Homework 1 Solutions

CS 511 Formal Methods

October 6, 2024

Exercise 1.2.1

(h)
$$p \vdash (p \rightarrow q) \rightarrow q$$

1.	p	premise
2.	$p \rightarrow q$	assumption
3.	q	\rightarrow E 1,2
4.	$(p \to q) \to q$	→I 2-3

(i)
$$(p \to r) \land (q \to r) \vdash p \land q \to r$$

1.
$$(p \rightarrow r) \land (q \rightarrow r)$$
 premise
2. $p \rightarrow r$ $\land E_1 \ 1$
3. $p \land q$ assumption
4. p $\land E_1 \ 3$
5. r $\rightarrow E \ 2,4$
6. $p \land q \rightarrow r$ $\rightarrow I \ 3-5$

(j)
$$q \rightarrow r \vdash (p \rightarrow q) \rightarrow (p \rightarrow r)$$

1. $q \rightarrow r$ premise

2. $p \rightarrow q$ assumption

3. p assumption

4. q \rightarrow E 2,3

5. r \rightarrow E 1,4

6. $p \rightarrow r$ \rightarrow I 3–5

 $(p \to q) \to (p \to r)$

Exercise 1.4.2

7.

(g)

p	q	$p \to q$	$(p \to q) \to p$	$ \mid ((p \to q) \to p) \to p $
Τ	Τ	Τ	T	T
Τ	F	F	T	T
F	\mathbf{T}	Τ	F	Т
F	F	Τ	F	T

(h)

p	q	r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$ \mid (p \lor q) \to r$	$(p \to r) \lor (q \to r)$	$ \mid ((p \lor q) \to r) \to ((p \to r) \lor (q \to r)) $
\overline{T}	Т	Т	Т	T	T	Т	T	T
${ m T}$	\mathbf{T}	\mathbf{F}	Т	F	F	F	F	T
$_{\mathrm{T}}$	\mathbf{F}	T	T	T	T	Т	T	T
$_{\mathrm{T}}$	\mathbf{F}	\mathbf{F}	Т	F	T	F	Т	T
\mathbf{F}	\mathbf{T}	\mathbf{T}	Т	Т	Т	Т	Т	T
\mathbf{F}	\mathbf{T}	\mathbf{F}	Т	T	F	F	Т	T
\mathbf{F}	F	\mathbf{T}	F	Т	Т	Т	Т	T
\mathbf{F}	F	F	F	Т	Т	Т	T	Т

 \rightarrow I 2–6

(i)

Exercise 1.5.3

(b)

Show that, if $C \subseteq \{\neg, \land, \lor, \rightarrow, \bot\}$ is adequate for propositional logic, then $\neg \in C$ or $\bot \in C$. (Hint: suppose C contains neither \neg nor \bot and consider the truth value of a formula ϕ , formed by using only the connectives in C, for a valuation in which every atom is assigned \top .)

Proof. We prove the contrapositive of the original statement. Assume that neither \neg nor \bot are in C. I claim that $C \subseteq \{\land, \lor, \rightarrow\}$ is not adequate for propositional logic because it can make neither \neg nor \bot from \land , \lor , and \rightarrow . To see this, observe the following truth table:

p	q	$p \rightarrow q$	$q \to p$	$p \lor q$	$p \wedge q$	$\neg p$	
Т	Т	Т	Т	Т	Τ	F	F
Τ	F	F	$\mid T \mid$	$\mid \mathrm{T} \mid$	F	F	F
\mathbf{F}	Τ	Τ	F	Γ	F	Τ	F
\mathbf{F}	F	Т	Γ	F	F	Τ	F

Note that, in the case where p is true, none of the connectives in $C \subseteq \{\land, \lor, \rightarrow\}$ with an arbitrary Boolean variable q can turn the truth value of the statement to false. For both \neg and \bot in the case where p is true, they change the truth value to false. We can look at the partial truth table to emphasize this:

This means that no combination of \rightarrow , \vee , and \wedge can create \neg or \bot , which implies that $C \subseteq \{\land, \lor, \rightarrow\}$ is not adequate for propositional logic. (This is an informal description of structural induction, but I wanted to go easy on its use here since we have not formally covered the technique in class, yet.)

(c)

Is $\{\leftrightarrow, \neg\}$ adequate? Prove your answer.

Proof. $\{\leftrightarrow, \neg\}$ is not adequate for propositional logic. This can be seen easiest from looking at a truth table:

p	q	$ \neg p $	p	$\rightarrow q$
Т	Т	F	Т	
Τ	\mathbf{F}	F	F	
\mathbf{F}	T	Γ	Т	
\mathbf{F}	\mathbf{F}	Γ	Т	
			ı	
p	q	$p \leftrightarrow$	q	$p \rightarrow q$
$\frac{p}{T}$	$\frac{q}{\mathrm{T}}$	$p \leftrightarrow T$	· q	$\begin{array}{ c c }\hline p \to q \\ \hline \end{array}$
			· q	
T	T	Т	· q	T

The connectives \neg and \leftrightarrow have an even number of true values and \rightarrow has an odd number of true values. This means that any combination of \neg and \leftrightarrow cannot form \rightarrow as functions of variables p and q (do you see why?).