4.3 The theorem of Fermat and Wilson revisited

June 21, 2016

3

a)

1.
$$(a, m) = 1$$

2.
$$(a-1,m)=1$$

$$\diamond 1 + a + a^2 + \dots + a^{\phi(m)-1} \equiv 0 \pmod{m}$$

Car on a que
$$\sum_{j=0}^{\phi(m)-1} a^j = \frac{1 - a^{\phi(m)}}{1 - a}$$
.

Donc (a-1) $\sum_{j=0}^{\phi(m)-1} a^j = a^{\phi(m)} - 1$. Or, par le théorème d'Euler, on a que

$$a^{\phi(m)}-1\equiv 0 \pmod{m}$$
. Donc $(a-1)\sum_{j=0}^{\phi(m)-1}a^j\equiv 0 \pmod{m}$. Puisque $(a-1,m)=0$

1, on peut retirer le terme (a-1) et alors on a le résultat voulu.

4*

- 1. $r_1, \dots, r_{\phi(m)}$ un système de résidue réduit
- 2. m impair

$$\diamond r_1 + r_2 + \dots + r_{\phi(m)} \equiv 0(\mathbf{mod}\ m)$$

Puisque m est impair, on a que pgdc(m,2) = 1 et donc $2r_i$ possède un résidue unique dans le système puisqu'il s'agit d'un nombre relativement premier à m. Il en va de même pour chaque $2r_j$ auquel correspond un unique résidue.

Ansi, on a que
$$2\sum_{j=1}^{\phi(m)}r_j\equiv\sum_{j=1}^{\phi(m)}r_j\pmod{m}$$
 et donc $\sum_{j=1}^{\phi(m)}r_j\equiv0\pmod{m}$.

11

1. p premier et différent de 2

2.
$$0 \le a \le p - 1$$

$$\diamond \binom{p-1}{a} \equiv (-1)^a (\mathbf{mod} \ p)$$

La chose est évidente pour $\binom{p-1}{0}$ et $\binom{p-1}{p-1}$. Supposons la chose vraie pour a-1 et considérons 0 < a < p-1.

On a

$$\binom{p-1}{a} - (-1)^a = \binom{p-1}{a-1} \frac{p-1}{a} - (-1)^a$$

$$= \frac{\binom{p-1}{a-1}p - \binom{p-1}{a-1}a - (-1)^a a}{a}$$

$$= \binom{p-1}{a-1} \frac{p}{a} - \left[\binom{p-1}{a-1} + (-1)^a \right]$$

$$= \binom{p}{a} + \left[\binom{p-1}{a-1} - (-1)^{a-1} \right]$$

Or, on a que $\binom{p}{a}$ est divisible par p (ex. 3-1 9 et 0 < a < p-1) et $\binom{p-1}{a-1} - (-1)^{a-1}$ l'est également par hypothèse d'induction.

12

- 1. n
- 2. p premier

 $\diamond~p$ divise ${2n \choose n}$ mais pas p^2

On a que $\binom{2n}{n} = p^{\frac{2n\cdots(p+1)(p-1)\cdots(n+1)}{n!}} = d$ et donc $2n\cdots(p+1)(p-1)\cdots(n+1) = \frac{n!d}{p}$, d'où l'on conclut que $\frac{n!d}{p}$ est un entier et donc p divise n!d.

Or $p \nmid n, (n-1), \cdots 2$ puisque p est premier. Donc p divise d par **cor. 2-3**. Alors $\frac{2n \cdots (p+1)(p-1) \cdots (n+1)}{n!} = \frac{d}{p}$ un entier. Mais alors $\binom{2n}{n} = p \frac{2n \cdots (p+1)(p-1) \cdots (n+1)}{n!} = pk$ où k est un entier. Donc $p \mid \binom{2n}{n}$.

Supposons alors que p^2 divise $\binom{2n}{n}$. On a que $kp^2 = \frac{2n!}{(n!)^2} \Leftrightarrow lp^2 = 2n!$ pour un certain k. Donc $p^2 \mid 2n!$.

Alors $lp = 2n \cdots (p+1)(p-1)! = 2n \cdots (p+1)(p\alpha-1)$ pour un certain entier α par **thm. 5-3**. Or $p \nmid (p\alpha-1)$. De plus n . Or, par

cor. 2-3 et cor. 2-4, p doit diviser p+1 ou p+2 ou ... 2n, ce qui est impossible.

14

 \diamond Calculer la quantité de nombre premier comprise dans l'interval fermé [m!+2,m!+m] où m>1

Soit $0 \le k \le m-2$. Alors on a que $m!+2 \le m!+2+k \le m!+m$. Or, on a que $m!+2+k=m!+q=m\cdots q!+q$ et donc pour tout q=2+k, on a que m!+2+k est divisible par q. Or, q< m!+q et donc m!+q=dq où d>1. Donc m!+q n'est pas premier et ce pour tout k entre 0 et m-2.