Difracción de electrones

Determinación de distancias interplanares del grafito

FÍSICA III -Junio 2019 -Bs. As. -Argentina

Erwin Zambrana José F. González

DIFRACCIÓN DE ELECTRONES

- Motivación
- Dispositivo y marco teórico
 - Estructura del grafito
 - Relación de Broglie
 - Condición de Bragg
 - Anillos de interferencia
- Mediciones
 - Medición directa
 - Error de medición directa
 - Medición fotográfica
- Resultados

$$\frac{p^2}{2m} = e.\Phi \qquad \lambda = \frac{h}{p}$$

$$d = f(\Phi, D)$$

ANILLOS DE DIFRACCIÓN

ANILLOS DE DIFRACCIÓN

MEDICIONES – MEDICIÓN DIRECTA

$$d = f(\Phi, D) \qquad \delta d^2 = k(\delta R)^2 + l(\delta \lambda)^2 + m(\delta D)^2$$

- Ventajas
 - Sistemático
 - Corrección de máximo
 - Zonas de rechazo

Centro:

$$x_0 = \frac{\sum_{x=1}^{n} (\sum_{y=1}^{m} (i(x, y).x))}{\sum_{x=1}^{n} (\sum_{y=1}^{m} (i(x, y)))}$$

$$y_0 = \frac{\sum_{x=1}^{n} (\sum_{y=1}^{m} (i(x,y), y))}{\sum_{x=1}^{n} (\sum_{y=1}^{m} (i(x,y)))}$$

Centro:

$$x_0 = \frac{\sum_{x=1}^{n} (\sum_{y=1}^{m} (i(x, y).x))}{\sum_{x=1}^{n} (\sum_{y=1}^{m} (i(x, y)))}$$

$$y_0 = \frac{\sum_{x=1}^{n} (\sum_{y=1}^{m} (i(x,y),y))}{\sum_{x=1}^{n} (\sum_{y=1}^{m} (i(x,y)))}$$

Intensidad del Pixel

Distancia Interplanar Menor				
por calibre	por fotografía	Diferencia		
128,9 pm	129,2 pm	0,3 pm		

Distancia Interplanar Mayor			
por calibre	por fotografía	Diferencia	
233,2 pm	220,7 pm	$\overline{12,5}$ pm	

δ Distancia Interplanar Menor				
por calibre	por fotografía	Diferencia		
14,6 pm	7,2 pm	7,4 pm		

δ Distancia Interplanar Mayor			
por calibre	por fotografía	Diferencia	
37,1 pm	8,6 <i>pm</i>	28,5 pm	

CONCLUSIONES

- Conclusiones
 - Dualidad onda-partícula
 - Estudio de materiales
 - Reducción del error

¿Preguntas?

Erwin Zambrana erwinauta@gmail.com

José F. González jfgonzalez@fi.uba.ar

