Neural Networks Ninjaz

Agenda

- Heart Disease Dataset
- Neural Networks Models
- **3** Comparison of the best NN model results
- Machine Learning Models
- 5 Comparison of the best ML model results

Datatset

Heart Disease Dataset

This data set dates from 1988 and consists of four databases: Cleveland, Hungary, Switzerland, and Long Beach V.

It contains 12 attributes and 918 records

The "target" field refers to the presence of heart disease in the patient. It is integer-valued 0 = no disease and 1 = disease

Data	columns (total	12 columns):	
#	Column	Non-Null Count	Dtype
0	Age	918 non-null	int64
1	Sex	918 non-null	object
2	ChestPainType	918 non-null	object
3	RestingBP	918 non-null	int64
4	Cholesterol	918 non-null	int64
5	FastingBS	918 non-null	int64
6	RestingECG	918 non-null	object
7	MaxHR	918 non-null	int64
8	ExerciseAngina	918 non-null	object
9	Oldpeak	918 non-null	float64
10	ST_Slope	918 non-null	object
11	HeartDisease	918 non-null	int64

Deep learning - ANN models

First NN Model

Two layers

First layer: 100 units Activation='LeakyReLU'

Second layer: 100 units Activation='LeakyReLU'

Output layer : one unit

Activation Function 'sigmoid'

Plot the model training history

Second NN Model

Two layers

First layer: 6 units Activation='Relu'

Second layer: 6 units Activation='Relu'

Output layer : one unit

Activation Function 'sigmoid'

Plot the model training history

Third NN Model

One layer

layer: 8 units Activation='relu'

Output layer : one unit

Activation Function 'sigmoid'

Plot the model training history

Fourth NN Model

Two layers

First layer: 16 units Activation='swish'

Second layer: 16 units Activation='swish'

Output layer : one unit

Activation Function 'sigmoid'

Swish activation function

• Swish is a activation function which was discovered by researchers at Google.

• Swish is as computationally efficient as ReLU and shows better performance than ReLU on deeper models.

• The values for swish ranges from negative infinity to infinity.

Plot the model training history

comparison of NN model results

model no		precision	recall	f1-score	support	accuracy
	0	0.83 0.86	0.81 0.88	0.82 0.87	77 107	0.85
3	0	0.86 0.89	0.84 0.90	0.85 0.89	77 107	0.88
3	0	0.84 0.83	0.75 0.90	0.79 0.86	77 107	0.84
4	0	0.87 0.90	0.86 0.91	0.86 0.90	77 107	0.89

Machine learning models

kogistic regression model

```
classifier = LogisticRegression(random_state = 0)
classifier.fit(X train, y train)
y pred = classifier.predict(X test)
accuracy score(y test,y pred,normalize=True)
0.8260869565217391
cm = confusion matrix(y test, y pred)
\subset \mathbf{m}
array([[56, 21],
       [11, 96]], dtype=int64)
pred = classifier.predict(X test)
print(classification report(y test, pred))
               precision
                            recall f1-score
                                                support
                    0.84
                              0.73
                                         0.78
           Θ
                                                      77
                              0.90
                    0.82
                                         0.86
                                                     107
                                         0.83
                                                     184
    accuracy
                                         0.82
                    0.83
                              0.81
                                                    184
   macro avg
weighted avg
                    0.83
                              0.83
                                         0.82
                                                     184
```


kogistic regression model-Tuning

```
# Instantiate Standard Scaler
scaler = StandardScaler()
# Fit & transform data.
scaled_df = scaler.fit_transform(X_train)
pca = PCA()
pca.fit(scaled_df)
PCA()
pipe = make_pipeline(
    PCA(n_components= 6),
    LogisticRegression())
pipe.fit(X_train, y_train)
pipe.score(X_test, y_test)
0.8478260869565217
pred = pipe.predict(X test)
print(classification report(y test, pred))
              precision
                           recall f1-score
                                              support
                   0.84
                             0.79
                                        0.81
                                                    77
                                       0.87
           1
                   0.86
                             0.89
                                                   107
                                       0.85
                                                   184
    accuracy
                                       0.84
                                                   184
   macro avg
                   0.85
                             0.84
weighted avg
                             0.85
                                       0.85
                                                   184
                   0.85
```


Desicion tree model

```
scaler = StandardScaler()
# Fit & transform data.
X_train_sc = scaler.fit_transform(X_train)
X_test_sc = scaler.transform(X_test)
class_tree = DecisionTreeClassifier(criterion='gini', max_depth=4)
class tree.fit(X train sc, y train)
preds_class = class_tree.predict(X_test_sc)
val_train = round(class_tree.score(X_train_sc, y_train),2)*100
val_test = round(class_tree.score(X_test_sc, y_test),2)*100
print(f'Training Accuracy: {val train}%')
print(f'Test Set Accuracy: {val_test}%')
Training Accuracy: 89.0%
Test Set Accuracy: 82.0%
pred = class tree.predict(X test)
print(classification_report(y_test, pred))
              precision
                           recall f1-score
                                              support
                   0.79
                             0.75
                                       0.77
                                                   77
                             0.86
                   0.83
                                       0.84
                                                  107
                                       0.82
                                                  184
    accuracy
                             0.81
   macro avg
                   0.81
                                       0.81
                                                  184
weighted avg
                   0.81
                             0.82
                                       0.81
                                                  184
```


Desicion tree model - Tuning

```
# Classification
param_grid = {
    "criterion": ["gini", "entropy"],
    "max depth": [2,4,6]
grid = GridSearchCV(
    class_tree,
    param_grid,
    cv = 5,
    n jobs=-1,
    verbose=1
grid.fit(X_train, y_train)
```


0.82

0.82

184

0.82

Random forest model

```
class_forest = RandomForestClassifier(n_estimators = 6, criterion = 'gini', random_state = 0)
class_forest.fit(X_train_sc, y_train)
preds_class = class_forest.predict(X_test_sc)
val_train = round(class_forest.score(X_train_sc, y_train),2)*100
val_test = round(class_forest.score(X_test_sc, y_test),2)*100
print(f'Training Accuracy: {val_train}%')
print(f'Test Set Accuracy: {val test}%')
Training Accuracy: 99.0%
Test Set Accuracy: 83.0%
pred = class_forest.predict(X_test)
print(classification_report(y_test, pred))
              precision
                           recall f1-score
                                              support
                             0.83
                                       0.81
                                                   77
                   0.78
                   0.87
                             0.83
                                       0.85
                                                  107
                                       0.83
                                                  184
    accuracy
                                       0.83
                   0.83
                             0.83
                                                  184
   macro avg
weighted avg
                   0.83
                             0.83
                                       0.83
                                                  184
```


Random forest model-Tuning

```
# Classification
param_grid = {
    "n_estimators": [10,20,30],
    "criterion": ["gini", "entropy"],
    "max_depth": [2,4,6]
}
grid = GridSearchCV(
    class_forest,
    param_grid,
    cv = 5,
    n_jobs=-1,
    verbose=1
)
grid.fit(X_train, y_train)
grid.best
```

```
grid.best_score_
0.8814462771409934
grid.best params
{'criterion': 'gini', 'max_depth': 6, 'n_estimators': 20}
pred = grid.predict(X test)
print(classification_report(y_test, pred))
              precision
                           recall f1-score
                                              support
                             0.77
                                       0.81
                                                   77
                   0.87
                   0.84
                             0.92
                                       0.88
                                                  107
           1
```

0.84

0.85

0.85

0.85

0.85

184

184

184

59

accuracy

0.86

0.85

macro avg

weighted avg

comparison of model results

model no.	precision	recall	f1-score	support	accuracy
3 1	0.84 0.82	0.73 0.90	0.78 0.86	77 107	0.82
3 1	O.79 O.83	0.75 0.86	0.77 0.84	77 107	0.82
3 1	O.78 O.87	0.83 0.83	0.81 0.85	77 107	0.83

comparison of tuning model results

model no.	precision	recall	f1-score	support	accuracy
(1) 0 1	0.84 0.86	0.79 0.89	O.81 O.87	77 107	0.85
3 1	0.77 0.85	0.79 0.83	0.78 0.84	77 107	0.82
3 1	0.87 0.84	0.77 0.92	O.81 O.88	77 107	0.85

