4 Взаємне розташування прямої та площини у просторі

Пряма
$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{p}$$
, площина $Ax + By + Cz + D = 0$

Деякі відомості про взаємне розташування прямої та площини у просторі

у просторі		
у просторі $Al + Bm + Cp = 0,$ $\vec{S} = \{l; m; p\},$ $\vec{n} = \{A; B; C\},$ $\vec{n} \cdot \vec{S} = 0.$ $\frac{A}{l} = \frac{B}{m} = \frac{C}{p},$ $\vec{n} \parallel \vec{S}$ $\sin \theta = \frac{Al + Bm + Cp}{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + p^2}},$	\vec{S}_1 \vec{n}_1 \vec{n}_1 \vec{n}_1 \vec{n}_1	Умова паралельності прямої $\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{p}$ і площини $Ax + By + Cz + D = 0$ Умова перпендикулярності прямої і площини Кут θ між прямою і площиною
$\sin \theta = \frac{\vec{n} \cdot \vec{S}}{ \vec{n} \cdot \vec{S} }.$ $\begin{cases} Ax + By + Cz + D = 0, \\ x = lt + x_0, \\ y = mt + y_0, \\ z = pt + z_0 \end{cases}$ $t = -\frac{Ax_0 + By_0 + Cz_0 + D}{Al + Bm + Cp}$ $(Al + Bm + Cp \neq 0)$ (3.27)	\vec{n}_1 \vec{S}_2	Точка P перетину прямої $\begin{cases} x = lt + x_0, \\ y = mt + y_0, \\ z = pt + z_0 \end{cases}$ і площини $Ax + By + Cz + D = 0$ - розв'язок системи (3.34)

Приклад № 3. Знайти точку перетину прямої $\frac{x-2}{-2} = \frac{y+3}{1} = \frac{z-1}{3}$ і площини 2x + 3y - 2z = 0.

Розв'язання. Запишемо рівняння заданої прямої у параметричному вигляді: x = -2t + 2, y = t - 3, z = 3t + 1. Розв'язуємо систему

$$\begin{cases} 2x+3y-2z=0, \\ x=-2t+2, \\ y=t-3, \\ z=3t+1. \end{cases}$$

Маємо

$$2(-2t+2) + 3(t-3) - 2(3t+1) = 0 \Rightarrow -4t + 4 + 3t - 9 - 6t - 2 = 0 \Rightarrow -7t - 7 = 0 \Rightarrow t = -1.$$

Тоді
$$x = -2 \cdot (-1) + 2 = 4$$
, $y = -1 - 3 = -4$, $z = 3 \cdot (-1) + 1 = -2$. Отже, $P(4; -4; -2)$ – шукана точка.

Приклад № 4. Скласти рівняння площини, що проходить через точку $M_0(3; -1; -2)$ перпендикулярно до заданої прямої $\frac{x+1}{5} = \frac{y+2}{-3} = \frac{z-1}{2}.$

Розв'язання. Якщо пряма перпендикулярна до площини, то напрямний вектор \vec{S} прямої і нормальний вектор \vec{n} площини колінеарні: $\vec{S} \parallel \vec{n}$. За умовою задачі $\vec{S} = \{5; -3; 2\}$. Тоді $\vec{n} = \lambda \vec{S}$ і при $\lambda = 1$ дістаємо $\vec{n} = \{5; -3; 2\}$. Використовуємо рівняння площини (3.15), а саме: $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$, де $\vec{n} = \{A; B; C\} = \{5; -3; 2\}$.

Дістаємо 5(x-3)-3(y+1)+2(z+2)=0 або 5x-3y+2z-14=0 - шукане рівняння площини.

Приклад № 5. Скласти рівняння площини, що проходить через дві паралельні прямі

$$\frac{x-4}{2} = \frac{y+1}{-3} = \frac{z-1}{2}$$
 Ta $x = 2t-2, y = -3t+1, z = -2t+4$.

Розв'язання. Перша пряма проходить через точку $M_1(4; -1; 1)$, друга через точку $M_2(-2; 1; 4)$. Напрямний вектор цих прямих $\vec{S} = \{2; -3; -2\}$.

Зробимо таку побудову (рис. 1). З'єднаємо точки M_1 і M_2 . Дістаємо вектор $\overline{M_1M_2}=\{-6;2;3\}$. Виберемо на шуканій площині Q біжучу точку M(x,y,z) і запишемо вектор $\overline{M_1M}=\{x-4;y+1;z-1\}$.

 \overrightarrow{Q} Три вектори \overrightarrow{S} , $\overrightarrow{M_1M_2}$, $\overrightarrow{M_1M}$ лежать в одній площині, отже, вони компланарні.

Умовою компланарності трьох

векторів є умова $(\overrightarrow{M_1M} \times \overrightarrow{M_1M_2}) \cdot \overrightarrow{S} = 0$ (див. гл. II, формула (2.36)). Тоді маємо

$$\begin{vmatrix} x-4 & y+1 & z-1 \\ -6 & 2 & 3 \\ 2 & -3 & 2 \end{vmatrix} = 0.$$

Це ϵ рівняння площини у вигляді (3.16). Розкладаємо визначник за елементами першого рядка. Дістаємо:

13(x-4)+18(y+1)+14(z-1)=0 \Rightarrow 13x-52+18y+18+14z-14=0 \Rightarrow 13x+18y+14z-48=0 - шукане рівняння площини.

Приклад № 6. Знайти точку перетину прямих

$$\frac{x+1}{2} = \frac{y}{-3} = \frac{z+1}{-2}, \quad \frac{x-1}{4} = \frac{y+3}{-2} = \frac{z+3}{5}.$$

Розв'язання. Для того, щоб знайти точку перетину прямих, потрібно, щоб ці прямі лежали в одній площині. Напрямні вектори заданих прямих $\vec{S}_1 = \{2; -3; -2\}$, $\vec{S}_2 = \{4; -2; 5\}$. Розглянемо ще вектор $\overline{M_1M_2}$, де $M_1(-1; 0; -1)$ – точка, що належить першій прямій, $M_2(1; -3; -3)$ – точка, що належить другій заданій прямій. Тоді $\overline{M_1M_2} = \{2; -3; -2\}$. Використаємо умову компланарності векторів, а саме: $(\vec{S}_1 \times \vec{S}_2) \cdot \overline{M_1M_2} = 0$ (формула (2.36) гл. ІІ). Маємо перевірити, чи дорівнює нулю визначник, складений із координат векторів \vec{S}_1 , \vec{S}_2 , $\overline{M_1M_2}$. Обчислюємо визначник. Дістаємо

$$\begin{vmatrix} 2 & -3 & -2 \\ 4 & -2 & 5 \\ 2 & -3 & -2 \end{vmatrix} = 0$$
 тому, що два рядки рівні (ввластивіть 4 визначників, гл. І).

Отже, задані прямі перетинаються.

Координати точки перетину повинні задовольняти рівняння обох прямих. Перепишемо ці рівняння у параметричному вигляді. Дістаємо

$$x = 2t_1 - 1$$
, $y = -3t_1$, $z = -2t_1 - 1$ Ta $x = 4t_2 + 1$, $y = -2t_2 - 3$, $z = 5t_2 - 3$

Тоді:

$$\begin{cases} 2t_1 - 1 = 4t_2 + 1, \\ -3t_1 = -2t_2 - 3, \Rightarrow \\ -2t_1 - 1 = 5t_2 - 3, \end{cases} \Rightarrow \begin{cases} 2t_1 - 4t_2 = 2, \\ -3t_1 + 2t_2 = -3, \Rightarrow \\ -2t_1 - 5t_2 = -2, \end{cases} \begin{cases} t_1 - 2t_2 = 1, \\ 3t_1 - 2t_2 = 3, (3.28) \\ 2t_1 + 5t_2 = 2. \end{cases}$$

Дістали систему трьох рівнянь з двома невідомими. Вибираємо два рівняння і знаходимо розв'язок системи цих рівнянь. Нехай це – перші два рівняння системи (3.28), тобто

$$\begin{cases} t_1 - 2t_2 = 1, \\ 3t_1 - 2t_2 = 3 \end{cases} \Rightarrow \begin{cases} -2t_1 = -2, \\ 2t_2 = t_1 - 1 \end{cases} \Rightarrow \begin{cases} t_1 = 1, \\ t_2 = 0. \end{cases}$$

Перевіряємо, чи задовольняють значення $t_1 = 1$ і $t_2 = 0$ третє рівняння системи (3.28), маємо $2 \cdot 1 + 5 \cdot 0 = 2$, тобто ці значення t_1 і t_2 задовольняють і третє рівняння системи, отже, є розв'язком системи (3.28).

Підставляємо $t_1 = 1$ у параметричне рівняння першої заданої прямої або $t_2 = 0$ у параметричне рівняння другої заданої прямої. Маємо

$$x = 2 \cdot 1 - 1 = 1$$
, $y = -3 \cdot 1 = -3$, $z = -2 \cdot 1 - 1 = -3$.

Отже, P(1; -3; -3) — точка перетину заданих прямих.

Приклад № 7. Знайти проекцію точки $M_0(2; 2; -2)$ на пряму $\frac{x-1}{2} = \frac{y+3}{1} = \frac{z+1}{-2}.$

Розв'язання. Проекція P точки M_0 на пряму (рис. 2)— це основа перпендикуляра, опущеного із точки M_0 на пряму. Або це точка

перетину прямої і площини Q, що проходить через точку M_0 перпендикулярно до заданої прямої. Задана пряма має

напрямний вектор $\vec{S}=\{2;1;-2\}$. Нормальний вектор \vec{n} площини, яка перпендикулярна до заданої прямої, колінеарний вектору \vec{S} : $\vec{n} = \lambda \vec{S}$, або $\vec{n} = \vec{S}$ при $\lambda = 1$. Тобто, $\vec{n} = \{2;1;-2\}$. Точка $M_0(2;2;-2)$ лежить у цій площині. Рівняння цієї площини (згідно з формулою (3.15)) набуває вигляду

$$2(x-2)+1(y-2)-2(z+2)=0$$
 and $2x+y-2z-10=0$.

Знайдемо точку перетину заданої прямої (запишемо її рівняння у параметричному вигляді, а саме: x = 2t + 1, y = t - 3, z = 2t - 1) і площини 2x + y - 2z - 10 = 0 (див. приклад № 153). Можна також використати формулу (3.27) для знаходження параметра t, а саме:

$$t = -\frac{Ax_0 + By_0 + Cz_0 + D}{Al + Bm + Cp}.$$

У нашому випадку A=2, B=1, C=-2, D=-10, l=2, m=1, $p=-2, x_0=1, y_0=-3, z_0=-1.$ Тоді

$$t = -\frac{2 \cdot 1 + 1 \cdot (-3) - 2 \cdot (-1) - 10}{2 \cdot 2 + 1 \cdot 1 - 2 \cdot (-2)} = -\frac{-9}{9} = 1.$$

Підставляємо значення t у параметричні рівняння прямої і дістаємо $x=2\cdot 1+1=3,\ y=1-3=-2,\ z=-2\cdot 1-1=-3.$ Маємо координати точки перетину прямої і площини, що проходить через задану точку, перпендикулярно до заданої прямої, тобто P(3;-2;-3) проекція заданої точки M_0 на задану пряму.

Приклад № 8. Знайти точку Q симетричну точці

 $M_0(1; -1; -3)$ відносно площини 3x - 4y + 2z + 28 = 0.

Розв'язання. Нехай P — проекція точки M_0 на задану площину L (рис. 3). Тоді координати точки Q знаходимо із співвідношень

$$\frac{x_{M_0} + x_Q}{2} = x_P, \qquad \frac{y_{M_0} + y_Q}{2} = y_P, \qquad \frac{z_{M_0} + z_Q}{2} = z_P.$$

Тобто
$$x_Q = 2x_P - x_{M_0}$$
, $y_Q = 2y_P - y_{M_0}$, $z_Q = 2z_P - z_{M_0}$.

Знайдемо координати точки P як точки перетину прямої M_0Q і заданої площини. Запишемо рівняння прямої M_0Q . Напрямний вектор \vec{S} цієї прямої колінеарний нормальному вектору \vec{n} заданої площини і $\vec{S} = \vec{n} = \{3; -4; 2\}$. За формулою (3.22), а саме:

$$x = lt + x_0$$
, $y = mt + y_0$, $z = pt + z_0$

маємо параметричні рівняння прямої, що проходить через точку $M_0(1; -1; -3)$ перпендикулярно до заданої площини, а саме:

$$x = 3t + 1$$
, $y = -4t - 1$, $z = 2t - 3$.

За формулою (3.27), а саме:

$$t = -\frac{Ax_0 + By_0 + Cz_0 + D}{Al + Bm + Cp}$$

знаходимо t. Дістаємо

$$t = -\frac{3 \cdot 1 - 4 \cdot (-1) + 2 \cdot (-3) + 28}{3 \cdot 3 - 4 \cdot (-4) + 2 \cdot 2} = -1.$$

Знаходимо координати точки Р. Маємо

$$x = 3 \cdot (-1) + 1 = -2$$
, $y = -4 \cdot (-1) - 1 = 3$, $z = 2 \cdot (-1) - 3 = -5$, $P(-2; 3; -5)$

Отже,

$$x_{Q} = 2 \cdot (-2) - 1 = -5, y_{Q} = 2 \cdot 3 - (-1) = 7, z_{Q} = 2 \cdot (-5) - (-3) = -7$$

і Q(-5;7;-7) — точка, симетрична точці $M_0(1;-1;-3)$ відносно заданої плошини.

Приклад № 9. Скласти рівняння площини, що проходить через точку $M_0(1; 0; -1)$ і пряму x = 2t - 1, y = -t + 2, z = -2t + 3.

Розв'язання. За умовою задачі напрямний вектор заданої

прямої $\vec{S} = \{2; -1; -2\}$ лежить у шуканій площині Q (рис. 4).

На заданій прямій лежить точка $M_1(-1; 2; 3)$. Визначаємо вектор

$$\overrightarrow{M_0M_1} = \{-2; 2; 4\}.$$

Вибираємо у шуканій площині біжучу точку M(x; y; z) і визначаємо вектор $\overrightarrow{M_0M}$. Маємо $\overrightarrow{M_0M} = \{x-1; y; z+1\}$. Три вектори $\overrightarrow{M_0M}$, $\overrightarrow{M_0M_1}$, \overrightarrow{S} лежать в одній площині, тобто вони компланарні. За умовою компланарності трьох векторів маємо

$$\begin{vmatrix} x-1 & y & z+1 \\ 2 & -1 & -2 \\ -2 & 2 & 4 \end{vmatrix} = 0, \quad \text{afo} \quad 0 \cdot (x-1) - 4y + 2 \cdot (z+1) = 0.$$

Звідки 2y - z - 1 = 0 - шукане рівняння площини.

5 Криві другого порядку

