ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАУЧНО-ОБРАЗОВАТЕЛЬНАЯ КОРПОРАЦИЯ ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа по физике N_2

Изучение скольжения тележки по наклонной плоскости

Выполнили:

Шпак Всеволод Васильевич Степанов Арсений Алексеевич Выдра Андрей Михайлович

Группа:

ФИЗ ПИиКТ БАЗ 3.4.1

Преподаватель:

Пулькин Николай Сергеевич

1 Цели работы

Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости и определение величины ускорения свободного падения g

1.1 Задачи, решаемые при выполнении работы

- Измерение времени движения тележки по рельсу с фиксированным углом наклона
- Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту
- Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки
- Исследование зависимости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения
- Обработка экспериментальных данных

2 Схема установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка-угольник

2.1 Измерительные приборы

$N_{\bar{0}}$	Наименование	Тип	Используемый диапазон	Погрешность
1	Линейка на рельсе	-	0 - 1.3 м	±5 мм
2	Линейка на угольнике	-	0 - 25 см	±0.5 мм
3	Секундомер (ПКЦ-3)	Электронный	0 - 100 с	±0.1 c

3 Результаты прямых измерений

3.1 Данные рельса в горизонте

x, MM	x', MM	h, мм	h', MM
220	1000	202	204

3.2 Данные экспериментов

Серия экспериментов №1

$N_{\overline{0}}$	x_1 , M	x_2 , M	t_1 , c	t_2 , c	$x_2 - x_1$, M	$(t_2^2 - t_1^2)/2$, c ²
1	0.15	0.40	1.50	2.80	0.25	2.795
2	0.15	0.50	1.60	3.30	0.35	4.165
3	0.15	0.70	1.50	3.80	0.55	6.095
4	0.15	0.90	1.60	4.40	0.75	8.4
5	0.15	1.10	1.70	4.90	0.95	10.56

Серия экспериментов №2.1

$N_{\overline{0}}$	<i>h</i> , м	<i>h</i> ′, м	t_1 , c	t_2 , c
1			1.6	4.9
2			1.5	4.8
3	210	204	1.6	4.8
4			1.4	4.7
5			1.5	4.7

Серия экспериментов №2.2

$N_{\overline{0}}$	<i>h</i> , м	<i>h</i> ′, м	t_1 , c	t_2 , c
1			1.0	3.3
2			1.0	3.2
3	220	204	1.0	3.3
4			1.0	3.3
5			1.0	3.2

Серия экспериментов №2.3

Nº	<i>h</i> , м	<i>h</i> ′, м	t_1 , c	t_2 , c
1			0.8	2.7
2			0.8	2.6
3	230	204	0.8	2.6
4			0.8	2.6
5			0.8	2.6

Серия экспериментов №2.4

No	<i>h</i> , м	<i>h</i> ′, м	t_1 , c	t_2 , c
1			0.7	2.2
2			0.7	2.3
3	239	205	0.6	2.2
4			0.7	2.3
5			0.7	2.3

Серия экспериментов №2.5

$N_{\overline{0}}$	<i>h</i> , м	<i>h</i> ′, м	t_1 , c	t_2 , c
1			0.6	2.0
2			0.6	2.0
3	249	205	0.6	2.0
4			0.6	2.0
5			0.6	2.0

4 Результаты косвенных измерений

4.1 Используемые формулы

4.1.1 Выборочное значение

$$\langle t \rangle_N = \frac{1}{N} \cdot \sum_{i=1}^N t_i$$

4.1.2 Среднеквадратичное отклонение среднего значения

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \cdot \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

4.1.3 Доверительный интервал случайной погрешности

$$\Delta_t = t_{\alpha n} \cdot \sigma_{\langle t \rangle} \qquad \alpha = 0.95$$

4.1.4 Расчёт погрешности для ускорения

$$\Delta a = \langle a \rangle \cdot \sqrt{\frac{(\Delta x_2)^2 + (\Delta x_1)^2}{(x_2 - x_1)^2} + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2}}$$

4.1.5 Расчёт ускорения

$$B = \frac{\sum_{i=1}^{N} a_i \cdot \sin \alpha_i - \frac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} (\sum_{i=1}^{N} \sin \alpha_i)^2}$$
$$A = \frac{1}{n} (\sum_{i=1}^{N} a_i - B \cdot \sum_{i=1}^{N} \sin \alpha_i)$$

3

4.2 Расчёт вспомогательных величин

	серия 2.1	серия 2.2	серия 2.3	серия 2.4	серия 2.5
$\langle t_1 \rangle$	1.520	1.000	0.800	0.680	0.600
$\langle t_2 \rangle$	4.780	3.260	2.620	2.260	2.000
Δ_{t_1}	0.045	0.000	0.000	0.024	0.000
Δt_1	0.067	0.050	0.050	0.055	0.050
Δ_{t_2}	0.045	0.029	0.024	0.029	0.000
Δt_2	0.067	0.058	0.055	0.058	0.050
$\langle a \rangle$	0.093	0.197	0.305	0.409	0.522
Δa	0.003	0.008	0.015	0.024	0.030

4.3 Расчёт ускорения и погрешностей

Кол-во пластин	$\sin \alpha$	t_1 , c	t_2 , c	$a, \mathrm{m/c^2}$
1	0.010256410	1.520 ± 0.067	4.780 ± 0.067	0.093 ± 0.003
2	0.023076923	1.000 ± 0.050	3.260 ± 0.058	0.197 ± 0.008
3	0.035897436	0.800 ± 0.050	2.620 ± 0.055	0.305 ± 0.015
4	0.046153846	0.680 ± 0.055	2.260 ± 0.058	0.409 ± 0.024
5	0.058974359	0.600 ± 0.050	2.000 ± 0.050	0.522 ± 0.030

5 Графики

5.1 Зависимость Y = aZ

5.2 Зависимость $a = A + B \cdot \sin \alpha$

6 Окончательные результаты

$$B = g = 8.873 \qquad A = -0.004$$

$$\delta_g = \sqrt{\frac{\sum_{i=1}^N d_i^2}{D(N-2)}} \qquad d_i = a_i - (A+B \cdot \sin \alpha_i) \qquad D = \sum_{i=1}^N \sin \alpha_i^2 - \frac{1}{N} (\sum_{i=1}^N \sin \alpha_i)^2$$

$$D = 0.001454 \qquad \delta_g = 0.490 \qquad \Delta g = 2 \cdot \delta_g = 0.98$$

$$\epsilon = \frac{\Delta g}{g} \cdot 100\% = 11\%$$

7 Выводы

В первой части задания была доказана линейная зависимость $Y(Z) = a \cdot Z$, где Y — перемещение тележки по рельсу, когда мы измеряли время, а Z — квадрат времени, за которое было произведено это перемещение. Следовательно, движение равноускоренное.

Во второй части работы, проанализировав скорость движения тележки и её ускорение мы смогли определить значение ускорения свободного падения: $g=8.873\pm0.98~\mathrm{m/c^2}$ с относительной погрешностью в 11%