Bee Image Classification using a CNN to detect varroa mites

By: Mahdi Shadkam-Farrokhi

The Problem

- Honey bees contribute nearly \$20 billion to the value of U.S. crop production ¹
- Beekeepers continue to lose up to 45 percent of their hives annually ²
- Varroa mites are a major culprit ²
- Varroa mites are super effective vs. honey bees
 - Drain body fluids directly
 - Transmit deadly virus

varroa destructor

How can we help?

- Improve beekeeper's ability to detect *varroa* infestation
 - Quicker detection = quicker treatment
 - Taking a picture is quick and convenient!
- Plan of attack:
 - Use Honey Bee Annotated Image Dataset (on Kaggle) ³
 - Train a Convolutional Neural Network (CNN) to classify a bee image as having a varroa mite or not (binary classification)
 - Using accuracy as metric
 - **BONUS:** Create a practical application with the model

Glimpse of the data

- ~4,400 bee images
 - 25% varroa
 - 75% Healthy (baseline)
- Observations:
 - Different image sizes
 - Different orientations
 - Dark Exoskeletons
 - Background confusion
 - Different resolutions
 - Partial bee images
 - Different photographers?

healthy

healthy

healthy

healthy

varroa

varroa

varroa

Model Preparation

- Addressing issues:
 - Different image sizes
 Resized to a standard WxH
 - Different orientations Rotation + Mirror Transformation
 - Dark Exoskeletons Brightness Transformation
 - Background confusion Brightness Transformation
 - Different resolutions
 - Partial bee images
 - O Different photographers?
- Network topography:
 - [3 x (2 Conv + 1 MaxPool)] + [2 Dense]

Model Evaluation

- 98.9% training accuracy
- 99.5% testing accuracy
 - Background confusion still an issue
- Is the CNN actually detecting varroa?
 - Neural Networks are "black box" models
 - We can look at convolutional layer weights!

Exploring the CNN

Varroa bee

Conclusion

- Successfully trained a CNN to perform better than baseline
 - 98.9% training and 99.5% testing accuracy
- The model seems to actually detect varroa!
- One weakness of the CNN!
 - Background confusion
 - Take photos using contrasting background
- Grain of salt...
 - Small dataset!
 - Single source of varroa images = bias
 - Resizing = reduced data quality

Recommendations + Future Work

- Revisit with more robust dataset w/same WxH
- Bee Classifier mobile web application 4
 - Validate and test model in production-like setting
- Impractical for beekeepers to photograph individual bees!
 - Train CNN to crop from photos with many bees
 - Feed those images into our CNN

https://bit.ly/2KYNPlP

Bee Image Classifier

Check to see if your bee has a

Documentation on GitHut Made bu: Mahdi Shadkam-Farrok

Sources

- 1. ABF Pollination Facts
- 2. CMS business Agriculture and Bees: What Consumers Need to Know
- 3. Honey Bee Annotated Image Dataset (Kaggle)
- 4. Bee Image Classifier (proof of concept)

