- **1.** Utilitzant les equivalències donades en la llista següent, justifica l'equivalència entre les fórmules $\neg((A \lor B) \land \neg(A \land B))$ i $\neg(A \land B) \rightarrow (\neg A \land \neg B)$
 - (a) $P \wedge Q \equiv Q \wedge P$ (commutativa de la conjunció)
 - **(b)** $P \lor Q \equiv Q \lor P$ (commutativa de la disjunció)
 - (c) $(P \land (Q \land R)) \equiv ((P \land Q) \land R)$ (associativa de la conjunció)
 - (d) $(P \lor (Q \lor R)) \equiv ((P \lor Q) \lor R)$ (associativa de la disjunció)
 - (e) $\neg \neg P \equiv P$ (doble negació)
 - (f) $\neg (P \land Q) \equiv \neg P \lor \neg Q$ (negació d'una conjunció) (llei de De Morgan)
 - **(g)** $\neg (P \lor Q) \equiv \neg P \land \neg Q$ (negació d'una disjunció) (llei de De Morgan)
 - **(h)** $P \rightarrow Q \equiv \neg P \lor Q$ (definibilitat del condicional)

Per provar l'equivalència entre ambdues expressions caldrà partir d'una d'elles (tant se val quina escollim) i fent servir les regles d'equivalència que es donen a l'exercici arribar a l'altra. Comencem, per exemple, amb la segona expressió. Llavors tenim la següent cadena d'equivalències:

(a) Fem us de la Definibilitat del condicional:

$$\neg (A \land B) \to (\neg A \land \neg B) \equiv \neg \neg (A \land B) \lor (\neg A \land \neg B).$$

(b) Fem ús de la regla de negacio de la disjunció:

$$\neg \neg (A \land B) \lor (\neg A \land \neg B) \equiv \neg \neg (A \land B) \lor \neg (A \lor B).$$

(c) Fem ús de la regla de negació de la conjunció (invertida):

$$\neg \neg (A \land B) \lor \neg (A \lor B) \equiv \neg (\neg (A \land B) \land (A \lor B)).$$

(d) Fem ús de la regla de commutativitat de la conjunció:

$$\neg(\neg(A \land B) \land (A \lor B)) \equiv \neg((A \lor B) \land \neg(A \land B).$$

2. Siguin a, b nombres reals, amb $b \ge 0$. Demostra que

$$|a| \le |b|$$
 si i només si $a \le b$ i $-a \le b$

Recordem que per demostrar una equivalència cal demostrar les dues implicacions:

- (⇒) Siguin $a, b \in \mathbb{R}$ amb b > 0 i tals que $|a| \leq |b|$. Fem la demostració per casos:
 - Si $a \ge 0$ aleshores |a| = a i per tant $a = |a| \le |b| = b$ ja que $b \ge 0$. És a dir $a \le b$. A més com que $a \ge 0$, aleshores $-a \le 0$; i com que $0 \le b$, $-a \le b$.
 - Si a < 0 aleshores |a| = -a i per tant $-a = |a| \le |b| = b$ ja que $b \ge 0$. A més com que a < 0 i $0 \le b$, $a \le b$.

Com que els casos son exhaustius i en tots dos casos hem demostrat que $a \le b$ i $-a \le b$, queda demostrat que per qualssevol $a,b \in \mathbb{R}$ amb $b \ge 0$, $|a| \le |b|$ implica $a \le b$ i $-a \le b$.

- (\Leftarrow) Siguin $a, b \in \mathbb{R}$ amb b > 0 i tals que $a \leq b$ i $-a \leq b$. Fem la demostració per casos:
 - Si $a \ge 0$ aleshores |a| = a i per tant $|a| = a \le b = |b|$ ja que $b \ge 0$. És a dir $|a| \le |b|$.
 - Si a < 0 aleshores |a| = -a i per tant $|a| = -a \le b = |b|$ ja que $b \ge 0$. És a dir $|a| \le |b|$.

Com que els casos son exhaustius i en tots dos casos hem demostrat que |a| = |b|, queda demostrat que per qualssevol $a, b \in \mathbb{R}$ amb $b \ge 0$, $a \le b$ i $-a \le b$ implica $|a| \le |b|$.

3. Siguin m, n, r nombres naturals estrictament positius. Demostra per reducció a l'absurd que si tenim $m \cdot n + r$ objectes i els distribuïm entre m caixes, aleshores hi ha almenys una caixa que té més de n objectes.

Per demostrar la condició de l'enunciat per reducció a l'absurd, hem de supposar la negació de la conclusió de l'enunciat i llavors arribar a una contradicció. Tenim que la negació de la condició "hi ha almenys una caixa que que té més de n objectes" és la condició "cada caixa té com a màxim n objectes". Per tant, suposem que tenim una distribució de $m \cdot n + r$ objectes entre m caixes de manera que cada caixa té com a màxim n objectes. Com que tenim m caixes i en cada caixa hi ha com a màxim n objectes, deduïm que com a molt hi ha d'haver $m \cdot n$ objectes entre totes les caixes. Per tant, $m \cdot n + r \le m \cdot n$. Però d'aquí es dedueix que $r \le 0$, la qual cosa contradiu la hipòtesi de l'enunciat que diu que r és estrictament positiu.