# Equivalence Class Testing

## Introduction

Use of Equivalence Classes as the basis for functional testing has 2 motivations:

- Have a sense of complete testing
- Avoid redundancy

Ex: In triangle problem (5,5,5) is a test case for equilateral triangle.

Testing again with (6,6,6) or (10,10,10) makes no sense!

### Equivalence Class Test Cases for NextDate function

#### Based on valid values, the equivalence classes are:

```
MI= {month: I <= month <= 12}
```

$$DI = {day: I <= day <= 3I}$$

### And the invalid equivalence classes are:

```
M2 = \{month : month < 1\}
```

$$M3 = \{month : month > 12\}$$

$$D2 = {day : day < 1}$$

$$D3 = {day : day > 31}$$

$$Y2 = {year: year < 1812}$$

$$Y3 = {year : year > 2050}$$

### Example of: Weak Normal Equivalence testing

Assume the equivalence partitioning of input X is: 1 to 10; 11 to 20, 21 to 30 and the equivalence partitioning of input Y is: 1 to 5; 6 to 10; 11 to 15; and 16 to 20



We have covered each of the 4 equivalence classes for input Y.

General rule for # of test cases?
What do you think?
# of partitions of the largest set?

### Example of: Strong Normal Equivalence testing

Assume the equivalence partitioning of input X is: 1 to 10; 11 to 20, 21 to 30 and the equivalence partitioning of input Y is: 1 to 5; 6 to 10; 11;15; and 16 to 20



### a. Weak Normal and Strong Normal EC test case

| Test Case ID | Month (mm) | Day (dd) | Year (yyyy) | Expected Output |
|--------------|------------|----------|-------------|-----------------|
| WNI, SNI     | 6          | 15       | 1912        | 6/16/1912       |

### Example of: Strong Robust Equivalence testing

Assume the equivalence partitioning of input X is: 1 to 10; 11 to 20, 21 to 30 and the equivalence partitioning of input Y is: 1 to 5; 6 to 10; 11;15; and 16 to 20



### Example of: Weak Robust Equivalence testing

Assume the equivalence partitioning of input X is 1 to 10; 11 to 20, 21 to 30 and the equivalence partitioning of input Y is 1 to 5; 6 to 10; 11;15; and 16 to 20



### b. Weak Robust EC Test Cases

| Test Case ID | Month (mm) | Day (dd) | Year (yyyy) | Expected Output                                                    |
|--------------|------------|----------|-------------|--------------------------------------------------------------------|
| WRI          | 6          | 15       | 1912        | 6/16/1912                                                          |
| WR 2         | -1         | 15       | 1912        | Invalid Value of Month, as Month cannot be -ve                     |
| WR 3         | 13         | 15       | 1912        | Invalid Value of Month, as Month is always < 12                    |
| WR 4         | 6          | -1       | 1912        | Invalid Value of Day, as<br>Day cannot be -ve                      |
| WR 5         | 6          | 32       | 1912        | Invalid Value of Day, as<br>we cannot have 32 days<br>in any month |
| WR 6         | 6          | 15       | 1811        | Invalid Value of Year, as<br>the rage is 1812 to<br>2012 only      |
| WR 7         | 6          | 15       | 2013        | Invalid Value of Year                                              |

### c. Strong Robust EC test cases

- Multiple fault assumption.
- Robust-Test along with invalid inputs.
- Since there are 3 partitions/ Classes for each input variables. The total number of test cases is

$$(MI,M2,M3) \times (DI,D2,D3) \times (YI,Y2,Y3)$$

i.e.  $3\times3\times3=27$  test cases.

## Strong Robust EC test cases (contd..)

| Test case Id | Day | Month | Year |
|--------------|-----|-------|------|
| SRI          | DÍ  | MI    | ΥI   |
| SR2          | DI  | MI    | Y2   |
| SR3          | DI  | MI    | Y3   |
| SR4          | DI  | M2    | ΥI   |
| SR5          | DI  | M2    | y2   |
| SR6          | DI  | M2    | у3   |
| SR7          | DI  | M3    | ΥI   |
| SR8          | DI  | M3    | Y2   |
| SR9          | DI  | M3    | Y3   |
| SR10         | D2  | MI    | ΥI   |
| SRII         | D2  | MI    | Y2   |
| SR12         | D2  | MI    | Y3   |
| SR13         | D2  | M2    | ΥI   |
| SR14         | D2  | M2    | Y2   |
| SR15         | D2  | M2    | Y3   |
| SR16         | D2  | M3    | ΥI   |
| SR17         | D2  | M3    | Y2   |
| SR18         | D2  | M3    | Y3   |
| SR19         | D3  | MI    | ΥI   |
| SR20         | D3  | MI    | Y2   |
| SR21         | D3  | MI    | Y3   |
| SR22         | D3  | M2    | ΥI   |
| SR23         | D3  | M2    | Y2   |
| SR24         | D3  | M2    | Y3   |
| SR25         | D3  | M3    | ΥI   |
| SR26         | D3  | M3    | Y2   |
| SR27         | D3  | M3    | Y3   |

# Modified Equivalence Class for NextDate Problem

We need the modified classes as we know that at the end of a month

- The next day is I and the month is incremented.
- At the end of a year, both the day and the month are reset to I and the year is also incremented.
- Finally, the problem of leap year makes determining the last day of a month interesting.

### With all the above in mind, we describe the following equivalence classes

```
MI = {month : month has 30 days}

M2 = {month : month has 31 days}

M3 = {month : month is February}

DI = {day : I ≤ day ≤ 28}

D2 = {day : day = 29}

D3 = {day : day = 30}

D4 = {day : day = 31}

YI = {year : year = 2000}

Y2 = {year : year is a leap year}

Y3 = {year : year is a common year}
```

## **Weak Normal Equivalence Class**

- The inputs are mechanically selected from the approximate middle of the corresponding class
- Based on single fault assumption.

| Test Case ID | Month (mm) | Day (dd) | Year (yyyy) | Expected Output        |
|--------------|------------|----------|-------------|------------------------|
| WNI          | 6          | 14       | 2000        | 6/15/2000              |
| WN2          | 7          | 29       | 1996        | 7/30/1996              |
| WN3          | 2          | 30       | 2002        | 2/31/2002 (Impossible) |
| WN4          | 6          | 31       | 2000        | 7/1/2000 (Impossible)  |

## **Strong Normal Equivalence Class**

- Strong- Multiple fault assumption
- Normal-Testing for valid set of data/ valid inputs
- There will be 36 test cases.

(MI,M2,M3)X(DI,D2,D3,D4)X(YI,Y2,Y3)

i.e.  $3\times4\times3=36$  test cases.

### **Strong Normal Equivalence Class**

| Test Case ID | Month (mm) | Day (dd) | Year (yyyy) |
|--------------|------------|----------|-------------|
| SNI          | 6          | 14       | 2000        |
| SN2          | 6          | 14       | 1996        |
| SN3          | 6          | 14       | 2002        |
| SN4          | 6          | 29       | 2000        |
| SN5          | 6          | 29       | 1996        |
| SN6          | 6          | 29       | 2002        |
| SN7          | 6          | 30       | 2000        |
| SN8          | 6          | 30       | 1996        |
| SN9          | 6          | 30       | 2002        |
| SN10         | 6          | 31       | 2000        |
| SNII         | 6          | 31       | 1996        |
| SN12         | 6          | 31       | 2002        |
| SN13         | 7          | 14       | 2000        |
| SN14         | 7          | 14       | 1996        |
| SN15         | 7          | 14       | 2002        |
| SN16         | 7          | 29       | 2000        |
| SN17         | 7          | 29       | 1990        |
| SN18         | 7          | 29       | 2002        |
| SN19         | 7          | 30       | 2000        |
| SN20         | 7          | 30       | 1996        |
| SN21         | 7          | 30       | 2002        |
| SN22         | 7          | 31       | 2000        |
| SN23         | 7          | 31       | 1996        |
| SN24         | 7          | 31       | 2002        |
| SN25         | 2          | 14       | 2000        |
| SN26         | 2          | 14       | 1996        |
| SN27         | 2          | 14       | 2002        |
| SN28         | 2          | 29       | 2000        |
| SN29         | 2          | 29       | 1996        |
| SN30         | 2          | 29       | 2002        |
| SN31         | 2          | 30       | 2000        |
| SN32         | 2          | 30       | 1996        |
| SN33         | 2          | 30       | 2002        |
| SN34         | 2          | 31       | 2000        |
| SN35         | 2          | 31       | 1996        |
| SN36         | 2          | 31       | 2002        |

# Weak Robust Equivalence Class

- For valid inputs use one value from each valid class
- For invalid inputs, a test case will have one invalid value (from input domain) and the remaining value will all be valid.

## Strong Robust Equivalence Class

- Multiple Fault assumption
- Tests along with invalid inputs.
- We will have
  - Day- 6 classes
  - Month 5 Classes
  - Year -5 classes
- Therefore, Total no. of test Cases will be

$$5x6x5 = 150$$

## Triangle Problem

- **Simple version**: The triangle program accepts three integers, a, b, and c, as input. These are taken to be sides of a triangle. The output of the program is the type of triangle determined by the three sides: Equilateral, Isosceles, Scalene, or Not A Triangle.
- Improved version: "Simple version" plus better definition of inputs:

The integers a, b, and c must satisfy the following conditions:

- cl.  $1 \le a \le 200 \text{ c4. a} < b + c$
- c2.  $I \le b \le 200 \text{ c5. b} < a + c$
- c3.  $I \le c \le 200$  c6. c < a + b

# (contd..)

**Final Version**: "Improved version" plus better definition of outputs:

If an input value fails any of conditions c1, c2, or c3, the program notes this with an output message, for example, "Value of b is not in the range of permitted values. "If values of a, b, and c satisfy conditions c1, c2, and c3, one of four mutually exclusive outputs is given:

☐ If all three sides are equal, the program output is Equilateral.
☐ If exactly one pair of sides is equal, the program output is Isosceles.
☐ If no pair of sides is equal, the program output is Scalene.
☐ If any of conditions c4, c5, and c6 is not met, the program output is NotATriangle.

### Write all EC test cases for Triangle Problem

- Use output equivalence class
- 4 possible outputs : Equilateral, Isosceles, Scalene, and Not A Triangle
- 4 equivalence class:
  - RI ={<a,b,c>: the triangle with sides a, b, and c is equilateral}
  - R2 ={<a,b,c> : the triangle with sides a, b, and c is isosceles}
  - R3 ={<a,b,c> : the triangle with sides a, b, and c is scalene}
  - R4 ={<a,b,c> : the triangle with sides a, b, and c do not form a triangle}

## Weak normal

| Test case id | a | b | С | Expected       |
|--------------|---|---|---|----------------|
| 1            | 5 | 5 | 5 | Equilateral    |
| 2            | 2 | 2 | 3 | Isosceles      |
| 3            | 3 | 4 | 5 | Scalene        |
| 4            | 4 | i | 2 | Not a triangle |

# Weak Robust Equivalence Class

Weak-normal cases + following error cases

| Test Case | а   | b   | С   | Expected<br>Output |
|-----------|-----|-----|-----|--------------------|
| WR1       | -1  | 5   | 5   | a not in range     |
| WR2       | 5   | -1  | 5   | b not in range     |
| WR3       | 5   | 5   | -1  | c not in range     |
| WR4       | 201 | 5   | 5   | a not in range     |
| WR5       | 5   | 201 | 5   | b not in range     |
| WR6       | 5   | 5   | 201 | c not in range     |