	Thursday, 16 December 2021, 3:55 PM
	Finished
	Thursday, 16 December 2021, 4:20 PM 24 mins 37 secs
	5.00/5.00
	10.00 out of 10.00 (100 %)
Grade	10.00 Out 01 10.00 (10070)
Question 1	
Correct	
Mark 1.00 out of 1.00	
Every non zero line	ar transformation between finite dimensional vector spaces has a right inverse.
Every from zero linear transformation between finite afficiency spaces has a right inverse.	
Select one:	
○ True	
● False	
The correct answer is 'False'.	
2	
Question 2 Correct	
Mark 1.00 out of 1.00	
Wark 1.00 out of 1.00	
Let P(x) denote the vector space of all polynomials with real coefficients of degree at most four. Let	
	$T:P(x)\longrightarrow \mathbb{R}^6$
be a linear map. Th	en
	$\dim(\ker(T)) \neq \operatorname{rank}(T).$
Select one:	
■ True	
○ False	
The correct answer	is 'True'

4

Question **3**Correct

Mark 1.00 out of 1.00

Let

$$T: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$$

be an isomorphism. Suppose that there is a non zero vector v such that

$$T(v) = av$$

for some scalar a. Then

$$rank(T - aI) < 4.$$

Select one:

● True

False

The correct answer is 'True'.

Question 4

Correct

Mark 1.00 out of 1.00

Let V be a finite dimensional vector space and

$$T:V\longrightarrow V$$

a linear map. Then there is a vector space W and linear maps

$$T_1:V\longrightarrow W, \quad T_2:W\longrightarrow V$$

such that

 T_1

is surjective,

 T_2

is injective and

$$T=T_2\circ T_1$$
.

Select one:

■ True

False

The correct answer is 'True'.

Let

$$T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$$

be a linear transformation such that

$$T(1,2)^t = (2,3)^t, \quad T(0,1)^t = (1,4)^t.$$

Then

O a.

$$T(x,y)^t = (-4x + 5y, y)^t$$

b.

$$T(x,y)^t = (-5x + 4y, y)^t$$

C.

$$T(x,y)^t = (y, -5x + 4y)$$

d.

$$T(x,y)^t = (x, -5x + 4y)^t$$

Your answer is correct.

The correct answer is:

$$T(x,y)^t = (y, -5x + 4y)$$

→ Recording of discussion - 16 December 2021

Jump to...

\$