Inference with a single treated cluster

Andreas Hagemann

Department of Economics University of Michigan

Why is this interesting?

- Natural experiments are often limited to a single state.
- Standard and bootstrap inference with a single treated cluster relies on strong homogeneity assumptions.
- Methods like Conley-Taber assume "infinitely many" control clusters and strong homogeneity. If heterogeneity is allowed, it must be known exactly.
- Permutation inference has intuitive appeal but limited to testing sharp nulls.

Contribution of this paper

- I establish validity of test with one treated cluster and finitely many control clusters. Tests conventional null hypotheses.
- Needs 15 or so untreated clusters. Clusters are large and can exhibit heterogeneity of unknown form with mild restriction in one direction.
- No standard errors or knowledge of the structure of the within-cluster dependence are required.
- Underlying result: new bound on comparison of two samples of heterogenous normals where one sample has single observation.

Typical identification strategy

- One treated and some untreated clusters.
- \blacksquare Parameter of interest is δ .
- Treated cluster identifies $\theta_1 = \theta_0 + \delta$.
- Each untreated cluster identifies θ_0 .
- Between-cluster comparisons identify $\delta = \theta_1 \theta_0$.
- Want to test H_0 : $\delta = 0$.

Examples

- Clusters indexed by k. One treated cluster and q untreated clusters.
- Difference in differences (D_k indicates treatment, $I_t = 1$ is after intervention):

$$Y_{i,t,k} = \theta_0 I_t + \delta I_t D_k + \beta'_k Z_{i,t,k} + \zeta_{i,k} + U_{i,t,k}$$

- In first differences: $\Delta Y_{i,k} = \theta_0 + \delta D_k + \beta'_k \Delta Z_{i,k} + \Delta U_{i,k}$
- If $D_{q+1} = 1$, constant term in treated cluster becomes $\theta_1 = \theta_0 + \delta$. Write this as

$$\Delta Y_{i,k} = \begin{cases} \theta_0 + \beta_k' \Delta Z_{i,k} + \Delta U_{i,k}, & 1 \le k \le q \\ \theta_1 + \beta_k' \Delta Z_{i,k} + \Delta U_{i,k}, & k = q + 1 \end{cases}$$

■ Same idea works in levels and for probit, quantile regression, etc.

Regression with cluster-level treatment, cont.

■ Recall

$$\Delta Y_{i,k} = \begin{cases} \theta_0 + \beta_k' \Delta Z_{i,k} + \Delta U_{i,k}, & 1 \le k \le q \\ \theta_1 + \beta_k' \Delta Z_{i,k} + \Delta U_{i,k}, & k = q + 1 \end{cases}$$

■ Get q+1 estimates $(\hat{\theta}_1,\hat{\theta}_{0,1},\ldots,\hat{\theta}_{0,q})$. Can expect for some diagonal Σ

$$\sqrt{n}(\hat{\theta}_1 - \theta_1, \hat{\theta}_{0,1} - \theta_0, \dots, \hat{\theta}_{0,q} - \theta_0) \rightsquigarrow N(0, \Sigma)$$

- If H_0 : $\delta = 0$ is true, then $\theta_1 = \theta_0$ but we don't know θ_0 and Σ .
- Asymptotically like testing if mutually independent $X_1 \sim N(\mu_1, \sigma^2)$ and $X_{0,k} \sim N(\mu_0, \sigma_k^2), 1 \le k \le q$, satisfy $\mu_1 = \mu_0$.

The problem

- Test H_0 : $\mu_1 = \mu_0$ with indep. $X_1 \sim N(\mu_1, \sigma^2)$ and $X_{0,k} \sim N(\mu_0, \sigma_k^2)$, $1 \le k \le q$.
- If X_1 is much larger than $X_{0,1}, \ldots, X_{0,q}$, this should be evidence against H_0 .
- Don't know $\mu_0, \sigma^2, \sigma_1^2, \dots, \sigma_q^2$ and can't estimate them.
- If we knew $\sigma^2 = \sigma_1^2 = \cdots = \sigma_q^2$, could use comparison of means and permutation test.
- Data are not exchangeable, so permutation test can be arbitrarily bad.

Towards a solution

- If X_1 is much larger than $X_{0,1}, \ldots, X_{0,q}$, this should be evidence against H_0 .
- Use $\bar{X}_0 = q^{-1} \sum_{k=1}^q X_{0,k}$ and $w \in (0,1)$ to center and scale (more later) the data.

$$\blacksquare S = S(X, w) = ((1+w)(X_1 - \bar{X}_0), (1-w)(X_1 - \bar{X}_0), X_{0,1} - \bar{X}_0, \dots, X_{0,q} - \bar{X}_0)$$

■ Pretend S is the data and plug into comparison of means

$$s = (s_1, \dots, s_{q+2}) \mapsto T(s) = \frac{s_1 + s_2}{2} - \frac{1}{q} \sum_{k=1}^{q} s_{k+2}$$

■ $T(S) = X_1 - \bar{X}_0$. Independent of w but this changes if we permute S.

Worst-case permutations

■
$$S(X, w) = S = (S_1, ..., S_{q+2})$$
 and $T(S) = \frac{S_1 + S_2}{2} - \frac{1}{q} \sum_{k=1}^{q} S_{k+2}$

- Permute *S* to find critical value. T(S) can't be larger than largest permutation statistic. Check if T(S) equals largest permutation statistic.
- Rearrange *S* from largest to smallest element and call this S^{\triangledown} . Largest permutation statistic for this particular statistic *T* is $T(S^{\triangledown})$.

Rearrangement test

$$\blacksquare S = S(X, w) = ((1+w)(X_1 - \bar{X}_0), (1-w)(X_1 - \bar{X}_0), X_{0,1} - \bar{X}_0, \dots, X_{0,q} - \bar{X}_0)$$

Call the test function

$$\varphi(X,W) = 1\{T(S) = T(S^{\triangledown})\}$$

a rearrangement test.

- Need to account for the fact that we don't know $\mu_0, \sigma, \sigma_1, \dots, \sigma_q$
- lacksquare Nuisance parameters are under the null are, for some $ar{\sigma}<\infty$ and $\underline{\sigma}>0$,

$$\Lambda = \{(\mu_0, \sigma, \sigma_1, \dots, \sigma_q) \in \mathbb{R} \times (0, \infty)^{q+1} : \sigma \leq \bar{\sigma} \text{ and } \sigma_k \geq \underline{\sigma} \text{ for all } k \text{ but one} \}.$$

■ Rearrangement test $\varphi(X, w) = 1\{T(S) = T(S^{\triangledown})\}$

$$\mathbf{A} \in \Lambda = \{(\mu_0, \sigma, \sigma_1, \dots, \sigma_q) \in \mathbb{R} \times (0, \infty)^{q+1} : \sigma \leq \overline{\sigma} \text{ and } \sigma_k \geq \underline{\sigma} \text{ for all } k \text{ but one}\}$$

■ Under alternative, $\delta = \mu_1 - \mu_0$ and λ determine $E_{\lambda,\delta} \varphi(X, w)$. Let $\rho = \bar{\sigma}/\sigma$.

THEOREM (SIZE)

Under H_0 : $\delta = 0$ with indep. $X_1 \sim N(\mu_1, \sigma^2)$ and $X_{0,k} \sim N(\mu_0, \sigma_k^2)$, 1 < k < q. $\sup_{\lambda \in \Lambda} \mathsf{E}_{\lambda,0} \, \varphi(\mathsf{X},\mathsf{w}) \leq \int_0^\infty \Phi\big((1-\mathsf{w}) \varrho \mathsf{y} \big)^{q-1} \phi(\mathsf{y}) d\mathsf{y} + \frac{1}{2^{q+1}} + \min_{t>0} \big(\Phi\big(\sqrt{q-1} \mathsf{w} t \big)^{q-1} + 2\Phi(-qt) \big) \mathsf{near}$

Implications

- Controls size: $\sup_{\lambda \in \Lambda} \mathsf{E}_{\lambda,0} \, \varphi(\mathsf{X},\mathsf{w}) \leq \alpha \text{ if } \xi_{\mathsf{q}}(\mathsf{w},\varrho) \leq \alpha$
- $\xi_q(w, \varrho) \le \alpha$ is decreasing in q and (essentially) in w, increasing in ϱ .
- $\blacksquare \ \ \Lambda = \{(\mu_0, \sigma, \sigma_1, \dots, \sigma_q) \in \mathbb{R} \times (0, \infty)^{q+1} : \sigma \leq \bar{\sigma} \ \text{and} \ \sigma_k \geq \underline{\sigma} \ \text{for all} \ k \ \text{but one} \}$
- $\varrho = \bar{\sigma}/\underline{\sigma}$ is how much more variable X_1 can be than second least variable $X_{0,k}$. Can be infinitely more variable than least variable $X_{0,k}$.
- lacksquare $\varrho=2$ means variance can be up to four times larger. No other restrictions.

Size control is possible

How to test

- Pick ϱ and find $\mathbf{w} = \mathbf{w}_q(\alpha, \varrho)$ such that $\xi_q(\mathbf{w}, \varrho) = \alpha$.
- Let $\mathbf{x} \mapsto \varphi_{\alpha}(\mathbf{x}) = \varphi(\mathbf{x}, \mathbf{w}_{\mathbf{q}}(\alpha, \varrho))$. Then

$$\sup_{\lambda \in \Lambda} \mathsf{E}_{\lambda,0} \, \varphi_{\alpha}(\mathsf{X}) \leq \alpha.$$

- Available for wide range of ϱ and $\alpha = .05$ starting from q = 15.
- lacktriangle Essentially no restrictions starting from q=25. Tables and R code available.
- Alternative: **robustness check** where we increase ϱ until we no longer reject H_0 .

■ Suppose, with fixed q and unknown $\theta_1, \theta_0, \sigma, \sigma_1, \dots, \sigma_q$,

$$\sqrt{n}\left(\frac{\hat{\theta}_1-\theta_1}{\sigma},\frac{\hat{\theta}_{0,1}-\theta_0}{\sigma_1},\ldots,\frac{\hat{\theta}_{0,q}-\theta_0}{\sigma_q}\right) \rightsquigarrow N(0,I_{q+1})$$
 (AN)

- Satisfied under unknown spatio-temporal dependence.
- Let $\hat{\theta}_n = (\hat{\theta}_1, \hat{\theta}_{0,1}, \dots, \hat{\theta}_{0,q})$. The test satisfies $\varphi_{\alpha}(\hat{\theta}_n) = \varphi_{\alpha}(\sqrt{n}(\hat{\theta}_n \theta_0 \mathbf{1}_{q+1}))$.

THEOREM (CONSISTENCY)

Suppose (AN) holds. If $\theta_1 = \theta_0$, then

$$\lim_{n\to\infty} \mathsf{E}\,\varphi_{\alpha}(\hat{\theta}_n) = \mathsf{E}\,\varphi_{\alpha}(\mathsf{X}) \leq \alpha.$$

REARRANGEMENT TEST

- 1. Choose w for given q, α , and maximal tolerance for heterogeneity, e.g., $\rho = 2$.
- 2. Compute for each untreated cluster k an estimate $\hat{\theta}_{0,k}$ of θ_0 and compute an estimate $\hat{\theta}_1$ of θ_1 from the treated cluster so that the difference $\theta_1 \theta_0$ is the treatment effect of interest. Compute $S = S(\hat{\theta}_n, w)$.
- 3. Reorder S from largest to smallest. Call this by S^{∇} . Compute T(S) and $T(S^{\nabla})$.
- 4. Reject $H_0: \theta_1 = \theta_0$ in favor of $H_1: \theta_1 > \theta_0$ if $T(S) = T(S^{\nabla})$.
- No bootstrap, simulation, matching. Can do two-sided or one-sided in either direction, and is able to detect all fixed and $1/\sqrt{n}$ -local alternatives.

State of the literature

- Conley and Taber (2011) allows for single treated cluster but all clusters have to behave like i.i.d. copies of one another in absence of treatment.
- Ferman and Pinto (2019) and Ferman (2020) extend Conley-Taber approach to situations where heterogeneity is known exactly.
- Placebo exercises pioneered by Buchmueller, DiNardo, and Valetta (2011) require exchangeability and test sharp nulls.

Conley and Taber (2011)

- Two-way fixed effects $Y_{t,k} = \delta I_t D_k + \eta_t + \zeta_k + U_{t,k}$.
- Errors are serially correlated $U_{t,k} = \gamma U_{t-1,k} + \sigma^{1\{k=q+1\}} V_{t,k}$.
- \blacksquare Strength of time series correlation driven by γ . Heterogeneity driven by σ .
- Innovations $V_{t,k}$ are either standard normal or recentered/scaled chi-squared.
- Conley-Taber needs $\sigma=1$ and number of control clusters $q\to\infty$. Rearrangement valid with fixed q and unknown σ , uses $\varrho=2$ here.
- \blacksquare Record outcome of 5% level test (10,000 per coordinate) as σ changes.

Rearrangement (power, $\delta = 3$)

Garthwaite, Gross, and Notowidigdo (2014)

- Garthwaite, Gross, and Notowidigdo (2014) use DiD to study effects of large-scale disruption of public heath insurance on labor supply.
- In 2005, ~170,000 adults in Tennessee (roughly 4% of non-elderly, adult population) lost access state's public health insurance system TennCare.
- Health insurance and work status for 2000-2007 from 2001-2008 March CPS. Comparison groups for Tennessee are the 16 other Southern states.
- $Y_{t,k} = \theta_0 I_t + \delta I_t D_k + \zeta_k + U_{t,k}$, where $Y_{t,k}$ is state-by-year mean of outcome for state k in year t with 17 × 8 = 136 state-by-year means in total.
- Bootstrap standard errors and t_{16} critical values. Their bootstrap draws states and then individuals within states with replacement.

/

TennCare results and robustness check

0.972

.05

2.914

	(1)	(2)	(3)	(4)	(5)	(6)
			Employed	Employed	Employed	Employed
	Has public		working	working	working	working
	health		<20 hours	≥20 hours	20-35 hours	≥35 hours
	insurance	Employed	per week	per week	per week	per week
$\hat{\delta}$	-0.046	0.025	-0.001	0.026	0.001	0.025
s.e.	(0.010)	(0.011)	(0.004)	(0.010)	(0.007)	(0.011)
p-val.	[0.000]	[0.019]	[0.621]	[0.011]	[0.453]	[0.020]
	Rearrangement test: largest ϱ^2 at which H_0 : $\delta=0$ is rejected					
α	(" $ imes$ " indicates that H_0 : $\delta=0$ cannot be rejected for any $arrho\geq 0$)					
.10	5.434	1.793	×	2.208	×	×

X

1.195

X

X

Concluding remarks

- Valid conventional (non-sharp) inference with one treated and finitely many control clusters. Clusters can be heterogeneous of unknown form.
- Robust inference with \sim 15 control clusters.
- Easy to use because weights are tabulated or can be computed instantly. No matching, simulation, or resampling.