

张家琳 中国科学院计算技术研究所

zhangjialin@ict.ac.cn

2018-4-20



■ 输入: 111...11000...00, 判断1和0的个 数是否相等?

■ 上节课讲的图灵机需要花费大约 $2n^2$ 的时间,是否能够做的更快?

- 方案一:每次匹配最中间的1和0
  - $1+2+3+4+...+(2n-1)\approx 2n^2$
- 方案二: 增加纸带字符数目或状态数
  - 111 → \$#%
  - $q_1, q_2, q_3$
  - $\sim cn^2$



■ 能不能用更少的转移次数?

- 每次不是只把一个1改成#,而是把 一半"的1改成#!
- $\approx cn \log n$





#### 逻辑思维主要内容

- ■逻辑学基础
  - ■布尔逻辑、真值表
  - ■合取范式、析取范式
  - ■谓词逻辑
  - 公理系统
- ■图灵机模型

# 真值表

| x | у | $x \wedge y$ | $x \lor y$ | $x \rightarrow y$ | $x \oplus y$ |
|---|---|--------------|------------|-------------------|--------------|
| 0 | 0 | 0            | 0          | 1                 | 0            |
| 0 | 1 | 0            | 1          | 1                 | 1            |
| 1 | 0 | 0            | 1          | 0                 | 1            |
| 1 | 1 | 1            | 1          | 1                 | 0            |

#### 布尔逻辑

#### ■ 性质:

- $x \lor 0 = x, x \lor 1 = 1, x \land 0 = 0, x \land 1 = x$
- $x \lor \neg x = 1, x \land \neg x = 0$
- $x \land y = y \land x, x \lor y = y \lor x, x \oplus y = y \oplus x$  (交換律)
- $(x \land y) \land z = x \land (y \land z)$
- $(x \lor y) \lor z = x \lor (y \lor z)$
- $(x \land y) \lor z = (x \lor z) \land (y \lor z)$
- $(x \lor y) \land z = (x \land z) \lor (y \land z)$
- more ??

#### (结合律)

分配律)



#### ■ 性质:

$$x \lor y = \neg (\neg x \land \neg y)$$
  
(De Morgan律)

$$\neg (x \land y) = \neg x \lor \neg y$$

$$x \rightarrow y = \neg x \lor y$$

$$x \rightarrow y = \neg y \rightarrow \neg x$$

#### (逆否命题)

$$x \oplus y = (\neg x \land y) \lor (x \land \neg y)$$

$$x \oplus y = (x \lor y) \land (\neg x \lor \neg y)$$

### 范式

- 合取范式(conjunctive normal form, CNF)
  - $f(x_1,...,x_n) = Q_1 \wedge Q_2 \wedge Q_3 ... \wedge Q_m$
  - 其中:  $Q_i = l_1 \lor l_2 \lor ... \lor l_n$ ,  $l_j = x_j$ 或  $\neg x_j$

- 析取范式(disjunctive normal form, DNF)
  - $f(x_1,...,x_n) = Q_1 \lor Q_2 \lor Q_3 ... \lor Q_m$
  - 其中:  $Q_i = l_1 \wedge l_2 \wedge \ldots \wedge l_n$ ,  $l_j = x_j$ 或  $\neg x_j$



• 例:  $x \to (y \to z) = ?$ 

● 合取范式: (¬x ∨ ¬y ∨ z)

| x | y | $\boldsymbol{z}$ | f |
|---|---|------------------|---|
| 0 | 0 | 0                | 1 |
| 0 | 0 | 1                | 1 |
| 0 | 1 | 0                | 1 |
| 0 | 1 | 1                | 1 |
| 1 | 0 | 0                | 1 |
| 1 | 0 | 1                | 1 |
| 1 | 1 | 0                | 0 |
| 1 | 1 | 1                | 1 |

• 析取范式:  $(\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z)$  $\lor (\neg x \land y \land \neg z) \lor (\neg x \land y \land z) \lor (x \land \neg y \land z)$  $\land \neg z) \lor (x \land \neg y \land z) \lor (x \land y \land z)$ 

- 根据De Morgan律和合取范式(或析取范式),使用¬和△(或▽)可以表示出所有的布尔函数(?)。
- 问题:能否只用△, ▽表示出所有的布尔 函数?
  - 不能!
  - 单调性:  $f(x) \le f(x')$  if  $x \le x'$



■问题:能否只用⊕? (允许使用0,1)

■ 问题:如果只用→呢? (允许使用0,1)

### 谓词逻辑

#### ■ 全称量词∀和存在量词∃

- 每天都有24个小时。
- 存在一个素数不是奇数。
- "都不是"和"不都是"
- $\blacksquare \ \forall \ x \ (\neg P(x)), \ \exists \ x (\neg P(x))$
- $\exists x (\neg P(x)) = \neg (\forall x (P(x)))$

### 谓词逻辑

- ■量词的范围
  - 任何一个自然数,要么它本身为偶数,要么 加1后为偶数。
  - ∀*n* [Even(*n*) ∨ Even(*n* + 1)], 其中断言 Even(*n*)表示 *n*是偶数
  - $\forall n \in \mathbb{N}$  [Even $(n) \vee \text{Even}(n+1)$ ]
- ■量词的顺序
  - $\forall x, \exists y (y = x + 1)$
  - $\exists y, \forall x (y = x + 1)$



- ■布尔逻辑和谓词逻辑的更多性质
  - ■后续课程会学
- ■以上已经学习的
  - ■逻辑学的基本知识点
  - 不是逻辑思维!
- 什么是逻辑思维?





#### 逻辑思维

- 存在无穷多个素数。
- 如何用数学语言描述?



Euclid of Alexandria Elements

$$\forall n, \exists m, [(m > n) \land (\text{Prime}(m))]$$
  
 $\forall n, \exists m, \forall p, q [(m > n) \land (p, q > 1 \rightarrow pq \neq m)]$ 

## 4

#### 怎么证明?

存在无穷多个素数。

```
\forall n, \exists m, [(m > n) \land (Prime (m))]
```

- 方法一:
  - 任意给定一个正整数n, 我都可以找到一个 比n大的素数, .....
- 方法二: 欧几里得的证明方法
  - 假如只有有限个素数, ....., 得出矛盾
  - $\neg (\exists n, \forall m, [(m > n) \rightarrow \neg (\text{Prime}(m))])$

# -

#### 逻辑思维

- 存在无穷多个素数。
- 假如只有有限个素数, ....., 得出矛盾

```
\forall n, \exists m, [(m > n) \land (Prime (m))]

\neg (\exists n, \forall m, [(m > n) \rightarrow \neg (Prime (m))])
```

- ■能自己想明白
- 能和别人说明白





■ 对n > 2, 丢潘图方程  $x^n + y^n = z^n$  不存在非平凡解。

$$\forall a,b,c,n [(abc \neq 0) \land (n > 2) \rightarrow a^n + b^n \neq c^n]$$



#### 课后思考

存在无穷多对孪生素数。



• 对任何一个正整数n,如果是奇数则乘3m 加1,如果是偶数则除2,重复此过程,最终将得到1。



#### 3n + 1猜想

$$\begin{array}{c} \bullet \quad 6 \rightarrow 3 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \\ \rightarrow 1 \end{array}$$

■ 
$$15 \rightarrow 46 \rightarrow 23 \rightarrow 70 \rightarrow 35 \rightarrow 106 \rightarrow 53 \rightarrow 170 \rightarrow 85 \rightarrow 256 \rightarrow 128 \rightarrow 64$$
  
 $\rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$ 

Solve it!!



四色定理:任何平面图都可以被四着色,使得任何两个相邻的顶点不同色。

 $\forall$  平面图 $G = (V, E), \exists c : V \rightarrow \{1, 2, 3, 4\} \quad \forall (u, v) \in E, [c(u) \neq c(v)]$ 

可满足性问题(SAT): 给定CNF公式φ, 是否存在一种赋值, 使得这个CNF为真

$$(\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor \neg x_4 \lor \neg x_6) \land (x_2 \lor x_4 \lor \neg x_8) \land \dots$$

$$\exists A : \{x_1, x_2, ..., x_n\} \rightarrow \{0,1\}, [\varphi(x_1, ..., x_n) = 1]$$

#### 练习: 皮埃诺公理之一

■每个自然数有后继数,且这个后继数也 是自然数



#### 课后思考

- 连续函数的定义
  - 仅考虑一元实函数:  $f: R \to R$

■ 答案请见微积分课本



#### 课后思考

- ■连续函数的介值性
  - f是[0,1]上的连续函数,若f(0)=A, f(1)=B ,且A≠B。则对A、B之间的任意实数C,在 开区间(0,1)上至少有一点c, 使f(c)=C
  - 直观理解
  - 如何严格证明?
- 积分的直观概念 VS 积分的定义



#### 逻辑思维

- 能自己想明白
- 能和别人说明白

### 总结

- ■逻辑学基础
  - ■命题逻辑
  - ■合取范式、析取范式
  - ■谓词逻辑
- ■逻辑思维
- ■思考题
  - 能否只用⊕(允许使用0,1)表示所有布尔函数?如果只用→(允许使用0,1)呢?
  - 猜帽子

■ 问题: n名同学围成一圈,每个人随机的分配一顶红色或者蓝色的帽子,要求所有人同时猜出自己帽子的颜色。请设计一种策略,使得同时猜对的概率最高。





### 谢谢!