STA 522, Spring 2021 Introduction to Theoretical Statistics II

Lecture 2

Department of Biostatistics University at Buffalo

08 February, 2021

Review: Convergence of random variables

A sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X (written as $X_n \stackrel{P}{\to} X$) if, for every $\varepsilon > 0$,

$$\lim_{n\to\infty} P(|X_n-X|\geq \varepsilon)=0,$$

or, equivalently,

$$\lim_{n\to\infty}P\left(|X_n-X|<\varepsilon\right)=1.$$

A sequence of random variables X_1, X_2, \ldots converges almost surely to a random variable X (written $X_n \xrightarrow{a.s.} X$) if, for every $\varepsilon > 0$,

$$P\left(\lim_{n o\infty}|X_n-X|$$

This is same as saying

$$P(\lim_{n\to\infty} X_n = X) = 1 \text{ i.e., } P(\{s \in \mathcal{S} : \lim_{n\to\infty} X_n(s) = X(s)\}) = 1$$

Example: Let the sample space S be the closed interval [0,1] with the uniform probability distribution. Let $X_n(s) = s + s^n$ and X(s) = s. Show that $X_n \xrightarrow{a.s.} X$. Does this sequence converge in probability?

a.s. convergence: For every
$$s \in [0,1)$$
, $n \to \infty \implies s^n \to 0 \implies X_n(s) \to s = X(s)$.

For
$$s = 1$$
, $n \to \infty \implies s^n \to 1 \implies X_n(s) \to 2 \neq 1 = X(s)$.

But the convergence occurs on the set [0,1) and P([0,1))=1.

So X_n converges to X almost surely.

convergence in probability: Fix
$$\varepsilon > 0$$
. we have $P(|X_n - X| > \varepsilon) = P(\{s \in [0, 1] : |s^n| > \varepsilon\})$

$$egin{align} &=Pig(\{s\in[0,1]:s\geqarepsilon^{1/n}\}ig)\ &=\int_{-1/n}^1ds=1-arepsilon^{1/n} o 1-1=0 ext{ as } n o\infty \end{split}$$

So, yes, X_n does converge to X in probability.

Example: Same S = [0, 1] with the uniform probability distribution as before. Define the sequence X_1, X_2, \ldots as follows:

$$X_1(s) = s + I_{[0,1]}(s)$$
 $X_2(s) = s + I_{[0,1/2]}(s)$
 $X_3(s) = s + I_{[1/2,1]}(s)$ $X_4(s) = s + I_{[0,1/3]}(s)$
 $X_5(s) = s + I_{[1/3,2/3]}(s)$ $X_6(s) = s + I_{[2/3,1]}(s)$,

and so on, and let X(s)=s. Show that this sequence converges in probability, but not almost surely. For any $\varepsilon>0$

$$P(|X_n - X| \ge \varepsilon) = P(\text{interval whose length is going to zero}) \to 0.$$

For every s the value $X_n(s)$ alternates between s and s+1 infinitely often. For example, if s=3/8, $X_1(s)=11/8$, $X_2(s)=11/8$, $X_3(s)=3/8$, $X_4(s)=3/8$, $X_5(s)=11/8$, $X_6(s)=3/8$ etc. So no point-wise convergence occurs for this sequence. So X_n does not converge almost surely.

Relationship between convergence in probability and convergence almost surely

- convergence almost surely *implies* convergence in probability, but the converse is not true in general
- ► However, a sequence that converges in probability has a sub-sequence that converges almost surely.

Strong Law of Large Numbers (SLLN)

Let $X_1, X_2, ...$ be iid random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Define $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then for every $\varepsilon > 0$,

$$P\left(\lim_{n\to\infty}|\overline{X}_n-\mu|<\varepsilon\right)=1,$$

so that

$$\overline{X}_n \xrightarrow{a.s.} \mu$$
.

Remarks

- 1. "Stronger" analog of WLLN. SLLN \implies WLLN.
- 2. For both the WLLN and SLLN the assumption of a finite variance is sufficient but not necessary. The only moment condition needed is that $E|X_i| < \infty$.
- SLLN and WLLN may hold for non-iid random variables under certain regularity conditions. We can also create examples with non-iid random variables where WLLN holds but not SLLN.

Frequentist Definition of Probability

Given an event $A\subseteq \mathcal{S}$, consider an infinite sequence of independent random experiments/trials, and in each trial check whether or not A occurs. Let $f_n(A)$ be the frequency of the event A in the first n trials. Then the frequentist probability of A is defined as $P_n(A)=\lim_{n\to\infty}\frac{f_n(A)}{n}$ ("long-run relative frequency of A").

Justification via SLLN

Let $X_i = I(A \text{ occurs in trial-}i)$, $i = 1, \ldots, n$. Then $X_1, X_2, \ldots, X_n \sim \text{iid Bernoulli}(p = P(A))$ with $E(X_i) = P(A)$ and $Var(X_i) = P(A)[1 - P(A)] < \infty$. Also, $\sum_{i=1}^n X_i = \text{frequency of } A$ in first n trials $= f_n(A) \implies \overline{X}_n = \frac{f_n(A)}{n}$. Hence, by SLLN,

$$P_n(A) = \frac{f_n(A)}{n} = \overline{X}_n \xrightarrow{a.s.} E(X_1) = P(A)$$

Convergence in Distribution

Definition: A sequence of random variables $X_1, X_2, ...$ **converges** in distribution to a random variable X if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

at all points x where $F_X(x)$ is continuous. In this case, we write

$$X_n \xrightarrow{d} X$$
.

Note

This definition is actually about the cdfs of the random variables converge and not the random variables themselves.

Example: Let $X_1, X_2, ...$ be a sequence of continuous random variables with cdf given by

$$F_{X_n}(x) = 1 - \left(1 - \frac{x}{n}\right)^n \text{ for } 0 < x \le n.$$

Then For x > 0, $F_{X_n}(x) = 1 - \left(1 - \frac{x}{n}\right)^n \to 1 - e^{-x} =: F(x)$ as $n \to \infty$. Note that F(x) is the cdf of Exponential(1) distribution, i.e., $X_n \stackrel{d}{\to} \mathsf{Exponential}(\lambda = 1)$.

Example: Let $X_1, X_2, ...$ be a sequence of continuous random variables with cdf given by

$$F_{X_n}(x) = \left(\frac{x}{1+x}\right)^n \text{ for } x > 0.$$

Then $F_{X_n}(x) \to 0$ for all x. But a function equal to 0 everywhere is not a cdf (if F is a cdf then $\lim_{x\to\infty} F(x)$ must be 1), so X_n does **not** converge in distribution.

Example (contd.) Consider $V_n = \frac{X_n}{n}$ in previous example. Does V_n converge in distribution?

$$F_{V_n}(v) = F_{X_n}(nv)$$

$$= \left(\frac{nv}{1+nv}\right)^n$$

$$= \left[\left(1 - \frac{1}{1+nv}\right)^{nv}\right]^{1/v} \to e^{-1/v} \text{ for } v > 0$$

Since $F(v) = e^{-1/v}I(v > 0)$ is a cdf (verify), so V_n converges in distribution to $V \sim F$.

NOTE: F is the cdf of the inverse-Gamma($\alpha = 1$, $\beta = 1$) distribution.

Example: Suppose $X_1, X_2, ...$ are iid Uniform(0,1), and let $X_{(n)} = \max_{1 \le i \le n} X_i$. Does $X_{(n)}$ converge in probability? Can we say anything about the convergence of $n(1 - X_{(n)})$?

Heuristically, $X_{(n)}$ will get closer and closer to 1 as $n\to\infty$. To prove this formally, fix $\varepsilon>0$. We have

$$P(|X_{(n)} - 1| \ge \varepsilon) = P(X_{(n)} \ge 1 + \varepsilon) + P(X_{(n)} \le 1 - \varepsilon)$$

$$= 0 + P(X_{(n)} \le 1 - \varepsilon)$$

$$= P(X_i \le 1 - \varepsilon, \quad i = 1, \dots, n) = (1 - \varepsilon)^n \to 0$$

as $n \to \infty$. This means $X_{(n)} \stackrel{P}{\to} 1$.

Let
$$Y_n = n(1 - X_{(n)})$$
. Then for $t > 0$

$$F_{Y_n}(t) = P\left(n(1 - X_{(n)}) \le t\right)$$

= $P\left(X_{(n)} \ge 1 - t/n\right) = 1 - (1 - t/n)^n \to 1 - e^{-t}$

as $n \to \infty$. This means that $Y_n = n(1 - X_{(n)}) \xrightarrow{d} \text{Exponential}(1)$.

Relationship between convergence in probability & convergence in distribution

Theorem 5.5.12

If the sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X, the sequence also converges in distribution to X.

Proof See exercise 5.40 (homework).

Remark

almost sure convergence \implies convergence in probability \implies convergence in distribution. Reverse implications may not hold in general.

Theorem 5.5.13

The sequence of random variables X_1, X_2, \ldots converges in probability to a constant μ if and only if the sequence also converges in distribution to μ . That is, the statement

$$P(|X_n - \mu| > \varepsilon) \longrightarrow 0$$
 for every $\varepsilon > 0$

is equivalent to

$$P(X_n \le x) \longrightarrow \begin{cases} 0 & \text{if } x < \mu \\ 1 & \text{if } x > \mu. \end{cases}$$

Central Limit Theorem

Theorem 5.5.14

Let X_1, X_2, \ldots be a sequence of iid random variables whose mgfs exist in a neighborhood of 0 (that is, $M_{X_i}(t)$ exists for |t| < h, for some positive h). Let $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 > 0$ (both μ and σ^2 must be finite since the mgf exists).

Define
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 and $Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}$.

Let $G_n(x)$ denote the cdf of Z_n . Then for any x,

$$\lim_{n\to\infty} G_n(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.$$

In other words,

$$Z_n = rac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \stackrel{d}{ o} Z \sim \mathsf{N}(0,1) \ \ (ext{or simply } Z_n \stackrel{d}{ o} \mathsf{N}(0,1)).$$

Remarks

- Note that no assumption on the distribution of X_i is being made, only requirement is that they are iid and the mgf exists. Existence of mgf can be relaxed by just assuming $Var(X_1) = \sigma^2 < \infty$ (next theorem).
- ► Heuristic idea: normality comes from sums of "small" (finite variance), independent disturbances.
- ▶ DOES NOT hold in general if the regularity conditions are not satisfied. Example: $X_1, X_2, \dots \sim$ iid Cauchy(0, 1). Then $\sum_{i=1}^n X_i \sim \text{Cauchy}(0, n)$ (see Example 5.2.10 in CB 2E; discussed last semester) and $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim \text{Cauchy}(0, 1)$.

Proof of Theorem 5.5.14. Using Taylor's series on the mgf.

Define $Y_i = (X_i - \mu)/\sigma$, $M_Y(t) = \text{common mgf of the } Y_i \text{s which exists for } |t| < \sigma h$. Then

$$M_{\sqrt{n}(\overline{X}_n - \mu)/\sigma}(t) = M_{\sum_{i=1}^n Y_i/\sqrt{n}}(t)$$

$$= E\left(e^{\frac{(\sum_{i=1}^n Y_i)}{\sqrt{n}}t}\right)$$

$$= \left[E\left(e^{Y_1\left(\frac{t}{\sqrt{n}}\right)}\right)\right] = \left[M_Y\left(\frac{t}{\sqrt{n}}\right)\right]^n$$

Consider a Taylor series expansion of $M_Y(s)$ around 0.

$$M_Y(s) = M_Y(0) + M_Y^{(1)}(0) \frac{s}{1!} + M_Y^{(2)}(0) \frac{s^2}{2!} + R_n(s) \frac{s^2}{2!}$$

where $M_Y^{(k)}(0):=\frac{d^k}{dt^k}M_Y(t)\Big|_{t=0}$ and $R_n(s)\to 0$ as $n\to\infty$. The expansion is valid for $|s|<\sigma h$.

Note that

$$egin{aligned} M_Y(0) &= 1 \ M_Y^{(1)}(0) &= 0 \ M_Y^{(2)}(0) &= 1 \end{aligned}$$

So that

$$\left[M_Y\left(\frac{t}{\sqrt{n}}\right)\right]^n = \left[1 + \left(1 + R_n\left(\frac{t}{\sqrt{n}}\right)\right)\frac{t^2}{2n}\right]^n \to e^{\frac{t^2}{2}} = M_Z(t)$$

where $M_Z(t)$ denotes the mgf of N(0,1) distribution. This completes the proof since a mgf uniquely identifies a cdf.

Theorem 5.5.15 (Stronger version of Theorem 5.5.14)

Let $X_1, X_2, ...$ be a sequence of iid random variables with $\mathsf{E}(X_i) = \mu$ and $0 < \mathsf{Var}(X_i) = \sigma^2 < \infty$.

Define
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 and $Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma}$.

Let $G_n(x)$ denote the cdf of Z_n . Then for any x,

$$\lim_{n\to\infty} G_n(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy.$$

In other words,

$$Z_n = \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} N(0, 1).$$

Proof Exactly similar to Theorem 5.5.15, but uses characteristic function $(\phi(t) := E(e^{it}))$ instead of mgf. Omitted.

Slutsky's Theorem and Applications

Theorem 5.5.17 (Slutsky's Theorem)

If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{P} a$, where a is a constant, then

$$ightharpoonup X_n Y_n \xrightarrow{d} aX$$
; and

$$X_n + Y_n \xrightarrow{d} X + a$$
.

Proof: Omitted.

Normal Approximation with estimated variance

Suppose that $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} N(0,1)$, with σ unknown. Define

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$
. Then $\frac{\sqrt{n}(\overline{X}_n - \mu)}{S_n} \stackrel{d}{\to} N(0, 1)$.

Proof. Relies on two facts: (a) $S_n^2 \xrightarrow{P} \sigma^2$ as long as $\text{Var}(S_n^2) \to 0$ (Lecture 1); and

(b)
$$\frac{\sigma}{S_n} \stackrel{P}{\to} 1$$
 (see Exercise 5.32)

Principles of Data Reduction

Data reduction involves the use of statistics to summarize information (data) on a parameter θ . We study methods that retain important information about θ , and/or discard information that is irrelevant to θ .

- \triangleright sufficiency principle, in which no information about θ is discarded while achieving some summarization of the data (section 6.2);
- likelihood methods, in which we study functions that contain all information about θ available from a sample (section 6.3); and
- ▶ the equivariance principle, another method that preserves important features of the data (section 6.4).

Notation: Bold face and/or underline \underline{X} for the entire sample, i.e., $\underline{X} = (X_1, \dots, X_n)$, $\underline{x} = (x_1, \dots, x_n)$, $T(\underline{X}) = T(X_1, \dots, X_n)$, $T(\underline{X}) = T(x_1, \dots, x_n)$, $T(\underline{X})$, etc.

Homework

ightharpoonup Read pp. 236 - 240 (convergence concepts).