A Let/choose example

August 21, 2022

Can we make sense of this?

Proposition

We have

$$(\forall \ a \in \mathbf{R}) (\exists \ m \in \mathbf{R}) (\forall \ x \in \mathbf{R}) (x^2 \ge a^2 + m(x - a)).$$

- · Puzzled? Good.
- Let's try GNAT (= Geometric, Numerical, Algebraic, and Thinking).
- · But how to do that?

G is for geometric

The main event of our proposition is the inequality $x^2 \ge a^2 + m(x - a)$.

- For given values of m and a, geometrically this says the parabola $y = x^2$ is above or touching the line $y = a^2 + m(x a)$.
- Let's try a = 1 and m = 3. A graph is

- To the left of one, the line is below the parabola, where is should be,
- but just to the right of one, the line is above the parabola, where it shouldn't be.
- Apparently, the line is too steep.

Let's be shallow

• Again, let's try a=1. Since m=3 was too big, let's try m=1. A graph is

- To the left of one, the line is above the parabola, where it shouldn't be,
- but to the right of one, the line is *below the parabola*, where it should be.
- OK: m = 1 is too small and m = 3 is too big. What do we choose?

Let's not be shallow

You guessed it: Choose m = 2. The graph is

Now the parabola is uniformly above or touching the line. Apparently, the magic choice for m is two.

- Choices are hard.
- Like a Jeep, for *m* there is only one (possible value).
- Choose $m = 2 + \frac{1}{10^{100}}$, the inequality will not be satisfied for some value of x or a.

G is also for Generalization

Question OK, when a = 1, we need to choose m = 2. What's the story for other values of a?

Answer Sure. We need to choose the line to be the *tangent line*. Thus in the general case, we need to choose m = 2a.

In words, $(\forall \ a \in \mathbf{R}) \ (\exists \ m \in \mathbf{R}) \ (\forall \ x \in \mathbf{R}) \ (x^2 \ge a^2 + m(x - a))$ means that *every* tangent line to the parabola is below or touching the parabola.

A is for algebraic

Proposition

We have

$$(\forall \ a \in \mathbf{R}) (\exists \ m \in \mathbf{R}) (\forall x \in \mathbf{R}) (x^2 \ge a^2 + m(x - a)).$$

Proof

Let $a \in \mathbb{R}$. Choose m = 2a. Let $x \in \mathbb{R}$. We have

$$[x^2 \ge a^2 + m(x - a)] \equiv [x^2 \ge a^2 + 2a(x - a)] , \qquad \text{(substitution)}$$

$$\equiv [x^2 \ge 2ax - a^2] , \qquad \text{(expand)}$$

$$\equiv [x^2 - 2ax + a^2 \ge 0] , \qquad \text{(subtraction)}$$

$$\equiv [(x - a)^2 \ge 0] , \qquad \text{(factor)}$$

$$\equiv \text{True.} \qquad \text{(inequality fact)}$$

Since a precedes m in the statement $(\forall a \in \mathbf{R}) (\exists m \in \mathbf{R}) \dots$, it's OK for m to depend on a.

D is for Details

- The main part of the proof is a string of *logical equivalences* of the form $blob_1 \equiv blob_2 \equiv \cdots \equiv True$.
- The transitive property of equivalence allows us to conclude that $blob_1 \equiv True$. And that was what we wanted to prove.
- For a proof of this form to be valid, it's vital that every pair of statements be connected by equivalence, not implication.
- \P If we have instead $blob_1 \implies blob_2 \implies \cdots \implies$ True, congratulations! You just proved that

$$blob_1 \implies True$$

is true. But $P \implies$ True is a true statement regardless of the truth value of P.

Grade my work

Proposition

We have

$$(\forall \ a \in \mathbf{R}) (\exists \ m \in \mathbf{R}) (\forall \ x \in \mathbf{R}) (x^2 \ge a^2 + m(x - a)).$$

Fake Proof

Let $a \in \mathbb{R}$. Choose m = a + x. Let $x \in \mathbb{R}$. We have

$$[x^2 \ge a^2 + m(x - a)] \equiv [x^2 \ge a^2 + (x + a)(x - a)], \quad \text{(substitution)}$$

$$\equiv [x^2 \ge x^2], \quad \text{(expand)}$$

$$\equiv \text{True}. \quad \text{(equality fact)}$$

R is for Rubbish

Proposition

We have

$$(\forall a \in \mathbf{R}) (\exists m \in \mathbf{R}) (\forall x \in \mathbf{R}) (x^2 \ge a^2 + m(x - a)).$$

Fake Proof

Let $a \in \mathbf{R}$. Choose m = a + x. Let $x \in \mathbf{R}$. We have

Since *x* follows *m* in the statement

$$(\forall a \in \mathbf{R}) (\exists m \in \mathbf{R}) (\forall x \in \mathbf{R})$$

the value of m cannot depend on x.

- $^{\circ}$ The choice m = a + x violates this.
- So this is a "fake proof."

T is for Thinking

Question What can we say about functions *F* that have the property

$$(\forall a \in \mathbf{R}) (\exists m \in \mathbf{R}) (\forall x \in \mathbf{R}) (F(x) \ge F(a) + m(x - a)).$$

Specifically:

- Does this function property have a standard name?
- Does the sum, difference, product, or quotient of functions with this property also have this property?
- Is the number m always unique?
- Must the function F be differentiable? If so, must m = F'(a)?
- Is there an easy way to check if a function has this property?