

جهان دیجیتالی امروز!

- توسعه نسل های جدیدتر شبکه های مخابراتی
- پایداری نسل پنجم شبکه های عصبی (6G)
- ∘ تلاش برای بهبود طراحی و معرفی الگوهای ارتباطی جدید
- ظهور نسل ششم شبکه های عصبی و انقلابی تازه درجهت هرچه بیشتر دیجیتالی شدن.

6G به 1G از G به G

هر نسل از فناوری تلفن همراه، از نسل اول تا پنجم برای پاسخگویی به یکسری نیازهای خاص از کاربران و اپراتورها ی شبکه طراحی شده است.

نسل ششم ارتباطات و شکافی عظیم برای انتقال از 5G

- ∘ رشد سریع ارتباطات و دنیایی رو به هرچه بیشتر خودکار و داده محور شدن
- ∘ نیاز به بلاک های محاسباتی قوی تر و احساس نیاز به سرعت های بالاتر در انتقال داده.
- ∘ ترند شدن اینترت اشیا و ظهور ارتباطات بیسیم در وسایل نقلیه ، دستگاه ها و پوشیدنی ها و احساس نیاز به بلاک های محاسباتی قوی تر
- بلاک های محاسباتی موردنیاز حتی از توانمندی این سیستم های نوظهور نیز فراتر می روند و این خود چالشی بزرگ برای گام نهادن دراین مسیر است.

تفاوت عمده میان نسل ۶ ام و ۵ ام:

- استفاده از طیف کاری متفاوت
- تمرکز عمده روی اینترنت اشیا و تسریع توسعه آن به وسیله نسل ۶ ام درمقایسه با نسل قبلی
- ۰ سرعت بسیار بالای انتقال داده در نسل ۶ ام میتوان گفت که حدودا ۱۰۰ برابر سریع تر میباشد.

معماری شبکه و مدل های مورد نیاز نسل ۶ ام

- اگرچه شبکه های نسل ۵ ام قبلا برا ی کار در فرکانس های بسیار بالا به عنوان مثال، در باند های MMWQVe در طراحی شده اند ، نسل ۶ ام می تواند از فناوری ها ی حتی با طیف بالاتر، به عنوان مثال، از طریق تراهرتز و مخابرات اپتیکال بهره مند شود.
- علیرغم پیشرفت های نسل ۵ ام به سمت تنظیمات شبکه کارآمدتر، ناهمگونی برنامه های شبکه آینده و نیاز به پوشش سه بعدی ، الگوها ی جدید معماری بدون سلول را
 بر اساس ادغام دقیق فناوری های ارتباطی مختلف، هم برا ی دسترسی و هم درمورد جداسازی و مجازی سازی تجهیزات شبکه میطلبد.
- ۰ ما انتظار داریم که مطالعات را از امکانات محاسباتی متمرکز به پایانه ها بیاورد و از این طریق پیاده سازی مشخصی را برای مدل های یادگیری توزیع شده که از نقطه نظر تئوری در زمینه نسل ۵ ام مورد مطالعه قرار گرفته اند، ارائه دهد. یادگیری بدون نظارت و اشتراک دانش ، تصمیمات را از طریق پیش بینی ارتقا می دهد.

مواردی از کیس های کاربردی نسل ۶ ام:

- ۰ واقعیت افزوده و واقعیت مجازی
- ۰ حضور از راه دور هولوگرافیک (تلپورتاسیون)
 - ∘ ای– هلس
 - ∘ اتصال فراگیر
 - ۰ رباتیک
 - ماشین های بدون سرنشین

فناوری های مورداستفاده در نسل ۶ ام:

- Terahertz Communications
- VLC
- Full-Duplex Communication Stack
- Novel Channel Estimation Techniques (e.g., Out-of-Band Estimation and Compressed Sensing)
- Sensing and Network-Based Localization
- Innovative network Architectures
- Tight integration of multiple frequencies and communication technologies and cell-less architecture
- 3D Network Architecture
- Disaggregation and Virtualization of the Networking Equipment
- Advanced Access-Backhaul Integration
- Energy-Harvesting Strategies for Low Power Consumption Network Operations
- Integrating Intelligence In the network
- Learning Techniques for Data Selection and Feature Extraction
- Inter-User Inter-Operator Knowledge Sharing
- User-Centric Network Architecture

نتیجه گیری:

- ۰ دراین مقاله ما جنبه های کاربردی و تکنولوژی هایی را بررسی کردیم که نسل ششم ارتباطات میتواند به خوبی زمینه ساز توسعه و بهبود آنها باشد.
 - ∘ جدول صفحه بعد این جنبه ها و تکنولوژی های یادشده را به همراه چالش ها و پتانسیل های عمده پیشروی هریک به تصویر میکشد:

Enabling Technology	Potential	Challenges	Use cases
		New spectrum	
Terahertz	High bandwidth, small antenna size, focused beams	Circuit design, high propagation loss	Pervasive connectivity, industry 4.0, holographic telepresence
VLC	Low-cost hardware, low interference, unlicensed spectrum	Limited coverage, need for RF uplink	Pervasive connectivity, eHealth
	No	vel PHY techniques	
Full duplex	Continuous TX/RX and relaying	Management of interference, scheduling	Pervasive connectivity, industry 4.0
Out-of-band channel estimation	Flexible multi-spectrum communications	Need for reliable frequency mapping	Pervasive connectivity, holographic telepresence
Sensing and localization	Novel services and context-based control	Efficient multiplexing of communication and localization	eHealth, unmanned mobility, industry 4.0
	Innovati	ve network architectures	
Multi-connectivity and cell-less architecture	Seamless mobility and integration of different kinds of links	Scheduling, need for new network design	Pervasive connectivity, unmanned mobility, holographic telepresence, eHealth
3D network architecture	Ubiquitous 3D coverage, seamless service	Modeling, topology optimization and energy efficiency	Pervasive connectivity, eHealth, unmanned mobility
Disaggregation and virtualization	Lower costs for operators for massively- dense deployments	High performance for PHY and MAC processing	Pervasive connectivity, holographic telepresence, industry 4.0, unmanned mobility
Advanced access-backhaul integration	Flexible deployment options, outdoor-to- indoor relaying	Scalability, scheduling and interference	Pervasive connectivity, eHealth
Energy-harvesting and low- power operations	Energy-efficient network operations, resiliency	Need to integrate energy source characteristics in protocols	Pervasive connectivity, eHealth
	Intelli	igence in the network	
Learning for value of information assessment	Intelligent and autonomous selection of the information to transmit	Complexity, unsupervised learning	Pervasive connectivity, eHealth, holographic telepresence, industry 4.0, unmanned mobility
Knowledge sharing	Speed up learning in new scenarios	Need to design novel sharing mechanisms	Pervasive connectivity, unmanned mobility
User-centric network architecture	Distributed intelligence to the endpoints of the network	Real-time and energy-efficient processing	Pervasive connectivity, eHealth, industry 4.0
Not o	considered in 5G	With new feat	tures/capabilities in 6G

Thank you!