Table of mathematical symbols

Symbol	Meaning	Typical usage
·:	Therefore	y is double the value of x , $\therefore y + 1 = 2x + 1$
\implies	Implies	$x = 5 \implies x + 1 = 6$
=	Equal to	x = 5
<i>≠</i>	Not equal to	$5 \neq 6$
\approx	Approximately equal to	$\pi \approx 3.16$
>	Greater than	6 > 5
<u> </u>	Greater than or equal to	$6 \ge 5$ and $5 \ge 5$
<u> </u>	Less than	5 < 6
<u> </u>	Less than or equal to	$5 \le 6$ and $5 \le 5$
x	Absolute value of x	-5 = 5
∞	(Positive) infinity	This is not a <i>number</i> , but a concept. A sequence that gets larger without bound is said to "approach infinity".
j	The imaginary unit	By definition, $\sqrt{-1} = j$
N	The set of natural numbers	$1, 2, 3, 4, 5, 6, \dots$
\mathbb{Z}	The set of integers (whole numbers)	$0, 1, -1, 2, -2, 3, -3, 4, -4, 5 \dots$
Q	The set of rational numbers	This includes every integer, and every number that can be expressed as a fraction of two integers, e.g. $3, \frac{2}{5}, -14.2$
\mathbb{R}	The set of real numbers	This includes every rational number, and every irrational number such as π or $\frac{1}{3}\pi$
\mathbb{C}	The set of complex numbers	This includes every combination of a real number and an imaginary number, e.g. $3+j5$
\rightarrow	Tends towards	If $x_n = n$, then $x \to +\infty$ as $n \to \infty$
€	Is a member of	$3 \in \{2, 3, 8, 32\}$