TITLE

Graham Cooper

May 4th, 2015

Dual Graphs

<u>**Definition:**</u> Let G be a planar graph with an embedding. The dual G* of the embedding has one vertex V_f corresponding to each face f of G, and foreach edge in G whose two sides are f_1 , f_2 , G* has a corresponding edge V_{f_1} , V_{f_2} .

It is possible for the dual graph to have multiple edges and loops.

Properties of Duality:

- 1. IF G is planar then G^* is also planar (From inside a face, draw lines to the midpoints of the edges in the boundary)
- 2. $(G^*)^* = G$
- 3. # of faces in G = # of vertices in G^* # of vertices in G = # of faces in G^* # of edges in G = # of edges in G^*
- 4. degree of a vertex in $G = \deg$ of the corresponding face in G^* degree of a face in $G = \deg$ of the corresponding vertex in G^*
- 5. The dual of a platonic graph is platonic

<u>Theorem:</u> The dual of an Eulerian planar graph is bipartite.

<u>Proof:</u> IF a graph is Eulerian, every vertex has even degree. So every face has even degree. By A9 last Question, the dual is bipartite.

1

Matchings

<u>Definition:</u> A matching of a graph is a set of edges where no two edges share a common vertex (or they for ma subgraph of max dgeree 1)

General Question: What is the maximum size of a matching in a graph?

<u>Definition:</u> A vertex incident with an edge in a matching is called saturated. It is unsaturated otherwise.

A matching that saturates all vertices is a perfect matching.

If a graph has a perfect matching, then it has even # of vertices.