

SERVEUR LINUX

Installation et configuration

 $2^{\rm \`eme}$ Bachelier en Informatique

Projet Linux

Auteur:

Auteur:

Terencio Agozzino

Alexandre Ducobu

Enseignants:

Antoine Malaise

Julien DE BODT

Année académique 2016 - 2017

SERVEUR LINUX INSTALLATION ET CONFIGURATION

 $2^{\rm \`eme}$ Bachelier en Informatique

Projet Linux

Auteur: Auteur:

Terencio Agozzino Alexandre Ducobu

Enseignants:

Antoine Malaise

Julien De Bodt

Année académique 2016 - 2017

Ce document est mis à disposition selon les termes de la licence Creative Commons				
"Attribution - Pas d'utilisation commerciale 4.0 International".				
BY NC ND				

Table des matières

1	Pré	sentation générale du projet	3
	1.1	Introduction	3
	1.2	Déontologie	4
	1.3	Sécurité	4
2	Cho	oix	5
	2.1	Distribution	5
	2.2	Langue	7
	2.3	Noyau	7
	2.4	Partitionnement	7
	2.5	Sauvegardes	8
3	Ser	vices	9
	3.1	NTP	9
	3.2	SSH	12
	3.3	NFS	14
	3.4	Samba	16
	3.5	Quotas	18
	3.6	Base de données	19
	3.7	Serveur Web	20
	3.8	FTP	21
	3.9	DNS	22
\mathbf{R}_{0}	éfére	nces	24

1 Présentation générale du projet

1.1 Introduction

Dans le cadre de ce projet, il nous a été demandé d'administrer un serveur sous Linux.

Le choix de la distribution ainsi que la gestion des sauvegardes est libre et devra être justifié.

Le serveur devra contenir:

- un partage NFS qui permettra aux utilisateurs du réseaux local d'y stocker des fichiers;
- un partage *Samba* qui permettra aux utilisateurs de Windows d'accéder à ce même partage;
- un serveur Web, FTP, MySQL et DNS qui permettra un hébergement multi-utilisateurs;
 - le FTP permettra à chaque utilisateur d'accéder à son dossier Web;
 - une zone contenu le DNS sera indispensable pour les sites Web de l'utilisateur.
 - le DNS fera également office de DNS cache pour le réseau local.
- un serveur NTP pour que les machines du réseau local puissent se synchroniser;
- le support du module SSH.

1.2 Déontologie

En tant qu'administrateurs du serveur, nous serons tenus de suivre de nombreuses règles telles que :

- la documentation des actions entreprises sur le serveur;
- l'automatisation des installations et configurations au travers de scripts;
- la sécurité : mise en place de mots de passe forts, du SSH, etc.;
- la vigilance et la prévoyance, par exemple par la mise en place de sauvegardes avant et après chaque changements sur le serveur;
- le contrôle du bon fonctionnement de chaque élément.

1.3 Sécurité

Du côté de la sécurité, quelques contraintes seront prises en compte :

- mise en place d'une politique utilisateur;
- mise en place de quotas;
- partitionnement et gestion du disque (LVM et RAID);
- mise en place d'une stratégie de sauvegarde;
- désactivation des éléments inutiles et des mises à jours;
- mise en place d'un antivirus, d'un firewall, etc.

2 Choix

2.1 Distribution

Le choix de la distribution s'est naturellement porté sur Debian, pour ses nombreux avantages. En voici quelques exemples :

- Large communauté : grâce à cela, les erreurs et problèmes rencontrés ont souvent plusieurs solutions connues et éprouvées.
- Plusieurs architectures et noyaux : Debian supporte la majorité des architectures de processeurs comme AMD, Armel, i386, MIPS, etc. Elle supporte aussi de nombreux noyaux tels que FreeBSD et GNU Hurd.
- Sécurité : vu que la distribution est open-source, cela signifie que les backdoors sont presque inexistantes. De surcroît, lorsqu'une faille de sécurité est détectée, celle-ci est rapidement corrigée par la communauté.
 - En outre, Debian comprend de nombreux logiciels de sécurité tels que GPG (et PGP), SSH et autres.
- Stabilité : nous savons que les serveurs doivent avoir le plus grand temps d'accessibilité ($\approx 99.999\%$). Sous Debian, il existe de nombreux exemples de machines qui tournent sans arrêt pendant des années, mis à part lors de pannes ou de mises à jour matérielles.
- Système de paquets : grâce au système de paquets, les distributions Linux ont la possibilité d'installer de nombreux logiciels par une seule ligne de commande.

FIGURE 1 – Différences entre Debian et Ubuntu

De même, la distribution Debian est plus professionnel et celle-ci possède le leadership depuis des années.

Remarque : depuis mai 2016, Ubuntu a les mêmes parts de marché que Debian.

La distribution Ubuntu n'a pas été choisi pour les raisons suivantes :

- Dérivé de Debian : de ce fait, un administrateur sachant configurer un serveur sous
 Debian pourra facilitement s'adapter aux serveur sous Ubuntu.
- Vise le grand public. Par conséquent, est beaucoup moins utilisé dans le milieu professionnel.
- Assez récent sur le marché du serveur.
- Moins performant que Debian.

Concernant les autres distributions, CentOS est en baisse, mais reste au-dessus de Red Hat et de Fedora qui sont en chute libre.

FIGURE 2 – Parts de marché des distributions Linux

2.2 Langue

Pour le choix de la langue lors de l'installation, il a été préféré d'utiliser l'anglais vu que la majorité des documentations et forums sont disponibles dans cette langue. De plus, cela permet d'éviter une mauvaise traduction concernant les nouvelles mises à jour et de toucher un plus large public possible.

2.3 Noyau

Un noyau (monolithique¹) modulaire a été choisi afin de gérer les modules. En effet, celui-ci facilite l'ajout et la suppression de modules à chaud. Ces modules, pas toujours indispensables, peuvent être la source de failles et de bugs.

2.4 Partitionnement

Le partionnement du disque a été réalisé avec une partition racine, /boot, et un groupe de volume LVM nommé VolGroup. De sucroît, deux disques de 10 Go en RAID 1 ont été utilisés.

/boot primary 512 ext4 VolGroup logical 20958 lym	Label	Type	Taille (Mo)	Format
VolGroup logical 20958 lym	/boot	primary	512	ext4
1081041	VolGroup	logical	20958	lvm

LVsrv (/srv)	lvm	6144	ext4
LVswap (/swap)	lvm	4096	swap
LVhome (/home)	lvm	2048	ext4
LVroot (/root)	lvm	2048	ext4
LVusr (/usr)	lvm	2048	ext4
LVopt (/opt)	lvm	2048	ext4
LVvar (/var)	lvm	1024	ext4
LVtmp (/tmp)	lvm	1024	ext4

Table 1 – Tableau du partitionnement (avec LVM)

^{1.} Les fonctions du système et pilotes sont regroupés dans le kernel space généré à la compilation.

2.5 Sauvegardes

Dans le milieu de l'entreprise, deux types de sauvegarde sont principalement utilisées : incrémentielle ² et différentielle ³.

Afin de trouver un compromis, ces deux types de sauvegardes ont été utilisés :

- 1. différentielle : afin de restaurer les données plus rapidement par rapport à la sauvegarde incrémentielle ;
- 2. incrémentielle : pour une rapidité de sauvegarde et un stockage en mémoire plus économe que la sauvegarde différentielle.

Dans le but d'éviter de perturber l'accès au serveur, tous les jours à deux heures du matin, une sauvegarde incrémentielle est lancée à l'aide d'un $cron^4$, dans le but d'enregistrer les données modifiées et créées en cette journée.

```
crontab -e 0 2 * * * /usr/bin/backup-make.sh -i
```

Quant à la sauvegarde différentielle, celle-ci s'opère uniquement le dimanche à 2 heures du matin. Le dimanche étant un jour de congé pour la majorité du monde, ce qui aura un impact mineur sur les performances du serveur.

```
crontab -e 0 2 * * 0 /usr/bin/backup-make.sh -d
```

<u>Remarque</u>: à défaut d'utiliser *fcron* n'étant plus disponible sur Debian, le serveur doit être alimenté à l'heure de l'exécution du *cron*. Néanmoins, cela ne pose pas de difficultés, vu que le rôle du serveur est de fournir une disponibilité permanente.

Il est à noter que chacune de ces sauvegardes se fera sur un disque dur externe.

^{2.} Sauvegarde exclusivement les données modifiées ou ajoutées depuis la précédente sauvegarde.

^{3.} Sauvegarde les données modifiées ou ajoutées en référence à la dernière sauvegarde complète.

^{4.} Gestionnaire des tâches sous Linux devant être exécutées à un moment précis.

3 Services

3.1 NTP

Le NTP (*Network Time Protocol*), est le protocole utilisé afin de synchroniser les machines du reseau local en fonction de l'horloge du serveur.

3.1.1 Principe

Bien que tout équipement informatique dispose d'une horloge, celle-ci dérive comme toute montre ordinaire, ce qui peut amener a des erreurs de synchronisation.

La nécessité de synchroniser des équipements en réseau paraît alors évidente.

Chaque machine peut être à la fois serveur et cliente. Celle-ci sélectionnera un serveur de temps dans sa configuration, et récupérera l'heure, ainsi qu'un numéro de strate, n, et se déclarera de strate n + 1.

L'architecture du réseau est en arborescence, et divisée en trois couches :

- 1. les plus précises sources (horloges atomiques, récepteurs GPS, \dots) sont de strate 0;
- 2. les serveurs diffusant l'heure des sources sont de strate 1;
- 3. les serveurs de strate 2 sont généralement accessibles au public.

3.1.2 Configuration du serveur

La totalité de l'implémentation se trouve dans le fichier /etc/ntp.conf

Voici les différentes étapes et options qui ont été effectuées :

- activation des statistiques NTP;
- ajout de trois serveurs (un belge et deux européens);
- activation de l'échange de l'heure avec tout le monde (aucune modification n'est acceptée);
- activation de la synchronisation avec les machines du réseau local.

```
# Adjust time server
  ntpdate 1.be.pool.ntp.org
  driftfile /var/lib/ntp/ntp.drift
  # Statistics loopstats peerstats clockstats
  filegen loopstats file loopstats type day enable
  filegen peerstats file peerstats type day enable
  filegen clockstats file clockstats type day enable
12
  # You do need to talk to an NTP server or two (or three).
13
  server 1.be.pool.ntp.org iburst
14
  server 3.europe.pool.ntp.org
  server 2.europe.pool.ntp.org
17
  # By default, exchange time with everybody, but don't
  # allow configuration.
  restrict -4 default kod notrap nomodify nopeer noquery
  restrict -6 default kod notrap nomodify nopeer noquery
21
  # Local users may interrogate the ntp server more closely.
  restrict 127.0.0.1
  restrict 10.1.0.0 mask 255.255.0.0 nomodify notrap nopeer
  restrict ::1
27
  # To provide time to the local subnet.
28
  broadcast 10.1.255.255
30
31
```

Remarque : l'adresse de diffusion (broadcast) a été adapté en fonction du réseau.

3.1.3 Configuration du client

Tout comme le serveur, la totalité de l'implémentation se trouve dans le fichier /etc/ntp.confSur le client, la configuration est beaucoup plus simple :

- activation des statistiques NTP;
- ajout du serveur local.

```
# Adjust time server

# Adjust time server

# ntpdate 1.be.pool.ntp.org

# File containing the average deviation.

# driftfile /var/lib/ntp/ntp.drift

# Desired Statistics

# statistics loopstats peerstats clockstats

# filegen loopstats file loopstats type day enable

# filegen peerstats file peerstats type day enable

# filegen clockstats file clockstats type day enable

# you do need to talk to an NTP server or two (or three).

# server 10.1.214.184 prefer
```

Remarque : l'adresse IP 10.1.214.184 étant celle du serveur NTP.

3.2 SSH

Le SSH (Secure Shell), est un protocole de communication sécurisé. Celui-ci impose un échange de clés de chiffrement en début de connexion.

3.2.1 Type d'authentification

Il existe plusieurs manières de s'authentifier sur le serveur via SSH.

Les deux plus utilisées sont :

- 1. L'authentification par mot de passe;
- 2. L'authentification par clés publique et privée du client.

L'identification automatique par clés a été mise en place pour ce serveur. De ce fait, il est nul nécessaire d'entrer le mot de passe à chaque connexion à distance.

Cette méthode est plus complexe à mettre en place, mais elle surtout plus pratique.

On remarque rapidement son utilité si on se connecte fréquemment au serveur, car plus aucun mot de passe n'est demandé.

3.2.2 Implémentation

La majorité de l'implémentation se trouve dans le fichier $/etc/ssh/sshd_config$. Le serveur a été configuré respectant ces critères :

— installation de openssh;

```
# Installation of OpenSSH.

apt-get install openssh-server -y
```

— changement de port et passage à la version 2 de SSH pour plus de sécurité;

```
# Using port number 62000
Port 62000
# Using Protocol 2 of SSH
Protocol 2
```

- ajout d'une bannière (disponible dans le fichier /etc/ssh-banner/banner);
- The debianThink server is for authorized personnel only.
- 2 WARNING! Access to this device is restricted to those
- individuals with specific permissions. If you are not an
- authorized user, disconnect now. Any attempts to gain
- 5 unauthorized access will be prosecuted to the fullest
- extent of the law.
- 7
- 8 All access and use may (not will) be monitored
- 9 and/or recorded.
- connexion en tant que **root**;
- 1 # Privilege separation for security
- UsePrivilegeSeparation yes
- déconnexion après 120 secondes d'inactivité;
- 1 # Deactivation of the login in root and disconnection
- # after 120 seconds if no connections
- 3 LoginGraceTime 120
- 4 PermitRootLogin no
- 5 StrictModes yes
- désactivation de la connexion par mot de passe, vu que l'authentification passe par les clés RSA.

```
# We deny the authentication by MDP.
```

PasswordAuthentication no

Ensuite, une génération et un chiffrement d'une paire de clés publique / privée sur la machine cliente a été nécessaire.

```
ssh-keygen -t rsa -b 4096 -C $email -f "/$USER/.ssh/id_rsa" \ -N ""
```

Une fois cela fait, la clé publique de celle-ci a été enregistrée sur le serveur dans le fichier /etc/ssh/ssh_host_rsa_key afin d'accepter sa connection au serveur.

3.3 NFS

Le NFS (*Network File System*), est un protocole qui permet à un ordinateur d'accéder à des fichiers distants via un réseau.

Ce système de fichiers en réseau permet de partager des données principalement entre systèmes UNIX.

3.3.1 Constatation

Avant de commencer, il est à remarquer que, quelle que soit sa version, NFS est a déployer dans un réseau local et n'a pas de vocation à être ouvert sur Internet.

En effet, les données qui circulent sur le réseau ne sont pas chiffrées et les droits d'accès sont accordés en fonction de l'adresse IP du client (qui peut être usurpée).

3.3.2 Configuration côté serveur

La totalité de l'implémentation se trouve dans le fichier /etc/exports.

Voici les différentes étapes et options que nous avons effectuées :

— installation des différents services indispensables au NFS;

```
# Installation of NFS.

apt-get install nfs-kernel-server nfs-common -y
```

— création du dossier de partage, et ajout de droits spécifiques;

```
mkdir /srv/share
chmod 777 /srv/share
```

— activation du partage sur le réseau local et configuration dudit partage (autorise la lecture et l'écriture, retire les droit **root** à distance et désactivation de la vérification de sous-répertoires);

```
/srv/share 192.168.0.0/16(rw,no_subtree_check,root_squash)
```

— mises à jour de la tables des systèmes de fichiers partagés.

```
# Update the table of exported file systems.

exportfs -av
```

3.3.3 Configuration côté client

Sur le client, la configuration est similaire :

— installation des différents services indispensables au NFS;

```
# Installation of NFS.

apt-get install nfs-common -y
```

— création du dossier de partage, et ajout de droits spécifiques;

```
mkdir /mnt/share/users
chmod 777 /mnt/share/users
```

— installation d'AutoFS;

```
# Installation of AutoFS.
apt-get install AutoFS
```

— configuration d'AutoFS

Contenu du fichier /etc/auto.master :

```
/mnt/share /etc/auto.nfs --ghost,timeout=30
```

Contenu du fichier /etc/auto.nfs:

```
users -noexec, nosuid, rw, ghost \
192.168.77.131:/srv/share/users
```

Remarque : l'adresse IP 192.168.77.131 étant celle du serveur NFS.

La configuration ci-dessus permet la création d'un point de montage lors de l'accès au répertoire. La durée d'activité après le dernier accès au dossier partagé \Rightarrow au moins 30 secondes pour un partage samba, etc.).

3.4 Samba

Samba est un outil permettant de partager des dossiers et des imprimantes à travers un réseau local.

Son utilisation est conseillée pour partager de manière simple des ressources entre plusieurs ordinateurs.

Celui-ci est compatible avec les systèmes d'exploitation suivants : Windows, macOS, ainsi que des systèmes GNU/Linux, *BSD et Solaris dans lesquels une implémentation de Samba est installée.

3.4.1 Configuration

La configuration du serveur Samba se déroule en trois parties, mais tout d'abord, il est nécessaire de créer le dossier de partage et de lui donner les droits appropriés.

```
mkdir -p /srv/share/users/
chown -R root:users /srv/share/users/
chmod -R 775 /srv/share/users/
```

La totalité de l'implémentation se trouve dans le fichier /etc/samba/smb.conf.

1. configuration de Samba (désignation du workgroup, choix du nom de netbios, etc.);

```
# Installation of Samba.
apt-get install libcups2 samba samba-common cups
# If you don't know the name of the workgroup
# run this command on the Windows client to get
# the workgroup name: net config workstation.
[global]
workgroup = WORKGROUP
server string = Samba Server %v
netbios name = debian
security = user
map to guest = bad user
dns proxy = no
```

2. configuration du partage pour le groupe « users » (désignation du chemin, des droits, etc.);

```
[users]
comment = All Users

path = /srv/share/users

valid users = @users

force group = users

create mask = 0660

directory mask = 0771

writable = yes
```

3. configuration du partage du dossier « *home* » des utilisateurs (désignation des droits, vérification de l'identité, etc.).

```
[homes]
comment = Home Directories
browseable = no
valid users = %S
writable = yes
create mask = 0700
directory mask = 0700
```

3.5 Quotas

Dans le but de mieux gérer l'espace personnel de chaque utilisateur, des quotas ont été mis en place sur les partitions /home et /share.

À la création de chaque utilisateur, un quota avec une limite dur 5 de 500 Mo et une limite douce 6 de 400 Mo, lui sera attribué.

Remarque : lors du dépassement de la limite douce, l'utilisateur sera averti.

```
# Installation of quotatool, useful for scripts.
  apt-get install quota quotatool
  # Unmout the /home partition.
  user -k /dev/mapper/VolGroup-LVhome
  umount -1 /dev/mapper/VolGroup-LVhome
  # Unmout the /srv/share partition
  user -k /srv/share
  umount -1 /srv/share
  # Add this to /etc/fstab to the /home and /srv/share line
  usrquota, grpquota
12
  # Create the file 'aquota.user' and aquota.group' and
13
  # initialize all the partitions that contains quotas.
  quotacheck -cagumv
  # Mount the /home partition.
17
  mount /dev/mapper/VolGroup-LVhome
  # Mount the srv/share partition.
  mount /srv/share
20
  # Activate quota.
  quotaon -avug
```

^{5.} Limite que nul ne peut dépasser.

^{6.} Limite que l'utilisateur (ou groupe) peut dépasser pendant un certain laps de temps.

3.6 Base de données

Le serveur utilise Maria DB, un fork communautaire de MySQL édité sous
 $licence\ GPL.$

MySQL est un système de gestion de bases de données relationnelles. Il fait partie des logiciels de gestion de base de données les plus utilisés au monde, autant par le grand public que par des professionnels.

3.6.1 Mise en place

La totalité de l'implémentation se trouve dans le fichier /usr/bin/deepblue.sql

La base de données a été installée et configurée sur le serveur en différentes étapes :

```
— installation de MariaDB par APT (Advanced Package Tool);
```

```
apt-get install mariadb-server -y
```

— configuration sécurisée de l'installation de MariaDB;

```
nysql_secure_installation
```

— création de la base de données, nommée deepblue;

```
CREATE DATABASE IF NOT EXISTS deepblue
CHARACTER SET 'utf8'
COLLATE utf8_general_ci;
```

— création de la table « users » contenant les différents utilisateurs.

```
USE deepblue;

CREATE TABLE IF NOT EXISTS users (
   id INT NOT NULL AUTO_INCREMENT,
   username VARCHAR(30) NOT NULL,
   created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
   updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
   CONSTRAINT pk_users PRIMARY KEY(id)

PENGINE=InnoDB;
```

3.7 Serveur Web

3.8 FTP

Un serveur FTP (*File Transfer Protocol*), permet de transférer des fichiers par Internet ou par le biais d'un réseau informatique local (intranet). Dans notre cas, il sera disponible au travers du réseau local.

3.8.1 Choix du serveur

Pour un maximum de sécurité, VsFTPd (*Very Secure FTP Daemon*) a été utilisé. Ce serveur FTP est fortement axé sécurité : c'est l'un des premiers logiciels serveurs à mettre en œuvre la séparation des privilèges, minimisant ainsi les risques de piratage.

Dans sa configuration par défaut, VsFTPd est très restrictif :

- Seul le compte anonyme est autorisé à se connecter au serveur, et en lecture seule;
- Les utilisateurs ne peuvent accéder qu'à leur compte.

3.8.2 Configuration

À terminer...

3.9 DNS

Le DNS (*Domain Name System*), est un service permettant de résoudre un nom de domaine.

De fait, les serveurs étant identifiés par leur adresse IP, il a fallu créer un processus afin d'associer leur adresse à un nom plus simple à retenir, le « nom de domaine ».

3.9.1 Sélection du DNS

Il a été choisi d'utiliser BIND9 (Berkeley Internet Name Daemon).

Celui-ci est le serveur DNS le plus utilisé sur Internet, spécialement sur les systèmes de type UNIX et est devenu de facto un standard.

3.9.2 Mise en place

La majorité de l'implémentation se trouve dans le fichier /etc/bind/named.conf.options.

Le DNS a été installé et configuré sur le serveur en différentes étapes :

— installation de BIND9;

```
# Installation of bind9.

apt-get install bind9 bind9utils bind9-doc -y
```

— création des ACL (Access Control List) définissant le réseau local;

```
acl goodclients {
   10.1.0.0/16;
   localhost;
   localnets;
};
```

- création et configuration du serveur DNS en lui-même :
 - acceptation des requêtes uniquement pour le réseau interne;

```
recursion yes;
allow-query { goodclients; };
```

• configuration des forwarders;

```
forwarders {
    8.8.8.8;
    8.8.4.4;
};
forward only;
```

• activation de *DNSSEC* qui sécurise les données envoyées par le DNS;

```
dnssec-enable yes;
dnssec-validation yes;
```

 \bullet implémentation de la RFC1035 $^{7~8}.$

```
# Conform to RFC1035
auth-nxdomain no;
listen-on-v6 { any; };
```

^{7.} http://abcdrfc.free.fr/rfc-vf/rfc1035.html

^{8.} http://www.bortzmeyer.org/1035.html

Références

- [1] ASTUCES-INFO.COM. Debian : Ajouter des quotas sur le disque dur, Site, [en ligne]. https://www.astuces-info.com, (consulté le 23 mai 2017).
- [2] COUTAREL, J. Installation du serveur Web Apache sur un serveur dédié Kimsufi sous Ubuntu Server 14.04 LTS, Site, [en ligne]. https://justincoutarel.fr, (consulté le 17 mai 2017).
- [3] DUCEA, M. Apache Tips & Tricks: Hide Apache Software Version, Site, [en ligne]. http://www.ducea.com, (consulté le 17 mai 2017).
- [4] Gelbmann, M. Ubuntu became the most popular Linux distribution for web servers, Site, [en ligne]. http://www.w3techs.com, (consulté le 15 février 2017).
- [5] KROUT, E. Apache Web Server on Debian 8 (Jessie), Site, [en ligne]. https://www.linode.com, (consulté le 17 mai 2017).
- [6] LA COMMUNAUTÉ DE WIKIPÉDIA. MariaDB, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 23 mai 2017).
- [7] LA COMMUNAUTÉ DE WIKIPÉDIA. Network File System, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 23 mai 2017).
- [8] LA COMMUNAUTÉ DE WIKIPÉDIA. Samba (informatique), Site, [en ligne]. https://fr.wikipedia.org, (consulté le 23 mai 2017).
- [9] LA COMMUNAUTÉ DE WIKIPÉDIA. Secure Shell, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 23 mai 2017).
- [10] LA COMMUNAUTÉ DE WIKIPÉDIA. BIND, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 27 mai 2017).
- [11] LA COMMUNAUTÉ DE WIKIPÉDIA. Domain Name System, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 27 mai 2017).
- [12] LA COMMUNAUTÉ DE WIKIPÉDIA. Serveur FTP, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 27 mai 2017).
- [13] LA COMMUNAUTÉ DE WIKIPÉDIA. VsFTPd, Site, [en ligne]. https://fr.wikipedia.org, (consulté le 27 mai 2017).
- [14] LaTeX. A document preparation system. (consulté le 15 février 2017).

- [15] MEUH. NTP Clock is not syncing to low stratum server, Site, [en ligne]. http://s-tackoverflow.com, (consulté le 28 mars 2017).
- [16] RUCHI. NTP Server and Client Configuration in debian, Site, [en ligne]. http://www.debianadmin.com, (consulté le 23 mars 2017).
- [17] SVERDLOV, E. How To Create a New User and Grant Permissions in MySQL, Site, [en ligne]. https://www.digitalocean.com, (consulté le 23 mai 2017).
- [18] THE DEBIAN COMMUNITY. NTP, Site, [en ligne]. https://wiki.debian.org/NTP, (consulté le 23 mars 2017).
- [19] The Debian Support. Configuration serveur NTP, Site, [en ligne]. https://www.debian-fr.org, (consulté le 23 mars 2017).