Remark 3.15. Another interesting situation is when we have two foliated manifolds (M, \mathcal{F}^M) and (N, \mathcal{F}^N) , and a local diffeomorphism — say, a covering map — $F: M \to N$ which sends leaves of \mathcal{F}^M into leaves of \mathcal{F}^N , and we want to move affine information between them. Note that F_* maps \mathcal{F}^M -vertical vectors into \mathcal{F}^N -vertical vectors, but not necessarily surjectively. It will become clear that it is necessary that only \mathcal{F}^M -vertical vectors are mapped into \mathcal{F}^N -vertical vectors. For example, consider $id: \mathbb{R}^3 \to \mathbb{R}^3$, where the first \mathbb{R}^3 is foliated by $T\mathcal{F}^1 = \mathbb{R} \frac{\partial}{\partial y}$ and the second one is foliated by $T\mathcal{F}^2 = \mathbb{R} \frac{\partial}{\partial x} \oplus \mathbb{R} \frac{\partial}{\partial y}$. It is clear that id is a foliated diffeomorphism. The usual flat connection ∇^{flat} of \mathbb{R}^3 is a transverse affine connection to both foliations, albeit associated with different partner connections ω^1 and ω^2 (each of them is just ∇^{flat} restricted to the respective vertical distributions). However, $id^*\nabla^{\text{flat}} = \nabla^{\text{flat}}$ and $id^*\omega^2 = \omega^2$, which does not result in a transverse affine connection in the source foliation.

To achieve our goal, we must require furthermore that \mathcal{F}^M and \mathcal{F}^N are of the same dimension, so that vertical vectors on TM are in one-to-one correspondence with the vertical vectors in TN. Indeed, if (N, \mathcal{F}^N) is endowed with a transverse affine connection $\hat{\nabla}^N$, we can define the pullback $F^*\hat{\nabla}^N$ as follows: for $X,Y\in\mathfrak{X}(M)$, we set $(F^*\hat{\nabla}^N)_XY=Z$, where Z is given by: For $p\in M$, let \mathcal{U} be any neighborhood of p for which $\Phi:=F|_{\mathcal{U}}$ is a diffeomorphism onto its (open) image. Then, $Z(p):=d\Phi_p^{-1}\left(\hat{\nabla}^N_{\Phi_*X}\Phi_*Y\right)_{\Phi(p)}$. If ω^N is the partner connection associated with $\hat{\nabla}^N$, then we can check that, for any $V\in\mathfrak{X}(\mathcal{F}^M)$ and any $X\in\mathfrak{X}(M)$ we have

$$(F^*\hat{\nabla}^N)_X V = (F^*\omega^N)_X V,$$

$$(F^*\hat{\nabla}^N)_V X = [V, X] + (F^*\omega^N)_X V.$$

As for the holonomy invariance condition, given $V \in \mathfrak{X}(\mathcal{F}^M)$, and $X, Y \in \mathfrak{L}(\mathcal{F}^M)$ we have

$$(\mathcal{L}_{V}(F^{*}\hat{\nabla}^{N}))(X,Y) = [V, (F^{*}\hat{\nabla}^{N})_{X}Y] - (F^{*}\hat{\nabla}^{N})_{[V,X]}Y - (F^{*}\hat{\nabla}^{N})_{X}[V,Y].$$

Note that the two properties that we already established imply that the two last terms above are vertical. As for the first one, note that since F is locally a diffeomorphism, on a neighborhood of each point we can write $V = \Phi_*^{-1}(W)$ for some $W \in \mathfrak{X}(\mathcal{F}^N)$. Then we are left with

$$[V, (F^* \hat{\nabla}^N)_X Y] = \left[\Phi_*^{-1}(W), \Phi_*^{-1} \left(\hat{\nabla}^N_{\Phi_* X} \Phi_* Y \right) \right] = \Phi_*^{-1} \left[W, \hat{\nabla}^N_{\Phi_* X} \Phi_* Y \right],$$

which is vertical because $\hat{\nabla}^N$ is a transverse affine connection and Φ_* stablishes a one-to-one correspondence between vertical vectors.

In the converse direction, if now (M, \mathcal{F}^M) is given a transverse affine connection $\hat{\nabla}^M$, the necessary and sufficient condition for the existence of the pushforward via F is that F is one-to-one, (that is, a full diffeomorphism). When this is the case, we can set the pushforward $(F_*\hat{\nabla}^M)_XY = W$, for $X,Y \in \mathfrak{X}(N)$, where W is constructed as: given $q \in N$, let \mathcal{U} be any neighborhood of $p = F^{-1}(q)$ for which $\Phi := F|_{\mathcal{U}}$ is a diffeomorphism. Put $W(q) := d\Phi_p\left(\hat{\nabla}_{\Phi^*X}\Phi^*Y\right)_p$. As before, since vertical vectors in TM and in TN are in bijection, we obtain that $F_*\hat{\nabla}^M$ is a transverse affine connection with partner connection given by $F_*\omega^M$.

The next important consistency check arises by considering semi-Riemannian foliations. We show that any one such gives rise to a unique transverse affine structure — a result that works as an analogue of the fundamental theorem of semi-Riemannian geometry.

Theorem 3.16. Let g_{T} be a transverse semi-Riemannian metric on (M, \mathcal{F}) . There exists a unique transverse affine structure $[\overline{\nabla}]$ on (M, \mathcal{F}) such that, for any $\hat{\nabla} \in [\overline{\nabla}]$

(i) the torsion tensor $\operatorname{Tor}(\hat{\nabla})$ takes values in $\Gamma(T\mathcal{F})$, and

$$(ii) \ Xg_{\mathsf{T}}(Y,Z) = g_{\mathsf{T}}(\hat{\nabla}_X Y,Z) + g_{\mathsf{T}}(Y,\hat{\nabla}_X Z), \forall X,Y,Z \in \mathfrak{X}(M).$$