$12a_{0764} (K12a_{0764})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{66} - u^{65} + \dots - u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 66 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{66} - u^{65} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{11} - 2u^{9} - 4u^{7} - 4u^{5} - 3u^{3} \\ -u^{11} - u^{9} - 2u^{7} - u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{10} - u^{8} - 2u^{6} - u^{4} + u^{2} + 1 \\ -u^{12} - 2u^{10} - 4u^{8} - 4u^{6} - 3u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{26} + 3u^{24} + \dots + u^{2} + 1 \\ u^{28} + 4u^{26} + \dots + 12u^{8} + u^{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{27} + 4u^{25} + \dots + 12u^{7} + u^{3} \\ u^{27} + 3u^{25} + \dots + u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{65} - 8u^{63} + \dots - 6u^{3} - u \\ -u^{65} + u^{64} + \dots - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{65} + 32u^{63} + \cdots 16u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7, c_9	$u^{66} + 17u^{65} + \dots + u + 1$
c_2, c_8	$u^{66} - u^{65} + \dots - u - 1$
c_{3}, c_{6}	$u^{66} - u^{65} + \dots - 36u - 40$
c_4, c_5, c_{11}	$u^{66} + u^{65} + \dots - 3u - 1$
c_{10}, c_{12}	$u^{66} - 3u^{65} + \dots + 3u + 3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_9	$y^{66} + 65y^{65} + \dots - 31y + 1$
c_2, c_8	$y^{66} + 17y^{65} + \dots + y + 1$
c_{3}, c_{6}	$y^{66} - 35y^{65} + \dots - 32496y + 1600$
c_4, c_5, c_{11}	$y^{66} - 55y^{65} + \dots + y + 1$
c_{10}, c_{12}	$y^{66} + 37y^{65} + \dots - 3y + 9$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.207533 + 0.981086I	-6.35096 + 4.33929I	-15.3912 - 1.6731I
u = -0.207533 - 0.981086I	-6.35096 - 4.33929I	-15.3912 + 1.6731I
u = -0.322302 + 0.940128I	-3.57030 - 2.48361I	-12.14309 + 4.22745I
u = -0.322302 - 0.940128I	-3.57030 + 2.48361I	-12.14309 - 4.22745I
u = -0.272653 + 0.940034I	-3.76345 - 2.65206I	-14.2785 + 5.3930I
u = -0.272653 - 0.940034I	-3.76345 + 2.65206I	-14.2785 - 5.3930I
u = 0.208676 + 0.955825I	-1.57258 - 0.64572I	-10.64970 + 0.22730I
u = 0.208676 - 0.955825I	-1.57258 + 0.64572I	-10.64970 - 0.22730I
u = 0.271816 + 0.990028I	-10.11990 + 2.95711I	-17.8433 - 4.0853I
u = 0.271816 - 0.990028I	-10.11990 - 2.95711I	-17.8433 + 4.0853I
u = 0.327602 + 0.976374I	-0.88010 + 6.28741I	-8.00000 - 7.78129I
u = 0.327602 - 0.976374I	-0.88010 - 6.28741I	-8.00000 + 7.78129I
u = -0.326605 + 0.991495I	-5.65622 - 10.20650I	-13.5289 + 9.0267I
u = -0.326605 - 0.991495I	-5.65622 + 10.20650I	-13.5289 - 9.0267I
u = 0.757467 + 0.819779I	-0.27528 + 5.62378I	0
u = 0.757467 - 0.819779I	-0.27528 - 5.62378I	0
u = 0.524653 + 0.709653I	-0.64902 + 5.65149I	-7.27056 - 7.50619I
u = 0.524653 - 0.709653I	-0.64902 - 5.65149I	-7.27056 + 7.50619I
u = -0.136824 + 0.865327I	-4.39217 - 2.36691I	-15.8873 + 4.0107I
u = -0.136824 - 0.865327I	-4.39217 + 2.36691I	-15.8873 - 4.0107I
u = -0.832435 + 0.793863I	-3.01879 + 1.47388I	0
u = -0.832435 - 0.793863I	-3.01879 - 1.47388I	0
u = -0.796593 + 0.845883I	4.46763 - 2.52307I	0
u = -0.796593 - 0.845883I	4.46763 + 2.52307I	0
u = 0.829323 + 0.823308I	3.15412 - 0.61109I	0
u = 0.829323 - 0.823308I	3.15412 + 0.61109I	0
u = 0.866881 + 0.806451I	2.07449 - 8.47396I	0
u = 0.866881 - 0.806451I	2.07449 + 8.47396I	0
u = -0.863745 + 0.813119I	6.79180 + 4.40102I	0
u = -0.863745 - 0.813119I	6.79180 - 4.40102I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.514926 + 0.629940I	3.49483 - 1.91824I	-1.30925 + 4.40205I
u = -0.514926 - 0.629940I	3.49483 + 1.91824I	-1.30925 - 4.40205I
u = 0.857102 + 0.823493I	3.93034 - 0.31479I	0
u = 0.857102 - 0.823493I	3.93034 + 0.31479I	0
u = 0.752368 + 0.941982I	-0.652984 + 0.115352I	0
u = 0.752368 - 0.941982I	-0.652984 - 0.115352I	0
u = -0.774741 + 0.932829I	4.19655 - 3.39080I	0
u = -0.774741 - 0.932829I	4.19655 + 3.39080I	0
u = -0.849189 + 0.896624I	6.84678 + 0.99588I	0
u = -0.849189 - 0.896624I	6.84678 - 0.99588I	0
u = 0.845586 + 0.905987I	10.71050 + 3.14132I	0
u = 0.845586 - 0.905987I	10.71050 - 3.14132I	0
u = 0.789852 + 0.955570I	2.74573 + 6.66729I	0
u = 0.789852 - 0.955570I	2.74573 - 6.66729I	0
u = -0.842344 + 0.915164I	6.78882 - 7.27941I	0
u = -0.842344 - 0.915164I	6.78882 + 7.27941I	0
u = 0.519959 + 0.546372I	-0.16044 - 1.78515I	-5.05685 + 0.I
u = 0.519959 - 0.546372I	-0.16044 + 1.78515I	-5.05685 + 0.I
u = -0.779938 + 0.972264I	-3.56585 - 7.50384I	0
u = -0.779938 - 0.972264I	-3.56585 + 7.50384I	0
u = 0.804861 + 0.967797I	3.47971 + 6.50090I	0
u = 0.804861 - 0.967797I	3.47971 - 6.50090I	0
u = -0.803690 + 0.976805I	6.28091 - 10.60210I	0
u = -0.803690 - 0.976805I	6.28091 + 10.60210I	0
u = 0.802049 + 0.981776I	1.5273 + 14.6781I	0
u = 0.802049 - 0.981776I	1.5273 - 14.6781I	0
u = -0.629766 + 0.121194I	-2.95160 + 6.83126I	-7.61691 - 5.02881I
u = -0.629766 - 0.121194I	-2.95160 - 6.83126I	-7.61691 + 5.02881I
u = 0.175327 + 0.613584I	-0.378995 + 0.828694I	-8.44183 - 8.08874I
u = 0.175327 - 0.613584I	-0.378995 - 0.828694I	-8.44183 + 8.08874I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.599127 + 0.137206I	1.69680 - 2.97772I	-2.56592 + 3.49038I
u = 0.599127 - 0.137206I	1.69680 + 2.97772I	-2.56592 - 3.49038I
u = 0.614002	-7.09939	-11.6040
u = -0.541100 + 0.190827I	-1.30250 - 0.68240I	-5.55669 + 0.60358I
u = -0.541100 - 0.190827I	-1.30250 + 0.68240I	-5.55669 - 0.60358I
u = -0.490541	-1.14219	-8.66240

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7, c_9	$u^{66} + 17u^{65} + \dots + u + 1$
c_2,c_8	$u^{66} - u^{65} + \dots - u - 1$
c_3, c_6	$u^{66} - u^{65} + \dots - 36u - 40$
c_4, c_5, c_{11}	$u^{66} + u^{65} + \dots - 3u - 1$
c_{10}, c_{12}	$u^{66} - 3u^{65} + \dots + 3u + 3$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_9	$y^{66} + 65y^{65} + \dots - 31y + 1$
c_2,c_8	$y^{66} + 17y^{65} + \dots + y + 1$
c_3, c_6	$y^{66} - 35y^{65} + \dots - 32496y + 1600$
c_4, c_5, c_{11}	$y^{66} - 55y^{65} + \dots + y + 1$
c_{10}, c_{12}	$y^{66} + 37y^{65} + \dots - 3y + 9$