Survey on Poincaré Conjecture

2025年5月23日

Henri Poincaré John Milnor Stephen Smale William Thurston Micheal Freedman Grigori Perelman

POINCARÉ CONJECTURE

FROM 1900 TO 2003

目录

1	Poincaré 猜想		
	1.1	Poincaré 猜想	2
	1.2	光滑 Poincaré 猜想	4
	1.3	P.L. Poincaré 猜想	6
	1.4	n=3 的广义猜想等价于狭义猜想	8
2	总结		8

1 Poincaré 猜想

Poincaré 猜想自从 1904 年由 Henri Poincaré 提出, 在一百多年的时间 里推动着几何拓扑学的蓬勃发展, 至少 5 枚菲尔兹奖章的颁发与此相关.

它的研究路径和三角剖分猜想类似, 也是分范畴、分维数进行的; 有意思的是, 3 维三角剖分问题很早解决了, 而 3 维 Poincaré 猜想在本世纪才由Perelman 解决; 光滑的三角剖分问题很早被证明了, 但光滑 Poincaré 猜想还悬而未决. 光滑 Poincaré 猜想即不同维度上怪球的存在性问题, 尤其 4 维怪球的存在性, 是高度开放的问题.

1.1 Poincaré 猜想

当今拓扑学中很多同伦群与同调群的概念在 20 世纪初期刚被提出来时,它们的表述是含糊不清的. 如果按现代的语言来叙述,Poincaré 最初在 1900年就提出猜想: 如果一个 3 维流形的同调群与三维球面 S^3 相同,那么它是单连通的,进而同胚于 S^3 . 然而这个猜想的前半句是错的,Poincaré 在 1904年就举出了一个反例 (Poincaré 同调球 P, $H_*(P) = H_*(S^3)$, $|\pi_1(P)| = 120$,基本群是 120 阶的完美群,故 P 不是单连通的). 不过他保留了在 1900年猜想的后半句,也就是

猜想 1 (Poincaré 猜想 (1904)). 设 M 是一个闭的三维流形. 若 M 是单连通的,则 M 同胚于 S^3 .

一个世纪以来,这个猜想悬而未决. 人们转而研究 Poincaré 猜想在其它维数的类比,即广义 Poincaré 猜想. 然而此时的表述不能仅是" $n \ge 4$ 维的单连通闭流形同胚于 S^n ",因为已知这些维数上存在不与 S^n 同伦等价的单连通闭流形.

因此我们需要"与 S^n 同伦等价"这个当 $n \ge 4$ 时比单连通更强的条件,也就是

猜想 2 (广义 Poincaré 猜想). 设 M 是闭的 n 维流形, 若 M 同伦等价于 S^n , 则 M 同胚于 S^n .

在历史上,"广义 Poincaré 猜想"这个名词经常混指"拓扑 Poincaré 猜想"就是上面的这个)"、"弱光滑 Poincaré 猜想"、"光滑 Poincaré 猜想"、"弱 P.L. Poincaré 猜想"、"P.L. Poincaré 猜想",在这篇文章中,我希望将其特指"拓扑 Poincaré 猜想".

由于一个闭的三维流形是单连通的当且仅当其同伦等价于 S^3 (我将在文末给一个简短的证明),广义 Poincaré 猜想在 n=3 时就是狭义的 Poincaré 猜想.

如今,广义 Poincaré 猜想 (n=3 时为狭义 Poincaré 猜想) 在各个维数全部被证明了是正确的.

- 1. n=1 时, 正确, 因为闭曲线一定同胚于 S^1 ;
- 2. n=2 时, 正确, 由闭曲面分类定理, 单连通的闭曲面一定是 S^2 ;
- 3. n=3 时, 正确, 2003 年, Perelman 利用 Ricci flow 证明了 Thurston 的几何化猜想 [Per02][Per03b][Per03a](即任何三维闭流形均可沿二维 环面分解成若干块, 每块可赋予八种几何结构之一; 而单连通的闭流形 只能具有球面几何, 即 S^3), 从而解决了 Poincaré 猜想;
- 4. n = 4 时, 正确, 1982 年, Freedman 证明了 4 维流形的拓扑 h-配边 定理, 进而证明了单连通 4 维流形的分类定理, 最后推出了 4 维的 Poincaré 猜想 [Fre82];
- 5. $n \ge 5$ 时, 正确, 1962 年, Smale 提出的 h-配边理论可以给出 $n \ge 6$ 的 证明 [Sma62], 但 n = 5 的证明应该是 Newman 在 1966 年首次提出的 [New66].

对于这一系列结论, 应该有如下的补充说明:

- 在 Smale 的时代,5 维的广义 Poincaré 猜想无法用光滑 h-配边定理证明,光滑 h-配边理论只在 $n \ge 5$ 时正确,且只能用于证明 n+1 维的 Poincaré 猜想. 等到 Freedman 证明了 4 维拓扑 h-配边定理后,才能给一个基于 h-配边定理的证明. Smale 在 1962 年的文章仅声称了 P.L. Poincaré 猜想的结果,他的方法在 $n \ge 5$ 的 P.L. 和弱 P.L. 猜想起作用,在 n = 5 的拓扑猜想不起作用,尽管如此,后来人们还是经常把 " $n \ge 5$ 的 Poincaré 猜想"的大帽子戴在 Smale 的头上,并往往笼统地说 Smale 解决了 $n \ge 5$ 的广义 Poincaré 猜想.
- Freedman 在 1982 年的论文缺少非常多的细节,直到他亲自说服了一些知名人物,学界才承认了他的工作.但他的那套工具在后来的研究中鲜有使用,越来越少的人真正理解了他的证明,大家只是将其结论当作"黑盒子"使用,一些人甚至开始质疑它是否正确.人们(包括 Freedman

本人)害怕这个划时代的伟大成果的证明"丢失",于是在 Freedman 的支持下,一众数学家从 2013 年开始将他的工作扩写成一本 496 页的书,并在 2021 年出版 [BKK+21],目标是能让一些积极的本科生在一个学期内就能学懂.[Har21]

• Perelman 在 2002 年到 2003 年发表的三篇文章中,没有任何一句话提到"几何化猜想"或"Poincaré 猜想",虽然他的技术在事实上已经证明了.后来几组数学家补充了证明的细节,其中 John Morgan 和田刚将其扩写为了一本书 [MT07]. 学界将 Poincaré 猜想的证明归功于 Perelman,然而他拒绝领取 2006 年的菲尔兹奖,也拒绝了 2010 年克雷数学研究所授予的 100 万美元的千禧奖,称最早应用 Ricci flow的 Hamilton与他贡献相当,Poincaré 猜想的解决不该只归功于他一人.其实 Perelman 在 90 年代就已经有诸多重大成果,1994 年他因在 Alexandrov 几何的贡献受邀在 ICM 发表演讲,同年证明了"Soul conjecture",在 1995 年拒绝了多份顶尖高校的教职邀请,在 1996 年拒绝了欧洲数学会的奖项,老早就犯下了不领奖的"前科".

由于前文提到的"广义 Poincaré 猜想"的结论只要求流形拓扑意义下同胚于 S^n ,为了与后面"更广义"的 Poincaré 猜想作区分,我们之后会称前文的 Poincaré 猜想为"拓扑 Poincaré 猜想".

1.2 光滑 Poincaré 猜想

在 $n \ge 4$ 的拓扑 Poincaré 猜想还没解决的时候, 数学家们尝试给原来的流形更强的正则性, 如光滑性、分片线性 (P.L.) 等, 看看能不能得到同胚于球面的条件.

猜想 3 (弱光滑 Poincaré 猜想). 设 M 是闭的 n 维光滑流形, 若 M 同伦等价于 S^n , 则 M 同胚于 S^n .

历史上 $n \ge 5$ 的弱光滑 Poincaré 猜想的证明是 Smale 在 1960 年的著名文章 "GPC"中给出的,使用了微分拓扑的工具 [Sma61]. 近乎同时,Stallings 给出了 $n \ge 7$ 的弱 P.L. Poincaré 猜想的证明 [Sta60],这蕴含着对应的弱光滑 Poincaré 猜想.

然而, 因为拓扑 Poincaré 猜想强于弱光滑 Poincaré 猜想, 在拓扑猜想解决以后, 人们似乎很少再关心弱光滑猜想的那段历史.

一个更值得研究的问题是,做一个权衡,给一个强的条件的同时,也把结论加强,也就是不光要求拓扑意义下的同胚,而是要求微分同胚.我们称这个权衡后的猜想为强光滑 Poincaré 猜想,或简称光滑 Poincaré 猜想.它大名鼎鼎,而至今尚未完全解决.

猜想 4 (光滑 Poincaré 猜想). 设 M 是闭的 n 维光滑流形, 若 M 同伦等价于 S^n , 则 M 微分同胚于赋予标准光滑结构的 S^n .

对于单位球面 S^n , 分别挖掉南北极点得 $S^n \setminus (S.pt.)$ 和 $S^n \setminus (N.pt.)$, 并做 到赤平面 R^n 的球极投影 φ_1 和 φ_2 , $\mathcal{M} = \{(S^n \setminus (S.pt.), \varphi_1), (S^n \setminus (N.pt.), \varphi_2)\}$ 是 S^n 的光滑图册. 上面提到的 S^n 的"标准光滑结构"就是与 \mathcal{M} 相容的 极大图册.

事实上关于光滑 Poincaré 猜想的结论早在拓扑 Poincaré 猜想的一系列 发展之前就被提出了.

定理 1 (Moise[Moi52]+[Mil11]Theorem2). $n \leq 3$ 时,n 维拓扑流形存在唯一的光滑结构.

这个定理就告诉我们, $n \le 3$ 时, 拓扑同胚等价于光滑同胚, 也就是说 $n \le 3$ 的拓扑 Poincaré 猜想与光滑 Poincaré 猜想等价.

定理 2 (Milnor[Mil56]). S⁷ 存在怪异 (exotic) 的光滑结构.

这个结论也就否定了 n=7 的光滑 Poincaré 猜想. 如果我们把有怪异 光滑结构的球面记作 Σ^7 , 那么 Σ^7 与 S^7 同胚 (故同伦等价) 但不微分同胚, 我们简称这样的 Σ^7 为 "怪球 (exotic sphere)".

从 Milnor 1956 年的结果发表以后,关于光滑流形上的怪异光滑结构的研究蓬勃发展. 其中关于"怪球"的研究也就是关于"光滑 Poincaré 猜想"的研究: 一旦 S^n 存在与标准光滑结构不光滑同胚的光滑结构,那么 n 维的光滑 Poincaré 猜想就是错误的. 由于拓扑 Poincaré 猜想都是正确的,我们可以把光滑 Poincaré 猜想的表述约化成更直接的版本:

猜想 5 (光滑 Poincaré 猜想的另一种表述). 设 M 是闭的 n 维光滑流形, 若 M 同胚于 S^n , 则 M 微分同胚于 S^n 的标准微分结构, 也就是说不存在 n 维怪球.

关于光滑 Poincaré 猜想的权威综述, 可以参考王国祯的文章 [WX17] 的导言部分, 以及徐宙利在 2024 年 11 月的讲座 slides[Xu24].

在 Milnor 1956 年提出了 S^7 存在怪异结构之后, 他与 Kervaire 在 1963 年将 7 维的情况讨论完全 [KM63]: 即 S^7 上存在 28 种 (考虑定向) 不微分同胚的光滑结构, 如果不考虑定向, 则有 15 种.

在这篇文章中,Kervaire 和 Milnor 给出了判断是否存在怪球的一般性方法: 计算同伦 n-球面的配边群 Θ_3 , 由 Smale 的 $n \ge 5$ 的光滑 h-配边定理,可知 $n \ge 5$ 时 S^n 上不同的光滑结构的数量就是 $|\Theta_3|$. 同时给了 5-18 维的结论, 其中 5,6,12 是不存在怪球的维数.

如今,怪球论有如下的结论:

在足够高的维数上, 奇数维的球面都存在怪异的光滑结构, 即:有唯一光滑结构的奇数维球面只有 S^1 , S^3 , S^5 , S^{61} . 其中最后一个奇数维, 61 维不存在怪球是在 2017 年由王国祯和徐宙利证明的 [WX17].

偶数有超过一半的维数被证明存在怪球;剩余的偶数维人们也猜想是存在的 [BMQ23].

现有猜想:

猜想 6. 对于大于 4 维的球面, 有唯一光滑结构的只有 S^5 , S^6 , S^{12} , S^{56} , S^{61} .

目前怪球论的研究进展很快,人们相信这个猜想是正确的.

对于 4 维怪球的存在性问题, 虽然是高度开放的, 人们也倾向于认为 4 维怪球是存在的. 因为 4 维空间存在太多"狂野"的性质: 比如 \mathbb{R}^4 有不可数无穷个互不微分同胚的光滑结构(然而这个结论目前并不能给 4 维怪球的存在性有任何贡献).

1.3 P.L. Poincaré 猜想

与光滑 Poincaré 猜想类似, P.L. Poincaré 猜想一开始也是有一个弱版本:

猜想 7 (弱 P.L.Poincaré 猜想). 设 M 是闭的 n 维 P.L. 流形, H 同伦 等价于 H0, 则 H1 同胚于 H1.

在历史上,关于"弱 P.L. Poincaré 猜想",有如下的发展历程:

1. 1960 年 Smale[Sma61] 和 Stallings[Sta60] 各自证明了 $n \ge 7$ 的情况 (Smale 率先宣称, 二人使用的方法不同,Smale 此时使用的方法并非 h-配边, 而 Stallings 使用的方法称为 "engulfing"),随后 Smale 将自己证明方法推广到 $n \ge 5$;

- 2. 1961 年, Zeeman 修改了 Stallings 的构造 [Zee61], 解决了 n=5,6 的 情况;
- 3. 1966 年, Newman 将 Stallings 的 engulfing 方法推广到拓扑的情况, 即证明了 $n \ge 5$ 的广义(拓扑)Poincaré 猜想 [New66].

Smale 最初的证明和 Stalling 的 engulfing 定理有浓厚的 P.L. 拓扑的味道.

P.L. 拓扑在上世纪六七十年代有着广泛的应用, Smale 等人凭此取得了一众辉煌的成果. 然而随着一系列大问题的解决, 这一套工具也逐渐"没落"了. 如今几何拓扑领域的流行工具是规范场论 (Gauge Theory), 而很少有人再使用 P.L. 拓扑的工具解决问题了. 关于 P.L. 拓扑的一系列方法和应用,可以参考 Sandro Buoncristiano 在 2003 年写的一篇长综述 [Buo03], 其中介绍了弱 P.L. 猜想的证明细节; 以及 Rourke 和 Sanderson 在 80 年代写的课本 [RS82], 介绍了基于 h-配边定理的 $n \geq 6$ 的 P.L. 猜想的证明.

弱 P.L. 猜想随着拓扑猜想的解决, 更多只剩下技巧上的价值. 现在人们在介绍广义 Poincaré 猜想的证明方法时往往是用 h-配边定理, 尽管在历史上最早不是用 h-配边定理证明了广义 Poincaré 猜想.

弱 P.L.Poincaré 猜想经权衡之后的强版本 (通常直接称其为 P.L.Poincaré 猜想) 为

猜想 8 (P.L. Poincaré 猜想). 设 M 是闭的 n 维 P.L. 流形, 若 M 同伦等价于 S^n , 则 M P.L. 同胚于 S^n .

P.L. 结构是比光滑结构更弱的一种结构, 一个结论是说每个光滑结构决定唯一的 P.L. 结构 [Cai35][Whi40], 且 P.L. 正则性比拓扑更强, 由定理1可知 $n \le 3$ 时拓扑, P.L., 光滑三个范畴等价. 由于此时拓扑 Poincaré 拓扑猜想正确, 故 $n \le 3$ 的 P.L. Poincaré 猜想也正确.

 $n \ge 5$ 的 P.L. Poincaré 猜想被 Smale 用 h-配边定理相关的方法于 1962 年解决了 [Sma62].

由于 $n \le 6$ 光滑结构与 P.L. 结构等价 [Mil11](Theorem2), 4 维的 P.L. Poincaré 猜想就相当于 4 维怪球的存在性问题.

也就是说

推论 1. 4 维 P.L.Poincaré 猜想正确 \iff 4 维的光滑 Poincaré 猜想正确 \iff S^4 不存在怪异光滑结构

1.4 n=3 的广义猜想等价于狭义猜想

命题 1. M^3 是闭的三维流形,则 M 是单连通的 $\iff M$ 同伦等价于 S^3 .

证明. \Leftarrow : $\pi_1(M) = \pi_1(S^3) = 0$, 故 M 单连通;

⇒: 若 M 单连通, 则它的连通定向覆盖是平凡覆盖, 也就是说 M 为定向流形, 故 $H_3(M)=\mathbb{Z}$; 另外由于 $H_1(M)$ 是 $\pi_1(M)$ 的交换化, 故 $\pi_1(M)=0$ 推出 $H_1(M)=0$,再由万有系数定理, $H^1(M)=0$,再由 Poincaré 对 偶, $H_2(M)\cong H^1(M)=0$,再由 Hurewicz 定理, $\pi_2(M)\cong H_2(M)=0$,进而 $\pi_3(M)\cong H_3(M)\cong \mathbb{Z}$. 这意味着 $\pi_3(M)$ 的一个生成元可以由映射度为 1 的映射 $S^3\to M$ 决定, 诱导了 H_3 与 π_3 的同构. 进而存在一个由 S^3 到 M 的单连通单纯复形的映射,诱导了所有同调群的同构,再由 Whitehead 定理,可知这个映射是同伦等价的.

命题的必要性的思路来自于 Hatcher 关于 3 维流形分类的综述文章 [Hat04], 也可以参考知乎的一篇文章 [梁 19].

2 总结

现在 Poincaré 猜想本质上只剩一部分偶数维 (尤其是 4) 怪球的问题还没解决了.

表 1: 各种 Poincaré 猜想的解决情况

总结一下与 Poincaré 猜想相关的五枚菲尔兹奖章, 它们依次由 Milnor、Smale、Thurston、Freedman、Perelman 获得.

表 2: 与 Poincaré 猜想相关的菲尔兹奖

	<u> </u>	717121112 4117 1117 1212 4
数学家	获奖年份	成果
John Milnor	1962	7 维怪球 (7 维光滑 Poincaré 猜想)
Stephen Smale	1966	$n \ge 5$ 的广义 (P.L.)Poincaré 猜想
William Thurston	1982	几何化猜想(关于三维流形的一系列成果)
Michael Freedman	1986	n=4 的广义 Poincaré 猜想
Grigori Perelman	2006	(狭义)Poincaré 猜想

根据这个统计规律,是否能推断 2026 年的菲兹尔奖也会因 Poincaré 猜想而颁发呢?如果不算稳步推进的高维怪球的问题,Poincaré 猜想就只剩 4维怪球这一块儿大拼图了,留给数学界的时间不多了(笑).

参考文献

- [BKK⁺21] Stefan Behrens, Boldizsar Kalmar, Min Hoon Kim, Mark Powell, and Arunima Ray. *The Disc Embedding Theorem*. Oxford University Press, 07 2021.
- [BMQ23] Mark Behrens, Mark Mahowald, and J D Quigley. The 2-primary hurewicz image of tmf. *Geometry & Topology*, 27(7):2763–2831, September 2023.
- [Buo03] Sandro Buoncristiano. Fragments of geometric topology from the sixties. In *Geometry & Topology Monographs*, volume 6. 2003.
- [Cai35] S. S. Cairns. Triangulation of the manifold of class one. *Bulletin* of the American Mathematical Society, 41(8):549 552, 1935.
- [Fre82] Michael H. Freedman. The topology of four-dimensional manifolds. *Journal of Differential Geometry*, 17:357–453, 1982.

[Har21] Kevin Hartnett. New math book rescues landmark topology proof. Quanta Magazine, September 9 2021.

- [Hat04] Allen Hatcher. The classification of 3-manifolds —a brief overview. 2004.
- [KM63] Michel A. Kervaire and John W. Milnor. Groups of homotopy spheres: I. *Annals of Mathematics*, 77(3):504–537, 1963.
- [Mil56] John Milnor. On manifolds homeomorphic to the 7-sphere. Annals of Mathematics, 64(2):399-405, 1956.
- [Mil11] John W. Milnor. Differential topology forty-six years later. Notices of the American Mathematical Society, 58:804–809, 2011.
- [Moi52] Edwin E. Moise. Affine structures in 3-manifolds: V. the triangulation theorem and hauptvermutung. *Annals of Mathematics*, 56(1):96–114, 1952.
- [MT07] J.W. Morgan and G. Tian. Ricci Flow and the Poincare Conjecture. Clay mathematics monographs. American Mathematical Society, 2007.
- [New66] M. H. A. Newman. The engulfing theorem for topological manifolds. *Annals of Mathematics*, 84(3):555–571, 1966.
- [Per02] Grisha Perelman. The entropy formula for the ricci flow and its geometric applications, 2002.
- [Per03a] Grisha Perelman. Finite extinction time for the solutions to the ricci flow on certain three-manifolds, 2003.
- [Per03b] Grisha Perelman. Ricci flow with surgery on three-manifolds, 2003.
- [RS82] C.P. Rourke and B.J. Sanderson. Introduction to Piecewiselinear Topology. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1982.

[Sma61] Stephen Smale. Generalized poincaré's conjecture in dimensions greater than four. *Annals of Mathematics*, 74(2):391–406, 1961.

- [Sma62] S. Smale. On the structure of manifolds. American Journal of Mathematics, 84(3):387–399, 1962.
- [Sta60] John R. Stallings. Polyhedral homotopy-spheres. Bulletin of the American Mathematical Society, 66:485–488, 1960.
- [Whi40] J. H. C. Whitehead. On c1-complexes. Annals of Mathematics, 41(4):809–824, 1940.
- [WX17] Guozhen Wang and Zhouli Xu. The triviality of the 61-stem in the stable homotopy groups of spheres, 2017.
- [Xu24] Zhouli Xu. Homotopy groups of spheres. https://yifeizhu.github.io/7064/SUSTech%20talk.pdf, November 2024. Talk at SUSTech.
- [Zee61] E. C. Zeeman. The poincaré conjecture for n greater than or equal 5. In Topology of 3-manifolds and Related Topics (Proc. The Univ. of Georgia Institute, 1961), pages 198–204, Englewood Cliffs, NJ, 1961. Prentice-Hall, Inc.
- [梁 19] 梁嘉诚. Weak poincaré conjecture. https://zhuanlan.zhihu.com/p/65451345, 2019. Accessed: [Insert date of access].