

Facultad de Ciencias

Licenciatura en Ciencias de la Computación

Cómputo Evolutivo

Análisis de Rendimiento

M. en C. Oscar Hernández Constantino (constantino92@ciencias.unam.mx)

Contenido de la Presentación

- 1. Análisis de Rendimiento
 - 1.1 Definición de Objetivos

2. Configuración de Párametros

- 3. Medición
 - 3.1 Análisis Estadístico

Análisis de Rendimiento

Pasos Generales

Diseño Experimental

- Definición de objetivos
- Selección de instancias (ejemplares) del problema

2. Medición

- Definición de métricas - Análisis estadístico
- Análisis ordinal

3.

Presentación de Resultados

- Reporte de Resultados
- Visualización
- Análisis de datos
- Reproductibilidad

Ejemplos de Objetivos

- Tiempo de Búsqueda
- Calidad de las soluciones
- Facilidad de Implementación
- Flexiblidad para resolver otros problemas
- Innovación usando nuevos paradigmas (p.e. bio-inspirados)
- Nuevos componentes
 - Representación
 - Operadores de variación
 - Vecindad
 - Mecanismos de Diversificación o Intensificación
- Modelos Híbridos

Análisis, diseño y prueba de Métodos

- ¿Qué otros métodos se han utilizada para el problema de interés?
- ¿Cuál logra obtener los mejores resultados?
- Implementar alguno de los mejores, analizarlo y proponer mejoras
- Proponer un componente o método nuevo
- Usar otros métodos del estado del arte para realizar comparaciones

Selección de ejemplares (instancias)

La elección de ejemplares se debe hacer de manera cuidadosa.

- Ejemplares de la vida real
 - Constituyen un buen conjunto de prueba (benchmark)
 - Suelen ser difíciles de conseguir
 - Algunos contienen datos cofidenciales o propietarias
 - Se requiere invertir recursos (p.e. económicos y tiempo) para obtenerlas
- Ejemplares construidos
 - Están disponibles en Internet
 - Algunos contienen ejemplos de la vida real
 - Los ejemplares aleatorias generalmente difieren en la estructura que presentan los de la vida real

Configuración de Párametros

Parámetros

- Los parámetros no son independientes entre sí
- No es práctico probar todas las combinaciones
- Optimización de parámetros consume tiempo, la configuración óptima es diferente para cada tipo de instancia

Inicialización de Parámetros

- Fuera de línea (offline), Ajuste de Parámetros
 - Diseño de Experimentos (DOE, Design of experiments)
 - Meta-optimización
- En línea (online), Control de Parámetros
 - Dinámica
 - Adaptativa
 - » Autoadatativa

Conjuntos de Entrenamiento y de Prueba

Típicamente se suele dividir el conjunto de ejemplares en 2 partes: Entrenamiento y Prueba (evaluación).

Medición

Calidad de la Solución

Ejemplo de Reporte de Resultados

Problem	n	m	Opt (LB, UB)	Z _B	T_B	Z_{LS}					TLS
						SI	LI	SR	LR	LRM	-13
ABZ5	10	10	1234	1359	0.18	2073	1877	2093	1890	1890	0.01
ABZ6	10	10	943	1025	0.24	1500	1377	1397	1306	1250	0.02
ABZ7	20	15	(651, 681)	785	1.93	1117	985	1080	1019	1070	0.06
ABZ8	20	15	(627, 670)	804	1.96	1039	998	1014	1021	1029	0.08
ABZ9	20	15	(650, 706)	821	1.93	1094	1029	1159	1077	973	0.06
MT6	6	6	55	56	0.01	87	73	94	67	67	0.01
MT10	10	10	930	1076	0.16	1399	1534	1530	1272	1420	0.01
MT 20	20	5	1165	1310	0.27	1521	1610	1513	1544	1534	0.01
ORB1	10	10	1059	1281	0.17	1434	1583	1489	1391	1314	0.02
ORB2	10	10	888	1035	0.22	1303	1376	1370	1320	1241	0.02
ORB3	10	10	1005	1214	0.16	1405	1466	1463	1360	1327	0.03
ORB4	10	10	1005	1161	0.18	1760	1376	1556	1551	1464	0.02
ORB5	10	10	887	1049	0.20	1199	1251	1296	1180	1212	0.02

m = number of machines;

 Z_{LS}

 Z_B = value of the best solution found by *Bidir* out of five runs;

 T_B = computing time for the five runs of procedure *Bidir*;

= value of the solution found by each list schedule algorithm;

 T_{LS} = computing time for the five list schedule algorithms.

Esfuerzo Computacional

La eficiencia puede demostrarse usando un análisis teórico uno empírico.

- Análisis Teórico
 - Complejidad del Algoritmo en el peor caso; es deseable análisis del caso promedio.
 - Pruebas de convergencia
- Analisis Empírico
 - Tiempo de cómputo (ejecución o número de evaluaciones)

Entre menor sea la variabilidad de las soluciones obtenidas mejor es la **robustez**.

- Diferentes parámetros
- Diferentes ejemplares (tamaño o tipo)
- Diferentes ejecuciones (desviación estándar, peor caso)

¿Cómo analizamos los datos?

- Múltiples repeticiones
- Reportar estadísticas (media, mediana, peor, mejor) y realizar pruebas de hipótesis
- Utilizar diferentes gráficas
 - Gráficas de Evolución
 - Calidad para diferentes parámetros
 - Boxplots de calidad

Ejemplo de Reporte de Resultados

Problem	Size	UB(LB)	HEA			TSSA		
			Best	M_{av}	T_{av} (s)	Best	M_{av}	T_{av} (s)
ABZ7	20 × 15	656	657	657.6	662.3	658	661.8	85.9
ABZ8	20×15	665(645)	667	667.9	663.4	667	670.3	90.7
ABZ9	20×15	678(661)	678	678	303.02	678	684.8	90.2
ABZ7-9			2.05	2.12	542.9	2.10	2.80	88.9

3.2 Experimental protocol

We programmed the HEA in C++ and compiled it using g++ on a PC running the Linux operating system with a AMD 2.8 GHz Opteron CPU. We obtained the computational results without special tuning of the parameters, i.e., all the parameters used in our algorithm were fixed (constant) for all the instances considered. Table 1 gives the descriptions and settings of the parameters used in the HEA, in which the last column denotes the settings for the set of all the instances. Given the stochastic nature of the HEA, we solved each problem instance ten times independently. For each run, we set the total time limit for our algorithm as one CPU hour on our computer.

To measure the solution quality of our algorithm, we calculate the mean relative error (MRE) using the relative deviation formula $RE = 100 \times (UB_{uoler} - LB_{hest})/LB_{hest}$ for each instance, where LB_{hest} is a lower bound and UB_{sohe} is the best makespan found by any of the tested algorithms.

Cheng, T. C. E., Bo Peng, and Zhipeng Lü, A hybrid evolutionary algorithm to solve the job shop scheduling problem, (2016)

Pruebas de Hipótesis

¿Qué es una Prueba de Hipótesis?
Una afirmación o proposición que se analiza para tomar una decisión sobre su validez de acuerdo con la evidencia de la información obtenida a partir de una muestra o un proceso de experimentación. Típicamente hace referencia a:

- valor de un parámetro
- relación entre parámetros
- tipo de distribución

Análisis Estadístico

Ejemplo de Reporte de Resultados

The analyses were performed using the benchmark problems described in [33], which are a set of 19 scalable continuous optimization problems to be minimized. The parameter D allows setting the number of variables in the problems. In our study, it was set to 50. In every experiment, each execution was repeated 1.000 times.

TABLE II.	STATISTICAL COMPARISON BETWEEN ADAPTIVE AND FIXED SCHEMES (250,000 EVALUATIONS)

	jDE		CDE		JADE		SaDE		Uniform	
	1	+	1	+	1	+	1	<u> </u>	1	+
Fl	7.84	0	7.84	0	7.84	0	7.84	0	7.84	0
F2	47.05	52.94	39.21	60.78	72.54	15.68	66.66	19.60	43.13	54.90
F3	72.54	1.96	37.25	37.25	19.60	78.43	27.45	60.78	54.90	19.60
F4	86.27	13.72	88.23	5.88	92.15	3.92	86.27	7.84	76.47	21.56
F5	37.25	1.96	37.25	1.96	47.05	0	47.05	0	37.25	43.13
F6	54.90	0	54.90	0	54.90	0	54.90	0	54.90	0
F7	37.25	0	37.25	0	37.25	0	37.25	0	35.29	0
F8	90.19	9.80	90.19	7.84	54.90	41.17	64.70	33.33	82.35	17.64
F9	50.98	0	31.37	41.17	50.98	0	50.98	0	43.13	49.01
F10	43.13	45.09	52.94	0	54.90	0	54.90	0	41.17	52.94
FII	58.82	0	31.37	45.09	58.82	0	58.82	0	45.09	43.13
F12	78.43	0	19.60	54.90	19.60	52.94	25.49	39.21	68.62	0
F13	96.07	3.92	76.47	3.92	23.52	56.86	25.49	56.86	84.31	3.92
F14	82.35	0	86.27	5.88	96.07	0	88.23	0	70.58	19.60
F15	33.33	0	33.33	0	33.33	0	33.33	0	33.33	0
F16	68.62	21.56	21.56	49.01	23.52	47.05	60.78	29.41	39.21	43.13
F17	82.35	13.72	58.82	35.29	86.27	9.80	94.11	0	70.58	15.68
F18	74.50	17.64	50.98	17.64	70.58	9.80	76.47	11.76	56.86	39.21
F19	41.17	0	49.01	0	49.01	0	49.01	0	39.21	49.01
Mean	60.15	9.58	47.56	19.29	50.13	16.60	53.13	13.62	51.80	24.87

Segura, Carlos, et al. An analysis of the automatic adaptation of the crossover rate in differential evolution. 2014 IEEE Congress

on Evolutionary Computation (CEC)

Comparación medidas de Similitud

Configuración	D _{LCS}	D _{Ham}	D _{Pos}	
C _{LCS} BNP	6(3*)	4(1*)	9(6*)	
C _{Mch} BNP	10(4*)	9(3*)	9(3*)	
C _{Pos} BNP	9(2*)	9(1*)	9(7*)	
C _{LCS} Cluster	6(O*)	5(1*)	10(9*)	
C _{Mch} Cluster	8(2*)	6(0*)	10(8*)	
C _{Pos} Cluster	9(0*)	8(0*)	10(10*)	
Total	48(11*)	41(6*)	57(43*)	

Gráfica de Evolución de la Aptitud - Solución

Gráfica de Evolución - Población

Gráfica Evolución Promedio (JSSP- dum58)

BoxPlot - Comparación (JSSP- dum58)

Gráfica Evolución Promedio (JSSP- dum69)

BoxPlot - Comparación (JSSP- dum69)

Análisis de la Ejecución - Calidad de la Solución

Análisis de la Ejecución - Diversidad

Análisis de la Ejecución - Calidad de la Población

Análisis de la Ejecución - Diversidad en la Población

Gráficas de Evolución de Aptitud y Diversidad

(a) Evolución makespan - dmu58

(b) Evolución DCN_{av} - dmu58

Gráficas de Evolución de Aptitud y Diversidad (cont...)

(a) Evolución makespan - dmu76

(b) Evolución DCN_{av} - dmu76

Entropía

La entropía es un concepto de teoría de la Información que se utiliza para cuantificar la incertidumbre de una variable.

$$H(t) = \frac{1}{n} \sum_{i=1}^{n} H_i(t)$$

 $H_i(t)$ es la entropía del gen t, y se calcula como:

$$H_i(t) = -\sum_{j=1}^{v_i} P_{ij} \log(P_{ij})$$

 v_i es el número de posibles valores (alelos) para el gen i, P_{ij} es la frecuencia de los individuos de la población cuyo gen i toma el j-ésimo valor para ese gen.

Análisis de la Ejecución - Entropia

