Trig Final (SLTN v602)

- You can use a calculator (like Desmos)
- You should have a unit-circle with special angles and coordinates marked.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 68 meters. The arc length is 280 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r}$$
 $r = \frac{L}{\theta}$ $L = r\theta$

 $\theta = 4.118$ radians.

Question 2

Consider angles $\frac{-8\pi}{3}$ and $\frac{13\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\sin\left(\frac{-8\pi}{3}\right)$ and $\cos\left(\frac{13\pi}{4}\right)$ by using a unit circle (provided separately).

Find
$$sin(-8\pi/3)$$

$$\sin(-8\pi/3) = \frac{-\sqrt{3}}{2}$$

Find $cos(13\pi/4)$

$$\cos(13\pi/4) = \frac{-\sqrt{2}}{2}$$

Question 3

If $\sin(\theta) = \frac{63}{65}$, and θ is in quadrant II, determine an exact value for $\cos(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$A^{2} + 63^{2} = 65^{2}$$

$$A = \sqrt{65^{2} - 63^{2}}$$

$$A = 16$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant II in a unit circle.

$$\cos(\theta) = \frac{-16}{65}$$

Question 4

A mass-spring system oscillates vertically with a midline at y = 5.77 meters, a frequency of 6.9 Hz, and an amplitude of 8.81 meters. At t = 0, the mass is at the midline and moving up. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = 8.81\sin(2\pi6.9t) + 5.77$$

or

$$y = 8.81\sin(13.8\pi t) + 5.77$$

or

$$y = 8.81\sin(43.35t) + 5.77$$