M CL C

CH NG 1: I C NG V TH	4
1.1. CÁC KHÁI NI M C B N	4
1.1.1. th	4
1.1.2. ng i, chu trình, i chu trình	7
1.1.3. Tính liên thông	8
1.2. CÁC D NG TH	9
1.3. M T S PHÉP BI N I TRÊN TH	14
1.3.1. Phép phân chia s c p	14
1.3.2. Phép ng c u th	15
1.3.3. Phép toán trên th	16
1.3.3.1. Phép h i	16
1.3.3.2. Phép giao	16
1.4. S C S C A TH	16
1.5. K T CH NG	17
1.6. BÀIT P	17
CH NG 2: BI U DI N TH	21
2.1. MA TR N K	21
2.1.1. nh ngh a	21
2.1.2. B c và nh k d a trên ma tr n k	22
2.2. MA TR N TR NG S	23
2.2.1. nh ngh a	23
2.2.2. B c và nh k d a trên ma tr n tr ng s	24
2.3. MA TR N LIÊN K T	24
2.3.1. nh ngh a	24
2.3.2. B c và nh k d a trên ma tr n liên k t	25
2.4. DANH SÁCH C NH	27
2.4.1. nh ngh a	27
2.4.2. B c và nh k d a trên danh sách c nh	27
2.5. DANH SÁCH K	28
2.5.1. nh ngh a	28
2.5.2. B c và nh k d a trên danh sách k	
2.6. K T CH NG	29

2.7. BÀIT P	30
CH NG 3: CÁC THU T TOÁN TÌM KI M TRÊN TH	32
3.1. TÌM KI M THEO CHI U SÂU	32
3.2. TÌM KI M THEO CHI U R NG	35
3.3. M T S NG D NG	37
3.3.1. Tìm ng i gi a hai nh	37
3.3.2. Tìm các thành ph n liên thông c a th	39
3.4. K T CH NG	40
3.5. BÀI T P	40
CH NG 4: CÂY	42
4.1. NH NGH A	42
4.1.1. Cây	42
4.1.2. nh ngh a cây t i i	45
4.2. CÂY KHUNG NG N NH T	46
4.2.1. nh ngh a	47
4.2.2. Thu t toán Kruskal	48
4.2.3. Thu t toán Prim	49
4.3. CÂY CÓ H NG	51
4.3.1. nh ngh a cây có h ng	51
4.3.2. nh ngh a:	53
4.3.3. Phép duy t cây (Cây nh phân)	54
4.3.4. Ký pháp Balan	55
4.4. K T CH NG	58
4.5. BÀI T P	58
CH NG 5: CÁC BÀI TOÁN V NG I	60
5.1. TH EULER	60
5.1.1. Bài toán v 7 cây c u Konigsberg (Bài toán Euler)	60
5.1.2. nh ngh a:	61
5.1.3. Gi i thu t xây d ng chu trình Euler	64
5.1.4. Thu t toán Fleury (Thu t toán Flor) tìm chu trình Euler	66
5.2. TH HAMILTON	66
5.2.1. nh ngh a	66
5.2.2. Thu t toán xây d ng chu trình Hamilton	67

5.3. BÀI TOÁN NG I NG N NH T	69
5.3.1. Các khái ni m m u	69
5.3.2. nh ngh a bài toán tìm u ng i ng n nh t	69
5.3.3. nh ngh a ma tr n kho ng cách (tr ng s)	70
5.3.4. Thu t toán Dijkstra	70
5.3.5. Thu t toán Ford – Bellman	71
5.3.6. Thu t toán Floyd	73
5.4. K T CH NG	75
5.5. BÀI T P	75
TÀI LI U THAM KH O	78

CH NG 1

IC NGV TH

M c tiêu:

- ♦ Hi u c các khái ni m, nh ngh a liên quan n th có h ng và th vô h ng nh b c, các d ng nh, c nh, liên thông, chu trình, ng i.
- ♦ Phân bi t c các d ng th c bi t.
- ♦ Th c hi n c các phép bi n i và các phép toán trên th.
- ♦ Mô hình hóa m t bài toán th c t v d ng th.

1.1. CÁC KHÁI NI M C B N

1.1.1. th

nh ngh a: M t th là m t b G = (V, E), trong ϕ :

 $V \neq \emptyset$ là t ph p các nh,

 $E=\{(u,v) \mid u,v \in V\}$ là t ph p các c nh.

C p $nh(x, y) \in E$ không có th t c g i là c nh vô h ng, ng c l i g i là c nh có h ng. C nh có h ng còn c g i là cung.

th ch g m các c nh có h ng c g i là th có h ng, th ch g m các c nh vô h ng c g i là th vô h ng.

Ví d 1.1:

Hình 1.1: th có h ng và th vô h ng

 ${f n}$ ${f th}$: M t th G=(V,E) c g i là th nnum i c p nh ch có t i a 1 c nh/cung.

 ${\bf a}$ ${\bf th}$: M t th G=(V, E) cg i là a th n u có ít nh t m t c p nh c n i v i nhau b i nhi u c nh/cung cùng chi u.

Ví d 1.2:

Hình 1.2: a,b: n th; c,d: a th

M ts thu tng:

• **Khuyên**: C nh/cung c g i là khuyên n u có nh u trùng v i nh cu i. Ví d 1.3:

Hình 1.3: Khuyên t i nh b c a th có h ng và vô h ng

• C nh/cung song song: Hai c nh/cung c g i là song song (hay l p) n u chúng có 2 nh trùng nhau.

Ví d 1.4:

Hình 1.4: C nh có h ng song song và c nh vô h ng song song

- $\mathbf{nh} \ \mathbf{k} : \mathbf{N} \ \mathbf{u} \ (\mathbf{u}, \mathbf{v}) \ \mathbf{la} \ \mathbf{m} \ \mathbf{t} \ \mathbf{cung} \ \mathbf{c} \ \mathbf{a}$ th $\mathbf{coh} \ \mathbf{ng} \ \mathbf{th} \mathbf{i}$ nh $\mathbf{v} \ \mathbf{cg} \ \mathbf{i} \ \mathbf{la} \ \mathbf{k} \ \mathbf{c} \ \mathbf{a}$ nh $\mathbf{u} . \ \mathbf{N} \ \mathbf{u} \ (\mathbf{u}, \mathbf{v}) \ \mathbf{la} \ \mathbf{m} \ \mathbf{t} \ \mathbf{c} \ \mathbf{nh} \ \mathbf{c} \ \mathbf{a}$ th $\mathbf{voh} \ \mathbf{ng} \ \mathbf{thi} \ \mathbf{nh} \ \mathbf{v} \ \mathbf{k} \ \mathbf{v} \ \mathbf{i}$ nh $\mathbf{u} \ \mathbf{va} \ \mathbf{nh} \ \mathbf{u} \ \mathbf{c} \ \mathbf{ng} \ \mathbf{k} \ \mathbf{v} \ \mathbf{i}$ nh $\mathbf{v} \ \mathbf{k}$
- \mathbf{C} \mathbf{nh} \mathbf{k} : Hai c nh/cung c g i là k nhau n u chúng có chung m t nh.
- C nh liên thu c: C nh (u,v) c g i là liên thu c (hay k) v i 2 nh u, v.
- **B** c c a nh: S c nh liên thu c v i nh v g i là b c c a v, ký hi u d(v). i v i nh có khuyên thì b c tính là 2 cho m i khuyên.

Ví d 1.5:

Trong hình 1.2b b c c a nh 1 là 2, b c c a nh 2 là 3, b c c a nh 3 là 1, b c c a nh 4 là 2.

Trong hình 1.3b b c c a nh a là 1, b c c a nh b là 3, b c c a nh c là 2.

• **nh cô l p, nh treo**: Trong th vô h ng nh có b c 0 g i là nh cô l p, nh có b c 1 g i là nh treo.

Ví d 1.6: Trong th d i ây, nh c là nh cô l p (có b c 0), nh e là nh treo (có b c 1)

Hình 1.5: nh cô 1 p và nh treo

- Cung vào/ra: Cung (u,v) g i là cung ra kh i nh u và là cung vào nh v
- **Bán b c c a nh**: S cung vào nh v g i là bán b c vào (còn g i là n a b c trong) c a v, ký hi u là d⁻(v). S cung ra kh i nh v g i là bán b c ra (còn g i là n a b c ngoài) c a v, ký hi u d⁺(v).

Ví d 1.7: V i th có h ng trong hình 1.2a thì bán b c ra và bán b c vào c a các nh c cho trong b ng d i ây:

nh v	d'(v)	$\mathbf{d}^{+}(\mathbf{v})$
1	1	2
2	2	1
3	1	2
4	1	0

nh lý: Cho th G=(V,E), m là s cung hay s c nh c a G

i) N u G có h ng thì
$$\sum_{i \in V} d^-(i) = \sum_{i \in V} d^+(i) = m$$

ii)
$$\sum_{i \in V} d(i) = 2m$$

iii) S nh b c l là m t s ch n

Ch ng minh:

i) Vì m i cung (u,v) c tính b c m t l n b c ra c a nh u và m t l n b c vào c a nh v nên s b c ra = s b c vào = s cung.

ii) M i c nh (u,v) c tính b c m t l n trong d(u) và m t l n trong d(v), nh v y m i c nh c tính b c nên t ng b c b c nen t ng b c nh.

iii) G i $V_1 = \{các \quad nh có b c l \}; V_2 = \{các \quad nh có b c ch n\}$

theo ii) thì
$$\sum_{i \in V} d(i) = \sum_{i \in V1} d(i) + \sum_{i \in V2} d(i) = 2m(1)$$

Do \forall v \in V₂ thì d(v) ch n nên $\sum_{i \in V_2} d(i)$ ch n (vì t ng các s ch n là s ch n)

nên t (1) suy ra $\sum_{i \in V1} d(i)$ là s ch n, mà d(i) l ($\forall i \in V_1$) nên $\sum_{i \in V1} d(i)$ là t ng các s l có giá tr là s ch n, suy ra s các nh b c l là m t s ch n.

1.1.2. ng i, chu trình, i chu trình

Chu trình: Là ng i mà có nh u trùng v i nh cu i.

M t ng i hay chu trình c g i là n n u không có c nh/cung b l p l i, g i là s c p n u không có nh nào b l p l i.

i chu trình: Cho th G=(V,E) và $A\subset V$, i chu trình xác nh b i A ký hi u w(A) c nh ngh a nh sau:

 $w(A) = \{e \in E / e \text{ có } m \text{ t} \text{ nh trong } A\}$

M t i chu trình w c g i là s c p n u không t n t i w'⊂w sao cho G-w' không liên thông (tính liên thông xem ph n 1.1.3).

Ví d 1.8: Xét th vô h ng G:

Hình 1.6: th vô h ng

M t s ng i, chu trình và i chu trình trên th nh sau:

- 1, 3, 5, 2, 3, 5, 4 (ng i không n vì có c nh (3,5) b 1 p 1 i)
- 1, 2, 3, 5, 2, 4 (ng i n vì không có c nh nào l p l i nh ng không s c p vì có nh 2 b l p l i)
- 1, 2, 3, 5, 4 (ng is c p)
- 4, 5, 2, 3, 5, 2, 4 (Chu trình không n vì có c nh (5,2) b 1 p 1 i)

5, 2, 3, 1, 2, 4, 5 (chu trình n vì không có c nh nào l p l i nh ng không s c p vì có nh 2 b l p l i)

4, 5, 3, 2, 4 (chu trình s c p)

 $A=\{3,5\}$, $w(A)=\{(3,1),(3,2),(5,2),(5,4)\}$ không s c p vì có $w'=\{(5,2)\}$ và G-w' không liên thông.

 $A=\{1,2\}$, $w(A)=\{(1,3),(2,3),(2,5),(2,4)\}$ là s c p vì không t n t i w' \subset w G-w' không liên thông.

1.1.3. Tính liên thông

th liên thông: M t th G=(V,E) c g i là liên thông n u hai nh b t k u,v $\in V$ luôn có ng i t u n v và ng c l i. M t th vô h ng không liên thông thì luôn chia c thành các th con liên thông, m i th con g i là m t thành ph n liên thông.

Liên thông m nh: th G có h ng liên thông thì c g i là liên thông m nh.

Liên thông y u: N u th G có h ng không liên thông nh ng th vô h ng t ng ng liên thông thì G c g i là liên thông y u.

Ví d 1.9:

Hình 1.7: th liên thông, không liên thông

Trong hình trên, th G1 có 2 thành ph n liên thông, th G2 liên thông, th G3 liên thông m nh, G4 liên thông y u

nh r nhánh: nh u c g i là nh r nhánh n u vi c lo i b u cùng v i các c nh liên thu c làm t ng s thành ph n liên thông.

C nh c u: C nh e c g i là c nh c u n u vi c lo i b e làm t ng s thành ph n liên thông

Ví d 1.10: th trong hình d i \hat{a} y có 2 nh r nhánh là 2 và 5. Có 2 c nh c u là (2,5), (4,5)

Hình 1.8: th có nh r nhánh và c nh c u

1.2. CÁC D NG TH

 \boldsymbol{th} : th $c \ p \ n \ l \grave{a} \ n$ th mà gi a 2 nh b t k luôn có m t c nh. Ký hi u: K_n

Ví d 1.11: Hình d i ây li t kê m t s th c p 2, 3, 4, 5

Hình 1.9: th c p 2,3,4,5

nh lý: th n nh có n(n-1)/2 c nh

Ch ng minh:

nh th 1 s n i v i n-1 nh còn 1 i nên có n-1 c nh nh th 2 s n i v i n-2 nh còn 1 i nên có n-2 c nh

...

nh th n-1 s n i v i n-(n-1) nh còn l i nên có 1 c nh

S c nh c a K_n là (n-1)+(n-2)+...+1=n(n-1)/2

Ví d 1.12: th vòng c p 3,4,5,6

Hình 1.10: th vòng

th bánh xe: th vòng C_n c b sung thêm m t nh m i n i v i t t c các nh còn l i thì c g i là th bánh xe, ký hi u là W_n

Ví d 1.13:

Hình 1.11: th bánh xe

th l p ph ng: th l p ph ng ký hi u Q_n là th g m 2^n nh, m i nh bi u di n m t chu i nh phân n bit. Trong ó 2 nh k nhau ch khác nhau duy nh t 1 bit.

Ví d: 1.14:

Hình 1.12: th 1 p ph ng

th hai phía: M t th G=(V, E) c g i là th 2 phía n u nh t p nh V c a nó có th phân ho ch thành 2 t p X và Y sao cho m i c nh e \in E ch n i m t nh trong X v i m t nh trong Y. (th 2 phía còn có th g i là th 1 ng phân, th 2 ph n, th phân ôi). Ký hi u $G=(X \cup Y, E)$

Ví d 1.15:

Hình 1.13: th 2 phía a), th 2 phía $K_{2,3}$ b)

nh lý: G là th hai phía ⇔ G không có chu trình dài l

Ví d 1.16:

Hình 1.14: th hai phía và không hai phía

Trong hình trên, G_1 là th 2 phía vì không có chu trình dài 1, G_2 không là th hai phía vì có chu trình dài 1 là 3, 4, 5, 3. th G_1 có th bi u di n 1 i nh sau:

Hình 1.15: Bi u di n th hai phía

Thu t toán ki m tra th hai phía:

Xét n th vô h ng G=(V,E)

 $B \quad c \ 1 \hbox{:} \ Ch \ n \ m \ t \quad nh \ b \ t \ k \quad v \in V, \quad t \ X \hbox{=} \{v\}$

B c 2: Tìm t p Y={các nh k c a các nh trong X}. N u X \cap Y \neq Ø thì G không ph i là th hai phía, d ng. Ng c l i qua b c 3

B c 3: Tìm t p T={các nh k c a các nh trong Y}. N u T \cap Y \neq Ø thì G không ph i th hai phía, d ng. N u T=X thì G là th hai phía, d ng. Ng c l i, gán X=T và l p l i b c 2.

Ví d 1.17: Xét 2 th G_1 và G_2 nh trong hình 1.14

Dùng thu t toán ki m tra th G_1 và G_2 có là hai phía hay không?

Xét th G_1 :

$$t X=\{1\}, Y=\{2,4\}, T=\{1,3\}$$

 $X=\{1,3\}, Y=\{2,4\}, T=\{1,3\} d \text{ ng vì } T=X \Rightarrow G \text{ là}$ th hai phía

Xét th G_2 :

$$t X=\{1\}, Y=\{2,4\}, T=\{1,3,5\}$$

 $X=\{1,3,5\}, Y=\{2,3,4,5\}, d \text{ ng vì } X\cap Y=\{3,5\} \neq \emptyset \Rightarrow G \text{ không là}$ th hai phía

th chính qui b c k: th vô h ng G c g i là chính qui b c k (*hay còn g i là k- u*) n u m i nh c a G u có b c k. Các th vòng là chính qui b c 2, th K_n chính qui b c n-1.

th bù: Hai n th G và G' c g i là bù v i nhau n u chúng có chung các nh, c nh nào thu c G thì không thu c G' và ng c l i. Ký hi u: $G' = \overline{G}$.

Ví d 1.18: G và th bù c a G

Hình 1.16: th bù

Ví d 1.19: Hình 1.16 d i ây trình bày th G' là th con, G" là th b ph n c a G

Hình 1.17: th con và th b ph n

th ph ng: th G c g i là th ph ng n u có th v G trên m t m t ph ng sao cho các c nh c a nó không c t nhau tr nh. Cách v nh v y g i là bi u di n ph ng c a th.

Ví d 1.20: th ph ng c v l i v i các c nh không c t nhau.

Hình 1.18: th ph ng

th ix ng: Cho G=(V, E) là th có h ng, G c g i là th i x ng n u $(u,v) \in E \Rightarrow (v,u) \in E$. G c g i là i x ng n u gi a 2 nh b t k u có 2 cung ng c chi u nhau.

Ví d 1.2: Trong hình bên d i, th G_1 không i x ng, G_2 i x ng, G_3 i x ng

Hình 1.19: th ix ng

Ví d 1.22: G_1 không ph n x ng, G_2 ph n x ng, G_3 ph n x ng

Hình 1.20: th ph n x ng

th c n b ng: th có h ng G c g i là c n b ng (hay gi i x ng) n u $d^+(v)=d^-(v) \ \forall v \in V$. N u G n và $d^+(v)=d^-(v)=k \ \forall v \in V$ thì G c g i là k- u.

Ví d 1.23: th G_1 c n b ng, G_2 là 2- u

Hình 1.21: th c n b ng

th song liên thông: th G c g i là song liên thông n u G liên thông và không ch a nh r nhánh.

Ví d 1.24: th G_1 liên thông nh ng không song liên thông vì có nh r nhánh là 3, th G_2 là song liên thông.

Hình 1.22: th song liên thông

1.3. M TS PHÉP BI N I TRÊN TH

1.3.1. Phép phân chia s c p

Phép phân chia s c p là vi c chia c nh (u,v) c a m t th G b ng cách lo i b c nh này kh i G và thêm vào m t nh m i w cùng v i hai c nh (u,w) và (w,v). Hai th G_1 và G_2 c g i là ng c u (còn g i là ng phôi) n u chúng có c b ng cách th c hi n m t dãy các phép phân chia s c p trên m t th nào ó.

Ví d 1.25:

Hình 1.23: Dãy các phép phân chia s c p trên thì G₁

 G_2 và G_3 là $\mbox{ng } c$ u vì có $\mbox{c } b$ $\mbox{ng } c$ ách chia c $\mbox{ch } t$ \mbox{G}_1

Hình 1.24: thi ng c u

1.3.2. Phép ng c u th

Hai th $G_1=(V_1,E_1)$ và $G_2=(V_2,E_2)$ c g i là ng c u n u t n t i m t song ánh: $f\colon V_1 {\longrightarrow} V_2 \text{ sao cho } (u,v) {\in} \, E_1 \Leftrightarrow (f(u),f(v)) {\in} \, E_2$

Ví d 1.27: Ki m tra hai th ng c u:

Hình 1.25: Hai th ng c u

Hai th trên ng c u vì t n t i m t song ánh f v i f(1)=C, f(2)=A, f(3)=B, f(4)=E, f(5)=D

1.3.3. Phép toán trên th

Cho hai th $G_1=(V_1,E_1)$, $G_2=(V_2,E_2)$, ta nh ngh a m t s phép toán sau:

1.3.3.1. Phép h i

Phép h i gi a hai th $G_1(V_1,E_1)$ và $G_2(V_2,E_2)$ có k t qu là th G=(V,E) v i $V=V_1\cup V_2$ và $E=E_1\cup E_2$, ký hi u là $G=G_1\cup G_2$

1.3.3.2. Phép giao

Phép giao gi a hai th $G_1(V_1,E_1)$ và $G_2(V_2,E_2)$ có k t qu là th G=(V,E) v i $V=V_1\cap V_2$ và $E=E_1\cap E_2$, ký hi u là $G=G_1\cap G_2$

Ví d 1.28:

Hình 1.26: Phép h i và giao gi a 2 th

1.4. S C S C A TH

nh ngh a: Tô màu m t th vô h ng là m t s gán màu cho các nh sao cho hai nh k nhau ph i có màu khác nhau. S c s c a m t th là s màu t i thi u c n thi t tô màu th này.

M t trong nh ng ng d ng d nh n th y nh t c a s c s th là tô màu cho các vùng trên b n .

Thu t toán tô màu Welch-Powell:

B c1: Spxpcác nh ca th theo th t b c gi m d n.

B c 2: Ch n nh v ch a tô trên danh sách nh \tilde{a} s p x p theo th t b c t l n n nh . Ch n m t màu tô cho nh v và các nh không k v i v (l u ý: khi tô màu cho các nh không k v i v c n ki m tra xem các nh trong t p này có k v i nhau hay không, n u xu t hi n hai nh k nhau thì ch n l nh tô màu).

B c 3: L p l i b c 2 cho n khi t t c các nh u c tô và d ng thu t toán.

Ví d 1.29: Tìm s c s c a th sau:

Hình 1.27: th vô h ng G

S p x p các nh theo th t b c gi m d n và tô màu

nh	c	d	e	a	b	f
Вс	4	3	3	2	2	2
Màu	1	2	3	1	2	2

1.5. K T CH NG

Ch ng này trình bày t ng quan v th, các khái ni m c b n, thu t ng liên quan n th nh: th vô h ng, có h ng, liên thông, chu trình, ng i, s c s và m t s d ng th c bi t. Hi u c các khái ni m này s làm n n t ng cho vi c tìm hi u, v n d ng các ki n th c, các thu t toán v lý thuy t th trong các ch ng ti p theo.

1.6. BÀIT P

1) thi t k m t h th ng các tuy n xe buýt l u thông gi a các thành ph A,B,C,D,E ng i ta mô t nh sau: Gi a hai thành ph A và B có 2 tuy n, A và D có m t tuy n, A và C có m t tuy n, C và D có m t tuy n, B và C có 2 tuy n, C và E có m t tuy n, B và E có m t tuy n, riêng thành ph E có m t tuy n n i b .

a/ Hãy mô hình hóa bài toán trên thành m t th vô h ng, m i tuy n xe gi a 2 thành ph c xem nh m t c nh vô h ng c a th.

- b/ Hãy cho bi t s nh, s c nh, t ng s b c c a th trên và cho bi t th trên là th n hay a th.
- 2) Hãy cho bi t các th sau thu c lo i th nào (n th, a th, th liên thông, song liên thông, liên thông m nh, liên thông y u)

3) Cho th nh sau:

- a/ C p c a th là bao nhiêu ?. Xác nh b c c a t ng nh trên th a/ Hãy tìm chu trình n i qua 4 nh, 5 nh, 6 nh, 7 nh
- b/ Hãy tìm chu trình s c p i qua 4 nh, 5 nh, 6 nh, 7 nh
- c/ Tìm các i chu trình xác nh b i $A=\{1,3\}$, $B=\{4,5\}$, $C=\{1,3,6\}$. Cho bi t i chu trình nào là s c p, không s c p, gi i thích.
- 4) Trong các th sau, th nào là 2 phía. N u là th hai phía thì v l i th d ng hai phía.

5) Ki m tra các c p $\,$ th sau có $\,$ ng c u không. N u có hãy ch $\,$ ra m $\,$ t song ánh f gi a $\,$ G $_1$ và $\,$ G $_2$.

7) Áp d ng nh lý Kuratowski ki m tra các

th sau có ph ng không?

CH NG 2

BI U DI N TH

M c tiêu:

- lacktriangle Bi u di n c th theo các c u trúc nh : ma tr n k , ma tr n tr ng s , ma tr n liên k t, danh sách c nh, danh sách k .
- ◆ Phân tích c u nh c i m c a t ng ph ng pháp bi u di n, th c hi n ch n l a c u trúc bi u di n thích h p cho m t th c th .

2.1. MA TR N K

2.1.1. nh ngh a

Cho thi G=(V,E), v i $V=\{1,2,3,...n\}$. Ma tr n k A c a G là ma tr n vuông c p n xác n h b i: A[i,j]=d. V i d là s c nh/cung i t n h i n nh j.

N u G là th vô h ng (hay có h ng i x ng) thì A là ma tr n i x ng qua ng chéo chính.

N u G là th n thì A[i,j]=1 n u có c nh/cung n i t i n j, ng c l i A[i,j]=0.

 $Vi \ d \ 2.1 \colon Bi \ u \ di \ n \ c\'{a}c \qquad th \ G_1 \ v\`{a} \ G_2 \ b \ ng \ ma \ tr \ n \ k \ .$

Hình 2.1: Bi u di n th b ng ma tr n k

2.1.2. B c và nh k d a trên ma tr n k

Xét thì vô h ng:

B c c a nh k trong th vô h ng c xác nh b i t ng các ph n t c a dòng k ho c c t k trong ma tr n k . S d ng ma tr n k giúp xác nh nhanh nh k c a m t nh k nào ó trong th G hay xác nh k là k c a nh ng nh nào. Trong máy tính ma tr n k c l u tr b ng c u trúc m ng hai chi u A[i,j] v i i và j là ch s dòng và c t t ng ng trong m ng. N u A[i,j]>=1 thì j là nh k c a nh i (i c ng là nh k c a j). Nh v y xác nh các nh k c a nh k ta duy t qua các nh trong dòng k nh sau:

```
for j=1 to n do begin  if(A[k,j] \ge 1) \ then \\  j \ la \ nh \ k \ c \ a \ nh \ k \\ end; \\ Ng \ c \ l \ i, \quad xác \quad nh \ k \ la \ k \ c \ a \ nh \ ng \quad nh \ nao \ ta \ duy \ t \ qua \ các \quad nh \ trong \ c \ t \ k : \\ for \ i=1 \ to \ n \ do \\ begin \\  if(A[i,k] \ge 1) \ then \\  k \ la \ nh \ k \ c \ a \ nh \ i \\ end;
```

Xét th có h ng:

Bán b c ra c a nh k là t ng các ph n t trên dòng k c a ma tr n k , bán b c vào c a k là t ng các ph n t trên c t k c a ma tr n k .

Vi c xác nh nh k c a nh k và k là k c a nh ng nh nào th c hi n t ng t nh th vô h ng.

Trong tr ng h p th s nh l n h n nhi u so v i s c nh thì vi c s d ng ma tr n k tr nên kém hi u qu v m t b nh l u tr trên máy tính.

Ví d 2.2: Bi u di n th sau b ng ma tr n k :

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	1	0	0
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	1	0	0
6	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0
8	0	1	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0
	1 2 3 4 5 6 7 8 9 10	1 1 0 2 1 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0	1 2 1 0 1 2 1 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 1 9 0 0 10 0 0	1 2 3 1 0 1 0 2 1 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 1 0 9 0 0 0 10 0 0 0	1 2 3 4 1 0 1 0 0 2 1 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 1 0 0 9 0 0 0 0 10 0 0 0 0	1 2 3 4 5 1 0 1 0 0 0 2 1 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0 5 0 0 0 0 0 6 0 0 0 0 0 7 0 0 0 0 0 8 0 1 0 0 1 9 0 0 0 0 0 10 0 0 0 0 0	1 2 3 4 5 6 1 0 1 0 0 0 0 2 1 0 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 5 0 0 0 0 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 8 0 1 0 0 1 0 9 0 0 0 0 0 0 10 0 0 0 0 0	1 2 3 4 5 6 7 1 0 1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 8 0 1 0 0 1 0 0 9 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0	1 2 3 4 5 6 7 8 1 0 1 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 6 0 <	1 2 3 4 5 6 7 8 9 1 0 1 0

Hình 2.2: Matr n k c a th v is nh l n h n nhi u so v is c nh

Khi xác nh nh k ta ch quan tâm n nh ng v trí có giá tr >=1 trong ma tr n k. Trong ví d trên, ma tr n có quá nhi u v trí có giá tr 0 nh ng máy tính v n ph i l u tr , i u này d n n lãng phí b nh . Do ó, v i th nh trên thì vi c bi u di n b ng ma tr n k là không phù h p.

2.2. MATR NTR NGS

2.2.1. nh ngh a

Cho n th G=(V,E) v i $V=\{1,2,3,...n\}$, m i c nh c a G c gán m t giá tr $c[i,j] \in Z$ g i là tr ng s c a c nh (i,j). Ma tr n tr ng s A c a G là ma tr n vuông c p n c xác nh b i:

$$A[i,j] = \begin{cases} c[i,j] & \text{n } u(i,j) \in E \\ \theta^{-2} & \text{n } u(i,j) \notin E \end{cases}$$

Trong ó θ gó th $\ \underset{-3}{\text{là}}\ m$ t trong các giá tr : 0, $\sim_{A=}$ °, - ∞

N u G là th vô h ng thì ma tr n tr ng s $\,$, $\,$, $\,$ G $\,$ i x ng qua $\,$ ng chéo chính. Ví d $\,$ 2.3: Bi u di n các $\,$ th $\,$ $\,$ G_1 và G_2 b ng ma tr n tr ng s :

	1	2		4	5
1	0	3	5	1	∞
2	3	0	-2	∞	∞
3	5	-2	0	-3	7
4	1	∞	-3	0	9
5	∞	∞	5 -2 0 -3 7	9	0

Hình 2.3: Ma tr n tr ng s c a th

2.2.2. B c và nh k d a trên ma tr n tr ng s

Xét th vô h ng:

B c c a nh k c xác nh b ng cách m các ph n t có giá tr khác $\{0,\infty\}$ trên c t k ho c dòng k c a ma tr n tr ng s . N u A[i,j] $\neq \{0,\infty\}$ thì j là nh k c a nh i (và i c ng k j).

Xét th có h ng:

Bán b c ra c a nh k c tính b ng cách m các ph n t có giá tr khác $\{0,\infty\}$ trên dòng k, bán b c vào tính b ng cách m các ph n t có giá tr khác $\{0,\infty\}$ trên c t k.

 $Vi\ c\ x\'{a}c\ nh\ nh\ k\ c\ a\ nh\ k\ c\ th\ c\ hi\ n\ t\ ng\ t\ nh\ ma\ tr\ n\ k\ .$

Ma tr n tr ng s th ng c dùng bi u di n th cho các bài toán v ng i ng n nh t, cây khung ng n nh t, do ó ma tr n tr ng s còn c g i là ma tr n kho ng cách. V n l u tr trên máy tính thì ma tr n tr ng s c ng không hi u qu n u nh th có s nh l n h n nhi u so v i s c nh.

2.3. MATR NLIÊNK T

2.3.1. nh ngh a

Cho n th G=(V,E) có n nh và m c nh. Ma tr n liên k t A c a G là ma tr n có n dòng, m c t c nh ngh a nh sau:

N u G vô h ng:

$$A[i,j] {=} \left\{ \begin{array}{lll} 1 & \text{n u } & \text{nh i k v i c nh } e_j \\ 0 & \text{n u ng } & \text{cl i} \end{array} \right.$$

N u G có h ng:

$$A[i,j] = \left\{ \begin{array}{ll} 1 & \text{n u c nh } e_j \, r \ i \ kh \ i & \text{nh i} \\ -1 & \text{n u c nh } e_j \ i & \text{n nh i} \\ 0 & \text{n u c nh } e_i \ kh \hat{\text{o}} \text{ng k v i} & \text{nh} \end{array} \right.$$

Ví d 2.4: Bi u di n th G_1 và G_2 b ng ma tr n liên k t.

Hình 2.4: Ma tr n liên k t c a th G_1 và G_2

2.3.2. B c và nh k d a trên ma tr n liên k t

Xét th vô h ng:

Ma tr n liên k t c bi u di n trên máy tính b i m ng 2 chi u A[i,j]. v i i i di n cho nh và j i di n cho c nh c a th . B c c a nh k c tính b ng t ng giá tr các ph n t trên dòng k. Vi c xác nh nh k c a m t nh ph c t p h n ma tr n k và c th c hi n b ng cách duy t qua các c t trên dòng k, n u c t nào có giá tr 1 thì l n l t duy t trên c t ó, n u t i v trí $i \neq k$ và A[i,j]=1 thì i là nh k c a nh k.

```
for j=1 to m do begin  \begin{array}{c} if(A[k,j]=1) \text{ then} \\ begin \\ \text{for i=1 to n do} \\ begin \\ IF(i!=k \ v\`{a} \ A[i,j]=1) \\ & \text{i l\`{a} \ nh k c a nh k} \\ end; \\ end; \\ end; \end{array}
```

Ví d 2.5: Xác nh nh k c a nh k=3 trong th vô h ng G_1 hình 2.4

Hình 2.5: Xác nh nh k c a nh 3

u tiên ta l n l t duy t qua h t các c t t i v trí dòng k=3, c t b, e, g có giá tr 1 nên duy t trên các c t này. Khi duy t trên c t b, t i v trí i=1 có giá tr 1 và i≠k nên 1 là nh k c a nh 3, th c hi n t ng t cho các c t e, g ta tìm c 4 và 5 c ng là nh k c a nh 3.

Xét th có h ng

Xét nh k b t k , bán b c ra c a k là s các ph n t có giá tr b ng 1 trên dòng k, bán b c vào là s các ph n t có giá tr b ng -1 trên dòng k.

Vi c xác nh nh k c ng t ng t nh th vô h ng nh ng c n phân bi t nh u và nh cu i c a cung (bài t p).

Ma tr n liên k t s d ng m ng 2 chi u có n dòng, m c t l u tr th nên s có n×m ph n t . Do ó, n u th có s c nh nhi u h n s nh thì ma tr n liên k t t ra kém hi u qu h n ma tr n k , ng c l i n u th có s c nh ít h n s nh thì s d ng ma tr n liên k t s ít t n b nh h n. Th t v y, chúng ta hãy bi u di n l i th trong ví d 2.2 b ng ma tr n liên k t nh sau:

Ví d 2.6

Hình 2.6: Ma tr n liên k t

2.4. DANH SÁCH C NH

2.4.1. nh ngh a

Cho th G=(V,E) có m c nh, m i c nh $e\in E$ c 1 u tr trong hai danh sách: m t danh sách 1 u tr nh u và danh sách còn 1 i 1 u tr nh cu i. Do ó bi u di n t t c các c nh trong G, ta dùng 2 m ng m t chi u có kích th c là m, m ng th nh t s 1 u danh sách các nh u và m ng còn 1 i 1 u danh sách các nh cu i.

Ví d 2.7: Bi u di n th G sau b ng danh sách c nh:

u	Cu i
1	2
1	4
2	3
2	4
2	5
2 2 2 3 3	4
	2 4 3 4 5 4 5 5
4	5

u	Cu i
1	3
1	4
3	2
3	5
4	5
5 5	1
5	2

Hình 2.7: Danh sách c nh c a th

2.4.2. B c và nh k d a trên danh sách c nh

xác nh b c và nh k c a nh k b t k c a G ta l n l t duy t qua hai danh sách u và Cu i.

i v i th vô h ng:

- ms l n xu t hi n c a nh k trong hai danh sách là t ng b c c a nh k.
- N u u[i]=k thì Cu i[i] là nh k c a k, ng c l i n u Cu i[i]=k thì u[i] là nh k c a k.

ivi th cóh ng:

• Bán b c ra c a k là t ng s l n k xu t hi n trong danh sách u, Bán b c vào c a k là t ng s l n k xu t hi n trong m ng Cu i.

• N u u[i]=k thì Cu i[i] là nh k c a k.

bi u di n th G có m c nh thì danh sách c nh s d ng 2 m ng m t chi u 1 u tr các nh u và cu i c a c nh/cung nên có t t c là 2*m ph n t cho c 2 m ng. H n n a, khi xác nh nh k hay t ng b c c a nh ta u ph i duy t qua h t t t c các ph n t c a c hai m ng nên ph ng pháp này ch thích h p cho các th có s c nh ít h n nhi u so v i nh.

2.5. DANH SÁCH K

2.5.1. nh ngh a

Cho th G=(V,E), lutr các nh k c a m t nh k \in V ta s d ng danh sách g i là danh sách k . N u G có n nh thì c n n danh sách k lutr t t c các nh k .

Ví d 2.8: Bi u di n các th sau b ng danh sách k.

Danh sách	nh k
1	2, 3, 4
2	1, 3, 4
3	1, 2, 4, 5
4	1, 2, 3, 5
5	3, 4

Danh sách	nh k
1	2, 4
2	4
3	2, 5
4	2, 3
5	Ø

Hình 2.8: Danh sách k c a th

Trong máy tính ta s $\,d\,$ ng danh sách liên $\,k\,$ t $\,$ bi $\,u\,$ di $\,n\,$ danh sách $\,k\,$, các $\,$ nh $\,k\,$ trong $\,m\,$ t danh sách liên $\,k\,$ t móc $\,n\,$ i $\,v\,$ i nhau $\,m\,$ t cách tu $\,n\,$ t $\,$. Các danh sách $\,k\,$ c $\,a\,$ th $\,G_2\,$ c th $\,$ hi $\,n\,$ b $\,$ ng danh sách liên $\,k\,$ t $\,$ nh $\,$ sau:

Danh sách(1): $2 \longrightarrow 4 \longrightarrow Null$

Danh sách(2): 4 → Null

Danh sách(3): $2 \rightarrow 5 \rightarrow Null$

Danh sách(4): $2 \rightarrow 3 \rightarrow Null$

Danh sách(5): Null

2.5.2. B c và nh k d a trên danh sách k

i v i th vô h ng: Duy t danh sách k c a nh k

- B c c a nh k chính là s ph n t c a danh sách k
- Các nh k c a k là các ph n t trong danh sách k

iv i th có h ng:

- Duy t danh sách k t i nh k, s ph n t trong danh sách là bán b c ra c a k. Tính bán b c vào b ng cách duy t qua h t t t c các danh sách, s danh sách k ch a k là bán b c vào c a k.
- Duy t danh sách k t i nh k, các ph n t trong danh sách chính là các nh k
 c a nh k.

Ví d 2.9: Xác nh b c và các nh k c a nh 4 trong th có h ng G_2 hình 2.8: Duy t danh sách k t i nh 4, danh sách này có 2 ph n t là 1 và 2 nên nh 4 có 2 nh k và bán b c ra b ng 2. Duy t qua h t t t c các danh sách tìm bán b c vào, ta th y r ng có 2 danh sách có ch a 4 là danh sách t i nh 2 và 3 nên bán b c vào là 2 (s danh sách ch a 4).

S d ng danh sách k bi u di n th giúp xác nh nhanh các nh k c a m t nh và bán b c ra. Nh ng xác nh bán b c vào hay xác nh m t nh v là k c a nh ng nh nào thì ta ph i duy t qua h t t t c các danh sách, i u này s d n n s phép toán th c hi n s t ng lên. H n n a vi c tìm ki m trên danh sách liên k t theo c ch tu n t có ngh a là trong m i danh sách ta ph i duy t tu n t t ph n t u tiên nên th i gian th c hi n s t ng lên áng k.

2.6. K T CH NG

Trong th c t nhi u bài toán c gi i quy t b ng cách mô hình hóa v th, v i nh ng th có s nh và c nh t ng i l n thì không th thi u s tr giúp c a máy tính. Do ó vi c ch n l a ph ng pháp và c u trúc d li u phù h p bi u di n th trên máy tính là i u r t quan tr ng. Trong ch ng này chúng ta ã tìm hi u 5 ph ng pháp bi u di n th là: Ma tr n k, ma tr n tr ng s, ma tr n liên k t, danh sách c nh, danh sách k. M i ph ng pháp u có nh ng u và nh c i m riêng. Do ó vi c ch n l a ph ng pháp nào cho phù h p còn tùy thu c vào nhi u y u t nh: tính ch t c a th, b nh máy tính, th i gian th c hi n...

2.7. BÀIT P

1) Bi u di n các $\,$ th sau b ng ma tr n k , ma tr n liên k t, danh sách c nh và danh sách k :

2) Hãy v các th c cho b i các ma tr n nh sau:

8	1 /					
	1	2	3	4	5	6
1	0	1	2	∞	∞	∞
2	1	0	6	1	2	3
3	2	6	0	-5	9	∞
4	∞	1	2 6 0 -5 9	0	4	∞
5	∞	2	9	4	0	7
6	∞	3	∞	∞	7	0

t	o /							
	a	b	С	d	e	g	h	i
1	1	1	0	0	0	0	0	0
2	-1	0	1	1	-1	1	0	0
3	0	-1	0	0	0	0	0	1
4	0	0	-1	-1	1	0	-1	0
5	0	0	0	0 1 0 -1 0	0	-1	0	-1
6	0	0	0	0	0	0	1	0

- 3) Dùng ngôn ng 1 p trình C ho c Pascal, vi t ch ng trình nh p và xu t t h d i d ng ma tr n k , ma tr n liên k t, danh sách c nh, danh sách k .
- 4) Dùng ngôn ng $\ l$ p trình $\ C$ ho $\ c$ Pascal, vi $\ t$ ch $\ ng$ trình $\ c$ vào $\ m$ $\ t$ th $\ t$ file $\ v$ n b n (.txt) và xu t $\ t$ h d $\ i$ d ng ma tr n k , ma tr n liên k t, danh sách c nh, danh sách k .
- 5) Vi t ch ng trình c vào m t th, sau ó nh p vào m t nh và xu t ra b c c a nh ó. N u là th có h ng thì xu t ra bán b c vào và bán b c ra c a nh ó.
- 6) Vi t ch ng trình c vào m t th d ng ma tr n liên k t, nh p vào m t nh và xu t ra các nh k c a nh ó.

- 7) Vi t ch ng trình c vào m t th và ki m tra th có 2 phía hay không. N u là th 2 phía thì xu t ra các nh trong t ng phía c a th .
- 8) Vi t ch ng trình c vào m t th và ki m tra th có i x ng không.
- 9) Vi t ch ng trình c vào m t th và cho bi t s c s c a th ó.
- 10) Vi t ch ng trình c vào m t th d ng ma tr n k sau ó chuy n sang d ng X và xu t ra màn hình. V i X là:
 - a/ Ma tr n liên k t
 - b/ Danh sách c nh
 - c/ Danh sách k

CH NG 3

CÁC THU T TOÁN TÌM KI M TRÊN TH

M c tiêu:

- ♦ Hi u c các thu t toán DFS và BFS
- ♦ The chi n duy t the beng thu t toán DFS và BFS
- ♦ V n d ng thu t toán DFS và BFS tìm ng i và ki m tra tính liên thông trên th.

3.1. TÌM KI M THEO CHI U SÂU

Thu t toán DFS (Depth First Search):

DFS là thu t toán cs d ng tìm ki m hay duy t qua (th m) t t c các thu c các thành ph n liên thông c a th m t cách có h th ng v i k thu t g i là u sâu. Thu t toán có nhi u ng d ng gi i các bài toán v liên thông, cây khung, c cài t b ng ph ng pháp qui hay ph ng pháp ng i...Thu t toán có th 1 ps d ng c u trúc stack kh ph c t p c a thu t toán là O(n+m) v i n qui. là s nh và m là s c nh c a th.

Ý t ng:

- Xu t phát t m t nh v cho tr c ch a th m
- Th m nh v và tìm nh u nào ó ch a th m k v i v, th m u và l p l i quá trình này cho n khi t t c các nh u c th m.
- Nu tim t nhu nào ó mà không còn nh k ch a th m thì quay tr li nh tr c c a u (có nh k là u trong ng i n u) và tìm các nh k ch a th m c a nh này.

Thu t toán quy:

```
procedure DFS(v)
begin
th m[v]=1;
for(u \in k (v)) do
begin
if(th m[u]=0) then
```

DFS(u); //G i quy

end;

end;

Thu t toán trên ch duy t qua m t thành ph n liên thông c a th. duy t t t c các ph n liên thông ta th c hi n nh sau:

for($v \in V$) do th m[v]=0;

for($v \in V$) do

if(th m[v]=0) then DFS(v);

Ví d 3.1: Xu t phát t nh 1, dùng thu t toán DFS duy t qua t t c các nh c a th c cho nh sau:

Hình 3.1: th vô h ng

Xu t phát t nh 1 ch a th m, th m nh 1, tìm các nh k nh 1 là 2,3,7

Ch n nh 2 ch a th m k v i 1, th m nh 2, tìm các nh k v i 2 là 1,4,5,6

Ch n nh 4 ch a th m k v i 2, th m nh 4, tìm các nh k v i 4 là 2

Không có nh k nào c a 4 mà ch a th m nên quay tr 1 i nh tr c c a nh 4 là 2 và ch n nh k ch a th m khác c a nh 2.

Ch n nh 5 ch a th m k v i 2, th m nh 5, tìm các nh k v i 5 là 2,6

Ch n nh 6 ch a th m k v i 5, th m nh 6, các nh k v i 6 là 2,5

Không có nh k nào c a 6 mà ch a th m nên quay tr 1 i nh tr c c a nh 6 là 5 và ch n nh k ch a th m khác c a nh 5.

Không có nh k nào c a 5 mà ch a th m nên quay tr 1 i nh tr c c a nh 5 là 2 và ch n nh k ch a th m khác c a nh 2.

Không có nh k nào c a 2 mà ch a th m nên quay tr 1 i nh tr c c a nh 2 là 1 và ch n nh k ch a th m khác c a nh 1.

Ch n nh 3 ch a th m k v i 1, th m nh 3, tìm các nh k c a 3 là 1,7

Ch n nh 7 ch a th m k v i 3, th m nh 7, tìm các nh k c a 7 là 1,3

Không có nh k nào c a 7 mà ch a th m nên quay tr 1 i nh tr c c a nh 7 là 3 và ch n nh k ch a th m khác c a nh 3.

Không có nh k nào c a 3 mà ch a th m nên quay tr 1 i nh tr c c a nh 3 là 1 và ch n nh k ch a th m khác c a nh 1.

Không có nh k nào c a 1 mà ch a th m nên thu t toán d ng.

Theo that the m c a các nh, k t quad duy t b ng thu t toán DFS là: 1, 2, 4, 5, 6, 3, 7

L u ý: Trong quá trình th c hi n thu t toán, n u m t nh có nhi u nh k ch a th m thì u tiên ch n nh k c ánh s nh h n.

Ngoài ra DFS còn có th bi u di n d i d ng thu t toán lp, dùng c u trúc stack kh quy nh sau:

```
procedure DFS (v)
begin

stack=\emptyset; //Kh \ it \ o \ stack

push(stack,v) //B \ v \ vao \ stack

while(stack != \emptyset)

begin

u=pop(stack); //L \ y \ m \ t \ nh \ ra \ kh \ i \ stack

begin

th \ m[u]=1; // \ anh \ d \ u \ u \ \tilde{a} \ th \ m \ r \ i

for (k \in k \ (u)) do

if(k \notin stack \&\& th \ m[k]=0) then push(stack, k)

end;
end;
end;
```

Ví d 3.2: Dùng thu t toán DFS không quy duy t qua t t c các nh c a th hình 3.1 nh sau:

Hình 3.2: Duy t th b ng thu t toán DFS không quy

Kh i t o: stack=Ø, nh xu t phát là 1, b nh 1 vào stack

- B clp: i u ki nlp stack!= \emptyset
- L y nh 1 ra kh i stack: pop(stack), ánh d u nh 1 ã th m: th m[1]=1, tìm nh k ch a th m c a nh 1 mà không có trong stack: 2, 3, 7 và b t t c các nh k này vào stack theo th t t 1 n n nh .
- L y nh 2 ra kh i stack, ánh d u nh 2 \tilde{a} th m: th m[2]=1, tìm các nh k ch a th m c a 2 mà không ch a trong stack: 4,5,6 và b t t c các nh k này vào stack theo th t t 1 n n nh .
- L y nh 4 ra kh i stack, ánh d u nh 4 ã th m: th m[4]=1, nh 4 không còn nh k nào ch a th m nên không có nh nào b vào stack.
- L y nh 5 ra kh i stack, ánh d u nh 5 ã th m: th m[5]=1, nh 5 có nh k 6 ch a th m nh ng 6 ã có trong stack nên c ng không có nh nào b vào stack.
- L y nh 6 ra kh i stack, ánh d u nh 6 ã th m: th m[6]=1, nh này c ng không có nh k nào ch a th m.
- L y nh 3 ra kh i stack, ánh d u nh 3 ã th m: th m[3]=1, nh 3 có nh k 7 ch a th m nh ng ã có trong stack nên không có nh nào thêm vào stack.
- L y nh 7 ra kh i stack, ánh d u nh 7 ã th m: th m[7]=1, nh này không có nh k nào ch a th m.
- stack=Ø, thoát kh i vòng l p và k t thúc thu t toán. khi ó ta thu c dãy các nh ã th m qua nh sau: 1, 2, 4, 5, 6, 3, 7

3.2. TÌM KI M THEO CHI UR NG

Thu t toán BFS (Breadth First Search):

Thu t toán BFS dùng duy t và tìm ki m trên th c ng t nh thu t toán DFS nh ng thay vì dùng c u trúc stack thì BFS dùng c u trúc hàng i th c hi n, k thu t này g i là tìm ki m u tiên chi u r ng. Thu t toán có ph c t p là O(m+n).

Ý t ng:

- Xu t phát t nh v cho tr c ch a th m, b v vào hàng i.
- Lyt hàng i nhu, th mu và b các nh k ch a th m c a u vào hàng i.
- L p l i cho n khi hàng i r ng.

Thu t toán:

procedure BFS (v)

Ví d: 3.3: Xét th nh trong hình 3.1, dùng thu t toán BFS duy t th:

Hình 3.3: Duy t th b ng thu t toán BFS

4 | 5

5

4 | 5

5

6

6

6

6 6

Kh i t o: queue=Ø, nh xu t phát là 1, b nh 1 vào queue

B clp: iukinlp queue!=∅

- L y nh 1 ra kh i queue: pop(queue), ánh d u nh 1 \tilde{a} th m: th m[1]=1, tìm nh k ch a th m c a nh 1 mà không có trong queue: 2, 3, 7 và b t t c các nh k này vào queue theo th t t nh n 1 n.
- L y nh 2 ra kh i queue, ánh d u nh 2 ã th m: th m[2]=1, tìm các nh k ch a th m c a 2 mà không ch a trong queue: 4,5,6 và b t t c các nh k này vào queue theo th t t nh n l n.
- L y nh 3 ra kh i queue, ánh d u nh 3 ã th m: th m[3]=1, nh 3 không còn nh k nào ch a th m mà không có trong queue nên không có nh nào b vào queue.
- L y nh 7 ra kh i queue, ánh d u nh 7 ã th m: th m[7]=1, nh 7 không còn nh k nào ch a th m.

- L y nh 4 ra kh i queue, ánh d u nh 4 ã th m: th m[4]=1, nh này c ng không có nh k nào ch a th m.
- L y nh 5 ra kh i queue, ánh d u nh 5 ã th m: th m[5]=1, nh 5 có nh k 6 ch a th m nh ng ã có trong queue nên không có nh nào thêm vào queue.
- L y nh 6 ra kh i queue, ánh d u nh 6 ã th m: th m[6]=1, nh này không có nh k nào ch a th m.
- queue= \emptyset , thoát kh i vòng l p và k t thúc thu t toán. khi ó ta thu c dãy các nh \tilde{a} th m qua nh sau: 1, 2, 3, 7, 4, 5, 6

3.3. M TS NG D NG

3.3.1. Tìm ng i gi a hai nh

Cho G là m t th v i s và t là hai nh b t k c a G. Hãy tìm ng i t s n t.

gi i quy t bài toán này ta áp d ng thu t toán DFS ho c BFS duy t qua h t các nh thu c cùng m t thành ph n liên thông v i nh s. Sau khi k t thúc thu t toán, n u th m[t]=0 thì không t n t i ng i t s n t, ng c l i là có ng i. ghi nh ng i t s n t ta s d ng thêm m ng tr c[v] l u l i nh tr c c a nh v trong ng i t s n t.

Dùng thu t toán DFS quy:

```
procedure DFS(v)
begin

th m[v]=1;
for(u \in k (v)) do

if(th m[u]=0) then
begin

tr c[u]=v; //L u l i nh tr c c a u l a v

DFS(u); //Goi de quy
end;
```

Dùng thu t toán BFS:

```
procedure BFS (v)
begin
queue=Ø; // Kh i t o hàng i
push(queue,v) //B v vào stack
while(queue != Ø)
```

Ví d 3.4: Xét th G nh trong hình 3.1, dùng thu t toán DFS duy t qua th có l u l i ng i v i nh xu t phát là s=1. T ng b c c a thu t toán c mô t trong s sau:

Hình 3.4: Xác nh ng i t nh xu t phát n nh khác

Khi k t thúc thu t toán, t t c các nh u c th m (th m[v]=1, $\forall v \in V$) nên t nh xu t phát s=1 có ng i n t t c các nh còn l i.

ng i t nh xu t phát s=1 n các nh khác c xác nh d a vào giá tr c a m ng tr c[v]: tr c[2]=1, tr c[3]=1, tr c[4]=4, tr c[5]=2, tr c[6]=5, tr c[7]=3. ng i c th hi n nh sau:

Hình 3.5: ng i t nh 1 n các nh khác

3.3.2. Tìm các thành ph n liên thông c a th

Cho th G vô h ng, ki m tra G có liên thông hay không. N u G không liên thông thì cho bi t th có bao nhiều thành ph n liên thông, m i thành ph n liên thông g m nh ng nh nào?

gi i bài toán trên ta có the dùng thu t toán DFS hay BFS, trong ó có dùng bi n k m s thành ph n liên thông c a th, m i l n ch ng trình g i thu t toán DFS hay BFS thì giá tr c a k c t ng thêm 1 nv: for($v \in V$) do th m[v]=0; k=0; for($v \in V$) do if(tham[v]=0) do begin k=k+1;DFS(v) end; //Thu t toán DFS procedure DFS(v) begin th m[v]=k; for($u \in k(v)$) do if(th m[u]=0) then

DFS(u); //Goi de quy

end;

Ví d : 3.5: Hãy ki m tra th sau có liên thông hay không, n u không liên thông thì tìm các thành ph n liên thông t ng ng:

Hình 3.6: Ki m tra th liên thông

Theo thu t toán trên, ban u t t c các nh u ch a th m: th $m[v]=0 \forall v \in V$ L n th nh t ch ng trình g i DFS s duy t qua h t các nh trong thành ph n liên thông th nh t: 1,2,5

L n th hai ch ng trình g i DFS s duy t qua h t các nh trong thành ph n liên thông th hai: 3,4,6

L n th ba ch ng trình g i DFS s duy t qua h t các nh trong thành ph n liên thông th ba: 7,8

3.4. K T CH NG

DFS và BFS là hai thu t toán c bi t n r ng rãi khi th c hi n tìm ki m trên th, m i thu t toán có m t th t duy t khác nhau. Ngoài ra, các thu t toán này còn có nhi u ng d ng trong vi c gi i quy t các bài toán v liên thông, tìm ng i, tìm cây khung.

3.5. BÀIT P

1) Cho th vô h ng nh sau:

Xu t phát t nh 1, hãy duy t th trên b ng thu t toán:

- a/ DFS quy
- b/ DFS không quy
- c/BFS
- d/Th c hi n câu a,b,c xu t phát t nh 5.
- 2) Cài t thu t toán DFS và BFS duy t th b ng ngôn ng C ho c Pascal.

- 3) Cài t thu t toán ki m tra có ng i t nh s n nh t trên th hay không. N u có, xu t ra ng i t nh s n nh t.
- 4) Cài t thu t toán ki m tra th có liên thông hay không. N u không liên thông thì xu t ra s thành ph n liên thông và danh sách các nh trong m i thành ph n liên thông.

CH NG 4

CÂY

M c tiêu:

- ♦ Hi u c cây là m t khái ni m quan tr ng trong lý thuy t th, c u trúc d li u và gi i thu t.
- ♦ ng d ng c u trúc cây trong các gi i thu t tìm ki m, gi i thu t s p x p, bi u di n bài toán quy t nh (cây quy t nh), bi u di n quá trình tính toán các bi u th c i s và nhi u bài toán khác.

4.1. NH NGH A

4.1.1. Cây

- a) Cho G là th vô h ng. G c g i là *m t cây* n u G liên thông và không có chu trình n.
- b) R ng là th mà m i thành ph n liên thông c a nó là m t cây.

Ví d 4.1:

Hình 4.1: R ng g m có 3 cây T_1 , T_2 , T_3

Ví d 4.2:

Hình 4.2: th G_1, G_2, G_3

G₁ là cây

G₂ không là cây (do ch a chu trình)

G₃ không là cây (do không liên thông)

Chú ý:

nh ngh a cây hàm ý nói r ng m i cây u không ch a khuyên, c ng không ch a c nh song song.

nh lý 1: (i u ki n c n và (cây))

Cho T là th vô h ng có n nh. Các phát bi u sau ây là t ng ng:

- (1) T là cây
- (2) T không ch a chu trình và có n-1 c nh
- (3) T liên thông và có n-1 c nh
- (4) T liên thông và m i c nh c a nó u là c u
- (5) Hai nh b t k c a T c n i v i nhau b i úng m t ng i n
- (6) T không có chu trình n và n u thêm vào m t c nh gi a hai nh không k nhau thì có m t chu trình n duy nh t.

Ch ng minh

- $(1) \Rightarrow (2)$: T là cây \Rightarrow T không cha chu trình và có n-1 c nh
 - Hi n nhiên T không ch a chu trình (vì T là cây)
 - Ta c n ch ng minh T có n 1 c nh. Xét T_n là cây có n nh. Ta s ch ng minh quy n p theo n
 - V i n = 2, cây có 2 nh thì có 1 c nh. úng
 - Gi s m i cây có k nh thì s có k-1 nh
 - Xét T_{k+1} là cây có k+1 nh. D th y r ng trong cây T_{k+1} luôn t n t i ít nh t 1 nh treo

Lo i nh treo này (cùng v i c nh n i) ra kh i T_{k+1} ta c th T có k nh. D th y T v n liên thông và không có chu trình (do T_{k+1} không có chu trình)

Suy ra $T^{'}$ là cây. Theo gi $\,$ thi $\,t$ quy n $\,p,\,T^{'}$ có $\,k\,$ nh thì s $\,$ có $\,k-1$ c nh. V y cây T_{k+1} có $\,k$ c nh. ($\,$ pcm)

- $(2) \Rightarrow (3)$: T không ch a chu trình và có n-1 c nh \Rightarrow T liên thông và có n-1 c nh
 - Theo gi thi t T có n 1 c nh

- Ta ch c n ch ng minh T liên thông
- Gi s T có k thành ph n liên thông v i s nh l n l t là $n_1, ..., n_k$
- Khi ó m i thành ph n liên thông c a T s là m t cây và s có s c nh l n l t là $n_1-1,\,n_2-2,\,...,\,n_k-1$
- Suy ra, s c nh c a T s là $n_1 1 + n_2 2 + ... + n_k 1 = n k$
- Theo gi thi t, s c nh c a cây là n-1. T ó, suy ra k=1 hay T ch có m t thành ph n liên thông. Suy ra T liên thông (pcm)
- $(3) \Rightarrow (4)$: T liên thông và có n-1 c nh \Rightarrow T liên thông và m i c nh c a nó u là c u
 - Theo gi thi t T liên thông
 - Ta ch c n ch ng minh m i c nh c a T u là c u

Xét (u, v) là c nh b t k c a T. N u b (u, v) ra kh i T, ta s c th T có n nh và n-2 c nh

Ta \tilde{a} ch ng minh c th có n nh và n -2 c nh thì không th liên thông V y n u b c nh (u, v) ra thì s làm m t tính liên thông c a th . Suy ra (u, v) là c u. (pcm)

- $(4)\Rightarrow (5)$: T liên thông và m i c nh c a nó u là c u \Rightarrow Hai nh b t k c a T c n i v i nhau b i úng m t ng i n
 - Xét u, v là hai nh b t k trong T.
 - Do T liên thông nên luôn t n t i ng i gi a u và v. Ta s ch ng minh ng i này là duy nh t.

Gi s có hai ng i n khác nhau gi a u và v. Khi ó hai ng i này s t o thành m t chu trình.

Suy ra, các c nh trên chu trình này s không th là c u c – Mâu thu n.

V y gi a u và v ch có th t n t i úng 1 ng i n. (pcm)

- $(5) \Rightarrow (6)$: Hai nh b t k c a T c n i v i nhau b i úng m t ng i n \Rightarrow T không có chu trình n và n u thêm vào m t c nh gi a hai nh không k nhau thì có m t chu trình n duy nh t.
 - T không th có chu trình, vì n u có chu trình thì gi a hai nh trên chu trình này s có 2 ng i n khác nhau mâu thu n v i GT.
 - Gi s ta thêm vào T c nh (u,v) b t k (tr c ó không có c nh này trong T).

Khi ó c nh này s t o v i ng i duy nh t gi a u và v trong T t o thành 1 chu trình duy nh t. (Vì n u t o thành 2 chu trình thì ch ng t tr c ó có 2 ng i khác nhau gi a u và v – mâu thu n v i gi thi t)

(6) \Rightarrow (1): T không có chu trình n và n u thêm vào m t c nh gi a hai nh không k nhau thì có m t chu trình n duy nh t \Rightarrow T là cây

- Hi n nhiên T không ch a chu trình (theo gi thi t).
- Gi s T không liên thông. Khi ó T s có nhi u h n 1 thành ph n liên thông
- Suy ra, n u thêm vào m t c nh b t k gi a hai nh thu c 2 thành ph n liên thông khác nhau s không t o thêm chu trình nào mâu thu n v i gi thi t.
- V y, T ph i liên thông. Suy ra T là cây. (pcm)

4.1.2. nh ngh a cây t i

nh ngh a: Gi s G = (V, E) là th vô h ng liên thông. Cây T=(V, F) v i $F \subseteq E$ c g i là cây t i i (cây ph , cây bao trùm hay cây khung) c a th G. Ví d 4.3:

Hình 4.3: th và các cây khung c a nó

 $nh \, l \acute{y} \, (s \, t \, n \, t \, i \, c \, a \, c \hat{a} y \, t \, i \, i)$:

M i th liên thông u ch a ít nh t m t cây t i i.

Thu t toán tìm cây t i i c a th G:

B c 1: Ch n tùy ý $v \in V$ và kh i t o $X:=\{v\}$; $T:=\emptyset$

B c 2: Ch n $w \in V \setminus X$ sao cho có m t c nh e nào ó c a G n i w v i m t nh trong X

B c 3: Gán $X:=X \cup \{w\}$ và $T:=T \cup \{e\}$

B c 4: N u T n-1 ph n t thì d ng, ng c l i ti p t c b c 2.

Ví d 4.4: Minh h a thu t toán tìm cây t i i

Cho th sau:

Hình 4.4: th vô h ng G

T p V = $\{a, b, c, d, e\}, n=5, X:=\emptyset; T:=\emptyset;$

B1: Ch $n \in V$, kh it $o X:=\{a\}$; $T:=\emptyset$;

B2: Ch $n \in V \setminus X = \{b, c, d, e\} (vi (a, b) \in G);$

B3: $X := \{a, b\}; T := \{(a,b)\}$

B2: Ch $n \in V \setminus X = \{c, d, e\} (vi(b, e) \in G);$

B3: $X := \{a, b, e\}; T := \{(a,b), (b, e)\}$

B2: Ch $n \in V \setminus X = \{c, d\} (vi(e, d) \in G);$

B3: $X := \{a, b, e, d\}; T := \{(a,b), (b, e), (e, d)\}$

B2: Ch $n \in V \setminus X = \{c\} (vi (d, c) \in G);$

B3: $X := \{a, b, e, d, c\}; T := \{(a,b), (b, e), (e, d), (d, c)\}$

T có 4 ph n t $(n-1=4) \rightarrow$ thu t toán d ng.

Hình 4.5: Cây khung c a G

4.2. CÂY KHUNG NG N NH T

M t s bài toán ng d ng cây khung ng n nh t:

• Bài toán 1: Bài toán xây d ng h th ng ng s t

ta mu n xây d ng m t h th ng ng s t n i n thành ph sao cho hành khách có th i t b t k m t thành ph nào n b t k m t trong các thành ph còn l i. M t khác trên quan i m kinh t òi h i là chi phí xây ng ph i nh nh t. Rõ ràng th mà nh là các thành ph còn các d ng h th ng c nh là các tuy n ng s t n i các thành ph t ng ng v i ph ng án xây d ng t i u ph i là cây. Vì vây, bài toán t ra d n v bài toán tìm cây khung nh nh t trên n nh, m i nh t ng ng v i m t thành ph , v i dài trên các các c nh th chính là chi phí xây d ng ng ray n i hai thành ph t ng ng.

• Bài toán 2: Bài toán n i m ng máy tính:

C n n i m ng m t h th ng g m n máy tính ánh s t 1 n n. Bi t chi phí n i máy i v i máy j là c[i,j], i,j = 1, 2, . . . , n (thông th ng chi phí này ph thu c vào dài cáp n i c n s d ng). Hãy tìm cách n i m ng sao cho t ng chi phí n i m ng là nh nh t.

4.2.1. nh ngh a

Cho G = (V, E) là th vô h ng liên thông. M i c nh e c a th G c gán v i m t s th c c(e), g i là dài c a nó. Gi s , H = (V, T) là cây khung c a th G. Ta g i dài c(H) c a cây khung H là t ng dài t t c các c nh c a nó

$$c(H) = \sum_{e \in T} c(e)$$

Bài toán tìm cây khung ng n nh t:

Trong s t t c các cây khung c a th G hãy tìm m t cây khung có dài nh nh t, và cây khung ó c g i là cây khung ng n nh t c a th.

Ví d 4.5: Cây khung ng n nh t c a th G c v b ng các c nh tô m nh hình d i ây:

Hình 4.6: Cây khung ng n nh t c a th G

4.2.2. Thu t toán Kruskal

Gi i thi u thu t toán Kruskal:

Cho G là th liên thông, có tr $ng\,s$, n $\,$ nh. Thu t toán s $\,$ xây d $\,ng\,t$ p c $\,nh\,T$ c $\,$ a cây khung ng $\,$ n nh t $\,H=(V,\,T).$

Ý t ng:

Thu t toán xu t k t n p l n l t các c nh vào t p c nh T theo nguyên t c nh sau: u tiên k t n p các c nh có tr ng s nh h n, và khi nó không t o chu trình v i t p c nh a k t n p t r o ó.

Thu t toán:

B c 1: Ch n c nh ng n nh t e₁ trong các c nh c a G.

B c 2: Khi \tilde{a} ch n c k c nh e_1 , e_2 , e_3 , ..., e_k thì ch n ti p c nh e_{k+1} ng n nh t trong các c nh còn l i c a G sao cho không t o thành chu trình v i các c nh \tilde{a} ch n tr c.

B c 3: Ch n n-1 c nh thì d ng.

Ví d 4.6: Dùng thu t toán Kruskal tìm cây khung ng n nh t c a th sau:

Hình 4.7: th vô h ng G

Minh h a thu t toán Kruskal:

Di n gi i:

Tr ng s	C nh	
1	(a, b)	Ch n
3	(u, d)	Ch n
4	(b, u)	Ch n
4	(b, d)	Không ch n vì t o thành chu trình: b u d b
6	(a, u)	Không ch n vì t o thành chu trình: a b u a
6	(c, d)	Ch n. D ng vì ã c nh
8	(b, c)	

Cài t thu t toán:

Example Luý: Khi cài t thu t toán Kruskal phi dùng thu t toán s p x p nào ó s p x p các c nh theo th t t ng d n. ây c ng là m t h n ch c a thu t toán.

4.2.3. Thu t toán Prim

Gi i thi u thu t toán Prim:

Thu t toán Krusal làm vi c trên các c nh nên s kém hi u qu n u th có quá nhi u c nh nh các th dày (th v i s c nh $m \approx n(n-1)/2$). i ngh ch v i Kruskal, thu t toán Prim làm vi c trên các nh, nên s hi u qu h n v i các th dày. Và có th th y a s các th trong the c t có s nh không l n còn s c nh r t l n nên Prim t ra hi u qu h n Kruskal, m c dù cài t có phec t phen. Thu t toán Prim còn c g i là pheng pháp lân c n g n nh t.

Ý t ng:

Prim xu t cách xây d ng ng th i t p nh \tilde{a} k t n p V và t p c nh \tilde{a} k t n p T cho cây khung ng n nh t theo nguyên t c nh sau:

• B t u t m t nh u b t k c a th, u tiên ta n i u v i nh lân c n g n nó nh t, ch ng h n là nh v. Ngh a là trong s các c nh k v i nh u, c nh (u, v) có dài nh nh t.

- Trong s các c nh k v i hai nh u và v ta tìm c nh có dài nh nh t, c nh này d n n nh th ba w, và ta thu c cây b ph n g m ba nh và hai c nh.
- Quá trình này s c ti p t c cho n khi ta thu c cây g m n nh và n-I c nh, ây s là cây khung ng n nh t c n tìm.

Thu t toán Prim:

B c 1: Ch n m t nh b t k v_1 có cây T_1 ch g m m t nh

B c 2: Khi ã ch n cây T_k thì ch n ti p cây $T_{k+1} = T_k \cup e_{k+1}$. Trong ó e_{k+1} là c nh có dài nh nh t trong các c nh có m t u mút thu c T_k và u mút kia không thu c T_k

B c 3: Ch n c cây T_n thì d ng.

Ví d 4.7: Tìm cây khung ng n nh t c a th sau:

Hình 4.8: th tìm cây khung ng n nh t

Minh h a thu t toán Prim:

Cài t thu t toán:

Procedure Prim;

Begin

VH:= $\{\text{rootPrim}\}$; //B t k!

 $T:=\emptyset$;

While |VH| < n do

Begin

FindMinEdge(u,v); //Tìm c nh (u, v) có dài nh nh t

 $v \rightarrow VH; //K t n p nh v vào VH$

 $(u,v) \rightarrow T$; //K t n p c nh (u,v) vào T

End;

End;

4.3. CÂY CÓ H NG

4.3.1. nh ngh a cây có h ng

Cho G = (V, E) là m t th có h ng. G c g i là cây có h ng n u:

- (1) G không có chu trình,
- (2) G có g c

Hay:

Cây có h ng là th có h ng mà $th \ v\hat{o} \ h$ $ng \ n^I$ c a nó là m t cây.

Cây có g c là m t cây có h ng, trong ó có m t nh (nút) c bi t, g i là g c, t g c có ng i n m i nh khác c a cây.

M ts khái ni m c b n:

 $^{^1}$ th vô h $\,$ ng n n là $\,$ th thu $\,$ c t $\,$ th có h $\,$ ng G b ng cách xóa b $\,$ các chi u m i tên trên các cung

• Hai nh (nút) c n i v i nhau b ng m t nhánh tr c ti p thì nút trên g i là *nút* cha, nút còn l i g i là nút con.

- Nút g c là nút không có nút cha.
- Nút lá (nh treo) là nút có b c b ng 0.
- Nút nhánh (nh trong) là nút có b c khác 0 và không ph i là g c.
- Các nút có cùng m t nút cha g i là nút anh em (nút ng c p).
- M cc am t nút là dài ng it g c n nút ó.

Hình 4.9: Các m c c a cây

Ví d 4.8:

Hình 4.10: th G

Hình 4.11: Cây có g c c a th G

Ví d 4.9: Cho cây có g c T trong hình 4.10 trên

- Cây có g c r
- -d là con c a r, j là con c a d, \ldots
- -r là cha c a d, d là cha c a j, ...
- nh treo (hay lá): e, b, c,... nh trong (nút nhánh): r, d, j, n

4.3.2. nh ngh a:

M t cây có g c T c g i là cây m-phân n u m i nh c a T có nhi u nh t là m con.

Cây 2-phân c g i là cây nh phân.

Trong m t cây nh phân, m i con c ch rõ là con bên trái hay con bên ph i; con bên trái (t. . ph i) c v phía d i và bên trái (t. . ph i) c a cha.

Cây có g c T c g i là m t *cây m-phân* n u m i nh trong c a T u có úng m con.

a) Cây 4 phân

b) Cây nh phân

Hình 4.12: Cây 4 phân và cây nh phân

4.3.3. Phép duy t cây (Cây nh phân)

Có nhi u thu t toán duy t cây nh phân, các thu t toán ó khác nhau ch y u th t th m các nh.

Ví d 4.10: Gi s ta có cây nh phân sau:

Hình 4.13: Cây có h ng T

• Phép duy t ti n th t (NLR)

- 1. Th mg cr.
- 2. Duy t cây con bên trái c a T(r) theo ti n th t.
- 3. Duy t cây con bên ph i c a T(r) theo ti n th t.

Duy t cây nh phân T trong hình 4.13 theo phép duy t NLR:

V y th t các nh c in theo th t là: 2, 7, 5, 8, 1, 2, 4

• Phép duy t trung th t (LNR)

1. Duy t cây con bên trái c a T(r) theo trung th t.

- 2. Th mg cr.
- 3. Duy t cây con bên ph i c a T(r) theo trung th t.

Duy t cây nh phân T trong hình 4.12 theo phép duy t LNR:

V y th t các nh c in theo th t: 5, 7, 8, 2, 2, 1, 4

- Phép duy thu th t (LRN)
 - 1. Duy t cây con bên trái c a T(r) theo h u th t.
 - 2. Duy t cây con bên ph i c a T(r) theo h u th t.
 - 3. Th mg cr.

Duy t cây nh phân T trong hình 4.12 theo phép duy t **LRN**:

V y th t các nh c in theo th t là: 5, 8, 7, 2, 4, 1, 2

4.3.4. Ký pháp Balan

Thông th ng, m t bi u th c s h c c bi u di n theo ký pháp trung t

- D u phép toán (toán t) n m gi a hai toán h ng
- Th t th c hi n các phép toán c xác nh trong vi c s d ng các c p d u ngo c ho c quy nh m t th t u tiên gi a các phép toán
- Tính toán giá tr bi u th c s khá ph c t p (trên máy tính)

Ví d 4.11: Bi u th c d ng trung t:

$$4 + 5$$
; $A + B * C$

Có th bi u di n các bi u th c s h c mà không dùng n d u ngo c b ng cách s d ng: ký pháp ti n t ho c ký pháp h u t

Trong ký pháp ti n t: Toán t luôn c t tr c 2 toán h ng

Víd 4.12: Bi uth cd ng ti n t

$$+45$$
; $+A*BC$

Trong ký pháp h u t: Toán t luôn c t sau 2 toán h ng

Víd 4.13: Bi uth cd ngh ut

Ng i ta g i cách bi u di n bi u th c theo d ng ti n t là ký pháp Ba Lan, còn cách bi u di n theo d ng h u t là ký pháp Ba Lan ng c, ghi nh óng góp c a nhà toán h c và lôgic h c Ba Lan Lukasiewicz (1878-1956) trong v n này.

Trong ph n ti p theo, chúng ta s ch tìm hi u cách chuy n t bi u th c d ng trung t sang bi u th c d ng h u t vì quá trình tính toán giá tr c a bi u th c h u t khá t nhiên i v i máy tính.

Ý t ng là c bi u th c t trái sang ph i, n u g p m t toán h ng (con s ho c bi n) thì push toán h ng này vào ng n x p; n u g p toán t , l y hai toán h ng ra kh i ng n x p (stack), tính k t qu , y k t qu tr l i ng n x p. Khi quá trình k t thúc thì con s cu i cùng còn l i trong ng n x p chính là giá tr c a bi u th c ó.

Ví d 4.14: Bi u th c trung t:

$$5 + ((1+2)*4) + 3$$

Bi uth cnày cbi udi nlid id ngh ut:

Quá trình tính toán s di n ra theo nh b ng d i ây:

Ký t	Thao tác	Tr ng thái Stack
5	Push 5	5
1	Push 1	5, 1
2	Push 2	5, 1, 2
+	Tính 1 + 2	5, 3
	Push 3	
4	Push 4	5, 3, 4

*	Tính 4*3	5, 12
	Push 12	
+	Tính 12 + 5	17
	Push 17	
3	Push 3	17, 3
+	Tính 17 + 3	20
	Push 20	

Thu t toán:

(Thu t toán này d a theo c ch ng n x p và ý t ng chung c a thu t toán là duy t bi u th c t trái sang ph i)

- N u g p m t toán h ng (con s ho c bi n) thì ghi nó vào chu i k t qu (chu i k t qu là bi u th c trung t).
- N u g p d u m ngo c, a nó vào stack.
- N u g p m t toán t (g i là o₁), th c hi n hai b c sau:
 - N u còn có m t toán t o_2 nh stack và u tiên c a o_1 nh h n hay b ng u tiên c a o_2 thì l y o_2 ra kh i stack và ghi vào k t qu .
 - Push o₁ vào stack.
- N u g p d u ngo c óng thì l y các toán t trong stack ra và ghi vào k t qu cho n khi l y c d u ngo c m ra kh i stack.
- Khi ã duy th t bi u th c trung t , l n l t l y t t c toán h ng (n u có) t ng n x p ra và ghi vào chu i k t qu .

d hi u, b n hãy quan sát quá trình th c thi c a thu t toán qua m t ví d c th sau: Ví d 4.15: Bi u th c c n chuy n i: 3+4*2/(1-5)

Ký t	Thao tác	Stack	Chu ih ut
3	Ghi 3 vào K.qua		3
+	Push +	+	
4	Ghi 4 vào K.qua		3 4
*	Push *	+ *	
2	Ghi 2 vào K.qua		3 4 2
/	(L y/so sánh v i*)	+/	3 4 2 *

	L y * ra kh i Stack, ghi vào K.qua, Push/		
(Push (+/(3 4 2 *
1	Ghi 1 vào K.qua	+/(3 4 2 * 1
-	Push -	+/(-	3 4 2 * 1
5	Ghi 5 vào K.qua	+/(-	3 4 2 * 1 5
)	Pop cho n khi l y c (, ghi các toán t pop c ra K.qua	+/	3 4 2 * 1 5 -
	Popttc các toánt ra khing n x p và ghi vào K.qua		3 4 2 * 1 5 - / +

4.4. K T CH NG

Ch ng này trình bày nh ngh a m $\,t\,$ th nh th nào là m $\,t\,$ cây, nh ng $\,i\,$ u ki n $\,c\,$ n và $\,$ th là cây, thu $\,t\,$ toán tìm cây $\,t\,$ i $\,$ i $\,c\,$ a m $\,t\,$ th $\,G.$ Hi $\,u\,$ c và $\,v\,$ n $\,d\,$ ng cây khung ng $\,n\,$ nh $\,t,$ c $\,$ ng $\,nh\,$ nh $\,$ ng thu $\,t\,$ toán tìm cây khung ng $\,n\,$ nh $\,t\,$ vào các bài toán th $\,c\,$ t $\,$.

4.5. BÀI T P

- 1) Cho bi t s nút lá c a Cây 3 phân y có 100 nh.
- 2) Xét cây nh phân:

Hãy duy t cây theo các th t: ti n th t, trung th t, h u th t. Có nh n xét gì v giá tr c a các khóa khi duy t theo trung th t.

3) Hãy v ttc các cây khung ca các th sau:

4) th sau có t t c bao nhiêu cây khung?

 a/K_3 $b/K_{2,2}$

 $c/\,\,C_n \qquad \quad d/\,\,W_n$

5) Hãy tìm cây khung nh $\,$ nh $\,$ t $\,$ c $\,$ a $\,$ th $\,$ sau $\,$ b $\,$ ng thu $\,$ t toán $\,$ Prim

6) Hãy áp d ng thu t toán Krusksal tìm cây khung nh nh t c a các th có trong câu 5.

ng i

CH NG 5

CÁC BÀI TOÁN V NG I

M c tiêu:

- ♦ Hi u khái ni m và các d u hi u nh n bi t th Euler, Hamilton
- ♦ Hi u c các thu t toán tìm ng i ng n nh t nh Dijkstra, Ford-Bellman, Floyd và v n d ng các thu t toán này vào các bài toán tìm ng i trong th c t .

5.1. TH EULER

5.1.1. Bài toán v 7 cây c u Konigsberg (Bài toán Euler)

Thành ph Konigsberg thu c n c C ng hòa Litva có con sông Pregel ch y qua, gi a sông có cù lao Kneiphof t o nên b n vùng t. Ng i ta ã xây d ng 7 cây c u n i các vùng t này l i v i nhau nh hình v d i ây:

Hình 5.1: B y cây c u trên sông Pregel

Có th m t l n i qua t t c 7 chi c c u này hay không?

Chuy n bài toán v d ng th:

- M i vùng là m t nh
- Michicculàm to nh
- th c xây d ng t bài toán Euler

Hình 5.2: a th bi u di n thành ph Konigsberg

Bài toán th t ra: Có th i qua t t c các c nh c a th, sao cho m i c nh ch i qua úng m t l n c không?

5.1.2. nh ngh a:

Gi s G là n (a) th vô (có) h ng:

- Chu trình Euler trong G là chu trình n i qua t c các c nh c a th . N u G có chu trình Euler thì G c g i là th Euler
- ng i Euler trong G là ng i n quat t c các c nh c a th. N u G có ng i Euler thì G c g i là th n a Euler.

Nh n xét: Rõ ràng th Euler là n a Euler, nh ng i u ng c l i không úng. Ví d 5.1:

Hình 5.3: th có h ng H_1 , H_2

th H₁ trong hình 5.3 là th Euler vì nó có chu trình Euler a, b, c, d, e, a

th H₂ không có chu trình c ng nh ng i Euler.

Ví d 5.2:

Hình 5.4: th vô h ng G_1 , G_2

- th G₁ trong hình 5.4 là th Euler vì nó có chu trình Euler: a, d, e, b, f, e, c, b, a.
- th G_2 trong hình 5.4 là th n a Euler vì nó có ng i Euler: a, c, d, e, b, d, a, b (th G_2 không có chu trình Euler).

В

Cho th G = (V, E), n u m i nh u c a G có $deg(u) \ge 2$ thì G có chu trình.

Ch ng minh:

N u G có c nh l p thì kh ng nh c a b là hi n nhiên.

ng i

NuGlà n th:

G i $v \in G$ (b t k). Xây d ng theo quy n p ng i $v \rightarrow v_1 \rightarrow v_2 \rightarrow ...$

trong ó v_I là nh k v i v (v i $i \ge I$ ch n v_{i+1} là nh k v i nh v_i và $v_{i+1} \ne v_i$). Ta có th ch n c v_{i+1} vì $deg(v_i) \ge 2$. Do G h u h n, nên sau m t s b c h u h n ta ph i quay v m t nh ã ch n tr c ó. G i nh u tiên nh th là v_i . Khi ó, o n c a ng i xây d ng c n m gi a hai nh v_i là m t chu trình c n tìm.

Ví d 5.3:

Hình 5.5: th G_1 , G_2

Ta th y các nh trong th G_1 u có b c ch n $(\deg(a)=2, \deg(b)=2, \deg(c)=2, \deg(d)=2, \deg(e)=4, \deg(f)=2)$ và G_1 có m t chu trình là: a, f, e, d, c, b, e, a.

nh a trong th G_2 có deg(a)=1, deg(b)=1 và rõ ràng G_2 không có chu trình

nh lý 1 (Euler)

th vô h ng, liên thông G = (V, E) có chu trình Euler khi và ch khi m i nh u có b c ch n.

Ch ng minh:

• (i u ki n c n) G có chu trình Euler ⇒ M i nh u b c ch n

Gi s G có chu trình Euler P. Do ó, c m i l n P i qua m t nh u b t k c a G thì b c c a u t ng lên 2 (m t c nh vào và m t c nh ra t i u).

M t khác, m i c nh c a th ch xu t hi n úng m t l n, suy ra m i nh c a th G u $c ilde{o}$ b c ch n.

• (i u ki n) M i nh u b c ch $n \Rightarrow G$ có chu trình Euler

Xu t phát t m t nh a nào ó, ta l p dãy c nh k liên ti p cho n khi h t kh n ng i ti p. Theo gi thi t, m i nh u có b c ch n nên dãy c nh l p c ph i k t thúc t i a. T ó ta thu c chu trình C_1 . N u \tilde{a} vét h t c nh thì ó chính là chu trình c n tìm.

N u v n còn c nh thì do tính liên thông c a th G thì ph i t n t i m t c nh nào ó ch a ch n nh ng k v i m t nh a_1 nào ó $(a_1$ t n t i trong C_1). T a_1 và ti p t c quá trình nh trên cho n khi h t kh n ng i ti p, ta c chu trình C_2 ...

Hình 5.6: Các chu trình k nhau

Khi ã vét h t c nh ta l p c chu trình Euler cho th nh sau:

T nh a i theo n a trên c a chu trình C_1 cho n a_1 , l i ti p t c t a_1 i theo n a trên c a C_2 cho n a_2 ... Khi \tilde{a} n chu trình con cu i cùng ta i ng c l i theo các n a d i c a các chu trình con ... và cu i cùng tr v a. Ta nh n c m t chu trình Euler.

Ví d 5.4: Xét 2 th nh trong hình 5.4

Ta th y t t c các nh trong G_1 u là nh có b c ch n $(\deg(a)=2, \deg(b)=4, \deg(c)=2, \deg(d)=2, \deg(e)=4, \deg(f)=2)$ và rõ ràng G_1 có chu trình Euler: a, d, e, b, f, e, c, b, a.

nh a trong G_2 có deg(a)=3 (b c l) và G_2 không có chu trình Euler.

nh lý 2

th vô h ng, liên thông G = (V, E) là n a Euler (t c là G có ng i Euler mà không có chu trình Euler) khi và ch khi G có không quá hai nh b c l .

Ch ng minh:

N u G có không quá hai nh b c l thì s nh b c l c a G ch có th là 0 ho c là 2.

- N u s nh b c l c a G là 0 thì theo nh lý 1: G là th Euler (t c G là n a Euler, vì m i th Euler luôn là n a Euler)
- Nus nhbcl caGlà 2, gis là u và v.

G i H là th thu c t G b ng cách thêm vào G m t nh m i w và hai c nh (w, u) và (w, v). Khi ó, $\forall u \in H: deg(u) ch n$, theo nh lý 1 H có chu trình Euler. Xóa b kh i chu trình này nh w và hai c nh k v i nó, ta thu c ng i Euler trong G, t c G là n a Euler.

Ví d 5.5:

Hình 5.7: th G_1 , G_2

 G_1 ch có 2 nh b c 1, ó là nh a và b; nên G_1 có ng i Euler là: a, c, d, a, b, d, e, b. Do ó, theo nh lý 2 thì G_1 là th n a Euler.

 G_2 có 4 nh b c l (nh a, b, d, f), do ó theo nh lý 2 thì G_2 không là th n a Euler.

5.1.3. Gi i thu t xây d ng chu trình Euler

Procedure Euler_Cycle;

Begin

```
STACK := \emptyset;

CE := \emptyset; /* CE - Chu trình Euler */

/* Ch n u là m t nh nào ó c a th */

push(STACK,u); //b u vào stack

While (STACK \neq \emptyset) do

Begin

x:= pop(STACK); /* x là ph n t u c a STACK */

if (K (x) \neq \emptyset) then

begin

y:= nh u tiên trong danh sách k Ke(x);

push(STACK, y);

/* Lo i b c nh (x, y) kh i th */

Ke(x) := Ke(x) \ {y}; Ke(y) := Ke(y) \ {x};
```

end;

else

begin

x=pop(STACK);

b x vào CE;

end;

end;

End;

Ví d 5.6 (minh h a gi i thu t):

Hình 5.8: th G

nh v	Ke(v)
1	6, 5
2	5, 6
3	6, 5
4	6, 5, 7, 8
5	4, 3, 2, 1
6	4, 3, 2, 1
7	4, 8
8	4, 7

Minh h a gi i thu t:

Ch n v là nh 3

STACK	CE
3	Ø
3, 6	Ø
3, 6, 4	Ø
3, 6, 4, 5	Ø
3, 6, 4, 5, 3	Ø

3, 6, 4, 5	3
3, 6, 4, 5, 2	3
3, 6, 4, 5, 2, 6	3
3, 6, 4, 5, 2, 6, 1	3
3, 6, 4, 5, 2, 6, 1, 5	3
3, 6, 4	3, 5, 1, 6, 2, 5
3, 6, 4, 7	3, 5, 1, 6, 2, 5
3, 6, 4, 7, 8	3, 5, 1, 6, 2, 5
3, 6, 4, 7, 8, 4	3, 5, 1, 6, 2, 5
Ø	3, 5, 1, 6, 2, 5, 4, 8, 7, 4, 6, 3

Chu trình Euler c a th G là: 3, 5, 1, 6, 2, 5, 4, 8, 7, 4, 6, 3.

5.1.4. Thu t toán Fleury (Thu t toán Flor) tìm chu trình Euler

B t u t m t nh u b t k c a G và tuân theo qui t c sau:

- 1. M i khi i qua m t c nh nào ó thì xóa nó i, sau ó xóa nh cô l p (n u có).
- 2. Qui t c 2: Không bao gi i qua c u tr phi không còn cách i nào khác.

Ví d 5.7: Tìm chu trình Euler c a th sau:

Hình 5.9: th G

Chu trình Euler trong G là: a, b, c, f, d, c, e, f, g, h, b, g, a

5.2. TH HAMILTON

Trong m c này chúng ta xét bài toán t ng t trong m c tr c ch khác là ta quan tâm n ng i qua tâm n ng i qua t t c các nh c a th, m i nh úng m t l n.

5.2.1. nh ngh a

Gi s G là n th vô (có) h ng:

• Chu trình Hamilton là chu trình xu t phát t m t nh, i th m t t c các nh còn l i m i nh úng m t l n, cu i cùng quay tr l i nh xu t phát. th có chu trình Hamilton g i là th Hamilton.

• ng i Hamilton là ng i quat t c các nh c a th, m i nh úng m t l n. th có ng i Hamilton g i là th n a Hamilton.

Nh n xét: Rõ ràng th Hamilton là n a Hamilton, nh ng i u ng c l i không úng.

Ví d 5.8:

Hình 5.10: th G_1 , G_2

G₁ là th Hamilton vì có chu trình Hamilton: a, b, d, e, c, a

 G_2 là then a Hamilton vì có ng i Hamilton mà không có chu trình Hamilton: a, b, d, c

Nh n bi t th Hamilton:

- Ch a có d u hi u nh n bi t m t th có là th Hamilton hay không.
- Ch a có thu t toán ki m tra
- Các k t qu thu c ch d ng i u ki n
- Các phát bi u u d ng: "N u G có s c nh 1 n thì G là Hamilton".

nh lý 3 (Dirak 1952)

n th vô h ng G = (V, E) có n nh (v i n \geq 2). N u m i nh v c a th u có $deg(v) \geq n/2$ thì G là th Hamilton.

nh lý Dirak cho th có h ng:

Cho th có h ng, liên thông m nh G = (V, E) và có n nh. N u m i nh v c a G u có $deg^+(v) \ge n/2$, $deg^-(v) \ge n/2$ thì G là Hamilton.

5.2.2. Thu t toán xây d ng chu trình Hamilton

Ý t ng:

• B t u t 1 nh b t k , i theo con ng dài nh t có th c (depth – first)

- Nu ng ó cham i nh và có th n i 2 nh u và cu i b ng 1 c nh thì ó là chu trình Hamilton
- N u trái l i ta lùi l i m t nh m con ng theo chi u sâu khác
- C ti p t c quá trình trên cho n khi thu c chu trình Hamilton

Thu t toán:

```
Procedure Hamilton(k):
     /* Li t kê các chu trình Hamilton thu c b ng vi c phát tri n dãy các nh
     (X[1], ..., X[k-1]) c a th G = (V, E) cho b i danh sách k : Ke(v), v \in V */
Begin
     for y \in Ke(X[k-1]) do
          if (k = n+1) and (y = v0) then Xu \ t(X[1], ..., X[n], v0)
               if Chuaxet[y] then
               begin
                    X[k] := y;
                    Chuaxet[y]:=false;
                    Hamilton(k+1);
                    Chuaxet[y]:=true;
               end;
End;
/* Main program */
Begin
     for v \in V do Chuaxet[v]:=true;
     X[1]:=v0; /*v0 là m t nh nào ó c a th */
     Chuaxet[v0]:= false;
     Hamilton(2);
```

Ví d 5.9: Cho th G sau, tìm chu trình Hamilton c a G (n u có)

End.

Áp d ng thu t toán tìm chu trình Hamilton, các ng i và chu trình Hamilton c th hi n d ng cây d i ây:

Hình 5.11: Cây ng i và chu trình Hamilton

5.3. BÀI TOÁN NG ING NNH T

Bài toán: Tìm ra ng i ng n nh t t i m A n i m B trong t t c các ng i có th . Hi n nay có r t nhi u ph ng pháp gi i quy t bài toán này. Th nh ng, thông th ng, các thu t toán c xây d ng d a trên c s lý thuy t th t ra là các thu t toán có hi u qu nh t. Trong ph n này, chúng ta s xét m t s thu t toán nh v y.

5.3.1. Các khái ni m m

Xét th có h ng G=(V,E), |V|=n, |E|=m v i các cung c gán tr ng s , ngh a là, m i cung $(u,v)\in E$ c a nó c t t ng ng v i m t s th c w(u,v) g i là tr ng s c a nó. N u $(u,v)\not\in E$, chúng ta s t $w(u,v)=\infty$.

N u dãy $v_0, v_1, ..., v_p$ là ng i trên G, thì dài c a nó c nh ngh a là t ng

$$\sum_{i=1}^{p} w(v_{i-1}, v)$$

t c là, dài c a ng i chính là t ng các tr ng s trên các cung c a nó.

5.3.2. nh ngh a bài toán tìm u ng i ng n nh t

Bài toán tìm u ng i ng n nh t c phát bi u nh sau: Tìm ng i có dài nh nh t t m t nh xu t phát $s \in V$ n nh cu i (ích) $t \in V$. ng i nh v y ta s g i là ng i ng n nh t t s n t, còn dài c a nó ta s ký hi u là d(s,t) và còn g i là kho ng cách t s n t (kho ng cách nh ngh a nh v y có th là s âm). N u nh không t n t i ng i t s n t thì ta s t $d(s,t)=\infty$.

Rõ ràng, n u nh m i chu trình trong th u có dài d ng, trong ng i ng n nh t không có nh nào b l p l i (ng i không có nh l p l i s g i là ng i s c p). M t khác n u trong th có chu trình v i dài âm (chu trình nh v y g i ng n g n ta g i là *chu trình âm* hay *m ch âm*) thì kho ng cách gi a m t s c p nh nào ó c a th có th là không xác nh.

5.3.3. nh ngh a ma tr n kho ng cách (tr ng s)

Cho G=(V,E), $V=\{v_1,\,v_2,\,...,\,v_n\}$ là n th có tr ng s . Ma tr n kho ng cách c a G là ma tr n $D=(d_{ii})$ xác nh nh sau:

$$d_{ij} = \begin{cases} 0 & khi \ i = j \\ w(v_i, v_j) & khi \ (v_i, v_j) \in E \\ \infty & khi \ (v_i, v_j) \notin E \end{cases}$$

5.3.4. Thu t toán Dijkstra

N m 1959 E. W. Dijkstra a ra m t thu t toán r t hi u qu gi i bài toán ng i ng n nh t.

Bài toán: Cho G = (V, E) n, liên thông, có tr ng s d ng $(w(u, v) > 0 \ v \ i \ m \ i \ u$ khác v). Tìm ng i ng n nh t t u_0 n v và tính kho ng cách $d(u_0, v)$

Ph ng pháp:

Xác nh tu n t các nh có kho ng cách n u₀ t nh n l n

- 1. Tr c tiên nh có kho ng cách nh nh t n u_0 là u_0 .
- 2. Trong $V\setminus\{u_0\}$ tìm nh có kho ng cách n u_0 nh nh t (nh này ph i là m t trong các nh k v i u_0) gi s ó là u_1
- 3. Trong $V\setminus\{u_0, u_1\}$ tìm nh có kho ng cách n u_0 nh nh t (nh này ph i là m t trong các nh k v i u_0 ho c u_1) gi s ó là u_2
- 4. Ti p t c nh trên cho n bao gi tìm c kho ng cách t u₀ n m i nh.

N u G có n nh thì: $0 = d(u_0, u_0) < d(u_0, u_1) \le d(u_0, u_2) \le ... \le d(u_0, u_{n-1})$

Thu t toán Dijkstra:

B c 1: i:=0, S:= V\{u_0\}, L(u_0):=0, L(v):= ∞ v i m i v \in S và ánh d u nh v b i (∞ ,-). N u n=1 thì xu t d(u_0, u_0)=0= L(u_0)

N $u k = L(v_j)$ thì xu t d(u_0 , v_j)=k và ánh d $u v_j$ b i ($L(v_j)$; u_i)

$$u_{i+1} \!\!:= \!\! v_j S \!\!:= \!\! S \backslash \{\ u_{i+1}\}$$

B c 3: i = i+1

- -Nui=n-1thiktthúc
- N u không thì quay 1 i b c 2

Ví d 5.10: Tìm ng i ng n nh t t nh u n các nh còn l i.

Hình 5.12: th G-Tìm ng i ng n nh t

u	r	S	t	X	y	Z	w
0*	(∞, -)	(∞, -)	(∞, -)	(∞, -)	(∞, -)	(∞, -)	(∞, -)
-	(4, u)	(∞, -)	(∞, -)	(∞, -)	(1, u)*	(∞, -)	(∞, -)
-	$(3, y)^*$	(∞, -)	(∞, -)	(∞, -)	-	(4, y)	(∞, -)
-	-	(10, r)	(6, r)	(∞, -)	-	(4, y)*	(∞, -)
-	-	(10, r)	(6, r)*	(∞, -)	-	-	(9, z)
-	-	(9, t)	-	$(7, t)^*$	-	-	(9, z)
-	-	$(8, x)^*$	-	-	-	-	(9, z)
-	-	-	-	-	-	-	$(9, z)^*$

Hình 5.13: Cây ng i ng n nh t t nh u n các nh còn l i L u ý: Thu t toán Dijkstra không áp d ng c cho th có tr ng s âm.

5.3.5. Thu t toán Ford – Bellman

Tìm ng i ng n nh t t u_0 n các nh ho c ch ra th có m ch âm.

B c 1: $L_0(u_0) = 0$ và $L_0(v) = \infty \forall v \neq u_0$. and d u nh v b ng $(\infty, -)$; k = 1.

B c 2: $L_k(u_0) = 0$ và

 $L_k(v) = \min\{L_{k-1}(u) + w(uv)/u \ la \ nh \ tr \ c \ c \ a \ v\}$

N u $L_k(v) = L_{k-1}(y) + w(yv)$ thì ánh d u nh v b i $(L_k(v), y)$

 $B \quad c \ 3: \ N \ u \ L_k(v) = L_{k-1}(v) \ v \ i \ m \ i \ v, \ t \ c \ L_k(v) \quad n \quad nh \ thì \ d \ ng. \ Ng \quad c \ l \ i \quad n \ b \quad c \\ 4.$

Hình 5.14: th G-Tìm ng i ng n nh t v i Ford Bellman

k	1	2	3	4	5	6
0	0	(∞, -)	(∞, -)	(∞, -)	(∞, -)	(∞, -)
1	0	(7, 1)	(∞, -)	(8, 1)	(∞, -)	(∞, -)
2	0	(7, 1)	(11, 2)	(8, 1)	(9, 2)	(8, 2)
3	0	(7, 1)	(10, 6)	(2, 6)	(9, 2)	(8, 2)
4	0	(4, 4)	(10, 6)	(2, 6)	(4, 4)	(8, 2)
5	0	(4, 4)	(8, 2)	(2, 6)	(4, 4)	(5, 2)
6	0	(4, 4)	(7, 6)	(-1, 6)	(4, 4)	(5, 2)

 $k=n=6.\;L_k(i)\;\text{ch}\;\;a\;\;n\;\;\text{nh nên}\qquad\text{th có m ch âm. Ch ng h n: }4\to2\to6\to4\;\text{có}$ dài -3

Ví d 5.12: Tìm ng i ng n nh t t 1 n các nh còn l i

Hình 5.15: th G

k	1	2	3	4	5	6
0	0	(∞, -)	(∞, -)	(∞, -)	(∞, -)	(∞, -)
1	0	(7, 1)	(∞, -)	(8, 1)	(∞, -)	(∞, -)
2	0	(7, 1)	(11, 2)	(8, 1)	(9, 2)	(8, 2)
3	0	(7, 1)	(10, 6)	(6, 6)	(9, 2)	(8, 2)
4	0	(7, 1)	(10, 6)	(6, 6)	(8, 4)	(8, 2)
5	0	(7, 1)	(10, 6)	(6, 6)	(8, 4)	(8, 2)

Cây ng i ng n nh t sau khi áp d ng thu t toán Ford-Bellman nh sau:

Hình 5.16: Cây ng i ng n nh t t 1 n các nh còn l i

5.3.6. Thu t toán Floyd

Tìm ng i ng n nh t gi a t t c các c p nh ho c ch ra th có m ch âm. Ngoài ma tr n kho ng cách D ta còn dùng ma tr n $Q = (q_{ij})$, trong ó:

$$Q_{ij} = \begin{cases} j & khi \ ij \in E \\ 0 & khi \ ij \notin E \end{cases}$$

B c 1:
$$D_0 = D$$
, $Q_0 = Q$, $k = 1$.

B
$$c : V : i : i = 1$$
 n n, $v : i : j = 1$ n n.

$$D_k(i,j) = \begin{cases} D_{k-1}(i,k) + D_{k-1}(k,j) & n \not\in u \ D_{k-1}(i,j) > D_{k-1}(i,k) + D_{k-1}(k,j) \\ D_{k-1}(i,j) & n \not\in u \ D_{k-1}(i,j) \le D_{k-1}(i,k) + D_{k-1}(k,j) \end{cases}$$

$$Q_k(i,j) = \begin{cases} Q_{k-1}(i,k) & \text{n\'eu } D_{k-1}(i,j) > D_{k-1}(i,k) + D_{k-1}(k,j) \\ Q_{k-1}(i,j) & \text{n\'eu } D_{k-1}(i,j) \le D_{k-1}(i,k) + D_{k-1}(k,j) \end{cases}$$

B c 3: N u k = n thì d ng. N u k < n thì tr 1 i B <math>c 2 v i k := k+1

Ví d: 5.13: Dùng thu t toán Floyd, hãy tìm ng i ng n nh t gi a t t các c p nh c a th sau:

th trên có ma tr n kho ng cách D và ma tr n ng i Q nh sau:

$$D = \begin{array}{c|ccccc}
 & 1 & 2 & 3 & 4 \\
\hline
1 & 0 & 9 & 4 & 1 \\
2 & 3 & 0 & \infty & \infty \\
3 & \infty & 4 & 0 & \infty \\
4 & 2 & \infty & 2 & 0
\end{array}$$

$$Q = \begin{array}{c|ccccc} 1 & 2 & 3 & 4 \\ \hline 1 & 0 & 2 & 3 & 4 \\ 2 & 1 & 0 & 0 & 0 \\ 3 & 0 & 2 & 0 & 0 \\ 4 & 1 & 0 & 3 & 0 \end{array}$$

$$D_2 = \begin{array}{c|cccccc} 1 & 2 & 3 & 4 \\ \hline 1 & 0 & 9 & 4 & 1 \\ 2 & 3 & 0 & 7 & 4 \\ 3 & 7 & 4 & 0 & 8 \\ 4 & 2 & 11 & 2 & 0 \end{array}$$

$$Q_{2} = \begin{array}{c|cccc} 1 & 2 & 3 & 4 \\ \hline 1 & 0 & 2 & 3 & 4 \\ 2 & 1 & 0 & 1 & 1 \\ 3 & 2 & 2 & 0 & 2 \\ 4 & 1 & 1 & 3 & 0 \end{array}$$

$$D_{3} = \begin{array}{c|ccccc} 1 & 2 & 3 & 4 \\ \hline 1 & 0 & \boxed{8} & 4 & 1 \\ 2 & 3 & 0 & 7 & 4 \\ 3 & 7 & 4 & 0 & 8 \\ 4 & 2 & \boxed{6} & 2 & 0 \end{array}$$

$$Q_{3} = \begin{array}{c|cccc}
1 & 2 & 3 & 4 \\
\hline
1 & 0 & \boxed{3} & 3 & 4 \\
2 & 1 & 0 & 1 & 1 \\
3 & 2 & 2 & 0 & 2 \\
4 & 1 & \boxed{3} & 3 & 0
\end{array}$$

n ây thu t toán d ng và ta xác nh c ng i gi a 2 nh b t k d a vào ma tr n Q_4 và t ng tr ng s trên ng i t ng ng d a vào ma tr n D_4

Gi s ta c n xác nh ng i ng n nh t t nh 3 n nh 4, th c hi n nh sau:

Tính Q[3,4]=2, ngh a là ng i ng n nh t t 3 n 4 s i qua nh 2. Ti p t c tìm ng i t 2 n 4

Tính Q[2,4]=1, ngh a là ng i ng n nh t t 2 n 4 s i qua nh 1, ti p t c tìm ng i t 1 n 4.

Tính Q[1,4]=4, d ng. vì \tilde{a} n nh cu i (nh 4)

V y ng ing n nh t t 3 n 4 là: 3, 2, 1, 4

Tr ng s ng n nh tt ng ng là D[3,4]=8

5.4. K T CH NG

Ch ng này trình bày hai lo i c bi t là th Euler và th Hamilton, th các thu t toán tìm chu trình Euler, chu trình Hamilton và các d u hi u nh n bi t hai th này. Các khái ni m v lo i ng i ng n nh t và các thu t toán thông d ng th nh: Thu t toán Dijkstra, Fordtìm ng i ng n nh t gi a các nh trên Bellman, Floyd. Hi u và v n d ng c các thu t toán này s gi i quy t c nhi u bài toán v tìm ng i trong th c t.

5.5. BÀIT P

1) Trong các th sau, th nào là Euler, n a Euler? N u là th Euler, hãy tìm m t chu trình Euler. N u là th n a Euler, hãy tìm m t ng i Euler.

2) Hãy tìm m t ng i Hamilton có trong các th sau:

3) Dùng thu t toán xây d ng chu trình Hamilton, hãy tìm t t c các chu trình Hamilton có trong th sau:

4) Dùng thu t toán xây d ng chu trình Euler, hãy tìm chu trình Euler c a các th sau:

5) Dùng thu t toán Ford-Bellman tìm ng i ng n nh t t nh 1 n các nh khác c a các th sau:

6) Dùng thu t toán Dijkstra tìm ng i ng n nh t t nh A n các nh khác c a các th sau:

7) Dùng thu t toán Floyd tìm ng i ng n nh t gi a t t c các c p nh c a các th sau:

	1	2	3	4
1	∞	7	5	∞
2	∞	∞	7	6
	∞	∞	∞	∞
4	4	1	11	∞

Tài li u tham kh o 78

TÀILI U THAM KH O

[1] Tr n Ng c Danh, Toán r i r c nâng cao, Nhà xu t b n $\,$ i h c qu c gia TP.HCM, $\,$ 2004

- [2] Hoàng Chí Thành, th và thu t toán, NXB Giáo d c, 2007
- [3] Nguy n c Ngh a, Nguy n Tô Thành, Toán r i r c, NXB i h c Qu c Gia Hà N i, 2003