1. Prawdopodobieństwo klasyczne

14.10.2020

Zadanie 1. Jaka jest szansa trafienia "szóstki" w totolotka? (wybieramy 6 z 49 liczb, maszyna również losuje 6 z 49 liczb i musimy trafić wszystkie). Jaka jest szansa trafienia "piątki"? "czwórki"? "trójki"?

Odpowiedź: Liczba wszystkich możliwych wyników to liczba 6-elementowych podzbiorów 49-elementowego zbioru, czyli $|\Omega| = \binom{49}{6}$. Tylko jeden z tych podzbiorów daje główną wygraną, stąd prawdopodobieństwo zdarzenia A_6 ("szóstka w totolotka") wynosi:

$$P(A_6) \ = \ \frac{1}{\binom{49}{6}} \ = \ \frac{6!43!}{49!} \ = \ \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{44 \cdot 45 \cdot 46 \cdot 47 \cdot 48 \cdot 49} \ = \ \frac{1}{13\ 983\ 816}.$$

Trafienie "piątki". Zaznaczyliśmy 6 liczb i musi zostać wylosowane dokładnie 5 z tych 6 liczb. Jest sześć takich "piątek", a każda z tych "piątek" będzie miała szóstą liczbę z zakresu 7 – 49 (43 możliwości). Łącznie jest więc $6\times43=258$ 6-elementowych podzbiorów, które dają wygraną typu "piątka". Szukane prawdopodobieństwo wynosi więc:

$$P(A_5) = \frac{258}{\binom{49}{6}} \simeq \frac{1}{54\ 201}.$$

Trafienie "czwórki". Muszą zostać wylosowane 4 z 6 zaznaczonych liczb, co można zrealizować na $\binom{6}{4}$ sposobów. Pozostałe dwie liczby muszą pochodzić spoza zaznaczonej szóstki, co daje $\binom{49-6}{2}$ sposobów. Mamy więc:

$$P(A_4) = \frac{\binom{6}{4} \cdot \binom{43}{2}}{\binom{49}{6}} \simeq \frac{1}{1032}.$$

Trafienie "trójki". Analogicznie do poprzedniego przypadku:

$$P(A_3) = \frac{\binom{6}{3} \cdot \binom{43}{3}}{\binom{49}{6}} \simeq \frac{1}{57}.$$

Zadanie 2. Ile słów można utworzyć ze słowa BABA zmieniając kolejność liter? A ile ze słowa BAR-BARA?

Odpowiedź: Wpierw rozważmy prostsze słowo BABA. Możliwych ułożeń liter jest tyle, ile czteroelementowych permutacji, czyli 4! = 24. Niestety, z powodu powtarzających się liter, wiele z tych permutacji prowadzi do tych samych słów:

permutacja	słowo	permutacja	słowo	permutacja	słowo	permutacja	słowo
(1,2,3,4)	BABA	(2,3,1,4)	ABBA	(4,3,2,1)	ABAB	(3,2,4,1)	BAAB
(1,4,3,2)	BABA	(2,1,3,4)	ABBA	(2,3,4,1)	ABAB	(1,2,4,3)	BAAB
(3,4,1,2)	BABA	(3,1,2,4)	BBAA	(2,1,4,3)	ABAB	(4,2,1,3)	AABB
(3,2,1,4)	BABA	(3,1,4,2)	BBAA	(4,1,2,3)	ABAB	(2,4,1,3)	AABB
(4,1,3,2)	ABBA	(1,3,4,2)	BBAA	(1,4,2,3)	BAAB	(2,4,3,1)	AABB
(4,3,1,2)	ABBA	(1,3,2,4)	BBAA	(3,4,2,1)	BAAB	(4,2,3,1)	AABB

Weźmy przykładowo słowo ABBA. Przestawienie między sobą liter A, lub liter B, prowadzi do tego samego slowa ABBA. Litery A można między sobą przestawić na 2! = 2 sposoby, podobnie litery B.

Tym samym $2 \cdot 2 = 4$ permutacje (związane z przestawieniem między sobą tych samych liter) prowadzą do tego samego słowa.

Łącznie jest więc $\frac{4!}{4} = 6$ różnych słów, które można utworzyć ze słowa BABA.

Teraz rozważmy słowo BARBARA. Mamy 3 litery A, 2 litery B oraz 2 litery R, łącznie 7 liter. Podobnie jak poprzednio, przestawianie między sobą tych samych liter nie zmienia słowa. Litery A można przestawić na 3! sposobów, litery B oraz R – na 2! sposobów. Więc $3! \cdot 2! \cdot 2!$ przestawień prowadzi do tego samego słowa.

Łącznie mamy więc $\frac{7!}{3!2!2!}=210$ różnych słów, które można utworzyć ze słowa BARBARA. Nie będziemy ich tutaj wypisywać.

Zadanie 3. Załóżmy, że 10 osób obecnych w restauracji zamówiło w tym samym czasie 10 różnych dań. Niestety roztrzepany kelner zapisał tylko nazwy dań, ale nie zapisał kto co zamawiał. Po przygotowaniu potraw postanowił je więc rozdać gościom restauracji w sposób całkowicie losowy. Oblicz prawdopodobieństwo zdarzenia, że: (a) dany gość restauracji otrzyma swoje własne danie; (b) para osób siedząca przy danym stoliku otrzyma dania, które zamawiała; (c) wszyscy goście otrzymali swoje własne dania.

Odpowied'z:

(a) Weźmy gościa nr 1. Jest $|\Omega|=10!$ wszystkich możliwych przyporządkowań (permutacji) dań gościom restauracji. Niech A oznacza zdarzenie "gość nr 1 otrzymał swoje własne danie (nr 1)". Zdarzeniu A sprzyjają wszystkie permutacje, w których danie nr 1 jest przyporządkowane gościowi nr 1, natomiast pozostałe 9 dań jest przyporządkowane dowolnie do pozostałych 9 gości. Jest |A|=9! takich permutacji, stąd:

$$P(A) = \frac{9!}{10!} = \frac{1}{10}.$$

(b) Podobnie jak poprzednio, $|\Omega|=10!$. Zdarzeniu B – "oboje gości dostało dania, które zamawiali" sprzyjają wszystkie permutacje, które przyporządkowują poprawne dania tej parze i dowolnie przyporządkowują pozostałe 8 dań pozostałym 8 gościom. Jest |B|=8! takich permutacji, stąd:

$$P(B) = \frac{8!}{10!} = \frac{1}{90}.$$

(c) Podobnie jak poprzednio, $|\Omega|=10!$. Zdarzeniu C – "wszyscy goście dostali swoje własne dania" sprzyja tylko jedna permutacja, stąd:

$$P(C) = \frac{1}{10!}.$$

Zadanie 4. W klasie jest 10 dziewcząt i 10 chłopców, którym przydzielono arbitralnie i losowo miejsca w 10 dwuosobowych ławkach. Oblicz prawdopodobieństwo zdarzeń: (a) w danej (np. pierwszej) ławce siedzą dziewczynka i chłopiec; (b) w danej ławce siedzą dwie dziewczynki; (c) we wszystkich ławkach siedzą mieszane pary, tzn. dziewczynka i chłopiec.

$Odpowied\acute{z}$:

(a) Niech A będzie rzeczonym zdarzeniem. Do danej ławki możemy wybrać $\binom{20}{2}$ możliwych (nieuporządkowanych) par osób. Spośród tych par jest $|A|=\binom{10}{1}\binom{10}{1}=100$ (nieuporządkowanych) par mieszanych, stąd:

$$P(A) = \frac{\binom{10}{1}\binom{10}{1}}{\binom{20}{2}} = \frac{10}{19}.$$

(b) Niech B będzie rzeczonym zdarzeniem. Do danej ławki możemy wybrać $|\Omega| = {20 \choose 2}$ możliwych (nieuporządkowanych) par osób. Spośród tych par jest $|B| = {10 \choose 2}$ (nieuporządkowanych) par dziewczynek, stąd:

$$P(B) = \frac{\binom{10}{2}}{\binom{20}{2}} = \frac{9}{38}.$$

(c) Niech C będzie rzeczonym zdarzeniem. Załóżmy, że losowo permutujemy osoby, a potem umieszczamy po kolei obsadzając wpierw 1. ławkę, potem 2. ławkę, itp. Jest więc $|\Omega|=20!$ wszystkich możliwych ułożeń osób w ławkach. Do każdej z ławek przyporządkowujemy po jednym chłopcu (na 10! sposobów) i po jednej dziewczynce (na 10! sposobów) i dowolnie możemy ich poprzestawiać w obrębie każdej ławki (na 2^{10} sposobów). Jest więc $|C|=2^{10}\cdot 10!10!$ sposobów sprzyjających zdarzeniu C. Stąd:

$$P(C) = \frac{2^{10} \cdot 10!10!}{20!}$$

Zadanie 5. Przy okrągłym stole z 20 krzesłami rozsadzono 10 małżeństw w sposób całkowicie losowy. Oblicz prawdopodobieństwa zdarzeń: (a) dany mąż (np. mąż z pierwszego z małżeństw) siedzi obok swojej żony; (b) dany mąż siedzi pomiędzy dwoma innymi mężami; (c) wszystkie małżeństwa siedzą obok siebie. Odpowiedź:

(a) Weźmy męża nr 1 i niech A będzie rzeczonym zdarzenim (dotyczącym tego męża). Jest $|\Omega| = \binom{19}{2}$ możliwych (nieuporządkowanych) par osób, które będą sąsiadami tego męża. Jeśli jednym z sąsiadów ma być żona, drugi sąsiad może być wylosowany na $|A| = \binom{18}{1} = 18$ różnych sposób, stąd prawdopodobieństwo wynosi:

$$P(A) = \frac{18}{\binom{19}{2}} = \frac{2}{19}.$$

(można to także policzyć inaczej: szansa, że lewy sąsiad to żona wynosi $\frac{1}{19}$, podobnie szansa, że prawy sąsiad to żona wynosi $\frac{1}{19}$; oba zdarzenia ("lewy sąsiad to żona" i "prawy sąsiad to żona") są rozłączne, ich suma to dokładnie zdarzenie A, stąd jego prawdopodobieństwo wynosi $\frac{2}{19}$

(b) Niech B będzie rzeczonym zdarzeniem. Podobnie jak poprzednio, $|\Omega| = \binom{19}{2}$. Para mężów będących sąsiadami może być wylosowana na $|B| = \binom{9}{2}$ sposób, szukane prawdopodobieństwo wynosi więc:

$$P(B) = \frac{\binom{9}{2}}{\binom{19}{2}} = \frac{4}{19}.$$

(c) Niech C będzie rzeczonym zdarzeniem. Ponumerujmy miejsca od 1 do 20, zaczynając od dowolnego z miejsc. Załóżmy, że małżeństwo traktujemy jako nierozerwalną parę i sadzamy obok siebie. Możemy to zrobić na 10! sposobów (tyle jest możliwych uporządkowań par), a każdego męża i żonę możemy dowolnie przestawić między sobą. Czyli łącznie $2^{10}10!$ sposobów. Problem w tym, że stół jest okrągły, więc jedno z małżeństw możemy rozerwać i posadzić je na pierwszym i ostatnim miejscu, i również będzie "obok siebie". Daje to kolejne $2^{10}10!$ kombinacji, czyli razem jest $|C|=2\cdot 2^{10}10!$ kombinacji sprzyjających zdarzeniu C. Ponieważ łącznie jest $|\Omega|=20!$ możliwych uporządkowań, szukane prawdopodobieństwo wynosi więc:

$$P(C) = \frac{2 \cdot 2^{10} \cdot 10!}{20!}.$$

Zadanie 6. Na przystanku zatrzymują się 3 autobusy, każdy przyjedzie w losowym czasie między 0 a 15 minut. Jaka jest szansa, że będziemy czekać na pierwszy autobus krócej niż 5 minut?

Odpowiedź: Zdarzeniami elementarymi są trójki (x, y, z), określające czasy przyjazdu trzech autobusów. Przestrzeń zdarzeń elementarnych jest więc podzbiorem \mathbb{R}^3 :

$$\Omega = [0,15] \times [0,15] \times [0,15] = [0,15]^3.$$

Tym samym $|\Omega| = 15^3$. Zdarzenie "czekamy na pierwszy autobus krócej niż 5 minut" zapiszmy jako A. Prościej jest rozpatrzyć zdarzenie A' ("czekamy co najmniej 5 minut"), które można zapisać jako:

$$A' = \{(x, y, z) \in \Omega \colon x \geqslant 5 \land y \geqslant 5 \land z \geqslant 5\} = [5, 15]^3.$$

Stąd otrzymujemy $|A'| = 10^3$, a tym samym:

$$P(A') = \frac{10^3}{15^3} = \left(\frac{2}{3}\right)^3 = \frac{8}{27} \implies P(A) = 1 - P(A') = \frac{19}{27}.$$

Zadanie 7. Zdefiniujmy n-wymiarową kulę o promieniu r jako zbiór:

$$K_n(r) = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n : \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \leqslant r \right\}$$

Jaka jest szansa, że losowy wybrany punkt z $K_n(1)$ (kuli o promieniu 1) znajdzie się w odległości większej niż z od środka? Wskazówka: objętość n-wymiarowej kuli o promieniu r wyraża się wzorem:

$$|K_n(r)| = C_n r^n,$$

gdzie C_n jest pewną stałą zależną od wymiaru $(C_1=2,C_2=\pi,C_3=\frac{4}{3}\pi,\ldots)$

Odpowiedź: Zdarzeniami elementarnymi są n-wymiarowe punkty $x \in K_n(1)$, czyli $\Omega = K_n(1)$. Zgodnie ze wzskazówką, $|\Omega| = C_n 1^n = C_n$. Zdarzenie A ("punkt znajduje się w odległości większej niż z od środka") zaznaczono schematycznie na poniższym rysunku:

Zauważmy, że A' jest n-wymiarową kulą o promieniu z, stąd:

$$P(A') = \frac{|A|}{|\Omega|} = \frac{C_n z^n}{C_n} = z^n \qquad \Longrightarrow \qquad P(A) = 1 - z^n$$

A więc prawdopodobieństwo trafienia w ten obszar zbiega wykładniczo do 1 dla ustalonego z. Wynika z tego dość zaskakujące zjawisko: w przestrzeni o dużym wymiarze prawie wszystkie punkty znajdują się przy powierzchni kuli! Dla przykładu weźmy z=0.99 i $n=1\,000$, otrzymując P(A)=0.9999. Ten fakt ma dość istotne znaczenie w niektórych metodach analizy danych.

2. Aksjomatyczna definicja prawdopodobieństwa

21.10.2020

Zadanie 1. Niech A_1, A_2, A_3 oznaczają pewne zdarzenia losowe. Wyraź w jak najprostszy sposób za pomocą operacji teorio-mnogościowych zdarzenia:

- 1. B₁: "zaszły wszystkie trzy zdarzenia"
- 2. B₂: "zaszły dokładnie dwa zdarzenia"
- 3. B₃: "zaszło co najmniej jedno zdarzenie"
- 4. B4: "zaszło co najwyżej jedno zdarzenie"
- 5. B₅: "zaszło tylko zdarzenie A₁"
- 6. B₆: "nie zaszło żadne ze zdarzeń"

Odpowiedź:

- 1. $B_1 = A_1 \cap A_2 \cap A_3$
- 2. $B_2 = (A_1 \cap A_2 \cap A_3') \cup (A_1 \cap A_2' \cap A_3) \cup (A_1' \cap A_2 \cap A_3)$
- 3. $B_3 = A_1 \cup A_2 \cup A_3$
- 4. $B_4 = (A_1 \cap A_2' \cap A_3') \cup (A_1' \cap A_2 \cap A_3') \cup (A_1' \cap A_2' \cap A_3) \cup (A_1' \cap A_2' \cap A_3')$
- 5. $B_5 = A_1 \setminus (A_2 \cup A_3) = A_1 \cap A_2' \cap A_3'$
- 6. $B_6 = (A_1 \cup A_2 \cup A_3)'$

Zadanie 2. *Udowodnij, że jeśli* $A, B \in \mathcal{F}$ *to również* $A \setminus B \in \mathcal{F}$.

Odpowiedź: Wykorzystamy tutaj fakt, że $A \setminus B = A \cap B'$ (wystarczy narysować diagram Venna, aby się o tym przekonać). Ponieważ $B \in \mathcal{F}$ to z własności 2 algebry zdarzeń mamy $B' \in \mathcal{F}$. Z wykładu wiemy, że iloczyn dwóch zdarzeń z \mathcal{F} również należy do \mathcal{F} . Ponieważ $A \in \mathcal{F}$, mamy więc $A \cap B' \in \mathcal{F}$, co kończy dowód.

Zadanie 3.

- 1. Niech $\Omega = \{1, 2, 3, 4, 5, 6\}$. Sprawdź, czy $\mathcal{F} = \{\emptyset, \Omega, \{1, 2, 3\}, \{4, 5, 6\}\}$ jest σ -ciałem
- 2. Dla dowolnego Ω i $A\subset\Omega,$ wyznacz najmniejsze $\sigma\text{-}ciało$ zawierające zdarzenie A

$Odpowied\acute{z}$:

- 1. Tak, \mathcal{F} spełnia wszystkie trzy aksjomaty:
 - (a) $\Omega \in \mathcal{F}$ (oczywiste)
 - (b) $A \in \mathcal{F} \Rightarrow A' \in \mathcal{F}$ (wystarczy zauważyć, że dopełnienie każdego zbioru z \mathcal{F} jest również w \mathcal{F})

- (c) $A_1, A_2, \ldots \in \mathcal{F} \Rightarrow A_1 \cup A_2 \cup \ldots \in \mathcal{F}$ biorąc dowolne sumy zbiorów z \mathcal{F} zawsze otrzymamy element \mathcal{F}
- 2. Oznaczmy najmniejsze σ -ciało zawierające A jako \mathcal{F} . Oczywiście musimy mieć $\Omega \in \mathcal{F}$ z pierwszego aksjomatu. Z drugiego aksjomatu, dopełnienia zbiorów muszą być w \mathcal{F} , czyli \emptyset , $A' \in \mathcal{F}$. Okazuje się, że trzeci aksjomat jest już wtedy spełniony, a więc:

$$\mathcal{F} = \{\emptyset, \Omega, A, A'\}$$

Zadanie 4. Niech $\Omega = \mathbb{N}$. Rozważ rodzinę \mathcal{F} zawierającą wszystkie podzbiory Ω , które są skończone, lub których dopelnienia są skończone:

$$\mathcal{F} = \{ A \subseteq \Omega \colon A \ skończony \lor A' \ skończony \}$$

Sprawdź czy \mathcal{F} jest σ -ciałem.

Odpowiedź: \mathcal{F} nie jest σ -ciałem. O ile pierwsze dwa aksjomaty są spełnione, trzeci aksjomat:

$$A_1, A_2, \ldots \in \mathcal{F} \Rightarrow A_1 \cup A_2 \cup \ldots \in \mathcal{F}$$

nie jest. Weźmy podzbiory $A_n = \{2n\}$, tzn. A_n jest jedno-elementowym podzbiorem zawierającym liczbę 2n. Oczywiście $A_n \in \mathcal{F}$, ale $A_1 \cup A_2 \cup \ldots$ to zbiór naturalnych liczb parzystych. Jest on nieskończony, ale jego dopełnienie (zbiór naturalnych liczb nieparzystych) również jest nieskończone.

Zadanie 5. Pokaż, że dla dowolnych A_1, \ldots, A_n mamy $P(A_1 \cup \ldots A_n) \leq P(A_1) + \ldots + P(A_n)$.

Odpowiedź: Wykorzystamy fakt z wykładu mówiący, że dla dowolnych A i B zachodzi $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Ponieważ prawdopodobieństwo jest zawsze nieujemne, $P(A \cap B) \ge 0$, a tym samym $P(A \cup B) \le P(A) + P(B)$.

Dowód jest przez indukcję dla $n=2,3,\ldots$ Przypadek bazowy dla n=2 zbiorów właśnie pokazaliśmy. Załóżmy teraz, że własność zachodzi dla n-1 i pokażemy, że zachodzi wtedy również dla n (krok indukcji). Weźmy zbiór A jako $A=A_1\cup\ldots\cup A_{n-1}$, a zbiór B jako A_n . Mamy:

$$P(A_1 \cup \ldots \cup A_{n-1} \cup A_n) = P(A \cup B) \leqslant P(A) + P(B) = P(A_1 \cup \ldots A_{n-1}) + P(A_n). \tag{1}$$

Teraz wystarczy wykorzystać założenie indukcyjne:

$$P(A_1 \cup ... A_{n-1}) \leq P(A_1) + ... + P(A_{n-1}),$$

które po wstawieniu do prawej strony (1) daje:

$$P(A_1 \cup \ldots \cup A_{n-1} \cup A_n) \leq P(A_1) + \ldots + P(A_n),$$

co kończy dowód.

Zadanie 6 Udowodnij, że dla dowolnych zdarzeń $A_1, A_2, A_3 \in \Omega$:

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3).$$

Wskazówka: wykorzystaj udowodnione wcześniej: $P(B \cup C) = P(B) + P(C) - P(B \cap C)$.

Odpowiedź:

$$P(A_1 \cup A_2 \cup A_3) = P((A_1 \cup A_2) \cup A_3)$$

$$\stackrel{(*)}{=} P(A_1 \cup A_2) + P(A_3) - P((A_1 \cup A_2) \cap A_3)$$

$$\stackrel{(\dagger)}{=} P(A_1 \cup A_2) + P(A_3) - P((A_1 \cap A_3) \cup (A_2 \cap A_3))$$

$$\stackrel{(*)}{=} P(A_1) + P(A_2) - P(A_1 \cap A_2) + P(A_3) +$$

$$- (P(A_1 \cap A_3) + P(A_2 \cap A_3) - P(A_1 \cap A_2 \cap A_3))$$

$$= P(A_1) + P(A_2) + P(A_3) +$$

$$- P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3),$$

gdzie w wierszach oznaczonych (*) wykorzystaliśmy własność $P(B \cup C) = P(B) + P(C) - P(B \cap C)$, a w wierszu oznaczonym (†) wykorzystaliśmy prosty fakt $(B \cup C) \cap D = (B \cap D) \cup (C \cap D)$.

Zadanie 7*. Pokaż, że jeśli A_1, A_2, \ldots jest zstępujący i $A = \bigcap_{n=1}^{\infty} A_n$ to:

$$P(A) = \lim_{n \to \infty} P(A_n)$$

Odpowiedź: Można to zadanie zrobić podobnie, jak to dla ciągu wstępującego. Pójdziemy tu jednak na skróty i wykorzystamy to, że udowodniliśmy już analogiczną własność dla ciągu wstępującego i pokażemy, że wynika z tego powyższa własność dla ciągu zstępującego.

Zdefiniujemy sobie $C_n = A'_n$ dla $n = 1, 2, \ldots$ Zauważmy, że jeśli $A_1 \supset A_2 \supset \ldots$ jest zstępujący, to wtedy $C_1 \subset C_2 \subset \ldots$ jest wstępujący (wystarczy narysować diagram Venna, aby się o tym przekonać). Zdefiniujemy sobie $C = C_1 \cup C_2 \cup \ldots$ Z twierdzenia o ciągach wstępujących:

$$P(C) = \lim_{n \to \infty} P(C_n).$$

Ale zauważmy, że z prawa De Morgana:

$$C' = (C_1 \cup C_2 \cup \ldots)' = (A'_1 \cup A'_2 \cup \ldots)' = A_1 \cap A_2 \cap \ldots = A.$$

Tym samym:

$$P(A) = P(C') = 1 - P(C) = 1 - \lim_{n \to \infty} P(C_n) = \lim_{n \to \infty} (1 - P(C_n)) = \lim_{n \to \infty} P(A_n),$$

co należało dowieść.

Zadanie 8. Pokaż, że prawdopodobieństwo na dyskretnej przestrzeni zdarzeń spełnia aksjomaty Kolmogorowa

Odpowiedź: Przypomnijmy, że $\Omega = \{\omega_1, \omega_2, \ldots\}$ jest zbiorem przeliczalnym, a rozważana rodzina zdarzeń \mathcal{F} jest rodziną wszystkich podzbiorów Ω , tzn. $\mathcal{F} = 2^{\Omega}$. Każdemu ω_n przypisujemy liczbę $p_n \geqslant 0$ taką, że $\sum_{n=1}^{\infty} p_n = 1$. Prawdopodobieństwo dowolnego zdarzenia $A \subseteq \Omega$ definiujemy jako $P(A) = \sum_{n : \omega_n \in A} p_n$. Sprawdzimy teraz wszystkie trzy aksjomaty Kołmogorowa:

- 1. Nieujemność $P(A) \geqslant 0$: ponieważ $p_n \geqslant 0$ dla każdego n, to również każda ich suma będzie nieujemna.
- 2. Normalizacja $P(\Omega) = 1$:

$$P(\Omega) = \sum_{n: \, \omega_n \in \Omega} p_n = \sum_{n=1}^{\infty} p_n = 1,$$

gdzie ostatnia równość wynika z warunku, jaki nałożyliśmy na sumę p_n .

3. Addytywność: mając ciąg A_1,A_2,\ldots zdarzeń rozłącznych, tj. takich, że $A_i\cap A_j=\emptyset$, musimy pokazać, że $P\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i)$. Mamy:

$$P\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{n: \ \omega_n \in \bigcup_{i=1}^{\infty} A_i} p_n \stackrel{(*)}{=} \sum_{n: \ \omega_n \in A_1} p_n + \sum_{n: \ \omega_n \in A_2} p_n + \ldots = \sum_{i=1}^{\infty} P(A_i),$$

gdzie w (*) wykorzystaliśmy fakt, że zbiory A_i są rozłączne, więc może sumować po każdym ze zbiorów z osobna.

3. Prawdopodobieństwo warunkowe

28.10.2020

Zadanie 1. Podaj przykłady zdarzeń takich, że (a) P(A|B) < P(A), (b) P(A|B) = P(A), (c) P(A|B) > P(A)

Odpowiedź:

- Rzucamy monetą, $B = \{O\}$ "wypadł orzeł", $A = \{R\}$ "wypadła reszka". Wtedy $P(B) = \frac{1}{2}$, natomiast $P(A|B) = \frac{P(A\cap B)}{P(B)} = 0$. Ogólniej: jeśli dla dowolnego zdarzenia B z P(B) > 0 weźmiemy A = B', to $P(A|B) = \frac{P(B'\cap B)}{P(B)} = \frac{P(\emptyset)}{P(B)} = 0 < P(B)$.
- Rzucamy dwoma monetami, $B = \{RO, OO\}$ "wypadł orzeł na 1. monecie", $A = \{OR, OO\}$ "wypadł orzeł na 2. monecie". Wtedy $P(B) = \frac{1}{2}$, natomiast $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/4}{1/2} = \frac{1}{2}$.
- Rzucamy monetą, $B = \{O\}$ "wypadł orzeł", A = B. Wtedy $P(B) = \frac{1}{2}$, natomiast $P(A|B) = \frac{P(A\cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$. Ogólniej: jeśli dla dowolnego zdarzenia $B \ge 0 < P(B) < 1$ weźmiemy A = B to $P(A|B) = \frac{P(A\cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1 > P(B)$.

Zadanie 2. Pokaż, że P(A|B) jako funkcja A przy ustalonym B spełnia aksjomaty Kołmogorowa. Odpowiedź: Korzystamy z definicji: $P(A|B) = \frac{P(A \cap B)}{P(B)}$ dla P(B) > 0.

- 1. Nieujemność $P(A|B) \ge 0$: wynika wprost z definicji.
- 2. Normalizacja $P(\Omega|B) = 1$:

$$P(\Omega|B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

3. Addytywność: mając ciąg A_1,A_2,\ldots zdarzeń rozłącznych, tj. takich, że $A_i\cap A_j=\emptyset$, musimy pokazać, że $P\left(\bigcup_{j=1}^{\infty}A_j\mid B\right)=\sum_{j=1}^{\infty}P(A_j\mid B)$. Mamy:

$$P\Big(\bigcup_{i=1}^{\infty} A_j \mid B\Big) = \frac{P\Big(\big(\bigcup_{j=1}^{\infty} A_j\big) \cap B\Big)}{P(B)} = \frac{P\Big(\bigcup_{j=1}^{\infty} (A_j \cap B)\Big)}{P(B)} \stackrel{(*)}{=} \sum_{i=1}^{\infty} \frac{P(A_j \cap B)}{P(B)} = \sum_{i=1}^{\infty} P(A_j \mid B),$$

gdzie w (*) wykorzystaliśmy fakt, że skoro zbiory A_j (j=1,2,...) są rozłączne, to tym bardziej są rozłączne zbiory $A_j \cap B$ (j=1,2,...).

Zadanie 3. Rodzina ma dwójkę dzieci. Jaka jest szansa, że ma dwóch chłopców, jeśli wiemy, że jedno z dzieci ma na imię Franek? (przyjmij, że prawdopodobieństwo nadania chłopcu imienia Franek wynosi p)

Odpowiedź: Dla każdego dziecka mamy trzy możliwe wyniki: "dziewczynka" (d), "chłopiec Franek" (f), "chłopiec nie-Franek" (c). Z treści zadania wynika, że $P(\text{imię}=\text{Franek}\,|\,\text{chłopiec})=p$. W naszej notacji możemy to zapisać jako $P(\{f\}|\{c,f\})=p$. Wiemy również, że szansa na chłopca jest $\frac{1}{2}$, stąd $P(\{c,f\})=p$.

 $\frac{1}{2}$. Ze wzoru P(A)=P(A|B)P(B) wynika więc, że $P(\{f\})=\frac{p}{2},$ a stąd wnioskujemy również, że $P(\{c\})=\frac{1-p}{2}.$ W przypadku dziewczynki, $P(\{d\})=\frac{1}{2},$ tak jak poprzednio. Przestrzeń zdarzeń elementarnych ma postać:

$$\Omega = \{dd, df, dc, fd, ff, fc, cd, cf, cc\}.$$

Jak poprzednio zakładamy, że dzieci rodzą się niezależnie, więc prawdopodobieństwo pary to iloczyn prawdopodobieństw poszczególnych dzieci, tzn.:

$$P(\{dd\}) = \frac{1}{4}, \quad P(\{df\}) = P(\{fd\}) = \frac{p}{4}, \quad P(\{dc\}) = P(\{cd\}) = \frac{1-p}{4},$$

$$P(\{fc\}) = P(\{cf\}) = \frac{p(1-p)}{4}, \quad P(\{ff\}) = \frac{p^2}{4}, \quad P(\{cc\}) = \frac{(1-p)^2}{4}.$$

Weźmy teraz zdarzenie A – "dwóch chłopców", oraz zdarzenie B – "jedno z dzieci ma na imię Franck". Mamy:

$$A = \{cc, cf, fc, ff\}, \quad B = \{fd, df, fc, cf, ff\}, \quad A \cap B = \{cf, fc, ff\},$$

a stąd:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{2 \cdot \frac{p(1-p)}{4} + \frac{p^2}{4}}{2 \cdot \frac{p}{4} + 2 \cdot \frac{p(1-p)}{4} + \frac{p^2}{4}} = \frac{p(2-p)}{p(4-p)} = \frac{2-p}{4-p}.$$

Warto zauważyć, że dla p=1 ("wszyscy chłopcy mają na imię Franek") daje to $\frac{1}{3}$ (czyli jakbyśmy wiedzieli, że "jedno z dzieci to chłopiec"), a dla $p \simeq 0$ daje to $\simeq \frac{1}{2}$ (podobnie jak w stwierdzeniu, że "starsze dziecko to chłopiec", gdyż imię Franck jest tak rzadkie, że natychmiast identyfikuje jedno z dzieci).

Zadanie 4. Mamy w ręku trzy asy i dobieramy dwie dodatkowe karty. Jaka jest szansa na "karetę" (cztery asy)? Podobnie: jaka jest szansa na karetę, jeśli mamy w ręku dwa asy i dobieramy trzy karty?

Odpowiedź: Rozpatrzmy pierwszy przypadek (3 asy w ręku, dobieramy 2 karty). Jest wiele sposobów, żeby zrobić to zadanie. Np:

- 1. Patrzymy na karty, które pozostały w talii. Jest 49 kart, dobieramy dwie i potrzebujemy dobrać ostatniego asa (oznaczmy to zdarzenie przez A). Jako zdarzenia elementarne weźmy podzbiory dwuelementowe zbioru 49-elementowego. Mamy $|\Omega| = {49 \choose 2} = {49 \cdot 48 \choose 2}$ oraz |A| = 48 (ponieważ chcemy mieć asa oraz jedną z pozostałych 48 kart). Mamy więc $P(A) = {2 \over 49}$.
- 2. Używamy prawdopodobieństwa warunkowego. Niech Ω składa się z uporządkowanych piątek kart. Zdarzenie B – "pierwsze trzy karty to asy" składa się z $4 \cdot 3 \cdot 2 \cdot 49 \cdot 48$ piątek, ponieważ pierwsza karta może przyjść na 4 sposoby (as), druga na 3 sposoby (drugi as), trzecia na 2 sposoby (trzeci as), a pozostałe dwie karty są dowolne (spośród pozostałych). Jeśli przez A oznaczymy "kareta asów w pięciu kartach", to $A \cap B$ składa się z $4 \cdot 3 \cdot 2 \cdot (1 \cdot 48 + 48 \cdot 1)$, gdyż w ostatnich dwóch kartach as może przyjść jako pierwsza lub druga karta. Mamy więc:

$$P(A|B) = \frac{|A \cap B|}{|B|} = \frac{4 \cdot 3 \cdot 2 \cdot 2 \cdot 48}{4 \cdot 3 \cdot 2 \cdot 49 \cdot 48} = \frac{2}{49}$$

Jak widać, prawdopodobieństwo warunkowe tylko skomplikowało tutaj odpowiedź.

W drugim przypadku (2 asy w ręku, dobieramy 3 karty) możemy rozumować podobnie jak powyżej (pierwszy sposób), wtedy prawdopodobieństwo rzeczonego zdarzenia wynosi $\frac{48}{\binom{50}{3}} = \frac{48.6}{50.49.48} = \frac{3}{25.49}$

Zadanie 5. Losujemy dwie liczby x i y z przedziału [0,1]. Jaka jest szansa, że (a) $x \leq \frac{1}{2}$ jeśli $x+y \leq 1$; (b) $x \leq \frac{1}{2}$ jeśli $\max\{x,y\} \geq \frac{2}{3}$? Przyjmij model prawdopodobieństwa geometrycznego.

1. Zdarzenia elementarne to pary $(x,y) \in [0,1]^2 = \Omega$. Niech $A = \{(x,y): x \leq \frac{1}{2}\}$ oraz $B = \{(x,y): x + 1\}$ $y \leq 1$. Zbiory można przedstawić na poniższym rysunku:

Zbiór B ma kształt trójkąta z $|B| = \frac{1}{2}$, natomiast $A \cap B$ ma postać trapezu (zaznaczony wzorem "w kratkę" na rysunku), którego pole jest równe $\frac{3}{8}$. Stąd $P(A|B) = \frac{3/8}{1/2} = \frac{3}{4}$.

2. Jak poprzednio, $\Omega=[0,1]^2$, a zbiory $A=\{(x,y)\colon x\leqslant \frac{1}{2}\}$ oraz $B=\{(x,y)\colon \max\{x,y\}\geqslant \frac{2}{3}\}$ zostały zaznaczone poniżej:

Zbiór B ma kształt odwróconej litery "L". Mamy $|B|=|\Omega|-|B'|=1-\frac{2}{3}\cdot\frac{2}{3}=\frac{5}{9}$. Z kolei $A\cap B$ ma postać prostokąta o bokach $\frac{1}{2}$ i $\frac{1}{3}$, czyli $|A\cap B|=\frac{1}{6}$. Stąd $P(A|B)=\frac{1/6}{5/9}=\frac{3}{10}$.

Zadanie 6. Rzucamy kostką, jeśli wypadnie jedno oczko to rzucamy ponownie i dodajemy wyniki. Jaka jest szansa, że (sumarycznie) wyrzucimy wartość powyżej 4?

Odpowiedź: Niech zdarzenie A_1 oznacza "wypadło jedno oczko", A_2 – "wypadło więcej niż jedno oczko", a B – "wypadło sumarycznie powyżej 4".

Mamy $P(B|A_1) = \frac{1}{2}$, bo skoro na pierwszej kostce wypadło 1, na drugiej kostce musi wypaść 4,5 lub 6 oczek, żeby suma była *większa* niż 4. Jeśli zajdzie zdarzenie A_2 , nie rzucamy już drugą kostką, więc aby zaszło zdarzenie B, sumaryczny wynik (czyli po prostu liczba oczek na pierwszej, i jedynej, kostce) musi być równy 5 lub 6. Tym samym:

$$P(B|A_2) = \frac{P(B \cap A_2)}{P(A_2)} = \frac{1/3}{5/6} = \frac{2}{5}.$$

Z twierdzenia na prawdopodobieństwo całkowite:

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) = \frac{1}{6} \cdot \frac{1}{2} + \frac{5}{6} \cdot \frac{2}{5} = \frac{5}{12}.$$

Zadanie 7. Mamy b białych i c czarnych kul w urnie. Wyciągamy jedną kulę i od razu ją wyrzucamy (poza urnę!), nie sprawdzając koloru. Jakie jest prawdopodobieństwo wyciągnięcia za drugim razem kuli białej?

Odpowiedź: Niech B_1 i C_1 oznaczają zdarzenia polegające na wyciągnięciu za pierwszym razem kuli, odpowiednio, białej lub czarnej. Podobnie, niech B_2 i C_2 oznaczają analogiczne zdarzenia przy drugim losowaniu. Interesuje nas $P(B_2)$. Zauważmy, że $P(B_1) = \frac{b}{b+c}$, $P(C_1) = \frac{c}{b+c}$. Do tego, $P(B_2|B_1) = \frac{b-1}{b-1+c}$ oraz $P(B_2|C_1) = \frac{b}{b+c-1}$ (gdyż pozbywamy się jednej z kul z urny, odpowiednio białej lub czarnej).

Zdarzenia B_1 i C_1 są rozłączne i pokrywają całą przestrzeń, tworzą więc układ zupełny. Ze wzoru na prawdopodobieństwo całkowite:

$$\begin{split} P(B_2) &= P(B_2|B_1)P(B_1) + P(B_2|C_1)P(C_1) \\ &= \frac{b-1}{b+c-1}\frac{b}{b+c} + \frac{b}{b+c-1}\frac{c}{b+c} \\ &= \frac{b(b-1)+bc}{(b+c)(b+c-1)} = \frac{b(b+c-1)}{(b+c)(b+c-1)} = \frac{b}{b+c}. \end{split}$$

Co ciekawe, prawdopodobieństwo jest takie samo, jak w przypadku pojedynczego losowania.

Zadanie 8. Zadanie egzaminacyjne (typu testowego) ma 5 możliwych odpowiedzi, z których tylko jedna jest prawdziwa. Wśród 100 egzaminowanych studentów tylko 30 potrafi rozwiązać to zadanie, a pozostali będą wybierać jedną z odpowiedzi losowo. Jakie jest prawdopodobieństwo, że egzaminowany student potrafi rozwiązać zadanie, jeśli zaznaczył poprawną odpowiedź?

Odpowiedź: Oznaczmy zdarzenia:

- A "student udzielił poprawnej odpowiedzi"
- B₊ "student potrafi rozwiązać zadanie"
- B_ "student nie potrafi rozwiązać zadania"

Z treści zadania wnioskujemy, że:

$$P(B_{+}) = \frac{30}{100} = \frac{3}{10}, \quad P(B_{-}) = 1 - P(B_{+}) = \frac{7}{10}, \quad P(A|B_{+}) = 1, \quad P(A|B_{-}) = \frac{1}{5}.$$

Z twierdzenia Bayesa:

$$P(B_{+}|A) = \frac{P(A|B_{+})P(B_{+})}{P(A|B_{+})P(B_{+}) + P(A|B_{-})P(B_{-})} = \frac{1 \cdot 0.3}{1 \cdot 0.3 + 0.2 \cdot 0.7} = \frac{0.3}{0.44} \approx 0.68.$$

4. Niezależność

4.11.2020

Zadanie 1. Pokaż, że dowolne zdarzenie na pierwszej kostce jest niezależne od dowolnego zdarzenia na drugiej kostce.

Odpowiedź: Niech $\Omega = \{(1,1), (1,2), \dots, (6,5), (6,6)\}$ będzie przestrzenią zdarzeń elementarnych ($|\Omega| = 36$). Niech A_1 oznacza dowolne zdarzenie związane z pierwszą z kostek, a A_2 – z drugą z kostek. Załóżmy, że zdarzenie A_1 obejmuje n_1 spośród 6 wyników na pierwszej kostce (i dowolny wynik na drugiej, bo nic o niej nie mówi); podobnie, niech zdarzenie A_2 obejmuje n_2 spośród 6 wyników na drugiej kostce (i dowolny wynik na pierwszej). Np. jeśli A_1 – "wypadło jedno lub dwa oczka na pierwszej kostce", to $n_1 = 2$. Ponieważ wtedy $A_1 = \{(1,1), (1,2), \dots, (1,6), (2,1), (2,2), \dots, (2,6)\}$, mamy więc $|A_1| = 6n_1$. Podobnie, $|A_2| = 6n_2$. Tym samym:

$$P(A_1) = \frac{6n_1}{36} = \frac{n_1}{6}, \qquad P(A_2) = \frac{6n_2}{36} = \frac{n_2}{6}.$$

Z kolei zdarzenie $A_1 \cap A_2$ obejmuje wszystkie zdarzenia elementarne, dla których wynik na pierwszej kostce jest wśród n_1 wartości obejmowanych przez A_1 , a wynik na drugiej kostce – wśród n_2 wartości obejmowanych przez A_2 . Mamy więc $|A_1 \cap A_2| = n_1 n_2$ i stąd:

$$P(A_1 \cap A_2) = \frac{n_1 n_2}{36} = \frac{n_1}{6} \cdot \frac{n_2}{6} = P(A_1)P(A_2).$$

Zadanie 2. Rzucamy $n \ge 2$ razy monetą. Czy zdarzenia A – "brak orłów lub jeden orzeł" i B – "same orły lub same reszki" są niezależne? Czy odpowiedź zależy od n?

Odpowiedź: Oznaczamy przez C_k zdarzenie "wypadło k orłów". Jeśli za zdarzenia elementarne przyjmiemy n-elementowe ciągi binarne (gdzie jedynka oznacza orła, a zero – reszkę), to $|\Omega|=2^n$, $|C_0|=|C_n|=1$, zaś $|C_1|=n$ (jedynka może pojawić się na dowolnej pozycji ciągu). Mamy $|A|=|C_0|+|C_1|=n+1$, $|B|=|C_0|+|C_n|=2$, oraz $|A\cap B|=|C_0|=1$. Stąd:

$$P(A) \cdot P(B) = \frac{n+1}{2^n} \cdot \frac{2}{2^n} = \frac{2(n+1)}{2^{2n}}, \qquad P(A \cap B) = \frac{1}{2^n}.$$

Zdarzenia A i B są więc niezależne wtedy i tylko wtedy gdy:

$$\frac{1}{2^n} = \frac{2(n+1)}{2^{2n}} \iff 2(n+1) = 2^n \iff n = 2^{n-1} - 1.$$

Równość ta zachodzi wyłącznie dla n=3.

Zadanie 3*. Pokaż, że jeśli A_1, \ldots, A_n – niezależne, to również są niezależne B_1, \ldots, B_n , gdzie $B_i = A_i$ lub $B_i = A'_i$ ($i = 1, \ldots, n$).

 $Odpowied\acute{z}$: Pokażemy wpierw, że jeśli A_1, \ldots, A_n sa niezależne, to również:

$$A_1, \dots, A_{i-1}, A'_i, A_{i+1}, \dots, A_n$$
 sa niezależne, (1)

dla dowolnego $i=1,\ldots,n$. Ponieważ problem jest zupełnie symetryczny ze względu na indeksy $1,\ldots,n$, wystarczy udowodnić własność (1) dla i=n, tzn. pokazać, że:

$$A_1, \dots, A_{n-1}, A'_n$$
 są niezależne, (2)

Zrobimy to przez indukcję po n. Przypadek bazowy dla n=2 został pokazany na wykładzie: z niezależności A_1 i A_2 wynika niezależność A_1 i A_2' . Załóżmy teraz, że własność (2) zachodzi dla dowolnych n-1 (lub mniej) zdarzeń (założenie indukcyjne) i udowodnimy ją dla n zdarzeń. Oznaczmy $B_i=A_i$ dla i< n, oraz $B_n=A_n'$. Musimy pokazać, że

$$P(B_{i_1} \cap B_{i_2} \dots \cap B_{i_k}) = P(B_{i_1}) \cdot P(B_{i_2}) \cdot \dots \cdot P(B_{i_k}),$$

dla dowolnych indeksów $1 \le i_1 < i_2 < \ldots < i_k \le n$ i dowolnego $k = 2, \ldots, n$. Ale biorąc k < n, ten wniosek wynika z założenia indukcyjnego, ponieważ wybrany ciąg B_{i_1}, \ldots, B_{i_k} składa się z k < n zdarzeń, o których wiemy (z założenia indukcyjnego), że są niezależne. Stąd jedyne, co musimy pokazać, to przypadek k = n, czyli (wracając do starej notacji):

$$P(A_1 \cap \ldots \cap A_{n-1} \cap A'_n) = P(A_1) \cdot \ldots \cdot P(A_{n-1}) \cdot P(A'_n).$$

Oznaczmy $C = A_1 \cap \ldots \cap A_{n-1}$. Ponieważ:

$$P(C \cap A_n) = P(A_1 \cap \ldots \cap A_n) = P(A_1) \cdot \ldots \cdot P(A_n) = P(A_1 \cap \ldots \cap A_{n-1}) \cdot P(A_n) = P(C) \cdot P(A_n),$$

czyli C i A_n są niezależne. A więc, używając niezależności dla dwóch zdarzeń, wynika z tego, że C i A'_n są również niezależne. Tym samym:

$$P(A_1 \cap \ldots \cap A_{n-1} \cap A'_n) = P(C \cap A'_n) = P(C) \cdot P(A'_n) = P(A_1) \cdot \ldots \cdot P(A_{n-1}) \cdot P(A'_n),$$

co kończy dowód własności (2). To z kolei przez symetrie implikuje (1).

Powyższy wynik wystarcza do zakończenia zadania, ponieważ można go stosować wielokrotnie, zamieniając kolejne A_i na A'_i , za każdym razem korzystając z faktu, że zbiór zdarzeń wciąż jest niezależny.

Zadanie 4. Rzucamy n razy kostką n-ścienną. Jakie jest prawdopodobieństwo, że wyrzucimy przynajmniej jedną jedynkę? Do jakiej wartości zbiega to prawdopodobieństwo przy $n \to \infty$?

Odpowiedź: Niech $A_i, i=1,\ldots,n$, oznacza zdarzenie "jedynka na i-tej kostce n-ściennej". Mamy $P(A_i)=\frac{1}{n}$. Przez B_n oznaczmy zdarzenie "co najmniej jedna jedynka w n rzutach kostką n-ścienną", czyli $B_n=A_1\cup A_2\cup\ldots\cup A_n$. Stąd:

$$P(B_n) = 1 - P(B'_n) = 1 - P(A'_1 \cap A'_2 \cap \dots \cap A'_n) = 1 - P(A'_1)P(A'_2) \cdot \dots \cdot P(A'_n) = 1 - \left(1 - \frac{1}{n}\right)^n.$$

Wykorzystując znaną własność:

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n,$$

otrzymujemy:

$$\lim_{n \to \infty} P(B_n) = 1 - e^{-1} \simeq 0.6321.$$

Poniżej kilka przykładowych wartości prawdopodobieństw:

\overline{n}	$P(B_n)$	n	$P(B_n)$	n	$P(B_n)$
2	0.75	10	0.6513	50	0.6330
3	0.7037	20	0.6415	100	0.6325
4	0.6836	50	0.6358	200	0.6323
5	0.6723	100	0.6340	1000	0.6322

Zadanie 5. Jaka jest szansa, że uda się przesłać pakiet z punktu A do B w sieci komputerowej poniżej (liczby na krawędziach to prawd. awarii połączeń):

Wskazówka: zamień sieć na graf komponentów.

 $Odpowied\acute{z}$: Zamieniamy powyższy graf na graf komponentów (prawdopodobieństwa awarii wpisane wewnątrz komponentów):

Następnie sukcesywnie usuwamy komponenty szeregowe i równoległe zgodnie z regułami:

- komponenty szeregowe z prawdopodobieństwami awarii p_1, \ldots, p_n zastąp jednym komponentem z prawdopodobieństwem awarii $1 (1 p_1) \cdot \ldots \cdot (1 p_n)$,
- komponenty równoległe z prawdopodobieństwami awarii p_1, \ldots, p_n zastąp jednym komponentem z prawdopodobieństwem awarii p_1, \ldots, p_n .

Proces ten wygląda w tym przypadku następująco

Prawdopodobieństwo, że uda się przesłać pakiet, równa się 1-0.043=0.957

Zadanie 6. Jaś i Małgosia rzucają nieuczciwą monetą, która daje wygraną Małgosi z prawdopodobieństwem p i Jasiowi z prawdopodobieństwem 1-p. Ten, kto wygra, daje drugiej osobie złotówkę. Jaś zaczyna z kapitałem j zł, Małgosia – z m zł. Gra toczy się, dopóki któreś z nich nie przegra wszystkiego. Jaka jest szansa wygranej Jasia, a jaka Małgosi?

Odpowiedź: Można zamodelować grę jako spacer losowy:

przegrana Małgosi
$$1-p$$
 przegrana Jasia $-m$ 0 j

Ilekroć Małgosia wygra (z prawdopodobieństwem p), "ludzik" przesuwa się o jeden krok w prawo, gdy znajdzie się w odległości j od zera, oznacza to, że Jasio wyczerpał swój kapitał (analogicznie przy wygranej Jasia). Stąd otrzymujemy, że prawdopodobieństwo wygranej Małgosi (czyli przegranej Jasia) wynosi:

$$P(\text{wygra Małgosia}) \ = \ \begin{cases} \frac{m}{j+m} & \text{jeśli} \ p = \frac{1}{2}, \\ \frac{\left(\frac{p}{1-p}\right)^j - \left(\frac{p}{1-p}\right)^{j+m}}{1 - \left(\frac{p}{1-p}\right)^{j+m}} & \text{jeśli} \ p \neq \frac{1}{2}. \end{cases}$$

Ponieważ gra kończy się z prawdopodobieństwem 1, P(wygra Jasio) = 1 - P(wygra Małgosia).

Zadanie 7. Adam, Bolek i Czesio rzucają – w tej kolejności – monetą (uczciwą). Wygrywa ten, który pierwszy otrzyma orła. Znaleźć szanse na wygraną dla każdego z graczy. Znajdź ogólną odpowiedź dla nieuczciwej monety, w której orzeł wypada z prawdopodobieństwem p > 0

Odpowiedź: Od razu obliczymy odpowiedź dla dowolnego p>0. Wykorzystamy fakt, że jeśli przez trzy rzuty monetą nikt nie wygrał, sytuacja jest identyczna jak na początku gry (znowu każdy ma takie same szanse na wygraną). Niech p_A oznacza wygraną Adama. W pierwszej turze Adam wygrywa z prawdopodobieństwem p, a z prawdopodobieństwem 1-p gra toczy się dalej. Następnie, jeśli Bolek i Czesio nie wygrają, co zdarzy się z prawdopodobieństwem $(1-p)\cdot (1-p)$ (z niezależności rzutów), wracamy do początkowych szans na wygraną. A więc:

$$p_A = p + (1-p) \cdot ((1-p) \cdot (1-p) \cdot p_A) = p + (1-p)^3 p_A.$$

Stąd:

$$p_A(1-(1-p)^3) = p \iff p_A = \frac{p}{1-(1-p)^3}$$

Aby policzyć prawdopodobieństwo wygrania Bolka (oznaczone p_B) wystarczy zauważyć, że jest ono takie samo jak p_A , jeśli w pierwszej turze wypadnie reszka, tzn:

$$p_B = (1-p)p_A = \frac{p(1-p)}{1-(1-p)^3}.$$

Podobnie, prawdopodobieństwo wygrania Czesia (oznaczone p_C) jest takie samo, jak p_A , jeśli w pierwszej i drugiej turze wypadną reszki:

$$p_C = (1-p)^2 p_A = \frac{p(1-p)^2}{1-(1-p)^3}.$$

Zauważmy, że prawdopodobieństwa sumują się do jedynki, co oznacza, że ktoś kiedyś w końcu wygra:

$$p_A + p_B + p_C = \frac{p + p(1-p) + p(1-p)^2}{1 - (1-p)^3} = \frac{3p - 3p^2 + p^3}{3p - 3p^2 + p^3} = 1.$$

W szczególności, dla $p = \frac{1}{2}$, mamy:

$$p_A = \frac{4}{7}, \quad p_B = \frac{2}{7}, \quad p_C = \frac{1}{7}.$$

5. Zmienne losowe: wprowadzenie

9.11.2020

Zadanie 1. Niech P będzie miarą prawdopodobieństwa na Ω , a $X: \Omega \to \mathbb{R}$ zmienną losową. Pokaż, że miara P_X przyporządkowującą każdemu podzbiorowi $A \subseteq \mathbb{R}$ liczbę:

$$P_X(A) = P(X^{-1}(A))$$

spełnia aksjomaty Kołmogorowa na przestrzeni \mathbb{R} .

Wskazówka: trzeba wykorzystać fakt, że P spełnia aksjomaty Kołmogorowa.

 $Odpowied\acute{z}$:

1. Nieujemność:

$$P_X(A) = P(X^{-1}(A)) \stackrel{(*)}{\geqslant} 0$$

gdzie w (*) użyliśmy faktu, że miara P spełnia aksjomat o nieujemności.

2. Normalizacja:

$$P_X(\mathbb{R}) = P(X^{-1}(\mathbb{R})) \stackrel{(*)}{=} P(\Omega) \stackrel{(\dagger)}{=} 1$$

gdzie w (*) wykorzystaliśmy fakt, że przeciwobrazem całej osi liczb rzeczywistych jest cała przestrzeń Ω , a w (\dagger) wykorzystaliśmy fakt, że P spełnia aksjomat o normalizacji.

3. Przeliczalna addytywność: weźmy dowolny ciąg A_1, A_2, \ldots zdarzeń z \mathbb{R} parami rozłącznych. Wtedy ich przeciwobrazy $X^{-1}(A_1), X^{-1}(A_2), \ldots$ są również parami rozłączne (w Ω). Zatem:

$$P_X(A_1 \cup A_2 \cup \dots) = P(X^{-1}(A_1 \cup A_2 \cup \dots))$$

$$\stackrel{(*)}{=} P(X^{-1}(A_1) \cup X^{-1}(A_2) \cup \dots))$$

$$\stackrel{(\dagger)}{=} P(X^{-1}(A_1)) + P(X^{-1}(A_2)) + \dots$$

$$= P_X(A_1) + P_X(A_2) + \dots,$$

gdzie w (*) wykorzystaliśmy fakt, że przeciwobraz sumy jest sumą przeciwobrazów, a w (\dagger) wykorzystaliśmy fakt, że przeciwobrazy są rozłączne oraz, że P spełnia aksjomat o przeliczalnej addytywności.

Zadanie 2. Z talii 52 kart ciągniemy 6 i zliczamy liczbę pików. Znaleźć rozkład określonej w ten sposób zmiennej losowej.

Odpowiedź: Niech X będzie szukaną zmienną losową. Mamy $X \in \{0,1,\ldots,6\}$ i musimy wyznaczyć prawdopodobieństwa zdarzeń postaci P(X=k), dla $k=0,\ldots,6$. Jest $\binom{52}{6}$ możliwych sposobów wyboru 6 z 52 kart, natomiast zdarzeniu $\{X=k\}$ sprzyjają wszystkie wybory zawierające dokładnie k pików. Takich wyborów jest $\binom{13}{k}\binom{39}{6-k}$, gdzie pierwsza wartość mówi na ile sposobów można wybrać k z 13 pików, a druga – na ile sposobów można wybrać 6-k z 39 nie-pików. Mamy więc:

$$P(X = k) = \frac{\binom{13}{k} \binom{39}{6-k}}{\binom{52}{6}}$$

Zadanie 3. Mamy dwie monety: jedną uczciwą (szansa orła i reszki po 50%) i jedną nieuczciwą (szansa orła 80%, reszki 20%). Wybieramy losową jedną z nich i rzucamy nią 3 razy. Niech X będzie zmienną losową oznaczającą liczbę orłów. Wyznacz rozkład X.

Odpowiedź: Musimy wyznaczyć P(X=k) dla k=0,1,2,3. Niech U oznacza zdarzenie "wybrano do losowania uczciwą monetę". Mamy $P(U)=P(U')=\frac{1}{2}$. Z wzoru na prawdopodobieństwo całkowite:

$$P(X = k) = P(\{X = k\}|U)P(U) + P(\{X = k\}|U')P(U').$$

Przy ustalonej monecie, szansę na zadaną liczbę orłów w 3 rzutach uzyskuje się ze schematu Bernoulliego:

$$P(\{X=k\}|U) = \binom{3}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{3-k} = \frac{1}{8} \binom{3}{k}, \qquad P(\{X=k\}|U') = \binom{3}{k} (0.8)^k (0.2)^{3-k}.$$

Stąd:

$$P(X = k) = \frac{1}{2} \binom{3}{k} \left(\frac{1}{8} + (0.8)^k (0.2)^{3-k} \right)$$

Zadanie 4. Wybieramy losową permutację liczb $\{1, 2, ..., 10\}$. Niech X oznacza pozycję (licząc od 1), na której pojawi się pierwsza liczba parzysta. Podaj rozkład X. (np. dla permutacji $\{1, 3, 10, 2, 5, 8, 9, 7, 4, 6\}$ mamy X = 3)

Odpowiedź: Przede wszystkim zauważmy, że $X \in \{1,2,3,4,5,6\}$, ponieważ liczba parzysta musi pojawić się wśród pierwszych 6 liczb. Jeśli X=k, to znaczy, że na pozycjach $1,\ldots,k-1$ są same liczby nieparzyste, na pozycji k jest liczba parzysta, a pozostałe liczby są dowolne. Ponieważ bierzemy tu pod uwagę kolejność, liczby nieparzyste na pierwszy pozycjach można wybrać na $\frac{5!}{(6-k)!}$ sposobów (wariacja bez powtórzeń), liczba parzysta na pozycji k może być wybrana na 5 sposób, a pozostałe liczby są już ustalone i jedynie możemy je permutować na (10-k)! sposobów. Ponieważ łączna liczba permutacji wynosi 10!, mamy więc:

$$\begin{split} P(X=1) &= \frac{\frac{5!}{5!} \cdot 5 \cdot 9!}{10!} = \frac{5}{10} = \frac{1}{2}, \\ P(X=2) &= \frac{\frac{5!}{4!} \cdot 5 \cdot 8!}{10!} = \frac{25}{9 \cdot 10} = \frac{5}{18}, \\ P(X=3) &= \frac{\frac{5!}{3!} \cdot 5 \cdot 7!}{10!} = \frac{100}{8 \cdot 9 \cdot 10} = \frac{10}{72}, \\ P(X=4) &= \frac{\frac{5!}{2!} \cdot 5 \cdot 6!}{10!} = \frac{300}{7 \cdot 8 \cdot 9 \cdot 10} = \frac{10}{168}, \\ P(X=5) &= \frac{\frac{5!}{1!} \cdot 5 \cdot 5!}{10!} = \frac{600}{6 \cdot 7 \cdot 8 \cdot 9 \cdot 10} = \frac{10}{504}, \\ P(X=6) &= \frac{\frac{5!}{0!} \cdot 5 \cdot 4!}{10!} = \frac{600}{5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10} = \frac{1}{252}. \end{split}$$

Zadanie 5. Mamy urnę z 10 białymi i 20 czarnymi kulami. Wybieramy losowo ze zwracaniem 9 kul. Niech X określa liczbę wylosowanych białych kul. Jaki rozkład ma X?

Odpowiedź: Ponieważ łącznie jest 30 kul, prawdopodobieństwo wylosowania białej kuli w każdym losowaniu wynosi $p=\frac{10}{30}=\frac{1}{3}$ (losujemy ze zwracaniem!). Zmienna losowa X określa więc liczbę sukcesów (sukces = "biała kula") w 9 próbach, gdzie prawdopodobieństwo sukcesu wynosi $p=\frac{1}{3}$. Tym samym X ma rozkład dwumianowy $B(9,\frac{1}{3})$.

Zadanie 6*. Odszukaj dlaczego $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

Odpowiedź: Wzór wynika z rozwinięcia funkcji e^x w nieskończony szereg Taylora:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \ldots + \frac{f^{(k)}}{k!}(x - x_0)^k + \ldots$$

wokół punktu $x_0 = 0$ (tzw. szereg Maclaurina). Jest to możliwe, ponieważ e^x jest funkcją analityczną. Ponieważ $f(x) = f'(x) = f''(x) = \dots = e^x$, mamy:

$$f(0) = f'(0) = f''(0) = \dots = e^0 = 1,$$

stąd:

$$e^x = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Zadanie 7. Wyznacz rozkład prawdopodobieństwa dla wszystkich wymienionych poprzednio przykładów. Oblicz kilka pierwszych prawdopodobieństw

Odpowiedź: Wszystkie wspomniane przykłady można modelować za pomocą rozkład Poissona, wystarczy tylko obliczyć λ .

• Szansa rozpadu atomu promieniotwórczego w ciągu sekundy wynosi $p=10^{-14}$. Mając $n=10^{15}$ atomów wyznacz rozkład prawdopodobieństwa liczby rozpadów w danej sekundzie. Mamy $\lambda=pn=10$, stąd:

$$P(X=k) = \frac{10^k}{k!}e^{-10}, \qquad P(X=0) = e^{-10} \simeq 4.5 \cdot 10^{-5}, \qquad P(X=1) = 10e^{-10} \simeq 4.5 \cdot 10^{-4}$$

$$P(X=2) = \frac{10^2}{2!}e^{-10} \simeq 2.3 \cdot 10^{-3}, \quad P(X=3) \simeq 7.6 \cdot 10^{-3}, \quad P(X=4) \simeq 1.9 \cdot 10^{-2}$$

 \bullet Mamy artykuł z n=8000 słów. Szansa literówki w danym słowie to p=1/1000. Znaleźć rozkład liczby literówek.

Mamy $\lambda = pn = 8000/1000 = 8$, stad:

$$P(X=k) = \frac{8^k}{k!}e^{-8}, \quad P(X=0) \simeq 3.4 \cdot 10^{-4}, \quad P(X=1) \simeq 2.7 \cdot 10^{-3}, \quad P(X=2) \simeq 0.01$$

• DNA człowieka składa się z $n=6.4\times 10^9$ par zasad (w pojedynczej komórce). Szansa mutacji na parę zasad na rok wynosi $p=0.5\times 10^{-9}$. Wyznacz rozkład liczby mutacji w ciągu roku. Mamy $\lambda=pn=6.4\cdot 0.5=3.2$, stąd:

$$P(X=k) = \frac{3.2^k}{k!}e^{-3.2}, \quad P(X=0) \simeq 0.04, \quad P(X=1) \simeq 0.13, \quad P(X=2) \simeq 0.21$$

• Szansa katastrofy lotniczej wynosi 1 na 11 mln lotów (rocznie). Wyznacz rozkład liczby katastrof na rok, jeśli w ciągu roku odbywa się n=16 mln lotów. Mamy $\lambda=pn=\frac{16}{11}$, stąd:

$$P(X=k) = \frac{(16/11)^k}{k!}e^{-16/11}, \quad P(X=0) \simeq 0.23, \quad P(X=1) \simeq 0.4, \quad P(X=2) \simeq 0.25$$

6. Momenty zmiennych losowych

25.11.2020

Zadanie 1. Pokaż, że jeśli $X \sim B(n, p)$ to EX = np.

Odpowiedź: X przyjmuje wartości w zbiorze $\{0,1,\ldots,n\}$ z prawdopodobieństwami zadanymi wzorem $P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$. Korzystając z definicji wartości oczekiwanej:

$$EX = \sum_{k=0}^{n} k \cdot P(X = k)$$

$$= \sum_{k=1}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} k \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} n \frac{(n-1)!}{(k-1)!(n-k)!} p \cdot p^{k-1} (1-p)^{n-k}$$

$$= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{n-k}$$

$$\stackrel{(*)}{=} np \sum_{k=0}^{n-1} \binom{n-1}{k} p^{k} (1-p)^{n-1-k}$$

$$= np,$$

gdzie w (*) obniżyliśmy indeks sumowania (z k na k-1), a równość oznaczona przez (†) wynika z tego, że każdy element sumy to prawdopodobieństwo k sukcesów w n-1 próbach, stąd suma po wszystkich możliwych k (od 0 do n-1) musi dać łącznie 1.

Zadanie 2*. Pokaż, że jeśli $X \sim NB(r,p)$ to $EX = \frac{rp}{1-p}$

Odpowiedź: Zmienna $X \in \{0,1,2,\ldots\}$ ma rozkład ujemny dwumianowy NB(r,p) jeśli:

$$P(X = k) = {r+k-1 \choose r-1} (1-p)^r p^k.$$

Liczymy wartość oczekiwaną:

$$EX = \sum_{k=0}^{\infty} kP(X=k) = \sum_{k=1}^{\infty} k \binom{r+k-1}{r-1} (1-p)^r p^k, \tag{1}$$

gdzie opuściliśmy składnik sumy dla k=0 (równy zero). Zauważmy, że:

$$\begin{split} k\binom{r+k-1}{r-1} &= k\frac{(r+k-1)!}{(r-1)!(r+k-1-(r-1))!} = k\frac{(r+k-1)!}{(r-1)!k!} \\ &= \frac{(r+k-1)!}{(r-1)!(k-1)!} = r\frac{(r+k-1)!}{r!(k-1)!} \\ &= r\frac{(r+k-1)!}{r!(r+k-1-r)!} = r\binom{r+k-1}{r}. \end{split}$$

Wracając do (1), mamy:

$$P(X = k) = \sum_{k=1}^{\infty} r \binom{r+k-1}{r} (1-p)^r p^k$$

$$= r \frac{p}{1-p} \sum_{k=1}^{\infty} \binom{r+k-1}{r} (1-p)^{r+1} p^{k-1}$$

$$= r \frac{p}{1-p} \sum_{k=0}^{\infty} \binom{r+k}{r} (1-p)^{r+1} p^k,$$
(2)

gdzie ostatnia równość wynika ze zmiany indeksu sumowania z k na k-1. Czym jest suma otrzymana w ostatnim wyrażeniu? Aby odpowiedzieć na to pytanie zauważmy, że Y ma rozkład NB(r+1,p) jeśli:

$$P(Y=k) = \binom{(r+1)+k-1}{(r+1)-1} (1-p)^{r+1} p^k = \binom{r+k}{r} (1-p)^{r+1} p^k.$$

A więc ostatnia suma w (2) jest po prostu równa:

$$\sum_{k=0}^{\infty} P(Y=k) = 1$$

Czyli $EX = \frac{rp}{1-p}$, co należało dowieść.

Zadanie 3. Pokaż, że jeśli $X \sim \text{Pois}(\lambda)$ to $EX = \lambda$

Odpowiedź:Zmienna $X \in \{0,1,2,\ldots\}$ ma rozkład Poissona Pois $(\lambda),$ jeśli:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Liczymy wartość oczekiwaną:

$$\begin{split} EX &= \sum_{k=0}^{\infty} k P(X=k) \stackrel{(a)}{=} \sum_{k=1}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} \\ &= \sum_{k=1}^{\infty} \frac{\lambda^k}{(k-1)!} e^{-\lambda} = \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} \\ \stackrel{(b)}{=} \lambda \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = \lambda \underbrace{\sum_{k=0}^{\infty} P(X=k)}_{=1} = \lambda, \end{split}$$

gdzie w (a) opuściliśmy składnik sumy dla k=0 (równy zero), w (b) zmieniliśmy indeks sumowania z k na k-1, a ostatnia suma wynosi 1, ponieważ jest to suma prawdopodobieństw wszystkich możliwych wyników zmiennej losowej X.

Zadanie 4. Pokaż, że dla dyskretnej zmiennej losowej $X \in \mathcal{X}$ i funkcji $g: \mathcal{X} \to \mathcal{Y}$ zachodzi:

$$E(g(X)) = \sum_{x \in \mathcal{X}} g(x)P(X = x).$$

Odpowiedź: Zdefiniujmy zmienną losową Y = g(X). Z definicji wartości oczekiwanej:

$$E(Y) = \sum_{y \in \mathcal{V}} y P(Y = y),$$

natomiast z definicji rozkładu funkcji zmiennej losowej mamy:

$$P(Y = y) = \sum_{x: g(x)=y} P(X = x).$$

Łącząc oba powyższe otrzymujemy:

$$E(Y) = \sum_{y \in \mathcal{Y}} y \left(\sum_{x: g(x) = y} P(X = x) \right) = \sum_{y \in \mathcal{Y}} \sum_{x: g(x) = y} g(x) P(X = x) = \sum_{x \in \mathcal{X}} g(x) P(X = x),$$

gdzie ostatni krok wynika z faktu, że $\sum_{y \in \mathcal{Y}} \sum_{x:g(x)=y}$ to po prostu suma po wszystkich $x \in \mathcal{X}$.

Zadanie 5. Pokaż, że dla dowolnych funkcji g_1, \ldots, g_n :

$$E(g_1(X) + \ldots + g_n(X)) = E(g_1(X)) + \ldots + E(g_n(X))$$

Odpowiedź: Zdefiniujmy sobie funkcję $g(X) = g_1(X) + g_2(X) + \ldots + g_n(X)$. Używając wzoru na wartość oczekiwaną funkcji zmiennej losowej:

$$E(g(X)) = \sum_{x} g(x)P(X=x),$$

mamy:

$$E(g_1(X) + \dots + g_n(X)) = E(g(X)) = \sum_x g(x) P(X = x)$$

$$= \sum_x (g_1(x) + \dots + g_n(x)) P(X = x)$$

$$= \sum_x g_1(x) P(X = x) + \dots + \sum_x g_n(x) P(X = x)$$

$$= E(g_1(X)) + \dots + E(g_n(X))$$

Zadanie 6. Pokaż, że jeśli $X \sim \text{Pois}(\lambda)$, to $D^2(X) = \lambda$. Wykorzystaj fakt, że $EX = \lambda$ i użyj wzoru skróconego mnożenia dla wariancji.

 $Odpowied\acute{z}$: Jeśli $X \sim Pois(\lambda)$, to rozkład X jest dany wyrażeniem:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad X \in \{0, 1, ...\}.$$

Wykorzystując wzór skróconego mnożenia dla wariancji oraz fakt, że $EX = \lambda$ mamy:

$$D^{2}(X) = E(X^{2}) - (EX)^{2} = E(X^{2}) - \lambda^{2}.$$

Musimy więc tylko policzyć $E(X^2)$:

$$E(X^{2}) = \sum_{k=0}^{\infty} k^{2} P(X = k)$$

$$= \sum_{k=1}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=1}^{\infty} \underbrace{\left(k(k-1) + k\right)}_{=k^{2}} \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \sum_{k=2}^{\infty} k(k-1) \frac{\lambda^{k}}{k!} e^{-\lambda} + \underbrace{\sum_{k=1}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}}_{=EX}$$

$$= \sum_{k=2}^{\infty} \frac{\lambda^{k}}{(k-2)!} e^{-\lambda} + \lambda$$

$$= \lambda^{2} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} e^{-\lambda} + \lambda$$

$$\stackrel{(*)}{=} \lambda^{2} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda} + \lambda$$

$$= \lambda^{2} + \lambda,$$

gdzie w (*) obniżyliśmy indeks sumowania (z k na k-2), a w równości oznaczonej (†) wykorzystaliśmy fakt, że elementy sumy to prawdopodobieństwa postaci P(X=k) dla wszystkich możliwych $k \in \{0,1,2,\ldots\}$, stąd suma daje wartość równą 1.

Zadanie 7*. Pokaż, że dla rozkładu geometrycznego:

$$P(X = k) = (1 - p)^{k-1}p, \qquad k = 1, 2, \dots$$

wariancja wynosi $D^2(X) = \frac{1-p}{p^2}$

Odpowiedź: Jeden sposób został pokazany na wykładzie. Tutaj rozważymy inny sposób, w którym bezpośrednio będziemy próbowali policzyć nieskończone sumy wykorzystując wiedzę z matematyki dyskretnej. Wiemy, że wartość oczekiwana w rozkładzie geometrycznym wynosi $EX = \frac{1}{p}$. Wykorzystując wzór skróconego mnożenia dla wariancji:

$$D^{2}(X) = E(X^{2}) - (EX)^{2} = E(X^{2}) - \frac{1}{p^{2}},$$
 (3)

Musimy tylko policzyć $E(X^2)$:

$$E(X^2) = \sum_{k=1}^{\infty} k^2 P(X=k) = \sum_{k=1}^{\infty} k^2 (1-p)^{k-1} p$$

Rozważmy funkcję g(p) określoną wyrażeniem:

$$g(p) = \sum_{k=1}^{\infty} (1-p)^{k+1} \tag{4}$$

Możemy wyznaczyć wartość g(p) jako sumę nieskończonego szeregu geometrycznego $a + ar + ar^2 + \dots$ o wyrazie początkowym $a = (1 - p)^2$ i ilorazie r = (1 - p):

$$g(p) = \frac{a}{1-r} = \frac{(1-p)^2}{1-(1-p)} = \frac{(1-p)^2}{p}$$
 (5)

Policzmy pierwszą i drugą pochodną g(p). Możemy wykorzystać wyrażenie (4):

$$g'(p) = \left(\sum_{k=1}^{\infty} (1-p)^{k+1}\right)' = \sum_{k=1}^{\infty} \left((1-p)^{k+1}\right)' = -\sum_{k=1}^{\infty} (k+1)(1-p)^k$$

$$g''(p) = \left(-\sum_{k=1}^{\infty} (k+1)(1-p)^k\right)' = -\sum_{k=1}^{\infty} (k+1)\left((1-p)^k\right)' = \sum_{k=1}^{\infty} (k+1)k(1-p)^{k-1}$$

Teraz zauważmy, że:

$$pg''(p) = \sum_{k=1}^{\infty} (k+1)k(1-p)^{k-1}p = \underbrace{\sum_{k=1}^{\infty} k^2(1-p)^{k-1}p}_{=E(X^2)} + \underbrace{\sum_{k=1}^{\infty} k(1-p)^{k-1}p}_{=EX},$$

a więc:

$$pg''(p) = E(X^2) + \frac{1}{p} \Longrightarrow E(X^2) = pg''(p) - \frac{1}{p}.$$

Z drugiej strony, korzystając z wyrażenia (5), mamy:

$$g'(p) = \left(\frac{(1-p)^2}{p}\right)' = \left(\frac{1-2p+p^2}{p}\right)' = \left(\frac{1}{p}\right)' - (2)' + (p)' = -\frac{1}{p^2} + 1$$
$$g''(p) = \left(-\frac{1}{p^2} + 1\right)' = \frac{2}{p^3}$$

Tym samym:

$$E(X^2) = pg''(p) - \frac{1}{p} = \frac{2}{p^2} - \frac{1}{p},$$

a wiec z (3):

$$D^2(X) = E(X^2) - \frac{1}{p^2} = \frac{2}{p^2} - \frac{1}{p} - \frac{1}{p^2} = \frac{1}{p^2} - \frac{1}{p} = \frac{1-p}{p^2}$$

Zadanie 8*. Pokaż, że dla rozkładu dwumianowego:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \qquad k = 0, 1, \dots, n$$

wariancja wynosi $D^2(X) = np(1-p)$

Odpowiedź: Wiemy, że wartość oczekiwana w rozkładzie dwumianowym wynosi EX=np. Wykorzystując wzór skróconego mnożenia dla wariancji:

$$D^{2}(X) = E(X^{2}) - (EX)^{2} = E(X^{2}) - n^{2}p^{2},$$
(6)

musimy tylko policzyć $E(X^2)$:

$$E(X^{2}) = \sum_{k=0}^{n} kP(X = k)$$

$$= \sum_{k=1}^{n} k^{2} {n \choose k} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} (\underbrace{k(k-1) + k}_{=k^{2}}) {n \choose k} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=2}^{n} k(k-1) {n \choose k} p^{k} (1-p)^{n-k} + \sum_{k=1}^{n} k {n \choose k} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=2}^{n} k(k-1) \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k} + np$$

$$= \sum_{k=2}^{n} \frac{n!}{(k-2)!(n-k)!} p^{k} (1-p)^{n-k} + np$$

$$= n(n-1) \sum_{k=2}^{n} \frac{(n-2)!}{(k-2)!(n-k)!} p^{k} (1-p)^{n-k} + np$$

$$= n(n-1)p^{2} \sum_{k=2}^{n} {n-2 \choose k-2} p^{k-2} (1-p)^{n-k} + np$$

$$= n(n-1)p^{2} \sum_{k=2}^{n-2} {n-2 \choose k-2} p^{k} (1-p)^{n-2-k} + np$$

$$= n(n-1)p^{2} + np = n^{2}p^{2} - np^{2} + np,$$

gdzie ostatnia z sum równa jest jeden, ponieważ jest to suma prawdopodobieństw wszystkich możliwych wyników zmiennej o rozkładzie dwumianowym B(n-2,p). Używając (6) otrzymujemy:

$$D^2(X) = E(X^2) - n^2p^2 = n^2p^2 - np^2 + np - n^2p^2 = np - np^2 = np(1-p).$$

Zadanie 9. Pokaż, że jeśli $E(X^2) = 0$, to X ma rozkład jednopunktowy w zerze.

 $Odpowied\acute{z}$: Mamy:

$$0 = E(X^2) = \sum_{x} x^2 P(X = x),$$

Ponieważ wszystkie elementy sumy po prawej stronie są nieujemne, równość ta będzie spełniona tylko wtedy, gdy $x^2 = 0$ (a więc i x = 0) dla wszystkich x (takich, że P(X = x) > 0). Oznacza to, że zmienna X ma rozkład jednopunktowy w zerze.

7. Wielowymiarowe zmienne losowe

2.12.2020

Zadanie 1*. Pokaż, że rozkład $P_{X|B}(A) = P(X \in A|Y \in B)$ zdefiniowany jako

$$P(X \in A | Y \in B) = \frac{P(X \in A, Y \in B)}{P(Y \in B)}$$
(1)

dla $P(Y \in B) > 0$, spełnia aksjomaty Kolmogorowa Odpowiedź:

- 1. Nieujemność $P_{X|B}(A) \ge 0$: wynika wprost z definicji, ponieważ wszystkie wyrażenia po prawej stronie (1) sa nieujemne.
- 2. Normalizacja $P_{X|B}(\mathbb{R}) = 1$. Wynika to z poniższego:

$$P_{X|B}(\mathbb{R}) \ = \ \frac{P(X \in \mathbb{R}, Y \in B)}{P(Y \in B)} \ \stackrel{(*)}{=} \ \frac{P(Y \in B)}{P(Y \in B)} \ = \ 1,$$

gdzie w (*) użyliśmy dość oczywistej równości $P(Y \in B) = P(X \in \mathbb{R}, Y \in B)$, wynikającej z tego, że zdarzenia $\{Y \in B\}$ oraz $\{X \in \mathbb{R} \land Y \in B\}$ są identyczne.

3. Addytywność: mając ciąg A_1,A_2,\ldots zdarzeń rozłącznych, tj. takich, że $A_i\cap A_j=\emptyset$, musimy pokazać, że $P\left(\bigcup_{j=1}^{\infty}A_j\,\big|\,Y\in B\right)=\sum_{j=1}^{\infty}P(A_j|Y\in B)$. Mamy:

$$P_{X|B}\left(\bigcup_{j=1}^{\infty} A_j\right) = \frac{P\left(\left(X \in \bigcup_{j=1}^{\infty} A_j\right), Y \in B\right)}{P(Y \in B)}$$

$$= \frac{P\left(\bigcup_{j=1}^{\infty} \{X \in A_j \land Y \in B\}\right)}{P(Y \in B)}$$

$$\stackrel{(*)}{=} \sum_{j=1}^{\infty} \frac{P\left(\{X \in A_j \land Y \in B\}\right)}{P(Y \in B)}$$

$$= \sum_{j=1}^{\infty} \frac{P\left(X \in A_j, Y \in B\right)}{P(Y \in B)}$$

$$= \sum_{j=1}^{\infty} P(X \in A_j | Y \in B) = \sum_{j=1}^{\infty} P_{X|B}(A_j),$$

gdzie w (*) wykorzystaliśmy fakt, że skoro zdarzenia $\{X \in A_j\}$ $(j=1,2,\ldots)$ są rozłączne (bo zbiory $A_j, j=1,2,\ldots$ są rozłączne), to tym bardziej są rozłączne są zdarzenia $\{X \in A_j \land Y \in B\}$ $(j=1,2,\ldots)$.

Zadanie 2*. Owad składa Y jajeczek zgodnie z rozkładem Poissona z parametrem λ , a potomek owada wylęga się z jaja z prawdopodobieństwem p niezależnie od innych. Wyznacz rozkład prawdopodobieństwa liczby potomków X

Odpowiedź: Y ma rozkład Pois(λ), tzn:

$$P(Y = n) = \frac{\lambda^n}{n!} e^{-\lambda}, \qquad n = 0, 1, 2, \dots$$

Zakładając, że Y = n (tzn. owad złożył n jajeczek), liczba potomków X dana jest rozkładem dwumia-nowym (liczba "sukcesów" w n próbach, gdzie "sukces" oznacza wylęgnięcie się potomka z danego jaja, stad prawdopodobieństwo sukcesu wynosi p):

$$P(X = k|Y = n) = \binom{n}{k} p^k (1-p)^{n-k}, \qquad k = 0, 1, \dots, n$$

Zauważmy też, że P(X = k|Y = n) = 0 dla n < k (nie może się wylęgnąć więcej potomków niż jest złożonych jaj). Celem zadania jest policzenie "bezwarunkowego" rozkładu X, tzn. wyznaczenie prawdopodobieństwa P(X = k), dla $k = 0, 1, 2, \ldots$ Ze wzoru na prawdopodobieństwo całkowite:

$$P(X = k) = \sum_{n=0}^{\infty} P(X = k|Y = n)P(Y = n) = \sum_{n=k}^{\infty} {n \choose k} p^k (1-p)^{n-k} \frac{\lambda^n}{n!} e^{-\lambda},$$
 (2)

gdzie możemy sumować od n=k, ponieważ P(X=k|Y=n)=0 dla n< k. Przekształcając ostatnie wyrażenie otrzymujemy:

$$\binom{n}{k} p^k (1-p)^{n-k} \frac{\lambda^n}{n!} e^{-\lambda} = \frac{\cancel{x!}}{k! (n-k)!} p^k (1-p)^{n-k} \underbrace{\frac{\lambda^n}{\lambda^{n-k} \lambda^k}}_{\cancel{x!}} e^{-\lambda}$$

$$= \frac{(\lambda p)^k}{k!} e^{-\lambda} \frac{\left(\lambda (1-p)\right)^{n-k}}{(n-k)!}.$$

Podstawiając do (2) dostajemy:

$$\begin{split} P(X=k) &= \sum_{n=k}^{\infty} \frac{(\lambda p)^k}{k!} e^{-\lambda} \, \frac{\left(\lambda (1-p)\right)^{n-k}}{(n-k)!} \\ &= \frac{(\lambda p)^k}{k!} e^{-\lambda} \sum_{n=k}^{\infty} \frac{\left(\lambda (1-p)\right)^{n-k}}{(n-k)!} \\ &\stackrel{(*)}{=} \, \frac{(\lambda p)^k}{k!} e^{-\lambda} \sum_{n=0}^{\infty} \frac{\left(\lambda (1-p)\right)^n}{n!} \\ &\stackrel{(\dagger)}{=} \, \frac{(\lambda p)^k}{k!} e^{-\lambda} e^{\lambda (1-p)} \, = \, \frac{(\lambda p)^k}{k!} e^{-\lambda p}, \end{split}$$

gdzie w (*) zmieniliśmy indeks sumowania z n na n-k, a w (†) użyliśmy znanego faktu: $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$ (patrz zadanie z poprzedniego wykładu) dla $x = \lambda(1-p)$, a następnie zauważyliśmy, że $e^{-\lambda}e^{\lambda(1-p)} = e^{-\lambda+\lambda(1-p)} = e^{-\lambda p}$.

A więc P(X=k) ma rozkład Poissona z parametrem λp . Możemy z tego natychmiast wyznaczyć wartość oczekiwaną $EX=\lambda p$.

Zadanie 3. Rozważmy schemat n prób Bernoulliego z prawdopodobieństwem sukcesu p. Jaka jest średnia liczba sukcesów w pierwszej próbie, jeżeli wiemy, że łącznie zaszło k sukcesów?

Odpowiedź: Niech $Y \in \{0, 1, ..., n\}$ będzie zmienną losową o rozkładzie dwumianowym B(n, p) określającą liczbę sukcesów w n próbach. Niech $X \in \{0, 1\}$ będzie binarną zmienną losową określającą czy w

pierwszej próbie zaszedł sukces (X = 1) czy porażka (X = 0). Naszym celem jest policzenie E(X|Y = k). Mamy:

$$E(X|Y=k) = 0 \cdot P(X=0|Y=k) + 1 \cdot P(X=1|Y=k) = P(X=1|Y=k).$$

Zgodnie ze wzorem na prawdopodobieństwo warunkowe:

$$P(X = 1|Y = k) = \frac{P(X = 1, Y = k)}{P(Y = k)}.$$

Mianownik jest po prostu równy $P(Y = k) = \binom{n}{k} p^k (1-p)^{n-k}$, ponieważ jest to prawdopodobieństwo uzyskania k sukcesów w n próbach.

Teraz skupimy się na wyznaczeniu licznika. Od razu zauważmy, że licznik jest równy 0, jeśli k=0 (ponieważ nie ma możliwości aby w pierwszej próbie zaszedł sukces (X=1), a jednocześnie łączna liczba sukcesów k była równa 0). Rozważmy więc tylko k>0. Prawdopodobieństwo w liczniku P(X=1,Y=k) określa szansę zajścia zdarzenia "k sukcesów w n próbach, przy czym w pierwszej próbie nastąpił sukces". Dla dowolnego n-elementowego ciągu binarnego z k jedynkami (sukcesami), prawdopodobieństwo tego ciągu wynosi $p^k(1-p)^{n-k}$. Ile jest takich ciągów, w których sukces nastąpił w pierwszej próbie? Jest ich dokładnie $\binom{n-1}{k-1}$, ponieważ na tyle sposobów możemy rozłożyć k-1 sukcesów wśród pozostałych n-1 prób (jeden sukces jest zarezerwowany dla pierwszej próby). Tym samym:

$$P(X = 1, Y = k) = \binom{n-1}{k-1} p^k (1-p)^{n-k}, \quad \text{dla } k > 0$$

Otrzymujemy więc:

$$P(X=1|Y=k) = \frac{\binom{n-1}{k-1}p^k(1-p)^{n-k}}{\binom{n}{k}p^k(1-p)^{n-k}} = \frac{\binom{n-1}{k-1}}{\binom{n}{k}} = \frac{\frac{(n-1)!}{(k-1)!(n-k)!}}{\frac{n!}{k!(n-k)!}} = \frac{k}{n}.$$

Wynik ten zgadza się również dla k=0 (jak zauważyliśmy wcześniej, P(X=1|Y=0)=0). Tym samym $E(X|Y=k)=\frac{k}{n}$. Co zaskakujące, wynik ten w ogóle nie zależy od prawdopodobieństwa sukcesu p!

Zadanie 4. Rozważmy schemat n prób Bernoulliego z prawdopodobieństwem sukcesu p. Jaka jest średnia liczba sukcesów w pierwszej próbie? Wyznacz wynik na dwa sposoby:

- Bezpośrednio (trywialne),
- Korzystając ze wzoru E(E(X|Y)) = EX i wyniku z zadania 3.

Odpowiedź: Niech zmienna $X \in \{0,1\}$ określa liczbę sukcesów w pierwszej próbie. Ponieważ X ma rozkład dwupunktowy B(p), więc oczywiście EX = p.

Zobaczymy, czy ten sam wynik dostaniemy używając wyniku z poprzedniego zadania. Niech $Y \in \{0,1,\ldots,n\}$ będzie zmienną losową o rozkładzie dwumianowym B(n,p) określającą liczbę sukcesów w n próbach. Pokazaliśmy, że:

$$E(X|Y=k) = \frac{k}{n}.$$

Traktując warunkową wartość oczekiwaną jako funkcję zmiennej Y dostajemy:

$$E(X|Y) = \frac{Y}{n}$$

Stad:

$$EX = E(E(X|Y)) = E\left(\frac{Y}{n}\right) = \frac{np}{n} = p,$$

czego oczywiście się spodziewaliśmy.

8. Wielowymiarowe zmienne losowe II

16.12.2020

Zadanie 1. Niech g(X) będzie funkcją wektora dyskretnych zmiennych losowych $X = (X_1, \ldots, X_n)$. Pokaż, że zachodzi:

$$E(g(\boldsymbol{X})) = \sum_{\boldsymbol{x}} g(\boldsymbol{x}) P(\boldsymbol{X} = \boldsymbol{x})$$

Odpowiedź: Zdefiniujmy zmienną losową $Z=g(\boldsymbol{X})$. Ponieważ z definicji rozkładu funkcji zmiennej losowej:

$$P(Z=z) = \sum_{\boldsymbol{x}: \ g(\boldsymbol{x})=z} P(\boldsymbol{X}=\boldsymbol{x}),$$

to

$$\begin{split} E\big(g(\boldsymbol{X})\big) &= EZ = \sum_{z} z \, P(Z=z) \\ &= \sum_{z} z \Big(\sum_{\boldsymbol{x} \colon g(\boldsymbol{x}) = z} P(\boldsymbol{X} = \boldsymbol{x})\Big) \\ &= \sum_{z} \sum_{\boldsymbol{x} \colon g(\boldsymbol{x}) = z} g(\boldsymbol{x}) P(\boldsymbol{X} = \boldsymbol{x}) \\ &\stackrel{(*)}{=} \sum_{\boldsymbol{x}} g(\boldsymbol{x}) P(\boldsymbol{X} = \boldsymbol{x}), \end{split}$$

gdzie w (*) zauważyliśmy, że $\sum_{z}\sum_{x: g(x)=z}$ jest po prostu sumą po wszystkich x.

Zadanie 2. Pokaż, że dla dowolnych zmiennych losowych:

$$E(X_1 + X_2 + \ldots + X_n) = EX_1 + EX_2 + \ldots + EX_n$$

 $Mo\dot{z}esz$ wykorzystać udowodniony na wykładzie fakt, $\dot{z}e$ zachodzi to dla n=2 zmiennych losowych.

Odpowiedź: Udowodnimy to przez indukcję po n, zaczynając od n=2. Przypadek bazowy dla n=2 został pokazany na wykładzie. Weźmy teraz dowolne n i załóżmy (krok indukcyjny), że twierdzenie zachodzi dla n-1, tzn. że dla dowolnych zmiennych losowych $X_1, X_2, \ldots, X_{n-1}$ zachodzi:

$$E(X_1 + X_2 + \ldots + X_{n-1}) = EX_1 + EX_2 + \ldots + EX_{n-1}.$$

Pokażemy, że zachodzi to również dla dowolnych n zmiennych losowych X_1, X_2, \dots, X_n . W tym celu definiujemy zmienną $Y = X_1 + X_2 + \dots + X_{n-1}$. Mamy:

$$E(X_1 + X_2 + \ldots + X_n) = E(Y + X_n)$$

$$\stackrel{(*)}{=} EY + EX_n$$

$$= E(X_1 + \ldots + X_{n-1}) + EX_n$$

$$\stackrel{(\dagger)}{=} EX_1 + \ldots + EX_{n-1} + EX_n,$$

gdzie w (*) użyliśmy faktu, że twierdzenie zachodzi dla n=2, a w (\dagger) użyliśmy faktu, że twierdzenie zachodzi dla n-1 zmiennych losowych. To kończy dowód.

Zadanie 3. Załóżmy, że 10 osób obecnych w restauracji zamówiło w tym samym czasie 10 różnych dań. Niestety roztrzepany kelner zapisał tylko nazwy dań, ale nie zapisał kto co zamawiał. Po przygotowaniu potraw postanowił je więc rozdać gościom restauracji w sposób całkowicie losowy. Oblicz wartość oczekiwaną liczby gości, którzy otrzymali swoje własne dania.

Odpowiedź: Niech $X_i \in \{0,1\}$, $i=1,\ldots,10$ oznacza zmienną losową, która przyjmuje wartość 1 jeśli i-ty gość otrzymał swoje własne danie i wartość 0 w przeciwnym przypadku. Zauważmy, że $P(X_i=1)=\frac{1}{10}$ dla wszystkich i, ponieważ dany (i-ty) gość ma równe szanse otrzymać każde z dań, a tylko jedno z dziesięciu dań jest tym właściwym. Tym samym $X_i \sim B(p)$ gdzie $p=\frac{1}{10}$, a więc $EX_i=p=\frac{1}{10}$. Jeśli zdefiniujemy zmienną $X=X_1+X_2+\ldots+X_{10}$, to X będzie określało liczbę gości, którzy otrzymali swoje własne dania. Z addytywności wartości oczekiwanej:

$$EX = E(X_1 + \ldots + X_{10}) = EX_1 + \ldots + EX_{10} = 10 \cdot \frac{1}{10} = 1.$$

Zadanie 4. W klasie jest 10 dziewcząt i 10 chłopców, którym przydzielono arbitralnie i losowo miejsca w 10 dwuosobowych ławkach. Oblicz wartość oczekiwaną liczby ławek z dwoma dziewczynkami.

Odpowiedź: Niech $X_i \in \{0,1\}, i=1,\ldots,10$ oznacza zmienną losową, która przyjmuje wartość 1 jeśli w i-tej ławce siedzą dwie dziewczynki i wartość 0 w przeciwnym przypadku. Policzmy $P(X_i=1)$. Do danej ławki możemy wybrać $\binom{20}{2}$ nieuporządkowanych par osób, ale tylko $\binom{10}{2}$ z tych par to będą pary dwóch dziewczynek. Mamy więc:

$$P(X_i = 1) = \frac{\binom{10}{2}}{\binom{20}{2}} = \frac{9}{38}.$$

Tym samym $X_i \sim B(p)$ gdzie $p=\frac{9}{38}$, a więc $EX_i=p=\frac{9}{38}$. Jeśli zdefiniujemy zmienną $X=X_1+X_2+\ldots+X_{10}$, to X będzie określało liczbę lawek z dwoma dziewczynkami. Z addytywności wartości oczekiwanej:

$$EX = E(X_1 + \ldots + X_{10}) = EX_1 + \ldots + EX_{10} = 10 \cdot \frac{9}{38} = \frac{45}{19}.$$

Zadanie 5. Przy okrągłym stole z 20 krzesłami rozsadzono 10 małżeństw w sposób całkowicie losowy. Oblicz wartość oczekiwaną liczby mężów siedzących obok swoich żon.

Odpowiedź: Niech $X_i \in \{0,1\}, i=1,\ldots,10$ oznacza zmienną losową, która przyjmuje wartość 1 jeśli w i-ty mąż siedzi obok swojej żony i wartość 0 w przeciwnym przypadku. Policzmy $P(X_i=1)$. Jest $\binom{19}{2}$ (nieuporządkowanych) par osób, które będą sąsiad(k)ami i-tego męża. Jeśli jednym z sąsiadów/sąsiadek ma być żona i-tego męża, drugą osobę możemy dobrać na $\binom{18}{1}=18$ sposobów. Mamy więc:

$$P(X_i = 1) = \frac{18}{\binom{19}{2}} = \frac{2}{19}.$$

Tym samym $X_i \sim B(p)$ gdzie $p = \frac{2}{19}$, a więc $EX_i = p = \frac{2}{19}$. Jeśli zdefiniujemy zmienną $X = X_1 + X_2 + \ldots + X_{10}$, to X będzie określało *liczbę mężów siedzących obok swoich żon*. Z addytywności wartości oczekiwanej:

$$EX = E(X_1 + \ldots + X_{10}) = EX_1 + \ldots + EX_{10} = 10 \cdot \frac{2}{19} = \frac{20}{19}.$$

Zadanie 6. Pokaż, że ta nierówność Cauchy'ego-Schwarza implikuje następującą nierówność:

$$|C(X,Y)| \leqslant D(X)D(Y)$$

przy czym równość zachodzi wtedy i tylko wtedy, gdy jedna ze zmiennych jest funkcją liniową drugiej, np. Y=aX+b.

Odpowiedź: Rozważmy zmienne losowe:

$$Y' = Y - EY, \qquad X' = X - EX.$$

Mamy wtedy:

$$C(X,Y) = E((X - EX)(Y - EY)) = E(X'Y'),$$

$$D^{2}(X) = E((X - EX)^{2}) = E(X'^{2}),$$

$$D^{2}(Y) = E((Y - EY)^{2}) = E(Y'^{2}).$$

Z nierówności Cauchy'ego-Schwarza wynika, że:

$$(E(X'Y'))^2 \leqslant E(X'^2)E(Y'^2),$$

co oznacza, że:

$$C(X,Y)^2 \leqslant D^2(X)D^2(Y).$$

Po wyciągnięciu pierwiastka z obu stron dostajemy nierówność, którą chcieliśmy udowodnić. Na koniec zauważmy, że nierówność jest spełniona jako równość wtedy i tylko wtedy gdy nierówność Cauchy'ego-Schwarza jest spełniona jako równość, tzn. X' jest wielokrotnością Y' lub odwrotnie, np. Y'=aX'. Ale:

$$Y' = aX' \iff Y - EY = a(X - EX) \iff Y = aX - aEX + EY.$$

Ale to oznacza, że Y jest dowolną funkcją liniową X, tzn. Y=aX+b. Dlaczego? Ponieważ gdy przyłożymy wartość oczekiwaną do obu stron, dostaniemy EY=aEX+b, z czego wyjdzie nam, że b=EY-aEX, a tym samym Y=aX-aEX+EY.

Zadanie 7. Udowodnij, że jeśli zmienne losowe X_1, X_2, \ldots, X_n są niezależne to zachodzi:

$$E(X_1 \cdot X_2 \cdot \ldots \cdot X_n) = (EX_1) \cdot (EX_2) \cdot \ldots \cdot (EX_n).$$

 $Mo\dot{z}esz$ wykorzystać udowodniony na wykładzie fakt, $\dot{z}e$ zachodzi to dla n=2 zmiennych losowych.

Odpowiedź: Udowodnimy to przez indukcję po n, zaczynając od n=2. Przypadek bazowy dla n=2 został pokazany na wykładzie. Weźmy teraz dowolne n i załóżmy (krok indukcyjny), że twierdzenie zachodzi dla n-1, tzn. że dla dowolnych niezależnych zmiennych losowych $X_1, X_2, \ldots, X_{n-1}$ zachodzi:

$$E(X_1 \cdot X_2 \cdot \ldots \cdot X_{n-1}) = (EX_1) \cdot (EX_2) \cdot \ldots \cdot (EX_{n-1}).$$

Pokażemy, że zachodzi to również dla dowolnych n niezależnych zmiennych losowych X_1, X_2, \ldots, X_n . W tym celu definiujemy zmienną $Y = X_1 \cdot X_2 \cdot \ldots \cdot X_{n-1}$. Mamy:

$$E(X_1 \cdot X_2 \cdot \ldots \cdot X_n) = E(Y \cdot X_n)$$

$$\stackrel{(*)}{=} (EY) \cdot (EX_n)$$

$$= E(X_1 \cdot X_2 \cdot \ldots \cdot X_{n-1})(EX_n)$$

$$\stackrel{(\dagger)}{=} (EX_1) \cdot (EX_2) \cdot \ldots \cdot (EX_n),$$

gdzie w (*) użyliśmy faktu, że twierdzenie zachodzi dla n=2, a zmienne Y i X_n są niezależne (ponieważ Y jest funkcją $X_1, X_2, \ldots, X_{n-1}$, które wszystkie są niezależne od X_n), natomiast w (†) użyliśmy faktu, że twierdzenie zachodzi dla n-1 zmiennych losowych. To kończy dowód.

Zadanie 8. Udowodnij, że jeśli zmienne losowe X_1, X_2, \ldots, X_n są niezależne to zachodzi:

$$D^{2}(X_{1} + X_{2} + \ldots + X_{n}) = D^{2}(X_{1}) + D^{2}(X_{2}) + \ldots + D^{2}(X_{n}).$$

 $Mo\dot{z}esz$ wykorzystać udowodniony na wykladzie fakt, $\dot{z}e$ zachodzi to dla n=2 zmiennych losowych.

Odpowiedź: Udowodnimy to przez indukcję po n, zaczynając od n=2. Przypadek bazowy dla n=2 został pokazany na wykładzie. Weźmy teraz dowolne n i załóżmy (krok indukcyjny), że twierdzenie zachodzi dla n-1, tzn. że dla dowolnych zmiennych losowych $X_1, X_2, \ldots, X_{n-1}$ zachodzi:

$$D^{2}(X_{1} + X_{2} + ... + X_{n-1}) = D^{2}(X_{1}) + D^{2}(X_{2}) + ... + D^{2}(X_{n-1}).$$

Pokażemy, że zachodzi to również dla dowolnych n zmiennych losowych X_1, X_2, \ldots, X_n . W tym celu definiujemy zmienną $Y = X_1 + X_2 + \ldots + X_{n-1}$. Mamy:

$$D^{2}(X_{1} + X_{2} + \dots + X_{n}) = D^{2}(Y + X_{n})$$

$$\stackrel{(*)}{=} D^{2}(Y) + D^{2}(X_{n})$$

$$= D^{2}(X_{1} + \dots + X_{n-1}) + D^{2}(X_{n})$$

$$\stackrel{(\dagger)}{=} D^{2}(X_{1}) + D^{2}(X_{2}) + \dots + D^{2}(X_{n-1}) + D^{2}(X_{n}),$$

gdzie w (*) użyliśmy faktu, że twierdzenie zachodzi dla n=2, a zmienne Y i X_n są niezależne (ponieważ Y jest funkcją $X_1, X_2, \ldots, X_{n-1}$, które wszystkie są niezależne od X_n), natomiast w (†) użyliśmy faktu, że twierdzenie zachodzi dla n-1 zmiennych losowych. To kończy dowód.

Zadanie 9. Pokaż, że jeśli X i Y są niezależne, to:

$$D^{2}(aX + bY) = a^{2}D^{2}(X) + b^{2}D^{2}(Y)$$

Odpowiedź: Bierzemy zmienne losowe U=aX i V=bY. Ponieważ X i Y są niezależne, to niezależne są również U i V. Wykorzystując w (*) poniżej twierdzenie o sumie zmiennych losowych:

$$D^2(aX + bY) = D^2(U + V) \stackrel{(*)}{=} D^2(U) + D^2(V) = D^2(aX) + D^2(bY) = a^2D^2(X) + b^2D^2(Y),$$

gdzie w ostatniej równości wykorzystaliśmy znane prawo skalowania wariancji (patrz wykład).

Zadanie 10*. Pokaż, że jeśli X i Y są niezależne i X ma rozkład Pois (λ_1) , a Y ma rozkład Pois (λ_2) , to Z = X + Y ma rozkład Pois $(\lambda_1 + \lambda_2)$

 $Odpowied\acute{z}$:

$$\begin{split} P(Z=n) &= \sum_{k,\ell \colon k+\ell=n} P(X=k) P(Y=\ell) \\ &= \sum_{k=0}^n P(X=k) P(Y=n-k) \\ &= \sum_{k=0}^n \frac{\lambda_1^k}{k!} e^{-\lambda_1} \frac{\lambda_2^{n-k}}{(n-k)!} e^{-\lambda_2} \\ &= \frac{e^{-\lambda_1 - \lambda_2}}{n!} \sum_{k=0}^n \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k} \\ &= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} \sum_{k=0}^n \binom{n}{k} \lambda_1^k \lambda_2^{n-k} \\ &= \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} (\lambda_1 + \lambda_2)^n, \end{split}$$

gdzie ostatnia równość wynika z następującego faktu: dla dowolnych $a,b \in \mathbb{R}$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

9. Ciągłe zmienne losowe

16.12.2020

Zadanie 1. Rozważ zmienną X o gęstości:

$$f(x) = \begin{cases} cx^2 & x \in [0, 2] \\ 0 & x \notin [0, 2] \end{cases}$$

Wyznacz c i oblicz $P(a \leqslant X \leqslant b)$ dla $0 \leqslant a \leqslant b \leqslant 2$

 $Odpowiedź\colon Z$ warunku normalizacji musimy mieć:

$$\int_{-\infty}^{\infty} f(x) dx = \int_{0}^{2} cx^{2} dx = 1.$$

Wyznaczamy całkę:

$$\int_0^2 cx^2 \, dx = c \frac{1}{3} x^3 \Big|_0^2 = \frac{8c}{3} = 1,$$

z czego wynika, że $c = \frac{3}{8}$. Dla dowolnego $[a, b] \subseteq [0, 2]$ mamy:

$$P(a \le X \le b) = \int_a^b \frac{3}{8} x^2 dx = \frac{3}{8} \frac{1}{3} x^3 \Big|_a^b = \frac{1}{8} (b^3 - a^3).$$

Zadanie 2. Rozważ ciągłą zmienną losową, której rozkład zdefiniowany jest za pomocą dystrybuanty:

$$F(x) = \begin{cases} 1 - \left(\frac{1}{x}\right)^{\alpha} & x \geqslant 1\\ 0 & x < 1 \end{cases}$$

dla pewnego $\alpha > 0$. Wyznacz gestość prawdopodobieństwa f(x).

 $Odpowied \acute{z}$:

Aby otrzymać gęstość wystarczy zróżniczkować F(x). Dla x < 1 mamy F(x) = 0, a więc F'(x) = 0. Dla $x \ge 1$:

$$F'(x) = \left(1 - \left(\frac{1}{x}\right)^{\alpha}\right)' = -\left(x^{-\alpha}\right)' = \alpha x^{-\alpha - 1}.$$

Tym samym:

$$f(x) \ = \ \left\{ \begin{array}{ll} \alpha \left(\frac{1}{x}\right)^{\alpha+1} & x\geqslant 1 \\ 0 & x<1 \end{array} \right.$$

Rozkład ten nazywany jest rozkładem Pareto.

Zadanie 3. Niech X będzie ciąglą zmienną losową o gęstości $f_X(x)$, przyjmującą wartości w przedziale [a,b], natomiast Y=g(X) będzie funkcją zmiennej losowej X przyjmującą wartości w przedziale [c,d], przy czym $g:[a,b] \to [c,d]$ jest funkcją różniczkowalną i odwracalną. Pokaż, że gęstość $f_Y(y)$ zmiennej losowej Y dana jest poprzez:

$$f_Y(y) = f_X(h(y))|h'(y)|, \quad dla \ y \in [c, d]$$

 $qdzie h = q^{-1}$ jest funkcją odwrotną do q.

Odpowiedź: Jeśli funkcja g jest odwracalna, to znaczy, że musi być albo ściśle rosnąca, albo ściśle malejąca. Dowód wykonamy osobno dla obu przypadków.

(a) Funkcja g jest ściśle rosnąca. Oznacza to, że jej odwrotność $h=g^{-1}$ jest również ściśle rosnąca. Dowód przeprowadzimy poprzez policzenie dystrybuanty F_Y zmiennej losowej Y, a następnie jej zróżniczkowanie, aby otrzymać gęstość f_Y . Z definicji dystrybuanty mamy:

$$F_Y(y) = P(Y \leqslant y) = P(g(X) \leqslant y)$$

$$\stackrel{(*)}{=} P(X \leqslant \underbrace{g^{-1}}_{=h}(y)) = F_X(h(y)),$$

gdzie w (*) użyliśmy faktu, że warunek $g(X) \leq y$ jest równoważny warunkowi $X \leq f^{-1}(y)$; zachodzi to, ponieważ g jest funkcją ściśle rosnącą. Wykorzystując wzór na pochodną funkcji złożonej:

$$f_Y(y) = F'_Y(y) = (F_X(h(y)))' = F'_X(h(y))h'(y) = f_X(h(y))h'(y).$$

Na koniec zauważmy, że skoro h jest ściśle rosnąca to jej pochodna $h'(y) \ge 0$, a więc |h'(y)| = h'(y). To kończy dowód dla funkcji ściśle rosnącej.

(b) Funkcja g jest ściśle malejąca. Oznacza to, że jej odwrotność $h = g^{-1}$ jest również ściśle malejąca. Postępujemy podobnie jak w poprzednim przypadku:

$$F_{Y}(y) = P(Y \leqslant y) = P(g(X) \leqslant y)$$

$$\stackrel{(*)}{=} P(X \geqslant \underbrace{g^{-1}}_{=h}(y))$$

$$\stackrel{(\dagger)}{=} 1 - P(X \leqslant h(y)) = 1 - F_{X}(h(y)),$$

gdzie w (*) użyliśmy faktu, że warunek $g(X) \leq y$ jest równoważny warunkowi $X \geq f^{-1}(y)$; zachodzi to, ponieważ g jest funkcją ściśle malejącą (uwaga: zmienia się znak nierówność!). Z kolei w (†) użyliśmy faktu, że $P(X \leq a) + P(X \geq a) = 1$ (dwukrotnie zliczamy tutaj co prawda zdarzenie P(X = a), ale ma ono prawdopodobieństwo równe 0 z powodu ciągłości zmiennej X). Wykorzystując wzór na pochodną funkcji złożonej:

$$f_Y(y) = F'_Y(y) = (1 - F_X(h(y)))' = -f_X(h(y))h'(y).$$

Na koniec zauważmy, że skoro h jest ściśle malejąca, to jej pochodna $h'(y) \leq 0$, a więc |h'(y)| = -h'(y), co kończy dowód dla funkcji ściśle malejącej.

Zadanie 4. Niech $X \sim \text{Unif}[0,1]$, tzn. zmienna losowa X ma rozkład jednostajny na [0,1]: $f_X(x) = 1$ $dla \ 0 \leq x \leq 1$. Wyznacz gęstość f_Y zmiennej $Y = -\ln X$.

Odpowiedź: Jeśli $x \in [0,1]$ to $g(x) \in [0,\infty)$, ponieważ funkcja $g(x) = -\ln x$ mapuje przedział [0,1] na przedział $[0,\infty)$. Ponieważ:

$$y = -\ln x \qquad \iff \qquad x = e^{-y},$$

funkcja odwrotna ma postać:

$$h(y) = g^{-1}(y) = e^{-y},$$

a stąd:

$$|h'(y)| = |(e^{-y})'| = e^{-y}.$$

Tym samym:

$$f_Y(y) = f_X(h(y)) |h'(y)| = e^{-y} \quad \text{dla } y \in [0, \infty).$$

Y ma więc rozkład wykładniczy z parametrem $\lambda = 1$.

Zadanie 5. Pokaż, że jeśli $U \sim \text{Unif}[0,1]$ ma rozkład jednostajny na [0,1], to zmienna

$$X = F^{-1}(U)$$

dla ściśle rosnącej funkcji F o wartościach z przedziału [0,1] ma rozkład opisany za pomocą dystrybuanty $F_X = F$.

 $Odpowied\acute{z}$: Wyznaczamy dystrybuantę X:

$$F_X(x) = P(X \leqslant x) = P(F^{-1}(U) \leqslant x)$$

$$\stackrel{(*)}{=} P(U \leqslant F(x))$$

$$= F_U(F(x)),$$

gdzie w (*) użyliśmy faktu, że F jest funkcją rosnącą. Zauważmy, że skoro U ma rozkład jednostajny, to jej dystrybuanta na odcinku [0,1] (uwaga: $F(x) \in [0,1]$ dla dowolnego x zgodnie z założeniem) ma postać $F_U(u) = u$. Czyli:

$$F_X(x) = F(x).$$

Zadanie 6. Niech $X \sim \operatorname{Exp}(\lambda)$ będzie zmienną losową o rozkładzie wykładniczym z parametrem λ :

$$f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$$

Wyznacz EX.

Odpowiedź: Z definicji:

$$EX = \int_0^\infty x f(x) dx = \lambda \int_0^\infty x e^{-\lambda x} dx.$$

Dokonujemy zamiany zmiennej pod całką:

$$y = -\lambda x \quad \Rightarrow \quad dy = -\lambda dx,$$

co daje:

$$EX = \lambda \int_0^\infty x e^{-\lambda x} dx = \lambda \int_0^{-\infty} \left(\frac{-y}{\lambda}\right) e^y \left(\frac{-dy}{\lambda}\right) = -\frac{1}{\lambda} \int_{-\infty}^0 y e^y dy.$$

Musimy więc tylko pokazać, że $\int_{-\infty}^{0} y e^{y} dy = -1$. W tym celu policzymy wpierw całkę nieoznaczoną używając metody całkowania przez części:

$$\int ye^y \, dy = \begin{vmatrix} f(y) = y & f'(y) = 1 \\ g'(y) = e^y & g(y) = e^y \end{vmatrix} = ye^y - \int e^y \, dy = ye^y - e^y.$$

Tym samym:

$$\int_{-\infty}^{0} y e^y \, \mathrm{d}y = \left(y e^y - e^y \right) \Big|_{-\infty}^{0}.$$

Dla y = 0 mamy $ye^{y} - e^{y} = 0e^{0} - e^{0} = -1$. Dla $y = -\infty$ mamy:

$$\lim_{y \to -\infty} e^y = e^{-\infty} = 0,$$

oraz

$$\lim_{y\to -\infty} y e^y \ = \ \lim_{y\to -\infty} \frac{y}{e^{-y}} \ = \ \stackrel{\left[\frac{\infty}{\infty}\right]}{=} \ \lim_{y\to -\infty} \frac{y'}{(e^{-y})'} \ = \ \lim_{y\to -\infty} -\frac{1}{e^{-y}} \ = \ 0,$$

gdzie w jednej z równości użyliśmy twierdzenia de l'Hospitala. Tym samym:

$$(ye^y - e^y)\Big|_{-\infty}^0 = -1 - 0 = -1,$$

co kończy dowód.

Zadanie 7. Niech $X \sim \text{Exp}(\lambda)$ bedzie zmienną losową o rozkładzie wykładniczym z parametrem λ :

$$f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$$

Pokaż, że $D^2(X) = \frac{1}{\lambda^2}$.

Odpowiedź: Ze wzoru skróconego mnożenia na wariancję:

$$D^2(X) = E(X^2) - (EX)^2 = E(X^2) - \frac{1}{\chi^2},$$

musimy więc tylko wyznaczyć $E(X^2)$. Mamy:

$$E(X^2) = \int_0^\infty x^2 f(x) dx = \lambda \int_0^\infty x^2 e^{-\lambda x} dx.$$

Tak jak poprzednio, dokonujemy zamiany zmiennej pod całką:

$$y = -\lambda x \quad \Rightarrow \quad \mathrm{d}y = -\lambda \, \mathrm{d}x,$$

co daje:

$$E(X^2) = \lambda \int_0^\infty x^2 e^{-\lambda x} dx = \lambda \int_0^{-\infty} \left(\frac{-y}{\lambda}\right)^2 e^y \left(\frac{-dy}{\lambda}\right) = \frac{1}{\lambda^2} \int_{-\infty}^0 y^2 e^y dy.$$

Policzymy wpierw całkę nieoznaczoną używając metody całkowania przez części:

$$\int y^2 e^y \, dy = \left| \begin{array}{ccc} f(y) = y^2 & f'(y) = 2y \\ g'(y) = e^y & g(y) = e^y \end{array} \right| = y^2 e^y - 2 \int y e^y \, dy = y^2 e^y - 2(y e^y - e^y),$$

gdzie w ostatniej równości posłużyliśmy się wynikiem z zadania na obliczenie wartości oczekiwanej. Licząc granicę przy użyciu twierdzenia de l'Hospitala, dostaniemy, że:

$$\lim_{y \to -\infty} \left(y^2 e^y - 2(y e^y - e^y) \right) = 0,$$

co daje:

$$\int_{-\infty}^{0} y^{2} e^{y} \, \mathrm{d}y \ = \ \left(y^{2} e^{y} - 2 (y e^{y} - e^{y}) \right) \Big|_{-\infty}^{0} \ = \ 2,$$

a więc $E(X^2) = \frac{2}{\lambda^2}$. Stąd:

$$D^2(X) = E(X^2) - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}.$$

Zadanie 8. Kij o długości 1 złamano w punkcie wybranym z rozkładu jednostajnego. Wyznacz wartość oczekiwaną i wariancję pola prostokąta o długościach boków równych dwóm otrzymanym kawałkom kija.

Odpowiedź: Niech $X \sim \mathrm{Unif}[0,1]$ będzie zmienną określającą punkt, w którym został złamany kij. Zmienna X dzieli kij na odcinki X oraz 1-X. Zdefiniujemy więc zmienną Y=X(1-X) określającą pole prostokąta złożonego z tych odcinków. Wyznaczamy wartość oczekiwaną Y:

$$EY = \int_{-\infty}^{\infty} x(1-x)f_X(x) dx = \int_{0}^{1} x(1-x) dx = \left(\frac{1}{2}x^2 - \frac{1}{3}x^3\right)\Big|_{0}^{1} = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$$

Wariancję Y wyznaczymy korzystając ze wzoru skróconego mnożenia $D^2(Y) = E(Y^2) - (EY)^2$. Ponieważ EY jest już policzone, pozostaje policzyć $E(Y^2)$:

$$E(Y^2) = \int_0^1 (x(1-x))^2 dx = \int_0^1 (x^2 - 2x^3 + x^4) dx = \left(\frac{1}{3}x^3 - \frac{2}{4}x^4 + \frac{1}{5}x^5\right)\Big|_0^1 = \frac{1}{3} - \frac{1}{2} + \frac{1}{5} = \frac{1}{30}.$$

Stąd:

$$D^2(Y) = \frac{1}{30} - \left(\frac{1}{6}\right)^2 = \frac{1}{180}.$$

Zadanie 9. Pokaż, że:

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, \mathrm{d}x = 1$$

Wykorzystaj do tego wartość tzw. całki Gaussa:

$$\int_{-\infty}^{\infty} e^{-x^2} = \sqrt{\pi}$$

 $Odpowied\acute{z}$: Podstawiamy nową zmienną $y=\frac{x-\mu}{\sqrt{2}\sigma}$. Mamy:

$$\mathrm{d}y = \frac{1}{\sqrt{2\sigma^2}} \, \mathrm{d}x,$$

co po podstawieniu do całki daje:

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi\sigma^2}} \sqrt{2\sigma^2} \underbrace{\int_{-\infty}^{\infty} e^{-y^2} dy}_{=\sqrt{\pi}} = 1.$$

Zadanie 10*. Pokaż, że:

$$\int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2}} \, \mathrm{d}x = \sqrt{2\pi}.$$

Odpowiedź: Rozważmy całkę:

$$G(\beta) = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}\beta} \, \mathrm{d}x$$

Podstawiamy $y = \sqrt{\frac{\beta}{2}}x$:

$$\mathrm{d}y = \sqrt{\frac{\beta}{2}} \, \mathrm{d}x,$$

co daje:

$$G(\beta) = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}\beta} dx = \frac{\sqrt{2}}{\sqrt{\beta}} \int_{-\infty}^{\infty} e^{-y^2} dy = \frac{\sqrt{2\pi}}{\sqrt{\beta}},$$

gdzie użyliśmy wartości całki Gaussa (patrz poprzednie zadanie). Teraz zauważmy, że różniczkując po β :

$$\frac{\mathrm{d}G(\beta)}{\mathrm{d}\beta} \ = \ \frac{\mathrm{d}}{\mathrm{d}\beta} \left(\frac{1}{\sqrt{\beta}} \sqrt{2\pi} \right) \ = \ -\frac{1}{2}\beta^{-3/2} \sqrt{2\pi}.$$

Z drugiej strony:

$$\frac{\mathrm{d}G(\beta)}{\mathrm{d}\beta} = \frac{\mathrm{d}}{\mathrm{d}\beta} \left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}\beta} \, \mathrm{d}x \right) = \int_{-\infty}^{\infty} \frac{\mathrm{d}}{\mathrm{d}\beta} \left(e^{-\frac{x^2}{2}\beta} \right) \mathrm{d}x$$
$$= \int_{-\infty}^{\infty} -\frac{x^2}{2} e^{-\frac{x^2}{2}\beta} \, \mathrm{d}x = -\frac{1}{2} \int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2}\beta} \, \mathrm{d}x.$$

Tym samym:

$$\int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2}\beta} \, \mathrm{d}x = -2 \frac{\mathrm{d}G(\beta)}{\mathrm{d}\beta} \Big|_{\beta=1} = (-2) \left(-\frac{1}{2} \sqrt{2\pi} \right) = \sqrt{2\pi}.$$

Zadanie 11. *Niech* $X \sim N(\mu, \sigma^2)$. *Oblicz:*

(a)
$$P(-1 \le X \le 3)$$
 jeśli $\mu = 1$ i $\sigma^2 = 4$,

(b)
$$P(|X-3| \ge 2)$$
 jeśli $\mu = -1$ i $\sigma^2 = 9$,

(c)
$$P(|X+1| \le 5)$$
 jeśli $\mu = 2$ i $\sigma^2 = 16$,

wynik przedstawiając za pomocą wartości funkcji $\Phi(x)$ dla $x \ge 0$.

 $Odpowied\acute{z}$:

(a) Jeśli $\mu = 1$ i $\sigma^2 = 4$, to:

$$Z = \frac{X - \mu}{\sigma} = \frac{X - 1}{2} \sim N(0, 1),$$
 a więc $X = 2Z + 1$.

Stąd:

$$P(-1 \leqslant X \leqslant 3) = P(-1 \leqslant 2Z + 1 \leqslant 3) = P(-2 \leqslant 2Z \leqslant 2) = P(-1 \leqslant Z \leqslant 1) = \Phi(1) - \Phi(-1).$$

Ponieważ w przeszłości używano tablic dla funkcji Φ , przyjęło się, aby w wyniku pozostawić tylko za pomocą $\Phi(x)$ dla $x \ge 0$. Używając $\Phi(-x) = 1 - \Phi(x)$ możemy dalej przekształcić:

$$P(-1 \leqslant X \leqslant 3) = \Phi(1) - \Phi(-1) = \Phi(1) - (1 - \Phi(1)) = 2\Phi(1) - 1.$$

(b) Jeśli $\mu = -1$ i $\sigma^2 = 9$, to

$$Z = \frac{X - \mu}{\sigma} = \frac{X + 1}{3} \sim N(0, 1),$$
 a więc $X = 3Z - 1$.
 $P(|X - 3| \ge 2) = P(|3Z - 4| \ge 2).$

Ponieważ zdarzenie $\{|Y|\geqslant a\}$ dla a>0można zapisać jako $\{Y\geqslant a\}\cup\{Y\leqslant -a\}$ i oba zdarzenia są rozłączne,

$$P(|Y| \geqslant a) = P(Y \geqslant a) + P(Y \geqslant -a).$$

Czyli:

$$P(|3Z - 4| \ge 2) = P(3Z - 4 \ge 2) + P(3Z - 4 \le -2)$$

$$= P(Z \ge 2) + P\left(Z \le \frac{2}{3}\right)$$

$$= 1 - P(Z \le 2) + P\left(Z \le \frac{2}{3}\right)$$

$$= 1 - \Phi(2) + \Phi\left(\frac{2}{3}\right)$$

(c) Jeśli $\mu = 2$ i $\sigma^2 = 16$, to

$$Z = \frac{X - \mu}{\sigma} = \frac{X - 2}{4} \sim N(0, 1),$$
 a więc $X = 4Z + 2$.

$$P(|X+1| \le 5) = P(|4Z+3| \le 5).$$

Ponieważ zdarzenie $\{|Y| \le a\}$ dla a > 0 można zapisać jako $\{-a \le Y \le a\}$, mamy:

$$\begin{split} P(|4Z+3| \leqslant 5) \; &= \; P(-5 \leqslant 4Z+3 \leqslant 5) \; = \; P(-8 \leqslant 4Z \leqslant 2) \; = \; P\left(-2 \leqslant Z \leqslant \frac{1}{2}\right) \\ &= \; \Phi\left(\frac{1}{2}\right) - \Phi(-2) \; = \; \Phi\left(\frac{1}{2}\right) - 1 + \Phi(2). \end{split}$$

10. Ciągłe zmienne losowe II

13.01.2021

Zadanie 1. Rozważ zmienne (X,Y) o gęstości łącznej:

$$f(x,y) \ = \ \left\{ \begin{array}{ll} c(x+y) & \quad x,y \in [0,1] \\ 0 & \quad w \ przeciwnym \ przypadku \end{array} \right.$$

Oblicz stałą c, gęstości brzegowe i warunkowe.

Odpowiedź: Korzystając z warunku normalizacji gęstości obliczamy stałą c:

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = \int_{0}^{1} \int_{0}^{1} c(x + y) \, dx \, dy$$
$$= c \int_{0}^{1} \int_{0}^{1} x \, dx \, dy + c \int_{0}^{1} \int_{0}^{1} y \, dx \, dy$$
$$= c \int_{0}^{1} \left(\int_{0}^{1} dy \right) x \, dx + c \int_{0}^{1} \left(\int_{0}^{1} dx \right) y \, dy$$
$$= c \int_{0}^{1} \left(\int_{0}^{1} dy \right) x \, dx + c \int_{0}^{1} \left(\int_{0}^{1} dx \right) y \, dy$$
$$= c \int_{0}^{1} \left(\int_{0}^{1} dy \right) x \, dx + c \int_{0}^{1} \left(\int_{0}^{1} dx \right) y \, dy$$
$$= c \int_{0}^{1} \left(\int_{0}^{1} dy \right) x \, dx + c \int_{0}^{1} \left(\int_{0}^{1} dx \right) y \, dy$$
$$= c \int_{0}^{1} \left(\int_{0}^{1} dy \right) x \, dx + c \int_{0}^{1} \left(\int_{0}^{1} dx \right) y \, dx$$

z czego wynika, że c=1, a więc f(x,y)=x+y dla $x,y\in[0,1]$. Wyznaczmy teraz gęstości brzegowe:

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, \mathrm{d}y = \int_0^1 (x+y) \, \mathrm{d}y = x \int_0^1 \mathrm{d}y + \int_0^1 y \, \mathrm{d}y = x + \frac{1}{2} y^2 \Big|_0^1 = x + \frac{1}{2}.$$

Z symetrii gęstości ze względu na x i y otrzymujemy również $f_Y(y)=y+\frac{1}{2}$. Wyznaczamy na koniec gęstości warunkowe:

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{x+y}{x+\frac{1}{2}}.$$

Z symetrii zagadnienia mamy również $f_{X|Y}(x|y) = \frac{x+y}{y+\frac{1}{x}}$.

Zadanie 2. Losujemy punkt jednostajnie z kola o promieniu 1. Innymi słowy mamy parę zmiennych (X,Y) o gęstości łącznej:

$$f(x,y) = \begin{cases} c & x^2 + y^2 \leq 1 \\ 0 & w \ przeciwnym \ przypadku \end{cases}$$

Oblicz stałą c i gęstości brzegowe.

Odpowiedź: Obliczenie stałej c nie jest trudne, jeśli zauważymy, że całka gęstości to po prostu c razy pole koła o promieniu 1, czyli πc . Ponieważ musi to być równe jeden, otrzymujemy $c=\frac{1}{\pi}$.

Ponieważ rozkład jest całkowicie symetryczny ze względu na x i y, wystarczy policzyć jeden z rozkładów brzegowych, np. po x. Z definicji:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, \mathrm{d}y.$$

Dla zadanego x, funkcja gęstości jest niezerowa (i równa $\frac{1}{\pi}$) tylko wtedy, gdy $x^2 + y^2 \le 1$. Nierówność ta jest spełniona dla y z przedziału $[-\sqrt{1-x^2}, \sqrt{1-x^2}]$, a więc:

$$f_X(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy = \frac{1}{\pi} y \Big|_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} = \frac{2\sqrt{1-x^2}}{\pi}.$$

Podobnie $f_Y(y) = \frac{2\sqrt{1-y^2}}{\pi}$.

Dygresja: Zauważmy, że sprawdzenie normalizacji rozkładu brzegowe $f_X(x)$ nie jest łatwe! Trzeba wykonać całkę na przedziale [-1,1] (wartości, które może przyjąć x), tzn.:

$$\int_{-1}^{1} \frac{2\sqrt{1-x^2}}{\pi} \, \mathrm{d}x = \left| \begin{array}{c} x = \cos \alpha \\ \mathrm{d}x = -\sin \alpha \, \mathrm{d}\alpha \end{array} \right| = -\frac{2}{\pi} \int_{\pi}^{0} \sqrt{1-\cos^2 \alpha} \sin \alpha \, \mathrm{d}\alpha$$

$$= \frac{2}{\pi} \int_{0}^{\pi} |\sin \alpha| \sin \alpha \, \mathrm{d}\alpha = \frac{2}{\pi} \int_{0}^{\pi} \sin^2 \alpha \, \mathrm{d}\alpha$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \frac{1-\cos(2\alpha)}{2} \, \mathrm{d}\alpha = \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{2} \, \mathrm{d}\alpha + \frac{2}{\pi} \int_{0}^{\pi} \cos(2\alpha) \, \mathrm{d}\alpha$$

$$= \left| \begin{array}{c} \beta = 2\alpha \\ \mathrm{d}\beta = 2 \, \mathrm{d}\alpha \end{array} \right| = 1 + \frac{2}{\pi} \int_{0}^{2\pi} \cos(\beta) \frac{1}{2} \, \mathrm{d}\beta$$

$$= 1 + \frac{1}{\pi} \sin(\beta) \Big|_{0}^{2\pi} = 1.$$

Zadanie 3. Niech X_1, \ldots, X_n będą niezależnymi zmiennymi losowymi o tym samym rozkładzie opisanym dystrybuantą F_X . Wyznacz dystrybuanty zmiennych $Y = \max\{X_1, \ldots, X_n\}$ oraz $X = \min\{X_1, \ldots, X_n\}$. Odpowiedź:

1. Dystrybuanta F_Y zmienne Y:

$$F_Y(y) = P(Y \leqslant y) = P(\max\{X_1, \dots, X_n\} \leqslant y)$$

$$= P(X_1 \leqslant y, X_2 \leqslant y, \dots, X_n \leqslant y)$$

$$\stackrel{(*)}{=} P(X_1 \leqslant y) \cdot P(X_2 \leqslant y) \cdot \dots \cdot P(X_n \leqslant y) = F_X(y)^n,$$

gdzie w (*) wykorzystaliśmy niezależność X_1, \ldots, X_n .

2. Dystrybuanta F_Z zmienne Z:

$$F_{Z}(z) = P(Z \leq z) = 1 - P(Z > z) = 1 - P(\min\{X_{1}, ..., X_{n}\} > z)$$

$$= 1 - P(X_{1} > z, X_{2} > z, ..., X_{n} > z)$$

$$\stackrel{(*)}{=} 1 - P(X_{1} > z) \cdot P(X_{2} > z) \cdot ... \cdot P(X_{n} > z)$$

$$= 1 - (1 - P(X_{1} \leq z)) \cdot (1 - P(X_{2} \leq z)) \cdot ... \cdot (1 - P(X_{n} \leq z))$$

$$= 1 - (1 - F_{X}(z))^{n},$$

gdzie w (*) wykorzystaliśmy niezależność X_1,\ldots,X_n .

Zadanie 4. Zmienne losowe X i Y są niezależne, o rozkładzie wykładniczym, tzn. $X \sim \text{Exp}(\lambda_X)$ oraz $Y \sim \text{Exp}(\lambda_Y)$. Wyznacz rozkład zmiennej $Z = \min\{X,Y\}$. Wskazówka: trzeba wpierw uogólnić wzór na minimum zmiennych niezależnych, ale o różnym rozkładzie.

Odpowiedź: Rozpoczniemy od wyznaczenia wzoru na dystrybuantę minimum dwóch zmiennych losowych niezależnych (ale niekoniecznie o tym samym rozkładzie). Jest to bardzo podobne wyprowadzenie do tego w poprzednim zadaniu. Niech $Z = \min\{X,Y\}$, gdzie X i Y są niezależne. Mamy:

$$P(Z > z) = P(\min\{X, Y\} > z) = P(X > z, Y > z) = P(X > z)P(Y > z)$$

= $(1 - P(X \le z))(1 - P(Y \le z)) = (1 - F_X(z))(1 - F_Y(z)),$

a stąd:

$$F_Z(z) = P(Z \le z) = 1 - P(Z > z) = 1 - (1 - F_X(z))(1 - F_Y(z)).$$

Jeśli $X \sim \text{Exp}(\lambda)$, to dystrybuanta F_X dana jest wzorem:

$$F_X(x) = 1 - e^{-\lambda_X x}.$$

Podobnie $F_Y(y) = 1 - e^{-\lambda_Y y}$, a więc:

$$F_Z(z) = 1 - e^{-\lambda_X z} e^{-\lambda_Y z} = 1 - e^{-(\lambda_X + \lambda_Y)z}$$

Ale to jest dystrybuanta rozkładu wykładniczego o parametrze $\lambda_X + \lambda_Y$. Tym samym $Z \sim \text{Exp}(\lambda_X + \lambda_Y)$.

Zadanie 5*. Rozważ dwie niezależne zmienne losowe $X \sim N(\mu_X, \sigma_X^2)$ oraz $Y \sim N(\mu_Y, \sigma_Y^2)$. Wyznacz gęstość zmiennej Z = X + Y.

Odpowiedź:Gęstość f_Z zmiennej Zjest splotem gęstości f_X i $f_Y\colon$

$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(t) f_{Y}(z-t) dt$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma_{X}^{2}}} \exp\left\{-\frac{(t-\mu_{X})^{2}}{2\sigma_{X}^{2}}\right\} \frac{1}{\sqrt{2\pi\sigma_{Y}^{2}}} \exp\left\{-\frac{(z-t-\mu_{Y})^{2}}{2\sigma_{Y}^{2}}\right\} dt$$

$$= \frac{1}{\sqrt{2\pi\sigma_{Y}^{2}}} \frac{1}{\sqrt{2\pi\sigma_{Y}^{2}}} \int_{-\infty}^{\infty} \exp\left\{-\frac{(t-\mu_{X})^{2}}{2\sigma_{X}^{2}} - \frac{(z-t-\mu_{Y})^{2}}{2\sigma_{Y}^{2}}\right\} dt.$$
(2)

Aby policzyć tę całkę, spróbujemy uprościć wykładnik (wyrażenie w exp) w (2):

$$-\frac{(t-\mu_X)^2}{2\sigma_X^2} - \frac{(z-t-\mu_Y)^2}{2\sigma_Y^2} = -\frac{(t-\mu_X)^2\sigma_Y^2 + ((z-\mu_Y)-t)^2\sigma_X^2}{2\sigma_X^2\sigma_Y^2}$$

$$= -\frac{t^2(\sigma_X^2 + \sigma_Y^2) - 2t(\mu_X\sigma_Y^2 + (z-\mu_Y)\sigma_X^2) + \mu_X^2\sigma_Y^2 + (z-\mu_Y)^2\sigma_X^2}{2\sigma_Y^2\sigma_Y^2}.$$
 (3)

Zauważmy, że w liczniku w (3) mamy wyrażenie kwadratowe (ze względu na t) postaci:

$$at^2 - 2tb + c$$
.

gdzie:

$$a = \sigma_X^2 + \sigma_Y^2, \quad b = \mu_X \sigma_Y^2 + (z - \mu_Y)\sigma_X^2, \quad c = \mu_X^2 \sigma_Y^2 + (z - \mu_Y)^2 \sigma_X^2$$
 (4)

Chcielibyśmy je zamienić na bardziej zwartą postać $a(t-d)^2 + r$. Jak znaleźć d i r? Wystarczy oba wyrażenia przyrównać:

$$at^{2} - 2tb + c = a(t - d)^{2} + r = at^{2} - 2tad + ad^{2} + r$$

Ponieważ wyrażenia przy kolejnych potęgach t muszą być sobie równe, dostaniemy:

$$b = ad, c = ad^2 + r \implies d = \frac{b}{a}, r = c - ad^2 = c - \frac{b^2}{a}.$$

Czyli:

$$d = \frac{\mu_X \sigma_Y^2 + (z - \mu_Y) \sigma_X^2}{\sigma_X^2 + \sigma_Y^2}$$

$$r = \mu_X^2 \sigma_Y^2 + (z - \mu_Y)^2 \sigma_X^2 - \frac{(\mu_X \sigma_Y^2 + (z - \mu_Y) \sigma_X^2)^2}{\sigma_X^2 + \sigma_Y^2}$$

$$= \frac{\mu_X^2 \sigma_Y^4 + (z - \mu_Y)^2 \sigma_X^4 + \sigma_X^2 \sigma_Y^2 (\mu_X^2 + (z - \mu_Y)^2) - (\mu_X \sigma_Y^2 + (z - \mu_Y) \sigma_X^2)^2}{\sigma_X^2 + \sigma_Y^2}$$

$$= \frac{\sigma_X^2 \sigma_Y^2 (\mu_X^2 + (z - \mu_Y)^2) - 2\mu_X \sigma_Y^2 (z - \mu_Y) \sigma_X^2}{\sigma_X^2 + \sigma_Y^2}$$

$$= \frac{\sigma_X^2 \sigma_Y^2}{\sigma_X^2 + \sigma_Y^2} (\mu_X^2 + (z - \mu_Y)^2 - 2\mu_X (z - \mu_Y)) = \frac{\sigma_X^2 \sigma_Y^2}{\sigma_X^2 + \sigma_Y^2} (z - \mu_X - \mu_Y)^2.$$
 (5)

Ułamek po prawej stronie równania (3) ma więc postać:

$$-\frac{a(t-d)^2+r}{2\sigma_X^2\sigma_Y^2},$$

a tym samym całka w (2) wygląda następująco:

$$\int_{-\infty}^{\infty} \exp\left\{-\frac{a(t-d)^2 + r}{2\sigma_X^2 \sigma_Y^2}\right\} dt = \int_{-\infty}^{\infty} \exp\left\{-\frac{a(t-d)^2}{2\sigma_X^2 \sigma_Y^2}\right\} \exp\left\{-\frac{r}{2\sigma_X^2 \sigma_Y^2}\right\} dt$$

$$= \exp\left\{-\frac{r}{2\sigma_X^2 \sigma_Y^2}\right\} \int_{-\infty}^{\infty} \exp\left\{-\frac{a(t-d)^2}{2\sigma_X^2 \sigma_Y^2}\right\} dt. \tag{6}$$

Mając dowolny rozkład normalny o parametrach μ i σ^2 , gęstość rozkładu musi się normalizować do 1, tzn:

$$\frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \exp\left\{-\frac{(t-\mu)^2}{2\sigma^2}\right\} dt = 1,$$

z czego wynika:

$$\int_{-\infty}^{\infty} \exp\left\{-\frac{(t-\mu)^2}{2\sigma^2}\right\} dt = \sqrt{2\pi\sigma^2}$$
 (7)

Zauważmy teraz, że całka po prawej stronie (6) jest dokładnie postaci (7), jeśli przyrównamy $\mu=d$ oraz $\sigma^2=\frac{\sigma_X^2\sigma_Y^2}{a}$. Tym samym dostajemy:

$$\int_{-\infty}^{\infty} \exp\left\{-\frac{a(t-d)^2}{2\sigma_X^2 \sigma_Y^2}\right\} \mathrm{d}t \ = \ \sqrt{2\pi \frac{\sigma_X^2 \sigma_Y^2}{a}} \ = \ \sqrt{2\pi \frac{\sigma_X^2 \sigma_Y^2}{\sigma_X^2 + \sigma_Y^2}},$$

gdzie w ostatniej równości podstawiliśmy wartość a z (4). Wykorzystując definicję r z (5), dostajemy:

$$\exp\left\{-\frac{r}{2\sigma_X^2\sigma_Y^2}\right\} = \exp\left\{-\frac{\sigma_X^2\sigma_Y^2(z-\mu_X-\mu_Y)^2}{2\sigma_X^2\sigma_Y^2(\sigma_X^2+\sigma_Y^2)}\right\} = \exp\left\{-\frac{(z-\mu_X-\mu_Y)^2}{2(\sigma_X^2+\sigma_Y^2)}\right\}.$$

Możemy więc zapisać prawą stronę (6) jako:

$$\exp\left\{-\frac{(z-\mu_X-\mu_Y)^2}{2(\sigma_X^2+\sigma_Y^2)}\right\}\sqrt{2\pi\frac{\sigma_X^2\sigma_Y^2}{\sigma_X^2+\sigma_Y^2}}.$$

Podstawiając to do (2) dostajemy:

$$f_{Z}(z) = \frac{1}{\sqrt{2\pi\sigma_{X}^{2}}} \frac{1}{\sqrt{2\pi\sigma_{Y}^{2}}} \exp\left\{-\frac{(z - \mu_{X} - \mu_{Y})^{2}}{2(\sigma_{X}^{2} + \sigma_{Y}^{2})}\right\} \sqrt{2\pi \frac{\sigma_{X}^{2}\sigma_{Y}^{2}}{\sigma_{X}^{2} + \sigma_{Y}^{2}}}$$

$$= \sqrt{2\pi \frac{\sigma_{X}^{2}\sigma_{Y}^{2}}{\sigma_{X}^{2} + \sigma_{Y}^{2}}} \frac{1}{2\pi\sigma_{X}^{2}} \frac{1}{2\pi\sigma_{Y}^{2}}$$

$$= \frac{1}{\sqrt{2\pi(\sigma_{X}^{2} + \sigma_{Y}^{2})}} \exp\left\{-\frac{(z - \mu_{X} - \mu_{Y})^{2}}{2(\sigma_{X}^{2} + \sigma_{Y}^{2})}\right\}.$$

Ale to ostatnie wyrażenie ma postać gęstości rozkładu normalnego z parametrami $\mu=\mu_X+\mu_Y$ i $\sigma^2=\sigma_X^2+\sigma_Y^2$. Czyli:

$$Z \sim N\left(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2\right)$$
.

11. Twierdzenia graniczne

20.01.2021

(Słabe prawo wielkich liczb Czebyszewa) Niech X_1, X_2, \ldots będzie ciągiem niezależnych zmiennych losowych z wartościami oczekiwanymi $EX_i = \mu_i$ i wariancjami $D^2(X_i) = \sigma_i^2$, wspólnie ograniczonymi przez σ^2 (tzn. $\sigma_i^2 \leqslant \sigma^2$ dla wszystkich i). Pokaż, że:

$$\overline{X}_n - \overline{\mu}_n \stackrel{P}{\to} 0$$

 $gdzie \ \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \ oraz \ \overline{\mu}_n = \frac{1}{n} \sum_{i=1}^n \mu_i.$

Odpowiedź:Zgodnie z definicją zbieżności według prawdopodobieństwo, $\overline{X}_n-\overline{\mu}_n\stackrel{P}{\to} 0$ oznacza, że dla dowolnego $\epsilon > 0$:

$$\lim_{n \to \infty} P(|\overline{X}_n - \overline{\mu}_n| > \epsilon) = 0, \tag{1}$$

co musimy teraz udowodnić. Wyznaczamy wartość oczekiwaną i wariancję zmiennej losowej \overline{X}_n :

$$\begin{split} E\overline{X}_n &= E\left(\frac{1}{n}\sum_{i=1}^n X_i\right) &= \frac{1}{n}\sum_{i=1}^n EX_i &= \frac{1}{n}\sum_{i=1}^n \overline{\mu}_n, \\ D^2(\overline{X}_n) &= D^2\left(\frac{1}{n}\sum_{i=1}^n X_i\right) &= \frac{1}{n}\sum_{i=1}^n D^2(X_i) &= \frac{1}{n^2}\sum_{i=1}^n \sigma_i^2 \leqslant \frac{1}{n^2}\sum_{i=1}^n \sigma^2 &= \frac{\sigma^2}{n}, \end{split}$$

przy czym przy liczeniu wariancji wykorzystaliśmy niezależność zmiennych X_1, X_2, \dots Stosujemy do \overline{X}_n nierówność Czebyszewa:

$$P(|\overline{X}_n - E\overline{X}_n| > \epsilon) \leqslant \frac{D^2(\overline{X}_n)}{\epsilon^2},$$

co po podstawieniu wartości oczekiwanej i wariancji daje:

$$P(|\overline{X}_n - \overline{\mu}_n| > \epsilon) \leqslant \frac{\sigma^2}{n\epsilon^2},$$

Biorą $n \to \infty$, prawa strona dąży do 0, co implikuje (1) i kończy dowód.

Zadanie 2^* . Pokaż, że zbieżność z prawdopodobieństwem jeden implikuje zbieżność według prawdopodobie'nstwa:

$$X_n \stackrel{z \ pr. \ 1}{\to} X \qquad \Longrightarrow \qquad X_n \stackrel{P}{\to} X$$

Odpowiedź: Zacznijmy od przypomnienia definicji zbieżności:

$$P\left(\lim_{n\to\infty} X_n = X\right) = 1 \qquad \left(X_n \stackrel{\text{z pr. } 1}{\to} X\right)$$
 (2)

$$P\left(\lim_{n\to\infty} X_n = X\right) = 1 \qquad \left(X_n \stackrel{\text{z pr. 1}}{\to} X\right)$$

$$\forall \epsilon > 0 \quad \lim_{n\to\infty} P(|X_n - X| > \epsilon) = 0 \qquad \left(X_n \stackrel{P}{\to} X\right)$$
(2)

Musimy wykazać, że jeśli (2) jest spełnione, to również spełnione jest (3). Zbieżność (3) można przepisać w równoważny sposób jako:

$$\forall \epsilon > 0 \quad \lim_{n \to \infty} P(|X_n - X| \le \epsilon) = 1.$$

Rozważmy zdarzenie losowe:

$$A_n = \{ \omega \in \Omega \colon |X_n(\omega) - X(\omega)| \le \epsilon \}.$$

Aby udowodnić (3) wystarczy więc pokazać, że dla każdego $\epsilon > 0$:

$$\lim_{n \to \infty} P(A_n) = 1, \tag{4}$$

W tym celu rozważymy jeszcze jeden rodzaj zdarzenia:

$$B_n = \{ \omega \in \Omega \colon \forall m \geqslant n \mid X_m(\omega) - X(\omega) \mid \leqslant \epsilon \}.$$

Zdarzenie B_n jest silniejsze od A_n , tzn. jeśli $\omega \in B_n$, to również $\omega \in A_n$, a więc $B_n \subseteq A_n$. Wynika to z faktu, że w zdarzeniu B_n warunek $|X_m(\omega) - X(\omega)| \le \epsilon$ musi zajść nie tylko dla m = n (jak w zdarzeniu A_n), ale również dla wszystkich m > n. Pokażemy, że zbieżność z prawdopodobieństwem jeden (2) implikuje:

$$\lim_{n \to \infty} P(B_n) = 1. (5)$$

Ponieważ $B_n \subseteq A_n$, z monotoniczności miary prawdopodobieństwa mamy $P(B_n) \leq P(A_n)$, a więc skoro $\lim_{n\to\infty} P(B_n) = 1$, to również $\lim_{n\to\infty} P(A_n) = 1$; tym samym zajdzie (4) i udowodnimy (3). Pozostaje więc nam pokazać, że zachodzi (5).

W tym celu zauważmy, że ciąg zdarzeń B_1, B_2, B_3, \ldots jest ciągiem wstępującym, tzn:

$$B_1 \subseteq B_2 \subseteq B_3 \subseteq \dots$$

Wynika to z tego, że jeśli np. $\omega \in B_1$ ("dla wszystkich $m \ge 1$ zachodzi $|X_m(\omega) - X(\omega)| \le \epsilon$ "), to również $\omega \in B_2$ ("dla wszystkich $m \ge 2$ zachodzi $|X_m(\omega) - X(\omega)| \le \epsilon$ "), itp. Definiując teraz zdarzenie:

$$B = \bigcup_{n=1}^{\infty} B_n,$$

z ciągłości miary prawdopodobieństwa dla ciągów wstępujących (patrz: wykład II o aksjomatycznej definicji prawdopodobieństwa) wynika, że:

$$\lim_{n \to \infty} P(B_n) = P(B). \tag{6}$$

Czy jest zdarzenie B? Należą do niego zdarzenia elementarne ω , które znajdują się w którymkolwiek ze zdarzeń B_n (z definicji sumy zdarzeń). Innymi słowy $\omega \in B$, jeśli istnieje takie n, że dla wszystkich $m \geqslant n$ zachodzi $|X_m(\omega) - X(\omega)| \leqslant \epsilon$. Ale z definicji granicy, to są dokładnie te zdarzenia, dla których mamy $\lim_{n\to\infty} X_n(\omega) = X(\omega)$:

$$B = \{ \omega \in \Omega \colon \lim_{n \to \infty} X_n(\omega) = X(\omega) \}.$$

Ponieważ zbieżność z prawdopodobieństwem jeden (2) mówi, że P(B) = 1, z (6) wynika, że $\lim_{n\to\infty} P(B_n) = 1$, a więc pokazaliśmy, że zachodzi (5), co kończy dowód.

Zadanie 3. Rozważ spacer losowy po prostej, w którym w każdym kroku idziemy o jeden w prawo z prawdopodobieństwem p lub o jeden w lewo z prawdopodobieństwem 1-p, rozpoczynając od zera. Niech S_n oznacza położenie spacerowicza w chwili n $(S_0=0)$. Innymi słowy, $S_n=X_1+\ldots X_n$, gdzie X_i są niezależnymi zmiennymi losowymi z $P(X_i=1)=p$ i $P(X_i=-1)=1-p$. Udowodnij, że jeśli $p>\frac{1}{2}$, to z prawdopodobieństwem 1 zajdzie $\lim_{n\to\infty} S_n=\infty$, natomiast jeśli $p<\frac{1}{2}$, to z prawdopodobieństwem 1 zajdzie $\lim_{n\to\infty} S_n=-\infty$.

Odpowiedź: Dla każdego zmiennej X_i , $i=1,\ldots,n$, obliczmy wartość oczekiwaną μ i wariancję σ^2 :

$$\mu = EX_i = p \cdot 1 + (1 - p) \cdot (-1) = 2p - 1,$$

$$\sigma^2 = D^2(X_i) = E(X_i^2) - (EX_i)^2 = (p \cdot 1^2 + (1 - p) \cdot (-1)^2) - (2p - 1)^2 = 1 - (2p - 1)^2 < \infty.$$

Z mocnego prawa wielkich liczb (Chińczyna) wynika, że z prawdopodobieństwem 1 zachodzi:

$$\lim_{n \to \infty} \overline{X}_n = \mu = 2p - 1.$$

Wystarczy teraz zauważyć, że $\overline{X}_n = \frac{S_n}{n},$ a więc:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\overline{X}_n \cdot n \right) = \left(\lim_{n \to \infty} \overline{X}_n \right) \cdot \left(\lim_{n \to \infty} n \right) = (2p - 1) \cdot \infty,$$

czyli granicą jest ∞ dla $2p-1>0\iff p>\frac{1}{2},$ oraz $-\infty$ dla $2p-1<0\iff p<\frac{1}{2}.$

12. Twierdzenia graniczne II

21.01.2021

Zadanie 1. Pokaż, że dla dowolnej zmiennej losowej X, zmienna:

$$U = \frac{X - EX}{D(X)},$$

jest zmienną standaryzowaną, tzn. EU = 0 oraz $D^2(U) = 1$.

Odpowiedź: Zgodnie ze wzorem E(aX+b)=aEX+b, dla $a=\frac{1}{D(X)}$ oraz $b=-\frac{EX}{D(X)}$ mamy:

$$EU = E\left(\frac{X}{D(X)} - \frac{EX}{D(X)}\right) = \frac{EX}{D(X)} - \frac{EX}{D(X)} = 0.$$

Podobnie, zgodnie ze wzorem $D^2(aX+b)=a^2D^2(X)$, dla a,b jak powyżej, mamy:

$$D^{2}(U) = D^{2}\left(\frac{X}{D(X)} - \frac{EX}{D(X)}\right) = \frac{D^{2}(X)}{D^{2}(X)} = 1.$$

Zadanie 2. Używając przybliżenia rozkładem normalnym oszacuj prawdopodobieństwo, że liczba sukcesów S_n w rozkładzie $B(n=72,p=\frac{2}{3})$ przekroczy 55. Następnie wyznacz górne ograniczenie tego prawdopodobieństwa poprzez odpowiednie zastosowanie nierówności Czebyszewa i porównaj. Możesz również numerycznie wyznacz dokładną odpowiedź, aby sprawdzić jak dobre jest przybliżenie.

Odpowiedź: Ponieważ $np=48\geqslant 5$ i $n(1-p)=24\geqslant 5$, możemy użyć przybliżenia rozkładem normalnym:

$$U_n = \frac{S_n - np}{\sqrt{np(1-p)}} \sim N(0,1).$$

Stad:

$$P(S_n > a) = P\left(\frac{S_n - np}{\sqrt{np(1-p)}} > \frac{a - np}{\sqrt{np(1-p)}}\right) = P\left(U_n > \frac{a - np}{\sqrt{np(1-p)}}\right)$$
$$= 1 - P\left(U_n \leqslant \frac{a - np}{\sqrt{np(1-p)}}\right) \simeq 1 - \Phi\left(\frac{a - np}{\sqrt{np(1-p)}}\right),$$

gdzie $\Phi(\cdot)$ jest dystrybuantą standardowego rozkładu normalnego. Aby zwiększyć dokładność, przyjmiemy a=55.5. Mamy:

$$\frac{a - np}{\sqrt{np(1-p)}} = \frac{55.5 - 48}{\sqrt{72 \cdot \frac{1}{3} \cdot \frac{2}{3}}} = \frac{7.5}{4} = 1.875.$$

Tym samym:

$$P(S_n > 55.5) \simeq 1 - \Phi(1.875) \simeq 0.03$$

Aby zastosować nierówność Czebyszewa, policzmy wpierw:

$$ES_n = np = 48, D^2(S_n) = np(1-p) = 16.$$

Mamy:

$$P(S_n > 55) = P(S_n \ge 56) = P(S_n - EX_n \ge 56 - EX_n) = P(S_n - EX_n \ge 8)$$

 $\leqslant P(|S_n - EX_n| \ge 8) \stackrel{(*)}{\leqslant} \frac{D^2(S_n)}{8^2} = \frac{16}{64} = 0.25,$

gdzie w (*) zastosowaliśmy nierówność Czebyszewa.

Na koniec policzymy rzeczone prawdopodobieństwo w sposób dokładny:

$$P(S_n > 55) = \sum_{k=56}^{72} P(S_n = k) = \sum_{k=56}^{72} {72 \choose k} \left(\frac{2}{3}\right)^k \left(\frac{1}{3}\right)^{72-k} = 0.027.$$

Jak widać, przybliżenie rozkładem normalnym daje bardzo dobre przybliżenie wartości szukanego prawdopodobieństwa, natomiast nierówność Czebyszewa daje bardzo kiepskie ograniczenie górne.

Zadanie 3. Niech $X \sim \text{Pois}(\lambda)$ ma rozkład Poissona z parametrem λ . Pokaż, że:

$$M_X(t) = \exp\left\{\lambda(e^t - 1)\right\}$$

Odpowiedź:Rozkład prawdopodobieństwa zmiennej $X \sim \operatorname{Pois}(\lambda)$ ma postać:

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \qquad k = 0, 1, 2, \dots$$

Z definicji funkcji tworzącej momenty:

$$M_X(t) = \sum_{k=0}^{\infty} e^{tk} P(X = k) = e^{-\lambda} \sum_{k=0}^{\infty} e^{tk} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\left(\lambda e^t\right)^k}{k!} \stackrel{(*)}{=} e^{-\lambda} e^{e^t\lambda} = e^{\lambda(e^t - 1)},$$

gdzie w (*) wykorzystaliśmy równość $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ z $x = \lambda e^t$.

Zadanie 4. Niech $X \sim N(0,1)$ ma standardowy rozkład normalny. Pokaż, że:

$$M_X(t) = e^{t^2/2}$$

Odpowiedź: Gęstość prawdopodobieństwa zmiennej $X \sim N(0,1)$ ma postać:

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}, \qquad x \in \mathbb{R}$$

Z definicji funkcji tworzącej momenty:

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx = \int_{-\infty}^{\infty} e^{tx} e^{-\frac{1}{2}x^2} dx = \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^2 + tx} dx.$$

Aby powyższe wyrażenie scałkować wykorzystamy następującą sztuczkę: zapiszemy wyrażenie w wykładniku jako:

$$-\frac{1}{2}x^2 + tx = -\frac{1}{2}(x-t)^2 + \frac{1}{2}t^2.$$

Wyrażenie $e^{\frac{1}{2}t^2}$ możemy wyjąć przed całkę, stąd:

$$M_X(t) = e^{\frac{1}{2}t^2} \underbrace{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-t)^2} dx}_{=1} = e^{\frac{1}{2}t^2}.$$

Dlaczego całka po prawej stronie jest równa 1? Ponieważ wyrażenie podcałkowe to gęstość zmiennej o rozkładzie normalnym N(t,1), a całka z gęstości po całej dziedzinie musi się równać jeden.

Zadanie 5. Używając funkcji tworzącej momenty, wyznacz wartość oczekiwaną i wariancję dla rozkladów: dwumianowego, Poissona i standardowego normalnego

 $Odpowied\acute{z}$:

• Rozkład dwumianowy $X \sim B(n, p)$: mamy $M_X(t) = (pe^t + 1 - p)^n$, a stąd:

$$M'_X(t) = n(pe^t + 1 - p)^{n-1}pe^t M'_X(0) = np,$$

$$M''_X(t) = n(n-1)(pe^t + 1 - p)^{n-2}(pe^t)^2 + n(pe^t + 1 - p)^{n-1}pe^t M''_X(0) = n(n-1)p^2 + np.$$

Tym samym:

$$EX = np$$
, $D^2(X) = M_X''(0) - (M_X'(0))^2 = n(n-1)p^2 + np - n^2p^2 = np(1-p)$.

• Rozkład Poissona $X \sim \text{Pois}(\lambda)$: mamy $M_X(t) = \exp{\{\lambda(e^t - 1)\}}$, a stąd:

$$\begin{aligned} M_X'(t) &= e^{\lambda(e^t - 1)} \lambda e^t & M_X'(0) &= \lambda, \\ M_X''(t) &= e^{\lambda(e^t - 1)} (\lambda e^t)^2 + e^{\lambda(e^t - 1)} \lambda e^t & M_X''(0) &= \lambda^2 + \lambda. \end{aligned}$$

Tym samym:

$$EX = \lambda, \qquad D^2(X) = \lambda^2 + \lambda - \lambda^2 = \lambda.$$

• Rozkład Normalny $X \sim N(0,1)$: mamy $M_X(t) = e^{\frac{1}{2}t^2},$ a stąd:

$$\begin{split} M_X'(t) &= t e^{\frac{1}{2}t^2} & M_X'(0) = 0, \\ M_X''(t) &= t^2 e^{\frac{1}{2}t^2} + e^{\frac{1}{2}t^2} & M_X''(0) = 1. \end{split}$$

Tym samym EX = 0 i $D^2(X) = 1$.