

Cátedra: "MEDIOS DE ENLACE"

Prof. Adjunto: Esp. Ing. Eduardo J. Menso JTP: Ing. Jorge Zozaya

Curso: 3R1 Ciclo: 2014

TRABAJO PRÁCTICO Nº 13: LÍNEA DE TRANSMISIÓN

- 1) Definir línea de transmisión.
- 2) ¿Qué condiciones debe cumplir una línea para ser considerada de transmisión?
- 3) Línea de transmisión.
 - A) Tipos.
 - B) Forma física.
 - C) Valores típicos de impedancia característica.
- > 4) Parámetros electrónicos concentrados.
 - A) Definición.
 - B) Símbolo.
 - C) Graficar forma física típica.
 - D) Unidad de medida.
- > 5) Parámetros electrónicos distribuidos.
 - A) Definición.
 - B) Símbolo.
 - C) Graficar forma física típica.
 - D) Unidad de medida.
- \triangleright 6) Una línea de transmisión tiene los siguientes valores de parámetros distribuidos: R = 0,15 Ω; L = 100 mH; G = 240 mS; C = 10 pF. Calcular:
 - A) Tiempo de retardo (tr).
 - B) Impedancia característica (Zo).

RESPUESTAS

- 1) Es todo medio físico capaz de trasportar de un punto a otro energía, ya sea eléctrica, electromagnética o fotonica.
- 2) Las condiciones son:

(Longitud)
$$l > \frac{\lambda}{4}$$
 (Separacion entre conductores) $d < \frac{\lambda}{4}$

- 3) Línea de trasmisión
 - a) Tipos: Línea bifilar, Línea coaxial, Guía de onda, Línea de cintas, Fibra óptica, Espacio libre

b) Linea Bifilar:

Linea Coaxial

Fecha: 11/09/14 | Alumno: Sueldo Enrique DNI:38159523 | Legajo:62508 | Folio: 3/1

Cátedra: "MEDIOS DE ENLACE"

Prof. Adjunto: Esp. Ing. Eduardo J. Menso JTP: Ing. Jorge Zozaya Curso: 3R1 Ciclo: 2014

Guia de onda

Fibra optica

c) Línea bifilar

$$Z_o = 300\Omega$$
 $y Z_o = 600\Omega$

Línea coaxial:

$$Z_o = 50\Omega$$
 , $Z_o = 75\Omega$, $Z_o = 93\Omega$ y $Z_o = 150\Omega$

Guía de onda:

 Z_o No tiene un valor típico

Línea de cinta:

- Z_o Depende del ancho de la cinta conductora y el espesor de la E_r del sustrato Fibra óptica:
 - Z_o No tiene un valor típico

Espacio libre:

$$Z_o = 377\Omega$$

- 4) Parámetros electrónicos concentrados:
 - a) Son los elementos eléctricos clásicos que se encuentran disponibles entre los extremos del elemento considerado. Ellos son: resistencia, conductancia, inductancia y capacidad.

Inductancia

Capacidad

Cátedra: "MEDIOS DE ENLACE"

Prof. Adjunto: Esp. Ing. Eduardo J. Menso JTP: Ing. Jorge Zozaya Curso: 3R1 Ciclo: 2014

c) Resistencia

Inductancia

Capacidad

- d) Unidades de medidas: Resistencia $[ohm: \Omega]$ Conductancia [Siemens: S] Inductancia [Herio: H]Capacidad [Faradio: F]
- 5) Parámetros electrónicos distribuidos:
 - a) Son los 4 parámetros clásicos que se encuentran repartidos (distribuidos) a lo largo de la línea de trasmisión
 - d) Unidades de medidas: Resistencia $\left[\frac{\Omega}{Km}\right]$ Conductancia $\left[\frac{S}{Km}\right]$ Inductancia $\left[\frac{H}{Km}\right]$ Capacidad $\left[\frac{F}{Km}\right]$

6)

- a) Tr=0.001 s
- b) Zo=100000

Fecha: 11/09/14 Alumno: Sueldo Enrique DNI:38159523 Legajo:62508 Folio: 3/3