પ્રશ્ન 1(અ) [3 માર્ક્સ]

ร-**ฯ**ธ์ ระโ: (110101)₂ = (_)₁₀ = (_)₈ = (_ _)₁₆

જવાબ:

સ્ટેપ-બાય-સ્ટેપ કન્વર્ઝન (110101)₂:

બાઇનરી (110101)₂	ડેસિમલ	ઑક્ટલ	હેક્ઝાડેસિમલ
$1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$	32+16+0+4+0+1 = 53	$6 \times 8^{1} + 5 \times 8^{0} = 48 + 5$ = 53	$3 \times 16^{1} + 5 \times 16^{0} = 48 + 5$ = 35
(110101) ₂	(53) ₁₀	(65) ₈	(35) ₁₆

મેમરી ટ્રીક: "બાઇનરી ડિજિટ આઉટ હિયર" (BDOH) બાઇનરી→ડેસિમલ→ઑક્ટલ→હેક્ઝાડેસિમલ કન્વર્ઝન માટે.

પ્રશ્ન 1(બ) [4 માર્ક્સ]

કરો: (i) (11101101)₂+(10101000)₂ (ii) (11011)₂*(1010)₂

જવાબ:

બાઇનરી સરવાળા અને ગુણાકાર માટે ટેબલ:

(i) બાઇનરી સરવાળો	(ii) બાઇનરી ગુણાકાર
11101101	11011
+ 10101000	× 1010
110010101	00000
	11011
	00000
	11011
	11101110

ડેસિમલ વેરિફિકેશન:

- (i) (11101101)₂ = 237, (10101000)₂ = 168, સરવાળો = 405 = (110010101)₂
- (ii) (11011)₂ = 27, (1010)₂ = 10, ગુણાકાર = 270 = (11101110)₂

મેમરી ટ્રીક: સરવાળા માટે "કેરી અપ મેક્સ સમ" અને ગુણાકાર માટે "શિફ્ટ લેફ્ટ એડ પ્રોડક્ટ".

પ્રશ્ન 1(ક) [7 માર્ક્સ]

(i) કન્વર્ટ કરો: $(48)_{10} = (_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}})_{16} = (_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}})_{16} = (_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}})_{16} = (_{_{_{_{_{_{_{_{_{_{1}}}}}}}}})_{16}}$

(ii) 2's Complement પદ્ધતિનો ઉપયોગ કરીને બાદબાકી કરો: (1110)₂ – (1000)₂

(iii) (1111101)₂ ને (101)₂ વડે વિભાજિત કરો.

જવાબ:

(i) કન્વર્ઝન ટેબલ:

ડેસિમલ (48) ₁₀	બાઇનરી	ઑક્ટલ	હેક્ઝાડેસિમલ
48÷2 = 24 રેમ 0	110000	60	30
24÷2 = 12 રેમ 0			
12÷2 = 6 રેમ 0			
6÷2 = 3 રેમ 0			
3÷2 = 1 રેમ 1			
1÷2 = 0 રેમ 1			
(48) ₁₀	(110000) ₂	(60) ₈	(30) ₁₆

(ii) બાદબાકી ટેબલ:

2's Complement પદ્ધતિ	સ્ટેપ્સ
$(1110)_2 - (1000)_2$	1. (1000) ₂ નો 2's complement શોધો
(1000) ₂ नो 1's complement	(0111) ₂
2's complement	$(0111)_2 + 1 = (1000)_2$
$(1110)_2 + (1000)_2$	(10110) ₂
કેરી દૂર કરો	(0110) ₂
પરિણામ	$(0110)_2 = 6_{10}$

(iii) ભાગાકાર:

મેમરી ટ્રીક: લાંબા ભાગાકાર પ્રક્રિયા માટે "ડિવિઝન ડ્રોપ્સ ડાઉન રિમેન્ડર્સ".

પ્રશ્ન 1(ક) અથવા [7 માર્ક્સ]

કોડ્સ સમજાવો: ASCII, BCD, Gray

જવાબ:

સામાન્ય ડિજિટલ કોડ્સનું ટેબલ:

sìs	นณ์ฯ	ઉદાહરણ
ASCII (American Standard Code for Information Interchange)	128 કેરેક્ટર્સને રજૂ કરતો 7-બિટ કોડ જેમાં આલ્ફાબેટ્સ, નંબર્સ અને સ્પેશિયલ સિમ્બોલ્સ શામેલ છે	A = 65 (1000001) ₂
BCD (Binary Coded Decimal)	દરેક ડેસિમલ અંક (0-9) ને 4 બિટ્સનો ઉપયોગ કરીને રજૂ કરે છે	42 = 0100 0010
Gray Code	બાઇનરી કોડ જેમાં આસપાસના નંબરો માત્ર એક બિટથી અલગ પડે છે	(0,1,3,2) = (00,01,11,10)

ડાયાગ્રામ: ગ્રે કોડ જનરેશન:

મેમરી ટ્રીક: "ઓલવેઝ બાઇનરી જનરેટ્સ" - દરેક કોડનો પ્રથમ અક્ષર (ASCII, BCD, Gray).

પ્રશ્ન 2(અ) [3 માર્ક્સ]

બુલિયન બીજગણિતનો ઉપયોગ કરીને સરળ બનાવો: Y = A B + A' B + A' B' + A B'

જવાબ:

સ્ટેપ-બાય-સ્ટેપ સરળીકરણ:

સ્ટેપ	એક્સપ્રેશન	બુલિયન નિયમ
Y = A B + A' B + A' B' + A B'	પ્રારંભિક એક્સપ્રેશન	-
Y = A(B + B') + A'(B + B')	ફેક્ટરિંગ	ડિસ્ટ્રિબ્યુટિવ લૉ
Y = A(1) + A'(1)	કોમ્પ્લિમેન્ટ લૉ	B + B' = 1
Y = A + A'	સરળીકરણ	-
Y = 1	કોમ્પ્લિમેન્ટ લૉ	A + A' = 1

મેમરી ટ્રીક: બુલિયન સરળીકરણ સ્ટેપ્સ માટે "ફેક્ટર, સિમ્પ્લિફાય, ફિનિશ".

પ્રશ્ન 2(બ) [4 માર્ક્સ]

K-મેપનો ઉપયોગ કરીને નીચેના બુલિયન ફંક્શન ને સરળ બનાવો: f(A,B,C,D) = Σm (0,3,4,6,8,11,12)

જવાબ:

K-મેપ સોલ્યુશન:

ગ્રુપિંગ:

- ગ્રુપ 1: m(0,8) = A'C'D'
- ગ્રુપ 2: m(4,12) = BD'
- ગ્રૂપ 3: m(3,11) = CD
- ગ્રુપ 4: m(6) = A'B'CD'

સરળ કરેલ એક્સપ્રેશન: f(A,B,C,D) = A'C'D' + BD' + CD + A'B'CD'

મેમરી ટ્રીક: K-મેપ ગ્રુપિંગ સ્ટ્રેટેજી માટે "ગ્રુપ પાવર્સ ઓફ ટુ".

પ્રશ્ન 2(ક) [7 માર્ક્સ]

NOR ગેટને સ્વચ્છ આકૃતિઓ સાથે યુનિવર્સલ ગેટ તરીકે સમજાવો.

જવાબ:

NOR એઝ યુનિવર્સલ ગેટ:

ફંક્શન	NOR નો ઉપયોગ કરી ઇમ્પ્લિમેન્ટેશન	ટ્રુથ ટેબલ
Síc TON		А
		0
		1
Síc DNA		АВ
		0 0
		0 1
		1 0
		1 1
OR ગેટ		АВ
		0 0
		0 1
		1 0
		11

ડાયાગ્રામ: NOR ઇમ્પ્લિમેન્ટેશન:

NOT: A -1>-

AND: A --1>--I
I 1>-- A•B
B --1>--I

OR: A --1>--I
I I>-- A+B
B --1>--I

મેમરી ટ્રીક: NOR ગેટ ઇમ્પ્લિમેન્ટેશન માટે "NOT AND OR, NOR કરે મોર".

પ્રશ્ન 2(અ) અથવા [3 માર્ક્સ]

બુલિયન સમીકરણ માટે લોજિક સર્કિટ દોરો: Y = (A + B') . (A' + B') . (B + C)

જવાબ:

લોજિક સર્કિટ ઇમ્પ્લિમેન્ટેશન:

ટુથ ટેબલ વેરિફિકેશન:

- ਟਮੰ 1: (A + B')

- આઉટપુટ: Y = Term1 Term2 Term3

મેમરી ટ્રીક: જટિલ એક્સપ્રેશન માટે "દરેક ટર્મ અલગથી".

પ્રશ્ન 2(બ) અથવા [4 માર્ક્સ]

ડી-મોર્ગન્સના પ્રમેય લખો અને તેને સાબિત કરો.

જવાબ:

ડી-મોર્ગન્સ પ્રમેય અને પ્રૂફ:

પ્રમેચ	સ્ટેટમેન્ટ	ટ્રુથ ટેબલ દ્વારા પ્રૂફ
પ્રમેચ 1	(A•B)' = A' + B'	АВ
		0 0
		0 1
		1 0
		11
પ્રમેય 2	(A+B)' = A'•B'	АВ
		0 0
		0 1
		10
		11

ડાયાગ્રામ: ડી-મોર્ગન્સ લૉ વિઝ્યુલાઇઝેશન:

મેમરી ટ્રીક: ડી-મોર્ગન્સ લૉ લાગુ કરવા માટે "બાર તોડો, ઓપરેશન બદલો, ઇનપુટ ઇન્વર્ટ કરો".

પ્રશ્ન 2(ક) અથવા [7 માર્ક્સ]

સિમ્બોલ, ટ્રુથ ટેબલ અને સમીકરણની મદદથી તમામ લોજિક ગેટ્સ સમજાવો.

જવાબ:

લોજિક ગેટ્સ સમરી:

ગેટ	સિમ્બોલ	ટ્રુથ ટેબલ	સમીકરણ	વર્ણન
AND		АВ	Υ	Y = A•B
		0 0	0	

	0 1	0	
	1 0	0	
	1 1	1	
OR	АВ	Υ	Y = A+B
	0 0	0	
	0 1	1	
	1 0	1	
	1 1	1	
NOT	А	Υ	Y = A'
	0	1	
	1	0	
NAND	AB	Υ	Y = (A•B)'
	0 0	1	
	0 1	1	
	1 0	1	
	1 1	0	
NOR	AB	Υ	Y = (A+B)'
	0 0	1	
	0 1	0	
	1 0	0	
	1 1	0	
XOR	АВ	Υ	Y = A⊕B
	0 0	0	
	0 1	1	
	1 0	1	
	11	0	
XNOR	AB	Υ	Y = (A⊕B)'
	0 0	1	

0 1	0	
1 0	0	
1 1	1	

મેમરી ટ્રીક: "All Operations Need Necessary eXecution" (દરેક ગેટનો પહેલો અક્ષર - AND, OR, NOT, NAND, NOR, XOR).

પ્રશ્ન 3(અ) [3 માર્ક્સ]

સંક્ષિપ્તમાં 4:2 એન્કોડર સમજાવો.

જવાબ:

4-to-2 એન્કોડર ઓવરવ્યુ:

ફંક્શન	વર્ણન	ટ્રુથ ટેબલ
4:2 એન્કોડર	4 ઇનપુટ લાઇન્સને 2 આઉટપુટ લાઇન્સમાં કન્વર્ટ કરે છે	
	એક સમયે માત્ર એક જ ઇનપુટ એક્ટિવ	1000
	ઇનપુટ પોઝિશન બાઇનરીમાં એન્કોડેડ	0100
		0010
		0 0 0 1

ડાયાગ્રામ: 4:2 એન્કોડર:

મેમરી ટ્રીક: એન્કોડર ફંક્શન માટે "ઇનપુટ પોઝિશન ક્રિએટ્સ આઉટપુટ".

પ્રશ્ન 3(બ) [4 માર્ક્સ]

ફુલ એડર બ્લોક્સનો ઉપયોગ કરીને 4-બિટ પેરેલલ એડરને સમજાવો.

જવાબ:

4-બિટ પેરેલલ એડર:

કોમ્પોનન્ટ	ફંક્શન
ફુલ એડર	3 બિટ્સ (A, B, Carry-in) ને એડ કરે છે અને Sum અને Carry-out આપે છે
પેરેલલ એડર	4 ફુલ એડર્સને કેરી પ્રોપેગેશન સાથે જોડે છે

ડાયાગ્રામ: 4-બિટ પેરેલલ એડર:

મેમરી ટ્રીક: પેરેલલ એડરમાં કેરી પ્રોપેગેશન માટે "કેરી ઓલવેઝ પાસેસ રાઇટ".

પ્રશ્ન 3(ક) [7 માર્ક્સ]

ટ્રુથ ટેબલ, સમીકરણ અને સર્કિટ ડાયાગ્રામ સાથે 8:1 મલ્ટિપ્લેક્સરનું વર્ણન કરો.

જવાબ:

8:1 મલ્ટિપ્લેક્સર:

કોમ્પોનન્ટ	qย์ -	ફંક્શન
8:1	8 ઇનપુટ્સ, 3 સિલેક્ટ લાઇન્સ, 1 આઉટપુટ વાળો ડેટા	સિલેક્ટ લાઇન્સના આધારે 8 ઇનપુટ્સમાંથી એક પસંદ
MUX	સિલેક્ટર	કરે છે

ટ્રુથ ટેબલ:

સિલેક્ટ લાઇન્સ	આઉટપુટ
$S_2 S_1 S_0$	Υ
0 0 0	D_0
0 0 1	D ₁
0 1 0	D_2
011	D_3
1 0 0	D_4
1 0 1	D ₅
1 1 0	D_6
1 1 1	D ₇

બુલિયન સમીકરણ:

 $Y = S_2' \cdot S_1' \cdot S_0' \cdot D_0 + S_2' \cdot S_1' \cdot S_0 \cdot D_1 + S_2' \cdot S_1 \cdot S_0' \cdot D_2 + S_2' \cdot S_1 \cdot S_0 \cdot D_3 + S_2 \cdot S_1' \cdot S_0' \cdot D_4 + S_2 \cdot S_1' \cdot S_0 \cdot D_5 + S_2 \cdot S_1 \cdot S_0' \cdot D_6 + S_2 \cdot S_1 \cdot S_0 \cdot D_7$

ડાયાગ્રામ: 8:1 MUX:

મેમરી ટ્રીક: મલ્ટિપ્લેક્સર ઓપરેશન માટે "સિલેક્ટ ડિસાઇડ્સ ડેટા આઉટપુટ".

પ્રશ્ન 3(અ) અથવા [3 માર્ક્સ]

હાફ સબટ્રેક્ટરની લોજિક સર્કિટ દોરો અને તેનું કાર્ય સમજાવો.

જવાબ:

હાફ સબટ્રેક્ટર:

ફંક્શન	વર્ણન	ટ્રુથ ટેબલ
હાફ સબટ્રેક્ટર	બે બિટ્સને બાદ કરે છે અને ડિફરન્સ અને બોરો આપે છે	АВ
		0 0
		0 1
		1 0
		11

લોજિક સર્કિટ:

સમીકરણો:

- Sਿફરન્સ (D) = A ⊕ B
- બોરો આઉટ (Bout) = A' B

મેમરી ટ્રીક: હાફ સબટ્રેક્ટર ઓપરેશન માટે "ડિફરન્ટ બિટ્સ બોરો".

પ્રશ્ન 3(બ) અથવા [4 માર્ક્સ]

ટ્રુથ ટેબલ અને સર્કિટ ડાયાગ્રામ સાથે 3:8 ડીકોડર સમજાવો.

જવાબ:

3:8 slaise:

ફંક્શન	વર્ણન	ટ્રુથ ટેબલ (આંશિક)
3:8 ડીકોડર	3-બિટ બાઇનરી ઇનપુટને 8 આઉટપુટ લાઇન્સમાં કન્વર્ટ કરે છે	$A_2 A_1 A_0$
	એક સમયે માત્ર એક જ આઉટપુટ એક્ટિવ	0 0 0
		0 0 1
		111

સર્કિટ ડાયાગ્રામ:

સમીકરણો:

- $\bullet \quad \mathsf{Y}_0 = \mathsf{A}_2' \bullet \mathsf{A}_1' \bullet \mathsf{A}_0'$
- $\bullet \quad Y_1 = A_2' \bullet A_1' \bullet A_0$
- ...
- $\bullet \quad \mathsf{Y}_7 = \mathsf{A}_2 \bullet \mathsf{A}_1 \bullet \mathsf{A}_0$

મેમરી ટ્રીક: ડીકોડર ઓપરેશન માટે "બાઇનરી ઇનપુટ એક્ટિવેટ્સ આઉટપુટ".

પ્રશ્ન 3(ક) અથવા [7 માર્ક્સ]

ટ્રુથ ટેબલ, સમીકરણ અને સર્કિટ ડાયાગ્રામ સાથે ગ્રે થી બાઈનરી કોડ કન્વર્ટર સમજાવો.

જવાબ:

ગ્રે ટુ બાઇનરી કન્વર્ટર:

ફંક્શન	વર્ણન	ટેબલ: ગ્રે ટુ બાઇનરી
ગ્રે ટુ બાઇનરી	ગ્રે કોડને બાઇનરી કોડમાં કન્વર્ટ કરે છે	ગ્રે
	બાઇનરીનો MSB ગ્રેના MSBને સમાન	0000
	દરેક બાઇનરી બિટ, હાલના ગ્રે બિટ અને અગાઉના બાઇનરી બિટનો XOR છે	0001
		0011
		0010
		0110

સર્કિટ ડાયાગ્રામ:

સમીકરણો:

- $B_3 = G_3$
- $B_2 = G_3 \oplus G_2$
- $B_1 = B_2 \oplus G_1$
- $B_0 = B_1 \oplus G_0$

મેમરી ટ્રીક: ગ્રે ટુ બાઇનરી કન્વર્ઝન માટે "MSB સ્ટેઝ, રેસ્ટ XOR".

પ્રશ્ન 4(અ) [3 માર્ક્સ]

ટુથ ટેબલ અને સર્કિટ ડાયાગ્રામ સાથે D ફિલપ ફ્લોપ સમજાવો.

જવાબ:

D ફિલપ-ફ્લોપ:

ફંક્શન	વર્ણન	ટુંચ ટેબલ
D ફિલય-ફ્લોપ	ડેટા/ડિલે ફિલપ-ફ્લોપ	CLK
	ક્લોક એજ પર Q, D ને ફોલો કરે છે	1
		1

સર્કિટ ડાયાગ્રામ:

કેરેક્ટરિસ્ટિક સમીકરણ:

Q(next) = D

મેમરી ટ્રીક: D ફિલપ-ફ્લોપ ઓપરેશન માટે "ડેટા ડિલેઝ વન ક્લોક".

પ્રશ્ન 4(બ) [4 માર્ક્સ]

માસ્ટર સ્લેવ JK ફિલપ ફ્લોપનું કાર્ય સમજાવો.

જવાબ:

માસ્ટર-સ્લેવ JK ફ્લિપ-ફ્લોપ:

કોમ્પોનન્ટ	ઓપરેશન	ટ્રુથ ટેબલ
માસ્ટર	CLK = 1 હોય ત્યારે ઇનપુટ્સને સેમ્પલ કરે છે	J K
સ્લેવ	CLK = 0 હોય ત્યારે માસ્ટર આઉટપુટને ટ્રાન્સફર કરે છે	0 0
		0 1
		1 0
		11

ડાયાગ્રામ: માસ્ટર-સ્લેવ JK:

કાર્થપદ્ધતિ:

- માસ્ટર સ્ટેજ: ક્લોક હાઇ હોય ત્યારે ઇનપુટ કેપ્યર કરે છે
- સ્લેવ સ્ટેજ: ક્લોક લો હોય ત્યારે આઉટપુટ અપડેટ કરે છે
- **રેસ કન્ડિશન અટકાવે છે** ઇનપુટ કેપ્ચર અને આઉટપુટ અપડેટને અલગ કરીને

મેમરી ટ્રીક: માસ્ટર-સ્લેવ ઓપરેશન માટે "માસ્ટર સેમ્પલ્સ, સ્લેવ ટ્રાન્સફર્સ".

પ્રશ્ન 4(ક) [7 માર્ક્સ]

બ્લોક ડાયાગ્રામની મદદથી શિફ્ટ રજિસ્ટર્સનું વર્ગીકરણ કરો અને તેમાંના કોઈપણ એકને વિગતવાર સમજાવો.

જવાબ:

શિક્ટ રજિસ્ટર વર્ગીકરણ:

явіг	વર્ણન	ફંક્શન
SISO	સિરિયલ ઇન સિરિયલ આઉટ	ડેટા સિરિયલી, બિટ દર બિટ, એન્ટર થાય છે અને એક્ઝિટ થાય છે
SIPO	સિરિયલ ઇન પેરેલલ આઉટ	ડેટા સિરિયલી એન્ટર થાય છે, પેરેલલમાં એક્ઝિટ થાય છે
PISO	પેરેલલ ઇન સિરિયલ આઉટ	ડેટા પેરેલલમાં એન્ટર થાય છે, સિરિયલી એક્ઝિટ થાય છે
PIPO	પેરેલલ ઇન પેરેલલ આઉટ	ડેટા પેરેલલમાં એન્ટર થાય છે અને પેરેલલમાં એક્ઝિટ થાય છે

SIPO શિફ્ટ રજિસ્ટર વિગતવાર:

SIPO શિફ્ટ રજિસ્ટરનું કાર્ય:

- **સિરિયલ ડેટા** ડેટા-ઇન પિન પર, પ્રતિ ક્લોક સાયકલ એક બિટ, પ્રવેશે છે
- **દરેક ફિલપ-ફ્લોપ** ક્લોક પલ્સ પર તેની સામગ્રીને આગળના ફિલપ-ફ્લોપમાં પાસ કરે છે
- **4 ક્લોક સાયકલ્સ પછી**, 4-બિટ ડેટા બધા ફિલપ-ફ્લોપ્સમાં સ્ટોર થાય છે
- પેરેલલ આઉટપુટ Q0-Q3 પરથી એક સાથે ઉપલબ્ધ થાય છે

SIPO માટે ટાઇમિંગ ડાયાગ્રામ:

મેમરી ટ્રીક: SIPO ઓપરેશન માટે "સિરિયલ ઇનપુટ્સ પેરેલલ આઉટપુટ્સ".

પ્રશ્ન 4(અ) અથવા [3 માર્ક્સ]

ટુથ ટેબલ અને સર્કિટ ડાયાગ્રામ સાથે SR ફ્લિપ ફ્લોપ સમજાવો.

જવાબ:

SR ફિલપ-ફ્લોપ:

ફંક્શન	นย์่า	ટ્રુથ ટેબલ
SR ફિલય-ફ્લોપ	સેટ-રિસેટ ફ્લિપ-ફ્લોપ	S R
	બેઝિક મેમોરી એલિમેન્ટ	0 0
		0 1
		10
		11

સર્કિટ ડાયાગ્રામ:

મેમરી ટ્રીક: SR ફિલપ-ફ્લોપ ઓપરેશન માટે "સેટ ટુ 1, રિસેટ ટુ 0".

પ્રશ્ન 4(બ) અથવા [4 માર્ક્સ]

ટુથ ટેબલ અને સર્કિટ ડાયાગ્રામ સાથે JK ફિલપ ફ્લોપ સમજાવો.

જવાબ:

JK ફિલપ-ફ્લોપ:

ફંક્શન	นย์า	ટ્રુથ ટેબલ
JK ફિલય-ફ્લોપ	ઇમ્પ્રુલ્ડ SR ફિલપ-ફ્લોપ	JK
	અમાન્ય કન્ડિશન હલ કરે છે	0 0
		0 1
		1 0
		11

સર્કિટ ડાયાગ્રામ:

કેરેક્ટરિસ્ટિક સમીકરણ:

• Q(next) = J•Q' + K'•Q

મેમરી ટ્રીક: JK ફિલપ-ફ્લોપ સ્ટેટ્સ માટે "જમ્પ-કીપ-ટોગલ" (J=1 K=0: 1 પર જમ્પ, J=0 K=0: સ્ટેટ જાળવવો, J=1 K=1: ટોગલ).

પ્રશ્ન 4(ક) અથવા [7 માર્ક્સ]

ટ્રુથ ટેબલ અને સર્કિટ ડાયાગ્રામ સાથે 4-બિટ અસિંકોનસ અપ કાઉન્ટરનું વર્ણન કરો.

જવાબ:

4-બિટ અસિંકોનસ અપ કાઉન્ટર:

ફંક્શન	વર્ણન	કાઉન્ટ સિક્વન્સ
અસિંકોનસ કાઉન્ટર	રિપલ કાઉન્ટર પણ કહેવાય છે	$0000 \to 0001 \to 0010 \to 0011$
	ક્લોક માત્ર પહેલા FF ને ડ્રાઇવ કરે છે	$0100 \to 0101 \to 0110 \to 0111$
	દરેક FF અગાઉના FF આઉટપુટ દ્વારા ટ્રિગર થાય છે	$1000 \to 1001 \to 1010 \to 1011$
		$1100 \to 1101 \to 1110 \to 1111$

સર્કિટ ડાયાગ્રામ:

รเข่นผูด:

- **પહેલો FF** દરેક ક્લોક પત્સ પર ટોગલ થાય છે
- **બીજો FF** જ્યારે પહેલો FF 1 થી 0 પર જાય છે ત્યારે ટોગલ થાય છે
- ત્રીજો FF જ્યારે બીજો FF 1 થી 0 પર જાય છે ત્યારે ટોગલ થાય છે
- **યોથો FF** જ્યારે ત્રીજો FF 1 થી 0 પર જાય છે ત્યારે ટોગલ થાય છે

મેમરી ટ્રીક: અસિંક્રોનસ કાઉન્ટર ઓપરેશન માટે "રિપલ કેરીઝ પ્રોપેગેશન ડિલે".

પ્રશ્ન 5(અ) [3 માર્ક્સ]

નીચેની લોજીક ફેમિલીઝની તુલના કરો: TTL, CMOS, ECL

જવાબ:

લોજિક ફેમિલીઝ કમ્પેરિઝન:

પેરામીટર	TTL	CMOS	ECL
ટેક્નોલોજી	બાયપોલર ટ્રાન્ઝિસ્ટર્સ	MOSFETs	બાયપોલર ટ્રાન્ઝિસ્ટર્સ
પાવર કન્ઝમ્પશન	મધ્યમ	ખૂબ ઓછો	ઉચ્ચ
સ્પીડ	મધ્યમ	નીચી-મધ્યમ	ખૂબ ઉચ્ચ
નોઇઝ ઇમ્યુનિટી	મધ્યમ	ઉચ્ચ	નીચી
ફેન-આઉટ	10	50+	25
સપ્લાય વોલ્ટેજ	5V	3-15V	-5.2V

મેમરી ટ્રીક: લોજિક ફેમિલીઝની તુલના માટે "ટેક્નોલોજી કન્ટ્રોલ્સ મેની ઇલેક્ટ્રિકલ કેરેક્ટરિસ્ટિક્સ".

પ્રશ્ન 5(બ) [4 માર્ક્સ]

કોમ્બિનેશનલ અને સિક્વેન્શિયલ લોજિક સર્કિટ્સની સરખામણી કરો.

જવાબ:

કોમ્બિનેશનલ vs સિક્વેન્શિયલ સર્કિટ્સ:

પેરામીટર	કોમ્બિનેશનલ સર્કિટ્સ	સિકવેન્શિયલ સર્કિટ્સ
આઉટપુટ આદ્યારિત છે	માત્ર વર્તમાન ઇનપુટ્સ પર	વર્તમાન ઇનપુટ્સ અને અગાઉની સ્ટેટ પર
મેમોરી	કોઈ મેમોરી નથી	મેમોરી એલિમેન્ટ્સ ધરાવે છે
ફીડબેક	કોઈ ફીડબેક પાથ નથી	ફીડબેક પાથ્સ ધરાવે છે
ઉદાહરણો	એડર્સ, MUX, ડિકોડર્સ	ફિલ૫-ફ્લોપ્સ, કાઉન્ટર્સ, રજિસ્ટર્સ
ક્લોક	ક્લોકની જરૂર નથી	ઘણી વાર ક્લોકની જરૂર પડે છે
ડિઝાઇન એપ્રોચ	ટ્રુથ ટેબલ્સ, K-મેપ્સ	સ્ટેટ ડાયાગ્રામ્સ, ટેબલ્સ

ડાયાગ્રામ: કમ્પેરિઝન:

મેમરી ટ્રીક: કોમ્બિનેશનલ અને સિક્વેન્શિયલ સર્કિટ્સ વચ્ચે તફાવત કરવા માટે "કરંટ ઓન્લી vs મેમોરી સ્ટેટ્સ".

પ્રશ્ન 5(ક) [7 માર્ક્સ]

વ્યાખ્યાયિત કરો: ફેન ઇન, ફેન આઉટ, નોઇઝ માર્જિન, પ્રોપેગેશન ડિલે, પાવર ડિસીપેશન, ફિગર ઓફ મેરિટ, રેમ જવાબ:

ડિજિટલ ઇલેક્ટ્રોનિક્સ કી ડેફિનિશન્સ:

ટર્મ	વ્યાખ્યા	ટિપિકલ વેલ્યુઝ
ફેન-ઇન	લોજિક ગેટ જેટલા ઇનપુટ્સ હેન્ડલ કરી શકે તેની મહત્તમ સંખ્યા	TTL: 2-8, CMOS: 100+
ફેન-આઉટ	સિંગલ આઉટપુટ દ્વારા જેટલા ગેટ ઇનપુટ્સ ડ્રાઇવ કરી શકાય તેની મહત્તમ સંખ્યા	TTL: 10, CMOS: 50
નોઇઝ માર્જિન	એરર થાય તે પહેલાં ઉમેરી શકાય તેવો મહત્તમ નોઇઝ વોલ્ટેજ	TTL: 0.4V, CMOS: 1.5V
પ્રોપેગેશન ડિલે	ઇનપુટમાં બદલાવથી આઉટપુટમાં બદલાવ થવામાં લાગતો સમય	TTL: 10ns, CMOS: 20ns
પાવર ડિસીપેશન	ઓપરેશન દરમિયાન ગેટ દ્વારા વપરાતી શક્તિ	TTL: 10mW, CMOS: 0.1mW
ફિગર ઓફ મેરિટ	સ્પીડ અને પાવરનો ગુણાકાર (ઓછો વધુ સારો)	TTL: 100pJ, CMOS: 2pJ
RAM	રેન્ડમ એક્સેસ મેમોરી - ટેમ્પરરી સ્ટોરેજ ડિવાઇસ	มรเะ: SRAM, DRAM

ડાયાગ્રામ: ડિજિટલ પેરામીટર રિલેશનશિપ્સ:

મેમરી ટ્રીક: પેરામીટર ટર્મ્સ યાદ રાખવા માટે "ફાસ્ટ પાવર નીડ્સ પ્રોપર ફિગર રેટિંગ્સ".

પ્રશ્ન 5(અ) અથવા [3 માર્ક્સ]

ડિજિટલ ICના ઇ-વેસ્ટ મેનેજમેન્ટના પગલાં અને જરૂરિયાતનું વર્ણન કરો.

જવાબ:

ડિજિટલ ICs માટે ઇ-વેસ્ટ મેનેજમેન્ટ:

સ્ટેપ	વર્ણન	મહત્વ
કલેક્શન	ઇલેક્ટ્રોનિક વેસ્ટનું અલગ કલેક્શન	અયોગ્ય ડિસ્પોઝલને રોકે છે
સેગ્રેગેશન	ICsને અન્ય કોમ્પોનન્ટ્સથી અલગ કરવું	ટાર્ગેટેડ રિસાયક્લિંગ શક્ય બનાવે છે
ડિસમેન્ટલિંગ	હાનિકારક ભાગોને દૂર કરવા	પર્યાવરણીય નુકસાન ઘટાડે છે
રિકવરી	મૂલ્યવાન મટીરિયલ્સ (ગોલ્ડ, સિલિકોન) એક્સટ્રેક્ટ કરવા	સંસાધનો બચાવે છે
સેફ ડિસ્પોઝલ	નોન-રિસાયક્લેબલ પાર્ટ્સનો યોગ્ય નિકાલ	પ્રદૂષણ અટકાવે છે

ઇ-વેસ્ટ મેનેજમેન્ટની જરૂરિયાત:

• **હાનિકારક મટીરિયલ્સ**: ICs લેડ, મર્ક્યુરી, કેડમિયમ ધરાવે છે

• રિસોર્સ કન્ઝવેંશન: કિંમતી ધાતુઓ અને દુર્લભ સામગ્રી પુનઃપ્રાપ્ત કરે છે

• પર્યાવરણ સંરક્ષણ: જમીન અને પાણીના પ્રદૂષણને રોકે છે

• હેલ્થ સેફ્ટી: ઝેરી પદાર્થોના સંપર્કને ઘટાડે છે

મેમરી ટ્રીક: ઇ-વેસ્ટ મેનેજમેન્ટ સ્ટેપ્સ માટે "કલેક્શન સ્ટાર્ટ્સ ડિસમેન્ટલિંગ રિકવરી સેફ્લી".

પ્રશ્ન 5(બ) અથવા [4 માર્ક્સ]

સર્કિટ ડાયાગ્રામ સાથે રીંગ કાઉન્ટરનું કામ સમજાવો.

જવાબ:

રીંગ કાઉન્ટર:

ફંક્શન	વર્ણન	કાઉન્ટ સિક્વન્સ
રીંગ કાઉન્ટર	સિંગલ 1 સાથે સકર્યુલર શિફ્ટ રજિસ્ટર	$1000 \to 0100 \to 0010 \to 0001 \to 1000$
	કોઈપણ સમયે માત્ર એક જ ફિલપ-ફ્લોપ સેટ થયેલ હોય છે	
	N સ્ટેટ્સ માટે N ફિલપ-ફ્લોપ્સ	

સર્કિટ ડાયાગ્રામ:

કાર્થપદ્ધતિ:

- **ઇનિશિયલાઇઝેશન**: પહેલા FF ને 1 પર સેટ કરવામાં આવે છે, બાકીના 0 પર
- ઓપરેશન: સિંગલ 1 બધા ફિલપ-ફ્લોપ્સમાં ફરે છે
- એપ્લિકેશન્સ: સિક્વેન્સર્સ, કન્ટ્રોલર્સ, ટાઇમિંગ સર્કિટ્સ

મેમરી ટ્રીક: રીંગ કાઉન્ટર ઓપરેશન માટે "વન બિટ રોટેટ્સ ઓન્લી".

પ્રશ્ન 5(ક) અથવા [7 માર્ક્સ]

વર્ગીકૃત કરો: (i) મેમોરીઝ (ii) વિવિદ્ય લોજીક ફેમિલીઝ

જવાબ:

(i) મેમોરી વર્ગીકરણ:

явіз	સબટાઇપ્સ	લક્ષણો
RAM	SRAM	- સ્ટેટિક RAM - ફાસ્ટ, મોંઘી - ફ્લિપ-ફ્લોપ્સનો ઉપયોગ કરે છે - રિફ્રેશની જરૂર નથી
	DRAM	- ડાયનેમિક RAM - સ્લોઅર, સસ્તી - કેપેસિટર્સનો ઉપયોગ કરે છે - પીરિયોડિક રિફ્રેશની જરૂર પડે છે
ROM	PROM	- પ્રોગ્રામેબલ ROM - વન-ટાઇમ પ્રોગ્રામેબલ
	EPROM	- ઇરેઝેબલ PROM - UV લાઇટ દ્વારા ઇરેઝેબલ - મલ્ટિપલ રીપ્રોગ્રામિંગ
	EEPROM	- ઇલેક્ટ્રિકલી ઇરેઝેબલ PROM - ઇલેક્ટ્રિકલ ઇરેઝર - બાઇટ-લેવલ ઇરેઝર
	ફ્લેશ	- EEPROM વેરિએન્ટ - બ્લોક-લેવલ ઇરેઝર - નોન-વોલેટાઇલ

(ii) લોજિક ફેમિલીઝ વર્ગીકરણ:

ટેક્નોલોજી	ફેમિલીઝ	લક્ષણો
બાયપોલર	TTL	- ટ્રાન્ઝિસ્ટર-ટ્રાન્ઝિસ્ટર લોજિક - મધ્યમ સ્પીડ - 5V ઓપરેશન
	ECL	- એમિટર-કપલ્ડ લોજિક - ખૂબ હાઈ સ્પીડ - હાઈ પાવર કન્ઝમ્પશન
	2L	- ઇન્ટિગ્રેટેડ ઇન્જેક્શન લોજિક - હાઈ ડેન્સિટી
MOS	NMOS	- N-ચેનલ MOSFET - સિમ્પલર ફેબ્રિકેશન
	PMOS	- P-ચેનલ MOSFET - લોઅર પરફોર્મન્સ
	CMOS	- કોમ્પ્લિમેન્ટરી MOS - લો પાવર કન્ઝમ્પશન - હાઈ નોઇઝ ઇમ્યુનિટી
હાઇબ્રિડ	BiCMOS	- બાયપોલર અને CMOSને કોમ્બાઇન કરે છે - લો પાવર સાથે હાઈ સ્પીડ

મેમોરી વર્ગીકરણ ડાયાગ્રામ:

મેમરી ટ્રીક: મેમોરી પ્રકારો માટે "રિમેમ્બર સિમ્પલ ડિવિઝન: પ્રોગ્રામેબલ ઇરેઝેબલ ઇલેક્ટ્રિકલ" (RAM-SRAM-DRAM, PROM-EPROM-EEPROM).