PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-329867

(43) Date of publication of application: 18.11.1992

(51)Int.CI.

C23C 14/22 C23C 14/34 C23C 14/48

C30B 23/08

(21)Application number: 03-126838

(71)Applicant: FUJIKURA LTD

(22)Date of filing:

30.04.1991

(72)Inventor: IIJIMA YASUHIRO

TANABE NOBUO

(54) APPARATUS FOR PRODUCING POLYCRYSTALLINE THIN FILM

(57) Abstract:

PURPOSE: To produce the polycrystalline layer having

good crystal orientability.

CONSTITUTION: This device has an angle adjusting mechanism D which deposits the ions generated from an ion gun while irradiating the same simultaneously from a diagonal direction at the time of depositing the constituting particles driven out of a target 12 by sputtering onto a base material A. About 45° angle of the irradiation with the ions is most preferable and the ions are preferably argon ions and oxygen ions. The caxes of the respective crystal grains of the polycrystalline layer are oriented perpendicularly to the film forming surface of a base material in this way and the polycrystalline layer oriented with both of the a-axis and b-axis of the polycrystalline grains is obtd.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 特 許 公 報(B2)

(11)特許番号

第2670391号

(45)発行日 平成9年(1997)10月29日.

(24)登録日 平成9年(1997)7月4日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	· F I			技術表示箇所
C 2 3 C 14/22			C 2 3 C	14/22	В	
14/08				14/08	, F	•

請求項の数2(全 9 頁)

(21)出願番号	特顏平3-126838	(73)特許権者	000005186		
: .			株式会社フジクラ		
(22)出顧日	平成3年(1991)4月30日		東京都江東区木場1丁目5番1号		
		(72)発明者	飯島 康裕		
(65)公開番号	特開平4-329867	± 6	東京都江東区木場一丁目5番1号 藤倉		
(43)公開日	平成4年(1992)11月18日	,	電線株式会社内		
		(72)発明者	田辺。信夫		
前置審查			東京都江東区木場一丁目5番1号 藤倉		
		•	電線株式会社内		
•		(74)代理人	弁理士 志賀 正武 (外2名)		
•		審査官	三宅 正之		
			` . -		
	·	(56)参考文献	特開 平2-54757 (JP, A)		
			特開 平2-22198 (JP. A)		
			特期 昭55-32040 (JP, A)		
			1000		
,	•				

(54) 【発明の名称】 多結晶薄膜の製造装置

(57)【特許請求の範囲】

【請求項1】 多結晶薄膜が形成される基材を支持する 基材ホルダと、この基材ホルダの基材載置面に斜めに向いて対向配置された安定化ジルコニアのターゲットと、 前記ターゲットの構成粒子をスパッタするスパッタ手段 と、前記基材ホルダの基材載置面に対して斜め方向から 希ガスのイオンを照射するイオン源とが真空排気可能な 容器に収納されてなり、

前記基材ホルダには、基材ホルダの底部に接合された上部支持板とこの上部支持板にピン結合された下部支持板とこの下部支持板を支持する基台を具備してなり、上部支持板と下部支持板の相対角度をピン結合部を介して角度調節自在な角度調整機構が設けられ、前記イオン源からの希ガスのイオンピームを基材成膜面に対して所望の傾斜角度で照射自在に構成されてなり、

2

基材上面にイオンビームを斜め方向から照射しながらスパッタすることで各結晶粒の c 軸を基材の成膜面に対して垂直に各結晶粒の a 軸あるいは b 軸のなす粒界傾角を30度以下にした安定化ジルコニアの多結晶薄膜を成膜自在にされたことを特徴とする多結晶薄膜の製造装置。 【請求項2】 容器内部に金属テープの送出装置と巻取装置が設けられ、基材ホルダに対して送出装置から金属テープを送り出し自在に、かつ、基材ホルダ上の金属テープを巻取装置で巻き取り自在に構成されてなることを

【発明の詳細な説明】-

[0001]

【産業上の利用分野】本発明は結晶方位の整った多結晶 薄膜を製造する装置に関する。

特徴とする請求項1記載の多結晶薄膜の製造装置

[0002]

【従来の技術】近年になって発見された酸化物超電導体は、液体窒素温度を超える臨界温度を示す優れた超電導体であるが、現在、この種の酸化物超電導体を実用的な超電導体として使用するためには、種々の解決するべき問題点が存在している。その問題点の1つが、酸化物超電導体の臨界電流密度が低いという問題である。

【0003】前記酸化物超電導体の臨界電流密度が低いという問題は、酸化物超電導体の結晶自体に電気的な異方性が存在することが大きな原因となっており、特に酸化物超電導体はその結晶軸のa軸方向とb軸方向には電気を流し易いが、c軸方向には電気を流しにくいことが知られている。このような観点から酸化物超電導体を基材上に形成してこれを超電導体として使用するためには、基材上に結晶配向性の良好な状態の酸化物超電導体を形成し、しかも、電気を流そうとする方向に酸化物超電導体の結晶のa軸あるいはb軸を配向させ、その他の方向に酸化物超電導体のc軸を配向させる必要がある。

【0004】そこで従来、基板や金属テープなどの基材上に結晶配向性の良好な酸化物超電導層を形成するために種々の手段が試みられてきた。その1つの方法として、酸化物超電導体と結晶構造の類似したMgOあるいはSrTiO3などの単結晶基材を用い、これらの単結晶基材上にスパッタリングなどの成膜法により酸化物超電導層を形成する方法が実施されている。

【0005】前記MgOや $SrTiO_3$ の単結晶基材を用いてスパッタリングなどの成膜法を行なえば、酸化物超電導層の結晶が単結晶基材の結晶を基に結晶成長するために、その結晶配向性を良好にすることが可能であり、これらの単結晶基材上に形成された酸化物超電導層は、数十万~数百万 A/cm^2 程度の十分に高い臨界電流密度を発揮することが知られている。

[0006]

【発明が解決しようとする課題】ところで、酸化物超電 導体を導体として使用するためには、テープ状などの長 尺の基材上に結晶配向性の良好な酸化物超電導層を形成 する必要がある。ところが、金属テープなどの基材上に 酸化物超電導層を直接形成すると、金属テープ自体が多 結晶体でその結晶構造も酸化物超電導体と大きく異なる ために、結晶配向性の良好な酸化物超電導層は到底形成 できないものである。しかも、酸化物超電導層を形成す る際に行なう熱処理によって金属テープと酸化物超電導層との間で拡散反応が生じて酸化物超電導層の結晶構造 が崩れ、超電導特性が劣化する問題がある。

【0007】そこで従来、金属テープなどの基材上に、スパッタ装置を用いてMgOやSrTiO3などの中間層を被覆し、この中間層上に酸化物超電導層を形成することが行なわれている。ところがこの種の中間層上にスパッタ装置により形成した酸化物超電導層は、単結晶基材上に形成された酸化物超電導層よりもかなり低い臨界電流密度(例えば数千~一万A/cm²)程度しか示さ

ないという問題があった。これは、以下に説明する理由 によるものと考えられる。

【0008】図16は、金属テープなどの基材1上にス パッタ装置により中間層2を形成し、この中間層2上に スパッタ装置により酸化物超電導層3を形成した酸化物 超電導導体の断面構造を示すものである。ここで図16 に示す構造において、酸化物超電導層3は多結晶状態で あり、多数の結晶粒4が無秩序に結合した状態となって いる。これらの結晶粒4の1つ1つを個々に見ると各結 晶粒4の結晶のc軸は基材表面に対して垂直に配向して いるものの、a軸とb軸は無秩序な方向を向いていると ·考えられる。このように酸化物超電導層の結晶粒毎に a 軸とb軸の向きが無秩序になると、結晶配向性の乱れた 結晶粒界において超電導状態の量子的結合性が失われる 結果、超電導特性、特に臨界電流密度の低下を引き起こ すものと思われる。また、前記酸化物超電導体がa軸お よびb軸配向していない多結晶状態となるのは、その下 に形成された中間層2がa軸およびb軸配向していない 多結晶状態であるために、酸化物超電導層3を成膜する 場合に、中間層2の結晶に整合するように酸化物超電導 層3が成長するためであると思われる。

【0009】ところで、前記酸化物超電導体の応用分野以外において、多結晶体の基材上にスパッタ装置により各種の配向膜を形成する技術が利用されている。例えば光学薄膜の分野、光磁気ディスクの分野、配線基板の分野、高周波導波路や高周波フィルタ、空洞共振器などの分野であるが、いずれの技術においても基材上に膜質の安定した配向性の良好な多結晶薄膜を形成することが課題となっている。即ち、多結晶薄膜を形成することが課題となっている。即ち、多結晶薄膜の結晶配向性が良好であるならば、その上に形成される光学薄膜、磁性薄膜、配線用薄膜などの質が向上するわけであり、更に、基材上に結晶配向性の良好な光学薄膜、磁性薄膜、配線用薄膜などを直接形成できるならば、なお好ましいものである。

【0010】また、高周波数帯域で使用される磁気へッドのコア材として、高透磁率を有し、熱的にも安定なパーマロイ、あるいは、センダストなどの磁性薄膜が実用化されている。これらの磁性薄膜は、従来、蒸着やスパッタにより所定の基板上に形成されるが、これらの磁性薄膜の結晶方位の配向性が低いものであると、磁性薄膜の磁気異方性の制御が困難になり、膜面内では結晶粒の方位が無秩序になり、透磁率の高周波特性が損なわれる問題があった。また、膜面内での結晶軸の軸方向が無秩序であると、面内磁化にスキューやリップルと呼ばれる局所的なゆらぎが発生し、前述のように透磁率の高周波特性が損なわれることになる。

【0011】本発明は前記課題を解決するためになされたもので、基材の成膜面に対して直角向きに結晶軸の c 軸を配向させることができると同時に、成膜面と平行な面に沿って多結晶薄膜の結晶軸の a 軸および b 軸をも揃

えることができ、結晶配向性に優れた多結晶薄膜を製造 することができる装置の提供を目的とする。

[0012]

【課題を解決するための手段】請求項1記載の発明は前 記課題を解決するために、多結晶薄膜が形成される基材 を支持する基材ホルダと、この基材ホルダの基材載置面 に斜めに向いて対向配置された安定化ジルコニアのター ゲットと、前記ターゲットの構成粒子をスパッタするス パッタ手段と、前記基材ホルダの基材載置面に対して斜 め方向から希ガスのイオンを照射するイオン源とが真空 排気可能な容器に収納されてなり、前記基材ホルダに は、基材ホルダの底部に接合された上部支持板とこの上 部支持板にピン結合された下部支持板とこの下部支持板 を支持する基台を具備してなり、上部支持板と下部支持、 板の相対角度をピン結合部を介して角度調節自在な角度 調整機構が設けられ、前記イオン源からの希ガスのイオ ンビームを基材成膜面に対して所望の傾斜角度で照射自 在に構成されてなり、基材上面にイオンビームを斜め方 向から照射しながらスパッタすることで各結晶粒の c 軸 を基材の成膜面に対して垂直に各結晶粒のa軸あるいは b軸のなす粒界傾角を30度以下にした安定化ジルコニ アの多結晶薄膜を成膜自在にされたことを特徴とする。 請求項2記載の発明は前記課題を解決するために、前記 の構成において、容器内部に金属テープの送出装置と巻 取装置が設けられ、基材ホルダに対して送出装置から金 属テープを送り出し自在に、かつ、基材ホルダ上の金属 テープを巻取装置で巻き取り自在に構成されてなる。

[0013]

【作用】スパッタリングによりターゲットから叩き出し た構成粒子を基材の成膜面に堆積する際に、斜め方向か らイオンも同時に照射するので、構成粒子が効率的に活 性化される結果、基材の成膜面に対して。軸配向性に加 えてa軸配向性とb軸配向性も向上する。その結果、結 晶粒界が多数形成された多結晶薄膜であっても、結晶粒 ごとのa軸配向性とb軸配向性とc軸配向性のいずれも. が良好になり、膜質の向上した多結晶薄膜が得られる。 また、このような配向性の良好な多結晶薄膜を形成する には、イオンの照射角度を40~60度の範囲にするこ とが好ましい。よって角度調整機構を作動させてイオン の照射角度を好適な角度に調整することで、配向性の良 好な多結晶薄膜が得られる。また、角度調整機構におい ては、基材ホルダの底部に接続された上部支持板とそれ にピン結合された下部支持板の角度を調節することでイ オンの照射角度を容易に調整できる。次に、多結晶薄膜 として具体的に安定化ジルコニアを用いることができ、 希ガスイオンを斜め方向から基材成膜面に照射すると同 時に斜め方向から安定化ジルコニアのスパッタ粒子を基 材成膜面に堆積させることで各結晶粒のc軸を基材の成 膜面に対して垂直に各結晶粒のa軸あるいはb軸のなす 粒界傾角を30以下にした安定化ジルコニアの多結晶薄 膜を成膜できる。次に、容器内部に金属テープの送出装置と巻取装置を設け、基材ホルダに対して送出装置から金属テープを送り出し自在に、かつ、基材ホルダ上の金属テープを巻取装置で巻き取り自在に構成することで、長尺の金属テープ上に多結晶薄膜を連続成膜することができる。

[0014]

【実施例】以下、図面を参照して本発明の実施例につい て説明する。図1は、本発明装置の一実施例を示すもの であり、この実施例の装置は、スパッタ装置にイオンビ ームアシスト用のイオン源を設けた構成となっている。 本実施例の装置は、基材Aを保持する基材ホルダ11 と、この基材ホルダ11の斜め上方に所定間隔をもって 対向配置された板状のターゲット12と、前記基材ホル ダ11の斜め上方に所定間隔をもって対向され、かつ、 ターゲット12と離間して配置されたイオン源13と、 前記ターゲット12の下方においてターゲット12の下 面に向けて配置されたスパッタビーム照射装置

14を主 体として構成されている。また、図中符号15は、ター ゲット12を保持したターゲットホルダを示している。 【0015】また、本実施例の装置は図示略の真空容器 に収納されていて、基材Aの周囲を真空雰囲気に保持で きるようになっている。更に前記真空容器には、ガスボ ンベなどの雰囲気ガス供給源が接続されていて、真空容 器の内部を真空などの低圧状態で、かつ、アルゴンガス あるいはその他の不活性ガス雰囲気または酸素を含む不 活性ガス雰囲気にすることができるようになっている。

【0016】前記基材Aは、例えば板材、線材、テープ 材などの種々の形状のもので、基材Aは、銀、白金、ス テンレス鋼、銅などの金属材料や合金、あるいは、各種 ガラスあるいは各種セラミックスなどからなるものであ る。なお、基材Aとして長尺の金属テープ(ハステロイ 製あるいはステンレス製などのテープ)を用いる場合 は、真空容器の内部に金属テープの送出装置と巻取装置 を設け、送出装置から連続的に基材ホルダ11に基材A を送り出し、続いて巻取装置で巻き取ることでテープ状 の基材上に多結晶薄膜を連続成膜することができるよう に構成することが好ましい。

【0017】前記基材ホルダ11は内部に加熱ヒータを備え、基材ホルダ11の上に位置された基材Aを所用の温度に加熱できるようになっている。また、基材ホルダ11の底部には角度調整機構Dが付設されている。この角度調整機構Dは、基材ホルダ11の底部に接合された上部支持板5と、この上部支持板5にピン結合された下部支持板6と、この下部支持板6を支持する基台7を主体として構成されている。前記上部支持板5と下部支持板6とはピン結合部分を介して互いに回動自在に構成されており、基材ホルダ11の水平角度を調整できるようになっている。

50 【0018】前記ターゲット12は、目的とする多結晶

薄膜を形成するためのものであり、目的の組成の多結晶 薄膜と同一組成あるいは近似組成のものなどを用いる。 ターゲット 1 2 として具体的には、Mg Oあるいは Y2 O3で安定化したジルコニア(YSZ)、Mg O、Sr Ti O3などを用いるがこれに限るものではなく、形成 しようとする多結晶薄膜に見合うターゲッを用いれば良い。

【0019】前記イオン源13は、容器の内部に、蒸発 源を収納し、蒸発源の近傍に引き出し電極を備えて構成 されている。そして、前記蒸発源から発生した原子また は分子の一部をイオン化し、そのイオン化した粒子を引 き出し電極で発生させた電界で制御してイオンビームと して照射する装置である。粒子をイオン化するには直流 放電方式、高周波励起方式、フィラメント式、クラスタ イオンビーム方式などの種々のものがある。フィラメン ト式はタングステン製のフィラメントに通電加熱して熱 電子を発生させ、高真空中で蒸発粒子と衝突させてイオ ン化する方法である。また、クラスタイオンビーム方式 は、原料を入れたるつぼの開口部に設けられたノズルか ら真空中に出てくる集合分子のクラスタを熱電子で衝撃 してイオン化して放射するものである。本実施例におい ては、図2に示す構成の内部構造のイオン源13を用い る。このイオン源13は、筒状の容器16の内部に、引 出電極17とフィラメント18とArガスなどの導入管 19とを備えて構成され、容器16の先端からイオンを ビーム状に平行に照射できるものである。

【0020】前記イオン源13は図1に示すようにその中心軸Sを基材Aの上面(成膜面)に対して傾斜角度 θ でもって傾斜させて対向されている。この傾斜角度 θ は $40\sim60$ 度の範囲が好ましいが、特に45度前後が好ましい。従ってイオン源13は基材Aの上面に対して傾斜角 θ でもってイオンを照射できるように配置されている。なお、イオン源13によって基材Aに照射するイオンは、アルゴンと酸素の混合イオン、あるいはHe $^+$ 、Ne $^+$ 、Ar $^+$ 、Xe $^+$ 、Kr $^+$ などの希ガスのイオン、または、それらと酸素の混合イオンなどでも良い。

【0021】前記スパッタビーム照射装置14は、イオン源13と同等の構成をなし、ターゲット12に対してイオンを照射してターゲット12の構成粒子を叩き出すことができるものである。なお、本発明装置ではターゲ・40ット13の構成粒子を叩き出すことができることが重要であるので、ターゲット12に高周波コイルなどで電圧を印可してターゲット12の構成粒子を叩き出し可能なように構成し、スパッタビーム照射装置14を省略しても良い。

【0022】次に前記構成の装置を用いて基材A上にYSZの多結晶薄膜を形成する場合について説明する。基材A上に多結晶薄膜を形成するには、YSZのターゲットを用いるとともに、角度調整機構Dを調節してイオン源13から照射されるイオンを基材ホルダ11の上面に50

45度前後の角度で照射できるようにする。次に基材A を収納している容器の内部を真空引きして減圧雰囲気と する。そして、イオン源13とスパッタビーム照射装置 14を作動させる。

【0023】スパッタビーム照射装置14からターゲット12にイオンを照射すると、ターゲット12の構成粒子が叩き出されて基材A上に飛来する。そして、基材A上に、ターゲット12から叩き出した構成粒子を堆積させると同時に、イオン源13からArイオンと酸素インの混合イオンを照射する。このイオン照射する際の解射角度 θ は、45度が最も好ましく、40~60度の範囲ならば好適である。ここで θ を90度とすると、多結晶薄膜のc 軸は基材Aの成膜面に対して直角に配向で好ましくない。また、 θ を30度とすると、多結晶薄膜のもい。また、 θ を30度とすると、多結晶薄膜の角度でイオン照射するならば多結晶薄膜の結晶の(100)面が立つようになる。

【0024】このような照射角度でイオン照射を行ないながらスパッタリングを行なうことで、基材A上に形成されるYSZの多結晶薄膜の結晶軸のa軸とb軸とを配向させることができるが、これは、堆積されている途中のスパッタ粒子が適切な角度でイオン照射されたことにより効率的に活性化された結果によるものと思われる。 【0025】図3に、前記の方法でYSZの多結晶薄膜

【0025】図3に、削記の方法でYSZの多結晶沖膜 Bが堆積された基材Aを示す。図3に示す多結晶神膜B は、立方晶系の結晶構造を有する微細な結晶粒20が、 多数、結晶粒界を介して接合一体化されてなり、各結晶 粒20の結晶軸のc軸は基材Aの上面(成膜面)に対し て直角に向けられ、各結晶粒20の結晶軸のa軸どうし およびb軸どうしは、互いに同一方向に向けられて面内 配向されている。また、各結晶粒20のc軸が基材Aの (上面)成膜面に対して直角に配向されている。そし て、各結晶粒20のa軸(あるいはb軸)どうしは、そ れらのなす角度(図4に示す粒界傾角K)を30度以内 にして接合一体化されている。

【0026】前記のように基材A上にYSZの多結晶薄膜Bを形成したならば、この多結晶薄膜B上に酸化物超電導層を形成する。酸化物超電導層を多結晶薄膜B上に形成するには、目的の酸化物超電導体と近似組成あるいは同一組成のターゲットを用い、酸素ガス雰囲気中などにおいてスパッタリングを行なって多結晶薄膜B上に酸化物超電導層を形成しても良いし、前記ターゲットにレーザビームを照射して構成粒子をえぐり出して蒸着するレーザ蒸着法などを実施しても良い。

【0027】前記の多結晶薄膜Bにおいては、c軸が基材Aの成膜面に対して垂直な方向に配向し、成膜面と平行な面に沿ってa軸どうしおよびb軸どうしが良好な配向性を有するので、スパッタリングやレーザ蒸着で多結晶薄膜Bの上に積層される酸化物超電導層も多結晶薄膜

10

Bの配向性に整合するように堆積して結晶成長する。 【0028】よって前記多結晶薄膜B上に形成された酸化物超電導層は、多結晶状態の酸化物超電導層となるが、この酸化物超電導層の結晶粒の1つ1つにおいては、基材Aの厚さ方向に電気を流しにくい c 軸が配向し、基材Aの長手方向に a 軸どうしあるいは b 軸どうしが配向している。従って得られた酸化物超電導層は結晶粒界における量子的結合性に優れ、結晶粒界における超電導特性の劣化が少ないので、基材Aの長手方向に電気を流し易く、臨界電流密度の優れたものが得られる。

【0029】(製造例)図1に示す構成の装置を使用し、この装置を収納した容器内部を真空ポンプで真空引きして3.0×10 $^{-4}$ トールに減圧した。基材は、幅10mm、厚さ0.5mm、長さ10cmのハステロイC276テープを使用した。ターゲットはYSZ(安定化ジルコニア)製のものを用い、スパッタ電圧1000V、スパッタ電流100mA、イオン源のビームの照射角度を45度あるいは90度に設定し、イオン源のアシスト電圧を300V、500V、700Vにそれぞれ設定するとともに、イオン源の電流を15~50mAにそれぞれ設定して基材上にスパッタリングと同時にイオン照射を行なって厚さ0.3 μ mの膜状のYSZ層を形成した。

【0030】得られた各YSZの多結晶薄膜についてCuKα線を用いたθ-2θ法によるX線回折試験を行なった。図5~図7は、イオン源の入射角45度でイオンビーム電圧とイオンビーム電流を適宜変更して測定した試料の回折強さを示す図である。図5~図7に示す結果から、YSZの(200)面あるいは(400)面ので一人が認められ、YSZの多結晶薄膜の(100)面が基材表面と平行な面に沿って配向しているものと推定することができ、YSZの多結晶薄膜がそのC軸を基材上面に垂直に配向させて形成されていることが判明した。なお、図5~図7に示された各ピークの大きさの比較から、ビーム電流が多く、ビーム電圧が小さい方が、即ち、イオンを低い速度で大量に照射した方が多結晶薄膜の c軸配向性を向上できることが判明した。

【0031】図8~図10は、イオン源の入射角度90度でイオンビーム電圧とイオンビーム電流を適宜変更して測定した試料の回折強さを示す図である。図8~図10に示す結果から、イオン源の入射角度を90度にしても c 軸配向性に関しては十分な配向性が認められた。

【0032】次に、前記のようにc 軸配向された試料において、YSZ多結晶薄膜のa 軸あるいはb 軸が配向しているか否かを測定した。その測定のためには、図11に示すように、基材A上に形成されたYSZの多結晶薄膜にX線を角度 θ で照射するとともに、入射X線を含む鉛直面において、入射X線に対して 2θ (58.7度)の角度の位置にX線カウンター25を設置し、入射X線を含む鉛直面に対する水平角度 ϕ の値を適宜変更して、

即ち、基材Aを図11において矢印に示すように回転角 ゅだけ回転させることにより得られる回折強さを測定することにより多結晶薄膜Bのa軸どうしまたはb軸どうしの配向性を計測した。その結果を図12と図13に示す。

【0033】図12に示すようにイオンビームの入射角度を45度に設定して製造した試料の場合、ゆを90度と0度とした場合、即ち、回転角のに対して90度おきにYSZの(311)面のピークが現われている。これは、基板面内におけるYSZの(011)ピークに相当しており、YSZ多結晶薄膜のa軸どうしまたはb軸どうしが配向していることが明らかになった。これに対し、図13に示すように、イオンビーム入射角度を90度に設定して製造した試料の場合、特別なピークが見られず、a軸とb軸の方向は無秩序になってることが判明した。

【0034】以上の結果から本発明装置によって製造された試料の多結晶薄膜は、c軸配向は勿論、a軸どうし、および、b軸どうしも配向していることが明らかになった。よって本発明装置を実施することにより、配向性に優れたYSZなどの多結晶薄膜を製造できることが明らかになった。

【0035】一方、図14は、図12で用いたYSZ多結晶薄膜の試料を用い、この試料の多結晶層の各結晶粒における結晶配向性を試験した結果を示す。この試験では、図11を基に先に説明した方法でX線回折を行なう場合、 ϕ の角度を-10度-45度まで5度刻みの値に設定した際の回折ピークを測定したものである。図14に示す結果から、得られたYSZの多結晶薄膜の回折ピークは、粒界傾角30度以内では表われるが、45度では消失していることが明らかである。従って、得られた多結晶薄膜の結晶粒の粒界傾角は、30度以内に収まっていることが判明し、良好な配向性を有することが明らかになった。

【0036】図15は、本発明装置の他の実施例を示す ものである。この例の装置において図1に記載した装置 と同等の構成部分には同一符号を付してそれらの説明を 省略する。この例の装置において図1に示す装置と異っ ているのは、ターゲット12を3個設け、スパッタビー ム照射装置14を3個設け、基材Aとターゲット12に 高周波電源30を接続した点である。

【0037】この例の装置では、3個のターゲット12、12、12から、それぞれ別種の粒子を叩き出して基材A上に堆積させて複合膜を形成することができるので、より複雑な組成の多結晶膜でも製造できる特徴がある。また、高周波電源30を作動させてターゲット12からスパッタすることもできる。この例の装置を用いて前記方法を実施する場合も図1に示す装置の場合と同様に配向性に優れた多結晶薄膜を得ることができる。

【0038】ところで、図1または図13に示す構成の

装置を用いて前記方法を実施すれば、配向性の良好な光学薄膜、配向性の良好な光磁気ディスクの磁性薄膜、配向性の良好な集積回路用微細配線用薄膜、高周波導波路や高周波フィルタおよび空洞共振器などに用いられる誘電体薄膜のいずれでも形成することができる。即ち、結晶配向性の良好な多結晶薄膜B上に、これらの薄膜をスパッタリング、レーザ蒸着、真空蒸着、CVD(化学蒸着)などの成膜法で形成するならば、多結晶薄膜Bと良好な整合性でこれらの薄膜が堆積または成長するので、配向性が良好になる。

【0039】これらの薄膜を本発明装置で製造することで、配向性の良好な高品質の薄膜が得られるので、光学薄膜においては光学特性に優れ、磁性薄膜においては磁気特性に優れ、配線用薄膜においてはマイグレーションの生じない、誘電体薄膜においては誘電特性の良好な薄膜が得られる。

[0040]

【発明の効果】以上説明したように本発明によれば、ス パッタリングによりターゲットから叩き出した構成粒子 を基材の成膜面に堆積する際に斜め方向から所定の角度 でイオンビームを照射できるので、構成粒子を効率的に 活性化できる結果、基材の成膜面に対してc軸配向性に 加えてa軸配向性とb軸配向性も向上させることができ る。よって本発明装置を用いることで、結晶粒界が多数 形成された多結晶薄膜であっても、結晶粒ごとのa軸配 向性とb軸配向性とc軸配向性のいずれもが良好になっ ている多結晶薄膜を形成することができる。また、この ような配向性の良好な多結晶薄膜を形成するには、イオ ンの照射角度を所望の範囲にすることが好ましい。よっ て角度調整機構を作動させてイオンの照射角度を好適な 角度に調整することで、配向性の良好な多結晶薄膜が得 られる。また、角度調整機構においては、基材ホルダの・ 底部に接続された上部支持板とそれにピン結合された下 部支持板の角度を調節することでイオンの照射角度を容 易に調整できる。更に、本発明装置で得られた多結晶体 からなる金属基材上に形成された安定化ジルコニアの多 結晶薄膜は、結晶粒の粒界傾角が30度以内であるの で、結晶配向性に優れ、良質なものである。特に、多結 晶体からなる金属基材上に形成された安定化ジルコニア の多結晶薄膜であって、結晶粒の粒界傾角が30度以内 40 のものは、従来得られておらず、本願発明装置で製造さ れた多結晶薄膜は従来にない優れた結晶配向性を有する 多結晶薄膜である。

【0041】次に、多結晶薄膜として具体的に安定化ジルコニアを用いることができ、希ガスイオンを斜め方向から基材成膜面に照射すると同時に斜め方向から安定化ジルコニアのスパッタ粒子を基材成膜面に堆積させるこ

とで各結晶粒の c 軸を基材の成膜面に対して垂直に各結晶粒の a 軸あるいは b 軸のなす粒界傾角を 3 0 以下にした安定化ジルコニアの多結晶薄膜を成膜できる。次に、容器内部に金属テープの送出装置と巻取装置を設け、基材ホルダに対して送出装置から金属テープを送り出し自在に、かつ、基材ホルダ上の金属テープを巻取装置で巻き取り自在に構成することで、長尺の金属テープ上に多結晶薄膜を連続成膜することができる。

【図面の簡単な説明】

10 【図1】図1は本発明装置の一実施例を示す構成図である。

【図2】図2は本発明装置のイオン源の一例を示す断面 図である。

【図3】図3は本発明装置で製造された多結晶薄膜を示す構成図である。

【図4】図4は図3に示す多結晶薄膜の拡大平面図である。

【図5】図5はビーム電圧300Vで製造した本発明試料のX線回折結果を示すグラフである。

【図6】図6はビーム電圧500Vで製造した本発明試料のX線回折結果を示すグラフである。

【図7】図7はビーム電圧700Vで製造した本発明試料のX線回折結果を示すグラフである。

【図8】図8はビーム電圧300Vで製造した比較例試料のX線回折結果を示すグラフである。

【図9】図9はビーム電圧500Vで製造した比較例試料のX線回折結果を示すグラフである。

【図10】図10はビーム電圧700Vで製造した比較 例試料のX線回折結果を示すグラフである。

【図11】図11は a 軸配向性を調べるために行なった 試験装置を説明するための構成図である。

【図12】図12は本発明装置により製造された多結晶 薄膜の(311)面の回折ピークを示すグラフである。

【図13】図13は比較例における多結晶薄膜の (311) 面の回折ピークを示すグラフである。

【図14】図14は本発明装置で製造された多結晶薄膜の回転角5度おきの回折ピークを示すグラフである。

【図15】図15は本発明装置の他の実施例を示す構成 図である。

0 【図16】図16は従来の装置で製造された多結晶薄膜を示す構成図である。

【符号の説明】

A・・・基材、B・・・多結晶薄膜、D・・・角度調整 機構、θ・・・傾斜角度、w・・・回転角、11・・・ 基材ホルダ、12・・・ターゲット、13・・・イオン 源、14・・・スパッタビーム照射装置、15・・・タ ーゲットホルダ、

[図13]

【図15】

【図14】

