Surg. Robotics Summer School

Outline

- Overview: big ideas
 - Haptics Teleoperation
 - Surgical Skill
- Raven Surgical Robotics Research Platform
 - Goals
 - Adventures Raven II
- Architecture
- Intelligent Augmentation
 Virtual Fixtures
 - Kinect Haptics

 - Laser liver resection demo (video)
 Fundamentals of Laparoscopic Surgery Benchmark
 - Golf course/ Jetstream
- · Behavior Trees

CMU Summer School 7.2014

Bleke, Vannaford, University, of Washington

Overview

Haptics

Hannaford 1

Surg. Robotics Summer School

Input Impedance with Free Slave Motion. Force Feedback Gain with Locked Master, λ_f . Forward Velocity Gain with Free Slave Motion, λ_p . Input impedance with Free Slave Motion.

6.3 2-Port Network Models

Linearity

$$A \begin{bmatrix} \mathcal{F}_1 \\ \mathcal{F}_2 \end{bmatrix} + B \begin{bmatrix} \mathcal{E}_1 \\ \mathcal{E}_2 \end{bmatrix} = 0 \tag{10}$$

Where A and B are 2×2 matric

 $\left[\begin{array}{c} \mathcal{E}_1 \\ \mathcal{F}_2 \end{array}\right] = H \left[\begin{array}{c} \mathcal{F}_1 \\ \mathcal{E}_2 \end{array}\right]$ (12)where H is a 2×2 "Hybrid Matrix".

We then use the H parameters (i.e. the elements of H) to study the system. Let's express the definition of the h_{ij} elements in terms of the mechanical effort and flow variables:

$$h_{11} = \frac{f_1}{\dot{x}_1} \bigg|_{f_1 = 0} \tag{16}$$

$$h_{12} = \frac{f_1}{f_2} \Big|_{\dot{x}_1 = 0} \tag{17}$$

$$h_{21} = \frac{\dot{x}_2}{\dot{x}_1}\Big|_{f_2=0}$$
 (18)

$$h_{22} = \frac{\dot{x}_2}{f_2}\Big|_{\dot{x}_1 = 0} \tag{19}$$

Input Impedance with Free Slave Motion. Force Feedback Gain with Locked Master, λ_f . h_{12} Forward Velocity Gain with Free Slave Motion, λ_p . h_{21} Input impedance with Free Slave Motion. . Each h parameter corresponds to an important aspect of performance - Each h parameter corresponds to a mathematical boundary condition • Each h parameter corresponds to a well defined physical measurement

Position error-based Master-Slave Teleoperation 30

Hannaford

30

Surg. Robotics Summer School

$$\begin{bmatrix} f_1 \\ \dot{x}_4 \end{bmatrix} = H_{cs} \begin{bmatrix} \dot{x}_1 \\ f_4 \end{bmatrix} \tag{28}$$
 You can show:
$$H_{cs} = \begin{bmatrix} Z_3 + G \left[1 - \frac{G}{Z_3 + G}\right] & \frac{G}{Z_3 + G} \\ \frac{-G}{Z_3 + G} & \frac{1}{Z_3 + G} \end{bmatrix} \tag{29}$$

Study Design

- Measure positions, forces and torques in MIS procedures
- 30 subjects, 7 subtasks
- each
 Experiments using R1Expert surgeons on
 animals (pigs)
 Experiments performed in
 Center for
- Videoendoscopic Surgery
- IACUC approval

Brown, Rosen, Barecca, Sinanan, Chang

Hannaford 3

Surg. Robotics Summer School

Hidden Markov Model

HMM Approach

Video Analysis Score

Hannaford 4