Classical Symbolic Retrodictive Execution of Quantum Circuits

Jacques Carette McMaster University Gerardo Ortiz* Indiana University Amr Sabry Indiana University

February 24, 2022

4 1 Main

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Retrodictive quantum theory [4], retrocausality [2], and the time-symmetry of physical laws [13] suggest that partial knowledge about the future can be exploited to understand the present. We demonstrate the even stronger proposition that, in concert with the computational concepts of demand-driven lazy evaluation [9] and symbolic partial evaluation [8], retrodictive reasoning can be used as a computational resource to dequantize some quantum algorithms, i.e., to provide efficient classical algorithms inspired by their quantum counterparts.

Symbolic Execution of Classical Programs Applied to Quantum Oracles. A well-established technique to simultaneously explore multiple paths that a classical program could take under different inputs is *symbolic execution* [3, 5, 7, 10, 11]. In this execution scheme, concrete values are replaced by symbols which are initially unconstrained. As the execution proceeds, the symbols interact with program constructs and this typically introduces constraints on the possible values that the symbols represent. At the end of the execution, these constraints can be solved to infer properties of the program under consideration. The idea is also applicable to quantum circuits as the following example illustrates.

Let $[\mathbf{n}]$ denote the finite set $\{0, 1, \dots, (n-1)\}$. In Simon's problem, we are given a 2-1 (classical) function $f: [\mathbf{2^n}] \to [\mathbf{2^n}]$ with the property that there exists an a such $f(x) = f(x \oplus a)$ for all x; the goal is to determine a. The circuit in Fig. 1 implements the quantum algorithm when n=2 and a=3. In the circuit, the gates between barriers (1) and (2) implement a quantum oracle $U_f(x,0) = (x,f(x))$ that encapsulates the function f of interest. A direct classical simulation of the quantum cir-

Figure 1: Circuit for Simon's Algorithm n=2 and a=3

cuit would need to execute the U_f block four times, once for each possible value $|00\rangle$, $|01\rangle$, $|10\rangle$, and $|11\rangle$ for 29 the top two wires. Instead, let us introduce two symbols x_0 representing the top wire and x_1 representing the wire below it, and let's proceed with the execution symbolically. The state at barrier (1) is initially $|x_0x_100\rangle$. 31 At the first CX-gate, we symbolically calculate the result of the target wire as $x_0 \oplus 0 = x_0$ evolving the state 32 to $|x_0x_1x_00\rangle$. Going through the next three CX-gates, the state evolves as $|x_0x_1x_0x_0\rangle$, $|x_0x_1(x_0\oplus x_1)x_0\rangle$, 33 and $|x_0x_1(x_0 \oplus x_1)(x_0 \oplus x_1)\rangle$ at barrier (2). At that point, we have established that the bottom two wires 34 are equal; the result of their measurement can only be 00 or 11. Since the function is promised to be 2-1 for 35 all inputs, it is sufficient to analyze one case, say when the measurement at barrier (3) produces 00. This measurement collapses the top wires to $|x_0x_1\rangle$ subject to the constraint that $x_0 \oplus x_1 = 0$ or equivalently that 37 $x_0 = x_1$. We have thus inferred that both $x_0 = x_1 = 0$ and $x_0 = x_1 = 1$ produce the same measurement result at barrier (3) and hence that $f(00) = f(11) = f(00 \oplus 11)$ which reveals that a is 11 in binary notation.

Figure 2: Template quantum circuit

Since the quantum circuit between barriers (1) and (2) is reversible, we can perform the analysis above in a mixed predictive and symbolic retrodictive execution to make the flow of information conceptually clearer. We start a forward classical simulation with one arbitrary state at barrier (1), say $|0100\rangle$. This state evolves to $|0100\rangle$, then $|0100\rangle$ again, then $|0110\rangle$, and finally $|0111\rangle$. In this case, the result of measuring the bottom two wires is 11. Having produced a possible measurement at barrier (3), we start a retrodictive execution to find out what other input states might be compatible with this future measurement. To that end, we execute the circuit backwards with the symbolic state $|x_0x_111\rangle$; that execution evolves to $|x_0x_11(1 \oplus x_1)\rangle$, then $|x_0x_1(1\oplus x_1)(1\oplus x_1)\rangle$, then $|x_0x_1(1\oplus x_1)(1\oplus x_0\oplus x_1)\rangle$, and finally $|x_0x_1(1\oplus x_0\oplus x_1)(1\oplus x_0\oplus x_1)\rangle$. Having reached the initial conditions on the bottom two wires, we reconcile them with the collected constraints to conclude that $1 \oplus x_0 \oplus x_1 = 0$ or equivalently that $x_0 \neq x_1$. The measurement of 11 at barrier (3) is consistent with not just the state $|01\rangle$ we started with but also with the state $|10\rangle$. In other words, we have $f(01) = f(10) = f(01 \oplus 11)$ and the hidden value of a is revealed to be 11.

Representing Wavefunctions Symbolically. A symbolic variable represents a boolean value that can be 0 or 1; this is similar to a qubit in a superposition $(1/\sqrt{2})(|0\rangle \pm |1\rangle)$. Thus, it appears that H(0) could be represented by a symbol x to denote the uncertainty. Surprisingly, this idea scales to even represent maximally entangled states. Fig. 3(left) shows a circuit to generate the Bell state $(1/\sqrt{2})(|00\rangle+|11\rangle)$. By using the symbol x for $H|0\rangle$, the input to the CX-gate is $|x0\rangle$ which evolves to $|xx\rangle$. By sharing the same symbol in two positions, the symbolic state accurately represents the entangled Bell state. Similarly, for the circuit in Fig. 3(right), the state after the Hadamard gate is $|x00\rangle$ which evolves to $|xx0\rangle$ and then to $|xxx\rangle$ again accurately capturing the entanglement correlations.

40

41

42

43

44

45

46

47

48

50

53

54

55

57

59

60

61

62

63

64

65

66

68

69

72

Figure 3: Bell and **GHZ** States

This insight allows us to symbolically execute the many quantum algorithms that match the template in Fig. 2 (including Deutsch, Deutsch-Jozsa, Bernstein-Vazirani,

Simon, Grover, and Shor's algorithms). Specifically, in all these algorithms, the top collection of wires (which we will call the computational register) is prepared in a uniform superposition which can be represented using symbolic variables. Below, we report on the results of such symbolic executions. In each case, instead of the conventional execution flow depicted in Fig. 2(a), we find a possible measurement outcome w at barrier (3) and perform a retrodictive execution with a state $|xw\rangle$ going backwards to collect the constraints on x that enable us to solve the problem in question.

Deutsch. The quantum circuit in Fig. 4 determines if the function $[2] \rightarrow [2]$ 70 encapsulated in the quantum oracle U_f is constant or balanced. Since 0 is always 71 a possible measurement of the ancilla register, we start a retrodictive execution 73 of the U_f block with state $|x0\rangle$. This execution terminates with a state $|xr\rangle$ where r is a formula expressing the dependencies of the ancilla on x. Running 74 the experiment with different choices for f, the resulting formula always perfectly 75 describes f. Specifically when f is the constant function that returns 0, we have

Figure 4: Deutsch

r=0; when f is the constant function that returns 1, we have r=0; when f is the balanced function that

returns its input, we have r = x; and when f is the balanced function that returns the negation of its input, we have $r = 1 \oplus x$.

Deutsch-Jozsa. The problem is a generalization of the previous one. We are given a function $[2^n] \to [2]$ 80 that is promised to be constant or balanced and we need to decide distinguish the two cases. The quantum 81 circuit generalizes the one in Fig. 4 to use n-wires for the computation register. Similarly to before, we 82 perform a retrodictive execution of the U_f block with the state $|x_{n-1}\cdots x_1x_00\rangle$ and observe the resulting 83 formula r. Like before, when the function is constant, the formula r is the corresponding constant and when 84 the function is balanced, the formula r completely describes how the result is computed from the symbols 85 x_{n-1}, \dots, x_1, x_0 . For example, for n=6, the resulting formulae for three balanced functions were: x_0 , $x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5$, and $1 \oplus x_3x_5 \oplus x_2x_4 \oplus x_1x_5 \oplus x_0x_3 \oplus x_0x_2 \oplus x_3x_4x_5 \oplus x_2x_3x_5 \oplus x_1x_3x_5 \oplus x_2x_4 \oplus x_1x_5 \oplus x_2x_5 \oplus x$ 87 $x_0x_3x_5 \oplus x_0x_1x_4 \oplus x_0x_1x_2 \oplus x_2x_3x_4x_5 \oplus x_1x_3x_4x_5 \oplus x_1x_2x_4x_5 \oplus x_1x_2x_3x_5 \oplus x_0x_3x_4x_5 \oplus x_0x_2x_4x_5 \oplus x_0x_2x_3x_5 \oplus x_0x_3x_4x_5 \oplus x_0x_2x_4x_5 \oplus x_0x_2x_3x_5 \oplus x_0x_3x_4x_5 \oplus x_0x_2x_4x_5 \oplus x_0x_2x_3x_5 \oplus x_0x_3x_4x_5 \oplus x_0x_2x_4x_5 \oplus x_0x_2x_5 \oplus x_0x_2x_5 \oplus x_0x_2x_5 \oplus x_0x_5 \oplus x$ $x_0x_1x_4x_5 \oplus x_0x_1x_3x_5 \oplus x_0x_1x_3x_4 \oplus x_0x_1x_2x_4 \oplus x_0x_1x_2x_4x_5 \oplus x_0x_1x_2x_3x_5 \oplus x_0x_1x_2x_3x_4$. In the first case, the 89 function is balanced because its output depends on just one variable (which is 0 in half the possible inputs); in the second case the output of the function is the exclusive-or of all the input variables which is an easy 91 instance of a balanced function. The last case is a cryptographically strong balanced function whose output pattern is, by design, difficult to discern [6]. An important insight in the case of the Deutsch-Jozsa problem 93 is that, since we are promised the function is either constant or balanced, then any formula that refers to at 94 least one variable must indicate a balanced function. In other words, the outcome of the algorithm can be 95 immediately decided if the formula is anything other than 0 or 1. We confirmed this observation by running the experiment on all 12870 balanced functions from $[2^4] \rightarrow [2]$ and correctly identifying them as such. This is 97 significant as some of these functions produce complicated entangled patterns during quantum evolution and 98 could not be de-quantized using previous approaches [1]. The catch is that symbolic retrodictive execution 99 is not consistent with "query complexity" as it operates in time proportional to the depth of the quantum 100 oracle and the size of the formula.

Bernstein-Vazirani. We are given a function $f:[2^n] \to [2]$ that hides a secret number $s \in [2^n]$. We are promised the function is defined using the binary representations $\sum_{i=0}^{n-1} x_i$ and $\sum_{i=0}^{n-1} s_i$ of x and s respectively as $f(x) = \sum_{i=0}^{n-1} s_i x_i$ mod 2. The goal is to determine the secret number s. The circuit in Fig. 5 solves the problem for n=8 and a hidden number 92 (= 00111010 in binary notation with the rightmost bit at index 0). Retrodictive execution starting with the state $|x_0x_1x_2x_3x_4x_5x_6x_70\rangle$ terminates with the formula $x_1 \oplus x_3 \oplus x_4 \oplus x_5$. The secret string can be immediately read from the formula as the indices $\{1,3,4,5\}$ of the symbols are exactly the positions at which the secret string has a 1.

102

103

104

105

106

107

108

109

110

111

113

114

115

116

117

118

119

120

Grover. We are given a function $f: [2^n] \to [2]$ with the property that there exists only one input u such f(u) = 1. The goal is to find u. The conventional presentation of the quantum algorithm does not fit the template of Fig. 2. But it is still possible to construct a quantum oracle U_f from the given f and perform retrodictive execution starting from an ancilla measurement of 1 corresponding to the input pattern

Figure 5: Circuit for Bernstein-Vazirani Algorithm (n=8, s=92, least significant bit is the top wire)

we are interested in. The resulting equations for n = 4 and u in the range $\{0..15\}$ are in Fig. 6. In some cases (e.g. u = 15) the equations immediately reveal u; in others, retrodictive executive provides no advantage since solving arbitrary equations over boolean variables is, in general, an NP-complete problem.

```
u = 0
               1 \oplus x_3 \oplus x_2 \oplus x_1 \oplus x_0 \oplus x_2x_3 \oplus x_1x_3 \oplus x_1x_2 \oplus x_0x_3 \oplus x_0x_2 \oplus x_0x_1 \oplus x_1x_2x_3 \oplus x_0x_2x_3
                   \oplus x_0x_1x_3 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3
               x_0 \oplus x_0 x_3 \oplus x_0 x_2 \oplus x_0 x_1 \oplus x_0 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3
u=1
               x_1 \oplus x_1 x_3 \oplus x_1 x_2 \oplus x_0 x_1 \oplus x_1 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3
               x_0x_1 \oplus x_0x_1x_3 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3
u = 3
               x_2 \oplus x_2 x_3 \oplus x_1 x_2 \oplus x_0 x_2 \oplus x_1 x_2 x_3 \oplus x_0 x_2 x_3 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3
u = 4
u = 5
               x_0x_2 \oplus x_0x_2x_3 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3
u = 6
               x_1x_2 \oplus x_1x_2x_3 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3
u = 7
               x_0x_1x_2 \oplus x_0x_1x_2x_3
u = 8
               x_3 \oplus x_2 x_3 \oplus x_1 x_3 \oplus x_0 x_3 \oplus x_1 x_2 x_3 \oplus x_0 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_1 x_2 x_3
u = 9
               x_0x_3 \oplus x_0x_2x_3 \oplus x_0x_1x_3 \oplus x_0x_1x_2x_3
u = 10
               x_1x_3 \oplus x_1x_2x_3 \oplus x_0x_1x_3 \oplus x_0x_1x_2x_3
u = 11
               x_0x_1x_3 \oplus x_0x_1x_2x_3
u = 12
               x_2x_3 \oplus x_1x_2x_3 \oplus x_0x_2x_3 \oplus x_0x_1x_2x_3
u = 13
               x_0x_2x_3 \oplus x_0x_1x_2x_3
u = 14
               x_1x_2x_3 \oplus x_0x_1x_2x_3
u = 15
               x_0x_1x_2x_3
```

Figure 6: Result of retrodictive execution for the Grover oracle $(n = 4, w \text{ in the range } \{0..15\})$.

the shortest clause gives the solution!!!!!!!

124

126

127

128

130

132

133

134

135

136

137

138

ANF is a normal form; any other implementation gives the same formula two important points to make up front: ANF and white-box, black-box, and generator complexity measures https://dl.acm.org/doi/10.1145/3341106 Ewin Tang makes a similar point about the white, black, generator measures I think relation between the complexity of the formula and the corresponding wavefunction. Some very complicated formula denote just a single quantum state so it's not clear

Shor 15. The circuit in Fig. 7 uses a hand-optimized implementation of the modular exponentiation $4^x \mod 15$ to factor 15 using Shor's algorithm. In a conventional forward execution, the state before the QFT block is:

$$\frac{1}{2\sqrt{2}}((|0\rangle+|2\rangle+|4\rangle+|6\rangle)|1\rangle+(|1\rangle+|3\rangle+|5\rangle+|7\rangle)|4\rangle)$$

At this point, the ancilla register is measured to either $|1\rangle$ or $|4\rangle$. In either case, the computational register snaps to a state of the form $\sum_{r=0}^{3} |a+2r\rangle$ whose QFT has peaks at $|0\rangle$ or $|4\rangle$ making them the most likely outcomes of measurements of the computational register. If we measure $|0\rangle$, we repeat the experiment; otherwise we infer that the period is 2.

Figure 7: Finding the period of 4^x mod 15

In the retrodictive execution, we can start with the state $|x_2x_1x_0001\rangle$ since 1 is guaranteed to be a possible ancilla measurement. The first CX-gate changes the state to $|x_2x_1x_0x_001\rangle$ and the second CX-gate produces $|x_2x_1x_0x_00x_0\rangle$. At that point, we reconcile the retrodictive result of the ancilla register $|x_00x_0\rangle$ with the initial condition $|000\rangle$ to conclude that $x_0=0$. In other words, in order to observe the ancilla at 001, the computational register must be initialized to a superposition of the form $|??0\rangle$ where the least significant bit must be 0 and the other two bits are unconstrained. Expanding the possibilities, the first register needs to be in a superposition of the states $|000\rangle$, $|010\rangle$, $|100\rangle$ or $|110\rangle$ and we have just inferred using purely classical but retrodictive reasoning that the period is 2. Significantly, this approach is robust and does not require small hand-optimized circuits. Indeed, following the methods for producing quantum circuits for arithmetic operations from first principles using adders and

Figure 8: Equations generated by retrodictive execution of $a^x \mod 15$ starting from observed result 1 and unknown $x_8x_7x_6x_5x_4x_3x_2x_1x_0$. The solution for the unknown variables is given in the last column.

multipliers [12], our implementation for a general circuit for $a^x \mod 15$ has 56538 generalized Toffoli gates over 9 qubits, and yet the equations resulting from the retrodictive execution in Fig. 8 are trivial and immediately solvable as they only involve either the least significant bit x_0 (when $a \in \{4, 11, 14\}$) or the least significant two bits x_0 and x_1 (when $a \in \{2, 7, 8, 13\}$). When the solution is $x_0 = 0$, the period is 2. When the solution is $x_0 = 0$, $x_1 = 0$, the period is 4.

Shor 21. The examples presented so far demonstrate that some instances of quantum algorithms can be solved via classical symbolic retrodictive execution. But as was already apparent in some examples (e.g. Grover), running retrodictive execution may produce large residual equations that are difficult to solve. To appreciate how large these equations may be, we include the full set of equations produced for a retrodictive execution of Shor's algorithm for factoring 21. Unlike the number 15 which corresponds to a rare occurrence of products of Fermat primes producing a period that is a power of 2 and hence trivial to represent by equations of binary numbers, the period of 21 is not easily representable as a system of equations over binary numbers. The equations which span about five pages in Sec. 2 glaringly show the limitations of the basic retrodictive execution approach and the need for additional insights.

Retrodictive Executions and Function Pre-images. Given finite sets A and B, a function $f: A \to B$ and an element $y \in B$, we define $\{\cdot \stackrel{f}{\longleftarrow} y\}$, the pre-image of y under f, as the set $\{x \in A \mid f(x) = y\}$. For example, let $A = B = [\mathbf{2^4}]$ and let $f(x) = 7^x \mod 15$, then the collection of values that f maps to f, we define the collection of values that f maps to f, where f is the set f is the set f in the collection of values that f maps to f in the secution can be seen as a method to generate boolean formulae that describe the pre-image of the function f under study. For the example in Fig. 9, retrodictive execution might generate the formulae f in f in the set f in the formulae is indeed the set f in the critical points to note, however, are that: (i) solving the equations describing the pre-image is in general an intractable (even for quantum computers) f in the previous section. Only some global properties

Figure 9: The pre-image of 4 under $f(x) = 7^x \mod 15$.

of the pre-image are needed! Indeed, we have already seen that for solving the Deutsch-Jozsa problem, the only thing needed was whether the formula contains some variables. Also for the Bernstein-Vazirani problem, the only thing needed was the indices of the variables occurring in the formula. For Grover's algorithm, we only need to extract the singleton element in the pre-image and for Shor's algorithm we only need to extract the periodicity of the elements in the pre-image but retrodictive execution as presented so far is only able to de-quantize some rare instances of algorithms.

do communication protocols too?

extensional vs intensional reasoning about functions

graph state: H,H,CZ 00 00 01 01 10 10 11 -11

check if H commutes with x and cx and ccx so we only need H at beginning and end

insight: QFT insensitive to 0+2+4... vs 1+3+5... so insensitive to where lsb is 0/1 so we only need to know if a variable is constant or varying fourier transform classical efficient in some cases

Kochen-Specker; interactive QM; observer free will; choice backtracks

universe uses lazy evaluation?

algebra of Toffoli and Hadamard ZX calculus

values going at different speeds; intervals ideas; path types

https://quantumalgorithmzoo.org

 $|-\rangle$; two classes of vars; +vars and -vars; -vars infect +vars in control gates; We have two operations +red (add red) -red (remove red) Remember cx(+,-) = (-,-) Some interactions (Toffoli) want to create more refined operations +/-(1/2)(red) +/-(red) The more you do these operations the more precise it wants to be +/-(1/4)(red) +/-(1/2) red +/-(red) taint analysis with increasing precisions; truncate at desired precision (more and more colors) The taint analysis groups variables in "waves" (superpositions) of things that have the same color so the values we propagate are "red: phase=p; frequency=f; involved variables=x1,x2,..." Possibility that collapse of wave function is information flow back from measured future to present unknown initial conditions and then back to rest of wave that was not measured We need to explain ideas about time-reversal, prediction and retrodiction in physics. The laws of computation and the laws of physics are intimately related. When does knowing something about the future help us unveil the structure or symmetries of the past? It is like a detective story, but one with ramifications in complexity and/or efficiency. Problems involving questions where answers demand a Many(past)-to-one(future) map are at the root of our proposal

Possibility that collapse of wave function is information flow back from measured future to present unknown initial conditions and then back to rest of wave that was not measured transactional interpretation?

instead of generating one formula; generating many formulas with different weights or with various patterns of negative weights... and sum them to get the patterns we need

- Symbolic (retrodictive) evaluation as a broader perspective to classical computation
- Symbolic execution allows you to express/discover interference via shared variables
- When interference pattern is simple symbolic execution reveals solutions faster (and completely classically)
- Symbolic execution as a "classical waves" computing paradigm

Shor: have some fixed set of periodic states and always match the closest one after each gate??

Sort clauses by length; the difference two consecustive clauses is the period!!!!!!

References

177

178

179

180

181

- [1] Alastair A. Abbott. "The Deutsch-Jozsa problem: de-quantization and entanglement". In: *Natural Computing* 11 (2012).
 - [2] Yakir Aharonov and Lev Vaidman. "The Two-State Vector Formalism: An Updated Review". In: *Time in Quantum Mechanics*. Ed. by J.G. Muga, R. Sala Mayato, and Í.L. Egusquiza. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 399–447.

- [3] Roberto Baldoni, Emilio Coppa, Daniele Cono D'elia, Camil Demetrescu, and Irene Finocchi. "A Survey of Symbolic Execution Techniques". In: *ACM Comput. Surv.* 51.3 (May 2018).
- [4] Stephen M. Barnett, John Jeffers, and David T. Pegg. "Quantum Retrodiction: Foundations and
 Controversies". In: Symmetry 13.4 (2021).
- Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. "SELECT—a Formal System for Testing and Debugging Programs by Symbolic Execution". In: SIGPLAN Not. 10.6 (Apr. 1975), pp. 234–245.
- Linda Burnett, William Millan, Edward Dawson, and Andrew Clark. "Simpler Methods for Generating Better Boolean Functions with Good Cryptographic Properties". In: *Australasian Journal of Combinatorics* 29 (2004), pp. 231–247.
- [7] Lori A. Clarke. "A Program Testing System". In: Proceedings of the 1976 Annual Conference. ACM
 76. Houston, Texas, USA: Association for Computing Machinery, 1976, pp. 488–491.
- Yoshihiko Futamura. "Partial computation of programs". In: RIMS Symposia on Software Science and Engineering. Ed. by Eiichi Goto, Koichi Furukawa, Reiji Nakajima, Ikuo Nakata, and Akinori Yonezawa. Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 1–35.
- [9] Peter Henderson and James H. Morris. "A Lazy Evaluator". In: Proceedings of the 3rd ACM SIGACT-SIGPLAN Symposium on Principles on Programming Languages. POPL '76. Atlanta, Georgia: Association for Computing Machinery, 1976, pp. 95–103.
- 199 [10] William E. Howden. "Experiments with a symbolic evaluation system". In: *Proceedings of the National Computer Conference*. 1976.
- ²⁰¹ [11] James C. King. "Symbolic Execution and Program Testing". In: Commun. ACM 19.7 (July 1976), pp. 385–394.
- Vlatko Vedral, Adriano Barenco, and Artur Ekert. "Quantum networks for elementary arithmetic operations". In: *Phys. Rev. A* 54 (1 July 1996), pp. 147–153.
- Satosi Watanabe. "Symmetry of Physical Laws. Part III. Prediction and Retrodiction". In: Rev. Mod.
 Phys. 27 (2 Apr. 1955), pp. 179–186.

207 **2** Methods

208

209

223

You can't connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in your future. Steve Jobs

Lazy Evaluation. Consider a program that searches for three different numbers x, y, and z each in the range [1..n] and that sum to s. A well-established design principle for solving such problems is the *generate-and-test* computational paradigm. Following this principle, a simple program to solve this problem in the programming language Haskell is:

```
generate :: Int -> [(Int,Int,Int)]
generate n = [(x,y,z) | x <- [1..n], y <- [1..n], z <- [1..n]]

test :: Int -> [(Int,Int,Int)] -> [(Int,Int,Int)]
test s nums = [(x,y,z) | (x,y,z) <- nums, x /= y, x /= z, y /= z, x+y+z == s]

find :: Int -> Int -> (Int,Int,Int)
find s = head . test s . generate
```

The program consists of three functions: generate that produces all triples (x,y,z) from (1,1,1) to (n,n,n); test that checks that the numbers are different and that their sum is equal to s; and find that

composes the two functions: generating all triples, testing the ones that satisfy the condition, and returning the first solution. Running this program to find numbers in the range [1..6] that sum to 15 immediately produces (4,5,6) as expected.

But what if the range of interest was [1..10000000]? A naïve execution of the generate-and-test method would be prohibitively expensive as it would spend all its time generating an enormous number of triples that are un-needed. Lazy demand-driven evaluation as implemented in Haskell succeeds in a few seconds with the result (1,2,12), however. The idea is simple: instead of eagerly generating all the triples, generate a process that, when queried, produces one triple at a time on demand. Conceptually the execution starts from the observer site which is asking for the first element of a list; this demand is propagated to the function test which itself propagates the demand to the function generate. As each triple is generated, it is tested until one triple passes the test. This triple is immediately returned without having to generate any additional values.

Partial Evaluation. Below is a Haskell program that computes a^n by repeated squaring:

When both inputs are known, e.g., a = 3 and n = 5, the program evaluates as follows:

```
power 3 5

245 = 3 * power 3 4

246 = 3 * (let r1 = power 3 2 in r1 * r1)

247 = 3 * (let r1 = (let r2 = power 3 1 in r2 * r2) in r1 * r1)

248 = 3 * (let r1 = (let r2 = 3 in r2 * r2) in r1 * r1)

249 = 3 * (let r1 = 9 in r1 * r1)

250 = 243
```

Partial evaluation is used when we only have partial information about the inputs. Say we only know n=5. A partial evaluator then attempts to evaluate power with symbolic input a and actual input n=5. This evaluation proceeds as follows:

```
power a 5

= a * power a 4

= a * (let r1 = power a 2 in r1 * r1)
= a * (let r1 = (let r2 = power a 1 in r2 * r2) in r1 * r1)
= a * (let r1 = (let r2 = a in r2 * r2) in r1 * r1)
= a * (let r1 = a * a in r1 * r1)
= let r1 = a * a in a * r1 * r1
```

All of this evaluation, simplification, and specialization happens without knowledge of a. Just knowing n was enough to produce a residual program that is much simpler.

The evolution of a quantum system is typically understood as proceeding forwards in time — from the present to the future. As shown in Fig. 2(a),

Since the conventional execution starts with complete ignorance about the future, the initial state is prepared as a superposition that includes every possibility. In a well-designed algorithm, , by the time the computation reaches the measurement stages, the relative phases and probability amplitudes in that enormous superposition have become biased towards states of interest which are projected to produce the final answer.

Algebraic Normal Form (ANF).

circuits have generalized toffoli gates: semantics (and of controls; xor with target); ANF uses exactly those two primitives; explain

The resulting expressions are in algebraic normal form [5] where + denotes exclusive-or. instances with no 'and' easy to solve

if only x and cx then symbolic execution is efficient; no need for last batch of H can solve problem classically connect with Gottsman-Knill

Function Pre-Images and NP-Complete Problems. To appreciate the difficulty of computing pre-272 images in general, note that finding the pre-image of a function subsumes several challenging computational problems such as pre-image attacks on hash functions [4], predicting environmental conditions that allow 274 certain reactions to take place in computational biology [1, 2], and finding the pre-image of feature vectors 275 in the space induced by a kernel in neural networks [3]. More to the point, the boolean satisfiability problem 276 SAT is expressible as a boolean function over the input variables and solving a SAT problem is asking for 277 the pre-image of true. Indeed, based on the conjectured existence of one-way functions which itself implies 278 $P \neq NP$, all these pre-images calculations are believed to be computationally intractable in their most 279 general setting. 280

281 Complexity Analysis.

one pass over circuit BUT size of circuit may be exponential and complexity of normalizing to ANF not trivial

Discussion.

271

282

284

observer 1 measures wires a,b; obs2 measures wires b,c; not commuting; each obs gives partial solution to equations; but partial solutions cannot lead to a global solution KS suggests that equations do not have unique solutions; only materialize when you measure; can associate a probability with each variable in a equation: look at all solutions and see the contribution of each variable to these solutions.

Data Availability. All execution results will be made available and can be replicated by executing the associated software.

²⁸⁷ Code Availability. The computer programs used to generate the circuits and symbolically execute the quantum algorithms retrodictively will be made publicly available.

Author Contributions. The idea of symbolic evaluation is due to A.S. The connection to retrodictive quantum mechanics is due to G.O. The connection to partial evaluation is due to J.C. Both A.S. and J.C. contributed to the software code to run the experiments. Both A.S. and G.O. contributed to the analysis of the quantum algorithms and their de-quantization. All authors contributed to the writing of the document.

- ²⁹³ Competing Interests. No competing interests.
- 294 Materials & Correspondence. The corresponding author is Gerardo Ortiz.
- Supplementary Information. Equations generated by retrodictive execution of $16^x \mod 21$ starting from observed result 1 and unknown x. The circuit consists of 9 qubits, 36400 CX-gates, 38200 CCX-gates, and 4000 CCCX-gates. There are only three equations but each equation is exponentially large.
- $1 \oplus x_0 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3 x_4 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_7 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_7 x_8 x_9 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_7 x_8 \oplus x_0 x_1 x_2 x_3 x_4 x_5 x_1 x_1 x_2 x_3 x_4 x_5 x_1 x_2 x_3$

```
300
301
                                                    302
                                                    x_0x_1x_2x_3x_5x_7x_8 \oplus x_0x_1x_2x_3x_5x_7x_8x_9 \oplus x_0x_1x_2x_3x_5x_8x_9 \oplus x_0x_1x_2x_3x_5x_9 \oplus x_0x_1x_2x_3x_6 \oplus x_0x_1x_2x_3x_6x_7x_8 \oplus x_0x_1x_2x_3x_6x_8 \oplus x_0x_1x_2x_6x_8 \oplus x_0x
303
                                                    304
                                                    x_0x_1x_2x_3x_8 \oplus x_0x_1x_2x_3x_9 \oplus x_0x_1x_2x_4 \oplus x_0x_1x_2x_4x_5 \oplus x_0x_1x_2x_4x_5x_6 \oplus x_0x_1x_2x_4x_5x_6x_7 \oplus x_0x_1x_2x_4x_5x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_4x_5x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x
305
                                                    x_0x_1x_2x_4x_5x_6x_7x_8x_9 \oplus x_0x_1x_2x_4x_5x_6x_8x_9 \oplus x_0x_1x_2x_4x_5x_6x_9 \oplus x_0x_1x_2x_4x_5x_7x_8 \oplus x_0x_1x_2x_4x_5x_7x_9 \oplus x_0x_1x_2x_4x_5x_8 \oplus x_0x_1x_2x_4x_5x_6x_9 \oplus x_0x_1x_2x_5x_9 \oplus x_0x_1x_2x_5x_9 \oplus x_0x_1x_2x_1x_1x_2x_2x_1x_2x_1x_2x_1x_2x_1x_2x_1x_2x_1x_2x_1x_2x_1x_1x_1x_2x_1x_1x_1x_1x_1x_1x_1x_1x_1x_1x
306
                                                    307
                                                    x_0x_1x_2x_4x_7 \oplus x_0x_1x_2x_4x_7x_8 \oplus x_0x_1x_2x_4x_7x_8x_9 \oplus x_0x_1x_2x_4x_8x_9 \oplus x_0x_1x_2x_4x_9 \oplus x_0x_1x_2x_5x_6 
308
                                                      309
                                                    310
                                                    311
                                                    x_0x_1x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_1x_3x_4x_5x_6x_7x_9 \oplus x_0x_1x_3x_4x_5x_6x_9 \oplus x_0x_1x_3x_4x_5x_6x_9 \oplus x_0x_1x_3x_4x_5x_7 \oplus x_0x_1x_3x_4x_5x_7x_8 \oplus x_0x_1x_3x_4x_5x_6x_9 \oplus x_0x_1x_5x_6x_9 \oplus x_0x_1x_5x
312
                                                    x_0x_1x_3x_4x_5x_7x_8x_9 \oplus x_0x_1x_3x_4x_5x_8x_9 \oplus x_0x_1x_3x_4x_5x_9 \oplus x_0x_1x_3x_4x_6 \oplus x_0x_1x_3x_4x_6x_7x_8 \oplus x_0x_1x_3x_4x_6x_7x_9 \oplus x_0x_1x_3x_4x_6x_7x_8 \oplus x_0x_1x_3x_4x_6x_8 \oplus x_0x_1x_3x_4x_6x_8 \oplus x_0x_1x_3x_4x_6x_7x_8 \oplus x_0x_1x_3x_4x_6x_7x_8 \oplus x_0x_1x_5x_6x_8 \oplus x_0x_1x_5x_6x_8 \oplus x_0x_1x_5x_6x_8 \oplus x_0x_1x_6x_6x_8 \oplus x_0x_1x_6x_6x_8 \oplus x_0x_1x_6x_6x_8 \oplus x_0x_1x_6x_6x_8 \oplus x_0x_1x_6x_6x_8 \oplus x_0x_1x_6x_6x_8 \oplus x_0x_1x_6x_8 \oplus x_0x
313
                                                    314
                                                    315
                                                    x_0x_1x_3x_5x_7x_8 \oplus x_0x_1x_3x_5x_7x_9 \oplus x_0x_1x_3x_5x_8 \oplus x_0x_1x_3x_5x_8x_9 \oplus x_0x_1x_3x_6x_7 \oplus x_0x_1x_5x_6x_7 \oplus x
316
                                                    317
318
                                                    x_0x_1x_4x_5x_6 \oplus x_0x_1x_4x_5x_6x_7x_8 \oplus x_0x_1x_4x_5x_6x_7x_9 \oplus x_0x_1x_4x_5x_6x_8 \oplus x_0x_1x_4x_5x_6x_8x_9 \oplus x_0x_1x_4x_5x_7 \oplus x_0x_1x_4x_5x_7x_8x_9 \oplus x_0x_1x_4x_5x_6x_8x_9 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_4x_5x_6x_8x_9 \oplus x_0x_1x_4x_5x_6x_8x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_5x
                                                    319
                                                    x_0x_1x_4x_6x_8x_9 \oplus x_0x_1x_4x_6x_9 \oplus x_0x_1x_4x_7x_8 \oplus x_0x_1x_4x_7x_9 \oplus x_0x_1x_4x_8 \oplus x_0x_1x_4x_8x_9 \oplus x_0x_1x_5 \oplus x_0x_1x_5x_6x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_6x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_7 \oplus x
320
                                                    x_0x_1x_5x_6x_7x_8x_9 \oplus x_0x_1x_5x_6x_7x_9 \oplus x_0x_1x_5x_6x_8 \oplus x_0x_1x_5x_6x_9 \oplus x_0x_1x_5x_7 \oplus x_0x_1x_5x_7x_8 \oplus x_0x_1x_5x_7x_8x_9 \oplus x_0x_1x_5x_7x_8 \oplus x_0x_1x_5x_8 \oplus x
321
                                                    x_0x_1x_5x_8x_9 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_6 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_7x_9 \oplus x_0x_1x_6x_8 \oplus x_0x_1x_6x_8 \oplus x_0x_1x_7 \oplus x_0x_1x_7 \oplus x_0x_1x_7x_8x_9 \oplus x_0x_1x_6x_8 \oplus x
322
                                                    x_0x_1x_7x_9 \oplus x_0x_1x_8 \oplus x_0x_1x_9 \oplus x_0x_2 \oplus x_0x_2x_3 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_4x_5x_6 \oplus x_0x_2x_3x_4x_5x_6x_7 \oplus x_0x_2x_3x_4x_5x_6 \oplus x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_4x_5 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_2x_3x_4 \oplus x_0x_2x_3x_4 \oplus x_0x
323
324
                                                      x_0x_2x_3x_4x_5x_6x_7x_8 \oplus x_0x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_2x_3x_4x_5x_6x_8x_9 \oplus x_0x_2x_3x_4x_5x_6x_9 \oplus x_0x_2x_3x_4x_5x_7x_8 \oplus x_0x_2x_3x_4x_5x_7x_8 \oplus x_0x_2x_3x_4x_5x_7x_9 \oplus x_0x_2x_3x_4x_5x_6x_9 \oplus x_0x_2x_5x_6x_9 \oplus x_0x_2x_3x_4x_5x_6x_9 \oplus x_0x_2x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_6x_9 \oplus x_0x_5x_6x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x
                                                    325
                                                    326
                                                    327
                                                      x_0x_2x_3x_5x_7x_9 \oplus x_0x_2x_3x_5x_8 \oplus x_0x_2x_3x_5x_9 \oplus x_0x_2x_3x_6 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7x_8x_9 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_7 \oplus x_0x_2x_7 \oplus x_0x_7 \oplus x_0x_7 \oplus x_0x_7 \oplus x_0x_7 \oplus x_0x_7 \oplus x_0x
328
329
                                                    330
                                                    331
                                                    x_0x_2x_4x_6x_8x_9 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_4x_7x_8x_9 \oplus x_0x_2x_4x_7x_9 \oplus x_0x_2x_4x_8 \oplus x_0x_2x_4x_9 \oplus x_0x_2x_5 \oplus x_0x_2x_5x_6 \oplus x_0x_2x_5 \oplus x_0x_5 
332
                                                    x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_6x_7x_8 \oplus x_0x_2x_5x_6x_7x_8x_9 \oplus x_0x_2x_5x_6x_8x_9 \oplus x_0x_2x_5x_6x_9 \oplus x_0x_2x_5x_7x_8 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_6x_5x_6x_6x_5x_6x_5x_6x_6x_5x_6x_5x_6x_5x_6x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x
333
                                                    x_0x_2x_5x_8 \oplus x_0x_2x_5x_8x_9 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x_7x_8x_9 \oplus x_0x_2x_6x_7x_9 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_7 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_6x_9 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x
334
                                                    335
                                                    x_0x_3x_4x_5x_6x_8 \oplus x_0x_3x_4x_5x_6x_8x_9 \oplus x_0x_3x_4x_5x_7 \oplus x_0x_3x_4x_5x_7x_8x_9 \oplus x_0x_3x_4x_5x_7x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_9 \oplus x_0x_5x_9 \oplus x_0x
336
                                                    x_0x_3x_4x_6 \oplus x_0x_3x_4x_6x_7 \oplus x_0x_3x_4x_6x_7x_8 \oplus x_0x_3x_4x_6x_7x_8x_9 \oplus x_0x_3x_4x_6x_8x_9 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_3x_4x_7x_8 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_3x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x_0x
337
                                                    338
339
                                                      x_0x_3x_6x_7x_9 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_6x_8x_9 \oplus x_0x_3x_7 \oplus x_0x_3x_7x_8x_9 \oplus x_0x_3x_7x_9 \oplus x_0x_3x_8 \oplus x_0x_3x_9 \oplus x_0x_4 \oplus x_0x_4x_5 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_7 \oplus x_0x_7 
340
341
                                                    x_0x_4x_5x_6 \oplus x_0x_4x_5x_6x_7 \oplus x_0x_4x_5x_6x_7x_8 \oplus x_0x_4x_5x_6x_7x_8x_9 \oplus x_0x_4x_5x_6x_8x_9 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x
                                                    x_0x_4x_5x_7x_9 \oplus x_0x_4x_5x_8 \oplus x_0x_4x_5x_8x_9 \oplus x_0x_4x_6x_7 \oplus x_0x_4x_6x_7x_8x_9 \oplus x_0x_4x_6x_7x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_6x_8 \oplus x
342
                                                      343
                                                    x_0x_5x_6x_8x_9 \oplus x_0x_5x_7 \oplus x_0x_5x_7x_8x_9 \oplus x_0x_5x_7x_9 \oplus x_0x_5x_8 \oplus x_0x_5x_9 \oplus x_0x_6 \oplus x_0x_6x_7 \oplus x_0x_6x_7 \oplus x_0x_6x_7x_8 \oplus x_0x_6x_7 \oplus x
344
                                                    x_0x_6x_8x_9 \oplus x_0x_6x_9 \oplus x_0x_7x_8 \oplus x_0x_7x_9 \oplus x_0x_8 \oplus x_0x_8x_9 \oplus x_1 \oplus x_1x_2x_3 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_5 \oplus x_1x_5 
345
                                                    x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_9 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_3x_4x_5x_7 \oplus x_1x_2x_3x_4x_5x_7x_8 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_6x_9 \oplus x_1x_2x_5x_6x_6x_7x_9 \oplus x_1x_2x_5x_6x_6x_7x_7x_9 \oplus x_1x_2x_5x_6x_7x_9 \oplus x_1x_2x_5x_7x_9 \oplus x_1x_2x_5x_7x_9 \oplus x_1x_2x_5x_7x_9 \oplus x_1x_2x_5x_7x
346
                                                    347
                                                    348
                                                    x_1x_2x_3x_5 \oplus x_1x_2x_3x_5x_6 \oplus x_1x_2x_3x_5x_6x_7 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_3x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_5x_6x_8x_9 \oplus x_1x_2x_3x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_8x_9 \oplus x_1x_2x_6x_7x_8x_9 \oplus x_1x_2x_6x_7x_8x_9 \oplus x
349
                                                    x_1x_2x_3x_5x_7x_8 \oplus x_1x_2x_3x_5x_7x_9 \oplus x_1x_2x_3x_5x_8 \oplus x_1x_2x_3x_5x_8 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_3x_6x_7x_8x_9 \oplus x_1x_2x_3x_6x_7x_9 \oplus x_1x_2x_3x_6x_7x_8 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_3x_6x_7x_8 \oplus x_1x_2x_3x_6x_7x_8 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_7 \oplus x
```

```
x_1x_2x_3x_6x_8 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_7 \oplus x_1x_2x_3x_7x_8 \oplus x_1x_2x_3x_7x_8x_9 \oplus x_1x_2x_3x_8x_9 \oplus x_1x_2x_3x_9 \oplus x
351
352
                                                                                x_1x_2x_4x_5x_7x_9 \oplus x_1x_2x_4x_5x_8 \oplus x_1x_2x_4x_5x_9 \oplus x_1x_2x_4x_6 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_8x_9 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_6 \oplus x_1x_2x_6 \oplus x_1x_2x_6 \oplus x_1x_2x_6 \oplus x_1x_2x_6 \oplus x_1x_2x_6 \oplus x_1x_2x_6 \oplus x_1x_2x
353
                                                                                x_1x_2x_4x_6x_8x_9 \oplus x_1x_2x_4x_6x_9 \oplus x_1x_2x_4x_7x_8 \oplus x_1x_2x_4x_7x_9 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8x_9 \oplus x_1x_2x_5 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_4x_8x_9 \oplus x_1x_2x_5 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_4x_8x_9 \oplus x_1x_2x_5 \oplus x_1x_5 \oplus x_1x
                                                                                355
                                                                                x_1x_2x_5x_8x_9 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_6 \oplus x_1x_2x_6x_7x_8 \oplus x_1x_2x_6x_7x_9 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_7 \oplus x_1x_7 \oplus x
356
                                                                                x_1x_2x_7x_9 \oplus x_1x_2x_8 \oplus x_1x_2x_9 \oplus x_1x_3 \oplus x_1x_3x_4 \oplus x_1x_3x_4x_5 \oplus x_1x_3x_4x_5x_6 \oplus x_1x_3x_4x_5x_6x_7 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7 \oplus x_1x_3x_5x_6x_7 \oplus x_1x_3x_7 \oplus x_1x_7 \oplus x_1x
357
                                                                                    x_1x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_3x_4x_5x_6x_8x_9 \oplus x_1x_3x_4x_5x_6x_9 \oplus x_1x_3x_4x_5x_7x_8 \oplus x_1x_3x_4x_5x_7x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x
358
                                                                                x_{1}x_{3}x_{4}x_{5}x_{8}x_{9} \oplus x_{1}x_{3}x_{4}x_{6}x_{7} \oplus x_{1}x_{3}x_{4}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{3}x_{4}x_{6}x_{7}x_{9} \oplus x_{1}x_{3}x_{4}x_{6}x_{8} \oplus x_{1}x_{3}x_{4}x_{6}x_{9} \oplus x_{1}x_{3}x_{4}x_{7} \oplus x_{1}x_{3}x_{4}x_{6}x_{7} \oplus x_{1}x_{7} 
359
                                                                                    360
                                                                                x_1x_3x_5x_6x_8x_9 \oplus x_1x_3x_5x_7 \oplus x_1x_3x_5x_7x_8x_9 \oplus x_1x_3x_5x_7x_9 \oplus x_1x_3x_5x_8 \oplus x_1x_3x_5x_9 \oplus x_1x_3x_6 \oplus x_1x_3x_6x_7 \oplus x_1x_5x_6x_7 \oplus x_1x_5x_7 \oplus x
361
                                                                                x_1x_3x_6x_7x_8 \oplus x_1x_3x_6x_7x_8x_9 \oplus x_1x_3x_6x_8x_9 \oplus x_1x_3x_6x_9 \oplus x_1x_3x_7x_8 \oplus x_1x_3x_7x_9 \oplus x_1x_3x_8 \oplus x_1x_3x_8x_9 \oplus x_1x_4x_5 \oplus x_1x_3x_6x_7x_8 \oplus x_1x_3x_6x_7 \oplus x_1x_3x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_6x_8 \oplus x_1x_6x_8 \oplus x_1x_6x
362
                                                                                x_1x_4x_5x_6x_7 \oplus x_1x_4x_5x_6x_7x_8x_9 \oplus x_1x_4x_5x_6x_7x_9 \oplus x_1x_4x_5x_6x_8 \oplus x_1x_4x_5x_6x_9 \oplus x_1x_4x_5x_7 \oplus x_1x_4x_5x_7x_8 \oplus x_1x_4x_5x_6x_7 \oplus x_1x_4x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x_6x_9 \oplus x_1x_5x_6x
363
                                                                                x_1x_4x_5x_7x_8x_9 \oplus x_1x_4x_5x_8x_9 \oplus x_1x_4x_5x_9 \oplus x_1x_4x_6 \oplus x_1x_4x_6x_7x_8 \oplus x_1x_4x_6x_7x_9 \oplus x_1x_4x_6x_8 \oplus x_1x_4x_6x_8x_9 \oplus x_1x_4x_6x_8 \oplus x_1x
364
                                                                                x_1x_4x_7 \oplus x_1x_4x_7x_8x_9 \oplus x_1x_4x_7x_9 \oplus x_1x_4x_8 \oplus x_1x_4x_9 \oplus x_1x_5 \oplus x_1x_5x_6 \oplus x_1x_5x_6x_7 \oplus x_1x
365
                                                                                x_{1}x_{5}x_{6}x_{8}x_{9} \oplus x_{1}x_{5}x_{6}x_{9} \oplus x_{1}x_{5}x_{7}x_{8} \oplus x_{1}x_{5}x_{7}x_{9} \oplus x_{1}x_{5}x_{8} \oplus x_{1}x_{5}x_{8}x_{9} \oplus x_{1}x_{6}x_{7} \oplus x_{1}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{6}x_{7}x_{9} \oplus x_{1}x_{7}x_{9} \oplus x_{1}x_
366
                                                                                x_1x_6x_8 \oplus x_1x_6x_9 \oplus x_1x_7 \oplus x_1x_7x_8 \oplus x_1x_7x_8x_9 \oplus x_1x_8x_9 \oplus x_1x_9 \oplus x_2 \oplus x_2x_3x_4 \oplus x_2x_3x_4x_5x_6 \oplus x_2x_3x_4x_5x_6x_7x_8 \oplus x_1x_6x_9 \oplus x_1x_7 \oplus x
367
                                                                                368
369
                                                                                x_2x_3x_4x_5x_8 \oplus x_2x_3x_4x_5x_9 \oplus x_2x_3x_4x_6 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_5x_7 \oplus x_2x_5x_7 \oplus x_2x_5x_7 \oplus x_2x_5x_7 \oplus x_2x_7 
                                                                                x_2x_3x_4x_6x_9 \oplus x_2x_3x_4x_7x_8 \oplus x_2x_3x_4x_7x_9 \oplus x_2x_3x_4x_8 \oplus x_2x_3x_4x_8x_9 \oplus x_2x_3x_5 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_7 \oplus x_2x
370
                                                                                x_2x_3x_5x_6x_7x_9 \oplus x_2x_3x_5x_6x_8 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_3x_5x_7 \oplus x_2x_3x_5x_7x_8 \oplus x_2x_3x_5x_7x_8x_9 \oplus x_2x_3x_5x_8x_9 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x
371
                                                                                x_2x_3x_6 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_9 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_7 \oplus x_2x_3x_7 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_9 \oplus x_2x_3x_8 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_7 \oplus x_2x_7 \oplus x
372
                                                                                x_2x_3x_9 \oplus x_2x_4 \oplus x_2x_4x_5 \oplus x_2x_4x_5x_6 \oplus x_2x_4x_5x_6x_7 \oplus x_2x_4x_5x_6x_7x_8 \oplus x_2x_4x_5x_6x_7x_8x_9 \oplus x_2x_4x_5x_6x_8x_9 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_9 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x
373
                                                                                x_2x_4x_5x_6x_9 \oplus x_2x_4x_5x_7x_8 \oplus x_2x_4x_5x_7x_9 \oplus x_2x_4x_5x_8 \oplus x_2x_4x_5x_8x_9 \oplus x_2x_4x_6x_7 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_6x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_6x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_7x_9 \oplus x_2x_4x_6x_7x_9 \oplus x_2x_4x_7x_9 \oplus x_2x_7x_9 \oplus x_2x_7x
374
375
                                                                                    x_2x_5x_6x_7x_9 \oplus x_2x_5x_6x_8 \oplus x_2x_5x_6x_8x_9 \oplus x_2x_5x_7 \oplus x_2x_5x_7x_8x_9 \oplus x_2x_5x_7x_9 \oplus x_2x_5x_8 \oplus x_2x_5x_9 \oplus x_2x_6 \oplus x_2x_6x_7 \oplus x_2x_5x_8 \oplus x_2x_5x
376
                                                                                x_2x_6x_7x_8 \oplus x_2x_6x_7x_8x_9 \oplus x_2x_6x_8x_9 \oplus x_2x_6x_9 \oplus x_2x_7x_8 \oplus x_2x_7x_9 \oplus x_2x_8 \oplus x_2x_8x_9 \oplus x_3 \oplus x_3x_4x_5 \oplus x_3x_4x_5x_6x_7 \oplus x_3x_4x_5 \oplus x_3x_5 \oplus x_5 \oplus x
377
                                                                                378
                                                                                    x_3x_4x_5x_8x_9 \oplus x_3x_4x_5x_9 \oplus x_3x_4x_6 \oplus x_3x_4x_6x_7x_8 \oplus x_3x_4x_6x_7x_9 \oplus x_3x_4x_6x_8 \oplus x_3x_4x_6x_8 \oplus x_3x_4x_7 \oplus x_3x_4x_7x_8x_9 \oplus x_3x_4x_7 \oplus x_3x_7 \oplus x_7 \oplus x
379
                                                                                x_3x_4x_7x_9 \oplus x_3x_4x_8 \oplus x_3x_4x_9 \oplus x_3x_5 \oplus x_3x_5x_6 \oplus x_3x_5x_6x_7 \oplus x_3x_5x_6x_7x_8 \oplus x_3x_5x_6x_7x_8x_9 \oplus x_3x_5x_6x_8x_9 \oplus x_3x_5x_6x_7x_8x_9 \oplus x_5x_6x_7x_8x_9 \oplus x_5x_6x_7x_8x_9 \oplus x_5x_6x_7x_8x_9 \oplus x_5x_6x_7x_8x_9 \oplus x_5x_6x_9 \oplus x_5x_6x
380
                                                                                    x_3x_5x_6x_9 \oplus x_3x_5x_7x_8 \oplus x_3x_5x_7x_9 \oplus x_3x_5x_8 \oplus x_3x_5x_8x_9 \oplus x_3x_6x_7 \oplus x_3x
381
                                                                                382
                                                                                x_{4}x_{5}x_{7} \oplus x_{4}x_{5}x_{7}x_{8}x_{9} \oplus x_{4}x_{5}x_{7}x_{9} \oplus x_{4}x_{5}x_{8} \oplus x_{4}x_{5}x_{9} \oplus x_{4}x_{6} \oplus x_{4}x_{6}x_{7} \oplus x_{4}x_{6}x_{7}x_{8} \oplus x_{4}x_{6}x_{7}x_{8}x_{9} \oplus x_{4}x_{6}x_{8}x_{9} \oplus x_{4}x_{8}x_{9} \oplus x_{4}x_{8}x_{9} \oplus x_{4}x_{8}x_{9} \oplus x_{4}x_{8}x_{9} \oplus x_{4}x_{8}x_{9} \oplus x_{4}x_{8}x_{9} \oplus x
383
                                                                                x_{4}x_{6}x_{9} \oplus x_{4}x_{7}x_{8} \oplus x_{4}x_{7}x_{9} \oplus x_{4}x_{8} \oplus x_{4}x_{8}x_{9} \oplus x_{5} \oplus x_{5}x_{6}x_{7} \oplus x_{5}x_{7} \oplus x_{5}x_{7} \oplus x_{7} \oplus x
384
                                                                                x_5x_7x_8 \oplus x_5x_7x_8x_9 \oplus x_5x_8x_9 \oplus x_5x_9 \oplus x_6 \oplus x_6x_7x_8 \oplus x_6x_7x_9 \oplus x_6x_8 \oplus x_6x_8x_9 \oplus x_7 \oplus x_7x_8x_9 \oplus x_7x_9 \oplus x_8 \oplus x_9 = 1
385
```

 $x_0x_1x_2x_5x_6 \oplus x_0x_1x_2x_5x_6x_7 \oplus x_0x_1x_2x_5x_6x_7x_8 \oplus x_0x_1x_2x_5x_6x_7x_8x_9 \oplus x_0x_1x_2x_5x_6x_8x_9 \oplus x_0x_1x_2x_5x_6x_9 \oplus x_0x_1x_2x_5x_9 \oplus x$ $x_0x_1x_3x_4x_5x_7x_8x_9 \oplus x_0x_1x_3x_4x_5x_7x_9 \oplus x_0x_1x_3x_4x_5x_8 \oplus x_0x_1x_3x_4x_5x_9 \oplus x_0x_1x_3x_4x_6 \oplus x_0x_1x_3x_4x_6x_7 \oplus x_0x_1x_3x_4x_7 \oplus x_0x_1x_3x_4x_7 \oplus x_0x_1x_3x_4x_7 \oplus x_0x_1x_3x_4x_7 \oplus x_0x_1x_7 \oplus x$

```
402
403
                                                                  404
                                                                  405
                                                                  406
                                                                  x_0x_1x_4x_5x_6x_8y_9 \\ \pm x_0x_1x_4x_5x_6x_9 \\ \pm x_0x_1x_4x_5x_7x_8 \\ \pm x_0x_1x_4x_5x_7x_9 \\ \pm x_0x_1x_4x_5x_8x_9 \\ \pm x_0x_1x_5x_1x_5x_9 \\ \pm x_0x_1x_5x_1x_5x_9 \\ \pm x_0x_1x_5x_1x_5x_1x_5x_9 \\ \pm x_0x_1x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_5x_1x_
407
                                                                  408
                                                                     409
                                                                  x_0x_1x_5x_7x_8x_9 \oplus x_0x_1x_5x_7x_9 \oplus x_0x_1x_5x_8 \oplus x_0x_1x_5x_9 \oplus x_0x_1x_6 \oplus x_0x_1x_6x_7 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_7x_8x_9 \oplus x_0x_1x_6x_7x_8 \oplus x_0x_1x_6x_8 \oplus x_0x_1x_6x
410
                                                                     x_0x_1x_6x_8x_9 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_7x_8 \oplus x_0x_1x_7x_9 \oplus x_0x_1x_8 \oplus x_0x_1x_8x_9 \oplus x_0x_2x_3 \oplus x_0x_2x_3 \\ \oplus x_0x_2x_3 \oplus x_0x_2x_3 \\ \oplus x_0x_1x_6x_9 \oplus x_0x_1x_6x_9 \\ \oplus x_0x_1x_6x_9 \oplus x_0x_1x_7x_8 \\ \oplus x_0x_1x_8 \oplus x_0x_1x_8 \\ \oplus x_0x_1x_8 \oplus x_0x_1x_8 \\ \oplus x_0x_1x_8 \oplus x_0x_1x_8 \\ \oplus x_1x_8 \\ \oplus x_0x_1x_8 \\ \oplus x_0x_1x_8 \\ \oplus x_0x_1x_8 \\ \oplus x_0x_1x_8 \\ \oplus
411
                                                                  412
                                                                  x_0x_2x_3x_4x_5x_7x_8x_9 \oplus x_0x_2x_3x_4x_5x_8x_9 \oplus x_0x_2x_3x_4x_5x_9 \oplus x_0x_2x_3x_4x_6 \oplus x_0x_2x_3x_4x_6x_7x_8 \oplus x_0x_2x_3x_4x_6x_7x_9 \oplus x_0x_2x_3x_4x_6x_7x_8 \oplus x_0x_2x_3x_6x_8 \oplus x_0x_2x_3x_6x_8 \oplus x_0x_2x_3x_6x_8 \oplus x_0x_2x_3x_6x_8 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_3x_6x_8 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_3x_6x_8 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_3x_6x_8 \oplus x_0x_2x_6x_8 \oplus x
413
                                                                  414
                                                                     415
                                                                  x_0x_2x_3x_5x_7x_8 \oplus x_0x_2x_3x_5x_7x_9 \oplus x_0x_2x_3x_5x_8 \oplus x_0x_2x_3x_5x_8x_9 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7x_8x_9 \oplus x_0x_2x_3x_6x_7x_9 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7x_8 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_3x_6x_7 \oplus x_0x_2x_7 \oplus x
416
                                                                     x_0x_2x_3x_6x_8 \oplus x_0x_2x_3x_6x_9 \oplus x_0x_2x_3x_7 \oplus x_0x_2x_3x_7x_8 \oplus x_0x_2x_3x_7x_8x_9 \oplus x_0x_2x_3x_8x_9 \oplus x_0x_2x_3x_9 \oplus x_0x_2x_3 \oplus x_0x_2x_3x_1 \oplus x_0x_2x_1 \oplus x_0x_1 
417
                                                                  418
                                                                  x_0x_2x_4x_5x_7x_9 \oplus x_0x_2x_4x_5x_8 \oplus x_0x_2x_4x_5x_9 \oplus x_0x_2x_4x_6 \oplus x_0x_2x_4x_6x_7 \oplus x_0x_2x_4x_6x_7x_8 \oplus x_0x_2x_4x_6x_7x_8x_9 \oplus x_0x_2x_4x_6x_7x_8 \oplus x_0x_2x_4x_6x_7 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_7 \oplus x_0x_7 \oplus x
419
420
                                                                  x_0x_2x_4x_6x_8x_9 \oplus x_0x_2x_4x_6x_9 \oplus x_0x_2x_4x_7x_8 \oplus x_0x_2x_4x_7x_9 \oplus x_0x_2x_4x_8 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_5 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_7 \oplus x_0x_7 \oplus x
                                                                  x_0x_2x_5x_6x_7x_8x_9 \oplus x_0x_2x_5x_6x_7x_9 \oplus x_0x_2x_5x_6x_8 \oplus x_0x_2x_5x_6x_9 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_5x_7x_8 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_7x_8 \oplus x_0x_2x_5x_6x_7 \oplus x_0x_2x_5x_7 \oplus x_0x_5x_7 \oplus x
421
                                                                  x_0x_2x_5x_8x_9 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_6 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_7x_9 \oplus x_0x_2x_6x_8 \oplus x_0x_2x_6x_8x_9 \oplus x_0x_2x_7 \oplus x_0x_2x_7x_8x_9 \oplus x_0x_2x_6x_8x_9 \oplus x_0x_2x_6x_9 
422
                                                                  423
                                                                  x_0x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_3x_4x_5x_6x_8x_9 \oplus x_0x_3x_4x_5x_6x_9 \oplus x_0x_3x_4x_5x_7x_8 \oplus x_0x_3x_4x_5x_7x_9 \oplus x_0x_3x_4x_5x_8 \oplus x_0x_3x_4x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 
424
                                                                  x_0x_3x_4x_5x_8x_9 \oplus x_0x_3x_4x_6x_7 \oplus x_0x_3x_4x_6x_7x_8x_9 \oplus x_0x_3x_4x_6x_7x_9 \oplus x_0x_3x_4x_6x_8 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_3x_4x_7 \oplus x_0x_3x_4x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x
425
426
                                                                     x_0x_3x_5x_6x_8x_9 \oplus x_0x_3x_5x_7 \oplus x_0x_3x_5x_7x_8x_9 \oplus x_0x_3x_5x_7x_9 \oplus x_0x_3x_5x_8 \oplus x_0x_3x_5x_9 \oplus x_0x_3x_6 \oplus x_0x_3x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7 \oplus x_0x_6x_7 \oplus x_0x_7 \oplus x_0x
427
                                                                  x_0x_3x_6x_7x_8 \oplus x_0x_3x_6x_7x_8x_9 \oplus x_0x_3x_6x_9 \oplus x_0x_3x_6x_9 \oplus x_0x_3x_7x_8 \oplus x_0x_3x_7x_9 \oplus x_0x_3x_8 \oplus x_0x_3x_8x_9 \oplus x_0x_4x_5 \oplus x_0x_3x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_6x
428
                                                                  x_0x_4x_5x_6x_7 \oplus x_0x_4x_5x_6x_7x_8x_9 \oplus x_0x_4x_5x_6x_7x_9 \oplus x_0x_4x_5x_6x_8 \oplus x_0x_4x_5x_6x_9 \oplus x_0x_4x_5x_7 \oplus x_0x_4x_5x_7x_8 \oplus x_0x_4x_5x_6x_7 \oplus x_0x_6x_7 \oplus x_0x_7 \oplus x_0x_6x_7 \oplus x_0x_7 \oplus x_0x
429
                                                                     x_0x_4x_5x_7x_8x_9 \oplus x_0x_4x_5x_8x_9 \oplus x_0x_4x_5x_9 \oplus x_0x_4x_6 \oplus x_0x_4x_6x_7x_8 \oplus x_0x_4x_6x_7x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_4x_6x_8x_9 \oplus x_0x_4x_6x_8 \oplus x_0x_6x_6 \oplus x
430
431
                                                                  x_0x_4x_7 \oplus x_0x_4x_7x_8x_9 \oplus x_0x_4x_7x_9 \oplus x_0x_4x_8 \oplus x_0x_4x_9 \oplus x_0x_5 \oplus x_0x_5x_6 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7x_8 \oplus x_0x_5x_6x_7x_8x_9 \oplus x_0x_6x_9 \oplus x_0x_6x
                                                                     x_0x_5x_6x_8x_9 \oplus x_0x_5x_6x_9 \oplus x_0x_5x_7x_8 \oplus x_0x_5x_7x_9 \oplus x_0x_5x_8 \oplus x_0x_5x_8x_9 \oplus x_0x_6x_7 \oplus x_0x_6x_7x_8x_9 \oplus x_0x_6x_7x_9 \oplus x_0x_6x_9 \oplus x_0x_6x
432
                                                                  x_0x_6x_8 \oplus x_0x_6x_9 \oplus x_0x_7 \oplus x_0x_7x_8 \oplus x_0x_7x_8x_9 \oplus x_0x_8x_9 \oplus x_0x_9 \oplus x_1x_2 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x_4x_5x_6 \oplus x_0x_1x_2x_3x_4 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x
433
                                                                  x_1x_2x_3x_4x_5x_6x_7x_8 \oplus x_1x_2x_3x_4x_5x_6x_7x_9 \oplus x_1x_2x_3x_4x_5x_6x_8 \oplus x_1x_2x_3x_4x_5x_6x_8x_9 \oplus x_1x_2x_3x_4x_5x_7 \oplus x_1x_2x_3x_4x_5x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_8x_9 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x_9 \oplus x_1x_2x_5x_6x
434
435
                                                                  x_1x_2x_3x_4x_5x_7x_9 \oplus x_1x_2x_3x_4x_5x_8 \oplus x_1x_2x_3x_4x_5x_9 \oplus x_1x_2x_3x_4x_6 \oplus x_1x_2x_3x_4x_6x_7 \oplus x_1x_2x_3x_4x_6x_7x_8 \oplus x_1x_2x_3x_4x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_8x_9 \oplus x_1x_2x_3x_4x_8x_9 \oplus x_1x_2x_3x_9 \oplus x_1x_2x_9 \oplus x_1x_2x_3x_4x_9 \oplus x_1x_2x_3x_4x_9 \oplus x_1x_2x_3x_4x
                                                                  436
                                                                  437
                                                                  x_1x_2x_3x_5x_7x_8 \oplus x_1x_2x_3x_5x_7x_8x_9 \oplus x_1x_2x_3x_5x_8x_9 \oplus x_1x_2x_3x_5x_9 \oplus x_1x_2x_3x_6 \oplus x_1x_2x_3x_6x_7x_8 \oplus x_1x_2x_3x_6x_7x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_1x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_9 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_3x_6x_7 \oplus x_1x_2x_5x_6x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7 
438
                                                                  x_{1}x_{2}x_{3}x_{6}x_{8} \oplus x_{1}x_{2}x_{3}x_{6}x_{8}x_{9} \oplus x_{1}x_{2}x_{3}x_{7} \oplus x_{1}x_{2}x_{3}x_{7}x_{8}x_{9} \oplus x_{1}x_{2}x_{3}x_{7}x_{9} \oplus x_{1}x_{2}x_{3}x_{8} \oplus x_{1}x_{2}x_{3}x_{9} \oplus x_{1}x_{2}x_{4} \oplus x_{1}x_{2}x_{3}x_{1}x_{2}x_{3}x_{1} \oplus x_{1}x_{2}x_{3}x_{1}x_{2}x_{3}x_{1} \oplus x_{1}x_{2}x_{3}x_{1} \oplus x_{1}x_{2}x
439
                                                                  x_1x_2x_4x_5 \oplus x_1x_2x_4x_5x_6 \oplus x_1x_2x_4x_5x_6x_7 \oplus x_1x_2x_4x_5x_6x_7x_8 \oplus x_1x_2x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_4x_5x_6x_8x_9 \oplus x_1x_2x_4x_5x_6x_9 \oplus x_1x_2x_4x_5x_6x_7x_8 \oplus x_1x_2x_4x_5x_6x_7x_8x_7x_8 \oplus x_1x_2x_4x_5x_6x_7x_8 \oplus x_1x_2x_4x_5x_6x_7x_8x_8 \oplus x_1x_2x_4x_5x_6x_7x_8 \oplus x_1x_2x_4x_5x_6x_7x_8 \oplus x_1x_2x_4x_5x_6x_7x_8x_8 \oplus x_1x_2x_4x_5x_6x_7x_8x_8 \oplus x_1x_2x_4x_5x_6x_7x_8x_8 \oplus x_1x_2x_4x_5x_6x_7x_8x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_6x_7x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_8 \oplus x
440
441
                                                                     x_1x_2x_4x_5x_7x_8 \oplus x_1x_2x_4x_5x_7x_9 \oplus x_1x_2x_4x_5x_8 \oplus x_1x_2x_4x_5x_8x_9 \oplus x_1x_2x_4x_6x_7 \oplus x_1x_2x_4x_6x_7x_8x_9 \oplus x_1x_2x_4x_6x_7x_9 \oplus x_1x_2x_4x_7x_9 \oplus x_1x_2x_7x_9 \oplus x_1x_2x
                                                                  442
443
                                                                  x_1x_2x_5x_6x_7x_8 \oplus x_1x_2x_5x_6x_7x_9 \oplus x_1x_2x_5x_6x_8 \oplus x_1x_2x_5x_6x_8x_9 \oplus x_1x_2x_5x_7 \oplus x_1x_2x_5x_7x_8x_9 \oplus x_1x_2x_5x_7x_9 \oplus x_1x_2x_7x_9 \oplus x_1x_2x_5x_7x_9 \oplus x_1x_2x_5x_9x_9 \oplus x_1x_2x_5x_9x_9 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_5x
                                                                  x_1x_2x_5x_8 \oplus x_1x_2x_5x_9 \oplus x_1x_2x_6 \oplus x_1x_2x_6x_7 \oplus x_1x_2x_6x_7x_8 \oplus x_1x_2x_6x_7x_8 \oplus x_1x_2x_6x_9 \oplus x
444
                                                                  x_1x_2x_7x_9 \oplus x_1x_2x_8 \oplus x_1x_2x_8x_9 \oplus x_1x_3 \oplus x_1x_3x_4x_5 \oplus x_1x_3x_4x_5x_6x_7 \oplus x_1x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_5x_7x_9 \oplus x_1x_5x
445
                                                                  x_1x_3x_4x_5x_6x_8 \oplus x_1x_3x_4x_5x_6x_9 \oplus x_1x_3x_4x_5x_7 \oplus x_1x_3x_4x_5x_7x_8 \oplus x_1x_3x_4x_5x_7x_8x_9 \oplus x_1x_3x_4x_5x_8x_9 \oplus x_1x_3x_4x_5x_9 \oplus x_1x_3x_4x_5x_8x_9 \oplus x_1x_3x_8x_9 \oplus x_1x_3x_9 \oplus x_1x_9 \oplus x
446
                                                                  x_1x_3x_4x_6 \oplus x_1x_3x_4x_6x_7x_8 \oplus x_1x_3x_4x_6x_7x_9 \oplus x_1x_3x_4x_6x_8 \oplus x_1x_3x_4x_6x_8x_9 \oplus x_1x_3x_4x_7 \oplus x_1x_3x_4x_7x_8x_9 \oplus x_1x_3x_4x_7x_8x_9 \oplus x_1x_3x_4x_7x_8x_9 \oplus x_1x_3x_4x_6x_8x_9 \oplus x_1x_3x_4x_7 \oplus x_1x_3x_4x_7x_8x_9 \oplus x_1x_3x_4x_6x_8x_9 \oplus x_1x_3x_4x_7 \oplus x_1x_3x_4x_7x_8x_9 \oplus x_1x_3x_4x_7x_9 \oplus x_1x_3x_7x_9 \oplus x_1x_7x_9 \oplus x
447
                                                                  448
                                                                  x_1x_3x_5x_6x_8x_9 \oplus x_1x_3x_5x_6x_9 \oplus x_1x_3x_5x_7x_8 \oplus x_1x_3x_5x_7x_9 \oplus x_1x_3x_5x_8 \oplus x_1x_3x_5x_8x_9 \oplus x_1x_3x_6x_7 \oplus x_1x_3x_6x_7 \oplus x_1x_3x_6x_7 \oplus x_1x_3x_5x_8 \oplus x_1x_5x_8 
449
                                                                  x_{1}x_{3}x_{6}x_{7}x_{9} \oplus x_{1}x_{3}x_{6}x_{8} \oplus x_{1}x_{3}x_{6}x_{9} \oplus x_{1}x_{3}x_{7} \oplus x_{1}x_{3}x_{7}x_{8} \oplus x_{1}x_{3}x_{7}x_{8}x_{9} \oplus x_{1}x_{3}x_{8} \oplus x_{1}x_{3}x_{9} \oplus x_{1}x_{3} \oplus x_{1}x_{1} \oplus x_{1} \oplus x_{1}x_{1} \oplus x_{1} \oplus x_{1}x_{1} \oplus x_{1} \oplus x_{1}x_{1} \oplus x_{1} \oplus x_{1}
450
                                                                  x_1x_4x_5x_6 \oplus x_1x_4x_5x_6x_7x_8 \oplus x_1x_4x_5x_6x_7x_9 \oplus x_1x_4x_5x_6x_8 \oplus x_1x_4x_5x_6x_8x_9 \oplus x_1x_4x_5x_7 \oplus x_1x_4x_5x_7x_8x_9 \oplus x_1x_4x_5x_6x_8x_9 \oplus x_1x_5x_9 \oplus x_1x_5x
451
                                                                  x_1x_4x_5x_7x_9 \oplus x_1x_4x_5x_8 \oplus x_1x_4x_5x_9 \oplus x_1x_4x_6 \oplus x_1x_4x_6x_7 \oplus x_1x_4x_6x_7x_8 \oplus x_1x_4x_6x_7x_8x_9 \oplus x_1x_4x_6x_8x_9 \oplus x_1x_4x_6x_7x_8 \oplus x_1x_4x_6x_8 \oplus x_1x_4x_6x_8 \oplus x_1x_4x_6x_8x_8 \oplus x_1x_4x_6x_8 \oplus x_1x_6x_8 \oplus x_1x_6x_8 \oplus x_1x_6x_8 \oplus x_1x_6x_8 \oplus x_1x_6x_8 \oplus x_1x_6x_8 \oplus x_1x_6x_8
```

 $x_1x_4x_6x_9 \oplus x_1x_4x_7x_8 \oplus x_1x_4x_7x_9 \oplus x_1x_4x_8 \oplus x_1x_4x_8x_9 \oplus x_1x_5 \oplus x_1x_5x_6x_7 \oplus x_1x_5x_6x_7x_8x_9 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_9 \oplus x_1x$ $x_1x_5x_6x_8 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_7 \oplus x_1x_5x_7x_8 \oplus x_1x_5x_7x_8x_9 \oplus x_1x_5x_8x_9 \oplus x_1x_5x_9 \oplus x_1x_6 \oplus x_1x_6x_7x_8 \oplus x_1x_6x_7x_9 \oplus x_1x_6x_9 \oplus x_1x$ $x_1x_6x_8 \oplus x_1x_6x_8x_9 \oplus x_1x_7 \oplus x_1x_7x_8x_9 \oplus x_1x_7x_9 \oplus x_1x_8 \oplus x_1x_9 \oplus x_2 \oplus x_2x_3 \oplus x_2x_3x_4 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_4x_5x_6 \oplus x_1x_1x_1x_1 \oplus x_1x_1x_1 \oplus x_1x$ $x_2x_3x_4x_5x_6x_7 \oplus x_2x_3x_4x_5x_6x_7x_8 \oplus x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_2x_3x_4x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_5x_6x_9 \oplus x_2x_5x$ $x_2x_3x_4x_5x_7x_9 \oplus x_2x_3x_4x_5x_8 \oplus x_2x_3x_4x_5x_8x_9 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_7x_8x_9 \oplus x_2x_3x_4x_6x_7 \oplus x_2x_3x_4x_6x_8 \oplus x_2x_5x_6 \oplus x_2x_5x_6$ $x_2x_3x_5x_6x_7x_9 \oplus x_2x_3x_5x_6x_8 \oplus x_2x_3x_5x_6x_8x_9 \oplus x_2x_3x_5x_7 \oplus x_2x_3x_5x_7x_8x_9 \oplus x_2x_3x_5x_7 \oplus x_2x_3x_5x_8 \oplus x_2x_3x_5x_8 \oplus x_2x_3x_5x_9 \oplus x_2x_3x_5x_8 \oplus x_2x_5x_8 \oplus x_2x$ $x_2x_3x_6 \oplus x_2x_3x_6x_7 \oplus x_2x_3x_6x_7x_8 \oplus x_2x_3x_6x_7x_8x_9 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_9 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_6x_8x_9 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_8 \oplus x_2x_3x_6x_8 \oplus x_2x_6x_8 \oplus x_2x_6x_8 \oplus x_2x_6x_8 \oplus x_2x_6x_8 \oplus x_2x_6x_8 \oplus x_2x_6x$ $x_{2}x_{4}x_{5}x_{7} \oplus x_{2}x_{4}x_{5}x_{7}x_{8} \oplus x_{2}x_{4}x_{5}x_{7}x_{8}x_{9} \oplus x_{2}x_{4}x_{5}x_{8}x_{9} \oplus x_{2}x_{4}x_{5}x_{9} \oplus x_{2}x_{4}x_{6} \oplus x_{2}x_{4}x_{6}x_{7}x_{8} \oplus x_{2}x_{4}x_{6}x_{7}x_{9} \oplus x_{2}x_{4}x_{5}x_{9} \oplus x_{2}x_{4}x_{5}x_{9} \oplus x_{2}x_{4}x_{5}x_{9} \oplus x_{2}x_{4}x_{6}x_{7}x_{8} \oplus x_{2}x_{4}x_{6}x_{7}x_{9} \oplus x_{2}x_{4}x_{5}x_{9} \oplus x_{2}x_{$ $x_2x_4x_6x_8 \oplus x_2x_4x_6x_8x_9 \oplus x_2x_4x_7 \oplus x_2x_4x_7x_8x_9 \oplus x_2x_4x_7x_9 \oplus x_2x_4x_8 \oplus x_2x_4x_9 \oplus x_2x_5 \oplus x_2x_5x_6 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6 \oplus x_2x_5x_6$ $x_2x_5x_6x_7x_8 \oplus x_2x_5x_6x_7x_8x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_7x_8 \oplus x_2x_5x_7x_9 \oplus x_2x_5x_8 \oplus x_2x_5x_8x_9 \oplus x_2x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_7 \oplus x$ $x_2x_6x_7x_8x_9 \oplus x_2x_6x_7x_9 \oplus x_2x_6x_8 \oplus x_2x_6x_9 \oplus x_2x_7 \oplus x_2x_7x_8 \oplus x_2x_7x_8x_9 \oplus x_2x_8x_9 \oplus x_2x_9 \oplus x_3x_4 \oplus x_3x_4x_5x_6 \oplus x_3x_5x_6 \oplus x_5x_6 \oplus x$ $x_3x_4x_5x_6x_7x_8 \oplus x_3x_4x_5x_6x_7x_9 \oplus x_3x_4x_5x_6x_8 \oplus x_3x_4x_5x_6x_8x_9 \oplus x_3x_4x_5x_7 \oplus x_3x_4x_5x_7x_8x_9 \oplus x_3x_4x_5x_7x_9 \oplus x_3x_5x_7x_9 \oplus x_5x_7x_9 \oplus x_5x$ $x_{4}x_{5}x_{6}x_{8}x_{9} \oplus x_{4}x_{5}x_{6}x_{9} \oplus x_{4}x_{5}x_{7}x_{8} \oplus x_{4}x_{5}x_{7}x_{9} \oplus x_{4}x_{5}x_{8} \oplus x_{4}x_{5}x_{8}x_{9} \oplus x_{4}x_{6}x_{7} \oplus x_{4}x_{6}x_{7}x_{8}x_{9} \oplus x_{4}x_{6}x_{7}x_{9} \oplus x_{4}x_{7}x_{9} \oplus x_{7}x_{9} \oplus x_{7$ $x_4x_6x_8 \oplus x_4x_6x_9 \oplus x_4x_7 \oplus x_4x_7x_8 \oplus x_4x_7x_8x_9 \oplus x_4x_8x_9 \oplus x_4x_9 \oplus x_5x_6 \oplus x_5x_6x_7x_8 \oplus x_5x_6x_7x_9 \oplus x_5x_6x_8 \oplus x_5x_6x_7x_8 \oplus x_5x_6x_7x_9 \oplus x_5x_6x_8 \oplus x_5x_6x_7x_8 \oplus x_5x_6x_8 \oplus x_5x_6x_7x_8 \oplus x_5x_6x_8 \oplus x_5x$ $x_5x_6x_8x_9 \oplus x_5x_7 \oplus x_5x_7x_8x_9 \oplus x_5x_7x_9 \oplus x_5x_8 \oplus x_5x_9 \oplus x_6 \oplus x_6x_7 \oplus x_6x_7x_8 \oplus x_6x_7x_8x_9 \oplus x_6x_8x_9 \oplus x_6x_9 \oplus x_6x$ $x_7x_8 \oplus x_7x_9 \oplus x_8 \oplus x_8x_9 = 0$

 $x_0x_1x_2x_4x_5x_9 \oplus x_0x_1x_2x_4x_6 \oplus x_0x_1x_2x_4x_6x_7 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_4x_6x_7x_8x_9 \oplus x_0x_1x_2x_4x_6x_8x_9 \oplus x_0x_1x_2x_4x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x_2x_6x_7x_8 \oplus x_0x_1x$ $x_0x_1x_2x_4x_6x_9 \oplus x_0x_1x_2x_4x_7x_8 \oplus x_0x_1x_2x_4x_7x_9 \oplus x_0x_1x_2x_4x_8 \oplus x_0x_1x_2x_4x_8x_9 \oplus x_0x_1x_2x_5 \oplus x_0x_1x_2x_5x_6x_7 \oplus x_0x_1x_2x_5x_7 \oplus x_0x_1x_2x_7 \oplus x_0x_1x_2x_5x_7 \oplus x_0x_1x_2x_5x_7 \oplus x_0x_1x_2x$ $x_0x_1x_3x_6x_7 \oplus x_0x_1x_3x_6x_7x_8 \oplus x_0x_1x_3x_6x_7x_8x_9 \oplus x_0x_1x_3x_6x_8x_9 \oplus x_0x_1x_3x_6x_9 \oplus x_0x_1x_3x_7x_8 \oplus x_0x_1x_3x_7x_9 \oplus x_0x_1x_3x_7x_9 \oplus x_0x_1x_3x_7x_9 \oplus x_0x_1x_3x_6x_7x_8 \oplus x_0x_1x_3x_6x_8 \oplus x_0x_1x_6x_8 \oplus x_0x_1x_6x$ $x_0x_1x_6x_8 \oplus x_0x_1x_6x_9 \oplus x_0x_1x_7 \oplus x_0x_1x_7x_8 \oplus x_0x_1x_7x_8x_9 \oplus x_0x_1x_8x_9 \oplus x_0x_1x_9 \oplus x_0x_2 \oplus x_0x_2x_3x_4 \oplus x_0x_2x_3x_4$

```
x_0x_2x_3x_5x_6x_7 \oplus x_0x_2x_3x_5x_6x_7x_8x_9 \oplus x_0x_2x_3x_5x_6x_7x_9 \oplus x_0x_2x_3x_5x_6x_8 \oplus x_0x_2x_3x_5x_6x_9 \oplus x_0x_2x_3x_5x_7 \oplus x_0x_2x_3x_5x_6x_9 \oplus x_0x_2x_3x_5x_6x_7 \oplus x_0x_2x_5x_7 \oplus x_0x_5x_7 \oplus x_0x_7 
504
505
                                                                             x_0x_2x_3x_6x_8 \oplus x_0x_2x_3x_6x_8x_9 \oplus x_0x_2x_3x_7 \oplus x_0x_2x_3x_7x_8x_9 \oplus x_0x_2x_3x_7x_9 \oplus x_0x_2x_3x_8 \oplus x_0x_2x_3x_9 \oplus x_0x_2x_4 \oplus x_0x_2x_3x_1 \oplus x_0x_2x_2x_1 \oplus x_0x_2x_3x_1 \oplus x_0x_2x_2x_1 \oplus x_0x_2x_1 \oplus x_0x
506
                                                                             x_0x_2x_4x_5 \oplus x_0x_2x_4x_5x_6 \oplus x_0x_2x_4x_5x_6x_7 \oplus x_0x_2x_4x_5x_6x_7x_8 \oplus x_0x_2x_4x_5x_6x_7x_8x_9 \oplus x_0x_2x_4x_5x_6x_8x_9 \oplus x_0x_2x_4x_5x_6x_9 \oplus x_0x_2x_4x_5x_6x_7x_8 \oplus x_0x_2x_4x_5x_6x_7x_8x_9 \oplus x_0x_2x_4x_5x_6x_7x_8x_9x_8x_9 \oplus x_0x_2x_4x_5x_6x_7x_8x_9 \oplus x_0x_2x_6x_9 \oplus x_0x_2x
507
                                                                             x_0x_2x_4x_5x_7x_8 \oplus x_0x_2x_4x_5x_7x_9 \oplus x_0x_2x_4x_5x_8 \oplus x_0x_2x_4x_5x_8 \oplus x_0x_2x_4x_6x_7 \oplus x_0x_2x_4x_6x_7x_8x_9 \oplus x_0x_2x_4x_6x_7x_9 \oplus x_0x_2x_4x_6x_7x_8 \oplus x_0x_2x_4x_6x_7 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_7 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_7 
508
                                                                             x_0x_2x_4x_6x_8 \oplus x_0x_2x_4x_6x_9 \oplus x_0x_2x_4x_7 \oplus x_0x_2x_4x_7x_8 \oplus x_0x_2x_4x_7x_8x_9 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_4x_9 \oplus x_0x_2x_5x_6 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_4x_8x_9 \oplus x_0x_2x_4x_8 \oplus x_0x_2x_4x
509
                                                                             x_0x_2x_5x_6x_7x_8 \oplus x_0x_2x_5x_6x_7x_9 \oplus x_0x_2x_5x_6x_8 \oplus x_0x_2x_5x_6x_8x_9 \oplus x_0x_2x_5x_7 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_8x_9 \oplus x_0x_2x_5x_7x_9 \oplus x_0x_2x_7x_9 \oplus x
510
                                                                                x_0x_2x_5x_8 \oplus x_0x_2x_5x_9 \oplus x_0x_2x_6 \oplus x_0x_2x_6x_7 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_7x_8 \oplus x_0x_2x_6x_9 \oplus x
511
                                                                             x_0x_2x_7x_9 \oplus x_0x_2x_8 \oplus x_0x_2x_8x_9 \oplus x_0x_3 \oplus x_0x_3x_4x_5 \oplus x_0x_3x_4x_5x_6x_7 \oplus x_0x_3x_4x_5x_6x_7x_8x_9 \oplus x_0x_3x_4x_5x_6x_7x_9 \oplus x_0x_5x_6x_7x_9 \oplus x_0x_6x_7x_9 \oplus x_0x_9x_9 \oplus x_0x_9 \oplus x_0x_9x_9 \oplus x_0x_9x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x_0x_9 \oplus x
512
                                                                                x_0x_3x_4x_5x_6x_8 \oplus x_0x_3x_4x_5x_6x_9 \oplus x_0x_3x_4x_5x_7 \oplus x_0x_3x_4x_5x_7x_8 \oplus x_0x_3x_4x_5x_7x_8x_9 \oplus x_0x_3x_4x_5x_8x_9 \oplus x_0x_3x_4x_5x_9 \oplus x_0x_3x_4x_5x_8x_9 \oplus x_0x_5x_9 \oplus x_0x_9 
513
                                                                             x_0x_3x_4x_6 \oplus x_0x_3x_4x_6x_7x_8 \oplus x_0x_3x_4x_6x_7x_9 \oplus x_0x_3x_4x_6x_8 \oplus x_0x_3x_4x_6x_8x_9 \oplus x_0x_3x_4x_7 \oplus x_0x_3x_4x_7x_8x_9 \oplus x_0x_3x_4x_6x_7x_8 \oplus x_0x_3x_4x_6x_8 \oplus x_0x_5x_6 \oplus x_0x_5x_6 \oplus x_0x_6x_6 \oplus x_0x_6x
514
                                                                             515
                                                                             x_0x_3x_5x_6x_8x_9 \oplus x_0x_3x_5x_6x_9 \oplus x_0x_3x_5x_7x_8 \oplus x_0x_3x_5x_7x_9 \oplus x_0x_3x_5x_8 \oplus x_0x_3x_5x_8x_9 \oplus x_0x_3x_6x_7 \oplus x_0x_6x_7 \oplus x_0x_7 \oplus x
516
                                                                             x_0x_3x_6x_7x_9 \oplus x_0x_3x_6x_8 \oplus x_0x_3x_6x_9 \oplus x_0x_3x_7 \oplus x_0x_3x_7x_8 \oplus x_0x_3x_7x_8x_9 \oplus x_0x_3x_8x_9 \oplus x_0x_3x_9 \oplus x_0x_4 \oplus x_0x_4x_5x_6 \oplus x_0x_3x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_3x_6x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x_0x_6x_9 \oplus x_0x_9 \oplus x
517
                                                                             518
                                                                             519
                                                                             x_0x_4x_7x_9 \oplus x_0x_4x_8 \oplus x_0x_4x_8x_9 \oplus x_0x_5 \oplus x_0x_5x_6x_7 \oplus x_0x_5x_6x_7x_8x_9 \oplus x_0x_5x_6x_7x_9 \oplus x_0x_5x_6x_8 \oplus x_0x_5x_6x_9 \oplus x_0x
520
                                                                             x_0x_5x_7 \oplus x_0x_5x_7x_8 \oplus x_0x_5x_7x_8x_9 \oplus x_0x_5x_8x_9 \oplus x_0x_5x_9 \oplus x_0x_6 \oplus x_0x_6x_7x_8 \oplus x_0x_6x_7x_9 \oplus x_0x_6x_8 \oplus x_0x_6x_8x_9 \oplus x_0x_6x_9 \oplus x_0x_9 
521
522
                                                                             x_0x_7 \oplus x_0x_7x_8x_9 \oplus x_0x_7x_9 \oplus x_0x_8 \oplus x_0x_9 \oplus x_1 \oplus x_1x_2 \oplus x_1x_2x_3 \oplus x_1x_2x_3 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_3x_4x_5 \oplus x_1x_2x_3x_4 \oplus x_1x_2x_4 
                                                                             x_1x_2x_3x_4x_5x_6x_7 \oplus x_1x_2x_3x_4x_5x_6x_7x_8 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_3x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_5x_7x_8x_9 \oplus x_1x_2x_7x_8x_9 \oplus x_1x_2x_7x_8x_9 \oplus x_1x_2x_7x_9 \oplus x_1x_2x_7x_9 \oplus x_1x_2x
523
                                                                             x_1x_2x_3x_4x_5x_7x_9 \oplus x_1x_2x_3x_4x_5x_8 \oplus x_1x_2x_3x_4x_5x_8 \oplus x_1x_2x_3x_4x_6x_7 \oplus x_1x_2x_3x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_2x_3x_4x_7 \oplus x_1x_2x_7 \oplus x_1x_2x
524
                                                                             525
                                                                             526
                                                                             x_{1}x_{2}x_{3}x_{5}x_{7}x_{9} \oplus x_{1}x_{2}x_{3}x_{5}x_{8} \oplus x_{1}x_{2}x_{3}x_{5}x_{9} \oplus x_{1}x_{2}x_{3}x_{6} \oplus x_{1}x_{2}x_{3}x_{6}x_{7} \oplus x_{1}x_{2}x_{3}x_{6}x_{7}x_{8} \oplus x_{1}x_{2}x_{3}x_{6}x_{7}x_{8}x_{9} \oplus x_{1}x_{2}x_{3}x_{5}x_{7} \oplus x_{1}x_{2}x_{
527
528
                                                                                x_1x_2x_4x_5x_6x_7x_8x_9 \oplus x_1x_2x_4x_5x_6x_7x_9 \oplus x_1x_2x_4x_5x_6x_8 \oplus x_1x_2x_4x_5x_6x_9 \oplus x_1x_2x_4x_5x_7 \oplus x_1x_2x_4x_5x_7x_8 \oplus x_1x_2x_4x_5x_6x_7 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_7 
529
                                                                             x_1x_2x_4x_5x_7x_8x_9 \oplus x_1x_2x_4x_5x_8x_9 \oplus x_1x_2x_4x_5x_9 \oplus x_1x_2x_4x_6 \oplus x_1x_2x_4x_6x_7x_8 \oplus x_1x_2x_4x_6x_7x_9 \oplus x_1x_2x_4x_6x_8 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_8 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_8 \oplus x
530
                                                                             x_1x_2x_4x_6x_8x_9 \oplus x_1x_2x_4x_7 \oplus x_1x_2x_4x_7x_8x_9 \oplus x_1x_2x_4x_7x_9 \oplus x_1x_2x_4x_8 \oplus x_1x_2x_4x_9 \oplus x_1x_2x_5 \oplus x_1x_2x_5x_6 \oplus x_1x_2x_5 \oplus x_1x
531
                                                                             532
533
                                                                             x_1x_2x_5x_8 \oplus x_1x_2x_5x_8x_9 \oplus x_1x_2x_6x_7 \oplus x_1x_2x_6x_7x_8x_9 \oplus x_1x_2x_6x_7x_9 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_7 \oplus x_1x_2x_6x_8 \oplus x_1x_2x_6x_9 \oplus x_1x_2x_6x
                                                                             x_1x_2x_7x_8 \oplus x_1x_2x_7x_8x_9 \oplus x_1x_2x_8x_9 \oplus x_1x_2x_9 \oplus x_1x_3x_4 \oplus x_1x_3x_4x_5x_6 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_4x_5x_6x_7x_9 \oplus x_1x_3x_4x_5x_6x_7x_8 \oplus x_1x_3x_6x_7x_8 \oplus x_1x_3x_8x_8 \oplus x_1x_3x_8 \oplus x_1x_8 \oplus x_1x
534
                                                                             x_1x_3x_4x_5x_6x_8 \oplus x_1x_3x_4x_5x_6x_8y \oplus x_1x_3x_4x_5x_7 \oplus x_1x_3x_4x_5x_7x_8y \oplus x_1x_3x_4x_5x_7x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_4x_5x_9 \oplus x_1x_3x_4x_5x_8 \oplus x_1x_3x_5x_8 \oplus x_1x_5x_8 \oplus
535
                                                                             536
                                                                             537
                                                                             x_1x_3x_5x_6x_9 \oplus x_1x_3x_5x_7 \oplus x_1x_3x_5x_7x_8 \oplus x_1x_3x_5x_7x_8x_9 \oplus x_1x_3x_5x_8x_9 \oplus x_1x_3x_5x_9 \oplus x_1x_3x_6 \oplus x_1x_3x_6x_7x_8 \oplus x_1x_3x_5x_7x_8 \oplus x_1x_5x_5x_7x_8 \oplus x_1x_5x_5x_7x_8 \oplus x_1x_5x_7x_8 \oplus x_1x_5x_7x_7x_8 \oplus x_1x_5x_7x_7x_8 \oplus x_1x_5x_7x_7x_8 \oplus x_1x_5x_7x_7x_8 \oplus x_1x_5x
538
                                                                             x_1x_3x_6x_7x_9 \oplus x_1x_3x_6x_8 \oplus x_1x_3x_6x_8y \oplus x_1x_3x_7 \oplus x_1x_3x_7 \oplus x_1x_3x_7x_8y \oplus x_1x_3x_7y \oplus x_1x_3x_8 \oplus x_1x_3x_9 \oplus x_1x_4 \oplus x_1x_4x_5 \oplus x_1x_3x_6x_8 \oplus x_1x_3x_6x_8 \oplus x_1x_3x_6x_8 \oplus x_1x_3x_7 \oplus x_1x_7 
539
                                                                             x_1x_4x_5x_6 \oplus x_1x_4x_5x_6x_7 \oplus x_1x_4x_5x_6x_7x_8 \oplus x_1x_4x_5x_6x_7x_8x_9 \oplus x_1x_4x_5x_6x_8x_9 \oplus x_1x_4x_5x_6x_9 \oplus x_1x_4x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_8x_9 \oplus x_1x_5x_6x_7x_7x_8x_9 \oplus x_1x
540
                                                                             541
                                                                             x_1x_4x_7 \oplus x_1x_4x_7x_8 \oplus x_1x_4x_7x_8x_9 \oplus x_1x_4x_8x_9 \oplus x_1x_4x_9 \oplus x_1x_5x_6 \oplus x_1x_5x_6x_7x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_8 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_7x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x_1x_5x_6x_9 \oplus x
542
                                                                                x_1x_5x_6x_8x_9 \oplus x_1x_5x_7 \oplus x_1x_5x_7x_8x_9 \oplus x_1x_5x_7x_9 \oplus x_1x_5x_8 \oplus x_1x_5x_9 \oplus x_1x_6 \oplus x_1x_6x_7 \oplus x_1x_6x_7x_8 \oplus x_1x_6x_7x_8x_9 \oplus x_1x_6x_7x_9 \oplus x_1x_6x_7x_9 \oplus x_1x_6x_7x_9 \oplus x_1x_6x_7x_9 \oplus x_1x_6x_7x_9 \oplus x_1x_6x_7x_9 \oplus x_1x_6x_7x_8x_9 \oplus x_1x_6x_7x_8x_9 \oplus x_1x_6x_7x_8x_9 \oplus x_1x_6x_7x_8x_9 \oplus x_1x_6x_7x_8x_9 \oplus x_1x_6x_9x_9 \oplus x_1x
543
                                                                             x_1x_6x_8x_9 \oplus x_1x_6x_9 \oplus x_1x_7x_8 \oplus x_1x_7x_9 \oplus x_1x_8 \oplus x_1x_8x_9 \oplus x_2x_3 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_4x_5x_6x_7 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_5 \oplus x_2x_3x_4x_5 \oplus x_2x_3x_5 \oplus x_2x_5 
544
545
                                                                             x_2x_3x_4x_5x_6x_7x_9 \oplus x_2x_3x_4x_5x_6x_8 \oplus x_2x_3x_4x_5x_6x_9 \oplus x_2x_3x_4x_5x_7 \oplus x_2x_3x_4x_5x_7x_8 \oplus x_2x_3x_4x_5x_7x_8x_9 \oplus x_2x_3x_4x_5x_6x_9 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x
                                                                             x_2x_3x_4x_5x_9 \oplus x_2x_3x_4x_6 \oplus x_2x_3x_4x_6x_7x_8 \oplus x_2x_3x_4x_6x_7x_9 \oplus x_2x_3x_4x_6x_8 \oplus x_2x_3x_4x_6x_8 \oplus x_2x_3x_4x_7 \oplus x_2x_3x_4x_7 \oplus x_2x_3x_4x_7 \oplus x_2x_3x_4x_6 \oplus x_2x_3x_4 \oplus x_2x_3x
546
                                                                             x_2x_3x_4x_7x_9 \oplus x_2x_3x_4x_8 \oplus x_2x_3x_4x_9 \oplus x_2x_3x_5 \oplus x_2x_3x_5x_6 \oplus x_2x_3x_5x_6x_7 \oplus x_2x_3x_5x_6x_7x_8 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7x_8 \oplus x_2x_3x_5x_6x_7x_8x_9 \oplus x_2x_3x_5x_6x_7x_8 \oplus x_2x_5x_6x_7x_8 \oplus x_2x_3x_5x_6x_7x_8 \oplus x_2x_5x_6x_7x_8 \oplus x_2x_5x
547
                                                                             x_2x_3x_5x_6x_8x_9 \oplus x_2x_3x_5x_6x_9 \oplus x_2x_3x_5x_7x_8 \oplus x_2x_3x_5x_7x_9 \oplus x_2x_3x_5x_8 \oplus x_2x_3x_5x_8x_9 \oplus x_2x_3x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_7 \oplus x_2x_7 \oplus x_2x
548
                                                                                x_2x_3x_6x_7x_9 \oplus x_2x_3x_6x_8 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_7 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_8x_9 \oplus x_2x_3x_8x_9 \oplus x_2x_3x_9 \oplus x_2x_4 \oplus x_2x_4x_5x_6 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_6x_9 \oplus x_2x_3x_7 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7x_8 \oplus x_2x_3x_7 \oplus x_2x_7 \oplus x_2x
549
                                                                             550
                                                                             x_2x_4x_5x_8 \oplus x_2x_4x_5x_9 \oplus x_2x_4x_6 \oplus x_2x_4x_6x_7 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_7x_8 \oplus x_2x_4x_6x_7 \oplus x_2x_6x_7 \oplus x_2x_7 \oplus x_2x_6x_7 \oplus x
551
                                                                             x_2x_4x_7x_9 \oplus x_2x_4x_8 \oplus x_2x_4x_8x_9 \oplus x_2x_5 \oplus x_2x_5x_6x_7 \oplus x_2x_5x_6x_7x_8x_9 \oplus x_2x_5x_6x_7x_9 \oplus x_2x_5x_6x_8 \oplus x_2x_5x_6x_9 \oplus x_2x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x_5x_6x
552
                                                                             x_{2}x_{5}x_{7} \oplus x_{2}x_{5}x_{7}x_{8} \oplus x_{2}x_{5}x_{7}x_{8}x_{9} \oplus x_{2}x_{5}x_{8}x_{9} \oplus x_{2}x_{5}x_{9} \oplus x_{2}x_{6} \oplus x_{2}x_{6}x_{7}x_{8} \oplus x_{2}x_{6}x_{7}x_{9} \oplus x_{2}x_{6}x_{8} \oplus x_{2}x_{6}x_{8} \oplus x_{2}x_{6}x_{8} \oplus x_{2}x_{6}x_{8} \oplus x_{2}x_{6}x_{8} \oplus x_{2}x_{6}x_{7}x_{8} \oplus x_{2}x_{6}x_{7}x_{9} \oplus x_{2}x_{6}x_{8} \oplus x_{2}x_{6}x_{7}x_{9} \oplus x_{2}x_{7}x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7} \oplus x_{7}x_{7}x_{7} \oplus x_{7}x_{7} \oplus x_
553
                                                                             x_2x_7 \oplus x_2x_7x_8x_9 \oplus x_2x_7x_9 \oplus x_2x_8 \oplus x_2x_9 \oplus x_3 \oplus x_3x_4 \oplus x_3x_4x_5 \oplus x_3x_4x_5x_6 \oplus x_3x_4x_5x_6x_7 \oplus x_3x_4x_5x_6x_7x_8 \oplus x_3x_4x_5x_6x_7 \oplus x_3x_5x_6x_7 \oplus x_3x_5x_7 \oplus x_3x_5x_6x_7 \oplus x_3x_5x_7 \oplus x_3x_7 \oplus x
```

563 References

- Tatsuya Akutsu, Morihiro Hayashida, Shu-Qin Zhang, Wai-Ki Ching, and Michael K Ng. "Analyses and algorithms for predecessor and control problems for Boolean networks of bounded indegree". In: *Information and Media Technologies* 4.2 (2009), pp. 338–349.
- Johannes Georg Klotz, Martin Bossert, and Steffen Schober. "Computing preimages of Boolean networks". In: *BMC Bioinformatics* 14.10 (Aug. 2013), S4.
- J.T.-Y. Kwok and I.W.-H. Tsang. "The pre-image problem in kernel methods". In: *IEEE Transactions* on Neural Networks 15.6 (2004), pp. 1517–1525.
- Phillip Rogaway and Thomas Shrimpton. "Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance". In: Fast Software Encryption. Ed. by Bimal Roy and Willi Meier. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 371–388.
- Natalia Tokareva. "Chapter 1 Boolean Functions". In: *Bent Functions*. Ed. by Natalia Tokareva. Boston: Academic Press, 2015, pp. 1–15.