

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

AQA GCSE Maths: Higher

Pythagoras & Trigonometry

Contents

- * Pythagoras Theorem
- * SOHCAHTOA
- * Angles of Elevation & Depression
- * Exact Trig Values

Head to www.savemyexams.com for more awesome resources

Pythagoras Theorem

Your notes

Pythagoras Theorem

Who is Pythagoras?

- Pythagoras was a Greek mathematician who lived over 2500 years ago
- He is most famous for Pythagoras' theorem, which includes the important formula for right-angled triangles

What is Pythagoras' theorem?

- Pythagoras' theorem is a formula that links the lengths of the three sides of a right-angled triangle
- The longest side of a right-angled triangle is called the hypotenuse
 - The hypotenuse will always be the side **opposite** the right angle
- Pythagoras' theorem states that $a^2 + b^2 = c^2$
 - C is the length of the hypotenuse
 - a and b are the **lengths** of the **two shorter sides**
 - It does **not matter** which is labelled a and which is labelled b

How do I use Pythagoras' theorem to find the length of the hypotenuse?

- To find the length of the **hypotenuse**
 - Square the lengths of the two shorter sides
 - Add these two numbers together
 - Take the positive **square root**
- This can be written as $c = \sqrt{a^2 + b^2}$
 - This is just a **rearrangement** of the formula $a^2 + b^2 = c^2$ to make c the subject
 - Note that when finding the hypotenuse you **add** inside the square root

How do I use Pythagoras' theorem to find the length of a shorter side?

- To find the length of a **shorter side**
 - Square the lengths of the hypotenuse and the other shorter side
 - Subtract these numbers to find the difference

- Take the positive square root
- This can be written as $a = \sqrt{c^2 b^2}$
 - This is just a **rearrangement** of the formula $a^2 + b^2 = c^2$ to make a the subject
 - Note that when finding one of the shorter sides you **subtract** inside the square root

Examiner Tips and Tricks

- If the hypotenuse ends up being shorter than another side in your answer then you have made a **mistake** somewhere
- Make sure that you subtract the smaller value from the bigger value when finding the length of a shorter side
 - Otherwise you will get a "Math Error" when trying to find the square root of a negative number
- In questions with **multiple steps**:
 - Leave your answer as an **exact answer**
 - Do not round until the very end of the question

Worked Example

In the following diagram:

$$AB = 12 \text{ cm}$$

AC is a straight line, with AD = 9 cm and AC = 22 cm

Find $\it X$, the length of side $\it BC$. Give your answer to 1 decimal place.

To find X , we first need to find the length of $B\!D$ using triangle $AB\!D$ Note that $B\!D$ is a shorter side

Apply Pythagoras' theorem, $a = \sqrt{c^2 - b^2}$

$$BD = \sqrt{12^2 - 9^2} = \sqrt{63} = 7.93725...$$

It is best to leave rounding until the very end, use $\sqrt{63}$ (or $3\sqrt{7}$ if this is what your calculator has given you) in subsequent working

Find the length of DC by subtracting the length of AD from the length of AC

$$DC = 22 - 9 = 13 \text{ cm}$$

Now we can find $\it X$ using triangle $\it BCD$

Note that BC is the hypotenuse

Apply Pythagoras' theorem, $c = \sqrt{a^2 + b^2}$

$$x = \sqrt{BD^2 + DC^2} = \sqrt{(\sqrt{63})^2 + 13^2} = \sqrt{63 + 169}$$
$$x = \sqrt{232} = 15.23154621...$$

Round to 1 decimal place

 $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$

x = 15.2 cm

SOHCAHTOA

Your notes

SOHCAHTOA

What is trigonometry?

- Trigonometry is the mathematics of **angles** in triangles
- It looks at the relationship between **side lengths** and **angles of triangles**

What are sin, cos and tan?

- The three trigonometric functions sine, cosine and tangent
 - They come from ratios of side lengths in right-angled triangles
- You must label the sides of a right-angled triangle in relation to a chosen angle θ
 - The **hypotenuse**, **H**, is the **longest side** in a right-angled triangle
 - It will always be **opposite** the right angle
 - The side opposite 0 will be labelled opposite, O
 - The side **next to θ** will be labelled **adjacent**, **A**
- The functions sine, cosine and tangent are the ratios of the lengths of these sides as follows

$$= \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{O}{H}$$

$$\bullet \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{A}{H}$$

Your notes

What is SOHCAHTOA?

- **SOHCAHTOA** is a mnemonic often used to remember which ratio is which
 - Sin is Opposite over Hypotenuse
 - Cos is Adjacent over Hypotenuse
 - Tan is Opposite over Adjacent
- **H** is always the same but **O** and **A** change depending on which angle is labelled as θ

Head to www.savemyexams.com for more awesome resources

How can I use SOHCAHTOA to find missing lengths?

- STEP 1
 Label the sides of the triangle as H, O and A
- STEP 2
 Identify which trigonometric ratio to use: sin, cos or tan
 - Write down the letter of the **length** you are **given**
 - Write down the letter of the length you want to find
 - Find the two letters in **SOHCAHTOA** to identify which ratio to use
 - If you have **A** and **H** then use **cos**
- STEP 3

Substitute the values into the relevant trigonometric formula

• Remember to put brackets around the angle

$$\sin(50) = \frac{A}{7} \text{ or } \cos(40) = \frac{3}{H}$$

STEP 4

Rearrange and solve for the unknown letter

You will either need to multiply or divide

$$\cos(40) = \frac{3}{H} | \cos(40) = \frac{3}{\cos(40)}$$

Type the expression into your calculator

- The question might ask you to round your answer
- If not then round to three significant figures

How can I use SOHCAHTOA to find missing angles?

STEP 1

Label the sides of the triangle as H, O and A

STEP 2

Identify which trigonometric ratio to use: sin, cos or tan

- Write down the letters of the **lengths** you are **given**
- Find the two letters in **SOHCAHTOA** to identify which ratio to use
 - If you have **O** and **A** then use **tan**
- STEP 3

Substitute the values into the relevant trigonometric formula

■ The angle will be unknown

$$\tan(\theta) = \frac{3}{4}$$

STEP 4

Substitute the fraction into the inverse trigonometric function

You normally need to press SHIFT on your calculator first

$$\tan(\theta) = \frac{3}{4} | \cos \theta = \tan^{-1} \left(\frac{3}{4} \right)$$

STEP 5

Type the expression into your calculator

- The question might ask you to round your answer
- If not then round to one decimal place

Head to www.savemyexams.com for more awesome resources

How do I find the shortest distance from a point to a line?

- The shortest distance from any point to a line will always be the **perpendicular** distance
- Form a right-angled triangle and then use SOHCAHTOA to find the relevant distance

Examiner Tips and Tricks

- SOHCAHTOA (like Pythagoras) can only be used in right-angled triangles
- Ensure your calculator is set to measure angles in **degrees**
 - You should see the letter **D** or the word **Deg** at the top of your screen

Worked Example

Find the length of the side X cm in the following triangle.

Give your answer to 3 significant figures.

Page 11 of 27

First label the triangle

We know A and we want to know O - that's TOA or $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$

$$\tan(43) = \frac{x}{9}$$

Multiply both sides by 9

$$9 \times \tan(43) = x$$

Enter on your calculator

$$x = 8.3926...$$

Round to 3 significant figures

$$x = 8.39$$
 cm

Worked Example

Find the value of the angle y° in the following triangle.

Give your answer to 1 decimal place.

8 cm

First label the triangle

We know A and H - that's CAH or
$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\cos(y) = \frac{8}{23}$$

Use inverse \cos to find y

$$y = \cos^{-1}\left(\frac{8}{23}\right)$$

Page 13 of 27

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Enter on your calculator

y = 69.6455...

Round to 1 decimal place

 $y = 69.6^{\circ}$

Head to www.savemyexams.com for more awesome resources

Angles of Elevation & Depression

Your notes

Elevation & Depression

What are angles of elevation and depression?

- An angle of elevation or depression is the angle measured between the horizontal and the line of sight
 - Looking **up** at an object creates an angle of **elevation**
 - Looking **down** at an object creates an angle of **depression**
- Right-angled trigonometry can be used to find
 - an **angle** of elevation or depression
 - or a missing distance
- The tan ratio is often used in real-life scenarios
 - You may **know the height** of an object and want to **find the distance** you are from it
 - You may **know the distance** you are from an object and want to **find its height**

Examiner Tips and Tricks

It may be useful to draw more than one diagram if the triangles that you are interested in overlap one another.

Worked Example

A cliff is perpendicular to the sea and the top of the cliff, *T*, stands 24 metres above the level of the sea.

The angle of depression from the top of the cliff to a boat at sea is 35°.

At a point \boldsymbol{X} metres vertically up from the foot the cliff is a flag marker, \boldsymbol{M} .

The angle of elevation from the boat, B, to the flag marker is 18°.

(a) Draw a diagram of the situation. Label all the angles and distances given above.

(b) Find the distance from the boat to the foot of the cliff.

Consider triangle TBF where F is the foot of the cliff Angle $TBF = 35^{\circ}$ because of alternate angles

Use SOHCAHTOA to find the missing distance

We know the opposite (*TF*) and we want to find the adjacent (*BF*), so use $\tan \theta = \frac{O}{A}$

$$\tan 35 = \frac{24}{BF}$$

$$BF = \frac{24}{\tan 35}$$

$$BF = 34.27555...$$

 $BF = 34.3 \,\mathrm{m} \,(3 \,\mathrm{s.f.})$

(c) Find the value of X.

Consider triangle MBF

Use SOHCAHTOA to find the missing distance

We know the adjacent (BF) and we want to find opposite (MF), so use $\tan \theta = \frac{O}{A}$

$$\tan 18 = \frac{x}{34.27555...}$$

$$34.27555... \tan 18 = x$$

$$x = 11.1368...$$

$$x = 11.1 \,\mathrm{m} \,(3 \,\mathrm{s.f.})$$

Exact Trig Values

Your notes

Exact Trig Values

What are exact values in trigonometry?

- For **certain angles** the values of $\sin \theta$, $\cos \theta$ and $\tan \theta$ can be written **exactly**
 - This means using fractions and surds
- You are **expected to know** the exact values of sin, cos and tan for
 - 0°, 30°, 45°, 60°, 90°, 180° and their multiples

θ	0°	30°	45°	60°	90°
$\sin heta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos heta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
an heta	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	undefined

How can I remember these exact trig values?

- Look at patterns in the table
 - Note the values of sin θ from 0° to 90° match cos θ in reverse, from 90° to 0°
 - Some people remember $\sin \theta$ using the trick $\frac{\sqrt{0}}{2}$, $\frac{\sqrt{1}}{2}$, $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{3}}{2}$, $\frac{\sqrt{4}}{2}$ which simplifies to

$$0, \frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}, 1$$

• Two special **right-angled triangles** below can help you to find the exact values for 30°, 45° and 60°

Remember that by rationalising the denominator, $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

ANSWER: DENOMINATOR RATIONALISED

Copyright © Save My Exams, All Rights Reserved

BY SYMMETRY, ANGLES ARE 30°, 60° AND SIDE LENGTHS 1, 2
BY PYTHAGORAS', THIRD LENGTH IS √3

$$\sin 30^\circ = \frac{1}{2} \qquad \qquad \sin 60^\circ = \frac{\sqrt{3^\circ}}{2}$$

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$
 $\cos 60^{\circ} = \frac{1}{2}$

$$\tan 30^\circ = \frac{1}{\sqrt{3}} \qquad \tan 60^\circ = \sqrt{3}$$

Copyright © Save My Exams. All Rights Reserved

• The **trig graphs** can help you to remember the exact values for 0° and multiples of 90°

 $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$

Copyright © Save My Exams. All Rights Reserved

 $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$

How do I use exact trig values?

- You may come across trig questions in a **non-calculator** question
- In trig calculations, **substitute** in the **exact trig values** and solve as usual
 - E.g. Solve the equation $\cos 45 = \frac{x}{12}$
 - Replace $\cos 45$ with $\frac{\sqrt{2}}{2}$ to give $\frac{\sqrt{2}}{2} = \frac{x}{12}$
 - Then you can solve for X
- On trig graphs, you may be expected to find a coordinate
 - E.g. The coordinates (30, k) lie on the graph $y = \tan x$, find k

- k will be equal to an 30
- The exact value of $\tan 30$ is $\frac{\sqrt{3}}{3}$
- Therefore $k = \frac{\sqrt{3}}{3}$

Examiner Tips and Tricks

Writing these out (or sketching the triangles/graphs) on your paper at the beginning of the exam means that you can use them as many times as you need to during the exam!

Worked Example

Find the value of X in the diagram below.

Give your answer as an exact value.

Triangle ABC is a right-angled triangle, so use SOHCAHTOA

We know the hypotenuse (AC) and we want to calculate the opposite (BC), so use $\sin \theta = \frac{O}{H}$

$$\sin 60 = \frac{x}{28}$$

Remember that
$$\sin 60 = \frac{\sqrt{3}}{2}$$

So,

$$\frac{\sqrt{3}}{2} = \frac{x}{28}$$
$$28 \times \frac{\sqrt{3}}{2} = x$$

$$14 \times \sqrt{3} = x$$

Leave in exact (surd) form

$$x=14\sqrt{3}$$
 cm