Math AA HL at KCA - Chapter 10 to 11 Notes

 $\operatorname{Tim\ Bao\ } 2023\text{--}2025$

February 26, 2024

Contents

1	Radians, Arc Length, and Area of a Circle								
2	Sine Rule and Area of a Triangle	3							
3	Cosine Rule	3							
4	Cones								
5	Radian-Degree Special Values								
6	Trigonometric Graphs 6.1 Transformations of the Sine/Cosine Graphs								
7	The Unit Circle								
8	Inverse Trigonometric Functions								
9	Trigonometric Identities 9.1 Pythagorean and the tangent identities	8 8 8 9							
	9.4 Half Angle	9							

1 Radians, Arc Length, and Area of a Circle

Radian to degree conversion

$$\theta^{\circ} = \frac{180}{\pi} \theta^c$$

Degree to radian conversion

$$\theta^c = \frac{\theta^\circ}{180} \pi$$

Arc length l enclosed by two radii r at an angle θ

$$l = r\theta$$

Area of a sector

$$A = \frac{r^2\theta}{2}$$

2 Sine Rule and Area of a Triangle

Full sine rule

$$2R = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

where

 \bullet R is the circumradius of the triangle

Given two sides a, b and the angle in between C, the area of the triangle is given by

$$A = \frac{1}{2}ab\sin C$$

3 Cosine Rule

Cosine rule for a side

$$a^2 = b^2 + c^2 - 2bc\cos(A)$$

For an angle

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

4 Cones

Figure 1: Cone

- $l^2 = h^2 + r^2$
- $\bullet \ \ A=\pi r^2+\pi rl$
- $V = \frac{1}{3}\pi r^2 h$

5 Radian-Degree Special Values

Degrees	Radians	$sin \theta$	cosθ	$\tan \theta$	$csc\theta$	secθ	$\cot \theta$
0°	0	0	1	0	-	1	-
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	√3
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	1	0	-	1	-	0

Figure 2: Conversion Table

6 Trigonometric Graphs

Figure 3: Graphs

Periodicity:

- $\tan(\theta + k\pi) = \tan \theta, k \in \mathbb{Z}$
- $\sin(\theta + 2k\pi) = \sin\theta, k \in \mathbb{Z}$
- $\cos(\theta + 2k\pi) = \cos\theta, k \in \mathbb{Z}$

6.1 Transformations of the Sine/Cosine Graphs

$$y = a\sin(b(x-c)) + d, \quad a, b > 0$$

- Amplitude = |a|
- Period = $\frac{2\pi}{b}$
- Principle axis y = d
- Maximum a + d, minimum -a + d

It is obtained from the transformations

- ullet if a < 0 then a reflection in the x-axis
- \bullet vertical stretch by factor |a|
- horizontal stretch by factor $\frac{1}{b}$
- a translation through $\begin{pmatrix} c \\ d \end{pmatrix}$

7 The Unit Circle

Figure 4: The unit circle

Angles measured counter-clockwise from the positive x-axis are positive, and angles measured clockwise from the x-axis are negative.

A "reference angle" is the angle θ in the first quadrant.

- The corresponding angle in the second quadrant is $\pi \theta$
- The corresponding angle in the third quadrant is $\pi + \theta$
- The corresponding angle in the fourth quadrant is $-\theta$

Each angle's trigonometric ratios have the same *magnitude* as its reference angle; using information about the quadrant will help to determine the signs.

8 Inverse Trigonometric Functions

•
$$\csc \theta = \frac{1}{\sin \theta}$$

•
$$\sec \theta = \frac{1}{\cos \theta}$$

$$\bullet \cot \theta = \frac{1}{\tan \theta}$$

9 Trigonometric Identities

9.1 Pythagorean and the tangent identities

•
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\bullet \sin^2 \theta + \cos^2 \theta = 1$$

•
$$1 + \tan^2 \theta = \sec^2 \theta$$

•
$$1 + \cot^2 \theta = \csc^2 \theta$$

9.2 Double angle

These are just special cases of compound angle identities

•
$$\sin 2\theta = 2\cos\theta\sin\theta$$

•
$$\cos 2\theta =$$

$$\cos^2 \theta - \sin^2 \theta$$
$$= 1 - 2\sin^2 \theta$$
$$= 2\cos^2 \theta - 1$$

•
$$\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}$$

9.3 Compound Angle

- $\sin A \pm B = \sin A \cos B \pm \cos A \sin B$
- $\cos A \pm B = \cos A \cos B \mp \sin A \sin B$
- $\tan A \pm B = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

9.4 Half Angle

- $\sin \frac{\theta}{2} = \pm \sqrt{\frac{1 \cos \theta}{2}}$
- $\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}}$
- $\tan \frac{\theta}{2} = \frac{\sin \theta}{1 + \cos \theta} = \frac{1 \cos \theta}{\sin \theta}$