COSC 302: Analysis of Algorithms — Spring 2018 Prof. Darren Strash Colgate University

Worksheet 2 — Asymptotic Analysis and Proofs (solutions)

1. Prove that $n^2 + n + 5 = \Theta(n^2)$.

We show that $n^2 + n + 5 = O(n^2)$ and that $n^2 + n + 5 = \Omega(n^2)$. By Theorem 3.1, this shows that $n^2 + n + 5 = \Theta(n^2)$.

First we show that $n^2 + n + 5 = O(n^2)$.

Proof. We show that $\exists c > 0, n_0 > 0$ s.t. $0 \le n^2 + n + 5 \le cn^2, \forall n \ge n_0$.

$$n^{2} + n + 5 \le n^{2} + n + 5n^{2}$$
 $n \ge 1$
 $\le n^{2} + n^{2} + 5n^{2}$ $n \ge 1$
 $= 7n^{2}$ $n > 1$

Furthermore, we have that $n^2+n+5\geq 0$ for $n\geq 1$. Therefore for c=7, and all $n\geq n_0=1$, we have that $0\leq n^2+n+5\leq cn^2$ and by definition $n^2+n+5=O(n^2)$.

Next, we show that $n^2 + n + 5 = \Omega(n^2)$.

Proof. We show that $\exists c > 0, n_0 > 0$ s.t. $0 \le cn^2 \le n^2 + n + 5, \forall n \ge n_0$.

$$n^2 + n + 5 \ge n^2 + n$$
 $\forall n$
 $\ge n^2 + n^2$ $n \ge 1$
 $= 2n^2$ $n \ge 1$
 ≥ 0 $n \ge 1$

Furthermore, we have that $n^2+n+5\geq 0$ for $n\geq 1$. Therefore for c=2, and all $n\geq n_0=1$, we have that $0\leq cn^2\leq n^2+n+5$ and by definition $n^2+n+5=\Omega(n^2)$.

2. (Reflexivity) Prove that if f(n) is asymptotically non-negative, then f(n) = O(f(n)). Solution:

Proof. First note that since f(n) is asymptotically non-negative, $\exists n_1 > 0$ such that $f(n) \geq 0$ $\forall n \geq n_1$. Then,

$$0 \le f(n) \qquad \qquad n \ge n_1$$

$$\le 1 \cdot f(n) \qquad \qquad n \ge n_1$$

Therefore for c=1 and $n_0=n_1,\ 0\leq f(n)\leq cf(n)$ for all $n\geq n_0$ and f(n)=O(f(n)).

3. Prove that $\lg(n!) = \Theta(n \lg n)$.

Solution:

Proof. We show that $\lg(n!) = O(n \lg n)$ and $\lg(n!) = \Omega(n \lg n)$. By Theorem 3.1, this shows that $\lg(n!) = \Theta(n \lg n)$.

$$(\lg(n!) = O(n \lg n))$$
:

$$\lg(n!) = \lg(n \cdot (n-1) \cdots 2 \cdot 1)$$

$$\leq \lg(n \cdot n \cdots n \cdot n) \qquad \text{for } n \geq 1$$

$$= \lg(n^n)$$

$$= n \lg n.$$

Therefore for c = 1, and all $n \ge n_0 = 1$, we have that $0 \le \lg(n!) \le cn \lg n$, and $\lg(n!) = O(n \lg n)$.

$$(\lg(n!) = \Omega(n \lg n))$$
:

$$\begin{split} \lg(n!) &= \lg(n \cdot (n-1) \cdots (n/2+1) \cdots 2 \cdot 1) \\ &\geq \lg(n \cdot (n-1) \cdots (n/2+1)) \qquad \text{when } n \geq 4 \\ &\geq \lg(\frac{n}{2} \cdot \frac{n}{2} \cdots \frac{n}{2}) \qquad \qquad n/2 \text{ times} \\ &= \frac{n}{2} \lg(\frac{n}{2}) \\ &= \frac{n}{2} \lg n - \frac{n}{2} \\ &\geq \frac{n}{2} \lg n - \frac{n}{2} \lg \sqrt{n} \qquad \qquad 1 \leq \lg \sqrt{n}, \text{ when } n \geq 4 \\ &= \frac{n}{2} \lg n - \frac{n}{4} \lg n \\ &= \frac{n}{4} \lg n \end{split}$$

Therefore for c = 1/4, and all $n \ge n_0 = 4$, we have that $0 \le c \lg(n!) \le n \lg n$, and $\lg(n!) = \Omega(n \lg n)$.

4. (Transitivity) Let f(n), g(n), and h(n) be asymptotically non-negative functions. Prove that if f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Solution:

Proof. Let f(n) = O(g(n)), then there are positive constants c_1, n_1 such that $0 \le f(n) \le c_1 g(n)$ for all $n \ge n_1$. Further, let g(n) = O(h(n)), then there are positive constants c_2, n_2 such that $0 \le g(n) \le c_2 h(n)$ for all $n \ge n_2$.

Then,

$$0 \le f(n) \qquad n \ge n_1 \quad \text{(since } f(n) = O(g(n)))$$

$$\le c_1 g(n) \qquad n \ge n_1 \quad \text{(since } f(n) = O(g(n)))$$

$$\le c_1 c_2 h(n) \qquad n \ge \max\{n_1, n_2\} \quad \text{(since } g(n) = O(h(n)))$$

Therefore, for $c = c_1c_2$ and $n_0 = \max\{n_1, n_2\}$ we have that $0 \le f(n) \le ch(n)$ and f(n) = O(h(n)).

5. (Reflexivity) Prove that if f(n) is asymptotically non-negative, then f(n) = O(f(n)). (Edit: This is a repeat of question 2. Instead we will show that $f(n) = \Omega(f(n))$.

Proof. First note that since f(n) is asymptotically non-negative, $\exists n_1 > 0$ such that $f(n) \geq 0$ $\forall n \geq n_1$. Then,

$$0 \le 1 \cdot f(n) \qquad \qquad n \ge n_1$$

$$\le f(n) \qquad \qquad n \ge n_1$$

Therefore for c=1 and $n_0=n_1, 0 \le cf(n) \le f(n)$ for all $n \ge n_0$ and $f(n)=\Omega(f(n))$.

6. (Transpose symmetry) Let f(n) and g(n) be two asymptotically non-negative functions. Prove that if f(n) = O(g(n)) then $g(n) = \Omega(f(n))$.

Solution:

Proof. We first show the forward direction, that is: if f(n) = O(g(n)) then $g(n) = \Omega(f(n))$. (\Rightarrow) Suppose f(n) = O(g(n)), then there are positive constants c_1, n_1 such that $0 \le f(n) \le c_1 g(n)$ for all $n \ge n_1$.

Since $c_1 > 0$, it is also the case that $0 \le \frac{1}{c_1} f(n) \le g(n)$ for all $n \ge n_1$. Therefore, for constants $c = \frac{1}{c_1} > 0$, $n_0 = n_1 > 0$, we have that $0 \le c f(n) \le g(n)$. Hence, $g(n) = \Omega(f(n))$.

Now we show the reverse direction, that is: if $g(n) = \Omega(f(n))$, then f(n) = O(g(n)). The proof is similar.

(\Leftarrow) Suppose $g(n) = \Omega(f(n))$, then there are positive constants c_1, n_1 such that $0 \le c_1 f(n) \le g(n)$ for all $n \ge n_1$.

Since $c_1 > 0$, it is also the case that $0 \le f(n) \le \frac{1}{c_1}g(n)$ for all $n \ge n_1$. Therefore, for constants $c = \frac{1}{c_1} > 0$, $n_0 = n_1 > 0$, we have that $0 \le f(n) \le cg(n)$. Hence, f(n) = O(g(n)).

7. Prove that $n^3 \neq O(n^2)$ by contradiction.

Solution:

Proof. Suppose, for sake of contradiction that $n^3 = O(n^2)$. That is, there are constants $c > 0, n_0 > 0$ such that $0 \le n^3 \le cn^2$ for all $n \ge n_0$.

Let $x = \max\{n_0, c+1\}$. For $n \ge x$, $xn^2 \le n^3$, and by definition of $O(\cdot)$, $n^3 \le cn^2$. This implies that $xn^2 \le cn^2$, but $xn^2 > cn^2$ —a contradiction.

8. Prove that, for $n \in \mathbb{N}$, $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$ by induction. (Edit: The original version of this question said "for $i \in \mathbb{N}$ ")

Solution:

Proof. Base case: n = 0, then both $\sum_{i=0}^{0} i = 0$ and $\frac{0(0+1)}{2} = 0$.

Inductive step: Assume that $\sum_{i=0}^{k-1} i = \frac{(k-1)k}{2}$. Then

$$\sum_{i=0}^{k} i = \sum_{i=0}^{k-1} i + k$$

$$= \frac{(k-1)k}{2} + k$$

$$= \frac{k^2 - k + 2k}{2}$$

$$= \frac{k(k+1)}{2}.$$
I.H.

9. Prove that, for $c \neq 1$ and $n \in \mathbb{N}$, $\sum_{i=0}^{n} c^i = \frac{c^{n+1}-1}{c-1}$ by induction.

Solution:

Proof. Base case: For n = 0, then

$$\sum_{i=0}^{0} c^{i} = c^{0} = 1 = \frac{c-1}{c-1} = \frac{c^{1}-1}{c-1}.$$

Inductive step: Assume that $\sum_{i=0}^{k-1} c^i = \frac{c^k-1}{c-1}$. Then,

$$\sum_{i=0}^{k} i = \sum_{i=0}^{k} c^{i}$$

$$= \sum_{i=0}^{k-1} c^{i} + c^{k}$$

$$= \frac{c^{k} - 1}{c - 1} + c^{k}$$

$$= \frac{c^{k} - 1}{c - 1} + c^{k} \frac{c - 1}{c - 1}$$

$$= \frac{c^{k} - 1}{c - 1} + \frac{c^{k+1} - c^{k}}{c - 1}$$

$$= \frac{c^{k+1} + c^{k} - c^{k} - 1}{c - 1}$$

$$= \frac{c^{k+1} - 1}{c - 1}.$$

10. Prove the following by induction: Given an unlimited supply of 5-cent stamps and 7-cent stamps, we can make any amount of postage larger than 23 cents.

Solution:

Proof. Let p be the amount of postage we can make. We have two cases: 23 , and <math>p > 28.

Case 1: We begin with p > 28. We inductively assume that we can make p-5 cents worth of postage (which is greater than 23). Then we add a 5-cent stamp to get p = (p-5) + 5 cents of postage.

Case 2: We now show it is true for 23 , by manually showing that each value <math>p is a sum of 5's and 7's.

$$p = 24 = 7 + 7 + 5 + 5$$

$$p = 25 = 5 + 5 + 5 + 5 + 5$$

$$p = 26 = 7 + 7 + 7 + 5$$

$$p = 27 = 7 + 5 + 5 + 5 + 5$$

$$p = 28 = 7 + 7 + 7 + 7$$