2018. 2. 27. Titanic_Vis_1104

```
In [3]: import pandas as pd import matplotlib.pyplot as plt
```

In [4]: train = pd.read_csv("train.csv", index_col="PassengerId")
 print(train.shape)
 train.head()

(891, 11)

Out[4]:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [5]: # matplotlib inline 노트북을 실행한 브라우저에서 바로 그림을 보여주기 %matplotlib inline

seaborn

import seaborn as sns

hue : Survived 기준으로 쪼개어서 이를 시각화 해 준다. # survived : 0,1을 기준으로 시각화를 나누어준다. sns.countplot(data=train, x="Embarked", hue="Survived") #sns.countplot(data=train, x="Embarked")

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x1dd9cc924a8>

2018. 2. 27. Titanic Vis 1104

In [6]: # seaborn의 버전마다 보이는 것이 약간 다를 수 있다. # Survived 를 기준으로 클래스별 데이터 확인 sns.countplot(data=train, x="Pclass", hue="Survived")

Out[6]: <matplotlib.axes._subplots.AxesSubplot at Ox1dd9ccf9ac8>

In [7]: # barplot를 보겠다.
barplot 는 y를 지정하면 정수이어야 하고,
y의 평균값을 구하게 된다.
Fare 요금의 평균값이 나오게 된다.
그리고 중앙의 선은 표준편차를 나타낸다.
sns.barplot(data=train, x="Pclass", y="Fare", hue="Survived")

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x1dd9bbe2f98>

In [8]: # hue를 이용하여 구하게 된다.
가운데는 표준편차를 나타나게 된다.
bar가 길면 여러가지 데이터가 차이가 크다.
내가 풀려는 문제는 분류는 countplot를 주로 시각화하되 이를 나누는 것이 좋다.
내가 풀려는 문제는 Regression 만약 우리가 정수형을 맞출 목적은 barplot를 쓰고 y에 count를 쓰면 좋다.
가능한 y는 정수형이어야 한다.
sns.barplot(data=train, x="Pclass", y="Fare", hue="Survived")
■

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x1dd9cdeb9e8>

2018. 2. 27. Titanic Vis 1104

PointPlot

In [9]: # pointplot은 barplot의 나머지 부분을 # 그대로 나머지를 부여넣으며 되다

그대로 나머지를 붙여넣으면 된다. # 그대로인데 모양만 다르다.

sns.pointplot(data=train, x="Pclass", y="Fare", hue="Survived")

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x1dd9d0a4358>

In [10]: # pointplot은 barplot의 나머지 부분을

#sns.pointplot(data=train, x="Pclass", y="Fare", hue="Survived")

sns.distplot(train["Pclass"], hist=False)
sns.distplot(train["Survived"], hist=False)

Out[10]: <matplotlib.axes._subplots.AxesSubplot at Ox1dd9d12f9b0>

In [11]: # distplot는 두개의 그래프를 합쳐놓은 것이다.

barplot을 쓰고 pointplot를 쓰고 이런 순서로 확인해 본다.

distplot은 넣을 때, 아예 컬럼을 넣게 된다.

sns.distplot(train["Fare"])

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x1dd9d201cc0>


```
In [12]: # barplot을 쓰고 pointplot를 쓰고 이런 순서로 확인해 본다.
# distplot은 넣을 때, 아예 컬럼을 넣게 된다.
# hist과 선이 보이게 되는데 hist를 없애 보겠다.
# 시각화의 중요한 것은 직관적이어야 한다.
# 직관적이 아니면 시각화가 아니다. 초등학생이 보더라도 직관적이어야 한다.#
# 바로 볼때, Action plan이 나오도록 시각화를 하는 것이 좋다.
# 만약 데이터가 좋지 않을 때도 있다. 이때 조금 시각화가 방해될 경우가 있다.
# 아웃라이어가 발생할 수 있다.
# 아웃라이어가 있어, 이를 빼고 한번 그려보자.
sns.distplot(train["Fare"], hist=False)
```

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x1dd9d379a90>

In [13]: # 기타 옵션 - vertical 수평 #sns.distplot(train["Fare"], vertical=True) # 색 변경하기 sns.distplot(train["Fare"], color="y")

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x1dd9d4d4898>

In [14]: # 아웃라이어가 있어, 이를 빼고 한번 그려보자. train[train["Fare"]<100]</pre>

Out[14]:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q

In [15]: # 진도를 빠르게 뽑고 싶다면

- # 안보고 따라할 수 있다면 가장 Best이다.
- # 새로운 것을 배울 때, 처음에는 안보고 칠 수 있도록 한다.
- # 사람이 스마트해서 빨리 배운다.
- # 판다스 문법 보고 하루 잡고 2,3번 치면 빨리 배운다.
- # 데이터를 빨리 정리하고 중요하다.

low_fare = train[train["Fare"]<100]</pre>

print(low_fare.shape)

low_fare.head()

(838, 11)

Out[15]:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
Passengerld											
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [16]: # Tool이 능숙하고 하면 더 좋아진다.

- # 데이터로 전향하고 싶다면 Pandas에 익숙해 지는 것을 추천한다.
- # 아웃라이어를 제거한 이후에 했을 때, 그래프가 훨씬 좋아졌다.
- # 확실히 평균이 18정도인 것 같고, ...

sns.distplot(low_fare["Fare"], hist=False)

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x1dd9d55d400>


```
In [17]:
         sum1 = Iow_fare["Fare"].sum()
         print(low_fare["Fare"].describe())
         print(low_fare["Fare_P"].describe())
         print(sum1)
         low_fare["Fare_P"] = low_fare["Fare"]/18781.2
         # sns.countplot(data=low_fare, x="Fare")
         # print(low_fare[["Fare", "Fare_P" ]])
         sns.distplot(low_fare["Fare"], hist=False)
                  838.000000
         count
         mean
                   22.411942
                   20.827218
         std
         min
                    0.000000
         25%
                    7.895800
         50%
                   13.000000
         75%
                   27.720800
                   93.500000
         max
         Name: Fare, dtype: float64
         KevError
                                                    Traceback (most recent call last)
         C:\Anaconda3\Iib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
            2392
         -> 2393
                                  return self._engine.get_loc(key)
            2394
                             except KeyError:
         pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5239)()
         pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5085)()
         pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\h
         ashtable.c:20405)()
         pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.Py0bjectHashTable.get_item (pandas\_libs\h
         ashtable.c:20359)()
         KeyError: 'Fare_P'
         During handling of the above exception, another exception occurred:
         KeyError
                                                    Traceback (most recent call last)
         <ipython-input-17-a4e298823cab> in <module>()
               2 sum1 = low fare["Fare"].sum()
               3 print(low_fare["Fare"].describe())
            --> 4 print(low_fare["Fare_P"].describe())
               5 print(sum1)
               6 low_fare["Fare_P"] = low_fare["Fare"]/18781.2
         C:\Manaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
            2060
                             return self._getitem_multilevel(key)
            2061
                         else:
            2062
                              return self._getitem_column(key)
            2063
            2064
                     def _getitem_column(self, key):
         C:\Manaconda3\lib\site-packages\pandas\core\frame.py in _getitem_column(self, key)
            2067
                         # get column
            2068
                         if self.columns.is_unique:
         -> 2069
                              return self._get_item_cache(key)
            2070
            2071
                         # duplicate columns & possible reduce dimensionality
         C:\Anaconda3\lib\site-packages\pandas\core\generic.py in _get_item_cache(self, item)
                         res = cache.get(item)
            1532
             1533
                         if res is None:
         -> 1534
                              values = self._data.get(item)
            1535
                             res = self._box_item_values(item, values)
            1536
                             cache[item] = res
         C:\Anaconda3\lib\site-packages\pandas\core\line{\text{winternals.py}} in get(self, item, fastpath)
            3588
            3589
                             if not isnull(item):
            3590
                                  loc = self.items.get_loc(item)
            3591
            3592
                                  indexer = np.arange(len(self.items))[isnull(self.items)]
```

```
C:\Anaconda3\Iib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
                       return self._engine.get_loc(key)
  2394
                   except KeyError:
-> 2395
                        return self._engine.get_loc(self._maybe_cast_indexer(key))
  2396
  2397
                indexer = self.get_indexer([key], method=method, tolerance=tolerance)
pandas\_libs\index.pyx in pandas._libs.index.IndexEngine.get_loc (pandas\_libs\index.c:5239)()
pandasW_libsWindex.pyx in pandas._libs.index.IndexEngine.get_loc (pandasW_libsWindex.c:5085)()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item (pandas\_libs\h
ashtable.c:20405)()
pandas\_libs\hashtable_class_helper.pxi in pandas._libs.hashtable.Py0bjectHashTable.get_item (pandas\_libs\h
ashtable.c:20359)()
KeyError: 'Fare_P'
```

```
In [18]: # 생존자와 사망자의 운임요금을 보고 싶다.
# distplot은 hue가 안된다.
# distplot은 넣을 때부터 컬럼을 하나 골라버린다. 그래서 hue를 넣을 수 없다.
# low_fare["Survived"]==0
perish = low_fare[low_fare["Survived"]==0]
survived = low_fare[low_fare["Survived"]==1]

# label를 통해 오른쪽 위쪽에 레이블을 넣을 수 있다.
sns.distplot(perish["Fare"], hist=False, label="Perish")
sns.distplot(survived["Fare"], hist=False, label="Survived")
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at Ox1dd9d722b38>

In [19]: # countplot
 # barplot
 # distplot

Implot

```
In [20]: # 산점도 찍어보기 - ScatterPlot
# 나이와 요금에 대한 시각화
# x축, y축이 정수이어야 한다.
# x와 y의 값에 점을 하나 찍는다.
# 생존자와 사망자의 차이를 보는 것이 중요하다. hue이용가능
sns.Implot(data=train, x="Age", y="Fare")
```

Out[20]: <seaborn.axisgrid.FacetGrid at 0x1dd9d6a5da0>

Out[21]: <seaborn.axisgrid.FacetGrid at 0x1dd9d98fcc0>


```
In [22]: # 나이와 요금에 대한 시각화
# 생존자와 사망자의 차이를 보는 것이 중요하다. hue이용가능
# 파란색은 : 생존자(1), 사망(0)
# 선은 회귀선이다. 회귀선을 지울려면 fit_reg를 이용한다.
sns.Implot(data=train, x="Age", y="Fare", hue="Survived", fit_reg=False)
```

Out[22]: <seaborn.axisgrid.FacetGrid at 0x1dd9dcd3e48>


```
In [23]: # 원가가 확 드러나지 않는다. scatter plot이다.
# 원가 500달러 이상이 뭔가 그렇다.
# 아웃라어이를 확인 후, 제거해 보자.
# python 아웃라이어 기준:
# import matplotlib.pyplot as plt
print(train["Fare"].describe())
print(train["Fare"].quantile())
```

```
891.000000
count
mean
          32.204208
          49.693429
std
           0.000000
min
25%
           7.910400
50%
          14.454200
75%
          31.000000
         512.329200
Name: Fare, dtype: float64
14.4542
```

```
In [24]: plt.figure(figsize=(10,8))
    plt.subplot(211)
    sns.distplot(train["Fare"], hist=False)

plt.subplot(212)
    sns.boxplot(x=train["Fare"])
```

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x1dd9de33a20>


```
In [25]: # 뭔가가 확 드러나지 않는다. scatter plot이다.
# 뭔가 500달러 이상이 뭔가 그렇다.
# 아웃라어이를 제거해 보자.
low_fare = train[train["Fare"]<100]
sns.Implot(data=low_fare, x="Age", y="Fare", hue="Survived", fit_reg=False)
```

Out[25]: <seaborn.axisgrid.FacetGrid at 0x1dd9dcf9f60>


```
In [26]: # 팁 : 시각화를 하기 전에 뭔가 내가 상상하고 그래프를 상상하고 그린다.
# 그런데 의외의 일들이 생긴다. 이 일에 대해서 뭔가 생겼을 때,
# 이에 대한 Hint를 찾을 수 있다.
# Age, Fare에 대해서 상상하고 하면 시각화를 하면 힌트가 발생한다.
# 타이타닉은 사망자가 생존자보다 많다.
# 5개의 plot를 보고 이를 더 전문적으로 하고 싶다면 Matplotlib를 하기를 추천
# 기본적으로 Seaborn으로 시각화를 하고 전문적으로 하고 싶다면 Matplotlib를 하기를 추천한다.
■
```

SubPlots

In [27]: # subplot를 쓰면 하나의 컬럼에 여러개의 그래프를 한번에 그릴 수 있다. import matplotlib.pyplot as plt

plt.subplots()

In [28]: # 3개의 그래프를 한번에 볼 수 있다.
단점은 예쁘지 않다.
figure , (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3)

sns.countplot(data=train, x="Pclass", hue="Survived", ax=ax1)
sns.countplot(data=train, x="Sex", hue="Survived", ax=ax2)
sns.countplot(data=train, x="Embarked", hue="Survived", ax=ax3)

Out[28]: <matplotlib.axes._subplots.AxesSubplot at 0x1dd9dfdb550>


```
In [29]: # 3개의 그래프를 한번에 볼 수 있다.
# 단점은 예쁘지 않다.
# 이 단점을 해결하기 위해 너비를 조절해 줄 필요가 있다.
# set_size_inches(x, y)
figure, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3)
figure.set_size_inches(12,6)

sns.countplot(data=train, x="Pclass", hue="Survived", ax=ax1)
sns.countplot(data=train, x="Sex", hue="Survived", ax=ax2)
sns.countplot(data=train, x="Embarked", hue="Survived", ax=ax3)
```

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x1dd9f351a20>


```
In [30]: # 3개의 그래프를 한번에 볼 수 있다.
# O/제는 row를 두줄 로 해 보겠다.
# set_size_inches(x, y)
figure , ((ax1, ax2, ax3) , (ax4, ax5, ax6)) = plt.subplots(nrows=2, ncols=3)
figure.set_size_inches(12,8)

sns.countplot(data=train, x="Pclass", hue="Survived", ax=ax1)
sns.countplot(data=train, x="Sex", hue="Survived", ax=ax2)
sns.countplot(data=train, x="Embarked", hue="Survived", ax=ax3)
sns.countplot(data=train, x="SibSp", hue="Survived", ax=ax4)
sns.countplot(data=train, x="Parch", hue="Survived", ax=ax5)
```

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x1dd9f673f60>


```
In [31]: # col, row가 하나인 버전
figure, ax1 = plt.subplots(nrows=1, ncols=1)
figure.set_size_inches(13,4)
sns.countplot(data=train, x="Parch", hue="Survived", ax=ax1)
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at Ox1dd9f6bb198>

In [32]: # 시각화를 하는데 불편함이 없다.