ECE 340 Midterm 1 Review Questions

Sanat, Alex, Marwan October 2019

1 Band Diagrams

Figure 1: Semiconductor Band Diagram

- 1.1 Name the majority carrier in regions 2 and 4.
- 1.2 Which region has the highest conductivity?
- 1.3 This sample is at 300 K. At T = 100 K, would the resistivity in the region from 1.2 increase, decrease, or stay the same?

Figure 1: Semiconductor Band Diagram

- 1.4 Draw the direction and relative magnitude of electron diffusion in each region.
- 1.5 Draw the direction and relative magnitude of hole drift in each region.
- 1.6 Explain how you could determine the corresponding electron drift and hole diffusion based on your answers to 1.4 and 1.5.

Figure 1: Semiconductor Band Diagram

1.7 Draw the corresponding electric field. (Assume +x is to the right)

2 Optical Absorption

- 2.1 Create a plot of light intensity vs distance into a semiconductor when illuminated with photons with $h\nu > E_G$. Sketch two traces for different absorption coefficients such that $\alpha_1 < \alpha_2$.
- 2.2 What would change if $h\nu < E_G$?

3 Optical Generation

- 3.1 Create a qualitative plot of δp vs time for an n-type semiconductor that had been uniformly illuminated for a long time, but with light turned off at t=0. Sketch two traces for different carrier lifetimes such that $\tau_1 < \tau_2$. (Assume $\tau = \tau_p = \tau_n$)
- 3.2 For which τ is $E_i F_p$ largest for t < 0?

4 Thermal Effects

Figure 2: Carrier Concentration vs $Temperature^{-1}$

- 4.1 Suppose this is a sample of silicon $(n_i = 10^{10})$. Is this material doped with n or p type impurities?
- 4.2 What is the dominant effect in each region? Explain.

5 Approximations

- 5.1 What is the Boltzmann tail approximation, and when can it be used?
- 5.2 When is $n \approx N_D N_A$?
- 5.3 What is the low-level injection approximation, and when can it be used?