Profesor: ANTONIO ZAMORA GÓMEZ

- Grado en Ingeniería Multimedia
- Asignatura de 1^r cuatrimestre
- Obligatoria 3^r curso
- 6 créditos (3 Teoría 3 Prácticas)
- Guía docente

los datos multimedia.

seguridad actuales

particular.

Temario

SEGURIDAD

- Tema 1.- Introducción a la Seguridad de la Información
- Tema 2.- El cifrado de datos clásico
- Tema 3.- Criptografía simétrica en flujo
- Tema 4.- Criptografía simétrica en bloque
- Tema 5.- Criptografía asimétrica
- Tema 6.- Autoridades certificadoras

COMPRESIÓN

- Tema 7.- Teoría de la Información
- Tema 8.- Compresión de datos
- Tema 9.- Compresión de contenidos multimedia

Pormenorizado en guía docente

Scitala espartana

AA I SNT I C A COLINA F L RABC

Texto en claro

m = ASI CIFRABAN CON LA SCITALA

Texto cifrado

c = AAISNTICACOLINAFLRAASBC

Se trata de un sistema de cifra por transposición

Ejemplo

■ Consideremos el alfabeto A={_ABCDEFGHIJKLMNÑOPQRSTUVWXYZ} y el texto en claro

m=TRANSFERENCIA_CONFORME

A cada símbolo del alfabeto le asociamos un número

	A	В	C	D	E	F	G	Н	Ι	J	K	L	M	N	Ñ	O	P	Q	R	S	T	U	V	W	X	Y	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Para cifrar m utilizamos la clave k=2 y r=3, obteniendo

$$E_k(T)=E_k(21)=3\cdot21+2 \mod 28=9=I$$

 $E_k(R)=E_k(19)=3\cdot19+2 \mod 28=3=C$
 $E_k(E)=E_k(5)=3\cdot5+2 \mod 28=17=P$

o sea

c=ICEOFSPCPOKAEBKUOSUCMP

Ejemplo

■ Para descifrar c utilizamos la clave k=2 y r⁻¹=19*, obteniéndose

$$D_k(I) = D_k(9) = (9-2) 19 \mod 28 = 21 = T$$

 $D_k(C) = D_k(3) = (3-2) 19 \mod 28 = 19 = R$
 $D_k(P) = D_k(17) = (17-2) 19 \mod 28 = 5 = E$

Si generamos el alfabeto de cifrado, se simplificará el descifrado de posteriores criptogramas en los que se haya utilizado la misma clave.

	A	В	C	D	E	F	G	Н	Ι	J	K	L	M	N	Ñ	O	P	Q	R	S	T	U	V	W	X	Y	\mathbf{Z}
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
2	5	8	11	14	17	20	23	26	1	4	7	10	13	16	19	22	25	0	3	6	9	12	15	18	21	24	27
В	E	Н	K	N	P	S	V	Y	A	D	G	J	M	O	R	U	X		C	F	I	L	Ñ	Q	T	W	Z

3.4 Algoritmo RC4

■ Key Scheduling Algorithm (KSA)

Para calcular los valores iniciales de la S-Caja, se hace lo siguiente:

- 1. $S(i) = i \ \forall i \in \{0,1,...,255\}$
- 2. Rellenar el array K(0) a K(255) repitiendo la clave tantas veces como sea necesario.
- **3.** j = 0
- **4.** Para i = 0 hasta 255 hacer:

$$j = [j + S(i) + K(i)] \mod 256$$

Intercambiar S(i) y S(j).

■ Pseudo-Random Generation Algorithm (PRGA)

Dos contadores i y j se ponen a cero.

En la iteración r, cada byte, O_r, de la secuencia cifrante se calcula como sigue:

- 1. $i = (i + 1) \mod 256$
- **2.** $j = [j + S(i)] \mod 256$
- 3. Intercambiar los valores de S(i) y S(j)
- **4.** $t = [S(i) + S(j)] \mod 256$
- **5.** $O_r = S(t)_{(2)}$
- 3. Mientras se necesite secuencia cifrante volver a 1

4.3.3 Modo CFB (Cipher-Feedback)

- El vector inicial VI del Registro de Desplazamiento RD se carga, al igual que en el modo CBC, con un valor aleatorio de *b* bits.
- El mensaje se divide en bloques de *s* bits (normalmente un byte) que se suma or-exclusivo con los s bits más significativos que resultan de aplicar el algoritmo en bloque a los s bits del anterior registro con la clave k.
- En cada operación, se realimenta el bloque de s bits del criptograma al extremo derecho de dicho registro, produciendo un desplazamiento de s bits a la izquierda.
- \blacksquare Si S_c(x) representa los s bits más significativos de x, se tiene

$$\mathbf{c_i} = \mathbf{m_i} \oplus \mathbf{S_s}[\mathbf{E_k}(\mathbf{RD})], i = 1, 2, \dots$$

El bloque se va desplazando por el registro

5.4 Algoritmo RSA

5.5 Fundamentos criptográficos de la firma digital

Esquema de firma digital con cifrado en RSA

 n_A , e_A , d_A

n_B, e_B, d_B

m

 $c=m^{e_B} \mod n_B$ $\mathbf{m} = \mathbf{c}^{\mathbf{d}_{\mathrm{B}}} \bmod \mathbf{n}_{\mathrm{B}}$

m

$$\mathbf{r} = \mathbf{m}^{\mathbf{d}_{\mathrm{A}}} \mathbf{mod} \mathbf{n}_{\mathrm{A}}$$

$$s = r^{e_B} \mod n_B$$

 $s = r^{e_B} \mod n_B$

m

c; m; s; $s^{d_B} \mod n_B = r^{d_B e_B} \mod n_B = r$

c; m; s; r; $\mathbf{r}^{e_A} \mod n_A \stackrel{\equiv}{\mathbf{m}} \mathbf{m}$

<u>MÉTODO DE HUFFMAN</u>

Ejemplo

■ Se puede obtener el código de Huffman construyendo un árbol en sentido ascendente teniendo en cuenta el teorema que fundamenta el método.

$$p=0.4 \ m_1$$
 $p=0.3 \ m_2$ $p=0.2 \ m_3$ $p=0.1 \ m_4$

MÉTODO DE HUFFMAN

Ejemplo

■ Se puede obtener el código de Huffman construyendo un árbol en sentido ascendente teniendo en cuenta el teorema que fundamenta el método.

MÉTODO DE HUFFMAN

Ejemplo

■ Se puede obtener el código de Huffman construyendo un árbol en sentido ascendente teniendo en cuenta el teorema que fundamenta el método.

MÉTODO DE HUFFMAN

Ejemplo

■ Se puede obtener el código de Huffman construyendo un árbol en sentido ascendente teniendo en cuenta el teorema que fundamenta el método.

$$m_1=1$$
 $m_2=00$
 $p=0.6$
 $m_3=0.10$
 $m_4=0.11$
 $p=0.4$
 m_1
 $p=0.3$
 m_2
 $p=0.3$
 m_3
 $p=0.4$
 m_4
 $p=0.4$
 m_4
 $p=0.4$
 m_1
 $p=0.3$
 m_2
 $p=0.4$
 m_3
 $p=0.4$
 m_3
 $p=0.4$
 m_3
 $p=0.4$
 m_4
 m_5
 m_5
 m_5
 m_5
 m_6
 m_6
 m_7
 m_8
 m_9
 m

8.2 Compresión sin pérdida

- Los métodos de compresión sin pérdida de datos pueden ser clasificados de acuerdo a los tipos de datos para los que fueron diseñados.
- Los tres tipos principales de datos para comprimir son: texto, imágenes y sonido.
- Algunos de los algoritmos de propósito general más conocidos para la compresión sin pérdida de datos son:
 - La transformada Burrows-Wheeler.
 - LZ77
 - LZW
 - Huffman
 - Codificación Aritmética
 - RLE
 - Deflate

8.3 Compresión con pérdida

8.3.1 El estándar JPEG

- Las técnicas de compresión de imagen, actualmente en desarrollo, logran razones de compresión desde 10:1 a 50:1 sin perdida perceptible de calidad.
- Sin embargo, disponer de esta tecnología no es suficiente.
- Para que una aplicación del mercado que emplee almacenamiento y transmisión de imágenes digitales sea utilizable, es necesario disponer de un estándar de compresión que permita la interoperabilidad entre equipos de diferentes fabricantes
- Durante las últimas décadas expertos fotográficos trabajando juntos bajo los auspicios de ITU, ISO e IEC. han desarrollado el estándar JPEG (Joint Photographic Experts Group) que pretende ser el estándar internacional de compresión de imagen digital para ajustarse a las necesidades de la mayor parte de las aplicaciones que utilizan imágenes digitales.

Sistema de evaluación

- **♣** El 50% de la nota final corresponde a la del examen final y el otro 50% a la de un trabajo práctico sobre seguridad.
- **♣** Nota mínima 4 sobre 10 en las dos partes.
- **Las notas del trabajo práctico se mantienen para la convocatoria de julio.**
- **♣** En las convocatorias extraordinarias se realizará un examen de teoría y otro de prácticas, aplicándose los mismos criterios de ponderación y mínimos. Siendo, por tanto, todos los componentes recuperables.

Pormenorizado en guía docente

Trabajo práctico

- **♣** Grupos de 4 alumnos
- ♣ Se dejará información en UACloud (Materiales docentes)

- ♣Grupos 2 (lunes 11:00 a 13:00) y 3 (lunes 09:00 a 11:00) profesor Antonio Zamora Gómez (responsable de la asignatura)
- ♣ Grupos 1 (martes 13:00 a 15:00) y 4 (martes 11:00 a 13:00) profesor José Vicente Aguirre Pastor

GRADO EN INGENIERÍA MULTIMEDIA **COMPRESIÓN Y SEGURIDAD**

Planificación curso 2021-2022

Nº	SEMANA	DÍAS LECTIVOS	TEORÍA	PRÁCTICAS
1	13 sep - 17 sep	5	Presentación 1 Introducción a la Seguridad de los datos multimedia	Presentación. Nociones generales sobre seguridad.
2	20 sep - 24 sep	5	2 El cifrado de datos clásico	Nociones generales sobre seguridad. Creación grupos y elección trabajo práctico
3	27 sep - 01 oct	5	3 Criptografía simétrica en flujo	
4	04 oct - 08 oct	5	4 Criptografía simétrica en bloque	
5	11 oct - 15 oct	0	11 de octubre, lunes, festivo por Día de la Comunidad Valenciana	11 de octubre, lunes, festivo por Día de la Comunidad Valenciana 12 de octubre, martes, festivo por Fiesta Nacional de España
6	18 oct - 22 oct	5	5 Criptografía asimétrica	Entrega 1 ^a memoria antes de 23:59 h. del 23 oct
7	25 oct - 29 oct	5	5 Criptografía asimétrica 6 Autoridades certificadoras	
8	01 nov - 05 nov	4 (M,X,J,V)	1 de noviembre, lunes, festivo por Todos los Santos	
9	08 nov - 12 nov	5	7 Teoría de la Información	Entrega 2ª memoria antes de 23:59 h. del 13 nov
10	15 nov - 19 nov	5	7 Teoría de la Información 8 Compresión de datos	
11	22 nov - 26 nov	5	8 Compresión de datos9 Compresión de contenidos multimedia	
12	29 nov - 03 dic	5	9 Compresión de contenidos multimedia	
13	06 dic - 10 dic	3 (M,J,V)	6 de diciembre, lunes, festivo por Día de la Constitución 8 de diciembre, miércoles, festivo por La Inmaculada Concepción	Entrega prácticas antes de 23:59 h. del 11 dic
14	13 dic - 17 dic	5	Ejercicios	Evaluación de prácticas 13, 14 dic
15	20 dic - 23 dic TOTAL DÍAS ->	4 (L,M,X,J) 69	Ejercicios	Evaluación de prácticas 20, 21 dic