Computer Vision: Lecture 2

 $\hbox{\it Christopher} \,\, Z_{\rm ACH}$

2023-11-02

Today's Lecture

Projective Geometry

- Homogeneous coordinates, projective space
- Lines, planes and conics
- Projective transformations

Relevant chapters in Szeliski's book:

- 2.1: Geometric primitives and transformations
- 2.1.1: 2D transformations
- 2.1.4: 3D to 2D projections

Projective space \mathbb{P}^2

If there exists a $\lambda \neq 0$ such that $\mathbf{x} = \lambda \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$, then we write $\mathbf{x} \sim \mathbf{y}$. An equivalence relation \sim induces equivalence classes

$$[\mathbf{x}] := \{ \mathbf{y} \in \mathbb{R}^3 : \mathbf{y} \sim \mathbf{x} \}$$

 \mathbb{P}^2 is the quotient space of \mathbb{R}^3 by $\sim:\,\mathbb{P}^2=\{[\mathbf{x}]:\mathbf{x}\in\mathbb{R}^3\}=\mathbb{R}^3/\sim$

- ullet Straightforward to extend to $\mathbb{P}^k = \mathbb{R}^{k+1}/\sim$
- If $\mathbf{x}=(x_1,x_2,x_3)^{\top}$ with $x_3\neq 0$, then $\begin{pmatrix} x_1/x_3\\x_2/x_3\\1 \end{pmatrix}$ is a representative for $[\mathbf{x}]$
- Bijection between $(x_1, x_2, 1)^{\top} \in [\mathbf{x}] \in \mathbb{P}^2$ and $(x_1, x_2)^{\top} \in \mathbb{R}^2$
- We can move between \mathbb{R}^2 and \mathbb{P}^2 as needed (if $x_3 \neq 0$)

 $(x_1,x_2,x_3)^{ op}$ are homogeneous coordinates corresponding to $(x_1/x_3,x_2/x_3)^{ op}$

Projective space \mathbb{P}^2

If there exists a $\lambda \neq 0$ such that $\mathbf{x} = \lambda \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$, then we write $\mathbf{x} \sim \mathbf{y}$. An equivalence relation \sim induces equivalence classes

$$[\mathbf{x}] := \{\mathbf{y} \in \mathbb{R}^3 : \mathbf{y} \sim \mathbf{x}\}$$

 \mathbb{P}^2 is the quotient space of \mathbb{R}^3 by \sim : $\mathbb{P}^2=\{[\mathbf{x}]:\mathbf{x}\in\mathbb{R}^3\}=\mathbb{R}^3/\sim$

- ullet Straightforward to extend to $\mathbb{P}^k = \mathbb{R}^{k+1}/\sim$
 - If $\mathbf{x} = (x_1, x_2, x_3)^{\top}$ with $x_3 \neq 0$, then $\begin{pmatrix} x_1/x_3 \\ x_2/x_3 \\ 1 \end{pmatrix}$ is a representative for $[\mathbf{x}]$
 - Bijection between $(x_1,x_2,1)^{\top} \in [\mathbf{x}] \in \mathbb{P}^2$ and $(x_1,x_2)^{\top} \in \mathbb{R}^2$
 - We can move between \mathbb{R}^2 and \mathbb{P}^2 as needed (if $x_3 \neq 0$)!

 $(x_1,x_2,x_3)^\top$ are homogeneous coordinates corresponding to $(x_1/x_3,x_2/x_3)^\top$

Projective space \mathbb{P}^2

If there exists a $\lambda \neq 0$ such that $\mathbf{x} = \lambda \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$, then we write $\mathbf{x} \sim \mathbf{y}$. An equivalence relation \sim induces equivalence classes

$$[\mathbf{x}] := \{ \mathbf{y} \in \mathbb{R}^3 : \mathbf{y} \sim \mathbf{x} \}$$

 \mathbb{P}^2 is the quotient space of \mathbb{R}^3 by \sim : $\mathbb{P}^2=\{[\mathbf{x}]:\mathbf{x}\in\mathbb{R}^3\}=\mathbb{R}^3/\sim$

- ullet Straightforward to extend to $\mathbb{P}^k = \mathbb{R}^{k+1}/\sim$
- If $\mathbf{x}=(x_1,x_2,x_3)^{\top}$ with $x_3\neq 0$, then $\begin{pmatrix} x_1/x_3\\x_2/x_3\\1 \end{pmatrix}$ is a representative for $[\mathbf{x}]$
- Bijection between $(x_1,x_2,1)^{\top} \in [\mathbf{x}] \in \mathbb{P}^2$ and $(x_1,x_2)^{\top} \in \mathbb{R}^2$
- We can move between \mathbb{R}^2 and \mathbb{P}^2 as needed (if $x_3 \neq 0$)!

 $(x_1,x_2,x_3)^{ op}$ are homogeneous coordinates corresponding to $(x_1/x_3,x_2/x_3)^{ op}$

Projective space \mathbb{P}^2

If there exists a $\lambda \neq 0$ such that $\mathbf{x} = \lambda \mathbf{y}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$, then we write $\mathbf{x} \sim \mathbf{y}$. An equivalence relation \sim induces equivalence classes

$$[\mathbf{x}] := \{ \mathbf{y} \in \mathbb{R}^3 : \mathbf{y} \sim \mathbf{x} \}$$

 \mathbb{P}^2 is the quotient space of \mathbb{R}^3 by $\sim: \mathbb{P}^2 = \{[\mathbf{x}] : \mathbf{x} \in \mathbb{R}^3\} = \mathbb{R}^3/\sim$

- ullet Straightforward to extend to $\mathbb{P}^k = \mathbb{R}^{k+1}/\sim$
- If $\mathbf{x}=(x_1,x_2,x_3)^{\top}$ with $x_3\neq 0$, then $\begin{pmatrix} x_1/x_3\\x_2/x_3\\1 \end{pmatrix}$ is a representative for $[\mathbf{x}]$
- Bijection between $(x_1,x_2,1)^{\top} \in [\mathbf{x}] \in \mathbb{P}^2$ and $(x_1,x_2)^{\top} \in \mathbb{R}^2$
- We can move between \mathbb{R}^2 and \mathbb{P}^2 as needed (if $x_3 \neq 0$)!

 $(x_1,x_2,x_3)^{ op}$ are homogeneous coordinates corresponding to $(x_1/x_3,x_2/x_3)^{ op}$

• Converting to homogeneous coordinates ("homogenizing")

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \leadsto \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} \in \begin{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} \end{bmatrix} \in \mathbb{P}^2$$

Representative $(x_1, x_2, 1)^{\top}$ is element of \mathbb{R}^3

• Converting to Cartesian coordinates ("de-homogenizing")

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{P}^2 \leadsto \begin{pmatrix} x_1/x_3 \\ x_2/x_3 \end{pmatrix} \in \mathbb{R}^2$$

if $x_3 \neq 0$

Why are homogeneous coordinates useful?

Recall Euclidean transformation

$$\mathbf{X}' = \mathtt{R}\mathbf{X} + \mathbf{T}$$

 $\mathbf{X}, \mathbf{X}' \in \mathbb{R}^3$

Affine expression (linear + offset)

• Interpret $\mathbf{X} \in \mathbb{P}^3$:

$$\mathbf{X}' = \underbrace{\begin{pmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0}^\top & 1 \end{pmatrix}}_{\in \mathbb{R}^{4x4}} \mathbf{X}$$

$$\mathbf{X}, \mathbf{X}' \in \mathbb{P}^3$$

Purely linear expression

Why are homogeneous coordinates useful?

• Recall Euclidean transformation

$$X' = RX + T$$

$$\mathbf{X}, \mathbf{X}' \in \mathbb{R}^3$$

Affine expression (linear + offset)

• Interpret $\mathbf{X} \in \mathbb{P}^3$:

$$\mathbf{X}' = \underbrace{\begin{pmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0}^{\top} & 1 \end{pmatrix}}_{\in \mathbb{R}^{4x4}} \mathbf{X}$$

$$\mathbf{X}, \mathbf{X}' \in \mathbb{P}^3$$

Purely linear expression

Why are homogeneous coordinates useful?

ullet Recall projection onto the image plane, followed by calibration matrix (s=0)

$$\mathbf{p} = \mathtt{K} \cdot \pi(\mathbf{X}) = \begin{pmatrix} \gamma f & 0 & x_0 \\ 0 & f & y_0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X_1/X_3 \\ X_2/X_3 \\ 1 \end{pmatrix} = \begin{pmatrix} \gamma f X_1/X_3 + x_0 \\ f X_2/X_3 + y_0 \\ 1 \end{pmatrix} \in \mathbb{P}^2$$

Observe that

$$\pi(\mathtt{K}\mathbf{X}) = \frac{1}{X_3} \begin{pmatrix} \gamma f X_1 + x_0 X_3 \\ f X_2 + y_0 X_3 \\ X_3 \end{pmatrix} = \mathtt{K} \cdot \pi(\mathbf{X}) \in [\mathtt{K}\mathbf{X}]$$

We can apply the perspective division as final step

$$\underbrace{\left[\mathbf{K}(\mathbf{R}\ \mathbf{T})\mathbf{X}\right]}_{\mathbf{p}\in\mathbb{P}^2}\equiv\pi\big(\underbrace{\mathbf{K}(\mathbf{R}\mathbf{X}+\mathbf{T})}_{=\mathbf{P}\mathbf{X}}\big)$$

Projection matrix P = K(R $\mid \mathbf{T}) \in \mathbb{R}^{3 imes 4}$

Why are homogeneous coordinates useful?

 \bullet Recall projection onto the image plane, followed by calibration matrix (s=0)

$$\mathbf{p} = \mathtt{K} \cdot \pi(\mathbf{X}) = \begin{pmatrix} \gamma f & 0 & x_0 \\ 0 & f & y_0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X_1/X_3 \\ X_2/X_3 \\ 1 \end{pmatrix} = \begin{pmatrix} \gamma f X_1/X_3 + x_0 \\ f X_2/X_3 + y_0 \\ 1 \end{pmatrix} \in \mathbb{P}^2$$

Observe that

$$\pi(\mathtt{K}\mathbf{X}) = \frac{1}{X_3} \begin{pmatrix} \gamma f X_1 + x_0 X_3 \\ f X_2 + y_0 X_3 \\ X_3 \end{pmatrix} = \mathtt{K} \cdot \pi(\mathbf{X}) \in [\mathtt{K}\mathbf{X}]$$

We can apply the perspective division as final step

$$\underbrace{\left[\mathbf{K}(\mathbf{R}\ \mathbf{T})\mathbf{X}\right]}_{\mathbf{p}\in\mathbb{P}^2}\equiv\pi\underbrace{\left(\mathbf{K}(\mathbf{R}\mathbf{X}+\mathbf{T})\right)}_{=\mathbf{P}\mathbf{X}}$$

6/36

Projection matrix P = K(R $\mid \mathbf{T}) \in \mathbb{R}^{3 imes 4}$

Why are homogeneous coordinates useful?

ullet Recall projection onto the image plane, followed by calibration matrix (s=0)

$$\mathbf{p} = \mathtt{K} \cdot \pi(\mathbf{X}) = \begin{pmatrix} \gamma f & 0 & x_0 \\ 0 & f & y_0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} X_1/X_3 \\ X_2/X_3 \\ 1 \end{pmatrix} = \begin{pmatrix} \gamma f X_1/X_3 + x_0 \\ f X_2/X_3 + y_0 \\ 1 \end{pmatrix} \in \mathbb{P}^2$$

Observe that

$$\pi(\mathtt{K}\mathbf{X}) = \frac{1}{X_3} \left(\begin{smallmatrix} \gamma f X_1 + x_0 X_3 \\ f X_2 + y_0 X_3 \\ X_3 \end{smallmatrix} \right) = \mathtt{K} \cdot \pi(\mathbf{X}) \in [\mathtt{K}\mathbf{X}]$$

We can apply the perspective division as final step

$$\underbrace{\left[\mathbf{K}(\mathbf{R}\;\mathbf{T})\mathbf{X}\right]}_{\mathbf{p}\in\mathbb{P}^2}\equiv\pi\underbrace{\left(\mathbf{K}(\mathbf{R}\mathbf{X}+\mathbf{T})\right)}_{=\mathbf{P}\mathbf{X}}$$

Projection matrix $P = K(R \mid T) \in \mathbb{R}^{3 \times 4}$

Why are homogeneous coordinates useful?

- Allowing to work with quantities such as $[(x_1, x_2, 0)^T]$
- Points, lines and planes at infinity
- More on that later

Recap Camera Model

The Pinhole Camera

$$\mathbf{x} = \pi(\mathtt{K}(\mathtt{R}\mathbf{X} + \mathbf{T})) = \pi(\mathtt{K}\,\mathtt{R}(\mathbf{X} - \mathbf{C}))$$

- ullet Camera center ${f C}$ or translation vector ${f T}=-{\mathtt R}{f C}$
- Rotation matrix R
- Camera calibration matrix (intrinsics) K
- \bullet Perspective projection π

Recap Camera Model

The Pinhole Camera

$$\mathbf{x} = \pi(\mathtt{K}(\mathtt{R}\mathbf{X} + \mathbf{T})) = \pi(\mathtt{K}\,\mathtt{R}(\mathbf{X} - \mathbf{C}))$$

ullet Projection matrix $\mathtt{P} = \mathtt{K}(\mathtt{R} \mid \mathbf{T}) \in \mathbb{R}^{3 imes 4}$

$$\mathbf{x} = \pi(P\mathbf{X}) \iff \exists \lambda \neq 0 : \lambda \mathbf{x} = P\mathbf{X}$$

 λ ... "projective depth"

- Pros and cons with pinhole model? Limitations?
- What is the position (camera centre) of the camera $P = K(R \mid T)$?
- What is the projection of the camera centre for camera matrix P?
- ullet How can one determine if a 3D point ${f X}$ is in front of camera?

Unprojecting an image point

Which 3D points project to image point ${\bf x}$ for given camera matrix P? What is the viewing ray for image point ${\bf x}$ of camera P?

- We are interested in $X(\lambda)$ in world coordinates • $\lambda \dots$ projective depth / parameter to move on the
- In world coordindates: $\mathbf{X}(\lambda)$ satisfies

$$\lambda \mathbf{x} = P\underbrace{\mathbf{X}(\lambda)}_{\mathbf{X} \in \mathbb{P}^3} = P_{3,3} \underbrace{\mathbf{X}(\lambda)}_{\mathbf{X} \in \mathbb{R}^3} + P_4$$

$$P = (P_{3,3} \mid P_4)$$

• Solve for $\mathbf{X}(\lambda)$

$$\mathbf{X}(\lambda) = P_{3,3}^{-1}(\lambda \mathbf{x} - P_4) = \lambda P_{3,3}^{-1} \mathbf{x} - P_{3,3}^{-1} P_4$$

• Calibrated camera $P = K(R \mid T)$

$$P_{3,3}^{-1} = R^{T}K^{-1}$$
 $P_{3,3}^{-1}P_{4} = -C$ $X(\lambda) = \lambda R^{T}K^{-1}x + C$

Unprojecting an image point

Which 3D points project to image point ${\bf x}$ for given camera matrix P? What is the viewing ray for image point ${\bf x}$ of camera P?

- ullet We are interested in $\mathbf{X}(\lambda)$ in world coordinates
 - ullet $\lambda \dots$ projective depth / parameter to move on the line/ray
- In world coordindates: $\mathbf{X}(\lambda)$ satisfies

$$\lambda \mathbf{x} = P \underbrace{\mathbf{X}(\lambda)}_{\mathbf{X} \in \mathbb{P}^3} = P_{3,3} \underbrace{\mathbf{X}(\lambda)}_{\mathbf{X} \in \mathbb{R}^3} + P_4 \qquad \qquad P = (P_{3,3} \mid P_4)$$

• Solve for $\mathbf{X}(\lambda)$

$$\mathbf{X}(\lambda) = P_{3,3}^{-1}(\lambda \mathbf{x} - P_4) = \lambda P_{3,3}^{-1} \mathbf{x} - P_{3,3}^{-1} P_4$$

• Calibrated camera $P = K(R \mid T)$

$$P_{3,3}^{-1} = R^{T}K^{-1}$$
 $P_{3,3}^{-1}P_4 = -C$ $X(\lambda) = \lambda R^{T}K^{-1}x + C$

 Christopher Zach
 Computer Vision: Lecture 2
 2023-11-02
 11 / 36

Unprojecting an image point

Which 3D points project to image point \mathbf{x} for given camera matrix P? What is the viewing ray for image point \mathbf{x} of camera P?

- ullet We are interested in ${f X}(\lambda)$ in world coordinates
 - ullet $\lambda \dots$ projective depth / parameter to move on the line/ray
- ullet In world coordindates: $\mathbf{X}(\lambda)$ satisfies

$$\lambda \mathbf{x} = \mathtt{P}\underbrace{\mathbf{X}(\lambda)}_{\mathbf{X} \in \mathbb{P}^3} = \mathtt{P}_{3,3}\underbrace{\mathbf{X}(\lambda)}_{\mathbf{X} \in \mathbb{R}^3} + \mathtt{P}_4 \qquad \qquad \mathtt{P} = (\mathtt{P}_{3,3} \mid \mathtt{P}_4)$$

• Solve for $\mathbf{X}(\lambda)$

$$\mathbf{X}(\lambda) = P_{3,3}^{-1}(\lambda \mathbf{x} - P_4) = \lambda P_{3,3}^{-1} \mathbf{x} - P_{3,3}^{-1} P_4$$

• Calibrated camera $P = K(R \mid T)$

$$P_{3,3}^{-1} = R^{T}K^{-1}$$
 $P_{3,3}^{-1}P_4 = -C$ $X(\lambda) = \lambda R^{T}K^{-1}x + C$

Unprojecting an image point

Which 3D points project to image point ${\bf x}$ for given camera matrix P? What is the viewing ray for image point ${\bf x}$ of camera P?

- ullet We are interested in $\mathbf{X}(\lambda)$ in world coordinates
 - ullet $\lambda \dots$ projective depth / parameter to move on the line/ray
- ullet In world coordindates: $\mathbf{X}(\lambda)$ satisfies

$$\lambda \mathbf{x} = \mathtt{P}\underbrace{\mathbf{X}(\lambda)}_{\mathbf{X} \in \mathbb{P}^3} = \mathtt{P}_{3,3}\underbrace{\mathbf{X}(\lambda)}_{\mathbf{X} \in \mathbb{R}^3} + \mathtt{P}_4 \qquad \qquad \mathtt{P} = (\mathtt{P}_{3,3} \mid \mathtt{P}_4)$$

ullet Solve for $\mathbf{X}(\lambda)$

$$\mathbf{X}(\lambda) = P_{3,3}^{-1}(\lambda \mathbf{x} - P_4) = \lambda P_{3,3}^{-1} \mathbf{x} - P_{3,3}^{-1} P_4$$

• Calibrated camera $P = K(R \mid T)$

$$P_{3,3}^{-1} = R^{T}K^{-1}$$
 $P_{3,3}^{-1}P_4 = -C$ $X(\lambda) = \lambda R^{T}K^{-1}x + C$

Christopher Zach Computer Vision: Lecture 2 2023-11-02

Unprojecting an image point

Which 3D points project to image point x for given camera matrix P? What is the viewing ray for image point x of camera P?

- ullet We are interested in $\mathbf{X}(\lambda)$ in world coordinates
 - ullet $\lambda \dots$ projective depth / parameter to move on the line/ray
- In world coordindates: $\mathbf{X}(\lambda)$ satisfies

$$\lambda \mathbf{x} = \mathtt{P}\underbrace{\mathbf{X}(\lambda)}_{\mathbf{X} \in \mathbb{P}^3} = \mathtt{P}_{3,3}\underbrace{\mathbf{X}(\lambda)}_{\mathbf{X} \in \mathbb{R}^3} + \mathtt{P}_4 \qquad \qquad \mathtt{P} = (\mathtt{P}_{3,3} \mid \mathtt{P}_4)$$

• Solve for $\mathbf{X}(\lambda)$

$$\mathbf{X}(\lambda) = P_{3,3}^{-1}(\lambda \mathbf{x} - P_4) = \lambda P_{3,3}^{-1} \mathbf{x} - P_{3,3}^{-1} P_4$$

• Calibrated camera $P = K(R \mid T)$

$$\mathbf{P}_{3,3}^{-1} = \mathbf{R}^{\top} \mathbf{K}^{-1} \hspace{1cm} \mathbf{P}_{3,3}^{-1} \mathbf{P}_4 = -\mathbf{C} \hspace{1cm} \mathbf{X}(\lambda) = \lambda \mathbf{R}^{\top} \mathbf{K}^{-1} \mathbf{x} + \mathbf{C}$$

The Pinhole Camera Model

Attention

Different conventions used in the literature/software

- Computer vision community mostly uses
 - ullet Camera is looking in z direction
 - World coordinates to camera coordinates: X' = RX + T
- Computer graphics (OpenGL)
 - ullet Camera is looking in -z direction
- "Position-centric" parametrization
 - World coordinates to camera coordinates: $\mathbf{X}' = \mathtt{R}(\mathbf{X} \pm \mathbf{C})$
 - \bullet $\pm C$ might be called "translation"
- Inverse parametrization
 - World coordinates to camera coordinates: $\mathbf{X}' = \mathtt{R}^{\top}(\mathbf{X} \pm \mathbf{C})$
 - "Look at" parametrization
- Lots of ambiguities about image coordinates (mm) and sensor coordinates (pixels)

At least the right-handed coordinate system convention is generally accepted.

The Pinhole Camera Model: Summary

Summary

Model for a pinhole camera

$$\mathbf{x} \sim \underbrace{\mathbf{K}(\mathbf{R} \mid \mathbf{T})}_{=\mathbf{P}} \mathbf{X} = \mathbf{P} \mathbf{X} \qquad \mathbf{X} \in \mathbb{P}^3$$

- ullet Camera represented by its projection matrix (or camera matrix) $\mathtt{P} \in \mathbb{R}^{3 imes 4}$
 - P has 11 d.o.f.
 - If K is known, then the camera is said to be calibrated
- Camera center
 - in camera coordinates: 0
 - in world coordinates: $-R^{T}T$

Recap Homogeneous Coordinates

ullet Projective space \mathbb{P}^k

$$\mathbf{x} \sim \mathbf{y} : \iff \exists \lambda \neq 0 : \mathbf{x} = \lambda \mathbf{y} \qquad \mathbf{x}, \mathbf{y} \in \mathbb{R}^{k+1}$$
$$[\mathbf{x}] := \{ \mathbf{y} \in \mathbb{R}^{k+1} : \mathbf{y} \sim \mathbf{x} \}$$
$$\mathbb{P}^k := \{ [\mathbf{x}] : \mathbf{x} \in \mathbb{R}^{k+1} \} = \mathbb{R}^{k+1} / \sim$$

- We identify \mathbf{x}/x_{k+1} as a point in \mathbb{R}^k if $x_{k+1} \neq 0$
- Advantages
 - Represent quantities that are defined up to non-zero scale
 - Treat expressions in a purely linear way
 - Gracefully handle (some) infinities

- Which of the following statements is correct?
 - **1** The set of points in \mathbb{R}^2 is a subset of points in \mathbb{P}^2
 - ② The set of points in \mathbb{R}^2 is equal to the set of points in \mathbb{P}^2

• Line in \mathbb{R}^2 : $(a,b) \neq (0,0)$

$$ax + by + c = 0 \iff \mathbf{l}^{\top} \mathbf{x} = 0$$
 $\mathbf{x} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}, \mathbf{l} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

• Line is defined up to scale

$$\forall \lambda \neq 0 : \mathbf{l}^{\top} \mathbf{x} = 0 \iff \lambda \mathbf{l}^{\top} \mathbf{x} = 0$$

ullet Therefore $\mathbf{l},\lambda\mathbf{l}\in[\mathbf{l}]\in\mathbb{P}^2$

Unique intersection

Two lines l_1 , $l_2 \in \mathbb{P}^2$ with $l_1 \neq l_2$ have a unique intersection in \mathbb{P}^2 .

Intersection point x is given as solution of

$$\mathbf{l}_{1}^{\top}\mathbf{x} = 0 \wedge \mathbf{l}_{2}^{\top}\mathbf{x} = 0 \iff \begin{pmatrix} \mathbf{l}_{1}^{\top} \\ \mathbf{l}_{2}^{\top} \end{pmatrix}\mathbf{x} = \mathbf{0}$$

Since $1_1
eq 1_2$ the rank of $inom{1_1^{ op}}{1_2^{ op}} = 2$ and $\mathbf{x}
eq \mathbf{0}$ lies in a 1-D nullspace

- Example: $\mathbf{l}_1=(-1,0,1)^{\top}$, $\mathbf{l}_2=(1,0,1)^{\top}$ (2 parallel vertical lines)
- Intersection $(0, \lambda, 0)^{\top} \in [(0, 1, 0)^{\top}]$: point at infinity in \mathbb{R}^2

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \lim_{\varepsilon \to \pm 0} \begin{pmatrix} 0 \\ 1 \\ \varepsilon \end{pmatrix} \equiv \lim_{\varepsilon \to \pm 0} \begin{pmatrix} 0/\varepsilon \\ 1/\varepsilon \end{pmatrix}$$

17/36

Unique intersection

Two lines l_1 , $l_2 \in \mathbb{P}^2$ with $l_1 \neq l_2$ have a unique intersection in \mathbb{P}^2 .

Intersection point x is given as solution of

$$\mathbf{l}_1^{\top} \mathbf{x} = 0 \wedge \mathbf{l}_2^{\top} \mathbf{x} = 0 \iff \begin{pmatrix} \mathbf{l}_1^{\top} \\ \mathbf{l}_2^{\top} \end{pmatrix} \mathbf{x} = \mathbf{0}.$$

Since $\mathbf{l}_1 \neq \mathbf{l}_2$ the rank of $\mathbf{l}_{\mathbf{l}_2^\top}^{\mathbf{l}_1^\top}) = 2$ and $\mathbf{x} \neq \mathbf{0}$ lies in a 1-D nullspace.

- Example: $l_1 = (-1, 0, 1)^{\top}$, $l_2 = (1, 0, 1)^{\top}$ (2 parallel vertical lines)
- Intersection $(0, \lambda, 0)^{\top} \in [(0, 1, 0)^{\top}]$: point at infinity in \mathbb{R}^2

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \lim_{\varepsilon \to \pm 0} \begin{pmatrix} 0 \\ 1 \\ \varepsilon \end{pmatrix} \equiv \lim_{\varepsilon \to \pm 0} \begin{pmatrix} 0/\varepsilon \\ 1/\varepsilon \end{pmatrix}$$

Christopher Zach Computer Vision: Lecture 2 2023-11-02

Unique intersection

Two lines l_1 , $l_2 \in \mathbb{P}^2$ with $l_1 \neq l_2$ have a unique intersection in \mathbb{P}^2 .

Intersection point x is given as solution of

$$\mathbf{l}_1^{\top} \mathbf{x} = 0 \wedge \mathbf{l}_2^{\top} \mathbf{x} = 0 \iff \begin{pmatrix} \mathbf{l}_1^{\top} \\ \mathbf{l}_2^{\top} \end{pmatrix} \mathbf{x} = \mathbf{0}.$$

Since $\mathbf{l}_1 \neq \mathbf{l}_2$ the rank of $\binom{\mathbf{l}_1^\top}{\mathbf{l}_2^\top} = 2$ and $\mathbf{x} \neq \mathbf{0}$ lies in a 1-D nullspace.

- Example: $\mathbf{l}_1 = (-1, 0, 1)^{\top}$, $\mathbf{l}_2 = (1, 0, 1)^{\top}$ (2 parallel vertical lines).
- Intersection $(0,\lambda,0)^{\top} \in [(0,1,0)^{\top}]$: point at infinity in \mathbb{R}^2

$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \lim_{\varepsilon \to \pm 0} \begin{pmatrix} 0 \\ 1 \\ \varepsilon \end{pmatrix} \equiv \lim_{\varepsilon \to \pm 0} \begin{pmatrix} 0/\varepsilon \\ 1/\varepsilon \end{pmatrix}$$

17/36

Computer Vision: Lecture 2 2023-11-02

- Duality has many meanings
 - Duality in optimization: Langrange and Fenchel duality
 - Dual cones
 - ullet Dual vector space: all linear functionals \mathbb{V}^* acting on vector space \mathbb{V}
 - Duality in projective geometry: incidence-preserving operations
- ullet Lines can be interpreted as linear mapping $\langle \mathbf{l},\cdot
 angle \in (\mathbb{R}^3)^*$
- Lines and points are dual when it comes to incidence relations

Two points uniquely determine a line, and two lines uniquely determine a point.

Christopher Zach

Unprojecting an image line

Given a line l in the image and a camera matrix P, can we "unproject" the line?

- ullet Image points ${f x}$ on the line satisfy ${f l}^{ op}{f x}=0$
- \bullet Image points satisfy $\mathbf{x} \sim \mathtt{P}\mathbf{X}$
- Therefore $0 = \mathbf{1}^{\top} P \mathbf{X} = (P^{\top} \mathbf{1})^{\top} \mathbf{X}$

 $\Pi = P^{\top}1$ is 3D-plane projecting to line 1 in camera P.

3D plane

 $\Pi \in \mathbb{P}^3$ with $(\Pi_1, \Pi_2, \Pi_3)^{\top} \neq \mathbf{0}$ defines a 3D plane, $\{\mathbf{X} \in \mathbb{P}^3 : \Pi^{\top}\mathbf{X} = 0\}$

Point-plane duality

Three points uniquely determine a plane, and 3 planes uniquely determine a point

Unprojecting an image line

Given a line I in the image and a camera matrix P, can we "unproject" the line?

- Image points ${\bf x}$ on the line satisfy ${\bf l}^{\top}{\bf x}=0$
- \bullet Image points satisfy $\mathbf{x} \sim \mathtt{P}\mathbf{X}$
- $\bullet \ \, \mathsf{Therefore} \,\, 0 = \mathbf{l}^{\top} \mathsf{P} \mathbf{X} = (\mathsf{P}^{\top} \mathbf{l})^{\top} \mathbf{X}$

 $\Pi = P^{\top}1$ is 3D-plane projecting to line 1 in camera P.

3D plane

 $\Pi \in \mathbb{P}^3$ with $(\Pi_1, \Pi_2, \Pi_3)^{\top} \neq \mathbf{0}$ defines a 3D plane, $\{\mathbf{X} \in \mathbb{P}^3 : \Pi^{\top}\mathbf{X} = 0\}$

Point-plane duality

Three points uniquely determine a plane, and 3 planes uniquely determine a point

 Christopher Zach
 Computer Vision: Lecture 2
 2023-11-02
 19 / 36

Unprojecting an image line

Given a line I in the image and a camera matrix P, can we "unproject" the line?

- Image points ${\bf x}$ on the line satisfy ${\bf l}^{\top}{\bf x}=0$
- \bullet Image points satisfy $\mathbf{x} \sim \mathtt{P}\mathbf{X}$
- $\bullet \ \, \mathsf{Therefore} \,\, 0 = \mathbf{l}^{\top} \mathsf{P} \mathbf{X} = (\mathsf{P}^{\top} \mathbf{l})^{\top} \mathbf{X}$

 $\Pi = \mathtt{P}^{\top} \mathbf{l}$ is 3D-plane projecting to line l in camera P.

3D plane

 $\Pi \in \mathbb{P}^3$ with $(\Pi_1, \Pi_2, \Pi_3)^{\top} \neq \mathbf{0}$ defines a 3D plane, $\{\mathbf{X} \in \mathbb{P}^3 : \Pi^{\top}\mathbf{X} = 0\}$

Point-plane duality

Three points uniquely determine a plane, and 3 planes uniquely determine a point

Unprojecting an image line

Given a line l in the image and a camera matrix P, can we "unproject" the line?

- Image points ${\bf x}$ on the line satisfy ${\bf l}^{\top}{\bf x}=0$
- \bullet Image points satisfy $\mathbf{x} \sim \mathtt{P}\mathbf{X}$
- $\bullet \ \, \mathsf{Therefore} \,\, 0 = \mathbf{l}^{\top} \mathsf{P} \mathbf{X} = (\mathsf{P}^{\top} \mathbf{l})^{\top} \mathbf{X}$

 $\Pi = \mathtt{P}^{\top} \mathbf{l}$ is 3D-plane projecting to line l in camera P.

3D plane

 $\Pi \in \mathbb{P}^3 \text{ with } (\Pi_1, \Pi_2, \Pi_3)^\top \neq \mathbf{0} \text{ defines a 3D plane, } \{\mathbf{X} \in \mathbb{P}^3 : \Pi^\top \mathbf{X} = 0\}.$

Point-plane duality

Three points uniquely determine a plane, and 3 planes uniquely determine a point.

Unprojecting an image line

Given a line l in the image and a camera matrix P, can we "unproject" the line?

- Image points \mathbf{x} on the line satisfy $\mathbf{l}^{\top}\mathbf{x} = 0$
- \bullet Image points satisfy $\mathbf{x} \sim \mathtt{P}\mathbf{X}$
- Therefore $0 = \mathbf{l}^{\top} \mathbf{P} \mathbf{X} = (\mathbf{P}^{\top} \mathbf{l})^{\top} \mathbf{X}$

 $\Pi = P^{\top}l$ is 3D-plane projecting to line l in camera P.

3D plane

 $\Pi \in \mathbb{P}^3 \text{ with } (\Pi_1,\Pi_2,\Pi_3)^\top \neq \mathbf{0} \text{ defines a 3D plane, } \{\mathbf{X} \in \mathbb{P}^3: \Pi^\top \mathbf{X} = 0\}.$

Point-plane duality

Three points uniquely determine a plane, and 3 planes uniquely determine a point.

X-at-infinity

- Extend incindence properties to all configuration (including parallel ones)
- Line at infinity: $\mathbf{l} \sim (0,0,1)^{\top} \in \mathbb{P}^2$
 - Points on the line at infinity: intersection of parallel 2D lines
- Plane at infinity: $\Pi \sim (0,0,0,1)^{\top} \in \mathbb{P}^3$
 - Points on the plane at infinity: intersection of parallel 3D lines
 - Lines on the plane at infinity: intersection of parallel 3D planes

Vanishing points and lines

The last supper by Duccio (around 1310).

Vanishing points and lines

The last supper by Duccio (around 1310). Parallel lines do not meet at a single vanishing point.

Vanishing points and lines

The last supper by Duccio (around 1310). Parallel lines do not meet at a single vanishing point.

The last supper by da Vinci (1499).

The last supper by da Vinci (1499).

The last supper by da Vinci (1499).

• Where do two parallel lines in \mathbb{R}^3 with direction d intersect?

$$\mathbf{X}_1(t) = \mathbf{X}_1 + t\mathbf{d}$$
 $\mathbf{X}_2(t) = \mathbf{X}_2 + t\mathbf{d}$ $t \in \mathbb{R}$

• Interpret as quantities in \mathbb{P}^3 : s=1/r

$$\begin{pmatrix} \mathbf{X}_i(t) \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{X}_i \\ 1 \end{pmatrix} + t \begin{pmatrix} \mathbf{d} \\ 0 \end{pmatrix} \sim \begin{pmatrix} s\mathbf{X}_i \\ s \end{pmatrix} + \begin{pmatrix} \mathbf{d} \\ 0 \end{pmatrix} \qquad i = 1, 2$$

- ullet Lines intersect at $inom{\mathbf{d}}{0}\in\mathbb{P}^3$
 - More principled: unique intersection of 3 planes (two of them are parallel
- Projection into image

$$K(R \mid \mathbf{T}) \begin{pmatrix} \mathbf{d} \\ 0 \end{pmatrix} = KR \, \mathbf{c}$$

• Where do two parallel lines in \mathbb{R}^3 with direction d intersect?

$$\mathbf{X}_1(t) = \mathbf{X}_1 + t\mathbf{d}$$
 $\mathbf{X}_2(t) = \mathbf{X}_2 + t\mathbf{d}$ $t \in \mathbb{R}$

• Interpret as quantities in \mathbb{P}^3 : s=1/t

$$\begin{pmatrix} \mathbf{X}_i(t) \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{X}_i \\ 1 \end{pmatrix} + t \begin{pmatrix} \mathbf{d} \\ 0 \end{pmatrix} \sim \begin{pmatrix} s\mathbf{X}_i \\ s \end{pmatrix} + \begin{pmatrix} \mathbf{d} \\ 0 \end{pmatrix} \qquad i = 1, 2$$

- ullet Lines intersect at ${f d}\choose{0}\in \mathbb{P}^3$
 - More principled: unique intersection of 3 planes (two of them are parallel)
- Projection into image

$$K(R \mid \mathbf{T}) \begin{pmatrix} \mathbf{d} \\ 0 \end{pmatrix} = KR \, \mathbf{d}$$

• Where do two parallel lines in \mathbb{R}^3 with direction d intersect?

$$\mathbf{X}_1(t) = \mathbf{X}_1 + t\mathbf{d}$$
 $\mathbf{X}_2(t) = \mathbf{X}_2 + t\mathbf{d}$ $t \in \mathbb{R}$

• Interpret as quantities in \mathbb{P}^3 : s=1/t

$$\begin{pmatrix} \mathbf{X}_i(t) \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{X}_i \\ 1 \end{pmatrix} + t \begin{pmatrix} \mathbf{d} \\ 0 \end{pmatrix} \sim \begin{pmatrix} s\mathbf{X}_i \\ s \end{pmatrix} + \begin{pmatrix} \mathbf{d} \\ 0 \end{pmatrix} \qquad i = 1, 2$$

- ullet Lines intersect at ${f d}\choose{0}\in \mathbb{P}^3$
 - More principled: unique intersection of 3 planes (two of them are parallel)
- Projection into image

$$K(R \mid \mathbf{T}) \begin{pmatrix} \mathbf{d} \\ 0 \end{pmatrix} = KR \mathbf{d}$$

Christopher Zach

Conic

Let $C \in \mathbb{R}^{3 \times 3}$ be a symmetric matrix. A conic C is the set of points \mathbf{x} from \mathbb{P}^2 that satisfy $\mathbf{x}^\top C \mathbf{x} = 0$,

$$\mathcal{C} := \{ \mathbf{x} : \mathbf{x}^\top \mathbf{C} \mathbf{x} = 0 \}.$$

• Example: circle at the origin with radius 1

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}^{\top} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = x^2 + y^2 - 1 = 0$$

- Do we need to assume that C is symmetric?
- Tangent line at x: 1 = Cx satisfies $1^T x = 0$
- The set of all tangent lines

$$\{\mathbf{l} = \mathbf{C}\mathbf{x} : \exists \mathbf{x} : \mathbf{x}^{\top} \mathbf{C}\mathbf{x} = 0\} \stackrel{\mathbf{x} = \mathbf{C}^{-1}\mathbf{l}}{=} \{\mathbf{l} : (\mathbf{C}^{-1}\mathbf{l})^{\top} \mathbf{C} \mathbf{C}^{-1}\mathbf{l} = 0\} = \{\mathbf{l} : \mathbf{l}^{\top} \mathbf{C}^{-1}\mathbf{l} = 0\}$$

24 / 36

 C^{-1} is called the dual cone

Conic

Let $C \in \mathbb{R}^{3 \times 3}$ be a symmetric matrix. A conic C is the set of points \mathbf{x} from \mathbb{P}^2 that satisfy $\mathbf{x}^\top C \mathbf{x} = 0$,

$$\mathcal{C} := \{ \mathbf{x} : \mathbf{x}^\top \mathbf{C} \mathbf{x} = 0 \}.$$

• Example: circle at the origin with radius 1

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}^{\top} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = x^2 + y^2 - 1 = 0$$

- Do we need to assume that C is symmetric?
- Tangent line at x: l = Cx satisfies $l^T x = 0$
- The set of all tangent lines

$$\{\mathbf{l} = \mathbf{C}\mathbf{x} : \exists \mathbf{x} : \mathbf{x}^{\top} \mathbf{C}\mathbf{x} = 0\} \stackrel{\mathbf{x} = \mathbf{C}^{-1}\mathbf{l}}{=} \{\mathbf{l} : (\mathbf{C}^{-1}\mathbf{l})^{\top} \mathbf{C}\mathbf{C}^{-1}\mathbf{l} = 0\} = \{\mathbf{l} : \mathbf{l}^{\top}\mathbf{C}^{-1}\mathbf{l} = 0\}$$

24 / 36

 C^{-1} is called the dual cone

Conic

Let $C \in \mathbb{R}^{3 \times 3}$ be a symmetric matrix. A conic C is the set of points \mathbf{x} from \mathbb{P}^2 that satisfy $\mathbf{x}^\top C \mathbf{x} = 0$,

$$\mathcal{C} := \{ \mathbf{x} : \mathbf{x}^\top \mathbf{C} \mathbf{x} = 0 \}.$$

• Example: circle at the origin with radius 1

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}^{\top} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = x^2 + y^2 - 1 = 0$$

- Do we need to assume that C is symmetric?
- Tangent line at \mathbf{x} : $\mathbf{l} = \mathbf{C}\mathbf{x}$ satisfies $\mathbf{l}^{\top}\mathbf{x} = 0$
- The set of all tangent lines

$$\{\mathbf{l} = \mathtt{C}\mathbf{x}: \exists \mathbf{x}: \mathbf{x}^{\top}\mathtt{C}\mathbf{x} = 0\} \overset{\mathbf{x} = \mathtt{C}^{-1}\mathbf{l}}{=} \{\mathbf{l}: (\mathtt{C}^{-1}\mathbf{l})^{\top}\mathtt{C}\mathtt{C}^{-1}\mathbf{l} = 0\} = \{\mathbf{l}: \mathbf{l}^{\top}\mathtt{C}^{-1}\mathbf{l} = 0\}$$

24 / 36

 C^{-1} is called the dual cone

Extra slide: why is Cx a tangent line?

- Introduce $f(\mathbf{x}) := \mathbf{x}^{\top} \mathbf{C} \mathbf{x}, \ \mathbf{x} \in \mathbb{P}^2$
- Gradient $\nabla f(\mathbf{x})$:

$$\phi(x,y) = 0$$

$$\phi(x,y) > 0$$

$$\phi(x,y) > 0$$

$$\nabla f(\mathbf{x}) = (\mathbf{C} + \mathbf{C}^{\top})\mathbf{x}$$

Automatically symmetrizes C!

- Therefore $f(\mathbf{x})$ is constant in direction orthogonal to $\nabla f(\mathbf{x}) = (\mathtt{C} + \mathtt{C}^\top)\mathbf{x}$
- Line $\mathbf{l} = (\mathbf{C} + \mathbf{C}^{\top})\mathbf{x}$ is tangent line to level set $\{\mathbf{y}: f(\mathbf{y}) = f(\mathbf{x})\}$
- \bullet C symmetric: $l \sim \text{C} \mathbf{x}$

Quadrics

Quadric

Let $Q \in \mathbb{R}^{4 \times 4}$ be a symmetric matrix. A quadric Q is the set of points \mathbf{X} from \mathbb{P}^3 that satisfy $\mathbf{X}^{\top}Q\mathbf{X} = 0$,

$$\mathcal{Q} := \{\mathbf{X}: \mathbf{X}^{\top} \mathbf{Q} \mathbf{X} = 0\}.$$

Example: sphere at the origin with radius 1

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}^{\top} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = x^2 + y^2 + z^2 - 1 = 0$$

- Tangent plane at \mathbf{X} : $\Pi = \mathbf{Q}\mathbf{X}$ satisfies $\Pi^{\top}\mathbf{X} = 0$
- The set of all tangent planes

$$\{\Pi:\Pi^{\top}\mathbf{Q}^{-1}\Pi=0\}$$
 \mathbf{Q}^{-1} is called the dual quadric

Christopher Zach Computer Vision: Lecture 2

Discussion

Projection of a quadric

How does a quadric Q look in an image with camera matrix P?

- We consider the silhouette of the quadric in the image
- Silhouette is generated by lines in the image tangential to Q
 - ullet Lines 1 correspond to $3\mathsf{D}$ planes $\Pi = \mathsf{P}^{ op} \mathsf{1}$
 - ullet Planes Π are tangental to \mathbb{Q} , i.e. in the dual cone

$$0 = \Pi^{\mathsf{T}} \mathbf{Q}^{-1} \Pi = (\mathbf{P}^{\mathsf{T}} \mathbf{l})^{\mathsf{T}} \mathbf{Q}^{-1} \mathbf{P}^{\mathsf{T}} \mathbf{l} = \mathbf{l}^{\mathsf{T}} \mathbf{P} \mathbf{Q}^{-1} \mathbf{P}^{\mathsf{T}} \mathbf{l}$$

27 / 36

- PQ⁻¹P[⊤] is the dual conic in the image
- ullet $(\mathsf{PQ}^{-1}\mathsf{P}^{\perp})^{-1}$ is the image conic of the quadric Q

Christopher Zach Computer Vision: Lecture 2 2023-11-02

Discussion

Projection of a quadric

How does a quadric Q look in an image with camera matrix P?

- We consider the silhouette of the quadric in the image
- Silhouette is generated by lines in the image tangential to Q
 - Lines 1 correspond to 3D planes $\Pi = P^{\top}1$
 - \bullet Planes Π are tangental to Q, i.e. in the dual cone

$$0 = \boldsymbol{\Pi}^{\top} \mathbf{Q}^{-1} \boldsymbol{\Pi} = (\mathbf{P}^{\top} \mathbf{l})^{\top} \mathbf{Q}^{-1} \mathbf{P}^{\top} \mathbf{l} = \mathbf{l}^{\top} \mathbf{P} \mathbf{Q}^{-1} \mathbf{P}^{\top} \mathbf{l}$$

27 / 36

- $PQ^{-1}P^{\top}$ is the dual conic in the image
- $(PQ^{-1}P^{\top})^{-1}$ is the image conic of the quadric Q

Christopher Zach Computer Vision: Lecture 2 2023-11-02

Discussion

Projection of a quadric

How does a quadric Q look in an image with camera matrix P?

- We consider the silhouette of the quadric in the image
- Silhouette is generated by lines in the image tangential to Q
 - Lines 1 correspond to 3D planes $\Pi = P^{T}I$
 - Planes Π are tangental to Q, i.e. in the dual cone

$$0 = \boldsymbol{\Pi}^{\top} \mathbf{Q}^{-1} \boldsymbol{\Pi} = (\mathbf{P}^{\top} \mathbf{l})^{\top} \mathbf{Q}^{-1} \mathbf{P}^{\top} \mathbf{l} = \mathbf{l}^{\top} \mathbf{P} \mathbf{Q}^{-1} \mathbf{P}^{\top} \mathbf{l}$$

- $PQ^{-1}P^{\top}$ is the dual conic in the image
- $(PQ^{-1}P^{\top})^{-1}$ is the image conic of the quadric Q

Computer Vision: Lecture 2

Projective transformation

A projective transformation H is an invertible linear mapping from $\mathbb{P}^k o \mathbb{P}^k$,

$$y = Hx$$
.

It can be represented by an invertible matrix $H \in \mathbb{R}^{(k+1)\times(k+1)}$.

• Projective transformations are defined (non-zero) up-to-scale

$$\mathtt{H}\mathbf{x} \sim \lambda \mathtt{H}\mathbf{x}$$

- Homographies are projective transformations in \mathbb{P}^2 , $\mathbb{H} \in \mathbb{R}^{3 \times 3}$
 - 8 degrees of freedom (why?)
 - 4 correspondences $\mathbf{x}_i \leftrightarrow \mathbf{y}_i$ to estimate H

Plane transfer between images

If ${\bf X}$ is on a 3D plane $\Pi,$ then there exists a homography H such that

$$\mathbf{y} = \mathtt{P}_2 \mathbf{X} = \mathtt{HP}_1 \mathbf{X} = \mathtt{H} \mathbf{x}$$

- Assume $\Pi=(0,0,1,0)^{ op}$ (z=0 plane). Then $\mathbf{X}=(X_1,X_2,0,\mu)^{ op}\in\mathbb{P}^3$
- Write $P_i = (A_i \mid \mathbf{b}_i)$ for i = 1, 2

$$\mathbf{x} = \mathbf{A}_1 \begin{pmatrix} X_1 \\ X_2 \\ 0 \end{pmatrix} + \mu \mathbf{b}_1 = \underbrace{\left(\mathbf{A}_1 (1:3,1:2) \mid \mathbf{b}_1\right)}_{=:\mathbf{C}} \begin{pmatrix} X_1 \\ X_2 \\ \mu \end{pmatrix}$$

- Solve for $(X_1, X_2, \mu) = \mathbf{C}^{-1}\mathbf{x}$
- Insert into 2nd camera

$$\mathbf{y} \sim \mathbf{P}_2 \begin{pmatrix} X_1 \\ X_2 \\ 0 \\ \mu \end{pmatrix} = \underbrace{\left(\mathbf{A}_2(1:3,1:2) \mid \mathbf{b}_2\right)\mathbf{C}^{-1}}_{=\mathbf{H}} \mathbf{y}$$

Christopher Zach Computer Vision: Lecture 2 2023-11-02 29 / 36

Plane transfer between images

If ${\bf X}$ is on a 3D plane Π , then there exists a homography H such that

$$\mathbf{y} = \mathtt{P}_2 \mathbf{X} = \mathtt{HP}_1 \mathbf{X} = \mathtt{H} \mathbf{x}$$

- Assume $\Pi = (0, 0, 1, 0)^{\top}$ (z = 0 plane). Then $\mathbf{X} = (X_1, X_2, 0, \mu)^{\top} \in \mathbb{P}^3$.
- Write $P_i = (A_i \mid b_i)$ for i = 1, 2

$$\mathbf{x} = \mathtt{A}_1 \begin{pmatrix} X_1 \\ X_2 \\ 0 \end{pmatrix} + \mu \mathbf{b}_1 = \underbrace{\left(\mathtt{A}_1 (1:3,1:2) \mid \mathbf{b}_1 \right)}_{-:c} \begin{pmatrix} X_1 \\ X_2 \\ \mu \end{pmatrix}$$

- Solve for $(X_1, X_2, \mu) = C^{-1}x$
- Insert into 2nd camera

$$\mathbf{y} \sim \mathrm{P}_2 \left(\begin{smallmatrix} X_1 \\ X_2 \\ 0 \\ \mu \end{smallmatrix} \right) = \underbrace{\left(\mathrm{A}_2 (1:3,1:2) \mid \mathbf{b}_2 \right) \mathrm{C}^{-1}}_{=\mathrm{H}} \mathbf{x}$$

 Christopher Zach
 Computer Vision: Lecture 2
 2023-11-02
 29 / 36

Plane transfer between images

If ${\bf X}$ is on a 3D plane Π , then there exists a homography H such that

$$\mathbf{y} = \mathtt{P}_2 \mathbf{X} = \mathtt{HP}_1 \mathbf{X} = \mathtt{H} \mathbf{x}$$

- Assume $\Pi = (0, 0, 1, 0)^{\top}$ (z = 0 plane). Then $\mathbf{X} = (X_1, X_2, 0, \mu)^{\top} \in \mathbb{P}^3$.
- Write $P_i = (A_i \mid \mathbf{b}_i)$ for i = 1, 2

$$\mathbf{x} = \mathtt{A}_1 \begin{pmatrix} X_1 \\ X_2 \\ 0 \end{pmatrix} + \mu \mathbf{b}_1 = \underbrace{\left(\mathtt{A}_1 (1:3,1:2) \mid \mathbf{b}_1\right)}_{=:\mathtt{C}} \begin{pmatrix} X_1 \\ X_2 \\ \mu \end{pmatrix}$$

- Solve for $(X_1, X_2, \mu) = \mathbb{C}^{-1}\mathbf{x}$
- Insert into 2nd camera

 Christopher Zach
 Computer Vision: Lecture 2
 2023-11-02
 29 / 36

Plane transfer between images

If ${\bf X}$ is on a 3D plane Π , then there exists a homography H such that

$$\mathbf{y} = \mathtt{P}_2 \mathbf{X} = \mathtt{HP}_1 \mathbf{X} = \mathtt{H} \mathbf{x}$$

- Assume $\Pi = (0, 0, 1, 0)^{\top}$ (z = 0 plane). Then $\mathbf{X} = (X_1, X_2, 0, \mu)^{\top} \in \mathbb{P}^3$.
- Write $P_i = (A_i \mid \mathbf{b}_i)$ for i = 1, 2

$$\mathbf{x} = \mathtt{A}_1 \begin{pmatrix} X_1 \\ X_2 \\ 0 \end{pmatrix} + \mu \mathbf{b}_1 = \underbrace{\left(\mathtt{A}_1 (1:3,1:2) \mid \mathbf{b}_1\right)}_{=:\mathtt{C}} \begin{pmatrix} X_1 \\ X_2 \\ \mu \end{pmatrix}$$

- Solve for $(X_1, X_2, \mu) = \mathbf{C}^{-1}\mathbf{x}$
- Insert into 2nd camera

 Christopher Zach
 Computer Vision: Lecture 2
 2023-11-02
 29 / 36

Plane transfer between images

If X is on a 3D plane Π , then there exists a homography H such that

$$\mathbf{y} = \mathtt{P}_2 \mathbf{X} = \mathtt{HP}_1 \mathbf{X} = \mathtt{H} \mathbf{x}$$

- Assume $\Pi = (0, 0, 1, 0)^{\top}$ (z = 0 plane). Then $\mathbf{X} = (X_1, X_2, 0, \mu)^{\top} \in \mathbb{P}^3$.
- Write $P_i = (A_i \mid b_i)$ for i = 1, 2

$$\mathbf{x} = \mathbf{A}_1 \begin{pmatrix} X_1 \\ X_2 \\ 0 \end{pmatrix} + \mu \mathbf{b}_1 = \underbrace{\left(\mathbf{A}_1(1:3,1:2) \mid \mathbf{b}_1\right)}_{=:\mathbf{C}} \begin{pmatrix} X_1 \\ X_2 \\ \mu \end{pmatrix}$$

- Solve for $(X_1, X_2, \mu) = C^{-1}x$
- Insert into 2nd camera

$$\mathbf{y} \sim \mathtt{P}_2 \left(\begin{smallmatrix} X_1 \\ X_2 \\ 0 \\ \mu \end{smallmatrix} \right) = \underbrace{\left(\mathtt{A}_2 (1:3,1:2) \mid \mathbf{b}_2 \right) \mathtt{C}^{-1}}_{=\mathtt{H}} \mathbf{x}$$

Christopher Zach Computer Vision: Lecture 2

Example: Point Transfer via a Plane.

If a set of points \mathbf{X}_i lying on the same plane is projected into two cameras $\mathbf{x}_i \sim P_1 \mathbf{X}_i$, $\mathbf{y}_i \sim P_2 \mathbf{X}_i$, then there is a homography such that $\mathbf{x}_i \sim \mathtt{H} \mathbf{y}_i$.

Example: Point Transfer via a Plane.

Compute the homography by selecting (at least) 4 points, and solving $\lambda_i \mathbf{x}_i = \mathtt{H} \mathbf{y}_i$.

Example: Point Transfer via a Plane.

30 / 36

Apply transformation to right image. (Uses matlabs imtransform.)

Example: Point Transfer via a Plane.

Mean value of the two images. Points on the plane seem to agree.

Affine Transformations ($\mathbb{P}^n \to \mathbb{P}^n$)

$$\mathtt{H} = \left[\begin{array}{cc} \mathtt{A} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{array} \right],$$

where $A \in \mathbb{R}^{n \times n}$ (invertible) and $\mathbf{t} \in \mathbb{R}^n$.

- Parallel lines are mapped to parallel lines.
- Preserves the line at infinity (points at infinity are mapped to points at infinity, and regular points are mapped to regular points).
- Can be written y = Ax + t for points in \mathbb{R}^n .

Similarity Transformations $(\mathbb{P}^n o \mathbb{P}^n)$

$$\mathbf{H} = \left[\begin{array}{cc} s\mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{array} \right],$$

where $R \in \mathbb{R}^{n \times n}$ rotation, $\mathbf{t} \in \mathbb{R}^n$, s > 0

- Special case of affine transformation.
- Preserves angles between lines.

Euclidian Transformations (Rigid body motion $\mathbb{P}^n o \mathbb{P}^n$)

$$\mathbf{H} = \left[\begin{array}{cc} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{array} \right],$$

where $R \in \mathbb{R}^{n \times n}$ rotation, $\mathbf{t} \in \mathbb{R}^n$.

- Special case of similarity.
- Preserves distances.

	Projective	Affine	Similarity	Euclidean
Maps lines to lines		Υ	Υ	Υ
Preserves parallel lines	N	Υ	Υ	Υ
Preserves angles	N	N	Υ	Υ
Preserves distances	N	N	N	Υ

Exercises

• Given camera matrix $P = (R \mid \mathbf{t})$, what is the mapping between stars $(\mathbf{y}_i, 0)$ and their images \mathbf{x}_i , where $\mathbf{y}_i, \mathbf{x}_i \in \mathbb{P}^2$?

To do

- Work on assignment 1
- Lab session after this lecture: MTI1-MTI4