

FCC LISTED, REGISTRATION

NUMBER: 720267

Test report No:

IC LISTED REGISTRATION NUMBER IC 4621A-2

NIE: 45355RRF.004

Test report REFERENCE STANDARD: USA FCC Part 22 & Part 24 & Part 27 CANADA IC RSS-132, RSS-133, CANADA IC RSS-139, RSS-130

KSS-13U				
Identificación del objeto ensayado: Identification of item tested	Multiprotocol router for the Internet of Things			
Marca: Trademark	Libelium			
Modelo y/o referencia tipo: Model and /or type reference	Meshlium 4G 802.15.4 AP 900 US			
Other identification of the product:	Libelium's product FCC ID: XKM-MESHLIUM-V1 Libelium's product IC: 8472A-MESHLIUMV1 Chipsets FCC ID: RI7LE910NA, OUR-XBEEPRO, MCQ-XB900HP and TK4WLE600VX Chipsets IC: 5131A-LE910NA, 4214A-XBEEPRO and 1846A-XB900HP.			
Final HW version:	1.0			
Final SW version:	1.0			
IMEI TAC:	35894205			
Características: Features	Can communicate with 2G, 3G and 4G/LTE networks. Also equipped with a short-range 802.15.4 module (2.4 GHz ISM band), a long-range RF 900 radio (900 MHz ISM band) and a 802.11a/b/g/n/ac module (2.4 GHz ISM bands). Includes a GNSS (GPS) receiver. USA and Canada version, AT&T. Includes 2 cellular antennas for diversity gain. Contains these radios: WLE600VX, XBee-PRO 802.15.4, LE910 NAG and XBee-PRO 900HP			
Fabricante: Manufacturer	LIBELIUM COMUNICACIONES DISTRIBUIDAS S.L C/ Escatrón 16 (Edificio Libelium), CP: 50014, Zaragoza (SPAIN)			
Método de ensayo solicitado, norma: Test method requested, standard	USA FCC Part 22 10-1-15 Edition. USA FCC Part 24 10-1-15 Edition. USA FCC Part 27 10-1-15 Edition. CANADA IC RSS-132 Issue 3, Jan. 2013. CANADA IC RSS-133 Issue 6, Jan. 2013. CANADA IC RSS-139 Issue 3, Jul. 2015. CANADA IC RSS-130 Issue 1, Oct. 2013. Measurement Guidance 971168 D01 v02r02 for certification of Licensed Digital Transmitters. ANSI/TIA-603-D (2010).			

	ANSI C63.26 (2015).
Resultado: Summary	IN COMPLIANCE
Approved by (name / position & signature)	A. Llamas RF Lab. Manager
Fecha de realización: Date of issue	2016-10-04
Formato de informe No: Report template No	FDT08_18

AT4 wireless, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
www.at4wireless.com ⋅ C.I.F. A29 507 456

Index

Competences and guarantees	4
General conditions	
Uncertainty	4
Usage of samples	5
Test sample description	5
Identification of the client	5
Testing period	5
Environmental conditions	5
Remarks and comments	6
Testing verdicts	7
Appendix A – Test result for FCC Part 22/IC RSS-132	9
Appendix B – Test result for FCC Part 24/IC RSS-133	27
Appendix C – Test result for FCC Part 27/IC RSS-139/IC RSS-130	49

Competences and guarantees

AT4 wireless is a laboratory with a measurement facility in compliance with the requirements of Section 2.948 of the FCC rules and has been added to the list of facilities whose measurements data will be accepted in conjuction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Registration Number: 720267.

AT4 wireless is a laboratory with a measurement site in compliance with the requirements of RSS 212, Issue 1 (Provisional) and has been added to the list of filed sites of the Canadian Certification and Engineering Bureau. Reference File Number: IC 4621A-1.

In order to assure the traceability to other national and international laboratories, AT4 wireless has a calibration and maintenance program for its measurement equipment.

AT4 wireless guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at AT4 wireless at the time of performance of the test.

AT4 wireless is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

<u>IMPORTANT:</u> No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of AT4 wireless.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of AT4 wireless.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of AT4 wireless and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the AT4 wireless internal document PODT000.

Page 4 of 63 2016-10-04

Usage of samples

Samples undergoing test have been selected by: the client.

Sample S/01 is composed of the following elements:

Control Nº	Description	Model	Serial Nº	Date of reception
48668/008	Multiprotocol router for the Internet of Things	Meshlium 4G 802.15.4 AP 900 US		2016-06-06
48668/045	Antenna 2.4 GHz			2016-06-06
48668/047	Antenna 2.4 GHz			2016-06-06
48668/053	Antenna 900 MHz			2016-06-06
48668/068	Antenna 4G GPS			2016-06-06
48668/069	Antenna 4G GPS			2016-06-06
48668/070	Antenna 4G GPS			2016-06-06
48668/028	Ethernet crossover cable			2016-06-06
48668/035	Ethernet cable			2016-06-06
48668/018	AC/DC Adapter	SAW24-120-2000		2016-06-06
48668/020	POE			2016-06-06

^{1.} Sample S/01 has undergone the test(s).

All tests indicated in appendix A, B and C.

Test sample description

The test sample consists of a central node of a Waspmote Plug & Sense! network. It gathers all the data and sends it to the cloud. Meshlium can be deployed outdoors and is quickly configured with its graphic interface.

Identification of the client

LIBELIUM COMUNICACIONES DISTRIBUIDAS S.L.

C/ Escatrón 16 (Edificio Libelium), CP: 50014, Zaragoza (SPAIN)

Testing period

The performed test started on 2016-06-06 and finished on 2016-06-09.

The tests have been performed at AT4 wireless.

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 20 % Max. = 75 %
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 1 Ω

In the semianechoic chamber the following limits were not exceeded during the test.

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 20 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 1 Ω
Normal site attenuation (NSA)	< ±4 dB at 10 m distance between item under test and receiver antenna, (30 MHz to 1000 MHz)
Field homogeneity	More than 75% of illuminated surface is between 0 and 6 dB (26 MHz to 1000 MHz).

Remarks and comments

- 1: Test not requested. Only radiated spurious emissions tests were requested.
- 2: Used instrumentation.

		Last Cal. date	Cal. due date
1.	Semianechoic Absorber Lined Chamber ETS FACT3 200STP	N.A.	N.A.
2.	BiconicalLog antenna ETS LINDGREN 3142E	2014/03	2017/03
3.	Multi Device Controller EMCO 2090	N.A.	N.A.
4.	Double-ridge Guide Horn antenna 1-18 GHz SCHWARZBECK BBHA 9120 D	2013/11	2016/11
5.	Broadband Horn antenna 18-40 GHz Schwarbeck BBHA 9170	2014/03	2017/03
6.	EMI Test Receiver R&S ESU 40	2016/03	2018/03
7.	Spectrum analyser Rohde & Schwarz FSW50	2015/12	2017/12
8.	RF pre-amplifier 10 MHz-6 GHz SCHWARZBECK BBV9743	2015/09	2016/09
9.	RF pre-amplifier 1-18 GHz BONN ELEKTRONIK BLMA 0118-3A	2016/02	2018/02
10.	RF pre-amplifier 18-40 GHz BONN ELEKTRONIK BLMA 1840-1M	2015/12	2017/12
11.	Universal Radio communication Tester R&S CMW500	2014/07	2017/07

AT4 wireless, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
www.at4wireless.com ⋅ C.I.F. A29 507 456

Testing verdicts

Not applicable:	N/A
Pass:	P
Fail:	F
Not measured:	N/M

FCC PART 22/IC RSS-132 PARAGRAPH	VERDICT		I	
	NA	P	F	NM
Clause 22.913/RSS-132 Clause 5.4: RF output power				NM ¹
Clause 2.1047/RSS-132 Clause 5.2: Modulation characteristics				NM ¹
Clause 22.355/RSS-132 Clause 5.3: Frequency stability				NM ¹
Clause 2.1049: Occupied Bandwidth				NM ¹
Clause 22.917/RSS-132 Clause 5.5: Spurious emissions at antenna terminals				NM ¹
Clause 22.917/RSS-132 Clause 5.5: Radiated emissions		P		

^{1:} See section "Remarks and comments".

FCC PART 24/IC RSS-133 PARAGRAPH	VERDICT			
	NA	P	F	NM
Clause 24.232/RSS-133 Clause 6.4: RF output power				NM ¹
Clause 2.1047/RSS-133 Clause 6.2: Modulation characteristics				NM ¹
Clause 24.235/RSS-133 Clause 6.3: Frequency stability				NM ¹
Clause 2.1049: Occupied Bandwidth				NM ¹
Clause 24.238/RSS-133 Clause 6.5: Spurious emissions at antenna terminals				NM ¹
Clause 24.238/RSS-133 Clause 6.5: Radiated emissions		P		

^{1:} See section "Remarks and comments".

AT4 wireless, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
www.at4wireless.com ⋅ C.I.F. A29 507 456

FCC PART 27/IC RSS-139/ IC RSS-130 PARAGRAPH	VERDICT		1	
	NA	P	F	NM
Clause 27.50 / RSS-139 Clause 6.5. / RSS-130 Clause 4.4.: RF output power				NM ¹
Clause 2.1047 / RSS-139 Clause 6.2. / RSS-130 Clause 4.1.: Modulation characteristics				NM ¹
Clause 27.54 / RSS-139 Clause 6.4. / RSS-130 Clause 4.3.: Frequency stability				NM ¹
Clause 2.1049: Occupied Bandwidth				NM ¹
Clause 27.53 / RSS-139 Clause 6.6. / RSS-130 Clause 4.6.: Spurious emissions at antenna terminals				NM ¹
Clause 27.53 / RSS-139 Clause 6.6. / RSS-130 Clause 4.6.: Radiated emissions		P		

^{1:} See section "Remarks and comments".

AT4 wireless, S.A.U.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456

Appendix A – Test result for FCC Part 22/IC RSS-132

2016-10-04

AT4 wireless, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
www.at4wireless.com ⋅ C.I.F. A29 507 456

INDEX

TEST CONDITIONS	11
Radiated emissions	12

TEST RESULTS FOR FCC PART 22 AND IC RSS-132

TEST CONDITIONS

Power supply (V):

Vnominal = 115 Vac

Vmax = N/A

Vmin = N/A

The subscripts nom, min and max indicate voltage test conditions (nominal, minimum and maximum respectively, as declared by the applicant).

N/A: Not Applicable.

Type of power supply = AC/DC adapter.

Type of antenna = External attachable antennae.

TEST FREQUENCIES:

GPRS AND EDGE MODULATION

Lowest channel (128): 824.2 MHz

Middle channel (190): 836.6 MHz

Highest channel (251): 848.8 MHz

WCDMA AND HSUPA MODULATION

Lowest channel (4132): 826.4 MHz

Middle channel (4182): 836.4 MHz

Highest channel (4233): 846.6 MHz

LTE. QPSK AND 16QAM MODULATION (BAND V)

		Channel (Frequency, MHz)						
	$\begin{array}{c} \mathrm{BW} = 1.4 \\ \mathrm{MHz} \end{array}$	BW = 3 MHz	BW = 5 MHz	BW = 10 MHz				
Lowest	20407	20415	20425	20450				
	(824.70)	(825.50)	(826.50)	(829.00)				
Middle	20525	20525	20525	20525				
	(836.50)	(836.50)	(836.50)	(836.50)				
Highest	20643	20635	20625	20600				
	(848.30)	(847.50)	(846.50)	(844.00)				

2016-10-04

Radiated emissions

SPECIFICATION

FCC § 22.917

RSS-132. Clause 5.5.

METHOD

The measurement was performed with the EUT inside an anechoic chamber. The spectrum was scanned from 30 MHz to at least the 10th harmonic of the highest frequency generated within the equipment.

The EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter distance from the measuring antenna for measurements below 1 GHz and at 1 m distance for measurements above 1 GHz.

Detected emissions were maximized at each frequency by rotating the EUT and adjusting the measuring antenna height and polarization. The maximum meter reading was recorded. The radiated emissions were measured with peak detector and 1 MHz bandwidth.

Highest detected emissions are substituted by the Substitution method, in accordance with the ANSI/TIA/EIA-603-D.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po) and the level in dBm relative Po becomes:

Po $(dBm) - [43 + 10 \log (Po in mwatts) - 30] = -13 dBm$

TEST SETUP

Radiated measurements below 1 GHz.

Report No: (NIE) 45355RRF.004

Page 12 of 63 2016-10-04

Radiated measurements above 1 GHz.

RESULTS

GPRS AND EDGE MODULATION

A preliminary scan determined the GPRS modulation as the worst case. The following tables and plots show the results for GPRS modulation.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-10 GHz.

Substitution method data

Frequency	Instrument	Polarization	(1) Generator	(1) Generator (2) Cable (3) Substitution		E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
1648.15	-5.64	Vertical	-23.81	1.90	8.63	-17.07
2472.55	-15.95	Vertical	-33.71	2.10	10.66	-25.15
3296.66	3296.66 -21.25 Vertical		-37.33	2.50	11.43	-28.39
4120.75	-39.26	Vertical	-39.26	2.82	11.93	-44.60
4945.45	-46.61	Vertical	-58.45	3.15	11.52	-50.07

2016-10-04

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-10 GHz.

Substitution method data

Frequency (MHz)	Instrument reading	Polarization	(1) Generator output (dBm)	(2) Cable	(3) Substitution	E.I.R.P. $(dBm) = (1) - (2) + (3)$
(WITIZ)	(dBm)		Output (uBiii)	ttput (dBm) loss (dB) antenna gain Gi (respect to isotropic		(1) - (2) + (3)
					radiator) (dB)	
1673.05	-11.47	Vertical	-29.61	1.95	8.72	-22.83
2509.75	509.75 -15.01 Vertical		-32.71	2.10	10.70	-24.11
3346.45	-20.15	Vertical	-36.24	2.50	11.52	-27.22
4182.85	-39.59	Vertical	-53.79	2.88	11.89	-44.78

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-10 GHz.

Substitution method data

Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm) loss (dB) antenna gain Gi		(1) - (2) + (3)	
	(dBm)				(respect to isotropic	
					radiator) (dB)	
1697.35	-17.25	Vertical	-35.36	1.99	8.81	-28.54
2546.35	46.35 -20.29 Vertical		-37.89	2.10	10.72	-29.27
3394.75	-34.76	Vertical	-50.88	2.50	11.61	-41.77
4244.05	-42.22	Vertical	-56.21	2.90	11.85	-47.26

WCDMA AND HSUPA MODULATION

A preliminary scan determined the WCDMA modulation as the worst case. The following tables and plots show the results for WCDMA modulation.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-10 GHz.

Substitution method data

Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm) loss (dB)		antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
1650.55	-16.43	Vertical	-34.60	1.90	8.64	-27.86
2475.55	-16.66	Vertical	-34.41	2.10	10.66	-25.85
3300.55	3300.55 -32.24 Vertical		-48.31	2.50	11.44	-39.37
4126.15	-48.13	Vertical	-62.56	2.83	11.92	-53.46
4958.00	-53.41	Horizontal	-65.06	3.18	11.46	-56.56

Page 14 of 63 45355RRF.004 2016-10-04

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-10 GHz.

Substitution method data

Frequency (MHz)	Instrument reading (dBm)	Polarization	(1) Generator output (dBm)	` '		E.I.R.P. $(dBm) = (1) - (2) + (3)$
1675.15	-22.51	Vertical	-40.65	1.95	8.73	-33.87
2513.05	13.05 -23.05 Vertical		-40.75	2.10	10.71	-32.15
3348.55	-32.28	Vertical	-48.38	2.50	11.53	-39.35
4186.45	-51.56	Vertical	-65.74	2.89	11.89	-56.74

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-10 GHz.

Substitution method data

Frequency	Instrument Polarization		(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
1690.45	-24.63	Vertical	-42.74	1.98	8.79	-35.94
2535.85	-24.15	Vertical	-41.77	2.10	10.71	-33.16
3380.95	3380.95 -38.17 Vertical		-54.29	2.50	11.59	-45.20
4226.65	-49.03	Vertical	-63.07	2.90	11.86	-54.11
4983.85	-53.41	Horizontal	-65.06	3.18	11.46	-56.78

LTE QPSK AND 16QAM MODULATION. Band V. BW = 1.4 MHz, 3 MHz, 5 MHz and 10 MHz.

A preliminary scan determined the QPSK 1.4 MHz bandwidth RB=1, Offset 0 as the worst case.

The following plots show the results for this configuration.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-10 GHz.

Substitution method data

Frequency	requency Instrument Polarization		(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
1648.45	-13.19	Vertical	-31.36	1.90	8.63	-24.62
2472.55	2472.55 -14.41 Vertical		-32.17	2.10	10.66	-23.61
3296.95	3296.95 -30.29 Vertical		-46.37	2.50	11.43	-37.43
4121.35	-43.63	Vertical	-58.08	2.82	11.93	-48.97

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-10 GHz.

Substitution method data

Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
1671.85	-15.51	Vertical	-33.65	1.94	8.72	-26.88
2579.95	-17.37	Vertical	-35.07	2.10	10.70	-26.47
3344.05	-26.67	Vertical	-42.77	2.50	11.52	-33.75
4179.85	-41.74	Vertical	-55.95	2.88	11.89	-46.94

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-10 GHz.

Substitution method data

Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
1695.55	-21.12	Vertical	-39.23	1.99	8.80	-32.42
2543.35	.35 -20.44 Vertical		-38.05	2.10	10.72	-29.43
3391.45	-37.73	Vertical	-53.85	2.50	11.60	-44.75
4239.25	-45.55	Vertical	-59.56	2.90	11.86	-50.60

Verdict: PASS

45355RRF.004 Page 16 of 63 2016-10-04

FREQUENCY RANGE 30 MHz-1000 MHz.

GPRS MODULATION

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

WCDMA MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

CHANNEL: HIGHEST

LTE QPSK MODULATION. BW=1.4 MHz. Band V

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

FREQUENCY RANGE 1 GHz to 10 GHz.

GPRS MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

CHANNEL: HIGHEST

WCDMA MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

CHANNEL: HIGHEST

LTE QPSK MODULATION. BW=1.4 MHz. Band V

CHANNEL: LOWEST

CHANNEL: MIDDLE

CHANNEL: HIGHEST

AT4 wireless, S.A.U.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456

Appendix B – Test result for FCC Part 24/IC RSS-133

AT4 wireless, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
www.at4wireless.com ⋅ C.I.F. A29 507 456

INDEX

TEST CONDITIONS	29
Radiated emissions	30

TEST RESULTS FOR FCC PART 24 AND IC RSS-133

TEST CONDITIONS

Power supply (V):

Vnominal = 115 Vac

Vmax = N/A

Vmin = N/A

The subscripts nom, min and max indicate voltage test conditions (nominal, minimum and maximum respectively, as declared by the applicant).

N/A: Not Applicable.

Type of power supply = AC/DC adapter.

Type of antenna = External attachable antennae.

TEST FREQUENCIES:

GPRS AND EDGE MODULATION

Lowest channel (512): 1850.2 MHz Middle channel (662): 1880.2 MHz Highest channel (810): 1909.8 MHz

WCDMA AND HSUPA MODULATION

Lowest channel (9262): 1852.4 MHz Middle channel (9400): 1880.0 MHz Highest channel (9538): 1907.6 MHz

LTE. QPSK AND 16QAM MODULATION (BAND II)

		Channel (Frequency, MHz)							
	$\begin{array}{c} \mathrm{BW} = 1.4 \\ \mathrm{MHz} \end{array}$	BW = 3 MHz	BW = 5 MHz	$\begin{array}{c} \mathrm{BW} = 10 \\ \mathrm{MHz} \end{array}$	BW = 15 MHz	BW = 20 MHz			
Lowest	18607	18615	18625	18650	18675	18700			
	(1850.70)	(1851.50)	(1852.50)	(1855.00)	(1857.50)	(1860.00)			
Middle	18900	18900	18900	18900	18900	18900			
	(1880.00)	(1880.00)	(1880.00)	(1880.00)	(1880.00)	(1880.00)			
Highest	19193	19185	19175	19150	19125	19100			
	(1909.30)	(1908.50)	(1907.50)	(1905.00)	(1902.50)	(1900.00)			

Radiated emissions

SPECIFICATION

FCC § 24.238

RSS-133. Clause 6.5.

METHOD

The measurement was performed with the EUT inside an anechoic chamber. The spectrum was scanned from 30 MHz to at least the 10th harmonic of the highest frequency generated within the equipment.

The EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter distance from the measuring antenna for measurements below 1 GHz and at 1 m distance for measurements above 1 GHz.

Detected emissions were maximized at each frequency by rotating the EUT and adjusting the measuring antenna height and polarization. The maximum meter reading was recorded. The radiated emissions were measured with peak detector and 1 MHz bandwidth.

Highest detected emissions are substituted by the Substitution method, in accordance with the ANSI/TIA/EIA-603-D.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. P in watts.

At Po transmitting power, the specified minimum attenuation becomes 43+10log (Po) and the level in dBm relative Po becomes:

Po $(dBm) - [43 + 10 \log (Po in mwatts) - 30] = -13 dBm$

TEST SETUP

Radiated measurements below 1 GHz.

Report No: (NIE) 45355RRF.004

Radiated measurements above 1 GHz.

RESULTS

GPRS AND EDGE MODULATION

A preliminary scan determined the GPRS modulation as the worst case. The following plots show the results for GPRS modulation.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
3700.25	-38.54	Vertical	-54.10	2.70	11.88	-44.92

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
3760.25	-36.29	Vertical	-51.73	2.70	11.90	-42.53

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

Frequency (MHz)	Instrument reading (dBm)	Polarization	(1) Generator output (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gi (respect to isotropic radiator) (dB)	E.I.R.P. $(dBm) = (1) - (2) + (3)$
3819.25	-40.00	Vertical	-55.32	2.70	11.93	-46.09
7638.75	-48.94	Horizontal	-51.81	4.12	10.62	-45.32

Verdict: PASS

WCDMA AND HSUPA MODULATION

A preliminary scan determined the WCDMA modulation as the worst case. The following tables and plots show the results for WCDMA modulation.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
3707.25	-39.71	Vertical	-55.26	2.70	11.88	-46.08
4994.25	-53.29	Vertical	-65.55	3.19	12.09	-56.65

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

Frequency (MHz)	Instrument reading (dBm)	Polarization	(1) Generator output (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gi (respect to isotropic radiator) (dB)	E.I.R.P. $(dBm) =$ $(1) - (2) + (3)$
3762.25	-42.75	Vertical	-58.18	2.70	11.90	-48.98
4984.75	-52.53	Vertical	-64.81	3.18	12.08	-55.91

Page 32 of 63 2016-10-04

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

Frequency (MHz)	Instrument reading (dBm)	Polarization	(1) Generator output (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gi (respect to isotropic radiator) (dB)	E.I.R.P. $(dBm) = (1) - (2) + (3)$
3812.75	-42.79	Vertical	-58.13	2.70	11.93	-48.90
4989.25	-52.06	Vertical	-64.33	3.19	12.09	-55.43

Verdict: PASS

LTE QPSK AND 16QAM MODULATION. Band II. BW = 1.4 MHz, 3 MHz, 5 MHz, 10 MHz 15 MHz and 20 MHz.

A preliminary scan determined the QPSK 20 MHz bandwidth RB=1, Offset 0 as the worst case. The following tables and plots show the results for this configuration.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

Frequenc (MHz)	y Instrument reading (dBm)	Polarization	(1) Generator output (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gi (respect to isotropic radiator) (dB)	E.I.R.P. $(dBm) = (1) - (2) + (3)$
3701.75	-35.24	Vertical	-50.80	2.70	11.88	-41.62
5552.25	-46.25	Horizontal	-58.08	3.52	12.76	-48.84

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
3760.25	-37.39	Vertical	-52.83	2.70	11.90	-43.63
5640.25	-47.16	Horizontal	-59.06	3.40	12.87	-49.59

45355RRF.004 Page 33 of 63 2016-10-04

AT4 wireless, S.A.U.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-20 GHz.

Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
3818.75	-41.91	Vertical	-57.23	2.70	11.93	-48.00
5728.25	-45.24	Vertical	-56.80	3.67	12.97	-47.50
7637.75	-51.59	Vertical	-54.46	4.12	10.62	-47.97

Verdict: PASS

FREQUENCY RANGE 30 MHz-1000 MHz.

GPRS MODULATION

(This plot is valid for all three channels)

WCDMA MODULATION

(This plot is valid for all three channels)

LTE QPSK MODULATION. BW=20 MHz. Band II

(This plot is valid for all three channels)

FREQUENCY RANGE 1 GHz to 3 GHz.

GPRS MODULATION

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

Note: The peak above the limit is the carrier frequency.

WCDMA MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

CHANNEL: HIGHEST

LTE QPSK MODULATION. BW=20 MHz. Band II

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

FREQUENCY RANGE 3 GHz to 18 GHz.

GPRS MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

CHANNEL: HIGHEST

WCDMA MODULATION

CHANNEL: LOWEST

CHANNEL: MIDDLE

CHANNEL: HIGHEST

LTE QPSK MODULATION. BW=20 MHz. Band II

CHANNEL: LOWEST

CHANNEL: MIDDLE

AT4 wireless, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
www.at4wireless.com ⋅ C.I.F. A29 507 456

CHANNEL: HIGHEST

FREQUENCY RANGE 18 GHz TO 20 GHz.

GPRS MODULATION

(This plot is valid for all three channels)

WCDMA MODULATION

(This plot is valid for all three channels)

LTE QPSK MODULATION. BW=20 MHz. Band II

(This plot is valid for all three channels)

AT4 wireless, S.A.U.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 · 29590 Campanillas · Málaga · España www.at4wireless.com · C.I.F. A29 507 456

Appendix C – Test result for FCC Part 27/IC RSS-139/IC RSS-130

AT4 wireless, S.A.U.
Parque Tecnológico de Andalucía,
c/ Severo Ochoa nº 2 ⋅ 29590 Campanillas ⋅ Málaga ⋅ España
www.at4wireless.com ⋅ C.I.F. A29 507 456

INDEX

TEST CONDITIONS	51
Radiated emissions	52

TEST RESULTS FOR FCC PART 27 AND IC RSS-139/RSS-130

TEST CONDITIONS

Power supply (V):

Vnominal = 115 Vac

Vmax = N/A

Vmin = N/A

The subscripts nom, min and max indicate voltage test conditions (nominal, minimum and maximum respectively, as declared by the applicant).

N/A: Not Applicable.

Type of power supply = AC/DC adapter.

Type of antenna = External attachable antennae.

TEST FREQUENCIES:

LTE. QPSK AND 16QAM MODULATION (BAND IV)

	Channel (Frequency, MHz)								
	BW = 1.4 MHz	BW = 3 MHz	BW = 5 MHz	$\begin{array}{c} \mathrm{BW} = 10 \\ \mathrm{MHz} \end{array}$	BW = 15 MHz	BW = 20 MHz			
Lowest	19957	19965	19975	20000	20025	20050			
	(1710.70)	(1711.50)	(1712.50)	(1715.00)	(1717.50)	(1720.00)			
Middle	20175	20175	20175	20175	20175	20175			
	(1732.50)	(1732.50)	(1732.50)	(1732.50)	(1732.50)	(1732.50)			
Highest	20350	20385	20375	20350	20325	20300			
	(1754.30)	(1753.50)	(1752.50)	(1750.00)	(1747.50)	(1745.00)			

LTE. QPSK AND 16QAM MODULATION (BAND XVII)

	Channel (Frequency, MHz)						
	BW = 5 MHz	BW = 10 MHz					
Lowest	23755 (706.50)	23780 (709.00)					
Middle	23790 (710.00)	23790 (710.00)					
Highest	23825 (713.50)	23800 (711.00)					

Radiated emissions

SPECIFICATION

FCC §2.1051 and §27.53(g) (h). RSS-139 Clause 6.6. RSS-130 Clause 4.6.

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. P in watts.

METHOD

The measurement was performed with the EUT inside an anechoic chamber. The spectrum was scanned from 30 MHz to at least the 10th harmonic of the highest frequency generated within the equipment.

The EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter distance from the measuring antenna for measurements below 1 GHz and at 1 m distance for measurements above 1 GHz.

Detected emissions were maximized at each frequency by rotating the EUT and adjusting the measuring antenna height and polarization. The maximum meter reading was recorded. The radiated emissions were measured with peak detector and 1 MHz bandwidth.

Highest detected emissions are substituted by the Substitution method, in accordance with the ANSI/TIA/EIA-603-D.

Measurement Limit:

According to specification. the power of emissions shall be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. P in watts.

At Po transmitting power. the specified minimum attenuation becomes 43+10log (Po) and the level in dBm relative Po becomes:

Po $(dBm) - [43 + 10 \log (Po in mwatts) - 30] = -13 dBm$

TEST SETUP

Radiated measurements below 1 GHz.

Report No: (NIE) 45355RRF.004

Page 52 of 63 2016-10-04

Radiated measurements above 1 GHz.

RESULTS

LTE QPSK AND 16QAM MODULATION. Band IV. BW = 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz.

A preliminary scan determined the QPSK 1.4 MHz bandwidth RB=1, Offset 0 as the worst case. The configuration of Resource Blocks which is the worst case for conducted power was used.

The following tables and plots show the results for this configuration.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-18 GHz.

Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
3142.25	-29.42	Vertical	-45.51	2.40	11.16	-36.75
5132.25	-48.92	Horizontal	-60.67	3.24	11.82	-52.09
6843.25	-48.70	Vertical	-53.34	3.84	10.14	-47.04

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-18 GHz.

Frequency (MHz)	Instrument reading (dBm)	Polarization	(1) Generator output (dBm)	(2) Cable loss (dB)	(3) Substitution antenna gain Gi (respect to isotropic radiator) (dB)	E.I.R.P. $(dBm) = (1) - (2) + (3)$
3464.75	-38.71	Vertical	-54.87	2.50	11.74	-45.63
5197.75	-43.76	Horizontal	-55.62	3.20	11.97	-46.85
6930.25	-49.16	Vertical	-53.20	3.90	9.95	-47.15

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-18 GHz.

Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
3508.75	-35.21	Vertical	-51.36	2.51	11.80	-42.07
5262.75	-48.97	Horizontal	-60.87	3.23	12.13	-51.97
7017.75	-48.60	Vertical	-52.20	3.90	9.83	-46.27

Verdict: PASS

Page 54 of 63

LTE QPSK AND 16QAM MODULATION. Band XVII. BW = 5 MHz, 10 MHz, 15 MHz and 20 MHz.

A preliminary scan determined the QPSK 5 MHz bandwidth RB=1, Offset 0 as the worst case.

The following tables and plots show the results for this configuration.

1. CHANNEL: LOWEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-10 GHz.

Substitution method data

Duobilitation	Substitution method data							
Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =		
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)		
	(dBm)				(respect to isotropic			
					radiator) (dB)			
1413.25	-16.93	Vertical	-35.18	1.50	7.63	-29.05		
2119.75	-20.17	Vertical	-38.49	1.90	10.09	-30.30		
2826.85	-23.13	Vertical	-39.73	2.30	10.83	-31.20		
3533.35	-35.94	Vertical	-52.02	2.53	11.81	-42.74		
4240.15	-52.13	Vertical	-66.13	2.90	11.86	-57.17		

2. CHANNEL: MIDDLE

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-10 GHz.

Substitution method data

Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)
	(dBm)				(respect to isotropic	
					radiator) (dB)	
1420.45	-17.33	Vertical	-35.60	1.50	7.67	-29.43
2130.25	-22.80	Vertical	-41.11	1.90	10.11	-32.90
2840.35	-28.75	Vertical	-45.32	2.30	10.84	-36.78
3550.75	-38.64	Vertical	-54.66	2.55	11.82	-45.39
4261.15	-49.88	Vertical	-63.81	2.90	11.84	-54.87

Page 55 of 63 2016-10-04

3. CHANNEL: HIGHEST

Frequency range 30 MHz-1000 MHz.

No spurious signals were found in all the range.

Frequency range 1 GHz-10 GHz.

Substitution method data

D G C C C C C C C C C C C C C C C C C C	Substitution metrod data							
Frequency	Instrument	Polarization	(1) Generator	(2) Cable	(3) Substitution	E.I.R.P. (dBm) =		
(MHz)	reading		output (dBm)	loss (dB)	antenna gain Gi	(1) - (2) + (3)		
	(dBm)				(respect to isotropic			
					radiator) (dB)			
1427.35	-16.41	Vertical	-34.72	1.50	7.71	-28.51		
2140.75	-22.07	Vertical	-40.38	1.90	10.13	-32.15		
2854.75	-27.31	Vertical	-43.83	2.30	10.84	-35.29		
3568.45	-36.08	Vertical	-52.05	2.57	11.83	-42.79		
4282.45	-51.88	Vertical	-65.75	2.90	11.83	-56.82		

Verdict: PASS

FREQUENCY RANGE 30 MHz-1000 MHz.

LTE QPSK MODULATION. BW=1.4 MHz. Band IV

(This plot is valid for all three channels)

LTE QPSK MODULATION. BW=5 MHz. Band XVII

CHANNEL: LOWEST

CHANNEL: MIDDLE

Note: The peak above the limit is the carrier frequency.

CHANNEL: HIGHEST

FREQUENCY RANGE 1 GHz to 3 GHz.

LTE QPSK MODULATION.

BW=1.4 MHz. Band IV

CHANNEL: LOWEST

Note: The peak above the limit is the carrier frequency.

CHANNEL: MIDDLE

CHANNEL: HIGHEST

FREQUENCY RANGE 1 GHz to 10 GHz

LTE QPSK MODULATION. BW=5 MHz. Band XVII

CHANNEL: LOWEST

CHANNEL: MIDDLE

CHANNEL: HIGHEST

FREQUENCY RANGE 3 GHz to 18 GHz.

LTE QPSK MODULATION. BW=1.4 MHz. Band IV

CHANNEL: LOWEST

CHANNEL: MIDDLE

CHANNEL: HIGHEST

