

PolarHT™ Module

N-Channel Enhancement Mode

 $V_{DSS} = 100 V$ $I_{D25} = 1220 A$ R = 1.25 mO ma

 $\mathbf{R}_{\mathrm{DS(on)}} = 1.25 \, \mathbf{m} \Omega \, \mathrm{max}.$

MOSFET						
Symbol	Conditions	Maximum Ra	Maximum Ratings			
V _{DSS}	$T_{VJ} = 25^{\circ}C$ to $150^{\circ}C$	100	V			
V_{GS}		± 20	V			
I _{D25}	T _C = 25°C	1220	Α			
I _{D80}	$T_{C} = 80^{\circ}C$	970	Α			
I _{F25}	$T_C = 25^{\circ}C$ (diode)	1220	Α			
I _{E80}	$T_c = 80^{\circ}C$ (diode)	970	Α			

Symbol Conditions

Characteristic Values

 $(T_{VJ} = 25^{\circ}C, \text{ unless otherwise specified})$

		min.	typ.	max.	
R_{DSon}	$V_{GS} = 10 \text{ V}; I_{D} = I_{D80}$ $T_{VJ} = 25^{\circ}\text{C}$		1.00	1.25	mΩ
	$T_{VJ} = 125$ °C		1.62	2.00	mΩ
$V_{GS(th)}$	$V_{DS} = 20 \text{ V}; I_{D} = 3 \text{ mA}$	3		5	V
I _{DSS}	$V_{DS} = 0.8 \cdot V_{DSS}$; $V_{GS} = 0 \text{ V}$; $T_{VJ} = 25^{\circ}\text{C}$			0.3	mA
	$T_{VJ} = 125$ °C			6	mA
I _{GSS}	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$			1.2	μA
\mathbf{Q}_{g})		1710		nC
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}; V_{DS} = 50 \text{ V}; I_{D} = 1000 \text{ A}$		396		nC
\mathbf{Q}_{gd}	J		1020		nC
t _{d(on)}			360		ns
t _r	inductive load		1620		ns
t _{d(off)}	$V_{GS} = 10 \text{ V}; V_{DS} = 50 \text{ V}$		460		ns
t _f	$V_{GS} = 10 \text{ V}, V_{DS} = 30 \text{ V}$ $I_D = 1000 \text{ A}; R_G = 1.8 \Omega$ $T_{VJ} = 25 ^{\circ}\text{C}$		1020		ns
E_{on}	$R_{G} = R_{G \text{ ext}} + R_{out \text{ driver}}$		7.7		mJ
E_{off}	G - I G ext I Fout driver		62.3		mJ
E _{rec})		0.57		mJ
t _{d(on)}			400		ns
t _r	inductive load		1640		ns
t _{d(off)}	$V_{GS} = 10 \text{ V}; V_{DS} = 50 \text{ V}$		560		ns
t _f	$V_{GS} = 10 \text{ V}, V_{DS} = 30 \text{ V}$ $I_D = 1000 \text{ A}; R_G = 1.8 \Omega$ $T_{VJ} = 125 ^{\circ}\text{C}$		820		ns
E _{on}	$R_G = R_{G \text{ ext}} + R_{out \text{ driver}}$		8.5		mJ
E_{off}	I 1G — I 1G ext T I 1out driver		58.9		mJ
E _{rec}	J		0.82		mJ
R_{thJC}				0.053	K/W
R_{thJH}	with heat transfer paste (IXYS test setup)		0.065	0.088	K/W

Features

- PolarHT™ MOSFET technology
- low $\mathbf{R}_{\text{\tiny DSon}}$
- dv/dt ruggedness
- fast intrinsic reverse diode
- package
- low inductive current path
- screw connection to high current main terminals
- use of non interchangeable connectors for auxiliary terminals possible
- Kelvin source terminals for easy drive
- isolated DCB ceramic base plate

Applications

- converters with high power density for
- main and auxiliary AC drives of electric vehicles
- DC drives
- power supplies

Source Drain Diode							
Symbol	Conditions		Characteristic Values				
			min.	typ.	max.		
V _{SD}	$I_F = 1000 \text{ A}; V_{GS} = 0 \text{ V};$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		1.03 0.96		V V	
t _{rr} Q _{rr} I _{RM}	$V_{DS} = 50 \text{ V; } I_F = 1000 \text{ A}$ $di_F/dt = 650 \text{ A/}\mu\text{s}$	T _{vJ} = 25°C		300 12.7 72		ns μC Α	
t _{rr} Q _{rr} I _{RM}	$V_{DS} = 50 \text{ V; } I_F = 1000 \text{ A}$ $di_F/dt = 630 \text{ A/}\mu\text{s}$	T _{vJ} = 125°C		340 18 88		ns μC A	

Module					
Symbol	Conditions	Ratings			
		min.	typ.	max.	
T _{VJ}		-40		150	°C
T _{stg}		-40		125	°C
V _{ISOL}	$I_{ISOL} \le 1$ mA, 50/60 Hz			3600	٧~
M _d	Mounting torque (M6)	2.25		2.75	Nm
	Terminal connection torque (M6)	4.5		5.5	Nm
Weight			250		g

Product Marking						
Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Code Key	
Standard	VMO1200-01F	VMO1200-01F	Box	2	501051	

Optional accessories for modules

Dimensions in mm (1 mm = 0.0394")

keyed twin plugs (UL758, style 1385, CSA class 5851, guide 460-1-1)

- Type ZY180L with wire length 350mm
 - for pins 4 (Gate, yellow wire) and 5 (Kelvin Source, red wire)

20100614b

 $\begin{array}{ccc} \mbox{Fig. 1} & \mbox{Drain source breakdown voltage} \\ & \mbox{$V_{\rm DSS}$ versus junction temperature $T_{\rm VJ}$} \end{array}$

Fig. 3 Typical output characteristic

Fig. 5 Typ. drain source on-state resistance $R_{\rm DS(on)}$ versus junction temperature $T_{\rm VJ}$

Fig. 2 Typical transfer characteristic

Fig. 4 Typical output characteristic

Fig. 5 Typ. drain source on-state resistance $R_{DS(on)}$ versus I_D 20100614b

Fig. 6 Typ. turn-on energy & switching times vs. drain source current, inductive switching

Fig. 7 Typ. turn-off energy & switching times vs. drain source current, inductive switching

Fig. 8 Typ. turn-on energy & switching times vs. gate resistor, inductive switching

Fig. 9 Typ. turn-off energy & switching times vs. gate resistor, inductive switching

Fig. 10 Typical gate charge characteristic

Fig. 11 Typ. reverse recovery time t_{rr} of the body diode versus di/dt

20100614b

Fig. 13 Typ. reverse recovery current I_{RM} of the body diode versus di/dt

Fig. 15 Source drain current I_F (body diode) vs. typical source drain voltage $V_{\mbox{\scriptsize SD}}$

of the body diode versus di/dt

Fig. 16 Typ. transient thermal impedance with heat tranfer paste (IXYS test setup)

Fig. 17 Definition of switching times