COMBINING BRAIN COMPUTER INTERFACE WITH VISION FOR OBJECT CATEGORIZATION

SOUMYA SARA JOHN SC17M048

Dept. of Avionics

Indian Institute of Space Science and Technology

21 May 2018

TABLE OF CONTENTS

Introduction

Our Brain

Electroencephalography(EEG)

Pyramid Match Kernel

BCI based Object Categorization

Conclusion

1

INTRODUCTION

INTRODUCTION

- · Detect objects in an image and detect the object categories
- Existing methods : Bag of Visual Words , Kernel methods , CNN-based ,etc.

3

CHALLENGES

· Illumination condition , Occlusions , Clutter , Different camera view point

OUR BRAIN

OUR BRAIN-ANATOMY

Figure 1: Brain lobes

5

OUR BRAIN-ANATOMY

Parts of the brain:

- · Cerebrum:
 - · Frontal Lobe : Emotions, judgement
 - · Parietal Lobe : Pain, vision, speech
 - · Occipital Lobe : Interprets vision
 - · Temporal Lobe : Memory, sequencing, language
- Cerebellum: Coordinates muscle movements, maintain posture, balance
- · Brainstem:
 - · Pons : Relay center
 - · Medulla Oblongata : breathing,body temperature

OUR BRAIN-VISUAL PATHWAY

Figure 2: Visual Pathways in Brain

3

ELECTROENCEPHALOGRAPHY(EEG)

EEG - INTRODUCTION

- · Invented by Hans Berger in 1924
- · EEG data is a crude representation of brain activity
- Neurons electrically charged by membrane transport proteins that pump ions across their membranes
- · Action potential or nerve impulses
- · Greatest advantage is its speed
- · Applications:
 - · Monitor alertness, brain death and coma
 - · Locate areas of damage
 - · Computer Vision

EEG - INTRODUCTION

Figure 3: Structure of a Neuron

Figure 4: Action Potential

EEG ANALYSIS

- · Advantages:
 - · non-invasive ,passive measuring device and hence safe to use
 - · Does not require a highly skilled operator or medical procedure
- · Two ways of analysing EEG data:
 - · Spectral power of the signal
 - · Inspecting the ERPs

EEG ANALYSIS - SPECTRAL POWER

- · Spectral power in different frequency bands corresponding to the neural activity
- · Use FFT, Eigen Methods
- · 5 types of brain waves:
 - · Alpha waves (8-13 Hz): seen in adults at rest with eyes closed
 - · Beta waves (13-30 Hz): seen in alert wake adults
 - · Theta waves (4-8 Hz): seen in children during sleep
 - · Delta waves (<4 Hz): seen in young babies during deep sleep
 - · Gamma waves (>35 Hz): reflects the mechanism of consciousness

- · Also called as Event Related Potentials (ERPs)
- Significant voltage fluctuations resulting from evoked neural activity

Figure 5: ERP waveform

- · Use grand average ERPs
- · In image categorization task, ERPs show two phases:
 - · Early features (100 < t(ms) < 220)
 - · Late features (350 < t(ms) < 550)
- · Features of ERP response is highly sensitive to faces

Figure 6: ERP waveforms when the subject sees a face [3]

Figure 7: ERP waveforms when the subject sees an image with no face [3]

CLASSIFICATION USING ERPS: EXPERIMENTAL SETUP

Figure 8: Internationally accepted 10-20 electrode placement

CLASSIFICATION USING ERPS: EXPERIMENTAL RESULT

Figure 9: (a) Accuracy for various classes (b) Accuracy with multiple users for face vs inanimate object classification¹

¹P. Shenoy and D. Tan. ,"Human-aided computing: Utilizing implicit human processing to classify images" , In ACM - CHI 2008

PYRAMID MATCH KERNEL - INTRODUCTION

- · Object Categorization steps , in general
 - · Keypoints in image (Dense , Hessian , Harris corner detectors)
 - · Features at these keypoints (HoG , SIFT)
 - · Match the features (distance measure)
- · Indexing features with visual vocabularies (Bag of Visual Words)

PYRAMID MATCH KERNEL - INTRODUCTION

- · Problems with existing techniques:
 - · Designed to operate on fixed length vector inputs
 - · Requires solving for explicit correspondences between features
 - · Computationally costly
 - · Impractical for large set sizes

Figure 10: Car image and its keypoints

Figure 11: Histogram Pyramid

Figure 12: Histograms H(0),H(1),H(2),H(3) from pyramid

Figure 13: Histograms H(4), H(5), H(6), H(7) from pyramid

Figure 14: Pyramid match example

- · By Kristen Grauman and Trevor Darrell in 2007
- · Each object is a collection of some features
- · Measures partial match similarity of features
- · Maps unordered feature sets to multiresolution histograms
- The histogram pyramids are then compared using a weighted histogram intersection
- · Robust to clutter

PYRAMID MATCH KERNEL - PRELIMINARIES

- · Feature space F of d-dimensional vectors
- · Point sets come from input space S:

$$S = \{X | X = \{x_1, x_2, ... x_m\}\}$$
 (1)

where $x_i \in F$ and m = |X|

· Given point sets X and Y,where m=|X| and n=|Y|; ($m \le n$), a partial matching :

$$M(X,Y;\pi) = \{(x_1,y_{\pi_1}), (x_2,y_{\pi_2}), ..., (x_m,y_{\pi_m})\}$$
 (2)

which pairs each point in **X** to some unique point in **Y** as per $\pi = [\pi_1, \pi_2, ..., \pi_m]$ and $1 \le \pi_i \le n$

PYRAMID MATCH KERNEL - PRELIMINARIES

· The cost of partial matching :

$$C(M(X,Y;\pi)) = \sum_{x_i \in X} ||x_i - y_{\pi_i}||_1$$
 (3)

Optimal partial matching uses

$$\pi^* = \underset{\pi}{\operatorname{argminC}}(\mathsf{M}(\mathsf{X}, \mathsf{Y}; \pi)) \tag{4}$$

· Similarity of a partial matching

$$S(M(X,Y;\pi)) = \sum_{x_i \in X} \frac{1}{||x_i - y_{\pi_i}||_1 + 1}$$
 (5)

- · Uses a multidimensional multiresolution histogram pyramid
 - · Finest resolution bins are small
 - · Grows in size at successive levels
- Two point sets are considered to be matched when two points from them begin to share a bin
- · Each feature set is mapped to a multiresolution histogram
- Histogram pyramids are then compared using a weighted histogram intersection computation

· Feature extraction function ψ for an input set ${\bf X}$ is defined as:

$$\psi(X) = [H_0(X), H_1(X), ..., H_{L-1}(X)], \tag{6}$$

where $X \in S$, $L = \lceil log_2 D \rceil + 1$, $H_i(X)$ is a histogram vector formed over points in X using d-dimensional bins of side length 2^i

- · $H_i(X)$ has a dimension $r_i = (\frac{D}{2^i})^d$
- · Pyramid match P_{Δ} between two point sets Y and Z is defined as :

$$P_{\Delta}(\psi(Y), \psi(Z)) = \sum_{i=0}^{L-1} w_i N_i$$
 (7)

where N_i signifies the number of newly matched pairs at level i and w_i is a weight for matches formed at level i.

· To calculate N_i, use histogram intersection function I as follows:

$$I(A,B) = \sum_{j=1}^{r} \min(A^{(j)}, B^{(j)}),$$
 (8)

where \boldsymbol{A} and \boldsymbol{B} are histograms with r bins and $\boldsymbol{A}^{(j)}$ denotes the count of the j^{th} bin of \boldsymbol{A}

$$N_{i} = I(H_{i}(Y), H_{i}(Z)) - I(H_{i-1}(Y), H_{i-1}(Z))$$
(9)

where $\mathbf{H_{i}}$ represents the $\mathbf{i^{th}}$ component histogram generated by ψ

- Number of new matches found at each level in the pyramid is weighted according to the size of that histogram's bins
- Applying a geometric bound in terms of L₁ norm, at level i in pyramid: bin length = d2ⁱ
- $\cdot w_i = \frac{1}{d2^i}$
- · Pyramid match then is:

$$P_{\Delta}(\psi(Y), \psi(Z)) = \sum_{i=0}^{L-1} W_i \left(I(H_i(Y), H_i(Z)) - I(H_{i-1}(Y), H_{i-1}(Z)) \right)$$
(10)

PYRAMID MATCH KERNEL - EFFICIENCY

- No pairwise distance computation between features O(m²) savings
- · Computational complexity is O(dmL)
- · If multiple (T) pyramid matches are there O(TdmL)

BCI BASED OBJECT CATEGORIZATION

COMBINING EEG AND PMK FOR OBJECT CATEGORIZATION

- Use an EEG device to measure the brain activity when the subjects are shown images
- · Assign a kernel for the EEG data based on similarity
- · Pyramid Match Kernel for those images
- · Combine the kernels via kernel alignment
- · Classify using SVM

COMBINING EEG AND PMK FOR OBJECT CLASSIFICATION

Figure 15: Framework to combine vision computations with human brain processing for visual category recognition[1]

COMBINING BCI WITH VISUAL FEATURES

- · Feature fusion methods
 - · Boosting
 - · Bagging
- · Decision level fusion methods ²
 - · Combining decisions from multiple modalities
 - · eg: majority vote, sum, product, maximum, minimum

²J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. "On combining classifiers "Pattern Analysis and Machine Intelligence,1998

BOOSTING ALGORITHM

- \cdot Given : $(x_1,y_1),.....(x_m,y_m)$ where $x_i\in X$, $y_i\in Y=\{-1,+1\}$ Initialize $D_1(i)=1/m$ For t=1,2,...T :
 - · Train a weak learner using distribution D_t.
 - · Get a weak hypothesis $h_t: X \to \{-1, +1\}$ with error,

$$\epsilon_t = \text{Pr}_{D_i}[h_t(\boldsymbol{x}_i) \neq y_i] = \sum_{i: h_t(\boldsymbol{x}_i) \neq y_i} D_t(i)$$

- · Choose $\alpha_{\mathrm{t}} = \frac{1}{2}\mathrm{ln}(\frac{1-\epsilon_{\mathrm{t}}}{\epsilon_{\mathrm{t}}})$
- · Update:

$$D_{t+1}(i) = \frac{D_t(i)exp(-\alpha_t y_i h_t(\boldsymbol{x}_i))}{Z_t}$$

where Z_t is a normalization factor

· Output of the hypothesis:

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(\mathbf{x})\right)$$

BOOSTING - EXAMPLE

BAGGING

- · Given set L contains $\{(x_1,y_1),.....(x_m,y_m\})$ where $x_i\in X$, $y_i\in Y=\{1,2,...j\}$ Predictor $\psi(x,L)$
- . Take repeated bootstrap samples $\{\mathsf{L}^{(\mathsf{B})}\}$ from L and form $\{\psi(\mathsf{X},\mathsf{L}^{(\mathsf{B})})\}$
- · Vote to form $\psi_{\rm B}({\bf x})$

BAGGING PROCEDURE

Figure 16: Bagging procedure

KERNEL ALIGNMENT FOR FUSION

- · Given a set of training images, corresponding EEG responses from k users , compute kernel $K_{\varepsilon i}$ for user i
- · Compute Pyramid Match Kernel K_{Δ}
- · Combined kernel K as

$$\mathbf{K} = \alpha_0 \mathbf{K}_{\Delta} + \sum_{i=1}^{k} \alpha_i \mathbf{K}_{\epsilon i}$$
 (11)

 $\alpha = \{\alpha_0, ... \alpha_k\}$ are the parameters to be optimized

· Define an ideal kernel **A** such that $A_{ij}=1$ iff, i^{th} and j^{th} image have the same visual category label else $A_{ij}=0$

KERNEL ALIGNMENT FOR FUSION

· Minimize objective function $L(\alpha)$ defined as

$$\underset{\alpha}{\operatorname{argmin}} ||\mathbf{K} - \mathbf{A}||_{\mathsf{F}}^2$$

subject to : $\alpha_i \ge 0$ for $i \in \{0, ...k\}$

- · Solved using gradient descent procedure based BFGS method
- · Gradients:

$$\frac{\delta L(\alpha)}{\delta \alpha} = 2.sum(K_{\epsilon i} \circ (K - A))$$

where sum(\cdot) means summation over all the elements of the matrix and ' \circ ' denotes the Hadamard product

EXPERIMENTAL DETAILS[1]

- · Images from Caltech 256 dataset
- · Classes: Inanimate, face, animals
- · Computed Pyramid Match Kernel using SIFT features
- · EEG data measurement
 - · 32 channels (10-20); used only 12 of them
 - · Captured at 2kHz , downsampled to 100 Hz
 - · Filtered using Butterworth filter in range 0.5 30 Hz
 - · Restricted data to 100 500 ms
 - · Concatenated them to a single vector
 - · Gaussian kernel:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\beta ||\mathbf{x}_i - \mathbf{x}_j||^2)$$

where $\beta = 10^{-5}$

EXPERIMENTAL RESULTS

Method	Accuracy
PMK	81.67%
EEG	68.33%
PMK + EEG	86.67%
PMK + EEG (Voting)	91.67%

Table 1: Comparison of classification accuracies

EXPERIMENTAL RESULTS

Recognized Class				
	True Class	Animals	Faces	Inanimate
	Animals	19	0	1
	Faces	1	19	0
	Inanimate	1	2	17

Table 2: Confusion Matrix for EEG + PMK

EXPERIMENTAL RESULTS

Figure 17: Examples misclassified by EEG and PMK but corrected in EEG + PMK; the red doubled ones were misclassified even in EEG + PMK[1]

INFERENCES AND CHALLENGES

- · Testing using EEG
- · Object Localization
- · No independent assumption on PMK

OTHER BCI RELATED WORKS

- · BCI and Deep Learning
 - Motor Imagery³
 - · On board BCI using CNN
- · Medical Applications:
 - · Bionic Eye
 - · Wearable BCIs to assist communication in ICU's

³S.Sakhavi, C. Guan and S. Yan "Learning Temporal Information for Brain-Computer Interface Using Convolutional Neural Networks", IEEE Trans. Neural Netw. Learn. Syst.

CONCLUSION

- Such a combination between vision and human brain processing can yield significant gains in accuracy for the task of object categorization
- · Advantages:
 - · Robust to clutter and partial occlusion
 - · Lower number of parameters compared to CNN
 - · Efficient method
- · Disadvantages:
 - · Difficult to choose the channels from 32 channels
 - · EEG signals are subject dependent

REFERENCES

- 1. A.Kapoor , P.Shenoy and D.Tan.,"Combining Brain Computer Interfaces with Vision for Object Categorization",In CVPR 2008
- K. Grauman and T. Darrell., "The pyramid match kernel: Discriminative classification with sets of image features", In ICCV 2005
- 3. P. Shenoy and D. Tan. ,"Human-aided computing: Utilizing implicit human processing to classify images", In ACM CHI 2008
- 4. R. Schapire. "A brief introduction to boosting." In Proceedings of International Conference on Algorithmic Learning Theory, 1999.
- 5. L. Breiman." Bagging predictors", Machine Learning, 1996.

