Introduction to Information Retrieval

Hinrich Schütze and Christina Lioma Lecture 14: Vector Space Classification

Introduction to Information Retrieval

Outline

- Recap
- Peature selection
- Intro vector space classification
- A Rocchio
- 5 knn
- 6 Linear classifiers
- > two classes

Feature selection

- In text classification, we usually represent documents in a high-dimensional space, with each dimension corresponding to a term.
- In this lecture: axis = dimension = word = term = feature
- Many dimensions correspond to rare words.
- Rare words can mislead the classifier.
- Rare misleading features are called noise features.
- Eliminating noise features from the representation increases efficiency and effectiveness of text classification.
- Eliminating features is called feature selection.

Example for a noise feature

- Let's say we're doing text classification for the class China.
- Suppose a rare term, say ARACHNOCENTRIC, has no information about China . . .
- ... but all instances of ARACHNOCENTRIC happen to occur in
- China documents in our training set.
- Then we may learn a classifier that incorrectly interprets ARACHNOCENTRIC as evidence for the class *China*.
- Such an incorrect generalization from an accidental property of the training set is called overfitting.
- Feature selection reduces overfitting and improves the
- accuracy of the classifier.

Basic feature selection algorithm

```
SELECTFEATURES(\mathbb{D}, c, k)

1 V \leftarrow \text{EXTRACTVOCABULARY}(\mathbb{D})

2 L \leftarrow []

3 for each t \in V

4 do A(t, c) \leftarrow \text{ComputeFeatureUtility}(\mathbb{D}, t, c)

5 APPEND(L, \langle A(t, c), t \rangle)

6 return FeaturesWithLargestValues(L, k)

How do we compute A, the feature utility?
```

Different feature selection methods

- A feature selection method is mainly defined by the feature utility measure it employs
- Feature utility measures:
 - Frequency select the most frequent terms
 - Mutual information select the terms with the highest mutual information
 - Mutual information is also called information gain in this context.
 - X² feature selection

Frequency based feature selection

- Select terms that are most common in class.
- Frequency can be of two types:
 - Document frequency number of documents of class c that contain t
 - Collection frequency The number of times t occurs in the documents of class c.

Mutual information

- Compute the feature utility A(t, c) as the expected mutual information (MI) of term t and class c.
- MI tells us "how much information" the term contains about the class and vice versa.
- For example, if a term's occurrence is independent of the class (same proportion of docs within/without class contain the term), then MI is 0.
- Definition:

$$I(U;C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) \log_2 \frac{P(U = e_t, C = e_c)}{P(U = e_t)P(C = e_c)}$$

How to compute MI values

Based on maximum likelihood estimates, the formula we actually use is:

$$I(U; C) = \frac{N_{11}}{N} \log_2 \frac{NN_{11}}{N_{1.}N_{.1}} + \frac{N_{01}}{N} \log_2 \frac{NN_{01}}{N_{0.}N_{.1}} + \frac{N_{10}}{N} \log_2 \frac{NN_{10}}{N_{1.}N_{.0}} + \frac{N_{00}}{N} \log_2 \frac{NN_{00}}{N_{0.}N_{.0}}$$

N₁₀: number of documents that contain t ($e_t = 1$) and are not in c ($e_c = 0$); N_{11} : number of documents that contain t ($e_t = 1$) and are in c ($e_c = 1$); N_{01} : number of documents that do not contain t ($e_t = 1$) and are in c ($e_c = 1$); N_{00} : number of documents that do not contain t ($e_t = 1$) and are not in c ($e_c = 1$); $N = N_{00} + N_{01} + N_{10} + N_{11}$.

MI example for *poultry*/EXPORT in Reuters

$$e_c=e_{poultry}=1$$
 $e_c=e_{poultry}=0$
 $e_t=e_{\mathrm{EXPORT}}=1$ $N_{11}=49$ $N_{10}=27{,}652$ Plug $e_t=e_{\mathrm{EXPORT}}=0$ $N_{01}=141$ $N_{00}=774{,}106$ these values into formula:

$$I(U;C) = \frac{49}{801,948} \log_2 \frac{801,948 \cdot 49}{(49+27,652)(49+141)} + \frac{141}{801,948} \log_2 \frac{801,948 \cdot 141}{(141+774,106)(49+141)} + \frac{27,652}{801,948} \log_2 \frac{801,948 \cdot 27,652}{(49+27,652)(27,652+774,106)} + \frac{774,106}{801,948} \log_2 \frac{801,948 \cdot 774,106}{(141+774,106)(27,652+774,106)}$$

$$\approx 0.000105$$

MI feature selection on Reuters

Class: coffee

term	MI
COFFEE	0.0111
BAGS	0.0042
GROWERS	0.0025
KG	0.0019
COLOMBIA	0.0018
BRAZIL	0.0016
EXPORT	0.0014
EXPORTERS	0.0013
EXPORTS	0.0013
CROP	0.0012

Class: sports

term	MI
SOCCER	0.0681
CUP	0.0515
MATCH	0.0441
MATCHES	0.0408
PLAYED	0.0388
LEAGUE	0.0386
BEAT	0.0301
GAME	0.0299
GAMES	0.0284
TEAM	0.0264

Naive Bayes: Effect of feature selection

(multinomial = multinomial Naive Bayes, binomial

= Bernoulli Naive Bayes)

Feature selection for Naive Bayes

- In general, feature selection is necessary for Naive Bayes to get decent performance.
- Also true for most other learning methods in text classification: you need feature selection for optimal performance.

χ^2 Feature selection

- X² test is applied to test independence of two events.
 - P(AB)=P(A)P(B) or P(A|B)=P(A) or P(B|A)=P(B)
- Two events are
 - Occurrence of term
 - Occurrence of class
- Rank terms with respect to the following quantity

$$X^{2}(\mathbb{D}, t, c) = \sum_{e_{t} \in \{0,1\}} \sum_{e_{c} \in \{0,1\}} \frac{(N_{e_{t}e_{c}} - E_{e_{t}e_{c}})^{2}}{E_{e_{t}e_{c}}}$$

N: Observed frequency in D, E: Expected frequency

χ^2 Feature selection

$$E_{11} = N \times P(t) \times P(c) = N \times \frac{N_{11} + N_{10}}{N} \times \frac{N_{11} + N_{01}}{N}$$
$$= N \times \frac{49 + 141}{N} \times \frac{49 + 27652}{N} \approx 6.6$$

where N is the total number of documents as before.

We compute the other $E_{e_te_c}$ in the same way:

	$e_{poultry} = 1$		$e_{poultry} = 0$	
$e_{\sf export} = 1$	$N_{11} = 49$	$E_{11} \approx 6.6$	$N_{10} = 27,652$	$E_{10} \approx 27,694.4$
$e_{export} = 0$	$N_{01} = 141$	$E_{01} \approx 183.4$	$N_{00} = 774,106$	$E_{00} \approx 774,063.6$

Plugging these values into Equation (13.18), we get a X^2 value of 284:

$$X^{2}(\mathbb{D}, t, c) = \sum_{e_{t} \in \{0,1\}} \sum_{e_{c} \in \{0,1\}} \frac{(N_{e_{t}e_{c}} - E_{e_{t}e_{c}})^{2}}{E_{e_{t}e_{c}}} \approx 284$$

χ^2 Feature selection

- X² test is the measure of how much E and N deviates from each other.
- $X^2 = 284$ ($X^2 > 10.83$) => we can reject the the hypothesis that poultry and export are independent with only a 0.001 chance of being wrong.
- **► Table 13.6** Critical values of the χ^2 distribution with one degree of freedom. For example, if the two events are independent, then $P(X^2 > 6.63) < 0.01$. So for $X^2 > 6.63$ the assumption of independence can be rejected with 99% confidence.

p	χ^2 critical value
0.1	2.71
0.05	3.84
0.01	6.63
0.005	7.88
0.001	10.83

Outline

- Recap
- 2 Feature selection
- Intro vector space classification
- A Rocchio
- 5 KNN
- 6 Linear classifiers
- > two classes

Recall vector space representation

- Each document is a vector, one component for each term.
- Terms are axes.
- High dimensionality: 100,000s of dimensions
- Normalize vectors (documents) to unit length
- How can we do classification in this space?

Vector space classification

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region.
- Premise 2: Documents from different classes don't overlap.
- We define lines, surfaces, hypersurfaces to divide regions.

Classes in the vector space

Should the document * be assigned to China, UK or Kenya? Find separators between the classes Based on these separators: * should

be assigned to China How do we find separators that do a good job at classifying new documents like \star ? – Main topic of today

Aside: 2D/3D graphs can be misleading

Left: A projection of the 2D semicircle to 1D. For the points x_1, x_2, x_3, x_4, x_5 at x coordinates -0.9, -0.2, 0, 0.2, 0.9 the distance $|x_2x_3| \approx 0.201$ only differs by 0.5% from $|x'_2x'_3| = 0.2$; but $|x_1x_3|/|x'_1x'_3| = d_{\text{true}}/d_{\text{projected}} \approx 1.06/0.9 \approx 1.18$ is an example of a large distortion (18%) when projecting a large area. Right: The corresponding projection of the 3D hemisphere to 2D.

Outline

- Recap
- 2 Feature selection
- Intro vector space classification
- Rocchio
- 5 KNN
- 6 Linear classifiers
- > two classes

Relevance feedback

- In relevance feedback, the user marks documents as relevant/nonrelevant.
- Relevant/nonrelevant can be viewed as classes or categories.
- For each document, the user decides which of these two classes is correct.
- The IR system then uses these class assignments to build a better query ("model") of the information need . . .
- . . . and returns better documents.
- Relevance feedback is a form of text classification.

Using Rocchio for vector space classification

- The principal difference between relevance feedback and text classification:
 - The training set is given as part of the input in text classification.
 - It is interactively created in relevance feedback.

Rocchio classification: Basic idea

- Compute a centroid for each class
 - The centroid is the average of all documents in the class.
- Assign each test document to the class of its closest centroid.

Recall definition of centroid

$$\vec{\mu}(c) = \frac{1}{|D_c|} \sum_{d \in D_c} \vec{v}(d)$$

where D_c is the set of all documents that belong to class c and $\vec{v}(d)$ is the vector space representation of d.

Rocchio algorithm

```
TRAINROCCHIO(\mathbb{C}, \mathbb{D})

1 for each c_j \in \mathbb{C}

2 do D_j \leftarrow \{d : \langle d, c_j \rangle \in \mathbb{D}\}

3 \vec{\mu}_j \leftarrow \frac{1}{|D_j|} \sum_{d \in D_j} \vec{v}(d)

4 return \{\vec{\mu}_1, \dots, \vec{\mu}_J\}

ApplyRocchio(\{\vec{\mu}_1, \dots, \vec{\mu}_J\}, d)

1 return arg min_j |\vec{\mu}_j - \vec{v}(d)|
```

Rocchio illustrated : a1 = a2, b1 = b2, c1 = c2

Rocchio properties

- Rocchio forms a simple representation for each class: the centroid
 - We can interpret the centroid as the prototype of the class.
- Classification is based on similarity to / distance from centroid/prototype.
- Does not guarantee that classifications are consistent with the training data!

Time complexity of Rocchio

mode	time complexity
training	$\Theta(\mathbb{D} L_{ave} + \mathbb{C} V) pprox \Theta(\mathbb{D} L_{ave})$
testing	$\Theta(L_{a} + \mathbb{C} M_{a}) pprox \Theta(\mathbb{C} M_{a})$

Rocchio vs. Naive Bayes

- In many cases, Rocchio performs worse than Naive Bayes.
- One reason: Rocchio does not handle nonconvex, multimodal classes correctly.

Rocchio cannot handle nonconvex, multimodal classes

Exercise: Why is Rocchio not expected to do well for the classification task a vs. b here?

- A is centroid of the a's, B is centroid of the b's.
- The point o is closer to A than to B.
- But o is a better fit for the b class.
- A is a multimodal class with two prototypes.
- But in Rocchio we only have one prototype.

Outline

- Recap
- Peature selection
- Intro vector space classification
- A Rocchio
- 5 kNN
- 6 Linear classifiers
- > two classes

kNN classification

- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.
- If you need to get a pretty accurate classifier up and running in a short time . . .
- ... and you don't care about efficiency that much ...
- . . . use kNN.

kNN classification

- kNN = k nearest neighbors
- * kNN classification rule for k = 1 (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.
- kNN classification rule for k > 1 (kNN): Assign each test document to the majority class of its k nearest neighbors in the training set.
- Rationale of kNN: contiguity hypothesis
 - We expect a test document d to have the same label as the training documents located in the local region surrounding d.

Probabilistic kNN

- Probabilistic version of kNN: P(c|d) = fraction of k neighbors of d that are in c
- * kNN classification rule for probabilistic kNN: Assign d to class c with highest P(c|d)

Probabilistic kNN

1NN, 3NN classification decision for star?

kNN algorithm

```
TRAIN-KNN(\mathbb{C}, \mathbb{D})

1 \mathbb{D}' \leftarrow \operatorname{PREPROCESS}(\mathbb{D})

2 k \leftarrow \operatorname{SELECT-K}(\mathbb{C}, \mathbb{D}')

3 \operatorname{return} \mathbb{D}', k

APPLY-KNN(\mathbb{D}', k, d)

1 S_k \leftarrow \operatorname{ComputeNearestNeighbors}(\mathbb{D}', k, d)

2 \operatorname{for} \operatorname{each} c_j \in \mathbb{C}(\mathbb{D}')

3 \operatorname{do} p_j \leftarrow |S_k \cap c_j|/k

4 \operatorname{return} \operatorname{arg} \max_j p_j
```

Exercise

How is star classified by:

(i) 1-NN (ii) 3-NN (iii) 9-NN (iv) 15-NN (v) Rocchio?

Time complexity of kNN

kNN with preprocessing of training set

```
training \Theta(|\mathbb{D}|L_{ave})
testing \Theta(L_a + |\mathbb{D}|M_{ave}M_a) = \Theta(|\mathbb{D}|M_{ave}M_a)
```

- kNN test time proportional to the size of the training set!
- The larger the training set, the longer it takes to classify a test document.
- kNN is inefficient for very large training sets.

kNN: Discussion

- No training necessary
 - But linear preprocessing of documents is as expensive as training Naive Bayes.
 - We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.
- Optimality result: asymptotically zero error if Bayes rate is zero.
- But kNN can be very inaccurate if training set is small.

Outline

- Recap
- 2 Feature selection
- Intro vector space classification
- A Rocchio
- 5 KNN
- 6 Linear classifiers
- > two classes

Linear classifiers

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - . . . where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.
- We find this separator based on training set.
- Methods for finding separator: Perceptron, Rocchio, Naïve Bayes – as we will explain on the next slides
- Assumption: The classes are linearly separable.

A linear classifier in 1D

- A linear classifier in 1D is a point described by the equation $w_1d_1 = \theta$
- The point at θ/w_1
- Points (d_1) with $w_1d_1 \ge$ are in the class c.
- Points (d_1) with $w_1d_1 < \theta$ are ir the complement class

A linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$
- Example for a 2D linear classifier
- Points $(d_1 d_2)$ with $w_1 d_1 + w_2 d_2 \ge \theta$ are in the class c.
- Points $(d_1 d_2)$ with $w_1 d_1 + w_2 d_2 < \theta$ are in the $\frac{1}{C}$. complement class

A linear classifier in 2D

- A linear classifier in 3D is a plane described by the equation $w_1d_1 + w_2d_2 +$ $w_3d_3 = \theta$
- Example for a 3D linear classifier
- Points $(d_1 d_2 d_3)$ with $w_1 d_1 + w_2 d_2 + w_3 d_3 \ge \theta$ are in the class c.
- Points $(d_1 d_2 d_3)$ with $w_1 d_1 + w_2 d_2 + w_3 d_3 < \theta$ are in the complement class \overline{c} .

Rocchio as a linear classifier

Rocchio is a linear classifier defined by:

$$\sum_{i=1}^{M} w_i d_i = \vec{w} \vec{d} = \theta$$

• where \vec{w} is the normal vector $\vec{\mu}(c_1) - \vec{\mu}(c_2)$ and $\theta = 0.5 * (|\vec{\mu}(c_1)|^2 - |\vec{\mu}(c_2)|^2)$.

Naive Bayes as a linear classifier

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

$$\sum_{i=1}^{N} w_i d_i = \theta$$

where $w_i = \log[\hat{P}(t_i|c)/\hat{P}(t_i|\bar{c})]$, $d_i = \text{number of occurrences of } t_i$ in d, and $\theta = -\log[\hat{P}(c)/\hat{P}(\bar{c})]$. Here, the index i, $1 \le i \le M$, refers to terms of the vocabulary (not to positions in d as k did in our original definition of Naive Bayes)

kNN is not a linear classifier

- Classification decision based on majority of k nearest neighbors.
- The decision boundaries between classes are piecewise linear . . .
 - ... but they are in general not linear classifiers that can be described as

$$\sum_{i=1}^{M} w_i d_i = \theta.$$

Example of a linear two-class classifier

ti	Wi	d_{1i}	d_{2i}	ti	Wi	d_{1i}	d_{2i}
prime	0.70	0	1	dlrs	-0.71	1	1
rate	0.67	1	0	world	-0.35	1	0
interest	0.63	0	0	sees	-0.33	0	0
rates	0.60	0	0	year	-0.25	0	0
discount	0.46	1	0	group	-0.24	0	0
bundesbank	0.43	0	0	dlr	-0.24	0	0

- This is for the class interest in Reuters-21578.
- For simplicity: assume a simple 0/1 vector representation
- d_1 : "rate discount dlrs world"
- d_2 : "prime dlrs"
- $\theta = 0$

- Exercise: Which class $\frac{1}{d_1} d_1$ assigned to? Which class is d_2 assigned to? If \vec{d}_1 gn document "rate discount dlrs world" to interest since $\vec{d}_1 = C_1 / 7 \cdot 1 + 0.46 \cdot 1 + (-0.71) \cdot 1 + (-0.35) \cdot 1 = 0.07 > 0 = 0$ The sign \vec{d}_2 "prime dlrs" to the complement class (not in interest) since $\vec{d}_1 = -0.01 \le 0$.

Which hyperplane?

Learning algorithms for vector space classification

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
 - Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms
 - Support vector machines
 - Perceptron (example available as PDF on website: http://ifnlp.org/ir/pdf/p.pdf)
- The best performing learning algorithms usually require iterative learning.

Which hyperplane?

Which hyperplane?

- For linearly separable training sets: there are infinitely many separating hyperplanes.
- They all separate the training set perfectly . . .
- ... but they behave differently on test data.
- Error rates on new data are low for some, high for others.
- How do we find a low-error separator?
- Perceptron: generally bad; Naive Bayes, Rocchio: ok; linear SVM: good

Linear classifiers: Discussion

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane
 - Huge differences in performance on test documents
- Can we get better performance with more powerful nonlinear classifiers?
- Not in general: A given amount of training data may suffice for estimating a linear boundary, but not for estimating a more complex nonlinear boundary.

A nonlinear problem

- Linear classifier like Rocchio does badly on this task.
- kNN will do well (assuming enough training data)

Which classifier do I use for a given TC problem?

- Is there a learning method that is optimal for all text classification problems?
- No, because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
 - How noisy is the problem?
 - How stable is the problem over time?
 - For an unstable problem, it's better to use a simple and robust classifier.

Outline

- Recap
- 2 Feature selection
- Intro vector space classification
- Rocchio
- 5 KNN
- 6 Linear classifiers
- > two classes

How to combine hyperplanes for > 2 classes?

One-of problems

- One-of or multiclass classification
 - Classes are mutually exclusive.
 - Each document belongs to exactly one class.
 - Example: language of a document (assumption: no document)
 - contains multiple languages)

One-of classification with linear classifiers

- Combine two-class linear classifiers as follows for one-of classification:
 - Run each classifier separately
 - Rank classifiers (e.g., according to score)
 - Pick the class with the highest score

Any-of problems

- Any-of or multilabel classification
 - A document can be a member of 0, 1, or many classes.
 - A decision on one class leaves decisions open on all other classes.
 - A type of "independence" (but not statistical independence)
 - Example: topic classification
 - Usually: make decisions on the region, on the subject area, on the industry and so on "independently"

Any-of classification with linear classifiers

- Combine two-class linear classifiers as follows for any-of classification:
 - Simply run each two-class classifier separately on the test document and assign document accordingly

Take-away today

- Feature selection for text classification: How to select a subset of available dimensions
- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification
- k nearest neighbor classification
- Linear classifiers
- More than two classes

Resources

- Chapter 13 of IIR (feature selection)
- Chapter 14 of IIR
- Resources at http://ifnlp.org/ir
 - Perceptron example
 - General overview of text classification: Sebastiani (2002)
 - Text classification chapter on decision tress and perceptrons:
 Manning & Schütze (1999)
 - One of the best machine learning textbooks: Hastie, Tibshirani
 & Friedman (2003)