Frequency Domain Filtering

Topics to be covered

- 2D Fourier Transfom
- Frequency Domain Filtering
- Low Pass Filter
- High Pass Filter
- High Boost and Other Filters

2D Fourier Transform

Signal with Frequencies 10, 25, 50 and 100 Hz

Signal with frequencies 10, 25, 50 and 100 Hz

Sinusoidal gratings

A sinusoidal grating is a two-dimensional representation in which the amplitude varies sinusoidally along a certain direction.

Sine Wave

Grating of Sine Wave

Sinusoidal gratings

Sinusoidal gratings

High Frequency

Fourier Transform of Grating

Fourier Transform of Grating

Grating

Fourier Transform

Fourier Transform of Image

Image

Fourier Transform

Fourier Transform of Image

Image

Fourier Transform

Frequency Domain Filtering

- Compute Fourier Transform of the image.
- Design a filter in frequency domain and define the cut-off frequency.
- Multiply the results of Fourier Transform of the image with the filter.
- Compute inverse Fourier Transform to get the filtered image.

Low Pass Filter

Low pass filter enhances all frequency components within a specified radius while attenuating all other frequencies.

2D Low Pass Filter

2D Low Pass Filter

$$H(u,v) = \begin{cases} 1, & \text{if } D(u,v) < D_0. \\ 0, & \text{if } D(u,v) > D_0. \end{cases}$$

where,

D(u, v) is the distance between point (u, v) and the origin of 2D frequency

$$D_0 = \text{Cut-off frequency}$$

Frequency Domain Low Pass Filtering

High Pass Filter

High pass filter enhances high frequency components while attenuating low frequencies. High pass filter controls the sharpening of the image.

2D High Pass Filter

2D High Pass Filter

$$H(u,v) = \begin{cases} 1, & \text{if } D(u,v) > D_0. \\ 0, & \text{if } D(u,v) < D_0. \end{cases}$$

where,

D(u, v) is the distance between point (u, v) and the origin of 2D frequency

$$D_0 = \text{Cut-off frequency}$$

Frequency Domain High Pass Filtering

High Boost Filter is High Pass Filter

High Boost Filter in frequency domain

Other Filters

