Epipolar Geometry

Three Questions

1. Correspondence Geometry

 \circ Given an image point x in the first view, how does this constrain the position of the corresponding point x' in the second image?

Camera Geometry (motion)

- \circ Given a set of corresponding image points $x_i \leftrightarrow x_i', i=1,...,n$
- \circ What are the cameras P and P' for the two views?
- What is the geometric transformation between the two views?

3. Scene Geometry (structure)

- \circ Given corresponding image points $x_i \leftrightarrow x_i'$ and cameras P,P'
- \circ What is the position of the point X in space?

Geometry

- ullet Epipolar plane π is the plane formed by P,P',X
- ullet Plane passes through camera planes and points x,x^\prime lie on the edges of the plane
- Epipoles Intersection of baseline with image plane
 - o Projection of projection center in other image
 - \circ Vanishing point of camera motion direction
- ullet Baseline Line formed by π and the epipoles o Translation between cameras
- Cross Produt

$$a imes b = egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix} b = [a_x] b$$

• Triple Scalar Product \rightarrow 3 points are coplanar

$$(a \times b) \cdot c = 0$$

• Equations

$$P' = RP + t$$
 $p = MP, M = [I|0]$ $p' = M'P', M' = [R|t]$

P is the point in space, p,p' are points in image

$$O'p', OO', Op \text{ are coplanar } \implies p' \cdot [t \times (Rp)] = 0, \begin{cases} p = (u, v, 1)^T \\ p' = (u', v', 1)^T \end{cases}$$

$$p' \cdot [t \times (Rp)] = 0 \implies p' \cdot [(t \times R)p] = 0 \implies p'([t_x]R)p = 0$$

$$\underbrace{E = [t_x]R}_{\text{Essential Matrix}} \implies \boxed{p'Ep = 0}$$

- Essential Matrix
 - E can be used to find rotation and translation
 - Computed from point correspondences
- Uncalibrated camera
 - \circ $\hat{p}=M^{-1}p$ and $\hat{p'}=M'_{int}p'$
 - \circ p and p' are points in pixel coordiantes corresponding to $\hat{p},\hat{p'}$
 - $p'^T F p = 0$
 - $\circ \ F = M_{int}^{\prime T} E M_{int}^{-1}$
- Properties of fundamental and essential matrix
 - \circ With calibration parameters ightarrow essential
 - ∘ Without → fundamental
 - ∘ Matrix is 3×3
 - \circ Transpose: If F is essential matrix of cameras P,P' \Rightarrow F^T is essential matrix of camera P',P
 - \circ **Epipolar Lines:** p and p' as points in the projective plane \Rightarrow Fp is projective line in the right image
 - $l' = Fp, l = F^Tp'$
 - \circ **Epipole:** For any p the epipolar line l'=Fp contains the epipole e' \Rightarrow $(e'^TF)p=0$ for all p
 - ullet $e'^TF=0$ and Fe=0
 - Epipoles are in the Null Space of the Essential Matrix

- Fundamental Matrix
 - Encodes information of the intrinsic and extrinsic parameters
 - F is of rank 2 since S has rank 2 (R and M and M' have full rank)
 - Has 7 DOG
 - 9 elements \rightarrow scaling is not significant δ det(F) = 0
- Essential Matrix
 - Encodes only extrinsic parameters
 - Rank 2 since S has rank 2
 - Its two nonzero singular values are equal
 - \circ Has only 5 DOG \rightarrow 3 rotation, 2 translation
- Scaling Ambiguity

$$P' = RP + t$$

$$p = \frac{P}{\hat{z^T}P} \qquad p' = \frac{RP + t}{\hat{z^T}(RP + t)}$$

- Depth Z and Z' and t can only be recovered to a scale factor
- Computing the Fundamental Matrix from Point Correspondences
 - \circ Defined by the equation $x_i'^T F x_i = 0$
 - \circ For n point matches ightarrow A is an n imes 9 matrix
 - lacksquare Solve Af=0
 - Homogeneous set of equations
 - f can be determined only up to a scale, so there are 8 unknowns
 - 8 Point Algorithm
 - \circ Least Squares solution is the singular vector corresponding the smallest singular value of A \to last column of V in the SVD
 - This has a lot of error since the matrix is almost singular
 - Non-Linear Least Squares Approach
- Rectification
 - ∘ Image Reprojection
 - Reproject image planes onto common plane parallel to line between optical centers
 - Rotate left camera so epipoles go to infinity along the horizontal axis
 - \circ Apply same rotation to the right camera
 - \circ Rotate the right camera by R
 - Adjust the scale
- 3D Reconstruction

- Stereo: We know the viewing geometry (extrinsic parameters) and the intrinsic parameters ⇒ Find correspondences exploiting epipolar geometry, then reconstruct
- \circ **Structure from motion:** Find correspondences \to estimate extrinsic parameters (rotation and translation) \to reconstruct
- Uncalibrated Cameras: Find correspondences → compute projection matrices → reconstruct up to a projective transformation
 - Don't know the position of camera respective to origin
 - Can't find the orientation of camera plane

Triangulation

- If cameras are intrinsically and extrinsically calibrated ⇒ find P as the midpoint of the common perpendicular to the two rays in space
- Intrinsically calibrated cameras
 - Compute the essential matrix E using normalized points
 - lacksquare Select $M=[I|0], M'=[R|T]
 ightarrow E=[T_x]R$
 - ullet Find T and R using SVD of E

$$E = U\Sigma V^T \ [T_x] = UZU^T \quad R = UWV^T \text{ or } R = UW^TV^T \ W = egin{bmatrix} 0 & -1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix} \text{ and } Z = egin{bmatrix} 0 & 1 & 0 \ -1 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

- lacktriangle Multiple solutions ightarrow One with positive values is correct
- Linear Triangulation
 - Homogenous System

$$x = MX$$
 $x' = M'X$ $x imes MX = 0$ $x' imes M'X' = 0$ $x' ime$

$$AX = 0$$

- X is the last column of V in the SVD of A
- Projective Reconstruction Theorem
 - Assume we determine matching points x_i and x_i^\prime . Then we can compute a unique Fundamental matrix F
 - lacktriangle The camera matrices M,M' cannot be recovered uniquely
 - lacktriangle Thus the reconstruction X_i is not unique
 - There exists a projective transformation H
 - Reconstructive Ambiguity

$$x_i = MX_i = (MH_P^{-1})(H_pX_i)$$

- Two different objects produce the same image since the cameras are uncalibrated
- \blacksquare Find the original distorted by a projective transformation H \rightarrow Projective Reconstruction
- lacksquare If reconstruction is derived from real images ightarrow there is a true reconstruction that can produce the actual points X_i of the scene
- Consequences
 - We can compute a projective reconstruction of a scene from 2 views based on image correspondences alone
 - Don't need anything about poses or calibration
- \circ Projective \rightarrow Metric
 - lacktriangledown Compute homography H such that $X_{Ei}=HX_i$ for 5 or more control points X_{Ei}
 - Rectification using 5 points
 - Compute projective reconstruction
 - Find 5+ control points
 - Use them to solve for projective transformation (9 DOF) and rectify the projective reconstruction
- Stratified Reconstruction
 - Begin with projective reconstruction
 - Refine it to affine reconstruction
 - Fix plane to infinity
 - Parallel lines are parallel, ratios along parallel lines are correct
 - Reconstructed scene is then an affine transformation of the actual scene
 - Refine to a metric reconstruction
 - Use orthogonality

- Angles and ratios are correct
- Reconstructed scene is then a scaled version of the actual scene
- Reconstruction from N views
 - Projective or affine reconstruction from large set of images
 - ullet Given a set of camera M^i
 - lacksquare For each camera M^i ightarrow set of image point x^i_j
 - ullet Find 3D points X_j and cameras M^i , such that $M^iX_j=x_j^i$
- Reconstruction from intrinsically calibrated cameras
 - ullet Compute the essential matrix E using normalized points
 - ullet Find T and R from SVD(E)
 - lacktriangle Select M = [I|0] and M' = [R|T] then E = $[T_x]$ R
- Bundle Adjustment
 - Solve following minimization problem
 - ullet Find M^i and X_j that minimize

$$\sum_{i,j} d(M^i X_j, x^i_j)^2$$

- Levenberg Marquardt algorithm
- Problems
 - lacktriangle Many parameters ightarrow 11 per camera, 3 per 3D point
- Useful as final adjustment step for bundles of arrays

Linear Triangulation

- ullet x=MX where x is the camera point and X is the world point
- $\quad \blacksquare \ \, \mathsf{X} \ \, || \ \, \mathsf{MX} \, \rightarrow \, x \times MX = 0$
- $x' = M'X \rightarrow x' \times M'X = 0$
- lacksquare M is 3×4 with rows m_1^T, m_2^T, m_3^T

$$M = egin{bmatrix} m_1^T \ m_2^T \ m_3^T \end{bmatrix} \implies MX = egin{bmatrix} m_1^T X \ m_2^T X \ m_3^T X \end{bmatrix}$$

$$egin{pmatrix} x \ y \ 1 \end{pmatrix} imes egin{bmatrix} m_1^T X \ m_2^T X \ m_3^T X \end{bmatrix} = 0$$

$$x(m_3^T X) - (m_1^T X) = 0$$

$$y(m_3^TX) - (m_2^TX) = 0$$

$$\underbrace{x(m_2^TX)-y(m_1^TX)=0}$$

Linear combination of first two

$$A = egin{bmatrix} xm_3^T & -m_1^T \ ym_3^T & -m_2^T \ x'm_3^{'T} & -m_1^{'T} \ y'm_3^{'T} & -m_2^{'T} \end{bmatrix}$$

- ullet Homogeneous System ightarrow AX=0
- ullet X is the last column of V in the SVD of $A=U\Sigma V^T$
- ∘ Geometric Error
 - $d(x,\hat{x})^2+d(x',\hat{x'})^2$ subject to $\hat{x'^T}F\hat{x}=0$ - $\hat{x}=M\hat{X}$ and $\hat{x'}=M\hat{X'}$
 - Reconstruct matches in projective frame by minimizing reprojection error