PRAKTIKUM SISTEM DIGITAL - KELAS B MODUL 7 :: Flip – Flop Dasar

NAMA : MUHAMMAD WAHYU SYAFI'UDDIN

NIM : L200210056

ASISTEN LAB : 1. Endah Puji Rahayu

2. Vita Pratama Putri

Percobaan 1 - NOR Latch

1. Buat dan simulasikan NOR latch seperti pada gambar! Dan kemudian klik switch SW-SPDT untuk mengoperasikan Latch.

2. Berdasarkan simulasi anda, isi titik-titik pada tabel berikut!

	S (SET)	R (RESET)	OU'	TPUT	MODE	
	S (SET)	it (RESET)	Q	Q'	MODE	
1	0	1	0	1	Reset	
2	0	0	0	1	Memori	
3	1	0	1	0	Set	
4	0	0	1	0	Memori	
5	1	1	0	0	Terlarang	

Catatan: Kolom mode menjelaskan kondisi kinerja dari FF tersebut, seperti 'memori', 'set', 'reset', atau 'togle'

3. Jawab pertanyaan berikut!

- a. Apa yang akan terjadi jika kita berikan kondisi S=R=0?

 Kondisi 'resting' normal, dan keluaran tetap atau tidak berubah dari keluaran sebelumnya.
- b. Kenapa kondisi S=R=1 tidak diperbolehkan? Karena gerbang 0 dan output sama-sama bernilai 0 dapat mematahkan persamaan logika Q=NOT.

Percobaan 2 - NAND Latch

1. Buat dan simulasikan NOR latch seperti pada gambar! Dan kemudian klik switch SW-SPDT untuk mengoperasikan Latch.

2. Berdasarkan simulasi anda, isi titik-titik pada tabel berikut!

	S (SET)	R (RESET)	OU	TPUT	MODE
	S (SE1)	K (KESE1)	Q	Q'	MODE
1	0	1	1	0	Set
2	1	1	1	0	Memori
3	1	0	0	1	Reset
4	1	1	0	1	Memori
5	1	0	1	1	Terlarang

Catatan: Kolom mode menjelaskan kondisi kinerja dari FF tersebut, seperti 'memori', 'set', 'reset', atau 'togle

3. Jawab pertanyaan berikut!

a. Apa yang akan terjadi jika kita berikan kondisi S = R = 1?

Kondisi 'resting' normal, dan keluaran tetap atau tidak berubah dari keluaran sebelumnya.

b. Kenapa kondisi S=R=0 tidak diperbolehkan? Karena akan menghasilkan keluaran yang ambigu, juga gerbang 0 dan output sama-sama bernilai 0 dapat mematahkan persamaan logika Q=NOT

- 4. Berdasarkan analisis rangkaian flip-flop di atas, apa opini/pendapat anda tentang pernyataan "Flip-flop dan latch digunakan sebagai elemen penyimpanan data":
 - Flip Flop merupakan rangkaian yang mempunyai 2 kondisi stabil dan dapat digunakan untuk menyimpan informasi (multivibrator dengan kondisi ganda). Rangkaiannya dapat dibuat untuk mengubah kondisi melalui sinyal-sinyal yang diaplikasikan ke 1 atau lebih kontrol input dan akan mempunyai 1 atau 2 output.

Percobaan 3 - Flip - Flop RS

1. Buat dan simulasikan Flip-Flop RS seperti pada gambar! Dan kemudian klik switch SW-SPDT untuk mengoperasikan Flip-Flop RS.

2. Berdasarkan simulasi anda, isi titik-titik pada tabel berikut!

	S (SET)	R (RESET)	CLOCK	OUTPUT		MODE
	S (SET)			Q	Q _(t+1)	WODE
1	0	0	0	Memori	Memori	Memori
2	0	0	1	Memori	Memori	Memori
3	0	1	0	Memori	Memori	Memori
4	0	1	1	0	1	Reset
5	1	0	0	0	1	Memori
6	1	0	1	1	0	Set
7	1	1	0	1	0	Memori
8	1	1	1	0	0	Terlarang

Catatan: Kolom mode menjelaskan kondisi kinerja dari FF tersebut, seperti 'memori', 'set', 'reset', atau 'togle

3. Jawab pertanyaan berikut!

a. Apa yang akan terjadi jika kita beri kondisi S = R = 1 dan clock berubah dari 1 ke 0?
 Output akan ambigu karna tidak diperbolehkan S,R dan clock berada dalam kondisi high diwaktu yang sama.

Bagaimana kondisi diatas dapat terjadi?
 Saat merubah clock berada pada kondisi high bersamaan dengan S dan R tidak diperbolehkan oleh proteus,

sehingga tidak dapat pula merubah clock kemudian ke kondisi low.

c. Jelaskan bagaimana Flip-flop RS bekerja!

Output FF hanya akan berubah dengan inputan saat pulsa clock bernilai 1.

Percobaan 4 - Flip - Flop D

1. Buat dan simulasikan Flip-Flop D seperti pada gambar! Dan kemudian klik switch SW-SPDT untuk mengoperasikan flip-flop.

2. Berdasarkan simulasi anda, isi titik-titik pada tabel berikut!

	D	CLOCK	OU'	TPUT	MODE
	D	CLOCK	Q	$Q_{(t+1)}$	MODE
1	0	0	Memori	Memori	Memori
2	0	1	0	1	Data in
3	1	0	0	1	Memori
4	1	1	1	0	Data in
5	0	0	1	0	Memori
6	0	1	0	1	Data in
7	1	0	0	1	Memori
8	1	1	1	0	Data in

Catatan: Kolom mode menjelaskan kondisi kinerja dari FF tersebut, seperti 'memori' atau 'Data in/masuk'.

3. Jelaskan bagaimana Flip-flop D bekerja!

FF D adalah multivibrator dengan keadaan ganda(bisable) yang input D di transfer ke output setelah menerima pulsa clock.

4. Apa fungsi NOT gate pada Flip-Flop D dibandingkan dengan FlipFlop SR!

Input S dihubungkan ke input R menggunakan inventer (NOT gate) sehingga terbentuk input baru yaitu data (D).

Percobaan 5 - Flip - Flop JK

1. Buat dan simulasikan JK Flip-Flop seperti pada gambar! Dan kemudian klik switch SW-SPDT untuk mengoperasikan flip-flop.

2. Berdasarkan simulasi anda, isi titik-titik pada tabel berikut!

	J	К	CLOCK	OUTPUT		MODE
				Q	$Q_{(t+1)}$	WODE
1	0	0	0	0	1	Memori
2	0	0	1	0	1	Memori
3	0	1	0	0	1	Memori
4	0	1	1	0	1	Reset
5	1	0	0	0	1	Memori
6	1	0	1	1	0	Set
7	1	1	0	1	0	Memori
8	1	1	1	0	1	Toggle

Catatan: Kolom mode menjelaskan kondisi kinerja dari FF tersebut, seperti 'memori', 'set', 'reset', atau 'togle'

3. Jawab pertanyaan berikut ini

- a. Apa yang akan terjadi jika J = K = 0, dan clock rise up (change from 0 to 1)? Output Q akan tetap berada pada nilai/keadaan terakhir.
- b. Apa yang akan terjadi jika J = K = 1, dan clock rise up?
 Keluaran 'toggle', dan keluaran berlawanan dengan kondisi sebelumnya

4. Jelaskan bagaimana Flip-flop JK bekerja!

FF JK adalah modifikasi dari FF SR hanya saja tidak terdapat kondisi terlarang. FF JK mempunyai semua sifat FF lainnya, juga dapat berubah menjadi FF-T (toggle) yaitu FF yang akan hidup jika diberi pulasa pertama dan akan mati jika diberi pulsa kedua, demikian seterusnya.