20

25

CLAIMS

- 1. A method for reducing the methane content in an off-gas stream of a gas-fired plant, wherein at least a portion of said off-gas stream is contacted with a plasma and a catalyst.
- 2. A method according to claim 1, wherein further the NOx content of said off-gas stream is reduced.
 - 3. A method according to any one of the preceding claims, wherein said plasma is generated by the use of an electrical or an electromagnetic field.
- 4. A method according to claim 3, wherein the plasma is generated by use of an electrical field of 1-100 kV/cm.
 - 5. A method according to any one of the preceding claims, wherein the plasma is generated by means of an alternating voltage of a frequency of 100 Hz to 100 kHz.
 - 6. A method according to any one of the preceding claims, wherein the plasma is maintained with the aid of a partial discharge.
 - 7. A method according to claim 6, wherein the partial discharge is generated by use of a dielectric.
 - 8. A method according to any one of the preceding claims, wherein the whole off-gas stream or virtually the whole off-gas stream is contacted with said plasma and said catalyst.
 - 9. A method according to any one of the preceding claims, which is carried out at a temperature of 300 500 °C.
 - 10. A method according to any one of the preceding claims, wherein said catalyst comprises Al₂O₃, zeolite, ZrO₂, Ga₂O₃, TiO₂, WO₃, perovskite or combinations thereof.
 - 11. A method according to claim 8, wherein said catalyst comprises γ -Al₂O₃.

- 12. A method according to any one of the preceding claims, wherein said catalyst is a three-way catalyst, which comprises Rh, Pt or Pd on Al₂O₃ support, if desired with additions of Ce, La, Zr or Ce.
- 13. A method according to any one of the preceding claims, wherein said catalyst is an oxidation catalyst, which comprises Ag or Pt on a metal oxide support.