Modéliser le comportement statique des systèmes mécaniques

Révision 1 – Résolution des problèmes de statique – Statique 2D

Industrielles de

Sciences

TD 02

Dépose de bagage automatique dans les aéroports (DBA)

Concours Centrale Supelec TSI 2018

Savoirs et compétences :

Mise en situation

Le processus d'enregistrement des passagers dans les aéroports est en train de vivre une mutation en évoluant de la « banque d'enregistrement » classique vers une idée de « dépose bagages » automatisée. Cette évolution a été justifiée pour fluidifier le trafic passager notamment sur les destinations avec des fréquences très importantes, par exemple certains vols Paris-Province.

Le système DBA est constitué par un basculeur actionné par un dispositif bielle-manivelle et une machine asynchrone.

Recherche de la vitesse de rotation maximale

Objectif Le bagage et le chariot sont animés par un dispositif bielle-manivelle et une machine asynchrone triphasée avec un réducteur entraînant la manivelle. L'objectif est de déterminer la vitesse de rotation maximale de la machine asynchrone triphasée actionnant le basculeur en accord avec l'exigence 1.4 (le basculement du bagage doit se faire en 8 s).

Pour dimensionner correctement la machine asynchrone, la première étape est le calcul de la vitesse maximale de l'arbre moteur. On choisit comme loi de mouvement de rotation du moteur une loi en trapèze. On donne ainsi le profil de vitesse de rotation ω_r de l'arbre de sortie du réducteur par rapport au bâti.

Le rapport de réduction entre l'arbre moteur de vitesse de rotation et l'arbre de sortie de réducteur est noté $k=\frac{\omega_r}{\omega_{\mathrm{mot}}}=\frac{1}{107,7}$. Compte tenu du temps de basculement du bagage de 8 s, les valeurs des temps sont les suivantes : $t_1=0.5\,\mathrm{s},\ t_2=2.5\,\mathrm{s},\ t_3=3\,\mathrm{s},\ t_4=5\,\mathrm{s},\ t_5=5.5\,\mathrm{s},\ t_6=7.5\,\mathrm{s},\ t_7=8\,\mathrm{s}$. L'arbre de sortie du motoréducteur doit faire un demi-tour entre 0 et t_3 , puis un demi-tour entre t_4 et t_7 .

Question 1 Déterminer ω_{max} en fonction des différents t_i . Faire l'application numérique.

Correction En calculant l'aire sous la courbe (l'intégrale de la vitesse est la position) et sachant que le réducteur doit faire un demi-tour $(\pi$ rad), on a : $\pi = \frac{1}{2}t_1\omega_{\max} + \frac{1}{2}(t_3 - t_2)\omega_{\max} + (t_2 - t_1)\omega_{\max} = \left(\frac{1}{2}t_1 + \frac{1}{2}(t_3 - t_2) + (t_2 - t_1)\right)\omega_{\max}$. On a donc $\omega_{\max} = \frac{\pi}{-\frac{1}{2}t_1 + \frac{1}{2}t_2 + \frac{1}{2}t_3} = \frac{\pi}{-\frac{1}{2}0,5 + \frac{1}{2}2,5 + \frac{1}{2}3} = \frac{\pi}{2,5} = 1.26 \, \text{rad} \, \text{s}^{-1}$.

Question 2 En déduire la vitesse de rotation de l'arbre moteur maximale $\omega_{mot \, max}$. Faire l'application numérique et donner le résultat en $tr \cdot min^{-1}$.

Correction $\omega_{\rm mot\,max}=107, 7\times 1, 26=135\,{\rm rad\,s^{-1}}=1292\,{\rm tr\,min^{-1}}.$

Recherche du couple moteur maximal en vue du dimensionnement de la machine asynchrone

Objectif La seconde étape du dimensionnement consiste à rechercher le couple moteur maximal en accord avec l'exigence 1.2 (la masse du bagage pouvant être manœuvré par le système est de 50 kg).

Pour calculer le couple moteur maximal, on se place dans un cas quasi-statique et on néglige tous les effets dynamiques. Compte tenu de la construction du mécanisme (non linéaire), le couple moteur est variable et on le calcule dans une position particulière correspondant au couple maximal.

On note:

- *S*₀ le bâti;
- S₁ l'ensemble constitué par le chariot, le bagage et les galets, dont le centre de gravité est noté G et la masse est notée m = 80 kg;
- S_2 la bielle DB de direction $\overrightarrow{x_2}$;
- S_3 l'arbre de sortie de réducteur et la manivelle $\overrightarrow{ED} = R \overrightarrow{x_3}$ avec R = 86 mm.

Le mouvement est considéré comme plan. On néglige toutes les masses sauf celle de l'ensemble S_1 . Toutes les liaisons sont parfaites. Le référentiel lié au solide S_0 est considéré galiléen. On note l'accélération de la pesanteur $\overrightarrow{g} = -g \overrightarrow{y_0}$ avec $g = 9.821 \,\mathrm{m\,s^{-2}}$.

Les liaisons entre S_0 et S_1 sont des liaisons sphèreplan de normales $(A_1, \overrightarrow{x_{11}})$ et $(A_1, \overrightarrow{x_{12}})$. On note I le point d'intersection des normales $(A_1, \overrightarrow{x_{11}})$ et $(A_2, \overrightarrow{x_{12}})$. On note $\overrightarrow{IB} = L_2 \overrightarrow{x}_{12}$ et $\overrightarrow{IG} = x_G \overrightarrow{x}_0 + y_G \overrightarrow{y}_0$.

On note les angles α_i formés entre les vecteurs \overrightarrow{x}_0 et $\overrightarrow{x}_i : \alpha_i = (\overrightarrow{x_0}, \overrightarrow{x_i})$ avec $i \in \{2; 3; 11; 12\}$.

La liaison entre S_1 et S_2 est une liaison pivot d'axe $(B, \overrightarrow{z_0})$.

La liaison entre S_2 et S_3 est une liaison pivot d'axe $(D, \overrightarrow{z_0})$.

La liaison entre S_0 et S_3 est une liaison pivot d'axe $(Es, \overrightarrow{z_0})$.

Question 3 Déterminer la forme des torseurs $\{\mathcal{T}(S_0 \to S_1)\}_1$ au point A_1 et $\{\mathcal{T}(S_0 \to S_1)\}_2$ au point A_2 des actions mécaniques des rampes du bâti S_0 s'appliquant sur le chariot S_1 . Ces torseurs sont-ils des glisseurs?

Question 4 La somme des torseurs $\{\mathcal{T}(S_0 \to S_1)\}_1$ et $\{\mathcal{T}(S_0 \to S_1)\}_2$ est-elle un glisseur? Si oui, déterminer un point de son support.

Correction On a
$$\{\mathcal{T}(S_0 \to S_1)\} = \{\mathcal{T}(S_0 \to S_1)\}_1 + \{\mathcal{T}(S_0 \to S_1)\}_2 = \left\{\begin{array}{c} F_1 \overrightarrow{x_{11}} + F_2 \overrightarrow{x_{12}} \\ \overrightarrow{0} \end{array}\right\}_I$$
. Ce torseur est un glisseur dont le point I appartient au support.

Question 5 Déterminer la forme du torseur $\{\mathcal{T}(S_2 \to S_1)\}$ de l'action mécanique de la bielle S_2 sur l'ensemble S_1 au point B. On notera F_B la norme de la résultante de ce torseur.

Correction On prendra F_B comme valeur algébrique et pas comme norme de la résultante. On isole la bielle S_2 , elle est soumise à deux glisseurs. D'après le PFS, ces glisseurs sont de même norme, de même direction (la droite (DB)) et de sens opposés. On a $\{\mathcal{T}(S_2 \to S_1)\} = \left\{ \begin{array}{c} F_B \overrightarrow{x_2} \\ \overrightarrow{0} \end{array} \right\}$.

Question 6 En isolant S_1 , et en ramenant les moments en I, déterminer l'expression de F_B en fonction de la masse m de S_1 , des angles α_i et des constantes du problème.

Correction On isole S_1 .

On réalise le BAME :

On réalise le BAME:

•
$$\{\mathcal{T}(S_2 \to S_1)\} = \left\{\begin{array}{c} F_B \overrightarrow{x_2} \\ \overrightarrow{0} \end{array}\right\}_B$$

$$= \left\{\begin{array}{c} F_B \overrightarrow{x_2} \\ L_2 F_B \sin(\alpha_{12} - \alpha_2) \overrightarrow{z} \end{array}\right\}_I (\overrightarrow{IB} \wedge F_B \overrightarrow{x_2}) = L_2 \overrightarrow{x_{12}} \wedge F_B \overrightarrow{x_2} = L_2 F_B \sin(\alpha_{12} - \alpha_2) \overrightarrow{z});$$

• $\{\mathcal{T}(S_0 \to S_1)\} = \left\{\begin{array}{c} F_1 \overrightarrow{x_{11}} + F_2 \overrightarrow{x_{12}} \\ \overrightarrow{0} \end{array}\right\}_I;$

• $\{\mathcal{T}(\text{pes} \to S_1)\} = \left\{\begin{array}{c} -mg \overrightarrow{y_0} \\ \overrightarrow{0} \end{array}\right\}_G;$

$$= \left\{\begin{array}{c} -mg \overrightarrow{y_0} \\ -mg x_G \overrightarrow{z_0} \end{array}\right\}_I (\overrightarrow{IG} \wedge -mg \overrightarrow{y_0}) = (x_G \overrightarrow{x_0} + y_G \overrightarrow{y_0}) \wedge -mg \overrightarrow{y_0} = -mg x_G \overrightarrow{z_0}).$$

En appliquant le TRS en I en projection sur $\overrightarrow{z_0}$, on a: $L_2 F_B \sin(\alpha_{12} - \alpha_2) - mg x_G = 0$ soit $F_B = 1$

•
$$\{\mathcal{T}(S_0 \to S_1)\} = \left\{\begin{array}{c} F_1 \overrightarrow{x_{11}} + F_2 \overrightarrow{x_{12}} \\ \overrightarrow{0} \end{array}\right\}_I;$$

•
$$\{\mathcal{T}(\text{pes} \to S_1)\} = \left\{\begin{array}{c} -mg \ y_0' \\ \overrightarrow{0} \end{array}\right\}_G$$

$$= \left\{\begin{array}{c} -mg \ \overrightarrow{y_0} \\ -mg \ x_G \ \overrightarrow{z_0} \end{array}\right\}_I (\overrightarrow{IG} \wedge -mg \ \overrightarrow{y_0}) = \left(x_G \overrightarrow{x_0} + y_G \ \overrightarrow{y_0}\right) \wedge -mg \ \overrightarrow{y_0} = -mg \ x_G \ \overrightarrow{z_0}).$$

$$\frac{mg\,x_G}{L_2F_B\sin(\alpha_{12}-\alpha_2)}.$$

Question 7 On note C_{red} le couple exercé par l'arbre de sortie de réducteur sur la manivelle S_3 . Montrer que $C_{red} - RF_B \sin(\alpha_3 - \alpha_2) = 0$.

Correction

Dans la configuration choisie, on a $x_G=506\,\mathrm{mm}$, $L_2=140\,\mathrm{mm}$, $\alpha_3=91^\circ$, $\alpha_{12}=108^\circ$ et $\alpha_2=3^\circ$ (on montre par une simulation numérique que cette position conduit au couple maximal).

Question 8 En déduire l'expression du couple C_{red} qu'exerce le réducteur sur la manivelle S_3 en fonction du

poids du chariot, des angles α_i et des constantes du problème. Faire l'application numérique.

Correction

Question 9 En déduire la valeur numérique C_m du couple qu'exerce l'arbre de la machine asynchrone sur l'arbre d'entrée du réducteur (on supposera le rendement du réducteur égal à 1).

Correction

Caractéristiques géométriques du vérin