Exercice 3

On considére, pour le parquetre réel x le système:

$$\left(\sum_{n}\right) \begin{cases} \chi_{1} + \chi_{2} &= 1 \\ \chi_{1} + \chi_{2} + \chi_{3} &= 0 \\ \chi_{n-2} + \chi_{n-1} + \chi_{n-2} &= 0 \\ \chi_{n-1} + \chi_{n-1} + \chi_{n-2} &= 0 \end{cases}$$

et $\Delta_n(\alpha)$ le déterminant de la matrice de (Z_n)

1) Ecrivons la matrice de (Σ_n) et exprimons $\Delta_n(x)$ en fonction de $\Delta_{n-1}(x)$ et de $\Delta_{n-2}(x)$

$$\left(\sum_{n}\right) = \begin{pmatrix} \alpha & 1 & 0 & \cdots & 0 \\ 1 & \alpha & 1 & \cdots & 0 \\ 0 & 1 & \alpha & 1 \\ 0 & \cdots & 0 & 1 & \alpha \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

Donc la matrice de (Zn) est: $A_n = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 1 \end{pmatrix}$

(78)

$$\Delta_{n}(\alpha) = \det(A_{n}) = \begin{bmatrix} \alpha & 1 & 0 & --- & 0 \\ 1 & 0 & --- & 0 \end{bmatrix}$$

En developpant suivant la première ligne, ona:

$$\Delta_{n}(\alpha) = \alpha \begin{vmatrix} \alpha & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 &$$

or
$$\begin{vmatrix} x & y & 0 & --- & 0 \\ 1 & 0 & --- & 0 \\ 1 & 0 & --- & 0 \end{vmatrix} = A_{n-1}(x)$$

alos
$$\Delta_n(\alpha) = \alpha \Delta_{n-1} - \Delta_{n-2}$$
.

2) Si $\Delta_n(\alpha) \neq 0$, déterminons ∞_k en fonction de $\Delta_{n-k}(\alpha)$ et $\Delta_n(\alpha)$ pour tout k en $\frac{Convenant}{\Delta_n(\alpha)} = \frac{\Delta_n(\alpha)}{\Delta_n(\alpha)} = 1$.

On convient que $\Delta_n(\alpha) = 1$.

Supposions que $\Delta_n(\alpha) \neq 0$. Alors le système (Z_n) est un système de CRAMER; d'où (Z_n) admet une solution unique

and (2n) according to $(x_1; x_2; -\cdot\cdot; x_n) \in \mathbb{R}^n$, on $x_k = \frac{\Delta_{x_k}}{\Delta_n(x)}$ pour tout $k = 1; 2; \cdots; n$;

où Δ_{x_k} est égal ou déterminant de la matrice obtenue en remplaçant dans la matrice de (Σ_n) la k-ième colonne par les éléments respectifs 1;0;...;0. Ainsi

 $\Delta_{\chi_k} = (-1)^{k+1} \Delta_{n-k}(\alpha)$, pour tout k=1;2;...;n.

Dou $x_k = (-1)^{k+1} \frac{\Delta_{n-k}(\alpha)}{\Delta_{n}(\alpha)}, k=1;2;...;n.$

(79)

On suppose que $|\alpha| < 2$ et on pose $\alpha = 2\cos\theta$ 3) Calculons $\Delta_n(\alpha)$ et x_k pour n=3 et $\theta=\frac{\pi}{3}$. $\triangle_{0}(\theta) = 1$. On sait que: $\Delta_1(\alpha) = \alpha \implies \Delta_1(\theta) = 2\cos\theta$ Daprès la question 1), ona: $\Delta_n(\alpha) = \alpha \Delta_{n-1}(\alpha) - \Delta_{n-2}(\alpha)$ Donc, $\Delta_n(\theta) = 2\cos\theta \Delta_{n-1}(\theta) - \Delta_{n-9}(\theta)$. Ainsi, $\Delta_2(0) = 2 \cos \theta \Delta_1(0) - \Delta_0(0)$ C'est-ā-dire, $\Delta_2(0) = 4 \cos 0 - 1 = 2 \cos(20) + 1$. $\frac{Sin(3\theta)}{Sin\theta} = \frac{Sin(2\theta + \theta)}{Sin\theta} = \frac{Sin(2\theta)\cos\theta + \cos(2\theta)\sin\theta}{Sin\theta}$ $\frac{\sin(3\theta)}{\sin\theta} = \frac{2\sin\theta\cos\theta\cos\theta}{\sin\theta} + \cos(2\theta)$ Sin(30) = 2 cos 0 + cos (20) or $\cos(2\theta) = \cos\theta - \sin\theta = 2\cos\theta - 1 \Rightarrow 2\cos\theta = \cos(2\theta) + 1$ donc, $\frac{\sin(30)}{\sin 0} = 2\cos(20) + 1$; ainsi, $\Delta_2(\theta) = \frac{\sin(3\theta)}{\sin(\theta)} = \frac{\sin[(2+1)\theta]}{\sin\theta}$

Montrons que:
$$\Delta_n(\theta) = \frac{\sin[(n+1)\theta]}{\sin\theta}$$
, $\forall n \in \mathbb{N}$.

(i) Comme
$$\Delta_0(\theta) = 1$$
 et $\frac{\sin[(0+1)\theta]}{\sin \theta} = \frac{\sin \theta}{\sin \theta} = 1$ alors $\Delta_0(\theta) = \frac{\sin[(0+1)\theta]}{\sin \theta}$.

On sait que:
$$\Delta_1(\theta) = 2\cos\theta$$

et $\frac{\sin\left[(1+1)\theta\right]}{\sin\theta} = \frac{\sin\left(2\theta\right)}{\sin\theta} = \frac{2\sin\theta\cos\theta}{\sin\theta} = 2\cos\theta$
donc, $\Delta_1(\theta) = \frac{\sin\left[(1+1)\theta\right]}{\sin\theta}$.

Comme, on plus,
$$\Delta_{\mathcal{L}}(0) = \frac{\sin \left[(2+1)0 \right]}{\sin 0}$$

alors c'est vrai pour n=051;2.

(ii) Soit n un entier naturel supérieur à 2. Supposons que: $\Delta_{k}(\theta) = \frac{\sin[(k+1)\theta]}{\sin \theta}$, $\forall k \in [[\bullet;n]]$.

Daprès la question 1), on a: $\Delta_{k+1}(0) = 2\cos\theta \Delta_k(0) - \Delta_{k-1}(0)$

Et d'après l'hypothèse de récurrence, on a: $\Delta_{k}(\theta) = \frac{\sin \left[(k+1)\theta \right]}{\sin \theta} \text{ at } \Delta_{k-1}(\theta) = \frac{\sin (k\theta)}{\sin \theta}$

Donc
$$\Delta_{k+1}(\theta) = 2\cos\theta \left(\frac{\sin[(k+1)\theta]}{\sinh\theta}\right) - \frac{\sin(k\theta)}{\sinh\theta}$$
;

ainsi $\Delta_{k+1}(\theta) = \frac{2\cos\theta}{\sinh\theta} \sin[(k+1)\theta] - \sin(k\theta)$ (*)

 $\sin[(k+2)\theta] = \sin[((k+1)+1)\theta] = \sin[(k+1)\theta+\theta]$
 $\sin[(k+2)\theta] = \sin\theta\cos[(k+1)\theta] + \cos\theta\sin[(k+1)\theta]$
 $\sin[(k+2)\theta] = \sin\theta\cos(k\theta) - \sin\theta\sin(k\theta) + \cos\theta\sin[(k+1)\theta]$
 $\sin[(k+2)\theta] = \sin\theta\cos(k\theta) - \sin\theta\sin(k\theta) + \cos\theta\sin[(k+1)\theta]$

or $\sin[(k+2)\theta] = \sin\theta\cos(k\theta) - \sin\theta\sin(k\theta) + \cos\theta\sin[(k+1)\theta]$

or $\sin[(k+1)\theta] = \sin(k\theta+\theta) = \sin\theta\cos(k\theta) + \cos\theta\sin(k\theta)$
 $\Rightarrow \cos\theta\sin[(k+1)\theta] = \cos\theta\sin\theta\cos(k\theta) + \cos\theta\sin(k\theta)$
 $\Rightarrow \sin\theta\cos\theta\cos(k\theta) = \cos\theta\sin[(k+1)\theta] - \cos\theta\sin(k\theta)$;

alm $\sin[(k+2)\theta] = 2\cos\theta\sin[(k+1)\theta] - \sin\theta\sin(k\theta) - \cos\theta\sin(k\theta)$;

alm $\sin[(k+2)\theta] = 2\cos\theta\sin[(k+1)\theta] - \sin\theta\sin(k\theta) - \cos\theta\sin(k\theta)$;

alm $\sin[(k+2)\theta] = 2\cos\theta\sin[(k+1)\theta] - \sin(k\theta) + \cos\theta\sin(k\theta)$

oinsi $\sin[(k+2)\theta] = 2\cos\theta\sin[(k+1)\theta] - \sin(k\theta) + \cos\theta\sin(k\theta)$
 $\sin\theta\cos(k\theta) = \cos\theta\sin[(k+1)\theta] - \sin(k\theta) + \cos\theta\sin(k\theta)$
 $\sin\theta\cos(k\theta) = \sin((k+2)\theta) - \sin((k+2)\theta) - \sin((k+2)\theta)$
 $\sin\theta\cos(k\theta) = \sin\theta\cos(k\theta)$
 $\sin\theta\cos(k\theta) = \sin\theta$

Daprès (i) et (ii),
$$\Delta_n(0) = \frac{\sin[(n+1)\theta]}{\sin \theta}$$
, $\forall n \in \mathbb{N}$.

Pour n=3 et $\theta=\frac{17}{3}$; on a:

$$x_{k} = (-1)^{k+1} \frac{\Delta_{3-k}(\sqrt[n]{3})}{\Delta_{3}(\sqrt[n]{3})}, k=1;2;3.$$

$$\Delta_{3-k}(\overline{V_3}) = \frac{\sin\left[(3-k+1)\overline{J_3}\right]}{\sin\left(\overline{V_3}\right)} = \frac{\sin\left[(4-k)\overline{J_3}\right]}{\left(\frac{\sqrt{3}}{2}\right)}, k = 1;2;3$$

$$\Delta_{3-k}\left(\frac{\pi}{3}\right) = \frac{2\sqrt{3}}{3} \sin\left[\frac{(4-k)\pi}{3}\right], \quad k=1;2;3.$$

$$at \Delta_3\left(\frac{\Pi}{3}\right) = \frac{\sin\left[\left(3+1\right)\frac{\Pi}{3}\right]}{\sin\left(\frac{\Pi}{3}\right)} = \frac{\sin\left(\frac{4\Pi}{3}\right)}{\sin\left(\frac{\Pi}{3}\right)} = \frac{\left(-\frac{\sqrt{3}}{2}\right)}{\left(\frac{\sqrt{3}}{2}\right)} = -1$$

alors
$$x_k = (-1)^{k+2} \frac{2\sqrt{3}}{3} \sin \left[\frac{(4-k)\pi}{3} \right], k = 1; 2; 3$$
.

on resultat de
$$(\Sigma)$$

avec (Σ) : $\begin{cases} dx_1 + x_2 &= 1 \\ x_1 + dx_2 + x_3 &= 0 \\ x_2 + dx_3 &= 0 \end{cases}$

(*) D'après la question 3), les solutions de
$$(\Xi_3)$$

sont $x_k = \frac{2\sqrt{3}}{3}(-1)^{k+2}\sin\left[\frac{(4-k)\pi}{3}\right]$, $k=1$; $k=1$;

$$\begin{array}{c} D'_{51} u'_{1} = \frac{2\sqrt{3}}{3} \times (-1)^{4+2} \sin\left(\frac{317}{3}\right) = -\frac{2\sqrt{3}}{3} \sin(77) = 0 \quad \text{(Car sin IT = 0)} \\ \chi_{2} = \frac{2\sqrt{3}}{3} \times (-1)^{2+2} \sin\left(\frac{217}{3}\right) = \frac{2\sqrt{3}}{3} \times \frac{\sqrt{3}}{2} = 1 \\ \chi_{3} = \frac{2\sqrt{3}}{3} \times (-1)^{3+2} \sin\left(\frac{17}{3}\right) = -\frac{2\sqrt{3}}{3} \times \frac{\sqrt{3}}{2} = -1 \end{array}$$

Ainsi les solutions de (Z_3) sont : $x_1 = 0$; $x_2 = 1$ et $x_3 = -1$.

(**) Pour
$$x = 2\cos\frac{17}{3} = 2 \times \frac{1}{2} = 1$$
 | ma:

$$(\Xi): \begin{cases} \chi_1 + \chi_2 = 1 & (1) \\ \chi_1 + \chi_2 + \chi_3 = 0 & (2) \\ \chi_2 + \chi_3 = 0 & (3) \end{cases}$$

En remplaçant x_1 par por valeur dans (1), ona: $x_2=1$ (3) = D $x_3=-x_2$; d'où $x_3=-1$.

D'après (*) et (**), les solutions de (\mathbb{Z}_3) et (\mathbb{Z}) sont identiques.