Authors:

- o Mhd Jawad Al Rahwanji 7038980 mhal00002@stud.uni-saarland.de
- o Christian Singer 7039059 chsi00002@stud.uni-saarland.de

Exercise 4.3 - Gradient Descent

a) We have the following:

$$f(\mathbf{x}) = f(x_1, x_2) = \frac{1}{1 + exp(-(x_1^2 + x_2^2))},$$

$$\epsilon = \mathbf{0}. \mathbf{2}, \text{ and}$$

$$\nabla f(\mathbf{x}) = \nabla f(x_1, x_2) = (\frac{2x_1 exp(-(x_1^2 + x_2^2))}{(1 + exp(-(x_1^2 + x_2^2)))^2}, \frac{2x_2 exp(-(x_1^2 + x_2^2))}{(1 + exp(-(x_1^2 + x_2^2)))^2})$$

The gradient descent iterations:

Iteration	X	$f(\mathbf{x})$	$f(\mathbf{x})$
0	(1, -1)	0.88	(0.21, -0.21)
1	(0.958, -0.958)	0.86	(0.22, -0.22)
2	(0.914, -0.914)	0.84	(0.24, -0.24)
3	(0.866, -0.866)	0.81	(0.25, -0.25)
	Mata Ma	notice f/x) > f/x	

Note. We notice $f(x_0) > f(x_2)$

A higher ϵ would lead to faster convergence but at a small risk of slightly overshooting. Whereas, a much larger ϵ , say > 1, might lead to never finding the minimum.

After 21 iterations of gradient descent, an \hat{x} was achieved where for 3 consecutive iterations the value of f(x) exhibited no change > 1e-2. A ϵ equal to 0.2 was used to avoid overshooting and slowly but surely reaching the minimum.

$$\hat{x} = (0.162, -0.162)$$

Our \hat{x} is not the global minimum because we stopped early but had we continued a $\hat{x} = (0, 0)$ is achievable using gradient descent. The function is convex, therefore, it has a guaranteed global minimum at (0, 0) where f((0, 0)) = 0.5.