https://powcoder.com

Assignment Project Fxam Help

Add WeChat powcoder

Back To Solving Problems

The Rod Cutting Problem

Assignment roproject letter Help They will cut the rods into smaller pieces to sell on

- Each rod size has a different market value
- · Whattps://poweoder.com/?

Is
$$p(3) + p(3) + p(3) + p(1) > p(4) + p(4) + p(2)$$
?

Instance of The Problem

Then the answer for N=10 is 32 $(1 \times 6 + 4 \times 1, \text{ or } 2 \times 5)$

Rod Cutting

Assignment Project Exam Help

						5					
1.	price	3	#/	6	9	16	20	122	24	26	30
n	ittp	S.	//	po		NC	O	ie)	r.C	OI	n

Question

Given an array of prices $P = [P_1, \dots, P_k]$ and an integer N between 1 and k, how can RU be complete? $P = [P_1, \dots, P_k]$

Assignment Project, Examp Help

Possible https://powcoder.com

- Choose some sizes $s \equiv \langle s_1, \dots, s_i \rangle$ that sum to N
- (Values can repeat in s)
- Compared We Chat powcoder
- For all possible s
- Update current best R(N) as you go

Assignment Project Exam Help

ı											
	price	3	4	6	9	16	20	22	24	26	30
	size	1	2	3	4	5	6	7	8	9	10

https://powcoder.com

Question

How do you generate (only) sequences s that sum to N?

At this point it will be useful to think about reducing the problem to solving one or more smaller subproblems.

Assignment3 Project

Choosing sizes:

- Pick https://powcoder.com
- Then s is s_1 followed by $\langle s_2, \dots \rangle$ that sum to $N-s_1$

Can now see the drutter of the problem: powcoder

- For each possible s₁
- Find all solutions for $N-s_1$, and combine with s_1
- Base case: only sequence that sums to 0 is ()

- Pick an s₁
- Max nette Sing suppose $R(N-s_1)$ is overall solution for rod length $(N-s_1)$
- One option per value for s₁

A Simple Recursive Solution

Assignment Project Exam Help

return 0

elshttps://powcoder.com

choices[i] = P[i] + SimpleRodCut(N-i, P)
return max(choices)

• Add WeChat powcoder

- max finds the maximum of the choices

How does this run?

Simple Rod Cut — Reflection

WOW that was sloooooowww.

Assignment Project Exam Help

Question

Solving R(0) takes $\Theta(1)$ time. What about R(N)?

Time for Simple Solution

The time taken by SimpleRodCut is

Assignment Project Exam Help

$$T(0) = \Theta(1)$$

https://powcoder.com

or

Add We'Chat powcoder

so
$$T(N) = \Theta(2^N)$$
.

- The running time grows exponentially.
- This is not a practical solution.

Divide & Conquer?

Assignment Project Exam Help

$$P[s1] + R(N-s1)$$

New Strategy

What is there that we can take advantage of?

Assignment Project Exam Help R(1)Add WeChat powcoder R(0) R(0)R(3) R(2) R(1,

Dynamic Programming

13 / 21

Dynamic Programming

Assignment Programming makes a space-time tradeoff Assignment Programming makes a space-time tradeoff the Research Resea

- Compute it once and save the answer in a table
- Check the table before computing each subproblem

This is called memorsation we are making a note for later)

```
MemoisedRodCut(Input: N, P = [P_1, ..., P_k])

for A=Q to WeChat powcoder

return MemoiseAux(N, P, R)
```

R is the table to be filled in

Memoisation

```
Assignment Project Exam Help
   if R[N] > 0
   rhttps://powcoder.com
    choices[i] = P[i] + MemoiseAux(N-i, P, R)
   R[N] = max(choices)
   retuAdd WeChat powcoder
```

- If R[N] was already computed (R[N] > 0) it is returned immediately
- Otherwise we compute it, save it, and then return it
- Also called Top Down (set out to solve the biggest problem)

The 'Bottom Up' Method

We know which problems depend on which others

Assivement the Problem Exam Help

```
BottomUpRodCut(Input: N, P = [P_1, ..., P_k])

R[ALUDS://powcoder.com

for i = 1 to N

choices = [0, ..., 0]

facility e Chat powcoder

R[i] = max(choices)

return R[N]
```

• What is the running time?

Dynamic Programming

Project Exam Help • The problem has optimal substructure

- The problem has overlapping subproblems

A probler https://spowcoder.com

- the problem can be decomposed into subproblems
- an optimal solution uses optimal solutions to the subproblems

In rod cutting did optimil excitat wp new coder

•
$$P[i] + R[N - i]$$
, where $1 \le i < N$

and each R[N-i] was an optimal solution for N-i.

Optimal Substructure

Assignment Project Exam Help Problem Enweighted Shortest Path)

Input: graph G = (V, E).

Input terpices u/powcoder.com
Output: the simple path from u to v containing the fewest edges

Problem (Noweighted Wiggest Pub) at powcoder

Input: vertices $u, v \in V$.

Output: the simple path from u to v containing the most edges

Optimal Substructure

A shortest path is composed of optimal solutions to subproblems

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

The shortest path from 1 to 2 (via x) is

- shortest path from 1 to x
- plus the shortest path from x to 2

Optimal Substructure

How about a longest path? Assignment Project Exam Help ler.com Add WeChat powcoder

- Independent subproblem solutions do not make an optimal solution
- In an optimal solution the subproblems will interfere

Overlapping Subproblems

The second property we need when applying dynamic programming is

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

- The same problems are generated over and over
- The subproblems must still be independent
- The set of all subproblems is the subproblem space
- The smaller the subproblem space the quicker the (dynamic) algorithm