TD 9 - Equations de Maxwell et ondes életromagnétiques dans le vide

1 Rappels de cours

Equations de Maxwell:

$$\begin{split} div(\vec{E}) &= \frac{\rho}{\varepsilon_0} \\ div(\vec{B}) &= 0 \\ rot(\vec{E}) &= -\frac{\partial \vec{B}}{\partial t} \\ rot(\vec{B}) &= \mu_0 \vec{j} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \end{split}$$

Conductivité d'un milieu:

On définit la conductivité γ d'un milieu par la relation $\vec{j} = \gamma \vec{E}$.

Aspect énergétique:

- 1. Puissance volumique cédée par le champ électromagnétique à la matière : $\mathcal{P}_v = \vec{j} \cdot \vec{E}$
- 2. Densité volumique d'énergie électromagnétique : $u_{em}=\frac{1}{2}(\varepsilon_0 E^2+\frac{1}{\mu_0}B^2)$
- 3. Vecteur de nsité de courant d'énergie (ou vecteur de Poynting) : $\vec{\pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}$
- 4. Conservation de l'énergie : $\frac{\partial u_{em}}{\partial t} + div(\vec{\pi}) = -\vec{j} \cdot \vec{E}$

Ondes électromagnétiques dans le vide :

Equation de propagation du champ électromagnétique (équation d'Alembert) : $\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$, avec $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$

Capacités exigibles:

- 1. Savoir énoncer les équations de Maxwell.
- 2. Lien entre \vec{j} et \vec{E}
- 3. Puissance volumique cédée par le champ électromagnétique à la matière, densité volumique d'énergie électromagnétique, vecteur densité de courant d'énergie (ou vecteur de Poynting), conservation de l'énergie.
- 4. Retrouver l'équation d'Alembert à partir des équations de Maxwell.

2 Bilan énergétique d'un cylindre conducteur

On considère un cylindre conducteur (γ) , de rayon a, parcouru par un courant I uniforme.

- 1. Calculer \vec{j} et en déduire \vec{E} .
- 2. Calculer le champ magnétique dans le conducteur et en déduire la densité volumique d'énergie électromagnétique puis l'énergie électromagnétique totale contenue dans le conducteur.
- Calculer la puissance cédée par le champ électromagnétique au conducteur par effet joule, et en déduire la résistance du conducteur.

3 Paradoxe de Feynman:

On considère un solénoïde semi-infini de rayon a, posé sur une plaque pouvant pivoter autour de l'axe (Oz) et parcouru par un courant i(t)., avec i(t) = I, pour t < 0. Sur la plaque sont disposées N charges q > 0 à une distance b de l'axe. A t = 0, on coupe le courant. Que se passe-t-il?

On donne le rotationnel en coordonnées cylindriques :

$$\vec{rot}(\vec{f}) = \left(\frac{1}{r}\frac{\partial f_z}{\partial \theta} - \frac{\partial f_\theta}{\partial z}\right)\vec{e_r} + \left(\frac{\partial f_r}{\partial z} - \frac{\partial f_z}{\partial r}\right)\vec{e_\theta} + \frac{1}{r}\left(\frac{\partial}{\partial r}(rf_\theta) - \frac{\partial f_r}{\partial \theta}\right)\vec{e_z}$$

4 Onde électromagnétique dans le vide

On considère une onde électromagnétique se propageant dans le vide. On la représentation complexe du champ électrique de cette onde :

$$\vec{E} = \begin{cases} 0 \\ E_0 cos(\frac{\pi y}{a}) exp(i(\omega t - k_0 z)) \\ \underline{\alpha} E_0 sin(\frac{\pi y}{a}) exp(i(\omega t - k_0 z)) \end{cases}$$

avec $\underline{\alpha}$ un nombre complexe et k_0 positif.

- 1. Déterminer $\underline{\alpha}$ et k_0 en fonction de E_0 , ω , a et c.
- 2. Déterminer le champ magnétique \vec{B} associé à cette onde.
- 3. Calculer le vecteur de Poynting et sa valeur moyenne dans le temps.
- 4. Calculer la valeur moyenne dans le temps de la densité volumique d'énergie.

5 Situation qu'on rencontre dans la vie de tous les jours

On considère un cylindre chargé uniformément en surface et pouvant tourner autour de son axe horizontal. Une masse M est suspendue au bout d'un fil inextensible enroulé autour du cylindre. On lâche la masse, déterminer $\omega(t)$ la vitesse angulaire du cylindre.

6 Guide d'ondes rectangulaire

Quatre plans métalliques parfaitement conducteurs (sur la figure ci-dessous x=0, x=a, y=0, y=b) délimitent un guide d'onde de longueur infinie suivant Oz, de section droite rectangulaire et dans lequel règne le vide (permitivité ϵ_0 , perméabilité μ_0). On se propose d'étudier la propagation dans ce guide suivant la direction Oz d'une onde électromagnétique monochromatique de pulsation ω , dont le champ

électrique s'écrit : $\vec{E} = f(x,y)cos(\omega t - k_g z)\vec{u_x}$. Dans cette expression : f désigne une fonction réelle des variables y et x, et k_g est une constante positive. On posera $k_g = \frac{2\pi}{\lambda_g}$, où λ_g est la "longueur d'onde guidée" et on notera : $k_0 = \frac{2\pi}{\lambda_0} = \frac{\omega}{c}$

- 1. Montrer que f ne dépend que de y puis déterminer l'équation différentielle à laquelle est soumise f(y).
- 2. Résoudre cette équation et introduire un entier n correspondant à différents modes propres.
- 3. Déterminer \vec{B} .
- 4. Exprimer k_g en fonction de ω , c, n et b. En déduire λ_g en fonction de λ_0 , b et n.
- 5. Montrer qu'il existe une fréquence de coupure f_c en dessous de laquelle il n'y a plus propagation.
- 6. Exprimer la vitesse de phase v_{ϕ} de l'onde en fonction de c, n et du rapport $\frac{f}{f_c}$, f étant la fréquence de l'onde.
- 7. Donner l'expression du vecteur de Poynting $\vec{\Pi}$. Quelle est la valeur moyenne $<\vec{\Pi}>$ dans le temps de ce vecteur? En déduire la puissance moyenne transmise par une section droite du guide d'ondes.
- 8. Calculer la valeur moyenne, dans le temps de la densité d'énergie volumique de l'énergie électromagnétique < u>
- 9. A l'aide des résultats précédents, déduire la vitesse de propagation v_e de l'énergie. Quelle relation simple peut-on constater entre v_e et v_{ϕ} ?

