



## Finite Element Method for the Tricomi Equation

Brady Metherall

March 2020

## Tricomi Equation



The Tricomi equation [1],

$$g(y)u_{xx} + u_{yy} = f, (1)$$

arises when studying transonic flow in fluid mechanics. The function q is assumed to be

- smooth in the domain.
- monotonic increasing with y.
- of the same sign as y, that is,  $\operatorname{sgn} g = \operatorname{sgn} y$ .

The most common form is g(y) = y, which is analyzed in [2].

## Tricomi Equation



We rewrite (1) as

$$Lu = f (2)$$

within the domain  $\Omega$  bounded by  $\Gamma_0$ ,  $\Gamma_1$ , and  $\Gamma_2$ . Here  $\Gamma_0$  is a curve in the upper half-plane connecting (-1,0) and (1,0), and  $\Gamma_1$  and  $\Gamma_2$  are the characteristics passing through (-1,0) and (1,0), respectively. The boundary value problem can now be stated as

$$u=0$$
 on  $\Gamma_0 \cup \Gamma_1$ . (4)

### Tricomi Domain





Figure 1: Example domain of  $yu_{xx} + u_{yy} = 0$ .

## Weak Formulation



We define the function space, W, as

$$W = \{ \phi \in C(\bar{\Omega}) \cap H^2(\Omega) \cap H^1(\partial\Omega) :$$
  
 
$$L\phi \in L^2(\Omega) \text{ and } \phi|_{\Gamma_0 \cup \Gamma_1} = 0 \}.$$

Then the weak formulation can be phrased as: given  $f\in L^2(\Omega)$ , we wish to find  $u\in W$  such that

$$(Lu, lv)_{L^2(\Omega)} = (f, lv)_{L^2(\Omega)}$$
(5)

for all  $v \in W$ . Here  $l: W \to L^2(\Omega)$  is defined as

$$l\phi = \alpha_1 \phi_x + \alpha_2 \phi_y \tag{6}$$

for all  $\phi \in W$ , where  $\alpha_1$  and  $\alpha_2$  are known functions.

### Finite Elements



We let  $\{V_h\}$  be a family of finite dimensional subspaces of W, and define an approximate solution,  $u_h \in V_h$ , to be one where given  $f \in L^2(\Omega)$ 

$$(Lu_h, lv_h)_{L^2(\Omega)} = (f, lv_h)_{L^2(\Omega)} \tag{7}$$

for all  $v_h \in V_h$ .

Let  $\{\phi_j\}$  be a basis for  $V_h$ , then (7) can be cast into the linear system

$$\mathbf{A}\mathbf{u} = \mathbf{b},\tag{8}$$

where  $A_{ij}=(L\phi_j,l\phi_i)_{L^2(\Omega)}$ ,  $b_i=(f,l\phi_i)_{L^2(\Omega)}$ , and  $u_h=\sum_i u_i\phi_i$ .

### Finite Elements



#### Lemma

The matrix A is invertible.

### Proof.

Suppose there exists a vector  $\mathbf{z}$  such that  $\mathbf{A}\mathbf{z} = \mathbf{0}$ , and let  $z_h = \sum_i z_i \phi_i$ . Then

$$0 = \mathbf{z}^T \mathbf{A} \mathbf{z},\tag{9}$$

$$= (Lz_h, lz_h)_{L^2(\Omega)}, \tag{10}$$

$$\geq C\|z_h\|_{L^2(\Omega)}^2\tag{11}$$

by coercivity. Thus,  $z_h \equiv 0$  and  $\mathbf{z} = \mathbf{0}$ , and so  $\mathbf{A}$  is invertible.  $\square$ 

### Finite Elements



Theorem

There is a unique  $u_h \in V_h$  satisfying the weak formulation

$$(Lu_h, lv_h)_{L^2(\Omega)} = (f, lv_h)_{L^2(\Omega)}.$$
 (12)

Proof.

This follows immediately from the previous lemma since  ${\bf A}$  has a non-zero determinant.

# **Error Analysis**



#### Theorem

For  $u \in W \cap H^s(\Omega)$  and with Lagrange elements of degree k where  $k+1 \le s$ , there exists a positive constant, C, such that

$$||u - u_h||_{H^1(\Omega)} \le Ch^{k-1}|u|_{H^{k+1}(\Omega)}.$$
 (13)

Thus, the method will converge for  $k \geq 2$  and  $s \geq 3$ . This error estimate requires quite a lot of smoothness, as is typical with mixed problems.

# References



- A. K. Aziz, M. Schneider, and A. Werschulz, "A Finite Element Method for the Tricomi Problem," *Numerische Mathematik*, vol. 35, pp. 13–20, 1980.
- [2] J. A. Trangenstein, "A Finite Element Method for the Tricomi Problem in the Elliptic Region," *SIAM Journal on Numerical Analysis*, vol. 14, no. 6, pp. 1066–1077, 1977.