Bayesian Symbol-Refined Tree Substitution Grammars for Syntactic Parsing

<u>Hiroyuki Shindo</u>

NTT CS Labs.

Akinori Fujino

NTT CS Labs.

Yusuke Miyao

NII

Masaaki Nagata

NTT CS Labs.

July 10 ACL 2012

Task: Statistical Constituent Parsing

Training

Testing

F-score: ?

Previous Work

- Naive CFG-based parser does NOT perform well...
 - Coarse symbol annotations
 - Strong independence assumption

Previous approaches:

- a) CFG with automatic symbol refinement [Matsuzaki et al. 05, Petrov et al. 06]
- b) Tree substitution grammars (TSG) [Cohn et al. 09, Post et al. 09]

a) CFG with automatic symbol refinement

- Idea: split symbols into subcategories (based on the likelihood)
- Inference: EM algorithm

a) CFG with automatic symbol refinement

- Idea: split symbols into subcategories (based on the likelihood)
- Inference: EM algorithm

Refined PCFG rules:

$S-0 \longrightarrow$	NP-1 VP-2	p_0
NP-1 \rightarrow	PRP-0	p_1
PRP-0 →	"I"	p_2
$VP-2 \rightarrow$	VBP-0 NP-1	p_3

b) Tree Substitution Grammars (TSG)

- Idea: Allow arbitrarily large tree fragments

- Inference: MCMC sampling

Motivation

Two approaches are complementary

[Cohn et al. 09, Bansal & Klein 10]

- Clustering context
- Learning structure

Proposal:

Symbol-Refined TSG (SR-TSG)

SR-TSG

SR-TSG

- Latent variables of SR-TSG:

tree fragments + symbol subcategories

Search space is huge!

Challenge:

Fully automatic learning

Probabilistic model

Inference

Probabilistic Model of SR-TSG

Overview of Probabilistic Model

What we need:

1. Probability distribution over refined tree fragments

Pitman-Yor process

[Pitman & Yor 96]

2. Framework for back-off smoothing

Large → small tree fragments

3-level hierarchy

3-Level Hierarchy

Pitman-Yor Process (PYP)

- A prior for non-parametric Bayesian model
- Useful for modeling data with power-law distribution
- Closely related to <u>Chinese Restaurant Process (CRP)</u>

Pitman-Yor Process (PYP)

1

$$\times P_0(A)$$

$$1-d \qquad \theta+d$$

- Prob. of choosing a table $\propto \{\frac{\mathrm{count}\,(k) d}{\theta + \# \; \mathrm{tables} \cdot d} \quad \text{occupied}$
- "Rich get richer" effect

- Prob. of choosing a table $\propto \{\frac{\mathrm{count}\,(k) d}{\theta + \# \; \mathrm{tables} \cdot d} \quad \text{new table}$
- "Rich get richer" effect

- Prob. of choosing a table $\propto \{\frac{\mathrm{count}\,(k) d}{\theta + \# \; \mathrm{tables} \cdot d} \quad \text{occupied}$
- "Rich get richer" effect

Effect of back-off smoothing

Summary of Probabilistic Model

- Probability distribution over SR-TSG fragments
 - Pitman-Yor process as a prior
- 3-level hierarchy for back-off smoothing
 - SR-TSG ← SR-CFG ← RU-CFG
- Parsing accuracy(f-score): 91.1% on English PTB

Inference

Overview of Inference

What we want:

Overview of Inference

- MAP estimation: $argmax p(\mathbf{Z}|\mathbf{T})$

- MCMC sampling for inference

tree fragments

+

symbol subcategories

Stepwise training:

1. Fix Train

2. Train Almost fixed

Overview of MCMC Sampling

Inference of Symbol Refinement

Problem:

- Gibbs sampler is inefficient
Update only one variable at a time

Inference of Symbol Refinement

Proposal:

- 3 types of blocked samplers to find better solution

For each MCMC iteration...

- a) Run <u>sentence</u> sampler
- b) Run <u>subtree</u> sampler
- c) Run <u>restaurant</u> sampler

a) Sentence Sampler

- Metropolis-Hastings (MH) algorithm [Johnson et al. 07]

For each <u>sentence</u>...

- 1. Run inside algorithm
- 2. Sample a derivation
- 3. Accept or reject the sample

a) Sentence Sampler

- Update a sentence at a time

c) Restaurant Sampler

- Update # of tables

c) Restaurant Sampler

- Update # of tables

For each table label ...

- Keep count

count = 6

- Remove all

- Helpful for optimizing # of tables
- Add one by one

Effect of MCMC Samplers

Summary of Inference

- MCMC sampling
- Stepwise training for the induction of latent variables
- 3 types of blocked samplers
 - Effective for finding better solution

Experiment

Parsing Accuracy

Final Result

- System combination [Zhang et al. 09]
- Self-training [Huang et al. 10]

are better than SR-TSG.

Conclusion

Approach:

```
SR-TSG = TSG + symbol refinement
- Fully automatic learning
```

Probabilistic Model:

Pitman-Yor process + 3-level hierarchy

Inference:

3 types of MCMC samplers for efficient training

Result:

State-of-the-art

Thank you.

Internal Subcategory Marginalization

- Encourage the model to find large tree fragments

