## Unsupervised Data Mining: From Batch to Stream Mining Algorithms

Prof. Dr. Stefan Kramer

Johannes Gutenberg-Universität Mainz

#### Outline

Itemsets and APriori



## Example Microarray Data

|   | ARG1 | ARG4 | ARO3 | <br>LYS1 |
|---|------|------|------|----------|
| 1 | 1    | 1    | 1    | <br>0    |
| 2 | 1    | 1    | 1    | <br>1    |
| 3 | 0    | 1    | 1    | <br>1    |
| 4 | 0    | 1    | 0    | <br>1    |
| 5 | 1    | 1    | 1    | <br>0    |
| 6 | 0    | 0    | 0    | <br>0    |
| 7 |      |      |      | <br>     |

Before data mining step: data cleaning, sampling, discretization, feature selection, etc.

## **Another Representation**

|   | ARG1 | ARG4 | ARO3 | <br>LYS1 |
|---|------|------|------|----------|
| 1 | 1    | 1    | 1    | <br>0    |
| 2 | 1    | 1    | 1    | <br>1    |
| 3 | 0    | 1    | 1    | <br>1    |
| 4 | 0    | 1    | 0    | <br>1    |
| 5 | 1    | 1    | 1    | <br>0    |
| 6 | 0    | 0    | 0    | <br>0    |
| 7 |      |      |      | <br>     |

## Association Rule Mining

#### Table in relational database

|   | ARG1 | ARG4 | ARO3 | <br>LYS1 |
|---|------|------|------|----------|
| 1 | 1    | 1    | 1    | <br>0    |
| 2 | 1    | 1    | 1    | <br>1    |
| 3 | 0    | 1    | 1    | <br>1    |
| 4 | 0    | 1    | 0    | <br>1    |
| 5 | 1    | 1    | 1    | <br>0    |
| 6 | 0    | 0    | 0    | <br>0    |
| 7 |      |      |      | <br>     |

#### Association rules

"IF ARG1 and HIS5 THEN LYS1"

support: 54 %

confidence: 93 %

"IF YOL118C THEN ARG1"

support: 53 %

confidence: 88 %

## Frequent Itemsets and Association Rules

60 % of observations: ARO3 and LYS1 upregulated

80 % of observations: ARG1 upregulated

40 % of observations: ARO3, LYS1 and ARG1

upregulated

"IF ARO3 and LYS1 THEN ARG1"

support: 40 %

confidence: 67 %

ARO3 and LYS1 vs. ARG1



## Two-Phased Algorithm

- First phase: find frequent itemsets (e.g., {ARO3, LYS1}, {ARG1}, {ARO3, LYS1, ARG1})
- Second phase: construct association rules (e.g., if {ARO3, LYS1} then {ARG1})

"IF ARO3 and LYS1 THEN ARG1"

support: 40 %

confidence: 67 %

{ARO3, LYS1} vs. {ARG1}



## Support and Confidence

"IF ARO3 and LYS1 THEN ARG1"

support: 40 %

confidence: 67 %

"IF Y THEN X"

{ARO3, LYS1} vs. {ARG1}



Support: p(X,Y)

Confidence:  $p(X|Y) = \frac{p(X,Y)}{p(Y)}$ 

#### Frequent Pattern Discovery

#### Input:

- table D in relational database
- minimum support threshold: minSupport

#### Output:

 all patterns (here: itemsets) p for which freq(p, D) ≥ minSupport

How?

# APriori Algorithm (Agrawal et al., 1993)

```
i := 1
C_i := \{\{A\} \mid A \text{ is an item}\}
while C_i \neq \{\} do
   % candidate testing (database scan)
   for each set in C<sub>i</sub> test whether it is frequent
   let F<sub>i</sub> be the collection of frequent sets from C<sub>i</sub>
   % candidate formation
   let C_{i+1} be those sets of size i+1 such that all
   subsets are in F<sub>i</sub> (frequent)
   i := i + 1
return \cup F_i
```

#### **Candidate Formation**

- By joining: union of pairs of frequent itemsets from the previous level
- e.g., {A,B} and {B,C} gives {A,B,C}
- However, {A, C} might still be infrequent
- Thus, additional pruning step checking whether all subsets are known to be frequent

#### Main Ideas of APriori

- Each iteration consists of two phases
  - candidate formation
  - candidate testing (database scan)
- Minimize database scans for each tuple t do for each candidate itemset i do

•••

 Avoid unnecessary tests on the database (test only those patterns that can, knowing the previous levels, be frequent)

# Patterns (Itemsets) and (Association) Rules

- From frequent itemsets c and c ∪ {i} derive if c then {i}
- Start with the maximally specific frequent itemsets
- Variants possible: only one item in the RHS (very common assumption), only one item in the LHS (not very common)
- Generally: patterns and rules frequent patterns p, q such that p ≤ q if p then q (with some confidence)

## Formalization of Data Mining



q(p, D) ... interestingness predicate: a pattern p from L is interesting wrt. database D what is interesting? frequent, non-redundant, class correlated, structurally diverse, ...

#### Formalization of Data Mining

- Simple formalization/definition of data mining (Mannila & Toivonen, 1997)
- Language L of patterns p
- Database D
- Interestingness predicate q
- Find a theory of the data:
   Th(L, D, q) = {p ∈ L | q(p,D) is true}

# Anti-Monotonicity and Monotonicity

L: language of patterns

Constraint is anti-monotonic iff

$$\forall \phi, \gamma \in L: \phi < \gamma \land \gamma \in S \rightarrow \phi \in S$$

e.g., minimum frequency,  $p \le \{ABDF\}$ 

Constraint is monotonic iff

$$\forall \phi, \gamma \in L: \phi < \gamma \land \phi \in S \rightarrow \gamma \in S$$

e.g., maximum frequency,  $p \ge \{AB\}$ 

# Monotonicity and Anti-Monotonicity



# Basic Components of Pattern Mining Algorithms

#### Generality Order

- Many pattern languages are ordered according to the "is-more-general-than" relation
- p ≤ q "p is more general than q"
- "Whenever q occurs,
   it is also the case that p occurs"
   (in all conceivable examples)
- Lattice of patterns
- Example: lattice of itemsets

## Example



## Subsumption Operator

- Generality ordering between patterns:
   "Does a pattern p subsume a pattern q?"
- Itemsets:
  - $p \le q \text{ iff } p \subseteq q$
- Trivial for itemsets, but computationally hard, e.g., for graphs

#### Example Run APriori

freq(p, D) 
$$\geq$$
 0.3

$$C1 = \{A, B, C\}$$

$$F1 = \{A, B, C\}$$
  
 $C2 = \{AB, AC, BC\}$ 

$$F2 = \{AB\}$$
  
 $C3 = \{\}$ 



freq(p, D)  $\geq$  0.3



freq(p, D)  $\geq$  0.3



freq(p, D)  $\geq$  0.3



$$Bd^{+} = \{AB, C\}$$

## Borders (Mannila & Toivonen, 1997)

- Positive Border for minimum frequency constraint:
  - most specific solution patterns in L
- S: set of solution patterns

$$Bd^+(S) = \{ \varphi \in S \mid \forall \gamma \in L : \varphi \prec \gamma \to \gamma \notin S \}$$

 Negative Border: most general non-solution patterns in L

$$Bd^{-}(S) = \{ \varphi \in L \setminus S \mid \forall \gamma \in L : \gamma \prec \varphi \rightarrow \gamma \in S \}$$

freq(p, D) 
$$\geq$$
 0.3

$$Bd^{+} = \{AB, C\}$$
  
 $Bd^{-} = \{AC, BC\}$ 

$$Bd^{-}(S) = \{ \varphi \in L \setminus S \mid \\ \forall \gamma \in L : \\ \gamma \prec \varphi \rightarrow \gamma \in S \}$$



## From APriori Output to Borders

#### Positive border:

 either: collect all frequent patterns in F and then maximize:

$$Bd^+ = \{ \phi \in F \mid \neg \exists \gamma \in F : \phi < \gamma \}$$

 or: collect only those from the transition from frequent to infrequent and then maximize

#### Negative border:

 just keep track of the candidates that turn out to be infrequent

#### From APriori Output to Borders

#### Example:

- F1= {A, B, C, D}
- C2 = {AB, AC, AD, BC, BD, CD}
- F2 = {AB, AC, AD, BC, BD}
- C3 = {ABC, **ABD**}
- F3 = {ABC}

#### Consequently:

- $Bd^{-} = \{CD, ABD\}$
- max({C, D, AB, AD, BD, ABC}) = Bd+ = {AD, BD, ABC}

## Coverage

- covers(p, e)
   pattern p covers example e =
   pattern p is contained in example e
- Itemsets: simply p ⊆ e
- Non-trivial for more complex pattern languages!

#### Canonization of Patterns

- Unique representation of patterns (and examples): canonical form
- If syntactic variants exist, then the search space may explode even more dramatically
- Itemsets {A, B} and {B, A} represented as lists?

# Downward Refinement (Specialization) Operator

 Downward refinement operator (specialization operator)

```
\dot{Q} := \rho_s(p)

set of all minimal specializations of p:

all q \in Q are subsumed by p, but there is no q'

more general than q also subsumed by p
```

• Itemsets:

$$\rho_s(p) := \{q \mid q = p \cup \{i \in I\} \land |q| = |p| + 1\}$$
  
where I is the set of all itemsets

• Example:  $\rho_s(A) = \{AB, AC\}$ 

# Upward Refinement (Generalization) Operator

 Upward refinement operator (generalization operator)

$$\ddot{Q} := \rho_g(p)$$
  
 $set$  of all  $minimal$  generalizations of  $p$ :  
all  $q \in Q$  subsume  $p$ , but there is no more  
specific  $q$  also subsuming  $p$ 

• Itemsets:

$$\rho_g(p) := \{ q \mid q = p \setminus \{ i \in p \} \land |q| = |p| - 1 \}$$

• Example:  $\rho_g(ABCD) = \{ABC, ABD, ACD, BCD\}$ 

# Desirable Properties of Downward Refinement Operators

- 1. locally finite: there exists n such that  $|\rho_s(p)| \le n$  for all  $p \in L$
- 2. complete for L: all patterns are reachable within a finite number of steps  $L = \rho^*$  (most general pattern)
- 3. proper: there is no  $p' \in \rho_s(p)$  such that  $p' \equiv \rho_s(p)$
- **4.** optimal: there is only one path to each  $p \in L$

#### **APriori Revisited**

```
i := 1
C_i := r_s(\{\})
while C_i \neq \{\} do
    % candidate testing (database scan)
    for each set in C<sub>i</sub> test whether it is frequent
    let F<sub>i</sub> be the collection of frequent sets from C<sub>i</sub>
    % candidate formation
    C_{i+1} := \{ p \mid q \in F_i \land p \in \rho_s(q) \land \rho_g(p) \subseteq F_i \}
    i := i + 1
return \cup F_i
```

## Pruning and Canonization

- Database scans are expensive
- Can be avoided by exploiting knowledge about previously encountered patterns (e.g., all patterns more general are known to be frequent) - trade-off!
- Canonization needed to prevent further combinatorial explosion (especially important for more complex pattern languages)