

Depto de Matemática. Primer Cuatrimestre de 2022 Teoría de la Medida Práctica 2: Integral de Riemann

Ejercicio 1. Obtener la fórmula del área de un rectángulo de lados a y b, siendo a y b reales cualesquiera.

Ejercicio 2. Sea $f:[a,b]\to\mathbb{R}$ una función acotada y P,P' particiones de [a,b] con $P\subset P'$.

1. Demostrar que

$$\underline{S}(P,f) \leq \underline{S}(P',f)$$
 y $\overline{S}(P',f) \leq \overline{S}(P,f)$.

2. Inferir que para cualesquiera P, P' (sin importar que una este o no contenida dentro de la otra)

$$S(P, f) \leq \overline{S}(P, f)$$
.

Ejercicio 3. Dada la función

$$f(x) = \begin{cases} 1 & x = 0 \\ x & 0 < x < 1 \\ 0 & x = 1, \end{cases}$$

- 1. Hallar las sumas inferior y superior de Darboux $\underline{S}(P;f)$ y $\overline{S}(P;f)$, con la partición $P=\left\{0,\frac{1}{4},\frac{1}{2},\frac{3}{4},1\right\}$ de (0,1).
- 2. Dado $\epsilon=\frac{1}{2}$, encontrar $\delta>0$ tal que para cualquier partición P en intervalos de longitud menor que δ , la diferencia entre $\overline{S}(P;f)$ y $\underline{S}(P;f)$ sea menor que $\frac{1}{2}$.

Ejercicio 4. Considerar la función

$$g(x) = \sum_{n=1}^{\infty} \frac{1}{2^{2n-1}} \left[\frac{2^n x + 1}{2} \right] \quad 0 \le x \le 1,$$

donde $|\alpha|$ denota el mayor entero menor o igual a α .

- 1. Mostrar que la serie converge para todo $x \in [0,1]$, que la función g(x) es monótona creciente, que g(0) = 0 y g(1) = 1.
- 2. Encontrar todos los puntos en los cuales la función g es discontinua y en estos puntos calcular la diferencia entre los límites laterales.
- 3. Mostrar que g es integrable de Riemann sobre [0, 1].
- 4. Hallar el valor de $\int_0^1 g(x)\,dx.$ Indicar claramente los motivos que llevan a su conclusión.

Ejercicio 5. Encontrar todos los valores positivos de α para los cuales la integral impropia

$$\int_{-1}^{1} \frac{1}{|x|^{\alpha}} \, dx$$

tiene un valor. Explicar las razones que conducen a su conclusión.

Ejercicio 6. Probar que $f(x) = \sum_{n=1}^{\infty} \frac{((nx))}{n^2}$ converge uniformemente, siendo

$$((x)) = \begin{cases} x - \lfloor x \rfloor, & \lfloor x \rfloor \le x < \lfloor x \rfloor + \frac{1}{2} \\ 0 & x = \lfloor x \rfloor + \frac{1}{2} \\ x - \lfloor x \rfloor - 1 & \lfloor x \rfloor + \frac{1}{2} < x < \lfloor x \rfloor + 1. \end{cases}$$

Ejercicio 7. Demostrar que f es continua en x si y solo si w(f;x)=0.

Ejercicio 8. Sea f definida por $f(x)=\sin\left(\frac{1}{x}\right)$ si $x\neq 0$ y f(0)=0. ¿Cuál es la oscilación de f en 0? Justificar su respuesta.

Ejercicio 9.* Hallar la oscilación en $x=\frac{1}{3}$ de la función

$$g(x) = \begin{cases} x & x \in \mathbb{Q} \\ -x & x \notin \mathbb{Q}. \end{cases}$$

Justificar la respuesta.

Ejercicio 10. Usando sumas de Darboux:

1. Si $0 \le a < b$, probar que

$$\int_{a}^{b} x^{2} dx = \frac{b^{3}}{3} - \frac{a^{3}}{3}.$$

Ayuda: Usar particiones uniformes y la fórmula $\sum\limits_{i=1}^n n^2 = n(n+1)(2n+1)/6.$

2. Para 0 < a < b, probar que

$$\int_{a}^{b} \frac{1}{x} dx = \ln(b) - \ln(a)$$

3. Si $0 \le a < b \le \pi$, demostrar que

$$\int_{a}^{b} \cos x dx = -(\operatorname{sen}(b) - \operatorname{sen}(a)).$$

Ejercicio 11.* Sea

$$n(x) = \left\{ \begin{array}{ll} 1 & x = \frac{1}{n}, \ n \in \mathbb{N}. \\ 0 & \text{en otro caso}. \end{array} \right.$$

Probar que n es integrable sobre [0,1] y que $\int n(x) dx = 0$.

Ejercicio 12.* Sea

$$p(x) = \begin{cases} 0 & x = 0\\ \frac{1}{x} - \left| \frac{1}{x} \right| & \text{en otro caso} \end{cases}$$

Probar que p es integrable sobre [0, 1].

Ejercicio 13. Hallar el contenido exterior de los siguientes conjuntos:

- 1. $\mathbb{Q} \cap [0,1]$;
- 2. $[0,1] \mathbb{Q}$;
- 3. $\left\{\frac{n}{n+1} \mid n \in \mathbb{N}\right\}$;
- **4.** $\left\{ \frac{2k-1}{2^n} \mid n \in \mathbb{N}, 1 \le k \le 2^{n-1} \right\}$;
- 5. $\{\frac{k}{n} \mid n \in \mathbb{N}, \ k = 1, 2 \circ 3\};$
- 6. $(0,1) \cup (3,4)$;

7.
$$\bigcup_{n=1}^{\infty} \left(\frac{1}{2n}, \frac{1}{2n-1} \right).$$

Ejercicio 14. Probar que si S tiene contenido exterior 0 y T es cualquier conjunto acotado, entonces

$$c_e(S \cup T) = c_e(T)$$

donde c_e se lee como contenido exterior.