

DEEP LEARNING COM TENSORFLOW

REDE NEURAL CONVOLUTIVA

DIEGO RODRIGUES DSC

INFNET

CRONOGRAMA

Dia	Aula	Trab	
02/09	Workshop de Deep Learning		
04/09	Deep FeedForward		
09/09	Rede Neural Convolutiva	Modelo Baseline	
11/09	AutoEncoder		
16/09	Representation & Transfer Learning	Modelo Profundo	
18/09	Sequências		
23/09	Modelos Generativos	Deployment	
25/09	Apresentação dos Trabalhos Parte II		

- PARTE 1 : TEORIA
 - VISÃO COMPUTACIONAL
 - BUSINESS
 UNDERSTANDING
 - MODELING
 - REDE NEURAL
 CONVOLUTIVA
 - MAX POOLING

- PARTE 2 : PRÁTICA
 - CNN DÍGITOS
- PARTE 3 : TRABALHOS
 - SEMANA 1

PARTE 1 : TEORIA

VISÃO COMPUTACIONAL

1980'S - NEUROCOGNITRON

Em paralelo a Marr, o cientista da computação Kunihiko Fukushima desenvolveu uma rede neural que era capaz de reconhecer padrões em imagens. A rede, chamada de Neurocognitron, foi a primeira Rede Neural Convolucional (CNN) da história.

Criada por **Yann LeCun** para reconhecimento de dígitos escritos à mão (usada no dataset MNIST).

LeNet foi uma das primeiras arquiteturas de CNN e introduziu conceitos como camadas convolutivas e de pooling.

Estrutura simples: poucas camadas convolutivas seguidas de camadas totalmente conectadas, usada para problemas de classificação de imagens pequenas (28x28 pixels)

2010 - IMAGENET

Em 2010 o dataset "ImageNet" foi disponibilizado, junto com as competições anuais de classificação de imagem. Essa base proveu a fundação para os modelos de CNN utilizados atualmente.

2012 - ALEXNET

Desenvolvida por Alex Krizhevsky, foi um marco ao vencer a competição ImageNet com grande margem.

Introduziu redes mais profundas e complexas (8 camadas) e o uso de ReLU como função de ativação, acelerando o treinamento.

Usou técnicas como Dropout e Data Augmentation para reduzir overfitting.

Demonstrou o poder de GPUs para treinamento de redes profundas, revolucionando o campo de deep learning.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Criada por Karen Simonyan e Andrew Zisserman, a arquitetura VGG popularizou o uso de múltiplas camadas convolutivas empilhadas com filtros pequenos (3x3).

O modelo VGG-16 e VGG-19 (16 e 19 camadas, respectivamente) mostraram que redes mais profundas podem capturar representações mais complexas das imagens.

Simples em estrutura, mas com muitas camadas, é amplamente usada como base em transfer learning.

2014 - GOOGLENET / INCEPTION

Desenvolvida pela equipe do Google, a arquitetura Inception inovou ao introduzir o conceito de "blocos Inception", que aplicam convoluções de diferentes tamanhos simultaneamente.

Reduziu drasticamente o número de parâmetros, mantendo alta performance.

O GoogLeNet venceu o desafio ImageNet de 2014, com 22 camadas, mas menos parâmetros que o AlexNet.

Criada por Kaiming He e colaboradores, a ResNet introduziu a ideia de blocos residuais, que utilizam conexões de atalho (skip connections).

Esse design resolveu o problema de degradação em redes muito profundas, permitindo a criação de redes com mais de 100 camadas (como a ResNet-152).

A ResNet foi outro divisor de águas ao mostrar que redes extremamente profundas podem ser treinadas com sucesso, vencendo o desafio ImageNet de 2015.

Figure 3. Example network architectures for ImageNet. **Left**: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. **Middle**: a plain network with 34 parameter layers (3.6 billion FLOPs). **Right**: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. **Table 1** shows more details and other variants.

BUSINESS UNDERSTANDING

CLASSIFICAÇÃO DE IMAGENS

SEGMENTAÇÃO DE IMAGENS

Types of Image Segmentation

SEMANTIC IMAGE SEGMENTATION

INSTANCE SEGMENTATION

PANOPTIC SEGMENTATION

IDENTIFICAÇÃO

DETECÇÃO DE POSE

DETECÇÃO DE OBJETOS

TRACKING DE OBJETOS

BUSCA INDEXADA POR IMAGEM

RECONSTRUÇÃO DE CENA

INSPEÇÃO AUTOMATIZADA

NAVEGAÇÃO

REMOÇÃO DE RUÍDO

True image

Blurred and noisy image

Restoration by Algorithm 1

MODELOS GENERATIVOS

MODELING

Convolução

- A camada convolutiva é um dos principais blocos de construção das redes neurais convolutivas (CNNs), usada amplamente em visão computacional.
- O objetivo dessa camada é detectar padrões locais, como bordas, texturas ou formas, a partir das entradas (imagens).
- Funciona aplicando um filtro (kernel) sobre a imagem de entrada, que se desloca ao longo dela, realizando operações de convolução. Cada filtro aprende a detectar características específicas.

Convolução

- A operação resulta em um mapa de características (feature map), que destaca as características detectadas pelo filtro em diferentes regiões da imagem.
- Uma das vantagens é a compartilhamento de pesos, onde o mesmo filtro é usado em toda a imagem, reduzindo o número de parâmetros e tornando o modelo mais eficiente.
- Com a aplicação de múltiplos filtros, diferentes características podem ser extraídas simultaneamente, ajudando a rede a entender a imagem de forma mais completa.
- Além disso, as camadas convolutivas preservam a relação espacial dos pixels, o que é essencial para o reconhecimento de padrões complexos.

MAX POOLING

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Max Pooling é uma técnica de redução de dimensionalidade usada em redes neurais convolutivas (CNNs).

Sua principal função é reduzir as dimensões espaciais (altura e largura) do mapa de características, mantendo as características mais importantes.

O pooling é aplicado em regiões da imagem e seleciona o valor máximo dentro de cada região.

Isso ajuda a tornar a rede mais eficiente ao reduzir a quantidade de dados, diminuindo a complexidade computacional e o risco de overfitting.

MAX POOLING

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Benefícios

- Redução de dimensionalidade: Menos parâmetros e menos computação.
- Invariância a pequenas translações: Pequenas mudanças na posição do objeto na imagem não afetam a detecção.
- Controle de overfitting: Ao reduzir o número de neurônios, diminui-se o risco de overfitting.

Batch Normalization

Dropout

PARTE 2 : PRÁTICA

AMBIENTE PYTHON

6. Deployment

| pandas

4. Variáveis Aleatórias

K Keras

6. Machine

Learning

1. Editor de Código

2. Gestor de Ambiente

3. Ambiente
Python do Projeto

3. Notebook Dinâmico

WORKSHOP

- QUAL A TOPOLOGIA DE DEEP LEARNING ADEQUADA PARA O MEU TRABALHO?
- QUAL CAPÍTULO DO LIVRO MELHOR SE ENQUADRA NO MEU TRABALHO?
- AULA 3: NOVO CICLO DE BUSINESS UNDERSTANDING / GRUPO + MODELO BASELINE TREINADO
- AULA 5 OU 7: MODELO PROFUNDO TREINADO
- AULA 7: DEPLOYMENT DO MODELO*
- AULA 3-7 > APRESENTAÇÃO TEÓRICA DA(S) TOPOLOGIA(S) + LEITURA DE ARTIGO +
 ACOMPANHAMENTO DOS TRABALHOS + DEEP DIVE NO CÓDIGO (POR GRUPO)
- APRESENTAÇÃO FINAL DOS TRABALHOS