

Data Structures and Algorithms I

Recursion

The mirrors

Acknowledgement

- The contents of these slides have origin from School of Computing, National University of Singapore.
- We greatly appreciate support from Mr. Aaron Tan Tuck Choy, and Dr. Low Kok Lim for kindly sharing these materials.

Policies for students

- These contents are only used for students PERSONALLY.
- Students are NOT allowed to modify or deliver these contents to anywhere or anyone for any purpose.

Recording of modifications

- Course website address is changed to http://sakai.it.tdt.edu.vn
- Slides "Practice Exercises" are eliminated.
- Course codes cs1010, cs1020, cs2010 are placed by 501042, 501043, 502043 respectively.

Objectives

Strengthening the concept of recursion learned in 501042 (or equivalent)

 Demonstrating the application of recursion on some classic computer science problems

Applying recursion on data structures

 Understanding recursion as a problemsolving technique known as divide-andconquer paradigm

References

Book

- Chapter 3: Recursion: The Mirrors
- Chapter 6: Recursion as a Problem-Solving Technique, pages 337 to 345.

IT-TDT Sakai → 501043 website

→ Lessons

http://sakai.it.tdt.edu.vn

Programs used in this lecture

- CountDown.java
- ConvertBase.java
- SortedLinkedList,java, TestSortedList.java
- Combination.java

Outline

- 1. Basic Idea
- 2. How Recursion Works?
- 3. Examples
 - Count down
 - Display an integer in base b
 - Printing a Linked List
 - Printing a Linked List in reverse order
 - Inserting an element into a Sorted Linked List
 - Towers of Hanoi
 - Combinations: n choose k
 - Binary Search in a Sorted Array
 - Kth Smallest Number
 - Permutations of a string
 - The 8 Queens Problem

1 Basic Idea

Also known as a central idea in CS

1.1 Pictorial examples

Some examples of recursion (inside and outside CS):

Droste effect

Recursive tree

Recursion is the process of repeating items in a self-similar way but with smaller size.

1.2 Textual examples

Definitions based on recursion:

Recursive definitions:

- 1. A person is a descendant of another if
 - the former is the latter's child, or
 - the former is one of the descendants of the latter's child.
- 2. A list of numbers is
 - a number, or
 - a number followed by a list of numbers.

Recursive acronyms:

- 1. GNU = GNU's Not Unix
- 2. PHP = PHP: Hypertext Preprocessor

Dictionary entry:

Recursion: See recursion.

To understand recursion, you must first understand recursion.

1.3 Divide-and-Conquer

- Divide: In top-down design (for program design or problem solving), break up a problem into sub-problems of the same type.
- Conquer: Solve the problem with the use of a function that calls itself to solve each sub-problem
 - one or more of these sub-problems are so simple that they can be solved directly without calling the function

A paradigm where the solution to a problem depends on solutions to smaller instances of the SAME problem.

1.4 Why recursion?

- Many algorithms can be expressed naturally in recursive form
- Problems that are complex or extremely difficult to solve using linear techniques may have simple recursive solutions
- It usually takes the following form:

```
Solvelt (problem) {
   if (problem is trivial) return result;
   else {
      simplify problem;
      return Solvelt (simplified problem);
   }
}
```

2 How Recursion Works

Understanding Recursion

2.1 Recursion in 501042

- In 501042, you learned simple recursion
 - No recursion on data structures
 - Code consists of 'if' statement, no loop
 - How to trace recursive codes
- Examples covered in 501042
 - Factorial (classic example)
 - Fibonacci (classic example)
 - Greatest Common Divisor (classic example)
 - Other examples
 - Lecture slides and programs are available on 501043's "501042 Stuffs" page:

http://sakai.it.tdt.edu.vn

2.1 Recursion in 501042: Factorial (1/2)

$$n! = \begin{cases} 1, & n = 0 \\ n \times (n-1) \times \dots \times 2 \times 1, & n > 0 \end{cases}$$

$$n! = \begin{cases} 1, & n = 0 \\ n \times (n-1)!, n > 0 \end{cases}$$

Recurrence relation

Iterative solution

```
// Precond: n >= 0
int fact(int n) {
  int result = 1;
  for (int i=1;i<=n;i++)
    result *= i;
  return result;
}</pre>
```

```
// Precond: n >= 0
int fact(int n) {
   if (n == 0)
     return 1;
   else
     return n * fact(n-1);
}
```

Remember to document pre-conditions, which are common for recursive codes.

/ Base Recursive case call

2.1 Recursion in 501042: Factorial (2/2)

2.1 Recursion in 501042: Fibonacci (1/4)

- Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, ...
 - The first two Fibonacci numbers are both 1 (arbitrary numbers)
 - The rest are obtained by adding the previous two together.
- Calculating the nth Fibonacci number recursively:

```
Fib(n) = 1 for n=1, 2
= Fib(n-1) + Fib(n-2) for n > 2
```

```
// Precond: n > 0
int fib(int n) {
  if (n <= 2)
    return 1;
  else
  return fib(n-1) + fib(n-2);
}</pre>
```

Elegant but extremely inefficient. Which is correct?

- 1. Recursion doesn't reach base case
- 2. A lot of repeated work
- 3. Should put recursive case above base case

2.1 Recursion in 501042: Fibonacci (2/4)

2.1 Recursion in **501042**: Fibonacci (3/4)

Iterative Fibonacci

```
int fib(int n) {
 if (n \ll 2)
   return 1;
 else {
   int prev1=1, prev2=1, curr;
   for (int i=3; i<=n; i++) {
     curr = prev1 + prev2;
     prev2 = prev1;
     prev1 = curr;
   return curr;
```

Q: Which part of the code is the key to the improved efficiency?

- (1) Part A (red)
- (2) Part B (blue)

◈

2.1 Recursion in 501042: Fibonacci (4/4)

- Closed-form formula for Fibonacci numbers
- Take the ratio of 2 successive Fibonacci numbers (say A and B). The bigger the pair of numbers, the closer their ratio is to the Golden ratio φ which is $\approx 1.618034...$

Α	2	3	5	8	 144	233
В	3	5	8	13	 233	377
В/А	1.5	1.666	1.6	1.625	 1.61805	1.61802

• Using φ to compute the Fibonacci number x_n :

$$x_n = \frac{\varphi^n - (1 - \varphi)^n}{\sqrt{5}}$$

See

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html

2.1 Recursion in 501042: GCD (1/2)

- Greatest Common Divisor of two integers a and b, where a and b are non-negative and not both zeroes
- Iterative method given in Practice Exercise 11

```
// Precond: a, b non-negative,
            not both zeroes
int gcd(int a, int b) {
 int rem;
 while (b > 0) {
    rem = a \% b;
    a = b;
    b = rem;
  return a;
```

2.1 Recursion in 501042: GCD (2/2)

Recurrence relation:

$$gcd(a, b) = \begin{cases} a, & \text{if } b = 0\\ gcd(b, a\%b), & \text{if } b > 0 \end{cases}$$

```
// Precond: a, b non-negative,
// not both zeroes
int gcd(int a, int b) {
  if (b == 0)
    return a;
  else
    return gcd(b, a % b);
}
```


2.2 Visualizing Recursion

Artwork credit: ollie.olarte

- It's easy to visualize the execution of nonrecursive programs by stepping through the source code.
- However, this can be confusing for programs containing recursion.
 - Have to imagine each call of a method generating a copy of the method (including all local variables), so that if the same method is called several times, several copies are present.

2.2 Stacks for recursion visualization

int j = fact(5)

fact(0)

1

fact(1)

1 × 1

fact(2)

 2×1

fact(3)

 3×2

fact(4)

4 × 6

fact(5)

5 × 24

Use

push() for new recursive call pop() to return a value from a call to the caller.

Example: fact (n)

```
if (n == 0) return 1;
else return n * fact (n-1);
```

$$i = 120$$

2.3 Recipe for Recursion

Sometimes we call #1 the "inductive step"

To formulate a recursive solution:

- 2. Base case: Identify the "simplest" instance (so that we can solve it without recursion)
- Be sure we are able to reach the "simplest" instance (so that we will not end up with infinite recursion)

2.4 Bad Recursion

```
funct(n) = 1 if (n==0)
= funct(n-2)/n if (n>0)
```

Q: What principle does the above code violate?

- 1. Doesn't have a simpler step.
- 2. No base case.
- 3. Can't reach the base case.
- 4. All's good. It's a ~trick~!

3 Examples

How recursion can be used

3.1 Countdown

CountDown.java

```
public class CountDown {
  public static void countDown(int n) {
     if (n \le 0) // don't use == (why?)
       System.out.println ("BLAST OFF!!!!");
     else {
       System.out.println("Count down at time " + n);
       countDown(n-1);
  public static void main(String[] args) {
     countDown(10);
```

3.2 Display an integer in base b

See ConvertBase.java

E.g. One hundred twenty three is 123 in base 10; 173 in base 8

```
public static void displayInBase(int n, int base) {
  if (n > 0) {
    displayInBase(n / base, base);
    System.out.print(n % base);
  }
}
What is the
  precondition for
  parameter base?
}
```

```
Example 1:

n = 123, base = 10

123/10 = 12 123 % 10 = 3

12/10 = 1 12 % 10 = 2

1/10 = 0 1 % 10 = 1

Answer: 123
```

Example 2: n = 123, base = 8 123/8 = 15 123 % 8 = 3 15/8 = 1 15 % 8 = 7 1/8 = 0 1 % 8 = 1 Answer: 173

3.3 Printing a Linked List recursively

See SortedLinkedList.java and TestSortedList.java

```
public static void printLL(ListNode n) {
 if (n != null) {
                                      Q: What is the base case?
   System.out.print(n.value);
   printLL(n.next);
                           Q: How about printing in reverse order?
                                               head
           printLL (head) →
                               printLL
                                 print
          Output:
            5
                                    print
```

3.4 Printing a Linked List recursively in

reverse order

See SortedLinkedList.java and TestSortedList.java

```
public static void printRev(ListNode n) {
 if (n!=null) {
                                       Just change the name!
   printRev(n.next);
                                         ... Sure, right!
   System.out.print(n.value);
                                                 head
            printRev(head) ->
                                printRev
                                   printRev
            Output:
              9
                         5
                                      printRev
```

3.5 Sorted Linked List Insertion (1/2)

Insert an item v into the sorted linked list with head p

3.5 Sorted Linked List Insertion (2/2)

```
public static ListNode insert(ListNode p, int v) {
 // Find the first node whose value is bigger than v
 // and insert before it.
 // p is the "head" of the current recursion.
 // Returns the "head" after the current recursion.
 if (p == null \mid | v < p.element)
   return new ListNode(v, p);
 else {
   p.next = insert(p.next, v);
   return p;
                      To call this method:
                      head = insert(head, newItem);
```

3.6 Towers of Hanoi

- Given a stack of discs on peg A, move them to peg B, one disc at a time, with the help of peg C.
- A larger disc cannot be stacked onto a smaller one.

3.6 Towers of Hanoi – Quiz

- What's the base case?
 - A: 1 disc
 - B: 0 disc

From en.wikipedia.org

- What's the inductive step?
 - A: Move the top n-1 disks to another peg
 - B: Move the bottom n-1 disks to another peg
- How many times do I need to call the inductive step?
 - A: Once
 - B: Twice
 - C: Three times

3.6 Tower of Hanoi solution

```
public static void Towers(int numDisks, char src, char dest, char temp) {
  if (numDisks == 1) {
    System.out.println("Move top disk from pole " + src + " to pole " + dest);
  } else {
    Towers(numDisks - 1, src, temp, dest); // first recursive call
    Towers(1, src, dest, temp);
    Towers(numDisks - 1, temp, dest, src); // second recursive call
  }
}
```

3.6 Tower of Hanoi iterative solution (1/2)

```
public static void LinearTowers(int orig_numDisks, char orig_src,
                             char orig_dest, char orig_temp) {
 int numDisksStack[] = new int[100]; // Maintain the stacks manually!
 char srcStack[] = new char[100];
 char destStack[] = new char[100];
 char tempStack[] = new char[100];
 int stacktop = 0;
 numDisksStack[0] = orig_numDisks; // Init the stack with the 1st call
 srcStack[0] = orig_src;
 destStack[0] = orig_dest;
                              Complex!
 tempStack[0] = orig_temp;
 stacktop++;
                              This and the next slide are
                              only for your reference.
```

3.6 Tower of Hanoi iterative solution (2/2)

```
while (stacktop>0) {
 stacktop--; // pop current off stack
 int numDisks = numDisksStack[stacktop];
 char src = srcStack[stacktop]; char dest = destStack[stacktop];
 char temp = tempStack[stacktop];
 if (numDisks == 1) {
   System.out.println("Move top disk from pole "+src+" to pole "+dest);
 } else {
     /* Towers(numDisks-1,temp,dest,src); */ // second recursive call
   numDisksStack[stacktop] = numDisks -1;
                                                Q: Which version runs faster?
   srcStack[stacktop] = temp;
   destStack[stacktop] = dest;
                                                   A: Recursive
   tempStack[stacktop++] = src;
                                                    B: Iterative (this version)
     /* Towers(1,src,dest,temp); */
   numDisksStack[stacktop] =1;
   srcStack[stacktop] = src; destStack[stacktop] = dest;
   tempStack[stacktop++] = temp;
     /* Towers(numDisks-1,src,temp,dest); */ // first recursive call
   numDisksStack[stacktop] = numDisks -1;
   srcStack[stacktop] = src; destStack[stacktop] = temp;
   tempStack[stacktop++] = dest;
```

3.6 Towers of Hanoi

Towers(4, src, dest, temp)

3	src	temp	dest
1	src	dest	temp
3	temp	dest	src
numDiskStack	srcStack	destStack	tempStack

	-	owers()
Num of discs, n	Num of moves, f(n)	Time (1 sec per move)
1	1	1 sec
2	3	3 sec
3	3+1+3 = 7	7 sec
4	7+1+7 = 15	15 sec
5	15+1+15 = 31	31 sec
6	31+1+31 = 63	1 min
16	65,536	18 hours
32	4.295 billion	136 years
64	1.8×10^{10} billion	584 billion years
N	2 ^N – 1	

[501043 Lecture 10: Recursion]

3.7 Being choosy...

"Photo" credits: <u>Torley</u> (this pic is from 2nd life)

Suppose you visit an ice cream store with your parents.

You've been good so they let you choose 2 flavors of ice cream.

The ice cream store stocks 10 flavors today. How many different ways can you choose your ice creams?

3.7 n choose k

See Combination.java

3.8 Searching within a sorted array

Idea: narrow the search space by half at every iteration until a single element is reached.

Problem: Given a sorted int array a of *n* elements and int x, determine if x is in a.

x = 15

[501043 Lecture 10: Recursion]

3.8 Binary Search by Recursion

```
public static int binarySearch(int [] a, int x, int low, int high)
                                          throws ItemNotFound {
  // low: index of the low value in the subarray
  // high: index of the highest value in the subarray
  if (low > high) // Base case 1: item not found
     throw new ItemNotFound("Not Found");
                                                Q: Here, do we assume
  int mid = (low + high) / 2;
                                                that the array is sorted
                                                in ascending or
  if (x > a[mid])
                                                descending order?
     return binarySearch(a, x, mid + 1, high);
                                                  A: Ascending
  else if (x < a[mid])
                                                  B: Descending
     return binarySearch(a, x, low, mid - 1);
  else
     return mid; // Base case 2: item found
```

3.8 Auxiliary functions for recursion

- Hard to use this function as it is.
- Users just want to find something in an array. They don't want to (or may not know how to) specify the low and high indices.
 - Write an auxiliary function to call the recursive function
 - Using overloading, the auxiliary function can have the same name as the actual recursive function it calls

```
Auxiliary function binarySearch(int[] a, int x) {
return binarySearch(a, x, 0, a.length-1);
Recursive function
```

3.9 Find kth smallest (unsorted array)

```
public static int kthSmallest(int k, int[] a) { // k >= 1
  // Choose a pivot element p from a[]
                                                  Map the lines to the
  // and partition (how?) the array into 2 parts where
  // left = elements that are <= p
                                                  slots
  // right = elements that are > p
                                                  A: 1i, 2ii, 3iii, 4iv, 5v
                                                  B: 1i, 2ii, 3v, 4iii, 5iv
  int numLeft = sizeOf(left);
                                                  C: 1ii, 2i, 3v, 4iii, 5iv
  if (2____) {
                                                  D: 1i, 2ii, 3v, 4iv, 5iii
     return 4
  else
                                where
     return 5
                                i. k == numLeft
                                ii k < numLeft
                                iii. return kthSmallest(k, left);
       left
                  right
                                iv. return kthSmallest(k – numLeft, right);
                                v. return p;
```

◈

3.10 Find all Permutations of a String (1/3)

- For example, if the user types a word say east, the program should print all 24 permutations (anagrams), including eats, etas, teas, and non-words like tsae.
- Idea to generate all permutation:
 - Given east, we would place the first character i.e. e in front of all 6 permutations of the other 3 characters ast ast, ats, sat, sta, tas, and tsa to arrive at east, eats, esat, esta, etas, and etsa, then
 - we would place the second character, i.e. a in front of all 6 permutations of est, then
 - the third character i.e. s in front of all 6 permutations of eat, and
 - finally the last character i.e. t in front of all 6 permutations of eas.
 - □ Thus, there will be 4 (the size of the word) recursive calls to display all permutations of a four-letter word.
- Of course, when we're going through the permutations of the 3-character string e.g. ast, we would follow the same procedure.

3.10 Find all Permutations of a String (2/3)

 Recall overloaded substring() methods in String class

String	substring(int beginIndex)
	Returns a new string that is a substring of this string. The substring begins with the character at beginIndex and extends to the end of this string.
String	substring(int beginIndex, int endIndex)
	Returns a new string that is a substring of this string. The substring begins at beginIndex and extends to the character at index endIndex - 1. Thus the length of the substring is endIndex – beginIndex.

3.10 Find all Permutations of a String (3/3)

```
public class Permutations {
 public static void main(String args[]) {
   permuteString("", "String");
 public static void permuteString(String beginningString, String endingString) {
   if (endingString.length() <= 1)</pre>
     System.out.println(beginningString + endingString);
   else
     for (int i = 0; i < endingString.length(); i++) {
       try {
         String newString = endingString.substring(0,i) + endingString.substring(i+1);
                  // newString is the endingString but without character at index i
         permuteString(beginningString + endingString.charAt(i), newString);
       } catch (StringIndexOutOfBoundsException exception) {
         exception.printStackTrace();
```

[501043 Lecture 10: Recursion]

Exercise: Eight Queens Problem

 Place eight Queens on the chess board so that they cannot attack one another

 Q: How do you formulate this as a recursion problem?
 Work with a partner on this.

http://en.wikipedia.org/wiki/Eight_queens_puzzle

Backtracking

- Recursion and stacks illustrate a key concept in search: backtracking
- We can show that the recursion technique can exhaustively search all possible results in a systematic manner
- Learn more about searching spaces in other CS classes.

More Recursion later

- You will see more examples of recursion later when we cover more advanced sorting algorithms
 - Examples: Quick Sort, Merge Sort

5 Summary

- Recursion The Mirrors
- Base Case:
 - Simplest possible version of the problem which can be solved easily
- Inductive Step:
 - Must simplify
 - Must arrive at some base case
- Easily visualized by a Stack
- Operations before and after the recursive calls come in FIFO and LIFO order, respectively
- Elegant, but not always the best (most efficient) way to solve a problem

End of file