PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(E1) Y-4	Γ			
(51) International Patent Classification 6:	A2	(11) International Publication Number: WO 96/20689		
A61K		(43) International Publication Date: 11 July 1996 (11.07.96)		
(21) International Application Number: PCT/US95/16248 (22) International Filing Date: 13 December 1995 (13.12.95)		(81) Designated States: AU, CA, JP, MX, NZ, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).		
(30) Priority Data: 08/364,338 27 December 1994 (27.12.94)	4) U	Published S Without international search report and to be republished upon receipt of that report.		
(71) Applicant: THE DU PONT MERCK PHARMACE COMPANY [US/US]; 1007 Market Street, Wilming 19898 (US).	UTICA gton, D	L E		
(72) Inventors: AMPARO, Eugene, Cruz; 416 Corner Ketch-Lyndell Road, Downingtown, PA 19335 (US). MILLER, William, Henry; 333 Fell Lane, Schwenksville, PA 19473 (US). PACOFSKY, Gregory, James; 510 Polk Street, Raleigh, NC 27604-1960 (US). WITYAK, John; 127 Kelton Road, West Grove, PA 19390-9439 (US). WEBER, Patricia, Carol; 1970 Timber Lakes Drive, Yardley, PA 19067 (US). DUNCIA, John, Jonas, Vytautas; 124 Oldbury Drive, Wilmington, DE 19808-1420 (US). SANTELLA, Joseph, Basil, III; 250 Lewis Road, Springfield, PA 19064-2129 (US).		8. 3 1		
(74) Agents: REINERT, Norbert, F. et al.; The Du Pont Pharmaceutical Company, Legal/Patent Records 1007 Market Street, Wilmington, DE 19898 (US).	t Merci Center	k		

(54) Title: BORONIC ACID AND ESTER INHIBITORS OF THROMBIN

(57) Abstract

Novel boronic acid and ester and carboxyl-modified amino acid compounds of formula (I): R^1 -Z-CHR¹-A, which are inhibitors of trypsin-like enzymes, are disclosed, where R^1 , Z, R^2 and A are defined within.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
АT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE.	
BB	Barbados	GR	Greece	NL NL	Niger
BE	Belgium	. HU	Hungary	NO NO	Netherlands
BF	Burkina Faso	IE	Ireland		Norway
BG	Bulgaria	IT	Italy	NZ	New Zealand
BJ	Benin	JР	Japan .	PL	Poland
BR	Brazil	KE	Kenya	PT	Portugal
BY	Belarus	KG	Kyrgystan	RO	Romania
CA	Canada	KP		RU	Russian Federation
CF	Central African Republic	and a	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SG	Singapore
CI	Côte d'Ivoire	LL LL	Liechtenstein	SI	Slovenia
CM	Cameroon	LK	Sri Lanka	SK	Slovakia
CN	China			SN	Senegal
CS	Czechos lovalria	LR LT	Liberia	SZ	Swaziland
CZ	Czech Republic		Lithuenia	TD	Chad
DE	Germany	w	Luxembourg	TG	Togo
DK	Denmark	LV	Latvia	TJ	Tajikistan
EE	Estonia	MC	Monaco	TT	Trinidad and Tobago
ES	Spain	MD	Republic of Moldova	UA	Ukraine
FI	Finland	MG	Madagascar	UG	Uganda
FR	Prance	ML	Mali	US	United States of America
GA		MN	Mongolia	UZ	Uzbekistan
UA.	Gabon	MIR ·	Mauritania	VN	Vict Nam

<u>Title</u>

Boronic Acid and Ester Inhibitors of Thrombin

Cross-reference to Earlier Filed Applications

5

This application is a continuation-in-part of U.S.

Patent Application Serial Number 8/348/029, filed

December 1, 1994, which is a continuation-in-part of

U.S. Patent Application Serial Number 08/318/029, filed

October 4, 1994, which is a continuation-in-part of U.S.

Patent Application Serial Number 08/036/377, filed March
24, 1993.

Field of the Invention

This invention relates to the discovery of new boronic acid derivatives which are inhibitors of thrombin and pharmaceutical compositions thereof.

Background of the Invention

20 Hemostasis is the normal physiological process in which bleeding from an injured blood vessel is arrested. It is a dynamic and complex process in which proteolytic enzymes such as thrombin play a key role. Blood coagulation may occur through either of two cascades of 25 zymogen activations, the extrinsic and intrinsic pathways of the coagulation cascade. Factor VIIa in the extrinsic pathway, and Factor IXa in the intrinsic pathway are important determinants of the activation of factor X to factor Xa, which itself catalyzes the 30 activation of prothrombin to thrombin. The last protease in each pathway is thrombin, which acts to hydrolyze four small peptides (two FpA and two FpB) from each molecule of fibrinogen, thus deprotecting its polymerization sites. Once formed, the linear fibrin 35 polymers may be cross-linked by factor XIIIa, which is

itself activated by thrombin. In addition, thrombin is

a potent activator of platelets, upon which it acts at specific receptors. Thrombin activation of platelets leads to aggregation of the cells and secretion of additional factors that further accelerate the creation of a hemostatic plug. Thrombin also potentiates its own production by the activation of factors V and VIII (see Hemker and Beguin in: Jolles, et. al., "Biology and Pathology of Platelet Vessel Wall Interactions," pp. 219-26 (1986), Crawford and Scrutton in: Bloom and Thomas, "Haemostasis and Thrombosis," pp. 47-77, (1987), Bevers, et. al., Eur. J. Biochem. 1982, 122, 429-36, Mann, Trends Biochem. Sci. 1987, 12, 229-33).

10

30

Thrombosis may be regarded as the pathological condition wherein improper activity of the hemostatic mechanism results in intravascular thrombus formation. Etiological factors such as the presence of atherosclerotic plaque, phlebitis and septicemia may cause thrombosis, leading to impaired blood flow to the effected tissues and possible serious pathological consequences. Thrombosis may be reduced by inhibition of the normal process of blood coagulation by anticoagulants. Anticoagulants act by reducing the amount of thrombin which is generated, or by inhibiting with the proteolytic actions of thrombin.

25 Currently, two of the most effective classes of drugs in clinical use as anticoagulants are the heparins and the vitamin K antagonists. The heparins are ill-defined mixtures of sulfated polysaccharides that bind to, and thus potentiate the action of antithrombin III.

Antithrombin III is a naturally occurring inhibitor of the activated clotting factors IXa, Xa, XIa, thrombin and probably XIIa (see Jaques, Pharmacol. Rev. 1980, 31, pp. 99-166). The vitamin K antagonists, of which warfarin is the most well-known example, act indirectly by inhibiting the post-ribosomal carboxylations of the vitamin K dependent coagulation factors II, VII, IX and

X (see Hirsch, Semin. Thromb. Hemostasis 1986, 12, 1-11). While effective therapies for the treatment of thrombosis, heparins and vitamin K antagonists have the unfortunate side effects of bleeding and marked interpatient variability, resulting in a small and unpredictable therapeutic safety margin. The use of direct acting thrombin inhibitors is expected to alleviate these problems.

Anticoagulants are also necessary in the processing

of blood for therapeutic or diagnostic purposes or for
the production of blood products or fragments, since
contact of blood with the surfaces commonly used for
blood collection and storage causes activation of
coagulation leading to thrombin formation and clot
formation.

The coagulation proteases thrombin, factor Xa, factor VIIa, and factor IXa are serine proteases having trypsin-like specificity for the cleavage of sequence-specific Arg-Xxx peptide bonds. As with other serine proteases, the cleavage event begins with an attack of the active site serine on the scissile bond of the substrate, resulting in the formation of a tetrahedral intermediate. This is followed by collapse of the tetrahedral intermediate to form an acyl enzyme and release of the amino terminus of the cleaved sequence. Hydrolysis of the acyl enzyme then releases the carboxy terminus.

20

25

A number of naturally occurring thrombin inhibitors have been reported. These include nazumamide A from Theonella sp. (see Fusetani, et. al., Tetrahedron Lett. 1991, 32, 7073-4), cyclotheonamide A from Theonella sp. (see Fusetani, et. al., J. Am. Chem. Soc. 1990, 112, 7053-4), amblyommin from Amblyomma hebraeum (see Bonin, et. al., EP 345614), hirudin from Hirudo medicinalis, recombinant versions of hirudin and hirudin fragments (see Rigbl and Jackson, EP 352903, Koerwer, WO 9109946,

Meyer, et. al., WO 9108233, Dawson, et. al., WO 9109125, Maraganore, et. al., WO 9102750 and Maraganore, EP 333356).

Synthetic thrombin inhibitors have also been disclosed. Arylsulfonylarginine amides such as (2R,4R)-4-methyl-1-[N²-{(3-methyl-1,2,3,4-tetrahydro-8-quinolinyl)sulfonyl}-L-arginyl]-2-piperidinecarboxylate have been shown to be effective inhibitors of thrombin (see Okamoto, et. al. Thromb Res. 1976, 8, 77-82,

- Ohshiro, et. al., Blood Vessel 1983, 14, 216-8), as have compounds containing constrained arginine mimics such as (2-naphthylsulfonylglycyl)-4-amidino-phenylalanyl piperidide (see Stuerzebecher, et. al., Thromb. Res. 1983, 29, 635-42), 1-[2-[5-(dimethylamino)naphth-1-
- ylsulfonamido]-3-(2-iminohexahydropyrimidin-5yl)propanoyl]-4-methylpiperidine dihydrochloride (see
 Ishikawa, JP 88227572 and Ishikawa and Inamura, JP
 88227573), N-(trans-4-amino-methylcyclohexylcarbonyl)-4O-(2-picolyl)-L-tyrosine 4-acetanilide dihydrochloride
- (see Okamoto, et. al., EP 217286) and 4[(aminoiminomethyl)amino]benzoic acid esters (see Fuji, et. al., DE 3005580, Matsuoka, et. al., Jpn. J.

 Pharmacol. 1989, 51, 455-63, and Takeshita, et. al., EP 435235).
- Inhibitor design has benefitted from the knowledge of the mechanism of action and of the peptide sequences which are thought to bind in the catalytic site of thrombin, e.g., -Gly-Val-Arg-Gly- of fibrinogen (see Blombäck, et. al., J. Biol. Chem., 1972, 247, 1496-512),
- 30 Ile-Pro-Arg-Ser- of prothrombin (see Magnussen, et. al., in: Reich, et. al., "Proteases and Biological Control," pp. 123-149 (1975)) and -Val-Pro-Arg-Gly- of factor XIII (see Takagi and Doolittle, Biochemistry 1974, 13, 750-6 and Nakamura, et. al., Biochem. Biophys. Res. Commun.
- 35 1974, 58, 250-256). This class of mechanism-based inhibitors are exemplified by the tripeptide aldehyde D-

Phe-Pro-N-Me-Arg-H (see Bajusz, et. al., J. Med. Chem. 1990, 33, 1729-35), the chloromethyl ketone Ac-D-Phe-Pro-ArgCH2Cl (see Kettner and Shaw, Thromb. Res. 1979, 14, 969-73) and the trifluoromethyl ketone D-Phe-Pro-ArgCF3 (see Kolb, et. al., US 697987).

Kettner and Shenvi (EP 293881, published June 12, 1988), disclose peptide boronic acid inhibitors of trypsin-like proteases of formula (1)

 $R^{1}-[(A^{3})_{\alpha}(A^{2})_{p}(A^{1})_{o}]_{n}-NH-CHR^{2}-BY^{1}Y^{2}$ (1) 10

wherein Y^1 and Y^2 , independently, are hydroxyl or fluoro or, taken together, form a moiety derived from a dihydroxy compound having at least two hydroxy groups 15 separated by at least two connecting atoms in a chain or ring, said chain or ring comprising 1 to about 20 carbon atoms and, optionally, a heteroatom which can be N, S, or 0; R² is a substituted alkyl selected from the group consisting of $-(CH_2)_z-X$, $-(CH(CH_3)-(CH_2)_2-X$, $-CH_2-CH-$

- 20 $(CH_3) - CH_2 - X$, $-(CH_2)_2 - CH(CH_3) - X$ and $-(CH_2)_2 - CH(CH_3)_2 - X$, where X is $-NH_2$, $-NH-C(NH)-NH_2$ or $-S-C(NH)-NH_2$, and z is 3 to 5; n, o, p and q are, independently, either 0 or 1; A^1 , A^2 and A^3 are, independently, amino acids of L- or Dconfiguration selected from the group consisting of Ala,
- 25 Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val; and R1 is a peptide comprised of 1 to about 20 amino acids, an acyl or a sulfonyl group comprised of 1 to about 20 carbon atoms, H, or an N-terminal protecting group.
- 30 disclosure, Kettner and Shenvi demonstrated that the pinanediol esters of boropeptides are pharmacogolically equivalent to the corresponding boronic acids.

Metternich (EP 0471651 A2) discloses borolysine thrombin inhibitors of formula (2)

W-Y-NR4-CHR5-BQ1Q2

35

wherein W is an N-protecting group; Y is a sequence of n amino acids such that the n+1 amino acid peptide Y-Lys or Y-Arg has an affinity for the active site of a trypsin-like protease; where n is an integer of from 1 5 to 10 and in which at least one amino acid is an unnatural amino acid having a hydrophobic side chain; 01 and Q^2 are the same or different and are selected from -OH, -COR1, -CONR1R2, -NR1R2 or -OR3 of Q^1 and Q^2 taken 10 together form a diol residue; R1, R2 and R3 which may be the same or different, are C1-10alkyl, C6-10aryl, C6-10aralkyl, or phenyl substituted by up to three groups selected from C1-4alkyl, halogen and C1-4alkoxy; R4 is hydrogen or C₁₋₁₀alkyl; R₅ is a group -A-X; wherein A is $-(CH_2)_z$ - in which z is 2, 3, 4 or 5; $-CH(CH_3) - (CH_2)_2$ -; 15 $-CH_2-CH(CH_3)-CH_2-;$ $-(CH_2)_2-CH(CH_3)-;$ $-(CH_2)_2-C(CH_3)_2-;$ $CH(CH_3) - (CH_2)_3 - ; -CH_2 - CH(CH_3) - (CH_2)_2 - ; -CH_2 - CH_2 - CH(CH_3) - ; -CH_2 - CH_2 CH_{2}^{-}$; - $(CH_{2})_{3}$ - $CH(CH_{3})_{-}$; - $(CH_{2})_{3}$ - $C(CH_{3})_{2}$: C_{6-10} aryl C_{6-1} 10 aralkyl and X is $-NH_2$, $-NH-C(NH)-NH_2$, $-S-C(NH)-NH_2$, N_3 , 20 -C1-4alkoxy, C1-4alkylthio or Si(CH3)3 or R4 and R5 taken together form a trimethylene group and the asymmetric carbon atom may have the D- or L-configuration or represent any mixture of these.

Surprising for their lack of a basic residue at P₁

25 are tripeptide thrombin inhibitors comprised of 1aminoboronic and 1-aminophosphonic acid analogs of 3methoxy-propylglycine (see Claeson, et. al., US 07245428) and pentylglycine (see Cheng, et. al.,
"Symposium on Thrombosis and Hemostasis," 1991,

30 Amsterdam, Abstract 2150).

35

In addition to thrombin inhibition, boropeptides have been disclosed with utility as a treatment for tumors, viral infections and arthritis (US 4963655A and EP 354522A), emphysema (US 4499082A), hypertension (EP 315574A) and as factor VII/VIIa inhibitors (WO 8909612A). Kleemann, et. al. (AU A-24693/88) disclose

remin-inhibiting 1-amino boronic acid derivatives of formula (3) $A^{1}-A^{2}-HN-CHR^{2}-BXR^{3}(YR^{4})$ (3)

5 in which A¹ denotes a radical of formulae (4-8).

$$R^{1}NR^{6}-CHR^{5}-C=O-$$

$$R^{1}CHR^{12}-CHR^{5}-C=O-$$

$$R^{1}NR^{6}-CHR^{5}-CHR^{7}-CHR^{8}-CHR^{9}-C=O-$$

$$R^{1}CHR^{12}-CHR^{5}-CHR^{7}-CHR^{8}-CHR^{9}-C=O-$$

$$R^{1}CHR^{12}-CH(CH_{2})_{m}R^{11}-C=O-$$

$$(8)$$

Despite the foregoing, more efficacious and specific inhibitors of coagulation proteases are needed as

15 potentially valuable therapeutic agents for the treatment of thrombosis. None of the cited references describe or suggest the new thrombin-inhibiting boronic acid derivatives of the present invention.

20 <u>Summary of Invention</u>

This invention pertains to novel compounds of formula (I):

 R^1 -Z-CHR²-A (I)

25 wherein

A is

- $a) -BY^1Y^2$
- b) $-C (=0) CF_3$,
- c) -C(=0) CHF₂,
- 30 d) -C(=0) CH₂F,
 - e) -C(=0) CH₂Cl,
 - $f) C (=0) OR^3$,
 - g) $-C (=0) NR^{15}R^{16}$,
 - h) $-C (=0) R^3$,
- 35 i) $-C (=0) COOR^3$,
 - $j) C(=0) C(=0) NR^{15}R^{16}$

```
k) -C (=0) C (=0) R^3
            1) -C (=0) CY^3Y^4COOR^3,
           m) -C (=0) CY^3Y^4C (=0) NR^{15}R^{16},
           n) -C (=0) CY^3Y^4C (=0) R^3,
 5
           o) -PO3H2, or
           p) -CHO;
     \mathbf{Y}^1 and \mathbf{Y}^2 are independently
           a) -OH,
           b) -F,
10
           c) -NR^3R^4, or
           d) C_1-C_8 alkoxy:
     Y^1 and Y^2 can be taken together to form:
           e) a cyclic boron ester where said chain or ring
                 contains from 2 to 20 carbon atoms and, from
15
                 0-3 heteroatoms which can be N, S, or O,
           f) a cyclic boron amide where said chain or ring
                 contains from 2 to 20 carbon atoms and, from
                 0-3 heteroatoms which can be N, S, or O,
           g) a cyclic boron amide-ester where said chain or
20 -
                 ring contains from 2 to 20 carbon atoms and,
                 from 0-3 heteroatoms which can be N, S, or O;
     Y^3 and Y^4 are independently
           a) -OH or
           b) -F:
25
     Z is
         a) -(CH_2)_mCONR_{-1}
         b) -(CH_2)_mCSNR^8-,
         c) -(CH_2)_mSO_2NR^8-,
         d) -(CH_2)_mCO_2-,
30
         e) -(CH_2)_mC(S)O-, or
         f) - (CH<sub>2</sub>)<sub>m</sub>SO<sub>2</sub>O-;
     R<sup>l</sup> is
         a) -(CH_2)_p-aryl, wherein aryl is phenyl, naphthyl or
            biphenyl substituted with one, two or three
35
            substituents selected from the group consisting
            of:
```

```
halo (F, Cl, Br, I), methylenedioxy, -R8,
                    -NR8COR9, C2-C6-alkenyl, C2-C6-alkynyl,
                    -(CH_2)<sub>w</sub>-OR<sup>8</sup>, -(C_1-C<sub>6</sub>)-perfluoroalkyl,
                    -(CH_2)_wCN, -(CH_2)_wNC, -(CH_2)_wNO_2, -(CH_2)_wCF_3,
  5
                    -(CH_2)_wS(0)_TR^7, -(CH_2)_wNR^8R^9, -(CH_2)_wCOR^8,
                    -(CH_2)_wCHO; -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9.
                    -(CH<sub>2</sub>)_wSO<sub>2</sub>NH-(C<sub>1</sub>-C<sub>5</sub>)-alkyl, -(CH<sub>2</sub>)_wSO<sub>2</sub>NH<sub>2</sub>,
                    -(CH<sub>2</sub>)_wSO<sub>2</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>)-alky1, -(CH<sub>2</sub>)_wSO<sub>2</sub>NH-
                    CO_2 - (C_1 - C_6) - alkyl, - (CH_2) wNHSO_2 - (C_1 - C_6) - alkyl,
10
                    - (CH<sub>2</sub>) wNHSO<sub>2</sub> - (C<sub>1</sub>-C<sub>6</sub>) -perfluoroalkyl,
                    -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-phenyl, -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-
                    perfluorophenyl, - (CH2) wCN4H, -0 (CH2) wCN,
                    -NH(CH_2)_wCN, -S(CH_2)_wCN, -(CH_2)_wNH-CO-(C_1-C_6-
                    alkyl), -(CH_2) wNH-CO-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl),
15
                    -(CH_2)_{wNH}-CO-(pheny1)_{,}-(CH_2)_{wNH}-CO_2-(C_1-C_6-
                    alkyl), -(CH_2)_{W}NH-CO_2-(C_1-C_6-perfluoroalkyl),
                    -(CH<sub>2</sub>)_wNH-CO<sub>2</sub>-(phenyl), -0(C=0)-(C<sub>1</sub>-C<sub>5</sub>-alkyl),
            b) heteroaryl, wherein heteroaryl is an
20
               unsubstituted, monosubstituted or disubstituted:
                i)
                       quinolinyl,
                ii)
                       isoquinolinyl,
                iii) benzopyranyl,
               iv)
                       benzothiophenyl,
25
               v)
                      benzofuranyl,
               vi)
                       5,6,7,8-tetrahydroquinolinyl,
               vii) 5,6,7,8-tetrahydroisoguinolinyl,
               and wherein the substituents are selected from the
30
               group consisting of halo (F, Cl, Br, I), -CN, C1-
               C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl, C2-
               C_{10}-alkynyl, R^8, -OR^8, -NO_2, -CF_3, -S(O)_TR^7,
```

 $-NR^8R^9$, $-COR^8$, $-CO_2R^8$, $-CONHR^8$, NR^8COR^9 , $NR^8CO_2R^9$,

-----NR12

C)

d)

e)

5

f)

10

wherein J is N or C and K, L, M and Q are independently selected at each occurrence from the group consisting of N, CR^{13} , S or O, provided that:

15

- i) there may be only one S or O present in the ring at a time;
- ii) there may only be 1-2 N present when there is an O or S present;
- iii) there may be only 1-4 N present;

g)

wherein W, R, T, U and V are selected from the group consisting of: CR^{13} or N, provided that there be no less than 1 and no more than 3 N present;

h)

$$\begin{array}{c|c} & & & & \\ & &$$

is as defined above;

i)

10

15

5

is as defined above;

j)

wherein G is O, S, or NP, where P is an amine protecting group selected from the group

consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$);

k)

wherein G is O, S, or NP, where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$);

 R^2 is

10

- a) $-(C_1-C_{12} \text{ alkyl})-x$,
 - b) $-(C_2-C_{12} \text{ alkenyl})-x$, or

C)

X is

- a) halogen (F, Cl, Br, I),
 - b) -CN,
 - $c) -NO_2,$
 - d) -CF3,
 - e) $-S(0)_T R^{14}$,
- 20 f) -NHR¹⁴
 - g) -NHS(0) rR14,
 - h) -NHC(NH)H,
 - i) -NHC(NH)NHOH,
 - j) -NHC(NH)NHCN,
- 25 k) -NHC (NH) NHR¹⁴,

```
1) -NHC(NH)NHCOR14,
              m) -C(NH)NHR14
              n) -C(NH)NHCOR14.
              o) -C(0)NHR14,
   5
              p) - C(0) NHC(0) R^{14}
              q) - C(0) OR^{14}
              r) - OR^{14}
              s) -0C(0)R^{14}.
              t) -OC(0)OR^{14}.
  10
             u) -OC(0) NHR14,
             v) - OC(0) NHC(0) R^{14}
             w) -SC(=NH) NHR14, or
             x) -SC(=NH) NHC(=0) R^{14}:
       \mathbb{R}^3 is
             a) hydrogen,
 15
             b) C<sub>1</sub>-C<sub>8</sub> alkyl,
             c) -(C_1-C_4 \text{ alkyl})-\text{aryl},
             d) C5-C7 cycloalkyl, or
             e) phenyl;
 20 R4 is
             a) hydrogen,
             b) C<sub>1</sub>-C<sub>8</sub> alkyl,
             c) -(C_1-C_4 \text{ alkyl}) - \text{aryl}
             d) C5-C7 cycloalkyl,
 25
             e) phenyl, or
             f) phenylsulfonyl:
      {\tt R}^{\tt 5} and {\tt R}^{\tt 6} are hydrogen or when taken together form a six
           membered aromatic ring optionally substituted with
           one, two or three substituents selected from the
 30
           group consisting of halo (F, Cl, Br, I), -CN, C1-
           C_{10}-alkyl, C_{3}-C_{8}-cycloalkyl, C_{2}-C_{10}-alkenyl, C_{2}-C_{10}-
           alkynyl, -OR^8, -NO_2, -CF_3, -S(O)_TR^7, -NR^8R^9, -COR^8,
           -CO_2R^8, -CONR^8R^9, phenyl, benzyl, phenylethyl;
      R^7 is
. 35
           a) phenyl,
```

```
b) C1-Cg-alkyl,
          c) C1-C4-alkoxy,
          d) -CF3, or
          e) benzyl;
     \mathbb{R}^8 and \mathbb{R}^9 are independently
          a) H,
          b)
          c) C3-C7 cycloalkyl, or
10
          d) C1-Cg-alkyl;
     R<sup>ll</sup> is
          a) halo (F, Cl, Br, I),
          b) -CN,
          c) C1-C10-alkyl,
15
          d) C3-Cg-cycloalkyl,
          e) C2-C10-alkenyl,
          f) C2-C10-alkynyl,
          g) -OR8,
          h) - NO_2
20
          i) -CF3,
          j) - S(0)_{r}R^{7},
          k) - NR^8R^9
          1) -COR9,
          m) - CO_2R^8,
          n) -CONR<sup>8</sup>R<sup>9</sup>, or
25
          o) H
     R^{12} is
              H, C1-C4 alkyl, phenyl, benzyl, -COR7, or
              -S(0)_{r}^{7};
     R^{13} is
30
              H, halogen (F, Cl, Br, I), (C_1-C_8) alkyl, (C_1-C_8)
              C6)-perfluoroalky1, -(CH2)r-D, C3-C8 cycloalky1,
              C2-C6-alkenyl, C2-C6-alkynyl, methylenedioxy,
```

```
-(CH_2)_w - OR^8, -(CH_2)_w NC, -(CH_2)_w CN, -(CH_2)_w NO_2,
                 -(CH_2)_wCF_3, -(CH_2)_wS(0)_rR^7, -(CH_2)_wNR^8R^9,
                 -(CH_2)_wCOR^8, -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9,
                 -(CH_2)_wSO_2NH - (C_1-C_6) - alky1, -(CH_2)_wSO_2NH_2,
  5
                 -(CH_2)_wSO_2NH-CO-(C_1-C_6)-a1ky1, -(CH_2)_wSO_2NH-CO_2-
                 (C_1-C_6) -alkyl, - (CH_2)_{\dot{w}}SO_2NH, - (CH_2)_{\dot{w}}NHSO_2- (C_1-C_6)
                 C_6)-alkyl, -(CH_2)<sub>w</sub>NHSO<sub>2</sub>-(C_1-C_6)-perfluoroalkyl,
                 -(CH<sub>2</sub>) wNHSO<sub>2</sub>-phenyl, -(CH<sub>2</sub>) wNHSO<sub>2</sub>-
                perfluorophenyl, -(CH_2)_wCN_4H, -O(C=0)-(C_1-C_5-C_1)
10
                alkyl), -0(CH_2)_wCN, -NH(CH_2)_wCN, -S(CH_2)_wCN,
                 -(CH<sub>2</sub>)<sub>W</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-alky<sub>1</sub>), -(CH<sub>2</sub>)<sub>W</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-
                perfluoroalkyl), -(CH2)wNH-CO-(phenyl),
                 -(CH_2)_wNH-CO_2-(C_1-C_6-alkyl), -(CH_2)_wNH-CO_2-(C_1-c_6-alkyl)
                C6-perfluoroalkyl), -(CH2)wNH-CO2-(phenyl),
15
                -(CH<sub>2</sub>)uphenyl wherein the phenyl contains 0-3
                substituents selected from R18, -S-(CH2)uphenyl
                wherein the phenyl contains 0-3 substituents
                selected from R18, or -O-(CH2)uphenyl wherein
                the phenyl contains 0-3 substituents selected
20
                from R18:
      Rl4 is
             a) -H,
             b) -CF3
             c) -C1-C4 alkyl,
25
            d) -(CH_2)_{\alpha}-aryl, wherein aryl is phenyl, biphenyl,
            naphthyl, or fluorenyl unsubstituted or substituted
            with one to three substituents selected from the
            group consisting of:
                   halogen (F, Cl, Br, I),
30
                   -CF3,
                   -(C1-C4 alky1),
                   -(CH<sub>2</sub>)_xR<sup>15</sup>
                   -(CH_2)_{X}CO(CH_2)_{V}R^{15}
                   -(CH_2)_{X}C(0)O(CH_2)_{V}R^{15}
                   -(CH_2)_{x}C(0)N[(CH_2)_{y}R^{15}][(CH_2)_{y}R^{16}],
35
                   -methylenedioxy,
```

```
-(C1-C4 alkoxy),
                       -(CH_2)_{x}O(CH_2)_{v}R^{15}
                       - (CH<sub>2</sub>) xOCO (CH<sub>2</sub>) vR<sup>15</sup>,
                      -(CH_2)_{X}OC(0)O(CH_2)_{VR}15,
 5
                       -(CH_2)_{X}OC(O)N[(CH_2)_{V}R^{15}][(CH_2)_{V}R^{16}],
                       -(CH_2)_{X}OC(O)N[(CH_2)_{V}R^{15}][CO(CH_2)_{V}R^{16}],
                       -(CH_2)_{x}S(0)_{r}(CH_2)_{v}R^{15}
                       -(CH<sub>2</sub>)<sub>x</sub>S(O)<sub>r</sub>(CH<sub>2</sub>)<sub>v</sub>COR<sup>15</sup>,
                       -(CH_2)_xS(0)_r(CH_2)_yC(0)OR^{15},
10
                      -(CH_2)_{xS}(0)_{x}N[(CH_2)_{yR}^{15}][(CH_2)_{yR}^{16}]
                       -(CH_2)_XN[(CH_2)_YR^{15}][(CH_2)_YR^{16}],
                       -(CH_2)_XN[(CH_2)_YR^{15}][CO(CH_2)_YR^{16}],
                       -(CH_2)_XN[(CH_2)_YR^{15}][C(0)O(CH_2)_YR^{16}],
                       -(CH_2)_XN[(CH_2)_YR^{15}]CON[(CH_2)_YR^{15}][(CH_2)_YR^{16}],
15
                       -(CH_2)_XN[(CH_2)_YR^{15}]CON[(CH_2)_YR^{15}]
                       [CO(CH<sub>2</sub>)yR<sup>16</sup>],
                       -(CH_2)_XN[(CH_2)_YR^{15}][S(0)_r(CH_2)_YR^{16}];
      {\bf R}^{15} and {\bf R}^{16} are independently
               a) hydrogen,
20
              b) C<sub>1</sub>-C<sub>8</sub> alkyl,
               c) -(C<sub>1</sub>-C<sub>4</sub> alkyl)-aryl, where aryl is defined
                      above,
               d) C5-C7 cycloalkyl,
               e) phenyl, substituted by 0-3 R18,
              f) benzyl, substituted by 0-3 R^{18}, or
25
              g) - (C<sub>1</sub>-C<sub>4</sub> alkoxy);
      \mathbb{R}^{15} and \mathbb{R}^{16} can be taken together to form a ring:
      R<sup>18</sup> and R<sup>19</sup> are independently
30
                    H, halo (F, Cl, Br, I), C_1-C_8-alkyl, C_3-C_8
                    cycloalkyl, C2-C6-alkenyl, C2-C6-alkynyl,
                    -(CH_2)_w-OR^8, -(CH_2)_wCN, -(CH_2)_wNC, -(CH_2)_wNO_2,
                    -(CH_2)_wCF_3, -(CH_2)_wS(O)_TR^7, -(CH_2)_wNR^8R^9,
```

```
-(CH_2)_wCOR^8, -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9,
                   -(CH_2)_wSO_2NH-(C_1-C_6)-alky1, -(CH_2)_wSO_2NH_2,
                  -(CH_2)_wSO_2NH-CO-(C_1-C_6)-a1ky1, -(CH_2)_wSO_2NH-
                  CO_2-(C_1-C_6)-alkyl, -(CH_2)<sub>w</sub>SO<sub>2</sub>NH-, -(CH_2)<sub>w</sub>NHSO<sub>2</sub>-
 5
                   (C_1-C_6) -alkyl, -(CH_2) wNHSO2-(C_1-C_6)-
                  perfluoroalkyl, -(CH2)wNHSO2-phenyl,
                   -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-perfluorophenyl, -(CH<sub>2</sub>)<sub>w</sub>CN<sub>4</sub>H,
                   -0(C=0)-(C_1-C_5-alkyl), -0(CH_2)_wCN, -NH(CH_2)_wCN,
                   -S(CH<sub>2</sub>)_wCN, -(CH<sub>2</sub>)_wNH-CO-(C<sub>1</sub>-C<sub>6</sub>-alkyl),
10
                  -(CH<sub>2</sub>)<sub>w</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl), -(CH<sub>2</sub>)<sub>w</sub>NH-
                  CO-(C_1-C_6-pheny1), -(CH_2)_wNH-CO_2-(C_1-C_6-alky1),
                  -(CH_2)<sub>w</sub>NH-CO<sub>2</sub>-(C_1-C<sub>6</sub>-phenyl), or -O(C=0) phenyl;
      R18 and R19 can be taken together to form a
             methylenedioxy group;
      R<sup>20</sup> and R<sup>20a</sup> are independently
15
                 (C1-Cg)alkyl, -(CH2)uphenyl wherein the phenyl
                contains 0-3 substituents selected from R18,
                (C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl, or -(CH<sub>2</sub>)<sub>r</sub>-D;
      m is 0 to 6;
20
     n is 1 to 2;
      p is 0 to 2;
      q is 0 to 4.
      r is 0 to 2;
      s is 0 to 3;
25 t is 1 to 5;
      u is 0 to 5;
     v is 0 to 5:
     w is 0 to 5;
      x is 0 to 6;
30 y is 0 to 6;
     D is fur-2-yl, fur-3-yl, thiophen-2-yl, thiophen-3-yl,
             oxazol-2-yl, oxazol-4-yl, thiazol-2-yl, thiazol-4-
            yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl,
            pyrid-2-yl, pyrid-4-yl, pyridazin-3-yl, pyridazin-
35
            4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl,
            or tetrazolyl;
```

```
E is -CO-, -SO_2-, -CH_2- or a single bond;
      F is -CO-:
     W is
            a) -0-,
 5
            b) -S(0) r-,
            C) - NR^4 - 
            d) -NC (=0) R^3-.
            e) a bond, or
            f) - (CH<sub>2</sub>)<sub>n</sub>-;
10
     or prodrugs or pharmaceutically acceptable salts
          thereof.
            Preferred compounds of formula (I) are those
     compounds wherein:
15
      Z is
          a) -(CH_2)_mCONR8_-.
          b) -(CH_2)_mCSNR^8-
          c) - (CH_2)_mSO_2NR^8-,
     R<sup>l</sup> is
20
          a) -(CH2)p-aryl, wherein aryl is phenyl, naphthyl or
             biphenyl substituted with one, two or three
              substituents selected from the group consisting
             of:
                halo (F, Cl, Br, I), methylenedioxy, -R<sup>8</sup>,
               -NR8COR9, C2-C6-alkenyl, C2-C6-alkynyl,
25
                 -(CH<sub>2</sub>)<sub>W</sub>-OR<sup>8</sup>, -(C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl.
                 -(CH_2)_wCN, -(CH_2)_wNC, -(CH_2)_wNO_2, -(CH_2)_wCF_3,
                 -(CH_2)_{wS}(0)_{rR}^7, -(CH_2)_{wNR}^8R^9, -(CH_2)_{wCOR}^8,
                 -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9. -(CH_2)_wSO_2NH-(C_1-
30
                C_6) -alkyl, -(CH_2) _wSO_2NH_2, -(CH_2) _wSO_2NH-CO-(C_1-
                 C_6)-alkyl, -(CH_2)<sub>w</sub>SO<sub>2</sub>NH-CO_2-(C_1-C_6)-alkyl,
                 -(CH_2)_wNHSO_2-(C_1-C_6)-alkyl, -(CH_2)_wNHSO_2-(C_1-C_6)
                 C6) -perfluoroalkyl, -(CH2) wNHSO2-phenyl,
                 -(CH2)wNHSO2-perfluorophenyl, -(CH2)wCN4H, e-
35
                O(CH_2)_wCN, -NH(CH_2)_wCN, -S(CH_2)_wCN, -(CH_2)_wNH-
                CO^{-}(C_1^{-}C_6^{-}alkyl), -(CH_2)_wNH^{-}CO^{-}(C_1^{-}C_6^{-}alkyl)
```

perfluoroalkyl), -(CH₂)_wNH-CO-(phenyl), -(CH₂)_wNH-CO₂-(C₁-C₆-alkyl), -(CH₂)_wNH-CO₂-(C₁-C₆-perfluoroalkyl), or -(CH₂)_wNH-CO₂-(phenyl),-0(C=0-(C₁-C₅ alkyl);

- b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted:
 - i) quinolinyl,
 - ii) isoquinolinyl,
 - iii) benzopyranyl,
- iv) benzothiophenyl,
 - v) benzofuranyl,
 - vi) 5,6,7,8-tetrahydroquinolinyl,
 - vii) 5,6,7,8-tetrahydroisoquinolinyl,
- and wherein the substituents are selected from the group consisting of halo (F, Cl, Br, I), -CN, Cl-Cl0-alkyl, C3-C8-cycloalkyl, C2-Cl0-alkenyl, C2-Cl0-alkynyl, R8, -OR8, -NO2, -CF3, -S(O)rR7, -NR8R9, -COR8, -CO2R8, -CONR8H, NR8COR9, NR8CO2R9;

20 c)

d)

e)

25

f) wherein the ring

represented by -J-K-L-M-Q- is a group

selected from:

```
-N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-
                        -N-C(R^{13})=C(R^{13})-C(R^{13})=N-
                   2)
                        -N-C(R^{13})=C(R^{13})-N=C(R^{13})-
 5
                   3)
                        -N-C(R^{13})=N-C(R^{13})=N-
                   4)
                        -N-C(R^{13})=C(R^{13})-N=N-
                        -N-C(R^{13})=N-N=N-
                   6)
                        -N-N=C(R^{13})-N=N-.
                   7)
10
                   8)
                        =C-O-C(R^{13})=N-C(R^{13})=.
                        -C=C(R^{13})-O-C(R^{13})=N-
                   9)
                   10) = C - C(R^{13}) = C(R^{13}) - N = 
                        -C=C(R^{13})-C(R^{13})=N-O-.
                   11)
                   12) = C - C(R^{13}) = C(R^{13}) - 0 - N = .
15
                   13)
                        -C=C(R^{13})-O-N=C(R^{13})-.
                         =C-S-C(R^{13})=N-C(R^{13})=
                   14)
                         -C=C(R^{13})-S-C(R^{13})=N-
                   15)
                        =C-S-C(R^{13})=C(R^{13})-N=
                   16)
                        -C=N-S-N=C(R^{13}) - ,
                   17)
                         -C=N-S-C(R^{13})=N-
                   18)
20
                         =C-S-N=C(R^{13})-N=
                   19)
                         =C-S-C(R^{13})=C(R^{13})-C(R^{13})=.
                   20)
                         -C=C(R^{13})-S-C(R^{13})=C(R^{13})-.
                   21)
                   22)
                         =C-O-C(R^{13})=C(R^{13})-C(R^{13})=, or
                         -C=C(R^{13})-O-C(R^{13})=C(R^{13})-;
25
                   23)
```

g) wherein the ring

WO 96/20689

represented by -C-W-R-T-U-V- is a group

selected from:

- 1) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$
- 2) $-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$
- 3) $-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$
 - 4) $-C=N-N=C(R^{13})-C(R^{13})=C(R^{13})-$
 - 5) $-C=C(R^{13})-N=N-C(R^{13})=C(R^{13})-$
 - 6) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$,
 - 7) $-C=N-C(R^{13})=C(R^{13})-N=C(R^{13})-$
 - 8) $-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})$ -,
 - 9) $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$
 - 10) $-C=N-C(R^{13})=N-N=C(R^{13})$
 - 11) $-C=N-C(R^{13})=C(R^{13})-N=N-$, or
 - 12) $-C=C(R^{13})-N=C(R^{13})-N=N-$;

15 h)

5

10

~~<u>`</u>

wherein is as defined above;

i)

U R V W

wherein

20 is as defined above;

j)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$;

5 k)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$;

10 R¹⁴ is

15

- a) -H,
- b) -CF3
- c) $-C_1-C_4$ alkyl,
- d) $-(CH_2)_{\mathbf{Q}}$ -aryl, wherein aryl is phenyl, biphenyl, naphthyl, or fluorenyl unsubstituted substituted with one to three substituents selected from the

group consisting of:

halogen (F, Cl, Br, I),

- -CF3,
- $-(C_1-C_4 \text{ alkyl}),$
 - -methylenedioxy,
 - -(C1-C4 alkoxy),
 - $(CH_2)_XN[(CH_2)_YR^{15}][(CH_2)_YR^{16}];$

and all other required substituents of formula (I) are as defined in Claim 1.

More preferred compounds of the formula (I) are those compounds wherein:

```
A is
```

- $a) BY^1Y^2$
- b) $-C (=0) CF_3$,
- 10 d) $-C (=0) CH_2F$,
 - e) -C(=0) CH₂Cl,
 - $f) C (=0) OR^3$,
 - g) $-C (=0) NR^{15}R^{16}$,
 - h) $-C (=0) R^3$,
- i) $-C (=0) COOR^3$,
 - $j) C (=0) C (=0) NR^{15}R^{16}$
 - $k) C (=0) C (=0) R^3$,
 - 1) -CHO;

 \mathbf{Y}^1 and \mathbf{Y}^2 are independently

- 20 a) -OH, or
 - b) C₁-C₈ alkoxy;
 - yl and y2 can be taken together to form a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,

Z is

25

- a) (CH₂)_mCONR8-,
- b) (CH₂)_mCSNR⁸-, or
- c) $(CH_2)_mSO_2NR^8$ -;

$30 R^{1}$ is

- a) -(CH₂)_p-aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents independently selected at each occurrence from the group consisting of:
- halo (F, Cl, Br, I), methylenedioxy, $-R^8$, $-NR^8COR^9$, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl,

```
-(CH<sub>2</sub>)<sub>W</sub>-OR<sup>8</sup>, -(C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl,
                -(CH_2)_wCN, -(CH_2)_wNC, -(CH_2)_wNO_2, -(CH_2)_wCF_3,
                -(CH_2)_wS(0)_rR^7, -(CH_2)_wNR^8R^9, -(CH_2)_wCOR^8,
                -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9. -(CH_2)_wSO_2NH-(C_1-
                C_6)-alkyl, -(CH_2)_wSO_2NH_2, -(CH_2)_wSO_2NH-CO-(C_1-
5
                C_6)-alkyl, -(CH_2)<sub>w</sub>SO_2NH-CO_2-(C_1-C_6)-alkyl,
                -(CH_2)_wSO_2NH_-, -(CH_2)_wNHSO_2-(C_1-C_6)-alkyl,
                - (CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl,
                - (CH<sub>2</sub>) wNHSO<sub>2</sub> - phenyl, - (CH<sub>2</sub>) wNHSO<sub>2</sub> -
10
                perfluorophenyl, -(CH2)wCN4H, -O(CH2)wCN,
                alkyl), -(CH2)wNH-CO-(C1-C6-perfluoroalkyl),
                -(CH_2)_{w}NH-CO-(pheny1), -(CH_2)_{w}NH-CO_2-(C_1-C_6-
                alkyl), -(CH2)wNH-CO2-(C1-C6-perfluoroalkyl),
15
                or -(CH_2)_wNH-CO_2-(phenyl), -0(C=0)-C_1-C_5-
                alkyl);
          b) heteroaryl, wherein heteroaryl is an
             unsubstituted, monosubstituted or disubstituted:
             i)
                   quinolinyl,
20
             ii)
                   isoquinolinyl,
             iii) benzopyranyl,
             iv) benzothiophenyl,
             v)
                   benzofuranyl,
             vi)
                  5,6,7,8-tetrahydroquinolinyl,
             vii) 5,6,7,8-tetrahydroisoquinolinyl,
25
                wherein the substituents are members selected
                 from the group consisting of: halo (F, Cl, Br,
                 I), -CN, C1-C10-alkyl, C3-Cg-cycloalkyl, C2-
                 C_{10}-alkenyl, C_2-C_{10}-alkynyl, R^8, -OR^8, -NO_2,
30
                 -CF_3, -S(0)_{r}R^7, -NR^8R^9, -COR^8, -CO_2R^8, -CONR^8H,
                NR8COR9, NR8CO2R9;
```

C)

d)

e)

5

10

15

20

wherein the ring represented by -J-K-L-M-Q- is a group selected from:

1)
$$-N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$$

2)
$$-N-C(R^{13})=C(R^{13})-C(R^{13})=N-$$

3)
$$-N-C(R^{13})=C(R^{13})-N=C(R^{13})$$

4)
$$-N-C(R^{13})=N-C(R^{13})=N-$$

5)
$$-N-C(R^{13})=C(R^{13})-N=N-$$

6)
$$-N-C(R^{13})=N-N=N-$$

7)
$$-N-N=C(R^{13})-N=N^{-1}$$

8) =
$$C - C(R^{13}) = N - C(R^{13}) = .$$

9)
$$-C=C(R^{13})-O-C(R^{13})=N-$$

10) =
$$C - C(R^{13}) = C(R^{13}) - N = .$$

11)
$$-C=C(R^{13})-C(R^{13})=N-O-$$
.

12) =
$$C - C(R^{13}) = C(R^{13}) - 0 - N = .$$

13)
$$-C=C(R^{13})-O-N=C(R^{13})-$$

14) =
$$C-S-C(R^{13})=N-C(R^{13})=$$
,

15)
$$-C=C(R^{13})-S-C(R^{13})=N-$$
,

16) =
$$C-S-C(R^{13}) = C(R^{13}) - N=$$
,
17) = $C-S-C(R^{13}) = C(R^{13}) - C(R^{13}) =$,

16)

```
19) = C - C(R^{13}) = C(R^{13}) - C(R^{13}) =, or
```

20) $-C=C(R^{13})-O-C(R^{13})=C(R^{13})-;$

wherein the ring represented by -C-W-R-T-U-V- is a group selected from:

1)
$$-C=N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$$

2)
$$-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$$
,

3)
$$-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$$

4)
$$-C=N-N=C(R^{13})-C(R^{13})=C(R^{13})-$$

5)
$$-C=C(R^{13})-N=N-C(R^{13})=C(R^{13})-$$

6)
$$-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$$
,

7)
$$-C=N-C(R^{13})=C(R^{13})-N=C(R^{13})-$$
,

8)
$$-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-$$
,

9)
$$-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$$
,

10)
$$-C=N-C(R^{13})=N-N=C(R^{13})$$
-,

11)
$$-C=N-C(R^{13})=C(R^{13})-N=N-$$
, or

12)
$$-C=C(R^{13})-N=C(R^{13})-N=N-;$$

g)

wherein

20

10

15

is as defined above;

h)

$$\begin{array}{c|c}
R - W \\
\downarrow U - V
\end{array} (CH_2)_u - \begin{array}{c}
\downarrow I \\
\downarrow I \\$$

is as defined above; or

i)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$);

 \mathbb{R}^2 is

10

- a) (C1-C12 alky1)-X,
- b) $-(C_2-C_{12} \text{ alkenyl})-X$, or

c)

X is

- a) halogen (F, Cl, Br, I),
 - b) -CN,
 - c) -NO₂,
 - d) -CF3,
 - e) -NHR¹⁴
- 20 f) -NHS(0) $_{r}R^{14}$,

```
g) -NHC(NH)H,
              h) -NHC(NH)NHOH,
              i) - NHC (NH) NHCN,
              j) -NHC(NH)NHR<sup>14</sup>,
              k) -NHC (NH) NHCOR<sup>14</sup>,
 5
              1) -C(NH)NHR^{14}.
              m) -C(NH)NHCOR14.
              n) - C(0) NHR^{14}
              o) -C(0) NHC(0) R^{14},
              p) - C(0) OR^{14}
10
              q) - OR^{14}
               r) - OC(0)R^{14}
               s) -OC(0)OR^{14},
               t) -0C(0)NHR^{14},
               u) - OC(0) NHC(0) R^{14}
15
               v) -SC(=NH) NHR<sup>14</sup>, or
               w) -SC(=NH) NHC(=0) R<sup>14</sup>;
       R<sup>13</sup> is
                   H, halogen (F, Cl, Br, I), (C1-C6)alkyl,
20
                   -(CH<sub>2</sub>)<sub>r</sub>-D, methylenedioxy, -(CH<sub>2</sub>)<sub>w</sub>-OR<sup>8</sup>,
                   -(CH<sub>2</sub>)_wCONR<sup>8</sup>R<sup>9</sup>, -(CH<sub>2</sub>)_wNC, -(CH<sub>2</sub>)_wCN,
                   -(CH_2)_wNO_2, -(CH_2)_wS(O)_TR^7, -(CH_2)_wCOR^8,
                   -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9, -(CH_2)_wSO_2NH^-(C_1-
                   C_5)-alkyl, -(CH_2) _wSO_2NH_2, -(CH_2) _wSO_2NH-CO-(C_1-
25
                   C_6) -alkyl, - (CH<sub>2</sub>) wSO<sub>2</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>) -alkyl,
                   -(CH_2)_{w}NHSO_2-(C_1-C_6)-alkyl, -(CH_2)_{w}NHSO_2-(C_1-C_6)
                   C6) -perfluoroalkyl, - (CH2) wNHSO2 - phenyl,
                   -(CH2) wNHSO2-perfluorophenyl, -(CH2) wCN4H,
                   -0(C=0)-(C_1-C_5-a1ky1), -0(CH_2)_wCN, -NH(CH_2)_wCN,
30
                   -s(CH<sub>2</sub>)_wCN, -(CH<sub>2</sub>)_wNH-CO-(C<sub>1</sub>-C<sub>6</sub>-alkyl),
                   -(CH<sub>2</sub>)<sub>w</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl), -(CH<sub>2</sub>)<sub>w</sub>NH-
                   CO-(C_1-C_6-phenyl), -(CH_2)_wNH-CO_2-(C_1-C_6-alkyl),
                    -(CH<sub>2</sub>)<sub>w</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>-phenyl), -(CH<sub>2</sub>)<sub>u</sub>phenyl
                   wherein the phenyl contains 0-3 substituents
35
                    selected from R18, or -O(C=O) phenyl wherein the
```

R18.

```
R<sup>14</sup> is
               a) -H,
  5
               b) -CF3
               c) -C1-C4 alkyl,
               d) -(CH<sub>2</sub>)<sub>G</sub>-aryl, wherein aryl is phenyl, biphenyl,
               naphthyl, or fluorenyl are optionally substituted
10
               with one to three substituents selected from the
               group consisting of:
                       halogen (F, Cl, Br, I),
                       ·-CF<sub>3</sub>,
                       -(C1-C4 alkyl),
15
                       -methylenedioxy,
                       -(C1-C4 alkoxy), or
                       -(CH<sub>2</sub>)_{x}N[(CH<sub>2</sub>)_{v}R<sup>15</sup>][(CH<sub>2</sub>)_{v}R<sup>16</sup>];
       R<sup>18</sup> and R<sup>19</sup> are independently
                     H, halo (F, Cl., Br, I), C_1-C_6-alkyl, -(CH<sub>2</sub>)<sub>W</sub>-
20
                     OR^8, - (CH_2)_wCN, - (CH_2)_wNC, - (CH_2)_wNO_2,
                     -(CH_2)_wS(0)_rR^7, -(CH_2)_wNR^8R^9, -(CH_2)_wCOR^8,
                     -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9, -(CH_2)_wSO_2NH-(C_1-
                     C_5)-alkyl, -(CH_2)_wSO_2NH_2, -(CH_2)_wSO_2NH-CO-(C_1-
25
                     C_6)-alkyl, -(CH_2)<sub>w</sub>SO_2NH-CO_2-(C_1-C_6)-alkyl,
                     -(CH<sub>2</sub>)_wNHSO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>)-alky1, -(CH<sub>2</sub>)_wNHSO<sub>2</sub>-(C<sub>1</sub>-
                     C6) -perfluoroalkyl, -(CH2) wNHSO2-phenyl,
                     -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-perfluorophenyl, -(CH<sub>2</sub>)<sub>w</sub>CN<sub>4</sub>H,
                     -0(C=0)-(C_1-C_5-alkyl), -0(CH_2)_wCN, -NH(CH_2)_wCN,
30
                     -S(CH<sub>2</sub>)<sub>w</sub>CN, -(CH<sub>2</sub>)<sub>w</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-alky1),
                     -(CH<sub>2</sub>)<sub>w</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl), -(CH<sub>2</sub>)<sub>w</sub>NH-
                    CO-(C_1-C_6-phenyl), -(CH_2)_wNH-CO_2-(C_1-C_6-alkyl),
                     -(CH_2)<sub>wNH</sub>-CO_2-(C_1-C_6-phenyl), or -O(C=0) phenyl;
       R18 and R19 can be taken together to form a
35
              methylenedioxy group;
      R<sup>20</sup> and R<sup>20a</sup> are independently
```

phenyl contains 0-3 substituents selected from

```
(C1-Cg)alkyl, -(CH2)uphenyl wherein the phenyl
              contains 0-3 substituents selected from R<sup>18</sup>,
              (C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl, or -(CH<sub>2</sub>)<sub>r</sub>-D;
     D is fur-2-yl, fur-3-yl, thiophen-2-yl, thiophen-3-yl,
           oxazol-2-yl, oxazol-4-yl, thiazol-2-yl, thiazol-4-
 5
           yl, pyrid-2-yl, pyrid-4-yl, pyrimidin-2-yl, or
           pyrimidin-4-yl;
     Wis
           a) -0-,
           b) -NR^4-.
10
           c) a bond, or
           d) -(CH_2)_{n}-;
     and all other required substituents of formula (I) are
15
     as defined in Claim 2.
           Most preferred compounds of the formula (I) are
     those compounds wherein:
     A is -BY^{1}Y^{2};
20 Y^1 and Y^2 are -OH:
     Y^1 and Y^2 can be taken together to form a cyclic boron
           ester where said chain or ring contains from 2 to
           20 carbon atoms and, from 0-3 heteroatoms which can
           be N, S, or O,
25 \cdot Z is -(CH<sub>2</sub>)<sub>m</sub>CONR<sup>8</sup>-;
     R<sup>l</sup> is
          a) - (CH<sub>2</sub>)<sub>D</sub>-aryl, wherein aryl is phenyl, naphthyl or
             biphenyl substituted with one, two or three
             substituents selected from the group consisting
30
             of:
                halo (F, Cl, Br, I), methylenedioxy, -R<sup>8</sup>,
               -NR8COR9, C2-C6-alkenyl, C2-C6-alkynyl,
                -(CH_2)_W-OR<sup>8</sup>, -(C_1-C<sub>6</sub>)-perfluoroalkyl,
                -(CH_2)_wCN, -(CH_2)_wNC, -(CH_2)_wNO_2, -(CH_2)_wCF_3,
                -(CH_2)_wS(0)_TR^7, -(CH_2)_wNR^8R^9, -(CH_2)_wCOR^8,
35
                -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9. -(CH_2)_wSO_2NH-(C_1-
```

C6)-alkyl, -(CH₂)_wSO₂NH₂, -(CH₂)_wSO₂NH-CO-(C₁-C₆)-alkyl, -(CH₂)_wSO₂NH-CO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-alkyl, -(CH₂)_wNHSO₂-(C₁-C₆)-perfluoroalkyl, -(CH₂)_wNHSO₂-phenyl, -(CH₂)_wNHSO₂-perfluorophenyl, -(CH₂)_wCN₄H, -O(CH₂)_wCN, -NH(CH₂)_wCN, -S(CH₂)_wCN, -(CH₂)_wNH-CO-(C₁-C₆-alkyl), -(CH₂)_wNH-CO-(C₁-C₆-phenyl), -(CH₂)_wNH-CO-(C₁-C₆-phenyl), -(CH₂)_wNH-CO₂-(C₁-C₆-perfluoroalkyl), or -(CH₂)_wNH-CO₂-(C₁-C₆-phenyl);

- b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted isoquinolinyl wherein the substituents are members selected from the group consisting of: halo (F, Cl, Br, I), -CN, C1-C10-alkyl, C3-C8cycloalkyl, C2-C10-alkenyl, C2-C10-alkynyl, R⁸, -OR⁸, -NO₂, -CF₃, -S(O)_TR⁷, -NR⁸R⁹, -COR⁸,
- -CO₂R⁸, -CONR⁸R⁹, NR⁸COR⁹, NR⁸CO₂R⁹,

 O
 O

d) M—L

5

10

15

wherein the ring represented by -J-K-L-M-Q- is a group selected from:

- 1) $-N-C(R^{13})=N-C(R^{13})=N-$,
- 2) $-N-C(R^{13})=C(R^{13})-N=N-$

3) $-N-N=C(R^{13})-N=N-$

 $-N-C(R^{13})=N-N=N-$

 $=C-S-C(R^{13})=C(R^{13})-C(R^{13})=$, or 6)

 $=C-O-C(R^{13})=C(R^{13})-C(R^{13})=;$ 7)

5 e)

wherein the ring represented by -C-W-R-T-U-V- is a group selected from:

 $-C=N-C(R^{13})=C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})$

1) $-C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-$

2) $-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$

3) $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$

4) $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$, or

5) $-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-;$

15 f)

10

wherein

is as defined above;

g)

20 is as defined above; or

h)

wherein G is S;

 R^2 is

a) -(C1-C12 alky1)-X, or

5 b)

X is

- a) halogen (F, Cl, Br, I),
- b) -CN,
- 10 c) $-NHR^{14}$
 - d) -NHC(NH)H,
 - e) -NHC(NH)NHR14,
 - $f) C(NH)NHR^{14}$
 - $g) OR^{14}$, or
- 15 h) $-SC(=NH)NHR^{14}$;

R^{ll} is H;

 R^{13} is

H, halogen (F, Cl, Br, I), $-(CH_2)_wNO_2$, (C1-

 C_6) alkyl, $-(CH_2)_r$ -D, $-(CH_2)_w$ -OR⁸,

 $-(CH_2)_wCONR^8R^9$, $-(CH_2)_wCN$, $-(CH_2)_wNC$,

 $-(CH_2)_wCOR^8$, $-(CH_2)_wCO_2R^8$, $-(CH_2)_wCO_2R^3$,

 $-(CH_2)_wNR^8R^3$, $-(CH_2)_wS(0)_2R^7$, $-(CH_2)_wS(0)_1R^7$

C6) -a1ky1, -(CH2) wNHSO2-pheny1 -(CH2) wSO2NH-(C1-

 C_5)-alkyl, -(CH₂)_wSO₂NH₂, -(CH₂)_wSO₂NH-CO₂-(C₁-

25 C_6) -alkyl, - $(CH_2)_WNHSO_2$ - $(C_1$ - C_6) -alkyl,

```
- (CH2) wNHSO2 - (C1 - C6) -perfluoroalkyl,
               -(CH_2)_w CN_4H, -O(C=0) - (C_1 - C_5 - alkyl), -O(CH_2)_t CN,
               alkyl), -(CH2)wNH-CO-(C1-C6-perfluoroalkyl), or
                -(CH<sub>2</sub>)uphenyl wherein the phenyl contains 0-3
 5
                substituents selected from R18;
    R14 is -H:
     R<sup>18</sup> and R<sup>19</sup> are independently
                 H, halo (F, Cl, Br, I), C_1-C_6-alkyl, -(CH<sub>2</sub>)<sub>W</sub>-
                 OR^8, -(CH<sub>2</sub>)<sub>W</sub>CN, -(CH<sub>2</sub>)<sub>W</sub>NC, -(CH<sub>2</sub>)<sub>W</sub>NO<sub>2</sub>,
10
                 -(CH_2)_wS(0)_rR^7, -(CH_2)_wNR^8R^9, -(CH_2)_wCOR^8,
                 -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9, -(CH_2)_wSO_2NH^-(C_1-
                 C_5)-alkyl, -(CH<sub>2</sub>)wSO<sub>2</sub>NH<sub>2</sub>, -(CH<sub>2</sub>)wSO<sub>2</sub>NH-CO-(C<sub>1</sub>-
                 C_6)-alkyl, -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>)-alkyl,
                  -(CH_2)_wNHSO_2-(C_1-C_6)-alkyl, -(CH_2)_wNHSO_2-(C_1-C_6)
15
                 C6) -perfluoroalkyl, -(CH2) wNHSO2-phenyl,
                  -(CH2) wNHSO2-perfluorophenyl, -(CH2) wCN4H,
                  -0(C=0)-(C_1-C_5-alkyl), -0(CH_2)_{t}CN, -NH(CH_2)_{t}CN,
                  -S(CH_2)_{t}CN, -(CH_2)_{w}NH-CO-(C_1-C_6-alkyl),
                  -(CH<sub>2</sub>) wNH-CO-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl), -(CH<sub>2</sub>) wNH-
20
                  CO-(C_1-C_6-phenyl), -(CH_2)_WNH-CO_2-(C_1-C_6-alkyl),
                  -(CH_2) wNH-CO_2-(C_1-C_6-phenyl), or -O(C=0) phenyl;
      R18 and R19 can be taken together to form a
             methylenedioxy group;
      \mathbb{R}^{20} is selected from the group consisting of:
                 (CH_2)_r-D, or -(CH_2)_uphenyl wherein the phenyl
                contains 0-3 substituents selected from R18;
      and all other required substituents of formula (I) are
      defined as in Claim 3.
 30
             Specifically preferred are those most preferred
```

 N^{1} - (4-phenylbenzoyl) - (R)-boroarginine, hydrochloride N^{1} - (3-phenoxybenzoyl) - (R)-boroarginine, hydrochloride

compounds listed below:

```
N^{1}-(1-fluorenonyl)-(R)-boroarginine, hydrochloride
    N^{2}-(4-[1-butyl]benzoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(2-benzoylbenzoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(5-phenyl-2-furoyl)-(R)-boroarginine, hydrochloride
     N1-(3-[N-benzyloxycarbonyl-N-methylamino]-4-[1-butyl]-
          benzoyl) - (R) -boroarginine, hydrochloride
     N^{1}-(2-phenyl-4-isoquinoloyl)-(R)-boroarginine,
          hydrochloride
     N^{1}-(4-cyclohexylbenzoyl)-(R)-boroarginine,
10
          hydrochloride
     N^{1}-(2-methyl-4-phenylbenzoyl)-(R)-boroarginine,
          hydrochloride
     N^{1}-[4-phenyl-2-nitrobenzoyl]boroArg, (+)-pinanediol
          ester
15
    N^{1}-[4-phenyl-2-fluorobenzoyl]boroArg, (+)-pinanediol
     N^{\frac{1}{2}}-[4-phenyl-2-aminobenzoyl]boroArg, (+)-pinanediol
     N^{1}-[4-phenyl-2-(methylsulfonamido)benzoyl]boroArg, (+)-
20
          pinanediol ester
     N^{I}-[4-phenyl-2-(cyanomethylamino)benzoyl]boroArg, (+)-
          pinanediol ester
     N^{1}-[4-phenyl-2-(cyanomethyl)benzoyl]boroArg, (+)-
          pinanediol ester
25
    N^{1}- [4-phenyl-2-(diethylamino)benzoyl]boroArg, (+)-
          pinanediol ester
    N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-methyl-
          benzoyl]boroArg, (+)pinanediol ester
    N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-methyl-
30
          benzoyl]boroArg, (+)pinanediol ester
    N^{l} - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] - 2 - methyl -
          benzoyl]boroArg, (+)-pinanediol ester
    N^{l}-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg,
          (+)-pinanediol ester
35
    N^{l}-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg-OH
```

```
N^{\frac{1}{2}} - [4 - [2 - (n-butoxycarbonylaminosulfonyl) phenyl] -2 -
          methyl-benzoyl]boroArg, (+)-pinanediol ester
     N^{\frac{1}{2}}- [4-[2-(diethylaminosulfonyl)phenyl]-2-methyl-
           benzoyl]boroArg, (+)pinanediol ester
     N^{\frac{1}{2}} - [4 - [2 - (t-butylaminosulfonyl) phenyl] -2 -fluoro-
 5
           benzoyl]boroArg, (+)pinanediol ester
     N^{l} - [4 - [2 - (aminosulfonyl) phenyl] - 2 - fluoro -
           benzoyl]boroArg, (+)pinanediol ester
     N^{1}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-fluoro-
10
           benzoyl]boroArg, (+)-pinanediol ester
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-
           benzoyl]boroArg, (+)pinanediol ester
     N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroArg,
           (+)pinanediol ester
15
     N1-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-nitro-
           benzoyl]boroArg, (+)-pinanediol ester
     N^{1}-(3-phenylbenzoyl)boroarg, (+)-pinanediol
     N^{1}-[4-(3-BOCNHphenyl)2-methylbenzoyl]boroarg, (+)-
           pinanediol
     N^2-(5-phenyl-2-furoyl)boroarg, (+)-pinanediol
20
     N^{1}-(5-phenyl-2-thienyl)boroarg, (+)-pinanediol
     N^{\frac{1}{2}} - [4 - (3-nitrophenyl) benzoyl] boroarg, (+)-pinanediol
     N^{\frac{1}{2}}- [4-(3-aminophenyl) benzoyl] boroarg, (+)-pinanediol
     N^{1}-(3-phenylbenzoyl)borolys, (+)-pinanediol
     N^{1}-(5-phenyl-2-furoyl)boroarg-OH
25
     N^{\frac{1}{2}} - (3-phenylbenzoyl) boroIrg, (+)-pinanediol
     (R) - [5-amino-1-[[[5-(phenylmethyl)-1H-1,2,4-triazol-1-
           yl]acetyl]amino]-pentyl]boronic acid hydrochloride
      [3aS-[2(S*),3a\alpha,4\beta,6\beta]]-(1,1-dimethylethyl) [3-[5-[[[4-
30
            [(amino-iminomethyl)amino]-1-(hexahydro-3a,5,5-
           trimethyl-4,6-methano-1,3,2-benzo-dioxaborol-2-
           yl)butyl]amino]carbonyl]-2-thienyl]phenyl)carbamate
           hydrochloride
      [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]] - N - [5-amino-1-(hexahydro-
35
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
```

```
2-yl)pentyl]-5-(phenyl-methyl)-3-(2H-tetrazol-5-
                         ylmethyl)-1H-1,2,4-triazole-1-acetamide
                        hydrochloride
             [3aS-[2(S^*),3a\alpha,4\beta,6\beta,7a\alpha]]-1-[2-[[5-amino-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydro-1-(hexahydr
    5
                         3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
                         2-yl)pentyl]amino]-2-oxoethyl]-5-(phenylmethyl)-1H-
                         1,2,4-triazole-3-acetic acid hydrochloride 1:1 with
                         [3aS-[2(S^*),3a\alpha,4\beta,6\beta,7a\alpha]]-1-[2-[5-amino-1-
                         (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
 10
                        benzodioxaboro1-2-yl)pentyl]amino]-2-oxoethyl]-3-
                         (phenylmethyl)-1H-1,2,4-triazole-5-acetic acid
                        hydrochloride
            [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-methyl 1-[2-[[5-amino-1-
                         (hexahydro-3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-
 15
                        benzodioxaborol-2-yl)pentyl]-amino]-2-oxoethyl]-5-
                        (phenylmethyl)-1H-1,2,4-triazole-3-acetate
                       hydrochloride
            [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-methyl 1-[2-[[5-amino-1-
                        (hexahydro-3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-
20
                       benzodioxaborol-2-yl)pentyl]-amino]-2-oxoethyl]-3-
                        (phenylmethyl)-1H-1,2,4-triazole-5-acetate
                       hydrochloride
            [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-1)]
                       3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
25
                       2-yl)pentyl]-3-phenyl-5-(phenyl-methyl)-1H-1,2,4-
                       triazole-1-acetamide hydrochloride
           (R) - [5-amino-1-[[[3-phenyl-5-(phenylmethyl)-1H-1,2,4-
                       triazol-1-yl]acetyl]-amino]pentyl]boronic acid
                       hydrochloride
30
           [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
                       3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
                       2-yl)pentyl]-3-(3-nitro-phenyl)-5-(phenylmethyl)-
                       1H-1,2,4-triazole-1-acetamide hydrochloride
           [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[4-[(aminoiminomethyl)-
35
                       amino]-1-(hexahydro-3a, 5, 5-trimethyl-4, 6-methano-
                       1,3,2-benzodioxaborol-2-yl)butyl]-3-(3-
```

```
nitrophenyl) -5- (phenylmethyl) -1H-1,2,4-triazole-1-
          acetamide hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-yl)pentyl]-3,5-bis(phenyl-methyl)-1H-1,2,4-
5
          triazole-1-acetamide hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[4-[(aminoiminomethyl)-
          amino] -1- (hexahydro-3a, 5, 5-trimethyl-4, 6-methano-
          1,3,2-benzodioxaborol-2-yl)butyl]-3,5-
10
          bis (phenylmethyl) -1H-1,2,4-triazole-1-acetamide
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-)]
           3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-
           2-yl)pentyl]-3-(phenylmethyl)-1H-1,2,4-triazole-1-
15
          acetamide
     (R) - [5-amino-1-[[[3-(phenylmethyl)-1H-1,2,4-triazol-1-
          yl]acetyl]amino]-pentyl]boronic acid hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
20
           2-y1)penty1]-5-methy1-3-(phenylmethy1)-1H-1,2,4-
           triazole-1-acetamide hydrochloride
     [3aS-[2(R*),3a\alpha,4\beta,6\beta]]-N-[5-amino-1-(hexahydro-3a,5,5-
           tri-methyl-4,6-methano-1,3,2-benzodioxaborol-2-
           yl) pentyl] -5- [(phenyl-methoxy) methyl] -3-
25
           (phenylmethyl)-1H-1,2,4-triazole-1-acetamide
           hydrochloride
     [3aS - [2(S^*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]] - N - [5 - amino - 1 - (hexahydro - 1)]
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-5-(cyanomethyl)-3-(phenylmethyl)-1H-
30
           1,2,4-triazole-1-acetamide hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-1)]
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-3-(phenylmethyl)-5-propyl-1H-1,2,4-
           triazole-1-acetamide hydrochloride
35
     [3aS-[2(S+),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
```

```
2-y1) penty1] -5-pheny1-3-(phenylmethy1) -1H-1,2,4-
          triazole-1-acetamide hydrochloride
     (R) - [5-amino-1-[[[5-methyl-3-(phenylmethyl)-1H-1,2,4-
          triazol-1-yl]acetyl]-amino]pentyl]boronic acid
          hydrochloride
 5
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-y1)penty1]-3-phenyl-1H-1,2,4-triazole-1-acetamide
          hydrochloride
10
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-1)]
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-y1)penty1]-5-methy1-3-pheny1-1H-1,2,4-triazole-1-
          acetamide hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
15
          3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-
          2-yl)pentyl]-5-(2-phenyl-ethyl)-1H-1,2,4-triazole-
          1-acetamide
     (R) - [5-amino-1-[[[5-(2-phenylethyl)-1H-1,2,4-triazol-1-
          yl]acetyl]amino]-pentyl]boronic acid hydrochloride
20
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-
          2-yl)pentyl]-3,5-bis(2-phenyl-ethyl)-1H-1,2,4-
          triazole-1-acetamide hydrochloride
     (R) - [5-amino-1-[[[3,5-bis(2-phenylethyl)-1H-1,2,4-
25
          triazol-1-yl]acetyl]amino]-pentyl]boronic acid
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-
          2-yl)pentyl]-3-(2-phenylethyl)-1H-1,2,4-triazole-1-
30
          acetamide
     (R) - [5-amino-1-[[[3-(2-phenylethyl)-1H-1,2,4-triazol-1-
          yl]acetyl]amino]-pentyl]boronic acid hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
35
          2-yl)pentyl]-3-(3-phenyl-propyl)-1H-1,2,4-triazole-
          l-acetamide
```

```
(R) - [5-amino-1-[[[5-(3-phenylpropyl)-1H-1,2,4-triazol-1-
          yl]acetyl]amino]-pentyl]boronic acid hydrochloride
    (R) - [5-amino-1-[[[3-(3-phenylpropyl)-1H-1,2,4-triazol-1-
          yl]acetyl]amino]-pentyl]boronic acid hydrochloride
    [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
5
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-yl)pentyl]-1,5-bis(phenyl-methyl)-1H-1,2,4-
          triazole-3-acetamide hydrochloride 2:8 with (R)-
          [5-amino-1-[[[1,5-bis(phenylmethyl)-1H-1,2,4-
          triazol-3-yl]acetyl]amino]-pentyl]boronic acid
10
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-4-methyl-2-phenyl-5-
          pyrimidinecarboxamide hydrochloride
15
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-2,4-diphenyl-5-pyrimidinecarboxamide
           hydrochloride
      [3aS - [2(S*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]] - N - [4-
20
           [(amimoiminomethyl)amino]-1-(hexahydro-3a,5,5-
           trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)-
           butyl]-4-methyl-2-phenyl-5-pyrimidinecarboxamide
           hydrochloride
      [3aS-[2(S*),3\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
 25
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-6-phenyl-3-pyridinecarboxamide
            hydrochloride
      (R) - [5-amino-1-[[(6-pheny1-3-
            pyridinyl) carbonyl] amino] pentyl] boronic acid
 30
            dihydrochloride
            Illustrative of the compounds of this invention are
```

35

the following:

```
N^{2}-(4-phenylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
    N^{2}-(3-phenylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
    N^{2}-(3-phenoxybenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
    N1-(4-[4-pyridyl]benzoyl)-(R)-boroarginine (+)-
          pinanediol, bisulfite
    N^{1}-(2-benzoylbenzoyl)-(R)-boroarginine (+)-pinanediol,
10
          bisulfite
    N^{1}-(3-benzoylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
    N^{2}-(4-benzoylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
    N^{1}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-
15
          boroarginine (+)-pinanediol, bisulfite
    N^{2}-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
    N^{2}-(4-ethylbenzoyl)-(R)-boroarginine (+)-pinanediol,
20
          bisulfite
    N^{1}-(4-n-propylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
    N^{1}-(4-isopropylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
    N^{2}-(4-n-butylbenzoyl)-(R)-boroarginine (+)-pinanediol,
25
          bisulfite
    N^{1}-(4-tert-butylbenzoyl)-(R)-boroarginine (+)-
          pinanediol, bisulfite
    N^{1}-(4-n-hexylbenzoyl)-(R)-boroarginine (+)-pinanediol,
          bisulfite
30
    N^{2}-(4-cyclohexylbenzoyl) -(R)-boroarginine (+)-
          pinanediol, bisulfite
    N^{1}-(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
    N^{1}-(4-n-butyloxybenzoyl)-(R)-boroarginine (+)-
35
          pinanediol,
                       bisulfite
```

```
N^{1}- (4-[N-cyclopropylcarbonyl] aminobenzoyl) - (R) -
         boroarginine (+)-pinanediol, bisulfite
    N1-(4-[N-cyclohexylcarbonyl]aminobenzoyl)-(R)-
         boroarginine (+)-pinanediol, bisulfite
    N^{1}-(4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
5
         boroarginine (+)-pinanediol, bisulfite
    N^{1}-(4-[4-methoxy]phenylbenzoyl)-(R)-boroarginine (+)-
         pinanediol, bisulfite
    N^{1}-(2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-
         boroarginine (+)-pinanediol, bisulfite
10
    N^{2}-(2-[1-naphthyl]benzoyl)-(R)-boroarginine (+)-
         pinanediol, bisulfite
    N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-boroarginine (+)-
          pinanediol, bisulfite
    N^{1}-(4-phenylbenzoyl)-(R)-borothioarginine (+)-
15
          pinanediol, hydrobromide
    N^{1}-(3-phenylbenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
    N^{1}-(3-phenoxybenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
20
     N^{1}-(2-benzoylbenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
     N^{1}-(3-benzoylbenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
     N^{1}-(4-benzoylbenzoyl)-(R)-borothioarginine (+)-
25
          pinanediol, hydrobromide
     N^{1}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
     N^{1}-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
30
     N^{1}-(4-ethylbenzoyl)-(R)-borothioarginine (+)-pinanediol,
          hydrobromide
     N^{2}-(4-n-propylbenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
     N^{1}-(4-isopropylbenzoyl)-(R)-borothioarginine (+)-
 35
          pinanediol, hydrobromide
```

```
N^{1}-(4-n-butylbenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
     N^{1}-(4-tert-butylbenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
    N^{1}-(4-n-hexylbenzoyl)-(R)-borothioarginine (+)-
 5
          pinanediol, hydrobromide
     N^{1}-(4-cyclohexylbenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
     N^{1}-(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
10
          borothioarginine (+)-pinanediol, hydrobromide
     N^{1}-(4-n-butyloxybenzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
    N^{1}- (4-[N-cyclopropylcarbonyl] aminobenzoyl) - (R) -
          borothioarginine (+)-pinanediol, hydrobromide
15
    N^{1}- (4-[N-cyclohexylcarbonyl] aminobenzoyl) - (R) -
          borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-(4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
    N^{2}-(4-[4-methoxy]phenylbenzoyl)-(R)-borothioarginine
          (+)-pinanediol, hydrobromide
20
    N^{1}-(2-[2-phenylbenzyloxycarbonyl]benzoyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-(2-[1-naphthyl]benzoyl)-(R)-borothioarginine (+)-
          pinanediol, hydrobromide
25
    N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-borothioarginine
          (+)-pinanediol, hydrobromide
    N^{l}-([2-anthraquinony1]carbony1)-(R)-boroarginine (+)-
          pinanediol, bisulfite
    N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-boroarginine
30
          (+)-pinanediol, bisulfite
    N^{1}-([2-anthraquinonyl]carbonyl)-(R)-borothioarginine
          (+)-pinanediol, hydrobromide
    N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
35
    N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-borothiohomoarginine
          (+)-pinanediol, hydrobromide
```

 N^{1} -([2-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)pinanediol, bisulfite N1-([2-fluoren-9-onyl]carbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide N^{1} -([3-fluoren-9-onyl]carbonyl)-(R)-borothioarginine 5 (+) -pinanediol, hydrobromide N^{1} -([3-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)pinanediol, bisulfite N^{1} -([4-fluoren-9-onyl]carbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide 10 N^{1} -([4-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)pinanediol, bisulfite N^{1} -(1-naphthoy1)-(R)-borothicarginine (+)-pinanediol, hydrobromide N^{1} -(1-naphthoy1)-(R)-boroarginine (+)-pinanediol, 15 bisulfite N1-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)borothioarginine (+)-pinanediol, hydrobromide N^2 -(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)borothioarginine (+)-pinanediol, hydrobromide 20 N^{1} -(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)borothioarginine (+)-pinanediol, hydrobromide $N^{\frac{1}{4}}$ -(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)borothioarginine (+)-pinanediol, hydrobromide N^{1} -(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-25 borothioarginine (+)-pinanediol, hydrobromide N1-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)borothioarginine (+)-pinanediol, hydrobromide N^{1} -(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)borothioarginine (+)-pinanediol, hydrobromide 30 N^{1} -(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide N^{1} -(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)borothioarginine (+)-pinanediol, hydrobromide

```
N^{\perp}-(2-methyl-4-[4-carboxy] phenyl-5-
          trifluoromethylbenzoyl) - (R) -borothioarginine (+) -
          pinanediol, hydrobromide
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
 5
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
          borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-boroarginine
          (+)-pinanediol, bisulfite
    N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
10
          boroarginine (+)-pinanediol, bisulfite
    N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-boroarginine
          (+)-pinanediol, bisulfite
    N^{1}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
15
    N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-boroarginine
          (+)-pinanediol, bisulfite
    N^{1}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-boroarginine
          (+)-pinanediol, bisulfite
20
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
          (R)-boroarginine (+)-pinanediol, bisulfite
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
25
          boroarginine (+)-pinanediol, bisulfite
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-
          trifluoromethylbenzoyl) - (R) -boroarginine (+) -
          pinanediol, bisulfite
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
          boroarginine (+)-pinanediol, bisulfite
30
    N^{2}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
         boroarginine (+)-pinanediol, bisulfite
    N^{1}-(2-[5-phenyl]furylcarbonyl)-(R)-boroarginine (+)-
          pinanediol, bisulfite
35
    N^{2}-(2-[5-phenyl]thiophen-ylcarbonyl)-(R)-boroarginine
          (+)-pinanediol, bisulfite
```

 N^{1} -(2-[5-phenyl] furylcarbonyl) -(R) -borothioarginine (+) pinanediol, hydrobromide N1-(2-[5-phenyl]thiophen-ylcarbonyl)-(R)borothioarginine (+)-pinanediol, hydrobromide N^{1} -(3-[6-phenyl]pyridylcarbonyl)-(R)-boroarginine (+)-5 pinanediol, bisulfite N^{1} -(3-[5-benzyloxy]pyridylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite N^{1} -(3-[6-phenyl]pyridylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide 10 N^{1} -(3-[5-benzyloxy]pyridylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide N1-(2-benzopyronylcarbonyl)-(R)-boroarginine (+)pinanediol, bisulfite N^{2} -(2-benzopyronylcarbonyl)-(R)-borothioarginine (+)-15 pinanediol, hydrobromide N^{1} -(3-isoquinolinylcarbonyl)-(R)-boroarginine (+)pinanediol, bisulfite N^{2} -(2-phenyl-4-isoquinolinylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite 20 N^{1} -(3-isoquinolinylcarbonyl)-(R)-borothioarginine (+)pinanediol, hydrobromide N^{1} -(2-phenyl-4-isoquinolinylcarbonyl)-(R)borothioarginine (+)-pinanediol, hydrobromide N^{1} -(2-isoquinolinylcarbonyl)-(R)-boroarginine (+)-25 pinanediol, bisulfite N^{2} -(2-isoquinolinylcarbonyl)-(R)-borothioarginine (+)pinanediol, hydrobromide hydrochloride N^{1} -(4-phenylbenzoyl)-(R)-boroarginine, hydrochloride N^{1} -(3-phenylbenzoyl)-(R)-boroarginine, 30 hydrochloride N^{1} -(3-phenoxybenzoyl)-(R)-boroarginine, N^{1} - (4-[4-pyridyl]benzoyl)-(R)-boroarginine, hydrochloride N^{1} -(2-benzoylbenzoyl)-(R)-boroarginine, hydrochloride hydrochloride N^{1} -(3-benzoylbenzoyl)-(R)-boroarginine, 35

 N^{1} - (4-benzoylbenzoyl) - (R) -boroarginine,

hydrochloride

```
N^{1}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-
          boroarginine, hydrochloride
     N^{1}-(3-[N-benzyloxycarbonyl-N-methyl] aminobenzoyl) - (R) -
          boroarginine, hydrochloride
     N^{1}-(4-ethylbenzoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(4-n-propylbenzoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(4-isopropylbenzoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(4-tert-butylbenzoyl)-(R)-boroarginine,
          hydrochloride
10
     N^{1}- (4-n-\text{hexylbenzoyl})-(R)-boroarginine, hydrochloride
     N^{1}-(4-cyclohexylbenzoyl)-(R)-boroarginine,
          hydrochloride
     N^{1}-(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
          boroarginine, hydrochloride
     N^{1}-(4-n-butyloxybenzoyl)-(R)-boroarginine,
15
          hydrochloride
     N^{1}- (4-[N-cyclopropylcarbonyl] aminobenzoyl) - (R) -
          boroarginine, hydrochloride
     N^{1}- (4-[N-cyclohexylcarbonyl]aminobenzoyl) - (R) -
20
          boroarginine, hydrochloride
     N^{1}-(4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
          boroarginine, hydrochloride
    N^{1}-(4-[4-methoxy]phenylbenzoyl)-(R)-boroarginine,
          hydrochloride
25
    N^{1}- (2-[2-pheny1]benzyloxycarbonylbenzoyl)-(R)-
          boroarginine, hydrochloride
    N^{1}-(2-[1-naphthyl]benzoyl)-(R)-boroarginine,
          hydrochloride
    N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-boroarginine,
30
          hydrochloride
    N^{1}-([2-anthraquinonyl]carbonyl)-(R)-boroarginine,
          hydrochloride
    N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-boroarginine,
          hydrochloride
35
    N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-boroarginine,
          hydrochloride
```

```
N^{1}-([3-fluoren-9-onyl]carbonyl)-(R)-boroarginine,
         hydrochloride
    N^{1}-(1-naphthoyl)-(R)-boroarginine, hydrochloride
    N^{1}-([4-fluoren-9-onyl]carbonyl)-(R)-boroarginine,
         hydrochloride
5
    N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-
          boroarginine, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
          boroarginine, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-boroarginine,
10
          hydrochloride
    N^{2}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
          boroarginine, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-boroarginine,
15
          hydrochloride
     N^1-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-
          boroarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
          boroarginine, hydrochloride
     N1-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
20
           (R) -boroarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
          boroarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-
          trifluoromethylbenzoyl) - (R) -boroarginine,
25
          hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy] phenyl-5-chlorobenzoyl)-(R)-
          boroarginine, hydrochloride
     N^{2}-(2-methyl-4-[4-carboxy] phenyl-5-hydroxybenzoyl)-(R)-
           boroarginine, hydrochloride
30
     N^{1}-(2-[5-phenyl] furylcarbonyl) -(R) -boroarginine,
           hydrochloride
     N^{2}-(2-[5-phenyl]thiophen-ylcarbonyl)-(R)-boroarginine,
           hydrochloride
    N^{1}-(2-benzopyronylcarbonyl)-(R)-boroarginine,
35
           hydrochloride
```

```
N^{1}-(2-isoquinolinylcarbonyl)-(R)-boroarginine,
          hydrochloride
     N^{1}-(3-isoquinolinylcarbonyl)-(R)-boroarginine,
          hydrochloride
     N^{1}-(2-phenyl-4-isoquinolinylcarbonyl)-(R)-boroarginine,
          hydrochloride
     N^{1}-(4-phenylbenzoyl)-(R)-borothioarginine,
          hydrochloride
     N^{1}-(3-phenylbenzoyl)-(R)-borothioarginine,
10
          hydrochloride
     N^{1}-(3-phenoxybenzoyl)-(R)-borothioarginine,
          hydrochloride
     N^{1}-(2-benzoylbenzoyl)-(R)-borothioarginine,
          hydrochloride '
15
    N^{2}-(3-benzoylbenzoyl)-(R)-borothioarginine,
          hydrochloride
     N^{1}-(4-benzoylbenzoyl)-(R)-borothioarginine,
          hydrochloride
     N1-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-
          borothioarginine, hydrochloride
20
     N^{1}-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
          borothioarginine, hydrochloride
     N^{1}-(4-ethylbenzoyl)-(R)-borothioarginine, hydrochloride
     N^{1}-(4-n-propylbenzoyl)-(R)-borothioarginine,
25
          hydrochloride
    N^{1}-(4-isopropylbenzoyl)-(R)-borothioarginine,
          hydrochloride
    N^{1}- (4-n-butylbenzoyl) - (R) -borothioarginine,
          hydrochloride
   N^{1}-(4-tert-butylbenzoyl)-(R)-borothioarginine,
30
          hydrochloride
     N^{1}-(4-n-hexylbenzoyl)-(R)-borothioarginine,
          hydrochloride
    N^{1}-(4-cyclohexylbenzoyl)-(R)-borothioarginine,
35
          hydrochloride
```

```
N^{1}-(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
         borothioarginine, hydrochloride
    N^{1}-(4-n-butyloxybenzoyl)-(R)-borothioarginine,
         hydrochloride
    N^{1}-(4-[N-cyclopropylcarbonyl] aminobenzoyl) - (R) -
5
         borothioarginine, hydrochloride
    N^{1}- (4 - [N-cyclohexylcarbonyl] aminobenzoyl) - (R) -
          borothioarginine, hydrochloride
    N^{1}-(4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
          borothioarginine, hydrochloride
10
    N^{2}-(4-[4-methoxy]phenylbenzoyl)-(R)-borothioarginine,
          hydrochloride
    N1-(2-[2-phenylbenzyloxycarbonyl]benzoyl)-(R)-
          borothioarginine, hydrochloride
    N^{1}-(2-[1-naphthyl]benzoyl)-(R)-borothioarginine,
15
          hydrochloride
     N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-borothioarginine,
          hydrochloride
     N^{1}-([2-anthraquinonyl]carbonyl)-(R)-borothioarginine,
20
          hydrochloride
     N^{2}-([2-dioxothioxanthinonyl]carbonyl)-(R)-
          borothioarginine, hydrochloride
     N^{\perp}-([2-fluoren-9-onyl]carbonyl)-(R)-
          borothiohomoarginine, hydrochloride
     N1-([2-fluoren-9-onyl]carbonyl)-(R)-borothioarginine,
25
          hydrochloride
     N^{1}-([3-fluoren-9-onyl]carbonyl)-(R)-borothioarginine,
          hydrochloride
     N1-([4-fluoren-9-onyl]carbonyl)-(R)-borothioarginine,
           hydrochloride
30
     N^{1}-(1-naphthoy1)-(R)-borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-
           borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
           borothioarginine, hydrochloride
35
```

```
N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-
          borothioarginine.
                             hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
          borothioarginine, hydrochloride
     N^{\perp}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-
          borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-
          borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
10
          borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
          (R) -borothioarginine, hydrochloride
     N^{l} - (2-methyl-4-[4-carboxy] phenyl-5-fluorobenzoyl) - (R) -
         · borothioarginine, hydrochloride
     N^{2}-(2-methyl-4-[4-carboxy]phenyl-5-
15
          trifluoromethylbenzoyl) - (R) -borothioarginine,
          hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
          borothioarginine, hydrochloride
20
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
          borothioarginine, hydrochloride
     N^{1}-(2-[5-phenyl]furylcarbonyl)-(R)-borothioarginine,
          hydrochloride
     N^{1}-(2-[5-phenyl]thiophenylcarbonyl)-(R)-
          borothioarginine, hydrochloride
25
     N^{1}-(3-[6-phenyl]pyridylcarbonyl)-(R)-boroarginine,
          hydrochloride
     N^{2}-(3-[5-benzyloxy]pyridylcarbonyl)-(R)-boroarginine,
          hydrochloride
30
    N^{1}-(3-[6-phenyl]pyridylcarbonyl)-(R)-borothioarginine,
          hydrochloride
     N1-(3-[5-benzyloxy]pyridylcarbonyl)-(R)-
          borothioarginine, hydrochloride
     N^{2}-(2-benzopyronylcarbonyl)-(R)-borothioarginine,
          hydrochloride
35
```

```
N^{1}-(3-isoquinolinylcarbonyl)-(R)-borothicarginine,
          hydrochloride
    N^{2} - (2-phenyl-4-isoquinolinylcarbonyl) - (R) -
          borothioarginine, hydrochloride
5
    N^{1}-(2-isoquinolinylcarbonyl)-(R)-borothioarginine,
          hydrochloride
    N^{1}-(4-phenylbenzoyl)-(R)-borolysine (+)-pinanediol,
          hydrochloride
    N^{2}-(3-phenylbenzoyl)-(R)-borolysine (+)-pinanediol,
10
          hydrochloride
    N^{1}-(3-phenoxybenzoyl)-(R)-borolysine (+)-pinanediol,
          hydrochloride
    N^{L}-(4-[4-pyridyl]benzoyl)-(R)-borolysine (+)-pinanediol,
          hydrochloride
15
    N^{1}-(2-benzoylbenzoyl)-(R)-borolysine (+)-pinanediol,
          hydrochloride
    N^{1}-(3-benzoylbenzoyl)-(R)-borolysine (+)-pinanediol,
          hydrochloride
    N^{1}-(4-benzoylbenzoyl)-(R)-borolysine (+)-pinanediol,
20
          hydrochloride
    N^{2}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-borolysine
          (+)-pinanediol, hydrochloride
    N^{1}-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
          borolysine (+)-pinanediol, hydrochloride
    N^{1}-(4-ethylbenzoyl)-(R)-borolysine (+)-pinanediol,
25
          hydrochloride
    N^{1}-(4-n-propylbenzoyl)-(R)-borolysine (+)-pinanediol,
          hydrochloride
    N^{1}-(4-isopropylbenzoyl)-(R)-borolysine (+)-pinanediol,
30
          hydrochloride
    N^{1}-(4-tert-butylbenzoyl)-(R)-borolysine (+)-pinanediol,
          hydrochloride
    N^{1}- (4-n-hexylbenzoyl) - (R) -borolysine (+) -pinanediol,
          hydrochloride
    N^{1}-(4-cyclohexylbenzoyl)-(R)-borolysine (+)-pinanediol,
35
          hydrochloride
```

```
N^{1}-(2-[N-(2-phenylethyl) carbonyl] aminobenzoyl) - (R) -
         borolysine (+)-pinanediol, hydrochloride
    N^{2}-(4-n-butyloxybenzoyl)-(R)-borolysine (+)-pinanediol,
         hvdrochloride
    N^{1}-(4-[N-cyclopropylcarbonyl]aminobenzoyl)-(R)-
5
         borolysine (+)-pinanediol, hydrochloride
    N^{2}-(4-[N-cyclohexylcarbonyl]aminobenzoyl)-(R)-borolysine
          (+)-pinanediol, hydrochloride
    N^{1}-(4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-borolysine
          (+)-pinanediol, hydrochloride
10
    N^{2}-(4-[4-methoxy]phenylbenzoyl)-(R)-borolysine (+)-
         pinanediol, hydrochloride
    N^{1}-(2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-borolysine
          (+)-pinanediol, hydrochloride
    N^{1}-(2-[1-naphthyl]benzoyl)-(R)-borolysine (+)-
15
         pinanediol, hydrochloride
    N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-borolysine (+)-
         pinanediol, hydrochloride
    N^{1}-([2-anthraquinonyl]carbonyl)-(R)-borolysine (+)-
20
         pinanediol, hydrochloride
    N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-borolysine
          (+)-pinanediol, hydrochloride
    N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-borolysine (+)-
          pinanediol, hydrochloride
    N^{1}-([3-fluoren-9-onyl]carbonyl)-(R)-borolysine (+)-
25
          pinanediol, hydrochloride
    N^{2}-(1-naphthoy1)-(R)-borolysine (+)-pinanediol,
         hydrochloride
    N^{2}-([4-fluoren-9-onyl]carbonyl)-(R)-borolysine (+)-
          pinanediol, hydrochloride
30
    N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-borolysine
          (+) -pinanediol, hydrochloride
    N1-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
          borolysine (+)-pinanediol, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-borolysine
35
          (+)-pinanediol, hydrochloride
```

```
N^{1}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
          borolysine (+)-pinanediol, hydrochloride
    N^{2}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-borolysine
          (+)-pinanediol, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-borolysine
5
          (+)-pinanediol, hydrochloride
    N^{2}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
          borolysine (+)-pinanediol, hydrochloride
    N^{2}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
          (R) -borolysine (+) -pinanediol, hydrochloride
10
    N^{2}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
          borolysine (+)-pinanediol, hydrochloride
    N^{2}-(2-methyl-4-[4-carboxy]phenyl-5-
          trifluoromethylbenzoyl) - (R) -borolysine (+) -
          pinanediol, hydrochloride
15
    N^{2}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
          borolysine (+)-pinanediol, hydrochloride
    N^{2}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
          borolysine (+)-pinanediol, hydrochloride
20
    N^{2}-(2-[5-phenyl]furylcarbonyl)-(R)-borolysine (+)-
          pinanediol, hydrochloride
    N^{l}-(2-[5-phenyl]thiophen-ylcarbonyl)-(R)-borolysine (+)-
          pinanediol, hydrochloride
    N^{2}-(2-benzopyronylcarbonyl)-(R)-borolysine (+)-
25
          pinanediol, hydrochloride
    N^{1}-(2-isoquinolinylcarbonyl)-(R)-borolysine (+)-
          pinanediol, hydrochloride
    N^{2}-(3-isoguinolinylcarbonyl)-(R)-borolysine (+)-
          pinanediol, hydrochloride
30
     N^{1}-(2-phenyl-4-isoquinolinylcarbonyl)-(R)-borolysine
          (+)-pinanediol, hydrochloride
     N^{2}-(4-phenylbenzoyl)-(R)-borolysine, hydrochloride
     N^{2}-(3-phenylbenzoyl)-(R)-borolysine, hydrochloride
     N^{1}-(3-phenoxybenzoyl)-(R)-borolysine, hydrochloride
    N^{1}-(4-[4-pyridyl]benzoyl)-(R)-borolysine, hydrochloride
35
     N^{1}-(2-benzoylbenzoyl)-(R)-borolysine, hydrochloride
```

 N^{2} -(3-benzoylbenzoyl)-(R)-borolysine, hydrochloride

```
N^{2}-(4-benzoylbenzoyl)-(R)-borolysine, hydrochloride
    N^{1}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-borolysine,
          hydrochloride
    N^{2}-(3-[N-benzyloxycarbonyl-N-methyl] aminobenzoyl) - (R) -
 5
          borolysine, hydrochloride
    N^{1}-(4-ethylbenzoyl)-(R)-borolysine, hydrochloride
    N^{1}-(4-n-propylbenzoyl)-(R)-borolysine, hydrochloride
    N^{1}-(4-isopropylbenzoyl)-(R)-borolysine, hydrochloride
    N^{1}-(4-tert-butylbenzoyl)-(R)-borolysine, hydrochloride
10
    N^{2}- (4-n-hexylbenzoyl) - (R) -borolysine, hydrochloride
    N^{2}-(4-cyclohexylbenzoyl)-(R)-borolysine, hydrochloride
    N^{2}-(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
          borolysine, hydrochloride
    N^{1}-(4-n-butyloxybenzoyl)-(R)-borolysine, hydrochloride
15
    N^{1}- (4 - [N-cyclopropylcarbonyl] aminobenzoyl) - (R) -
          borolysine, hydrochloride
    N^{1}- (4 - [N-cyclohexylcarbonyl] aminobenzoyl) - (R) -
          borolysine, hydrochloride
    N^{1}-(4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
20
          borolysine, hydrochloride
    N^{1}-(4-[4-methoxy]phenylbenzoyl)-(R)-borolysine,
          hydrochloride
    N^{1}-(2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-
25
          borolysine, hydrochloride
    N^{1}-(2-[1-naphthyl]benzoyl)-(R)-borolysine,
          hydrochloride
    N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-borolysine,
          hydrochloride
    N^{\perp}-([2-anthraquinonyl]carbonyl)-(R)-borolysine,
30
          hydrochloride
     N^{2}-([2-dioxothioxanthinonyl]carbonyl)-(R)-borolysine,
          hydrochloride
    N1-([2-fluoren-9-onyl]carbonyl)-(R)-borolysine,
35
          hydrochloride
```

```
N1-([3-fluoren-9-onyl]carbonyl)-(R)-borolysine,
          hydrochloride
     N^{1}-(1-naphthoy1)-(R)-borolysine, hydrochloride
     N^{1}-([4-fluoren-9-onyl]carbonyl)-(R)-borolysine,
 5
          hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-borolysine,
          hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
          borolysine, hydrochloride
10 N1-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-borolysine,
          hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
          borolysine, hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-borolysine,
15
          hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-borolysine,
          hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
          borolysine, hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
20
          (R)-borolysine, hydrochloride
     N^{2}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
          borolysine, hydrochloride
    N^1-(2-methyl-4-[4-carboxy]phenyl-5-
          trifluoromethylbenzoyl) - (R) -borolysine,
25
         hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
          borolysine, hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
30
          borolysine, hydrochloride
    N^{1}-(2-[5-phenyl] furylcarbonyl) -(R) -borolysine,
          hydrochloride
    N^{1}-(2-[5-phenyl]thiophenylcarbonyl)-(R)-borolysine,
          hydrochloride
    N^{1}-(2-benzopyronylcarbonyl)-(R)-borolysine,
35
          hydrochloride
```

```
N^{1}-(2-isoguinolinylcarbonyl)-(R)-borolysine,
          hydrochloride
     N^{1}-(3-isoquinolinylcarbonyl)-(R)-borolysine,
          hydrochloride
    N^{1}-(2-phenyl-4-isoquinolinylcarbonyl)-(R)-borolysine,
 5
          hydrochloride
     N^{1}-(2-methyl-4-phenylbenzoyl)-R-borolysine,
          hydrochloride
     N1-(2-methyl-4-phenylbenzoyl)-R-borolysine, (+)-
          pinanediol, hydrochloride
10
    N^{\frac{1}{2}}-(2-methyl-4-phenylbenzoyl)-R-borothioarginine,
          hydrobromide
    N^{l}-(2-methyl-4-phenylbenzoyl)-R-borothioarginine, (+)-
          pinanediol, hydrochloride
    N^{I}-(2-methyl-4-phenylbenzoyl)-R-boroarginine,
15
          hydrochloride
     N^{1}-(2-methyl-4-phenylbenzoyl)-R-boroarginine, (+)-
          pinanediol, bisulfite
    N1-[4-phenyl-2-nitrobenzoyl]boroArg(Me), (+)-pinanediol
20
          ester
    N^{1}-[4-phenyl-2-fluorobenzoyl]boroArg(Me), (+)-pinanediol
          ester
    N^{1} - [4-phenyl-2-aminobenzoyl]boroArg(Me), (+)-pinanediol
          ester
    N^{1} - [4-pheny1-2-(methylsulfonamido) benzoyl] boroArg (Me),
25
          (+)-pinanediol ester
    N^{1}-[4-pheny1-2-(cyanomethylamino)benzoyl]boroArg(Me),
          (+)-pinanediol ester
    N^{\frac{1}{2}} - [4-pheny1-2-(cyanomethyl)benzoyl]boroArg(Me), (+)-
          pinanediol ester
30
    N^{l}-[4-phenyl-2-(diethylamino)benzoyl]boroArg(Me), (+)-
          pinanediol ester
    N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-methyl-
          benzoyl]boroArg(Me), (+)pinanediol ester
    N^{2}-[4-[2-(aminosulfonyl)phenyl]-2-methyl-
35
          benzovl]boroArg(Me), (+)pinanediol ester
```

```
N^{\frac{1}{2}} - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] -2 -methyl-
           benzoyl]boroArg(Me), (+)-pinanediol ester
     N1 - [4 - [2 - (t -
           butylaminosulfonyl) phenyl]benzoyl]boroArg(Me), (+) -
 5
           pinanediol ester
     N1-[4-[2-(t-
           butylaminosulfonyl)phenyl]benzoyl]boroArg(Me)-OH
     N^{1}-[4-[2-(n-butoxycarbonylaminosulfonyl)phenyl]-2-
           methyl-benzoyl]boroArg(Me), (+)-pinanediol ester
10
     N^{1}-[4-[2-(diethylaminosulfonyl)phenyl]-2-methyl-
           benzoyl]boroArg(Me), (+)pinanediol ester
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-
           benzoyl]boroArg(Me), (+)pinanediol ester
     N^{2} - [4 - [2 - (aminosulfonyl) phenyl] -2 -fluoro-
15
           benzoyl]boroArg(Me), (+)pinanediol ester
     N^{2} - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] -2 - fluoro-
           benzoyl]boroArg(Me), (+)-pinanediol ester
     N^{l}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-
           benzoyl]boroArg(Me), (+)pinanediol ester
     N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-nitro-
20
           benzoyl]boroArg(Me), (+)pinanediol ester
     N^{2} - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] -2-nitro-
           benzoyl]boroArg(Me), (+)-pinanediol ester.
     N^{1}-[4-phenyl-2-nitrobenzoyl]boroMPG, (+)-pinanediol
25
           ester
     N^{\frac{1}{2}}-[4-phenyl-2-fluorobenzoyl]boroMPG, (+)-pinanediol
     N^{1}-[4-phenyl-2-aminobenzoyl]boroMPG, (+)-pinanediol
           ester
     N^{1} - [4-phenyl-2-(methylsulfonamido)benzoyl]boroMPG, (+)-
30
          pinanediol ester
     N^{\frac{1}{4}}-[4-phenyl-2-(cyanomethylamino)benzoyl]boroMPG, (+)-
          pinanediol ester
     N^{1}-[4-pheny1-2-(cyanomethyl)benzoyl]boroMPG, (+)-
35
          pinanediol ester
```

```
N^{1}-[4-phenyl-2-(diethylamino)benzoyl]boroMPG, (+)-
           pinanediol ester
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-methyl-
           benzoyl]boroMPG, (+)pinanediol ester
     N^{1}-[4-[2-(aminosulfonvl)phenvl]-2-methyl-
           benzoyl]boroMPG, (+)pinanediol ester
     N^{1} - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] - 2 - methyl -
           benzoyl]boroMPG, (+)-pinanediol ester
     N^{\frac{1}{2}} - [4 - [2 - (t - butylaminosulfonyl) phenyl] benzoyl] boroMPG,
           (+)-pinanediol ester
10
     N^{\frac{1}{2}} - [4-[2-(t-butylaminosulfonyl)phenyl] benzoyl]boroMPG-
     N^{\frac{1}{2}} - [4 - [2 - (n-butoxycarbonylaminosulfonyl) phenyl] -2-
          methyl-benzoyl]boroMPG, (+)-pinanediol ester
15
     N^{l} - [4 - [2 - (diethylaminosulfonyl) phenyl] -2 - methyl -
          benzoyl]boroMPG, (+)pinanediol ester
     N^{I}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-
          benzoyl]boroMPG, (+)pinanediol ester
     N^{1}-[4-[2-(aminosulfonvl)phenvl]-2-fluoro-
20
          benzoyl]boroMPG, (+)pinanediol ester
     N^{1}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-fluoro-
          benzoyl]boroMPG, (+)-pinanediol ester
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-
          benzoyl]boroMPG, (+)pinanediol ester
25
     N^{I} - [4 - [2 - (aminosulfonyl) phenyl] -2 - nitro - benzoyl] boroMPG,
           (+)pinanediol ester
     N^{1} - [4 - [2 - (methoxycarbonylaminosulfonyl)phenyl] - 2 - nitro-
           benzoyl]boroMPG, (+)-pinanediol ester.
     N^{2}-[4-phenyl-2-nitrobenzoyl]boroACA, (+)-pinanediol
30
           ester
     N^{\frac{1}{2}}-[4-phenyl-2-fluorobenzoyl]boroACA, (+)-pinanediol
     N^{1}-[4-phenyl-2-aminobenzoyl]boroACA, (+)-pinanediol
           ester
```

```
N^{1}-[4-phenyl-2-(methylsulfonamido)benzoyl]boroACA, (+)-
          pinanediol ester
     N^{I} - [4-phenyl-2-(cyanomethylamino)benzoyl]boroACA, (+)-
          pinanediol ester
 5
     N^{I} - [4-phenyl-2-(cyanomethyl)benzoyl]boroACA, (+)-
          pinanediol ester
     N^{1}-[4-phenyl-2-(diethylamino)benzoyl]boroACA, (+)-
          pinanediol ester
     N^{\frac{1}{2}} - [4 - [2 - (t-butylaminosulfonyl) phenyl] -2-methyl-
10
          benzoyl]boroACA, (+)pinanediol ester
     N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-methyl-
          benzoyl]boroACA, (+)pinanediol ester
     N^{\frac{1}{2}} - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] - 2 - methyl -
          benzoyl]boroACA, (+)-pinanediol ester
15
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl] benzoyl]boroACA,
           (+)-pinanediol ester
     N^2-[4-[2-(t-butylaminosulfonyl)phenyl] benzoyl]boroACA-
     N^{2}-[4-[2-(n-butoxycarbonylaminosulfonyl)phenyl]-2-
20
           methyl-benzoyl]boroACA, (+)-pinanediol ester
     N^{1} - [4 - [2 - (diethylaminosulfonyl) phenyl] -2 -methyl -
          benzoyl]boroACA, (+)pinanediol ester
     N1-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-
          benzoyl]boroACA, (+)pinanediol ester
25
     N^{2}-[4-[2-(aminosulfonyl)phenyl]-2-fluoro-
          benzoyl]boroACA, (+)pinanediol ester
     N^{1} - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] - 2 - fluoro-
           benzoyl]boroACA, (+)-pinanediol ester
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-
30
           benzoyl]boroACA, (+)pinanediol ester
     N^{\perp}-[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroACA,
           (+)pinanediol ester
     N^{1}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-nitro-
           benzoyl]boroACA, (+)-pinanediol ester
```

```
N^{1}-[4-phenyl-2-nitrobenzoyl]boroLys, (+)-pinanediol
           ester
     N^{1}-[4-phenyl-2-fluorobenzoyl]boroLys, (+)-pinanediol
     N^{1}-[4-phenyl-2-aminobenzoyl]boroLys, (+)-pinanediol
 5
     N^{\frac{1}{2}} [4-phenyl-2-(methylsulfonamido)benzoyl]boroLys, (+)-
           pinanediol ester
     N^{1}-[4-phenyl-2-(cyanomethylamino)benzoyl]boroLys, (+)-
10 -
           pinanediol ester
     N^{l}-[4-phenyl-2-(cyanomethyl)benzoyl]boroLys, (+)-
           pinanediol ester
     N^{2}-[4-phenyl-2-(diethylamino)benzoyl]boroLys, (+)-
          pinanediol ester
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-methyl-
15
          benzoyl]boroLys, (+)pinanediol ester
     N^1 - [4 - [2 - (aminosulfonyl) phenyl] -2-methyl-
          benzoyl]boroLys, (+)pinanediol ester
     N^{1}-[4-[2-(methoxycabonylaminosulfonyl)phenyl]-2-methyl-
20
          benzoyl]boroLys, (+)-pinanediol ester
     N^{\frac{1}{2}} [4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroLys,
           (+)-pinanediol ester
     N^{l}-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroLys-OH
     N^{\frac{1}{2}} [4-[2-(n-butoxycarbonylaminosulfonyl)phenyl]-2-
          methyl-benzoyl]boroLys, (+)-pinanediol ester
25
     N^{\frac{1}{2}} [4-[2-(diethylaminosulfonyl)phenyl]-2-methyl-
          benzoyl]boroLys, (+)pinanediol ester
     N^{l}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-
          benzoyl]boroLys, (+)pinanediol ester
     N^{l}-[4-[2-(aminosulfonyl)phenyl]-2-fluoro-
30
          benzoyl]boroLys, (+)pinanediol ester
     N^{l}-[4-[2-(methoxycarbonylaminosulfonyl)phenyl]-2-fluoro-
          benzoyl]boroLys, (+)-pinanediol ester
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-nitro-
35
          benzoyl]boroLys, (+)pinanediol ester
```

```
N^{l}-[4-[2-(aminosulfonyl)phenyl]-2-nitro-benzoyl]boroLys, (+)pinanediol ester
```

 N^{2} -[4-[2-(methoxyaminosulfonyl)phenyl]-2-nitrobenzoyl]boroLys, (+)-pinanediol ester.

5

Detailed Description of the Invention

Throughout the specification, the following conventional three-letter abbreviations for amino acid residues or amino acids apply:

10	Ala	=	alanine
	Arg	=	arginine
	Asn	=	asparagine
	Asp	=	aspartic acid
	Суз	=	cysteine
15	Gln	=	glutamine
·	Glu	=	glutamic acid
	Gly	=	glycine
	His	=	histidine
	Ile	=	isoleucine
20	Leu	=	leucine
	Lys	=	lysine
	Met	=	methionine
	Phe	=	phenylalanine
	Pro	=	proline
25	Ser	=	serine
	Thr	=	threonine
	Trp	=	tryptophan
	Tyr	=	tyrosine
•	Va1	=	valine
30	Irg	=	arginine where the guanidine is
			replaced with an isothiouronium
			(-SC(=NH)NH ₂)
	Arg(Me)	=	arginine with the guanidino group
			methylated
35	MPG	=	5-methoxy-propylglycine

5

10

ACA = 3-(4-amino)cyclohexylalanine

The prefix "boro" indicates amino acid residues where the carboxy group is replaced by a boronic acid (Formula I. Y^1 and $Y^2 = -OH$).

The pinanediol boronic acid ester and the pinacol boronic acid ester are abbreviated "-C10H16-" and -C6H12-" respectively. Other illustrations of diols useful for deriving a boronic acid orthoesters are 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 2,3-butanediol, 1,2-diisopropylethanediol, 5,6-decanediol, 1,2-dicyclohexylethanediol.

The formamidino modified amino group is abbreviated (CH=NH). For example, the formamidino analog of

-boroOrn-OH {-NH-CH[(CH₂)₃-NH-CH(NH)H]B(OH)₂ }is
-boroOrn(CH=NH)-OH. Analogs containing sidechain
substituents are described by indicating the substituent
in parenthesis following the name of the parent residue.
For example the analog of boroPhenylalanine containing a

meta cyano group is -boroPhe(mCN)-. N-alkyl
substituents on the guanidino group of boroArg- or on
the isothiouronium analogs (boroIrg) are also put in
parenthesis in a similar manner.

Other abbreviations are: Z, benzyloxycarbonyl;

BSA, benzene sulfonic acid; THF, tetrahydrofuran; Boc-,
t-butoxycarbonyl-; Ac-, acetyl; pNA, p-nitro-aniline;
DMAP, 4-N,N-dimethylaminopyridine; Tris,
Tris(hydroxymethyl)aminomethane; MS, mass spectrometry;
FAB/MS, fast atom bombardment mass spectrometry.

LRMS(NH3-CI) and HRMS(NH3-CI) are low and high
resolution mass spectrometry, respectively, using NH3 as
an ion source

As used herein, the structure , wherein J is N or C and K, L, M and Q are independently selected at each occurrence from the group consisting of N, CR^{13} , S or 0, provided that:

- i) there may be only one S or O present in the ring at a time;
- ii) there may only be 1-2 N present when there is an O or S present;
- iii) there may be only 1-4 N present; is used as a substituent definition for R¹. This substituent may be exemplified by the following structures where -J-K-L-M-Q- is:

 $-C=N-S-N=C(R^{13})$ -,

17)

```
18) -C=N-S-C(R^{13})=N-,

19) =C-S-N=C(R^{13})-N=,

20) =C-S-C(R^{13})=C(R^{13})-C(R^{13})=,

21) -C=C(R^{13})-S-C(R^{13})=C(R^{13})-,

22) =C-O-C(R^{13})=C(R^{13})-C(R^{13})=, or

23) -C=C(R^{13})-O-C(R^{13})=C(R^{13})-.
```

As used herein, the structure , wherein in W, R, T, U and V are independently selected at each occurrence from the group consiting of: CR¹³ or N, provided that there may be only 1-3 N present, is used as a substituent definition for R¹. This substituent may be exemplified by the following structures where -C-W-R-T-U-V- is:

"Amino acid residues" as used herein, refers to natural or unnatural amino acids of either D- or L-30 configuration. Natural amino acids residues are Ala, Arg, Asn, Asp, Aze, Cys, Gln, Glu, Gly, His, Ile, Irg

> Leu, Lys, Met, Orn, Phe, Phe(4-fluoro), Pro, Sar, Ser, Thr, Trp, Tyr, and Val. Roberts and Vellaccio, The Peptides, Vol 5; 341-449 (1983), Academic Press, New York, discloses numerous suitable unnatural amino acids and is incorporated herein by reference for that purpose.

"Amino acids residues" also refers to various amino acids where sidechain functional groups are coupled with appropriate protecting groups known to those skilled in 10 the art. "The Peptides", Vol 3, 3-88 (1981) discloses numerous suitable protecting groups and is incorporated herein by reference for that purpose.

The reactions of the synthetic methods claimed herein are carried out in suitable solvents which may be readily selected by one of skill in the art of organic synthesis, said suitable solvents generally being any solvent which is substantially nonreactive with the starting materials (reactants), the intermediates, or products at the temperatures at which the reactions are carried out, i.e., temperatures which may range from the solvent's freezing temperature to the solvent's boiling temperature. A given reaction may be carried out in one solvent or a mixture of more than one solvent. Depending on the particular reaction step, suitable solvents for a particular reaction step may be selected.

15

20

25

30

. The compounds herein described may have asymmetric centers. All chiral, diastereomeric, and racemic forms are included in the present invention. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention. It will be appreciated that certain compounds of the present invention contain an asymmetrically substituted carbon atom, and may be 35 isolated in optically active or racemic forms. It is

well known in the art how to prepare optically active

forms, such as by resolution of racemic forms or by synthesis, from optically active starting materials. Also, it is realized that cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomer form is specifically

10 indicated.

15

When any variable (for example, R¹ through R²⁰, R^{20a}, m, n, D, E, F, W, X, etc.) occurs more than one time in any constituent or in Formula (I), its definition on each occurrence is independent of its definition at every other occurrence. Thus, for example, if a group is shown to be substituted with 0-3 R¹¹, then said group may optionally be substituted with up to three R¹¹ and R¹¹ at each occurrence is selected independently from the defined list of possible R¹¹.

Also, for example, in -N(R¹⁵)₂, each of the R¹⁵ substituents may be independently selected from the list of possible R²⁰ groups defined. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.

Similarly, by way of example, for the group $-C(R^{11})_2$, each of the two R^{11} substituents on C is independently selected from the defined list of possible R^{11} .

As used herein, "alkyl" is intended to include both branched and straight-chain saturated aliphatic

30 hydrocarbon groups having the specified number of carbon atoms; "haloalkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, substituted with 1 or more halogen (for example -C_vF_w

35 where v = 1 to 3 and w = 1 to (2v+1)); "alkoxy" represents an alkyl group of indicated number of carbon

atoms attached through an oxygen bridge; "cycloalkyl" is intended to include saturated ring groups, including mono-,bi- or poly-cyclic ring systems, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl and cyclooctyl; and "biycloalkyl" is intended to include saturated bicyclic ring groups such as [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4.0]bicyclodecane (decalin), [2.2.2]bicyclooctane, and so forth. "Alkenyl" is intended to include 10 hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl, propenyl, and the like; and "alkynyl" is intended to include hydrocarbon chains of 15 either a straight or branched configuration and one or more triple carbon-carbon bonds which may occur in any stable point along the chain, such as ethynyl, propynyl and the like.

"Halo" or "halogen" as used herein refers to

20 fluoro, chloro, bromo, and iodo; and "counterion" is
used to represent a small, negatively charged species
such as chloride, bromide, hydroxide, acetate, sulfate,
and the like.

As used herein, "aryl" or "aromatic residue" is 25 intended to mean phenyl or naphthyl; the term "arylalkyl" represents an aryl group attached through an alkyl bridge. By way of examples: the term "C7-C10" arylalkyl" is intended to refer to an aryl group attached through a C1-C4 alkyl bridge to the residue of 30 the indicated compound; the term "(C1-C3 alkyl)aryl" is intended to refer to a C1-C3 alkyl group which is attached through an aryl ring to the residue of the indicated compound; the term "aryl(C1-C3 alkyl)" is intended to refer to an aryl group attached through a 35 C₁-C₃ alkyl group to the residue of the indicated compound.

As used herein, "carbocycle" or "carbocyclic residue" is intended to mean any stable 3- to 8-membered monocyclic or bicyclic or 7- to 14-membered bicyclic or tricyclic or an up to 26-membered polycyclic carbon ring, any of which may be saturated, partially unsaturated, or aromatic. Examples of such carbocyles include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, phenyl, biphenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin).

As used herein, the term "heterocycle" is intended 10 to mean a stable 5- to 7- membered monocyclic or bicyclic or 7- to 10-membered bicyclic heterocyclic ring which is saturated and consists of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S and wherein the nitrogen and 15 sulfur heteroatoms may optionally be oxidized, and the nitrogen may optionally be quaternized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The 20 heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom which results in a stable structure. The term "heteroaryl" is intended to mean an aromatic form of a heterocyclic ring. Unless otherwise specified, the heterocyclic and heteroaryl rings described herein may be substituted on carbon or 25 on a nitrogen atom if the resulting compound is stable. Unless otherwise specified, examples of such heterocycles include, but are not limited to, pyridinyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, benzothiophenyl, 30 indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, tetrahydroquinolinyl,

35 tetrahydroisoquinolinyl, decahydroquinolinyl or octahydroisoquinolinyl, azocinyl, triazinyl, 6H-1,2,5-

thiadiazinyl, 2H,6H-1,5,2-dithiazinyl, thiophenyl, thianthrenyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathiinyl, 2H-pyrrolyl, isothiazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl,

- isoindolyl, 3H-indolyl, 1H-indazolyl, purinyl, 4H-quinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH-carbazolyl, carbazolyl, &-carbolinyl, phenanthridinyl, acridinyl, perimidinyl,
- phenanthrolinyl, phenazinyl, phenarsazinyl, phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, oxazolidinyl,
- benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, or isatinoyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.

when a bond to a substituent is shown to cross the bond connecting two atoms in a ring, then such substituent may be bonded to any atom on the ring. When a substituent is listed without indicating the atom via which such substituent is bonded to the rest of the compound of formula I, then such substituent may be

bonded via any atom in such substituent. For example, when the substituent is piperazinyl, piperidinyl, or tetrazolyl, unless specified otherwise, said piperazinyl, piperidinyl, tetrazolyl group may be bonded to the rest of the compound of formula (I) via any atom in such piperazinyl, piperidinyl, tetrazolyl group.

Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By stable compound or stable structure it is meant herein a compound that is sufficiently robust to survive isolation to a useful degree of purity from a

35

reaction mixture, and formulation into an efficacious therapeutic agent.

The term "substituted", as used herein, means that an one or more hydrogen on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substitution is keto (i.e., =0), then 2 hydrogens on the atom are replaced.

10 As used herein, the term "any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino or sulfhydryl" means any group bonded to an O, N, or S atom, respectively, which is cleaved from the O, N, or S atom when the compound is 15 administered to a mammalian subject to provide a compound having a remaining free hydroxyl, amino, or sulfhydryl group, respectively. Examples of groups that, when administered to a mammalian subject, are cleaved to form a free hydroxyl, amino or sulfhydryl, 20 include but are not limited to, phosphate esters, C1-C6 alkyl substituted with 0-3 R¹¹, C₃-C₆ alkoxyalkyl substituted with 0-3 R¹¹, C₁-C₆ alkylcarbonyl substituted with 0-3 R^{11} , C_1 - C_6 alkoxycarbonyl substituted with 0-3 R11, C1-C6 alkylaminocarbonyl substituted with 0-3 R¹¹, benzoyl substituted with 0-3 R^{12} , phenoxycarbonyl substituted with 0-3 R^{12} , phenylaminocarbonyl substituted with 0-3 R¹², or heteroarylcarbonyl. Examples of groups that, when administered to a mammalian subject, are cleaved to form a free hydroxyl, amino or sulfhydryl, may include 30 hydroxy, amine or sulfhydryl protecting groups, respectively.

As used herein, the term "amine protecting group" means any group known in the art of organic synthesis for the protection of amine groups. Such amine protecting groups include those listed in Greene and

Wuts, "Protective Groups in Organic Synthesis" John
Wiley & Sons, New York (1991) and "The Peptides:
Analysis, Synthesis, Biology, Vol. 3, Academic Press,
New York (1981), the disclosure of which is hereby
incorporated by reference. Any amine protecting group
known in the art can be used. Examples of amine
protecting groups include, but are not limited to, the
following: 1) acyl types such as formyl,
trifluoroacetyl, phthalyl, and p-toluenesulfonyl; 2)
aromatic carbamate types such as benzyloxycarbonyl (Cbz)
and substituted benzyloxycarbonyls, 1-(p-biphenyl)-1methylethoxycarbonyl, and 9-fluorenylmethoxycarbonyl
(Fmoc); 3) aliphatic carbamate types such as tertbutyloxycarbonyl (Boc), ethoxycarbonyl,
diisopropylmethoxycarbonyl, and allyloxycarbonyl: 4)

diisopropylmethoxycarbonyl, and allyloxycarbonyl; 4)
cyclic alkyl carbamate types such as
cyclopentyloxycarbonyl and adamantyloxycarbonyl; 5)
alkyl types such as triphenylmethyl and benzyl; 6)
trialkylsilane such as trimethylsilane; and 7) thiol
containing types such as phenylthiocarbonyl and
dithiasuccinoyl.

The term "amino acid" as used herein means an organic compound containing both a basic amino group and an acidic carboxyl group. Included within this term are natural amino acids, modified and unusual amino acids, 25 as well as amino acids which are known to occur biologically in free or combined form but usually do not occur in proteins. Included within this term are modified and unusual amino acids, such as those disclosed 30 in, for example, Roberts and Vellaccio (1983) The Peptides, 5: 342-429, the teaching of which is hereby incorporated by reference. Modified or unusual amino acids which can be used to practice the invention include, but are not limited to, D-amino acids, hydroxylysine, 4-hydroxyproline, an N-Cbz-protected 35 amino acid, ornithine, 2,4-diaminobutyric acid,

homoarginine, norleucine, N-methylaminobutyric acid, naphthylalanine, phenylglycine, S-phenylproline, tert-leucine, 4-aminocyclohexylalanine, N-methyl-norleucine, 3,4-dehydroproline, N,N-

- dimethylaminoglycine, N-methylaminoglycine, 4-aminopiperidine-4-carboxylic acid, 6-aminocaproic acid, trans-4-(aminomethyl)-cyclohexanecarboxylic acid, 2-, 3-, and 4-(aminomethyl)-benzoic acid, 1-aminocyclopentanecarboxylic acid,
- 10 1-aminocyclopropanecarboxylic acid, and 2-benzyl-5aminopentanoic acid.

15

20

The term "peptide" as used herein means a compound that consists of two or more amino acids (as defined herein) that are linked by means of a peptide bond. The term "peptide" also includes compounds containing both peptide and non-peptide components, such as pseudopeptide or peptide mimetic residues or other non-amino acid components. Such a compound containing both peptide and non-peptide components may also be referred to as a "peptide analog".

The term "peptide bond" means a covalent amide linkage formed by loss of a molecule of water between the carboxyl group of one amino acid and the amino group of a second amino acid.

25 As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein the parent compound of formula (I) is modified by making acid or base salts of the compound of formula (I). Examples of pharmaceutically acceptable salts include, 30 but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.

"Prodrugs" are considered to be any covalently

bonded carriers which release the active parent drug

according to formula (I) in vivo when such prodrug is

administered to a mammalian subject. Prodrugs of the compounds of formula (I) are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo; to the parent compounds. Prodrugs include compounds of formula (I) wherein hydroxy, amine, or sulfhydryl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino, or sulfhydryl group, respectively. Examples of prodrugs include, but 10 are not limited to, acetate, formate, or benzoate derivatives of alcohol and amine functional groups in the compounds of formula (I); phosphate esters, dimethylglycine esters, aminoalkylbenzyl esters, aminoalkyl esters and carboxyalkyl esters of alcohol and 15 phenol functional groups in the compounds of formula (I); and the like.

The pharmaceutically acceptable salts of the compounds of formula (I) include the conventional non-20 toxic salts or the quaternary ammonium salts of the compounds of formula (I) formed, for example, from nontoxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and 25 the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, 30 salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.

The pharmaceutically acceptable salts of the present invention can be synthesized from the compounds of formula (I) which contain a basic or acidic moiety by conventional chemical methods. Generally, such salts

can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally,

nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in <u>Remington's Pharmaceutical Sciences</u>, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

The disclosures of all of the references cited herein are hereby incorporated herein by reference in their entirety.

15

10

Synthesis

The compounds of formula (I) can be prepared using the reactions and techniques described below. The reactions are performed in a solvent appropriate to the reagents and materials employed and suitable for the transformations being affected. It will be understood by those skilled in the art of organic synthesis that the functionality present on the molecule should be consistent with the chemical transformations proposed and this will sometimes require judgment as to the order of synthetic steps or selection of particular process scheme used from that shown below in order to obtain a desired compound of the invention.

Scheme 1. Synthesis of Thrombin Inhibitors

Reagents: a. IBCF, NMM, RCO₂H, Et₃N, 0 °C, b. NaN₃, c. H₂, Pd(OH)₂/C, HCl, d. DMAP, aminoiminomethanesulfonic acid, e. phenylboronic acid

5 Amine hydrochloride 1 is readily available *via* the procedure of Kettner and Shenvi (EP 0293881 A2).

10

There are numerous synthetic methods by which to prepare amide 2, however, competing with amide formation is the cyclization of 1 to afford a complex mixture containing the desired amide and the corresponding N-acylboroproline. Since purification at this stage is unfeasible, choosing the correct method for amide formation is crucial to obtaining 2 in a purity suitable for subsequent synthetic transformations.

Three methods are preferred for the preparation of 2. In the first, a solution of 1 in tetrahydrofuran or dichloromethane at 0 °C is treated sequentially with the desired acid chloride followed by two equivalents of triethylamine. The mixture is then allowed to warm to room temperature overnight. The second method is the mixed anhydride procedure of Anderson, et. al. (J. Am. Chem. Soc. 1967, 89, 5012). In this method the isobutyl mixed anhydride is generated by dissolving the 10 carboxylic acid component in tetrahydrofuran and adding one equivalent of N-methylmorpholine. The solution is cooled to 0 °C and one equivalent of isobutyl chloroformate is added. After 5 minutes, a solution of 1 in chloroform is added, followed by the addition of 15 one equivalent of triethylamine. The mixture is typically stirred at 0 °C for one hour followed by one to several hours at room temperature. The third method for amide formation is the hydroxybenzotriazole/DCC method of König and Geiger (Chem. Ber. 1970, 103, 788-20 98). Thus, to a solution of 1 and the carboxylic acid component in dimethylformamide or tetrahydrofuran at 0 °C is added N-methylmorpholine, 1-hydroxybenzotriazole hydrate (2 eq) and DCC (1.05 eq). The solution is allowed to warm to room temperature overnight. 25 The preferred method for the preparation of azide 3 is by reaction of 2 with sodium azide (1.1 eq) in dimethylformamide at 70 °C for 2 hours.

The azide displacement may also be performed prior to amide formation. This is the preferred method in cases where the rate of amide formation is slow relative to the rate of cyclization. Azide 4 is prepared by a modification of the procedure of Kettner and Shenvi (EP 0293881 A2) as shown in Scheme 2. Thus, bromide 5 is reacted with sodium azide, followed by homologation to give 6, chloride displacement to afford 7 and acidic

30

hydrolysis to give 4. Amide formation between 4 and the carboxylic acid component then affords 3 directly.

Scheme 2. Synthesis of Azide 4

5

10

15

20

Reagents: a. NaN₃ b. $CHCl_2Li$, $ZnCl_2$, c. $LiN(TMS)_2$, d. 4M HCl, dioxane

Reduction of azide 3 to amine 8 may be accomplished by hydrogenation over precious metal catalysts. The preferred catalyst for this transformation is Pearlman's catalyst (palladium hydroxide on carbon). The amine is typically isolated as the hydrochloride salt. Isolation of 8 as the free base typically results in lowered yields. Salts of 8 which may confer superior physical properties may be preferred over the hydrochloride salt.

Formamidination of amine 8 may be accomplished using cyanamide. Due to the low reactivity of amine 8, however, the preferred method for this transformation is reaction with 4-dimethylamin-opyridine (DMAP) and aminoiminomethanesulfonic acid (AMSA, prepared by the method of Kim, et. al., Tetrahedron Lett. 1988, 29, 3183-6). This affords guanidine 9, which is isolated as the bisulfite or hydrochloride salt.

Cleavage of pinanediol ester 9 may be accomplished using anhydrous boron trichloride according to the

procedure of Matteson and Ray (J. Am. Chem. Soc. 1980, 102, 7588). This method, however, is strongly Lewis acidic and leads to partial destruction of the substrate. The preferred method for water soluble boronic acids is a transesterification reaction that is run in the presence of excess phenylboronic acid. The free boronic acid 10 may then be isolated using cation exchange chromatography.

The isothiouronium functionalized analogs 11/12 are prepared from bromide 2 according to the procedure of Kettner and Shenvi (EP 0293881 A2).

Inhibitors containing a sulfonamide in place of a carboxamide are prepared from either 1 or 4 by reaction with a sulfonyl chloride in the presence of a hindered amine (Scheme 3). The product sulfonamide 13 is then converted to the guanidinium 14 or isothiouronium 15 in the same manner as the corresponding carboxamides.

Scheme 3. Synthesis of Sulfonamides

20

10

Inhibitors containing the borolysine moiety are prepared analogously to those containing boroarginine according to Kettner and Shenvi (EP 0293881 A2).

Novel biaryls synthesized in this invention are prepared through palladium catalyzed coupling of an appropriate arylmetal species to the aryl halide of choice using the methods described in Negishi, et. al., Org. Synth. 1987, 66, 67-74, and references cited within.

Synthetic approaches toward construction of pyrroles are numerous: R. J. Sundberg in "Comprehensive Heterocyclic Chemistry", A. R. Katritzky (Ed.), Pergamon Press, New York (1984), Vol. 4, p. 705; Synthesis, 1946, 281. The following discussion is restricted to the most common and reliable methods towards the synthesis of pyrroles within the general scope of the invention.

Compounds where R¹ is a pyrrole can be synthesized as shown on Scheme 4.

Scheme 4

Starting material diketone 16 may or may not have its substituents R¹³⁻¹⁶ in final form as defined in the scope. These substituents might be in protected forms or in the form of suitable precursors which make the heterocyclic portion, for example, amenable to synthesis. These precursor forms can then be converted to their final forms later on in the synthesis using procedures familiar to one skilled in the art.

The cyclization condensation of 1,4-dicarbonyl compounds with ammonia, primary amines or related compounds, the Paal-Knorr reaction, is one of the most general and widely applicable pyrrole syntheses, R. A. Jones and G. P. Bean, "The Chemistry of Pyrroles", Academic Press, London, 1977; p. 77-81. The generality of this approach is primarily determined by the availability of the dicarbonyl precursors, 16, as illustrated by Scheme 4. By heating such diketones with ammonia or amines in a solvent like benzene, toluene or methylene chloride with a catalyst such as sulfuric acid, acetic acid, p-toluenesulfonic acid, alumina or even titanium tetrachloride, pyrroles like 17

10

25

30

35

may be prepared.

Subsequent alkylation of pyrrole 17 with a bromoester, for example, leads to the alkylated heterocycle 18. Alkylation conditions include either first deprotonating with NaH or KH in DMF followed by addition of the alkylating agent or simply stirring the heterocycle with the alkylating agent in an inert solvent such as DMF or DMSO at 0°C to 100°C in the presence of an acid scavenger such as K2CO3.

Saponification of ester 18 followed by coupling aminoboronic ester 1 or 19 as discussed previously yields compound 20. This bromide may be either elaborated to the lysine side-chain 21 (X=1) or if X=0, into the corresponding ornithine side-chain or any other side-chain discussed previously. Subsequent hydrolysis of the boronic ester yields the boronic acid as discussed previously too.

The cyclization of diynes 23 with amines has been reported and an adaptation of this method is shown in Scheme 5 (K. E. Schulte et al., Chem. Ber (1965) 98; A. J. Chalk Tet. Lett. (1972) 3487). The diynes are made via transition metal catalyzed coupling of alkynes,

PCT/US95/16248

i.e., the Cadio-Chodkiewicz reaction (W. Chodkiewicz Ann. Chim. (Paris) (1957) 2 81g).

Scheme 5

5

$$R^{13}$$
-C=C-C=C- R^{13} + H_2N -(C H_2)_m-CO₂-t-Bu \longrightarrow 23 24

Scheme 6

10

15

Furans (27) have been converted directly to pyrroles by treatment with amines but the harsh conditions required (400°C/Al₂O₃) precludes its generality. 2,5-Dialkoxytetrahydrofurans (29) have been more commonly

employed as furan (or 1,4-dicarbonyl) equivalents and react readily with aliphatic or aromatic amines (and even weakly nucleophilic sulfonamides) to give pyrroles as shown in Scheme 6, J. W. F. Wasley and K. Chan,
Synth.Commun.3, 303 (1973). Although commercially available 2,5-dialkoxytetrahydrofurans (29)
(R1=R2=H)) generally restrict one to preparing 1-substituted pyrroles, more highly substituted systems may be obtained by a three-step alcoholysis of the appropriate furans (27) to the more highly substituted 2,5-dialkoxytetrahydrofurans (29) as shown in Scheme 6, N. L. Weinberg and H. R. Weinberg, Chem. Rev., 68, 449 (1968); N. Elming, Adv. Org. chem., 2, 67 (1960).

The Hantzsch synthesis utilizes the condensation of 15 B-haloketones (30a) and B-ketoesters (31) in the presence of ammonia or a primary amine to give pyrroles such as (32), as shown in Scheme 7, A. Hantzsch, Chem. Ber., 23, 1474 (1980); D. C. von Beelen, J. Walters, and S. von der Gen, <u>Rec Trav.</u> <u>Chem.</u> <u>98</u>, 437 (1979). Among the numerous modifications reported over the years, the 20 substitution of (30a) with the readily available α-hydroxyaldehydes or nitroalkenes has expanded the versatility and generality of this important method, D. M. McKinnon, Can. J. Chem. 43, 2628 (1965); H. George 25 and H. J. Roth, Arch. Pharm. 307, 699 (1974); C. A. Grok ... and K. Camenisch, Helv. Chem. Acta, 36, 49 (1953).

Scheme 7

Scheme 8

a)
$$R^{13}R^{13}$$
 AcOH, NaOAC 33 34 $R^{13}R^{13}$ R^{13} R^{13}

- The closely related Knorr condensation involves the reaction between amino carbonyl compounds (or their precursors) and carbonyl (or dicarbonyl) compounds, J. M. Patterson, Synthesis, 282 (1976). Representative methods for preparing substituted pyrroles (35 and 38) are shown by Scheme 8, equations a) and b), S. Umio et al., Jap. Pat. 7018653, Fujisawa Pharmaceutical Co., Ltd., 1970 (C. A. 73, 77039, 1970); K. Tanaka, K. Kariyone, S. Umio, Chem. Pharm. Bull. (Tokyo)), 17, 611 (1969).
- 15 The elaboration of an appropriately functionalized pyrrole is another method for preparing pyrroles of general formula I. Methyl (or ethyl) 5-formyl-1H-pyrrole-2-carboxylate (43) is a particularly useful intermediate with regards to pyrroles claimed in this invention and has been prepared by a number of methods

as shown by Scheme 9, eq. a, W. A. Davies, A. R. Pinder and I. G. Morris, Tetrahedron 18, 405 (1962); Org Syn., vol 36, p. 74; Org. Syn., vol. 51.

More recently, Ullrich has extended the Vilsmeyer
Haack formylation of pyrroles to include vinylogous systems such as (46) by using the 3-(N,N-dimethylformamide derivative, as shown by Scheme 9, eq. b, F. W. Ullrich and E. Breitmaier, Synthesis, 641 (1983); W. Heinz, et al., Tetrahedron, 42, 3753 (1986).

claimed in this invention has recently been reported, whereby lithiation of the 6-dimethylamino-1-azafulvene dimer (49) followed by treatment with an appropriate electrophile and subsequent hydrolysis leads to 5-substituted pyrrole-2-carboxaldehydes (51), as illustrated in Scheme 10, J. M. Muchowski and P. Hess, Tetrahedron Lett., 29, 777 (1988). The carboxylic acid, ester and aldehyde side-chains depicted in Schemes 9-10 can be readily converted to R¹³⁻¹⁶ by methods familiar

to one skilled in the art.

Scheme 10

A general and versatile approach to pyrazoles

(R1=pyrazole) involves condensation of a 1,3difunctional compound (usually dicarbonyl) with
hydrazine or its derivatives, as shown in Scheme 11 for
pyrazoles of the formula 53 and reviewed by G. Corspeau
and J. Elguerv, Bull. Soc. Chim. Fr., 2717 (1970).
Rarely have pyrazoles have been prepared in which the NN bond is the last step of the ring closure, J. Elguerv
in Comprehensive Heterocyclic Chemistry, S. R. Katritzky

(Ed.) Pergamon Press, New York, Vol. 5 (1984), p. 274; J. Barluenga, <u>J. Chem. Soc, Perkin Trans.1</u>, 2275 (1983).

Scheme 11

5

15

The condensation of 1,3-dicarbonyl compounds with hydrazine hydrate derivatives is generally carried out

10 by admixture of the two components in a suitable solvent like a lower alcohol, ether, or THF at 0°C to the reflux temperature for 1-18 hours.

The synthesis of 1,3-dicarbonyl compounds has received considerable attention in the literature and most of the major approaches towards 1,3-diketones <u>52</u> of interest in this invention are illustrated by <u>Scheme 12</u>.

Scheme 12

Scheme 12 (cont'd.)

bases like sodium ethoxide, sodium hydride or sodium amide in a suitable solvent like alcohol, DMF, DMSO or benzene at 0°C to reflux for 4-18 hours with 30-70% efficiency, J. M. Sprague, L. J. Beckham and H. Adkins, J. Amer. Chem. Soc., 56, 2665 (1934). Metallation of hydrazines 55 with n-BuLi followed by reaction with carboxylic acid chlorides and subsequent hydrolysis affords 52, D. Enders and P. Wenster, Tetrahedron Lett., 2853 (1978). Metallation of 54 with the non-nucleophilic mesityl lithium followed by acylation also affords 52, A. K. Beck, M. S. Hoelstein and D. Seebach, Tetrahedron Lett., 1187 (1977); D. Seebach, Tetrahedron

As shown in <u>Scheme 12</u>, equation b, the addition of 20 Grignard reagents to S-keto carboxylic acid chlorides

Lett., 4839; (1976).

may be limited to monoaddition at low temperatures to provide 52, C. D. Hurd and G. D. Kelso, J. Amer. Amer.

Soc. 62, 1548 (1940); F. Sato, M. Trone, K. Oyuro, and M. Sato, Tetrahedron Lett. 4303 (1979). Lithium dialkyl copper reagents (R² CuLi) have also been used, Luong-Thi and Riviero, J. Organomet. Chem. 77, C52 (1974).

Analogously, addition of alkyllithium reagents (R¹⁵Li) to the monoanions of ß-keto esters 57 also give rise to 1,3-diketones, S. N. Huckin and L. Weiler, Can. J. Chem.

Eschenmoser has demonstrated a synthesis of 6-diketones through a sulfur extrusion reaction of keto thioesters 58 with tributylphosphine, triethylamine and lithium perchlorate, S. Eshenmoser, Helv. Chim. Acta.,

15 54, 710 (1971).

The rearrangement of α , β -epoxy ketones <u>59</u> to β -diketones <u>52</u> catalyzed by Pd° has been reported, R. Noyori, <u>J. Amer. Chem. Soc. 102</u>, 2095 (1980).

Mixed anhydrides such as <u>61</u>, available from

20 carboxylic acids <u>60</u> and trifluoroacetic anhydride, have been shown to acylate alkynes <u>62</u> to produce the enol trifluoroacetate of a ß-diketone <u>63</u>.

Transesterification by refluxing with methanol liberates

the ß-diketone 52, A. L. Henne and J. M. Tedder, J.

25 <u>Chem. Soc.</u> 3628 (1953).

Scheme 13

5 Scheme 14

Scheme 14, cont'd.

Compounds where R¹=imidazole, such as <u>65</u>, are readily available by any of a number of standard methods. For example, acylaminoketone <u>64</u> can be cyclized with ammonia or equivalents thereof, D. Davidson, et al., <u>J. Org. Chem.</u>, <u>2</u>, 319 (1937) to the corresponding imidazole as shown in <u>Scheme 13</u>. The corresponding oxazole <u>66</u> can also be converted to imidazole <u>65</u> by action of ammonia or amines in general, H. Bredereck, et. al., <u>Ber.</u>, <u>88</u>, 1351 (1955); J. W. Cornforth and R. H. Cornforth, <u>J. Chem. Soc.</u>, 96, (1947).

Several alternative routes to imidazoles <u>65</u> are illustrated in <u>Scheme 14</u>. As shown in <u>Scheme 14</u> equation a), reaction of the appropriate R¹³ substituted imidate esters <u>67</u> with an appropriately substituted

 α -hydroxy- or α -haloketone or aldehyde <u>68</u> in ammonia leads to imidazoles of formula <u>65</u>, P. Dziuron, and W. Schunack, <u>Archive</u>, <u>Pharmaz.</u>, 307 and 470 (1974).

The starting imidazole compounds <u>65</u> wherein R^{13} is hydrogen can be prepared as shown in equation b) by reaction of the appropriate R^{13} -substituted imidate ester <u>67</u> with α -aminoacetaldehyde dimethyl acetal, M. R. Grimmett, <u>Adv. Heterocyclic Chem.</u>, <u>12</u>, 103 (1970).

As shown in equation c), imidazole 72 (wherein R¹³=hydrogen and CH₂OH) can be prepared by treatment of the imidate ester 67 with 1,3-dihydroxyacetone 71 in ammonia by the procedure described in Archive der Pharmazie, 307, 470 (1974). Halogenation of imidazole 72 or any imidazole wherein R¹³ is hydrogen is preferably accomplished by reaction with one to two equivalents of N-halosuccinimide in a polar solvent such as dioxane or 2-methoxyethanol at a temperature of 40-100°C for 1-10 hours.

Compounds of formula <u>73</u> can also be prepared from <u>70</u>

20 by reaction with formaldehyde as described in E. F.

Godefroi, et al., <u>Recueil</u>, 91, 1383 (1972) followed by halogenation as was described above.

As shown in equation d) the imidazoles $\underline{65}$ can also be prepared by reaction of R^{13} substituted amidines $\underline{74}$ with an α -hydroxy- or α -haloketone or aldehyde $\underline{68}$ as described by F. Kunckel, $\underline{Ber.}$, $\underline{34}$, $\underline{637}$, (1901).

25

30

As shown in equation e), preparation of the nitroimidazoles ($\underline{65}$, $R^{13} = NO_2$) is preferably accomplished by heating the appropriate starting imidazole in a 3:1 mixture of conc. sulfuric acid/conc. nitric acid at $60\text{-}100^{\circ}\text{C}$ for 1-6 hours. Nitration of the imidazole can be achieved by first converting the hydroxmethylimidazole to the corresponding chloromethylimidazole 75 employing thionyl chloride or

oxalyl chloride. Nitration, as described above, followed by hydrolysis provides the nitroimidazoles 77.

Imidazoles <u>80</u> where R¹³ = CN can be prepared as shown in equation f) by reaction of R¹³ substituted ortho esters, ortho acids or aldehydes (followed by oxidation of the aldehyde) with diaminomaleonitrile <u>79</u> by the procedure described by R. W. Begland et al., <u>J. Org. Chem.</u>, <u>39</u>, 2341 (1974). Likewise, R¹³ substituted imidate esters <u>67</u> also react with diaminomaleonitrile to give 4,5-dicyanoimidazoles <u>80</u>. The nitrile groups can be further elaborated into other functional groups by methods familiar to one skilled in the art.

Compounds wherein R^{13} = alkyl of 1-6 (straight or branched), phenyl, phenalkyl where alkyl is 1-3 carbon atoms, etc. and another R^{13} = CH₂OH can be prepared as shown in equation g). The imidazoles <u>83</u> were prepared as described in L A. Reiter, <u>J. Org. Chem.</u>, <u>52</u>, 2714 (1987), Hydroxymethylation of <u>83</u> as described by U. Kempe, et al. in U.S. Patent 4,278,801 provides the hydroxymethylimidazoles <u>84</u>.

The CH_2OH group, as in imidazolemethanol $\underline{72}$, is a versatile synthon for other functional groups. Scheme $\underline{15}$ shows some of these transformations, all of which are familiar to one skilled in the art.

25

15

Scheme 15

A suitably protected imidazole <u>85</u> may undergo selective halogen-metal exchange followed by quenching with electrophiles to yield trisubstituted imidazoles (Scheme 16) (M. Groziak and L. Wei <u>J. Org. Chem.</u> (1992) <u>57</u>, 3776). This strategy can be used to add several R¹³ groups onto the imidazole ring. By changing the order in which the electrophiles are added, one may change the position to which the electrophile gets attached onto the imidazole ring.

5

Scheme 16

5 where $(R^{13})^+$ is a suitable electrophilic precursors to R^{13} .

The pyrazoles and imidazoles disclosed previously and other heterocycles which will be mentioned later in this specification may undergo alkylation onto a nitrogen

Scheme 17

where Y' is a protected form or a suitable precursor to Y; Y is COOH, SO₃H, etc., which is suitable for further coupling to an amine or alcohol to produce the "Z" group of Formula (I).

- 1) NaH or KH, DMF
- 2) X-(CH₂)_n-Y
- 3) elaborate to Y

90

15

20

atom just as the pyrrole in Scheme 4 by simply stirring a mixture of the heterocycle <u>88</u> and alkylbromide,

5 iodide, mesylate or tosylate <u>89</u> in the presence of an acid scavanger such as potassium carbonate in an inert solvent such as THF or DMF for several hours to several days at room temperature or up to the reflux temperature of the solvent (Scheme 17).

Another way to make 90 involves first deprotonation of the N-H of heterocycle 88 with a base such as NaH, KH, n-BuLi, t-BuLi, etc., followed by displacement of the X-leaving group of 89 to yield 90.

This sequence can be performed in inert solvents such as ether or THF. NaH and KH can also be employed in DMF and DMSO at room temperature or at a higher temperature. Alkylation sometimes yields regioisomers when more than one nitrogen atom is present in the heterocycle. These isomers can be separated by standard methods such as crystallization or chromatography. Once

alkylated, the Y group can be coupled to the boronic acid moiety and all protecting groups removed to yield compounds of Formula I by procedures described previously.

5 Compounds where R¹ = 1,2,4-triazole can be prepared by the route of H. Paul, G. Hilgetag and G. Jahnchen, Chem. Ber., 101, 2033 (1968) which is depicted in Scheme 18. Imidate ester 92 is formed from nitrile 91 by the method of P. Keynaud and R. D. Moreau Bull. Soc. Chim. 10 France, 2997 (1964). Hydrazide 99 is easily

Scheme 18

15

20

25

prepared via the action of hydrazine on the corresponding methyl ester precursor. It is understood that R^{13} of 91 and 94 do not necessarily have to be in their final form, for example. In each case, they can exist as either a protected species or in the form of a precursor to R^{13} .

Alkylation of triazole <u>96</u> yields two isomeric products <u>97</u> and <u>98</u> when the R¹³ groups are not identical. These intermediates can be converted into final products in the usual fashion as shown in Scheme 19.

The regioselective syntheses of both <u>97</u> and <u>98</u> are shown in <u>Scheme 20</u>. Imidate ester <u>93</u> is reacted with hydrazine to form amidrazone <u>103</u>. Alkylation with methyl µ-bromoacetate yields <u>104</u>. Ring closure with either an ortho-ester, acid chloride or anhydride yields triazole <u>98</u>. For a similar triazole synthesis, see David B. Reitz, European Patent Application 508, 445, published 14.10.92., G. D. Searle & Co. For schemes 20, 21 and 22, the different R¹³ groups are differentiated from one another by the placement of a prime symbol next to one of the R¹³ groups, i.e. R¹³.

Scheme 20

PCT/US95/16248

10

Yet another regioselective synthesis of <u>97</u> or <u>98</u> is depicted in Scheme 21 following a similar sequence as was shown in Scheme 20 (D. B. Reitz, ibid.).

1,2,4-Triazoles also undergo selective metalation at the 5-position when the nitrogen at the 1-position is suitably protected. The metallated triazole can then be quenched through the addition of an electrophile to result in a newly functionalized triazole at the 5-

position. Suitable protecting groups are benzyl and trityl. (D. K. Anderson, et al., <u>J. Heterocyclic Chem.</u>, <u>23</u>, 1257 (1986) as well as diethoxymethyl (S. Ohta, et al., <u>Chem. Pharm. Bull.</u>, <u>41</u>, 1226 (1993). The 3-position can also be metallated if the 5-position is suitably protected (S. Ohta et al., ibid.). Thus here we have two other methods for introducing R¹³ substituents at the 5- or 3-positions of the 1,2,4-triazoles.

Compounds where R¹ = 1,2,3-triazole can be synthesized via the 1,3-dipolar cycloaddition of an azide to an alkyne as shown in Scheme 22 (for an example of this cycloaddition reaction, see W. Kirmse and L. Horner Justus Liebigs Ann. Chem. (1958) 614, 1).

15

Scheme 22

Compounds where R¹ = tetrazole can be synthesized by the methods outlined in Scheme 23. In line a, three methods are given for the conversion of a nitrile into a tetrazole (ammonium chloride/sodium azide: W. G. Finnegan et al., <u>J. Am. Chem. Soc.</u> 1958, <u>80</u>, 3908;

Finnegan et al., <u>J. Am. Chem. Soc.</u> 1958, <u>80</u>, 3908; trialkyltin azides: J. G. Luitjen et al., <u>Rec. Trav.</u> <u>Chim. Pays-Bas</u>; dialkyltin oxide: S. Wittenberger and B. G. Donner, <u>J. Org. Chem.</u>, 1993, <u>58</u>, 4139).

In Scheme 23, line b, two procedures are given for the regioselective synthesis of 1,5-disubstituted tetrazoles (DEAD, Ph₃P, TMSN₃: J. V. Duncia, M. E. Pierce, J. B. Santella III, <u>J. Org. Chem.</u> 1991, <u>56</u> 2395; Tf₂O/NaN₃: E. W. Thomas <u>Synthesis</u>, 1993, 767) which can be more difficult to synthesize due to the steric crowding of the substituents.

Compounds where R¹ is an oxazole may be synthesized by a variety of methods including those outlined in Scheme 24. The oldest synthesis and one of the most versatile is shown on line a), namely the

- cyclodehydration of 2-acylaminoketones (The Robinson-Gabriel Synthesis) (see I. J. Turchi in Oxazoles,
 Turchi, I. J., ed. John Wiley and Sons, New York (1986)
 p. 1). The 2-acylaminoketone starting materials may be synthesized from the Dakin-West reaction and
- modifications thereof (G.H. Cleland and F.S. Bennett Synthesis (1985) 681 and references therein). Some cyclodehydration agents include PCl₅, H₂SO₄, P₂O₅, SOCl₂, etc).

Scheme 23

Scheme 24

10

35

Ra, Rb and RC are equal to R13 which is described in the scope of this application. R13 in Scheme 24 does not have to be in finalized form as it appears in the scope, but can be in protected form or in the form of suitable precursors. It is understood that only when the entire molecule of formula I is synthesized do all of the substituents have to appear in their final forms as stated in the scope. Protected forms and suitable precursors to R¹³ are readily recognized by one skilled in the art of organic synthesis.

In line b, the reaction of α -acylketones 131 with ammonium acetate/acetic acid also yields oxazole 130 (D. Davidson, M. Weiss, M. Jelling J. Org. Chem. (1937), 2 328). In line c, we find the regioselective formation of oxazole 130 from the reaction of an α -haloketone 134 15 with amide 133 (R. Lakham, B. Ternai, Adv. Heterocycl. Chem. (1974) 17, 99; I. J. Turchi, M. J. S. Dewar, Chem. Rev. (1975), 75, 389). Acid chlorides 135 react with oximes 136 to yield after a [3,3] sigmatropic rearrangement (138) oxazole 130 as shown in line d (G. 20 S. Reddy and M. V. Bhatt Ind. J. Chem. (1981) 208, 322; M. V. Bhatt, G. S. Reddy <u>Tet. Lett.</u> (1980) <u>21</u>, 2359). In line e, μ -azidoketones (140), after reaction with triphenylphosphine to yield 141, react with acid chloride 135 to yield oxazole 130 (E. Zbiral, E. Bauer, 25 J. Stroh Monatsh. Chem. (1971) 102, 168). Finally, oxazoles undergo deprotonation with strong bases such as n-BuLi at the 2-position when the 4 and 5 positions are blocked and after quenching with an electrophile can yield oxazole 130 (R. Schroder, V. Schollkopf, E. Blume, I. Hoppe Liebigs Ann. Chem., (1975) 533). As stated earlier, R¹³ can be either in final form as defined in the scope of this application or in the form of precursor functionality which later on can be elaborated into final form by methods familiar to one skilled in

the art. This holds true not only for the oxazoles discussed here, but for all of the other heterocyclic systems in this application where R¹³ appears as substituents.

Oxazoles are most readily brominated at the 5-position followed by the 4-position and finally the 2-position. A brominated oxazole (as well as other brominated heterocycles in this application) can undergo aryl cross-coupling reactions catalyzed by transition metals to yield aryl-or heteroaryl-substituted oxazoles (See for example E.-I. Negishi; A. O. King; N. Okukado J. Org. Chem. (1977) 42, 1821).

Compounds where R¹ is an isoxazole may be synthesized by the methods outlined in Scheme 25. In line a, reaction of 1,3-diketone 143 with hydroxylamine yields oxazoles 144 and 145. Nitrile oxide 146 can also add across the triple bond of alkyne 147 to yield isoxazoles 144 and 145. (See P. Grunanger and P. Vita-Finsi Isoxazoles, v. 49 pt. 1 of The Chemistry of Heterocyclic Compounds, E. C. Taylor and A. Weissberger, eds., John Wiley and Sons (New York: 1991) p. 126).

Scheme 25

5

10

15

20

a)
$$R^b$$
 R^c NH_2OH R^a R^c R^b R^c R^c R^c $N-O$ $N-O$

As discussed previously R^a , R^b and R^c in Scheme 25 are again equal to R^{13} and are not necessarily in final form as they appear in the scope of this application.

Compounds wherein R¹ is a thiazole may be synthesized by the method depicted in Scheme 26, which mimics the route of Scheme 24c) describing a route for oxazoles. Thus thioamide 148 reacts with α-halocarbonyl compound 134 to yield thiazole 149. Again as for the oxazole, R^a, R^b, and R^C have the same definitions. For the synthesis of thiazoles, by the route depicted in Scheme 26, see G. Vernin "General Synthetic Methods for Thiazole and Thiazolium Salts" in Thiazole and Its Derivatives, J. V. Metzger, ed., volume 34. pt. 1 in The Chemistry of Heterocyclic Compounds, A. Weissberger and E. C. Taylor, eds. John Wiley and Sons (New York:1979) p. 180.

Schame 26

5

10

15

20

25

Compounds wherein R^1 is a 1,2,5-thiadiazole may be synthesized by the methods shown in Scheme 27. Diamine $\underline{150}$ may be reacted with sulfur monochloride to yield 1,2,5-thiadiazole $\underline{151}$. Likewise, α -diketone $\underline{152}$ may be converted into bisoxime $\underline{153}$ which also reacts with S_2Cl_2 to yield $\underline{151}$ (L. M. Weinstock, P. Davis, B. Handelsman, R. Tull \underline{J} . Org. Chem. (1967) $\underline{32}$, 2823). Z is defined in Scheme 24.

Scheme 27

5 Scheme 28

Compounds wherein R¹ is a 1,2,4-thiadiazole may be synthesized by the method depicted in Scheme 28.

Oxidation of thioamide 154 with hydrogen peroxide yields S-oxide 155 which must be stored at 0°C. Further reaction of the S-oxide intermediate with thioamide 156 yields thioacylamidine 157 which cyclizes to product 158

(V. Goerdeler, H. Porrmann Chem. Ber. (1962) 95, 627). R^a and R^b are as defined previously in Scheme 24.

Compounds where R¹ is a furan may be synthesized by the methods shown in Scheme 29, but as understood by one skilled in the art, not limited thereto, as in the case as for all of the schemes in this patent application. In line a, cyclodehydration of 1,4- dicarbonyl compound 159 yields furan 160 (L. D. Krasnoslobodskaya, Ya. L Gol'dfarb Russ. Chem. Rev. (Engl. Trans.) 1969, 38, 389). In line b, α-bromoketone or aldehyde 161 protected as its dimethyl ketal or acetal reacts with trimethylsilylenol ether 162 to yield intermediate 163 which cyclizes to furan 160 (T. Mukaiyama, H. Ishihara, K. Inomata Chem. Lett., 1975, 527). R^a, R^b, R^c, and R^d are R¹³ which is described in the scope of this application and with similar limitations as were described under Scheme 24 for R¹³ with regards to being

Compounds where R¹ is a thiophene may be synthesized

20 by the methods shown in Scheme 30. In line a, 1,4dicarbonyl compound 159 is reacted with a phosphorous
sulfide (phosphorous pentasullfide, phosphorous
trisulfide, phosphorous heptasulfide, etc.) to yield
thiophene 164 (H. D. Hartough, Chem. Heterocycl. Compd.,

- 25 1952, 3, 1). The dicarbonyl compound 159 also reacts with H₂S to favor thiophenes at lower temperatures (-50°C) (F. Duus <u>Tetrahedron</u>, 1976, 32, 2817). Reaction of alkenes 165 or 166 (line b) with sulfur and heat also yield thiophene 164 (A. S. Broun, M. G. Voronkov J. Gen.
- 30 <u>Chem. USSR.</u> (Engl. Trans.) (1947) <u>17</u>, 1162; M. g. Voronkov, A. S. Broun, ibid, (1948) <u>18</u>, 700; J. Schmitt,, M. Suquet, R. Fallard (<u>C. R. Hebd. Seances Acad, Sci.</u> (1956) <u>242</u>, 1738. R^a, R^b, R^c and R^d are as defined in Scheme 29.

35

10

15

in final form or not.

Scheme 29

dehydrating agents include $\rm H_2SO_4,\,HCl,$ polyphosphoric acid, $\rm PCl_3,\,ZnCl_2,\,DMSO,$ phosphoric esters, etc.

Scheme 30

10

a) 159
$$\frac{\Delta}{}$$
 or H₂S at approx. -50° C $\frac{R^b}{}$ $\frac{R^c}{}$ R^d

b)
$$\begin{array}{c}
R^{b} \\
R^{a}
\end{array}$$

$$\begin{array}{c}
R^{c} \\
R^{d}
\end{array}$$

$$\begin{array}{c}
S, \Delta \\
S, \Delta
\end{array}$$

$$\begin{array}{c}
164 \\
R^{d}
\end{array}$$

$$\begin{array}{c}
166 \\
\end{array}$$

Compounds where R¹ is a pyridine may be synthesized by the methods shown in Scheme 31. It is to be understood that each scheme and each reaction has its own scope and limitations and that no one synthesis is

universally applicable. It is also to be understood that one skilled in the art will be able to determine which synthesis is best suited for his or her needs. In line a, reaction of enamine 167 with ethynyl ketone 168 will cyclize to pyridine 170 (F. Bohlmann, D. Rahtz Chem. Ber. (1957) 90,, 2265). Enamino ketones 171 (line b) condense with 1,3-diketones or beta-keto esters 172 to yield pyridine 174 where R is alkyl, aryl or alkoxy and aryloxy (N. K. Kachetkov, A. Gonsales, A. Nesmeyanov Dokl. Akad, Navk, SSSR (1951) 79, 609; S. Auricchio, R. Bernardi, A. Ricca Tet. Lett. (1976) 9831; H. Henecka Chem. Ber. (1949) 82, 41).

The Hantsch dihydropyridine synthesis can be used in the synthesis of pyridines as shown in line c. 15 are many modifications of this synthesis of which only one is shown. Reaction of 175 with beta-aminocrotonate 176 yields dihydropyridine 177 (F. Bassett, H. Meyer, E. Wehinger Angew. Chem. Int. Ed. Engl. (1981) 20, 762). Further oxidation with, for example, dilute nitric acid yields pyridine 178 where R and R¹ can be different 20 alkoxy groups (E. Knoevenagel, W. Rushhaupt Ber. (1898) 31 1025). Cycloaddition of oxazole 179 with alkene 180 can also yield a pyridine (182) (M. Ya Karpeiskii, V. L. Florent'ev Russ. Chem. Rev. (Engl. Trans.) (1969) 38, 540; R. Lakhan, B. Ternai Adv. Heterocyl. Chem. (1974) 25 17, 99). In all of these pyridine synthesis, Ra, Rb, RC, and Rd are as described for Scheme 29. All of the substituents around the pyridine ring can be in final form or in the form of a precursor to a given functional 30 group as would be recognized by one skilled in the art. Finally, in line e, hydroxypyridines, such as 183, may be triflated and coupled with an aryl-or heteroarylboronic acid or aryl-or heteroaryltrialkylstannane using a transition metal . 35 catalyst such as Pd to yield aryl or

heteroarylpyridinecarboxylic acids, such as <u>186</u>. This in turn may be coupled to aminoboronic acid esters as discussed previously to yield compounds of Formula I. Halogens, such as Br or I may be used instead of triflate in compound <u>184</u> to undergo what is known as the Suzuki coupling reaction. R and R¹ in line e) are any of the allowed phenyl substituents in the scope of this application (Suzuki reactions: A. Suzuki <u>Pure Appl.</u> Chem. (1985) <u>57</u>, 1749).

Scheme 31

5 Compounds where R¹ is a pyridazine may be synthesized by the routes shown in Scheme 32. Reaction of 1,4-carbonyl compound <u>187</u> with hydrazine yields pyridazine <u>188</u>. If the 1,4-dicarbonyl compound is

saturated as in line b (compound <u>159</u>), then the product from the reaction with hydrazine <u>189</u> must be oxidized to yield pyridazine <u>188</u> (K. C. Nicolaou, W. E. Barnette, R. L. Magolda <u>J. Am. Chem. Soc.</u> (1979) <u>101</u>, 766;

5

20

Scheme 32

M. Tisler, B. Stanovnik "Pyridazines and their Benzo Derivatives" in A. R. Katrizky, C W. Rees <u>Comprehensive Heterocyclic Chemistry</u>, v.3 (Pergamon Press: Oxford), 1984, p. 45). Halopyridazines or hydroxypyridazines may also undergo the same aromatic cross-coupling reactions as were described for pyridines. Ra, Rb, Rc and Rd, etc., are defined the same as in the pyridine case.

Compounds wherein R¹ is a pyrimidine may be synthesized by the methods shown in Scheme 33. Reaction of 1,3-dicarbonyl compound 190 with amidine 191 yields pyrimidine 192 (D. J. Brown, S. F. Mason The Pyrimidines in A. Weissberger ed. The Chemistry of Heterocyclic Compounds, (John Wiley: New York) 1962, p. 31).

Scheme 33

a)
$$R^{b} \longrightarrow R^{c}$$
 $R^{c} \longrightarrow R^{d}$ $R^{d} \longrightarrow R^{d}$

Reaction of amidine 191 with 193 also yields pyrimidines (P. Schenone, L. Sansebastiano, L. Mosti J. Heterocyclic Chem. (1990) 27, 295). Ra, Rb, Rc, and Rd are as defined previously in Scheme 32. Halopyrimidines or hydroxypyrimidines may also undergo the same aromatic cross-coupling reactions as were described for pyridines.

Scheme 34

Compounds in which R1 is a 1,2,4-triazine may be 5 synthesized by the procedures outlined in Scheme 34. line a, 1,3-dicarbonyl compound 194 is condensed with amidrazone 195 to yield triazine 196 (H. Neunhoeffer and P. F. Wiley Chemistry of 1,2,3-Triazines and 1,2,4-Triazines and Pentazines, v. 33 in A. Weissberger, E. C. 10 Taylor, eds., The Chemistry of Heterocyclic Compounds John Wiley and Sons (New York: 1978) pp 194-200 and p. 524). In line b, cyclization of acylhydrazone 197 with ammonia or ammonium acetate leads to triazine 196 (H. Neunhoeffer, P. F. Wiley, ibid., p. 196, 197). In line 15 c, reaction 1,2-dicarbonyl compound 194 with oxalamidrazonates 198 yields 1,2,4-triazine ester 199. Saponification of 199 yields 200 which can be decarboxylated to yield 1,2,4-triazine 201 (H. Neunhoeffer, P. F. Wiley, ibid., p. 526). Ra, Rb, and 20 R^C are as defined in the pyridine case. Halotriazines

or hydroxytriazines may undergo the same aromatic cross-

coupling reactions as were described earlier for pyridines.

Compounds in which R¹ is as described in lines k and l in the scope of this application may be synthesized by the methods described in Scheme 35. If heterocycle -J-K-L-M-Q- 202 contains a bromine, iodine or a hydroxyl group (which can be triflated) designated by X, then it can undergo a Suzuki coupling to yield 204 where u is 0 (A. Suzuki, ibid) (Scheme 35, line a). If instead of B(OH)₂ a trialkyltin group is present, then a Stille coupling can be performed when X = triflate (J. K. Stille Angew. Chem. Int. Ed. Engl. (1986) 25 508; J. K. Stille Pure Appl. Chem. (1985) 57, 1771).

15 Scheme 35

5

The X and B(OH)₂ (or trialkyltin) moieties may be reversed so that now $X = B(OH)_2$ (or R₃Sn) and the phenyl of <u>203</u> contains halogen or triflate group. The same coupling procedures may be used in synthesizing compounds where R¹ is described by line 1 and u is 0 as were used in synthesizing compounds where R¹ is described by line k and u is 0.

When u is not 0, heterocycle 205 and its sixmembered ring counterpart -C-W-R-T-U-V- (described in line 1) must be synthesized from scratch by the methods 10 described heretofore, with the - (CH2)u-Phenyl-(CH2)mCO2R group being one of the substituents in final or precursor form. If heterocycle 205 contains an N-H which is alkylatable, then alkylation with 206 where X is Cl, Br, I, mesylate tosylate or triflate yields 207 15 (Scheme 35, line b). The esters 204 and 207 can then be hydrolyzed to the free acid and coupled with aminoboronic acid ester derivative as described in Scheme 4, for example, to yield boronic acid esters 20 which can also be hydrolyzed to the corresponding free boronic acid products.

A general method (Scheme 36) for the synthesis of 4-carboxydihydroheterocycles (oxazolines, thiazolines, imidazolines) utilizes the condensation of an α -amino acid ester (210) with an imidate (211) to provide 212, 25 see: Meyers, A. I.; Hanagan, M. A.; Mazzu, A. L. Heterocycles 1981, 15, 361; Meyers, A. I.; Whitten, C. E. Heterocycles 1976, 1, 1687; North, M.; Pattenden, G. Tetrahedron 1990, 46, 8267; Jones, R. C. F.; Ward, G. J. Tetrahedron Lett. 1988, 29, 3853. In the case where R²⁰ 30 = H, the cyclization might be conducted with trimethyl orthoformate instead of 211, see: Martin, P. K. et al. J. Org. Chem. 1968, 33, 3758. For compounds that are substituted only at the 2-position of the heterocycle, serine or cysteine might be used as the amino acid ester 35 partner. The dihydroimidazole-based materials would be

prepared from an N^{α} -monoprotected diaminopropionic acid to prevent tautomerization of the double bond once the cyclic system of 212 has been formed, see: Martin, P. K. et al. *J. Org. Chem.* 1968, 33, 3758. Hydrolysis of the ester then affords carboxylic acid 213.

Scheme 36: Synthesis of 4-Carboxyheterocycles.

G = O, S, NP P = amine protecting group

10

15

20

It may be desirable to prepare more highly substituted heterocycles as well (Scheme 37). An approach to the oxazoline class could utilize reaction between the anion of 215 and formaldehyde to provide adducts 216 as recorded by Kanemasa, S. et al. Tetrahedron Lett. 1993, 34, 677 and Ito, Y. et al. Tetrahedron 1988, 44, 5253. Hydrolysis of the imine should deliver 217, an example of an α -substituted α -amino acids, as a mixture of isomers. Condensation as before with imidate (211) should generate cyclic moieties of general structure 218 which are hydrolyzed to 219.

PCT/US95/16248

The corresponding thiazolines should be available by installing a sulfhydryl group prior to cyclocondensation. To that end, N - protection of 217, followed by reaction with a sulfur nucleophile, a thiol ester or an inorganic salt thereof, based on the work reported by Mitsunobu, O. Synthesis 1981, 1, and Yuan, W. et al. J. Med. Chem. 1993, 36, 211, should provide the substituted cysteine (220) upon premoval of the N-protecting group. Subsequent reaction with the imidate should deliver 221 and ultimately 222, after hydrolysis of the ester.

Scheme 37: Synthesis of Substituted Heterocycles.

5 The imidazolines should be obtained via the condensation described by Jones, R. C. F.; Ward, G. J. Tetrahedron Lett. 1988, 29, 3853, of a suitable diamino acid with imidate 211. The preparation parallels the sequences discussed above where the anion of 215 would 10 be expected to generate adduct 223 as described by

10

15

20

25

Gilbert, I. et al. Tetrahedron Lett. 1991, 32, 2277.

Manipulation of the protecting groups and implementation of the aforementioned cyclization should give imidazoline 225 which may be converted to the corresponding carboxylic acid 226.

Using an analogous synthetic sequence (Scheme 38), the polysubstituted versions of these heterocycles should also be accessible. For the oxazo - or imidazo - type compounds, reaction of the anion of 215 with an electrophile 227 should deliver 228, as reported by Kanemasa, S. et al. Tetrahedron Lett. 1993, 34, 677 [cf. Meyer, R. et al. Liebigs Ann. Chem. 1977, 1183], and liberation of the a -amino group should then provide 229, as a mixture of isomers. Application of the now standard cyclocondensation should complete the synthesis of 231 upon hydrolysis of 230.

A similar sequence should provide an entry into the thiazolines series (235). However, in the case where $R^{3b} = H$, this material would be prepared by converting 232 to the corresponding mercaptan 233 using the conditions described earlier; the ester in 234 could then be hydrolyzed to afford 235. This reaction sequence would be preferred to avoid use of a presumably unstable thioaldehyde (227 where U = S and $R^{3b} = H$), see: Takahashi, T. et al. Heterocycles 1993, 36, 1601 and references therein.

SCHEME 38: Polysubstituted Heterocycles, Synthesis I.

5 Alternative methods for the preparation of these polysubstitutued heterocycles employ (Scheme 39) the

233

addition of the anion of isocyanide 236 to an electrophile 227 to provide the heterocycle 237, see: Ito, Y. et al. Tetrahedron Lett. 1989, 30, 4681; Ito, Y. et al. Tetrahedron Lett. 1988, 29, 6321, 235; Ito, Y. et al. Tetrahedron Lett. 1987, 28, 6215; Ito, Y. et al. Tetrahedron 1988, 44, 5253; Meyer, R. et al. Liebigs Ann. Chem. 1977, 1183. The carboxylic ester may be manipulated at this time, however the preferred sequence would implement either an exchange reaction mediated by a transition metal catalyst as reported by Ito, Y. et 10 al. Tetrahedron 1988, 44, 5253 to provide derivatives 238; standard hydrolysis followed by reaction with imidate 211 would also yield 238. Subsequent conversion to the carboxylic acid 239 should proceed smoothly. For cyclic compounds (243) where $R^{20} = H$, the 15 preferred sequence would involve the sequential hydrolysis of adduct 240, transformation of the hydroxyl group into a sulfhydryl function, cyclocondensation to thiazoline 242 and finally hydrolysis to afford the desired carboxylic acid 243. 20

SCHEME 39: Polysubstituted Heterocycles, Synthesis II.

Another noteworthy method (Scheme 40) for the assembly of oxazolines and thiazolines utilizes an appropriate N-acyl-β-hydroxy-α-amino acid (244) which

PCT/US95/16248 WO 96/20689

reacts intramolecularly by cyclization of the amide carbonyl onto the hydroxyl group of the amino acid. This transformation may occur upon treatment with triphenylphosphine and an azodicarboxylate, as reported by Wipf, P.; Miller, C. P. Tetrahedron Lett. 1992, 33, 6267, 907 and Galéotti, N. et al. Ibid., 2807, or through the use of diphenyl sulfoxide and triflic anhydride, as demonstrated by Yokokawa, F. et al. Synlett 1992, 153, to generate the requisite ring system; in 245. Hydrolysis of the ester then provides 246. Alternatively, this cyclization may be effected by intramolecular displacement of the corresponding halo derivative (-OH --> halogen in 244), which is generated in situ, to provide the oxazoline (245), see: Evans, D. A. et al. J. Org. Chem. 1992, 57, 1961. 15

10

20

25

30

SCHEME 40: Alternative Syntheses of Oxazolines and Thiazolines.

The regioisomeric 5-carboxyheterocycles may be synthesized (Scheme 41) by condensation of an appropriate α -functionalized β -amino acid with imidate 211; for an example of this type of cyclization, see: Wolfe, S. et al. Tetrahedron Lett. 1979, 3913. In the event, nucleophilic opening of an a, b - epoxy acid (247) with an inorganic azide such as lithium azide according to Chong, J. M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1563 should provide 248; the corresponding esters also participate in this reaction, see:

Commerçon, A. et al. Tetrahedron Lett. 1992, 33, 5185.
Reduction should give the requisite α-hydroxy-β-amino acid 249. Alternatively, it may be desirable to prepare 249 from an a - amino acid directly as described by 5 Poss, M. A.; Reid J. A. Tetrahedron Lett. 1992, 33, 1411, by reaction of the appropriate N-BOC compound (250) with 2-furyllithium to provide vicinal amino alcohol (251); manipulation of the furan moiety and deprotection then generates 249. A similar approach 10 using 2-lithiothiazoles may also be useful, see: Dondoni, A.; Perrone, D. Tetrahedron Lett. 1992, 33, 7259.

SCHEME 41: Regioisomeric Heterocycles, Synthesis I.

Completion of the syntheses of the heterocycles should follow precedent. Reaction with of 249 with 211 should provide oxazoline 254 directly. This alcohol may also be used in a sequence described previously to allow for incorporartion of sulfur and ultimately provide 250; this mercaptan should lead to thiazoline 251.

Additionally, 249 could be employed as a substrate for reaction with a nitrogen based nucleophile, see:

Mitsunobu, O. Synthesis 1981, 1 [cf. Cardani, S. et al.

Tetrahedron 1988, 44, 5563], to deliver 252 as a precursor for imidazoline 253.

The regioisomeric imiodazolines should be available from other routes as well (Scheme 42). One method would call for hydrolysis of imine 223, discussed earlier in Scheme 37, followed by protection of the newly liberated α-amino group to give 254. Cleavage of the phthaloyl residue and reaction with imidate 211 should provide 255 which is hydrolyzed to 256. An alternative approach calls for reaction of an α-bromo-

20 α,β-unsaturated ester (257) with an amidine (258) [sterically hindered (P is large) materials do not react] to generate 259 in a single step as reported by Marsura, A. et al. Synthesis 1985, 537; hydrolysis of the ester should yield the acid 260.

SCHEME 42: Alternative Preparations of Imidazolines.

The several types of inhibitors disclosed in this invention can be broadly classified by their electrophilic functional group \underline{A} , as defined in Formula (I). The compounds described below, unlike the boron containing peptides, utilize a highly electrophilic carbon atom at \underline{A} to interact with the active site serine of thrombin. The precursor for the electrophilic carbon

5

inhibitors is the appropriately protected amino acid (261) of Scheme 43.

Scheme 43

MO₂C

NPG

H

$$262$$
 $CH_2NHC(=NH)H$
 263

MO₂C

 $CH_2NHC(=N-CN)NH_2$
 263

MO₂C

 $CH_2NHC(=N-CN)NH_2$
 263

MO₂C

 $CH_2NHC(=N-CH)NH_2$
 264
 $CH_2NHC(=N-CH)NH_2$
 264
 $CH_2NHC(=N-CH)NH_2$
 264
 $CH_2NHC(=N-CH)NH_2$
 264
 $CH_2NHC(=N-CH)NH_2$
 $CH_2NHC(=N-CH)NH_2$

The preparation of (261) can be found in the general chemical literature, one such reference being the review by Morrison and Mosher (1976). According to Scheme 43 various terminal functional groups are available from (261): the formamidino- (262), cyanoguanidino- (263), hydroxyguanidino- (264) and guanidino- analogs (265).

5

10

The preparation of amidine derivative (267) and phenylguanidines of formula (269) from amino acids (266)

and (268), respectively, is shown in Scheme 44. The conditions used to prepare amidines of formula (267) is discussed for (303) of Scheme 53 while the method for formamidinylation of (268) to give (269) is the same as that described to prepare (295) of Scheme 52.

Scheme 44.

 $Q = -(CH_2)_{y^-}$ or $-(CH_2)_{q-1}C_6H_4(CH_2)_{p-1}$

 $Q = -(CH_2)_{q-1}C_6H_4$

v = 1-12

M = alkyl or benzyl

PG = suitable amine protecting group

10

5

As shown in Scheme 45, appropriately protected derivatives of formulae (261-269), wherein M is an alkyl or benzyl group can be coupled with N,N-disubstituted acid (270) or (271) (wherein M is hydrogen). The X

group in compounds of formulae (261) through (269) and (272) in Scheme 45, as well as in compounds illustrated in the Schemes to follow, is a protected version of the terminal functional group X, as defined by Formula (I), unless deprotection is indicated to obtain the final compound of the sequence.

Scheme 45.

10

15

20

It is understood that the protecting group(s) used should compatible with the conditions of the process discussed; a good source for information on protecting group chemistry is Greene and Wuts (1991).

The preparation of the thrombin inhibitors trihalomethyl ketone (274) and α -ketoester (275) are shown in Scheme 46. The coupled ester (272), wherein M is alkyl or benzyl can be converted to the acid (M is hydrogen) by the methodology appropriate for the particular ester functionality as described in Greene and Wuts (1984). The aldehyde (273) can be prepared by selective reduction of the acid (272, M is hydrogen) to the primary alcohol followed by oxidation.

25

Scheme 46.

PCT/US95/16248

5

10

15

To obtain the primary alcohol, the acid can be transformed to the mixed anhydride by condensation of the trialkylammonium salt of the acid with an alkyl- or arylchloroformate in an inert non-polar solvent such as tetrahydrofuran, 1,2-dimethoxyethane or toluene at-78°C to room temperature. The solution of the resulting mixed anhydride is filtered and reduced to the peptidyl alcohol with an excess of a borohydride reducing agent in a compatible solvent like water or an alcohol at -78°C to room temperature according to the method of Rodriguez et. al., Tetrahedron Lett. 32, 923 (1991). The peptidyl alcohol can be oxidized to aldehyde (273) without over oxidation by a variety of procedures, as

detailed by Hudlicky in Oxidations in Organic Chemistry, American Chemical Society, p. 114 (1991); the preferred methods include Swern oxidation described by Omura and Swern, Tetrahedron 34, 1651 (1978); and the Pfitzner-Moffat oxidation described by Fearon et al.in J. Med. Chem. 30, 1617 (1987). A two step protocol reported by Edwards, Tetrahedron Lett. 33, 4279 (1992) can be used to prepare the trifluoromethyl ketones (274) (J is fluorine) from aldehyde (273). In this procedure a 10 metallated trifluoromethyl anion is generated from an excess of trifluoromethyliodide or -bromide and an active metal such as zinc, magnesium, lithium or cadmium in inert, anhydrous solvents like tetrahydrofuran or N, N-dimethylformamide at temperatures of -100°C up to 15 the reflux point of the solvent. Alternatively, the metalated trifluoromethyl anion may be generated by the transmetallation of trifluoromethyliodide or -bromide with an organometallic compound such as a Grignard reagent or alkyllithium compound in an inert solvent 20 like tetrahydrofuran, hexane or ether at temperatures ranging from -78°C up to the reflux point of the selected solvent. Aldehyde (273) can be added to the solution of the metalated trifluoromethyl anion to form the trifluoroethanol derivative at temperatures of 25 -100°C or higher. To obtain the trifluoromethyl ketone (274) where J is fluoro, the alcohol is oxidized by the Pfitzner-Moffat or Swern procedure. Removal of the protecting group(s) on terminal group X by the appropriate method will provide the thrombin inhibitors 30 of formulae (274).

Trihalomethyl analogs of (274), where J is fluoro can also be prepared from aldehyde (273) by a different method. The trihalomethyl ketones are prepared by treating aldehyde (273) with either the trimethylsilyl trihaloacetate or the potassium or sodium trihaloacetate in a polar solvent such as an alcohol, N,N-

5

10

15

25

30

dimethylformamide or methylsulfoxide with or without a base such as a trialkyl amine, potassium carbonate or sodium hydroxide at temperatures of -78°C or higher according to the method of Beaulieu, Tetrahedron Lett.

32, 1031 (1991); Shell Int. Res., European Patent Application EP 16504). The resulting aaa-trihaloethanol is oxidized and group X can be deprotected as above to give the thrombin inhibitors or formulae (274).

The α -ketoester thrombin inhibitors, exemplified by (276), are prepared according to a route disclosed by Iwanowicz et. al. in *Bioorgan*. *Med. Chem. Lett.* 12, 1607 (1992). The tris(ethylthio)methyl anion is added to the peptidyl aldehyde (273) in a solvent such as tetrahydrofuran, 1,2-dimethoxyethane or toluene at -100°C or higher to give the alcohol (275). The α -hydroxyl ester is generated from (275) by treatment with a mixture of mercuric salts, such as mercuric chloride

and mercuric oxide, in an alcohol or water. Swern or
20 Pfitzner-Moffat oxidation of the α-hydroxyl ester
followed by the deprotection of substituent X protecting
group provides thrombin inhibitors of formula (276).

Another method for the preparation of compound (276) substitutes a 1-lithio-1-alkoxyethene or 1-magnesio-1-alkoxyethene for the tris(ethylthio)methyl anion of Scheme 15 in an addition reaction with peptidyl aldehyde (273). There can be obtained an adduct analogus to the tris(ethylthio)hydroxyethyl compound (275) when excess 1-magnesio- or 1-lithio-1-alkoxyethene anion is stirred at temperatures ranging from -100 °C to ambient temperature with (273) in anhydrous solvents such as diethyl ether or tetrahydrofuran. This alkoxyolefin product may then be transformed to (276) by oxidative cleavage with reagents such as ozone or periodate in an inert solvent such as a halohydrocarbon, lower alkyl ketone, an alcohol or water at temperatures

ranging from -100 $^{\circ}$ C to ambient temperature, followed by oxidation of the intervening α -hydroxyester and deprotection as described above.

The preparation of the αα-dihalomethylketone
thrombin inhibitors of this invention is outlined in
Scheme 47.

Scheme 47.

10

15

20

25

The aa-dihalomethylketone (279), where J is fluoro can be prepared from the aldehyde (273) by selective reaction of the aldehyde with the anion of the corresponding dihalomethane. The metalated dihalomethane anion is generated from one equivalent each of a strong hindered base, such as lithium tetramethylpiperidide or tertbutyllithium, and the selected dihalomethane in an anhydrous, inert solvent like tetrahydrofuran or 1,2-dimethoxyethane at -100°C or higher according to the method of Taguchi et. al. Bull. Chem. Soc. Jpn., 50, 1588 (1977). The metalated dihalomethane anion can be added to the aldehyde (273) at -100°C or higher. Alternatively, the dihalomethane anion is generated from a dihalomethyl(trimethyl)silane

and an anhydrous fluoride ion source such as tris(diethylamino)sulfonium difluoromethyl silicate in an inert solvent like benzene, acetonitrile or tetrahydrofuran at -78°C or higher, then (273) can be added to give dihaloethanol (278) according to the method of Fujita and Hiyama, J. Am. Chem. Soc. 107, 4085 (1985). The resulting dihaloethanol can be oxidized to ketone (279) by the Swern or Pfitzner-Moffat procedure. Removal of the protecting group(s) on substituent X of (279) gives the aa-dihalomethylketone thrombin inhibitors.

α-Halomethylketone thrombin inhibitors can be prepared by the process illustrated in Scheme 48. The acid chloride (281) can be prepared from acid (272), wherein M is hydrogen or its trialkylammonium, sodium or potassium salt with a chlorinating agent such as thionyl chloride, oxalyl chloride or dichloromethylmethyl ether in a solvent like tetrahydrofuran or dichloromethane with or without a catalytic amount of N, Ndimethylformamide at -78°C or higher. Alternatively, 20 the mixed anhydride of (272) may be prepared as described for (272) in Scheme 46. Compound (281) or the mixed anhydride of (272) can be treated with an ether solution of diazomethane and either anhydrous hydrogen fluoride or hydrogen chloride gas according to that 25 described by McPhee and Klingsbury, Org. Synth. Coll. III, 119 (1955); or hydrogen bromide according to the method Miescher and Kaji, Helv. Chim. Acta. 24, 1471 (1941).

Scheme 48.

Selection of the hydrogen fluoride gas will give the α -fluoromethylketone analog, (282) wherein J is fluoro; and hydrogen chloride gas gives the α -chloromethylketone analog (282) wherein J is chloro. Deprotection of X gives the corresponding thrombin inhibitors of (282).

The general preparative route for the αβdiketoester, -amide and -ketone thrombin inhibitors of
this invention is exemplified in Scheme 49. Compound
(281) or the mixed anhydride of (272) can be reacted
with a Wittig reagent such as methyl (triphenylphosphoranylidene) acetate in a solvent like

tetrahydrofuran or acetonitrile at temperatures ranging from 0°C to the reflux point of the solvent to give (284). Oxidative cleavage of the phosphoranylidene (284) with an oxidizing agent like ozone or OXONETM in an inert solvent such as tetrahydrofuran,

dichloromethane or water at temperatures of -78°C or higher gives the vicinal tricarbonyl compound (285), analogous to that described by Wasserman and Vu,

20

PCT/US95/16248

Tetrahedron Lett. 31, 5205 (1990). Cleavage of the protecting group can provide thrombin inhibitors of formula (285).

5

Scheme 49.

$$R^{4}R^{5}$$
 H $C(O)M$ $R^{11}N$ $C(O)C(=PPh_{3})CO_{2}CH_{3}$ X $Z72: M = OH$ $Z84$ $Z81: M = CI$ $Q = -(CH_{2})_{1-12}$ or $-(CH_{2})_{q}C_{6}H_{4}(CH_{2})_{p}$ $R^{11}N$ R^{3} $C(O)C(O)C(O)CO_{2}CH_{3}$ $R^{11}N$ R^{3} $C(O)C(O)CO_{2}CH_{3}$ $R^{11}N$ R^{3} $C(O)C(O)CO_{2}CH_{3}$ X $Z85$

The preparative routes for the synthesis of the α mono- and $\alpha\alpha$ -dihalo- β -ketoester -amide and ketone 10 thrombin inhibitors of this invention are summarized in Scheme 50. The exemplified β -ketoester (287) is available from the acid derivative (272). The acid (272) can be treated with carbonyl diimidazole in an inert solvent such as tetrahydrofuran or dichloromethane 15 at 0°C or higher to form the acyl imidazole. This acyl imidazole, or the mixed anhydride of (272), can be further reacted with lithioethylacetate in solvents such as 1,2-dimethoxyethane or tetrahydrofuran/hexane at temperatures ranging from -100°C to ambient temperature, 20 according to the method of Dow, J. Org. Chem. 55, 386 (1990) to give β -ketoester (287).

Scheme 50.

$$Q = (CH_2)_{1-12} \text{ or } (CH_2)_q C_6 H_4 (CH_2)_p$$

$$R^4 R^5 H_1 V_1 V_2 C(O) C(J)_2 CO_2 CH_3$$

$$R^3 O Q_1 V_3$$

288 : J = H, halogen 289 : J = dihalogen

5

10

15

20

Compound (287) serves as a substrate for both mono- and dihalogenation. The α -monochloro analog of (288), where J is each chlorine and hydrogen, can be prepared by controlled halogenation reactions with reagents like Nchlorosuccinimide or thionyl chloride in an inert halogenated solvent and at temperatures ranging from -20°C to the reflux point of the selected solvent according to the methods of Uhle, J. Am. Chem. Soc. 83, 1460 (1961); and DeKimpe et. al., Synthesis 2, 188 (1987). The $\alpha\alpha$ -dihalo analog (289) where J is chloro is available from halogenation with molecular chlorine in a halogenated solvent at temperatures of -20°C or higher according to the method of Bigelow and Hanslick, Org. Syn. Coll. II, 244 (1943). Reagents such as Nfluorobis[(trifluoromethyl)sulfonyl]imide are useful for the preparation of mono- and difluoro analogs (288) and (289) by reacting the appropriate stoichiometry of this

reagent with (287) in a halogenated solvent at temperatures of -78°C or higher according to the method of Resnati and DesMarteau, *J. Org. Chem.* 56, 4925 (1991). Deprotection of substituent X of the halogenation products (288) and (289) can provide the corresponding thrombin inhibitors.

Compounds of formula (287) also serves as a substrate for the preparation of tricarbonyl derivatives such as (285) (Scheme 49). Condensation of (287) with an aldehyde, such as benzaldehyde, gives an β -ene-a, dione. This ene-dione can be oxidatively cleaved with reagents like ozone or periodate to give tricarbonyl analog (285).

The preparation of the mono- and dihalomethylketone thrombin inhibitors is outlined in Scheme 51. The intermediates formed in the preparation of the α -mono- and α,α -dihalo- β -ketoester thrombin inhibitors of Scheme 49 can be used in these preparations.

20

25

30

15

10

Schame 51.

288 : J = halogen, H 289 : J = dihalogen 282: J = dihalogen 279 : J = halogen, H

The decarboxylation of these halogenation products, (288) and (289), can be effected by saponification of the ester with mild aqueous base such as potassium carbonate or sodium hydroxide in water miscible solvents like an alcohol, tetrahydrofuran or N,N-dimethylformamide, followed by adjusting the pH to a range of 4 to 6. This mixture can be either stirred at

ambient temperatures or heated at various temperatures up to the reflux point of the solvent chosen until the formation of (279) or (282) is complete and is similar to that reported in Matsuda et. al., Tetrahedron Lett. 30, 4259 (1989). Removal of protecting group(s) can provide thrombin inhibitors corresponding to (279) or (282).

A process for the preparation of the boropeptide thrombin inhibitors of this invention from intermediates 10 (291) and (292) is disclosed in Scheme 52. Compound (291) serves as a starting point for isothiouronium thrombin inhibitors (296) and (297). The boronic ester (296) is prepared by stirring a solution of (291) and thiourea in an inert polar solvent, such as an alcohol 15 or N, N-dimethylformamide, at temperatures ranging from ambient to the reflux temperature of the selected It is understood that a boronic acid ester like compound (296) is an effective thrombin inhibitor, however, it may be transformed to the corresponding free boronic acid (297) without a loss of biological 20 activity. Compound (297) is derived from the boron ester (296) by transesterification under equilibrium conditions.

25

Scheme 52

Thus stirring ester (296) with an excess of an alkyl- or aryl boric acid in a biphasic mixture of neutral or acidic water and an immiscible solvent, such as ethyl ether or toluene, gives (297) after several hours at ambient temperature. The conditions generally preferred use 5 to 10 equivalents of phenylboric acid in ethyl ether/water at neutral pH. Thrombin inhibitors (293) to (299) are obtained by reduction of an azide intermediate prepared from (291) or (292). The azide intermediate is prepared by heating either (291) or (292) with an inorganic azide, such as sodium or potassium azide, in an anhydrous polar aprotic solvent, such as acetone, dimethylformamide or methyl sulfoxide at temperatures ranging from ambient to 130°C. Alternatively, phase transfer conditions may be employed to prepare the azide intermediate from (291) or (292). For example, a

10

15

tetraalkylammonium azide in a non-polar aprotic solvent, such as tetrahydrofuran or toluene, or a crown ether and inorganic azide in biphasic mixtures of water and an immiscible solvent, such as benzene, toluene or xylene, can be stirred at room temperature or heated up to the reflux point of the selected solvent. The primary amines (293) and (294) are most conveniently obtained from the catalytic hydrogenation of the azide in an inert solvent, such as an alcohol, ethyl acetate or 10 tetrahydrofuran with a transition metal catalyst such as platinum or palladium on carbon under an atmosphere of hydrogen gas. A variety of alternative methods are also useful and can be found in the monograph by Hudlicky (1984, pp. 76). The acid salt of the resulting amines 15 (293) and (294) may be formed by the addition of one equivalent of the desired acid to the hydrogenation mixture. Phenylboric acid mediated hydrolysis of esters (293) and (294) gives the free boronic acid thrombin inhibitors (298) and (299), compounds of formula (I) of 20 the invention.

Compounds containing a primary guanidine or Nalkyl guanidine functionality may be prepared by the alternative process outlined in Scheme 52. As illustrated with primary amine (293), the transformation to (295) is effected with a guanidinylation agent, such 25 as an S-alkyl thiourea, aminoiminomethane sulfonic acid reported by Miller and Bischoff Synthesis 9, 777 (1986), cyanamide reported by Kettner et al. (1990) or their Nalkyl derivatives. This mixture is stirred at room 30 temperature or higher with a base, such as potassium carbonate, triethylamine or N, N-dimethylaminopyridine in an inert solvent like water, alcohol, N,Ndimethylformamide or acetone. The guanidine boronic acid esters (295) can be deesterified to give the 35 corresponding boronic acid (300) by the phenylboric acid procedure described above.

PCT/US95/16248

According to Scheme 53, the bromide (292) is converted to the corresponding alkylnitrile (302) upon exposure to the cyanide anion under a variety of conditions.

5

Scheme 53

10 Effective methods include the use of potassium or sodium cyanides in polar aprotic solvents, such as N,N-dimethylformamide, methylsulfoxide, acetone or ethylmethyl ketone, at temperatures ranging from ambient up to the reflux point of the selected solvent. More useful, however, are conditions employing phase transfer agents such as tetrabutylammonium cyanide in a nonpolar aprotic solvent such as tetrahydrofuran or toluene, or a

biphasic mixture of a crown ether and an inorganic cyanide in water with an immiscible solvent like benzene, toluene or xylene. These mixtures can be stirred at ambient temperature or heated up to the reflux temperature of the selected solvent. An amidine like (303) is prepared by first treating nitrile (302) with a saturated solution of a mineral acid such as hydrogen chloride in an alcohol solvent at room temperature or lower. The intermediate O-alkylimidate 10 can be exposed to ammonia, or a primary or secondary amine under anhydrous conditions with or without an inert solvent. As illustrated in Scheme 5, compound (303) is produced by treating the O-alkylimidate formed from (302) with neat anhydrous ammonia at reflux. The 15 free boronic acid (304) is obtained by transesterification of (303) with phenylboric acid in a mixture of water and diethyl ether.

EXAMPLE 1: N¹-(4-Phenylbenzoyl)boroarginine (+)-Pinanediol, Bisulfite

Part A: (+)-Pinanediol 4-bromo-1(R)-(4-phenylbenzoy1) aminobutane-1-boronate. To a solution of (+)pinanediol 4-bromo-1(R)-aminobutane-1-boronate hydrochloride (5.00 g, 13.6 mmol) in dichloromethane (50 mL) at 0 °C was added 4-phenylbenzoyl chloride (4.97 g, 22.9 mmol) followed by N-methylmorpholine (4 mL, 36 mmol). After 1 hour, the cooling bath was removed and 10 the mixture stirred at room temperature for 2 hours. The mixture was then diluted with ethyl acetate and washed with 0.1 M hydrochloric acid, saturated sodium bicarbonate and saturated sodium chloride. The organic phase was dried over anhydrous magnesium sulfate, 15 filtered and the filtrate concentrated in vacuo to afford 3.37 g (48%) of the desired amide, mass spectrum: $(M+H)^+ = 510/512$; ¹H NMR (300 MHz, CDCl₃) $\partial 7.9$ (2H, d, J = 8.3), 7.84 (1H, bs), 7.6 (2H, d, J = 8.3), 7.44 (5H, m), 4.37 (1H, m), 3.41 (1H, t, J = 6.9), 2.0 (10H, m) 20 1.49 (3H, s), 1.38 (1H, m), 1.29 (3H, s), 0.91 (3H, s).

Part B: (+)-Pinanediol 4-azido-1(R)-(4-phenylbenzo-yl)aminobutane-1-boronate. To a solution of (+)
pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate (3.37 g, 6.60 mmol) in dimethylformamide (6 mL) was added sodium azide (547 mg, 8.41 mmol). The resulting mixture was heated at 70 °C for 2 hours, cooled to room temperature, and diluted with ethyl acetate. The mixture was then washed with water, saturated sodium chloride and dried over anhydrous magnesium sulfate. Filtration, followed by concentration of the filtrate in vacuo gave 3.04 g (97%) of the desired azide, mass spectrum: (M+H) + = 473; lh

NMR (300 MHz, CDCl3) d7.89 (2H, d, J = 8.3), 7.75 (1H,

bs), 7.3 (7H, m), 4.32 (1H, m), 3.32 (1H, m), 2.0 (10H, m) 1.48 (3H, s), 1.3 (4H, m), 0.9 (3H, s).

Part C: N^{1} -(4-Phenylbenzoyl)boroornithine (+)-5 pinanediol, hydrochloride. To a solution of (+)pinanediol 4-azido-1(R)-(4-phenylbenzoyl)aminobutane-1boronate (3.04 g, 6.44 mmol) in methanol (30 mL) was added Pearlman's catalyst $(Pd(OH)_2/C, 200 \text{ mg})$ and 1 M hydrochloric acid (6.5 mL, 6.5 mmol). The mixture was 10 placed on a Parr apparatus and hydrogenated at 50 psi for 3 hours. The mixture was filtered using CeliteTM, washed with methanol and the filtrate concentrated in vacuo. The resulting amorphous solid was dissolved in water and washed with ether. The aqueous phase was then 15 concentrated in vacuo and crystallized from ethyl acetate-hexanes, giving 1.52 g (49%) of the desired amine hydrochloride, mass spectrum: $(M+H)^+ = 447$; mp: 157-170 °C; 1H NMR (400 MHz, CDCl3/DMSO-d6) d9.88 (1H, bs), 8.18, (2H, d, J = 8.3), 8.13 (3H, bs), 7.68 (2H, d,20 J = 8.3), 7.61 (2H, d J = 7.0), 7.45 (2H, d, J = 7.0), 7.37 (1H, d, J = 7.30), 4.20 (1H, d, J = 6.3), 2.99 (1H, m), 2.87 (2H, m), 2.31 (1H, m), 2.13 (1H, m), 1.84 (7H, m), 1.56 (1H, d, J = 10.0), 1.42 (3H, s), 1.29 (3H, s), 0.89 (3H, s).

25

30

35

Part D: N¹-(4-Phenylbenzoyl)boroarginine (+)pinanediol, bisulfite. To a solution of N¹-(4phenylbenzoyl)boroornithine (+)-pinanediol,
hydrochloride (80 mg, 0.17 mmol) in ethanol (2 mL) was
added 4-dimethylaminopyridine (40 mg, 0.33 mmol). After
15 minutes, aminoiminomethanesulfonic acid (40 mg, 0.32
mmol) was added and the resulting mixture heated at
reflux for 3 hours. After cooling to room temperature,
the mixture was filtered and the filtrate concentrated
in vacuo. The residue was dissolved in chloroform and
washed with 0.1 M hydrochloric acid, water and dried

over anhydrous magnesium sulfate. Filtration, followed by concentration of the filtrate in vacuo afforded 73 mg (84%) of the desired guanidine, mass spectrum: (M+H) + = 489; 1H NMR (400 MHz, CDCl₃, 60 °C) d9.48 (1H, bs), 8.10 (2H, d, J = 8.1), 8.07 (1H, bs), 7.75 (1H, bs), 7.54 (2H, d, J = 8.3), 7.48 (2H, d, J = 7.0), 7.35 (3H, m), 7.06 (4H, bs), 4.19 (1H, bd, J = 8.3), 3.1 (2H, m), 2.84 (1H, m), 2.29 (1H, m), 2.12 (1H, m), 1.96 (1H, m), 1.75 (6H, m), 1.47 (1H, d, J = 10.2), 1.40 (3H, s), 1.24 (3H, s), 0.83 (3H, s).

EXAMPLE 34: (+)-Pinanediol 4-(Formamidino)thio-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate, Hydrobromide

(+) -Pinanediol 4-(formamidino)thio-1(R)-(4-15 phenylbenzoyl)aminobutane-1-boronate, hydrobromide. a solution of (+)-pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate (200 mg, 0.392 mmol) in methanol (3 mL) was added thiourea (120 mg, 1.58 mmol). The reaction was stirred at room temperature for 3 days. 20 The mixture was concentrated in vacuo, the residue dissolved in water and washed with ether. Concentration of the aqueous portion afforded 80 mg (35%) of the desired isothiourea, mass spectrum: (M+H) + = 506; 1H NMR $(300 \text{ MHz}, \text{CDCl}_3) d8.15 (2H, d, J = 8.4), 7.61 (2H, d, J)$ 25 = 8.4), 7.52 (2H, m), 7.38 (3H, m), 6.47 (1H, bs), 4.23 (1H, dd, J = 6.6, 1.9), 3.24 (1H, m), 3.14, (1H, m),2.96, (1H, m), 2.32 (1H, m), 2.15 (1H, m), 1.99 (1H, m), 1.78 (6H, m), 1.48 (1H, d, J = 10.1), 1.42 (3H, s), 1.27 30 (3H, s), 0.86 (3H, s).

EXAMPLE 898: R-N¹-(3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetyl-borolysine, (+)-pinanediol ester, hydrochloride; $X = -CH_2NH_2$, $R^{13} = -CH_2Ph$, $R^{14} = -CH_2CN$, $Y^1, Y^2 = (+)$ -pin.

Part A. Ethyl benzylimidate, hydrochloride.

HCl gas (17.1 g, 469 mmol, 1.1 eq) was slowly 10 bubbled into a solution of phenylacetonitrile (50.00 g, 427 mmol, 1 eq) in ethanol (27.6 mL, 469 mmol, 1.1 eq) at 0 °C. The reaction was put into the refrigerator over the weekend. After warming to room temperature, ether (300 mL) was added to the reaction mixture which 15 had solidified and the contents were vigorously stirred at 0 °C to pulverize the mixture. The solid material was filtered while cold under an inert atmosphere and the filter cake rinsed with some more ether. product was dried under high vacuum to yield 60.0 g (mp 94.0-95.0 °C) of a white solid. A second crop yielded 20 20.98 g (96.0-97.5 °C).

25 Part B. 3-Cyanomethyl-5-phenylmethyl-1,2,4-triazole.

The imidate from part A (14.92 g, 91 mmol, 1 eq)

was dissolved in ethanol (250 mL) and cooled to 0 °C

under an inert atmosphere. Cyanoacetohydrazide (9.06 g, 91 mmol, 1 eq) dissolved as best possible in warm ethanol was added, and the resultant mixture stirred at room temperature overnight. The mixture was filtered, and the filtrate concentrated to yield a gummy orange solid. Trituration from hexanes yielded 19.72 g of solid product acylamidrazone (MS detects (M+H) + = 216). This intermediate was heated neat (oil bath) at 170 °C under an inert atmosphere for 0.5 h to crack out water. The product was cooled to room temperature and dissolved in ethyl acetate. The solvent was dried (MgSO4) and stripped to yield 11.89 g of an orange solid. chromatography over silica gel in solvent systems consisting of 3:1 pentane/ethyl acetate to 100% ethyl acetate to 4:1 chloroform/methanol yielded 6.76 g (38%) of a light pink solid product; m.p. = 140.0-142.5 °C. NMR (DMSO- d_6) ∂ 14.00-13.60 (bs, 1H); 7.40-7.10 (m, 5H); 4.08 (s, 2H); 4.05 (s, 2H). MS: $(M+H)^+ = 199$.

10

15

20

25

30

Part C. Ethyl (3-cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetate.

The compound from part B (3.36 g, 17 mmol, 1 eq) was added portionwise to a mixture of DMF and 50 % NaH (0.81 g, 17 mmol, 1 eq) at 25 °C. After H₂ evolution had ceased, the mixture was heated a little with a heat gun to ensure complete deprotonation. The mixture was cooled to 0 °C and ethyl bromoacetate (1.88 mL, 17 mmol, 1 eq) was added. The reaction was allowed to warm to room temperature and was stirred overnight. Ethyl acetate was added and the mixture washed with water (5x) to remove the DMF. The organic layer was dried (MgSO₄) and stripped to yield 6.10 g of a reddish

oil. Flash chromatography in 3:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate yielded 2.93 g of an amber oil which consisted of a 4:1 mixture of regioisomers as determined by NMR with the major isomer being depicted above. NMR (major isomer) (CDCl₃) ∂ 7.40-7.20 (m, 5H); 4.68 (s, 2H); 4.25-4.05 (m, 4H); 3.84 (s, 2H); 1.23 (t, 3H, J=7 Hz).

Part D. (3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetic acid.

The product of part C (1.00g, 3.52 mmol, 1 eq),
1.000 N NaOH (7.03 mL, 7.03 mmol, 2 eq) and methanol (10 mL) were mixed and stirred at room temperature. After
24h, the methanol was stripped and the aqueous mixture washed with ether (2x). The aqueous layer was then acidified with conc. HCl and extracted with ethyl acetate (3x). The organic layers were combined, dried (MgSO₄) and stripped to yield 0.66 g of an off-white
20 glass. MS (M+H) + = 257.

Part E. (+)-Pinanediol 5-bromo-1(R)-((3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetamido)pentane-1-boronate.

25

N-methylmorpholine (0.42 mL, 3.86 mmol, 1.5 eq) was added to a solution of the product in part D (0.66 g,

2.58 mmol, 1 eq) in THF at 25 $^{\circ}$ C. The mixture was cooled to -20 °C and isobutylchloroformate (0.50 mL, 3.86 mmol, 1.5 eq) in THF was added dropwise. seperate flask, pinanediol 5-bromo-1-R-aminopentane-1boronate hydrochloride (0.98 g, 2.58 mmol, 1 eq) was dissolved in CHCl₃ and cooled to -78 °C. Triethylamine (0.36 mL, 2.58 mmol, 1 eq) was then added and the mixture syringed immediately into the reaction flask with the mixed anhydride. The reaction was allowed then to warm to room temperature overnight. The next day, 10 the precipitate was filtered off and the solids were rinsed with THF. The filtrate was stripped to yield 410 mg of a white oil. Flash chromatography over silica gel in solvent systems consisting of 3:1 pentane/ethyl acetate to 100% ethyl acetate to 4:1 chloroform/methanol 15 yielded 300 mg of a clear, colorless viscous oil and only one regioisomer by NMR. MS $(M+H)^+ = 633$ and 635. NMR (CDCl₃) ∂ 7.40-7.10 (m, 5H); 6.13 (d, 1H, J=6 Hz); 4.62 (s, 2H); 4.40-4.20 (m, 1H); 4.17 (s, 2H); 3.86 (s, 1H); 3.50-3.20 (m, 3H); 2.40-2.10 (m, 2H); 2.10-20 1.75 (m, 4H); 1.75-1.10 (m, 13 H); 0.83 (s, 3H).

Part F. (+)-Pinanediol 5-azido-1(R)-((3-Cyanomethyl-5phenylmethyl-1,2,4-triazol-1-yl)acetamido)pentane-1boronate.

The product from Part E (300 mg, 0.52 mmol, 1 eq), sodium azide (1.03 mmol, 2 eq), and DMSO (5 mL) were mixed and stirred at room temperature under an inert atmosphere for 24 h. Ethyl acetate was added and the

mixture rinsed with water (5x). The ethyl acetate layer was dried (MgSO4) and stripped to yield 256 mg of a light amber oil. IR (neat) 2096 cm-1. NMR (CDCl3) ô 7.40-7.10 (m, 5H); 6.15 (d, 1H, J=6 Hz); 4.62 (s, 2H); 4.40-4.20 (d of d, 1H, J=7, 2 Hz); 4.20-4.10 (m, 2H); 3.85 (s, 2H); 3.40-3.10 (m, 3H); 2.50-1.40 (m, 9H); 1.40-1.00 (m, 9 H); 0.84 (s, 3H).

Part G. (+)-Pinanediol 5-amino-1(R)-((3-Cyanomethyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetamido)pentane-1-boronate, hydrochloride salt.

15

20

The product from Part F (250 mg, 0.46 mmol, 1 eg) and triphenylphosphine (157 mg, 0.6 mmol, 1.3 eg) and THF (5 mL) were mixed and stirred at room temperature. After 1 h, water (11 μ M, 0.6 mmol, 1.3 eq) was added and the mixture stirred overnight. After 24 h, the reaction was not finished, and thus 1.3 eq more equivalents of water were added and the reaction stirred for another 24 The reaction was now complete and 1 equivalent of 1.000 N HCl was added. The reaction was then stripped and water was added and the reaction again stripped. Ethyl ether was added and the mixture stripped once more. The residue was dried under high vacuum to yield 138 mg of a white glass. MS detects $(M+H)^+ = 519$ and 385 (minus pinanediol). Mass calculated for C28H40BN6O3: 519.3255. Found: 519.3274. NMR shows a 1:1 mixture of pinanediol ester and free boronic acid.

15

20

EXAMPLE 908: R-N¹-(3-(1H-tetrazol-5-yl)methyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetyl-borolysine, (+)-pinanediol ester, hydrochloride; $X = -CH_2NH_2$, $R^{13} = -CH_2Ph$, $R^{14} = -CH_2$ -(CN_4H), Y^1 , $Y^2 = (+)$ -pin.

Part A. Ethyl (3-(N-triphenylmethyl)-1H-tetrazol-5yl)methyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetate

The product from Example 360, part C (1.83 g, 6.44 mmol, 1 eq), tributyltin chloride (1.75 mL, 6.44 mmol, 1 eq), sodium azide (0.42 g, 6.44 mmol, 1 eq), and xylenes (15 mL) were mixed and refluxed for 24h under an inert atmosphere. The mixture was cooled to room temperature and pyridine was then added (0.57 mL, 7.08 mmol, 1.1 eq) followed after 0.5 h by trityl chloride (1.97 g, 7.08 mmol, 1.1 eq). The following day, the reaction was worked up by adding ethyl ether and rinsing the mixture with water (3x). The ether layer was dried (MgSO4), and stripped to yield 5.66 g of an amber oil. Flash chromatography in 3:1 pentane/ethyl acetate to 100% ethyl acetate over silica gel yielded 1.33 g of an amber

oil which eventually crystallized. MS detects $(M+H)^+ = 570$ and 328 $(M+H-CPh_3)^+$.

5

10

15

Part B. (3-(N-Triphenylmethyl)-1H-tetrazol-5-yl)methyl-5-phenylmethyl-1,2,4-triazol-1-yl)acetic acid.

The product from part A (200 mg, 0.35 mmol, 1 eq), 1.000 N NaOH (0.39 mL, 0.39 mmol, 1.1 eq) and THF (5 mL) were mixed and stirred at room temperature under an inert atmosphere for 24 h. The reaction was not finished and thus 0.5 eq more of 1.000 N NaOH were added and stirred overnight. Water was then added and the pH adjusted to 5 with 1N HCl. The mixture was stripped to dryness. The residue was stirred in ethyl acetate. Some solids were filtered and the filtrate was stripped to yield 190 mg of a white glass. NMR (CDCl₃) & 7.40-7.15 (m, 12 H); 7.15-7.00 (m, 8 H); 4.55 (s, 2); 4.40 (s, 2H); 4.10 (s, 2H).

20

Part C. (+)-Pinanediol 5-azido-1(R)-((3-((N-triphenylmethyl)-1H-tetrazol-5-ylmethyl)-5-phenylmethyl-1,2,4-triazol-1-yl)acetamido)pentane-1-boronate.

The compound in part B was converted to the corresponding azidoboronic acid pinanediol ester by the methods disclosed in example 360, parts E and F. IR (neat) 2095 cm⁻¹. NMR (CDCl₃) ∂ 7.45-7.20 (m, 12H);

5 7.17 (d, 2H, J=7 Hz); 7.12 (d, 6H, J=7 Hz); 6.34 (d, 1H, J=6 Hz); 4.60 (s, 2H); 4.42 (s, 2H); 4.27 (d, 1H, J=7 Hz); 3.13 (t, 2H, J=2 Hz); 3.06 (q, 1H, J=7 Hz); 2.40-2.10 (m, 2H); 2.01 (t, 1H, J=6 Hz); 1.95-1.70 (m, 2H); 1.60-1.40 (m, 4H); 1.37 (s, 3H); 1.35-1.20 (m, 5H); 1.16 (d, 1H, J=11 Hz); 0.82 (s, 3H). MS detects (M+H) + = 830 and (M+H-CPh₃) +=588.

Part D. R-N1-(3-(1H-tetrazol-5-y1)methyl-5
phenylmethyl-1,2,4-triazol-1-y1)acetyl-borolysine, (+)
pinanediol ester, hydrochloride.

The product from part C (135 mg, 0.16 mmol, 1 eq), 10% Pd on carbon (25 mg), chloroform (39 µL, 0.49 mmol, 3 eq) and methanol (5 mL) were mixed and stirred under hydrogen under balloon pressure for 24 h at room temperature. The mixture was filtered through a Celite® cake rinsing the cake well with methanol afterwards. The filtrate was stripped to yield an off-white glass. This glass was triturated with ethyl ether to yield after drying 50 mg of an off-white solid. Mass calcd. for C28H41BN9O3: 562.3425. Found: 562.3413. NMR (DMSO-d6) & 8.75-8.50 (m, 1H); 7.40-7.10 (m, 5H); 4.87 (bs, 2H); 4.30-4.00 (m, 5H); 2.96-2.60 (m, 3H); 2.40-

2.00 (m, 2H); 1.91 (t, 1H, J=6 Hz); 1.90-1.75 (m, 1H); 1.75-1.10 (m, 14 H); 0.80 (s, 3H).

5

EXAMPLE 3458. R-N¹-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)borolysine, (+)-pinanediol ester, hydrochloride; $X = -CH_2NH_2$, $R^{13} = -Ph$, $R^{14} = -CH_3$, $R^{15} = H$, $Y^1, Y^2 = (+)-pin$.

10

15

20

acids.

Part A. 2-Phenyl-4-methylpyrimidin-5-carboxylic acid.

The above compound was synthesized by the procedure of P. Schenone, L. Sansebastiano, L. Mosti J. Heterocyclic Chem. 1990, 27, 302 which is generally applicable to a wide variety of pyrimidine-5-carboxylic

Part B. R-N1-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)borolysine, (+)-pinanediol ester, hydrochloride.

The product was obtained using the procedures described in example 360, parts E and F and example 361, part D followed by prepatory TLC in 4:1

25 chloroform/methanol. (M+H) +=477. NMR (DMSO-d₆) ∂ 8.86 (s, 1H); 8.50-8.30 (m, 2H); 7.70-7.40 (m, 3H); 4.25 (d, 1H, J=7 Hz); 2.90-2.70 (m, 3H); 2.64 (s, 3H); 2.40-1.00 (m, 15H); 0.84 (s, 3H).

EXAMPLE 3538. R-N¹-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)boroarginine, (+)-pinanediol ester, hydrochloride; $X = -NH(C=NH)NH_2$, $R^{13} = -Ph$, $R^{14} = -CH_3$, $R^{15} = H$, $Y^1, Y^2 = (+)-pin$.

Part A. R-N1-((2-phenyl-4-methylpyrimidin-5-y1)carbonyl)boroornithine, (+)-pinanediol ester,

10 hydrochloride.

20

The above intermediate was synthesized by the procedures described for example 361 using the appropriate starting materials.

Part B. R-N1-((2-phenyl-4-methylpyrimidin-5-yl)carbonyl)boroarginine, (+)-pinanediol ester, hydrochloride.

The product from part A (500 mg, 1 mmol, 1 eq), formamidinesulfonic acid (224 mg, 1.8 mmol, 2 eq), 4-(N,N-dimethylamino)pyridine (220 mg, 1.8 mmol, 2 eq, and ethanol (20 mL) were mixed and refluxed under an inert atmosphere for 5 hours. Some solid material was filtered and the filtrate was stripped to yield a yellow glass. The glass was taken up in chloroform/0.1 N HCl. Solids precipitated. These were filtered and dried to

yield 144 mg of product as a white powder: mp 132 °C (dec.). $(M+H)^{+}=505$.

Mass calcd. for $C_{27}H_{38}BN_6O_3$: 505.3086. Found: 505.3098. NMR (DMSO-d₆) ∂ 8.89 (s, 1H); 8.60-8.40 (m, 2H); 8.05-7.80 (m, 1H); 7.65-7.40 (m, 3H); 7.40-6.80 5 (m, 3H); 4.19 (d, 1H, J=7 HZ); 3.60-3.20 (m, 3H); 2.85-2.40 (m, 4H); 2.40-1.95 (m, 1H); 1.95-1.00 (m, 16 H); 0.80 (t, 3H).

10

25

Example 5926. N1-[(4R)-2-(2-Phenyl)ethyl-Thiazoline-4-Carboxy] -R-borothioarginine-(+)-pinanediol ester

Part A. (4R)-2-(2-phenyl)ethyl-thiazoline-4-carboxylic 15 acid ethyl ester.

Cysteine ethyl ester hydrochloride (950 mg, 5.10 mmol) was added to a solution of ethyl (2 phenyl)ethylimidate (900 mg, 5.10 mmol) [prepared by the method of North, M.; Pattenden, G. Tetrahedron 1990, 46, 8267] in EtOH (20 mL) at room temperature. The reaction 20 mixture was stirred for 16 h and concentrated under reduced pressure. The residue was partitioned between $\rm H_2O$ (ca. 50 mL) and EtOAc (ca. 100 mL) and the layers were separated; the aqueous phase was extracted with EtOAc (1 \times 20 mL). The combined organic layers were washed with saturated aqueous NaCl (1 \times 50 mL), dried (Na₂SO₄), and concentrated under reduced pressure to

give an oil which was purified by flash chromatography, elution with 3:1 hexanes - EtOAc, to afford 885 mg (66%) of the title compound as a colorless oil. 1 H NMR (300 MHz, CDCl₃) 5 7.23 (comp, 5H), 5.05 (dd, 1H, J = 9.5, 9.1 Hz), 4.27 (dq, 2H, J = 7.0, 1.8 Hz), 3.55 (m, 2H), 2.97 (m, 2H), 2.86 (m, 2H), 1.32 (t, 3H, J = 7.0 Hz); LRMS 264 (M + 1, base).

Part B. (4R)-2-(2-phenyl)ethyl-thiazoline-4-carboxylic acid.

A solution of lithium hydroxide monohydrate (96 mg, 2.28 mmol) in H_2O (2 mL) was added to a solution of (4R) - 2 - (2 - phenyl)ethyl - thiazoline - 4 - carboxylic acid ethyl ester (400 mg, 1.52 mmol) in THF (8 mL) and MeOH (5 mL). The reaction mixture was stirred at room 15 temperature for 1 h at which time 2M aqueous HCl was added until pH = 2 and the aqueous phase was extracted with EtOAc (2 x 30 mL). The combined organic layers were washed with saturated aqueous NaCl (1 x 20 mL), dried (MgSO₄), and concentrated under reduced pressure 20 to give 340 mg (95%) of the title compound as an oil. 1H NMR (300 MHz, CDCl₃) δ 7.22 (comp, 5H), 6.86 (br s, 1H), 5.14 (dd, 1H, J = 9.5, 9.1 Hz), 3.64 (m, 2H), 2.96(comp. 4H); LRMS 236 (M + 1, base).

25

Part C. (1R)-4-Bromo-1-[(4R)-2-(2-Phenyl)ethylthiazoline-4-carbox]amido-1-boronic acid-(+)-pinanediol ester.

A solution of (4R) - 2 - (2 - phenyl)ethyl
thiazoline - 4 - carboxylic acid (335 mg, 1.43 mmol) and

4 - methylmorpholine (0.47 mL, 4.28 mmol) in 10 mL of

anhydrous THF at -20 °C was treated with i - butyl

chloroformate (0.20 mL, 1.57 mmol) and stirred for 2 min

after which a solution of (1R) - 4 - bromoaminobutane
1 - boronic acid (+) - pinanediol ester (522 mg, 1.43

mmol) in 4 mL of anhydrous DMF was added. The reaction

mixture was stirred at -20 $^{\rm OC}$ for 15 min, warmed to room temperature over 18 h then poured into EtOAc (ca. 100 mL) and washed with H₂O (3 x 25 mL), and saturated aqueous NaCl (1 x 25 mL), dried (Na₂SO₄) and

- concentrated under reduced pressure. The residue was purified by flash chromatography, elution with 3:2 hexanes EtOAc, to give 306 mg (39%) of the title compound as an oil. LRMS 549, 547 (M + 1, base).
- Part D. <u>N¹</u>-[(4R)-2-(2-Phenyl)ethyl-Thiazoline-4-Carboxy]-R-borothioarginine-(+)-pinanediol ester.

The residue was purified by size exclusion

A mixture of (1R) - 4 - bromo - 1 - [(4R) - 2 - (2 - phenyl)ethyl - thiazoline - 4 - carbox]amido - 1 - boronic acid (+) - pinanediol ester (295 mg, 0.54 mmol) and thiourea (82 mg, 1.08 mmol) in 10 mL of EtOH was heated at reflux for 14 h then cooled to room temperature and concentrated under reduced pressure.

chromatography on Sephadex LH - 20, elution with MeOH, to give a glass which was dissolved in 3 mL of THF and treated with Et₂O (ca. 10 mL) to give a solid that was washed with Et₂O (ca. 5 mL) and dried to afford 230 mg (68%) of the title compound. LRMS 543 (M + 1, base); HRMS Calcd for C₂₇H₄₀BN₄O₃S₂: 543.2635. Found:

25 543.2643.

The compounds in the following tables were or can be synthesized by the methods discussed previously or by methods familiar to one skilled in the art.

30

The compounds listed in Tables 1-61 may be prepared using the above examples. It is understood that R^{14-16} and R^{A-C} in the tables correspond to independent R13 groups as described within the scope of this application.

Table 1

10

Ex	X	$\mathbb{R}^{\mathbf{A}}$	RB	RC	Y^1,Y^2	Phys
						Data
1	NHC (NH) NH ₂	н	н	Ph	(+)-pin	A '
2	NHC (NH) NH ₂	н	Ph	н	(+)-pin	BZ
3	NHC (NH) NH ₂	н	OPh	Ph.	(+)-pin	В
4	NHC (NH) NH2	н	н	4-pyridyl	(+)-pin	С
5	NHC (NH) NH ₂	COPh	н	н	(+)-pin	
6	NHC (NH) NH ₂	н	COPh	H	(+)-pin	
7	NHC (NH) NH ₂	н	H	COPh	(+)-pin	
8	NHC (NH) NH ₂	н	NHCbz	н	(+)-pin	
9	NHC (NH) NH ₂	н ,	NMeCbz	н	(+)-pin	
10	NHC (NH) NH ₂	H -	H	Et	(+)-pin	
11	NHC (NH) NH ₂	н	н	n-Pr	(+)-pin	
12	NHC (NH) NH ₂	н	Н	i-Pr	(+)-pin	
13	NHC (NH) NH ₂	н	H	n-Bu	(+)-pin	
14	NHC (NH) NH ₂	н	H ·	t-Bu	(+)-pin	Ļ
15	NHC (NH) NH2	н	H	n-hexyl	(+)-pin	L
16	NHC (NH) NH ₂	н	H	cyclohexyl	(+)-pin	ı

17	NHC (NH) NH2	NHCO (CH ₂) ₂ Ph	н	н	(+)-pin	
18	NHC (NH) NH ₂	н	н	0-n-Bu	(+)-pin	
19	NHC (NH) NH2	н	н	NHCOcyclopr	(+)-pin	
			•	opyl		
20	NHC (NH) NH2	H .	н	NHCO-	(+)-pin	
	•			cyclohexyl		
21	NHC (NH) NH2	н	н	NHCO (4-	(+)-pin	
				C6H4OMe)		
22	NHC (NH) NH ₂	н	H	4-C6H4OMe	(+)-pin	
23	NHC (NH) NH ₂	CO ₂ CH ₂ (2-	н	н	(+)-pin	
		C ₆ H ₄ Ph)				
24	NHC (NH) NH ₂	н	H	l-naphthyl	(+)-pin	
25	NHC (NH) NH ₂	н .	н	4-C ₆ H ₄ CO ₂ H	(+)-pin	
26	NHC (NH) NH ₂	COPh	н	Me	(+)-pin	
27	NHC (NH) NH ₂	н	NHCbz	n-Bu	(+)-pin	
28	MHC (NH) NH ₂	н	NMeCbz	n-Bu	(+)-pin	
29	NHC (NH) NH ₂	Me	H	Ph	(+)-pin	СВ
30	NHC (NH) NH ₂	Me	H	4-C6H4CO2H	(+)-pin	
31	NHC (NH) NH ₂	н	н -	4-C6H4CO2Me	(+)-pin	
32	NHC (NH) NH ₂	Me	н	4-C6H4CO2Me	(+)-pin	
33	NHC (NH) NH2	H	OMe	Ph	(+)-pin	
34	SC (NH) NH ₂	н	Н	Ph	(+)-pin	D
35	SC (NH) NH ₂	H	Ph	H	(+)-pin	E
36	SC (NH) NH ₂	H	OPh	H	(+)-pin	F
37	SC (NH) NH ₂	COPh	H	н	(+)-pin	G
38	SC (NH) NH ₂	H	COPh	н	(+)-pin	н
39	SC (NH) NH ₂	н	н .	COPh	(+)-pin	I
40	SC (NH) NH ₂	н .	NHCbz	н	(+)-pin	J
41	SC (NH) NH ₂	H.	NMeCbz	н	(+)-pin	K.
42	SC (NH) NH ₂	н	н	Et .	(+)-pin	L
43	SC (NH) NH ₂	н	н	n-Pr	(+)-pin	M
44	SC (NH) NH ₂	Ĥ.	н	i-Pr	(+)-pin	N
45	SC (NH) NH ₂	н	н	n-Bu	(+)-pin	0
46	SC (NH) NH ₂	н	H	t-Bu	(+)-pin	P
47	SC (NH) NH ₂	н	н	n-hexyl	(+)-pin	Q

48	SC (NH) NH ₂	H ·	н	cyclohexyl	(+)-pin	R
49	SC (NH) NH ₂	NHCOCH2CH2Ph	н	н	(+)-pin	s
50	SC (NH) NH ₂	н	н	0-n-Bu	(+)-pin	T
51	SC (NH) NH ₂	н	н	NHCOcyclopr	(+)-pin	Ū
				opyl		
52	SC (NH) NH ₂	н	н	NHCOcyclohe	(+)-pin	v
				xyl ·		
53	SC (NH) NH ₂	н	н	NHCO (4-	(+)-pin	W
				C6H4OMe)		
54	SC (NH) NH ₂	н	H	4-C6H4OMe	(+)-pin	x
55	SC (NH) NH ₂	CO2CH2 (2-	н	н	(+)-pin	Y
	·	C ₆ H ₄ Ph)				
56	SC (NH) NH ₂	н	н	1-naphthyl	(+)-pin	
57	SC (NH) NH ₂	н	н	4-C ₆ H ₄ CO ₂ H	(+)-pin	
58	SC (NH) NH2	н	NHCbz	n-Bu	(+)-pin	z
59	SC (NH) NH ₂	H	NMeCbz	n-Bu	(+)-pin	AA
60	SC (NH) NH ₂	COPh	н	Me	(+)-pin	BB
61	$SC(NH)NH_2$	н	н	4-pyridyl	(+)-pin	
62	SC (NH) NH ₂	Me	н	4-C6H4CO2H	(+)-pin	
63	SC (NH) NH ₂	н	H	4-C6H4CO2Me	(+)-pin	
64	SC (NH) NH ₂	Me	н	4-C6H4CO2Me	(+)-pin	
65	SC (NH) NH ₂	Me	H	Ph	(+)-pin	
66	SC (NH) NH ₂	н .	OMe	Ph	(+)-pin	
67	CH ₂ NH ₂	н	H	Ph	(+)-pin	
68	CH ₂ NH ₂	н	Ph	н .	('+) -pin	YY
69	CH ₂ NH ₂	н	OPh	н	(+)-pin	
70	CH ₂ NH ₂	COPh	н	н	(+)-pin	
71	CH ₂ NH ₂	н .	COPh	н	(+)-pin	
72	CH ₂ NH ₂	н	н	COPh	(+)-pin	
73	CH ₂ NH ₂	н	NHCbz	н	(+)-pin	
74	CH ₂ NH ₂	н	NMeCbz	н	(+)-pin	
75	CH ₂ NH ₂	н	н	Et	(+)-pin	
76	CH ₂ NH ₂	н	н	n-Pr	(+)-pin	
77	CH ₂ NH ₂	н	н	i-Pr	(+)-pin	
78	CH ₂ NH ₂	н	н	n-Bu	(+)-pin	

	79	CH2NH2	н	н	t-Bu	(+)-pin
	80	CH ₂ NH ₂	н	н	n-hexyl	(+)-pin
	81	CH ₂ NH ₂	н	н	cyclohexyl	(+)-pin
	82	CH ₂ NH ₂	NHCOCH2CH2Ph	н	н	(+)-pin
	83	CH ₂ NH ₂	н	н	O-n-Bu	(+)-pin
	84	CH ₂ NH ₂	н	н	NHCOcyclop:	(+)-pin
					opy1	
	85	CH ₂ NH ₂	н	н	NHCOcyclohe	(+)-pin
					xyl	
	86	CH2NH2	н	н	NHCO (4-	(+)-pin
					C ₆ H ₄ OMe)	
	87	CH ₂ NH ₂	н	н	4-C6H4OMe	(+)-pin
	88	CH ₂ NH ₂	CO ₂ CH ₂ (2-	н	н	(+)-pin
			C6H4Ph)			
	89	CH ₂ NH ₂	H .	н	1-naphthyl	(+)-pin
	90	CH ₂ NH ₂	н	H	4-C6H4CO2H	(+) -pin
	91	CH ₂ NH ₂	н	NHCbz	n-Bu	(+)-pin
	92	CH ₂ NH ₂	н	NMeCbz	n-Bu	(+)-pin
	93	CH2NH2	COPh	н	Me	(+)-pin
	94	CH ₂ NH ₂	н	H	4-pyridyl	(+)-pin
	95	CH2NH2	Me	н	4-C6H4CO2H	(+)-pin
	96	CH2NH2	н	н	4-C6H4CO2M8	(+)-pin
	97	CH ₂ NH ₂	Me	н	4-C6H4CO2Me	(+)-pin
	98	CH ₂ NH ₂	Me	н	·Ph	(+)-pin
	99	CH2NH2	н	OMe	Ph	(+)-pin
	100	CH ₂ NH ₂	н	OMe	Ph	ОН, ОН
	101	NHC (NH) NH ₂	н	н	Ph	он, он
	102	NHC (NH) NH ₂	н	Ph	н	он, он
	103	NHC (NH) NH ₂	н	OPh	Ph	он, он
	104	NHC (NH) NH ₂	н	н	4-pyridyl	он, он
	105	NHC (NH) NH ₂	COPh	н	н	он, он
	106	NHC (NH) NH2	н	COPh	н	он, он
	L07	NHC (NH) NH2	н	н	COPh	ОН, ОН
1	108	NHC (NH) NH2	H	NHCbz	н	он, он
1	109	NHC (NH) NH2	н	NMeCbz	Н	он, он

110	NHC (NH) NH ₂	н	н	Et	OH, OH	
111	NHC (NH) NH ₂	н	н	n-Pr	OH, OH	
112	NHC (NH) NH2	н	н .	i-Pr	OH, OH	
113	NHC (NH) NH ₂	н	н	n-Bu	он, он	
114	NHC (NH) NH ₂	н	н	t-Bu	OH, OH	
115	NHC (NH) NH ₂	н	н	n-hexyl	он, он	
116	NHC (NH) NH ₂	н	н	cyclohexyl	ОН, ОН	
117	NHC (NH) NH ₂	NHCO (CH2) 2Ph	н	н	ОН, ОН	
118	NHC (NH) NH ₂	н	н	O-n-Bu	ОН, ОН	
119	NHC (NH) NH ₂	н	н	NHCOcyclopr	ОН, ОН	
	•			opyl		
120	NHC (NH) NH ₂	H	H	NHCO-	OH, OH	
				cyclohexyl		
121	NHC (NH) NH2	н	н	NHCO (4-	ОН, ОН	
				C6H4OMe)		
122	NHC (NH) NH ₂	н	H	4-C6H4OMe	OH, OH	
123	NHC (NH) NH ₂	CO ₂ CH ₂ (2-	н	н	ОН, ОН	
		C ₆ H ₄ Ph)				
124	NHC (NH) NH2	н	н	1-naphthyl	он, он	
125	NHC (NH) NH ₂	н	H	4-C6H4CO2H	OH, OH	
126	NHC (NH) NH2	COPh	н	Me	OH, OH	•
127	NHC (NH) NH2	н	NHCbz	n-Bu	OH, OH	
128	NHC (NH) NH2	н	NMeCbz	n-Bu	OH, OH	
129	NHC (NH) NH ₂	Me	н	Ph	OH, OH	Э
130	NHC (NH) NH2	Me	н	4-C6H4CO2H	он, он	
131	NHC (NH) NH ₂	н	н	4-C6H4CO2Me	он, он	
132	NHC (NH) NH ₂	Me	н	4-C6H4CO2Me	он, он	
133	NHC (NH) NH2	H	OMe	Ph	OH, OH	
134	SC (NH) NH ₂	H	н	Ph	OH, OH	
135	SC (NH) NH ₂	н	Ph	н	он, он	
136	SC (NH) NH ₂	H	OPh	H	он, он	
137	SC (NH) NH ₂	COPh	Н	н	он, он	
138	SC (NH) NH ₂	·H	COPh	н	он, он	
139	SC (NH) NH ₂	н	н	COPh	он, он	
140	SC (NH) NH ₂	н	NHCbz	н	он, он	

141	SC (NH) NH ₂	H ·	NMeCbz	н	он, он
142	SC (NH) NH ₂	н	н	Et ·	он, он
143	sc (nн) nн ₂	н	н	n-Pr	он, он
144	SC (NH) NH ₂	н	н	i-Pr	он, он
145	SC (NH) NH ₂	н	н	n-Bu	он, он
146	SC (NH) NH ₂	н	н .	t-Bu	он, он
147	SC (NH) NH ₂	н	н	n-hexyl	он, он
148	SC (NH) NH ₂	н	н	cyclohexyl	он, он
149	SC (NH) NH ₂	NHCOCH2CH2Ph	н	н	он, он
150	SC (NH) NH ₂	н	н	O-n-Bu	он, он
151	SC (NH) NH ₂	Н	н	NHCOcyclopr	он, он
		•		opyl	
152	SC (NH) NH ₂	н	н	NHCOcyclohe	он, он
	. •			xyl	
153	SC (NH) NH ₂	н	н	NHCO (4 -	он, он
				C6H4OMe)	
154	SC (NH) NH ₂	н	н	4-C6H4OMe	он, он
155	SC (NH) NH ₂	CO ₂ CH ₂ (2-	H	н	он, он
		C ₆ H ₄ Ph)			
156	SC (NH) NH ₂	н	H	1-naphthyl	он, он
157	SC (NH) NH ₂	н	н	4-C6H4CO2H	он, он
158	SC (NH) NH ₂	H .	NHCbz	n-Bu	он, он
159	SC (NH) NH ₂	н	NMeCbz	n-Bu	OH, OH
160	SC (NH) NH ₂	COPh	Н	Me	OH, OH
161	SC (NH) NH ₂	н .	H	4-pyridyl	он, он
162	SC (NH) NH ₂	Me	н	4-C6H4CO2H	он,он
163	SC (NH) NH ₂	H	Н	4-C6H4CO2Me	он, он
164	SC (NH) NH ₂	Me	н	4-C6H4CO2Me	он, он
165	SC (NH) NH ₂	Me	н	Ph	он, он
166	SC (NH) NH ₂	H	OMe	Ph	он, он
167	CH ₂ NH ₂	н	H	Ph	он, он
168	CH ₂ NH ₂	н	Ph	H	он,он
169	CH ₂ NH ₂	н	OPh	н	он, он
170	CH ₂ NH ₂	COPh	н	н	он, он
171	CH ₂ NH ₂	н	COPh	н	он,он -

172	CH ₂ NH ₂	н	н	COPh	он, он	
173	CH ₂ NH ₂	н	NHCbz	н	он, он	
174	CH ₂ NH ₂	н	NMeCbz	н	он, он	
175	CH ₂ NH ₂	н	н	Et	он, он	
176	CH ₂ NH ₂	н	H	n-Pr	он, он	
177	CH ₂ NH ₂	н	н	i-Pr	он, он	
178	CH ₂ NH ₂	н	H	n-Bu	OH, OH	
179	CH2NH2	н	н	t-Bu	OH, OH	
180	CH ₂ NH ₂	н	H	n-hexyl	он, он	
181	CH2NH2	н	н	cyclohexyl	OH, OH	
182	CH ₂ NH ₂	$\mathtt{NHCOCH_2CH_2Ph}$	н	н	OH, OH	
183	CH ₂ NH ₂	н	н	O-n-Bu	OH, OH	
184	CH ₂ NH ₂	н	н	NHCOcyclopr	он,он	
				opyl		
185	CH ₂ NH ₂	H	н	NHCOcyclohe	он, он	
	•			xyl		
186	CH ₂ NH ₂	н	н	NHCO (4-	OH, OH	
	• .			C ₆ H ₄ OMe)	•	
187	CH ₂ NH ₂	н	н	4-C6H4OMe	OH, OH	
188	CH2NH2	CO ₂ CH ₂ (2-	H	н	он, он	
		C ₆ H ₄ Ph)				
189	CH2NH2	н	н	1-naphthyl	OH, OH	
190	CH2NH2	н	н	4-C6H4CO2H	OH, OH	
191	CH2NH2	н	NHCbz	n-Bu	он, он	
192	CH2NH2	н	NMeCbz	n-Bu	он, он	
193	CH2NH2	COPh	н	Me	OH,OH	
194	CH2NH2	н	н	4-pyridyl	он, он	
195	CH2NH2	Me	н	4-C6H4CO2H	OH, OH	
196	CH2NH2	н	H	4-C6H4CO2Me	OH, OH	
197	CH2NH2	Me	н	4-C6H4CO2Me	OH, OH	
198	CH ₂ NH ₂	Me	н	Ph	OH, OH	
199	NH (C=NH) NH ₂	F	H	Ph	(+)-pin	SS
200	NH (C=NH) NH ₂	F	н	Ph	он, он	
201	NH (C=NH) NH ₂	NH ₂	н	Ph	(+)-pin	
202	NH (C=NH) NH ₂	NH ₂	н	Ph	он, он	

203	NH (C=NH) NH ₂	NO ₂	н	Ph	(+)-pin	TT
204	NH (C=NH) NH ₂	NO ₂	н	Ph	он, он	
205	NH (C=NH) NH ₂	OH	н	Ph	(+)-pin	
206	NH (C=NH) NH ₂	ОН	н	Ph	он, он	
207	NH (C=NH) NH2	-NHSO2CF3	н.	Ph	(+)-pin	
208	NH (C=NH) NH ₂	-NHSO2CF3	H	Ph	(+)-pin	
209	NH (C=NH) NH2	-NHSO2CH3	н	Ph	(+)-pin	
210	NH (C=NH) NH ₂	-NHSO2CH3	н	Ph	(+)-pin	
211	NH (C=NH) NH2	CH ₂ CN	н	Ph	(+)-pin	
212	NH (C=NH) NH ₂	CH ₂ CN	н	Ph	он, он	
213	ин (с=ин) ин ₂	CH ₂ CH ₂ CN	н	Ph	(+) -pin	
214	NH (C=NH) NH ₂	CH ₂ CH ₂ CN	н	Ph	он, он	
215	NH (C=NH) NH ₂	OCH ₂ CN	н	Ph	(+)-pin	
216	NH (C=NH) NH ₂	OCH ₂ CN	н	Ph	он, он	
217	NH (C=NH) NH ₂	SCH ₂ CN	н	Ph	(+)-pin	
218	NH (C=NH) NH ₂	SCH ₂ CN	н	Ph	он, он	
219	NH (C=NH) NH ₂	NHCH ₂ CN	н	Ph	(+)-pin	
220	NH (C=NH) NH2	NHCH2CN	Н	Ph	ОН, ОН	
221	NH (C=NH) NH ₂	сн ₂ он	н	Ph	(+)-pin	
222	NH (C=NH) NH ₂	сн ₂ он	н	Ph	он, он	
223	NH (C=NH) NH ₂	CH ₃	н	2-(t-butyl-	(+)-pin	סט
				MHSO ₂) - Ph		
224	NH (C=NH) NH ₂	сн3	н	2-(t-butyl-	он, он	
				NHSO2) - Ph		
225	NH (C=NH) NH ₂	CH ₃	Н	2-(ethyl-	(+)-pin	
				NHSO2) - Ph		•
226	ин (С=ин) ин ₂	сн3	н	2-(ethy1-	ОН, ОН	
	•			NHSO2) - Ph		
227	NH (C=NH) NH ₂	СН3	н	2-(H2NSO2)-	(+)-pin	ZZ
				Ph		
228	ин (с=ин) ин ₂	СН3	н	2-(H2NSO2)-	он, он	
				Ph		,
229	NH (C=NH) NH ₂	сн3	н	2 - (MeCO-	(+)-pin	
				NHSO2) - Ph		

230	ин (с≕ин) ин2	СНЗ	н .	2- (MeCO- NHSO ₂) - Ph	он, он
231	NH (C=NH) NH ₂	СН3	н	2 - (MeOCO - NHSO ₂) - Ph	(+)-pin AB
232	NH (C=NH) NH ₂	СН3	Ħ	2- (MeOCO- NHSO ₂) - Ph	он, он
233	NH (C=NH) NH ₂	CH ₃	н	2-(NH ₂)-Ph	(+)-pin
234	NH (C=NH) NH ₂	СН3	н	2-(NH ₂)-Ph	=
235	NH (C=NH) NH2	сн3	н	2-	(+)-pin
				(CH3SO2NH) -	
				Ph	
236	NH (C=NH) NH ₂	СН3	н	2-	он, он
				(CH3SO2NH) -	
	•			Ph	
237	NH (C=NH) NH2	сн3	н	2-	(+)-pin
				(CF3SO2NH) -	
				Ph.	
238	NH (C=NH) NH2	СН3	н	2-	он, он
				(CF3SO2NH) -	
•				Ph	
239	NH (C=NH) NH ₂	CH ₃	н	2-(CN4H)-Ph	(+)-pin
240	NH (C=NH) NH ₂	CH ₃	н	2-(CN4H)-Ph	он, он
241	NH (C=NH) NH ₂	CH ₃	н	2- (COOH) -Ph	(+)-pin
242	ин (C=ин) ин ₂	СН3	н	2-(COOH)-Ph	он, он
243	NH (C=NH) NH ₂	СН3	н	3-(NH ₂)-Ph	(+)-pin
244	NH (C=NH) NH ₂	СН3	н	3-(NH ₂)-Ph	он, он
245	NH (C=NH) NH ₂	сн3	н	3-	(+)-pin
				(CH ₃ SO ₂ NH) -	
				Ph	
246	NH (C=NH) NH ₂	сн3	н	3-	он, он
				(CH3SO2NH) -	
				Ph	
247	NH (C=NH) NH ₂	сн3	ОН	Ph	(+)-pin
248	NH (C=NH) NH ₂	сн3	ОН	Ph	он, он
249	NH (C=NH) NH2	сн3	NH ₂	Ph	(+)-pin

250	NH (C=NH) NH2	СН3	NH ₂ .	Ph	он, он	
251	ин (с=ин) ин ₂	F	н	2-(t-butyl- NHSO ₂)-Ph	(+)-pin	
252	NH (C=NH) NH ₂	F	н	2-(t-butyl- NHSO ₂)-Ph	он, он	
253	ин (С=ин) ин ₂	F	н	2-(ethyl- NHSO ₂)-Ph	(+)-pin	
254	NH (C≕NH) NH ₂	F	н	2-(ethyl- NHSO ₂)-Ph	ОН, ОН	
255	NH (C=NH) NH ₂	F	н	2-(H ₂ NSO ₂)-	(+)-pin	
256	NH (C=NH) NH ₂	F	H	2 - (H ₂ NSO ₂) -	он, он	
257	NH (C=NH) NH ₂	F	н	2 - (MeCO - NHSO ₂) - Ph	(+)-pin	
258	ин (с=ин) ин ₂	F	н	2 - (MeCO - NHSO ₂) - Ph	ОН, ОН	
259	ин (C=NH) NH ₂	F	н .	2 - (MeOCO- NHSO ₂) - Ph	(+) -pin	
260	NH (C=NH) NH ₂	F	н	2 - (MeOCO- NHSO ₂) - Ph	он, он	
261	ин (с=ин) ин2	н	н	2-(t-butyl- NHSO ₂)-Ph	(+) -pin	AC
262	NH (C=NH) NH ₂	cı ·	Н	2-(t-buty1- NHSO ₂)-Ph	(+)-pin	CE
263	NH (С=NH) NH ₂	н	н .	2 - (t-buty1 - NHSO ₂) - Ph	он, он	AD
264	NH (C=NH) NH ₂	c1	н	2-(t-buty1- NHSO ₂)-Ph	он, он	
265	NH (C=NH) NH ₂	Cl	н	2-(ethyl- NHSO ₂)-Ph	(+) -pin	
266	NH (C=NH) NH ₂	C1	н	2-(ethyl- NHSO ₂)-Ph	он, он	
267	NH (C=NH) NH ₂	Cl	н	2-(H ₂ NSO ₂)-	(+)-pin	

268	NH.(C=NH) NH2	Cl	н	2 - (H ₂ NSO ₂) -	он, он
٠.				Ph	
269	NH (C=NH) NH ₂	c1	н	2 - (MeCO-	(+)-pin
				NHSO2) - Ph	
270	NH (C=NH) NH ₂	Cl	н	2 - (MeCO-	OH, OH
			•	NHSO2) - Ph	
271	NH (C=NH) NH2	Cl	н	2 - (MeOCO-	(+)-pin
				NHSO2) - Ph	•
272	NH (C=NH) NH2	Cl	н	2 - (MeOCO-	OH, OH
				NHSO2) - Ph	
273	NH (C=NH) NH2	NHSO2CH3	н	2-(t-butyl-	(+)-pin
				NHSO2) - Ph	
274	NH (C=NH) NH2	NHSO2CH3	н	2-(t-buty1-	он, он
				NHSO2) - Ph	
275	NH (C=NH) NH ₂	NHSO2CH3	н	2-(ethyl-	(+)-pin
				NHSO ₂) - Ph	
276	NH (C=NH) NH ₂	NHSO2CH3	н	2-(ethyl-	OH, OH
				NHSO ₂) - Ph	
277	NH (C=NH) NH ₂	NHSO2CH3	н	2-(H2NSO2)-	(+)-pin
		•	,	Ph	
278	NH (C=NH) NH ₂	NHSO2CH3	н	2 - (H2NSO2) -	OH, OH
•				Ph	
279	NH (C=NH) NH ₂	NHSO ₂ CH ₃	н	2 - (MeCO-	(+)-pin
	•			NHSO ₂) - Ph	
280	ин (C=ин) ин ₂	NHSO ₂ CH ₃	н	2 - (MeCO-	он, он
				NHSO ₂) - Ph	,
281	NH (C=NH) NH ₂	NHSO2CH3	н	2 - (MeOCO-	(+)-pin
•				NHSO ₂) - Ph	
282 .	NH (C=NH) NH ₂	NHSO2CH3	н	2 - (MeOCO-	OH, OH
				$MHSO_2$) - Ph	
283	NH (C=NH) NH2	СН3	н	3-(t-	(+)-pin VV
				butyloco-	•
				NH) - Ph	

284	NH (C=NH) NH ₂	СН3	н	3-(t-	он, он	
				butyloco-		
				NH) - Ph		
285	NH (C=NH) NH ₂	N(Et) ₂	н	Ph	(+)-pin	
286	ин (C=ин) ин ₂	CH ₃	н	2-((ethyl) ₂	(+)-pin	CF
				-NSO ₂) -Ph		
287.	NH (C=NH) NH ₂	CH ₃	н	2-(n-Bu0C0-	(+)-pin	
				NHSO2) - Ph		
288	NH (C=NH) NH ₂	NO ₂	н	2-(t-butyl-	(+)-pin	CG
•				NHSO2) - Ph	,	
289	NH (С=NH) NH ₂	NO ₂	н	2-(t-butyl-	ОН, ОН	
				NHSO2) - Ph		
290	NH (C=NH) NH ₂	NO ₂	н	2-(ethy1-	(+)-pin	
	•			NHSO2) - Ph		
291	NH (C=NH) NH2	NO ₂	н	2-(ethy1-	OH, OH	
				NHSO2) - Ph		
292	NH (C=NH) NH ₂	NO ₂	н	2-(H2NSO2)-	(+)-pin	
				Ph		
293	NH (C=NH) NH2	NO ₂	н	2- (H2NSO2) -	он, он	
				Ph		
294	NH (C=NH) NH2	NO ₂	н	2 - (MeCO-	(+)-pin	
	•			NHSO ₂) - Ph		
295	NH (C=NH) NH2	NO ₂	н	2 - (MeCO-	ОН, ОН	
				NHSO2) - Ph	·	
296	NH (C=NH) NH ₂	NO ₂	н	2 - (MeOCO-	(+)-pin	
	•			NHSO ₂) - Ph		
297	NH (C=NH) NH2	NO ₂	. н	2 - (MeOCO-	он, он	
				NHSO ₂) - Ph		
298	NH (C=NH) NH ₂	н	NO ₂	Ph .	(+)-pin	AE .
299	NH (C=NH) NH ₂	н	NH ₂	Ph	(+)-pin	AF
300	NH (C=NH) NH ₂	н ;	NO ₂	Ph	он, он	
301	NH (C=NH) NH ₂	н	NH ₂	Ph	он, он	
302	NH (C=NH) H	н	н	2-(t-butyl-	-	CH
				NHSO ₂) - Ph		
303	NH (C=NH) NH2	2-NHBOC	н	Ph	(+) -pin	CI
					-	

304	NH (C=NH) NH ₂	2-NO2	н	Ph	(+)-pin	ದ
305	-OCH3	2-Me	н	2- (H2NSO2) -	(+)-pin	CK
				Ph		
306	CH ₂ NH ₂	сн3	н	4-thiophen-	(+) -pin	
				2-y1		
307	CH2NH2	CH ₃	н	4-thiophen-	(+)-pin	
	-			3-yl		
308	CH ₂ NH ₂	CH3	3-thio	н	(+)-pin	
			phen-			
			2-y1			
309	CH2NH2	CH ₃	3-thio	н	(+) -pin	
			phen-			
			3-yl			
310	CH2NH2	сн3	н .	4-furan-2-	(+) -pin	
				γl		
311	CH ₂ NH ₂	сн3	н	4-furan-3-	(+)-pin	
				уl		
312	CH ₂ NH ₂	CH ₃	3-	н	(+)-pin	
			furan-			
•			2-yl			
313	CH ₂ NH ₂	CH ₃	3-	н	(+)-pin	
			furan-			
	•	•	3-y1			
314	CH ₂ NH ₂	CH3	н	4-imidazol-	(+)-pin	
				2-yl		
315	CH ₂ NH ₂	CH ₃	н	4-imidazol-	(+)-pin	
				4-yl		
316	CH ₂ NH ₂	CH3	3-imid	H .	(+)-pin	
	•		azol-			
			2-yl			
317	CH ₂ NH ₂	CH ₃	3-imid	н	(+)-pin	
			azol-			
			4-y1			
318	CH ₂ NH ₂	CH ₃	H	4-pyrazol-	(+)-pin	
			•	1-y1		

319	CH ₂ NH ₂	СН3	Н	4-pyrazol-	(+)-pin
				2-y1	
320	CH2NH2	CH ₃	3-pyra	н	(+)-pin
			zol-1-		
			yl		
321	CH ₂ NH ₂	CH ₃	3-pyra	н	(+)-pin
			zol-2-		
			yl		
322	CH ₂ NH ₂	CH ₃	н	4-pyrrol-1-	(+)-pin
				уl	•
323	CH ₂ NH ₂	СН3	н	4-pyrrol-2-	(+)-pin
				yl	
324	CH ₂ NH ₂	сн3	3-	н	(+)-pin
			pyrrol.		
			-1-yl		,
325	CH ₂ NH ₂	CH ₃	3-	н	(+)-pin
			pyrrol		
			-2-y1		
326	CH ₂ NH ₂	CH ₃	н	4-(1,2,4-	(+)-pin
				triazol-1-	
				y1)	
327	CH ₂ NH ₂	CH3	Н	4-(1,2,4-	(+)-pin
				triazol-2-	
				y1) .	
328	CH ₂ NH ₂	CH ₃	3-	н	(+) -pin
			(1,2,4		
			-tri		
			azol-		
			1-y1)		
329	CH ₂ NH ₂	CH ₃	3-	н	(+)-pin
			(1,2,4		
			-tri		
			azol-		
			1-y1)		

330	CH ₂ NH ₂	СН3	н	4-(1,2,3-	(+)-pin
				triazol-1-	
				y1)	
331	CH ₂ NH ₂	сн3	н	4-(1,2,3-	(+)-pin
				triazol-4-	
				yl)	
332	CH2NH2	CH ₃	3-	н	(+)-pin
	• .		(1,2,3		
			-tri		
			azol-		
			1-yl)		•
333	CH2NH2	CH ₃	3-	н	(+)-pin
			(1,2,3		
			-tri		
			azol-		
			4-y1)		
334	CH ₂ NH ₂	CH3	н	4-tetrazol-	(+)-pin
	•			1-yl	
335	CH ₂ NH ₂	CH3	н	4-tetrazol-	(+)-pin
				5-yl	•
336	CH ₂ NH ₂	CH ₃	3 -	H	(+)-pin
			tetra		
			zo1-1-		
			yl		
337	CH2NH2	СНЗ	3-	н	(+)-pin
			tetra		•
	•		zo1-5-		
			zo1-5- yl		
338	сн ₂ nн ₂	СН3		4-0xazo1-2-	(+)-pin
338	СН ₂ NН ₂	СН3	уl	4-oxazo1-2- yl	(+)-pin
	CH ₂ NH ₂ CH ₂ NH ₂	СH ₃	уl		· · · <u>-</u>
339	СН ₂ NН ₂		уl	yl	· · · <u>-</u>
339	· -		уl	yl 4-oxazol-4-	(+)-pin

341	сн ₂ ин ₂	сн3	3-	н	(+)-pin
	•		oxazol		
			-2-yl		
342	CH ₂ NH ₂	CH3	3-	н	(+) -pin
			oxazol		
			-4-yl		
343	CH2NH2	CH ₃	3 -	н	(+)-pin
		•	oxazol		
			-5-yl		
344	CH ₂ NH ₂	CH ₃	Н	4-thiazol-	(+) -pin
				2-y1	
345	CH ₂ NH ₂	CH ₃	н	4-thiazol-	(+)-pin
				4-y l	
346	CH2NH2	СН3	н	4-thiazol-	(+)-pin
				5-yl	
347	CH ₂ NH ₂	сн3	3-thia	н	(+)-pin
			zol-2-		
	•	•	y1		
348	CH2NH2	СН3	3-thia	н	(+)-pin
			zol-4-		•
			yl		
349	CH ₂ NH ₂	CH3	3-thia	н	(+) -pin
			zo1-5-		
			yl		
350	CH ₂ NH ₂	СН3	н	4-pyridin-	(+)-pin
			·•	2-yl	
351	CH2NH2	СН3	н	4-pyridin-	(+)-pin
				3-y1	
352	CH ₂ NH ₂	СН3	3-pyri	н	(+)-pin
			din-2-		
			уl		
353	CH2NH2	СН3	3-pyri	н	(+)-pin
			din-3-		
			уl		

```
354
       CH2NH2
                     CH<sub>3</sub>
                                   H
                                             4-pyrimi
                                                          (+)-pin
                                             din-2-yl
355
       CH2NH2
                     CH<sub>3</sub>
                                             4-pyrimi
                                    H
                                                          (+)-pin
                                             din-4-yl
356
       CH2NH2
                     CH3
                                   H
                                             4-pyrimi
                                                          (+)-pin
                                            din-5-yl
357
       CH2NH2
                     CH<sub>3</sub>
                                    3-pyri H
                                                          (+)-pin
                                    midin-
                                    2-yl
358
       CH2NH2
                     CH<sub>3</sub>
                                    3-pyri H
                                                          (+)-pin
                                    midin-
                                    4-yl
359
       CH2NH2
                     CH3
                                    3-pyri H
                                                          (+) -pin
                                    midin-
                                    5-yl
(+) -pin indicates (+) -pinanediol
A: MS (M+H)^+ = 489;
B: MS (DCI - NH<sub>3</sub>), 505 (M + H) ^{+}.
C: MS (M+H)^+ = 490.
D: MS (M+H)^+ = 506;
E: mp 145-150 °C; MS (DCI - NH<sub>3</sub>), Calc: 506, Found: 506.
F: MS (DCI - NH<sub>3</sub>), 522 (M + H)^+.
G: HRMS (DCI - NH<sub>3</sub>), Calc: 534.2597, Found: 534.2609.
H: HRMS (DCI - NH<sub>3</sub>), Calc: 534.2597, Found: 534.2605.
I: HRMS (DCI - NH<sub>3</sub>), Calc: 534.2597, Found: 534.2609.
J: [a]_D = -14.85^{\circ} (c = 0.606, MeOH); MS (CI - NH<sub>3</sub>), m/e
(%) 537.2 (10.2, M + H - H_2NCN)+), 429.0 (42.8), 277.0
(100); Anal. Calcd for C<sub>30</sub>H<sub>40</sub>BBrN<sub>4</sub>O<sub>5</sub>S: C, 54.64; H,
6.11; N, 8.50; B, 1.64. Found: C, 54.52; H, 6.16; N,
8.45; B, 1.60.
K: [a]_D = -15.07^{\circ} (c = 0.604, MeOH); MS (CI - NH<sub>3</sub>), m/e
(%) 593.2 (1.2, (M + H)^+), 568.3 (22, (M + NH_4 - H)^+)
```

10

15

20

 $H_2NCN)^+$), 551.3 (100, (M + H - $H_2NCN)^+$); Anal. Calcd for

C₃₁H₄₂BBrN₄O₅S: C, 55.29; H, 6.29; N, 8.32; B, 1.61.

Found: C, 55.15; H, 6.21; N, 8.22; B, 1.47.

L: $[a]_D = -14.12^{\circ}$ (c = 0.602, MeOH); MS (DCI - NH₃), m/e (%) 458 (100, (M + H)⁺); Anal. Calcd for $C_{24}H_{37}BBrN_3O_3S$: C, 53.54; H, 6.93; N, 7.81; B, 2.01. Found: C, 53.75; H, 6.98; N, 7.74; B, 1.97.

- 5 M: $[a]_D = -14.21^\circ$ (C = 0.556, MeOH); MS (CI NH₃), m/e (%) 472.2 (13.5, (M + H)⁺), 430.2 (100, (M + H H₂NCN)⁺), 278.0 (61.9); Anal. Calcd for C₂₅H₃₉BBrN₃O₃S: C, 54.36; H, 7.12; N, 7.61; B, 1.96. Found: C, 54.50; H, 7.18; N, 7.83; B, 1.73.
- 10 N: $[a]_D = -13.79^{\circ}$ (c = 0.602, MeOH); MS (DCI NH₃), m/e (%) 472 (100, (M + H)⁺), 430 (37, (M + H H₂NCN)⁺); Anal. Calcd for $C_{25}H_{39}BBrN_3O_3S$: C, 54.36; H, 7.12; N, 7.61; B, 1.96. Found: C, 54.64; H, 7.17; N, 7.50; B, 1.74.
- 15 O: $[a]_D = -13.19^{\circ}$ (C = 0.364, MeOH); MS (CI NH₃), m/e (%) 486.2 (3.3, (M + H)⁺), 444.2 (87.1, (M + H H₂NCN)⁺), 292.0 (100); Anal. Calcd for C₂₆H₄₁BBrN₃O₃S: C, 55.13; H, 7.30; N, 7.42; B, 1.91. Found: C, 54.99; H, 7.22; N, 7.29; B, 2.07.
- 20 P: $[a]_D = -12.71^{\circ}$ (c = 0.598, MeOH); MS (DCI NH₃), m/e (%) 486 (100, (M + H)⁺), 444 (16, (M + H H₂NCN)⁺); Anal. Calcd for $C_{26}H_{41}BBrN_3O_3S$: C, 55.13; H, 7.30; N, 7.42; B, 1.91. Found: C, 55.09; H, 7.45; N, 7.40; B, 1.67.
- Q: MS (DCI NH₃), m/e (%) 514 (100, (M + H)⁺), 472 (16, (M + H H₂NCN)⁺); Anal. Calcd for C₂₈H₄₅BBrN₃O₃S: C, 56.57; H, 7.63; N, 7.07; B, 1.82. Found: C, 56.19; H, 7.53; N, 6.97; B, 1.99.
- R: $[a]_D = -11.70^\circ$ (c = 0.530, MeOH); MS (DCI NH₃), m/e (%) 512 (100, (M + H)⁺), 470 (40, (M + H - H₂NCN)⁺); Anal. Calcd for C₂₈H₄₃BBrN₃O₃S: C, 56.77; H, 7.32; N, 7.09; B, 1.82. Found: C, 56.49; H, 7.38; N, 6.96; B,
 - S: HRMS (DCI NH₃), Calc: 577.3019, Found: 577.3025.

1.75.

35 T: $[a]_D = -8.31^{\circ}$ (C = 0.614, MeOH); MS (DCI - NH₃), m/e (%) 502 (100, (M + H)+), 460 (28, (M + H - H₂NCN)+);

```
Anal. Calcd for C_{26}H_{41}BBrN_3O_4S: C, 53.62; H, 7.10; N,
     7.21; B, 1.86. Found: C, 53.61; H, 7.09; N, 7.20; B,
     1.78.
     U: HRMS (DCI - NH<sub>3</sub>), Calc: 513.2707, Found: 513.2702.
     V: HRMS (DCI - NH<sub>3</sub>), Calc: 555.3165, Found: 555.3176.
     W: HRMS (DCI - NH<sub>3</sub>), Calc: 579.2812, Found: 579.2801.
     X: HRMS (DCI - NH<sub>3</sub>), Calc: 450.2962, Found: 450.2958.
     Y: HRMS (DCI - NH<sub>3</sub>), Calc: 640.3016, Found: 640.3022.
     Z: [a]_D = -8.80^{\circ} (c = 0.602, MeOH); MS (CI - NH<sub>3</sub>), m/e
10
     (%) 593.2 (1.3, (M + H - H_2NCN)^+), 485.2 (42.7), 333.0
     (100); Anal. Calcd for C_{34}H_{48}BBrN_{4}O_{5}S: C, 57.07; H,
     6.76; N, 7.83; B, 1.51. Found: C, 57.17; H, 6.84; N,
     7.76; B, 1.41.
     AA: MS (CI - NH<sub>3</sub>), m/e (%) 649.4 (1.9, (M + H)+), 624.4
15
     (31, (M + NH<sub>4</sub> - H<sub>2</sub>NCN)<sup>+</sup>), 607.2 (100, (M + H - H<sub>2</sub>NCN)<sup>+</sup>),
     455.0 (39), 444.0 (29.8); Anal. Calcd for
     C35H50BBrN4O5S: C, 57.62; H, 6.91; N, 7.68; B, 1.48.
     Found: C, 57.37; H, 6.86; N, 7.64; B, 1.40.
     BB: HRMS (DCI - NH<sub>3</sub>), Calc: 520.2805, Found: 520.2796.
20
     SS.
           MS (DCI - NH<sub>3</sub>), Calc: 507, Found: 507.
     TT.
           MS (DCI - NH<sub>3</sub>), Calc: 534, Found: 534.
     w.
           MS (DCI - NH<sub>3</sub>), Calc: 638, Found: 638.
     W.
           MS (DCI - NH<sub>3</sub>), Calc: 618, Found: 618.
     XX.
           MS (DCI - NH<sub>3</sub>), Calc: 489, Found: 489.
25
     YY.
           MS (DCI - NH3), Calc: 461, Found: 461.
     ZZ.
           MS (DCI - NH<sub>3</sub>), Calc: 582, Found: 582.
     AB.
           MS (DCI - NH3), Calc: 641, Found: 641.
     AC.
           MS (DCI - NH<sub>3</sub>), Calc: 625, Found: 625.
     AD.
           MS (DCI - NH<sub>3</sub>), Calc: 490, Found: 490.
30
     Æ.
           MS (DCI - NH<sub>3</sub>), Calc: 534, Found: 534.
     AF.
           MS (DCI - NH<sub>3</sub>), Calc: 504, Found: 504.
     CB.
           MS (M+H) +, Calc: 503.32, Found: 503.32.
     CD.
           MS (M+H)+, Calc: , Found: .(WITYAK)
     CE.
           MS (M+H)+, Calc: 658, Found: 658.
35
     CF.
           MS (M+H)+, Calc: 638, Found: 638.
     CG.
           MS (M+H)<sup>+</sup>, Calc: 669, Found: 669.
```

CH. MS (M+H)⁺, Calc: 609, Found: 609. CI. MS (M+H)⁺, Calc: 604, Found: 604. CJ. MS (M+H)⁺, Calc: 641, Found: 641. CK. MS (M+H)⁺, Calc: 555, Found: 555.

5

Table 2

Ex	x	Y	Y^1, Y^2	Phys Data
365	CH ₂ NH ₂	co	(+)-pin	
366	CH2NH2	so ₂	(+)-pin	
367	NHC (NH) NH2	co	(+)-pin	
368	NHC (NH) NH2	so ₂	(+)-pin	
369	SC (NH) NH ₂	co	(+)-pin	cc
370	SC (NH) NH ₂	so ₂	(+)-pin	DD
371	CH ₂ NH ₂	CO	OH, OH	
372	CH ₂ NH ₂	SO ₂	OH, OH	
373	NHC (NH) NH2	co	он, он	
374	NHC (NH) NH ₂	SO ₂	ОН,ОН	
375	SC (NH) NH ₂	co	OH, OH	
376	SC (NH) NH ₂	so ₂	OH, OH	

10 CC: HRMS (DCI - NH₃), Calc: 560.2390, Found: 560.2407. DD: HRMS (DCI - NH₃), Calc: 596.2060, Found: 596.2055.

Table 3

Ex	x .	t		Y^1,Y^2	Ph	ys Data
382	NH ₂	2		(+)-pin		
383	SC (NH) NH ₂	£ 2		(+)-pin	EE	
384	SC (NH) NH2	1		(+)-pin	FF	
385	NHC (NH) NH2	2		(+)-pin		
386	NHC (NH) NH2	1		(+)-pin		•
387	NH ₂	2		он, он		
388	SC (NH) NH ₂	2		OH, OH		
389	SC (NH) NH2	1 .		OH, OH	•	
390	NHC (NH) NH2	2		OH, OH		
391	NHC (NH) NH2	1		OH, OH		
EE:	HRMS (DCI	- NH ₃),	Calc:	546.2597.	Found:	546.260

FF: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2609.

WO 96/20689

Table 4

 Y^1, Y^2 Phys Data Ex 397. $\mathtt{CH_2NH_2}$ (+) -pin 398 NHC (NH) NH2 (+)-pin SC (NH) NH₂ 399 (+)-pin GG CH_2NH_2 400 он, он MHC (NH) NH2 401 OH, OH 402 SC (NH) NH₂ он, он

5 GG: HRMS (DCI - NH₃), Calc: 532.2441, Found: 532.2445.

Table 5

Ex	x	Y^1, Y^2	Phys Data
403	CH2NH2	(+)-pin	
404	NHC (NH) NH ₂	(+)-pin	

WO 96/20689

405 SC(NH)NH₂ (+)-pin HH

406 CH₂NH₂ OH,OH

407 NHC(NH)NH₂ OH,OH

408 SC(NH)NH₂ OH,OH

HH: HRMS (DCI - NH₃), Calc: 532.2441, Found: 532.2452.

Table 6

	Ex	x	Y^1, Y^2	Phys Data	
	436	NHC (NH) NH2	(+)-pin		
	437	SC (NH) NH ₂	(+)-pin	II	
	438	CH ₂ NH ₂	(+)-pin		
	439	NHC (NH) NH ₂	OH, OH		
	440	SC (NH) NH ₂	OH, OH		
	441	CH ₂ NH ₂	OH, OH		
II:	HRMS	(DCI - NH_3),	Calc: 480.24	193, Found:	480.2492.

Table 7

Ex	x	Y	Y^1, Y^2	Phys Data
447	NHC (NH) NH ₂	0	(+)-pin	WW
448	SC (NH) NH ₂	0	(+)-pin	JJ
449	CH ₂ NH ₂	0	(+)-pin	
450	NHC (NH) NH2	s	(+)-pin	
451	SC (NH) NH ₂	S	(+)-pin	
452	CH2NH2	s	(+)-pin	
453	NHC (NH) NH ₂	0	OH, OH	
454	SC (NH) NH ₂	0	OH, OH	
455	CH2NH2	0	OH, OH	
456	NHC (NH) NH ₂	S	OH, OH	
457	SC (NH) NH ₂	S	OH, OH	
458	CH ₂ NH ₂	s	OH, OH	
		•		

5 JJ: HRMS (DCI - NH₃), Calc: 496.2441, Found: 496.2449.
WW. MS (DCI - NH₃), Calc: 345, Found: 345.

Table 8

Ex	x	RB	RC	Y^1,Y^2	Phys Data
464	NHC (NH) NH ₂	н	Ph	(+)-pin	
465	NHC (NH) NH2	OBn	н	(+)-pin	
466	SC (NH) NH ₂	н	Ph	(+)-pin	KK
467	SC (NH) NH ₂	OBn	H	(+)-pin	LL
468	CH2NH2	н	Ph	(+)-pin	CI.
469	CH2NH2	OBn.	H	(+)-pin	
470	NHC (NH) NH ₂	н	Ph	OH, OH	
471	NHC (NH) NH ₂	OBn.	H	OH, OH	
472	SC (NH) NH ₂	н	Ph	OH, OH	
473	SC (NH) NH ₂	OBn	н	он, он	
474	CH ₂ NH ₂	н	Ph	OH, OH	CIM
475	CH2NH2	OBn.	н	OH, OH	

5 KK: HRMS (DCI - NH₃), Calc: 507.2601, Found: 507.2592. LL: HRMS (DCI - NH₃), Calc: 537.2667, Found: 537.2685. CL: Anal. Calc'd. for C₂₇H₃₆BN₃O₃ · (HCl)_{1.7} · (H₂O)_{2.2}: C, 57.60; H, 7.54; Cl, 10.70; N, 7.46. Found: C, 57.40; H, 7.23; Cl, 10.78; N, 7.53. MS (M+H) +: calc. 462, Found 462.

CM: MS(M+H)+: Calc: 328, Found: 328.

Table 9

Ex	x	Y^1,Y^2	Phys Data
476	NHC (NH) NH ₂	(+)-pin	
477	SC (NH) NH ₂	(+)-pin	MM
478	CH ₂ NH ₂	(+)-pin	
479	NHC (NH) NH2	он, он	
480	SC (NH) NH ₂	OH, OH	
481	CH ₂ NH ₂	он, он	

5 MM: HRMS (DCI - NH₃), Calc: 498.2233, Found: 498.2231.

Table 10

Ex	x	$M_{\mathcal{I}}$	W ²	R ³	Y^1, Y^2	Phys Data
482	NHC (NH) NH2	N	CH	н	(+)-pin	
483	SC (NH) NH ₂	n	CH	H	(+)-pin	NN
484	CH ₂ NH ₂	M	CH	н	(+)-pin	

485	NHC (NH) NH2	CH	N	Ph	(+) -p:	in	
486	SC (NH) NH ₂	CH	N	Ph	(+)-p:	in oo	
487	CH ₂ NH ₂	CH	N .	Ph	(+)-p:	in	
488	NHC (NH) NH2	N	CH	H	он, он		
489	SC (NH) NH ₂	N	CH	н	он, он		
490	CH2NH2	N	CH	н	он, он		
491	NHC (NH) NH2	CH	. 13	Ph	OH, OH		
492	SC (NH) NH ₂	CH	N	Ph	он, он		
493	CH2NH2	CH	N	Ph	он, он		
NN:	HRMS (DCI -	$NH_3)$,	Calc:	481.	2445,	Found:	481.2442.
00:	HRMS (DCI -	$NH_3)$,	Calc:	557.	2758,	Found:	557.2754.

Table 11

5

Ex	x	Y^1,Y^2	Phys Data
499	NHC (NH) NH ₂	(+)-pin	
500	SC (NH) NH ₂	(+)-pin	PP ·
501	CH2NH2	(+)-pin	•
502	NHC (NH) NH ₂	OH, OH	•
503	SC (NH) NH ₂	OH, OH	
504	CH2NH2	OH, OH	

PP: HRMS (DCI - NH₃), Calc: 5481.2445, Found: 481.2440.

Table 12

Ex X R³ Y¹, Y² Phys Data 510 SC(NH)NH₂ H (+)-pin QQ 5 QQ: HRNS (NH₃ -CI/DEP), Calc: 503.3193, Found: 503.3199.

Table 13

Ex	m, X	R^{A}	_R B	_R C	Y^1, Y^2	Phys
516	2, SC (NH) NH ₂	· H	NHCO- (CH ₂) ₂ Ph	н	(+) -pin	Data RR
517	2, SC (NH) NH ₂	н	Ph	н	(+)-pin	
518	2, SC (NH) NH ₂	Н	OPh	Ph	(+)-pin	
519	1, SC (NH) NH ₂	н	н	4- pyridyl	(+)-pin	
520	1, NHC (NH) NH2	COPh	н	Н	(+)-pin	

521	3, NHC (NH) NH2	H	COPh	Н	(+)-pin
522	3, NHC (NH) NH2	н	н	COPh	(+)-pin

RR: HRMS (DCI-NH₃), Calc: 605.333, Found: 605.3325.

Table 14

Ex	x		m	R13	R ¹⁴		Y ¹ Y ²	Phys. Data
528	CH2NH2	•	1	Ph	 н .		(+)-pin	
529	CH2NH2		1	Ph	Methyl		(+)-pin	
530	CH2NH2		Ţ	Ph	Ethyl		(+)-pin	
531	CH2NH2		1 .	Ph	n-Propyl		(+)-pin	
532	CH2NH2		1	Ph	n-Butyl		(+)-pin	
533	CH2NH2		1	Ph	CH2SCH3		(+)-pin	
534	CH2NH2		1	Ph	CH ₂ (SO) CH ₃		(+)-pin	
535	CH2NH2		1	Ph	CH2 (802) CH3		(+)-pin	
536	CH2NH2		1	Ph	CH2CH2SCH3	٠	(+)-pin	
537	CH2NH2		1	Ph	CH2CH2 (SO) CH3		(+)-pin	
538	CH2NH2		1	Ph	CH2CH2 (SO) 2CH3		(+)-pin	
539	CH2NH2		1	Ph	CH ₂ CN		(+)-pin	
540	CH2NH2		1	Ph	CH2CH2CN		(+)-pin	
541	CH2NH2		1	Ph	CH2CH2CH2CN		(+)-pin	
542	CH2NH2		1	Ph	CF ₃		(+)-pin	
543	CH2NH2		1	Ph	CF2CF3		(+)-pin	
544	CH2NH2		1	Ph	CF2CF2CF3		(+)-pin	
545	CH2NH2		1	Ph	CF2CF2CF2CF3		(+)-pin	
546	CH2NH2		1	Ph	F5-Ph		(+)-pin	
547	CH2NH2		1.	Ph	сн₂со₂н		(+)-pin	
548	CH2NH2		1	Ph	(CH ₂) ₂ CO ₂ H		(+)-pin	
549	CH2NH2		1	Ph	$(CH_2)_3 \infty_2 H$		(+)-pin	
550	CH2NH2		1	Ph	CH2CN4H		(+)-pin	
551	CH2NH2		1	Ph	(CH ₂) ₂ CN ₄ H		(+)-pin	
552	CH2NH2		1	Ph	(CH ₂) 3 CN ₄ H		(+)-pin	
553	CH2NH2		1	Ph	CH2NO2		(+)-pin	
554	CH2NH2		1	Ph	(CH ₂) ₂ NO ₂		(+)-pin	
555	CH2NH2		1	Ph	(CH ₂) 3NO ₂		(+)-pin	

556	CH2NH2	1	Ph	CH ₂ OH	(+)-pin	
557	CH2NH2	1	Ph	(CH ₂) ₂ OH	(+)-pin	
558	CH2NH2	1	Ph	(CH ₂) ₃ OH	(+)-pin	
559	CH2NH2	1	Ph	CH2CO2Me	(+)-pin	
560	CH2NH2	1	Ph	$(CH_2)_2CO_2Me$	(+)-pin	
561	CH2NH2	1	Ph	$(CH_2)_3 \infty_2 Me$	(+)-pin	
562	CH2NH2	1	Ph	Ph	(+)-pin	
563	CH2NH2	1	Ph	PhCH ₂	(+)-pin 2	AG
564	CH2NH2	1	Ph	Ph(CH ₂) ₂	(+)-pin	
565	CH ₂ NH ₂	1	Ph	3-NO ₂ -Ph	(+)-pin	
566	CH2NH2	1	Ph .	4-NO ₂ -Ph	(+)-pin	
567	CH2NH2	1	Ph	3-CO ₂ H-Ph	(+)-pin	
568	CH2NH2	1	Ph	4-CO ₂ H-Ph	(+)-pin	
569	CH2NH2	. 1	Ph	3-CN ₄ H-Ph	(+)-pin	
570	CH2NH2	1.	Ph	4-CN ₄ H-Ph	(+)-pin	
571	CH2NH2	1	Ph	3 - (HOCH ₂) - Ph	(+)-pin	
572	CH2NH2	1	Ph	4-(HOCH ₂)-Ph	(+)-pin	
573	NH (C=NH) NH ₂	× 1	Ph	H	(+)-pin	
574	NH (C=NH) NH ₂	1	Ph	Methyl	(+)-pin	
575	NH (C=NH) NH ₂	1	Ph	Ethyl	(+)-pin	
576	NH (C=NH) NH ₂	1	Ph	n-Propyl	(+)-pin	
577	NH (C-NH) NH ₂	1	· Ph	n-Butyl	(+)-pin	
578	NH (C=NH) NH ₂	1	Ph	CH2SCH3	(+)-pin	
579	NH (C=NH) NH ₂	1	Ph	CH ₂ (SO) CH ₃	(+)-pin	
580	NH (C=NH) NH ₂	. 1	Ph	$CH_2(SO_2)CH_3$	(+)-pin	
581	NH (C=NH) NH ₂	1	Ph	CH2CH2SCH3	(+)-pin	
582	NH (C=NH) NH ₂	1	Ph	CH2CH2 (SO) CH3	(+)-pin	
583	NH (C=NH) NH ₂	1.	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin	
584	NH (C=NH) NH ₂	1	Ph	CH ₂ CN	(+)-pin	
585	NH (C=NH) NH ₂	1	Ph	CH2CH2CN	(+)-pin	
-586	NH (C=NH) NH ₂	1	Ph	CH2CH2CH2CN	(+)-pin	
587	NH (C=NH) NH ₂	1	Ph	CF ₃	(+)-pin	
588	NH (C=NH) NH ₂	1	Ph	CF ₂ CF ₃	(+)-pin .	
589	NH (C=NH) NH ₂	1	Ph	CF2CF2CF3	(+)-pin	
590	NH (C=NH) NH ₂	1	Ph	CF2CF2CF2CF3	(+)-pin	
591	NH (C=NH) NH ₂	1	Ph	F5-Ph	(+)-pin	
592	NH (C=NH) NH ₂	1	Ph	СН2СО2Н	(+)-pin	
593	NH (C=NH) NH ₂	1	Ph	$(CH_2)_2 \infty_2 H$	(+)-pin	
594	NH (C=NH) NH ₂	ı	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin	
595	NH (C=NH) NH ₂	1	Ph	CH2CN4H	(+)-pin	

596	NH (C=NH) NH2	1	Ph	(CH ₂) ₂ CN ₄ H	(+)	-pin
597	NH (C=NH) NH2	1	Ph	(CH ₂) ₃ CN ₄ H	(+)	-pin
598	NH (C=NH) NH2	1	Ph	CH2NO2	(+)	-pin
599	NH (C=NH) NH2	1	Ph	(CH ₂) ₂ NO ₂	(+)	-pin
600	NH (C=NH) NH2	1	Ph	(CH ₂) ₃ NO ₂	(+)	-pin
601	NH (C=NH) NH2	1	Ph	CH ₂ OH	(+)	-pin
602	NH (C=NH) NH2	1	Ph	(CH ₂) ₂ OH	(+)	-pin
603	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ OH	(+)	-pin
604	NH (C=NH) NH ₂	1	Ph	CH ₂ CO ₂ Me	(+)	-pin
605	NH (C=NH) NH ₂	1	Ph	$(CH_2)_2CO_2Me$	(+)	-pin
606	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)	-pin
607	NH (C=NH) NH ₂	, 1	Ph	Ph	(+)	-pin
609	NH (C=NH) NH2	1	Ph	3-NO ₂ -Ph	(+)	-pin
610	NH (C=NH) NH ₂	. 1	Ph	4-NO ₂ -Ph	(+)	-pin
611	NH (C=NH) NH2	1	Ph	3-CO ₂ H-Ph	(+)	-pin
612	NH (C=NH) NH ₂	1	Ph	4-CO2H-Ph	(+)	-pin
613	NH (C=NH) NH ₂	1	Ph	3-CN4H-Ph	(+)	-pin
614	ин (с-ин) ин ₂	1	Ph	4 - CN ₄ H - Ph	(+)	-pin
615	NH (C=NH) NH ₂	1	Ph	3 - (HOCH ₂) - Ph	(+)	-pin
616	NH (C=NH) NH ₂	1	Ph	4-(HOCH2)-Ph	(+)	-pin
617	CH2NH2	1	Ph	н	OH,	ОН
619	CH2NH2	1	Ph	Methyl	OH,	ОН
619	CH2NH2	1	Ph	Ethyl	OH,	ОН
620	CH2NH2	1	Ph	n-Propyl	OH,	OH
621	CH ₂ NH ₂	1	Ph	n-Butyl	OH,	ОН
622	CH ₂ NH ₂	1	Ph	CH2SCH3	OH,	ОН
623	CH ₂ NH ₂	1	Ph	CH ₂ (SO) CH ₃	OH,	ОН
624	CH2NH2	1	Ph	$CH_2(SO_2)CH_3$	OH,	ОН
625	CH ₂ NH ₂	1	Ph	CH2CH2SCH3	OH,	ОН
626	CH ₂ NH ₂	1	Ph	CH2CH2 (SO) CH3	OH,	ОН
627	CH2NH2	1	Ph	CH2CH2 (SO) 2CH3	OH,	ОН
628	CH ₂ NH ₂	1	Ph	CH ₂ CN	OH,	ОН
629	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ CN	OH,	ОН
630	CH ₂ NH ₂	1	Ph	CH2CH2CH2CN	OH,	OH
631	CH2NH2	1	Ph	CF ₃	OH,	ОН
632	CH2NH2	1	Ph	CF2CF3	OH,	ОН
633	CH2NH2	1	Ph	CF2CF2CF3	OH,	ОН
634	CH2NH2	1	Ph	CF2CF2CF2CF3	OH,	ОН
635	CH ₂ NH ₂	1	Ph	F5-Ph	OH,	ОН
636	CH2NH2	1	Ph	CH ₂ ∞ ₂ H	OH,	ОН

637	CH2NH2	1	Ph	(CH ₂) ₂ CO ₂ H	OH,	OH	
638	CH2NH2	1	Ph	(CH ₂) ₃ ∞ ₂ H	OH,	OH	
639	CH2NH2	1	Ph	CH2CN4H	OH,	OH	
640	CH2NH2	1	Ph	(CH ₂) ₂ CN ₄ H	OH,	OH	
641	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	OH,	OH	
642	CH ₂ NH ₂	1	Ph	CH ₂ NO ₂	OH,	OH	
643	CH2NH2	1	Ph	(CH ₂) ₂ NO ₂	OH,	OH	
644	CH2NH2	1	Ph	(CH ₂) 3NO ₂	OH,	ОН	
645	CH ₂ NH ₂	1	Ph	CH ₂ OH	OH,	OH	
646	CH2NH2	1	Ph	(CH ₂) ₂ OH	OH,	OH	
647	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ OH	OH,	OH	
648	CH2NH2	1	Ph	CH ₂ CO ₂ Me	OH,	OH	
649	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	OH,	ОН	
650	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	OH,	OH	
651	CH2NH2	1	Ph	Ph	OH,	ОН	
652	CH ₂ NH ₂	. 1	Ph	PhCH ₂	OH,	OH	A
653	CH ₂ NH ₂	1	Ph	Ph(CH ₂) ₂	OH,	ОН	
654	CH ₂ NH ₂	1	Ph	3-NO ₂ -Ph	OH,	OH	
655	CH2NH2	1	Ph	4-NO ₂ -Ph	OH,	OH	
656	CH2NH2	1	Ph	3-CO2H-Ph	OH,	ОН	
657	CH ₂ NH ₂	1	Ph	4-CO ₂ H-Ph	OH,	OH	
658	CH2NH2	1	Ph	3-CN ₄ H-Ph	OH,	OH	
659	CH ₂ NH ₂	1	Ph	4-CN ₄ H-Ph	OH,	ОН	
660	CH2NH2	1	Ph	3-(HOCH ₂)-Ph	OH,	OH	
661	CH ₂ NH ₂	1	Ph	4-(HOCH ₂)-Ph	OH,	ОН	
662	NH (C=NH) NH ₂	1	Ph	Н	OH,	OH	
663	NH (C=NH) NH ₂	1	Ph	Methyl	OH,	OH	
664	NH (C=NH) NH ₂	1	Ph .	Ethyl	OH,	OH	
665	NH (C=NH) NH ₂	1	Ph	n-Propyl	OH,	OH	
666	NH (C=NH) NH ₂	1	Ph	n-Butyl	OH,	OH	
667	NH (C=NH) NH ₂	1	Ph	CH ₂ SCH ₃	OH,	OH	
668	NH (C=NH) NH ₂	1	Ph	CH ₂ (80) CH ₃	OH,	OH	
669	NH (C=NH) NH ₂	1	Ph	CH ₂ (SO ₂) CH ₃	OH,	OH	
670	NH (C=NH) NH ₂	1	Ph	CH2CH2SCH3	OH,	OH	
671	NH (C=NH) NH ₂	1	Ph.	CH2CH2 (80) CH3	OH,	OH	
672	NH (C=NH) NH ₂	1	Ph	CH2CH2 (SO) 2CH3	OH,	OH	
673	NH (C=NH) NH ₂	1	Ph	CH ₂ CN	OH,	ОН	
674	NH (C=NH) NH ₂	1	Ph	CH2CH2CN	OH,	ОН	
675	NH (C=NH) NH ₂	1	Ph	CH2CH2CH2CN	OH,	OH	
676	NH (C=NH) NH ₂	1	Ph	CF ₃	OH,	OH	

677	NH (C=NH) NH ₂	1	Ph	CF2CF3	он, он
678	NH (C=NH) NH ₂	, 1	Ph	CF2CF2CF3	он, он
679	NH (C=NH) NH2	1	Ph	CF2CF2CF3	он, он
680	NH (C=NH) NH2	1	Ph	F ₅ -Ph	он, он
681	NH (C=NH) NH ₂	1	Ph	CH ₂ CO ₂ H	он, он
682	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
683	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ ∞ ₂ H	он, он
684	NH (C=NH) NH ₂	1	Ph	CH2CN4H	OH, OH
685	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	он, он
686	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	он, он
687	NH (C=NH) NH ₂	1	Ph	CH ₂ NO ₂	он, он
688	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ NO ₂	он, он
689	NH (C=NH) NH ₂	1	Ph	(CH ₂) 3NO ₂	он, он
690	NH (C=NH) NH ₂	1	Ph	CH ₂ OH	OH, OH
691	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ OH	он, он
692	NH (C=NH) NH2	1	Ph	(CH ₂) 3OH	он, он
693	NH (C=NH) NH ₂	.1	Ph	CH ₂ CO ₂ Me	он, он
694	NH (C=NH) NH ₂	. 1	Ph	$(CH_2)_2CO_2Me$	OH, OH
695	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	он, он
696	NH (C=NH) NH ₂	1	Ph	Ph	он, он
697	NH (C=NH) NH ₂	1	Ph	PhCH ₂	OH, OH
698	NH (C=NH) NH ₂	1	Ph	Ph (CH_2) 2	OH, OH
699	NH (C=NH) NH ₂	1	Ph	3-NO ₂ -Ph	OH, OH
700	NH (C=NH) NH ₂	1	Ph	4-NO ₂ -Ph	OH, OH
701	NH (C=NH) NH ₂	1	Ph	3-CO ₂ H-Ph	OH, OH
702	NH (C=NH) NH ₂	1	Ph	4-CO ₂ H-Ph	OH, OH
703	NH (C=NH) NH ₂	1	Ph	3-CN ₄ H-Ph	он, он
704	NH (C=NH) NH ₂	1	Ph .	4-CN ₄ H-Ph	он, он
705	NH (C=NH) NH ₂	1	Ph	3- (HOCH ₂) -Ph	он, он
706	NH (C=NH) NH ₂	1	Ph	4- (HOCH ₂) - Ph	он, он
707	-8-(C=NH)NH ₂	1	Ph	Н	(+)-pin
708	-8-(C=NH)NH ₂	1	Ph	Methyl	(+)-pin
709	-5-(C=NH)NH ₂	1	Ph	Ethyl	(+)-pin
710	-8-(C=NH)NH ₂	1	Ph	n-Propyl	(+)-pin
711	-S-(C=NH)NH ₂	1	Ъþ	n-Butyl	(+)-pin
712	-s-(C=NH)NH ₂	1	Ph	CH ₂ SCH ₃	(+)-pin
713	g-(C=NH)NH ₂	1	Ph	CH ₂ (SO) CH ₃	(+)-pin
714	-8-(C=NH)NH ₂	1	Ph	CH ₂ (80 ₂) CH ₃	(+)-pin
715	-8-(C=NH)NH ₂	1	Ph	CH2CH2SCH3	(+)-pin '
716	-8-(C=NH)NH ₂	1	Ph	CH ₂ CH ₂ (80) CH ₃	(+)-pin

717	-8-(C=NH)NH2	1	Ph	CH2CH2 (SO) 2CH3	(+)-pin
718	-8-(C=NH)NH2	1	Ph	CH ₂ CN	(+)-pin
719	-s-(c=NH)NH2	1	Ph	CH2CH2CN	(+)-pin
720	-s-(c=NH)NH2	1	Ph	CH2CH2CH2CN	(+)-pin
721	-s-(c=NH)NH2	1	Ph	CF ₃	(+)-pin
722	-8-(C=NH)NH ₂	1	Ph	CF2CF3	(+)-pin
723	-8-(C=NH)NH2	1	Ph	CF2CF2CF3	(+)-pin
724	-8-(C=NH)NH2	1	Ph	CF2CF2CF2CF3	(+)-pin
725	-s-(C=NH)NH2	1	Ph	F5-Ph	(+)-pin
726	-s-(C=NH)NH2	1	Ph	сн ₂ со ₂ н	(+)-pin
727	-8-(C-NH)NH2	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
728	-S-(C=NH)NH2	1	Ph	(CH ₂) 3CO ₂ H	(+)-pin
729	-s-(c=NH)NH2	1	Ph:	CH2CN4H	(+)-pin
730	-s-(C=NH)NH2	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
731	-8-(C=NH)NH2	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
732	-s-(C=NH)NH2	ı	Ph	CH2NO2	(+)-pin
733	-s-(c=NH)NH2	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
734	-8-(C=NH)NH2	1	Ph .	(CH ₂) ₃ NO ₂	(+)-pin
735	-s-(C=NH)NH2	1	Ph	CH ₂ OH	(+)-pin
736	-8-(C=NH)NH2	1	Ph	(CH ₂) ₂ OH	(+)-pin
737	-s-(c=NH)NH2	1	Ph	(CH ₂) ₃ OH	(+)-pin
738	-s-(C=NH)NH2	1	Ph	CH ₂ CO ₂ Me	(+)-pin
739	-s-(c=NH)NH2	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
740	-s-(c=NH)NH2	1.	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
741	-s-(c=nh)nh2	1	Ph	Ph	(+)-pin
742	-s-(c=NH)NH2	1 .	Ph	3-NO ₂ -Ph	(+)-pin
743	-8-(C=NH)NH2	1	Ph	4-NO ₂ -Ph	(+)-pin
744	-s-(c=NH)NH2	1	Ph	3-CO ₂ H-Ph	(+)-pin
745	-8-(C=NH)NH2	1	Ph	4-CO ₂ H-Ph	(+)-pin
746	-8-(C=NH)NH2	1	Ph	3-CN4H-Ph	(+)-pin
747	-8-(C=NH)NH2	1	Ph	4-CN ₄ H-Ph	(+)-pin
748	-8- (C=NH) NH2	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
749	-s-(c=NH)NH2	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
750	-8-(C=NH)NH2	1	Ph	Н	он, он
751	-s-(c=NH)NH2	1	Ph	Methyl	он, он
752	-s-(C=NH)NH2	1	Ph	Ethyl	OH, OH
753	-s-(c=NH)NH2	1	Ph	n-Propyl	OH, OH
754	-s-(C=NH)NH ₂	1	Ph	n-Butyl	он, он
755	-s-(C=NH)NH2	1	Ph	CH28CH3	он, он
756	-8-(C=NH)NH2	1	Ph	CH ₂ (80) CH ₃	OH, OH

757	-8-(C=NH)NH2	1	Ph	CH ₂ (80 ₂) CH ₃	он, он
758	-s-(C=NH)NH2	1	Ph	CH2CH28CH3	OH, OH
759	-8-(C=NH)NH2	1	Ph	CH2CH2 (80) CH3	он, он
760	-s-(c=nh)nh2	1	Ph	CH2CH2 (SO) 2CH3	он, он
761	-s-(c=NH)NH2	1	Ph	CH ₂ CN	он, он
762	-s-(C=NH)NH ₂	1	Ph	CH2CH2CN	он, он
763	-s-(c=nh)nh2	1	Ph	CH2CH2CH2CN	он, он
764	-8-(C=NH)NH2	1	Ph	CF ₃	он, он
765	-8-(C=NH)NH2	1	Ph	CF2CF3	он, он
766	-8-(C=NH)NH2	1	Ph	CF2CF2CF3	он, он
767	-8-(C=NH)NH2	1	Ph	CF2CF2CF2CF3	он, он
768	-8-(C=NH)NH ₂	1	Ph	F5-Ph	он, он
769	-s-(c=nh)nh ₂	1	Ph	$\text{сн}_2\infty_2$ н	он, он
770	-s-(c=NH)NH2	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
771	-8- (C=NH) NH ₂	1	Ph	$(CH_2)_3 \infty_2 H$	он, он
772	-s-(c=NH)NH ₂	1	Ph	CH2CN4H	OH, OH
773	-s-(C=NH)NH2	1	Ph	(CH ₂) ₂ CN ₄ H	он, он
774	-8-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH
775	-s-(C=NH)NH2	1	Ph	CH2NO2	он, он
776	-s-(C=NH)NH2	1	Ph	(CH ₂) ₂ NO ₂	он, он
777	-s-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ NO ₂	OH, OH
778	-8-(C=NH)NH ₂	1	Ph	СН ₂ ОН	он, он
779	-8-(C=NH)NH2	1	Ph.	(CH ₂) ₂ OH	он, он
780	-s-(c=NH)NH ₂	1	Ph	(CH ₂) ₃ OH	он, он
781	-s-(C=NH)NH2	1 .	Ph	$\text{CH}_2 \infty_2 \text{Me}$	OH, OH
782	-s-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	он, он
783	-s-(c=NH)NH2	1	Ph	(CH ₂) ₃ CO ₂ Me	он, он
784	-s-(C=NH)NH2	1	Ph	Ph	он, он
785	-8-(C=NH)NH ₂	1	Ph	PhCH ₂	он, он
786	-8-(C=NH)NH ₂	1	Ph	Ph(CH ₂) ₂	OH, OH
787	-8-(C=NH)NH ₂	1	Ph	3-NO ₂ -Ph	ОН, ОН
788 .	-s-(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	он, он
789	-s-(c=nh)nh ₂	1	Ph	3-CO ₂ H-Ph	он, он
790	-s-(c=NH)NH ₂	1	Ph	4-CO ₂ H-Ph	он, он
791	-9-(C=NH)NH2	1	Ph	3-CN4H-Ph	он, он
792	-s-(C=NH)NH ₂	1	Ph	4 - CN ₄ H - Ph	он, он
793	-8-(C=NH)NH ₂	1	Ph	3 - (HOCH ₂) - Ph	он, он
794	-8-(C=NH)NH ₂	1	Ph	4 - (HOCH ₂) - Ph	OH, OH
795	CH2NH2	2	Ph	H	(+)-pin
796	CH2NH2	2	Ph	H	OH, OH

797	OMe	1	Ph	н	(+)-pin
798	OMe	1	Ph	Methyl	(+)-pin
799	OMe	1	Ph	Ethyl	(+)-pin
800	OMe	1	Ph	n-Propyl	(+)-pin
801	OMe	1	Ph	n-Butyl	(+)-pin
802	OMe	1	Ph	CH ₂ 8CH ₃	(+)-pin
803	OMe	1	Ph	CH ₂ (80) CH ₃	(+)-pin
804	OMe	1	Ph	CH ₂ (80 ₂) CH ₃	(+)-pin
805	OMe	1	Ph	CH2CH2SCH3	(+)-pin
806	OMe ,	1	Ph	CH ₂ CH ₂ (so) CH ₃	(+)-pin
807	OMe	1	Ph	CH2CH2 (80) 2CH3	(+)-pin
808	OMe	1	Ph	CH ₂ CN	(+)-pin
809	OMe	1	Ph	CH2CH2CN	(+)-pin
810	OMe	1	Ph	CH2CH2CH2CN	(+)-pin
811	OMe .	1	Ph	CF3	(+)-pin
812	OMe	1	Ph	CF2CF3	(+)-pin
813	OMe	1	Ph	CF2CF2CF3	(+)-pin
814	OMe	1	Ph	CF2CF2CF2CF3	(+)-pin
815	OMe	1	Ph	F5-Ph	(+)-pin
816	OMe	1	Ph	CH2CO2H	(+)-pin
817	OMe	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
818	OMe	1	Ph	(CH ₂) ₃ ∞ ₂ H	(+)-pin
819	OMe	1	Ph	CH2CN4H	(+)-pin
820	OMe	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
821	OMe	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
822	OMe	1	Ph	CH ₂ NO ₂	(+)-pin
823	OMe	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
824	OMe	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin
825	OMe	1	Ph	CH ₂ OH	(+)-pin
926	OMe	1	Ph	(CH ₂) ₂ OH	(+)-pin
827	OMe	1	Ph	(CH ₂) ₃ OH	(+)-pin
828	OMe	1	Ph	CH ₂ CO ₂ Me	(+)-pin
829	OMe	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
830	OMe ·	1	Ph	$(CH_2)_3CO_2Me$	(+)-pin
831	OMe	1	Ph	Ph	(+)-pin
832	OMe	1	Ph	PhCH ₂	(+)-pin
833	OMe	1	Ph	Ph(CH ₂) ₂	(+)-pin
834	OMe	1	Ph	3-NO ₂ -Ph	(+)-pin
835	OMe	1	Ph	4-NO ₂ -Ph	(+)-pin
836	OMe	1	Ph	3-CO ₂ H-Ph	(+)-pin

837	OMe	1	Ph	4-CO2H-Ph	(+)-pin
838	OMe	1	Ph	3-CN4H-Ph	(+)-pin
839	OMe	1	Ph	4-CN4H-Ph	(+)-pin
840	OMe	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
841	OMe	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
842	OMe	1	Ph	н	он, он
843	OMe	1	Ph	Methyl	он, он
844	OMe	1	Ph	Ethyl	он, он
845	OMe	1	Ph	n-Propyl	он, он
846	OMe	1	Ph	n-Butyl	он, он
847	OMe	1	Ph	CH28CH3	он, он
948	OMe	1	Ph	CH ₂ (SO) CH ₃	он, он
849	OMe	1	Ph	$CH_2(SO_2)CH_3$	он, он
850	OMe	1	Ph	CH2CH28CH3	он, он
851	OMe	1	Ph	CH2CH2 (SO) CH3	он, он
852	OMe	1	Ph	$CH_2CH_2(SO)_2CH_3$	он, он
853	OMe	1	Ph	CH ₂ CN	OH, OH
854	OMe	1	Ph	CH2CH2CN	он, он
855	OMe	1	Ph	CH2CH2CH2CN	ОН, ОН
856	OMe	1	Ph	CF ₃	он, он
857	OMe	1	Ph	CF2CF3	ОН, ОН
858	OMe	1	Ph	CF2CF2CF3	ОН, ОН
859	OMe	1	Ph	CF2CF2CF2CF3	он, он
860	OMe	1	Ph	F5-Ph	он, он
861	OMe	1	Ph	CH ₂ ∞ ₂ H	он, он
862	OMe	1	Ph	(CH ₂) ₂ CO ₂ H	OH, OH
863	OMe	1	Ph	(CH ₂) ₃ CO ₂ H	он, он
864	OMe	1	Ph	CH2CN4H	он, он
865	OMe	1	Ph	(CH ₂) ₂ CN ₄ H	ОН, ОН
966	OMe	1	Ph	(CH ₂) ₃ CN ₄ H	он, он
867	OMe	1	Ph	CH ₂ NO ₂	он, он
868	OMe	1	Ph	(CH ₂) ₂ NO ₂	он, он
869	OMe	1	Ph	(CH ₂) ₃ NO ₂	он, он
870	OMe	1	Ph	CH ₂ OH	он, он
971	OMe	1	Ph	(CH ₂) ₂ OH	он, он
37 2	OMe	1	Ph	(CH ₂) ₃ OH	он, он
373	OMe	1	Ph	CH ₂ CO ₂ Me	он, он
374	OMe	1	Ph	(CH ₂) ₂ CO ₂ Me	он, он
375	OMe	1.	Ph	(CH ₂) ₃ CO ₂ Me	он, он
376	OMe	1	Ph	Ph	он, он

877	OMe		5 1	Dh att		
878	OMe .	1	Ph	PhCH ₂	он, он	
879	OMe	1	Ph	Ph(CH ₂) ₂	OH, OH	
880		1	Ph	3-NO ₂ -Ph	он, он	
891	OMe	1	Ph	4-NO ₂ -Ph	OH, OH	
	OMe	1	Ph	3-CO ₂ H-Ph	OH, OH	
882	OMe	1	Ph	4-CO ₂ H-Ph	OH, OH	
883	ONe	1	Ph	3-CN ₄ H-Ph	OH, OH	
884	OMe .	1	Ph	4 - CN ₄ H - Ph	он, он	
885	OMe	1	Ph	3 - (HOCH ₂) - Ph	OH, OH	
886	OMe	1	Ph	4- (HOCH ₂) -Ph	он, он	
887	CH ₂ NH ₂	1	PhCH ₂	н	(+)-pin	AK
988	CH2NH2	1	PhCH ₂	Methyl	(+)-pin	AL
889	CH2NH2	1	PhCH ₂	Ethyl	(+)-pin	
890	CH ₂ NH ₂	1	PhCH ₂	n-Propyl	(+)-pin	AM
891	CH2NH2	1 .	PhCH ₂	n-Butyl	(+)-pin	
892	CH2NH2	1	PhCH ₂	CH2SCH3	(+)-pin	AN
893	CH2NH2	1	PhCH ₂	CH ₂ (SO) CH ₃	(+)-pin	
894	CH2NH2	1	PhCH ₂	CH ₂ (SO ₂) CH ₃	(+) -pin	
895	CH2NH2	1	PhCH ₂	CH2CH28CH3	(+)-pin	
896	CH ₂ NH ₂	1	PhCH ₂	CH2CH2 (SO) CH3	(+)-pin	
897	CH2NH2	1	PhCH ₂	CH2CH2 (SO) 2CH3	(+)-pin	
898	CH2NH2	1	PhCH ₂	CH ₂ CN	(+)-pin	CN
899	CH2NH2	1	PhCH ₂	CH2CH2CH2CN	(+)-pin	
900	CH2NH2	1	PhCH ₂	CF ₃	(+)-pin	
901	CH2NH2	1	PhCH ₂	CF2CF3	(+)-pin	
902	CH ₂ NH ₂	1	PhCH ₂	CF2CF2CF3	(+)-pin	
903	CH2NH2	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin	
904	CH2NH2	1	PhCH ₂	F5-Ph	(+)-pin	
905	CH2NH2	1	PhCH ₂	СН2СО2Н	(+)-pin	AW
906	CH2NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin	
907	CH2NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin	
908	CH2NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin	
909	CH2NH2	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin	
910	CH2NH2	1	PhCH ₂	CH2NO2	(+)-pin	
911	CH2NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin	
912	CH2NH2	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin	
913	CH2NH2	1	PhCH ₂	71 011	(+)-pin	AO
914	CH2NH2	2	PhCH ₂	CH2OCH2Ph	(+)-pin	AP
915	CH2NH2	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
916	CH2NH2	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin	
	•				· · , pan	

917	CH2NH2	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin	CP
918	CH2NH2	1	PhCH ₂	$(CH_2)_2CO_2Me$	(+)-pin	
919	CH2NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	. (+)-pin	
920	CH2NH2	1	PhCH ₂	Ph	(+)-pin	AQ
921	CH2NH2	1	PhCH ₂	PhCH ₂	(+)-pin	AR
922	CH ₂ NH ₂	1	PhCH ₂	$Ph(CH_2)_2$	(+)-pin	
923	CH ₂ NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin	AS
924	CH2NH2	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin	
925	CH ₂ NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin	
926	CH2NH2	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin	
927	CH ₂ NH ₂	1	PhCH ₂	3-CN4H-Ph	(+)-pin	
928	CH2NH2	1	PhCH ₂	4-CN4H-Ph	(+)-pin	
929	CH2NH2	1	PhCH ₂	3-(HOCH ₂)-Ph	(+)-pin	
930	CH2NH2	1	PhCH ₂	4 - (HOCH ₂) - Ph	(+)-pin	
931	CH2NH2	1	PhCH ₂	3-NH2-Ph	(+)-pin	CQ
932	NH (C=NH) NH ₂	1	PhCH ₂	н	(+)-pin	
933	NH (C=NH) NH ₂	1	PhCH ₂	Methyl	(+)-pin	
934	NH (C=NH) NH2	1	PhCH ₂	Ethyl	(+)-pin	
935	NH (C=NH) NH ₂	1	PhCH ₂	n-Propyl	(+)-pin	
936	NH (C=NH) NH ₂	1	PhCH ₂	n-Butyl	(+)-pin	
937	NH (C=NH) NH ₂	1	PhCH ₂	CH2SCH3	(+)-pin	
938	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ (SO) CH ₃	(+)-pin	
939	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ (SO ₂) CH ₃	(+)-pin	
940	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH28CH3	(+)-pin	
941	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH2 (SO) CH3	(+)-pin	
942	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH2(SO)2CH3	(+)-pin	
943	NH (С=NH) NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin	
944	NH (C=NH) NH2	- 1	PhCH ₂	CH ₂ CH ₂ CN	(+)-pin	
945	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH2CH2CN	(+)-pin	
946	NH (C=NH) NH ₂	1	PhCH ₂	CF ₃	(+)-pin	
947	NH (C=NH) NH ₂	1	PhCH ₂	CP2CF3	(+)-pin	
948	NH (C=NH) NH ₂	1	PhCH ₂	CF2CF2CF3	(+)-pin	
949	NH (C=NH) NH ₂	1	PhCH ₂	CF2CF2CF3	(+)-pin	
950	NH (C=NH) NH ₂	1	PhCH ₂	F ₅ -Ph	(+)-pin	
951	NH (C=NH) NH2	1	PhCH ₂	сн₂∞2н	(+)-pin	
952	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin	
953	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin	
954	NH (C=NH) NH2	1	PhCH ₂	CH2CN4H	(+)-pin	
955	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin	
956	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) 3 CN ₄ H	(+)-pin	
					•	

957	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ NO ₂	(+)-pin	
958	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin	
959	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin	
960	NH (C=NH) NH2	1	PhCH ₂	CH ₂ OH	(+)-pin	
961	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
962	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin	
963	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin	
964	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin	
965 .	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin	
966	NH (C=NH) NH ₂	1	PhCH ₂	Ph	(+)-pin	
967	NH (C=NH) NH ₂	1	PhCH ₂	PhCH ₂	(+)-pin	AT
968	NH (C=NH) NH2	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin	
969	NH (C=NH) NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin	AU
970	NH (C=NH) NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin	
971	NH (C=NH) NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin	
972	NH (C=NH) NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin	
973	NH (C=NH) NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin	
974	NH (C=NH) NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin	
975	NH (C=NH) NH ₂	1	PhCH ₂	3 - (HOCH ₂) - Ph	(+)-pin	
976	NH (C=NH) NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin	
977	CH2NH2	1	PhCH ₂	H	он, он	AI
977 978	СН ₂ NН ₂ СН ₂ NН ₂	1	PhCH ₂ PhCH ₂	H Methyl	он, он он, он	IA
						AI
978	CH ₂ NH ₂	1	PhCH ₂	Methyl	он, он	AI
978 979	CH ₂ NH ₂ CH ₂ NH ₂	1	PhCH ₂	Methyl Ethyl	он, он он, он	AI
978 979 980	CH ₂ NH ₂ CH ₂ NH ₂ CH ₂ NH ₂	1 1 1	PhCH ₂ PhCH ₂ PhCH ₂	Methyl Ethyl n-Propyl	OH, OH OH, OH	AI
978 979 980 981	CH ₂ NH ₂ CH ₂ NH ₂ CH ₂ NH ₂ CH ₂ NH ₂	1 1 1	PhCH ₂ PhCH ₂ PhCH ₂	Methyl Ethyl n-Propyl n-Butyl	OH, OH OH, OH OH, OH	AI
978 979 980 981 982	CH ₂ NH ₂	1 1 1 1	PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂	Methyl Ethyl n-Propyl n-Butyl CH ₂ SCH ₃	OH, OH OH, OH OH, OH OH, OH	AI
978 979 980 981 982 983	CH ₂ NH ₂	1 1 1 1 1	PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂	Methyl Ethyl n-Propyl n-Butyl CH28CH3 CH2(SO)CH3	OH, OH OH, OH OH, OH OH, OH OH, OH	AI
978 979 980 981 982 983	CH ₂ NH ₂	1 1 1 1 1	PhCH ₂	Methyl Ethyl n-Propyl n-Butyl CH ₂ SCH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃	OH, OH OH, OH OH, OH OH, OH OH, OH OH, OH	AI
978 979 980 981 982 983 984	CH ₂ NH ₂	1 1 1 1 1 1	PhCH ₂	Methyl Ethyl n-Propyl n-Butyl CH ₂ 8CH ₃ CH ₂ (8O) CH ₃ CH ₂ (SO ₂) CH ₃ CH ₂ CH ₂ SCH ₃	OH, OH OH, OH OH, OH OH, OH OH, OH OH, OH	IA.
978 979 980 981 982 983 984 985	CH ₂ NH ₂	1 1 1 1 1 1 1	PhCH ₂	Methyl Ethyl n-Propyl n-Butyl CH ₂ SCH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₃	OH, OH	IA.
978 979 980 981 982 983 984 985 986	CH ₂ NH ₂	1 1 1 1 1 1 1 1 1 1 1 1	PhCH ₂	Methyl Ethyl n-Propyl n-Butyl CH ₂ SCH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ (SO) CH ₃	OH, OH	AI
978 979 980 981 982 983 984 985 986 987	CH ₂ NH ₂	1 1 1 1 1 1 1 1 1 1 1 1 1	PhCH ₂	Methyl Ethyl n-Propyl n-Butyl CH ₂ SCH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ CH ₂ (SO) CH ₃	OH, OH	AI
978 979 980 981 982 983 984 985 986 987 988	CH ₂ NH ₂	1 1 1 1 1 1 1 1 1 1 1 1 1	PhCH ₂	Methyl Ethyl n-Propyl n-Butyl CH28CH3 CH2(SO) CH3 CH2(SO2) CH3 CH2CH2SCH3 CH2CH2SCH3 CH2CH2(SO) CH3 CH2CH2(SO) CH3 CH2CH2(SO) CH3 CH2CH2(SO) CH3 CH2CH2(SO) CH3	OH, OH	AI
978 979 980 981 982 983 984 985 986 987 988 989	CH ₂ NH ₂	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PhCH ₂	Methyl Ethyl n-Propyl n-Butyl CH ₂ SCH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ CN CH ₂ CN	OH, OH	AI
978 979 980 981 982 983 984 985 986 987 988 989	CH ₂ NH ₂	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PhCH ₂	Methyl Ethyl n-Propyl n-Butyl CH28CH3 CH2(SO) CH3 CH2(SO2) CH3 CH2CH2SCH3 CH2CH2(SO) CH3 CH2CH2(SO) 2CH3 CH2CH2(SO) 2CH3 CH2CH2(SO) 2CH3 CH2CH2(SO) CH3 CH2CH2(SO) CH3	OH, OH	AI
978 979 980 981 982 983 984 985 986 987 988 989	CH ₂ NH ₂	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PhCH ₂	Methyl Ethyl n-Propyl n-Butyl CH ₂ SCH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ CN CH ₂ CH ₂ CN CH ₂ CH ₂ CN CF ₃ CF ₂ CF ₃	OH, OH	AI
978 979 980 981 982 983 984 985 986 987 988 989 990	CH ₂ NH ₂	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PhCH ₂	Methyl Ethyl n-Propyl n-Butyl CH28CH3 CH2(SO) CH3 CH2(SO2) CH3 CH2CH2SCH3 CH2CH2(SO) CH3 CH2CH2(SO) 2CH3 CH2CH2(SO) 2CH3 CH2CH2(SO) 2CH3 CH2CH2(SO) CH3 CH2CH2CN CH2CH2CN CH2CH2CN CH2CH2CN CH2CH2CN CF3 CF2CF3	OH, OH	AI

997	CH2NH2	1	PhCH ₂	(СH ₂) ₂ СС ₂ Н	он, он
998	CH2NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	он, он
999	CH2NH2	1	PhCH ₂	CH2CN4H	OH, OH
1000	CH2NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	он, он
1001	CH2NH2	. 1	PhCH ₂	(CH ₂) ₃ CN ₄ H	он, он
1002	CH2NH2	1	PhCH ₂	CH ₂ NO ₂	он, он
1003	CH2NH2	1	PhCH ₂	$(CH_2)_2NO_2$	OH, OH
1004	CH2NH2	1	PhCH ₂	$(CH_2)_3NO_2$	OH, OH
1005	CH2NH2	1	PhCH ₂	CH ₂ OH	он, он
1006	CH2NH2	1	PhCH ₂	(CH ₂) ₂ OH	он, он
1007	CH2NH2	1	PhCH ₂	(CH ₂) ₃ OH	он, он
1008	CH2NH2	1	PhCH ₂	CH ₂ CO ₂ Me	он, он
1009	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	он, он
1010	CH2NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, OH
1011	CH ₂ NH ₂	1	PhCH ₂	Ph	OH, OH AV
1012	CH2NH2	1	PhCH ₂	PhCH ₂	OH, OH
1013	CH ₂ NH ₂	i	PhCH ₂	Ph(CH ₂) ₂	он, он
1014	CH ₂ NH ₂	1	PhCH ₂	3-NO ₂ -Ph	он, он
1015	CH2NH2	1	PhCH ₂	4-NO ₂ -Ph	он, он
1016	CH ₂ NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	он, он
1017	CH ₂ NH ₂	1	PhCH ₂	4-CO ₂ H-Ph	он, он
1018	CH ₂ NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	он, он
1019	CH ₂ NH ₂	1	PhCH ₂	4-CN4H-Ph	OH, OH
1020	CH ₂ NH ₂	1	PhCH ₂	3 - (HOCH ₂) - Ph	он, он
1021	CH ₂ NH ₂	1	PhCH ₂	.4-(HOCH ₂)-Ph	OH, OH
1022	CH ₂ NH ₂	1	PhCH ₂	F	(+)-pin
1023	CH ₂ NH ₂	1	PhCH ₂	Cl	(+)-pin
1024	CH2NH2	1	PhCH ₂	Br	(+)-pin
1025	CH ₂ NH ₂	1	PhCH ₂	I	(+)-pin
1026	CH ₂ NH ₂	1	PhCH ₂	соон .	(+)-pin
1027	CH2NH2	1	PhCH ₂	СООМе	(+)-pin
1028	CH ₂ NH ₂	1	PhCH ₂	CHO	(+)-pin
1029	CH ₂ NH ₂	1	PhCH ₂	COMe	(+)-pin
1030	CH2NH2	1	PhCH ₂	NO ₂	(+)-pin
1031	CH2NH2	1	PhCH ₂	CN	(+)-pin
1032	CH2NH2	1	PhCH ₂	isopropyl	(+)-pin
1033	CH ₂ NH ₂	1	PhCH ₂	3-F-phenyl	(+)-pin
1034	CH ₂ NH ₂	1	PhCH ₂	3-C1-phenyl	(+)-pin
1035	CH2NH2	1	PhCH ₂	4-Br-phenyl	(+)-pin -
1036	CH ₂ NH ₂	1	PhCH ₂	4-I-phenyl	(+)-pin

1037	CH2NH2	1	PhCH ₂	3-CH ₃ -phenyl	(+)-pin
1038	CH2NH2	1	PhCH ₂	3-MeO-phenyl	(+)-pin
1039	CH2NH2	1	PhCH ₂	3-CN-phenyl	(+)-pin
1040	CH2NH2	1	PhCH ₂	4-CN-phenyl	(+)-pin
1041	CH2NH2	1	PhCH ₂	3-NC-phenyl	(+)-pin
1042	CH2NH2	1	PhCH ₂	4-NC-phenyl	(+)-pin
1043	CH2NH2	1	PhCH ₂	3-CF ₃ -phenyl	(+)-pin
1044	CH2NH2	1	PhCH ₂	3-CH ₃ 8-phenyl	(+)-pin
1045	CH2NH2	1	PhCH ₂	3-CH ₃ SO-phenyl	(+)-pin
1046	CH2NH2	1	PhCH ₂	3-CH ₃ SO ₂ -phenyl	(+)-pin
1047	CH2NH2	1	PhCH ₂	3-N(Me) ₂ -phenyl	(+)-pin
1048	CH2NH2	1	PhCH ₂	3-MeCO-phenyl	(+)-pin
1049	CH2NH2	1	PhCH ₂	3-CHO-phenyl	(+)-pin
1050	CH2NH2	1	PhCH ₂	3-CO ₂ Me-phenyl	(+)-pin
1051	CH2NH2	1	PhCH ₂	3-CONH ₂ -phenyl	(+)-pin
1052	CH2NH2	1	PhCH ₂	CH2NHSO2CF3	(+)-pin
1053	CH2NH2	1	PhCH ₂	CH2NHSO2CH3	(+)-pin
1054	CH2NH2	1	PhCH ₂	CH ₂ CO ₂ -i-propyl	(+)-pin
1055	CH2NH2	1	PhCH ₂	CH ₂ CHO	(+)-pin
1056	CH2NH2	1	PhCH ₂	CH ₂ CH ₂ CMe	(+)-pin
1057	CH2NH2	1.	PhCH ₂	CH ₂ CH ₂ O-i-propyl	(+)-pin
1058	CH2NH2	1	PhCH ₂	CH ₂ OCOMe	(+)-pin
1059	CH2NH2	1	PhCH ₂	CH ₂ OCO-i-propyl	(+)-pin
1060	CH2NH2	1	PhCH ₂	CH ₂ OCO-Phenyl	(+)-pin
1061	CH2NH2	1	PhCH ₂	CH ₂ NHCOMe	(+)-pin
1062	CH ₂ NH ₂	1	PhCH ₂	CH2NHCO-i-propyl	(+)-pin
1063	CH2NH2	1	PhCH ₂	F	OH, OH
1064	CH2NH2	1	PhCH ₂	Cl	он, он
1065	CH2NH2	1	PhCH ₂	Br	OH, OH
1066	CH2NH2	1	PhCH ₂	I	он, он
1067	CH2NH2	1	PhCH ₂	соон	он, он
1068	CH2NH2	1	PhCH ₂	COOMe	он, он
1069	CH ₂ NH ₂	1	PhCH ₂	СНО	он, он
1070	CH ₂ NH ₂	1	PhCH ₂	COMe	он, он
1071	CH2NH2	1	PhCH ₂	NO ₂	он, он
1072	CH2NH2	1	PhCH ₂	CN CN	он, он
1073	CH2NH2	1	PhCH ₂	isopropyl	он, он
1074	CH ₂ NH ₂	1	PhCH ₂	3-F-phenyl	он, он
1075	CH ₂ NH ₂	1	PhCH ₂	3-Cl-phenyl	OH, OH
1076	CH ₂ NH ₂	1	PhCH ₂	4-Br-phenyl	он, он

1077	CH ₂ NH ₂	1	PhCH ₂	4-I-phenyl	он, он
1078	CH2NH2	1	PhCH ₂	3-CH ₃ -phenyl	он, он
1079	CH2NH2	1	PhCH ₂	3-MeO-phenyl	он, он
1080	CH2NH2	1	PhCH ₂	3-CN-phenyl	он, он
1081	CH2NH2	1	PhCH ₂	4-CN-phenyl	он, он
1082	CH2NH2	1	PhCH ₂	3-NC-phenyl	он, он
1083	CH2NH2	1	PhCH ₂	4-NC-phenyl	он, он
1084	CH2NH2	ı	PhCH ₂	3-CF ₃ -phenyl	он, он
1085	CH2NH2	1	PhCH ₂	3-CH ₃ 8-phenyl	он, он
1086	CH2NH2	1	PhCH ₂	3-CH ₃ SO-phenyl	он, он
1087	CH2NH2	1	PhCH ₂	3-CH3SO2-phenyl	он, он
1088	CH2NH2	1	PhCH ₂	3-N(Me) ₂ -phenyl	он, он
1089	CH2NH2	1	PhCH ₂	3-MeCO-phenyl	он, он
1090	CH2NH2	1	PhCH ₂	3-CHO-phenyl	OH, OH
1091	CH2NH2	1	PhCH ₂	3-CO ₂ Me-phenyl	он, он
1092	CH2NH2	1	PhCH ₂	3-CONH ₂ -phenyl	он, он
1093	CH2NH2	1	PhCH ₂	CH2NHSO2CF3	он, он
1094	CH2NH2	1	PhCH ₂	CH2NHSO2CH3	он, он
1095	CH2NH2	1	PhCH ₂	$\text{CH}_2 \infty_2 \text{-i-propyl}$	он, он
1096	CH2NH2	1	PhCH ₂	CH ₂ CHO	он, он
1097	CH2NH2	1	PhCH ₂	CH ₂ CH ₂ OMe	он, он
1098	CH2NH2	1	PhCH ₂	CH ₂ CH ₂ O-i-propyl	он, он
1099	CH2NH2	1	PhCH ₂	CH ₂ OCOMe	он, он
1100	CH2NH2	1	PhCH ₂	CH2OCO-i-propyl	он, он
1101	CH2NH2	1	PhCH ₂	CH ₂ OCO-Phenyl	он, он
1102	CH2NH2	1	PhCH ₂	CH ₂ NHCOMe	он, он
1103	CH2NH2	1	PhCH ₂	CH ₂ NHCO-i-propyl	он, он
1104	CH2NH2	1	3,4-Di-F-	CH ₂ CN	(+)-pin
			PhCH ₂	•	
1105	CH2NH2	1	3,4-Di-	CH ₂ CN	(+)-pin
			Cl-PhCH2		
1106	CH2NH2	1	4-Br-	CH ₂ CN	(+)-pin
			PhCH ₂		
1107	CH2NH2	1	4-I-PhCH ₂	CH ₂ CN	(+)-pin
1108	CH2NH2	1	4-Me-	CH2CN	(+)-pin
			PhCH ₂		
1109	CH2NH2	1	2-MeO-	CH ₂ CN	(+)-pin
			PhCH ₂		
1110	CH2NH2	1	2-CN-	CH ₂ CN	(+)-pin
			PhCH ₂		
	•				

1111	CH ₂ NH ₂	1	2-NC- PhCH ₂	CH ₂ CN	(+)-pin
1112	CH2NH2	1	2-NO ₂ -	CH2CN	(+)-pin
1113	CH2NH2	1		CH2CN	(+)-pin
1114	CH2NH2	1		CH2CN	(+)-pin
1115	CH2NH2	1	-	CH2CN	(+)-pin
1116	CH2NH2	1	3-MeSO ₂ -	CH2CN	(+)-pin
1117	CH2NH2	1	2-NH ₂ -PhCH ₂	CH ₂ CN	(+)-pin
1118	CH2NH2	1	_	CH ₂ CN	(+)-pin
1119	CH ₂ NH ₂	1	2-CHO- PhCH ₂	CH ₂ CN	(+)-pin
1120	CH ₂ NH ₂	1	3-MeCO-	CH ₂ CN	(+)-pin
1121	CH2NH2	1	PhCH ₂ 2-MeO ₂ C-	CH ₂ CN	(+)-pin
1122	CH2NH2	1	PhCH ₂ 2-NH ₂ OC-	CH ₂ CN	(+)-pin
1123	CH2NH2	1	PhCH ₂ 2-HOCH ₂ -	CH ₂ CN	(+)-pin
1124	CH ₂ NH ₂	1	PhCH ₂ 3,4-Di-F-	CH2CN	он, он
1125	CH ₂ NH ₂	1,	PhCH ₂ 3,4-Di- Cl-PhCH ₂	CH ₂ CN	он, он
1126	CH ₂ NH ₂	1		CH ₂ CN	он, он
1127	CH2NH2	1	4-I-PhCH ₂	CH ₂ CN	он, он
1128	CH ₂ NH ₂	1		CH ₂ CN	он, он
1129	CH ₂ NH ₂	1		CH2CN	он, он
1130	CH ₂ NH ₂	ı.	PhCH ₂ 2-CN-	CH2CN	он, он
			PhCH ₂	,	

1131	CH ₂ NH ₂	1	2-NC-	CH ₂ CN	OH,	OH
			PhCH ₂			
1132	CH2NH2	1	2-NO ₂ -	CH ₂ CN	OH,	OH
			PhCH ₂			
1133	CH2NH2	1	2-CF3-	CH ₂ CN	OH,	OH
			PhCH ₂			
1134	CH2NH2	1	2-Me8-	CH ₂ CN	OH,	OH
			PhCH ₂			
1135	CH2NH2	1	3-MeSO-	CH ₂ CN	OH,	OH
			PhCH ₂			
1136	CH ₂ NH ₂	1	3-Me802-	CH ₂ CN	OH,	OH
			PhCH ₂			
1137	CH ₂ NH ₂	1	2-NH ₂ -	CH ₂ CN	OH,	ОН
			PhCH ₂			
1138	CH2NH2	1	3-NHMe-	CH ₂ CN	OH,	ОН
			PhCH ₂			
1139	CH2NH2	1	2-CHO-	CH ₂ CN	OH,	ОН
			PhCH ₂			
1140	CH2NH2	1	3-MeCO-	CH ₂ CN	OH,	ОН
			PhCH ₂			
1141	CH2NH2	1	2-MeO ₂ C-	CH ₂ CN	OH,	ОН
			PhCH ₂			
1142	CH2NH2	1	2-NH2OC-	CH2CN	он,	ОН
			PhCH ₂			
1143	CH2NH2	1	2-HOCH2-	CH ₂ CN	OH,	ОН
			PhCH ₂			
1144	NH (C=NH) NH2	1	PhCH ₂	н	OH,	ОН
1145	NH (C=NH) NH ₂	1	PhCH ₂	Methyl	OH,	
1146	NH (C=NH) NH ₂	1	_	Ethyl	OH,	
1147	NH (C=NH) NH ₂	1	PhCH ₂	-	OH,	
1148		1	PhCH ₂		OH,	
1149		1	PhCH ₂		OH,	
1150		1	PhCH ₂	CH ₂ (SO) CH ₃	OH,	
1151		1	_	CH ₂ (SO ₂) CH ₃	OH,	
1152	NH (C=NH) NH ₂	1	_	CH2CH2SCH3	OH,	
1153	NH (C=NH) NH ₂	1		CH2CH2 (SO) CH3	OH,	·
	NH (C=NH) NH ₂	1		CH ₂ CH ₂ (SO) ₂ CH ₃	OH,	•
	NH (C=NH) NH ₂					
			_	CH ₂ CN	OH,	
1156	_	1		CH ₂ CH ₂ CN	OH,	
1157	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH2CH2CN	OH,	OH

1158	NH (C=NH) NH ₂	1	PhCH ₂	CF3	OH,	OH
1159	NH (C=NH) NH ₂	1	PhCH ₂	CF2CF3	OH,	OH
1160	NH (C=NH) NH2	1	PhCH ₂	CF2CF2CF3	OH,	OH
1161	NH (C=NH) NH2	1	PhCH ₂	CF2CF2CF2CF3	OH,	OH
1162	NH (C=NH) NH2	1	PhCH ₂	P5-Ph	OH,	OH
1163	NH (C=NH) NH ₂	1	PhCH ₂	CH2CO2H	OH,	OH
1164	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) 2∞2H	OH,	OH
1165	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH,	OH
1166	NH (C=NH) NH ₂	1	PhCH ₂	CH2CN4H	OH,	OH
1167	NH (C=NH) NH ₂	1 .	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH,	OH
1168	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH,	OH
1169	NH (C=NH) NH2	1	PhCH ₂	CH2NO2	OH,	OH
1170	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH,	OH
1171	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) 3NO ₂	OH,	OH
1172	NH (C=NH) NH2	1	PhCH ₂	CH ₂ OH	OH,	OH
1173	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₂ OH	OH,	OH
1174	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₃ OH	OH,	OH
1175	NH (C=NH) NH2	1	PhCH ₂	CH ₂ CO ₂ Me	OH,	ОН
1176	NH (C=NH) NH ₂	' 1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH,	OH
1177	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH,	ОН
1178	NH (C=NH) NH ₂	1	PhCH ₂	Ph	OH,	OH
1179	NH (C=NH) NH ₂	1	PhCH ₂	PhCH ₂	OH,	OH
1180	NH (C=NH) NH2	1	PhCH ₂	Ph(CH ₂) ₂	OH,	OH
1181	NH (C=NH) NH ₂	1	PhCH ₂	3-NO ₂ -Ph	OH,	ОН
1182	NH (C=NH) NH2	1	PhCH ₂	4-NO ₂ -Ph	OH,	ОН
1183	NH (C=NH) NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	OH,	OH
1184	NH (C=NH) NH2	1	PhCH ₂	4-CO ₂ H-Ph	OH,	ОН
1185	NH (C=NH) NH2	1	PhCH ₂	3-CN4H-Ph	OH,	OH
1186	NH (C=NH) NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	OH,	OH
1187	NH (C=NH) NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	OH,	OH
1188	NH (C=NH) NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	OH,	OH
1189	NH (C=NH) NH2	1	PhCH ₂	CH2CHO	(+)	-pin
1190	NH (C=NH) NH2	1	PhCH ₂	CH2CHO	OH,	OH
1191	CH ₂ NH ₂	1	PhCH ₂	CH2CHO	(+)	-pin
1192	CH2NH2	1	PhCH ₂	CH ₂ CHO	OH,	OH
1193	-s-(c=NH)NH2	1	PhCH ₂	н	(+)	-pin
1194	-s-(c=NH)NH2	1	PhCH ₂	Methyl	(+)	-pin
1195	-s-(C=NH)NH2	1	PhCH ₂	Ethyl	(+)	-pin
1196	-s-(C=NH)NH2	1	PhCH ₂	n-Propyl	(+)	-pin
1197	-s-(c=nh)nh2	1	PhCH ₂	n-Butyl	(+)	-pin

1198	-8-(C=NH)NH2	1	PhCH ₂	CH2SCH3	(+)-pin
1199	-s-(C=NH)NH2	1	PhCH ₂	CH ₂ (80) CH ₃	(+)-pin
1200	-s-(c=NH)NH2	1	PhCH ₂	CH2 (802) CH3	(+)-pin
1201	-8-(C=NH)NH2	1	PhCH ₂	CH2CH28CH3	(+)-pin
1202	-8-(C=NH)NH2	1	PhCH ₂	CH2CH2 (80) CH3	(+)-pin
1203	-8-(C=NH)NH2	1	PhCH ₂	CH2CH2 (80) 2CH3	(+)-pin
1204	-8-(C=NH)NH2	1	PhCH ₂	CH ₂ CN	(+)-pin
1205	-s-(C=NH)NH2	1	PhCH ₂	CH2CH2CN	(+)-pin
1206	-8- (C=NH) NH ₂	1	PhCH ₂	CH2CH2CH2CN	(+)-pin
1207	-8-(C=NH)NH ₂	1	PhCH ₂	CF ₃	(+)-pin
1208	-s-(C=NH)NH2	1	PhCH ₂	CF2CF3	(+)-pin
1209	-8-(C=NH)NH2	1	PhCH ₂	CF2CF2CF3	(+)-pin
1210	-8-(C=NH)NH2	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin
1211	-8-(C=NH)NH2	1	PhCH ₂	F ₅ -Ph	(+)-pin
1212	-s-(C=NH)NH2	1	PhCH ₂	сн₂∞2н	(+)-pin
1213	-8-(C=NH)NH2	1	PhCH ₂	$(CH_2)_2 \infty_2 H$	(+)-pin
1214	-s-(C=NH)NH2	1	PhCH ₂	$(CH_2)_3 \infty_2 H$	(+)-pin
1215	-8-(C=NH)NH2	1	PhCH ₂	CH ₂ CN ₄ H	(+)-pin
1216	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1217	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) 3CN ₄ H	(+)-pin
1218	-s-(c=NH)NH2	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
1219	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1220	-9-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
1221	-s-(C=NH)NH2	1	PhCH ₂	СH2ОН	(+)-pin
1222	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
1223	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
1224	-s-(C=NH)NH2	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
1225	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
1226	-s-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
1227	-s-(C=NH)NH ₂	1	PhCH ₂	Ph	(+)-pin
1228	-s-(c=NH)NH ₂	1	PhCH ₂	PhCH ₂	(+)-pin
1229	-S-(C=NH)NH2	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
1230	-s-(C=NH)NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
1231	-8-(C=NH)NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
1232	-9-(C=NH)NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
1233	-8-(C=NH)NH2	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
1234	-s-(C=NH)NH2	1	PhCH ₂	3-CN4H-Ph	(+)-pin
1235	-9-(C=NH)NH2	1	PhCH ₂	4 - CN ₄ H - Ph	(+)-pin
1236	-8-(C=NH)NH ₂	1	PhCH ₂	3 - (HOCH ₂) - Ph	(+)-pin
1237	-S-(C=NH)NH2	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin

1238	- CN	1	PhCH ₂	CH2CN	(+)-pin
1239	-NO ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1240	- CH ₂ NO ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1241	-CF3	1	PhCH ₂	CH ₂ CN	(+)-pin
1242	-NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1243	- NHOH	1	PhCH ₂	CH ₂ CN	(+)-pin
1244	-NHOMe	1	PhCH ₂	CH ₂ CN	(+)-pin
1245	- CH2NHOH	1	PhCH ₂	CH ₂ CN	(+)-pin
1246	- CH ₂ NHOMe	1	PhCH ₂	CH ₂ CN	(+)-pin
1247	-NH (C=NH) CH3	1	PhCH ₂	CH2CN	(+)-pin
1248	-NH (C=NH) NHOH	1	PhCH ₂	CH ₂ CN	(+)-pin
1249	-NH (C=NH) NHNH2	1	PhCH ₂	CH ₂ CN	(+)-pin
1250	-NH (C=NH) NHCN	1	PhCH ₂	CH ₂ CN	(+)-pin
1251	-NH (C=NH) NHCH3	1	PhCH ₂	CH ₂ CN	(+)-pin
1252	-NH(C=NH)	1	PhCH ₂	CH ₂ CN	(+)-pin
	NHCOCH3				
1253	-c(=nh)nh ₂	1	PhCH ₂	CH ₂ CN	(+)-pin
1254	-C(=NH)NHMe	1	PhCH ₂	CH ₂ CN	(+)-pin
1255	-C (=NH) NHCOMe	1	PhCH ₂	CH2CN	(+)-pin
1256	-CONH ₂	1	PhCH ₂	CH2CN	(+)-pin
1257	- Conhch3	1	PhCH ₂	CH ₂ CN	(+)-pin
1258	- co ₂ сн ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1259	-OH	1	PhCH ₂	CH ₂ CN	(+)-pin
1260	- CH ₂ OH	1	PhCH ₂	CH ₂ CN	(+)-pin
1261	-SCH3	ı	PhCH ₂	CH ₂ CN	(+)-pin
1262	-soch ₃	1	PhCH ₂	CH ₂ CN	(+)-pin
1263	- SO2CH3	1	PhCH ₂	CH ₂ CN	(+)-pin
1264	-s-(c=nh)nhch3	1	PhCH ₂	CH ₂ CN	(+)-pin
1265	-8-(C=NH)	. 1	PhCH ₂	CH ₂ CN	(+)-pin
	инсосн3				
1266	-S-(C=NH)NH2	1	PhCH ₂	H	он, он
1267	-s-(c=nh)nh2	1	PhCH ₂	Methyl	он, он
1268	-s-(C=NH)NH2	1	PhCH ₂	Ethyl	OH, OH
1269 .	$-s-(C=NH)NH_2$	1	PhCH ₂	n-Propyl	OH, OH
1270	-8-(C=NH)NH2	1	PhCH ₂	n-Butyl	он, он
1271	-s-(C=NH)NH2	1	PhCH ₂	CH28CH3	он, он
1272	-s-(C=NH)NH2	1	PhCH ₂	CH ₂ (SO) CH ₃	он, он
1273	-8-(C=NH)NH2	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	он, он
1274	-s-(C=NH)NH2	1	PhCH ₂	CH2CH2SCH3	он, он
1275	-s-(C=NH)NH2	1	PhCH ₂	CH2CH2 (80) CH3	он, он

1276	-8-(C=NH)NH2	1	PhCH ₂	CH2CH2 (SO) 2CH3	OH,	ОН
1277	-8-(C=NH)NH2	1	PhCH ₂	CH ₂ CN	OH,	ОН
1278	-8-(C=NH)NH ₂	1	PhCH ₂	CH2CH2CN	OH,	ОН
1279	-8- (C=NH) NH ₂	1	PhCH ₂	CH2CH2CH2CN	OH,	OH
1280	-8- (C=NH) NH ₂	1	PhCH ₂	CF ₃	OH,	OH
1281	-8- (C=NH) NH ₂	1	PhCH ₂	CF2CF3	OH,	ОН
1282	-8-(C=NH)NH2	1	PhCH ₂	CF2CF2CF3	OH,	ОН
1283	-8-(C=NH)NH2	1	PhCH ₂	CF2CF2CF2CF3	OH,	OH
1284	-8-(C=NH)NH2	1	PhCH ₂	F5-Ph	OH,	ОН
1285	-s-(C=NH)NH2	1	PhCH ₂	$\text{CH}_2\infty_2\text{H}$	OH,	ОН
1286	-8- (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH,	ОН
1287	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH,	OH
1288	-8-(C=NH)NH2	1	PhCH ₂	CH2CN4H	OH,	OH
1289	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH,	OH
1290	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH,	OH
1291	-s-(C=NH)NH2	1	PhCH ₂	CH ₂ NO ₂	OH,	ОН
1292	-s-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH,	OH
1293	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH,	ОН
1294	-s-(C=NH)NH2	1	PhCH ₂	CH ₂ OH	OH,	OH
1295	-8- (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	OH,	OH
1296	-s-(c=NH)NH2	1	PhCH ₂	(CH ₂) ₃ OH	OH,	OH
1297	-s-(C=NH)NH2	1	PhCH ₂	CH ₂ CO ₂ Me	OH,	OH
1298	-s-(c=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH,	OH
1299	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH,	OH
1300	-s-(c=NH)NH2	1	PhCH ₂	Ph	OH,	OH
1301	-s-(C=NH)NH2	.1	PhCH ₂	PhCH ₂	OH,	OH
1302	-s-(c=NH)NH2	1	PhCH ₂	Ph(CH ₂) ₂	OH,	ОН
1303	-s-(C=NH)NH2	1	PhCH ₂	3-NO ₂ -Ph	OH,	ОН
1304	-s-(c=NH)NH2	1	PhCH ₂	4-NO ₂ -Ph	OH,	OH
1305	-s-(c=NH)NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	OH,	OH
1306	-s-(C=NH)NH2	1	PhCH ₂	4-CO2H-Ph	OH,	OH
1307	-s-(C=NH)NH2	1	PhCH ₂	3-CN4H-Ph	OH,	OH
1308	-s-(C=NH)NH2	1	PhCH ₂	4-CN ₄ H-Ph	OH,	OH
1309	-s-(C=NH)NH2	1	PhCH ₂	3 - (HOCH ₂) - Ph	OH,	OH
1310	-s-(C=NH)NH2	1	PhCH ₂	4 - (HOCH ₂) - Ph	OH,	OH
1311	- CN	1	PhCH ₂	CH ₂ CN	OH,	ОН
1312	-NO ₂	1	PhCH ₂	CH ₂ CN	OH,	OH
1313	-CH2NO2	1	PhCH ₂	CH ₂ CN	OH,	OH
1314	-CF3	1	PhCH ₂	CH ₂ CN	OH,	OH
1315	-NH ₂	1	PhCH ₂	CH2CN	OH,	OH

1316	- инон	1	PhCH ₂	CH ₂ CN	он, он
1317	-NIMe	1	PhCH ₂	CH ₂ CN	OH, OH
1318	- CH ₂ NHOH	1	PhCH ₂	CH ₂ CN	он, он
1319	- CH ₂ NHOMe	1	PhCH ₂	CH ₂ CN	OH, OH
1320	-NH(C=NH)CH3	1	PhCH ₂	CH2CN	он, он
1321	- NH (C=NH) NHOH	1	PhCH ₂	CH ₂ CN	он, он
1322	-NH (C=NH) NHNH2	1	PhCH ₂	CH2CN	OH, OH
1323	-nh (c=nh) nhcn	1	PhCH ₂	CH ₂ CN	он, он
1324	-NH (C=NH) NHCH3	1	PhCH ₂	CH ₂ CN	OH, OH
1325	-NH (C=NH)	1	PhCH ₂	CH ₂ CN	OH, OH
	инсосн3				
1326	-C (=NH) NH2	1	PhCH ₂	CH ₂ CN	он, он
1327	- C (=NH) NHMe	1	PhCH ₂	CH ₂ CN	он, он
1328	-C (=NH) NHCOMe	- 1	PhCH ₂	CH ₂ CN	он, он
1329	-CONH ₂	1	PhCH ₂	CH ₂ CN	OH, OH
1330	-CONHCH3	1	PhCH ₂	CH ₂ CN	он, он
1331	-co ₂ cH ₃	1	PhCH ₂	CH ₂ CN	он, он
1332	-OH	1	PhCH ₂	CH ₂ CN	он, он
1333	- CH ₂ OH	1	PhCH ₂	CH ₂ CN	он, он
1334	-8CH3	1	PhCH ₂	CH ₂ CN	он, он
1335	-SOCH3	1	PhCH ₂	CH ₂ CN	OH, OH
1336	-80 ₂ CH ₃	1	PhCH ₂	CH ₂ CN	он, он
1337	-s-(C=NH)NHCH3	1	PhCH ₂	CH ₂ CN	OH, OH
1338	-S-(C=NH)	1	PhCH ₂	CH ₂ CN	OH, OH
	инсосн3				
1339	CH ₂ NH ₂	2	PhCH ₂	н	(+)-pin
1340	CH ₂ NH ₂	2	PhCH ₂	н	он, он
1341	OMe	1	PhCH ₂	н	(+)-pin
1342	OMe	1	PhCH ₂	Methyl	(+)-pin
1343	OMe	1	PhCH ₂	Ethyl .	(+)-pin
1344	OMe	1	PhCH ₂	n-Propyl	(+)-pin
1345	OMe	1	PhCH ₂	n-Butyl	(+)-pin
1346	OMe	1	PhCH ₂	CH2SCH3	(+)-pin
1347	OMe	1	PhCH ₂	CH ₂ (SO) CH ₃	(+)-pin
1348	OMe	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	(+)-pin
1349	OMe	1	PhCH ₂	CH2CH28CH3	(+)-pin
1350	OMe	1	PhCH ₂	CH2CH2 (60) CH3	(+)-pin
1351	OMe	1	PhCH ₂	$\mathrm{CH_2CH_2}(80)_2\mathrm{CH_3}$	(+)-pin
1352	OMe	1	PhCH ₂	CH ₂ CN	(+)-pin CR
1353	OMe	1	PhCH ₂	CH2CH2CN	(+)-pin

1354	ОМе	1	PhCH ₂	CH2CH2CH2CN	(+)-pin
1355	OMe	1	PhCH ₂	CF3	(+)-pin
1356	OMe	1	PhCH ₂	CF2CF3	(+)-pin
1357	OMe	1	PhCH ₂	CF2CF2CF3	(+)-pin
1358	OMe	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin
1359	OMe	1	PhCH ₂	F ₅ -Ph	(+)-pin
1360	OMe	1	PhCH ₂	сн₂∞2н	(+)-pin
1361	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1362	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
1363	OMe	1	PhCH ₂	CH2CN4H	(+)-pin
1364	OMe	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1365	OMe	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
1366	CMe	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
1367	OMe	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1368	OMe	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
1369	OMe	1	PhCH ₂	CH ₂ OH	(+)-pin
1370	OMe	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
1371	OMe	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
1372	OMe	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
1373	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
1374	OMe	1	PhCH ₂	$(CH_2)_3CO_2Me$	(+)-pin
1375	OMe	1	PhCH ₂	Ph	(+)-pin
1376	OMe	1	PhCH ₂	PhCH ₂	(+)-pin
1377	OMe	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
1378	OMe	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
1379	OMe	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
1380	OMe	1 .	PhCH ₂	3-CO ₂ H-Ph	(+)-pin
1381	OMe	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
1382	OMe	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin
1383	OMe	1	PhCH ₂	4 - CN4H - Ph	(+)-pin
1384	OMe	1	PhCH ₂	3- (HOCH ₂) - Ph	(+)-pin
1385	OMe	1	PhCH ₂	4- (HOCH ₂) - Ph	(+)-pin
1386	OMe	1	PhCH ₂	H	он, он
1387	OMe	1	PhCH ₂	Methyl	он, он
1388	OMe	1	PhCH ₂	Ethyl	он, он
1389	OMe	1	PhCH ₂	n-Propyl	он, он
1390	OMe	1	PhCH ₂	n-Butyl	он, он
1391	OMe	1	PhCH ₂	CH2SCH3	он, он
1392	OMe	1	PhCH ₂	CH ₂ (SO) CH ₃	он, он
1393	OMe	1	PhCH ₂	CH ₂ (SO ₂) CH ₃	он, он

1394	OMe	. 1	PhCH ₂	CH2CH2SCH3	он, он
1395	OMe	1	PhCH ₂	CH2CH2 (80) CH3	он, он
1396	OMe .	1	PhCH ₂	CH2CH2 (80) 2CH3	OH, OH
1397	OMe	1	PhCH ₂	CH2CN	OH, OH
1398	OMe	1	PhCH ₂	CH2CH2CN	он, он
1399	OMe	1	PhCH ₂	CH2CH2CH2CN	он, он
1400	OMe	1	PhCH ₂	CF ₃	OH, OH
1401	Offe	1	PhCH ₂	CF2CF3	OH, OH
1402	OMe	1	PhCH ₂	CF2CF2CF3	OH, OH
1403	OMe	1	PhCH ₂	CF2CF2CF2CF3	OH, OH
1404	OMe	1	PhCH ₂	F5-Ph	OH, OH
1405	OMe	1	PhCH ₂	CH ₂ CO ₂ H	он, он
1406	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
1407	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH, OH
1408	OMe	1	PhCH ₂	CH2CN4H	OH, OH
1409	OMe	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	он, он
1410	OMe	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OH
1411	OMe	1	PhCH ₂	CH ₂ NO ₂	OH, OH
1412	OMe	1	PhCH ₂	(CH ₂) ₂ NO ₂	он, он
1413	OMe	1	PhCH ₂	(CH ₂) ₃ NO ₂	он, он
1414	OMe	1	PhCH ₂	CH ₂ OH	OH, OH
1415	OMe	1	PhCH ₂	(CH ₂) ₂ OH	он, он
1416	OMe	1	PhCH ₂	(CH ₂) ₃ OH	он, он
1417	OMe	1	PhCH ₂	CH ₂ CO ₂ Me	он, он
1418	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	он, он
1419	OMe	1	PhCH ₂	$(CH_2)_3CO_2Me$	он, он
1420	OMe	1	PhCH ₂	Ph	OH, OH
1421	OMe	1	PhCH ₂	PhCH ₂	он, он
1422	OMe	1	PhCH ₂	Ph(CH ₂) ₂	он, он
1423	OMe	1	PhCH ₂	3-NO ₂ -Ph	он, он
1424	OMe	1	PhCH ₂	4-NO ₂ -Ph	он, он
1425	OMe	1	PhCH ₂	3-CO ₂ H-Ph	он, он
1426	OMe	1 .	PhCH ₂	4-CO ₂ H-Ph	он, он
1427	OMe	1	PhCH ₂	3 - CN ₄ H - Ph	он, он
1428	OMe	1	PhCH ₂	4-CN4H-Ph	он, он
1429	OMe	1	PhCH ₂	3 - (HOCH ₂) - Ph	он, он
1430	OMe	1	PhCH ₂	4- (HOCH ₂) -Ph	он, он
1431	CH ₂ NH ₂	1	PhCH2CH2	H	(+)-pin AX
1432	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Methyl	(+)-pin
1433	CH2NH2	1	PhCH2CH2	Ethyl	(+)-pin

1434	CH ₂ NH ₂	1	PhCH ₂ CH ₂	n-Propyl	(+)-pin	
1435 -	CH2NH2	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin	
1436	CH2NH2	1	PhCH2CH2	CH28CH3	(+)-pin	
1437	CH2NH2	1	PhCH ₂ CH ₂	CH ₂ (80) CH ₃	(+)-pin	
1438	CH2NH2	1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	(+)-pin	
1439	CH2NH2	1	PhCH2CH2	CH2CH28CH3	(+)-pin	
1440	CH2NH2	1	PhCH2CH2	CH2CH2 (80) CH3	(+)-pin	
1441	CH2NH2	1	PhCH2CH2	CH2CH2 (80) 2CH3	(+)-pin	
1442	CH2NH2	1	PhCH2CH2	CH2CN	(+)-pin	
1443	CH2NH2	1	PhCH ₂ CH ₂	CH2CH2CN	(+)-pin	
1444	CH2NH2	ı	PhCH2CH2	CH2CH2CH2CN	(+)-pin	
1445	CH2NH2	1	PhCH2CH2	CF ₃	(+)-pin	
1446	CH2NH2	1	PhCH2CH2	CF2CF3	(+)-pin	
1447	CH2NH2	1	PhCH ₂ CH ₂	CF2CF2CF3	(+)-pin	
1448	CH2NH2	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin	
1449	CH ₂ NH ₂	1	PhCH2CH2	F5-Ph	(+)-pin	
1450	CH2NH2	1	PhCH2CH2	CH2CO2H	(+)-pin	
1451	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin	
1452	CH2NH2	1	PhCH2CH2	(CH ₂) ₃ ∞ ₂ H	(+)-pin	
1453	CH2NH2	1	PhCH2CH2	CH2CN4H	(+)-pin	
1454	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin	
1455	CH2NH2	1	PhCH2CH2	(CH ₂) 3CN ₄ H	(+)-pin	
1456	CH2NH2	1	PhCH2CH2	CH ₂ NO ₂	(+)-pin	
1457	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin	
1458	CH2NH2	1	PhCH2CH2	(CH ₂) 3NO ₂	(+)-pin	
1459	CH2NH2	1	PhCH2CH2	CH ₂ OH	(+)-pin C	3
1460	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin	
1461	CH2NH2	1	PhCH2CH2	(CH ₂) ₃ OH	(+)-pin	
1462	CH2NH2	1	PhCH2CH2	CH ₂ CO ₂ Me	(+)-pin	
1463	CH2NH2	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin	
1464	CH2NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	(+) -pin	
1465	CH2NH2	1	PhCH2CH2	Ph	(+)-pin	
1466	CH2NH2	1	PhCH2CH2	PhCH ₂	(+)-pin	
1467	CH2NH2	1	PhCH2CH2	Ph(CH ₂) ₂	(+)-pin A	ľ
1468	CH2NH2	1	PhCH2CH2	3-NO ₂ -Ph	(+) -pin	
1469	CH ₂ NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin	
1470	CH2NH2	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin	
1471	CH2NH2	1	PhCH2CH2	4-CO ₂ H-Ph	(+) -pin	
1472	CH2NH2	1	PhCH2CH2	3-CN4H-Ph	(+)-pin-	
1473	CH2NH2	1	PhCH ₂ CH ₂	4-CN4H-Ph	(+)-pin	

1474	CH ₂ NH ₂	1	PhCH2CH2	3- (HOCH ₂) -Ph	(+)-pin
1475	CH2NH2	1	PhCH2CH2	4-(HOCH ₂)-Ph	(+)-pin
1476	NH (C=NH) NH ₂	1	PhCH2CH2	H	(+)-pin
1477	NH (C=NH) NH ₂	1	PhCH2CH2	Methyl	(+)-pin
1478	NH (C=NH) NH ₂	1	PhCH2CH2	Ethyl	(+)-pin
1479	NH (C=NH) NH ₂	1	PhCH2CH2	n-Propyl	(+)-pin
1480	NH (C=NH) NH2	1	PhCH2CH2	n-Butyl	(+)-pin
1481	NH (C-NH) NH ₂	1	PhCH2CH2	CH ₂ 8CH ₃	(+)-pin
1482	NH (C=NH) NH ₂	ı	PhCH2CH2	CH ₂ (BO) CH ₃	(+)-pin
1483	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	(+)-pin
1484	NH (C=NH) NH2	1	PhCH2CH2	CH2CH28CH3	(+)-pin
1485	NH (C=NH) NH2	1	PhCH2CH2	CH2CH2 (80) CH3	(+)-pin
1486	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH2 (SO) 2CH3	(+)-pin
1487	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ CN	(+)-pin
1488	NH (C=NH) NH2	1	PhCH2CH2	CH2CH2CN	(+)-pin
1489	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
1490	NH (C=NH) NH ₂	1	PhCH2CH2	CF ₃	(+)-pin
1491	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CF2CF3	(+)-pin
1492	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF3	(+)-pin
1493	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
1494	NH (C=NH) NH ₂	1	PhCH2CH2	F5-Ph	(+)-pin
1495	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ ∞ ₂ H	(+)-pin
1496	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
1497	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) 3∞2H	(+)-pin
1498	NH (C=NH)NH2	1	PhCH2CH2	CH2CN4H	(+)-pin
1499	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin
1500	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	(+)-pin
1501	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ NO ₂	(+)-pin
1502	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
1503	ŅН (С=NН) NН2	1	PhCH2CH2	(CH ₂) ₃ NO ₂	(+)-pin
1504	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ OH	(+)-pin
1505	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
1506	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ OH	(+)-pin
1507	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ CO ₂ Me	(+)-pin
1508	NH (C=NH) NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	(+)-pin
1509	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	(+)-pin
1510	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	Ph	(+)-pin
1511	NH (C=NH) NH ₂	1	PhCH2CH2	PhCH ₂	(+)-pin
1512	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	(+)-pin
1513	NH (C=NH) NH ₂	1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin

1514	NH (C=NH) NH2	1	PhCH2CH2	4-NO ₂ -Ph	(+)-pin	
1515	NH (C=NH) NH ₂	1	PhCH2CH2	3-CO ₂ H-Ph	(+)-pin	
1516	NH (C=NH) NH2	1	PhCH2CH2	4-CO ₂ H-Ph	(+)-pin	
1517	NH (C=NH) NH2	1	PhCH2CH2	3-CN4H-Ph	(+)-pin	
1518	NH (C=NH) NH2	1	PhCH2CH2	4 - CN4H - Ph	(+)-pin	
1519	NH (C=NH) NH ₂	1	PhCH2CH2	3- (HOCH ₂)-Ph	(+)-pin	
1520	NH (C=NH) NH ₂	1	PhCH2CH2	4- (HOCH2) -Ph	(+)-pin	
1521	CH2NH2	1	PhCH2CH2	н	он, он а	2
1522	CH2NH2	1	PhCH ₂ CH ₂	Methyl	OH, OH	
1523	CH2NH2	1	PhCH ₂ CH ₂	Ethyl	OH, OH	
1524	CH2NH2	1	PhCH2CH2	n-Propyl	он, он	
1525	CH ₂ NH ₂	1	PhCH2CH2	n-Butyl	он, он	
1526	CH2NH2	1	PhCH ₂ CH ₂	CH ₂ 8CH ₃	он, он	
1527	CH ₂ NH ₂	1	PhCH2CH2	CH ₂ (80) CH ₃	ОН, ОН	
1528	CH2NH2	1	PhCH2CH2	$CH_2(SO_2)CH_3$	ОН, ОН	
1529	CH2NH2	1	PhCH ₂ CH ₂	CH2CH2SCH3	он, он	
1530	CH2NH2	1	PhCH ₂ CH ₂	$\mathrm{CH}_2\mathrm{CH}_2$ (SO) CH_3	он, он	
1531	CH ₂ NH ₂	1	PhCH ₂ CH ₂	$\mathrm{CH_2CH_2}(80)_2\mathrm{CH_3}$	ОН, ОН	
1532	CH ₂ NH ₂	1	PhCH2CH2	CH ₂ CN	он, он	
1533	CH ₂ NH ₂	1	PhCH2CH2	CH2CH2CN	OH, OH	
1534	CH2NH2	1	PhCH2CH2	CH2CH2CH2CN	он, он	
1535	CH ₂ NH ₂	1	PhCH2CH2	CF3	OH, OH	
1536	CH2NH2	1	PhCH2CH2	CF2CF3	он, он	
1537	CH ₂ NH ₂	1	PhCH2CH2	CF2CF2CF3	OH, OH	
1538	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CF2CF2CF2CF3	он, он	
1539	CH ₂ NH ₂	1	PhCH ₂ CH ₂	F ₅ -Ph	он, он	
1540	CH2NH2	1	PhCH2CH2	CH ₂ CO ₂ H	OH, OH	
1541	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	он, он	
1542	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	он, он	
1543	CH ₂ NH ₂	1	PhCH2CH2	CH2CN4H	он, он	
1544	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	он, он	
1545	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	он, он	
1546	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH2NO2	он, он	
1547	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ NO ₂	он, он	
1548	CH2NH2	1	PhCH ₂ CH ₂	(CH ₂) 3NO ₂	OH, OH	
1549	CH2NH2	1	PhCH2CH2	CH ₂ OH	он, он	
1550	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	он, он	
1551	CH2NH2	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	он, он	
1552	CH2NH2	1	PhCH2CH2	CH ₂ CO ₂ Me	OH, OH	
1553	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	OH, OH	

1554	CH2NH2	1	$PhCH_2CH_2$	(CH ₂) ₃ CO ₂ Me	OH,	OH	
1555	CH2NH2	1	PhCH2CH2	Ph	OH,	OH	
1556	CH ₂ NH ₂	1	$PhCH_2CH_2$	PhCH ₂	OH,	ОН	
1557	CH2NH2	1	PhCH2CH2	Ph(CH ₂) ₂	OH,	ОН	ΑJ
1558	CH ₂ NH ₂	1	PhCH2CH2	3-NO ₂ -Ph	OH,	ОН	
1559	CH ₂ NH ₂	1	PhCH2CH2	4-NO ₂ -Ph	OH,	OH	
1560	CH2NH2	1	PhCH2CH2	3-CO ₂ H-Ph	OH,	ОН	
1561	CH ₂ NH ₂	1	PhCH2CH2	4-CO2H-Ph	OH,	OH	
1562	CH ₂ NH ₂	1	PhCH2CH2	3-CN4H-Ph	OH,	ОН	
1563	CH2NH2	1	PhCH2CH2	4-CN ₄ H-Ph	OH,	OH	. 7
1564	CH2NH2	1	PhCH2CH2	3 - (HOCH ₂) - Ph	OH,	ОН	
1565	CH ₂ NH ₂	1	PhCH2CH2	4-(HOCH ₂)-Ph	OH,	ОН	
1566	NH (C=NH) NH ₂	1	$PhCH_2CH_2$	н	OH,	ОН	
1567	NH (C=NH) NH ₂	1	PhCH2CH2	Methyl	OH,	ОН	
1568	NH (C=NH) NH2	1	PhCH2CH2	Ethyl	OH,	ОН .	
1569	NH (C=NH) NH ₂	ı	PhCH2CH2	n-Propyl	OH,	ОН	
1570	NH (C-NH) NH ₂	1	PhCH2CH2	n-Butyl	OH,	ОН	
1571	NH (C=NH) NH ₂	1	PhCH2CH2	CH28CH3	OH,	ОН	
1572	NH (C=NH) NH ₂	1	$PhCH_2CH_2$	CH ₂ (SO) CH ₃	OH,	ОН	
1573	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	OH,	ОН	
1574	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH2SCH3	OH,	ОН	
1575	NH (C=NH) NH ₂	1	$PhCH_2CH_2$	CH2CH2 (SO) CH3	OH,	OH	
1576	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH2 (60) 2CH3	OH,	OH	
1577	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ CN	OH,	ОН	
1578	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ CH ₂ CN	OH,	ОН	
1579	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ CH ₂ CH ₂ CN	OH,	ОН	
1580	NH (C=NH) NH ₂	1	PhCH2CH2	CF ₃	OH,	OH	
1581	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF3	OH,	ОН	
1582	NH (C=NH) NH ₂	1	$PhCH_2CH_2$	CF2CF2CF3	OH,	ОН	
1583	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF2CF3	OH,	OH	
1584	NH (C=NH) NH ₂	1	PhCH2CH2	F5-Ph	OH,	ОН	
1585	NH (C=NH) NH ₂	1	PhCH2CH2	Сн2СО2Н	OH,	ОН	
1586	NH (C=NH) NH ₂	1	$PhCH_2CH_2$	(CH ₂) ₂ CO ₂ H	OH,	OH	
1587	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	OH,	ОН	
1588	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CN4H	OH,	ОН	
1589	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	OH,	ОН	
1590	NH (C=NH) NH ₂	1	${\tt PhCH_2CH_2}$	(CH ₂) ₃ CN ₄ H	OH,	ОН	
1591	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ NO ₂	OH,	ОН	
1592	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ NO ₂	OH,	ОН	
1593	NH (C=NH) NH ₂	Ţ	PhCH2CH2	(CH ₂) 3NO ₂	OH,	ОН	

1594	NH (C=NH) NH2	1	PhCH2CH2	CH ₂ OH	он, он
1595	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ OH	он, он
1596	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ OH	OH, OH
1597	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	OH, OH
1598	NH (C=NH) NH ₂	1	PhCH2CH2	$(CH_2)_2CO_2Me$	OH, OH
1599	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	$(CH_2)_3CO_2Me$	OH, OH
1600	NH (C-NH) NH2	1	PhCH2CH2	Ph	OH, OH
1601	NH (C=NH) NH ₂	1	PhCH2CH2	PhCH ₂	он, он
1602	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	$Ph(CH_2)_2$	OH, OH
1603	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	OH, OH
1604	NH (C=NH) NH2	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	OH, OH
1605	NH (C=NH) NH2	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	он, он
1606	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	он, он
1607	NH (C=NH) NH ₂	1	PhCH2CH2	3-CN4H-Ph	ОН, ОН
1608	NH (C=NH) NH ₂	1	PhCH2CH2	4-CN4H-Ph	он, он
1609	NH (C=NH) NH ₂	1	PhCH2CH2	3-(HOCH ₂)-Ph	он, он
1610	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	он, он
1611	-s-(c=NH)NH2	1	$PhCH_2CH_2$	н	(+)-pin
1612	-s-(C=NH)NH2	1	PhCH2CH2	Methyl	(+)-pin
1613	-s-(C=NH)NH ₂	1	PhCH2CH2	Ethyl	(+)-pin
1614	-s-(C=NH)NH2	1	PhCH2CH2	n-Propyl	(+)-pin
1615	-s-(c=NH)NH ₂	1	PhCH2CH2	n-Butyl	(+)-pin
1616	-s-(c=NH)NH2	1	PhCH2CH2	CH28CH3	(+)-pin
1617	-s-(c=NH)NH2	1	PhCH2CH2	CH ₂ (SO) CH ₃	(+)-pin
1618	-s-(c=NH)NH2	1	PhCH2CH2	$\mathrm{CH}_2(\mathrm{SO}_2)\mathrm{CH}_3$	(+)-pin
1619	-s-(c=NH)NH2	1	PhCH ₂ CH ₂	CH2CH2SCH3	(+)-pin
1620	-s-(C=NH)NH2	1	PhCH ₂ CH ₂	$ ext{CH}_2 ext{CH}_2 ext{(SO)} ext{CH}_3$	(+)-pin
1621	-s-(C=NH)NH2	1	PhCH ₂ CH ₂	CH_2CH_2 (SO) $_2CH_3$	(+)-pin
1622	-8-(C=NH)NH2	1	PhCH2CH2	CH ₂ CN	(+)-pin
1623	-8-(C=NH)NH ₂	1	PhCH2CH2	CH2CH2CN	(+)-pin
1624	-9-(C=NH)NH2	. 1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
1625	-9-(C=NH)NH2	1	PhCH2CH2	CF ₃	(+)-pin
1626	-8-(C=NH)NH2	1	PhCH2CH2	CF2CF3	(+)-pin
1627	-s-(C=NH)NH2	1	PhCH2CH2	CF2CF2CF3	(+)-pin
1628	-8- (C=NH) NH2	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
1629	-s-(c=NH)NH2	1	PhCH ₂ CH ₂	F5-Ph	(+)-pin
1630	-g-(C=NH)NH ₂	ı.	PhCH ₂ CH ₂	CH2CO2H	(+)-pin
1631	-s-(c=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1632	-s-(c=nh)nh2	1	PhCH2CH2	(CH ₂) ₃ ∞ ₂ H	(+)-pin -
1633	-8-(C=NH)NH2	1	PhCH2CH2	CH2 CN4H	(+)-pin

	6 (6)77)	_		(mr) mr	
1634	-8-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1635	-8-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
1636	-s-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH2NO2	(+)-pin
1637	-8-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
1638	-8-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₃ NO ₂	(+)-pin
1639	-8-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin
1640	-8- (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
1641	-s-(C=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	(+)-pin
1642	-s-(C=NH)NH ₂	1	PhCH ₂ CH ₂	· CH ₂ CO ₂ Me	(+)-pin
1643	-8- (C=NH) NH ₂	1	PhCH ₂ CH ₂	$(CH_2)_2CO_2Me$	(+)-pin
1644	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	(+)-pin
1645	-8-(C=NH)NH ₂	1	PhCH2CH2	Ph	(+)-pin
1646	-s-(C=NH)NH2	1	PhCH2CH2	PhCH ₂	(+)-pin
1647	-s-(C=NH)NH2	1	PhCH2CH2	Ph(CH ₂) ₂	(+)-pin
1648	-s-(C=NH)NH2	1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin
1649	-8-(C=NH)NH2	1	PhCH2CH2	4-NO ₂ -Ph	(+)-pin
1650	-9-(C=NH)NH2	1	PhCH2CH2	3-CO ₂ H-Ph	(+)-pin
1651	-s-(c=NH)NH2	1	PhCH2CH2	4-CO2H-Ph	(+)-pin
1652	-s-(C=NH)NH2	1	PhCH2CH2	3-CN4H-Ph	(+)-pin
1653	-s-(c=NH)NH2	1	PhCH2CH2	4-CN ₄ H-Ph	(+)-pin
1654	-s-(c=NH)NH2	1	PhCH2CH2	3 - (HOCH ₂) - Ph	(+)-pin
1655	-s-(c=NH)NH2	. 1	PhCH2CH2	4 - (HOCH ₂) - Ph	(+)-pin
1656	-8-(C=NH)NH2	1	PhCH2CH2	H	он, он
1657	-s-(c=NH)NH2	1	PhCH2CH2	Methyl	он, он
1658	-s-(C=NH)NH2	1	PhCH2CH2	Ethyl	он, он
1659	-s-(C=NH)NH2	1	PhCH2CH2	n-Propyl	он, он
1660	-s-(C=NH)NH2	1	PhCH2CH2	n-Butyl	он, он
1661	-s-(C=NH)NH2	1	PhCH2CH2	CH2SCH3	он, он
1662	-8-(C=NH)NH2	1	PhCH ₂ CH ₂	CH ₂ (SO) CH ₃	он, он
1663	-s-(C=NH)NH2	1	PhCH ₂ CH ₂	CH ₂ (SO ₂) CH ₃	он, он
1664	-s-(c=NH)NH2	1	PhCH2CH2	CH2CH2SCH3	он, он
1665	-8-(C=NH)NH2	1	PhCH2CH2	CH2CH2 (SO) CH3	он, он
1666	-s-(c=NH)NH2	ľ	PhCH ₂ CH ₂	CH2CH2 (SO) 2CH3	он, он
1667	-8-(C=NH)NH2	1	PhCH2CH2	CH ₂ CN	он, он
1668	-8-(C=NH)NH2	1	PhCH2CH2	CH2CH2CN	он, он
1669	-s-(C=NH)NH2	1	PhCH2CH2	CH2CH2CH2CN	он, он
1670	-8-(C=NH)NH2	1	PhCH2CH2	CF ₃	он, он
1671	-8-(C=NH)NH2	1	PhCH2CH2	CF ₂ CF ₃	он, он
1672				CF2CF2CF3	он, он
	-8-(C=NH)NH2			CF2CF2CF2CF3	он, он
		-			,

1674	-s-(C=NH)NH2	1	PhCH2CH2	P5-Ph	OH, OH
1675	-s-(C=NH)NH2	1	PhCH2CH2	$\text{сн}_2\infty_2$ н	OH, OH
1676	-s-(c=NH)NH2	1	PhCH2CH2	$(CH_2)_2\infty_2H$	OH, OH
1677	-s-(C=NH)NH2	1	PhCH2CH2	(CH ₂) 3∞2H	OH, OH
1678	-s-(c=NH)NH2	1	PhCH2CH2	CH2CN4H	OH, OH
1679	-8-(C=NH)NH2	ı	PhCH2CH2	(CH ₂) ₂ CN ₄ H	OH, OH
1680	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	OH, OH
1681	-8-(C=NH)NH2	1	PhCH2CH2	CH2NO2	OH, OH
1682	-8-(C=NH)NH2	1	PhCH2CH2	$(CH_2)_2NO_2$	OH, OH
1683	-8-(C=NH)NH2	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH, OH
1684	-s-(C=NH)NH2	1	PhCH ₂ CH ₂	CH ₂ OH	OH, OH
1685	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₂ OH	он, он
1686	-8-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₃ OH	он, он
1687	-s-(c=NH)NH2	1	PhCH2CH2	CH ₂ CO ₂ Me	он, он
1688	-s-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	он, он
1689	-s-(C=NH)NH ₂	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	он, он
1690	-s-(C=NH)NH ₂	1	PhCH2CH2	Ph	он, он
1691	-8-(C=NH)NH ₂	1	PhCH2CH2	PhCH ₂	он, он
1692	-s-(C=NH)NH ₂	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	OH, OH
1693	-s-(C=NH)NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	он, он
1694	-8-(C=NH)NH ₂	1	PhCH2CH2	4-NO ₂ -Ph	он, он
1695	-s-(c=NH)NH ₂	1	PhCH2CH2	3-CO ₂ H-Ph	OH, OH
1696	-s-(C=NH)NH ₂	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	OH, OH
1697	-8-(C=NH)NH ₂	1	PhCH2CH2	3-CN ₄ H-Ph	OH, OH
1698	-s-(C=NH)NH ₂	. 1	PhCH2CH2	4-CN ₄ H-Ph	OH, OH
1699	-s-(C=NH)NH ₂	1	PhCH2CH2	3- (HOCH ₂) - Ph	OH, OH
1700	-s-(c=NH)NH ₂	1	PhCH2CH2	4- (HOCH ₂) - Ph	OH, OH
1701	OMe	1	PhCH2CH2	н	(+)-pin
1702	OMe	1	PhCH2CH2	Methyl	(+)-pin
1703	OMe	1	PhCH2CH2	Ethyl	(+)-pin
1704	OMe	1	PhCH2CH2	n-Propyl	(+)-pin
1705	OMe	1	PhCH2CH2	n-Butyl	(+)-pin
1706	OMe .	1	PhCH2CH2	CH28CH3	(+)-pin
1707	OMe	1	PhCH2CH2	CH ₂ (so) CH ₃	(+)- pin
1708	OMe	1	PhCH ₂ CH ₂	CH ₂ (80 ₂) CH ₃	(+)-pin
1709	OMe	1	PhCH2CH2	СН2СН2SСН3	(+)-pin
1710	OMe	1	PhCH ₂ CH ₂	CH2CH2 (80) CH3	(+)-pin
1711	OMe	1	PhCH ₂ CH ₂	CH2CH2 (80) 2CH3	(+)-pin
1712	OMe	1	PhCH2CH2	CH ₂ CN	(+)-pin
1713	OMe	1	PhCH ₂ CH ₂	CH2CH2CN	(+)- pi n

1714	OMe	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
1715	OMe	1	PhCH2CH2	CF3	(+)-pin
1716	OMe	1	PhCH2CH2	CF2CF3	(+)-pin
1717	OMe	1	PhCH2CH2	CF2CF2CF3	(+)-pin
1718	OMe	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
1719	OMe	1	PhCH ₂ CH ₂	F5-Ph	(+)-pin
1720	OMe	1	PhCH2CH2	CH2CO2H	(+)-pin
1721	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1722	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ ∞ ₂ H	(+)-pin
1723	OMe	1	PhCH2CH2	CH2CN4H	(+)-pin
1724	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1725	OMe	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	(+)-pin
1726	OMe	1	PhCH ₂ CH ₂	CH ₂ NO ₂	(+)-pin
1727	OMe	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
1728	OMe	1	PhCH2CH2	(CH ₂) ₃ NO ₂	(+)-pin
1729	OMe	1	PhCH ₂ CH ₂	CH ₂ OH	(+)-pin
1730	OMe	1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
1731	OMe ⁻	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	(+)-pin
1732	OMe	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)-pin
1733	OMe	1	PhCH2CH2	$(CH_2)_2CO_2Me$	(+)-pin
1734	OMe	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	(+)-pin
1735	OMe	1	PhCH ₂ CH ₂	Ph .	(+)-pin
1736	OMe	1	PhCH ₂ CH ₂	PhCH ₂	(+)-pin
1737	OMe	ı	PhCH ₂ CH ₂	Ph(CH ₂) ₂	(+)-pin
1738	OMe	1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin
1739	OMe	1	PhCH2CH2	4-NO ₂ -Ph	(+)-pin
1740	OMe	1	PhCH2CH2	3-CO ₂ H-Ph	(+)-pin
1741	OMe	1	PhCH2CH2	4-CO ₂ H-Ph	(+)-pin
1742	OMe	1	PhCH2CH2	3-CN4H-Ph	(+)-pin
1743	OMe	1	PhCH2CH2	4 - CN4H - Ph	(+)-pin
1744	OMe	1	PhCH2CH2	3 - (HOCH ₂) - Ph	(+)-pin
1745	OMe	1	PhCH2CH2	4-(HOCH ₂)-Ph	(+)-pin
1746	OMe	1	PhCH2CH2	H	он, он
1747	OMe	1	PhCH2CH2	Methyl	он, он
1748	OMe	Ţ	PhCH ₂ CH ₂	Ethyl	он, он
1749	OMe	1	PhCH ₂ CH ₂	n-Propyl	он, он
1750	OMe	1	PhCH ₂ CH ₂	n-Butyl	OH, OH
1751	OMe	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	он, он
1752	OMe	1	PhCH ₂ CH ₂	CH2 (80) CH3	он, он
1753	OMe	1	PhCH2CH2	CH ₂ (SO ₂) CH ₃	он, он

1754	OMe	1	PhCH2CH2	CH2CH2SCH3	он, он
1755	OMe	1	PhCH2CH2	CH2CH2 (60) CH3	он, он
1756	OMe	1	PhCH2CH2	CH2CH2 (SO) 2CH3	он, он
1757	OMe	1	PhCH2CH2	CH ₂ CN	он, он
1758	OMe	1	PhCH2CH2	CH2CH2CN	OH, OH
1759	OMe	1	PhCH ₂ CH ₂	CH2CH2CH2CN	OH, OH
1760	OMe	1	PhCH2CH2	CF3	OH, OH
1761	OMe	1	PhCH2CH2	CF2CF3	он, он
1762	OMe	1	PhCH2CH2	CF2CF2CF3	он, он
1763	OMe	1	PhCH2CH2	CF2CF2CF2CF3	OH, OH
1764	OMe	1	$PhCH_2CH_2$	F ₅ -Ph	OH, OH
1765	OMe	1	$PhCH_2CH_2$	СН2∞2Н	OH, OH
1766	OMe	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	OH, OH
1767	OMe	1 ,	PhCH2CH2	(CH ₂) ₃ CO ₂ H	он, он
1768	OMe	1	PhCH2CH2	CH2CN4H	он, он
1769	OMe	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	он, он
1770	OMe	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	он, он
1771	OMe	1	PhCH2CH2	CH2NO2	он, он
1772	OMe	1	PhCH2CH2	(CH ₂) ₂ NO ₂	он, он
1773	OMe	1	PhCH2CH2	(CH ₂) ₃ NO ₂	OH, OH
1774	OMe	1	PhCH2CH2	CH ₂ OH	OH, OH
1775	OMe	1	PhCH2CH2	(CH ₂) ₂ OH	он, он
1776	OMe	1	PhCH2CH2	(CH ₂) 30H	он, он
1777	OMe	1	PhCH2CH2	CH ₂ CO ₂ Me	OH, OH
1778	OMe	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	он, он
1779	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	он, он
1780	OMe	1	PhCH2CH2	Ph .	он, он
1781	OMe	1	PhCH ₂ CH ₂	PhCH ₂	он, он
1782	OMe	1	PhCH ₂ CH ₂	Ph(CH ₂) ₂	OH, OH
1783	OMe	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	он, он
1784	OMe	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	он, он
1785	OMe	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	OH, OH
1786	OMe	1	PhCH ₂ CH ₂	4-CO2H-Ph	он, он
1787	OMe	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	он, он
1788	OMe	1	PhCH2CH2 .	4-CN ₄ H-Ph	он, он
1789	OMe	1	PhCH2CH2	3 - (HOCH ₂) - Ph	он, он
1790	OMe	1	PhCH ₂ CH ₂	4- (HOCH ₂) - Ph	он, он
1791	NH (C=NH) H	1	Ph	Н	(+)-pin
1792	NH (C=NH) H	1	Ph	Methyl	(+) -pin -
1793	NH (C=NH) H	1	Ph	Ethyl	(+)-pin

1794	NH (C=NH) H	1	Ph	n-Propyl	(+) -pin
1795	nh (c=nh) h	1	Ph	n-Butyl	(+)-pin
1796	nh (c=nh) h	1	Ph	CH28CH3	(+)-pin
1797	nh (c=nh) h	1	Ph	CH ₂ (80) CH ₃	(+)-pin
1798	nh (c=nh) h	1	Ph	CH ₂ (80 ₂) CH ₃	(+)-pin
1799	NH (C=NH) H	1	Ph	CH2CH28CH3	(+)-pin
1800	NH (C-NH) H	1	Ph	CH2CH2 (80) CH3	(+)-pin
1801	NH (C=NH) H	1	Ph	CH2CH2 (80) 2CH3	(+)-pin
1802	NH (C=NH) H	1	Ph	CH ₂ CN	(+)-pin
1803	NH (C=NH) H	1	Ph	CH2CH2CN	(+)-pin
1804	NH (C=NH) H	1	Ph	CH2CH2CH2CN	(+)-pin
1805	NH (C=NH) H	1	Ph	CF ₃	(+)-pin
1806	NH (C=NH) H	1	Ph	CF2CF3	(+)-pin
1807	NH (C=NH) H	1	Ph	CF2CF2CF3	(+)-pin
1808	NH (C=NH) H	1	Ph	CF2CF2CF2CF3	(+)-pin
1809	NH (C=NH) H	ı	Ph	F5-Ph	(+)-pin
1810	NH (C=NH) H	1	Ph	CH ₂ ∞ ₂ H	(+)-pin
1911	NH (C=NH) H	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
1812	NH (C=NH) H	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin
1813	NH (C=NH) H	1	Ph	CH2CN4H	(+)-pin
1814	NH (C-NH) H	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
1815	NH (C=NH) H	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
1816	NH (C=NH) H	1	Ph	CH ₂ NO ₂	(+)-pin
1917	NH (C=NH) H	1	Ph	(CH2)2NO2	(+)-pin
1818	NH (C=NH) H	ı	Ph	(CH ₂) ₃ NO ₂	(+)-pin
. 1819	NH (C=NH) H	1	Ph	CH ₂ OH	(+)-pin
1820	NH (C=NH) H	1	Ph	(CH ₂) ₂ OH	(+)-pin
1821	NH (C=NH) H	1	Ph	(CH ₂) ₃ OH	(+)-pin
1822	NH (C=NH) H	1	Ph	CH ₂ CO ₂ Me	(+)-pin
1823	NH (C=NH) H	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
1824	NH (C=NH) H	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
1825	NH (C=NH) H	1	Ph	Ph ·	(+)-pin
1826	NH (C=NH) H	1	Ph	PhCH ₂	(+)-pin
1827	NH (C=NH) H	1	Ph	Ph(CH ₂) ₂	(+)-pin
1828	NH (C=NH) H	1	Ph	3-NO ₂ -Ph	(+)-pin
1829	NH (C=NH) H	1	Ph	4-NO2-Ph	(+)-pin
1830	NH (C=NH) H	1	Ph	3-CO ₂ H-Ph	(+)-pin
1831	NH (C=NH) H	1	Ph	4-CO2H-Ph	(+)-pin
1832	NH (C=NH) H	1	Ph	3 - CN4H - Ph	(+)-pin
1833	NH (C=NH) H	1	Ph	4-CN4H-Ph	(+)-pin
			•		

1834	NH (C=NH) H	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
1835	NH (C=NH) H	1	Ph	4 - (HOCH ₂) - Ph	(+)-pin
1836	NH (C=NH) H	1	Ph	н	он, он
1837	NH (C=NH) H	1	Ph	Methyl	он, он
1838	NH (C=NH) H	1	Ph	Ethyl	он, он
1839	NH (C=NH) H	1	Ph	n-Propyl	он, он
1840	ин (С-ин) н	1	Ph	n-Butyl	он, он
1841	NH (C=NH) H	1	Ph	CH ₂ 8CH ₃	он, он
1842	NH (C=NH) H	1	Ph	CH ₂ (80) CH ₃	он, он
1843	NH (C=NH) H	1	Ph	CH ₂ (80 ²) CH ₃	он, он
1844	NH (C=NH) H	1	Ph	CH2CH2SCH3	он, он
1845	NH (C=NH) H	1	Ph	CH2CH2 (SO) CH3	он, он
1846	NH (C=NH) H	1	Ph	$\mathrm{CH_2CH_2}(\mathrm{SO})_2\mathrm{CH_3}$	он, он
1847	NH (C=NH) H	1	Ph	CH ₂ CN	он, он
1848	NH (C=NH) H	1	Ph	CH2CH2CN	он, он
1849	NH (C=NH) H	1	Ph	CH2CH2CH2CN	он, он
1850	NH (C=NH) H	1	Ph	CF ₃	он, он
1851	NH (C=NH) H	1	Ph	CF2CF3	он, он
1852	NH (C=NH) H	1	Ph	CF2CF2CF3	он, он
1853	NH (C=NH) H	1	Ph	CF2CF2CF2CF3	он, он
1854	NH (C=NH) H	1	Ph	F5-Ph	он, он
1855	NH (C=NH) H	1	Ph	сн ₂ ∞ ₂ н	он, он
1856	NH (C-NH) H	1	Ph	(CH ₂) ₂ CO ₂ H	он, он
1857	NH (C=NH) H	1	Ph	(CH ₂) ₃ CO ₂ H	он, он
1858	NH (C=NH) H	1	Ph	CH2CN4H	он, он
1859	NH (C-NH) H	1	Ph	(CH ₂) ₂ CN ₄ H	он, он
1860	NH (C=NH) H	1	Ph	(CH ₂) ₃ CN ₄ H	он, он
1861	NH (C=NH) H	1	Ph	CH2NO2	он, он
1862	ин (с-ин) н	1	Ph	(CH ₂) ₂ NO ₂	он, он
1863	NH (C-NH) H	1	Ph	(CH ₂) 3NO ₂	он, он
1864	NH (C=NH) H	1	Ph	CH ₂ OH	OH, OH
1865	NH (C=NH) H	1	Ph	(CH ₂) ₂ OH	OH, OH
1866	NH (C=NH) H	1	Ph	(CH ₂) ₃ OH	он, он
1867	NH (C-NH) H	1	Ph	CH2CO2Me	он, он
1868	NH (C=NH) H	1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH
1869	NH (C=NH) H	1	Ph	(CH ₂) ₃ CO ₂ Me	он, он
1870	NH (C=NH) H	1	Ph	Ph	он, он
1871	NH (C=NH) H	1	Ph	PhCH ₂	он, он
1872	NH (C=NH) H	1	Ph	Ph(CH ₂) ₂	он, он
1873	NH (C=NH) H	1	Ph	3-NO ₂ -Ph	он, он

1874	NH (C=NH) H	1	Ph	4-NO ₂ -Ph	OH, OH
1875	NH (C=NH) H	1	Ph	3-CO ₂ H-Ph	он, он
1876	NH (C=NH) H	1	Ph	4-CO ₂ H-Ph	он, он
1877	NH (C=NH) H	1	Ph	3-CN4H-Ph	он, он
1878	NH (C=NH) H	1	Ph	4-CN ₄ H-Ph	он, он
1879	NH (C=NH) H	1	Ph	3-(HOCH ₂)-Ph	он, он
1880	NH (C=NH) H	1	Ph	4- (HOCH ₂) - Ph	он, он
1881	NH (C=NH) H	1	PhCH ₂	н	(+)-pin
1882	NH (C=NH) H	1	PhCH ₂	Methyl	(+)-pin
1883	NH (C=NH) H	1	PhCH ₂	Ethyl	(+)-pin
1884	NH (C=NH) H	1	PhCH ₂	n-Propyl	(+)-pin
1005	NH (C=NH) H	1	PhCH ₂	n-Butyl	(+)-pin
1896	NH (C=NH) H	1	PhCH ₂	CH28CH3	(+)-pin
1887	NH (C=NH) H	1	PhCH ₂	CH ₂ (80) CH ₃	(+)-pin
1888	NH (C=NH) H	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	(+)-pin
1889	NH (C=NH) H	1	PhCH ₂	CH2CH28CH3	(+)-pin
1890	NH (C=NH) H	1	PhCH ₂	CH2CH2 (80) CH3	(+)-pin
1891	NH (C=NH) H	1	PhCH ₂	CH2CH2 (SO) 2CH3	(+)-pin
1892	nh (c=nh) h	1	PhCH ₂	CH2CN	(+)-pin
1893	NH (C=NH) H	1	PhCH ₂	CH2CH2CN	(+)-pin
1894	NH (C=NH) H	1	PhCH ₂	CH2CH2CH2CN	(+)-pin
1895	NH (C=NH) H	1	PhCH ₂	CF ₃	(+)-pin
1896	NH (C=NH) H	1	PhCH ₂	CF2CF3	(+)-pin
1897	NH (C=NH) H	1	PhCH ₂	CF2CF2CF3	(+)-pin
1898	NH (C=NH) H	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin
1899	NH (C=NH) H	1	PhCH ₂	F5-Ph	(+)-pin
1900	NH (C=NH) H	1,	PhCH ₂	СH ₂ СО ₂ H	(+)-pin
1901	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
1902	NH (C=NH)H	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
1903	NH (C=NH) H	1	PhCH ₂	CH2CN4H	(+)-pin
1904	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
1905	NH (C=NH) H	1	PhCH ₂	(CH ₂) 3CN ₄ H	(+)-pin
1906	NH (C=NH) H	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
1907	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
1908	NH (C=NH) H	1	PhCH ₂	(CH ₂) 3NO ₂	(+)-pin
1909	NH (C=NH) H	1	PhCH ₂	CH ₂ OH	(+)-pin
1910	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
1911	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
1912	NH (C=NH) H	1	PhCH ₂	CH2CO2Me	(+)-pin
1913	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin

1914	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-p	in
1915	NH (C=NH) H	1	PhCH ₂	Ph	(+)-p	in
1916	NH (C=NH) H	1	PhCH ₂	PhCH ₂	(+) -p	in
1917	NH (C=NH) H	1	PhCH ₂	Ph(CH ₂) ₂	(+)-p	in
1918	NH (C=NH) H	1	PhCH ₂	3-NO ₂ -Ph	(+)-p	in
1919	NH (C=NH) H	1	PhCH ₂	4-NO ₂ -Ph	(+)-p	in
1920	NH (C=NH) H	1	PhCH ₂	3-CO ₂ H-Ph	(+)-p	in
1921	NH (C=NH) H	1	PhCH ₂	4-CO2H-Ph	(+)-p	in
1922	nh (c=nh) h	1	PhCH ₂	3-CN4H-Ph	(+)-p:	in
1923	NH (C=NH) H	1	PhCH ₂	4-CN4H-Ph	(+)-p	in
1924	NH (C -N H) H	1	PhCH ₂	3- (HOCH ₂) - Ph	(+)-p:	in
1925	nh (c=nh) h	1 .	PhCH ₂	4 - (HOCH ₂) - Ph	(+)-p:	in
1926	NH (C=NH) H	1	PhCH ₂	н	OH, O	H
1927	NH (C=NH) H	1	PhCH ₂	Methyl	OH, O	H
1928	NH (C=NH) H	1	PhCH ₂	Ethyl	OH, O	H
1929	NH (C=NH) H	1	PhCH ₂	n-Propyl	OH, O	H
1930	NH (C=NH) H	1	PhCH ₂	n-Butyl	OH, O	H
1931	NH (C=NH) H	1	PhCH ₂	CH ₂ 8CH ₃	OH, O	H
1932	NH (C=NH) H	1	PhCH ₂	CH ₂ (80) CH ₃	OH, OH	H
1933	NH (C=NH) H	1	PhCH ₂	CH ₂ (SO ₂) CH ₃	OH, OH	ł
1934	NH (C=NH) H	1	PhCH ₂	CH2CH2SCH3	OH, OH	ł
1935	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ (SO) CH ₃	OH, OH	i
1936	NH (C=NH) H	1	PhCH ₂	CH2CH2 (80) 2CH3	OH, OH	ł
1937	NH (C⇒NH) H	1	PhCH ₂	CH ₂ CN	OH, OH	1
1938	NH (C-NH) H	1	PhCH ₂	CH ₂ CH ₂ CN	OH, OH	I
1939	NH (C=NH) H	1	PhCH ₂	CH2CH2CH2CN	OH, OH	Ŧ
1940	NH (C=NH) H	1	PhCH ₂	CF3	OH, OH	ł
1941	NH (C-NH) H	1	PhCH ₂	CF ₂ CF ₃	OH, O	4
1942	NH (C=NH) H	1	PhCH ₂	CF2CF2CF3	OH, OH	ł
1943	NH (C=NH) H	1	PhCH ₂	CF2CF2CF2CF3	OH, OH	ł
1944	NH (C=NH) H	1	PhCH ₂	F5-Ph	OH, OH	ł
1945	NH (C=NH) H	1	PhCH ₂	CH ₂ CO ₂ H	OH, OF	ł
1946	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OF	ł
1947	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ ∞ ₂ H	OH, OH	I
1948	NH (C=NH) H	1	PhCH ₂	CH2CN4H	OH, OF	ł
1949	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH	i
1950	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH, OI	ł
1951	NH (C=NH) H	1	PhCH ₂	CH ₂ NO ₂	OH, OH	ł
1952	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH, OH	ı.
1953	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH, OH	ł

1954	NH (C=NH) H	1	PhCH ₂	CH ₂ OH	он, он
1955	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ OH	он, он
1956	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ OH	он, он
1957	NH (C=NH) H	1	PhCH ₂	CH ₂ CO ₂ Me	он, он
1958	NH (C=NH) H	1	PhCH ₂	$(\mathrm{CH_2})_2\infty_2\mathrm{Me}$	OH, OH
1959	NH (C=NH) H	1	PhCH ₂	$(CH_2)_3CO_2Me$	он, он
1960	NH (C=NH) H	1	PhCH ₂	Ph .	OH, OH
1961	NH (C -N H) H	1	PhCH ₂	PhCH ₂	он, он
1962	NH (C=NH) H	1	PhCH ₂	Ph(CH ₂) ₂	он, он
1963	NH (C=NH) H	1	PhCH ₂	3-NO ₂ -Ph	он, он
1964	NH (C=NH) H	1	PhCH ₂	4-NO ₂ -Ph	он, он
1965	NH (C=NH) H	1	PhCH ₂	3-CO ₂ H-Ph	он, он
1966	NH (C=NH) H	1	PhCH ₂	4-CO2H-Ph	он, он
1967	ин (c=ин) н	1	PhCH ₂	3-CN ₄ H-Ph	он, он
1968	NH (C=NH) H	1	PhCH ₂	4 - CN4H - Ph	он, он
1969	NH (C=NH) H	ı	PhCH ₂	3-(HOCH ₂)-Ph	он, он
1970	NH (C-NH) H	1	PhCH ₂	4-(HOCH ₂)-Ph	он, он
1971	NH (C=NH) H	. 1	PhCH2CH2	н	(+)-pin
1972	NH (C-NH) H	1	PhCH2CH2	Methyl	(+)-pin
1973	NH (C=NH) H	1	PhCH2CH2	Ethyl	(+)-pin
1974	NH (С − NH) Н	1	PhCH2CH2	n-Propyl	(+)-pin
1975	NH (C=NH) H	1	PhCH2CH2	n-Butyl	(+)-pin
1976	NH (C=NH) H	1	PhCH2CH2	CH ₂ SCH ₃	(+)-pin
1977	NH (C=NH) H	1	PhCH2CH2	CH ₂ (SO) CH ₃	(+)-pin
1978	NH (C=NH) H	1	PhCH2CH2	CH ₂ (SO ₂) CH ₃	(+)- pi n
1979	NH (C=NH) H	1	PhCH ₂ CH ₂	CH2CH2SCH3	(+)-pin
1980	NH (C=NH) H	1	PhCH2CH2	CH ₂ CH ₂ (SO) CH ₃	(+)-pin
1981	NH (C=NH) H	1	PhCH2CH2	CH2CH2 (SO) 2CH3	(+)-pin
1982	NH (C=NH) H	1	PhCH2CH2	CH ₂ CN	(+)-pin
1983	NH (C=NH) H	1	PhCH2CH2	CH2CH2CN	(+)-pin
1984	NH (C=NH) H	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
1985	NH (C=NH) H	1	PhCH2CH2	CF ₃	(+)-pin
1986	NH (C=NH) H	1	PhCH2CH2	CF2CF3	(+)-pin
1987	NH (C=NH) H	1	PhCH2CH2	CP2CF2CF3	(+)-pin
1988	NH (C=NH) H	. 1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
1989	NH (C=NH) H	1	PhCH ₂ CH ₂	F5-Ph	(+)-pin
1990	ин (С=ин) н	. 1	PhCH2CH2	сн₂со₂н	(+)-pin
1991	NH (C-NH) H	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
1992	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	(+)-pin
1993	NH (C=NH) H	1	PhCH2CH2	CH2CN4H	(+)-pin

1994	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) 2CN ₄ H	(+)-pin
1995	NH (C=NH) H	1	PhCH ₂ CH ₂	$(CH_2)_3CN_4H$	(+)-pin
1996	NH (C=NH) H	1	PhCH2CH2	CH2NO2	(+)-pin
1997	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
1998	NH (C=NH) H	1	PhCH2CH2	(CH ₂) 3NO ₂	(+)-pin
1999	NH (C -N H) H	1	PhCH2CH2	сн ₂ он	(+)-pin
2000	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
2001	NH (C=NH) H	1	PhCH2CH2	(CH ₂) 3OH	(+)-pin
2002	NH (C=NH) H	1	PhCH2CH2	CH ₂ CO ₂ Me	(+)-pin
2003	NH (C=NH) H	1	PhCH2CH2	$(CH_2)_2CO_2Me$	(+)-pin
2004	ин (С=ин) н	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	(+)-pin
2005	NH (C=NH) H	1	PhCH2CH2	Ph	(+)-pin
2006	NH (C=NH) H	1	PhCH ₂ CH ₂	PhCH ₂	(+)-pin
2007	NH (C=NH) H	1	PhCH2CH2	Ph(CH ₂) ₂	(+)-pin
2008	NH (C=NH) H	1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin
2009	NH (C=NH) H	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+)-pin
2010	NH (C-NH) H	1	PhCH ₂ CH ₂	3-CO ₂ H-Ph	(+)-pin
2011	NH (C=NH) H	1	PhCH ₂ CH ₂	4-CO ₂ H-Ph	(+)-p <u>in</u>
2012	NH (C=NH) H	1	PhCH ₂ CH ₂	3-CN4H-Ph	(+)-pin
2013	NH (C-NH) H	1	PhCH2CH2	4-CN4H-Ph	(+)-pin
2014	NH (C=NH) H	1	PhCH ₂ CH ₂	3- (HOCH ₂) -Ph	(+)-pin
2015	NH (C=NH) H	1	PhCH2CH2	4-(HOCH ₂)-Ph	(+)-pin
2016	NH (C=NH) H	1	PhCH2CH2	н	OH, OH
2017	NH (C=NH) H	1	PhCH2CH2	Methyl	он, он
2018	NH (C=NH) H	1	PhCH2CH2	Ethyl	он, он
2019	NH (C=NH) H	. 1	PhCH2CH2	n-Propyl	он, он
2020	NH (C=NH) H	1	PhCH2CH2	n-Butyl	он, он
2021	NH (C=NH) H	. 1	PhCH2CH2	CH28CH3	он, он
2022	NH (C=NH) H	1	PhCH2CH2	CH ₂ (80) CH ₃	он, он
2023	NH (C=NH) H	1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	он, он
2024	NH (C=NH) H	1	PhCH2CH2	CH2CH2SCH3	OH, OH
2025	NH (C=NH) H	1	PhCH2CH2	CH2CH2 (80) CH3	OH, OH
2026	NH (C=NH) H	1	PhCH2CH2	$CH_2CH_2(SO)_2CH_3$	он, он
2027	NH (C=NH) H	1	PhCH2CH2	CH ₂ CN	он, он
2028	NH (C=NH) H	ı	PhCH ₂ CH ₂	CH2CH2CN	OH, OH
2029	NH (C=NH) H	1	PhCH2CH2	CH2CH2CH2CN	он, он
2030	NH (C=NH) H	1	PhCH2CH2	CF ₃	ОН, ОН
2031	NH (C=NH) H	i	PhCH2CH2	CF2CF3	OH, OH
2032	NH (C=NH) H	1	PhCH ₂ CH ₂	CF2CF2CF3	он, он
2033	NH (C=NH) H	1	PhCH2CH2	CF2CF2CF2CF3	он, он

2034	NH (C=NH) H	1	PhCH2CH2	F5-Ph	OH, OH
2035	nh (c=nh) h	1	PhCH2CH2	CH ₂ ∞ ₂ H	OH, OH
2036	nh (C=Nh) h	1	PhCH2CH2	(CH ₂) ₂ ∞ ₂ H	OH, OH
2037	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	OH, OH
2038	NH (C=NH) H	1	PhCH2CH2	CH2CN4H	OH, OH
2039	NH (C=NH) H	1	PhCH2CH2	$(CH_2)_2CN_4H$	OH, OH
2040	NH (C=NH) H	1,	PhCH2CH2	(CH ₂) 3CN ₄ H	он, он
2041	nh (c=nh) h	1	PhCH2CH2	CH ₂ NO ₂	OH, OH
2042	NH (C=NH) H	1	PhCH ₂ CH ₂	$(CH_2)_2NO_2$	он, он
2043	nh (c=nh) h	1	PhCH2CH2	$(CH_2)_3NO_2$	он, он
2044	nh (c=nh) h	1	PhCH2CH2	CH ₂ OH	он, он
2045	nh (c=nh) h	1	PhCH2CH2	(CH ₂) ₂ OH	он, он
2046	nh (c=nh) h	1	PhCH2CH2	(CH ₂) ₃ OH	он, он
2047	nh (c=nh) h	1	PhCH ₂ CH ₂	CH ₂ ∞ ₂ Me	он, он
2048	NH (C=NH) H	` 1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	OH, OH
2049	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	он, он
2050	NH (C=NH) H	1	PhCH ₂ CH ₂	Ph	он, он
2051	NH (C=NH) H	1 .	PhCH ₂ CH ₂	PhCH ₂	OH, OH
2052	NH (C=NH) H	1	PhCH2CH2	Ph(CH ₂) ₂	он, он
2053	NH (C=NH) H	1	PhCH2CH2	3-NO ₂ -Ph	OH, OH
2054	NH (C=NH) H	1	PhCH2CH2	4-NO ₂ -Ph	OH, OH
2055	NH (C=NH) H	1	PhCH2CH2	3-CO ₂ H-Ph	OH, OH
2056	NH (C=NH) H	1	PhCH2CH2	4-CO ₂ H-Ph	OH, OH
2057	NH (C=NH) H	1	PhCH2CH2	3-CN4H-Ph	OH, OH
2058	NH (C=NH) H	1	PhCH2CH2	4-CN ₄ H-Ph	он, он
2059	NH (C=NH) H	1	PhCH2CH2	3-(HOCH ₂)-Ph	ОН, ОН
2060	NH (C=NH) H	1	PhCH2CH2	4- (HOCH ₂) - Ph	он, он
2061	CH2NH2	1	PhCH ₂	3-NO ₂ -Ph	(+)_pin CU
2062	NH (C=NH) NH ₂	1	Ph	PhCH ₂	(+)-pin
2063	NH (C=NH) NH ₂	1	Ph	PhCH ₂ CH ₂	(+)-pin
2064	-8-(C=NH)NH2	1	Ph	PhCH ₂	(+)-pin
2065	-s-(C=NH)NH2	1	Ph	PhCH2CH2	(+)-pin
2066	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin CN
2067	CH ₂ NH ₂	1	PhCH ₂	CH2CN4H	(+)-pin CO
2068	CH2NH2	1	PhCH2CH2	CH2OCH2Ph	(+)-pin CT

AG. Anal. calcd. for C₃₂H₄₂EN₅O₃•0.7 H₂O•1.7 HCl: C, 61.00; H, 7.21; Cl, 9.56 N, 11.11. Found: C, 60.93; H, 7.20; Cl, 9.57 N, 11.55.

```
AH. Anal. calcd. for C22H28BN503 • 12H20 • 2.6HCl: C, 36.09;
Cl., 12.59; N, 9.56. Found: C, 36.25; Cl, 12.52; N, 9.32.
AI. Anal. calcd. for C16H24BN5O3 • 1.5 H2O • 1.8 HCl: C, 43.89;
H, 6.63; Cl, 14.57; N, 16.06. Found: C, 44.01; H, 6.28;
Cl, 14.21; N, 15.59.
    Anal. calcd. for C25H34EN5O3.2 H2O.1.6 HCl: C, 53.84; H,
7.16; Cl, 10.17; N, 12.56. Found: C, 53.71; H, 7.13; Cl,
10.25; N, 12.60.
AK.
     MS (M+H) *1 Calc. 480, Found 480.
AL.
     MS (M+H)+: Calc. 494, Found 494.
AM.
     MS (M+H) ** Calc. 522, Found 522.
AN
     MS (M+H) ** Calc. 540, Found 540.
AO.
     MS (M+H) ** Calc. 510, Found 510.
AP.
     MS (M+H) +: Calc. 600, Found 600.
     MS (M+H) +1 Calc. 556, Found 556.
AQ.
AR.
     MS (M+H) *: Calc. 570, Found 570.
AS.
     MS (M+H) ** Calc. 601, Found 601.
     MS (M+H) *: Calc. 598, Found 598.
AT.
AU.
     MS (M+H) +: Calc. 629, Found 629.
AV.
     MS (M+H)*: Calc. 422, Found 422.
AW.
     MS (M+H) ** Calc. 538, Found 538.
AX.
     MS (M+H)*: Calc. 494, Found 494.
AY.
     MS (M+H) ** Calc. 598, Found 598.
AZ.
    MS (M+H) ** Calc. 360, Found 360.
CN.
    MS (M+H)*: Calc. 519, Found 519.
CO.
    MS (M+H)*: Calc. 562, Found 562.
CP.
    MS (M+H)+: Calc. 552, Found 552.
CQ.
    MS (M+H)*: Calc. 571, Found 571.
CR.
    MS (M+H)*: Calc. 520, Found 520.
CS.
    MS (M+H) *:
                Calc. 524, Found 524.
CT.
    MS (M+H)*: Calc. 614, Found 614.
CU.
    MS (M+H) *: Calc. 571, Found 571.
```

Table 15

Ex	x	m	R13	R14	Y ¹ Y ²	Phys.
2073	CH2NH2	1	Ph	н	(+)-pin	BW
2074	CH2NH2	1	Ph	Methyl	(+)-pin	BX
2075	CH2NH2	1	Ph'	Ethyl	(+)-pin	
2076	CH ₂ NH ₂	1	Ph	n-Propyl	(+)-pin	
2077	CH2NH2	1	Ph	n-Butyl	(+)-pin	
2078	CH2NH2	1	Ph	CH28CH3	(+)-pin	
2079	CH2NH2	1	Ph	CH ₂ (so) CH ₃	(+)-pin	
2080	CH ₂ NH ₂	1	Ph .	CH ₂ (so ₂)CH ₃	(+)-pin	
2081	CH ₂ NH ₂	1	Ph	CH2CH28CH3	(+)-pin	
2082	CH ₂ NH ₂	1	Ph	CH2CH2 (80) CH3	(+)-pin	
2083	CH2NH2	1	Ph	CH2CH2 (80) 2CH3	(+)-pin	
2084	CH2NH2	1	Ph	CH ₂ CN	(+)-pin	
2085	CH2NH2	1	Ph	CH2CH2CN	(+)-pin	
2086	CH ₂ NH ₂	1	Ph	CH2CH2CH2CN	(+)-pin	
2087	CH2NH2	1	Ph	CF ₃	(+)-pin	
2088	CH ₂ NH ₂	1	Ph	CF2CF3	(+)-pin	
2089	CH2NH2	1	Ph	CF2CF2CF3	(+)-pin	
2090	CH2NH2	1	Ph	CF2CF2CF2CF3	(+)-pin	
2091	CH2NH2	1	Ph	F5-Ph	(+)-pin	
2092	CH2NH2	1	Ph	СН2СО2Н	(+)-pin	
2093	CH2NH2	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin	
2094	CH2NH2	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin	
2095	CH2NH2	1	Ph	CH2CN4H	(+)-pin	
2096	CH2NH2	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin	
2097	CH2NH2	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin	
2098	CH2NH2	1	Ph	CH ₂ NO ₂	(+)-pin	
2099	CH2NH2	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin	
2100	CH2NH2	1	Ph	(CH ₂) 3NO ₂	(+)-pin	
2101	CH2NH2	1	Ph	CH ₂ OH	(+)-pin	
2102	CH2NH2	1	Ph	(CH ₂) ₂ OH	(+)-pin	
2103	CH2NH2	1	Ph	(CH ₂) ₃ OH	(+)-pin	
2104	CH2NH2	1	Ph	CH ₂ CO ₂ Me	(+)-pin	

2105	CH2NH2	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
2106	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
2107	CH ₂ NH ₂	1	Ph	3-NO ₂ -Ph	(+)-pin
2108	CH2NH2	1	Ph	4-NO2-Ph	(+)-pin
2109	CH ₂ NH ₂	1	Ph ·	3-00 ₂ H-Ph	(+)-pin
2110	CH ₂ NH ₂	1	Ph	4-00 ₂ H-Ph	(+)-pin
2111	CH2NH2	1.	Ph	3-CN ₄ H-Ph	(+)-pin
2112	CH2NH2	1	Ph	4-CN4H-Ph	(+)-pin
2113	CH2NH2	1	Ph	3-(HOCH ₂)-Ph	(+)-pin
2114	CH2NH2	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
2115	NH (C=NH) NH ₂	1	Ph	н	(+)-pin
2116	NH (C=NH) NH ₂	1	Ph	Methyl	(+)-pin
2117	NH (C=NH) NH ₂	1	Ph :	Ethyl	(+)-pin
2118	NH (C=NH) NH ₂	1	Ph	n-Propyl	(+)-pin
2119	NH (C=NH) NH ₂	1	Ph	n-Butyl.	(+)-pin
2120	NH (C=NH) NH ₂	1	Ph	CH28CH3	(+)-pin
2121	NH (C=NH) NH ₂	1	Ph	CH ₂ (SO) CH ₃	(+)-pin
2122	NH (C=NH) NH ₂	1	Ph	CH ₂ (80 ₂) CH ₃	(+)-pin
2123	NH (C=NH) NH ₂	1	Ph	CH2CH28CH3	(+)-pin
2124	NH (C=NH) NH ₂	1	Ph	CH ₂ CH ₂ (80) CH ₃	(+)-pin
2125	NH (C=NH) NH ₂	1	Ph	CH ₂ CH ₂ (80) ₂ CH ₃	(+)-pin
2126	NH (C=NH) NH ₂	1	Ph	CH ₂ CN	(+)-pin
2127	NH (C=NH) NH ₂	1	Ph	CH ₂ CH ₂ CN	(+)-pin
2128	NH (C=NH) NH ₂	1	Ph	CH2CH2CH2CN	(+)-pin
2129	NH (C=NH) NH ₂	1	Ph	CF ₃	(+)-pin
2130	NH (C=NH) NH ₂	1	Ph	CF2CF3	(+)-pin
2131	NH (C=NH) NH2	1	Ph	CF2CF2CF3	(+)-pin
2132	NH (C=NH) NH ₂	1	Ph	CF2CF2CF2CF3	(+)-pin
2133	NH (C=NH) NH ₂	ı	Ph	F5-Ph	(+)-pin
2134	NH (C=NH) NH ₂	1	Ph	CH ₂ CO ₂ H	(+)-pin
2135	NH (C=NH) NH2	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
2136	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	(+) -pin
2137	NH (C=NH) NH ₂	1	Ph	CH2CN4H	(+)-pin
2138	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
2139	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
2140	NH (C=NH) NH ₂	1	Ph	CH2NO2	(+)-pin
2141	ин (С=ин) ин ₂	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
2142	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin
2143 .	NH (C=NH) NH ₂	1	Ph	CH ₂ OH	(+)-pin
2144	NH (C-NH) NH2	1	Ph	(CH ₂) ₂ OH	(+)-pin

2145	NH (C=NH) NH2	. 1	Ph	(CH ₂) ₃ OH	(+)	-pin
2146	NH (C=NH) NH2	1	Ph	CH2CO2Me	(+)	-pin
2147	NH (C=NH) NH2	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)	-pin
2148	NH (C=NH) NH2	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)	-pin
2149	NH (C=NH) NH2	1	Ph	3-NO ₂ -Ph	(+)	-pin
2150	NH (C=NH) NH2	1	Ph	4-NO2-Ph	(+)	-pin
2151	NH (C=NH) NH ₂	1	Ph	3-002H-Ph	(+)	-pin
2152	NH (C=NH) NH2	1	Ph	4-002H-Ph	(+)	-pin
2153	NH (C=NH) NH ₂	1	Ph	3-CN4H-Ph	(+)	-pin
2154	NH (C=NH) NH ₂	1	Ph	4-CN ₄ H-Ph	(+)	-pin
2155	NH (C=NH) NH ₂	1	Ph	3-(HOCH ₂)-Ph	(+)	-pin
2156	NH (C=NH) NH ₂	1	Ph	4-(HOCH ₂)-Ph	(+)	-pin
2157	CH2NH2	1	Ph	Н	OH,	OH
2158	CH2NH2	1	Ph	Methyl	OH,	OH
2159	CH2NH2	1	Ph	Ethyl	OH,	OH
2160	CH2NH2	1	Ph	n-Propyl	OH,	ОН
2161	CH ₂ NH ₂	1	Ph	n-Butyl	OH,	OH
2162	CH2NH2	1	Ph	CH ₂ SCH ₃	OH,	OH
2163	CH2NH2	1.	Ph	CH ₂ (80) CH ₃	OH,	ОН
2164	CH2NH2	1	Ph	CH ₂ (80 ₂) CH ₃	OH,	OH
2165	CH ₂ NH ₂	1	Ph	CH2CH2BCH3	OH,	OH
2166	CH ₂ NH ₂	1	Ph	CH ₂ CH ₂ (80) CH ₃	OH,	OH
2167	CH2NH2	1	Ph	CH2CH2 (SO) 2CH3	OH,	OH
2168	CH ₂ NH ₂	1	Ph	CH ₂ CN	OH,	OH
2169	CH2NH2	1	Ph	CH2CH2CN	OH,	OH
2170	CH2NH2	1	Ph	CH2CH2CH2CN	OH,	OH
2171	CH2NH2	1	Ph	CF ₃	OH,	OH
2172	CH2NH2	1	Ph	CF2CF3	OH,	OH
2173	CH ₂ NH ₂	1	Ph	CF2CF2CF3	OH,	OH
2174	CH ₂ NH ₂	1	Ph	CF2CF2CF2CF3	OH,	ОН
2175	CH ₂ NH ₂	1	Ph	F ₅ -Ph	OH,	OH
2176	CH2NH2	1	Ph .	CH2CO2H	OH,	OH
2177	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	OH,	OH
2178	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	OH,	ОН
2179	CH ₂ NH ₂	1	Ph ·	CH2CN4H	OH,	OH
2180	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	OH,	OH
2181	CH ₂ NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	OH,	OH
2182	CH2NH2	i	Ph	CH ₂ NO ₂	OH,	OH
2183	CH2NH2	1	Ph ·	(CH ₂) ₂ NO ₂	OH,	OH
2184	CH2NH2	1	Ph	(CH ₂) ₃ NO ₂	OH,	OH

2185	CH ₂ NH ₂	1	Ph	СН ₂ ОН	он, он
2186	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ OH	OH, OH
2187	CH2NH2	1	Ph	(CH ₂) ₃ OH	он, он
2188	CH ₂ NH ₂	1	Ph	CH ₂ CO ₂ Me	он, он
2189	CH ₂ NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	он, он
2190	CH2NH2	1	Ph	(CH ₂) ₃ CO ₂ Me	он, он
2191	CH2NH2	1	Ph	3-NO ₂ -Ph	он, он
2192	CH2NH2	1	Ph	4-NO2-Ph	он, он
2193	CH2NH2	1	Ph	3-00 ₂ H-Ph	он, он
2194	CH2NH2	1	Ph	4-002H-Ph	он, он
2195	CH2NH2	1	Ph	3-CN4H-Ph	он, он
2196	CH2NH2	1	Ph	4-CN4H-Ph	он, он
2197	CH ₂ NH ₂	1	Ph	3 - (HOCH ₂) - Ph	он, он
·2198	CH ₂ NH ₂	1-	Ph	4 - (HOCH ₂) - Ph	он, он
2199	NH (C=NH) NH ₂	1	Ph	H	он, он
2200	NH (C=NH) NH ₂	1	Ph	Methyl	он, он
2201	NH (C=NH) NH ₂	1	Ph	Ethyl	он, он
2202	NH (C=NH) NH ₂	1	Ph	n-Propyl	он, он
2203	NH (C=NH) NH ₂	1	Ph	n-Butyl	он, он
2204	NH (C=NH) NH ₂	1	Ph .	CH28CH3	OH, OH
2205	NH (C=NH) NH ₂	1	Ph	CH ₂ (80) CH ₃	он, он
2206	NH (C=NH) NH ₂	1	Ph	CH ₂ (80 ₂) CH ₃	он, он
2207	NH (C=NH) NH ₂	1	Ph	CH2CH2SCH3	он, он
2208	NH (C=NH) NH ₂	1	Ph	CH ₂ CH ₂ (SO)CH ₃	OH, OH
2209	NH (C=NH) NH ₂	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	он, он
2210	NH (C=NH) NH ₂	1	Ph	CH ₂ CN	он, он
2211	NH (C=NH) NH ₂	1	Ph	CH2CH2CN	он, он
2212	NH (C=NH) NH ₂	. 1	Ph	CH2CH2CH2CN	OH, OH
2213	NH (C=NH) NH ₂	1	Ph	CF ₃	он, он
2214	NH (C=NH) NH ₂	1	Ph .	CF2CF3	он, он
2215	NH (C=NH) NH ₂	1	Ph	CF2CF2CF3	он, он
2216	NH (C=NH) NH ₂	1	Ph	CF2CF2CF2CF3	он, он
2217	NH (C=NH) NH ₂	1	Ph	F ₅ -Ph	он, он
2218	NH (C=NH) NH ₂	1	Ph	CH ₂ CO ₂ H	он, он
2219	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ CO ₂ H	он, он
2220	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	он, он
2221	NH (C=NH) NH ₂	1	Ph	CH2CN4H	он, он
2222	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ CN ₄ H	он, он
2223	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	он, он
2224	NH (C=NH) NH ₂	1	Ph	CH2NO2	он, он

2225	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ NO ₂	он, он
2226	NH (C=NH) NH ₂	1	Ph	(CH ₂) 3NO ₂	OH, OH
2227	NH (C=NH) NH ₂	1	Ph	CH ₂ OH	он, он
2228	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ OH	он, он
2229	NH (C=NH) NH ₂	1	Ph	(CH ₂) 3OH	он, он
2230	NH (C=NH) NH ₂	1	Ph	CH2CO2Me	он, он
2231	NH (C=NH) NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	он, он
2232	NH (C=NH) NH2	1	Ph	(CH ₂) ₃ CO ₂ Me	он, он
2233	NH (C=NH) NH ₂	1	Ph	3-NO ₂ -Ph	он, он
2234	NH (C=NH) NH ₂	1	Ph .	4-NO ₂ -Ph	он, он
2235	NH (C=NH) NH ₂	1	Ph	3-00 ₂ H-Ph	он, он
2236	NH (C=NH) NH ₂	1	Ph	4-002H-Ph	он, он
2237	NH (C=NH) NH ₂	1	Ph	3-CN4H-Ph	он, он
2238	NH (C=NH) NH ₂	- 1	Ph	4-CN4H-Ph	он, он
2239	NH (C=NH) NH ₂	1	Ph	3-(HOCH ₂)-Ph	он, он
2240	NH (C=NH) NH2	1	Ph	4-(HOCH ₂)-Ph	он, он
2241	-8-(C=NH)NH2	1	Ph	н	(+)-pin
2242	-8-(C=NH)NH ₂	1	Ph	Methyl	(+)-pin
2243	-s-(C=NH)NH2	ı	Ph	Ethyl	(+)-pin
2244	-8-(C=NH)NH2	1	Ph	n-Propyl	(+)-pin
2245	-8-(C=NH)NH2	1	Ph	n-Butyl	(+)-pin
2246	-8-(C=NH)NH2	1	Ph	CH28CH3	(+)-pin
2247	-8-(C=NH)NH2	1	Ph '	CH ₂ (80) CH ₃	(+)-pin
2248	-s-(c=NH)NH2	1	Ph	CH ₂ (80 ₂) CH ₃	(+)-pin
2249	-8-(C=NH)NH2	1	Ph	CH2CH2SCH3	(+)-pin
2250	-9-(C≠NH)NH ₂	1	Ph	CH2CH2 (SO) CH3	(+)-pin
2251	-S-(C=NH)NH2	1	Ph	CH2CH2 (80) 2CH3	(+)-pin
2252	-s-(C=NH)NH2	1	Ph	CH ₂ CN	(+)-pin
2253	-s-(C=NH)NH2	1	Ph	CH2CH2CN	(+)-pin
2254	-s-(C=NH)NH ₂	1	Ph	CH2CH2CH2CN	(+)-pin
2255	-8-(C=NH)NH ₂	1	Ph ·	CF ₃	(+)-pin
2256	-8-(C=NH)NH2	1	Ph	CF ₂ CF ₃	(+)-pin
2257	-s-(c=nh)nh2	1	Ph	CF2CF2CF3	(+)-pin
2258	$-8-(C=NH)NH_2$	1	Ph	CF2CF2CF2CF3	(+)-pin
2259	-8-(C=NH)NH ₂	1	Ph	P5-Ph	(+)-pin
2260	-s-(C=NH)NH2	1	Ph	сн ₂ со ₂ н	(+)-pin
2261	-8-(C=NH)NH2	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
2262	-s-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CO ₂ H	(+)-pin
2263	-s-(c=NH)NH2	1	Ph	CH ₂ CN ₄ H	(+)-pin

2265	-8-(C=NH)NH ₂	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
2266	-8-(C=NH)NH2	1	Ph	CH ₂ NO ₂	(+)-pin
2267	-8-(C=NH)NH2	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
2268	-8-(C=NH)NH2	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin
2269	-8-(C=NH)NH2	1	Ph	сн ₂ он	(+)-pin
2270	-8-(C=NH)NH2	. 1	Ph	(CH ₂) ₂ OH	(+)-pin
2271	-s-(C=NH)NH2	1	Ph	(CH ₂) ₃ OH	(+)-pin
2272	-8-(C=NH)NH2	1	Ph	CH2CO2Me	(+)-pin
2273	-8-(C=NH)NH ₂	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
2274	-8-(C=NH)NH ₂	1	Ph	$(CH_2)_3CO_2Me$	(+)-pin
2275	-8- (C=NH) NH ₂	1	Ph	3-NO ₂ -Ph	(+)-pin
2276	-B-(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	(+)-pin
2277	-8-(C-NH)NH2	1	Ph	3-00 ₂ H-Ph	(+)-pin
2278	-8- (C=NH) NH ₂	1	Ph	4-CO ₂ H-Ph	(+)-pin
2279	-8- (C=NH) NH ₂	1	Ph	3-CN4H-Ph	(+)-pin
2280	-s-(C=NH)NH2	1	Ph	4-CN ₄ H-Ph	(+)-pin
2281	-8-(C=NH)NH2	1	Ph	3 - (HOCH ₂) - Ph	(+)-pin
2282	-8-(C=NH)NH ₂	1	Ph	4-(HOCH ₂)-Ph	(+)-pin
2283	-8-(C=NH)NH2	1	Ph	н	он, он
2284	-8-(C=NH)NH2	1	Ph	Methyl	он, он
2285	-8-(C=NH)NH ₂	1	Ph	Ethyl	он, он
2286	-8-(C=NH)NH ₂	1	Ph	` n-Propyl	OH, OH
2287	-s-(C=NH)NH2	1	Ph	n-Butyl	он, он
2288	-s-(C=NH)NH2	1	Ph	CH ₂ SCH ₃	он, он
2289	-s-(c=NH)NH2	1	Ph	CH ₂ (SO) CH ₃	он, он
2290	-s-(c=NH)NH2	1	Ph	$CH_2(SO_2)CH_3$	он, он
2291	-s-(C=NH)NH2	1	Ph	CH2CH2SCH3	он, он
2292	-8-(C=NH)NH2	. 1	Ph	CH ₂ CH ₂ (SO) CH ₃	он, он
2293	-8-(C-NH)NH2	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	он, он
2294	-s-(C=NH)NH ₂	1	Ph -	CH ₂ CN	он, он
2295	-s-(C=NH)NH ₂	1	Ph	CH2CH2CN	он, он
2296	· •	1	Ph	CH2CH2CH2CN	он, он
2297	-s-(C=NH)NH2	1	Ph	CF ₃	OH, OH
2298	7	1	Ph	CF ₂ CF ₃	он, он
2299	-s-(C=NH)NH2	1	Ph	CF2CF2CF3	он, он
2300	-s-(C=NH)NH ₂	1	Ph	CF2CF2CF2CF3	он, он
2301	-s-(c=NH)NH ₂	1	Ph	F ₅ -Ph	он, он
2302	-s-(C=NH)NH ₂	1	Ph	CH2CO2H	он, он
2303	-s-(C=NH)NH2	1	Ph	(CH ₂) ₂ CO ₂ H	он, он
2304	-9-(C=NH)NH2	1	Ph	(CH ₂) ₃ CO ₂ H	OH, OH

2305	-s-(c=nh)nh2	1	Ph	CH2CN4H	OH, OH
2306	-s-(C=NH)NH2	1	Ph	(CH ₂) ₂ CN ₄ H	он, он
2307	-s-(C=NH)NH2.	1	Ph	(CH ₂) ₃ CN ₄ H	он, он
2308	-s-(c=NH)NH2	1	Ph	CH2NO2	он, он
2309	-8-(C=NH)NH2	1	Ph	(CH ₂) ₂ NO ₂	OH, OH
2310	-s-(C=NH)NH2	1	Ph	(CH ₂) 3NO ₂	он, он
2311	-8-(C=NH)NH2	1	Ph	CH ₂ OH	OH, OH
2312	-s-(C=NH)NH2	1	Ph	(CH ₂) ₂ OH	он, он
2313	-s-(C=NH)NH2	1	Ph	(CH ₂) ₃ OH	он, он
2314	-9-(C=NH)NH2	1	Ph	CH ₂ CO ₂ Me	он, он
2315	-s-(C=NH)NH2	1	Ph	(CH ₂) ₂ CO ₂ Me	он, он
2316	-s-(C=NH)NH2	1	· Ph	(CH ₂) ₃ CO ₂ Me	OH, OH
2317	-s-(C=NH)NH2	1	Ph	3-NO ₂ -Ph	OH, OH
2318	-s-(C=NH)NH ₂	1	Ph	4-NO ₂ -Ph	он, он
2319	-s-(C=NH)NH2	1	Ph	3-00 ₂ H-Ph	он, он
2320	-8-(C=NH)NH2	1	Ph	4-00 ₂ H-Ph	он, он
2321	-s-(C=NH)NH2	1	Ph	3-CN ₄ H-Ph	он, он
2322	-s-(c=NH)NH2	1	Ph	4-CN ₄ H-Ph	OH, OH
2323	-8-(C=NH)NH2	1	Ph	3 - (HOCH ₂) - Ph	он, он
2324	-8-(C=NH)NH2	1	Ph	4 - (HOCH2) - Ph	OH, OH
	_			-	•
2325	CH2NH2	2	Ph	н	(+)-pin
2325 2326	CH ₂ NH ₂ CH ₂ NH ₂	2 2	Ph Ph	н	
					(+)-pin
2326	CH2NH2	2	Ph	н	(+)-pin OH, OH
2326 2327	CH ₂ NH ₂ OMe	2 1	Ph Ph	н	(+)-pin OH, OH (+)-pin
2326 2327 2328	CH ₂ NH ₂ OMe	2 1 1	Ph Ph Ph	н н Methyl	(+)-pin OH, OH (+)-pin (+)-pin
2326 2327 2328 2329	CH ₂ NH ₂ OMe OMe	2 1 1	Ph Ph Ph Ph	H H Methyl Ethyl	(+)-pin OH, OH (+)-pin (+)-pin (+)-pin
2326 2327 2328 2329 2330	CH2NH2 OMe OMe OMe	2 1 1 1	Ph Ph Ph Ph	H Methyl Ethyl n-Propyl	(+)-pin OH, OH (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin
2326 2327 2328 2329 2330 2331	CH ₂ NH ₂ OMe OMe OMe OMe OMe	2 1 1 1	Ph Ph Ph Ph Ph	H H Methyl Ethyl n-Propyl n-Butyl	(+)-pin OH, OH (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin
2326 2327 2328 2329 2330 2331 2332	CH ₂ NH ₂ OMe OMe OMe OMe OMe OMe	2 1 1 1 1	Ph Ph Ph Ph Ph Ph	H Methyl Ethyl n-Propyl n-Butyl CH ₂ 8CH ₃	(+)-pin OH, OH (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin
2326 2327 2328 2329 2330 2331 2332 2333	CH ₂ NH ₂ OMe OMe OMe OMe OMe OMe OMe	2 1 1 1 1 1	Ph Ph Ph Ph Ph Ph	H H Methyl Ethyl n-Propyl n-Butyl CH28CH3 CH2(SO)CH3	(+)-pin OH, OH (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin
2326 2327 2328 2329 2330 2331 2332 2333	CH ₂ NH ₂ OMe OMe OMe OMe OMe OMe OMe OMe	2 1 1 1 1 1 1	Ph Ph Ph Ph Ph Ph Ph	H Methyl Ethyl n-Propyl n-Butyl CH ₂ SCH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃	(+)-pin OH, OH (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335	CH ₂ NH ₂ OMe OMe OMe OMe OMe OMe OMe OMe OMe	2 1 1 1 1 1 1 1	Ph Ph Ph Ph Ph Ph Ph Ph	H H Methyl Ethyl n-Propyl n-Butyl CH ₂ 8CH ₃ CH ₂ (SO) CH ₃ CH ₂ (8O ₂) CH ₃ CH ₂ CH ₂ 8CH ₃	(+)-pin OH, OH (+)-pin
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336	CH ₂ NH ₂ OMe	2 1 1 1 1 1 1 1 1	Ph Ph Ph Ph Ph Ph Ph Ph	H Methyl Ethyl n-Propyl n-Butyl CH ₂ SCH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₃	(+)-pin OH, OH (+)-pin
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337	CH ₂ NH ₂ OMe	2 1 1 1 1 1 1 1 1 1	Ph Ph Ph Ph Ph Ph Ph Ph Ph	H H Methyl Ethyl n-Propyl n-Butyl CH ₂ 8CH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ (SO) CH ₃	(+)-pin OH, OH (+)-pin
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338	CH ₂ NH ₂ OMe	2 1 1 1 1 1 1 1 1 1 1	Ph	H Methyl Ethyl n-Propyl n-Butyl CH ₂ SCH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ CH ₂ (SO) CH ₃	(+)-pin OH, OH (+)-pin
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339	CH ₂ NH ₂ OMe	2 1 1 1 1 1 1 1 1 1 1 1 1	Ph	H Methyl Ethyl n-Propyl n-Butyl CH ₂ 8CH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ (SO) CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ COO CH ₃ CH ₂ CH ₂ COO CH ₃ CH ₂ CH ₂ COO CH ₃ CH ₂ COO CH ₂ COO CH ₂ COO CH ₃ CH ₂ COO CH ₂ C	(+)-pin OH, OH (+)-pin
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340	CH ₂ NH ₂ OMe	2 1 1 1 1 1 1 1 1 1 1 1 1 1	Ph	H Methyl Ethyl n-Propyl n-Butyl CH ₂ SCH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CN	(+)-pin OH, OH (+)-pin
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341	CH ₂ NH ₂ OMe	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ph P	H Methyl Ethyl n-Propyl n-Butyl CH ₂ 8CH ₃ CH ₂ (SO) CH ₃ CH ₂ (SO ₂) CH ₃ CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₂ CH ₂ CN CH ₂ CH ₂ CH ₂ CN CH ₂ CH ₂ CH ₂ CN CF ₃	(+)-pin OH, OH (+)-pin

2345	ОМе	1	Ph	F5-Ph	(+)-pin
2346	OMe	1	Ph	CH2CO2H	(+)-pin
2347	OMe	1	Ph	(CH ₂) ₂ CO ₂ H	(+)-pin
2348	OMe	1	Ph	(CH ₂) ₃ ∞ ₂ H	(+)-pin
2349	OMe	1	Ph	CH2CN4H	(+)-pin
2350	OMe	1	Ph	(CH ₂) ₂ CN ₄ H	(+)-pin
2351	OMe	1	Ph	(CH ₂) ₃ CN ₄ H	(+)-pin
2352	OMe	1	Ph	CH ₂ NO ₂	(+)-pin
2353	OMe	1	Ph	(CH ₂) ₂ NO ₂	(+)-pin
2354	OMe	1	Ph	(CH ₂) ₃ NO ₂	(+)-pin
2355	OMe	1	Ph	CH ₂ OH	(+)-pin
2356	OMe	1	Ph	(CH ₂) ₂ OH	(+)-pin
2357	OMe	1	Ph	(CH ₂) ₃ OH	(+)-pin
2358	OMe	1	Ph	CH ₂ CO ₂ Me	(+)-pin
2359	OMe	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)-pin
2360	OMe	1	Ph	(CH ₂) ₃ CO ₂ Me	(+)-pin
2361	OMe	1	Ph	3-NO ₂ -Ph	(+)-pin
2362	OMe	1	Ph	4-NO ₂ -Ph	(+)-pin
2363	OMe	1	Ph	3-∞ ₂ H-Ph	(+)-pin
2364	OMe	1	Ph	4-CO ₂ H-Ph	(+)-pin
2365	OMe	1	Ph	3-CN ₄ H-Ph	(+)-pin
2366	OMe	1	Ph	4-CN ₄ H-Ph	(+)-pin
2367	OMe	1	Ph	3 - (HOCH ₂) - Ph	(+)-pin
2368	OMe	1	Ph	4 - (HOCH ₂) - Ph	(+)-pin
2369	OMe	1	Ph	н	он, он
2370	OMe	1	Ph	Methyl	он, он
2371	OMe	1	Ph	Ethyl	он, он
2372	OMe	1	Ph	n-Propyl	он, он
2373	OMe	1	Ph	n-Butyl	он, он
2374	OMe	1	Ph	CH ₂ 8CH ₃	он, он
2375	OMe	1	Ph	CH ₂ (80) CH ₃	он, он
2376	OMe	1	Ph	CH ₂ (80 ₂) CH ₃	он, он
2377	OMe	1	Ph	CH2CH2SCH3	он, он
2378	OMe	1	Ph	CH2CH2 (SO) CH3	он, он
2379	OMe	1	Ph	CH2CH2 (80) 2CH3	он, он
2380	OMe	1	Ph	CH ₂ CN	он, он
2381	OMe	1	Ph	CH ₂ CH ₂ CN	он, он
2382	OMe	1	Ph	CH2CH2CH2CN	он, он
2383	OMe	1	Ph	CF ₃	он, он
2384	OMe	1	Ph	CF2CF3	OH, OH

2385	OMe	1	Ph	CF2CF2CF3	он, он	
2386	ОМе	1	Ph	CF2CF2CF2CF3	он, он	
2387	OMe	1	Ph	P5-Ph	он, он	
2388	OMe	1	Ph	CH2CO2H	он, он	
2389	OMe	1	Ph	(CH ₂) ₂ CO ₂ H	он, он	
2390	OMe	1	Ph	(CH ₂) ₃ CO ₂ H	он, он	
2391	OMe	1	Ph	CH2CN4H	он, он	
2392	OMe	1	Ph	(CH ₂) ₂ CN ₄ H	OH, OH	
2393	OMe	1	Ph	(CH ₂) ₃ CN ₄ H	OH, OH	
2394	OMe	1	Ph	CH ₂ NO ₂	OH, OH	
2395	OMe	1	Ph	(CH ₂) ₂ NO ₂	OH, OH	
2396	OMe	1	Ph	(CH ₂) ₃ NO ₂	OH, OH	
2397	OMe	1	Ph	CH ₂ OH	он, он	
- 2398	OMe	1	Ph	(CH ₂) ₂ OH	OH, OH	
2399	OMe	1	Ph	(CH ₂) ₃ OH	он, он	
2400	OMe	1	Ph	CH ₂ CO ₂ Me	он, он	
2401	OMe	. 1	Ph	(CH ₂) ₂ CO ₂ Me	OH, OH	
2402	OMe	1	Ph	(CH ₂) ₃ CO ₂ Me	OH, OH	
2403	OMe	1	. Ph	3-NO ₂ -Ph	OH, OH	
2404	OMe	1	Ph	4-NO ₂ -Ph	OH, OH	
2405	OMe	1	Ph	3-002H-Ph	он, он	
2406	OMe	1	Ph	4-002H-Ph	он, он	
2407	OMe	1	Ph	3-CN4H-Ph	он, он	
2408	OMe	1	Ph	4-CN ₄ H-Ph	OH, OH	
2409	OMe	1	Ph	3 - (HOCH ₂) - Ph	OH, OH	
2410	OMe	1	Ph	4-(HOCH ₂)-Ph	OH, OH	
2411	CH2NH2	1	PhCH ₂	Н	(+)-pin	BA
2412	CH2NH2	1	PhCH ₂	Methyl	(+)-pin	BC
2413	CH2NH2	1	PhCH ₂	Ethyl	(+)-pin	
2414	CH ₂ NH ₂	1	PhCH ₂	n-Propyl	(+)-pin	BD
2415	CH2NH2	1	PhCH ₂	n-Butyl	(+)-pin	
2416	CH2NH2	1	PhCH ₂	CH ₂ SCH ₃	(+)-pin	BE
2417	CH ₂ NH ₂	1	PhCH ₂	CH ₂ (80) CH ₃	(+)-pin	
2418	CH ₂ NH ₂	1	PhCH ₂	$CH_2(SO_2)CH_3$	(+)-pin	
2419	CH ₂ NH ₂	1	PhCH ₂	CH2CH2SCH3	(+)-pin	
2420	CH2NH2	1	PhCH ₂	CH2CH2 (SO) CH3	(+)-pin	
2421	CH2NH2	1	PhCH ₂	CH ₂ CH ₂ (80) ₂ CH ₃	(+)-pin	
2422	CH2NH2	1	PhCH ₂	CH ₂ CN	(+)-pin	BF
2423	CH ₂ NH ₂	1	PhCH ₂	CH2CH2CN	(+)-pin	
2424	CH ₂ NH ₂	1	PhCH ₂	CH2CH2CH2CN	(+) -pin	

2425	CH2NH2	1	PhCH ₂	CF ₃	(+)-pin	
2426	CH ₂ NH ₂	1	PhCH ₂	CF2CF3	(+)-pin	
2427	CH2NH2	1	PhCH ₂	CF2CF2CF3	(+)-pin	
2428	CH2NH2	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin	
2429	CH2NH2	1	PhCH ₂	F5-Ph	(+)-pin	
2430	CH2NH2	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin	BG
2431	CH2NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin	
2432	CH2NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin	
2433	CH ₂ NH ₂	1	PhCH ₂	CH2CN4H	(+)-pin	
2434	CH2NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin	
2435	CH2NH2	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin	
2436	CH2NH2	1	PhCH ₂	CH ₂ NO ₂	(+)-pin	
2437	CH2NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin	
2438	CH2NH2	1	PhCH ₂	(CH2)3NO2	(+)-pin	
2439	CH2NH2	1	PhCH2	CH ₂ OH	(+)-pin	CV
2440	CH2NH2	1	PhCH ₂	CH ₂ OCH ₂ Ph	(+)-pin	CW
2441	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
2442	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin	
2443	CH2NH2	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin	CX
2444	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin	
2445	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin	
2446	CH ₂ NH ₂	1	PhCH ₂	Ph	(+)-pin	
2447	CH ₂ NH ₂	1	PhCH ₂	PhCH ₂	(+)-pin	
2448	CH ₂ NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin	
2449	CH ₂ NH ₂	· 1	PhCH ₂	4-NO ₂ -Ph	(+)-pin	
2450	CH ₂ NH ₂	1	PhCH ₂	3-CO ₂ H-Ph	(+)-pin	
2451	CH2NH2	1	PhCH ₂	4-002H-Ph	(+)-pin	
2452	CH ₂ NH ₂	1	PhCH ₂	3-CN ₄ H-Ph	(+)-pin	· p.
2453	CH ₂ NH ₂	1	PhCH ₂	4-CN ₄ H-Ph	(+) -pin-	
2454	CH ₂ NH ₂	1	PhCH ₂	3 - (HOCH ₂) - Ph	(+)-pin	
2455	CH2NH2	1	PhCH ₂	4 - (HOCH ₂) - Ph	(+)-pin	
2456	NH (C=NH) NH ₂	1	PhCH ₂	Н	(+)-pin	
2457	NH (C=NH) NH ₂	1	PhCH ₂	Methyl	(+)-pin	
2458	NH (C=NH) NH ₂	1	PhCH ₂	Ethyl	(+)-pin	
2459	NH (C=NH) NH ₂	1	PhCH ₂	n-Propyl	(+)-pin	
2460	NH (C=NH) NH ₂	1	PhCH ₂	n-Butyl	(+)-pin	
2461	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ 8CH ₃	(+)-pin	
2462	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ (SO) CH ₃	(+)-pin	•
2463	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	(+)-pin	
2464	NH (C=NH) NH2	1	PhCH ₂	CH2CH28CH3	(+)-pin	

2465	NH (C=NH) NH2	1	PhCH ₂	CH2CH2(SO)CH3	(+)-pin	
2466	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH2(80)2CH3	(+)-pin	
2467	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CN	(+)-pin	
2468	NH (C=NH) NH2	1	PhCH ₂	CH2CH2CN	(+)-pin	
2469	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH2CH2CN	(+)-pin	
2470	NH (C=NH) NH2	1	PhCH ₂	· CF3	(+)-pin	
2471	NH (C=NH) NH2	1	PhCH ₂	CF2CF3	(+)-pin	
2472	NH (C=NH) NH2	1	PhCH ₂	CF2CF2CF3	(+)-pin	
2473	NH (C=NH) NH ₂	ı	PhCH ₂	CF2CF2CF2CF3	(+)-pin	
2474	NH (C=NH) NH2	ı	PhCH ₂	F ₅ -Ph	(+)-pin	
2475	NH (C=NH) NH2	1	PhCH ₂	CH2CO2H	(+)-pin	
2476	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin	
2477	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin	
2478	NH (C=NH) NH ₂	1	PhCH ₂	CH2CN4H	(+)-pin	
2479	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin	
2480	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin	
2481	NH (C=NH) NH ₂	1	PhCH ₂	CH2NO2	(+)-pin	
2482	NH (C=NH) NH ₂	1	PhCH ₂	$(CH_2)_2NO_2$	(+)-pin	
2483	NH (C=NH) NH2	1	PhCH ₂	$(CH_2)_3NO_2$	(+)-pin	
2484	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ OH	(+)-pin	
2485	NH (C=NH) NH2	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
2486	NH (C-NH) NH2	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin	
2487	NH (C-NH) NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin	
2488	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin	
.2489	NH (C=NH) NH ₂	1	PhCH ₂	$(CH_2)_3CO_2Me$	(+)-pin	
2490	NH (C=NH) NH ₂	1	PhCH ₂	Ph	(+)-pin	
2491	NH (C=NH) NH ₂	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin	CY
2492	NH (C=NH) NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin	
2493	NH (C=NH) NH ₂	1	PhCH ₂	3-00 ₂ H-Ph	(+)-pin	
2494	NH (C=NH) NH ₂	٠, ٦	PhCH ₂	4-00 ₂ H-Ph	(+)-pin	
2495	NH (C=NH) NH2	1	PhCH ₂	3 - CN4H - Ph	(+)-pin	
2496	NH (C=NH) NH2	1	PhCH ₂	4 - CN4H - Ph	(+)-pin	
2497	NH (C=NH) NH ₂	1	PhCH ₂	3-(HOCH ₂)-Ph	(+)-pin	
2498	NH (C=NH) NH ₂	1	PhCH ₂	4 - (HOCH ₂) - Ph	(+)-pin	
2499	CH2NH2	1	PhCH ₂	н	OH, OH	BH
2500	CH2NH2	1	PhCH ₂	Methyl	он, он	
2501	CH ₂ NH ₂	1	PhCH ₂	Ethyl	он, он	
2502	CH2NH2	1	PhCH ₂	n-Propyl	он, он	
2503	CH2NH2	1	PhCH ₂	n-Butyl	он, он	
2504	CH2NH2	1	PhCH ₂	CH ₂ SCH ₃	OH, OH	

2505	CH2NH2	1	PhCH ₂	CH ₂ (80) CH ₃	OH,	ОН
2506	CH2NH2	1	PhCH ₂	CH2 (802) CH3	OH,	ОН
2507	CH2NH2	1	PhCH ₂	CH2CH28CH3	OH,	ОН
2508	CH2NH2	1	PhCH ₂	CH2CH2 (80) CH3	OH,	ОН
2509	CH2NH2	1	PhCH ₂	CH2CH2(80)2CH3	OH,	ОН
2510	CH2NH2	1	PhCH ₂	CH ₂ CN	OH,	ОН
2511	CH2NH2	1	PhCH ₂	CH2CH2CN	OH,	ОН
2512	CH2NH2	1	PhCH ₂	CH2CH2CH2CN	OH,	ОН
2513	CH2NH2	1	PhCH ₂	CF ₃	OH,	ОН
2514	CH2NH2	1	PhCH ₂	CF2CF3	OH,	ОН
2515	CH2NH2	1	PhCH ₂	CF2CF2CF3	OH,	ОН
2516	CH2NH2	1	PhCH ₂	CF2CF2CF2CF3	OH,	ОН
2517	CH2NH2	1	$PhCH_2$	F5-Ph	OH,	ОН .
2518	CH2NH2	1	PhCH ₂	СH ₂ CO ₂ H	OH,	ОН
2519	CH2NH2	1 .	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH,	ОН
2520	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH,	ОН
2521	CH2NH2	1	PhCH ₂	CH2CN4H	OH,	ОН
2522	CH ₂ NH ₂	1	$PhCH_2$	(CH ₂) ₂ CN ₄ H	OH,	ОН
2523	CH2NH2	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH,	ОН
2524	CH2NH2	1	PhCH ₂	CH ₂ NO ₂	OH,	OH
2525	CH2NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH,	ОН
2526	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	OH,	ОН
2527	CH2NH2	1	PhCH ₂	CH ₂ OH	OH,	ОН
2528	CH2NH2	1	PhCH ₂	(CH ₂) ₂ OH	OH,	OH
2529	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₃ OH	OH, C	ОН
2530	CH ₂ NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	OH, C	ЭН
2531	CH ₂ NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH, C	ЭН
2532	CH2NH2	1 .	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH, C	ЭН
2533	CH2NH2	1	PhCH ₂	Ph	OH, C	HC
2534	CH2NH2	1	PhCH ₂	3-NO ₂ -Ph	OH, C	ЭН
2535	CH2NH2	1	PhCH ₂	4-NO ₂ -Ph	OH, C	ЭН
2536	CH2NH2	1	PhCH ₂	3-002H-Ph	OH, C	ЭН
2537	CH2NH2	ı	$PhCH_2$	4-002H-Ph	OH, C	ЭH
2538	CH2NH2	1	PhCH ₂	3-CN4H-Ph	OH, C	H
2539	CH2NH2	1	PhCH ₂	4 - CN ₄ H - Ph	OH, C)H
2540	CH2NH2	1	PhCH ₂	3-(HOCH ₂)-Ph	OH, C	H
2541	CH ₂ NH ₂	1	PhCH ₂	4 - (HOCH ₂) - Ph	OH, C	ЭН
2542	NH (C=NH) NH ₂	1	PhCH ₂	Н	OH, C	H
2543	NH (C=NH) NH2	1	PhCH ₂	Methyl	OH, C	ЭН
2544	NH (C=NH) NH ₂	. 1	PhCH ₂	Ethy1	он, с	ЭН

2545	NH (C=NH) NH ₂	1	PhCH ₂	n-Propyl	он, он
2546	NH (C=NH) NH ₂	1	PhCH ₂	n-Butyl	он, он
2547	NH (C=NH) NH2	1	PhCH ₂	CH28CH3	он, он
2548	NH (C=NH) NH2	1	PhCH ₂	CH ₂ (80) CH ₃	OH, OH
2549	NH (C=NH) NH2	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	он, он
2550	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH28CH3	он, он
2551	NH (C=NH) NH2	1	PhCH ₂	CH2CH2 (SO) CH3	он, он
2552	NH (C=NH) NH2	1	PhCH ₂	CH2CH2 (SO) 2CH3	он, он
2553	NH (C=NH) NH2	1	PhCH ₂	CH ₂ CN	он, он
2554	NH (C=NH) NH ₂	1	PhCH ₂	CH2CH2CN	он, он
2555	NH (C=NH) NH2	1	$PhCH_2$	CH2CH2CH2CN	он, он
2556	NH (C=NH) NH ₂	1	PhCH ₂	CF ₃	ОН, ОН
2557	NH (C=NH) NH ₂	1	PhCH ₂	CF2CF3	ОН, ОН
2558	NH (C=NH) NH ₂	• 1	PhCH ₂	CF2CF2CF3	он, он
2559	NH (C=NH) NH ₂	1	PhCH ₂	CF2CF2CF2CF3	OH, OH
2560	NH (C=NH) NH ₂	1	PhCH ₂	F5-Ph	OH, OH
2561	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CO ₂ H	он, он
2562	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
2563	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) 3CO ₂ H	OH, OH
2564	NH (C=NH) NH ₂	1	PhCH ₂	CH2CN4H	OH, OH
2565	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	он, он
2566	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	он, он
2567	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ NO ₂	ОН, ОН
2568	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ NO ₂	он, он
2569	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	он, он
2570	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ OH	OH, OH
2571	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	OH, OH
2572	NH (C=NH) NH ₂	1	PhCH ₂	(CH ₂) 3OH	он, он
2573	NH (C=NH) NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	он, он
2574	NH (C=NH) NH ₂	1	PhCH ₂	$(CH_2)_2CO_2Me$	он, он
2575	NH (C=NH) NH ₂	. 1	PhCH ₂	(CH ₂) 3CO ₂ Me	OH, OH
2576	NH (C=NH) NH ₂	1	PhCH ₂	3-NO ₂ -Ph	он, он
2577	NH (C=NH) NH ₂	1	PhCH ₂	4-NO ₂ -Ph	он, он
2578	NH (C-NH) NH ₂	1	PhCH ₂	3-00 ₂ H-Ph	OH, OH
2579	NH (C=NH) NH ₂	1	PhCH ₂	4-00 ₂ H-Ph	OH, OH
2580	NH (C=NH) NH ₂	1	PhCH ₂	3 - CN4H - Ph	он, он
2581	NH (C=NH) NH ₂	1	PhCH ₂	4 - CN ₄ H - Ph	он, он
2582	NH (C=NH) NH ₂	1	PhCH ₂	3 - (HOCH ₂) -Ph	OH, OH
2583	NH (C=NH) NH ₂	1	PhCH ₂	4 - (HOCH ₂) -Ph	OH, OH
2584	-s-(c=NH)NH2	1	PhCH ₂	н	(+)-pin

2585	-8-(C=NH)NH2	1	PhCH ₂	Methyl	(+)-pin
2586	-8-(C=NH)NH ₂	1	PhCH ₂	Bthyl	(+)-pin
2587	-8-(C=NH)NH2	1	PhCH ₂	n-Propyl	(+)-pin
2589	-s-(c=nh)nh2	1	PhCH ₂	n-Butyl	(+)-pin
2589	-8-(C=NH)NH ₂	1	PhCH ₂	CH2SCH3	(+)-pin
2590	-s-(c=nh)nh2	1	PhCH ₂	CH2 (80) CH3	(+)-pin
2591	-8-(C=NH)NH2	1	PhCH ₂	CH2 (802) CH3	(+)-pin
2592	-8-(C=NH)NH2	1	PhCH ₂	CH2CH28CH3	(+)-pin
2593	-8-(C=NH)NH2	1	PhCH ₂	CH2CH2 (80) CH3	(+)-pin
2594	-8-(C=NH)NH2	1	PhCH ₂	CH2CH2 (80) 2CH3	(+)-pin
2595	-8- (C=NH) NH2	1	PhCH ₂	CH ₂ CN	(+)-pin
2596	-s-(C=NH)NH2	1	PhCH ₂	CH2CH2CN	(+)-pin
2597	-s-(C=NH)NH2	1	PhCH ₂	CH2CH2CH2CN	(+)-pin
2598	-s-(C=NH)NH2	1	PhCH ₂	CF ₃	(+)-pin
2599	-9-(C=NH)NH2	1	PhCH ₂	CF2CF3	(+)-pin
2600	-s-(C=NH)NH2	1	PhCH ₂	CF2CF2CF3	(+)-pin
2601	-s-(C=NH)NH ₂	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin
2602	-s-(C=NH)NH2	1	PhCH ₂	F ₅ -Ph	(+)-pin
2603	-8-(C=NH)NH2	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin
2604	-9-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
2605	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
2606	-s-(C=NH)NH2	1	PhCH ₂	CH2CN4H	(+)-pin
2607	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
2608	-s-(c=NH)NH2	,1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
2609	-s-(C=NH)NH ₂	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
2610	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
2611	-s-(C=NH)NH2	1	PhCH ₂	(CH ₂) 3NO ₂	(+)-pin
2612	-s-(C=NH)NH2	1	PhCH ₂	СН ₂ ОН	(+)-pin
2613	-s-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
2614	-s-(C=NH)NH2	1	.PhCH2	(CH ₂) ₃ OH	(+)-pin
2615	-s-(c=NH)NH ₂	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
2616	-9-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
2617	-s-(C=NH)NH ₂	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
2618	-8-(C=NH)NH2	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
2619	-8-(C=NH)NH ₂	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
2620	-9-(C=NH)NH2	1	PhCH ₂	3-002H-Ph	(+)-pin
2621	-s-(c=NH)NH2	1	PhCH ₂	4-002H-Ph	(+)-pin
2622	-8-(C=NH)NH ₂	1	PhCH ₂	3 - CN4H - Ph	(+')-pin
2623	-s-(c=nh)nh2	1	PhCH ₂	4-CN ₄ H-Ph	(+)-pin
2624	-s-(C=NH)NH2	1	PhCH ₂	3 - (HOCH ₂) - Ph	(+)-pin

2625	-8-(C=NH)NH ₂	1	PhCH ₂	4-(HOCH ₂)-Ph	(+)-pin
2626	-8-(C=NH)NH2	1	PhCH ₂	Н	он, он
2627	-8-(C=NH)NH2	1	PhCH ₂	Methyl	он, он
2628	-8-(C=NH)NH2	1	PhCH ₂	Ethyl	он, он
2629	-8-(C=NH)NH ₂	1	PhCH ₂	n-Propyl	он, он
2630	-8-(C=NH)NH ₂	1	$PhCH_2$	n-Butyl	он, он
2631	-8-(C=NH)NH ₂	1	PhCH ₂	CH2SCH3	OH, OH
2632	-8-(C=NH)NH2	1	PhCH ₂	CH ₂ (80) CH ₃	он, он
2633	-s-(C=NH)NH2	1	PhCH ₂	CH2 (802) CH3	он, он
2634	-8-(C=NH)NH2	1	PhCH ₂	CH2CH28CH3	он, он
2635	-s-(C=NH)NH ₂	1	PhCH ₂	CH2CH2 (80) CH3	ОН, ОН
2636	-8-(C=NH)NH ₂	1	PhCH ₂	CH2CH2 (80) 2CH3	он, он
2637	-s-(C=NH)NH2	1	PhCH ₂	CH ₂ CN	OH, OH
2638	-s-(C=NH)NH2	1	PhCH ₂	CH2CH2CN	OH, OH
2639	-s-(c=NH)NH2	1	PhCH ₂	CH2CH2CH2CN	он, он
2640	-s-(c=nh)nh ₂	1	PhCH ₂	CF ₃	он, он
2641	-8-(C=NH)NH ₂	1	PhCH ₂	CF2CF3	он, он
2642	-s-(C=NH)NH ₂	1	PhCH ₂	CF2CF2CF3	он, он
2643	-8-(C=NH)NH2	1	PhCH ₂	CF2CF2CF2CF3	он, он
2644	-8-(C=NH)NH2	1	PhCH ₂	F5-Ph	OH, OH
2645	-8-(C=NH)NH2	1	PhCH ₂	сн ₂ со ₂ н	он, он
2646	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	он, он
2647	-8-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	он, он
2648	-s-(c=NH)NH2	1	PhCH ₂	CH2CN4H	OH, OH
2649	-s-(c=nh)nh2	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	он, он
2650	-s-(c=NH)NH2	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	ОН, ОН
2651	-s-(c=NH)NH2	1	PhCH ₂	CH2NO2	он, он
2652	-s-(c=NH)NH2	1	PhCH ₂	(CH ₂) ₂ NO ₂	он, он
2653	-s-(c=nh)nh ₂	1	PhCH ₂	(CH ₂) ₃ NO ₂	он, он
2654	-s-(C=NH)NH2	1	PhCH ₂	СH ₂ OH	он, он
2655	-s-(c=NH)NH ₂	1	PhCH ₂	(CH ₂) ₂ OH	он, он
2656	-9-(C=NH)NH2	1	PhCH ₂	(CH ₂) ₃ OH	он, он
2657	-8-(C=NH)NH ₂	1	PhCH ₂	CH2CO2Me	OH, OH
2658	-s-(c=nh)nh ₂	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	он, он
2659	-s-(c=NH)NH2	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	он, он
2660	-s-(c=nh)nh2	1	PhCH ₂	3-NO2-Ph	он, он
2661	-S-(C=NH)NH2	1	PhCH ₂	4-NO ₂ -Ph	он, он
2662	-s-(c=NH)NH2	1	PhCH ₂	3-00 ₂ H-Ph	он, он
2663	-s-(c=nh)nh2	1	PhCH ₂	4-∞2H-Ph	OH, OH
2664	-s-(c=nh) nh2	1	PhCH ₂	3-CN4H-Ph	он, он

2665	-8-(C=NH)NH2	1	PhCH ₂	4-CN ₄ H-Ph	он, он
2666	-8-(C=NH)NH2	1	PhCH ₂	3 - (HOCH ₂) - Ph	он, он
2667	-8-(C=NH)NH2	1	PhCH ₂	4 - (HOCH ₂) -Ph	он, он
2668	OMe	1	PhCH ₂	Н	(+)-pin
2669	OMe	1	PhCH ₂	Methyl	(+)-pin
2670	OMe	1	PhCH ₂	Ethyl	(+)-pin
2671	OMe	1	PhCH ₂	n-Propyl	(+)-pin
2672	OMe	1	PhCH ₂	n-Butyl	(+)-pin
2673	OMe	1	PhCH ₂	CH2BCH3	(+)-pin
2674	OMe	1	PhCH ₂	CH ₂ (80) CH ₃	(+)-pin
2675	OMe	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	(+)-pin
2676	OMe	1	PhCH ₂	CH2CH28CH3	(+)-pin
2677	OMe	1	PhCH ₂	CH2CH2 (SO) CH3	(+)-pin
2678	OMe	1	PhCH ₂	CH2CH2 (80) 2CH3	(+)-pin
2679	OMe	1	PhCH ₂	CH ₂ CN	(+)-pin
2680	OMe	1	PhCH ₂	CH2CH2CN	(+)-pin
2681	OMe	1	PhCH ₂	CH2CH2CH2CN	(+)-pin
2682	OMe	1	PhCH ₂	CF3	(+)-pin
2683	OMe	1	PhCH ₂	CF ₂ CF ₃	(+)-pin
2684	OMe	1	PhCH ₂	CP2CF2CF3	(+)-pin
2685	OMe ·	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin
2686	OMe	1	PhCH ₂	F5-Ph	(+)-pin
2687	OMe	1	PhCH ₂	CH ₂ CO ₂ H	(+)-pin
2688	OMe	1	PhCH2	(CH ₂) ₂ CO ₂ H	(+)-pin
2689	OMe ·	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
2690	OMe	1	PhCH ₂	CH2CN4H	(+)-pin
2691	OMe	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
2692	OMe	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	(+)-pin
2693	OMe	1	PhCH ₂	CH2NO2	(+)-pin
2694	OMe	1	PhCH ₂	(CH ₂) ₂ NO ₂	(+)-pin
2695	OMe	1	PhCH ₂	(CH ₂) ₃ NO ₂	(+)-pin
2696	OMe	ı	PhCH ₂	CH ₂ OH	(+)-pin
2697	OMe	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
2698	OMe	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
2699	OMe	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
2700	OMe	. 1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
2701	OMe .	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
2702	OMe	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
2703	OMe	1 .	PhCH ₂	4-NO ₂ -Ph	(+)-pin '
2704	OMe	1	PhCH ₂	3-00 ₂ H-Ph	(+)-pin

2705	OMe	1	PhCH ₂	4-002H-Ph	(+)	-pin
2706	OMe	1	PhCH ₂	3-CN4H-Ph	(+)	-pin
2707	OMe	1	PhCH ₂	4 - CN4H - Ph	(+)	-pin
2708	OMe	1	PhCH ₂	3 - (HOCH ₂) - Ph	(+)	-pin
2709	OMe	1	PhCH ₂	4 - (HOCH ₂) - Ph	(+)	-pin
2710	OMe	1	PhCH ₂	Н	OH,	OH
2711	OMe	1	PhCH ₂	Methyl	OH,	OH
2712	OMe	1	PhCH ₂	Et.hy1	OH,	ОН
2713	OMe	1	PhCH ₂	n-Propyl	OH,	ОН
2714	OMe	1	PhCH ₂	n-Butyl	OH,	ОН
2715	OMe	1	PhCH ₂	CH28CH3	OH,	OH
2716	OMe	1	PhCH ₂	CH ₂ (80) CH ₃	OH,	OH
2717	ОМе	1	PhCH ₂	CH ₂ (80 ₂) CH ₃	OH,	OH
2718	OMe	1	PhCH ₂	CH2CH28CH3	OH,	OH
2719	OMe	1	PhCH ₂	CH2CH2 (80) CH3	OH,	OH
2720	OMe	1	PhCH ₂	CH2CH2 (SO) 2CH3	OH,	ОН
2721	OMe	1	PhCH ₂	CH ₂ CN	OH,	ОН
2722	OMe	1	PhCH ₂	CH2CH2CN	OH,	OH
272 3	OMe	1	PhCH ₂	CH2CH2CH2CN	OH,	OH
2724	OMe	1	PhCH ₂	CF3	OH,	OH
2725	OMe	1	PhCH ₂	CF2CF3	OH,	ОН
2726	ОМе	1	PhCH ₂	CF2CF2CF3	OH,	OH
2727	OMe	1	PhCH ₂	CF2CF2CF2CF3	OH,	ОН
2728	OMe	1	PhCH ₂	F ₅ -Ph	OH,	OH
2729	OMe	1	PhCH ₂	СH ₂ СО ₂ Н	OH,	OH
2730	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH,	ОН
2731	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	OH,	ОН
2732	OMe	1	PhCH ₂	CH2CN4H	OH,	ОН
2733	OMe	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH,	ОН
2734	OMe	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	OH,	ОН
2735	OMe	1	PhCH ₂	CH ₂ NO ₂	OH,	ОН
2736	OMe	1	PhCH ₂	(CH ₂) ₂ NO ₂	OH,	OH
2737	OMe	1	PhCH ₂	(CH ₂) 3NO ₂	OH,	ОН
2738	OMe	1	PhCH ₂	СH ₂ ОН	OH,	ОН
2739	OMe	1	PhCH ₂	(CH ₂) ₂ OH	OH,	OH
2740	OMe	1	PhCH ₂	(CH ₂) ₃ OH	OH,	ОН
2741	OMe	1	PhCH ₂	CH ₂ CO ₂ Me	OH,	ОН
2742	OMe	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	OH,	ОН
2743	OMe	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	OH,	OH
2744	OMe	1	PhCH ₂	3-NO2-Ph	OH,	ОН

2745	OMe	1	PhCH ₂	4-NO ₂ -Ph	он, он	
2746	OMe	1	PhCH ₂	3-00 ₂ H-Ph	он, он	
2747	OMe	1	PhCH ₂	4-CO ₂ H-Ph	он, он	
2748	OMe	1	PhCH ₂	3-CN4H-Ph	он, он	
2749	OMe	1	PhCH ₂	4-CN4H-Ph	он, он	
2750	OMe	1	PhCH ₂	3 - (HOCH ₂) - Ph	он, он	
2751	OMe	1	PhCH ₂	4 - (HOCH ₂) - Ph	он, он	
2752	CH2NH2	1	PhCH2CH2	н	(+)-pin	BI
2753	CH ₂ NH ₂	1	PhCH2CH2	Methyl	(+)-pin	
2754	CH ₂ NH ₂	ı	PhCH2CH2	Ethyl	(+)-pin	
2755	CH ₂ NH ₂	1	PhCH2CH2	n-Propyl	(+)-pin	
2756	CH2NH2	1	PhCH2CH2	n-Butyl	(+)-pin	
2757	CH2NH2	1	PhCH2CH2	CH28CH3	(+)-pin	
2758	CH ₂ NH ₂	1	PhCH2CH2	CH ₂ (80) CH ₃	(+)-pin	
2759	CH ₂ NH ₂	1	PhCH2CH2	CH ₂ (SO ₂) CH ₃	(+)-pin	
2760	CH ₂ NH ₂	1	PhCH2CH2	CH2CH28CH3	(+)-pin	
2761	CH2NH2	1	PhCH2CH2	CH ₂ CH ₂ (SO) CH ₃	(+)-pin	
2762	CH2NH2	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (80) ₂ CH ₃	(+)-pin	
2763	CH2NH2	1	$PhCH_2CH_2$	CH ₂ CN	(+)-pin	
2764	CH2NH2	1	PhCH2CH2	CH ₂ CH ₂ CN	(+)-pin '	
2765	CH2NH2	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin	
2766	CH2NH2	1	PhCH ₂ CH ₂	CF ₃	(+)-pin	
2767	CH2NH2	1	PhCH2CH2	CF2CF3	(+)-pin	
2768	CH2NH2	1	PhCH2CH2	CF2CF2CF3	(+)-pin	
2769	CH2NH2	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin	
2770	CH2NH2	1	PhCH2CH2	F5-Ph	(+)-pin	
2771	CH2NH2	1	PhCH2CH2	CH2CO2H	(+)-pin	
2772	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin	
2773	CH2NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	(+)-pin	
2774	CH2NH2	1	PhCH2CH2	CH2CN4H	(+)-pin	
2775	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin	
2776	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	(+)-pin	
2777	CH2NH2	1	PhCH2CH2	CH2NO2	(+)-pin	
2778	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin	
2779	CH ₂ NH ₂	1	PhCH2CH2	(CH ₂) 3NO ₂	(+)-pin	
2780	CH2NH2	1	PhCH2CH2	сн ₂ он	(+)-pin	CZ.
2781	CH2NH2	1	PhCH2CH2	CH2OCH2Ph	(+)-pin	DA
2782	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin	
2783	CH2NH2	1	PhCH2CH2	(CH ₂) ₃ OH	(+)-pin	
2784	CH2NH2	1	PhCH2CH2	CH ₂ CO ₂ Me	(+)-pin	

2785	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	(+)-pin
2786	CH2NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	(+)-pin
2787	CH2NH2	1	PhCH2CH2	3-NO2-Ph	(+)-pin
2788	CH2NH2	1	PhCH2CH2	4-NO2-Ph	(+)-pin
2789	CH2NH2	1	PhCH2CH2	3-∞2H-Ph	(+)-pin
2790	CH2NH2	1	PhCH2CH2	4-00 ₂ H-Ph	(+)-pin
2791	CH2NH2	1	PhCH2CH2	3-CN ₄ H-Ph	(+)-pin
2792	CH2NH2	1	PhCH ₂ CH ₂	4-CN4H-Ph	(+)-pin
2793	CH2NH2	1	PhCH ₂ CH ₂	3 - (HOCH ₂) - Ph	(+)-pin
2794	CH2NH2	1	PhCH ₂ CH ₂	4-(HOCH ₂)-Ph	(+)-pin
2795	NH (C=NH) NH ₂	1	PhCH2CH2	н	(+)-pin
2796	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	Methyl	(+)-pin
2797	NH (C=NH) NH ₂	1	PhCH2CH2	Ethyl	(+)-pin
2798	NH (C=NH) NH ₂	1	PhCH2CH2	n-Propyl	(+)-pin
2799	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	n-Butyl	(+)-pin
2800	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ SCH ₃	(+)-pin
2801	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ (SO) CH ₃	(+)-pin
2802	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	(+)-pin
2803	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH2SCH3	(+)-pin
2804	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ CH ₂ (so) CH ₃	(+)-pin
2805	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH2 (SO) 2CH3	(+)-pin
2806	NH (C=NH) NH ₂	1 .	PhCH2CH2	CH ₂ CN	(+)-pin
2807	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH2CN	(+)-pin
2808	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
2809	NH (C=NH) NH ₂	1	PhCH2CH2	CF ₃	(+)-pin
2810	NH (C=NH) NH ₂	1	PhCH2CH2	CF ₂ CF ₃	(+)-pin
2811	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF3	(+)-pin
2812	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
2813	NH (C=NH) NH ₂	1	PhCH2CH2	F ₅ -Ph	(+)-pin
2814	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH2CO2H	(+)-pin
2815	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
2816	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
2817	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH2CN4H	(+)-pin
2818	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin
2819	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	(+)-pin
2820	NH (C=NH) NH ₂	1	PhCH2CH2	CH2NO2	(+)-pin
2821	ин (с=ин) ин ₂	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
2822	ин (С=ин) ин ₂	1	PhCH2CH2	(CH ₂) ₃ NO ₂	(+)-pin
2823	NH (C=NH) NH ₂	ı	PhCH2CH2	CH ₂ OH	(+)-pin
2824	NH (C-NH) NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	(+)-pin

2025	NIII / C-NIII / NIII -		PhCH ₂ CH ₂	(CH ₂) ₃ OH	1.1	_4_	
2825 2826	NH (C=NH) NH ₂ NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ CO ₂ Me	(+)-		
2827	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	(+) - (+) -		
2828	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me			
2829	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	(+) -		
2830	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	4-NO ₂ -Ph	(+) - (+) -		
2831	NH (C=NH) NH ₂	1	PhCH2CH2	3-002H-bh ,			
2832	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	4-∞ ₂ H-Ph	(+) - (+) -		
2833	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	3-CN ₄ H-Ph	(+) -	_	
2834	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	(+) -		
2835	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	3 - (HOCH ₂) - Ph			
2836	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	4 - (HOCH ₂) - Ph	(+) -		
2837	CH ₂ NH ₂	1	PhCH ₂ CH ₂	н	(+)-		D.T
2838	CH ₂ NH ₂	1	PhCH ₂ CH ₂	Methyl	OH,		BJ
2839	CH2NH2	1	PhCH ₂ CH ₂	Ethyl	OH,		
2840	CH ₂ NH ₂	1	PhCH ₂ CH ₂	n-Propyl	OH,		
2841	CH ₂ NH ₂	1	PhCH ₂ CH ₂	n-Butyl	OH,		
2842	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ SCH ₃	OH,		
2843	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ (80) CH ₃	OH,		
2844	CH2NH2	1	PhCH ₂ CH ₂	CH ₂ (80 ₂) CH ₃	OH,		
2845	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	OH,		
2846	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (80) CH ₃	OH,		
2847	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	OH,		
2848	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	OH,		,
2849	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH ₂ CH ₂ CN	OH,		
2850	CH ₂ NH ₂	1	PhCH ₂ CH ₂	CH2CH2CH2CN	OH,		
2851	CH ₂ NH ₂		PhCH ₂ CH ₂	CF ₃			
		1		_	OH,		
2852 2853	CH2NH2	1	PhCH ₂ CH ₂ PhCH ₂ CH ₂	CF2CF3	OH,		
	CH2NH2	1	PhCH ₂ CH ₂	CF2CF2CF3	OH,		
2854	CH ₂ NH ₂	1		CF2CF2CF2CF3	OH,		
2855	CH ₂ NH ₂	1	PhCH ₂ CH ₂	_	OH,		
2856	CH ₂ NH ₂		PhCH ₂ CH ₂		OH,		
	CH ₂ NH ₂	1		(CH ₂) ₂ CO ₂ H	OH,		
2858	CH ₂ NH ₂	1		(CH ₂) ₃ CO ₂ H	OH,		
2859	CH ₂ NH ₂	1	PhCH ₂ CH ₂		OH,		
2860	CH ₂ NH ₂	1 .		(CH ₂) ₂ CN ₄ H	OH,		
2861	CH ₂ NH ₂	1		(CH ₂) ₃ CN ₄ H	OH,		
2862	CH ₂ NH ₂	1	PhCH ₂ CH ₂		OH,		
2863	CH ₂ NH ₂	1			OH,	OH -	
2864	CH ₂ NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ NO ₂	OH,	OH	

2865	CH2NH2	ı	PhCH2CH2	СН ₂ ОН	OI	i, oh
2866	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ OH	O1	i, oh
2867	CH2NH2	1	PhCH2CH2	(CH ₂) ₃ OH	OF	HO,
2868	CH2NH2	1	PhCH2CH2	CH ₂ CO ₂ Me	OH	и, он
2869	CH2NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	OH	н, он
2970	CH2NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	OH	, OH
2871	CH ₂ NH ₂	1	PhCH2CH2	3-NO ₂ -Ph	OH	і, он
2872	CH ₂ NH ₂	1	PhCH2CH2	4-NO2-Ph	OH	, OH
2873	CH ₂ NH ₂	1	PhCH2CH2	3-∞ ₂ H-Ph	OH	, он
2874	CH ₂ NH ₂	. 1	PhCH ₂ CH ₂	4-∞ ₂ H-Ph	OH	, он
2875	CH ₂ NH ₂	1	PhCH2CH2	3-CN4H-Ph	ОН	, OH
2876	CH ₂ NH ₂	1	PhCH2CH2	4-CN4H-Ph	OH	, OH
2877	CH ₂ NH ₂	1	PhCH2CH2	3-(HOCH ₂)-Ph	OH	, OH
2878	CH2NH2	1	PhCH2CH2	4- (HOCH ₂) -Ph	OH	, он
2879	NH (C=NH) NH ₂	1	PhCH2CH2	Н	OH	, OH
2880	NH (C=NH) NH ₂	1	PhCH2CH2	Methyl	ОН	, OH
2881	NH (C=NH) NH ₂	1	PhCH2CH2	Ethy1	ОН	, он
2882	NH (C=NH) NH ₂	1	$PhCH_2CH_2$	n-Propyl	ОН	, OH
2883	NH (C=NH) NH ₂	1	PhCH2CH2	n-Butyl	ОН	, OH
2884	NH (C=NH) NH2	1	PhCH ₂ CH ₂	CH28CH3	ОН	, OH
2885	NH (C=NH) NH ₂	1	$PhCH_2CH_2$	CH ₂ (80) CH ₃	ОН	, он
2886	NH (C=NH) NH ₂	1	$PhCH_2CH_2$	CH ₂ (80 ₂) CH ₃	ОН	, он
2887	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH28CH3	ОН	, он
2888	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH2 (80) CH3	ОН	, он
2889	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	$\mathrm{CH_2CH_2}(\mathrm{SO})_2\mathrm{CH_3}$	ОН	, он
2890	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH ₂ CN	ОН	, он
2891	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CH2CN	ОН	, он
2892	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CH2CH2CH2CN	ОН	, он
2893	NH (C=NH) NH ₂	1	$PhCH_2CH_2$	CF ₃	ОН	, он
2894	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	CF2CF3	OH,	, ОН
2895	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF3	ОН	, ОН
2896	NH (C=NH) NH ₂	1	PhCH2CH2	CF2CF2CF2CF3	ОН	, он
2897	NH (C=NH) NH ₂	1	$PhCH_2CH_2$	F5-Ph	ОН	ОН
2898	NH (C=NH) NH2	1	PhCH ₂ CH ₂	CH2CO2H	OH,	ОН
2899	NH (C=NH) NH2	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH,	ОН
2900	NH (C=NH) NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	OH,	ОН
2901	NH (C=NH) NH ₂	1	PhCH2CH2	CH2CN4H	он,	ОН
2902	NH (C=NH) NH ₂	. 1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	OH,	ОН
2903	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) 3CN ₄ H	OH,	OH
2904 .	NH (C=NH) NH ₂	1	PhCH2CH2	CH2NO2		ОН

2905	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ NO ₂	OH, OH
2906	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ NO ₂	он, он
2907	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ OH	он, он
2908	NH (C=NH) NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	он, он
2909	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₃ OH	OH, OH
2910	NH (C=NH) NH ₂	1	PhCH2CH2	CH ₂ CO ₂ Me	он, он
2911	NH (C=NH) NH ₂	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	он, он
2912	NH (C=NH) NH ₂	. 1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	OH, OH
2913	NH (C=NH) NH ₂	1	PhCH2CH2	3-NO ₂ -Ph	он, он
2914	NH (C=NH) NH ₂	1	PhCH2CH2	4-NO ₂ -Ph	он, он
2915	NH (C=NH) NH ₂	1	PhCH2CH2	3-00 ₂ H-Ph	он, он
2916	NH (C=NH) NH ₂	1	PhCH2CH2	4-002H-Ph	он, он
2917	NH (C=NH) NH ₂	1	PhCH2CH2	3-CN4H-Ph	он, он
2918	NH (C=NH) NH ₂	1	PhCH2CH2	4 - CN ₄ H - Ph	он, он
2919	NH (C=NH) NH ₂	1	PhCH2CH2	3- (HOCH ₂)-Ph	он, он
2920	NH (C=NH) NH ₂	1	PhCH2CH2	4-(HOCH ₂)-Ph	он, он
2921	-s-(C=NH)NH2	1	PhCH2CH2	H	(+)-pin
2922	-8-(C=NH)NH2	1	PhCH ₂ CH ₂	Methyl	(+)-pin
2923	-s-(C=NH)NH2	1	PhCH ₂ CH ₂	Ethyl	(+)-pin
2924	-s-(C=NH)NH2	1	PhCH2CH2	n-Propyl	(+)-pin
2925	-8-(C=NH)NH ₂	1	PhCH2CH2	n-Butyl	(+)-pin
2926	-8-(C=NH)NH2	. 1	PhCH ₂ CH ₂	CH2SCH3	(+)-pin
2927	-s-(C=NH)NH2	1	PhCH2CH2	CH ₂ (SO) CH ₃	(+)-pin
2928	-s-(C=NH)NH ₂	1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	(+)-pin
2929	-8-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH2CH2SCH3	(+)-pin
2930	-s-(C=NH)NH2	1	PhCH2CH2	CH ₂ CH ₂ (SO) CH ₃	(+)-pin
2931	-s-(C=NH)NH2	1	PhCH2CH2	CH2CH2 (SO) 2CH3	(+)-pin
2932	-8-(C=NH)NH ₂	1	PhCH2CH2	CH ₂ CN	(+)-pin
2933	-s-(C=NH)NH ₂	1	PhCH ₂ CH ₂	CH2CH2CN	(+)-pin
2934	-s-(C=NH)NH2	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
2935	-s-(c=NH)NH ₂	1	PhCH ₂ CH ₂	CF ₃	(+)-pin
2936	-s-(C=NH)NH2	1	PhCH ₂ CH ₂	CF2CF3	(+)-pin
2937	-s-(c=nh)nh ₂	1	PhCH2CH2	CP2CF2CF3	(+)-pin
2938	-s-(c=NH)NH ₂	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
2939	-s-(C=NH)NH2	1	PhCH ₂ CH ₂	F ₅ -Ph	(+)-pin
2940	-s-(C=NH)NH ₂	1	PhCH2CH2	CH2CO2H	(+)-pin
2941	-s-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
2942	-s-(c=NH)NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	(+)-pin
2943	-s-(C=NH)NH2	1	PhCH2CH2	CH2CN4H	(+)-pin
2944	-8-(C=NH)NH2	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin

2945	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	(+)-pin
2946	-8-(C=NH)NH ₂	1	PhCH2CH2	CH ₂ NO ₂	(+)-pin
2947	-s-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
2948	-s-(C=NH)NH2	1	PhCH2CH2	(CH ₂) 3NO ₂	(+)-pin
2949	-8-(C=NH)NH2	1	PhCH2CH2	СН ₂ ОН	(+)-pin
2950	-s-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
2951	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₃ OH	(+)-pin
2952	-8-(C=NH)NH2	1	PhCH2CH2	CH2CO2Me	(+)-pin
2953	-8-(C=NH)NH2	1	PhCH2CH2	$(CH_2)_2CO_2Me$	(+)-pin
2954	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	(+)-pin
2955	-8-(C=NH)NH ₂	1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin
2956	-s-(C=NH)NH2	1	PhCH2CH2	4-NO ₂ -Ph	(+)-pin
2957	-8-(C=NH)NH ₂	1	PhCH2CH2	3-00 ₂ H-Ph	(+)-pin
2958	-8-(C=NH)NH ₂	1	PhCH2CH2	4-∞ ₂ H-Ph	(+)-pin
2959	-s-(C=NH)NH2	1	PhCH2CH2	3 - CN4H - Ph	(+)-pin
2960	-8-(C=NH)NH2	1	PhCH2CH2	4-CN4H-Ph	(+)-pin
2961	-s-(c=nh)nh ₂	1	PhCH2CH2	3 - (HOCH ₂) - Ph	(+)-pin
2962	-8- (C=NH) NH2	1	PhCH ₂ CH ₂	4 - (HOCH ₂) -Ph	(+)-pin
2963	-8-(C=NH)NH2	1	PhCH2CH2	н	OH, OH
2964	-s-(C=NH)NH2	1	PhCH2CH2	Methyl	OH, OH
2965	-8-(C=NH)NH2	1	PhCH2CH2	Ethyl	OH, OH
2966	-s-(c=NH)NH2	1	PhCH2CH2	n-Propyl	OH, OH
2967	-s-(C=NH)NH2	1	PhCH2CH2	n-Butyl	OH, OH
2968	-S-(C=NH)NH2	1	PhCH2CH2	CH ₂ SCH ₃	OH, OH
2969	-s-(c=NH)NH2	1	PhCH2CH2	CH ₂ (so) CH ₃	OH, OH
2970	-s-(c=nh)nH2	1	PhCH2CH2	CH ₂ (50 ₂) CH ₃	OH, OH
2971	-s-(c=NH)NH2	1	PhCH2CH2	CH2CH2SCH3	он, он
2972	-s-(c=nh)nh2	1	PhCH2CH2	$\mathrm{CH_2CH_2}(\mathrm{SO})\mathrm{CH_3}$	он, он
2973	-s-(c=nh)nh2	1	PhCH2CH2	$CH_2CH_2(SO)_2CH_3$	он, он
2974	-s-(c=nh)nh2	, 1	PhCH2CH2	CH ₂ CN	он, он
2975	-s-(C=NH)NH2	1	PhCH2CH2	CH2CH2CN	он, он
2976	-s-(c=nh)nh ₂	1	PhCH2CH2	CH2CH2CH2CN	он, он
2977	-s-(c=NH)NH ₂	1	$PhCH_2CH_2$	CF ₃	он, он
2978	-s-(c=nh)nh2	ı	$PhCH_2CH_2$	CF2CF3	он, он
2979	-s-(c=nh)nh2	1	PhCH2CH2	CF2CF2CF3	он, он
2980	-s-(c=NH)NH ₂	1	PhCH ₂ CH ₂	CF2CF2CF2CF3	ОН, ОН
2981	-s-(c=nh)nh2	1	PhCH2CH2	F5-Ph	он, он
2982	-s-(C=NH)NH2	1	PhCH2CH2	сн2со2н	он, он
2983	-s-(c=nh)nh2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	OH, OH
2984	-s-(c=NH)NH ₂	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ H	он, он
	•				

2985	-8-(C=NH)NH2	1	PhCH2CH2	CH2CN4H	он, он
2986	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	он, он
2987	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	OH, OH
2988	-8-(C=NH)NH2	1	PhCH ₂ CH ₂	CH2NO2	он, он
2989	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₂ NO ₂	он, он
2990	-8-(C=NH)NH2	1	$PhCH_2CH_2$	(CH ₂) 3NO ₂	он, он
2991	-s-(c=NH)NH2	1	PhCH2CH2	СH ₂ OH	он, он
2992	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₂ OH	он, он
2993	-s-(c=NH)NH2	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	он, он
2994	-8-(C=NH)NH2	1	$PhCH_2CH_2$	CH ₂ CO ₂ Me	он, он
2995	-8-(C=NH)NH2	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	он, он
2996	-s-(c=NH)NH2	1 .	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	он, он
2997	-s-(C=NH)NH2	1	PhCH2CH2	3-NO ₂ -Ph	он, он
2998	-s-(c=NH)NH2	1	PhCH2CH2	4-NO ₂ -Ph	он, он
2999	-s-(c=NH)NH2	1	PhCH2CH2	3-002H-Ph	он, он
3000	-s-(C=NH)NH2	1	PhCH2CH2	4-CO ₂ H-Ph	он, он
3001	-s-(C=NH)NH2	1	PhCH ₂ CH ₂	3-CN4H-Ph	он, он
3002	-s-(C=NH)NH2	1	PhCH2CH2	4 - CN4H - Ph	он, он
3003	-s-(C=NH)NH2	1	PhCH ₂ CH ₂	3 - (HOCH ₂) - Ph	он, он
3004	-s-(C=NH)NH2	1	PhCH2CH2	4-(HOCH ₂)-Ph	он, он
3005	OMe	1	$PhCH_2CH_2$	н	(+)-pin
3006	OMe	1	PhCH2CH2	Methyl	(+)-pin
3007	OMe	1	PhCH2CH2	Ethyl	(+)-pin
3008	OMe	1	PhCH2CH2	n-Propyl	(+)-pin
3009	OMe	1	PhCH2CH2	n-Butyl	(+)-pin
3010	OMe	1	PhCH2CH2	CH2SCH3	(+)-pin
3011	OMe	1	PhCH2CH2	CH ₂ (SO) CH ₃	(+)-pin
3012	OMe	1	PhCH2CH2	CH ₂ (SO ₂) CH ₃	(+)-pin
3013	OMe	1	PhCH2CH2	CH2CH2SCH3	(+)-pin
3014	OMe	1	PhCH2CH2	CH2CH2 (SO) CH3	(+)-pin
3015	OMe	. 1	PhCH2CH2	CH2CH2 (SO) 2CH3	(+)-pin
3016	OMe	1	PhCH2CH2	CH2CN	(+)-pin
3017	OMe	1	PhCH ₂ CH ₂	CH2CH2CN	(+)-pin
3018	OMe	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
3019	OMe	1	PhCH2CH2	CF ₃	(+)-pin
3020	OMe	1	PhCH2CH2	CF2CF3	(+)-pin
3021	OMe	1	PhCH2CH2	CF2CF2CF3	(+)-pin
3022	OMe	1	PhCH ₂ CH ₂	CF2CF2CF2CF3	(+)-pin
3023	OMe	1	PhCH2CH2	F5-Ph	(+)-pin
3024	OMe	1	PhCH2CH2	CH2CO2H	(+)-pin
					-

3025	ОМе	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
3026	OMe	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	(+)-pin
3027	OMe	1,	PhCH2CH2	CH2CN4H	(+)-pin
3028	ОМе	, 1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin
3029	ОМе	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	(+)-pin
3030	OMe	1	PhCH2CH2	CH2NO2	(+)-pin
3031	OMe	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
3032	OMe	1	PhCH2CH2	(CH ₂) ₃ NO ₂	(+)-pin
3033	OMe	1	PhCH2CH2	CH ₂ OH	(+)-pin
3034	OMe	1,	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
3035	OMe	1	PhCH2CH2	(CH ₂) ₃ OH	(+)-pin
3036	OMe	1	PhCH2CH2	CH ₂ CO ₂ Me	(+)-pin
3037	OMe	1	$PhCH_2CH_2$	(CH ₂) ₂ CO ₂ Me	(+)-pin
3038	OMe	1	$PhCH_2CH_2$	(CH ₂) ₃ CO ₂ Me	(+)-pin
3039	OMe	1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin
3040	OMe	1	$PhCH_2CH_2$	4-NO ₂ -Ph	(+)-pin
3041	OMe	1.	PhCH2CH2	3-00 ₂ H-Ph	(+)-pin
3042	OMe	1	PhCH ₂ CH ₂	4-∞2H-Ph	(+)-pin
3043	OMe	1	PhCH2CH2	3-CN4H-Ph	(+)-pin
3044	ОМе	1	PhCH2CH2	4-CN4H-Ph	(+)-pin
3045	OMe	1	$PhCH_2CH_2$	3-(HOCH ₂)-Ph	(+)-pin
3046	OMe	1	$PhCH_2CH_2$	4-(HOCH ₂)-Ph	(+)-pin
3047	OMe	1	PhCH2CH2	Н	он, он
3048	OMe	1	PhCH2CH2	Methyl	он, он
3049	OMe	1	$PhCH_2CH_2$	Ethyl	он, он
3050	OMe	1	$PhCH_2CH_2$	n-Propyl	он, он
3051	OMe	1	PhCH ₂ CH ₂	n-Butyl	он, он
3052	OMe	1	PhCH2CH2	CH ₂ 8CH ₃	он, он
3053	OMe	1	$PhCH_2CH_2$	CH ₂ (SO) CH ₃	он, он
3054	OMe	1	PhCH2CH2	CH ₂ (SO ₂) CH ₃	он, он
3055	OMe	1	PhCH ₂ CH ₂	CH ₂ CH ₂ SCH ₃	он, он
3056	OMe	1	PhCH2CH2	CH2CH2 (SO) CH3	он, он
3057	OMe	1	$PhCH_2CH_2$	$\mathrm{CH_2CH_2}(\mathrm{SO})_2\mathrm{CH_3}$	он, он
3058	OMe	1	$PhCH_2CH_2$	CH ₂ CN	он, он
3059	OMe	1	$PhCH_2CH_2$	CH2CH2CN	он, он
3060	OMe	1.	PhCH2CH2	CH2CH2CH2CN	он, он
3061	OMe	1	PhCH2CH2	CF3	он, он
3062	OMe	1	PhCH2CH2	CF2CF3	он, он
3063	OMe	1	PhCH2CH2	CF2CF2CF3	он, он
3064	OMe	1	PhCH2CH2	CF2CF2CF2CF3	он, он

3065	OMe	1	PhCH2CH2	F ₅ -Ph	он, он
3066	OMe	Ŀ	PhCH2CH2	CH2CO2H	он, он
3067	OMe	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	он, он
3068	OMe	ı	PhCH2CH2	(CH ₂) ₃ CO ₂ H	он, он
3069	OMe	1	PhCH ₂ CH ₂	CH2CN4H	он, он
3070	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ CN ₄ H	он, он
3071	OMe	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	он, он
3072	OMe	1	PhCH2CH2	CH2NO2	он, он
3073	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ NO ₂	он, он
3074	OMe	1	PhCH2CH2	(CH ₂) ₃ NO ₂	он, он
3075	OMe	1	PhCH2CH2	CH ₂ OH	он, он
3076	OMe	1	PhCH ₂ CH ₂	(CH ₂) ₂ OH	он, он
3077	OMe	,1	PhCH2CH2	(CH ₂) ₃ OH	он, он
3078	OMe	1	PhCH2CH2	CH ₂ CO ₂ Me	он, он
3079	OMe	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	он, он
3080	OMe	1	PhCH2CH2	(CH ₂) ₃ CO ₂ Me	он, он
3081	OMe	1	PhCH2CH2	3-NO ₂ -Ph	он, он
3082	OMe	1	PhCH2CH2	4-NO ₂ -Ph	он, он
3083	OMe	1	PhCH2CH2	3-002H-Ph	он, он
3084	OMe	1	PhCH2CH2	4-002H-Ph	OH, OH
3085	OMe	1	PhCH ₂ CH ₂	3-CN4H-Ph	он, он
3086	OMe	1	PhCH ₂ CH ₂	4-CN4H-Ph	он, он
3087	OMe	1	PhCH2CH2	3- (HOCH ₂)-Ph	OH, OH
3088	OMe	1	PhCH2CH2	4 - (HOCH ₂) - Ph	OH, OH
3089	NH (C=NH) H	1	Ph	H .	(+)-pin
3090	NH (C=NH) H	1	Ph	Methyl	(+)-pin
3091	NH (C=NH) H	1	Ph	Ethyl	(+)-pin
3092	NH (C=NH) H	1	Ph	n-Propyl	(+)-pin
3093	NH (C=NH) H	1	Ph	n-Butyl	(+)-pin
3094	NH (C-NH) H	1	Ph	CH28CH3	(+)-pin
3095	NH (C=NH) H	1	Ph	CH ₂ (80) CH ₃	(+)-pin
3096	NH (C=NH) H	1	Ph	CH ₂ (80 ₂) CH ₃	(+)-pin
3097	NH (C=NH) H	1	Ph	CH2CH28CH3	(+)-pin
3098	NH (C=NH) H	1	Ph	CH ₂ CH ₂ (SO) CH ₃	(+)-pin
3099	NH (C=NH) H	1 .	Ph	CH2CH2 (SO) 2CH3	(+)-pin
3100	NH (C=NH) H	1	Ph	CH2CN	(+)-pin
3101	NH (C=NH) H	1	Ph	CH2CH2CN	(+)-pin
3102	NH (C=NH) H	1	Ph	CH2CH2CH2CN	(+)-pin
3103	NH (C=NH) H	1.	Ph .	CF3	(+)-pin
3104	NH (C=NH) H	1	Ph	CF2CF3	(+)-pin

3105	NH (C=NH) H	1	Ph	CF2CF2CF3	(+)	-pin
3106	NH (C=NH) H	1	Ph	CF2CF2CF3	(+)	-pin
3107	NH (C=NH) H	1	Ph	F5-Ph	(+)	-pin
3108	NH (C=NH) H	1	Ph	CH2CO2H	(+)	-pin
3109	NH (C=NH) H	1	Ph	(CH ₂) ₂ CO ₂ H	(+)	-pin
3110	NH (C=NH) H	1	Ph	(CH ₂) ₃ CO ₂ H	(+)	-pin
3111	NH (C=NH) H	1	Ph	CH2CN4H	(+)	-pin
3112	NH (C=NH) H	1	Ph	(CH ₂) ₂ CN ₄ H	(+)	-pin
3113	NH (C=NH) H	1	Ph	(CH ₂) ₃ CN ₄ H	(+)	-pin
3114	NH (C=NH) H	1	Ph	CH ₂ NO ₂	(+)	-pin
3115	NH (C=NH) H	1	Ph	(CH ₂) ₂ NO ₂	(+)	-pin
3116	NH (C=NH) H	1	Ph	(CH ₂) 3NO ₂	(+)	-pin
3117	NH (C=NH) H	1	Ph	СН ₂ ОН	(+)	-pin
3118	NH (C=NH) H	1	Ph	(CH ₂) ₂ OH	. (+)	-pin
3119	NH (C=NH) H	1	Ph	(CH ₂) ₃ OH	(+)	-pin
3120	NH (C=NH) H	1	Ph	CH ₂ CO ₂ Me	(+)	-pin
3121	NH (C=NH) H	1	Ph	(CH ₂) ₂ CO ₂ Me	(+)	-pin
3122	NH (C=NH) H	1	Ph	$(CH_2)_3CO_2Me$	(+)	-pin
3123	NH (C=NH) H	1	Ph	3-NO ₂ -Ph	(+)	-pin
3124	NH (C=NH) H	1	Ph	4-NO ₂ -Ph	(+)	-pin
3125	NH (C=NH) H	1	Ph	3-00 ₂ H-Ph	(+)	-pin
3126	NH (C=NH) H	1	Ph	4-00 ₂ H-Ph	(+)	-pin
3127	NH (C=NH) H	1	Ph	3-CN4H-Ph	(+)	-pin
3128	NH (C=NH) H	1	Ph	4 - CN ₄ H - Ph	(+)	-pin
3129	NH (C=NH) H	1	Ph	3 - (HOCH ₂) - Ph	(+)	-pin
3130	NH (C=NH) H	1	Ph	4-(HOCH ₂)-Ph	(+)	-pin
3131	NH (C=NH) H	· 1	Ph	H ·	OH,	OH
3132	NH (C=NH) H	1	Ph	Methyl	OH,	ОН
3133	NH (C=NH) H	1	Ph	Ethyl	OH,	OH
3134	NH (C=NH) H	1	Ph	n-Propyl	OH,	OH
3135	NH (C=NH) H	1	Ph	n-Butyl	OH,	OH
3136	NH (C=NH) H	1	Ph	CH28CH3	OH,	OH
3137	NH (C=NH) H	1	Ph	CH ₂ (80) CH ₃	OH,	ОН
3138	NH (C=NH) H	1	Ph	CH ₂ (SO ₂) CH ₃	OH,	ОН
3139	NH (C=NH) H	1	Ph	CH2CH2SCH3	OH,	ОН
3140	NH (C=NH) H	1	Ph	CH2CH2 (SO) CH3	OH,	ОН
3141	NH (C=NH) H	1	Ph	CH ₂ CH ₂ (SO) ₂ CH ₃	OH,	ОН
3142	NH (C=NH) H	1	Ph	CH ₂ CN	OH,	
3143	NH (C=NH) H	1	Ph	CH2CH2CN	OH,	ОН
3144	· NH (C=NH) H	1	Ph	CH2CH2CH2CN	OH,	ОН
				- -		

3145	NH (C=NH) H	1	Ph	CF ₃	он, он
3146	NH (C=NH) H	1	Ph	CF2CF3	он, он
3147	NH (C=NH) H	1	Ph	CF2CF2CF3	он, он
3148	NH (C=NH) H	1	Ph	CF2CF2CF2CF3	он, он
3149	NH (C=NH) H	1	Ph	F5-Ph	он, он
3150	NH (C=NH) H	1	Ph	CH2CO2H	он, он
3151	NH (C=NH) H	1	Ph	(CH ₂) ₂ CO ₂ H	он, он
3152	NH (C=NH) H	1	Ph	(CH ₂) ₃ CO ₂ H	он, он
3153	NH (C=NH) H	1	Ph	CH2CN4H	он, он
3154	NH (C=NH) H	1	Ph	(CH ₂) ₂ CN ₄ H	он, он
3155	NH (C=NH) H	1	Ph	(CH ₂) ₃ CN ₄ H	он, он
3156	NH (C=NH) H	1	Ph	CH ₂ NO ₂	он, он
3157	NH (C=NH) H	. 1	Ph	$(CH_2)_2NO_2$	он, он
3158	NH (C=NH) H	1	Ph	$(CH_2)_3NO_2$	он, он
3,159	NH (C=NH) H	1	Ph	CH ₂ OH	OH, OH
3160	NH (C=NH) H	1	Ph	(CH ₂) ₂ OH	он, он
3161	NH (C=NH) H	1	Ph	(CH ₂) ₃ OH	он, он
3162	NH (C=NH) H	1	Ph	CH ₂ CO ₂ Me	он, он
3163	NH (C=NH) H	1	Ph	$(CH_2)_2CO_2Me$	он, он
3164	NH (C=NH) H	1	Ph	(CH ₂) ₃ CO ₂ Me	он, он
3165	NH (C=NH) H	1	Ph	3-NO ₂ -Ph	он, он
3166	NH (C=NH) H	1	Ph	4-NO ₂ -Ph	OH, OH
3167	NH (C=NH) H	1	Ph	3-00 ₂ H-Ph	он, он
3168	NH (C=NH) H	1	Ph	4-00 ₂ H-Ph	OH, OH
3169	NH (C=NH) H	1	Ph	3-CN ₄ H-Ph	OH, OH
3170	NH (C=NH) H	1	Ph	4-CN ₄ H-Ph	он, он
3171	NH (C=NH) H	1	Ph	3 - (HOCH ₂) - Ph	он, он
3172	NH (C=NH) H	1	Ph	4-(HOCH ₂)-Ph	он, он
3173	NH (C=NH) H	1	PhCH ₂	н	(+)-pin
3174	NH (C=NH) H	1	PhCH ₂	Methyl	(+)-pin
3175	NH (C=NH) H	1	PhCH ₂	Ethyl	(+)-pin
3176	NH (C=NH) H	1	PhCH ₂	n-Propyl	(+)-pin
3177	NH (C=NH) H	. 1	PhCH ₂	n-Butyl	(+)-pin
3178	NH (C=NH) H	1	PhCH ₂	CH ₂ 8CH ₃	(+)-pin
3179	NH (C=NH) H	1	PhCH ₂	CH ₂ (SO) CH ₃	(+)-pin
3180	NH (C=NH) H	1	PhCH ₂	CH ₂ (SO ₂) CH ₃	(+)-pin
3181	NH (C=NH) H	1	PhCH ₂		(+)-pin
3182	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ (SO) CH ₃	(+)-pin
3183	NH (C=NH) H	1	PhCH ₂	CH ₂ CH ₂ (SO) ₂ CH ₃	(+)-pin
3184	NH (C=NH) H	1	PhCH ₂	CH ₂ CN	(+)-pin

3185	NH (C=NH) H	1	PhCH ₂	CH2CH2CN	(+)-pin
3186	NH (C=NH) H	1	PhCH ₂	CH2CH2CH2CN	(+)-pin
3187	NH (C=NH) H	1	PhCH ₂	CF ₃	(+)-pin
3188	NH (C=NH) H	1	PhCH ₂	CF2CF3	(+)-pin
3189	NH (C=NH) H	1	PhCH ₂	CF2CF2CF3	(+)-pin
3190	NH (C=NH) H	1	PhCH ₂	CF2CF2CF2CF3	(+)-pin
3191	NH (C=NH) H	1	PhCH ₂	F5-Ph	(+)-pin
3192	NH (C=NH) H	1	PhCH ₂	CH2CO2H	(+)-pin
3193	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	(+)-pin
3194	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	(+)-pin
3195	NH (C=NH) H	1	PhCH ₂	CH2CN4H	(+)-pin
3196	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	(+)-pin
3197	NH (C-NH) H	1	PhCH ₂	$(CH_2)_3CN_4H$	(+)-pin
3198	NH (C—NH) H	1	PhCH ₂	CH ₂ NO ₂	(+)-pin
3199	NH (C=NH) H	1	PhCH ₂	$(CH_2)_2NO_2$	(+)-pin
3200	NH (C=NH) H	1	PhCH ₂	$(CH_2)_{3}NO_2$	(+)-pin
3201	NH (C=NH) H	1	PhCH ₂	СН ₂ ОН	(+)-pin
3202	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
3203	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ OH	(+)-pin
3204	NH (C=NH) H	1	PhCH ₂	CH ₂ CO ₂ Me	(+)-pin
3205	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	(+)-pin
3206	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
3207	NH (C=NH) H	1	PhCH ₂	3-NO ₂ -Ph	(+)-pin
3208	NH (C=NH) H	1	PhCH ₂	4-NO ₂ -Ph	(+)-pin
3209	NH (C=NH) H	1	PhCH ₂	3-\omega_H-Ph	(+)-pin
3210	NH (C=NH) H	1	PhCH ₂	4-CO ₂ H-Ph	(+)-pin
3211	NH (C=NH) H	1	PhCH ₂	3-CN4H-Ph	(+)-pin
3212	NH (C=NH) H	1	PhCH ₂	4 - CN4H - Ph	(+)-pin
3213	NH (C=NH) H	1	PhCH ₂	3 - (HOCH ₂) - Ph	(+)-pin
3214	NH (C=NH) H	1	PhCH ₂	4 - (HOCH ₂) -Ph	(+)-pin
3215	NH (C=NH) H	1	PhCH ₂	Н	он, он
3216	NH (C=NH) H	1	PhCH ₂	Methyl	он, он
3217	NH (C=NH) H	1	PhCH ₂	Ethyl	OH, OH
3218	NH (C=NH) H	1	PhCH ₂	n-Propyl	OH, OH
3219	NH (C=NH) H	1	PhCH ₂	n-Butyl	он, он
3220	NH (C=NH) H	1	PhCH ₂	СН ₂ SCH ₃	ОН, ОН
3221	NH (C=NH) H	1	PhCH ₂	CH ₂ (SO) CH ₃	он, он
3222	NH (C=NH) H	1	PhCH ₂	CH ₂ (SO ₂) CH ₃	ОН, ОН
3223	NH (C=NH) H	1	PhCH ₂	CH2CH28CH3	он, он
3224	NH (C=NH) H	1	PhCH ₂	CH2CH2(SO)CH3	ОН, ОН

3225	NH (C=NH) H	1	PhCH ₂	CH2CH2 (80) 2CH3	он, он
3226	NH (C=NH) H	1	PhCH ₂	CH ₂ CN	он, он
3227	NH (C=NH) H	1	PhCH ₂	CH2CH2CN	он, он
3228	NH (C=NH) H	1	PhCH ₂	CH2CH2CH2CN	он, он
3229	NH (C=NH) H	1	PhCH ₂	CF ₃	он, он
3230	NH (C=NH) H	1	PhCH ₂	CF2CF3	он, он
3231	NH (C=NH) H	1	PhCH ₂	CF2CF2CF3	он, он
3232	NH (C=NH) H	1	PhCH ₂	CF2CF2CF2CF3	он, он
3233	NH (C=NH) H	1	PhCH ₂	F ₅ -Ph	он, он
3234	NH (C=NH) H	1	PhCH ₂	CH ₂ CO ₂ H	он, он
3235	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ H	OH, OH
3236	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ H	он, он
3237	NH (C=NH) H	1	PhCH ₂	CH2CN4H	OH, OH
3238	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CN ₄ H	OH, OH
3239	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CN ₄ H	он, он
3240	NH (C=NH) H	1	PhCH ₂	CH ₂ NO ₂	он, он
3241	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ NO ₂	он, он
3242	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ NO ₂	он, он
3243	NH (C=NH) H	1	PhCH ₂	CH2OH	он, он
3244	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ OH	он, он
3245	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ OH	OH, OH
3246	NH (C=NH) H	1	PhCH ₂	CH ₂ CO ₂ Me	он, он
3247	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₂ CO ₂ Me	он, он
3248	NH (C=NH) H	1	PhCH ₂	(CH ₂) ₃ CO ₂ Me	он, он
3249	NH (C=NH) H	1	PhCH ₂	3-NO ₂ -Ph	OH, OH
3250	NH (C=NH) H	1	PhCH ₂	4-NO ₂ -Ph	он, он
3251	NH (C=NH) H	1	PhCH ₂	3-CO ₂ H-Ph	OH, OH
3252	NH (C=NH) H	1	PhCH ₂	4-CO ₂ H-Ph	OH, OH
3253	NH (C=NH) H	1	PhCH ₂	3-CN4H-Ph	он, он
3254	NH (C=NH) H	1	PhCH ₂	4-CN ₄ H-Ph	он, он
3255	NH (C=NH) H	1	PhCH ₂	3 - (HOCH ₂) - Ph	он, он
3256	NH (C=NH) H	1	PhCH ₂	4 - (HOCH ₂) - Ph	он, он
3257	NH (C=NH) H	1	PhCH2CH2	Н	(+)-pin
3258	NH (C=NH) H	1	PhCH ₂ CH ₂	Methyl	(+)-pin
3259	NH (C=NH) H	1	PhCH2CH2	Ethyl	(+)-pin
3260	NH (C-NH) H	1 .	PhCH2CH2	n-Propyl	(+)-pin
3261	NH (C-NH) H	1	PhCH2CH2	n-Butyl	(+)-pin
3262	NH (C=NH) H	1	PhCH2CH2	CH ₂ SCH ₃	(+)-pin
3263	NH (C=NH) H	1	PhCH2CH2	CH ₂ (80) CH ₃	(+)-pin
3264	NH (C=NH) H	1	PhCH2CH2	CH ₂ (SO ₂) CH ₃	(+)-pin

3265	NH (C=NH) H	ı	PhCH2CH2	CH2CH2SCH3	(+)-pin
3266	nh (c=nh) h	1	PhCH2CH2	CH2CH2 (SO) CH3	(+)-pin
3267	nh (c=nh) h	1	PhCH2CH2	CH2CH2 (80) 2CH3	(+)-pin
3268	nh (c=nh) h	1	PhCH2CH2	CH ₂ CN	(+)-pin
3269	NH (C=NH) H	. 1	PhCH2CH2	CH2CH2CN	(+)-pin
327.0	NH (C=NH) H	1	PhCH2CH2	CH2CH2CH2CN	(+)-pin
3271	NH (C -N H) H	. 1	PhCH2CH2	CF ₃	(+)-pin
3272	NH (C=NH) H	1	PhCH2CH2	CF2CF3	(+)-pin
3273	NH (C=NH) H	1	PhCH2CH2	CF2CF2CF3	(+)-pin
3274	NH (C=NH) H	1	PhCH2CH2	CF2CF2CF2CF3	(+)-pin
3275	NH (C=NH) H	1	PhCH2CH2	F5-Ph	(+)-pin
3276	NH (C=NH) H	1	PhCH2CH2	сн ₂ со ₂ н	(+)-pin
3277	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ CO ₂ H	(+)-pin
3278	NH (C=NH) H	1	$PhCH_2CH_2$	(CH ₂) ₃ CO ₂ H	(+)-pin
3279	NH (C-NH) H	1	PhCH2CH2	CH2CN4H	(+)-pin
3280	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ CN ₄ H	(+)-pin
3281	NH (C=NH) H	1	PhCH2CH2	(CH ₂) 3CN ₄ H	(+)-pin
3282	NH (C=NH) H	1	PhCH2CH2	CH2NO2	(+)-pin
3283	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ NO ₂	(+)-pin
3284	NH (C=NH) H	1	PhCH2CH2	(CH ₂) 3NO ₂	(+)-pin
3285	NH (C=NH) H	1	$PhCH_2CH_2$	CH ₂ OH	(+)-pin
3286	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ OH	(+)-pin
3287	NH (C=NH) H	1	$PhCH_2CH_2$	(CH ₂) ₃ OH	(+)-pin
3288	NH (C=NH) H	1	PhCH2CH2	CH2CO2Me	(+)-pin
3289	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ CO ₂ Me	(+)-pin
3290	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	(+)-pin
3291	NH (C=NH) H	1	PhCH2CH2	3-NO ₂ -Ph	(+)-pin
3292	NH (C=NH) H	1	PhCH2CH2	4-NO ₂ -Ph	(+)-pin
3293	NH (C=NH) H	1	PhCH ₂ CH ₂	3-00 ₂ H-Ph	(+)-pin
3294	NH (C=NH) H	1	$PhCH_2CH_2$	4-CO ₂ H-Ph	(+)-pin
3295	NH (C=NH) H	1	PhCH2CH2	3-CN4H-Ph	(+)-pin
3296	NH (C=NH) H	1	PhCH2CH2	4-CN4H-Ph	(+)-pin
3297	NH (C=NH) H	. 1	PhCH ₂ CH ₂	3-(HOCH ₂)-Ph	(+)-pin
3298	NH (C=NH) H	. 1	$PhCH_2CH_2$	4-(HOCH ₂)-Ph	(+)-pin
3299	NH (C=NH) H	1	PhCH2CH2	Н	он, он
3300	NH (C=NH) H	1	PhCH ₂ CH ₂	Methy1	он, он
3301	NH (C=NH) H	1	PhCH ₂ CH ₂	Ethyl	OH, OH
3302	NH (C=NH) H	. 1	PhCH2CH2	n-Propyl	OH, OH
3303	NH (C=NH) H	1	PhCH2CH2	n-Butyl	он, он
3304	NH (C=NH) H	1	PhCH2CH2	CH ₂ 8CH ₃	он, он

3305	NH (C=NH) H	1	PhCH2CH2	CH ₂ (80) CH ₃	OH,	OH
3306	NH (C=NH) H	1	PhCH2CH2	CH ₂ (80 ₂) CH ₃	OH,	ОН
3307·	NH (C=NH) H	1	PhCH2CH2	CH2CH28CH3	OH,	ОН
3308	NH (C=NH) H	1	PhCH2CH2	CH2CH2 (SO) CH3	OH,	ОН
3309	NH (C=NH) H	1	PhCH2CH2	CH2CH2 (80) 2CH3	OH,	ОН
3310	NH (C=NH) H	1	PhCH2CH2	CH ₂ CN	OH,	ОН
3311	NH (C=NH) H	1	$PhCH_2CH_2$	CH2CH2CN	OH,	ОН
3312	NH (C=NH) H	1	PhCH2CH2	CH2CH2CH2CN	OH,	OH
3313	NH (C=NH) H	1	PhCH2CH2	CF3	OH,	ОН
3314	NH (C=NH) H	Ĺ	PhCH2CH2	CF2CF3	OH,	ОН
3315	NH (C=NH) H	1	PhCH2CH2	CF2CF2CF3	OH,	ОН
3316	NH (C=NH) H	1	PhCH2CH2	CF2CF2CF2CF3	OH,	ОН
3317	NH (C=NH) H	1	PhCH2CH2	F ₅ -Ph	OH,	ОН
3318	NH (C=NH) H	1	PhCH ₂ CH ₂	сн ₂ со ₂ н	OH,	ОН
3319	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ H	OH,	ОН
3320	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₃ CO ₂ H	OH,	ОН
3321	NH (C=NH) H	1	PhCH ₂ CH ₂	CH2CN4H	OH,	ОН
3322	NH (C=NH) H	1	PhCH ₂ CH ₂	$(CH_2)_2CN_4H$	OH,	ОН
3323	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₃ CN ₄ H	OH,	ОН
3324	NH (C=NH) H	1	PhCH ₂ CH ₂	CH2NO2	OH,	ОН
3325	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ NO ₂	OH,	ОН
3326	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₃ NO ₂	OH,	ОН
3327	NH (C=NH) H	1	PhCH2CH2	СН2ОН	OH,	ОН
3328	NH (C=NH) H	1	PhCH2CH2	(CH ₂) ₂ OH	OH,	ОН
3329	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ OH	OH,	ОН
3330	NH (C=NH) H	1	PhCH2CH2	CH ₂ CO ₂ Me	OH,	ОН
3331	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₂ CO ₂ Me	OH,	ОН
3332	NH (C=NH) H	1	PhCH ₂ CH ₂	(CH ₂) ₃ CO ₂ Me	OH,	ОН
3333	NH (C=NH) H	1	PhCH ₂ CH ₂	3-NO ₂ -Ph	он,	ОН
3334	NH (C=NH) H	1	PhCH ₂ CH ₂	4-NO2-Ph	OH,	ОН
3335	NH (C=NH) H	1	PhCH ₂ CH ₂	3-002H-Ph	OH,	ОН
3336	NH (C=NH) H	1	PhCH2CH2	4-∞2H-Ph	OH,	ОН
3337	NH (C=NH) H	1	$PhCH_2CH_2$	3-CN4H-Ph	OH,	ОН
3338	NH (C=NH) H	1	PhCH ₂ CH ₂	4-CN ₄ H-Ph	OH,	ОН
3339	NH (C=NH) H	1	PhCH2CH2	3-(HOCH ₂)-Ph	OH,	ОН
3340	NH (C=NH) H	1	PhCH2CH2	4-(HOCH ₂)-Ph	OH,	ОН
					•	

BA. MS (M+H)+: Calc. 480, Found 480.

BC. MS (M+H)+: Calc. 494, Found 494.

BD. MS (M+H) +: Calc. 522, Found 522.

BE. MS (M+H)+: Calc. 540, Found 540. BF. MS (M+H)+: Calc. 519, Found 519. BG. MS (M+H)+: Calc. 538, Found 538. BH. MS (M+H)+: Calc. 346, Found 346. BI. MS (M+H)+: Calc. 494, Found 494. BJ. Anal. calcd. for C₁₇H₂6BN₅O₃·2 H₂O·1.8 HCl: C, 44.30; H, 6.95; C1, 13.84; N, 15.20. Found: C, 44.22; H, 6.66; C1, 14.03; N, 14.03. BW. MS (M+H)+: Calc. 466, Found 466. BX. MS (M+H)+: Calc. 480, Found 480. CV. MS (M+H)+: Calc. 510, Found 510. CW. MS (M+H)+: Calc. 600, Found 600. CX. MS (M+H)+: Calc. 552, Found 552. CY. MS (M+H)+: Calc. 629, Found 629. CZ. MS (M+H)+: Calc. 524, Found 524. DA. MS (M+H)+: Calc. 614, Found 614.

Table 16

Ex	x	m	R ¹³	R14	y ¹ y ²	Phys. Data
3345	CH2NH2	1	Ph	Ph	(+)-pin	
3346	CH2NH2	1	Ph	PhCH ₂	(+)-pin	
3347	CH2NH2	1	Ph	Ph(CH ₂) ₂	(+)-pin	
3348	CH2NH2	1	PhCH ₂	Ph	(+)-pin	•
3349	CH2NH2	1	PhCH ₂	PhCH ₂	(+)-pin	BY
3350	CH2NH2.	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin	
3351	CH2NH2	1	Ph(CH ₂) ₂	Ph	(+)-pin	
3352	CH2NH2	1	$Ph(CH_2)_2$	PhCH ₂	(+)-pin	
3353	CH2NH2	1	$Ph(CH_2)_2$	Ph(CH ₂) ₂	(+)-pin	
3354	CH2NH2	1	Ph	Ph	он, он	
3355	CH2NH2	1	Ph	PhCH ₂	он, он	
3356	CH2NH2	1	Ph	Ph(CH ₂) ₂	он, он	
3357	CH2NH2	1	PhCH ₂	Ph ·	он, он	
3358	CH2NH2	1	PhCH ₂	PhCH ₂	он, он	

3359	CH2NH2	1	PhCH ₂	Ph(CH ₂) ₂	он, он
3360	CH2NH2	1	Ph(CH ₂) ₂	Ph	он, он
3361	CH2NH2	1	Ph(CH ₂) ₂	PhCH ₂	он, он
3362	CH2NH2	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	он, он
3363	NH (C=NH) NH2	1	Ph	Ph	(+)-pin
3364	NH (C=NH) NH2	1	Ph	PhCH ₂	(+)-pin
3365	NH (C=NH) NH2	1	Ph	Ph(CH ₂) ₂	(+)-pin
3366	NH (C=NH) NH2	1	PhCH ₂	Ph	(+)-pin
3367	NH (C=NH) NH2	1	PhCH ₂	PhCH ₂	(+)-pin
3368	NH (C=NH) NH ₂	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3369	NH (C=NH) NH ₂	1	Ph(CH ₂) ₂	Ph	(+)-pin
3370	NH (C=NH) NH ₂	1	Ph(CH ₂) ₂	PhCH ₂	(+)-pin
3371	NH (C=NH) NH ₂	1	$Ph(CH_2)_2$	Ph(CH ₂) ₂	(+)-pin
3372	NH (C=NH) NH ₂	1	Ph	Ph	он, он
3 37 3	NH (C=NH) NH ₂	1	Ph	PhCH ₂	он, он
3374	NH (C=NH) NH ₂	1	Ph	Ph(CH ₂) ₂	он, он
3375	NH (C=NH) NH ₂	1	PhCH ₂	Ph	он, он
3376	NH (C=NH) NH ₂	1	PhCH ₂	PhCH ₂	он, он
3377	NH (C=NH) NH2	1	PhCH ₂	Ph(CH ₂) ₂	он, он
3378	NH (C=NH) NH ₂	1	Ph(CH ₂) ₂	Ph	он, он
3379	NH (C=NH) NH ₂	1	$Ph(CH_2)_2$	PhCH ₂	он, он
3380	NH (C=NH) NH ₂	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	он, он
3381	OMe	1	Ph	Ph	(+)-pin
3382	OMe	1	Ph	PhCH ₂	(+)-pin
3383	OMe	1	Ph	$Ph(CH_2)_2$	(+)-pin
3384	OMe	1	PhCH ₂	Ph	(+)-pin
3385	OMe	1	PhCH ₂	PhCH ₂	(+)-pin
3386	OMe	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3387	OMe	1	Ph(CH ₂) ₂	Ph	(+)-pin
3368	OMe	1	Ph(CH ₂) ₂	PhCH ₂	(+)-pin
3389	OMe	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin
3390	OMe	1	Ph	Ph	он, он
3391	OMe	1	Ph	PhCH ₂	он, он
3392	OMe	1	Ph	Ph(CH ₂) ₂	он, он
3393	OMe	1	PhCH ₂	Ph	он, он
3394	OMe	1	PhCH ₂	PhCH ₂	он, он
3395	OMe	1	PhCH ₂	Ph(CH ₂) ₂	он, он
3396	OMe	1	Ph(CH ₂) ₂	Ph	он, он
3397	OMe	1	Ph(CH ₂) ₂	PhCH ₂	он, он
3398	OMe	1	Ph (CH ₂) ₂	Ph(CH ₂) ₂	он, он

3399	NH (C=NH) H	1	Ph	Ph	(+)-pin
3400.	NH (C=NH) H	1	Ph	PhCH ₂	(+)-pin
3401	NH (C=NH) H	1	Ph	Ph(CH ₂) ₂	(+)-pin
3402	NH (C=NH) H	1	PhCH ₂	Ph	(+)-pin
3403	NH (C=NH) H	1	PhCH ₂	PhCH ₂	(+)-pin
3404	NH (C=NH) H	1	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3405	NH (C=NH) H	1	Ph(CH ₂) ₂	Ph	(+)-pin
3406	NH (C=NH) H	1	Ph(CH ₂) ₂	PhCH ₂	(+)-pin
3407	NH (C=NH) H	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin
3408	NH (C=NH) H	1	Ph	Ph	он, он
3409	ин (с-ин) н	1	Ph	PhCH ₂	он, он
3410	NH (C=NH) H	1	Ph	Ph(CH ₂) ₂	он, он
3411	NH (C=NH) H	ı	PhCH ₂	Ph	он, он
3412	NH (C=NH) H	1	PhCH ₂	PhCH ₂	он, он
3413	NH (C-NH) H	1	PhCH ₂	Ph(CH ₂) ₂	он, он
3414	NH (C=NH) H	1	Ph(CH ₂) ₂	Ph	он, он
3415	NH (C=NH) H	1	Ph(CH ₂) ₂	PhCH ₂	он, он
3416	NH (C=NH) H	1	Ph(CH ₂) ₂	Ph(CH ₂) ₂	он, он
3417	CH2NH2	2	Ph	Ph :	(+)-pin
3418	CH2NH2	2	Ph	PhCH ₂	(+)-pin
3419	CH2NH2	2	Ph	Ph(CH ₂) ₂	(+)-pin
3420	CH2NH2	2	PhCH ₂	Ph	(+)-pin
3421	CH2NH2	2	PhCH ₂	PhCH ₂	(+)-pin
3422	CH2NH2	2	PhCH ₂	Ph(CH ₂) ₂	(+)-pin
3423	CH2NH2	2	$Ph(CH_2)_2$	Ph	(+)-pin
3424	CH2NH2	2	$Ph(CH_2)_2$	PhCH ₂	(+)-pin
3425	CH ₂ NH ₂	2	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)-pin
3426	CH2NH2	2	Ph	Ph	он, он
3427	CH ₂ NH ₂	2	Ph	PhCH ₂	он, он
3428	CH ₂ NH ₂	2	Ph	Ph(CH ₂) ₂	он, он
3429	CH2NH2	2	PhCH ₂	Ph	он, он
3430	CH2NH2	2	PhCH ₂	PhCH ₂	он, он
3431	CH2NH2	2	PhCH ₂	Ph(CH ₂) ₂	он, он
3432	CH2NH2	2	Ph(CH ₂) ₂	Ph	он, он
3433	CH2NH2	2	Ph(CH ₂) ₂	PhCH ₂	он, он
3434	CH2NH2	2	Ph(CH ₂) ₂	Ph(CH ₂) ₂	он, он
3435	NH (C=NH) NH2	2	Ph	Ph	(+)-pin
3436	NH (C=NH) NH ₂	2	Ph	PhCH ₂	(+)-pin
3437	NH (C=NH) NH2	2	Ph	Ph(CH ₂) ₂	· (+)-pin
3438	NH (C=NH) NH ₂	2	PhCH ₂	Ph	(+)-pin

3439	NH (C=NH) NH ₂	2	PhCH ₂	PhCH ₂	(+)	-pin
3440	NH (C=NH) NH ₂	2	PhCH ₂	Ph(CH ₂) ₂	(+)	-pin
3441	NH (C=NH) NH ₂	2	Ph(CH ₂) ₂	Ph	(+)	-pin
3442	NH (C=NH) NH2	2	Ph(CH ₂) ₂	PhCH ₂	(+)	-pin
3443	NH (C=NH) NH ₂	2	Ph(CH ₂) ₂	Ph(CH ₂) ₂	(+)	-pin
3444	NH (C=NH) NH ₂	2	Ph	Ph	OH,	ОН
3445	NH (C=NH) NH ₂	2	Ph	PhCH ₂	OH,	ОН
3446	NH (C=NH) NH ₂	2	Ph	Ph(CH ₂) ₂	OH,	ОН
3447	NH (C=NH) NH ₂	2	PhCH ₂	Ph	OH,	ОН
3448	NH (C=NH) NH ₂	2	PhCH ₂	PhCH ₂	OH,	ОН
3449	NH (C=NH) NH ₂	2	PhCH ₂	Ph(CH ₂) ₂	OH,	OH
3450	NH (C=NH) NH2	2	Ph(CH ₂) ₂	Ph	OH,	ОН
3451	NH (C=NH) NH ₂	2	$Ph(CH_2)_2$	PhCH ₂	он,	ОН
3452	NH (C=NH) NH ₂	2	$Ph(CH_2)_2$	Ph(CH ₂) ₂	OH,	ОН

BY. MS (M+H)+: Calc. 570, Found 570.

Table 17

Ex	×	R13	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys . Data
3457	CH2NH2	Ph	н	н	(+)-pin	
3458	CH2NH2	Ph	methyl	н	(+)-pin	BK
3459	CH ₂ NH ₂	Ph	methyl	н	(+)-pin	
3460	CH ₂ NH ₂	Ph	methyl	methyl	(+)-pin	
3461	CH ₂ NH ₂	Ph '	ethyl	H	(+)-pin	
3462	CH2NH2	Ph	ethyl	methyl	(+)-pin	
3463	CH2NH2	Ph	ethyl	ethyl	(+)-pin	
3464	CH ₂ NH ₂	Ph	isopropyl	н	(+)-pin	
3465	CH2NH2	Ph	phenyl	H	(+)-pin	BL
3466	CH2NH2	Ph	CH ₂ CN	н	(+)-pin	
3467	CH ₂ NH ₂	Ph	CH ₂ NC	н	(+)-pin	
3468	CH2NH2	Ph	CH2NO2	Ĥ	(+)-pin	
3469	CH2NH2	Ph	CH2SCH3	н	(+)-pin	
3470	CH2NH2	Ph	CH2SOCH3	н	(+)-pin	
3471	CH ₂ NH ₂	Ph	CH2SO2CH3	н	(+)-pin	
3472	CH2NH2	Ph	СH ₂ OH	н	(+)-pin	
3473	CH2NH2	Ph	СН ₂ СООН	н	(+)-pin	
3474	CH2NH2	Ph	(CH ₂) ₂ COOH	н	(+)-pin	
3475	CH2NH2	Ph	(CH ₂) ₂ CN	Н	(+)-pin	
3476	CH2NH2	Ph	CH=CHCOOMe	Н	(+)-pin	
3477	CH2NH2	Ph .	сн-снсоон	н	(+)-pin	
3478	CH2NH2	Ph	CH-CHCN	н	(+)-pin	
3479	CH2NH2	Ph	CH2CN4H	н	(+)-pin	
3480	CH ₂ NH ₂	Ph	CH2NHSO2CF3	н	(+)-pin	
3481	CH ₂ NH ₂	Ph	CH ₂ CH ₂ CN	н	(+)-pin	
3482	CH2NH2	Ph	CH2CH2NC	н	(+)-pin	
3483	CH ₂ NH ₂	Ph	CH2CH2NO2	н	(+)-pin	
3484	CH2NH2	Ph	CH2CH2SCH3	н	(+)-pin	
3485	CH ₂ NH ₂	Ph	CH2CH2SOCH3	н	(+)-pin	
3486	CH2NH2	Ph	сн ₂ сн ₂ so ₂ сн ₃	н	(+)-pin	
3487	CH2NH2	Ph	CH ₂ CH ₂ OH	н	(+)-pin	,

3488	CH2NH2	Ph	NO ₂	н	(+)-pin
3489	CH ₂ NH ₂	Ph	F	н .	(+)-pin
3490	CH2NH2	Ph	ОН	Н	(+)-pin
3491	CH2NH2	Ph	н	H	он, он
3492	CH2NH2	Ph	methyl	н	он, он
3493	CH2NH2	Ph	methyl	methyl	он, он
3494	CH ₂ NH ₂	Ph	ethyl	H	он, он
3495	CH ₂ NH ₂	Ph	ethyl	methyl	он, он
3496	CH ₂ NH ₂	Ph	ethyl	ethyl	он, он
3497	CH ₂ NH ₂	Ph	isopropyl	н	он, он
3498	CH ₂ NH ₂	Ph	phenyl	н	он, он
3499	CH ₂ NH ₂	Ph	CH ₂ CN	н	он, он
3500	CH2NH2	Ph	CH ₂ NC	н	он, он
3501	CH2NH2	Ph	CH2NO2	н	он, он
3502	CH2NH2	Ph	CH2SCH3	Н	он, он
3503	CH2NH2	Ph	CH2SOCH3	Н	он, он
3504	CH2NH2	Ph	CH2SO2CH3	H	он, он
3505	CH2NH2	Ph	CH ₂ OH	н	он, он
3506	CH2NH2	Ph	CH2COOH	н	он, он
3507	CH2NH2	Ph	(CH ₂) ₂ COOH	H	он, он
3508	CH2NH2	Ph	(CH ₂) ₂ CN	Н	он, он
3509	CH ₂ NH ₂	Ph	CH=CHCOOMe	н	он, он
3510	CH2NH2	Ph	сн=снсоон	Н	он, он
3511	CH2NH2	Ph	CH2CN4H	Н	он, он
3512	CH ₂ NH ₂	Ph	CH2NHSO2CF3	н	он, он
3513	CH2NH2	Ph ·	CH2CH2CN	H	он, он
3514	CH2NH2	Ph	CH2CH2NC	H	он, он
3515	CH2NH2	Ph	CH2CH2NO2	Н	он, он
3516	CH2NH2	Ph .	CH2CH2SCH3	H	он, он
3517	CH2NH2	Ph	CH2CH2SOCH3	н	он, он
3518	CH2NH2	Ph	CH2CH2SO2CH3	н	он, он
3519	CH2NH2	Ph	CH ₂ CH ₂ OH	H	он, он
3520	CH2NH2	Ph	CH ₂ CH ₂ COOH	`H	он, он
3521	СН ² ИН ²	Ph	CH2CH2CN4H	н	он, он
3522	CH2NH2	Ph	CH2CH2NHSO2CF3	н	он, он
3523	CH2NH2	PhCH ₂	н	н	(+)-pin
3524	CH2NH2	PhO	methyl	н	(+)-pin
3525	CH2NH2	Phs	methyl	methyl	(+)-pin
3526	CH2NH2	PhNH	ethyl	н	(+)-pin
3527	CH2NH2	PhCONH	ethyl	methyl	(+)-pin

3528	CH2NH2	Phnhco	ethyl	ethyl	(+)-pin	
3529	CH ₂ NH ₂	Ph	isopropyl	н	(+)-pin	
3530	CH2NH2	PhCH ₂	phenyl	н	(+)-pin	
3531	CH2NH2	PhO	CH ₂ CN	н	(+)-pin	
3532	CH2NH2	Phs .	CH2NC	н	(+)-pin	
3533	CH2NH2	PhNH	CH2NO2	H	(+)-pin	
3534	CH ₂ NH ₂	PhCONH	CH28CH3	н	(+)-pin	
3535	CH2NH2	PhNHCO	CH2SOCH3	н	(+)-pin	
3536	CH2NH2	$Ph(CH_2)_2$	CH ₂ SO ₂ CH ₃	н	(+)-pin	
3537	NH (C=NH) NH ₂	Ph	н	Н	(+)-pin	
3538	NH (C=NH) NH ₂	Ph	methyl	н	(+)-pin	BM
3539	NH (C=NH) NH ₂	Ph	methyl	н	(+)-pin	
3540	NH (C=NH) NH ₂	Ph	methyl	methyl	(+)-pin	
3541	NH (C=NH) NH ₂	Ph	ethyl	н	(+)-pin	
3542	NH (C=NH) NH ₂	Ph	ethyl	methyl	(+)-pin	
3543	NH (C=NH) NH ₂	Ph	ethyl	ethyl	(+)-pin	
3544	NH (C=NH) NH ₂	Ph	isopropyl	Н	(+)-pin	
3545	NH (C=NH) NH ₂	Ph	phenyl	H	(+)-pin	
3546	NH (C=NH) NH ₂	Ph	CH ₂ CN	H	(+)-pin	
3547	NH (C=NH) NH ₂	Ph	CH2NC	H	(+)-pin	
3548	NH (C=NH) NH ₂	Ph	CH2NO2	H	(+)-pin	
3549	NH (C=NH) NH ₂	Ph	CH ₂ SCH ₃	H	(+)-pin	
3550	NH (C=NH) NH ₂	Ph	CH2BOCH3	Н	(+)-pin	
3551	NH (C=NH) NH ₂	Ph	CH2802CH3	H	(+)-pin	
3552	NH (C=NH) NH ₂	Ph	CH ₂ OH	H	(+)-pin	
3553	NH (C=NH) NH ₂	Ph	сн ₂ соон	H	(+)-pin	
3554	NH (C=NH) NH ₂	Ph	(CH ₂) ₂ COOH	н	(+)-pin	
3555	NH (C=NH) NH ₂	Ph	(CH ₂) ₂ CN	Н	(+)-pin	
3556	NH (C=NH) NH ₂	Ph .	CH=CHCOOMe	H	(+)-pin	
3557	NH (C=NH) NH ₂	Ph	СН-СНСООН	н	(+)-pin	
3556	NH (C=NH) NH ₂	Ph	CH2CN4H	H	(+)-pin	
3559	NH (C=NH) NH ₂	Ph	CH2NHSO2CF3	н	(+)-pin	
3560	NH (C=NH) NH ₂	Ph	CH2CH2CN	Н	(+)-pin	
3561	NH (C=NH) NH ₂	Ph	CH2CH2NC	н	(+)-pin	
3562	NH (C=NH) NH ₂	Ph	CH2CH2NO2	H	(+)-pin	
3563	NH (C=NH) NH ₂	Ph	CH2CH2SCH3	H	(+)-pin	
3564	NH (C=NH) NH ₂	Ph	CH2CH2SOCH3	н	(+)-pin	
3565	NH (C=NH) NH ₂	Ph	CH2CH2SO2CH3	н	(+)-pin	
3566	NH (C=NH) NH ₂	Ph	CH2CH2OH	н	(+)-pin	
3567	NH (C=NH) NH ₂	Ph	NO ₂	H	(+)-pin	

3568	NH (C=NH) NH ₂	Ph	F	н	(+)-pin
3569	NH (C=NH) NH ₂	Ph	ОН	н	(+)-pin
3570	NH (C=NH) NH2	Ph	н	н	он, он
3571	NH (C=NH) NH ₂	Ph	methyl	н	он, он
3572	NH (C=NH) NH2	Ph	methyl	methyl	он, он
3573	NH (C=NH) NH2	Ph	ethyl	н	он, он
3574	NH (C=NH) NH2	Ph	ethyl	methyl	он, он
3575	NH (C=NH) NH2	Ph	ethyl	ethyl	он, он
3576	NH (C=NH) NH2	Ph	isopropyl	н	он, он
3577	NH (C=NH) NH ₂	Ph	phenyl	н	он, он
3578	NH (C=NH) NH2	Ph .	CH ₂ CN	н	он, он
3579	NH (C=NH) NH2	Ph	CH2NC	н	он, он
3580	NH (C=NH) NH ₂	Ph	CH ₂ NO ₂	н	он, он
3581	NH (C=NH) NH ₂	Ph	CH28CH3	н	он, он
3582	NH (C=NH) NH ₂	Ph	CH ₂ BOCH ₃	H	он, он
3583	NH (C=NH) NH2	Ph	CH ₂ SO ₂ CH ₃	н	он, он
3584	NH (C=NH) NH ₂	Ph	CH ₂ OH	Н	он, он
3585	NH (C=NH) NH ₂	Ph	CH ₂ COOH	H	он, он
3586	NH (C=NH) NH2	Ph	(CH ₂) ₂ COOH	H	он, он
3587	NH (C=NH) NH2	Ph	(CH ₂) ₂ CN	H	он, он
3588	NH (C=NH) NH ₂	Ph	CH=CHCOOMe	н	он, он
3589	NH (C=NH) NH ₂	Ph	СН=СНСООН	Н	он, он
3590	NH (C=NH) NH ₂	Ph	CH2CN4H	н	он, он
3591	NH (C=NH) NH ₂	Ph	CH2NHSO2CF3	H	он, он
3592	NH (C=NH) NH ₂	Ph	CH2CH2CN	H	он, он
3593	NH (C=NH) NH ₂	Ph	CH2CH2NC	H	он, он
3594	NH (C=NH) NH ₂	Ph	CH2CH2NO2	н	он, он
3595	NH (C=NH) NH ₂	Ph	СH ₂ CH ₂ SCH ₃	н	он, он
3596	NH (C=NH) NH ₂	Ph	сн2сн2восн3	н	он, он
3597	NH (C=NH) NH ₂	Ph	CH2CH2SO2CH3	H	он, он
3598	NH (C=NH) NH ₂	Ph	сн ₂ сн ₂ он	н	он, он
3599	NH (C=NH) NH ₂	Ph	СH ₂ СH ₂ СООН	H	он, он
3600	NH (C=NH) NH ₂	Ph	CH2CH2CN4H	н	он, он
3601	NH (C=NH) NH ₂	Ph	CH2CH2NHSO2CF3	н	он, он
3602	NH (C=NH) NH2	PhCH ₂	н	н	(+)-pin
3603	NH (C=NH) NH2	PhO	methyl	н	(+)-pin
3604	NH (C-NH) NH2	PhS	methyl	methyl	(+)-pin
3605	NH (C=NH) NH ₂	PhNH	ethyl	н	(+)-pin
3606	NH (C=NH) NH2	PhCONH	ethyl	methyl	(+)-pin
3607	NH (C=NH) NH2	PhNHCO	ethyl	ethyl	(+)-pin

3608	NH (C-NH) NH2 .	Ph	isopropyl	н	(+)-pin
3609	NH (C=NH) NH2	PhCH ₂	phenyl	н	(+)-pin
3610	NH (C=NH) NH2	PhO	CH ₂ CN	Н	(+)-pin
3611	NH (C=NH) NH2	PhS	CH2NC	н	(+)-pin
3612	NH(C=NH)NH2	PhNH	CH2NO2	н	(+)-pin
3613	NH (C=NH) NH ₂	PhCONH	СН28СН3	н	(+)-pin
3614	NH (C=NH) NH ₂	PhNHCO	CH280CH3	н	(+)-pin
3615	NH (C=NH) NH2	$Ph(CH_2)_2$	CH2802CH3	Н .	(+)-pin
3616	OMe	Ph	CH ₃	H	(+)-pin
3617	NH (C=NH) H	Ph	CH3	н	(+)-pin
3618	OMe	Ph	CH3	н	он, он
3619	NH (C=NH) H	Ph	CH3	н	он, он

BK. MS (M=H) : Calc. 477, Found 477.

BL. MS (M=H)+: Calc. 539, Found 539.

BM. MS (M=H)*: Calc. 505, Found 505.

Table 18

Ex	x	R ¹³	R ¹⁴	R15	Y ¹ Y ²	Phye. Data
3624	CH ₂ NH ₂	Ph	н	Н	(+)-pin	
3625	CH2NH2	Ph	methyl	н .	(+)-pin	
3626	CH2NH2	Ph	ethyl	H	(+)-pin	
3627	CH2NH2	Ph	ethyl	methyl	(+)-pin	
3628	CH2NH2	Ph	ethy1	ethyl	(+)-pin	
3629	CH2NH2	Ph	isopropyl	н	(+)-pin	
3630	CH2NH2	Ph	phenyl	н	(+)-pin	
3631	CH ₂ NH ₂	Ph	CH ₂ CN	н	(+)-pin	
3632	CH2NH2	Ph	CH ₂ NC	н	(+)-pin	
3633	CH2NH2	Ph	CH2NO2	H	(+)-pin	
3634	CH2NH2	Ph	сн ₂ всн ₃	H	(+)-pin	
3635	CH2NH2	Ph	CH ₂ SOCH ₃	н	(+)-pin	
3636	CH2NH2	Ph	CH ₂ SO ₂ CH ₃	H	(+)-pin	
3637	CH2NH2	Ph	СH ₂ ОН	н	(+)-pin	
3638	CH2NH2	Ph	CH2COOH	н	(+)-pin	
3639	CH ₂ NH ₂	Ph	CH2CN4H	н	(+)-pin	
3640	CH2NH2	Ph	CH2NHSO2CF3	н	(+)-pin	
3641	CH2NH2	Ph	CH ₂ CH ₂ CN	н	(+)-pin	
3642	CH2NH2	Ph	CH ₂ CH ₂ NC	н	(+)-pin	
3643	CH2NH2	Ph	CH2CH2NO2	н	(+)-pin	
3644	CH2NH2	Ph '	CH2CH28CH3	H	(+)-pin	
3645	CH2NH2	Ph	CH2CH2SOCH3	Н	(+)-pin	
3646	CH2NH2	Ph	CH2CH2SO2CH3	н	(+)-pin	
3647	CH ₂ NH ₂	Ph	CH ₂ CH ₂ OH	н	(+)-pin	
364B	CH ₂ NH ₂	Ph	NO ₂	н	(+)-pin	
3649	CH ₂ NH ₂	Ph	P	н	(+)-pin	
3650	CH2NH2	Ph	OH	н	(+)-pin	
3651	CH ₂ NH ₂	Ph	н	H	он, он	
3652	CH2NH2	Ph	methyl	H	он, он	
3653	CH2NH2	Ph	methyl	methyl	он, он	
3654	CH2NH2	Ph	ethyl	н	он, он	

3655	CH2NH2	Ph	ethyl	methyl	он, он
3656	CH ₂ NH ₂	Ph	ethyl	ethyl	он, он
3657	CH ₂ NH ₂	Ph	isopropyl	H	он, он
3658	CH2NH2	Ph	phenyl	H	он, он
3659	CH ₂ NH ₂	Ph	CH ₂ CN	н	он, он
3660	CH ₂ NH ₂	Ph	CH ₂ NC	Н	он, он
3661	CH2NH2	Ph .	CH2NO2	H	он, он
3662	CH2NH2	Ph	CH28CH3	н	он, он
3663	CH ₂ NH ₂	Ph	сн ₂ восн ₃	H	он, он
3664	CH2NH2	Ph	CH2802CH3	H	он, он
3665	CH2NH2	Ph	CH ₂ OH	н	он, он
3666	CH2NH2	Ph	СH2СООН	н	он, он
3667	CH2NH2	Ph	CH ₂ CN ₄ H	н	он, он
3668	CH2NH2	Ph	CH2NHSO2CF3	н	он, он
3669	CH2NH2	Ph	CH2CH2CN	н	он, он
3670	CH2NH2	Ph	CH ₂ CH ₂ NC	Н	он, он
3671	CH2NH2	Ph	CH2CH2NO2	Н	он, он
3672	CH2NH2	Ph	CH ₂ CH ₂ SCH ₃	н	он, он
3673	CH2NH2	Ph	CH2CH2SOCH3	н	он, он
3674	CH2NH2	Ph	CH2CH2802CH3	н	он, он
3675	CH2NH2	Ph	CH ₂ CH ₂ OH	н	он, он
3676	CH2NH2	Ph	сн ₂ сн ₂ соон	н	он, он
3677	CH2NH2	Ph	CH2CH2CN4H	Н	он, он
3678	CH2NH2	Ph	CH2CH2NHSO2CF3	H	он, он
3679	CH2NH2	PhCH ₂	н	H	(+)-pin
3680	CH2NH2	PhO	methyl	H	(+)-pin
.3681	CH2NH2	Phs	methyl	methyl	(+)-pin
3682	CH2NH2	PhNH	ethyl	н	(+)-pin
3683	CH2NH2	PhCONH	ethyl	methyl	(+)-pin
3684	CH2NH2	PhNHCO	ethyl	ethyl	(+)-pin
3685	CH2NH2	Ph	isopropyl	H .	(+)-pin
3686	CH2NH2	PhCH ₂	phenyl	Н	(+)-pin
3687	CH2NH2	PhO	CH ₂ CN	Н	(+)-pin
3688	CH2NH2	PhS	CH ₂ NC	Н	(+)-pin
3689	CH2NH2	PHNH	CH2NO2	н	(+)-pin
3690	CH2NH2	PhCONH	CH2SCH3	H	(+)-pin
3691	CH2NH2	PhNHCO	CH2SOCH3	н	(+)-pin
3692	CH2NH2	Ph ($\mathrm{CH_2}$) 2	CH2SO2CH3	Н	(+)-pin
3693	NH (C=NH) NH ₂	Ph	н	н	(+)-pin
3694	NH (C=NH) NH ₂	Ph	methyl	methyl	(+)-pin

3695	NH (C=NH) NH ₂	Ph	ethyl	н	(+)-pin
3696	NH (C=NH) NH ₂	Ph	ethyl	methyl	(+)-pin
3697	NH (C=NH) NH2	Ph	ethyl	ethyl	(+)-pin
3698	NH (C=NH) NH2	Ph	isopropyl	Н	(+)-pin
3699	NH (C=NH) NH ₂	Ph	phenyl	H	(+)-pin
3700	NH (C=NH) NH ₂	Ph	CH ₂ CN	H	(+)-pin
3701	NH (C=NH) NH ₂	Ph	CH2NC	н	(+)-pin
3702	NH (C=NH) NH ₂	Ph	CH ₂ NO ₂	H	(+)-pin
3703	NH (C=NH) NH ₂	Ph	CH ₂ BCH ₃	H	(+)-pin
3704	NH (C=NH) NH ₂	Ph	CH280CH3	H	(+)-pin
3705	NH (C=NH) NH ₂	Ph	CH2802CH3	H	(+)-pin
3706	NH (C=NH) NH ₂	Ph	СН2ОН	н	(+)-pin
3707	NH (C=NH) NH ₂	Ph .	CH ₂ COOH	Н	(+)-pin-
3708	NH (C=NH) NH ₂	Ph	CH2CN4H	H	(+)-pin
3709	NH (C=NH) NH ₂	Ph	CH2NHSO2CF3	Н	(+)-pin
3710	NH (C=NH) NH ₂	Ph	CH2CH2CN	Н	(+)-pin
3711	NH (C=NH) NH ₂	Ph	CH2CH2NC	Н	(+)-pin
3712	NH (C=NH) NH ₂	Ph	CH2CH2NO2	н	(+)-pin
3713	NH (C=NH) NH ₂	Ph	CH2CH28CH3	H	(+)-pin
3714	NH (C=NH) NH ₂	Ph	CH2CH2SOCH3	н .	(+)-pin
3715	NH (C=NH) NH ₂	Ph	CH2CH2SO2CH3	H	(+)-pin
3716	NH (C=NH) NH ₂	Ph	CH ₂ CH ₂ OH	H .	(+)-pin
3717	NH (C=NH) NH ₂	Ph	NO ₂	H	(+)-pin
3718	NH (C=NH) NH ₂	Ph	F	н	(+)-pin
3719	NH (C=NH) NH ₂	Ph	OH	н	(+)-pin
3720	NH (C=NH) NH ₂	Ph	H .	K	он, он
3721	NH (C=NH) NH ₂	Ph	methyl	н	он, он
3722	NH (C=NH) NH ₂	Ph	methyl	methyl	он, он
3723 -	NH (C=NH) NH ₂	Ph	ethyl	Н	он, он
3724	NH (C=NH) NH ₂	Ph	ethyl	methyl	он, он
3725	NH (C=NH) NH ₂	Ph	ethyl	ethyl	он, он
3726	NH (C=NH) NH ₂	Ph	isopropyl	Н	он, он
3727	NH (C=NH) NH ₂	Ph	phenyl	Н	он, он
3728	NH (C=NH) NH ₂	Ph	CH ₂ CN	н	он, он
3729	NH (C=NH) NH ₂	Ph	CH2NC	н .	он, он
3730	NH (C=NH) NH ₂	Ph	CH ₂ NO ₂	н .	он, он
3731	NH (C=NH) NH ₂	Ph	CH2SCH3	Н	он, он
3732	NH (C=NH) NH ₂	Ph	CH2SOCH3	Н	он, он
3733	NH (C=NH) NH ₂	Ph	CH2SO2CH3	н	он, он
3734	NH (C=NH) NH ₂	Ph	CH ₂ OH	н	он, он

3735	NH (C=NH) NH ₂	Ph	CH ₂ COOH	н	он, он
3736	NH (C=NH) NH ₂	Ph	CH2CN4H	н	он, он
3737	NH (C=NH) NH2	Ph	CH2NHSO2CF3	. H .	OH, OH
3738	NH (C=NH) NH2	Ph	CH2CH2CN	Н	он, он
3739	NH (C=NH) NH ₂	Ph -	CH2CH2NC	Н	он, он
3740	NH (C=NH) NH ₂	Ph	CH2CH2NO2	Н	он, он
3741	NH (C=NH) NH2	Ph	CH2CH28CH3	H	он, он
3742	NH (C=NH) NH2	Ph	CH2CH2SOCH3	H	он, он
3743	NH (C=NH) NH2	Ph	CH2CH2SO2CH3	н .	он, он
3744	NH (C=NH) NH ₂	Ph	CH2CH2OH	H	он, он
3745	NH (C=NH) NH2	Ph	CH2CH2COOH	н	он, он
3746	NH (C=NH) NH ₂	Ph	CH2CH2CN4H	н	он, он
3747	NH (C=NH) NH ₂	Ph .	CH2CH2NHSO2CF3	н	он, он
3748	NH (C=NH) NH ₂	PhCH2	н	н	(+)-pin
3749	NH (C=NH) NH2	PhO	methyl	н	(+)-pin
3750	NH (C=NH) NH ₂	Phs	methyl	methyl	(+)-pin
3751	NH (C=NH) NH ₂	PhNH	ethyl	H	(+)-pin
3752	NH (C=NH) NH ₂	PhCONH	ethyl	methyl	(+)-pin
3753	NH (C=NH) NH ₂	PhNHCO	ethyl	ethyl	(+)-pin
3754	NH (C=NH) NH ₂	Ph	isopropyl	H	(+)-pin
3755	NH (C=NH) NH ₂	PhCH ₂	phenyl	н	(+)-pin
3756	NH (C=NH) NH ₂	PhO	CH ₂ CN	н	(+)-pin
3757	NH (C=NH) NH ₂	PhS	CH ₂ NC	H	(+)-pin
3758	NH (C=NH) NH ₂	PhNH	CH ₂ NO ₂	H	(+)-pin
3759	NH (C=NH) NH ₂	PhCONH	CH ₂ SCH ₃	н	(+)-pin
3760	NH (C=NH) NH ₂	PhNHCO	CH2SOCH3	н .	(+)-pin
3761	NH (C=NH) NH ₂	$Ph(CH_2)_2$	CH ₂ SO ₂ CH ₃	Н	(+)-pin
3762	OMe	Ph	CH3	н	(+)-pin
3763	NH (C=NH) H	Ph	CH ₃	н	(+)-pin
3764	OMe	Ph	CH3	Н	он, он
3765	NH (C=NH) H	Ph	CH3	н	он, он

Table 19

Ex	x	R ¹³	R14	R ¹⁵	Y ¹ Y ²	Phys. Data
3770	CH ₂ NH ₂	Ph	н	H	(+)-pin	
3771	CH2NH2	Ph	methyl	H	(+)-pin	
3772	CH2NH2	Ph	н	н -	он, он	
3773	CH ₂ NH ₂	Ph	methyl	H	он, он	
3774	NH (C=NH) NH ₂	Ph	н	H .	(+)-pin	
3775	NH (C=NH) NH ₂	Ph	methyl	н	(+)-pin	
3776	NH (C=NH) NH ₂	Ph	H	н	он, он	
3777	NH (C=NH) NH2	Ph	methyl	н	он, он	
3778	. OMe	Ph	CH ₃	H	(+)-pin	
3779	NH (C=NH) H	Ph .	CH ₃	Н	(+)-pin	
3780	OMe	Ph	CH ₃	н	он, он	
3781	NH (C=NH) H	Ph	CH ₃	н	он, он	

Table 20

				•	,	
Ex	x	_R 13	R14	R 15	Y ¹ Y ²	Phys. Data
3786	CH2NH2	Ph	н	н	(+)-pin	
3787	CH2NH2	Ph	methyl	methyl	(+)-pin	•
3788	CH ₂ NH ₂	Ph	ethyl	н	(+)-pin	
37,89	CH2NH2	Ph	ethyl	methyl	(+)-pin	
3790	CH2NH2	Ph	ethyl	ethyl	(+)-pin	
3791	CH2NH2	Ph	isopropyl	н	(+)-pin	
3792	CH ₂ NH ₂	Ph	phenyl	н	(+)-pin	
3793	CH2NH2	Ph	CH2CN	н	(+)-pin	
3794	CH2NH2	Ph	CH2NC	н	(+)-pin	•
3795	CH2NH2	Ph	CH2NO2	H	(+)-pin	
3796	CH2NH2	Ph	CH28CH3	Н	(+)-pin	
3797	CH2NH2	Ph	CH2BOCH3	н	(+)-pin	
3798	CH2NH2	Ph	CH2SO2CH3	н	(+)-pin	
3799	CH ₂ NH ₂	Ph	сн ₂ он	H	(+)-pin	
3800	CH ₂ NH ₂	Ph	сн ₂ соон	н	(+)-pin	
3801	CH2NH2	Ph	CH2CN4H	н	(+)-pin	
3802	CH2NH2	Ph	CH2NHSO2CF3	н	(+)-pin	
3803	CH2NH2	Ph	CH ₂ CH ₂ CN	н	(+)-pin	
3804	CH2NH2	Ph	CH2CH2NC	н	(+)-pin	
3805	CH2NH2	Ph	CH2CH2NO2	н	(+)-pin	
3906	CH2NH2	Ph	СН2СН28СН3	н	(+)-pin	
3807	CH2NH2	Ph	CH2CH2BOCH3	н	(+)-pin	
3808	CH2NH2	Ph	CH2CH2SO2CH3	н	(+)-pin	
3809	CH2NH2	Ph	CH2CH2OH	н	(+)-pin	
3810	CH ₂ NH ₂	Ph	NO ₂	н	(+)-pin	
3811	CH2NH2	Ph	F	н	(+)-pin	
3812	CH ₂ NH ₂	Ph	ОН	н	(+)-pin	
3813	CH2NH2	Ph	н	н	он, он	
3814	CH2NH2	Ph	methyl	н	OH, OH	
3815	CH ₂ NH ₂	Ph	methyl	methyl	он, он	
3816	CH2NH2	Ph	ethyl	н	он, он	

3817	CH2NH2	Ph	ethyl	methyl	он, он
3818	CH2NH2	Ph	ethyl	ethyl	он, он
3819	CH2NH2	Ph	isopropyl	H	он, он
3820	CH2NH2	Ph	phenyl	н	он, он
3821	CH2NH2	Ph	CH2CN	н	он, он
3822	CH2NH2	Ph	CH2NC	н	он, он
3823	CH2NH2	Ph	CH2NO2	н	он, он
3824	CH2NH2	Ph	CH28CH3	н	он, он
3825	CH2NH2	Ph	CH ₂ SOCH ₃	н	он, он
3826	CH2NH2	Ph	CH2802CH3	H	он, он
3827	CH2NH2	Ph	CH ₂ OH	H	он, он
3828	CH2NH2	Ph	CH2COOH	H	он, он
3829	CH2NH2	Ph	CH2CN4H	H	он, он
3830	CH2NH2	Ph	CH2NHSO2CF3	H	он, он
3831	CH2NH2	Ph	CH ₂ CH ₂ CN	н	он, он
3832	CH2NH2	Ph	CH2CH2NC	H	он, он
3833	CH2NH2	Ph	CH2CH2NO2	H	он, он
3834	CH2NH2	Ph	CH2CH2SCH3	H	он, он
3835	CH2NH2	Ph	CH2CH2SOCH3	н	он, он
3836	CH2NH2	Ph	CH2CH2SO2CH3	н	он, он
3837	CH2NH2	Ph	CH2CH2OH	н	он, он
3838	CH2NH2	Ph	CH2CH2COOH	н	он, он
3839	CH ₂ NH ₂	Ph	CH2CH2CN4H	H	OH, OH
3840	CH2NH2	Ph	CH2CH2NHSO2CF3	H.	он, он
3841	CH2NH2	PhCH ₂	н	H	(+)-pin
3842	CH ₂ NH ₂	PhO	methyl	н	(+)-pin
3843	CH2NH2	Phs	methyl	methyl	(+)-pin
3844	CH2NH2	PhNH	ethyl	н	(+)-pin
3845	CH ₂ NH ₂	PhCONH	ethyl	methyl	(+)-pin
3846	CH2NH2	PhNHCO	ethyl	ethyl	(+)-pin
3847	CH2NH2	Ph	isopropyl	н	(+)-pin
3848	CH2NH2	PhCH ₂	phenyl	H	(+)-pin
3849	CH2NH2	PhO	CH ₂ CN	н	(+)-pin
3850	CH2NH2	PhS	CH2NC	H	(+)-pin
3051	CH2NH2	PhNH	CH ₂ NO ₂	H	(+)-pin
3852	CH2NH2	PhCONH	CH2SCH3	Н	(+)-pin
3853	CH2NH2	PhNHCO	CH2SOCH3	н	(+)-pin
3854	CH2NH2	Ph(CH ₂) ₂	CH2SO2CH3	н	(+)-pin
3855	NH (C-NH) NH2	Ph	н	H .	(+)-pin
3856	NH (C=NH) NH ₂	Ph	methyl	methyl	(+)-pin

3857	NH (C=NH) NH2	Ph	ethyl	н	(+)-pin
3858	NH (C=NH) NH ₂	Ph	ethyl	methyl	(+)-pin
3859	NH (C=NH) NH2	Ph	ethy1	ethyl	(+)-pin
3860	NH (C-NH) NH2	Ph	isopropyl	н	(+)-pin
3861	NH (C=NH) NH2	Ph	phenyl	н	(+)-pin
3862	NH (C=NH) NH ₂	Ph	CH ₂ CN	н	(+)-pin
3863	NH (C=NH) NH2	Ph	CH2NC	H	(+)-pin
3864	NH (C=NH) NH2	Ph	CH2NO2	н	(+)-pin
3865	NH (C=NH) NH ₂	Ph	CH ₂ 8CH ₃	н	(+)-pin
3866	NH (C=NH) NH2	Ph	CH2SOCH3	н	(+)-pin
3867	NH (C=NH) NH2	Ph	CH2802CH3	н	(+)-pin
3868	NH (C=NH) NH2	Ph	сн ₂ он	н	(+)-pin
3869	NH (C=NH) NH2	Ph	сн ₂ соон	н	(+)-pin
3870	NH (C=NH) NH2	Ph	CH2CN4H	H	(+)-pin
3871	NH (C=NH) NH2	Ph	CH2NHSO2CF3	H	(+)-pin
3872	NH (C-NH) NH2	Ph	CH2CH2CN	Н	(+)-pin
3873	NH (C=NH) NH ₂	Ph	CH2CH2NC	н	(+)-pin
3874	NH (C=NH) NH ₂	Ph	CH2CH2NO2	н	(+)-pin
3875	NH (C=NH) NH2	Ph	CH2CH28CH3	н -	(+)-pin
3876	NH (C=NH) NH ₂	Ph	CH2CH2SOCH3	н .	(+)-pin
3877	NH (C=NH) NH ₂	Ph	СH ₂ CH ₂ 80 ₂ CH ₃	н	(+)-pin
3878	NH (C=NH) NH ₂	Ph	CH ₂ CH ₂ OH	н	(+)-pin
3879	NH (C=NH) NH ₂	Ph	NO ₂	Н	(+)-pin
3880	NH (C=NH) NH ₂	Ph	F	H	(+)-pin
3881	NH (C=NH) NH2	Ph	ОН	Н	(+)-pin
3882	NH (C=NH) NH ₂	Ph	н	Н	он, он
3883	NH (C=NH) NH ₂	Ph	methyl	H	он, он
3884	NH (C=NH) NH2	Ph	methyl	methyl	он, он
3885	NH (C=NH) NH ₂	Ph	ethyl	н	он, он
3886	NH (C=NH) NH ₂	Ph	ethyl	methyl	он, он
3887	NH (C=NH) NH2	Ph	ethyl	ethyl	он, он
3888	NH (C=NH) NH2	Ph	isopropyl	Н	он, он
3889	NH (C=NH) NH2	Ph	phenyl	H	он, он
3890	NH (C=NH) NH ₂	Ph	CH ₂ CN	Н	он, он
3891	NH (C=NH) NH ₂	Ph	CH2NC	н	он, он
3892	NH (C=NH) NH ₂	Ph	CH ₂ NO ₂	н	он, он
3893	NH (C=NH) NH ₂	Ph	CH ₂ SCH ₃	н	он, он
3894	NH (C=NH) NH ₂	Ph	сн ₂ восн ₃	н	он, он
3895	NH (C=NH) NH ₂	Ph	CH2802CH3	н	он, он
3896	NH (C=NH) NH ₂	Ph	СН ₂ ОН	H	он, он

3897	NH (C=NH) NH2	Ph	CH2COOH	н	он, он
3898	NH (C=NH) NH ₂	Ph	CH2CN4H	н	он, он
3899	NH (C=NH) NH ₂	Ph	CH2NHSO2CF3	н	он, он
3900	NH (C=NH) NH ₂	Ph	CH2CH2CN	н	он, он
3901	NH (C=NH) NH2	Ph	CH2CH2NC	н	он, он
3902	NH (C=NH) NH2	Ph	CH2CH2NO2	н	он, он
3903	NH (C=NH) NH2	Ph	CH2CH2SCH3	н	он, он
3904	NH (C=NH) NH2	Ph	CH2CH2SOCH3	н	он, он
3905	NH (C=NH) NH ₂	Ph	CH2CH2802CH3	н	он, он
3906	NH (C=NH) NH ₂	Ph	сн ₂ сн ₂ он	н	он, он
3907	NH (C=NH) NH2	Ph	сн ₂ сн ₂ соон	н	он, он
3908	NH (C=NH) NH2	Ph .	CH2CH2CN4H	н	он, он
3909	NH (C=NH) NH ₂	Ph	CH2CH2NH8O2CF3	н	он, он
3910	NH (C=NH) NH ₂	PhCH ₂	н	н	(+)-pin
3911	NH (C=NH) NH2	PhO	methyl	H	(+)-pin
3912	NH (C=NH) NH2	PhS	methyl	methyl	(+)-pin
3913	NH (C-NH) NH2	PhNH	ethyl	н	(+)-pin
3914	NH (C=NH) NH2	PhCONH	ethyl	methyl	(+)-pin
3915	NH (C=NH) NH ₂	PhNHCO	ethyl	ethyl	(+)-pin
3916	NH (C=NH) NH2	Ph	isopropyl	Н	(+)-pin
3917	NH (C=NH) NH ₂	PhCH ₂	phenyl	н	(+)-pin
3918	NH (C=NH) NH2	PhO	CH ₂ CN	H	(+)-pin
3919	NH (C=NH) NH2	Phs	CH2NC	H	(+)-pin
3920	NH (C=NH) NH2	PhNH	CH ₂ NO ₂	Н	(+)-pin
3921	NH (C=NH) NH2	PhCONH	CH2SCH3	н	(+)-pin
3922	NH (C=NH) NH ₂	PhNHCO	CH ₂ SOCH ₃	н	(+)-pin
3923	NH (C=NH) NH ₂	$Ph(CH_2)_2$	CH2802CH3	H	(+)-pin
3924	OMe	Ph	CH ₃	H	(+)-pin
3925	NH (C=NH) H	Ph	CH3	H	(+)-pin
3926	OMe	Ph	CH3	H	он, он
3927	NH (C=NH) H	Ph	CH ₃	H	он, он

Table 21

Ex	x	R13	R14	R ¹⁵	Y1Y2	Phys. Data
3932	CH2NH2	Ph	н	н	(+)-pin	
3933	CH ₂ NH ₂	Ph	methyl	н	(+)-pin	
3934	CH2NH2	Ph	н	H	он, он	
3935	CH2NH2	Ph	methyl	H	он, он	
3936	NH (C=NH) NH2	Ph	н	н	(+)-pin	
3937	NH (C=NH) NH2	Ph	methyl	н	(+)-pin	
3938	NH (C-NH) NH2	Ph	н	н	он, он	
3939	NH (C=NH) NH ₂	Ph	methyl	н	он, он	
3940	OMe	Ph	CH ₃	н	(+)-pin	
3941	NH (C=NH) H	Ph	CH ₃	н	(+)-pin	
3942	OMe	Ph	CH ₃	H	он, он	
3943	NH (C=NH) H	Ph	CH3	H	он, он	

PCT/US95/16248

Table 22

Ex	x	R13	R14	Y1Y2	Phys. Data
3948	CH2NH2	Ph	н	(+)-pin	
3949	CH2NH2	Ph	methyl	(+)-pin	
3950	CH2NH2	Ph	н	он, он	
3951	CH2NH2	Ph	methyl	он, он	
3952	NH (C=NH) NH2	Ph	н	(+)-pin	
3953	NH(C=NH)NH2	Ph '	methyl	(+)-pin	
3954	NH (C=NH) NH2	Ph	Н	он, он	
3955	NH(C=NH)NH2	Ph	methyl	он, он	
3956	OMe	Ph	CH ₃	(+)-pin	
3957	NH (C=NH) H	Ph	CH ₃	(+)-pin	
3958	OMe	Ph	CH3	он, он	
3959	NH (C=NH) H	Ph	CH ₃	OH, OH	-

Table 23

Ex	x	R ¹³	R14	Y ¹ Y ²	Phys. D	ata
3964	CH2NH2	Ph	н	(+)-pin		
3965	CH2NH2	Ph	methyl	(+)-pin		
3966	CH2NH2	Ph	н	он, он		
3967	CH2NH2	Ph	methyl	он, он		
3968	NH(C=NH)NH2	Ph	н	(+)-pin		
3969	NH(C=NH)NH2	Ph	methyl	(+)-pin		
3970	NH(C=NH)NH2	Ph	н	он, он		
3971	NH (C=NH) NH2	Ph	methyl	он, он		
3972	OMe	Ph	CH ₃	(+)-pin	•	
3973	NH (C=NH) H	Ph	CH3	(+)-pin		
3974	OMe	Ph	CH3	он, он		
3975	NH (C=NH) H	Ph	CH3	он, он		

Table 24

Ex	x	R ¹³	R ¹⁴	Y1Y2	Phys. Data
3980	CH2NH2	Ph	н	(+)-pin	
3981	CH2NH2	Ph	methyl	(+)-pin	
3982	CH2NH2	Ph	н	он, он	
3983	CH2NH2	Ph	methyl	он, он	•
3984	NH (C=NH) NH2	Ph	Н	(+)-pin	
3985	NH (C=NH) NH2	Ph	methyl	(+)-pin	
3986	NH (C=NH) NH2	Ph	Н	он, он	
3987	NH (C=NH) NH2	Ph	methyl	он, он	
3988	OMe	Ph	CH ₃	(+)-pin	
3989	NH (C=NH) H	Ph	CH ₃	(+)-pin	
3990	OMe	Ph	CH3	он, он	
3991	NH (C=NH) H	Ph	CH3	он, он	

Table 25

Ex	x	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
3996	CH2NH2	Ph	н	H	(+)-pin	
3997	CH2NH2	Ph	methyl	H	(+)-pin	
3998	CH2NH2	Ph	н	H	он, он	
3999	CH2NH2	Ph	methyl	н	он, он	
4000	NH (C=NH) NH ₂	Ph	н	H	(+)-pin	
4001	NH (C=NH) NH ₂	Ph	methyl	н	(+)-pin	
4002	NH (C=NH) NH ₂	Ph	н	н	он, он	
4003	NH (C=NH) NH ₂	Ph	methyl	H	он, он	
4004	OMe	Ph	CH3	н	(+)-pin	
4005	NH (C=NH) H	Ph	CH3	н	(+)-pin	
4006	OMe	Ph	CH3	н	он, он	
4007	NH (C=NH) H	Ph	CH ₃	Н	он, он	

Table 26

Ex	x	R13	R14	R ¹⁵	Y^1Y^2	Phys. Data
4012	CH2NH2	Ph	Н	н	(+)-pin	
4013	CH2NH2	Ph	methyl	н	(+)-pin	
4014	CH2NH2	Ph	н	н	он, он	
4015	CH2NH2	Ph	methyl	н	он, он	
4016	CH2NH2	Ph	H	Ph	(+)-pin	
4017	CH2NH2	Ph	н	Ph	он, он	
4018	NH (C=NH) NH2	Ph	Н	н	(+)-pin	
4019	NH (C=NH) NH2	Ph	methyl	н	(+)-pin	
4020	NH (C=NH) NH2	Ph	H	н	он, он	
4021	NH (C=NH) NH2	Ph	methyl	н	он, он	
4022	NH (C=NH) NH ₂	Ph	Н	Ph	(+)-pin	
4023	NH (C=NH) NH ₂	Ph	н	Ph	он, он	
4024	OMe	Ph	CH ₃	H	(+)-pin	
4025	NH (C=NH) H	Ph	CH ₃	н.	(+)-pin	
4026	OMe	Ph	CH ₃	н	он, он	•
4027	NH (C-NH) H	Ph	CH ₃	н	он. он	

Table 27

Ex	x	R13	R14	R ¹⁵	R16	Y ¹ Y ²	Phys. Data
4032	CH2NH2	Ph	H	н	н	(+)-pin	
4033	CH2NH2	Ph	methyl	н	н	(+)-pin	
4034	CH ₂ NH ₂	Ph	H	H	н	он, он	
4035	CH ₂ NH ₂	Ph	methyl	н	н	он, он	
4036	NH (C=NH) NH ₂	Ph	н	H	н	(+)-pin	
4037	NH (C=NH) NH ₂	Ph	methyl	н	н	(+)-pin	
4038	NH (C=NH) NH ₂	Ph	н	н	н	он, он	
4039	NH (C=NH) NH ₂	Ph	methyl	н	н	он, он	
4040	NH (C=NH) NH ₂	Ph	н	CH ₃	CH3	(+)-pin	
4041	NH (C-NH) NH ₂	Ph	н	CH3	CH3	он, он	
4042	OMe	Ph	CH ₃	н	н	(+)-pin	
4043	NH (C=NH) H	Ph	CH ₃	H	н	(+)-pin	
4044	OMe	Ph	СН3	Н	н	он, он	
4045	NH (C=NH) H	Ph	сн3	H	н	он, он	

Table 28

Ex	x	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	Y1Y2	Phye. Data	
4050	CH2NH2	Ph	СН2СО2Н	н	н	(+)-pin		
4051	CH2NH2	Ph	methyl	н	H	(+)-pin		
4052	CH2NH2	Ph	сн ₂ со ₂ н	н	Н	он, он		
4053	CH2NH2	Ph	methyl	н	Н	он, он		
4054	NH (C=NH) NH2	Ph	CH2CN	н	н	(+)-pin		
4055	NH (C=NH) NH ₂	Ph	methyl	н	н	(+) -pin		
4056	NH (C=NH) NH ₂	Ph	CH ₂ CN	н	н	он, он		
4057	NH (C=NH) NH ₂	Ph	methyl	н	н	он, он		
4058	NH (C=NH) NH ₂	Ph	CH3	CH3	н	(+)-pin		
4059	NH (C=NH) NH ₂	Ph	CH3	CH3	н	он, он		
4060	OMe	Ph	CH3	н	н	(+)-pin		
4061	NH (C=NH) H	Ph	CH3	н	Н	(+)-pin		
4062	OMe	Ph	CH ₃	н .	Н	он, он		
4063	NH (C=NH) H	Ph	CH ₃	н	н	он, он		
4064	CH2NH2	Ph	н	н	H	(+)-pin		
4065	CHaNHa	Ph	H	н	н	OH. OH		

Table 29

Ex	x	R13	R14	R ¹⁵	R ¹⁶	Y^1Y^2	Phys. Data
4070	CH2NH2	Ph	н	н	H	(+)-pin	
4071	CH ₂ NH ₂	Ph	methyl	н	H	(+)-pin	
4072	CH2NH2	Ph	н	H	H	он, он	
4073	CH2NH2	Ph	methyl	H	н	OH, OH	
4074	NH (C=NH) NH ₂	Ph	H	H	н	(+)-pin	
4075	NH (C=NH) NH ₂	Ph	methyl	H	H	(+)-pin	
4076	NH (C=NH) NH ₂	Ph	Н	H	H	он, он	
4077	NH (C=NH) NH ₂	Ph	methyl	H	H	он, он	
4078	NH (C=NH) NH ₂	Ph	CH ₃	CH3	н	(+)-pin	•
4079	NH (C=NH) NH ₂	Ph	CH ₃	CH3	н	он, он	
4080	OMe	Ph	н	H	OH	(+)-pin	
4081	NH (C=NH) H	Ph	н	H	F	(+)-pin	
4082	OMe	Ph	Н	H	Me	он, он	•
4083	NH (C=NH) H	Ph	H	H	Et	он, он	

Table 30

Ex	X	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	Y ¹ Y ²	Phys. Data
4088	CH2NH2	PhCH ₂	H	Н	Cl	(+)-pin	
4089	CH2NH2	PhCH ₂	H	methyl	н	(+)-pin	
4090	CH2NH2	PhCH ₂	Н	CH ₂ CN	H	·(+)-pin	
4091	CH2NH2	PhCH ₂	H	CH ₂ COOH	н	(+)-pin	
4092	CH2NH2	PhCH ₂	H	CH ₂ NC	н	(+)-pin	
4093	CH2NH2	PhCH ₂	н	CH2NO2	н	(+)-pin	
4094	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	H	(+)-pin	
4095	CH2NH2	PhCH ₂	н	CH ₂ SOCH ₃	н	(+)-pin	
4096	CH2NH2	PhCH ₂	н	н	NO ₂	он, он	
4097	CH2NH2	PhCH ₂	н	methyl	H	он, он	
4098	CH2NH2	PhCH ₂	н	CH ₂ CN	H	он, он	
4099	CH2NH2	PhCH2 .	Н	CH ₂ COOH	H	он, он	
4100	CH2NH2	PhCH ₂	Н	CH ₂ NC	н	он, он	
4101	CH2NH2	PhCH ₂	Н	CH2NO2	Н	он, он	
4102	CH2NH2	PhCH ₂	Н	(CH ₂) ₂ OH	H	он, он	
4103	CH2NH2	PhCH2	H	CH2SOCH3	н	он, он	
4104	NH (C-NH) NH2	PhCH ₂	H	н	H	(+)-pin	
4105	NH (C=NH) NH ₂	PhCH ₂	Н	methyl	H	(+)-pin	
4106	NH (C=NH) NH ₂	PhCH ₂	Н	CH ₂ CN	H	(+)-pin	
4107	NH (C=NH) NH2	PhCH ₂	Н	сн2соон	H	(+)-pin	
4108	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	H	(+)-pin	
4109	NH (C=NH) NH ₂	PhCH ₂	H	CH2NO2	H	(+)-pin	
4110	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	н	(+)-pin	
4111	NH (C=NH) NH2	PhCH ₂	H	CH2SOCH3	H	(+)-pin	
4112	NH (C=NH) NH ₂	PhCH ₂	н	н	н	он, он	
4113	NH (C=NH) NH ₂	PhCH ₂	H	methyl	н	он, он	
4114	NH (C=NH) NH2	PhCH ₂	н	CH2CN	H	он, он	
4115	NH (C=NH) NH2	PhCH ₂	H	CH2COOH	H	он, он	
4116	NH (C=NH) NH2	PhCH ₂	н	CH2NC	н	он, он	
4117	NH (C=NH) NH ₂	\mathtt{PhCH}_2	н	CH2NO2	H	он, он	
4118	NH (C-NH) NH2	PhCH ₂	н	(CH ₂) ₂ OH	н	он, он	

4119 $NH(C=NH)NH_2$ $PhCH_2$ H CH_2SOCH_3 H OH, OH

Table 31

Ex	x	R ¹³	R14	R ¹⁵	Y ¹ Y ²	Phys. Data
4124	CH2NH2	PhCH ₂	н	н	(+)-pin	
4125	CH2NH2	PhCH ₂	н	methyl	(+)pin	
4126	CH2NH2	PhCH ₂	н	CH ₂ CN	(+)-pin	
4127	CH2NH2	PhCH ₂	н	СН2СООН	(+)-pin	
4128	CH2NH2	PhCH ₂	H	CH ₂ NC	(+)-pin	
4129	CH2NH2	PhCH ₂	н	CH2NO2	(+)-pin	
4130	CH2NH2	PhCH ₂	н	(CH ₂) ₂ OH	(+)-pin	
4131	CH2NH2	PhCH ₂	н	CH2SOCH3	(+)-pin	
4132	CH2NH2	PhCH ₂	н	H .	он, он	
4133	CH ₂ NH ₂	PhCH ₂	. н	methyl	он, он	
4134	CH2NH2	PhCH ₂	H	CH ₂ CN	он, он	
4135	CH2NH2	PhCH ₂	н	CH2COOH	он, он	
4136	CH2NH2	PhCH ₂	H	CH ₂ NC	он, он	
4137	CH2NH2	PhCH ₂	н	CH2NO2	он, он	
4138	CH2NH2	PhCH ₂	н	(CH ₂) ₂ OH	он, он	
4139	CH2NH2	PhCH ₂	Н	CH2SOCH3	он, он	
4140	NH (C=NH) NH2	PhCH ₂	Н	Н	(+)-pin	
4141	NH (C=NH) NH ₂	PhCH ₂	Н	methyl	(+)-pin	
4142	NH (C=NH) NH ₂	PhCH ₂	Н	CH ₂ CN	(+)-pin	
4143	NH (C=NH) NH ₂	PhCH ₂	H	сн₂соон	(+)-pin	
4144	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
4145	NH (C=NH) NH ₂	PhCH ₂	H	CH2NO2	(+)-pin	
4146	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
4147	NH (C=NH) NH ₂	PhCH ₂	H	CH2SOCH3	(+)-pin	
4148	NH (C=NH) NH ₂	PhCH ₂	H	H	он, он	
4149	NH (C=NH) NH ₂	PhCH ₂	H	methyl	он, он	
4150	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH	
4151	NH (C=NH) NH ₂	PhCH ₂	H	CH2COOH	он, он	
4152	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NC	он, он	
4153	NH (C=NH) NH ₂	PhCH ₂	H	CH2NO2	он, он	
4154	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH	

4155 NH(C=NH)NH2 PhCH2 H CH2SOCH3 OH, OH

Table 32

Ex	x	R ¹³	R ¹⁵	R ¹⁴	Y ¹ Y ²	Phys.
4160	CH2NH2	PhCH ₂	H	н	(+)-pin	
4161	CH2NH2	PhCH ₂	Cl	н	(+)-pin	
4162	CH ₂ NH ₂	PhCH ₂	н	methyl	(+)-pin	
4163	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	(+)-pin	
4164	CH2NH2	PhCH ₂	Cl	CH2CN	(+)-pin	
4165	CH2NH2	PhCH ₂	H	сн2соон	(+)-pin	
4166	CH2NH2	PhCH ₂	H	CH2NC	(+)-pin	
4167	CH ₂ NH ₂	PhCH ₂	н	CH2NO2	(+)-pin	
4168	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
4169	CH2NH2	PhCH ₂	H	CH2SOCH3	(+)-pin	
4170	CH ₂ NH ₂	PhCH ₂	н	н .	он, он	
4171	CH ₂ NH ₂	PhCH ₂	Cl	н	он, он	
4172	CH ₂ NH ₂	PhCH ₂	H	methyl	он, он	
4173	CH2NH2	PhCH ₂	H	CH2CN	он, он	
4174	CH2NH2	PhCH ₂	Cl	CH2CN	он, он	
4175	CH ₂ NH ₂	PhCH ₂	H	СН ₂ СООН	OH, OH	
4176	CH2NH2	PhCH ₂	н .	CH2NC	он, он	
4177	CH2NH2	PhCH2	H	CH2NO2	он, он	
4178	CH ₂ NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	он, он	
4179	CH ₂ NH ₂	PhCH ₂	H	CH2SOCH3	он, он	
4180	NH (C=NH) NH ₂	PhCH ₂	H	н	(+)-pin	
4181	NH (C=NH) NH2	PhCH ₂	H	methyl	(+)-pin	
4182	NH (C=NH) NH ₂	PhCH ₂	H	CH2CN	(+)-pin	
4183	NH (C=NH) NH ₂	PhCH ₂	. н	сн2соон	(+)-pin	
4184	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
4185	NH (C=NH) NH2	PhCH ₂	н	CH2NO2	(+)-pin	
4186	NH (C=NH) NH2	PhCH ₂	H	(CH ₂) ₂ OH	(+)-pin	
4187	NH (C=NH) NH ₂	PhCH ₂	н	CH2SOCH3	(+)-pin	
4188	NH (C=NH) NH ₂	PhCH ₂	н	н	он, он	
4189	NH (C=NH) NH ₂	PhCH ₂	н	methyl	он, он	

4190	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	OH,	OH	
4191	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	OH,	ОН	
4192	NH (C=NH) NH2	PhCH ₂	H	CH2NC	OH,	ОН	
4193	NH (C=NH) NH2	PhCH ₂	H	CH2NO2	OH,	ОН	
4194	NH (C=NH) NH2	PhCH ₂	H	(CH ₂) ₂ OH	OH,	ОН	
4195	NH (C=NH) NHa	PhCHa	¥	CHAROCHA	OH	OH	

Table 33

Ex	x	R13	R ¹⁴	Y ¹ Y ²	Phys. Data
4200	CH2NH2	PhCH ₂	н	(+)-pin	
4201	CH2NH2	PhCH ₂	methyl	(+)-pin	
4202	CH2NH2	PhCH ₂	CH2CN	(+)-pin	
4203	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4204	CH2NH2	PhCH ₂	СН2СООН .	(+)-pin	
4205	CH2NH2	PhCH ₂	CH2NC	(+)-pin	
4206	CH2NH2	PhCH ₂	CH2NO2	(+)-pin	
4207	CH2NH2	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4208	CH2NH2	PhCH ₂	CH2BOCH3	(+)-pin	
4209	CH2NH2	PhCH ₂	н	он, он	
4210	CH2NH2	PhCH ₂	methyl	он, он	
4211	CH2NH2	PhCH ₂	CH ₂ CN	он, он	
4212	CH2NH2	PhCH ₂	CH ₂ CN	он, он	
4213	CH2NH2	PhCH ₂	CH ₂ COOH	он, он	
4214	CH2NH2	PhCH ₂	CH2NC	он, он	
4215	CH2NH2	PhCH ₂	CH2NO2	он, он	٠
4216	CH2NH2	PhCH ₂	(CH ₂) ₂ OH	он, он	
4217	CH2NH2	PhCH ₂	CH2SOCH3	он, он	
4218	NH (C=NH) NH2	PhCH ₂	н	(+)-pin	
4219	NH (С=NH) NH2	PhCH ₂	methyl	(+)-pin	
4220	NH (C=NH) NH ₂	PhCH ₂	CH2CN	(+)-pin	
4221	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
4222	NH (C=NH) NH ₂	PhCH ₂	СН2СООН	(+)-pin	
4223	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	· · ·	
4224	NH (C=NH) NH ₂	PhCH ₂	CH2NC	(+)-pin	
4225	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
4226	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4227	NH (C=NH) NH ₂	PhCH ₂	CH2EOCH3	(+)-pin	
4228	NH (C=NH) NH ₂	PhCH ₂	н .	он, он	
4229	NH (C-NH) NH ₂	PhCH ₂	methyl	он, он	

4230				
	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
4231	NH (C=NH) NH2	PhCH ₂	(CH ₂) ₂ CN	он, он
4232	NH (C-NH) NH2	PhCH ₂	СН2СООН	он, он
4233	NH (C=NH) NH2	PhCH ₂	(CH ₂) ₂ COOH	он. он
4234	NH (C=NH) NH2	PhCH ₂	CH ₂ NC	OH, OH
4235	NH (C=NH) NH2	PhCH ₂	CH ₂ NO ₂	OH, OH
4236	NH (C=NH) NH2	PhCH ₂	(CH ₂) ₂ OH	он, он
4237	NH (C=NH) NH2	PhCH ₂	CH280CH3	OH, OH

Table 34

Ex	x	_R 13	Y ¹ Y ²	Phys. Data
		m=1		
4242	CH2NH2	PhCH ₂	(+)-pin	
4243	CH2NH2	PhCH ₂	он, он	
4244	NH(C=NH)NH2	PhCH ₂	(+)-pin	
4245	NH(C=NH)NH2	PhCH ₂	он, он	
4246	OMe	PhCH ₂	(+)-pin	
4247	OMe .	PhCH ₂	он, он	
4248	NH (C=NH)H	PhCH ₂	(+)-pin	
4249	NH (C=NH)H	PhCH ₂	он, он	
4250	CH2NH2	PhCH ₂ CH ₂	(+)-pin	DB
4251	CH2NH2	PhCH2CH2	он, он	
4252	NH (C=NH)NH2	PhCH2CH2	(+)-pin	
4253	NH (C=NH)NH2	PhCH ₂ CH ₂	он, он	
4254	OMe	PhCH ₂ CH ₂	(+)-pin	
4255	OMe	PhCH ₂ CH ₂	он, он	
4256	NH (C=NH)H	PhCH ₂ CH ₂	(+)-pin	140
4257	NH (C=NH)H	PhCH2CH2	он, он	DC
4258	CH2NH2	Ph	(+)-pin	
4259	CH2NH2	Ph	он, он	
4260	NH (C=NH) NH2	Ph	(+)-pin	
4261	NH (C=NH) NH2	Ph	он, он	
4262	OMe .	Ph	(+)-pin	
4263	OMe	Ph	он, он	
4264	NH (C=NH) H	Ph	(+)-pin	
4265	NH (C=NH) H	Ph	он, он	
4266	CH2NH2	PhCH2CH28	(+)-pin	
4267	CH2NH2	PhCH ₂ S	(+)-pin	
4268	CH ₂ NH ₂	PhCH2CH2S	он, он	
4269	CH ₂ NH ₂	PhCH ₂ s	он, он	
4270		m=2		

4271	CH ₂ NH ₂	PhCH ₂	(+)-pin
4272	CH ₂ NH ₂	PhCH ₂	он, он
4273	NH (C=NH) NH ₂	PhCH ₂	(+)-pin
4274	NH (C=NH) NH ₂	PhCH ₂	он, он
4275	OMe	PhCH ₂	(+)-pin
4276	OMe	PhCH ₂	он, он
4277	NH (C=NH) H	PhCH ₂	(+)-pin
4278	NH (O=NH) H	PhCH ₂	он, он
4279	CH ₂ NH ₂	PhCH ₂ CH	2 (+)-pin
4280	CH ₂ NH ₂	PhCH ₂ CH	2 OH, OH
4281	NH (C=NH) NH2	PhCH ₂ CH	2 (+)-pin
4282	NH (C=NH) NH2	PhCH ₂ CH	2 ОН, ОН
4283	OMe	PhCH ₂ CH	2 (+)-pin
4284	OMe	PhCH ₂ CH	2 ОН, ОН
4285	NH (C=NH) H	PhCH ₂ CH	2 (+)-pin
4286	NH (C=NH)H	PhCH ₂ CH	2 ОН, ОН
4287	CH2NH2	Ph	(+)-pin
4288	CH2NH2	Ph	он, он
4289	NH (C=NH) NH ₂	Ph	(+)-pin
4290	NH (C=NH) NH2	Ph	он, он
4291	OMe	Ph	(+)-pin
4292	OMe	Ph	он, он
4293	NH (C=NH)H	Ph	(+)-pin
4294	NH (C=NH) H	Ph	он, он
DB.	HRMS Calc'd.	495.3255, F	ound 495.3257
DC.	HRMS Calc'd.	467.2442, F	ound 467.2950

Table 35

	•			
Ex	x	R13	Y ¹ Y ²	Phys. Data
		m-1	. ••	
4299	CH ₂ NH ₂	PhCH ₂	(+)-pin	
4300	CH2NH2	PhCH ₂	он, он	
4301	NH (C=NH) NH ₂	PhCH ₂	(+)-pin	
4302	NH (C=NH) NH ₂	PhCH ₂	он, он	
4303	OMe	PhCH ₂	(+)-pin	•
4304	OMe	PhCH ₂	он, он	
4305	NH (C=NH) H	PhCH ₂	(+)-pin	
4306	NH (C=NH) H	PhCH ₂	он, он	
4307	CH2NH2	PhCH ₂ CH ₂	(+)-pin	DE .
4308	CH2NH2	PhCH2CH2	он, он	
4309	NH (C=NH) NH2	PhCH ₂ CH ₂	(+)-pin	•
4310	NH (C=NH) NH2	PhCH2CH2	он, он	
4311	OMe	PhCH ₂ CH ₂	(+)-pin	
4312	OMe	PhCH2CH2	он, он	
4313	NH (C=NH) H	PhCH ₂ CH ₂	(+)-pin	
4314	NH (C=NH) H	PhCH ₂ CH ₂	он, он	
4315	CH2NH2	Ph	(+)-pin	
4316	CH2NH2	Ph	он, он	
4317	NH (C=NH) NH2	Ph	(+)-pin	
4318	NH (C=NH) NH2	Ph	он, он	
4319	CMe	Ph	(+)-pin	
4320	OMe	Ph	он, он	
4321	NH (C=NH) H	Ph	(+)-pin	
4322	NH (C=NH) H	Ph	он, он	•
4323		m -2		•
4324	CH2NH2	PhCH ₂	(+)-pin	
4325	CH2NH2	PhCH ₂	он, он	
4326	NH (С=NH) ŅН2	PhCH ₂	(+)-pin	

4327	NH (C-NH) NH ₂	PhCH ₂	он, он
4328	OMe	PhCH ₂	(+)-pin
4329	OMe	PhCH ₂	OH, OH
4330	NH (C-NH) H	PhCH ₂	(+)-pin
4331	NH (C=NH) H	PhCH ₂	он, он
4332	CH ₂ NH ₂	PhCH2CH2	(+)-pin
4333	CH2NH2	PhCH2CH2	он, он
4334	NH (C=NH) NH ₂	PhCH2CH2	(+)-pin
4335	NH (C=NH) NH ₂	PhCH2CH2	он, он
4336	CMe	PhCH2CH2	(+)-pin
4337	OMe	PhCH2CH2	он, он
4338	NH (C=NH) H	PhCH2CH2	(+)-pin
4339	NH (C=NH) H	PhCH2CH2	он, он
4340	CH ₂ NH ₂	Ph	(+)-pin
4341	CH2NH2	Ph	он, он
4342	NH (C=NH) NH ₂	Ph	(+)-pin
4343	NH (C=NH) NH ₂	Ph	OH, OH
4344	OMe	Ph	(+)-pin
4345	OMe	Ph	он, он
4346	NH (C=NH) H	Ph	(+)-pin
4347	NH (C=NH) H	Ph	он, он
DE.	HRMS Calc'd. 495.3	255. Found	495.3249

Table 36

		•		Λ	
Ex	x	R ¹³	R ¹⁴	Y ¹ Y ²	Phys.
					Data
		m=1	•	•	
4348	CH ₂ NH ₂	PhCH ₂	H	(+)-pin	
4349	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin	
4350	CH2NH2	PhCH ₂	CH ₂ CN	(+)-pin	
4351	CH ₂ NH ₂	PhCH ₂	СН ₂ СООН	(+)-pin	
4352	CH ₂ NH ₂	PhCH ₂	CH2NC	(+) -pin	
4353	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin	
4354	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4355	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin	
4356	CH ₂ NH ₂	PhCH ₂	н	он, он	
4357	CH ₂ NH ₂	PhCH ₂	methyl	ОН, ОН	
4358	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH	
4359	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH	
4360	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он	
4361	CH2NH2	PhCH ₂	CH2NO2	он, он	
4362	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он	
4363	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	OH, OH	
4364	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin	
4365	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin	
4366	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4367	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
4368	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4369	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	

4370	NH (C=NH) NH ₂	PhCH ₂	CH2NC	(+)-pin
4371	NH (C=NH) NH ₂	PhCH ₂	CH2NO2	(+) -pin
4372	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4373	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4374	NH (C=NH) NH ₂	PhCH ₂	н	н, он
4375	NH (C=NH) NH ₂	PhCH ₂	methyl	он, он
4376	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
4377	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	он, он
4378	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	ОН, ОН
4379	NH (C=NH) NH ₂	PhCH ₂	(СH ₂) ₂ СООН	он, он
4380	NH (C=NH) NH ₂	PhCH ₂	CH2NC	OH, OH
4381	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4382	NH (C=NH) NH ₂	$PhCH_2$	(CH ₂) ₂ OH	он, он
4383	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
4384			n=2	
4385	CH ₂ NH ₂	PhCH ₂	н	(+)-pin
4386	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
4387	CH ₂ NH ₂	PhCH ₂	CH ² CN	(+) -pin
4388	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4389	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4390	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4391	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4392	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4393	CH ₂ NH ₂	PhCH ₂	н	он, он
4394	CH ₂ NH ₂	PhCH ₂	methyl	он, он
4395	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он
4396	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он
4397	CH ₂ NH ₂	PhCH ₂	CH2NC	он, он
4398	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4399	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4400	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
4401	NH (C=NH) NH ₂	PhCH ₂		(+)-pin
4402	NH (C=NH) NH ₂	PhCH ₂	ethyl	(+)-pin
4403	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4404	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin

4405	NH (C=NH) NH ₂	PhCH ₂	CH₂COOH	·(+) -pin
4406	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4407	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4408	NH (C=NH) NH ₂	PhCH ₂	CH2NO2	(+) -pin
4409	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4410	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+) -pin
4411	NH (C=NH) NH ₂	PhCH ₂		он, он
4412	NH (C=NH) NH ₂	PhCH ₂	ethyl	он, он
4413	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
4414	NH (C=NH) NH ₂	PhCH ₂	$(CH_2)_2CN$	он, он
4415	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	он, он
4416	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4417	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	он, он
4418	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4419	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4420	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	ОН, ОН
4421		m= 0		
4422	CH ₂ NH ₂	PhCH ₂	н	(+) -pin
		2		(+) pin
4423	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
4423 4424				_
	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
4424	CH ₂ NH ₂ CH ₂ NH ₂	PhCH ₂	methyl CH ₂ CN	(+)-pin (+)-pin
4424 4425	CH ₂ NH ₂ CH ₂ NH ₂ CH ₂ NH ₂	PhCH ₂ PhCH ₂	methyl CH ₂ CN CH ₂ COOH	(+)-pin (+)-pin (+)-pin
4424 4425 4426	CH ₂ NH ₂ CH ₂ NH ₂ CH ₂ NH ₂ CH ₂ NH ₂	PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂	methyl CH ₂ CN CH ₂ COOH CH ₂ NC	(+)-pin (+)-pin (+)-pin (+)-pin
4424 4425 4426 4427	CH ₂ NH ₂	PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂	methyl CH ₂ CN CH ₂ COOH CH ₂ NC CH ₂ NO ₂	(+)-pin (+)-pin (+)-pin (+)-pin (+)-pin
4424 4425 4426 4427 4428	CH ₂ NH ₂	PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂	methyl CH ₂ CN CH ₂ COOH CH ₂ NC CH ₂ NO ₂ (CH ₂) ₂ OH	(+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin
4424 4425 4426 4427 4428 4429	CH ₂ NH ₂	PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂ PhCH ₂	methyl CH ₂ CN CH ₂ COOH CH ₂ NC CH ₂ NO ₂ (CH ₂) ₂ OH CH ₂ SOCH ₃	(+) -pin (+) -pin (+) -pin (+) -pin (+) -pin (+) -pin (+) -pin
4424 4425 4426 4427 4428 4429	CH ₂ NH ₂	PhCH ₂	methyl CH ₂ CN CH ₂ COOH CH ₂ NC CH ₂ NO ₂ (CH ₂) ₂ OH CH ₂ SOCH ₃ H	(+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin
4424 4425 4426 4427 4428 4429 4430 4431	CH ₂ NH ₂	PhCH ₂	methyl CH ₂ CN CH ₂ COOH CH ₂ NC CH ₂ NO ₂ (CH ₂) ₂ OH CH ₂ SOCH ₃ H methyl	(+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin OH, OH
4424 4425 4426 4427 4428 4429 4430 4431 4432	CH ₂ NH ₂	PhCH ₂	methyl CH ₂ CN CH ₂ COOH CH ₂ NC CH ₂ NO ₂ (CH ₂) ₂ OH CH ₂ SOCH ₃ H methyl CH ₂ CN	(+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin OH, OH
4424 4425 4426 4427 4428 4429 4430 4431 4432	CH ₂ NH ₂	PhCH ₂	methyl CH ₂ CN CH ₂ COOH CH ₂ NC CH ₂ NO ₂ (CH ₂) ₂ OH CH ₂ SOCH ₃ H methyl CH ₂ CN CH ₂ COOH	(+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin OH, OH OH, OH
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433	CH ₂ NH ₂	PhCH ₂	methyl CH ₂ COOH CH ₂ NC CH ₂ NO ₂ (CH ₂) ₂ OH CH ₂ SOCH ₃ H methyl CH ₂ CN CH ₂ COOH CH ₂ COOH	(+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin OH, OH OH, OH OH, OH
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434	CH ₂ NH ₂	PhCH ₂	methyl CH ₂ CN CH ₂ COOH CH ₂ NC CH ₂ NO ₂ (CH ₂) ₂ OH CH ₂ SOCH ₃ H methyl CH ₂ CN CH ₂ COOH CH ₂ COOH CH ₂ NC	(+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin OH, OH OH, OH OH, OH OH, OH OH, OH
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435	CH ₂ NH ₂	PhCH ₂	methyl CH ₂ CN CH ₂ COOH CH ₂ NC CH ₂ NO ₂ (CH ₂) ₂ OH CH ₂ SOCH ₃ H methyl CH ₂ CN CH ₂ COOH CH ₂ NC CH ₂ NO ₂	(+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin (+)-pin OH, OH OH, OH OH, OH OH, OH OH, OH OH, OH

4440	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4441	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4442	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	(+)-pin
4443	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4444	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4445	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4446	NH (C=NH) NH2	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4447	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4448	NH (C=NH) NH ₂	PhCH ₂	н	н, он
4449	NH (C=NH) NH ₂	PhCH ₂	methyl	он, он
4450	NH (C=NH) NH2	PhCH ₂	CH ₂ CN	он, он
4451	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	он, он
4452	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	он, он
4453	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4454	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	ОН, ОН
4455	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4456	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4457	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	он. он

Table 37

Ex	x	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data	
m=1						
4462	CH2NH2	PhCH ₂	н	(+)-pin		
4463	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin		
4464	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin		
4465	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin		
4466	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin		
4467	CH ₂ NH ₂	PhCH ₂	CH2NO2	(+) -pin		
4468	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin		
4469	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	(+)-pin		
4470	CH ₂ NH ₂	PhCH ₂	н	он, он		
4471	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH	•	
4472	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он		
4473	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он		
4474	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он		
4475	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH		
4476	CH2NH2	PhCH ₂	(CH ₂) ₂ OH	он, он		
4477	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он		
4478	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin		
4479	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin		
4480	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin		
4481	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin		
4482	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin		
4483	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin		
4484	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin		
4485	NH (C=NH) NH2	PhCH ₂	CH ₂ NO ₂	(+)-pin	•	

4486	NH (C=NH) NH ₂	$PhCH_2$	(CH ₂) ₂ OH	(+)-pin
4487	NH (C=NH) NH ₂	$PhCH_2$	CH ₂ SOCH ₃	(+)-pin
4488	NH (C=NH) NH ₂	PhCH ₂	н	он, он
4489	NH (C=NH) NH ₂	PhCH ₂	methy1	OH, OH
4490	NH (C=NH) NH ₂	PhCH ₂	CH2CN	он, он
4491	NH (C≕NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	он, он
4492	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	он, он
4493	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4494	NH (C=NH) NH ₂	PhCH ₂	CH2NC	он, он
4495	NH (C=NH) NH ₂	PhCH ₂	CH2NO2	он, он
4496	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4497	MH (C=NH) MH ₂	PhCH ₂	CH2SOCH3	ОН, ОН
4498			m=2	
4499	CH ₂ NH ₂	PhCH ₂	н	(+) -pin
4500	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4501	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4502	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4503	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4504	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4505	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4506	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4507	CH ₂ NH ₂	PhCH ₂	н	он, он
4508	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
4509	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он
4510	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он
4511	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	ОН, ОН
4512	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	ОН, ОН
4513	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4514	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
4515	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin
4516	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4517	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4518	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4519	MH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4520	NH (C≕NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin

4521	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4522	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4523	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4524	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
4525	NH (C=NH) NH ₂	PhCH ₂	H	он, он
4526	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4527	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
4528	NH (C=NH) NH ₂	PhCH ₂	$(CH_2)_2CN$	он, он
4529	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	ОН, ОН
4530	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4531	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	он, он
4532	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4533	NH (C=NH) NH ₂	PhCH ₂	$(CH_2)_2OH$	он, он
4534	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	ОН, ОН
		m=0		
4535	CH ₂ NH ₂	PhCH ₂	Н	(+)-pin
4536	CH ₂ NH ₂	FhCH ₂	methyl	(+)-pin
4537	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4538	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4539	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4540	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4541	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4542	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
4543	CH ₂ NH ₂	PhCH ₂	н	он, он
4544	CH ₂ NH ₂	PhCH ₂	methyl	он, он
4545	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4546	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он
4547	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он
4548	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4549	CH ₂ NH ₂	PhCH ₂	$(CH_2)_2OH$	OH, OH
4550	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4551	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin
4552	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4553	NH (C=NH) NH ₂	PhCH ₂	. CH ₂ CN	(+)-pin
4554	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin

4555	NH (C=NH) NH ₂	PhCH ₂	CH. COOH	4.3
4333	\C-201/2012	PHCH ₂	CH ₂ COOH	(+)-pin
4556	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4557	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4558	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4559	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4560	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+) -pin
4561	NH (C=NH) NH ₂	PhCH ₂	H	он, он
4562	NH (C=NH) NH ₂	PhCH ₂	methyl	он, он
4563	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
4564	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	он, он
4565	NH (C=NH) NH ₂	$PhCH_2$	CH ₂ COOH	он, он
4566	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4567	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	он, он
4568	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4569	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4570	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	он. он

Table 38

Ex	x	R13	R14	Y^1Y^2	Phys. Data
		m=.	1		
4575	CH ₂ NH ₂	PhCH ₂	н	(+)-pin	
4576	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin	
4577	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4578	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4579	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
4580	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
4581	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4582	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	(+)-pin	
4583	CH ₂ NH ₂	PhCH ₂	н	он, он	
4584	CH ₂ NH ₂	PhCH ₂	methyl	он, он	
4585	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он	
4586	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	ОН, ОН	
4587	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он	
4588	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он	
4589	CH2NH2	PhCH ₂	(CH ₂) ₂ OH	ОН, ОН	
4590	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	он, он	
4591	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin	
4592	ин (C=ин) ин ₂	PhCH ₂	methyl	(+)-pin	
4593	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4594	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
4595	NH (C=NH) NH ₂	PhCH ₂	сн ₂ соон	(+) -pin	
4596	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin	
4597	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	

4598	NH (C=NH) NH ₂	PhCH ₂	CH2NO2	(+)-pin
4599	MH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4600	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4601	NH (C=NH) NH ₂	PhCH ₂	н	он, он
4602	NH (C=NH) NH ₂	PhCH ₂	methyl	он, он
4603	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
4604	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	он, он
4605	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	он, он
4606	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4607	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	он, он
4608	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	ОН, ОН
4609	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	ОН, ОН
4610	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	OH, OH
		п	b==0	
4611	CH ₂ NH ₂	PhCH ₂	н	(+)-pin
4612	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4613	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4614	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4615	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4616	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4617	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4618	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
4619	CH ₂ NH ₂	PhCH ₂	н	OH, OH
4620	CH ₂ NH ₂	PhCH ₂	methyl	ОН, ОН
4621	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он
4622	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он
4623	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он
4624	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4625	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4626	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	ОН, ОН
4627	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin
4628	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4629	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4630	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4631	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin

4632	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4633	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4634	nh (C=nh) nh ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4635	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4636	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4637	NH (C=NH) NH ₂	PhCH ₂	Н	он, он
4638	NH (C=NH) NH ₂	PhCH ₂	methyl	он, он
4639	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
4640	NH (C≕NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	он, он
4641	NH (C=NH) NH ₂	PhCH ₂	СH ₂ СООН	он, он
4642	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4643	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	он, он
4644	NH (C≕NH) NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4645	NH (C=NH) NH ₂	PhCH ₂	(СН ₂) ₂ ОН	он, он
4646	NH (C=NH) NH2	PhCH ₂	CH2SOCH3	он. он

Table 39

Ex	x	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data	
m=1						
4651	CH ₂ NH ₂	PhCH ₂	н	(+)-pin		
4652	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin		
4653	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin		
4654	CH ₂ NH ₂	PhCH ₂	СН2СООН	(+) -pin		
4655	CH ₂ NH ₂	PhCH ₂	CH2NC	(+)-pin	•	
4656	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin		
4657	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin		
4658	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin	•	
4659	CH ₂ NH ₂	PhCH ₂	н	OH, OH		
4660	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH		
4661	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он		
4662	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он		
4663	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он		
4664	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	ОН, ОН		
4665	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он		
4666	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	ОН, ОН		
4667	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin	•	
4668	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin		
4669	MH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	•	
4670	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin		
4671	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin		
4672	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin		
4673	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin		
4674	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin		
4675	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin		

4676	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4677	NH (C=NH) NH ₂	PhCH ₂	н	OH, OH
4678	NH (C=NH) NH ₂	PhCH ₂	methyl	он, он
4679	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
4680	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4681	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	он, он
4682	NH (C=NH) NH ₂	PhCH ₂	$(CH_2)_2COOH$	он, он
4683	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4684	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4685	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4686	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
		m=0		
4687	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
4688	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4689	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4690	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4691	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4692	CH ₂ NH ₂	PhCH ₂	CH2NO2	(+)-pin
4693	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4694	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
4695	CH ₂ NH ₂	PhCH ₂	н	он, он
4696	CH ₂ NH ₂	PhCH ₂	methyl	он, он
4697	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4698	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он
4699	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он
4700	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4701	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4702	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
4703	NH (C=NH) NH ₂	PhCH ₂	н	(+) -pin
4704	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4705	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4706	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
4707	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4708	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4709	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin

4710	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4711	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4712	MH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
4713	NH (C=NH) NH ₂	PhCH ₂	н	он, он
4714	NH (C=NH) NH ₂	PhCH ₂	methyl	ОН, ОН
4715	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
4716	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	он, он
4717	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	ОН, ОН
4718	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4719	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	ОН, ОН
4720	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4721	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4722	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH2	OH OH

Table 40

			4		
Ex	x	R ¹³	R14	Y ¹ Y ²	Phys. Data
		m=1			·
4727	CH ₂ NH ₂	PhCH ₂	Н	· (+)-pin	
4728	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin	
4729	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4730	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4731	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
4732	CH ₂ NH ₂	PhCH ₂	CH2NO2	(+)-pin	
4733	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4734	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	(+)-pin	
4735	CH ₂ NH ₂	PhCH ₂	н	он, он	
4736	CH ₂ NH ₂	PhCH ₂	methyl	он, он	
4737	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он	
4738	CH ₂ NH ₂	PhCH ₂	СН2СООН	он, он	
4739	CH ₂ NH ₂	PhCH ₂	CH2NC	он, он	
4740	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он	
4741	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он	
4742	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он	
4743	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin	
4744	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin	
4745	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4746	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
4747	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	(+)-pin	
4748	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	
4749	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
4750	NH (C=NH) NH ₂	PhCH ₂	CH2NO2	(+) -pin	
4751	NH (C=NH) NH2	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	

4752	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4753	NH (C=NH) NH ₂	$PhCH_2$	н	OH, OH
4754	NH (C=NH) NH ₂	PhCH ₂	methyl	он, он
4755	NH (C=NH) NH ₂	PhCH ₂	CH2CN	он, он
4756	NH (C=NH) NH ₂	$PhCH_2$	(CH ₂) ₂ CN	OH, OH
4757	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4758	NH (C=NH) NH ₂	$PhCH_2$	(CH ₂) ₂ COOH	ОН, ОН
4759	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	ОН, ОН
4760	NH (C=NH) NH ₂	PhCH ₂	CH2NO2	он, он
4761	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	ОН, ОН
4762	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	OH, OH
			m=0	
4763	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
4764	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4765	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4766	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4767	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4768	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4769	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4770	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4771	CH ₂ NH ₂	PhCH ₂	н	ОН, ОН
4772	CH ₂ NH ₂	PhCH ₂	methyl	ОН, ОН
4773	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4774	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он
4775	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4776	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4777	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4778	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
4779	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin
4780	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
4781	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4782	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin
4783	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4784	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4785	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin

PCT/US95/16248

4786	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4787	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4788	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+) -pin
4789	NH (C=NH) NH ₂	PhCH ₂	н	он, он
4790	NH (C=NH) NH ₂	PhCH ₂	methyl	он, он
4791	NH (C=NH) NH ₂	PhCH ₂	CH2CM	он, он
4792	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	он, он
4793	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	он, он
4794	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4795	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	он, он
4796	NH (C=NH) NH ₂	$PhCH_2$	CH ₂ NO ₂	он, он
4797	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4798	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

Table 41

Ex	x	R13	R ¹⁴	Y^1Y^2	Phys.	Data
		m=1				
4803	CH ₂ NH ₂	PhCH ₂	н	(+)-pin		
4804	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin		
4805	CH ₂ NH ₂	PhCH ₂	CH2CN	(+)-pin		
4806	CH ₂ NH ₂	PhCH ₂	Сн2соон	(+)-pin		
4807	CH ₂ NH ₂	PhCH ₂	CH2NC	(+)-pin		
4808	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin		
4809	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin		
4810	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin		
4811	CH ₂ NH ₂	PhCH ₂	н	он, он		
4812	CH ₂ NH ₂	PhCH ₂	methyl	он, он		
4813	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он		
4814	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он	•	
4815	CH ₂ NH ₂	PhCH ₂	CH2NC	он, он		
4816	CH ₂ NH ₂	PhCH ₂	CH2NO2	он, он		
4817	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он		
4818	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	OH, OH		
4819	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin		
4820	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin		
4821	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin		
4822	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin		
4823	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin		
4824	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin		
4825	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin		
4826	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin		
4827	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin		

4828	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4829	NH (C=NH) NH ₂	PhCH ₂	н	он, он
4830	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4831	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
4832	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	он, он
4833	NH (C≖NH) NH ₂	PhCH ₂	CH ₂ COOH	он, он
4834	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4835	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	он, он
4836	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4837	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4838	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
		1	m=0	
4839	CH2NH2	PhCH ₂	. н	(+)-pin
4840	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4841	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4842	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4843	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4844	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4845	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4846	CH ₂ NH ₂	$PhCH_2$	CH ₂ SOCH ₃	(+)-pin
4847	CH ₂ NH ₂	PhCH ₂	н	он, он
4848	CH ₂ NH ₂	PhCH ₂	methyl	ОН, ОН
4849	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он
4850	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4851	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он
4852	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
4853	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4854	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	он, он
4855	NH (C=NH) NH ₂	PhCH ₂	н	· (+)-pin
4856	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
4857	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
4858	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
4859	NH (C=NH) NH ₂	$PhCH_2$	СH ₂ СООН	(+)-pin
4860	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4861	NH (C=NH) NH ₂	PhCH ₂	CH2NC	(+)-pin

4862	MH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4863	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4864	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4865	NH (C=NH) NH ₂	PhCH ₂	н	он, он
4866	NH (C=NH) NH ₂	PhCH ₂	methyl	он, он
4867	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
4868	MH (C=MH) MH ²	PhCH ₂	(CH ₂) ₂ CN	ОН, ОН
4869	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	ОН, ОН
4870	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4871	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	он, он
4872	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	ОН, ОН
4873	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4874	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он

WO 96/20689

Table 42

E cc	x	R ¹³	R ¹⁴	Y^1Y^2	Phys. Data
		m=1	•		
4879	CH ₂ NH ₂	PhCH ₂	н	(+) -pin	
4880	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin	
4881	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4882	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin	
4883	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin	
4884	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin	
4885	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin	
4886	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin	
4887	CH ₂ NH ₂	PhCH ₂	н .	OH, OH	
4888	CH ₂ NH ₂	PhCH ₂	methyl	он, он	
4889	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он	
4890	CH ₂ NH ₂	PhCH ₂	СН2СООН	он, он	•
4891	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH	
4892	CH2NH2	PhCH ₂	CH ₂ NO ₂	ОН, ОН	
4893	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он	
4894	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH	
4895	NH (C=NH) NH ₂	PhCH ₂	н	(+) -pin	
4896	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin	
4897	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
4898	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+) -pin	
4899	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
4900	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	
4901	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	

4902	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4903	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4904	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4905	NH (C=NH) NH ₂	PhCH ₂	н	OH, OH
4906	NH (C=NH) NH ₂	$PhCH_2$	methyl	он, он
4907	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
4908	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4909	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
4910	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4911	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4912	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4913	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4914	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
			m=2	
4915	CH ₂ NH ₂	PhCH ₂	н	(+)-pin
4916	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4917	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4918	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4919	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4920	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4921	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4922	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4923	CH ₂ NH ₂	$PhCH_2$	н	он, он
4924	CH ₂ NH ₂	PhCH ₂	methyl	ОН, ОН
4925	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	ОН, ОН
4926	CH ₂ NH ₂	PhCH ₂	сн2соон	он, он
4927	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	OH, OH
4928	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4929	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4930	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
4931	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin
4932	nh (C=nh) nh ₂	PhCH ₂	methyl	(+)-pin
4933	NH (C=NH) NH ₂	$PhCH_2$	CH ₂ CN	(+)-pin
4934	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
4935	$NH(C=NH)NH_2$	PhCH ₂	CH ₂ COOH	(+)-pin

4936	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4937	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4938	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
4939	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
4940	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4941	NH (C=NH) NH ₂	PhCH ₂	н	он, он
4942	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
4943	NH (C=NH) NH ₂	PhCH ₂	CH2CN	он, он
4944	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	он, он
4945	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	он, он
4946	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
4947	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	он, он
4948	NH (C=NH) NH ₂	PhCH ₂	CH2NO2	он, он
4949	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
4950	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
		m=0		•
4951	CH ₂ NH ₂	PhCH ₂	н	(+)-pin
4952	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
4953	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
4954	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
4955	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
4956	CH ₂ NH ₂	PhCH ₂	CH2NO2	(+) -pin
4957	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4958	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
4959	CH ₂ NH ₂	PhCH ₂	н	он, он
4960	CH ₂ NH ₂	PhCH ₂	methyl	он, он
4961	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он
4962	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он
4963	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	ОН, ОН
4964	CH ₂ NH ₂	PhCH ₂	CH2NO2	он, он
4965	CH ₂ NH ₂	PhCH ₂	$(CH_2)_2OH$	он, он
4966	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
4967	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin
4968	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin

4970	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
4971	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin
4972	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
4973	MH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
4974	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin
4975	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
4976	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
4977	NH (C=NH) NH ₂	PhCH ₂	н	OH, OH
4978	NH (C=NH) NH ₂	PhCH ₂	methyl	ОН, ОН
4979	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
4980	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
4981	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	он, он
4982	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
4983	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH. OH
4984	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
4985	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
4986	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH

Table 43

Ex	x	R ¹³	R ¹⁴	Y ¹ Y ²	Phys. Data
		m-	1		•
4991	CH ₂ NH ₂	PhCH ₂	н	(+) -pin	
4992	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin	
4993	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin	₩)
4994	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin	
4995	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin	
4996	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+) -pin	
4997	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin	
4998	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin	
4999	CH ₂ NH ₂	PhCH ₂	н	он, он	
5000	CH ₂ NH ₂	PhCH ₂	methyl	он, он	_
5001	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он	
5002	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	OH, OH	
5003	CH2NH2	PhCH ₂	CH ₂ NC	он, он	
5004	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он	
5005	CH2NH2	PhCH ₂	(CH ₂) ₂ OH	он, он	
5006	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH	
5007	NH (C=NH) NH ₂	PhCH ₂	н	(+) -pin	
5008	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin	
5009	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
5010	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin	
5011	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin	
5012	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	
5013	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	

5014	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
5015	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
5016	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
5017	NH (C=NH) NH ₂	PhCH ₂	н	он, он
5018	NH (C=NH) NH ₂	$PhCH_2$	methyl	он, он
5019	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
5020	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
5021	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	OH, OH
5022	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
5023	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	OH, OH
5024	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	ОН, ОН
5025	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	ОН, ОН
5026	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
			m=2	
5027	CH ₂ NH ₂	PhCH ₂	н	(+)-pin
5028	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
5029	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
5030	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
5031	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
5032	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
5033	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
5034	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5035	CH ₂ NH ₂	PhCH ₂	н	он, он
5036	CH ₂ NH ₂	PhCH ₂	methyl	OH, OH
5037	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он
5038	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он
5039	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он
5040	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
5041	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
5042	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
5043	NH (C=NH) NH ₂	PhCH ₂	Н	(+)-pin
5044	NH (C=NH) NH ₂	PhCH ₂	methyl	(+) -pin
5045	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
5046	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
5047	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+) -pin

5048	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+) -pin
5049	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
5050	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
5051	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
5052	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5053	NH (C=NH) NH ₂	PhCH ₂	н	он, он
5054	NH (C=NH) NH ₂	PhCH ₂	methyl	он, он
5055	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
5056	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	он, он
5057	NH (C=NH) NH ₂	PhCH ₂	СН2СООН	он, он
5058	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
5059	ин (С=ин) ин ₂	PhCH ₂	CH ₂ NC	он, он
5060	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
5061	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
5062	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
		m=0		
5063	CH ₂ NH ₂	PhCH ₂	н	(+)-pin
5064	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
5065	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
5066	CH ₂ NH ₂	PhCH ₂	СН ₂ СООН	(+)-pin
5067	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
5068	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
5069	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
5070	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
5071	CH ₂ NH ₂	PhCH ₂	н	он, он
5072	CH ₂ NH ₂	PhCH ₂	methyl	он, он
5073	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он; он
5074	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он
5075	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он
5076	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
5077	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
5078	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
5079	NH (C=NH) NH ₂	PhCH ₂	н	(+) -pin
5080	ин (C=NH) ин ₂	PhCH ₂	methyl	(+) -pin
5081	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin

5082	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
5083	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
5084	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
5085	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
5086	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
5087	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
5088	$NH(C=NH)NH_2$	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5089	NH (C=NH) NH ₂	PhCH ₂	H .	OH, OH
5090	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
5091	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5092	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) 2CN	OH, OH
5093	NH (C=NH) NH2	PhCH ₂	СН2СООН	OH, OH
5094	NH (C=NH) NH2	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
5095	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	
5096	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	OH, OH
5097	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
5098	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	OH, OH
	_		200cm3	OH, OH

Table 44

Ex	x	_R 13	R ¹⁴	Y ¹ Y ²	Phys. Data
		m=1	•		
5103	CH ₂ NH ₂	PhCH ₂	н	(+)-pin	
5104	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin	
5105	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
5106	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
5107	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	
5108	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin	
5109	CH ₂ NH ₂	PhCH ₂	(СH ₂) ₂ ОН	(+)-pin	
5110	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin	
5111	CH ₂ NH ₂	PhCH ₂	н	он, он	
5112	CH ₂ NH ₂	PhCH ₂	methyl	он, он	
5113	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	он, он	
5114	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он	
5115	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он	
5116	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он	
5117	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он	
5118	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	он, он	
5119	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin	
5120	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin	
5121	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	(+)-pin	
5122	NH (C=NH) NH ₂	PhCH ₂	$(CH_2)_2CN$	(+)-pin	
5123	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin	
5124	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin	
5125	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin	

5126	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
5127	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+) -pin
5128	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	(+)-pin
5129	NH (C=NH) NH ₂	PhCH ₂	H	OH, OH
5130	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
5131	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5132	NH (C=NH) NH ₂	$PhCH_2$	(CH ₂) ₂ CN	OH, OH
5133	NH (C=NH) NH ₂	PhCH ₂	CH2COOH	он, он
5134	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	OH, OH
5135	NH (C=NH) NH ₂	PhCH ₂	CH ² NC	он, он
5136	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	ОН, ОН
5137	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	ОН, ОН
5138	NH (C=NH) NH ₂	PhCH ₂	CH2SOCH3	ОН, ОН
			m=2	,
5139	CH ₂ NH ₂	PhCH ₂	H	(+)-pin
5140	CH ₂ NH ₂	PhCH ₂	methyl	(+) -pin
5141	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+) -pin
5142	CH ₂ NH ₂	PhCH ₂	CH2COOH	(+) -pin
5143	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+) -pin
5144	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
5145	CH ₂ NH ₂	$PhCH_2$	(CH ₂) ₂ OH	(+)-pin
5146 .	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+) -pin
5147	CH ₂ NH ₂	PhCH ₂	H	ОН, ОН
5148	CH ₂ NH ₂	PhCH ₂	methyl	ОН, ОН
5149	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	ОН, ОН
5150	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	ОН, ОН
5151	CH ₂ NH ₂	$PhCH_2$	CH ₂ NC	ОН, ОН
5152	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	ОН, ОН
5153	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	ОН, ОН
5154	CH ₂ NH ₂	PhCH ₂	CH2SOCH3	OH, OH
5155	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin
5156	NH (C=NH) NH ₂	PhCH ₂	methyl	(+)-pin
5157	NH (C=NH) NH ₂	PhCH ₂	CH2CN	(+)-pin
5158	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) 2CN	(+)-pin
5159	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin

5160	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
5161	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
5162	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
5163	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
5164	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
5165	NH (C=NH) NH ₂	PhCH ₂	н .	он, он
5166	NH (C=NH) NH ₂	PhCH ₂	methyl	ОН, ОН
5167	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	он, он
5168	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	ОН, ОН
5169	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	он, он
5170	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
5171	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	он, он
5172	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
5173	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
5174	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
		m=0		
5175	CH ₂ NH ₂	PhCH ₂	н	(+) -pin
5176	CH ₂ NH ₂	PhCH ₂	methyl	(+)-pin
5177	CH ₂ NH ₂	PhCH ₂	CH ₂ CN	(+)-pin
5178	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
5179	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	(+)-pin
5180	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
5181	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
5182	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
5183	CH ₂ NH ₂	PhCH ₂	н	он, он
5184	CH ₂ NH ₂	PhCH ₂	methyl	он, он
5185	CH ₂ NH ₂	PhCH ₂	CH2CN	он, он
5186	CH ₂ NH ₂	PhCH ₂	CH ₂ COOH	он, он
5187 .	CH ₂ NH ₂	PhCH ₂	CH ₂ NC	он, он
5188	CH ₂ NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
5189	CH ₂ NH ₂	PhCH ₂	(CH ₂) ₂ OH	он, он
5190	CH ₂ NH ₂	PhCH ₂	CH ₂ SOCH ₃	он, он
5191	NH (C=NH) NH ₂	PhCH ₂	н	(+)-pin
5192	ин (С=ин) ин ₂	PhCH ₂	methyl	(+)-pin

5194	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	(+)-pin
5195	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	(+)-pin
5196	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	(+)-pin
5197	NH (C=NH) NH ₂	PhCH ₂	CH2NC	(+)-pin
5198	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	(+)-pin
5199	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	(+)-pin
5200	NH (C=NH) NH ₂	PhCH ₂	CH ₂ SOCH ₃	(+)-pin
5201	NH (C=NH) NH ₂	PhCH ₂	н	
5202	NH (C=NH) NH ₂	PhCH ₂	methyl	OH, OH
5203	NH (C=NH) NH ₂	PhCH ₂	CH ₂ CN	OH, OH
5204	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ CN	OH, OH
5205	NH (C=NH) NH ₂	PhCH ₂	CH ₂ COOH	он, он
5206	NH (C=NH) NH ₂	PhCH ₂	_	он, он
5207	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ COOH	он, он
5208	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NC	он, он
5209	NH (C=NH) NH ₂	PhCH ₂	CH ₂ NO ₂	он, он
5210	NH (C=NH) NH ₂	PhCH ₂	(CH ₂) ₂ OH	OH, OH
		Facen ₂	CH ₂ SOCH ₃	OH. OH

Table 45

Ex	x	R ¹³	_Y 1 _Y 2	Phys. Data
	-	m=1		
5215	CH ₂ NH ₂	PhCH ₂	(+)-pin	
5216	CH ₂ NH ₂	PhCH ₂	он, он	
5217	NH (C=NH) NH ₂	PhCH ₂	(+)-pin	
5218	NH (C=NH) NH ₂	PhCH ₂	ОН, ОН	
5219	OMe	PhCH ₂	(+)-pin	
5220	OMe	PhCH ₂	он, он	
5221	NH (C=NH) H	PhCH ₂	(+)-pin	
5222	NH (C=NH) H	PhCH ₂	он, он	
5223	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin	
5224	CH ₂ NH ₂	PhCH ₂ CH ₂	он, он	
5225	NH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin	
5226	NH (C=NH) NH2	PhCH ₂ CH ₂	он, он	
5227	OMe	PhCH ₂ CH ₂	(+)-pin	
5228	OMe	PhCH ₂ CH ₂	он, он	
5229	NH (C=NH) H	PhCH ₂ CH ₂	(+)-pin	
5230	ин (С=ин) н	PhCH ₂ CH ₂	он, он	
5231	CH ₂ NH ₂	Ph	(+)-pin	•
5232	CH ₂ NH ₂	Ph	он, он	
5233	NH (C=NH) NH ₂	Fh	(+)-pin	
5234	NH (C=NH) NH ₂	Ph	он, он	
5235	OMe	Ph	(+) -pin	
5236	QMe ·	Ph	OH, OH	
5237	NH (C=NH) H	Ph	(+) -pin	
5238	NH (C=NH) H	Ph	он, он	

m=0

5239	CH ₂ NH ₂	PhCH ₂	(+)-pin
5240	CH ₂ NH ₂	PhCH ₂	он, он
5241	NH (C=NH) NH ₂	PhCH ₂	(+)-pin
5242	NH (C=NH) NH ₂	PhCH ₂	он, он
5243	OMe	PhCH ₂	(+)-pin
5244	OMe	PhCH ₂	он, он
5245	NH (C=NH) H	PhCH ₂	(+)-pin
5246	NH (C=NH) H	PhCH ₂	он, он
5247	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin
5248	CH ₂ NH ₂	PhCH ₂ CH ₂	он, он
5249	NH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin
5250	NH (C=NH) NH ₂	PhCH ₂ CH ₂	он, он
5251	OMe	PhCH ₂ CH ₂	(+)-pin
5252	OMe	PhCH ₂ CH ₂	он, он
5253	NH (C=NH) H	PhCH ₂ CH ₂	(+)-pin
5254	NH (C=NH) H	PhCH ₂ CH ₂	он, он
5255	CH ₂ NH ₂	Ph	(+)-pin
5256	CH ₂ NH ₂	Ph	он, он
5257	NH (C=NH) NH ₂	Ph.	(+)-pin
5258	NH (C=NH) NH ₂	Ph	он, он
5259	OMe	Ph	(+)-pin
5260	OMe	Ph	OH, OH
5261	NH (C=NH) H	Ph ·	(+) -pin
5262	NH (C=NH) H	Ph	он, он

Table 46

Ex	x	R13	y 1 y 2	Phys. Data
		m=1	,	
5267	CH ₂ NH ₂	PhCH ₂	(+)-pin	
5268	CH ₂ NH ₂	PhCH ₂	он, он	
5269	NH (C=NH) NH ₂	PhCH ₂	(+)-pin	
5270	NH (C=NH) NH ₂	PhCH ₂	OH, OH	• .
5271	OMe	PhCH ₂	(+)-pin	
5272	OMe	PhCH ₂	OH, OH	
5273	NH (C=NH) H	PhCH ₂	(+)-pin	
5274	NH (C=NH) H	PhCH ₂	он, он	
5275	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin	
5276	CH ₂ NH ₂	PhCH ₂ CH ₂	он, он	
5277	NH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin	
5278	NH (C=NH) NH ₂	PhCH ₂ CH ₂	он, он	
5279	OMe	PhCH ₂ CH ₂	(+)-pin	
5280	OMe	PhCH2CH2	он, он	
5281	NH (C=NH) H	PhCH ₂ CH ₂	(+)-pin	•
5282	NH (C=NH) H	PhCH ₂ CH ₂	он, он	
5283	CH ₂ NH ₂	Ph	(+)-pin	
5284	CH ₂ NH ₂	Ph	он, он	
5285	NH (C=NH) NH ₂	Ph	(+) -pin .	
5286	NH (C=NH) NH ₂	Ph	он, он	
5287	OMe	Ph	(+)-pin	
5288	OMe	Ph	он, он	
5289	NH (C=NH) H	Ph	(+) -pin	
5290	NH (C=NH) H	Ph	он, он	

m=0

5291	CH ₂ NH ₂	PhCH ₂	(+)-pin
5292	CH ₂ MH ₂	PhCH ₂	он, он
5293	NH (C=NH) NH ₂	PhCH ₂	(+)-pin
5294	NH (C=NH) NH ₂	PhCH ₂	ОН, ОН
5295	OMe	PhCH ₂	(+)-pin
5296	OMe .	PhCH ₂	он, он
5297	NH (C=NH) H	PhCH ₂	(+)-pin
5298	NH (C=NH) H	PhCH ₂	он, он
5299	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin
5300	CH ₂ NH ₂	PhCH ₂ CH ₂	он, он
5301	NH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin
5302	NH (C=NH) NH ₂	PhCH ₂ CH ₂	он, он
5303	OMe	PhCH ₂ CH ₂	(+)-pin
5304	OMe	PhCH ₂ CH ₂	он, он
5305	NH (C=NH) H	PhCH ₂ CH ₂	(+)-pin
5306	NH (C=NH) H	PhCH2CH2	он, он
5307	CH ₂ NH ₂	Ph	(+)-pin
5308	CH ₂ NH ₂	Ph	он, он
5309	NH (C=NH) NH ₂	Ph	(+)-pin
5310	MH (C=NH) NH ₂	Ph	он, он
5311	OMe	Ph	(+)-pin
5312	OMe	Ph	он, он
5313	NH (C=NH) H	Ph	(+)-pin
5314	NH (C=NH) H	Ph	он, он.

Table 47

Ex	x	R13	Y ¹ Y ²	Phys . Data
		m=1		
5319	CH ₂ NH ₂	PhCH ₂	(+) -pin	
5320	CH ₂ NH ₂	PhCH ₂	он, он	
5321	NH (C=NH) NH ₂	PhCH ₂	(+)-pin	
5322	NH (C=NH) NH ₂	PhCH ₂	OH, OH	
5323	OMe	PhCH ₂	(+)-pin	
5324	OMe	PhCH ₂	ОН, ОН	
5325	NH (C=NH) H	PhCH ₂	(+)-pin	
5326	ин (С≕ин) н	PhCH ₂	он, он	
5327	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin	
5328	CH ₂ NH ₂	PhCH ₂ CH ₂	он, он	
5329	NH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin	
5330	NH (C=NH) NH ₂	PhCH ₂ CH ₂	он, он	
5331	OMe	PhCH ₂ CH ₂	(+)-pin	
5332	OMe	PhCH ₂ CH ₂	он, он	
5333	NH (C=NH) H	PhCH ₂ CH ₂	(+)-pin	
5334	NH (C=NH) H	PhCH ₂ CH ₂	ОН, ОН	
5335	CH ₂ NH ₂	Ph	(+)-pin	
5336	CH ₂ NH ₂	Ph	он, он	
5337	NH (C=NH) NH ₂	Ph	(+)-pin	
5338	NH (C=NH) NH ₂	Ph	OH, OH	
5339	CMe	Ph	(+)-pin	
5340	OMe	Ph	он, он	•
5341	ин (С=ин) н	Ph	(+)-pin	
5342	NH (C=NH) H	Ph	он, он	

m=0

5343	CH ₂ NH ₂	PhCH ₂	(+)-pin
5344	CH ₂ NH ₂	PhCH ₂	он, он
5345	NH (C=NH) NH ₂	PhCH ₂	(+)-pin
5346	NH (C=NH) NH ₂	PhCH ₂	он, он
5347	OMe	PhCH ₂	(+)-pin
5348	CMe	PhCH ₂	он, он
5349	NH (C=NH) H	PhCH ₂	(+)-pin
5350	NH (C=NH) H	PhCH ₂	он, он
5351	CH ₂ NH ₂	PhCH ₂ CH ₂	(+)-pin
5352	CH ₂ NH ₂	PhCH ₂ CH ₂	OH, OH
5353	NH (C=NH) NH ₂	PhCH ₂ CH ₂	(+)-pin
5354	NH (C=NH) NH ₂	PhCH ₂ CH ₂	он, он
.5355	OMe	PhCH ₂ CH ₂	(+)-pin
5356	OMe	PhCH ₂ CH ₂	он, он
5357	NH (C=NH) H	PhCH ₂ CH ₂	(+)-pin
5358	NH (C=NH) H	PhCH ₂ CH ₂	он, он
5359	CH ₂ NH ₂	Ph	(+)-pin
5360	CH ₂ NH ₂	Ph	он, он
5361	NH (C=NH) NH ₂	Ph	(+)-pin
5362	NH (C≖NH) NH ₂	Ph	OH, OH
5363	OMe	Ph	(+)-pin
5364	OMe	Ph	ОН, ОН
5365	NH (C=NH) H	Ph	(+)-pin
5366	NH (C=NH) H	Ph	он, он

Table 48

Ex	x	R ¹³	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
				m=1		
5371	CH ₂ NH ₂	PhCH ₂	H	н	(+)-pin	
5372	CH ₂ NH ₂	PhCH ₂	H	methyl	(+)-pin	
5373	CH ₂ NH ₂	PhCH ₂	н	CH ₂ CN	(+) -pin	
5374	CH ₂ NH ₂	PhCH ₂	н	CH ₂ COOH	(+)-pin	•
5375	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NC	(+)-pin	
5376	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NO ₂	(+)-pin	
5377	CH ₂ NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	(+)-pin	
5378	CH ₂ NH ₂	PhCH ₂	н	CH2SOCH3	(+)-pin	
5379	CH ₂ NH ₂	PhCH ₂	н	н	он, он	
5380	CH ₂ NH ₂	PhCH ₂	н	methyl	он, он	
5381	CH2NH2	PhCH ₂	н	CH ₂ CN	он, он	
5382	CH ₂ NH ₂	PhCH ₂	н	СH ₂ СООН	он, он	
5383	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NC	он, он	
5384	CH ₂ NH ₂	PhCH ₂	H .	CH ₂ NO ₂	он, он	
5385	CH ₂ NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	он, он	
5386	CH ₂ NH ₂	PhCH ₂	н	CH2SOCH3	он, он	
5387	NH (C=NH) NH ₂	PhCH ₂	н	н	(+)-pin	
5388	NH (C=NH) NH ₂	PhCH ₂	н	methyl	(+)-pin	
5389	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ CN	(+)-pin	
5390	NH (C=NH) NH ₂	PhCH ₂	н	СH ₂ СООН	(+)-pin	
5391	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NC	(+)-pin	
5392	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NO ₂	(+)-pin	
5393	NH (C=NH) NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	(+)-pin	

5394	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ SOCH ₃	(+)-pin	
5395	NH (C=NH) NH ₂	PhCH ₂	н	H	OH, OH	
5396	NH (C≕NH) NH ₂	PhCH ₂	н	methyl	OH, OH	
5397	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ CN	OH, OH	
5398	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ COOH	OH, OH	
5399	NH (C=NH) NH ₂	PhCH ₂	H	CH ³ NC	он, он	
5400	NH (C=NH) NH ₂	$PhCH_2$	н	CH ₂ NO ₂	. ОН, ОН	
5401	NH (C=NH) NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	он, он	
5402	NH (C=NH) NH ₂	PhCH ₂	н	CH2SOCH3	он, он	
5403				m=0		
5404	NH (C=NH) NH ₂	н	H	3-(t-buty1-	(+)-pin	BS
				O2CNH) -Ph		
5405	NH (C=NH) NH ₂	H	н	3-(t-butyl-	он, он	
				O2CNH) - Ph		
5406	NH (C=NH) NH ₂	H	н	3-(NH ₂)-Ph	(+)-pin	
5407	NH (C=NH) NH ₂	H	н	3 - (NH ₂) - Ph	ОН, ОН	
5408	NH (C=NH) NH ₂	н	н	3 - (CH ₃ SO ₂ NH) -	(+)-pin	
				Ph ·		
5409	NH (C=NH) NH ₂	H	н	3-(CH ₃ SO ₂ NH)-	ОН, ОН	
				Ph		
5410		н	methyl	Ph	(+)-pin	
5411	NH (C=NH) NH ₂	н	methyl	Ph	OH, OH	
5412	NH (C=NH) NH ₂	н	CH ₂ CN	Ph	(+)-pin	
5413	NH (C=NH) NH ₂	н	CH ₂ CN	Ph.	он, он	
5414	NH (C=NH) NH ₂	Н	methyl	3 - (CH3SO2NH) -	(+)-pin	
				Ph		
5415	NH (C=NH) NH ₂	н	methyl	3-(CH3SO2NH)-	он, он	
				Ph		
5416	NH (C=NH) NH ₂	Н	CH ₃	2- (CH3SO2NH) -	(+)-pin	
				Ph		
5417	NH (C=NH) NH ₂	H	CH3	2-(CH3SO2NH)-	он, он	
				Ph		
5418	NH (C=NH) NH ₂	H	CH ₂ CN	3 - (CH3SO2NH) -	(+)-pin	
			•	Ph		

5419	NH (C=NH) NH ₂	н	CH ₂ CN	3 - (CH3SO2NH) -	он, он	
				Ph		
5420	NH (C=NH) NH ₂	н	CH ₂ CN	2-(CH3SO2NH)-	(+)-pin	
				Ph		
5421	NH (C=NH) NH ₂	н	CH ² CN	2-(CH3SO2NH)-	он, он	
				Ph	*	
5422	NH (C=NH) NH ₂	н	CH ₂ COOH	3-(CH3SO2NH)-	(+)-pin	
				Ph		
5423	NH (C=NH) NH ₂	н	CH ₂ COOH	3-(CH ₃ SO ₂ NH)-	он, он	
				Ph		
5424	NH (C=NH) NH ₂	н	CH ₂ COOH	2-(CH3SO2NH)-	(+) -pin	
				Ph		
5425	NH (C=NH) NH ₂	н	CH ₂ COOH	2-(CH3SO2NH)-	OH, OH	
				Ph	•	
5426 .	NH (C=NH) NH ₂	н	н	3-(t-buty10C0	(+)-pin	BP
				-NH) -Ph		

BP. MS (M+H)+: Calc 610, Found 610.

5

BS. MS (M+H)+: Calc 610, Found 610.

Table 49

						•
Ex	x	R13	R ¹⁴	R ¹⁵	Y ¹ Y ²	Phys. Data
			m=1			
5431	CH ₂ NH ₂	PhCH ₂	н	н	(+)-pin	
5432	CH ₂ NH ₂	PhCH ₂	н	methyl	(+)-pin	
5433	CH ₂ NH ₂	PhCH ₂	н	CH ₂ CN	(+)-pin	
5434	CH ₂ NH ₂	PhCH ₂	H	СН2СООН	(+)-pin	
5435	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
5436	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NO ₂	(+)-pin	
5437	CH ₂ NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	(+)-pin	
5438	CH ₂ NH ₂	PhCH ₂	н	CH2SOCH3	(+)-pin	
5439	CH ₂ NH ₂	PhCH ₂	н	н	ОН, ОН	
5440	CH ₂ NH ₂	PhCH ₂	н	methyl	он, он	
5441	CH ₂ NH ₂	PhCH ₂	н	CH ₂ CN	он, он	
5442	CH ₂ NH ₂	PhCH ₂	н	CH₂COOH	он, он	
5443	CH ₂ NH ₂	$PhCH_2$	н	CH ₂ NC	он, он	
5444	CH ₂ NH ₂	$PhCH_2$	н	CH ₂ NO ₂	он, он	
5445	CH ₂ NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	он, он	
5446	CH ₂ NH ₂	PhCH ₂	н	CH ₂ SOCH ₃	он, он	
5447	NH (C=NH) NH ₂	PhCH ₂	н	н	(+)-pin	
5448	NH (C=NH) NH ₂	PhCH ₂	н	methyl	(+) -pin	
5449	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ CN	(+)-pin	
5450	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ COOH	(+) -pin	
5451	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NC	(+)-pin	
5452	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NO ₂	(+)-pin	
5453	NH (C=NH) NH2·	PhCH ₂	н	(CH ₂) ₂ OH	(+) -pin	
5454	NH (C=NH) NH2	PhCH ₂	н	CH2SOCH3	(+)-pin	
5455	NH (C=NH) NH2	PhCH ₂	н	н	ОН, ОН	
					,	

5456	NH (C≔NH) NH ₂	PhCH ₂	н	methyl	он, он
5457	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ CN	он, он
5458	NH (C=NH) NH ₂	PhCH ₂	н	СН ₂ СООН	он, он
5459	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NC	он, он
5460	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NO ₂	он, он
5461	NH (C=NH) NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	он, он
5462	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ SOCH ₃	он, он
		•	m==0		
5463	CH ₂ NH ₂	PhCH ₂	н	н	(+) -pin
5464	CH ₂ NH ₂	PhCH ₂	н	methyl	(+)-pin
5465	CH ₂ NH ₂	PhCH ₂	н	CH ₂ CN	(+) -pin
5466	CH ₂ NH ₂	PhCH ₂	н	CH ₂ COOH	(+)-pin
5465	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NC	(+)-pin
5466	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NO ₂	(+)-pin
5467	CH ₂ NH ₂	PhCH ₂	н	$(CH_2)_2OH$	(+)-pin
5468	CH ₂ NH ₂	PhCH ₂	н	CH ₂ SOCH ₃	(+)-pin
5469	CH ₂ NH ₂	PhCH ₂	Н	н	он, он
5470	CH ₂ NH ₂	PhCH ₂	н	methyl	он, он
5471	CH ₂ NH ₂	PhCH ₂	Н	CH ₂ CN	он, он
5472	CH ₂ NH ₂	PhCH ₂	н	CH ₂ COOH	OH, OH
5473	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NC	он, он
5474	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NO ₂	OH, OH
54 75	CH ₂ NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	ОН, ОН
5476	CH ₂ NH ₂	PhCH ₂	н	CH ₂ SOCH ₃	OH, OH
5477	NH (C=NH) NH ₂	PhCH ₂	н	н	(+)-pin
5478	NH (C=NH) NH ₂	PhCH ₂	Н	methyl	(+)-pin
5479	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ CN	(+)-pin
5480	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ COOH	(+)-pin
5481	ин (С=ин) ин ₂	PhCH ₂	н	CH ₂ NC	(+)-pin
5482	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NO ₂	(+) -pin
5483	NH (C≐NH) NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	(+) -pin
5484	NH (C=NH) NH ₂	PhCH ₂	н	CH2SOCH3	(+)-pin
5485	NH (C=NH) NH ₂	PhCH ₂	н	н	он, он
5486	NH (C=NH) NH ₂	$PhCH_2$	н	methyl	он, он
5487	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ CN	он, он

5488	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	он, он
5489	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NC	он, он
5490	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NO ₂	ОН, ОН
5491	NH (C=NH) NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	OH, OH
5492	NH (C=NH) NH ₂	PhCH ₂	н	CH2SOCH3	OH. OH

Table 50

Ex	x	R13	R ¹⁴	R ¹⁵	y ¹ y ²	Phys. Data
				m=1		
5497	CH ₂ NH ₂	PhCH ₂	н .	н	(+)-pin	
5498	CH ₂ NH ₂	PhCH ₂	н	methyl	(+) -pin	
5499	CH ₂ NH ₂	PhCH ₂	н	CH ₂ CN	(+)-pin	
5500	CH ₂ NH ₂	$PhCH_2$	н	CH ₂ COOH	(+)-pin	
5501	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NC	(+)-pin	
5502	CH ₂ NH ₂	PhCH ₂	H	CH_2NO_2	(+)-pin	
5503	CH ₂ NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	(+) -pin	
5504	CH ₂ NH ₂	$PhCH_2$	н	CH ₂ SOCH ₃	(+)-pin	
5505	CH ₂ NH ₂	$PhCH_2$	н	н	он, он	
5506	CH ₂ NH ₂	$PhCH_2$	н	methyl	OH, OH	
5507	CH ₂ NH ₂	$PhCH_2$	н	CH ₂ CN	OH, OH	
5508	CH ₂ NH ₂	PhCH ₂	н	CH ₂ COOH	он, он	
5509	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NC	он, он	
5510	CH ₂ NH ₂	$PhCH_2$	н	CH ₂ NO ₂	OH, OH	
5511	CH ₂ NH ₂	$PhCH_2$	н	(CH ₂) ₂ OH	OH, OH	
5512	CH ₂ NH ₂	PhCH ₂	н	CH ₂ SOCH ₃	OH, OH	
5513	NH (C=NH) NH ₂	$PhCH_2$	н	н	(+)-pin	
5514	NH (C=NH) NH ₂	PhCH ₂	н	methyl	(+)-pin	
5515	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ CN	(+)-pin	
5516	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ COOH	(+)-pin	
5517	NH (C=NH) NH ₂	$PhCH_2$	н	CH ₂ NC	(+)-pin	
5518	NH (C=NH) NH ₂	$PhCH_2$	н	CH ₂ NO ₂	(+)-pin	
5519	NH (C=NH) NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	(+)pin	

5520	NH (C=NH) NH ₂	PhCH ₂	н	CH2SOCH3	(+)-pin
5521	NH (C=NH) NH ₂	PhCH ₂	н	н	ОН, ОН
5522	NH (C=NH) NH ₂	PhCH ₂	н	methyl	ОН, ОН
5523	MH (C=NH) NH ₂	$PhCH_2$	н	CH ₂ CN	OH, OH
5524	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	ОН, ОН
5525	NH (C=NH) NH ₂	PhCH ₂	Н	CH ₂ NC	он, он
5526	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NO ₂	ОН, ОН
5527	NH (C=NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	OH, OH
5528	NH (C=NH) NH ₂	PhCH ₂	н	CH2SOCH3	OH, OH
				m=0	
5529	NH (C=NH) NH ₂	H	Н	3-(t-butyl-	(+)-pin BT
				O2CNH) - Ph	
5530	NH (C=NH) NH ₂	н	H.	3-(t-butyl-	OH, OH
			•	O2CNH) - Ph	
5531	NH (C=NH) NH ₂	н	н	3-(NH ₂)-Ph	(+)-pin
5532	NH (C=NH) NH ₂	H	н	3-(NH ₂)-Ph	ОН, ОН
5533	NH (C=NH) NH ₂	н	н	3- (CH3SO2NH) -	(+)-pin
				Ph	
5534	NH (C=NH) NH ₂	н	Н	3- (CH3SO2NH) -	OH, OH
				Ph	
5535	NH (C=NH) NH ₂	н	н	Ph	(+)-pin BU
5536	NH (C=NH) NH ₂	Н	н	Ph	OH, OH BV
5537	NH (C=NH) NH ₂	н	CH ₃	Ph	(+)-pin
5538	NH (C=NH) NH ₂	н	CH3	Ph	ОН, ОН
5539	NH (C=NH) NH ₂	н	CH ₂ CN	Ph	(+)-pin
5540	NH (C=NH) NH ₂	н	CH ₂ CN	Ph	он, он
5541	NH (C=NH) NH ₂	н	CH ₂ COOH	Ph	(+)-pin
5542	NH (C=NH) NH ₂	н	CH ₂ COOH	Ph	он, он
5543	NH (C=NH) NH ₂	Н	$CH_2SO_2NH_2$	Ph	(+)-pin
5544	NH (C=NH) NH ₂	н	CH ₂ SO ₂ NH ₂	Ph	он, он
5545	NH (C=NH) NH	н	CH ₂ CN	3 - (CH3SO2NH) -	(+)-pin
				Ph	
5546	NH (C=NH) NH	H .	CH ₂ CN	3 - (CH3SO2NH) -	он, он
				Ph	

5547	NH (C=NH) NH	н .	CH ₂ COOH	3 - (CH ₃ SO ₂ NH) -	(+)-pin	
				Ph		
5548	NH (C=NH) NH	н	CH ₂ COOH	3- (CH3SO2NH) -	он, он	
				Ph		
5549	NH (C=NH) NH	н	CH ₂ COOH	2-(CH3SO2NH)-	(+)-pin	
				Ph		
5550	NH (C=NH) NH	н	CH ₂ COOH	2-(CH3SO2NH)-	он, он	
				Ph		
5551	NH (C=NH) NH ₂	н	н	3-(t-butyloco	(+)-pin	во
				-NH) -Ph		
5552	NH (C=NH) NH ₂	н	н	Ph	(+)-pin	BQ
5553	NH (C=NH) NH ₂	н	H-	Ph	OH	BR

BO. MS (M+H) +: Calc. 594, Found 594.

5

BS. MS (M+H) +: Calc. 345, Found 345.

BT. MS (M+H) +: Calc. 594, Found 594.

10 BU. MS (M+H) *: Calc. 479, Found 479.

BV. MS (M+H) +: Calc. 345, Found 345.

BQ. MS (M+H)+: Calc. 479, Found 479.

Table 51

	•				•	
Ex	x	R13	R ¹⁴	R15	Y ¹ Y ²	Phys. Data
			m=1	•		
5558	CH ₂ NH ₂	PhCH ₂	н	н	(+)-pin	•
5559	CH ₂ NH ₂	PhCH ₂	н	methyl	(+)-pin	
5560	CH ₂ NH ₂	PhCH ₂	н	CH ₂ CN	(+)-pin	
5561	CH ₂ NH ₂	PhCH ₂	н	CH ₂ COOH	(+)-pin	
5562	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NC	(+)-pin	
5563	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NO ₂	(+)-pin	
5564	CH ₂ NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	(+)-pin	
5565	CH ₂ NH ₂	PhCH ₂	н	CH2SOCH3	(+)-pin	
5566	CH ₂ NH ₂	PhCH ₂	H	н	ОН, ОН	
5567	CH ₂ NH ₂	PhCH ₂	н	methyl	OH, OH	
5568	CH ₂ NH ₂	PhCH ₂	н	CH ₂ CN	OH, OH	
5569	CH ₂ NH ₂	PhCH ₂	н	СН ₂ СООН	ОН, ОН	
5570	CH ₂ NH ₂	PhCH ₂	н ,	CH ₂ NC	OH, OH	
5571	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NO ₂	он, он	
5572	CH ₂ NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	OH, OH	
5573	CH ₂ NH ₂	PhCH ₂	н.	CH2SOCH3	ОН, ОН	
5574	NH (C=NH) NH ₂	PhCH ₂	н	н	(+)-pin	
5575	NH (C=NH) NH ₂	$PhCH_2$	н	methyl	(+)-pin	
5576	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	(+) -pin	
5577	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	(+) -pin	
5578	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ NC	(+)-pin	
5579	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NO ₂	(+)-pin	
5580	NH (C=NH) NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	(+) -pin	
5581	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ SOCH ₃	(+)-pin	
					-	

5582	NH (C=NH) NH ₂	PhCH ₂	н	н	он, он
5583	NH (C=NH) NH ₂	PhCH ₂	н	methyl	он, он
5584	NH (C=NH) NH ₂	PhCH ₂	н	CH2CN	он, он
5585	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ COOH	он, он
5586	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NC	он, он
5587	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NO ₂	он, он
5588	NH (C≖NH) NH ₂	PhCH ₂	H	(CH ₂) ₂ OH	он, он
5589	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ SOCH ₃	он, он
			m=0		
5590	CH ₂ NH ₂	PhCH ₂	H	н	(+)-pin
5591	CH ₂ NH ₂	PhCH ₂	н	methyl	(+)-pin
5592	CH ₂ NH ₂	PhCH ₂	H	CH ₂ CN	(+) -pin
5593	CH ₂ NH ₂	PhCH ₂	Н	CH ₂ COOH	(+) -pin
5594	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NC	(+)-pin
5595	CH ₂ NH ₂	PhCH ₂	Н	CH ₂ NO ₂	(+)-pin
5596	CH ₂ NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	(+) -pin
5597	CH ₂ NH ₂	PhCH ₂	H	CH ₂ SOCH ₃	(+) -pin
5598	CH ₂ NH ₂	PhCH ₂	н	н	он, он
5599	CH ₂ NH ₂	PhCH ₂	H	methyl	он, он
5600	CH ₂ NH ₂	PhCH ₂	н	CH ₂ CN	он, он
5601	CH ₂ NH ₂	PhCH ₂	H	CH ₂ COOH	он, он
5602	CH ₂ NH ₂	PhCH ₂	н	CH ₂ NC	он, он
5603	CH ₂ NH ₂	PhCH ₂	H	CH ₂ NO ₂	он, он
5604	CH ₂ NH ₂	PhCH ₂	н	$(CH_2)_2OH$	он, он
5605	CH ₂ NH ₂	PhCH ₂	н	CH ₂ SOCH ₃	он, он
5606	NH (C=NH) NH ₂	PhCH ₂	H .	н	(+)-pin
5607	NH (C=NH) NH ₂	PhCH ₂	н	methyl	(+)-pin
5608	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ CN	(+)-pin
5609	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ COOH	(+)-pin
5610	NH (C=NH) NH ₂	PhCH ₂	н	CH2NC	(+)-pin
5611	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NO ₂	(+)-pin
5612	NH (C=NH) NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	(+)-pin
5613	NH (C=NH) NH ₂	PhCH ₂	н	CH2SOCH3	(+)-pin
5614	NH (C=NH) NH ₂	PhCH ₂	н	н	он, он
5615	NH (C=NH) NH ₂	PhCH ₂	н	methyl	он, он

5616	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ CN	OH, OH
5617	NH (C=NH) NH ₂	PhCH ₂	H	CH ₂ COOH	он, он
5618	NH (C=NH) NH ₂	PhCH ₂	н	CH2NC	OH, OH
5619	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ NO ₂	OH, OH
5620	NH (C=NH) NH ₂	PhCH ₂	н	(CH ₂) ₂ OH	он, он
5621	NH (C=NH) NH ₂	PhCH ₂	н	CH ₂ SOCH ₃	он, он

Table 52

5						
	Ex	x .	R ¹³	R14	$Y^{1}Y^{2}$	Phys. Data
				m=0		
	5626	CH ₂ NH ₂	н	н	(+) -pin	
	5627	CH ₂ NH ₂	н	methyl	(+)-pin	
	5628	CH ₂ NH ₂	н	н	он, он	•
	5629	CH ₂ NH ₂	н	methyl	OH, OH	
	5630	CH ₂ NH ₂	н	CH ₂ CN	(+) -pin	
	5631	CH ₂ NH ₂	н	(CH ₂) ₂ COOH	(+)-pin	
	5632	CH ₂ NH ₂	H	CH ₂ CN	OH, OH	
	5633	CH ₂ NH ₂	н	(CH ₂) ₂ COOH	он, он	
	5634	CH ₂ NH ₂	н	CH ₂ COOMe	(+)-pin	
	5635	CH ₂ NH ₂	н	(CH ₂) COOH	·(+)-pin	
	5636	CH ₂ NH ₂	н	CH ₂ COOMe	OH, OH	
	5637	CH ₂ NH ₂	н	(CH ₂) COOH	он, он	
	5638	CH ₂ NH ₂	н	(CH ₂) ₂ CN ₄ H	(+)-pin	
	5639	CH ₂ NH ₂	н	(CH ₂) CN ₄ H	(+)-pin	
	5640	CH2NH2	н	(CH ₂) ₂ CN ₄ H	OH, OH	•
	5641	CH ₂ NH ₂	н	(CH ₂) CN ₄ H	он, он	
	5642	NH (C=NH) NH ₂	н	н	(+)-pin	
	5643	NH (C=NH) NH ₂	н	methyl	(+)-pin	
	5644	NH (C=NH) NH ₂	н	Н	он, он	
	5645	NH (C=NH) NH ₂	н	methyl	он, он	
	5646	NH (C=NH) NH ₂	н	CH ₂ CN	(+)-pin	
	5647	NH (C=NH) NH ₂	н	(CH ₂) ₂ COOH	(+)-pin	
	5648	NH (C=NH) NH ₂	н	CH ₂ CN	ОН, ОН	
	5649	NH (C=NH) NH ₂	н	(CH ₂) ₂ COOH	он, он	

5650	NH (C=NH) NH ₂	н	CH ₂ COOMe	(+) -pin
5651	NH (C=NH) NH ₂	н	(CH ₂) COOH	(+)-pin
5652	NH (C=NH) NH ₂	н	CH ₂ COOMe	ОН, ОН
5653	NH (C=NH) NH ₂	н	(CH ₂) COOH	ОН, ОН
5654	NH (C=NH) NH ₂	н	(CH ₂) ₂ CN ₄ H	(+)-pin
5655	NH (C=NH) NH ₂	Н	(CH ₂) CN ₄ H	(+)-pin
5656	NH (C=NH) NH ₂	н	(CH ₂) ₂ CN ₄ H	он, он
5657	NH (C=NH) NH ₂	н	(CH ₂) CN ₄ H	ОН, ОН
5658	OMe	н	н	(+)-pin
5659	OMe	н	н	OH, OH
5660	NH (C=NH) H	н	н	(+)-pin
5661	NH (C=NH) H	н	н	ОН, ОН
5662	CH ₂ NH ₂	CH ₂ CN	н	(+)-pin
5663	CH ₂ NH ₂	CH ₂ CN	н	он, он
5664	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	н	(+)-pin
5665	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	н	OH, OH
5666	OMe	CH ₂ COOMe	H	(+)-pin
5667	CMe	CH ₂ COOMe	н	он, он
5668	NH (C=NH) H	$(CH_2)_2CN_4H$	н	он, он
5669	NH (C=NH) H	(CH ₂) ₂ CN ₄ H	н	(+)-pin
			m=1	
5670	CH ₂ NH ₂	н	н .	(+)-pin
5671	CH ₂ NH ₂	Н	methyl	(+)-pin
5672	CH ₂ NH ₂	н	H .	он, он
5673	CH ₂ NH ₂	н	methyl	он, он
5674	CH ₂ NH ₂	н	CH ₂ CN	(+)-pin
5675	CH ₂ NH ₂	н	(CH ₂) ₂ COOH	(+)-pin
5676	CH ₂ NH ₂	Н	CH ₂ CN	он, он
5677	CH ₂ NH ₂	н	(CH ₂) ₂ COOH	он, он
5678	CH ₂ NH ₂	н	CH ₂ COOMe	(+)-pin
5679	CH ₂ NH ₂	н	(CH ₂) COOH	(+)-pin
5680	CH ₂ NH ₂	н	CH ₂ COOMe	OH, OH
5681	CH ₂ NH ₂	. н	(CH ₂) COOH	OH, OH
5682	CH ₂ NH ₂	н	$(CH_2)_2CN_4H$	(+)-pin
5683	CH ₂ NH ₂	н	(CH ₂) CN ₄ H	(+)-pin

5684	CH ₂ NH ₂	н	$(CH_2)_2CN_4H$	он, он
5685	CH ₂ NH ₂	н	(CH ₂) CN ₄ H	он, он
5686	NH (C≖NH) NH ₂	н	н	(+)-pin
5687	NH (C=NH) NH ₂	н	methyl	(+)-pin
5688	NH (C=NH) NH ₂	н	н	он, он
5689	NH (C=NH) NH ₂	н	methyl	он, он
5690	NH (C=NH) NH ₂	н	CH ₂ CN	(+) -pin
5691	NH (C=NH) NH ₂	н	(CH ₂) ₂ COOH	(+)-pin
5692	NH (C=NH) NH ₂	н	CH ₂ CN	OH, OH
5693	NH (C=NH) NH ₂	H ·	(CH ₂) ₂ COOH	он, он
5694	NH (C=NH) NH ₂	н	CH ₂ COOMe	(+)-pin
5695	NH (C=NH) NH ₂	н	(CH ₂) COOH	(+)-pin
5696	NH (C=NH) NH ₂	н	CH ₂ COOMe	он, он
5697	NH (C=NH) NH ₂	н	(CH ₂) COOH	он, он
5698	NH (C=NH) NH ₂	н	(CH ₂) ₂ CN ₄ H	(+)-pin
5699	NH (C=NH) NH ₂	н	(CH ₂) CN ₄ H	(+)-pin
5700	NH (C=NH) NH ₂	н	(CH ₂) ₂ CN ₄ H	он, он
5701	NH (C=NH) NH ₂	н	(CH ₂) CN ₄ H	он, он
5702	OMe	н	н	(+)-pin
5703	CMe	н	H .	он, он
5704	NH (C=NH) H	н	н	(+)-pin
5705	NH (C=NH) H	н	н	он, он
5706	CH ₂ NH ₂	CH ₂ CN	н	(+)-pin
57 07	CH ₂ NH ₂	CH ₂ CN	н	он, он
5708	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	н	(+)-pin
5709	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	H	он, он
5710	OMe	CH ₂ COOMe	н	(+) -pin
5711	OMe	CH ₂ COOMe	н	OH, OH
5712	NH (C=NH) H	$(CH_2)_2CN_4H$	Н	он, он
5713	NH (C=NH) H	$(CH_2)_2CN_4H$	н	(+) -pin
	•		m=0	
5714	CH ₂ NH ₂	н	н	(+)-pin
5715	CH2NH2.	H.	methyl	(+)-pin
5716	CH ₂ NH ₂	н	н	он, он
5717	CH ₂ NH ₂	н	methyl	он, он

5718	CH ₂ NH ₂	н	CH ₂ CN	(+)-pin
5719	CH ₂ NH ₂	н	(CH ₂) ₂ COOH	(+)-pin
5720	CH ₂ NH ₂	Н	CH ₂ CN	он, он
5721	CH ₂ NH ₂	H	(CH ₂) ₂ COOH	он, он
5722	CH ₂ NH ₂	н	CH ₂ COOMe	(+) -pin
5723	CH ₂ NH ₂	H ·	(CH ₂) COOH	(+) -pin
5724	CH ₂ NH ₂	н	CH ₂ COOMe	он, он
5725	CH ₂ NH ₂	H	(CH ₂) COOH	он, он
5726	CH ₂ NH ₂	н	$(CH_2)_2CN_4H$	(+) -pin
5727	CH ₂ NH ₂	н	(CH ₂) CN ₄ H	(+)-pin
5728	CH ₂ NH ₂	н	$(CH_2)_2CN_4H$	он, он
5729	CH ₂ NH ₂	н	(СН ₂) СN ₄ н	он, он
5730	NH (C=NH) NH ₂	н	н	(+) -pin
5731	NH (C=NH) NH ₂	н	methyl	(+) -pin
5732	NH (C=NH) NH ₂	н	н	он, он
5733	NH (C=NH) NH ₂	н	methyl	он, он
5734	NH (C=NH) NH ₂	н	CH ₂ CN	(+)-pin
5735	NH (C=NH) NH ₂	н	(CH ₂) ₂ COOH	(+) -pin
5736	NH (C≕NH) NH ₂	н	CH ₂ CN	OH, OH
5737	NH (C=NH) NH ₂	н	(CH ₂) ₂ COOH	он, он
5738	MH (C=NH) NH ₂	н	CH ₂ COOMe	(+)-pin
5739	NH (C=NH) NH ₂	н	(CH ₂) COOH	(+)-pin
5740	NH (C=NH) NH ₂	н	CH ₂ COOMe	он, он
5741	NH (C=NH) NH ₂	н	(CH ₂) COOH	он, он
5742	NH (C=NH) NH ₂	н	$(CH_2)_2CN_4H$	(+)-pin
5743	NH (C=NH) NH ₂	н	(CH ₂) CN ₄ H	(+)-pin
5744	NH (C=NH) NH ₂	н	(CH ₂) ₂ CN ₄ H	он, он
5745	NH (C=NH) NH ₂	н	(CH ₂) CN ₄ H	он, он
5746	OMe	н	н	(+)-pin
5747	œ e	н	н	он, он
5748	NH (C=NH) H	н	н	(+)-pin
5749	ин (С=ин) н	н	н	он, он
5750	CH ₂ NH ₂	CH2CN	н	(+) -pin
5751	CH ₂ NH ₂	CH ₂ CN	н	он, он
5752	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	н	(+)-pin

5753	NH (C=NH) NH ₂	(CH ₂) ₂ COOH	· H	OH, OH
5754	CMe	CH ₂ COOMe	н	(+) -pin
5755	CMe	CH ₂ COOMe	н	OH, OH
5756	NH (C=NH) H	$(CH_2)_2CN_4H$	н	он, он
5757	NH (C=NH) H	(CH ₂) ₂ CN ₄ H	н	(+) -pin

Table 53

Ex	x	R13	R14	Y^1Y^2	Phys. Data
5762	CH ₂ NH ₂	н	н	(+)-pin	
5763	CH ₂ NH ₂	H	H	он, он	
5764	NH (C=NH) NH ₂	н	н	(+)-pin	
57 65	NH (C=NH) NH ₂	н	H '	он, он	
57 66	OMe	н	н	(+)-pin	
57 67	OMe	н	H	OH, OH	
5768	NH (C=NH) H	н .	н	он, он	
57 69	NH (C=NH) H	н	н	(+)-pin	
5770	CH ₂ NH ₂	CH ₂ CN	н	(+)-pin	
5771	CH ₂ NH ₂	CH ₂ CN	н	он, он	
5772	NH (C=NH) NH ₂	(CH ₂) COOH	н	(+)-pin	
5773	NH (C=NH) NH ₂	(CH ₂) COOH	H	он, он	
5774	OMe	CH ₂ COOMe	н	(+)-pin	
5775	OMe .	CH ₂ COOMe	н	он, он	
5776	NH (C=NH) H	$(CH_2)CN_4H$	н	он, он	
5777	NH (C=NH) H	(CH ₂) CN ₄ H	н	(+) -nin	

· 5

Table 54

and m=0

Ex	x	R13	R14	$Y^{1}Y^{2}$	Phys. Data
5782	CH ₂ NH ₂	CH ₃	н	(+)-pin	
5783	CH2NH2	CH ₃	н	OH, OH	
5784	NH (C=NH) NH ₂	CH ₃	H	(+)-pin	
5785	NH (C=NH) NH ₂	CH3	н	он, он	
5786	OMe	н	н	(+)-pin	
5787	OMe	н	н	OH, OH	
5788	NH (C=NH) H	н	н	он, он	
5789	NH (C=NH) H	н	н	(+)-pin	
5790	CH ₂ NH ₂	CH ₂ CN	н	(+)-pin	
5791	CH ₂ NH ₂	CH ₂ CN	H	OH, OH	
5792	NH (C=NH) NH ₂	(CH ₂) COOH	н	(+)-pin	
5793	NH (C=NH) NH ₂	(CH ₂) COOH	н	он, он	
5794	OMe	CH ₂ COOMe	н	(+) -pin	
5795	ОМе	CH ₂ COOMe	н	он, он	
5796	NH (C=NH) H	(CH ₂) CN ₄ H	Н	ОН, ОН	
5797	NH (C=NH) H	(CH ₂) CN ₄ H	н	(+)-pin	

5

Table 55

Ex	x	R13	R14	Y^1Y^2	Phys. Data
5802	CH ₂ NH ₂	н	н	(+)-pin	
5803	CH ₂ NH ₂	H	H	OH, OH	
5804	NH (C=NH) NH ₂	н	н	(+) -pin	
5805	NH (C=NH) NH ₂	н	н	он, он	
5806	OMe	H	н	(+)-pin	
5807	OMe	н	н	OH, OH	
5808	NH (C=NH) H	н	н	ОН, ОН	,
5809	NH (C=NH) H	н	н	(+)-pin	
5810	CH ₂ NH ₂	CH ₂ CN	н	(+) -pin	
5811	CH ₂ NH ₂	CH ₂ CN	н	ОН, ОН	•
5812	NH (C=NH) NH ₂	(CH ₂) COOH	н	(+)-pin	
5813	NH (C=NH) NH ₂	(CH ₂) COOH	н	OH, OH	
5814	OMe	CH ₂ COOMe	н	(+)-pin	
5815	OMe	CH ₂ COOMe	н	OH, OH	
5816	NH (C=NH) H	(CH ₂) CN ₄ H	н	OH, OH	
5817	NH (C=NH) H	(CH ₂) CN ₄ H	H	(+) -pip	

5

Table 56

$$R^{13}$$
 $(CH_2)_mCO-NH$
 CH_2X
 CH_2X
 CH_2X

Ex	x	· R13	R14	Y^1Y^2	Phys. Data
5822	CH2NH2	н	н	(+)-pin	
5823	CH2NH2	н	н	он, он	
5824	NH (C=NH) NH ₂	н	н	(+)-pin	
5825	NH (C=NH) NH ₂	н	H	OH, OH	
5826	OMe	н	н	(+) -pin	
5827	OMe	H	н	OH, OH	
5828	NH (C=NH) H	н	н	OH, OH	
5829	NH (C=NH) H	н	н	(+)-pin	
5830	CH ₂ NH ₂	CH ₂ CN	н	(+)-pin	
5831	CH ₂ NH ₂	CH ₂ CN	н	OH, OH	
5832	NH (C=NH) NH ₂	(CH ₂) COOH	Н	(+)-pin	
5833	NH (C=NH) NH ₂	(CH ₂) COOH	н	OH, OH	
5834	OMe	CH ₂ COOMe	н	(+)-pin	
5835	OMe	CH ₂ COOMe	н	он, он	
5836	NH (C=NH) H	(CH ₂) CN ₄ H	н	он, он	
5837	NH (C=NH) H	(CH ₂) CN ₄ H	н	(+)-pin	•

5

Table 57

Ex	x	R ¹³	R14	Y^1Y^2	Phys.	Data
		m=7				
5842	CH ₂ NH ₂	н	H	(+) -pin		
5843	CH ₂ NH ₂	н	H	он, он		
5844	NH (C=NH) NH ₂	н	H	(+) -pin		
5845	NH (C=NH) NH ₂	H	Ħ	OH, OH		
5846	OMe	н	н	(+)-pin		
5847	CMe	H	н	он, он		
5848	NH (C=NH) H	н	н	ОН, ОН		
5849	MH (C=NH) H	н	н	(+)-pin		
5850	CH ₂ NH ₂	CH ₂ CN	н	(+)-pin		
5851	CH ₂ NH ₂	CH ₂ CN	н	OH, OH		
5852	NH (C=NH) NH ₂	(CH ₂) COOH	н	(+)-pin		
5853	NH (C=NH) NH ₂	(CH ₂) COOH	н	ОН, ОН		
5854	OMe	CH ₂ COOMe	н	(+)-pin		
5855	OMe	CH ₂ COOMe	н	он, он		
5856	NH (C=NH) H	(CH ₂) CN ₄ H	н	он, он		
5857	NH (C=NH) H	(CH ₂) CN ₄ H	н	(+)-pin		
	•	m=0				
5858	CH ₂ NH ₂	н	H	(+)-pin		
5859	CH ₂ NH ₂	H	н	он, он		
5860	NH (C=NH) NH ₂	н	н	(+) -pin		
5861	NH (C=NH) NH ₂	H	н	OH, OH		
5862	OMe	н	H	(+)-pin		
5863	OMe	н	н	ОН, ОН		
5864	NH (C=NH) H	н	н	ОН, ОН		

PCT/US95/16248

5865	NH (C=NH) H	H	Н	(+)-pin
5866	CH ₂ NH ₂	CH ₂ CN	н	(+)-pin
5867	CH ₂ NH ₂	CH ₂ CN	н	OH, OH
5868	NH (C=NH) NH ₂	(CH ₂) COOH	H	(+)-pin
5869	NH (C=NH) NH ₂	(CH ₂) COOH	н	OH, OH
5870	OMe	CH ₂ COOMe	H	(+)-pin
5871	CM e	CH ₂ COOMe	н	он, он
5872	NH (C=NH) H	(CH ₂) CN ₄ H	н	он, он
5873	NH (C=NH) H	(CH ₂) CN ₄ H	н	(+)-pin

Table 58

Ex	x	R ¹³	R14	_Y 1 _Y 2	Phys.	Data
	1.	m=1				
5878	CH ₂ NH ₂	н	н	(+)-pin		
5879	CH ₂ NH ₂	H	H ·	он, он		
5880	NH (C=NH) NH ₂	н	н	(+)-pin		
5881	NH (C=NH) NH ₂	Н	н	он, он		
5882	OMe	н	н	(+)-pin		
5883	OMe	н	H.	он, он		
5884	NH (C=NH) H	н	н	ОН, ОН		
5885	NH (C=NH) H	н	H	(+)-pin		
5886	CH ₂ NH ₂	CH2CN	н	(+)-pin		
5887	CH ₂ NH ₂	CH ₂ CN	н	OH, OH		
5888	NH (C=NH) NH ₂	(CH ₂) COOH	н	(+)-pin	•	
5889	NH (C=NH) NH ₂	(CH ₂) COOH	н	OH, OH		
5890	OMe	CH ₂ COOMe	н	(+)-pin		
5891	OMe	CH ₂ COOMe	н .	он, он		
5892	NH (C=NH) H	(CH ₂) CN ₄ H	н	он, он		
5893	NH (C=NH) H	(CH ₂) CN ₄ H	н	(+)-pin		
		m=0		_		
5894	CH ₂ NH ₂	H	н	(+)-pin		
5895	CH ₂ NH ₂	н	H .	ОН, ОН		
5896	NH (C=NH) NH ₂	н	н	(+)-pin		
5897	NH (C=NH) NH ₂	н	н	OH, OH		
5898	OMe	н	н	(+)-pin		
5899	OMe	н	н	ОН, ОН		
5900	NH (C=NH) H	н	н	OH, OH		

5901	MH (C=NH) H	н	H	(+)-pin
5902	CH ₂ NH ₂	CH ₂ CN	H	(+) -pin
5903	CH ₂ NH ₂	CH ₂ CN	H	ОН, ОН
5904	NH (C=NH) NH ₂	(CH ₂) COOH	H	(+)-pin
5905	NH (C=NH) NH2	(CH ₂) COOH	H	он, он
5906	OMe	CH ₂ COOMe	н .	(+)-pin
5907	OMe	CH ₂ COOMe	н	он, он
5908	NH (C=NH) H	$(CH_2)CN_4H$	н	он, он
5909	NH (C=NH) H	(CH ₂) CN ₄ H	н	(+)-pin

Table 59

Ex	x	σ	Y^1Y^2	Phys. Data
	•		m=1	
5914	CH ₂ NH ₂	s	(+)-pin	
5915	NHC (=NH) NH2	s	(+)-pin	
5916	SC (=NH) NH ₂	s	(+)-pin	
5917	CH ₂ NH ₂	S	OH, OH	
5918	NHC (=NH) NH ₂	s	OH, OH	
5919	SC (=NH) NH ₂	S	OH, OH	
5920	CH ₂ NH ₂	0	(+)-pin	
5921	NHC (=NH) NH ₂	0	(+)-pin	
5922	SC (=NH) NH ₂	0	(+)-pin	
5923	CH ₂ NH ₂	0	он, он	,
5924	NHC (≔NH) NH2	0	OH, OH	
5925	SC (=NH) NH ₂	0	OH, OH	
			m=2	
5926	CH ₂ NH ₂	s	(+)-pin	CA
5927	NHC (=NH) NH2	S	(+)-pin	
5928	SC (=NH) NH2	s	(+)-pin	
5929	CH2NH2	, s	OH, OH	
5930	NHC (=NH) NH2	S	OH, OH	·
5931	$SC (=NH) NH_2$. s	OH, OH	
5932	CH ₂ NH ₂	0	(+)-pin	
5933	NHC (=NH) NH2	0	(+)-pin	
5934	$SC (=NH) NH_2$	0	(+)-pin	
5935	CH ₂ NH ₂	. 0	он, он	
5936	NHC (=NH) NH ₂	0	OH, OH	
5937	SC (=NH) NH ₂	0	OH, OH	
CA:	HRMS Calc.:	543.2635.	Found: 543,2643	•

PCT/US95/16248

Table 60

Ex	x	Ü ,	Y^1Y^2	Phys. Data
	•	m=1	L	
5942	CH ₂ NH ₂	S	(+) -pin	
5943	NHC (=NH) NH ₂	S	(+) -pin	
5944	SC (=NH) NH ₂	S	(+) -pin	
5945	CH ₂ NH ₂	s	он, он	
5946	NHC (=NH) NH ₂	s	он, он	
5947	SC (=NH) NH ₂	s	OH, OH	
5948	CH ₂ NH ₂	0	(+)-pin	•
5949	NHC (=NH) NH ₂	0	(+) -pin	
5950	SC (=NH) NH ₂	0	(+)-pin	
5951	CH ₂ NH ₂	0	OH, OH	
5952	NHC (=NH) NH ₂	Ο .	OH, OH	
5953	SC (=NH) NH ₂	0	OH, OH	
		m=:	2	
5954	CH2NH2	s	(+)-pin	
5955	NHC (=NH) NH ₂	S	(+)-pin	•
5956	SC (=NH) NH ₂	· S	(+) -pin	
5957	CH ₂ NH ₂	S	OH, OH	
5958	NHC (=NH) NH ₂	· s	OH, OH	
5959	$SC (=NH) NH_2$. S	OH, OH	
5960	CH ₂ NH ₂	. 0	(+) -pin	
5961	NHC (=NH) NH2	•	(+)-pin	
5962	SC (=NH) NH2	0	(+)-pin	
5963	CH2NH2	0	он, он	
5964	NHC (=NH) NH2	0	он, он	
5965	SC (=NH) NH ₂	. 0	OH, OH	

5

WO 96/20689

Table 61

5					•		
	Ex	x	RA	RC	R ^D	Y ¹ ,Y ²	Phys Data
	5970	NHC (NH) NH ₂	Me	Ph	OMe	(+)-pin	Data
	5971	NHC (NH) NH2	Me	Ph	CONH ₂	(+)-pin	
	5972	NHC (NH) NH2	Me	Ph	F	(+)-pin	
	5973	NHC (NH) NH2	Me	Ph	CF3	(+)-pin	
	5974	NHC (NH) NH2	Me	Ph	Cl	(+)-pin	
	5975	NHC (NH) NH2	Me	Ph	ОН	(+)-pin	
	5976	NHC (NH) NH ₂	Me	4-C6H4CO2H	OMe	(+)-pin	
	5977	NHC (NH) NH ₂	Me	4-C6H4CO2H	CONH2	(+)-pin	
	5978	NHC (NH) NH ₂	Me	4-C6H4CO2H	F	(+)-pin	
	5979	NHC (NH) NH ₂	Me	4-C6H4CO2H	CF ₃	(+)-pin	
	5980	NHC (NH) NH ₂	Me	4-C6H4CO2H	Cl	(+)-pin	
	5981	NHC (NH) NH ₂	Me	4-C6H4CO2H	OH	(+)-pin	
	5982	SC (NH) NH ₂	Me	Ph ·	OMe	(+)-pin	
	5983	SC (NH) NH ₂	Me	Ph	CONH ₂	(+)-pin	
	5984	SC (NH) NH ₂	Me	Ph	F	(+)-pin	
	5985	SC (NH) NH ₂	Me	Ph	CF ₃	(+)-pin	
	5986	SC (NH) NH ₂	Me	Ph	Cl	(+)-pin	
	5987	SC (NH) NH ₂	Me	Ph	OH	(+)-pin	
	5988	SC (NH) NH ₂	Me	4-C6H4CO2H	OMe	(+) -pin	
	5989	SC (NH) NH ₂	Me	4-C6H4CO2H	CONH ₂	(+) -pin	
	5990	SC (NH) NH ₂	Me	4-C6H4CO2H	F	(+)-pin	

5991	SC (NH) NH ₂	Me	4-C6H4CO2H	CF ₃	(+)-pin
5992	SC (NH) NH ₂	Me	4-C6H4CO2H	Cl	(+)-pin
5993	SC (NH) NH ₂	Me	4-C6H4CO2H	OH	(+)-pin
5994	CH2NH2	Me	Ph	OMe	(+)-pin
5995	CH ₂ NH ₂	Me	Ph	CONH ₂	(+)-pin
5996	CH ₂ NH ₂	Me	Ph	F	(+)-pin
5997	CH2NH2	Me	Ph	CF ₃	(+)-pin
5998	CH ₂ NH ₂	Me	Ph	C1	(+)-pin
5999	CH ₂ NH ₂	Me	Ph	ОН	(+)-pin
6000	CH ₂ NH ₂	Me	4-C6H4CO2H	OMe	(+)-pin
6001	CH ₂ NH ₂	Me	4-C6H4CO2H	CONH2	(+)pin
6002	CH ₂ NH ₂	Me	4-C6H4CO2H	F	(+)-pin
6003	CH ₂ NH ₂	Me	4-C6H4CO2H	CF3	(+)-pin
6004	CH ₂ NH ₂	Me	4-C6H4CO2H	Cl	(+)-pin
6005	CH ₂ NH ₂	Me	4-C6H4CO2H	ОН	(+)-pin
6006	NHC (NH) NH ₂	Me	Ph	OMe	OH, OH
6007	NHC (NH) NH2	Me	Ph.	CONH ₂	OH, OH
6008	NHC (NH) NH ₂	Me	Ph	F	OH, OH
6009	NHC (NH) NH ₂	Me	Ph	CF3	OH, OH
6010	NHC (NH) NH ₂	Me	Ph	Cl	он, он
6011	NHC (NH) NH ₂	Me	Ph .	ОН	OH, OH
6012	NHC (NH) NH ₂	Me	4-C6H4CO2H	OMe	OH, OH
6013	NHC (NH) NH ₂	Me	4-C6H4CO2H	CONH2	OH, OH
6014	NHC (NH) NH ₂	Me	4-C6H4CO2H	F .	OH, OH
6015	NHC (NH) NH ₂	Me	4-C6H4CO2H	CF ₃	OH, OH
6016	NHC (NH) NH2	Me	4-C6H4CO2H	ci	OH, OH
6017	NHC (NH) NH ₂	Me	4-C6H4CO2H	OH	OH, OH
6018	SC (NH) NH ₂	Me	Ph .	OMe	он, он
6019	SC (NH) NH ₂	Me	Ph	CONH ₂	он, он
6020	SC (NH) NH ₂	Me	Ph	F	он, он
6021	SC (NH) NH ₂	Me	Ph	CF ₃	OH, OH
6022	SC (NH) NH ₂	Me	Ph	Cl	OH, OH
6023	SC (NH) NH ₂	Me	Ph	ОН	OH, OH
6024	SC (NH) NH ₂	Me	4-C6H4CO2H	OMe	OH, OH
6025	SC (NH) NH ₂	Me	4-C6H4CO2H	CONH ₂	OH, OH

6026	SC (NH) NH ₂	Me	4-C6H4CO2H	F	OH, OH
6027	SC (NH) NH_2	Me	4-C6H4CO2H	CF ₃	OH, OH
6028	SC (NH) NH ₂	Me	4-C6H4CO2H	Cl	OH, OH
6029	SC (NH) NH ₂	Me	4-C6H4CO2H	OH	OH, OH
6030	CH ₂ NH ₂	Me	Ph	OMe	он, он
6031	CH ₂ NH ₂	Me	Ph	CONH ₂	он, он
6032	CH ₂ NH ₂	Me	Ph.	F	он, он
6033	CH2NH2	Me	Ph	CF ₃	OH, OH
6034	CH ₂ NH ₂	Me	Ph	C1	OH, OH
6035	CH ₂ NH ₂	Me	Ph	OH	он, он
6036	CH2NH2	Me	4-C6H4CO2H	OMe	OH, OH
6037	CH ₂ NH ₂	Me	4-C6H4CO2H	COMH2	он, он
6038	CH ₂ NH ₂	Me	4-C6H4CO2H	F	он, он
6039	CH ₂ NH ₂	Me	4-C6H4CO2H	CF ₃	OH, OH
6040	CH ₂ NH ₂	Me	4-C6H4CO2H	Cl	OH, OH
6041	CH ₂ NH ₂	Me	4-C6H4CO2H	OH	он, он

Utility

The compounds of formula (I) are useful as inhibitors of trypsin-like enzymes, notably human thrombin, Factor VIIa, Factor IXa, Factor Xa, plasma kallikrein and plasmin. Because of their inhibitory action, these compounds are indicated for use in the prevention or treatment of physiological reactions catalyzed by the aforesaid enzymes such as blood coagulation and inflammation. These compounds are also useful as anticoagulants for the processing of blood for therapeutic or diagnostic purposes or for the production of blood products or fragments, since contact of blood with the surfaces commonly used for blood collection and storage causes activation of coagulation leading to thrombin formation and clot formation.

The effectiveness of compounds of the present invention as inhibitors of blood coagulation proteases was determined using purified human proteases and synthetic substrates following procedures similar to those described in Kettner et al. (1990).

20

25

30

35

For these assays, the rate of enzymatic (thrombin, Factor Xa, and Factor VIIa) hydrolysis of chromogenic substrates (S2238 (H-D-Phe-Pip-Arg-pNA), S2222, and S2288, respectively; Kabi Pharmacia, Franklin, OH) was measured both in the absence and presence of compounds of the present invention. Hydrolysis of the substrate resulted in the release of pNA, which was monitored spectrophotometrically by measuring the increase in absorbance at 405 nM. A decrease in the rate of absorbance change at 405 nm in the presence of inhibitor is indicative of enzyme inhibition. The results of this assay are expressed as inhibitory constant, Ki.

Thrombin and Xa determinations were made in 0.10 M sodium phosphate buffer, pH 7.5, containing 0.20 M NaCl, and 0.5 % PEG 8000. VIIa determinations were made in 0.05 M tris buffer, pH 7.6, containing 0.10 M NaCl, 4 mM

 $CaCl_2$, and 0.1% bovine serum albumin. The Michaelis constant, K_m , for substrate hydrolysis was determined at 25 °C using the method of Lineweaver and Burk.

Values of K_i were determined by allowing 0.2 - 0.5 nM human thrombin or human factor Xa (Enzyme Research Laboratories, South Bend, IN), or 50 nM human factor VIIa (BiosPacific, Emeryville, CA) react with the substrate (0.20 mM - 1 mM) in the presence of inhibitor. Reactions were allowed to go for 30 minutes and the velocities (rate of absorbance change vs time) were measured in the time frame of 25-30 minutes. The following relationship was used to calculate K_i values.

$$v_{0}-v_{S}$$
 I v_{S} K_{i} $(1 + S/K_{m})$

where:

5

10

vo is the velocity of the control in the absence of inhibitor;

Vs is the velocity in the presence of inhibitor;

I is the concentration of inhibitor;

Ki is the dissociation constant of the enzyme:

inhibitor complex:

S is the concentration of substrate;

25 Km is the Michaelis constant.

Using the methodology described above, representative compounds of this invention were evaluated and found to exhibit a Ki of less 500 µM thereby confirming the

30 utility of compounds of the invention as effective inhibitors of human blood coagulation proteases. The results of these assays are summarized in Table 62, where +++ indicates a Ki < 500 nM; ++ indicates a Ki < 50,000 nM; and + indicates a Ki 500,000 < nM;
indicates inactive.

Table 62. Ki values for inhibition of Serine Proteases by compounds of the present invention.

EXAMPLE	Thrombin	Factor Xa	Factor VIIa
1	+++	++	NT
2	+++	+++	+++
29	+++	NT	NT
35	+++	+++	++
68	++	++	+++
129	+++	+++	NT ·
199	+++	+++	+++
203	+++	+++	. +++
224	+++	+++ .	+++
227	+++	+++	++
231	+++	+++	++
261	+++	+++	+++
262	+++	+++	+++
263	+++	+++	+++
283	+++	+++.	++
286	+++	+++	+++
288	+++	NT	+++
298	+++	+++	+++
299	+++	+++	+++
302	+++	+++	++
303	+++	++ .	++
304	++	++	++
305	++	++	++
468	++ -	++	++
474	++	++	++
887	+++	NT	NT
888	+++	++	++
890	+++	++	++
892	.+++	++	++
898	+++	++	++
905	++	++	
913	+++	-	++

914	+++	++ ,,	++
917	+++	++	++
920	+++	NT	NT
921	+++	++	++
923	+++	++	. ++
931	+++	++	++
967	+++	++	+++
969	+++	++	++
977	+++	nt	NT
1352	+++	++	NT
1431	+++	NT	NT
1459	++	++	++
1467	+++	NT	++
1521	+++	NT	NT
1557	+++	NT	++
2066	NT	NT	NT
2067	+++	NT	NT
2068	++	++	++
2073	+++	++	++
2074	+++	++	++
2411	+++	NT	NT
2412	+++	++	++,
2414	+++	++	++
2416	+++	++	++
2422	+++	++	++
2430	++	++	-
2439	+++	. ++	++
2440	+++	++ ,	++
2443	+++	++	++
2446	+++	++	++
2447	+++	++	++
2490	+++	++	+++
2491	+++	+++	++
2499	+++	++	++
2533	+++	++	, -

2752	+++	NT	NT
2780	+++	++	++-
2781	+++	++	++
2837	++	NT	NT
3349	+++	++	NT
3458	+++	-	++
3465	+++	++	++
3538	+++	++	++
4064	++	++	++
4065	++	++	++
5426	+++	+++	NT
5529	+++	+++	NT
5551	NT	NT	NT

The final concentration of thrombin was 4 NIH units/mL. The effectiveness of compounds in prolonging clotting times is reported as K_iTT (nM; level of inhibitor required to prolong clotting to the time observed for 2 NIH units/mL thrombin in the absence of inhibitor). Compounds of the present invention were found to have K_iTT values in the range of 100 - 6000 nm.

Generally, these compounds may be administered orally or parenterally to a host to obtain an anti-thrombogenic effect. The dosage of the active compound depends on the mammalian species, body weight, age, and mode of administration as will be obvious to one skilled in the art. In the case of large mammals such as humans, the compounds may be administered alone or in combination with pharmaceutical carriers or diluents at a dose of from 0.02 to 15 mg/Kg to obtain the anti-thrombogenic effect, and may be given as a single dose or in divided doses or as a sustained release formulation.

10

20

Pharmaceutical carriers or diluents are well known and include sugars, starches and water, which may be used to make tablets, capsules, injectable solutions or

the like which can serve as suitable dosage forms for administration of the compounds of this invention.

Remington's Pharmaceutical Sciences, A. Osol, is a standard reference text which discloses suitable pharmaceutical carriers and dosage forms. The disclosure of this text is hereby incorporated by reference for a more complete teaching of suitable dosage forms for administration of the compounds of this invention.

WHAT IS CLAIMED IS:

1. A compound of formula:

 R^1 -Z-CHR²-A

5

(I)

wherein:

A is

- $a) BY^1Y^2$,
- b) $-C (=0) CF_3$,
- 10 c) -C(=0) CHF₂,
 - d) $-C(=0)CH_2F$,
 - e) -C(=0) CH₂C1,
 - $f) C (=0) OR^3$
 - g) $-C (=0) NR^{15}R^{16}$,
- 15 h) $-C (=0) R^3$,
 - i) $-C (=0) COOR^3$,
 - $j) C (=0) C (=0) NR^{15}R^{16}$
 - $k) C (=0) C (=0) R^3$
 - 1) $-C (=0) CY^3Y^4COOR^3$,
- 20 m) $-C (=0) CY^3Y^4C (=0) NR^{15}R^{16}$,
 - n) $-C (=0) CY^3Y^4C (=0) R^3$,
 - $o) PO_3H_2$, or
 - p) -CHO;

 Y^1 and Y^2 are independently

25 a) -OH,

35

- b) -F,
- c) $-NR^3R^4$, or
- d) C₁-C₈ alkoxy;

 Y^1 and Y^2 can be taken together to form:

- e) a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,
 - f) a cyclic boron amide where said chain or ring contains from 2 to 20 carbon atoms and, from 0-3 heteroatoms which can be N, S, or O,

```
g) a cyclic boron amide-ester where said chain or
                      ring contains from 2 to 20 carbon atoms and
                      from 0-3 heteroatoms which can be N, S, or O;
       Y^3 and Y^4 are independently
  5
              a) -OH or
              b) -F;
       Z is
            a) -(CH_2)_mCONR_{-}
            b) -(CH_2)_mCSNR^8-,
            c) -(CH<sub>2</sub>)<sub>m</sub>SO<sub>2</sub>NR<sup>8</sup>-,
10
            d) - (CH_2)_m CO_2 - ,
            e) -(CH_2)_mC(S)O-, or
            f) - (CH<sub>2</sub>)<sub>m</sub>SO<sub>2</sub>O-;
      R<sup>l</sup> is
15
            a) -(CH<sub>2</sub>)<sub>D</sub>-aryl, wherein aryl is phenyl, naphthyl or
                biphenyl substituted with one, two or three
                substituents selected from the group consisting
                    halo (F, Cl, Br, I), methylenedioxy, -R8
                    -NR^8COR^9, C_2-C_6-alkenyl, C_2-C_6-alkynyl,
20
                    -(CH_2)<sub>w</sub>-OR<sup>8</sup>, -(C_1-C_6)-perfluoroalkyl,
                    -(CH_2)_wCN, -(CH_2)_wNC, -(CH_2)_wNO_2, -(CH_2)_wCF_3,
                    -(CH_2)_{WS}(O)_{T}R^7, -(CH_2)_{W}NR^8R^9, -(CH_2)_{W}COR^8,
                    -(CH_2)_wCHO; -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9.
25
                    -(CH_2)_wSO_2NH - (C_1 - C_5) - alky1, -(CH_2)_wSO_2NH_2,
                    -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>)-alkyl, -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-
                    CO_2-(C_1-C_6)-alkyl, -(CH_2)<sub>w</sub>NHSO<sub>2</sub>-(C_1-C_6)-alkyl,
                    - (CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl,
                    -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-phenyl, -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-
30
                    perfluorophenyl, -(CH2) wCN4H, -O(CH2) wCN,
                    -NH(CH_2)_wCN, -S(CH_2)_wCN, -(CH_2)_wNH-CO-(C_1-C_6-
                    alkyl), -(CH2)wNH-CO-(C1-C6-perfluoroalkyl),
                    - (CH_2)_{wNH}-CO-(phenyl), - (CH_2)_{wNH}-CO<sub>2</sub>-(C_1-C<sub>6</sub>-
                    alkyl), -(CH_2)_{W}NH-CO_2-(C_1-C_6-perfluoroalkyl),
35
                    -(CH_2)_{w}NH-CO_2-(phenyl), -0(C=0)-(C_1-C_5-alkyl),
```

5

15

20

- b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted:
 - i) quinolinyl,
 - ii) isoquinolinyl,
 - iii) benzopyranyl,
 - iv) benzothiophenyl,
 - v) benzofuranyl,
 - vi) 5,6,7,8-tetrahydroquinolinyl,
- vii) 5,6,7,8-tetrahydroisoquinolinyl,

and wherein the substituents are members selected from the group consisting of halo (F, Cl, Br, I), -CN, C_1 - C_{10} -alkyl, C_3 - C_8 -cycloalkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkynyl, R^8 , -OR 8 , -NO $_2$, -CF $_3$, -S(0) $_TR^7$, -NR $^8R^9$, -COR 8 , -CO $_2R^8$, -CONHR 8 , NR 8 COR 9 , NR 8 CO $_2R^9$,

E R⁵

e) O R¹¹.

f)

wherein J is N or C and K, L, M and Q are independently selected at each occurrence from the group consisting of N, CR¹³, S or O, provided that:

i) there may be only one S or O present in the ring at a time;

ii) there may only be 1-2 N present when there is an O or S present;

iii) there may be only 1-4 N present;

g)

5

10

15

wherein W, R, T, U and V are selected from the group consisting of: CR¹³ or N, provided that there be no less than 1 and no more than 3 N present;

h)

20

is as defined above;

i)

$$T = W \qquad (CH_2)_u = V \qquad R^{18}$$

$$R^{18} \qquad V = R^{18}$$

$$R^{19} \qquad \text{wherein}$$

is as defined above;

j)

wherein G is O, S, or NP, where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$,

 $-C (=0) OR^3);$

k)

10

wherein G is O, S, or NP, where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$,

 $-C(=0)OR^3);$

15 R^2 is

a) -(C1-C12 alkyl)-X,

b) - (C2-C12 alkenyl)-X, or

c)

X is

- a) halogen (F, Cl, Br, I),
- b) -CN,
- 5 c) $-NO_2$,
 - d) -CF3,
 - e) $-S(0)_{r}R^{14}$,
 - f) -NHR14
 - g) -NHS(0) $_{r}$ R¹⁴,
- 10 h) -NHC(NH)H,
 - i) NHC (NH) NHOH,
 - j) -NHC(NH)NHCN,
 - k) -NHC(NH) NHR14,
 - 1) -NHC(NH)NHCOR14,
- m) -C(NH) NHR 14 ,
 - $n) C(NH) NHCOR^{14}$
 - o) $-C(0)NHR^{14}$,
 - p) -C(0) NHC(0) R^{14} ,
 - $q) C(0) OR^{14}$
- 20 r) $-OR^{14}$,
 - s) $-OC(0)R^{14}$,
 - t) $-0C(0)OR^{14}$,
 - u) -OC(0)NHR14,
 - $v) OC(0) NHC(0) R^{14}$
- 25 w) $-SC(=NH)NHR^{14}$, or
 - x) -SC(=NH) NHC(=0) R^{14} ;

R^3 is

- a) hydrogen,
- b) C₁-C₈ alkyl,
- 30 c) $-(C_1-C_4 \text{ alkyl}) \text{aryl}$,
 - d) C₅-C₇ cycloalkyl, or

```
e) phenyl;
     R4 is
           a) hydrogen,
           b) C<sub>1</sub>-C<sub>8</sub> alkyl,
           c) -(C_1-C_4 \text{ alkyl}) - \text{aryl},
5
           d) C5-C7 cycloalkyl,
           e) phenyl, or
           f) phenylsulfonyl;
     {\tt R}^{\tt 5} and {\tt R}^{\tt 6} are hydrogen or when taken together form a six
         membered aromatic ring optionally substituted with
10
         one, two or three substituents selected from the
         group consisting of halo (F, Cl, Br, I), -CN, C1-
         C_{10}-alkyl, C_3-C_8-cycloalkyl, C_2-C_{10}-alkenyl, C_2-C_{10}-
         alkynyl, -OR^8, -NO_2, -CF_3, -S(O)_TR^7, -NR^8R^9, -COR^8,
         -CO_2R^8, -CONR^8R^9, phenyl, benzyl, phenylethyl;
15
     R^7 is
          a) phenyl,
          b) C1-Cg-alkyl,
          c) C_1-C_4-alkoxy,
          d) -CF3 or
20
          e) benzyl;
     R^8 and R^9 are independently
          a) H,
25
          c) C3-C7 cycloalkyl,
          d) C1-Cg-alkyl, or
     R<sup>11</sup> is
          a) halo (F, Cl, Br, I),
          b) -CN,
30
          c) C1-C10-alkyl,
          d) C3-Cg-cycloalkyl,
          e) C2-C10-alkenyl,
```

```
f) C2-C10-alkynyl,
         ) g) -OR8,
            h) -NO2,
            i) -CF3,
  5
            j) -S(0)_{r}R^{7},
            k) - NR^8R^9
            m) - CO_2R^8
            1) -cor<sup>9</sup>,
            n) -CONR<sup>8</sup>R<sup>9</sup>, or
 10
            o) H
       R^{12} is
                 H, C1-C4 alkyl, phenyl, benzyl, -COR7, or
                 -S(0)_{T}R^{7};
      R^{13} is
                 H, halogen (F, Cl, Br, I), (C_1-C_8) alkyl, (C_1-C_8)
15
                 C6)-perfluoroalkyl, -(CH2)r-D, C3-C8 cycloalkyl,
                 C2-C6-alkenyl, C2-C6-alkynyl, methylenedioxy,
                 -(CH_2)_w-OR^8, -(CH_2)_wNC, -(CH_2)_wCN, -(CH_2)_wNO_2,
                 -(CH_2)_wCF_3, -(CH_2)_wS(O)_rR^7, -(CH_2)_wNR^8R^9,
20
                 -(CH<sub>2</sub>)_wCOR<sup>8</sup>, -(CH<sub>2</sub>)_wCO<sub>2</sub>R<sup>8</sup>, -(CH<sub>2</sub>)_wCONR<sup>8</sup>R<sup>9</sup>,
                 -(CH_2)_wSO_2NH-(C_1-C_6)-alkyl, -(CH_2)_wSO_2NH_2,
                 - (CH_2)_wSO_2NH-CO-(C_1-C6) -alkyl, - (CH_2)_wSO_2NH-CO<sub>2</sub>-
                 (C_1-C_6)-alkyl, -(CH_2)_wSO_2NH, -(CH_2)_wNHSO_2-(C_1-C_1)_wNHSO_2
                 C_6)-alkyl, -(CH_2)<sub>w</sub>NHSO<sub>2</sub>-(C_1-C_6)-perfluoroalkyl,
25
                 -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-phenyl, -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-
                 perfluorophenyl, -(CH_2)_wCN_4H, -O(C=0)-(C_1-C_5-C_5-C_5)
                 alkyl), -0(CH_2)_wCN, -NH(CH_2)_wCN, -S(CH_2)_wCN,
                 -(CH_2)_{w}NH-CO-(C_1-C_6-alkyl), -(CH_2)_{w}NH-CO-(C_1-C_6-alkyl)
                 perfluoroalkyl), -(CH2)wNH-CO-(phenyl),
30
                 - (CH_2)_wNH-CO_2-(C_1-C_6-alkyl), - (CH_2)_wNH-CO_2-(C_1-
                C6-perfluoroalkyl), -(CH2)wNH-CO2-(phenyl),
                 -(CH2)uphenyl wherein the phenyl contains 0-3
                substituents selected from R18, -S-(CH2)uphenyl
                wherein the phenyl contains 0-3 substituents
                selected from R^{18}, or -O-(CH_2)uphenyl wherein
35
```

```
the phenyl contains 0-3 substituents selected
                from R18:
     R14 is
            a) -H.
            b) - CF3
5
            c) -C_1-C_4 alkyl,
            d) -(CH_2)_{\mathbf{Q}}-aryl, wherein aryl is phenyl, biphenyl,
            naphthyl, or fluorenyl unsubstituted or substituted
            with one to three substituents selected from the
             group consisting of:
10
                    halogen (F, Cl, Br, I),
                    -CF3,
                    -(C_1-C_4 \text{ alkyl}),
                    -(CH<sub>2</sub>)_xR<sup>15</sup>,
                    - (CH_2)_xCO(CH_2)_yR^{15},
15
                    -(CH_2)_{X}C(0)O(CH_2)_{V}R^{15},
                    - (CH_2)_xC(0)N[(CH_2)_yR^{15}][(CH_2)_yR^{16}],
                    -methylenedioxy,
                    -(C1-C4 alkoxy),
                    - (CH_2)_{x}O(CH_2)_{y}R^{15},
20
                    - (CH_2)_{X}OCO(CH_2)_{V}R^{15},
                    -(CH_2)_{X}OC(0)O(CH_2)_{V}R^{15},
                    -(CH_2)_{x}OC(0)N[(CH_2)_{y}R^{15}][(CH_2)_{y}R^{16}],
                    -(CH_2)_{x}OC(0)N[(CH_2)_{y}R^{15}][CO(CH_2)_{y}R^{16}],
                    - (CH_2)_xS(0)_r(CH_2)_yR^{15},
25
                    -(CH_2)_xS(0)_r(CH_2)_yCOR^{15},
                    -(CH_2)_{X}S(0)_{T}(CH_2)_{V}C(0)OR^{15},
                    -(CH_2)_xS(0)_rN[(CH_2)_yR^{15}][(CH_2)_yR^{16}]
                    -(CH_2)_XN[(CH_2)_YR^{15}][(CH_2)_YR^{16}],
                    -(CH_2)_XN[(CH_2)_YR^{15}][CO(CH_2)_YR^{16}],
30
                    -(CH_2)_XN[(CH_2)_YR^{15}][C(0)O(CH_2)_YR^{16}],
                    - (CH_2)_XN[(CH_2)_YR^{15}]CON[(CH_2)_YR^{15}][(CH_2)_YR^{16}],
                    - (CH_2)_XN[(CH_2)_YR^{15}]CON[(CH_2)_YR^{15}]-
                     [CO(CH_2)_{V}R^{16}],
                    - (CH_2)_XN[(CH_2)_YR^{15}][S(0)_r(CH_2)_YR^{16}];
35
      R<sup>15</sup> and R<sup>16</sup> are independently
```

```
a) hydrogen,
```

- b) C₁-C₈ alkyl,
- c) -(C₁-C₄ alkyl)-aryl, where aryl is defined above,
- d) C₅-C₇ cycloalkyl,
 - e) phenyl, substituted by 0-3 R18,
 - f) benzyl, substituted by 0-3 R¹⁸, or
 - $g) (C_1 C_4 \text{ alkoxy});$

 R^{15} and R^{16} can be taken together to form a ring:

10

15

20

5

R¹⁸ and R¹⁹ are independently

H, halo (F, Cl, Br, I), C₁-C₈-alkyl, C₃-C₈ cycloalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl,

 $-(CH_2)_w - OR^8$, $-(CH_2)_w CN$, $-(CH_2)_w NC$, $-(CH_2)_w NO_2$,

 $-(CH_2)_wCF_3$, $-(CH_2)_wS(0)_rR^7$, $-(CH_2)_wNR^8R^9$,

 $-(CH_2)_wCOR^8$, $-(CH_2)_wCO_2R^8$, $-(CH_2)_wCONR^8R^9$,

 $-(CH_2)_wSO_2NH-(C_1-C_6)-alkyl, -(CH_2)_wSO_2NH_2,$

-(CH₂)_wSO₂NH-CO-(C₁-C₆)-alkyl, -(CH₂)_wSO₂NH-

 CO_2 -(C_1 - C_6)-alky1, -(CH_2) $_wSO_2NH$ -(CH_2) $_wNHSO_2$ -

 (C_1-C_6) -alkyl, - $(CH_2)_wNHSO_2$ - (C_1-C_6) -

perfluoroalkyl, -(CH2)wNHSO2-phenyl,

-(CH2) wNHSO2-perfluorophenyl, -(CH2) wCN4H,

 $-0(C=0)-(C_1-C_5-alkyl)$, $-0(Ch_2)_wCN$, $-NH(Ch_2)_wCN$,

25 -S(CH₂)_wCN, -(CH₂)_wNH-CO-(C₁-C₆-alkyl),

-(CH₂)_wNH-CO-(C₁-C₆-perfluoroalkyl), -(CH₂)_wNH-

 $CO-(C_1-C_6-pheny1)$, $-(CH_2)_wNH-CO_2-(C_1-C_6-alky1)$,

-(CH_2)_{WNH}- CO_2 -(C_1 - C_6 -phenyl), or -O(C=O) phenyl;

R18 and R19 can be taken together to form a

30 methylenedioxy group;

 R^{20} and R^{20a} are independently:

(C₁-C₈)alkyl, -(CH₂)uphenyl wherein the phenyl contains 0-3 substituents selected from R^{18} , (C₁-C₆)-perfluoroalkyl, or -(CH₂)_r-D;

PCT/US95/16248

```
m is 0 to 6;
    n is 1 to 2;
    p is 0 to 2;
    q is 0 to 4.
5 r is 0 to 2;
    s is 0 to 3;
    t is 1 to 5;
    u is 0 to 5;
    v is 0.to 5;
    w is 0 to 5;
10
    x is 0 to 6;
    y is 0 to 6;
    D is fur-2-yl, fur-3-yl, thiophen-2-yl, thiophen-3-yl,
           oxazol-2-yl, oxazol-4-yl, thiazol-2-yl, thiazol-4-
           yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl,
15
           pyrid-2-yl, pyrid-4-yl, pyridazin-3-yl, pyridazin-
           4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrazin-2-yl,
         or tetrazolyl;
     E is -CO-, -SO<sub>2</sub>- , -CH<sub>2</sub>- or a single bond,
     F is -CO-;
20
     W is
           a) -0-,
           b) -S(0)_{r}-,
           c) -NR^{4}-,
           d) -NC(=0)R^3-,
25
           e) a bond, or
           f) - (CH_2)_{n}-;
     or prodrugs or pharmaceutically acceptable salts
          thereof.
30
     2. A compound of Claim 1 wherein:
     Z is
          a) -(CH<sub>2</sub>)<sub>m</sub>CONR<sup>8</sup>-,
         b) -(CH_2)_mCSNR^8-,
          c) -(CH_2)_mSO_2NR^8-,
35
     R<sup>l</sup> is
```

```
a) -(CH2)p-aryl, wherein aryl is phenyl, naphthyl or
                              biphenyl substituted with one, two or three
                               substituents selected from the group consisting
   5
                                     halo (F, Cl, Br, I), methylenedioxy, -R<sup>8</sup>,
                                      -NR^{8}COR^{9}, C<sub>2</sub>-C<sub>6</sub>-alkenyl, C<sub>2</sub>-C<sub>6</sub>-alkynyl,
                                      -(CH<sub>2</sub>)<sub>w</sub>-OR<sup>8</sup>, -(C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl,
                                      -(CH_2)_{W}CN, -(CH_2)_{W}NC, -(CH_2)_{W}NO_2, -(CH_2)_{W}CF_3,
                                      -(CH_2)_{WS}(O)_{TR}^{7}, -(CH_2)_{WNR}^{8}R^{9}, -(CH_2)_{W}COR^{8},
10
                                      -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9. -(CH_2)_wSO_2NH^-(C_1-
                                     C_6)-alky1, -(CH_2)_wSO_2NH_2, -(CH_2)_wSO_2NH-CO-(C_1-
                                     C_6)-alkyl, -(CH_2)<sub>w</sub>SO<sub>2</sub>NH-CO_2-(C_1-C_6)-alkyl,
                                      -(CH_2)_wNHSO_2-(C_1-C_6)-alkyl, -(C_1-C_6)-alkyl, -(C_1-C
                                     C6) -perfluoroalkyl, -(CH2) wNHSO2-phenyl,
15
                                      -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-perfluorophenyl, -(CH<sub>2</sub>)<sub>w</sub>CN<sub>4</sub>H,
                                      -O(CH_2)_wCN, -NH(CH_2)_wCN, -S(CH_2)_wCN, -(CH_2)_wNH-
                                      CO-(C_1-C_6-alkyl), -(CH_2)_wNH-CO-(C_1-C_6-alkyl)
                                      perfluoroalkyl), -(CH2)wNH-CO-(phenyl),
                                      -(CH_2)_{wNH}-CO_2-(C_1-C_6-alky1), -(CH_2)_{wNH}-CO_2-(C_1-C_6-alky1)
20
                                     C6-perfluoroalkyl), or -(CH2)wNH-CO2-(phenyl),-
                                      0(C=0-(C_1-C_5 \text{ alkyl});
                       b) heteroaryl, wherein heteroaryl is an
                              unsubstituted, monosubstituted or disubstituted:
                              i)
                                            quinolinyl,
25
                              ii) isoquinolinyl,
                              iii) benzopyranyl,
                              iv) benzothiophenyl,
                              V)
                                            benzofuranyl,
                              vi) 5,6,7,8-tetrahydroquinolinyl,
30
                              vii) 5,6,7,8-tetrahydroisoquinolinyl,
                              and wherein the substituents are selected from the
                              group consisting of halo (F, Cl, Br, I), -CN, C1-
                              C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl, C2-
                              C_{10}-alkynyl, R^8, -OR^8, -NO_2, -CF_3, -S(O)_TR^7,
35
                               -NR^8R^9, -COR^8, -CO_2R^8, -CONR^8H, NR^8COR^9, NR^8CO_2R^9;
```

đ)

5 e)

f) wherein the ring

represented by -J-K-L-M-Q- is a group

selected from:

1)
$$-N-C(R^{13}) = C(R^{13}) - C(R^{13}) = C(R^{13}) -$$
,
2) $-N-C(R^{13}) = C(R^{13}) - C(R^{13}) = N-$,
3) $-N-C(R^{13}) = C(R^{13}) - N = C(R^{13}) -$,
4) $-N-C(R^{13}) = N-C(R^{13}) = N-$,
5) $-N-C(R^{13}) = C(R^{13}) - N = N-$
6) $-N-C(R^{13}) = N-N = N-$,
7) $-N-N = C(R^{13}) - N = N-$,
8) $= C-O-C(R^{13}) = N-C(R^{13}) = N-$,
10) $= C-C(R^{13}) - C(R^{13}) = N-$,
11) $-C=C(R^{13}) - C(R^{13}) = N-$,
12) $= C-C(R^{13}) = C(R^{13}) - O-$ N=,
13) $-C=C(R^{13}) = C(R^{13}) - O-$ N=,
14) $= C-S-C(R^{13}) = N-C(R^{13}) =$,

```
15) -C=C(R^{13})-S-C(R^{13})=N-
                        =C-S-C(R^{13})=C(R^{13})-N=
                   16)
                   17)
                        -C=N-S-N=C(R^{13}) -.
                       -C=N-S-C(R^{13})=N-
                   18)
                   19) = C-S-N=C(R^{13})-N=
 5
                        =C-S-C(R^{13})=C(R^{13})-C(R^{13})=.
                   20)
                        -C=C(R^{13})-S-C(R^{13})=C(R^{13})-.
                   21)
                   22)
                        =C-O-C(R^{13})=C(R^{13})-C(R^{13})=, or
                        -C=C(R^{13})-O-C(R^{13})=C(R^{13})-:
                  23)
10
          g) wherein the ring
                           represented by -C-W-R-T-U-V- is a group
            selected from:
                       -C=N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-C(R^{13})
                  2) -C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-
                  3) -C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-
15
                      -C=N-N=C(R^{13})-C(R^{13})=C(R^{13})
                  4)
                       -C=C(R^{13})-N=N-C(R^{13})=C(R^{13})-
                      -C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-C
                  6)
                  7) -C=N-C(R^{13})=C(R^{13})-N=C(R^{13})
20
                       -C=N-C(R^{13})=N-C(R^{13})=C(R^{13})
                  8)
                       -C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-
                  9)
                  10) -C=N-C(R^{13})=N-N=C(R^{13})-.
                  11)
                        -C=N-C(R^{13})=C(R^{13})-N=N- or
                        -C=C(R^{13})-N=C(R^{13})-N=N-:
                  12)
25
            h)
```

is as defined above;

i)

$$\begin{array}{c|c} R - W \\ \hline V - (CH_2)_u - U \\ \hline R^{18} \\ \hline R^{18} \\ \hline W \\ \end{array}$$
 wherein

is as defined above;

5 j)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$;

10 k)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$;

15 R^{14} is:

20

- a) -H,
- b) -CF3
- c) -C1-C4 alkyl,
- d) - $(CH_2)_q$ -aryl, wherein aryl is phenyl, biphenyl, naphthyl, or fluorenyl unsubstituted or substituted

```
with one to three substituents selected from the
              group consisting of:
                     halogen (F, Cl, Br, I),
                     -CF3,
   5
                     -(C<sub>1</sub>-C<sub>4</sub> alkyl),
                     -methylenedioxy,
                     -(C_1-C_4 \text{ alkoxy}),
                     -(CH_2)_XN[(CH_2)_YR^{15}][(CH_2)_YR^{16}];
       and all other required substituents of formula (I) are
 10
       as defined in Claim 1.
       3. A compound of Claim 2 wherein
       A is
             a) - BY^1Y^2
 15
             b) -C (=0) CF_3,
             c) -C(=0) CHF<sub>2</sub>,
             d) -C (=0) CH_2F,
             e) -C(=0) CH<sub>2</sub>C1,
             f) - C (=0) OR^3
 20
             g) -C (=0) NR^{15}R^{16}
             h) -C (=0) R^3,
             i) -C(=0)COOR<sup>3</sup>,
             j) -C(=0)C(=0)NR^{15}R^{16}
             k) -C(=0)C(=0)R^3,
25
             1) -CHO;
      \mathbf{Y}^1 and \mathbf{Y}^2 are independently
             a) -OH, or
            b) C<sub>1</sub>-C<sub>8</sub> alkoxy;
      \mathbf{Y}^1 and \mathbf{Y}^2 can be taken together to form
            a cyclic boron ester where said chain or ring
30
                   contains from 2 to 20 carbon atoms and from 0-
                   3 heteroatoms which can be N, S, or O,
      Z is
           a) - (CH<sub>2</sub>)<sub>m</sub>CONR8-,
          b) -(CH_2)_mCSNR^8-, or
35
```

```
c) -(CH_2)_mSO_2NR^8-;
     Rl is
         a) -(CH2)p-aryl, wherein aryl is phenyl, naphthyl or
             biphenyl substituted with one, two or three
             substituents independently selected at each
 5
             occurrence from the group consisting of:
                halo (F, Cl, Br, I), methylenedioxy, -R8,
                -NR8COR9, C2-C6-alkenyl, C2-C6-alkynyl,
                -(CH_2)_W-OR^8, -(C_1-C_6)-perfluoroalkyl,
                -(CH_2)_wCN, -(CH_2)_wNC, -(CH_2)_wNO_2, -(CH_2)_wCF_3,
10
                -(CH_2)_{wS}(O)_{rR}^7, -(CH_2)_{wNR}^8 R^9, -(CH_2)_{w}COR^8,
                -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9. -(CH_2)_wSO_2NH^-(C_1-
                C_6)-alkyl, -(CH_2) wSO2NH2, -(CH_2) wSO2NH-CO-(C_1-
                C_6)-alkyl, -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>)-alkyl,
                -(CH_2)_wSO_2NH-, -(CH_2)_wNHSO_2-(C_1-C_6)-alkyl,
15
                -(CH<sub>2</sub>)wNHSO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl,
                -(CH2)wNHSO2-phenyl, -(CH2)wNHSO2-
                perfluorophenyl, -(CH2) wCN4H, -0(CH2) wCN,
                -NH(CH_2)_wCN, -S(CH_2)_wCN, -(CH_2)_wNH-CO-(C_1-C_6-
                alkyl), -(CH2)wNH-CO-(C1-C6-perfluoroalkyl),
20
                -(CH_2)_{W}NH-CO-(phenyl), -(CH_2)_{W}NH-CO_2-(C_1-C_6-
                alkyl), -(CH_2)_{wNH}-CO_2-(C_1-C_6-perfluoroalkyl),
                or -(CH_2)_{wNH}-CO_2-(phenyl), -0(C=0)-C_1-C_5-
                alkyl);
          b) heteroaryl, wherein heteroaryl is an
25
             unsubstituted, monosubstituted or disubstituted:
                   quinolinyl,
             i)
                   isoquinolinyl,
             ii)
             iii) benzopyranyl,
             iv) benzothiophenyl,
30
             v)
                   benzofuranyl,
                   5,6,7,8-tetrahydroquinolinyl,
             vi)
             vii) 5,6,7,8-tetrahydroisoquinolinyl,
```

wherein the substituents are members selected from the group consisting of: halo (F, Cl, Br, I), -CN, C_1 - C_{10} -alkyl, C_3 - C_8 -cycloalkyl, C_2 - C_{10} -alkenyl, C_2 -Cl₀-alkynyl, R^8 , -OR⁸, -NO₂, -CF₃, -S(O)_TR⁷, -NR⁸R⁹, -COR⁸, -CO₂R⁸, -CONR⁸H, NR⁸COR⁹, NR⁸CO₂R⁹;

c)

d)

10

20

5

e) M—L Q K

wherein the ring represented by -J-K-L-M-Q- is a group selected from:

- 15 1) $-N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-$
 - 2) $-N-C(R^{13})=C(R^{13})-C(R^{13})=N-$,
 - 3) $-N-C(R^{13})=C(R^{13})-N=C(R^{13})$
 - 4) $-N-C(R^{13})=N-C(R^{13})=N-$,
 - 5) $-N-C(R^{13})=C(R^{13})-N=N-$
 - 6) $-N-C(R^{13})=N-N=N-$,
 - 7) $-N-N=C(R^{13})-N=N-$,
 - 8) = $C-O-C(R^{13})=N-C(R^{13})=$,
 - 9) $-C=C(R^{13})-O-C(R^{13})=N-$,
 - 10) = $C O C(R^{13}) = C(R^{13}) N =$,

```
=C-C(R^{13})=C(R^{13})-O-N=,
                  12)
                        -C=C(R^{13})-O-N=C(R^{13})-
                  13)
                        =C-S-C(R^{13})=N-C(R^{13})=,
                  14)
                        -C=C(R^{13})-S-C(R^{13})=N-
                  15)
                        =C-S-C(R^{13})=C(R^{13})-N=,
                  16)
5
                        =C-S-C(R^{13})=C(R^{13})-C(R^{13})=
                  17)
                        -C=C(R^{13})-S-C(R^{13})=C(R^{13})-,
                  18)
                        =C-O-C(R^{13})=C(R^{13})-C(R^{13})=, or
                  19)
                        -C=C(R^{13})-O-C(R^{13})=C(R^{13})-;
                  20)
            f)
10
            wherein the ring represented by -C-W-R-T-U-V- is a
            group selected from:
                       -C=N-C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})-
                  1)
                       -C=C(R^{13})-N=C(R^{13})-C(R^{13})=C(R^{13})-
                   2)
15
                       -C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-,
                   3)
                       -C=N-N=C(R^{13})-C(R^{13})=C(R^{13})-
                   4)
                       -C=C(R^{13})-N=N-C(R^{13})=C(R^{13})-
                   5)
```

 $-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$,

 $-C=N-C(R^{13})=C(R^{13})-N=C(R^{13})$ -,

 $-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-$

 $-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$

 $-C=N-C(R^{13})=C(R^{13})-N=N-$, or

 $-C=N-C(R^{13})=N-N=C(R^{13})$ -,

 $-C=C(R^{13})-N=C(R^{13})-N=N-;$

6)

7)

8)

9)

10)

11)

12)

g)

20

25

is as defined above;

h)

is as defined above; or

i)

wherein G is O, S, or NP (where P is an amine protecting group selected from the group consisting of: $-R^3$, $-C(=0)R^3$, $-SO_2R^3$, $-C(=0)OR^3$);

 \mathbb{R}^2 is

10.

a) - (C1-C12 alkyl)-X,

b) $-(C_2-C_{12} \text{ alkenyl})-X$, or

15 c)

X is

- a) halogen (F, Cl, Br, I),
- b) -CN,
- c) -NO₂, 5
 - d) -CF₃,
 - $e) NHR^{14}$
 - f) -NHS(0) $_{r}$ R¹⁴,
 - g) -NHC(NH)H,
- h) -NHC(NH)NHOH, 10
 - i) -NHC(NH)NHCN,
 - j) -NHC(NH)NHR¹⁴,
 - k) -NHC(NH)NHCOR14,
 - 1) $-C(NH)NHR^{14}$,
- m) -C(NH)NHCOR14, 15
 - $n) C(0) NHR^{14}$
 - o) $-C(0) NHC(0) R^{14}$,
 - p) $-C(0)OR^{14}$,
 - $q) OR^{14}$
- $r) OC(0)R^{14}$, 20
 - s) $-OC(0)OR^{14}$,
 - t) $-OC(0)NHR^{14}$,
 - $u) OC(0) NHC(0) R^{14}$
 - v) -SC(=NH)NHR¹⁴, or
- w) -SC (=NH) NHC (=0) R^{14} ; 25

R¹³ is

H, halogen (F, Cl, Br, I), (C_1-C_6) alkyl,

-(CH₂)_r-D, methylenedioxy, -(CH₂)_w-OR⁸,

 $-(CH_2)_{w}NC$, $-(CH_2)_{w}CN$, $-(CH_2)_{w}NO_2$, 30

 $-(CH_2)_wS(0)_rR^7$, $-(CH_2)_wNR^8R^9$, $-(CH_2)_wCOR^8$,

```
-(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9, -(CH_2)_wSO_2NH-(C_1-
                                      C_5)-alkyl, -(CH_2)_WSO_2NH_2, -(CH_2)_WSO_2NH-CO-(C_1-
                                      C_6) -alkyl, - (C_{12}) _{w}SO_{2}NH-CO_{2}-(C_{1}-C_{6}) -alkyl,
                                      -(CH_2)_wNHSO_2-(C_1-C_6)-alkyl, -(C_1-C_6)-alkyl, -(C_1-C
  5
                                      C6) -perfluoroalkyl, - (CH2) wNHSO2 -phenyl,
                                      -(CH2) wNHSO2-perfluorophenyl, -(CH2) wCN4H,
                                      -0(C=0)-(C_1-C_5-alky1), -0(CH_2)_wCN, -NH(CH_2)_wCN,
                                      -S(CH_2)_wCN, -(CH_2)_wNH-CO-(C_1-C_6-alky1),
                                      -(CH<sub>2</sub>)<sub>W</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl), -(CH<sub>2</sub>)<sub>W</sub>NH-
10
                                     CO-(C_1-C_6-phenyl), -(CH_2)_wNH-CO_2-(C_1-C_6-alkyl),
                                      -(CH<sub>2</sub>)<sub>W</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>-phenyl), -(CH<sub>2</sub>)<sub>U</sub>phenyl
                                     wherein the phenyl contains 0-3 substituents
                                      selected from R<sup>18</sup>, or -O(C=O) phenyl wherein the
                                     phenyl contains 0-3 substituents selected from
                                     R18:
15
             R<sup>14</sup> is
                             a) -H,
                             b) -CF3
                             c) -C1-C4 alkyl,
20
                             d) -(CH<sub>2</sub>)<sub>G</sub>-aryl, wherein aryl is phenyl, biphenyl,
                             naphthyl, or fluorenyl unsubstituted or substituted
                             with one to three substituents selected from the
                             group consisting of:
25
                                             halogen (F, Cl, Br, I),
                                              -CF<sub>3</sub>,
                                             -(C1-C4 alkyl),
                                              -methylenedioxy,
                                              -(C1-C4 alkoxy), or
                                              -(CH_2)_XN[(CH_2)_YR^{15}][(CH_2)_YR^{16}];
30
             R<sup>18</sup> and R<sup>19</sup> are independently
                                         H, halo (F, Cl, Br, I), C_1-C_6-alkyl, -(CH<sub>2</sub>)<sub>W</sub>-
                                         OR^8, - (CH_2)_wCN, - (CH_2)_wNC, - (CH_2)_wNO_2,
35
                                         -(CH_2)_{wS}(0)_{xR}^{7}, -(CH_2)_{wNR}^{8}R^{9}, -(CH_2)_{wCOR}^{8},
                                         -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9, -(CH_2)_wSO_2NH-(C_1-
```

```
C_5)-alkyl, -(CH_2)_wSO_2NH_2, -(CH_2)_wSO_2NH-CO-(C_1-
                C_6)-alkyl, -(CH_2)<sub>w</sub>SO_2NH-CO_2-(C_1-C_6)-alkyl,
                -(CH_2)_wNHSO_2-(C_1-C_6)-alky1, -(CH_2)_wNHSO_2-(C_1-C_6)
                C6)-perfluoroalkyl, -(CH2)wNHSO2-phenyl,
                -(CH2)wNHSO2-perfluorophenyl, -(CH2)wCN4H,
5
                -O(C=0)-(C_1-C_5-a1ky1), -O(CH_2)_wCN, -NH(CH_2)_wCN,
                -S(CH<sub>2</sub>)<sub>W</sub>CN, -(CH<sub>2</sub>)<sub>W</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-alkyl),
                -(CH<sub>2</sub>)<sub>w</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl), -(CH<sub>2</sub>)<sub>w</sub>NH-
                CO-(C_1-C_6-phenyl), -(CH_2)_wNH-CO_2-(C_1-C_6-alkyl),
                -(CH_2)<sub>w</sub>NH-CO<sub>2</sub>-(C_1-C<sub>6</sub>-phenyl), or -O(C=O)phenyl;
10
     R18 and R19 can be taken together to form a
            methylenedioxy group;
     R<sup>20</sup> and R<sup>20a</sup> are independently
               (C1-C8)alkyl, -(CH2)uphenyl wherein the phenyl
               contains 0-3 substituents selected from R18,
15
               (C1-C6)-perfluoroalkyl, or -(CH2)r-D;
     D is fur-2-yl, fur-3-yl, thiophen-2-yl, thiophen-3-yl,
            oxazol-2-yl, oxazol-4-yl, thiazol-2-yl, thiazol-4-
            yl, pyrid-2-yl, pyrid-4-yl, pyrimidin-2-yl, or
20
            pyrimidin-4-yl;
     W is
            a) -0-,
            b) -NR^4-,
            c) a bond, or
25
            d) -(CH_2)_{n}^{-};
     and all other required substituents of formula (I) are
     as in claim 2.
    4. A compound of Claim 3 wherein:
30
      A is -BY^{1}Y^{2};
     Y^1 and Y^2 are -OH;
      Y1 and Y2 can be taken together to form a cyclic boron
            ester where said chain or ring contains from 2 to
            20 carbon atoms and, from 0-3 heteroatoms which can
35
            be N, S, or O,
```

```
Z is -(CH<sub>2</sub>)<sub>m</sub>CONR<sup>8</sup>-;
      R1 is
           a) - (CH<sub>2</sub>)<sub>D</sub>-aryl, wherein aryl is phenyl, naphthyl or
              biphenyl substituted with one, two or three
 5
               substituents selected from the group consisting
              of:
                  halo (F, Cl, Br, I), methylenedioxy, -R8,
                  -NR^8COR^9, C_2-C_6-alkenyl, C_2-C_6-alkynyl,
                  -(CH<sub>2</sub>)<sub>w</sub>-OR<sup>8</sup>, -(C<sub>1</sub>-C<sub>6</sub>)-perfluoroalkyl,
                  -(CH_2)_wCN, -(CH_2)_wNC, -(CH_2)_wNO_2, -(CH_2)_wCF_3,
10
                  -(CH_2)_{WS}(0)_{TR}^{7}, -(CH_2)_{WNR}^{8}R^{9}, -(CH_2)_{W}COR^{8},
                  -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9. -(CH_2)_wSO_2NH-(C_1-
                  C_6)-alkyl, -(CH_2)_wSO_2NH_2, -(CH_2)_wSO_2NH-CO-(C_1-
                  C_6) -alkyl, -(CH_2) wSO<sub>2</sub>NH-CO<sub>2</sub>-(C_1-C_6) -alkyl,
15
                  -(CH_2)_wNHSO_2-(C_1-C_6)-alky1, -(CH_2)_wNHSO_2-(C_1-C_6)-alky1
                  C6) -perfluoroalkyl, -(CH2) wNHSO2-phenyl,
                  -(CH<sub>2</sub>)<sub>w</sub>NHSO<sub>2</sub>-perfluorophenyl, -(CH<sub>2</sub>)<sub>w</sub>CN<sub>4</sub>H,
                  -0(CH_2)_wCN, -NH(CH_2)_wCN, -S(CH_2)_wCN, -(CH_2)_wNH-
                  CO-(C_1-C_6-alky1), -(CH_2)_{W}NH-CO-(C_1-C_6-alky1)
20
                  perfluoroalkyl), -(CH2)wNH-CO-(C1-C6-phenyl),
                  -(CH_2)_wNH-CO_2-(C_1-C_6-alkyl), -(CH_2)_wNH-CO_2-(C_1-C_6-alkyl)
                  C6-perfluoroalkyl), or -(CH2)wNH-CO2-(C1-C6-
                 phenyl);
           b) heteroaryl, wherein heteroaryl is an
25
              unsubstituted, monosubstituted or disubstituted
              isoquinolinyl wherein the substituents are members
              selected from the group consisting of:
                 halo (F, Cl, Br, I), -CN, C1-C10-alkyl, C3-Cg-
                  cycloalkyl, C2-C10-alkenyl, C2-C10-alkynyl, R8,
30
                  -OR^{8}, -NO_{2}, -CF_{3}, -S(O)_{T}R^{7}, -NR^{8}R^{9}, -COR^{8}
                  -CO_2R^8, -CONR^8R^9, NR^8COR^9, NR^8CO_2R^9,
           C)
```

5

10

15

20

đ)

wherein the ring represented by -J-K-L-M-Q- is a group selected from:

1)
$$-N-C(R^{13})=N-C(R^{13})=N-$$

2)
$$-N-C(R^{13})=C(R^{13})-N=N-$$
,

3)
$$-N-N=C(R^{13})-N=N-$$
,

5)
$$-N-C(R^{13})=N-N=N-$$
,

6) =
$$C-S-C(R^{13})=C(R^{13})-C(R^{13})=$$
, or

7) =
$$C - C(R^{13}) = C(R^{13}) - C(R^{13}) =$$
;

e)

wherein the ring represented by -C-W-R-T-U-V- is a group selected from:

1)
$$-C=N-C(R^{13})=C(R^{13})=C(R^{13})-C(R^{13})=C(R^{13})$$

1)
$$-C=C(R^{13}) - N=C(R^{13}) - C(R^{13}) = C(R^{13}) -$$

2)
$$-C=C(R^{13})-C(R^{13})=N-C(R^{13})=C(R^{13})-$$

3)
$$-C=C(R^{13})-N=C(R^{13})-N=C(R^{13})-$$
,

4)
$$-C=N-C(R^{13})=C(R^{13})-C(R^{13})=N-$$
, or

5)
$$-C=N-C(R^{13})=N-C(R^{13})=C(R^{13})-;$$

f)

$$\bigcup_{M}^{K} J - (CH_2)_u - \bigcup_{R^{18}}^{R^{18}} -$$

Q K

wherein

is as defined above;

g)

wherein

5 is as defined above; or

h)

wherein G is S;

 \mathbb{R}^2 is

10

a) - (C1-C12 alky1)-X, or

b)

X is

a) halogen (F, Cl, Br, I),

15

b) -CN,

```
c) -NHR14
              d) -NHC(NH)H,
              e) -NHC(NH)NHR<sup>14</sup>.
              f) -C(NH)NHR<sup>14</sup>,
              q) - OR^{14}, or
 5
              h) -SC(=NH)NHR^{14};
      Rll is H:
      R<sup>13</sup> is
                  H, halogen (F, Cl, Br, I), -(CH_2)_wNO_2, (C1-
                  C_6) alkyl, - (CH_2)_r-D, - (CH_2)_w-OR<sup>8</sup>,
10
                  -(CH<sub>2</sub>)<sub>W</sub>CONR<sup>8</sup>R<sup>9</sup>, -(CH<sub>2</sub>)<sub>W</sub>CN, -(CH<sub>2</sub>)<sub>W</sub>NC,
                  -(CH_2)_wCOR^8, -(CH_2)_wCO_2R^8, -(CH_2)_wCO_2R^3,
                   -(CH_2)_{wNR}^{8}R^{3}, -(CH_2)_{wS}(O)_{2}R^{7}, -(CH_2)_{wS}O_{2}NHCO-(C1-C1)_{wS}
                  C6)-alkyl, -(CH2)wNHSO2-phenyl -(CH2)wSO2NH-(C1-
                  C_5)-alkyl, -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH<sub>2</sub>, -(CH<sub>2</sub>)<sub>w</sub>SO<sub>2</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-
15
                  C_6) -alkyl, - (CH<sub>2</sub>) wNHSO<sub>2</sub> - (C<sub>1</sub>-C<sub>6</sub>) -alkyl,
                   -(CH2) wNHSO2-(C1-C6) -perfluoroalkyl,
                   -(CH<sub>2</sub>)_{w}CN<sub>4</sub>H, -O(C=0)-(C<sub>1</sub>-C<sub>5</sub>-alkyl), -O(CH<sub>2</sub>)_{t}CN,
                   alkyl), -(CH2)wNH-CO-(C1-C6-perfluoroalkyl), or
20
                   -(CH<sub>2</sub>)uphenyl wherein the phenyl contains 0-3
                   substituents selected from R18;
       R<sup>14</sup> is -H:
       R18 and R19 are independently
                    H, halo (F, C1, Br, I), C_1-C_6-alkyl, -(CH_2)_{W}-
25
                    OR^8, - (CH_2)_wCN, - (CH_2)_wNC, - (CH_2)_wNO_2,
                     -(CH_2)_{wS}(0)_{rR}^7, -(CH_2)_{wNR}^8R^9, -(CH_2)_{wCOR}^8,
                     -(CH_2)_wCO_2R^8, -(CH_2)_wCONR^8R^9, -(CH_2)_wSO_2NH^-(C_1-C_1)_wSO_2NH^-
                     C_5)-alkyl, -(CH_2)_wSO_2NH_2, -(CH_2)_wSO_2NH-CO-(C_1-
                     C_6)-alkyl, -(CH_2)_wSO_2NH-CO_2-(C_1-C_6)-alkyl,
30
                     -(CH_2)_wNHSO_2-(C_1-C_6)-alkyl, -(CH_2)_wNHSO_2-(C_1-C_6)
                     C6)-perfluoroalkyl, -(CH2)wNHSO2-phenyl,
                     -(CH<sub>2</sub>)wNHSO<sub>2</sub>-perfluorophenyl, -(CH<sub>2</sub>)wCN<sub>4</sub>H,
                     -O(C=O)-(C_1-C_5-alky1), -O(CH_2)_{t}CN, -NH(CH_2)_{t}CN,
                     -S(CH<sub>2</sub>)<sub>t</sub>CN, -(CH<sub>2</sub>)<sub>w</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-alkyl),
35
```

```
-(CH<sub>2</sub>)<sub>w</sub>NH-CO-(C<sub>1</sub>-C<sub>6</sub>-perfluoroalkyl), -(CH<sub>2</sub>)<sub>w</sub>NH-
                CO-(C_1-C_6-pheny1), -(CH_2)_wNH-CO_2-(C_1-C_6-alky1),
                -(CH<sub>2</sub>)<sub>w</sub>NH-CO<sub>2</sub>-(C<sub>1</sub>-C<sub>6</sub>-phenyl), or -O(C=0)phenyl;
     R18 and R19 can be taken together to form a
 5
           methylenedioxy group;
     R^{20} is selected from the group consisting of:
              (CH_2)_r-D, or -(CH_2)_uphenyl wherein the phenyl
              contains 0-3 substituents selected from R18;
10
     and all other required substituents of formula (I) are
     defined as in Claim 3.
           A compound of Claim 4 selected from the group
     consisting of:
15
     N^{1}-(4-phenylbenzoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(3-phenoxybenzoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(1-fluorenonyl)-(R)-boroarginine, hydrochloride
     N^{1}- (4-[1-buty1]benzoyl) - (R) -boroarginine, hydrochloride
     N^{1}-(2-benzoylbenzoyl)-(R)-boroarginine, hydrochloride
20
     N^{1}-(5-phenyl-2-furoyl)-(R)-boroarginine, hydrochloride
     N1-(3-[N-benzyloxycarbonyl-N-methylamino]-4-[1-butyl]-
          benzoyl) - (R) -boroarginine, hydrochloride
     N^{1}-(2-phenyl-4-isoquinoloyl)-(R)-boroarginine,
           hydrochloride
25
     N^{1}- (4-cyclohexylbenzoyl) - (R) -boroarginine,
           hydrochloride
     N^{2}-(2-methyl-4-phenylbenzoyl)-(R)-boroarginine,
           hydrochloride
     N^{1}-[4-phenyl-2-nitrobenzoyl]boroArg, (+)-pinanediol
30
           ester
     N^{1}-[4-phenyl-2-fluorobenzoyl]boroArg, (+)-pinanediol
     N^{l}-[4-phenyl-2-aminobenzoyl]boroArg, (+)-pinanediol
```

 N^{l} - [4-phenyl-2-(methylsulfonamido)benzoyl]boroArg, (+)-

pinanediol ester

35

```
N^{1}-[4-phenyl-2-(cyanomethylamino)benzoyl]boroArg, (+)-
           pinanediol ester
     N^{1}-[4-pheny1-2-(cyanomethyl)benzoyl]boroArg, (+)-
           pinanediol ester
 5
     N^{\frac{1}{2}} - [4-pheny1-2-(diethylamino)benzoyl]boroArg, (+)-
           pinanediol ester
     N1-[4-[2-(t-butylaminosulfonyl)phenyl]-2-methyl-
           benzoyl]boroArg, (+)pinanediol ester
     N^{1}-[4-[2-(aminosulfonyl)phenyl]-2-methyl-
10
           benzoyl]boroArg, (+)pinanediol ester
     N^2 - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] -2 -methyl-
           benzoyl]boroArg, (+)-pinanediol ester
     N^{l}-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg,
           (+)-pinanediol ester
     N^{\frac{1}{2}}-[4-[2-(t-butylaminosulfonyl)phenyl]benzoyl]boroArg-OH
15
     N^{\frac{1}{2}} - [4 - [2 - (n-butoxycarbonylaminosulfonyl) phenyl] -2-
           methyl-benzoyl]boroArg, (+)-pinanediol ester
     N^{1}-[4-[2-(diethylaminosulfonyl)phenyl]-2-methyl-
           benzoyl]boroArg, (+)pinanediol ester
20
     N^{1}-[4-[2-(t-butylaminosulfonyl)phenyl]-2-fluoro-
           benzoyl]boroArg, (+)pinanediol ester
     N1-[4-[2-(aminosulfonyl)phenyl]-2-fluoro-
           benzoyl]boroArg, (+)pinanediol ester
     N^{\frac{1}{2}} - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] - 2 - fluoro-
           benzoyl]boroArg, (+)-pinanediol ester
25
     N^{\frac{1}{2}} - [4 - [2 - (t-butylaminosulfonyl) phenyl] - 2 - nitro-
           benzoyl]boroArg, (+)pinanediol ester
     N^{\frac{1}{2}} - [4 - [2 - (aminosulfonyl) phenyl] -2 - nitro-benzoyl] boroArg,
           (+)pinanediol ester
     N^{\frac{1}{2}} - [4 - [2 - (methoxycarbonylaminosulfonyl) phenyl] -2 - nitro-
30
           benzoyl]boroArg, (+)-pinanediol ester
     N^{l}-(3-phenylbenzoyl)boroarg, (+)-pinanediol
     N^{\frac{1}{2}}- [4-(3-BOCNHphenyl)2-methylbenzoyl]boroarg, (+)-
           pinanediol
     N^{l}-(5-phenyl-2-furoyl)boroarg, (+)-pinanediol
35
```

```
N^{1}-(5-phenyl-2-thienyl)boroarg, (+)-pinanediol
     N^{l}-[4-(3-nitrophenyl)benzoyl]boroarg, (+)-pinanediol
     N^{l} - [4 - (3 - aminophenyl) benzoyl] boroarg, (+) - pinanediol
     N^{1}-(3-phenylbenzoyl)borolys, (+)-pinanediol
 5. N1-(5-phenyl-2-furoyl)boroarg-OH
     N^{1}-(3-phenylbenzoyl)boroIrg, (+)-pinanediol
     (R) - [5-amino-1-[[[5-(phenylmethyl)-1H-1,2,4-triazol-1-
           yl]acetyl]amino]-pentyl]boronic acid hydrochloride
     [3aS-[2(S^*),3a\alpha,4\beta,6\beta]]-(1,1-dimethylethyl) [3-[5-[[[4-
10
           [(amino-iminomethyl)amino]-1-(hexahydro-3a,5,5-
           trimethyl-4,6-methano-1,3,2-benzo-dioxaborol-2-
          yl)butyl]amino]carbonyl]-2-thienyl]phenyl]carbamate
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-1)]
15
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-5-(phenyl-methyl)-3-(2H-tetrazol-5-
          ylmethyl)-1H-1,2,4-triazole-1-acetamide
          hydrochloride
     [3aS-[2(S^*),3a\alpha,4\beta,6\beta,7a\alpha]]-1-[2-[[5-amino-1-(hexahydro-
20
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl) pentyl] amino] -2-oxoethyl] -5- (phenylmethyl) -1H-
           1,2,4-triazole-3-acetic acid hydrochloride 1:1 with
           [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-1-[2-[[5-amino-1-
           (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
25
          benzodioxaborol-2-yl)pentyl]amino]-2-oxoethyl]-3-
           (phenylmethyl)-1H-1,2,4-triazole-5-acetic acid
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-methyl 1-[2-[[5-amino-1-
           (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
30
          benzodioxaborol-2-yl)pentyl]-amino]-2-oxoethyl]-5-
           (phenylmethyl)-1H-1,2,4-triazole-3-acetate
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-methyl 1-[2-[[5-amino-1-
           (hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-
35
          benzodioxaborol-2-yl)pentyl]-amino]-2-oxoethyl]-3-
```

```
(phenylmethyl)-1H-1,2,4-triazole-5-acetate
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-y1)penty1]-3-pheny1-5-(pheny1-methy1)-1H-1,2,4-
5
          triazole-1-acetamide hydrochloride
     (R) - [5-amino-1-[[[3-phenyl-5-(phenylmethyl)-1H-1,2,4-
          triazol-1-yl]acetyl]-amino]pentyl]boronic acid
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
10
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-yl)pentyl]-3-(3-nitro-phenyl)-5-(phenylmethyl)-
          1H-1,2,4-triazole-1-acetamide hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[4-[(aminoiminomethyl)-
          amino]-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-
15
           1,3,2-benzodioxaborol-2-yl)butyl]-3-(3-
          nitrophenyl) -5- (phenylmethyl) -1H-1,2,4-triazole-1-
          acetamide hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-1-)]
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
20
           2-y1) penty1]-3,5-bis(phenyl-methyl)-1H-1,2,4-
           triazole-1-acetamide hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[4-[(aminoiminomethyl)-
           amino]-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-
           1,3,2-benzodioxaborol-2-yl)butyl]-3,5-
25
           bis(phenylmethyl)-1H-1,2,4-triazole-1-acetamide
           hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-3-(phenylmethyl)-1H-1,2,4-triazole-1-
30
           acetamide
     (R) - [5-amino-1-[[[3-(phenylmethyl)-1H-1,2,4-triazol-1-
          yl]acetyl]amino]-pentyl]boronic acid hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
35
```

```
2-yl)pentyl]-5-methyl-3-(phenylmethyl)-1H-1,2,4-
           triazole-1-acetamide hydrochloride
     [3aS-[2(R*), 3a\alpha, 4\beta, 6\beta]]-N-[5-amino-1-(hexahydro-3a, 5, 5-
           tri-methyl-4,6-methano-1,3,2-benzodioxaborol-2-
 5
           yl)pentyl]-5-[(phenyl-methoxy)methyl]-3-
           (phenylmethyl) -1H-1,2,4-triazole-1-acetamide
           hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
10
           2-yl)pentyl}-5-(cyanomethyl)-3-(phenylmethyl)-1H-
           1.2,4-triazole-1-acetamide hydrochloride
     [3aS-[2(S*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-y1)penty1]-3-(phenylmethy1)-5-propy1-1H-1,2,4-
15
           triazole-1-acetamide hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-5-phenyl-3-(phenylmethyl)-1H-1,2,4-
           triazole-1-acetamide hydrochloride
20
     (R) - [5-amino-1-[[[5-methyl-3-(phenylmethyl)-1H-1,2,4-
           triazol-1-yl]acetyl]-amino]pentyl]boronic acid
           hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
25
           2-yl)pentyl]-3-phenyl-1H-1,2,4-triazole-1-acetamide
          hydrochloride
     [3aS-[2(S*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
           2-yl)pentyl]-5-methyl-3-phenyl-1H-1,2,4-triazole-1-
30
          acetamide hydrochloride
     [3aS-[2(S*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]] -N-[5-amino-1-(hexahydro-
           3a, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-
          2-yl)pentyl]-5-(2-phenyl-ethyl)-1H-1,2,4-triazole-
           l-acetamide
35
     (R) - [5-amino-1-[[[5-(2-phenylethyl)-1H-1,2,4-triazol-1-
          yl]acetyl]amino]-pentyl]boronic acid hydrochloride
```

```
[3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-y1)penty1]-3,5-bis(2-phenyl-ethy1)-1H-1,2,4-
          triazole-1-acetamide hydrochloride
     (R) - [5-amino-1-[[[3,5-bis(2-phenylethyl)-1H-1,2,4-
 5
          triazol-1-yl]acetyl]amino]-pentyl]boronic acid
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-yl)pentyl]-3-(2-phenylethyl)-1H-1,2,4-triazole-1-
10
          acetamide
     (R) - [5-amino-1-[[[3-(2-phenylethyl)-1H-1,2,4-triazol-1-
          yl]acetyl]amino]-pentyl]boronic acid hydrochloride
     [3aS-[2(S*), 3a\alpha, 4\beta, 6\beta, 7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
15
          2-yl)pentyl]-3-(3-phenyl-propyl)-1H-1,2,4-triazole-
          1-acetamide
     (R) - [5-amino-1-[[[5-(3-phenylpropyl)-1H-1,2,4-triazol-1-
          yl]acetyl]amino]-pentyl]boronic acid hydrochloride
     (R) - [5-amino-1-[[[3-(3-phenylpropyl)-1H-1,2,4-triazol-1-
20
          yl]acetyl]amino]-pentyl]boronic acid hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
          3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
          2-yl)pentyl]-1,5-bis(phenyl-methyl)-1H-1,2,4-
          triazole-3-acetamide hydrochloride 2:8 with (R)-
25
           [5-amino-1-[[[1,5-bis(phenylmethyl)-1H-1,2,4-
          triazol-3-yl]acetyl]amino]-pentyl]boronic acid
          hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-1)]
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
30
           2-y1) pentyl] -4-methyl-2-phenyl-5-
          pyrimidinecarboxamide hydrochloride
     [3aS-[2(S*),3a\alpha,4\beta,6\beta,7a\alpha]]-N-[5-amino-1-(hexahydro-
           3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-
```

2-yl)pentyl]-2,4-diphenyl-5-pyrimidinecarboxamide hydrochloride

[3aS-[2(S*),3a α ,4 β ,6 β ,7a α]]-N-[4-

[(amimoiminomethyl)amino]-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)-butyl]-4-methyl-2-phenyl-5-pyrimidinecarboxamide hydrochloride

[3aS-[2(S*),3α,4β,6β,7aα]]-N-[5-amino-1-(hexahydro-3a,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl)pentyl]-6-phenyl-3-pyridinecarboxamide hydrochloride

(R) - [5-amino-1-[[(6-phenyl-3pyridinyl)carbonyl]amino]pentyl]boronic acid
dihydrochloride

15

10

5

6. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of any one of Claims 1 through 5.

20

25

7. A method of treating a physiological disorder in a warm blooded animal catalyzed by trypsin-like enzymes comprising administering to an animal in need of such treatment an effective amount of a compound of any one of Claims 1 through 5.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A61K 31/41, 31/415, 31/435, 31/44, 31/47, C07D 249/08, 213/06, 215/06, 217/04

(43) International Publication Date: 11 July 1996 (11.07.96)

(11) International Publication Number: WO 96/20689

(43) International Publication Date: 11 July 1996 (11.07.96)

(81) Designated States: AU, CA, JP, MX, NZ, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

US

(71) Applicant: THE DU PONT MERCK PHARMACEUTICAL COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).

. 27 December 1994 (27.12.94)

(72) Inventors: AMPARO, Eugene, Cruz; 416 Corner Ketch-Lyndell Road, Downingtown, PA 19335 (US). MILLER, William, Henry; 333 Fell Lane, Schwenksville, PA 19473 (US). PACOFSKY, Gregory, James; 510 Polk Street, Raleigh, NC 27604-1960 (US). WITYAK, John; 127 Kelton Road, West Grove, PA 19390-9439 (US). WEBER, Patricia, Carol; 1970 Timber Lakes Drive, Yardley, PA 19067 (US). DUNCIA, John, Jonas, Vytautas; 124 Oldbury Drive, Wilmington, DE 19808-1420 (US). SANTELLA, Joseph, Basil, III; 250 Lewis Road, Springfield, PA 19064-2129 (US).

(74) Agents: REINERT, Norbert, F. et al.; The Du Pont Merck Pharmaceutical Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report: 24 October 1996 (24.10.96)

(54) Title: BORONIC ACID AND ESTER INHIBITORS OF THROMBIN

(57) Abstract

(30) Priority Data:

08/364,338

Novel boronic acid and ester and carboxyl-modified amino acid compounds of formula (I): R¹-Z-CHR¹-A, which are inhibitors of trypsin-like enzymes, are disclosed, where R¹, Z, R² and A are defined within.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	. GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea.	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	L	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EĒ	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/16248

A. CLASSIFICATION OF SUBJECT MATTER						
IPC(6) :Please See Extra Sheet.						
US CL: Please See Extra Sheet. According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum documentation searched (classification system followed by classification symbols)						
U.S. : A61K 31/41, 31/415, 31/435, 31/44, 31/47						
C07D 249/08, 213/06, 215/06, 217/04						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)						
Electronic data base consulted during the international season (mains of						
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category* Citation of document, with indication, where app	propriate, of the relevant passages Relevant to claim No.					
A,P US, A, 5,462,724 (SCHINAZI ET column 3, lines 5-40.	AL.) 31 October 1995, 1-7					
	<u> </u>					
	1					
·						
'						
1						
Further documents are listed in the continuation of Box C						
Special categories of cited documents:	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention					
A document defining the general state of the art which is not considered to be of particular relevance	eve designed of particular relevance: the claimed invention cannot be					
E earlier document published on or after the international filing date *L* document which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered to involve an inventive step when the document is taken alone					
L document which may throw doubts on priority claim(s) or which a cited to establish the publication date of another citation or other special reason (as specified).	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is					
"O" document referring to an oral disclosure, use, exhibition or other	combined with one or more other such documents, such combination being obvious to a person skilled in the art					
"P" document published prior to the international filing date but later than the priority date claimed	"&" document member of the same patent family					
Date of the actual completion of the international search	Date of mailing of the international search report 16 SEP 1996					
14 AUGUST 1996	0 1 0					
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks	Authorized officer Lumm Files: 10					
Box PCT Washington, D.C. 20231	JOSEPH K. MCKANE jd					
Facsimile No. (703) 305-3230	Telephone No. (703) 308-1235					

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/16248

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

A61K 31/41, 31/415, 31/435, 31/44, 31/47; C07D 249/08; 213/06; 215/06; 217/04

A. CLASSIFICATION OF SUBJECT MATTER: US CL :

514/64, 75, 82, 89, 93, 94, 256, 307, 311, 321, 328 544/229; 546/13, 139, 152; 548/110, 112, 113, 252, 266.2, 311.1