

Course Name: Engineering Calculus Course Code: EMAT101L

Academic Year: 2024-25 Semester: Odd

Date: August 24, 2024 Type: 3-1-0

Tutorial Sheet: 2

CO-mapping:

	CO1	CO2	CO3	CO4	CO5	CO6
Q1	✓					
Q2	✓					
Q3	✓					
Q4	✓					
Q5	✓					

Objectives: Students will be able to understand and apply the different methods of convergence and divergence of a sequence.

1. Show that the sequence $\langle S_n \rangle$, defined by the recursion formula

$$S_{n+1} = \sqrt{3S_n} \qquad S_1 = 1$$

converges to 3.

2. Examine if the following sequences converge, diverge or oscillate. The n^{th} term of the sequence are given by:

(a)
$$a_n = n \cdot (-1)^{n+3}$$

(b)
$$a_n = \frac{n^3}{n+1}$$

(c)
$$a_n = \frac{\cos^2 n}{n}$$

3. Show that the following sequences, whose n^{th} terms are given below, are the convergent sequences.

(a)
$$a_n = \left(1 + \frac{1}{n}\right)^n$$

(b) For any real number x, $a_n = \frac{x^n}{n!}$

(c)
$$a_n = \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \frac{1}{\sqrt{n^2 + 3}} + \dots + \frac{1}{\sqrt{n^2 + n}}\right)$$

4. Use Sandwich theorem to prove that

(a)
$$\lim_{n \to \infty} \frac{1}{n} \sin^2 n = 0.$$

(b)
$$\lim_{n \to \infty} \left[\frac{n}{n^3 + 1} + \frac{2n}{n^3 + 2} + \dots + \frac{n^2}{n^3 + n} \right] = \frac{1}{2}.$$

5. Use Monotone convergence theorem to prove that

$$\{x_n\} = \left\{\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}\right\}$$

is convergent.

"Constantly think about how you could be doing things better. Keep questioning yourself." — Elon Musk

