SS 10, Prof. Obermayer

due to 29.4.2010

Bayesian Networks & Inference

In this exercise we will create a Bayesian network and answer a probabilistic query about network variables applying belief propagation (*message passing*). The second block of this exercise consists of a Bayesian linear regression task. Use Matlab or Python for the programming exercises.

Additional Material: You can find the links to download the BayesNetToolbox for Matlab and the OpenBayes package for Python as well as template code on the ISIS platform.

1.1 Bayesian Network Example

(6 points)

• Create a DAG using the node variables B (Burglary), E (Earthquake), A (Alarm), R (Radio broadcast) and the following (conditional) probabilities:

$$P(B) = 0.01, P(E) = 10^{-6}, P(R|E = false) = 0, P(R|E = true) = 1$$

$$B \quad E \parallel P(A)$$

$$\begin{array}{c|cccc} B & E & P(A) \\ \hline f & f & 0.001 \\ f & t & 0.41 \\ t & f & 0.95 \\ t & t & 0.98 \\ \end{array}$$

Our question is: What is the probability for a burglary, given the alarm goes off and the radio broadcasts an earthquake warning? Formally: P(B|A=true,R=true)

In order to answer this question construct a *junction tree* based on the *DAG*, initialize *clique* and *separator* potentials, introduce the evidence, perform *message passing* and calculate the marginal probability. (4 points)

• Verify your calculations using the *BayesNetToolbox* for Matlab or the *OpenBayes* package for Python. When using Matlab you can implement the network by applying the functions mk_bnet, draw_graph (to plot the *DAG*), tabular_CPD, jtree_inf_engine, enter_evidence, and marginal_nodes. (2 points)

1.2 Bayesian Regression

(4 points)

Apply sequential Bayesian regression to a linear model with polynomial basis functions. Matlab template code in the bayes_regression.zip archive is available for download. You can either complete the template program bayes_polyfit.m or write your own code in Matlab or Python.

- Generate a dataset containing N=50 data points (x,t), where x is drawn uniformly and independently from the interval [-1, 1] and $t=h(x)+\epsilon$ is given by the deterministic function $h(x)=-0.25x^2+0.75x^3$ and a zero mean Gaussian random variable ϵ with precision (inverse variance) $\beta=25$.

 Use the M=2 basis functions $\phi_1(x)=x^2$, $\phi_2(x)=x^3$ to transform your input data. (1 point)
- Implement sequential Bayesian learning. We assume a Gaussian prior distribution for the weights of the linear model $p(\mathbf{w}) \sim \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0)$, with mean $\mathbf{m}_0 = \mathbf{0}$ and covariance (inverse precision) matrix $\mathbf{S}_0 = \alpha^{-1}\mathbf{I}$ where \mathbf{I} denotes the $M \times M$ identity matrix. For the likelihood function we obtain the following expression:

$$p(\mathbf{t}|\mathbf{w}) \sim \prod_{i} \mathcal{N}(t_i|\mathbf{w}^T \phi(x_i), \beta^{-1})$$

Derive the updates \mathbf{m}_n , \mathbf{S}_n of posterior distribution using the following result for Gaussians:

Given

$$p(\mathbf{x}) \sim \mathcal{N}(\mathbf{x}|\mu, \mathbf{\Lambda}^{-1}), \qquad p(\mathbf{y}|\mathbf{x}) \sim \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1})$$

we obtain for the conditional distribution of x given y

$$p(\mathbf{x}|\mathbf{y}) \sim \mathcal{N}(\mathbf{x}|\mathbf{\Gamma}\{\mathbf{A}^T\mathbf{L}(\mathbf{y} - \mathbf{b}) + \mathbf{\Lambda}\boldsymbol{\mu}\}, \mathbf{\Gamma})$$

where
$$\Gamma = (\mathbf{\Lambda} + \mathbf{A}^T \mathbf{L} \mathbf{A})^{-1}$$
.

For sequentially arriving data points, the posterior can act as the prior for subsequent data points. (1 point)

• Apply Bayesian sequential learning using the dataset. During learning the posterior distribution $p(\mathbf{w}|\mathbf{t})$ changes after the presentation of each training data point. Draw 5 weight vectors randomly from the posterior distributions corresponding to the n-th learning sequence for n=1,5,25 and visualize the model output. Investigate how the model output changes in dependence of n, i.e. as more and more data is used to determine $p(\mathbf{w}|\mathbf{t})$, and show the output for n=N using the maximum a posteriori weight vector \mathbf{w}_{MAP} . Carry out this analysis for $\alpha=0.01,1,100$. Interpret the results. (2 points)

Total points: 10