

RecForest: Random survival forests to analyze recurrent events in R

Juliette Murris*, Sandrine Katsahian†, Audrey Lavenu‡

* HeKA, Inserm, Inria, Université Paris Cité, Pierre Fabre R&D, †Centre d'Investigation Clinique, Paris, France † Institut de Recherche Mathématique de Rennes (IRMAR), Rennes, France

MOTIVATING EXAMPLE

Available options within a survival framework

- Time-to-first event (either readmission or death)
- Time-to-reccurence, with or without death

The advent of machine learning

- Usual machine learning algorithms have been extended to account for survival data
- But not to account for survival data and recurrent events, with or without a terminal event.

Objectives

- > Introduce a new approach to model recurrent events using ensemble methods
- > Introduce associated R code

METHODS

RecForest Algorithm Without a terminal event With a terminal event

(1) Draw *B* **bootstrap** samples from the learning data;

(2) Grow a **survival tree** *b* extended to recurrent events;

At each node, *mtry* predictors are randomly selected with $mtry \in \mathbb{N}$

Terminal node estimator

Pruning strategy

Splitting rule

 $\hat{\mu}_b(t|\mathbf{x}) = \hat{R}_b(t|\mathbf{x}) = \int_0^t \frac{N_b(\mathrm{d}u|\mathbf{x})}{Y_b(\mathrm{d}u|\mathbf{x})}$

Pseudo score test from NP estimates

Maximize the test statistic

Wald test from Ghosh-Lin model

$$\hat{\mu}_b(t|\mathbf{x}) = \int_0^t \hat{S}_b(u|\mathbf{x}) d\hat{R}_b(u|\mathbf{x})$$

for tree b

A minimal number of events and/or a minimal number of individuals

(3) **Estimate** \widehat{M} is computed over the B trees.

USING R

Step 1 Create a RecForest object

Step 3 Assess variable importance to measure impact on predictions

DISCUSSION & CONCLUSION

- Our approach is **simple** and easily **accessible**
- Solid baseline for many extensions

Perspectives

Develop an R package

RecForest is a valuable contribution for analysing recurrent events in medical research

Step 2 Evaluate performances, using adapted versions of C-index and MSE

c_index(my_recforest, X_new = NULL) # X_new = NULL refers to 00B samples 2 mse(my_recforest, X_new = NULL) # X_new = NULL refers to 00B samples

Metric	Np	GL1	GL2	GL3	GL4	RecForest	GL*
C-index 个	0.58 (0.05)	0.53 (0.08)	0.48 (0.08)	0.48 (0.07)	0.45 (0.05)	0.80 (0.04)	0.60 (0.06)
IMSE ↓			8 361.16 (6 292.29)		9 981.50 (6 064.23)	706.02 (508.96)	7 934.28 (6 606.23)

Step 4 Predict with new data

predictions = predict(my_recforest, X_new = X_new)

BIBLIOGRAPHY

Andrews DF, Hertzberg AM (1985) Bouaziz, O. (2023) Breiman, L. (2001) Cook, R. J., & Lawless, J. (2007) Devaux, A, et. Al (2023) Feurer, M., & Hutter, F. (2019) Harrell Jr, F. E., Lee, K. L., & Mark, D. B. (1996) Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009) Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008) Kaplan, E. L., & Meier, P. (1958) Kim, S., Schaubel, D. E., & McCullough, K. P. (2018) Kvamme, H., & Borgan, Ø. (2019) Murris, J., Charles-Nelson, A., Lavenu, A., & Katsahian, S. (2022) Nelson, W. B. (2003) Therneau, T., Grambsch, P., & Fleming, T. (1990)