

Rapport de Stage Industriel

Mise en place d'une expérience à très basse température et étude d'effets quantiques dans des systèmes nanométriques

FÉLIX PIÉDALLU

FILIÈRE PNS 2014-2015

Au sein de l'équipe HQC

Sous la direction de Takis Kontos et Laure Bruhat

Table des matières

ın	troa	uction	3											
1	L'ex	xpérience	4											
	1.1	Interaction d'électrons et de photons dans un nanotube de carbone	4											
		1.1.1 Un milieu 1D (nanotube)	4											
		1.1.2 Une cohérence spatiale (atome artificiel)	4											
		1.1.3 L'interaction Électrons/Rayonnement Gigahertz	4											
		1.1.4 Quelques exemples d'expériences	4											
	1.2	Fabrication des nanotubes de Carbone	4											
	1.3	Utilisation du champ magnétique	4											
2	Le d	cryostat à dilution	5											
	2.1	·												
	2.2													
3	Le d	câblage DC et RF	8											
	3.1	Choix des matériaux	9											
	3.2	Thermalisation électronique	9											
	3.3	Filtrage des lignes DC	10											
		3.3.1 Blindage des câbles coaxiaux	11											
	3.4	Fabrication des câbles coaxiaux	11											
	3.5	Caractérisation des câbles coaxiaux	13											
4	Les	résultats de l'expérience (avant et/ou après câblage)	15											
5	Bila	an	16											
	5.1	Guide de câblage, d'utilisation du VNA	16											

REMERCIEMENTS

Je tiens à remercier Takis Kontos et Laure Bruhat pour m'avoir accueilli au sein de l'équipe HQC, ainsi que pour m'avoir encadré durant ce stage. De plus, je souhaite remercier l'ensemble des membres de l'équipe avec lesquels j'ai pu échanger sur leurs projets de recherche. Enfin, je souhaite remercier Phelma Grenoble-INP pour m'avoir donné l'opportunité de réaliser ce stage.

Hybrid Quantum Circuits

L'équipe HQC fait partie du Laboratoire Pierre Aigrain, le laboratoire de l'ENS Ulm spécialisé dans la physique de la matière condensée et la physique mésoscopique.

Basé à Paris, il regroupe autour de Takis Kontos et Audrey Cottet plusieurs doctorants : Matthieu Baillergeau, Matthieu Desjardins, Matthieu Dartiailh et Laure Bruhat, avec qui j'ai essentiellement travaillé durant mon stage.

Les sujets de recherche sont essentiellement concentrés autour de la spintronique et du transport quantique dans des nanotubes de carbone.

Introduction

Laure Bruhat a entamé depuis plus de deux ans une thèse portant notamment sur la séparation des paires de Cooper intriquées dans une cavité micro-ondes et le transport quantique. Pour ce faire, elle a mis en place une expérience dans un cryostat à dilution sèche, fourni par CryoConcept.

Le cryostat ouvert avec la bobine (bleue)

Ce cryostat étant "spacieux", Takis Kontos et Laure Bruhat ont décidé d'y rajouter une expérience. Celle-ci serait placée au sein d'un champ magnétique, généré par une bobine installée dans le cryostat. Cette expérience pourra donc permettre d'étudier l'influence du champ magnétique (700mT) sur la séparation des paires de Cooper.

Mon travail consiste donc à comprendre l'ensemble du fonctionnement du cryostat, et à câbler la seconde expérience, de la fabrication des câbles à leur caractérisation et leur mise en place dans le cryostat. Il consiste aussi à mettre à froid pour les divers tests du cryostat après la mise en place de la bobine

L'expérience

- 1.1 Interaction d'électrons et de photons dans un nanotube de carbone
- 1.1.1 Un milieu 1D (nanotube)
- 1.1.2 Une cohérence spatiale (atome artificiel)
 - \rightarrow Pas de bruit ambiant \rightarrow cryostat
- 1.1.3 L'interaction Électrons/Rayonnement Gigahertz
 - ightarrow Contrôle excellent du signal envoyé ightarrow câbles coaxiaux les plus parfaits possibles
- 1.1.4 Quelques exemples d'expériences
 - Cooper Pair Splitter
 - Couplage Champ électrique/Trajectoire/Spin
- 1.2 Fabrication des nanotubes de Carbone
- 1.3 Utilisation du champ magnétique

Le cryostat à dilution

Afin d'accéder à des températures de l'ordre que la dizaine de milliKelvins, l'expérience est située dans un cryostat à dilution sèche.

2.1 Principe d'un cryostat à dilution

FIGURE 2.1 : Schéma du cryostat à dilution et diagramme de phase du mélange d'Hélium

Le cryostat à dilution est basé sur certaines propriétés du mélange des isotopes d'Hélium 3 He et 4 He.

Prenons un mélange équilibré liquide ${}^{3}\text{He}/{}^{4}\text{He}$ (donc pré-refroidi à 1K) ; ${}^{1}{}^{4}\text{He}$ étant le plus lourd, il tombe au fond et ${}^{1}{}^{3}\text{He}$ flotte au-dessus.

Ensuite, du point de vue des interactions quantiques dans chacun des liquides, on remarque que les interactions pour l'atome d'³He sont plus faibles que pour l'⁴He : les premiers vont descendre dans la phase ⁴He, mais pas l'inverse.

On se trouve donc en présence de deux phases : celle, plus légère, d' 3 He pur, et celle de mélange 3 He/ 4 He. Enfin, les atomes d' 3 He sont des Fermions, et le principe d'exclusion de Pauli s'y applique : la solubilité de l' 3 He dans l' 4 He sera limitée aux environs de $\{6,6\%$ 3 He, 93.4% 4 He $\}$.

Lorsqu'on pompe de l'³He de la phase diluée vers la phase pure, une pression osmotique va apparaître à l'interface des deux phases : l'³He va alors se dissoudre dans la phase diluée. Or cette réaction est endothermique, et ceci fournit la puissance calorifique au cryostat.

Ceci se passe au niveau de la chambre de mélange.

Lorsque la pompe diminue la pression dans cette chambre de mélange, la phase diluée va monter jusqu'au réservoir supérieur. Ici, la température est aux alentours de 600-800mK et la pression de ~ 10 Pa.

L'³He va essentiellement s'évaporer du mélange. En effet, il a une pression partielle bien plus évelée que l'⁴He, qui lui va en grande partie rester confiné dans le réservoir et dans la chambre de mélange.

La vapeur va alors passer par la pompe (à température ambiante), être refroidie pour revenir jusqu'à la chambre de mélange où la pression osmotique entre les deux phases va augmenter d'autant plus : de l'³He va alors passer dans la phase diluée en refroidissant le cryostat, et recommencer le processus.

Les échangeurs thermiques permettent à l'³He réinjecté d'être remis à basse température pour ne pas réchauffer l'ensemble du cryostat. Cela permet aussi d'augmenter la température dans le réservoir supérieur et permettre à l'³He de s'évaporer.

2.2 Cryostat sec : Principe du tube à gaz pulsé

Le mélange doit être pré-refroidi avant d'être injecté dans le cryostat.

La plupart des cryostats utilisent un bain d'azote liquide à 77K qui permet aussi de nettoyer le mélange des impuretés, un bain d'⁴He liquide à 4,2K, puis un bain d'⁴He liquide à faible pression à 1K (diminuer la pression de l'⁴He permet d'abaisser son point de condensation).

Ces derniers bains nécessitant un apport d'⁴He, il peuvent être remplacé par un tube à gaz pulsé, d'où l'appellation de cryostat sec (mis à part le bain d'azote liquide qui est à l'extérieur du cryostat).

Un tube à gaz pulsé fonctionne selon un cycle proche du cycle de Stirling, grâce à un piston et un compresseur. Ceux-ci engendrent des vibrations importantes, qui pourraient empêcher toute mesure dans le cryostat. C'est pour cela que le tube pulsé est séparé du cryostat.

FIGURE 2.2 : Schéma du tube à gaz pulsé

Figure 2.3: Organisation du cryostat à dilution sèche

Le câblage DC et RF

Le câblage du cryostat consiste en deux parties :

Les câbles DC: ils véhiculent les signaux continus. Au nombre de 17, ils sont thermalisés à chaque étage pour limiter le bruit thermique.

Les câbles coaxiaux : les deux grilles rapides, le signal d'entrée et le signal de sortie. Ils font l'objet de beaucoup d'attention, afin d'avoir les meilleures mesures possibles.

FIGURE 3.1 : Schéma de câblage de l'expérience

3.1 Choix des matériaux

Parlons tout d'abord des câbles de descente. Ceux-ci véhiculent le bruit thermique d'étage en étage, ce que nous voulons limiter au maximum.

Nous faisons donc le choix de câbles atténuant le signal afin de limiter l'apport de bruit. Ceci permet en plus de limiter les ponts thermiques entre étages dûs à la conductivité des câbles.

Les câbles DC sont alors :

- des câbles coaxiaux souples entre 300K et 800mK, peu résistifs (le signal est suffisant pour avoir un bon rapport signal/bruit)
- des câbles de Manganin, très résistifs ($\sim 45\Omega/m$), jusqu'à 20mK (l'étage le plus froid)
- des câbles peu résistifs ($\sim 0.4\Omega/m$) jusqu'à la chambre d'expérience

et les câbles RF coaxiaux semi-rigides de descente sont :

- en Cuivre-Béryllium, thermalisé à chaque étage, jusqu'à 20mK. Le CuBe est beaucoup plus résistif que le Cuivre.
- en Cuivre jusqu'à la chambre d'expérience

Les câbles sont cintrés en "U" entre chaque étage, afin de limiter le passage des radiations au maximum. Ceci permet de plus d'avoir une certaine souplesse dans les câbles pour les connecter sans trop de difficultés.

Enfin, on rajoute à chaque étage un atténuateur (valeur en rouge sur le schéma). Ceci permet d'envoyer en amont du cryostat un signal très fort, qui détruirait les échantillons, pour avoir dès le départ un rapport signal/bruit très bon.

Pour le câble de remontée, on raisonne différemment : il faut atténuer le signal le moins possible, jusqu'à l'amplificateur haute fréquence qui est situé à 4K (sa température nominale de fonctionnement). Un câble rigide de Niobium-Titane est alors utilisé.

Afin de limiter le "retour" de signal de l'amplificateur par ce câble, on thermalise deux circulateurs à 20mK. On utilise des câbles de Cuivre pour les connexions avec la chambre d'expérience.

3.2 Thermalisation électronique

Une grande partie du bruit provient de la température électronique. Si les câbles ne sont pas bien thermalisés, on risque de ne mesurer qu'un bruit à 300K.

Les câbles coaxiaux sont thermalisés à chaque étage du cryostat par des pinces, reliées par des câbles de cuivre jusqu'aux platines du cryostat. L'ensemble des pièces est bien sûr doré pour avoir les meilleurs contacts thermiques possibles ; les pores des parois en contact sont bouchées par de l'Apiezon N, à l'instar de la pâte thermique de nos processeurs.

Les câbles DC sont thermalisés à chaque étage par des presses dorées grâce à de la Stycast. Cette époxy permet une très bonne thermalisation des câbles fins aux presses dorées et montées sur les platines du cryostat.

Une thermalisation s'effectue aussi au niveau du boîtier de thermalisation où les câbles font des méandres afin d'assurer une bonne thermalisation électronique.

(a) Fils de Manganin "stycastés" dans une presse dorée

(b) Câbles coaxiaux thermalisés

FIGURE 3.2 : Thermalisation des câbles sur la platine du cryostat

3.3 Filtrage des lignes DC

En plus de la thermalisation, les lignes DC sont filtrées à l'étage 20mK. Un premier filtrage est effectué dans le boîtier de thermalisation à l'aide d'un filtre Passe-Bas RC du second ordre.

FIGURE 3.3 : Boîtier de thermalisation non soudé

Un second filtrage est effectué grâce à l'Eccosorb. Cette résine composite à base d'époxy (même fabricant que la Stycast, mêmes solutions) absorbe très efficacement les micro-ondes résultant du bruit électronique.

Il a donc fallu mettre en place un petit boîtier, dans lequel nous faisons passer 17 câbles bleus de 80cm, compartimenté pour que l'Eccosorb n'abîme pas les prises lors du durcissement et des cycles de refroidissement.

J'ai donc décidé de dessiner des pièces en 3D sous OpenSCAD afin de former ces compartiments. Après quelques recherches, il est apparu que le matériau le plus utilisé en impression 3D,

(a) Modélisation 3D des pièces dans le boîtier

(b) Boîtier de filtrage en place dans le cryostat

FIGURE 3.4 : Boîtier de filtrage, rempli d'Eccosorb

le PLA, peut être utilisé dans un cryostat (bien que jamais utilisé jusqu'ici).

En fait, beaucoup de matériaux ne sont pas compatibles avec de telles applications. Notamment, la faible pression dans le cryostat peut faire dégazer les matériaux (air dans les parois poreuses, ou des composants du matériau lui-même qui s'évapore). La plupart des matériaux élastiques sont dans ce cas.

De plus, certains matériaux peuvent ne pas supporter les cycles de refroidissement dans le cryostat. C'était le cas des précédentes séparations, qui ont alors cassé les câbles qui passaient au travers.

3.3.1 Blindage des câbles coaxiaux

En aval du boîtier de thermalisation, les câbles sont bien thermalisés et déjà bien filtrés. On ne voudrait donc pas laisser les câbles DC non blindés, au risque de recevoir des radiations, ne serait-ce que de l'étage à 100mK.

Une tresse métallique soudée à la masse entoure donc les câbles jusqu'au boîtier de filtrage micro-ondes. Celui-ci est directement branché sur la chambre d'expérience, les câbles restent donc isolés.

3.4 Fabrication des câbles coaxiaux

Comme je l'ai précisé plus haut, les signaux RF sont véhiculés par des câbles coaxiaux semi-rigides.

J'ai donc procédé intégralement à la fabrication et la caractérisation de ces câbles.

La moindre imperfection des câbles coaxiaux se ressent fortement sur leur atténuation - nous verrons cela plus tard -, il faut donc les manier et les cintrer en faisant attention à ne pas les tordre.

Dénudage Il faut dénuder quelques millimètres du câble pour souder la pin sur l'âme du câble coaxial. On utilisera le support 21B ainsi que la petite scie. Il faut aller doucement sans appuyer, jusqu'à ce qu'on sente que c'est "lisse".

Soudure de la pin centrale On fixe la pin sur l'âme du câble, puis on serre le tout en place avec la pièce W60 Il ne faut pas oublier l'entretoise W56 entre la pin et l'isolant encore en place.

FIGURE 3.5 : Dénudage d'un câble coaxial

Pour souder il suffit de chauffer l'extérieur de la pin tout en positionnant le fil d'étain sur le trou sur le bord de la pin.

FIGURE 3.6 : Pin centrale soudée sur le câble

Soudure de la prise extérieur On fixe sur la prise mâle une prise femelle factice W14M (81) qui permet de positionner comme il faut la prise. Comme à l'étape précédente on serre le tout en place. Le plus efficace est de faire un tortillon d'étain au-dessus de la prise, que l'on chauffe. En étant un peu patient l'étain va fondre et rentrer naturellement dans la prise.

Fixation de l'isolant La dernière étape est de mettre l'isolant entre la prise et la pin. on utilise la pièce W52 (W53) que l'on serre à la clé dynamométrique. On place l'isolant à l'intérieur, et on pousse d'un coup avec la pièce complémentaire. Mesure du câble nécessaire Maintenant il faut prendre la dimension de câble à couper. Sur le montage il faut prendre la dimension entre les deux

FIGURE 3.7 : Soudure de la prise extérieure

FIGURE 3.8 : Fixation de l'isolant

3.5 Caractérisation des câbles coaxiaux

Maintenant que les câbles ont été cintrés et connectorisés, il faut mesurer leur caractéristique atténuation/fréquence. D'une part pour vérifier si les câbles sont utilisables, et d'autre part pour avoir les valeurs exactes d'atténuation afin de calibrer nos mesures à fréquence fixée.

L'appareil dédié à cette tâche est le VNA (Vector Network Analyzer) ou PNA (Performance Network Analyzer). L'équipe a récemment fait l'acquisition d'un PNA N5242 de Agilent.

En se plaçant sur un canal de mesure, on calibre l'appareil avec les câbles flexibles supplémentaires, puis on connecte notre câble coaxial.

FIGURE 3.9 : Le PNA de l'équipe

Figure $3.10: La caractéristique d'un câble <math display="inline">\operatorname{correct}(\operatorname{vert})$ et un abîmé (violet)

Les résultats de l'expérience (avant et/ou après câblage)

Bilan

5.1 Guide de câblage, d'utilisation du VNA,...

Conclusion

Bibliographie

[1] Page de l'équipe NanoSpin. http://neel.cnrs.fr/spip.php?rubrique51.

Guide de câblage du cryostat à dilution

Félix Piédallu

Juin 2015

Table des matières

Tables de cablage	1
1.0.1 Câbles en manganin	1
1.0.2 Câbles bleus blindés (tresse)	3
1.0.3 Boîtier de filtrage	3
Boîtier de filtrage	3
2.1 Connexions du bloc	4
2.2 Compartimentage du bloc	4
2.4 Préparation de l'Écosorb	4
Soudure des prises μD	4
Connexion avec la canne	4
Tresse	4
Câblage des lignes RF	4
	4
6.2 Thermalisation des câbles RF	
Caractérisation des câbles au VNA	5
	5
7.5 Enregistrement d'une mesure	
	1.0.1 Câbles en manganin 1.0.2 Câbles bleus blindés (tresse) 1.0.3 Boîtier de filtrage 2.1 Connexions du bloc 2.2 Compartimentage du bloc 2.3 Câblage du bloc 2.4 Préparation de l'Écosorb Soudure des prises μD Connexion avec la canne Tresse Câblage des lignes RF 6.1 Guide de fabrication des câbles 6.2 Thermalisation des câbles RF Caractérisation des câbles au VNA 7.1 Création de la nouvelle trace 7.2 Paramètres du VNA 7.3 Calibration du VNA 7.4 Lancement d'une mesure

1 Tâbles de câblage

L'"entrée" est à gauche, la "sortie" en haut de chaque tableau.

Les indices en rouge correspondent aux lignes haute impédance (= utilisables avec les grilles rapides)

1.0.1 Câbles en manganin

Les indices de l'entrée sont numérotés à partir du scotch métallisé.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1				33.3													
2			32.9														
3																32.5	
4										32.3							
5													32.8				
6						33.0											
7									33.1								
8																	32.8
9								33.1									
10														34.0			
11		32.7															
12															32.8		
13							33.0										
14					33.3												
15												32.7					
16											32.9						
17	32.8						·										

1.0.2 Câbles bleus blindés (tresse)

Résistance de tous les fils : $0.2-0.3\Omega$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1														×			
2		×															
3				×													
4					×												
5																×	
6												×					
7			×														
8															×		
9											×						
10										×							
11							×										
12													×				
13	×																
14								×									
15						×											
16									×								
17																	×

1.0.3 Boîtier de filtrage

Résistance de tous les fils : $0.2-0.3\Omega$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1									×								
2				×													
3																	×
4					×												
5														×			
6							×										
7																×	
8												×					
9						×											
10											×						
11			×														
12								×									
13															×		
14		×															
15													×				
16	×																
17										×							

2 Boîtier de filtrage

B.o.M:

- $10 \times \text{Vis M2}$
- 2 × Prises μD femelle
- $-4 \times \text{Vis M1} + \text{\'ecrou} + 2 \text{ rondelles (pour les prises)}$
- ×

2.1 Connexions du bloc

Le bloc est connecté grâce à des prises μD . Les vis d'entrée sont "maison", les vis de sortie sont des vis Allen 2.5mm.

2.2 Compartimentage du bloc

Afin de filtrer les micro-ondes des lignes DC, nous faisons passer les 17 câbles par un boîtier rempli d'Écosorb.

Malheureusement, l'Écosorb peut abîmer les soudures et les câbles au bout de quelques cycles de refroidissement. Nous avons donc décidé de compartimenter ce boîtier pour protéger les connexions.

Des pièces en PLA vont alors être imprimées. Elles ont été dessinées grâce à OpenSCAD et converties au format STL.

2.3 Câblage du bloc

On utilise 17 câbles bleus de 80cm. Ces câbles sont entortillés autour d'une chute de câble coaxial. On les passe alors d'abord dans les pièces en PLA puis on les soude sur les prises μD .

2.4 Préparation de l'Écosorb

On fait un mélange d'écosorb avec 1,18% de catalyseur (en poids) : Ici on a mélangé 2,5g de catalyseur pour 212g de pâte. Il faut d'abord bien homogénéiser la pâte avant de mélanger.

Le mélange sèche en quelques jours. Il faut donc faire attention à poser le bloc bien à l'horizontale (en pensant aux prises).

3 Soudure des prises μD

Les prises μD sont assez fragiles, il ne faut pas appuyer trop sur les pins avec le fer. La technique est de remplir la pin d'étain, puis de glisser le fil dedans sans avoir à apporter d'étain. Il est préférable de mettre une gaine thermorétractable à une soudure sur deux.

4 Connexion avec la canne

On utilise une prise μ D (vis maison) que l'on fixe sur le bouchon de la canne. Faire attention au sens de branchement, en fonction de l'aménagement du cryostat (normalement un trait au feutre noir indique le sens).

5 Tresse

Entre le boîtier de thermalisation et de filtrage, les câbles sont blindés par une tresse d'aluminium. Il est préférable de faire passer les câbles une fois qu'une prise μD est soudée.

6 Câblage des lignes RF

6.1 Guide de fabrication des câbles

Voici une liste des étapes à suivre pour fabriquer un câble coaxial connectorisé.

Il est préférable de cintrer le câble et de souder un connecteur avant de prendre les mesures et de couper le câble.

On utilisera du matériel des deux mallettes.

Il faut nettoyer le bout après chaque étape de limage/coupe avec de l'air sec.

Cintrage du câble On utilise la cintreuse. Pour chaque câble il faut faire un "U" pour éviter les interférences d'un étage à l'autre, et pour avoir une certaine souplesse du câble.

Pour faire:

— 1/4 tour : il faut 15mm de câble

-1/2 tour : il faut 29mm

Dénudage Il faut dénuder quelques millimètres du câble pour souder la pin sur l'âme du câble coaxial. On utilisera le support **21B** ainsi que la petite scie. Il faut aller doucement sans appuyer, jusqu'à ce qu'on sente que c'est "lisse".

Ensuite, il faut retirer la gaine avec un scalpel et limer pour retirer les restes d'isolant et pour adoucir les angles.

Soudure de la pin centrale On fixe la pin sur l'âme du câble, puis on serre le tout en place avec la pièce W60 Il ne faut pas oublier l'entretoise W56 entre la pin et l'isolant encore en place.

Pour souder il suffit de chauffer l'extérieur de la pin tout en positionnant le fil d'étain sur le trou sur le bord de la pin.

Soudure de la prise extérieur On fixe sur la prise mâle une prise femelle factice W14M (81) qui permet de positionner comme il faut la prise. Comme à l'étape précédente on serre le tout en place.

Le plus efficace est de faire un tortillon d'étain au-dessus de la prise, que l'on chauffe. En étant un peu patient l'étain va fondre et rentrer naturellement dans la prise.

Fixation de l'isolant La dernière étape est de mettre l'isolant entre la prise et la pin. on utilise la pièce W52 (W53) que l'on serre à la clé dynamométrique. On place l'isolant à l'intérieur, et on pousse d'un coup avec la pièce complémentaire.

Mesure du câble nécessaire Maintenant il faut prendre la dimension de câble à couper. Sur le montage il faut prendre la dimension entre les deux

6.2 Thermalisation des câbles RF

Les câbles RF se thermalisent grâce aux pinces dorées (sur les câbles et sur les atténuateurs). On utilise l'Apiezon N pour avoir un bon contact thermique avec la pince.

Une des vis de chaque pince permet de fixer un fil de cuivre doré (elle est donc plus longue que les autres).

Sur câble Rg405 : 3 vis 10mm + 1 vis 16mm Sur atténuateur : 1 vis 16mm + 1 vis 2mm

7 Caractérisation des câbles au VNA

Il faut enfin caractériser les câbles coaxiaux fabriqués au VNA afin :

- de vérifier qu'ils n'ont pas été abîmés (mal cintrés)
- d'avoir les valeurs exactes d'atténuation des câbles à la fréquence de mesure, afin d'avoir une mesure la plus précise possible.

7.1 Création de la nouvelle trace

- Il faut se placer dans une "fenêtre" libre (clic-droit > Créer fenêtre)
- Menu Trace > New Trace.
- Sélectionner les tracés correspondants aux ports utilisés (S33, S34, S43, S44 par exemple)
- Sélectionner un Channel disponible pour ne pas risquer d'influencer d'autres mesures sur d'autres fenêtres.

7.2 Paramètres du VNA

Nombre de points : 12801 (menu Sweep)

Puissance: -20dB et Power On (Menu Power) Gamme de mesure: 1GHz - 20GHz et 4-8GHz

IF Bandwidth: 1kHz (menu Avg)

7.3 Calibration du VNA

Avant toute mesure il faut calibrer le VNA. Nous utilisons la calibration électronique (Boîtier N4691-6006).

Menu Response > Cal Wizard

Use Electronic Calibration (ECal) > 2 Ports (sélectionner les ports branchés) > ECal Thru As... (do Orientation)

Cliquer sur Measure > Finish (pas Save).

7.4 Lancement d'une mesure

Vérifier que l'on est en Power On. Dans le menu Trigger, cliquer sur Single (mesure unique).

7.5 Enregistrement d'une mesure

File > Save As. Filetype : CSV.

Les fichiers sont nommés dans le format "yyyymmdd_cableX_GammeDeFréquences.csv".