

University of New Hampshire

10 SCL 30.72 1532 10.509

Hydroptilidae (Trichoptera) of America North of Mexico

by

R. L. Blickle

NEW HAMPSHIRE
AGRICULTURAL EXPERIMENT STATION
UNIVERSITY OF NEW HAMPSHIRE
DURHAM, NEW HAMPSHIRE

Acknowledgements

The western species were made available for study by Dr. D. G. Denning, Moraga, California. The illustrations were made by Miss Wendy Lull, a graduate student in the Zoology Department, University of New Hampshire. The keys have been adapted from those of previous workers. The illustrations have been redrawn from published figures of the type description, if possible, or from other appropriate sources. The works of Betten (1934) and Ross (1944) were invaluable in the present study.

Programs of the New Hampshire Agricultural Experiment Station are open to all persons without regard to race, color, national origin or sex. The University of New Hampshire is an Affirmative Action/Equal Opportunity Employer.

Abstract

Insects of the family Hydroptilidae (Trichoptera) are dealt with in the following manner. Brief discussions of the family and genera; tables for determining the 15 genera; a key for determining each species (males), including 180 species in all; an increase of 102 species since Ross (1944). This encheiridion also includes a check list of the species as to provinces (Canada) and states (U.S.A.) to date; the original reference for each species; illustrations of the male genitalia of each species described up to and including August 1977; selected literature references.

KEY WORDS: Trichoptera, Hydroptilidae, North America.

TABLE OF CONTENTS

	Page
General discussion of family	1-3
Key to genera	3-4
Brief discussion of genera - Agraylea, Dibusa, Ithytrichia, Leucotrichia, Mayatrichia, Metrichia,	
Orthotrichia, Paleagapetus, Rioptila, Stactobiella, Zumatrichia	4-5
Key to species of above genera	6-9
Genus Hydroptila - discussion, key to species	10-21
Genus Neotrichia - discussion, key to species	21-24
Genus Ochrotrichia - discussion, key to species	24-35
Genus Oxyethira - discussion, key to species	35-42
Literature	43-45
Check list	46-55
Plates	56-97

HYDROPTILIDAE (TRICHOPTERA)

OF AMERICA NORTH OF MEXICO

Ъу

R. L. Blickle 4

HYDROPTILIDAE

These small Trichoptera, usually less than 6 mm in length, are known as microcaddis flies. The larvae are aquatic but do not construct cases until the last instar, being "free living" in their earlier stages. In the imago the antennae are generally stout and shorter than the body length. Ocelli may be present or absent, most genera have ocelli. Maxillary palpi five segmented in both sexes. Legs moderately long, hairy; spurs may be present on the tibiae either apically, preapically or both. The spurs are usually larger than spines, are movable and may be covered with sharp The spur formula, as in the genus Hydroptila for example, would be 0-2-4. This indicates the number of spurs on the fore, middle, and hind legs respectively. Since there are never more than two spurs together and the apical ones are indicated first, thus in the genus Hydroptila there would be 0 on the foreleg, 2 apical ones on the mesotibia and 2 apical plus 2 preapical spurs on the metatibia. Both sexes have the same spur count. Wings generally acute at apex with reduced venation, although the venation may be difficult to see due to the numerous hairs on the wings. Hair fringes of the wing may be several times the width of the wing itself, especially the hind wings.

The spur formula and the presence or absence of ocelli enables one to separate some genera from others using only these criteria. The following table gives the spur formula and the presence or absence of ocelli for each genera. As can be noted the genus Neotrichia may be immediately separated by the spur formula. In the group with 0-2-4 spurs the Hydroptila are separated by lack of ocelli. In the next group of 0-3-4 spurs the Orthotrichia also are separated by lack of ocelli. In the next group of 1-3-4 the genus Dibusa is the only one without ocelli. Thus by observation of the spurs and ocelli, one fourth of the genera may be determined.

The small size of the <u>Neotrichia</u> and the possession of "scent caps" on the dorsal part of the head of male <u>Hydroptila</u> also give clues that are helpful in determination of species of these genera.

Taxonomic determination to species is based on the male genitalia primarily. There is a general resemblance among those species in each genus and one can recognize the proper genus quite readily with experience. The female specimens in most instances will have to be run through a genera key to place them properly, although here again with practice they may be easily recognized as to the correct genus.

 $[\]frac{1}{P}$ Professor of Entomology, Department of Entomology, University of New Hampshire.

Genera grouped as to spurs and ocelli

Genus	Spur Formula	<u>Ocelli</u>
Neotrichia	0-2-3	+
Hydroptila	0-2-4	0
Mayatrichia	0-2-4	+
Rioptila	0-2-4	+
Agraylea	0-3-4	+
Ithytrichia	0-3-4	+
Ochrotrichia	0-3-4	+
Orthotrichia	0-3-4	0
0xyethira	0-3-4	+
Dibusa	1-3-4	0
Leucotrichia	1-3-4	+
Metrichia	1-3-4	+
Palegapetus	1-3-4	+
Stactobiella	1-3-4	+
Zumatrichia	1-3-4	+

Flint discusses the suprageneric classification and points out that it is not completely satisfactory. The following have been proposed by various workers: Nielsen (1948) two subfamilies, Hydroptilinae (Agraylea, Hydroptila, Oxyethira), Orthotrichinae (Orthotrichia, Ithyrichia); Botosaneanu (1956), Stactobinae (Stactobia etc.), however, Stactobiella Mart. probably should be in the Hydroptilinae (sensu Nielsen) as the genus based on the larvae are not related to Stactobia (see Flint 1970, p. 2); Ross (1956) placed the genera Paleagapetus and Ptilocolepus in the Ptilocolepinae and all the others in the Hydroptilinae. latter two genera were originally classed as rhyacophilids. Palearctic Ptilocolepus was placed in the Hydroptilidae after the larva had been described by Thienemann (1904), however, Martynov (1934) put it in Ptilocolepinae (Rhyacophilidae). There seems to be no question that the latter two genera belong in the Hydrotilidae. Flint (1970), proposed Leucotrichinae for 9 neotropical

genera, two of which also occur in the U.S.A., namely <u>Leucotrichia</u> and <u>Zumatrichia</u>. Wiggins (1977), considers the genera <u>Neotrichia</u> and <u>Mayatrichia</u> to be a subfamily unit after studying the larvae but did not create a subfamily to contain them.

Table for determination of Hydrotilidae genera

1.	Foretibia without apical spur.	-2
	Foretibia with apical spur.	-10
2.	Spur formula: 0-2-3; ocelli present.	Neotrichia
	Spur formula: 0-2-4 or 0-3-4; ocelli present or absent.	-3
3.	Spur formula: 0-2-4.	-4
	Spur formula: 0-3-4.	-6
4.	Ocelli present.	-5
	Ocelli absent.	- <u>Hydroptilia</u>
5.	Metascutellum pentangular.	-Rioptila
	Metascutellum triangular.	- <u>Mayatrichia</u>
6.	Ocelli absent; metascutellum rectangular.	-Orthotrichia
	Ocelli present; metascutellum not rectangular.	-7
7.	Mesoscutellum with fracture line from lateral angle to lateral angle.	l Ochrotrichia
	No fracture line across mesoscutellum.	-8
8.	Mesoscutellum diamond shape; wide area posterior to postero-dorsal edge.	-Agraylea
	Mesoscutellum with anterior edge evenly curved; postero-dorsal edge close to or touching posterior margin on meson.	-9
9.	Postero-dorsal edge of mesoscutellum touching posterior edge on meson; metascutellum extends to lateral margin of segment.	- <u>Oxyethira</u>
	Postero-dorsal edge of mesoscutellum sepa- rated from posterior edge; metascutellum connected to lateral margin by straplike piece.	- <u>Ithytrichia</u>

10. Ocelli absent. -Dibusa
Ocelli present. -11

11. Mesonotum convex; scutellum with a large oval wart.

Mesonotum flat, scutellum without a large oval wart.

-12

12. Metascutellum as wide as scutum, short,
rectangular. -Stactobiella

Metascutellum narrower than scutum; pentangular or triangular. -13

13. Metascutellum pentangular. <u>Leucotrichinae*</u>
Metascutellum triangular. <u>Metrichia</u>

*Leucotrichia and Zumatrichia are treated under the species section.

Eleven genera are treated in this section, they are as follows: Agraylea Curtis comprised of 3 species which may be considered to be distributed in northern U.S.A. and southern Canada. One species A. multipunctata is a holarctic one. The other two occur in more restricted areas i.e. A. costello in n.e. U.S.A. and southeastern Canada and A. saltesea in northwestern U.S.A. Dibusa Ross is comprised of one (1) species from southeastern and southern U.S.A. Ithytrichia has two species, I. clavata being very widespread and I. mazon known only from Ill. and Ky. Leucotrichia Mosley is for the most part Neotropical, but three (3) species occur in U.S.A. Two, L. limpia and L. sarita are found in Arizona and Texas, the third L. pictipes (Banks) is known from 17 states, nine western and eight eastern. The distribution follows the Rocky Mountain and Pacific coast areas on one hand and the northcentral and northeastern areas on the other. Another Leucotrichinae, the genus Zumatrichia Mosley, has one species in the U.S.A. occuring in Arizona and Montana. Mayatrichia Mosley contains a very widely spread species, M. ayama. This species described from Mexico has been taken from Florida to Quebec to Montana. The other three are known only from southwestern or western states. Metrichia Ross is considered here to be a valid genus. Although the larvae are quite similar to those of Ochrotrichia the larval habits have differences and the adults are morphologically distinct. Three species occur in southwestern U.S.A. and the genus is also known from as far south as Chile. Orthotrichia Eaton has been studied by Kingsolver and Ross (1961). Here again we have two widespread species namely, O. aegerfasciella (Chambers), an eastern species that has been known as 0. americana Banks and most of the records are under that name, and 0. cristata that has been taken from British Columbia to Quebec and The others, O. baldufi and O. instabilis extend from Maine to Florida; with O. curta and O. dentata known from Florida. Paleagapetus Ulmer a genus with two western species P. guppyi and

P. nearcticus and one eastern one P. celsus. Rioptila Blickle and Denning contains one species R. arizonica from Arizona and Utah. Stactobiella Martynov in North America embraces the following four species: S. brustia, n.w. U.S.A. and Arizona, S. delira known from California and Oregon to north central U.S.A. and New Hampshire, S. palmata, southern Canada, northern U.S.A., and the North Central states, and S. martynovi, Tennessee (Smoky Mts.).

In the last genus the term "bracteole" is used in the table for determination. Ross (1948) gives the following:"a structure associated with the area dorsad of the base of each clasper... In some cases this appears as a small structure at the base of each clasper in others the structure is larger and more conspicuous than the clasper and probably usurps its function. For this I propose the term bracteole." S. delira is an example of one with a small structure and S. palmata of the large, conspicuous one.

Key to Species of Genera Agraylea, Dibusa, Ithytrichia, Leucotrichia, Metrichia, Orthotrichia, Paleagapetus, Rioptila, Stactobiella, Zumatrichia.

Agravlea Curtis 1834

Agraylea Curtis 1834		
1. Process on 7th sternite short, conical- Process on 7th sternite long	fig. 1 fig. 2,3	saltesea Ross 1938
Tong	116. 2,0	-
 7th sternite process with tooth at basal 1/5th; claspers (ventral view) not as wide as long 7th sternite process not toothed; claspers as wide 	fig. 2,2a	multipunctata Curtis 1834
as long	fig. 3,3a	costello Ross 1941
Dibusa Ross 1939	fig. 4a,4b	angata Ross 1939
<u>Ithytrichia</u> Eaton 1873		
Claspers (ventral aspect) narrowed from base to apexClaspers (ventral aspect) with apex wide, truncate	fig. 5c,5ae	clavata Morton 1905 mazon Ross 1944
Leucotrichinae		
 Antennae of male, basal segment enlarged. Ocelli male 2, female 3 		Zumatrichia

segment terete. Ocelli 2 or 3

Zumatrichia Mosley 1937

- Antennae of male, basal

9th segment with long fig. 7a notosa (Ross) 1944 lateral styles

Leucotrichia

Leucotrichia Mosely 1934			
1. 3 ocelli - 2 ocelli	fig.	8a	<u>limpia</u> Ross 1944 -2
Head without special lobes; antennae simpleHead with setate lobes.Some antennal segments	fig.	9a	sarita Ross 1944
flattened. 7th sternite with brush of setae	fig.	10a	pictipes (Banks) 1911
Mayatrichia Mosely 1934			
1. Aedeagus tip bluntAedeagus tip pointed			-2 -3
2. Aedeagus tip 3 prongedAedeagus tip not pronged		11a 14a,14c	ayama Mosely 1934 moselyi B. & D. 1977
3. Mesal lobe of claspers nearly truncate; apical setae long stoutMesal lobe of claspers oblique; apical setae	fig.	12a	ponta Ross 1944
short slender, not arising in same plane	fig.	13a	acuna Ross 1944
Metrichia Ross 1938			
 Lateral aspect: clasper 2 x as long as wide; cerci elongate Lateral aspect: clasper 4.5 	fig.	16a	arizonensis Flint 1972
x as long as wide; cerci ovate			-2
2. Tips of both aedeagal rods pointedTip of one rod truncate	_	15a 17a,17b	<u>nigritta</u> (Banks) 1907 <u>volada</u> B.& D.1977
Orthotrichia Eaton 1873			
1. Subgenital plate with long slender lateral armsLateral arms subgenital plate short, rounded; no	fig.	18c	aegerfasciella (Chambers) 1873
internal process			-2

2.	Shaft of subgenital plate with tooth-like projections			-3
-	Shaft of subgenital plate with no ventral tooth-like projections, slender rod arising from 10th segment projects posteriorly	fig.	19c	<u>cristata</u> Morton 1905
3.	Apex of 10th tergite entirely membranous; no sclerotized rod arising from 10th segment Apex of 10th tergite with	fig.	20c	<u>curta</u> K. & R. 1961
	dark sclerotized area			-4
4.	Subgenital plate truncate, posterior margin truncate; ventral process large Subgenital plate T-shaped,	fig.	21c	<u>dentata</u> K. & R. 1961
	emarginate; ventral process usually small			-5
5.	Subgenital plate cleft; ventral process very small	fig.	22c	instabilis Denning
-	Subgenital plate not cleft; ventral process variable	fig.	23c	<u>baldufi</u> K. & R. 1961
Pa.	leagapetus Ulmer 1912			
1.	Lateral process of 9th segment ending in 3 pronged structure			-2
-	Lateral process of 9th segment not 3 pronged	fig.	24a,24c	celsus Ross 1938
	Lateral view: 10th tergite upcurved at tip Lateral view: 10th tergite	fig.	25a,25c	guppyi Schmid 1951
	not upcurved at tip	fig.	26a	nearcticus Banks 1936
	optila Blickle and Denning 77		27a, , 27 ant.	arizonica B. & D. 1977
St	actobiella Martynov 1925			
1.	Claspers apparently fused, forming a ventral plate Claspers not fused, either elongate or ovate	fig.	28a,28c	<u>brustia</u> (Ross) 1938 -2

A bracteole arising above each clasper Bracteole a small process, associated with clump of		-3
setae	fig. 29c	delira (Ross) 1938
Bracteole apex divided into 3 fingers Bracteole divided at basal 1/3rd, a seta near	fig. 31c	palmata (Ross) 1938
acute apex. Aedeagus truncate	fig. 30c	martynovi B. & D.

Genus Hydroptila Dalman 1819

At present the largest genus in the family Hydroptilidae comprised of sixty species. This genus may be recognized readily as possessing a spur formula of 0-2-4 and in lacking ocelli. In addition the males have "scent caps" or eversible glands on the dorsal area of the head. Although these "scent caps" are probably diagnostic, very little work has been done on them. Mosely (1919, 1923, 1924) has studied a few species. Most of the studies have been on the male genitalia, in fact the genitalia are the basis for determining Trichoptera. In the Hydroptila, two groups may be separated by the shape of the 7th sternite process (figs. 32 & 33); one has a short pointed process and the other a long and blunt one. The male claspers, tenth tergite and the aedeagus are quite distinct for each species.

Species that are quite similar such as Hydroptila arctia Ross - H. consimilis Morton have some overlap in their distribution but the first is more western and the latter one more eastern in distribution. Two other similar species Hydroptila hamata Morton and H. modica Mosely have distributions that overlap but here the former is more eastern than the latter, these two are more difficult to separate. The three H. icona Mosely, H. ajax Ross and H. pecos Ross are quite alike. H. icona occurs in Mexico and south central U.S.A., H. pecos as a species also occurs in south-central U.S.A. and more northward into Colorado and Wyoming. H. ajax is more eastern and northward in its occurrence but does extend into areas where the others occur. The 10th tergites of the three are distinctive - H. ajax - is divided into lateral and mesal sclerotized "fingers," with membranous strips between them. H. icona has an emarginate 10th tergite, H. pecos is entire. The relative length of the claspers are: H. ajax - longest, H. icona - intermediate, H. pecos - shortest. However, care should be taken in determining these animals.

Text Figure 1. Hydroptila of genitalia. H. broweri, 2A lateral, 2C ventral; 10 = tenth tergite, sp = subgenital plate; cl = clasper.

Hydroptila Dalman 1819

1.	Seventh sternite with a long median process.	fig.	32		-2
-	Seventh sternite with a short median process.	fig.	33		-17
2.	10th tergite with apex divided into a pair of stout heavily sclerotized arms that are curved sharply mesad at their apex. 10th tergite not divided	fig.	34	xella Ross 1941	
_	as above				-3
3.	8th sternite with an apicomesal sclerotized projection; median process of 7th sternite usually narrowed at apex.		35	virgata Ross 19	38
-	8th sternite without apicomesal process; 7th sternite process not narrowed.				-4
4.	Claspers short and beak like; 10th tergite longer than claspers.				- 5
-	Claspers slender, long; 10th tergite shorter than claspers.				-15
5.	Apical part of aedeagus divided into three (3) processes.				-6
-	Apical part of aedeagus divided into two (2) processes.				-8
6.	Apex of aedeagus with three long filamentous processes. Claspers long, slender closely appressed on meson; loth tergite deeply cleft on meson.		36	callia Denning	1947
-	Apex of aedeagus with two long and one short fila-				_7

7.	Aedeagus, apical part, one filament straight and one bent at rt. angles; apex of short process bent.	fig.	37	modica Mosely 1937
-	Aedeagus, apical part, one filament straight, one curved gradually, the short process straight.	fig.	38	fiskei Blickle 1963
8.	Apex of aedeagus beak- shaped; inner tubular structure extrudes through a bulbous area before the apex.	fig.	39	wyomia Denning 1947
-	Apex of aedeagus not beak-shaped.			-9
9.	One rod of aedeagus bent sharply at a rt. angle at apex, other process straight.	fig.	40	hamata Morton 1905
-	Rods not bent sharply, the bend is gradual and curving.			-10
10.	Aedeagus with apical 1/4 of stout process pointed, hinged or flaplike in respect to base of process.	fig.	41	tortosa Ross 1938
-	Aedeagus without pointed hinge or flap at apex.			-11
11.	Processes of apical part of aedeagus straight or nearly so; clasper short, slightly beaked at tip; 10th tergite, lateral aspect, concave with rounded end.	fig.	42	amoena Ross 1938
-	Processes of aedeagus, apical part, curled or entwined about each other.			-12
12.	Lateral aspect: clasper slender; aedeagus: en- twined process around central rod long; 10th tergite concave.	fig.	43	ampoda Ross 1941
-	Lateral aspect: clasper narrow at apex, broad at base, apex bladelike.			-13

13. Aedeagus: one apical rod entwined around straight process, base of apical part imbricated. 10th tergite sides parallel, tip slightly emarginate, concave in lateral profile. Clasper apex black tipped, base of dorsal projection with one large seta.

fig. 44

lennoxi Blickle 1968

- Aedeagus: rods entwined about each other. Claspers dorsal-basal projection with several setae, apex more bladelike.

-14

14. Dorsally: 10th tergite flared laterally beyond middle, apical lobes rounded, excised deeply.

fig. 45

metoeca Blickle & Morse 1954

- Dorsally: 10th tergite widest before middle, lateral lobes more angular fig. 46 excised shallowly.

remita Blickle & Morse 1954

15. Apex of aedeagus with knob beyond lateral spur fig. 47 at tip.

spatulata Morton 1905

Apex of aedeagus without knob beyond lateral spur. Beneath 10th tergite a pair of long processes which curve around the tip and over the back of the tergite.

-16

16. 10th tergite unexpanded at apex; lateral projection of 9th segment 1/2 the length of 10th tergite.

fig. 48

vala Ross 1938

10th tergite with apex divided into a pair of laterally directed sharp points, lateral process of 9th segment as long as 10th tergite.

fig. 49

armata Ross 1938

17.	10th tergite bearing sclerotized hooks, curved rods, or radiating rods.			-18
-	10th tergite membranous, or membranous with sclerotized strips.			-25
18.	10th tergite apex with four radiating rods; claspers long slender and emarginate in dorsal aspect at apical 1/3.		50	<u>nicoli</u> Ross 1941
-	10th tergite with rods hooked or curved			-19
19.	10th tergite with a pair of long, closely appressed processes, apices pointed laterad, truncate and scle- rotized. Claspers long slender hooked at apex.		51	waubesiana Betten
-	10th tergite with curved rods at apex, or sharply angled downward, beak-like.			-20
20.	10th: rods sharply angled down at apex, above the angle a posterior directed spine. Claspers long curved mesally, a spine at apex.		52	maculata Banks 1904
-	10th tergite rods curved at apex.			-21
21.	10th tergite divided into a pair of lateral, slender filaments that curve under the apico-dorsal projections of the claspers. Claspers long knobbed at apex.	fig.	53	delineata Morton 1905
-	10th tergite with dorsally or ventrally curved rods. Claspers not knobbed.			-22

22.	10th tergite with long lateral sclerotized areas separated by a membranous fold; long membranous rods arise at base and curve dorsally around the tip; a large sharp lateral spur just before the dorsal bend of rods.	fig.	54	waskesia Ross 1944
-	Not as above.			-23
23.	10th tergite with dorsally curved rods, pointed and bulbous immediately before apex. Claspers short.	fig.	55	eramosa Harper 1973
-	10th tergite rods curved ventrally.			-24
24.	10th tergite divided into a pair of large rods that curl around long sinuate rods arising from base of tergite. Claspers small, truncate, short. Heavy spines along apical margin of 8th segment.	fig.	56	grandiosa Ross 1938
-	10th tergite divided into rods that curl around straight rods; claspers large, curving mesally at apex.	fig.	57	gunda Milne 1936
25.	Claspers short; either c-shaped, broad at base and curving down at apex, small blunt ovate, or beak-like.			-26
-	Claspers elongate; 10th tergite usually elongate.			-29
26.	Short stout spines on apex of 8th sternite or apico-lateral area of segment.			-27
-	No short stout spines present on apical part of 8th segment.			-28

27.	Short stout spines on apex of 8th sternite. Claspers, lateral aspect, broad base and narrow apex.	fig.	58	spinata Blickle Morse 1954	&
-	Short stout spines on apico-lateral margin of 8th segment. Claspers short, ovate.	fig.	59	dentata Ross 193	8
28.	Claspers, lateral aspect; c-shaped. 10th tergite, dorsal aspect; broad, sharp, emarginate	fig.	60	jackmanni Blickl 1963	e
-	Claspers not c-shaped; short beak-like at apex. 10th tergite with short finger-like projections at lateral corners.	fig.	61	rono Ross 1941	
29.	Aedeagus with a long pointed, lateral process near apex.				-30
-	Aedeagus without this process.				-31
30.	Claspers slender	fig.	62	arctia Ross 1938	
-	Claspers broad, slightly expanded on apical third.	fig.	63	consimilis Morto	n
31.	Very long heavy spines on apico-lateral margin of 8th tergite.				-32
-	No long spines present.				-33
32.	Aedeagus straight. 10th tergite with 2 long arms projecting dorso-poste- riorly, apex of arms	fig.	64	<u>lonchera</u> Blickle	&
_	expanded, oval. Aedeagus sharply bent at			Morse 1954	
	apex; 10th tergite small.	fig.	65	molsonae Blickle	1961
33.	Claspers, ventral aspect, with apex curved or hooked ectally so that the tips are approximately at rt. angles to main part of				
	claspers.				-34
-	Claspers: ovate, triangu- lar, straight or nearly so tips not at rt. angles.	,			-40

34.	Claspers with apex hooked. (tip bent>90°).				-35
-	Claspers with apex curved. (tip not bent)90°).				-38
35.	10th tergite with sides parallel for basal 2/3, apices diverging and tapered; a forked sclerotized band dorso-basad and ending apico-ventrad. Claspers slightly longer than 10th tergite, expanded at apical 1/5 into an ectal tooth-like projection.	- fig.	66	acadia Ross 1941	
-	10th tergite without forked sclerotized band, as above. Claspers at extreme apex acutely reflexed.				-36
36.	Aedeagus straight, apical portion divided 1/4 its length to apex. 10th with lateral tips "twisted" beak-shaped, central lobe ovate.	fig.	67	xoncla Ross 1941	30
-	Aedeagus with apical part sickle-shaped, or bent at an acute angle. Claspers converging towards tip, and approximate mesally. Tips curve ectally.	J			-37
37.	Aedeagus; apex sharply bent at rt. angles, spiral stout.	fig.	68	protera Ross 193	8
	Aedeagus; apical part sickle-shaped.	fig.	69	<u>berneri</u> Ross 193	8
38.	10th tergite diverging at apex, laterally apices acutely hooked. Claspers very long, diverging apically.	fig.	70	wakulla Denning	1947
-	10th tergite apices rounded or blunt. Claspers sinuate.				-39

39.	Aedeagus with extreme apex forked. 10th tergite lateral arms blunt at apex. Claspers with a gradual 45° curve at apex.	fig.	71	xera Ross 1938
-	Aedeagus not forked, apex acinate. 10th tergite with lateral arms rounded at apex. Claspers strongly curved, 90° at apex.	fig.	72	salmo Ross 1941
40.	Claspers with dark sclero- tized elevation on lateral margin midway between base and apex.	fig.	73	albicornis Hagen 1861
-	Claspers without such elevation.			-41
41.	Claspers gradually widening from base to apex, apices oblong, ovate, converging. Lateral arms of 10th ter- gite tapering to acute points.	fig.	74	melia Ross 1938
-	Claspers not oblong, ovate nor widening from base to apex.			-42
42.	Claspers regularily tri- angular, ventral aspect, base widest; aedeagus: tu- bular central process ex- posed at tip; subgenital plate triangular. 10th ter- gite broad, weakly tri- lobed in ventral view.		75.	decia Etneir & Way 1973
-	Clasper triangular, or straight; 10th tergite with 3 lobes or rounded at apex.	ı		-43
43.	Clasper triangular; 10th tergite 3 lobed, broad; central lobe broad flat, lateral ones ear-shaped. Aedeagus with a transparent alate structure.	fig.	76	lloganae Blickle 1961
-	Clasper straight, or nearly so.			-44

44.	10th tergite with 3 apical arms, membranous mesal arm projecting dorsad, lateral arms sclerotized expanded apically, apices diverging. Aedeagus stout, tapering to apex, no spiral process.	fig.	78	valhalla Denning	3 1947
-	10th tergite hood shaped, rounded or emarginate, sclerotized mesally and laterally, or may be membranous laterally and mesally.				-45
45.	Apical angle of clasper with sclerotized point or clasper with 5 lateral projections tipped with spines.				-46
-	Outer apical angle or clasper without sclerotized point or 5 spinose lateral projections.				-53
46.	Claspers with 5 heavy spines arising from projections, as viewed ventrally.	fig.	77	lenora Blickle & Denning 1977	ž.
-	Clasper with sclerotized point; no spine tipped projections on outer 2/5ths.	•			-47
47.	Apical part of aedeagus divided into 2 rods, basal part very long. Spiral process present.		79	denza Ross 1948	
-	Apical part of aedeagus not divided into 2 rods in addition to spiral process.				-48
48.	Aedeagus lacking a spiral process, aedeagus very long at least 1/2 the body length. 10th tergite long.		80	broweri Blickle	1963
-	Aedeagus with spiral process.	Ü			-49

49.	Spiral process small, not extending towards aedeagus tip.	fig.	81	scolops Ross 1938
-	Spiral process stout, extending towards aedeagus tip.			-50
50.	10th tergite with mesal sclerotized strap; membranous laterally	fig.	82	perdita Morton 1905
-	10th tergite sclerotized laterally.			-51
51.	Claspers 4x as long from lateral projection to tip as width of clasper at this point.	fig.	83	ajax Ross 1938
-	Claspers less than 4x as long.			-52
52.	Apex of 10th tergite rounded.	fig.	84	pecos Ross 1941
	Apex of 10th tergite emarginate.	fig.	85	icona Mosely 1937
53.	10th tergite with apex of lateral arms pointed, thorn-like mesal lobe membranous.	fig.	86	tusculum Ross 1947
-	10th tergite without acutely pointed lateral arms.			-54
54.	Claspers diverging at apex.			-55
-	Claspers converging at apex.	fig.	87	<u>latosa</u> Ross 1947
55.	Aedeagus straight.			-56
-	Aedeagus with apical part curved or apex bent at angle.			-57
56.	Aedeagus with apical part blade like. Subgenital plate triangular.	fig.	88	quinola Ross 1941
-	Aedeagus with apical part not blade like. Subgeni- tal plate forked at apex.	fig.	89	novicola Blickle & Morse 1954

57.	Apex of aedeagus gradually curved from near base to apex.			-58	
-	Apex of aedeagus bent into a right angled process.			-59	
58.	10th tergite with lateral arms upcurved; a dorsal projecting process on surface of mesal lobe. Aedeagus sickle-shaped.	fig.	90	argosa Ross 1938	
-	10th tergite lateral arms straight with membranous folds between; below 10th tergite a pair of very slender filaments. Aedea- gus with membranous area appressed to curved apical				
	part.	fig.	91	strepha Ross 1938	
59.	Aedeagus with imbricated portion below spiral process.	fig.	92	angusta Ross 1938	
-	Aedeagus without imbri- cated portion below				

Neotrichia Morton 1905

fig. 93

pullatus Denning 1947

spiral process

The members of this genus are the smallest of the Hydroptilidae, they may be 2 mm. or less in length. They are easily recognized by the presence of ocelli and a spur formula of 0-2-3.

Species of this genus are more numerous in the tropical and subtropical regions, however, 14 species are considered to occur in America north of Mexico. They appear to be quite local in their occurence, although they may be very numerous as shown by light trap collections of N. halia Denning from Maine, 8,393 specimens being taken from July 5 to August 8, 1959 from 4 towns in the northern part of the state. The most widespread species is N. okapa Ross recorded from 10 states and one province, being recorded from Maine to California and Quebec to Florida. Others as N. halia occurs across northern U.S.A. from Maine to Wyoming and N. vibrans Ross with an eastern U.S.A. distribution from Wisconsin to Maine to Florida.

Most species are distinct and readily separated, however, those similar to \underline{N} . okapa are more difficult to separate. Care in preparing these insects must be exercised since they can be overcleared quite easily.

- 1. Claspers prominent, elongate, 2x or more as long as wide
- Claspers short, hook shape, square, or curved.
- 2. Claspers fused to form a long ventral plate; apex narrow, upturned, covered fig. 94 with long setae.

minutisimell. bers) 1873

- Claspers not forming setae covered plate.
- 3. 9th segment with outer lateral process divided to form long dorsal and ventral fingers.

fig. 95 kitae Ross 19

- 9th segment with outer lateral process simple.
- 4. Claspers with dorsal hook that reaches 2/3 of its distance to apex. Aedeagus; wide tubular base, long narrow neck; spiral process encircling tube slightly over one revolution; apex cylindrical, incised at tip.

fig. 96

osmena Ross 19

- Claspers without dorsal hook
- 5. Aedeagus apex membranous; spiral process encircling structure 1/2 turn, projecting towards apex; apical part ends in 2 sclerotized hooks, side by side; an arrow shaped hook connected to internal duct. fig. 97

erstis Denni

- Aedeagus apex sclerotized.
- 6. Aedeagus with a pair of sclerotized hooks at apex.
- Aedeagus without a pair of sclerotized hooks at apex.

7.	Aedeagus apical part 1/2 length of base; hooks at tip long, slender, similar in appearance. Claspers nearly 3 x as long as wide.	fig.	98	collata Morton 1905
-	Aedeagus apical part short, 1/4 length of base; hooks at tip dissimilar, one acuminate, one hook like with broad base. At times the hooks are appressed together, at others separate.		99	halia Denning 1947
8.	Aedeagus: apical part with 2 stout black spurs near middle; base very wide; spiral stout.	fig.	100	caxima Mosely 1937
-	Aedeagus: apical part without 2 stout black spurs.			- 9
9.	From sides of 10th tergite a pair of lateral extensions; below these a pair of sclerotized, posteriorly pointed bodies. Claspers, lateral view, thick at base, tapering to apex, toothed at apical 1/3.	fig.	101	okapa Ross 1939
-	From sides of 10th tergite a pair of heavily sclero- tized long points; below these heavily sclerotized triangular bodies. Clas- pers, lateral view, base thick tapering to a flat, somewhat upturned apical portion.	fig.	102	sonora Ross 1944
10.	Aedeagus: two similarily shaped hooks at middle of apical part; spiral pro- cess stout. Claspers, qua-	*+6*	102	1
	drate, apical margin step- like.	fig.	103	falca Ross 1938

-11

- Aedeagus hooks dissimilar,

or none present.

11. Aedeagus with dissimilar sclerotized hooks; tip acuminate, membranous; spiral stout.

fig. 104 riegeli Ross 1941

- Aedeagus without hooks.

-12

12. Aedeagus: apex irregularily expanded, membranous; very long, slender spiral process. Claspers, lateral view, curved ventrad, apex hook-shape, acuminate.

fig. 105 elerobi Blickle 1961

 Aedeagus: apex flattened membranous, or flattened elliptic with long apical setae. A comb of setae or an apical projection on 8th sternite.

-13

13. Aedeagus: apex flattened, elliptic, pair of apical setae. 8th sternite with apico-mesal lobe.

fig. 106 v:

vibrans Ross 1938

- Aedeagus: apex flattened, truncate; no apical setae. 8th sternite with apicomesal comb of large setae. fig. 107

edalis Ross 1941

Ochrotrichia Mosely 1934

The genus occurs in the Nearctic and Neotropical regions from Ontario and Maine west to the Pacific coastal states and south to Peru, S.A. and in the West Indies. Although some species are found in eastern U.S.A., the greater number occur in the western and southwestern states.

The adults are from 2 to 4 mm in length, from front of head to wing tip. They have 3 ocelli and a spur formula of 0-3-4. The males usually have a simple tubular aedeagus, a spinose complicated 10th tergite and large claspers which are arranged on either side of the 10th tergite. The shape and structure of the 10th tergite and claspers are distinctive for each species and determinations are based on these structures.

Only a few species are known to have a wide distribution, namely: O. tarsalis from Ontario and Maine south to Florida and to Central America; O. stylata in the west from Washington and Montana south to Central America; O. spinosa from Minnesota and Wisconsin south to Kentucky; O. logana in Washington, Oregon, Idaho, Wyoming and Utah with O. lometa more southern in California, Utah, Colorado, Arizona and New Mexico. It is quite possible that further study will increase the known distribution of some species, an example is O. wojcickyi known originally from Maine and New Hampshire but now

known also from Ohio.

The genus has been treated recently by Flint (1972 for those in Neotropical areas of Mexico and Central America; by Denning and Blickle (1972) mainly for species of America north of Mexico. In the first paper the genus Metrichia Ross is placed as a subgenus of Ochrotrichia. The former paper included keys to species, a check list and descriptions of new species. There is a total of 45 species, descriptions of 21 new species and a discussion of the species occurring in the area. The second paper is a review of known species and description of 15 new entities. Thus 36 species are added to the large genus, 28 in Ochrotrichia. The recently described ones are included in the present key and list of North American species. In this genus the claspers and 10th tergite are usually asymmetrical.

Text Figure II. Ochrotrichia of genitalia. Lettering used for majority of species, Ochr. alsea, lA lateral, lB dorsal. Lettering used for shawnee group, Ochr. shawnee, 2A lateral, 2B dorsal. Lettering used for confusa group, Ochr. riesi, 3A lateral, 3B dorsal. Smaller letters designations given to the various processes A, B, C, D, E, F and H.

Ochrotrichia Mosely 1934

1.	10th tergite with hooked or straight sclerotized processes.		-3
-	10th tergite without hooked or straight sclerotized processes.		-2
2.	10th tergite short trian- gular, apex acuminate; claspers long, narrow (2.3 x as long as 10th ter- gite); 2 brushes of black pegs at apex.	fig. 108	xena Ross 1938
-	10th tergite rounded at apex; claspers no more than 1.6x longer than 10th tergite	fig. 109	unio Ross 1938
3.	Dorsal view: 10th tergite divided into 2 processes.		-4
-	Dorsal view: 10th tergite divided into more than 2 processes.		-5
4.	10th tergite with 2 long convoluted processes of equal length extending posteriorly.	fig. 110	provosti Blickle 1961
-	10th tergite processes un- equal; left process nar- rows apically with tip strongly twisted. (Puerto Rican species)	fig. 111	gurneyi Flint 1964
5	. 10th tergite; sclerite F coiled near apex, forming a spring-like structure.		-6
-	10th tergite; without a coiled spring-like structure at apex.		- 9

6.	10th tergite; process C
	slender, extends to apex
	of D; D short, stout; E
	with a row of small den-
	ticles on outer apical
	surface; F without a shoul-
	der beyond spiral; 2
	heavily pigmented spines fig. 112
	at base of tergite.
	3

denningi Blickle & Morse 1957

 10th tergite: C not extending to tip of D; E without denticles at apex.

-7

 10th tergite: C not angled at base; apex of D slender; apex of F narrowed beyond shoulder near spiral.

fig. 113 shawnee Ross 1938

 10th tergite: process C angled at base; apex of D stout.

-8

 10th tergite: A very broad; apex of D reaches to spiral; F with a deeply excised shoulder beyond spiral.

fig. 114 contorta Ross 1938

- 10th tergite: A narrow; apex of D removed from spiral by at least the width of the spiral; shoulder of F not deeply excised.

fig. 115 anisca Ross 1941

 10th tergite: a long conspicuous spine curving mesad at the middle of the tergite; basad a small spine directed in the opposite direction.

-10

 10th tergite: no long conspicuous spine curving mesad and no small spine curving laterad in opposite direction.

-11

10.	a small dentate projection; D curves mesad at an angle less than 90° to its base.		116	potomus Denning 1947
-	No dentate process on B basad of apex of D, D curves mesad at a 90° angle.	fig.	117	tarsalis Hagen 1861
11.	Claspers, side view, less than 2x as long as wide.			-12
-	Claspers, side view, more than 2x as long as wide; measuring the longest axis in relation to the width at mid point.			-16
12.	Claspers with an apical circular incision. 10th tergite apex tapering to a sharp point.	fig.	118	weddleae Ross 1947
-	Claspers rounded apically.			-13
13.	10th tergite with rods B and C projecting dorsad. Clasper apex with a dense brush of stout setae on mesal surface, a row of peglike spines extends from mid-ventral margin basad		119	arizonica Denning &
	on mesal surface.			Blickle 1972
-	10th tergite with one or no rods projecting dorsad.			-14
14.	Clasper with basal 1/2 square shaped, lower margin tapering to a rounded apico dorsal apex, apex with a brush of long stout setae; mesal surface covered with numerous long setae; a row of heavy spines extends basad from mid-ventral margin.)-	120	trapoiza Ross 1947
_	Clasper not tapering	TTR.	120	LIAPOIZA ROSS 1747
	dorsad.			-15

15.	Clasper: apex rounded and covered mesally with a heavy brush of stout setae row of long spines on mesal surface extending above ventral margin of clasper; 10th tergite: A long, hooked-shaped ventral projection		121	spinulata Denning & Blickle 1972
-	Clasper: 1.8 to 1.9 x as long as wide; a short spine on mesal surface. 10th tergite: A broad with a small lateral hook at apex. C with apical part down curved.	fig.	122	zioni Denning & Blickle 1972
16.	Claspers in side view approximately 6 x as long as wide; claspers parallel sided.	fig.	123	susanae Flint 1976
-	Claspers less than 6 x as long as wide, not parallel sided.			-17
17.	Claspers (side view): ventral mesal area bearing large spines or large processes tipped with stout spines.			- 18
-	Clasper ventral mesal area with a single projection bearing at most stout denticles, or a single stout spine; or there may be no projection or spur.			-20
18.	Apical narrow portion of claspers bearing a dense patch of hairs on mesal surface at apex; a strong spine on mesal surface of broad basal part.	fig.	124	<pre>quadrispina Denning & Blickle 1972</pre>
-	Clasper with no patch of hairs at apex nor strong spine on mesal surface of basal part.			-19

	10th tergite hook large, extends beyond rod B. Rods C & D slender.	fig.	125	<u>riesi</u> Ross 1944	
-	10th tergite hook small, rod B extends furthest pos- teriorly. Rods C & D thick at base, tapering to apex.	fig.	126	confusa Morton 19	905
	apex.	115.	120	confusa norcon 1.	, ,
20.	Clasper: no projection or spine on ventromesal surface.				-38
-	Clasper: projection or spine present on ventro-mesal surface.				-21
21.	Clasper: apex attenuated and bearing a very long stout spine which arises on the mesal surface. A row of short stout spines on dor-	•	127	ildria Denning & Blickle 1972	
	sal margin of clasper.			BIICKIE 1972	
-	Clasper without long, stout spine arising from mesal surface.	:			-22
22.	Claspers tapering to apex and bearing a small spine or lobe on ventral margin beyond its mid point.				-23
_	Claspers not as above.				-30
23.	Claspers without dark teeth on ventral lobe, with 9 or 10 peg-like spines on dor- sal mesal margin above lobe.	fig.	128	rothi Denning & Blickle 1972	
-	Claspers with teeth on ventral lobe, no peg-like spines on dorsal mesal margin. Apical rod of 10th				
	tergite with circular membranous area.				-24

24.	Basal spine twisted beneat 10th tergite; two long black tipped spines direc- ted posterior-dorsad from base of 10th tergite.		129	okanoganensis F	lint
-	No basal twisted spine beneath 10th tergite; no more than one spine of 10th tergite directed posteriordorsad.	e			-25
25.	One spine directed posterior-dorsad.	fig.	130	argentea Flint Blickle 1972	&
-	No spines directed posterior-dorsad.				-26
26.	10th tergite rod E shorter than D.				-27
-	10th tergite rod E longer than D. B short, heavy, bent acutely at tip.	fig.	131	logana Ross 194	1
27.	10th tergite: rod E short directed dorsad; rod B directed slightly dorsad at tip.	fig.	133	honeyi Blickle a	&
-	10th tergite: rod E not directed dorsad; B not bent acutely at tip, nor directed dorsad.	t			-28
28.	Spine beneath 10th tergite base short, straight, acuminate; rod B longer than E; D decidedly longer than E.	fig.	132	lometa Ross 194	1
-	Spine beneath 10th tergite stout at its base, curved or bent at apex.	61	252	Tometa Robb 1775	-29
29.	Spine beneath base of 10th tergite stout basally, tapering to a sharp hooked apex; rods B, D, and E approximately of equal length.	fig.	134	wojcickyi Blickl	le 1963
-	Spine beneath base of 10th tergite stout basally, curved sharply ventrad,				
	apex acute, C very long, almost equals A.	fig.	135	alsea Denning & Blickle 1972	

30.	Clasper (lateral view); large stout spine at mid point of ventral margin 4/5 of the clasper height at this point; small spine at apex of clasper about 1/4 the height of clasper apex.	fig.	136	oregona Ross 193	18
-	Spine on ventral margin 1/3 or less clasper height at this point.	3			-31
31.	Clasper: apex bird-head shaped; apical spine equal to 1/3 or more of clasper height.				-31
-	Clasper: apex not bird- head shape; apical spine not more than 1/4 clasper height.				-34
32.	Apical spine of clasper equal to 4/5th height of apical part of clasper. Clasper apex rounded "duck head" shaped; spine at mid ventral margin 1/6th the height of clasper at this point.	fig.	137	dactylophora Fli 1965	nt
-	Apical spine of clasper no more than 1/3rd height of claspers apical part; spine at mid ventral margin 1/3rd. height of clasper.	è			-33
33.	Rod C long directed dorsad; rod B slender straight; a setose protuberance on mesal part of left clas- per.	fig.	139	salaris Blickle Denning 1977	&
-	Rod C short; rod B short stout; no setose protu- berance on left clasper.	fig.	138	lucia Denning & Blickle 1972	

34	Left clasper with middle of ventral portion angulate; bearing a spine well separated from the others; clasper tapers to apical spine; spine at ventral margin 1/3 clasper height.	<u>spinosa</u> Ross 1938
-	Left clasper sinuate at middle, spine at mid-ven-tral margin no longer than 1/5 clasper height.	-35
35.	Clasper apex with a row of 4 to 6 black peg-like spines on mesal surface. fig. 141	<u>eliaga</u> Ross 1941
-	Clasper apex with one or two spines.	-36
36.	Clasper with spine at extreme apex, and a large spine at mid-ventral margin, above the mid-ventral spine there are two or three large teeth on mesal sur- fig. 142 face.	nacora Denning & Blickle 1972
-	Clasper without apical spine, mid-ventral spine present, denticles on mesal surface.	-37
37.	Clasper, decidedly sigmoid in shape. 10th tergite with a long rod projecting posterior-dorsad above rest of tergite.	<u>phenosa</u> Ross 1947
-	Clasper slightly sigmoid in shape. 10th tergite without long dorsally projecting rods; with a short rod curving dorsad and ending in	
8.	Clasper: tapering to an	arva Ross 1941
	acute apex. Clasper: with a rounded	-39
	apex.	-41

39.	Claspers: a row of short spines on dorsal margin and a distinct hump basad of the row.		145	buccata Denning & Blickle 1972
-	Claspers: a row of short spines on dorsal margin; no hump basad of the row.	o		-40
40.	10th tergite with only 4 rods; 3 rods approximately equal length; two rods curved sharply dorsad. Clasper with a row of 5 or 6 short spines on mesal surface.	r- fig.	148	mono Ross 1941
-	10th tergite with more than 4 rods, no rods curved sharply dorsad. Claspers with many peg-like spines on mesal surface.	n fig.	146	hadria Denning & Blickle 1972
41.	Clasper apex with short, apical spine; mesal surface with few spines.	fig.	147	alexanderi Denning & Blickle 1972
-	Clasper apex without apical spine; mesal surface with many spines.	1		-42
42.	Clasper: mid-mesal surface with a brush of dark spines, a linear row of long spines extending from brush to apex.	fig.	149	<u>capitana</u> Ross 1944
-	Clasper: no brush of spines on mesal surface.	5		-43
43.	Clasper: length 5 x width.	fig.	150	vertreesi Denning & Blickle 1972
-	Clasper: length 3 x width.			-44
44.	10th tergite: two apical processes entwined, a large stout rod extends from base to mid-point of tergite.			-45
-	10th tergite: apical processes not entwined, no large rod extending from base to mid-point.	fig.	151	felipe Ross 1944

45. Rt. clasper with a projection on mesal basal area.

fig. 152

tenuata Blickle & Denning 1977

 No mesal basal projection on rt. clasper.

fig. 153

stylata Ross 1938

Oxyethira Eaton 1873

As with most Hydroptilidae the distribution of the species in the genus Oxyethira reflects, for the most part, the areas wherein workers have been active. However, there does seem to be a general pattern in that the species are more numerous east of the Mississippi River and in the more northern regions of the area under consideration. The numbers of species recorded from the northern areas studied are: NH-14, ME-14, MN-13, WI-10, IL-8, NY-7, PQ-6; in the south FL-11 and GA-6. This is not to say that any locality has been covered completely, but some areas more extensively so than others. In addition one species, Oxy. araya has been taken in the Yukon, Canada and two, Oxy. obtatus and Oxy. sida, in Newfoundland. Some species, such as Oxy. pallida, are quite widespread throughout the area, and others as Oxy. aeola, Oxy. forcipita, Oxy. michiganensis and Oxy. serrata occur across northern U.S.A. and southern Canada. Oxy. dualis has been recorded from CA to NH and OR to NM but seems to be restricted in breeding habitats.

Four very similar species that may be difficult to separate from each other occur from Florida northward to Canada to California as follows: Oxy. aeola Ross 1938, Oxy. abacatica Denning 1947, Oxy. anabola Blickle 1966 and Oxy. barnstoni Harper 1976. The first occurs from Oregon to British Columbia to Minnesota, the 2nd in southeastern U.S.A., the 3rd from New Jersey to Canada and west to Minnesota, the last one is known from Quebec. In the areas where the species distribution overlaps they can be confused with each other, however, when compared carefully as to genitalic characters and structures of the other parts of the abdomen, differences between them are apparent. They are separated in the species key, see completes 17 through 19, differences not in the key are: 8th segment dorsally; aeola - deeply irregularily emarginate, lateral lobes with mesal shoulder; anabola - evenly emarginate, no mesal shoulder; lateral; aeola - lateral lobes sinuate on lower margin; anabola - lower margin straight. In barnstoni the 8th tergum is more weakly incised on the posterior margin, the 10th segment is stouter and regularily rounded (lateral view) more so than in the other species.

Oxyethira Eaton 1873

1.	8th tergite produced into a process on the apico-lateral margin.		-2
-	8th tergite not produced in a process on apico-lateral margin.		-14
2.	8th tergite with apico-lateral margins produced into long, serrate processes. Claspers elongate; emarginate apico-dorsally. fig.	154	serrata Ross 1938
-	8th tergite without serrate processes on apico-lateral margins.		-3
3.	8th tergite produced into long sclerotized rods apico-laterally; rods con- verging, approximate at apex. Aedeagus: basal part wide, narrowing to a single rod like apical part, curved at extreme apex. fig.	155	aculea Ross 1941
-	8th tergite rods not approximate at apex.		-4
4.	8th tergite rods bifurcate at apex; each fork tipped with spines. Aedeagus; central part stout for its entire length, with a hook-like process at the apex; spiral process long, encircles central part with a 3/4 turn. fig.	156	<u>araya</u> Ross 1941
-	8th tergite rods not bifurcate at apex.		-5

5. Aedeagus divided into two processes apically; one a ribbon like process arising near the middle and tapering to an acute apex. Ribbonlike part encircles the central part for at least one revolution. -6 - Aedeagus without a ribbonlike encircling structure as above. -7 6. 8th tergite apex with dorso-lateral processes curved dorsally and mesally at tip. Below aedeagus (ventral aspect) a large triangular plate. No ventral process on seventh fig. 157 sternite. ulmeri Mosley 1937 - 8th tergite divided into lateral lobes, the lower margins of each produced into long, smooth, tapering processes. Left one curved dorsad, right one ventrad. Ventral process on 7th sternite. fig. 158 arizona Ross 1948 7. 8th segment with a lateral process, bearing long seta or emarginate on apex. -8 - 8th segment without such a lateral process. -9 8. 8th segment with a long process on apico-lateral margin, this produced into a narrow apex and bearing a very long seta; seta directed dorsad and longer fig. 159 michiganensis Mosley than process. 1934 - 8th segment, ventral portion scoop shaped; dorsal part a heavily sclerotized hump; from hump sclerotized lateral arms, base of each being within 8th tergite, progressing posteriorly and

fig. 160

glasa Ross 1941

curving dorsad, apex excised to form a pair of

sharp points.

9.	8th segment with apico- lateral part tapering to a long, slender, quadrate process, bearing a set of three flat leaflets. Aedea- gus: with apex divided into three sclerotized projec- tions, one short and two long.		161	setosa Denning 1	.947
-	Aedeagus with apex not so divided				-10
10.	8th segment produced into an apico-lateral triangular lobe, heavily setose, deeply incised dorsally; dorsad and mesad to this lobe appears a long attenuated process directed slightly ventrad. Aedeagus; with two cylindrical apical lobes, one with three setae at apex, the other with one seta.		162	obtatus Denning	1947
-	8th segment with an apico- lateral dark spine, or a ventro-lateral heavily sclerotized process.				-11
11.	8th segment with a heavy spine or spines at apico-lateral margin.				-12
-	8th segment with a ventral lateral sclerotized process on margin.				-13
12.	8th segment with a single heavy spine on apico-lateral margin.	fig.	163	rivicola Blickle	. &
-	8th segment with four spines on apico-lateral margin. Clasper projecting and upturned at apex.	fig.	164	<u>coercens</u> Morton	1905

13.	8th segment with a ventro- lateral process that is heavily sclerotized and at- tenuated apically on dorsal margin, ventral margin ser- rate.	1	165	florida Denning	1947
-	8th segment produced into apico-ventral ear like lobes, ninth segment with a very long internal ventral projection which is narrow and pointed.	a fig.	166	zeronia Ross 19	41
14.	Ventral margin of 9th segment produced and bifurcate.				-15
-	Ventral margin of 9th is not produced and bifurcate				-16
15.	9th segment bifurcated aper deeply excised; sides parallel. Aedeagus spatu- late.	fig.	167	azteca Mosely 1	937
-	Aedeagus apex divided into a slender subacute process and shorter robust pro- cess.	fig.	168	janella Denning	
16.	Rods of 9th segment pro- nounced, 8th segment excised dorsally.				-17
-	Rods of 9th segment not pronounced and 8th segment not excised dorsally.				-20
17.	Rods of 9th segment extend beyond subgenital plate, apices of rods directed ventrad.				-18
-	Rods of 9th segment do not extend beyond subgenital plate, apices of rods either upcurved or straight.				-19
18.	Aedeagus lobed (4) apically; 8th tergite strongly incised.	fig.	169	anabola Blickle	1966
-	Aedeagus not lobed; 8th tergite feebly incised.	fig.	172	barnstoni Harpen	1976

19.	Rods of 9th segment straight, reaches to sub- genital plate. 8th segment lateral lobes wide, trian- gular shaped at apex.	fig.	170	aeola Ross 1938
· _	Rods of 9th segment curve slightly ventrad and then dorsally at apical part, apex acute.	fig.	171	abacatica Denning 1947
20.	Aedeagus. A single tube with enlarged tip; tip contains eversible teeth.	fig.	173	dualis Morton 1905
-	Aedeagus; with apical portion divided into two or more parts.			- 21
21.	Aedeagus with apical portion of 3 parts, two long and one short (spiral process). 9th segment with dorsal apico-lateral projections.	fig.	174	pallida Banks 1904
-	Aedeagus with apical portion of 2 parts.			-22
22.	Aedeagus with long acute main apical portion and a long, stout tooth approximately 1/2 as long as main part, arising at junction of apical portion and base.	fig.	175	verna Ross 1938
-	Aedeagus without a long, stout tooth as above.			-23
23.	Aedeagus with a long slender apical portion, expanded at tip. Spiral process small closely appressed to central part.	fig.	176	forcipita Mosely 1934
-	Aedeagus apical part stouter, spiral process no appressed to central por- tion.	t		-24

24.	Aedeagus-apical main portion blunt at apex, a v-shaped membranous apex extends back 1/3 of its length from apex; a second division as long as main portion, with an acute apex, does not encircle main portion. 9th segment with dorsal apico-lateral projections.	fig.	177	maya Denning	
-	Aedeagus with apical main part stout and a spiral process encircling it for at least one complete turn.				-25
25.	Two rows of broad stout spines on apical part of 9th sternite; claspers fused; in side view appears as a long sinuate sclerotized, rod that projects posteriorly.		178	rossi Blickle & Morse 1957	
-	No rows of broad stout spines on 9th sternite, and clasper not fused to form a sinuate rod.				-26
26.	Spiral process encircles aedeagus 1 1/2 times.				-27
-	Spiral process encircles aedeagus 2 1/2 times. Tip is expanded and membranous no processes on tip. Claspers short, pointed upcurved.		179	allagashensis Blickle 1963	
27.	Aedeagus with apex cylindrical, semi-membranous and a sharp, triangular sclerotized process placed transversely across the apex near the tip. Claspers fused to form an ovate plate, deeply incised on meson.	-	180	<u>lúmosa</u> Ross 194	8
-	Aedeagus with two sclero- tized projections at tip.				-28

28. Apex of aedeagus bulbous, two apical projections, the larger one short stout. Plate formed by claspers narrow. 9th sternite truncate on each apical margin.

fig. 181

grisea Betten 1934

- Apex of aedeagus not bulbous but expanded.

-29

29. Apex of aedeagous slightly enlarged; two projections, one round, serrate, plate like, second long acute. Plate formed by claspers wide. 9th sternite tapers to lateral acute, apical angle.

fig. 182

novasota Ross 1944

Apex of aedeagus with two fig. 183 projections finger like.

sida Blickle and Morse 1954

Oxyethira & genitalia. Oxy. lumosa, lA lateral, Text Figure III. 1C ventral; sp = subgenital plate, cl = clasper.

LITERATURE

- Betten, C. 1934. The Caddisflies or Trichoptera of New York State. N.Y. State Mus. Bull. 292, 576 pp.
- Denning, D. G. and R. L. Blickle. 1972. A review of the genus Ochrotrichia (Trichoptera, Hydroptilidae). Ann. Ent. Soc. Amer. 65: 141-151.
- Flint, O. S. 1964. The Caddisflies (Trichoptera) of Puerto Rico. Univ. Puerto Rico, Agr. Exp. Sta. Tech. paper 40, 80 pp.
- . 1970. Studies on Neotropical caddisflies, X: Leucotrichia and related genera of North and Central America. (Trichoptera, Hydroptilidae). Smithson. Contr. Zool. no. 60, 64 pp.
- . 1972. Studies on Neotropical caddisflies, XII: The genus Ochrotrichia from Mexico and Central America (Trichoptera, Hydroptilidae). Smithson. Contr. Zool. no. 118, 28 pp.
- Kingsolver, J. M. and H. H. Ross. 1961. New species of Nearctic Orthotrichia (Hydroptilidae, Trichoptera). Ill. State Acad. Sci. Trans. 54(1,2): 28-33.
- Martynov, A. B. 1934. Trichoptera annulipalpia I. Analytical tables of USSR 13: 1-343 Leningrad.
- Mosely, M. E. 1934. New exotic Hydroptilidae. Roy. Ent. Soc. Lond. Trans. 82(1): 137-163.
- . 1937. Mexican Hydroptilidae. Roy. Ent. Soc. Lond. Trans. 86(10): 151-190.
- . 1939. The Brazilian Hydroptilidae. Nov. Zool. 41:
- Ross, H. H. 1944. The Caddisflies or Trichoptera of Illinois. Ill. Nat. Hist. Surv. Bul. 23: 1-326.
- . 1948. Notes and descriptions of Nearctic Hydroptilidae (Trichoptera). Wash. Acad. Sci. Jour. 38(6): 201-206.
- . 1956. Evolution and Classification of Mountain Caddisflies. Univ. Ill. Press, Urbana, Ill.

SCENT ORGANS

- Mosely, M. E. 1919. Scent organs of the genus Hydroptila. Trans. Ent. Soc. Lond. (1919) pp. 393-397.
- Trans. Ent. Soc. Lond. (1922) pp. 54-56.

. 1924. Scent organs of the genus Hydroptila (Trichoptera). Trans. Ent. Soc. Lond. pp. 291-294.

HYDROPTILIDAE RECORDS

- Anderson, N. H. 1976. The distribution and biology of Oregon Trichoptera. Ore. Agri. Exp. Sta. Tech. Bull. 134, 152 pp. (Hydroptilidae pp. 41-47).
- Blickle, R. L. 1962. Hydroptilidae (Trichoptera) of Florida. Fla. Ent. 45: 153-155.
- _____. 1964. Hydroptilidae (Trichoptera) of Maine. Ent. News LXXV.: 159-162.
- and D. G. Denning. 1977. New species and a new genus of Hydroptilidae (Trichoptera). Kans. Ent. Soc. Jour. 50: 287-300.
- Denning, D. G. and R. L. Blickle. 1971. A new Trichoptera from the Hawaiian Islands. Pan. Pac. Ent. 47: 164.
- Etnier, D. A. 1965. An annotated list of the Trichoptera of Minnesota, with description of a new species. Ent. News 76: 141-152. (Hydroptilidae pp. 146-148).
- _____. 1968. Range extensions of Trichoptera into Minnesota, with descriptions of two new species. Ent. News 79: 188-192. (Hydroptilidae p. 191).
- . 1973. Extension of known ranges of northern Trichoptera into the southern Appalachians. Georgia Ent. Soc. Jour. 8: 272-274.
- Fischer, F. C. J. 1960-1973. Trichopterum Catalogus vol. 1-15. Nederland ent. veren. Amsterdam. (Hydroptilidae vol. 2).
- Longridge, J. L. and W. L. Hilsenhoff. 1973. Annotated list of Trichoptera (Caddisflies) in Wisconsin. Wisc. Acad. Sci. Arts and Letters LXI.: 173-183. (Hydroptilidae p. 177).
- Morse, W. J. and R. L. Blickle. 1953. A check list of Trichoptera (Caddisflies) of New Hampshire. Ent. News LXIV.: 68-102. (Hydroptilidae pp. 72-73).
- . 1957. Additions and corrections to the New Hampshire list of Trichoptera. Ent. News LXVIII.: 127-131. (Hydroptilidae pp. 128-130).
- Resh, V. H. 1975. A distributional study of the caddisflies of Kentucky. Transactions of the Kentucky Acad. of Sci. Vol. 36, Nos. 1-2, pp. 6-16.

- Robert, A. 1958. Les Trichopteres de la region du lac Monroe Parc du Mont Tremblant, Que. Ann. Soc. Ent. Que. 1958: 57-60.
- Ross, H. H. and G. J. Spencer. A preliminary list of the Trichoptera of British Columbia. Ent. Soc. B.C. Proc. 48: 43-51. (Hydroptilidae pp. 46-47).
- Roy, D. and P. P. Harper. 1975. Nouvelle mentions de trichopteres de Quebec et description of Limnephilus nimmoi sp. nov. Can. Zoo. Jour. 53: 1082-1088. (Hydroptilidae pp. 1082-1083).
- Unzicker, J. D., L. Aggus and L. O. Warren. 1970. A preliminary
 list of the Arkansas Trichoptera. J. Ga. Entom. Soc. 5: 167174.

LARVAL LITERATURE

- Hickin, N. E. 1967. Caddis larvae: Larvae of British Trichoptera. London.
- Lepneva, S. G. 1964. Trichoptera Vol. II., no. 1. Larvae and pupae of Annulipalpi. Fauna SSR. n.s. no. 88. (Translated 1970, Israel Prog. Sci.).
- ______. 1966. Trichoptera Vol. II., no. 2. Larvae and pupae of Integripalpi. Fauna SSR. n.s. no. 95. (Translated 1971, Israel Prog. Sci.).
- Nielsen, A. 1948. Postembryic development and biology of the Hydroptilidae. K. Danske Vidensk. Selskab. Skov. 5: 1-200.
- Ross, H. H. 1959. Trichoptera, In Ward and Whipple, Fresh Water Biology, T. W. Edmonson ed. Wiley, N.Y.C. pp. 1024-1049.
- Wiggins, G. B. 1977. Larvae of North American Caddisfly Genera. Univ. Toronto Press, Ont. Canada. 400 pp.

CHECK LIST

The two-letter abbreviations used by the postal services are used for states and provinces. A change in this system has been to place a period after the abbreviations of the Canadian provinces. This was deemed necessary because the same letters are used for Nebraska (NB) and New Brunswick (NB.). Also, a period is placed after the last locality listed for each species. In the cases where only one state or province is used the locality is spelled out.

Synonyms listed are those since 1944.

Abbreviations used:

Prov	inces	Stat	es (Cont.)
AB.	Alberta	ME	Maine
BC.	British Columbia	MD	Maryland
MN.	Manitoba	MA	Massachusetts
NB.	New Brunswick	ΜI	Michigan
NS.	Nova Scotia	MN	Minnesota
NF.	Newfoundland	MS	Mississippi
ON.	Ontario	MO	Missouri
PQ.	Province of Quebec	MT	Montana
SK.	Saskatchewan	NB	Nebraska
YK.	Yukon	NV	Nevada
		NH	New Hampshire
Stat	es	NJ	New Jersey
		NM	New Mexico
AL	Alabama	NY	New York
AK	Alaska	NC	North Carolina
AZ	Arizona	ND	North Dakota
AR	Arkansas	OH	Ohio
CA	California	OK	Oklahoma
CO	Colorado	OR	Oregon
CT	Connecticut	PA	Pennsylvania
DE	Delaware	RI	Rhode Island
DC	District of Columbia	SC	South Carolina
FL	Florida	SD	South Dakota
GA	Georgia	TN	Tennessee
ΗI	Hawaii	TX	Texas
ID	Idaho	UT	Utah
IL	Illinois	VT	Vermont
IN	Indiana	VA	Virginia
IA	Iowa	WA	Washington
KS	Kansas	WV	West Virginia
KY	Kentucky	WI	Wisconsin
LA	Louisiana	WY	Wyoming

CHECK LIST

Genus - Species	Original Publication	Province/State
Agraylea Curtis 1834 1941 costello Ross	Can. Ent. 73	ME,PQ.,ON.,WI.
1834 multipunctata Curtis	Lond. Edinb. phil. mag. jour. Sci.	Holarctic. NB. to BC., OR to IL, VA.
1938 saltesea Ross	Ill. natr. hist. surv. Bul. 21	CA,MT,OR.
Alisotrichia Flint 196 sp. (larva).	Smith. contr. Zool. 60 (1970)	Utah
Dibusa Ross 1939 1939 angata Ross	Wash. ent. soc. Proc. 41	AR, KY, NC, OK, TN.
Hydroptila Dalman 1819		
1941 acadia Ross	Amer. ent. soc. Trans. 67	Nova Scotia
1938 ajax Ross	Ill. natr. hist. surv. Bul. 21	IL, ID, IN, KY, MN, MT, NY, OK, OR, WI, TX, WA.
1861 albicornis Hagen	Smith. inst. misc. Coll.	AR, IL, IN, ME, MN, MO, NY, OH, OK, ON., WI.
1941 ampoda Ross	Can. Ent. 73	ME,MN,NB.,NH,PQ.
1938 amoena Ross	Ill. natr. hist. surv. Bul. 21	AR, IL, KY, MN, OK, PQ., WI.
1938 angusta Ross	Ill. natr. hist. surv. Bul. 21	IL,IN,KY,MO,NM,OH, OK,TX.
1938 arctia Ross (syn. acoma Denning 1947)	Ill. natr. hist. surv. Bul. 21	AZ,BC.,CA,HI,ID, UT.
1938 argosa Ross	Ill. natr. hist. surv. Bul. 21	CA, ID, MT, NV, OR, UT, WA.
1938 armata Ross	Ill. natr. hist. surv. Bul. 21	AR, IL, IN, KY, MI, MN, NH, OK, WI.
1941 berneri Ross	Amer. ent. soc. Trans. 67	FL,PQ.,WI.
1963 broweri Blickle	Brook. ent. soc. Bul. 58	Maine
1947 callia Denning	Brook. ent. soc. Bul. 42	CO,MI,MN,NH,NC, PQ.,WI,WY.
1905 consimilis Morton	N.Y. state mus. Bul. 86	AB., AR, AZ, BC., ID, IL, KY, ME, MI, MN, NH, NM, NY, OK, OR, TN, TX, UT, VA, WA, WI.

Genus - Species	Original Publication	Province/State
1973 decia Etnier & Way	Kans. ent. soc. Jour. 46	Tennessee
1905 delineata Morton	N.Y. state mus. Bul. 86	IN, KY, MN, NH, NY, NS., TN.
1938 dentata Ross	Ill. natr. hist. surv. Bul. 21	ME,NH,VA.
1948 denza Ross	Wash. acad. sci. Jour. 38	Mexico
1973 eramosa Harper	Can. J. Zool. 51	Ontario
1963 fiskei Blickle	Brook. ent. soc. Bul. 58	ME,NH.
1938 grandiosa Ross	Ill. natr. hist. surv. Bul. 21	AR, IL, IN, KY, MN, MO, OK, WI.
1936 gunda Milne (syn. dodgei Denning 1947)	N.A. Trichop. studies pt. 3	GA,NH,VA.
1905 hamata Morton	N.Y. state mus. Bul. 86	AZ,AR,CA,CO,ID,IL, IN,KY,ME,MI,MN, MO,NH,NM,NY,NC, OK,ON.,OR,PA,TX, UT,VA,WA,WY.
1937 icona Mosely	Roy. ent. soc. Lond. Trans. 86	AZ,CA,NM,OK,TX.
1963 jackmanni Blickle	Brook. ent. soc. Bul. 58	ME,MN,WI.
1947 latosa Ross	Amer. ent. soc. Trans. 73	Georgia
1969 lennoxi Blickle	Ent. news 70	New Hampshire
1961 lloganae Blickle	Brook. ent. soc. Bul. 55	Florida
1954 lonchera Blickle & Morse	Brook. ent. soc. Bul. 49	New Hampshire
1977 lenora Blickle & Denning	Kans. ent. soc. Jour. 50	Oregon
1904 maculata (Banks)	Ent. news 15	DC,FL,ME,NH,VA.
1938 melia Ross	Ill. natr. hist. surv. Bul. 21	Oklahoma
1954 metoeca Blickle & Morse	Brook. ent. soc. Bul. 49	DE,ME,MN,NF.,NH,
1937 modica Mosely	Roy. ent. soc. Lond. Trans. 86	AZ,OR.
1961 molsonae Blickle	Brook. ent. soc. Bul. 55	Florida
1941 nicoli Ross	Amer. ent. soc. Trans. 67	Nova Scotia
1954 novicola Blickle & Morse	Brook. ent. soc. Bul. 49	ME,MN,NH.

Genus - Species	Original Publication	Province/State
1941 pecos Ross	Amer. ent. soc. Trans. 67	AZ,CO,NM,WY.
1905 perdita Morton	N.Y. state mus. Bul. 86	AR,IL,KY,MI,MN,NH, NY,ON.,PA,WI.
1938 protera Ross	III. natr. hist. surv. Bul. 21	Oklahoma
1947 pullatus Denning	Brook. ent. soc. Bul. 42	Wyoming
1947 quinola Ross	Amer. ent. soc. Trans. 73	FL,ME,MN,NH,ON.,
1954 remita Blickle & Morse	Brook. ent. soc. Bul. 49	FL,ME,NH,NJ.
1941 rono Ross	Amer. ent. soc. Trans. 67	AZ,CA,CO,MT,NV,OR.
1941 salmo Ross	Amer. ent. soc. Trans. 67	ME,MN,NH,WI.
1938 scolops Ross	Ill. natr. hist. surv. Bul. 21	IL,MN,WI.
1905 spatulata Morton	N.Y. state mus. Bul. 86	IL, IN, KY, MI, MN, NH, NY, PQ., TN, WI.
1954 spinata Blickle & Morse	Brook. ent. soc. Bul. 49	ME,NH.
1941 strepha Ross	Amer. ent. soc. Trans. 67	ME,MN,NH,PA,WI.
1938 tortosa Ross	Ill. natr. hist. surv. Bul. 21	ME,MN,NH,VA.
1947 tusculum Ross	Amer. ent. soc. Trans. 73	Tennessee
1938 vala Ross	Ill, natr. hist. surv. Bul. 21	IL,KY,OK.
1947 valhalla Denning	Psyche 54	ME,MI,MN,NH,WI.
1938 virgata Ross	Ill. natr. hist. surv. Bul. 21	AR,DE,IL,KY,MN,NH,OK,WI.
1947 wakulla Denning	Can. Ent. 79	Florida
1944 waskesia Ross	Ill. natr. hist. surv. Bul. 23	MN,PQ.,SK.,TN.
1934 waubesiana Betten	N.Y. state mus. Bul. 292	AR,FL,IL,IN,KY,LA, MI,MN,NJ,OH,ON., SK.,WI.
1947 wyomia Denning	Brook. ent. soc. Bul. 42	ME,MI,NH,WI,WY.
1941 xella Ross	Amer. ent. soc. Trans. 67	IL,NH,TN.
1938 xera Ross	Ill. natr. hist. surv. Bul. 21	BC.,CA,ID,ME,MT, NH,OR,WY.
1941 xoncla Ross	Can. Ent. 73	DE,ME,NH,NS.,PQ.

Genus - Species	Original Publication	Province/State
Ithytrichia Eaton 1873		
1905 clavata Morton	N.Y. state mus. Bul. 86	BC.,CA,IL,ME,NH, OK,PA,PQ.
1944 mazon Ross	Ill. natr. hist. surv. Bul. 23	IL,KY.
Leucotrichia Mosely 19	934	
1944 limpia Ross	Ill. natr. hist. surv. Bul. 23	AZ,TX.
1911 pictipes (Banks)	Amer. ent. soc. Trans. 37	AZ,CA,CO,CT,ID,IL, MI,MN,MT,NV,NM, NY,OR,UT,VA,WI, WY,WV.
1944 sarita Ross	Ill. natr. hist. surv. Bul. 23	AZ,TX.
Mayatrichia Mosely 193	4	
1944 acuna Ross	Ill. natr. hist. surv. Bul. 23	TX,UT.
1937 ayama Mosely	Roy. ent. soc. Lond. Trans. 86	AB. to PQ., to FL and Mexico,MT, NB,UT.
1977 moselyi Blickle & Denning	Kans. ent. soc. Jour. 50	Utah
1944 ponta Ross	Ill. natr. hist. surv. Bul. 23	Oklahoma
Motriahia Poss 1939		
Metrichia Ross 1938 1972 arizonensis Flint	Smith. contr. Zool. 118	Arizona
1907 nigritta (Banks)	N.Y. ent. soc. Jour. 15	AZ,OK,TX.
1977 volada Blickle & Denning	Kans. ent. soc. Jour. 50	Arizona
Neotrichia Morton 1905		
1937 caxima (Mosely)	Roy. ent. soc. Lond. Trans. 86	Texas
1905 collata Morton	N.Y. state mus. Bul. 86	IL,KY,ME,NY.
1941 edalis Ross	Amer. ent. soc. Trans. 67	IL,MO,OK.
1961 elerobi Blickle	Brook. ent. soc. Bul. 55	Florida
1947 erstis Denning	Brook. ent. soc. Bul. 42	SK.,MT.
1938 falca Ross	Ill. natr. hist. surv. Bul. 21	IL,WI.
1947 halia Denning (syn. numii Ross 1948)	Brook. ent. soc. Bul. 42	AZ,CA,CO,ME,MT,NY, WI,WY.

Genus - Species	Original Publication	Province/State
1941 kitae Ross	Amer. ent. soc. Trans. 67	Missouri
1873 minutisimella (Chambers)	Can. Ent. 5	AR,FL,IL,IN,KY,MO, OK.
1939 okapa Ross	Ann. ent. soc. Amer. 32	CA,FL,IL,KY,ME,NH, OH,OK,OR,PA,PQ., WI.
1944 osmena Ross (syn. panneus Den- ning 1947)	Ill. natr. hist. surv. Bul. 43	UT,WY.
1941 riegeli Ross	Amer. ent. soc. Trans. 67	IL,KY.
1944 sonora Ross	Ill. natr. hist. surv. Bul. 23	Texas
1938 vibrans Ross	Ill. natr. hist. surv. Bul. 21	AR,FL,ME,NH,WI.
Ochrotrichia Mosely 19 1972 alexanderi Den-		California
ning & Blickle		
1972 alsea Denning & Blickle	Ann. ent. soc. Amer. 65	Oregon
1941 anisca (Ross)	Amer. ent. soc. Trans. 67	AR, IL, KY, OK.
1972 argentea Flint & Blickle	Ann. ent. soc. Amer. 65	AZ,NM
1972 arizonica Den- ning & Blickle	Ann. ent. soc. Amer. 65	AZ,CA,UT.
1941 arva (Ross)	Amer. ent. soc. Trans. 67	Tennessee
1972 buccata Den- ning & Blickle	Ann. ent. soc. Amer. 65	CA, ID.
1944 capitana Ross	Ill. natr. hist. surv. Bul. 23	Texas
1905 confusa (Morton)	N.Y. state mus. Bul.86	KY,NY,TN.
1941 contorta (Ross)	Amer. ent. soc. Trans. 67	AR,MO.
1965 dactylophora Flint	Proc. ent. soc. Wash. 67	AZ,NM.
1957 denningi Blickle & Morse	Brook. ent. soc. Bul. 52	ME, NH, WV.
1941 eligia (Ross)	Amer. ent. soc. Trans. 67	IL,TN.
1944 felipe Ross	Ill. natr. hist. surv. Bul. 23	Texas
1972 hadria Denning & Blickle	Ann. ent. soc. Amer. 65	California

Genus - Species	Original Publication	Province/State
1977 honeyi Blickle & Denning	Kans. ent. soc. Jour. 50	California
1972 ildria Denning & Blickle	Ann. ent. soc. Amer. 65	AZ,UT.
1941 logana (Ross)	Amer. ent. soc. Trans. 67	AZ,CA,CO,ID,OR,UT, WY.
1941 lometa (Ross)	Amer. ent. soc. Trans. 67	AZ,CA,CO,NV,NM,UT.
1972 lucia Denning & Blickle	Ann. ent. soc. Amer. 65	CA,OR.
1941 mono (Ross)	Amer. ent. soc. Trans. 67	California
1972 nacora Denning & Blickle	Ann. ent. soc. Amer. 65	CA,OR.
1965 okanaganesis Flint	Proc. ent. soc. Wash. 67	OR, WA.
1938 oregona (Ross)	Ill. natr. hist. surv. Bul. 21	CO,ID,MT,OR,WA.
1947 phenosa Ross	Amer. ent. soc. Trans. 73	CA,OR.
1947 potomus Denning	Brook. ent. soc. Bul. 42	MT,OK,UT,WY.
1961 provosti Blickle	Brook. ent. soc. Bul. 55	Florida
1972 quadrispina Den- ning & Blickle	Ann. ent. soc. Amer. 65	AZ,UT.
1944 riesi Ross	Ill. natr. hist. surv. Bul. 23	Illinois
1972 rothi Denning & Blickle	Ann. ent. soc. Amer. 65	Arizona
1977 salaris Blickle & Denning	Kans. ent. soc. Jour. 50	CA,OR.
1938 shawnee (Ross)	Ill. natr. hist. surv. Bul. 21	IL,KY,NY.
1938 spinosa (Ross)	Ill. natr. hist. surv. Bul. 21	IL,KY,MN,OK,WI.
1972 spinulata Den- ning & Blickle	Ann. ent. soc. Amer. 65	AZ,NM.
1938 stylata (Ross)	Ill. natr. hist. surv. Bul. 21	AZ,CA,CO,ID,MT,OK, OR,SD,WA,WY,Cen- tral America.
1976 susanae Flint	Ann. ent. soc. Amer. 69	Colorado
1977 tenuata Blickle & Denning	Kans. ent. soc. Jour. 50	CA,OR.

Genus - Species	Original Publication	Province/State
1861 tarsalis (Hagen)	Smith, misc. Coll.	AR,FL,IL,IN,NY,MN, MO,OK,ON.,WI,TX, VA.
1947 trapoiza Ross	Amer. ent. soc. Trans. 73	CA,CO,UT,WA.
1941 unio (Ross)	Amer. ent. soc. Trans. 67	IL,KY.
1972 vertreesi Den- ning & Blickle	Ann. ent. soc. Amer. 65	CA,OR.
1944 weddleae Ross	Ill. natr. hist. surv. Bul. 23	AR,OK.
1963 wojcickyi Blickle	Brook. ent. soc. Bul. 58	ME,MN,NH,OH.
1938 xena (Ross)	Ill. natr. hist. surv. Bul. 21	IL,KY.
1972 zioni Denning & Blickle	Ann. ent. soc. Amer. 65	Utah
Orthotrichia Eaton 187 1873 aegerfasciella (Chambers) (syn. americana Banks 1904)	3 Can. ent. 5	AR,CT,FL,IL,IN,KY, LA,ME,MD,MN,NH, NY,NJ,TX,VA,WI.
1961 baldufi King- solver & Ross	Ill. state acad. Sci.	FL,ME,MN,NH,WI.
1905 cristata Morton	N.Y. state mus. Bul. 86	BC.,DE,FL,IL,IN, KY,ME,MI,MT,NH, OK,PQ.,TN,TX,WI.
1961 curta Kingsolver & Ross	Ill. state acad. Sci.	Florida
1961 dentata King- solver & Ross	Ill. state acad. Sci.	Florida
1948 instabilis Den- ning	Ann. ent. soc. Amer. 41	FL,NH.
Oxyethira Eaton 1873 1947 abacatica Den- ning	Can. ent. 79	FL,GA.
1941 aculea Ross	Amer. ent. soc. Trans. 67	AZ,NM,OK,TX.
1938 aeola Ross	Ill. natr. hist. surv. Bul. 21	AB.,BC.,MN,MT,OR, SK.,WA.
1963 allagashensis Blickle	Brook. ent. soc. Bul. 58	ME,NJ.
1966 anabola Blickle	Ent. news 67	ME,MN,NH,NJ,ON.,

Genus - Species	Original Publication	Province/State
1941 araya Ross	Can. ent. 73	ME,MN,NB.,NS.,WI, YT.
1948 arizona Ross	Wash. acad. sci. Jour. 38	Arizona
1937 azteca (Mosely)	Roy. ent. soc. Lond. Trans. 86	S.W.U.S.A.
1976 barnstoni Harper	Ann. ent. soc. Que. 21	Quebec
1905 coercens Morton	N.Y. state mus. Bul. 86	IL, IN, ME, MN, MT, NH, NY, OK, PQ., WI.
1905 dualis Morton	N.Y. state mus. Bul. 86	AR,CA,IL,MO,MT,NH, NM,NY,OR,TX,VA.
1947 florida Denning	Can. ent. 79	Florida
1934 forcipata Mosely	Roy. ent. soc. Lond. Trans. 82	IL,ME,MI,MN,NH,NY, ON.,PQ.,VA,WI.
1941 glasa (Ross)	Amer. ent. soc. Trans. 67	FL,GA,LA,OK.
1934 grisea Betten	N.Y. state mus. Bul. 292	IL, IN, ME, NH, NJ, NY.
1948 janella Denning (syn. neglecta Flint 1964)	Ann. ent. soc. Amer. 41	FL,LA,Central America,Antilles
1948 lumosa Ross	Wash. acad. soc. Jour. 38	Florida .
1947 maya Denning	Can. ent. 79	FL,GA,HI.
1934 michiganensis Mosely (syn. sodalis Ross & Spencer 1948)	Roy. ent. soc. Lond. Trans. 82	BC.,GA,ME,MN,NH, NY,WI.
1944 novasota Ross	Ill. natr. hist. surv. Bul. 23	FL,TX.
1947 obtatus Denning	Psyche 54	DE,ME,MN,NF.,NH, PQ.,WI.
1904 pallida (Banks) (syn. cibola Denning 1947)	Wash. ent. soc. Proc. 6	AL,AZ,DC,FL,GA,IL, KY,MD,ME,MN,NB, NH,NY,OK,VA,WI, WY.
1954 rivicola Blickle & Morse	Brook. ent. soc. Bul. 49	ME,MN,NH,TN,WI.
1957 rossi Blickle & Morse (syn. berneri Etnier 1965)	Brook. ent. soc. Bul. 52	ME,MN,NH,WI.
1938 serrata Ross	Ill. natr. hist. surv. Bul. 21	AB.,BC.,ID,IL,ME, MI,MN,NH,NY,PQ., WI,WY.
1947 setosa Denning	Can. ent. 79	FL,GA.

Genus - Species	Original Publication	Province/State
1954 sida Blickle & Morse	Brook. ent. soc. Bul. 49	ME,MN,NF.,NH,PQ., WI.
1957 ulmeri Mosely	Roy. ent. soc. Lond. Trans. 86	Texas
1938 verna Ross	Ill. natr. hist. surv. Bul. 21	FL, IL, LA, NB., NH.
1941 zeronia Ross (syn. walteri Den- ning 1947)	Can. ent. 73	FL,GA,IL,LA,ME,MI, MN,NH,NS.,NJ,TN, WI.
Paleagapetus Ulmer 191	2	
1938 celsus Ross	Ill. natr. hist. surv. Bul. 21	NH, NC, OK, PA, PQ., TN.
1951 guppyi Schmid	Inst. roy. sci. natr. Belgique Bul. 27	BC.,OR.
1936 nearcticus Banks	Arb. morph. tax. ent. Berlin: Dahlem 3	CA,OR,WA.
Dischile Blickle C Don	ning 1077	
Rioptila Blickle & Den 1977 arizonensis Blickle & Denning	Kan. ent. soc. Jour. 50	AZ,UT.
Stactobiella Martynov	1924	
1938 brustia (Ross)	Ill. natr. hist. surv. Bul. 21	AZ,OR,UT,WY.
1938 delira (Ross)	Ill. natr. hist. surv. Bul. 21	CA, ID, IL, KY, NH, OK, OR, TN, WI, WY.
1977 martynovi Blickle & Denning	Kans. ent. soc. Jour. 50	Tennessee
1938 palmata (Ross)	Ill. natr. hist. surv. Bul. 21	AB., IL, KY, ME, NH, OK, OR, SD, TN, WI.
Zumatrichia Mosely 193	4	
1944 notosa (Ross)	Ill. natr. hist. surv.	AZ,MT.

Bul. 23

Plate I

Agraylea saltesea	fig. 1 process on 7th sternite, la ventral.
Agraylea multipunctata	fig. 2 process on 7th sternite, 2a ventral.
Agraylea costello	fig. 3 process on 7th sternite, 3a ventral.
Dibusa angata	fig. 4a lateral, 4b dorsal.
Ithytrichia clavata	fig. 5c ventral, 5ae aedeagus.
Ithytrichia mazon	fig. 6c ventral.
Zumatrichia notosa	fig. 7a lateral.
Leucotrichia limpia	fig. 8a lateral.
Leucotrichia sarita	fig. 9a lateral.
Leucotrichia pictipes	fig. 10a lateral.
Mayatrichia ayama	fig. 11a lateral, 11ae aedeagus.

Plate II

introduction points points	Mayatrichia po	onta :	fig.	12a	lateral,	12ae	aedeagus.
----------------------------	----------------	--------	------	-----	----------	------	-----------

Mayatrichia acuna fig. 13a lateral.

Mayatrichia moselyi fig. 14a lateral, 14c ventral.

Metrichia nigritta fig. 15a lateral.

Metrichia arizonensis fig. 16a lateral.

Metrichia volada fig. 17a lateral, 17b dorsal.

Orthotrichia aegerfasciella fig. 18c ventral.

Orthotrichia cristata fig. 19c ventral.

Orthotrichia curta fig. 20c ventral.

Orthotrichia dentata fig. 21c ventral.

Orthotrichia instabilis fig. 22c ventral.

Orthotrichia baldufi fig. 23c ventral.

Plate III

Paleagapetus celsus fig. 24a lateral, 24c ventral.

Paleagapetus guppyi fig. 25a lateral, 25c ventral.

Paleagapetus nearcticus fig. 26a lateral.

Rioptila arizonensis fig. 27a lateral, 27b dorsal, 27ant

antenna.

Stactobiella brustia fig. 28a lateral, 28c ventral.

Stactobiella delira fig. 29c ventral.

Stactobiella palmata fig. 31c ventral.

Stactobiella martynovi fig. 30c ventral.

Plate IV

7th sternite process	long	fig.	32			
7th sternite process	short	fig.	33			
Hydroptila xella		fig.	34a	lateral,	34ae	aedeagus.
Hydroptila virgata		fig.		lateral, t 7 stern		aedeagus,
Hydroptila callia		fig.	36a	lateral,	36ae	aedeagus.
Hydroptila modica		fig.	37a	lateral,	37ae	aedeagus.
Hydroptila fiskei		fig.	38a	lateral,	38ae	aedeagus.
Hydroptila wyomia		fig.	39a	lateral,	39ae	aedeagus.
Hydroptila hamata		fig.	40a	e aedeagu:	S •	
Hydroptila tortosa		fig.	41a	lateral,	41ae	aedeagus.
Hydroptila amoena		fig.	42a	lateral,	42ae	aedeagus.
Hydroptila ampoda		fig.	43a	lateral,	43ae	aedeagus.

Plate V

<u>Hydroptila</u> <u>lennoxi</u>	fig. 44a lateral, 44ae aedeagus.
Hydroptila metoeca	fig. 45a lateral, 45b dorsal, 45ae aedeagus.
Hydroptila remita	fig. 46a lateral, 46b dorsal, 46ae aedeagus.
Hydroptila spatulata	fig. 47a lateral, 47ae aedeagus.
Hydroptila vala	fig. 48a lateral, 48ae aedeagus.
Hydroptila armata	fig. 49a lateral, 49ae aedeagus.
Hydroptila nicoli	fig. 50b dorsal.
Hydroptila waubesiana	fig. 51b dorsal.
Hydroptila maculata	fig. 52a lateral.
Hydroptila delineata	fig. 53b dorsal.

Plate VI

fig. 54a lateral, 54b dorsal.
fig. 55a lateral, 55ae aedeagus.
fig. 56a lateral.
fig. 57a lateral.
fig. 58a lateral.
fig. 59a lateral.
fig. 60a lateral.
fig. 61a lateral, 61c ventral.
fig. 62a lateral, 62ae aedeagus.
fig. 63c ventral, 63ae aedeagus.
fig. 64b dorsal, 64ae aedeagus.

Hydroptila molsonae

fig. 65a lateral, 65c ventral.

Plate VII

Hydroptila acadia	fig. 66a lateral, 66b dorsal, 66ae aedeagus.
Hydroptila xoncla	fig. 67b dorsal, 67ae aedeagus.
Hydroptila protera	fig. 68a lateral, 68ae aedeagus.
<u>Hydroptila</u> <u>berneri</u>	fig. 69a lateral, 69ae aedeagus.
Hydroptila wakulla	fig. 70c ventral.
Hydroptila xera	fig. 71a lateral, 71ae aedeagus.
Hydroptila salmo	fig. 72b dorsal, 72a aedeagus.
Hydroptila albicornis	fig. 73a lateral, 73ae aedeagus.
Hydroptila melia	fig. 74a lateral, 74c ventral.
Hydroptila decia	fig. 75c ventral, 75ae aedeagus.
Hydroptila lloganae	fig. 76b dorsal, 76ae aedeagus.
Hydroptila lenora	fig. 77c ventral, 77b dorsal.

Plate VIII

Hydroptila valhalla fig. 78a lateral, 78b dorsal, 78ae aedeagus.

Hydroptila denza fig. 79c ventral, 79ae aedeagus.

Hydroptila broweri fig. 80a lateral, 80c ventral, 80ae aedeagus.

Hydroptila scolops fig. 8lae aedeagus.

Hydroptila perdita fig. 82b dorsal, 82ae aedeagus.

Hydroptila ajax fig. 83a lateral, 83ae aedeagus.

Hydroptila pecos fig. 84a lateral, 84b dorsal.

Hydroptila icona fig. 85c ventral.

Hydroptila tusculum fig. 86a lateral.

Plate IX

<u>Hydroptila</u> <u>latosa</u>	fig.	87c ventral,	87ae	aedeagus.
Hydroptila quinola	fig.	88c ventral,	88ae	aedeagus.
Hydroptila novicola	fig.	89c ventral.	89ae	aedeagus.
Hydroptila argosa	fig.	90a lateral,	90ae	aedeagus.
Hydroptila strepha	fig.	91a lateral,	91ae	aedeagus.
Hydroptila angusta	fig.	92a lateral,	92ae	aedeagus.
Hydroptila pullatus	fig.	93c ventral,	93ae	aedeagus.

Plate X

Neotrichia minutisimella	fig.	94a	lateral,	94c	ventral.
--------------------------	------	-----	----------	-----	----------

Neotrichia kitae fig. 95a lateral.

Neotrichia osmena fig. 96b dorsal, 96c ventral.

Neotrichia ersitis fig. 97a lateral, 97ae aedeagus.

Neotrichia collata fig. 98c ventral, 98ae aedeagus.

Neotrichia halia fig. 99ae aedeagus.

Neotrichia caxima fig. 100ae aedeagus.

Neotrichia okapa fig. 101a lateral.

Plate XI

Neotrichia sonora	fig.	102ъ	dorsal.		
Neotrichia falca	fig.	103c	ventral,	103ae	aedeagus.
Neotrichia riegeli	fig.	104c	ventral,	104ae	aedeagus.
Neotrichia elerobi	fig.	105a	lateral.		
Neotrichia vibrans	fig.	106c	ventral,	106ae	aedeagus.
Neotrichia edalis	fig.	107c	ventral,	107ae	aedeagus.

Plate XII

Ochrotrichia xena	fig.	108a	left	lateral,	108ъ	dorsal.
Ochrotrichia unio	fig.	109a	left	lateral,	109Ъ	dorsal.
Ochrotrichia provosti	fig.	110ь	dorsa	al.		
Ochrotrichia gurneyi	fig.	111b	dors	al.		
Ochrotrichia denningi	fig.	112b	dors	al.		
Ochrotrichia shawnee	fig.	113a	left	lateral,	113Ъ	dorsal.
Ochrotrichia contorta	fig.	114b	dors	al.		
Ochrotrichia anisca	fig.	115b	dors	a1.		
Ochrotrichia potomus	fig.	116b	dors	al.		
Ochrotrichia tarsalis	fig.	117b	dors	al.		

Ochrotrichia weddleae

Ochrotirchia arizonica

fig. 118a left lateral, 118b dorsal.

fig. 119a Rt. lateral, 119b dorsal.

Plate XIII

<u>Ochrotrichia</u>	trapoiza	fig.	120a	left lateral.
<u>Ochrotrichia</u>	spinulata	fig.	121a	left lateral, 121b dorsal.
<u>Ochrotrichia</u>	zioni	fig.	122a	left lateral, 122b dorsal.
<u>Ochrotrichia</u>	susanae	fig.	123a	Rt. lateral, 123b dorsal.
Ochrotrichia	quadrispina	fig.	124a	Rt. lateral, 124b dorsal.
<u>Ochrotrichia</u>	riesi	fig.	125a	left lateral, 125b dorsal.
Ochrotrichia	confusa	fig.	126a	left lateral.
Ochrotrichia	ildria	fig.	127a	Rt. lateral, 127b dorsal.

Plate XIV

Ochrotrichia rothi	fig. 128a Rt. lateral, 128b dorsal.
Ochrotrichia okanaganensis	fig. 129a left lateral, 129b 10th tergite.
Ochrotrichia argentea	fig. 130a left lateral, 130b dorsal.
Ochrotrichia logana	fig. 131a left lateral, 131b dorsal.
Ochrotrichia honeyi	fig. 133a Rt. lateral, 133b dorsal.
Ochrotrichia lometa	fig. 132a left lateral, 132b dorsal.
Ochrotrichia wojcickyi	fig. 134a Rt. lateral, 134b dorsal.

Plate XV

<u>Ochrotrichia</u>	alsea	fig.	135a Rt. lateral, 135b dorsal.
<u>Ochrotrichia</u>	oregona	fig.	136a left lateral, 136d 10th tergite lateral.
<u>Ochrotrichia</u>	dactylophora	fig.	137a left lateral, 137b dorsal.
<u>Ochrotrichia</u>	salaris	fig.	139a Rt. lateral, 139b dorsal.
<u>Ochrotrichia</u>	lucia	fig.	138a Rt. lateral, 138b dorsal.
<u>Ochrotrichia</u>	spinosa	fig.	140a left lateral, 140d 10th tergit lateral.
<u>Ochrotrichia</u>	eliaga	fig.	141a left lateral.
<u>Ochrotrichia</u>	nacora	fig.	142a Rt. lateral, 142b dorsal.
Ochrotrichia	phenosa	fig.	143a left lateral.

Plate XVI

Ochrotrichia ar	rva f:	_	144a left lateral, 144b claspers ventral.
Ochrotrichia bu	iccata f	ig.	145a Rt. lateral, 145b dorsal.
Ochrotrichia ha	adria f	ig.	146a left lateral, 146b dorsal.
Ochrotrichia al	lexanderi f	ig.	147a Rt. lateral, 147b dorsal.
Ochrotrichia mo	ono f	ig.	148a left lateral, 148b dorsal.
Ochrotrichia ca	apitana f	ig.	149a left lateral, 149b dorsal.

Plate XVII

Ochrotrichia vertreesi fig. 150a left lateral, 150b dorsal.

Ochrotrichia felipe fig. 151a 1eft 1ateral, 151b dorsal.

Ochrotrichia tenuata fig. 152a Rt. lateral, 152b dorsal.

Ochrotrichia stylata fig. 153b dorsal.

Plate XVIII

Oxyethira serrata fig. 154a lateral, 154ae aede

Oxyethira aculea fig. 155a lateral, 155ae aedeagus.

Oxyethira araya fig. 156a lateral, 156ae aedeagus.

Oxyethira ulmeri fig. 157a lateral.

Oxyethira arizona fig. 158a lateral, 158ae aedeagus.

Oxyethira michiganensis fig. 159a lateral.

Oxyethira glasa fig. 160a lateral.

Oxyethira setosa fig. 161a lateral, 161ae aedeagus.

Plate XIX

<u>Oxyethira</u>	obtatus	fig.	162a	lateral,	162ae	aedeagus.

Oxyethira rivicola fig. 163a lateral.

Oxyethira coercens fig. 164a lateral.

Oxyethira florida fig. 165a lateral, 165ae aedeagus.

Oxyethira zeronia fig. 166a lateral.

Oxyethira azteca fig. 167a lateral, 167ae aedeagus, plus

internal structures.

Oxyethira janella fig. 168a lateral.

Oxyethira anabola fig. 169a lateral, 169ae aedeagus.

Oxyethira aeola fig. 170a lateral, 170ae aedeagus.

Oxyethira abacatica fig. 171a lateral, 171ae aedeagus.

Plate XX

Oxyethira barnstoni	fig. 172a lateral, 172ae aedeagus.
Oxyethira dualis	fig. 173a lateral, 173ae aedeagus.
Oxyethira pallida	fig. 174ae aedeagus.
Oxyethira verna	fig. 175a lateral, 175ae aedeagus.
Oxyethira forcipata	fig. 176a lateral, 176ae aedeagus.
Oxyethira maya	fig. 177a lateral, 177ae aedeagus.
Oxyethira rossi	fig. 178a lateral.
Oxyethira allagashensis	fig. 179a lateral, 179ae aedeagus.

Plate XXI

Oxyethira lumosa	fig.	180a	lateral,	180c	ventral.
------------------	------	------	----------	------	----------

AUG 1 3 2004

BioSci 630.72 N532 no.501-516

how to have a first of

1

