

Course > Unit 3: ... > Part A ... > 2. Lect...

# 2. Lecture 6

The following can be done after Lecture 6.

6-1

5.0/5.0 points (graded)

Let 
$$\mathbf{D} := egin{pmatrix} 2 & 0 \ 0 & 3 \end{pmatrix}$$
 . What is the upper right entry of  $e^{t\mathbf{D}}$  ?

0

**✓ Answer**: 0

0

## **Solution:**

0.

In general, if  $\mathbf D$  is a diagonal matrix with diagonal entries  $\lambda_1,\ldots,\lambda_n$ , then  $e^{t\mathbf D}$  is a diagonal matrix with diagonal entries  $e^{\lambda_1 t},\ldots,e^{\lambda_n t}$ . The upper right entry of  $e^{t\mathbf D}$  in the problem is not on the diagonal, so it is  $\mathbf 0$ .

Submit

You have used 1 of 10 attempts

• Answers are displayed within the problem

6-2

5.0/5.0 points (graded)

Let  ${f A}=egin{pmatrix} {f 2} & {f 2} \ {f -2} & {f -2} \end{pmatrix}$  . What is the lower right entry of  ${f e^{t{f A}}}$ ? (Hint: What is  ${f A}^2$ ?)

1-2\*t

**✓ Answer:** 1-2\*t

 $1-2 \cdot t$ 

**FORMULA INPUT HELP** 

## **Solution:**

1 - 2t.

Since  $\mathbf{A}^2 = \mathbf{0}$ ,

$$egin{align} e^{t{f A}} &= {f I} + t{f A} + rac{(t{f A})^2}{2!} + rac{(t{f A})^3}{3!} + \cdots \ &= {f I} + t{f A} \ &= egin{pmatrix} 1 + 2t & 2t \ -2t & 1 - 2t \end{pmatrix}. \end{split}$$

Submit

You have used 1 of 10 attempts

**1** Answers are displayed within the problem

6-3

10.0/10.0 points (graded)

Let  ${f A}=egin{pmatrix} 3 & 2 \ 0 & 3 \end{pmatrix}$  . What is the upper right entry of  $e^{t{f A}}$  ?

2\*t\*exp(3\*t)

**✓ Answer:** 2\*t\*e^(3\*t)

 $2 \cdot t \cdot \exp(3 \cdot t)$ 

5/6/2018

**Solution:** 

 $2te^{3t}$ .

Let  ${f N}:=egin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$  . Then  ${f A}=3{f I}+{f N}$  . Scalar multiples of  ${f I}$  commute with any matrix, and  ${f N}^2=0$  , so

$$egin{aligned} e^{t\mathbf{A}} &= e^{t(3\mathbf{I})}e^{t\mathbf{N}} \ &= e^{3t\mathbf{I}}(\mathbf{I} + t\mathbf{N} + 0 + 0 + \cdots) \ &= \left(egin{aligned} e^{3t} & 0 \ 0 & e^{3t} \end{aligned}
ight) \left(egin{aligned} 1 & 2t \ 0 & 1 \end{aligned}
ight) \ &= \left(egin{aligned} e^{3t} & 2te^{3t} \ 0 & e^{3t} \end{aligned}
ight). \end{aligned}$$

Submit

You have used 2 of 15 attempts

**1** Answers are displayed within the problem

6-4

10.0/10.0 points (graded)

Find the first coordinate of  $\binom{5}{7}$  with respect to the basis  $\binom{2}{1}$ ,  $\binom{3}{2}$  of  $\mathbb{R}^2$ .

-11 **✓** Answer: -11

-11

## **Solution:**

The first coordinate is -11.

We need to solve

$$egin{pmatrix} 5 \ 7 \end{pmatrix} = c_1 egin{pmatrix} 2 \ 1 \end{pmatrix} + c_2 egin{pmatrix} 3 \ 2 \end{pmatrix};$$

then the answer is  $oldsymbol{c_1}$  . This amounts to the system

$$2c_1 + 3c_2 = 5$$
  
 $c_1 + 2c_2 = 7$ .

To find  $c_1$ , eliminate  $c_2$  by taking  ${\bf 2}$  times the first equation minus  ${\bf 3}$  times the second equation:

$$c_1 = 2(5) - 3(7) = -11.$$

Submit

**1** Answers are displayed within the problem

6-5

10/10 points (graded)

The function  $10\cos(5t) + 8\sin(5t)$  lies in the complex vector space with basis  $e^{5it}$ ,  $e^{-5it}$ . Find its second coordinate with respect to that basis.

**✓ Answer:** 4\*i + 5

 $5 + 4 \cdot i$ 

#### **Solution:**

The answer is 5 + 4i,

because

$$egin{aligned} 10\cos(5t) + 8\sin(5t) &= 10\left(rac{e^{5it} + e^{-5it}}{2}
ight) + 8\left(rac{e^{5it} - e^{-5it}}{2i}
ight) \ &= 5(e^{5it} + e^{-5it}) - 4i(e^{5it} - e^{-5it}) \ &= (5 - 4i)e^{5it} + (5 + 4i)e^{-5it}. \end{aligned}$$

Submit

**1** Answers are displayed within the problem

6-6

5.0/5.0 points (graded)

The vectors  $\mathbf{v}_1:=\begin{pmatrix}4/5\\3/5\end{pmatrix}$  and  $\mathbf{v}_2:=\begin{pmatrix}-3/5\\4/5\end{pmatrix}$  form an orthonormal basis of  $\mathbb{R}^2$ . Find the first coordinate of  $\begin{pmatrix}10\\15\end{pmatrix}$  with respect to this basis.

17 **✓** Answer: 17

17

## **Solution:**

The first coordinate is

$$\begin{pmatrix} 10 \\ 15 \end{pmatrix} \cdot \mathbf{v}_1 = \begin{pmatrix} 10 & 15 \end{pmatrix} \cdot \begin{pmatrix} 4/5 \\ 3/5 \end{pmatrix}$$
$$= 8 + 9 = 17.$$

Submit

**1** Answers are displayed within the problem

6-7

10.0/10.0 points (graded)

Vectors  $\mathbf{w_1}, \mathbf{w_2}, \mathbf{w_3}$  form an orthogonal basis for  $\mathbb{R}^3$ . Given that  $\mathbf{w_1} = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$  , what is the

first coordinate of the vector  $\mathbf{v} := \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$  with respect to this basis?

(Enter as a fraction or decimal to three places.)

0.34210526

**✓ Answer:** 13/38

0.34210526

### **Solution:**

The first coordinate is 13/38.

If  $\mathbf{v} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + c_3 \mathbf{w}_3$ , then  $\mathbf{v} \cdot \mathbf{w}_1 = c_1 \mathbf{w}_1 \cdot \mathbf{w}_1 + 0 + 0$  (since  $\mathbf{w}_1$  is orthogonal to  $\mathbf{w}_2$  and  $\mathbf{w}_3$ ), so the first coordinate is

$$c_1 = rac{{f v} \cdot {f w}_1}{{f w}_1 \cdot {f w}_1} = rac{(f 0}{3} egin{matrix} 1 & 2 \end{pmatrix} \cdot egin{pmatrix} 2 \ 3 \ 5 \end{pmatrix}}{(f 2} = rac{13}{38}.$$

Submit

**1** Answers are displayed within the problem

# 2. Lecture 6

**Hide Discussion** 

**Topic:** Unit 3: Solving systems of first order ODEs using matrix methods / 2. Lecture 6

Add a Post

