David_Riser_DataChallenge1

February 20, 2019

1 Data Challenge 1: David Riser

Our first data challenge asks us to predict employee turnover, decide the main factors which drive it, and offer advice about how to improve employee retention.

1.1 Table of Contents:

- 1. Problem Statement and Objectives
 - 1.1 Basic problem statement
 - 1.2 Metrics for success
- 2. Loading and Cleaning
 - 2.1 Loading the data with Pandas
 - 2.2 Outliers and NaN values
- 3. Feature Engineering
 - 3.1 Basic compensation features
 - 3.2 Employee lifetime features
- 4. Visual Exploration
 - 4.1 Correlation between variables
- 5. Modeling
 - 5.1 Scaling and transforming
 - 5.2 Logistic regression model
 - 5.3 Performance analysis
- 6. Interpretation of Model
 - 6.1 Attrition predictors
 - 6.2 Actionable steps to reduce attration

1.2 1. Problem Statement and Objectives

1.2.1 1.1 Basic Problem Statement

Employee attrition (an employee quits) is expensive for the company who loses the employee, often costing them over \$100K. For this data challenge we've been asked to predict which employees are at risk of quitting, and provide some actionable insights on how to improve the situation. We've also been asked which factors (features) are the best predictors of employee attrition.

1.2.2 Data

Several companies have provided HR data on employee attrition (24,702 employee records), we will explore the structure of this data in section 2.1.

1.2.3 Objectives

- Ensure the data are valid. Before building models and making predictions and creating knowledge, i'll do my best to verify the integrity of the data and data collection.
- Provide a model that predicts employee attrition.
- Offer suggestions on actionable ways to improve employee attrition rates, validate these suggestions if possible.

1.2.4 1.2 Metrics for Success

The problem statement implies that losing employees is very costly. Depending on what our suggestion is for retaining employees, it's likely less costly to the company to offer incentives to at risk employees than it is to lose them. For this reason, I believe it is important to not miss true positives and that I can tolerate some level of false positives. For this reason, i'll be optimizing the recall of the model. We'll also dive a little deeper into more informative metrics provided that there is time.

```
In [1]: import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import seaborn as sns

%matplotlib inline
```

1.3 2. Loading and Cleaning

In this section the data is loaded into memory and we aim to clean the data for our machine learning model. Additionally, we seek to decide if the data is reasonably representative of the ground truth and will actually build a useful model.

1.3.1 2.1 Loading with Pandas

```
In [2]: data = pd.read_csv('./employee_retention_data.csv')
In [3]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 24702 entries, 0 to 24701
Data columns (total 7 columns):
employee_id
               24702 non-null float64
company_id
               24702 non-null int64
dept
               24702 non-null object
seniority
               24702 non-null int64
salary
               24702 non-null float64
               24702 non-null object
join_date
               13510 non-null object
quit_date
dtypes: float64(2), int64(2), object(3)
memory usage: 1.3+ MB
```

We can see the basic structure of the data from a basic computer perspective here, the dates are stored as objects (strings) and will need to be converted to numerical representations. I chose to convert each date into a year, month, day format using three columns.

1.3.2 2.2 Outliers and NaN Values

In this section, I want to inspect the dataset and check for values which are obviously outliers and then make a decision on what to do with them. Additionally, i'll handle NaN values in this section.

```
In [4]: data.describe()
```

Out[4]:		employee_id	company_id	seniority	salary
	count	24702.000000	24702.000000	24702.000000	24702.000000
	mean	501604.403530	3.426969	14.127803	138183.345478
	std	288909.026101	2.700011	8.089520	76058.184573
	min	36.000000	1.000000	1.000000	17000.000000
	25%	250133.750000	1.000000	7.000000	79000.000000
	50%	500793.000000	2.000000	14.000000	123000.000000
	75%	753137.250000	5.000000	21.000000	187000.000000
	max	999969.000000	12.000000	99.000000	408000.000000

Here we can see that something doesn't make sense. The seniority variable which describes the number of years of experience of an employee is actually 99 for some employees. Let's see how many.

```
In [5]: data[data['seniority'] > 50]
Out [5]:
               employee_id
                             company_id
                                                                           join_date
                                              dept
                                                    seniority
                                                                  salary
        24700
                   97289.0
                                          engineer
                                                            98
                                                                266000.0
                                                                          2011-12-13
                                     10
        24701
                                         marketing
                  604052.0
                                                            99 185000.0
                                                                          2011-07-26
                quit_date
        24700 2015-01-09
        24701 2013-12-06
```

Since these represent such a small fraction of the entire sample, I am going to remove them from this analysis. The employee from company 10 may be important because of the relatively small size of company 10. If that turns out to be the case, we could try guessing the seniority of these employees by looking at their department and salary. For now let's continue without these two employees. Let's look for missing values now.

```
In [6]: data.isna().sum()
Out[6]: employee_id
                            0
        company_id
                            0
        dept
                            0
        seniority
                            0
        salary
                            0
        join_date
                            0
        quit_date
                       11192
        dtype: int64
```

Here it's clear that the dataset is somewhat clean already. The missing values in quit_date correspond to employees which have not quit and are still employed as of 12/31/2015. In the cleaning phase, we will use that to create a binary target variable called churn_status to represent the employees status. Let's define our cleaning function and proceed to clean the dataset.

```
In [7]: def process_date(date_string):
            ''' Tokenize dates into arrays of integers.
                Arguments:
                date_string - String containing a date in the
                format year/month/day.
                Ouptut:
                If the input is null, the
                function returns an array of zeros. Otherwise
                the array is returned with [year, month, day].
            if type(date_string) == str:
                tokens = date string.split('-')
                tokens = [int(t) for t in tokens]
                if len(tokens) != 3:
                    return np.array([0, 0, 0])
                else:
                    return np.array(tokens)
            return np.array(([0, 0, 0]))
        def get_year(date_string):
            return process_date(date_string)[0]
        def get_month(date_string):
```

```
def get_day(date_string):
            return process_date(date_string)[2]
        def clean_dataset(data):
            ''' Clean employee dataset of NaN values and add target.
                This function uses the insights gained above to clean
                the employee/company dataset.
                Arguments:
                data - The input dataframe which contains the employee data.
                Output:
                data - The modified dataframe is returned.
            data = data[data['seniority'] < 90]</pre>
            # Add target as float 0/1.
            data['churn_status'] = data['quit_date'].notna().round()
            # Decompose join date string into 3 integers.
            data['join_year'] = data['join_date'].apply(get_year)
            data['join_month'] = data['join_date'].apply(get_month)
            data['join_day'] = data['join_date'].apply(get_day)
            # Decompose quit date string into 3 integers.
            data['quit_year'] = data['quit_date'].apply(get_year)
            data['quit_month'] = data['quit_date'].apply(get_month)
            data['quit_day'] = data['quit_date'].apply(get_day)
            # Drop useless columns
            data.drop(columns = ['join_date', 'quit_date'], inplace = True)
            return data
In [8]: data = clean_dataset(data)
/Users/davidriser/anaconda3/envs/insight/lib/python3.7/site-packages/ipykernel_launcher.py:49:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm
/Users/davidriser/anaconda3/envs/insight/lib/python3.7/site-packages/ipykernel_launcher.py:52:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

return process_date(date_string)[1]

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm.
/Users/davidriser/anaconda3/envs/insight/lib/python3.7/site-packages/ipykernel_launcher.py:53:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm/Users/davidriser/anaconda3/envs/insight/lib/python3.7/site-packages/ipykernel_launcher.py:54: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm.
/Users/davidriser/anaconda3/envs/insight/lib/python3.7/site-packages/ipykernel_launcher.py:57:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm./Users/davidriser/anaconda3/envs/insight/lib/python3.7/site-packages/ipykernel_launcher.py:58: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm.
/Users/davidriser/anaconda3/envs/insight/lib/python3.7/site-packages/ipykernel_launcher.py:59:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm./Users/davidriser/anaconda3/envs/insight/lib/python3.7/site-packages/pandas/core/frame.py:3697 A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm? errors=errors)

In [9]: data.head()

Out[9]:	employee_id	company id		dept ser	niority	salary	\	
0	13021.0	7	customer_se	-	28	89000.0		
1	825355.0	7	_	eting	20 1	83000.0		
2	927315.0	4	mark	eting	14 1	01000.0		
3	662910.0	7	customer_se	rvice	20 1	15000.0		
4	256971.0	2	data_sc	ience	23 2	76000.0		
	churn_status	join_year	${ t join_month}$	join_day	quit_yea	r quit_	month	\
0	1.0	2014	3	24	201	5	10	
1	1.0	2013	4	29	201	4	4	
2	0.0	2014	10	13		0	0	
3	1.0	2012	5	14	201	3	6	

```
4
             1.0
                         2011
                                         10
                                                    17
                                                              2014
                                                                                8
   quit_day
0
          30
1
           4
2
           0
           7
3
4
          22
```

Before moving to feature engineering, let's quickly see if the classes are balanced.

Not too bad.

1.4 3. Feature Engineering

Let's use all of our creativity to add some features from the domain that might be useful.

```
In [11]: def feature_engineer(data):
```

```
# Total number of days worked at the company
# for those who quit (I will fix the others below).
data['days_worked'] = 365 * (data['quit_year'] - data['join_year']) + \
    365.25 / 12.0 * (data['quit_month'] - data['join_month']) + \
    (data['quit_day'] - data['join_day'])
# Add some days worked for peolpe who didn't quit.
indexer = data['days_worked'] < 0</pre>
data['days_worked'].loc[indexer] = 365 * (2015 - data['join_year'].loc[indexer]) -
    365.25 / 12.0 * (12 - data['join_month'].loc[indexer]) + \
    (31 - data['join_day'].loc[indexer])
# By plotting salary and seniority one can see that there are clearly
# three steps for every company.
data['career_level'] = np.digitize(data['seniority'], np.array([0, 5, 15, 99]))
# Encode the departments into columns
department = data['dept']
data = pd.get_dummies(data, columns = ['dept'], prefix = 'dept')
data['dept'] = department
# Compare the individual employee to the average in their division
# by computing z-score
```

```
data['average_salary_in_division'] = data.groupby(['company_id', 'dept', 'career_]
data['std_salary_in_division'] = data.groupby(['company_id', 'dept', 'career_leve']
data['internal_salary_zscore'].fillna(0, inplace = True)
data.drop(columns = ['average_salary_in_division', 'std_salary_in_division'], inp
# Compare the individual employee to the average in their division
# by computing z-score
data['average_salary_in_profession'] = data.groupby(['dept', 'career_level']).tra
data['std_salary_in_profession'] = data.groupby(['dept', 'career_level']).transform
data['profession_salary_zscore'] = (data['salary'] - data['average_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_salary_in_profession_
data['profession_salary_zscore'].fillna(0, inplace = True)
data.drop(columns = ['average_salary_in_profession', 'std_salary_in_profession'],
# Figure out how long the person worked before coming to this company
# Need to insert zeros if people haven't worked before coming here.
# This variable has problems check it out.
data['previous_days_worked'] = 365.25 * data['seniority'] - data['days_worked']
data['previous_days_worked'] = data['previous_days_worked'].apply(lambda x: 0.0 i
# How much of their careers have they worked here?
data['career_fraction_in_company'] = data['days_worked'] / (data['days_worked'] +
# How much of the department years of experience
# does each person have?
data['dept experience fraction'] = data['seniority'] / data.groupby(['company id'
data['dept_experience_fraction'].fillna(0, inplace = True)
# How does their experience compare to the top dog?
data['dept_experience_disparity'] = data.groupby(['company_id', 'dept']).transformation
data['dept_experience_disparity'].fillna(data['seniority'].max(), inplace = True)
# Compare the individual employee to the average in their division
# by computing z-score of seniority
data['average_seniority_in_profession'] = data.groupby(['dept', 'career_level']).
data['std_seniority_in_profession'] = data.groupby(['dept', 'career_level']).tran-
data['profession_seniority_zscore'] = (data['seniority'] - data['average_seniority']
data['profession_seniority_zscore'].fillna(0, inplace = True)
data.drop(columns = ['average_seniority_in_profession', 'std_seniority_in_profess
data['profession_seniority_zscore'].fillna(0, inplace = True)
# Compare the individual employee to the average in their division
# by computing z-score of seniority
#data['average_seniority_in_division'] = data.groupby(['company_id' ,'dept', 'car
#data['std_seniority_in_division'] = data.groupby(['company_id', 'dept', 'career_
#data['division_seniority_zscore'] = (data['salary'] - data['average_seniority_in
#data['division_seniority_zscore'].fillna(0, inplace = True)
\#data.drop(columns = ['average\_seniority\_in\_division', 'std\_seniority\_in\_division']
```

```
#data['division_seniority_zscore'].fillna(0, inplace = True)

# Has the employee taken a step up during their
# time in the company. This happens from 4-5 and
# from 14-15 according to our visual analysis below.
current_experience = data['seniority'].values
previous_experience = data['previous_days_worked'].values / 365.25
data['step_up_1'] = (current_experience >= 5) & (previous_experience < 5)
data['step_up_2'] = (current_experience >= 15) & (previous_experience < 14)
data['step_up_1'] = data['step_up_1'].astype(int)
data['step_up_2'] = data['step_up_2'].astype(int)
return data
a = feature engineer(data)</pre>
```

/Users/davidriser/anaconda3/envs/insight/lib/python3.7/site-packages/pandas/core/indexing.py:18
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htmlself._setitem_with_indexer(indexer, value)

Out[12]:		employee_id	company_	id senior	ity	salary	churn_status	join_year \	\
	0	13021.0		7	28	89000.0	1.0	2014	
	1	825355.0		7	20	183000.0	1.0	2013	
	2	927315.0		4	14	101000.0	0.0	2014	
	3	662910.0		7	20	115000.0	1.0	2012	
	4	256971.0		2	23	276000.0	1.0	2011	
	5	509529.0		4	14	165000.0	1.0	2012	
	6	88600.0		4	21	107000.0	0.0	2013	
	7	716309.0		2	4	30000.0	0.0	2014	
	8	172999.0		9	7	160000.0	1.0	2012	
	9	504159.0		1	7	104000.0	0.0	2012	
	10	892155.0		6	13	72000.0	1.0	2012	
	11	904158.0		2	17	230000.0	0.0	2015	
		join_month	join_day	quit_year	qu	it_month		dept	\
	0	3	24	2015		10	cust	omer_service	
	1	4	29	2014		4		marketing	
	2	10	13	0		0		marketing	
	3	5	14	2013		6	cust	omer_service	
	4	10	17	2014		8		data_science	
	5	1	30	2013		8		data_science	
	6	10	21	0		0	cust	omer_service	
	7	3	5	0		0	cust	omer_service	
	8	12	10	2015		10		engineer	

```
9
              6
                        12
                                                  0
                                     0
                                                                            sales
10
             11
                        12
                                  2015
                                                  2
                                                                customer_service
              5
                                                  0
11
                        11
                                     0
                                                                        marketing
                              profession_salary_zscore previous_days_worked
    internal_salary_zscore
0
                  -0.761004
                                               -1.200686
                                                                       9642.9375
1
                   1.330631
                                                0.105023
                                                                       6965.0000
2
                  -0.347946
                                               -0.945573
                                                                       4669.6250
3
                   1.976543
                                                0.394777
                                                                       6916.5625
4
                  -0.837331
                                                0.101311
                                                                       7361.6250
5
                   0.408610
                                               -0.391116
                                                                       4535.4375
6
                   1.183250
                                               -0.096135
                                                                       6869.3750
7
                   0.081826
                                                0.704173
                                                                        796.0625
8
                   0.311569
                                               -0.620292
                                                                       1509.6250
9
                  -1.966423
                                               -0.768153
                                                                       1260.1250
10
                   1.547717
                                                0.168272
                                                                       3912.1875
11
                   1.777681
                                                1.961723
                                                                       5976.1875
    career_fraction_in_company
                                  dept_experience_fraction
0
                        0.057110
                                                    0.004165
1
                        0.046543
                                                    0.010325
2
                        0.086805
                                                    0.003837
3
                        0.053174
                                                    0.002975
4
                        0.123694
                                                    0.002769
5
                        0.113046
                                                    0.003540
6
                        0.104413
                                                    0.001946
7
                        0.455125
                                                    0.000180
8
                        0.409553
                                                    0.002677
9
                        0.507138
                                                    0.000456
10
                        0.176078
                                                    0.001806
11
                        0.037535
                                                    0.002253
    dept_experience_disparity
                                 profession_seniority_zscore
                                                                 step_up_1
0
                              1
                                                      1.550613
                                                                          0
                              9
1
                                                     -0.319690
                                                                          0
2
                                                                          0
                             15
                                                       1.565323
3
                              9
                                                     -0.329178
                                                                          0
4
                              6
                                                      0.389992
                                                                          0
5
                             15
                                                      1.630788
                                                                          0
6
                              8
                                                     -0.094204
                                                                          0
7
                                                                          0
                             25
                                                      1.367156
8
                             22
                                                     -0.868630
                                                                          1
9
                             22
                                                     -0.829365
                                                                          1
                                                                          0
10
                             16
                                                      1.206759
11
                             12
                                                     -1.009213
                                                                          0
   step_up_2
```

0

```
1
            0
2
            0
3
            0
4
            0
5
            0
6
            0
7
            0
8
            0
9
            0
10
            0
            0
11
[12 rows x 29 columns]
```

1.5 4. Visual Exploration

I am going to set some style preferences before the plotstorm begins.

```
In [13]: plt.rc('font', family = 'serif')
        plt.rc('font', size = 18)
In [14]: plt.figure(figsize = (16, 9))
         company_data = data.query('company_id == 1')
         for department in company_data['dept'].unique():
             plt.scatter(
                 company_data.query('dept == "{}"'.format(department))['salary'],
                 company_data.query('dept == "{}"'.format(department))['seniority'],
                 edgecolor = 'k',
                 alpha = 0.9,
                 label = department
             );
         plt.ylim([0, 30])
         plt.legend(frameon = False)
         plt.xlabel('Salary (USD?)')
         plt.ylabel('Seniority (Years)')
Out[14]: Text(0, 0.5, 'Seniority (Years)')
```



```
In [16]: plt.figure(figsize = (16, 9))
         plt.hist(
             data.query('company_id == 1 and dept_marketing == 1 and career_level == 1')['salar
             bins = np.linspace(10000, 300000, 80),
             edgecolor = 'k',
             density = True,
             label = 'Junior'
         );
         plt.hist(
             data.query('company_id == 1 and dept_marketing == 1 and career_level == 2')['salar
             bins = np.linspace(10000, 300000, 80),
             edgecolor = 'k',
             density = True,
             label = 'Mid Career'
         );
         plt.hist(
             data.query('company_id == 1 and dept_marketing == 1 and career_level == 3')['salar
             bins = np.linspace(10000, 300000, 80),
             edgecolor = 'k',
             density = True,
             label = 'Senior'
         );
         plt.legend(frameon = False)
         plt.title('Marketing Salaries for Company 1')
Out[16]: Text(0.5, 1.0, 'Marketing Salaries for Company 1')
```


This figure reveals something interesting. Employees within company one with the same level of experience are not compensated the same. Perhaps this information can be used as a predictor. One could imagine using a z-score for each employee, reflecting how far away they are from the mean salary in their bracket.

Out[17]: <BarContainer object of 6 artists>


```
In [18]: plt.figure(figsize = (16, 9))
         plt.hist(
             data.query('churn_status < 0.5')['internal_salary_zscore'],</pre>
             bins = np.linspace(-3, 3, 40),
             edgecolor = 'k',
             alpha = 0.6,
             label = 'Stayed',
             density = True
         );
         plt.hist(
             data.query('churn_status > 0.5')['internal_salary_zscore'],
             bins = np.linspace(-3, 3, 40),
             edgecolor = 'k',
             alpha = 0.6,
             label = 'Quit',
             density = True
         );
         plt.legend(frameon = False)
```

Out[18]: <matplotlib.legend.Legend at 0x116de7470>


```
In [19]: plt.figure(figsize = (16, 9))
         plt.hist(
             data.query('churn_status < 0.5')['profession_salary_zscore'],</pre>
             bins = np.linspace(-3, 3, 40),
             edgecolor = 'k',
             alpha = 0.6,
             label = 'Stayed',
             density = True
         );
         plt.hist(
             data.query('churn_status > 0.5')['profession_salary_zscore'],
             bins = np.linspace(-3, 3, 40),
             edgecolor = 'k',
             alpha = 0.6,
             label = 'Quit',
             density = True
         );
         plt.legend(frameon = False)
```

Out[19]: <matplotlib.legend.Legend at 0x116ef0940>

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x116e17940>

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x115f35128>

In [22]: sns.pairplot(data[['salary', 'seniority', 'days_worked', 'churn_status']], hue = 'chur'
/Users/davidriser/anaconda3/envs/insight/lib/python3.7/site-packages/statsmodels/nonparametric,
binned = fast_linbin(X, a, b, gridsize) / (delta * nobs)
/Users/davidriser/anaconda3/envs/insight/lib/python3.7/site-packages/statsmodels/nonparametric,
FAC1 = 2*(np.pi*bw/RANGE)**2

Out[22]: <seaborn.axisgrid.PairGrid at 0x1a19561b38>


```
In [23]: plt.figure(figsize = (16, 9))
         plt.hist(
             data[data['churn_status'] == 0]['days_worked'],
             bins = 60,
             edgecolor = 'k',
             alpha = 0.6,
             density = True,
             label = 'Still Working'
         );
         plt.hist(
             data[data['churn_status'] == 1]['days_worked'],
             bins = 60,
             edgecolor = 'k',
             alpha = 0.6,
             density = True,
             label = 'Quit'
         );
         plt.legend(frameon = False)
         plt.axvline(365.0, linestyle = '--', linewidth = 1, color = 'k', alpha = 0.8)
```

```
plt.axvline(2 * 365.0, linestyle = '--', linewidth = 1, color = 'k', alpha = 0.8) plt.axvline(3 * 365.0, linestyle = '--', linewidth = 1, color = 'k', alpha = 0.8)
```

Out[23]: <matplotlib.lines.Line2D at 0x1a1a7e05c0>

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1a7b6208>

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1af19828>

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1af40a20>

1.6 5. Modeling

In this section predictions are made for employee attrition based on the cleaned data that has features added to it. First, I am going to define which features to take into account. I'm leaving out things like the start and end date of employment, as that information has been transfered into the days_worked variable and I don't think it would be meaningful to include start days, months, and years.

Now we're going to do something important and define the metrics that we want to track. Based on these we can take a decision on what action to recommend.

```
In [31]: from sklearn.metrics import confusion_matrix
In [32]: def business_metric(y_pred, y_true,
                             cost_of_loss = 100000,
                             cost_of_intervention = 10000,
                             probability_of_success = 0.2):
             ''' Important business metric. This would be fleshed out with someone who knows b
             confusion_mat = confusion_matrix(y_true, y_pred)
             true_negatives = confusion_mat[0,0]
             false_negatives = confusion_mat[1,0]
             false_positives = confusion_mat[0,1]
             true_positives = confusion_mat[1,1]
             # We predicted that the person will quit
             # but actually they will not. We incur the
             # cost of the intervention.
             cost = false_positives * cost_of_intervention
             # We predict that the employee will not quit
             # but they are going to quit. We incur the full
             # cost of loss.
             cost += false_negatives * cost_of_loss
             # We predict they will quit, and they actually will
             # but by doing our intervention we save N * probability of success
             # of them and only incur the intervention cost for them.
             cost += true_positives * (cost_of_intervention + (1 - probability_of_success) * c
             # True negatives are free so do nothing for them.
             return float(cost / len(y_true))
In [33]: metrics = {
             'accuracy' : accuracy_score,
             'precision' : precision_score,
             'recall' : recall_score,
             'f1_score' : f1_score,
             'business_metric' : business_metric
```

}

We know from visual exploration of the data that the number of days worked is important and that employee attrition spikes around the one and two year employment times. Let's build a simple model that just guesses employees are going to quit if they're inside of a time window quit_window from one or two years of employment.

```
In [34]: class NaiveBaselineModel(object):
             NaiveBaselineModel - Guess that any employee close
             to 1 or 2 years of employment is likely to quit.
             def __init__(self, quit_window = 60):
                 self.quit_window = quit_window
             def fit(x_train, y_train):
                 pass
             def predict(self, days_worked):
                 predictions = np.zeros(len(days_worked))
                 predictions[np.where((days_worked > (365 - self.quit_window)) & (days_worked -
                 predictions[np.where((days_worked > (2 * 365 - self.quit_window)) & (days_worked > (2 * 365 - self.quit_window))
                 return predictions
             def predict_proba(self, days_worked):
                 return self.predict(days_worked)
   Let's also write a function useful for training our models.
In [35]: def train_evaluate(model, x_train, x_test, y_train, y_test, metrics = {}, return_model
             model.fit(x_train, y_train)
             y_pred_test = model.predict(x_test)
             y_pred_train = model.predict(x_train)
             results = {}
             for metric_name in metrics.keys():
                 results[metric_name + '_test'] = metrics[metric_name](y_pred_test, y_test)
                 results[metric_name + '_train'] = metrics[metric_name](y_pred_train, y_train)
             if return_model:
                 return model, results
             else:
                 return results
In [36]: baseline_model = NaiveBaselineModel(60)
         y_pred_baseline = baseline_model.predict(data['days_worked'].values)
         print(accuracy_score(data['churn_status'].values, y_pred_baseline))
```

```
print(precision_score(data['churn_status'].values, y_pred_baseline))
         print(recall_score(data['churn_status'].values, y_pred_baseline))
0.7002834008097166
0.7865928081870247
0.6202250518211431
  Standardization of the features.
In [37]: transformer = StandardScaler()
         x = transformer.fit_transform(data[features].values)
         y = data[target].values
         x_train, x_test, y_train, y_test = train_test_split(x, y)
In [38]: default_models = {
             'Logistic Regression' : LogisticRegression(),
             'Naive Bayes' : GaussianNB(),
             'Random Forest' : RandomForestClassifier(),
             'Gradient Boosted Trees' : GradientBoostingClassifier()
         }
In [39]: default_metrics = {}
         for model in default_models.keys():
             default_metrics[model] = train_evaluate(
                 model = default_models[model],
                 x_train = x_train,
                 x_{test} = x_{test}
                 y_train = y_train,
                 y_test = y_test,
                 metrics = metrics
             )
In [40]: for key, value in default_metrics.items():
             print(key)
             for k, v in value.items():
                 print('\t', k, v)
Logistic Regression
         accuracy_test 0.6050202429149798
         accuracy_train 0.6087989203778678
         precision_test 0.8733912002394493
         precision_train 0.8628897413199568
         recall_test 0.5914065666801783
         recall_train 0.5998222343771366
         f1_score_test 0.7052567975830815
         f1_score_train 0.7076997539628119
```

```
Naive Bayes
         accuracy_test 0.5815384615384616
         accuracy train 0.5833198380566802
         precision_test 0.7390002993115834
         precision train 0.7347300088521688
         recall_test 0.5905285816790241
         recall train 0.5979827089337176
         f1_score_test 0.6564743419303377
         f1_score_train 0.6593406593406593
         business_metric_test 52879.35222672065
         business_metric_train 53561.133603238864
Random Forest
         accuracy_test 0.6981376518218624
         accuracy_train 0.9861808367071525
         precision_test 0.7117629452259803
         precision_train 0.9832792367463362
         recall_test 0.7252211039951204
         recall train 0.99147079242289
         f1 score test 0.7184290030211479
         f1 score train 0.9873580246913579
         business_metric_test 51713.36032388664
         business_metric_train 49532.52361673414
Gradient Boosted Trees
         accuracy_test 0.7525506072874494
         accuracy_train 0.7710121457489879
         precision_test 0.876384316073032
         precision_train 0.893577259761975
         recall_test 0.7242146920603513
         recall_train 0.7419354838709677
         f1_score_test 0.7930660888407368
         f1_score_train 0.8107263965732644
         business_metric_test 51169.230769230766
         business_metric_train 51684.21052631579
  It seems like the gradient boosted tree is working best for this dataset (without any tuning).
Let's write a function to do k-fold cross validation and tune the parameters.
In [41]: from sklearn.model_selection import KFold, StratifiedKFold
```

business_metric_test 52644.534412955465 business_metric_train 53306.34278002699

''' Train k-fold cross validation and return results

metrics = {}, k = 5, stratify = False, model_params = {}):

In [42]: def train_evaluate_kfold(model_builder, x, y,

in a DateFrame. '''

if stratify:

```
else:
                 kf = KFold(k)
             results = {}
             for name in metrics.keys():
                 results[name + '_test'] = np.zeros(k)
                 results[name + '_train'] = np.zeros(k)
             fold_idx = 0
             for train_idx, test_idx in kf.split(x, y):
                 model = model_builder(**model_params)
                 current_result = train_evaluate(
                     model = model,
                     x_train = x[train_idx],
                     x_test = x[test_idx],
                     y_train = y[train_idx],
                     y_test = y[test_idx],
                     metrics = metrics
                 )
                 for res in current_result.keys():
                     results[res][fold_idx] = current_result[res]
                 fold_idx += 1
             return pd.DataFrame(results)
In [43]: kfold_results = train_evaluate_kfold(
             model_builder = GradientBoostingClassifier,
             x = x
             y = y,
             k = 5,
             metrics = metrics,
             stratify = False,
             model_params = dict()
         )
In [44]: kfold_results.head(5)
Out [44]:
            accuracy_test accuracy_train precision_test precision_train \
         0
                 0.770445
                                 0.771964
                                                 0.885192
                                                                   0.893159
         1
                 0.769028
                                 0.771913
                                                 0.919428
                                                                   0.914854
         2
                 0.753239
                                 0.772368
                                                 0.879735
                                                                   0.897674
         3
                                 0.775506
                0.758907
                                                 0.879955
                                                                   0.897965
```

kf = StratifiedKFold(k, y)

```
4
        0.758704
                        0.773988
                                        0.899236
                                                         0.904359
  recall_test recall_train f1_score_test f1_score_train \
      0.746992
                    0.741466
                                   0.810241
                                                   0.810274
0
1
      0.724844
                    0.734809
                                   0.810622
                                                   0.815006
2
      0.728380
                    0.740500
                                   0.796935
                                                   0.811547
3
      0.727528
                    0.745546
                                   0.796515
                                                   0.814688
4
      0.729849
                    0.738969
                                   0.805737
                                                   0.813341
  business_metric_test business_metric_train
0
           52123.481781
                                 51347.672065
1
           50698.380567
                                  51707.995951
2
           52004.048583
                                  51416.497976
3
           50672.064777
                                  51703.947368
           52495.951417
                                  51263.663968
```

Now that training is easy, let's tune the hyperparameters of the model using this cross validation function.

```
In [45]: parameter_limits = {
             'n_estimators' : [20, 400],
             'max_depth' : [2, 5]
         }
         parameter_values = {
             'loss' : ['deviance', 'exponential']
         }
         parameter_generators = {
             'n_estimators' : lambda x: np.random.randint(parameter_limits['n_estimators'][0],
             'max_depth' : lambda x: np.random.randint(parameter_limits['max_depth'][0], parameter_limits['max_depth']
             'loss' : lambda x: np.random.choice(parameter_values['loss'], x)
         }
In [46]: from tqdm import tqdm
In [47]: def stack_dicts(dictionaries):
              ''' Assuming same keys for all dictionaries, stack them into one with lists of va
             keys = dictionaries[0].keys()
             output_dict = {}
             for key in keys:
                  output_dict[key] = [dictionaries[i][key] for i in range(len(dictionaries))]
             return output_dict
         def tune_hyperparameters(model_builder, n_iter, parameter_generators,
                                   x, y, metrics = {}, k = 5, stratify = False):
```

```
''' Use random search to find the metric values for different parameter sets. '''
             # Get some parameters to test
             parameters = {}
             for parameter in parameter_generators.keys():
                 parameters[parameter] = parameter_generators[parameter](n_iter)
             # Summary of results
             summary = []
             # Test them
             for iteration in tqdm(range(n_iter)):
                 # Build current iteration
                 current_parameters = {}
                 for parameter in parameters.keys():
                     current_parameters[parameter] = parameters[parameter][iteration]
                 # Find results
                 current_results = train_evaluate_kfold(
                     model_builder = GradientBoostingClassifier,
                     x = x
                     y = y,
                     k = 5,
                     metrics = metrics,
                     stratify = False,
                     model_params = current_parameters
                 )
                 # Add scores by averaging folds
                 current_parameters.update(current_results.mean().to_dict())
                 summary.append(current_parameters)
             return pd.DataFrame(stack_dicts(summary))
In [48]: hyperparams_results = tune_hyperparameters(
             model_builder = GradientBoostingClassifier,
             n iter = 100,
             x = x
             y = y,
             k = 4,
             metrics = metrics,
             stratify = False,
             parameter_generators = parameter_generators
         )
100%|| 100/100 [40:41<00:00, 21.41s/it]
```

In [49]: hyperparams_results.sort_values('recall_test', ascending = False)

Out[49]:	n_estimators	max_depth	loss	accuracy_test	accuracy_train	\
10	338	4	deviance	0.833077	0.884676	
30	320	4	deviance	0.829352	0.879089	
73	304	4	deviance	0.826356	0.874281	
67	374	4	exponential	0.822874	0.873704	
82	240	4	deviance	0.817206	0.858016	
36	386	3	deviance	0.814453	0.845466	
59	312	4	exponential	0.813684	0.858988	
54	230	4	deviance	0.814251	0.853836	
88	311	4	exponential	0.811538	0.858654	
12	287	4	exponential	0.808381	0.852368	
75	343	3	deviance	0.807692	0.837024	
57	266	4	exponential	0.806356	0.845496	
29	189	4	deviance	0.805506	0.841913	
14	285	3	deviance	0.800243	0.825364	
34	173	4	deviance	0.803198	0.836144	
2	371	3	exponential	0.795466	0.824960	
93	223	4	exponential	0.796761	0.830830	
24	159	4	deviance	0.798947	0.829686	
43	217	4	exponential	0.796437	0.829271	
33	255	3	deviance	0.795506	0.818340	
7	205	4	exponential	0.793806	0.826022	
74	232	3	deviance	0.792470	0.812996	
66	145	4	deviance	0.795668	0.823239	
25	332	3	exponential	0.788704	0.816437	
79	192	4	exponential	0.791417	0.821387	
15	330	3	exponential	0.788259	0.815739	
99	326	3	exponential	0.788057	0.815051	
69	202	4	exponential	0.790405	0.822763	
61	126	4	deviance	0.791457	0.815951	
21	211	3	deviance	0.787328	0.807257	
				• • •		
56	244	2	exponential	0.758704	0.768411	
23	131	3	exponential	0.758502	0.771235	
40	129	3	exponential	0.757409	0.770182	
11	236	2	exponential	0.757085	0.766427	
63	123	3	exponential	0.757652	0.769514	
9	126	3	exponential	0.757247	0.770283	
80	117	3	exponential	0.757206	0.768472	
16	117	3	exponential	0.757166	0.768472	
62	158	2	deviance	0.755668	0.763887	
49	157	2	deviance	0.755547	0.763735	
27	159	2	deviance	0.755506	0.764069	
48	151	2	deviance	0.755182	0.762611	
84	55	4	deviance	0.763279	0.775506	
35	80	3	deviance	0.757247	0.767571	

72 77 44	191 185	2 exponen2 exponen		751498 750972	0.758816	
	185	2 exponen	tial 0	750070	0.757006	
44			orar o.	150912	0.757996	
_	164	2 exponen	tial 0.	745870	0.753583	
90	45	4 devi	ance 0.	756275	0.766771	
46	52	4 exponen	tial 0.	754008	0.764879	
87	50	3 devi	ance 0.	749352	0.755800	
89	96	2 exponen	tial 0.	738947	0.744504	
53	94	2 exponen	tial 0.	738138	0.744211	
8	68	2 devi	ance 0.	740891	0.744717	
32	76	2 exponen	tial 0.	737976	0.742794	
85	31	4 exponen	tial 0.	742672	0.747257	
18	59	2 exponen	tial 0.	735830	0.739109	
83	22	2 exponen	tial 0.	715749	0.717389	
45	22	2 exponen	tial 0.	715749	0.717389	
42	22	2 exponen	tial 0.	715749	0.717389	
	<pre>precision_test</pre>	<pre>precision_train</pre>	recall_test	${\tt recall_train}$	f1_score_test	\
10	0.888468	0.931629	0.821186	0.867366	0.853390	
30	0.887558	0.929040	0.816511	0.860932	0.850457	
73	0.886526	0.926390	0.813021	0.855697	0.848082	
67	0.886613	0.927564	0.808167	0.854081	0.845469	
82	0.887880	0.922246	0.800008	0.835322	0.841557	
36	0.885276	0.910736	0.797768	0.824950	0.839128	
59	0.885518	0.921974	0.796602	0.836825	0.838585	
54	0.887728	0.922338	0.796199	0.829500	0.839389	
88	0.884132	0.922420	0.794533	0.836087	0.836814	
12	0.883244	0.919699	0.790826	0.829054	0.834402	
75	0.883051	0.907031	0.790132	0.815668	0.833917	
57	0.884956	0.916678	0.787356	0.821512	0.833223	
29	0.890155	0.919669	0.783687	0.815022	0.833467	
14	0.884734	0.905199	0.779772	0.801298	0.828847	
34	0.892381	0.918263	0.779698	0.808247	0.832165	
2	0.880608	0.904328	0.775809	0.801251	0.824793	
93	0.886897	0.914753	0.774274	0.803237	0.826713	
24	0.893053	0.917171	0.774118	0.800497	0.829271	
43	0.887193	0.913733	0.773792	0.801775	0.826542	
33	0.885414	0.904070	0.773567	0.792879	0.825607	
7	0.887109	0.913662	0.770593	0.797658	0.824683	
74	0.886359	0.902845	0.769389	0.786761	0.823625	
66	0.895564	0.916857	0.769022	0.792533	0.827376	
25	0.879554	0.901590	0.767967	0.791741	0.819874	
79	0.887921	0.912940	0.767317	0.792175	0.823134	
15	0.880318	0.902087	0.767093	0.790623	0.819680	
99	0.880162	0.901867	0.766928	0.789869	0.819515	
69	0.887862	0.913329	0.766062 0.764242	0.793698 0.784301	0.822407 0.824388	
61				U /X4301	U 874388	
61 21	0.895141 0.885700	0.915374 0.902141	0.763467	0.779985	0.819934	

deviance

4

0.760567

0.772794

0

51

56	0.885387	0.891753	0.730651	0.738850	0.800504
23	0.886038	0.895902	0.730105	0.740389	0.800473
40	0.884840	0.894666	0.729364	0.739711	0.799539
11	0.884806	0.891694	0.729084	0.736661	0.799319
63	0.886643	0.896215	0.728985	0.738354	0.800022
9	0.886196	0.896272	0.728701	0.739190	0.799676
80	0.886726	0.895993	0.728466	0.737288	0.799744
16	0.886726	0.895993	0.728420	0.737288	0.799717
62	0.884156	0.890192	0.727806	0.734420	0.798291
49	0.884156	0.890396	0.727676	0.734174	0.798210
27	0.884075	0.890045	0.727657	0.734676	0.798168
48	0.885042	0.890821	0.726965	0.732781	0.798135
84	0.912021	0.921747	0.725646	0.735075	0.808188
35	0.895173	0.902468	0.725349	0.733770	0.801273
0	0.913118	0.922821	0.722426	0.731768	0.806591
72	0.886786	0.891957	0.722242	0.728180	0.796007
77	0.886349	0.891362	0.721831	0.727504	0.795582
44	0.885066	0.891660	0.716849	0.722649	0.792002
90	0.919597	0.927087	0.715742	0.723926	0.804912
46	0.913218	0.921852	0.715650	0.723799	0.802378
87	0.903624	0.908115	0.714086	0.719159	0.797670
89	0.892252	0.896970	0.707193	0.711250	0.788931
53	0.893431	0.898174	0.706000	0.710554	0.788631
8	0.903946	0.907335	0.705486	0.708063	0.792340
32	0.900477	0.904155	0.703631	0.707157	0.789825
85	0.933825	0.936859	0.697829	0.701329	0.798741
18	0.918464	0.920949	0.695878	0.698244	0.791774
83	0.947891	0.949380	0.670076	0.671530	0.784842
45	0.947891	0.949380	0.670076	0.671530	0.784842
42	0.947891	0.949380	0.670076	0.671530	0.784842
72	0.947031	0.949300	0.070070	0.071330	0.704042
	f1_score_train	business_metric_test	hugines	s_metric_train	
10	0.898339	50888.663968		50372.672065	
30	0.893677	50925.910931		50428.542510	
73	0.889628	50955.870445		50426.619433	
67	0.889296	50990.688259		50482.388664	
82	0.876620	51047.368421		50639.271255	
36	0.865690	51074.898785		50764.777328	
59	0.803090	51074.696768		50629.554656	
	0.873451	51062.591093			
54 ••	0.877121			50681.072874 50632.894737	
88		51104.048583			
12 75	0.872022	51135.627530		50695.748988	
75 57	0.858899	51142.510121		50849.190283	
57	0.866480	51155.870445		50764.473684	
29	0.864182	51164.372470		50800.303644	
14	0.850060	51217.004049		50965.789474	
34	0.859739	51187.449393	•	50857.995951	

2	0.849652	51264.777328	50969.838057
93	0.855372	51251.821862	50911.133603
24	0.854862	51229.959514	50922.570850
43	0.854094	51255.060729	50926.720648
33	0.844801	51264.372470	51036.032389
7	0.851724	51281.376518	50959.210526
74	0.840779	51294.736842	51089.473684
66	0.850157	51262.753036	50987.044534
25	0.843072	51332.388664	51055.060729
79	0.848272	51305.263158	51005.566802
15	0.842646	51336.842105	51062.044534
99	0.842120	51338.866397	51068.927126
69	0.849316	51315.384615	50991.801619
61	0.844745	51304.858300	51059.919028
21	0.836585	51346.153846	51146.862348
		• • •	
56	0.808118	51632.388664	51535.323887
23	0.810732	51634.412955	51507.085020
40	0.809821	51645.344130	51517.611336
11	0.806777	51648.582996	51555.161943
63	0.809633	51642.914980	51524.291498
9	0.810158	51646.963563	51516.599190
80	0.808900	51647.368421	51534.716599
16	0.808900	51647.773279	51534.716599
62	0.804821	51662.753036	51580.566802
49	0.804756	51663.967611	51582.085020
27	0.804916	51664.372470	51578.744939
48	0.804088	51667.611336	51593.319838
84	0.817883	51586.639676	51464.372470
35	0.809397	51646.963563	51543.724696
0	0.816260	51613.765182	51491.497976
72	0.801775	51704.453441	51631.275304
77	0.801127	51709.716599	51639.473684
44	0.798283	51760.728745	51683.603239
90	0.813002	51656.680162	51551.720648
46	0.810900	51679.352227	51570.647773
87	0.802655	51725.910931	51661.437247
89	0.793375	51829.959514	51774.392713
53	0.793406	51838.056680	51777.327935
8	0.795379	51810.526316	51772.267206
32	0.793581	51839.676113	51791.497976
85	0.802150	51792.712551	51746.862348
18	0.794279	51861.133603	51828.340081
83	0.786276	52061.943320	52045.546559
45	0.786276	52061.943320	52045.546559
42	0.786276	52061.943320	52045.546559

[100 rows x 13 columns]

Since running these random trials takes time, let's try to be smart and save them to a folder so that we don't lose them and we can gradually increase the number.

```
In [50]: import glob, os
         def check_and_create_directory(path):
             if not os.path.exists(path):
                 os.mkdir(path)
In [51]: random_samples_path = './samples'
         # Low chance of repeat
         sample_filename = '{}/{}.csv'.format(random_samples_path, np.random.randint(0, 1e9))
         print('Saving samples to {}'.format(sample_filename))
         check_and_create_directory(random_samples_path)
         hyperparams_results.to_csv(sample_filename, index = False)
Saving samples to ./samples/339227563.csv
In [52]: previous_results = []
         for f in glob.glob(random_samples_path + '/*.csv'):
             previous_results.append(pd.read_csv(f))
         if len(previous_results) > 0:
             samples = pd.concat(previous_results)
         else:
             samples = hyperparams_results
In [53]: samples.sort_values('recall_test', ascending = False)
Out [53]:
                           max depth
                                              loss accuracy_test accuracy_train \
             n_estimators
         23
                                                          0.837126
                                                                          0.893745
                       393
                                          deviance
                                    4
         82
                       347
                                          deviance
                                                          0.835506
                                                                          0.887186
         40
                       342
                                    4
                                          deviance
                                                          0.834656
                                                                          0.886265
         10
                       338
                                    4
                                                          0.833077
                                                                          0.884676
                                          deviance
                       346
                                    4
                                                                          0.885294
         28
                                          deviance
                                                          0.832348
         55
                       345
                                    4
                                                          0.831619
                                                                          0.884676
                                          deviance
                       339
                                    4
                                                                          0.884393
         15
                                          deviance
                                                          0.832389
                                    4
         19
                       331
                                          deviance
                                                          0.830607
                                                                          0.881599
                       320
                                    4
         30
                                          deviance
                                                          0.829352
                                                                          0.879089
         26
                       314
                                    4
                                                                          0.877176
                                          deviance
                                                          0.827571
                                    4
         73
                       304
                                          deviance
                                                          0.826356
                                                                          0.874281
         64
                       369
                                    4 exponential
                                                          0.824534
                                                                          0.874838
         79
                       364
                                    4 exponential
                                                          0.821822
                                                                          0.873006
         67
                       374
                                    4
                                       exponential
                                                          0.822874
                                                                          0.873704
                       344
                                       exponential
                                                                          0.867561
         62
                                                          0.817854
```

```
35
              335
                                                    0.817206
                                                                      0.865688
                             4
                                exponential
              334
60
                             4
                                exponential
                                                    0.816032
                                                                      0.864939
78
              333
                             4
                                                    0.816073
                                                                      0.863947
                                exponential
9
              242
                             4
                                    deviance
                                                    0.818866
                                                                      0.859140
                             4
82
              240
                                    deviance
                                                    0.817206
                                                                      0.858016
              398
                             3
56
                                    deviance
                                                    0.814332
                                                                      0.848026
36
              386
                             3
                                    deviance
                                                    0.814453
                                                                      0.845466
59
              312
                             4
                                exponential
                                                    0.813684
                                                                      0.858988
              230
                             4
54
                                    deviance
                                                    0.814251
                                                                      0.853836
88
              311
                             4
                                exponential
                                                    0.811538
                                                                      0.858654
              220
                             4
86
                                                                      0.852257
                                    deviance
                                                    0.814049
                             4
91
              218
                                    deviance
                                                    0.812834
                                                                      0.849575
                             4
12
              287
                                                    0.808381
                                                                      0.852368
                                exponential
                             3
75
              343
                                    deviance
                                                    0.807692
                                                                      0.837024
73
              277
                             4
                                exponential
                                                    0.805223
                                                                      0.849514
. .
               . . .
53
              177
                             2
                                exponential
                                                    0.745830
                                                                      0.754666
                             2
63
              115
                                                    0.746194
                                                                      0.753644
                                    deviance
90
               45
                             4
                                    deviance
                                                    0.756275
                                                                      0.766771
46
               52
                             4
                                                    0.754008
                                                                      0.764879
                                exponential
                             2
44
              106
                                    deviance
                                                    0.745749
                                                                      0.752287
               50
                             3
87
                                    deviance
                                                    0.749352
                                                                      0.755800
32
              131
                             2
                                exponential
                                                    0.740891
                                                                      0.748047
36
              130
                             2
                                                                      0.748036
                                exponential
                                                    0.741174
6
               49
                             3
                                                    0.745020
                                                                      0.752358
                                exponential
89
                             2
               96
                                exponential
                                                    0.738947
                                                                      0.744504
                             2
70
               80
                                                                      0.748279
                                    deviance
                                                    0.742591
                             3
               37
84
                                    deviance
                                                    0.745992
                                                                      0.750648
                             2
51
              101
                                exponential
                                                    0.738543
                                                                      0.744899
53
               94
                             2
                                exponential
                                                    0.738138
                                                                      0.744211
                             2
8
               68
                                                    0.740891
                                                                      0.744717
                                    deviance
75
               35
                             4
                                    deviance
                                                    0.748866
                                                                      0.755314
                             2
32
               76
                                exponential
                                                    0.737976
                                                                      0.742794
27
               72
                             2
                                                                      0.741599
                                exponential
                                                    0.736518
               30
                             4
46
                                                    0.743360
                                                                      0.747166
                                exponential
                             2
4
               44
                                    deviance
                                                    0.735870
                                                                      0.736680
                             4
85
               31
                                exponential
                                                    0.742672
                                                                      0.747257
37
               30
                             2
                                    deviance
                                                    0.735101
                                                                      0.736356
               59
                             2
18
                                exponential
                                                    0.735830
                                                                      0.739109
80
               21
                             3
                                exponential
                                                    0.735951
                                                                      0.737480
30
               21
                             3
                                                                      0.737480
                                exponential
                                                    0.735951
                             2
               22
83
                                exponential
                                                    0.715749
                                                                      0.717389
42
               22
                             2
                                                                      0.717389
                                exponential
                                                    0.715749
                             2
45
               22
                                exponential
                                                    0.715749
                                                                      0.717389
                             2
59
               21
                                exponential
                                                    0.695830
                                                                      0.695921
0
               20
                             2
                                exponential
                                                    0.695547
                                                                      0.695698
```

precision_test precision_train recall_test recall_train f1_score_test '

23	0.888646	0.935392	0.826721	0.878257	0.856460
82	0.891029	0.934367	0.822956	0.869183	0.855564
40	0.890737	0.934255	0.821950	0.867903	0.854890
10	0.888468	0.931629	0.821186	0.867366	0.853390
28	0.888041	0.932078	0.820346	0.867963	0.852766
55	0.887452	0.931911	0.819707	0.867164	0.852142
15	0.889934	0.931911	0.819707	0.865826	0.853100
19	0.888494	0.931024	0.817676	0.863246	0.851536
30	0.887558	0.929040	0.816511	0.860932	0.850457
26	0.888279	0.929336	0.813637	0.857932	0.849245
73	0.886526	0.926390	0.813021	0.855697	0.848082
64	0.884619	0.926645	0.811667	0.856346	0.846462
79	0.882646	0.925924	0.809199	0.854202	0.844195
67	0.886613	0.927564	0.808167	0.854081	0.845469
62	0.882073	0.924218	0.804131	0.847468	0.841186
35	0.882875	0.923460	0.802807	0.845299	0.840815
60	0.882652	0.923276	0.801327	0.844359	0.839910
78	0.883022	0.922902	0.801168	0.843197	0.839993
9	0.891108	0.924709	0.800447	0.835350	0.843264
82	0.887880	0.922246	0.800008	0.835322	0.841557
56	0.883408	0.912540	0.798702	0.827356	0.838786
36	0.885276	0.910736	0.797768	0.824950	0.839128
59	0.885518	0.921974	0.796602	0.836825	0.838585
54	0.887728	0.922338	0.796199	0.829500	0.839389
88	0.884132	0.922420	0.794533	0.836087	0.836814
86	0.891946	0.922189	0.793726	0.827439	0.839884
91	0.892010	0.922243	0.792095	0.823768	0.839007
12	0.883244	0.919699	0.790826	0.829054	0.834402
75	0.883051	0.907031	0.790132	0.815668	0.833917
73	0.881479	0.918796	0.787863	0.825756	0.831913
	• • •		•••	• • • •	
53	0.885705	0.892465	0.716606	0.723508	0.792147
63	0.888439	0.894186	0.715999	0.721782	0.792877
90	0.919597	0.927087	0.715742	0.723926	0.804912
46	0.913218	0.921852	0.715650	0.723799	0.802378
44	0.888622	0.893642	0.715481	0.720535	0.792629
87	0.903624	0.908115	0.714086	0.719159	0.792629
32	0.885447	0.892161	0.714080	0.716562	0.788913
36					
	0.886732	0.893211	0.711379	0.716188	0.789343
6	0.902077	0.907460	0.710113	0.715832	0.794597
89	0.892252	0.896970	0.707193	0.711250	0.788931
70	0.904602	0.908246	0.706890	0.711351	0.793519
84	0.915985	0.918882	0.706571	0.710287	0.797707
51	0.893250	0.899745	0.706447	0.710726	0.788867
53	0.893431	0.898174	0.706000	0.710554	0.788631
8	0.903946	0.907335	0.705486	0.708063	0.792340
75	0.930253	0.935584	0.704983	0.709565	0.802033
32	0.900477	0.904155	0.703631	0.707157	0.789825

27	0.903510	0.907638	0.701167	0.704835	0.789452
46	0.931850	0.934801	0.699279	0.701881	0.798849
4	0.909127	0.909829	0.698689	0.699269	0.790090
85	0.933825	0.936859	0.697829	0.701329	0.798741
37	0.910530	0.911477	0.697498	0.698459	0.789859
18	0.918464	0.920949	0.695878	0.698244	0.791774
80	0.938959	0.938790	0.690167	0.691732	0.795440
30	0.938959	0.938790	0.690167	0.691732	0.795440
83	0.947891	0.949380	0.670076	0.671530	0.784842
42	0.947891	0.949380	0.670076	0.671530	0.784842
45	0.947891	0.949380	0.670076	0.671530	0.784842
59	0.973032	0.973241	0.647654	0.647805	0.777653
0	0.978228	0.978143	0.646482	0.646616	0.778450
Ů	0.010220	0.070110	0.010102	0.010010	0.110100
	f1_score_train	business_metric_te	st business	_metric_train	
23	0.905915	50848.1781		50281.983806	
82	0.900591	50864.3724	70	50347.570850	
40	0.899851	50872.8744	94	50356.781377	
10	0.898339	50888.6639	68	50372.672065	
28	0.898869	50895.9514	17	50366.497976	
55	0.898363	50903.2388	66	50372.672065	
15	0.898269	50895.5465	59	50375.506073	
19	0.895847	50913.3603		50403.441296	
30	0.893677	50925.9109	31	50428.542510	
26	0.892198	50943.7246	96	50447.672065	
73	0.889628	50955.8704	45	50476.619433	
64	0.890089	50974.0890	69	50471.052632	
79	0.888593	51001.2145	75	50489.372470	
67	0.889296	50990.6882	59	50482.388664	
62	0.884163	51040.8906	88	50543.825911	
35	0.882636	51047.3684	21	50562.550607	
60	0.882040	51059.1093	12	50570.040486	
78	0.881230	51058.7044	53	50579.959514	
9	0.877755	51030.7692	31	50628.036437	
82	0.876620	51047.3684	21	50639.271255	
56	0.867849	51076.1133	60	50739.170040	
36	0.865690	51074.8987	85	50764.777328	
59	0.877323	51082.5910	93	50629.554656	
54	0.873451	51076.9230	77	50681.072874	
88	0.877121	51104.0485	83	50632.894737	
86	0.872240	51078.9473		50696.862348	
91	0.870226	51091.0931	17	50723.684211	
12	0.872022	51135.6275		50695.748988	
75	0.858899	51142.5101		50849.190283	
73	0.869766	51167.2064		50724.291498	
53	0.799137	51761.1336		51672.773279	
63	0.798782	51757.4898		51682.995951	

```
90
          0.813002
                              51656.680162
                                                      51551.720648
46
          0.810900
                              51679.352227
                                                      51570.647773
44
          0.797803
                              51761.943320
                                                      51696.558704
87
          0.802655
                              51725.910931
                                                      51661.437247
32
          0.794774
                              51810.526316
                                                      51738.967611
          0.794957
                              51807.692308
36
                                                      51739.068826
6
          0.800313
                              51769.230769
                                                      51695.850202
89
          0.793375
                              51829.959514
                                                      51774.392713
70
          0.797817
                              51793.522267
                                                      51736.639676
84
          0.801214
                              51759.514170
                                                      51712.955466
51
          0.794133
                              51834.008097
                                                      51770.445344
53
                              51838.056680
          0.793406
                                                      51777.327935
8
          0.795379
                              51810.526316
                                                      51772.267206
75
          0.807027
                              51730.769231
                                                      51666.295547
32
          0.793581
                              51839.676113
                                                      51791.497976
27
          0.793456
                              51854.251012
                                                      51803.441296
46
          0.801724
                              51785.829960
                                                      51747.773279
4
          0.790756
                              51860.728745
                                                      51852.631579
          0.802150
                              51792.712551
                                                      51746.862348
85
37
          0.790852
                              51868.421053
                                                      51855.870445
18
          0.794279
                              51861.133603
                                                      51828.340081
80
          0.796403
                              51859.919028
                                                      51844.635628
30
          0.796403
                              51859.919028
                                                      51844.635628
          0.786276
                              52061.943320
83
                                                      52045.546559
42
          0.786276
                              52061.943320
                                                      52045.546559
45
          0.786276
                              52061.943320
                                                      52045.546559
59
          0.777805
                              52261.133603
                                                      52260.222672
0
          0.778553
                             52263.967611
                                                      52262.449393
```

[200 rows x 13 columns]

Let's now take a look at the parameter set which has the highest recall and use that to train our final model.

```
In [56]: results
Out[56]: {'accuracy_test': 0.8241295546558705,
          'accuracy_train': 0.8907422402159244,
          'precision_test': 0.8790781203232565,
          'precision_train': 0.9355758827579423,
          'recall_test': 0.8115501519756839,
          'recall_train': 0.8741843580553258,
          'f1_score_test': 0.8439655172413792,
          'f1_score_train': 0.9038388445458,
          'business_metric_test': 50453.44129554656,
          'business_metric_train': 50486.909581646425}
In [57]: idx = np.argsort(model.feature_importances_)
         plt.figure(figsize = (6, 8))
         plt.barh(
             [features[i] for i in idx],
             [model.feature_importances_[i] for i in idx],
             edgecolor = 'k'
         )
         plt.xlabel('Importance')
Out[57]: Text(0.5, 0, 'Importance')
```


2 6. Interpretation of Model

The model trainined above heavily relies on knowing how many days an employee has worked so far. The trend is clearly evident from the visual exploration; people quit around one and two years on the job. Our simple baseline model took advantage of this fact as well. The second most important factor in attrition appears to be the relative salary gap between peers working in the same division.

2.0.1 6.1 Recommended Actions

- Track employees and focus on those around the one and two year mark, the model can predict those at risk employees for you.
- Offer these employees a raise that brings their salary closer to the mean for their division and
 career level. The degree to which this raise can be offered without affecting the bottom line
 depends on how much you expect to lose by replacing this candidate with a less experienced
 one (hard to quantify).
- Start tracking job satisfaction and hours worked per week. Stronger predictions could be
 made if the company collected job satisfaction surveys and tracked the hours each employee
 is working on per week.

• The business metric defined is probably not perfect but it follows the recall, so maximizing recall seems sensible.

```
In [58]: np.sum(data['churn_status'].values) * 100000 / len(data)
Out[58]: 54704.45344129555
```

The number above is the cost (per employee) of replacing all those employees who quit if we offer no incentives. When compared with our best business metric (cost per employee) we see that we can save 4,000 - 5,000 per employee.