Задача 1. Докажите, что если уравнение $x^2 - my^2 = 1$ имеет нетривиальное (т.е., отличное от решения x = 1, y = 0) решение в целых числах, то m не есть полный квадрат.

- Задача 2. а) Покажите, что преобразование $(x,y) \mapsto T(x,y) = (3x+2y,4x+3y)$ переводит всякую гиперболу семейства $x^2 my^2 = c$ в себя и всякое целочисленное решение уравнения $x^2 2y^2 = 1$ в другое целочисленное решение.
- **б)** Покажите, что уравнение $x^2 2y^2 = 1$ имеет бесконечно много решений в целых числах.
- в) Докажите, что всякое положительное целочисленное решение уравнения $x^2-2y^2=1$ может быть получено из тривиального решения (1,0) посредством многократного применения преобразования T
 - \mathbf{r})* Приведите общую формулу решений уравнения Пелля $x^2 2y^2 = 1$.
- **Задача 3.** а) Докажите, что вещественные числа вида $a+b\sqrt{m},\ a,b\in\mathbb{Z}$ замкнуты относительно операций сложения, вычитания и умножения. Это множество обозначается $\mathbb{Z}[\sqrt{m}]$ и называется кольцом целых гауссовых чисел.
- **б)** Докажите, что вещественные числа вида $a + b\sqrt{m}$, $a, b \in \mathbb{Q}$ замкнуты относительно операций сложения, вычитания, умножения и деления при $a \neq 0$. Это множество называется полем квадратичного расширения $\mathbb{Q}[\sqrt{m}]$.
- в) Каждому гауссову числу $z=a+b\sqrt{m}$ сопоставим сопряженное гауссово число $\bar{z}=a-b\sqrt{m}$. Назовем нормой N(z) гауссова числа z целое число $z\bar{z}=a^2-mb^2$. Докажите мультипликативность нормы: $N(z_1z_2)=N(z_1)N(z_2)$.
- г) Пусть $z_1 = a_1 + b_1 \sqrt{m}$ и $z_2 = a_2 + b_2 \sqrt{m}$ два целых гауссовых числа, причем модуль нормы z_2 равен n. Тогда, если $a_1 = a_2 \mod n$ и $b_1 = b_2 \mod n$, то z_1 делится на z_2 в $\mathbb{Z}[\sqrt{m}]$.
- **Задача 4. а)** Решения уравнения Пелля $x^2 my^2 = 1$ находятся во взаимно-однозначном соответствии с целыми гауссовыми числами из $\mathbb{Z}[\sqrt{m}]$ с нормой, равной единице. Объясните это.
- **б)** Докажите, что на множестве решений уравнения Пелля определена операция умножения, а роль единицы играет тривиальное решение (1,0).
- в) Переформулируйте результаты задачи 2 в терминах гауссовых чисел.
- **г)** Назовем фундаментальным решением уравнения Пелля положительное решение с минимальной нормой соответствующего гауссова числа (если таковое существует). Покажите, что положительные решения уравнения исчерпываются степенями фундаментального.
- д) Покажите, что для доказательства существования нетривиального решения уравнения Пелля достаточно показать, что существует гипербола $x^2 my^2 = c$, содержащая бесконечно много целых точек.
- **Задача 5.** а) Докажите, что если множество M на плоскости имеет площадь, большую 1, то найдутся две точки $A, B \in M$ такие, что вектор \overrightarrow{AB} целочисленный.
- **б)** (лемма Минковского) Докажите, что всякое центрально-симметричное множество площади больше 4 содержит целочисленную точку, отличную от начала координат.
- в) Пусть m не есть полный квадрат. Выведите из задач 4д и 56 существование нетривиального решения у любого уравнения Пелля $x^2 my^2 = 1$.
- **Задача 6.** Пусть пара (x,y) положительное решение уравнения Пелля $x^2-my^2=1$. Тогда $\left|\frac{x}{y}-\sqrt{m}\right|<\frac{1}{2y^2}$.

Таким образом, рациональное число x/y хорошо приближает \sqrt{m} и потому является подходящей дробью для \sqrt{m} . Более точно, это следует из такого свойства приближений: если несократимая дробь p/q такова, что $\left|\frac{p}{q}-\alpha\right|<\frac{1}{2q^2}$, то она является подходящей дробью для иррационального числа α . Однако, не всякая подходящая дробь для \sqrt{m} определяет решение соответствующего уравнения Пелля.

нако, не всякая подходящая дробь для \sqrt{m} определяет решение соответствующего уравнения Пелля. Попробуйте разобраться с этим на примерах уравнений Пелля с m=2 и m=3.

Задача 7*. Докажите, что все целые неотрицательные решения уравнения $x^2 - mxy + y^2 = 1$ описываются как соседние члены рекуррентной последовательности $\varphi_0 = 0, \varphi_1 = 1, \varphi_{k+1} = m\varphi_k - \varphi_{k-1}$.