UADAPy: An Uncertainty-Aware Visualization and Analysis Toolbox

Patrick Paetzold (University of Konstanz), David Hägele (University of Stuttgart), Marina Evers (University of Stuttgart), Daniel Weiskopf (University of Stuttgart), Oliver Deussen (University of Konstanz)

INTRODUCTION

- Multiple visualization frameworks like D3 or VTK provide implementations for all stages of the visualization pipeline but do not focus on uncertainty
- We propose the software package UADAPy for analyzing and visualizing multivariate data
- We express uncertain data as probability distributions
- We cover multiple stages of the visualization/analysis pipeline, i.e., data modeling, data transformation, and visual mapping, supporting the propagation of uncertainty

FEATURES

Datasets:

 Example datasets used in various publications focusing on uncertainty visualization to provide easy entry to our library

Transformations:

- UAPCA is an uncertainty-aware variant of the linear dimensionality reduction method PCA
- UAMDS, a variant of MDS that applies to Gaussian distributions

Visualization:

- Bivariate distributions
 - Techniques like scatter plots
 - Aggregated representation: isolines and isobands as visualization techniques to show specific quantiles
 - One-dimensional summary statistics of the distributions: box plots, violin plots, strip plots, and swarm plots
- Higher-dimensional distributions
 - Small multiples, such as a plot matrix showing all pairs of dimensions as bivariate plots (e.g. scatter or contour plots), or separately as univariate plots (e.g. box or violin plots)
 - Dimensionality reduction methods can be applied to get a 2dimensional probability distribution

CODE EXAMPLE

- Loading data
 distribs_hi = data.load_iris_normal()
- Applying UAMDS
 distribs_lo = uamds(distribs_hi, dims=2)
- Visualizing data plots2D.plot_contour(distribs_lo, seed=0)

SENERAL CONCEPT

- Close integration with existing libraries such as SciPy for data modeling or Matplotlib for data visualization
- Support visualization researchers who develop uncertaintyaware algorithms
 - Provide easy access to different steps of the visualization pipeline
 - Avoid the need for reimplementations
- Provide current state-of-the-art data transformation and visualization methods to end users analyzing uncertain data

DISCUSSION AND FUTURE WORK

- Support analysis and visualization of uncertain time series.
- Support interactive plotting frameworks like Bokeh or Plotly
- Establish a foundational platform where further uncertainty-aware algorithms can easily be included
- Available at https://github.com/UniStuttgart-VISUS/uadapy

