O Samba é um conjunto de programas que implementão protocolos *Server Message Block* ou simplesmente **SMB** para sistemas UNIX. Este protocolo também é referenciado como Common Internet File System (**CIFS**). O Samba implementa igualmente o protocolo NetBIOS com o nmbd.

Aplicações de compartilhamento de arquivos e impressoras do Microsoft **Windows são baseadas em NetBIOS** (*Network Basic Input Output System*). A BIOS define a interface de aplicações usadas para solicitar serviços I/O (entrada/saída) do sistema operacional DOS. NetBIOS estende isto com chamadas que suportam I/O através de uma rede.

Hoje, o NetBIOS é usado através do TCP/IP, o que permite às aplicações NetBIOS de serem executadas através de grandes redes como a Internet. Isto é possível encapsulando as mensagens NetBIOS dentro de datagramas TCP/IP. O protocolo que faz isto é o **NetBIOS over TCP/IP** (NBT).

O NBT precisa de um método para mapear nomes NetBIOS de computador, que são os endereços de uma rede NetBIOS, para endereços IPs de uma rede TCP/IP. Existem três métodos para mapear nomes NetBIOS em endereços IP:

•broadcast IP - Uma mensagem de broadcast que contém um nome de computador NetBIOS é transmitida, e quando um host vir seu próprio nome em tal transmissão devolve seu endereço IP à fonte da transmissão.

- •Arquivo lmhosts Um arquivo que mapeia nomes NetBIOS de computador para endereços IPs.
- •NetBIOS Name Server (NBNS) Um NBNS mapeia nomes NetBIOS para endereços IP para seus clientes. O daemon nmdb do Samba pode fornecer este serviço.

Os sistemas em uma rede NBT são classificados de acordo com o modo que elas solucionam nomes NetBIOS em endereços IP.

Assim existem quatro classificações possíveis de redes NetBIOS:

- **b-node** Um sistema que soluciona endereços por broadcast. Broadcast só tem efeito em uma rede física que suporta broadcast, e normalmente está limitado a uma única sub-rede.
- **p-node** Um sistema que consulta diretamente um servidor de nome NBNS, desta forma para solucionar endereços este modelo um nó faz requisições a um servidor de nomes NetBIOS.

m-node - Um sistema que primeiro usa resolução de endereço por broadcast e, em caso de não ter sucesso, volta a um servidor NBNS é um **nó-misto** (m-node). Usando uma abordagem dupla, é eliminada a dependência completa de um servidor NBNS que é a fraqueza da solução p-node. O problema com m-node é que sua abordagem de broadcast, menos desejável, é realizada primeiro. Na prática, m-nodes são raramente usados.

h-nodes - Um sistema que primeiro tenta solucionar o endereço usando o servidor NBNS e então volta para usar broadcast e se tudo o mais falha procura por um arquivo lmhosts local é um **nó-híbrido**. O h-node é o método usado pela maioria dos sistemas atuais.

Serviço de Nomes NetBIOS

O **NMBD** é a parte da distribuição do software Samba básico que **transforma** um **servidor Linux em um servidor NBNS**. O nmbd pode controlar consultas de clientes Windows e ser configurado para agir como um servidor WINS.

A implementação da Microsoft do serviço de nome NetBIOS é o Windows Internet Name Service (**WINS**). O Samba é compatível com o WINS e pode ser usado como um servidor WINS.

As **opções** fundamentais que se relacionam para executar o **WINS** no Samba (dentro do arquivo de configuração do samba: /etc/samba/smb.conf) são como segue:

wins support - Esta opção determina se o nmbd é executado ou não como um servidor WINS (yes ou no).

dns proxy - Esta opção diz para o nmbd usar um servidor de nomtes - **DNS** para solucionar consultas WINS e que ele não pode solucionar de nenhum outro modo (yes ou no). Isto só ajuda se o nome NetBIOS e o nome do DNS forem os mesmos.

wins server - Esta opção só é util se você não estiver executando um servidor WINS em seu sistema Linux. Pois, esta opção **indica o IP de um servidor WINS** externo.

wins proxy - Quando ajustado a yes (e não no), o nmbd soluciona mensagens de broadcast de consultas de nome NetBIOS transformando-as em consultas unicast e as enviando diretamente para o servidor WINS. Se wins support for yes, estas consultas são controladas pelo próprio nmbd, caso contrário, wins server estiver ajustado, estas consultas são enviadas ao servidor externo. A opção wins proxy é necessária apenas se os clientes não sabem o endereço do servidor ou não entendem o protocolo WINS.

O servidor de nome NetBIOS geralmente é executado no momento da inicialização do sistema Linux ou com o seguinte comando:

```
#nmbd -D
```

Quando iniciado com a opção -D, o nmbd executa continuamente, escutando por solicitações de serviço de nome NetBIOS na porta 137.

Se a opção -H /etc/lmhosts for adicionada à linha de comando, o servidor também responde com o mapeamento definido no arquivo lmhosts. Mas a maioria dos servidores WINS não precisa de um arquivo lmhosts porque os servidores descobrem mapeamento de endereços dinamicamente.

Normalmente os clientes registram os seus nomes NetBIOS com o servidor quando eles inicializam.

O arquivo lmhosts contém mapeamentos de nome estático para endereço. Cada entrada começa com um endereço IP e é seguido por um nome de host.

Configurando um Servidor Samba

O servidor Samba é configurado pelo arquivo smb.conf (no Slackware /etc/samba/smb.conf). Tal arquivo é dividido em seções: Global, home e outros compartilhamentos.

Com exceção da seção global que define parâmetros de configuração para o servidor inteiro, as demais definem compartilhamentos. Sendo que um compartilhamento é um recurso oferecido pelo servidor aos clientes, normalmente um arquivo ou diretório, mas pode ser também uma impressora.

O SAMBA disponibiliza os seguintes componentes/comandos:

smbd - O servidor SAMBA.

nmbd - O Servidor de nomes NetBios

smbclient - Cliente SMB para sistemas Unix.

smbpasswd - Alterar senhas (encriptadas) de usuários smb.

smbprint - Cliente para envio de impressão a sistemas Linux.

smbstatus - Apresenta a situação atual das conexões SMB no Host.

testparm - Verifica o arquivo smb.conf (configuração do SAMBA).

testprns - Verifica a comunicação via rede com as impressoras.

Variáveis do smb.conf

Ler um arquivo smb.conf pode ser confuso se você não entender as variáveis encontradas no arquivo. Todas estas são listadas a seguir:

- %a Arquitetura da máquina cliente
- %d ID do processo de servidor
- %g GID do usuário atribuído ao cliente
- %G GID do nome de usuário solicitado pelo cliente
- %h Nome no DNS do host do servidor
- %н Diretório home do nome de usuário atribuído ao cliente

- %I Endereço IP do cliente
- %L Nome NetBIOS do servidor
- %m Nome NetBIOS do cliente
- %M Nome no DNS do host cliente
- %P Diretório raiz do serviço atual
- %R Protocolo negociado durante a conexão
- %S Nome do serviço atual
- %⊤ A data e hora
- %u Nome do usuário atribuído ao cliente
- %U Nome de usuário solicitado pelo cliente
- %v O número da versão do Samba.

As variáveis fornecem flexibilidade porque cada variável é substituída na configuração por um valor obtido do sistema.

Seção Global do smb.conf

A seção global define vários parâmetros que afetam o servidor inteiro. Os principais parâmetros são:

workgroups - Define o grupo de trabalho do qual este servidor é membro. Grupos de trabalho não são usados para segurança já que hosts que não estão no grupo são autorizados a compartilhar arquivos normalmente.

server string - Define um comentário apresentado aos clientes pelo servidor Samba.

log file - Define o local do arquivo de registro de logs.

max log size - Define o tamanho máximo de um arquivo de registro em kilobyte.

encrypt passwords - Especifica se o Samba deve ou não usar senhas criptografadas. Fixar este parâmetro em yes torna o servidor mas compatível com os clientes Windows, e torna mais difícil a tarefa de intrusos detectarem senhas na rede. Se este parâmetro for ajustado em no, serão usadas senhas de texto claro, o que requer mudanças nas configurações do cliente e torna a segurança mais fulnerável.

Security - Define o tipo de segurança usado. Existem quatro configurações possíveis:

•share: Solicita segurança no nível do recurso compartilhado. Este é o nível mais baixo de segurança. Um recurso configurado em tal nível é compartilhado com todo mundo. É possível associar uma senha com um compartilhamento, mas a senha é a mesma para todos.

user: Solicita segurança em nível de usuário. A todo usuário é exigido um nome e uma senha.

server: Define segurança em nível de servidor. É semelhante ao nível user, mas um servidor externo é usado para autenticar nome e senha. O servidor externo deve ser definido pela opção password server.

domain: Define segurança em nível de domínio. Neste esquema, o servidor Linux une um domínio Windows NT e usa o controlador de domínio Windows para aprovar nomes de usuários e senhas. Use a opção password server para apontar ao Windows NT Primary Domain Controller (PDC). Registre-se em PDC, e crie uma conta para o sistema Linux. Finalmente acrescente estar linhas à seção global no sistema Linux:

```
domain master = no
local master = no
preferred master = no
ostype = 0
```

smb passwd file - Use este parâmetro para apontar o local do arquivo smbpasswd. Quando senhas criptografadas são usadas, o servidor Samba tem que manter dois arquivos de senha: passwd e smbpasswd. Você pode usar o script mksmbpasswd.sh para construir o arquivo inicial smbpasswd utilizando o arquivo passwd. Desta forma, serão usadas as senhas padrão do sistema no servidor Samba.

socket options - Define parâmetros de ajuste de desempenho do servidor Samba. O padrão é TCP_DELAY que envia pacotes múltiplos com cada transferência. As opções SO_RCVBUF e SO_SNDBUF quem ajustam o buffer de envio e recebimento em oito kilobytes, o que pode aumentar ligeiramente o desempenho.

dns proxy - Especifica se o nmbd deve ou não encaminhar consultas NBNS não resolvidas ao DNS.

Senhas de texto claro

Quando Samba usa senhas de texto claro, nenhuma sincronização de banco de dados de senha é requerida, porque só um banco é usado (/etc/passwd).Porém, senhas de texto claro não são compatíveis com muitas versões do Windows, porque estas requerem senhas criptografadas. Para forçar estes clientes a usar senhas de texto claro, você tem que editar o registro de todos os clientes.

A outra seção no arquivo de configuração de exemplo se relaciona ao compartilhamento de arquivos é a **seção homes**.

A seção homes é uma seção de compartilhamento especial e diz ao smbd para permitir aos usuários acessar seus próprios diretórios home através do SMB.

```
[home]
  comment = Diretório Home
  browseable = no
  writable = yes
  valid users = %S
  create mode = 0664
  directory mode = 0775
```

Os parâmetros de configuração definidos nesta seção homes são os seguintes:

comment - fornece uma descrição do recurso compartilhado.

browseable - Especifica o usuário pode enxergar ou não o compartilhamento deste recurso compartilhado. no significa que somente usuários com permissão estão autorizados a enxergar o recurso. Este parâmetro só controla navegação o acesso real aos conteúdos do recurso é controlado pelas permissões de arquivos Linux.

writable - Especifica se os arquivos/diretórios do compartilhamento podem ou não ser criados/alterados. Se yes o recurso compartilhado pode ser escrito. Este parâmetro define as ações permitidas pelo Samba. Permissões real para escrever ainda é controlado pelas permissões de arquivo do Linux.

valid users - Define os usuários que estão autorizados a usar este compartilhamento.

create mode - Define a permissão de arquivo usada quando um arquivo é criado neste compartilhamento.

directory mode - Define as permissões usadas quando um diretório é criado neste compartilhamento.

Tendo uma compreensão dos elementos usados para criar estas seções, você está pronto para criar sua própria seção de compartilhamento no arquivo smb.conf.

Demais Seções

Correspondem aos compartilhamentos presentes na rede.

Os parâmetros abaixo são apenas alguns dos inúmeros podem ser utilizados:

comment - Comentário para o compartilhamento.

path - Caminho do diretório compartilhado.

valid users - Este parâmetro é usado para destacar quem terá acesso ao compartilhamento na rede. É importante destacar que estações Win95/98/Me têm diferenças entre si que em muitas situações representam um problema para acesso e segurança. Acontece algumas vezes de você definir o "write list" e o "read list" corretamente mas mesmo assim usuários do "read list" conseguem escrever no compartilhamento (!). Para resolver este problema, inclua o:

"valid users" indicando os usuários que têm acesso e em seguida inclua o "write list" e o "read list" conforme sua necessidade.

writeable - Indica se será ou não possível criar ou excluir arquivos ou diretórios do compartilhamento.

public / guest ok - Indica se será ou não permitido o acesso de outros usuários.

browseable - Define se o compartilhamento será ou não visível para o Ambiente de Rede do Windows (apresentado na rede).

write list - Define os usuários e/ou grupos com acesso de escrita no compartilhamento. Para mais de um usuário, separe os nomes por vírgula (user1, user2) e para grupos utilize @ antes do nome do grupo.

read list - Como em write list, mas define quem terá permissão de apenas leitura.

force create mode - Diz ao Samba para forçar o tipo de permissão dos arquivos criados (o mesmo que usar o chmod). Esta permissão tem menor prioridade que os parâmetros write liste read list.

force directory mode - O mesmo que force create mode, mas para os diretórios criados no compartilhamento.

admin users - Indica quais são os usuários com permissão completa para o compartilhamento (permissão de root).

copy - Permite copiar os parâmetros de outra seção, como um template por exemplo, útil se utiliza compartilhamentos semelhantes. Para alterar parâmetros basta informá-los na seção atual.

hosts allow - Indica quais máquinas podem acessar o compartilhamento. Podese utilizar o endereço IP ou o nome da máquina. Para garantir acesso a toda uma rede classe C por exemplo, escreva: "hosts allow = 192.168.1.". **Atenção** sempre deixe o host 127.0.0.1 na lista de hosts allow para o bom funcionamento do Samba.

hosts deny - Como em "hosts allow", mas para restringir o acesso ao compartilhamento.

max connections - Permite especificar o número máximo de conexões simultâneas ao compartilhamento.

max disk size - Permite especificar qual o limite de espaço em disco que o compartilhamento pode utilizar. Este valor é definido em Mb (megabytes).

Exemplo de um arquivo smb.conf

```
[global]
  workgroup = teste
  server string = Samba Server
  security = user
  encrypt passwords=no
  hosts allow = localhost 127. 10. 192.168.4.
  load printers = yes
  log file = /var/log/samba/user/log.%m
  \max \log \text{size} = 50
  socket options = TCP NODELAY
  domain master = yes
  preferred master = yes
  domain logons = yes
  wins support = yes
  dns proxy = no
[homes]
  comment = Home Directories
  browseable = yes
  writable = yes
  valid users = %S
[tmp]
  comment = Temporary file space
  path = /tmp
  read only = no
  public = yes
```

Testando o SAMBA

Agora que o smb.conf está configurado faça um teste para saber se está tudo certo, com o comando testparm:

```
# testparm /etc/samba/smb.conf
# [enter novamente]
```

Será criado o arquivo teste_config_samba. Confira este arquivo e caso exista alguma mensagem de erro (ERROR...) volte e corrija o problema.

Acessando servidores de arquivo Windows através de Estações Linux

O smbolient da mesma forma que o SAMBA permite que o Linux atue como servidor para estações Linux e redes Microsoft, ele também permite atuar como estação de trabalho para acessar servidores de ambos sistemas, sem que nenhuma configuração seja necessária no servidor.

Com o smbclient é possível acessar dados em um servidor Windows (lembra o comando net, mas a sintaxe utilizada é similar aos de FTP). Ele pode ser usado para receber e enviar arquivos, listar diretórios, navegar pelos diretórios, renomear e apagar arquivos, entre outros. Diretórios compartilhados por um servidor SAMBA são acessados da mesma forma.

Para verificar quais compartilhamentos estão disponíveis em um determinado Host, execute:

```
$ smbclient -L host_desejado [enter]
```

A resposta será uma lista de serviços, ou seja, nomes de dispositivos ou impressoras que podem ser compartilhados com os usuários na rede. A menos que o servidor SMB não tenha itens de segurança configurados, será solicitada uma senha antes de mostrar as informações. Exemplo:

```
$smbclient -L ORACULO
Password:
Domain=[TESTE] OS=[Unix] Server=[Samba 3.0.10]
        Sharename
                          Туре
                                       Comment
                         Disk
                                      Home Directories
        homes
                         Disk
                                      Temporary file space
        tmp
       public
                         Disk
                                      Public Stuff
        IPC$
                                      IPC Service (Samba Server)
                          IPC
        ADMIN$
                          IPC
                                      IPC Service (Samba Server)
        luiz
                                      Home Directories
                         Disk
Domain=[TESTE] OS=[Unix] Server=[Samba 3.0.10]
                              Comment
        Server
                                        er
```

ORACULO	Samba Serve
Workgroup	Master
TESTE	ORACULO

Para acessar uma pasta compartilhada, basta especificar o caminho na rede, conforme abaixo:

```
smbclient //localhost/aula -U aula
```

A saída será algo como:

```
Password:
Domain=[TESTE] OS=[Unix] Server=[Samba 3.0.10]
smb: \>
```

Digite help para obter ajuda sobre os comandos do smbclient.

O smbpasswd

O Samba permite também que as estações troquem suas senhas de logon, utilizando o smbpasswd. Ele age de forma similar ao comando passwd, mas as senhas são armazenadas no arquivo smbpasswd. É possível ainda alterar a senha dos usuários em um servidor Primário de um Domínio NT (PDC). Utilizado pelo superusuário, ele permite que contas sejam adicionados ou removidos e atributos sejam alterados.

Mantenha o "localhost" especificado no parâmetro "allow hosts" para seu perfeito funcionamento.

Luiz Arthur

O smbpasswd é um arquivo em formato ASCII e contém o nome do usuário, identificação junto ao Linux, a senha encriptada, o indicador de como está a conta e a data de última alteração da senha do usuário.

Vale destacar que o smbpasswd somente é útil quando o Samba está configurado para utilizar senhas criptografadas.

O smbstatus

Para saber a situação atual das conexões Samba, utilizamos o smbstatus (\$smbstatus).

Abaixo está a lista das opções aceitas:

- -ь Fornece uma resposta resumida.
- -d Fornece uma resposta comentada.
- -L Lista somente os recursos em uso.
- -p Lista os processos smbd e finaliza em seguida. Útil quando utilizado em programas.

- -S Lista todos os compartilhamentos definidos.
- -s Permite utilizar outro arquivo de configuração (smb.conf2 por exemplo), que deve ser especificado após a opção.
- -u Lista as informações relevantes sobre o usuário, que deve ser especificado após a opção.

fim