Příklad (1.)

As we have discussed in class, a mapping cylinder M_f for a map $f: X \to Y$ deformation retracts to the subspace Y by sliding each point (x,t) along the segment $\{x\} \times [0,1] \subset M_f$ to the endpoint $f(x) \in Y$. Show continuity of this deformation retraction. Hint: Check the discussion on this subject on p. 2 of Hatcher's book.

Důkaz

We have deformation retraction F(x,t) = (x,t). Firstly we show continuity of F from $X \times [0,1]$ to space $X \times [0,1]$ (without Y and quotient). When we compose F with projection to X or [0,1], we get identity, so F is continuous to $X \times [0,1]$.

Now we do the quotient. In domain of F (now $X \times [0,1] \coprod Y/\sim$), there are even more open sets. Open sets in $X \times [0,1)$ is unchanged. In $Y = X \times \{1\}$ we have in addition open sets "created" by Y. But f(x) is continuous, so if $U \subset Y$ is open, $f^{-1}(U)$ is open and so $U \subset X \times \{1\}$ was already open. Thus continuity to $X \times [0,1] \coprod Y/\sim$ is the same as the continuity to $X \times [0,1]$.

Příklad (2.)

Construct an explicit deformation retraction of $\mathbb{R}^n \setminus \{\mathbf{o}\}$ onto S^{n-1} .

Řešení

$$F(t,x) = f_t(x) = t \cdot \frac{x}{\|x\|} + (1-t) \cdot x, \qquad \|x\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Obviously for t = 0: $f_0(x) = x$, so $f_0 = \mathrm{id}_X$, and $f_1(x) = \frac{x}{\|x\|} \in S^{n-1}$, so $f_1(X) = S^2$ and $f_1|_A = \mathrm{id}_A$ $(x \in A \implies \|x\| = 1)$.

It remains to show continuity: multiplication, addition, and square root are continuous. $||x|| \neq 0 \ (x \neq \mathbf{o})$, thus $\frac{1}{||x||}$ is continuous.

Příklad (3.)

Given positive integers v (for vertices), e (for edges), and f (for faces) satisfying v-e+f=2, construct a cell structure on S^2 having v 0-cells, e 1-cells, and f 2-cells.

Řešení

We take "chain" of vertex–edge–vertex–edge–…–vertex so we use all vertices $(e \ge v - 1)$ from equality v - e + f = 2 so we have enough edges): Take $e_1^0, \ldots, e_v^0, e_1^1, \ldots, e_{v-1}^1$, such that we have $\varphi_i^1 : \partial e_i^1 \to \bigcup_i e_i^0, \ \varphi_i^1(0) := e_i^0, \ \varphi_i^1(1) := e_{i+1}^0$.

Now we add "balloons" aka faces wrapped with one edge starting and ending in first vertex. So we add e^1_v $(e^1_{v+1},\dots,e^1_{v-1+f-1})$ and e^2_1 (e^2_2,\dots,e^2_{f-1}) with φ^1_i : $\partial e^1_i \to \bigcup_j e^0_j$, $\varphi^1_i(0) := \varphi^1_i(1) := e^0_1$ a φ^2_i : $\partial e^2_i \to \bigcup_j e^0_j \cup \bigcup_j e^1_j$ homeomorphism on e^1_{v-1+i} .

Finally we add e_f^2 and $\varphi_f^2: \partial e_f^2 \to \bigcup_j e_j^0 \cup \bigcup_j e_j^1$ which "goes through"

$$e_1^1, e_2^1, \dots, e_{v-1}^1, e_{v-1}^1, e_{v-2}^1, \dots, e_1^1, e_v^1, e_{v+1}^1, \dots, e_{v-1+f-1}^1.$$

Příklad (4.)

Show that the change-of-basepoint homomorphism β_h (for fundamental groups) depends only on the homotopy class of h.

 $D\mathring{u}kaz$

We define β_h as $[f] \mapsto [h \cdot f \cdot h^{-1}]$. When we have \tilde{h} and h and homotopy $F(\cdot, 0) = h$ and $F(\cdot, 1) = \tilde{h}$, than we can define

$$G(x,t) = \begin{cases} F(3x,t), & \text{for } x \leq \frac{1}{3} \\ f(3x-1), & \text{for } \frac{1}{3} \leq x \leq \frac{2}{3} \end{cases}$$
$$F(3-3x,t), \text{for } \frac{2}{3} \leq x,$$

where $x \in [0,1]$ and $f, h: [0,1] \to X$, $h \cdot f \cdot h^{-1}: [0,3] \to X$. G is homotopy $h \cdot f \cdot h^{-1}$ to $\tilde{h} \cdot f \cdot \tilde{h}^{-1}$