Applied Statistical Methods II

Chapter #14

Logistic Regression, Poisson Regression, and Generalized Linear Models

Part III

Goodness-of-Fit

- What about a global measure of model fit?
 - Goodness-of-Fit tests H₀: Model fits well.
 - Linear regression: had the F-tests.
- Have three main tests of fit for logistic regression:
 - Pearson's χ²
 - Deviance test (aka Likelihood ratio)
 - Hosmer-Lemeshow
- Pearson's and the Deviance are only good if you have many repeats for covariate patterns.

Political Protest Example

- 360 Columbia University class of 1969 alum are sampled.
- They are asked:
 - Their current political affiliation with 1= strongly democrat and 7=strongly republican (ordered). In our example, we use that as one covariate *x* taking 7 ordered values, not treated as categorical.
 - Asked if they participated in any political protests in college.
- The observed data are summarized in the following table:

Protest Data

Party Identification	Protestors	Non Protestors
Strong Democrat	10	18
Weak Democrat	59	38
Leaning Democrat	41	22
Independent	26	7
Leaning Republica	n 44	10
Weak Republican	47	7
Strong Republican	29	2

Pearson's χ^2

- Assume that we have repeated observations at "c" different covariate patterns.
- Let Y_{ij} be the $i^{th} = 1, ..., n_j$ subject with j-th covariate pattern $X_{j1}, ..., X_{j(p-1)}, j = 1, ..., c$.
 - We will assume Y_{ij} | X_{j1},..., X_{j(p-1)} ~ Ber (π_j) are independent across i, j.
- $O_{j1} = \sum_{i=1}^{n_j} Y_{ij}$ and $O_{j0} = n_j O_{j1}$
- Note that $O_{j1} \sim Binomial(n_j, \pi_j)$ and $O_{j0} \sim Binomial(n_j, 1 \pi_j)$. Why?
- You fit the regression model $logit(\pi_i) = \beta_0 + \cdots + \beta_{p-1} X_{i(p-1)}$ to get $\hat{\pi}_1, \dots, \hat{\pi}_c$.
- Then the expected values of O_{i1} and O_{i0} are:
 - $E_{i1} = n_i \hat{\pi}_i$ and $E_{i0} = n_i E_{i1}$

Pearson's χ^2 , cont.

- Idea: compare the observed values of O_{j1} and O_{j0} to what you would expect under the regression model $\operatorname{logit}(\pi_i) = \beta_0 + \cdots + \beta_{p-1} X_{j(p-1)}$.
- Pearson's statistic compares the observed numbers to the expected estimated from the regression model

$$X^{2} = \sum_{j=1}^{c} \sum_{k=0}^{1} \frac{\left(O_{jk} - E_{jk}\right)^{2}}{E_{jk}} = n \sum_{j=1}^{c} \frac{\left(O_{j1}/n - E_{j1}/n\right)^{2}}{\left(E_{j1}/n\right)\left(1 - E_{j1}/n\right)}$$

- Under the null H_0 : logit(π_i) = $\beta_0 + \cdots + \beta_{p-1} X_{i(p-1)}$
 - X^2 is asymptotically χ^2_{c-p} .
 - Reject the model for large values of X²
 - Distribution only holds if n_j is large for all j.

Deviance Test

- Also assumes you have repeated covariate patterns.
- DEV is the likelihood ratio test of the current model to the saturated model.
- Under the saturated model
 - Observations from one group have no effect on the estimated mean of another group.
 - $\bullet \ \hat{\pi}_{ij} = O_{j1}/n_j$

Deviance Test, cont.

- The likelihood ratio test first fits the proposed model $logit(\pi_{ij}) = \beta_0 + \cdots + \beta_{p-1} X_{j(p-1)}$
 - Get the log-likelihood $\ell(M)$.
- Fit the saturated model to get the log-likelihood $\ell(F)$.
- Form the statistics $Dev = -2 [\ell(M) \ell(F)]$.
- When n_j are large, *Dev* is approximately χ^2_{c-p} .

Deviance Table

- Deviance is additive and can be used to compare the fit of a sequence of nested models.
- Based on the likelihood ratio tests.
- This serves the analogous function to the F-test that is used in the normal model.

$Deviance\ table\ ("ANOVA\ table"):$

Sequence of models	Deviance (e.g.)	Diff	df	$\chi_p^2 \ (p=1)$
X_1, X_2, X_3	50			
X_1, X_2	70	20	1	$P < 10^{-3}$
X_1	100	30	1	
0	200	100	1	

Protest Data

		Non
Party Identification	Protestors	Protestors
Strong Democrat	10	18
Weak Democrat	59	38
Leaning Democrat	41	22
Independent	26	7
Leaning Republicar	ո 44	10
Weak Republican	47	7
Strong Republican	29	2

Political Protest Example

- n = 360, c = 7, p = 2, $n_1 = O_{11} + O_{10} = 10 + 18 = 28$ and so on.
- Fit a logistic model: there is a linear relationship between the logit of the probability of protesting and political leaning.
 - $Y_{ij} \mid X_{j1}, \dots, X_{j(p-1)} \sim Ber(\pi_j), j = 1, \dots, c.$
 - $logit(\pi_j) = \beta_0 + \beta_1 X_{j1} + \cdots + \beta_{p-1} X_{j(p-1)}$
- Do a goodness-of-fit test to see if the logistic model fits well.

Entering Aggregated Data

- Given this table, you would not want to enter a row for each subject.
- What cell subject *j* falls into does not matter.
- Only the sufficient statistics O_{i1} , O_{i0} are important.

Goodness-of-Fit For the Crab Data

- We will consider the crab data set and the model:
 - Color is linearly associated with having any satellites.
- Color=1,2,3,4 goes from light to dark.
- y=1 if satellites are present and 0 otherwise.

Hosmer-Lemeshow Test

- The Hosmer-Lemeshow test is good for continuous variables.
- Fit a logistic regression and get $\hat{\pi}_i$ for i = 1, ..., N and sort in increasing order.
- An algorithm is used to combine the observations into c (usually 10) groups based on the closeness of $\hat{\pi}_i$.
 - Idea: under H_0 : logistic model is correct, $\pi(x_i) \approx \pi(x_j)$ if $||x_i x_j||$ is small.
 - Choice of c will depend on p. Ideally, $c \propto K^{(p-1)} \Rightarrow$ really only useful for small problems.
 - See Applied Logistic Regression by D.W. Hosmer and S. Lemeshow for details.
- Perform a Pearson's χ^2 in the binned data.
- The distribution can be approximated by χ^2 with df = c-2.

SAS Examples for HL test

- Hosmer-Lemeshow test is specific to logistic regression -GENMOD does not do it.
- Must use Proc LOGISTIC.
- We will consider a model that looks at the linear relationship between width and having any satellites for the Crab data, and also look at the IPO example from the book.

IPO example from the text

- Study of 482 initial public offering companies (IPOs)
- $Y_i = 1$ if financed by venture capital funds.
- X_i = face value of the company.
- Let's look at SAS examples.

Residuals

- Since Y_i is 0 or 1, the raw residuals are not that helpful.
- There are two main types of residuals that are common for identifying model fit and outliers.
 - Pearson's
 - Deviance
- Person's Residuals:
- $\bullet r_{p_i} = \frac{Y_i \hat{\pi}_i}{\sqrt{\hat{\pi}_i (1 \hat{\pi}_i)}}$
- Is called Pearson's Residuals since $X^2 = \sum_{i=1}^n r_{p_i}^2$

 The studentized residual divides by the square root of 1 the diagonal of the hat matrix.

$$r_{s_i} = \frac{r_{p_i}}{\sqrt{1-h_{ii}}}$$

- $H = W^{1/2}X(X^TWX)^{-1}X^TW^{1/2}$.
- $W^{1/2}$ is the diagonal matrix of $\sqrt{\pi_i(1-\pi_i)}$.
- Derivation (this argument applies for all GLMs using the canonical link): From HW2, there exists a function $K(\theta)$ such that $K'(\theta) = E_{\theta}(y)$ and $K''(\theta) = \text{Var}_{\theta}(y)$.

$$\hat{\pi}_{i} = K'\left(x_{i}^{T}\hat{\beta}\right) \approx K'\left(x_{i}^{T}\beta\right) + K''\left(x_{i}^{T}\beta\right)x_{i}^{T}\left(\hat{\beta} - \beta\right)$$
$$\hat{\beta} - \beta \approx -(X^{T}WX)^{-1}X^{T}(Y - \pi)$$
$$\Rightarrow Y - \hat{\pi} \approx (I_{n} - WX(X^{T}WX)^{-1}X^{T})(Y - \pi)$$

Therefore, $Var(Y - \pi) \approx W^{1/2} (I_n - H) W^{1/2}$

Deviance Residuals

- For independent data, can write
 - $0 < \text{deviance of the model} = \sum_{i=1}^{n} dev_i^2$.
 - If model is correct, and since the model is a sub-model of the *saturated model* (each data point Y_i has a parameter), then $\sum_{i=1}^{n} dev_i^2 \approx \chi_{n-p}^2$.
 - Akin to residual sum of squares in linear regression.
- The deviance residual is $dev_i = sign(Y_i \hat{\pi}_i)\sqrt{-2\left[Y_i\log(\hat{\pi}_i) + (1 Y_i)\log(1 \hat{\pi}_i)\right]}$.
- Also has a standardized version: $\frac{dev_i}{\sqrt{1-h_{ii}}}$.
- Usually the deviance residuals are preferred to Pearson's.
 - Neither one of them has as nice of properties as the residuals for linear reg.
 - Pearson's can be skewed for reasons that do not relate to the fit of the model.

Deviance Residuals

- For independent data, can write $0 < \text{deviance of the model} = \sum_{i=1}^{n} dev_i^2$.
 - If model is correct, and since the model is a sub-model of the *saturated model* (each data point Y_i has a parameter), then $\sum_{i=1}^{n} dev_i^2 \approx \chi_{n-p}^2$.
 - Akin to residual sum of squares in linear regression.
- The deviance residual is $dev_i = sign(Y_i \hat{\pi}_i)\sqrt{-2[Y_i\log(\hat{\pi}_i) + (1 Y_i)\log(1 \hat{\pi}_i)]}.$
- Also has a standardized version: $\frac{dev_i}{\sqrt{1-h_{ii}}}$.
- Usually the deviance residuals are preferred to Pearson's.
 - Neither one of them has as nice of properties as the residuals for linear reg.
 - Pearson's can be skewed for reasons that do not relate to the fit of the model.

Use of the Residuals

- The residuals can be used to identify overall model fit and to find influential observations.
- Based on a plot of either the Studentized Pearson's or Deviance residual vs. the fitted value.
- For large sample sizes: E(residual) = 0.
- A loess plot through the residual plot should be close to a straight line.
- In linear regression, could preform outlier tests.
- In logistic regression, it is much more subjective.
 - Look for extremes and their influence on the fit.

Generalized Additive Models

- In linear regression we have additive models $E(y) = f_1(x_1) + f_2(x_2) + \cdots + f(x_p)$, where f functions can be estimated by smoothing.
- In logistic regression, Y_i is 0 or 1, so direct smoothing approaches do not work well.
- $GLM \rightarrow GAM \rightarrow GLM$
 - $logit(\mu) = f_1(x_1) + f_2(x_2) + \cdots + f(x_p).$
 - check if f functions are near linear, can be used as a model building tool for GLM.
 - use R function "gam". I will post an example on Canvas.

