

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

การสอบปลายภาคการศึกษาที่ 2 ปีการศึกษา 2555

ข้อสอบวิชา PHY 207 Thermal and Statistical Physics

ภาควิชาฟิสิกส์ชั้นปีที่ 2

วันสอบ วันจันทร์ที่ 20 พฤษภาคม พ.ศ. 2556

เวลา 9.00-12.00 น.

คำสั่ง

- 1. เขียนชื่อ-รหัส ลงในช่องว่างที่กำหนดทุกแผ่น
- 2. ข้อสอบมี 10 ข้อ รวมทั้งหมด 12 แผ่น คะแนนเต็ม 100 คะแนน
- 3. ทำข้อสอบลงในที่ว่างตามลำดับข้อนั้นๆ ถ้าที่ว่างเขียนคำตอบไม่พอให้เขียนต่อด้านหลัง
- 4. อนุญาตให้ใช้เครื่องคำนวณตามประกาศของมหาวิทยาลัยฯ
- 5. ไม่อนุญาตให้นำเอกสารใดๆเข้าห้องสอบ

ข้อที่	กะแนนเต็ม	คะแนนได้
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
รวม	100	

ข้อสอบชุดนี้ได้ผ่านการกลั่นกรองจากคณะกรรมการฯของภาควิชาฟิสิกส์แล้ว

Sy

สูตรคำนวณ

$$\begin{split} d^{1}Q &= dU + d^{1}W, \quad TdS = dU + d^{1}W \\ \left(\frac{\partial u}{\partial v}\right)_{T} &= T\left(\frac{\partial P}{\partial T}\right)_{v} - P, \\ \left(\frac{\partial h}{\partial P}\right)_{T} &= -T\left(\frac{\partial v}{\partial T}\right)_{P} + v \\ \left(\frac{\partial s}{\partial P}\right)_{v} &= \frac{c_{v}}{T}\left(\frac{\partial T}{\partial P}\right)_{v}, \\ \left(\frac{\partial s}{\partial P}\right)_{v} &= \frac{c_{v}}{T}\left(\frac{\partial T}{\partial P}\right)_{v}, \\ \left(\frac{\partial s}{\partial V}\right)_{P} &= \frac{c_{p}}{T}\left(\frac{\partial T}{\partial V}\right)_{P} \\ Tds &= c_{v}dT + T\left(\frac{\partial P}{\partial T}\right)_{v}dV \\ Tds &= c_{p}dT - T\left(\frac{\partial v}{\partial V}\right)_{P}dP \\ Tds &= c_{p}\left(\frac{\partial T}{\partial V}\right)_{v}dV + c_{v}\left(\frac{\partial T}{\partial P}\right)_{v}dP \\ \eta &= \left(\frac{\partial T}{\partial V}\right)_{v} = -\frac{1}{c_{v}}\left(\frac{\partial u}{\partial V}\right)_{T}, \\ \mu_{J} &= \left(\frac{\partial G}{\partial T}\right)_{P} = -S, \\ \left(\frac{\partial G}{\partial P}\right)_{T} &= -P, \\ \left(\frac{\partial G}{\partial T}\right)_{P} &= -S, \\ \left(\frac{\partial H}{\partial V}\right)_{S} &= -P, \\ \left(\frac{\partial H}{\partial S}\right)_{P} &= T, \\ \left(\frac{\partial H}{\partial P}\right)_{S} &= V \\ \left(\frac{\partial T}{\partial V}\right)_{S} &= -\left(\frac{\partial P}{\partial S}\right)_{v}, \\ \left(\frac{\partial S}{\partial V}\right)_{T} &= \left(\frac{\partial P}{\partial T}\right)_{V} \\ \left(\frac{\partial S}{\partial P}\right)_{T} &= -\left(\frac{\partial V}{\partial T}\right)_{P}, \\ \left(\frac{\partial T}{\partial P}\right)_{S} &= \left(\frac{\partial V}{\partial S}\right)_{P} \\ \left(\frac{\partial P}{\partial T}\right)_{13} &= \frac{I_{13}}{T(v^{T}-v^{T})}; \\ T &= T_{w} \\ \left(\frac{\partial P}{\partial T}\right)_{13} &= \frac{I_{13}}{T(v^{T}-v^{T})}; \\ T &= T_{s} \\ \end{array}$$

$$\Delta G = RT(n_1 \ln x_1 + n_2 \ln x_2)$$

$$\Delta G = n_1(\mu_1 - g_1) + n_2(\mu_2 - g_2)$$

$$\mu = -T \left(\frac{\partial S}{\partial n}\right)_{U,X} = \left(\frac{\partial F}{\partial n}\right)_{T,X} = \left(\frac{\partial G}{\partial n}\right)_{T,Y} = \left(\frac{\partial U}{\partial n}\right)_{S,V}$$

$$E_{total} = U = \sum_{j} \varepsilon_{j} N_{j}$$

$$\overline{N}_{j} = \overline{N}_{j}^{g} = \overline{N}_{j}^{t} = \frac{1}{\Omega} \sum_{k} N_{jk} \mathbf{W}_{k}$$

$$\mathbf{B} \cdot \mathbf{E} \qquad \omega_{j} = \frac{(g_{j} + N_{j} - 1)!}{(g_{j} - 1)! N_{j}!}$$

$$\mathbf{W}_{k} = \mathbf{W}_{B-E} = \prod_{j} \frac{(g_{j} + N_{j} - 1)!}{(g_{j} - 1)! N_{j}!}$$

$$\mathbf{W}_{k} = \mathbf{W}_{F-D} = \prod_{j} \frac{g_{j}!}{(g_{j} - N_{j})! N_{j}!}$$

$$\mathbf{M} \cdot \mathbf{B} \qquad \omega_{j} = g_{j}^{N_{j}}$$

$$\mathbf{W}_{k} = \mathbf{W}_{M-B} = N! \prod_{j} \frac{g_{j}^{N_{j}}}{N_{j}!}$$

$$\frac{\overline{N}_{j}}{g_{j}} = \frac{1}{\exp\left(\frac{\varepsilon_{j} - \mu}{k_{B}T}\right) - 1}$$

$$\frac{\overline{N}_{j}}{g_{j}} = \exp\left(\frac{\varepsilon_{j} - \mu}{k_{B}T}\right) + 1$$

$$\frac{\overline{N}_{j}}{g_{j}} = \exp\left(\frac{\mu - \varepsilon_{j}}{k_{B}T}\right)$$

$$Z = \sum_{j} g_{j} \exp\left(\frac{-\varepsilon_{j}}{k_{B}T}\right)$$

 $S = k_B \ln \Omega$

4		•
011	ก รหส์	•

1. Describe briefly the basic principles of The Zeroth law, The First law, The Second law and The Third law of the thermodynamics.

4	a v
941	อรหสรหสรหส
D	Ud II bl

- 2. (a) Describe briefly the meaning of chemical potential (μ) of the thermodynamics.
 - (b) Describe briefly the meaning of entropy (S) in the meaning of statistical thermodynamics.

3. Describe the meaning of path $a \to b \to c$ and $f \to e \to d$ in the figure. [Keywords: metastable equilibrium state, unstable equilibrium state, supercooled vapor and superheatted liquid].

4		
କ୍ୟ ନ)รหสรหส	٠,

- 4. (a) Describe briefly difference of The Bose-Einstein statistics, The Fermi-Dirac statistics and The Maxwell-Boltzmann statistics.
 - (b) Describe briefly difference of Bosons particles and Fermions particles.

ė.	รหัส	,
หล	5 W A	

5. The pressure on water $1 \times 10^{-4} \, m^3$, initially at $0^{\circ} \, C$, is slowly increased from 1 atm to 10 atm.

Calculate the heat transferred (dQ) if the process is <u>isothermal</u>. [Hint: Being with an appropriate TdS relation, $\left(\frac{\partial V}{\partial T}\right)_P = V_0 \beta$, $c_P = 420 J/K$ and $\beta = -6.8 \times 10^{-5} K^{-1}$].

1		
3	ω ·	
ห้อ	รหัส	,

6. Liquid helium has a normal boiling point of 4.2 K. However, at a pressure of 1 mm of mercury, it boils at 1.2 K. Estimate the average latent heat (l_{23}) of vaporization of helium in this temperature range. [Hint: Being with an appropriate the Clausius-Clapeyron equation, 1 $atm = 1.013 \times 10^5 Pa$ and 1 mmHg = 133.3Pa].

A	av	^
ชื่อ	รห์ส	9

- 7. A container of volume V is divided by partitions into three parts containing one kilomole of <u>helium</u> gas, two kilomoles of <u>neon</u> gas, and three kilomoles of <u>argon</u> gas, respectively. The temperature of each gas is initially 300 K and the pressure is 2 atm. The partitions are removed and the gases diffuse into each other.
 - (a) Calculate the mole fraction of each gas in the mixture.
 - (b) Calculate the partial pressure of each gas in the mixture.
 - (c) Calculate the change of the Gibbs function of the system in the mixing process.
 - (d) Calculate the change of the entropy of the system in the mixing process.

4		
30	~ a a	10
"KP1	วหต	10

8. Show that the radiant energy density (u) of blackbody radiation is given by

 $u = \sigma T^4$, when σ is the Stefan-Boltmann constant.

[Hint: Being with an appropriate the combine first and second laws equation, $\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial P}{\partial T}\right)_V - P$].

9. Show that the pressure P_i inside a bubble of radius r in a liquid which is under an external pressure P_e is given by $P_i - P_e = \frac{2\sigma}{r}$ where σ is surface tension forces. [Hint: $\vec{F}_{\downarrow} = \vec{F}_{\uparrow}$].

10. Bosons particles are distributed among the states of the seven equally spaced energy levels shown in figure. Assume that the total number of particles (N=6), the total energy $(U=6\varepsilon)$ and the degeneracy $(g_i = 3)$ of each level.

> U = 6E $g_i = 3$

k =	1	2	3	4	5	6	7	8	9	10	11
$\mathbf{E}_{i}/\mathbf{E} = 6$											
S		•									
4			•	•							
3					••	•					
2			•			•		٠.			
1		·		••			٠.			: :	
0		: :		٠.	: :	٠.	••	٠.			

- (a) Find the thermodynamic probability of each macrostates (\mathcal{U}_k).
- (b) Find the total number of microstates of the assembly (Ω) .