APPLIED DATA SCIENCE CAPSTONE PROJECT:

CLUSTER AND SEGMENT NEIGHBORHOODS IN MAJOR CITIES FOR EXPATS

INTRODUCTION/BUSINESS PROBLEM:

As many people leave their home countries to move and work abroad they become expats to that country.

Leaving your neighborhood behind and moving to a new neighborhood in a new country can be quiet challenging and someone can still get confused while transitioning into a new culture/social etiquette.

Providing some type of guidance can help expats find a suitable neighborhood in a new country and adjust much faster.

The solution is to extract the neighborhoods for the home city and the destination city to perform clustering taking mainly into account the most common venues in each neighborhood.

DATA COLLECTION AND CLEANING

Multiple datasets will be used in combination with the Foursquare location data. Data will be used to cluster and segment neighborhoods in two major cities. The two major cities to be taken as an example are Toronto, Canada and New York City, U.S.

The New York City neighborhoods dataset is published by the New York (City). Department of City Planning. The Toronto neighborhoods dataset can be scraped online from Wikipedia.

The Geocoder library can be used to fetch latitude and longitude coordinates for each of the neighborhoods. Adding the geographical coordinates (latitude and longitude) allows to map these neighborhoods using the folium API.

The Foursquare location API will be used to extract the list of venues surrounding each of the neighborhoods.

METHODOLOGY

01

In this project we can direct our efforts on detecting areas of Toronto and NYC that have similar common venues, particularly clustering them. 02

In first step the required data was collected: Extracting the list of Toronto and New York City neighborhoods by scraping the web. Once the datasets are extracted, dataframes were populated accordingly while still dealing with missing as well as null values was also done in this step.

03

Second step in our analysis was calculation and exploration of most common venues across different areas of Toronto and NYC - maps from folium API were used to easily identify a few promising areas similar to the expats current home and focus our attention on those areas.

04

In third and final step the focus was on the most promising areas and within those create clusters of locations that share similar common venues: Taking into consideration locations with same types of dining options, coffee shops, and gym/parks.

<pre>manhattan_grouped = manhattan_onehot.groupby('Neighborhood').mean().reset_index() manhattan_grouped</pre>													
	Neighborhood	Accessories Store	Adult Boutique	Afghan Restaurant	African Restaurant	American Restaurant	Animal Shelter	Antique Shop	Arcade	Arepa Restaurant	Argentinian Restaurant	Art Gallery	Art Museum
0	Battery Park City	0.000000	0.00	0.00	0.00000	0.010000	0.00	0.00	0.00	0.000000	0.000000	0.000000	0.00
1	Carnegie Hill	0.000000	0.00	0.00	0.00000	0.010000	0.00	0.00	0.00	0.000000	0.000000	0.000000	0.01
2	Central Harlem	0.000000	0.00	0.00	0.06383	0.042553	0.00	0.00	0.00	0.000000	0.000000	0.042553	0.00
3	Chelsea	0.000000	0.00	0.00	0.00000	0.030000	0.00	0.01	0.00	0.000000	0.000000	0.030000	0.00
4	Chinatown	0.000000	0.00	0.00	0.00000	0.040000	0.00	0.00	0.00	0.000000	0.000000	0.000000	0.00
5	Civic Center	0.000000	0.00	0.00	0.00000	0.030000	0.00	0.01	0.00	0.000000	0.000000	0.020000	0.00
6	Clinton	0.000000	0.00	0.00	0.00000	0.040000	0.00	0.00	0.00	0.000000	0.000000	0.010000	0.00
7	East Harlem	0.000000	0.00	0.00	0.00000	0.000000	0.00	0.00	0.00	0.000000	0.000000	0.000000	0.00
8	East Village	0.000000	0.00	0.00	0.00000	0.020000	0.00	0.01	0.00	0.020000	0.010000	0.010000	0.00
9	Financial District	0.010000	0.00	0.00	0.00000	0.040000	0.00	0.00	0.00	0.000000	0.000000	0.000000	0.00
10	Flatiron	0.000000	0.00	0.00	0.00000	0.040000	0.00	0.00	0.00	0.000000	0.000000	0.000000	0.00
11	Gramercy	0.000000	0.00	0.00	0.00000	0.040000	0.00	0.00	0.01	0.000000	0.000000	0.010000	0.00

Dataframe contains each neighborhood and the frequency of the venues in that area

```
----Battery Park City----
          venue freq
           Park 0.08
    Coffee Shop 0.07
          Hotel 0.05
            Gym 0.04
  Memorial Site 0.04
----Carnegie Hill----
                venue freq
          Pizza Place 0.06
          Coffee Shop 0.06
                 Café 0.04
  Japanese Restaurant 0.03
    French Restaurant 0.03
----Central Harlem----
                 venue freq
    African Restaurant 0.06
  Gym / Fitness Center 0.04
           Art Gallery 0.04
     French Restaurant 0.04
        Cosmetics Shop 0.04
```

We can also extract the top-N most common venues for each neighborhood

1st Most

2nd Most

3rd Most

4th Most

Before clustering

	Neighborho	od Comm Ven		ommon Venue	Common Venue	Comr	non C	Common Venue	Common Venue	Common		mon Co enue	mmon Venue	Common Venue
0	Battery Pa C	ark iity Pa	ark Coffe	ee Shop	Hotel	(Gym Mem	orial Site	Wine Shop	Clothing Store	e It Restau	•	artment Store	Vomen's Store
1	Carnegie l	Hill Coffee Sh	op Pizz	za Place	Café	Yoga St	udio B	ookstore	Cosmetics Shop	Frenci Restauran		Bar	panese taurant	Spa
2	Central Harle	em Afric Restaura	Art	Gallery	Seafood Restaurant	Amer Restau	-	/ Fitness Center	French Restaurant	Cosmetic Shop		nese Pu Irant	blic Art	Grocery Store
3	Chels	sea Coffee Sh	op Res	Italian staurant	Ice Cream Shop	Night	club	Bakery	Seafood Restaurant	America: Restauran	The	eater Art	Gallery	Hotel
4	Chinato	wn Chine Restaura		merican staurant	Cocktail Bar	Sal Barbers	•	Dim Sum estaurant	Spa	Vietnames Restauran			Cream Shop	Bubble Tea Shop
	Borough I	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Mos Commo Venu	n Common
0	Manhattan	Marble Hill	40.876551	-73.910660	1	Coffee Shop	Discount Store	Sandwich Place	Yoga Studio	Tennis Stadium	Supplement Shop	Steakhouse	Sp	a Seafood Restaurant
1	Manhattan	Chinatown	40.715618	-73.994279	1	Chinese Restaurant	American Restaurant	Cocktail Bar	Salon / Barbershop	Dim Sum Restaurant	Spa	Vietnamese Restaurant	Dumpling Restauran	
2	Manhattan	Washington Heights	40.851903	-73.936900	0	Café	Mobile Phone Shop	Bakery	Spanish Restaurant	Deli / Bodega	Mexican Restaurant	Sandwich Place	Nev America Restauran	n Park
3	Manhattan	Inwood	40.867684	-73.921210	0	Mexican Restaurant	Café	Lounge	Bakery	Pizza Place	Park	Frozen Yogurt Shop	Chines Restauran	
4	Manhattan	Hamilton Heights	40.823604	-73.949688	0	Deli / Bodega	Café	Mexican Restaurant	Pizza Place	Chinese Restaurant	Coffee Shop	Sushi Restaurant	Caribbea Restauran	Rank

5th Most

6th Most

7th Most

8th Most

9th Most

10th Most

After clustering

Manhattan Neighborhoods Clustered by Venues Category

Toronto Neighborhood Clustered

 The approach implemented was to analyze neighborhoods in the home city and cluster them by venues.
 Then, analyze neighborhoods in the destination city and cluster them by venues. Once we generated the clusters using K-means clustering, we can compare the results.

Cluster 5 Toronto

tor	onto_merge	ed.loc[to	ronto_merge	d['Cluster La	bels'] == 4,	toronto_mer	rged.columns	[[1] + list(range(5, tor	onto_merged.	shape[1]))]]	
	Borough	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
50	Downtown Toronto	4	Park	Playground	Trail	Building	Diner	Farmers Market	Falafel Restaurant	Event Space	Ethiopian Restaurant	Electronics Store
64	Central Toronto	4	Trail	Jewelry Store	Park	Sushi Restaurant	Electronics Store	Doner Restaurant	Donut Shop	Dumpling Restaurant	Eastern European Restaurant	Women's Store

Cluster 1 NYC

e[1]//]]	m_merged.snap	(3, mannatta	+ IIst(range	columns[[1]	iaccan_merged] == 0, marir	uster Labels	an_merged[CI	. Toc[mannacca	nactan_merged	man
10th Most Common Venue	9th Most Common Venue	8th Most Common Venue	7th Most Common Venue	6th Most Common Venue	5th Most Common Venue	4th Most Common Venue	3rd Most Common Venue	2nd Most Common Venue	1st Most Common Venue	Neighborhood	
Supplement Shop	Park	New American Restaurant	Sandwich Place	Mexican Restaurant	Deli / Bodega	Spanish Restaurant	Bakery	Mobile Phone Shop	Café	Washington Heights	2
Wine Bar	American Restaurant	Chinese Restaurant	Frozen Yogurt Shop	Park	Pizza Place	Bakery	Lounge	Café	Mexican Restaurant	Inwood	3
Bakery	Bank	Caribbean Restaurant	Sushi Restaurant	Coffee Shop	Chinese Restaurant	Pizza Place	Mexican Restaurant	Café	Deli / Bodega	Hamilton Heights	4
Lounge	Bike Trail	Café	Ramen Restaurant	Italian Restaurant	Seafood Restaurant	Coffee Shop	Mexican Restaurant	Park	Deli / Bodega	Manhattanville	5
Taco Place	Spanish Restaurant	Steakhouse	French Restaurant	Café	Latin American Restaurant	Thai Restaurant	Deli / Bodega	Bakery	Mexican Restaurant	East Harlem	7
Szechuan Restaurant	Deli / Bodega	Thai Restaurant	Bar	Café	Mexican Restaurant	Yoga Studio	Pizza Place	Coffee Shop	Indian Restaurant	Manhattan Valley	25
Spa	Dog Run	Hotel	Pizza Place	Deli / Bodega	Asian Restaurant	Greek Restaurant	Café	Mexican Restaurant	Park	Tudor City	36

CONCLUSION

The analysis performed on the Toronto and NYC datasets was used to address the problem expats face when moving to a new country.

The solution was to perform clustering taking mainly into account the most common venues in each neighborhood.

Neighborhoods were classified into clusters depending on their similarities (in terms of most common venues), then the clusters of each country were compared, and two closest clusters were identified.

Providing this type of guidance can help expats find a suitable neighborhood in a new country and adjust much faster.