aaagacccag ctgtgaccga gtgggttttg gctgagctgg tggccaaact 2880 ggaagaccca agagagaaac attttaattt atgtctcgag gaaagggact ggttaccagg 2940 3000 qcaqccagtt ctggaaaacc tttcccagag catacagctt agcaaaaaga cagtgtttgt gatgacagac aagtatgcaa agactgaaaa ttttaagata gcattttact tgtcccatca 3060 gaggeteatg gatgaaaaag ttgatgtgat tatettgata tttettgaga agecetttea 3120 3180 gaagtccaag ttcctccagc tccggaaaag gctctgtggg agttctgtcc ttgagtggcc

aacaaacccg caagetcace catacttetg geagtgteta aagaacgeee tggecacaga 3240 caatcatgtg gcctatagtc aggtgttcaa ggaaacggtc tagcccttct ttgcaaaaca 3300 3360 caactgccta qtttaccaag gagaggcctg gctgtttaaa ttgttttcat atataccaca ccaaaagcgt gttttgaaat tcttcaagaa atgagattgc ccatatttca ggggag 3416 <210> 33 <211> 3418 <212> DNA <213> Homo spaiens <400> 33 actocagata taggatoact coatgocato aagaaagttg atgotattgg goccatotoa 60 agetgatett ggeacetete atgetetget etetteaace agacetetae attecatttt 120 ggaagaagac taaaaatggt gtttccaatg tggacactga agagacaaat tcttatcctt 180 tttaacataa tcctaatttc caaactcctt ggggctagat ggtttcctaa aactctgccc 240 tqtqatqtca ctctggatgt tccaaagaac catgtgatcg tggactgcac agacaagcat 300 360 ttqacaqaaa ttcctggagg tattcccacg aacaccacga acctcaccct caccattaac cacataccag acatetecee agegteettt cacagactgg accatetggt agagategat 420 ttcagatgca actgtgtacc tattccactg gggtcaaaaa acaacatgtg catcaagagg . 480 ctqcaqatta aacccagaag ctttagtgga ctcacttatt taaaatccct ttacctggat 540 qqaaaccaqc tactagagat accgcagggc ctcccgccta gcttacagct tctcagcctt 600 gaggccaaca acatcttttc catcagaaaa gagaatctaa cagaactggc caacatagaa 660 atactctacc tgggccaaaa ctgttattat cgaaatcctt gttatgtttc atattcaata 720 780 gagaaagatg ccttcctaaa cttgacaaag ttaaaagtgc tctccctgaa agataacaat gtcacagccg tccctactgt tttgccatct actttaacag aactatatct ctacaacaac 840 atgattgcaa aaatccaaga agatgatttt aataacctca accaattaca aattcttgac 900 960 ctaaqtqqaa attqccctcg ttgttataat gccccatttc cttgtgcgcc gtgtaaaaaat aatteteece tacagateee tgtaaatget tttgatgege tgacagaatt aaaagtttta 1020 1080 cgtctacaca gtaactctct tcagcatgtg cccccaagat ggtttaagaa catcaacaaa ctccaqqaac tqqatctqtc ccaaaacttc ttggccaaag aaattgggga tgctaaattt 1140 ctgcattttc tccccagcct catccaattg gatctgtctt tcaattttga acttcaggtc 1200 tatcgtgcat ctatgaatct atcacaagca ttttcttcac tgaaaagcct gaaaattctg 1260 cqqatcaqaq gatatgtctt taaagagttg aaaagcttta acctctcgcc attacataat 1320 cttcaaaatc ttgaagttct tgatcttggc actaacttta taaaaattgc taacctcagc 1380

|            | aatttaaaag<br>caagtgaagt |            |            |            |            | 1440<br>1500 |
|------------|--------------------------|------------|------------|------------|------------|--------------|
| gaaccccagg | tcctggaaca               | attacattat | ttcagatatg | ataagtatgc | aaggagttgc | 1560         |
| agattcaaaa | acaaagaggc               | ttctttcatg | tctgttaatg | aaagctgcta | caagtatggg | 1620         |
| cagaccttgg | atctaagtaa               | aaatagtata | ttttttgtca | agtcctctga | ttttcagcat | 1680         |
| ctttctttcc | tcaaatgcct               | gaatctgtca | ggaaatctca | ttagccaaac | tcttaatggc | 1740         |
| agtgaattcc | aacctttagc               | agagctgaga | tatttggact | tctccaacaa | ccggcttgat | 1800         |
| ttactccatt | caacagcatt               | tgaagagctt | cacaaactgg | aagttctgga | tataagcagt | 1860         |
| aatagccatt | attttcaatc               | agaaggaatt | actcatatgc | taaactttac | caagaaccta | 1920         |
| aaggttctgc | agaaactgat               | gatgaacgac | aatgacatct | cttcctccac | cagcaggacc | 1980         |
| atggagagtg | agtctcttag               | aactctggaa | ttcagaggaa | atcacttaga | tgttttatgg | 2040         |
| agagaaggtg | ataacagata               | cttacaatta | ttcaagaatc | tgctaaaatt | agaggaatta | 2100         |
| gacatctcta | aaaattccct               | aagtttcttg | ccttctggag | tttttgatgg | tatgcctcca | 2160         |
| aatctaaaga | atctctcttt               | ggccaaaaat | gggctcaaat | ctttcagttg | gaagaaactc | 2220         |
| cagtgtctaa | agaacctgga               | aactttggac | ctcagccaca | accaactgac | cactgtccct | 2280         |
| gagagattat | ccaactgttc               | cagaagcctc | aagaatctga | ttcttaagaa | taatcaaatc | 2340         |
| aggagtctga | cgaagtattt               | tctacaagat | gccttccagt | tgcgatatct | ggatctcagc | 2400         |
| tcaaataaaa | tccagatgat               | ccaaaagacc | agcttcccag | aaaatgtcct | caacaatctg | 2460         |
| aagatgttgc | ttttgcatca               | taatcggttt | ctgtgcacct | gtgatgctgt | gtggtttgtc | 2520         |
| tggtgggtta | accatacgga               | ggtgactatt | ccttacctgg | ccacagatgt | gacttgtgtg | 2580         |
| gggccaggag | cacacaaggg               | ccaaagtgtg | atctccctgg | atctgtacac | ctgtgagtta | 2640         |
| gatctgacta | acctgattct               | gttctcactt | tccatatctg | tatctctctt | tctcatggtg | 2700         |
| atgatgacag | caagtcacct               | ctatttctgg | gatgtgtggt | atatttacca | tttctgtaag | 2760         |
| gccaagataa | aggggtatca               | gcgtctaata | tcaccagact | gttgctatga | tgcttttatt | 2820         |
| gtgtatgaca | ctaaagaccc               | agctgtgacc | gagtgggttt | tggctgagct | ggtggccaaa | 2880         |
| ctggaagacc | caagagagaa               | acattttaat | ttatgtctcg | aggaaaggga | ctggttacca | 2940         |
| gggcagccag | ttctggaaaa               | cctttcccag | agcatacagc | ttagcaaaaa | gacagtgttt | 3000         |
| gtgatgacag | acaagtatgc               | aaagactgaa | aattttaaga | tagcatttta | cttgtcccat | 3060         |
| cagaggctca | tggatgaaaa               | agttgatgtg | attatcttga | tatttcttga | gaagcccttt | 3120         |
| cagaagtcca | agttcctcca               | gctccggaaa | aggctctgtg | ggagttctgt | ccttgagtgg | 3180         |
| ccaacaaacc | cgcaagctca               | cccatacttc | tggcagtgtc | taaagaacgc | cctggccaca | 3240         |
| gacaatcatg | tggcctatag               | tcaggtgttc | aaggaaacgg | tctagccctt | ctttgcaaaa | 3300         |

cacaactgcc tagtttacca aggagaggcc tggctgttta aattgttttc atatataca 3360 caccaaaagc gtgttttgaa attcttcaag aaatgagatt gcccatattt caggggag 3418

<210> 34

<211> 1049

<212> PRT

<213> Homo sapiens

<400> 34

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe 1 5 10 15

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile 65 70 75 80

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe 85 90 95

Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys
100 105 110

Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr 115 120 125

Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile 165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser 180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val 195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro 210 215 220

Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile 225 230 235 240

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu 245 250 255

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro

265 270 Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala 280 Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 295 Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp 310 Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu 325 330 His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu 345 Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser 360 Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu 375 Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu 535 Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr 550 Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn 570 Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr 585

Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile

 $(A_{n})^{2} + (A_{n})^{2} +$ 

600 605 Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn 630 Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn 710 Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu His His Asn Arg Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr 825 Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser 840 Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu 900 Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu 920 Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser

72/231

and the second of the second o

930 935 940
Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys
945 950 955 960

Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln 965 970 975

Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu 980 985 990

Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys 995 1000 1005

Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1010 1015 . 1020

Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025 1030 1035

Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1040 1045

<210> 35

<211> 1049

<212> PRT

<213> Homo sapiens

<400> 35

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe 1 5 10 15

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile
65 70 75 80

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe 85 90 95

Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys 100 105 110

Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr 115 120 . 125

Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln
130 135 140

Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile 165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 295 Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp 315 Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu 390 395 Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met 405 410 Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys

Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp

Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln

490

ત્રા કે મહત્વ ન કરી જ મુક્કે પુંચાલનો મુક્કે કરી કરી કે કે પ્રેટિક ફે. મેંડું ક જ પૂર્વ નાર્કિક કરી જો જો જો જો જો જો છે.

505 500 Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu 520 Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu 535 Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr 550 555 Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr 585 Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile 600 Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu 615 Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn 630 Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn Cys Ser Arg Ser His Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg Ser Pro Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu His His Asn Arg 775 Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly 810 Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr 825 Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser

840 Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe 855

Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly 870

Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val 890

Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu 905

Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu 920

Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser 935

Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys 955

Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln

Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu

Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys 1000

Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1015

Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1030

Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1045

<210> 36 <211> 1049 <212> PRT <213> Homo spaiens

<400> 36

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile 70 75

in the second section of the company for the design of section with

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe 85 90 95

് ജീന്ത് ആരു എന്ന് അവര് എന്നു. വിവര്ഷ്ട്രായിൽ വാധ്യായിരുന്നു. വിവര്ഷ്ട്രായിൽ വിവര്ഷ്ട്രായിൽ വിവര്ഷ്ട്രായിൽ വിവ അവര്ട്ട് സ്ഥാന്ത്രത്ത് വിവര്ഷ്ട്രായിൽ വിവര്ഷ്ട്രായിൽ വിവര്ഷ്ട്രായിൽ വിവര്ഷ്ട്രായിൽ വിവര്ഷ്ട്രായിൽ വിവര്ഷ്ട്രായ

- Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys 100 105 110
- Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr 115 120 125
- Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140
- Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160
- Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile 165 170 175
- Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser 180 185 190
- Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val 195 200 205
- Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro 210 215 220
- Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile 225 230 235 240
- Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu 245 250 255
- Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro 260 265 270
- Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala 275 280 285
- Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 295 300
- Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp 305 310 315 320
- Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu 325 330 335
- His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu 340 345 350
- Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser 355 360 365
- Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu 370 375 380
- Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu 385 390 395 400
- Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met

angles of the end of the engineering of

410 Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp 505 Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu 520 Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr 555 Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp 650 Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu 695 Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg 730 Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu

78/231

and the second s

740 745 750

Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro
755 760 765

- Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu His His Asn Arg 770 775 780
- Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His 785 790 795 800
- Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly 805 810 815
- Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr 820 825 830
- Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser 835 840 845
- Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe 850 855 860
- Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly 865 870 875 886
- Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val 885 890 895
- Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu
  900 905 910
- Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu
  915 920 925
- Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser 930 940
- Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys 945 950 955 960
- Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln 965 970 975
- Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu 980 985 990
- Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys 995 1000 1005
- Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1010 1015 1020
- Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025 1030 1035
- Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1040 1045

<210> 37

<211> 1049

<212> PRT

<213> Homo sapiens <400> 37

Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe 1 5 10 15

. . .

Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Asp Ile 65 70 75 80

Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe
85 90 95

Arg Cys Asn Cys Val Pro Ile Pro Leu Gly Ser Lys Asn Asn Met Cys
100 105 110

Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser Gly Leu Thr Tyr 115 120 125

Leu Lys Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile 165 . 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser 180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val 195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro 210 215 220

Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile 225 230 235 240

Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp Leu 245 250 255

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro 260 265 270

Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala Phe Asp Ala 275 280 285

Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 295 300

Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys Leu Gln Glu Leu Asp 305 310 315

Brysk.

Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp Ala Lys Phe Leu 325 330 335

The state of the s

- His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu 340 345 350
- Leu Gln Val Tyr Arg Ala Ser Met Asn Leu Ser Gln Ala Phe Ser Ser 355 360 365
- Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe Lys Glu 370 380
- Leu Lys Ser Phe Asn Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu 385 390 395 400
- Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met 405 410 415
- Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys 420 425 430
- Ile Ser Pro Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala 435 440 445
- Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His 450 455 460
- Tyr Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys 465 470 475 480
- Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly Gln 485 490 495
- Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser Ser Asp 500 505 510
- Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu 515 520 525
- Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro Leu Ala Glu Leu 530 535 540
- Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr 545 550 555 560
- Ala Phe Glu Glu Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn 565 570 575
- Ser His Tyr Phe Gln Ser Glu Gly Ile Thr His Met Leu Asn Phe Thr 580 585 590
- Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile 595 600 605
- Ser Ser Ser Thr Ser Arg Thr Met Glu Ser Glu Ser Leu Arg Thr Leu 610 620
- Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp Asn 625 630 635 640
- Arg Tyr Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp

· . · .

645 650 Ile Ser Lys Asn Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly 665 Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys 680 Ser Phe Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn 710 Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu His His Asn Arg 775 Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His 795 790 Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly 810 Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr 825 Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Leu Ser Ile Ser 840 Val Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe 855 Trp Asp Val Trp Tyr Ile Tyr His Phe Cys Lys Ala Lys Ile Lys Gly Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val Tyr Asp Thr Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu 905 Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser 935 Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His Gln 970 Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu

82/231

980 985 990

Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys
995 1000 1005

Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln Ala His Pro 1010 1015 1020

Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025 1030 1035

Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val 1040 1045

<210> 38 <211> 3243 <212> DNA

<213> murine

<400> 38

attotootoo accagacoto ttgattocat tttgaaagaa aactgaaaat gqtqttttoq 60 atgtggacac ggaagagaca aattttgatc tttttaaata tgctcttagt ttctagagtc 120 tttgggtttc gatggtttcc taaaactcta ccttgtgaag ttaaagtaaa tatcccaqaq 180 gcccatgtga tcgtggactg cacagacaag catttgacag aaatccctga gggcattccc 240 actaacacca ccaatcttac ccttaccatc aaccacatac caagcatctc tecagattcc 300 ttccgtaggc tgaaccatct ggaagaaatc gatttaagat gcaattgtgt acctgttcta 360 ctggggtcca aagccaatgt gtgtaccaag aggctgcaga ttagacctgg aagctttagt 420 ggactctctg acttaaaagc cctttacctg gatggaaacc aacttctgga gataccacag 480 gatetgecat ecagettaca tettetgage ettgaggeta acaacatett etccateacg 540 aaggagaatc taacagaact ggtcaacatt gaaacactct acctgggtca aaactgttat 600 tatogaaato ottgoaatgt ttootattot attgaaaaag atgotttoot aqttatqaqa 660 aatttgaagg tteteteaet aaaagataae aatgteaeag etgteeeeae eaetttgeea 720 cctaatttac tagagcteta tetttataac aatateatta agaaaateea agaaaatgat 780 tttaataacc tcaatgagtt gcaagttctt gacctaagtg gaaattgccc tcgatgttat 840 aatgtcccat atccgtgtac accgtgtgaa aataattccc ccttacagat ccatgacaat 900 gctttcaatt cattgacaga attaaaagtt ttacgtttac acagtaattc tcttcagcat 960 gtgcccccaa catggtttaa aaacatgaga aacctccagg aactagacct ctcccaaaac 1020 tacttggcca gagaaattga ggaggccaaa tttttgcatt ttcttcccaa ccttgttgag 1080 ttggattttt ctttcaatta tgagctgcag gtctaccatg catctataac tttaccacat 1140 tcactctctt cattggaaaa cttgaaaatt ctgcgtgtca aggggtatgt ctttaaagag 1200 ctgaaaaact ccagtctttc tgtattgcac aagcttccca ggctggaagt tcttgacctt 1260

ggcactaact tcataaaaat tgctgacctc aacatattca aacattttga aaacctcaaa 1320 ctcatagacc tttcagtgaa taagatatet ccttcagaag agtcaagaga agttggettt 1380 tgtcctaatg ctcaaacttc tgtagaccgt catgggcccc aggtccttga ggccttacac 1440 tatttccgat acgatgaata tgcacggagc tgcaggttca aaaacaaaga gccaccttct 1500 ttcttgcctt tgaatgcaga ctgccacata tatgggcaga ccttagactt aagtagaaat 1560 aacatatttt ttattaaacc ttctgatttt caqcatcttt cattcctcaa atgcctcaac 1620 ttatcaggaa acaccattgg ccaaactctt aatggcagtg aactctggcc gttgagagag 1680 ttgcggtact tagacttctc caacaaccgg cttgatttac tctactcaac agcctttgaa 1740 gagetecaga gtettgaagt tetggateta agtagtaaca gecaetattt teaageagaa 1800 ggaattactc acatgctaaa ctttaccaag aaattacqqc ttctggacaa actcatgatq 1860 aatgataatg acatetetae tteggeeage aggaceatgg aaagtgaete tettegaatt 1920 ctggagttca gaggcaacca tttagatgtt ctatggagag ccggtgataa cagatacttg 1980 gacttettea agaatttgtt caatttagag gtattagata tetecagaaa tteectgaat 2040 tecttgeete etgaggtttt tgagggtatg cegecaaate taaagaatet eteettggee 2100 aaaaatgggc tcaaatcttt cttttgggac agactccagt tactgaagca tttggaaatt 2160 ttggacetca gecataacca getgacaaaa gtacetgaga gattggecaa etgttecaaa 2220 agteteacaa eactgattet taageataat eaaateagge aattgacaaa atatttteta 2280 gaagatgctt tgcaattgcg ctatctagac atcagttcaa ataaaatcca ggtcattcag 2340 aagactagct tcccagaaaa tgtcctcaac aatctggaga tgttggtttt acatcacaat 2400 cgctttcttt gcaactgtga tgctgtgtgg tttgtctggt gggttaacca tacagatgtt 2460 actattccat acctggccac tgatgtgact tgtgtaggtc caggagcaca caaaggtcaa 2520 agtgtcatat cccttgatct gtatacgtgt gagttagatc tcacaaacct gattctqttc 2580 tcagtttcca tatcatcagt cctctttctt atggtagtta tgacaacaag tcacctcttt 2640 ttctgggata tgtggtacat ttattatttt tggaaagcaa agataaaggg gtatcagcat 2700 ctgcaatcca tggagtcttg ttatgatgct tttattgtgt atgacactaa aaactcagct 2760 gtgacagaat gggttttgca ggagctggtg gcaaaattgg aagatccaag agaaaaacac 2820 ttcaatttgt gtctagaaga aagagactgg ctaccaggac agccagttct agaaaacctt 2880 tcccagagca tacagctcag caaaaagaca gtgtttgtga tgacacagaa atatgctaag 2940 actgagagtt ttaagatggc attttatttg tctcatcaga ggctcctgga tgaaaaagtg 3000 gatgtgatta tettgatatt ettggaaaag cetetteaga agtetaagtt tetteagete 3060 aggaagagac tctgcaggag ctctgtcctt gagtggcctg caaatccaca ggctcaccca 3120 tacttctggc agtgcctgaa aaatgccctg accacagaca atcatgtggc ttatagtcaa 3180

| atgttca                          | agg                       | aaacagtcta | gctctctgaa | gaatgtcacc | acctaggaca | tgccttgaat | 3240 |
|----------------------------------|---------------------------|------------|------------|------------|------------|------------|------|
| cga                              |                           |            |            |            |            |            | 3243 |
| <210><br><211><br><212><br><213> | 39<br>3747<br>DNA<br>muri |            |            |            |            |            |      |
| <400><br>gagctca                 | 39<br>aaag                | gctctgcgag | teteggtttt | ctgttgcctt | ctctctgtct | cagaggactc | 60   |
| catctat                          | aga                       | accactctat | gccttcaaga | aagatgtcct | tggctccctt | ctcaggatga | 120  |
| tcctgg                           | ccta                      | tctctgactc | tcttctcctc | caccagacct | cttgattcca | ttttgaaaga | 180  |
| aaactga                          | aaaa                      | tggtgtttc  | gatgtggaca | cggaagagac | aaattttgat | ctttttaaat | 240  |
| atgctct                          | tag                       | tttctagagt | ctttgggttt | cgatggtttc | ctaaaactct | accttgtgaa | 300  |
| gttaaag                          | gtaa                      | atatcccaga | ggcccatgtg | atcgtggact | gcacagacaa | gcatttgaca | 360  |
| gaaatc                           | cctg                      | agggcattcc | cactaacacc | accaatctta | cccttaccat | caaccacata | 420  |
| ccaagca                          | atct                      | ctccagattc | cttccgtagg | ctgaaccatc | tggaagaaat | cgatttaaga | 480  |
| tgcaatt                          | gtg                       | tacctgttct | actggggtcc | aaagccaatg | tgtgtaccaa | gaggctgcag | 540  |
| attagad                          | cctg                      | gaagctttag | tggactctct | gacttaaaag | ccctttacct | ggatggaaac | 600  |
| caactt                           | ctgg                      | agataccaca | ggatctgcca | tccagcttac | atcttctgag | ccttgaggct | 660  |
| aacaaca                          | atct                      | tctccatcac | gaaggagaat | ctaacagaac | tggtcaacat | tgaaacactc | 720  |
| tacctg                           | ggtc                      | aaaactgtta | ttatcgaaat | ccttgcaatg | tttcctattc | tattgaaaaa | 780  |
| gatgcti                          | ttcc                      | tagttatgag | aaatttgaag | gttctctcac | taaaagataa | caatgtcaca | 840  |
| gctgtc                           | ccca                      | ccactttgcc | acctaattta | ctagagctct | atctttataa | caatatcatt | 900  |
| aagaaa                           | atcc                      | aagaaaatga | ttttaataac | ctcaatgagt | tgcaagttct | tgacctaagt | 960  |
| ggaaati                          | tgcc                      | ctcgatgtta | taatgtccca | tatccgtgta | caccgtgtga | aaataattcc | 1020 |
| ccctta                           | caga                      | tccatgacaa | tgctttcaat | tcattgacag | aattaaaagt | tttacgttta | 1080 |
| cacagta                          | aatt                      | ctcttcagca | tgtgccccca | acatggttta | aaaacatgag | aaacctccag | 1140 |
| gaacta                           | gacc                      | tctcccaaaa | ctacttggcc | agagaaattg | aggaggccaa | atttttgcat | 1200 |
| tttctt                           | ccca                      | accttgttga | gttggatttt | tctttcaatt | atgagctgca | ggtctaccat | 1260 |
| gcatct                           | ataa                      | ctttaccaca | ttcactctct | tcattggaaa | acttgaaaat | tctgcgtgtc | 1320 |
| aagggg                           | tatg                      | tctttaaaga | gctgaaaaac | tccagtcttt | ctgtattgca | caagcttccc | 1380 |
| aggctg                           | gaag                      | ttcttgacct | tggcactaac | ttcataaaaa | ttgctgacct | caacatattc | 1440 |
| aaacat                           | tttg                      | aaaacctcaa | actcatagac | ctttcagtga | ataagatatc | tccttcagaa | 1500 |

|            |            | ttgtcctaat<br>ctatttccga |            |            |            | 1560<br>1620 |
|------------|------------|--------------------------|------------|------------|------------|--------------|
| aaaaacaaag | agccaccttc | tttcttgcct               | ttgaatgcag | actgccacat | atatgggcag | 1680         |
| accttagact | taagtagaaa | taacatattt               | tttattaaac | cttctgattt | tcagcatctt | 1740         |
| tcattcctca | aatgcctcaa | cttatcagga               | aacaccattg | gccaaactct | taatggcagt | 1800         |
| gaactctggc | cgttgagaga | gttgcggtac               | ttagacttct | ccaacaaccg | gcttgattta | 1860         |
| ctctactcaa | cagcctttga | agagctccag               | agtcttgaag | ttctggatct | aagtagtaac | 1920         |
| agccactatt | ttcaagcaga | aggaattact               | cacatgctaa | actttaccaa | gaaattacgg | 1980         |
| cttctggaca | aactcatgat | gaatgataat               | gacatctcta | cttcggccag | caggaccatg | 2040         |
| gaaagtgact | ctcttcgaat | tctggagttc               | agaggcaacc | atttagatgt | tctatggaga | 2100         |
| gccggtgata | acagatactt | ggacttcttc               | aagaatttgt | tcaatttaga | ggtattagat | 2160         |
| atctccagaa | attccctgaa | ttccttgcct               | cctgaggttt | ttgagggtat | gccgccaaat | 2220         |
| ctaaagaatc | tctccttggc | caaaaatggg               | ctcaaatctt | tcttttggga | cagactccag | 2280         |
| ttactgaagc | atttggaaat | tttggacctc               | agccataacc | agctgacaaa | agtacctgag | 2340         |
| agattggcca | actgttccaa | aagtctcaca               | acactgattc | ttaagcataa | tcaaatcagg | 2400         |
| caattgacaa | aatattttct | agaagatgct               | ttgcaattgc | gctatctaga | catcagttca | 2460         |
| aataaaatcc | aggtcattca | gaagactagc               | ttcccagaaa | atgtcctcaa | caatctggag | 2520         |
| atgttggttt | tacatcacaa | tcgctttctt               | tgcaactgtg | atgctgtgtg | gtttgtctgg | 2580         |
| tgggttaacc | atacagatgt | tactattcca               | tacctggcca | ctgatgtgac | ttgtgtaggt | 2640         |
| ccaggagcac | acaaaggtca | aagtgtcata               | tcccttgatc | tgtatacgtg | tgagttagat | 2700         |
| ctcacaaacc | tgattctgtt | ctcagtttcc               | atatcatcag | tactatttat | tatggtagtt | 2760         |
| atgacaacaa | gtcacctctt | tttctgggat               | atgtggtaca | tttattattt | ttggaaagca | 2820         |
| aagataaagg | ggtatcagca | tetgcaatee               | atggagtctt | gttatgatgc | ttttattgtg | 2880         |
| tatgacacta | aaaactcagc | tgtgacagaa               | tgggttttgc | aggagctggt | ggcaaaattg | 2940         |
| gaagatccaa | gagaaaaaca | cttcaatttg               | tgtctagaag | aaagagactg | gctaccagga | 3000         |
| cagccagttc | tagaaaacct | ttcccagagc               | atacagetea | gcaaaaagac | agtgtttgtg | 3060         |
| atgacacaga | aatatgctaa | gactgagagt               | tttaagatgg | cattttattt | gtctcatcag | 3120         |
| aggctcctgg | atgaaaaagt | ggatgtgatt               | atcttgatat | tcttggaaaa | gcctcttcag | 3180         |
| aagtctaagt | ttcttcagct | caggaagaga               | ctctgcagga | gctctgtcct | tgagtggcct | 3240         |
| gcaaatccac | aggctcaccc | atacttctgg               | cagtgcctga | aaaatgccct | gaccacagac | 3300         |
| aatcatgtgg | cttatagtca | aatgttcaag               | gaaacagtct | agctctctga | agaatgtcac | 3360         |
| cacctaggac | atgccttggt | acctgaagtt               | ttcataaagg | tttccataaa | tgaaggtctg | 3420         |

aatttttcct aacagttgtc atggctcaga ttggtgggaa atcatcaata tatggctaag 3480 aaattaagaa ggggagactg atagaagata atttctttct tcatgtgcca tgctcagtta 3540 aatatttccc ctagctcaaa tctgaaaaac tgtgcctagg agacaacaca aggctttgat 3600 ttatctgcat acaattgata agagccacac atctgccctg aagaagtact agtagtttta 3660 gtagtagggt aaaaattaca caagctttct ctctctctga tactgaactg taccagagtt 3720 caatgaaata aaagcccaga gaacttc 3747

<210> 40

<211> 3449

<212> DNA

<213> murine

<400> 40

gcgagtetcg gttttctgtt gccttctctc tgtctcagag gactccatct atagaaccac 60 totatgoott caagaaagat gtoottggot coottotcag gatgatoctg gootatotot 120 gactetette teeteeacca gacetettga tteeattttg aaagaaaact gaaaatggtg 180 ttttcgatgt ggacacggaa gagacaaatt ttgatctttt taaatatgct cttagtttct 240 agagtetttg ggtttegatg gttteetaaa actetacett gtgaagttaa agtaaatate 300 ccagaggccc atgtgatcgt ggactgcaca gacaagcatt tgacagaaat ccctgagggc 360 atteccacta acaccaccaa tettaccett accatcaace acataccaag cateteteca 420 gattccttcc gtaggctgaa ccatctggaa gaaatcgatt taagatgcaa ttgtgtacct 480 gttctactgg ggtccaaagc caatgtgtgt accaagaggc tgcagattag acctggaagc 540 tttagtggac tctctgactt aaaagccctt tacctggatg gaaaccaact tctggagata 600 ccacaggatc tgccatccag cttacatctt ctgagccttg aggctaacaa catcttctcc 660 atcacgaagg agaatctaac agaactggtc aacattgaaa cactctacct gggtcaaaac 720 tgttattatc gaaateettg caatgtttee tattetattg aaaaagatge ttteetagtt 780 atgagaaatt tgaaggttet eteactaaaa gataacaatg teacagetgt eeccaceact 840 ttgccaccta atttactaga gctctatctt tataacaata tcattaagaa aatccaagaa 900 aatgatttta ataacctcaa tgagttgcaa gttcttgacc taagtggaaa ttgccctcga 960 tgttataatg teccatatee gtgtacaceg tgtgaaaata atteceeett acagateeat 1020 gacaatgett teaatteatt gacagaatta aaagttttae gtttacacag taattetett 1080 cagcatgtgc ccccaacatg gtttaaaaac atgagaaacc tccaggaact agacctctcc 1140 caaaactact tggccagaga aattgaggag gccaaatttt tgcattttct tcccaacctt 1200 gttgagttgg atttttcttt caattatgag ctgcaggtct accatgcatc tataacttta 1260

ccacattcac tetetteatt ggaaaacttg aaaattetge gtgtcaaggg gtatgtettt 1320 aaagagetga aaaactecag tetttetgta ttgcacaage tteccagget ggaagttett 1380 gaccttggca ctaacttcat aaaaattgct gacctcaaca tattcaaaca ttttgaaaac 1440 ctcaaactca tagacctttc agtgaataag atatctcctt cagaagagtc aaqaqaaqtt 1500 ggcttttgtc ctaatgctca aacttctgta gaccgtcatq qqccccagqt ccttqaqqcc 1560 ttacactatt tccgatacga tgaatatgca cggagctgca ggttcaaaaa caaagagcca 1620 ccttctttct tgcctttgaa tgcagactgc cacatatatg ggcagacctt agacttaagt 1680 agaaataaca tatttttat taaaccttct gattttcagc atctttcatt cctcaaatgc 1740 ctcaacttat caggaaacac cattggccaa actcttaatg gcagtgaact ctggccgttg 1800 agagagttgc ggtacttaga cttctccaac aaccggcttg atttactcta ctcaacagcc 1860 tttgaagagc tccagagtct tgaagttctg gatctaagta gtaacagcca ctattttcaa 1920 gcagaaggaa ttactcacat gctaaacttt accaagaaat tacggcttct ggacaaactc 1980 atgatgaatg ataatgacat ctctacttcg gccagcagga ccatggaaag tgactctctt 2040 cgaattctgg agttcagagg caaccattta gatgttctat ggagagccgg tgataacaga 2100 tacttggact tcttcaagaa tttgttcaat ttagaggtat tagatatctc cagaaattcc 2160 ctgaattcct tgcctcctga ggtttttgag ggtatgccgc caaatctaaa gaatctctcc 2220 ttggccaaaa atgggctcaa atctttcttt tgggacagac tccagttact gaagcatttg 2280 gaaattttgg acctcagcca taaccagctg acaaaagtac ctgagagatt ggccaactgt 2340 tccaaaagtc tcacaacact gattcttaag cataatcaaa tcaggcaatt gacaaaatat 2400 tttctagaag atgctttgca attgcgctat ctagacatca gttcaaataa aatccaggtc 2460 attcagaaga ctagcttccc agaaaatgtc ctcaacaatc tggagatgtt ggttttacat 2520 cacaatcgct ttctttgcaa ctgtgatgct gtgtggtttg tctggtgggt taaccataca 2580 gatgttacta ttccatacct ggccactgat gtgacttgtg taggtccagg agcacacaaa 2640 ggtcaaagtg tcatatccct tgatctgtat acgtgtgagt tagatctcac aaacctgatt 2700 ctgttctcag tttccatatc atcagtcctc tttcttatgg tagttatgac aacaagtcac 2760 ctctttttct gggatatgtg gtacatttat tatttttgga aagcaaagat aaaggggtat 2820 cagcatctgc aatccatgga gtcttgttat gatgctttta ttgtgtatga cactaaaaac 2880 tcagctgtga cagaatgggt tttgcaggag ctggtggcaa aattggaaqa tccaaqaqaa 2940 aaacacttca atttgtgtct agaagaaaga gactggctac caggacagcc agttctagaa 3000 aacctttccc agagcataca gctcagcaaa aagacagtgt ttgtgatgac acagaaatat 3060 gctaagactg agagttttaa gatggcattt tatttgtctc atcagaggct cctggatgaa 3120 aaagtggatg tgattatett gatattettg gaaaageete tteagaagte taagtttett 3180

cagctcagga agagactctg caggagctct gtccttgagt ggcctgcaaa tccacaggct 3240
cacccatact tctggcagtg cctgaaaaat gccctgacca cagacaatca tgtggcttat 3300
agtcaaatgt tcaaggaaac agtctagctc tctgaagaat gtcaccacct aggacatgcc 3360
ttggtacctg aagttttcat aaaggtttcc ataaatgaag gtctgaattt ttcctaacag 3420
ttgtcatggc tcagattggt gggaaatca 3449

<210> 41

<211> 1050

<212> PRT

<213> murine

<400> 41

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu 1 5 10 15

Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile
65 70 75 80

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu 85 90 95

Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys 100 105 110

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp 115 120 125

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr 165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser 180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val 195 200 205

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro 210 215 220

Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile

230 235 Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 245 250 Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro 265 Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser 280 Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 295 Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 310 315 Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu 325 330 His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu 345 Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile 410 Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys 475 Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser 500 Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu 535 Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser

and the region of the particle of the region of the region

565 Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe 585 Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp 600 Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile 615 Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp 630 Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu 650 Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu 665 660 Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu 680 Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn 775 Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr 825 Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile 840 Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe 855 Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys 870 Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu

PCT/US2004/012788 WO 2004/094671

905 Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys

Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu 935

Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln

Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His

Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu

Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 1000

Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1015

Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1030

His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val 1045

<210> 42

<211> 1050 <212> PRT

<213> murine

<400> 42

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu

Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro 55

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu 90

Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 135

92/231

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

- Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr 165 170 175
- Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser 180 185 190
- Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val
- Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro 210 215 220
- Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile 225 230 235 240
- Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 245 250 255
- Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro 260 265 270
- Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser 275 280 285
- Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 295 300
- Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 305
- Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu 325 330 335
- His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu 340 345 350
- Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser 355 360 365
- Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu 370 375 380
- Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu 385 390 395 400
- Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile 405 410 415
- Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys 420 425 430
- Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala 435 440 445
- Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His 450 455 460
- Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys

470 475 Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser 505 Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser 570 Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe 585 Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile 615 Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu 650 Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu 665 Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile 695 Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala 705 710 715 Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile 730 Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn Arq Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val

and the second of the second o

Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile 840 Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys 875 Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile 890 Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln 955 Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 1000 Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1015 Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1030 His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val 1045 1040 <210> 43 <211> 1050

<212> PRT

The Mark of the Control of the Contr

<213> murine

<400> 43

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu

Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile 40

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr 170 Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser 280 Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 295 Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 315 Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu 330 His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser 360 Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu

|            | 370        |            |                   |            |            | 375        |            |            |            |                    | 380        |            |            |            |            |
|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|
| Leu<br>385 | Lys        | Asn        | Ser               | Ser        | Leu<br>390 | Ser        | Val        | Leu        | His        | <b>L</b> ув<br>395 | Leu        | Pro        | Arg        | Leu        | Glu<br>400 |
| Val        | Leu        | qaA        | Leu               | Gly<br>405 | Thr        | Asn        | Phe        | Ile        | Lys<br>410 | Ile                | Ala        | Авр        | Leu        | Asn<br>415 | Ile        |
| Phe        | ГÀЗ        | His        | Phe<br>420        | Glu        | Asn        | Leu        | Lys        | Leu<br>425 | Ile        | Asp                | Leu        | Ser        | Val<br>430 | Asn        | Lys        |
| Ile        | Ser        | Pro<br>435 | Ser               | Glu        | Glu        | Ser        | Arg<br>440 | Glu        | Val        | Gly                | Phe        | Cys<br>445 | Pro        | Asn        | Ala        |
| Gln        | Thr<br>450 | Ser        | Val               | Asp        | Arg        | His<br>455 | Gly        | Pro        | Gln        | Val                | Leu<br>460 | Glu        | Ala        | Leu        | His        |
| Tyr<br>465 | Phe        | Arg        | Tyr               | qaA        | Glu<br>470 | Tyr        | Ala        | Arg        | Ser        | Cys<br>475         | Arg        | Phe        | Lys        | Asn        | Lys<br>480 |
| Glu        | Pro        | Pro        | Ser               | Phe<br>485 | Leu        | Pro        | Leu        | Asn        | Ala<br>490 | Asp                | Сув        | His        | Ile        | Tyr<br>495 | Gly        |
| Gln        | Thr        | Leu        | Asp<br>500        | Leu        | Ser        | Arg        | Asn        | Asn<br>505 | Ile        | Phe                | Phe        | Ile        | Lys<br>510 | Pro        | Ser        |
| Asp        | Phe        | Gln<br>515 | His               | Leu        | Ser        | Phe        | Leu<br>520 | ГÀЗ        | Сув        | Leu                | Asn        | Leu<br>525 | Ser        | Gly        | Asn        |
| Thr        | Ile<br>530 | Gly        | Gln               | Thr        | Leu        | Asn<br>535 | Gly        | Ser        | Glu        | Leu                | Trp<br>540 | Pro        | Leu        | Arg        | Glu        |
| Leu<br>545 | Arg        | Tyr        | Leu               | Asp        | Phe<br>550 | Ser        | Asn        | Asn        | Arg        | Leu<br>555         | Asp        | Leu        | Leu        | Tyr        | Ser<br>560 |
| Thr        | Ala        | Phe        | Glu               | Glu<br>565 | Leu        | Gln        | Ser        | Leu        | Glu<br>570 | Val                | Leu        | Asp        | Leu        | Ser<br>575 | Ser        |
| Asn        | Ser        | His        | <b>Tyr</b><br>580 | Phe        | Gln        | Ala        | Glu        | Gly<br>585 | Ile        | Thr                | His        | Met        | Leu<br>590 | Asn        | Phe        |
| Thr        | Гув        | Lys<br>595 | Leu               | Arg        | Leu        | Leu        | Asp<br>600 | ьув        | Leu        | Met                | Met        | Asn<br>605 | Asp        | Asn        | Asp        |
| Ile        | Ser<br>610 | Thr        | Ser               | Ala        | Ser        | Arg<br>615 | Thr        | Met        | Glu        | Ser                | Asp<br>620 | Ser        | Leu        | Arg        | Ile        |
| Leu<br>625 | Glu        | Phe        | Arg               | Gly        | Asn<br>630 | His        | Leu        | Asp        | Val        | Leu<br>635         | Trp        | Arg        | Ala        | Gly        | Asp<br>640 |
| Asn        | Arg        | Tyr        | Leu               | Asp<br>645 | Phe        | Phe        | Lys        | Asn        | Leu<br>650 | Phe                | Asn        | Leu        | Glu        | Val<br>655 | Leu        |
| Asp        | Ile        | Ser        | Arg<br>660        | Asn        | Ser        | Leu        | Asn        | Ser<br>665 | Leu        | Pro                | Pro        | Glu        | Val<br>670 | Phe        | Glu        |
| Gly        | Met        | Pro<br>675 | Pro               | Asn        | Leu        | Lys        | Asn<br>680 | Leu        | Ser        | Leu                | Ala        | Lув<br>685 | Asn        | Gly        | Leu        |
| Lys        | Ser<br>690 | Phe        | Phe               | Trp        | Asp        | Arg<br>695 | Leu        | Gln        | Leu        | Ļeu                | Lys<br>700 | His        | Leu        | Glu        | Ile        |
| Leu        | Asp        | Leu        | Ser               | His        | Asn        | Gln        | Leu        | Thr        | ГЛЗ        | Val                | Pro        | Glu        | Arg        | Leu        | Ala        |

and the second of the second of the second

705 710 715 720 Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile 725 730 735

 $(-1)^{\frac{1}{2}} \frac{1}{2} \frac{1}{$ 

- Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr 740 745 750
- Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe 755 760 765
- Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn 770 780
- Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn 785 790 795 800
- His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val 805 810 815
- Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr 820 825 830
- Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile 835 840 845
- Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe 850 855 860
- Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys 865 870 875 880
- Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile 885 890 895
- Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu
  900 905 910
- Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys 915 920 925
- Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu 930 935 940
- Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln 945 950 955 960
- Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His 965 970 975
- Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu 980 985 990
- Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 995 1000 1005
- Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1010 1015 1020
- Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1025 1030 1035
- His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val

98/231

1040 1045 1050

<210> 44

<211> 1050

<212> PRT

<213> murine

in the chinate of the second persons of the second persons of the second contract of the second contract of the The second contract of the second persons of the second persons of the second of the second persons of the s

<400> 44

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu 1 5 10 15

Asn Met Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile 65 70 75 80

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu 85 90 95

Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys
100 105 110

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp 115 120 125

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 150 155

Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr 165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser 180 185 190

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val

Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro 210 215 220

Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile 225 230 235 240

Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 245 250 255

Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro 260 265 270

Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser 275 280 285

Leu Thr 290 Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 Pro Pro Thr Trp Phe Lys Asn Met Arg 315 Leu Glu Glu Leu Asp 320 Leu Ser Gln Asn Tyr Leu Ala Arg Glu Tle Glu Glu Glu Ala Lys Phe Leu 325 Phe Ser Phe Asn Tyr Glu 340 Phe Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser Ser Glu Asn Leu Lys Ile Leu Arg Val Lys Glu Tyr Val Phe Lys Glu 370 Phe Glu 370 Phe Glu 370 Phe Glu 370 Phe Ser Phe Asn Tyr Glu 360 Phe Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu

rawadi a raki a Miretak Kedawa Persak

Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu 385 390 395 400

Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile 405 410 415

Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys 420 425 430

Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala 435 440 445

Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His 450 455 460

Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys 465 470 475 480

Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly
485 490 495

Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser 500 505 510

Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn 515 520 525

Thr Ile Gly Gln Thr Leu Asn Gly Ser Glu Leu Trp Pro Leu Arg Glu 530 540

Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu Tyr Ser 545 550 555 560

Thr Ala Phe Glu Glu Leu Gln Ser Leu Glu Val Leu Asp Leu Ser Ser 565 570 575

Asn Ser His Tyr Phe Gln Ala Glu Gly Ile Thr His Met Leu Asn Phe 580 585 590

Thr Lys Lys Leu Arg Leu Leu Asp Lys Leu Met Met Asn Asp Asn Asp 595 600 605

Ile Ser Thr Ser Ala Ser Arg Thr Met Glu Ser Asp Ser Leu Arg Ile

و الله المحالية الم والمراكبة المحالية ا

and the second of the second o

615 620 Leu Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Ala Gly Asp 630 635 Asn Arg Tyr Leu Asp Phe Phe Lys Asn Leu Phe Asn Leu Glu Val Leu 650 Asp Ile Ser Arg Asn Ser Leu Asn Ser Leu Pro Pro Glu Val Phe Glu 665 Gly Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu 680 Lys Ser Phe Phe Trp Asp Arg Leu Gln Leu Leu Lys His Leu Glu Ile Leu Asp Leu Ser His Asn Gln Leu Thr Lys Val Pro Glu Arg Leu Ala 715 Asn Cys Ser Lys Ser Leu Thr Thr Leu Ile Leu Lys His Asn Gln Ile 725 730 Arg Gln Leu Thr Lys Tyr Phe Leu Glu Asp Ala Leu Gln Leu Arg Tyr Leu Asp Ile Ser Ser Asn Lys Ile Gln Val Ile Gln Lys Thr Ser Phe 760 Pro Glu Asn Val Leu Asn Asn Leu Glu Met Leu Val Leu His His Asn 775 Arg Phe Leu Cys Asn Cys Asp Ala Val Trp Phe Val Trp Trp Val Asn His Thr Asp Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly Pro Gly Ala His Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe Ser Val Ser Ile Ser Ser Val Leu Phe Leu Met Val Val Met Thr Thr Ser His Leu Phe 855 Phe Trp Asp Met Trp Tyr Ile Tyr Tyr Phe Trp Lys Ala Lys Ile Lys Gly Tyr Gln His Leu Gln Ser Met Glu Ser Cys Tyr Asp Ala Phe Ile Val Tyr Asp Thr Lys Asn Ser Ala Val Thr Glu Trp Val Leu Gln Glu Leu Val Ala Lys Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu 935 Ser Gln Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Gln

langali yang 4-4-4 alam at matalang asam kalingga terbagai kangga ang Kalingga na kangga kangga ang at matalan

945 950 955 960
Lys Tyr Ala Lys Thr Glu Ser Phe Lys Met Ala Phe Tyr Leu Ser His
965 970 975

Gln Arg Leu Leu Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu 980 985 990

Glu Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg Leu 995 1000 1005

Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 1010 1015 1020

Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn 1025 1030 1035

His Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val 1040 1045 1056

<210> 45

<211> 1050

<212> PRT

<213> murine

<400> 45

Met Val Phe Ser Met Trp Thr Arg Lys Arg Gln Ile Leu Ile Phe Leu 1 5 10 15

Asn Met Leu Leu Val Ser Arg Val Phe Gly Phe Arg Trp Phe Pro Lys 20 25 30

Thr Leu Pro Cys Glu Val Lys Val Asn Ile Pro Glu Ala His Val Ile 35 40 45

Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro Glu Gly Ile Pro 50 55 60

Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His Ile Pro Ser Ile 65 70 75 80

Ser Pro Asp Ser Phe Arg Arg Leu Asn His Leu Glu Glu Ile Asp Leu 85 90 95

Arg Cys Asn Cys Val Pro Val Leu Leu Gly Ser Lys Ala Asn Val Cys
100 105 110

Thr Lys Arg Leu Gln Ile Arg Pro Gly Ser Phe Ser Gly Leu Ser Asp 115 120 125

Leu Lys Ala Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130 135 140

Asp Leu Pro Ser Ser Leu His Leu Leu Ser Leu Glu Ala Asn Asn Ile 145 150 155 160

Phe Ser Ile Thr Lys Glu Asn Leu Thr Glu Leu Val Asn Ile Glu Thr 165 170 175

Leu Tyr Leu Gly Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Asn Val Ser 180 185 190

102/231

e a karamet de l'este de la legación de la legación

Tyr Ser Ile Glu Lys Asp Ala Phe Leu Val Met Arg Asn Leu Lys Val 195 200 205

and the control of th

- Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu Pro 210 215 220
- Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys Ile 225 230 235 240
- Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp Leu 245 250 255
- Ser Gly Asn Cys Pro Arg Cys Tyr Asn Val Pro Tyr Pro Cys Thr Pro 260 265 270
- Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn Ser 275 280 285
- Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290 295 300
- Val Pro Pro Thr Trp Phe Lys Asn Met Arg Asn Leu Gln Glu Leu Asp 305 310 315 320
- Leu Ser Gln Asn Tyr Leu Ala Arg Glu Ile Glu Glu Ala Lys Phe Leu 325 330 335
- His Phe Leu Pro Asn Leu Val Glu Leu Asp Phe Ser Phe Asn Tyr Glu 340 345 350
- Leu Gln Val Tyr His Ala Ser Ile Thr Leu Pro His Ser Leu Ser Ser 355 360 365
- Leu Glu Asn Leu Lys Ile Leu Arg Val Lys Gly Tyr Val Phe Lys Glu 370 375 380
- Leu Lys Asn Ser Ser Leu Ser Val Leu His Lys Leu Pro Arg Leu Glu 385 390 395 400
- Val Leu Asp Leu Gly Thr Asn Phe Ile Lys Ile Ala Asp Leu Asn Ile 405 410 415
- Phe Lys His Phe Glu Asn Leu Lys Leu Ile Asp Leu Ser Val Asn Lys 420 425 430
- Ile Ser Pro Ser Glu Glu Ser Arg Glu Val Gly Phe Cys Pro Asn Ala 435 440 445
- Gln Thr Ser Val Asp Arg His Gly Pro Gln Val Leu Glu Ala Leu His 450 455 460
- Tyr Phe Arg Tyr Asp Glu Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys 465 470 475 480
- Glu Pro Pro Ser Phe Leu Pro Leu Asn Ala Asp Cys His Ile Tyr Gly
  485 490 495
- Gln Thr Leu Asp Leu Ser Arg Asn Asn Ile Phe Phe Ile Lys Pro Ser 500 505 510
- Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn

ak kangan liberah kangan liberah dan kecamatan dan kecamatan berangan dan kecamatan dan berangan dan kecamatan Berangan kecamatan dan berangan berangan berangan berangan berangan berangan berangan berangan berangan berang

| Thr        | Ile<br>530 | 515<br>Gly | GÌn        | Thr        | Leu        | Asn<br>535 | 520<br>Gly | Ser        | Glu        | Leu        | Trp<br>540 | 525<br>Pro | Leu        | Arg        | Glu        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu<br>545 | Arg        | Tyr        | Leu        | Asp        | Phe<br>550 | Ser        | Asn        | Asn        | Arg        | Leu<br>555 | qaA        | Leu        | Leu        | Tyr        | Ser<br>560 |
| Thr        | Ala        | Phe        | Glu        | Glu<br>565 | Leu        | Gln        | Ser        | Leu        | Glu<br>570 | Val        | Leu        | Asp        | Leu        | Ser<br>575 | Ser        |
| Asn        | Ser        | His        | Tyr<br>580 | Phe        | Gln        | Ala        | Glu        | Gly<br>585 | Ile        | Thr        | His        | Met        | Leu<br>590 | Asn        | Phe        |
| Thr        | Ьуs        | Lys<br>595 | Leu        | Arg        | Leu        | Leu        | Asp<br>600 | ГÀЗ        | Leu        | Met        | Met        | Asn<br>605 | Asp        | Asn        | Asp        |
| Ile        | Ser<br>610 | Thr        | Ser        | Ala        | Ser        | Arg<br>615 | Thr        | Met        | Glu        | Ser        | Asp<br>620 | Ser        | Leu        | Arg        | Ile        |
| Leu<br>625 | Glu        | Phe        | Arg        | Gly        | Asn<br>630 | His        | Leu        | Asp        | Val        | Leu<br>635 | Trp        | Arg        | Ala        | Gly        | Asp<br>640 |
| Asn        | Arg        | Tyr        | Leu        | Asp<br>645 | Phe        | Phe        | Lys        | Asn        | Leu<br>650 | Phe        | Asn        | Leu        | Glu        | Val<br>655 | Leu        |
| Asp        | Ile        | Ser        | Arg<br>660 | Asn        | Ser        | Leu        | Asn        | Ser<br>665 | Leu        | Pro        | Pro        | Glu        | Val<br>670 | Phe        | Glu        |
| Gly        | Met        | Pro<br>675 | Pro        | Asn        | Leu        | Lys        | Asn<br>680 | Leu        | Ser        | Leu        | Ala        | Lys<br>685 | Asn        | Gly        | Leu        |
| Lys        | Ser<br>690 | Phe        | Phe        | Trp        | Asp        | Arg<br>695 | Leu        | Gln        | Leu        | Leu        | Lys<br>700 | His        | Leu        | Glu        | Ile        |
| Leu<br>705 | qaA        | Leu        | Ser        | His        | Asn<br>710 | Gln        | Leu        | Thr        | Lys        | Val<br>715 | Pro        | Glu        | Arg        | Leu        | Ala<br>720 |
| Asn        | Сув        | Ser        | Lys        | Ser<br>725 | Leu        | Thr        | Thr        | Leu        | Ile<br>730 | Leu        | Lys        | His        | Asn        | Gln<br>735 | Ile        |
| Arg        | Gln        | Leu        | Thr<br>740 | Lys        | Tyr        | Phe        | Leu        | Glu<br>745 | Asp        | Ala        | Leu        | Gln        | Leu<br>750 | Arg        | Tyr        |
| Leu        | Asp        | Ile<br>755 | Ser        | Ser        | Asn        | Lys        | Ile<br>760 | Gln        | Val        | Ile        | Gln        | Lys<br>765 | Thr        | Ser        | Phe        |
| Pro        | Glu<br>770 | Asn        | Val        | Leu        | Asn        | Asn<br>775 | Leu        | Glu        | Met        | Leu        | Val<br>780 | Leu        | His        | His        | Asn        |
| Arg<br>785 |            | Leu        | Сув        | Asn        | Сув<br>790 | Asp        | Ala        | Val        | Trp        | Phe<br>795 | Val        | Trp        | Trp        | Val        | Asn<br>800 |
| His        | Thr        | Asp        | Val        | Thr<br>805 |            | Pro        | Tyr        | Leu        | Ala<br>810 | Thr        | Asp        | Val        | Thr        | Суs<br>815 | Val        |
| Gly        | Pro        | Gly        | Ala<br>820 | His        | Lys        | Gly        | Gln        | Ser<br>825 | Val        | Ile        | Ser        | Leu        | Asp<br>830 |            | Tyr        |
| Thr        | Сув        | Glu<br>835 |            | Asp        | Leu        | Thr        | Asn<br>840 | Leu        | Ile        | Leu        | Phe        | Ser<br>845 | Val        | Ser        | Ile        |
| Ser        | Ser        | Val        | Leu        | Phe        | Leu        | Met        | Val        | Val        | Met        | Thr        | Thr        | Ser        | His        | Leu        | Phe        |

104/231

| Phe<br>865                   | 850<br>Trp                                                                     | Asp            | Met        | Trp        | Tyr<br>870 | 855<br>Ile | Tyr         | Tyr        | Phe        | Trp<br>875 | 860<br>Lys  | Ala        | Гув        | Ile        | Lys<br>880 |     |
|------------------------------|--------------------------------------------------------------------------------|----------------|------------|------------|------------|------------|-------------|------------|------------|------------|-------------|------------|------------|------------|------------|-----|
|                              | Tyr                                                                            | Gln            | His        |            |            | Ser        | Met         | Glu        |            |            | Tyr         | Asp        | Ala        | Phe        |            |     |
| Val                          | Тиг                                                                            | Nan            | Thr        | 885        | λen        | S0**       | 77.         | 1701       | 890        | <b>a</b> 1 | <b></b>     | vv. 7      | T          | 895        | <b>0</b> 1 |     |
| Val                          | TÄT                                                                            | Asp            | 900        | пув        | Well       | per        | Ата         | 905        | Tnr        | GIU        | Trp         | vaı        | ьец<br>910 | GIN        | GIU        |     |
| Leu                          | Val                                                                            | Ala<br>915     | Ьуs        | Leu        | Glu        | Asp        | Pro<br>920  | Arg        | Glu        | Lys        | His<br>'    | Phe<br>925 | Asn        | Leu        | Cys        |     |
| Leu                          | Glu<br>930                                                                     | Glu            | Arg        | Asp        | Trp        | Leu<br>935 | Pro         | Gly        | Gln        | Pro        | Val<br>940  | Leu        | Glu        | Asn        | Leu        |     |
| Ser<br>945                   | Gln                                                                            | Ser            | Ile        | Gln        | Leu<br>950 | Ser        | Lys         | Lys        | Thr        | Val<br>955 | Phe         | Val        | Met        | Thr        | Gln<br>960 |     |
| Lys                          | Tyr                                                                            | Ala            | ГÀв        | Thr<br>965 | Glu        | Ser        | Phe         | Lys        | Met<br>970 | Ala        | Phe         | Tyr        | Leu        | Ser<br>975 | His        |     |
| Gln                          | Arg                                                                            | Leu            | Leu<br>980 | Asp        | Glu        | Lys        | Val         | Asp<br>985 | Val        | Ile        | Ile         | Leu        | Ile<br>990 | Phe        | Leu        |     |
| Glu                          | Lys                                                                            | Pro<br>995     | Leu        | Gln        | Lys        | Ser        | Lys<br>1000 |            | Leu        | Glr        | ı Leu       | Arg<br>100 |            | /s Ar      | g Leu      |     |
| Cys                          | Arg<br>1010                                                                    |                | Ser        | · Val      | . Leu      | Glu<br>101 |             | p Pr       | o Al       | a As       | n Pr<br>10  | o 6        | ln A       | Ala E      | lis        |     |
| Pro                          | Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr. Thr Asp Asn<br>1025 1030 1035 |                |            |            |            |            |             |            |            |            |             |            |            |            |            |     |
| His                          | Val<br>1040                                                                    |                | туг        | Ser        | Gln        | Met<br>104 |             | іе Гу      | s Gl       | u Th       | ır Va<br>10 | 1<br>50    |            |            |            |     |
| <210<br><211<br><212<br><213 | .> 3<br> > D                                                                   | 6<br>311<br>NA | sapi       | ens        |            |            |             |            |            |            |             |            |            |            |            |     |
| <400                         |                                                                                | 6              | Барт       | CIID       |            |            |             |            |            |            |             |            |            |            |            |     |
|                              |                                                                                |                |            |            |            |            |             |            |            |            |             |            |            |            | acatg      | 60  |
|                              |                                                                                |                |            |            |            |            |             |            |            |            |             |            |            |            | agtta      | 120 |
|                              |                                                                                |                |            |            |            |            |             |            |            |            |             |            |            |            | actca      | 180 |
|                              |                                                                                |                |            |            |            |            |             |            |            |            |             |            |            |            | aatat      | 240 |
|                              |                                                                                |                |            |            |            |            |             |            |            |            |             |            |            |            | ttcaa      | 300 |
|                              |                                                                                |                |            |            |            |            |             |            |            |            |             |            |            |            | agaac      | 360 |
|                              |                                                                                |                |            |            |            |            |             |            |            |            |             |            |            |            | accta      | 420 |
|                              |                                                                                |                |            |            |            |            |             |            |            |            |             |            |            |            | gtttg      | 480 |
| ccag                         | agtc                                                                           | tt t           | gaca       | gaac       | t ta       | gtct       | aatt        | caa        | aaca       | ata        | tata        | caac       | at a       | acta       | aagag      | 540 |

ggcatttcaa gacttataaa cttgaaaaat ctctatttgg cctggaactg ctattttaac 600 aaagtttgcg agaaaactaa catagaagat ggagtatttg aaacgctgac aaatttggag 660 ttgctatcac tatctttcaa ttctctttca cacgtgccac ccaaactgcc aagctcccta 720 cgcaaacttt ttctgagcaa cacccagatc aaatacatta gtgaagaaga tttcaaggga 780 ttgataaatt taacattact agatttaagc gggaactgtc cgaggtgctt caatgcccca 840 tttccatgcg tgccttgtga tggtggtgct tcaattaata tagatcgttt tgcttttcaa 900 aacttgaccc aacttcgata cctaaacctc tctagcactt ccctcaggaa gattaatgct 960 gcctggttta aaaatatgcc tcatctgaag gtgctggatc ttgaattcaa ctatttagtg 1020 1080 tettttaaet atataaaggg gagttateea cageatatta atattteeag aaacttetet 1140 aaacttttgt ctctacgggc attgcattta agaggttatg tgttccagga actcagagaa 1200 gatgatttcc agcccctgat gcagcttcca aacttatcga ctatcaactt gggtattaat 1260 tttattaagc aaatcgattt caaacttttc caaaatttct ccaatctgga aattatttac 1320 ttgtcagaaa acagaatatc accgttggta aaagataccc ggcagagtta tgcaaatagt 1380 tcctcttttc aacgtcatat ccggaaacga cgctcaacag attttgagtt tgacccacat 1440 tegaaetttt ateattteae eegteettta ataaageeae aatgtgetge ttatggaaaa 1500 gccttagatt taagcctcaa cagtattttc ttcattgggc caaaccaatt tgaaaatctt 1560 cctgacattg cctgtttaaa tctgtctgca aatagcaatg ctcaagtgtt aagtggaact 1620 gaattttcag ccattcctca tgtcaaatat ttggatttga caaacaatag actagacttt 1680 gataatgcta gtgctcttac tgaattgtcc gacttggaag ttctagatct cagctataat 1740 tcacactatt tcagaatagc aggcgtaaca catcatctag aatttattca aaatttcaca 1800 aatctaaaag ttttaaactt gagccacaac aacatttata ctttaacaga taagtataac 1860 ctggaaagca agtccctggt agaattagtt ttcagtggca atcgccttga cattttgtqq 1920 aatgatgatg acaacaggta tatctccatt ttcaaaggtc tcaagaatct gacacgtctg 1980 gatttatccc ttaataggct gaagcacatc ccaaatgaag cattccttaa tttgccagcg 2040 agtotoactg aactacatat aaatgataat atgttaaagt tttttaactg gacattactc 2100 cagcagttcc ctcgtctcga gttgcttgac ttacgtggaa acaaactact ctttttaact 2160 gatagectat etgaetttae atetteeett eggaeactge tgetgagtea taacaggatt 2220 teccaectae ectetggett tetttetgaa gteagtagte tgaagcaect egatttaagt 2280 tccaatctgc taaaaacaat caacaaatcc gcacttgaaa ctaagaccac caccaaatta 2340 tctatgttgg aactacacgg aaaccccttt gaatgcacct gtgacattgg agatttccga 2400 agatggatgg atgaacatct gaatgtcaaa attcccagac tggtagatgt catttgtgcc 2460

agtcctgggg atcaaagagg gaagagtatt gtgagtctgg agctgacaac ttgtgtttca 2520 gatgtcactg cagtgatatt attitititie acgitetita teaccaccat ggitatgitg 2580 gctgccctgg ctcaccattt gttttactgg gatgtttggt ttatatataa tgtgtgttta 2640 gctaaggtaa aaggctacag gtctctttcc acatcccaaa ctttctatga tgcttacatt 2700 tottatgaca ccaaagatgo ctotgttact gactgggtga taaatgagot gogotaccac 2760 cttgaagaga gccgagacaa aaacgttctc ctttgtctag aggagaggga ttgggacccg 2820 ggattggcca tcatcgacaa cctcatgcag agcatcaacc aaagcaagaa aacagtattt 2880 gttttaacca aaaaatatgc aaaaagctgg aactttaaaa cagcttttta cttggctttg 2940 cagaggctaa tggatgagaa catggatgtg attatattta tcctgctgga gccagtqtta 3000 cagcattete agtatttgag getaeggeag eggatetgta agageteeat cetecagtgg 3060 cctgacaacc cgaaggcaga aggcttgttt tggcaaactc tgagaaatgt ggtcttgact 3120 gaaaatgatt cacggtataa caatatgtat gtcgattcca ttaagcaata ctaactgacg 3180 ttaagtcatg atttcgcgcc ataataaaga tgcaaaggaa tgacatttct gtattagtta 3240 tctattqcta tqtaacaaat tatcccaaaa cttaqtqqtt taaaacaaca catttqctqq 3300 cccacagttt t 3311

<210> 47

<211> 3367

<212> DNA

<213> Homo spaiens

<400> 47

ctcctgcata gagggtacca ttctgcgctg ctgcaagtta cggaatgaaa aattagaaca 60 acagaaacgt ggttctcttg acacttcagt gttagggaac atcagcaaga cccatcccag 120 gagaccttga aggaagcctt tgaaagggag aatgaaggag tcatctttgc aaaatagctc 180 ctgcagcctg ggaaaggaga ctaaaaagga aaacatgttc cttcagtcgt caatgctgac 240 ctgcattttc ctgctaatat ctggttcctg tgagttatgc gccgaagaaa atttttctag 300 aagctateet tgtgatgaga aaaagcaaaa tgaeteagtt attgeagagt geagcaateg 360 tegactacag gaagtteece aaacggtggg caaatatgtg acagaactag acetgtetga 420 taatttcatc acacacataa cgaatgaatc atttcaaggg ctgcaaaatc tcactaaaat 480 aaatctaaac cacaacccca atgtacagca ccagaacgga aatcccggta tacaatcaaa 540 tggcttgaat atcacagacg gggcattcct caacctaaaa aacctaaggg agttactgct 600 tgaagacaac cagttacccc aaataccctc tggtttgcca gagtctttga cagaacttag 660 tctaattcaa aacaatatat acaacataac taaagaggc atttcaagac ttataaactt 720

gaaaaatctc tatttggcct ggaactgcta ttttaacaaa gtttgcgaga aaactaacat 780 agaagatgga gtatttgaaa cgctgacaaa tttggagttg ctatcactat ctttcaattc 840 totttcacac gtgtcaccca aactgccaag ctccctacgc aaactttttc tgagcaacac 900 ccagatcaaa tacattagtg aagaagattt caagggattg ataaatttaa cattactaga 960 tttaageggg aactgteega ggtgetteaa tgeeceattt ecatgegtge ettgtgatgg 1020 tggtgcttca attaatatag atcgttttgc ttttcaaaac ttgacccaac ttcgatacct 1080 aaacctctct agcacttccc tcaggaagat taatgctgcc tqqtttaaaa atatqcctca 1140 tctgaaggtg ctggatcttg aattcaacta tttagtggga gaaatagcct ctggggcatt 1200 tttaacgatg ctgccccgct tagaaatact tgacttgtct tttaactata taaaggggaq 1260 ttatccacag catattaata tttccagaaa cttctctaaa cctttgtctc tacgggcatt 1320 gcatttaaga ggttatgtgt tccaggaact cagagaagat gatttccagc ccctgatgca 1380 gcttccaaac ttatcgacta tcaacttggg tattaatttt attaaqcaaa tcqatttcaa 1440 acttttccaa aatttctcca atctggaaat tatttacttg tcagaaaaca gaatatcacc 1500 gttggtaaaa gatacccggc agagttatgc aaatagttcc tcttttcaac gtcatatccg 1560 gaaacgacgc tcaacagatt ttgagtttga cccacattcg aacttttatc atttcacccq 1620 tcctttaata aagccacaat gtgctgctta tggaaaagcc ttagatttaa gcctcaacag 1680 tattttcttc attgggccaa accaatttga aaatcttcct gacattgcct qtttaaatct 1740 gtctgcaaat agcaatgctc aagtgttaag tggaactgaa ttttcaqcca ttcctcatqt 1800 caaatatttg gatttgacaa acaatagact agactttgat aatgctagtg ctcttactga 1860 attgtccgac ttggaagttc tagatctcag ctataattca cactatttca gaatagcagg 1920 cgtaacacat catctagaat ttattcaaaa tttcacaaat ctaaaagttt taaacttgag 1980 ccacaacaac atttatactt taacagataa gtataacctg gaaagcaagt ccctggtaga 2040 attagttttc agtggcaatc gccttgacat tttgtggaat gatgatgaca acaggtatat 2100 ctccattttc aaaggtctca agaatctgac acgtctggat ttatccctta ataggctgaa 2160 gcacatccca aatgaagcat teettaattt gecagegagt etcaetgaae tacatataaa 2220 tgataatatg ttaaagtttt ttaactggac attactccag cagtttcctc gtctcgagtt 2280 gcttgactta cgtggaaaca aactactctt tttaactgat agcctatctg actttacatc 2340 ttcccttcgg acactgctgc tgagtcataa caggatttcc cacctaccct ctggctttct 2400 ttctgaagtc agtagtctga agcacctcga tttaagttcc aatctgctaa aaacaatcaa 2460 caaatccgca cttgaaacta agaccaccac caaattatct atgttggaac tacacggaaa 2520 cccctttgaa tgcacctgtg acattggaga tttccgaaga tggatggatg aacatctgaa 2580 tgtcaaaatt cccagactgg tagatgtcat ttgtgccagt cctggggatc aaagagggaa 2640

gagtattgtg agtctggagc taacaacttg tgtttcagat gtcactgcag tgatattatt 2700 tttcttcacg ttctttatca ccaccatggt tatgttqqct qccctqqctc accatttqtt 2760 ttactgggat gtttggttta tatataatgt gtgtttagct aagataaaag gctacaggtc 2820 tetttecaca teccaaactt tetatgatge ttacatttet tatgacacca aagatgeete 2880 tgttactgac tgggtgataa atgagctgcg ctaccacctt gaagagagcc gagacaaaaa 2940 cgttctcctt tgtctagagg agagggattg ggacccqqqa ttqqccatca tcgacaacct 3000 catgcagagc atcaaccaaa gcaagaaaac agtatttgtt ttaaccaaaa aatatgcaaa 3060 aagctggaac tttaaaacag ctttttactt ggctttgcag aggctaatgg atgagaacat 3120 ggatgtgatt atatttatcc tgctggagcc agtgttacag cattctcagt atttgaggct 3180 acggcagcgg atctgtaaga gctccatcct ccagtggcct gacaacccga aggcagaagg 3240 cttgttttgg caaactctga gaaatgtggt cttgactgaa aatgattcac ggtataacaa 3300 tatgtatgtc gattccatta agcaatacta actgacgtta agtcatgatt tcgcgccata 3360 ataaaga 3367

<210> 48

And the first of the second of

<211> 4211

<212> DNA

<213> Homo spaiens

<400> 48

ctcctgcata gagggtacca ttctgcgctg ctgcaagtta cggaatgaaa aattagaaca 60 acagaaacat ggaaaacatg ttccttcagt cgtcaatgct gacctgcatt ttcctgctaa 120 tatotggttc ctgtgagtta tgcgccgaag aaaatttttc tagaagctat ccttgtgatg 180 agaaaaagca aaatgactca gttattgcag agtgcagcaa tcgtcgacta caggaagttc 240 cccaaacggt gggcaaatat gtgacagaac tagacctgtc tgataatttc atcacacaca 300 taacgaatga atcatttcaa gggctgcaaa atctcactaa aataaatcta aaccacaacc 360 ccaatgtaca gcaccagaac ggaaatcccg gtatacaatc aaatggcttg aatatcacag 420 acggggcatt cctcaaccta aaaaacctaa gggagttact gcttgaagac aaccagttac 480 cccaaatacc ctctggtttg ccagagtctt tgacagaact tagtctaatt caaaacaata 540 tatacaacat aactaaagag ggcatttcaa gacttataaa cttgaaaaat ctctatttgg 600 cctggaactg ctattttaac aaagtttgcg agaaaactaa catagaagat ggagtatttg 660 aaacgetgae aaatttggag ttgetateae tatettteaa ttetetttea caegtgeeae 720 ccaaactgcc aagctcccta cgcaaacttt ttctgagcaa cacccagatc aaatacatta 780 gtgaagaaga tttcaaggga ttgataaatt taacattact agatttaagc gggaactgtc 840

| cgaggtgctt<br>tagatcgttt | caatgcccca<br>tgcttttcaa | tttccatgcg<br>aacttgaccc | tgccttgtga<br>aacttcgata | tggtggtgct<br>cctaaacctc | tcaattaata<br>tctagcactt | 900<br>960 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| ccctcaggaa               | gattaatgct               | gcctggttta               | aaaatatgcc               | tcatctgaag               | gtgctggatc               | 1020       |
| ttgaattcaa               | ctatttagtg               | ggagaaatag               | cctctggggc               | atttttaacg               | atgctgcccc               | 1080       |
| gcttagaaat               | acttgacttg               | tcttttaact               | atataaaggg               | gagttatcca               | cagcatatta               | 1140       |
| atatttccag               | aaacttctct               | aaacttttgt               | ctctacgggc               | attgcattta               | agaggttatg               | 1200       |
| tgttccagga               | actcagagaa               | gatgatttcc               | agcccctgat               | gcagcttcca               | aacttatcga               | 1260       |
| ctatcaactt               | gggtattaat               | tttattaagc               | aaatcgattt               | caaacttttc               | caaaatttct               | 1320       |
| ccaatctgga               | aattatttac               | ttgtcagaaa               | acagaatatc               | accgttggta               | aaagataccc               | 1380       |
| ggcagagtta               | tgcaaatagt               | tectettte                | aacgtcatat               | ccggaaacga               | cgctcaacag               | 1440       |
| attttgagtt               | tgacccacat               | tcgaactttt               | atcatttcac               | ccgtccttta               | ataaagccac               | 1500       |
| aatgtgctgc               | ttatggaaaa               | gccttagatt               | taagcctcaa               | cagtattttc               | ttcattgggc               | 1560       |
| caaaccaatt               | tgaaaatctt               | cctgacattg               | cctgtttaaa               | tctgtctgca               | aatagcaatg               | 1620       |
| ctcaagtgtt               | aagtggaact               | gaattttcag               | ccattcctca               | tgtcaaatat               | ttggatttga               | 1680       |
| caaacaatag               | actagacttt               | gataatgcta               | gtgctcttac               | tgaattgtcc               | gacttggaag               | 1740       |
| ttctagatct               | cagctataat               | tcacactatt               | tcagaatagc               | aggcgtaaca               | catcatctag               | 1800       |
| aatttattca               | aaatttcaca               | aatctaaaag               | ttttaaactt               | gagccacaac               | aacatttata               | 1860       |
| ctttaacaga               | taagtataac               | ctggaaagca               | agtccctggt               | agaattagtt               | ttcagtggca               | 1920       |
| atcgccttga               | cattttgtgg               | aatgatgatg               | acaacaggta               | tatctccatt               | ttcaaaggtc               | 1980       |
| tcaagaatct               | gacacgtctg               | gatttatccc               | ttaataggct               | gaagcacatc               | ccaaatgaag               | 2040       |
| cattccttaa               | tttgccagcg               | agtctcactg               | aactacatat               | aaatgataat               | atgttaaagt               | 2100       |
| tttttaactg               | gacattactc               | cagcagtttc               | ctcgtctcga               | gttgcttgac               | ttacgtggaa               | 2160       |
| acaaactact               | ctttttaact               | gatagcctat               | ctgactttac               | atcttccctt               | cggacactgc               | 2220       |
| tgctgagtca               | taacaggatt               | tcccacctac               | cctctggctt               | tctttctgaa               | gtcagtagtc               | 2280       |
| tgaagcacct               | cgatttaagt               | tccaatctgc               | taaaaacaat               | caacaaatcc               | gcacttgaaa               | 2340       |
| ctaagaccac               | caccaaatta               | tctatgttgg               | aactacacgg               | aaaccccttt               | gaatgcacct               | 2400       |
| gtgacattgg               | agatttccga               | agatggatgg               | atgaacatct               | gaatgtcaaa               | attcccagac               | 2460       |
| tggtagatgt               | catttgtgcc               | agtcctgggg               | atcaaagagg               | gaagagtatt               | gtgagtctgg               | 2520       |
| agctaacaac               | ttgtgtttca               | gatgtcactg               | cagtgatatt               | atttttcttc               | acgttcttta               | 2580       |
| tcaccaccat               | ggttatgttg               | gctgccctgg               | ctcaccattt               | gttttactgg               | gatgtttggt               | 2640       |
| ttatatataa               | tgtgtgttta               | gctaaggtaa               | aaggctacag               | gtetettee                | acatcccaaa               | 2700       |
| ctttctatga               | tgcttacatt               | tcttatgaca               | ccaaagatgc               | ctctgttact               | gactgggtga               | 2760       |

| taaatgagct gcgctacca | c cttgaagaga | gccgagacaa | aaacgttctc | ctttgtctag | 2820 |
|----------------------|--------------|------------|------------|------------|------|
| aggagagga ttgggatco  | g ggattggcca | tcatcgacaa | cctcatgcag | agcatcaacc | 2880 |
| aaagcaagaa aacagtatt | t gttttaacca | aaaaatatgc | aaaaagctgg | aactttaaaa | 2940 |
| cagcttttta cttggcttt | g cagaggctaa | tggatgagaa | catggatgtg | attatattta | 3000 |
| tcctgctgga gccagtgtt | a cagcattctc | agtatttgag | gctacggcag | cggatctgta | 3060 |
| agagetecat cetecagte | g cctgacaacc | cgaaggcaga | aggcttgttt | tggcaaactc | 3120 |
| tgagaaatgt ggtcttgad | t gaaaatgatt | cacggtataa | caatatgtat | gtcgattcca | 3180 |
| ttaagcaata ctaactgad | g ttaagtcatg | atttcgcgcc | ataataaaga | tgcaaaggaa | 3240 |
| tgacatttct gtattagtt | a tctattgcta | tgtaacaaat | tatcccaaaa | cttagtggtt | 3300 |
| taaaacaaca catttgctg | g cccacagttt | ttgagggtca | ggagtccagg | cccagcataa | 3360 |
| ctgggtcctc tgctcaggg | t gtctcagagg | ctgcaatgta | ggtgttcacc | agagacatag | 3420 |
| gcatcactgg ggtcacact | c atgtggttgt | tttctggatt | caattcctcc | tgggctattg | 3480 |
| gccaaaggct atactcate | t aagccatgcg | agcctctccc | acaaggcagc | ttgcttcatc | 3540 |
| agagctagca aaaaagaga | g gttgctagca | agatgaagtc | acaatctttt | gtaatcgaat | 3600 |
| caaaaaagtg atatctcat | c actttggcca | tattctattt | gttagaagta | aaccacaggt | 3660 |
| cccaccagct ccatgggag | t gaccacctca | gtccagggaa | aacagctgaa | gaccaagatg | 3720 |
| gtgagctctg attgcttca | g ttggtcatca | actattttcc | cttgactgct | gtcctgggat | 3780 |
| ggcctgctat cttgatgat | a gattgtgaat | atcaggaggc | agggatcact | gtggaccatc | 3840 |
| ttagcagttg acctaacac | a tcttctttc  | aatatctaag | aacttttgcc | actgtgacta | 3900 |
| atggtcctaa tattaagct | g ttgtttatat | ttatcatata | tctatggcta | catggttata | 3960 |
| ttatgctgtg gttgcgttc | g gttttattta | cagttgcttt | tacaaatatt | tgctgtaaca | 4020 |
| tttgacttct aaggtttag | a tgccatttaa | gaactgagat | ggatagcttt | taaagcatct | 4080 |
| tttacttctt accattttt | t aaaagtatgc | agctaaattc | gaagcttttg | gtctatattg | 4140 |
| ttaattgcca ttgctgtaa | a tcttaaaatg | aatgaataaa | aatgtttcat | tttacaaaaa | 4200 |
| aaaaaaaaa a          |              |            |            |            | 4211 |

<210> 49

<211> 3468

<212> DNA

<213> Homo sapiens

<400> 49

ctcctgcata gagggtacca ttctgcgctg ctgcaagtta cggaatgaaa aattagaaca 60 acagaaacat ggttctcttg acacttcagt gttagggaac atcagcaaga cccatcccag 120

180 gagacettga aggaageett tgaaagggag aatgaaggag teatetttge aaaatagete ctgcagcctg ggaaaggaga ctaaaaagga aaacatgttc cttcagtcgt caatgctgac 240 ctgcattttc ctgctaatat ctggttcctg tgagttatgc gccgaagaaa atttttctag 300 aagctateet tgtgatgaga aaaagcaaaa tgaeteagtt attgeagagt geagcaateg 360 togactacag gaagttocco aaacggtggg caaatatgtg acagaactag acctgtotga 420 taatttcatc acacacataa cgaatgaatc atttcaaggg ctgcaaaatc tcactaaaat 480 aaatctaaac cacaacccca atgtacagca ccagaacgga aatcccggta tacaatcaaa 540 tggcttgaat atcacagacg gggcattcct caacctaaaa aacctaaggg agttactgct 600 tgaagacaac cagttacccc aaataccctc tggtttgcca gagtctttga cagaacttag 660 tctaattcaa aacaatatat acaacataac taaagagggc atttcaagac ttataaactt 720 gaaaaatctc tatttggcct ggaactgcta ttttaacaaa gtttgcgaga aaactaacat 780 agaagatgga gtatttgaaa cgctgacaaa tttggagttg ctatcactat ctttcaattc 840 tettteacae gtgecaceca aactgecaag etceetaege aaaettttte tgageaacae 900 ccagatcaaa tacattagtg aagaagattt caagggattg ataaatttaa cattactaga 960 tttaageggg aactgteega ggtgetteaa tgeeecattt ceatgegtge ettqtgatgg 1020 tggtgcttca attaatatag atcgttttgc ttttcaaaac ttgacccaac ttcgatacct 1080 aaacctctct agcacttccc tcaggaagat taatgctgcc tggtttaaaa atatgcctca 1140 tctgaaggtg ctggatcttg aattcaacta tttagtggga gaaatagcct ctggggcatt 1200 tttaacgatg ctgccccgct tagaaatact tgacttgtct tttaactata taaaqqqqaq 1260 ttatccacag catattaata tttccagaaa cttctctaaa cttttqtctc tacqqqcatt 1320 gcatttaaga ggttatgtgt tccaggaact cagagaagat gatttccagc ccctgatgca 1380 gcttccaaac ttatcgacta tcaacttggg tattaatttt attaagcaaa tcgatttcaa 1440 acttttccaa aatttctcca atctggaaat tatttacttg tcagaaaaca gaatatcacc 1500 gttggtaaaa gatacccggc agagttatgc aaatagttcc tcttttcaac gtcatatccq 1560 gaaacgacgc tcaacagatt ttgagtttga cccacattcg aacttttatc atttcacccg 1620 tcctttaata aagccacaat gtgctgctta tggaaaagcc ttagatttaa gcctcaacaq 1680 tattttette attgggeeaa accaatttga aaatetteet gacattgeet gtttaaatet 1740 gtctgcaaat agcaatgctc aagtgttaag tggaactgaa ttttcagcca ttcctcatgt 1800 caaatatttg gatttgacaa acaatagact agactttgat aatgctaqtq ctcttactga 1860 attgtccgac ttggaagttc tagatctcag ctataattca cactatttca qaataqcaqq 1920 cgtaacacat catctagaat ttattcaaaa tttcacaaat ctaaaagttt taaacttgag 1980 ccacaacaac atttatactt taacagataa gtataacctg gaaagcaagt ccctggtaga 2040

The second section of the second seco

attagttttc agtggcaatc gccttgacat tttgtggaat gatgatgaca acaggtatat 2100 ctccattttc aaaggtctca agaatctgac acgtctggat ttatccctta ataggctgaa 2160 gcacatccca aatgaagcat teettaattt gecagegagt eteaetgaae tacatataaa 2220 tgataatatg ttaaagtttt ttaactggac attactccag cagtttcctc gtctcgagtt 2280 gettgaetta egtggaaaca aactaetett tttaaetgat ageetatetg aetttaeate 2340 ttcccttcgg acactgctgc tgagtcataa caggatttcc cacctaccct ctggctttct 2400 ttctgaagtc agtagtctga agcacctcga tttaagttcc aatctgctaa aaacaatcaa 2460 caaatccgca cttgaaacta agaccaccac caaattatct atgttggaac tacacggaaa 2520 cccctttgaa tgcacctgtg acattggaga tttccgaaga tggatggatg aacatctgaa 2580 tgtcaaaatt cccagactgg tagatgtcat ttgtgccagt cctggggatc aaagagggaa 2640 gagtattgtg agtctggagc taacaacttg tgtttcagat gtcactgcag tgatattatt 2700 tttcttcacg ttctttatca ccaccatggt tatgttggct gccctggctc accatttgtt 2760 ttactgggat gtttggttta tatataatgt gtgtttagct aaggtaaaag gctacaggtc 2820 tetttecaca teccaaaett tetatgatge ttacatttet tatgacacea aagatgeete 2880 tgttactgac tgggtgataa atgagctgcg ctaccacctt gaagagagcc gagacaaaaa 2940 cgttctcctt tgtctagagg agagggattg ggatccggga ttggccatca tcgacaacct 3000 catgcagagc atcaaccaaa gcaagaaaac agtatttgtt ttaaccaaaa aatatgcaaa 3060 aagctggaac tttaaaacag ctttttactt ggctttgcag aggctaatgg atgagaacat 3120 ggatgtgatt atatttatcc tgctggagcc agtgttacag cattctcagt atttgaggct 3180 acggcagcgg atctgtaaga gctccatcct ccagtggcct qacaacccqa aqqcaqaaqq 3240 cttgttttgg caaactctga gaaatgtggt cttgactgaa aatgattcac qqtataacaa 3300 tatgtatgtc gattccatta agcaatacta actgacgtta agtcatgatt tcgcgccata 3360 ataaagatgc aaaggaatga catttctgta ttagttatct attgctatgt aacaaattat 3420 cccaaaactt agtggtttaa aacaacacat ttgctggccc acagtttt 3468

the control of the state of the

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe Leu 1 5 10 15

Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe Ser Arg 20 25 30

<sup>&</sup>lt;210> 50

<sup>&</sup>lt;211> 1041

<sup>&</sup>lt;212> PRT

<sup>&</sup>lt;213> Homo sapiens

<sup>&</sup>lt;400> 50

Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His 90 Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln Ser Asn 105 Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn Leu Arg Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser Gly Leu Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr 170 Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu 200 Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu 215 Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly 260 Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln 280 Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala 295 300 Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe 315 Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu 330 Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser

Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser

Section 2 is a result of a recommendation of the second account of a region of the second account of the second account

htt met til miller skrevmensktill i frekkligherfor med engligt skrive fred i blev oggår frimere en kjendig.

360 Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn 390 395 Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn 410 Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro 425 Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln 440 Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His 455 Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe Ile 490 Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala 520 Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu Ser Lys Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp 615 Asn Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn 630 Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr

695 700 Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser 710 715 His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser 730 Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn 745 Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg 775 Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala 840 His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu 855 Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr 875 Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile 965 970 Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu 985 Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro 1000 Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu 1015

116/231

Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile

1025 Lys Gln Tyr 1040 1030

1035

<210> 51 <211> 1059 <212> PRT

500 graph "我就在我们的"我们的",我们在我们的"我们的",一个不成为了我们,"我们不是我们的",我们就是我们的"我们是我们的我们是我们的","这个人

<213> Homo sapiens

<400> 51

Met Lys Glu Ser Ser Leu Gln Asn Ser Ser Cys Ser Leu Gly Lys Glu

1 10 15

Thr Lys Lys Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile 20 25 30

Phe Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe 35 40 45

Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile 50 55 60

Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly 65 70 75 80

Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile 85 90 95

Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu 100 105 110

Asn His Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln 115 120 125

Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn 130 135 140

Leu Arg Glu Leu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser 145 150 155 160

Gly Leu Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile 165 170 175

Tyr Asn Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn 180 185 190

Leu Tyr Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr 195 200 205

Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu 210 215 220

Ser Leu Ser Phe Asn Ser Leu Ser His Val Ser Pro Lys Leu Pro Ser 225 230 235 240

Ser Leu Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser 245 250 255

Glu Glu Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser 260 265 270

.

. .

Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu 295 Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu 330 Glu Phe Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys 360 Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Pro Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln 490 Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe 500 505 Phe Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu

Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr
580 585 590

Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val

His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn

600 605 Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu 620 Ser Lys Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp Asn Asp Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln 695 Phe Pro Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu 730 Leu Ser His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu 740 Val Ser Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu 805 Val Asp Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile 825 Val Ser Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile 840 Leu Phe Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val 865 875 Cys Leu Ala Lys Ile Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp 920 Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu

935 940

Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr 950

Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr 970

Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val 985

Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu 1000

Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro 1015

Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn 1030

Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val 1045

Asp Ser Ile Lys Gln Tyr 1055

<210> 52

<211> 1041 <212> PRT

<213> Homo sapiens

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe Leu 5

Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe Ser Arg

Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile Ala Glu

Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly Lys Tyr

Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn 70

Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His

Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln Ser Asn

Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn Leu Arg

Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser Gly Leu 135

Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn 150 155

120/231

The Control of the Co

Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr 165 170 175

park of the property of the

e antido e a companya da compa

- Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile 180 185 190
- Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu
  195 200 205
- Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu 210 215 220
- Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu 225 230 235 240
- Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn 245 250 255
- Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly 260 265 270
- Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln 275 280 285
- Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala 290 295 300
- Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe 305 310 315 320
- Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu 325 330 335
- Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser 340 345 350
- Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser 355 360 365
- Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu 370 375 380
- Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn 385 390 395 400
- Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn 405 410 415
- Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro 420 425 430
- Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln 435 440 445
- Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His 450 455 460
- Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala 465 470 470 480
- Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe Ile

485 490 Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu 505 . Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu Ser Lys 600 Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp 615 Asn Asp Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn 630 635 Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn 650 Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn 660 665 Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro 680 Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr 695 Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Ser His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn 745 Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg 775 Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe

825 830 Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala 840

His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu 855

Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr 875

Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp 890

Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn 905

Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile

Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe

Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe

Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile 970

Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu 985

Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro 1000

Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu 1015

Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile 1030

Lys Gln Tyr 1040

<210> 53 <211> 1041 <212> PRT

<213> Homo sapiens

<400> 53

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe Leu 5

Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe Ser Arg

Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile Ala Glu

Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly Lys Tyr 55

. . .

Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu Asn His Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn Leu Arg Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser Gly Leu 135 Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn 150 155 Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr 170 Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu 215 Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys Asp Gly 260 Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu Thr Gln 280 Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile Asn Ala 295 300 Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu Glu Phe 310 315 Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr Met Leu 330 Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu Arg Glu 375 Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr Ile Asn

en a spripe particular endirect

and a dispersion between a property of the side

385 395 Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe Ile 490 Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu Ser Lys Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile Leu Trp 615 Asn Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn 630 Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn 650 Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser 710 715 His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val Ser

725 730 735

Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr Ile Asn
740 745 750

Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met Leu Glu 755 760 765

Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp Phe Arg 770 775 780

Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu Val Asp 785 790 795 800

Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile Val Ser 805 810 815

Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe 820 825 830

Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala Leu Ala 835 840 845

His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val Cys Leu 850 855 860

Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr 865 870 875 880

Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp 885 890 895

Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn 900 905 910

Val Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile 915 920 925

Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe 930 935 940

Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe 945 950 955 960

Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile Ile 965 970 975

Phe Ile Leu Clu Pro Val Leu Gln His Ser Gln Tyr Leu Arg Leu 980 985 990

Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro 995 1000 1005

Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn Val Val Leu 1010 1015 1020

Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val Asp Ser Ile 1025 1030 1035

Lys Gln Tyr 1040

126/231

<210> 54

<211> 1059

<212> PRT

<213> Homo sapiens

<400> 54

Met Lys Glu Ser Ser Leu Gln Asn Ser Ser Cys Ser Leu Gly Lys Glu
1 5 10 15

Thr Lys Lys Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile 20 25 30

Phe Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe 35 40 45

Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val Ile 50 55 60

Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr Val Gly 65 70 75 80

Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile Thr His Ile 85 90 95

Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr Lys Ile Asn Leu 100 105 110

Asn His Asn Pro Asn Val Gln His Gln Asn Gly Asn Pro Gly Ile Gln
115 120 125

Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala Phe Leu Asn Leu Lys Asn 130 135 140

Leu Arg Glu Leu Leu Glu Asp Asn Gln Leu Pro Gln Ile Pro Ser 145 150 155 160

Gly Leu Pro Glu Ser Leu Thr Glu Leu Ser Leu Ile Gln Asn Asn Ile 165 170 175

Tyr Asn Ile Thr Lys Glu Gly Ile Ser Arg Leu Ile Asn Leu Lys Asn 180 185 190

Leu Tyr Leu Ala Trp Asn Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr 195 200 205

Asn Ile Glu Asp Gly Val Phe Glu Thr Leu Thr Asn Leu Glu Leu 210 215 220

Ser Leu Ser Phe Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser 225 230 235 240

Ser Leu Arg Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser 245 250 255

Glu Glu Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser 260 265 270

Gly Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys 275 280 285

Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn Leu 290 295 300

- Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Lys Ile 305 310 315 320
- Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val Leu Asp Leu 325 330 335
- Glu Phe Asn Tyr Leu Val Gly Glu Ile Ala Ser Gly Ala Phe Leu Thr 340 345 350
- Met Leu Pro Arg Leu Glu Ile Leu Asp Leu Ser Phe Asn Tyr Ile Lys 355 360 365
- Gly Ser Tyr Pro Gln His Ile Asn Ile Ser Arg Asn Phe Ser Lys Leu 370 380
- Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr Val Phe Gln Glu Leu 385 390 395 400
- Arg Glu Asp Asp Phe Gln Pro Leu Met Gln Leu Pro Asn Leu Ser Thr 405 410 415
- Ile Asn Leu Gly Ile Asn Phe Ile Lys Gln Ile Asp Phe Lys Leu Phe
  420 425 430
- Gln Asn Phe Ser Asn Leu Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile 435 440 445
- Ser Pro Leu Val Lys Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser 450 455 460
- Phe Gln Arg His Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp 465 470 475 480
- Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln 485 490 495
- Cys Ala Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe 500 505 510
- Phe Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu 515 520 525
- Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu Phe 530 540
- Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn Arg Leu 545 555 560
- Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp Leu Glu Val 565 570 575
- Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile Ala Gly Val Thr
  580 585 590
- His His Leu Glu Phe Ile Gln Asn Phe Thr Asn Leu Lys Val Leu Asn 595 600 605
- Leu Ser His Asn Asn Ile Tyr Thr Leu Thr Asp Lys Tyr Asn Leu Glu

615 620 Ser Lys Ser Leu Val Glu Leu Val Phe Ser Gly Asn Arg Leu Asp Ile 635 Leu Trp Asn Asp Asp Asp Asn Arg Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn Leu Thr Arg Leu Asp Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn Glu Ala Phe Leu Asn Leu Pro Ala Ser Leu Thr Glu Leu His 680 Ile Asn Asp Asn Met Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro Arg Leu Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr Asp Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu 725 Leu Ser His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu 745 Val Ser Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr 760 Ile Asn Lys Ser Ala Leu Glu Thr Lys Thr Thr Thr Lys Leu Ser Met 780 Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile Gly Asp 790 795 Phe Arg Arg Trp Met Asp Glu His Leu Asn Val Lys Ile Pro Arg Leu 810 Val Asp Val Ile Cys Ala Ser Pro Gly Asp Gln Arg Gly Lys Ser Ile 830 Val Ser Leu Glu Leu Thr Thr Cys Val Ser Asp Val Thr Ala Val Ile Leu Phe Phe Phe Thr Phe Phe Ile Thr Thr Met Val Met Leu Ala Ala 850 Leu Ala His His Leu Phe Tyr Trp Asp Val Trp Phe Ile Tyr Asn Val 870 875 Cys Leu Ala Lys Val Lys Gly Tyr Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys Asp Ala Ser Val Thr 905 Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr

945 950 955 960 Val Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr 965 970 975

Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val 980 985 990

Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu 995 1000 1005

Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro 1010 1015 1020

Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn 1025 1030 1035

Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val 1040 1045 1050

Asp Ser Ile Lys Gln Tyr 1055

<210> 55

.

<211> 3220

<212> DNA

<213> murine

<400> 55

attcagagtt ggatgttaag agagaaacaa acgttttacc ttcctttgtc tatagaacat 60 ggaaaacatg coccetcagt catggattet gaegtgettt tgtetgetgt cetetggaac 120 cagtgccatc ttccataaag cgaactattc cagaagctat ccttgtgacg agataaggca 180 caactccctt gtgattgcag aatgcaacca tcgtcaactg catgaagttc cccaaactat 240 aggcaagtat gtgacaaaca tagacttgtc agacaatgcc attacacata taacgaaaga 300 gtcctttcaa aagctgcaaa acctcactaa aatcgatctg aaccacaatg ccaaacaaca 360 gcacccaaat gaaaataaaa atggtatgaa tattacagaa ggggcacttc tcagcctaag 420 aaatctaaca gttttactgc tggaagacaa ccagttatat actatacctg ctgggttgcc 480 tgagtctttg aaagaactta gcctaattca aaacaatata tttcaggtaa ctaaaaacaa 540 cacttttggg cttaggaact tggaaagact ctatttgggc tggaactgct attttaaatg 600 taatcaaacc tttaaggtag aagatggggc atttaaaaat cttatacact tgaaggtact 660 ctcattatct ttcaataacc ttttctatgt gcccccaaa ctaccaagtt ctctaaggaa 720 actttttctg agtaatgcca aaatcatgaa catcactcag gaagacttca aaggactgga 780 aaatttaaca ttactagatc tgagtggaaa ctgtccaagg tgttacaatg ctccatttcc 840 ttgcacacct tgcaaggaaa actcatccat ccacatacat cctctggctt ttcaaagtct 900 cacceaactt ctctatctaa acctttccag cacttccctc aggacgattc cttctacctg 960 gtttgaaaat ctgtcaaatc tgaaggaact ccatcttgaa ttcaactatt tagttcaaga 1020

| aattgcctcg | ggggcatttt | taacaaaact | acccagttta | caaatccttg | atttgtcctt | 1080 |
|------------|------------|------------|------------|------------|------------|------|
| caactttcaa | tataaggaat | atttacaatt | tattaatatt | tcctcaaatt | tctctaagct | 1140 |
| tegttetete | aagaagttgc | acttaagagg | ctatgtgttc | cgagaactta | aaaagaagca | 1200 |
| tttcgagcat | ctccagagtc | ttccaaactt | ggcaaccatc | aacttgggca | ttaactttat | 1260 |
| tgagaaaatt | gatttcaaag | ctttccagaa | tttttccaaa | ctcgacgtta | tctatttatc | 1320 |
| aggaaatcgc | atagcatctg | tattagatgg | tacagattat | teetettgge | gaaatcgtct | 1380 |
| tcggaaacct | ctctcaacag | acgatgatga | gtttgatcca | cacgtgaatt | tttaccatag | 1440 |
| caccaaacct | ttaataaagc | cacagtgtac | tgcttatggc | aaggccttgg | atttaagttt | 1500 |
| gaacaatatt | ttcattattg | ggaaaagcca | atttgaaggt | tttcaggata | tcgcctgctt | 1560 |
| aaatctgtcc | ttcaatgcca | atactcaagt | gtttaatggc | acagaattct | cctccatgcc | 1620 |
| ccacattaaa | tatttggatt | taaccaacaa | cagactagac | tttgatgata | acaatgcttt | 1680 |
| cagtgatctt | cacgatctag | aagtgctgga | cctgagccac | aatgcacact | atttcagtat | 1740 |
| agcaggggta | acgcaccgtc | taggatttat | ccagaactta | ataaacctca | gggtgttaaa | 1800 |
| cctgagccac | aatggcattt | acaccctcac | agaggaaagt | gagctgaaaa | gcatctcact | 1860 |
| gaaagaattg | gttttcagtg | gaaatcgtct | tgaccatttg | tggaatgcaa | atgatggcaa | 1920 |
| atactggtcc | atttttaaaa | gtctccagaa | tttgatacgc | ctggacttat | catacaataa | 1980 |
| ccttcaacaa | atcccaaatg | gagcattcct | caatttgcct | cagagcetee | aagagttact | 2040 |
| tatcagtggt | aacaaattac | gtttctttaa | ttggacatta | ctccagtatt | ttcctcacct | 2100 |
| tcacttgctg | gatttatcga | gaaatgagct | gtattttcta | cccaattgcc | tatctaagtt | 2160 |
| tgcacattcc | ctggagacac | tgctactgag | ccataatcat | ttctctcacc | taccctctgg | 2220 |
| cttcctctcc | gaagccagga | atctggtgca | cctggatcta | agtttcaaca | caataaagat | 2280 |
| gatcaataaa | tectecetge | aaaccaagat | gaaaacgaac | ttgtctattc | tggagctaca | 2340 |
| tgggaactat | tttgactgca | cgtgtgacat | aagtgatttt | cgaagctggc | tagatgaaaa | 2400 |
| tctgaatatc | acaattccta | aattggtaaa | tgttatatgt | tccaatcctg | gggatcaaaa | 2460 |
| atcaaagagt | atcatgagcc | tagatctcac | gacttgtgta | tcggatacca | ctgcagctgt | 2520 |
| cctgttttc  | ctcacattcc | ttaccacctc | catggttatg | ttggctgctc | tggttcacca | 2580 |
| cctgttttac | tgggatgttt | ggtttatcta | tcacatgtgc | tctgctaagt | taaaaggcta | 2640 |
| caggacttca | tccacatccc | aaactttcta | tgatgcttat | atttcttatg | acaccaaaga | 2700 |
| tgcatctgtt | actgactggg | taatcaatga | actgcgctac | caccttgaag | agagtgaaga | 2760 |
| caaaagtgtc | ctcctttgtt | tagaggagag | ggattgggat | ccaggattac | ccatcattga | 2820 |
| taacctcatg | cagagcataa | accagagcaa | gaaaacaatc | tttgttttaa | ccaagaaata | 2880 |

tgccaagage tggaacttta aaacagettt etaettggee ttgcagagge taatggatga 2940
gaacatggat gtgattattt teateeteet ggaaceagtg ttacagtaet cacagtaeet 3000
gaggettegg cagaggatet gtaagagete cateeteeag tggeecaaca ateecaaage 3060
agaaaacttg ttttggeaaa gtetgaaaaa tgtggtettg aetgaaaatg atteaeggta 3120
tgaegatttg tacattgatt eeattaggea ataetagtga tgggaagtea egaetetgee 3180
ateataaaaa cacacagett eteettaeaa tgaacegaat 3220

<210> 56

<211> 3220

<212> DNA

<213> murine

<400> 56

attcagagtt ggatgttaag agagaaacaa acgttttacc ttcctttgtc tatagaacat 60 ggaaaacatg ccccctcagt catggattct gacgtgcttt tgtctgctgt cctctggaac 120 cagtgccatc ttccataaag cgaactattc cagaagctat ccttgtgacg agataaggca 180 caactccctt gtgattgcag aatgcaacca tcgtcaactg catgaagttc cccaaactat 240 300 aggcaagtat gtgacaaaca tagacttgtc agacaatgcc attacacata taacgaaaga 360 gtcctttcaa aagctgcaaa acctcactaa aatcgatctg aaccacaatg ccaaacaaca gcacccaaat gaaaataaaa atggtatgaa tattacagaa ggggcacttc tcagcctaag 420 aaatctaaca gttttactgc tggaagacaa ccagttatat actatacctg ctgggttgcc 480 tgagtctttg aaagaactta gcctaattca aaacaatata tttcaggtaa ctaaaaacaa 540 cacttttggg cttaggaact tggaaagact ctatttgggc tggaactgct attttaaatg 600 taatcaaacc tttaaggtag aagatggggc atttaaaaaat cttatacact tgaaggtact 660 ctcattatct ttcaataacc ttttctatgt gccccccaaa ctaccaagtt ctctaaggaa 720 actttttctg agtaatgcca aaatcatgaa catcactcag gaagacttca aaggactgga 780 aaatttaaca ttactagatc tgagtggaaa ctgtccaagg tgttacaatg ctccatttcc 840 ttgcacacct tgcaaggaaa actcatccat ccacatacat cctctggctt ttcaaagtct 900 cacccaactt ctctatctaa acctttccag cacttccctc aggacgattc cttctacctg 960 gtttgaaaat ctgtcaaatc tgaaggaact ccatcttgaa ttcaactatt tagttcaaga 1020 aattgcctcg ggggcatttt taacaaaact acccagttta caaatccttg atttgtcctt 1080 caactttcaa tataaggaat atttacaatt tattaatatt tcctcaaatt tctctaagct 1140 tegttetete aagaagttge acttaagagg ctatgtgtte egagaactta aaaagaagea 1200 tttcgagcat ctccagagtc ttccaaactt ggcaaccatc aacttgggca ttaactttat 1260

| tgagaaaatt gatttcaaag<br>aggaaatcgc atagcatctg |              |             |            |            | 1320<br>1380 |
|------------------------------------------------|--------------|-------------|------------|------------|--------------|
| tcggaaacct ctctcaacag                          | acgatgatga   | gtttgatcca  | cacgtgaatt | tttaccatag | 1440         |
| caccaaacct ttaataaagc                          | cacagtgtac   | tgcttatggc  | aaggccttgg | atttaagttt | 1500         |
| gaacaatatt ttcattattg                          | ggaaaagcca   | atttgaaggt  | tttcaggata | tcgcctgctt | 1560         |
| aaatctgtcc ttcaatgcca                          | atactcaagt   | gtttaatggc  | acagaattct | cctccatgcc | 1620         |
| ccacattaaa tatttggatt                          | taaccaacaa   | cagactagac  | tttgatgata | acaatgcttt | 1680         |
| cagtgatett caegatetag                          | aagtgctgga   | cctgagccac  | aatgcacact | atttcagtat | 1740         |
| agcaggggta acgcaccgto                          | taggatttat   | .ccagaactta | ataaacctca | gggtgttaaa | 1800         |
| cctgagccac aatggcattt                          | acaccctcac   | agaggaaagt  | gagctgaaaa | gcatctcact | 1860         |
| gaaagaattg gttttcagtg                          | gaaatcgtct   | tgaccatttg  | tggaatgcaa | atgatggcaa | 1920         |
| atactggtcc atttttaaaa                          | gtctccagaa   | tttgatacgc  | ctggacttat | catacaataa | 1980         |
| ccttcaacaa atcccaaatg                          | gagcattcct   | caatttgcct  | cagageetee | aagagttact | 2040         |
| tatcagtggt aacaaattac                          | gtttctttaa   | ttggacatta  | ctccagtatt | ttcctcacct | 2100         |
| tcacttgctg gatttatcga                          | gaaatgagct   | gtattttcta  | cccaattgcc | tatctaagtt | 2160         |
| tgcacattcc ctggagacac                          | tgctactgag   | ccataatcat  | ttctctcacc | taccctctgg | 2220         |
| cttcctctcc gaagccagga                          | atctggtgca   | cctggatcta  | agtttcaaca | caataaagat | 2280         |
| gatcaataaa tootoootgo                          | aaaccaagat   | gaaaacgaac  | ttgtctattc | tggagctaca | 2340         |
| tgggaactat tttgactgca                          | cgtgtgacat   | aagtgatttt  | cgaagctggc | tagatgaaaa | 2400         |
| tctgaatatc acaattccta                          | aattggtaaa   | tgttatatgt  | tccaatcctg | gggatcaaaa | 2460         |
| atcaaagagt atcatgagco                          | tagateteae   | gacttgtgta  | tcggatacca | ctgcagctgt | 2520         |
| cctgtttttc ctcacattco                          | ttaccacctc   | catggttatg  | ttggctgctc | tggttcacca | 2580         |
| cctgttttac tgggatgttt                          | ggtttatcta   | tcacatgtgc  | tctgctaagt | taaaaggcta | 2640         |
| caggacttca tccacatcco                          | : aaactttcta | tgatgcttat  | atttcttatg | acaccaaaga | 2700         |
| tgcatctgtt actgactggg                          | f taatcaatga | actgcgctac  | caccttgaag | agagtgaaga | 2760         |
| caaaagtgtc ctcctttgtt                          | : tagaggagag | ggattgggat  | ccaggattac | ccatcattga | 2820         |
| taacctcatg cagagcataa                          | accagagcaa   | gaaaacaatc  | tttgttttaa | ccaagaaata | 2880         |
| tgccaagagc tggaacttta                          | aaacagcttt   | ctacttggcc  | ttgcagaggc | taatggatga | 2940         |
| gaacatggat gtgattattt                          | tcatcctcct   | ggaaccagtg  | ttacagtact | cacagtacct | 3000         |
| gaggettegg cagaggatet                          | : gtaagagctc | catcctccag  | tggcccaaca | atcccaaagc | 3060         |
| agaaaacttg ttttggcaaa                          | gtctgaaaaa   | tgtggtcttg  | actgaaaatg | attcacggta | 3120         |
| tgacgatttg tacattgatt                          | ccattaggca   | atactagtga  | tgggaagtca | cgactctgcc | 3180         |

atcataaaaa cacacagctt ctccttacaa tgaaccgaat

3220

<210> 57

<211> 1032

<212> PRT

<213> murine

<400> 57

Met Glu Asn Met Pro Pro Gln Ser Trp Ile Leu Thr Cys Phe Cys Leu 1 5 10 15

Leu Ser Ser Gly Thr Ser Ala Ile Phe His Lys Ala Asn Tyr Ser Arg 20 25 30

Ser Tyr Pro Cys Asp Glu Ile Arg His Asn Ser Leu Val Ile Ala Glu 35 40 45

Cys Asn His Arg Gln Leu His Glu Val Pro Gln Thr Ile Gly Lys Tyr 50 55 60

Val Thr Asn Ile Asp Leu Ser Asp Asn Ala Ile Thr His Ile Thr Lys 65 70 75 · 80

Glu Ser Phe Gln Lys Leu Gln Asn Leu Thr Lys Ile Asp Leu Asn His 85 90 95

Asn Ala Lys Gln Gln His Pro Asn Glu Asn Lys Asn Gly Met Asn Ile 100 105 110

Thr Glu Gly Ala Leu Leu Ser Leu Arg Asn Leu Thr Val Leu Leu Leu 115 120 125

Glu Asp Asn Gln Leu Tyr Thr Ile Pro Ala Gly Leu Pro Glu Ser Leu 130 135 140

Lys Glu Leu Ser Leu Ile Gln Asn Asn Ile Phe Gln Val Thr Lys Asn 145 150 155 160

Asn Thr Phe Gly Leu Arg Asn Leu Glu Arg Leu Tyr Leu Gly Trp Asn 165 170 175

Cys Tyr Phe Lys Cys Asn Gln Thr Phe Lys Val Glu Asp Gly Ala Phe 180 185 190

Lys Asn Leu Ile His Leu Lys Val Leu Ser Leu Ser Phe Asn Asn Leu 195 200 205

Phe Tyr Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu 210 215 220

Ser Asn Ala Lys Ile Met Asn Ile Thr Gln Glu Asp Phe Lys Gly Leu 225 230 235 240

Glu Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr 245 250 255

Asn Ala Pro Phe Pro Cys Thr Pro Cys Lys Glu Asn Ser Ser Ile His 260 265 270

Ile His Pro Leu Ala Phe Gln Ser Leu Thr Gln Leu Leu Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg Thr Ile Pro Ser Thr Trp Phe Glu Asn 295 Leu Ser Asn Leu Lys Glu Leu His Leu Glu Phe Asn Tyr Leu Val Gln Glu Ile Ala Ser Gly Ala Phe Leu Thr Lys Leu Pro Ser Leu Gln Ile 330 Leu Asp Leu Ser Phe Asn Phe Gln Tyr Lys Glu Tyr Leu Gln Phe Ile Asn Ile Ser Ser Asn Phe Ser Lys Leu Arg Ser Leu Lys Lys Leu His 360 Leu Arg Gly Tyr Val Phe Arg Glu Leu Lys Lys His Phe Glu His Leu Gln Ser Leu Pro Asn Leu Ala Thr Ile Asn Leu Gly Ile Asn Phe Ile Glu Lys Ile Asp Phe Lys Ala Phe Gln Asn Phe Ser Lys Leu Asp Val Ile Tyr Leu Ser Gly Asn Arg Ile Ala Ser Val Leu Asp Gly Thr Asp Tyr Ser Ser Trp Arg Asn Arg Leu Arg Lys Pro Leu Ser Thr Asp Asp Asp Glu Phe Asp Pro His Val Asn Phe Tyr His Ser Thr Lys Pro Leu Ile Lys Pro Gln Cys Thr Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Asn Ile Phe Ile Ile Gly Lys Ser Gln Phe Glu Gly Phe Gln 490 Asp Ile Ala Cys Leu Asn Leu Ser Phe Asn Ala Asn Thr Gln Val Phe 500 505 Asn Gly Thr Glu Phe Ser Ser Met Pro His Ile Lys Tyr Leu Asp Leu 520 Thr Asn Asn Arg Leu Asp Phe Asp Asn Asn Ala Phe Ser Asp Leu His Asp Leu Glu Val Leu Asp Leu Ser His Asn Ala His Tyr Phe Ser Ile Ala Gly Val Thr His Arg Leu Gly Phe Ile Gln Asn Leu Ile Asn Leu Arg Val Leu Asn Leu Ser His Asn Gly Ile Tyr Thr Leu Thr Glu 585 Glu Ser Glu Leu Lys Ser Ile Ser Leu Lys Glu Leu Val Phe Ser Gly

| _          | _          | 595        | _          | '          |            | _          | 600              |            | _          | _          |            | 605        | _          | _          | _          |
|------------|------------|------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asn        | Arg<br>610 | Leu        | Asp        | His        | Leu        | Trp<br>615 | Asn              | Ala        | Asn        | Asp        | Gly<br>620 | Lys        | Tyr        | Trp        | Ser        |
| Ile<br>625 | Phe        | ГАВ        | Ser        | Leu        | Gln<br>630 | Asn        | Leu <sup>.</sup> | Ile        | Arg        | Leu<br>635 | Asp        | Leu        | Ser        | Tyr        | Asn<br>640 |
| Asn        | Leu        | Gln        | Gln        | Ile<br>645 | Pro        | Asn        | Gly              | Ala        | Phe<br>650 | Leu        | Asn        | Leu        | Pro        | Gln<br>655 | Ser        |
| Leu        | Gln        | Glu        | Leu<br>660 | Leu        | Ile        | Ser        | Gly              | Asn<br>665 | Гув        | Leu        | Arg        | Phe        | Phe<br>670 | Asn        | Trp        |
| Thr        | Leu        | Leu<br>675 | Gln        | Tyr        | Phe        | Pro        | His<br>680       | Leu        | His        | Leu        | Leu        | Asp<br>685 | Leu        | Ser        | Arg        |
| Asn        | Glu<br>690 | Leu        | Tyr        | Phe        | Leu        | Pro<br>695 | Asn              | Cys        | Leu        | Ser        | Lys<br>700 | Phe        | Ala        | His        | Ser        |
| Leu<br>705 | Glu        | Thr        | Leu        | Leu        | Leu<br>710 | Ser        | His              | Asn        | His        | Phe<br>715 | Ser        | His        | Leu        | Pro        | Ser<br>720 |
| Gly        | Phe        | Leu        | Ser        | Glu<br>725 | Ala        | Arg        | Asn              | Leu        | Val<br>730 | His        | Leu        | Asp        | Leu        | Ser<br>735 | Phe        |
| Asn        | Thr        | Ile        | Lys<br>740 | Met        | Ile        | Asn        | Lys              | Ser<br>745 | Ser        | Leu        | Gln        | Thr        | Lys<br>750 | Met        | Lys        |
| Thr        | Asn        | Leu<br>755 | Ser        | Ile        | Leu        | Glu        | Leu<br>760       | His        | Gly        | Asn        | Tyr        | Phe<br>765 | Asp        | Cys        | Thr        |
| Cys        | Asp<br>770 | Ile        | Ser        | Asp        | Phe        | Arg<br>775 | Ser              | Trp        | Leu        | Asp        | Glu<br>780 | Asn        | Leu        | Asn        | Ile        |
| Thr<br>785 | Ile        | Pro        | Lys        | Leu        | Val<br>790 | Asn        | Val              | Ile        | Сув        | Ser<br>795 | Asn        | Pro        | Gly        | Asp        | Gln<br>800 |
| Lys        | Ser        | Lys        | Ser        | Ile<br>805 | Met        | Ser        | Leu              | Asp        | Leu<br>810 | Thr        | Thr        | Cys        | Val        | Ser<br>815 | Asp        |
| Thr        | Thr        | Ala        | Ala<br>820 | Val        | Leu        | Phe        | Phe              | Leu<br>825 | Thr        | Phe        | Leu        | Thr        | Thr<br>830 | Ser        | Met        |
| Val        | Met        | Leu<br>835 | Ala        | Ala        | Leu        | Val        | His<br>840       | His        | Leu        | Phe        | Tyr        | Trp<br>845 | Asp        | Val        | Trp        |
| Phe        | Ile<br>850 | Tyr        | His        | Met        | Сув        | Ser<br>855 | Ala              | Lys        | Leu        | Lys        | Gly<br>860 | Tyr        | Arg        | Thr        | Ser        |
| Ser<br>865 | Thr        | Ser        | Gln        | Thr        | Phe<br>870 | Tyr        | Asp              | Ala        | Tyr        | Ile<br>875 | Ser        | Tyr        | Asp        | Thr        | Lys<br>880 |
| Asp        | Ala        | Ser        | Val        | Thr<br>885 | Asp        | Trp        | Val              | Ile        | Asn<br>890 | Glu        | Leu        | Arg        | Tyr        | His<br>895 | Leu        |
| Glu        | Glu        | Ser        | Glu<br>900 | Asp        | ГÀЗ        | Ser        | Val              | Leu<br>905 | Leu        | Cys        | Leu        | Glu        | Glu<br>910 | Arg        | qaA        |
| Trp        | Asp        | Pro<br>915 | Gly        | Leu        | Pro        | Ile        | Ile<br>920       | Asp        | Asn        | Leu        | Met        | Gln<br>925 | Ser        | Ile        | Asn        |
| Gln        | Ser        | Lys        | Ьуs        | Thr        | Ile        | Phe        | Val              | Leu        | Thr        | Lys        | Lys        | Tyr        | Ala        | Lys        | Ser        |

935 940 Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp

955

Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln 970

Tyr Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile

Leu Gln Trp Pro Asn Asn Pro Lys Ala Glu Asn Leu Phe Trp Gln Ser 1000

Leu Lys Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asp Asp 1015

Leu Tyr Ile Asp Ser Ile Arg Gln Tyr 1025 1030

<210> 58

<211> 1032 <212> PRT

<213> murine

<400> 58

Met Glu Asn Met Pro Pro Gln Ser Trp Ile Leu Thr Cys Phe Cys Leu 5 10

Leu Ser Ser Gly Thr Ser Ala Ile Phe His Lys Ala Asn Tyr Ser Arg

Ser Tyr Pro Cys Asp Glu Ile Arg His Asn Ser Leu Val Ile Ala Glu 40

Cys Asn His Arg Gln Leu His Glu Val Pro Gln Thr Ile Gly Lys Tyr

Val Thr Asn Ile Asp Leu Ser Asp Asn Ala Ile Thr His Ile Thr Lys

Glu Ser Phe Gln Lys Leu Gln Asn Leu Thr Lys Ile Asp Leu Asn His

Asn Ala Lys Gln Gln His Pro Asn Glu Asn Lys Asn Gly Met Asn Ile

Thr Glu Gly Ala Leu Leu Ser Leu Arg Asn Leu Thr Val Leu Leu

Glu Asp Asn Gln Leu Tyr Thr Ile Pro Ala Gly Leu Pro Glu Ser Leu 135

Lys Glu Leu Ser Leu Ile Gln Asn Asn Ile Phe Gln Val Thr Lys Asn 155 150

Asn Thr Phe Gly Leu Arg Asn Leu Glu Arg Leu Tyr Leu Gly Trp Asn

Cys Tyr Phe Lys Cys Asn Gln Thr Phe Lys Val Glu Asp Gly Ala Phe 180 185

137/231

Lys Asn Leu Ile His Leu Lys Val Leu Ser Leu Ser Phe Asn Asn Leu 200 Phe Tyr Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu 210 Ser Asn Ala Lys Ile Met Asn Ile Thr Gln Glu Asp Phe Lys Gly Leu 225 Clu Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr 245 Asn Ala Pro Phe Pro Cys Thr Pro Cys Lys Glu Asn Ser Ser Ile His 260

260 265 270

Ile His Pro Leu Ala Phe Gln Ser Leu Thr Gln Leu Leu Tyr Leu Asn 275 280 285

Leu Ser Ser Thr Ser Leu Arg Thr Ile Pro Ser Thr Trp Phe Glu Asn 290 295 300

Leu Ser Asn Leu Lys Glu Leu His Leu Glu Phe Asn Tyr Leu Val Gln 305 310 315 320

Glu Ile Ala Ser Gly Ala Phe Leu Thr Lys Leu Pro Ser Leu Gln Ile 325 330 335

Leu Asp Leu Ser Phe Asn Phe Gln Tyr Lys Glu Tyr Leu Gln Phe Ile 340 345 350

Asn Ile Ser Ser Asn Phe Ser Lys Leu Arg Ser Leu Lys Lys Leu His 355 360 365

Leu Arg Gly Tyr Val Phe Arg Glu Leu Lys Lys Lys His Phe Glu His 370 375 380

Leu Gln Ser Leu Pro Asn Leu Ala Thr Ile Asn Leu Gly Ile Asn Phe 385 390 395 400

Ile Glu Lys Ile Asp Phe Lys Ala Phe Gln Asn Phe Ser Lys Leu Asp 405 410 415

Val Ile Tyr Leu Ser Gly Asn Arg Ile Ala Ser Val Leu Asp Gly Thr 420 425 430

Asp Tyr Ser Ser Trp Arg Asn Arg Leu Arg Lys Pro Leu Ser Thr Asp 435 440 . 445

Asp Asp Glu Phe Asp Pro His Val Asn Phe Tyr His Ser Thr Lys Pro 450 455 460

Leu Ile Lys Pro Gln Cys Thr Ala Tyr Gly Lys Ala Leu Asp Leu Ser 465 470 475 480

Leu Asn Asn Ile Phe Ile Ile Gly Lys Ser Gln Phe Glu Gly Phe Gln 485 490 495

Asp Ile Ala Cys Leu Asn Leu Ser Phe Asn Ala Asn Thr Gln Val Phe 500 505 510

Asn Gly Thr Glu Phe Ser Ser Met Pro His Ile Lys Tyr Leu Asp Leu

520 Thr Asn Asn Arg Leu Asp Phe Asp Asp Asn Asn Ala Phe Ser Asp Leu His Asp Leu Glu Val Leu Asp Leu Ser His Asn Ala His Tyr Phe Ser Ile Ala Gly Val Thr His Arg Leu Gly Phe Ile Gln Asn Leu Ile Asn Leu Arg Val Leu Asn Leu Ser His Asn Gly Ile Tyr Thr Leu Thr Glu Glu Ser Glu Leu Lys Ser Ile Ser Leu Lys Glu Leu Val Phe Ser Gly Asn Arq Leu Asp His Leu Trp Asn Ala Asn Asp Gly Lys Tyr Trp Ser Ile Phe Lys Ser Leu Gln Asn Leu Ile Arg Leu Asp Leu Ser Tyr Asn Asn Leu Gln Gln Ile Pro Asn Gly Ala Phe Leu Asn Leu Pro Gln Ser Leu Gln Glu Leu Leu Ile Ser Gly Asn Lys Leu Arg Phe Phe Asn Trp Thr Leu Leu Gln Tyr Phe Pro His Leu His Leu Leu Asp Leu Ser Arg Asn Glu Leu Tyr Phe Leu Pro Asn Cys Leu Ser Lys Phe Ala His Ser Leu Glu Thr Leu Leu Ser His Asn His Phe Ser His Leu Pro Ser Gly Phe Leu Ser Glu Ala Arg Asn Leu Val His Leu Asp Leu Ser Phe 730 Asn Thr Ile Lys Met Ile Asn Lys Ser Ser Leu Gln Thr Lys Met Lys 745 Thr Asn Leu Ser Ile Leu Glu Leu His Gly Asn Tyr Phe Asp Cys Thr 760 Cys Asp Ile Ser Asp Phe Arg Ser Trp Leu Asp Glu Asn Leu Asn Ile Thr Ile Pro Lys Leu Val Asn Val Ile Cys Ser Asn Pro Gly Asp Gln Lys Ser Lys Ser Ile Met Ser Leu Asp Leu Thr Thr Cys Val Ser Asp 810 Thr Thr Ala Ala Val Leu Phe Phe Leu Thr Phe Leu Thr Thr Ser Met Val Met Leu Ala Ala Leu Val His His Leu Phe Tyr Trp Asp Val Trp 840 Phe Ile Tyr His Met Cys Ser Ala Lys Leu Lys Gly Tyr Arg Thr Ser

850 855 860 Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr Asp Thr Lys 865 870 875 880

Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg Tyr His Leu 885 890 895

Glu Glu Ser Glu Asp Lys Ser Val Leu Leu Cys Leu Glu Glu Arg Asp 900 905 910

Trp Asp Pro Gly Leu Pro Ile Ile Asp Asn Leu Met Gln Ser Ile Asn 915 920 925

Gln Ser Lys Lys Thr Ile Phe Val Leu Thr Lys Lys Tyr Ala Lys Ser 930 935 940

Trp Asn Phe Lys Thr Ala Phe Tyr Leu Ala Leu Gln Arg Leu Met Asp 945 955 960

Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro Val Leu Gln 965 970 975

Tyr Ser Gln Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile 980 985 990

Leu Gln Trp Pro Asn Asn Pro Lys Ala Glu Asn Leu Phe Trp Gln Ser 995 1000 1005

Leu Lys Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asp Asp 1010 1015 1020

Leu Tyr Ile Asp Ser Ile Arg Gln Tyr 1025 1030

<210> 59

<211> 1032

<212> PRT

<213> murine

<400> 59

Met Glu Asn Met Pro Pro Gln Ser Trp Ile Leu Thr Cys Phe Cys Leu 1 5 10 15

Leu Ser Ser Gly Thr Ser Ala Ile Phe His Lys Ala Asn Tyr Ser Arg 20 25 30

Ser Tyr Pro Cys Asp Glu Ile Arg His Asn Ser Leu Val Ile Ala Glu 35 40 45

Cys Asn His Arg Gln Leu His Glu Val Pro Gln Thr Ile Gly Lys Tyr 50 55 60

Val Thr Asn Ile Asp Leu Ser Asp Asn Ala Ile Thr His Ile Thr Lys 65 70 75 80

Glu Ser Phe Gln Lys Leu Gln Asn Leu Thr Lys Ile Asp Leu Asn His 85 90 95

Asn Ala Lys Gln Gln His Pro Asn Glu Asn Lys Asn Gly Met Asn Ile 100 105 110

Lys Glu Leu Ser Leu Ile Gln Asn Asn Ile Phe Gln Val Thr Lys Asn 145 150 155 160

Asn Thr Phe Gly Leu Arg Asn Leu Glu Arg Leu Tyr Leu Gly Trp Asn 165 170 175

Cys Tyr Phe Lys Cys Asn Gln Thr Phe Lys Val Glu Asp Gly Ala Phe 180 185 190

Lys Asn Leu Ile His Leu Lys Val Leu Ser Leu Ser Phe Asn Asn Leu 195 200 205

Phe Tyr Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu 210 215 220

Ser Asn Ala Lys Ile Met Asn Ile Thr Gln Glu Asp Phe Lys Gly Leu 225 230 235 240

Glu Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Tyr 245 250 255

Asn Ala Pro Phe Pro Cys Thr Pro Cys Lys Glu Asn Ser Ser Ile His 260 265 270

Ile His Pro Leu Ala Phe Gln Ser Leu Thr Gln Leu Leu Tyr Leu Asn 275 280 285

Leu Ser Ser Thr Ser Leu Arg Thr Ile Pro Ser Thr Trp Phe Glu Asn 290 295 300

Leu Ser Asn Leu Lys Glu Leu His Leu Glu Phe Asn Tyr Leu Val Gln 305 310 315 320

Glu Ile Ala Ser Gly Ala Phe Leu Thr Lys Leu Pro Ser Leu Gln Ile 325 330 335

Leu Asp Leu Ser Phe Asn Phe Gln Tyr Lys Glu Tyr Leu Gln Phe Ile 340 345 350

Asn Ile Ser Ser Asn Phe Ser Lys Leu Arg Ser Leu Lys Lys Leu His 355 360 365

Leu Arg Gly Tyr Val Phe Arg Glu Leu Lys Lys Lys His Phe Glu His 370 375 380

Leu Gln Ser Leu Pro Asn Leu Ala Thr Ile Asn Leu Gly Ile Asn Phe 385 390 395 400

Ile Glu Lys Ile Asp Phe Lys Ala Phe Gln Asn Phe Ser Lys Leu Asp
405
415

Val Ile Tyr Leu Ser Gly Asn Arg Ile Ala Ser Val Leu Asp Gly Thr 420 425 430

Asp Tyr Ser Ser Trp Arg Asn Arg Leu Arg Lys Pro Leu Ser Thr Asp

| Asp        | Asp<br>450    | 435<br>Glu  | Phe        | Asp          | Pro          | His<br>455 | 440<br>Val  | Asn          | Phe        | Tyr        | His<br>460    | 445<br>Ser   | Thr        | Lys         | Pro        |
|------------|---------------|-------------|------------|--------------|--------------|------------|-------------|--------------|------------|------------|---------------|--------------|------------|-------------|------------|
| Leu<br>465 | Ile           | Lys         | Pro        | Gln          | Cys<br>470   | Thr        | Ala         | Tyr          | Gly        | Lys<br>475 | Ala           | Leu          | Asp        | Leu         | Ser<br>480 |
| Leu        | Asn           | Asn         | Ile        | Phe<br>485   | Ile          | Ile        | Gly         | Lys          | Ser<br>490 | Gln        | Phe           | Glu          | Gly        | Phe<br>495  | Gln        |
| Asp        | Ile           | Ala         | Сув<br>500 | Leu          | Asn          | Leu        | Ser         | Phe<br>505   | Asn        | Ala        | Asn           | Thr          | Gln<br>510 | Val         | Phe        |
| Asn        | Gly           | Thr<br>515  | Glu        | Phe          | Ser          | Ser        | Met<br>520  | Pro          | His        | Ile        | Lys           | Tyr<br>525   | Leu        | Asp         | Leu        |
| Thr        | Asn<br>530    | Asn         | Arg        | Leu          | Asp          | Phe<br>535 | Asp         | Asp          | Asn        | Asn        | Ala<br>540    | Phe          | Ser        | Asp         | Leu        |
| His<br>545 | Asp           | Leu         | Glu        | Val          | Leu<br>550   | Asp        | Leu         | Ser          | His        | Asn<br>555 |               | His          | Tyr        | Phe         | Ser<br>560 |
| Ile        | Ala           | Gly         | Val        | Thr<br>565   | His          | Arg        | Leu         | Gly          | Phe<br>570 |            | Gln           | Asn          | Leu        | Ile<br>575  | Asn        |
| Leu        | Arg           | Val         | Leu<br>580 |              | Leu          | Ser        | His         | Asn<br>585   | Gly        | Ile        | Tyr           | Thr          | Leu<br>590 |             | Glu        |
| Glu        | Ser           | Glu<br>595  |            | Lys          | Ser          | Ile        | Ser<br>600  |              | Lys        | Glu        | Leu           | Val<br>605   |            | Ser         | Gly        |
| Asn        | Arg<br>610    |             | Asp        | His          | Leu          | Trp<br>615 |             | Ala          | Asn        | a Asp      | 620           |              | Tyr        | Trp         | Ser        |
| Ile<br>625 |               | Lys         | Ser        | Leu          | Gln<br>630   |            | Leu         | Ile          | Arg        | 635        |               | Leu          | ser        | Туг         | Asn<br>640 |
| Asn        | Leu           | Gln         | Gln        | 11e<br>645   |              | Asr        | Gly         | Ala          | Phe<br>650 |            | ı Asr         | ı Lev        | ı Pro      | 655         | Ser        |
| Leu        | Glr           | Glu         | 660        |              | ı Ile        | Ser        | Gly         | Asn<br>665   |            | s Let      | ı Arg         | g Phe        | 670        |             | Trp        |
| Thr        | . Leu         | Lev<br>675  |            | туг          | Phe          | Pro        | His<br>680  |              | His        | s Lev      | ı Leı         | 1 Ası<br>689 |            | ı Ser       | Arg        |
| Ası        | 690           |             | і Туі      | Phe          | e Lev        | 695        |             | о Суа        | Let        | ı Se:      | т <b>Ly</b> s |              | e Ala      | a His       | s Ser      |
| Le:<br>705 |               | ı Thi       | . Lei      | ı Lev        | 1 Leu<br>710 |            | c His       | s Asr        | n His      | 71         |               | r Hi         | s Lei      | ı Pro       | 720        |
| Gly        | y Phe         | e Lei       | ı Sei      | r Glu<br>729 |              | a Arg      | g Ası       | ı Let        | 1 Va:      |            | s Lei         | u Asj        | p Lei      | 3 Sei<br>73 | r Phe      |
| Ası        | n Thi         | r Ile       | e Ly:      |              | t Ile        | e Ası      | ı Lys       | 5 Sei<br>74! |            | r Le       | u Gl          | n Th         | r Ly:      |             | . Lys      |
| Th         | r Ası         | n Let<br>75 |            | r Il         | e Lei        | ı Gl       | u Let<br>76 |              | s Gl       | y As       | n Ty          | r Ph<br>76   |            | p Cy:       | s Thr      |
| Cv         | о <b>Л</b> аг | n T1        | a Se       | r Agi        | n Phe        | a Am       | a Se        | r Tri        | o Le       | u As       | n Gl          | u As         | n Le       | u Ası       | n Ile      |

| _                            | 770         |                       |            |            |            | 775        |             |            |            |            | 780        |            |            |            |            |     |
|------------------------------|-------------|-----------------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Thr<br>785                   | Ile         | Pro                   | ГÀв        | Leu        | Val<br>790 | Asn        | Val         | Ile        | Cys        | Ser<br>795 | Asn        | Pro        | Gly        | Asp        | Gln<br>800 |     |
| Lys                          | Ser         | Lys                   | Ser        | Ile<br>805 | Met        | Ser        | Leu         | Asp        | Leu<br>810 | Thr        | Thr        | Cys        | Val        | Ser<br>815 | Asp        |     |
| Thr                          | Thr         | Ala                   | Ala<br>820 | Val        | Leu        | Phe        | Phe         | Leu<br>825 | Thr        | Phe        | Leu        | Thr        | Thr<br>830 | Ser        | Met        |     |
| Val                          | Met         | Leu<br>835            | Ala        | Ala        | Leu        | Val        | His<br>840  | His        | Leu        | Phe        | Tyr        | Trp<br>845 | Asp        | Val        | Trp        |     |
| Phe                          | Ile<br>850  | Tyr                   | His        | Met        | Сув        | Ser<br>855 | Ala         | Lys        | Leu        | Lys        | Gly<br>860 | Tyr        | Arg        | Thr        | Ser        |     |
| Ser<br>865                   | Thr         | Ser                   | Gln        | Thr        | Phe<br>870 | Tyr        | Asp         | Ala        | Tyr        | Ile<br>875 | Ser        | Tyr        | Asp        | Thr        | 880<br>Lys |     |
| Asp                          | Ala         | Ser                   | Val        | Thr<br>885 | Asp        | Trp        | Val         | Ile        | Asn<br>890 | Glu        | Leu        | Arg        | Tyr        | His<br>895 | Leu        |     |
| Glu                          | Glu         | Ser                   | Glu<br>900 | Asp        | Lys        | Ser        | Val         | Leu<br>905 | Leu        | Сув        | Leu        | Glu        | Glu<br>910 | Arg        | Asp        |     |
| Trp                          | Asp         | Pro<br>915            | Gly        | Leu        | Pro        | Ile        | Ile<br>920  | Asp        | Asn        | Leu        | Met        | Gln<br>925 | Ser        | Ile        | Asn        |     |
| Gln                          | Ser<br>930  | Lys                   | Lys        | Thr        | Ile        | Phe<br>935 | Val         | Leu        | Thr        | Lys        | Lys<br>940 | Tyr        | Ala        | Lys        | Ser        |     |
| Trp<br>945                   | Asn         | Phe                   | Lys        | Thr        | Ala<br>950 | Phe        | Tyr         | Leu        | Ala        | Leu<br>955 | Gln        | Arg        | Leu        | Met        | Asp<br>960 |     |
| Glu                          | Asn         | Met                   | Asp        | Val<br>965 | Ile        | Ile        | Phe         | Ile        | Leu<br>970 | Leu        | Glu        | Pro        | Val        | Leu<br>975 | Gln        |     |
| Tyr                          | Ser         | Gln                   | Tyr<br>980 | Leu        | Arg        | Leu        | Arg         | Gln<br>985 | Arg        | Ile        | Cys        | Lys        | Ser<br>990 | Ser        | Ile        |     |
| Leu                          | Gln         | Trp<br>995            | Pro        | Asn        | Asn        | Pro        | Lys<br>1000 |            | Glu        | Asn        | Leu        | Phe<br>100 |            | p Gl       | n Ser      |     |
| Leu                          | Lys<br>1010 | Asn                   | Val        | Val        | Leu        | Thr<br>101 |             | u As       | n As       | p Se       | r Ar<br>10 | g T<br>20  | yr A       | sp A       | gp         |     |
|                              | Tyr<br>1025 |                       | Asp        | Ser        | lle        | Arg<br>103 |             | n Ty       | r          |            |            |            |            |            |            |     |
| <210<br><211<br><212<br><213 | > 3<br>> D  | 0<br>352<br>NA<br>omo | sapi       | ens        |            |            |             |            |            |            |            |            |            |            |            |     |
| <400<br>aggc                 |             | -                     | aaaa       | tctt       | a ct       | tcct       | ctat        | tct        | ctga       | gcc        | gctg       | ctgc       | cc c       | tgtg       | ggaag      | 60  |
|                              |             |                       |            |            |            |            |             |            |            |            |            |            |            |            | accct      | 120 |
| ctgg                         | agaa        | gc c                  | cctg       | cccc       | c ca       | gcat       | gggt        | ttc        | tgcc       | gca        | gcgc       | cctg       | ca c       | ccgc       | tgtct      | 180 |

240 ctcctggtgc aggccatcat gctggccatg accctggccc tgggtacctt gcctgccttc 300 ctaccetgtg agetecagee ccaeggeetg gtgaactgea actggetgtt cetgaagtet gtgccccact tctccatggc agcacccgt ggcaatgtca ccagcctttc cttgtcctcc 360 aaccgcatcc accacctcca tgattctgac tttgcccacc tgcccagcct gcggcatctc 420 aacctcaagt ggaactgccc gccggttggc ctcagcccca tgcacttccc ctgccacatg 480 accatcgagc ccagcacctt cttggctgtg cccaccctgg aagagctaaa cctgagctac 540 aacaacatca tgactgtgcc tgcgctgccc aaatccctca tatccctgtc cctcagccat 600 accaacatec tgatgetaga etetgecage etegeeggee tgeatgeeet gegetteeta 660 ttcatggacg gcaactgtta ttacaagaac ccctgcaggc aggcactgga ggtggccccg 720 ggtgccctcc ttggcctggg caacctcacc cacctgtcac tcaagtacaa caacctcact 780 gtggtgcccc gcaacctgcc ttccagcctg gagtatctgc tgttgtccta caaccgcatc 840 gtcaaactgg cgcctgagga cctggccaat ctgaccgccc tgcgtgtgct cgatgtgggc 900 ggaaattgec geegetgega ceaegeteec aacceetgea tggagtgeec tegteaette 960 ccccagctac atcccgatac cttcagccac ctgagccgtc ttgaaggcct ggtgttgaag 1020 gacagttete teteetgget gaatgecagt tggtteegtg ggetgggaaa ceteegagtg 1080 ctggacctga gtgagaactt cctctacaaa tgcatcacta aaaccaaggc cttccagggc 1140 ctaacacage tgcgcaaget taacctgtcc ttcaattacc aaaagagggt gtcctttgcc 1200 cacctgtete tggeceette ettegggage etggtegeee tgaaggaget ggacatgeae 1260 ggcatcttct tccgctcact cgatgagacc acgctccggc cactggcccg cctgcccatg 1320 ctccagactc tgcgtctgca gatgaacttc atcaaccagg cccagctcgg catcttcagg 1380 gccttccctg gcctgcgcta cgtggacctg tcggacaacc gcatcagcgg agcttcggag 1440 ctgacagcca ccatggggga ggcagatgga ggggagaagg tctggctgca gcctggggac 1500 cttgctccgg ccccagtgga cactcccagc tctgaagact tcaggcccaa ctgcagcacc 1560 ctcaacttca ccttggatct gtcacggaac aacctggtga ccgtgcagcc ggagatgttt 1620 gcccagctct cgcacctgca gtgcctgcgc ctgagccaca actgcatctc gcaggcaqtc 1680 aatggctccc agttcctgcc gctgaccggt ctgcaggtgc tagacctgtc ccgcaataag 1740 etggacetet accaegagea eteatteaeg gagetaeege gaetggagge eetggacete 1800 agetacaaca gecageeett tggeatgeag ggegtgggee acaaetteag ettegtgget 1860 cacctgcgca ccctgcgcca cctcagcctg gcccacaaca acatccacag ccaagtgtcc 1920 cagcagetet geagtacgte getgegggee etggaettea geggeaatge aetgggeeat 1980 atgtgggccg agggagacct ctatctgcac ttcttccaag gcctgagcgg tttgatctgg 2040 ctggacttgt cccagaaccg cctgcacacc ctcctgcccc aaaccctgcg caacctcccc 2100

| aagagcctac | aggtgctgcg | tctccgtgac | aattacctgg | ccttctttaa | gtggtggagc | 2160 |
|------------|------------|------------|------------|------------|------------|------|
| ctccacttcc | tgcccaaact | ggaagtcctc | gacctggcag | gaaaccggct | gaaggccctg | 2220 |
| accaatggca | geetgeetge | tggcacccgg | ctccggaggc | tggatgtcag | ctgcaacagc | 2280 |
| atcagcttcg | tggcccccgg | cttcttttcc | aaggccaagg | agctgcgaga | gctcaacctt | 2340 |
| agcgccaacg | ccctcaagac | agtggaccac | tcctggtttg | ggcccctggc | gagtgccctg | 2400 |
| caaatactag | atgtaagcgc | caaccctctg | cactgcgcct | gtggggggc  | ctttatggac | 2460 |
| ttcctgctgg | aggtgcaggc | tgccgtgccc | ggtctgccca | gccgggtgaa | gtgtggcagt | 2520 |
| ccgggccagc | tccagggcct | cagcatcttt | gcacaggacc | tgcgcctctg | cctggatgag | 2580 |
| gccctctcct | gggactgttt | cgccctctcg | ctgctggctg | tggctctggg | cctgggtgtg | 2640 |
| cccatgctgc | atcacctctg | tggctgggac | ctctggtact | gcttccacct | gtgcctggcc | 2700 |
| tggcttccct | ggcgggggcg | gcaaagtggg | cgagatgagg | atgccctgcc | ctacgatgcc | 2760 |
| ttcgtggtct | tcgacaaaac | gcagagcgca | gtggcagact | gggtgtacaa | cgagcttcgg | 2820 |
| gggcagctgg | aggagtgccg | tgggcgctgg | gcactccgcc | tgtgcctgga | ggaacgcgac | 2880 |
| tggctgcctg | gcaaaaccct | ctttgagaac | ctgtgggcct | cggtctatgg | cagccgcaag | 2940 |
| acgctgtttg | tgctggccca | cacggaccgg | gtcagtggtc | tcttgcgcgc | cagcttcctg | 3000 |
| ctggcccagc | agcgcctgct | ggaggaccgc | aaggacgtcg | tggtgctggt | gatcctgagc | 3060 |
| cctgacggcc | gccgctcccg | ctacgtgcgg | ctgcgccagc | gcctctgccg | ccagagtgtc | 3120 |
| ctcctctggc | cccaccagcc | cagtggtcag | cgcagcttct | gggcccagct | gggcatggcc | 3180 |
| ctgaccaggg | acaaccacca | cttctataac | cggaacttct | gccagggacc | cacggccgaa | 3240 |
| tagccgtgag | ccggaatcct | gcacggtgcc | acctccacac | tcacctcacc | tctgcctgcc | 3300 |
| tggtctgacc | ctcccctgct | cgcctccctc | accccacacc | tgacacagag | ca         | 3352 |
|            |            |            |            |            |            |      |

<210> 61

<211> 3257

<212> DNA

<213> Homo sapiens

<400> 61

cegetgetge cectgtggga agggaceteg agtgtgaage atcettecet gtagetgetg 60
tecagtetge cegecagace etetggagaa geceetgeee eccageatgg gtttetgeeg 120
cagegeettg caceegetgt eteteetggt geaggeeate atgetggeea tgaeeetgge 180
cetgggtace ttgeetgeet tectaceetg tgageteeag ecceaeggee tggtgaaetg 240
caactggetg tteetgaagt etgtgeecea etteteeatg geageaeeee gtggeaatgt 300
caceageett teettgteet ceaaeegeat ecaeeaeete eatgattetg aetttgeea 360

|            |            |            | gtggaactgc<br>gcccagcacc |            |            | 420<br>480 |
|------------|------------|------------|--------------------------|------------|------------|------------|
| ggaagagcta | aacctgagct | acaacaacat | catgactgtg               | cctgcgctgc | ccaaatccct | 540        |
| catatecetg | tccctcagcc | ataccaacat | cctgatgcta               | gactctgcca | gcctcgccgg | 600        |
| cctgcatgcc | ctgcgcttcc | tattcatgga | cggcaactgt               | tattacaaga | acccctgcag | 660        |
| gcaggcactg | gaggtggccc | cgggtgccct | ccttggcctg               | ggcaacctca | cccacctgtc | 720        |
| actcaagtac | aacaacctca | ctgtggtgcc | ccgcaacctg               | ccttccagcc | tggagtatct | 780        |
| gctgttgtcc | tacaaccgca | tcgtcaaact | ggcgcctgag               | gacctggcca | atctgaccgc | 840        |
| cctgcgtgtg | ctcgatgtgg | gcggaaattg | cegeegetge               | gaccacgctc | ccaacccctg | 900        |
| catggagtgc | cctcgtcact | tcccccagct | acatcccgat               | accttcagcc | acctgagccg | 960        |
| tcttgaaggc | ctggtgttga | aggacagttc | teteteetgg               | ctgaatgcca | gttggttccg | 1020       |
| tgggctggga | aacctccgag | tgctggacct | gagtgagaac               | ttcctctaca | aatgcatcac | 1080       |
| taaaaccaag | gccttccagg | gcctaacaca | gctgcgcaag               | cttaacctgt | ccttcaatta | 1140       |
| ccaaaagagg | gtgtcctttg | cccacctgtc | tetggeceet               | tccttcggga | gcctggtcgc | 1200       |
| cctgaaggag | ctggacatgc | acggcatctt | cttccgctca               | ctcgatgaga | ccacgctccg | 1260       |
| gccactggcc | cgcctgccca | tgctccagac | tctgcgtctg               | cagatgaact | tcatcaacca | 1320       |
| ggcccagctc | ggcatcttca | gggccttccc | tggcctgcgc               | tacgtggacc | tgtcggacaa | 1380       |
| ccgcatcagc | ggagcttcgg | agctgacagc | caccatgggg               | gaggcagatg | gagggagaa  | 1440       |
| ggtctggctg | cagcctgggg | accttgctcc | ggccccagtg               | gacactccca | gctctgaaga | 1500       |
| cttcaggccc | aactgcagca | ccctcaactt | caccttggat               | ctgtcacgga | acaacctggt | 1560       |
| gaccgtgcag | ccggagatgt | ttgcccagct | ctcgcacctg               | cagtgcctgc | gcctgagcca | 1620       |
| caactgcatc | tegeaggeag | tcaatggctc | ccagttcctg               | ccgctgaccg | gtctgcaggt | 1680       |
| gctagacctg | tcccacaata | agctggacct | ctaccacgag               | cactcattca | cggagctacc | 1740       |
| acgactggag | gccctggacc | tcagctacaa | cagccagccc               | tttggcatgc | agggcgtggg | 1800       |
| ccacaacttc | agcttcgtgg | ctcacctgcg | caccctgcgc               | cacctcagcc | tggcccacaa | 1860       |
| caacatccac | agccaagtgt | cccagcagct | ctgcagtacg               | tegetgeggg | ccctggactt | 1920       |
| cagcggcaat | gcactgggcc | atatgtgggc | cgagggagac               | ctctatctgc | acttcttcca | 1980       |
| aggcctgagc | ggtttgatct | ggctggactt | gtcccagaac               | cgcctgcaca | ccctcctgcc | 2040       |
| ccaaaccctg | cgcaacctcc | ccaagagcct | acaggtgctg               | cgtctccgtg | acaattacct | 2100       |
| ggccttcttt | aagtggtgga | gcctccactt | cctgcccaaa               | ctggaagtcc | tcgacctggc | 2160       |
| aggaaaccag | ctgaaggccc | tgaccaatgg | cagcctgcct               | gctggcaccc | ggctccggag | 2220       |
| gctggatgtc | agctgcaaca | gcatcagctt | cgtggccccc               | ggcttctttt | ccaaggccaa | 2280       |

ggagctgcga gagctcaacc ttagcgccaa cgccctcaag acagtggacc actcctggtt 2340 tgggcccetg gcgagtgccc tgcaaatact agatgtaagc gccaaccctc tgcactgcgc 2400 ctgtggggcg gcctttatgg acttcctgct ggaggtgcag gctgccgtgc ccggtctgcc 2460 cagccgggtg aagtgtggca gtccgggcca gctccagggc ctcagcatct ttgcacagga 2520 cctgcgcctc tgcctggatg aggccctctc ctgggactgt ttcgccctct cgctgctgqc 2580 tgtggctctg ggcctgggtg tgcccatgct gcatcacctc tgtggctggg acctctggta 2640 etgettecae etgtgeetgg cetggettee etggeggggg eggeaaagtg ggegagatga 2700 ggatgccctg ccctacgatg ccttcgtggt cttcgacaaa acgcagagcg cagtggcaga 2760 ctgggtgtac aacgagcttc gggggcagct ggaggagtgc cgtgggcgct gggcactccg 2820 cctgtgcctg gaggaacgcg actggctgcc tggcaaaacc ctctttgaga acctgtgggc 2880 ctcggtctat ggcagccgca agacgctgtt tgtgctggcc cacacggacc gggtcagtgg 2940 tetettgege gecagettee tgetggeeca geagegeetg etggaggaee geaaggaegt 3000 egtggtgetg gtgateetga geeetgaegg eegeegetee egetaegtge qqetqeqeea 3060 gegeetetge egecagagtg tecteetetg geceeaceag eccagtggte agegeagett 3120 ctgggcccag ctgggcatgg ccctgaccag ggacaaccac cacttctata accggaactt 3180 ctgccaggga cccacggccg aatagccgtg agccggaatc ctgcacggtg ccacctccac 3240 actcacctca cctctgc 3257

<210> 62

<211> 1032

<212> PRT

<213> Homo sapiens

<400> 62

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 20 25 30

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu 35 40 45

Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn 50 55 60

Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp 65 70 75 80

Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp 85 · 90 95

Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met

| Thr        | Ile        | Glu<br>115 | 100<br>Pro | Ser        | Thr        | Phe        | Leu<br>120 | 105<br>Ala | Val        | Pro        | Thr        | Leu<br>125 | 110<br>Glu | Glu        | Leu        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asn        | Leu<br>130 | Ser        | Tyr        | Asn        | Asn        | Ile<br>135 | Met        | Thr        | Val        | Pro        | Ala<br>140 | Leu        | Pro        | Lys        | Ser        |
| Leu<br>145 | Ile        | Ser        | Leu        | Ser        | Leu<br>150 | Ser        | His        | Thr        | Asn        | Ile<br>155 | Leu        | Met        | Leu        | Asp        | Ser<br>160 |
| Ala        | Ser        | Leu        | Ala        | Gly<br>165 | Leu        | His        | Ala        | Leu        | Arg<br>170 | Phe        | Leu        | Phe        | Met        | Asp<br>175 | Gly        |
| Asn        | Сув        | Tyr        | Tyr<br>180 | Lys        | Asn        | Pro        | Суѕ        | Arg<br>185 | Gln        | Ala        | Leu        | Glu        | Val<br>190 | Ala        | Pro        |
| Gly        | Ala        | Leu<br>195 | Leu        | Gly        | Leu        | Gly        | Asn<br>200 | Leu        | Thr        | His        | Leu        | Ser<br>205 | Leu        | Lys        | Tyr        |
| Asn        | Asn<br>210 | Leu        | Thr        | Val        | Val        | Pro<br>215 | Arg        | Asn        | Leu        | Pro        | Ser<br>220 | Ser        | Leu        | Glu        | Tyr        |
| Leu<br>225 | Leu        | Leu        | Ser        | Tyr        | Asn<br>230 | Arg        | Ile        | Val        | Lys        | Leu<br>235 | Ala        | Pro        | Glu        | Asp        | Leu<br>240 |
| Ala        | Asn        | Leu        | Thr        | Ala<br>245 | Leu        | Arg        | Val        | Leu        | Asp<br>250 | Val        | Gly        | Gly        | Asn        | Cys<br>255 | Arg        |
| Arg        | Cys        | Asp        | His<br>260 | Ala        | Pro        | Asn        | Pro        | Сув<br>265 | Met        | Glu        | Сув        | Pro        | Arg<br>270 | His        | Phe        |
| Pro        | Gln        | Leu<br>275 | His        | Pro        | Asp        | Thr        | Phe<br>280 | Ser        | His        | Leu        | Ser        | Arg<br>285 | Leu        | Glu        | Gly        |
| Leu        | Val<br>290 | Leu        | Lys        | Asp        | Ser        | Ser<br>295 | Leu        | Ser        | Trp        | Leu        | Asn<br>300 | Ala        | Ser        | Trp        | Phe        |
| Arg<br>305 | Gly        | Leu        | Gly        | Asn        | Leu<br>310 | Arg        | Val        | Leu        | Asp        | Leu<br>315 | Ser        | Glu        | Asn        | Phe        | Leu<br>320 |
| Tyr        | Lys        | Cya        | Ile        | Thr<br>325 | ГÀв        | Thr        | Lys        | Ala        | Phe<br>330 | Gln        | Gly        | Leu        | Thr        | Gln<br>335 | Leu        |
| Arg        | Lys        | Leu        | Asn<br>340 | Leu        | Ser        | Phe        | Asn        | Tyr<br>345 | Gln        | Lys        | Arg        | Val        | Ser<br>350 | Phe        | Ala        |
| His        | Leu        | Ser<br>355 | Leu        | Ala        | Pro        | Ser        | Phe<br>360 | Gly        | Ser        | Leu        | Val        | Ala<br>365 | Leu        | ГÀЗ        | Glu        |
| Leu        | Asp<br>370 | Met        | His        | Gly        | Iļe        | Phe<br>375 | Phe        | Arg        | Ser        | Leu        | Asp<br>380 | Glu        | Thr        | Thr        | Leu        |
| Arg<br>385 | Pro        | Leu        | Ala        | Arg        | Leu<br>390 | Pro        | Met        | Leu        | Gln        | Thr<br>395 | Leu        | Arg        | Leu        | Gln        | Met<br>400 |
| Asn        | Phe        | Ile        | Asn        | Gln<br>405 | Ala        | Gln        | Leu        | Gly        | Ile<br>410 | Phe        | Arg        | Ala        | Phe        | Pro<br>415 | Gly        |
| Leu        | Arg        | Tyr        | Val<br>420 | Asp        | Leu        | Ser        | Asp        | Asn<br>425 | Arg        | Ile        | Ser        | Gly        | Ala<br>430 | Ser        | Glu        |
| Leu        | Thr        | Ala        | Thr        | Met        | Gly        | Glu        | Ala        | Asp        | Gly        | Gly        | Glu        | Lys        | Val        | Trp        | Leu        |

148/231

440 445 Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu Ser Arg Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly 550 555 Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr 570 Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser 585 Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe 615 Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu 630 His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln 650 Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Arg Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg 695 Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe 705 Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala 730 Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala 760 Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu

775 780 Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser 790 795 Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr 920 Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 935 Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 945 950 955 Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg 970 Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 980 Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln 1000 Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg 1010 1015 Asn Phe Cys Gln Gly Pro Thr Ala Glu 1025 1030 <210> 63 <211> 1032

<212> PRT

<213> Homo sapiens

<400> 63

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 25

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu 35 40 45

- Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn 50 55 60
- Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp 65 70 75 80
- Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp 85 90 95
- Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met 100 105 110
- Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu
  115 120 125
- Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser 130 135 140
- Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser 145 150 155 160
- Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly 165 170 175
- Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro 180 185 190
- Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr 195 200 205
- Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr 210 215 220
- Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu 225 230 235 240
- Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg
  245 250 255
- Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe 260 265 270
- Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly
  275 280 285
- Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe 290 295 300
- Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu 305 310 315 320
- Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu 325 330 335
- Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala
- His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu

360 365 Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu 375 Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Gly Glu Lys Val Trp Leu Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu Asp Phe Arg Pro Asn Cys Ser Thr Leu Asn Phe Thr Leu Asp Leu Ser Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser His Leu Gln Cys Leu Arg Leu Ser His Asn Cys Ile Ser Gln Ala Val 500 Asn Gly Ser Gln Phe Leu Pro Leu Thr Gly Leu Gln Val Leu Asp Leu 520 Ser His Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu 535 Pro Arg Leu Glu Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Gly Met Gln Gly Val Gly His Asn Phe Ser Phe Val Ala His Leu Arg Thr 565 570 Leu Arg His Leu Ser Leu Ala His Asn Asn Ile His Ser Gln Val Ser 585 Gln Gln Leu Cys Ser Thr Ser Leu Arg Ala Leu Asp Phe Ser Gly Asn Ala Leu Gly His Met Trp Ala Glu Gly Asp Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Ile Trp Leu Asp Leu Ser Gln Asn Arg Leu His Thr Leu Leu Pro Gln Thr Leu Arg Asn Leu Pro Lys Ser Leu Gln 650 Val Leu Arg Leu Arg Asp Asn Tyr Leu Ala Phe Phe Lys Trp Trp Ser Leu His Phe Leu Pro Lys Leu Glu Val Leu Asp Leu Ala Gly Asn Gln 680 Leu Lys Ala Leu Thr Asn Gly Ser Leu Pro Ala Gly Thr Arg Leu Arg

152/231

695 700 Arg Leu Asp Val Ser Cys Asn Ser Ile Ser Phe Val Ala Pro Gly Phe 710 715 Phe Ser Lys Ala Lys Glu Leu Arg Glu Leu Asn Leu Ser Ala Asn Ala Leu Lys Thr Val Asp His Ser Trp Phe Gly Pro Leu Ala Ser Ala Leu Gln Ile Leu Asp Val Ser Ala Asn Pro Leu His Cys Ala Cys Gly Ala Ala Phe Met Asp Phe Leu Leu Glu Val Gln Ala Ala Val Pro Gly Leu Pro Ser Arg Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Leu Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Ala Leu Ser Trp Asp Cys Phe Ala Leu Ser Leu Leu Ala Val Ala Leu Gly Leu Gly Val 825 Pro Met Leu His His Leu Cys Gly Trp Asp Leu Trp Tyr Cys Phe His 845 840 Leu Cys Leu Ala Trp Leu Pro Trp Arg Gly Arg Gln Ser Gly Arg Asp 855 Glu Asp Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Thr Gln 875 870 Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Gly Gln Leu Glu 890 Glu Cys Arg Gly Arg Trp Ala Leu Arg Leu Cys Leu Glu Glu Arg Asp 905 900 Trp Leu Pro Gly Lys Thr Leu Phe Glu Asn Leu Trp Ala Ser Val Tyr 920 Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 935 Gly Leu Leu Arg Ala Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 955 Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Ser Pro Asp Gly Arg 970 Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 985 Leu Leu Trp Pro His Gln Pro Ser Gly Gln Arg Ser Phe Trp Ala Gln Leu Gly Met Ala Leu Thr Arg Asp Asn His His Phe Tyr Asn Arg 1020 1015

Asn Phe Cys Gln Gly Pro Thr Ala Glu

1025 1030

<210> 64

<211> 333

<212> PRT

<213> Homo sapiens

<400> 64

Met Pro Met Lys Trp Ser Gly Trp Arg Trp Ser Trp Gly Pro Ala Thr 1 5 10 15

His Thr Ala Leu Pro Pro Pro Gln Gly Phe Cys Arg Ser Ala Leu His 20 25 30

Pro Leu Ser Leu Leu Val Gln Ala Ile Met Leu Ala Met Thr Leu Ala 35 40 45

Leu Gly Thr Leu Pro Ala Phe Leu Pro Cys Glu Leu Gln Pro His Gly 50 55 60

Leu Val Asn Cys Asn Trp Leu Phe Leu Lys Ser Val Pro His Phe Ser 65 70 75 80

Met Ala Ala Pro Arg Gly Asn Val Thr Ser Leu Ser Leu Ser Ser Asn 85 90 95

Arg Ile His His Leu His Asp Ser Asp Phe Ala His Leu Pro Ser Leu 100 105 110

Arg His Leu Asn Leu Lys Trp Asn Cys Pro Pro Val Gly Leu Ser Pro 115 120 125

Met His Phe Pro Cys His Met Thr Ile Glu Pro Ser Thr Phe Leu Ala 130 135 140

Val Pro Thr Leu Glu Glu Leu Asn Leu Ser Tyr Asn Asn Ile Met Thr 145 150 155 160

Val Pro Ala Leu Pro Lys Ser Leu Ile Ser Leu Ser Leu Ser His Thr 165 170 175

Asn Ile Leu Met Leu Asp Ser Ala Ser Leu Ala Gly Leu His Ala Leu 180 185 190

Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys Arg

Gln Ala Leu Glu Val Ala Pro Gly Ala Leu Leu Gly Leu Gly Asn Leu 210 215 220

Thr His Leu Ser Leu Lys Tyr Asn Asn Leu Thr Val Val Pro Arg Asn 225 230 235 240

Leu Pro Ser Ser Leu Glu Tyr Leu Leu Ser Tyr Asn Arg Ile Val 245 250 255

Lys Leu Ala Pro Glu Asp Leu Ala Asn Leu Thr Ala Leu Arg Val Leu 260 265 270

Asp Val Gly Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys 275 280 285

Met Glu Cys Pro Arg His Phe Pro Gln Leu His Pro Asp Thr Phe Ser 290 295 300

His Leu Ser Arg Leu Glu Gly Leu Val Leu Lys Asp Ser Ser Leu Ser 305 310 315 320

Trp Leu Asn Ala Ser Trp Phe Arg Gly Leu Gly Asn Leu 325 330

<210> 65

<211> 216

<212> PRT

<213> Homo sapiens

<400> 65

Met Leu Tyr Ser Ser Cys Lys Ser Arg Leu Leu Asp Ser Val Glu Gln 1 5 10 15

Asp Phe His Leu Glu Ile Ala Lys Lys Gly Phe Cys Arg Ser Ala Leu 20 25 30

His Pro Leu Ser Leu Leu Val Gln Ala Ile Met Leu Ala Met Thr Leu 35 40 45

Ala Leu Gly Thr Leu Pro Ala Phe Leu Pro Cys Glu Leu Gln Pro His 50 55 60

Gly Leu Val Asn Cys Asn Trp Leu Phe Leu Lys Ser Val Pro His Phe 65 70 75 80

Ser Met Ala Ala Pro Arg Gly Asn Val Thr Ser Leu Ser Leu Ser Ser 85 90 95

Asn Arg Ile His His Leu His Asp Ser Asp Phe Ala His Leu Pro Ser

Leu Arg His Leu Asn Leu Lys Trp Asn Cys Pro Pro Val Gly Leu Ser 115 120 125

Pro Met His Phe Pro Cys His Met Thr Ile Glu Pro Ser Thr Phe Leu 130 135 140

Ala Val Pro Thr Leu Glu Glu Leu Asn Leu Ser Tyr Asn Asn Ile Met 145 150 155 160

Thr Val Pro Ala Leu Pro Lys Ser Leu Ile Ser Leu Ser Leu Ser His 165 170 175

Thr Asn Ile Leu Met Leu Asp Ser Ala Ser Leu Ala Gly Leu His Ala 180 185 190

Leu Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys 195 200 205

Arg Gln Ala Leu Glu Val Ala Pro 210 215

<210> 66

<211> 117

<212> PRT

<213> Homo sapiens

<400> 66

Met Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala 1 5 10 15

Phe Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp
20 25 30

Leu Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly 35 40 45

Asn Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His 50 55 60

Asp Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys 70 75 80

Trp Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His 85 90 95

Met Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu 100 105 110

Leu Asn Leu Ser Tyr 115

<210> 67

<211> 1032

<212> PRT

<213> Homo sapiens

<400> 67

Met Gly Phe Cys Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln 1 5 10 15

Ala Ile Met Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 20 25 30

Leu Pro Cys Glu Leu Gln Pro His Gly Leu Val Asn Cys Asn Trp Leu 35 40 45

Phe Leu Lys Ser Val Pro His Phe Ser Met Ala Ala Pro Arg Gly Asn 50 55 60

Val Thr Ser Leu Ser Leu Ser Ser Asn Arg Ile His His Leu His Asp 65 70 75 80

Ser Asp Phe Ala His Leu Pro Ser Leu Arg His Leu Asn Leu Lys Trp 85 90 95

Asn Cys Pro Pro Val Gly Leu Ser Pro Met His Phe Pro Cys His Met 100 105 110

Thr Ile Glu Pro Ser Thr Phe Leu Ala Val Pro Thr Leu Glu Glu Leu 115 120 125

156/231

Asn Leu Ser Tyr Asn Asn Ile Met Thr Val Pro Ala Leu Pro Lys Ser Leu Ile Ser Leu Ser Leu Ser His Thr Asn Ile Leu Met Leu Asp Ser 155 Ala Ser Leu Ala Gly Leu His Ala Leu Arg Phe Leu Phe Met Asp Gly Asn Cys Tyr Tyr Lys Asn Pro Cys Arg Gln Ala Leu Glu Val Ala Pro Gly Ala Leu Leu Gly Leu Gly Asn Leu Thr His Leu Ser Leu Lys Tyr Asn Asn Leu Thr Val Val Pro Arg Asn Leu Pro Ser Ser Leu Glu Tyr Leu Leu Ser Tyr Asn Arg Ile Val Lys Leu Ala Pro Glu Asp Leu Ala Asn Leu Thr Ala Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys Met Glu Cys Pro Arg His Phe 260 265 Pro Gln Leu His Pro Asp Thr Phe Ser His Leu Ser Arg Leu Glu Gly 280 Leu Val Leu Lys Asp Ser Ser Leu Ser Trp Leu Asn Ala Ser Trp Phe 295 Arg Gly Leu Gly Asn Leu Arg Val Leu Asp Leu Ser Glu Asn Phe Leu 310 Tyr Lys Cys Ile Thr Lys Thr Lys Ala Phe Gln Gly Leu Thr Gln Leu 325 330 Arg Lys Leu Asn Leu Ser Phe Asn Tyr Gln Lys Arg Val Ser Phe Ala 345 His Leu Ser Leu Ala Pro Ser Phe Gly Ser Leu Val Ala Leu Lys Glu Leu Asp Met His Gly Ile Phe Phe Arg Ser Leu Asp Glu Thr Thr Leu 375 Arg Pro Leu Ala Arg Leu Pro Met Leu Gln Thr Leu Arg Leu Gln Met Asn Phe Ile Asn Gln Ala Gln Leu Gly Ile Phe Arg Ala Phe Pro Gly 410 Leu Arg Tyr Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Ala Ser Glu Leu Thr Ala Thr Met Gly Glu Ala Asp Gly Glu Lys Val Trp Leu 440 Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu

| Asp<br>465 | 450<br>Phe | Arg        | Pro        | Asn        | Cys<br>470 | 455<br>Ser | Thr        | Leu        | Asn        | Phe<br>475 | 460<br>Thr | Leu        | Asp        | Leu        | Ser<br>480 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Arg        | Asn        | Asn        | Leu        | Val<br>485 | Thr        | Val        | Gln        | Pro        | Glu<br>490 | Met        | Phe        | Ala        | Gln        | Leu<br>495 | Ser        |
| His        | Leu        | Gln        | Сув<br>500 | Leu        | Arg        | Leu        | Ser        | His<br>505 | Asn        | Cys        | Ile        | Ser        | Gln<br>510 | Ala        | Val        |
| Asn        | Gly        | Ser<br>515 | Gln        | Phe        | Leu        | Pro        | Leu<br>520 | Thr        | Gly        | Leu        | Gln        | Val<br>525 | Leu        | Asp        | Leu        |
| Ser        | His<br>530 | Asn        | Lys        | Leu        | qaA        | Leu<br>535 | Tyr        | His        | Glu        | His        | Ser<br>540 | Phe        | Thr        | Glu        | Leu        |
| Pro<br>545 | Arg        | Leu        | Glu        | Ala        | Leu<br>550 | Asp        | Leu        | Ser        | Tyr        | Asn<br>555 | Ser        | Gln        | Pro        | Phe        | Gly<br>560 |
| Met        | Gln        | Gly        | Val        | Gly<br>565 | His        | Asn        | Phe        | Ser        | Phe<br>570 | Val        | Ala        | His        | Leu        | Arg<br>575 | Thr        |
| Leu        | Arg        | His        | Leu<br>580 | Ser        | Leu        | Ala        | His        | Asn<br>585 | Asn        | Ile        | His        | Ser        | Gln<br>590 | Val        | Ser        |
| Gln        | Gln        | Leu<br>595 | Сув        | Ser        | Thr        | Ser        | Leu<br>600 | Arg        | Ala        | Leu        | Asp        | Phe<br>605 | Ser        | Gly        | Asn        |
| Ala        | Leu<br>610 | Gly        | His        | Met        | Trp        | Ala<br>615 | Glu        | Gly        | Asp        | Leu        | Tyr<br>620 | Leu        | His        | Phe        | Phe        |
| Gln<br>625 | Gly        | Leu        | Ser        | Gly        | Leu<br>630 | Ile        | Trp        | Leu        | Asp        | Leu<br>635 | Ser        | Gln        | Asn        | Arg        | Leu<br>640 |
| His        | Thr        | Leu        | Leu        | Pro<br>645 | Gln        | Thr        | Leu        | Arg        | Asn<br>650 | Leu        | Pro        | Lys        | Ser        | Leu<br>655 | Gln        |
| Val        | Leu        | Arg        | Leu<br>660 | Arg        | Asp        | Asn        | Tyr        | Leu<br>665 | Ala        | Phe        | Phe        | Lys        | Trp<br>670 | Trp        | Ser        |
| Leu        | His        | Phe<br>675 | Leu        | Pro        | Lys        | Leu        | Glu<br>680 | Val        | Leu        | Asp        | Leu        | Ala<br>685 | Gly        | Asn        | Gln        |
| Leu        | Lys<br>690 | Ala        | Leu        | Thr        | Asn        | Gly<br>695 | Ser        | Leu        | Pro        | Ala        | Gly<br>700 | Thr        | Arg        | Leu        | Arg        |
| Arg<br>705 | Leu        | Asp        | Val        | Ser        | Суз<br>710 | Asn        | Ser        | Ile        | Ser        | Phe<br>715 | Val        | Ala        | Pro        | Gly        | Phe<br>720 |
| Phe        | Ser        | Lys        | Ala        | Lys<br>725 | Glu        | Leu        | Arg        | Glu        | Leu<br>730 | Asn        | Leu        | Ser        | Ala        | Asn<br>735 | Ala        |
| Leu        | Lys        | Thr        | Val<br>740 | Asp        | His        | Ser        | Trp        | Phe<br>745 | Gly        | Pro        | Leu        | Ala        | Ser<br>750 | Ala        | Leu        |
| Gln        | Ile        | Leu<br>755 | Asp        | Val        | Ser        | Ala        | Asn<br>760 | Pro        | Leu        | His        | Cys        | Ala<br>765 | Сув        | Gly        | Ala        |
| Ala        | Phe<br>770 | Met        | Asp        | Phe        | Leu        | Leu<br>775 | Glu        | Val        | Gln        | Ala        | Ala<br>780 | Val        | Pro        | Gly        | Leu        |
| Pro        | Ser        | Arg        | Val        | Lys        | СХа        | Gly        | Ser        | Pro        | Gly        | Gln        | Leu        | Gln        | Gly        | Leu        | Ser        |

| 785                          |             |                        |            |            | 790        |            |             |            |            | 795        |            |            |            |            | 800        |     |
|------------------------------|-------------|------------------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Ile                          | Phe         | Ala                    | Gln        | Asp<br>805 | Leu        | Arg        | Leu         | Сув        | Leu<br>810 | Asp        | Glu        | Ala        | Leu        | Ser<br>815 | Trp        |     |
| Asp                          | Сув         | Phe                    | Ala<br>820 | Leu        | Ser        | Leu        | Leu         | Ala<br>825 | Val        | Ala        | Leu        | Gly        | Leu<br>830 | Gly        | Val        |     |
| Pro                          | Met         | Leu<br>835             | His        | His        | Leu        | Сув        | Gly<br>840  | Trp        | Asp        | Leu        | Trp        | Tyr<br>845 | Cys        | Phe        | His        |     |
| Leu                          | Сув<br>850  | Leu                    | Ala        | Trp        | Leu        | Pro<br>855 | Trp         | Arg        | Gly        | Arg        | Gln<br>860 | Ser        | Gly        | Arg        | Asp        |     |
| Glu<br>865                   | Asp         | Ala                    | Leu        | Pro        | Tyr<br>870 | qaA        | Ala         | Phe        | Val        | Val<br>875 | Phe        | Asp        | Lys        | Thr        | Gln<br>880 |     |
| Ser                          | Ala         | Val                    | Ala        | Asp<br>885 | Trp        | Val        | Tyr         | Asn        | Glu<br>890 | Leu        | Arg        | Gly        | Gln        | Leu<br>895 | Glu        |     |
| Glu                          | Cys         | Arg                    | Gly<br>900 | Arg        | Trp        | Ala        | Leu         | Arg<br>905 | Leu        | Суз        | Leu        | Glu        | Glu<br>910 | Arg        | Asp        |     |
| Trp                          | Leu         | Pro<br>915             | Gly        | Lys        | Thr        | Leu        | Phe<br>920  | Glu        | Asn        | Leu        | Trp        | Ala<br>925 | Ser        | Val        | Tyr        |     |
| Gly                          | Ser<br>930  | Arg                    | ГÀЗ        | Thr        | Leu        | Phe<br>935 | Val         | Leu        | Ala        | His        | Thr<br>940 | Asp        | Arg        | Val        | Ser        |     |
| Gly<br>945                   | Leu         | Leu                    | Arg        | Ala        | Ser<br>950 | Phe        | Leu         | Leu        | Ala.       | Gln<br>955 | Gln        | Arg        | Leu        | Leu        | Glu<br>960 |     |
| qaA                          | Arg         | Lys                    | Asp        | Val<br>965 | Val        | Val        | Leu         | Val        | Ile<br>970 | Leu        | Ser        | Pro        | Asp        | Gly<br>975 | Arg        |     |
| Arg                          | Ser         | Arg                    | Tyr<br>980 | Val        | Arg        | Leu        | Arg         | Gln<br>985 | Arg        | Leu        | Сув        | Arg        | Gln<br>990 | Ser        | Val        |     |
| Leu                          | Leu         | Trp<br>995             | Pro        | His        | Gln        |            | Ser<br>1000 |            | Gln        | Arg        | Ser        | Phe<br>100 |            | p Al       | a Gln      |     |
| Leų                          | Gly<br>1010 |                        | Ala        | Leu        | Thr        | Arg        |             | p As       | n Hi       | s Hi       |            | e T<br>20  | yr A       | sn A       | rg         |     |
| Asn                          | Phe<br>1025 |                        | Gln        | Gly        | Pro        | Thr<br>103 |             | a Gl       | u          |            |            |            |            |            |            |     |
| <210<br><211<br><212<br><213 | > 3<br>> D  | 8<br>200<br>NA<br>urin | e          |            |            |            |             |            |            |            |            |            |            |            |            |     |
| <400                         |             |                        |            |            |            |            |             |            |            |            |            |            |            |            |            |     |
|                              |             |                        |            |            |            |            |             |            |            |            |            |            |            |            | ggact      | 60  |
|                              |             |                        |            |            |            |            |             |            |            |            |            |            |            |            | tgggt      | 120 |
|                              |             |                        |            |            |            |            |             |            |            |            |            |            |            |            | attgg      | 180 |
|                              |             |                        |            |            |            |            |             |            |            |            |            |            |            |            | cccgc      | 240 |
| ctct                         | cctt        | ga t                   | ctcc       | aacc       | g ta       | tcca       | ccac        | ctg        | caca       | act        | ccga       | cttc       | gt c       | cacc       | tgtcc      | 300 |

| aacctgcggc | agctgaacct | caagtggaac | tgtccaccca | ctggccttag | cccctgcac  | 360  |
|------------|------------|------------|------------|------------|------------|------|
| ttetettgee | acatgaccat | tgagcccaga | accttcctgg | ctatgcgtac | actggaggag | 420  |
| ctgaacctga | gctataatgg | tatcaccact | gtgccccgac | tgcccagctc | cctggtgaat | 480  |
| ctgagcctga | gccacaccaa | catcctggtt | ctagatgcta | acagcctcgc | cggcctatac | 540  |
| agcctgcgcg | ttctcttcat | ggacgggaac | tgctactaca | agaacccctg | cacaggagcg | 600  |
| gtgaaggtga | ccccaggcgc | cctcctgggc | ctgagcaatc | tcacccatct | gtctctgaag | 660  |
| tataacaacc | tcacaaaggt | gccccgccaa | ctgcccccca | gcctggagta | cctcctggtg | 720  |
| tcctataacc | tcattgtcaa | gctggggcct | gaagacctgg | ccaatctgac | ctcccttcga | 780  |
| gtacttgatg | tgggtgggaa | ttgccgtcgc | tgcgaccatg | cccccaatcc | ctgtatagaa | 840  |
| tgtggccaaa | agtccctcca | cctgcaccct | gagaccttcc | atcacctgag | ccatctggaa | 900  |
| ggcctggtgc | tgaaggacag | ctctctccat | acactgaact | cttcctggtt | ccaaggtctg | 960  |
| gtcaacctct | cggtgctgga | cctaagcgag | aactttctct | atgaaagcat | caaccacacc | 1020 |
| aatgcctttc | agaacctaac | ccgcctgcgc | aagctcaacc | tgtccttcaa | ttaccgcaag | 1080 |
| aaggtatcct | ttgcccgcct | ccacctggca | agttccttca | agaacctggt | gtcactgcag | 1140 |
| gagctgaaca | tgaacggcat | cttcttccgc | tcgctcaaca | agtacacgct | cagatggctg | 1200 |
| gccgatctgc | ccaaactcca | cactctgcat | cttcaaatga | acttcatcaa | ccaggcacag | 1260 |
| ctcagcatct | ttggtacctt | ccgagccctt | cgctttgtgg | acttgtcaga | caatcgcatc | 1320 |
| agtgggcctt | caacgctgtc | agaagccacc | cctgaagagg | cagatgatgc | agagcaggag | 1380 |
| gagctgttgt | ctgcggatcc | tcacccagct | ccactgagca | cccctgcttc | taagaacttc | 1440 |
| atggacaggt | gtaagaactt | caagttcacc | atggacctgt | ctcggaacaa | cctggtgact | 1500 |
| atcaagccag | agatgtttgt | caatctctca | cgcctccagt | gtcttagcct | gagccacaac | 1560 |
| tccattgcac | aggetgtcaa | tggctctcag | ttcctgccgc | tgactaatct | gcaggtgctg | 1620 |
| gacctgtccc | ataacaaact | ggacttgtac | cactggaaat | cgttcagtga | gctaccacag | 1680 |
| ttgcaggccc | tggacctgag | ctacaacagc | cagcccttta | gcatgaaggg | tataggccac | 1740 |
| aatttcagtt | ttgtggccca | tctgtccatg | ctacacagcc | ttagcctggc | acacaatgac | 1800 |
| attcataccc | gtgtgtcctc | acatctcaac | agcaactcag | tgaggtttct | tgacttcagc | 1860 |
| ggcaacggta | tgggccgcat | gtgggatgag | gggggccttt | atctccattt | cttccaaggc | 1920 |
| ctgagtggcc | tgctgaagct | ggacctgtct | caaaataacc | tgcatatcct | ccggccccag | 1980 |
| aaccttgaca | acctccccaa | gagcctgaag | ctgctgagcc | tccgagacaa | ctacctatct | 2040 |
| ttctttaact | ggaccagtct | gtccttcctg | cccaacctgg | aagtcctaga | cctggcaggc | 2100 |
| aaccagctaa | aggccctgac | caatggcacc | ctgcctaatg | gcaccctcct | ccagaaactg | 2160 |

|   | gatgtcagca                                        | gcaacagtat | cgtctctgtg | gtcccagcct | tattagatat | ggcggtcgag | 2220 |
|---|---------------------------------------------------|------------|------------|------------|------------|------------|------|
|   | ctgaaagagg                                        | tcaacctcag | ccacaacatt | ctcaagacgg | tggatcgctc | ctggtttggg | 2280 |
|   | cccattgtga                                        | tgaacctgac | agttctagac | gtgagaagca | accctctgca | ctgtgcctgt | 2340 |
|   | ggggcagcct                                        | tcgtagactt | actgttggag | gtgcagacca | aggtgcctgg | cctggctaat | 2400 |
|   | ggtgtgaagt                                        | gtggcagccc | cggccagctg | cagggccgta | gcatcttcgc | acaggacctg | 2460 |
|   | cggctgtgcc                                        | tggatgaggt | cctctcttgg | gactgctttg | gcctttcact | cttggctgtg | 2520 |
|   | gccgtgggca                                        | tggtggtgcc | tatactgcac | catctctgcg | gctgggacgt | ctggtactgt | 2580 |
|   | tttcatctgt                                        | gcctggcatg | gctacctttg | ctggcccgca | gccgacgcag | cgcccaagct | 2640 |
|   | ctcccctatg                                        | atgccttcgt | ggtgttcgat | aaggcacaga | gcgcagttgc | ggactgggtg | 2700 |
|   | tataacgagc                                        | tgcgggtgcg | gctggaggag | cggcgcggtc | gccgagccct | acgcttgtgt | 2760 |
| • | ctggaggacc                                        | gagattggct | gcctggccag | acgctcttcg | agaacctctg | ggcttccatc | 2820 |
|   | tatgggagcc                                        | gcaagactct | atttgtgctg | gcccacacgg | accgcgtcag | tggcctcctg | 2880 |
|   | cgcaccagct                                        | teetgetgge | tcagcagcgc | ctgttggaag | accgcaagga | cgtggtggtg | 2940 |
|   | ttggtgatcc                                        | tgcgtccgga | tgcccaccgc | tcccgctatg | tgcgactgcg | ccagcgtctc | 3000 |
|   | tgccgccaga                                        | gtgtgctctt | ctggccccag | cagcccaacg | ggcagggggg | cttctgggcc | 3060 |
|   | cagctgagta                                        | cagccctgac | tagggacaac | cgccacttct | ataaccagaa | cttctgccgg | 3120 |
|   | ggacctacag                                        | cagaatagct | cagagcaaca | gctggaaaca | gctgcatctt | catgcctggt | 3180 |
|   | tcccgagttg                                        | ctctgcctgc |            |            |            |            | 3200 |
|   | <210> 69<br><211> 3471<br><212> DNA<br><213> muri |            |            |            |            |            |      |
|   | <400> 69<br>tgaaagtgtc                            | acttcctcaa | ttctctgaga | gaccctggtg | tggaacatca | ttctctqccq | 60   |
|   |                                                   |            | ctcgggagaa | ·          |            |            | 120  |
|   |                                                   |            | ccctcctggt |            |            |            | 180  |
|   |                                                   |            | tcctaccctg |            |            |            | 240  |
|   | caattggctg                                        | ttcctgaagt | ctgtaccccg | tttctctgcg | gcagcatcct | gctccaacat | 300  |
|   | cacccgcctc                                        | tccttgatct | ccaaccgtat | ccaccacctg | cacaactccg | acttcgtcca | 360  |
|   |                                                   |            | tgaacctcaa |            |            |            | 420  |
|   |                                                   |            | tgaccattga |            |            |            | 480  |
|   | ggaggagctg                                        | aacctgagct | ataatggtat | caccactgtg | ccccgactgc | ccagctccct | 540  |
|   |                                                   |            |            |            |            |            |      |

| ggtgaatctg<br>cctatacago | agcctgagcc<br>ctgcgcgttc | acaccaacat<br>tcttcatgga | cctggttcta<br>cgggaactgc | gatgctaaca<br>tactacaaga | gcctcgccgg<br>acccctgcac | 600<br>660 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| aggagcggtg               | aaggtgaccc               | caggcgccct               | cctgggcctg               | agcaatctca               | cccatctgtc               | 720        |
| tctgaagtat               | aacaacctca               | caaaggtgcc               | ccgccaactg               | cccccagcc                | tggagtacct               | 780        |
| cctggtgtcc               | tataacctca               | ttgtcaagct               | ggggcctgaa               | gacctggcca               | atctgacctc               | 840        |
| ccttcgagta               | cttgatgtgg               | gtgggaattg               | ccgtcgctgc               | gaccatgccc               | ccaatccctg               | 900        |
| tatagaatgt               | ggccaaaagt               | ccctccacct               | gcaccctgag               | accttccatc               | acctgagcca               | 960        |
| tctggaaggc               | ctggtgctga               | aggacagctc               | tctccataca               | ctgaactctt               | cctggttcca               | 1020       |
| aggtctggtc               | aacctctcgg               | tgctggacct               | aagcgagaac               | tttctctatg               | aaagcatcaa               | 1080       |
| ccacaccaat               | gcctttcaga               | acctaacccg               | cctgcgcaag               | ctcaacctgt               | ccttcaatta               | 1140       |
| ccgcaagaag               | gtatcctttg               | cccgcctcca               | cctggcaagt               | tccttcaaga               | acctggtgtc               | 1200       |
| actgcaggag               | ctgaacatga               | acggcatctt               | cttccgctcg               | ctcaacaagt               | acacgctcag               | 1260       |
| atggctggcc               | gatctgccca               | aactccacac               | tctgcatctt               | caaatgaact               | tcatcaacca               | 1320       |
| ggcacagctc               | agcatctttg               | gtaccttccg               | agcccttcgc               | tttgtggact               | tgtcagacaa               | 1380       |
| tcgcatcagt               | gggccttcaa               | cgctgtcaga               | agccacccct               | gaagaggcag               | atgatgcaga               | 1440       |
| gcaggaggag               | ctgttgtctg               | cggatcctca               | cccagctcca               | ctgagcaccc               | ctgcttctaa               | 1500       |
| gaacttcatg               | gacaggtgta               | agaacttcaa               | gttcaccatg               | gacctgtctc               | ggaacaacct               | 1560       |
| ggtgactatc               | aagccagaga               | tgtttgtcaa               | tctctcacgc               | ctccagtgtc               | ttagcctgag               | 1620       |
| ccacaactcc               | attgcacagg               | ctgtcaatgg               | ctctcagttc               | ctgccgctga               | ctaatctgca               | 1680       |
| ggtgctggac               | ctgtcccata               | acaaactgga               | cttgtaccac               | tggaaatcgt               | tcagtgagct               | 1740       |
| accacagttg               | caggccctgg               | acctgagcta               | caacagccag               | ccctttagca               | tgaagggtat               | 1800       |
| aggccacaat               | ttcagttttg               | tgacccatct               | gtccatgcta               | cagagcctta               | gcctggcaca               | 1860       |
| caatgacatt               | catacccgtg               | tgtcctcaca               | tctcaacagc               | aactcagtga               | ggtttcttga               | 1920       |
| cttcagcggc               | aacggtatgg               | gccgcatgtg               | ggatgagggg               | ggcctttatc               | tccatttctt               | 1980       |
| ccaaggcctg               | agtggcctgc               | tgaagctgga               | cctgtctcaa               | aataacctgc               | atatcctccg               | 2040       |
| gccccagaac               | cttgacaacc               | tccccaagag               | cctgaagctg               | ctgagectee               | gagacaacta               | 2100       |
| cctatctttc               | tttaactgga               | ccagtctgtc               | cttcctaccc               | aacctggaag               | tcctagacct               | 2160       |
| ggcaggcaac               | cagctaaagg               | ccctgaccaa               | tggcaccctg               | cctaatggca               | ccctcctcca               | 2220       |
| gaaactcgat               | gtcagtagca               | acagtatcgt               | ctctgtggtc               | ccagccttct               | tegetetgge               | 2280       |
| ggtcgagctg               | aaagaggtca               | acctcagcca               | caacattctc               | aagacggtgg               | atcgctcctg               | 2340       |
| gtttgggccc               | attgtgatga               | acctgacagt               | tctagacgtg               | agaagcaacc               | ctctgcactg               | 2400       |
| tgcctgtggg               | gcagccttcg               | tagacttact               | gttggaggtg               | cagaccaagg               | tgcctggcct               | 2460       |

| ggctaatg | gt gtgaagtgtg           | gcagccccgg | ccagctgcag | ggccgtagca | tcttcgcgca | 2520 |
|----------|-------------------------|------------|------------|------------|------------|------|
| ggacctgc | gg ctgtgcctgg           | atgaggtcct | ctcttgggac | tgctttggcc | tttcactctt | 2580 |
| ggctgtgg | cc gtgggcatgg           | tggtgcctat | actgcaccat | ctctgcggct | gggacgtctg | 2640 |
| gtactgtt | tt catctgtgcc           | tggcatggct | acctttgctg | gcccgcagcc | gacgcagcgc | 2700 |
| ccaaactc | tc ccttatgatg           | ccttcgtggt | gttcgataag | gcacagagcg | cagttgccga | 2760 |
| ctgggtgt | at aacgagctgc           | gggtgcggct | ggaggagcgg | cgcggtcgcc | gagccctacg | 2820 |
| cttgtgtc | tg gaggaccgag           | attggctgcc | tggccagacg | ctcttcgaga | acctctgggc | 2880 |
| ttccatct | at gggagccgca           | agactctatt | tgtgctggcc | cacacggacc | gcgtcagtgg | 2940 |
| cctcctgc | gc accagettec           | tgctggctca | gcagcgcctg | ttggaagacc | gcaaggacgt | 3000 |
| ggtggtgt | tg gtgatcctgc           | gtccggatgc | ccaccgctcc | cgctatgtgc | gactgcgcca | 3060 |
| gcgtctct | gc cgccagagtg           | tgctcttctg | gccccagcag | cccaacgggc | aggggggctt | 3120 |
| ctgggccc | ag ctgagtacag           | ccctgactag | ggacaaccgc | cacttctata | accagaactt | 3180 |
| ctgccggg | ga cctacagcag           | aatagctcag | agcaacagct | ggaaacagct | gcatcttcat | 3240 |
| gcctggtt | cc cgagttgctc           | tgcctgcctt | gctctgtctt | actacaccgc | tatttggcaa | 3300 |
| gtgcgcaa | ta tatgctacca           | agccaccagg | cccacggagc | aaaggttggc | agtaaagggt | 3360 |
| agttttct | cc ccatgcatct           | ttcaggagag | tgaagataga | caccagaccc | acacagaaca | 3420 |
| ggactgga | gt tcattctctg           | cccctccacc | ccactttgcc | tgtctctgta | t          | 3471 |
| <212> D  | )<br>340<br>WA<br>urine |            |            |            |            |      |

<400> 70

tetetgagag accetggtgt ggaacateat tetetgeege ceagtttgte agagggagee 60 tegggagaat cetecatete ecaacatggt teteegtega aggaetetge acceettgte 120 cctcctggta caggctgcag tgctggctga gactctggcc ctgggtaccc tgcctgcctt 180 cctaccctgt gagctgaagc ctcatggcct ggtggactgc aattggctgt tcctgaagtc 240 tgtaccccgt ttctctgcgg cagcatcctg ctccaacatc acccgcctct ccttgatctc 300 caaccgtatc caccacctgc acaactccga cttcgtccac ctgtccaacc tgcggcagct 360 gaacctcaag tggaactgtc cacccactgg ccttagcccc ctgcacttct cttgccacat 420 gaccattgag cccagaacct tcctggctat gcgtacactg gaggagctga acctgagcta 480 taatggtatc accactgtgc cccgactgcc cagctccctg gtgaatctga gcctgagcca 540 caccaacatc ctggttctag atgctaacag cctcgccggc ctatacagcc tgcgcgttct 600

cttcatggac gggaactgct actacaagaa cccctgcaca ggagcggtga aggtgacccc 660 aggegeette etgggeetga geaateteae ceatetgtet etgaagtata acaaceteae 720 aaaggtgccc cgccaactgc cccccagcct ggagtacctc ctggtgtcct ataacctcat 780 tgtcaagctg gggcctgaag acctggccaa tctgacctcc cttcgagtac ttgatgtggg 840 tgggaattgc cgtcgctgcg accatgcccc caatccctgt atagaatgtg gccaaaagtc 900 cctccacctg caccctgaga ccttccatca cctgagccat ctggaaggcc tggtgctgaa 960 ggacagetet etecatacae tgaactette etggtteeaa ggtetggtea aceteteggt 1020 gctggaccta agcgagaact ttctctatga aagcatcaac cacaccaatg cctttcagaa 1080 cctaacccgc ctgcgcaagc tcaacctgtc cttcaattac cgcaagaagg tatcctttgc 1140 ccgcctccac ctggcaagtt ccttcaagaa cctggtgtca ctgcaggagc tgaacatgaa 1200 cggcatcttc ttccgctcgc tcaacaagta cacgctcaga tggctggccg atctgcccaa 1260 actecacact etgeatette aaatgaactt cateaaceag geacagetea geatetttgg 1320 taccttccga gcccttcgct ttgtggactt gtcagacaat cgcatcagtg ggccttcaac 1380 gctgtcagaa gccaccctg aagaggcaga tgatgcagag caggaggagc tgttgtctgc 1440. ggatecteae ecagetecae tgageaeeee tgettetaag aactteatgg acaggtgtaa 1500 gaacttcaag ttcaccatgg acctgtctcg gaacaacctg gtgactatca agccagagat 1560 gtttgtcaat ctctcacgcc tccagtgtct tagcctgagc cacaactcca ttgcacaggc 1620 tgtcaatggc tctcagttcc tgccgctgac taatctgcag gtgctggacc tgtcccataa 1680 caaactggac ttgtaccact ggaaatcgtt cagtgagcta ccacagttgc aggccctgga 1740 cctgggctac aacagccagc cctttagcat aaagggtata ggccacaatt tcagttttgt 1800 ggcccatctg tccatgctac acagccttag cctggcacac aatgacattc atacccgtgt 1860 gtcctcacat ctcaacagca actcagtgag gtttcttgac ttcagcggca acggtatggg 1920 ccgcatgtgg gatgaggggg gcctttatct ccatttcttc caaggcctga gtggcctgct 1980 gaagetggae etgteteaaa ataacetgea tateeteegg eeceagaace ttgacaacet 2040 ccccaagagc ctgaagctgc tgagcctccg agacaactac ctatetttct ttaactggac 2100 cagtotgtoc ttootgocca acctggaagt cotagacctg gcaggcaacc agotaaaggc 2160 cetgaccaat ggcaccetge etaatggcac cetectecag aaactggatg teageagcaa 2220 cagtatcgtc tctgtggtcc cagccttctt cgctctggcg gtcgagctga aagaggtcaa 2280 ceteageeac aacattetea agaeggtgga tegeteetgg tttgggccca ttgtgatgaa 2340 cctgacagtt ctagacgtga gaagcaaccc tctgcactgt gcctgtgggg cagccttcgt 2400 2460 cageceegge cagetgeagg geegtageat ettegeacag gaeetgegge tgtgeetgga 2520

| tgaggtcct                   | c tettgggaet | gctttggcct | ttcactcttg | gctgtggccg | tgggcatggt | 2580 |
|-----------------------------|--------------|------------|------------|------------|------------|------|
| ggtgcctat                   | a ctgcaccatc | tetgeggetg | ggacgtctgg | tactgttttc | atctgtgcct | 2640 |
| ggcatggct                   | a cctttgctgg | cccgcagccg | acgcagcgcc | caagctctcc | cctatgatgc | 2700 |
| cttcgtggt                   | g ttcgataagg | cacagagcgc | agttgcggac | tgggtgtata | acgagctgcg | 2760 |
| ggtgcggct                   | g gagggggggc | gcggtcgccg | agccctacgc | ttgtgtctgg | aggaccgaga | 2820 |
| ttggctgcc                   | ggccagacgc   | tcttcgagaa | cctctgggct | tccatctatg | ggagccgcaa | 2880 |
| gactctatt                   | t gtgctggccc | acacggaccg | cgtcagtggc | ctcctgcgca | ccagcttcct | 2940 |
| gctggctca                   | g cagcgcctgt | tggaagaccg | caaggacgtg | gtggtgttgg | tgatcctgcg | 3000 |
| tccggatgc                   | c caccgctccc | gctatgtgcg | actgcgccag | cgtctctgcc | gccagagtgt | 3060 |
| gctcttttg                   | g ccccagcagc | ccaacgggca | ggggggcttc | tgggcccagc | tgagtacagc | 3120 |
| cctgactag                   | g gacaaccgcc | acttctataa | ccagaacttc | tgccggggac | ctacagcaga | 3180 |
| atagctcag                   | a gcaacagctg | gaaacagctg | catcttcatg | cctggttccc | gagttgctct | 3240 |
| gcctgcctt                   | g ctctgtctta | ctacaccgct | atttggcaag | tgcgcaatat | atgctaccaa | 3300 |
| gccaccggg                   | c ccacggagca | aaggttggct | gtaaagggta |            |            | 3340 |
| <210> 71 <211> 34' <212> DN | _            |            |            |            |            |      |

<213> murine

<400> 71

tgaaagtgtc acttcctcaa ttctctgaga gaccctggtg tggaacatca ttctctgccg 60 cccagtttgt cagagggagc ctcgggagaa tcctccatct cccaacatqq ttctccqtcq 120 aaggactetg cacccettgt ceeteetggt acaggetgca gtgetggetg agactetgge 180 cctgggtacc ctgcctgcct tcctaccctg tgagctgaag cctcatggcc tggtggactg 240 caattggctg ttcctgaagt ctgtaccccg tttctctgcg gcagcatcct gctccaacat 300 caccegeete teettgatet ecaacegtat ceaecacetg cacaacteeg acttegteca 360 cctgtccaac ctgcggcagc tgaacctcaa gtggaactgt ccacccactg gccttagccc 420 cctgcacttc tcttgccaca tgaccattga gcccagaacc ttcctggcta tgcgtacact 480 ggaggagetg aacctgaget ataatggtat caccactgtg ccccgactgc ccagctccct 540 ggtgaatctg agcctgagcc acaccaacat cctggttcta gatgctaaca gcctcgccgg 600 cctatacage ctgcgcgttc tcttcatgga cgggaactgc tactacaaga acccctgcac 660 aggageggtg aaggtgaccc caggegecet cetgggeetg ageaatetea eccatetgte 720 tctgaagtat aacaacctca caaaggtgcc ccgccaactg ccccccagcc tggagtacct 780

|            | tataacctca<br>cttgatgtgg |            |            |            |            | 840<br>900 |
|------------|--------------------------|------------|------------|------------|------------|------------|
| tatagaatgt | ggccaaaagt               | ccctccacct | gcaccctgag | accttccatc | acctgagcca | 960        |
| tctggaaggc | ctggtgctga               | aggacagete | tctccataca | ctgaactctt | cctggttcca | 1020       |
| aggtctggtc | aacctctcgg               | tgctggacct | aagcgagaac | tttctctatg | aaagcatcaa | 1080       |
| ccacaccaat | gcctttcaga               | acctaacccg | cctgcgcaag | ctcaacctgt | ccttcaatta | 1140       |
| ccgcaagaag | gtatcctttg               | cccgcctcca | cctggcaagt | tccttcaaga | acctggtgtc | 1200       |
| actgcaggag | ctgaacatga               | acggcatctt | cttccgctcg | ctcaacaagt | acacgctcag | 1260       |
| atggctggcc | gatctgccca               | aactccacac | tctgcatctt | caaatgaact | tcatcaacca | 1320       |
| ggcacagctc | agcatctttg               | gtaccttccg | agcccttcgc | tttgtggact | tgtcagacaa | 1380       |
| tegcateagt | gggccttcaa               | cgctgtcaga | agccacccct | gaagaggcag | atgatgcaga | 1440       |
| gcaggaggag | ctgttgtctg               | cggatcctca | cccagctcca | ctgagcaccc | ctgcttctaa | 1500       |
| gaacttcatg | gacaggtgta               | agaacttcaa | gttcaccatg | gacctgtctc | ggaacaacct | 1560       |
| ggtgactatc | aagccagaga               | tgtttgtcaa | tctctcacgc | ctccagtgtc | ttagcctgag | 1620       |
| ccacaactcc | attgcacagg               | ctgtcaatgg | ctctcagttc | ctgccgctga | ctaatctgca | 1680       |
| ggtgctggac | ctgtcccata               | acaaactgga | cttgtaccac | tggaaatcgt | tcagtgagct | 1740       |
| accacagttg | caggccctgg               | acctgagcta | caacagccag | ccctttagca | tgaagggtat | 1800       |
| aggccacaat | ttcagttttg               | tgacccatct | gtccatgcta | cagagcctta | gcctggcaca | 1860       |
| caatgacatt | catacccgtg               | tgtcctcaca | tctcaacagc | aactcagtga | ggtttcttga | 1920       |
| cttcagcggc | aacggtatgg               | gccgcatgtg | ggatgagggg | ggcctttatc | tccatttctt | 1980       |
| ccaaggcctg | agtggcctgc               | tgaagctgga | cctgtctcaa | aataacctgc | atatcctccg | 2040       |
| gccccagaac | cttgacaacc               | tccccaagag | cctgaagctg | ctgagcctcc | gagacaacta | 2100       |
| cctatctttc | tttaactgga               | ccagtctgtc | cttcctaccc | aacctggaag | tcctagacct | 2160       |
| ggcaggcaac | cagctaaagg               | ccctgaccaa | tggcaccctg | cctaatggca | ccctcctcca | 2220       |
| gaaactcgat | gtcagtagca               | acagtatcgt | ctctgtggtc | ccagccttct | tegetetgge | 2280       |
| ggtcgagctg | aaagaggtca               | acctcagcca | caacattctc | aagacggtgg | atcgctcctg | 2340       |
| gtttgggccc | attgtgatga               | acctgacagt | tctagacgtg | agaagcaacc | ctctgcactg | 2400       |
| tgcctgtggg | gcagccttcg               | tagacttact | gttggaggtg | cagaccaagg | tgcctggcct | 2460       |
| ggctaatggt | gtgaagtgtg               | gcagccccgg | ccagctgcag | ggccgtagca | tcttcgcgca | 2520       |
| ggacctgcgg | ctgtgcctgg               | atgaggtcct | ctcttgggac | tgctttggcc | tttcactctt | 2580       |
| ggctgtggcc | gtgggcatgg               | tggtgcctat | actgcaccat | ctctgcggct | gggacgtctg | 2640       |
| gtactgtttt | catctgtgcc               | tggcatggct | acctttgctg | gcccgcagcc | gacgcagcgc | 2700       |

| ccaaactctc | ccttatgatg | ccttcgtggt | gttcgataag | gcacagageg | cagttgccga | 2760 |
|------------|------------|------------|------------|------------|------------|------|
| ctgggtgtat | aacgagctgc | gggtgcggct | ggaggagcgg | cgcggtcgcc | gagccctacg | 2820 |
| cttgtgtctg | gaggaccgag | attggctgcc | tggccagacg | ctcttcgaga | acctctgggc | 2880 |
| ttccatctat | gggagccgca | agactctatt | tgtgctggcc | cacacggacc | gcgtcagtgg | 2940 |
| cctcctgcgc | accagcttcc | tgctggctca | gcagcgcctg | ttggaagacc | gcaaggacgt | 3000 |
| ggtggtgttg | gtgatcctgc | gtccggatgc | ccaccgctcc | cgctatgtgc | gactgcgcca | 3060 |
| gcgtctctgc | cgccagagtg | tgctcttctg | gccccagcag | cccaacgggc | aggggggctt | 3120 |
| ctgggcccag | ctgagtacag | ccctgactag | ggacaaccgc | cacttctata | accagaactt | 3180 |
| ctgccgggga | cctacagcag | aatagctcag | agcaacagct | ggaaacagct | gcatcttcat | 3240 |
| gcctggttcc | cgagttgctc | tgcctgcctt | gctctgtctt | actacaccgc | tatttggcaa | 3300 |
| gtgcgcaata | tatgctacca | agccaccagg | cccacggagc | aaaggttggc | agtaaagggt | 3360 |
| agttttcttc | ccatgcatct | ttcaggagag | tgaagataga | caccagaccc | acacagaaca | 3420 |
| ggactggagt | tcattctctg | cccctccacc | ccactttgcc | tgtctctgta | t          | 3471 |

<210> 72

<211> 1032

<212> PRT

<213> murine

<400> 72

Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 20 25 30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu 35 40 45

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ala Ser Cys Ser Asn 50 55 60

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn 65 70 75 80

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp 85 90 95

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met 100 105 110

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu 115 120 125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser 130 135 140

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly 170 Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu 305 315 Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala 345 Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu 375 Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met 395 Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala 410 Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr 425 Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Gln Glu Glu Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser 455 Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu

- 465 470 475 480 Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu 485 490 495
- Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala 500 505 510
- Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp 515 520 525
- Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu 530 535
- Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe 545 550 555
- Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser 565 570 575
- Met Leu His Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val 580 585 590
- Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly 595 600 605
- Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe 610 620
- Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn 625 630 635 640
- Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu 645 650 655
- Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr 660 665 670
- Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn 675 680 685
- Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu 690 695 700
- Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala 705 710 715 720
- Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn 725 730 735
- Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn 740 745 750
- Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly 755 760 765
- Ala Ala Phe Val Asp Leu Leu Glu Val Gln Thr Lys Val Pro Gly 770 780
- Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg
  785 790 795 800
- Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser

805 810 815

Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val
820 825 830

Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe 835 840 845

His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser 850 855

Ala Gln Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln 865 . 870 875 886

Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu 885 890 895

Glu Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp 900 905 910

Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr 915 920 925

Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 930 935 940

Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 945 950 955 960

Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala His 965 970 975

Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 980 985 990

Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln 995 1000 1005

Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln 1010 1015 1020

Asn Phe Cys Arg Gly Pro Thr Ala Glu 1025 1030

<210> 73

<211> 1032

<212> PRT

<213> murine

<400> 73

Met Val Leu Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln
1 5 10 15

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 20 25 30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu
35 40

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ala Ser Cys Ser Asn 50 55 60

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn 65 70 75 80

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp 85 90 95

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met
100 105 110

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu 115 120 125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser 130 140

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala 145 150 155 160

Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly 165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro 180 185 190

Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr 195 200 205

Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr 210 215 220

Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu 225 230 235 240

Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg 245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser 260 265 270

Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly 275 280 285

٠.

Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe 290 295 300

Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu 305 310 315 320

Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu
325 330 335

Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala 340 345 350

Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu 355 360 365

Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu 370 375 380

Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met

390 395 Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala 410 405 Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr 425 Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Glu Glu 440 Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser 455 Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu 475 Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu 490 485 Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala 505 Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu Leu Pro Gln Leu Gln Ala Leu Asp Leu Gly Tyr Asn Ser Gln Pro Phe Ser Ile Lys Gly Ile Gly His Asn Phe Ser Phe Val Ala His Leu Ser 570 Met Leu His Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val 585 Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu 650 Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr 660 665 Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu 695 Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn

725 730 735

Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn
740 745 750

The second first the second second second

Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly
755 760 765

Ala Ala Phe Val Asp Leu Leu Leu Glu Val Gln Thr Lys Val Pro Gly
770 780

Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg
785 790 795 800

Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser 805 810 815

Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val 820 825 830

Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe 835 840 845

His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser 850 855 860

Ala Gln Ala Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln 865 870 875 880

Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu 885 890 895

Gly Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp 900 905 910

Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr 915 920 925

Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 930 935 940

Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 945 950 955 960

Asp Arg Lys Asp Val Val Val Leu Val Ile Leu Arg Pro Asp Ala His
965 970 975

Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 980 985 990

Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln 995 1000 1005

Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln 1010 1015 1020

Asn Phe Cys Arg Gly Pro Thr Ala Glu 1025 1030

<210> 74

<211> 1032

والارتباط والمواجع والمواجع والمراجع

<212> PRT

<213> murine <400> 74

Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln 1 5 10 15

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe 20 25 30

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu 35 40

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ala Ser Cys Ser Asn 50 55 60

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn 65 70 75 80

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp 85 90 95

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met
100 105 110

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu 115 120 125

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser 130 140

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala 145 150 155 160

Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly 165 170 175

Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro 180 185 190

Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr 195 200 205

Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr 210 215 220

Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu 225 235 240

Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Asn Cys Arg
245 250 255

Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser 260 265 270

Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly 275 280 285

Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe 290 295 300

Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu 305 310 315 320

Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met 395 Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr 420 Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Glu Glu Glu Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser 455 Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu 490 Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala 505 Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp 520 Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu 535 Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Thr His Leu Ser 570 Met Leu Gln Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val 585 Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu

| Lys        | Leu        | Leu        | Ser        | 645<br>Leu | Arg        | Asp        | Asn        | Tyr        | 650<br>Leu | Ser        | Phe        | Phe        | Asn        | 655<br>Trp | Thr        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            |            |            | 660        |            |            |            |            | 665        |            |            |            |            | 670        | _          |            |
| Ser        | Leu        | Ser<br>675 | Phe        | Leu        | Pro        | Asn        | Leu<br>680 | Glu        | Val        | Leu        | Asp        | Leu<br>685 | Ala        | Gly        | Asn        |
| Gln        | Leu<br>690 | Lys        | Ala        | Leu        | Thr        | Asn<br>695 | Gly        | Thr        | Leu        | Pro        | Asn<br>700 | Gly        | Thr        | Leu        | Leu        |
| Gln<br>705 | Lys        | Leu        | Asp        | Val        | Ser<br>710 | Ser        | Asn        | Ser        | Ile        | Val<br>715 | Ser        | Val        | Val        | Pro        | Ala<br>720 |
| Phe        | Phe        | Ala        | Leu        | Ala<br>725 | Val        | Glu        | Leu        | Lys        | Glu<br>730 | Val        | Asn        | Leu        | Ser        | His<br>735 | Asn        |
| Ile        | Leu        | Lys        | Thr<br>740 | Val        | qaA        | Arg        | Ser        | Trp<br>745 | Phe        | Gly        | Pro        | Ile        | Val<br>750 | Met        | Asn        |
| Leu        | Thr        | Val<br>755 | Leu        | Asp        | Val        | Arg        | Ser<br>760 | Asn        | Pro        | Leu        | His        | Сув<br>765 | Ala        | Cys        | Gly        |
| Ala        | Ala<br>770 | Phe        | Val        | Asp        | Leu        | Leu<br>775 | Leu        | Glu        | Val        | Gln        | Thr<br>780 | ГÀЗ        | Val        | Pro        | Gly        |
| Leu<br>785 | Ala        | Asn        | Gly        | Val        | Lys<br>790 | Сув        | Gly        | Ser        | Pro        | Gly<br>795 | Gln        | Leu        | Gln        | Gly        | Arg<br>800 |
| Ser        | Ile        | Phe        | Ala        | Gln<br>805 | Asp        | Leu        | Arg        | Leu        | Cys<br>810 | Leu        | Asp        | Glu        | Val        | Leu<br>815 | Ser        |
| Trp        | Asp        | Сув        | Phe<br>820 | Gly        | Leu        | Ser        | Leu        | Leu<br>825 | Ala        | Val        | Ala        | Val        | Gly<br>830 | Met        | Val        |
| Val        | Pro        | Ile<br>835 | Leu        | His        | His        | Leu        | Сув<br>840 | Gly        | Trp        | Asp        | Val        | Trp<br>845 | Tyr        | Cys        | Phe        |
| His        | Leu<br>850 | Сув        | Leu        | Ala        | Trp        | Leu<br>855 | Pro        | Leu        | Leu        | Ala        | Arg<br>860 | Ser        | Arg        | Arg        | Ser        |
| Ala<br>865 | Gln        | Thr        | Leu        | Pro        | Tyr<br>870 | Asp        | Ala        | Phe        | Va1        | Val<br>875 | Phe        | Asp        | Lys        | Ala        | Gln<br>880 |
| Ser        | Ala        | Val        | Ala        | Asp<br>885 | Trp        | Val        | Tyr        | Asn        | Glu<br>890 | Leu        | Arg        | Val        | Arg        | Leu<br>895 | Glu        |
| Glu        | Arg        | Arg        | Gly<br>900 | Arg        | Arg        | Ala        | Leu        | Arg<br>905 | Leu        | Сув        | Leu        | Glu        | Asp<br>910 | Arg        | Asp        |
| Trp        | Leu        | Pro<br>915 | Gly        | Gln        | Thr        | Leu        | Phe<br>920 | Glu        | Asn        | Leu        | Trp        | Ala<br>925 | Ser        | Ile        | Tyr        |
| Gly        | Ser<br>930 | Arg        | Lys        | Thr        | Leu        | Phe<br>935 | Val        | Leu        | Ala        | His        | Thr<br>940 | Asp        | Arg        | Val        | Ser        |
| Gly<br>945 | Leu        | Leu        | Arg        | Thr        | Ser<br>950 | Phe        | Leu        | Leu        | Ala        | Gln<br>955 | Gln        | Arg        | Leu        | Leu        | Glu<br>960 |
| Asp        | Arg        | Lys        | Asp        | Val<br>965 | Val        | Val        | Leu        | Val        | Ile<br>970 | Leu        | Arg        | Pro        | Asp        | Ala<br>975 | His        |
| Arg        | Ser        | Arg        | Tyr        | Val        | Arg        | Leu        | Arg        | Gln        | Arg        | Leu        | Сув        | Arg        | Gln        | Ser        | Val        |

980 985 990

Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln

Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln 1015

Asn Phe Cys Arg Gly Pro Thr Ala Glu 1030

<210> 75

<211> 1032 <212> PRT

<213> murine

<400> 75

Met Val Leu Arg Arg Arg Thr Leu His Pro Leu Ser Leu Leu Val Gln

Ala Ala Val Leu Ala Glu Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe

Leu Pro Cys Glu Leu Lys Pro His Gly Leu Val Asp Cys Asn Trp Leu

Phe Leu Lys Ser Val Pro Arg Phe Ser Ala Ala Ala Ser Cys Ser Asn 55

Ile Thr Arg Leu Ser Leu Ile Ser Asn Arg Ile His His Leu His Asn

Ser Asp Phe Val His Leu Ser Asn Leu Arg Gln Leu Asn Leu Lys Trp 90

Asn Cys Pro Pro Thr Gly Leu Ser Pro Leu His Phe Ser Cys His Met 105

Thr Ile Glu Pro Arg Thr Phe Leu Ala Met Arg Thr Leu Glu Glu Leu 120

Asn Leu Ser Tyr Asn Gly Ile Thr Thr Val Pro Arg Leu Pro Ser Ser

Leu Val Asn Leu Ser Leu Ser His Thr Asn Ile Leu Val Leu Asp Ala

Asn Ser Leu Ala Gly Leu Tyr Ser Leu Arg Val Leu Phe Met Asp Gly 170

Asn Cys Tyr Tyr Lys Asn Pro Cys Thr Gly Ala Val Lys Val Thr Pro

Gly Ala Leu Leu Gly Leu Ser Asn Leu Thr His Leu Ser Leu Lys Tyr 200

Asn Asn Leu Thr Lys Val Pro Arg Gln Leu Pro Pro Ser Leu Glu Tyr 210

Leu Leu Val Ser Tyr Asn Leu Ile Val Lys Leu Gly Pro Glu Asp Leu 230 235

Ala Asn Leu Thr Ser Leu Arg Val Leu Asp Val Gly Gly Asn Cys Arg Arg Cys Asp His Ala Pro Asn Pro Cys Ile Glu Cys Gly Gln Lys Ser Leu His Leu His Pro Glu Thr Phe His His Leu Ser His Leu Glu Gly Leu Val Leu Lys Asp Ser Ser Leu His Thr Leu Asn Ser Ser Trp Phe Gln Gly Leu Val Asn Leu Ser Val Leu Asp Leu Ser Glu Asn Phe Leu 315 Tyr Glu Ser Ile Asn His Thr Asn Ala Phe Gln Asn Leu Thr Arg Leu Arg Lys Leu Asn Leu Ser Phe Asn Tyr Arg Lys Lys Val Ser Phe Ala Arg Leu His Leu Ala Ser Ser Phe Lys Asn Leu Val Ser Leu Gln Glu Leu Asn Met Asn Gly Ile Phe Phe Arg Ser Leu Asn Lys Tyr Thr Leu Arg Trp Leu Ala Asp Leu Pro Lys Leu His Thr Leu His Leu Gln Met Asn Phe Ile Asn Gln Ala Gln Leu Ser Ile Phe Gly Thr Phe Arg Ala Leu Arg Phe Val Asp Leu Ser Asp Asn Arg Ile Ser Gly Pro Ser Thr Leu Ser Glu Ala Thr Pro Glu Glu Ala Asp Asp Ala Glu Gln Glu Glu Leu Leu Ser Ala Asp Pro His Pro Ala Pro Leu Ser Thr Pro Ala Ser 455 Lys Asn Phe Met Asp Arg Cys Lys Asn Phe Lys Phe Thr Met Asp Leu 470 475 Ser Arg Asn Asn Leu Val Thr Ile Lys Pro Glu Met Phe Val Asn Leu 490 Ser Arg Leu Gln Cys Leu Ser Leu Ser His Asn Ser Ile Ala Gln Ala Val Asn Gly Ser Gln Phe Leu Pro Leu Thr Asn Leu Gln Val Leu Asp Leu Ser His Asn Lys Leu Asp Leu Tyr His Trp Lys Ser Phe Ser Glu 535 Leu Pro Gln Leu Gln Ala Leu Asp Leu Ser Tyr Asn Ser Gln Pro Phe 555

Ser Met Lys Gly Ile Gly His Asn Phe Ser Phe Val Thr His Leu Ser

565 570 575 Met Leu Gln Ser Leu Ser Leu Ala His Asn Asp Ile His Thr Arg Val 585 Ser Ser His Leu Asn Ser Asn Ser Val Arg Phe Leu Asp Phe Ser Gly Asn Gly Met Gly Arg Met Trp Asp Glu Gly Gly Leu Tyr Leu His Phe Phe Gln Gly Leu Ser Gly Leu Leu Lys Leu Asp Leu Ser Gln Asn Asn Leu His Ile Leu Arg Pro Gln Asn Leu Asp Asn Leu Pro Lys Ser Leu 650 Lys Leu Leu Ser Leu Arg Asp Asn Tyr Leu Ser Phe Phe Asn Trp Thr Ser Leu Ser Phe Leu Pro Asn Leu Glu Val Leu Asp Leu Ala Gly Asn Gln Leu Lys Ala Leu Thr Asn Gly Thr Leu Pro Asn Gly Thr Leu Leu 695 Gln Lys Leu Asp Val Ser Ser Asn Ser Ile Val Ser Val Val Pro Ala 705 710 715 Phe Phe Ala Leu Ala Val Glu Leu Lys Glu Val Asn Leu Ser His Asn 730 Ile Leu Lys Thr Val Asp Arg Ser Trp Phe Gly Pro Ile Val Met Asn 745 Leu Thr Val Leu Asp Val Arg Ser Asn Pro Leu His Cys Ala Cys Gly 760 Ala Ala Phe Val Asp Leu Leu Glu Val Gln Thr Lys Val Pro Gly Leu Ala Asn Gly Val Lys Cys Gly Ser Pro Gly Gln Leu Gln Gly Arg Ser Ile Phe Ala Gln Asp Leu Arg Leu Cys Leu Asp Glu Val Leu Ser Trp Asp Cys Phe Gly Leu Ser Leu Leu Ala Val Ala Val Gly Met Val 825 Val Pro Ile Leu His His Leu Cys Gly Trp Asp Val Trp Tyr Cys Phe His Leu Cys Leu Ala Trp Leu Pro Leu Leu Ala Arg Ser Arg Arg Ser 855 Ala Gln Thr Leu Pro Tyr Asp Ala Phe Val Val Phe Asp Lys Ala Gln Ser Ala Val Ala Asp Trp Val Tyr Asn Glu Leu Arg Val Arg Leu Glu 890 Glu Arg Arg Gly Arg Arg Ala Leu Arg Leu Cys Leu Glu Asp Arg Asp

179/231

PCT/US2004/012788 WO 2004/094671

905 910 Trp Leu Pro Gly Gln Thr Leu Phe Glu Asn Leu Trp Ala Ser Ile Tyr 915 920 Gly Ser Arg Lys Thr Leu Phe Val Leu Ala His Thr Asp Arg Val Ser 935 Gly Leu Leu Arg Thr Ser Phe Leu Leu Ala Gln Gln Arg Leu Leu Glu 945 Asp Arg Lys Asp Val Val Leu Val Ile Leu Arg Pro Asp Ala His 970 Arg Ser Arg Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val 980 Leu Phe Trp Pro Gln Gln Pro Asn Gly Gln Gly Phe Trp Ala Gln Leu Ser Thr Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln 1010 1015 Asn Phe Cys Arg Gly Pro Thr Ala Glu 1025 1030 <210> 76 <211> 3002 <212> DNA <213> Homo sapiens <400> 76 gtggcttggt attcactggc aggtttcaga catttagatc tttcttttaa tgactaacac 60 catgcctatc tgtggagaag ctggcaacat gtcacacctg gaaattgttt ttcaacatta 120 atactattat ttggcagtaa tccagattgc ttttgccacc aacctgaaga catatagagg 180 cagaaggaca ggaataattc tatttgtttc ctgttttgaa acttccatct gtaaggctat 240 caaaaggaga tgtgagagag ggtattgagt ctggcctgac aatgcagttc ttaaaccaaa 300 ggtccattat gcttctcctc tctgagaatc ctgacttacc tcaacaacgg agacatggca 360 cagtagccag cttggagact tctcagccaa tgctctgaga tcaagtcgaa gacccaatat 420 acagggtttt gagctcatct tcatcattca tatgaggaaa taagtggtaa aatccttgga 480 aatacaatga gactcatcag aaacatttac atattttgta gtattgttat gacagcagag 540 ggtgatgctc cagagctgcc agaagaaagg gaactgatga ccaactgctc caacatgtct 600 ctaagaaagg ttcccgcaga cttgacccca gccacaacga cactggattt atcctataac 660 ctcctttttc aactccagag ttcagatttt cattctgtct ccaaactgag agttttgatt 720 ctatgccata acagaattca acagctggat ctcaaaacct ttgaattcaa caaggagtta 780 agatatttag atttgtctaa taacagactg aagagtgtaa cttggtattt actggcaggt 840 ctcaggtatt tagatctttc ttttaatgac tttgacacca tgcctatctg tgaggaagct

900

THE PROPERTY OF THE PROPERTY AND THE AND THE PROPERTY AND THE PROPERTY OF THE PROPERTY OF A PROPERTY OF THE PR

| ggcaacatgt<br>ttccagaaaa | cacacctgga<br>ttgctcatct | aatcctaggt<br>gcatctaaat | ttgagtgggg<br>actgtcttct | caaaaataca<br>taggattcag | aaaatcagat<br>aactcttcct | 960<br>1020 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------|
| cattatgaag               | aaggtagcct               | gcccatctta               | aacacaacaa               | aactgcacat               | tgttttacca               | 1080        |
| atggacacaa               | atttctgggt               | tcttttgcgt               | gatggaatca               | agacttcaaa               | aatattagaa               | 1140        |
| atgacaaata               | tagatggcaa               | aagccaattt               | gtaagttatg               | aaatgcaacg               | aaatcttagt               | 1200        |
| ttagaaaatg               | ctaagacatc               | ggttctattg               | cttaataaag               | ttgatttact               | ctgggacgac               | 1260        |
| cttttcctta               | tcttacaatt               | tgtttggcat               | acatcagtgg               | aacactttca               | gatccgaaat               | 1320        |
| gtgacttttg               | gtggtaaggc               | ttatcttgac               | cacaattcat               | ttgactactc               | aaatactgta               | 1380        |
| atgagaacta               | taaaattgga               | gcatgtacat               | ttcagagtgt               | tttacattca               | acaggataaa               | 1440        |
| atctatttgc               | ttttgaccaa               | aatggacata               | gaaaacctga               | caatatcaaa               | tgcacaaatg               | 1500        |
| ccacacatgc               | ttttcccgaa               | ttatcctacg               | aaattccaat               | atttaaattt               | tgccaataat               | 1560        |
| atcttaacag               | acgagttgtt               | taaaagaact               | atccaactgc               | ctcacttgaa               | aactctcatt               | 1620        |
| ttgaatggca               | ataaactgga               | gacactttct               | ttagtaagtt               | gctttgctaa               | caacacaccc               | 1680        |
| ttggaacact               | tggatctgag               | tcaaaatcta               | ttacaacata               | aaaatgatga               | aaattgctca               | 1740        |
| tggccagaaa               | ctgtggtcaa               | tatgaatctg               | tcatacaata               | aattgtctga               | ttctgtcttc               | 1800        |
| aggtgcttgc               | ccaaaagtat               | tcaaatactt               | gacctaaata               | ataaccaaat               | ccaaactgta               | 1860        |
| cctaaagaga               | ctattcatct               | gatggcctta               | cgagaactaa               | atattgcatt               | taattttcta               | 1920        |
| actgatctcc               | ctggatgcag               | tcatttcagt               | agactttcag               | ttctgaacat               | tgaaatgaac               | 1980        |
| ttcattctca               | gcccatctct               | ggattttgtt               | cagagetgee               | aggaagttaa               | aactctaaat               | 2040        |
| gcgggaagaa               | atccattccg               | gtgtacctgt               | gaattaaaaa               | atttcattca               | gcttgaaaca               | 2100        |
| tattcagagg               | tcatgatggt               | tggatggtca               | gattcataca               | cctgtgaata               | ccctttaaac               | 2160        |
| ctaaggggaa               | ttaggttaaa               | agacgttcat               | ctccacgaat               | tatcttgcaa               | cacagetetg               | 2220        |
| ttgattgtca               | ccattgtggt               | tattatgcta               | gttctggggt               | tggctgtggc               | cttctgctgt               | 2280        |
| ctccactttg               | atctgccctg               | gtatctcagg               | atgctaggtc               | aatgcacaca               | aacatggcac               | 2340        |
| agggttagga               | aaacaaccca               | agaacaactc               | aagagaaatg               | tccgattcca               | cgcatttatt               | 2400        |
| tcatacagtg               | aacatgattc               | tctgtgggtg               | aagaatgaat               | tgatccccaa               | tctagagaag               | 2460        |
| gaagatggtt               | ctatcttgat               | ttgcctttat               | gaaagctact               | ttgaccctgg               | caaaagcatt               | 2520        |
| agtgaaaata               | ttgtaagctt               | cattgagaaa               | agctataagt               | ccatctttgt               | tttgtctccc               | 2580        |
| aactttgtcc               | agaatgagtg               | gtgccattat               | gaattttact               | ttgcccacca               | caatctcttc               | 2640        |
| catgaaaatt               | ctgatcatat               | aattcttatc               | ttactggaac               | ccattccatt               | ctattgcatt               | 2700        |
| cccaccaggt               | atcataaact               | gaaagctctc               | ctggaaaaaa               | aagcatactt               | ggaatggccc               | 2760        |
| aaggataggc               | gtaaatgtgg               | gcttttctgg               | gcaaaccttc               | gagctgctat               | taatgttaat               | 2820        |

gtattagcca ccagagaaat gtatgaactg cagacattca cagagttaaa tgaagagtct 2880 cgaggttcta caatctctct gatgagaaca gattgtctat aaaatcccac agtccttggg 2940 aagttgggga ccacatacac tgttgggatg tacattgata caacctttat gatggcaatt 3000 tg

<210> 77

<211> 811

<212> PRT

<213> Homo sapiens

<400> 77

Met Arg Leu Ile Arg Asn Ile Tyr Ile Phe Cys Ser Ile Val Met Thr 1 5 10 15

Ala Glu Gly Asp Ala Pro Glu Leu Pro Glu Glu Arg Glu Leu Met Thr
20 25 30

Asn Cys Ser Asn Met Ser Leu Arg Lys Val Pro Ala Asp Leu Thr Pro 35 40 45

Ala Thr Thr Thr Leu Asp Leu Ser Tyr Asn Leu Leu Phe Gln Leu Gln 50 55 60

Ser Ser Asp Phe His Ser Val Ser Lys Leu Arg Val Leu Ile Leu Cys 65 70 75 80

His Asn Arg Ile Gln Gln Leu Asp Leu Lys Thr Phe Glu Phe Asn Lys 85 90 95

Glu Leu Arg Tyr Leu Asp Leu Ser Asn Asn Arg Leu Lys Ser Val Thr 100 105 110

Trp Tyr Leu Leu Ala Gly Leu Arg Tyr Leu Asp Leu Ser Phe Asn Asp 115 120 125

Phe Asp Thr Met Pro Ile Cys Glu Glu Ala Gly Asn Met Ser His Leu 130 135 140

Glu Ile Leu Gly Leu Ser Gly Ala Lys Ile Gln Lys Ser Asp Phe Gln 145 150 155 160

Lys Ile Ala His Leu His Leu Asn Thr Val Phe Leu Gly Phe Arg Thr 165 170 175

Leu Pro His Tyr Glu Glu Gly Ser Leu Pro Ile Leu Asn Thr Thr Lys 180 185 190

Leu His Ile Val Leu Pro Met Asp Thr Asn Phe Trp Val Leu Leu Arg 195 200 205

Asp Gly Ile Lys Thr Ser Lys Ile Leu Glu Met Thr Asn Ile Asp Gly 210 215 220

Lys Ser Gln Phe Val Ser Tyr Glu Met Gln Arg Asn Leu Ser Leu Glu 225 235 240

Asn Ala Lys Thr Ser Val Leu Leu Leu Asn Lys Val Asp Leu Leu Trp 245 250 255

- Asp Asp Leu Phe Leu Ile Leu Gln Phe Val Trp His Thr Ser Val Glu 260 265 270
- His Phe Gln Ile Arg Asn Val Thr Phe Gly Gly Lys Ala Tyr Leu Asp 275 280 285
- His Asn Ser Phe Asp Tyr Ser Asn Thr Val Met Arg Thr Ile Lys Leu 290 295 300
- Glu His Val His Phe Arg Val Phe Tyr Ile Gln Gln Asp Lys Ile Tyr 305 310 315 320
- Leu Leu Thr Lys Met Asp Ile Glu Asn Leu Thr Ile Ser Asn Ala
  325
  330
  335
- Gln Met Pro His Met Leu Phe Pro Asn Tyr Pro Thr Lys Phe Gln Tyr 340 345 350
- Leu Asn Phe Ala Asn Asn Ile Leu Thr Asp Glu Leu Phe Lys Arg Thr 355 360 365
- Ile Gln Leu Pro His Leu Lys Thr Leu Ile Leu Asn Gly Asn Lys Leu 370 375 380
- Glu Thr Leu Ser Leu Val Ser Cys Phe Ala Asn Asn Thr Pro Leu Glu 385 390 395 400
- His Leu Asp Leu Ser Gln Asn Leu Leu Gln His Lys Asn Asp Glu Asn 405 410 415
- Cys Ser Trp Pro Glu Thr Val Val Asn Met Asn Leu Ser Tyr Asn Lys
  420 425 430
- Leu Ser Asp Ser Val Phe Arg Cys Leu Pro Lys Ser Ile Gln Ile Leu 435 440 445
- Asp Leu Asn Asn Asn Gln Ile Gln Thr Val Pro Lys Glu Thr Ile His
  450 455 460
- Leu Met Ala Leu Arg Glu Leu Asn Ile Ala Phe Asn Phe Leu Thr Asp 465 470 475 480
- Leu Pro Gly Cys Ser His Phe Ser Arg Leu Ser Val Leu Asn Ile Glu
  485 490 495
- Met Asn Phe Ile Leu Ser Pro Ser Leu Asp Phe Val Gln Ser Cys Gln 500 505 510
- Glu Val Lys Thr Leu Asn Ala Gly Arg Asn Pro Phe Arg Cys Thr Cys 515 520 525
- Glu Leu Lys Asn Phe Ile Gln Leu Glu Thr Tyr Ser Glu Val Met Met 530 540
- Val Gly Trp Ser Asp Ser Tyr Thr Cys Glu Tyr Pro Leu Asn Leu Arg 545 550 555
- Gly Ile Arg Leu Lys Asp Val His Leu His Glu Leu Ser Cys Asn Thr

570

565

Ala Leu Leu Ile Val Thr Ile Val Val Ile Met Leu Val Leu Gly Leu 585 Ala Val Ala Phe Cys Cys Leu His Phe Asp Leu Pro Trp Tyr Leu Arg 605 600 Met Leu Gly Gln Cys Thr Gln Thr Trp His Arg Val Arg Lys Thr Thr Gln Glu Gln Leu Lys Arg Asn Val Arg Phe His Ala Phe Ile Ser Tyr Ser Glu His Asp Ser Leu Trp Val Lys Asn Glu Leu Ile Pro Asn Leu 650 Glu Lys Glu Asp Gly Ser Ile Leu Ile Cys Leu Tyr Glu Ser Tyr Phe 665 Asp Pro Gly Lys Ser Ile Ser Glu Asn Ile Val Ser Phe Ile Glu Lys 680 Ser Tyr Lys Ser Ile Phe Val Leu Ser Pro Asn Phe Val Gln Asn Glu 695 Trp Cys His Tyr Glu Phe Tyr Phe Ala His His Asn Leu Phe His Glu Asn Ser Asp His Ile Ile Leu Ile Leu Leu Glu Pro Ile Pro Phe Tyr 730 Cys Ile Pro Thr Arg Tyr His Lys Leu Lys Ala Leu Leu Glu Lys Lys 745 Ala Tyr Leu Glu Trp Pro Lys Asp Arg Arg Lys Cys Gly Leu Phe Trp 760 Ala Asn Leu Arg Ala Ala Ile Asn Val Asn Val Leu Ala Thr Arg Glu 775 Met Tyr Glu Leu Gln Thr Phe Thr Glu Leu Asn Glu Glu Ser Arg Gly 790 785 Ser Thr Ile Ser Leu Met Arg Thr Asp Cys Leu 805 <210> 78 <211> 2760 <212> DNA <213> Homo sapiens <220> <221> misc\_feature <222> (2529)..(2529) <223> n is a, c, g, or t <400> 78 aagaatttgg actcatatca agatgctctg aagaagaaca accctttagg atagccactg caacatcatg accaaagaca aagaacctat tgttaaaagc ttccattttg tttgccttat

60

| gatcataata<br>gtcaaaaaga | gttggaacca<br>ggtcttattc | gaatccagtt<br>atgttccaaa | ctccgacgga<br>agacctaccg | aatgaatttg<br>ctgaaaacca | cagtagacaa<br>aagtcttaga | 180<br>240 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| tatgtctcag               | aactacatcg               | ctgagcttca               | ggtctctgac               | atgagctttc               | tatcagagtt               | 300        |
| gacagttttg               | agactttccc               | ataacagaat               | ccagctactt               | gatttaagtg               | ttttcaagtt               | 360        |
| caaccaggat               | ttagaatatt               | tggatttatc               | tcataatcag               | ttgcaaaaga               | tatcctgcca               | 420        |
| tcctattgtg               | agtttcaggc               | atttagatct               | ctcattcaat               | gatttcaagg               | ccctgcccat               | 480        |
| ctgtaaggaa               | tttggcaact               | tatcacaact               | gaatttcttg               | ggattgagtg               | ctatgaagct               | 540        |
| gcaaaaatta               | gatttgctgc               | caattgctca               | cttgcatcta               | agttatatcc               | ttctggattt               | 600        |
| aagaaattat               | tatataaaag               | aaaatgagac               | agaaagtcta               | caaattctga               | atgcaaaaac               | 660        |
| ccttcacctt               | gtttttcacc               | caactagttt               | attcgctatc               | caagtgaaca               | tatcagttaa               | 720        |
| tactttaggg               | tgcttacaac               | tgactaatat               | taaattgaat               | gatgacaact               | gtcaagtttt               | 780        |
| cattaaattt               | ttatcagaac               | tcaccagagg               | tccaacctta               | ctgaatttta               | ccctcaacca               | 840        |
| catagaaacg               | acttggaaat               | gcctggtcag               | agtctttcaa               | tttctttggc               | ccaaacctgt               | 900        |
| ggaatatctc               | aatatttaca               | atttaacaat               | aattgaaagc               | attcgtgaag               | aagattttac               | 960        |
| ttattctaaa               | acgacattga               | aagcattgac               | aatagaacat               | atcacgaacc               | aagtttttct               | 1020       |
| gttttcacag               | acagetttgt               | acaccgtgtt               | ttctgagatg               | aacattatga               | tgttaaccat               | 1080       |
| ttcagataca               | ccttttatac               | acatgctgtg               | tcctcatgca               | ccaagcacat               | tcaagttttt               | 1140       |
| gaactttacc               | : cagaacgttt             | . tcacagatag             | tatttttgaa               | aaatgttcca               | cgttagttaa               | 1200       |
| attggagaca               | cttatcttac               | : aaaagaatgg             | attaaaagac               | cttttcaaag               | taggtctcat               | 1260       |
| gacgaaggat               | atgccttctt               | tggaaatact               | ggatgttagc               | tggaattctt               | tggaatctgg               | 1320       |
| tagacataaa               | a gaaaactgca             | ı cttgggttga             | gagtatagtg               | gtgttaaatt               | tgtcttcaaa               | 1380       |
| tatgcttact               | gactctgttt               | tcagatgttt               | acctcccagg               | atcaaggtac               | ttgatcttca               | 1440       |
| cagcaataaa               | a ataaagagc <u>c</u>     | g ttcctaaaca             | agtcgtaaaa               | ctggaagctt               | tgcaagaact               | 1500       |
| caatgttgc                | t ttcaattctt             | taactgacct               | tcctggatgt               | ggcagcttta               | gcagcctttc               | 1560       |
| tgtattgat                | c attgatcaca             | a attcagttto             | c ccacccatco             | g gctgatttct             | tccagagctg               | 1620       |
| ccagaagat                | g aggtcaataa             | a aagcagggg              | a caatccatto             | caatgtacct               | gtgagctaag               | 1680       |
| agaatttgt                | c aaaaatata              | g accaagtato             | c aagtgaagtg             | g ttagagggct             | ggcctgattc               | 1740       |
| ttataagtg                | t gactaccca              | g aaagttatag             | g aggaagccca             | a ctaaaggact             | ttcacatgtc               | 1800       |
| tgaattatc                | c tgcaacata              | a ctctgctga              | t cgtcaccato             | ggtgccacca               | tgctggtgtt               | 1860       |
| ggctgtgac                | t gtgacctcc              | c tctgcatct              | a cttggatctg             | g ccctggtato             | tcaggatggt               | 1920       |
| gtgccagtg                | g acccagact              | c ggcgcaggg              | c caggaacata             | a cccttagaaq             | g aactccaaag             | 1980       |
| aaacctcca                | g tttcatgct              | t ttatttcat              | a tagtgaaca              | t gattctgcct             | gggtgaaaag               | 2040       |

tgaattggta ccttacctag aaaaagaaga tatacagatt tgtcttcatg agaggaactt 2100 tgtccctggc aagagcattg tggaaaatat catcaactgc attgagaaga gttacaagtc 2160 catctttgtt ttgtctccca actttgtcca gagtgagtgg tgccattacg aactctattt 2220 tgcccatcac aatctctttc atgaaggatc taataactta atcctcatct tactggaacc 2280 cattccacag aacagcattc ccaacaagta ccacaagctg aaggctctca tgacgcagcg 2340 gacttatttg cagtggccca aggagaaaag caaacgtggg ctcttttggg ctaacattag 2400 agccgctttt aatatgaaat taacactagt cactgaaaac aatgatgtga aatcttaaaa 2460 aaatttagga aattcaactt aagaaaccat tatttacttg gatgatggtg aatagtacag 2520 togtaagtna otgtotggag gtgootocat tatootoatg cottoaggaa agaottaaca 2580 aaaacaatgt ttcatctggg gaactgagct aggcggtgag gttagcctgc cagttagaga 2640 cageceagte tettetggtt taateattat gttteaaatt gaaacagtet ettttgagta 2700 aatgctcagt ttttcagctc ctctccactc tgctttccca aatggattct gttggtgaag 2760

<210> 79

<211> 2753

<212> DNA

<213> Homo sapiens

<400> 79 agaatttgga ctcatatcaa gatgctctga agaagaacaa ccctttagga tagccactgc 60 aacatcatga ccaaagacaa agaacctatt gttaaaagct tccattttgt ttgccttatg 120 atcataatag ttggaaccag aatccagttc tccgacggaa atgaatttgc agtagacaag 180 tcaaaaagag gtcttattca tgttccaaaa gacctaccgc tgaaaaccaa agtcttagat 240 atgtctcaga actacatcgc tgagcttcag gtctctgaca tgagctttct atcagagttg 300 acagttttga gactttccca taacagaatc cagctacttg atttaagtgt tttcaagttc 360 aaccaggatt tagaatattt ggatttatct cataatcagt tgcaaaagat atcctgccat 420 cctattgtga gtttcaggca tttagatctc tcattcaatg atttcaaggc cctgcccatc 480 tgtaaggaat ttggcaactt atcacaactg aatttcttgg gattgagtgc tatgaagctg 540 caaaaattag atttgctgcc aattgctcac ttgcatctaa gttatatcct tctggattta 600 agaaattatt atataaaaga aaatgagaca gaaagtctac aaattctgaa tgcaaaaacc 660 cttcaccttg tttttcaccc aactagttta ttcgctatcc aagtgaacat atcagttaat 720 actttagggt gcttacaact gactaatatt aaattgaatg atgacaactg tcaagttttc 780 attaaatttt tatcagaact caccagaggt tcaaccttac tgaattttac cctcaaccac 840 900 atagaaacga cttggaaatg cctggtcaga gtctttcaat ttctttggcc caaacctgtg

|            |            |            | attgaaagca<br>atagaacata |            |            | 960<br>1020 |
|------------|------------|------------|--------------------------|------------|------------|-------------|
| ttttcacaga | cagctttgta | caccgtgttt | tctgagatga               | acattatgat | gttaaccatt | 1080        |
| tcagatacac | cttttataca | catgctgtgt | cctcatgcac               | caagcacatt | caagtttttg | 1140        |
| aactttaccc | agaacgtttt | cacagatagt | atttttgaaa               | aatgttccac | gttagttaaa | 1200        |
| ttggagacac | ttatcttaca | aaaaaatgga | ttaaaagacc               | ttttcaaagt | aggtctcatg | 1260        |
| acgaaggata | tgccttcttt | ggaaatactg | gatgttagct               | ggaattcttt | ggaatctggt | 1320        |
| agacataaag | aaaactgcac | ttgggttgag | agtatagtgg               | tgttaaattt | gtcttcaaat | 1380        |
| atgcttactg | actctgtttt | cagatgttta | cctcccagga               | tcaaggtact | tgatcttcac | 1440        |
| agcaataaaa | taaagagcgt | tcctaaacaa | gtcgtaaaac               | tggaagcttt | gcaagaactc | 1500        |
| aatgttgctt | tcaattcttt | aactgacctt | cctggatgtg               | gcagctttag | cagcctttct | 1560        |
| gtattgatca | ttgatcacaa | ttcagtttcc | cacccatcgg               | ctgatttctt | ccagagctgc | 1620        |
| cagaagatga | ggtcaataaa | agcaggggac | aatccattcc               | aatgtacctg | tgagctaaga | 1680        |
| gaatttgtca | aaaatataga | ccaagtatca | agtgaagtgt               | tagagggctg | gcctgattct | 1740        |
| tataagtgtg | actacccaga | aagttataga | ggaagcccac               | taaaggactt | tcacatgtct | 1800        |
| gaattatcct | gcaacataac | tctgctgatc | gtcaccatcg               | gtgccaccat | gctggtgttg | 1860        |
| gctgtgactg | tgacctccct | ctgcatctac | ttggatctgc               | cctggtatct | caggatggtg | 1920        |
| tgccagtgga | cccagactcg | gcgcagggcc | aggaacatac               | ccttagaaga | actccaaaga | 1980        |
| aacctccagt | ttcatgcttt | tatttcatat | agtgaacatg               | attetgeetg | ggtgaaaagt | 2040        |
| gaattggtac | cttacctaga | aaaagaagat | atacagattt               | gtcttcatga | gaggaacttt | 2100        |
| gtccctggca | agagcattgt | ggaaaatatc | atcaactgca               | ttgagaagag | ttacaagtcc | 2160        |
| atctttgttt | tgtctcccaa | ctttgtccag | agtgagtggt               | gccattacga | actctatttt | 2220        |
| gcccatcaca | atctctttca | tgaaggatct | aataacttaa               | tcctcatctt | actggaaccc | 2280        |
| attccacaga | acagcattcc | caacaagtac | cacaagctga               | aggctctcat | gacgcagcgg | 2340        |
| acttatttgc | agtggcccaa | ggagaaaagc | aaacgtgggc               | tcttttgggc | taacattaga | 2400        |
| gccgctttta | atatgaaatt | aacactagtc | actgaaaaca               | atgatgtgaa | atcttaaaaa | 2460        |
| aatttaggaa | attcaactta | agaaaccatt | atttacttgg               | atgatggtga | atagtacagt | 2520        |
| cgtaagtaac | tgtctggagg | tgcctccatt | atcctcatgc               | cttcaggaaa | gacttaacaa | 2580        |
| aaacaatgtt | tcatctgggg | aactgagcta | ggcggtgagg               | ttagcctgcc | agttagagac | 2640        |
| agcccagtct | cttctggttt | aatcattatg | tttcaaattg               | aaacagtctc | ttttgagtaa | 2700        |
| atgctcagtt | tttcagctcc | tctccactct | gctttcccaa               | atggattctg | ttg        | 2753        |

<210> 80

<211> 796

<212> PRT

<213> Homo sapiens

<400> 80

Met Thr Lys Asp Lys Glu Pro Ile Val Lys Ser Phe His Phe Val Cys
1 5 10 15

Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp Gly Asn 20 25 30

Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val Pro Lys 35 40 45

Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn Tyr Ile 50 55 60

Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu Thr Val 65 70 75 80

Leu Arg Leu Ser His Asn Arg Ile Gln Leu Leu Asp Leu Ser Val Phe 85 90 95

Lys Phe Asn Gln Asp Leu Glu Tyr Leu Asp Leu Ser His Asn Gln Leu 100 105 110

Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu Asp Leu 115 120 125

Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe Gly Asn 130 135 140

Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu Gln Lys
145 150 155 160

Leu Asp Leu Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile Leu Leu 165 170 175

Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser Leu Gln 180 185 190

Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr Ser Leu 195 200 205

Phe Ala Ile Gln Val Asn Ile Ser Val Asn Thr Leu Gly Cys Leu Gln 210 215 220

Leu Thr Asn Ile Lys Leu Asn Asp Asp Asn Cys Gln Val Phe Ile Lys 225 230 235 240

Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Phe Thr Leu 245 250 255

Asn His Ile Glu Thr Thr Trp Lys Cys Leu Val Arg Val Phe Gln Phe 260 265 270

Leu Trp Pro Lys Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile 275 280 285

Ile Glu Ser Ile Arg Glu Glu Asp Phe Thr Tyr Ser Lys Thr Thr Leu Lys Ala Leu Thr Ile Glu His Ile Thr Asn Gln Val Phe Leu Phe Ser 315 Gln Thr Ala Leu Tyr Thr Val Phe Ser Glu Met Asn Ile Met Met Leu Thr Ile Ser Asp Thr Pro Phe Ile His Met Leu Cys Pro His Ala Pro Ser Thr Phe Lys Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Ile Phe Glu Lys Cys Ser Thr Leu Val Lys Leu Glu Thr Leu Ile Leu Gln Lys Asn Gly Leu Lys Asp Leu Phe Lys Val Gly Leu Met Thr Lys 395 Asp Met Pro Ser Leu Glu Ile Leu Asp Val Ser Trp Asn Ser Leu Glu 405 410 Ser Gly Arg His Lys Glu Asn Cys Thr Trp Val Glu Ser Ile Val Val 425 Leu Asn Leu Ser Ser Asn Met Leu Thr Asp Ser Val Phe Arg Cys Leu 440 Pro Pro Arg Ile Lys Val Leu Asp Leu His Ser Asn Lys Ile Lys Ser 455 Val Pro Lys Gln Val Val Lys Leu Glu Ala Leu Gln Glu Leu Asn Val 470 Ala Phe Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ser Phe Ser Ser Leu Ser Val Leu Ile Ile Asp His Asn Ser Val Ser His Pro Ser Ala 500 Asp Phe Phe Gln Ser Cys Gln Lys Met Arg Ser Ile Lys Ala Gly Asp Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Glu Phe Val Lys Asn Ile Asp Gln Val Ser Ser Glu Val Leu Glu Gly Trp Pro Asp Ser Tyr Lys Cys Asp Tyr Pro Glu Ser Tyr Arg Gly Ser Pro Leu Lys Asp Phe His Met Ser Glu Leu Ser Cys Asn Ile Thr Leu Leu Ile Val Thr Ile Gly 585 Ala Thr Met Leu Val Leu Ala Val Thr Val Thr Ser Leu Cys Ile Tyr 600 Leu Asp Leu Pro Trp Tyr Leu Arg Met Val Cys Gln Trp Thr Gln Thr

PCT/US2004/012788 WO 2004/094671

620

|                          | 610        |                          |            |                    |            | 615        |            |             |            |              | 620          |            |            |             |             |
|--------------------------|------------|--------------------------|------------|--------------------|------------|------------|------------|-------------|------------|--------------|--------------|------------|------------|-------------|-------------|
| Arg .<br>525             | Arg        |                          |            |                    | 630        | Ile        |            |             |            | 635          | Leu          |            |            |             | 040         |
| Gln                      | Phe        | His                      | Ala        | Phe<br>645         | Ile        | Ser        | Tyr        | Ser         | Glu<br>650 | His          | Asp          | Ser        | Ala        | Trp<br>655  | Val         |
| Lys                      | Ser        | Glu                      | Leu<br>660 | Val                | Pro        | Tyr        | Leu        | Glu<br>665  | Lys        | Glu          | Asp          | Ile        | Gln<br>670 | Ile         | Сув         |
| Leu                      | His        | Glu<br>675               | Arg        | Asn                | Phe        | Val        | Pro<br>680 | Gly         | Lys        | Ser          | Ile          | Val<br>685 | Glu        | Asn         | Ile         |
| Ile                      | Asn<br>690 | Сув                      | Ile        | Glu                | Lys        | Ser<br>695 | Tyr        | ГÀв         | Ser        | Ile          | Phe<br>700   | Val        | Leu        | Ser         | Pro         |
| Asn<br>705               | Phe        | Val                      | Gln        | Ser                | Glu<br>710 | Trp        | Cys        | His         | Туг        | Glu<br>715   | Leu          | Tyr        | Phe        | Ala         | His<br>720  |
| His                      | Asn        | Leu                      | Phe        | His<br>725         |            | Gly        | Ser        | Asn         | 730        | Lev          | Ile          | Leu        | Ile        | Leu<br>735  | Leu         |
| Glu                      | Pro        | Ile                      | Pro<br>740 |                    | Asn        | Ser        | Ile        | Pro<br>745  | Ası        | 1 Губ        | Tyr          | His        | 750        | Leu         | Lys         |
| Ala                      | Leu        | Met<br>755               |            | Gln                | Arg        | Thr        | 760        | Leu         | Gl:        | a Try        | ) Pro        | Ъув<br>765 | Glu<br>S   | Lys         | Ser         |
| Lys                      | Arg<br>770 |                          | , Leu      | ı Phe              | Trp        | 775        |            | ı Ile       | e Ar       | g Ala        | a Ala<br>780 | Phe        | e Asr      | Met         | : Lys       |
| Leu<br>785               |            | Let                      | ı Val      | l Thr              | Glu<br>790 |            | ı Ası      | n Asp       | ∨Va        | 1 Ly:<br>79: | s Ser<br>5   | :          |            |             |             |
| <21<br><21<br><21<br><21 | .1><br>.2> | 81<br>796<br>PRT<br>Home | o saj      | piens              | 3          |            |            | ,           |            |              |              |            |            |             |             |
| <40                      | 00>        | 81                       |            |                    |            |            |            |             |            |              |              |            |            |             |             |
| Met<br>1                 | Th:        | r Ly                     | s As       | р <b>L</b> y:<br>5 | s Gl       | u Pr       | o Il       | e Va        | l Ly<br>10 | rs Se        | r Ph         | e Hi       | s Ph       | e Va<br>15  | l Cys       |
| Let                      | ı Me       | t Il                     | e Il<br>20 |                    | e Va       | l Gl       | y Th       | r Ar<br>25  | g Il       | e Gl         | n Ph         | e Se       | r As       | p Gl        | y Asn       |
| Gli                      | u Ph       | e Al<br>35               |            | l As               | р Ьу       | s Se       | r Ly<br>40 | s Ar        | g G        | Гу Ге        | u Il         | e Hi<br>45 | s Va       | l Pr        | o Lys       |
| As                       | р Le<br>50 |                          | o Le       | u Ly               | s Th       | r Ly<br>55 |            | l Le        | u A        | sp Me        | t Se<br>60   | r Gl       | n As       | n Ty        | r Ile       |
| Al<br>65                 |            | u Le                     | eu Gl      | n Va               | .l Se      |            | p Me       | et Se       | r Pl       | ne Le<br>79  | eu Se        | r Gl       | u Le       | u Th        | r Val<br>80 |
| Le                       | u Ar       | g Le                     | eu Se      | er Hi<br>85        |            | n Ai       | g II       | le GJ       | n L<br>9   | eu Le<br>O   | eu As        | p Le       | eu Se      | er Va<br>95 | l Phe       |
| Ьу                       | s Ph       | ie As                    |            | ln As<br>00        | p Le       | eu Gl      | lu Ty      | yr Le<br>10 | eu A<br>05 | sp L         | eu Se        | er Hi      | is As      | sn G]<br>LO | ln Leu      |

Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu Asp Leu 120 Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe Gly Asn 135 Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu Gln Lys 155 Leu Asp Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile Leu Leu Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser Leu Gln 185 Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr Ser Leu 200 Phe Ala Ile Gln Val Asn Ile Ser Val Asn Thr Leu Gly Cys Leu Gln 215 Leu Thr Asn Ile Lys Leu Asn Asp Asp Asn Cys Gln Val Phe Ile Lys 230 Phe Leu Ser Glu Leu Thr Arg Gly Ser Thr Leu Leu Asn Phe Thr Leu 250 Asn His Ile Glu Thr Thr Trp Lys Cys Leu Val Arg Val Phe Gln Phe 265 Leu Trp Pro Lys Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile 280 Ile Glu Ser Ile Arg Glu Glu Asp Phe Thr Tyr Ser Lys Thr Thr Leu 295 Lys Ala Leu Thr Ile Glu His Ile Thr Asn Gln Val Phe Leu Phe Ser 310 Gln Thr Ala Leu Tyr Thr Val Phe Ser Glu Met Asn Ile Met Met Leu 325 Thr Ile Ser Asp Thr Pro Phe Ile His Met Leu Cys Pro His Ala Pro Ser Thr Phe Lys Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Ile Phe Glu Lys Cys Ser Thr Leu Val Lys Leu Glu Thr Leu Ile Leu 375 Gln Lys Asn Gly Leu Lys Asp Leu Phe Lys Val Gly Leu Met Thr Lys 385 Asp Met Pro Ser Leu Glu Ile Leu Asp Val Ser Trp Asn Ser Leu Glu 410 Ser Gly Arg His Lys Glu Asn Cys Thr Trp Val Glu Ser Ile Val Val 425 Leu Asn Leu Ser Ser Asn Met Leu Thr Asp Ser Val Phe Arg Cys Leu

440 435 Pro Pro Arg Ile Lys Val Leu Asp Leu His Ser Asn Lys Ile Lys Ser 455 Val Pro Lys Gln Val Val Lys Leu Glu Ala Leu Gln Glu Leu Asn Val 470 Ala Phe Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ser Phe Ser Ser 490 Leu Ser Val Leu Ile Ile Asp His Asn Ser Val Ser His Pro Ser Ala Asp Phe Phe Gln Ser Cys Gln Lys Met Arg Ser Ile Lys Ala Gly Asp 520 Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Glu Phe Val Lys Asn Ile Asp Gln Val Ser Ser Glu Val Leu Glu Gly Trp Pro Asp Ser Tyr Lys 550 Cys Asp Tyr Pro Glu Ser Tyr Arg Gly Ser Pro Leu Lys Asp Phe His 565 Met Ser Glu Leu Ser Cys Asn Ile Thr Leu Leu Ile Val Thr Ile Gly Ala Thr Met Leu Val Leu Ala Val Thr Val Thr Ser Leu Cys Ile Tyr 595 Leu Asp Leu Pro Trp Tyr Leu Arg Met Val Cys Gln Trp Thr Gln Thr 615 Arg Arg Arg Ala Arg Asn Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu 625 Gln Phe His Ala Phe Ile Ser Tyr Ser Glu His Asp Ser Ala Trp Val 650 Lys Ser Glu Leu Val Pro Tyr Leu Glu Lys Glu Asp Ile Gln Ile Cys Leu His Glu Arg Asn Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile 680 Ile Asn Cys Ile Glu Lys Ser Tyr Lys Ser Ile Phe Val Leu Ser Pro 695 Asn Phe Val Gln Ser Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His 710 His Asn Leu Phe His Glu Gly Ser Asn Asn Leu Ile Leu Ile Leu Leu Glu Pro Ile Pro Gln Asn Ser Ile Pro Asn Lys Tyr His Lys Leu Lys 745 Ala Leu Met Thr Gln Arg Thr Tyr Leu Gln Trp Pro Lys Glu Lys Ser

Lys Arg Gly Leu Phe Trp Ala Asn Ile Arg Ala Ala Phe Asn Met Lys

775 770 Leu Thr Leu Val Thr Glu Asn Asn Asp Val Lys Ser 790

<210> 82 .

<211> 796 <212> PRT

<213> Homo sapiens

<400> 82

Met Thr Lys Asp Lys Glu Pro Ile Val Lys Ser Phe His Phe Val Cys 10 5

Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp Gly Asn

Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val Pro Lys 40

Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn Tyr Ile

Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu Thr Val 75 70

Leu Arg Leu Ser His Asn Arg Ile Gln Leu Leu Asp Leu Ser Val Phe

Lys Phe Asn Gln Asp Leu Glu Tyr Leu Asp Leu Ser His Asn Gln Leu

Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu Asp Leu 120

Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe Gly Asn 135

Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu Gln Lys 155 150

Leu Asp Leu Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile Leu Leu

Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser Leu Gln 185

Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr Ser Leu

Phe Ala Ile Gln Val Asn Ile Ser Val Asn Thr Leu Gly Cys Leu Gln 215

Leu Thr Asn Ile Lys Leu Asn Asp Asp Asn Cys Gln Val Phe Ile Lys 225

Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Phe Thr Leu 250

Asn His Ile Glu Thr Trp Lys Cys Leu Val Arg Val Phe Gln Phe 260

Leu Trp Pro Lys Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile 275 280 285

- Ile Glu Ser Ile Arg Glu Glu Asp Phe Thr Tyr Ser Lys Thr Thr Leu 290 295 300
- Lys Ala Leu Thr Ile Glu His Ile Thr Asn Gln Val Phe Leu Phe Ser 305 . 310 315 320
- Gln Thr Ala Leu Tyr Thr Val Phe Ser Glu Met Asn Ile Met Met Leu 325 330 335
- Thr Ile Ser Asp Thr Pro Phe Ile His Met Leu Cys Pro His Ala Pro 340 345 350
- Ser Thr Phe Lys Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser 355 360 365
- Ile Phe Glu Lys Cys Ser Thr Leu Val Lys Leu Glu Thr Leu Ile Leu 370 375 380
- Gln Lys Asn Gly Leu Lys Asp Leu Phe Lys Val Gly Leu Met Thr Lys 385 390 395 400
- Asp Met Pro Ser Leu Glu Ile Leu Asp Val Ser Trp Asn Ser Leu Glu 405 410 415
- Ser Gly Arg His Lys Glu Asn Cys Thr Trp Val Glu Ser Ile Val Val 420 425 430
- Leu Asn Leu Ser Ser Asn Met Leu Thr Asp Ser Val Phe Arg Cys Leu 435 440 445
- Pro Pro Arg Ile Lys Val Leu Asp Leu His Ser Asn Lys Ile Lys Ser 450 455 460
- Val Pro Lys Gln Val Val Lys Leu Glu Ala Leu Gln Glu Leu Asn Val 465 470 475 480
- Ala Phe Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ser Phe Ser Ser 485 490 495
- Leu Ser Val Leu Ile Ile Asp His Asn Ser Val Ser His Pro Ser Ala 500 505 510
- Asp Phe Phe Gln Ser Cys Gln Lys Met Arg Ser Ile Lys Ala Gly Asp 515 520 525
- Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Glu Phe Val Lys Asn Ile 530 535 540
- Asp Gln Val Ser Ser Glu Val Leu Glu Gly Trp Pro Asp Ser Tyr Lys 545 550 555
- Cys Asp Tyr Pro Glu Ser Tyr Arg Gly Ser Pro Leu Lys Asp Phe His 565 570 575
- Met Ser Glu Leu Ser Cys Asn Ile Thr Leu Leu Ile Val Thr Ile Gly 580 585 590
- Ala Thr Met Leu Val Leu Ala Val Thr Val Thr Ser Leu Cys Ile Tyr

| Leu                      | Asp<br>610  | 595<br>Leu                | Pro        | Trp        | Tyr        | Leu<br>615 | 600<br>Arg | Met        | Val        | Cys        | Gln<br>620  | 605<br>Trp | Thr               | Gln        | Thr        |     |    |
|--------------------------|-------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|-------------------|------------|------------|-----|----|
| Arg<br>625               | Arg         | Arg                       | Ala        | Arg        | Asn<br>630 | Ile        | Pro        | Leu        | Glu        | Glu<br>635 | Leu         | Gln        | Arg               | Asn        | Leu<br>640 |     |    |
| Gln                      | Phe         | His                       | Ala        | Phe<br>645 | Ile        | Ser        | Tyr        | Ser        | Glu<br>650 | His        | Asp         | Ser        | Ala               | Trp<br>655 | Val        |     |    |
| Lys                      | Ser         | Glu                       | Leu<br>660 | Val        | Pro        | Tyr        | Leu        | Glu<br>665 | Lys        | Glu        | Asp         | Ile        | Gln<br>670        | Ile        | Сув        |     |    |
| Leu                      | His         | Glu<br>675                | Arg        | Asn        | Phe        | Val        | Pro<br>680 | Gly        | ГÀЗ        | Ser        | Ile         | Val<br>685 | Glu               | Asn        | Ile        |     |    |
| Ile                      | Asn<br>690  | Сув                       | Ile        | Glu        | ГАВ        | Ser<br>695 | Tyr        | Lys        | Ser        | Ile        | Phe<br>700  | Val        | Leu               | Ser        | Pro        |     |    |
| Asn<br>705               | Phe         | Val                       | Gln        | Ser        | Glu<br>710 | Trp        | Сув        | His        | Tyr        | Glu<br>715 | Leu         | Tyr        | Phe               | Ala        | His<br>720 |     |    |
| His                      | Asn         | Leu                       | Phe        | His<br>725 | Glu        | Gly        | Ser        | Asn        | Asn<br>730 | Leu        | Ile         | Leu        | Ile               | Leu<br>735 | Leu        |     |    |
| Glu                      | Pro         | Ile                       | Pro<br>740 | Gln        | Asn        | Ser        | Ile        | Pro<br>745 |            | Lys        | Tyr         | His        | <b>Lys</b><br>750 | Leu        | Lys        |     |    |
| Ala                      | Leu         | Met<br>755                |            | Gln        | Arg        | Thr        | Tyr<br>760 |            | Gln        | Trp        | Pro         | Lys<br>765 | Glu               | ГÀЗ        | Ser        |     |    |
| Lys                      | Arg<br>770  |                           | Leu        | Phe        | Trp        | Ala<br>775 |            | Ile        | Arg        | Ala        | Ala<br>780  | Phe        | Asn               | Met        | Lys        |     |    |
| Leu<br>785               |             | Leu                       | Val        | Thr        | Glu<br>790 |            | Asn        | Asp        | Val        | Lys<br>795 |             | •          |                   |            |            |     |    |
| <21<br><21<br><21<br><21 | .1><br>.2>  | 83<br>2604<br>DNA<br>muri |            |            |            |            |            |            |            |            |             |            |                   |            |            |     |    |
| <40<br>aag               | 0><br> taaa | 83<br>aat                 | gato       | ıtgaa      | ıga a      | ıtggt      | aaag       | jt co      | ectct      | ggga       | ta <u>c</u> | geete      | tgc               | aaca       | tgagcc     | (   | 50 |
| aag                      | jacaç       | gaaa                      | acco       | atco       | jtg g      | ggag       | tttc       | c ac       | ettte      | gtttg      | g cgc       | ccts       | gcc               | ttaa       | tagtcg     | 12  | 20 |
| gaa                      | ıgcat       | gac                       | cccg       | gttct      | ct a       | atga       | actt       | g ag       | gteta      | tggt       | aga:        | actat      | tca               | aaca       | ıggaacc    | 1   | 80 |
| tta                      | ectca       | atgt                      | ccc        | caaaç      | gac o      | etge       | cacca      | aa ga      | aacaa      | aago       | cct         | gagt       | ctg               | tcto       | aaaact     | 2   | 40 |
| cta                      | atato       | ctga                      | gctt       | cgga       | atg o      | cctga      | atato      | ca go      | ctttc      | ctgto      | aga         | agcto      | gaga              | gtto       | tgagac:    | 3   | 00 |
| tct                      | ccca        | acaa                      | cag        | gatao      | egg a      | agcct      | tgat       | t to       | ccato      | gtatt      | ct1         | tgtt       | caat              | cagg       | gacttag    | 3   | 60 |
| aat                      | acci        | gga                       | tgt        | ctcad      | cac a      | aatc       | ggtt       | gc a       | aaaca      | atcto      | e tt        | gctg       | cct               | atg        | gcgagcc    | 4   | 20 |
| tga                      | aggca       | atct                      | aga        | cctc       | tca 1      | ttca       | atga       | ct t       | tgat       | gtaci      | t gc        | ctgt       | gtgt              | aag        | gaatttg    | 4   | 80 |
| gca                      | aacci       | tgac                      | gaa        | gctga      | act 1      | ttcci      | tggg       | at t       | aagt       | gctg       | c ca        | agtt       | ccga              | caa        | ctggato    | . 5 | 40 |

| tgctcccagt<br>taaaaggcgg | tgctcacttg<br>ggaaacagaa | catctaagct<br>agtcttcaga | gcattcttct (<br>ttcccaatac | ggacttagtg<br>caccgttctc | agtcatcata<br>catttggtct | 600<br>660 |
|--------------------------|--------------------------|--------------------------|----------------------------|--------------------------|--------------------------|------------|
| ttcatccaaa               | tagcttgttc               | tctgttcaag               | tgaacatgtc ·               | tgtaaacgct               | ttaggacatt               | 720        |
| tacaactgag               | taatattaaa               | ttgaatgatg               | aaaactgtca                 | aaggttaatg               | acatttttat               | 780        |
| cagaactcac               | cagaggtcca               | accttattga               | atgtgaccct                 | ccagcacata               | gaaacaacct               | 840        |
| ggaagtgctc               | ggttaaactt               | ttccaattct               | tttggccccg                 | accggtggag               | tacctcaata               | 900        |
| tttacaactt               | aacgataact               | gagagaatcg               | acagggaaga                 | atttacttac               | teggagacag               | 960        |
| cactgaagtc               | actgatgata               | gagcacgtca               | aaaaccaagt                 | gttcctcttt               | tcaaaggagg               | 1020       |
| cgctatactc               | ggtgtttgct               | gagatgaaca               | tcaagatgct                 | ctctatctca               | gacacccctt               | 1080       |
| tcatccacat               | ggtgtgcccg               | ccatccccaa               | gctcatttac                 | atttctgaac               | tttacccaga               | 1140       |
| atgttttac                | tgacagtgtt               | tttcaaggct               | gttccacctt                 | aaagagattg               | cagacactta               | 1200       |
| tcttacaaag               | gaatggtttg               | aagaactttt               | ttaaagtagc                 | tctcatgact               | aagaatatgt               | 1260       |
| cctctctgga               | aactttggat               | gttagtttga               | attctttgaa                 | ctctcatgca               | tatgacagga               | 1320       |
| catgcgcctg               | ggctgagagc               | atattggtgt               | tgaatttgtc                 | ttcgaatatg               | cttacaggct               | 1380       |
| ctgtcttcag               | atgcttacct               | cccaaggtca               | aggtccttga                 | ccttcacaac               | aacaggataa               | 1440       |
| tgagcatccc               | : taaagatgtc             | acccacctgc               | aggctttgca                 | ggaactcaat               | gtagcatcca               | 1500       |
| actccttaac               | : tgaccttcct             | gggtgtgggg               | ccttcagcag                 | cctttctgtg               | ctggtcatcg               | 1560       |
| accataacto               | agtttcccat               | ccctctgagg               | atttcttcca                 | gagctgtcag               | aatattagat               | 1620       |
| ccctaacago               | gggaaacaac               | ccattccaat               | gcacatgtga                 | gctgagggac               | tttgtcaaga               | 1680       |
| acataggcto               | g ggtagcaaga             | gaagtggtgg               | agggctggcc                 | tgactcttac               | aggtgtgact               | 1740       |
| acccagaaag               | g ctctaaggga             | actgcactga               | gggacttcca                 | catgtctcca               | ctgtcctgtg               | 1800       |
| atactgttct               | gctgactgtc               | accatcgggg               | ccactatgct                 | ggtgctggct               | gtcactgggg               | 1860       |
| ctttcctctc               | g tctctacttt             | gacctgccct               | ggtatgtgag                 | gatgctgtgt               | cagtggacac               | 1920       |
| agaccaggca               | a cagggccagg             | cacatcccct               | tagaggaact                 | ccagagaaac               | ctccagttcc               | 1980       |
| atgcttttg                | t ctcatacagt             | . gagcatgatt             | ctgcctgggt                 | gaagaacgaa               | ttactaccca               | 2040       |
| acctagaga                | a agatgacato             | : cgggtttgcc             | tccatgagag                 | gaactttgtc               | cctggcaaga               | 2100       |
| gcattgtgg                | a gaacatcato             | : aatttcattg             | agaagagtta                 | caaggccatc               | tttgtgctgt               | 2160       |
| ctccccact                | t catccagagt             | gagtggtgcc               | : attatgaact               | ctattttgcc               | catcataatc               | 2220       |
| tcttccatg                | a aggctctgat             | aacttaatco               | : tcatcttgct               | ggaacccatt               | ctacagaaca               | 2280       |
| acattccca                | g tagataccad             | aagctgcggg               | g ctctcatggc               | acageggaet               | tacttggaat               | 2340       |
| ggcctactg                | a gaagggcaaa             | e cgtgggctgt             | : tttgggccaa               | ccttagagct               | tcatttatta               | 2400       |
| tgaagttag                | c cttagtcaat             | gaggatgatg               | g tgaaaacttg               | aaacttgggt               | : ttctaactta             | 2460       |

| ataaactgtc aacctgggct                               | ctcatgaaca    | ctgtggtttt   | cagttcctac   | ctggaggtac   | 2520 |
|-----------------------------------------------------|---------------|--------------|--------------|--------------|------|
| ttctgttgtg gtgtcttagt                               | ttgctctgtg    | cttatgataa   | ataacatgtt   | tagaagtagt   | 2580 |
| ttatgaaggt gctaagttca                               | ı ttaa        |              |              |              | 2604 |
| <210> 84<br><211> 2604<br><212> DNA<br><213> murine |               |              |              |              |      |
| <400> 84 aagtaaaaat gctgtgaag                       | a atggtaaagt  | ccctctggga   | tagcctctgc   | aacatgagcc   | 60   |
| aagacagaaa acccatcgt                                | g gggagtttcc  | actttgtttg   | cgccctggcc   | ttaatagtcg   | 120  |
| gaagcatgac cccgttctc                                | t aatgaacttg  | agtctatggt   | agactattca   | aacaggaacc   | 180  |
| ttactcatgt ccccaaaga                                | c ctgccaccaa  | gaacaaaagc   | cctgagtctg   | tctcaaaact   | 240  |
| ctatatctga gcttcggat                                | g cctgatatca  | gctttctgtc   | agagctgaga   | gttctgagac   | 300  |
| tctcccacaa caggatacg                                | g agccttgatt  | tccatgtatt   | cttgttcaat   | caggacttag   | 360  |
| aatacctgga tgtctcaca                                | c aatcggttgc  | aaaacatctc   | ttgctgccct   | atggcgagcc   | 420  |
| tgaggcatct agacctctc                                | a ttcaatgact  | ttgatgtact   | gcctgtgtgt   | aaggaatttg   | 480  |
| gcaacctgac gaagctgac                                | t ttcctgggat  | taagtgctgc   | caagttccga   | caactggatc   | 540  |
| tgctcccagt tgctcactt                                | g catctaagct  | gcattcttct   | ggacttagtg   | agtcatcata   | 600  |
| taaaaggcgg ggaaacaga                                | a agtetteaga  | ttcccaatac   | caccgttctc   | catttggtct   | 660  |
| ttcatccaaa tagcttgtt                                | c tctgttcaag  | tgaacatgtc   | tgtaaacgct   | ttaggacatt   | 720  |
| tacaactgag taatattaa                                | a ttgaatgatg  | aaaactgtca   | . aaggttaatg | acatttttat   | 780  |
| cagaactcac cagaggtco                                | a accttattga  | atgtgaccct   | ccagcacata   | gaaacaacct   | 840  |
| ggaagtgctc ggttaaact                                | t ttccaattct  | tttggccccg   | accggtggag   | tacctcaata   | 900  |
| tttacaactt aacgataac                                | t gagagaatcg  | ı acagggaaga | atttacttac   | : tcggagacag | 960  |
| cactgaagtc actgatgat                                | a gagcacgtca  | aaaaccaagt   | gtteetett    | tcaaaggagg   | 1020 |
| cgctatactc ggtgtttgc                                | t gagatgaaca  | tcaagatgct   | ctctatctca   | gacacccctt   | 1080 |
| tcatccacat ggtgtgcc                                 | g ccatccccaa  | gctcatttac   | atttctgaac   | : tttacccaga | 1140 |
| atgtttttac tgacagtgt                                | t tttcaaggct  | gttccacctt   | aaagagattg   | g cagacactta | 1200 |
| tcttacaaag gaatggtt                                 | g aagaacttt   | ttaaagtago   | c tctcatgact | : aagaatatgt | 1260 |
| cctctctgga aactttgga                                | at gttagtttga | a attctttgaa | a ctctcatgca | a tatgacagga | 1320 |
| catgcgcctg ggctgagag                                | gc atattggtgt | t tgaatttgto | ttcgaatatg   | g cttacaggct | 1380 |
| ctgtcttcag atgcttac                                 | et cccaaggtc  | a aggtccttga | a ccttcacaa  | c aacaggataa | 1440 |
|                                                     |               |              |              |              |      |

| tgagcatccc<br>actccttaac | taaagatgtc<br>tgaccttcct | acccacctgc<br>gggtgtgggg | aggetttgea<br>cetteageag | ggaactcaat<br>cctttctgtg | gtagcatcca<br>ctggtcatcg | 1500<br>1560 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| accataactc               | agtttcccat               | ccctctgagg               | atttcttcca               | gagctgtcag               | aatattagat               | 1620         |
| ccctaacagc               | gggaaacaac               | ccattccaat               | gcacatgtga               | gctgagggac               | tttgtcaaga               | 1680         |
| acataggctg               | ggtagcaaga               | gaagtggtgg               | agggctggcc               | tgactcttac               | aggtgtgact               | 1740         |
| acccagaaag               | ctctaaggga               | actgcactga               | gggacttcca               | catgtctcca               | ctgtcctgtg               | 1800         |
| atactgttct               | gctgactgtc               | accatcgggg               | ccactatgct               | ggtgctggct               | gtcactgggg               | 1860         |
| ctttcctctg               | tctctacttt               | gacctgccct               | ggtatgtgag               | gatgctgtgt               | cagtggacac               | 1920         |
| agaccaggca               | cagggccagg               | cacatcccct               | tagaggaact               | ccagagaaac               | ctccagttcc               | 1980         |
| atgcttttgt               | ctcatacagt               | gagcatgatt               | ctgcctgggt               | gaagaacgaa               | ttactaccca               | 2040         |
| acctagagaa               | agatgacatc               | cgggtttgcc               | tccatgagag               | gaactttgtc               | cctggcaaga               | 2100         |
| gcattgtgga               | gaacatcatc               | aatttcattg               | agaagagtta               | caaggccatc               | tttgtgctgt               | 2160         |
| ctccccactt               | catccagagt               | gagtggtgcc               | attatgaact               | ctattttgcc               | catcataatc               | 2220         |
| tcttccatga               | aggetetgat               | aacttaatcc               | tcatcttgct               | ggaacccatt               | ctacagaaca               | 2280         |
| acattcccag               | tagataccac               | aagctgcggg               | ctctcatggc               | acagcggact               | tacttggaat               | 2340         |
| ggcctactga               | gaagggcaaa               | cgtgggctgt               | tttgggccaa               | ccttagagct               | tcatttatta               | 2400         |
| tgaagttago               | cttagtcaat               | gaggatgatg               | tgaaaacttg               | aaacttgggt               | ttctaactta               | 2460         |
| ataaactgto               | aacctgggct               | ctcatgaaca               | ctgtggtttt               | cagtteetae               | ctggaggtac               | 2520         |
| ttctgttgtg               | gtgtcttagt               | ttgctctgtg               | cttatgataa               | ataacatgtt               | tagaagtagt               | 2580         |
| ttatgaaggt               | gctaagttca               | ttaa                     |                          |                          |                          | 2604         |

<210> 85

<211> 2421

<212> DNA

<213> murine

<400> 85 atggtaaagt ccctctggga tagcctctgc aacatgagcc aagacagaaa acccatcgtg 60 gggagtttcc actttgtttg cgccctggcc ttaatagtcg gaagcatgac cccgttctct 120 aatgaacttg agtctatggt agactattca aacaggaacc ttactcatgt ccccaaagac 180 240 ctgccaccaa gaacaaaagc cctgagtctg tctcaaaact ctatatctga gcttcggatg 300 cctgatatca gctttctgtc agagctgaga gttctgagac tctcccacaa caggatacgg agccttgatt tccatgtatt cttgttcaat caggacttag aatacctgga tgtctcacac 360 aatcggttgc aaaacatctc ttgctgccct atggcgagcc tgaggcatct agacctctca 420 ttcaatgact ttgatgtact gcctgtgtgt aaggaatttg gcaacctgac gaagctgact 480

| 1 | ttcctgggat | taagtgctgc   | aaagttccga   | caactggatc   | tgctcccagt   | tgctcacttg | 540<br>600 |
|---|------------|--------------|--------------|--------------|--------------|------------|------------|
|   |            | gcattettet   |              |              |              |            |            |
| ä | agtcttcaga | ttcccaatac   | caccgttctc   | catttggtct   | ttcatccaaa   | tagcttgttc | 660        |
| 1 | tctgttcaag | tgaacatgtc   | tgtaaacgct   | ttaggacatt   | tacaactgag   | taatattaaa | 720        |
| f | ttgaatgatg | aaaactgtca   | aaggttaatg   | acatttttat   | cagaactcac   | cagaggtcca | 780        |
| , | accttattga | atgtgaccct   | ccagcacata   | gaaacaacct   | ggaagtgctc   | ggttaaactt | 840        |
| i | ttccaattct | tttggccccg   | accggtggag   | tacctcaata   | tttacaactt   | aacgataact | 900        |
| • | gagagaatcg | acagggaaga   | atttacttac   | teggagacag   | cactgaagtc   | actgatgata | 960        |
| ! | gagcacgtca | aaaaccaagt   | gttcctcttt   | tcaaaggagg   | cgctatactc   | ggtgtttgct | 1020       |
|   | gagatgaaca | tcaagatgct   | ctctatctca   | gacacccctt   | tcatccacat   | ggtgtgcccg | 1080       |
|   | ccatccccaa | gctcatttac   | atttctgaac   | tttacccaga   | atgtttttac   | tgacagtgtt | 1140       |
|   | tttcaaggct | gttccacctt   | aaagagattg   | cagacactta   | tcttacaaag   | gaatggtttg | 1200       |
|   | aagaactttt | ttaaagtagc   | tctcatgact   | aagaatatgt   | cctctctgga   | aactttggat | 1260       |
|   | gttagtttga | attctttgaa   | ctctcatgca   | tatgacagga   | catgcgcctg   | ggctgagagc | 1320       |
|   | atattggtgt | tgaatttgtc   | ttcgaatatg   | cttacaggct   | ctgtcttcag   | atgcttacct | 1380       |
|   | cccaaggtca | aggtccttga   | ccttcacaac   | aacaggataa   | tgagcatccc   | taaagatgtc | 1440       |
|   | acccacctgc | aggctttgca   | ggaactcaat   | gtagcatcca   | actccttaac   | tgaccttcct | 1500       |
|   | gggtgtgggg | ccttcagcag   | cctttctgtg   | ctggtcatcg   | accataactc   | agtttcccat | 1560       |
|   | ccctctgagg | atttcttcca   | gagctgtcag   | aatattagat   | ccctaacagc   | gggaaacaac | 1620       |
|   | ccattccaat | gcacatgtga   | gctgagggac   | tttgtcaaga   | acataggctg   | ggtagcaaga | 1680       |
|   | gaagtggtgg | agggctggcc   | tgactcttac   | aggtgtgact   | acccagaaag   | ctctaaggga | 1740       |
|   | actgcactga | gggacttcca   | catgtctcca   | ctgtcctgtg   | atactgttct   | gctgactgtc | 1800       |
|   | accatcgggg | ccactatgct   | ggtgctggct   | gtcactgggg   | ctttcctctg   | tctctacttt | 1860       |
|   | gacctgccct | ggtatgtgag   | gatgctgtgt   | cagtggacac   | agaccaggca   | cagggccagg | 1920       |
|   | cacatcccct | tagaggaact   | ccagagaaac   | ctccagttcc   | atgcttttgt   | ctcatacagt | 1980       |
|   | gagcatgatt | ctgcctgggt   | gaagaacgaa   | ttactaccca   | acctagagaa   | agatgacatc | 2040       |
|   | cgggtttgcc | : tccatgagag | gaactttgtc   | cctggcaaga   | gcattgtgga   | gaacatcatc | 2100       |
|   | aatttcattg | , agaagagtta | caaggccatc   | tttgtgctgt   | ctccccactt   | catccagagt | 2160       |
|   | gagtggtgco | : attatgaact | ctattttgcc   | catcataatc   | tcttccatga   | aggctctgat | 2220       |
|   | aacttaatco | : tcatcttgct | ggaacccatt   | ctacagaaca   | . acattcccag | tagataccac | 2280       |
|   | aagctgcggg | g ctctcatggc | : acagcggact | : tacttggaat | ggcctactga   | gaagggcaaa | 2340       |
|   | cgtgggctgt | : tttgggccaa | ccttagagct   | : tcatttatta | tgaagttago   | cttagtcaat | 2400       |
|   |            |              |              |              |              |            |            |

2421

PCT/US2004/012788 WO 2004/094671

gaggatgatg tgaaaacttg a

<210> 86

<211> 806

<212> PRT

<213> murine

<400> 86

Met Val Lys Ser Leu Trp Asp Ser Leu Cys Asn Met Ser Gln Asp Arg

Lys Pro Ile Val Gly Ser Phe His Phe Val Cys Ala Leu Ala Leu Ile

Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu Glu Ser Met Val Asp

Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys Asp Leu Pro Pro Arg

Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile Ser Glu Leu Arg Met

Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val Leu Arg Leu Ser His

Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe Leu Phe Asn Gln Asp 105

Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu Gln Asn Ile Ser Cys

Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu Ser Phe Asn Asp Phe 135

Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn Leu Thr Lys Leu Thr

Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln Leu Asp Leu Leu Pro 170

Val Ala His Leu His Leu Ser Cys Ile Leu Leu Asp Leu Val Ser His

His Ile Lys Gly Gly Glu Thr Glu Ser Leu Gln Ile Pro Asn Thr Thr 200

Val Leu His Leu Val Phe His Pro Asn Ser Leu Phe Ser Val Gln Val 215

Asn Met Ser Val Asn Ala Leu Gly His Leu Gln Leu Ser Asn Ile Lys 235

Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr Phe Leu Ser Glu Leu 250

Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu Gln His Ile Glu Thr 265 260

Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe Phe Trp Pro Arg Pro 275 280 285

Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile Thr Glu Arg Ile Asp 290 295 300

Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu Lys Ser Leu Met Ile 305 310 315 320

Glu His Val Lys Asn Gln Val Phe Leu Phe Ser Lys Glu Ala Leu Tyr 325 330 335

Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu Ser Ile Ser Asp Thr 340 345 350

Pro Phe Ile His Met Val Cys Pro Pro Ser Pro Ser Ser Phe Thr Phe 355 360 365

Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Val Phe Gln Gly Cys 370 375 380

Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu Gln Arg Asn Gly Leu 385 390 395 400

Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys Asn Met Ser Ser Leu 405 410 415

Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp 420 425 430

Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val Leu Asn Leu Ser Ser 435 440 445

Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys 450 450

Val Leu Asp Leu His Asn Asn Arg Ile Met Ser Ile Pro Lys Asp Val 465 470 475 480

Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val Ala Ser Asn Ser Leu 485 490 495

Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val 500 505 510

Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser 515 520 525

Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys 530 535 540

Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg 545 550 555 560

Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg Cys Asp Tyr Pro Glu
565 570 575

Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser 580 585 590

Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly Ala Thr Met Leu Val

PCT/US2004/012788 WO 2004/094671

600 595 Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr Arg His Arg Ala Arg 635 His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe 650 Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu 665 Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys Leu His Glu Arg Asn Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Phe Ile Glu Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro His Phe Ile Gln Ser 715 Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Glu Pro Ile Leu Gln 745 Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln 760 Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly Lys Arg Gly Leu Phe 775 Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys Leu Ala Leu Val Asn 795 Glu Asp Asp Val Lys Thr 805 <210> 87 <211> 806 <212> PRT <213> murine <400> 87

Met Val Lys Ser Leu Trp Asp Ser Leu Cys Asn Met Ser Gln Asp Arg 5

Lys Pro Ile Val Gly Ser Phe His Phe Val Cys Ala Leu Ala Leu Ile 25

Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu Glu Ser Met Val Asp

Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys Asp Leu Pro Pro Arg 55

Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile Ser Glu Leu Arg Met 75

| Pro        | Asp        | Ile        | Ser        | Phe<br>85  | Leu          | Ser        | Glu        | Leu        | Arg<br>90  | Val        | Leu        | Arg        | Leu        | Ser<br>95  | His        |
|------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Asn        | Arg        | Ile        | Arg<br>100 | Ser        | Leu          | Asp        | Phe        | His<br>105 | Val        | Phe        | Leu        | Phe        | Asn<br>110 | Gln        | Asp        |
| Leu        | Glu        | Tyr<br>115 | Leu        | Asp        | Val          | Ser        | His<br>120 | Asn        | Arg        | Leu        | Gln        | Asn<br>125 | Ile        | Ser        | Сув        |
| Cys        | Pro<br>130 | Met        | Ala        | Ser        | Leu          | Arg<br>135 | His        | Leu        | Asp        | Leu        | Ser<br>140 | Phe        | Asn        | Asp        | Phe        |
| Asp<br>145 | Val        | Leu        | Pro        | Val        | Сув<br>150   | Lys        | Glu        | Phe        | Gly        | Asn<br>155 | Leu        | Thr        | Lys        | Leu        | Thr<br>160 |
| Phe        | Leu        | Gly        | Leu        | Ser<br>165 | Ala          | Ala        | ГÀв        | Phe        | Arg<br>170 | Gln        | Leu        | Asp        | Leu        | Leu<br>175 | Pro        |
| Val        | Ala        | His        | Leu<br>180 | His        | Leu          | Ser        | Сув        | Ile<br>185 | Leu        | Leu        | Asp        | Leu        | Val<br>190 | Ser        | Tyr        |
| His        | Ile        | Lув<br>195 | Gly        | Gly        | Glu          | Thr        | Glu<br>200 | Ser        | Leu        | Gln        | Ile        | Pro<br>205 | Asn        | Thr        | Thr        |
| Val        | Leu<br>210 | His        | Leu        | Val        | Phe          | His<br>215 | Pro        | Asn        | Ser        | Leu        | Phe<br>220 | Ser        | Val        | Gln        | Val        |
| Asn<br>225 | Met        | Ser        | Val        | Asn        | Ala<br>230   | Leu        | Gly        | His        | Leu        | Gln<br>235 | Leu        | Ser        | Asn        | Ile        | Lys<br>240 |
| Leu        | Asn        | Asp        | Glu        | Asn<br>245 | Сув          | Gln        | Arg        | Leu        | Met<br>250 | Thr        | Phe        | Leu        | Ser        | Glu<br>255 | Leu        |
| Thr        | Arg        | Gly        | Pro<br>260 |            | Leu          | Leu        | Asn        | Val<br>265 | Thr        | Leu        | Gln        | Hìs        | Ile<br>270 | Glu        | Thr        |
|            |            | 275        |            |            |              |            | 280        |            |            |            |            | 285        |            |            | Pro        |
|            | 290        |            |            |            |              | 295        |            |            |            |            | 300        |            |            |            | qaA        |
| 305        |            |            |            |            | 310          |            |            |            |            | 315        |            |            |            |            | 1le<br>320 |
| Glu        | His        | Val        | Lys        | 325        |              | Val        | Phe        | Leu        | 330        |            | . TĀ2      | Glu        | Ala        | Leu<br>335 | Tyr        |
| Ser        | Val        | Phe        | Ala<br>340 |            | Met          | Asn        | lle        | Lys<br>345 |            | . Leu      | . Ser      | · Ile      | Ser<br>350 |            | Thr        |
| Pro        | Phe        | 355        |            | Met        | . Val        | . Сув      | 360        |            | Ser        | Pro        | Ser        | Ser<br>365 | Phe        | Thr        | Phe        |
| Leu        | 370        |            | . Thr      | Glr        | a Asn        | Va]        |            | Thr        | : Asp      | Ser        | 7 Val      |            | e Glr      | Gly        | у Сув      |
| Ser<br>385 |            | Leu        | ı Lys      | arg        | J Leu<br>390 |            | 1 Thr      | Leu        | ı Ile      | 395        |            | a Arg      | g Ası      | ı Gly      | 400        |
| Ľуя        | . Asr      | ı Phe      | e Phe      | Lys        | val          | Ala        | a Lev      | ı Met      | : Thi      | . Lys      | a Asr      | Met        | : Ser      | : Sei      | Leu        |

415 410 405 Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp 425 420 Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val Leu Asn Leu Ser Ser 435 Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys 455 Val Leu Asp Leu His Asn Asn Arg Ile Met Ser Ile Pro Lys Asp Val Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val Ala Ser Asn Ser Leu Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg 550 555 Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg Cys Asp Tyr Pro Glu Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser 585 Cys Asp Thr Val Leu Leu Thr Val Thr Ile Gly Ala Thr Met Leu Val Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp 615 Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr Arg His Arg Ala Arg His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe 650 645 Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys Leu His Glu Arg Asn 680 Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Phe Ile Glu 695 690 Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro His Phe Ile Gln Ser 715 Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His 730 725 Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Glu Pro Ile Leu Gln

740 745 750
Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln
755 760 765

Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly Lys Arg Gly Leu Phe

Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys Leu Ala Leu Val Asn 785 790 795 800

Glu Asp Asp Val Lys Thr 805

<210> 88

<211> 806

<212> PRT

<213> murine

<400> 88

Met Val Lys Ser Leu Trp Asp Ser Leu Cys Asn Met Ser Gln Asp Arg 1 5 10 15

Lys Pro Ile Val Gly Ser Phe His Phe Val Cys Ala Leu Ala Leu Ile 20 25 30

Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu Glu Ser Met Val Asp 35 40 45

Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys Asp Leu Pro Pro Arg 50 55 60

Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile Ser Glu Leu Arg Met 65 70 75 80

Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val Leu Arg Leu Ser His 85 90 95

Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe Leu Phe Asn Gln Asp 100 105 110

Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu Gln Asn Ile Ser Cys 115 120 125

Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu Ser Phe Asn Asp Phe 130 135 140

Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn Leu Thr Lys Leu Thr 145 150 155 160

Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln Leu Asp Leu Leu Pro 165 170 175

Val Ala His Leu His Leu Ser Cys Ile Leu Leu Asp Leu Val Ser His 180 185 190

His Ile Lys Gly Gly Glu Thr Glu Ser Leu Gln Ile Pro Asn Thr Thr 195 200 205

Val Leu His Leu Val Phe His Pro Asn Ser Leu Phe Ser Val Gln Val 210 215 220

Asn Met Ser Val Asn Ala Leu Gly His Leu Gln Leu Ser Asn Ile Lys
225 230 235 240

Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr Phe Leu Ser Glu Leu 245 250 255

Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu Gln His Ile Glu Thr 260 265 270

Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe Phe Trp Pro Arg Pro 275 280 285

Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile Thr Glu Arg Ile Asp 290 295 300

Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu Lys Ser Leu Met Ile 305 310 315 320

Glu His Val Lys Asn Gln Val Phe Leu Phe Ser Lys Glu Ala Leu Tyr 325 330 335

Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu Ser Ile Ser Asp Thr 340 345 350

Pro Phe Ile His Met Val Cys Pro Pro Ser Pro Ser Ser Phe Thr Phe 355 360 365

Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser Val Phe Gln Gly Cys 370 375 380

Ser Thr Leu Lys Arg Leu Gln Thr Leu Ile Leu Gln Arg Asn Gly Leu 385 390 395 400

Lys Asn Phe Phe Lys Val Ala Leu Met Thr Lys Asn Met Ser Ser Leu 405 410 415

Glu Thr Leu Asp Val Ser Leu Asn Ser Leu Asn Ser His Ala Tyr Asp 420 425 430

Arg Thr Cys Ala Trp Ala Glu Ser Ile Leu Val Leu Asn Leu Ser Ser 435 440 445

Asn Met Leu Thr Gly Ser Val Phe Arg Cys Leu Pro Pro Lys Val Lys 450 455 460

Val Leu Asp Leu His Asn Asn Arg Ile Met Ser Ile Pro Lys Asp Val 465 470 475 480

Thr His Leu Gln Ala Leu Gln Glu Leu Asn Val Ala Ser Asn Ser Leu 485 490 495

Thr Asp Leu Pro Gly Cys Gly Ala Phe Ser Ser Leu Ser Val Leu Val 500 505 510

Ile Asp His Asn Ser Val Ser His Pro Ser Glu Asp Phe Phe Gln Ser 515 520 525

Cys Gln Asn Ile Arg Ser Leu Thr Ala Gly Asn Asn Pro Phe Gln Cys 530 535 540

Thr Cys Glu Leu Arg Asp Phe Val Lys Asn Ile Gly Trp Val Ala Arg

545 550 555 560
Glu Val Val Glu Gly Trp Pro Asp Ser Tyr Arg Cys Asp Tyr Pro Glu
565 570 575

Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser

Ser Ser Lys Gly Thr Ala Leu Arg Asp Phe His Met Ser Pro Leu Ser 580 585 590

Cys Asp Thr Val Leu Euu Thr Val Thr Ile Gly Ala Thr Met Leu Val 595 600 605

Leu Ala Val Thr Gly Ala Phe Leu Cys Leu Tyr Phe Asp Leu Pro Trp 610 615 620

Tyr Val Arg Met Leu Cys Gln Trp Thr Gln Thr Arg His Arg Ala Arg 625 630 635 640

His Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe 645 650 655

Val Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Asn Glu Leu Leu 660 665 670

Pro Asn Leu Glu Lys Asp Asp Ile Arg Val Cys Leu His Glu Arg Asn 675 680 685

Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Asn Phe Ile Glu 690 695 700

Lys Ser Tyr Lys Ala Ile Phe Val Leu Ser Pro His Phe Ile Gln Ser 705 710 715 720

Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His
725 730 735

Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Leu Glu Pro Ile Leu Gln 740 745 750

Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg Ala Leu Met Ala Gln
755 760 765

Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly Lys Arg Gly Leu Phe 770 775 780

Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys Leu Ala Leu Val Asn 785 790 795 800

Glu Asp Asp Val Lys Thr 805

<210> 89

<211> 795

<212> PRT

<213> murine

<400> 89

Met Ser Gln Asp Arg Lys Pro Ile Val Gly Ser Phe His Phe Val Cys
1 5 10 15

Ala Leu Ala Leu Ile Val Gly Ser Met Thr Pro Phe Ser Asn Glu Leu 20 25 30

Glu Ser Met Val Asp Tyr Ser Asn Arg Asn Leu Thr His Val Pro Lys Asp Leu Pro Pro Arg Thr Lys Ala Leu Ser Leu Ser Gln Asn Ser Ile Ser Glu Leu Arg Met Pro Asp Ile Ser Phe Leu Ser Glu Leu Arg Val Leu Arg Leu Ser His Asn Arg Ile Arg Ser Leu Asp Phe His Val Phe Leu Phe Asn Gln Asp Leu Glu Tyr Leu Asp Val Ser His Asn Arg Leu Gln Asn Ile Ser Cys Cys Pro Met Ala Ser Leu Arg His Leu Asp Leu Ser Phe Asn Asp Phe Asp Val Leu Pro Val Cys Lys Glu Phe Gly Asn 135 Leu Thr Lys Leu Thr Phe Leu Gly Leu Ser Ala Ala Lys Phe Arg Gln Leu Asp Leu Leu Pro Val Ala His Leu His Leu Ser Cys Ile Leu Leu 170 Asp Leu Val Ser Tyr His Ile Lys Gly Gly Glu Thr Glu Ser Leu Gln 185 Ile Pro Asn Thr Thr Val Leu His Leu Val Phe His Pro Asn Ser Leu 200 Phe Ser Val Gln Val Asn Met Ser Val Asn Ala Leu Gly His Leu Gln 215

Leu Ser Asn Ile Lys Leu Asn Asp Glu Asn Cys Gln Arg Leu Met Thr 225 230 235 240

Phe Leu Ser Glu Leu Thr Arg Gly Pro Thr Leu Leu Asn Val Thr Leu 245 250 255

Gln His Ile Glu Thr Thr Trp Lys Cys Ser Val Lys Leu Phe Gln Phe 260 265 270

Phe Trp Pro Arg Pro Val Glu Tyr Leu Asn Ile Tyr Asn Leu Thr Ile 275 280 285

Thr Glu Arg Ile Asp Arg Glu Glu Phe Thr Tyr Ser Glu Thr Ala Leu 290 295 300

Lys Ser Leu Met Ile Glu His Val Lys Asn Gln Val Phe Leu Phe Ser 305 310 315 320

Lys Glu Ala Leu Tyr Ser Val Phe Ala Glu Met Asn Ile Lys Met Leu 325 330 335

Ser Ile Ser Asp Thr Pro Phe Ile His Met Val Cys Pro Pro Ser Pro 340 345 350

Ser Ser Phe Thr Phe Leu Asn Phe Thr Gln Asn Val Phe Thr Asp Ser

| Val        | Phe<br>370 | 355<br>Gln | Gly        | Сув        |            | Thr<br>375 | 360<br>Leu | Lys        | Arg        | Leu        | Gln<br>380 | 365<br>Thr | Leu        | Ile        | Leu        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            |            | Asn        | Gly        |            | Lys        |            | Phe        | Phe        | Lys        |            |            | Leu        | Met        | Thr        | Lys<br>400 |
| 385<br>Asn | Met        | Ser        | Ser        |            | 390<br>Glu | Thr        | Leu        | Asp        |            | 395<br>Ser | Leu        | Asn        | Ser        |            |            |
|            |            |            |            | 405        |            |            |            |            | 410        |            |            |            |            | 415        |            |
| Ser        | His        | Ala        | Туг<br>420 | Asp        | Arg        | Thr        | Сув        | Ala<br>425 | Trp        | Ala        | Glu        | Ser        | Ile<br>430 | Leu        | Val        |
| Leu        | Asn        | Leu<br>435 | Ser        | Ser        | Asn        | Met        | Leu<br>440 | Thr        | Gly        | Ser        | Val        | Phe<br>445 | Arg        | Сув        | Leu        |
| Pro        | Pro<br>450 | Lys        | Val        | ГÀв        | Val        | Leu<br>455 | Asp        | Leu        | His        | Asn        | Asn<br>460 | Arg        | Ile        | Met        | Ser        |
| Ile<br>465 | Pro        | Lys        | Asp        | Val        | Thr<br>470 | His        | Leu        | Gln        | Ala        | Leu<br>475 | Gln        | Glu        | Leu        | Asn        | Val<br>480 |
| Ala        | Ser        | Asn        | Ser        | Leu<br>485 | Thr        | Asp        | Leu        | Pro        | Gly<br>490 | Cys        | Gly        | Ala        | Phe        | Ser<br>495 | Ser        |
| Leu        | Ser        | Val        | Leu<br>500 | Val        | Ile        | Asp        | His        | Asn<br>505 | Ser        | Val        | Ser        | His        | Pro<br>510 | Ser        | Glu        |
| Asp        | Phe        | Phe<br>515 | Gln        | Ser        | Сув        | Gln        | Asn<br>520 | Ile        | Arg        | Ser        | Leu        | Thr<br>525 | Ala        | Gly        | Asn        |
| Asn        | Pro<br>530 | Phe        | Gln        | Cys        | Thr        | Сув<br>535 | Glu        | Leu        | Arg        | Asp        | Phe<br>540 | Val        | Lys        | Asn        | Ile        |
| Gly<br>545 | Trp        | Val        | Ala        | Arg        | Glu<br>550 | Val        | Val        | Glu        | Gly        | Trp<br>555 | Pro        | Asp        | Ser        | Tyr        | Arg<br>560 |
| Cys        | Asp        | Tyr        | Pro        | Glu<br>565 | Ser        | Ser        | Lys        | Gly        | Thr<br>570 | Ala        | Leu        | Arg        | Asp        | Phe<br>575 | His        |
| Met        | Ser        | Pro        | Leu<br>580 | Ser        | Сув        | Asp        | Thr        | Val<br>585 | Leu        | Leu        | Thr        | Val        | Thr<br>590 | Ile        | Gly        |
| Ala        | Thr        | Met<br>595 |            | Val        | Leu        | Ala        | Val<br>600 | Thr        | Gly        | Ala        | Phe        | Leu<br>605 | . Сув      | Leu        | Tyr        |
| Phe        | Asp<br>610 |            | Pro        | Trp        | Tyr        | Val<br>615 | Arg        | Met        | Leu        | Сув        | Gln<br>620 | Trp        | Thr        | Gln        | Thr        |
| Arg<br>625 |            | Arg        | Ala        | Arg        | His<br>630 | Ile        | Pro        | Leu        | Glu        | Glu<br>635 |            | Gln        | Arg        | Asn        | Leu<br>640 |
| Gln        | Phe        | His        | Ala        | Phe<br>645 |            | Ser        | Tyr        | Ser        | Glu<br>650 |            | Asp        | Ser        | Ala        | Trp<br>655 | Val        |
| Lys        | Asn        | Glu        | Leu<br>660 |            | Pro        | Asn        | Leu        | Glu<br>665 |            | Asp        | Asp        | Ile        | Arg<br>670 | Val        | Сув        |
| Leu        | His        | Glu<br>675 |            | Asn        | Phe        | Val        | Pro<br>680 |            | . TÀa      | Ser        | : Ile      | Val<br>685 |            | Asn        | Ile        |
| Ile        | Asr        | ı Phe      | : Ile      | Glu        | . Lys      | Ser        | Туг        | : Lys      | Ala        | ıle        | Phe        | val        | Leu        | . Ser      | Pro        |

```
700
                         695
His Phe Ile Gln Ser Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His
                                         715
           710
His Asn Leu Phe His Glu Gly Ser Asp Asn Leu Ile Leu Ile Leu Leu
                                      730
                 725
Glu Pro Ile Leu Gln Asn Asn Ile Pro Ser Arg Tyr His Lys Leu Arg
Ala Leu Met Ala Gln Arg Thr Tyr Leu Glu Trp Pro Thr Glu Lys Gly
        755
Lys Arg Gly Leu Phe Trp Ala Asn Leu Arg Ala Ser Phe Ile Met Lys
Leu Ala Leu Val Asn Glu Asp Asp Val Lys Thr
<210> 90
<211> 10
<212> DNA
<213> artificial sequence
<220>
<223> consensus p50 subunit
<220>
<221> misc feature
<222> (7)..(7)
<223> N = c \text{ or } t
<400> 90
                                                                           10
ggggatnccc
 <210> 91
 <211> 10
 <212> DNA
 <213> artificial sequence
 <220>
 <223> consensus p65 subunit
 <220>
 <221> misc_feature
 <222> (4)..(4)
<223> N = a or g
 <220>
 <221> misc_feature
 \langle 222 \rangle (5)..(5)
\langle 223 \rangle N = a, c, g, or t
 <400> 91
                                                                           10
 gggnntttcc
```

210/231

<210> 92

<211> 22 <212> DNA <213> artificial sequence <220> <223> consensus subunit <400> 92 22 agttgagggg actttcccag gc <210> 93 <211> 27 <212> DNA <213> artificial sequence <220> <223> CREB binding site <400> 93 27 agagattgcc tgacgtcaga gagctag <210> 94 <211> 21 <212> DNA <213> artificial sequence <220> <223> AP-1 binding site <400> 94 21 cgcttgatga gtcagccgga a <210> 95 <211> 15 <212> DNA <213> artificial sequence <220> <223> AP-1 binding site <400> 95 15 cgcatgagtc agaca <210> 96 <211> 19 <212> DNA <213> artificial sequence <220> <223> ISRE <400> 96

The state of the s

PCT/US2004/012788

WO 2004/094671

19 tgcagaagtg aaactgagg <210> . 97 <211> 11 <212> DNA <213> artificial sequence <220> <223> ISRE <400> 97 11 agaacgaaac a <210> 98 <211> 15 <212> DNA <213> artificial sequence . <220> <223> ISRE <400> 98 15 gagaagtgaa agtgg <210> 99 <211> 18 <212> DNA <213> artificial sequence <220> <223> ISRE <400> 99 18 taagaacatg aaactgaa <210> 100 <211> 15 <212> DNA <213> artificial sequence <220> <223> ISRE <400> 100 15 atgaaactga aagta <210> 101 <211> 16 <212> DNA <213> artificial sequence <220> <223> ISRE

WO 2004/094671

PCT/US2004/012788

|                           | 101<br>ccga aagcgc  | 16 |
|---------------------------|---------------------|----|
| <210><211><211><212><213> | 13                  |    |
| <220>                     |                     |    |
| <223>                     | ISRE                |    |
| <400>                     | 102                 |    |
|                           | ggaa agt            | 13 |
| <210>                     | 103                 |    |
| <211>                     |                     |    |
| <212>                     |                     |    |
| <213>                     | artificial sequence |    |
| <220>                     |                     |    |
| <223>                     | SRE                 |    |
| <400>                     | 103                 | _  |
| tcaccc                    | cac                 | 9  |
|                           |                     |    |
| -210-                     | 104                 |    |
| <210>                     |                     |    |
| <211><br><212>            |                     |    |
|                           | artificial sequence |    |
| (2137                     | artiriorar podamon  |    |
| <220>                     |                     |    |
| <223>                     | SRE                 |    |
| <400>                     | 104                 | 10 |
| ctcacc                    | ccac                | 10 |
|                           |                     |    |
| <210>                     | 105                 |    |
| <211>                     | 10                  |    |
| <212>                     |                     |    |
| <213>                     | artificial sequence |    |
| <220>                     |                     |    |
| <223>                     | SRE                 |    |
| <400>                     | 105                 |    |
| gccaco                    |                     | 10 |
| <210>                     | 106                 |    |
| <211>                     | 17                  |    |
| <212>                     |                     |    |
| <213>                     | artificial sequence |    |

```
<220>
<223> NFAT
<400> 106
                                                                         17
tatgaaacag ttttcc
<210> 107
<211> 9
<212> DNA
<213> artificial sequence
<220>
<223> NFAT
<400> 107
                                                                           9
aggaaactc
<210> 108
<211> 10
<212> DNA
<213> artificial sequence
<220>
<223> NFAT
<220>
<221> misc_feature
<222> (2)..(2)
<223> N = a \text{ or } g
<220>
<221> misc_feature
<222> (5)..(5)
<223> N = a or g
<400> 108
                                                                          10
anganattcc
<210> 109
<211> 16
<212> DNA
<213> artificial sequence
<220>
<223> NFAT
<400> 109
                                                                          16
ccagttgagc cagaga
 <210> 110
 <211> 30
<212> DNA
<213> artificial sequence
<220>
```

214/231

والمراج المراج والمتمام والمتمال المالي والمراجع

and state of the first of the first control of the first of the second o

```
<223> GAS
<400> 110
                                                                           30
ctttcagttt catattactc taaatccatt
<210> 111
<211> 10
<212> DNA
<213> artificial sequence
<220>
<223> p53 consensus site
<220>
<221> misc_feature
<222> (1)..(3)
<223> N = a or g
<220>
<221> misc_feature
<222> (5)..(6)
<223> N = a or t
<220>
<221> misc_feature
<222> (8)..(10)
<223> N = c or t
<400> 111
                                                                           10
nnncnngnnn
<210> 112
<211> 10
<212> DNA
<213> artificial sequence
<220>
<223> p53 consensus site
<400> 112
                                                                           10
aggcatgcct
<210> 113
 <211> 10
 <212> DNA
 <213> artificial sequence
 <220>
 <223> p53 consensus site
 <400> 113
                                                                           10
 gggcttgccc
 <210> 114
```

| <212>                     | 10<br>DNA<br>artificial sequence       |    |
|---------------------------|----------------------------------------|----|
| <220>                     |                                        |    |
| <223>                     | p53 consensus site                     |    |
| <400><br>gggcttg          | 114<br>gctt                            | 10 |
| <210><211><211><212><213> | 13                                     |    |
| <220>                     |                                        |    |
| <223>                     | p53 consensus site                     |    |
|                           | 115<br>actt gcc                        | 13 |
| <210><211><212><212><213> | 20                                     |    |
| <220>                     |                                        |    |
| <223>                     | p53 consensus site                     |    |
| <400><br>ggacat           | 116<br>gccc gggcatgtcc                 | 20 |
| <210><211><211><212><213> | 23                                     |    |
| <220>                     |                                        |    |
| <223>                     | p53 consensus site                     |    |
| <400><br>gtagca           | 117<br>attag cccagacatg tcc            | 23 |
| <210><211><212><213>      | 36                                     |    |
| <220>                     |                                        |    |
| <223>                     | TARE                                   |    |
| <400>                     | 118 atgca gacaagagtc agagtttccc cttgaa | 36 |

| <210>         | 119                                     |             |            |            |            |                     |       |
|---------------|-----------------------------------------|-------------|------------|------------|------------|---------------------|-------|
| <211>         | 10                                      |             |            |            |            |                     |       |
| <212>         |                                         |             |            |            |            |                     |       |
| <213>         | arti                                    | ficial sequ | ence       |            |            |                     |       |
| <220>         |                                         |             |            |            |            |                     |       |
|               |                                         |             |            |            |            |                     |       |
| <223>         | SRF                                     |             |            |            |            |                     |       |
|               |                                         |             |            |            |            |                     |       |
| <220>         |                                         |             |            |            |            |                     |       |
| <221>         | misc                                    | _feature    |            |            |            |                     |       |
| <222>         | (3).                                    | . (8)       |            |            |            |                     |       |
| <223>         | N =                                     | a or t      |            |            |            |                     |       |
|               |                                         |             |            |            |            |                     |       |
| <400>         | 119                                     |             |            |            |            |                     |       |
| ccnnnn        |                                         |             |            |            |            |                     | 10    |
| 00            |                                         |             |            |            |            |                     |       |
|               |                                         |             |            |            |            |                     |       |
| <210>         | 120                                     |             |            |            |            |                     |       |
|               |                                         |             |            |            |            |                     |       |
| <211>         | 11                                      |             |            |            |            |                     |       |
| <212>         |                                         |             |            |            |            |                     |       |
| <213>         | artı                                    | ficial sequ | ence       |            |            |                     |       |
|               |                                         |             |            |            |            |                     |       |
| <220>         |                                         |             |            | •          |            |                     |       |
|               |                                         |             |            |            |            |                     |       |
| <223>         | SRF                                     |             |            |            |            |                     |       |
|               |                                         |             |            |            |            |                     |       |
| <400>         | 120                                     |             |            |            |            |                     |       |
| ccaaat        | aagg                                    | C           |            |            |            |                     | 11    |
|               |                                         |             |            |            |            |                     |       |
|               |                                         |             |            |            |            |                     |       |
| <210>         | 121                                     |             |            |            |            |                     |       |
| <211>         |                                         |             |            |            |            |                     |       |
| <212>         |                                         |             |            |            | •          |                     |       |
| <213>         |                                         | sapiens     |            |            |            |                     |       |
| <b>\213</b> / | 1101110                                 | Caprons     |            |            |            |                     |       |
| <400>         | 121                                     |             |            |            |            |                     |       |
| <400>         | 121                                     | +++-        | ttcattcata | ttttaggag  | ttttgaatga | ttggatatgt          | 60    |
| agaaaa        | attt                                    | Ladadacia   | tttatttata | ccccaggag  | 0000502050 | 555-                |       |
|               |                                         |             | tgtgtatcta | tatacatttt | tattttgcat | atgtactttg          | 120   |
| aattat        | attc                                    | atattattaa  | Lgigiateta | cacagacccc | cacceggac  | aoguaoccog          |       |
|               |                                         |             |            |            | anannatata | cttatcaaat          | 180   |
| atacaa        | aatt                                    | tacatgaaca  | aattacacta | aaagttatte | Cacaaalala | CCCaccaaac          | 200   |
|               |                                         |             |            |            |            | atasttatt           | 240   |
| taagtt        | aaat                                    | gtcaatagct  | tttaaactta | aattttagtt | Laactttttt | gccaccccc           | 240   |
|               |                                         |             |            |            |            | + a + a a a + a a + | 300   |
| actttg        | gaata                                   | aaaagagcaa  | actttgtagt | ttttatctgt | gaagtagagg | tatacgtaat          | 300   |
|               |                                         |             |            |            |            |                     | 200   |
| atacat        | aaat                                    | agatatgcca  | aatctgtgtt | attaaaattt | catgaagatt | tcaattagaa          | 360   |
|               |                                         |             |            |            |            |                     |       |
| aaaaat        | acca                                    | taaaaggctt  | tgagtgcagg | tgaaaaatag | gcaatgatga | aaaaaaatga          | 420   |
|               |                                         |             |            |            |            |                     |       |
| aaaact        | tttt                                    | aaacacatgt  | agagagtgcg | taaagaaagc | aaaaacagag | atagaaagta          | 480   |
|               |                                         | •           |            |            |            |                     |       |
| caacta        | agga                                    | atttagaaaa  | tggaaattag | tatqttcact | atttaagacc | tatgcacaga          | 540   |
| Cuacio        | -3354                                   |             |            | _          | _          |                     |       |
| acess         | 1+0++                                   | cadaaaacct  | agaggccgaa | gttcaaggtt | atccatctca | agtagcctag          | 600   |
| ycaaag        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | cayaaaaacct | ~3~3300944 | J          |            |                     |       |
|               | -++~~                                   | andatacana  | tggccctgtc | cttttcttta | ctgatggccg | tactaatact          | 660   |
| caatat        | Litge                                   | aacaccccaa  | Lyguettyte | Juliund    | 2-34-33-03 | -999-9              |       |
|               |                                         |             |            |            |            |                     | 670   |
| caqcta        | acaaa                                   |             |            |            |            |                     | - , , |

| <210> 122                                                         |            |
|-------------------------------------------------------------------|------------|
| <211> 207                                                         |            |
| <212> DNA<br><213> Homo sapiens                                   |            |
| (21) None Suprem                                                  |            |
| <400> 122                                                         | <b>C</b> 0 |
| aggttctctg aaggccttgc ttcctgcaga tgccttaaat agggaacata ctgatttcca | 60         |
| ctttcttaat gcttctggac catttccatt tctgtttttg ctttccttct taactcttta | 120        |
| catgagttta gagccgtgtt tctcaaatga tgggctagca cgcgtaagag ctcggtacct | 180        |
| atcgatagag aaatgttctg gcacctg                                     | 207        |
|                                                                   |            |
| <210> 123                                                         |            |
| <211> 161<br><212> DNA                                            |            |
| <213> Homo sapiens                                                |            |
| <400> 123                                                         |            |
| aggttetetg aaggetttge tteetgeaga tgeettaaat agggaacata etgattteea | 60         |
| ctttcttaat gcttctggac cactttccat ttctgttttt gctttccttc ttgaactctt | 120        |
| tacatgagtt tagageegtg ttteteaace attttgtttt t                     | 161        |
|                                                                   |            |
| <210> 124                                                         |            |
| <211> 300                                                         |            |
| <212> DNA<br><213> Homo sapiens                                   |            |
| (213) Nomo Baptone                                                |            |
| <400> 124                                                         | 60         |
| ttctcaggtc gtttgctttc ctttgctttc tcccaagtct tgttttacaa tttgctttag | 60         |
| tcattcactg aaactttaaa aaacattaga aaacctcaca gtttgtaaat ettttteeet | 120        |
| attatatata tcataagata ggagcttaaa taaagagttt tagaaactac taaaatgtaa | 180        |
| atgacatagg aaaactgaaa gggagaagtg aaagtgggaa attcctctga atagagagag | 240        |
| gaccatctca tataaatagg ccatacccac ggagaaagga cattctaact gcaacctttc | 300        |
| ·                                                                 |            |
| <210> 125                                                         |            |
| <211> 401<br><212> DNA                                            |            |
| <213> Homo sapiens                                                |            |
| <400> 125                                                         |            |
| gatctgtaat gaataagcag gaactttgaa gactcagtga ctcagtgagt aataaagact | 60         |
| cagtgacttc tgatcctgtc ctaactgcca ctccttgttg tcccaagaaa gcggcttcct | 120        |
| gctctctgag gaggacccct tccctggaag gtaaaactaa ggatgtcagc agagaaattt | 180        |
| ttccaccatt ggtgcttggt caaagaggaa actgatgagc tcactctaga tgagagagca | 240        |
| ctgaggaga gagagagact cgaatttccg gagctatttc agttttcttt tccgttttgt  | 300        |

|                                                   | ttatgatacc<br>aactggccct |              |            |            | ccccttaggg | 360<br>401 |
|---------------------------------------------------|--------------------------|--------------|------------|------------|------------|------------|
| <210> 126<br><211> 781<br><212> DNA<br><213> Homo | o sapiens                |              |            |            |            |            |
| <400> 126<br>ggttgtctgt                           | atgeeteect               | gagggtattt   | cactttctgc | tcccatccgc | ccctatgagc | 60         |
| gagtacctat                                        | gagcacagga               | tgtgcacata   | tttgagtctt | attagtggta | cacgcagttt | 120        |
| tatcatctcc                                        | ccaggtctgt               | gtctgtatga   | aatgtgcatg | ggtgtgtgtg | tgcacgcgtg | 180        |
| tgttcccact                                        | cggggaatgt               | ggggagaggt   | gcatggagcc | aagatgggtg | gtaaatagta | 240        |
| tgtttctgaa                                        | attaaaggac               | taatgtggag   | gaaggcgccc | cagatgtact | aaaccctttg | 300        |
| ccttcatctc                                        | atcctctctg               | acttgggaag   | aaccaggatt | ttgtttttaa | gcccttgggc | 360        |
| atacagttgt                                        | tccatcccga               | catgaactca   | gcctcccgtc | tgaccgcccc | ttggccttcc | 420        |
| ttcttcctcg                                        | atctgtggaa               | cccagggaat   | ctgcctagtg | ctgtctccaa | gcaccttggc | 480        |
| catgatgtaa                                        | acccagagaa               | attagcatct   | ccatctcctt | ccttattccc | cacccaaaag | 540        |
| tcatttcctc                                        | ttagttcatt               | acctgggatt   | ttgatgtcta | tgttccctcc | tcgttattga | 600        |
| tacacacaca                                        | gagagagaca               | aacaaaaaag   | gaacttcttg | aaattccccc | agaaggtttt | 660        |
| gagagttgtt                                        | ttcaatgttg               | caacaagtca   | gtttctagtt | taagtttcca | tcagaaagga | 720        |
| gtagagtata                                        | taagttccag               | taccagcaac   | agcagcagaa | gaaacaacat | ctgtttcagg | 780        |
| g                                                 |                          |              |            |            |            | 781        |
| <210> 127 <211> 277 <212> DNA <213> Hom           |                          |              |            |            |            |            |
| <400> 127<br>gcatctccat                           | ctccttcctt               | attccccacc   | caaaagtcat | ttcctcttag | ttcattacct | 60         |
| gggattttga                                        | tgtctatgtt               | ccctcctcgt   | tattgataca | cacacagaga | gagacaaaca | 120        |
| aaaaaggaac                                        | ttcttgaaat               | tcccccagaa   | ggttttgaga | gttgttttca | atgttgcaac | 180        |
| aagtcagttt                                        | ctagtttaag               | tttccatcag   | aaaggagtag | agtatataag | ttccagtacc | 240        |
| agcaacagca                                        | gcagaagaaa               | . caacatctgt | ttcaggg    |            |            | 277        |
| <210> 128 <211> 305 <212> DNA <213> Hom           | ;<br><b>,</b>            |              |            |            |            |            |
| <400> 128                                         | 3                        |              |            |            |            |            |

| caagacatgc<br>tgcttcttag                  | caagtgctga<br>cgctagcctc | gtcactaata<br>aatgacgacc | aagaaaaaag<br>taagctgcac | aagtaaagga<br>ttttccccct | agagtggttc<br>agttgtgtct | 60<br>120 |
|-------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------|
| tgcgatgcta                                | aaggacgtca               | ttgcacaatc               | ttaataaggt               | ttccaatcag               | ccccacccgc               | 180       |
| tctggcccca                                | ccctcaccct               | ccaacaaaga               | tttatcaaat               | gtgggatttt               | cccatgagtc               | 240       |
| tcaatattag                                | agteteaace               | cccaataaat               | ataggactgg               | agatgtctct               | gaggctcatt               | 300       |
| ctgcc                                     |                          |                          |                          |                          |                          | 305       |
| <210> 129 <211> 118: <212> DNA <213> Home | 1<br>o sapiens           |                          |                          |                          |                          |           |
| <400> 129<br>cctgcaagag                   | acaccatcct               | gaggggaaga               | gggcttctga               | accagettga               | cccaataaga               | 60        |
| aattcttggg                                | tgccgacggg               | gacagcagat               | tcagagccta               | gagccgtgcc               | tgcgtccgta               | 120       |
| gtttccttct                                | agcttctttt               | tgatttcaaa               | tcaagactta               | cagggagagg               | gagcgataaa               | 180       |
| cacaaactct                                | gcaagatgcc               | acaaggtcct               | cctttgacat               | ccccaacaaa               | gaaggtgagt               | 240       |
| agtaatctcc                                | ccctttctgc               | cctgaaccaa               | gtggcttcag               | taagtttcag               | ggctccagga               | 300       |
| gacctgggca                                | tgcaggtgcc               | gatgaaacag               | tggtgaagag               | actcagtggc               | agtggcagtg               | 360       |
| gggagagcac                                | tcgcagcaca               | ggcaaacctc               | tggcacaaga               | gcaaagtcct               | cactggagga               | 420       |
| ttcccaaggg                                | tcacttggga               | gagggcaggc               | agcagccaac               | ctcctctaag               | tgggctgaag               | 480       |
| caggtgaaga                                | aatggcagaa               | gacgcggtgg               | tggcaaaaag               | gagtcacaca               | ctccacctgg               | 540       |
| agacgccttg                                | aagtaactgc               | acgaaatttg               | agggtggcca               | ggcagttcta               | caacagccgc               | 600       |
| ctcacaggga                                | gagccagaac               | acagcaagaa               | ctcagatgac               | tggtagtatt               | accttcttca               | 660       |
| taatcccagg                                | cttggggggc               | tgcgatggag               | tcagaggaaa               | ctcagttcag               | aacatctttg               | 720       |
| gtttttacaa                                | tacaaattaa               | ctggaacgct               | aaattctagc               | ctgttaatct               | ggtcactgaa               | 780       |
| aaaaaaaaa                                 | tttttttt                 | ttcaaaaaac               | atagctttag               | cttattttt                | ttttctcttt               | 840       |
| gtaaaacttc                                | gtgcatgact               | tcagctttac               | tcttgtcaag               | acatgccaag               | tgctgagtca               | 900       |
| ctaataaaga                                | aaaaagaagt               | : aaaggaagag             | tggttctgct               | tettageget               | agcctcaatg               | 960       |
| acgacctaag                                | g ctgcactttt             | cccctagtt                | gtgtcttgcg               | atgctaaagg               | acgtcattgc               | 1020      |
| acaatcttaa                                | taaggtttcc               | : aatcagcccc             | acccgctctg               | gcccaccct                | caccctccaa               | 1080      |
| caaagattta                                | tcaaatgtgg               | gattttccca               | tgagtctcaa               | tattagagto               | tcaaccccca               | 1140      |
| ataaatatag                                | gactggagat               | : gtctctgagg             | ctcattctgo               | c                        |                          | 1181      |

<sup>&</sup>lt;210> 130 <211> 778 <212> DNA

|                                                  | sapiens    |            |            |            |            |     |
|--------------------------------------------------|------------|------------|------------|------------|------------|-----|
| <400> 130<br>ctaccacttg                          | tctattctgc | tatatagtca | gtccttacat | tgctttcttc | ttctgataga | 60  |
| ccaaactctt                                       | taaggacaag | tacctagtct | tatctatttc | tagatecece | acattactca | 120 |
| gaaagttact                                       | ccataaatgt | ttgtggaact | gatttctatg | tgaagacatg | tgccccttca | 180 |
| ctctgttaac                                       | tagcattaga | aaaacaaatc | ttttgaaaag | ttgtagtatg | cccctaagag | 240 |
| cagtaacagt                                       | tcctagaaac | tctctaaaat | gcttagaaaa | agatttattt | taaattacct | 300 |
| ccccaataaa                                       | atgattggct | ggcttatctt | caccatcatg | atagcatctg | taattaactg | 360 |
| aaaaaaaata                                       | attatgccat | taaaagaaaa | tcatccatga | tcttgttcta | acacctgcca | 420 |
| ctctagtact                                       | atatctgtca | catggtctat | gataaagtta | tctagaaata | aaaaagcata | 480 |
| caattgataa                                       | ttcaccaaat | tgtggagctt | cagtatttta | aatgtatatt | aaaattaaat | 540 |
| tattttaaag                                       | atcaaagaaa | actttcgtca | tactccgtat | ttgataagga | acaaatagga | 600 |
| agtgtgatga                                       | ctcaggtttg | ccctgagggg | atgggccatc | agttgcaaat | cgtggaattt | 660 |
| cctctgacat                                       | aatgaaaaga | tgagggtgca | taagttctct | agtagggtga | tgatataaaa | 720 |
| agccaccgga                                       | gcactccata | aggcacaaac | tttcagagac | agcagagcac | acaagctt   | 778 |
|                                                  | o sapiens  |            |            |            |            |     |
| <400> 131<br>actccgtatt                          | tgataaggaa | caaataggaa | gtgtgatgac | tcaggtttgc | cctgagggga | 60  |
| tgggccatca                                       | gttgcaaatc | gtggaatttc | ctctgacata | atgaaaagat | gagggtgcat | 120 |
| aagttctcta                                       | gtagggtgat | gatataaaaa | gccaccggag | cactccataa | ggcacaaact | 180 |
| ttcagagaca                                       | gcagagcaca | caagctt    |            |            |            | 207 |
| <210> 132<br><211> 645<br><212> DNA<br><213> Hom |            |            |            |            |            |     |
| <400> 132<br>gggggtgatt                          |            | gggctgtccc | aggettgtcc | ctgctacccg | cacccagcct | 60  |
| ttcctgaggc                                       | ctcaagcctg | ccaccaagcc | cccagctcct | teteceegea | gggcccaaac | 120 |
| acaggcctca                                       | ggactcaaca | cagcttttcc | ctccaacccc | gttttctctc | cctcaacgga | 180 |
| ctcagctttc                                       | tgaagcccct | cccagttcta | gttctatctt | tttcctgcat | cctgtctgga | 240 |
| agttagaagg                                       | aaacagacca | cagacctggt | ccccaaaaga | aatggaggca | ataggttttg | 300 |
| aggggcatgg                                       | ggacggggtt | cagcctccag | ggtcctacac | acaaatcagt | cagtggccca | 360 |

| daadaceeee et                                                                                                                                                                               |                                                                                                     |                                                                                                   |                                                                                                   |                                                                                                                          |                                                                                                   |                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|
| ttgtgtgtcc cc                                                                                                                                                                               | eggaateg<br>aactttee                                                                                | gagcagggag<br>aaatccccgc                                                                          | gatggggagt<br>ccccgcgatg                                                                          | gtgaggggta<br>gagaagaaac                                                                                                 | tccttgatgc<br>cgagacagaa                                                                          | 420<br>480                                           |
| ggtgcagggc co                                                                                                                                                                               | actaccgc                                                                                            | ttcctccaga                                                                                        | tgagctcatg                                                                                        | ggtttctcca                                                                                                               | ccaaggaagt                                                                                        | 540                                                  |
| tttccgctgg tt                                                                                                                                                                               | gaatgatt                                                                                            | ctttccccgc                                                                                        | cctcctctcg                                                                                        | ccccagggac                                                                                                               | atataaaggc                                                                                        | 600                                                  |
| agttgttggc ac                                                                                                                                                                               | acccagcc                                                                                            | agcagacgct                                                                                        | ccctcagcaa                                                                                        | ggaca                                                                                                                    |                                                                                                   | 645                                                  |
| <210> 133<br><211> 457<br><212> DNA<br><213> Homo s                                                                                                                                         | sapiens                                                                                             |                                                                                                   |                                                                                                   |                                                                                                                          |                                                                                                   |                                                      |
| <400> 133<br>gcctgtactc ag                                                                                                                                                                  | gccaagggt                                                                                           | gcagagatgt                                                                                        | tatatatgat                                                                                        | tgctcttcag                                                                                                               | ggaaccgggc                                                                                        | 60                                                   |
| ctccagctca ca                                                                                                                                                                               | accccagct                                                                                           | gctcaaccac                                                                                        | ctcctctctg                                                                                        | aattgactgt                                                                                                               | cccttctttg                                                                                        | 120                                                  |
| gaactctagg co                                                                                                                                                                               | ctgacccca                                                                                           | ctccctggcc                                                                                        | ctcccagccc                                                                                        | acgattcccc                                                                                                               | tgacccgact                                                                                        | 180                                                  |
| ccctttccca ga                                                                                                                                                                               | aactcagtc                                                                                           | gcctgaaccc                                                                                        | ccagcctgtg                                                                                        | gttctctcct                                                                                                               | aggcctcagc                                                                                        | 240                                                  |
| ctttcctgcc tt                                                                                                                                                                               | ttgactgaa                                                                                           | acagcagtat                                                                                        | cttctaagcc                                                                                        | ctgggggctt                                                                                                               | ccccgggccc                                                                                        | 300                                                  |
| cageceegae et                                                                                                                                                                               | tagaacccg                                                                                           | cccgctgcct                                                                                        | gccacgctgc                                                                                        | cactgccgct                                                                                                               | tcctctataa                                                                                        | 360                                                  |
| agggacctga go                                                                                                                                                                               | egteeggge                                                                                           | ccaggggctc                                                                                        | cgcacagcag                                                                                        | gtgaggctct                                                                                                               | cctgccccat                                                                                        | 420                                                  |
| ctccttgggc tg                                                                                                                                                                               | gcccgtgct                                                                                           | tcgtgctttg                                                                                        | gactacc                                                                                           |                                                                                                                          |                                                                                                   | 457                                                  |
| <210> 134                                                                                                                                                                                   |                                                                                                     |                                                                                                   |                                                                                                   |                                                                                                                          |                                                                                                   |                                                      |
| <211> 973<br><212> DNA<br><213> Homo s                                                                                                                                                      | sapiens                                                                                             |                                                                                                   |                                                                                                   |                                                                                                                          |                                                                                                   |                                                      |
| <212> DNA<br><213> Homo s                                                                                                                                                                   |                                                                                                     | tttgattcat                                                                                        | ggtgctgaga                                                                                        | ctqqaqqttc                                                                                                               | ctctqctqta                                                                                        | 60                                                   |
| <212> DNA<br><213> Homo s<br><400> 134<br>gcagcaaatc as                                                                                                                                     | gaatggcag                                                                                           |                                                                                                   |                                                                                                   |                                                                                                                          |                                                                                                   | 60<br>120                                            |
| <212> DNA<br><213> Homo s<br><400> 134<br>gcagcaaatc ag<br>ggctcagaat ag                                                                                                                    | gaatggcag<br>tgtctaagc                                                                              | aattgaggaa                                                                                        | tgtctcagaa                                                                                        | aacgtggggc                                                                                                               | tagtgtgcca                                                                                        |                                                      |
| <212> DNA<br><213> Homo s<br><400> 134<br>gcagcaaatc as                                                                                                                                     | gaatggcag<br>tgtctaagc<br>aaagccatt                                                                 | aattgaggaa<br>ttccctccct                                                                          | tgtctcagaa<br>aattctgatt                                                                          | aacgtggggc<br>ggataagggc                                                                                                 | tagtgtgcca<br>attacagttg                                                                          | 120                                                  |
| <212> DNA <213> Homo s  <400> 134 gcagcaaatc ag ggctcagaat ag tatttatctg ca                                                                                                                 | gaatggcag<br>tgtctaagc<br>aaagccatt<br>cctgctggc                                                    | aattgaggaa<br>ttccctccct<br>tgttcctggg                                                            | tgtctcagaa<br>aattctgatt<br>gaagtcccat                                                            | aacgtggggc<br>ggataagggc<br>gttgcagact                                                                                   | tagtgtgcca<br>attacagttg<br>cgaaggtatt                                                            | 120<br>180                                           |
| <212> DNA <213> Homo s <400> 134 gcagcaaatc ag ggctcagaat ag tatttatctg ca acttagcaaa ag                                                                                                    | gaatggcag<br>tgtctaagc<br>aaagccatt<br>cctgctggc<br>cctccaagt                                       | aattgaggaa<br>ttccctccct<br>tgttcctggg<br>tacggaattt                                              | tgtctcagaa<br>aattctgatt<br>gaagtcccat<br>ccctctgctc                                              | aacgtggggc<br>ggataagggc<br>gttgcagact<br>ctctttttt                                                                      | tagtgtgcca<br>attacagttg<br>cgaaggtatt<br>ggtaatagtg                                              | 120<br>180<br>240                                    |
| <212> DNA <213> Homo s <400> 134 gcagcaaatc ag ggctcagaat ag tatttatctg ca acttagcaaa ag atttattgta gg                                                                                      | gaatggcag tgtctaagc aaagccatt cctgctggc cctccaagt actttccaa                                         | aattgaggaa<br>ttccctccct<br>tgttcctggg<br>tacggaattt<br>aacatgaact                                | tgtctcagaa aattctgatt gaagtcccat ccctctgctc gtttcttgaa                                            | aacgtggggc<br>ggataagggc<br>gttgcagact<br>ctctttttt<br>aaaaagaact                                                        | tagtgtgcca attacagttg cgaaggtatt ggtaatagtg tcattgcata                                            | 120<br>180<br>240<br>300                             |
| <212> DNA <213> Homo s <400> 134 gcagcaaatc ag ggctcagaat ag tatttatctg ca acttagcaaa ag atttattgta gg aattaggttt ca                                                                        | gaatggcag tgtctaagc aaagccatt cctgctggc cctccaagt actttccaa aaaggttgc                               | aattgaggaa<br>ttccctccct<br>tgttcctggg<br>tacggaattt<br>aacatgaact<br>aatccattct                  | tgtctcagaa aattctgatt gaagtcccat ccctctgctc gtttcttgaa aactataatg                                 | aacgtggggc<br>ggataagggc<br>gttgcagact<br>ctctttttt<br>aaaaagaact<br>cttttctca                                           | tagtgtgcca attacagttg cgaaggtatt ggtaatagtg tcattgcata acacttaaac                                 | 120<br>180<br>240<br>300<br>360                      |
| <212> DNA <213> Homo s <400> 134 gcagcaaatc ag ggctcagaat ag tatttatctg ca acttagcaaa ag atttattgta gg aattaggttt ca tagaaaaaaa ca                                                          | gaatggcag tgtctaagc aaagccatt cctgctggc cctccaagt actttccaa aaaggttgc ctttcagag                     | aattgaggaa ttccctcct tgttcctggg tacggaattt aacatgaact aatccattct gttattttc                        | tgtctcagaa aattctgatt gaagtcccat ccctctgctc gtttcttgaa aactataatg aaaatatccc                      | aacgtggggc<br>ggataagggc<br>gttgcagact<br>ctctttttt<br>aaaaagaact<br>cttttctca<br>cagtaataga                             | tagtgtgcca attacagttg cgaaggtatt ggtaatagtg tcattgcata acacttaaac aattttcat                       | 120<br>180<br>240<br>300<br>360<br>420               |
| <212> DNA <213> Homo s <400> 134 gcagcaaatc ag ggctcagaat ag tatttatctg ca acttagcaaa ag atttattgta gg aattaggttt ca tagaaaaaaa ca ttttacagtt ag                                            | gaatggcag tgtctaagc aaagccatt cctgctggc cctccaagt actttccaa aaaggttgc ctttcagag aaacctaat           | aattgaggaa ttccctccct tgttcctggg tacggaattt aacatgaact aatccattct gttattttc tttttggtaa            | tgtctcagaa aattctgatt gaagtcccat ccctctgctc gtttcttgaa aactataatg aaaatatccc cagcaagttg           | aacgtggggc<br>ggataagggc<br>gttgcagact<br>ctctttttt<br>aaaaagaact<br>cttttctca<br>cagtaataga<br>tgcctgatta               | tagtgtgcca attacagttg cgaaggtatt ggtaatagtg tcattgcata acacttaaac aattttcat ttagaacagt            | 120<br>180<br>240<br>300<br>360<br>420<br>480        |
| <pre>&lt;212&gt; DNA &lt;213&gt; Homo s &lt;400&gt; 134 gcagcaaatc as ggctcagaat as tatttatctg cs acttagcaaa as atttattgta gs aattaggttt cs tagaaaaaaa cs ttttacagtt as cctttatagg ts</pre> | gaatggcag tgtctaagc aaagccatt cctgctggc cctccaagt actttccaa aaaggttgc ctttcagag aaacctaat acagtcctc | aattgaggaa ttccctccct tgttcctggg tacggaattt aacatgaact aatccattct gttattttc tttttggtaa cttgatcaaa | tgtctcagaa aattctgatt gaagtcccat ccctctgctc gtttcttgaa aactataatg aaatatccc cagcaagttg tactataaag | aacgtggggc<br>ggataagggc<br>gttgcagact<br>ctctttttt<br>aaaaagaact<br>cttttctca<br>cagtaataga<br>tgcctgatta<br>taataggact | tagtgtgcca attacagttg cgaaggtatt ggtaatagtg tcattgcata acacttaaac aattttcat ttagaacagt ggcctgcttt | 120<br>180<br>240<br>300<br>360<br>420<br>480<br>540 |

| gctcatttgg g                                       | tatctgatt   | tgtggtgtgt | taaaacaagt | ttcacgtctt | atagcagtcc | 780 |
|----------------------------------------------------|-------------|------------|------------|------------|------------|-----|
| ctgaatgaaa a                                       | catcataag   | atggtatcta | gaatggtgtg | agaaaaggat | tcatagctat | 840 |
| cctagggtta t                                       | tgtaaaaaa   | caaagggtgc | tttttgagga | aatgaattta | aaagcggggg | 900 |
| ggcacgcata g                                       | agacagacc   | ttgggaaagt | agcttgagac | agaagggaaa | caggttgatt | 960 |
| tacgatgggg t                                       | tc          |            |            |            |            | 973 |
| <210> 135<br><211> 333<br><212> DNA<br><213> Homo  | sapiens     |            |            |            |            |     |
| <400> 135<br>gctaccttaa g                          | aaggctggt   | taccatctgg | gttttcacag | tgctttcaca | ttcttatcac | 60  |
| tttcaacact a                                       | ctgcaaata   | ggaagggaca | gtaacattta | gaagagaaca | aaacagaaac | 120 |
| tcttggaagc a                                       | ggaaaggtg . | catgactcaa | agagggaaat | tcctgtgcca | taaaaggatt | 180 |
| gctggtgtat a                                       | aaatgctct   | atatatgcca | attatcaatt | tcctttcatg | ttcagcattt | 240 |
| ctactccttc c                                       | aagaagagc   | agcaaagctg | aagttagcag | cagcagcacc | agcagcaaca | 300 |
| gcaaaaaaca a                                       | acatgagtg   | tgaagggcat | ggc        |            |            | 333 |
| <210> 136<br><211> 1048<br><212> DNA<br><213> Homo | sapiens     |            |            |            |            |     |
| <400> 136<br>ggtgaccaag a                          | atgtgagca   | agcccaggca | cagccactgt | gggcgcctga | ccaaacagca | 60  |
| ctaaatttgt g                                       | gtgggacatg  | atcccagagg | tgtgtggctt | cacccctcaa | cgagtggcgt | 120 |
| ggcatggagt t                                       | actgaatct   | ccaaggtcaa | acaggccctc | aaattcatca | agaaaagggt | 180 |
| agggacaaac a                                       | atctgtacca  | agagaaggca | ggaggagctg | agcaacgtcc | tgctgccatg | 240 |
| aggaaagcag (                                       | ctgccaagaa  | ggactgagcc | cctgccatct | gcctataatg | aaagctttgc | 300 |
| aaaataaaat a                                       | aatataaaa   | taaagtaata | aaattaaatt | aaatttaaaa | ataaaataaa | 360 |
| gcaaaacaaa a                                       | ataaaatata  | taaagtaaaa | attgttaaaa | tgcaaaacaa | tatggacata | 420 |
| aatacagaaa (                                       | cacagggaaa  | cttctttagg | cactcattta | caggtaaaaa | tatgaaattg | 480 |
| aataaaggtc a                                       | atctggtgtc  | aaataatata | ggccttatct | attataagag | tttggactga | 540 |
| aaagcaaaag t                                       | tgagataaca  | aaaaaaagct | tttcagaata | ttattttgta | tagatatgtg | 600 |
| aaggatgaag g                                       | ggtgggtgaa  | aggaccaaaa | acagaaacac | agtetteetg | aatgaatgac | 660 |
| aatcagaatt                                         | ccgctgccca  | aagtagtccg | acaattaaat | ggatttctag | gaaaagctac | 720 |
| cttaagaagg                                         | ctggttacca  | tctgggtttt | cacagtgctt | tcacattctt | atcactttca | 780 |

| acactactgc                                        | aaataggaag | ggacagtaac | atttagaaga | gaacaaaaca | gaaactcttg | 840  |
|---------------------------------------------------|------------|------------|------------|------------|------------|------|
| gaagcaggaa                                        | aggtgcatga | ctcaaagagg | gaaattcctg | tgccataaaa | ggattgctgg | 900  |
| tgtataaaat                                        | gctctatata | tgccaattat | caatttcctt | tcatgttcag | catttctact | 960  |
| ccttccaaga                                        | agagcagcaa | agctgaagtt | agcagcagca | gcaccagcag | caacagcaaa | 1020 |
| aaacaaacat                                        | gagtgtgaag | ggcatggc   |            |            |            | 1048 |
| <210> 137<br><211> 504<br><212> DNA<br><213> Home | o sapiens  |            |            |            |            |      |
| <400> 137<br>agggggcccc                           | gcagcagccc | cttggcttcc | cttctccctt | geeteecete | eggggeteeg | 60   |
| gttcagaggc                                        | actctgggcg | cctgctacag | cttccaaact | gegeegette | cttcttcggc | 120  |
| agaaaaggac                                        | tttcagatgc | ggcggcggcg | gcggcggcga | ctcaggacag | cgcccctcc  | 180  |
| cctaacggcc                                        | gcctctccct | ctcccctcg  | cccgccccgg | ctcccccacc | tctgggaagg | 240  |
| cgctgggggt                                        | gtggccaggg | accggtataa | agtccggggg | agccggtccc | gggcagccgc | 300  |
| tcagccccct                                        | gcccctcgcc | gecegeegee | tgcctgggcc | gggccgagga | tgcggcgcag | 360  |
| cgcctcggcg                                        | gccaggcttg | ctccctccgg | cacgcctgct | aacttccccc | gctacgtccc | 420  |
| cgttcgcccg                                        | ccgggccgcc | ccgtctcccc | gegeeeteeg | ggtcgggtcc | tccaggagcg | 480  |
| ccaggcgctg                                        | ccgccgtgtg | ccct       |            |            |            | 504  |
| <210> 138 <211> 104 <212> DNA <213> Hom           |            |            |            |            |            |      |
| <400> 138<br>gatcacaaca                           | gctctacaaa | tacacaatga | ttacaaggaa | tggtgcccca | ctggagttgt | · 60 |
| tcaacgcaaa                                        | acttgcacat | tgcaagtggc | aatctcccag | gcctgcctcc | ctccacgagt | 120  |
| gggtctgaat                                        | gggcctgaga | ggcaaacatc | caagaaggag | gaagaggctc | ggcggcacct | 180  |
| ccctccccgg                                        | gagttctgct | gattccatct | tggggaagca | gggtggacca | gggcccaaat | 240  |
| gcgccctggg                                        | gagattgcgg | gggcgggaga | ggttgcaagg | ggcaagtggc | aagagcctgt | 300  |
| taacgtctta                                        | gggcctccag | gcctttctgt | gcccctagct | gtgcctgtac | gctttacccc | 360  |
| acctcaggag                                        | gcttggtctc | cagcggttga | ggctggaagc | accggggtgc | ggtggaaagg | 420  |
| gctctgtcca                                        | ggaagaccgg | atccgcagag | ccgggagtcc | gggctaggaa | gtccctttct | 480  |
| cggtgggaga                                        | ctgaggccgc | cttggcgggg | cgggacgaga | ctcctccgag | gtcgggaaag | 540  |
| ggggccccgc                                        | agcagcccct | tggcttccct | tctcccttgc | ctccctccg  | gggctccggt | 600  |

| tcagagg                                                  | cac tctgggcgcc                     | tgctacagct  | tccaaactgc | gccgcttcct | tcttcggcag | 660  |
|----------------------------------------------------------|------------------------------------|-------------|------------|------------|------------|------|
| aaaagga                                                  | ctt tcagatgcgg                     | cggcggcggc  | ggcggcgact | caggacagcg | cccctcccc  | 720  |
| taacggc                                                  | ege etetecetet                     | cccctcgcc   | cgccccggct | ccccacctc  | tgggaaggcg | 780  |
| ctggggg                                                  | tgt ggccagggac                     | cggtataaag  | tccgggggag | ccggtcccgg | gcagccgctc | 840  |
| agccccc                                                  | tgc ccctcgccgc                     | ccgccgcctg  | cctgggccgg | gccgaggatg | cggcgcagcg | 900  |
| cctcggc                                                  | ggc caggcttgct                     | ccctccggca  | cgcctgctaa | cttcccccgc | tacgtccccg | 960  |
| ttcgccc                                                  | gcc gggccgcccc                     | gtctccccgc  | gccctccggg | tegggteete | caggagcgcc | 1020 |
| aggcgct                                                  | gcc gccgtgtgcc                     | ct          |            |            |            | 1042 |
| <211><br><212>                                           | 139<br>24<br>DNA<br>artificial seq | uence       |            |            |            |      |
| <223>                                                    | Immunostimulat                     | ory nucleic | acid       |            |            |      |
| <400><br>tcgtcgt                                         | 139<br>ttt gacgttttgt              | cgtt        |            | ·          |            | 24   |
| <210>                                                    | 140                                |             |            |            |            |      |
| <211>                                                    | 24                                 |             |            |            |            |      |
|                                                          | DNA                                |             |            |            |            |      |
| <213>                                                    | artificial seq                     | dence       |            |            |            |      |
| <220>                                                    |                                    |             |            |            |            |      |
| <223>                                                    | Immunostimulat                     | ory nucleic | acid       |            |            |      |
| <400><br>tcgtcgt                                         | 140<br>ttt gtegttttt               | tcga        |            |            |            | 24   |
| <210>                                                    | 141                                |             |            |            |            |      |
| <211>                                                    | 24                                 |             |            |            |            |      |
| <212>                                                    | DNA                                | mionae      |            |            |            |      |
| <213>                                                    | artificial seq                     | uence       |            |            |            |      |
| <220>                                                    |                                    |             |            |            |            |      |
| <223>                                                    | Immunostimulat                     | ory nucleic | : acid     |            |            |      |
| <pre>&lt;400&gt; 141 tcgtcgtttc gtcgtttcgt cgtt 24</pre> |                                    |             |            |            |            |      |
| tegtegi                                                  | ttte gregttregt                    | . eget      |            |            |            | 2.7  |
| <210>                                                    | 142                                |             |            |            |            |      |
| <211>                                                    | 24<br>DNA                          |             |            |            |            |      |
| <212><br><213>                                           |                                    | nence       |            |            |            |      |
|                                                          |                                    |             |            |            |            |      |

WO 2004/094671 PCT/US2004/012788 <220> <223> Immunostimulatory nucleic acid <400> 142 24 tcgtcgtttc gtcgttttgt cgtt <210> 143 <211> 21 <212> DNA <213> artificial sequence <220> <223> Immunostimulatory nucleic acid <400> 143 21 togtogtttt toggtogttt t <210> 144 <211> 22 <212> DNA <213> artificial sequence <220> <223> Immunostimulatory nucleic acid <400> 144 22 tcgtcgtttt tcgtgcgttt tt <210> 145 <211> 22 <212> DNA <213> artificial sequence <220> <223> Immunostimulatory nucleic acid <400> 145 22 tegtegtttt eggeggeege eg <210> 146 <211> 24 <212> DNA <213> artificial sequence <220> <223> Immunostimulatory nucleic acid <400> 146 24 tcgtcgtttt acggcgccgt gccg <210> 147 <211> 24

<212> DNA

```
<213> artificial sequence
<220>
<223> Immunostimulatory nucleic acid
<220>
<221> misc_feature
<222> (2)..(2)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (5)..(5)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (13)..(13)
<223> N = 5-methylcytosine
<220>
<221> misc feature
<222> (21)..(21)
<223> N = 5-methylcytosine
<400> 147
                                                                              24
tngtngtttt gtngttttgt ngtt
<210> 148
<211> 27
<212> DNA
<213> artificial sequence
<220>
<223> Immunostimulatory nucleic acid
<220>
<221> misc_feature
<222> (2)..(2)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (5)..(5)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (7)..(7)
<223> N = 5-methylcytosine
<220>
<221> misc feature
<222> (11)..(11)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (13)..(14)
```

<223> N = 5-methylcytosine

```
<220>
<221> misc_feature
<222> (16)..(16)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (19)..(19)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (22)..(22)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (26)..(27)
<223> N = 5-methylcytosine
<400> 148
                                                                         27
tngtngntgt ntnngnttnt tnttgnn
<210> 149
<211> 21
<212> DNA
<213> artificial sequence
<220>
<223> Immunostimulatory nucleic acid
<220>
<221> misc_feature
<222> (2)..(2)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (8)..(8)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (10)..(10)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (13)..(13)
<223> N = 5-methylcytosine
<220>
<221> misc_feature
<222> (16)..(16)
<223> N = 5-methylcytosine
<220>
<221> misc_feature <222> (20)..(20)
```

<223> N = 5-methylcytosine <400> 149 21 gngtttgntn ttnttnttgn g <210> 150 <211> 20 <212> DNA <213> artificial sequence <220> <223> Immunostimulatory nucleic acid <220> <221> misc\_feature <222> (2)..(4) <223> N = 5-methylcytosine <220> <221> misc\_feature
<222> (8)..(8)
<223> N = 5-methylcytosine <220> <221> misc\_feature
<222> (12)..(12)
<223> N = 5-methylcytosine <220> <221> misc\_feature
<222> (15)..(16)
<223> N = 5-methylcytosine <220> <221> misc\_feature
<222> (19)..(19)
<223> N = 5-methylcytosine <400> 150 20 gnnnaagntg gnatnngtna <210> 151 <211> 15 <212> DNA <213> artificial sequence <220> <223> Immunostimulatory nucleic acid <400> 151 15 tcctggcggg gaagt <210> 152 <211> 42 <212> DNA <213> artificial sequence

PCT/US2004/012788

WO 2004/094671

<220>

| √22 <b>3</b> >   | 01 fgomucléotitie                       |    |
|------------------|-----------------------------------------|----|
| <400>            | 152                                     |    |
|                  | gag ccaccatgag acagactttg ccttgtatct ac | 42 |
|                  |                                         |    |
| <210>            | 153                                     |    |
| <211>            |                                         |    |
| <212>            |                                         |    |
| <213>            | artificial sequence                     |    |
| 40005            |                                         |    |
| <220>            |                                         |    |
| <223>            | Oligonucleotide                         |    |
|                  |                                         |    |
| <400>            | 153                                     |    |
| gaaagaa          | attc ttaatgtaca gagtttttgg atccaag      | 37 |
|                  |                                         |    |
| <210>            | 154                                     |    |
| <211>            | ·                                       |    |
| <212>            |                                         |    |
| <213>            | artificial sequence                     |    |
| <000×            |                                         |    |
| <220>            |                                         |    |
| <223>            | Immunostimulatory nucleic acid          |    |
|                  |                                         |    |
| <400>            |                                         |    |
| tgctgct          | ttt gtgettttgt gett                     | 24 |
|                  | ·                                       |    |
| <210>            | 155                                     |    |
| <211>            | 20                                      |    |
| <212>            | DNA                                     |    |
| <213>            | artificial sequence                     |    |
| <220>            |                                         |    |
| 12207            | •                                       |    |
| <223>            | Immunostimulatory nucleic acid          |    |
|                  |                                         |    |
| <400>            | 155                                     |    |
| tccatga          | acgt teetgatget                         | 20 |
|                  |                                         |    |
| <210>            | 156                                     |    |
| <211>            | 20                                      |    |
| <212>            | DNA                                     |    |
| <213>            | artificial sequence                     |    |
| <220>            |                                         |    |
|                  |                                         |    |
| <223>            | Immunostimulatory nucleic acid          |    |
| 44005            | 100                                     |    |
| <400>            | 156<br>aget teetgatget                  | 20 |
| cooking          |                                         | 20 |
|                  |                                         |    |
| <210>            | 157                                     |    |
| <211><br><212>   | 20                                      |    |
| <21 <i>2&gt;</i> | DNA artificial sequence                 |    |
|                  |                                         |    |

| WO 2004        | 1/094671                       | PCT/US2004/012788 |
|----------------|--------------------------------|-------------------|
| ∢220>          |                                |                   |
| <223>          | Immunostimulatory nucleic acid |                   |
| <220>          |                                |                   |
| <221>          | misc_feature                   |                   |
|                | (8) (8)                        | •                 |
| <223>          | N = 5-methylcytosine           |                   |
| <400>          | 157                            |                   |
| tccatg         | angt teetgatget                | 20                |
|                |                                | ·                 |
| <210>          | 158                            |                   |
| <211>          |                                |                   |
| <212>          |                                |                   |
| <213>          | artificial sequence            |                   |
| <220>          |                                |                   |
| <223>          | Immunostimulatory nucleic acid |                   |
| <400>          | 158                            |                   |
| tegteg         | tttt eggegegege eg             | 22                |
| <210>          |                                |                   |
| <211>          |                                |                   |
| <212>          |                                |                   |
| <213>          | artificial sequence            |                   |
| <220>          |                                |                   |
| <223>          | Immunostimulatory nucleic acid | ٠.                |
| <400>          | 159                            |                   |
| ggggad         | gacg tegtgggggg g              | 21                |
| <210>          |                                |                   |
| <211>          |                                |                   |
| <212><br><213> | DNA<br>artificial sequence     |                   |
| <220>          | •                              |                   |
| <223>          | Immunostimulatory nucleic acid |                   |
| <400>          | 160                            |                   |
|                | ettt eggeggeege eg             | 22                |
| <210>          | 161                            |                   |
| <211>          |                                |                   |
| <212>          |                                |                   |
|                | artificial sequence            |                   |
| <220>          |                                |                   |
| <223>          | Immunostimulatory nucleic acid |                   |
| <400>          |                                |                   |
| gggga          | gcagc tgctgggggg g             | 21                |