

Chap. 5 – TITRAGES ACIDO - BASIQUES

I- Généralités

1. Condition pour pouvoir réaliser un titrage

Un titrage n'est possible que si la réaction chimique est unique, rapide et quasi-totale ($K > 10^4$).

I- Généralités

2. Relation à l'équivalence

 Au cours du dosage, le volume du milieu réactionnel varie. Il faut donc établir sous l'équation du dosage un tableau d'avancement en quantités de matière.

A l'équivalence, les réactifs titrant et à titrer ont été introduits dans les proportions stœchiométriques.

Pour le titrage d'un monoacide par une monobase, cela donne :

$$n(acide)_i = n(base)_{ajouté}$$

soit $C_oV_o = C v_{éq}$

1. Titrage d'un acide fort par une base forte

a- Équation du dosage

Montage de titrage pH-métrique (Bordas TS)

1. Titrage d'un acide fort par une base forte

a- Équation du dosage

1. Titrage d'un acide fort par une base forte

b- Équation de la courbe pH = f(V)

$$H_3O^+ + HO^- \rightarrow 2H_2O$$

$$v = 0 \qquad C_0V_0 \qquad 0 \qquad \text{excès}$$

$$0 < v < v_{\text{\'eq}} \qquad C_0V_0 - Cv \qquad \approx 0 \qquad \text{excès}$$

$$v = v_{\text{\'eq}} \qquad \approx 0 \qquad \approx 0 \qquad \text{excès}$$

$$v > v_{\text{\'eq}} \qquad \approx 0 \qquad Cv - C_0V_0 \qquad \text{excès}$$

1. Titrage d'un acide fort par une base forte

b- Équation de la courbe pH = f(V)

$$\begin{aligned} &H_3O^+ \ + \ HO^- & \to \ 2H_2O \\ &\textbf{v} = \textbf{0} & \text{pH d'un acide fort} & pH = -\log C_0 = pC_0 \\ &\textbf{0} < \textbf{v} < \textbf{v}_{\text{\'eq}} & \textbf{pH impos\'e par l'acide} \\ &\text{fort restant} & pH = -\log \frac{C_o V_o - C v}{V_o + v} \\ &\textbf{v} = \textbf{v}_{\text{\'eq}} & \textbf{solution Na^+ + Cl^-} & \textbf{pH} = \textbf{7} \end{aligned}$$

$$V > V_{\acute{eq}}$$
 pH imposé par la soude $pH = 14 + log \frac{Cv - C_o V_o}{V_o + v}$ en excès

1. Titrage d'un acide fort par une base forte

1. Titrage d'un acide fort par une base forte

d- Détermination de l'équivalence

On peut la déterminer:

par la méthode des tangentes;

1. Titrage d'un acide fort par une base forte

d- Détermination de l'équivalence

On peut la déterminer:

- par la méthode des tangentes;
- en traçant la courbe dérivée;

1. Titrage d'un acide fort par une base forte

d- Détermination de l'équivalence

On peut la déterminer:

- par la méthode des tangentes;
- en traçant la courbe dérivée;
- en suivant le titrage non plus par pHmétrie, mais au moyen d'un indicateur coloré.

1. Titrage d'un acide fort par une base forte

e- Influence de la concentration sur la courbe pH = f(v) pour le titrage d'un acide fort.

2. Titrage d'un acide faible par une base forte

a- Équation du dosage

2. Titrage d'un acide faible par une base forte

a- Équation du dosage

$$CH_3CO_2H + HO^- \stackrel{\mathsf{K}}{\underset{\mathsf{K}_b}{\longleftrightarrow}} CH_3CO_2^- + H_2O$$

$$K = \frac{[CH_3CO_2^{-1}]}{[CH_3CO_2H][[OH^{-1}]} = 1 / K_b = 1 / 10^{-9.2} \longrightarrow K = 10^{9.2} \longrightarrow \text{Réaction totale}$$

2. Titrage d'un acide faible par une base forte

b- Equation de la courbe pH = f(V)

$$CH_3CO_2H + HO^- \rightarrow CH_3CO_2^- + H_2O$$

$$V = 0$$

 $C^0 V^0$

excès

> pH d'une solution d'acide faible : $pH = \frac{1}{2}(pK_a + pC_0)$

$$pH = \frac{1}{2}(pK_a + pC_0)$$

$$0 < v < v_{\text{\'eq}}$$

 $0 < v < v_{\acute{e}\alpha}$ $C_0 V_0 - C V$

≈0

Cv

excès

mélange acide faible/base faible conjuguée :

$$pH = pK_a + \log \frac{Cv}{C_0V_0 - Cv}$$

2. Titrage d'un acide faible par une base forte

b- Équation de la courbe pH = f(V)

$$CH_3CO_2H + HO^- \rightarrow CH_3CO_2^- + H_2O$$

$$v = v_{\text{éq}}$$
 ≈ 0 ≈ 0 C_0V_0 excès

solution de la base faible conjuguée :

$$pOH = \frac{1}{2}(pK_b + pC_b)$$
 avec $C_b = \frac{C_oV_o}{V_o + v_{eq}}$

$$V > V_{\text{\'eq}}$$
 ≈ 0 $C_0 V_0$ $C_0 V_0$ excès

> pH donné par la soude en excès :

$$pH = 14 + log \frac{Cv - C_o V_o}{V_o + v}$$

2. Titrage d'un acide faible par une base forte

c- Allure de la courbe acide faible-base forte

2. Titrage d'un acide faible par une base forte

d- Influence de la concentration sur la courbe pH = f(v) pour le titrage d'un acide faible (acétique)

1. Définition

- Un indicateur coloré est un couple acide-base (HIn/In⁻) (In = Indicateur) dont les formes acide (HIn) et basique (In⁻) ont des couleurs différentes.
- On le caractérise par son pK_a que l'on nomme pK_i.
- La teinte sensible de l'indicateur qui est appelée zone de virage correspond à la superposition de 2 couleurs.

1. Définition

- Un indicateur coloré est un couple acide-base (HIn/In-) (In = Indicateur) dont les formes acide (HIn) et basique (In-) ont des couleurs différentes.
- On le caractérise par son pK_a que l'on nomme pK_i.
- La teinte sensible de l'indicateur qui est appelée zone de virage correspond à la superposition de 2 couleurs.

Zone de virage à peu près entre pK_i – 1 et pK_i + 1

- Si pH < pK_i-1 : [Hin] > 10 [In⁻], la forme non dissociée prédomine ainsi que sa couleur ;
- Si pH > pK_i+1 : [In⁻] > 10 [Hin], la forme dissociée prédomine ainsi que sa couleur.

2. Exemples

• Hélianthine $pK_i = 3.7$

• Bleu de bromothymol $pK_i = 7,0$

Rouge de Phénol pK_i = 8,0

2. Exemples

- Pour réaliser un dosage, on choisit un indicateur coloré dont la zone de virage se situe dans la zone du saut de pH, ce qui implique un pK_i proche du pH_{éq}.
- La zone de virage peut inclure le pH_{éq}, mais ce n'est pas une obligation.

1. Dosage d'un acide fort par une base forte $HCI(C_0V_0)/NaOH$ (CV)

a-Équation du dosage et détermination de la courbe $\sigma = f(v)$

$$H_3O^+ + Cl^- + Na^+ + HO^- \rightarrow Cl^- + Na^+ + 2H_2O$$

Qté de matière	H ₃ O+	CI-	Na⁺	OH-
Avant éq	C ₀ V ₀ -CV	C_0V_0	CV	0

- Cl⁻ est cte; la conductivité diminue car les H₃O⁺ sont remplacés par Na⁺ et la conductivité de Na⁺ est nettement inférieure à celle de H₃O⁺; [H₃O⁺] \ [Na+] /
- Avant l'équivalence : milieu très acide, OH⁻ négligeable, seuls Na⁺, Cl⁻ et H₃O⁺ participent au courant :

$$\sigma = \lambda^{\circ}_{CI}.[CI] + \lambda^{\circ}_{Na+}.[Na^{+}] + \lambda^{\circ}_{H3O+}.[H_{3}O^{+}]$$

$$= \lambda^{\circ}_{CI}.\frac{c_{0}v_{0}}{v_{0}+v} + \lambda^{\circ}_{Na+}.\frac{cv}{v_{0}+v} + \lambda^{\circ}_{H3O+}.\frac{c_{0}v_{0}-cv}{v_{0}+v}$$

1. Dosage d'un acide fort par une base forte HCI(C₀V₀)/NaOH (CV)

a-Équation du dosage et détermination de la courbe $\sigma = f(v)$

$$H_3O^+ + Cl^- + Na^+ + HO^- \rightarrow Cl^- + Na^+ + 2H_2O$$

Qté de matière	H ₃ O ⁺	CI-	Na⁺	OH-
Avant éq	C ₀ V ₀ -CV	C_0V_0	CV	0

- Cl⁻ est cte; la conductivité diminue car les H₃O⁺ sont remplacés par Na⁺ et la conductivité de Na⁺ est nettement inférieure à celle de H₃O⁺; [H₃O⁺] \ [Na+] /
- Avant l'équivalence : milieu très acide, OH⁻ négligeable, seuls Na⁺, Cl⁻ et H₃O⁺ participent au courant :
- Si v<<Vo (dilution négligeable)

$$\sigma = (\lambda^{\circ}_{Cl^{-}} + \lambda^{\circ}_{H3O+}).C_{0} + (\lambda^{\circ}_{Na+} - \lambda^{\circ}_{H3O+}).\frac{cv}{v_{0}}$$

σ est une fonction affine décroissante de v

1. Dosage d'un acide fort par une base forte $HCI(C_0V_0)/NaOH$ (CV)

a-Équation du dosage et détermination de la courbe $\sigma = f(v)$

$$H_3O^+ + Cl^- + Na^+ + HO^- \rightarrow Cl^- + Na^+ + 2H_2O$$

Qté de matière	H ₃ O+	CI ⁻	Na+	OH-
Avant éq	C ₀ V ₀ -CV	C_0V_0	CV	0
Après éq	0	C_0V_0	CV	CV-C ₀ V ₀

 Après l'équivalence : solution neutre de NaCl ; la conductivité augmente par l'apport en excès de OH-

$$\sigma = \lambda^{\circ}_{Cl^{-}}[Cl^{-}] + \lambda^{\circ}_{Na+}[Na^{+}] + \lambda^{\circ}_{HO^{-}}[HO^{-}]$$

$$= \lambda^{\circ}_{Cl^{-}} \frac{c_{0}v_{0}}{v_{0}+v} + \lambda^{\circ}_{Na+} \frac{cv}{v_{0}+v} + \lambda^{\circ}_{HO^{-}} \frac{cv-c_{0}v_{0}}{v_{0}+v}$$

1. Dosage d'un acide fort par une base forte HCI(C₀V₀)/NaOH (CV)

a-Équation du dosage et détermination de la courbe $\sigma = f(v)$

$$H_3O^+ + Cl^- + Na^+ + HO^- \rightarrow Cl^- + Na^+ + 2H_2O$$

Qté de matière	H ₃ O ⁺	CI-	Na+	OH-
Avant éq	C ₀ V ₀ -CV	C_0V_0	CV	0
Après éq	0	$C^0\Lambda^0$	CV	CV-C ₀ V ₀

- Après l'équivalence : solution neutre de NaCl ; la conductivité augmente par l'apport en excès de OH-
- Si v<<Vo (dilution négligeable)

$$\sigma = (\lambda^{\circ}_{Cl^{-}} - \lambda^{\circ}_{HO^{-}}).C_{0} + (\lambda^{\circ}_{Na+} + \lambda^{\circ}_{HO^{-}}).\frac{cv}{v_{0}}$$

σ est une fonction affine croissante de v

1. Dosage d'un acide fort par une base forte HCI(C₀V₀)/NaOH (CV)

b- Allure de la courbe $\sigma = f(v)$

$$H_3O^+ + Cl^- + Na^+ + HO^- \rightarrow Cl^- + Na^+ + 2H_2O$$

2. Dosage d'un acide faible par une base forte $CH_3COOH(C_0V_0)/NaOH(CV)$

a- Équation du dosage et détermination de la courbe $\sigma = f(v)$

$$CH_3COOH + Na^+ + HO^- \rightarrow CH_3COO^- + Na^+ + 2H_2O$$

Qté de matière	CH ₃ COO-	Na ⁺	OH-	
Avant éq	CV	CV	~0	

- CH₃COOH ne conduit pas, CH₃COOH est remplacé par des ions CH₃COO⁻ et la conductivité augmente
- Avant l'équivalence : OH⁻ est négligeable, seuls CH₃COO- et Na⁺ participent au courant ;

$$\sigma = \lambda^{\circ}_{CH3COO^{-}}[CH_{3}COO^{-}] + \lambda^{\circ}_{Na+}[Na^{+}]$$

$$= \lambda^{\circ}_{CH3COO^{-}} \frac{cV}{V_{0}+V} + \lambda^{\circ}_{Na+} \frac{cV}{V_{0}+V}$$

2. Dosage d'un acide faible par une base forte CH₃COOH(C₀V₀)/NaOH (CV)

a- Équation du dosage et détermination de la courbe $\sigma = f(v)$

$$CH_3COOH + Na^+ + HO^- \rightarrow CH_3COO^- + Na^+ + 2H_2O$$

Qté de matière	CH ₃ COO-	Na ⁺	OH-	
Avant éq	CV	CV	~0	

- CH₃COOH ne conduit pas, CH₃COOH est remplacé par des ions CH₃COO⁻ et la conductivité augmente
- Avant l'équivalence : OH⁻ est négligeable, seuls CH₃COO⁻ et Na⁺ participent au courant ;
- Si v<<Vo (dilution négligeable)

$$\sigma = (\lambda^{\circ}_{CH3COO^{-}} + \lambda^{\circ}_{Na+}).\frac{cv}{v_{o}}$$

σ est une fonction linéaire croissante de v

2. Dosage d'un acide faible par une base forte $CH_3COOH(C_0V_0)/NaOH(CV)$

a-Équation du dosage et détermination de la courbe $\sigma = f(v)$

$$CH_3COOH + Na^+ + HO^- \rightarrow CH_3COO^- + Na^+ + 2H_2O$$

Qté de matière	CH ₃ COO-	Na+	OH-
Avant éq	CV	CV	~0
Après éq	C_0V_0	CV	CV-C ₀ V ₀

 Après l'équivalence : CH₃COOH a totalement réagi, on forme le sel CH₃COONa et on ajoute du Na⁺ et OH⁻ en excès

$$\sigma = \lambda^{\circ}_{CH3COO^{-}}[CH_{3}COO^{-}] + \lambda^{\circ}_{Na+}[Na^{+}] + \lambda^{\circ}_{HO^{-}}[HO^{-}]$$

$$= \lambda^{\circ}_{CH3COO^{-}} \frac{c_{0}v_{0}}{v_{0}+v} + \lambda^{\circ}_{Na+} \frac{cv}{v_{0}+v} + \lambda^{\circ}_{HO^{-}} \frac{cv-c_{0}v_{0}}{v_{0}+v}$$

2. Dosage d'un acide faible par une base forte CH₃COOH(C₀V₀)/NaOH (CV)

a- Équation du dosage et détermination de la courbe $\sigma = f(v)$

$$CH_3COOH + Na^+ + HO^- \rightarrow CH_3COO^- + Na^+ + 2H_2O$$

Qté de matière	CH ₃ COO-	Na+	OH-
Avant éq	CV	CV	~0
Après éq	C_0V_0	CV	CV-C ₀ V ₀

- Après l'équivalence : CH₃COOH a totalement réagi, on forme le sel CH₃COONa et on ajoute du Na⁺ et OH⁻ en excès
- Si v<<Vo (dilution négligeable)

$$\sigma = (\lambda^{\circ}_{CH3COO^{-}} - \lambda^{\circ}_{HO^{-}}).C_{0} + (\lambda^{\circ}_{Na+} + \lambda^{\circ}_{HO^{-}}).\frac{cv}{v_{0}}$$

σ est une fonction affine croissante de v

La pente augmente vite car $\lambda^{\circ}_{OH-} >> \lambda^{\circ}_{CH3COO-}$

2. Dosage d'un acide faible par une base forte $CH_3COOH(C_0V_0)/NaOH$ (CV)

b- Allure de la courbe $\sigma = f(v)$

$$CH_3COOH + Na^+ + HO^- \rightarrow CH_3COO^- + Na^+ + 2H_2O$$

