Ottimizzazione Combinatoria Appunti

Alex Bastianini

Contents

Chapter 1	Introduzione	Page
Chapter 2	Problemi e Modelli	Page

2.1 Problemi di ottimizzazione

Chapter 1

Introduzione

Prova scritta e orale. Si studiano metodi algoritmici per ottimizzare problemi di flusso su reti e di programmazione lineare. In poche parole, impariamo come prendere decisioni.

Chapter 2

Problemi e Modelli

2.1 Problemi di ottimizzazione

Definition 2.1.1: Ricerca operativa

La **ricerca operativa** è un ramo della matematica applicata che si occupa dello studio, della modellizzazione e della risoluzione dei cosiddetti *problemi decisionali* complessi mediante strumenti matematici, algoritmici e computazionali, con l'obiettivo di ottimizzare processi e risorse

Per evitare qualsivoglia fraintendimento fornirò anche la definizione di ottimizzazione Combinatoria

Definition 2.1.2: Ottimizzazione Combinatoria

Si definisce Ottimizzazione Combinatoria una branca della Ricerca Operativa che nel modellare matematicamente e risolvere problemi complessi di natura discreta unisce tecniche di calcolo combinatorio alla teoria degli algoritmi e ai risultati teorici e metodologici della programmazione lineare

Pertanto ricerca operativa e ottimizzazione combinatoria sono due cose diverse, MA cito testualmente

"Per tutti i nostri scopi ricerca operativa e ottimizzazione, sono sinonimi

tuttavia non vedremo solo alcune tecniche di ottimizzazione combinatoria, ma anche altre tecniche che stanno nella ricerca operativa ma che trattano di valori non discreti"

– Ugo

Adesso, sotterrato questo problema di carattere unicamente terminologico con cui io non posso fare a meno di strizzarmi il cervello perché c'ho l'autismo, possiamo tornare a parlare di ricerca operativa/ottimizzazione combinatoria (tanto so' sinonimi per noi)

I problemi di cui si occupa la ricerca operativa, quindi, riguardano situazioni in cui occorra massimizzare i ricavi o minimizzare i costi, in presenza di risorse limitate. Detto in termini più matematici, data una funzione **vincolata** l'obiettivo è trovare una soluzione ottimale che massimizzi o minimizzi tale funzione.

È pertanto vero, quindi, che questa disciplina ha forte contenuto economico

La ricerca operativa si inserisce all'interno del processo decisionale, il quale può essere suddiviso in diverse fasi

- Individuazione problema
- Raccolta dati
- Costruzione modello, ovvero la Traduzione del problema in un modello matematico che descriva il sistema e i vincoli in modo formale
- **Determinazione di piu' soluzioni**: applicazione di algoritmi e tecniche di ottimizzazione per individuare la soluzione migliore
- Analisi dei risultati

La ricerca operativa, quindi, si occupa delle fasi 3 e 4 del processo, dato che sono le fasi che richiedono l'impiego di modelli matematici, algoritmi di ottimizzazione e strumenti computazionali. Adesso andiamo a definire per benino che cosa intendiamo per "modello"

Definition 2.1.3: modello

un **modello** è una descrizione astratta e scritta in linguaggio matematico, della parte di realtà utile al processo decisionale

I modelli ci permettono di inquadrare i problemi in una determinata "cornice" che ci permette di determinare quale tipo di algoritmo risolutivo usare.

Esistono tre tipi di modelli:

- Teoria dei giochi: ricerca di un equilibrio fra le componenti coinvolte in un'interazione reciproca, spesso con obbiettivi contrastanti. (non ce ne occupiamo)
- **Simulazione**: il problema viene studiato simulando la situazione senza studiarne la natura in modo analitico tramite generazione di istanze casuali. (anche questi modelli non ci interessano)
- Analitici: dal problema si costruisce un modello matematico rigoroso (senza perdere informazione sul problema reale) e risolto mediante tecniche analitiche, senza ricorrere a simulazioni. La natura stessa dello spazio matematico in cui è inserito il problema è in grado di garantire la soluzione ottima. Questo tipo approccio è particolarmente vantaggioso in quanto assicura l'esattezza della soluzione supponendo che il modello sia formulato correttamente.

È tuttavia richiesto un discreto livello di creatività

Definiamo, adesso, i problemi che andiamo a trattare

Definition 2.1.4: Problema

Definiamo **problema** una domanda, espressa in termini generali, la cui risposta dipende da *parametri* e *variabili*, sopratutto nei problemi analitici

Un problema \mathcal{P} è descritto tramite:

- I suoi parametri e variabili
- Le caratteristiche che una soluzione deve avere

Quando fissiamo un'istanza di un problema, vengono fissati i parametri ma non le variabili, che sono le incognite che devono essere definite. Distinguiamo un problema dalla sua istanza per generalizzarlo. Si presti attenzione alla differenza tra parametri e variabili che molti si confondono

Example 2.1.1 (Problema con paramteri e variabili)

Sia \mathcal{P} il seguente problema

$$ax^2 + bx + c = 0$$

Dove $a, b \in c$ sono i suoi parametri e x rappresenta le variabili, una possibile istanza di tale problema è:

$$5x^2 - 6x + 1 = 0$$

Un modo comune per descrivere un problema è dare l'insieme di soluzioni ammissibili $\mathbb{F}_{\mathcal{P}} \subseteq G$, dove G è un sovrainsieme generico noto, di solito contenente la collezione di tutte le possibili configurazioni o decisioni che si possono prendere, dando dei vincoli che un generico $g \in G$ deve soddisfare per far parte di $\mathbb{F}_{\mathcal{P}}$, avremo così che $G - \mathbb{F}_{\mathcal{P}}$ è l'insieme delle soluzioni non ammissibili

Example 2.1.2

Sia l'instanza di ${\mathcal P}$ definita precedentemente

$$5x^s - 6x + 1 = 0$$

si ha che

$$\begin{split} \mathbb{G} &= \mathbb{R} \\ \mathbb{F}_{\mathcal{P}} &= \left\{ x \in \mathbb{R} \middle| 5x^2 - 6x + 1 = 0 \right\} \end{split}$$