

Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8

Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8

Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8

$$T(u,v) = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} F(x,y) - (x,y,u,v)$$

$$F(x,y) = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} F(x,y) - (x,y,u,v)$$

$$= \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} F(x,y) - (x,y,u,v)$$

Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8

Digital Image Processing, 3rd ed. Gonzalez & Woods

www.ImageProcessingPlace.com

Chapter 8

Image Compression

Discrete Cosine Transform

Digital Image Processing, 3rd ed. Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8

Image Compression

Why DCT?

Digital Image Processing, 3rd ed. Gonzalez & Woods www.ImageProcessingPlace.com

Chapter 8

Image Compression

a b c d

FIGURE 8.28 Approximations of Fig. 8.9(a) using 12.5% of the $8 \times 8 DCT$ coefficients: (a)-(b) threshold coding results; (c)-(d) zonal coding results. The difference images are scaled by 4.

Digital Image Processing, 3rd ed. Gonzalez & Woods

www.ImageProcessingPlace.com

Chapter 8

Image Compression

abcd

FIGURE 8.27 Approximations of Fig. 8.27(a) using 25% of the DCT coefficients and (b) 2 × 2 subimages, (c) 4×4 subimages, and (d) 8×8 subimages. The original image in (a) is a zoomed section of Fig. 8.9(a).