wherein said sheath is formed of polyure-

- wherein said construction is an outlet guide vane of an aircraft gas turbine engine.
- 12. A method of fabricating a reinforced hollow airfoil of laminated shell structure comsembly including an elongated laminated corprising the steps of: providing a core as
 - rugated support structure of one material and material disposed in the corrugations of said a plurality of elongated mandrels of another 0

75

- structure, then bonding said shell only to said compassing said core assembly except at the cooperating therewith to define the core asstacked lamellae on said core assembly ensembly, then applying a laminated shell of support structure in contact therewith and ends thereof and contacting said support
 - leaving a hollow airfoil with an integral intermandrels through an open end of said shell, support structure, and then removing said nal corrugated support structure. 20
- The method of claim 12, wherein the generally trapezoidal in shape providing area contact with said shell at spaced-apart areas 25 corrugations of said support structure are
- spaced apart mandrels, placing the material of said support structure over said first mandrels The method of claim 13, wherein the ture are formed by aligning a first plurality of 30 corrugations of said laminated support struc-
- mandrels thereby to form the corrugations and drels and then interposing a second plurality of mandrels in between said first plurality of and into the spaces between said first man-
 - The method of claim 12, wherein said shell and said support structure are formed of said core assembly. the same material 40
 - each of said laminae is a composite of carbon 16. The method of claim 15, wherein or graphite fibers and glass reinforcement
- bonding the laminae to each other and to said fibers impregnated with a thermosetting resin, and further including the step of applying heat and pressure to the combination of the core assembly and the stacked laminae for support structure. 45 20
 - The method of claim 15, wherein said material is a composite of laminae of metallic foils bonded together.
- The method of claim 12, wherein said material of said shell is a composite of carbon fibers impregnated with an epoxy resin and or graphite fibers and glass reinforcement the material of said support structure comprises laminae of metallic foils bonded together. 22 9
- The method of claim 12, wherein said terial interleaved with the laminae of the supcorrugated support structure further includes layers of elastomeric vibration damping ma-

65

laminæ of the support structure.

including the step of applying a layer of elastomeric vibration damping material to the The method of claim 12, and further inside surface of said shell in intermittent contact with said support structure.

as UK Patent Application as GB an 2 7

The method of claim 12, and further resistant sheath to the outer surface of said including the step of applying an erosionshell,

(61) INT CL' F01D 9/00 F04D 29/64 // F01D 5/28 F04D

Domastic classification F1V 104 402 404 406 410 412 CGG CW

(25)

(33) 0S

(32) 13 Feb 1984

(30) Priority data (31) 579632

(22) Date of filing 4 Feb 1985

(21) Application No 8502793

U1S 1987 2006 F1V

87W 26 28

Documents cited GB 0778685

(20)

Goneral Electric Company (USA-New York), 1 River Road, Schenectady 12305, State of New York,

United States of America

(58) Field of search

- The method of claim 12, and further platform having a recess therein shaped com. plementary to but dimensioned slightly larger than one end of the airfoil, plugging one end including the steps of providing a mounting
- then injecting an elastomeric material into the form with a predetermined substantially uniof said hollow airfoil, inserting said plugged end of the airfoil into the recess in the platform clearance space between the recess of curing the elastomeric material for bonding platform and the inserted end of the airfoil clearance space for filling same, and then 80 85
 - The method of claim 22, and further the inserted end of the airfoil to the platform resistant sheath to the outer surface of said including the step of applying an erosion-90
- airfoil after assembly thereof to said mounting An airfoil construction or method of platform.

High Holborn House, 52-54 High Holborn, London

(74) Agent and/or Address for Service

Brookes & Martin,

WC1V 6SE

Charles Thomas Safemme

Guy Cliff Murphy

(72) Inventors

Ċ

fabricating the same substantially as hereinbe-95

Printed in the United Kingdom for Her Majesty's Stanonery Olliee, Dd 8818935, 1985, 4235, Published at The Patent Olliee, 25 Southampton Buildings, London, WCZA 1AY, from which copies may be obtained.

ਨੀ _

formed by disposing silicone rubber

mandrest 73 in the corrugations of

the faminated support structure to

stacking on both sides of the core

(

desired aerodynamic shape, then

form a core assembly having a

(57) A hollow composite airfoil with corrugated support 70 structure is

(54) Hollow laminated airfoil

an integral internal laminated

ഉ predetermined substantially uniform assembly. Heat and pressure being laminæ before bonding thereof and also be disposed between the core elastomeric material being injected airfoil Fig. 2. A polyurethane sheet clearance space therebetween, an cured to bond the platform to the into the clearance space and then composite material (of which the hollow airfoil is plugged and that overlapping adjacent the leading damping polyurethane layer may end is inserted into a recess in a One open end of the resulting 46 may be wrapped around the assembly laminæ 75, 76 of a support structure may also be mandrels being then removed. airfoil and cured and vibration and trailing edges of the core used to bond the airfoil the mounting platform with a formed), with the stacks

GB 2 154 286

Fig 9

8

ኼ.

გ-

8

各

FigII

æ √&

Fig12

113

SPECIFICATION

Hollow composite airfoils with corrugated internal support structure and method of fabricating same

Fabricating same
Cross-Reforence to Related Applications
The invention disclosed and claimed in this application is related to the invention disclosed and claimed in application Serial No.

Opposition of the properties o

15 Background of the Invention

The present invention relates to airfoils such as blades, vanes, struts or the like with aero-dynamic surfaces, and to a method of fabricating such blades, vanes or struts. The invention has particular application to vanes of the type utilized in gas turbines used for aircraft propulsion.

0

Blades, vanes and struts of various airfoil
25 design are commonly used in gas turbine
engines. Typically, such blades, vanes or
struts are solid members, since this affords
the greatest combination of strength and ease
of fabrication. However, a critical considera-

the greatest combination of strength and ease of fabrication. However, a critical considera-30 tion in aircraft engine construction is weight reduction, which militates against the use of solid structural members. Accordingly, it is known to provide hollow blades, vanes or struts for such applications.

Since hollow airfoils do not have the same structural strength or stiffness as solid airfoils, it is necessary to provide hollow airfoils with some type of support such as stiffening ribs or the like. Herefore, hollow airfoils with inter-

C

40 nal support structures have been disclosed for example, in U.S. Patent Nos. 3,365,124; 50.27,44.3 and 4,221,539. The construction of such hollow airfoils is relatively costly and complex. Typically, the airfoil is formed in two 45 parts or halves, with the internal ribs being formed unitarily with one or both halves and joined together by suitable bonding techniques. Alternatively, the hollow airfoil shell would have to be fabricated first and then the 50 internal rib structure inserted thereinto and

O internal rib structure inserted thereinto and bonded thereto. Another important consideration in airfoils for turbo machinery is vibration damping. Such damping has been provided, for

Such damping has been provided, for 55 example, by external sheathing of the airfoil, as disclosed in U.S. Patent No. 3.357,850. Such external sheathing necessitates additional manufacturing steps and can significantly increase the cost of the finished airfoil.

Summary of the Invention

It is a general object of this invention to provide an improved hollow airfoil construction and method of fabricating same, which 65 avoids the disadvantages of prior airfoil con-

structions and methods of fabrication while affording additional structural and operating

An important object of the invention is the

70 provision of a novel hollow airfoil which is of relatively simple and economical construction. Another object of the invention is the provision of a hollow airfoil of the type sat forth, which has adequate structural strength while 75 affording good vibration demping.

In connection with the foregoing objects, it is another object of this invention to provide a

method of fabricating such a hollow airfoil which is simple and aconomical.

80 In connection with the foragoing object, it is yet another object of the invention to provide a method of the type set forth which

minimizes fabrication steps.
These and other objects of the invention are attained by providing an airfoit construction comprising: a hollow shell, a corrugated support structure disposed in the shell and in are contact therewith at spaced-apart areas thereon, the support structure cooperating with

90 the shell to define hollow cavities therebetween. These and other objects of the invention are

further attained by providing a method of fabricating a hollow airfoil comprising the steps of: providing a core assembly including an elongated corrugated support structure of one material and a plurality of elongated man drels of another material disposed in the corrumations of the sumont structure in contact

rugations of the support structure in contact
100 therewith and cooperating therewith to define
the core assembly, then applying a shell
around the core assembly encompassing the
core assembly except at the ends thereof and
contacting the support structure, then bond-

contacting the support structure, then bond-105 ing the shell only to the support structure, and then removing the mandrels through an open end of the shell, leaving a hollow shell with an integral internal corrugated support

structure.

The invention consists of certain novel features and a combination of parts herainafter fully described, illustrated in the accompanying drawings, and particularly pointed out in the appended claims, it being understood that various changes in the details may be made without departing from the spirit, or secrific-

120 Brief Description of the Drawings For the purpose of facilitating an und

ing any of the advantages of the present

invention.

For the purpose of fecilitating an understanding of the invention, there are illustrated in the accompanying drawings preferred embodiments thereof, from an inspection of 125 which, when considered in connection with a felloming denomination, the fellomina denomination the invention is

5 which, when considered in connection with the following description, the invention, its construction and operation, any many of its advantages should be readily understood and appreciated.

Figure 1 is a simplified cross-sectional view.

130

6,542,35

3

វល

- 230°F., followed by post-curing at 275°F, for vane preform 70 has been cured in the moldevent alternate materials are used. After the four hours. However, it will be appreciated ferred materials described above, the cure cycle includes a cure of about one hour at that the curing cycle could change in the
 - 41 by simply pulling them out. There remains moved through one end of the hollow shell the hollow vane 40 with integral, internal, ing machine 80, the mandrels 73 are re-0
 - longitudinally extending support structure 47. Next, the vane 40 is assembled to the mounting platform 60. Preferably, the inner 5
- surface of the cavity 64 and the outer surface therein are abraded, as by grit blasting, the remaining surfaces of the vane 40 and the of the end of the vane 40 to be inserted 20
 - and Chemical Division and Whittaker Corporaately masked. It will be appreciated that alter could also be used. A suitable primer is then tion under the trademarks THIXON 300 and applied to the abraded surfaces. The primer platform base plate 61 first being approprinative abrading technique, such as etching, may, for example, be a mixture of primers such as those sold by the Dayton Coatings 25
 - dry film thickness of approximately .0003 to THIXON 301. Primer is applied to achieve a The primed vane 40 and platform 60 are drilled in the platform 60 or, in the alterna-.0004 inch. The injection bore 66 is then is premolded into the platform 60. 35 8
- temperature of about 320°F, and then loaded which is maintained at a temperature of about 350°F. More specifically, the vane 40 is supthen preheated for about 15 minutes at a into a transfer mold assembly 85 (Fig. 12)
 - shown) and the insertion end is clamped in a ceived in a complementary cavity in a mold retaining plate 84. The platform 60 is reported in a suitable support fixture (not 40
 - abraded end of the vane 40 is received in the 45 tool 86. The retaining plate 84 is secured to cavity 64 of the platform 60 with a predeterthe mold to the mold tool 86 so that the
- 50 therearound. Preferably, the depth of insertion proximately 0.08 inch is established between the tip of the vane 40 and the bottom of the the cavity 64. Also the sizing of the vane 40 of the vane 40 into the cavity 64 is approximined substantially uniform clearance space cavity 64 by not bottoming the vane 40 in mately 0.8 inch and a clearance space apand the cavity 64 is such that a clearance 52
- The mold tool 86 has an injection sprue 87 which is disposed in alignment with the injecsprue 87 communicates with a transfer cylintion bore 66 through the platform 60. The der 88 in which is disposed a piston 89. 60 sidewalls of the cavity 64. 65

space of about 0.08 inch is established be-

tween the sides of the vane 40 and the

trademark VITON by E. I. DuPont de Nemours tion bore 66 into the clearance space between 8 Co. Inc., is loaded into the transfer cylinder 88, which is maintained at a temperature of mold assembly 85 for about 75 minutes at a about 350°F. The elastomer is then injected pressure through the sprue 87 and the injecthe vane 40 and the platform 60. The vane/ platform assembly is retained in the transfer under about 3,500 psi maximum transfer tomer rubber such as that sold under the 75

temperature of about 350°F., which serves to transfer mold assembly 85 and post-cured for bonded assembly is then removed from the 300°F., after which surplus VITON flash is cure the VITON elastomer 65 and securely bond the vane 40 to the platform 60. The about 16 hours at a temperature of about 80 82

removed from the platform 60 and from the The vane 40, after molding and the postcure cycle has low resistance to erosion vane 40.

- caused by debris such as sand, gravel and the be exposed. Thus, the polyurethane sheath 49 like, to which aircraft gas turbine engines may is applied to the outer surface of the hollow resistance. First the outer surface of the holshell 41 to provide the necessary erosion 90
 - masked to prevent erosion thereof during the grit blasting process. Polyurethane film, approximately .010 inch thick with an approxiblasting, the surfaces of the mounting platlow shell 41 is lightly abraded, as by grit form 60 and the encapsulant 65 being 95 8
- mately .001 inch thick coating of an adhesive 41 by use of a suitable tool, such as a spatula or the like, to prevent entrapment of air or the shape. The film strip is then wrapped around the hollow shell 41, being worked down into resin on one surface thereof, is then cut into intimate contact with the surface of the shell an clongated strip of the desired size and 105
- urethane sheath 49, the vane 40 is placed in When the outer surface of the hollow shell 41 has been completely covered by the polya press fixture 90 (Fig. 13) for curing the adhesive. The press fixture 90 includes a formation of resin-rich pockets. 110
 - intensifier envelope 93 is wrapped around the vane 40 into the press fixture 90, a pressuresheathed vane 40. Preferably, the envelope ranged in a single-fold configuration having upper member 92. Before insertion of the 93 is formed of silicone rubber and is artwo flaps which respectively lie along the convex lower member 91 and a concave 115
- intensifier envelope 93 serves to increase and the sheathed vane 40 and the pressure-intenfixture 90 and cured for about 60 minutes at convex and concave surfaces of the vane 40 a temperature of about 230°F. The pressureedge of the vane 40. Then the assembly of and overlap, as at 94, beyond the trailing sifier envelope 93 are placed in the press 120 125 130

and uniform adherence to the outer surface of the shell 41. The support structure 47 should 40 is then removed from the press fixture 90, provide sufficient internal support during the pressing operation but, if necessary, the holevenly distribute the pressure applied to the operation. The polyurethane sheathed vane sheath 49 to assure uniform curing thereof low core 44 could be pressurized for this

10 the envelope 93 is removed and the sheathed four hours at 270°F. Excess polyurethane film There results a vane assembly 30 which is vane 41 is post-cured in an oven for about is then trimmed from the vane 41.

strength and erosion resistance. Furthermore, obtained without the use of potentially strateexcellent dimensional uniformity and an immetallic airfoils. All of these advantages are fatigue resistance compared to comparable 15 of extremely light weight and inexpensive proved surface finish, as well as improved the vane assembly 30 is characterized by manufacture, and has improved fatigue gic materials. 20

40 is inserted in the boot 55 and the platform 60 is then botted in place on the fan cowl 29 turbofan engine 20, the free end of the vane In mounting the vane assembly 30 to the as described above. 25

Referring now to Fig. 14, there is illustrated an alternative vane construction, generally designated by the numeral 100, which is essentially the same as the vane 40 except that it includes a vibration damping layer. 30

- More specifically, the vane 100 has laminated composite outer shells 101 and 101a comprised of laminae 101b and having walls 102 and 103 which are spaced apart to define an being joined together along the leading and internal cavity 104, the walls 102 and 103 35
 - trailing edges of the vane 100. A corrugated lands 106. A layer 107 of elastomeric vibration damping material lines the inner surface laminated support structure 105 is disposed in the cavity 104, the corrugations being generally trapozoidal and having flattened 6 45

of the shell 101 so as to be in area contact

- exception that the polyurethane layer 107 is 105, the layer 107 preferably being formed with the lands 106 of the support structure of polyurethane. If desired, a polyurethane sheath (not shown) like the sheath 49 may shell 101. The method of fabrication of the applied between the core assembly 71 and vane 100 is substantially the same as that also be applied to the outer surface of the described above for the vane 40, with the 20 22
- assembly of the vane preform 70. The epoxy bonding medium for the polyurethane layer resin in the shell laminae 77 provides the the shell preforms 75 and 76 during the 9

- ion-damping layers interleaved therein. More material, similar to the layers 107, may also laminae 105a and the layers 107a all being this embodiment layers 107a of elastomeric prises laminae 105a of composite material. specifically, the support structure 105 combe interleaved with the laminae 105a, the 101a of the shell, 101 during the molding co-cured simultaneously with the laminae operation. 2 75
- resulting in an extremely light weight and low method of manufacturing such a vane. There structure which provides mechanical support there has been provided an improved hollow cost vane assembly with improved structural and vibration damping; as well as a unique vane construction with an internal support have also been disclosed a method for assembling the vane to a mounting platform, From the foregoing, it can be seen that and operating characteristics. 8 82

CLAIMS

- areas thereon, said support structure cooperatgated support structure disposed in said shell and in area contact therewith at spaced-apart 1. An airfoil construction comprising: a ing with said shell to define hollow cavities hollow faminated shell; a laminated corru-9 95
 - wherein said support structure and said shell 2. The airfoil construction of claim 1, are formed of the same material 11. F therebetween.
- 100 wherein said material, is a composite of carbon or graphite fibers, and glass reinforcement The airfoil construction of claim 2, fibers impregnated with an epoxy resin.
 - wherein said material of said shell is a compoepoxy resin and the material of said support structure comprises laminae of metallic foils site of carbon or graphite fibers and glass 4. The airfoil construction of claim 1, reinforcement fibers:impregnated with an 105
- wherein said material comprises laminae of 5. The airfoil construction of claim 2, metallic foils bonded together. bonded together. 110
 - wherein said faminated corrugated support 6. The airfoil construction of claim 1,
- structure further includes layers of elastomeric the laminae of said laminated support strucvibration damping material interleaved with 115
- The airfoil construction of claim 1, and 120 further including a layer of elastomeric vibration damping material disposed on the inside surface of said shell and being intermittently The airfoil construction of claim 7. contacted by said support structure.
 - 125 wherein said vibration damping layer is formed of polyurethane.
- The airfoil construction of claim 1, and further including an erosion-resistant sheath
 - covering the outer surface of said shell.

 10. The airfoil construction of claim 9, 130

port structure 105 may have additional vibra-

65

as a further embodiment, the laminated sup-

Referring now to Fig. 15 of the drawings,

GB 2 154 286A

~

?

porating the features of the present invention; Figure 2 is an exploded perspective view of including outlet guide vane assemblies incor-

with and embodying the features of the prea vane assembly constructed in accordance sent invention;

Figure 3 is an enlarged sectional view taken along the line 3-3 in Fig. 2;

Figure 4 is a perspective view of the vane assembly of Fig. 2 in assembled condition; Figure 5 is a fragmentary sectional view taken along the line 5-5 in Fig. 4; 9

view of the end plug of the vane assembly of Figure 6 is an enlarged side elevational 5

Figure 7 is a further enlarged view in verti-

cal section taken along the line 7-7 in Fig. 6; Figure 8 is an enlarged fragmentary view of 20 the upper portion of the outlet guide vane

assembly of Fig. 2, illustrating the manner of attachment to the fan cowl;

illustrating a preform, assembly of which is 25 the first step in the fabrication of the vane Figure 9 is a perspective exploded view assembly of Fig. 2;

spective view illustrating the formation of the Figure 10 is an enlarged, fragmentary perpreform of Fig. 9;

essembly for joining the parts of the preform illustrated in Figs. 9 and 10; Figure 11 is a sectional view of a mold 30

Figure 12 is a fragmentary sectional view of an apparatus for bonding the vane to a

Figure 13 is an enlarged sectional view of a press mechanism for applying a sheath to the 35 mounting platform;

Figure 15 is a further enlarged fragmentary sectional view of a further embodiment of the Figure 14 is an enlarged fragmentary sec-40 tional view of an alternative embodiment of the vane of the present invention; and

Description of the Preferred Embodiments vane of the present invention. 4 ت

of the operation of the engine 20 will enhance Referring to Fig. 1 of the drawings, there is diagrammatically illustrated a gas turbofan en-55 the invention to be described below. Basically, generally designated by the numeral 20 various components by way of background for are well known in the art, a brief description While it is recognized that turbofan engines appreciation of the interrelationship of the 20

the engine 20 may be considered as comprisby a shaft 25. The core engine 21 includes an 60 21 and which is interconnected to the fan 22 the direction of the solid arrow, and is initially rotatable stage of fan blades 23, and a fan turbine 24A downstream of the core engine axial flow compressor 26 having a rotor 27. Air enters inlet 28 from the left of Fig. 1, in ing a core engine 21, a fan 22 including a

tending outlet guide vane assemblies 30, (one 30 is to redirect the helical air flow exiting the apart around the core engine cowl. The prime fan blades 23 into a predominantly truly axial direction. A first portion of the relatively cool purpose of the outlet guide vane assemblies with by a plurality of radially outwardly exshown) substantially equiangularly spaced 2

discharges through a fan nozzle 32. A second enters a fan bypass duct 31 defined between the core engine 21 and the fan cowl 29, and compressed air exiting the fan blades 23 portion of the compressed air enters core 80

to a combustor 34 where it is mixed with fuel engine inlet 33, is further compressed by the gines. The hot gases of combustion then pass tion gases which drive a core engine turbine axial flow compressor 26, and is discharged 35. The turbine 35, in turn, drives the rotor and burned to provide high energy combus-27 in the usual manner of gas turbine en-82

turn, drives the fan 22. A propulsive force is discharging air from the fan bypass duct 31 through and drive the fan turbine which, in through the fan nozzle 32 and by the disthus obtained by the action of the fan 22 90

gine nozzle 37 defined, in part, by a plug 38 The present invention relates to the outlet charge of combustion gases from a core enand the cowl 39 of the core engine 21. 95

composite construction and to a novel method guide vane assemblies 30 of novel polymeric of fabrication thereof. Referring now to Figs. vane 40 which comprises a hollow shell 41 assembly 30 includes an elongated airfoil 2 through 8 of the drawings, each vane 8

having walls 42 and 43 which are spaced

41 is an elongated laminated composite corruapart to define a cavity 44 therebetween (Fig. 47a which are integral with the walls 42 and extending the longitudinal length of the shell leading edge 45 and the trailing edge 46 of the vane 40. Disposed in the cavity 44 and gated support structure 47 having generally trapezoidal corrugations with flattened lands 3), and which are interconnected along the 110 105

the walls 42 and 43, the support structure 47 between the corrugations of the support strucserves to provide an erosion-resistant covering 43. Preferably, the lands 47a are bonded to can be seen that the cavity 44 remains open both ends thereof, as at 48 (Fig. 2). Preferainternal support for the walls 42 and 43. It ture 47, and the hollow shell 41 is open at serving as a stiffening member to provide bly, a polyurethane sheath 49 covers the outer surface of the hollow shell 41 and 115 120

Integral with the insert portion 51 at the outer with an end plug 50 which includes an insert and thereof and extending laterally outwardly One open end 48 of the shell 41 is closed portion 51 having a concave inner end 52.

130

compressed by the fan blades 23.

65

for the vane 40,

eral surface thereof. The other end of the vane 41 and be substantially flush with the periphtherefrom is a cap flange 53 dimensioned to bear against the distal and edge of the shell 40 is adapted to be received in a boot 55,

and extending laterally outwardly therefrom is the socket insert 56 at the upper end thereof end of the vane 40 is inserted. Integral with More specifically, the boot 55 has a socket insert 56 defining a cavity 57 in which the which is mounted in core engine cowl 39. 9

Mounted on the plugged end of the vane 40 is a mounting platform 60 to facilitate an attachment flange 58.

associated turbofan engine 20. The mounting peripheral wall 62 integral therewith around platform 60 has a substantially rectangular base plate 61 provided with an upstanding mounting of the vane assembly 30 in the 5

base plate 61 and projecting upwardly therefrom is an arcuate body 63 defining a recess or cavity 64 which is shaped complementary the perimeter thereof. Also integral with the to but dimensioned slightly larger than the 20

plugged end of the vane 40. The plugged end clearance space therearound, which space is of the vane 40 is received in the cavity 64 with a predetermined substantially uniform filled with an elastomeric encapsulant 65

mounting platform 60. Preferably, the encapsulant 65 is injected into the clearance space through an injection bore 66 in the arcuate which serves to bond the vane 40 to the body 63, as will be explained more fully

receiving a complementary fastener, such as a bolt 68 and nut plate 68a (Fig. 8). Both the and with the arcuate body 63 are two mountbelow. Also integral with the base plate 61 platform 60 and the plug 50 are preferably ing lugs 67, each provided with a bore for 40

formed of a nylon filled with carbon fibers.

8

In use, the vane assembly 30 is mounted in complementary recess (not shown) in the cowl place by inserting the free end of the vane 40 , being secured in into the boot 55, which is mounted in a 39 of the core engine 21 45

The vane assembly 30 offers the advantage place by suitable means. The mounting platform 60 is secured by bolts 68 to the inner surface of the fan cowl 29, as illustrated in

the application of a few fasteners, and has the structure 47 supports the outer aerodynamic hollow construction. The corrugated support mounting in the gas turbofan engine 20 by of a preformed assembly which is ready for advantage of low weight by reason of its shell 41 internally.

the drawings, the method of fabrication of the Referring now also to Figs. 9 through 13 of vane assembly 30 will be described. The vane which includes a core assembly 71 and shell 40 is first constructed from a vane preform. preforms 75 and 76. The core assembly 71 generally designated by the numeral 70,

spectively disposed in the spaces between the comprises the uncured faminated corrugated support structure 47 and a plurality of elongated removable mandrels 73 which are recorrugations of the support structure 47 on both sides thereof, as illustrated in Fig. 10.

core assembly 7,1 ,which is substantially in the are interposed to form the corrugations in the the uncured support structure 47 to form the aerodynamic shape of the finished vane 40. support structure 47. The mandrels 73 are shaped and dimensioned to cooperate with 2

structure 47 are stacked and the mandrels 73

More specifically, the laminae of the support

and glass fibers, such as unidirectional hybrid thin laminae of a composite material, preferathermosetting epoxy resin, available from the bly a composite of graphite or carbon fibers The support structure 47 may be formed of 80-graphite/20-glass, impregnated with a 8 85

forms 75 and 76, or both, could be formed of a composite consisting of, for example, lami-3M Company, St., Paul, Minnesota, Alternatively, the support structure 47, or the prenae of metallic foils bonded together by a 8

suitable adhesive. Each of the mandrels 73 is resin during cure, the material preferably beformed of a material with release characteristics so that it will not adhere to an epoxy ing a silicone rubber, such as that sold by 95

General Electric Company under the trade-Each of the shell preforms 75 and 76 mark TUFEL.

preforms 75 and 76 are respectively laid over composite material, preferably the same comcomprises a plurality of thin laminae 77 of a posite as the support structure 47. The shell the convex and concave surfaces of the core assembly 71, each of the shell preforms 75 8

these extending portions of the shell preforms being dimensioned to be longitudinally coterthe leading and trailing edges thereof so that tending beyond the core assembly 71 along minous with the core assembly 71, but ex-

110 75 and 76 overlap each other. Thus, it will be appreciated that the inner ones of the laminae 77 are in area contact with the lands 47a of

After the vane preform 70 is assembled, it which includes heated matched male and female dies 81 and 82. Heat and pressure are 115 is placed in a molding machine 80 (Fig. 11) simultaneously applied to the vane preform the support structure 47.

support structure 47, in one step. More specipreforms 75 and 76 are bonded together, the laminae of the support structure 47 are cured 70 by the molding machine 80 to cure the 120 vane preform 70, including the corrugated fically, the laminae 77 of each of the shell

the leading and trailing edges of the vane 40. The inner ones of the laminae 77 are simultaand the overlapping portions of the shell preforms 75 and 76 are bonded together along neously bonded to the lands 47a of the 30

support structure 47, but they are not bonded