Проект

по статистическому практикуму

Зайченко Николай и Мартюшова Кира, 332 гр.

Мы объединили два набора данных:

titles.csv — содержит основную информацию о фильмах. credits.csv — содержит информацию об актёрах и их участии в фильмах.

После объединения получаем следующие признаки:

- 1. title название фильма
- 2. type тип (например, фильм, сериал)
- 3. release_year год выпуска
- 4. age_certification возрастной рейтинг
- 5. runtime продолжительность фильма в минутах
- 6. genres жанры (один или несколько)
- 7. production_countries страна(-ы) производства
- 8. imdb_id идентификатор IMDb
- 9. imdb_score оценка IMDb (целевой признак)
- 10.imdb_votes количество голосов на IMDb
- 11.actor_name имя актёра

Анализ распределения числовых признаков: Violinplot + Boxplot

Распределение 'release_year'

Распределение 'runtime'

Распределение 'imdb_score'

Распределение 'imdb_votes' (min=5)

Распределение 'avg_actor_popularity'

Распределение 'num_actors'

Корреляционная матрица -0.13 1.00 -0.17 -0.21 -0.12 -0.14 release_year - 0.8 -0.17 1.00 0.14 0.09 0.42 runtime -0.15 - 0.6 -0.13 -0.15 1.00 0.19 0.06 -0.03 imdb_score - 0.4 -0.21 0.14 0.19 1.00 0.00 0.40 imdb_votes - 0.2 0.09 avg_actor_popularity -0.12 0.06 0.00 1.00 -0.04 - 0.0 -0.14 0.42 -0.03 0.40 -0.04 1.00 num_actors imdb_score imdb_votes avg_actor_popularity num_actors runtime release_year

Распределение оценок IMDb по топ-10 странам производства

Самые популярные жанры (по количеству фильмов)

Распределение оценок IMDb по жанрам

Градиентный бустинг

Градиентный бустинг строит взвешенную композицию алгоритмов:

$$a(x) = \sum_{i=1}^{T} \alpha_i b_i(x),$$

где $b_i(x)$ — базовые алгоритмы, а α_i — их веса.

$$a(x) = \sum_{i=1}^{I} \alpha_i b_i(x)$$

$$Q(\alpha, b) = \sum_{i=1}^{l} L(a(x_i), y_i) = \sum_{i=1}^{l} L\left(\underbrace{\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha b(x_i), y_i}_{f_{T,i}}\right) \to \min_{\alpha, b}$$

$$Q(\alpha, b) = \sum_{i=1}^{l} L(a(x_i), y_i) = \sum_{i=1}^{l} L\left(\underbrace{\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha b(x_i), y_i}_{f_{T,j}}\right) \to \min_{\alpha, b}$$

$$f_{T-1} = [f_{T-1,1}, f_{T-1,2}, \dots, f_{T-1,l}]^T$$

$$f_T = [f_{T,1}, f_{T,2}, \dots, f_{T,l}]^T$$

$$Q(\alpha, b) = \sum_{i=1}^{l} L(a(x_i), y_i) = \sum_{i=1}^{l} L\left(\underbrace{\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha b(x_i), y_i}_{f_{T,j}}\right) \to \min_{\alpha, b}$$

$$f_{T-1} = [f_{T-1,1}, f_{T-1,2}, \dots, f_{T-1,l}]^T$$

$$f_T = [f_{T,1}, f_{T,2}, \dots, f_{T,l}]^T$$

$$g_i = \frac{\partial L(f_{T-1,i}, y_i)}{\partial f_{T-1,i}} = L'(f_{T-1,i}, y_i), \quad i = 1, \dots, l$$

$$Q(\alpha, b) = \sum_{i=1}^{l} L(a(x_i), y_i) = \sum_{i=1}^{l} L\left(\underbrace{\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha b(x_i), y_i}_{f_{T,j}}\right) \to \min_{\alpha, b}$$

$$f_{T-1} = [f_{T-1,1}, f_{T-1,2}, \dots, f_{T-1,l}]^T$$

$$f_{T,i} = f_{T-1,i} - \alpha g_i, \quad i = 1, \dots, l$$

$$f_T = [f_{T,1}, f_{T,2}, \dots, f_{T,l}]^T$$

$$f_{T,i} = f_{T-1,i} + \alpha b(x_i), \quad i = 1, \dots, l$$

$$g_i = \frac{\partial L(f_{T-1,i}, y_i)}{\partial f_{T-1,i}} = L'(f_{T-1,i}, y_i), \quad i = 1, \dots, l$$

$$b_T = \arg\min_{b} \sum_{i=1}^{l} (b(x_i) + g_i)^2$$

$$b_T = \arg\min_{b} \sum_{i=1}^{l} (b(x_i) + g_i)^2$$

$$\alpha_T = \arg\min_{\alpha>0} \sum_{i=1}^{l} L(f_{T-1,i} + \alpha b_T(x_i), y_i)$$

В качестве входных признаков (\mathbf{X}) используются числовые характеристики фильмов:

- Длительность фильма (runtime);
- Год выпуска (release_year);
- Число актеров (num_actors)
- Популярность актера (avg_actor_popularity);
- Есть ли в фильме топ-актер (has top actor);
- Жанр фильма (genres);
- Страна производства (country).

В качестве целевой переменной (Y) берётся рейтинг IMDb (imdb_score), который необходимо предсказать.

Для модели градиентного бустинга наиболее популярной функцией потерь является среднеквадратичная ошибка (MSE):

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
.

Для модели градиентного бустинга наиболее популярной функцией потерь является среднеквадратичная ошибка (MSE):

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
.

Средняя абсолютная ошибка (МАЕ):

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|;$$

Коэффициент детерминации (R^2) :

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}.$$

Результаты

Модель	MSE	MAE	R^2
Градиентный бустинг	0,9885	0,7575	0,2914

Кластеризация: OPTICS и спектральный подход

OPTICS (Ordering Points To Identify the Clustering Structure)

- Похоже на DBSCAN, но не требует фиксированного радиуса
- Строит упорядоченный список точек по плотности
- Обнаруживает кластеры разной плотности и шум

Параметры OPTICS

- min_samples: определяет минимальный размер кластера
- cluster_method: метод кластеризации (в нашем случае это метод "xi")
- хі: чувствительность к изменению плотности

Ключевые понятия OPTICS

Core Distance — радиус, включающий min_samples

Reachability Distance(q,p) = max(core_dist(p), dist(p,q))

Метод хі в ОРТІСЅ

- Кластеры определяются как области стабильной плотности, между которыми резкие изменения.
- Используется относительное изменение расстояния достижимости:

$$\frac{\text{reachability_dist}_{i+1} - \text{reachability_dist}_{i}}{\text{reachability_dist}_{i}} > \xi$$

• Параметр $\xi \in (0,1)$ — чувствительность к границам кластеров (обычно 0.03–0.05).

Пример графика достижимости

Спектральная кластеризация

- 1. Строим граф похожести
- 2. Вычисляем лапласиан графа
- 3. Находим собственные вектора
- 4. Применяем k-means

Матрица смежности и лапласиан

$$ullet$$
 Матрица А: $A_{ij} = egin{cases} 1, & ext{если } j \in kNN(i) \ 0, & ext{иначе} \end{cases}$

- ullet Матрица степеней: $D_{ii} = \sum_j A_{ij}$
- ullet Нормализованный лапласиан: $L = I D^{-1/2} A D^{-1/2}$

Кластеризация фильмов с помощью комбинации данных методов:

Цель: Мы хотим автоматически разделить фильмы на группы (кластеры), основываясь на количественных характеристиках.

Это позволяет понять, какие типы фильмов существуют в датасете, какие у них общие свойства, и как можно использовать эту информацию, например, для рекомендаций или анализа рынка.

Используемые признаки:

- runtime длительность фильма;
- release_year год выхода;
- imdb_score рейтинг IMDb;
- imdb_votes количество голосов на IMDb;
- жанры.

