

Pianificazione dei Sistemi Informativi

I profili principali

- Storicamente nell''IT vi sono molteplici profili principali
- Profili standardizzati
 - European E-Competence Framework
 - modello Eucip

Eventualmente approfondiremo

- Ambiti standard
 - Pianificazione strategica e progettazione (Plan)
 - Sviluppo e implementazione (Build)
 - Esercizio (Run)
 - Supporto (Enable)
 - Gestione (Manage)

Il ruolo dell'Analista di Sistemi

- Ruolo chiave nello sviluppo dei Sistemi Informativi
 - o nell'analizzare la situazione business
 - o nell'identificare opportunità di miglioramenti
 - o nel progettare SI per implementare i miglioramenti

I ruoli del Systems Analyst

- Interagisce con numerosi altri professionisti
 - specialisti tecnici (DBA, network admin, programmatori)
 - persone dell'area business (utenti, dirigenti, steering committee)
 - altri (vendor, consulenti)
- Vari ruoli specialistici
 - People-oriented: change management analyst, project management
 - Business-oriented: requirements analyst, business analyst
 - Technically-oriented: infrastructure analyst
 - Generalista: systems analyst

Cosa piace ai System Analyst del proprio lavoro?

- Sfide
- Tecnologia
- Varietà
- Cambiamento costante
- Problem Solving

Cosa non piace ai System Analyst del proprio lavoro?

- Mancanza di comunicazione/riconoscimento del Management
- Errori e richieste degli End-user
- Stress/pressione/esaurimento
- Tecnologia di business in costante mutamento
- Scadenze non realistiche

Preparatevi per la vostra carriera

- ☐ Working knowledge of information technology
- ☐ Computer programming experience & expertise
- ☐ General business knowledge
- ☐ Problem-solving skills
- ☐ Interpersonal communication skills
- ☐ Flexibility and adaptability
- ☐ Character and ethics
- ☐ Systems analysis & design skills

Come vengono costruiti i sistemi?

Systems Development Life Cycle (SDLC)

- ☐ Pianificazione (Planning)
- ☐ Analisi (Analysis)
- ☐ Progettazione (Design)
- **☐** Implementazione (Implementation)

Fase di Planning

- Avvio del progetto
 - Preparare una System Request
 - Eseguire un'analisi preliminare di fattibilità
- Predisposizione del progetto
 - Project Plan, includendo work plan & staffing (risorse) plan

Fase di Analisi

- Individuare una strategia di analisi
 - o studiare il sistema attuale e i suoi problemi
- Raccogliere e analizzare i requisiti
 - Sviluppare il concetto del nuovo sistema
 - Descrivere il nuovo sistema con modelli di analisi
- Preparare e presentare la proposta di sistema
 - Riassumere i risultati della fase di analisi
 - La decisione Go/No Go è presa dallo "sponsor" e dallo steering committee

Fase di Progettazione

- Scegliere la strategia di acquisizione del SI
 - Build / Buy / Outsource (tutte le scelte sono sempre possibili ?)
- Progettare i componenti del sistema
 - Architettura, interfaccia, database, programmi,...
 - Assemblare gli elementi progettuali nella System Specification
- Presentare allo steering committee
 - La decisione Go / No Go prima di entrare nella fase finale

Il dilemma "make, buy or customize"

- Acquistare una soluzione IT presente sul mercato e provvedere eventualmente ad adattarla (**buy** o acquisto)
- Adattare, più o meno ampiamente, una soluzione totale o parziale esistente (customize o adattamento)
- Costruire da zero (o da semilavorati) una soluzione ad hoc (make o realizzazione da zero)

Il dilemma "make, buy or customize"

	Buy	Customize	Make
Requisiti	Approssimati	Pochi	Esatti
Modificabilità	Difficile	Elevata	Buona
Costo	Dipende da requisiti e diffusione	Dipende	Alto

Fase di Implementazione

- Costruzione del sistema
 - Programmazione e testing
- Installazione del sistema
 - Training
 - Conversione al nuovo sistema
- Supporto al sistema in funzione

Avvio del Progetto

Come sono avviati i progetti?

Da dove vengono i progetti sui SI?

- Soddisfare un bisogno/need del business
 - abilitare una iniziativa o strategia di business
 - supportare una fusione/acquisizione
 - risolvere un "point of pain" (punto di dolore/critico)
 - utilizzare una nuova tecnologia
 - conseguenza del Business Process Management (BPM):
 - Business Process Automation
 - Business Process Improvement
 - Business Process Reengineering

What is BPM? (continued)

- Four-step continuous cycle:
 - Define and map the steps in a business process,
 - Create ways to improve on steps in the process that add value,
 - Find ways to eliminate or consolidate steps in the process that don't add value,
 - Create or adjust electronic workflows to match the improved process maps.

Cos'è il BPM? (cont)

- Un ciclo continuo a quattro fasi:
 - 1. Definire e mappare i passi di un processo aziendale,
 - 2. Creare modi per migliorare i passi nel processo che aggiungono valore,
 - 3. Individuare i modi per eliminare o consolidare i passi nel processo che non aggiungono valore,
 - 4. Creare o adattare i workflow informatici per farli corrispondere alle mappe migliorate del processo.

BPM Identifies Business Needs

- Business Process Automation
 - "Create or adjust electronic workflows to match the improved process maps"
- Business Process Improvement
 - Study the business processes
 - Create new, redesigned processes to improve the process workflows, and/or
 - Utilize new technologies enabling new process structures
- Business Process Reengineering
 - Total overhaul of work processes

BPM identifica i bisogni del Business

- Business Process Automation
 - "Creare o adattare i workflow informatici per farli corrispondere alle mappe migliorate del processo"
- Business Process Improvement
 - Studiare i processi di business
 - Creare nuovi, riprogettati processi per migliorare i workflow dei processi, e/o
 - Utilizzare nuove tecnologie che abilitano nuove strutture dei processi
- Business Process Reengineering
 - Una totale revisione dei processi

Abbiamo già un progetto?

- Una forte esigenza di business conduce una persona o un gruppo a farsi avanti come <u>Project Sponsor</u>
 - È la forza propulsiva dietro al progetto
 - Specifica i requisiti di business complessivi
 - Determina il business value
 - Richiede formalmente un progetto tramite la System Request

Relazione tra stakeholder e progetto

4 Pianificazione dei SI – Sis. Inf. 22-23

Attività del Project Sponsor

- Select the right project manager for the job and provide the project manager with a clear mandate, context, and level of authority
- . Ensure it is the appropriate project organization for the job
- Allow sufficient time to perform initiation activities properly, including ensuring we are doing the right thing, and for assessing readiness and complexity levels
- · Provide input and meaningful evaluation of the charter
- Participate in kick-off meeting and provide go/no go decision for the next stage

- Check whether plans are realistic and approve only those that are feasible
- Ensure the team is not forced to commit to unrealistic expectations
- Allow sufficient time for proper project planning.
- · Serve as a timely and relevant escalation point for issues and challenges
- Ensure prioritization of cross-project and within the project items, based on the portfolio and organizational needs
- · Observe the project team's dynamics and effectiveness

- Work with the project manager and do not over step boundaries by over-focusing on project details
- Evaluate progress against objectives and quide the project manager accordingly with relevant feedback
- Empower and motivate project managers and team members to identify and solve their own project problems and facilitate effective conflict resolution processes for the project team and stakeholders
- . Ensure you follow the process and do not bypass scope change or other project procedures
- Identify underlying factors and root causes to address issues in a meaningful way and don't "shoot the messenger"
- · Acknowledge/celebrate completion of key milestones

- Participate in the post-project evaluation and implement applicable findings
- Evaluate project performance based on adherence to project specifications/success criteria
- Ensure handoff is done in such way as to maximize benefit realization
- · Foster a constructive discussion of project success or failure
- Ensure sign-off completion

4 Pianificazione dei SI - Sis. Inf. 22-23

Fonte: Schibi, O. & Lee, C. (2015). Project sponsorship: senior management's role in the successful outcome of projects.

PMI® Global Congress 2015—EMEA, London, England. Newtown Square, PA: Project Management Institute.

La System Request

- Descrive le ragioni business per il progetto
- Definisce il valore atteso per il sistema
 - Forza lo sponsor a formalizzare le sue idee
 - Fornisce un framework per raccogliere le informazioni iniziali sul progetto
 - Standardizza l'informazione utilizzata dallo steering (approval) committee
- Elenca gli elementi chiave del progetto

Elementi della Systems Request

Description	Examples
The person who initiates the project and who serves as the primary point of contact for the project on the business side	Several members of the finance department Vice president of marketing CIO CEO
The business-related reason for initiating the system	Reach a new market segment Offer a capability to keep up with competitors Improve access to information Decrease product defects Streamline supply acquisition processes
The new or enhanced business capabilities that the system will provide	Provide online access to information Capture customer demographic information Include product search capabilities Produce performance reports Enhance online user support
The benefits that the system will create for the organization	3% increase in sales 1% increase in market share Reduction in headcount by 5 FTEs \$200,000 cost savings from decreased supply costs \$150,000 savings from removal of outdated technology
Issues that pertain to the approval committee's decision	Government-mandated deadline for May 30 System needed in time for the Christmas holiday season Top-level security clearance needed by project team to work with data
	The person who initiates the project and who serves as the primary point of contact for the project on the business side The business-related reason for initiating the system The new or enhanced business capabilities that the system will provide The benefits that the system will create for the organization

Systems Request per il Tune Source Music Download System

System Request—Digital Music Download Project

Project Sponsor: Carly Edwards, Assistant Vice President, Marketing

Business Need: This project has been initiated to create the capability of selling digital music downloads to customers through kiosks in our stores and over the Internet using our web site. Currently,

- Customers have many alternatives for downloading music and we need to provide this capability to retain our competitive position.
- Our music archive of rare and hard-to-find music is underutilized.

Business Requirements: Using this system over the Web or in-store kiosks, customers will be able to search for and purchase digital music downloads. The specific functionality that the system should have includes the following:

- Search for music in our digital music archive.
- · Listen to music samples.
- Purchase individual downloads at a fixed fee per download.
- Establish a customer subscription account permitting unlimited downloads for a monthly fee.
- Purchase music download gift cards.

Business Value: We expect that Tune Source will increase sales by enabling existing customers to purchase specific digital music tracks and by reaching new customers who are interested in our unique archive of rare and hard-to-find music. We expect to gain a new revenue stream from customer subscriptions to our download services. We expect some increase in cross-selling, as customers who have downloaded a track or two of a CD decide to purchase the entire CD in a store or through our web site. We also expect a new revenue stream from the sale of music download gift cards.

Conservative estimates of tangible value to the company include the following:

- \$757,500 in sales from individual music downloads
- \$950,000 in sales from customer subscriptions
- \$205,000 in additional in-store or web site CD sales
- \$153,000 in sales from music download gift cards

Special Issues or Constraints:

 The marketing department views this as a strategic system. To prevent significant customer attrition, this project should be completed as soon as possible.

Stima del Business Value

- oldentificare le
 - fonti: aumento delle vendite; riduzione dei costi; meno personale; minor avvicendamento del personale
- Assegnare valoricome stime iniziali

	Sales Projections				
	Individual Downloads	Subscriptions	Cross-Selling of CDs	Gift Cards	
High-level estimate (prob. = 25%)	\$900,000	\$1,100,000	\$250,000	\$180,000	
Medium-level estimate (prob. = 60%)	750,000	950,000	200,000	150,000	
Low-level estimate (prob. = 15%)	550,000	700,000	150,000	120,000	
Weighted average expected sales	\$757,500	\$950,000	\$205,000	\$153,000	

Analisi di fattibilità

- Vale davvero la pena di fare questo progetto...
- Siamo in grado di fare questo progetto...
- L'organizzazione accetterà questo se andiamo avanti...

Analisi di fattibilità

- Un business case dettagliato per il progetto
 - Fattibilità tecnica
 - Fattibilità economica
 - Fattibilità organizzativa
- Compilato in uno studio di fattibilità
- Ha una importanza critica rivalutare la fattibilità durante tutto il progetto

Fattibilità tecnica : siamo in grado di realizzarlo?

- Fonti di rischio tecnico:
 - Mancanza di familiarità di utenti e analisti con l'area applicativa di business
 - Mancanza di familiarità con la tecnologia
 - L'abbiamo già utilizzata ? Quanto è nuova?
 - Dimensione del progetto
 - Numero di persone, intervallo temporale, caratteristiche distinte
 - Compatibilità con sistemi esistenti
 - Grado di integrazione richiesto

Fattibilità economica: dovremmo realizzarlo?

- Identificare costi e benefici
- Assegnare valori a costi e benefici
- Determinare il flusso di cassa (cash flow)
- Valutare la sostenibilità finanziaria
 - Return on investment (ROI)
 - Punto di pareggio (Break even point)
 - Net Present Value (NPV è il valore attuale netto, tiene conto delle mancate entrate dovuto ad un uso alternativo – interessi - delle risorse spese)

Costi e benefici

$$ROI = \frac{Total Benefits - Total Costs}{Total Costs}$$

(In the year in which Cumulative Cash Flow turns positive):

$$PV = \frac{\text{Cash flow amount}}{(1 + | \text{rate of return})^n}$$
 where n is the year in which the cash flow occurs.

4 Pianificazione dei SI – Sis. Inf. 22-23

Costi e benefici

- olncludere costi di sviluppo e operativi
- Considerare benefici tangibili intangibili

Development Costs	Operational Costs
Development team salaries	Software upgrades
Consultant fees	Software licensing fees
Development training	Hardware repair and upgrades
Hardware and software	Cloud storage fees
Vendor installation	Operational team salaries
Office space and equipment	Communications charges
Data conversion costs	User training
Tangible Benefits	Intangible Benefits
Increased sales	Increased market share
Reductions in staff	Increased brand recognition
Reductions in inventory	Higher-quality products
Reductions in IT costs	Improved customer service
Better supplier prices	Better supplier relations

Esempio di analisi costi-benefici

Si preferisce basarsi su NPV

ROI = 12.36% (TB-TC)/TC BEV = 4.12 anni NPV = 68290.85 (con tasso al 6%)

	2015	2016	2017	2018	2019	Total
Benefits						
Increased sales		500,000	530,000	561,800	595,508	
Reduction in customer complaint calls ^a		70,000	70,000	70,000	70,000	
Reduced inventory costs		68,000	68,000	68,000	68,000	
Total Benefits ^b		638,000	668,000	699,800	733,508	
Present Value Total Benefits		601,887	594,518	587,566	581,007	2,364,97
Development Costs						
2 Servers @ \$125,000	250,000	0	0	0	0	
Printer	100,000	0	0	0	0	
Software licenses	34,825	0	0	0	0	
Server software	10,945	0	0	0	0	
Development labor	1,236,525	0	0	0	0	
Total Development Costs	1,632,295	0	0	0	0	
Operational Costs						
Hardware		50,000	50,000	50,000	50,000	
Software		20,000	20,000	20,000	20,000	
Operational labor		115,000	119,600	124,384	129,359	
Total Operational Costs		185,000	189,600	194,384	199,359	
Total Costs	1,632,295	185,000	189,600	194,384	199,359	
Present Value Total Costs	1,632,295	174,528	168,743	163,209	157,911	2,296,68
NPV (PV Total Benefits – PV Total Costs)						68,29
aCustomer service values are based on redu	red costs of han	dling customer c	omplaint phone	calls		

An important yet intangible benefit will be the ability to offer services that our competitors currently offer.

Fattibilità organizzativa: se lo costruiamo, lo utilizzeranno?

- Allineamento strategico
 - Gli obiettivi del progetto sono allineati con la business strategy?
- Valutare l'effetto sui diversi stakeholders
 - Il project champion è forte e influente ?
 - C'è un forte e diffuso supporto del management organizzativo ?
 - Gli utenti del sistema sono recettivi/resistenti ?

Fattibilità organizzativa: se lo costruiamo, lo utilizzeranno?

- Allineamento strategico
 - Un allineamento stretto con la strategia di business migliora la probabilità di successo
- I gruppi di stakeholder possono essere influenzati
 - Presentazioni che descrivono e promuovono i benefici
 - Enfatizzare i benefici personali e quelli organizzativi
 - I prototipi aiutano a dimostrare il concetto di sistema
 - Un vero coinvolgimento degli utenti durante tutto il progetto

Valutazione fattibilità: sommario

- Tutti i progetti hanno dei rischi di fattibilità
 - L'obiettivo è conoscere i rischi da affrontare (nell'analisi SWOT: Strengths, Weaknesses, Opportunities, Threats) e la loro entità
 - Il Project Sponsor, il Project Manager, e gli altri team member devono avere questa consapevolezza
 - Quando i rischi sono noti, si può cercare di mitigarli
 - Ad esempio, se si ha a che fare con una nuova tecnologia
 - Prevedere sufficiente budget per la formazione
 - Prevedere sufficiente budget per avere consulenti esperti
 - Avere più tempo per avanzare nella curva di apprendimento
 - Utilizzare una metodologia che contenga la sperimentazione

Valutazione fattibilità: sommario

- E' essenziale rianalizzare continuamente e rivedere la valutazione della fattibilità
 - Quanto bene stiamo gestendo i rischi che avevamo identificati ?
 Sono necessari degli aggiustamenti ?
 - A. Il rischio è ben gestito
 - B. Il rischio non è ben gestito e occorre ulteriore attenzione
 - Ci sono nuovi rischi all'orizzonte ?
 - Se sì, quali sono le azioni necessarie ad affrontare questi rischi?
 - Effetti sul budget e sulla pianificazione ?

Selezione del progetto

Problematiche della selezione

- ☐ Modi di caratterizzare i progetti
 - Dimensione
 - Costo
 - Scopo
 - Durata
 - Rischio
 - Ambito
 - Valore economico

Problematiche della selezione

- □ L'approvazione (direzione, comitato, etc) si basa sulla System Request e sullo studio di fattibilità
 - Project portfolio come si colloca il progetto entro l'intero portfolio di progetti?
 - Necessità di compromessi: selezionare progetti per formare un project portfolio bilanciato
 - Progetti sostenibili possono essere respinti o differiti a causa del project portfolio

Project Portfolio Management

- PPM software raccoglie e gestisce le informazioni su tutti i progetti – in corso e in attesa di approvazione.
- Le aziende restano aggiornate sui progetti e si adattano al variare delle condizioni.
- Caratteristiche: prioritizzazione dei progetti, allocazione del personale, monitoraggio realtime dei progetti, segnalazione delle variazioni di costi e temporali, monitoraggio della fattibilità economica.

Creazione del Project Plan

- Quando il progetto viene approvato, il responsabile del progetto (project manager) deve:
 - selezionare la miglior metodologia per il progetto
 - sviluppare un piano di lavoro per il progetto (work plan)
 - stabilire un piano per il personale
 - creare modi per coordinare e controllare il progetto

Selezionare una metodologia per il progetto

- Metodologia: un approccio formalizzato per implementare il System Development Life Cycle
 - Una serie di passi da eseguire e deliverable da produrre
- Fonti per la metodologia
 - Sviluppate internamente dalle organizzazioni
 - Società di consulenza
 - Fornitori software

Selezionare una metodologia per il progetto: problematiche

- Fattori che possono influenzare la scelta della migliore opzione:
 - Chiarezza dei requisiti utente
 - Familiarità con la tecnologia
 - Complessità del sistema
 - Affidabilità del sistema
 - Intervallo temporale
 - Schedule visibility

Sviluppo strutturato

- Basato sul SDLC
- Assume una fase di progetto sia completata prima di passare alla successiva
 - Waterfall Development
 - Parallel Development
 - V-model
- Obiettivo completare ogni fase prima di andare avanti assicura risultati corretti e di alta qualità (ma la rigidità può essere uno svantaggio in condizioni dinamiche ed incerte)

Altre metodologie: RAD

- RAD (Rapid Application Development) integra tecniche e strumenti speciali:
 - CASE tools
 - JAD sessions
 - Visual programming languages
 - Code generators
- Obiettivo sviluppare parte del sistema rapidamente per metterla nella mani degli utenti

Tre approcci RAD

- Iterative development
 - Una serie di versioni sviluppate sequenzialmente
- System Prototyping
 - Creare un prototipo (modello) del sistema e "crescerlo" fino al sistema finale
- Throw-away prototyping
 - Prototype alternative designs in an experimental way
 - Build system following prototype design but discard the actual prototype

Altre metodologie: ADM

- Agile Development Methodologies
 - Extreme Programming (XP), Scrum, e altri
 - Si focalizza su cicli brevi che producono un prodotto software completo
 - Altamente adattabile in ambienti dinamici

4 Pianificazione dei SI – Sis. Inf. 22-23

Il Manifesto dell'ADM

Stiamo scoprendo modi migliori di creare software, sviluppandolo e aiutando gli altri a fare lo stesso.

Grazie a questa attività siamo arrivati a considerare importanti:

Gli individui e le interazioni più che i processi e gli strumenti Il software funzionante più che la documentazione esaustiva La collaborazione col cliente più che la negoziazione dei contratti Rispondere al cambiamento più che seguire un piano

Ovvero, fermo restando il valore delle voci a destra, consideriamo più importanti le voci a sinistra.

Kent Beck Mike Beedle Arie van Bennekum Alistair Cockburn Ward Cunningham Martin Fowler James Grenning
Jim Highsmith
Andrew Hunt
Ron Jeffries
Jon Kern
Brian Marick

Robert C. Martin Steve Mellor Ken Schwaber Jeff Sutherland Dave Thomas

Sommario sulla selezione della metodologia di progetto

Ability to develop systems	Waterfall	Parallel	V-Model	Iterative	System Proto- typing	Throwaway Prototyping	Agile Develop- ment
With unclear user requirements	Poor	Poor	Poor	Good	Excellent	Excellent	Excellent
With unfamiliar technology	Poor	Poor	Poor	Good	Poor	Excellent	Poor
That are complex	Good	Good	Good	Good	Poor	Excellent	Poor
That are reliable	Good	Good	Excellent	Good	Poor	Excellent	Good
With a short time schedule	Poor	Good	Poor	Excellent	Excellent	Good	Excellent
With schedule visibility	Poor	Poor	Poor	Excellent	Excellent	Good	Good

Come le aziende gestiscono i progetti?

Is There a "Central" Methodology?	Most Common Project Management Methodologies (In Order)	Who Typically Leads Engineering Projects?	
Big Tech & Public Tech Companies	- 20	V .	
- Teams can choose how they work (common) - Suggested methodology, but teams can choose (less frequent)	1. Plan->Build (iterate)->Ship 2. No "formal" methodology	- Tech lead - An engineer on the team	
Venture-funded scaleups (Series B & above)		
- Suggested methodology, but teams can choose (common) - Teams expected to follow specific a methodology (less frequent)	1. Plan->Build (iterate)->Ship 2. No "formal" methodology 3. Kanban 4. Scrum	- Tech lead - An engineer on the team	
Venture-funded startups (up to Series A)			
- Teams expected to follow specific a methodology (common) - Suggested methodology, but teams can choose (less frequent)	1. Plan->Build (iterate)->Ship 2. Scrum 3. Kanban	- An engineer on the team - Product manager	
Non-venture funded tech companies			
- Teams expected to follow specific a methodology (mostly) - Suggested methodology, but teams can choose (less frequent)	1. Scrum 2. Others (Kanban, SAFe, Scaled Agile)	- Tech lead - Dedicated project manager - An engineer on the team	
Large, non-tech companies			
- Teams expected to follow specific a methodology (mostly) - Suggested methodology, but teams can choose (rarely)	1. Scrum 2. SAFe 3. Others (Plan->build->ship, Kanban)	It varies: - A dedicated project manager - Scrum master - Product manager/owner - Tech lead	
Consultancies	×		
- Teams expected to follow specific a methodology (mostly) - Suggested methodology, but teams can choose (rarely)	Scrum No "formal" methodology	A dedicated project manager	

newsletter.pragmaticengineer.com

Come le Big Tech gestiscono i progetti

Company	Is There a "Central" Methodology?	What Project Management "Methodology" Is Typically* Used for Engineering Projects?	Who Typically Leads Engineering Projects?	
Amazon	No, teams can choose	Plan (6-pager)->Build (iterate)->Ship	Tech lead	
Apple	No, teams can choose	Plan->Build (iterate)->Ship	Tech lead	
Datadog	No, teams can choose	Plan (RFC)->Build (Iterate)->Ship	Tech lead or an engineer	
Facebook	No, teams can choose	Plan->Build (iterate)->Ship	Tech lead or an engineer	
Google	No, teams can choose	Plan (Design Doc)->Build (iterate)->Ship	Tech lead or an engineer	
Netflix	No, teams can choose	Plan->Build (iterate)->Ship	Tech lead or an engineer	
Shopify	No, teams can choose	GSD (Get Shit Done, 6-week cycles)	Tech lead or an engineer	
Spotify	No, teams can choose	Plan->Build (iterate)->Ship	Tech lead or an engineer	
Uber	No, teams can choose	Plan (ERD)->Build (iterate)->Ship	Tech lead or an engineer	

newsletter.pragmaticengineer.com

Elementi di Project Management

Definizione di Progetto: le origini

"Gestione sistematica di un'impresa complessa, unica e di durata determinata, rivolta al raggiungimento di un obiettivo chiaro e predefinito mediante un processo continuo di pianificazione e controllo di risorse differenziate e con vincoli interdipendenti di costi-tempi-qualità."

(R.D. Archibald, 1944)

Definizione pratica di Progetto

Un progetto è uno sforzo temporaneo intrapreso allo scopo di creare un prodotto, un servizio o un risultato unici.

Tipica sequenza delle fasi

Definizione di Deliverable

- I deliverable sono i risultati del progetto
- In alcuni contesti possono anche essere chiamati outcome
- Possono essere:
 - un prodotto o manufatto che viene prodotto, quantificabile, che costituisce un prodotto finale o un componente di un prodotto;
 - la capacità di erogare un servizio, ad esempio una funzione aziendale a sostegno della produzione o della distribuzione;
 - un risultato, come degli esiti o dei documenti.

Elaborazione Progressiva

- Per elaborazione progressiva si intende lo sviluppo in passaggi successivi e la prosecuzione incrementale del progetto.
- L'elaborazione progressiva è una caratteristica dei progetti che accompagna i concetti di unicità e temporaneità.

Progetti e lavoro operativo

- Le strutture organizzative eseguono lavoro per raggiungere una serie di obiettivi.
- In genere, è possibile classificare il lavoro come progetto o come funzioni operative (o processi), anche se le due categorie presentano talvolta aree comuni.

Progetti e processi (1/2)

- Progetti e processi condividono molte delle caratteristiche elencate di seguito:
 - sono eseguiti da persone;
 - sono vincolati da risorse limitate;
 - sono soggetti a pianificazione, esecuzione e controllo.

Progetti e processi (2/2)

Progetti e processi si distinguono principalmente per il fatto che

- i processi vengono eseguiti in modo continuativo
- hanno natura ripetitiva
- mentre i progetti hanno natura temporanea e unica

Il Project Management è l'applicazione di conoscenze, skill, strumenti e tecniche alle attività di progetto al fine di soddisfarne i requisiti.

Il Project Management: azione

Il Project Management viene espletato mediante l'applicazione e l'integrazione dei processi di Project Management per le attività di

- inizio,
- pianificazione,
- esecuzione,
- monitoraggio,
- controllo,
- chiusura.

Il Project Management include

- identificare i requisiti;
- fissare obiettivi chiari e raggiungibili (riferiti ai requisiti – SMART);
- individuare il giusto equilibrio tra le esigenze di qualità, ambito (scope), tempo e costi, che sono in competizione tra di loro;
- adattare specifiche di prodotto, piani e approccio alle diverse aree di interesse e alle diverse aspettative dei vari stakeholder.

Specifico/Semplice (ossia ben definito e chiaramente comprensibile)

Misurabile (o per lo meno valutabile) nella sua raggiungibilità

Accettabile (nel senso di "considerato raggiungibile" dalle persone coinvolte nel progetto)

Rilevante (ossia importante per il committente, al punto di affidare un mandato chiaro e forte a coloro che hanno responsabilità nel progetto)

Tempificato/Tracciabile (nel senso che deve essere conseguito entro una data certa e poter essere tracciato nel suo avanzamento)

4 Pianificazione dei SI – Sis. Inf. 22-23

Altra definizione di Project Management

"Il Project Management non è semplicemente una tecnica di approccio, ma una filosofia impiegata dal management di un'organizzazione, ad ogni livello e per ogni funzione, al fine di raggiungere determinati obiettivi in presenza di rischio e di vincoli complessi."

(S. Barile)

Altra definizione di Project Management

"Molto spesso il Project Management è la formalizzazione del buon senso."

(G. Antonelli)

Obiettivi del Project Management

- Dare una visione realistica del progetto durante tutto il suo ciclo di vita
- Responsabilizzare tutti gli attori coinvolti su obiettivi specifici
- Evidenziare situazioni critiche e proporre valide alternative in modo tempestivo o comunque in tempo utile
- Tracciare un quadro previsionale dell'evoluzione futura del progetto
- Proporre ed imporre regole comuni a tutti gli attori coinvolti
- Assicurare la coerenza tra gli obiettivi parziali assegnati e quelli generali di progetto

Project Management

E' necessario fare dei compromessi

Modificare un elemento richiede di aggiustare gli altri

Definizione di Project Manager

 Il Project Manager è la persona incaricata del raggiungimento degli obiettivi di progetto

Definizione di Stakeholder

- Tutte le persone che hanno interesse in un'organizzazione, in un progetto, in un servizio ecc...
- Possono essere interessati alle attività, agli obiettivi, alle risorse o ai prodotti
- Termine usato sia per i processi, sia per i progetti

Esempi di Stakeholder

Esempi di stakeholder sono:

- Clienti
- Partner
- Organi legislativi
- Impiegati
- Azionisti
- Proprietari
- Ecc...

Influenza degli stackholder

4 Pianificazione dei SI – Sis. Inf. 22-23

Altro uso del Project Management

Il termine "Project Management" viene talvolta utilizzato per descrivere un approccio della struttura organizzativa alla gestione delle funzioni operative.

Gestione per progetti

 Questo approccio, più propriamente definito "gestione per progetti", affronta numerosi aspetti delle funzioni operative (e dei processi che esse formano) sotto forma di progetti per garantire l'applicazione di consolidate tecniche di Project Management.

I sottoinsiemi del Project Management

- Gestione complessiva integrata
- Gestione dell'ambito
- Gestione dei tempi
- Gestione dei costi
- Gestione della qualità
- Gestione delle risorse umane
- Gestione della comunicazione
- Gestione dei rischi
- Gestione dell'approvvigionamento

I sottoinsiemi del Project Management

4 Pianificazione dei SI – Sis. Inf. 22-23

Grafo del progetto (o PERT)

- Program Evaluation and Review Technique
- E' il modello logico/funzionale del progetto
- Nodi per gli eventi (milestone/deliverable) e frecce per le attività (AoA) oppure riquadri per le attività, frecce per la relazione delle dipendenze (AoN)
- Grafo unidirezionale aciclico, simile al diagramma di attività

Grafo del progetto o PERT

- Un progetto consiste, essenzialmente, di una serie di attività interdipendenti che devono essere eseguite con una precisa sequenza.
- Con le tecniche PERT/CPM (Critical Path Method) si rappresenta il flusso logico delle attività mediante un reticolo
 - PERT : durate aleatorie.
 - PERT ET = (OT+4*MLT+PT)/6
 - CPM : durate deterministiche

Grafo del progetto o PERT

Il tipo di reticolo più adottato è quello cosiddetto "ad arco" (tipo AOA - Activity On Arrow) ed formato da:

- frecce, che rappresentano le attività
- nodi, punti di inizio/fine delle attività, che rappresentano eventi (ad es. milestone o rilascio di deliverable) nel tempo

Grafo del progetto o PERT

Fig. 1: PERT Chart

- * Numbered rectangles are nodes and represent events or milestones.
- * Directional arrows represent dependent tasks that must be completed sequentially.
- * Diverging arrow directions (e.g. 1-2 & 1-3) indicate possibly concurrent tasks
- * Dotted lines indicate dependent tasks that do not require resources.

Grafo del progetto o PERT: esempio

Tipo AON (Activity On Node)

Grafo del progetto o PERT: esempio 2

Il percorso attività B-attività C è alternativo al percorso attività D

Le fasi associate al PERT

- Pianificazione e costruzione del modello (reticolo) di dettaglio
- Stime dei tempi e analisi dei percorsi
- Programmazione operativa
- Controllo delle operazioni sul progetto in corso d'opera

Elementi ricavabili tramite il PERT

- I componenti del progetto
- La rappresentazione della rete (o reticolo) associata al progetto
- Il calcolo della tempificazione
- Le risorse
- L'aggiornamento in corso d'opera
- L' esposizione dei risultati -> GANTT

Grafo di Progetto: perchè?

- Per costruire le basi di una gestione integrata del progetto e per facilitare il livello di collegialità e di comunicazione fra gli esecutori del progetto
- Per facilitare il Project Manager nell'avere un quadro logico dell'evoluzione del progetto

Grafo di Progetto: perchè?

- Per evitare incomprensioni ed attese inutili durante l'evoluzione del progetto e migliorare il livello di responsabilità reciproca tra gli esecutori delle attività
- Per porre le basi della costruzione di una pianificazione temporale affidabile e dinamica anche tramite l'uso del metodo del cammino critico (CPM)
- Per aumentare il livello di simulazione gestionale del progetto

Pianificazione della durata del progetto

- In base al tempo e alle risorse richieste da ciascuna attività, si può valutare la durata totale del progetto
- Attività con predecessori comuni richiedono il completamento di tutti (AND-join degli Activity Diagram)
- Attività senza tempo di riserva sono critiche
- Il percorso critico è "la sequenza delle attività presenti nel reticolo logico di un progetto che determina la durata del progetto" (PMBOK).

Pianificazione della durata del progetto

- Impostate le dipendenze
- Ultimato il numero di giorni-uomo
- Occorre mappare il tutto su un calendario reale

• Tenendo conto di festività, ferie, malattie...

Applicazione del metodo CPM

Occorre procedere per passaggi successivi:

- 1. definire la WBS del progetto;
- in base ad ogni workpackage della WBS identificare le singole attività;
- 3. valutare una stima delle durate di ogni attività;
- definire le dipendenze tra le attività e rappresentarle in un reticolo logico;
- 5. esaminare i percorsi tra attività di inizio e di fine per identificare il percorso critico (durata più lunga). Per i casi non banali:
 - calcolo manuale del percorso critico
 - utilizzo delle apposite funzioni all'interno dei SW di PM

I dati sulle attività

- D: durata prevista dell'attività
- ES: Earliest Start, data di inizio minima
- EF: Earliest Finish, data di fine minima

$$[EF := ES + D - 1]$$

- LS: Latest Start, data di inizio massima (senza provocare ritardi al progetto)
- LF: Latest Finish, data di fine massima (senza influenzare la data prevista di completamento del progetto)

$$[LS := LF - D + 1]$$

 SL: margine di scorrimento (anche float o slack o tempo "di riserva"): LF-EF (quanto può essere in ritardo un'attività senza ritardare il progetto)

Calcolo percorso critico

Fase in avanti : pianificazione al più presto

- calcolo dei valori di ES e EF per ogni attività
- la data di fine minima del progetto è l'EF dell'ultima attività

Fase all'indietro: pianificazione al più tardi

- la data di fine minima (anche massima se non può slittare) del progetto diventa l'LF dell'ultima attività
- a ritroso, calcolo dei valori di LS e LF per ogni attività
- il valore di LS della prima attività è la data massima in cui è possibile iniziare il progetto per finirlo in tempo

Esempio di CPM

Altro esempio

4 Pianificazione dei SI – Sis. Inf. 22-23

Altro esempio

4 Pianificazione dei SI – Sis. Inf. 22-23

Altro esempio

4 Pianificazione dei SI – Sis. Inf. 22-23

Esercizio

Con riferimento al progetto e alle attività descritti dal grafo orientato illustrato in figura, si determini:

- a) la durata del progetto;
- b) il percorso critico;
- c) lo slack (margine di slittamento) dell'attività C;
- d) le attività del progetto che presentano il massimo slack;

4 Pianificazione dei SI – Sis. Inf. 22-23

In MS Project

Il diagramma di GANTT (o a barre)

- Le attività del progetto vengono rappresentate come barre su un asse temporale orizzontale
- Sull'asse verticale possono esservi le attività e/o le risorse
- Evidenzia tempi, dipendenze e criticità
- Permette di monitorare giorno per giorno l'andamento dei progetti

Il diagramma di GANTT (o a barre) - 2

4 Pianificazione dei SI – Sis. Inf. 22-23

Esempio di diagramma di GANTT

4 Pianificazione dei SI – Sis. Inf. 22-23

Esempio di diagramma di GANTT - 2

GANTT: perchè?

- Per pianificare la tempistica delle attività di progetto
- Per verificare la fattibilità temporale del progetto
- Per permettere a tutti gli interpreti del progetto di avere un quadro generale ed integrato delle date di inizio e fine delle varie fasi del progetto

GANTT: perchè?

 Per ufficializzare a livello strategico le date desiderate/imposte di inizio, fine, eventuali milestone intermedie (Master Schedule)

 Per ufficializzare a livello operativo le date di inizio e fine attese di ciascuna attività elementare (Gantt di dettaglio)

GANTT: perchè?

 Per controllare durante l'avanzamento del progetto gli scostamenti temporali (ritardi/anticipi) rispetto alle date pianificate

 Per verificare continuamente le nuove stime a finire del progetto o di sue parti, a fronte dei consuntivi e per facilitare le relative correzioni

Pianificazioni delle risorse

Individuazione disponibilità

Analisi risorse necessarie

 Calcolo carico risorse e analisi sovraccarico e sottocarico

Costi e livelli di staff

4 Pianificazione dei SI – Sis. Inf. 22-23

Il diagramma degli incarichi

- Le durate delle attività del progetto vengono rappresentate come barre su un asse temporale orizzontale
- Sull'asse verticale ci sono le risorse
- Praticamente diventa l'agenda degli incarichi per le varie risorse umane coinvolte nel progetto

Esempio di diagramma degli incarichi

4 Pianificazione dei SI – Sis. Inf. 22-23

Suggerimenti: pianificazioni realistiche

- Non demoralizzare chi lavora al progetto
- Pianificazioni complete ma concise
- Adattabili (almeno entro certi limiti)
- Evitare che pianificazioni arbitrarie sconvolgano tutto
- Progetti lunghi vanno suddivisi
- Progetti parziali ben definiti e con risultati chiari

La metodologia risultante nella pratica

- Determinazione delle attività del progetto, attraverso una WBS
- Individuazione delle dipendenze logico-temporali fra le attività, per poterne definire una sequenza precisa
- Calcolo dei tempi delle singole attività e della somma estesa a tutto il progetto
- Mappatura dei tempi su un calendario, tenendo presenti gli intervalli di disponibilità delle risorse umane cui le attività vengono assegnate come incarichi

Come risparmiare tempo

- Impegnare più persone (non sempre positivo)
- Collegare le fasi
- Acquistare alcune componenti
- Aggiungere strumenti
- Impiegare personale superesperto

Il controllo del progetto

Verifica diario del progetto

Organizzazione e protocollo delle riunioni

Analisi delle tendenze e dei milestone

Relazioni

Le informazioni in una relazione

- Progetto di riferimento
- Data e nome autore
- Breve riassunto attività in corso o eseguite
- Elenco di tutti i problemi
- Stadi successivi
- Note

Stima del progetto

- Il processo per assegnare valori previsionale per tempi e impegni delle persone (efforts)
- Fonti per la stima
 - Metodologia in uso
 - Precedenti progetti
 - Sviluppatori esperti
- Le stime sono inizialmente degli intervalli e diventano più specifici nel corso del progetto
 - Standard industriali
 - Function point estimation

Stime progettuali con percentuali standard

Percentuali da standard industriali

	Planning	Analysis	Design	Implementation
Typical industry standards for business applications (%)	15	20	35	30
Estimates based on actual figures for first stage of SDLC (person-months)	Actual:	Estimated: 5.33	Estimated: 9.33	Estimated: 8
SDLC, systems development life cycle.				

Esempio

IF 4 months are required for Planning, then

15% X = 4, where X = overall length of project X = 4 / 15%

X = 26.66 months for entire project

Therefore:

Planning (15%): 4 months
Analysis (20%): 5.33 months
Design (35%): 9.33 months
Implementation (30%): 8 months

• Total Project Length: 26.66 months

Function point analysis

- La tecnica dei Function Point (FP) è usata per valutare la dimensione dei prodotti software (da sviluppare e mantenere) e per misurare la produttività dei team di sviluppo; è stata definita in IBM da Allan Albrecht negli anni '70
- L'idea base consiste nel quantificare le funzionalità fornite dal prodotto finale in termini di dati e processi significativi per gli utenti finali, è quindi legata di più al "cosa fare" (requisiti business/funzionali) rispetto al "come fare".
- I requisiti sono categorizzati in cinque tipi:
 - Output, interrogazioni, input, file e interfacce esterne
- I vantaggi principali della tecnica FP consistono nell'essere alquanto oggettiva e abbastanza indipendente dalla tecnologia utilizzata nello sviluppo.
- Vi sono di versi metodi di conteggio dei FP
 - Per approfondimenti http://www.ifpug.org
- 4 Pianificazione dei SI Sis. Inf. 22-23

Identificazione dei task

- ☐ Utilizzare line guida consolidate metodologie esistenti
- ☐ Utilizzare analogie basarsi sulle liste di task di progetti precedenti
- □ Approccio Top-down suddividere attività in task più piccoli e dettagliati
- ☐ Descrivere come Work Breakdown Structure

Esempio: definire i task con un approccio Top-down

- ☐ Dare i voti agli assegnamenti di programmazione
 - 1.Create grading plan
 - A.Develop grading rubric
 - B.Develop test plan, test data, and check figures
 - 2. Prepare programming projects for grading
 - A.Download submitted projects
 - B.For all projects, extract zipped files
 - 3. For all projects,
 - A.Administer test plan and check performance and results
 - B.Check code for required elements
 - C.Apply rubric and determine final score.

Tipica voce di Work Plan

Task Information	Example
Name of the task	Perform economic feasibility
Start date	Jan 5, 2016
Completion date	Jan 19, 2016
Person assigned to the task	Project sponsor Mary Smith
Deliverable(s)	Cost-benefit analysis
Completion status	Complete
Priority	High
Resources needed	Spreadsheet software
Estimated time	16 hours
Actual time	14.5 hours

Work Plan del progetto

Task ID	Task Name	Assigned To	Estimated			Actual				
			Duration (days)	Start Date	Finish Date	Start Date	Fini sh Date	Duration variance	Dependency	Status
1	Design Phase		31	Mon 11/14/16	Wed 12/2 8/16					Open
1.1	Develop database design document	Megan	9	Mon 12/5/16	Thurs 12/15/16					Open
1.1.1	Staging database design	Megan	9	Mon 12/5/16	Thurs 12/15/16					Open
1.12	Suspense database design	Megan	9	Mon 12/5/16	Thurs 12/15/16					Open
1.2	Develop rejects-handling design document	Megan	9	fri 12/14/16	Wed 12/2 8/16				1.1.1, 1.1.2	Open
1.2.1	Rejects-handling engine design	Megan	9	Fri 12/16/16	Wed 12/2/16					Open
1.3	Develop OLAP design document	Joach im	9	fri 12/16/16	Wed 12/28/16				1.1.1, 1.1.2	Open
1.3.1	Universe design	Joach im	9	fri 12/16/16	Wed 12/28/16					Open
1.4	Develop OLAP design part 1	Kevin	8	Fri 12/9/16	Tues 12/20/16					Open
1.4.1	High-priority reports design	Kevin	8	Fri 12/9/16	Tues 12/2 0/16					Open
1.5	Develop application design document	Tomas	9	Fri 12/16/16	Wed 12/2 8/16					Open
1.5.1	Croup consolidation and corporate reporting (CCCR) maintenance application design	Tomas	9	Fri 12/16/16	Wed 12/2 8/16					Open

Work Plan del progetto

Task ID	Task Name	Assigned To	Estimated			Actual				
			Duration (days)	Start Date	Finish Date	Start Date	Fini sh Date	Duration variance	Dependency	Status
1.6	Extract, transform, load (ETI) design document	Joach im	2	Thu 12/29/16	Fri 12/30/16					Open
1.6.1	Data export utility design	Joachim	2	Thu 12/29/16	Fri 12/30/16					Open
1.7	Application design document	Mei-ling	26	Mon 11/14/16	Tue 12/2 0/16					Open
1.7.1	Web entry application UI design	Mei-ling	26	Mon 11/14/16	Tue 12/20/16					Open
1.7.2	Web entry application UI design sign-off	Mei-ling	1	Wed 11/30/16	Wed 11/30/16					Open
1.73	Web entry forms and data- base model validation	Kevin	11	Wed 11/23/16	Thu 12/8/16					Open
1.8	Functional requirements document	Chantelle	9	Mon 12/10/16	Thu 12/2 2/16					Open
1.8.1	Application design	Chantelle	9	Mon 12/12/16	Thu 12/22/16					Open
1.8.1.1	User authentication	Chantelle	4	Mon 12/12/16	Thu 12/1 5/16					Open
1.8.1.2	Call logging	Chantelle	2	Fri 12/16/16	Mon 12/1 9/16					Open
1.8.1.3	Search	Chantelle	3	Tue 12/20/16	Thu 12/22/16					Open

Considerazioni sullo staffing

- ☐ E' necessario far corrispondere le abilità alle necessità del progetto ogni volta questo sia possibile
- ☐ Considerare le abilità tecniche e quelle interpersonali
 - o Tutto il lavoro sui SI è fatto in team
 - o Le abilità tecniche non sono sufficienti- è necessario essere in grado di lavorare con gli altri
 - O Utilizzare la formazione e personale esterno (consulenti, supporto dei vendor) quando le abilità non sono disponibili
- ☐ I livelli di staffing cambieranno durante il progetto
- Aggiungere personale aggiunge overhead e non è sempre produttivo

Motivazione

- ☐ Utilizzare ricompense economiche con cautela
- ☐ Utilizzare ricompense intrinseche
 - oriconoscimento
 - o raggiungimento del risultato
 - oil lavoro stesso
 - o responsabilità
 - opromozione
 - o possibilità di acquisire nuove abilità

Motivazione

- ☐ Considerare i "de-motivatori" ... NON
 - oassegnare scadenze non realistiche
 - oignorare l'impegno
 - oaccettare un prodotto di bassa qualità
 - oricompensare allo stesso modo chi lavora nel progetto
 - oprendere una decisione importante senza l'input della squadra
 - o mantenere cattive condizioni di lavoro

Assicurare la performance del gruppo

- □ Assicurarsi che la squadra comprenda il progetto e gli obiettivi
 □ Stabilire procedure operative (Project Charter)
 - o disponibilità
 - o rapporti sullo stato del progetto
 - o riunioni
- ☐ Assicurarsi che i membri della squadra arrivino a conoscersi
- ☐ Stabilire metodi per affrontare i problemi

Gestire l'ambito del progetto

- Attenzione allo scope/feature creep
- Utilizzare JAD e la prototipazione per minimizzare la pressione dello scope creep
- Implementare un processo formale per l'approvazione di modifiche
- Posticipare requisiti addizionali come future estensioni al sistema

Timeboxing

- ☐ Le tecniche per la stima dei tempi possono rivelare che il progetto richieda più tempo di quanto disponibile
- ☐ Timboxing : assegnare un periodo temporale fisso (time box) ad ogni attività pianificata
- ☐ Timeboxing aiuta in queste situazioni:
 - Impostare una scadenza ravvicinata ma realistica. Identificare il nucleo dei requisiti funzionali essenziali
 - La squadra deve limitarsi a mettere a fuoco le funzioni essenziali
 - o L'alta qualità deve essere al centro dell'attenzione
 - Le altre funzioni saranno aggiunte in seguito
 - ORipetere per aggiungere raffinamenti e miglioramenti

Quando una scadenza viene mancata...

□ Non assumere che si possa recuperare
 □ L'UNICA situazione in cui si può avere più tempo è quando:

 il resto del progetto è più semplice della parte precedente
 E
 il resto del progetto è più semplice di quanto si era stimato inizialmente

 □ Valutare la complessità del resto del progetto per determinare il corretto aggiustamento dello schedule
 □ Aggiungere personale non è sempre il modo giusto per gestire gli scivolamenti dello schedule

Approfondimenti Project Management

- Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK Guide) (6th Edition)
- Project Management in Practice, 6th Edition, Jack R. Meredith, Scott M. Shafer, Samuel J. Mantel, Jr., Margaret M. Sutton, Wiley, ISBN: 9781119298601
- Project Management: The Managerial Process, Clifford F. Gray, Erik W. Larson, McGraw-Hill