CAMPO ELETTRICO NEI DIELETTRICI

Un dielettrico è un materiale in cui i portatori di carica non sono liberi di muoversi. Quando poniamo il dielettrico all'interno di un campo $\vec{\epsilon}$, se le molecole hanno già un momento di dipolo elettrico (cariche pos e neg separate), questo si orienta in direzione del campo.

Se invece non posseggono un momento di dipolo, le cariche si polarizzano e poi

si orientano.

L'effetto netto è sostanzialmente quello di ottenere una neutralità in tutto il dielettrico tranne che ai margini del materiale. Si produce un campo elettrico interno diretto da + a -

Prendendo un punto P interno al dielettrico, posso calcolare il campo elettrico complessivo sommando i due campi

$$E_{int} = E_0 + E' = E_0$$
in modulo:
$$E_{int} = E_0 - E' = E_0$$
è come dividere E_0
per una certa costante E_0

CAPACITÀ E CONDENSATORI

Energia associata alla costruzione di una distribuzione di carica

Supponiamo di avere una carica puntiforme Q_t e di portarla in un certo punto. Il lavoro L necessario per fare ciò é zero.

Prendiamo ora una seconda carica q_2 e la vogliamo portare in una certa posizione rispetto a Q_4

Sappiamo che agisce la forza di Coulomb.

Il lavoro L' necessario per spostare q_2 a distanza q_3 da q_4 è dato dalla variazione di energia potenziale.

$$L' = Q_2 \vee_{Q_4} (A) =$$

$$= Q_4 \vee_{Q_4} (A)$$

Voglio ora portare una carica q_3 da una distanza infinita a una certa posizione rispetto a q_4 e q_2

Il lavoro complessivo è dato da:

Se le cariche hanno tutte lo stesso segno, il lavoro complessivo è una quantità positiva (perché si respingono), quindi spendo dell'energia.

Posso costruire una distribuzione di cariche per immagazzinare questa energia (condensatore).

Capacità

Supponiamo di avere un conduttore sferico (per semplicità) di raggio R e mettiamoci una carica Q. I portatori sono liberi di muoversi quindi vanno a ricoprire la superficie della sfera generando una distribuzione di carica assimilabile al guscio sferico.

Abbiamo precedentemente calcolato che, per il guscio sferico, vale:

$$Q \rightarrow V(R) = Ke \frac{Q}{R}$$

Se raddoppiamo la carica:

$$Q' = 2Q \rightarrow V'(R) = ke \frac{2Q}{R} - ke \frac{Q}{R}$$

Se la triplichiamo:

$$Q'' = 3Q \rightarrow V''(R) = Ke Q''$$

Il potenziale dipende dalla carica che poniamo sulla superficie, dalla geometria (R) del conduttore è dal fatto che siamo nel vuoto.

Il fattore di proporzionalità tra quanta carica metto e il potenziale può essere definita come capacità.

Capacità di un conduttore isolato

$$C = \frac{Q}{V}$$

• United di misura:
$$\frac{C}{V} = F$$
 (forced)

· Se prendiamo una sfera di raggio R=1 m

$$\frac{1}{10^{-9}} = \frac{1}{10^{-9}} = \frac{1}{10^{-10}} = \frac{1}{1$$

il farad e una unita di misura scomoda

Nella legge di Gauss vien3 fuori la costante $4\pi k_e = \frac{1}{\epsilon}$

CONDENSATORE

È un sistema di sue conduttori (armature) in condizione di induzione completa.

Induzione completa: se c'è un campo elettrico, tutte le linee di campo che escono dal primo conduttore vanno a finire nel secondo.

Se, ad esempio, sul conduttore 1 è presente una carica +Q, sul conduttore 2 si manifesta una carica uguale e opposta -Q

Questo succede per la legge di Gauss.

Se prendo una superficie chiusa che prende entrambi i conduttori e calcolo il flusso del campo elettrico lungo di essa, le linee di campo non attraversano la superficie e complessivamente il flusso è zero.

Ma questo flusso è anche uguale alla somma algebrica delle cariche elettriche all'interno della superficie, ovvero (nel nostro caso) +Q e -Q

$$C = Q$$
 CAPACITA $V_1 - V_2$ la differenze di potenziole

tre l'armoture con le carica (+)

e l'armatura con la carica ()

Condensatore sferico

$$C = \frac{Q}{V_1 - V_2}$$

Prendiamo due conduttori sferici e concentrici

N.B. distribuzione dicarica su un guscio sferico

$$V(r) = \begin{cases} ke \frac{Q}{R} & r \leq R \\ ke \frac{Q}{r} & r > R \end{cases}$$

Calcoliamo il potenziale della sfera interna:

$$V(r = R_1) = ke + Q + ke - Q = V_1$$

ROTENZIALE PRODOTTO
SULLA SUPERFICIE
INTERNA

POTENZIALE PRODOTTO
SULLA SUPERFICIE ESTERNA

Potenziale prodotto dalla sfera esterna:

$$V_1 - V_2 = Ke + Q - Ke + Q = Ke Q - R_2 - R_1$$
 $R_1 - R_2 = Ke Q - R_2 - R_1$

$$C = \frac{Q}{V_1 - V_2} = \frac{R_1 R_2}{\text{ke}(R_2 - R_1)} = \frac{A \pi \epsilon_0 R_1 R_2}{R_2 - R_1}$$

Condensatore piano

I conduttori sono lastre idealmente di superficie infinita

$$C = \frac{Q}{V_1 - V_2}$$

$$dV = -\vec{E} \cdot d\vec{s}$$

N.B. distribuzione di carica di un piano \perp asse \times

Vediamo cosa succede con due piani

Descrivo quanto vale il campo elettrico nelle 3 regioni di spazio separate dalle due piastre

T

$$tQ$$
 $-i$
 $-$

$$dV = -\vec{E} \cdot d\vec{s}$$

$$\vec{E} = \begin{cases} 0 & \text{per } \times < 0 \\ 4\pi \text{ke}_{0}\vec{i} & \text{per } 0 < \times < d \\ 0 & \text{per } \times > 0 \end{cases}$$

$$\text{integrando}$$

$$\int_{V_{1}-V_{2}}^{V_{1}} dV = \int_{d}^{0} -\vec{E} \cdot d\vec{s} = \int_{d}^{0} -\vec{E} \cdot dx =$$

$$C = \frac{Q}{V_1 - V_2} = \frac{Q}{4\pi \text{kedd}} = \frac{20}{300}$$

$$\frac{Carica}{\text{superficie}}$$

$$Q = 0.5$$

Dipende solo dalla geometria e dalla natura del materiale (tra le piastre)