Лабораторная работа №3

Дисциплина: Сетевые технологии

Комягин Андрей Николаевич

Содержание

1	Цел	Ь	5	
	1.1	Цель работы	5	
2	Ход	работы	6	
	2.1	МАС-адресация	6	
	2.2	Анализ кадров канального уровня в Wireshark	7	
		2.2.1 Анализ ІСМР-трафика	7	
		2.2.2 Анализ ARP-трафика	8	
	2.3	Анализ протоколов транспортного уровня	10	
		2.3.1 Анализ НТТР	10	
		2.3.2 Анализ DNS	12	
		2.3.3 Анализ QUIC	13	
	2.4	Анализ handshake протокола TCP	14	
		2.4.1 handshake	14	
		2.4.2 График Потока	17	
3	Выв	воды	18	
Сп	Список литературы			

Список иллюстраций

2.1	ipconfig
2.2	ICMP 2356
2.3	ICMP 2357
2.4	ARP 81
2.5	APR 82
2.6	HTTP GET Request (152)
2.7	HTTP 200 OK Response (155)
	DNS Standard Query (63)
2.9	DNS Standard Query Response (64)
2.10	QUIC
2.11	QUIC
2.12	syn
2.13	syn, ack
2.14	ack
2.15	График Потока

Список таблиц

1 Цель

1.1 Цель работы

Изучение посредством Wireshark кадров Ethernet, анализ PDU протоколов транспортного и прикладного уровней стека TCP/IP.

2 Ход работы

2.1 МАС-адресация

С помощью команды ipconfig определить основные параметры сетевого соединения.

Для определения текущих сетевых настроек была использована команда ipconfig в консоли Windows.

```
Адаптер беспроводной локальной сети Беспроводная сеть:

DNS-суффикс подключения . . . . :

Локальный IPv6-адрес канала . . . : fe80::28f2:9ef4:cafe:7d81%6

IPv4-адрес. . . . . . . . . . . : 192.168.0.138

Маска подсети . . . . . . . . . : 255.255.255.0

Основной шлюз. . . . . . . . . : 192.168.0.1
```

Рис. 2.1: ipconfig

Из полученных данных были определены ключевые параметры адаптера беспроводной сети:

- IPv4-адрес: 192.168.0.138 текущий IP-адрес моего устройства в локальной сети.
- Маска подсети: 255.255.255.0 определяет, какая часть IP-адреса относится к сети, а какая к узлу.
- Основной шлюз: 192.168.0.1 IP-адрес маршрутизатора (роутера), через который осуществляется выход в другие сети, включая Интернет.

МАС-адрес моего устройства (2c:6d:c1:60:d8:d0) был определен в ходе последующего анализа трафика в Wireshark.

2.2 Анализ кадров канального уровня в Wireshark

Захватить и проанализировать пакеты ARP и ICMP в части кадров канального уровня (Ethernet II).

Для генерации трафика была выполнена команда ping 192.168.0.1 (ping основного шлюза). В Wireshark был применен фильтр **arp or icmp**.

2.2.1 Анализ ІСМР-трафика

На скриншоте ниже виден обмен ІСМР-пакетами (эхо-запросы и эхо-ответы).

1. ICMP Echo (ping) Request (пакет №2356):

Описание: Мое устройство (192.168.0.138) отправляет эхо-запрос на основной шлюз (192.168.0.1).

Заголовок Ethernet II:

Source MAC: Intel 60:d8:d0 (2c:6d:c1:60:d8:d0) (мой ПК)

Destination MAC: TpLinkTechno_59:88:0b (28:ee:52:59:88:0b) (мой роутер)

Type: IPv4 (0x0800)

Рис. 2.2: ICMP 2356

2. ICMP Echo (ping) Reply (πακετ Nº2357):

Описание: Основной шлюз (192.168.0.1) отвечает на запрос, подтверждая свою доступность.

Заголовок Ethernet II:

Source MAC: TpLinkTechno_59:88:0b (мой роутер)

Destination MAC: Intel_60:d8:d0 (мой ПК)

Type: IPv4 (0x0800)

Рис. 2.3: ICMP 2357

2.2.2 Анализ ARP-трафика

На скриншотах ниже представлен детальный анализ ARP-запроса и ответа.

1. ARP Request (пакет №81):

Описание: Poyrep (TpLinkTechno) выполняет широковещательный запрос с целью узнать MAC-адрес устройства с IP 192.168.0.138. Запрос звучит как: "Кто имеет IP 192.168.0.138? Сообщите 192.168.0.1".

Заголовок Ethernet II:

Destination MAC: Broadcast (ff:ff:ff:ff:ff) (отправка всем устройствам в сети)

Source MAC: TpLinkTechno 59:88:0b

Type: ARP (0x0806)

Рис. 2.4: ARP 81

2. ARP Reply (пакет №82):

Описание: Мое устройство отвечает на ARP-запрос, сообщая свой MAC-адрес. Ответ звучит как: "192.168.0.138 находится по MAC-адресу 2c:6d:c1:60:d8:d0".

Заголовок Ethernet II: Destination MAC: TpLinkTechno_59:88:0b (адресный ответ, не широковещательный)

Source MAC: Intel_60:d8:d0

Type: ARP (0x0806)

Рис. 2.5: APR 82

2.3 Анализ протоколов транспортного уровня

2.3.1 Анализ НТТР

Проанализировать информацию по протоколу TCP в случае HTTP-запросов и ответов.

Был осуществлен переход на сайт http://info.cern.ch/, после чего трафик был отфильтрован по http.

1. HTTP GET Request (пакет №152):

Описание: Клиент (мой ПК) запрашивает у сервера 188.184.67.127 корневую страницу /hypertext/WWW/TheProject.html.

Протокол TCP: Запрос инкапсулирован в TCP-сегмент. Source Port - динамический (49153), Destination Port - 80 (стандартный для HTTP).

```
Capture Length: 557 bytes (4456 bits)

[Frame is marked: False]

[Frame is imarked: False]

[Frame is marked: False]

[Frame is marked
```

Рис. 2.6: HTTP GET Request (152)

2. HTTP 200 OK Response (пакет №191):

Описание: Сервер успешно отвечает на запрос, отправляя содержимое HTMLстраницы.

Протокол TCP: Ответ также передается по TCP. Source Port - 80, Destination Port - 49153.

Рис. 2.7: HTTP 200 OK Response (155)

2.3.2 Анализ DNS

Проанализировать информацию по протоколу UDP в случае DNS-запросов и ответов.

Был захвачен трафик во время работы в браузере и отфильтрован по dns.

1. DNS Standard Query (пакет №63):

Описание: Клиент запрашивает у DNS-сервера (192.168.0.1) IP-адрес для домена api.browser.yandex.ru.

Протокол UDP: Запрос инкапсулирован в UDP-дейтаграмму. Source Port - динамический (58384), Destination Port - 53 (стандартный для DNS).

Рис. 2.8: DNS Standard Query (63)

2. DNS Standard Query Response (пакет №64):

Описание: DNS-сервер отвечает, предоставляя IP-адрес для запрошенного домена.

Протокол UDP: Source Port - 53, Destination Port - 58384.

Рис. 2.9: DNS Standard Query Response (64)

2.3.3 Анализ QUIC

Проанализировать информацию по протоколу QUIC.

Был захвачен трафик к современному веб-ресурсу, использующему протокол QUIC.

Описание: QUIC (Quick UDP Internet Connections) — это транспортный протокол, работающий поверх UDP. Он обеспечивает шифрование по умолчанию и более быстрое установление соединения.

На скриншотах виден обмен пакетами Initial и Handshake, которые служат для установления защищенного соединения между клиентом 192.168.0.138 и сервером 142.250.74.131.

Рис. 2.10: QUIC

Рис. 2.11: QUIC

2.4 Анализ handshake протокола TCP

2.4.1 handshake

С помощью Wireshark проанализировать handshake протокола ТСР.

Было инициировано соединение с веб-сервером, трафик был отфильтрован по tcp.port == 80. Были проанализированы первые три пакета, составляющие трёхступенчатое рукопожатие.

Шаг 1: SYN (пакет №143)

Клиент (192.168.0.138) отправляет серверу (188.184.67.127) сегмент с установленным флагом SYN (Synchronize). Это запрос на установку соединения.

Рис. 2.12: syn

Шаг 2: SYN, ACK (пакет №146)

Сервер отвечает сегментом с двумя флагами: SYN (он также предлагает синхронизировать номер последовательности) и ACK (Acknowledgment - подтверждает получение первого пакета от клиента).

Рис. 2.13: syn, ack

Шаг 3: АСК (пакет №147)

Клиент отправляет серверу сегмент с флагом АСК, подтверждая получение пакета SYN, АСК от сервера. На этом рукопожатие завершается, и соединение считается установленным.

Рис. 2.14: ack

2.4.2 График Потока

Для визуализации обмена был построен график потока, на котором наглядно представлено всё TCP-соединение, включая начальное трёхступенчатое рукопожатие и последующие повторные передачи (Retransmissions).

Рис. 2.15: График Потока

3 Выводы

В ходе работы изучение посредством Wireshark кадров Ethernet, анализ PDU протоколов транспортного и прикладного уровней стека TCP/IP прошли успешно.

Список литературы

(ТУИС)[https://esystem.rudn.ru/course/view.php?id=9060]