BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, HYDERABAD CAMPUS SECOND SEMESTER 2019-2020 COURSE HANDOUT (PART-II)

Date: 27/03/2020

In addition to Part I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : CS F364

Course Title : Design and Analysis of Algorithms

Instructor-in-charge: Tathagata Ray

Instructor : Rajib Ranjan Maiti, Mrityunjay Singh

1. Scope and Objective

This course is the next logical step after the course on Data Structures and Algorithms. This course introduces students to different paradigm of algorithms and various techniques to analyze them. The analysis is of the correctness of the algorithm and the time complexity (also space complexity). They will also learn about the computational intractability; a class of NP-complete problems and techniques to prove NP-completeness. They will learn major techniques to deal with such computationally intractable set of problems.

The objective of the course is to impart students with different algorithmic paradigm and its characteristics. The students at the end of the course will be able to

- To identify suitable algorithms or data structure to apply for a given problem.
- Will be able to argue about the time complexity of algorithms.
- Will be able to write the proof of correctness of algorithms.
- Will be able to understand the intricacies involved in choosing the right data structures to implement algorithms.
- Will be able to implement computational geometric algorithms.

2. Text Books

(T1) Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms. Third Ed. MIT(2010)

3. Reference Books:

- (R1) Jon Kleinberg, Eva Tardos. Algorithm Design. First Ed. Pearson (2012)
- (R2) E. Horowitz, S. Sahni, S. Rajsekaran. Fundamentals of Computer Algorithms. Second Ed. University Press.
- (R3) R. Motwani, P. Raghavan. Randomized Algorithms CUP, 1995.
- (R4) G. Auseiello, et.al. Complexity and Approximation, Springer.
- (AR) Additional Reading assignments

4. Lecture Plan:

	4. Lecture Plan:							
Lecture	Learning Objectives	Topics	References					
No.								
01-02	Introduction to algorithms	Introduction to	T1-Chapter-1,2,3					
	Revision of asymptotic notations.	Growth of Function	_					
03-15	Basic principle of Divide and	Basic Design						
	Conquer.Recursion of Divide and Conquer.	Techniques: Divide and	T1-Chapter-					
	 What is Greedy Strategy 	conquer, Greedy,	4,15,16,23,24,25,					
	 How to prove the correctness of 	Dynamic Programming.	R1, R2, AR					
	Greedy Algorithm.Difference between greedy and							
	Dynamic programming.							
	 Implementing Memoization. 							
	Writing recursion for Dynamic							
16-20	Network Flow ProblemFord-Fulkerson Algorithm	Specialized design						
	 Applications of Network flow. 	techniques : Network	T1-chapter 26, 5,					
	 Difference between deterministic 	flow, Randomization	R1, R2, R3, AR					
	and Randomized algorithm	(Examples, Analysis,						
	Strength of Randomized Algorithm.	Limitation)						
21-25	Analysis of Randomized AlgorithmIntroduction to decision problems.	Complexity Classes						
21-23	• Difference between P and NP.	and Hardness of	T1-Chapter-34,					
	Difference between NP-complete	problems: P, NP,	R4, AR					
	and NP-HardSignificance of SAT.	Reductions, NP	104,7110					
	 How to prove reduction for proving 	hardness and NP						
	NP-completeness.	Completeness, reduction						
		techniques, Some						
		standard NP complete						
		problems						
26-32	Famous N-Queen Problem.	Design techniques for						
20 32	 Introduction to Backtracking and 	Hard Problems:	T1-Chapter-35,					
	Branch and BoundIntroduction to Approximation	Backtracking, branch	R2, R4, AR					
	algorithm and Approximation class	and Bound,	, ,					
		Approximation						
		algorithms						
33-40	Significance of Linear Programming	Linear Programming:	T1-Chapter-29, AR					
	Application of LPP	LP Problems and	,					
	 Geometric understanding of LPP and extrema Theorem. 	Simplex algorithms.						
	 Simplex and how we walk on the 							
	polytope.							
41-42	How to do analysis of parallel	Introduction to design	T1-Chapter-27, R1,					
	programs.	and analysis of parallel	R2, AR					
	 Basic approaches towards parallel programming 	and multithreaded						
	programming	programming						

5. Old Evaluation Scheme:

S. No.	Evaluation	Duration	Date and	Weightage	Nature of
	Component		Time	(%)	Component
1.	Quiz-1, Quiz-2	30 minutes	TBA	10	Closed Book
2.	Assignment	Take Home	TBA	20	Open Book
3	Midterm	90 Mins	7/3 11.00 -12.30 PM	30	Closed Book
5.	Comprehensive	3 Hours	14/05 AN	40	Closed Book

New Evaluation Scheme (after COVID-19 nationwide lockdown)

S. No.	Evaluation	Duration	Date and	Weightage	Nature of
	Component		Time	(%)	Component
1.	Quiz-1	30 minutes	TBA	5	Closed Book
2.	Assignment	Take Home	TBA	20	Open Book
3	Midterm	90 Mins	7/3 11.00 -12.30 PM	30	Closed Book
5.	Comprehensive	3 Hours	14/05 AN	45	Closed Book

Chamber Consultation Hour: TBA

Notices: All notices pertaining to this course will be displayed on the CS & IS Notice Board or CMS.

Make-Up Policy:

No makeups will be given for quizzes under any circumstance.

Makeup for tests can be given only for genuine cases and that too with prior approval from the instructor in charge on providing letter from Chief Warden certifying the reason of leave.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Please read the punishment rules of our Institute for use of any kind of unfair means during any component of the course. Refrain from making any such attempts even.

Instructor-in-charge Tathagata Ray