CS11313 - **Spring** 2023

Design & Analysis of Algorithms

Integer Multiplication

more Divide & Conquer Examples!

Ibrahim Albluwi

Overview

Problem. Given two positive integers x and y of length n digits each, find $x \times y$.

Rules of the game.

- Adding or subtracting two *n*-digit numbers requires $\Theta(n)$ operations.
- Single-digit multiplication requires constant time. (can be precomputed)
- Multiplying a decimal number by 10 requires constant time. (shift-left)

Goal. See an example of a divide and conquer algorithm that is not related to searching or sorting.

Attempt # 1: Repeated Addition

Problem. Given two positive integers x and y of length n digits each, find $x \times y$.

Solution 1. Repeated addition.

Example: $200 \times 300 = 300 + 300 + ... (200 times)$

Quiz 1

Problem. Given two positive integers x and y of length n decimal digits each, how many single digit operations are performed if $x \times y$ is computed using repeated addition?

- **A.** $\Theta(n)$
- **B.** $\Theta(n \log n)$
- **C.** $\Theta(n^2)$
- **D.** $\Theta(2^n)$
- **E.** None of the above

Quiz 1

Problem. Given two positive integers x and y of length n decimal digits each, how many single digit operations are performed if $x \times y$ is computed using repeated addition?

- **A**. $\Theta(n)$
- **B.** $\Theta(n \log n)$
- **C.** $\Theta(n^2)$
- **D.** $\Theta(2^n)$
- **E.** None of the above
- The largest decimal number representable using *n* digits is $10^n 1$
- Therefore, y is added $\sim 10^n$ times in the worst case.
- Each addition involves $\Omega(n)$ single digit operations.
- **Total** = $\Omega(n10^n)$ single digit operations.

Problem. Given two positive integers x and y of length n digits each, find $x \times y$.

Solution 1. Repeated addition.

Example:
$$200 \times 300 = 300 + 300 + ... (200 times)$$

 $\sim 10^n$ additions each involving $\Omega(n)$ digits = $\Omega(n10^n)$ single digit operations.

The largest decimal number representable using n digits is $10^n - 1$

Solution 2. Long Multiplication.

Problem. Given two positive integers x and y of length n digits each, find $x \times y$.

Solution 1. Repeated addition.

Example: $200 \times 300 = 300 + 300 + ... (200 times)$

 $\sim 10^n$ additions each involving $\Omega(n)$ digits = $\Omega(n10^n)$ single digit operations.

The largest decimal number representable using n digits is $10^n - 1$

Solution 2. Long Multiplication.

Problem. Given two positive integers x and y of length n digits each, find $x \times y$.

Solution 1. Repeated addition.

Example: $200 \times 300 = 300 + 300 + ... (200 times)$

 $\sim 10^n$ additions each involving $\Omega(n)$ digits = $\Omega(n10^n)$ single digit operations.

The largest decimal number representable using n digits is $10^n - 1$

Solution 2. Long Multiplication.

Example: 2311 x 4301 =

Problem. Given two positive integers x and y of length n digits each, find $x \times y$.

Solution 1. Repeated addition.

Example: $200 \times 300 = 300 + 300 + ... (200 times)$

 $\sim 10^n$ additions each involving $\Omega(n)$ digits = $\Omega(n10^n)$ single digit operations.

The largest decimal number representable using n digits is $10^n - 1$

Solution 2. Long Multiplication.

Problem. Given two positive integers x and y of length n digits each, find $x \times y$.

Observation 1. A positive integer *x* of length *n* digits can be split into 2 halves as follows:

Left half: Shift right $\frac{n}{2}$ steps: 0 0 0 **4 5 3**

Right half: Shift left $\frac{n}{2}$ steps: 9 6 1 0 0 0 then Shift right $\frac{n}{2}$ steps 0 0 0 9 6 1

The number *x* can be written as $a \cdot 10^{\frac{n}{2}} + b$

Problem. Given two positive integers x and y of length n digits each, find $x \times y$.

Observation 1. A positive integer *x* of length *n* digits can be split into 2 halves as follows:

Left half: Shift right $\frac{n}{2}$ steps: 0 0 0 **4 5 3**

Right half: Shift left $\frac{n}{2}$ steps: 9 6 1 0 0 0 then Shift right $\frac{n}{2}$ steps 0 0 9 6 1

The number *x* can be written as $a \cdot 10^{\frac{n}{2}} + b$

Observation 2. $x \times y$ can be written as: $(a \cdot 10^{\frac{n}{2}} + b) \times (c \cdot 10^{\frac{n}{2}} + d)$ left half of y of y

Problem. Given two positive integers x and y of length n digits each, find $x \times y$.

Observation 1. A positive integer *x* of length *n* digits can be split into 2 halves as follows:

Left half: Shift right $\frac{n}{2}$ steps: 0 0 0 **4 5 3**

Right half: Shift left $\frac{n}{2}$ steps: 9 6 1 0 0 0 then Shift right $\frac{n}{2}$ steps 0 0 9 6 1

The number *x* can be written as $a \cdot 10^{\frac{n}{2}} + b$

Observation 2. $x \times y$ can be written as: $(a \cdot 10^{\frac{n}{2}} + b) \times (c \cdot 10^{\frac{n}{2}} + d)$ $= ac \cdot 10^{n} + ad \cdot 10^{\frac{n}{2}} + bc \cdot 10^{\frac{n}{2}} + bd$ $= \underline{ac} \cdot 10^{n} + (\underline{ad} + \underline{bc}) \cdot 10^{\frac{n}{2}} + \underline{bd}$

$$= \underline{ac} \cdot 10^n + (\underline{ad} + \underline{bc}) \cdot 10^{\frac{n}{2}} + \underline{bd}$$

Multiplying two *n*-digit numbers requires **4** multiplications between numbers of length $\frac{n}{2}$ each!

$$= \underline{ac} \cdot 10^n + (\underline{ad} + \underline{bc}) \cdot 10^{\frac{n}{2}} + \underline{bd}$$

Multiplying two *n*-digit numbers requires 4 multiplications between numbers of length $\frac{n}{2}$ each!

Running Time.
$$T(n) = 4T(\frac{n}{2}) + cn$$

to shift and perform 3 addition operations

$$= \underline{ac} \cdot 10^n + (\underline{ad} + \underline{bc}) \cdot 10^{\frac{n}{2}} + \underline{bd}$$

Multiplying two *n*-digit numbers requires 4 multiplications between numbers of length $\frac{n}{2}$ each!

Running Time.
$$T(n) = 4T(\frac{n}{2}) + cn = \Theta(n^2)$$

using the master method

Can we reduce the number of subproblems?

$$= \underline{ac} \bullet 10^n + (\underline{ad} + \underline{bc}) \bullet 10^{\frac{n}{2}} + \underline{bd}$$

Multiplying two *n*-digit numbers requires 4 multiplications between numbers of length $\frac{n}{2}$ each!

Running Time.
$$T(n) = 4T(\frac{n}{2}) + cn = \Theta(n^2)$$

using the master method

Can we reduce the number of subproblems?

$$= \underline{ac} \cdot 10^n + (\underline{ad} + \underline{bc}) \cdot 10^{\frac{n}{2}} + \underline{bd}$$

Multiplying two *n*-digit numbers requires **4** multiplications between numbers of length $\frac{n}{2}$ each!

Running Time.
$$T(n) = 4T(\frac{n}{2}) + cn = \Theta(n^2)$$

Can we reduce the number of subproblems?

Observation. If we know what (a + b)(c + d) we what (ad + bc) is!

Explanation.
$$(a + b)(c + d) = \underline{ac} + \underline{ad + bc} + \underline{bd}$$

we want this sum

we know these

$$= \underline{ac} \bullet 10^n + (\underline{ad} + \underline{bc}) \bullet 10^{\frac{n}{2}} + \underline{bd}$$

Multiplying two *n*-digit numbers requires 4 multiplications between numbers of length $\frac{n}{2}$ each!

Running Time.
$$T(n) = 4T(\frac{n}{2}) + cn = \Theta(n^2)$$

Can we reduce the number of subproblems?

Observation. If we know what (a + b)(c + d) we what (ad + bc) is!

Explanation.
$$(a + b)(c + d) = ac + ad + bc + bd$$

 $(a + b)(c + d) - (ac + bd) = (ac + ad + bc + bd) - (ac + bd)$

$$= \underline{ac} \cdot 10^n + (\underline{ad} + \underline{bc}) \cdot 10^{\frac{n}{2}} + \underline{bd}$$

Multiplying two *n*-digit numbers requires 4 multiplications between numbers of length $\frac{n}{2}$ each!

Running Time. $T(n) = 4T(\frac{n}{2}) + cn = \Theta(n^2)$

Can we reduce the number of subproblems?

Observation. If we know what (a + b)(c + d) we what (ad + bc) is!

Explanation.
$$(a + b)(c + d) = ac + ad + bc + bd$$

$$(a+b)(c+d) = ac + ad + bc + bd$$

 $(a+b)(c+d)-(ac+bd) = (ac+ad+bc+bd) - (ac+bd) = (ad+bc)$

$$= \underline{ac} \cdot 10^n + (\underline{ad} + \underline{bc}) \cdot 10^{\frac{n}{2}} + \underline{bd}$$

Multiplying two *n*-digit numbers requires **4** multiplications between numbers of length $\frac{n}{2}$ each!

Running Time.
$$T(n) = 4T(\frac{n}{2}) + cn = \Theta(n^2)$$

Can we reduce the number of subproblems?

Observation. If we know what (a + b)(c + d) we what (ad + bc) is!

Explanation.
$$(a + b)(c + d) = ac + ad + bc + bd$$

$$(a+b)(c+d) = ac + ad + bc + bd$$

 $(a+b)(c+d)-(ac+bd) = (ac+ad+bc+bd) - (ac+bd) = (ad+bc)$

only **one** multiplication is needed to find (ad + bc)

$$x \times y = ac \cdot 10^{n} + (ad + bc) \cdot 10^{\frac{n}{2}} + bd$$
$$= ac \cdot 10^{n} + ((a + b)(c + d) - (ac + bd) \cdot 10^{\frac{n}{2}} + bd$$

$$= \underline{ac} \cdot 10^n + (\underline{ad} + \underline{bc}) \cdot 10^{\frac{n}{2}} + \underline{bd}$$

Multiplying two *n*-digit numbers requires **4** multiplications between numbers of length $\frac{n}{2}$ each!

Running Time.
$$T(n) = 4T(\frac{n}{2}) + cn = \Theta(n^2)$$

Can we reduce the number of subproblems?

Observation. If we know what (a + b)(c + d) we what (ad + bc) is!

Explanation.
$$(a + b)(c + d) = ac + ad + bc + bd$$

$$(a+b)(c+d)-(ac+bd) = (ac+ad+bc+bd)-(ac+bd)(=(ad+bc)$$

only **one** multiplication is needed to find (ad + bc)

$$x \times y = ac \cdot 10^{n} + (ad + bc) \cdot 10^{\frac{n}{2}} + bd$$
$$= ac \cdot 10^{n} + ((a + b)(c + d) - (ac + bd)) \cdot 10^{\frac{n}{2}} + bd$$

only **three** multiplications are needed to find $x \times y$

Karatsuba's Algorithm: Implementation

```
// assuming x and y have n digits each and n is a power of 2
MULTIPLY(x, y):
   n = number of digits in x and y
   if (n == 1) return x * y
   a = n/2 left-most digits of x
   b = n/2 right-most digits of x
   c = n/2 left-most digits of y
   d = n/2 right-most digits of y
   ac = MULTIPLY(a, c)
   bd = MULTIPLY(b, d)
   temp = MULTIPLY(a+b, c+d)
  return [ac * 10^n] + [(temp - ac - bd) * 10^{(n/2)} + bd
                                 1
                                      (2)
                          (3)
          (\mathbf{1})
```

Karatsuba's Algorithm: Implementation and Analysis

```
// assuming x and y have n digits each and n is a power of 2
MULTIPLY(x, y):
   n = number of digits in x and y
   if (n == 1) return x * y
   a = n/2 left-most digits of x
   b = n/2 right-most digits of x
   c = n/2 left-most digits of y
   d = n/2 right-most digits of y
   ac = MULTIPLY(a, c)
   bd = MULTIPLY(b, d)
   temp = MULTIPLY(a+b, c+d)
  return [ac * 10^n] + [(temp - ac - bd) * 10^(n/2)] + bd
```


 $T(n) = 3T(\frac{n}{2}) + cn$ — time to add, subtract, shift, etc.

Karatsuba's Algorithm: Implementation and Analysis

```
// assuming x and y have n digits each and n is a power of 2
MULTIPLY(x, y):
   n = number of digits in x and y
   if (n == 1) return x * y
   a = n/2 left-most digits of x
   b = n/2 right-most digits of x
   c = n/2 left-most digits of y
   d = n/2 right-most digits of y
   ac = MULTIPLY(a, c)
   bd = MULTIPLY(b, d)
   temp = MULTIPLY(a+b, c+d)
  return [ac * 10^n] + [(temp - ac - bd) * 10^(n/2)] + bd
```


$$T(n) = 3T(\frac{n}{2}) + cn = \Theta(n^{\log_2 3})$$
 using the master method
$$= O(n^{1.59})$$

Karatsuba's Algorithm: Implementation and Analysis

```
// assuming x and y have n digits each and n is a power of 2
MULTIPLY(x, y):
   n = number of digits in x and y
   if (n == 1) return x * y
   a = n/2 left-most digits of x
   b = n/2 right-most digits of x
   c = n/2 left-most digits of y
   d = n/2 right-most digits of y
   ac = MULTIPLY(a, c)
   bd = MULTIPLY(b, d)
   temp = MULTIPLY(a+b, c+d)
  return [ac * 10^n] + [(temp - ac - bd) * 10^(n/2)] + bd
```


$$T(n) = 3T(\frac{n}{2}) + cn = \Theta(n^{\log_2 3})$$

= $O(n^{1.59})$

Is it worth the effort?

Yes if n is large (>100) No if n is small.

Integer Multiplication: A Race for Efficiency!

year	algorithm	bit operations
12xx	grade school	$O(n^2)$
1962	Karatsuba-Ofman	$O(n^{1.585})$
1963	Toom-3, Toom-4	$O(n^{1.465}), O(n^{1.404})$
1966	Toom-Cook	$O(n^{1+\varepsilon})$
1971	Schönhage-Strassen	$O(n \log n \cdot \log \log n)$
2007	Fürer	$n \log n 2^{O(\log^* n)}$
2018	Harvey-van der Hoeven	$O(n\log n\cdot 2^{2\lg^* n})$
	\$2. 2	O(n)

Remark. GNU Multiple Precision library uses one of first five algorithms depending on n.

