Authors: Anders Shenholm and Riaz Kelly

1. What is Kali's main interface's MAC address? (The main interface is probably called eth0, but check ifconfig to be sure.)

08:00:27:59:7a:bb

2. What is Kali's main interface's IP address?

10.0.2.15

3. What is Metasploitable's main interface's MAC address?

08:00:27:18:25:1d

4. What is Metasploitable's main interface's IP address?

10.0.2.5

5. Show Kali's routing table. (Use "netstat -r" to see it with symbolic names, or "netstat -rn" to see it with numerical addresses.)

```
Kernel IP routing table
Destination
                Gateway
                                Genmask
                                                 Flags
                                                         MSS Window
                                                                     irtt Iface
0.0.0.0
                10.0.2.1
                                0.0.0.0
                                                                        0 eth0
                                                UG
                                                           0 0
10.0.2.0
                                255.255.255.0
                0.0.0.0
                                                           0 0
                                                                        0 eth0
```

6. Show Kali's ARP cache. (Use "arp" or "arp -n".)

```
Address HWtype HWaddress Flags Mask Iface
10.0.2.3 ether 08:00:27:11:d9:1f C eth0
10.0.2.1 ether 52:54:00:12:35:00 C eth0
```

7. Show Metasploitable's routing table.

nor nor ir roaving vabro											
Destination	Gateway	Genmask	Flags	MSS Window	irtt Iface						
10.0.2.0	*	255.255.255.0	U	0 0	0 eth0						
default	10.0.2.1	0.0.0.0	UG	0 0	0 eth0						

8. Show Metasploitable's ARP cache.

Address	HWtype	HWaddress	Flags Mask	Iface
10.0.2.1	ether	52:54:00:12:35:00	C	eth0
10.0.2.3	ether	08:00:27:11:D9:1F	С	eth0

 Suppose the user of Metasploitable wants to get the CS231 sandbox page via the command "curl http://cs231.jeffondich.com/". To which MAC address should Metasploitable send the TCP SYN packet to get the whole HTTP query started? Explain why.

It should send the initial packet to 08:00:27:18:25:1d as this MAC address corresponds to the IP address of the main interface (10.0.2.5).

10. Fire up Wireshark on Kali. Start capturing packets for "tcp port http". On Metasploitable, execute "curl http://cs231.jeffondich.com/". On Kali, stop capturing. Do you see an HTTP response on Metasploitable? Do you see any captured packets in Wireshark on Kali?

Wireshark didn't capture anything. Metasploitable doesn't show an HTTP response, just the HTML from the page.

(Start poisoning)

11. Show Metasploitable's ARP cache. How has it changed?

Now the ARP cache includes another IP destination, but now all IP destinations correspond to a new, different MAC address.

12. If you execute "curl http://cs231.jeffondich.com/" on Metasploitable now, to what MAC address will Metasploitable send the TCP SYN packet? Explain why.

Metasploitable will now send the TCP SYN packet to the MAC address of Kali's main interface (08:00:27:59:7a:bb). This is because this is where Ettercap is running.

- 13. Start Wireshark capturing "tcp port http" again.
- 14. Execute "curl http://cs231.jeffondich.com/" on Metasploitable. On Kali, stop capturing. Do you see an HTTP response on Metasploitable? Do you see captured packets in Wireshark? Can you tell from Kali what messages went back and forth between Metasploitable and cs231.jeffondich.com?

Metasploitable gave the same response as before, just a page of html.

Wireshark captured these frames. It shows TCP retransmissions between Metasploitable and cs231.jeffondich.com, indicating that packets were lost in the network connection. However, the network basically did its job and the interaction was effectively the same for Metasploitable as it returned the same result. However, we were able to eavesdrop on the interaction. We observed the TCP handshake. Also, Cs231.jeffondich.com gave an HTTP response (frame 9) though again this wasn't visible in the response Metasploitable received.

1 0.000000000	10.0.2.5	45.79.89.123	TCP	74 60917 - 80 [SYN] Seg=0 Win=5840 Len=0 MSS=1460 SACK PERM=1 TSval=80117 TSecr=0 WS=128
2 0.008436165	10.0.2.5	45.79.89.123	TCP	74 [TCP Retransmission] 60917 - 80 [SYN] Seg=0 Win=5840 Len=0 MSS=1460 SACK PERM=1 TSval=80117 TSecr=0 WS=128
3 0.056026622	45.79.89.123	10.0.2.5	TCP	60 80 - 60917 [SYN, ACK] Seq=0 Ack=1 Win=32768 Len=0 MSS=1460
4 0.063650781	45.79.89.123	10.0.2.5	TCP	58 [TCP Retransmission] 80 → 60917 [SYN, ACK] Seq=0 Ack=1 Win=32768 Len=0 MSS=1460
5 0.063937170	10.0.2.5	45.79.89.123	TCP	60 60917 - 80 [ACK] Seq=1 Ack=1 Win=5840 Len=0
6 0.064033607	10.0.2.5	45.79.89.123	HTTP	212 GET / HTTP/1.1
7 0.071625235	10.0.2.5	45.79.89.123	TCP	54 60917 - 80 [ACK] Seq=1 Ack=1 Win=5840 Len=0
8 0.071675429	10.0.2.5	45.79.89.123	TCP	212 [TCP Retransmission] 60917 80 [PSH, ACK] Seq=1 Ack=1 Win=5840 Len=158
9 0.118225924	45.79.89.123	10.0.2.5	HTTP	933 HTTP/1.1 200 OK (text/html)
10 0.119672084	45.79.89.123	10.0.2.5	TCP	933 [TCP Retransmission] 80 → 60917 [PSH, ACK] Seq=1 Ack=159 Win=32610 Len=879
11 0.120057258	10.0.2.5	45.79.89.123	TCP	60 60917 - 80 [ACK] Seq=159 Ack=880 Win=7032 Len=0
12 0.126252901	10.0.2.5	45.79.89.123	TCP	60 60917 → 80 [FIN, ACK] Seq=159 Ack=880 Win=7032 Len=0
13 0.127623194	10.0.2.5	45.79.89.123	TCP	54 [TCP Keep-Alive] 60917 → 80 [ACK] Seq=159 Ack=880 Win=7032 Len=0
14 0.127657970	10.0.2.5	45.79.89.123	TCP	54 [TCP Out-Of-Order] 60917 - 80 [FIN, ACK] Seq=159 Ack=880 Win=7032 Len=0
15 0.127879779	45.79.89.123	10.0.2.5	TCP	60 80 → 60917 [ACK] Seq=880 Ack=160 Win=32609 Len=0
16 0.135687473	45.79.89.123	10.0.2.5	TCP	54 [TCP Dup ACK 15#1] 80 60917 [ACK] Seq=880 Ack=160 Win=32609 Len=0
17 0.175368942	45.79.89.123	10.0.2.5	TCP	60 80 → 60917 [FIN, ACK] Seq=880 Ack=160 Win=32609 Len=0
18 0.175676130	45.79.89.123	10.0.2.5	TCP	54 [TCP Out-Of-Order] 80 → 60917 [FIN, ACK] Seq=880 Ack=160 Win=32609 Len=0
19 0.175940959	10.0.2.5	45.79.89.123	TCP	60 60917 → 80 [ACK] Seq=160 Ack=881 Win=7032 Len=0
20 0.183642689	10.0.2.5	45.79.89.123	TCP	54 [TCP Dup ACK 19#1] 60917 - 80 [ACK] Seq=160 Ack=881 Win=7032 Len=0

15. Explain in detail what happened. How did Kali change Metasploitable's ARP cache? (If you want to watch the attack in action, try stopping the PITM/MITM attack by selecting "Stop mitm attack(s)" from Ettercap's Mitm menu, starting a Wireshark capture for "arp", and restarting the ARP poisoning attack in Ettercap.)

Kali changed Metasploitable's ARP cache so that every IP address was associated with the same HWaddress, which was Kali's main interface's MAC address. This change meant that the TCP handshake packets were first sent to Kali instead of Metasploitable's main interface's MAC address.

16. If you wanted to design an ARP spoofing detector, what would you have your detector do? (As you think about this, consider under what circumstances your detector might generate false positives.)

To notice the version of ARP spoofing like what we did, it would have to recognize if multiple IP addresses mapped to the same hardware address. To avoid false positives of this type, it would need to have a memory of the MAC addresses which are distributed among multiple IP addresses on the local network.

