

Distinguous 2 Cas:

1) (E) est toujours positif, pour tout & réel 2) (E) peut être positif, selon les valeirs de &-

On remarque tout d'abord que si m=1, le polynôme s'écrit: [E]: -2x+3 polynôme du 1er degri (E) est positif si ou (3/2).

i) (E) to Lijours possifif pour tout or significe que le polynôme n'a pas de racines- $(m \neq 1)$ $\Delta = 4m^2 - 4(m-1)(m+2) - \Delta = 4m^2 - 4im^2 + 4m - 8m + 8$ $\Delta = -4m + 8$ $\Delta (0 \iff -4m + 8 \iff 0$

 $(0 \bigcirc -4m+8 < 0$

(E)>0 HOLER pow m>2

2) (E) positif sclor les valeus de x ($m \neq 1$)

a) $\Delta = 0 \iff m = 2$ (E) $S \in Cit$ (E): $\Delta^2 = 62t + 4 = 0$ (E) $\iff (2-2)^2 = 0$ Si = n = 2 (E) $\Rightarrow 0$ $Si = x \in \mathbb{R} \setminus \{2\}$

b)
$$\Delta > 0$$
 (E) $a \ done 2 \ racines$
 $2l_1 = \frac{2m + \sqrt{-4m+8}}{2(m-1)} = \frac{2m + 2\sqrt{2-m}}{m-1} = \frac{m + \sqrt{2-m}}{m-1}$
 $2l_2 = \frac{2m - \sqrt{-4m+8}}{2(m-1)} = \frac{2m - 2\sqrt{2-m}}{m-1} = \frac{m - \sqrt{2-m}}{m-1}$

tableau de signs

$$\frac{32 - 9}{m-1} = \frac{m+\sqrt{2-m}}{m-1} + 9$$

$$\frac{32 - m-\sqrt{2-m}}{m-1} = \frac{m+\sqrt{$$

Si
$$m (1 - m) o$$
 (E) positif eta lo padino
si $1(m(2 m-1) o$ (E) positif à l'entérieur des
recines
si $m \ge 2$ (E) positif quel que soit 2
Si $m=1$ (E) positif si $2(\frac{3}{2})$

Voir courbes représentatives ci juintes

m < 1

1 < m < 2

m > 2

