Traffic Flow: An analysis of 1D and 2D systems

Max Bohle, Bart Koedijk, Tycho Stam, & Koen Verlaan

How do traffic **cluster sizes** scale with **increasing vehicle density**, and to what extent do **dimensionality** in a **cellular automata**, and **system parameters** influence the **formation of traffic jams**?

- The size of the traffic cluster increases linearly when increasing the cars

- The size of the traffic cluster increases linearly when increasing the cars
- No difference in emergence can be found between 1D and
 2D

- The size of the traffic cluster increases linearly when increasing the cars
- No difference in emergence can be found between 1D and 2D
- Variations in system parameters do not significantly affect the the formation of traffic jam
 - Road Length
 - Max Speed
 - Speed Compliance

Nagel Schreckenberg / Phantom Traffic Jams A 1D approach

1D traffic model - rules

- Looping 1D road with specified length
- Car occupies single space, moves according to current speed and speed limit
- Cars interact; speed up / slow down according to other cars
- Interaction behavior causes emergence

Randomization parameter: 30% chance cars will slow down randomly

1D traffic model - logic

1-90 cars

Wolfram rule 184

1D Results: Emergence after ~15% <u>density</u>

randomization

Density vs Average Speed Individual Simulation Mean Average Speed 90% Confidence Interval Average Speed 0 0.2 0.4 0.8 0.0 0.6 1.0 Density

No randomization

1D Results: <u>Randomization</u> adds noise to emergent patterns

80 cars - randomization

80 cars - no randomization

1D Results: Speed limits delay onset of, and slow transition to, emergence

Density vs Average Speed Individual Simulation 0.8 Mean Average Speed 90% Confidence Interval 0.6 Average Speed 0.2 0.0 0.8 0.0 0.2 0.4 0.6 1.0 Density

No randomization

1D Results:

Road length adjusted for density does not impact the 1D system

28 cars, 100 road length - 28% density

56 cars, 200 road length - 28% density

2D Manhattan-like city Based on Chopard et al 1996

2D traffic model

Cars Rules:

- Cars will try to move at maximum speed on a straight road
- Cars will **stop** when a **car is in front** of them
- Cars will move on the rotary until the flag is changed to exit
 - Free Movement
 - Fixed Destination

Rotary Methods

Free Movement

Fixed Direction

2D traffic model

Cars Abstractions:

- Cars can move instantly to full speed and will break instantly
- Cars don't have a predefined destination
- Cars can only move as far as they can, **never overtaking another car**

Experimenting Parameters

Road Length: How long is the road between intersections

Max Speed: How many cells can a car move each timestep

Speed Compliance: What percentage of cars follow the speed limit (rebels can go either faster or slower)

Effect Rotary Method

Free Movement

Fixed Direction

Effect Road Length

Effect Max Speed

Effect Speed Compliance

Emergent Behaviour?

Distribution of jammed cars

 Power law distribution preferred over exponential distribution (p << 0.05) for 20 simulations.

Evolution of the Giant Component

Grid size = 100

Conclusion:

- Variations in system parameters do not significantly affect the the formation of traffic jams
 - Road Length
 - Max Speed
 - Speed Compliance

1D:

- Density and speed limits make a big difference
- Road length less of an impact because of the infinite lattice

2D:

- Density and road length make a big difference
- Speed limits and speed compliance less so

The size of the traffic cluster increases linearly when increasing the cars

- Given the log-log plot an almost linear distribution can be observed
- Suggests a Power-law
- More clusters of a lower size
- Phase transition after x > 2000 for Giant component

- No difference in emergence can be found between 1D and
 2D
- 2D has the possibility of system wide locks even in lower density
- Cars have a more familiar logic in 2D

Summary

- Use of a Cellular Automata (CA) in 1D and 2D
- The impact of speed limit and road length on the 1D CA
- Implementation of basic car logics, with some necessary assumptions
- The impact of the 2D parameters on the traffic jam
- Cluster frequency follows a power law
- Emergence of a Giant Component