Algorithms – Chapter 3 Growth of Functions

Juinn-Dar Huang Professor jdhuang@mail.nctu.edu.tw

July 2007

Rev. '08, '11, '12, '15, '16, '18, '19, '20, '21

Asymptotic Notations

- Though the exact running time can sometimes be calculated...
 - as we did for insertion sort
- The extra precision is not usually worth the effort
- Alternatively, study the asymptotic efficiency of algorithms
 - for a large input size
- Usually, an algorithm that is asymptotically more efficient will be the best choice for all but very small inputs

⊕-Notation

 For a given function g(n), Θ(g(n)) denotes the set of functions:

$$\Theta(g(n)) = \{ f(n) \mid \exists c_1, c_2, n_0 \text{ s.t. } 0 \le c_1 g(n) \le f(n) \le c_2 g(n)$$
 for all $n \ge n_0 \}$

$$f(n) \in \Theta(g(n))$$
 Standard set notation

$$f(n) = \Theta(g(n))$$
 Abuse; but commonly used

g(n) is an asymptotically tight bound for f(n)

Illustration

- The definition of $\Theta(g(n))$ requires that
 - f(n) must be asymptotically nonnegative
 - consequently, g(n) must be asymptotically nonnegative, too

Examples

• Show that $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

$$\frac{n^2}{14} \le \frac{n^2}{2} - 3n \le \frac{n^2}{2} \text{ if } n > 7.$$

• $6n^3 \neq \Theta(n^2)$

Polynomials

$$p(n) = \sum_{i=0}^{d} a_i n^i$$
 where a_i are constant with $a_d > 0$.

Then
$$P(n) = \Theta(n^d)$$
.

O-Notation (1/2)

 For a given function g(n), O(g(n)) denotes the set of functions:

$$O(g(n)) = \{ f(n) \mid \exists c, n_0 \text{ s.t. } 0 \le f(n) \le cg(n) \ \forall n \ge n_0 \}$$

g(n) is an asymptotically upper bound for f(n)

O-Notation (2/2)

- If $f(n) = \Theta(g(n))$, then f(n) = O(g(n))
- That is, $\Theta(g(n)) \subseteq O(g(n))$
- As well

 $p(n) = \sum_{i=0}^{d} a_i n^i$ where a_i are constant with $a_d > 0$.

Then $P(n) = O(n^d)$.

Ω -Notation

• For a given function g(n), $\Omega(g(n))$ denotes the set of functions:

$$\Omega(g(n)) = \{ f(n) \mid \exists c, n_0 \text{ s.t. } 0 \le cg(n) \le f(n) \ \forall n \ge n_0 \}$$

g(n) is an asymptotically lower bound for f(n)

Theorem

• For any two functions f(n) and g(n), $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Asymptotic Notations in Equations

• $n = O(n^2)$ \longrightarrow actually means $n \in O(n^2)$

- $2n^2+3n+1 = 2n^2 + \Theta(n)$ - i.e., $2n^2+3n+1 = 2n^2 + f(n)$ where $f(n) \in \Theta(n)$
- $2n^2 + \Theta(n) = \Theta(n^2)$
 - $\forall f(n) \in \Theta(n),$
 - $-\exists g(n) \in \Theta(n^2)$ such that
 - $-2n^2 + f(n) = g(n) \text{ for all } n$

o-Notation

- O-notation may or may not be asymptotically tight
 - $-2n^2 = O(n^2)$ asymptotically tight
 - $-2n = O(n^2)$ \rightarrow not asymptotically tight
 - o-notation is used to denote an upper bound that is not asymptotically tight

$$o(g(n)) = \{f(n) \mid \underline{\forall c > 0}, \exists n_0 > 0 \text{ s.t. } \forall n \ge n_0, 0 \le f(n) < cg(n)\}$$

$$f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

- Examples
 - $-2n = o(n^2)$
 - $-2n^2 \neq o(n^2)$

ω-Notation

By analogy

- O-notation vs. o-notation $\Leftrightarrow \Omega$ -notation vs. ω -notation

$$\omega(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0 > 0 \text{ s.t. } \forall n \ge n_0, 0 \le cg(n) < f(n) \}$$

$$f(n) = \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Examples

- $n^2/2 = \omega(n)$
- $n^2/2 \neq \omega(n^2)$

Properties (1/2)

Transitivity

$$f(n) = \Theta(g(n)) \land g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$$

$$f(n) = O(g(n)) \land g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$$

$$f(n) = \Omega(g(n)) \land g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$$

$$f(n) = o(g(n)) \land g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$$

$$f(n) = \omega(g(n)) \land g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$$

Reflexivity

$$f(n) = \Theta(f(n))$$
$$f(n) = O(f(n))$$
$$f(n) = \Omega(f(n))$$

Properties (2/2)

Symmetry

$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

Transpose symmetry

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$
$$f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n))$$

Monotonicity

Monotonicity

- A function f is monotonically increasing (non-decreasing) if m < n implies f(m) ≤ f(n)
- A function f is monotonically decreasing (non-increasing) if m < n implies f(m) ≥ f(n)
- A function f is strictly increasing if m < n implies f(m) < f(n)</p>
- A function f is strictly decreasing
 if m < n implies f(m) > f(n)

Copyright © 2007-2021 14

Floors and Ceilings

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

$$\lceil n/2 \rceil + \mid n/2 \mid = n$$

$$\lceil \lceil x/a \rceil/b \rceil = \lceil x/ab \rceil$$

$$\lfloor \lfloor x/a \rfloor/b \rfloor = \lfloor x/ab \rfloor$$

$$\lceil a/b \rceil \le (a+(b-1))/b$$

$$\lfloor a/b \rfloor \ge (a-(b-1))/b$$

x: real number

n: integer

a, b: integral constants

Modular Arithmetic

- For any integer a and any positive integer n, the value a mod n is the remainder (or residue) of the quotient a/n:
 - $a \mod n = a |a/n| * n$
 - If $(a \mod n) = (b \mod n)$. We write $a \equiv b \pmod n$ and say that a is **equivalent** to b, modulo n
 - We write $a \not\equiv b \pmod{n}$ if a is not equivalent to b, modulo n

Polynomials

 $p(n) = \sum_{i=0}^{d} a_i n^i$ where a_i are constant with $a_d > 0$. Then $P(n) = \Theta(n^d)$.

 A function f(n) is polynomially bounded if f(n) = O(n^k) for some constant k

Exponentials

For all real constants a > 1 and b

$$-\lim_{n\to\infty} \frac{n^b}{a^n} = 0$$

$$- \implies n^b = o(a^n)$$

Logarithms

- **Notations**
 - $-\lg n = \log_2 n$
 - $-\ln n = \log_e n$
 - $-\lg^k n = (\lg n)^k$
 - $-\lg\lg n = \lg(\lg n)$
- A function f(n) is polylogarithmically bounded if $f(n) = O(\lg^k n)$ for some constant k
- $lg^b n = o(n^a)$

$$\lim_{n\to\infty} \frac{n^b}{a^n} = 0 \quad \text{for all real constant a > 1 and b}$$

$$\lim_{n\to\infty}$$

Substitute $\lg n$ for n and 2^a for a $\lim_{n\to\infty} \frac{\lg^b n}{(2^a)^{\lg n}} = \lim_{n\to\infty} \frac{\lg^b n}{n^a} = 0$

Factorials

Weak upper bound: n! ≤ nⁿ

Properties

$$- n! = o(n^n)$$

$$n! = \omega(2^n)$$

$$\lg(n!) = \Theta(n \lg n)$$

Functional Iterations

$$f^{(i)}(n) = \begin{cases} n & \text{if } i = 0, \\ f(f^{(i-1)}(n)) & \text{if } i > 0. \end{cases}$$

For example, if f(n) = 2n, then $f^{(i)}(n) = 2^{i}n$

Iterated Logarithm Functions

$$\lg^{(i)}(n) = \begin{cases} n & \text{if } i = 0\\ \lg(\lg^{(i-1)} n) & \text{if } i > 0 \text{ and } \lg^{(i-1)} n > 0\\ \text{undefined if } i > 0 \text{ and } \lg^{(i-1)} n \le 0\\ & \text{or } \lg^{(i-1)} n \text{ is undefined.} \end{cases}$$

$$\lg^*(n) = \min\{i \ge 0 : \lg^{(i)} n \le 1\}$$

$$lg^{*}2 = 1$$
 $lg^{*}4 = 2$
 $lg^{*}16 = 3$
 $lg^{*}65536 = 4$
 $lg^{*}2^{65536} = 5$

Fibonacci Numbers (1/2)

Fibonacci numbers

$$-F_0 = 0, F_1 = 1, F_i = F_{i-1} + F_{i-2}$$
 for $i \ge 2$
- 0, 1, 1, 2, 3, 5, 8, 13, ...

Golden ratio

$$- \phi = \frac{1 + \sqrt{5}}{2} = 1.61803...$$
 one of the roots of $x^2 - x - 1 = 0$

$$- \hat{\phi} = \frac{1 - \sqrt{5}}{2} = -0.61803...$$
 another root of $x^2 - x - 1 = 0$

Fibonacci Numbers (2/2)

$$F_i = \frac{\phi^i - \widehat{\phi}^i}{\sqrt{5}}$$
 Try to prove it by math induction

Function Names

1	constant		
$\lg^* n$	iterated logarithm		
$\lg^{(O(1))} n = \lg \lg \ldots \lg n$	_		
O(1)			
lg n	logarithmic		
$\lg^{O(1)} n = (\lg n)^{O(1)}$	polylogarithmic		
\sqrt{n}	sublinear		
n	linear		
$n \lg n$	loglinear		
n^2	quadratic		
n^3	cubic		
n^4	quartic		
$2^n, 3^n, \dots$	exponential		
n!	factorial		
n^n	-		

Growth of Functions

Growth of Functions

Assume 1 BIPS, 1 instruction/operation

Order	Θ	n = 10	n = 100	$n = 10^3$	$n = 10^6$
1	Θ(1)	$1 \times 10^{-9} \text{ sec}$			
lg* n	$\Theta(\lg^* n)$	$3 \times 10^{-9} \text{ sec}$	$3 \times 10^{-9} \text{sec}$	$3 \times 10^{-9} \text{ sec}$	4 × 10 ⁻⁹ sec
$\lg \lg n$	$\Theta(\lg\lg n)$	$2 \times 10^{-9} \text{ sec}$	$3 \times 10^{-9} \text{ sec}$	$3 \times 10^{-9} \text{ sec}$	4 x 10 ⁻⁹ sec
$\lg n$	$\Theta(\lg n)$	$3 \times 10^{-9} \text{ sec}$	$7 \times 10^{-9} \text{ sec}$	$1 \times 10^{-8} \text{ sec}$	2 x 10 ⁻⁸ sec
\sqrt{n}	$\Theta(\sqrt{n})$	$3 \times 10^{-9} \text{ sec}$	1×10^{-8} sec	$3 \times 10^{-8} \text{ sec}$	1 × 10 ⁻⁶ sec
n	$\Theta(n)$	$1 \times 10^{-8} \text{ sec}$	$1 \times 10^{-7} \text{ sec}$	1×10^{-6} sec	0.001 sec
$n \lg n$	$\Theta(n \lg n)$	$3 \times 10^{-8} \text{ sec}$	$2 \times 10^{-7} \text{ sec}$	3 × 10 ⁻⁶ sec	0.006 sec
n^2	$\Theta(n^2)$	$1 \times 10^{-7} \text{ sec}$	1×10^{-5} sec	0.001 sec	16.7_min
_n 3	$\Theta(n^3)$	1×10^{-6} sec	0.001 sec	1 sec	3×10^5 cent.
2^n	$\Theta(2^n)$	1×10^{-6} sec	3×10^{17} cent.	∞	∞
n!	$\Theta(n!)$	0.003 sec	∞	∞	∞

Copyright © 2007-2021 26