Lab Section: TPM

Your Name: Elissa Ito

Collaborators (if any): Peter Williams

Lab 2 - Characterization of The Flywheel Plant

Experiment #2. Derive angular velocity

wheel_vel = (wheel_pos-pre_wheel_pos)/loop_time;

Experiment #3. Low-pass filter

filt_vel = alpha*wheel_vel + (1-alpha)*filt_vel;

Determine the value of alpha if the sampling period is 0.01s and the desired filter cutoff frequency is 15Hz.

 $\alpha = 0.01/(0.01 + 1/(15*2*pi)) = 0.4851936$

Experiment #4. Open-loop transfer function

Page 1 9/28/21

Open-loop transfer function (input: PWM pin voltage, output: wheel angular velocity):

Tau = 0.15s

Vss = 25.8

Vin = 2.94

Kdc = 8.7755102

$$G(s) = \frac{\Omega(s)}{V_c(s)} = \frac{K_{dc}}{\tau s + 1} = 8.7755102/(0.15s + 1)$$

Page 2 9/28/21

Extra Credit Task: Simscape Simulation

Page 3 9/28/21

$$K_v(or\ K_b)=0.0075\ \mathrm{V}$$

R = 3.2 ohms

b = 0.00096 N*m

Page 4 9/28/21