DS1

3 heures

- Tout résultat ou raisonnement doit être clairement justifié, sauf mention du contraire.
- La qualité de la rédaction sera prise en compte dans l'évaluation.
- La présentation de la copie sera prise en compte dans l'évaluation :
 - ⊳ | encadrez les résultats principaux;
 - > soulignez les résultats et arguments intermédiaires importants;
 - *⊳* soignez votre écriture ;
 - > maintenez une marge dans vos copies, aérez votre présentation;
 - ⊳ enfin, numérotez vos copies (et non vos pages).
- Les documents, calculatrices et autres appareils électroniques sont interdits.
- Pour répondre à une question, vous pouvez admettre des résultats issus des questions précédentes, en le signalant.
- Si vous constatez ce qui vous semble être une erreur d'énoncé, signalez-le sur votre copie en expliquant les initiatives que vous avez été amené à prendre.
- Ne rendez pas le sujet avec vos copies.

DS1 1/5

Autour de la racine carrée

Objectifs du problème Dans ce sujet, on étudi

Dans ce sujet, on étudie différentes propriétés de la fonction racine carrée. On se concentre en particulier sur certaines questions d'irrationalité.

Rappel

On pourra utiliser l'irrationalité $\sqrt{2}$, qui a été montrée en cours.

Les parties de ce problème sont indépendantes les unes des autres.

Partie I – Pour commencer

1. Écrire le nombre

$$1 - \frac{1}{1 - \frac{1}{1 - \frac{1}{\sqrt{2}}}}$$

sous la forme $a + b\sqrt{2}$, avec $a, b \in \mathbb{Z}$.

2. Écrire le nombre

$$\frac{1}{\sqrt{2} - \sqrt{3} + \sqrt{5}}$$

sans racine au dénominateur.

Partie II – Pour continuer

3. Montrer que

$$\forall x, y \in \mathbb{R}_+, \quad x + y = \sqrt{xy} \implies \begin{cases} x = 0 \\ y = 0. \end{cases}$$

4. Soit $n \in \mathbb{N}^*$. Montrer que

$$\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \dots + \frac{1}{\sqrt{n} + \sqrt{n+1}} = \sqrt{n+1} - 1.$$

Partie III – Premières irrationalités

5. Transferts de rationalité et d'irrationalité.

Soient $x, y \in \mathbb{R}$.

(a) Montrer que

$$\begin{cases} x \in \mathbb{Q} \\ y \in \mathbb{Q} \end{cases} \implies x + y \in \mathbb{Q}.$$

(b) L'assertion

$$\begin{cases} x \notin \mathbb{Q} \\ y \notin \mathbb{Q} \end{cases} \implies x + y \notin \mathbb{Q}$$

est-elle vraie?

Si elle est vraie, montrez-la; sinon, donnez un contre-exemple.

(c) L'assertion

$$\left. \begin{array}{l} x \in \mathbb{Q} \\ y \notin \mathbb{Q} \end{array} \right\} \implies x + y \notin \mathbb{Q}$$

est-elle vraie?

Si elle est vraie, montrez-la; sinon, donnez un contre-exemple.

6. Exemples.

- (a) Montrer que $\sqrt{6} \notin \mathbb{Q}$.
- (b) Montrer que $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$.
- (c) Montrer que

$$\frac{1}{\sqrt{2}+\sqrt{3}}\notin\mathbb{Q}.$$

Partie IV – Monotonies

Soit I un intervalle de \mathbb{R} .

On rappelle qu'une fonction $f: I \longrightarrow \mathbb{R}$ est dite strictement croissante ssi

$$\forall x, y \in I, \quad x < y \implies f(x) < f(y).$$

7. Une question de cours.

On considère la fonction

$$f: \left\{ \begin{array}{c} \mathbb{R}_+ \longrightarrow \mathbb{R} \\ x \longmapsto \sqrt{x}. \end{array} \right.$$

Montrer, sans utiliser la dérivation, que f est strictement croissante.

8. On considère la fonction

$$g: \left\{ \begin{array}{ll} [1, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto x - \sqrt{x}. \end{array} \right.$$

Montrer, sans utiliser la dérivation, que g est strictement croissante.

Partie V – Inégalités

Résultat admis

On admet que la fonction carré est strictement croissante sur \mathbb{R}_+ .

9. Entier le plus proche de $\sqrt{43}$.

Comme d'habitude, vos affirmations devront être justifiées.

(a) Déterminer un entier $n \in \mathbb{N}$ tel que

$$n < \sqrt{43} < n + 1.$$

- (b) Déterminer l'entier le plus proche de $\sqrt{43}$.
- 10. Montrer que

$$\forall x, y > 0, \quad \sqrt{y} + \frac{x - y}{2\sqrt{y}} \geqslant \sqrt{x}.$$

11. Concavités.

(b) Montrer que

$$\forall x, y \in \mathbb{R}_+, \ \forall \lambda \in [0, 1], \ \lambda \sqrt{x} + (1 - \lambda)\sqrt{y} \leqslant \sqrt{\lambda x + (1 - \lambda) y}.$$

Partie VI – Racine carrée ensembliste

Définition et notation

Pour toute partie $A \subset \mathbb{R}_+$, on appelle racine carrée de A, et on note \sqrt{A} , la partie de \mathbb{R}_+ définie par

$$\sqrt{A} := \left\{ x \in \mathbb{R}_+ \mid x^2 \in A \right\}.$$

12. Croissance.

Soient $A, B \subset \mathbb{R}_+$. Montrer que

$$A \subset B \implies \sqrt{A} \subset \sqrt{B}$$
.

13. Injectivité.

Soient $A, B \subset \mathbb{R}_+$. Montrer que

$$A \neq B \implies \sqrt{A} \neq \sqrt{B}$$
.

14.	Com	patibilité	à	l'union.

Soit I un ensemble non vide et soit $(A_i)_{i\in I}$ une famille de parties de \mathbb{R}_+ . Montrer que

$$\sqrt{\bigcup_{i\in I} A_i} = \bigcup_{i\in I} \sqrt{A_i}.$$

15. Exemple de point fixe.

Déterminer, sans justification, une partie $A \subset \mathbb{R}_+$ telle que $\sqrt{A} = A$.

Partie VII – Secondes irrationalités

16. Soient $n, m \in \mathbb{N}$. Montrer que

$$\left. \begin{array}{c} \sqrt{n} \notin \mathbb{Q} \\ \sqrt{m} \notin \mathbb{Q} \end{array} \right\} \quad \Longrightarrow \quad \sqrt{n} + \sqrt{m} \notin \mathbb{Q}.$$

17. Montrer que $\sqrt{2} + \sqrt{3} + \sqrt{5}$ est irrationnel.

On pourra admettre que $\sqrt{5} \notin \mathbb{Q}$.

FIN DU SUJET.

