МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

МЕТОДИЧНІ ВКАЗІВКИ

до лабораторної роботи № 9 на тему:

НАБЛИЖЕННЯ ФУНКЦІЙ МЕТОДОМ НАЙМЕНШИХ КВАДРАТІВ

Мета: ознайомлення на практиці з методом найменших квадратів апроксимації (наближення) функцій.

На практиці часто виникає необхідність описати у вигляді функціональної залежності зв'язок між величинами, заданими таблично або у вигляді набору точок з координатами (x_i, y_i) , $(i = \overline{0,n})$, де n - загальна кількість точок. Як правило, ці табличні дані отримані експериментально і мають похибки.

У результаті апроксимації бажано отримати досить просту функціональну залежність, яка дасть змогу «згладити» експериментальні похибки та обчислити значення функції в проміжних точках, що не містяться у вихідній таблиці.

10.1. Формулювання задачі

Розглянемо функцію y = f(x), задану таблицею своїх значень $y_i = f(x_i)$, $i = \overline{0,n}$. Потрібно знайти поліном фіксованого m -го степеня $(m = \overline{0,n})$

$$P_m(x) = a_0 + a_1 x + a_2 x^2 \dots + a_m x^m, (10.1)$$

для якого похибкою апроксимації є середнє квадратичне відхилення

$$\sigma = \sqrt{\frac{1}{n+1}} \sum_{i=0}^{n} (P_m(x_i) - y_i)^2 .$$
 (10.2)

Оскільки поліном (10.1) містить невизначені коефіцієнти a_i ($i = \overline{0, m}$), то необхідно їх підібрати таким чином, щоб мінімізувати функцію

$$\Phi(a_0, a_1, a_2, ...a_m) = \sum_{i=0}^{n} (P_m(x_i) - y_i)^2 = \sum_{i=0}^{n} \left(\sum_{j=0}^{m} a_j x_i^{j} - y_i\right)^2.$$
 (10.3)

У цьому і полягає суть використання методу найменших квадратів для апроксимації функцій.

Використовуючи необхідну умову екстремуму $\frac{\partial \Phi}{\partial a_k} = 0$ ($k = \overline{0,m}$) функції від багатьох змінних $\Phi(a_0, a_1, a_2, ...a_m)$, отримуємо так звану *нормальну систему* методу найменших квадратів для визначення коефіцієнтів a_i ($i = \overline{0,m}$) апроксимаційного полінома

$$\sum_{i=0}^{m} \left(\sum_{i=0}^{n} x_i^{j+k} \right) a_j = \sum_{i=0}^{n} y_i x_i^k, \qquad k = \overline{0, m}.$$
 (10.4)

Отримана система - це система лінійних алгебраїчних рівнянь відносно невідомих $a_0, a_1, a_2, ... a_m$. Можна показати, що визначник цієї системи відмінний від нуля, тобто її розв'язок існує і єдиний. Однак для високих степенів m система є погано обумовленою. Тому метод найменших квадратів застосовують для знаходження поліномів невисоких степенів $m \le 5$. Розв'язок нормальної системи шукають, використовуючи прямі або наближені методи розв'язування систем лінійних алгебраїчних рівнянь.

10.2. Часткові випадки апроксимаційних поліномів

Запишемо нормальну систему для визначення коефіцієнтів апроксимаційних поліномів методом найменших квадратів для двох найпростіших випадків, коли m=0 і m=2.

Для m = 0 поліном (10.1) набуває вигляду

$$P_0(x) = a_0. (10.5)$$

Для визначення невідомого коефіцієнта a_0 із використанням нормальної системи (10.4) отримуємо одне рівняння

$$(n+1)a_0 = \sum_{i=0}^n y_i,$$

тобто виходить, що коефіцієнт a_0 дорівнює середньому арифметичному значень функції в заданих точках і шуканий поліном буде таким:

$$P_0(x) = \frac{1}{(n+1)} \sum_{i=0}^{n} y_i.$$
 (10.6)

Якщо ж використати для апроксимації поліном другого степеня (m=2) у вигляді

$$P_2(x) = a_0 + a_1 x + a_2 x^2, (10.7)$$

то нормальна система рівнянь для визначення коефіцієнтів a_0, a_1, a_2 матиме такий вигляд:

$$\begin{cases}
\left(n+1\right)a_{0} + \left(\sum_{i=0}^{n} x_{i}\right)a_{1} + \left(\sum_{i=0}^{n} x_{i}^{2}\right)a_{2} = \sum_{i=0}^{n} y_{i}, \\
\left(\sum_{i=0}^{n} x_{i}\right)a_{0} + \left(\sum_{i=0}^{n} x_{i}^{2}\right)a_{1} + \left(\sum_{i=0}^{n} x_{i}^{3}\right)a_{2} = \sum_{i=0}^{n} y_{i}x_{i}, \\
\left(\sum_{i=0}^{n} x_{i}^{2}\right)a_{0} + \left(\sum_{i=0}^{n} x_{i}^{3}\right)a_{1} + \left(\sum_{i=0}^{n} x_{i}^{4}\right)a_{2} = \sum_{i=0}^{n} y_{i}x_{i}^{2}.
\end{cases} (10.8)$$

Приклад 10.1. Використовуючи метод найменших квадратів, побудувати апроксимаційний поліном 2-го степеня для таблично заданої функції

х	-3	-1	0	1	3
У	-4	-0,8	1,6	2,3	1,5

Розв'язування. Запишемо нормальну систему рівнянь (10.8) для визначення коефіцієнтів a_0 , a_1 , a_2 . Для цього виконаємо допоміжні обчислення

$$n+1=5,$$

$$\sum_{i=0}^{4} x_i = -3-1+0+1+3=0,$$

$$\sum_{i=0}^{4} x_i^2 = 9+1+0+1+9=20,$$

$$\sum_{i=0}^{4} x_i^3 = -27-1+0+1+27=0,$$

$$\sum_{i=0}^{4} x_i^4 = 81 + 1 + 0 + 1 + 81 = 164;$$

$$\sum_{i=0}^{n} y_i = -4 - 0.8 + 1.6 + 2.3 + 1.5 = 5.4 - 4.8 = 0.6;$$

$$\sum_{i=0}^{n} y_i x_i = 12 + 0.8 + 0 + 2.3 + 4.5 = 19.6;$$

$$\sum_{i=0}^{n} y_i x_i^2 = -4 \cdot 9 - 0.8 \cdot 1 + 0 + 2.3 \cdot 1 + 1.5 \cdot 9 = 15.8 - 36.8 = -21,$$

із використанням яких у результаті отримаємо

$$\begin{cases} 5 a_0 + 0 a_1 + 20 a_2 = 0,6; \\ 0 a_0 + 20 a_1 + 0 a_2 = 19,6; \\ 20 a_0 + 0 a_1 + 164 a_2 = -21. \end{cases}$$

Знайдемо розв'язок цієї системи. З другого рівняння системи визначаємо коефіцієнт a_1

$$20 a_1 = 19,6;$$
$$a_1 = 0,98.$$

Віднявши від третього рівняння перше, помножене на 4, знаходимо a_2

$$(20-4\cdot 5) a_0 + (164-4\cdot 20) a_2 = -21-4\cdot 0,6;$$

$$84 a_2 = -23,4;$$

$$a_2 = -0,279.$$

Маючи значення a_1 і a_2 , з першого рівняння визначаємо коефіцієнт a_0

$$5 a_0 + 20 a_2 = 0,6;$$

 $5 a_0 = 0,6 + 20 \cdot 0,279 = 0,6 + 5,58 = 6,18;$
 $a_0 = 1,236.$

Відповідь: шуканий поліном 2-го степеня має вигляд

$$P_2(x) = 1,236 + 0,98x - 0,279x^2$$
.

Варіанти завдань

Методом найменших квадратів побудувати лінійний, квадратичний і кубічний апроксимаційні поліноми для таблично заданої функції.

Варіант 1	X	0,59	0,7	0,81	0,9	0,95	1
	у	2,94	3,2	3,38	3,53	3,75	4,06
Варіант 2	х	0,15	0,20	0,25	0,30	0,40	0,50
	у	4,48	5,47	6,05	7,39	8,11	9,93
Варіант 3	х	4,03	4,08	4,16	4,23	4,26	4,33
	у	3,01	2,78	2,52	2,42	2,19	1,95
Варіант 4	X	2,03	2,08	2,16	2,23	2,26	2,33
	у	4,01	3,78	3,52	3,42	3,19	2,95
Варіант 5	X	0,72	0,79	0,9	1,01	1,1	1,15
	у	2,8	2,94	3,2	3,38	3,53	3,75
Варіант 6	X	8,03	8,08	8,16	8,23	8,26	8,33
	у	4,48	5,47	6,05	7,39	8,11	9,93
Варіант 7	х	0,41	0,46	0,52	0,61	0,66	0,73
	у	2,73	2,31	1,97	1,76	1,53	1,31
Варіант 8	х	0,62	0,69	0,8	1,01	1,1	1,15

	у	2,8	2,94	3,2	3,38	3,53	3,75
Варіант 9	x	4,03	4,08	4,16	4,23	4,26	4,33
	У	2,8	2,94	3,2	3,38	3,53	3,75
Варіант 10	х	0,05	0,10	0,17	0,25	0,30	0,36
	у	0,54	0,51	0,47	0,45	0,42	0,38
Варіант 11	х	0,41	0,46	0,52	0,61	0,66	0,73
	у	4,48	5,47	6,05	7,39	8,11	9,93
Варіант 12	х	2,8	2,94	3,2	3,38	3,53	3,75
	у	3,01	2,78	2,52	2,42	2,19	1,95
Варіант 13	х	0,15	0,20	0,25	0,30	0,40	0,50
	у	4,01	3,78	3,52	3,42	3,19	2,95
Варіант 14	х	8,03	8,08	8,16	8,23	8,26	8,33
	У	5,01	4,78	3,52	3,12	3,19	2,95
Варіант 15	x	0,72	0,79	0,9	1,01	1,1	1,15
	у	2,8	2,94	3,2	3,38	3,53	3,75

Контрольні запитання

- 1. Як формують нормальну систему для визначення коефіцієнтів апроксимаційних поліномів?
- 2. Для яких значень поліномів степенів поліномів доцільно застосовувати метод найменших квадратів?
- 3. Як визначити невідомий коефіцієнт полінома нульового степеня?
- 4. Записати нормальну систему визначення коефіцієнтів для апроксимаційного полінома першого степеня.
- 5. Записати нормальну систему визначення коефіцієнтів для апроксимаційного полінома другого степеня.