

notícia mais empolgante que ele jamais receberia: um relato de um avanço tecnológico que transformaria a astronomia de um modo geral e a reputação do modelo centrado no Sol em particular. A notícia era tão espantosa que Kepler fez uma anotação especial a respeito da visita de Herr Wackher em março de 1610: "Eu experimentei uma emoção maravilhosa enquanto ouvia esta história curiosa. Fiquei emocionado no mais profundo de meu ser".

Kepler tinha acabado de ouvir a primeira notícia a respeito do telescópio, que estava sendo usado por Galileu para explorar o céu e revelar detalhes completamente novos do céu noturno. Graças a essa nova invenção, Galileu descobriria evidências provando que Aristarco, Copérnico e Kepler estavam corretos.

Ver para crer

Nascido em Pisa, em 15 de fevereiro de 1564, Galileu Galilei tem sido chamado de pai da ciência e, de fato, seu direito a esse título é baseado num impressionante registro de realizações. Ele pode não ter sido o primeiro a desenvolver uma teoria científica, ou o primeiro a realizar uma experiência, ou a observar a natureza, nem o primeiro a provar o poder da invenção. Mas provavelmente foi o primeiro a se destacar em cada um desses assuntos, sendo um teórico brilhante, um mestre da experimentação, um observador meticuloso e um hábil inventor.

Galileu demonstrou suas múltiplas habilidades durante seus anos como estudante, quando sua mente vagueou durante uma cerimônia na catedral e ele notou um candelabro balançando. Usando seu pulso para medir o tempo de cada oscilação, ele observou que o período para um ciclo de ida e volta permanecia constante, ainda que o arco amplo no início do ritual tivesse se reduzido para uma leve oscilação no final. De volta para casa, ele passou do modo observational para o experimental e brincou com pêndulos de diferentes comprimentos e pesos. Depois usou seus dados experimentais para desenvolver uma teoria que explicava como o período da oscilação é independente de seu ângulo e do peso, e depende apenas do comprimento do pêndulo. Depois da pesquisa pura, Galileu passou para a invenção e colabo-

rou no desenvolvimento regular permitia seu uso

Em especial, o apai paciente, revertendo os ele usou seu pulso para i estava estudando para s medicina. Posteriormen medicina, seguindo cari

Além de seu intelec seria o resultado de su tudo o que havia nele. uma vez exclamou: "Sei

Tal curiosidade esta não tinha respeito pela verdadeira só porque declarado que era. Por e duzir que objetos pesado fez uma experiência par a coragem de dizer que , ria, "escrevera o oposto

Quando Kepler ouv por Galileu para explora tivesse inventado. Muita fato foi Hans Lippershe teou o telescópio em ou Lippershey, Galileu anoi uma luneta construída p construir seus próprios i

A grande realização Lippershey num instru de 1609, Galileu present cópia mais poderoso do Marcos, instalaram a lun uma carta para o cunhad

A grande realização de Galileu foi transformar o projeto rudimentar de Lipperhey num instrumento verdadeiramente extraordinário. Em agosto de 1609, Galileu apresentou o design de Veneza com o que era então o telescópio mais poderoso do mundo. Junto a ele surgiu a torre de São Marcos, instalaram a luneta e observaram a Lagoa. Uma semana depois, em ma carta para o cunhado, Galileu informou que o telescópio tinha função

Quando Kepler ouviu pela primeira vez a notícia do uso do telescópio por Galileu para explorar o céu, ele provavelmente presumiu que Galileu o usava para inventar. Muitas pessoas fazem a mesma suposição ainda hoje. De fato foi Hans Lipperhey, um fabricante de óculos flamengo, quem patenteou o telescópio em outubro de 1608. Alguns meses depois da invenção de Lipperhey, Galileu anotou que "um boato chegou a nossos ouvidos sobre uma lunaeta construída por um certo holandês", e imediatamente passou a construir seu próprio telescópio.

Tal curiosidade estava associada a um temperamento rebelde. Galileu não tinha respeito pela autoridade no sentido de aceitar que uma coisa fosse verdadeira só porque professores, teólogos ou os amigos gregos tivessem declarado que era. Por exemplo, Aristóteles tinha usado a filosofia para deduzir que objetos pesados caíram mais depressa que objetos leves. Mas Galileu a coragem de dizer que Aristóteles, então o mais elogiado intelecto da história, "escrevera o oposto da verdade".

Além de seu intelecto indubitável, o sucesso de Galileu como cientista seria o resultado de sua tremenda curiosidade a respeito do mundo e de tudo o que havia nela. Ele estava bem ciente de sua natureza inquietadora e uma vez exclamou: "Será que nunca vou parar de me admirar?"

Em especial, o aparelho podia ser usado para medir a pulsação de um paciente, reverendo os papéis em relâgio a suas observações originais, quando ele usou seu pulso para medir o período de uma lampada balançando. Galileu estava estudando para ser médico, mas essa foi sua única contribuição para a medicina. Posteriormente ele convenceu o pai a permitir que abandonasse a medicina, seguindo carreira na ciência.

rou no desenvolvimento do *pulsologio*, um período simples cuja oscilação regular permitia seu uso como medidor de tempo.

65 NO PRINCIPIO

nado, “para o assombro infinito de todos”. Instrumentos rivais tinham um aumento de cerca de dez vezes, mas Galileu tinha uma compreensão melhor da óptica do aparelho e foi capaz de conseguir ampliações de sessenta vezes. Não somente o telescópio deu aos venezianos uma vantagem na guerra, porque eles podiam ver o inimigo antes que o inimigo os visse, mas também permitia que os mercadores astutos detectassem um navio distante chegando com uma nova carga de tecidos ou especiarias. E com isso eles podiam vender seus estoques antes que os preços de mercado despencassem.

Galileu lucrou com sua comercialização do telescópio, mas percebeu que a invenção também tinha um valor científico. Quando apontou sua luneta para o céu noturno, esta permitiu que ele visse mais longe, mais claramente e mais profundamente no espaço do que qualquer um tinha visto antes. Quando Herr Wacker contou a Kepler sobre o telescópio de Galileu, o astrônomo imediatamente reconheceu seu potencial e escreveu: “Oh, telescópio, instrumento de grande conhecimento, mais precioso do que qualquer cetro! Pois não é ele que colocado em tua mão faz de ti rei e senhor dos trabalhos de Deus?”. E Galileu se tornaria este rei e senhor.

Primeiro Galileu estudou a Lua e mostrou que ela era “cheia de vastas protuberâncias, profundos abismos e sinuosidades”, o que estava em contradição direta com a visão ptolomaica de que os corpos celestes eram esferas perfeitas. A imperfeição dos céus foi reforçada quando Galileu apontou seu telescópio para o Sol e viu manchas e máculas chamadas de manchas solares e que hoje sabemos serem regiões mais frias da superfície solar, com até 100 mil quilômetros de largura.

Então, no mês de janeiro de 1610, Galileu fez uma observação ainda mais importante quando detectou o que inicialmente julgou serem quatro estrelas vagueando nas vizinhanças de Júpiter. Logo ficou evidente que aqueles objetos não eram estrelas, porque se moviam em torno de Júpiter, o que significava que eram luas jovianas. Nunca antes alguém tinha visto uma lua que não fosse a nossa própria. Ptolomeu tinha afirmado que a Terra era o centro do universo, mas ali estava um sinal incontestável de que nem tudo orbitava a Terra.

Galileu, que mantinha correspondência com Kepler, estava bem ciente da última versão kepleriana do modelo copernicano, e percebeu que a descoberta das luas de Júpiter fornecia mais apoio ao modelo de universo

Figura 15 Os desenhos de G

centrado no Sol. Ele não certos, e no entanto contílo, na esperança de convevisão tradicional do unive impasse seria comprovar entre os dois modelos. Se um modelo e refutaria ou ser testadas, e é através dc

E de fato Copérnico testada tão logo surgissem No *De revolutionibus*, ele exibir uma série de fases (e

exibir uma série de fases (exemplo Vénus crescente, Vénus cheia, meia Vénus) No De revolutionibus, ela tinha declarado que Mercúrio e Vénus devem ser testada tão logo surgiissem ferramentas adequadas para fazer as observações.

E de fato Copérnico tinha feito tal previsão, a qual esperava para ser

ser testadas, e através dos testes que a ciência progrediu.

um modelo refutaria outro. A boa ciéncia desenvolve teorias que podem entre os dois modelos. Se tal previsão pudesse ser testada, ela confirmaria impasse seria comprovar uma previsão bem definida que fizesse a diferença entre os dois modelos. O único meio de romper o vício tradicional do universo centrado na Terra. O que é que a experiência de Galileu nos deu?

Na esperança de convencer as autoridades que ainda se agarravam a uma certos, e no entanto continuou a buscar mais evidências a favor desse modelo.

Figura 15 Os desenhos de Galileu para a Lua.

Figura 16 Os esboços de Galileu das mudanças de posição das luas de Júpiter. Os círculos representam Júpiter, e os vários pontos em ambos os lados mostram as posições variáveis das luas. Cada fileira representa uma observação feita em uma data e hora específicas, com uma ou mais observações por noite.

semelhante às fases da orbitasse o Sol ou vice-drão das fases porque Copérnico estava conf que suas previsões foss tornar poderoso o basta

Deixando Mercúrio das fases torna-se apare nado pelo Sol, mas do sempre está apontada p: fases. No modelo centi determinada pela trajeto mente ao seu epiciclo. C fases é diferente por sei Sol, sem nenhum epiciclo quência de Vênus cresce quer dúvida razoável, q

No outono de 1610 e cartografar as fases de xavam perfeitamente na munição extra para a de coberta em uma anotação: *Haec immatura a me iajovens para serem lidas p anagrama codificado qufiguras aemulatur Mater Mãe do Amor). Cíntia ei res, e a Mãe do Amor descoberto.*

A defesa do universo descoberta. A tabela 2 (p Terra com base em obs modelo centrado na Terr página seguinte, mostra c

e possigão das lhas de Jupiter. Os circunambos os lados mostram as posições observadas feita em uma hora

pagina seguinte, mostra como as observações de Galileu tornaram o modelo central do Sol mais centrado na Terra fazia mais sentido na Idade Média. A tabela 3, na descoberta. A tabela 2 (pp41-42) compara os modelos centrados no Sol e na Terra com base em observações pré-copernicanas, mostrando por que o descreveu.

A defesa do universo centrado no Sol tornava-se mais forte a cada nova

descoberto.

res, e a Mãe do Amor era uma aliada a Vênus, cujas fases Galileu tinha Mae do Amor). Cintia era uma referência à Lua, cujas fases já eram familiares, e a Mãe do Amor era a Amorina (As imagens de Cintia são imitadas pela figura amulcatur Mater Amorum (que se difere da de Cintia como Cyntia anagrama codificada que, se decifrado, seria compreendido como Cyntiae Jovens para serem lidas por mim"). Mais tarde ele revelou que a frase era um Hac immatura a me iam frustia leguntur oy ("Estas atualmente são muito cobertas em uma anotação criptografica em latim que se comprehenda como munijão extra para a defesa da revolução copernicana. Ela relata sua des- xavam preferentemente nas previsões do modelo centrado no Sol, e forneciam e cartografar as fases de Vênus. Como esperava, suas observações se encar- No outono de 1610, Galileu tornou-se a primeira pessoa a testemunhar

que a Vênus era razoável, qual modelo estava certo.

que a Vênus crescente e minguante, isso então provaria, além de qual- Sol, sem nenhum episídio. Se alguma pudesse identificar a verdadeira se- fases é diferente por ser determinada pela trajetória de Vênus em torno do mente ao seu episídio. Contudo, no modelo centrado no Sol, a seduziuca de determinada pela trajetória de Vênus em torno da Terra é obedecce rigorosa- fases. No modelo centrado na Terra, de Ptolomeu, a seduziuca de fases é sempre esta apontada para nós, e assim Vênus passar por uma série de nado pelo Sol, mas do nosso ponto de observação, na Terra, essa face nem das fases torna-se aparente na figura 17. Vênus tem sempre um lado ilumi- Deixando Mercúrio de lado e se concentrando em Vênus, o significado tornar podioso o bastante, poderíamos ver as fases em Mercúrio e Vênus." que suas previsões fossem comprovadas. "Se o sentido da visão pudesse se Copernico estava confiante de que era apenas uma questão de tempo ate drão das fases por que o telescópio ainda tinha que ser inventado, mas orbitasse o Sol ou vice-versa. No século XVI, ninguém poderia checar o pa- semelhante às fases da Lua e o exato padrão das fases dependria de a Terra

Figura 17 As precisas observações das fases de Vênus por Galileu provaram que Copérnico estava certo e Ptolomeu, errado. No modelo do universo centrado no Sol, mostrado no diagrama (a), a Terra e Vênus orbitam o Sol. Embora Vênus esteja sempre parcialmente iluminado pelo Sol, do ponto de vista da Terra o planeta parece passar por um ciclo de fases, transformando-se de um crescente num disco. As fases são mostradas ao lado de cada posição de Vênus.

No modelo de universo centrado na Terra, Vênus e o Sol orbitam a Terra e além disso Vênus se move em seu próprio epiciclo. As fases dependem do lugar onde Vênus se encontra em sua órbita e no seu epiciclo. No diagrama (b), a órbita de Vênus é tal que o planeta fica aproximadamente entre a Terra e o Sol, o que dá origem às fases mostradas. Ao identificar a série real de fases, Galileu pôde verificar qual modelo estava correto.

centrado no Sol mais favorecido. Os modelos centrados no Sol seriam rejeitados melhor a gravidade teria de explicar o movimento da Terra em torno do Sol se não estivesse de acordo com a teoria. O modelo terrestre não era realmente uma desconfirmação com a ciência, como demonstrado por Galileu.

Tabela 3

Esta tabela enumera dez critérios para avaliar os modelos terrestre e solar. Terra e no Sol, com base no argumento de Galileu. As cruzes e os vés indicam a relação aos critérios e um ponto de verificação. (pp. 41-42), o modelo centrado no Sol é preferível ao terrestre devido às novas observações obtidas com o advento do telescópio.

Critério		
1. Bom senso	Parece certo	Passado
2. Consciência de movimento	Não é certo	Presente
3. Cair no solo	Acontece	Antigo
4. Paralaxe estelar	Não é certa	Contemporânea
5. Previsão de órbitas planetárias	Correta	Contemporânea

Esta tabela enumera dez critérios importantes em relação aos modelos centrados na Terra e no Solo, com base no que se conhecia em 1970, depois das observações de Galileu. As cruzes e os véus dão uma indicação do desempenho de cada modelo em relação a novas observações (pontos 8, 9 e 10) que só foram possíveis como avanço do telescópio.

Tabela 3

centrado no Solo mais favorevel. As tradições remanescentes do modelo centralizado no Solo mais favorevel, como demonstramos anteriormente.

6. Movimento retrógrado dos planetas	Explicado com epiciclos e deferentes.	✓
7. Simplicidade	Muito complicado, epiciclos deferentes, equantes e excêntricos para cada planeta.	✓
8. Fases de Vênus	Não consegue prever as fases observadas.	X
9. Manchas no Sol e na Lua	Problemático — este modelo surge de uma visão aristotélica, que também afirma que os céus são perfeitos.	X
10. Luas de Júpiter	Problemático — supõe-se que tudo orbite a Terra!	X
Critério	Modelo centrado no Sol	Sucesso
1. Bom senso	Ainda exige um salto de imaginação e lógica para ver que a Terra pode girar ao redor do Sol.	X
2. Consciência do movimento	Galileu estava no caminho para explicar por que não sentimos o movimento da Terra em torno do Sol.	?
3. Cair no solo	Não existe explicação óbvia num modelo em que a Terra não está localizada no centro; somente mais tarde Newton explicaria a gravidade nesse contexto.	X
4. Paralaxe estelar	A Terra se move, assim a aparente ausência de paralaxe deve ser devida às imensas distâncias estelares; a paralaxe seria detectada com melhores telescópios.	?

5. Previsão de órbitas planetárias	En co:
6. Movimentos retrógrados dos planetas	Cc to po:
7. Simplicidade	Mu
8. Fases de Vênus	Pre vac
9. Manchas no Sol e na Lua	Ne nâ çâ lesi
10. Luas de Júpiter	Ne tol

Nesse ponto da história, tar o modelo centrado no Sol era a maioria dos astrônomos para que a Terra girava em torno de uma Terra fixa era emocional para um. Francesco Sizi ouviu falar naqueles que pareciam sugerir que a Terra era argumento muito estranho: "poderiam ter influência sobre a Terra". O filósofo Giulio Liceti chegou até a recusar-se a olhar para o céu. Quando Libri morreu, Galileo só podia ver as luas de Júpiter e a Terra.

A Igreja Católica, do mesmo modo, que a Terra estava fixa no céu, os jesuítas confirmaram a preciosa teoria de Copérnico diante os teólogos admitiram que a Terra era o centro do universo.

previsões excelentes para as órbitas planetárias, mas ainda se recusavam a aceitar que fosse uma representação válida da realidade. Em outras palavras, o Vaticano via o modelo centrado no Sol do mesmo modo como os estudantes da língua inglesa usam a frase: *How I need a drink, alcoholic of course, after de heavy lectures involving quantum mechanics* (“Ah, como eu preciso de uma bebida, alcoólica é claro, depois das aulas maçantes sobre mecânica quântica”). Esta frase, em inglês, é uma senha mnemônica para o número π . Somando o número de letras em cada palavra, teremos o valor 3,14159265358979, que é o verdadeiro valor de π até 14 casas decimais. A frase é um artifício altamente preciso para representar o valor de π , mas ao mesmo tempo sabemos que π não tem nada a ver com álcool. A Igreja mantinha a postura de que o modelo de universo centrado no Sol tinha um valor semelhante — preciso e útil, mas irreal.

Entretanto, os copernicanos continuaram a argumentar que o modelo centrado no Sol era bom para prever a realidade pelo simples motivo de que o Sol na verdade era o centro do universo. Não surpreende que isso tenha provocado uma dura reação da Igreja. Em fevereiro de 1616, um comitê de conselheiros da Inquisição declarou formalmente que adotar o modelo de universo com o Sol no centro era heresia. E, como resultado desse decreto, o *De revolutionibus* de Copérnico foi banido em março de 1616, 63 anos depois de publicado.

Galileu não se conformou com a condenação da Igreja às suas idéias científicas. Embora fosse um católico devoto, também era um racionalista apaixonado, e havia conseguido conciliar esses dois sistemas de crenças. Chegara à conclusão de que os cientistas estavam mais bem qualificados para comentar o mundo material, enquanto os teólogos estavam mais preparados para falar do mundo espiritual e sobre como se deve viver no mundo material. Galileu afirmava: “A Escritura Sagrada destina-se a ensinar aos homens como ir para o Céu e não como o céu funciona”.

Se a Igreja criticasse o modelo centrado no Sol pela identificação da debilidade do argumento, ou alegando pobreza de dados, Galileu e seus colegas estariam dispostos a ouvir, mas as críticas eram puramente ideológicas. Galileu preferiu ignorar os pontos de vista dos cardeais e ano após ano continuou a insistir numa nova visão do universo. Finalmente, em 1623 ele viu uma oportunidade de derrubar a ordem estabelecida quando seu amigo, o cardeal Maffeo Barberini, foi eleito para o trono papal como Urbano VIII.

Galileu e o novo papa se conheciam desde que freqüentaram a mesma

Figura 18 Copérnico (à esquerda, embaixo) e Galileu foram responsáveis na Terra para um modelo de universo que descreve o progresso do desenvolvimento e são aperfeiçoados construindo a partir do trabalho.

Copérnico estava preparado para o satélite e promoveu o Sol ao fornecer a evidência observacional. Ficou com a maior falha no modelo, levemente elípticas e não perfeitas, para descobrir a evidência funcional. A Terra não era o centro de tudo, mostrou que as fases de Vênus se repetem no Sol.

no Sol. mostrou que as fases de Vénus só eram compatíveis com um modelo de universo centrado a Terra não era o centro de tudo porque Júpiter tinha seus próprios satélites. Também para descobrir a evidência fundamental que convenceu os incrédulos. Ele mostrou que levemente elípticas e não modelo de Copérnico, ou seja, que as órbitas planetárias são ficar a maior fraha no modelo de Copérnico, mais tarde, ajudaria Johannes Kepler a identificar a evidência observacional que, apesar de seu nascimento é promovido o Sol ao papel central. Tycho Brahe, apesar de latão, satélite e promoveu o Sol ao papel central. Tycho Brahe, apesar de seu nascimento é promovido o Sol ao papel central. Tycho Brahe, apesar de seu nascimento é promovido o Sol ao papel central. Tycho Brahe, apesar de seu nascimento é promovido o Sol ao papel central. Tycho Brahe, apesar de seu nascimento é promovido o Sol ao papel central. Tycho Brahe, apesar de seu nascimento é promovido o Sol ao papel central. Tycho Brahe, apesar de seu nascimento é promovido o Sol ao papel central. Tycho Brahe, apesar de seu nascimento é promovido o Sol ao papel central. Tycho Brahe, apesar de seu nascimento é promovido o Sol ao papel central. Tycho Brahe, apesar de seu nascimento é promovido o Sol ao papel central. Tycho Brahe, apesar de seu nascimento é promovido o Sol ao papel central.

Copérnico estava preparado para dar o salto teórico que relegou a Terra a um mero construído a partir do trabalho do outro.

desenvolvem e são apeligados ao longo do tempo, por vários cientistas, cada um aspecto-chave do progresso científico, ou seja, como as teorias e os modelos se na Terra para um modelo de universo centrado no Sol. Juntas, suas realizações ilustram da, embalado) e Galileu foram responsáveis por impulsionar a mudança de modelo centrado

Figura 18 Copérnico (à esquerda, no alto), Tycho (à direita, no alto), Kepler (à esquerda,

universidade em Pisa. Logo após sua nomeação, Urbano VIII concedeu a Galileu seis longas audiências. Numa delas, Galileu mencionou sua idéia de escrever um livro que comparasse as duas visões do universo, e, quando deixou o Vaticano, saiu com a firme impressão de que recebera as bênçãos do papa. Retornou a seu gabinete e começou o que seria um dos livros mais controvertidos já publicados na história da ciência.

Em seu *Diálogo sobre os dois máximos sistemas do mundo*, Galileu usou três personagens para explorar os méritos das visões de mundo centradas no Sol e na Terra. Salviati apresentava a visão preferida de Galileu do Sol no centro, e era claramente um homem inteligente, culto e eloquente. Simplício, o bufão, tentava defender a visão centrada na Terra. E Sagredo agia como um mediador, guiando a conversa entre os dois personagens, embora seu ponto de vista às vezes transparecesse, quando ele zombava e criticava Simplício ao longo do texto. Tratava-se de um texto acadêmico, mas o artifício de usar personagens para explicar os argumentos e contra-argumentos o tornaram acessível a um público mais amplo. Também ajudava o fato de o livro ser escrito em italiano e não em latim; assim, o objetivo de Galileu era claramente conquistar amplo apoio popular para o universo centrado no Sol.

O *Diálogo* foi por fim publicado em 1632, quase uma década depois de Galileu ter conseguido, ao que tudo indica, a aprovação do papa. O enorme atraso entre a concepção e a publicação acabou tendo graves consequências, porque a Guerra dos Trinta Anos tinha mudado o panorama político e religioso e o papa Urbano VIII agora estava disposto a esmagar Galileu e seus argumentos. A Guerra dos Trinta Anos tivera início em 1618, quando um grupo de protestantes invadiu o palácio real, em Praga, e atirou pelas janelas superiores dois altos funcionários, num evento conhecido como “a defenestração de Praga”. O povo local estava enfurecido com a contínua perseguição do rei católico aos protestantes e, ao realizar esta ação, eles provocaram um violento levante das comunidades protestantes da Hungria, Transilvânia, Boêmia e outras partes da Europa.

Na ocasião em que o *Diálogo* foi publicado, a guerra assolava havia 14 anos, e a Igreja Católica sentia-se cada vez mais alarmada com a crescente ameaça dos protestantes. O papa tinha que ser um forte defensor da fé católica, e ele decidiu que parte de sua nova estratégia populista seria dar meia-volta e condenar os escritos blasfemos de qualquer cientista herege que se atrevesse a questionar a visão tradicional do universo centrado na Terra.

Uma explicação mai astrônomos invejosos da servadores e fomentaram alguns dos pronunciamei declarações do bufão Sin mente como Simplício, sem levar em conta as leis resposta sarcástica de Sa poderia ter feito os páss veias cheias de mercúrio, bem pequenas. Mas ele n para esconder a sua igno

Logo depois da publi recimento de Galileu pe “veemente suspeita de he tava muito doente para v acorrentado até Roma. E Enquanto esperava pela c go e ordenou à gráfica qu tarde demais — todos tin

O julgamento começ centrada no conflito entre de que “Deus fixou a Ter nunca mais”. A maioria cardeal Bellarmine: “Afir quanto afirmar que Jesus cardeais que presidiam o i ca a Galileu, liderada po VIII. Durante duas seman até ameaças de tortura, r rância. Até certo ponto e culpado, Galileu não foi r simplesmente sentenciado álogo, acrescentado à list torum. Barberini foi um d

O julgamento começou em abril de 1633. A acusação de heresia estava centrada no conflito entre os pontos de vista de Galileu e afirmação bíblica de que “Deus fixou a Terra sobre suas fundações, para que não se movesse nenhuma mais”. A maioria dos membros da Inquisição assumiu a opinião do cardenal Bellarmino: “Afirmar que a Terra gira em torno do Sol é tão errado quanto afirmar que Jesus não nasceu de uma virgem”. Todavia, entre os dez cardinais que presidiaram o julgamento, havia uma facção racionalista simpática a Galileu, liderada por Francisco Barberini, sobrinho do papa Urbano VIII. Durante duas semanas, acumularam-se provas contra Galileu, e houve até ameaças de tortura, mas Barberini continuamente pediu calma e tolerância. Até certo ponto ele foi bem-sucedido. Depois de ser considerado culpado, Galileu não foi nem executado nem largado numa masmorra. Foi simplesmente sentenciado à prisão domiciliar por tempo indeterminado, e o Diálogo, acrescentado à lista de livros proibidos, o *Index librorum prohibitorum*.

O julgamento de Galileu e sua punição constituem um dos episódios mais negros da história da ciência, um triunfo da irracionalidade sobre a lógica. No final do julgamento, Galileu foi forçado a abjurar, negar a verdade de seus argumentos. Contudo, ele conseguiu manter um pouco de seu orgulho em nome da ciência. Depois de ouvir a sentença de joelhos, ele se levantou e teria murmurado as palavras “*Eppur si muove!*” (“E no entanto ela se move!”). Em outras palavras, a verdade é ditada pela realidade, não pela Inquisição. A despeito do que a Igreja pudesse afirmar, o universo ainda funcionava de acordo com suas próprias leis científicas imutáveis, e a Terra de fato orbitava o Sol.

Galileu mergulhou no isolamento. Confinado a sua casa, ele continuou a pensar a respeito das leis que regem o Universo, mas suas pesquisas foram severamente limitadas quando ele ficou cego em 1637, talvez devido a um glaucoma provocado pela observação do Sol através do telescópio. O grande observador não podia mais observar. Galileu morreu em 8 de janeiro de 1642. E, num ato final de punição, a Igreja não permitiu que ele fosse enterrado em terreno consagrado.

A pergunta fundamental

O modelo centrado no Sol aos poucos se tornou amplamente aceito pelos astrônomos ao longo do século seguinte, em parte porque mais prova observational estava sendo reunida com a ajuda de telescópios melhores e em parte devido aos avanços teóricos para explicar a física subjacente ao modelo. Outro fator importante foi que uma geração de astrônomos tinha morrido. A morte é um elemento essencial no progresso da ciência, já que elimina os cientistas conservadores da geração anterior, relutantes em abandonar uma teoria velha e falaciosa para adotar uma nova e mais precisa. Sua teimosia é compreensível, já que associam o trabalho de uma vida inteira a um modelo estabelecido e hesitam em face da possibilidade de abandoná-lo a favor de um novo modelo. Como Max Planck, um dos maiores físicos do século XX comentou, “uma inovação científica importante raramente se estabelece aos poucos, conquistando e convertendo seus opositores: é muito pouco comum que Saulo se transforme em Paulo. O que acontece é que os opositores gradualmente vão morrendo e a nova geração se familiariza com a idéia desde o começo”.

Em paralelo à aceitação de astronômica, houve tam Os teólogos perceberam q os homens cultos consider posição em relação à astro origem a um período de li cientistas aplicariam sua cc lacionadas ao mundo natu filosóficos e os dogmas rel sas, lógicas e verificáveis. E da reprodução, dos compo

Contudo, uma questã os cientistas concordavam cia inacessível a qualquer eva disposto a enfrentar a p criado. Os cientistas se cor criação do universo era c mais, a abordagem desse a que se desenvolvera entre Big Bang sem Deus terian XVIII, assim como o univ século XVII. Na Europa, a inquestionável sobre a cria ticos aceitava que Deus tin

Parecia que a única que universo. Os estudiosos pe em diante, somando os an profetas, os reis e assim p totais enquanto prosseguia estimada da criação variass contagem. Afonso X, de pelas *Tábuas alfonsinas*, su do 6904 a.C., enquanto Jo inferior da escala, 3992 a.C.

Contudo, uma questão em especial era notoriamente ignorada, por que os cíentistas concordavam que ela estava além de sua alçada, e de fato parecia inacessível a qualquer empriedade intelectual. Parecia que ninguém estava disposto a enfronhar a pergunta fundamental sobre como o universo criado. Os cíentistas se contentavam em explicar os fenômenos naturais, e a criado. Na Europa, a Bíblia continuava a ser considerada a autoridade secular XVII, assim como o universo central do Sol oferecera a Inquisição no Big Bang sem Deus teriam parado hereticas para os teólogos do século XVI, assim como a ciência e a religião. As noções modernas de um que se desenvolvera entre a ciência e a religião. As noções modernas de um mundo, a borda de desses assuntos terra colocada em risco o respeito mútuo entre a ciência e a religião. Assim, a ciência e a religião estavam separadas, e a criado do universo era considerada um fenômeno sobrenatural. Além da religião secular sobre a criado do universo, e grande maioria dos católicos aceitava que Deus tinha criado o céu e a Terra.

Parecia que a única questão aberta à discussão era quando Deus criara o universo. Os estudiosos percorriam as listas de gergões bíblicas, do Gênesis em diante, somando os anos a cada nascimento, levando em conta Adão, os profetas, os reis e assim por diante, mantendo um círculo fechado de totais enducento processamento. Havia incertezas suficientes para que a estimada da criação variasse em até 3 mil anos, dependendo de quem fazia a contagem. Afonso X, de Castela e Leão, por exemplo, o rei responsável pelas *Tabuas Alfonsinas*, sugeriu a data mais antiga para a criação como sendo 6904 a.C., enquanto Johnannes Kepler preferiu uma data na extremidade de 992 a.C.

Em paralelo a acréscimo da visão de mundo heliocêntrica pela comunida-
de astronómica, houve também uma mudança de atitude por parte da Igreja.
Os teólogos perceberam que parceriam tolhos se continuassem a negar o que
os homens cultos consideravam uma realidade. Assim, a Igreja suavizou sua
positão em relação à astronomia e a muitas outras áreas da ciência, o que deu
origem a um período de liberdade intelectual. Ao longo do século XVII, os
cientistas aplicaram sua competência a uma ampla variedade de questões re-
lacionadas ao mundo natural, substituindo os mitos sobrenaturais, os erros
filosóficos e os dogmas religiosos por respostas e explicações naturais preci-
osas, lógicas e verificáveis. Elas estudaram tudo, da natureza da luz ao processo
da reprodução, dos componentes da matéria à mecânica das vulcões.

NO PRINCIPIO 79