Weekn
$$\overline{T}$$
 $y = x_1 + x_2 + \dots + x_m$
 $X = x_1 + x_2 + \dots + x_m$
 $X = x_1 + x_2 + \dots + x_m$
 $X = x_1 + x_2 + \dots + x_m$
 $X = x_1 + x_2 + \dots + x_m$
 $X = x_1 + x_2 + \dots + x_m$
 $X = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x_1 + x_2 + \dots + x_m$
 $Y = x$

Proposition of X, ..., & are independent $m_{X_{1}+\cdots+X_{m}}(t)=m(t)-\cdots m_{X_{n}}(t)$ $m_{X,+\cdots+X_m} = E[e^{\pm(X,+\cdots+X_m)}]$ $= E(e^{\pm X_i} - e^{\pm X_m})$ $= E(e^{\pm X_i}) - E(e^{\pm X_m})$ = m(t) -- m(t)eg Let X,,..., X, be i'd exponential (1) V= X,+--+ Xm $m_{\chi}(t) = \left[m_{\chi}(t)\right]^m = \frac{1}{(1-t)^m}, t < 1$ $= \int_{\mathbb{R}^{+}}^{\infty} e^{\pm y} \int_{\mathbb{R}^{+}}^{\infty} (y) dy$ at this point. Could guesa. Can'A solve it

Then $Van(X_1 + \cdots + X_m) = Van(X_1) + \cdots + Van(X_m)$

$$\frac{Nxt_0}{m_X(t)} = AX + b$$

$$m_X(t) = E(e^{tY}) = E(e^{atX} + bt)$$

$$= e^{bt} E(e^{atX}) = e^{bt} m_X(at)$$

$$= m_X^{(k)}(0) = E(X^k)$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array} \right) \right]$$

$$= \left[\begin{array}{c} \left(\begin{array}{c} y - b \\ a \end{array}$$

$$\frac{\overline{X} - M}{\sqrt{Nm}} = \sqrt{\frac{1}{N}} \left(\frac{1}{N} \sum_{i=1}^{N} X_i - \frac{1}{N} M \right)$$

$$= \sqrt{\frac{1}{N}} \left(\frac{1}{N} \sum_{i=1}^{N} X_i - \frac{1}{N} M \right)$$

$$= \sqrt{\frac{1}{N}} \left(\frac{1}{N} \sum_{i=1}^{N} X_i - \frac{1}{N} M \right)$$

$$= \sqrt{\frac{1}{N}} \left(\frac{1}{N} \sum_{i=1}^{N} X_i - \frac{1}{N} \sum_{$$

$$= \left(1 + \frac{1}{2} + \frac{1}{2}\right)^{m} \rightarrow e^{\frac{1}{2}/2}$$

$$= \left(1 + \frac{1}{2} + \frac{1}{2}\right)^{m} \rightarrow e^{\frac{1}{2}/2}$$
We now have 2 new mgf's sum of ridd exponential(1)'s $\left(\frac{1}{1-t}\right)^{n}$, $t < 1$

$$= \left(\frac{1}{1-t}\right)^{n}$$

So we want

(1) $\begin{cases} f(y)e^{ty}dy = \left(\frac{1}{1-t}\right)^{\tau}, t < 1 \\ -\infty \end{cases}$ $\begin{cases} f(y)e^{ty}dy = e^{t^{2}/2} \end{cases}$

 $f_{n(1)}$ $f(y) = \frac{x-1-y}{(x-1)!}$ gamma (r) paf N(0,1)a poly? ie is under e y 2/2 J211 ? Va! Let g(x) > 0 + h(y) > 0. Look at g(x) h(y) $-\infty < y < \infty$ Fact volume under g(x)h(y)= (area under g) (area under h)

Consider $e^{-\pi/2}e^{-y/2}$. The

volume under this is 2π . =) area under $e^{-\chi/z}$ is $\sqrt{2}i$ =) om thing is a part For the volume under e - xx + y

exponential $(\lambda) - \lambda > 0$ $Y = X \sim exponential(1)$ then $Y = X \sim exponential(1)$ ## { (y) = \(\lambda e^{-\lambda y} \), y >0

$$= 0 , ow$$

Must
$$f(y) = \frac{1}{1-t}$$
, $f(x) = \frac{1}{1-t}$.

If $X \sim \text{exponential}(1)$ then $E(X) = 1 + \text{Van}(X) = 1$.

If $X \sim \text{exponential}(1)$ then $E(X) = 1 + \text{Van}(X) = 1$.

If $X \sim \text{exponential}(1)$ then $f(x) = \frac{1}{1-t}$. Note that the text was $f(x) = \frac{1}{1-t}$.

If $f(x) = \frac{1}{1-t}$ and $f(x) = \frac{1}{1-t}$ and $f(x) = \frac{1}{1-t}$.

If $f(x) = \frac{1}{1-t}$ and $f(x) = \frac{1}{1-t}$ and $f(x) = \frac{1}{1-t}$.

If $f(x) = \frac{1}{1-t}$ and $f(x) = \frac{1}{1-t}$.

If $f(x) = \frac{1}{1-t}$ and $f(x) = \frac{1}{1-t}$.

If $f(x) = \frac{1}{1-t}$ and $f(x) = \frac{1}{1-t}$.

If $f(x) = \frac{1}{1-t}$ and $f(x) = \frac{1}{1-t}$.

If $f(x) = \frac{1}{1-t}$ and $f(x) = \frac{1}{1-t}$.

If $f(x) = \frac{1}{1-t}$ and $f(x) = \frac{1}{1-t}$.

If $f(x) = \frac{1}{1-t}$ and $f(x) = \frac{1}{1-t}$.

gamma (r, 1) Jet X,,..., X, be iid exponential(1). Then $V = X_1 + \dots + X_n \sim gamma(n)$ and has pdf + mgf $\int_{V}^{1} (y) = \frac{y^{r-1} e^{-y}}{(r-1)!}, y>0, \quad m_{V}(t) = \left(\frac{1}{1-t}\right)^{r}, \quad t < 1$ Now divide by 1>0 so that $W = \frac{Y}{\lambda} = \frac{\chi_1}{\lambda} + \dots + \frac{\chi_n}{\lambda} \sim gamma(x, \lambda)$ The standard gamma, gamma(r), has plf $\begin{cases} \chi(y) = C y^{n-1}e^{-y}, y > 0 \end{cases}$ is such as to make the area !. Set $\Gamma(n) = \int_{0}^{\infty} y^{n-1}e^{-y}dy$, r > 0. Then

 $C = \frac{1}{\Gamma(n)}$. This defines a pay for any r > 0.

If $W = \frac{1}{r}$ then $W \sim \operatorname{gamma}(r, 1)$ is

the general gamma + is defined for r, 1 > 0.

Some problems related to this material
1. En the $N(8,1)$ verify $\int_{-2\pi}^{2\pi} \frac{1}{\sqrt{2\pi i}} e^{-\frac{z^2}{2}} e^{\frac{z^2}{2}} dz = e^{-\frac{z^2}{2}} e^{-z$
Hint Look at $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-(z-t)/z}$
2. If Z~N(0,1) calculate the off
2. If $Z \sim N(0, 1)$ calculate the off $Y = Z^2$. If $Z \sim N(0, 1)$ realizate the off $Z \sim N(0, 1)$ and $Z \sim N(0, 1)$ may to obtain the $Z \sim N(0, 1)$ and $Z \sim N(0, 1) \sim N(0, 1)$ and $Z \sim N(0, 1) \sim$
3. Like the 10(0) 11 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
4. Verify (1)= (T) Hint: Fn (1/2) sex u= ry + use
the properties of them $Z = \frac{V-u}{U} \sim \mathcal{N}(0,1)$
So that $P(a < 1 < b) = P(a - 1 < 7 < b - 1) +$ so that $P(a < 1 < b) = P(a - 1 < 7 < b - 1)$
fence \- probabilities can be reduced to hence \- probabilities. Use this to calculate P(u-o<\< u10) Z-probabilities. Use this to calculate P(u-o<\< u10) approximately (use tallus, computers, etc).

Challenge problems 6. Let X have plf $A_X(x)$ + suggesse $h: \mathbb{R} \to \mathbb{R}$ is strictly increasing and differentiable.

Obtain the plf $A_X(x)$ worning $A_X(x)$. 7. Let X be a cts rv with strictly increasing of F. Show (a) $Y = F(X) \sim uniform(0, 1)$ (b) & Un uniform (0,1) then $X \stackrel{d}{=} F^{-1}(U)$, where \(\frac{1}{2}\) means both sides have the same probability dist n.