Adaptive Traffic Light Controller Project

$\mathop{\rm ASIC\ TEAM}_{ASU}$

December 4, 2024

Contents

Introduction	2
Problem Statement	2
System Requirements	2
FSM Overview 4.1 States 4.2 Transitions	
FSM Table	3
State and Transition Explanations 6.1 NS1 (North-South Lane 1)	4
	Problem Statement System Requirements FSM Overview 4.1 States

1 Introduction

This project involves designing an **adaptive traffic light controller** for a four-way intersection. The system adapts dynamically to real-time traffic conditions to ensure collision-free operation and prioritize heavily congested lanes.

The traffic light controller is modeled as a **Finite State Machine (FSM)** with 12 states corresponding to each lane's traffic light conditions.

2 Problem Statement

The goal is to develop a **traffic control system** with:

- 1. **Dynamic Timing:** Extend green light duration for congested lanes based on sensor inputs.
- 2. Collision Avoidance: Only one lane can have a green or yellow light at any time.
- 3. **Skipping Idle Lanes:** If no cars are detected in a lane, the FSM skips to the next lane in the sequence.
- 4. **Efficient Lane Priority:** Ensure a fair balance between lane priorities while dynamically adjusting for congestion.

3 System Requirements

- 1. Lanes: Four main lanes: NS1, NS2, EW1, EW2.
- 2. Sensors:
 - S1_NS1, S5_NS1 for North-South Lane 1.
 - S1_NS2, S5_NS2 for North-South Lane 2.
 - S1_EW1, S5_EW1 for East-West Lane 1.
 - S1_EW2, S5_EW2 for East-West Lane 2.
- 3. Traffic Lights: States: RED, GREEN, YELLOW.
- 4. Timers:
 - Default green timer: 20 seconds.
 - Yellow timer: 5 seconds.
 - Extended green timer: 30 seconds if congestion (S5 = 1) is detected.

4 FSM Overview

4.1 States

The FSM has 12 states:

- 1. NS1_RED, NS1_GREEN, NS1_YELLOW
- 2. NS2_RED, NS2_GREEN, NS2_YELLOW
- 3. EW1_RED, EW1_GREEN, EW1_YELLOW
- 4. EW2_RED, EW2_GREEN, EW2_YELLOW

4.2 Transitions

Transitions are triggered by:

- 1. Sensor Inputs: Cars detected (S1 = 1) or congestion (S5 = 1).
- 2. **Timer Expiry:** States transition when their timers expire.
- 3. **Idle Lane Skipping:** If a lane is in RED and no cars are detected (S1 = 0), the FSM skips to the next lane in sequence.

5 FSM Table

Current State	Condition	Next State	Output	Timer Exten-		
	(Inputs)			sion Condition		
NS1_RED	S1_NS1 = 1	NS1_GREEN	NS1: Green; All	No		
			others: Red			
NS1_RED	S1_NS1 = 0	NS2_RED	NS1: Red; All	No		
			others: Red			
NS1_GREEN	Timer expires	NS1_GREEN	Extend Green for	Yes (if S5_NS1 =		
	&& S5_NS1 = 1		NS1	1)		
NS1_GREEN	Timer expires	NS1_YELLOW	NS1: Yellow; All	No		
	&& S5_NS1 = 0		others: Red			
NS1_YELLOW	Timer running	NS1_YELLOW	NS1: Yellow; All	No		
			others: Red			
NS1_YELLOW	Timer expires	NS2_RED	NS1: Red; All	No		
			others: Red			
NS2_RED	S1_NS2 = 1	NS2_GREEN	NS2: Green; All	No		
			others: Red			
NS2_RED	$S1_NS2 = 0$	EW1_RED	NS2: Red; All	No		
			others: Red			
NS2_GREEN	Timer expires	NS2_GREEN	Extend Green for	Yes (if S5_NS2 =		
	&& S5_NS2 = 1		NS2	1)		
NS2_GREEN	Timer expires	NS2_YELLOW	NS2: Yellow; All	No		
	&& S5_NS2 = 0		others: Red			
NS2_YELLOW	Timer running	NS2_YELLOW	NS2: Yellow; All	No		
			others: Red			
NS2_YELLOW	Timer expires	EW1_RED	NS2: Red; All	No		
			others: Red			
EW1_RED	S1_EW1 = 1	EW1_GREEN	EW1: Green; All	No		
			others: Red			
Continued on next page						

Table 1 – Continued from previous page

Current State	Condition	Next State	Output	Timer Exten-
	(Inputs)			sion Condition
EW1_RED	$S1_EW1 = 0$	EW2_RED	EW1: Red; All	No
			others: Red	
EW1_GREEN	Timer expires	EW1_GREEN	Extend Green for	Yes (if S5_EW1 =
	&& S5_EW1 = 1		EW1	1)
EW1_GREEN	Timer expires	EW1_YELLOW	EW1: Yellow; All	No
	&& S5_EW1 = 0		others: Red	
EW1_YELLOW	Timer running	EW1_YELLOW	EW1: Yellow; All	No
			others: Red	
EW1_YELLOW	Timer expires	EW2_RED	EW1: Red; All	No
			others: Red	
EW2_RED	$S1_EW2 = 1$	EW2_GREEN	EW2: Green; All	No
			others: Red	
EW2_RED	$S1_EW2 = 0$	NS1_RED	EW2: Red; All	No
			others: Red	
EW2_GREEN	Timer expires	EW2_GREEN	Extend Green for	Yes (if S5_EW2 =
	&& S5_EW2 = 1		EW2	1)
EW2_GREEN	Timer expires	EW2_YELLOW	EW2: Yellow; All	No
	&& S5_EW2 = 0		others: Red	
EW2_YELLOW	Timer running	EW2_YELLOW	EW2: Yellow; All	No
			others: Red	
EW2_YELLOW	Timer expires	NS1_RED	EW2: Red; All	No
			others: Red	

6 State and Transition Explanations

6.1 NS1 (North-South Lane 1)

- 1. NS1_RED:
 - If S1_NS1 = 1, transition to NS1_GREEN.
 - If $S1_NS1 = 0$, skip to $NS2_RED$.
- 2. NS1_GREEN:
 - If Timer expires && S5_NS1 = 1, extend the green light duration.
 - If Timer expires && S5_NS1 = 0, transition to NS1_YELLOW.
- 3. NS1_YELLOW:
 - If the timer is still running, remain in NS1_YELLOW.
 - When the timer expires, transition to NS2_RED.

6.2 NS2 (North-South Lane 2)

- 4. NS2_RED:
 - If S1_NS2 = 1, transition to NS2_GREEN.

• If S1_NS2 = 0, skip to EW1_RED.

5. NS2_GREEN:

- If Timer expires && S5_NS2 = 1, extend the green light duration.
- If Timer expires && S5_NS2 = 0, transition to NS2_YELLOW.

6. NS2_YELLOW:

- If the timer is still running, remain in NS2_YELLOW.
- When the timer expires, transition to EW1_RED.

6.3 EW1 (East-West Lane 1)

7. EW1_RED:

- If S1_EW1 = 1, transition to EW1_GREEN.
- If $S1_EW1 = 0$, skip to $EW2_RED$.

8. EW1_GREEN:

- If Timer expires && S5_EW1 = 1, extend the green light duration.
- If Timer expires && S5_EW1 = 0, transition to EW1_YELLOW.

9. EW1_YELLOW:

- If the timer is still running, remain in EW1_YELLOW.
- When the timer expires, transition to EW2_RED.

6.4 EW2 (East-West Lane 2)

10. EW2_RED:

- If S1_EW2 = 1, transition to EW2_GREEN.
- If $S1_EW2 = 0$, skip to $NS1_RED$.

11. EW2_GREEN:

- If Timer expires && S5_EW2 = 1, extend the green light duration.
- If Timer expires && S5_EW2 = 0, transition to EW2_YELLOW.

12. EW2_YELLOW:

- If the timer is still running, remain in EW2_YELLOW.
- When the timer expires, transition to NS1_RED.