(NATURAL SCIENCE)

주체104(2015)년 제61권 제11호

Vol. 61 No. 11 JUCHE104(2015).

막분리농축-반사분광광도법에 의한 금속리리움속의 미량크롬정량

김동일, 최선애, 리수범

막분리농축기술은 최근 급속히 발전하여 널리 보급되고있는 첨단과학기술의 하나이다.[1, 3, 4] 이 방법들에서는 분석성분들이 려과포집, 고상추출되는 성질을 리용하여 고체막우에 분리한 다음 세척하고 그것을 적당한 용매로 용해시키거나 박막그대로 분광광도법, 반사분광법, 원자흡광분석법, ICP-발광분석법 등으로 분석한다.

금속리티움속의 미량의 크롬을 분리하지 않고 직접 정량하는것은 원자력공업과 합금 강생산에 절실히 필요한 고순도금속리티움생산공정을 과학기술적으로 관리운영하는데서 매우 중요하다. 크롬을 정량하기 위한 여러가지 방법[2]이 제기되였지만 막분리농축법으로 미량의 크롬을 분리하여 정량한 방법은 발표된것이 없다.

우리는 막분리농축법의 우점과 크롬-디페닐카르바지드(Cr-DPCB)착체의 특성을 리용하여 금속리티움속에 미량으로 들어있는 크롬을 분리하지 않고 직접 막분리한 다음 반사분광광도법으로 정량하기 위한 연구를 하였다.

실 험 방 법

장치로는 자외가시선분광광도계(《UV-2201》), 적분구장치(《ISR-240A》), 흡인려과장치를, 시약으로는 크롬표준용액(10μg/mL), DPCB용액(0.25%), 염산용액, 과망간산칼리움용액(0.5%), 뇨소용액(20%), 아질산나트리움용액(10%), 질산섬유소막(기공크기 0.2μm, 직경1.5mm)을 리용하였다.

일정한 량의 크롬표준용액 또는 시료용액을 분취하여 25mL의 눈금플라스크에 넣고 여기에 0.25% DPCB용액 1mL, 염산 1mL를 넣고 눈금까지 증류수를 넣은 다음 10min동안 방치하고 질산섬유소막을 리용하여 흡인려과한다.

0.1mol/L 염산과 증류수로 세척하고 방온도에서 막을 말리운 다음 적분구장치를 리용하여 반사흡광도(K-M세기)를 측정한다. 반사흡광도(K-M세기)는 다음과 같다.

K-M세 기 $=(1-R)^2/2R$

여기서 R는 반사률이다.

실험결과 및 해석

반사흡수스펙트르 질산섬유소막에 포집된 Cr-DPCB착체의 반사흡수스펙트르는 그림 1과 같다.

그림 1에서 보는바와 같이 Cr-DPCB착체의 최대흡수파장은 544nm이며 이 파장에서 크롬의 량이 증가함에 따라 반사흡광도는 커진다. 한편 순수한 막인 경우 이 파장에서 반사흡광도값은 거의 령이다. 그러므로 질산섬유소막에 농축된 Cr-DPCB착체를 산이나 유기용매로 용해하지 않고도 직접 반사흡광도를 측정하여 크롬을 정량할수 있다.

산도의 영향 Cr-DPCB착체형성에 미치는 염산의 영향은 그림 2와 같다.

그림 2에서 보는바와 같이 염산의 농도 0.5mol/L 까지는 반사흡광도변화가 거의 없지만 그 이상에

그림 1. 질산섬유소막에 포집된 Cr-DPCB 착체의 반사흡수스펙트르 1-순수한 막인 경우, 2-4는 크롬의 량이 각각 0.2 0.4 0.6µg인 경우

서는 감소한다. 그것은 염산의 농도 0.5mol/L이상에서는 착체가 불안정하여 파괴되기때문이다.

이로부터 우리는 용액에서 염산의 농도를 0.2mol/L로 하였다.

DPCB첨가량의 영향 Cr-DPCB착체를 형성시키는데 필요한 DPCB의 량을 결정하기 위하여 0.3μg의 크롬표준용액에 대하여 0.25%의 DPCB의 첨가량을 변화시키면서 Cr-DPCB착체의 반사흡광도변화를 보았다.(그림 3)

그림 2. 팀산의 항상 Cr의 량 0.3µg, 포집면적 0.785cm²

그림 3. DPCB의 량에 따르는 Cr-DPCB 착체의 반사흡광도변화 Cr의 량 0.3µg, 포집면적 0.785cm²

그림 3에서 보는바와 같이 0.25% DPCB를 0.3mL이상 넣었을 때 반사흡광도값은 일정하였다. 그러므로 0.25% DPCB의 량을 1mL로 정하였다.

방치시간과 막분리후 Cr-DPCB착체의 안정성 Cr-DPCB착체형성방치시간을 1~60min범위에서 변화시키면서 반사흡광도를 측정하였다.(그림 4)

그림 4에서 보는바와 같이 15min까지 반사흡광도변화가 없고 그 이상에서는 약간씩 감소하지만 60min동안에 불과 0.05만큼 반사흡광도가 감소한다. 그러므로 우리는 방치시간을 15min으로 정하였다.

다음으로 질산섬유소막에 포집된 Cr-DPCB착체의 색안정성을 검토하였는데 우리가 검토한 시간범위(막분리후 24h까지)에서 반사흡광도변화는 없었다.

농축률범위 0.785cm²의 면적을 가진 려파막에 0.3μg의 크롬이 들어있는 시료의 체적을 변화시키면서 반사흡광도변화를 보았다.(그림 5)

그림 4. 방치시간에 따르는 흡광도변호 Cr의 량 0.3μg, 포집면적 0.785cm²

그림 5. 시료의 체적에 따르는 흡광도변화 Cr의 량 0.3 μ g, 포집면적 0.785cm²

그림 5에서 보는바와 같이 시료의 체적을 $0.1\sim150$ mL까지 변화시켜도 반사흡광도는 변하지 않는다.

방해이온의 영향과 검량선 리티움의 질을 평가하는데서 중요한 원소로 되는 K, Na, Fe, Ni, Mg의 영향을 평가한 결과 3μ g의 크롬에 대하여 K, Na는 100배, Ni, Mg는 50배, Fe는 10배 있어도 영향을 주지 않는다.

크롬의 농도가 $0\sim10\mu\mathrm{g/mL}$ 일 때 반사흡광도와 농도사이에는 다음과 같은 관계가 성립하다.

K-M세 기 = 0.513×C

이때 크롬정량의 변동곁수는 1.9%(n=5)이고 검출아래한계는 0.008μg/mL이다.

대상물분석 일정한 량의 리티움시료를 평량하여 증류수로 푼다. 여기에 염산 10mL, 질 산 3mL를 넣고 서서히 가열하면서 찌끼를 푼 다음 증발건조시킨다. 염산 5mL를 넣고 가열 하여 찌끼를 푼 다음 0.1% 과망간산칼리움 2mL를 넣고 3min동안 끓인다. 20% 뇨소용액 10mL 를 넣은 다음 10% 아질산나트리움용액을 적하하면서 과망간산칼리움을 제거한다.

증류수를 넣어 총체적이 25mL 되게 한 다음 일정한 량을 취하여 실험방법대로 크롬을 검량선법으로 정량하고 비불길원자흡광분석법과 비교하였다.(표)

표. 리디움쪽의 크롬성당결과 		
No.	크롬의 함량/%	
	막분리농축—반사분광법	비불길원자흡광분석법
1	$4.33 \cdot 10^{-3}$	$4.18 \cdot 10^{-3}$
2	$4.22 \cdot 10^{-3}$	$4.30 \cdot 10^{-3}$
3	$4.30 \cdot 10^{-3}$	$4.28 \cdot 10^{-3}$
4	$4.32 \cdot 10^{-3}$	$4.32 \cdot 10^{-3}$
평균	$4.31 \cdot 10^{-3}$	$4.27 \cdot 10^{-3}$
표준편차	0.11	0.06
변동곁수/%	2.8	1.41

표 기기운속이 기록정량격과

표에서 보는바와 같이 두 방법의 정밀도와 정확도에서는 차이가 거의 없으며 변동곁수는 2.8%이다.

맺 는 말

질산섬유소막분리농축-반사분광광도법에 의한 미량의 크롬분석조건을 밝혔다. 측정파장 544nm, 염산의 농도 0.2mol/L, DPCB의 량 1mL, 방치시간 15min의 조건에서 금 속리티움속에 들어있는 미량의 크롬($n=10^{-3}$ %)을 변동결수 2.8%이하로 정량할수 있다.

참 고 문 헌

- [1] E. M. Thurmon; Trends in Anal. Chem., 19, 1, 2000.
- [2] Leyu Wang et al.; Spectrochimica Acta, A 60, 2465, 2004.
- [3] M. Ghaedi et al.; Food and Chemical Toxicology, 48, 891, 2010.
- [4] 大門邦夫 等; 分化, 50, 341, 2001.

주체104(2015)년 7월 5일 원고접수

Determination of Trace Cr Contained in Lithium by Membrane Separating Concentration-Reflective Spectrophotometry

Kim Tong Il, Choe Son Ae and Ri Su Bom

We established the analysis conditions of trace Cr by nitrocellulose membrane separating concentration-reflective spectrophotometry. Under the conditions of measuring wavelength 544nm, concentration of hydrochloric acid 0.2mol/L, amount of DPCB 1mL and batching time 15min, the trace Cr contained in metallic lithium can be determinated with below 2.8% of variation coefficient.

Key words: membrane separating concentration-reflective spectrophotometry, Cr