A Synchronisation Facility for a Stream Processing Coordination Language

Anna Tikhonova

AstraKahn

A program is a network of

- Boxes not analysable
- Synchronisers
- connected by
- Channels
- Wiring patterns
 - Static
 - Dynamic (serial replication)

Objectives

A dedicated language of synchronisers:

- Implement a compiler
 - Transition analysis
 - Data transformation analysis

Output from the serial replication pipeline:

Explore the role of synchronisers in the serial replication

Synchroniser

- State machine
 - Several input and output channels
 - Non-deterministic
 - Dedicated language (analysable)
- Store variables
 - Save messages
- State variables
 - Fold regular transition matrices

The Language (examples)

```
synch zip2 (a, b | c) {
 store ma, mb;
 start {
   on:
     a {
      ma = this;
      goto s1;
      mb = this;
      goto s2;
 }
 s1 {
   on:
      send ma || this => c;
 }
s2 {
   on:
     a {
      send this | mb => c;
```

```
synch counter (a | b) {
 state int(2) c = 0;
 start {
   on:
     a & [c < 3] {
       set c = [c + 1];
    a & [c == 3] {
      set c = [0];
      send this => b;
    }
}
```

Term system

- Message Definition Language (MDL)
 - Basic terms
 - Constructors

- Examples:
 - Variable \$t
 - -Record $\{x:\$x, y:\$y, z:\$z\}$
 - Choice (: v:\$v, w:\$v :)

Passports

The compiler

- Lexical and syntax analysis
- Static analysis
 - Semantic checking
 - Type checking
- Runtime data structure
- Passport

Serial Replication

 x_{θ} is the fixed point message

An inactive replica transmits the fixed point message without change

Forward Fixed Point

Every synchroniser on the fixed-point path transmits the fixed-point message without change

The fixed-point condition of **N** is $p_1 \wedge (p_2^1 \vee p_2^1) \wedge p_3$

Output from the Serial Replication

Synchroniser $S^{(j)}$, j=0,m checks if the fixed point condition extracted from the **j**-th synchroniser on the fixed point path is satisfied:

- Yes the message is sent to S^(j+1)
- No the message is sent to the next replica of N

Another Approach

Channel x' is auxiliary

Reverse Fixed Point

- prevents an unnecessary cascade
- is a state of a network in which it transmits any message without change
- A synchroniser can have a reverse fixed point
- A replica has a reverse fixed point if:
 - The replica has the fixed-point path
 - Every synchroniser on the fixed-point path has a reverse fixed point (possibly a closed subset of states)

Fixed Point Detection

- The fixed-point path search
 - DFS-based
 - Shared for both types of fixed point
- Fixed point detection in a synchroniser
 - Forward fixed point
 - Reverse fixed point

Conclusion

- The compiler
 - Transition analysis
 - Data transformation analysis
- Analysis of the fixed point approach
 - Another approach suggested
- Future directions
 - Flow inheritance
 - Statistical properties