Agents that Search Together: Adversarial Search

Russell and Norvig: Chapter 5

CSE 240: Winter 2023

Lecture 5

Announcements

- Assignment 1 is due WEDNESDAY at 5pm
- Quiz 1 on Thursday: will open at 11:25am (after class on Thursday)
 - Due Friday at 5pm.
 - Open book, open note
 - 30 minutes
 - Time added for DRC.

My Meta-Learning Tips: Quizzes

- Manage stress through relaxation and focus.
 - Relaxation: Take three deep breathes when quiz starts. If you find yourself getting anxious breathe! It works!!! Be prepared, have notes, review, etc.
 - Focus: Manage time. Be a smart test taker, ALWAYS put down/choose something. Do the easy questions first. Limit distractions.

Agenda/Schedule

Week 3

- Game theory
 - Adversarial games
 - Minimax algorithm and alpha-beta pruning
 - Stochastic games
 - Expectimax search algorithm

Today

- Adversarial search
 - Or search with other agent

Behavior Based on Computation

Agents Getting Along With Other Agents

Agents Getting Along With Humans

Types of Game

- Many different kinds of games!
- Types
 - Deterministic of stochastic?
 - One, two or more players?
 - Zero sum?
 - Perfect information (can you see the state)?

Types of Games

- General Games
 - Agents have independent utilities (values on outcomes)
 - Cooperation, indifference, competition, and more are all possible
 - We don't make Al to act in isolation, it should: 1) work around people and 2) help people
 - That means that every Al agents needs to solve a game.

- Zero-Sum Games
 - Agents have opposite utilities (values on outcomes)
 - Think of a single value that one maximizes and the other minimizes
 - Adversarial, pure competition

Primary Assumptions

- We start with there games:
 - Two players
 - Turn taking -> agents act alternately
 - Zero sum -> agents' goals are in conflict
 - Deterministic
 - Perfect information -> fully-observable

Deterministic Games with Terminal Utilities

- Many possible formalizations, one is:
 - States: S (start at s_0)
 - Players: $P = \{1,...,N\}$ (usually take turns)
 - Actions: A (may depend on player/state)
 - Transition Function: $S \times A \rightarrow S$
 - Terminal Test $S \to \{t, f\}$
 - Terminal Utilities: $S \times P \rightarrow R$
- Solution for a player is a policy: $S \rightarrow A$

Adversarial Games

Adversarial Search

Cost Utility

- No longer minimizing cost!
- Agent now wants to maximize its score/utility!

Single-Agent Trees

Single-Agent Trees

Single-Agent Trees

Non-terminal states:

 $V(s) = \max_{s' \in children(s)} V(s')$

Adversarial Game Trees

Adversarial Game Trees

Adversarial Game Trees

Minimax Values

Terminal States:

$$V(s) = known$$

Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Each node has a minimax value: best achievable utility against a rational adversary

Minimax values: computed recursively

Terminal values: part of the game

Optimal strategies

- Find the strategy for MAX assuming an infallible MIN opponent.
- Assumption: Both players play optimally !!
- Given a game tree, the optimal strategy can be determined by using the minimax value of each node:

```
\begin{aligned} &\text{MINIMAX-VALUE(n)=} \\ &\text{UTILITY(n)} & &\text{If n is a terminal} \\ &\text{max}_{s \in \text{successors(n)}} \text{ MINIMAX-VALUE(s)} & &\text{If n is a max node} \\ &\text{min}_{s \in \text{successors(n)}} \text{ MINIMAX-VALUE(s)} & &\text{If n is a min node} \end{aligned}
```

Computing Minimax Values

- Two recursive functions:
 - max-value maxes the values of successors
 - min-value mins the values of successors
- def value(state):
 - If the state is a terminal state: return the state's utility
 - If the next agent is MAX: return max-value(state)
 - If the next agent is MIN: return min-value(state)

```
\begin{array}{ll} \text{def max-value(state):} & \text{def min-value(state):} \\ \text{Initialize max} = -\infty & \text{Initialize min} = \infty \\ \text{For each successor of state:} & \text{For each successor of state:} \\ \text{Compute value(successor)} & \text{Compute value(successor)} \\ \text{Update max accordingly} & \text{Update min accordingly} \\ \text{Return max} & \text{Return min} \end{array}
```

CE 5: Minimax

Minimax Properties

Optimal against a perfect player. Otherwise?

Properties of Minimax

For chess, b~35, m~100, exact solution is completely infeasible

Pruning

Minimax Example

Problem of minimax search

- Number of games states is exponential to the number of moves.
 - Solution: Do not examine every node
 - Alpha-beta pruning
 - Remove branches that do not influence final decision

Alpha-beta pruning

- We can improve on the performance of the minimax algorithm through alphabeta pruning
- Basic idea: "If you have an idea that is surely bad, don't take the time to see how truly awful it is." -- Patrick Winston

- We don't need to compute the value at this node.
- No matter what it is, it can't affect the value of the root node.

Alpha-Beta Pruning

- General configuration
 - We're computing the MIN-VALUE at n
 - We're looping over n's children
 - n's value estimate is dropping
 - a is the best value that MAX can get at any choice point along the current path
 - If n becomes worse than α, MAX will avoid it, so can stop considering n's other children
 - Define β similarly for MIN

MAX
MIN

MAX

MAX

MIN

Alpha Beta Implementation

α: MAX's best option on path to root β: MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
def min-value(state , \alpha, \beta):
    initialize v = +\infty
    for each successor of state:
        v = \min(v, value(successor, \alpha, \beta))
        if v \le \alpha return v
        \beta = \min(\beta, v)
    return v
```

Alpha Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - So the most naive version won't let you do action section
- Good child ordering improves effectiveness of pruning
- With "perfect ordering"
 - Time complexity drops to $O(b^{m/2})$
 - Doubles solvable depth!
 - Full search of, e.g., chess, is still hopeless

- a: best already explored path along path to root for maximer
- β: best already explored path along path to root for minimizer

Alpha-Beta Example

Do DF-search until first leaf

- a: best already explored path along path to root for maximer
- β: best already explored path along path to root for minimizer

Alpha-Beta Example

Do DF-search until first leaf

- a: best already explored path along path to root for maximer
- β: best already explored path along path to root for minimizer

- a: best already explored path along path to root for maximer
- β: best already explored path along path to root for minimizer

- a: best already explored path along path to root for maximer
- β: best already explored path along path to root for minimizer

- a: best already explored path along path to root for maximer
- β: best already explored path along path to root for minimizer

- a: best already explored path along path to root for maximer
- β: best already explored path along path to root for minimizer

- a: best already explored path along path to root for maximer
- β: best already explored path along path to root for minimizer

- a: best already explored path along path to root for maximer
- β: best already explored path along path to root for minimizer

- a: best already explored path along path to root for maximer
- β: best already explored path along path to root for minimizer

Alpha-Beta Practice 1

Alpha-Beta Practice 2

Recap

- Game theory
 - Adversarial games
 - Minimax algorithm and alpha-beta pruning
- Next lecture
 - Stochastic games
 - Expectimax search algorithm