

BACKGROUND

• Initial evidence:

- Emotion neurocircuitry & inflammation
- Th 17 cells (IL-1 β /IL-17 pathways), asthma, & psychological distress

HYPOTHESES

Inflammation Asthma-Related Th2 & Th17 Pathways

STUDY DESIGN

STUDY DESIGN

^{* *} Airway inflammation measured (daily)

RESULTS

ACUTE STRESS INCREASES CORTISOL

CORTISOL RESPONSE TO STRESS IS ASSOCIATED WITH STRESS NEUROCIRCUITRY ACTIVATION

p < .05 corrected

Mean Glucose Metabolism (Stress minus Control)

→ meta

Greater glucose metabolism, in stress vs control

IL-23A EXPRESSION POST-AIRWAY CHALLENGE INCREASE IS ASSOCIATED WITH STRESS-RELATED AMYGDALA ACTIVATION Greater increase in

Greater increase in inflammation,

in stress vs control

p < .05 corrected

Greater glucose metabolism, in stress vs control

CONCLUSIONS

CONCLUSIONS

• Psychosocial stress-evoked **cortisol** associated with **brain activity** (*amygdala*, hippocampus, ACC, insula)

• Greater Th17-related (*IL-23A mRNA*) inflammatory response to allergen associated with increased stress-related amygdala activity

- Stress-related brain activity predicts increased inflammatory signaling capacity
 - Efferent pathway
 - Targeted treatments

THANK YOU!

Work supported by NHLBI (R01 HL123284)

Melissa Rosenkranz, PhD

William Busse, PhD

Danika Klaus, RN

Stephane Esnault, PhD

...and many more!

QUESTIONS

QUESTIONS

QUESTIONS

TH17 CELLS

- Adaptive Immune System → IL-17 (neutrophils)
- Differentiation promoted by IL-23, TNF-a, IL-1 β , IL-21 (requires IL-6 and TGF β)
- Psychological Stress $\rightarrow \uparrow$ IL-23A, IL-1 β , IL-6

Asthma:

- IL-17 in severe asthma; modulates Th2 responses in mild asthma
- EOS (Th2 cells) release IL-1 $\beta \rightarrow$ IL-17 expression

HOW DOES THE BRAIN INFLUENCE THE AIRWAY?

- Distal Mechanism: brain (sub/cortical)
 - In-Between Mechanisms: brainstem
- Proximal Mechanisms:
 - HPA Axis
 - Sympathetic Nervous System
 - Neurogenic Inflammation (Sensory Neuropeptides)

PRIOR EVIDENCE

- Psychosocial Stressor → Increased Cortisol, associated with Airway Inflammation
 Biomarkers
 - Th 17 path (IL-17A, IL-1R1)

- Th2 path (EOS) moderated by chronic stress

(Rosenkranz et al., 2016)

greater cortisol

PRIOR EVIDENCE

- Psychosocial Stressor → Stress Neurocircuitry Activation associated with Airway
 Inflammation Biomarkers
 - Th2 pathway (FeNO) & Th17 cell mRNA (IL23A, IL1R1)

