Линейная регрессия

Ельцов Данил, Михаил Михайлов 8 января 2021 г.

Содержание

1 Постановка задачи		становка задачи	2	
2	Ист	пользуемые данные	2	
3	Опи	исание решения	2	
	3.1	Идея решения	2	
	3.2	Подготовка данных	2	
	3.3	Вычисление коэффициентов	2	
		3.3.1 Теоретический расчет параметров	2	
		3.3.2 Предсказание целевой переменной	3	
	3.4	Построение регрессионной модели		
4	Рез	ультаты	3	

Резюме

По датасетам с Kaggle и официальной статистики по COVID-19 в мире была построена регрессионная модель, способная по демографическим данным страны предсказать кривую развития пандемии в отдельно взятой стране.

На вход модель принимает числовые характеристики конкретной страны, такие как средний возраст, индекс урбанизации и проч. и результатом работы программы являются коэффициенты логистической прямой

Постановка задачи

Предсказать динамику роста новой коронавирусной инфекции в конкретной стране, основываясь на ее географических и демографических особенностях.

Используемые данные

Был взят датасет, содержащий числовые характеристики самых больших стран с Kaggle. Представляет из себя несколько таблиц одинакового формата: id, country, country code, feature

Также был взят датасет, содержащий официальную статистику по развитию коронавируса в разных странах

Описание решения

Идея решения

В результате анализа темпов развития COVID-19 в различных странах было сделано предположение, что развитие коронавируса в целом происходит согласно логистической кривой. В следствие этого было решено построить регрессионную модель для предсказания параметров логистической кривой.

Подготовка данных

Для начала необходимо было объединить все характеристики стран в один CSV-файл, что легко было сделано с помощью их трех-буквенного кода. Затем мы к каждой стране из этой таблицы сопоставили посчитанные для неё коэффициенты логистической регрессии. В результате получился файл clear_data.csv, имеющий следующую структуру:

Вычисление коэффициентов

Дифференциальное уравнение задающее логистическую кривую выглядит следующим образом

$$\frac{dP}{dt} = rP(1 - \frac{P}{K})$$

где параметры кривой это:

- Р количество зараженных
- г коэффициент роста
- К поддерживающая емкость среды

Поддерживающую емкость среды в различных моделях оценивают как число из промежутка $[0.75P_{max}; P_{max}]$ где P_{max} — число жителей в данной стране, поэтому значение K нас не интересует. Таким образом интересует только коэффициент роста r.

Теоретический расчет параметров

Поймем как можно вычислять параметр r. Проведя преобразования над уравнением кривой получаем

$$\frac{dP}{P} = r\left(1 - \frac{P}{K}\right)dt$$

Проведем усреднение, предположив, что выражение в скобках будет равно примерно $\frac{1}{2}$:

$$\langle \frac{dP}{P} \rangle = \frac{rdt}{2}$$

Теперь положим для удобства приращение dt = 1 (так как мы сами выбираем единицы относительно которых считаем), получим:

$$r = 2 * \frac{1}{n} \sum_{i=1}^{n} \frac{dP_i}{P_i}$$

Где P_i, dP_i — общее число больных и число заболевших на i-ый день.

Предсказание целевой переменной

Для предсказания коэффициента r логистической кривой конкретной страны будут использованы её следующие демографические признаки:

- sex ratio
- median age
- urbanization rate

Построение регрессионной модели

После предпосчета параметров регрессии для каждой страны мы запустили обучение модели LinearRegression из популярной библиотеки для машинного обучения - sklearn, которая подобрала коэффициенты регрессионной кривой методом наименьших квадратов.

Результаты

Рис. 1: Результаты работы регрессии

На рисунке 1 представлены нормализованные данные (значение r помножено на 100, рассматриваемые параметры — минмакс нормализация) и прямая регрессии. Видно, что вообще говоря коэффициент r не имеет линейной зависимости от исследуемых параметров. Возможно, это связанно с методом подсчета значения r — хотя получились вполне реалистичные числа, такой метод подсчета не имеет качественного обоснования. Возможно, это связано с самой природой числа r и индекс урбанизации, распределение по полу, средний возраст

не влияют на значение параметра r или влияют незначительно. Для проверки роли вклада рассматриваемых параметров в значение r можно рассмотреть другие параметры

 ${
m Ha}$ текущий момент вывод таков — зависимость r от рассматриваемых параметров не является линейной.

- Подборка датасета Данил Ельцов, Михаил Михайлов
- Анализ данных Данил Ельцов, Михаил Михайлов
- Построение модели, код Михаил Михайлов
- Анализ результатов Михаил Михайлов
- Отчёт Данил Ельцов, Михаил Михайлов
- Code