

Dominik Bitzer

General-purpose computing on GPU (GPGPU)

• Blockpraktikum Modern Computer Architecture

Aufgabensteller: Dr. Gordon Cichon

•Datum: 01. August 2018

Motivation und Hintergrund

GPU vs. CPU:

GLOPs: ca. 6,5x

Bandbreite: ca. 4,3x

Leistungsaufnahme: ca. 1,7x

Effizienz: ca. 3,8x (GFLOP / Watt)

Quellen:

https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2 20-GHz

https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/specifications

Motivation und Hintergrund

CPU Architektur:

- Wenige Kerne mit hoher single-thread Leistung
- Wenige Register, aber große, hierarchisch organisierte Caches
- Ziel: geringe Latenz, schnelle Abarbeitung serieller Tasks

Quellen:

P. Jonathan and T. Josh: A Comparison of Modern GPU and CPU Architectures: And the Common Convergence of Both, 2011

Motivation und Hintergrund

GPU Architektur:

- Viele Kerne mit geringer single-thread Leistung
- Viele Register, kleinere Caches
- Ziel: hoher Durchsatz ähnlicher Berechnungen

Quellen:

P. Jonathan and T. Josh: A Comparison of Modern GPU and CPU Architectures: And the Common Convergence of Both, 2011

Projekt: Netflix Korrelationen

- Netflix Price: öffentlicher Datamining Wettbewerb
- >100 Mio. Bewertungen von 17.000 Filmen durch ca. 500.000 Nutzer
- Idee: Korrelationsmatrix über Filme anhand Bewertungen

$$r_{xy} = \frac{\sum\limits_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum\limits_{i=1}^{n}(x_i-\bar{x})^2\sum\limits_{i=1}^{n}(y_i-\bar{y})^2}} \qquad \text{(Definition Pearson's Correlation)}$$

$$r_{xy} = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \, \sqrt{n\sum y_i^2 - (\sum y_i)^2}} \quad \text{(gleich, nur programmierer freundlich)}$$

Quellen:

https://www.mathsisfun.com/data/correlation.html https://www.kaggle.com/netflix-inc/netflix-prize-data

LUDWIG-

GPGPU Herausforderungen

Portierung von CPU Code zu GPGPU Code:

GPU kann keine CPU-Funktionen aufrufen, darunter fallen z.B. nicht-portierte STL-Funktionen (siehe Vortrag Thomas)

Weitere eventuelle Probleme:

- Technische Einschränkungen, z.B. Double Precision Leistung wesentlich niedriger als Single Precision (aber z.B. Lösung durch Nvidia Tesla)
- Evtl. Lock-In auf Anbieter, CUDA-Code nicht auf AMD-GPUs nutzbar (OpenCL bietet hierfür Lösung)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

GPGPU Herausforderungen

GPU-Parallelismus muss genutzt werden, z.B. Schleifen umschreiben

Single-Thread Schleife

for (int i = 0; i < n; i++)

$$z[i] = x[i] + y[i];$$

X	6	8	2	8	7	6	3	2	5	5	3	2	9	10	9	0	7	4	4	3
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
У	8	1	6	3	7	9	8	7	4	8	4	10	4	8	1	1	10	10	1	3
	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
Z	14	9	8	11	15	15	11	10	9	13	7	12	13	18	10	1	17	13	5	6

Quellen:

https://devblogs.nvidia.com/even-easier-introduction-cuda/

MAXIMILIANS: UNIVERSITÄT

GPGPU Herausforderungen

GPU-Parallelismus muss genutzt werden, z.B. Schleifen umschreiben

Single-Thread Schleife

for (int i = 0; i < n; i++)

$$z[i] = x[i] + y[i];$$

Grid

Quellen:

https://devblogs.nvidia.com/even-easier-introduction-cuda/

Multi-Thread Schleife

Block-Position in Grid

Block-Größe

int index = blockIdx.x * blockDim.x + threadIdx.x;

int stride = blockDim.x * gridDim.x;

for (int i = index; i < n; i += stride)

Grid-Größe Thread-Position in Block

$$z[i] = x[i] + y[i];$$

GPGPU Herausforderungen

Beschränkung Kommunikation Host und GPU durch Latenz und Bandbreitebeschränkungen des Systembus

z.B. GPU-Speicher zu GPU 144 GB/s (NVIDIA Tesla C2050) vs. Hauptspeicher zu GPU 8 GB/s (PCIe x16 Gen2)

Datenaustausch zwischen muss optimiert werden, z.B.:

- Batching von Datentransfers
- Parallelisierung von Berechnungen und Transfers
- GPU für möglichst großen Teil des Programms verwenden

```
A global mem = cuda.to device(np.array([1, 2, 3]))
B global mem = cuda.to device(np.array([4, 5, 6]))
C global mem = cuda.device array((3, 2)) # result array
# Start the kernel
cuda kernel[blockspergrid, threadsperblock](A global mem, B global mem, C global mem)
res = C global mem.copy to host()
```

Quellen:

https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/

Alle CUDA Threads in Wrap (Teil von Block) arbeiten Instruktionen gleichzeitig ab Jeder Thread geht jeden Zweig durch (Branch Divergence)

Quellen:

https://www.bu.edu/pasi/files/2011/07/Lecture4.pdf

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

GPGPU Herausforderungen

Caches von GPU-Prozessoren sehr klein, häufige Cache-Misses Optimierung, explizites Laden von Daten aus (GPU-) Global Memory in schnelleren "Shared Memory"

Quellen:

https://nyu-cds.github.io/python-numba/05-cuda/

GPGPU Herausforderungen

Aufteilung eines Problems auf große Anzahl Threads Gleichmäßige Aufteilung von Rechenlast z.B. bei Simulationen schwer Verbesserung der Auslastung z.B. durch "Dynamic Parallelism"

Quellen:

https://devblogs.nvidia.com/introduction-cuda-dvnamic-parallelism/ http://www.misterx.ca/Mandelbrot Set/M Set-IMAGES & WALLPAPER.html

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Ergebnisse der Berechnungen

Maximale gefundene Korrelation (0,37):

My Favorite Brunette (1947 American romantic comedy) und

The Lemon Drop Kid (1951 comedy film)

Minimale gefundene Korrelation (-0,124):

Was das Herz begehrt (mit Jack Nicholson) und Aqua Teen Hunger Force (Cartoon-Serie)

	Dinosaur	Isle of Ma	Characte	Paula Ab	The Rise	Sick	8 Man	What the	195		N_	My Favor	Lord of th	Nature: A
Dinosau	r Planet	0,034	0,01	0,031	0,029	0,015	0,039	0,005		0		0,034	0,01	0,038
Isle of N	/lan TT 200	4 Review	0,016	0,041	0,047	0,019	0,068	0,005	Jan 18			0,023	0,007	0,053
Characte	er			0,018	0,009	0,032	0,023	0,02				0,022	0,003	0,01
Paula Al	Paula Abdul's Get Up & Dance				0,015	0,022	0,052	0,005		No.		0,017	0,007	0,038
The Rise	and Fall o	of ECW				0,012	0,038	-0,007	0,035	0,010	0,008	0,021	0,011	0,028
Sick							0,028	0,028	0,037	0,065	0,038	0,018	0,004	0,016
8 Man								0,004	0,074	0,058	0,036	0,043	0,009	0,038
What th	What the #\$*! Do We Know!?								0,007	0,01	0,014	0,006	0,001	0,007
Class of	Nuke 'Em	High 2								0,032	0,021	0,025	0,018	0,037
Fighter											0,057	0,025	0,01	0,028
Full Frame: Documentary Shorts												0,017	-0,001	0,032
My Favo	My Favorite Brunette												0,002	0,03
Lord of t	Lord of the Rings: The Return of the King: Extended Edition: Bonus Material													-0,001