Formale Systeme

Aussagenlogik - Probeklausur im November 2018

Prof. Dr. Steffen Hölldobler

Aufgabe 1

Aussagenlogische Formel \blacktriangleright Wenn F ein Atom ist, dann ist F eine Formel.

- \blacktriangleright Wenn F eine Formel ist, dann ist F eine Formel.
- ▶ Wenn F und G Formeln sind, dann ist auch $F \circ G$ eine Formel, wobei $\circ \in \{\land, \lor, \rightarrow\}$.

Aussagenlogische Interpretation \blacktriangleright Eine Interpretation $I=(W,\cdot^I)$ besteht aus der Menge der Wahrheitswerte W und

 \blacktriangleright einer Abbildung $I: L(R) \to W$, welche die folgenden Bedingungen erfüllt:

$$[F]^{I} = \begin{cases} ^{*}/[G]^{I} & \text{wenn } F \text{ von der Form } \mathcal{G} \text{ ist} \\ [G_{1}]^{I} \circ ^{*} [G_{2}]^{I} & \text{wenn } F \text{ von der Form } (G_{1} \circ G_{2}) \text{ ist} \end{cases}$$

Tautologie \blacktriangleright F ist allgemeingültig, wenn für alle Interpretationen $I=(W,+^I)$ gilt: $F^I=\top$.

Aussagenlogische Konsequenz \blacktriangleright F ist genau dann eine Konsequenz einer Menge von Formeln \mathcal{G} , symbolisch $\mathcal{G} \models F$,

- ▶ wenn für jede Interpretation $I = (W, +^{I})$ gilt:
- \blacktriangleright wenn I Modell für \mathcal{G} ist, dann ist I auch Modell für F.

Konjunktive Normalform \longrightarrow CNF ist von der Form einer verallgemeinerten Konjunktion $\langle C_1, \dots, C_m \rangle$ mit $m \geq 0$ und

▶ jedes C_j mit $1 \le j \le m$ ist einer Klausel von der Form $[L_1, \ldots, L_n]$, wobei $L_i, i = 1, \ldots, n$ ein Literal ist.

Aufgabe 2

- (a) falsch
- (b) wahr
- (c) falsch
- (d) wahr
- (e) wahr
- (f) falsch
- (g) wahr
- (h) wahr

Aufgabe 3

- \blacktriangleright (2 Punkte) Sei *I* eine Interpretation, die alle aussagenlogische Variablen in \mathcal{R} auf \top abbildet.
- ▶ (2 Punkte) Also ist I ein Modell für jede definite Klausel. Sei dazu $[A, l_1, ..., L_m]$ eine definite Klausel, bei der A ein positives Literal ist.

$$[A, l_1, \dots, L_m]^I = [(A \vee [L_1 \vee \dots \vee L_m])]^I$$

$$= [A]^I \vee^* [L_1 \vee \dots \vee L_m]^I$$

$$= \top \vee^* [L_1 \vee \dots \vee L_m]^I$$

$$= \top$$

 \blacktriangleright (2 Punkte) Damit ist I ein Modell für eine Konjunktion von definiten Klauseln, d.h. für eine Formel in Klauselform, die nur definite Klauseln enthält.

Aufgabe 4

Die Aussage ist falsch. (0.5 Punkte) Betrachte dazu die Formel $F=(p\vee p).$ (1.5 Punkte) Dann ist

- ▶ $|S(F)| = |\{(p \lor p), p\}| = 2$
- $ightharpoonup |\mathcal{P}_F| = |\{\Lambda, 1\Lambda, 2\Lambda\}| = 3$

Aufgabe 5

- ▶ (1 Punkt) Es gibt 2^{2^n} verschiedene Äquivalenzklassen bezüglich $\mathcal{L}(\mathcal{R}, n)$ definiert durch \equiv .
- ▶ (2 Punkte) Also gibt es maximal $k \leq 2^{2^n}$ unterschiedliche Äquivalenzklassen bezüglich \mathcal{G}_n definiert durch \equiv .
- ▶ (2 Punkte) Es gibt ein Modell I für die Formeln $\mathcal{G}_1, \ldots, \mathcal{G}_k \in \mathcal{G}_n$, die die k Äquivalenzklassen repräsentieren,
- ▶ (2 Puntke) da $\{\mathcal{G}_1, \dots \mathcal{G}_k\}$ eine echte Teilmenge von F ist.
- \blacktriangleright (1 Punkt) Diese Interpretation ist also auch ein Modell für \mathscr{G}_n ,
- ▶ (1 Punkt) da mit jedem G_i auch alle anderen Formeln der gegebenen Äquivalenzklasse auf wahr unter I abgebildet werden.