Background

Electromagnetic Spectrum

Frequency Spectrum Allocation

Unlicensed ISM/SRD bands:

USA/Canada:

■ 260 – 470 MHz (FCC Part 15.231; 15.205) ■ 902 – 928 MHz (FCC Part 15.247; 15.249)

■ 2400 – 2483.5 MHz (FCC Part 15.247; 15.249)

Europe:

433.050 – 434.790 MHz (ETSI EN 300 220)

■ 863.0 – 870.0 MHz (ETSI EN 300 220)

2400 – 2483.5 MHz (ETSI EN 300 440 or ETSI EN 300 328)

Japan:

315 MHz

426-430, 449, 469 MHz

2400 – 2483.5 MHz

2471 – 2497 MHz

(Ultra low power applications)

(ARIB STD-T67)

(ARIB STD-T66)

(ARIB RCR STD-33)

ISM = Industrial, Scientific and Medical

ISM/SRD License-Free Frequency Bands

Table 2.4 IEEE 802.11b Channels for Both DS-SS and FH-SS WLAN Standards

Country	Frequency Range Available	DSSS Channels Available	FHSS Channels Available
United States	2.4 to 2.4835 GHz	1 through 11	2 through 80
Canada	2.4 to 2.4835 GHz	1 through 11	2 through 80
Japan	2.4 to 2.497 GHz	1 through 14	2 through 95
France	2.4465 to 2.4835 GHz	10 through 13	48 through 82
Spain	2.445 to 2.4835 GHz	10 through 11	47 through 73
Remainder of Europe	2.4 to 2.4835	1 through 13	2 through 80

Simplex RF System

- A radio technology that allows only one-way communication from a transmitter to a receiver
- Examples: FM radio, Pagers, TV, One-way AMR systems

Half-duplex RF Systems

- Operation mode of a radio communication system in which each end can transmit and receive, but not simultaneously.
- Note: The communication is bidirectional over the same frequency, but unidirectional for the duration of a message. The devices need to be transceivers. Applies to most TDD and TDMA systems.
- Examples: Walkie-talkie, wireless keyboard mouse

Full-duplex RF Systems

- Radio systems in which each end can transmit and receive simultaneously
- Typically two frequencies are used to set up the communication channel.
 Each frequency is used solely for either transmitting or receiving. Applies to Frequency Division Duplex (FDD) systems.
- Example: Cellular phones, satellite communication

Unidades

 dBm ou dBmW (decibel miliwatt) é uma unidade de medida utilizada principalmente em telecomunicações para expressar a frequencia absoluta mediante uma relação logaritimica. Define-se como o nível de potência em decibéis em relação ao nível de referência de um 1 mW

P(dBM) = 10 log10 (Power in mW)

 The decibel watt or dBW is a unit for the measurement of the strength of a signal expressed in decibels relative to one watt.

• P(dBM) = 10 log10 (Power in W)

Exemplo

- Potência de transmissão Pt = 50W
- (a)dBm
- (b)dBW

- Pt (dBm) = $10 \log[50x10^3] = 47,0 \text{ dBm}$
- Pt (dBM) = $10 \log[50] = 17,0 \text{ dBW}$

Unidades

Definitions

- dBm relative to 1 mW
- dBc relative to carrier
- 10mW = 10dBm, 0dBm = 1mW
- -110dBm = 1E-11mW = 0.00001nW

Rule of thumb:

- Double the power = 3 dB increase
- Half the power = 3 dB decrease

dBm to Watt

About dBm and W

 Voltage Ratio 	$aV = 20 \log (P2/P1)$	[aV] = dB
-----------------------------------	------------------------	-----------

Communication process

Wireless Communication Systems

Modulation and Demodulation

Modulation Methods

- Starting point: we have a low frequency signal and want to send it at a high frequency
- Modulation: The process of superimposing a low frequency signal onto a high frequency signal
- Three modulation schemes available:
 - Amplitude Modulation (AM): the amplitude of the carrier varies in accordance to the information signal
 - Frequency Modulation (FM): the frequency of the carrier varies in accordance to the information signal
 - Phase Modulation (PM): the phase of the carrier varies in accordance to the information signal

Digital Modulation

Modulation of digital signals is known as Shift Keying

Amplitude Shift Keying (ASK):

Pros: simple

Cons: susceptible to noise

Example: Many legacy wireless systems, e.g. AMR

Digital Modulation

Frequency Shift Keying (FSK):

- Pros: less susceptible to noise
- Cons: theoretically requires larger bandwidth/bit than ASK
- Popular in modern systems
- Gaussian FSK (GFSK), e.g. used in Bluetooth, has better spectral density than 2-FSK modulation, i.e. more bandwidth efficient

Digital Modulation

- Phase Shift Keying (PSK):
 - Pros:
 - Less susceptible to noise
 - Bandwidth efficient
 - Cons:
 - Require synchronization in frequency and phase → complicates receivers and transmitter
 - Example: IEEE 802.15.4 / ZigBee

Constelação

Figure 2-6. Representation of the phase and amplitude relationship by a constellation of symbols, or phase-state diagram, for QPSK (a) and 8-PSK (b). (c) Constellation diagram of an M-ary QAM (M=16, 3 amplitudes + 12 phases) signal set. [Note that there are other possible 16-QAM constellations].