## **Continuous Random Variables**

[Ross S5.1]

We saw random variables where the set of possible outcomes was discrete. In some cases, a random variable can take a continuum of values:

X = time at which a train arrives

Y =voltage across a resistor

Z = rainfall measured in mm

**Definition 15.1:** We say X is a continuous random variable if there is a nonnegative function  $f_X(x)$  such that

$$P[X \in B] = \int_{B} f_X(x) dx = \int_{B} f_X(u) du$$

 $f_X(x)$  is called **probability density function** (pdf).

[ Textbook omits subscript X on  $f_X(x)$ ...]

This is similar to mass density: if I know  $\rho(x)$ , the **density of mass** in kg/m<sup>3</sup> at every point  $x \in \mathbb{R}^3$ , then the mass inside any volume V is:



$$m(V) = \iiint_V \rho(\underline{x}) d\underline{x}$$

 $f_X(x)$  is similar, except it measures the density of probability, not mass:

$$P[X \in B] = \int_{B} f_X(x) \ dx$$



Since X must take some value:

$$1 = P[X \in (-\infty, \infty)] = \int_{-\infty}^{\infty} f_X(x) dx.$$
 (15.1)

*Note:* Say X has units of kg. Since dx has units of kg,  $f_X(x)$  has units of kg<sup>-1</sup>.

Once we know  $f_X(x)$ , all probability statements about X can be answered:

1) 
$$P[X \in [a, b]] = \int_a^b f_X(x) dx$$



2) 
$$P[X = a] = P[X \in [a, a]] = \int_a^a f_X(x) dx = 0$$

3) 
$$F_X(a) = P[X \le a] = P[X \in (-\infty, a]] = \int_{-\infty}^a f_X(x) dx$$

4) 
$$f_X(a) = \frac{d}{da} F_X(a)$$

**Example 15.1:** The lifetime of a motor in months is a random variable with pdf

$$f_X(x) = \begin{cases} \lambda e^{-x/100} & x \ge 0\\ 0 & x < 0 \end{cases}$$

for some constant  $\lambda$ . What is the probability that it functions for

- a) between 50 and 150 months?
- b) fewer than 100 months?

Solution:

**Example 15.2:** Let X have pdf  $f_X(x)$ , and Y = 2X. Find  $f_Y(y)$ .

Solution: