Analysis1

Mesh:

Entità	Dimensioni
Nodi	134406
Elementi	598574

TIPO DI ELEMENTO:

Connettività	Statistiche
TE4	598574 (100,00%)

Materiali.1

Materiale	Acciaio	
Modulo di Young	2e+011N_m2	
Modulo di Poisson	0,266	
Densità	7860kg_m3	
Coefficiente di dilatazione termica	1,17e-005_Kdeg	
Limite di proporzionalità	2,5e+008N_m2	

Caso di analisi statica

Condizioni di bordo

Figure 1

Calcolo STRUTTURA

Numero di nodi : 134406 Numero di elementi : 598574 Numero di D.O.F. : 403218 Numeri di relazioni di contatto : 0 Numero di elementi cinematici : 0

Tetraedro lineare: 598574

Calcolo REAZIONI

Nome: Vincoli.1

Numero di S.P.C: 648

Calcolo CARICHI

Nome: Carichi.1

Risultante del carico applicato:

Fx = 2.765e-010 N

Fy = -4.478e-009 N

Fz = -2.650e + 004 N

Mx = 5.660e+003 Nxm

My = 7.131e+004 Nxm

Mz = 2.524e-009 Nxm

Calcolo MASSA STRUTTURALE

Nome: StructuralMassSet.1

Numero di linee : 403218 Numero di coefficienti : 7971048 Numero di blocchi : 16 Numero massimo di coefficienti per blocco : 500000

Dimensione totale della matrice : 92 . 76 Mb

Massa strutturale: 2.599e+003 kg

Coordinate del momento di inerzia centrale

Xg: 2.817e+003 mm

Yg: -2.140e+002 mm

 $Zg: 1.295e+002 \ mm$

Tensore di inerzia nell'origine: kgxm2

3.070e+002 1.574e+003 -8.918e+002

1.574e+003 2.236e+004 7.151e+001

-8.918e+002 7.151e+001 2.241e+004

Calcolo RIGIDEZZA

Numero di linee : 403218 Numero di coefficienti : 7971048 Numero di blocchi : 16 Numero massimo di coefficienti per blocco : 500000

Dimensione totale della matrice : 92 . 76 Mb

Calcolo SINGOLARITA'

Vincolo: Vincoli.1

Numero di singolarità locali : 0 Numero di singolarità in traslazione : 0 Numero di singolarità in rotazione : 0 Tipo di vincolo generato : MPC

Calcolo VINCOLI

Vincolo: Vincoli.1

Numero di vincoli : 648

Numero di coefficienti : 0

Numero di vincoli fattorizzati : 648

Numero di coefficienti : 0

Numero di vincoli differiti : 0

Calcolo NORMALIZZATO

Metodo : SPARSE

Numero dei gradi di fattorizzazione : 402570

Numero di supernodi : 8733

Numero di indici in sovrapposizione : 1563594

Numero di coefficienti : 169558029

Massima ampiezza frontale : 3672

Massima dimensione frontale : 6743628

Dimensione della matrice di fattorizzazione (MB) : 1293 . 63

Numero di blocchi : 85

Numero di Mflops per la fattorizzazione : 2 . 069e+005 Numero di Mflops per la soluzione : 6 . 802e+002 Pivot relativo minimo : 3 . 094e-004

Calcolo METODO DIRETTO

Nome: Soluzione del caso di analisi statica.1

Vincolo: Vincoli.1

Viene presa in considerazione la massa della struttura

Carico: Carichi.1

Energia di deformazione: 5.718e+000 J

Equilibrio

Componenti	Forze applicate	Reazioni	Residuo	Errore relativo di ampiezza
Fx (N)	2.7649e-010	6.8817e-008	6.9094e-008	5.7464e-011
Fy (N)	-4.4784e-009	4.5566e-007	4.5118e-007	3.7524e-010
Fz (N)	-2.6499e+004	2.6499e+004	1.6217e-006	1.3487e-009
Mx (Nxm)	5.6597e+003	-5.6597e+003	-3.1553e-007	6.6944e-011
My (Nxm)	7.1311e+004	-7.1311e+004	8.0973e-007	1.7179e-010
Mz (Nxm)	2.5239e-009	-9.4831e-008	-9.2307e-008	1.9584e-011

Soluzione del caso di analisi statica.1 - Mesh su deformata.1

Figure 2

Mesh su deformata ---- Sul bordo ---- Su tutto il modello

Soluzione del caso di analisi statica.1 - Sforzi alla Von Mises (valori nodali).2

Figure 3

Elementi 3D: : Componenti: : Tutti

Mesh su deformata ---- Sul bordo ---- Su tutto il modello

Soluzione del caso di analisi statica.1 - Vettore traslazione.1

Figure 4

Elementi 3D: : Componenti: : Tutti

Mesh su deformata ---- Sul bordo ---- Su tutto il modello

Sensori globali

Nome del sensore	Valore del sensore	
Energia	5,718J	
Percentuale di errore globale (%)	17,926923752	