IN THE CLAIMS

Please delete all prior lists of claims in the application and insert the following list of claims:

1-3. (CANCELED)

4. (CURRENTLY AMENDED) An isolated, unnatural polypeptide compound selected from the group consisting of formula:

$$A = X_a - Y - Z_c - A_d$$

wherein:

each X and each Z is independently variable and is selected from the group consisting of α -amino acid residues, β -amino acid residues, and γ -amino acid residues, provided that at least one X or Z comprises an α -amino acid residue and at least another two of X or Z comprise two cyclically-constrained β -amino acid residues; and

wherein each cyclically-constrained β -amino acid residue is independently selected from the group consisting of:

wherein V and W are combined, together with the carbon atoms to which they are bonded, and independently define a substituted or unsubstituted, monocyclic or bicyclic C_{3} - C_{10} cycloalkyl, cycloalkenyl or heterocyclic ring having one or more N, O or S atom(s) as the heteroatom(s);

the substituents on carbon atoms of the rings being independently selected from the group consisting of linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, and the substituents listed above for V and W when V and W are not combined;

the substituents on nitrogen heteroatoms of the rings being independently selected from the group consisting of hydrogen, monocyclic or bicyclic C_1 - C_{10} -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, $-S(=O)_2$ - R^{17} , -C(=O)- R^{17} , $-S(=O)_2$ - R^{18} , and -C(=O)- R^{18} , where n = 1 to 6;

wherein R^{17} is independently selected from the group consisting of hydrogen, monocyclic or bicyclic C_1 - C_{10} -alkyl, alkenyl, or alkynyl; monoor bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

wherein R¹⁸ is independently selected from the group consisting of hydroxy, linear, branched, or cyclic C₁-C₆-alkyl, alkenyl, or alkynyl; mono-

or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-C₆-alkyl; mono- or bicyclic heteroaryl-C₁-C₆-alkyl; C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-Nheteroarylamino, N-aryl-N-heteroarylamino, aryl-G1-C6-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₅-alkylcarboxamide, monoor diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-Narylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-Nheteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-Nheteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

wherein each cyclically-constrained β-amino acid residue is further selected from the group consisting of:

wherein R^5 and R^6 are independently selected from the group consisting of hydrogen, hydroxy, linear, branched, or cyclic C_1 - C_{16} -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_{16} alkylamino; mono- or bicyclic aryl; mono- or bicyclic

heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_{36} -alkyl; mono- or bicyclic heteroaryl- C_1 - C_{16} -alkyl; -(CH₂)_{0.6}-OR⁷, -(CH₂)_{0.6}-SR⁷, -(CH₂)_{0.6}-S(=O)-CH₂-R⁷, -(CH₂)_{0.6}-S(=O)₂-CH₂-R⁷, -(CH₂)_{0.6}-NHC(=O)R⁷, -(CH₂)_{0.6}-NHS(=O)₂-CH₂-R⁷, -(CH₂)_{0.6}-C(=O)-OH, -(CH₂)_{0.6}-C(=O)-OR⁷, -(CH₂)_{0.6}-C(=O)-NH₂, -(CH₂)_{0.6}-C(=O)-NH₂, -(CH₂)_{0.6}-C(=O)-NH₂, -(CH₂)_{0.6}-C(=O)-NHR⁷, -(CH₂)_{0.6}-C(=O)-N(R⁷)₂, -(CH₂)_{0.6}-O-(CH₂)_{2.6}-R⁸, -(CH₂)_{0.6}-S-(CH₂)_{2.6}-R⁸, -(CH₂)_{0.6}-S(=O)-(CH₂)_{2.6}-R⁸, -(CH₂)_{0.6}-NH-(CH₂)_{2.6}-R⁸, -(CH₂)_{0.6}-N-{(CH₂)_{2.6}-R⁸}, and -(CH₂)_{0.6}-NHS(=O)₂-(CH₂)_{2.6}-R⁸; wherein

 R^7 is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

R⁸ is selected from the group consisting of hydroxy, C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C1-C6-alkylthio, C1-C6-alkylsulfinyl, C1-C6alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C1-C6alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-Narylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁- C_6 -alkylamino, carboxylic acid, carboxamide, mono- or di- C_1 - C_6 alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-Nheteroarylcarboxamide, N-aryl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆-alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-Narylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-Nheteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

wherein each cyclically-constrained β -amino acid residues is further selected from the group consisting of:

wherein R⁹, R¹⁰, and R¹³ are independently selected from the group consisting of hydrogen, linear, branched, or cyclic C₁-C₆-alkyl, alkenyl, or alkynyl; mono-or di- C₁-C₆ alkylamino, mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C₁-C₆-alkyl, mono- or bicyclic heteroaryl-C₁-C₆-alkyl, -(CH₂)_{1.6}-OR¹¹, -(CH₂)_{1.6}-SR¹¹, -(CH₂)_{1.6}-S(=O)-CH₂-R¹¹, -(CH₂)_{1.6}-NR¹¹R¹¹, -(CH₂)_{1.6}-NHC(=O)R¹¹, -(CH₂)_{1.6}-NHS(=O)₂-CH₂-R¹¹, -(CH₂)_{0.6}-C(=O)-OH, -(CH₂)_{0.6}-C(=O)-OR¹¹, -(CH₂)_{0.6}-C(=O)-NH₂, -(CH₂)_{0.6}-C(=O)-NHR¹¹, -(CH₂)_{0.6}-C(=O)-N(R¹¹)₂, -(CH₂)_{1.6}-O-(CH₂)_{2.6}-R¹², -(CH₂)_{1.6}-S-(CH₂)_{2.6}-R¹², -(CH₂)_{1.6}-S(=O)₂-(CH₂)_{2.6}-R¹², -(CH₂)_{1.6}-NH-(CH₂)_{2.6}-R¹², -(CH₂)_{1.6}-NH-(CH₂)_{2.6}-R¹², -(CH₂)_{1.6}-NH-(CH₂)_{2.6}-R¹², -(CH₂)_{1.6}-NHC(=O)-(CH₂)_{2.6}-R¹², and -(CH₂)_{1.6}-NHS(=O)₂-(CH₂)_{2.6}-R¹²; wherein

 R^{11} is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

 R^{12} is selected from the group consisting of hydroxy, C_1 - C_6 -alkyloxy, aryloxy, heteroaryloxy, thio, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, arylthio, arylsulfinyl, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di- C_1 - C_6 -alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-

arylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl- C_1 - C_6 -alkylamino, carboxylic acid, carboxamide, mono- or di- C_1 - C_6 -alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di- C_1 - C_6 -alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the subsitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane;

 R^{14} is selected from the group consisting of hydrogen, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_6 alkylamino, mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, $-S(=O)_2$ - $(CH_2)_{1.6}$ - R^{11} , $-C(=O)R^{11}$, $-S(=O)_2$ - $(CH_2)_{2.6}R^{12}$, and -C(=O)- $(CH_2)_{1.6}$ - R^{12} ; wherein R^{11} and R^{12} are as defined above;

R¹⁵ and R¹⁶ are selected from the group listed above for R⁹, R¹⁰, and R¹³, and are further selected from the group consisting of hydroxy, C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, arylsulfonyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-N-heteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-alkyl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆-alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-

heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or trisubstituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

each "Y" is independently variable and is a single bond or a reverse-turn moiety; and

each "A" is independently selected from the group consisting of hydrogen, hydroxy, an amino-terminus protecting group, and a carboxy-terminus protecting group; and each "a," "c," and "d" is an independently variable positive integer, and wherein

"a" + "c" > 3; and

salts thereof.

5. (ORIGINAL) The compound of Claim 4, wherein each Y is a single bond or a reverse turn moiety independently selected from group consisting of a prolyl-glycolic acid residue, a di-nipecotic acid residue, or a compound of the following formula:

where each R^3 is independently variable and is selected from the group consisting of hydrogen, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, and mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, and

where each R4 is selected from the group consisting of hydroxy, linear, branched, or cyclic C1-C6-alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl; mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; C_1 - C_6 -alkyloxy, aryloxy, heteroaryloxy, thio, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C1-C6-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, Nalkyl-N-arylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl-C1-C6alkylamino, carboxylic acid, carboxamide, mono- or di-C1-C6-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, Nalkyl-N-heteroarylcarboxamide, N-aryl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C1-C6-alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-beteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl, heteroaryl; Oalkylurethane, O-arylurethane, and O-heteroarylurethane.

6. (CURRENTLY AMENDED) An isolated, unnatural polypeptide compound selected from the group consisting of formula:

$$A = \begin{bmatrix} X_a - Y - Z_c - \end{bmatrix}_d A$$

wherein:

each X and each Z is independently variable and is selected from the group consisting of α -amino acid residues, β -amino acid residues, and γ -amino acid residues, provided that at least one X or Z is an α -amino acid residue and at least another two of X or Z comprise two cyclically-constrained residues, the two cyclically-constrained residues comprising cyclically-constrained β -amino acid residues or cyclically-constrained γ -amino

acid residues, or one cyclically-constrained β -amino acid residue and one cyclically-constrained γ -amino acid residue; and

wherein the cyclically-constrained β -amino acid residues are selected from the group consisting of:

wherein V and W are combined, together with the carbon atoms to which they are bonded, and independently define a substituted or unsubstituted, monocyclic or bicyclic C_{3} - C_{10} cycloalkyl, cycloalkenyl or heterocyclic ring having one or more N, O or S atom(s) as the heteroatom(s);

the substituents on carbon atoms of the rings being independently selected from the group consisting of linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono-

or bicyclic heteroaryl-C₁-C₆-alkyl, and the substituents listed above for V and W when V and W are not combined;

the substituents on nitrogen heteroatoms of the rings being independently selected from the group consisting of hydrogen, monocyclic or bicyclic C_1 - C_{10} -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, $-S(=O)_2$ - R^{17} , -C(=O)- R^{17} , $-S(=O)_2$ - $(CH_2)_{n+1}$ - R^{18} , and -C(=O)- $(CH_2)_n$ - R^{18} , where n=1 to 6;

wherein R^{17} is independently selected from the group consisting of hydrogen, monocyclic or bicyclic C_1 - C_{10} -alkyl, alkenyl, or alkynyl; monoor bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

wherein R¹⁸ is independently selected from the group consisting of hydroxy, linear, branched, or cyclic C₁-C₆-alkyl, alkenyl, or alkynyl; monoor bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl-C1-C6-alkyl; mono- or bicyclic heteroaryl-C₁-C₆-alkyl; C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C1-C6-alkylthio, C1-C6-alkylsulfinyl, C1-C6-alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-Nheteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C1-C6-alkylcarboxamide, monoor diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-Narylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-Nheteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C1-C6alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-

heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

wherein the cyclically-constrained β-amino acid residues are further selected from the group consisting of:

wherein R^5 and R^6 are independently selected from the group consisting of hydrogen, hydroxy, linear, branched, or cyclic C_1 - C_{16} -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_{16} alkylamino; mono- or bicyclic aryl; mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_{16} -alkyl; mono- or bicyclic heteroaryl- C_1 - C_{16} -alkyl; -(CH_2)_{0.6}- CR^7 , -(CH_2)_{0.6}- CR^7 ,

 R^7 is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

R⁸ is selected from the group consisting of hydroxy, C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆-alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane;

and wherein the cyclically-constrained β -amino acid residues are further selected from the group consisting of:

wherein R⁹, R¹⁰, and R¹³ are independently selected from the group consisting of hydrogen, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_6 alkylamino, mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, -(CH₂)₁₋₆-OR¹¹, -(CH₂)₁₋₆-SR¹¹, -(CH₂)₁₋₆-S(=O)-CH₂-R¹¹, -(CH₂)₁₋₆-S(=O)-CH₂-R¹¹, -(CH₂)₁₋₆-NR¹¹R¹¹, -(CH₂)₁₋₆-NHC(=O)R¹¹, -(CH₂)₁₋₆-NHC(=O)R¹¹

$$\begin{split} -(\text{CH}_2)_{0.6} - \text{C}(=\text{O}) - \text{NHR}^{11}, & -(\text{CH}_2)_{0.6} - \text{C}(=\text{O}) - \text{N}(\text{R}^{11})_2, & -(\text{CH}_2)_{1.6} - \text{O} - (\text{CH}_2)_{2.6} - \text{R}^{12}, \\ -(\text{CH}_2)_{1.6} - \text{S} - (\text{CH}_2)_{2.6} - \text{R}^{12}, & -(\text{CH}_2)_{1.6} - \text{S}(=\text{O}) - (\text{CH}_2)_{2.6} - \text{R}^{12}, & -(\text{CH}_2)_{1.6} - \text{S}(=\text{O})_2 - (\text{CH}_2)_{2.6} - \text{R}^{12}, \\ -(\text{CH}_2)_{1.6} - \text{NH} - (\text{CH}_2)_{2.6} - \text{R}^{12}, & -(\text{CH}_2)_{1.6} - \text{N} - \{(\text{CH}_2)_{2.6} - \text{R}^{12}\}_2, & -(\text{CH}_2)_{1.6} - \text{NHC}(=\text{O}) - (\text{CH}_2)_{2.6} - \text{R}^{12}, \\ \text{and} & -(\text{CH}_2)_{1.6} - \text{NHS}(=\text{O})_2 - (\text{CH}_2)_{2.6} - \text{R}^{12}; \text{ wherein} \end{split}$$

 R^{11} is independently selected from the group consisting of hydrogen, C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono- or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl; and

R¹² is selected from the group consisting of hydroxy, C₁-C₆-alkyloxy, aryloxy, heteroaryloxy, thio, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfinyl, arylthio, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di-C₁-C₆-alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-N-heteroarylamino, aryl-C₁-C₆-alkylamino, carboxylic acid, carboxamide, mono- or di-C₁-C₆-alkylcarboxamide, mono- or diarylcarboxamide, mono- or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di-C₁-C₆-alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or trisubstituted urea, wherein the subsitutent(s) is selected from the group consisting of C₁-C₆-alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane;

 R^{14} is selected from the group consisting of hydrogen, linear, branched, or cyclic C_1 - C_6 -alkyl, alkenyl, or alkynyl; mono-or di- C_1 - C_6 alkylamino, mono- or bicyclic aryl, mono- or bicyclic heteroaryl having up to 5 heteroatoms selected from N, O, and S; mono-or bicyclic aryl- C_1 - C_6 -alkyl, mono- or bicyclic heteroaryl- C_1 - C_6 -alkyl, -S(=O)₂-(CH₂)₁₋₆- R^{11} , -C(=O) R^{11} , -S(=O)₂-(CH₂)₂₋₆ R^{12} , and -C(=O)-(CH₂)₁₋₆- R^{12} ; wherein R^{11} and R^{12} are as defined above;

 R^{15} and R^{16} are selected from the group listed above for R^9 , R^{10} , and R^{13} , and are further selected from the group consisting of hydroxy, C_1 - C_6 -alkyloxy, aryloxy, heteroaryloxy, thio, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, arylthio, arylsulfinyl, heteroarylsulfinyl, heteroarylsulfonyl, amino, mono- or di- C_1 - C_6 -alkylamino, mono- or diarylamino, mono- or diheteroarylamino, N-alkyl-N-arylamino, N-alkyl-N-heteroarylamino, N-aryl-N-heteroarylamino, aryl- C_1 - C_6 -alkylamino, carboxylic acid, carboxamide, mono- or di- C_1 - C_6 -alkylamino, or diheteroarylcarboxamide, N-alkyl-N-arylcarboxamide, N-alkyl-N-heteroarylcarboxamide, N-aryl-N-heteroarylcarboxamide, sulfonic acid, sulfonamide, mono- or di- C_1 - C_6 -alkylsulfonamide, mono- or diarylsulfonamide, mono- or diheteroarylsulfonamide, N-alkyl-N-arylsulfonamide, N-alkyl-N-heteroarylsulfonamide, N-aryl-N-heteroarylsulfonamide, urea; mono- di- or tri-substituted urea, wherein the substitutent(s) is selected from the group consisting of C_1 - C_6 -alkyl, aryl, heteroaryl; O-alkylurethane, O-arylurethane, and O-heteroarylurethane; and

wherein the cyclically-constrained γ -amino acid residues are selected from the group consisting of:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

wherein R, together with the carbons to which it is attached, and further together with the β -position carbon in the γ -amino acid backbone where appropriate, independently defines a substituted or unsubstituted, monocyclic or bicyclic C_3 to C_{10} cycloalkyl, cycloalkenyl, or heterocycle moiety, the heterocycle moiety having 1, 2, or 3 heteroatoms selected from the group consisting of N, S, and O; and

each "Y" is independently variable and is a single bond or a reverse-turn molety; and

each "A" is independently selected from the group consisting of hydrogen, hydroxy, an amino-terminus protecting group, and a carboxy-terminus protecting group; and each "a," "c," and "d" is an independently variable positive integer, and wherein "a" + "c" > 3; and salts thereof.

7. (CANCELED)

- 8. (ORIGINAL) The compound of Claim 6, wherein at least one of X or Z is a cyclically-constrained β -amino acid residue wherein V and W, and the carbon atoms to which they are bonded, define a substituted or unsubstituted C_4 to C_6 cycloalkyl, cycloalkenyl, or heterocyclic ring having one nitrogen atom as the sole heteratom.
- 9. (ORIGINAL) The compound of Claim 6, wherein at least one of X or Z is a cyclically-constrained β -amino acid residue wherein V and W, and the carbon atoms to which they are bonded, define a substituted or unsubstituted cyclopentyl, cyclohexyl, pyrrolidinyl, or piperdinyl ring.

10. (CANCELED)

11. (WITHDRAWN and CURRENTLY AMENDED) A method of probing, disrupting, or mimicking binding interactions between two protein molecules or fragments thereof, the method comprising:

in an in vivo, in vitro, or ex vivo reaction between the two proteins,

- (a) introducing to the reaction an unnatural polypeptide compound according to Claim ± 3; and then
- (b) quantifying any effect of the added compound from step (a) on thermodynamic or kinetic parameters of the binding interaction between the two protein molecules or fragments thereof.

12-14. (CANCELED)