# **Project Report**

# Clustering Analysis of Air Traffic Passenger Statistics

Ayyub Orujzade
University of Warsaw
Faculty of Economic Sciences
January 2024

#### Introduction

Finding and analyzing patterns in data is essential for producing actionable insights in the fields of data science and business analytics. Unsupervised learning techniques, particularly clustering, are essential for identifying potential internal structures and relationships in datasets.

Clustering is the process of assembling related observations into groups according to shared traits, which uncovers latent patterns and advances a deeper comprehension of the underlying data. Beyond its technical uses, clustering is important because it has real consequences for business strategy decision-making. Clustering makes it easier to comprehend consumer behavior at a deeper level by defining groups of related entities. This in turn gives businesses the ability to customize strategies according to the particular requirements and preferences of particular customer segments, ranging from focused marketing campaigns to optimal inventory management.

We are looking into the "Air Traffic Passenger Statistics" dataset as part of this project, which includes data on the operating airline, geographical areas, passenger counts, and other pertinent aspects of air travel. Some important features to cluster include "Operating Airline," "GEO Region," and "Passenger Count," among others. The dataset was preprocessed before analysis to fix possible problems like missing values and adjust the data so that clustering algorithms could use it.

As we explore the complexities of the "Air Traffic Passenger Statistics," we must choose an appropriate clustering algorithm, look over the generated clusters, and evaluate their quality. This project aims to not only apply unsupervised learning methods but also to interpret the implications of identified clusters.

#### **Dataset**

The **Air Traffic Passenger Statistics** dataset is a comprehensive collection of information about air travel activities. It includes several dimensions, giving a comprehensive picture of the airline industry's performance.

The dataset consists of the following key columns:

- **Activity Period**: The time period during which the activity occurred.
- **Operating Airline**: The airline performing the flight operation.
- Operating Airline IATA Code: IATA code representing the operating airline.
- **Published Airline**: The airline as published in reports.
- **Published Airline IATA Code**: IATA code for the published airline.
- **GEO Summary:** A summary of the geographic region.
- **GEO Region:** The specific geographic region.

- Activity Type Code: Code representing the type of activity.
- **Price Category Code:** Code indicating the price category.
- **Terminal:** The airport terminal associated with the activity.
- **Boarding Area:** The boarding area within the terminal.
- Passenger Count: The number of passengers involved in the activity.
- Adjusted Activity Type Code: Adjusted code for the activity type.
- Adjusted Passenger Count: Adjusted passenger count.
- Year: The year in which the activity occurred.
- Month: The month in which the activity occurred.

#### Clustering

There are different types of clustering algorithms, such as those based on connectivity, centroids, density, distribution, and so on, each of which has advantages and disadvantages and is suitable for different purposes and use cases.

In this project, we mainly focus on using two of the clustering techniques: hierarchical clustering (connectivity-based) and k-means (centroid-based). These two unsupervised Machine Learning techniques are both based on proximity (using distance measures). They are simple but very effective and powerful in many clustering tasks.

I started with collecting and analyzing the data.

```
import pandas as pd # Tabular data manipulation library

# Loading data
df = pd.read_csv('C:/Users/orucz/OneDrive/Рабочий стол/UW materials/python/
Air Traffic Passenger Statistics.csv')
print(df.head()) # only first 5 rows will appear
```

|   | Activity<br>Period | Operating<br>Airline | Operating<br>Airline<br>IATA<br>Code | Published<br>Airline | Published<br>Airline<br>IATA<br>Code | GEO<br>Summary | GEO<br>Region | Activity<br>Type<br>Code | Price<br>Category<br>Code | Terminal      | Boarding<br>Area | Passenger<br>Count | Adjusted<br>Activity<br>Type<br>Code | Adjusted<br>Passenger<br>Count | Year | Month |
|---|--------------------|----------------------|--------------------------------------|----------------------|--------------------------------------|----------------|---------------|--------------------------|---------------------------|---------------|------------------|--------------------|--------------------------------------|--------------------------------|------|-------|
| 0 | 200507             | ATA<br>Airlines      | TZ                                   | ATA<br>Airlines      | TZ                                   | Domestic       | US            | Deplaned                 | Low Fare                  | Terminal<br>1 | В                | 27271              | Deplaned                             | 27271                          | 2005 | July  |
| 1 | 200507             | ATA<br>Airlines      | TZ                                   | ATA<br>Airlines      | TZ                                   | Domestic       | US            | Enplaned                 | Low Fare                  | Terminal<br>1 | В                | 29131              | Enplaned                             | 29131                          | 2005 | July  |
| 2 | 200507             | ATA<br>Airlines      | TZ                                   | ATA<br>Airlines      | TZ                                   | Domestic       | US            | Thru /<br>Transit        | Low Fare                  | Terminal<br>1 | В                | 5415               | Thru /<br>Transit *<br>2             | 10830                          | 2005 | July  |
| 3 | 200507             | Air<br>Canada        | AC                                   | Air<br>Canada        | AC                                   | International  | Canada        | Deplaned                 | Other                     | Terminal<br>1 | В                | 35156              | Deplaned                             | 35156                          | 2005 | July  |
| 4 | 200507             | Air<br>Canada        | AC                                   | Air<br>Canada        | AC                                   | International  | Canada        | Enplaned                 | Other                     | Terminal<br>1 | В                | 34090              | Enplaned                             | 34090                          | 2005 | July  |

# **Filtering**

The raw data consists of 16 columns in total. To make analysis and demonstration easier, I filtered the clustering analysis.

| Activity<br>Period | Operating<br>Airline | Operating<br>Airline<br>IATA<br>Code | Published<br>Airline | Published<br>Airline<br>IATA<br>Code | GEO<br>Summary | GEO<br>Region | Activity<br>Type<br>Code | Price<br>Category<br>Code | Terminal      | Boarding<br>Area | Passenger<br>Count | Adjusted<br>Activity<br>Type<br>Code | Adjusted<br>Passenger<br>Count | Year | Month  |
|--------------------|----------------------|--------------------------------------|----------------------|--------------------------------------|----------------|---------------|--------------------------|---------------------------|---------------|------------------|--------------------|--------------------------------------|--------------------------------|------|--------|
| 200808             | Air<br>Canada        | AC                                   | Air<br>Canada        | AC                                   | International  | Canada        | Deplaned                 | Other                     | Terminal<br>3 | Е                | 35117              | Deplaned                             | 35117                          | 2008 | August |
| 200808             | Air<br>Canada        | AC                                   | Air<br>Canada        | AC                                   | International  | Canada        | Enplaned                 | Other                     | Terminal<br>3 | Е                | 35185              | Enplaned                             | 35185                          | 2008 | August |
| 200808             | AirTran<br>Airways   | FL                                   | AirTran<br>Airways   | FL                                   | Domestic       | US            | Deplaned                 | Low Fare                  | Terminal<br>1 | В                | 20860              | Deplaned                             | 20860                          | 2008 | August |
| 200808             | AirTran<br>Airways   | FL                                   | AirTran<br>Airways   | FL                                   | Domestic       | US            | Enplaned                 | Low Fare                  | Terminal<br>1 | В                | 21908              | Enplaned                             | 21908                          | 2008 | August |
| 200808             | Alaska<br>Airlines   | AS                                   | Alaska<br>Airlines   | AS                                   | Domestic       | US            | Deplaned                 | Other                     | Terminal<br>1 | В                | 48397              | Deplaned                             | 48397                          | 2008 | August |

df\_filtered.info() # method used to display concise information about a
DataFrame in pandas

Index: 306 entries, 4320 to 14137
Data columns (total 16 columns):

| #  | Column                      | Non-Null Count | Dtype  |
|----|-----------------------------|----------------|--------|
|    |                             |                |        |
| 0  | Activity Period             | 306 non-null   | int64  |
| 1  | Operating Airline           | 306 non-null   | object |
| 2  | Operating Airline IATA Code | 306 non-null   | object |
| 3  | Published Airline           | 306 non-null   | object |
| 4  | Published Airline IATA Code | 306 non-null   | object |
| 5  | GEO Summary                 | 306 non-null   | object |
| 6  | GEO Region                  | 306 non-null   | object |
| 7  | Activity Type Code          | 306 non-null   | object |
| 8  | Price Category Code         | 306 non-null   | object |
| 9  | Terminal                    | 306 non-null   | object |
| 10 | Boarding Area               | 306 non-null   | object |
| 11 | Passenger Count             | 306 non-null   | int64  |
| 12 | Adjusted Activity Type Code | 306 non-null   | object |
| 13 | Adjusted Passenger Count    | 306 non-null   | int64  |
| 14 | Year                        | 306 non-null   | int64  |
| 15 | Month                       | 306 non-null   | object |
|    |                             |                |        |

dtypes: int64(4), object(12)

Using the code below, we keep only the fields of interest in our data frame.

```
fields = [
    'Operating Airline',
    'GEO Region',
    'Year',
    'Month',
    'Passenger Count',
    'Activity Type Code',
    'Price Category Code'
]

df = df_filtered[fields].set_index('Operating Airline')
df.head()
```

|                   | <b>GEO</b> Region | Year | Month  | Passenger Count | Activity Type Code | Price Category Code |
|-------------------|-------------------|------|--------|-----------------|--------------------|---------------------|
| Operating Airline |                   |      |        |                 |                    |                     |
| Air Canada        | Canada            | 2008 | August | 35117           | Deplaned           | Other               |
| Air Canada        | Canada            | 2008 | August | 35185           | Enplaned           | Other               |
| AirTran Airways   | US                | 2008 | August | 20860           | Deplaned           | Low Fare            |
| AirTran Airways   | US                | 2008 | August | 21908           | Enplaned           | Low Fare            |
| Alaska Airlines   | US                | 2008 | August | 48397           | Deplaned           | Other               |

Now we have 6 columns in total.

#### **Preprocessing**

Before delving into clustering analysis, it is crucial to conduct exploratory data analysis (EDA) and preprocess the data as needed. This may involve addressing missing values, scaling numerical features, or encoding categorical variables, ensuring a clean and standardized dataset for robust clustering outcomes.

print(df.describe())# method in pandas is used to generate descriptive
statistics of a DataFrame

|       | Year        | Passenger Count |
|-------|-------------|-----------------|
| count | 306.000000  | 306.000000      |
| mean  | 2011.614379 | 90581.630719    |
| std   | 2.272066    | 99482.511448    |
| min   | 2008.000000 | 20010.000000    |
| 25%   | 2010.000000 | 24798.750000    |
| 50%   | 2012.000000 | 52440.000000    |
| 75%   | 2014.000000 | 131464.000000   |
| max   | 2015.000000 | 659837.000000   |

From the statistics reported, it appears that the data do not have major anomalies and no missing values for all columns. Otherwise, it seems that the feature "Passenger Count" may have potentially large outliers, while the rest of the features seem to be in a fairly reasonable range.

### **Treating outliers**

I used boxplot to visualize the "Passenger Count" distribution. This will enable us to more fully comprehend the distribution of this numerical feature and help us spot any possible outliers. The *matplotlib* library will be used for the visualization:

```
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 6))
plt.boxplot(df['Passenger Count'])
plt.title('Boxplot of Passenger Count')
plt.xlabel('Passenger Count')
plt.show()
```

#### Before treating



I decided to remove outliers from the "Passenger Count" column, and used a criterion such as the **Z-score** to identify and remove the extreme values.

This code calculates Z-scores for the "Passenger Count" column and removes the rows where the absolute Z-score is greater than 3.

```
from scipy.stats import zscore
import numpy as np

z_scores = zscore(df['Passenger Count']) # Calculation of Z-scores

outliers = (np.abs(z_scores) > 3) # Defining a threshold for identifying outliers

df_cleaned = df[~outliers].copy() # Removing outliers
```

# After treating



# **Performing PCA**

Before entering the features into a clustering algorithm, I ran PCA on the data.

Using PCA, a dimensionality reduction technique, we can reduce the number of principal components in our data and concentrate on a small number that account for the majority of the information and variance. PCA's primary benefit is actually visualization.

I used **Standard Scaling** (Z-score normalization) method.

```
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
numerical_features = df_cleaned[['Passenger Count', 'Year']]

# Standardization of the numerical features
scaler = StandardScaler()
numerical_features_standardized = scaler.fit_transform(numerical_features)

# Applying PCA
pca = PCA(n_components=2)
pca_result = pca.fit_transform(numerical_features_standardized)

# Creating a DataFrame with PCA results
pca_df = pd.DataFrame(data=pca_result, columns=['Principal Component 1',
'Principal Component 2'])

# Resetting the index of the original DataFrame
df_cleaned_reset = df_cleaned.reset_index(drop=True)

# Concatenating the PCA results with the reset DataFrame
final_df = pd.concat([df_cleaned_reset, pca_df], axis=1)

# Displaying the first few rows of the final DataFrame
print(final_df.head())
```

The data frame is ready for clustering algorithm.

# **Hierarchical clustering**

I tried hierarchical clustering first. Hierarchical clustering allows to build a cluster tree ("dendrogram") that displays the clustering steps.

The tree can then be sliced horizontally to determine the number of clusters that make the most sense given its structure.

```
# 'final_df' contains the DataFrame with PCA results
pca_components = final_df[['Principal Component 1', 'Principal Component
2']]

# Performing hierarchical clustering
linkage_matrix = linkage(pca_components, method='ward')

# Plotting the dendrogram
plt.figure(figsize=(10, 6))
dendrogram(linkage_matrix, p=5, truncate_mode='level', orientation='top',
labels=final_df.index)
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('Data Points')
plt.ylabel('Distance')
plt.show()
```



- The **linkage** function calculates the hierarchical clustering of principal components. The 'ward' linkage method is an effective option for reducing variance between clusters.
- The **dendrogram** function helps visualize the clustering hierarchy.

# Scatter plot

The **scatter plot** visualizes the distribution of data points in the reduced twodimensional space defined by the principal components obtained from PCA. Each point represents an observation, and the axes correspond to the first and second principal components. The color differentiation showcases the clustering patterns, offering insights into how well the hierarchical clustering algorithm grouped similar data points in this lowerdimensional feature space.

```
from scipy.cluster.hierarchy import fcluster
import seaborn as sns

# Specifying the number of clusters or the height at which to cut the
dendrogram
num_clusters = 3
# Cutting the dendrogram and getting cluster labels
cluster_labels = fcluster(linkage_matrix, t=num_clusters,
criterion='maxclust')
# Adding cluster labels to the DataFrame
final_df['Cluster_Labels_Hierarchical'] = cluster_labels
sns.scatterplot(x='Principal Component 1', y='Principal Component 2',
hue='Cluster_Labels_Hierarchical', data=final_df, palette='viridis')
plt.title('Agglomerative Hierarchical Clusters - Scatter Plot ')
plt.xlabel('Data Points')
plt.ylabel('Distance')
plt.show()
```





This provides us with a basic understanding of how many clusters could be present in this data and how they would show up in a scatter plot.

While hierarchical clustering is a great tool for showing the clustering process as a tree structure, it is not without its drawbacks. Hierarchical clustering only goes through the data once. This implies that records that are assigned or incorrectly assigned at the start of the process cannot be redistributed afterwards.

We rarely end our analysis with the hierarchical clustering solution; instead, we use it to obtain a "visual" representation of potential cluster shapes and then employ an iterative technique (such as k-means) to enhance and optimize the clustering solutions.

# **Using k-means**

A common clustering technique called **K-means** involves choosing a target number of clusters, **k**, and allocating each record to one of the **k** clusters in order to reduce a measure of dispersion within the clusters.

The process is iterative and involves assigning and reallocating data points in order to reduce the distance between each record and the cluster centroid. When some progress is made at the conclusion of each iteration, the process is repeated until very little progress is made.

We must first specify k (number of clusters) in order to perform k-means clustering. We have two options for doing this:

- To determine how many clusters to attempt, first perform hierarchical clustering.
- To find k, use the "Elbow" method.

The "Elbow" graph, which illustrates the turning point for the ideal number of clusters, is plotted by the code below.

```
from sklearn.cluster import KMeans

# 'pca_components' contains the principal components obtained from PCA
X = pca_components
k_values = range(1, 11)
inertia_values = []

for k in k_values:
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(X)
    inertia_values.append(kmeans.inertia_)
plt.plot(k_values, inertia_values, marker='o')
plt.title('Elbow Method for Optimal k')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Inertia')
plt.show()
```



In this case, five clusters are the ideal number because the value does not drop noticeably beyond five.

### Silhouette score

The **silhouette score** is an additional technique for figuring out the ideal number of clusters. The silhouette score compares an object's separation from other clusters to how similar it is to its own cluster (cohesion). A high score means the object is well matched to its own cluster and poorly matched to clusters nearby. The score ranges from -1 to 1.

```
from sklearn.metrics import silhouette_score

X = final_df[['Principal Component 1', 'Principal Component 2']]
k_values = range(2, 11)
silhouette_scores = []

for k in k_values:
    kmeans = KMeans(n_clusters=k, random_state=42)
    cluster_labels = kmeans.fit_predict(X)
    silhouette_avg = silhouette_score(X, cluster_labels)
    silhouette_scores.append(silhouette_avg)

plt.plot(k_values, silhouette_scores, marker='o')
plt.title('Silhouette Score for Optimal k')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Silhouette Score')
plt.show()
```



#### Conclusion

#### **Data Overview:**

 Air traffic passenger statistics were analyzed, with a focus on columns like "Passenger Count" and "Year."

#### **Data Preparation:**

• Identified and removed outliers from the "Passenger Count" column using appropriate methods. The dataset was then scaled, and principal component analysis (PCA) was used to reduce its dimensionality.

#### **Cluster Analysis:**

- Principal components were used in hierarchical clustering to identify patterns of similarity among data points in a reduced feature space.
- The elbow method and silhouette score were used to determine the best number of clusters for K-means clustering. The chosen number of clusters creates meaningful groupings within the data.

#### Visualization:

• Scatter plots showed the distribution of data points in the reduced PCA space, indicating potential clusters.

The research suggests that the air traffic passenger dataset exhibits meaningful patterns that can be uncovered through clustering techniques. The optimal number of clusters, derived from both the elbow method and silhouette score, provides insights into the natural grouping of air traffic data, assisting to identify specific trends or segments. Further analysis and interpretation of these clusters can provide valuable information for stakeholders in the air travel industry, guiding decision-making and strategic planning.

Overall, the clustering analysis, visualization, and data preprocessing work together to provide a thorough grasp of the underlying structures in the air traffic passenger dataset. This information can be used to make more informed decisions and gain a deeper understanding of the variables affecting patterns of air travel.

#### References

1. Air Traffic Passenger Statistics Dataset. (2016).

https://data.world/data-society/air-traffic-passenger-data

2. Machine Learning in Python. Pedregosa, F., et al. (2011). Journal of Machine Learning Research, 12, 2825–2830.

https://jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf

3. Harris, C. R., et al. (2020). Nature, 585, 357-362.

https://www.nature.com/articles/s41586-020-2649-2

4. Powerful data analysis tools for Python. McKinney, W. (2010). Proceedings of the 9th Python in Science Conference, 51–56.

https://conference.scipy.org/proceedings/scipy2010/mckinney.html

5. Visualization with Python. Hunter, J. D. (2007). Computing in Science & Engineering, 9(3), 90–95.

https://ieeexplore.ieee.org/document/4160265