Министерство науки и высшего образования Российской Федерации Новосибирский государственный технический университет

Методы оптимизации Лабораторная работа №3

Студенты: Кожекин М.В.

Утюганов Д.С.

Вариант: 5

1. Цель работы

Ознакомиться с методами штрафных функций при решении задач нелинейного программирования. Изучить типы штрафных и барьерных функций, их особенности, способы и области применения, влияние штрафных функций на сходимость алгоритмов, зависимость точности решения задачи нелинейного программирования от величины коэффициента штрафа.

2. Задание

Применяя методы поиска минимума 0-го порядка, реализовать программу для решения задачи нелинейного программирования с использованием **метода штрафных** функций.

Исследовать сходимость метода штрафных функций в зависимости от

- выбора штрафных функций,
- начальной величины коэффициента штрафа,
- стратегии изменения коэффициента штрафа,
- начальной точки,
- задаваемой точности.

Сформулировать выводы.

Применяя методы поиска минимума 0-го порядка, реализовать программу для решения задачи нелинейного программирования с ограничением типа неравенства (только пункт а) с использованием метода барьерных функций.

Исследовать сходимость **метода барьерных функций (только пункт а)** в зависимости от

- выбора барьерных функций,
- начальной величины коэффициента штрафа,
- стратегии изменения коэффициента штрафа,
- начального приближения,
- задаваемой точности.

Сформулировать выводы.

Вариант 5

При ограничении:

a)
$$x + y <= -1$$

$$6) y = x + 1$$

Параметры методов в большинстве исследований следующие:

$$E = 1e^{-12}$$

$$r_0 = 10$$

$$rMult = 2$$

$$\alpha = 8$$

3. Зависимость скорости сходимости метода от заданной точности

3.1. Штрафные функции

$$G_j[g_j(\bar{x})] = \frac{1}{2} \left\{ g_j(\bar{x}) + \left| g_j(\bar{x}) \right| \right\}$$

ε	Итераций	Вычислений f	r	x	$f(\mathbf{x})$
$1 \cdot 10^{-3}$	4	271	160	$(9.993447e - 01, 1.999343e + 00)^T$	4
$1 \cdot 10^{-4}$	5	301	320	$(1.000008e + 00, 2.000008e + 00)^T$	4
$1 \cdot 10^{-5}$	4	264	160	$(9.999935e - 01, 1.999993e + 00)^T$	4
$1 \cdot 10^{-6}$	4	263	160	$(1.000001e + 00, 2.000001e + 00)^T$	4
$1 \cdot 10^{-7}$	4	269	160	$(1.000000e + 00, 2.000000e + 00)^T$	4

$$G_j[g_j(\bar{x})] = \left[\frac{1}{2} \left\{ g_j(\bar{x}) + \left| g_j(\bar{x}) \right| \right\} \right]^2$$

arepsilon	Итераций	Вычислений f	r	х	$f(\mathbf{x})$
$1 \cdot 10^{-3}$	11	767	20,480	$(1.158437e + 00, 2.158042e + 00)^T$	4.07
$1 \cdot 10^{-4}$	14	984	$1.64 \cdot 10^{5}$	$(1.155621e + 00, 2.155573e + 00)^T$	4.07
$1 \cdot 10^{-5}$	17	1,213	$1.31 \cdot 10^6$	$(1.155281e + 00, 2.155275e + 00)^T$	4.07
$1 \cdot 10^{-6}$	20	1,448	$1.05 \cdot 10^{7}$	$(1.155233e + 00, 2.155232e + 00)^T$	4.07
$1 \cdot 10^{-7}$	23	1,698	$8.39 \cdot 10^7$	$(1.155227e + 00, 2.155227e + 00)^T$	4.07

$$G_j[g_j(ar x)] = \Big[rac{1}{2}ig\{g_j(ar x) + ig|g_j(ar x)ig|ig\}\Big]^lpha$$
,если $lpha$ чётное

ε	Итераций	Вычислений f	r	х	$f(\mathbf{x})$
$1 \cdot 10^{-3}$	34	2,143	$1.72 \cdot 10^{11}$	$(3.935642e - 01, 1.364665e + 00)^T$	4.88
$1 \cdot 10^{-4}$	54	3,429	$1.8 \cdot 10^{17}$	$(3.575230e - 01, 1.353514e + 00)^T$	5.21
$1 \cdot 10^{-5}$	78	4,945	$3.02 \cdot 10^{24}$	$(3.513336e - 01, 1.350961e + 00)^T$	5.26
$1 \cdot 10^{-6}$	102	6,468	$5.07 \cdot 10^{31}$	$(3.507720e - 01, 1.350737e + 00)^T$	5.26
$1 \cdot 10^{-7}$	125	8,037	$4.25 \cdot 10^{38}$	$(3.506919e - 01, 1.350688e + 00)^T$	5.26

3.2. Барьерные функции

$$G_j[g_j(\bar{x})] = -\frac{1}{g_j(\bar{x})}$$

arepsilon	Итераций	Вычислений f	r	x	$f(\mathbf{x})$
$1 \cdot 10^{-3}$	11	768	$4.88 \cdot 10^{-3}$	$(-6.919326e - 01, -6.994372e - 01)^T$	8.59
$1 \cdot 10^{-4}$	25	1,912	$2.98 \cdot 10^{-7}$	$(-2.617377e - 01, -7.386586e - 01)^T$	5.69
$1 \cdot 10^{-5}$	28	2,292	$3.73 \cdot 10^{-8}$	$(-2.603444e - 01, -7.397926e - 01)^T$	5.68
$1 \cdot 10^{-6}$	31	2,703	$4.66 \cdot 10^{-9}$	$(-2.597752e - 01, -7.402737e - 01)^T$	5.68
$1 \cdot 10^{-7}$	45	3,477	$2.84 \cdot 10^{-13}$	$(-2.596667e - 01, -7.403336e - 01)^T$	5.68

$$G_j[g_j(\bar{x})] = -ln\Big[-g_j(\bar{x})\Big]$$

ε	Итераций	Вычислений f	r	x	$f(\mathbf{x})$
$1 \cdot 10^{-3}$	1	94	5	$(-1.061042e + 00, -1.751568e + 00)^T$	14.65
$1 \cdot 10^{-4}$	1	103	5	$(-1.060892e + 00, -1.750890e + 00)^T$	14.65
$1 \cdot 10^{-5}$	1	113	5	$(-1.060884e + 00, -1.750837e + 00)^T$	14.65
$1 \cdot 10^{-6}$	1	122	5	$(-1.060879e + 00, -1.750834e + 00)^T$	14.65
$1 \cdot 10^{-7}$	1	132	5	$(-1.060879e + 00, -1.750834e + 00)^T$	14.65

3.3. Вывод

При значении малом значении α (1 и 2) заданная точность не оказывает влияние на скорость сходимости метода штрафных функций.

Для первой барьерной функций рост точности ведёт к увеличению числа итераций и вычислений целевой функции.

Вторая же не может найти более точное решение, поэтому её стоит использовать с минимальной точностью.

4. Зависимость скорости сходимости метода от коэффициента изменения штрафа

4.1. Штрафные функции

$$G_j[g_j(\bar{x})] = \frac{1}{2} \{g_j(\bar{x}) + |g_j(\bar{x})|\}$$

rMult	Итераций	Вычислений f	r	x	$f(\mathbf{x})$
2	5	496	320	$(1.000000e + 00, 2.000000e + 00)^T$	4
3	5	503	2,430	$(1.000000e + 00, 2.000000e + 00)^T$	4
4	8	685	$6.55 \cdot 10^5$	$(1.000000e + 00, 2.000000e + 00)^T$	4
5	47	3,234	$7.11 \cdot 10^{33}$	$(9.999861e - 01, 1.999986e + 00)^T$	4
6	35	2,416	$1.72 \cdot 10^{28}$	$(9.999521e - 01, 1.999952e + 00)^T$	4
7	37	2,550	$1.86 \cdot 10^{32}$	$(9.999502e - 01, 1.999950e + 00)^T$	4
8	8	685	$1.68 \cdot 10^8$	$(1.000000e + 00, 2.000000e + 00)^T$	4
9	26	1,875	$6.46 \cdot 10^{25}$	$(9.999958e - 01, 1.999996e + 00)^T$	4
10	22	1,587	$1 \cdot 10^{23}$	$(9.999732e - 01, 1.999973e + 00)^T$	4

$$G_j[g_j(\bar{x})] = \left[\frac{1}{2} \left\{ g_j(\bar{x}) + \left| g_j(\bar{x}) \right| \right\} \right]^2$$

rMult	Итераций	Вычислений f	r	x	$f(\mathbf{x})$
2	28	3,093	$2.68 \cdot 10^9$	$(1.155227e + 00, 2.155227e + 00)^T$	4.07
3	21	2,381	$1.05 \cdot 10^{11}$	$(1.039906e + 00, 2.039906e + 00)^T$	4
4	19	2,229	$2.75 \cdot 10^{12}$	$(1.002909e + 00, 2.002909e + 00)^T$	4
5	19	2,264	$1.91 \cdot 10^{14}$	$(1.000405e + 00, 2.000405e + 00)^T$	4
6	16	2,069	$2.82 \cdot 10^{13}$	$(1.000008e + 00, 2.000008e + 00)^T$	4
7	17	1,802	$2.33 \cdot 10^{15}$	$(-1.173890e + 00, -1.738896e - 01)^T$	18.18
8	12	1,371	$6.87 \cdot 10^{11}$	$(-1.285930e + 00, -2.859298e - 01)^T$	19.68
9	11	1,261	$3.14 \cdot 10^{11}$	$(-1.364879e + 00, -3.648791e - 01)^T$	20.78
10	11	1,221	$1 \cdot 10^{12}$	$(-1.425473e + 00, -4.254725e - 01)^T$	21.65

$$G_j[g_j(ar x)] = \Big[rac{1}{2}ig\{g_j(ar x) + ig|g_j(ar x)ig|ig\}\Big]^lpha$$
,если $lpha$ чётное

rMult	Итераций	Вычислений f	r	x	$f(\mathbf{x})$
2	241	21,121	$3.53 \cdot 10^{73}$	$(3.506846e - 01, 1.350685e + 00)^T$	5.26
3	158	13,932	$2.43 \cdot 10^{76}$	$(1.078361e + 00, 2.078361e + 00)^T$	4.02
4	128	11,441	$1.16 \cdot 10^{78}$	$(1.149671e + 00, 2.149671e + 00)^T$	4.07
5	111	9,999	$3.85 \cdot 10^{78}$	$(1.192329e + 00, 2.192329e + 00)^T$	4.11
6	100	9,086	$6.53 \cdot 10^{78}$	$(1.247717e + 00, 2.247717e + 00)^T$	4.18
7	67	6,908	$4.18 \cdot 10^{57}$	$(1.298145e + 00, 2.298145e + 00)^T$	4.27
8	63	6,541	$7.85 \cdot 10^{57}$	$(1.317640e + 00, 2.317640e + 00)^T$	4.3
9	61	6,316	$1.62 \cdot 10^{59}$	$(1.336057e + 00, 2.336057e + 00)^T$	4.34
10	58	6,075	$1 \cdot 10^{59}$	$(1.331247e + 00, 2.331247e + 00)^T$	4.33

tableRMultFines

4.2. Барьерные функции

$$G_j[g_j(\bar{x})] = -\frac{1}{g_j(\bar{x})}$$

rMult	Итераций	Вычислений f	r	х	$f(\mathbf{x})$
2	58	6,419	$3.47 \cdot 10^{-17}$	$(-2.596589e - 01, -7.403411e - 01)^T$	5.68
3	18	2,356	$2.58 \cdot 10^{-8}$	$(-6.540634e - 01, -6.540635e - 01)^T$	8.21
4	43	5,321	$1.29 \cdot 10^{-25}$	$(-2.403403e - 01, -7.596596e - 01)^T$	5.69
5	36	4,271	$6.87 \cdot 10^{-25}$	$(-1.627271e - 01, -8.372728e - 01)^T$	5.88
6	30	3,561	$4.52 \cdot 10^{-23}$	$(-1.415051e - 01, -8.584949e - 01)^T$	5.97
7	27	3,196	$1.52 \cdot 10^{-22}$	$(-1.290716e - 01, -8.709284e - 01)^T$	6.03
8	25	2,956	$2.65 \cdot 10^{-22}$	$(-1.216684e - 01, -8.783316e - 01)^T$	6.06
9	24	2,802	$1.25 \cdot 10^{-22}$	$(-1.170250e - 01, -8.829749e - 01)^T$	6.09
10	23	2,681	$1 \cdot 10^{-22}$	$(-1.139555e - 01, -8.860444e - 01)^T$	6.11

$$G_j[g_j(\bar{x})] = -ln\Big[-g_j(\bar{x})\Big]$$

rMult	Итераций	Вычислений f	r	x	$f(\mathbf{x})$
2	1	180	5	$(-1.060879e + 00, -1.750834e + 00)^T$	14.65
3	1	180	3.33	$(-1.060879e + 00, -1.750834e + 00)^T$	14.65
4	1	180	2.5	$(-1.060879e + 00, -1.750834e + 00)^T$	14.65
5	1	180	2	$(-1.060879e + 00, -1.750834e + 00)^T$	14.65
6	1	180	1.67	$(-1.060879e + 00, -1.750834e + 00)^T$	14.65
7	1	180	1.43	$(-1.060879e + 00, -1.750834e + 00)^T$	14.65
8	1	180	1.25	$(-1.060879e + 00, -1.750834e + 00)^T$	14.65
9	1	180	1.11	$(-1.060879e + 00, -1.750834e + 00)^T$	14.65
10	1	180	1	$(-1.060879e + 00, -1.750834e + 00)^T$	14.65

4.3. Вывод

Для решения методом штрафной функции оптимальным методом является выбор первой функции с коэффициентом штрафа rMult=2.

С ростом степени α в штрафной функции растёт число итераций и вычислений целевой функции. Для $\alpha>=2$ оптимален rMult =3.

Для решения методом барьерной функции оптимален выбор первой функции с параметром rMult=2 для получения наиболее точного результата. Можно использовать метод с параметром rMult=10. Так мы получим приближенное решение с вдвое меньшими вычислительными затратами.

5. Зависимость скорости сходимости метода от начального значения штрафа

5.1. Штрафные функции

$$G_j[g_j(\bar{x})] = \frac{1}{2} \{g_j(\bar{x}) + |g_j(\bar{x})|\}$$

r_0	Итераций	Вычислений f	r	x	$f(\mathbf{x})$
1	6	845	64	$(1.288387e + 00, 2.288387e + 00)^T$	4.25
2	5	672	64	$(1.132032e + 00, 2.132032e + 00)^T$	4.05
4	4	496	64	$(6.432039e - 01, 1.643204e + 00)^T$	4.38
8	5	500	256	$(1.000000e + 00, 2.000000e + 00)^T$	4
16	5	501	512	$(1.000000e + 00, 2.000000e + 00)^T$	4
32	1	61	64	$(-2.000000e + 00, -1.000000e + 00)^T$	31
64	1	61	128	$(-2.000000e + 00, -1.000000e + 00)^T$	31

$$G_j[g_j(\bar{x})] = \left[\frac{1}{2} \{g_j(\bar{x}) + |g_j(\bar{x})|\}\right]^2$$

r_0	Итераций	Вычислений f	r	x	$f(\mathbf{x})$
1	31	3,561	$2.15 \cdot 10^9$	$(1.320299e + 00, 2.320299e + 00)^T$	4.31
2	30	3,404	$2.15 \cdot 10^9$	$(1.292411e + 00, 2.292411e + 00)^T$	4.26
4	29	3,253	$2.15 \cdot 10^9$	$(1.235510e + 00, 2.235510e + 00)^T$	4.17
8	29	3,180	$4.29 \cdot 10^9$	$(1.173672e + 00, 2.173672e + 00)^T$	4.09
16	28	3,047	$4.29 \cdot 10^9$	$(1.117858e + 00, 2.117858e + 00)^T$	4.04
32	27	2,920	$4.29 \cdot 10^9$	$(1.065477e + 00, 2.065477e + 00)^T$	4.01
64	27	2,791	$8.59 \cdot 10^9$	$(1.027760e + 00, 2.027760e + 00)^T$	4

$$G_j[g_j(ar x)] = \Big[rac{1}{2}ig\{g_j(ar x) + ig|g_j(ar x)ig|ig\}\Big]^lpha$$
,если $lpha$ чётное

r_0	Итераций	Вычислений f	r	x	$f(\mathbf{x})$
1	173	17,223	$1.2 \cdot 10^{52}$	$(1.273767e + 00, 2.273767e + 00)^T$	4.22
2	256	22,123	$2.32 \cdot 10^{77}$	$(7.244551e - 01, 1.724455e + 00)^T$	4.23
4	255	21,970	$2.32 \cdot 10^{77}$	$(7.242674e - 01, 1.724267e + 00)^T$	4.23
8	255	21,890	$4.63 \cdot 10^{77}$	$(7.345661e - 01, 1.734566e + 00)^T$	4.21
16	245	21,489	$9.05 \cdot 10^{74}$	$(1.059100e + 00, 2.059100e + 00)^T$	4.01
32	245	20,472	$1.81 \cdot 10^{75}$	$(9.954348e - 01, 1.995435e + 00)^T$	4
64	243	20,178	$9.05 \cdot 10^{74}$	$(9.956446e - 01, 1.995645e + 00)^T$	4

5.2. Барьерные функции

$$G_j[g_j(\bar{x})] = -\frac{1}{g_j(\bar{x})}$$

r_0	Итераций	Вычислений f	r	x	$f(\mathbf{x})$
1	54	5,586	$5.55 \cdot 10^{-17}$	$(-2.764539e - 01, -7.235461e - 01)^T$	5.69
2	55	5,735	$5.55 \cdot 10^{-17}$	$(-2.765279e - 01, -7.234721e - 01)^T$	5.69
4	56	5,902	$5.55 \cdot 10^{-17}$	$(-2.765339e - 01, -7.234661e - 01)^T$	5.69
8	26	3,390	$1.19 \cdot 10^{-7}$	$(-6.597586e - 01, -6.597589e - 01)^T$	8.26
16	58	6,277	$5.55 \cdot 10^{-17}$	$(-2.461733e - 01, -7.538267e - 01)^T$	5.69
32	57	6,017	$2.22 \cdot 10^{-16}$	$(-2.651979e - 01, -7.348021e - 01)^T$	5.68
64	58	6,079	$2.22 \cdot 10^{-16}$	$(-2.628074e - 01, -7.371927e - 01)^T$	5.68

$$G_j[g_j(\bar{x})] = -ln\Big[-g_j(\bar{x})\Big]$$

r_0	Итераций	Вычислений f	r	x	$f(\mathbf{x})$
1	28	3,668	$3.73 \cdot 10^{-9}$	$(-2.631574e - 01, -7.368426e - 01)^T$	5.68
2	28	3,647	$7.45 \cdot 10^{-9}$	$(-2.631686e - 01, -7.368314e - 01)^T$	5.68
4	1	183	2	$(-8.672954e - 01, -1.296810e + 00)^T$	11.2
8	1	180	4	$(-1.000000e + 00, -1.618034e + 00)^T$	13.53
16	1	177	8	$(-1.227380e + 00, -2.090309e + 00)^T$	17.86
32	1	185	16	$(-1.595075e + 00, -2.780173e + 00)^T$	25.82
64	1	189	32	$(-2.160645e + 00, -3.779900e + 00)^T$	40.46

5.3. Вывод

Для решения методом штрафной функции оптимальным методом является выбор первой функции с начальным значением штрафа $\in [8, 16]$.

С ростом степени α в штрафной функции растёт число итераций и вычислений целевой функции. Для $\alpha>=2$ оптимален $r_0\in[32,64]$.

Для решения методом барьерной функции оптимален выбор первой функции с любым параметром или второй с $r_0 \in [1,2]$

Для второй (логарифмической) функции метода барьеров рост начального значения штрафа ведёт к тому, что метод в первую очередь стремится не найти локальный минимум, а стремится отойти как можно дальше от границы области.

6. Зависимость скорости сходимости метода от начального приближения

6.1. Вывод

Начальное приближение никак не влияет на сходимость метода.

7. Исходный код программы

head.h

```
1 #pragma once
  #define _CRT_SECURE_NO_WARNINGS
  #define UNICODE
#include <fstream>
5 #include <iostream>
6 #include <vector>
7 #include <string>
8 #include <iomanip>
9 #include <functional>
#include <cmath>
  #include <math.h>
12
  using namespace std;
13
15
16 // float || double
typedef double real;
  typedef vector <real> vector1D;
  typedef vector <vector <real>> matrix2D;
21
  // Умножение на константу
  inline bool operator==(const vector1D& a, const vector1D& b) {
  #ifdef _DEBUG
      if (a.size() != b.size())
26
          throw std::exception();
27
  #endif
28
      for (int i = 0; i < a.size(); ++i)</pre>
          if (a[i] != b[i])
30
               return false;
31
32
33
      return true;
34
35
36
  // Сложение векторов
  inline vector1D operator+(const vector1D& a, const vector1D& b) {
  #ifdef DEBUG
39
      if (a.size() != b.size())
40
          throw std::exception();
  #endif
42
      vector1D result = a;
43
      for (int i = 0; i < b.size(); i++)</pre>
44
           result[i] += b[i];
      return result;
46
  }
47
50 // Сложение матриц
inline matrix2D operator+(const matrix2D& a, const matrix2D& b) {
52 #ifdef _DEBUG
```

```
if (a.size() != b.size())
53
            throw std::exception();
54
   #endif
55
       matrix2D result = a;
56
       for (int i = 0; i < b.size(); i++)</pre>
57
            for (int j = 0; j < b.size(); j++)</pre>
58
                 result[i][j] += b[i][j];
59
       return result;
60
61
62
63
   // Сложение матриц
   inline matrix2D operator/(const matrix2D& a, const real& b) {
66
       matrix2D result = a;
67
       for (int i = 0; i < a.size(); i++)</pre>
68
            for (int j = 0; j < a.size(); j++)</pre>
69
70
                result[i][j] /= b;
       return result;
71
72
   }
73
74
   // Вычитание векторов
   inline vector1D operator-(const vector1D& a, const vector1D& b) {
   #ifdef _DEBUG
78
       if (a.size() != b.size())
            throw std::exception();
79
   #endif
80
       vector1D result = a;
81
       for (int i = 0; i < b.size(); i++)</pre>
82
            result[i] -= b[i];
83
       return result;
 84
85
86
87
   inline vector1D operator-(const vector1D& a) {
88
       vector1D result = a;
89
       for (int i = 0; i < a.size(); i++)</pre>
90
            result[i] = -result[i];
91
92
       return result;
93
94
95
   // Умножение матрицы на вектор
   inline vector1D operator*(const matrix2D& a, const vector1D& b) {
97
       vector1D result = { 0.0, 0.0 };
98
       for (int i = 0; i < a.size(); i++)</pre>
99
            for (int j = 0; j < a.size(); j++)</pre>
                result[i] += a[i][j] * b[j];
101
       return result;
102
103
105
   // Умножение на константу
   inline vector1D operator*(const vector1D& a, double b) {
107
       vector1D result = a;
108
       for (int i = 0; i < result.size(); i++)</pre>
109
            result[i] *= b;
110
       return result;
111
112 }
```

```
113
   // Умножение на константу
115
inline vector1D operator*(double b, const vector1D& a) {
       return operator*(a, b);
118
119
120
  // Деление на константу
   inline vector1D operator/(const vector1D& a, double b) {
       vector1D result = a;
123
       for (int i = 0; i < result.size(); i++)</pre>
124
            result[i] /= b;
       return result;
126
127 }
128
   // Деление на константу
130
inline vector1D operator/(double b, const vector1D& a) {
       return operator/(a, b);
132
133
134
135
  // Скалярное произведение
   inline real operator*(const vector1D& a, const vector1D& b) {
   #ifdef _DEBUG
138
       if (a.size() != b.size())
139
            throw std::exception();
140
   #endif
       real sum = 0;
142
       for (int i = 0; i < a.size(); i++)</pre>
143
            sum += a[i] * b[i];
145
       return sum;
146
147
  // Потоковый вывод вектора
  inline std::ostream& operator<<(std::ostream& out, const vector1D& v) {</pre>
150
151
       for (int i = 0; i < v.size() - 1; ++i)
152
           out << v[i] << " ";
153
       out << v.back();</pre>
154
       return out;
155
156
157
   // Потоковый вывод вектора для ТеХ
  inline void printTeXVector(std::ofstream &fout, const vector1D &v) {
159
       fout << "$(";
       for (int i = 0; i < v.size() - 1; ++i)
161
           fout << v[i] << ", ";
162
       fout << v.back() << ")^T$";
163
165
  // Потоковый вывод матрицы
   inline std::ostream& operator<<(std::ostream& out, const matrix2D& v) {</pre>
167
       for (int i = 0; i < v.size() - 1; ++i)
           out << v[i] << " ";
169
       out << v.back();</pre>
170
       return out;
171
172 }
```

```
// Евклидова норма
  real calcNormE(const vector1D &x) {
175
      return sqrt(x*x);
177
178
179
  // Определитель матрицы
180
  real det(const matrix2D &m) {
       return m[0][0] * m[1][1] - m[0][1] * m[1][0];
183 }
  main.cpp
 #include "head.h"
 int fCalcCount, gCalcCount, alpha, rMult;
  real r;
  //-
 6 struct methodResult
 7 {
       real E;
 8
       int iterationsCount;
 9
       int fCalcCount;
10
       int r0;
11
       vector1D x0, x, xPrev, S, gradf;
12
13
       matrix2D A;
       real fx, fxPrev, lambda;
14
       void printResultE(std::ofstream &fout);
15
       void printResultR(std::ofstream &fout);
16
       void printResultRFirst(std::ofstream &fout);
  };
18
19
21
  // Вывод результатов в поток
  void methodResult::printResultE(std::ofstream &fout) {
22
       fout << E << "\t"
23
           << iterationsCount << "\t"
24
           << fCalcCount << "\t"
25
           << r << "\t";
26
       printTeXVector(fout, x);
27
       fout << "\t" << fx << endl;
28
29
30
31
  // Вывод результатов в поток
   void methodResult::printResultR(std::ofstream &fout) {
33
       fout << rMult << "\t"
34
           << iterationsCount << "\t"
35
           << fCalcCount << "\t"
```

void methodResult::printResultRFirst(std::ofstream &fout) {

<< r << "\t";

// Вывод результатов в поток

fout << r0 << "\t"

<< r << "\t";

printTeXVector(fout, x);

fout << "\t" << fx << endl;

<< iterationsCount << "\t"

<< fCalcCount << "\t"

37

38

39

41 42

45

46

47

```
printTeXVector(fout, x);
49
       fout << "\t" << fx << endl;
50
51
52
53
54
55
  // Функция для исследования min=0 в точке (1,1)
  // х — вектор аргументов функции
  inline real f(const vector1D &x) {
       fCalcCount++;
59
       return 4 * pow((x[1] - x[0]), 2) + 3 * pow((x[0] - 1), 2);
60
62
63
  // Ограничение области б
66
  inline real gFine(const vector1D &x) {
       // y = x + 1
67
       gCalcCount++;
68
       return fabs(x[1] - x[0] - 1) /*+ fabs(x[0] + x[1] + 1)*/;
70
  }
  // Ограничение области а
73
  inline real gBarrier(const vector1D &x) {
       // x + y <= -1
74
       gCalcCount++;
75
       return x[0] + x[1] + 1;
76
77
78
81
82
  // Штрафная функция G
83
  inline real G1(const vector1D &x) {
       if (gFine(x) > 0)
85
           return 0.5*(gFine(x) + fabs(gFine(x)));
86
       else
87
88
           return 0;
89
  inline real G2(const vector1D &x) {
90
91
       if (gFine(x) > 0)
           return pow(0.5*(gFine(x) + fabs(gFine(x))), 2);
92
       else
93
           return 0;
94
95
  inline real G3(const vector1D &x) {
       if (gFine(x) > 0)
97
           return pow(0.5*(gFine(x) + fabs(gFine(x))), alpha);
98
       else
99
           return 0;
100
101
  inline real G4(const vector1D &x) {
102
       if (gBarrier(x) <= 0)</pre>
103
           return -1.0 / gBarrier(x);
104
105
           return std::numeric_limits<double>::infinity();
106
inline real G5(const vector1D &x) {
```

```
if (gBarrier(x) <= 0)</pre>
109
            return -log(-gBarrier(x));
110
111
            return std::numeric_limits<double>::infinity();
112
113
114
115
116
^{117} // Минимизируемая функция Q(x,y)
real Q1(const vector1D &x) { return f(x) + r * G1(x); }
  real Q2(const vector1D &x) { return f(x) + r * G2(x); }
real Q3(const vector1D &x) { return f(x) + r * G3(x); }
real Q4(const vector1D &x) { return f(x) + r * G4(x); }
   real Q5(const vector1D &x) { return f(x) + r * G5(x); }
123
124
   // Поиск интервала, содержащего минимум
^{127} // f ^{-} целевая одномерная функция
^{128} // a,b — искомые границы отрезка
129 // х — начальное приближение
\frac{130}{1} // S — орты направления()
  void interval(const function<real(const vector1D &x)> &f, real &a, real &b,
      vector1D &x, vector1D &S)
132
       real lambda0 = 0.0;
133
       real delta = 1.0e-8;
134
135
       real lambda_k_minus_1 = lambda0;
       real f_k_{minus_1} = f(x + S * lambda_k_{minus_1});
       real lambda_k;
137
       real f_k;
138
       real lambda_k_plus_1;
       real f_k_plus_1;
       real h;
141
       if (f(x + S * lambda0) > f(x + S * (lambda0 + delta)))
142
143
            lambda_k = lambda0 + delta;
           h = delta;
145
       }
146
       else
       {
148
            lambda k = lambda0 - delta;
149
           h = -delta;
150
       f_k = f(x + S * lambda_k);
152
       while (true)
153
           h *= 2.0;
            lambda_k_plus_1 = lambda_k + h;
156
            f_k_plus_1 = f(x + S * lambda_k_plus_1);
157
           if (f_k > f_k_plus_1)
            {
                lambda k minus 1 = lambda k;
160
                f_k_{\min} = f_k;
161
                lambda_k = lambda_k_plus_1;
                f_k = f_k_plus_1;
163
            }
164
           else
165
            {
                a = lambda_k_minus_1;
167
```

```
b = lambda_k_plus_1;
168
                if (b < a)
169
                     swap(a, b);
170
                return;
171
            }
172
       }
173
  }
174
175
176
   // Вычисление пго— числа Фибоначии
178
  inline real fib(int n)
179
180
       real sqrt5 = sqrt(5.0), pow2n = pow(2.0, n);
181
       return (pow(1.0 + sqrt5, n) / pow2n - pow(1.0 - sqrt5, n) / pow2n) / sqrt5;
182
183
184
185
186
  // Определение коэффициента лямбда методом Фибоначчи
  // f — минимизируемая функция
189 // x — начальное значение
  // S — базис
  // E - точность
   real fibonacci(const function<real(const vector1D &x)> &f, vector1D &x, vector1D
192
       &S, real E)
193
194
       real a, b;
       interval(f, a, b, x, S);
       int iter;
196
       real len = fabs(a - b);
197
       int n = 0;
       while (fib(n) < (b - a) / E) n++;
199
       iter = n - 3;
200
       real lambda1 = a + (fib(n - 2) / fib(n)) * (b - a);
201
       real f1 = f(x + S * lambda1);
202
       real lambda2 = a + (fib(n - 1) / fib(n)) * (b - a);
203
       real f2 = f(x + S * lambda2);
204
       for (int k = 0; k < n - 3; k++)
205
            if (f1 <= f2)
207
            {
208
                b = lambda2;
209
                lambda2 = lambda1;
210
                f2 = f1;
211
                lambda1 = a + (fib(n - k - 3) / fib(n - k - 1)) * (b - a);
212
                f1 = f(x + S * lambda1);
213
            }
            else
215
            {
216
                a = lambda1;
217
                lambda1 = lambda2;
                f1 = f2;
219
                lambda2 = a + (fib(n - k - 2) / fib(n - k - 1)) * (b - a);
220
                f2 = f(x + S * lambda2);
222
            len = b - a;
223
224
       lambda2 = lambda1 + E;
225
       f2 = f(x + S * lambda2);
226
```

```
if (f1 <= f2)
227
           b = lambda1;
228
       else
229
           a = lambda1;
230
       return (a + b) / 2.0;
232
233
234
   // Метод Розенброка
  // f — оптимизиуремая функция
238 // х0 — начальное приближение
  // E - точность
  // funcname — название функции
  methodResult calcByRosenbrock(const function<real(const vector1D &x)> &fExact,
      const function<real(const vector1D &x)> &f, const function<real(const</pre>
      vector1D &x)> &G, const vector1D &x0, real r0, real E, const string &funchame
      , bool isFineNotBarier) {
242
       ofstream fout("report/tableRosenbrock_" + funcname + ".txt");
243
       ofstream steps("steps/Rosenbrock_" + funchame + ".txt");
       fout << scientific;</pre>
245
       steps << fixed << setprecision(12);</pre>
246
       steps << x0 << endl;
247
       methodResult result;
249
       fCalcCount = 0;
250
251
       gCalcCount = 0;
       vector1D xPrev, B, x = x0;
       int maxiter = 1000;
253
       int iterationsCount = 0, count = 0;
254
       r = r0;
       real lambda1, lambda2;
256
       matrix2D A(2);
257
       A[0] = \{ 1.0, 0.0 \};
258
       A[1] = \{ 0.0, 1.0 \};
259
260
261
       // Начальные ортогональные направления
262
       matrix2D S(2);
       S[0] = \{ 1.0, 0.0 \};
264
       S[1] = \{ 0.0, 1.0 \};
265
       do {
           xPrev = x;
268
269
           // Минимализируем функцию в направлениях S^k_1...S^k_n
           lambda1 = fibonacci(f, x, S[0], E);
           x = x + S[0] * lambda1;
272
           lambda2 = fibonacci(f, x, S[1], E);
273
           x = x + S[1] * lambda2;
           // Построение новых ортогональных направлений при
276
           // сортировке лямбд в порядке убывания по абсолютным значениям
277
           A[0] = S[0] * lambda1 + S[1] * lambda2;
           if (fabs(lambda1 >= lambda2))
                A[1] = S[1] * lambda2;
280
           else
281
                A[1] = S[0] * lambda1;
282
283
```

```
284
            // Ортогонализация ГраммаШмидта—
285
            S[0] = A[0] / calcNormE(A[0]);
286
            B = A[1] - S[1] * A[1] * S[1];
287
            if (calcNormE(B) > E)
                S[1] = B / calcNormE(B);
289
            iterationsCount++;
290
291
292
            fout << iterationsCount << "\t"
                << fCalcCount << "\t"
294
                << r << "\t"
295
                << x << "\t"
                << fExact(x) << endl;
297
298
            steps << x << endl;
299
            if (isFineNotBarier)
301
                r *= rMult;
302
            else
303
                r /= rMult;
305
       } while (abs(f(x) - f(xPrev)) > E && abs(calcNormE(x) - calcNormE(xPrev)) >
306
      E && iterationsCount < maxiter && r*G(x) > E);
307
       fout.close();
308
       steps.close();
309
310
       result.E = E;
       result.iterationsCount = iterationsCount;
312
       result.fCalcCount = fCalcCount;
313
       result.x0 = x0;
314
315
       result.x = x;
       result.fx = fExact(x);
       result.r0 = r0;
317
318
       return result;
319
  }
320
321
322
323
324
   // Исследования
327
328
329
331
332
   // Зависимость скорости сходимости метода от заданной точности
  void researchE()
334
335
       cout << "Research E" << endl;</pre>
336
       ofstream foutF("steps/tableEFines.txt");
337
       ofstream foutB("steps/tableEBarriers.txt");
338
       ofstream fout1("report/tableE1.txt");
339
       ofstream fout2("report/tableE2.txt");
340
       ofstream fout3("report/tableE3.txt");
341
       ofstream fout4("report/tableE4.txt");
342
```

```
ofstream fout5("report/tableE5.txt");
343
       fout1 << scientific << "E\titer\tfCalc\tr\tx\tfx" << endl;</pre>
       fout2 << scientific << "E\titer\tfCalc\tr\tx\tfx" << endl;</pre>
345
       fout3 << scientific << "E\titer\tfCalc\tr\tx\tfx" << endl;</pre>
346
       fout4 << scientific << "E\titer\tfCalc\tr\tx\tfx" << endl;</pre>
347
       fout5 << scientific << "E\titer\tfCalc\tr\tx\tfx" << endl;</pre>
348
349
       methodResult result;
350
       real r0 = 10;
351
       rMult = 2;
       alpha = 8;
353
       vector1D x0Fine = \{-2, -1\};
354
       vector1D x0Barrier = \{0, -2\};
356
       for (double E = 1e-3; E >= 1e-7; E /= 10)
357
           result = calcByRosenbrock(f, Q1, G1, x0Fine, r0, E, "Q1", true);
           result.printResultE(fout1);
360
           foutF << result.x << endl;
361
           result = calcByRosenbrock(f, Q2, G2, x0Fine, r0, E, "Q2", true);
362
           result.printResultE(fout2);
           foutF << result.x << endl;
364
           result = calcByRosenbrock(f, Q3, G3, x0Fine, r0, E, "Q3", true);
365
           result.printResultE(fout3);
           foutF << result.x << endl;
367
368
           result = calcByRosenbrock(f, Q4, G4, x0Barrier, r0, E, "Q4", false);
369
           result.printResultE(fout4);
370
           foutB << result.x << endl;
           result = calcByRosenbrock(f, Q5, G5, x0Barrier, r0, E, "Q5", false);
372
           result.printResultE(fout5);
373
           foutB << result.x << endl;
       }
375
376
       // Визуализация
377
       string runVisualisation = "python plot.py "
378
           + to_string(x0Fine[0]) + " " + to_string(x0Fine[1]) + " "
379
           + to_string(x0Barrier[0]) + " " + to_string(x0Barrier[1]) + " " +
380
      to_string(1);
       system(runVisualisation.c_str());
382
       foutF.close();
383
       foutB.close();
384
       fout1.close();
385
       fout2.close();
386
       fout3.close();
387
       fout4.close();
388
       fout5.close();
389
390
391
392
  // Зависимость скорости сходимости метода от стратегии изменения коэффициента штрафа
394
  void researchRMult()
395
396
       cout << "Research r^mult" << endl;</pre>
397
       ofstream foutF("steps/tableRMultFines.txt");
398
       ofstream foutB("steps/tableRMultBarriers.txt");
399
       ofstream fout1("report/tableRMult1.txt");
400
       ofstream fout2("report/tableRMult2.txt");
401
```

```
ofstream fout3("report/tableRMult3.txt");
402
       ofstream fout4("report/tableRMult4.txt"
       ofstream fout5("report/tableRMult5.txt");
404
       fout1 << scientific << "rMult\titer\tfCalc\tr\tx\tfx" << endl;</pre>
405
       fout2 << scientific << "rMult\titer\tfCalc\tr\tx\tfx" << endl;</pre>
       fout3 << scientific << "rMult\titer\tfCalc\tr\tx\tfx" << endl;</pre>
407
       fout4 << scientific << "rMult\titer\tfCalc\tr\tx\tfx" << endl;</pre>
408
       fout5 << scientific << "rMult\titer\tfCalc\tr\tx\tfx" << endl;</pre>
409
       methodResult result;
411
       real E = 1e-12;
412
       real r0 = 10;
413
       alpha = 8;
       vector1D x0Fine = \{-2, -1\};
415
       vector1D x0Barrier = \{0, -2\};
416
       for (size_t i = 2; i <= 10; i += 1)</pre>
           rMult = i;
419
           result = calcByRosenbrock(f, Q1, G1, x0Fine, r0, E, "Q1", true);
420
           result.printResultR(fout1);
421
           foutF << result.x << endl;
           result = calcByRosenbrock(f, Q2, G2, x0Fine, r0, E, "Q2", true);
423
           result.printResultR(fout2);
424
           foutF << result.x << endl;
           result = calcByRosenbrock(f, Q3, G3, x0Fine, r0, E, "Q3", true);
426
           result.printResultR(fout3);
427
           foutF << result.x << endl;</pre>
428
429
           result = calcByRosenbrock(f, Q4, G4, x0Barrier, r0, E, "Q4", false);
431
           result.printResultR(fout4);
432
           foutB << result.x << endl;
           result = calcByRosenbrock(f, Q5, G5, x0Barrier, r0, E, "Q5", false);
           result.printResultR(fout5);
435
           foutB << result.x << endl;
436
       }
437
438
       // Визуализация
439
       string runVisualisation = "python plot.py "
440
           + to string(x0Fine[0]) + " " + to string(x0Fine[1]) + " "
           + to string(x0Barrier[0]) + " " + to string(x0Barrier[1]) + " " +
442
      to string(2);
       system(runVisualisation.c_str());
443
       foutF.close();
       foutB.close();
446
       fout1.close();
447
       fout2.close();
       fout3.close();
449
       fout4.close();
450
       fout5.close();
451
452
453
454
   // Зависимость скорости сходимости метода от стратегии изменения коэффициента штрафа
  void researchRFirst()
457
458
       cout << "Research r_0" << endl;</pre>
459
       ofstream foutF("steps/tableRFirstFines.txt");
460
```

```
ofstream foutB("steps/tableRFirstBarriers.txt");
461
       ofstream fout1("report/tableRFirst1.txt");
       ofstream fout2("report/tableRFirst2.txt");
463
       ofstream fout3("report/tableRFirst3.txt");
464
       ofstream fout4("report/tableRFirst4.txt");
       ofstream fout5("report/tableRFirst5.txt");
466
       fout1 << scientific << "rFirst\titer\tfCalc\tr\tx\tfx" << endl;</pre>
467
       fout2 << scientific << "rFirst\titer\tfCalc\tr\tx\tfx" << endl;</pre>
468
       fout3 << scientific << "rFirst\titer\tfCalc\tr\tx\tfx" << endl;</pre>
469
       fout4 << scientific << "rFirst\titer\tfCalc\tr\tx\tfx" << endl;</pre>
       fout5 << scientific << "rFirst\titer\tfCalc\tr\tx\tfx" << endl;</pre>
471
472
       methodResult result;
473
       real E = 1e-12;
474
       rMult = 2;
475
       alpha = 8;
       vector1D x0Fine = \{-2, -1\};
       vector1D x0Barrier = \{0, -2\};
478
479
       for (real r0 = 1; r0 <= 64; r0 *= 2)
480
           result = calcByRosenbrock(f, Q1, G1, x0Fine, r0, E, "Q1", true);
482
           result.printResultRFirst(fout1);
483
           foutF << result.x << endl;
           result = calcByRosenbrock(f, Q2, G2, x0Fine, r0, E, "Q2", true);
485
           result.printResultRFirst(fout2);
486
           foutF << result.x << endl;
487
           result = calcByRosenbrock(f, Q3, G3, x0Fine, r0, E, "Q3", true);
488
           result.printResultRFirst(fout3);
           foutF << result.x << endl;</pre>
490
491
           result = calcByRosenbrock(f, Q4, G4, x0Barrier, r0, E, "Q4", false);
           result.printResultRFirst(fout4);
493
           foutB << result.x << endl;
494
           result = calcByRosenbrock(f, Q5, G5, x0Barrier, r0, E, "Q5", false);
495
           result.printResultRFirst(fout5);
           foutB << result.x << endl;</pre>
497
       }
498
499
       // Визуализация
501
       string runVisualisation = "python plot.py "
502
           + to_string(x0Fine[0]) + " " + to_string(x0Fine[1]) + " "
503
           + to_string(x0Barrier[0]) + " " + to_string(x0Barrier[1]) + " " +
504
      to_string(3);
       system(runVisualisation.c_str());
505
       foutF.close();
       foutB.close();
508
       fout1.close();
509
       fout2.close();
510
       fout3.close();
       fout4.close();
512
       fout5.close();
513
514
515
516
517
518 // Зависимость скорости сходимости метода от начального приближения
void researchXFirst()
```

```
520
       cout << "Research x 0" << endl;</pre>
521
       methodResult result;
522
       real E = 1e-12;
523
       real r0 = 10;
       rMult = 2;
525
       alpha = 8;
526
       vector1D x0Fine = \{-2, -1\};
527
       vector1D x0Barrier = \{0, -2\};
       ofstream fout1("steps/Rosenbrock_Q_1.txt");
530
       result = calcByRosenbrock(f, Q1, G1, x0Fine, r0, E, "Q1_1", true);
531
       fout1 << result.iterationsCount << " " << result.fCalcCount << endl;</pre>
       result = calcByRosenbrock(f, Q2, G2, x0Fine, r0, E, "Q2_1", true);
533
       fout1 << result.iterationsCount << " " << result.fCalcCount << endl;</pre>
534
       result = calcByRosenbrock(f, Q3, G3, x0Fine, r0, E, "Q3_1", true);
       fout1 << result.iterationsCount << " " << result.fCalcCount << endl;</pre>
       result = calcByRosenbrock(f, Q4, G4, x0Barrier, r0, E, "Q4_1", false);
537
       fout1 << result.iterationsCount << " " << result.fCalcCount << endl;</pre>
538
       result = calcByRosenbrock(f, Q5, G5, x0Barrier, r0, E, "Q5_1", false);
539
       fout1 << result.iterationsCount << " " << result.fCalcCount << endl;</pre>
541
       // Визуализация
542
       string runVisualisation = "python plot.py "
           + to_string(x0Fine[0]) + " " + to_string(x0Fine[1]) + " "
           + to_string(x0Barrier[0]) + " " + to_string(x0Barrier[1]) + " " +
545
      to_string(4);
       system(runVisualisation.c_str());
546
548
       ofstream fout2("steps/Rosenbrock_Q_2.txt");
549
       x0Fine = \{ 2, -1 \};
       x0Barrier = \{ -2.5, 1 \};
       result = calcByRosenbrock(f, Q1, G1, x0Fine, r0, E, "Q1_2", true);
552
       fout2 << result.iterationsCount << " " << result.fCalcCount << endl;</pre>
553
       result = calcByRosenbrock(f, Q2, G2, x0Fine, r0, E, "Q2_2", true);
       fout2 << result.iterationsCount << " " << result.fCalcCount << endl;</pre>
555
       result = calcByRosenbrock(f, Q3, G3, x0Fine, r0, E, "Q3_2", true);
556
       fout2 << result.iterationsCount << " " << result.fCalcCount << endl;</pre>
557
       result = calcByRosenbrock(f, Q4, G4, x0Barrier, r0, E, "Q4_2", false);
       fout2 << result.iterationsCount << " " << result.fCalcCount << endl;</pre>
559
       result = calcByRosenbrock(f, Q5, G5, x0Barrier, r0, E, "Q5_2", false);
560
       fout2 << result.iterationsCount << " " << result.fCalcCount << endl;</pre>
561
       // Визуализация
563
       runVisualisation = "python plot.py "
564
           + to_string(x0Fine[0]) + " " + to_string(x0Fine[1]) + " "
           + to_string(x0Barrier[0]) + " " + to_string(x0Barrier[1]) + " " +
      to_string(5);
       system(runVisualisation.c_str());
567
       fout2.close();
569
570
571
  void main()
573
574
       researchE();
575
       researchRMult();
576
       researchRFirst();
```

```
578
       researchXFirst();
579
  plot.py
 import pylab
 import numpy
  import sys
 4 import matplotlib.pyplot as plt
 5 import matplotlib.lines as lines
  import matplotlib.cm as cm
  DPI = 120
10 xList = []
11 yList = []
12 data = []
  text = []
13
  folder = 'pics/'
15
  steps = 'steps/'
16
17
  # Считывание итогов работы метода
   def inputMethodResults(filename):
19
       global text
20
       global data
21
22
       text = []
       data = []
23
       with open(steps + filename, 'r') as f:
24
           for line in f: # read rest of lines
25
                data.append([ int(x) for x in line.split()])
       for i in range(len(data)):
27
           text.append('iter:'+str(data[i][0])+'\nfCalc: '+str(data[i][1]))
28
29
  # Считывание хода метода
31
  def inputSteps(filename):
32
33
       global xList
       global yList
34
       global data
35
       xList = []
36
       yList = []
37
       data = []
38
       with open(steps + filename, 'r') as f:
39
           for line in f: # read rest of lines
40
                data.append([ float(x) for x in line.split()])
41
       for i in range(len(data)):
           xList.append(data[i][0])
43
           yList.append(data[i][1])
44
  # Целевая функция
47
  def f(x, y):
       return 4*(y-x)**2 + 3*(x-1)**2
50
  # Рассчёт значений целевой функции на сетке
   def buildIsoLines(f):
53
54
       x = numpy.linspace (-3, 3, 100)
       y = numpy.linspace (-4, 3, 100)
55
       xgrid, ygrid = numpy.meshgrid(x, y)
56
57
       zgrid = f(xgrid, ygrid)
```

```
return xgrid, ygrid, zgrid
58
60
  # Закраска областей, где накладывается штраф или барьер уходит в бесконечность
61
   def drawFines():
62
       x1 = numpy.linspace(-3, 3, 100)
63
       y1 = -1 - x1
64
       yBorder = 3
65
       plt.fill_between(x1,y1,yBorder, color='grey', alpha=0.4)
       x2 = numpy.linspace(-3, 2, 100)
67
       y2 = x2 + 1
68
       plt.plot(x2, y2)
69
  # Отрисовка сходимости метода
   def drawMethodConvergence(name, f, index, x0, y0, xExp, yExp):
73
       global text
       inputSteps(name + '.txt')
75
       drawFines()
76
       x, y, z = buildIsoLines(f)
77
       cs = pylab.contour(x, y, z, 25)
       plt.plot(xList, yList, linewidth=1)
79
       for i in range(len(xList)):
80
           plt.scatter(xList[i], yList[i], s=2, color='black')
81
82
       plt.title(name, fontsize=19)
       plt.xlabel('X', fontsize=10)
83
       plt.ylabel('Y', fontsize=10)
84
       plt.tick_params(axis='both', labelsize=8)
85
       plt.scatter(x0, y0, s=20)
       plt.scatter(xExp, yExp, s=20)
87
       plt.text(2, 2, text[index], size=12,
88
            ha="center", va="center",
            bbox=dict(boxstyle="square",
                       ec=(.5, .5, .5),
91
                       fc=(.8, .8, 0.8),
92
93
       plt.savefig(folder + name + '.png', dpi=DPI)
95
       plt.clf()
96
97
   # Отрисовка точек в исследовании
99
   def drawPointsAtResearch(name, f):
       inputSteps(name + '.txt')
       drawFines()
102
       x, y, z = buildIsoLines(f)
103
       cs = pylab.contour(x, y, z, 25)
       plt.title(name, fontsize=19)
       plt.xlabel('X', fontsize=10)
106
       plt.ylabel('Y', fontsize=10)
107
       plt.tick_params(axis='both', labelsize=8)
       for i in range(len(xList)):
           plt.scatter(xList[i], yList[i], s=5, color='black')
110
       plt.savefig(folder + name + '.png', dpi=DPI)
111
       plt.clf()
112
113
114
115
      __name__ == '__main__':
      # парсим начальное приближение
```

```
params = sys.argv[1:6]
118
       x0Fine = float(params[0])
119
      y0Fine = float(params[1])
120
       x0Barrier = float(params[2])
121
      y0Barrier = float(params[3])
122
      mode = int(params[4])
123
      xExp = 1
124
      yExp = 1
125
       if mode == 1:
128
           drawPointsAtResearch('tableEFines', f)
129
           drawPointsAtResearch('tableEBarriers', f)
131
      if mode == 2:
132
           drawPointsAtResearch('tableRMultFines', f)
133
           drawPointsAtResearch('tableRMultBarriers', f)
135
       if mode == 3:
136
           drawPointsAtResearch('tableRFirstFines', f)
137
           drawPointsAtResearch('tableRFirstBarriers', f)
139
      if mode == 4:
140
           inputMethodResults('Rosenbrock_Q_1.txt')
141
           drawMethodConvergence('Rosenbrock_Q1_1', f, 0, x0Fine, y0Fine, xExp,
142
      yExp)
           drawMethodConvergence('Rosenbrock_Q2_1', f, 1, x0Fine, y0Fine, xExp,
143
      yExp)
           drawMethodConvergence('Rosenbrock_Q3_1', f, 2, x0Fine, y0Fine, xExp,
      yExp)
           drawMethodConvergence('Rosenbrock_Q4_1', f, 3, x0Barrier, y0Barrier,
145
      xExp, yExp)
           drawMethodConvergence('Rosenbrock_Q5_1', f, 4, x0Barrier, y0Barrier,
146
      xExp, yExp)
147
      if mode == 5:
148
           inputMethodResults('Rosenbrock_Q_2.txt')
149
           drawMethodConvergence('Rosenbrock_Q1_2', f, 0, x0Fine, y0Fine, xExp,
150
      yExp)
           drawMethodConvergence('Rosenbrock_Q2_2', f, 1, x0Fine, y0Fine, xExp,
      yExp)
           drawMethodConvergence('Rosenbrock_Q3_2', f, 2, x0Fine, y0Fine, xExp,
152
      yExp)
           drawMethodConvergence('Rosenbrock_Q4_2', f, 3, x0Barrier, y0Barrier,
153
      xExp, yExp)
           drawMethodConvergence('Rosenbrock_Q5_2', f, 4, x0Barrier, y0Barrier,
154
      xExp, yExp)
```