Events and Basic Properties

Fu Lingyue

April 6, 2020

1 Events

We have a probability space (Ω, \mathcal{F}, P) .

 Ω The origin set, called sample space.

 $\omega \in \Omega$ ω is the element in sample space, called sample.

Event \mathcal{F} is the events on the space Ω . Every event $E \in \mathcal{F}$ is a \mathcal{F} -measurable subset of Ω .

1.1 Intuitive Understanding

 Ω is the biggest set, we choose an arbitrary element ω in it. Then $P(\mathcal{F})$ is the probability that ω is in \mathcal{F} . That is to say, we can consider Ω as the all possible cases, and \mathcal{F} is the set of those cases we have to calculate their probability. The way to calculate probability is the mapping $P: \mathcal{F} \mapsto [0, +\infty)$.

2 Monotone convergence of measure

 $F_n \uparrow F$ Let $\{F_n\}$ as a sequence of sets which satisfy

$$F_n \subseteq F_{n+1}(\forall n \in \mathbb{N}), \bigcup F_n = F.$$

 $f_n \uparrow f$ Let f_n as a sequence of real numbers which satisfy

$$f_n \le f_{n+1} (\forall n \in \mathbb{N}), \lim_{n \to \infty} f_n = f.$$

Theorem 1. (a) If $F_n \in \Sigma(n \in \mathbb{N})$ and $F_n \uparrow F$, then $\mu(F_n) \uparrow \mu(F)$. (b) If $G_n \in \Sigma(n \in \mathbb{N}), \mu(G_k) < \infty$ for some k and $G_n \downarrow G$, then $\mu(G_n) \downarrow \mu(G)$. *Proof.* (a) Denote $G_1 := F_1, G_n := F_n \setminus F_{n-1} (n \geq 2)$, then G_n mutually disjoint. And we have

$$\mu(F_n) = \mu(G_1 \cup G_2 \cup \dots \cup G_n) = \sum_{k \le n} \mu(G_n)$$

Consider the sequence $\{\Sigma_{k\leq n}\mu(G_k)\}$, we have

$$\Sigma_{k \le n} \mu(G_k) \le \Sigma_{k \le n+1} \mu(G_k)$$
, and $\lim_{n \to \infty} \Sigma_{k \le n} \mu(G_k) = \Sigma_{k < \infty} \mu(G_k)$.

Thus we can get

$$\mu(F_n) = \sum_{k \le n} \mu(G_n) \uparrow \sum_{k \le \infty} \mu(G_k) = \mu(F).$$

(b) Define $F_n = G_k \setminus G_{k+n}$, then use (a) to prove it.

Corollary 1. (Continuity from below) If $F_n \in \Sigma$, $F_n \subseteq F_{n+1}$, $n \in \mathbb{N}$, then

$$\lim_{n\to\infty}\mu(F_n)=\mu(\bigcup_{n\to\infty}F_n)=\mu(\lim_{n\to\infty}F_n).$$

Corollary 2. (Continuity from above) If $G_n \in \Sigma$, $G_n \supseteq G_{n+1}$, $n \in \mathbb{N}$, then

$$\lim_{n\to\infty}\mu(G_n)=\mu(\bigcap_{n\to\infty}G_n)=\mu(\lim_{n\to\infty}G_n)$$

provided there exists a k with $\mu(G_k) < \infty$.

Theorem 2. If $\mu(F_n) = 0$, then $\mu(\bigcup_{n=1}^{\infty} F_n) = 0$.

2.1 $\lim_{\longrightarrow} \sup/\inf$ and \downarrow , \uparrow

Discuss the real number sequence $\{x_n\}$ here.

Denote

$$\limsup x_n := \inf_m \{ \sup_{n \ge m} x_n \} = \downarrow \lim_m \{ \sup_{n \ge m} x_n \} \in [-\infty, \infty].$$

It is clear that the sequence $\sup_{n>m} x_n$ satisfy:

$$\sup_{n \ge m} x_n \ge \sup_{n \ge m+1} x_n.$$

Thus the limit of it exists.

Similarly, denote

$$\lim\inf x_n := \sup_m \{\inf_{n \ge m} x_n\} = \uparrow \lim_m \{\inf_{n \ge m} x_n\} \in [-\infty, \infty].$$

Theorem 3. x_n converge to $[-\infty, \infty] \Leftrightarrow \limsup x_n = \liminf x_n$.

In order to describe probability in the future, we discuss the relation between a real number z with $\limsup x_n$.

- 1. If $z > \limsup x_n$, then x_n will **eventually** less than z, i.e., $x_n < z$ when n > N.
- 2. If $z < \limsup x_n$, then x_n will **infinitely often** times greater than z, i.e., $x_n > z$ for infinite n.

3 a.s. and i.o.

a.s. If

$$F := \{\omega : S(\omega) \text{ is true}\} \in \mathcal{F}, P(F) = 1,$$

then the statement S is almost sure.

Lemma 1. Set S and S^C are both in \mathcal{F} , then $P(S) + P(S^C) = 1$.

Proof. For
$$P(\mathcal{F}) = 1, S$$
 and S^C are disjoint, then $P(S) + P(S^C) = P(S \cup S^C) = 1$.

Theorem 4. If $F_n \in \mathcal{F}$ and $\forall n P(F_n) = 1$, then $P(\bigcap_n F_n) = 1$.

Proof. For $P(F_n)^C = 0$, we have

$$P(\bigcap_{n} F_{n}) = P((\bigcup_{n} F_{n}^{C})^{C}) = 1 - P(\bigcup_{n} F_{n}^{C}) = 1.$$

Consider the event sequence E_n .

i.o. We define

$$(E_n, \text{i.o.}) = (\text{events that happen in infinite } E_n)$$

$$:= \lim \sup_{m} E_n$$

$$:= \bigcap_{m} \bigcup_{n \geq m} E_n$$

$$= \{\omega \mid \forall m, \exists k \geq m, s.t. \omega \in E_k\}$$

$$= \{\omega \mid \omega \in E_n \text{ for infinite n}\}$$

Theorem 5.

$$P(\limsup E_n) \ge \limsup P(E_n).$$

Proof. Define $G_m := \bigcup_{n \geq m} E_n$, and $G_m \downarrow G := \limsup E_n$. According to continuity from below,

$$P(G) = \downarrow \lim_{m \to \infty} P(G_m) = \downarrow \lim_{m \to \infty} P(\bigcup_{n > m} E_n).$$

It is clear that $P(\bigcup_{n\geq m} E_n) \geq \sup P(E_n)$, thus

$$P(\limsup E_n) = P(G) \ge \limsup P(E_n).$$

ev We write (E_n, ev) as

$$(E_n, ev) := (E_n \text{ will eventually happens})$$

 $:= \liminf E_n$
 $:= \bigcup_m \bigcap_{n \ge m} E_n$
 $= \{\omega \mid \text{ for some m, } \omega \in E_n \text{ for every } n \ge m\}.$

Theorem 6.

$$P(\liminf E_n) \le \liminf P(E_n).$$

Proof. Similar to Theorem 5.

4 BC1

Theorem 7. (BC1) The event sequence E_n satisfies $\Sigma_n P(E_n) < \infty$. Then

$$P(\limsup E_n) = P(E_n, i.o.) = 0.$$

Proof. Let $G_m = \bigcup_{n > m} E_n$ and $G_m \downarrow G = \bigcap_m G_m$. Then we have

$$P(\limsup E_n) = P(G) \le P(G_m) = P(\bigcup_{n > m} E_n) \le \Sigma_n P(E_n).$$

When
$$m \to \infty$$
, $\Sigma_{n>m} P(E_n) = 0$.

4.1 Aplication

Use BC1 to prove Discrete-time Poincaré's Recurence Theorem.

Theorem 8. Let T be a measure-preserving transformation on a probability space (Ω, \mathcal{F}, P) . Then. for any $E \in \mathcal{F}$ with P(E) > 0, almost all points of E returns to E infinitely often under positive iterations by T.

Proof. For each $n \in \mathbb{N}$, let $A_n := \{x \in E \mid x \notin T^{-kn}(E), \forall k \in \mathbb{N}\} = E \setminus \bigcup_{k \geq 1} T^{-kn}(E)$. $T^{-kn}(E)$ is an event for E is an event and T is measure-preserving. Thus A_n is an event as well

 $A_n, T^{-1}(A_n) \dots$ are pairwise disjoint. And for T is measure-preserving

$$P(A_n) = P(T^{-1}(A_n) = \dots = 0.$$

And for $P(\limsup A_n) \leq P(\bigcup A_n) \leq \Sigma P(A_n) = 0$, $P(\limsup A_n)$ obtains 0. It is clear that $\forall x \in E \setminus \limsup A_n, x$ visits E infinitely often under positive iterations by T. For $|(E \setminus \limsup A_n)| = P(E) = 1$, we can conclude that almost surely all points in E are returning to E infinitely often.