

Tutorials Week 1

Position of Empirical Economics in the curriculum

Period 1		Period 2	Period 3, 4			
	i	Research Project				
	B&F	Fintech				
	B&SI	Frontiers of Business and Social Impact				
Empirical	BD&E	Frontiers of Entrepreneurship				
Economics	EP	Policy Evaluation Skills	Thesis			
	IM	Frontiers of International Management				
	FM	Next Generation Finance				
	SC&R	SC&R				
	SF&I	Sustainability Risk				

Some practical information:

In Blackboard, you can find under Course Content, the following:

- The datasets we use for Blackboard
- There is a PDF with the compilation of the tutorial exercises
- Stata commands
- Papers used for the datasets
- Tutorials for Stata
- Statistical tables
- doc.files
- In case you need more support in Econometrics, the slides of Dr. Anna Salomon for Bachelor are helpful,
- For support in statistics, the slides of Dr. Adriaan Kalwij from the Bachelor course are also helpful.

Regression Analysis: a recapitulation of Econometrics and Statistics in Bachelor

Pdf file on Blackboard	Dataset on Blackboard	Papers related to the datasets	Description
C 3.4	attend.dta	Leslie Papke(2005): The Effects of Spending on Test Pass Rates: Evidence from Michigan, Journal of Public Economics 89, 821-839	OLS mechanics to write estimated models. Interpretation of the coefficients β_0 ; β_1 ; and β_2 . (further explanation in the book, page 199). Basic Stata commands. Data structure, variables, interpretation regression parameters (check lecture – unit 1 page 44)
C 4.10	elem94_95	Leslie Papke(2005): The Effects of Spending on Test Pass Rates: Evidence from Michigan, Journal of Public Economics 89, 821-839	interpretation of coefficients, log variables, changes in standard error, t-test, and rejection areas. Write an economic conclusion.
6.3	wage2.dta	Blackburn McK. and Neumark, D. (1992): Unobserved ability, efficiency wages, and interindustry wage differentials. The Quarterly Journal of Economics,	Marginal effects, use, and meaning of interaction terms: meaning and how to generate them in Stata. Assess the statistical significance of the interaction term and compare the coefficient of determination with and without the interaction term. (further explanation on the book page 218)
7.14	sleep75.dta	J.E. Biddle and D.S. Hamermesh (1990): Sleep and the Allocation of Time, Journal of Political Economy 98, 922-943.	use of dummy variables, interaction terms, F-test
C 8.1	sleep75.dta	J.E. Biddle and D.S. Hamermesh (1990): Sleep and the Allocation of Time; Journal of Political Economy 98, 922-943.	heteroskedasticity, robust standard errors, the variance of the error term, heteroskedasticity testing (Breush-Pagan). See Chapter 8.3

C 3.4. Use the data in ATTEND.RAW for this exercise.

i) Obtain the minimum, maximum, and average values for the variables atndrte, priGPA, and ACT

Variables: atndrte: percent classes attended; priGPA: cumulative GPA prior to term; ACT: ACT score

. use "U:\Stata\Empirical Economics Data Sets\Week 1\ATTEND.DTA"

. sum atndrte priGPA ACT

Variable	Obs	Mean	Std. Dev.	Min	Max
atndrte	680	81.70956	17.04699	6.25	100
priGPA	680	2.586775	.5447141	.857	3.93
ACT	680	22.51029	3.490768	13	32

ii) Estimate the model (basic OSL):

$$atndrte = \beta_0 + \beta_1 priGPA + \beta_2 ACT + u$$

Write the results in equation form.

$$atnarte = 75.70 + 17.26priGPA - 1.72ACT$$
 (19.49)
 (15.94)
 (-10.16)

reg atndrte priGPA ACT

Source	SS	df	MS		er of obs	=	680 138.65
Model	57336.7612	2	28668.380		677)	=	0.0000
		_					
Residual	139980.564	677	206.76597	′4 R−sqı	uared	=	0.2906
+				- Adj	R-squared	=	0.2885
Total	197317.325	679	290.5998	9 Root	MSE	=	14.379
atndrte	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
priGPA	17.26059	1.083103	15.94	0.000	15.1339	5	19.38724
ACT	-1.716553	.169012	-10.16	0.000	-2.04840	4	-1.384702
_cons	75.7004	3.884108	19.49	0.000	68.0740	6	83.32675

Source	SS	df	MS	Numb	er of obs	=	680
+				- F(2,	677)	=	138.65
Model	57336.7612	2	28668.380	6 Prob	> F	=	0.0000
Residual	139980.564	677	206.76597	4 R-sq	uared	=	0.2906
+				- Adj	R-squared	=	0.2885
Total	197317.325	679	290.5998	9 Root	MSE	=	14.379
atndrte	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
priGPA	17.26059	1.083103	15.94	0.000	15.133	95	19.38724
ACT	-1.716553	.169012	-10.16	0.000	-2.0484	04	-1.384702
cons	75.7004	3.884108	19.49	0.000	68.074	96	83.32675

Interpret the intercept. Does it have a useful meaning?

R-squared: 0.29

Students with 0 priGPA and 0 ACT would attend 75.7% of classes on average. Since this is unlikely to happen, the intercept does not have practical meaning.

Utrecht University

iii) Discuss the estimated slope coefficients.

Source	SS	df	MS	Numbe	er of obs	=	686
+				F(2,	677)	=	138.69
Model	57336.7612	2	28668.3806	Prob	> F	=	0.0000
Residual	139980.564	677	206.765974	R-sq	uared	=	0.290
				Adj I	R-squared	=	0.288
Total	197317.325	679	290.59989	Root	MSE	=	14.379
atndrte	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval
priGPA	17.26059	1.083103	15.94	0.000	15.133	95	19.38724
	-1.716553	.169012	-10.16	0.000	-2.04840	94	-1.384702
ACT	-1./10333	.103012	10.10	0.000			

atndrte: percent classes attended priGPA: cumulative GPA prior to term

ACT: ACT score

atndrte = 75.70 + 17.26priGPA - 1.72ACT

Interpretation:

Interpretation of β_i Level-level: $\Delta y = \beta_i \Delta x$

- For every point increase in the prior GPA (priGPA), the attendance rate (atndrte) is expected to increase by 17,26 percentage points, holding all other variables constant.
- For every point increase in ACT score, the attendance rate (atndrte) is expected to decrease by 1.72 percentage points, holding all other variables constant.

What if two students have the same ACT?

• In that case, check the priGPA for those students. The one student with a higher priGPA will attend 17.26% more classes compared to the other.

iv) What is the predicted atndrte if priGPA=3.65 and ACT = 20?

```
The predicted attendance rate atndrte when priGPA=3.65 and ACT=20 equals 104.3705 . display _b[_cons] + _b[priGPA]*3.65 + _b[ACT]*20 104.3705

What you do in the exam, you just replace: atndrte = 75.70+17.26(3.65)-1.72(20)=104.40%
```

What do you make of this result? Are there any students in the sample with these values of the explanatory variables?

This result is not possible. We can not predict that the attendance will increase in 104.40%. A student with a priGPA of 3.65 and ACT of 20 will for sure attend to 100% the class but not to 104.40%. It exceeds predictions

v) If student A has priGPA = 3.1 and ACT = 21 and student B has priGPA = 2.1 and ACT = 26, what is the predicted difference in their attendance rates?

$$atndrte = 75.70 + 17.26priGPA - 1.72ACT$$

Student A:

$$atndrte = 75.70 + 17.26 * (3.1) - 1.72(21)$$

$$atndrte = 75.70 + 53.51 - 36.12$$

$$atndrte = 93.09$$

Student B:

$$atndrte = 75.70 + 17.26 * (2.1) - 1.72(26)$$

$$atndrte = 75.70 + 36.25 - 44.72$$

$$atndrte = 67.23$$

STATA Commands:

.
$$di_b[_cons] + _b[priGPA]*2.1 + _b[ACT]*26$$

67.31727

Predicted difference in their attendance rates = 93.09 - 67.23 = 25.86

C.4.10 Use the data in ELEM94_95 to answer this question.

The dependent variable *lavgsal* is the log of average teacher salary and *bs* is the ratio of average benefits to average salary (by school).

i) Run the simple regression of lavgsal on bs.

Source	SS	df	MS	Numb	er of obs	=	1,848
				- F(1,	1846)	=	28.23
Model	1.5088834	1	1.508883	4 Prob	> F	=	0.0000
Residual	98.6724955	1,846	.05345205	6 R-sq	uared	=	0.0151
+				- Adj	R-squared	=	0.0145
Total	100.181379	1,847	.05424005	4 Root	MSE	=	.2312
lavgsal	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
bs	7951249	.1496545	-5.31	0.000	-1.0886	35	501619
cons	10.7479	.0516622	208.04	0.000	10.646	57	10.84922

Variables:

- bs: avgben/avgsal
- lavgsal: log(avgsal)

Is the estimated slope statistically different from zero?

- Ho: β_1 statistically significant = 0.
- H1: β_1 statistically significant $\neq 0$ (two-sided test : Table G.2)
- If |t-value| > t critical value, then reject Ho.
- 5.31 > 1.96, which means that in absolute terms the t-statistics is greater than the c.v. at 5% significance level.
 Therefore, we reject Ho.
- We accept H1: β_1 is statistically significant different from 0.

Is bs statistically different from -1?

We need to test this:

Write all statistical steps for an F-test:

- $Ho = \beta_1 = -1$
- $H1 = \beta_1 \neq -1$ Table G.3a); b) for F-Distribution
- If F value > F critical value, then reject Ho.
- If 1.87 > 2.71 (at 10% level; 0.10 --> Table 3a) or if 1.87 > 3.84 (at 5% level, $0.05 \rightarrow$ Table G.3b), then reject Ho.
- In both cases, it is not the case that the F-values are greater than the F-critical values. Hence, we can not reject Ho.
- We accept Ho: bs is **not** statistically different from -1.

For the exam, you have to write all the steps for a T-test or F-test:

Formulate the Ho, t statistics, and F-statistics, write the critical values at the significance level that is asked (mostly 5%), formulate the rejection area, reject or fail to reject the Ho, and write the interpretation of the coefficient and the economic meaning.

The interpretation of the regression parameter (coefficient) for bs: It is a log-level because log(y) and x.

$$%\Delta y = (100\beta_i) * \Delta x$$

Calculate the percentage change:
$$(e^{coefficient} - 1) * 100 = (e^{-0.7951249t} - 1) * 100 = -54.8475$$

A one-unit increase in the ratio of average benefits to average salary by school bs, suggests approximately a 54.85% decrease in the average salary, holding other variables constant.

Economic interpretation: This finding might suggest that schools with higher benefit ratios relative to salaries may offer lower average salaries for teachers, potentially reflecting budgetary priorities or compensation structures within those schools.

ii) Add the variable *lenrol* and *lstaff* to the regression from part (i). What happens to the coefficient on *bs*?

What happens to the coefficient on bs?

- It increased.
- Now it is -0.61 against -0.79. You can also calculate the percentage change for the average salaries (~-45.39%) This implies that for each one-unit increase in the ratio of average benefits to average salary –bs-, the average teachers' salary is expected to decrease by about 45.39%, holding other factors constant. This suggests a negative relationship between the benefits-to-salary ratio and teacher salaries, but a lower decrease than in i).
- This is normal when adding more variables and when controlling others.

Additional questions:

What can you say about the R-squared in both regressions and what do the standard errors say? What about the SSR?

ii) How does the situation compare with that in table 4.1?

- This is a smaller sampler. n=408
- Compared to Table 4.1. bs now increased. Now it is -0.589
- (It went from -0.825 to -0.605, when adding more independent variables.)

TABLE 4.1 Testing the Sa	ılary-Benefits Trade	off	
	Dependent Variable	e: log(<i>salary</i>)	
Independent Variables	(1)	(2)	(3)
b/s	825 (.200)	605 (.165)	589 (.165)
log(enroll)		.0874 (.0073)	.0881 (.0073)
log(staff)		222 (.050)	218 (.050)
droprate			00028 (.00161)
gradrate			.00097 .00066)
intercept	10.523 (0.042)	10.884 (0.252)	10.738 (0.258)
Observations <i>R</i> -squared	408 .040	408 .353	408 .361

- Is bs statistically different from zero? Yes, it is.
- Is it statistically different from -1?

- Ho: $\beta_1 = -1$
- H1: β_1 : $\neq -1 \rightarrow$ (this is a double-sized test)
- Fvalue > Fcv, then reject Ho
- 13.9 > 2.71 (at 0.10) or > 3.84 (0.05)
- We reject Ho at the 10% and 5% significance levels level. *bs* is statistically different from -1.
- The coefficients of the other variables are different from Table 4.1. They might have been taken from another example.

iii) How come the standard error on the BS coefficient is smaller in part (ii) than in part i)?

The s.e. in i) is 0.200. It is larger than the ii) and iii) (each 0.165) because there are fewer controlled variables in i). In ii) and iii) we included more regressors. This can be observed with the variance of the OLS regressors.

What happens to the error variance versus multicollinearity when lenrol and lstaff are added?

$$Var(\hat{\beta}_j) = \frac{\hat{\sigma}^2}{(1 - R_j^2) \sum_{i=1}^n (x_i - \bar{x})^2} = \frac{\hat{\sigma}^2}{(1 - R_j^2) SST_j}$$

$$se(\hat{\beta}_j) = \sqrt{(Var(\hat{\beta}_j))} : \text{ standard error of } \hat{\beta}_j$$

- R^2 can also increase (it increased in ii) >0) and leads to lowering the standard error.
- If R^2 comes close to 1, this can lead to a multicollinearity problem (a good fit of the model represents high variability of the explanatory and dependent variables).
- If SST is small, multicollinearity can arise. Larger n are mainly related to higher SST.
- If there is multicollinearity, the standard error will increase substantially.

iv) How come the coefficient of Istaff is negative? Is it large in magnitude?

```
. reg lavgsal bs lenrol lstaff
                                                 Number of obs
     Source |
                                                                       1,848
                                                 F(3, 1844)
                                                                      572.03
                                                 Prob > F
      Model
               48.2908776
                                 3 16.0969592
                                                                      0.0000
   Residual
               51.8905013
                             1,844 .028140185
                                                 R-squared
                                                                      0.4820
                                                 Adj R-squared
                                                                      0.4812
      Total
              100.181379
                              1,847 .054240054
                                                 Root MSE
                                                                      .16775
                  Coef.
                          Std. Err.
                                              P> t
                                                        [95% Conf. Interval]
    lavgsal
               -.6050611
                           .1087429
                                      -5.56
                                              0.000
                                                       -.8183333
                                                                   -.3917889
     lenrol
               -.0315853
                           .0084769
                                      -3.73
                                              0.000
                                                       -.0482106
                                                                     -.01496
     lstaff
               -.7137195
                           .0177902
                                     -40.12
                                              0.000
                                                       -.7486105
                                                                   -.6788285
                13.95305
                           .1072337
                                     130.12
                                              0.000
                                                        13.74274
      _cons
                                                                    14.16336
```

This is a log-log level: $\%\Delta y = \beta_i\%\Delta x$

A 1% increase in the staff number, is associated with approximately a 0.71% decrease in the average salary while keeping the other variable fixed. Yes, it is large in magnitude.

v) Now add the variable *lunch* to the regression. Holding other factors fixed, are teachers being compensated for teaching students from disadvantaged backgrounds? Explain.

. reg lavgsal bs lenrol lstaff lunch

Source	SS			Number of obs F(4, 1843)	
Model	48.904075 51.2773039	4 12.2 1843 .02	2260187 7822737	Prob > F R-squared Adj R-squared	= 0.0000 = 0.4882
Total				 Root MSE	= .1668
_				[95% Conf.	_
bs lenrol lstaff lunch	516129 0284092 6906322	.1097747 .008456 .0183604 .0001615 .1097259			3008332 0118247 6546228 0004414

- The number of lunches offered in a school increases because the number of more disadvantaged children in classes increases, too.
- It is a log-level: $\frac{100\beta_i}{2}$ = $\frac{100\beta_i}{2}$ the %change of average salaries is -0.07581%, because -0.0007581*100%
- For each additional lunch provided, the average salary of teachers is expected to decrease by about 0.07581%.
- Teachers are not being compensated for teaching students from disadvantaged backgrounds.
- The school would need to reconsider how to allocate resources better, so the trade-off does not affect teacher.

vi) Overall, is the pattern of results that you find with ELEM94_95.RAW consistent with the pattern in table 4.1?

Source	SS	df	MS	Numb	er of ob	5 =	1,848
+				- F(1,	1846)	=	28.23
Model	1.5088834	1	1.508883	4 Prob	> F	=	0.0000
Residual	98.6724955	1,846	.05345205	6 R-sq	uared	=	0.0151
+				- Adj	R-square	d =	0.0145
Total	100.181379	1,847	.05424005	4 Root	MSE	=	.2312
lavgsal	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
bs l	7951249	.1496545	-5.31	0.000	-1.088	635	501615
cons	10.7479	.0516622	208.04	0.000	10.64	657	10.84922

. reg lavgsal bs lenrol 1staff

Source	SS	df	MS	Number of obs	=	1,848
			-	F(3, 1844)	=	572.03
Model	48.2908776	3	16.0969592	Prob > F	=	0.0000
Residual	51.8905013	1,844	.028140185	R-squared	=	0.4820
			-	Adj R-squared	=	0.4812
Total	100.181379	1,847	.054240054	Root MSE	=	.16775

lavgsal	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
bs lenrol lstaff	6050611 0315853 7137195	.1087429 .0084769 .0177902	-5.56 -3.73 -40.12	0.000 0.000 0.000	8183333 0482106 7486105	3917889 01496 6788285
_cons	13.95305	.1072337	130.12	0.000	13.74274	14.16336

. reg lavgsal bs lenrol lstaff lunch

	Source	SS	df	MS	Number of obs	=	1,848
-					F(4, 1843)	=	439.43
	Model	48.904075	4	12.2260187	Prob > F	=	0.0000
	Residual	51.2773039	1,843	.027822737	R-squared	=	0.4882
_					Adj R-squared	=	0.4870
	Total	100.181379	1,847	.054240054	Root MSE	=	.1668

lavgsal	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
bs	516129	.1097747	-4.70	0.000	7314248	3008332
lenrol	0284092	.008456	-3.36	0.001	0449936	0118247
lstaff	6906322	.0183604	-37.62	0.000	7266416	6546228
lunch	0007581	.0001615	-4.69	0.000	0010747	0004414
_cons	13.83149	.1097259	126.06	0.000	13.61629	14.04669
	ı					

vi) Overall, is the pattern of results that you find with ELEM94_95.RAW consistent with the pattern in table 4.1?

- Not all the coefficients have the same sign; hence, there is a qualitative difference between the regression results and Table 4.1.
- In Table 4.1. we find that with bs and *log staff* fixed, additional students would increase the average salary of the teaching staff. (the logenroll is positive in ii) and iii))
- Compared to the regressions, we found that we have lower wages on average in schools with more enrollments, holding other factors fixed (the logenroll is negative in the regressions).
- The difference in the sample in the regressions versus Table 4.1. can be due to differences in the sample. The characteristics of the schools or teachers in the two samples may differ significantly, which can lead to different relationships between enrollment and teacher salaries. Also, selection bias: smaller samples can lead to specific patterns due to the different types of schools included, e.g., schools with different demographic levels are overrepresented in one sample; this can affect the sign and magnitude of the coefficient.
- Measurement error: if the data quality is poorer due to e.g. missings in the data, can also lead to different estimates.

6.3) The following model allows the return to education to depend upon the total amount of both parent's education, called *pareduc*:

$$\log(wage) = \beta_0 + \beta_1 educ + \beta_2 educ * pareduc + \beta_3 exper + \beta_4 tenure + u$$

To keep in mind:

TABLE 2.3 Su	mmary of Functiona	l Forms Involving Loga	rithms
Model	Dependent Variable	Independent Variable	Interpretation of $oldsymbol{eta}_1$
Level-level	У	X	$\Delta y = \beta_1 \Delta x$
Level-log	У	log(x)	$\Delta y = (\beta_1/100)\% \Delta x$
Log-level	log(y)	X	$\%\Delta y = (100\beta_1)\Delta x$
Log-log	log(y)	log(x)	$\%\Delta y = \beta_1\%\Delta x$

• For the interaction term, we have to generate two new variables. The first is *pareduc* and the other, the own education under the influence of the *pareduc*, that means: *educ*pareduc*

```
gen pareduc = meduc+feduc
(213 missing values generated)
Then generate an interaction term = educ*pareduc
gen educ_pareduc=educ*pareduc
(213 missing values generated)
```

University i) Show that, in decimal form, the return to another year of education in this model is:

$$\Delta \log(wage)/\Delta educ = \beta_1 educ + \beta_2 pareduc$$

What sign do you expect for β_2 ? Why?

- We expect the sign to be positive. If parents' education is higher (pareduc), the coefficient for return to education will also increase.
- The interaction term "educ_pareduc" is positive since we believe that it is more likely that children of bettereducated parents tend to have more access to studies and become more productive workers.

Source	SS	df	MS	Numbe	er of ob	s =	722
				F(4,	717)	=	36.44
Model	21.4253649	4	5.35634121	Prob	> F	=	0.0000
Residual	105.386551	717	.146982637	R-sq	uared	=	0.1690
				Adj I	R-square	d =	0.1643
Total	126.811916	721	.175883378		MCE	=	.38338
		721	.1/30033/0	Root	MSE		.30330
lwage	Coef.	Std. Err.		P> t			
			t			Conf.	Interval]
lwage	Coef.	Std. Err.	t 4.46	P> t	[95%	Conf. 835	Interval]
lwage	Coef. .0467522	Std. Err.	t 4.46 3.68	P> t 0.000	[95% .0261	Conf. 835	Interval .067321
lwage educ duc_pareduc	Coef. .0467522 .000775	Std. Err. .0104767 .0002107	t 4.46 3.68 4.79	P> t 0.000 0.000	.0261 .0003	Conf. 835 612 299	.067321 .0011887 .026612

ii) Using the data in WAGE2.RAW, the estimated equation is:

12-9-2024

$$\log(wage) = 5.65 + 0.047educ + 0.00078educ * pareduc + 0.019exper + 0.010tenure$$

$$(0.13) \qquad (0.010) \qquad (0.00021) \qquad (0.004) \qquad (0.003)$$

$$n = 722, R^2 = 0.169 \qquad \text{(Only 722 observations contain full information on parents' education.)}$$

Interpret the coefficient on the interaction term. It might help to choose two specific values for pareduc – for example, pareduc = 32 if both parents have a college education, or pareduc = 24 if both parents have a high school education – and to compare the estimated return to educ:

The return to another year of education:

$$\Delta \log(wage)/\Delta educ = \beta_1 educ + \beta_2 pareduc$$

for example, pareduc = 32 if both parents have a college education

for example, pareduc = 24 if both parents have a high school education

$$= 0.0468 + 0.000775(32) = 0.072$$

$$= 0.0468 + 0.000775(24) = 0.065$$

The rate of returns is 6.5% and 7.2%, respectively.

ii) Using the data in WAGE2.RAW, the estimated equation is:

$$\log(wage) = 5.65 + 0.047educ + 0.00078educ * pareduc + 0.019exper + 0.010tenure$$

$$(0.13) \qquad (0.010) \qquad (0.00021) \qquad (0.004) \qquad (0.003)$$

Calculate this with Stata:

nlcom _b[educ] + _b[educ_pareduc]*32										
_nl_1: _b[educ] + _b[educ_pareduc]*32										
lwage	Coef.	Std. Err.	z		[95% Conf. Interva					
					.0574198 .08568					
nlcom _b[educ] _nl_1:	+ _b[educ_pa _b[educ] + _	-	uc]*24							
lwage					[95% Conf. Interva					
					.0504374 .08026					

Interpretation:

If you come from parents who have a college education, your wage will increase by 7.2%. If you come from parents who only have a high school education, the rate of return on education is 6.5%.

iii) When pareduc is added as a separate variable to the equation, we get:

$$log(wage) = 4.94 + 0.097educ + +0.033 \ pareduc - 0.0016educ * pareduc + 0.020exper + 0.010tenure$$

$$(0.38) \quad (0.027) \quad (0.017) \quad (0.0012) \quad (0.004) \quad (0.003)$$

$$n = 722, R^2 = 0.1735$$

. reg lwage ed	duc pareduc ed	uc_pareduc	exper ten	ure			
Source	SS	df	MS		er of obs	=	722
				- F(5,	716)	=	30.07
Model	22.0046475	5	4.400929	5 Prob	> F	=	0.0000
Residual	104.807268	716	.14637886	6 R-sq	uared	=	0.1735
				- Adj	R-squared	=	0.1678
Total	126.811916	721	.175883378	B Root	MSE	=	.38259
lwage					[95% Co	nf.	Interval]
educ	.0971133	.0273897	3.55	0.000	.043339	7	.150887
pareduc	.0332144	.0166963	1.99	0.047	.000434	8	.0659939
educ pareduc		.0011966	-1.31	0.190	003917	5	.0007809
exper	.0195568	.0039499	4.95	0.000	.011802	1	.0273116
tenure	.0103082	.002988	3.45	0.001	.00444	2	.0161744
_cons	4.937661	.3790621	13.03	0.000	4.19345	5	5.681867

Does the estimated return to education now depend positively on parent education?

- It does not depend positively. The return on education has a negative relationship to parental education.
- The interaction term is not significant anymore. This can have been caused by omitting the variable *pareduc in ii)* (this caused omitted variable bias).

Test the null hypothesis that the return to education does not depend on parent education.

- Test if pareduc has an effect on the rate of returns to education. That means, pareduc has a relationship to wage, and it can not be 0
 - \rightarrow Ho: $\beta_2 = 0$
 - \rightarrow H1: $\beta_2 \neq 0$ (two-sided test : Table G.2)
 - ➤ If |t-stats| > tcritical value, then reject Ho.
 - ➤ 1.99 > 1.960, reject Ho at 5% significance level.
 - Pareduc has an effect on Iwage.
 - ➤ Pareduc yields a positive coefficient, which is significant at 5%. So it has an effect on the average wage, but not via the rate of returns (not via education). The interaction term is not even significant at the 10% level against a two-sided alternative.

This exercise provides a good example of how omitting a level effect (pareduc in this case) can lead to a biased estimation of the interaction effect.

Additional task: quadratic function and new interaction term.

gen educ2=educ^2

Source	SS	df	MS	Number of obs	=	723
				F(6, 715)	=	25.5
Model	22.3579761	6	3.72632934	Prob > F	=	0.000
Residual	104.45394	715	.146089426	R-squared	=	0.1763
+				Adj R-squared	=	0.1694
Total	126.811916	721	.175883378	Root MSE	=	.38222
lwage				> t [95% Co		
+						
educ		.0915571		.011 .05324		.412746
	005388	.0034646	-1.56 0	.120012	19	.0014139
educ2			1.18 0	.23901437	18	.057450
educ2 pareduc	.0215393	.0182913	1.10	.233		
pareduc	.0215393 000748	.0182913		.56700331	32	.001817
pareduc			-0.57 0			
pareduc duc_pareduc	000748	.0013066	-0.57 0 5.07 0	.56700331	48	.0018172 .0278676 .0164014

- The relationship between education and log wages is now non-linear because of the quadratic functional form and will depend on education and parental education.
- For this reason, we will estimate the effect of education for an individual with average education and average pareduc. In the next slide, we calculate the rate of return to education and parental education.

Calculate the rate of return again:

- To calculate the rate of return manually:
 - = logwage = 4.11+0.23edu-0.0053educ^2 + 0.02153pareduc 0.000748educ_pareduc ...

```
The commands in Stata for the rate of returns:

nlcom _b[educ] + 2*_b[educ2]*13.46845+ _b[educ_pareduc]*21.06094

_nl_1: _b[educ] + 2*_b[educ2]*13.46845+ _b[educ_pareduc]*21.06094

lwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 | .0721034 .0093799 7.69 0.000 .0537192 .0904877
```

- Even though the coefficients of educ2 and educ_pareduc were not significant statistically, the estimated rate of returns to education is significant at 1% and is 7.2% per school year at the mean.
- Important: when using quadratic forms, there is no linear relationship.

 Hence the rate of returns to education changes with the educ. Since educ^2 has a negative coefficient, we find a decreasing rate of returns to education in line with theoretical expectations and many empirical studies.

7.14 Use the data in SLEEP75.RAW for the exercise. The equation of interest is:

$$sleep = \beta_0 + \beta_1 totwrk + \beta_2 educ + \beta_3 age + \beta_4 age^2 + \beta_5 yngkid + u$$

i) Estimate this equation separately for men and women and report the results in the usual form. Are there notable differences between the two estimated equations?

The variables are:

- The total number of working hours (totwrk),
- education level (educ),
- age and,
- the number of young kids (yngkid) that are younger than 3 years old and,
- the relationship to the total number of sleep hours (sleep) a man or woman gets.
- We will consider a dummy variable for this regression: Male = 1; Male = 0

• First we run the regression without considering the binary variable of male = 1

. reg sleep totwrk educ age yngkid

Source	SS	df	MS	Number of obs	=	706
+				F(4, 701)	=	22.46
Model	15818709.4	4	3954677.35	Prob > F	=	0.0000
Residual	123421126	701	176064.374	R-squared	=	0.1136
+				Adj R-squared	=	0.1085
Total	139239836	705	197503.313	Root MSE	=	419.6

sleep	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
totwrk	1483157	.0167037	-8.88	0.000	1811109	1155205
educ	-11.19025	5.889365	-1.90	0.058	-22.75315	.3726611
age	2.402862	1.518646	1.58	0.114	5787773	5.384502
yngkid	21.84079	49.75161	0.44	0.661	-75.83923	119.5208
cons	3628.15	114.6692	31.64	0.000	3403.014	3853.286

• We need to generate age^2 and run the regression again:

 $sleep = \beta_0 + \beta_1 totwrk + \beta_2 educ + \beta_3 age + \beta_4 age^2 + \beta_5 yngkid + u$

- . gen age2=age^2
- . reg sleep totwrk educ age age2 yngkid

Source	SS	df	MS	Number of obs	=	706
				F(5, 700)	=	18.14
Model	15972384.7	5	3194476.94	Prob > F	=	0.0000
Residual	123267451	700	176096.359	R-squared	=	0.1147
				Adj R-squared	=	0.1084
Total	139239836	705	197503.313	Root MSE	=	419.64
sleep	Coef.	Std. Err.	t P	> t [95% Co	nf.	Interval]
	+					
totwrk	4450453					
co cm rc	1460463	.0168809	-8.65 0	.000179189	16	1129031
educ	1460463	.0168809 5.890168		.000179189 .059 -22.7022		1129031 .4267914
			-1.89 0		23	
educ	-11.13772	5.890168	-1.89 0 -0.71 0	.059 -22.7022	3	.4267914
educ age	-11.13772 -8.123949	5.890168 11.37049	-1.89 0 -0.71 0 0.93 0	.059 -22.7022 .475 -30.448	23 33 .7	.4267914 14.2004

Now the equations are separately estimated. For that, we need to consider the dummy variables. Male = 1; Male = 0

reg sleep totwrk educ age age2 yngkid if ma	'eg	male==1	L
---	-----	---------	---

Source	SS	df		Number of obs	=	400 14.59
				Prob > F		
Model	11806161.6	_	2361232.32		=	0.0000
Residual	63763979	394	161837.51	R-squared	=	0.1562
+				Adj R-squared	=	0.1455
Total	75570140.6	399	189398.849	Root MSE	=	402.29

reg sleep	totwrk	educ	age	age2	yngkid	if	male==0
-----------	--------	------	-----	------	--------	----	---------

Source	SS	df	MS	Number of obs	=	306
+				F(5, 300)	=	6.50
Model	6201576.18	5	1240315.24	Prob > F	=	0.0000
Residual	57288575.9	300	190961.92	R-squared	=	0.0977
+				Adj R-squared	=	0.0826
Total	63490152.1	305	208164.433	Root MSE	=	436.99

sleep	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
totwrk	1821232	.0244855	-7.44	0.000	2302618	1339846
educ age	-13.05238 7.156591	7.414218 14.32037	-1.76 0.50	0.079 0.618	-27.62876 -20.99731	1.523996 35.31049
age2	0447674	.1684053	-0.27	0.791	3758528	.2863181
yngkid	60.38021 3648.208	59.02278 310.0393	1.02	0.307 0.000	-55.65877	176.4192
_cons	3648.208	510.0393	11.77	0.000	3038.67	4257.747

sleep	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
totwrk	1399495	.0276594	-5.06	0.000	1943806	0855184
educ	-10.20514	9.588848	-1.06	0.288	-29.07506	8.664787
age	-30.35657	18.53091	-1.64	0.102	-66.82361	6.110464
age2	.3679406	.2233398	1.65	0.101	0715705	.8074516
yngkid	-118.2826	93.18757	-1.27	0.205	-301.6667	65.10154
cons	4238.729	384.8923	11.01	0.000	3481.299	4996.16

- For males the *education* coefficient is stast. significant at 10% (0.079 < 0.10); for women, it is not significant at 10% (0.288 > 0.10).
- The relationship between *age* and weekly minutes sleep at night (*sleep*) is also different:
 - ✓ For males, it has an inverse U shape, while for women, it is U-shaped. The P-value is not statistically significant at the 10% level. We do not have enough evidence to reject the Ho at the 10% significance level.
- The coefficient of *yngkids* dummy (if there is at least one kid in the family younger than 3):
 - For men, it is positive: 60.38 and negative for women: -118.28. However, it is not statistically significant at 10%.

- (ii) Compute the Chow test for equality of the parameters in the sleep equation for men and women. Use the form of the test that adds *male* and the interaction terms *male*towrk, ..., male*yngkid* and uses the full set of observations. What are the relevant *df* for the test? Should you reject the null at the 5% level?
- a. What are the relevant *df* for the test?
- b. Should you reject the null at the 5% level?

First, we have to generate interaction terms:

```
. gen totwrk_male=totwrk * male
. gen educ_male=educ*male
. gen age_male = age*male
. gen age2_male= age2*male
. gen yngkid_male = yngkid*male
```

Why do we generate interaction terms?

They generate a wider understanding of the variables in the model. More hypotheses can be tested about the relationship between the independent variables and the dependent ones.

Then run the regression using the interaction terms:

reg sleep totwrk educ age age2 yngkid male totwrk_male educ_male age_male age2_male yngkid_male

Source	SS	df	MS		per of obs	=	706
+				- F(1	1, 694)	=	9.48
Model	18187280.8	11	1653389.1	7 Prol) > F	=	0.0000
Residual	121052555	694	174427.31	3 R-50	quared	=	0.1306
+				- Adj	R-squared	=	0.1168
Total	139239836	705	197503.31	.3 Root	t MSE	=	417.64
sleep	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval
totwrk	1399495	.0264349	-5.29	0.000	1918514	1	0880476
educ	-10.20514	9.164321	-1.11	0.266	-28.19826	5	7.78798
age	-30.35657	17.71049	-1.71	0.087	-65.12914	1	4.415998
age2	.3679406	.2134519	1.72	0.085	0511483	3	.7870294
yngkid	-118.2826	89.06187	-1.33	0.185	-293.1456	5	56.58047
male	-590.5211	488.7916	-1.21	0.227	-1550.209	9	369.1665
otwrk male	0421737	.036674	-1.15	0.251	114179	9	.0298317
educ male	-2.847243	11.96795	-0.24	0.812	-26.34497	7	20.65048
age male	37.51316	23.12332	1.62	0.105	-7.886888	3	82.9132
age2 male	4127079	.2759136	-1.50	0.135	9544333	3	.129017
ngkid male	178.6628	108.1051	1.65	0.099	-33.5899	5	390.91
cons	4238.729	367.8519	11.52	0.000	3516.493	3	4960.965

 $sleep = \beta_0 + \beta_1 totwrk + \beta_2 educ + \beta_3 age + \beta_4 age^2 + \beta_5 yngkid + \beta_6 male + \beta_7 totwrk_male + \beta_8 educ_male + \beta_9 age_male + \beta_{10} age2_male + \beta_{11} yngkid_male + u$

Utrecht University

Now run the F-test on all coefficients that involve the male dummy (so consider the interaction terms and also the dummy male)

```
. test male totwrk_male educ_male age_male age2_male yngkid_male
       male = 0
     totwrk male = 0
  3) educ male = 0
  4) age male = 0
( 5) age2_male = 0
( 6) yngkid_male = 0
       F(6, 694) =
                           2.12
            Prob > F =
                           0.0495
H_0 = \beta_6 = \beta_7 = \beta_8 = \beta_9 = \beta_{10} = \beta_{11} = 0
H_1 = no true
If F_{value} > F_{CV}, then reject Ho
 2.12 > 2.10, then reject Ho at 5% significant level.
```

We reject Ho at 5%;

Gender has an effect on the total amount of hours of sleep.

a. What are the relevant *df* for the test?

The relevant df for the tests are 6 and 694. 6 is the d.f for the numerator and 694 the d.f. for the denominator.

b. Do you reject the null hypothesis at the 5% level? Yes, we reject the Ho. Gender has an effect on sleep.

iii) Given the results from parts (ii) and (iii), what would be your final model?

It means: test the interaction terms for joint significance.

```
test totwrk_male educ_male age_male age2_male yngkid_male

( 1) totwrk_male = 0
( 2) educ_male = 0
( 3) age_male = 0
( 4) age2_male = 0
( 5) yngkid_male = 0

F( 5, 694) = 1.26
Prob > F = 0.2814
```

$$H_0 = \beta_7 = \beta_8 = \beta_9 = \beta_{10} = \beta_{11} = 0$$

 H_1 : H_0 is not true or at least one is different than 0

If $F_{value} > F_{CV}$, then reject Ho

1.26 < 2.21, we do not reject Ho at 5% signficance level.

The data suggests that being male does not have an effect on sleep.

The final model: $sleep = \beta_0 + \beta_1 totwrk + \beta_2 educ + \beta_3 age + \beta_4 age^2 + \beta_5 yngkid + \beta_6 male + u$

Unbiasedness of OLS: assumptions

OLS – the ordinary least squares – delivers unbiased estimator parameters β_k if the following assumptions hold:

- 1. Population model is linear in parameters (and the terror term is additive)
- 2. Error term has a zero population mean : $E(\varepsilon_i) = 0$
- 3. All independent variables are uncorrelated with the error term $Corr(\varepsilon_i, X_i) = 0$
- 4. No perfect (multi)collinearity between independent variables.

OLS is unbiased estimator of Var $(\widehat{\beta_k})$ if assumptions 1-4 hold, as well as the following assumptions:

- 5. No serial correlation: $Corr(\varepsilon_i, \varepsilon_i) = 0$
- 6. No heteroskedasticity (homoskedasticity): the variance of the error term is constant. $Var(\varepsilon_i) = \sigma^2$ where σ^2 is constant.

If all assumptions hold, then:

- Perform hypothesis tests about a single population parameter using the t-test
- Perform hypothesis tests about multiple population parameters using the F-test

Heteroskedasticity

Heteroskedasticity: error term does not have a constant variance $Var(\varepsilon_i) \neq \sigma^2$

An Error Term Whose Variance Increases as Z Increases (Heteroskedasticity)

Consequences of Heteroskedasticity

- If assumptions 1-4 are not violated, then OLS is still an unbiased estimator of β_k
- But, since $Var(\widehat{\beta_k})$ depends on σ^2 , it is a biased estimator of $Var(\widehat{\beta_k})$
- T-statistics are incorrect since these depend on σ^2
- F-statistics are incorrect since these depend on σ^2
- If t- and F-statistics are incorrect, we can not perform hypothesis tests.
- Without hypothesis tests, we can not perform inference about the population from a sample, which is the aim of applied econometric analysis.
- Therefore, we need to know how to diagnose heteroskedasticity (apply the Breusch Pagan test) and then solve the problem if we find any.

Breusch-Pagan Test

Steps for diagnosis for heteroskedasticity

- 1. Estimate the model: $Y_i = \beta_o + \beta_1 X_{1i} + \beta_2 x_{2i} + \varepsilon_i$
- 2. Predict residuals: e_i from the estimated model: $Y_i = \hat{\beta}_o + \hat{\beta}_1 X_{1i} + \hat{\beta} x_{2i} + e_i$
- 3. Square the residuals: e_i^2
- 4. Regress squared residuals e_i^2 on independent variables from the original model: $e_i^2 = \delta_0 + \delta_1 x_{1i} + \delta_2 x_{2i} + v_i$
- 5. Test for joint significance of the independent variables on e_i^2 : if they do, then the Ho is rejected and heteroskedasticy exists.

$$H_0$$
: $\delta_1 = \delta_2 = 0$ Homoskedasticity

$$H_1$$
: H_0 not true Heteroskedasticity

If there is no heteroskedasticity, then the error term does not have a constant variance.

$$Var\left(\varepsilon_{i}\right)=\sigma^{2}(where\ \sigma^{2}\ is\ a\ constant)$$

Example for Heteroskedasticity

Step 1, 2 and 3:

- Estimate the model
- Predict the residual
- Square the residual: e_i^2

We want to examine the **relationship between economic development**, measured as log gdp per capita, **workers' education level**, and **entrepreneurship** (measured as the fraction of the working population in self-employment).

Because we expect entrepreneurship to be nonlinearly related to development, we estimate the following model:

$$\ln gdp_i = \beta_0 + \beta_1 educ_i + \beta_2 selfemp_i + \beta_3 selfemp_i^2 + \varepsilon_i$$

Estimates of the model:

. reg lnreggdp yearsed self_emp self_emp2

Source	SS	df	MS	Number of obs = $F(3, 543) =$
Model Residual	600.742478 144.930118			Prob > F = R-squared = Adj R-squared =
Total	745.672595	546	1.36570072	Root MSE =

547

lnreggdp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
yearsed	.3447389	.0093812	36.75	0.000	.326311	.3631669
self_emp	.0235793	.0038133	6.18	0.000	.0160886	.0310699
self_emp2	0005308	.000059	-9.00	0.000	0006467	0004149
_cons	6.495673	.0993675	65.37	0.000	6.300481	6.690865

- . predict uhat, resid
- . gen uhat2=uhat^2

We want to test for heteroskedasticity, so we **predict the** residuals (e_i) , and then obtain the squared residuals (e_i^2) .

Regress squared residuals e_i^2 on independent variables from the original model: Test for joint significance of the independent variables on e_i^2 : if they do, then the Ho is rejected and heteroskedasticy exists:

We now regress the squared residuals onto the explanatory variables from the original model:

Source	SS	df		MS		Number of obs		547
Model Residual	3.9418781 109.888897	3 543		395937 373659		F(3, 543) Prob > F R-squared Adj R-squared	= 0.0	0003 0346 0293
Total	113.830775	546	.2084	481273		Root MSE		1986
uhat2	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interv	/a1]
yearsed	0325959	.0081	.688	-3.99	0.000	0486422	0165	496
self_emp	0018068	.0033	205	-0.54	0.587	0083294	.0047	157
self_emp2	.0000143	.0000		0.28 5.99	0.781	0000866 .3486859	.0001	

The explanatory variables are jointly significant, as seen from the model F-test (p-value=0.0003<0.05). This means we reject the null hypothesis of homoskedasticity: the errors are heteroskedastic!

 H_0 : $\delta_1 = \delta_2 = 0$ (homoskedasticity)

 H_A : H_0 not true (heteroskedasticity)

- ► The solution for heteroskedasticity does not require changing the estimates $\widehat{\beta}_k$ (since OLS is still an unbiased estimator of β_k).
- ▶ However, we do **need new standard errors** since the $\widehat{Var}(\widehat{\beta}_k)$ are incorrect.
- We calculate the heteroskedasticity-robust standard error in Stata.
- Caveat: this robust standard error is only valid in large samples!

Heteroskedasticity - Solution

Heteroskedasticity-robust standard errors in Stata

. reg lnreggdp yearsed self_emp self_emp2, robust

Linear regression

Number of obs = 547 F(3, 543) = 1081.16 Prob > F = 0.0000 R-squared = 0.8056 Root MSE = .51663

lnreggdp	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
yearsed	.3447389	.0115737	29.79	0.000	.3220042	.3674736
self_emp	.0235793	.0047807	4.93	0.000	.0141884	.0329702
self_emp2	0005308	.000067	-7.92	0.000	0006624	0003992
_cons	6.495673	.1396055	46.53	0.000	6.22144	6.769906

Heteroskedasticity-robust standard errors can obtained easily by typing *,robust* at the end of the *reg* command.

Comparing regular and robust standard errors

- ▶ Robust standard errors are typically higher than the regular ones- although they may also be lower.
- ► Higher standard errors means the t-statistics become smaller (in absolute value), and estimates become less significant.
- ► In our example, the standard errors increase somewhat, but all coefficients are still individually significant.

Heteroskedasticity - Summary

- Problem = heteroskedastic errors
- ▶ Consequence = coefficient estimates $\widehat{\beta}$ remain unbiased (since OLS assumptions 1-4 have not been violated), but the variance estimates $\widehat{Var}(\widehat{\beta})$ (and hence also the std errors $\sqrt{\widehat{Var}(\widehat{\beta})}$) are biased (since OLS assumption 6 has been violated). This means we cannot perform hypothesis tests (tor F-tests).
- ▶ Diagnosis = Breusch-Pagan test, which involves regressing the squared residuals on all explanatory variables (there is heteroskedasticity if the p-value for the model F-test is smaller than the chosen significance level).
- ► **Solution** = estimate the equation with heteroskedasticity-robust standard errors (Stata command *reg* y x1 x2, robust)

C.8.1 Consider the following model to explain sleeping behavior:

$$sleep = \beta_0 + \beta_1 totwrk + \beta_2 educ + \beta_3 age + \beta_4 age^2 + \beta_5 yngkid + \beta_6 male + u$$

i) Write down a model that allows the variance of u to differ between men and women. The variance should not depend on other factors.

To solve this exercise, we need some knowledge about the variance of the error term:

Homoskedasticity:

- The variance of the error term is constant: $Var(\varepsilon_i) = \sigma^2$ where σ^2 is constant.
- The variance of the error term does not depend on the explanatory variables

$$Var(u \mid x_1, ... x_k) = \sigma^2$$

What this exercise asks us is to specify a simple linear model for the conditional variance of the error term:

$$Var(u \mid male) = \gamma_0 + \gamma_1 male_1$$

Since we do not know u but only the residuals, the empirical model is:

$$\widehat{u_i^2} = \widehat{\gamma}_0 + \widehat{\gamma}_1 male_i + e_i$$

Where e is an error term since we can not explain all the residual variance.

ii) Use the data in SLEEP75.RAW to estimate the parameters of the model for heteroskedasticity. (You have to estimate the sleep equation by OLS, first, to obtain the OLS residuals). Is the estimated variance of u higher for men or for women?

- First, we need to generate the squared for age.
- Then run the regression,
- Then we need to predict the residuals

 $sleep = \beta_0 + \beta_1 totwrk + \beta_2 educ + \beta_3 age + \beta_4 age^2 + \beta_5 yngkid + \beta_6 male + u$

n age2 = age	^2							predict u, re	s	
reg sleep to	twrk educ age	age2 yngk	id male					. gen u2=u^2		
Source	SS	df	MS		er of obs	=	706 16.30	reg u2 male		
Model	17092058.6	6	2848676.4	, ,	> F		0.0000	Source	SS	
Residual	122147777		174746.46		uared		0.1228			
Total		705	197503.31	_	R-squared MSE	=	0.1152 418.03	Model Residual	1.4430e+11 9.0942e+13	
sleep	Coef.	Std. Err.	t	P> t	[95% Con	 if.	Interval]	Total	9.1086e+13	
totwrk	1634235	.0181634	-9.00	0.000	1990848	3	1277622			
educ	-11.71327	5.871952	-1.99	0.046	-23.24205	5	1844947	u2	Coef.	Sto
age	-8.697402	11.32909	-0.77	0.443	-30.94053	3	13.54572		-28849.63	27
age2	.1284415	.1346696	0.95	0.341	1359638	3	.3928469	male		272
yngkid	0228006	50.27641	-0.00	1.000	-98.73367	7	98.68807	_cons	189359.2	20!
male _cons	87.75455 3840.852	34.66794 239.4139	2.53 16.04	0.012 0.000	19.68877 3370.795		155.8203 4310.909	Doggue	e the coe	cc:

predict u, re	S					
. gen u2=u^2						
reg u2 male						
	SS					706
+				F(1, 704) =	1.12
Model	1.4430e+11	1	1.4430e+11	Prob > F	=	0.2909
Residual	9.0942e+13	704	1.2918e+11	R-square	d =	0.0016
+				Adi R-sa	uared =	0.0002
Total	9.1086e+13	705	1.2920e+11			3.6e+05
	Coef.			-		_
	-28849.63					
:						
_cons	189359.2	20346.36	9.22 (0.000 1	49019.8 	229698.7

Because the coefficient for male is negative, the estimated variance is higher for women.

iii) Is the variance of the u statistically different from men and for women?

- No, because the Pvalue is 0.291 > 0.10.
- The t-statistics on male is only -1.06, which is not significant at even the 20% level against a two-sided alternative. (See Table G.2)
- Note that this is not the official Breusch Pagan test that tests whether heteroskedasticity exists in the complete empirical model.
- Here, we are only concerned with the issue of whether the variance of u differs between men and women.
- We could not argue that the error variance differs by gender, and we do not have to use "robust" standard errors.

Additional material: Test for heteroskedasticity: Breusch-Pagan Test

reg u2 totwrk educ age age2 yngkid male

Source	SS	df	MS	Numb	er of obs	=	706
+				F(6,	699)	=	1.85
Model	1.4229e+12	6	2.3715e+11	Prob	> F	=	0.0872
Residual	8.9663e+13	699	1.2827e+11	R-so	quared	=	0.0156
+				Adj	R-squared	=	0.0072
Total	9.1086e+13	705	1.2920e+11	Root	MSE	=	3.6e+05
u2		Chd Coo		5. 1. 1	FORW C		
	Coet.	Std. Err.	t	P> t	[95% Co	nt.	Interval]
totwrk	18.45399	15.56184		0.236	-12.0995		49.00754
			1.19			5	
totwrk	18.45399	15.56184	1.19 -2.02	0.236	-12.0995	5 6	49.00754
totwrk educ	18.45399 -10181.35	15.56184 5030.915	1.19 -2.02 -0.93	0.236 0.043	-12.0995 -20058.8	5 6 86	49.00754 -303.8341
totwrk educ age	18.45399 -10181.35 -9019.993	15.56184 5030.915 9706.43	1.19 -2.02 -0.93 0.63	0.236 0.043 0.353	-12.0995 -20058.8 -28077.2	5 6 24 12	49.00754 -303.8341 10037.26
totwrk educ age age2	18.45399 -10181.35 -9019.993 72.79544	15.56184 5030.915 9706.43 115.3809	1.19 -2.02 -0.93 0.63 0.12	0.236 0.043 0.353 0.528	-12.0995 -20058.8 -28077.2 -153.739	5 6 6 4 12	49.00754 -303.8341 10037.26 299.3301

. hettest, rhs fstat

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: totwrk educ age age2 yngkid male

F(6, 699) = 1.42Prob > F = 0.2037 Ho: $\delta_1=\delta_2=\delta_3=\delta_4=\delta_5=\delta_6=0$ (homoskedasticity)

H1: Ho is not true (heteroskedasticity)

If Ftest > Fcv, then reject Ho.

1.42 < 2.10, we can not reject Ho, at 5% significance level.

Homoskedasticity holds.


```
. reg sleep totwrk educ age age2 yngkid male, rob
Linear regression
                                               Number of obs
                                                                          706
                                               F(6, 699)
                                                                        14.29
                                               Prob > F
                                                                       0.0000
                                               R-squared
                                                                       0.1228
                                               Root MSE
                                                                       418.03
                            Robust
                           Std. Err.
      sleep
                   Coef.
                                               P> t
                                                         [95% Conf. Interval]
     totwrk
               -.1634235
                            .020683
                                       -7.90
                                               0.000
                                                        -.2040317
                                                                    -.1228154
       educ
               -11.71327
                           5.747549
                                       -2.04
                                               0.042
                                                         -22.9978
                                                                    -.4287441
               -8.697402
                           11.78685
                                       -0.74
                                               0.461
                                                        -31.83928
                                                                    14.44447
        age
                           .1360228
       age2
                .1284415
                                      0.94
                                               0.345
                                                        -.1386206
                                                                    .3955036
     yngkid
               -.0228006
                           53.90532
                                       -0.00
                                               1.000
                                                                    105.8129
                                                        -105.8585
       male
                87.75455
                           35.54252
                                      2.47
                                               0.014
                                                         17.97166
                                                                     157.5374
                3840.852
                           259.1258
                                       14.82
                                               0.000
                                                         3332.094
                                                                      4349.61
      _cons
```

However, the findings do not change relative to the version without robust standard errors.

