Exploring the Photoactive Properties of MXenes for Water Splitting

Diego Ontiveros, Francesc Viñes, Carme Sousa

Institut de Química Teòrica i Computacional (IQTCUB), Departament de Ciència de Materials i Química Física, Universitat de Barcelona.

Institut de Química Teòrica i Computacional

UNIVERSITAT DE BARCELONA

General Properties:

- An effective photocatalyst needs good band alignment, efficient charge separation, minimal overlap, anisotropic mobilities, strong visible light absorption, and high STH efficiency.
- Cohesive energy, phonons \rightarrow energetical and dynamical stability.

MXene	$E_{ m coh}$ (eV/at.)	$E_{ m g}^{ m PBE0}$ (eV)	$E_{ m opt}$ (eV)	Overlap (%)	η _{STH} (%)
Zr_2CO_2	-7.68	2.26	2.87	27.9	2.5
$\mathbf{Sc_2CS_2}$	-5.52	3.23	3.34	35.2	0.9
Y_2CS_2	-5.52	3.42	2.93	38.5	2.7
Sc_2CSe_2	-5.16	2.75	3.15	31.9	1.4
Y_2CSe_2	-5.17	3.21	2.99	34.5	2.3
$\mathbf{Sc_2CCl_2}$	-5.41	2.48	2.30	26.2	11.0
Y_2CCl_2	-5.42	2.44	1.89	31.7	21.3
Sc_2CBr_2	-5.09	2.31	2.31	27.1	10.9
Y_2CBr_2	-5.13	2.36	1.85	30.7	22.6
Y_2CI_2	-4.77	1.94	1.79	25.2	12.2

Band Alignment

- pH = 0: \checkmark band alignment for all cases, excepting Sc_2CSe_2 (on H_X surface).
- pH = 7: Some halide-terminated MXenes become unable to photocatalyzed HER.
- H_{MX} : Janus \rightarrow intrinsic $\vec{E} \rightarrow e^-/h^+$ separation.

MXenes^[1] $(M_{n+1}X_nT_x)$

M = Transition Metal (Groups 3 – 6) $X = C \text{ or } N \quad n = 1 - 4$ T = Termination (Groups 16 - 17)

Promising candidates for photocatalysing the water splitting process and produce clean H₂.^[2,3]

Objective: Explore the photoactive effectiveness of MXenes in the water splitting process, through different photocatalytic properties.

10 promising MXenes studied Sc_2CT_2 , Y_2CT_2 Sc_2CT_2 , Y_2CT_2 (T = Cl, Br),(T = S, Se)Y₂CI₂, Zr₂CO₂ $ABCH_{MX}$ $ABC \overline{H_M}$

Methods: DFT with PBE0 hybrid functional for electronic structure and GW-BSE for optic properties.

Zr_2CO_2 **—** Total -Zr2.26 eV (eV) E_F E

Electronic Structure:

• $CB \rightarrow d$ orbitals of M.

• Semiconductors $E_{\mathbf{g}} \approx \text{visible range}$.

• Indirect $\Gamma \rightarrow M$ (H_M) or $\Gamma \rightarrow K$ (H_{MX}) transitions.

• $VB \rightarrow C$ and M atoms, and T at lower energies.

• H_{MX} MXene structures: $E_g \approx UV$.

Charge Density:

• Overlap(VBM, CBM) $\approx 25 - 38 \%$.

Bandstructure

• $H_M: VBM \to p(C)$ orbitals, $CBM \to M$ layers.

DOS

• H_{MX} : VBM \rightarrow H_{X} face, CBM \rightarrow M-C layers. ☐ asymmetry in charge distribution.

Optical Absorption

- H_M : Good optical absorption in visible range.
- H_{MX} : Optical absorption shifted to UV.
- $E_{\text{opt}}(Y) < E_{\text{opt}}(Sc)$.
- BSE \rightarrow Exciton \rightarrow $E_{\rm b} \approx$ 0.3 0.7 eV.
- STH efficiency: halide (11-23%) > chalcogen (1-3%).

Charge Carrier Mobility:

- Along x (zigzag $\wedge \wedge$) and y (armchair \supset).
- Anisotropic electron carrier mobility, $\mu_e^x \neq \overline{\mu_e^y}$.
- H_{MX} : $\mu_e^x < \mu_e^y$, H_{M} : $\mu_e^x > \mu_e^y$.
- Isotropic hole carrier mobility, $\mu_h^x \approx \mu_h^y$.
- L Except for Sc_2CBr_2 → Asymmetric anisotropy both in e and h (charge separation \checkmark)

Sc_2CCl_2 $\mathbf{Sc}_2\mathbf{CBr}_2$ Zr_2CO_2 $\mu_e^x \quad \mu_h^x \quad \mu_e^y \quad \mu_h^y$ Y_2CS_2 Y_2CCl_2 Y_2CSe_2 Y_2CBr_2 Y_2CI_2

CONCLUSIONS

The photoactive potential of a group of 10 MXenes has been deeply explored using DFT calculations, showcasing robust stability, high charge carrier mobilities, strong visible light absorption, and promising solar-to-hydrogen efficiency. These features make them leading candidates for efficient water splitting photocatalysis, with $H_{\rm M}$ structures generally outperforming $H_{\rm MX}$ structures.

REFERENCES

- [1] Adv. Mater. 2011, 23, 4248–4253.
- [2] J. Mater. Chem. A, 2023, 11, 13754–13764.
- [3] Energy Environ. Mater., 2024, 0, e12774.

