

IN1006 Systems Architecture (PRD1 A 2022/23)

🔏 | My Moodle | IN1006 PRD1 A 2022-23 | COURSEWORK 1: Weekly Assessed Quiz | Quiz 3 Weekly Assessed Quiz 2022

Started on Thursday, 17 November 2022, 4:48 PM

State Finished

Completed on Thursday, 17 November 2022, 4:59 PM

Time taken 10 mins 59 secs

Grade 10.00 out of 10.00 (**100**%)

Question 1

orrect

Mark 1.00 out of 1.00

Which of the following equations correctly reflects the truth table shown below? A,B and C are inputs and F is the output.

Α	В	С	F
0	0	0	0
0	0	0 1	
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Select one:

- a. F = A'BC' + A'BC + AB'C' + ABC' + ABC
- b. None of these expressions
- \bigcirc c. F = (AB'C + A'BC' + A'BC' + A'B'C + A'B'C')'
- d. F = AB'C + A'BC' + A'BC' + A'B'C + A'B'C'
- e. Don't know/no answer
- f. F = (A'BC ' + A'BC + AB'C' + ABC' + ABC)'

The F output is given as a sum-of-products expression where each product (AND) should correspond to a row where F = 1.

The correct answer is: F = A'BC' + A'BC + AB'C' + ABC' + ABC

Mark 1.00 out of 1.00

Given the logic circuit and table below (with output Q), which line of the table does **not** correspond to the behaviour of the logic circuit?

Row	Α	В	C	Q
1	0	0	0	1
2	0	0	1	1
3	0	1	0	1
4	0	1	1	1
5	1	0	0	0
6	1	0	1	0
7	1	1	0	0
8	1	1	1	1

Select one:

- a. Row 6
- b. Don't know/no answer
- oc. Row 4
- d. Row 3
- e. Row 1
- of. All rows are correct
- g. Row 7
- h. Row 2
- i. Row 5
- j. Row 8

Row 3 is in error as the output of the NOR-gate (D) and AND-gate (E) are zero, leading to an output of the OR-gate (Q) of zero.

The correct answer is: Row 3

Which of the following is the correct Boolean expression for the logic circuit below (with output F).

Select one:

- a. F= (A+B)'C'(C+D)'
- b. F= (A+B)'C'(C+D)
- c. F= A+B'C'(C+D)
- d. Don't know/no answer
- e. F= (A+B)'C(C+D)

The output is one if all three of its inputs are one (AND). The first of these is NOR of inputs A, B. The second NOT C and there third C OR D. This gives the expression: F= (A+B)'C'(C+D)

The correct answer is: F=(A+B)'C'(C+D)

Given the logic circuit (with output W) and table below, which line of the table does *not* correspond with the behaviour of the logic circuit?

Row	Α	В	С	D	Z
1	0	0	0	0	0
2	0	0	0	1	1
3	0	0	1	0	0
4	0	0	1	1	0
5	0	1	0	0	0
6	0	1	0	1	0
7	0	1	1	0	0
8	0	1	1	1	1
9	1	0	0	0	0
10	1	0	0	1	0
11	1	0	1	0	0
12	1	0	1	1	0
13	1	1	0	0	0
14	1	1	0	1	0
15	1	1	1	0	0
16	1	1	1	1	0

Select one:

- a. Row 10
- o b. Row 12
- c. Row 8
- Od. Don't know/no answer
- e. Row 7
- f. Row 15
- g. Row 5
- h. Row 1
- i. Row 3

Row 8 is in error as all inputs to the AND gate must be one for W to be one, and this only occurs when the conditions in row two are met.

The correct answer is: Row 8

Given the logic circuit and table below, which line of the table does *not* correspond with the behaviour of the logic circuit (with output Z)?

Row	Α	В	С	D	Z
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	1	0	1
4	0	0	1	1	0
5	0	1	0	0	1
6	0	1	0	1	0
7	0	1	1	0	1
8	0	1	1	1	1
9	1	0	0	0	1
10	1	0	0	1	1
11	1	0	1	0	1
12	1	0	1	1	1
13	1	1	0	0	1
14	1	1	0	1	1
15	1	1	1	0	0
16	1	1	1	1	1

Select one:

- a. Row 15
- o b. Row 11
- oc. Row 7
- od. Row 6
- e. Don't know/no answer
- of. Row 1
- g. Row 10
- h. Row 13
- i. Row 3

Row 15 is in error as since A is an input to the final OR-gate and Z should be one when A is one.

The correct answer is: Row 15

Question **6**Correct

Mark 1.00 out of 1.00

Which of the following is the correct Boolean expression for the logic circuit below (with output Q).

Select one:

- \bigcirc a. Q = (A+B) + (BC)
- b. Don't know/no answer
- \bigcirc c. Q = (A+B)' + (BC)
- \bigcirc d. Q = (A+B)'(BC)
- e. Q = (AB)' + (B+C)

Output Q is OR of a NOR-gate (D) with inputs A, B and an AND-gate (E) with inputs B, C. This gives the expression: Q = (A+B)' + (BC)

The correct answer is: Q = (A+B)' + (BC)

Which of the following is the correct Boolean expression for the logic circuit below (with output Z).

Select one:

- \bigcirc a. Z = A + (B+C)D'
- b. $Z = A + (B \cdot C) + D'$
- \bigcirc c. Z = A' + (BC) + D'
- d. Don't know/no answer
- e. Z= A + (BC) + D

Input D feeds directly into a NOT gate so is inverted to D'. Inputs B and C are AND-ed together. Then all are OR-ed together with A to give the expression:

Z = A + (BC) + D'

The correct answer is: $Z = A + (B \cdot C) + D'$

Question 8

Correct

Mark 1.00 out of 1.00

Which of the following statements is the most accurate description for the sum-of-products expression below?

F = A'BC + ABC' + AB'C'

Select one:

- a. The truth table has three rows where F = 1 and at least one zero must be in the inputs to return one.
- b. Don't know/no answer.
- Oc. The truth table has three rows where F = 1 and B must be one to return one.
- d. The truth table has four rows where F = 1 and no zeros need to be in the inputs to return one.
- e. The truth table has three rows where F = 1 and no zeros need to be in the inputs to return one.
- \bigcirc f. The truth table has two rows where F = 1 and no zeros need to be in the inputs to return one.

Your answer is correct.

The number of OR-ed terms above specifies the number of input cases that lead to a true expression (rows of truth table that give F = 1). Each of the inverted variables shows where the input needs to be zero for that input case.

The correct answer is: The truth table has three rows where F = 1 and at least one zero must be in the inputs to return one.

Question 9
Correct Mark 1.00 out of 1.00
Mark 1.00 Out of 1.00
What is the effect of a bitwise-NAND operation on the following two 12-bit words: 1000 1010 1101, 0110 1110 0101?
Select one:
○ a. 1110 1110 1101
○ b. 1110 0100 1000
© c. 1111 0101 1010
○ d. Don't know/no answer
e. 0000 1100 0101
o f. 0001 0001 0010
Your answer is correct.
The NAND operation is applied to each of the pairs of bits at the same position in each word, moving from left to right.
The correct answer is: 1111 0101 1010
Question 10
Correct
Mark 1.00 out of 1.00
Which of the following statements is <i>the most accurate</i> description for the sum-of-products expression below?
F = A'B'C + A'BC' + AB'C'
T MBC MBC
Select one:
a. Don't know/no answer
○ b. The truth table has two rows where F = 1 and C must be zero to return one.
◎ c. The truth table has three rows where F = 1 and no more than two zeros must be in the inputs to return one.
\bigcirc d. The truth table has three rows where F = 1, and no zeros need to be in the inputs to return one.
\bigcirc e. The truth table has three rows where F = 1 and C must be one to return one.
of. The truth table has four rows where F = 1 and no more than two zeros must be in the inputs to return one.
Your answer is correct.
The number of OR-ed terms above specifies the number of input cases that lead to a true expression (rows of truth table that give
F = 1). Each of the barred variables shows where the input needs to be zero for that input case.
The correct answer is: The truth table has three rows where F = 1 and no more than two zeros must be in the inputs to return one.
→ Quiz 2 _ Weekly Assessed Quiz 2022
Jump to
Quiz 4 _ Weekly Assessed Quiz 2022 ►
Quiz navigation

Show one page at a time

