Relações Semânticas entre Conectivos na Lógica Proposicional

Márcio Lopes Cornélio DSC-Poli-UPE mlc@dsc.upe.br

Introdução

Introdução

Conjuntos de conectivos completos Equivalências com o conjunto {¬, ∨} Equivalências com os conectivos {¬, ∧} Um novo alfabeto para Lógica Proposicional Formas Normais Formas Normais - Exemplos Formais Normais - Obtenção

Formais Normais -Exemplo de obtenção

- Redução de toda fórmula da Lógica Proposicional utilizando um conjunto reduzido de conectivos
- Simplificação do alfabeto da Lógica Proposicional

Conjuntos de conectivos completos

Introdução

Conjuntos de conectivos completos

Equivalências com o conjunto {¬, ∨}
Equivalências com os conectivos {¬, ∧}
Um novo alfabeto para Lógica
Proposicional
Formas Normais
Formas Normais Exemplos
Formais Normais Obtenção

Formais Normais - Exemplo de obtenção

Definição Um conjunto de conectivos Ψ é dito **completo** se, dada uma fórmula H do tipo $\neg P$, $(P \lor Q)$, $P \land Q$, $(P \to Q)$ ou $(P \leftrightarrow Q)$, então podemos determinar uma outra fórmula G equivalente a H tal que G contém apenas conectivos do conjunto Ψ e os símbolos P e Q presentes em H.

Exemplo Conjunto com os conectivos ¬ e ∨

As fórmulas descritas acima podem ser obtidas trocando os conectivos ' \wedge ', ' \rightarrow ' e ' \leftrightarrow ' por ' \neg ' e ' \vee '

Equivalências com o conjunto $\{\neg, \lor\}$

Introdução Conjuntos de conectivos completos

Equivalências com o conjunto $\{\neg, \lor\}$

conectivos {¬, ∧}
Um novo alfabeto
para Lógica
Proposicional
Formas Normais
Formas Normais Exemplos
Formais Normais Obtenção
Formais Normais -

Exemplo de obtenção

Implicação $(P \to Q)$ pode ser expressa por $(\neg P \lor Q)$ Conjunção $(P \land Q)$ poder ser expressa por $\neg (\neg P \lor \neg Q)$ Bi-implicação $P \leftrightarrow Q$ pode ser expressa por $\neg (\neg (\neg P \lor Q) \lor \neg (\neg Q \lor P))$

- Consequência: completude do conjunto $\{\neg, \lor\}$
 - Prova por indução
 - Exercício: leitura da prova

Equivalências com os conectivos $\{\neg, \land\}$

Introdução Conjuntos de conectivos completos Equivalências com o conjunto $\{\neg, \lor\}$

Equivalências com os conectivos $\{\neg, \land\}$

Um novo alfabeto
para Lógica
Proposicional
Formas Normais
Formas Normais Exemplos
Formais Normais Obtenção
Formais Normais Exemplo de obtenção

- Definição: $(P \ nand \ Q) = (\neg (P \land Q))$
- O conjunto $\{nand\}$ é completo: qualquer fórmula E da Lógica Proposicional pode ser expressa apenas com nand e símbolos proposicionais e de verdade presentes em E.
- Equivalências
 - \bullet ¬P equivale a (P nand P)
 - lacktriangle $(P \lor Q)$ equivale a $((P \ nand \ P) \ nand \ (Q \ nand \ Q))$
- Conversão de fórmulas. Considere $H = P \land (R \rightarrow S)$

$$P \wedge (R \to S)$$

$$\equiv (P \wedge (\neg R \vee S)) \qquad [(P \to Q) = (\neg P \vee Q)]$$

$$\equiv \neg \neg (P \wedge \neg \neg (\neg R \vee S)) \qquad [P = \neg \neg P]$$

$$\equiv \neg \neg (P \wedge \neg (R \wedge \neg S)) \qquad [\neg (P \vee Q) = (\neg P \wedge \neg Q), \text{ De Morgan}]$$

$$\equiv \neg (P \text{ nand } (R \text{ nand } \neg S)) \qquad [(P \text{ nand } Q) = (\neg (P \wedge Q))]$$

$$\equiv (P \text{ nand } (R \text{ nand } (S \text{ nand } S))) \text{ nand}$$

$$(P \text{ nand } (R \text{ nand } (S \text{ nand } S))) \qquad [\neg P = (P \text{ nand } P)]$$

Um novo alfabeto para Lógica Proposicional

Introdução
Conjuntos de
conectivos completos
Equivalências com o
conjunto {¬, ∨}
Equivalências com os
conectivos {¬, ∧}

Um novo alfabeto para Lógica Proposicional

Formas Normais Formas Normais -Exemplos Formais Normais -Obtenção Formais Normais -Exemplo de obtenção

- Constituição do alfabeto:
 - ◆ Símbolos de pontuação: (,)
 - ◆ Símbolos de verdade: false
 - lacktriangle Símbolos proposicionais: P, Q, R, S, P_1 , Q_1 , R_1 , S_1 , P_2 , Q_2 , ...
 - ◆ Conectivos proposicionais: ¬, ∨
- Há outras redefinições do alfabeto, pois há outros conjuntos de conectivos completos
 - ◆ Equivalentes e determinam uma mesma linguagem

Formas Normais

Introdução
Conjuntos de
conectivos completos
Equivalências com o
conjunto {¬, ∨}
Equivalências com os
conectivos {¬, ∧}
Um novo alfabeto
para Lógica
Proposicional

Formas Normais

Formas Normais -Exemplos Formais Normais -Obtenção Formais Normais -Exemplo de obtenção

- Fórmulas podem ser expressa utilizando conjuntos distintos e completos de conectivos
- Fórmulas podem ter formas equivalentes a estruturas predefinidas
 - Formas normais

Definições

Literal. Símbolo proposicional ou sua negação.

Forma Normal Disjuntiva. Uma fórmula H está na forma normal disjuntiva (fnd), se é uma disjunção de conjunção de literais.

Forma Normal Conjuntiva. Uma fórmula H está na forma normal conjuntiva (fnc), se é uma conjunção de disjunção de literais.

Formas Normais - Exemplos

Introdução
Conjuntos de
conectivos completos
Equivalências com o
conjunto {¬, ∨}
Equivalências com os
conectivos {¬, ∧}
Um novo alfabeto
para Lógica
Proposicional

Formas Normais

Formas Normais - Exemplos

Formais Normais -Obtenção Formais Normais -Exemplo de obtenção ■ Forma normal disjuntiva

$$(\neg P \land Q) \lor (\neg R \land \neg Q \land P) \lor (P \land S)$$

■ Forma normal conjuntiva

$$(\neg P \lor Q) \land (\neg R \lor \neg Q \lor P) \land (P \lor S)$$

Formais - Obtenção

Introdução
Conjuntos de
conectivos completos
Equivalências com o
conjunto {¬, ∨}
Equivalências com os
conectivos {¬, ∧}
Um novo alfabeto
para Lógica
Proposicional
Formas Normais
Formas Normais Exemplos

Formais Normais -Obtenção

Formais Normais -Exemplo de obtenção

- Forma normal disjuntiva
 - 1. Extrair da tabela verdade as linhas em que a interpretação de uma fórmula é T.
 - 2. Construir conjunções de literais (fórmulas) a partir das linhas extraídas
 - 3. Construir uma disjunção com as conjunções obtidas no passo 2
- Forma normal conjuntiva
 - 1. Extrair da tabela verdade as linhas em que a interpretação de uma fórmula é T.
 - 2. Construir disjunções de literais (fórmulas) a partir das linhas extraídas
 - 3. Construir uma conjunção com as disjunções obtidas no passo 2

Formais Normais - Exemplo de obtenção

Introdução
Conjuntos de
conectivos completos
Equivalências com o
conjunto {¬, ∨}
Equivalências com os
conectivos {¬, ∧}
Um novo alfabeto
para Lógica
Proposicional
Formas Normais
Formas Normais Exemplos
Formais Normais Obtenção

Formais Normais -Exemplo de obtenção

P	Q	$\mid R \mid$	$(P \to Q) \land R$
T	Т	Т	Т
Т	Т	F	F
Т	F	Т	F
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	Т
F	F	F	F

$$\begin{array}{ll} \textbf{FND} & (P \wedge Q \wedge R) \vee (\neg P \wedge Q \wedge R) \vee (\neg P \wedge \neg Q \wedge R) \\ \textbf{FNC} & (\neg P \vee \neg Q \vee R) \wedge (\neg P \vee Q \vee \neg R) \wedge (\neg P \vee Q \vee R) \wedge \\ & (\neg P \vee Q \vee \neg R) \wedge (\neg P \vee \neg Q \vee \neg R) \\ \end{array}$$