

X36PKO přístupové metody potvrzování protokoly linkové vrstvy

Přístupové metody

- umožňují sdílet přenosové médium,
- statické
 - FDMA, TDMA,
- centralizované
 - cyklická výzva, binární vyhledávání, adaptivní výzva,
- distribuované deterministické
 - rezervační, binární vyhledávání, logický kruh, virtuální logický kruh,

Přístupové metody 2

- náhodný přístup
 - aloha prostá, taktovaná, řízená,
 - CSMA nenaléhající, naléhající, p-naléhající,
 - CSMA/CD,
 - CSMA/CD s deterministickým řešením kolize,
- kruhové sítě
 - token ring (Newhallův kruh),
 - Pierceův kruh,
 - vkládání rámců.

Carier Multiple Sense Access CSMA

nenaléhající

Carier Multiple Sense Access CSMA 2

naléhající

Carier Multiple Sense Access CSMA 3

p-naléhající

Propustnost náhodných přístupových metod

Další CSMA metody

- CSMA/CD (Collision Detection)
 - Ethernet
- CSMA/CA (Collision Avoidance)
 - IEEE 802.11
- CSMA/DCR (Deterministic Collision Resolution)
 - Controller Area Network

Chyby na síti

- bitová chybovost BER
 - 10⁻³ komutovaná linka,
 - 10⁻⁵ kvalitní linka,
 - 10⁻⁷ ISDN, ADSL,
 - 10⁻¹⁰ Ronja,
 - -10^{-12} optika,
- chybovost rámců FER

$$FER_{N} = 1 - (1 - BER)^{N}$$

Ochrana proti chybám

- kódy
 - detekční,
 - samoopravné,
 - dlouhé zpoždění,
 - vysoká chybovost?
 - složité přepínání směru,
 - Hammingova vzdálenost,
 - kódová vzdálenost

$$kvzd = ch_d + ch_o + 1$$
; $ch_d \ge ch_o$; ch_d , $ch_o \in \mathbb{N}$

Druhy kódů

- opakovací,
- "koktavý",
- parity
 - sudá, lichá, (jedna chyba a lichý počet chyb),
 - příčná a podélná,
- systematické x nesystematické,
- lineární,
 - Hammingovy
- cyklické (CRC) r ... stupeň polynomu
 - jedna, dvě, lichý počet, shluk < r+1 ... 1.0
 - shluk = $r+1 \dots 1 0.5^{r-1}$
 - shluk > $r+1 \dots 1 0.5^r$

Metody potvrzování

potvrzovací zpětná vazba

- synchronní simplexní protokol
 - nelze pozastavit vysílač,
 - pouze jeden směr,
 - omezené použití, opravné kódy,
- simplexní protokol s pozitivním potvrzováním
 - alespoň poloduplexní kanál,
 - ztráta potvrzení ... duplikace,

simplexní protokol s čistě negativním potvrzováním

- rychlá reakce na chybu,
- výpadky rámců.

simplexní protokol s negativním potvrzováním

- rychlá reakce,
- možná duplikace,
- možná záměna ack x nack.

- číslování rámců
 - číslování odpovědí,
 - modulo 2,8,128 ...,
 - střídavé potvrzování.

Skupinové potvrzování

- zvýšení propustnosti,
- poloduplexní linka,
- potvrzení po skupině rámců.

Skupinové potvrzování Go-Back-N

- kontinuální potvrzování,
- plně duplexní linka,
- možnost vložení potvrzení do zpětných dat,
- velikost okénka < modulo číslování,
- vyrovnávací paměti.

Selektivní opakování

- zopakování jediného rámce (srej)
- N<M/2

Poloduplex a duplex

Nesamostatné potvrzování

- piggy-backing
- TCP pouze piggy-backing

Protokoly linkové vrstvy

- přenos dat mezi přímo propojenými systémy,
- dělení proudu bitů na jednotku informace,
- kontrola integrity dat,
- adresace v rámci segmentu,
- zapouzdření dat vyšší vrstvy,
- bitově a znakově orientované protokoly.

SLIP

- Serial Line IP
- počátek 80. let 3com
- rfc 1055
- definuje pouze zapouzdření paketů na sériové lince
- nedefinuje: adresaci, typ paketů, detekci chyb, kompresi, informace ke konfiguraci
- znaky END c0 (192), ESC db (219)
- END nahrazuje db dc
- ESC nahrazuje db dd

CSLIP

- Compressed SLIP
- rfc 1114
- pouze redukce záhlaví TCP a IP (40B -> 3B 16B)
- přenáší se změny položek záhlaví
 - identifikace
 - SeqN, AckN
 - příznaky
 - délka okna
 - kontrolní součet TCP
 - ukazatel urgentních dat
- · ignorují se změny záhlaví
 - délka IP
 - kontrolní součet IP
- pokud se mění jiné položky komprese se neprovede
 - (ICMP, UDP, IP fragment, RST, SYN, FIN, noACK)

CSLIP (2)

CSLIP (3)

Byte 0	Č	Psh	IP ident	Seq	Ack	Win	Urg
Byte 1			číslo spo	jení (Č)			
Byte 2		ļ	Kontrolní s	oučet TCF	>		
Byte 3		<u>'</u>	COTTE OF THE				
Byte 4		ukaz	atel naléha	vých dat	(Urg)		
Byte 5		přírů	istek veliko	sti okna (Win)		
Byte 6		Přírůs	stek potvrze	ených dat	(Ack)		
Byte 7		přírůs	stek odesla	ných dat	(Seq)		
Byte 8		přírůst	ek identifik	ace IP (IF	ident)		
			Da	ta			

Jan Kubr - X36PKO 26 3/2009

HDLC

- High Level Data Link Control, ISO 13239
- synchronní i asynchronní přenos
- velmi rozsáhlá norma výrobci jen částečně implementovaná
- nekompatibilita CISCO HDLC, DEC HDLC
- ABM (Asynchronous Balanced Mode)
 - dvě stanice, fullduplex
- NRM (Normal Response Mode)
 - obdoba SDLC, více stanic, halfduplex
- ARM (Asynchronous Response Mode)
 - obdoba NRM, stanice může vysílat bez vyzvání, nepoužívaný

Formát HDLC rámce

Křídlová značka	Adresa	Řídící pole	Data	Kontrolní součet	Křídlová značka	
--------------------	--------	----------------	------	---------------------	--------------------	--

- křídlová značka 0111 1110
- bit stuffing vkládání 0 po pěti 1
- adresa 8b (NRM)
- kontrolní součet 16/32
- data protokol pouze u U-rámců
- řídící pole
 - U-rámce přenos dat, signalizace (nečíslované)
 - I-rámce přenos dat (informační)
 - S-rámce řízení toku dat, potvrzování (supervisor)
- řídící pole 8/16 ABM/ABME, NRM/NRME
- potvrzování střídavé, okénkové; pozitivní, negativní

HDLC rámce

I-rámec

S-rámec

U-rámec

7-3 1 7-3 N(R) P N(S) 0

N(R) P C 0 1 01 RR 05 RNR 09 REJ

3 1 2

C P C 1 1

03 UI 2f,3f SABM 43,53 DISC 0f,1f DM 63,73 UA 87,97 FRMR

HDLC dialogy

PPP

- Point to Point Protocol, rfc 1661, rfc 1662
- podmnožina HDLC
- asynchronní, bitově i znakově synchronní
- umožňuje souběh více protokolů
 - pouze U-rámce
 - na počátku 8/16 identifikátor protokolu
 - nelze číslovat a opakovat rámce (I-rámce)
- bitové spoje bit stuffing
- znakové spoje 7e -> 7d 5e, 7d -> 7d 5d

PPP formát rámce

Křídlová značka 01111110	Adresa 11111111	Řídící pole 03	Protokol	Data	Kontrolní součet	Křídlová značka 01111110
			c021	LCP		
			8021	NCP		
			0021	IPv4		
			0057	IPv6		

LCP

- navázání spojení, ukončení spojení, autentizace
- autentizace
 - terminál podle jména se spustí pppd
 - Password Authentication Protocol (PAP) podobné terminálu, jméno a heslo v LCP
 - Challenge Hanshake Authentication Protocol (CHAP) náhodný řetězec šifrovaný sdíleným klíčem
 - RADIUS, TACACS

LCP rámec

- kód typ příkazu (Conf-Req/Ack/Nack/Rej, Term-Req/Ack, Code-Rej, Prot-Rej, Echo-Req/Rep, Disc-Req)
- ID identifikace požadavku (stejná v dotazu i odpovědi)
- délka součet kód, ID, délka, volby
- volby požadavky/odpovědi na změnu parametrů linky (Max-Rec-Unit, Auth-Prot ...)

Protokoly NCP

- IPCP 8021, rfc 1332, IPv4
- IPV6CP 8057, rfc 2023, IPv6
- SNACP 804d, rfc 2043, IBM SNA
- DNCP 8027, rfc 1762, DECnet
- IPXCP 802b, rfc 1552, IPX
- NCP protokol začíná 8
- datový protokol začíná 0

IPCP

- kód oproti LCP chybí Prot-Rej, Echo-Req/Rep, Disc-Req
- volby podobné LCP IP-Compress-Protocol, IP-Address, Primary/Secondary-DNS
- 0021 nekomprimované pakety
- 002d komprimované pakety

Ethernet II (DIX)

preambule DA SA Typ Data (+ padd) CR0 46B-1500B

- preambule 10101010....101011
- DA, SA adresa cíle, adresa zdroje
 - 3B výrobce
 - XXXXXXFB
 - F 0..globální, 1..firemní
 - B 0..adresa karty, 1..multicast
 - 111...111 broadcast
- typ ID protokolu
 - 0800 ... IP
 - 0806 ... ARP
 - 8035 ... RARP
 - 86DD ... IPv6
 - 88A2 ... ATA over Ethernet

IEEE 802.3 (ISO 8802-3)

8B 2B-6B 2B-6B 2B 46B-1500B 4B

- délka 0-5dc
- data
 - přímo rámce IEEE 802.3 Novell IPX
 - rámce IEEE 802.2 nelze IP, protože chybí ARP
 - rámce IEEE 802.2 SNAP

IEEE 802.2 (ISO 8802-2)

- DSAP, SSAP Destination/Source Service Access Point
 - aa,ab ... SNAP
 - e0 ... Novell Netware
 - f0 ... IBM NetBIOS
- control odpovídá HDLC
 - pro SNAP U-rámec UI (Unnumbered Information)
- org identifikace organizace
 - 000000 ... Ethernet II typ, jinak definovaný organizací

Ethernet II x SNAP

- stejný výsledek
- v Internetu vyžadována podpora Ethernet II
- SNAP přenáší méně dat
- SNAP podporuje další typy sítí
- nic není jednoduché

Konec