СПЕЦИАЛЬНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ МОДЕЛИРОВАНИЯ БОЕВОЙ ВОЗДУШНОЙ ОБСТАНОВКИ И РЕАГИРОВАНИЯ ЗЕНИТНОЙ РАКЕТНОЙ СИСТЕМЫ «ШУРШУНЧИК»

Руководство программиста

Листов 18

АННОТАЦИЯ

В данном программном документе приведено руководство программиста по настройке и использованию специального программного обеспечения моделирования боевой воздушной обстановки и реагирования зенитной ракетной системы «Шуршунчик».

В данном программном документе, в разделе «Назначение и условия применения программы» указаны назначение и функции, выполняемые программой, условия, необходимые для выполнения программы.

В разделе «Характеристика программы» приведено описание основных характеристик и особенностей программы.

В разделе «Обращение к программе» приведено описание процедур вызова программы

В данном программном документе, в разделе «Входные и выходные данные» приведено описание организации используемой входной и выходной информации.

В разделе «Сообщения» указаны тексты сообщений, выдаваемых программисту или оператору в ходе выполнения программы, описание их содержания и действий, которые необходимо предпринять по этим сообщениям.

Оформление программного документа «Руководство программиста» произведено по требованиям ЕСПД (ГОСТ $19.101-77^{1}$), ГОСТ $19.103-77^{2}$), ГОСТ $19.104-78^{*3}$), ГОСТ $19.105-78^{*4}$), ГОСТ $19.504-79^{*5}$).

¹⁾ГОСТ 19.101-77 ЕСПД. Виды программ и программных документов

² ГОСТ 19.103-77 ЕСПД. Обозначение программ и программных документов

₃ГОСТ 19.104-78* ЕСПД. Основные надписи

чГОСТ 19.105-78* ЕСПД. Общие требования к программным документам

⁵ГОСТ 19.504-79* ЕСПД. Руководство программиста. Требования к содержанию и оформлению

СОДЕРЖАНИЕ

1.	НАЗНАЧЕНИЕ И УСЛОВИЯ ПРИМЕНЕНИЯ ПРОГРАММЫ	4
	1.1. Назначение программы	4
	1.2. Функции, выполняемые программой	4
	1.3. Условия необходимые для выполнения программы	4
	1.3.1. Объём оперативной памяти	4
	1.3.2. Требование к программному обеспечению	4
	1.3.3. Требование к аппаратному средству выполнения	
2.	ХАРАКТЕРИСТИКА ПРОГРАММЫ	5
	2.1. Описание основных характеристик программы	5
	2.1.1. Режим работы программы	5
	2.1.2. Контроль правильности выполнения программы	5
	2.1.3. Средства контроля самовосстанавливаемости программы.	5
	2.2. Основные особенности программы	5
3.	ОБРАЩЕНИЕ К ПРОГРАММЕ И ВЫПОЛНЕНИЕ	6
4.	ВХОДНЫЕ И ВЫХОДНЫЕ ДАННЫЕ	6
	4.1. Организация используемой входной информации	6
	4.2. Справочная информация по входным данным модулей	6
	4.3. Организация используемой выходной информации	8
	4.4. Справочная информация по выходным данным модулей	8
5.	СООБЩЕНИЯ ПРОГРАММИСТУ	9
	5.1. Формат получения сообщений	9
	5.2. Справочная информация по сообщениям программисту	9
П	ЕРЕЧЕНЬ ТЕРМИНОВ И СОКРАЩЕНИЙ	17
ΠV	ИАГРАММА КЛАССОВ	17

1. НАЗНАЧЕНИЕ И УСЛОВИЯ ПРИМЕНЕНИЯ ПРОГРАММЫ

1.1. Назначение программы

Программное обеспечение предназначено для виртуального моделирования поведения разных конфигураций систем: ПУ, ПБУ, МФР и целей в воздушной обстановке. Обеспечивает настройку конфигурации по следующим параметрам:

- 1) настройка координат объектов симуляции;
- 2) настройки траекторий объектов целей;
- 3) настройка максимального времени моделирования.

1.2. Функции, выполняемые программой

- 1) моделирование последовательных по времени состояний системы;
- 2) логирование процесса моделирования в консоль;
- 3) обмен данными через сообщения объектов симуляции через диспетчер в процессе моделирования;
- 4) отображение результатов моделирования в виде траекторий подвижных объектов симуляции;
- 5) сохранение кофигурации системы истории сообщений симуляции в файловую БД;
- 6) реализация алгоритмов следования целей траекториям;
- 7) реализация алгоритмов пусков по целям объектами ПУ;
- 8) реализация алгоритмов управления ПБУ.

1.3. Условия необходимые для выполнения программы

1.3.1. Объём оперативной памяти

Рекомендуемый объём оперативной памяти 2 Гб или выше. Свободного места на диске необходимо 512 Мб или выше.

1.3.2. Требование к программному обеспечению

Специальные программные средства, используемые СПО «Шуршунчик» должны быть представлены локализированной версией операционной системы Windows 10 или Windows 11.

1.3.3. Требования к аппаратному средству выполнения

Для исполнения СПО «Шуршунчик» видеокарта не требуется. Процессор выполнения Core 2 Duo 2.2 ГГц или двухядерный AMD 2.5 ГГц.

2. ХАРАКТЕРИСТИКА ПРОГРАММЫ

2.1. Описание основных характеристик программы

2.1.1 Режим работы программы

Специальной программное обеспечение моделирования боевой воздушной обстановки и реагирования зенитной ракетной системы «Шуршунчик» обеспечивает работу в единственном режиме функционирования, который является штатный режим.

В штатном режиме должна обеспечиваться доступность всех функций СПО «Шуршунчик». В штатном режиме функционирования СПО обеспечивает работу пользователей в непрерывном.

2.1.2. Контроль правильности выполнения программы

Контроль правильности выполнения программы осуществляется визуально. В случае корректной работы программы после её запуска на экране отображается пустое поле конфигурации со списком возможных моделей средств. После входа в главное окно системы необходимо проверить работоспособность программы (кнопки меню, выполнение операций и т.д.). В работоспособном состоянии программы на экране отображается главное окно приложения без отображения пользователю сообщений о сбое в работе.

2.1.3. Средства контроля самовосстанавливаемости программы

Самовосстанавливаемость программы обеспечивается средствами перезапуска или предварительным сохранением входных данных. Перезапуск программы осуществляется через остановку и последующий запуск. Контроль восстановления программы возможно проводить по работоспособности приложения.

2.2 Описание основных особенностей программы

Специальное программное обеспечение «Шуршунчик» имеет пользовательский интерфейс, однако не предоставляет конечному пользователю возможности настройки и изменения своих параметров, не относящихся к процессу моделирования.

3. ОБРАЩЕНИЕ К ПРОГРАММЕ И ВЫПОЛНЕНИЕ

Собранная программа состоит из архива, в котором должны находится следующие файлы:

- 1) ./logs/
- 2) ./SimulationAppUI/images/
- 3) main.exe

В папке logs сохраняется процесс логирование действий внутри программы после её запуска.

B SimulationAppUI/images/ лежат изображения иконок, используемых в для отображения программы.

Файл запуска программы main.exe не требует каких-либо других файлов, кроме как упомянутых выше.

Обращение к программе после запуска происходит со стороны оператора. Соответствующее описание есть в Руководстве оператора к данному программному обеспечению.

4. ВХОДНЫЕ И ВЫХОДНЫЕ ДАННЫЕ

4.1. Организация используемой входной информации

Входная информация вводится в соответствующих окнах ввода данных или окне «Отображения конфигурации» графического приложения.

4.2. Справочная информация по входным данным модулей

В таблице 1 отражены входные параметры модулей программного кода.

Таблица 1. Входные параметры модулей программного кода

Модуль	Параметр	Описание
AeroEnv	dispatcher	ссылка на объект диспетчера
	ID	собственный ID
	targets	список целей класса Movable
StartingDevice	dispatcher	ссылка на объект диспетчера

	ID	собственный ID
	pos	координата ПУ (х,у,z)
	aero_env	ссылка на объект ВО
RadarRound	dispatcher	ссылка на объект диспетчера
	ID	собственный ID
	cp_ID	ID ПБУ
	aero_env	ссылка на объект ВО
	pos	координаты положения РЛС, относительно глобальной СК (x, y, z)
	pan_start	начальное положение по углу поворота относительно глобальной СК в градусах
	tilt_start	начальное положение по углу наклона относительно глобальной СК в градусах
	view_distance	дальность обзора РЛС
	pan_per_sec	угол раскрыва по углу поворота за секунду обзора в градусах
	tilt_per_sec	угол раскрыва по углу наклона за секунду обзора в градусах
RadarSector	все, что в RadarRound	
	pan_angle	максимальный угол раскрыва по азимуту
	tilt_angle	максимальный угол раскрыва по углу наклона
	type_of_view	horizontal – горизонтальный тип обзора для секторного РЛС (рисунок 1, а), vertical - вертикальный тип обзора для секторного РЛС (рисунок 1, б).
CombatControlPoint	dispatcher	ссылка на объект диспетчера
	ID	собственный ID
	starting_devices_coords	координаты всех ПУ
GuidedMissile	dispatcher	ссылка на объект диспетчера
	ID	собственный ID

pos	координата ракеты (х,у,z)
aero_env	ссылка на объект ВО
speed	скорость ракеты
life_time	возможное время жизни ракеты
expl_radius	радиус взрыва ракеты
size	характерный размер ракеты

Рисунок 1 — Траектория движения ДНА при зигзагообразном обзоре: скорость переносного движения больше скорости относительного движения (а) и скорость переносного движения меньше скорости относительного движения (б)

4.3. Организация используемой выходной информации

Выходная информация поступает в графический интерфейс приложения в окно «Отображение траекторий».

4.4. Справочная информация по выходным данным модулей

В таблице 2 отражены выходные параметры модулей программного кода.

Таблица 2. Выходные параметры модулей программного кода

Выходные данные			
модуль	параметр	описание	способ получения
AeroEnv	entities	объекты в воздушной обстановк е (ЗУР, цели)	AeroEnv.getEntities()
RadarRound	visible_objec ts	объекты, которые	RadarRound.findObjects()

		видит	
		Радар	
RadarSector	visible_objec	объекты,	RadarSector.findObjects()
	ts	которые	, , ,
		видит	
		Радар	
CombatControlPo	obj_type,	находит	CombatControlPoint.findMostSimilarOb
int	sim_obj_key	наиболее	ject()
		похожий	
		объект из	
		памяти	
		иначе	
		считается,	
		что новый	
		объект это	
		новая цель	
GuidedMissile	status	Узнать	GuidedMissile.getStatus()
		статус	
		ракеты: 0 -	
		не	
		активна, 1	
		– летит, 2 -	
		поразила	
		цель, 3 -	
		пропустил	
		а цель,	
		закончило	
		сь топливо	

5. СООБЩЕНИЯ ПРОГРАММИСТУ

5.1. Формат получения сообщений

Программист получает сообщения в формате логов в папке logs.

5.2. Справочная информация по сообщениям программисту

В таблицах 3.1-3.7 отражены все форматы сообщений, поступающих в процессе логирования.

Таблица 3.1. Формат логов, выводящихся в процессе моделирования для модуля МФР

Сообщение Текст		Как получить
	МФР	
Угол поворота обзора МФР	Radar c id {selfID} видит по углу поворота от {self.pan_cur} до {self.pan_cur} + self.pan_per_sec}	 МФР вызывает функцию findObjects() МФР вызывает функцию moveToNextSector()
Угол наклона обзора МФР	Radar c id {selfID} видит по углу наклона от {self.tilt_cur} до {self.tilt_cur + self.tilt_per_sec}")	
МФР обнаружила объект	Radar c id {selfID} видит объект с сферическими координатами (dist, pan, tilt): {r, pan, tilt}	МФР вызывает функцию findObjects() Среди объектов ВО находятся те, что лежат в рамках обзора МФР
Количество объектов, видимых МФР	Radar c id {selfID} видит {len(visible_objects)} объектов	МФР вызвала функцию findObjects() и обработала все объекты в ВО
Количество полученных МФР сообщений от ПБУ	Radar c id {selfID} получил {len(msgs_from_ccp)} сообщений от CombatControlPoint	МФР вызывает функцию changeMissileCoords() и проверяет наличие сообщений с id = MSG_CCP2RADAR_type
Количество полученных МФР сообщений от ЗУР	Radar c id {selfID} получил {len(msgs_from_gm)} сообщений от ЗУР о том что она перестала существовать	МФР вызывает функцию sendCcpHitMissile() и проверяет наличие сообщений с id = MSG_GM2RADAR_type
МФР отправило сообщение ПБУ с целями	Radar c id {selfID} отправил сообщение CombatControlPoint c id {self.cp_ID} с видимыми объектами	МФР находит все цели и отправляет сообщение Radar2CombatControlMsg со списком целей
МФР отправляет рисовальщику список с положениями видимых целей	Radar c id {selfID} отправил сообщение Drawer c id {TARGET_TYPE_DRAWER} с положениями видимых объектов	МФР отправила сообщение Radar2DrawerMsg рисовальщику с положением всех найденных целей

МФР	Radar c id {selfID} отправил	МФР отправила
отправила	сообщение Dispatcher с id	сообщение Radar_ViewMessage
диспетчеру	{DISPATCHER_ID} c	диспетчеру с положением всех
список с	положениями видимых	найденных целей
положениями	объектов	
видимых целей		

Таблица 3.2. Формат логов, выводящихся в процессе моделирования для модуля ВО

ВО				
Количество объектов	AeroEnv имеет {len(self.entities)}	AeroEnv вызывает runSimulationStep()		
ВО отправила цели и зур ГУИ	BO отправил GUI: {len(missile_list)} ЗУР и {len(target_list)} ЦЕЛЕЙ	BO вызывает функцию send_vis_objects2gui() и отправляет сообщение AeroEnv_ViewMessage		
Количество объектов до взрыва	AeroEnv количество объектов {len(self.entities)}	BO вызывает функцию explosion()		
Состояние объекта до взрыва	AeroEnv расстояние между ЗУР и объектом {dist(pos, el.pos)}, размер объекта {el.size}, радиус взрыва {expl_rad}	ВО вызывает функцию explosion() и для каждого объекта сообщает расстояние до зур, размер объекта и радиус взрыва		
Взрыв цели	АегоЕпv взрыв ЗУР с координатами: {pos}, Уничтожила цель с ID: {elID} и координатами {el.pos}	В ходе функции explosion() после нахождения всех подходящих целей они уничтожаются		
Самолету назначена новая контрольная точка	Самолет ID: {selfID}, Новая контрольная точка: {self.target_point}	Если у самолёта остались контрольные точки - ему назначается новая		
Самолет прошел все контрольные точки	Самолет ID: {selfID} прошел все контрольные точки, летит по вектору: {self.vel}	Если у самолета не осталось контрольных точек - сообщается по какому вектору он летит		
	Самолет ID: {selfID}, координаты Самолета: {self.pos} корректировка большого угла поворота			

{round(np.rad2deg(angle_between(self.vel,	
vel_old)), 2)}°	

Таблица 3.3. Формат логов, выводящихся в процессе моделирования для модуля ПБУ

ПБУ				
Координаты starting_devices_coords ПБУ {starting_devices_coords}		Инициализация ПБУ		
Создана ПБУ	Создан ПБУ с ID {ID}			
Цели, видимые ПБУ	ПБУ видит объект, {max(0, target_speed_mod *(time_went - tick)- obj_error)}, {coord_dif}, {max(0, target_speed_mod * (time_went + tick)+ obj_error)}	ПБУ вызывает findMostSimilarObject() и сообщает о видимых целях		
Ракеты, видимые ПБУ	ПБУ видит объект, {max(0, missile_speed_mod *(time_went - tick)- obj_error)}, {coord_dif}, {max(0, missile_speed_mod * (time_went + tick)+ obj_error)}"	ПБУ вызывает findMostSimilarObject() и сообщает о видимых ракетах		
Типы объектов видимых ПБУ	ПБУ решила что объект с координатами {obj_coord} это {obj_type}, ЗУР - 2, Цель старая - 1, Цель новая - 0	ПБУ показывает классификацию объектов в конце функции findMostSimilarObject()		
ПБУ спросилла сколько ЗУР у ПУ	ПБУ спросила ПУ с id {key} сколько у нее ЗУР	ПБУ отправляет ПУ сообщение msg2starting_device в request_starting_devices_capacities()		
Количество сообщений от ПУ	ПБУ получил от ПУ {len(missile_capacity_msg)} сообщений о кол-ве ЗУР	B request_starting_devices_capacities() ПБУ проверяет количество сообщений с id= MSG_CCP_MISSILE_CAPACITY_ type		
ПБУ получил сообщение о количестве ЗУР от ПУ	ПБУ получил от ПУ {msg.sender_ID} сообщений о {msg.missile_number} ЗУР	B get_starting_devices_capacity() ПБУ проверяет наличие сообщений с id= MSG_CCP_MISSILE_CAPACITY_ type		

Количество сообщений от Радара об уничтожени и ЗУР	ПБУ получил {len(msgs_missile_hit)} сообщений от Радара о том что ЗУР перестала существовать	B get_hit_guided_missiles() ПБУ проверяет наличие сообщений с id= MSG_RADAR2CCP_GM_HIT_type
Количество сообщений от ПУ о запуске ЗУР	ПБУ получил от ПУ {len(msgsFromStartingDevice)} сообщений о запуске ЗУР	B get_launched_missiles() ПБУ проверяет наличие сообщений с id= MSG_SD2CCP_MS_type
	{target_num_dict}, {len(self.target_dict.items())}	
ПБУ получил id и начальные координаты ЗУР от ПУ	ПБУ получил от ПУ id ЗУР:{missile_id}, начальные координаты ЗУР:{missile_coord}	B get_launched_missiles() ПБУ проверяет наличие сообщений с id= MSG_SD2CCP_MS_type и обрабатывает каждое из них
ПБУ отправил сообщение GUI со списком целей и ЗУР	ПБУ отправил {len(target_list) + len(missile_list)} смс GUI	B send_vis_objects2gui() ПБУ отправляет GUI сообщения CombatControlPoint_ViewMessage
ПБУ отправил сообщение Рисовальщи ку с координатам и целей и ЗУР	ПБУ отправил {len(list_for_drawer)} смс Рисовальщику	В send_vis_objects2drawer() ПБУ отправляет GUI сообщения CombatControl2DrawerMsg со списком [тип, координаты]
ПБУ получил сообщения	ПБУ получил сообщения от {len(msg_from_radar)} МФР	ПБУ получил сообщения от МФР с id= MSG_RADAR2CCP_type и отправляет их количество
от МФР	ПБУ получил {len(msg.visible_objects)} сообщений от МФР с id {msg.sender_ID}	ПБУ отправляет сообщение, обрабатывая каждое от МФР
ПБУ отправил ПУ координаты новой цели	ПБУ отправил ПУ id {sd_id} координаты новой цели: {obj_coord}	ПБУ отправляет ПУ сообщение CombatControl2StartingDeviceMsg с координатами новой цели

Не осталось ЗУР для целей	Не осталось свободных ЗУР!!!	Есть новая цель, а ЗУР нет!
ПБУ сообщает МФР, что у ЗУР есть обновленны е координаты цели	ПБУ отправил сообщение Радару, что у ЗУР с id:{missile_id}, новые координаты ее цели:{obj_coord}	CombatControl2RadarMsg с ЗУР и
ПБУ передает новые координаты старой ЗУР	ПБУ увидел старую ЗУР с id:{self.missile_dict[sim_obj_key]. id}, новые координаты:{obj_coord}	ПБУ передает новые координаты старой ЗУР

Таблица 3.4. Формат логов, выводящихся в процессе моделирования для модуля рисовальщика

Рисовальщик			
Рисовальщик получает сообщение от ПБУ		Рисовальщик получает сообщение от ПБУ с id= MSG_CCP2DRAWER_type	

Таблица 3.5. Формат логов, выводящихся в процессе моделирования для модуля ЗУР

	ЗУР				
Запуск ЗУР	Запуск. ЗУР ID: {selfID}, начальная позиция: {self.pos}, начальная позиция цели: {self.pos_target}	Вызов функции launch()			
Корректир овка большого угла поворта	3УР ID: {selfID}, координаты ЗУР: {self.pos}, корректировка большого угла поворота {round(np.rad2deg(angle_between(self.vel, vel_old)),2)}°	Вызов функции updateCoordinate(), если угол между векторами скоростей > GuidedMissile_MaxR otAngle			
Информац ия о ЗУР	3YP ID: {selfID}, pos_target {self.pos_target}, target_vel {self.target_vel}, pos {self.pos}	Вызов функции checkIsHit()			
Положени e ЗУР ID: {selfID}, координаты ЗУР: {self.pos}, paccтояние до цели: {(((self.pos - self.pos_target) **					

относител ьно цели	2).sum()) ** 0.5}, расстояние до цели и нтерполированное {(((self.pos_target+self.target_vel*selfsimulating_t ick*self.delay_time - self.pos) ** 2).sum())**0.5}			
Обработка сообщени й от МФР	ЗУР ID: {selfID}, координаты ЗУР: {self.pos}, получила сообщение от Радара ID: {self.radar_id}, новые координаты цели: {pos_target}, ее вектор скорости: {target_vel}	Вызов функции runSimulationStep() Имеются сообщения от МФР		
ЗУР поразила цель	ЗУР ID: {selfID}, координаты ЗУР: {self.pos}, поразила цель с координатами: {self.pos_target}	Вызов функции runSimulationStep() Статус ЗУР = 1 сменился на статус = 2 после вызова функции checkIsHit()		
ЗУР сообщила ПБУ об уничтожен ии цели	3УР ID: {selfID}, отправила сообщение Радару {self.radar_id} о том, что она перестала существовать			
У ЗУР закончило сь топливо (время жизни истекло)	ЗУР ID: {selfID}, координаты ЗУР: {self.pos}, пропустила цель с координатами: {self.pos_target. Кончилось топливо	Вызов функции runSimulationStep() Статус ЗУР = 1 не сменился после вызова функции checkIsHit() и время существования превысило допустимое время жизни		
ЗУР уничтожил а цель	ЗУР ID: {selfID} прекратила существоавние изза поражения цели	Вызов функции runSimulationStep() Статус ЗУР = 2 после отработки всех условий и функций		
ЗУР не хватило топлива	ЗУР ID: {selfID} прекратила существоавние изза поражения цели нехватки топлива	Вызов функции runSimulationStep() Статус ЗУР = 3 после отработки всех условий и функций		

Таблица 3.6. Формат логов, выводящихся в процессе моделирования для модуля Диспетчера

Диспетчер							
Номер текущего шага	Hомер {selfcurr	текущего rent_step}	шага:		функции итерации	run(),	номер

Таблица 3.7. Формат логов, выводящихся в процессе моделирования для модуля ПУ

ПУ			
Получены сообщения с вопросом о количестве ЗУР	ПУ с ID {selfID} получила вопрос о кол-ве ЗУР	Вызов функции answer2request_gm_capacity() Есть сообщения типа = MSG_CCP_MISSILE_CAPACITY_type ПУ отправляет сообщения типа	
ПУ отправляет количество оставшихся ЗУР ПБУ	ПУ с ID {selfID} отправила ПБУ сколько у ПУ ЗУР	MissileCapacityMsg	
Количество сообщений от ПБУ	ПУ с ID {selfID} получила {len(new_messages)} сообщений от ПБУ	Вызов функции runSimulationStep() Проверка наличия сообщений с типом= MSG_CCP2SD_type Запуск ЗУР при их наличии по	
Запуск ЗУР	ПУ с ID {selfID} запустила зур с ID {free_missiles[0]ID} и отправила сообщения ПБУ с ID {msg.sender_ID}	переданным координатам	

ПЕРЕЧЕНЬ ТЕРМИНОВ И СОКРАЩЕНИЙ

 $\mathbf{M}\mathbf{\Phi}\mathbf{P}$ – многофункциональный радиолокатор.

ПБУ – пункт боевого управления.

 $\Pi \mathbf{Y}$ – пусковая установка.

ЗУР – зенитная управляемая ракета.

СПО – специальное программное обеспечение.

ДНА – диаграмма направленности антенны.

ВО – воздушная обстановка.

ДИАГРАММА КЛАССОВ

В рисунках 2.1, 2.3 представлена диаграмма классов, описывающая весь программный модуль СПО «Шуршунчик».

Рисунок 2.1 – Диаграмма классов модулей

Рисунок 2.2 – Диаграмма классов сообщений