GSVA for mutil Group

Ximing Ran

2025-03-24

Contents

1. Read the count data	2
2. Differential expression analysis	2
3. Visualization for reuslt (1) Sample information - PCA plot	3 4
4. GSVA analysis	6
Session information	16
<pre>library(tibble) library(tidyr) library(dplyr) library(rtracklayer)</pre>	
<pre># load function from local files source(here::here("source", "DEG_functions.R"))</pre>	

1. Read the count data

In this section, we will read the clean count data from the synaptosomes_bulkRNA folder. We will read the data and merge them into a single table. The final table will be stored in ../dataresults/bulkRNA_counts_clean.csv.

```
input_count <- read.csv(here::here("data", "bulkRNA",</pre>
                                        "bulkRNA_counts_cleaned.csv"))
counts <- as.data.frame(input_count) %>%
  column_to_rownames(var = "gene")
colnames(counts) <- gsub("_", "-", colnames(counts))</pre>
# raw sample list
sample_list_raw <- read.csv(here::here("data", "bulkRNA",</pre>
                                        "sample_info_AD.csv")) %>%
                     mutate(condition = paste0(Diagosis, "_", Treatment),
                             sample = gsub("_", "-", Sample.name))
# Ensure the column names of counts exist in Sample.name
new_colnames <- sample_list_raw$Label[match(colnames(counts), sample_list_raw$sample )]</pre>
# Assign new column names
colnames(counts) <- new_colnames</pre>
# sort the columns by the colname
condition_list <- data.frame(</pre>
  group =sample list raw$condition
row.names(condition_list) <- sample_list_raw$Label</pre>
counts<- counts[, rownames(condition list)]</pre>
gene_name_mapping<- readRDS(here::here("data","ref" ,"gene_name_mapping.rds"))</pre>
```

2. Differential expression analysis

In this section, we will perform differential expression analysis using DESeq2. We will compare the 22q vs Control in the vehicle condition. The results will be stored in results/02-DEG-V_10/DESeq2_results.csv.

```
# Init the result folder structure for the result
result_folder_all = './results'
result_folder = result_folder_all
```

3. Visualization for reuslt

(1) Sample information - PCA plot

```
figure_folder = result_folder
# do PCA for counts data
dds_obj <- DESeqDataSetFromMatrix(countData = counts,</pre>
                                   colData = condition_list,
                                   design = ~ group)
vsd.obj <- varianceStabilizingTransformation(dds_obj, blind = TRUE)</pre>
pcaData <- plotPCA(vsd.obj, intgroup = c("group"), returnData = T)</pre>
percentVar <- round(100 * attr(pcaData, "percentVar"))</pre>
p <-ggplot(pcaData, aes(PC1, PC2, color=group)) +</pre>
  geom_point(size=3) +
  labs(x = paste0("PC1: ",percentVar[1],"% variance"),
       y = paste0("PC2: ",percentVar[2],"% variance"),
  stat_ellipse(level = 0.95)+
  theme_bw() +
  # theme_classic()+
  theme(text = element_text(family = "Arial", colour = "black")) +
  # scale_color_manual(values = assigned_colors) +
  ggrepel::geom_text_repel(aes(label = name), color = "black")
print(p)
```



```
ggsave("./results/01-Sample_info/01_sample_PCA_plot.pdf", p,width = 8, height = 6, units = "in", dpi = ggsave("./results/01-Sample_info/01_sample_PCA_plot.png", p,width = 8, height = 6, units = "in", dpi = ggsave("./results/01-Sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01_sample_info/01
```

(2) Sample information - Distance heatmap

4. GSVA analysis

```
# # The following code is used to generate the GSVA matrix , only need to run once
# gmxFile <- here::here("data", "ref", "c5.go.v2023.1.Hs.symbols.gmt")</pre>
# go_list <- getGmt(gmxFile)</pre>
# geneset <- go_list
# dat <- as.matrix(counts)</pre>
# gsvapar <- gsvaParam(dat, geneset, maxDiff=TRUE)</pre>
# qsva es <- qsva(qsvapar)</pre>
# qsva matrix <- as.data.frame(qsva es)</pre>
# # save the result
# write.csv(qsva_matrix, "./results/02-GSVA/01_GSVA_matrix.csv")
#
# plot the heatmap for the GSVA result
pathway_list <- read.csv(here::here("data", "ref", "focus-pathway_2024_10_03.csv"))</pre>
box_plot_folder<- file.path(result_folder, "04-GSVA", "Boxplot")</pre>
# create the folder
dir.create(box_plot_folder, showWarnings = FALSE)
gsva_matrix <- read.csv("./results/02-GSVA/01_GSVA_matrix.csv", row.names = 1)</pre>
colnames(gsva matrix) <- sub("^X", "", colnames(gsva matrix))</pre>
condition_list_label <- condition_list</pre>
condition_list_label$group <- factor(</pre>
  condition_list_label$group,
  # levels = c("CTRL_Veh_0", "CTRL_Veh_10", "CTRL_Veh_100",
                "AD_Veh_0", "AD_Veh_10", "AD_Veh_100")
  levels = c("CTRL_Veh_0", "AD_Veh_0",
             "CTRL_Veh_10", "AD_Veh_10",
              "CTRL_Veh_100", "AD_Veh_100")
)
# plot for the focus pathway
for (i in 1:20){
  pathway_name <- pathway_list$pathway[i]</pre>
  print(pathway_name)
  p<-plot_gsva_boxplot_mutil_3(gsva_matrix,</pre>
                     condition list label =condition list label,
                     pathway_name = pathway_name,
                     figure_folder = file.path(result_folder,"02-GSVA","Boxplot-pair"),
                     file_name = paste0("GSVA_", pathway_name),
                     fig.height = 6, fig.width = 12,
                     reference_group_1="CTRL_Veh_0", compare_group_1="AD_Veh_0",
                     reference_group_2="CTRL_Veh_10", compare_group_2="AD_Veh_10",
                     reference_group_3="CTRL_Veh_100", compare_group_3="AD_Veh_100")
 print(p)
```

}

[1] "GOBP_MITOCHONDRIAL_RNA_3_END_PROCESSING"

[1] "GOBP_MITOCHONDRIAL_RNA_PROCESSING"

[1] "GOBP_POSITIVE_REGULATION_OF_TYPE_I_INTERFERON_MEDIATED_SIGNALING_PATHWAY"

[1] "GOBP_SODIUM_DEPENDENT_PHOSPHATE_TRANSPORT"

[1] "GOBP_NEURONAL_SIGNAL_TRANSDUCTION"

[1] "GOBP_CELLULAR_RESPONSE_TO_POTASSIUM_ION"

[1] "GOBP_REGULATION_OF_TYPE_I_INTERFERON_MEDIATED_SIGNALING_PATHWAY"

[1] "GOBP_MITOCHONDRIAL_RNA_CATABOLIC_PROCESS"

[1] "GOBP_NEGATIVE_REGULATION_OF_SYNAPTIC_TRANSMISSION_GLUTAMATERGIC"

[1] "GOBP_REGULATION_OF_MITOCHONDRIAL_TRANSLATION"

[1] "GOBP_NEGATIVE_REGULATION_OF_SYNAPTIC_TRANSMISSION"

[1] "GOBP_LIPID_GLYCOSYLATION"

[1] "GOBP_FAT_PAD_DEVELOPMENT"

[1] "GOBP_MITOCHONDRIAL_TRNA_PROCESSING"

[1] "GOBP_REGULATION_OF_MITOCHONDRIAL_RNA_CATABOLIC_PROCESS"

[1] "GOBP_NEUROTRANSMITTER_RECEPTOR_LOCALIZATION_TO_POSTSYNAPTIC_SPECIALIZATION_MEMBRANE"

[1] "GOBP_RESPONSE_TO_POTASSIUM_ION"

[1] "GOBP_POSITIVE_REGULATION_OF_SYNAPTIC_TRANSMISSION_GLUTAMATERGIC"

[1] "GOBP_NEUROTRANSMITTER_LOADING_INTO_SYNAPTIC_VESICLE"

[1] "GOBP_NEUROTRANSMITTER_CATABOLIC_PROCESS"

Session information

sessionInfo()

##

```
## R version 4.4.0 (2024-04-24)
## Platform: aarch64-apple-darwin20
## Running under: macOS Sonoma 14.3.1
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK v
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
```

```
## time zone: America/New York
## tzcode source: internal
##
## attached base packages:
## [1] parallel stats4
                           stats
                                     graphics grDevices utils
                                                                    datasets
## [8] methods
                 base
## other attached packages:
## [1] GSEABase_1.66.0
                                    graph_1.82.0
                                    XML_3.99-0.18
## [3] annotate_1.82.0
## [5] extrafont_0.19
                                    ggsignif_0.6.4
## [7] patchwork_1.3.0
                                    decoupleR_2.10.0
## [9] GSVA_1.52.3
                                    BiocParallel_1.38.0
## [11] edgeR_4.2.2
                                    limma_3.60.6
## [13] GenomicFeatures_1.56.0
                                    biomaRt_2.60.1
## [15] gprofiler2_0.2.3
                                    RColorBrewer_1.1-3
## [17] data.table_1.16.4
                                    org.Hs.eg.db_3.19.1
## [19] AnnotationDbi 1.66.0
                                    clusterProfiler 4.12.6
                                    pheatmap_1.0.12
## [21] ggfortify_0.4.17
## [23] EnhancedVolcano 1.22.0
                                    ggrepel 0.9.6
## [25] apeglm_1.26.1
                                    DESeq2_1.44.0
## [27] SummarizedExperiment 1.34.0 Biobase 2.64.0
## [29] MatrixGenerics_1.16.0
                                    matrixStats_1.5.0
## [31] reshape2 1.4.4
                                    Matrix 1.7-2
## [33] Signac 1.14.0
                                    Seurat_5.2.1
## [35] SeuratObject_5.0.2
                                    sp_2.2-0
## [37] rtracklayer_1.64.0
                                    GenomicRanges_1.56.2
## [39] GenomeInfoDb_1.40.1
                                    IRanges_2.38.1
## [41] S4Vectors_0.42.1
                                    BiocGenerics_0.50.0
## [43] knitr_1.49
                                    lubridate_1.9.4
## [45] forcats_1.0.0
                                    stringr_1.5.1
## [47] dplyr_1.1.4
                                    purrr_1.0.4
## [49] readr_2.1.5
                                    tidyr_1.3.1
                                    ggplot2_3.5.1
## [51] tibble_3.2.1
## [53] tidyverse_2.0.0
##
## loaded via a namespace (and not attached):
##
     [1] SpatialExperiment_1.14.0
                                     R.methodsS3_1.8.2
##
     [3] progress_1.2.3
                                     goftest_1.2-3
##
                                     Biostrings_2.72.1
     [5] HDF5Array_1.32.1
                                     spatstat.random_3.3-2
##
     [7] vctrs 0.6.5
##
     [9] digest_0.6.37
                                     png 0.1-8
##
   [11] deldir_2.0-4
                                     parallelly_1.42.0
                                     MASS_7.3-64
##
  [13] magick_2.8.5
  [15] httpuv_1.6.15
                                     qvalue_2.36.0
## [17] withr_3.0.2
                                     xfun_0.51
## [19] ggfun_0.1.8
                                     survival_3.8-3
##
  [21] memoise_2.0.1
                                     gson_0.1.0
## [23] systemfonts_1.2.1
                                     ragg_1.3.3
## [25] tidytree_0.4.6
                                     zoo_1.8-12
## [27] pbapply_1.7-2
                                     R.oo_1.27.0
## [29] prettyunits 1.2.0
                                     KEGGREST_1.44.1
## [31] promises_1.3.2
                                     httr 1.4.7
## [33] restfulr_0.0.15
                                     rhdf5filters 1.16.0
```

```
fitdistrplus_1.2-2
    [35] globals_0.16.3
## [37] rhdf5_2.48.0
                                     rstudioapi_0.17.1
## [39] UCSC.utils 1.0.0
                                     miniUI 0.1.1.1
## [41] generics_0.1.3
                                     DOSE_3.30.5
##
   [43] curl_6.2.1
                                     zlibbioc_1.50.0
##
  [45] ScaledMatrix 1.12.0
                                     ggraph 2.2.1
## [47] polyclip_1.10-7
                                     GenomeInfoDbData_1.2.12
## [49] SparseArray_1.4.8
                                     xtable_1.8-4
##
   [51] evaluate_1.0.3
                                     S4Arrays_1.4.1
##
  [53] BiocFileCache_2.12.0
                                     hms_1.1.3
  [55] irlba_2.3.5.1
                                     colorspace_2.1-1
##
  [57] filelock_1.0.3
                                     ROCR_1.0-11
## [59] reticulate_1.40.0
                                     spatstat.data_3.1-4
                                     lmtest_0.9-40
## [61] magrittr_2.0.3
## [63] later_1.4.1
                                     viridis_0.6.5
##
   [65] ggtree_3.12.0
                                     lattice_0.22-6
##
  [67] spatstat.geom_3.3-5
                                     future.apply_1.11.3
  [69] scattermore_1.2
                                     shadowtext 0.1.4
##
  [71] cowplot_1.1.3
                                     RcppAnnoy_0.0.22
##
   [73] pillar_1.10.1
                                     nlme 3.1-167
## [75] compiler_4.4.0
                                     beachmat_2.20.0
                                     stringi_1.8.4
## [77] RSpectra_0.16-2
## [79] tensor_1.5
                                     GenomicAlignments 1.40.0
## [81] plyr_1.8.9
                                     crayon_1.5.3
                                     BiocIO_1.14.0
## [83] abind_1.4-8
## [85] gridGraphics_0.5-1
                                     emdbook_1.3.13
## [87] locfit_1.5-9.11
                                     graphlayouts_1.2.2
## [89] bit_4.5.0.1
                                     fastmatch_1.1-6
## [91] textshaping_1.0.0
                                     codetools_0.2-20
## [93] BiocSingular_1.20.0
                                     plotly_4.10.4
## [95] mime_0.12
                                     splines_4.4.0
## [97] Rcpp_1.0.14
                                     fastDummies_1.7.5
## [99] sparseMatrixStats_1.16.0
                                     dbplyr_2.5.0
## [101] Rttf2pt1_1.3.12
                                     blob_1.2.4
## [103] here 1.0.1
                                     fs_1.6.5
## [105] listenv_0.9.1
                                     ggplotify_0.1.2
## [107] statmod 1.5.0
                                     tzdb 0.4.0
## [109] tweenr_2.0.3
                                     pkgconfig_2.0.3
## [111] tools_4.4.0
                                     cachem_1.1.0
## [113] RSQLite_2.3.9
                                     viridisLite_0.4.2
                                     numDeriv_2016.8-1.1
## [115] DBI_1.2.3
## [117] fastmap_1.2.0
                                     rmarkdown 2.29
                                     grid_4.4.0
## [119] scales_1.3.0
                                     Rsamtools_2.20.0
## [121] ica_1.0-3
## [123] coda_0.19-4.1
                                     dotCall64_1.2
## [125] RANN_2.6.2
                                     farver_2.1.2
## [127] tidygraph_1.3.1
                                     scatterpie_0.2.4
## [129] yaml_2.3.10
                                     cli_3.6.4
## [131] lifecycle_1.0.4
                                     uwot_0.2.2
## [133] mvtnorm_1.3-3
                                     timechange_0.3.0
## [135] gtable_0.3.6
                                     rjson_0.2.23
## [137] ggridges_0.5.6
                                     progressr 0.15.1
## [139] ape_5.8-1
                                     jsonlite_1.9.0
## [141] RcppHNSW_0.6.0
                                     bitops_1.0-9
```

```
## [143] bit64_4.6.0-1
                                     Rtsne_0.17
## [145] yulab.utils_0.2.0
                                     spatstat.utils_3.1-2
## [147] bdsmatrix_1.3-7
                                     GOSemSim 2.30.2
## [149] spatstat.univar_3.1-1
                                     R.utils_2.12.3
## [151] lazyeval_0.2.2
                                     shiny_1.10.0
## [153] htmltools 0.5.8.1
                                     enrichplot_1.24.4
## [155] GO.db 3.19.1
                                     sctransform 0.4.1
## [157] rappdirs_0.3.3
                                     tinytex_0.55
## [159] glue_1.8.0
                                     spam_2.11-1
## [161] httr2_1.1.0
                                     XVector_0.44.0
## [163] RCurl_1.98-1.16
                                     rprojroot_2.0.4
## [165] treeio_1.28.0
                                     gridExtra_2.3
## [167] extrafontdb_1.0
                                     igraph_2.1.4
## [169] R6_2.6.1
                                     SingleCellExperiment_1.26.0
## [171] labeling_0.4.3
                                     RcppRoll_0.3.1
## [173] cluster_2.1.8
                                     bbmle_1.0.25.1
## [175] Rhdf5lib_1.26.0
                                     aplot_0.2.4
## [177] DelayedArray_0.30.1
                                     tidyselect_1.2.1
## [179] ggforce_0.4.2
                                     xml2_1.3.6
## [181] future 1.34.0
                                     rsvd 1.0.5
## [183] munsell_0.5.1
                                     KernSmooth_2.23-26
## [185] htmlwidgets_1.6.4
                                     fgsea_1.30.0
## [187] rlang_1.1.5
                                     spatstat.sparse_3.1-0
## [189] spatstat.explore_3.3-4
```