Algorytmiczna teoria grafów Nieklasyczne kolorowanie wierzchołków i krawędzi grafu

dr Hanna Furmańczyk

20 stycznia 2017

Kolorowanie sprawiedliwe; Meyer 1973

Jeżeli wierzchołki grafu G można podzielić na k takich zbiorów niezależnych V_1,\ldots,V_k takich, że $||V_i|-|V_j||\leq 1$ dla wszystkich $i,j=1,\ldots,k$, to mówimy, że G jest sprawiedliwie k-kolorowalny. Najmniejsza liczba k, dla której graf G jest sprawiedliwie k-kolorowalny jest sprawiedliwą liczbą chromatyczną grafu i oznaczamy ją symbolem $\chi=(G)$.

Analogicznie definiujemy sprawiedliwy indeks chromatyczny, $\chi'_{=}(G)$.

Rysunek: Sprawiedliwe pokolorowanie gwiazdy S_6 i grafu pełnego K_4 .

Rysunek: Sprawiedliwe pokolorowanie gwiazdy S_6 i grafu pełnego K_4 .

$$\chi_{=}(G) \geq \chi(G)$$

Rysunek: Sprawiedliwe pokolorowanie gwiazdy S_6 i grafu pełnego K_4 .

$$\chi_{=}(G) \geq \chi(G)$$

Różnica $\chi_{=}(G) - \chi(G)$ może być dowolnie duża, np.

Rysunek: Sprawiedliwe pokolorowanie gwiazdy S_6 i grafu pełnego K_4 .

$$\chi_{=}(G) \geq \chi(G)$$

Różnica $\chi_{=}(G) - \chi(G)$ może być dowolnie duża, np. dla gwiazd.

Tw. Hajnal-Szemeredi, 1970

$$\chi_{=}(G) \leq \Delta(G) + 1$$

Tw. Hajnal-Szemeredi, 1970

$$\chi_{=}(G) \leq \Delta(G) + 1$$

Hipoteza ECC

Dla każdego spójnego grafu G różnego od grafu pełnego i nieparzystego cyklu zachodzi: $\chi_{=}(G) \leq \Delta(G)$.

Tw. Hajnal-Szemeredi, 1970

$$\chi_{=}(G) \leq \Delta(G) + 1$$

Hipoteza ECC

Dla każdego spójnego grafu G różnego od grafu pełnego i nieparzystego cyklu zachodzi: $\chi_{=}(G) \leq \Delta(G)$.

hipoteza udowodniona dla wielu klas grafów, brak dowodu w przypadku ogólnym

Twierdzenie

G: n wierzchołkowy graf prosty o liczbie stabilności (niezależności) $\alpha(G)$ (moc największego zbioru niezależnego), $v \in V(G)$. Wówczas

$$\left\lceil \frac{n}{\alpha(G - (N(v) \cup \{v\})) + 2} \right\rceil \leq \chi_{=}(G).$$

Twierdzenie

G: n wierzchołkowy graf prosty o liczbie stabilności (niezależności) $\alpha(G)$ (moc największego zbioru niezależnego), $v \in V(G)$. Wówczas

$$\left\lceil \frac{n}{\alpha(G - (N(v) \cup \{v\})) + 2} \right\rceil \leq \chi_{=}(G).$$

Dowód

Twierdzenie

G: n wierzchołkowy graf prosty o liczbie stabilności (niezależności) $\alpha(G)$ (moc największego zbioru niezależnego), $v \in V(G)$. Wówczas

$$\left\lceil \frac{n}{\alpha(G - (N(v) \cup \{v\})) + 2} \right\rceil \leq \chi_{=}(G).$$

Dowód

• liczba wierzchołków pokolorowana tym samym kolorem co v nie przekracza $\alpha(G-(N(v)\cup\{v\}))+1$,

Twierdzenie

G: n wierzchołkowy graf prosty o liczbie stabilności (niezależności) $\alpha(G)$ (moc największego zbioru niezależnego), $v \in V(G)$. Wówczas

$$\left\lceil \frac{n}{\alpha(G - (N(v) \cup \{v\})) + 2} \right\rceil \leq \chi_{=}(G).$$

Dowód

- liczba wierzchołków pokolorowana tym samym kolorem co v nie przekracza $\alpha(G (N(v) \cup \{v\})) + 1$,
- kolorowanie ma być sprawiedliwe, więc każdego innego koloru możemy użyć co najwyżej $\alpha(G (N(v) \cup \{v\})) + 2$ razy.

Kolorowanie ograniczone

Graf *G* ma *p*-ograniczone *k*-kolorowanie, jeżeli zbiór jego wierzchołków (krawędzi) można pokolorować *k* kolorami w taki sposób, że każdy kolor jest użyty nie więcej niż *p* razy.

$$\chi_p(G), \chi_p'(G)$$

Przykład

Kolorowanie zwarte - tylko krawędzie!

Slajdy Dereniowski: 274-275.

Kolorowanie sumacyjne

Slajdy Dereniowski: 271.

Definicja

Niech C bęzie zbiorem kolorów, dla każdego $v \in V(G)$, niech $L: V(G) \to 2^C$ będzie funkcją przypisującą każdemu wierzchołkowi $v \in V(G)$ listę dozwolonych kolorów $L(v) \subseteq C$. Jeżeli istnieje funkcja $f: V(G) \to C$ taka, że $f(v) \in L(v)$ dla każdego $v \in V(G)$ oraz $f(u) \neq f(v)$ dla $u, v \in E(G)$, wtedy G nazywa się L-kolorowalnym.

Definicja

Niech C bęzie zbiorem kolorów, dla każdego $v \in V(G)$, niech $L:V(G) \to 2^C$ będzie funkcją przypisującą każdemu wierzchołkowi $v \in V(G)$ listę dozwolonych kolorów $L(v) \subseteq C$. Jeżeli istnieje funkcja $f:V(G) \to C$ taka, że $f(v) \in L(v)$ dla każdego $v \in V(G)$ oraz $f(u) \neq f(v)$ dla $u, v \in E(G)$, wtedy G nazywa się L-kolorowalnym.

Jeżeli wszystkie listy są zbiorami $\{1, 2, ..., \chi(G)\}$, to kolorowanie listowe staje się kolorowaniem w zwykłym sensie.

Definicja

Jeżeli k jest liczbą naturalną, funkcja L jest taka, że |L(v)|=k dla każdego $v\in V(G)$, a graf G ma właściwe pokolorowanie listowe, wtedy mówi się, że G jest k-wybieralny, oraz definiuje się liczbę wyboru, ch(G) jako najmniejsze k takie, że G ma poprawne pokolorowanie listowe niezależnie od tego jakie listy zostaną przypisane jego wierzchołkom.

Definicja

Jeżeli k jest liczbą naturalną, funkcja L jest taka, że |L(v)|=k dla każdego $v\in V(G)$, a graf G ma właściwe pokolorowanie listowe, wtedy mówi się, że G jest k-wybieralny, oraz definiuje się liczbę wyboru, ch(G) jako najmniejsze k takie, że G ma poprawne pokolorowanie listowe niezależnie od tego jakie listy zostaną przypisane jego wierzchołkom.

Proste własności

$$\chi(G) \leq ch(G)$$

Definicja

Jeżeli k jest liczbą naturalną, funkcja L jest taka, że |L(v)|=k dla każdego $v\in V(G)$, a graf G ma właściwe pokolorowanie listowe, wtedy mówi się, że G jest k-wybieralny, oraz definiuje się liczbę wyboru, ch(G) jako najmniejsze k takie, że G ma poprawne pokolorowanie listowe niezależnie od tego jakie listy zostaną przypisane jego wierzchołkom.

Proste własności

$$\chi(G) \le ch(G)$$

 $ch(G) \le \Delta(G) + 1$

Zastosowanie kolorowania grafów