66.70 Estructura del Computador

Punto Flotante

En muchos cálculos el intervalo de números que se usan es muy grande:

- la masa del electrón, 9 x 10⁻²⁸ gramos
- la masa del Sol, 2 x 10³³ gramos

Representación en punto fijo

 M_e = Masa del electrón = 9 x 10⁻²⁸ gramos

 M_s = Masa del sol = 2 x 10³³ gramos

 $n\'umero representado = M x base^{exp}$

De un total de **N** bits:

- > 1 bit para el signo de la mantisa
- > x bits para mantisa
- > y bits para el exponente (magnitud y signo)

- Casi todos los lenguajes de programación ofrecen datos en punto flotante
- Desde PCs a supercomputadoras tienen coprocesadores para operaciones en PF
- Todo sistema operativo debe responder a excepciones punto flotantes (overflow)

- Casi todos los lenguajes de programación ofrecen datos en punto flotante
- Desde PCs a supercomputadoras tienen coprocesadores para operaciones en PF

Estandarización del formato PF: IEEE 754

- En 1982 la IEEE definió el estándar IEEE-754
- Lo implantó por primera vez en los Intel 8087
- En 1985 este formato fue aceptado como el estándar universal
- En 2008 se incluyeron modificaciones a la norma original

Norma IEEE 754

Norma IEEE 754

Definiendo la Norma IEEE 754

Cuestiones a establecer:

- > Qué <u>base</u> utilizar? ~ งังเม
- Números 'normalizados'
- Formato para guardar el exponente? (entero con signo)
- Valores "especiales"

no representan en Car ni cal ni Mag. y Signo Usamos el sistema

exceso +

0: se exceole en +

Definiendo la Norma IEEE 754 ¿Qué base utilizar?

- ✓ Cuál elegir? 2, 10, 16 ...
- ✓ Qué efecto tiene sobre la representación?
- ✓ Conveniencia al realizar operaciones aritméticas

Definiendo la Norma IEEE 754

Valores normalizados

Bit implícito vale 1

comienzan con 1, «
El p vo se pura j re oprise
representar a orno
representar modo

Ventajas:

- ✓ La representación binaria es única para un número dado
- ✓ Todos los bits de la mantisa son significativos
- ✓ Es más fácil comparar dos números:

1º) Comparo exponentes 2º) Comparo mantisas

Definiendo la Norma IEEE 754

Representación del exponente

- El exp. es un número entero con signo
- Sistema para su representación
 - Magnitud y Signo?
 - Complemento a 1 ?
 - Complemento a 2 ?
 - "Exceso-N"?

Representación "exceso 7"

Decimal	Two's Complement	Ones' Complement	Signed Magnitude	Exceso 7
-8	1000		7535 -	
-7	1001	1000	1111	0 0 0 0
-6	1010	1001	1110	0 0 0 1
-5	1011	1010	1101	0 0 1 0
-4	1100	1011	1100	0 0 1 1
-3	1101	1100	1011	0 1 0 0
-2	1110	1101	1010	0 1 0 1
-1	1111	1110	1001	0 1 1 0
0	0000	1111 or 0000	1000 or 0000	0 1 1 1 = 7
1	0001	0001	0001	1 0 0 0
2	0010	0010	0010	1 0 0 1
3	0011	0011	0011	1 0 1 0
4	0100	0100	0100	1 0 1 1
5	0101	0101	0101	1 1 0 0
6	0110	0110	0110	1 1 0 0 1 1 0 1 1 1 1 0 1 e s m 3 5 ω.ω
7	0111	0111	0111	1 1 1 1
				Le 1 me dice of

Representación "exceso 7"

	<u>7</u>	<u>so</u>	<u>ce</u>	<u>Ξχ</u>	<u>E</u>		Signed Magnitud		Ones' Compleme	vo's olement		Decimal
lor reservado								7 4 7		000	10	-8
n IEEE 754	0	0	0	0	-0		1111		1000	001	10	_7
-6 7	1	0	0	0	0		1110		1001	010	10	-6
1	0	1	0	0	0		1101		1010	011	10	-5
- 4	1	1	0	0	0		1100		1011	100	11	-4
PANG	0	0	1	0	0		1011		1100	101	11	-3
	1	0	1	0	0		1010		1101	110	11	-2
DE	0	1	1	0	0		1001		1110	111	11	-1
→ 0 PEPRE	1 .	1	1	0	0	000	1000 or 00	000	1111 or 000	000	00	0
) L . WE	0	0	0	1	1		0001		0001	001	00	1
l Repui	1	0	0	1	1		0010		0010	010	00	2
Cro.	0	1	0	1	1		0011		0011	011	00	3
	1	1	0	1	1		0100		0100	100	01	4
+5	0	0	1	1	1		0101		0101	101	01	5
	1	0	1	1	1		0110		0110	110	01	6
+7	0	1	1	1	1		0111		0111	111	01	7

Representación "exceso 7"

Decimal	Two's Complement	Ones' Complement	Signed Magnitude	Exceso 7	
-8	1000	——·			Valor reservado
-7	1001	1000	1111	0 0 0 0	en IEEE 754
-6	1010	1001	1110	0 0 0 1	- 6
-5	1011	1010	1101	0 0 1 0	
-4	1100	1011	1100	0 0 1 1	- 4
-3	1101	1100	1011	0 1 0 0	ventajas?
-2	1110	1101	1010	0 1 0 1	ientajas
-1	1111	1110	1001	0 1 1	16.
0	0000	1111 or 0000	1000 or 0000	0 1 1 1	→ 0
1	0001	0001	0001	1 0 0 0	
2	0010	0010	0010	1 0 0 1	
3	0011	0011	0011	1 0 1 0	
4	0100	0100	0100	1 0 1 1	
5	0101	0101	0101	1 1 0 0	+5
6	0110	0110	0110	1 1 0 1	
7	0111	0111	0111	1 1 1 0	+7
					Valor reservado

Definiendo la Norma IEEE 754

■ IEEE 754 expresa el componente en exceso-N

Cuál debería ser el valor de N ?

Rango representable en simple precisión

Rango del exponente

8 bits, exceso 127

No admite Exp=0000..0000 ni Exp=1111..1111

Máximo exponente representable (valor positivo): 1111 1110 -> 127 Mínimo exponente representable (valor negativo): 0000 0001 -> -126

Rango de la mantisa

23 bits

normalizar => bit implícito => 24 bits => Mantisa = 1.0 + Mantisa guardada

=> 1 ≤ *Mantisa* < 2

1 bi	t 8 bits	23 bits		
S	exponente	mantisa		

Rango representable en doble precisión

Rango del exponente

11 bits, exceso 1023

No admite Exp=0000..0000 ni Exp=1111..1111

Máximo exponente representable (valor positivo): 1111 1110 -> 1023 *Mínimo* exponente representable (valor negativo): 0000 0001 -> -1022

Rango de la mantisa

52 bits

normalizar => bit implícito => 53 bits => Mantisa = 1.0 + Mantisa guardada => 1 \le Mantisa \le 2

1 b	it 11 bits	52 bits		
s	exponente	mantisa		

Rango representable

Overflow y Underflow

$$M_{min}$$
 . base $exp_{min} \leq Num$. $\leq M_{max}$. base exp_{max}

Resolución

Números reales, su representación en punto fijo y en punto flotante

Dada una cadena de 32/64 bits - Cuántos números diferentes puedo representar?: 2 - En qué rango de valores? (con signo): { p. tijo: $2^{32}-1$ p. Moterite: 2^{12} ? operado misos

Valores de referencia en IEEE-754

	Simple precisión	Doble precisión
Bits del signo	1	1
Bits del exponente	8	11
Bits de la mantisa	23	52
Total de bits	32	64
Sistema de exponente	Exceso en 127	Exceso en 1023
Intervalo del exponente	-126 a +127	-1022 a +1023
Número normalizado más pequeño	2-126	2-1022
Número normalizado más grande	aprox. 2 ¹²⁸	aprox. 2 ¹⁰²⁴
Intervalo decimal	aprox. 10 ⁻³⁸ a 10 ³⁸	aprox. 10 ⁻³⁰⁸ a 10 ³⁰⁸

Norma IEEE 754

Valores especiales

Cero

Todos los bits en cero. Signo.

Infinito

• Exp=todos 1's , Mantisa = todos 0's . Signo.

NaN ("Not a number")

• E=todos 1's , Mantisa <> 0, Signo = no importa

Sumar dos números en punto flotante

- 1) Calcular la diferencia entre los exponentes d=|Exp1 Exp2| => determino cuál es el número mayor y cuál el menor
- 2° m 2°s
- 2) Correr *d* posiciones a la derecha la coma del número menor
- 3) Encolumnar y sumar las mantisas
- 4) El exponente del resultado es el exponente del número mayor
- 5) Normalizar la mantisa del resultado ajustando el exponente si fuese copio cestado (matema tico necesario

tos procesadores en pto le lung que de los procesadores en pto le comos y orser la trijo y hay un coprocessor comos y orser la trijo y hay un pto pro y ouganaliza

Punto fijo VS. Punto flotante

- Precisión
- Rango dinámico
- Velocidad
- Requerimientos de hardware