Econometria

Parte 1

Prof. Adalto Acir Althaus Junior oe

Sumário

- O que é?
- Por que usar?
- Modelos econométricos
- Natureza dos dados
- Causalidade

O que é?

- Econometria é um conjunto de métodos estatísticos usados para estimação de relações econômicas
- Econometria teórica: trata do desenvolvimento de métodos adequados para medir as relações econômicas especificadas nos modelos econométricos. Sob esse aspecto, ela depende fortemente da estatística matemática
- Econometria aplicada: utiliza as ferramentas da econometria teórica para estudar diversos tópicos econômicos, como a função de produção, a função investimento, as funções de oferta e de demanda, a teoria do portfólio, etc.

Por que usar?

- Método mais adequado para lidar com dados nãoexperimentais.
- Dados não-experimentais: coletados pela observação da realidade, típicos das ciências sociais.
- Dados experimentais: coletados a partir de experimentos controlados em laboratório, típicos das ciências naturais.

Modelos econométricos

- Primeiro passo para uma análise econométrica é a escolha do modelo econométrico a ser usado.
- Modelo econométrico: função matemática que representará a relação econômica a ser estudada.
 - Renda = f(Educação, Habilidade, ...)
- Duas questões a se considerar:
 - ✓ Que relação será analisada? E quais os fatores associados a ela?
 - ✓ Que informações devem ser usadas?

Que relação será analisada?

- Se existir modelos teóricos que expliquem o fenômeno estudado, basta decidir qual deles usar.
- Exemplo: para estudar o impacto de um imposto sobre um mercado há diversos modelos teóricos para se basear (competição perfeita, monopólio, oligopólio etc.); basta escolher o mais adequado ao problema.

Que relação será analisada?

- Não havendo modelos econômicos que explicitem as relações que se pretende estudar, confia-se na intuição sobre o problema ou em conhecimentos de outras áreas.
- Exemplo: para estudar os fatores associados aos níveis de saúde e educação das pessoas, os modelos econométricos se baseiam no que se sabe em outras áreas de conhecimento.

Que informações devem ser usadas?

- Depois de decidida a questão a ser respondida, deve-se decidir que tipo de dados são necessários.
- Natureza dos dados econométricos:
 - ✓ cross-section
 - √ séries temporais
 - ✓ painel

Dados em cross-section

- Dados de amostras de unidades (pessoas, firmas, países etc.) observadas em um ponto no tempo.
- A amostra deve ser aleatória, isto é, cada unidade é selecionada de forma independente.
- Campos de uso: Organização Industrial, Economia do Trabalho, Economia do Setor Público, etc.
- Exemplo: Pesquisa Nacional por Amostra de Domicílios (PNAD) do IBGE – contém informações demográficas e socioeconômicas de domicílios em todo o país.

Séries de tempo

- Observações de uma variável ao longo do tempo, como PIB, inflação, câmbio, etc.
- Informação depende do tempo, cada observação está relacionada com seu passado.
- Não é possível obter amostras aleatórias.
- Métodos econométricos diferentes dos usados em crosssection.
- Campos de uso: Macroeconomia e Finanças.
- Exemplos: índices de preços, preços de ações, taxas de juros etc.

Dados em Painel

- Combinação de estrutura de série de tempo com as unidades de uma cross-section.
- Unidades selecionadas de forma aleatória e então acompanhadas ao longo do tempo.
- Ferramentas econométricas parecidas com as usadas em crosssection.
- Exemplo: Pesquisa Mensal de Emprego do IBGE (PME).

Tipos de Dados

Cross Sectional

	Ano 2000				
	Variável Y	Variável X1	Variável X2	Variável X3	 Variável Xn
Empresa A					
Empresa B					
Empresa C					
Empresa D					
Empresa E					
Empresa F					
				•••	
Empresa Z					

Time Series

	Variável Y
Ano 2000	
Ano 2001	
Ano 2002	
Ano 2003	
Ano 2004	
Ano 2005	
Ano 20nn	

Panel Data

	Ano	Variável Y	Variável X1	Variável X2	 Variável Xn
Empresa A	2000				
Empresa A	2001				
Empresa A					
Empresa A	20nn				
Empresa B	2000				
Empresa B	2001				
Empresa B					
Empresa B	20nn				
Empresa C	2000				
Empresa C	2001				
Empresa C					
Empresa C	20nn				
			•••	•••	 •••
Empresa Z	2000				
Empresa Z	2001				
Empresa Z	•••	·			
Empresa Z	20nn				

Tipos de Dados

Cross Sectional

	Ano 2000				
	Variável Y	Variável X1	Variável X2	Variável X3	 Variável Xn
Empresa A					
Empresa B					
Empresa C					
Empresa D					
Empresa E					
Empresa F					
			•••		
Empresa Z					

Time Series

		Empresa A				
	Variável Y	Variável X1	Variável X2	Variável X3		Variável Xn
Ano 2000						
Ano 2001						
Ano 2002						
Ano 2003						
Ano 2004						
Ano 2005						
Ano 20nn						

Panel Data

	Ano	Variável Y	Variável X1	Variável X2	 Variável Xn
Empresa A	2000				
Empresa A	2001				
Empresa A	••				
Empresa A	20nn				
Empresa B	2000				
Empresa B	2001				
Empresa B	••				
Empresa B	20nn				
Empresa C	2000				
Empresa C	2001				
Empresa C	••				
Empresa C	20nn				
	:		•••		 •••
Empresa Z	2000				
Empresa Z	2001				
Empresa Z					
Empresa Z	20nn				

Time Series

	Variável Y
Ano 2000	
Ano 2001	
Ano 2002	
Ano 2003	
Ano 2004	
Ano 2005	
Ano 20nn	

Causalidade

- Em geral, procura-se relações de causalidade entre os fenômenos econômicos
- Tarefa difícil: há inúmeros fatores associados a um fenômeno econômico.
- Hipótese ceteris paribus ("tudo mais constante"): permite estabelecer uma causalidade mais 'pura' entre os fenômenos econômicos.
- Métodos econométricos permite aproximar desta hipótese, mesmo não atingindo-a por completo.

Conceitos e definições gerais

Econometria: 2 - Regressão Simples

Parte deste material foi gentilmente cedido pelo Prof. Marco A.F.H.

Cavalcanti

cavalcanti@ipea.gov.br

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio

Motivação

- Regressões lineares são indiscutivelmente a abordagem de modelagem mais popular em finanças e economia
 - Transparente e intuitivo
 - Técnica muito robusta; fácil de construir
 - Mesmo que n\u00e3o esteja interessado em causalidade, \u00e9 \u00fatil till para descrever os dados
- Dada a importância, vamos passar hoje e a próxima aula para rever as principais ideias

Sumário

- O modelo de regressão linear simples
 - Definição e terminologia
 - Estimação
 - Propriedades algébricas
 - Qualidade do ajuste
 - Unidades de medida
 - Forma funcional e não-linearidade
 - Propriedades estatísticas
- Referências bibliográficas
 - Wooldridge, cap.2

Introdução

Origem histórica

- Em um importante artigo, Francis Galton (1886), observou que a altura média de crianças, nascidas de pais com uma dada estatura, possuía uma tendência a se mover - regress - na direção da altura média da população como um todo.
- Karl Pearson, em 1886, confirmou os resultados de Galton após coletar mais de 1000 registros dos membros de um grupo familiar.

Interpretação moderna

 Análise de regressão é o estudo da dependência de uma variável, a variável dependente, em uma ou mais variáveis, variáveis explicativas ou independentes.

Definição e Terminologia

- Sejam y e x duas variáveis representando alguma população.
- O objetivo é explicar y em função de x, ou seja, como y varia de acordo com mudanças em x.
- \rightarrow Regredir y contra x
- 3 pontos importantes:
 - Dado que não há uma relação precisa entre y e x, como levar em conta outros fatores que afetam y?
 - Qual a relação funcional entre y e x?
 - Como capturar uma relação ceteris paribus entre y e x (se for o caso)?

Definição e Terminologia

Solução:

Considere a seguinte equação relacionando y e x

$$y = \beta_0 + \beta_1 x + u$$

Esta equação linear é conhecida como modelo de regressão simples.

Terminologia:

- y: variável dependente, variável explicada, variável de resposta, variável prevista, regressando, saída, efeito.
- x: variável independente, variável explicativa, variável de controle, preditor, regressor, entrada, causa.
- u: erro, distúrbio ou ruído.

Definição e Terminologia

- A variável *u* representa:
 - todos os outros fatores além de x que afetam a variável y;
 - erros de medição;
 - forma funcional inadequada e
 - inerente variabilidade nos agentes econômicos.
- Em análise de regressão consideramos que u é nãoobservável.
- Repare que se todos os outros fatores além de x são mantidos fixos, então

$$\Delta y = \beta_1 \Delta x$$

Definição e Terminologia

- Exemplo:
 - Safra de soja e quantidade de fertilizante

$$safra = \beta_0 + \beta_1 fert + u$$

• Se todos os outros fatores que afetam a safra permanecerem constantes, então:

$$\Delta safra = \beta_1 \Delta fert$$

Definição e Terminologia

- A linearidade da equação anterior implica que uma mudança de uma unidade em x, tem o mesmo efeito em y.
- O modelo de regressão linear realmente permite que conclusões *ceteris paribus* sejam obtidas?
 - Infelizmente NÃO!!!!
- Existe solução?
 - Sim, impondo restrições na variável u.

Definição e Terminologia

- Algumas hipóteses sobre a variável u:
 - Média nula

$$|E(u)=0|$$

Média condicional nula

$$|E(u \mid x) = E(u) = 0|$$

- Questão:
 - Suponha que a nota final dos alunos em um exame depende da frequência dos alunos e de fatores não-observáveis, tais como habilidade. A equação $\boxed{nota = \beta_0 + \beta_1 freq + u}$

satisfaz a premissa de média condicional nula do erro?

Função de Regressão Populacional

Definição

- Se E(u|x)=0, a função de regressão populacional (FRP) é definida por $E(y|x) = \beta_0 + \beta_1 x$
- A FRP é uma função linear de x. Para qualquer valor de x, a distribuição de y está centrada em torno de E(y|x).

- Como estimar os parâmetros β_0 e β_1 na equação de regressão?
 - É necessário uma amostra da população!
- Seja

$$\{(x_i, y_i): i = 1, ..., n\}$$

uma amostra aleatória de tamanho n da população.

Como esta amostra veio do modelo

$$y = \beta_0 + \beta_1 x + u$$

pode-se escrever

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

Exemplo: Poupança e Renda

Os dados

Dados de poupança e da renda de 100 famílias no ano de

1970.

A reta representa a equação

$$\left| \mathbf{E}(y \mid x) = \beta_0 + \beta_1 x \right|$$

- Como utilizar os dados para estimar os parâmetros?
 - Deve-se lembrar que

$$E(u) = 0 \quad e \quad E(xu) = 0$$

- Logo,
$$E(y - \beta_0 - \beta_1 x) = 0$$

 $E[x(y - \beta_0 - \beta_1 x)] = 0$

Portanto, pode-se usar os dados amostrais para resolver o problema

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\frac{1}{n} \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

Solução

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

onde

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 e $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

• Atenção:

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 > 0$$

- Os estimadores $\hat{\beta}_0$ e $\hat{\beta}_1$
 - são chamados de estimadores de mínimos quadrados.
- Para justificar este nome, define-se o valor estimado para variável y dado que $x=x_i$ como $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$
- O resíduo para a observação i é a diferença entre o valor real y_i e o seu valor estimado
- $\hat{u}_i = y_i \hat{y}_i = y_i \hat{\beta}_0 \hat{\beta}_1 x_i$
- ATENÇÃO: os resíduos não são os erros u_i definidos anteriormente!

- Voltando ao problema...
- Suponha que os parâmetros do modelo de regressão linear simples são estimados de forma a tornar a soma dos quadrados dos resíduos

$$\sum_{i=1}^{n} \hat{u}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i})^{2}$$

o menor possível.

• A solução é obtida ao derivar $S(\hat{\beta}_0, \hat{\beta}_1)$ em relação a $\hat{\beta}_0$ e $\hat{\beta}_1$

$$\frac{\partial S}{\partial \hat{\beta}_0} = -2\sum_{1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\frac{\partial S}{\partial \hat{\beta}_1} = -2\sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

Dividindo a primeira por 2n e com um pouco de álgebra têm-se

$$-\frac{2\sum_{1}^{n}y_{i}}{2n} + \frac{2\sum_{1}^{n}\hat{\beta}_{0}}{2n} + \frac{2\sum_{1}^{n}\hat{\beta}_{1}x_{i}}{2n} = \frac{0}{2n}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

$$0 = -\bar{y} + \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Substituindo \hat{eta}_0 na segunda equação

$$-2\sum_{1}^{n} x_{i} (y_{i} - (\bar{y} - \hat{\beta}_{1}\bar{x}) - \hat{\beta}_{1}x_{i}) = 0$$

$$-2\sum_{1}^{n}x_{i}(y_{i}-(\bar{y}-\hat{\beta}_{1}\bar{x})-\hat{\beta}_{1}x_{i})=0 \qquad \sum_{1}^{n}x_{i}(y_{i}-\bar{y})+\hat{\beta}_{1}\sum_{1}^{n}x_{i}(\bar{x}-x_{i})=0$$

A solução é

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}$$

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\hat{\beta}_1 = \frac{COV XY}{VAR X}$$

$$\hat{\beta}_1 = \frac{COV XY}{VAR X}$$

Função de Regressão Amostral

Definição

 Um vez estimados os parâmetros pode-se construir a função de regressão amostral (FRA)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

- A FRA é a versão estimada da função de regressão populacional, FRP.
- Vale <u>lembrar que a FRP é desconhecida</u>.
- Como a FRA é obtida a partir de uma amostra, uma nova amostra irá gerar uma nova FRA.

Função de Regressão Amostral

Definição

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Exemplos

Salário de executivos e retornos financeiros

- Sejam:
 - sal: salário anual de executivos em milhares de dólares
 - ret: retorno médio das ações da empresa
- Dados:
 - 209 registros para o ano de 1990 (fonte: Business Week, 06/05/1991)

Exemplos Salário e Educação

Sejam:

sal: salário por hora

educ: anos de escolaridade

• Dados: Dados de 526 indivíduos no ano de 1976

• Qual o problema com o resultado obtido?

Exercício

Salário e Consumo

• Estime a relação entre consume e renda com os dados abaixo:

.					
Consumo	Renda				
122	139				
114	126				
86	90				
134	144				
146	163				
107	136				
68	61				
117	62				
71	41				
98	120				
	122 114 86 134 146 107 68 117 71				

Exercício

Salário e Consumo

Estime a relação entre consume e renda com os dados abaixo:

Indivíduo "i"	Consumo	Renda			
1	122	139			
2	114	126			
3	86	90			
4	134	144			
5	146	163			
6	107	136			
7	68	61			
8	117	62			
9	71	41			
10	98	120			

$$Consumo = 52,69 + 0,4954 \times Renda + e$$

Propriedades Algébricas dos Estimadores

A soma dos resíduos, e consequentemente a média, é ZERO.

$$\sum_{i=1}^{n} \hat{u}_i = 0$$

A covariância amostral entre os regressores e os resíduos é ZERO implicando que

 $\sum_{i=1}^{n} x_i \hat{u}_i = 0$

• O ponto (\bar{x}, \bar{y}) esta sempre sobre a reta de mínimos quadrados.

Propriedades Algébricas dos Estimadores

 A variável dependente pode ser decomposta em dois termos: o valor estimado e o resíduo da regressão, isto é

$$y_i = \hat{y}_i + \hat{u}_i$$

- Pela decomposição acima nota-se que a média da variável dependente estimada é igual a média da própria variável dependente.
- A covariância amostral entre os resíduos e o valor estimado da variável dependente é ZERO, implicando que

$$\sum_{i=1}^n \hat{y}_i \hat{u}_i = 0$$

Qualidade do Ajuste

- Define-se
 - Soma total dos quadrados (SST Total Sum of Squares)

$$SST \equiv \sum_{i=1}^{n} (y_i - \overline{y})^2$$

 Soma dos quadrados ajustados ou explicados (SSE – Explained Sum of Squares)

$$SSE \equiv \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

Soma dos quadrados dos resíduos (SSR – Residual Sum of Squares)

$$SSR \equiv \sum_{i=1}^{n} \hat{u}_i^2$$

Qualidade do Ajuste

Pela definição de SST, SSE e SSR, chega-se a seguinte relação

$$|SST = SSE + SSR|$$

- Qual a interpretação para SST, SSE e SSR?
- Como medir a qualidade do ajuste a partir dos valores de SST,
 SSE e SSR?
 - Coeficiente de determinação ou R²

$$R^2 = \frac{SSE}{SST} = 1 - \frac{SSR}{SST}$$

Qual a interpretação para o coeficiente de determinação?

Exemplos

Salário de executivos e retornos financeiros

- Sejam:
 - sal: salário anual de executivos em milhares de dólares
 - ret: retorno médio das ações da empresa
- Dados:
 - 209 registros para o ano de 1990 (fonte: Business Week, 06/05/1991)

$$s\hat{a}l = 963.191 + 18.501ret$$

 $n = 209, \quad R^2 = 0.0132$

- Qual o efeito da mudança da unidade de medida das variáveis nos resultados da estimação por mínimos quadrados?
 - Considere o exemplo anterior. Suponha que, em vez de milhares de dólares, o salário seja medido em dólares.
 - Neste caso o resultado da regressão é

$$s\hat{a}l = 963191 + 18501ret$$

 $n = 209, \quad R^2 = 0.0132$

 O que acontece com os parâmetros estimados quando a variável dependente é multiplicada por k e a variável explicativa é multiplicada por c?

• Ou seja, se nós deslocarmos y e x para cima por c e k respectivamente, o que ocorre?

A inclinação estimada mudará?

- Apenas o intercepto estimado será alterado
- Matematicamente, é fácil ver porque...

$$y = \alpha + \beta x + u$$

$$y + c = \alpha + c + \beta x + u$$

$$y + c = \alpha + c + \beta (x + k) - \beta k + u$$

$$y + c = (\alpha + c - \beta k) + \beta (x + k) + u$$
New intercept

Slope the same

- Apenas o intercepto estimado será alterado
- Matematicamente, é fácil ver porque...

$$y = \alpha + \beta x + u$$

$$y + c = \alpha + c + \beta x + u$$

$$y + c = \alpha + c - \beta k + \beta (x + k) + u$$

$$y + c = (\alpha + c - \beta k) + \beta (x + k) + u$$
New intercept

Slope the same

- Não-linearidade nos parâmetros x não-linearidade nas variáveis.
- Neste curso será tratada apenas não-linearidade nas variáveis
- Parâmetros serão tratados como lineares
- Qual a vantagem de se trabalhar com modelos não-lineares nas variáveis?

- Assumir que o CEF causal é linear nem sempre é tão realista
- Por exemplo. considere a seguinte regressão já comentada

$$Salário = \alpha + \beta educ + u$$

- Você acredita que uma relação linear entre o número de anos de educação e o nível de salários seria realista?
- Como podemos ajustar/corrigir/melhorar isso?

- Melhor suposição é que cada ano de educação leva a um aumento constante proporcional (ou seja, percentual) dos salários
- Aproximação desta intuição pode ser capturada por...

$$In(Salário) = \alpha + \beta educ + u$$

• Ou seja a especificação linear é muito flexível porque pode capturar relações lineares entre variáveis não-lineares

Exemplo: Salário e Educação

Sejam:

- Isal: logaritmo natural do salário horário
- educ: anos de escolaridade
- Dados:
 - Dados de 526 indivíduos
 no ano de 1976

 $ls\hat{a}l = 0.584 + 0.083educ$

Quadro resumo:

Modelo	Variável Dependente	Variável Independente	Interpretação de β ₁
Nível-nível	У	X	$\Delta y = \beta_1 \Delta x$
Nível-log	У	log(x)	$\Delta y = (\beta_1/100)\% \Delta x$
Log-nível	log(y)	X	$\%\Delta y = (100\beta_1)\Delta x$
Log-log	log(y)	log(x)	$\%\Delta y = \%\Delta x$

 Pergunta: como mudam os coeficientes estimados em cada um dos casos acima quando mudamos as unidades de medida de y e/ou x?

Utilidade das regressões em Log

• As variáveis de log são úteis porque $100^*\Delta \ln(y) \approx \%\Delta y$

Eu pessoalmente não gosto dessa notação para "alteração percentual", mas todo mundo usa isso.

 Nota: Quando eu (e outros) dizem "Log", nós realmente nos referimos ao logaritmo natural, "Ln". Por exemplo. se você usar a função "log" no Stata, isso significa que você quer dizer "ln"

Interpretando regressões log-nível

 Na estimativa da equação de In(salário), 100β irá nos dizer %Δsalário que dever ocorrer para um ano adicional de educação. Para ver isso ...

$$ln(salario) = \alpha + \beta educ + u$$

Cuidado com isso "=". É apenas "igual a" se este for o verdadeiro β, e a regressão for univariada. O melhor entendimento é: "está associado a".

 $\Delta \ln(salario) = \beta \Delta educ$

 $100 \times \Delta \ln(salario) = (100\beta) \Delta educ$

 $\%\Delta salario \approx (100\beta)\Delta educ$

Interpretando regressões log-nível

- A mudança proporcional em y para uma dada mudança em x é assumida como constante
- A mudança em y não é assumida como constante ... ela aumenta à medida que x aumenta
- Especificamente, $\ln(y)$ é assumido como linear em x; mas y não é uma função linear de x...

$$ln(y) = \alpha + \beta x + u$$
$$y = exp(\alpha + \beta x + u)$$

Interpretando regressões log-nível

- Voltando a interpretação
- Suponha que você tenha estimado a equação salarial (onde os salários são \$ / hora) e tenha...

$$ln(salario) = 0.584 + 0.083educ$$

- O que um ano adicional de educação leva a você?
 - Resposta = aumento de 8,3% nos salários.
- Algum problema potencial com a especificação?
- Devemos interpretar a interceptação?

Interpretando regressões log-log

Se estimarmos

$$ln(y) = \alpha + \beta ln(x) + u$$

- β é a elasticidade de y em relação a x!
- ou seja, β é a variação percentual em y para uma variação de, por exemplo, 1% em x.
- Uma variação percentual em x corresponde a $\beta \Delta x\%$ em y
- Nota: a regressão assume que a elasticidade é constante entre $y \in x$ independentemente do nível de x

Interpretando regressões log-log

- Suponha que você calculou que o modelo de salário do CEO usando registros obteve o seguinte:
- In (salário) = 4,822 + 0,257 In (vendas)
- Qual é a interpretação de 0,257?

$$ln(salario) = 4,822 + 0,257 ln(vendas)$$

Resposta = Para cada aumento de 1% nas vendas, o salário aumenta em 0,257%

Interpretando regressões nível-log

Se estimarmos

$$y = \alpha + \beta \ln(x) + u$$

• $\beta/100$ é a mudança em y para 1% de mudança x

Interpretando regressões nível-log

 Suponha que você calculou que o modelo de salário do CEO usando registros obteve o seguinte quando o salário é expresso em milhares:

$$salario = 4.822 + 1.812,5 \ln(vendas)$$

• Qual a interpretação do valor 1.812,50?

Resposta = Para cada aumento de 1% nas vendas, o salário aumenta em \$18,125

Interpretando Regressões

Voltando a questão:

 Pergunta: como mudam os coeficientes estimados em cada um dos casos acima quando mudamos as unidades de medida de y e/ou x?

Interpretando regressões em log

- Voltando a questão:
- Pergunta: como mudam os coeficientes estimados quando usamos regressões em log quando mudamos as unidades de medida de y?

Resposta = Apenas o intercepto se altera; a inclinação não é afetada porque mede a mudança proporcional em y no modelo Log-nível

$$\log(y) = \alpha + \beta x + u$$

$$\log(c) + \log(y) = \log(c) + \alpha + \beta x + u$$

$$\log(cy) = (\log(c) + \alpha) + \beta x + u$$

Interpretando regressões em log

E quando mudamos as unidades de x?

Resposta = É a mesma lógica

$$y = \alpha + \beta \log(x) + u$$

$$y + \beta \log(c) = \alpha + \beta \log(x) + \beta \log(c) + u$$

$$y = (\alpha - \beta \log(c)) + \beta \log(cx) + u$$

Interpretando regressões em log

- Mensagem principal Se você redimensionar uma variável, isso não afetará o coeficiente de inclinação porque você está apenas observando as alterações proporcionais
- Certa vez, um autor argumentou que permitir a entrada de capital no país causou uma variação de -120% nos preços das ações durante os períodos de crise.
- Você vê algum problema com isso?

Claro! Uma queda de 120% nos preços das ações não é possível. A verdadeira mudança percentual foi de 70%. Aqui é onde esse autor deu errado ...

- Erro de aproximação ocorre porque quando a verdadeira % Δy se torna maior, $100\Delta \ln (y) \approx \% \Delta y$ se torna uma aproximação cada vez pior
- Para ver isso, considere uma mudança de y para y'...

Ex. #1:
$$\frac{y'-y}{y} = 5\%$$
, e $100\Delta \ln(y) = 4.9\%$

• Ex. #2:
$$\frac{y'-y}{y} = 75\%$$
, mas $100\Delta \ln(y) = 56\%$

O problema também ocorre para variações negativas

Ex. #1:
$$\frac{y'-y}{y} = -5\%$$
, e $100\Delta \ln(y) = -5.1\%$

Ex. #2:
$$\frac{y'-y}{y} = -75\%$$
, $\underline{\text{mas}} \ 100\Delta \ln(y) = -139\%$

 Portanto, se a mudança percentual implícita for grande, é melhor convertê-la em % real antes de interpretar a estimativa

$$\ln(y) = \alpha + \beta x + u$$

$$\ln(y') - \ln(y) = \beta(x' - x)$$

$$\ln(y'/y) = \beta(x' - x)$$

$$y'/y = exp(\beta(x' - x))$$

$$[(y' - y)/y]\% = 100[exp(\beta(x' - x)) - 1]$$

Coloque isso em uma nota de rodapé em seu artigo/trabalho!

• Agora podemos usar essa fórmula para ver qual é a variação real de% em y para x' - x = 1

$$[(y'-y)/y]\% = 100[\exp(\beta(x'-x)) - 1]$$
$$[(y'-y)/y]\% = 100[\exp(\beta) - 1]$$

• Se $\beta = 0.56$, a mudança percentual não é 56%, ela é:

$$100[\exp(0.56) - 1] = 75\%$$

Resumindo...

- Duas coisas para manter em mente sobre o uso de logs
 - O reescalonamento de uma variável não afeta os coeficientes de inclinação. Isso só afetará o intercepto
 - Log é apenas uma aproximação para % de alteração; pode ser uma aproximação muito ruim para grandes variações/mudanças
- Mas o uso de logs é útil
 - O uso de logs fornece coeficientes com interpretação atraente
 - Pode ignorar a unidade de medida das variáveis, já que elas são proporcionais as suas variações (Δs)
 - Logs de y ou x podem atenuar a influência de outliers

Rules of Thumb quando usar logs

- Útil para utilizar logs para variáveis com...
 - Quantidade monetária positiva
 - Valores integrais grandes (por exemplo, ativos totais)
- Não use logs para variáveis medidas em anos ou como proporções
- Se y∈ [0, ∞), pode utilizar ln (1 + y), mas tenha cuidado... a interpretação costumeira não será mais verdadeira...

O que há sobre usar ln(1 + y)?

- Como In(0) não existe, as pessoas usam In(1 + y) para variáveis não negativas, ou seja, $y \in [0, \infty)$
- Seja cuidadoso ao interpretar as estimativas! A interpretação "normal" já não é mais verdadeira, especialmente se houver muitos zeros ou muitos valores pequenos em y [Why?]
- Ex. # 1: O que significa ir de ln(0) até ln(x>0)?
- Ex. # 2: $\ln(x'+1) \ln(x+1)$ não é uma mudança percentual de x
- Nesse caso, pode ser melhor dimensionar y por outra variável,
 como tamanho da empresa, valor do PIB, ...

Mudança percentual...

- Qual é a mudança percentual no desemprego se passar de 10% para 9%?
 - Isso é 10% de queda
 - É uma queda de 1 ponto percentual
 - A alteração percentual é de $[(x_1 x_0) / x_0] \times 100$
 - A mudança de ponto percentual é a mudança bruta em porcentagens

Por favor, tome cuidado para descrever e interpretar corretamente de seus resultados empíricos

Muitas pessoas (e eu quero dizer muitos mesmo) cometem erros sobre isso!

Modelos com formas quadráticas

- Considere $y = \beta_0 + \beta_1 x + \beta_2 x^2 + u$
- Efeito parcial de *x* é dado por...

$$\Delta y = (\beta_1 + 2\beta_2 x) \Delta x$$

 O que há de diferente nesse efeito parcial em tudo o que vimos até agora?

Resposta = Depende do valor de x. Então, precisaremos escolher um valor de x para avaliação (por exemplo, \overline{X})

Modelos com formas quadráticas

- Se $\hat{\beta}_1 > 0$, $\hat{\beta}_2 < 0$, então há uma relação parabólica
 - Ponto de inflexão = Máximo = $|\hat{\beta}_1/2\hat{\beta}_2|$
 - Saiba onde está esse ponto de inflexão! Não espere uma relação parabólica se estiver fora do alcance de x
 - Por exemplo: não espere que "para empresas com ativos totais maiores que 1 trilhão de reais, a relação se torne negativa.."
 - Valores estranhos ou improváveis podem implicar erros de especificação ou simplesmente significar que os termos quadráticos são irrelevantes e devem ser excluídos da regressão (nem sempre)

Propriedades Estatísticas dos Estimadores

VALIDADE DO MODELO

- Algumas hipóteses importantes:
 - (H1) No modelo populacional, a variável dependente y está relacionada à variável independente x e ao erro u da seguinte forma:

$$y = \beta_0 + \beta_1 x + u$$

– (H2) Uma amostra aleatória de tamanho n

$$\{(x_i, y_i): i = 1, ..., n\}$$

pode ser construída a partir do modelo populacional.

Propriedades Estatísticas dos Estimadores

– (H3) Média condicional nula

$$E(u \mid x) = E(u) = 0$$

– (H4) Na amostra, as variáveis independentes x_i , i = 1, ..., n, não são todas iguais. Ainda, nenhuma variável independente deve ser combinação linear perfeita de outra variável independente do modelo.

Propriedades Estatísticas dos Estimadores

- Sob H(4):
- Uma importante fonte de falha desta hipótese é a situação em que o número de observações na amostra é menor que o número de parâmetros a serem estimados no modelo (n < k + 1).
- Assim, uma importante implicação desta hipótese é que a amostra tenha ao menos uma observação para cada parâmetro que se pretende estimar, isto é, n ≥ k + 1.

Propriedades Estatísticas dos Estimadores

• (H5) Homocedasticidade

$$Var(u \mid x) = \sigma^2$$

Propriedades Estatísticas dos Estimadores

 Teorema 1: sob as hipóteses (H1) - (H4) os estimadores de mínimos quadrados ordinários são não-tendenciosos, isto é

$$E(\hat{\beta}_0) = \beta_0$$
$$E(\hat{\beta}_1) = \beta_1$$

Propriedades Estatísticas dos Estimadores

Teorema 2: sob as hipóteses (H1) - (H5)

$$Var(\hat{\beta}_0) = \frac{\frac{\sigma_u^2}{n} \sum_{i=1}^n x_i^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\operatorname{Var}(\hat{\beta}_1) = \frac{\sigma_u^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\operatorname{Var}(\hat{\beta}_{0}) = \frac{\frac{\sigma^{2}}{n} \sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$\operatorname{Var}(\hat{\beta}_{1}) = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

Por simplicidade de notação: $\sigma_u^2 = \sigma^2$

Propriedades Estatísticas dos Estimadores

• Como estimar σ^2 ?

$$\hat{\sigma}^2 = \frac{1}{(n-2)} \sum_{i=1}^{n} \hat{u}_i^2 = \frac{SSR}{(n-2)}$$

• Teorema 3: sob as hipótese (H1) - (H5)

$$E(\hat{\sigma}^2) = \sigma^2$$

Conceitos e definições gerais

Regressão Linear

- Função de expectativa Condicional (CEF)
- Modelo linear OLS
- Estimação multivariada
- Teste de hipóteses
- Outras questões

Motivação

- Regressões lineares são indiscutivelmente a abordagem de modelagem mais popular em finanças e economia
 - Transparente e intuitivo
 - Técnica muito robusta; fácil de construir
 - Mesmo que não esteja interessado em causalidade, é útil para descrever os dados

Motivação

- Como estudiosos, analistas e pesquisadores, estamos interessados em explicar e entender como o mundo funciona
 - Por exemplo: como as escolhas das empresas em relação à alavancagem são explicadas por suas oportunidades de investimento
 - Ou seja, se as oportunidades de investimento saltassem repentinamente por alguma razão aleatória, como poderíamos esperar que a alavancagem das empresas respondesse em média?
- Mais amplamente, como Y é explicado por X, onde y e x são variáveis aleatórias?

Variáveis Aleatórias

• É útil saber que qualquer variável aleatória y pode ser escrita como

$$y = E(y|x) + \varepsilon$$

- onde (y, x, ε) são variáveis aleatórias e E $(\varepsilon \mid x) = 0$
- E (y | x) é o valor esperado de y dado x
- Em outras palavras, y pode ser dividido em parte "explicado" por x, E (y | x), e uma parte que é média independente de x, ε

Função de Expectativa Condicional

- $E\left(y \mid x\right)$ é o que chamamos de CEF (Conditional expectation function), e tem propriedades muito desejáveis
 - Maneira natural de pensar sobre a relação entre x e y
 - E, é melhor preditor de y dado x em um sentido de erro médio-quadrado mínimo
- Ou seja E(y|x) minimiza $E[(y-m(x))^2]$, onde m(x) pode ser qualquer função de x.

CEF visualmente...

• E (y | x) é fixo, mas não observável

 Intuição: para qualquer valor de x, a distribuição de y é centrada em E (y | x)

Regressão Linear e a CEF

- Se feito corretamente, uma regressão linear pode nos ajudar a descobrir o que a CEF é
- Considere o modelo de regressão linear, $y = \beta x + u$
 - y = variável dependente
 - x = variável independente
 - u = termo de erro (ou perturbação)
 - β = parâmetro de inclinação E (y | x) é fixo, mas não observável

Regressão Linear e a CEF

- Outros Termos para y...
 - Outcome variable
 - Response variable
 - Explained variable
 - Predicted variable
 - Regressand

- Outros Termos para x...
 - Covariate
 - Control variable
 - Explanatory variable
 - Predictor variable
 - Regressor

Detalhes sobre $y=\beta x+u$

- (y, x, u) são variáveis aleatórias
- (y, x) são observáveis
- (u, β) não são observáveis
 - u captura tudo o que determina y depois de contabilizar x
 [Isso pode ser um monte de coisas!]
 - Queremos estimar β

Ordinary Least Squares (OLS)

 Simplificando, o OLS encontra o β que minimiza o erro médio quadrático

$$\beta = \arg\min_{b} = E[(y - bx)^2]$$

- Usando a condição de primeira ordem: $E[x(y \beta x)] = 0$, temos $\beta = E[(xy)] / [E(x^2)]$
- Nota: por definição, o resíduo desta regressão, $y \beta x$, não é correlacionado com x

Ordinary Least Squares (OLS)

 Simplificando, o OLS encontra o β que minimiza o erro médio quadrático

$$\beta = \arg\min_{b} = E[(y - bx)^2]$$

- Usando a condição de primeira ordem: $E[x(y \beta x)] = 0$, temos $\beta = E[(xy)] / [E(x^2)]$
- Nota: por definição, o resíduo desta regressão, $y \beta x$, não é correlacionado com x

Ordinary Least Squares (OLS)

- Pode ser provado que...
 - $-\beta x$ é melhor* predição linear de y dado x
 - $-\beta x$ é melhor* aproximação linear de E(y|x)
 - * "Melhor" em termos de erro mínimo de média quadrática
- Isso é bastante útil. Ou seja mesmo se $E\left(y \mid x\right)$ é nãolinear, a regressão nos dá a melhor aproximação linear do mesmo

- Precisamos ter cuidado aqui ...
 - Como x explica y, o que a regressão nos ajuda a entender, não é o mesmo que determinar o efeito causal de x em y
- Para isso, precisamos de mais suposições ...

- Suposição 1: E(u) = 0
 - Com o intercepto, isso é totalmente inócuo
 - Apenas mude a regressão para $y = \alpha + \beta x + u$, onde α é o termo de interceptação
 - Agora suponha que $E(u) = k \neq 0$
 - Poderíamos reescrever u = k + w, onde E(w) = 0
 - Então, o modelo se torna $y = (\alpha + k) + \beta x + w$
 - Intercepto é agora apenas α + k e erro, w, significa zero
- Ou seja Qualquer média diferente de zero é absorvida pelo intercepto

- Suposição 2: $E(u|x) = E(u) \rightarrow CMI$
 - Em outras palavras, a média de u (ou seja, porção inexplicável de y) não depende do valor de x
 - Isto é "independência da média condicional" (CMI)
 - Verdade se x e u forem independentes um do outro
 - Implica que u e x são não correlacionados
- Esta é a suposição fundamental que está sendo feita quando as pessoas fazem inferências causais

- Basicamente, a suposição diz que você tem o modelo CEF (Conditional expectation function) correto para o efeito causal de x em y
 - O CEF é causal se descreve diferenças nos resultados médios para uma mudança em x
 - isto é, aumentar em x os valores a e b é igual a

$$E(y|x=b) - E(y|x=a)$$
 [In words?]

É fácil ver que isso só é verdade se E (u | x) = E (u)
 [Isso é feito no próximo slide...]

- Com o modelo $y = \alpha + \beta x + u$,
 - $E(y | x = a) = \alpha + \beta a + E(u | x = a)$
 - $E(y | x = b) = \alpha + \beta b + E(u | x = b)$
 - Assim, $E(y|x=b) E(y|x=a) = \beta(b-a) + E(u|x=b) E(u|x=a)$
- Isso apenas é igual ao que pensamos como o efeito "causal" de x mudar de a para b se E(u|x=b) = E(u|x=a) ... Isto é, a suposição de CMI se mantém

Causalidade CMI versus Correlação

- CMI (o que implica x e u são não correlacionados) é necessário para não viés
 - [que é uma propriedade de amostra finita]
- Mas, nós só precisamos assumir uma correlação zero entre x e u para consistência
 - [que é uma propriedade de amostra grande]
- Mais sobre viés vs. consistência depois; mas normalmente nos preocupamos com a consistência, e é por isso que muitas vezes me refiro a correlações em vez de CMI

Causalidade – É plausível?

 É certo que existem muitas razões pelas quais essa suposição pode ser violada

 Lembre-se, u captura todos os fatores que afetam y além de x... E ele conterá muitos!

Vamos apenas fazer alguns exemplos ...

Ex. # 1 - regressão de estrutura de capital

Considere seguir a regressão em nível de empresa:

$$Leverage_i = \alpha + \beta Profitability_i + u_i$$

- CMI implica que média u é a mesma para cada rentabilidade
- É fácil encontrar algumas histórias porque isso não é verdade ...
 - # 1 empresas não lucrativas tendem a ter maior risco de falência, o que, deveria significar uma menor alavancagem (endividamento)

Por outro lado....

 # 2 - empresas não lucrativas acumularam menos dinheiro, o que, deveria significar que elas teriam mais alavancagem (endividamento)

Ex. # 2 - Investments

Considere a regressão a seguir em nível de empresa:

$$Investment_i = \alpha + \beta Q_i + u_i$$

- CMI implica que média de u é a mesma para cada Q de Tobin
- É fácil encontrar algumas histórias que isso não é verdade ...
 - # 1 Empresas com Q baixo podem estar em perigo e investir menos
 - # 2 Empresas com Q alto podem ser menores, empresas mais jovens que têm mais dificuldade em levantar capital para financiar investimentos

Existe uma maneira de testar o CMI?

- Seja \hat{y} o valor previsto de y, ou seja,
 - $-\hat{y} = \alpha + \beta x$, onde α e β são estimativas de OLS
 - E, deixe \hat{u} ser o residual, ou seja, $\hat{u} = y \hat{y}$
- Podemos provar CMI se E (\hat{u}) = 0 e se \hat{u} não é correlacionado com x?

Resposta: não! Por construção esses resíduos são médios zero e não correlacionados com x. Veja a derivação anterior de estimativas do OLS

Existe uma maneira de testar o CMI?

- O que as pessoas chamam de "estratégia de identificação" são aquelas que procuram por violações da CMI
 - Ou seja, se procura uma razão pela qual a perturbação do modelo está correlacionada com x
- Infelizmente, não é tão difícil assim ...
- Tentar encontrar maneiras de garantir que a suposição do CMI possa ser realizada é o cuidado principal que você deve ter em seus estudos e trabalhos

$$E(u|x) = E(u) \rightarrow CMI$$

Endogeneidade

 Muitos "avaliadores" criticam um modelo dizendo que ele tem um "problema de endogeneidade", mas não dizem mais nada...

 Mas o que significa dizer que existe um "problema de endogeneidade"?

Endogeneidade

- Minha opinião: essas críticas vagas sobre "endogeneidade" suspeitam que algo está potencialmente errado, mas não sabem realmente porque ou como
- Não seja assim, Quando criticar, seja específico sobre qual é o problema!
- Violações ao CMI podem ser categorizadas em três pontos ... quais são?

Três razões pelas quais o CMI é violado

- Viés de variável omitida
- Viés de erro de medida
- Viés de simultaneidade
- Vamos ver cada um deles com muito mais detalhes na sessão "Causalidade"

O que "endógeno" significa para mim

 Um x "endógeno" é quando seu valor depende de y (ou seja, é determinado juntamente com y de tal forma que há viés de simultaneidade).

to me: Endogeneidade = "Tostines effect"

- Mas, alguns usam uma definição mais ampla que significa qualquer correlação entre x e u → E (u | x) = k ≠ 0
 - [por exemplo. Roberts & Whited (2011)]
- Por causa da confusão, evito usar "endogeneidade"; Eu recomendaria o mesmo para você
 - seja específico sobre a violação do CMI; apenas diga variável omitida, erro de medida ou viés de simultaneidade

Em suas apresentações ...

- Pense em "causalidade" ao apresentar seu trabalho ou paper
- Ainda não formalizei as várias razões pelas quais as inferências "causais" não deviam ser feitas; mas eu gostaria que você tentasse pensar nisso