USN 1 S I

3RMAT3C

Siddaganga Institute of Technology, Tumakuru – 572 103 (An Autonomous Institute affiliated to Visvesvaraya Technological University, Belagavi, Approved by AICTE, New Delhi)

B.E **TEST - 2** 2020-21 Course: **CSE and ISE** Branch: December 2020 Sem: **Third**

Mathematical Concepts for Information Technology

Time: 1 1/2 Hours Max. Marks: 50

		Answer all the questions	Marks	BL	COs	POs
1	a)	The pressure and volume of a gas are related by the equation $pv^{\gamma} = k$ where γ and k are constants. Fit this equation to the following set of observations: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	3	4	1
	b)	Derive $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$ with usual notations.	5	2	4	1
	c)	In the following table are recorded data showing the test scores made by salesmen on an intelligence test and their weekly sales: Test 40 70 60 80 50 90	6	3	4	1
		probable weekly sales volume if a salesman makes a score of 57.				
2	a)	A simply supported beam carries a concentrated load P at its midpoint. Corresponding to various values of P, the maximum deflection y is measured. The data is as follows.	5	3	4	1
	b)	Solve the Lagrange's partial differential equation $(z^2 - 2yz - y^2)p + (xy + zx)q = xy - zx$	6	3	3	1
	c)	Classify the p.d.e. $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$. Using the method of separation of variables find the solution of $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ for all possible values of the parameter.	6	2	3	1
3	a)	Eliminate a, b and c from $z = a(x + y) + b(x - y) + abt + c$ to form a first order partial differential equation.	5	4	3	1
	b)	Evaluate $\int_C \frac{z}{(z-1)(z-2)^2} dz$ where $C: z-2 = \frac{1}{2}$ using Cauchy's Residue theorem.	6	3	2	1
	c)	Form the partial differential equation by eliminating arbitrary functions from $z = xf_1(x + y) + f_2(x + y)$.	6	4	3	1