AOV网: 顶点活动网(Activity On Vertex network)

- 有向图;
- 无环图;
- 顶点表示活动;
- 边表示活动间的先后关系;

线性表视频知识点之间的依赖关系

AOV网: 顶点活动网(Activity On Vertex network)

课程编号	课程名称	先修课程
C1	高级程序设计	无
C2	离散数学	无
C3	计算机组成原理	C1
C4	数据结构	C1,C2
C5	高等数学	无
C6	信息论	C5
C7	计算机导论	无
C8	计算机网络	C7
C9	操作系统	C3,C4
C10	密码学	C4,C6
C11	网络安全技术	C10,C8

拓扑排序方法

- ◆ 输出AOV中一个没有前驱结点的顶点;
- ◆ 在AOV中删除该顶点以及对应的出边
- ◆ 重复上述两步,直到所有顶点都输出为止,完成了拓扑排序;或者还有未输出的顶点,这些顶点有前驱而不能删除,说明存在环路,这样的工程是不可行的。

一个AOV网的拓扑序列不是唯一的

AOV网中如果出现回路一定不能完成拓扑排序

拓扑排序算法核心过程:

- 1.计算各个顶点的入度;
- 2.将入度为0的顶点入栈;
- 3.如果栈不空,从栈中取出一个元素v,输出 到拓扑序列中;
- 4.检查顶点v的出边表,将出边表中的每个顶点w的入度减1(即删除顶点v为弧头的边表
 -),如果w的入度为0,则顶点w入栈
- 5.重复第三步和第四步,直到栈为空结束

蓝色表示该顶点已经输出到拓扑序列 红色表示顶点的入度有更新 绿色表示栈中内容

拓扑序列		各坝点的人度inPoint[]				桟nodeStack	
מה, 1, 1, 1, וגות ב	V0	V1	V2	V3	V	↓ V5	内容
初始	0	1	2	2	1	3	V0
V0	0	0	1	1	1	3	V1
V0 V1	0	0	0	1	0	2	V2 V4
V0 V1 V2	0	0	0	1	0	1	V4
V0 V1 V2 V4	0	0	0	1	0	0	V5
V0 V1 V2 V4 V5	0	0	0	0	0	0	V3
V0 V1 V2 V4 V5 V3	0	0	0	0	0	0	

nodeno next

