

BASICS OF MECHANICAL ENGINEERING

Vinkel Kumar Arora Gurjeet Singh Krishan Verma Lalit Batra

NIPA GENX ELECTRONIC RESOURCES & SOLUTIONS P. LTD.

New Delhi-110 034

NIPA GENX ELECTRONIC RESOURCES & SOLUTIONS P. LTD.

101,103, Vikas Surya Plaza, CU Block L.S.C.Market, Pitam Pura, New Delhi-110 034 Ph:+91 11 27341616, 27341717, 27341718 E-mail:newindiapublishingagency@gmail.com

www: www.nipabooks.com

For customer assistance, please contact

Phone: + 91-11-27 34 17 17 Fax: + 91-11- 27 34 16 16

E-Mail: feedbacks@nipabooks.com

© 2023, Publisher

ISBN: 978-81-94766-85-8

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, including electronic, mechanical, photocopying recording or otherwise without the prior written permission of the publisher or the copyright holder.

This book contains information obtained from authentic and highly reliable sources. Reasonable efforts have been made to publish reliable data and information, but the author/s, editor/s and publisher cannot assume responsibility for the validity, accuracy or completeness of all materials or information published herein or the consequences of their use. The work is published with the understanding that the publisher and author/s are not attempting to render any professional services. The author/s, editor/s and publisher have attempted to trace and acknowledge the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission and/or acknowledgements to publish in this form have not been taken. If any copyrighted material has not been acknowledged, please write to us and let us know so that we may rectify the error, in subsequent reprints.

Trademark Notice: NIPA, the NIPA logos and their presentations (the way they are written/ presented) in this book are the trademarks of the publisher and hence may not be used without written permission, if copied or used without authorization, the infringer will be prosecuted as per law.

NIPA also publishes books in a variety of electronic formats. Some content that appears in print may not be available in electronic books, and vice versa

Composed and Designed by NIPA.

Contents

4cknc	wledge	ment	vii
Prefac	ce		ix
1.	Ther	modynamics	1
	Vinkel	Kumar Arora	
	1.1	Introduction	1
	1.2	Macroscopic and Microscopic approaches of Thermodynamics	
	1.3	Thermodynamic System	
	1.4	Other Systems	
	1.5	Thermodynamic Property	6
	1.6	Temperature, Equity of Temperature	14
	1.7	Measurement of Temperature	17
	1.8	Pressure	19
	1.9	Thermodynamic Work and Heat	21
	1.10	Other Types of Work	33
	1.11	First Law of Thermodynamics (FLOT)	37
	1.12	Second Law of Thermodynamics and Entropy (SLOT)	50
	1.13	Entropy	56
	1.14	Third Law of Thermodynamics (TLOT)	59
	1.15	Multiple Choice Questions Practice Problems	60
2.	Steam	n Generation	63
	Vinkel	Kumar Arora	
	2.1	Introduction	63
	2.2	Steam Formation at a Constant Pressure	63
	2.3	Thermodynamic Properties of Steam	
	2.4	Use of Steam Tables.	
	2.5	Measurement of Dryness Fraction by Throttling Calorimeter	72
3.	Stean	n Generator	75
	Vinkel	Kumar Arora	
	3.1	Introduction: Boiler	75
	3.2	Classification of Boilers.	
	3.3	Comparison of fire Tube Boiler and Water Tube Boiler	
	3.4	Functions of Mounting and Accessories	
	3.5	Constructional and Operational Details of Cochran Boiler	

	3.6	Constructional and Operational Details of Babcock and	
		Wilcox Boiler	82
	3.7	Boiler Mountings	
	3.8	Control Fittings	
	3.9	Boiler Accessories	88
4.	Refr	igeration and Air Condition	93
	Vinke	l Kumar Arora	
	4.1	Introduction	93
	4.2	Brief History of Refrigeration and Air-Conditioning	94
	4.3	Necessity of Refrigeration & Air Conditioning	
	4.4	Applications	
	4.5	Methods of Producing Refrigeration Effect	
	4.6	Rating of Refrigerating Machine	
	4.7	Carnot refrigeration Cycle or Reversed Carnot cycle	
	4.8	Expression for Coefficient of Performance	
	4.9	Limitations of Reversed Carnot Cycle	
	4.10	Simple Vapour Compression Refrigeration System	
	4.11	Description of a Simple VCRS	103
	4.12	Coefficient of Performance of Vapour Compression	104
	4.13	Refrigeration System (VCRS) Theoretical Vapour compression cycle with different case	
5		igerants	
٥.			141
	Vinke	l Kumar Arora	
	5.1	Introduction	
	5.2	Refrigerant Selection Criteria	
	5.3	Types of Refrigerants	
	5.4	Designation of Refrigerants	124
	5.5	Properties of Refrigerants The Properties of Refrigerants may be Grouped into three Categories	128
6	Ann	lication of Refrigeration and Air Conditioning	
0.		l Kumar Arora	100
	6.1		122
	6.2	Domestic Refrigerator	
	6.3	Application of VCRS in Air Conditioners	
	6.4	Different Types of Air Conditioner	
	6.5	Application in Cold Chain	
7		11	
/ •		rnal Combustion Enginesl Kumar Arora	141
	7.1	Introduction	
	7.2	Classification of I.C. Engines	141

	7.3	Terms related to I.C. Engines	143
	7.4	Constructional details of I.C. Engines	
	7.5	Sequence of Operation	
	7.6	Comparison of Petrol (S.I) and Diesel (C.I) Engines	
	7.7	Valve Timing for Four Stroke Spark-ignition Engines	
	7.8	Two stroke engines	
8.	Air S	Standard Cycles	157
	Vinke	l Kumar Arora	
	8.1	Introduction	157
	8.2	Otto Cycle	158
	8.3	Diesel Cycle	161
	8.4	Dual Cycle	165
9.	Hyd	raulic Turbines	167
	Vinke	l Kumar Arora	
	9.1	Introduction	167
	9.2	Impulse and Reaction Turbines	167
	9.3	Difference between Impulse and Reaction Turbines	169
	9.4	Classification of Turbines	169
	9.5	Pelton Wheel Turbine	170
	9.6	Francis Turbine	172
	9.7	Kaplan Turbines	
	9.8	Difference Between Pelton Francis vs. Kaplan turbines	
	9.9	Specific Speed of Turbine	179
10.	Hyd	raulic Pumps	181
	Vinke	l Kumar Arora	
	10.1	Introduction	181
	10.2	Pump Classification	181
	10.3	Pump Applications	181
	10.4	Centrifugal Pumps	182
	10.5	Turbine Pump	
	10.6	Reciprocating Pump.	
	10.7	Diaphragm Pump	
	10.8	Gear Pump	
	10.9	Screw Pump	189
11.	Simp	ole Lifting Machines	191
	Vinke	l Kumar Arora	
	11.1	Introduction	
	11.2	Mechanical Advantage & Efficiency	
	11.2	Lower of Machine	102

	11.4	Reversibility of Machine	193
	11.5	Condition for Reversibility and Irreversibility of Machine	
	11.6	Simple Wheel & Axle	
	11.7	Differential Wheel and Axle	
	11.8	Pulleys	
	11.9	Worm and Worm Wheel	
	11.10	Single Purchase Crab Winch	198
	11.11	Double Purchase Crab Winch	
	11.12	Simple Screw Jack	199
	11.13	Compound Screw Jack	200
12.	Powe	er Transmission Methods and Devices	201
	Vinke	l Kumar Arora	
	12.1	Introduction	201
	12.2	Belt Drive	201
	12.3	Tension ratio in Flat belt Drive	205
	12.4	Tension Ratio of V- Belt Drive	206
	12.5	Power transmitted in a Belt Drive	208
	12.6	Centrifugal Tension in the Belt	209
	12.7	Initial tension in the Belt (To)	210
	12.8	Condition for Maximum Power Transmitted by the Belt Drive	211
	12.9	Types of Pulleys	
	12.10	Advantages and Disadvantages of Belt Drives	213
	12.11	Rope Drive	
	12.12	Chain Drive	214
	12.13	Gears Drive	217
	12.14	Velocity ration in Gear Drives	222
	12.15	Gear Trains: A Gear Train is a Combination of Gears used	
		to Transmit Motion from one Shaft to Other Shaft. They are	
		Classified as Follows	223
13.	Stres	ss and Strains	229
	Krish	an Kumar Verma	
	13.1	Introduction	229
	13.2		
	13.3	Concept and Types of Stress and Strains.	
	13.4	Poision's Ratio, µ	
	13.5	Stresses and Strains in Simple and Compound Bars	
		Under Axial Loading	234
	13.6	Strain in Varying Cross- Section Rod	
	13.7	Stresses and Strains in Composite Bar	
	13.8	Stresses and Strains in Compound Bar	
	13.9	Hook's Law	
	13.10	Stress and Strain Diagrams	

	13.11	Stress-Strain Plot for Brittle Material	239
	13.12	Elastic Constants and their Relationships	
14.	Ther	rmal Stress & Strains	243
	Lalit	Batra	
	14.1	Stresses Due to Change in Temperature- Thermal Stresses (σ_r) and Strain (ϵ)	242
	14.2	Stresses and Strain when Support Yield	
	14.3	Thermal Stresses and Strain in Compound Bar of Different Material	
15	Shea	r Force and Bending Moment	
10.	Lalit		201
			251
	15.1 15.2	Shear Force (S.F) & Bending Moment (B.M)	
	15.2	Different Supports and Their Reactions	
	15.4	Shear Force (S.F) and Its Sign Convention	
	15.5	Bending Moment (B.M) its sign convention	
	15.6	Shear Force Diagram (S.F.D) & Bending Moment Diagram (B.M.D)	
	15.7	Some Important Conclusions from S.F.D and B.M.D	
16.	Prin	ciple Stress and Principle Planes	275
	Lalit	_	
	16.1	Stresses on Inclined Plane Under Uniaxial Loading	275
	16.2	Mohr's Circle	
	16.3	Stresses on Inclined Plane under Biaxial Stresses	277
	16.4	Mohr's Circle	280
	16.5	Stresses on Inclined Plane under Biaxial Stress Combined	
		with Shear Stress.	
	16.6	Mohr's Circle	
	16.7	Principle Stress and Principle Planes	284
17.	Ener	gy and Exergy Analysis of Milk Processing	287
	Gurje	eet Singh	
	17.1	Overview of Milk Processing Industry	
	17.2	Thermodynamic and Thermoeconomic Analysis	
	17.3	Rice Husk Based Steam Generation System	
	17.4	Milk Processing Plants in Consideration	
	17.5	Summary	309
	Refe	rences	313

BASICS OF MECHANICAL ENGINEERING

Basic of Mechanical Engineering is an under graduate level book for all the engineering streams like Electrical Engineering, Civil Engineering, Food Technology, Electronics etc. This book contains 17 chapters all related to concepts of Mechanical Engineering. An attempt is made to present a book which not only covers the aspects of mechanical engineering related to concept but also to its applications. It is also attempted to cover the majority of the subjects related to mechanical engineering i.e. thermal science, power generation, internal combustion engines, hydraulic machinery, refrigeration, refrigerants, simple lifting machines, power transmission method, strength of materials and energy and exergy analysis of the milk processing industry. However, the justice is done with the topic to restrict within the scope of syllabus but additional information and resources are also provided. The concepts of thermodynamics, internal combustion engines, refrigeration, solid mechanics are applicable over large industrial preview, so this book will be helpful for every engineering graduate to quickly grasp the basic mechanical knowledge.

Vinkel Kumar Arora: Assistant Professor, Department of Food Engineering, National Institute of Food Technology Entrepreneurship & Management, Kundli, Sonipat

Gurjeet Singh: Assistant Professor, Punjab Engineering College, Chandigarh

Krishan Verma: Assistant Professor, Department of Mechanical Engineering JCBUST YMCA, Faridabad

Er. Lalit Batra: Assistant Professor, Bharati Vidyapeeth College of Engineering New Delhi

NIPA GENX ELECTRONIC RESOURCES & SOLUTIONS P. LTD.

101,103, Vikas Surya Plaza, CU Block L.S.C.Market, Pitam Pura, New Delhi-110 034 Ph:+91 11 27341616, 27341717, 27341718 E-mail:newindiapublishingagency@gmail.com www: www.nipabooks.com

