Dos bloques de diferente material, $m_1=2kg~y~m_2=1kg$, se mueven hacia arriba con una velocidad constante debido a una fuerza \vec{F} que forma un ángulo $\alpha=30^\circ$ con la horizontal. El coeficiente de roce entre m_2 y el muro es de 0.2

Calcular la magnitud de la fuerza

Sobre el bloque B de 2[kg] de masa, se coloca el bloque A de 3[kg] de masa. El bloque B es tirado por una cuerda con una fuerza de 40[N] en un ángulo de 30° por encima de la horizontal. Los bloques se mueven juntos sin deslizar entre sí con una rapidez constante de 3[cm/s]

Los bloques B_1 y B_2 son dispuestos como se detalla en la figura adjunta. El bloque B_1 posee una masa de 15 [kg], y se encuentra descansando en una superficie, tal que, su coeficiente de roce entre ellos es $\mu = 0, 6$. A su vez, el bloque B_2 pesa 40 [N]. El sistema es unido mediante 3 cuerdas c_1 , c_2 y c_3 , todas ellas juntándose en una argolla ideal -la masa se puede despreciar- produciedo una situación de equilibrio. Entonces:

- 1.- Realice un diagrama de interacciones del sistema presentado, detallando claramente todas las interacciones según la notación presentada en clases.
- **2.-** Determine el valor de la fuerza de roce que actúa sobre el bloque B_1 .

El sistema de la figura permanece en equilibrio. Hay roce entre el bloque Q y el carro P, pero el roce entre las ruedas del carro y el plano se puede despreciar.

Datos: Masa del bloque Q: $M_Q = 2[kg]$; masa del carro P: $M_P = 3[kg]$.