Quickest Search Over Multiple Sequences

Group Meeting

Bingbing Hu

June 16, 2019

SIST, ShanghaiTech

Outline

Motivation

Model

Solutions

Finite Horizon

Infinite Horizon

Motivation

Motivation

It has many applications:

- Locate attack point in sensor networks
- Find free frequency channel in cognitive radio systems
- Quality monitoring of manufacturing machines
- Sequentially search for certain data over multiple databases

Consider N sequences

- N sequences: $\{Y_k^i, k = 1, 2, ...\}, i = 1, ..., N$
- For each $i: \{Y_k^i, k=1,2,\dots\}$ are i.i.d. observations
- Two hypotheses:

$$1 - \pi_0$$
 $H_0: Y_k^i \sim Q_0, \ k = 1, 2, \dots$
 π_0 $H_1: Y_k^i \sim Q_1, \ k = 1, 2, \dots$

Consider N sequences

- N sequences: $\{Y_k^i, k = 1, 2, ...\}, i = 1, ..., N$
- For each $i: \{Y_k^i, k=1,2,\dots\}$ are i.i.d. observations
- Two hypotheses:

Consider N sequences

- N sequences: $\{Y_k^i, k = 1, 2, ...\}, i = 1, ..., N$
- For each $i: \{Y_k^i, k=1,2,...\}$ are i.i.d. observations
- Two hypotheses:

$$1 - \pi_0$$
 $H_0: Y_k^i \sim Q_0, \ k = 1, 2, \dots$
 π_0 $H_1: Y_k^i \sim Q_1, \ k = 1, 2, \dots$

Intuitively, we want to quickly search the seq. generated by Q_1 with **minimal delay** and **maximal accuracy**.

- ullet Each time select a sequence, say seq. j
- Draw a smaple Y from selected seq.
- Make one of the actions:
 - ▶ **Decision**: stop and claim
 - ▶ **Observation**: continue sampling from the same seq.
 - **Exploration**: observe next seq.
- Stop when proper conditions are satisfied

- ullet Each time select a sequence, say seq. j
- ullet Draw a smaple Y from selected seq.
- Make one of the actions:
 - ▶ Decision: stop and claim
 - ▶ **Observation**: continue sampling from the same seq.
 - ► Exploration: observe next seq.
- Stop when proper conditions are satisfied

Remarks:

- Consider $N=\infty$
- Switch back is not allowed

- ullet Each time select a sequence, say seq. j
- Draw a smaple Y from selected seq.
- Make one of the actions:
 - ▶ Decision: stop and claim
 - ▶ **Observation**: continue sampling from the same seq.
 - **Exploration**: observe next seq.
- Stop when proper conditions are satisfied

Remarks:

- Consider $N=\infty$
- Switch back is not allowed
- A1: All seq.s are independent

- ullet Each time select a sequence, say seq. j
- ullet Draw a smaple Y from selected seq.
- Make one of the actions:
 - ▶ Decision: stop and claim
 - ▶ **Observation**: continue sampling from the same seq.
 - **Exploration**: observe next seq.
- Stop when proper conditions are satisfied

Remarks:

- Consider $N=\infty$
- Switch back is not allowed
- A1: All seq.s are independent
- A2: A seq.'s distribution is independent of all others'

Notations

- Time k = 1, 2, ...
- s_k : seq. index observed at time k
- ullet $Y_k^{s_k}$: the observation at time k
- Filtration $\mathcal{F}_k = \sigma(Y_1^{s_1}, Y_2^{s_2}, \dots, Y_k^{s_k})$: knowledge up to time k
- Stopping time au: stop at seq. $s_{ au}$ and claim
- ullet ${\cal T}$: the set of all stopping times w.r.t. ${\cal F}_k$
- Switching function

$$\phi_k(\mathcal{F}_k) = \begin{cases} 1, & \text{exploration, } s_{k+1} = s_k + 1 \\ 0, & \text{observation, } s_{k+1} = s_k \end{cases}$$

Problem

Two performance metrics

- False alarm: $P(H^{s_{\tau}} = H_0)$
- ullet Avg. # of samples: $\mathbb{E}(au)$

This leads to the core problem

Problem

$$\inf_{\tau \in \mathcal{T}, \phi} \left[P(H^{s_{\tau}} = H_0) + c \mathbb{E}(\tau) \right] \tag{1}$$

Solutions

First, we consider a finite-horizon ver. of Problem (1) by restricting $\tau \in [0, T]$. This means we must stop at time T.

Posterior Prob.

Define $\pi_k = P(H^{s_k} = H_1 \mid \mathcal{F}_k)$ as the posterior prob. that seq. s_k is generated by Q_1 after observing \mathcal{F}_k ,

$$\pi_{1} = \frac{\pi_{0}q_{1}(Y_{1}^{1})}{\pi_{0}q_{1}(Y_{1}^{1}) + (1 - \pi_{0})q_{0}(Y_{1}^{1})}$$

$$\vdots$$

$$\pi_{k+1} = \frac{\pi_{k}q_{1}(Y_{k+1}^{s_{k+1}})}{\pi_{k}q_{1}(Y_{k+1}^{s_{k+1}}) + (1 - \pi_{k})q_{0}(Y_{k+1}^{s_{k+1}})} \mathbf{1}(\phi_{k} = 0)$$

$$+ \frac{\pi_{0}q_{1}(Y_{k+1}^{s_{k+1}})}{\pi_{0}q_{1}(Y_{k+1}^{s_{k+1}}) + (1 - \pi_{0})q_{0}(Y_{k+1}^{s_{k+1}})} \mathbf{1}(\phi_{k} = 1)$$

$$(2)$$

Posterior Prob.

$$\frac{P(H^{1} = H_{1})}{\pi_{0}q_{1}(Y_{1}^{1}) + (1 - \pi_{0})q_{0}(Y_{1}^{1})}$$

$$\vdots$$

$$\pi_{k+1} = \frac{\pi_{k}q_{1}(Y_{k+1}^{s_{k+1}})}{\pi_{k}q_{1}(Y_{k+1}^{s_{k+1}}) + (1 - \pi_{k})q_{0}(Y_{k+1}^{s_{k+1}})} \mathbf{1}(\phi_{k} = 0)$$

$$+ \frac{\pi_{0}q_{1}(Y_{k+1}^{s_{k+1}})}{\pi_{0}q_{1}(Y_{k+1}^{s_{k+1}}) + (1 - \pi_{0})q_{0}(Y_{k+1}^{s_{k+1}})} \mathbf{1}(\phi_{k} = 1)$$
(2)

Posterior Prob.

$$P(H^{1} = H_{1}) \qquad P(Y_{1}^{1} \mid H^{1} = H_{1})$$

$$\pi_{1} = \frac{\pi_{0}q_{1}(Y_{1}^{1}) + (1 - \pi_{0})q_{0}(Y_{1}^{1})}{\pi_{0}q_{1}(Y_{1}^{s_{k+1}}) + (1 - \pi_{k})q_{0}(Y_{k+1}^{s_{k+1}})} \mathbf{1}(\phi_{k} = 0)$$

$$\vdots$$

$$\pi_{k+1} = \frac{\pi_{k}q_{1}(Y_{k+1}^{s_{k+1}}) + (1 - \pi_{k})q_{0}(Y_{k+1}^{s_{k+1}})}{\pi_{k}q_{1}(Y_{k+1}^{s_{k+1}}) + (1 - \pi_{0})q_{0}(Y_{k+1}^{s_{k+1}})} \mathbf{1}(\phi_{k} = 0)$$

$$+ \frac{\pi_{0}q_{1}(Y_{k+1}^{s_{k+1}}) + (1 - \pi_{0})q_{0}(Y_{k+1}^{s_{k+1}})}{\pi_{0}q_{1}(Y_{k+1}^{s_{k+1}}) + (1 - \pi_{0})q_{0}(Y_{k+1}^{s_{k+1}})} \mathbf{1}(\phi_{k} = 1)$$

At each time $k \leq T$, based on \mathcal{F}_k , shall we stop sampling?

At each time $k \leq T$, based on \mathcal{F}_k , shall we stop sampling?

This calls the concept of function $\tilde{J}_k^T(\mathcal{F}_k)$, standing for the minimal cost-to-go at time k.

$$\widetilde{J}_{k}^{T}(\mathcal{F}_{k}) = \min \left\{ \underbrace{1 - \pi_{k}}_{\text{stop cost}}, \underbrace{c + \inf_{\phi_{k}} \mathbb{E} \left\{ \widetilde{J}_{k+1}^{T}(\mathcal{F}_{k+1}) \mid \mathcal{F}_{k}, \phi_{k} \right\}}_{\text{cont. cost}} \right\} (3)$$

At each time $k \leq T$, based on \mathcal{F}_k , shall we stop sampling?

More precisely, at time k, based on \mathcal{F}_k , take action (stop or continue?), pay a cost \tilde{J}_k^T .

$$\widetilde{J}_{k}^{T}(\mathcal{F}_{k}) = \min \left\{ \underbrace{1 - \pi_{k}}_{\text{stop cost}}, \quad \underbrace{c + \inf_{\phi_{k}} \mathbb{E} \left\{ \widetilde{J}_{k+1}^{T}(\mathcal{F}_{k+1}) \mid \mathcal{F}_{k}, \phi_{k} \right\}}_{\text{cont. cost}} \right\}$$
(3)

At each time $k \leq T$, based on \mathcal{F}_k , shall we stop sampling?

More precisely, at time k, based on \mathcal{F}_k , take action (stop or continue?), pay a cost \tilde{J}_k^T .

$$\widetilde{J}_{k}^{T}(\mathcal{F}_{k}) = \min \left\{ \underbrace{1 - \pi_{k}}_{\text{stop cost}}, \quad \underbrace{c + \inf_{\phi_{k}} \mathbb{E} \left\{ \widetilde{J}_{k+1}^{T}(\mathcal{F}_{k+1}) \mid \mathcal{F}_{k}, \phi_{k} \right\}}_{\text{cont. cost}} \right\}$$
(3)

ullet e.g., $ilde{J}_T^T(\mathcal{F}_T)=1-\pi_T$

Lemma 1

For each k, function $\tilde{J}_k^T(\mathcal{F}_k)$ depends only on π_k , say $J_k^T(\pi_k)$, so as the optimal switching rules ϕ_k .

Lemma 1

For each k, function $\tilde{J}_k^T(\mathcal{F}_k)$ depends only on π_k , say $J_k^T(\pi_k)$, so as the optimal switching rules ϕ_k .

To prove the lemma

$$\checkmark \ \tilde{J}_T^T(\mathcal{F}_T) = 1 - \pi_T$$

Lemma 1

For each k, function $\tilde{J}_k^T(\mathcal{F}_k)$ depends only on π_k , say $J_k^T(\pi_k)$, so as the optimal switching rules ϕ_k .

To prove the lemma

$$\checkmark \ \tilde{J}_T^T(\mathcal{F}_T) = 1 - \pi_T$$

• Assume $\tilde{J}_{k+1}^T(\mathcal{F}_{k+1})$ depends on $\pi_{k+1} \implies \tilde{J}_k^T(\mathcal{F}_k)$ depends only on π_k

Lemma 1

For each k, function $\tilde{J}_k^T(\mathcal{F}_k)$ depends only on π_k , say $J_k^T(\pi_k)$, so as the optimal switching rules ϕ_k .

To prove the lemma

$$\checkmark \ \tilde{J}_T^T(\mathcal{F}_T) = 1 - \pi_T$$

- Assume $\tilde{J}_{k+1}^T(\mathcal{F}_{k+1})$ depends on $\pi_{k+1} \implies \tilde{J}_k^T(\mathcal{F}_k)$ depends only on π_k
- So as ϕ_k

Proof of Lemma 1

Recall (3),

$$\tilde{J}_k^T(\mathcal{F}_k) = \min \left\{ 1 - \pi_k, \ c + \inf_{\phi_k} \mathbb{E} \left\{ \tilde{J}_{k+1}^T(\mathcal{F}_{k+1}) \mid \mathcal{F}_k, \phi_k \right\} \right\}.$$

The second item can be rewritten

$$c + \min\{A_{k,c}^T(\pi_k), A_{k,s}^T\},\$$

so $\tilde{J}_k^T(\mathcal{F}_k)$ depends on π_k , and ϕ_k is decided by

$$\phi_k = \begin{cases} 1, & \text{if } A_{k,c}^T(\pi_k) > A_{k,s}^T \\ 0, & \text{otherwise} \end{cases}, \tag{4}$$

which also depends only on π_k .

Proof of Lemma 1 (cont.)

$$\widetilde{J}_{k}^{T}(\mathcal{F}_{k}) = \min \left\{ 1 - \pi_{k}, \ c + \left[\inf_{\phi_{k}} \mathbb{E} \left\{ \widetilde{J}_{k+1}^{T}(\mathcal{F}_{k+1}) \mid \mathcal{F}_{k}, \phi_{k} \right\} \right] \right\} \\
\implies \min \left\{ \mathbb{E}_{\phi_{k}=0}(\dots), \ \mathbb{E}_{\phi_{k}=1}(\dots) \right\} \\
\implies \min \left\{ \int J_{k+1}^{T}(\pi_{k+1}) f_{c}(y|\mathcal{F}_{k}) dy, \ \int J_{k+1}^{T}(\pi_{k+1}) f_{s}(y|\mathcal{F}_{k}) dy \right\}$$

Proof of Lemma 1 (cont.)

$$\tilde{J}_{k}^{T}(\mathcal{F}_{k}) = \min \left\{ 1 - \pi_{k}, \ c + \left[\inf_{\phi_{k}} \mathbb{E} \left\{ \tilde{J}_{k+1}^{T}(\mathcal{F}_{k+1}) \mid \mathcal{F}_{k}, \phi_{k} \right\} \right] \right\} \\
\implies \min \left\{ \mathbb{E}_{\phi_{k}=0}(\dots), \ \mathbb{E}_{\phi_{k}=1}(\dots) \right\} \\
\implies \min \left\{ \int J_{k+1}^{T}(\pi_{k+1}) f_{c}(y|\mathcal{F}_{k}) dy, \ \int J_{k+1}^{T}(\pi_{k+1}) f_{s}(y|\mathcal{F}_{k}) dy \right\}$$

Two conditional PDF:

- stay: $f_c(y|\mathcal{F}_k) = \pi_k q_1(y) + (1 \pi_k) q_0(y)$
- switch: $f_s(y|\mathcal{F}_k) = \pi_0 q_1(y) + (1 \pi_0) q_0(y)$

Additionally, π_{k+1} depends on π_k or π_0 by (2).

Proof of Lemma 1 (cont.)

$$\tilde{J}_{k}^{T}(\mathcal{F}_{k}) = \min \left\{ 1 - \pi_{k}, \ c + \left[\inf_{\phi_{k}} \mathbb{E} \left\{ \tilde{J}_{k+1}^{T}(\mathcal{F}_{k+1}) \mid \mathcal{F}_{k}, \phi_{k} \right\} \right] \right\}$$

$$\implies \min \left\{ \mathbb{E}_{\phi_{k}=0}(\dots), \ \mathbb{E}_{\phi_{k}=1}(\dots) \right\}$$

$$\implies \min \left\{ \int J_{k+1}^{T}(\pi_{k+1}) f_{c}(y|\mathcal{F}_{k}) dy, \ \int J_{k+1}^{T}(\pi_{k+1}) f_{s}(y|\mathcal{F}_{k}) dy \right\}$$

$$A_{k,c}^{T}(\pi_{k})$$

Lemma 2

The functions $J_k^T(\pi_k)$ and $A_{k,c}^T(\pi_k)$ are nonnegative concave w.r.t. $\pi_k \in [0,1]$. And $J_k^T(1) = A_{k,c}^T(1) = 0$.

- These two functions are both somewhat nonnegative costs
- Concavity reserved
- Since $J_k^T(1) = \min\{0, \text{something}\} \ge 0 \implies J_k^T(1) = 0$, and

$$A_{k,c}^{T}(1) = \mathbb{E}\left\{J_{k+1}^{T}(1) \mid \mathcal{F}_{k}, \phi_{k} = 0\right\} = 0$$

 $J_k^T(\pi_k)$ satisfy:

- $\bullet \le 1 \pi_k$
- $J_k^T(1) = 0$
- ullet concave w.r.t. π_k

 $J_k^T(\pi_k)$ satisfy:

- $\leq 1 \pi_k$
- $J_k^T(1) = 0$
- concave w.r.t. π_k

src: L Lai, et al. "Quickest search"

Figure 1: An illustration of $J_k^T(\pi_k)$

Finite Horizon (solution)

Theorem 3

For the finite-horizon version of Problem (1), the optimal stopping time is $\tau_{\text{opt}} = \inf\{k : \pi_k > a_k^T\}$, in which a_k^T is given by the following equation:

$$1 - a_k^T = c + \min\{A_{k,c}^T(a_k^T), A_{k,s}^T\}.$$

Finite Horizon (solution)

Theorem 3

For the finite-horizon version of Problem (1), the optimal stopping time is $\tau_{\text{opt}} = \inf\{k : \pi_k > a_k^T\}$, in which a_k^T is given by the following equation:

$$1 - a_k^T = c + \min\{A_{k,c}^T(a_k^T), A_{k,s}^T\}.$$

Recall that

$$J_k^T(\pi_k) = \min \left\{ 1 - \pi_k, \ c + \min \{ A_{k,c}^T(\pi_k), A_{k,s}^T \} \right\}.$$

Finite Horizon (solution)

Theorem 3

For the finite-horizon version of Problem (1), the optimal stopping time is $\tau_{opt} = \inf\{k : \pi_k > a_k^T\}$, in which a_k^T is given by the following equation:

$$1 - a_k^T = c + \min\{A_{k,c}^T(a_k^T), A_{k,s}^T\}.$$

Once $\pi_k > a_k^T$, we have

$$1 - \pi_k < 1 - a_k^T = c + \min\{..\}$$

which means stop cost < cont. const. \Longrightarrow stop!

Now let $T \to \infty$, we get the infinite horizon ver. of Problem (1).

Observing that

- $\bullet \ \, \text{Constraint relaxed:} \ \, J_k^{T+1}(\pi) \leq J_k^T(\pi) \\$
- \bullet Lower bounded: $\lim_{T\to\infty}J_k^T(\pi)=\inf_{T>k}J_k^T(\pi)=J_k^\infty(\pi)$
- Concavity: $J_k^T(\pi)$ is concave for each T, k
- I.I.D. observation: $J_k^{\infty}(\pi) = J_{k+1}^{\infty}(\pi)$?

Observing that

- $\bullet \ \, \text{Constraint relaxed:} \ \, J_k^{T+1}(\pi) \leq J_k^T(\pi) \\$
- $\bullet \ \ \text{Lower bounded} \colon \lim_{T \to \infty} J_k^T(\pi) = \inf_{T > k} J_k^T(\pi) = J_k^\infty(\pi)$
- Concavity: $J_k^T(\pi)$ is concave for each T, k
- I.I.D. observation: $J_k^{\infty}(\pi) = J_{k+1}^{\infty}(\pi)$?
- $\implies J(\pi) := J_k^{\infty}(\pi)$ concave w.r.t. π

src: L Lai, et al. "Quickest search"

Figure 2: An illustration of $J(\pi)$

As $T \to \infty$,

- $\bullet \ A_{k,c}^T(\pi) \to A_c(\pi)$ $\bullet \ A_{k,s}^T \to A_s$

Lemma 4

$$A_c(\pi) \begin{cases} > A_s, & \text{if } \pi < \pi_0 \\ = A_s, & \text{if } \pi = \pi_0 \\ < A_s, & \text{if } \pi > \pi_0 \end{cases}$$

$$(5)$$

•
$$A_c(0) > A_s$$

- $A_c(1) = 0 < A_s$
- $A_c(\pi)$ concave

- $A_c(0) > A_s$
- $A_c(1) = 0 < A_s$
- $A_c(\pi)$ concave

Figure 3: An illustration of $A_c(\pi)$ and A_s

Infinite Horizon (solution)

Theorem 5

The optimal stopping time for Problem (1) is given by

$$au_{\mathit{opt}} = \inf\{k: \pi_k > \pi_U^*\}$$
 in which

$$1 - \pi_U^* = c + \min\{A_c(\pi_U^*), A_s\}.$$

Infinite Horizon (solution)

Theorem 5

The optimal stopping time for Problem (1) is given by

$$au_{opt} = \inf\{k : \pi_k > \pi_U^*\}$$
 in which

$$1 - \pi_U^* = c + \min\{A_c(\pi_U^*), A_s\}.$$

Recall that

$$J(\pi) = \min\{1 - \pi, \ c + \min\{A_c(\pi), A_s\}\}.$$
 (6)

Infinite Horizon (solution)

Theorem 5

The optimal stopping time for Problem (1) is given by $au_{opt} = \inf\{k: \pi_k > \pi_U^*\}$ in which

$$1 - \pi_U^* = c + \min\{A_c(\pi_U^*), A_s\}.$$

Once $\pi_k > \pi_U^*$, we have

$$1 - \pi_k < 1 - \pi_U^* = c + \min\{..\}$$

which means stop cost < cont. const. \Longrightarrow stop!

Process Tracking

src: L Lai, et al. "Quickest search"

For Convenience

Thank you!