

From linear algebra to non-linear weighted least squares optimization

Note-1: Please read this note first.

Note-2: While this page has the basic theoretical content, more elaborate explanations/visualizations will be added in sometime. Will notify on Moodle after adding.

Page Author: Shubodh Sai

Using this Notion page Resources Introduction Linear Least Squares Linear Algebra: The Overdetermined System Posing it as Least Squares Solution Pseudo inverse Computing using SVD Computing using QR Non-Linear Least Squares Problem Definition Solution Using Gradient Descent Non-Linear LS using GD: Solved example Using Newton's Method Using Gauss Newton **Levenberg Marquardt**

Problem Definition

Solution

Gauss Newton/Levenberg Marquardt for Weighted Nonlinear LS

Using this Notion page

(click on triangle shaped thing to toggle)

- ▼ Read this to know how to use this page the right way.
 - 1. Any logged-in Notion user can comment on this page. This is a wonderful way to collaborate. Whether you have doubts or a better way to explain a concept or even correct a typo, feel free to comment. There are existing places where you can contribute.
 - 2. Whenever you're studying this page, try to think critically and spend enough time wherever a question is asked before you "toggle" for the answer.
 - 3. Enable dark mode is a good idea.

Resources

▼ Resources: Books are referred to by their codenames in this page.

Books are referred to by their codenames in this page.

- 1. Convex Optimisation: Stephen Boyd (referred to as Book CO below)
- 2. Applied Linear Algebra: Stephen Boyd (Book ALA)
- 3. Multi-view Geometry: Zisserman Appendix 4, 5 & 6 (Book MVG)
- 4. Numerical Optimization, Jorge Nocedal and Steve Wright (Book NO) Chapter 10
- 5. Linear Algebra: Gilbert Strang (especially Lecture 15)

Introduction

- Be it Machine Learning or Computer Vision or Robotics problems, a common approach to formulating them is as optimization problems.
 - Formulate an objective function first.
 - \circ Then, one of the most common ways is to pose it as **Minimizing** squared error.
 - Other ways include **Minimizing** *cross-entropy* or **Maximizing** *log-likelihood* (Ex: Deep Learning), **Maximizing** *discounted sum of rewards* (Ex: Reinforcement Learning).
- We look at **Minimizing** squared error.

Linear Least Squares

Linear Algebra: The Overdetermined System

Ax = b

A is $m \times n$ matrix where m > n.

Note: We will be considering only full rank matrices. There are special cases like a low rank (like enforcing in F matrix computation), unknown rank systems etc which we won't be covering in this lecture.

In practice, it is full rank (noise) and overdetermined system (data). Assumed throughout this lecture.

- - there are no free variables so if b lies in column space of A, then 1 solution if it exists or else 0 solution.
 - ▼ (Reasoning THINK FIRST! and then toggle this)
 - 1. Think in terms of spanning the space. Does Ax span the entire m-dimensional space?
 - 2. Another way of reasoning: After row reduction, think of last rows of A the bottom-most reduced rows are all zeros but if the last value of reduced b isn't, you'll have 0 solutions. But if solvability condition is satisfied, a solution exists.

Posing it as Least Squares

So what you do is you say, you'd rather minimize the norm which represents the error:

$$||Ax - b||_2$$

▼ But why use ℓ^2 — norm in the first place?

Try attempting yourself. Will add more details in some time.

Linear Algebra Perspective:

Just a quick intuition is described here. For deeper understanding, watch this.

https://s3-us-west-2.amazonaws.com/secure.notion-stat ic.com/cb448965-78ac-4fd2-af53-5aed148ce378/lin_alg _perspective_of_least_squares.mp4

For a quick Linear Algebra intuition, watch this short animation.

▼ Animation — Linear Algebra perspective: Orthogonality Principle

(For the sake of this simple explanation, think of column space of \boldsymbol{A} as a plane)

b doesn't always lie in the column space of A i.e. Ax=b doesn't always have a solution. So, what is the vector ($p=A\hat{x}$) in the column space of A that is closest to b? The projection of b on A!

Say
$$A = \left[egin{array}{c} a_1^T \ a_2^T \end{array}
ight]$$
 where a_1 and a_2 are linearly

independent vectors. From animation, since

$$e = (b - p) = (b - A\hat{x})$$

is perpendicular to both a_1 and a_2 , we have $a_1^T \cdot (b-A\hat{x}) = 0$ and so is the case for a_2 . Which means

$$A^T(b-A\hat{x})=0.$$

Now see this.

We will be taking the Calculus route in this lecture and not going deeper into the Linear Algebra way.

Calculus Perspective:

Minimizing the error:

$$||Ax - b||_2$$

Ah, but $||Ax - b||_2$ is not differentiable. So I cannot say much about its convexity from this directly.

▼ But what I can do, is to square it, as both least-norm and least-square norm are equivalent problems. See this for more details.

(For those who want to go deep) Note: This statement is not false but not really the actual reason why we use "squared error". Will add more details in some time. TODO

So let's minimize

$$S(x) = \|Ax - b\|_2^2 = \|r\|^2$$

where r is known as

Expanding

$$x^T(A^TA)x - 2(A^Tb)^Tx + b^Tb$$

Matrix Calculus Basics

What really is **Linear** here?

Solution

We solve it analytically.

Pseudo inverse

This is a typical convex quadratic minimization problem.

- ▼ Why is it convex
 - ▼ (THINK FIRST!)

Why is linear leastsquares a convex function?

$$egin{aligned} \Longrightarrow
abla = 0 \ \Longrightarrow rac{\partial S}{\partial x} = -2A^Tb + 2A^TA\hat{x} = 0 \ \Longrightarrow A^TA\hat{x} = A^Tb \end{aligned}$$

Which are called **normal equations** of the least-squares problem.

$$\hat{x} = \left(A^T A\right)^{-1} A^T b$$
 $= A^\dagger b \qquad (A^\dagger \text{ is pseudo inverse.})$

- lacktriangle Why A^TA is invertible
 - ▼ (THINK FIRST!)
 - A^T A is invertible
- ▼ Test your understanding

Does $\hat{x}=A^{\dagger}b$ generally **satisfy** $A\hat{x}=b$?

4

▼ Answer

No.

Computing using SVD

Find the least-squares solution to the $m \times n$ set of equations $A\mathbf{x} = \mathbf{b}$, where m > n and rank A = n.

Algorithm

(i) Find the SVD $A = \mathbf{UDV}^{\mathsf{T}}$.

(ii) Set $\mathbf{b}' = \mathbf{U}^{\mathsf{T}}\mathbf{b}$.

(iii) Find the vector \mathbf{y} defined by $y_i = b_i'/d_i$, where d_i is the i-th diagonal entry of \mathbf{D} .

(iv) The solution is $\mathbf{x} = \mathbf{V}\mathbf{y}$.

Book MVG (SVD in detail: Will add more details in some time.)

Computing using QR

Algorithm 12.1 Least squares via QR factorization

given an $m \times n$ matrix A with linearly independent columns and an m-vector b.

- 1. QR factorization. Compute the QR factorization A=QR.
- 2. Compute $Q^T b$.
- 3. Back substitution. Solve the triangular equation $R\hat{x} = Q^T b$.

Book ALA

Orthogonal matrix Q and an upper triangular matrix R.

Non-Linear Least Squares

Problem Definition

minimize $\|\mathbf{f}(\mathbf{x})\|^2$

What is non-linear here?

$$\implies ext{minimize} \quad F(\mathbf{x}) = rac{1}{2}\mathbf{f}(\mathbf{x})^{ op}\mathbf{f}(\mathbf{x})$$

Solution

We solve it numerically (heuristics)

All nonlinear optimization algorithms follow the following procedure - Iterative Minimization:

- 1. Start from *initial* estimate
- 2. Each interation **update** step Δ is calculated
- 3. Next estimate $x^{t+1} = x^t + \Delta$ is obtained.

Stop when convergence criteria is reached (say Δ falls below a small threshold).

Algorithm 9.1 General descent method.

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. Determine a descent direction Δx .
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

The search direction in any descent method must satisfy:

$$abla F\left(x^{(k)}
ight)^T \Delta x^{(k)} < 0$$

Acute angle with the negative gradient

Book A - CO

Two important assumptions:

- 1. Needs good initialization
 - 2. f is locally linear

Table I: Iterative Optimization Methods

Step $\Delta \mathbf{x}$

Gradient Descent	$\Delta \mathbf{x} = -lpha \mathbf{J_f}^ op \mathbf{f}(\mathbf{x})$	
Newton's Method	$\left(\mathbf{H}^{ op}\mathbf{f}+\mathbf{J}^{ op}\mathbf{J} ight)\Delta\mathbf{x}=$	$-\mathbf{J}^{ op}\mathbf{f}(\mathbf{x})$
Gauss-Newton	$\mathbf{J}^{ op}\mathbf{J}\Delta\mathbf{x} =$	$-\mathbf{J}^{ op}\mathbf{f}(\mathbf{x})$
Levenberg-Marquardt	$\left(\mathbf{J}^{ op}\mathbf{J} + \lambda \mathbf{I} ight)\Delta\mathbf{x} =$	$-\mathbf{J}^{ op}\mathbf{f}(\mathbf{x})$

J & H are corresponding to f, not F.

Using Gradient Descent

Moving in the opposite direction of the gradient. A natural choice.

$$\Delta x = -\nabla F(x) \\ = -\mathbf{J}_{\mathbf{F}}$$

Method

$$\text{minimize} \quad F(\mathbf{x}) = \frac{1}{2}\mathbf{f}(\mathbf{x})^{\top}\mathbf{f}(\mathbf{x})$$

Matrix Calculus Basics:

Matrix Calculus

See below page for a solved example on how to compute Jacobian.

Non-Linear LS using GD: Solved example

Click on this page on next line 🚺

Mon-Linear Least Squares — Solved example: Computing Jacobian for a Gaussian & Gradient Descent

Using Newton's Method

For $x \in \mathsf{dom}\ f$, the vector

$$\Delta x_{
m nt} = -
abla^2 F(x)^{-1}
abla F(x)$$

is called the Newton step (for f, at x).

Newton method's interpretation:

$$\widehat{F}(x+v) = F(x) +
abla F(x)^T v + rac{1}{2} v^T
abla^2 F(x) v$$

Not to get confused, "f" is this figure is F in our case. Book A - CO

Positive definiteness of $abla^2 f(x)$ implies that

 $abla f\left(x^{(k)}
ight)^T \Delta x^{(k)} < 0$ Acute angle with

unless $\nabla f(x) = 0$, so the Newton step is a descent direction (unless x is optimal)!

$$egin{aligned} \mathbf{H}_F \Delta \mathbf{x} &= -\mathbf{J}_F \ ig(\mathbf{H}_\mathrm{f}^ op \mathbf{f}(\mathbf{x}) + \mathbf{J}_\mathrm{f}^ op \mathbf{J}_\mathrm{f}ig) \, \Delta \mathbf{x} &= -\mathbf{J}_\mathrm{f}^ op \mathbf{f}(\mathbf{x}) \end{aligned}$$

Using Gauss Newton

Linearize f

$$egin{aligned} \mathbf{As}\, F(\mathbf{x}) &= rac{1}{2}\mathbf{f}(\mathbf{x})^{ op}\mathbf{f}(\mathbf{x}), \, ext{we have} \ F(\mathbf{x} + \Delta\mathbf{x}) &pprox L_{\mathbf{x}}(\Delta\mathbf{x}) &= rac{1}{2}(\mathbf{f}(\mathbf{x}) + \mathbf{J}\Delta\mathbf{x})^{ op} \cdot (\mathbf{f}(\mathbf{x}) + \mathbf{J}\Delta\mathbf{x}) \ &= rac{1}{2}\mathbf{f}(\mathbf{x})^{ op}\mathbf{f}(\mathbf{x}) + \mathbf{f}(\mathbf{x})^{ op}\mathbf{J}\Delta\mathbf{x} + rac{1}{2}\Delta\mathbf{x}^{ op}\mathbf{J}^{ op}\mathbf{J}\Delta\mathbf{x} \ &= F(\mathbf{x}) + \mathbf{f}(\mathbf{x})^{ op}\mathbf{J}\Delta\mathbf{x} + rac{1}{2}\Delta\mathbf{x}^{ op}\mathbf{J}^{ op}\mathbf{J}\Delta\mathbf{x} \ &= F(\mathbf{x}) + \mathbf{f}(\mathbf{x})^{ op}\mathbf{J}\Delta\mathbf{x} + rac{1}{2}\Delta\mathbf{x}^{ op}\mathbf{J}^{ op}\mathbf{J}\Delta\mathbf{x} \ &\mathbf{J}^{ op}\mathbf{J}\Delta\mathbf{x} = -\mathbf{f}(\mathbf{x})^{ op}\mathbf{J} \ &\mathbf{J}^{ op}\mathbf{J}\Delta\mathbf{x} = -\mathbf{f}(\mathbf{x})^{ op}\mathbf{J} \ &\mathbf{J}^{ op}\mathbf{J}\Delta\mathbf{x} = -\mathbf{J}^{ op}\mathbf{f}(\mathbf{x}) \end{aligned}$$

Algorithm 18.1 Basic Gauss–Newton algorithm for nonlinear least squares given a differentiable function $f: \mathbf{R}^n \to \mathbf{R}^m$, an initial point $x^{(1)}$. For $k = 1, 2, ..., k^{\max}$

- 1. Form affine approximation at current iterate using calculus. Evaluate the Jacobian $Df(x^{(k)})$ and define
 - $\hat{f}(x; x^{(k)}) = f(x^{(k)}) + Df(x^{(k)})(x x^{(k)})$
- 2. Update iterate using linear least squares. Set $x^{(k+1)}$ as the minimizer of $\|\hat{f}(x;x^{(k)})\|^2$,

$$x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)})\right)^{-1} Df(x^{(k)})^T f(x^{(k)}).$$

Book ALA

Levenberg Marquardt

Combination of Gradient Descent and Gauss Newton.

$$\left(\mathbf{J}^{ op}\mathbf{J} + \lambda\mathbf{I}
ight)\Delta\mathbf{x} = -\mathbf{J}^{ op}\mathbf{f}(\mathbf{x})$$

- Reduction in error \rightarrow lambda divided by a factor of 10 & make the update.
- Increase in error → lambda multiplied by a factor of 10 & reject update.

When lambda is too small, it is essentially the same as Gauss Newton — will converge faster.

Levenberg–Marquardt algorithm. The ideas above can be formalized as the algorithm given below.

Algorithm 18.3 Levenberg-Marquardt algorithm for nonlinear least squares

given a differentiable function $f: \mathbf{R}^n \to \mathbf{R}^m$, an initial point $x^{(1)}$, an initial trust parameter $\lambda^{(1)} > 0$.

For $k = 1, 2, ..., k^{max}$

1. Form affine approximation at current iterate. Evaluate the Jacobian $Df(x^{(k)})$ and define

 $\hat{f}(x; x^{(k)}) = f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)}).$

2. Compute tentative iterate. Set $x^{(k+1)}$ as minimizer of

 $\|\hat{f}(x; x^{(k)})\|^2 + \lambda^{(k)} \|x - x^{(k)}\|^2.$

3. Check tentative iterate. If $\|f(x^{(k+1)})\|^2 < \|f(x^{(k)})\|^2$, accept iterate and reduce λ : $\lambda^{(k+1)} = 0.8\lambda^{(k)}$. Otherwise, increase λ and do not update x: $\lambda^{(k+1)} = 2\lambda^{(k)}$ and $x^{(k+1)} = x^{(k)}$.

Book ALA: The factor is different here

J & H are for f, not F.

Method	$\mathrm{Step}\ \boldsymbol{\Delta \mathbf{x}}$
Gradient Descent	$\Delta \mathbf{x} = -lpha \mathbf{J}^ op \mathbf{f}(\mathbf{x})$
Newton's Method	$\left(\mathbf{H}^{ op}\mathbf{f}+\mathbf{J}^{ op}\mathbf{J} ight)\Delta\mathbf{x}= -\mathbf{J}^{ op}\mathbf{f}(\mathbf{x})$
Gauss-Newton	$\mathbf{J}^{ op}\mathbf{J}\Delta\mathbf{x}=~-\mathbf{J}^{ op}\mathbf{f}(\mathbf{x})$
Levenberg-Marquardt	$\left(\mathbf{J}^{ op}\mathbf{J} + \lambda\mathbf{I} ight)\Delta\mathbf{x} = -\mathbf{J}^{ op}\mathbf{f}(\mathbf{x})$

Non-Linear Weighted Least Squares

Problem Definition

$$egin{aligned} F &= rac{1}{2} \sum_i \left\| f_i
ight\|_{\Sigma_i}^2 = rac{1}{2} \sum_i \left\| \mathbf{x}_i - \mathbf{y}_i
ight\|_{oldsymbol{\Sigma}_i}^2 \ &= rac{1}{2} \mathbf{f}^ op oldsymbol{\Sigma}^{-1} \mathbf{f} \ &= rac{1}{2} \mathbf{f}^ op oldsymbol{\Omega} \mathbf{f} \end{aligned}$$

$$\mathbf{x}^* = \operatorname*{argmin}_{\mathbf{x}} \ F(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{x}} \ rac{1}{2} \mathbf{f}(\mathbf{x})^ op \mathbf{\Omega} \mathbf{f}(\mathbf{x})$$

Solution

Gauss Newton/Levenberg Marquardt for Weighted Nonlinear LS

$$egin{aligned} F(\mathbf{x} + \Delta \mathbf{x}) &pprox L_{\mathbf{x}}(\Delta \mathbf{x}) = rac{1}{2} (\mathbf{f}(\mathbf{x}) + \mathbf{J} \Delta \mathbf{x})^{ op} \mathbf{\Omega} (\mathbf{f}(\mathbf{x}) + \mathbf{J} \Delta \mathbf{x}) \ &= rac{1}{2} \mathbf{f}(\mathbf{x})^{ op} \mathbf{\Omega} \mathbf{f}(\mathbf{x}) + \mathbf{f}(\mathbf{x})^{ op} \mathbf{\Omega} \mathbf{J} \Delta \mathbf{x} + rac{1}{2} \Delta \mathbf{x}^{ op} \mathbf{J}^{ op} \mathbf{\Omega} \mathbf{J} \Delta \mathbf{x} \ &= F(\mathbf{x}) + \mathbf{f}(\mathbf{x})^{ op} \mathbf{\Omega} \mathbf{J} \Delta \mathbf{x} + rac{1}{2} \Delta \mathbf{x}^{ op} \mathbf{J}^{ op} \mathbf{\Omega} \mathbf{J} \Delta \mathbf{x} \end{aligned}$$

$$egin{aligned} 0 &= L'(\Delta \mathbf{x}) = \mathbf{f}(\mathbf{x})^{ op} \mathbf{\Omega} \mathbf{J} + \mathbf{J}^{ op} \mathbf{\Omega} \mathbf{J} \Delta \mathbf{x} \ \mathbf{J}^{ op} \mathbf{\Omega} \mathbf{J} \Delta \mathbf{x} &= -\mathbf{f}(\mathbf{x})^{ op} \mathbf{\Omega} \mathbf{J} \ \mathbf{J}^{ op} \mathbf{\Omega} \mathbf{J} \Delta \mathbf{x} &= -\mathbf{J}^{ op} \mathbf{\Omega}^{ op} \mathbf{f}(\mathbf{x}) \end{aligned}$$

GN solution is what we just ended up. LM variant of the above is as follows:

$$\left(\mathbf{J}^{ op}\mathbf{\Omega}\mathbf{J} + \lambda\mathbf{I}
ight)\Delta\mathbf{x} = -\mathbf{J}^{ op}\mathbf{\Omega}^{ op}\mathbf{f}(\mathbf{x})$$