Defn: Size ad level
We say a fest is size of
$max (90) = \infty$
max type I error prob
we say a test is level & if
$max p(0) \leq \alpha$
max type I error prob.

Defin: Likelihood Ratio Test (LRT)

Recall $L(\theta) = f_0(x)$ is called the likelihear function.

We want to test a hypothesis

Ho: 0 e Oo v. Ha: 0 e Oo

The LRT statistic is defined as

or $\chi \approx 0$ thin Ho not as likely in composition to other volves of 0(i.e. make reject Ho)

The LRT says

 $2 = \{ \chi \mid \chi(\chi) \leq c \}$ $\int \text{for some } C \in [0, 1]$ rejection region

Han to drowe C?

Note: c=0 => always accept

c=1 > always reject

02 c < 1, in between => suntres veget/accet

Choose C to tradeoff type I and II errors.

e.g. c ~ 1 > reject a lot

histortype I evror

020 = not reject vey much laver type I error higher type IT error

Came: choose c' so malce correct spe I.

typically want to minimize type It error subject to a type I constraint.

est build a level & fest that minimizes
type IF error

 $\frac{e'\chi}{}$, let $\chi_n \stackrel{iid}{\sim} N(0, 6^2)$ known:

Cets form a LRT ()=R

 $L(Q) = TT \frac{1}{\sqrt{2tt62}} exp(-\frac{1}{262}(\chi_n - Q)^2) = (2Tt)(6^2)exp(-...)$ $L(Q) = TT \frac{1}{\sqrt{2tt62}} exp(-\frac{1}{262}(\chi_n - Q)^2) = (2Tt)(6^2)exp(-...)$ $L(Q) = TT \frac{1}{\sqrt{2tt62}} exp(-\frac{1}{262}(\chi_n - Q)^2) = (2Tt)(6^2)exp(-...)$

$$\lambda = L(\hat{\theta}_0)$$

$$L(\hat{\theta})$$

$$L(\hat{\theta})$$

$$\frac{\partial}{\partial \theta} = X - \hat{\theta} = X$$

$$\frac{\partial}{\partial \theta} = X - \hat{\theta} = X$$

$$L(\hat{\theta})$$

$$\frac{\partial}{\partial \theta} = X - \hat{\theta} = X$$

$$L(\hat{\theta})$$

$$\frac{\partial}{\partial \theta} = X - \hat{\theta} = X$$

$$L(\hat{\theta})$$

$$\frac{\partial}{\partial \theta} = X - \hat{\theta} = X$$

Recap!
$$\hat{\theta} = \overline{X}$$

$$\hat{A} = \begin{cases} \overline{X}, & \text{if } \overline{X} \neq a \\ a, & \text{if } \overline{X} \neq a \end{cases}$$

$$\lambda = \frac{L(\hat{\theta}_0)}{L(\hat{\theta})} = \begin{cases} \frac{L(\overline{X})}{L(\overline{X})} = 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})}, & \text{if } \overline{X} \neq a \end{cases}$$

$$= \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X} \neq a \end{cases} = \begin{cases} 1, & \text{if } \overline{X} \neq a \\ \frac{L(\alpha)}{L(\overline{X})} & \text{if } \overline{X$$

$$e^{\frac{N}{2}} = \frac{\sqrt{2}}{\sqrt{2}} \left[\frac{\sqrt{2}}$$

Ho:
$$0 \le a$$
 \Rightarrow LRT supe regat if

Ha: $0 > a$
 $x - a > c^*$
 $x = a > c^*$
 $x = a > c^*$

Is more than c^*

S. e. s. above a

How do we determine c^*

Cartral far type I evror

Max $P(refeat) = x$
 $0 \in G$

Max type I error prob

$$P(refeat) = P(x - a) = P(x - a)$$

$$= P(x - a) + a - b = a - b + c^*$$
 $x - c$
 $x - c$

Q' max vare ar of G? Z-NCOIL) $= \mathbb{P}\left(2 = \frac{\theta - \theta}{6/\sqrt{n}} + C^{*}\right)$ Max at = P(2>0*) 0=0 How do I choose d* to keep max type I err prob. at x? Choose at so flat $\mathbb{P}(2 > C^*) = \mathcal{L}$ i.l. $c \star = 3a = the point at which$ $a stended normal <math>\nu(0,1)$ - look up acearas:

my size x L'Kl is just to reject
When $\frac{\chi - q}{6/\sqrt{N}} > 3\alpha$
$\sqrt{-9}$
$\frac{1}{6\sqrt{D}}$
~ 1N