XIV WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO

ETAP II – POWIATOWY (online) 25 stycznia 2017 roku godz. 10:00

Czas pracy: 60 minut

Liczba punktów do uzyskania: 50

Instrukcja dla ucznia

- 1. Test zawiera 8 zadań.
- 2. Czytaj uważnie wszystkie polecenia.
- 3. W każdym z zadań podanych jest kilka odpowiedzi. Oceń prawdziwość każdej z nich. Wybierz **PRAWDA**, jeśli zdanie jest prawdziwe, lub **FAŁSZ** jeśli jest fałszywe.
- 4. Rozwiązując zadania, możesz korzystać z brudnopisu. Zapisy w brudnopisie nie będą sprawdzane i oceniane.
- 5. Nie używaj kalkulatora.
- 6. Przy rozwiązywaniu zadań możesz korzystać z przyborów kreślarskich.

Powodzenia!

ETAP II Strona 1 z 7

Zadanie 1. (0-8)

Równanie
$$(2^{-1} + 3^{-1} - 4^0)x = 2 + \frac{2}{2 + \frac{2}{2 - \frac{1}{2}}} - \frac{1}{3}\sqrt{9 + 16}$$

jest równoważne równaniu:

$(2^{-1} + 3^{-1} - 4^{0})x = 2 + \frac{2}{2 + \frac{2}{2 - \frac{1}{2}}} - \frac{1}{3}(3 + 4)$	PRAWDA	FAŁSZ
$(2^{-1} + 3^{-1} - 4^{0})x = 2,6 - \frac{1}{3}\sqrt{9 + 16}$	PRAWDA	FAŁSZ
$-\frac{1}{6}x = 2 + \frac{2}{2 + \frac{2}{2 - \frac{1}{2}}} - \frac{1}{3}\sqrt{9 + 16}$	PRAWDA	FAŁSZ
$\frac{1}{6}x = -2\frac{3}{5} + \frac{1}{3}\sqrt{9 + 16}$	PRAWDA	FAŁSZ
$\frac{1}{6}x = -\frac{14}{15}$	PRAWDA	FAŁSZ

Zadanie 2. (0-4)

Zapisano następujące litery alfabetu:

A B C D E F G H I J K L M N O P R S T U V W X Y Z

O tych literach można powiedzieć, że:

dokładnie szesnaście z nich ma oś symetrii.	PRAWDA	FAŁSZ
dokładnie sześć z nich ma środek symetrii.	PRAWDA	FAŁSZ
wszystkie litery mające środek symetrii są też osiowosymetryczne.	PRAWDA	FAŁSZ
wszystkie litery mające oś symetrii są też środkowosymetryczne.	PRAWDA	FAŁSZ
prawdopodobieństwo wylosowania litery, która nie jest ani osiowosymetryczna, ani środkowosymetryczna, wynosi 0,24.	PRAWDA	FAŁSZ

ETAP II Strona 2 z 7

Zadanie 3. (0-6)

Wyznaczając odpowiednie wielkości ze wzorów:

$$F = k \frac{q_1 \cdot q_2}{r^2}$$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$F = k \frac{q_1 \cdot q_2}{r^2} \qquad \qquad \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \qquad \qquad x^2 y + x = xy - 1$$

otrzymujemy:

$r = \frac{\sqrt{k \cdot q_1 \cdot q_2}}{F}$	PRAWDA	FAŁSZ
$q_1 = \frac{Fr^2}{kq_2}$	PRAWDA	FAŁSZ
$R = R_1 + R_2$	PRAWDA	FAŁSZ
$R_2 = \frac{RR_1}{R_1 - R}$	PRAWDA	FAŁSZ
$y = \frac{x+1}{x-x^2}$	PRAWDA	FAŁSZ

Zadanie 4. (0-6)

$$x = \sqrt{121 \cdot 98 + 121 \cdot 11 - 121 \cdot 60}$$
, zatem:

liczba x jest całkowita.	PRAWDA	FAŁSZ
zachodzi warunek: x > 80.	PRAWDA	FAŁSZ
liczba x jest podzielna przez 7.	PRAWDA	FAŁSZ
liczbę $\sqrt{11x}$ można zapisać w postaci $\mathbf{a}\sqrt{11}$, gdzie \mathbf{a} jest liczbą naturalną.	PRAWDA	FAŁSZ
liczbę $\frac{1}{7} + x^{-1}$ można zapisać w postaci ułamka właściwego.	PRAWDA	FAŁSZ

ETAP II Strona 3 z 7

Zadanie 5. (0-8)

Bok sześciokąta foremnego ma długość 2 cm. To oznacza, że:

krótsza przekątna sześciokąta ma długość równą średnicy okręgu	PRAWDA	FAŁSZ
wpisanego w ten wielokąt.		
sześciokąt ma osiem przekątnych.	PRAWDA	FAŁSZ
obwód sześciokąta jest równy obwodowi trójkąta równobocznego	PRAWDA	FAŁSZ
o polu $4\sqrt{3}$ cm ² .		
pole sześciokąta jest równe polu prostokąta o bokach:	PRAWDA	FAŁSZ
$\sqrt{6}$ cm i $3\sqrt{2}$ cm.		
stosunek pola koła opisanego na sześciokącie do pola koła	PRAWDA	FAŁSZ
wpisanego w ten wielokąt wynosi 4:3.		

Zadanie 6. (0-10)

Podstawy trapezu mają długości: 20 i 3. Kąty między ramionami i dłuższą podstawą mają miary 60° oraz 45°. **Jak wynika z obliczeń:**

krótsze ramię ma długość $\frac{34}{1+\sqrt{3}}$	PRAWDA	FAŁSZ
dłuższe ramię ma długość $\frac{17\sqrt{6}}{1+\sqrt{3}}$	PRAWDA	FAŁSZ
obwód trapezu wynosi $\frac{57+23\sqrt{3}+17\sqrt{6}}{1+\sqrt{3}}$	PRAWDA	FAŁSZ
pole trapezu wynosi $\frac{391\sqrt{3}}{2+2\sqrt{3}}$	PRAWDA	FAŁSZ
pole trapezu podobnego, którego boki są o 4% dłuższe, jest 1,0816 razy większe.	PRAWDA	FAŁSZ

ETAP II Strona 4 z 7

Zadanie 7. (0-4)

Funkcję liczbową opisano wzorem $f(x) = \frac{-x-3}{-x^2+2}$

Dla tej funkcji:

wartość dla argumentu $x = -2$ wynosi 0,5.	PRAWDA	FAŁSZ
wzór można zapisać w postaci $f(x) = \frac{x+3}{-2+x^2}$	PRAWDA	FAŁSZ
do wykresu funkcji należy punkt $P = (-\sqrt{3}, \sqrt{3} + 3)$	PRAWDA	FAŁSZ
można wyznaczyć wartość dla argumentu √2	PRAWDA	FAŁSZ
można wyznaczyć wartość dla argumentu $(-\sqrt{2})$	PRAWDA	FAŁSZ

Zadanie 8. (0-4)

Dane są liczby: $a = \frac{36 \cdot 7^5}{7^5 + 7^5 + 7^5 + 7^5}$ $b = \frac{50 \cdot 7^{-5} - 7^{-5}}{7 \cdot 7^{-5}}$

$$c = \sqrt[3]{7^3 \cdot 2 + 7^2 \cdot 7 + 5 \cdot 7^3} \qquad d = (-2 - 3)^2$$

Wynika stąd, że:

a = 7	PRAWDA	FAŁSZ
b = 14	PRAWDA	FAŁSZ
$c = 7\sqrt[3]{14}$	PRAWDA	FAŁSZ
d = 1	PRAWDA	FAŁSZ
mediana zestawu liczb <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> wynosi 11,5.	PRAWDA	FAŁSZ

ETAP II Strona 5 z 7

BRUDNOPIS (nie podlega ocenie)

ETAP II Strona 6 z 7

BRUDNOPIS (nie podlega ocenie)

ETAP II Strona 7 z 7