

A Configurable Medium Access Control Protocol for IEEE 802.15.4 Networks

Rodrigo Vieira Steiner Tiago Rogério Mück Antônio Augusto Fröhlich {rodrigo,tiago,guto}@lisha.ufsc.br

WSN architecture [Akyildiz et al. 2002]

Sensor Nodes

Sensor Nodes components [Akyildiz et al. 2002]

■ EPOS Mote I (http://epos.lisha.ufsc.br/)

- EPOS Mote I Architecture Overview
- 7.37 MHz 8-bit CPU
- 2.4 GHz Radio
- 128 kB Flash
- 8 kB SRAM
- 4 kB EEPROM

WSN Applications

Different applications => Different requirements

WSN applications taxonomy [Mottola 2010 (to appear)]

Motivation

- Different requirements => Different protocols
- Categories
 - Channel polling
 - Scheduled contention
 - TDMA-based
 - Hybrid
- Configurable Medium Access Control protocol
 - Enable application-specific protocols
 - Configurability not at expense of performance

Channel polling protocols

Scheduled contention protocols

9

TDMA-based protocols

C-MAC

Synchronous Sync

Asynchronous Sync

C-MAC

Rx Contention

Experiments

- Configurations evaluated
 - Beacon-enabled IEEE 802.15.4
 - Non-beacon IEEE 802.15.4
 - Non-beacon IEEE 802.15.4 without CSMA-CA
 - Non-beacon IEEE 802.15.4 without ACK
 - Non-beacon IEEE 802.15.4 without both CSMA-CA and ACK

Experiments

Configuration parameters and network topology

Parameter	Value	
Compiler	GCC 4.0.2	
Microcontroller clock	1 MHz	
Packet size	64 bytes	
Tx power	3 dBm	
Beacon order	7	
Superframe order	4	
Duty cycle	12%	

Memory Footprint

Configuration	Code (bytes)	Data (bytes)
No CSMA-CA / ACK	3248	185
No ACK	3572	185
No CSMA-CA	3768	202
CSMA-CA / ACK enabled	4092	202
CSMA-CA / ACK beacons enabled	5344	215

Average network throughput (logarithmic scale)

Average packet loss rate

Energy consumed per byte received on the coordinator

Energy consumed per byte sent on the leaf nodes

Round-trip time

■ C-MAC vs ZigBeeNet

Configuration	Code (bytes)	Data (bytes)	RTT (ms)
C-MAC IEEE 802.15.4	4092	202	79
ZigBeeNet IEEE 802.15.4	26776	289	62

Conclusions

- C-MAC is operational
 - Configuration is not automated, but can be easily done
 - Configurability achieved by metaprogramming techniques
 - Good performance

Perspectives

- Dynamic changes in protocol behavior
 - Reactive adaptation of parameters (e.g. duty cycle)
 - Coordinated protocol alterations (aided by a meta-protocol)
- Cross-layer optimizations
 - Protocol and service integration
 - Routing, transport, localization
 - HECOPS
 - Ant-based Hybrid Routing