Rew Sys 1	
) Problem Statement	
2) Apriliri Algorithm	
3) Association Rule	
Support confidence lift leverage c conviction Conclusions	
5) Business Strategy	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	3+1
Assuming Assuming prile of item 1 = item	2_

 $T1: \{(1, 3)5, 7\}$ T1: { (), 23 T2: { (), 7 } T2: { (1) 2, 8 & 3 T3: {(7, 3)7,83 Dict = \{ \le 1, 3\} ? \\ £ 1,33 $\{1,7\}$ £1, 3,73 ^[1, 2, 3] P/A P/A P/ P/A P/A X 2 2 X

ifem 1:
$$p$$

2: p

3: p

N ifem : p

2 p

8 1, p

8 2, p

8 2, p

8 1, p

8 2, p

8 2, p

8 2, p

8 1, p

8 2, p

8 2, p

8 3 = p

8 1, p

8 2, p

8 3 = p

8 1, p

8 2, p

8 3 = p

8 1, p

8 3 = p

9 1, p

9 2 1, p

9 3 = p

9 1, p

9 3 = p

9 1, p

9 2 1, p

9 3 = p

9 1, p

9 2 1, p

9 3 1, p

9 3

$$2^{n} - (n) - (n) - (n) = \text{full empty}$$

$$1 \text{ item}$$

$$\begin{cases} 1, 7, 33 \longrightarrow (nt) \\ \text{all rows} (invoicen) \end{cases}$$

$$0 \left(\left(\frac{n}{2} - n - 1 \right) \times (Nignoiden) \right)$$

 $\left(2^{n}-n-1\right)\times\left(N_{invoi(a)}\right)$

n = number of unique items

Jumber of myre

invoices

200 = 1024

 2^{100} \sim 2^{100} \sim $(2^{10})^{10}$ n = 100

£ 2,33 ×

\$ 1, 2, 3}

\[
\{\frac{2}{3}}
\]

\[
\{\frac{2}{3}}
\]

\[
\{\frac{2}{3}}
\]

\[
\{\frac{2}{3}}
\]

 $\begin{cases} 2,3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{cases}$