Model n-gram i generowanie tekstu

Agnieszka Ławrynowicz

Wydział Informatyki Politechniki Poznańskiej

21 marca 2018

Model języka: n-gram

Probabilistyczne modelowanie języka

Cel: przypisanie prawdopodobieństwa do zdania (sekwencji wyrazów):

$$P(W) = P(w_1, w_2, w_3, w_4, \dots w_n)$$

Podobne zadanie: prawdopodobieństwo kolejnego słowa:

$$P(w_5|w_1,w_2,w_3,w_4)$$

Model języka oblicza jedno z dwóch:

$$P(W)$$
 lub $P(w_n|w_1, w_2 \dots w_{n-1})$

Czy ludzie potrafią przewidzieć następny wyraz?

Jak?

- Wiedza dziedzinowa: red blood vs. red hat
- Wiedza nt. składni: the... <adj|noun>
- Wiedza leksykalna: pieczony kurczak vs. placek

Probabilistyczne modele językowe

Cel: przypisanie prawdopodobieństwa do zdania Zastosowania:

- Korekta pisowni
- Rozpoznawanie mowy
- Autouzupełnianie
- Podpowiedź odpowiedzi (np. na smsa)
- Generowanie języka
- Tłumaczenie maszynowe
- Streszczanie
- Odpowiadanie na pytania

Autouzupełnianie

Korekta pisowni

P(ta reklama trwa 20 skeund) < P(ta reklama trwa 20 sekund)

Generowanie języka

https://pdos.csail.mit.edu/archive/scigen/

SCIgen - An Automatic CS Paper Generator

About Generate Examples Talks Code Donations Related People Blog

figures, and ci	ogram that generates random Computer Science research papers, including graphs, tations. It uses a hand-written context-free grammar to form all elements of the m here is to maximize amusement, rather than coherence.
suspect might from spam in broad confere conferences.	prose for such a program is to auto-generate submissions to conferences that you have very low submission standards. A prime example, which you may recognize your inbox, is SCI/IIIS and its dozens of co-located conferences (check out the very cedescription on the WMSCI 2005 website). There's also a list of known bogus Using SCIgen to generate submissions for conferences like this gives us pleasure t, one of our papers was accepted to SCI 2005! see Examples for more details to.
We went to W	MSCI 2005. Check out the talks and video. You can find more details in our blog.
Also, check or	t our 10th anniversary celebration project: SCIpher!
Also, check ou	t our 10th anniversary celebration project: SCIpher!
	t our 10th anniversary celebration project: SCIpher! Random Paper
Generate a	Random Paper ate a random CS paper of your own? Type in some optional author names below,
Generate a	Random Paper ate a random CS paper of your own? Type in some optional author names below,
Generate a Want to gener and click "Gen	Random Paper ate a random CS paper of your own? Type in some optional author names below,
Generate a Want to gener and click "Gen Author 1:	Random Paper ate a random CS paper of your own? Type in some optional author names below,
Generate a Want to gener and click "Gen Author 1: Author 2:	Random Paper ate a random CS paper of your own? Type in some optional author names below,
Generate a Want to gener and click "Gen Author 1: Author 2: Author 3:	Random Paper ate a random CS paper of your own? Type in some optional author names below,

Obliczanie P(w) (prawdopodobieństwa łącznego)

Jak obliczyć prawdopodobieństwo łączne?

P(mój, kot, jest, tak, zwinny, jak)

Reguła łańcuchowa (przypomnienie)

Prawdopodobieństwa warunkowe:

$$\begin{split} P(B|A) &= P(A,B)/P(A) \\ P(A,B) &= P(A)P(B|A) \\ P(A,B,C,D) &= P(A)P(B|A)P(C|A,B)P(D|A,B,C) \end{split}$$

$$P(x_1, x_2, x_3, \dots, x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)\dots P(x_n|x_1, \dots, x_{n-1})$$

Reguła łańcuchowa (obliczanie prawdopodobieństwa łącznego)

$$P(w_1w_2w_3\dots w_n) = \prod_i P(w_i|w_1w_2\dots w_{i-1})$$

$$\begin{split} P(\text{``m\'oj kot jest tak zwinny jak''}) &= P(\text{m\'oj}) \cdot P(\text{kot}|\text{m\'oj}) \cdot P(\text{jest} \mid \text{m\'oj kot}) \cdot P(\text{tak}|\text{m\'oj kot jest tak}) \cdot P(\text{jak}|\text{m\'oj kot jest tak zwinny}) \end{split}$$

Reguła łańcuchowa (obliczanie prawdopodobieństwa łącznego)

$$P(w_1w_2w_3\dots w_n) = \prod_i P(w_i|w_1w_2\dots w_{i-1})$$

$$\begin{split} P(\text{``m\'oj kot jest tak zwinny jak''}) &= P(\text{m\'oj}) \cdot P(\text{kot}|\text{m\'oj}) \cdot P(\text{jest} \mid \text{m\'oj kot}) \cdot P(\text{tak}|\text{m\'oj kot jest tak}) \cdot P(\text{jak}|\text{m\'oj kot jest tak zwinny}) \end{split}$$

Jak obliczyć prawdopodobieństwa?

Czy możemy po prostu zliczać wystąpienia zdań?

```
\mathsf{P}(\mathsf{jak}|\mathsf{m\acute{o}j}\;\mathsf{kot}\;\mathsf{jest}\;\mathsf{tak}\;\mathsf{zwinny}) = \frac{\mathit{count}(\mathsf{m\acute{o}j}\;\mathsf{kot}\;\mathsf{jest}\;\mathsf{tak}\;\mathsf{zwinny}\;\mathsf{jak})}{\mathit{count}(\mathsf{m\acute{o}j}\;\mathsf{kot}\;\mathsf{jest}\;\mathsf{tak}\;\mathsf{zwinny})}
```

× Zbyt dużo możliwości aby zgromadzić wystarczająco dużo danych do estymacji.

Musimy posłużyć się aproksymacją

Własność Markowa

Andriej Markow (1856-1922)

Upraszczające założenie:

 $P(jak|mój \text{ kot jest tak zwinny}) \approx P(jak|zwinny)$ $P(jak|mój \text{ kot jest tak zwinny}) \approx P(jak|tak zwinny)$

Własność Markowa c.d.

$$P(w_1w_2w_3...w_n) = \prod_i P(w_i|w_1w_2...w_{i-1})$$

Aproksymujemy każdy czynnik iloczynu:

$$P(w_i|w_1w_2\ldots w_{i-1})\approx P(w_i|w_{i-k}\ldots w_{i-1})$$

Najprostszy przypadek: model unigram/1-gram

$$P(w_1w_2w_3...w_n) \approx \prod_i P(w_i)$$

Bigram/2-gram

$$P(w_i|w_1w_2\ldots w_{i-1})\approx P(w_i|w_{i-1})$$

Modele n-gram

Unigram (pojedynczy wyraz):

$$P(w_1w_2w_3\dots w_n)\approx\prod_i P(w_i)$$

Bigram (para sąsiadujących wyrazów):

$$P(w_i|w_1w_2\dots w_{i-1})\approx P(w_i|w_{i-1})$$

N-gram (w ogólności n sąsiadujących wyrazów):

$$P(w_i|w_1w_2\ldots w_{i-1})\approx P(w_i|w_{i-k}\ldots w_{i-1})$$

Google N-Gram

https://books.google.com/ngrams

Google Books Ngram Viewer

Estymacja prawdopodobieństwa bigramów

$$P(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

Specjalne tokeny

Możemy reprezentować początek i koniec zdania za pomocą specjalnych tokenów:

<s> To jest zdanie </s>

Przykład

$$P(w_i|w_{i-1}) = \frac{count(w_{i-1},w_i)}{count(w_{i-1})}$$
 ~~Wlazł kotek na płotek i mruga~~ ~~Wlazł kotek w płotek ~~kotek sobie mruczy i mruga~~~~

$$\begin{split} P(\mathsf{kotek} \mid \mathsf{Wlazl}) &= \frac{2}{2} \\ P(\mathsf{mruga} \mid \mathsf{i}) &= \frac{2}{2} \\ P(\mathsf{plotek} \mid \mathsf{w}) &= \frac{1}{1} \\ P(\mathsf{sobie} \mid \mathsf{kotek}) &= \frac{1}{3} \\ P(\mathsf{Wlazl} \mid <\mathsf{s}>) &= \frac{2}{3} \end{split}$$

Przykład: Berkeley Restaurant Project c.d.

Dane z systemu dialogowego, który odpowiadał na pytania dotyczące bazy danych restauracji w Berkeley w Kalifornii (Jurafsky i inni, 1994).

Próbka z 9332 zdań:

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Przykład: Berkeley Restaurant Project c.d.

Liczba bigramów dla 8 wyrazów (z |V| = 1446).

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Przykład: Berkeley Restaurant Project c.d

Normalizacja za pomocą unigramów (podzielenie każdego wiersza liczb przez odpowiednią liczbę unigramów dla w_{n-1}):

- $\frac{\text{count}(I,want)}{\text{count}(I\text{wszystkie})}$
- $p(I|want) = \frac{827}{2533} = 0,3264$

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Przykład: Berkeley Restaurant Project

Prawdopodobieństwa dla 8 wyrazów (ze słownika |V| = 1446):

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Przykład: Berkeley Restaurant Project c.d

Dodatkowe prawdopodobieństwa:

```
P(i|<s>) = 0.25
P(english|want) = 0.0011
P(food|english) = 0.5
P(</s>|food) = 0.68
```

Wyliczmy prawdopodobieństwo zdania: I want English food:

$$P(~~i want english food $$~~)$$

$$= P(i|~~) \cdot P(want|i) \cdot P(english|want) \cdot P(food|english) \cdot~~$$

$$= 0.25.0.33.0.011.0.5.0.68$$

= 0,000031

Zadanie

Ala idzie biegać Tomek idzie biegać Tomek idzie pływać Tomek idzie biegać

```
\begin{split} &P(\mathsf{Tomek}) = ? \\ &P(\mathsf{Ala}) = ? \\ &P(\mathsf{idzie}|\mathsf{Tomek}) = ? \\ &P(\mathsf{biega\acute{c}}|\mathsf{idzie}) = ? \\ &P(\mathsf{biega\acute{c}}|\mathsf{Tomek}|\mathsf{idzie}) = ? \\ &P_{\mathsf{unigramy}}(\mathsf{Tomek}|\mathsf{idzie}|\mathsf{biega\acute{c}}) = ? \\ &P_{\mathsf{bigramy}}(\mathsf{Tomek}|\mathsf{idzie}|\mathsf{biega\acute{c}}) = ? \text{ (wykorzystaj } < s >) \end{split}
```

Zadanie - rozwiązanie

Ala idzie biegać Tomek idzie biegać Tomek idzie pływać Tomek idzie biegać

$$\begin{split} &P(\mathsf{Tomek}) = \tfrac{3}{12} = 0,25 \\ &P(\mathsf{Ala}) = \tfrac{1}{12} = 0,08 \\ &P(\mathsf{idzie}|\mathsf{Tomek}) = \tfrac{3}{3} = 1 \\ &P(\mathsf{biega\acute{c}}|\mathsf{idzie}) = \tfrac{3}{4} = 0,75 \\ &P(\mathsf{biega\acute{c}}|\mathsf{Tomek}|\mathsf{idzie}) = \tfrac{2}{3} = 0,66 \\ &P_{\mathsf{unigramy}}(\mathsf{Tomek}|\mathsf{idzie}|\mathsf{biega\acute{c}}) = \tfrac{3}{12} \cdot \tfrac{4}{12} \cdot \tfrac{3}{12} = 0,02 \\ &P_{\mathsf{bigramy}}(\mathsf{Tomek}|\mathsf{idzie}|\mathsf{biega\acute{c}}) = \tfrac{3}{4} \cdot \tfrac{3}{3} \cdot \tfrac{3}{4} = 0,56 \end{split}$$

Ewaluacja jakości modelu

Ewaluacja modeli językowych

Czy nasz model językowy szacuje większe prawdopodobieństwo dla "dobrych" zdań ("prawdziwych" lub "często obserwowalnych") w porównaniu do prawdopodobieństwa "złych"? Metodologia (analogiczna do problemu uczenia nadzorowanego):

- 1 wytrenuj model na zbiorze trenującym
- przetestuj model na zbiorze testowym (uprzednio nieuwzlędnianych danych) za pomocą miary ewaluacji

Zewnętrzna ewaluacja modeli językowych

Najlepsza ewaluacja w celu porównania modeli językowych MJ_1 i MJ_2 to:

- włączenie ich do rozwiązania konkretnego zadania (korekta pisma, rozpoznawanie mowy itd.)
- wykonanie zadania, obliczenie wartości miary jakości (np. trafności klasyfikacji) dla MJ_1 i MJ_2
 - Jak wiele błędnie zapissanych wyrazów zostało prawidłowo poprawionych?
 - ..
- porównaj trafność dla MJ_1 i MJ_2

Zewnętrzna ewaluacja modeli językowych

A jeśli nie mamy na to czasu lub nie interesuje nas przydatność modelu w danym zadaniu a ewaluacja samego modelu?

Jak dobrze możemy przewidzieć następny wyraz? Ja zawsze zamawiam pizzę z serem i ...

```
Jak dobrze możemy przewidzieć następny wyraz?
Ja zawsze zamawiam pizzę z serem i ...
grzybami 0.1
pepperoni 0.1
brokułem 0.01
...
prażonym ryżem 0.0001
...
i 1e-100
```

Lepszy model to ten, który przyznaje wyższe prawdopodobieństwo wyrazom jakie rzeczywiście występują jako następny Czy unigramy dobrze sprawdzą się w tym zadaniu?

```
Jak dobrze możemy przewidzieć następny wyraz?
Ja zawsze zamawiam pizzę z serem i ...
grzybami 0.1
pepperoni 0.1
brokułem 0.01
...
prażonym ryżem 0.0001
...
i 1e-100
```

Lepszy model to ten, który przyznaje wyższe prawdopodobieństwo wyrazom jakie rzeczywiście występują jako następny

Czy unigramy dobrze sprawdzą się w tym zadaniu?

```
Jak dobrze możemy przewidzieć następny wyraz?
Ja zawsze zamawiam pizzę z serem i ...
grzybami 0.1
pepperoni 0.1
brokułem 0.01
...
prażonym ryżem 0.0001
...
i 1e-100
```

Lepszy model to ten, który przyznaje wyższe prawdopodobieństwo wyrazom jakie rzeczywiście występują jako następny Czy unigramy dobrze sprawdzą się w tym zadaniu?

Wewnętrzna ewaluacja modeli językowych

Jaką miarą ewaluacji mierzyć jak dobrze model języka modeluje język (naturalny) lub dany korpus?

Nieokreśloność (perplexity)

Mając dane zdanie W o długości N, miarą jakości modelu języka dla tego zdania jest odwrotność prawdopodobieństwa zbioru testowego, znormalizowana przez długość N:

$$PP(W) = P(w_1 w_2 \dots w_N)^{-\frac{1}{N}} = \sqrt[N]{\frac{1}{P(w_1 w_2 \dots w_N)}}$$

Perplexity pokazuje stopień niepewności naszego modelu co do tego, że dane słowo pochodzi z modelowanego języka. Im mniejsza wartość, tym model jest lepszy.

Miara nieokreśloności (perplexity)

Reguła łańcuchowa
$$PP(W) = \sqrt[N]{\prod_{i=1}^N \frac{1}{P(w_i|w_1...w_{i-1})}}$$
 Dla bigramów
$$PP(W) = \sqrt[N]{\prod_{i=1}^N \frac{1}{P(w_i|w_{i-1})}}$$

Problem przeuczenia

- model n-gram sprawdza się gdy korpus testowy przypomina korpus trenujący
- często tak nie jest
- żeby wytrenować odporny model musimy uwzględnić rzeczy, które występują w zbiorze testowym, ale nie ma ich w zbiorze trenującym

Problem przeuczenia: zerowe prawdopodobieństwa

Zbiór trenujący:

- denied the allegations: 5
- denied the speculation: 2
- denied the rumors: 1
- denied the report: 1

Zbiór testowy:

- denied the offer
- denied the loan

P(offer|denied the) wynosi 0!

Problem przeuczenia: zerowe prawdopodobieństwa

Dwa problemy:

- niedoszacowujemy prawdopodobieństw wyrazów, które mogą wystąpić
- jeśli prawdopodobieństwo wyrazu w zbiorze testowym wynosi 0 to nie możemy policzyć wartości miary nieokreśloności (perplexity) (dzielenie przez 0)

Nieznane wyrazy

- słownik zamknięty: w zbiorze testowym umieszczamy wyrazy tylko ze słownika
- słownik otwarty: może wystąpić problem wyrazów spoza słownika: Out of vocabulary (OOV), które możemy modelować za pomocą pseudo-wyrazu <UNK>

Nieznane wyrazy c.d.

Dwa sposoby radzenia sobie z nimi:

- przekształcenie problemu w taki ze słownikiem zamkniętym, wybierając a priori ustalony zasób wyrazów:
 - 1 wybierz słownik z ustaloną a priori listą wyrazów
 - 2 przekonwertuj w zbiórze trenującym wyrazy OOV na <UNK>
 - 3 oszacuj prawdopodobieństwa <UNK> z ich liczności tak jak dla regularnego wyrazu
- jeśli nie mamy zdefiniowanego słownika, można stworzyć go niejawnie poprzez zamianę wyrazów w zbiorze trenującym na <UNK> na podstawie ich częstości

Wygładzanie Laplace'a

Dodajemy 1 do liczby wystąpień, tak jak byśmy widzieli każdy wyraz jeden raz więcej

$$P_{Add-1}(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i) + 1}{count(w_{i-1}) + |V|}$$

Wygładzanie Laplace'a

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Dziękuję za uwagę!