Lecture 20

Rajiv Kumar rajiv.kumar@iitjammu.ac.in

October 29, 2021

Eigen Values and Eigen Vectors

Eigenvalues and Eigenvectors

Definition

- Let $T: V \to V$ be a linear transformation. Then an *eigenvector* of T is a nonzero vector \mathbf{v} such that $T(\mathbf{v}) = \lambda \mathbf{v}$ for some scalar λ . The scalar $\lambda \in \mathbb{F}$ is called *eigenvalue* of T.
- For any $n \times n$ matrix A over \mathbb{F} , a nonzero vector $X \in \mathbb{F}^n$ is called a eigenvector of A, if $AX = \lambda X$ for some scalar $\lambda \in \mathbb{F}$. The subspace $A_{\lambda} = \{X \in \mathbb{F}^n : AX = \lambda X\}$ is called the eigenspace of A corresponding to λ . Clearly, $A_{\lambda} = N(A \lambda I)$.

Remark

- Let $T:V\to V$ be a linear transformation, where V is a vector space (real or complex) and B be a basis of V. If $A=[T]_B$, then λ is an eigenvalue of A if and only if λ is an eigenvalue of T. Because $T(\mathbf{v})=\lambda\mathbf{v}$ implies that $[T(\mathbf{v})]_B=\lambda[\mathbf{v}]_B$. Therefore, $[T]_B[\mathbf{v}]_B=\lambda[\mathbf{v}]_B$, and hence $AX=\lambda X$ for $X=[\mathbf{v}]_B$. Conversely, if λ is an eigenvalue of A then $AX=\lambda X$ for some nonzero $X\in\mathbb{F}^n$, this implies $[T]_B[\mathbf{v}]_B=[T(\mathbf{v})]_B=\lambda[\mathbf{v}]_B$ for some nonzero vector $\mathbf{v}\in V$. This gives $T(\mathbf{v})=\lambda\mathbf{v}$.
- For any $n \times n$ matrix A over \mathbb{F} , a scalar $\lambda \in \mathbb{F}$ is an eigenvalue of A if and only if $\det(A \lambda I) = 0$. Suppose $\lambda \in \mathbb{F}$. Then λ is an eigenvalue of A if and only if there exists a nonzero vector $X \in \mathbb{F}^n$ such that $AX = \lambda X$ or equivalently $(A \lambda I)X = 0$. Since X is nonzero this is equivalent to $\det(A \lambda I) = 0$.

Definition

For any $n \times n$ matrix A over \mathbb{F} , the polynomial $\det(A - xI)$ is called the *characteristic polynomial* of A. The equation $\det(A - xI) = 0$ is called the *characteristic equation* of A. Thus the eigen values of A are the solutions of $\det(A - xI) = 0$ that lie in \mathbb{F} .

Example Consider the linear operator T on \mathbb{R}^2 defined by

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}2x_1 - 12x_2\\x_1 - 5x_2\end{bmatrix}$$
. Find eigenvalues and eigenvectors of T .

Solution. The matrix of T relative to the standard basis of \mathbb{R}^2 is given by $\begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$. To determine the eigenvalues we solve

$$\det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & -12 \\ 1 & -5 - \lambda \end{bmatrix} = 0$$
. Thus $\lambda_1 = -1$ and $\lambda_2 = -2$

are the eigenvalues. To find the eigenvectors, we need to find the null space of $A - \lambda_1 I$ and $A - \lambda_2 I$. Check that for $\lambda_1 = -1$,

$$N((A - \lambda I)) = \operatorname{span} \left\{ \begin{bmatrix} 4 \\ 1 \end{bmatrix} \right\}$$
. Thus $X_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ is an eigenvector.

Similarly, for $\lambda_2 = -2$, check that $X_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ is an eigenvector.

Exercise

- Find the eigenvalues and eigenvectors of $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}.$
- Find the eigenvalues of $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & -10 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$ find a basis for

each of the corresponding eigenspaces.

Answer.
$$\lambda=1,1,2,3$$
 and $A_{\lambda_1}=\operatorname{span}\left\{\begin{bmatrix}0\\1\\0\\2\end{bmatrix},\begin{bmatrix}-2\\0\\2\end{bmatrix}\right\}$,

 $A_{\lambda_2} = \operatorname{span} \left\{ egin{array}{c} 0 \ 5 \ 1 \ \end{array}
ight\}, A_{\lambda_3} = \operatorname{span} \left\{ egin{array}{c} 0 \ -5 \ 0 \ \end{array}
ight\}.$