Bài 2. Đường thẳng trong mặt phẳng tọa độ

A. Lý thuyết

1. Phương trình đường thẳng

1.1. Vecto chỉ phương và vecto pháp tuyến của đường thẳng

Vector \vec{u} được gọi là *vector chỉ phương* của đường thẳng Δ nếu $\vec{u} \neq \vec{0}$ và giá của \vec{u} song song hoặc trùng với Δ .

Vector \vec{n} được gọi là *vector pháp tuyến* của đường thẳng Δ nếu $\vec{n} \neq \vec{0}$ và \vec{n} vuông góc với vector chỉ phương của Δ .

Chú ý:

- Nếu đường thẳng Δ có vectơ pháp tuyến $\vec{n}=(a;b)$ thì Δ sẽ nhận $\vec{u}=(b;-a)$ hoặc $\vec{u}=(-b;a)$ là một vectơ chỉ phương.
- Nếu \vec{u} là vectơ chỉ phương của đường thẳng Δ thì $k\vec{u}$ $(k \neq 0)$ cũng là vectơ chỉ phương của Δ .

• Nếu \vec{n} là vectơ pháp tuyến của đường thẳng Δ thì $k\vec{n}$ $(k \neq 0)$ cũng là vectơ pháp tuyến của Δ .

Ví dụ:

- a) Cho đường thẳng d có vectơ chỉ phương $\vec{u} = \left(\frac{2}{3}; \frac{-1}{3}\right)$. Tìm một vectơ pháp tuyến của d.
- b) Cho đường thẳng d' có vectơ pháp tuyến $\vec{n} = (3,7)$. Tìm ba vectơ chỉ phương của d'.

Hướng dẫn giải

a) Đường thẳng d có vectơ chỉ phương $\vec{u} = \left(\frac{2}{3}; \frac{-1}{3}\right)$.

Suy ra d cũng có vectơ chỉ phương $3\vec{u} = (2;-1)$ và có vectơ pháp tuyến $\vec{n} = (1;2)$.

Vậy d có vectơ pháp tuyến $\vec{n} = (1,2)$.

b)

• d' có vecto pháp tuyến $\vec{n} = (3,7)$.

Suy ra d' có vecto chỉ phương $\vec{u} = (-7;3); -\vec{u} = (7;-3).$

• d' có vecto chỉ phương $\vec{u} = (-7;3)$.

Suy ra d' cũng có vecto chỉ phương $2\vec{u} = (-14;6)$.

Vậy ba vecto chỉ phương của d' là $\vec{u} = (-7;3); -\vec{u} = (7;-3); 2\vec{u} = (-14;6).$

1.2. Phương trình tham số của đường thẳng

Trong mặt phẳng Oxy, ta gọi:

$$\begin{cases} x = x_0 + tu_1 \\ y = y_0 + tu_2 \end{cases} \text{ (v\'oi } u_1^2 + u_2^2 > 0, t \in \mathbb{R} \text{)}$$

là *phương trình tham số* của đường thẳng Δ đi qua điểm $M_0(x_0; y_0)$, có vectơ chỉ phương $\vec{u} = (u_1; u_2)$.

Chú ý: Cho t một giá trị cụ thể thì ta xác định được một điểm trên đường thẳng Δ và ngược lại.

Ví dụ:

- a) Viết phương trình tham số của đường thẳng d đi qua điểm M(1; 3) và nhận $\vec{u} = (2; 9)$ làm vecto chỉ phương.
- b) Trong các điểm A(2; 5), B(3; 12), C(-4; 6) thì điểm nào thuộc đường thẳng d?

Hướng dẫn giải

a) Đường thẳng d đi qua điểm M(1;3) và có vecto chỉ phương $\vec{u}=(2;9)$.

Vậy phương trình tham số của đường thẳng d: $\begin{cases} x = 1 + 2t \\ y = 3 + 9t \end{cases}$

b)

• Thay tọa độ điểm A vào phương trình tham số của đường thẳng d, ta được:

$$\begin{cases} 2 = 1 + 2t \\ 5 = 3 + 9t \end{cases} \Leftrightarrow \begin{cases} t = \frac{1}{2} \\ t = \frac{2}{9} \end{cases} \text{ (vô lý).}$$

Khi đó A(2; 5) ∉ d.

• Thay tọa độ điểm B vào phương trình tham số của đường thẳng d, ta được:

$$\begin{cases} 3 = 1 + 2t \\ 12 = 3 + 9t \end{cases} \Leftrightarrow \begin{cases} t = 1 \\ t = 1 \end{cases} \Leftrightarrow t = 1.$$

Khi đó B(3; 12) \in d.

• Thay tọa độ điểm C vào phương trình tham số của đường thẳng d, ta được:

$$\begin{cases} -4 = 1 + 2t \\ 6 = 3 + 9t \end{cases} \Leftrightarrow \begin{cases} t = \frac{-5}{2} \\ t = \frac{1}{3} \end{cases} \text{ (vô lý)}.$$

Khi đó C(-4; 6) ∉ d.

Vậy chỉ có điểm B thuộc đường thẳng d.

1.3. Phương trình tổng quát của đường thẳng

Trong mặt phẳng Oxy, mỗi đường thẳng đều có *phương trình tổng quát* dạng: ax + by + c = 0, với a và b không đồng thời bằng 0.

Chú ý:

- Mỗi phương trình ax + by + c = 0 (a và b không đồng thời bằng 0) đều xác định một đường thẳng có vectơ pháp tuyến $\vec{n} = (a;b)$.
- Khi cho phương trình đường thẳng ax + by + c = 0, ta hiểu a và b không đồng thời bằng 0.

Ví dụ: Viết phương trình tổng quát của đường thẳng Δ trong mỗi trường hợp sau:

- a) Đường thẳng Δ đi qua điểm H(2; 1) và có vecto pháp tuyến $\vec{n} = (-2; -1)$.
- b) Đường thẳng Δ đi qua điểm K(5; -8) và có vecto chỉ phương $\vec{u} = (3; -4)$.
- c) Đường thẳng Δ đi qua hai điểm M(6; 3), N(9; 1).

Hướng dẫn giải

a) Đường thẳng Δ đi qua điểm H(2; 1) và có vectơ pháp tuyến $\vec{n}=\left(-2;-1\right)$ nên ta có phương trình tổng quát của Δ là: -2(x-2)-1(y-1)=0

$$\Leftrightarrow$$
 $-2x - y + 5 = 0$.

Vậy phương trình tổng quát của Δ là -2x - y + 5 = 0.

b) Δ có vecto chỉ phương $\vec{u}=(3;-4)$ nên Δ nhận $\vec{n}=(4;3)$ làm vecto pháp tuyến.

Đường thẳng Δ đi qua điểm K(5; -8) và có vectơ pháp tuyến $\vec{n}=(4;3)$ nên ta có phương trình tổng quát của Δ là: 4(x-5)+3(y+8)=0

$$\Leftrightarrow 4x + 3y + 4 = 0.$$

Vậy phương trình tổng quát của Δ là 4x + 3y + 4 = 0.

c) Với M(6; 3), N(9; 1) ta có: $\overrightarrow{MN} = (3;-2)$.

 Δ có vecto chỉ phương \overrightarrow{MN} = (3; -2) nên Δ nhận \vec{n} = (2; 3) làm vecto pháp tuyến.

Đường thẳng Δ đi qua điểm M(6; 3) và có vectơ pháp tuyến \vec{n} = (2;3) nên phương trình tổng quát của Δ là: 2(x-6) + 3(y-3) = 0

$$\Leftrightarrow 2x + 3y - 21 = 0.$$

Vậy phương trình tổng quát của Δ là 2x + 3y - 21 = 0.

Nhận xét:

• Phương trình đường thẳng Δ đi qua hai điểm $A(x_A; y_A)$, $B(x_B; y_B)$ có dạng:

$$\frac{x - x_A}{x_B - x_A} = \frac{y - y_A}{y_B - y_A}$$
 (với $x_B \neq x_A, y_B \neq y_A$).

• Nếu đường thẳng Δ cắt trục Ox và Oy tại A(a;0) và B(0;b) (a, b khác 0) thì phương trình Δ có dạng:

$$\frac{x}{a} + \frac{y}{b} = 1 \quad (1).$$

Phương trình (1) còn được gọi là phương trình đoạn chắn.

Ví dụ:

+) Đường thẳng Δ đi qua hai điểm P(2; 5), Q(1; 8).

Suy ra phương trình đường thẳng Δ : $\frac{x-2}{1-2} = \frac{y-5}{8-5} \Leftrightarrow \frac{x-2}{-1} = \frac{y-5}{3}$.

Vậy phương trình đường thẳng Δ là $\frac{x-2}{-1} = \frac{y-5}{3}$.

+) Đường thẳng Δ đi qua hai điểm X(-4; 0) và Y(0; 5).

Vậy phương trình đoạn chắn của Δ : $\frac{x}{-4} + \frac{y}{5} = 1$.

1.4. Liên hệ giữa đồ thị hàm số bậc nhất và đường thẳng

Ta đã biết đồ thị của hàm số bậc nhất $y = kx + y_0$ $(k \neq 0)$ là một đường thẳng d đi qua điểm $M(0; y_0)$ và có hệ số góc k. Ta có thể viết: $y = kx + y_0 \Leftrightarrow kx - y + y_0 = 0$.

Như vậy, đồ thị hàm bậc nhất $y = kx + y_0$ là một đường thẳng có vectơ pháp tuyến $\vec{n} = (k; -1)$ và có phương trình tổng quát là $kx - y + y_0 = 0$. Đường thẳng này không vuông góc với Ox và Oy.

Ngược lại, cho đường thẳng d có phương trình tổng quát ax + by + c = 0 với a và b đều khác 0, khi đó ta có thể viết: $ax + by + c = 0 \Leftrightarrow y = -\frac{a}{b}x - \frac{c}{b} \Leftrightarrow y = kx + y_0$.

Như vậy d là đồ thị của hàm bậc nhất $y=kx+y_0$ với hệ số góc $k=-\frac{a}{b}$ và tung độ gốc $y_0=-\frac{c}{b}$.

Ví du:

+) Cho đường thẳng d có phương trình: $y = 2x + 1 \Leftrightarrow 2x - y + 1 = 0$.

Ta suy ra vecto pháp tuyến của đường thẳng d là $\vec{n} = (2;-1)$.

+) Cho đường thẳng d' có phương trình: $x + 5y - 2 = 0 \Leftrightarrow y = -\frac{1}{5}x + \frac{2}{5}$.

Khi đó ta có d là đồ thị của hàm bậc nhất $y = kx + y_0$, với hệ số góc $k = -\frac{1}{5}$ và tung độ gốc $y_0 = \frac{2}{5}$.

Chú ý:

• Nếu a=0 và $b\neq 0$ thì phương trình tổng quát ax+by+c=0 trở thành $y=-\frac{c}{b}$.

Khi đó d là đường thẳng vuông góc với Oy tại điểm $\left(0; -\frac{c}{b}\right)$.

• Nếu b=0 và $a\neq 0$ thì phương trình tổng quát ax+by+c=0 trở thành $x=-\frac{c}{a}$.

Khi đó d là đường thẳng vuông góc với Ox tại điểm $\left(-\frac{c}{a};0\right)$.

Trong cả hai trường hợp trên, đường thẳng d không phải là đồ thị của hàm số bậc nhất.

2. Vị trí tương đối của hai đường thẳng

Trong mặt phẳng Oxy, cho hai đường thẳng Δ_1 : $a_1x + b_1y + c_1 = 0$ ($a_1^2 + b_1^2 > 0$) có vectơ pháp tuyến \vec{n}_1 và đường thẳng Δ_2 : $a_2x + b_2y + c_2 = 0$ ($a_2^2 + b_2^2 > 0$) có vectơ pháp tuyến \vec{n}_2 .

Ta có thể dùng phương pháp tọa độ để xét vị trí tương đối của Δ_1 và Δ_2 như sau:

- Nếu \vec{n}_1 và \vec{n}_2 cùng phương thì Δ_1 và Δ_2 song song hoặc trùng nhau. Lấy một điểm P tùy ý trên Δ_1 .
- + Nếu P $\in \Delta_2$ thì $\Delta_1 \equiv \Delta_2$.

+ Nếu P $\not\in \Delta_2$ thì $\Delta_1 // \Delta_2$.

 $- \ \text{N\'eu} \ \vec{n}_1 \ \text{và} \ \vec{n}_2 \ \text{không cùng phương thì} \ \Delta_1 \ \text{và} \ \Delta_2 \ \text{cắt nhau tại một điểm} \ M(x_0; \ y_0)$ với $(x_0; y_0)$ là nghiệm của hệ phương trình: $\begin{cases} a_1 x + b_1 y + c_1 = 0 \\ a_2 x + b_2 y + c_2 = 0 \end{cases}.$

Chú ý:

a) Nếu $\vec{n}_1 \cdot \vec{n}_2 = 0$ thì $\vec{n}_1 \perp \vec{n}_2$, suy ra $\Delta_1 \perp \Delta_2$.

- b) Để xét hai vector $\vec{n}_1(a_1;b_1)$ và $\vec{n}_2(a_2;b_2)$ cùng phương hay không cùng phương, ta xét biểu thức $a_1b_2 a_2b_1$:
- + Nếu $a_1b_2 a_2b_1 = 0$ thì hai vecto cùng phương.
- + Nếu $a_1b_2-a_2b_1\neq 0$ thì hai vecto không cùng phương.

Trong trường hợp tất cả các hệ số a₁, a₂, b₁, b₂ đều khác 0, ta có thể xét hai trường hợp:

+ Nếu $\frac{a_1}{a_2} = \frac{b_1}{b_2}$ thì hai vecto cùng phương.

+ Nếu $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ thì hai vecto không cùng phương.

Ví dụ: Xét vị trí tương đối của các cặp đường thẳng sau:

a)
$$\Delta_1$$
: $4x - 10y + 1 = 0$ và Δ_2 : $x + y + 2 = 0$.

b)
$$\Delta_1$$
: $12x - 6y + 6 = 0$ và Δ_2 : $2x - y + 5 = 0$.

c)
$$\Delta_1$$
: $8x + 10y - 12 = 0$ và Δ_2 :
$$\begin{cases} x = -6 + 5t \\ y = 6 - 4t \end{cases}$$

d)
$$\Delta_1$$
:
$$\begin{cases} x = -1 - 5t \\ y = 2 + 4t \end{cases}$$
 và Δ_2 :
$$\begin{cases} x = -6 + 4t' \\ y = 2 + 5t' \end{cases}$$

Hướng dẫn giải

a)
$$\Delta_1$$
: $4x - 10y + 1 = 0$ và Δ_2 : $x + y + 2 = 0$.

 Δ_1 và Δ_2 có vecto pháp tuyến lần lượt là $\vec{n}_1 = (4;-10)$ và $\vec{n}_2 = (1;1)$.

Ta có
$$\frac{4}{1} \neq \frac{-10}{1}$$
.

Suy ra \vec{n}_1 và \vec{n}_2 là hai vecto không cùng phương.

Khi đó ta có Δ_1 và Δ_2 cắt nhau tại một điểm M.

Giải hệ phương trình:

$$\begin{cases} 4x - 10y + 1 = 0 \\ x + y + 2 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{3}{2} \\ y = -\frac{1}{2} \end{cases}$$

Suy ra
$$M\left(-\frac{3}{2}; -\frac{1}{2}\right)$$
.

Vậy Δ_1 cắt Δ_2 tại điểm $M\left(-\frac{3}{2}; -\frac{1}{2}\right)$.

b)
$$\Delta_1$$
: $12x - 6y + 6 = 0$ và Δ_2 : $2x - y + 5 = 0$.

 Δ_1 và Δ_2 có vectơ pháp tuyến lần lượt là $\vec{n}_1 = (12; -6)$ và $\vec{n}_2 = (2; -1)$.

Ta có
$$\frac{12}{2} = \frac{-6}{-1}$$
.

Suy ra \vec{n}_1 và \vec{n}_2 là hai vecto cùng phương.

Khi đó ta có Δ_1 và Δ_2 song song hoặc trùng nhau.

Chọn $M(0; 1) \in \Delta_1$.

Thay tọa độ điểm M vào phương trình đường thẳng Δ_2 , ta được: $2.0-1+5=4\neq 0$.

Suy ra $M(0; 1) \notin \Delta_2$.

Vậy Δ_1 // Δ_2 .

c)
$$\Delta_1$$
: $8x + 10y - 12 = 0$ và Δ_2 :
$$\begin{cases} x = -6 + 5t \\ y = 6 - 4t \end{cases}$$

 Δ_1 có vecto pháp tuyến $\vec{n}_1 = (8;10)$.

 Δ_2 có vecto chỉ phương $\vec{u}_2 = (5; -4)$.

Suy ra Δ_2 có vecto pháp tuyến $\vec{n}_2 = (4;5)$.

Ta có
$$\frac{8}{4} = \frac{10}{5}$$
.

Suy ra \vec{n}_1 và \vec{n}_2 là hai vecto cùng phương.

Khi đó ta có Δ_1 và Δ_2 song song hoặc trùng nhau.

Chọn M(–6; 6) $\in \Delta_2$.

Thế tọa độ điểm M vào phương trình đường thẳng Δ_1 , ta được: 8.(-6) + 10.6 - 12 = 0.

Suy ra $M(-6; 6) \in \Delta_1$.

Vậy
$$\Delta_1 \equiv \Delta_2$$
.

d)
$$\Delta_1$$
:
$$\begin{cases} x = -1 - 5t \\ y = 2 + 4t \end{cases}$$
 và Δ_2 :
$$\begin{cases} x = -6 + 4t' \\ y = 2 + 5t' \end{cases}$$

• Δ_1 có vecto chỉ phương $\vec{u}_1 = (-5;4)$.

Suy ra Δ_1 có vecto pháp tuyến $\vec{n}_1 = (4,5)$.

• Δ_2 có vecto chỉ phương $\vec{u}_2 = (4;5)$.

Suy ra Δ_2 có vecto pháp tuyến $\vec{n}_2 = (5; -4)$.

 Δ_1 và Δ_2 có vectơ pháp tuyến lần lượt là $\vec{n}_1 = (4;5)$ và $\vec{n}_2 = (5;-4)$.

Ta có $\vec{n}_1 \cdot \vec{n}_2 = 4.5 + 5.(-4) = 0.$

Suy ra $\vec{n}_1 \perp \vec{n}_2$.

Do đó $\Delta_1 \perp \Delta_2$.

 Δ_1 đi qua điểm A(-1; 2) và có vecto pháp tuyến $\vec{n}_1 = (4;5)$.

Suy ra phương trình tổng quát của Δ_1 : $4(x+1)+5(y-2)=0 \Leftrightarrow 4x+5y-6=0$.

Tương tự, ta tìm được phương trình tổng quát của Δ_2 : 5x-4y+38=0.

Gọi M(x; y) là giao điểm của Δ_1 và Δ_2 .

Suy ra tọa độ điểm M thỏa hệ phương trình:

$$\begin{cases} 4x + 5y - 6 = 0 \\ 5x - 4y + 38 = 0 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{166}{41} \\ y = \frac{182}{41} \end{cases}$$

Khi đó ta có tọa độ là $M\left(-\frac{166}{41}; \frac{182}{41}\right)$.

Vậy Δ_1 và Δ_2 vuông góc với nhau tại điểm $M\left(-\frac{166}{41};\frac{182}{41}\right)$.

3. Góc giữa hai đường thẳng

3.1. Khái niệm góc giữa hai đường thẳng

Hai đường thẳng Δ_1 và Δ_2 cắt nhau tạo thành bốn góc.

- Nếu Δ_1 không vuông góc với Δ_2 thì góc nhọn trong bốn góc đó được gọi là **góc giữa hai đường thẳng** Δ_1 và Δ_2 .
- Nếu Δ_1 vuông góc với Δ_2 thì ta nói góc giữa Δ_1 và Δ_2 bằng 90° .

Ta quy ước: Nếu Δ_1 và Δ_2 song song hoặc trùng nhau thì góc giữa Δ_1 và Δ_2 bằng 0° .

Như vậy góc α giữa hai đường thẳng luôn thỏa mãn: $0^{\circ} \le \alpha \le 90^{\circ}$.

Góc giữa hai đường thẳng Δ_1 và Δ_2 được kí hiệu là $\left(\Delta_1,\Delta_2\right)$ hoặc (Δ_1,Δ_2) .

Ví dụ: Cho hình chữ nhật ABCD có $CBD = 30^{\circ}$.

Tính các góc: (BD, BC), (AB, AD), (AD, BC), (AB, BD).

Hướng dẫn giải

Ta có:

+) CBD = 30° . Suy ra (BD, BC) = 30° .

+) Vì AB \perp AD nên (AB, AD) = 90°.

- +) Vì AD // BC nên (AD, BC) = 0° .
- +) Ta có ABD + DBC = 90° (Vì AB \perp BC).

$$\Leftrightarrow$$
 ABD = 90° - DBC = 90° - 30° = 60° .

Vì $ABD = 60^{\circ}$ nên $(AB, BD) = 60^{\circ}$.

Vậy (BD, BC) =
$$30^{\circ}$$
, (AB, AD) = 90° , (AD, BC) = 0° , (AB, BD) = 60° .

3.2. Công thức tính góc giữa hai đường thẳng

Đường thẳng Δ_1 và Δ_2 có vecto pháp tuyến lần lượt là $\vec{n}_1 = (a_1; b_1), \vec{n}_2 = (a_2; b_2)$.

Ta có công thức:
$$\cos(\Delta_1, \Delta_2) = \frac{|a_1 a_2 + b_1 b_2|}{\sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}}$$
.

Nhận xét: Nếu Δ_1 , Δ_2 có vecto chỉ phương $\vec{\mathbf{u}}_1$, $\vec{\mathbf{u}}_2$ thì $\cos(\Delta_1, \Delta_2) = \left|\cos(\vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2)\right|$.

Chú ý: Ta đã biết hai đường thẳng vuông góc khi và chỉ khi chúng có hai vectơ pháp tuyến vuông góc. Do đó:

• Nếu Δ_1 và Δ_2 lần lượt có phương trình $a_1x + b_1y + c_1 = 0$ và $a_2x + b_2y + c_2 = 0$ thì ta có:

$$(\Delta_1, \Delta_2) = 90^\circ \Leftrightarrow a_1 a_2 + b_1 b_2 = 0.$$

• Nếu Δ_1 và Δ_2 lần lượt có phương trình $y=k_1x+m_1$ và $y=k_2x+m_2$ thì ta có:

$$(\Delta_1, \Delta_2) = 90^\circ \Leftrightarrow k_1 k_2 = -1.$$

Nói cách khác, hai đường thẳng có tích các hệ số góc bằng -1 thì vuông góc với nhau.

Ví dụ: Tìm số đo của góc giữa hai đường thẳng d_1 và d_2 trong các trường hợp sau:

a)
$$d_1$$
: $x - 2y + 5 = 0$ và d_2 : $3x - y = 0$.

b)
$$d_1$$
: $4x + 3y - 21 = 0$ và d_2 :
$$\begin{cases} x = 2 - 6t \\ y = -1 + 8t \end{cases}$$

c)
$$d_1$$
:
$$\begin{cases} x = 1 - t \\ y = 1 + 2t \end{cases}$$
 và d_2 :
$$\begin{cases} x = 2 - 4t' \\ y = 5 - 2t' \end{cases}$$

Hướng dẫn giải

a)
$$d_1$$
: $x - 2y + 5 = 0$ và d_2 : $3x - y = 0$

 d_1 , d_2 có vecto pháp tuyến lần lượt là $\vec{n}_1 = (1;-2)$, $\vec{n}_2 = (3;-1)$.

Ta có
$$\cos(d_1, d_2) = \frac{|1.3 + (-2).(-1)|}{\sqrt{1^2 + (-2)^2}.\sqrt{3^2 + (-1)^2}} = \frac{\sqrt{2}}{2}.$$

Suy ra $(d_1, d_2) = 45^{\circ}$.

Vậy
$$(d_1, d_2) = 45^{\circ}$$
.

b)
$$d_1$$
: $4x + 3y - 21 = 0$ và d_2 :
$$\begin{cases} x = 2 - 6t \\ y = -1 + 8t \end{cases}$$

 d_1 có vecto pháp tuyến $\vec{n}_1 = (4;3)$.

 \vec{u}_2 có vecto chỉ phương $\vec{u}_2 = (-6;8)$ nên có vecto pháp tuyến $\vec{n}_2 = (8;6)$.

Ta có $\vec{n}_2 = 2\vec{n}_1$.

Suy ra $\vec{n}_2 // \vec{n}_1$.

Vây $(d_1, d_2) = 0^{\circ}$.

c)
$$d_1$$
:
$$\begin{cases} x = 1 - t \\ y = 1 + 2t \end{cases}$$
 và d_2 :
$$\begin{cases} x = 2 - 4t' \\ y = 5 - 2t' \end{cases}$$

 d_1 , d_2 có vecto chỉ phương lần lượt là $\vec{u}_1 = (-1;2)$, $\vec{u}_2 = (-4;-2)$.

Ta có
$$\vec{\mathbf{u}}_1 \cdot \vec{\mathbf{u}}_2 = (-1) \cdot (-4) + 2 \cdot (-2) = 0$$
.

Suy ra $\vec{u}_1 \perp \vec{u}_2 \Rightarrow \vec{n}_1 \perp \vec{n}_2$

Vậy $(d_1, d_2) = 90^{\circ}$.

4. Khoảng cách từ một điểm đến một đường thẳng

Trong mặt phẳng Oxy, cho đường thẳng Δ có phương trình ax + by + c = 0 ($a^2 + b^2 > 0$) và điểm $M_0(x_0; y_0)$. *Khoảng cách* từ điểm M_0 đến đường thẳng Δ , kí hiệu là $d(M_0, \Delta)$, được tính bởi công thức: $d(M_0, \Delta) = \frac{\left|ax_0 + by_0 + c\right|}{\sqrt{a^2 + b^2}}$.

Ví dụ: Tính khoảng cách từ điểm đến đường thẳng được cho tương ứng như sau:

a)
$$A(3; 4)$$
 và Δ : $4x + 3y + 1 = 0$.

b) B(1; 2) và d: 3x - 4y + 1 = 0.

Hướng dẫn giải

a) Với A(3; 4) và Δ : 4x + 3y + 1 = 0 ta có:

$$d(A,\Delta) = \frac{|4.3 + 3.4 + 1|}{\sqrt{4^2 + 3^2}} = 5.$$

Vậy khoảng cách từ điểm A đến đường thẳng Δ bằng 5.

b) Với B(1; 2) và d: 3x - 4y + 1 = 0 ta có:

$$d(B,d) = \frac{|3.1 - 4.2 + 1|}{\sqrt{3^2 + (-4)^2}} = \frac{4}{5}.$$

Vậy khoảng cách từ điểm B đến đường thẳng d bằng $\frac{4}{5}$.

B. Bài tập tự luyện

Bài 1. Cho \triangle ABC có A(-2; 3), B(2; 5), C(5; 1).

- a) Viết phương trình tổng quát của đường thẳng AB và AC.
- b) Viết phương trình tham số của đường thẳng BC.
- c) Tính khoảng cách từ điểm B lần lượt đến cạnh AC và tính diện tích tam giác ABC.
- d) Viết phương trình đường trung tuyến kẻ từ C của tam giác ABC.

Hướng dẫn giải

a)

• Với A(-2; 3), B(2; 5) ta có
$$\overrightarrow{AB} = (4;2)$$
.

Do đó đường thẳng AB có vecto pháp tuyến $\vec{n}_{AB} = (2; -4)$.

Đường thẳng AB đi qua A(-2; 3) và nhận $\vec{n}_{AB} = (2; -4)$ làm vectơ pháp tuyến nên có phương trình tổng quát là:

$$2(x+2) - 4(y-3) = 0 \Leftrightarrow x - 2y + 8 = 0.$$

• Với A(-2; 3), C(5; 1) ta có
$$\overrightarrow{AC} = (7; -2)$$
.

Do đó đường thẳng AC có vecto pháp tuyến $\vec{n}_{AC} = (2,7)$.

Đường thẳng AC đi qua A(-2; 3) và nhận $\vec{n}_{AC} = (2;7)$ làm vectơ pháp tuyến nên có phương trình tổng quát là:

$$2(x+2) + 7(y-3) = 0 \Leftrightarrow 2x + 7y - 17 = 0.$$

Vậy phương trình tổng quát của đường thẳng AB, AC lần lượt là $x-2y+8=0,\,2x+7y-17=0.$

b) Với B(2; 5), C(5; 1) ta có
$$\overrightarrow{BC} = (3; -4)$$
.

Đường thẳng BC đi qua B(2; 5) và nhận $\overrightarrow{BC} = (3; -4)$ làm vectơ chỉ phương nên có phương trình tham số là:

$$\begin{cases} x = 2 + 3t \\ y = 5 - 4t \end{cases}$$

Vậy phương trình tham số của đường thẳng BC là $\begin{cases} x = 2 + 3t \\ y = 5 - 4t \end{cases}$

c) Với B(2; 5) và đường thẳng AC: 2x + 7y - 17 = 0 ta có:

$$d(B,AC) = \frac{|2.2 + 7.5 - 17|}{\sqrt{2^2 + 7^2}} = \frac{22\sqrt{53}}{53}.$$

Vậy khoảng cách từ điểm B đến cạnh AC bằng $\frac{22\sqrt{53}}{53}$.

Ta có
$$\overrightarrow{AC} = (7;-2)$$
 nên $AC = \sqrt{7^2 + (-2)^2} = \sqrt{53}$.

$$S_{ABC} = \frac{1}{2}.d(B,AC).AC = \frac{1}{2}.\frac{22\sqrt{53}}{53}.\sqrt{53} = 11$$
 (đvdt).

Vậy diện tích ΔABC bằng 11 đvdt.

d) Gọi I là trung điểm của AB. Khi đó tọa độ của điểm I thỏa mãn:

$$\begin{cases} x_{I} = \frac{x_{A} + x_{B}}{2} = \frac{-2 + 2}{2} = 0 \\ y_{I} = \frac{y_{A} + y_{B}}{2} = \frac{3 + 5}{2} = 4 \end{cases}$$

Suy ra I(0; 4).

Ta có
$$\overrightarrow{CI} = (0-5;4-1) = (-5;3)$$
.

Đường trung tuyến kẻ từ C của tam giác ABC chính là đường thẳng đi qua hai điểm C và I, tức là đường thẳng CI.

Do đó đường thẳng CI đi qua C(5; 1) có một vecto chỉ phương là $\overrightarrow{CI}(-5;3)$.

Phương trình tham số của đương thẳng CI là : $\begin{cases} x = 5 - 5t \\ y = 1 + 3t \end{cases} .$

Vậy phương trình tham số của đường trung tuyến kẻ từ C của tam giác ABC là:

$$\begin{cases} x = 5 - 5t \\ y = 1 + 3t \end{cases}$$

Bài 2. Cho hai đường thẳng Δ_1 : $(m-3)x + 2y + m^2 - 1 = 0$ và Δ_2 : $-x + my + (m-1)^2 = 0$.

- a) Xác định vị trí tương đối và xác định giao điểm (nếu có) của Δ_1 và Δ_2 trong các trường hợp m=0, m=1.
- b) Tìm m để hai đường thẳng Δ_1 và Δ_2 song song với nhau.

Hướng dẫn giải

a)

• Nếu m = 0 thì:

Phương trình Δ_1 : -3x + 2y - 1 = 0 và phương trình Δ_2 : -x + 1 = 0.

Đường thẳng Δ_1 , Δ_2 có vecto pháp tuyến lần lượt là $\vec{n}_1 = (-3; 2)$, $\vec{n}_2 = (-1; 0)$.

Ta có $a_1b_2 - a_2b_1 = (-3).0 + 3.(-1) = -3 \neq 0.$

Suy ra \vec{n}_1 , \vec{n}_2 là hai vecto không cùng phương.

Khi đó ta có Δ_1 , Δ_2 cắt nhau tại điểm M.

Vì M là giao điểm của Δ_1 và Δ_2 nên tọa độ điểm M thỏa hệ phương trình:

$$\begin{cases} -3x + 2y - 1 = 0 \\ -x + 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 2 \end{cases}$$

Suy ra M(1; 2).

• Nếu m = 1 thì:

Phương trình Δ_1 : -2x + 2y = 0 và phương trình Δ_2 : -x + y = 0.

Đường thẳng Δ_1 , Δ_2 có vectơ pháp tuyến lần lượt là $\vec{n}_1 = (-2; 2)$, $\vec{n}_2 = (-1; 1)$.

Ta có
$$\frac{-2}{-1} = \frac{2}{1}$$
.

Suy ra \vec{n}_1 , \vec{n}_2 là hai vecto cùng phương.

Khi đó ta có Δ_1 , Δ_2 song song hoặc trùng nhau.

Chọn điểm $O(0; 0) \in \Delta_1$.

Thay tọa độ điểm O vào phương trình Δ_2 ta được: -0 + 0 = 0 (đúng).

Suy ra $O(0; 0) \in \Delta_2$.

Do đó $\Delta_1 \equiv \Delta_2$.

Vậy khi m = 0 thì Δ_1 cắt Δ_2 tại điểm M(1; 2) và khi m = 1 thì Δ_1 trùng Δ_2 .

b)
$$\Delta_1$$
: $(m-3)x + 2y + m^2 - 1 = 0$ và Δ_2 : $-x + my + (m-1)^2 = 0$.

 Δ_1 , Δ_2 có vecto pháp tuyến lần lượt là $\vec{n}_1 = (m-3;2)$, $\vec{n}_2 = (-1;m)$.

Chọn B
$$\left(0; \frac{1-m^2}{2}\right) \in \Delta_1$$
.

 $\Delta_1 // \Delta_2$ khi và chỉ khi \vec{n}_1, \vec{n}_2 là hai vecto cùng phương và B $\notin \Delta_2$.

Ta có \vec{n}_1, \vec{n}_2 là hai vecto cùng phương.

$$\Leftrightarrow a_1b_2 - a_2b_1 = 0.$$

$$\Leftrightarrow$$
 $(m-3).m-2.(-1)=0.$

$$\Leftrightarrow m^2 - 3m + 2 = 0.$$

$$\Leftrightarrow$$
 m = 1 hay m = 2.

 \mathring{O} câu a), ta đã chứng minh được Δ_1 trùng Δ_2 khi m = 1.

Do đó ta loại m = 1.

Với m = 2, ta có tọa độ
$$B\left(0;-\frac{3}{2}\right)$$
 và phương trình Δ_2 : $-x+2y+1=0$.

Thay tọa độ B vào phương trình Δ_2 , ta được: $-0+2 \cdot \left(-\frac{3}{2}\right)+1=-2 \neq 0$.

Suy ra với m = 2, $B \notin \Delta_2$.

Vậy m = 2 thì
$$\Delta_1 // \Delta_2$$
.

Bài 3. Tìm m để góc hợp bởi hai đường thẳng Δ_1 : $\sqrt{3}x - y + 7 = 0$ và Δ_2 : mx + y + 1 = 0 một góc bằng 30°.

Hướng dẫn giải

$$\Delta_1$$
: $\sqrt{3}x - y + 7 = 0$ và Δ_2 : $mx + y + 1 = 0$

 Δ_1 , Δ_2 có vecto pháp tuyến lần lượt là $\vec{n}_1 = (\sqrt{3}; -1), \vec{n}_2 = (m; 1)$.

Ta có
$$\cos(\Delta_1, \Delta_2) = \frac{\left| m\sqrt{3} + (-1).1 \right|}{\sqrt{\left(\sqrt{3}\right)^2 + \left(-1\right)^2}.\sqrt{m^2 + 1^2}}.$$

Hay
$$\cos(\Delta_1, \Delta_2) = \frac{\left| m\sqrt{3} - 1 \right|}{2\sqrt{m^2 + 1}}$$

Theo đề, ta có góc giữa hai đường thẳng Δ_1 và Δ_2 bằng 30° .

Ta suy ra
$$\frac{\left|m\sqrt{3}-1\right|}{2\sqrt{m^2+1}} = \cos 30^\circ = \frac{\sqrt{3}}{2}$$

$$\Leftrightarrow \sqrt{3(m^2+1)} = \left| m\sqrt{3} - 1 \right|$$

$$\Leftrightarrow 3m^2 + 3 = 3m^2 - 2\sqrt{3}m + 1$$

$$\Leftrightarrow 2\sqrt{3}m = -2$$

$$\Leftrightarrow$$
 m = $-\frac{\sqrt{3}}{3}$.

Vậy m = $-\frac{\sqrt{3}}{3}$ thỏa mãn yêu cầu bài toán.

Bài 4. Cho đường thẳng d: 3x - 2y + 1 = 0 và điểm M(1; 2). Viết phương trình đường thẳng Δ đi qua điểm M và tạo với đường thẳng d một góc 45°.

Hướng dẫn giải

Gọi $\vec{n} = (a;b)$ là vectơ pháp tuyến của đường thẳng Δ .

Phương trình đường thẳng Δ đi qua M(1;2) có dạng: a(x-1)+b(y-2)=0.

$$\Leftrightarrow ax + by - a - 2b = 0.$$

Đường thẳng d: 3x - 2y + 1 = 0 có vectơ pháp tuyến $\vec{n}' = (3; -2)$.

Góc giữa hai đường thẳng Δ và d là:

$$\cos(\Delta, d) = \frac{\left|3a + (-2).b\right|}{\sqrt{a^2 + b^2}.\sqrt{3^2 + (-2)^2}} = \frac{\left|3a - 2b\right|}{\sqrt{13}.\sqrt{a^2 + b^2}}$$

Theo đề, ta có Δ tạo với d một góc 45° .

Suy ra
$$\cos 45^\circ = \frac{|3a - 2b|}{\sqrt{13}.\sqrt{a^2 + b^2}}$$
.

$$\Leftrightarrow \frac{\sqrt{2}}{2} = \frac{\left|3a - 2b\right|}{\sqrt{13} \cdot \sqrt{a^2 + b^2}}$$

$$\Leftrightarrow \sqrt{26\left(a^2 + b^2\right)} = 2\left|3a - 2b\right|$$

$$\Leftrightarrow 26a^2 + 26b^2 = 4(9a^2 - 12ab + 4b^2)$$

$$\Leftrightarrow -10a^2 + 48ab + 10b^2 = 0$$

$$\Leftrightarrow \begin{bmatrix} a = 5b \\ a = -\frac{1}{5}b \end{bmatrix}$$

• Với a = 5b, ta chọn a = 5.

Ta suy ra b = 1.

Khi đó ta nhận được phương trình đường thẳng Δ : 5x + y - 7 = 0.

• Với
$$a = -\frac{1}{5}b$$
, ta chọn $a = 1$.

Ta suy ra b = -5.

Khi đó ta nhận được phương trình đường thẳng Δ : x-5y+9=0.

Vậy có hai đường thẳng Δ thỏa yêu cầu bài toán có phương trình lần lượt là 5x+y-7=0 và x-5y+9=0.