DEEP LEARNING

Введение

Святослав Елизаров, Борис Коваленко 8 сентября 2018

Высшая школа экономики

ВЕРОЯТНОСТЬ

Вероятностным пространством называется тройка вида:

$$(\Omega, \mathcal{A}, \mathbb{P})$$

Где:

- · Ω множество элементарных событий
- \cdot ${\cal A}$ сигма-алгебра на Ω
- \cdot \mathbb{P} вероятностная мера, такая что $\mathbb{P}(\Omega)=1$

СЛУЧАЙНАЯ ВЕЛИЧИНА

Случайная величина – математический термин, использующийся для представления объектов или их свойств.

Случайной величиной называется некоторая функция $X:\Omega \to \mathbb{R}$, измеримая относительно \mathcal{A} . Случайные величины бывают непрерывными и дискретными.

СЛУЧАЙНАЯ ВЕЛИЧИНА

Случайная величина – математический термин, использующийся для представления объектов или их свойств.

Случайной величиной называется некоторая функция $X:\Omega \to \mathbb{R}$, измеримая относительно \mathcal{A} . Случайные величины бывают непрерывными и дискретными.

Примеры:

- Случайная величина Х отвечает времени ожидания автобуса.
- · X отвечает всем возможным изображениям разрешения 640x480

РАСПРЕДЕЛЕНИЕ

Распределение – это некоторый закон, ставящий в соответствие реализациям (значениям) случайной величины вероятности их появления.

Обычно обозначается $p_X(\cdot)$, когда речь идёт о случайной величине X или просто $p(\cdot)$, когда это понятно из контекста и называется **плотностью вероятности**.

РАСПРЕДЕЛЕНИЕ

Так же существует кумулятивная функция распределения, которая показывает вероятность всех событий меньших или равных данному.

$$P(x) = \mathbb{P}(X < x)$$

Связь с плотностью распределения:

$$P(x) = \int_{-\infty}^{x} p(t)dt$$

ПРИМЕРЫ РАСПРЕДЕЛЕНИЙ

• Биномиальное распределение

$$p(x) = \binom{n}{x} \mu^{x} (1 - \mu)^{n - x}$$

Обозначается $B(n, \mu)$

· Гауссовское распределение (нормальное)

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Обозначается $N(\mu, \sigma^2)$

• Распределение Лапласа

$$p(x) = \frac{1}{2b} \exp\left(-\frac{|(x-\mu)|}{b}\right)$$

Обозначается $L(\mu, b)$

УСЛОВНОЕ РАСПРЕДЕЛЕНИЕ

Условным называется распределение случайной величины при условии, что другая случайная величина приняла определённое значение.

p(x,y) – совместное распределение случайных величин X и Y. Тогда условным распределением будет

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

частотный подход

Важным является вопрос о том, как интерпретировать вероятности.

Частотным называется подход, в котором вероятность определяется частотой некоторого события, которе повторяется многократно в серии экспериментов.

Представим, что мы имеем выборку x_1, x_2, \ldots, x_n , состоящую из реализаций случайной величины X.

Что делать, чтобы восстановить распределение X?

Предположим, что распределение X принадлежит некоторому параметрическому семейству распределений(например, нормальному) с параметрами $\theta \in \Theta$. Можно записать это как условное распределение:

 $p(x|\theta)$

Данное условное распределение называется правдоподобием, его иногда обозначают символом \mathcal{L} .

Выпишем правдоподобие для имеющейся выборки:

$$p(x_1, x_2, \ldots, x_n | \theta)$$

И если считать объекты незавимыми, то

$$p(x_1,x_2,\ldots,x_n|\theta)=\prod_{i=1}^n p(x_i|\theta)$$

Выпишем правдоподобие для имеющейся выборки:

$$p(x_1, x_2, \ldots, x_n | \theta)$$

И если считать объекты незавимыми, то

$$p(x_1, x_2, \dots, x_n | \theta) = \prod_{i=1}^n p(x_i | \theta)$$

Или что эквивалентно:

$$\ln p(x_1, x_2, \dots, x_n | \theta) = \sum_{i=1}^n \ln p(x_i | \theta)$$

Необходимо найти такие параметры θ при которых правдоподобие будет максимальным.

$$\theta_{mle} = \arg\max_{\theta \in \Theta} p(x_1, x_2, \dots, x_n | \theta)$$

Где Θ множество параметров для данного семейства. Максимизация правдоподобия является основным механизмом статистического вывода в частотном подходе.

Представим, что мы подбрасываем монету.

Будем считать, что данные имеют распределение Бернулли.

Bern
$$(x|\mu) = \mu^{x}(1-\mu)^{1-x}$$

Параметр μ – вероятность выпадения орла, $x \in \{0,1\}$

Предположим, что данные независимы.

Выпишем логарифмическое правдоподобие:

$$\ln p(x_1, x_2, \dots, x_n | \mu) = \sum_{i=1}^n (x_i \ln \mu + (1 - x_i) \ln (1 - \mu))$$

Пусть выборка данных состоит из трёх наблюдений и все они равны 1 (выпал орёл).

Из формулы логарифмического правдоподобия видно, что параметр μ оценивается следующим образом:

$$\mu_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Пусть выборка данных состоит из трёх наблюдений и все они равны 1 (выпал орёл).

Из формулы логарифмического правдоподобия видно, что параметр μ оценивается следующим образом:

$$\mu_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Всё ли в порядке с данным решением?

Пусть выборка данных состоит из трёх наблюдений и все они равны 1 (выпал орёл).

Из формулы логарифмического правдоподобия видно, что параметр μ оценивается следующим образом:

$$\mu_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Всё ли в порядке с данным решением?

 $\mu_{ML}=$ 1 и наша монета обязана всегда приземляться орлом вверх!

БАЙЕСОВСКИЙ ПОДХОД

Байесовский подход трактует вероятность как меру неопределенности.

Так же многие события являются уникальными и не могут быть многократно повторены для того, чтобы измерить частоту того или иного исхода. Например, исчезновение лесов в дельте Амазонки. Байесовский подход позволят использовать априорное знание для определения вероятности таких событий.

БАЙЕСОВСКИЙ ПОДХОД

Основная идея байесовского подхода заключается в том, что параметры семейства тоже являются случайной величиной, именно она определяет априорное знание. Для вывода используется формула Байеса:

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$

Где: $p(x|\theta)$ – правдоподобие

p(heta) – априорное распределение параметров или prior

p(x) – вероятность данных или evidence

 $p(\theta|x)$ – апостериорное распределение.

Важным преимуществом Байесовского подхода является то, что можно использовать $p(\theta|x)$ в в качестве априорного распределения в дальнейшем и постепенно дообучать модель.

Главный инструмент статистического вывода максимизация апостериорной вероятности или MAP:

$$\theta_{map} = \arg\max_{\theta \in \Theta} p(\theta|x)$$

Важным преимуществом Байесовского подхода является то, что можно использовать $p(\theta|x)$ в в качестве априорного распределения в дальнейшем и постепенно дообучать модель.

Главный инструмент статистического вывода максимизация апостериорной вероятности или MAP:

$$\theta_{map} = \arg\max_{\theta \in \Theta} p(\theta|x)$$

Проблемы?

СОПРЯЖЁННОЕ РАСПРЕДЕЛЕНИЕ

Априорное распределение $p(\theta)$ называется сопряжённым к $p(x|\theta)$, если апостериорное распределение $p(\theta|x)$ имеет ту же функциональную форму, что и $p(\theta)$.

Примеры сопряженных распределений:

- Нормальное распределение является сопряженным к нормальному
- · Бета-распределение является сопряженным к распределению Бренулли.

$$p(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} = const \cdot x^{\alpha - 1} (1 - x)^{\beta - 1}$$

ПРИМЕР МАР

Вернёмся к примеру с монетой, но на этот раз зададим априорное распределение исходя из предположения, что монета честная.

В случае распределения Бернулии, нам необходимо выбрать симметричное бета-распределение. Возмём в качестве $\alpha=\beta=3$

$$p(\mu|x) = const \cdot \mu^5 (1 - \mu)^2$$

ПРИМЕР МАР

СРАВНЕНИЕ ЧАСТОТНОГО И БАЙЕСОВСКОГО ПОДХОДА

	Частотный	Байесовский	
Случайность	Объективная неопределенность	Субъективное незнание	
Переменные	Случайные или детерминированные	ого правдоподобия Теорема Байеса	
Инференс	Метод максимального правдоподобия		
Оценки	ML-оценки		
Размер выборки	n >> 1	∀n	

Пусть Ω – множество всех объектов. Обозначим через X некоторое подмножество этого множества, $X\subset \Omega$

Множество У – это множество значений целевого признака.

Функция $\tilde{f}:\Omega \to Y$ ставит в соответствие каждому объекту некоторое значение $y\in Y$.

Дано:

- Множество X
- · Значения функции \tilde{f} на множестве X

Задача: Предсказать значения \tilde{f} для всего множества Ω , или, другими словами, восстановить функцию f. Восстановленную функцию будем обозначать просто f.

Такая задача называется обучением с учителем или supervised learning

В случае если значения функции \tilde{f} на множестве X неизвестны, то такая задача называется обучением без учителя или unsupervised learning

В данном курсе мы столкнёмся со множеством частных случаев каждой из этих задач:

С учителем:

- 1. Классификация
- 2. Регрессия
- 3. Сегментация изображений

Без учителя:

- 1. Word or sentence embeddings
- 2. Кластеризация
- 3. Style transfer

ЛИНЕЙНАЯ РЕГРЕССИЯ

Простейшая линейная регрессия:

$$f(x) = \theta_1 x + \theta_0$$

ЛИНЕЙНАЯ РЕГРЕССИЯ

ЛИНЕЙНАЯ РЕГРЕССИЯ

Сколько стоит квартира, если в ней x_1 комнат и ее площадь равна x_2

Количество комнат	Общая площадь, <i>m</i> ²	Цена, руб.
3	60	10 млн
2	100	7 млн
2	50	6 млн

..

Построим график зависимости целевой переменной от одного из признаков:

Линейная зависимость?

Будем моделировать зависимоть с помощью линейной функции:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 = \theta^{\mathsf{T}} x$$

 θ - вектор весов (параметров)

Будем измерять качество модели с помощью функционала:

$$J(\theta) = \frac{1}{2} \sum_{i}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Как подобрать θ ?

ОБУЧЕНИЕ ЛИНЕЙНОЙ РЕГРЕССИИ

Функция потерь выпуклая. Выпуклая функция обладает множеством замечательных свойств, наиболее важными из которых для нас являются:

- 1. Функция непрерывна и дифференцируема на всём интервале за исключением не более чем счётного множества точек и дважды дифференцируема почти всюду.
- 2. Локальный минимум является глобальным.

Таким образом мы можем применять основанные на вычислении градиента методы, не боясь застрять в локальном минимуме.

ГРАДИЕНТНЫЙ СПУСК

Градиент – обобщение производной на многомерный случай. Это вектор, показывающий направления роста функции и по модулю равный скорости роста. Обозначается $\nabla f(x)$.

Градиентный спуск – простейший метод численной оптимизации: суть метода в последовательном движении в направлении противоположном градиенту.

ГРАДИЕНТНЫЙ СПУСК

ГРАДИЕНТНЫЙ СПУСК

$$\theta_i = \theta_{i-1} - \alpha \nabla f_{\theta}$$

Где θ_i – вектор параметров функции f на итерации i.

f – целевая функция.

 λ – learning rate, может быть как константой, так и функцией от номера итерации.

Рассмотрим алгоритм градиентного спуска для задачи линейной регрессии:

Инициализируем вектор параметров heta случайным образом и будем двигаться по градиенту функционала ошибки:

$$\theta_i = \theta_{i-1} - \alpha \nabla_{\theta} J$$

Найдём градиент функционала:

$$\nabla_{\theta} J(\theta) = \frac{\partial}{\partial \theta} \left[\frac{1}{2} \sum_{i}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \right] = \sum_{i}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Алгоритм имеет вид:

- 1. Инициализировать θ
- 2. Повторять до схождения:

$$\theta_i = \theta_{i-1} - \alpha \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Можно ли использовать другие подходы?

Рис. 1: Функция потерь выпуклая

Рис. 2: Найденная функция

Решим задачу в матричной форме:

Форма функциональной зависимости:

$$h_{\theta}(X) = X\theta$$

Функционал ошибки:

$$J(\theta) = \frac{1}{2}(X\theta - y)^{\mathsf{T}}(X\theta - y)$$

Градиент функционала ошибки:

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \left[\frac{1}{2} (X\theta - y)^{\mathsf{T}} (X\theta - y) \right] = \dots = X^{\mathsf{T}} X\theta - X^{\mathsf{T}} y$$
$$X^{\mathsf{T}} X\theta = X^{\mathsf{T}} y$$
$$\theta = (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} y$$

Теперь решим задачу в вероятностной постановке:

$$y^{(i)} = \theta^{T} x^{(i)} + \epsilon^{i}$$

$$p(\epsilon^{i}) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(\epsilon^{i})^{2}}{2\sigma^{2}}) \Rightarrow$$

$$\Rightarrow p(y^{i)}|x^{(i)};\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}})$$

Выпишем функцию правдоподобия:

$$l(\theta) = \log L(\theta) = \log \prod_{i}^{m} p(y^{i}) | x^{(i)}; \theta) =$$

$$= \log \prod_{i}^{m} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right) =$$

$$= \sum_{i}^{m} \log\left[\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - \theta^{T} x^{(i)})^{2}}{2\sigma^{2}}\right)\right] =$$

$$= m \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^{2}} \frac{1}{2} \sum_{i}^{m} (y^{(i)} - \theta^{T} x^{(i)})^{2}$$

Чтобы максимизировать $l(\theta)$, надо минимизировать

$$\frac{1}{2} \sum_{i}^{m} (y^{(i)} - \theta^{\mathsf{T}} x^{(i)})^{2}$$