

1 Classes d'adresses IP (V 4)

- 1) Appliquer sur le premier octet les valeurs binaires adéquates pour créer les classes A à E
- 2) Calculer les intervalles d'adresses décimales (valeur minimale et valeur maximale binaire codée de chaque octet) pour chaque classe avec votre calculatrice.

Exemple : valeur binaire = $000000002 \square 0_{10} / 1111111112 \square 255_{10}$

Α

Minimum =

В

C

D

Module 117

Questionnaire No 3

Ε

2 Intersection logique

2.1 Masques de réseau

Pour chacune des adresse IP proposée, déterminer la classe d'adresse et le masque réseau approprié.

172.16.25.18 🛮 Classe [], masque : []
5.1.23.18 🛘 Classe [], masque : []
192.168.1.115 🏻 Classe [], masque : []
187.15.255.1 🛭 Classe [], masque : []
125.116.1.0 🛭 Classe [], masque : []
132.31.0.5 🛭 Classe [], masque : []
195.15.32.18 🛭 Classe [], masque : [1

2.2 Masques de sous réseau

- 1) Calculer le masque décimal correspondant à la notation pointée
- 2) A l'aide de votre calculatrice, déterminer le résultat de l'intersection logique (NET_ID, Subnet_ID et HOST_ID).

Module 117

Questionnaire No 3

IP	Masque	NET_ID	Subnet_ID	Host_ID
15.130.2.181 / 11				
192.168.66.115 / 20				
187.15.187.1 / 18				
125.119.1.0 / 14				
132.31.72.5 / 21				
195.15.32.73 / 30				