Лема за покачването за регулярни езици

Иво Стратев

9 юни 2020 г.

1 Въведение

Да разгледаме следният автомат

Лесно се съобразва, че езикът на този автомат е безкраен, понеже съществува ориентиран цикъл, в който участва състояние, от което е достижимо финално състояние. Например 5 е състояние участващо в цикъла [2,3,5,4,2] и 2 е достижимо от началното състояние и от 5 е достижимо 6, което е финално.

Също така сравнително лесно се съобразява, че ако вземем дума от езика на автомата с дължина по-голяма или равна от 6, то думата ще е $ab.(cdba)^k.cda$ за някое $k \in \mathbb{N}_+$.

Лесно се съобразява и факта, че ако $k \in \mathbb{N}_+$, то за всяко $\mathfrak{i} \in \mathbb{N}$ думата $\mathfrak{ab.}(cd\mathfrak{ba})^{\mathfrak{i}k}.cd\mathfrak{a}$ е от езика на автомата. Ако $\mathfrak{i}=0$, то все едно не минаваме през цикъла съотвестващ на $(cd\mathfrak{ba})^k$. Ако $\mathfrak{i}>1$, то все едно правим допълнителни "обиколки"на цикъла съотвестващ на $(cd\mathfrak{ba})^k$.

2 Лема за покачването

Нека L е безкраен език над азбука Σ. Ако L е регулярен език, то съществува $\mathfrak{p} \in \mathbb{N}_+$, такова че за всяка дума $\alpha \in L$ ако $|\alpha| \geq \mathfrak{p}$, то съществуват $x,y,z \in \Sigma^*$, такива че $\alpha = xyz$ и $|xy| \leq \mathfrak{p}$ и $y \neq \varepsilon$ и за всяко $\mathfrak{i} \in \mathbb{N}$ думата $xy^{\mathfrak{i}}z$ е от езика L.

3 Контрапозиция на лемата за покачването

Нека L е безкраен език над азбука Σ . Ако за всяко $\mathfrak{p} \in \mathbb{N}_+$ същесвува дума α от L с дължина поне \mathfrak{p} и за всеки $x,y,z\in \Sigma^*$, такива че $\alpha=xyz$ и $|xy|\leq \mathfrak{p}$ и $y\neq \varepsilon$ същесвува $\mathfrak{i}\in \mathbb{N}$, такова че думата $xy^{\mathfrak{i}}z$ не е от езика L, то L не е регулярен.

4 Схема на доказателство, че даден безкраен език не е регулярен

Нека L е безкраен език над азбука Σ.

Нека $\mathfrak{p} \in \mathbb{N}_+$ и \mathfrak{p} е произволно.

Избираме дума α от L с дължина поне \mathfrak{p} .

Показваме, че за всяко разбиване на думата на три части $x,y,z\in \Sigma^*$, такива че $\alpha=xyz$ и $|xy|\leq p$ и $y\neq \epsilon$ можем да посочим $\mathfrak{i}\in\mathbb{N}$, такова че $xy^{\mathfrak{i}}z$ не е от L (pump-ваме с \mathfrak{i}).

От лемата за покачването заключваме, че L не е регулярен език.

5 Пример 1

Нека $L = \{\omega.b^n \mid \omega \in \{a, c\}^* \& n \in \mathbb{N} \& |\omega| = n\}.$

Нека $\mathfrak{p} \in \mathbb{N}_+$ и \mathfrak{p} е произволно.

Избираме $\alpha = a^p b^p$, която е от L с дължина 2p, което е повече от p.

Избрахме $\mathfrak{a}^p\mathfrak{b}^p$, защото от лемата xy е с дължина не повече от \mathfrak{p} , така че xy ще е съставена изцяло от \mathfrak{a} -та и понеже има ясна граница това са \mathfrak{b} -тата и както и да пъпнем надолу ($\mathfrak{i}=0$) или нагоре ($\mathfrak{i}>1$) ритр-натата дума няма да е в езика. Нека все пак формално да изкажем горното наблюдение.

Нека $x,y,z\in\{a,b,c\}^*$ са такива, че $\alpha=xyz$, $|xy|\leq p$ и $y\neq \epsilon$. Тогава xy е префикс на a^p , от където $z=a^{p-|xy|}b^p$. Също $0<|y|\leq |x|+|y|=|xy|\leq p$. Тогава $xy^iz=a^{|x|}.a^{i|y|}.a^{p-|xy|}.b^p=a^{|x|+i|y|+p-|x|-|y|}.b^p=a^{p+(i-1)|y|}.b^p$ и понеже $a^{p+(i-1)|y|}\in\{a,c\}^*$ търсим такова $i\in\mathbb{N}$, че $p+(i-1)|y|\neq p$. Избираме i=0 понеже $0<|y|\leq p$ и тогава p-|y|< p. Тоест $xy^0z\notin L$.

От лемата за покачването заключваме, че L не е регулярен език.

6 Пример 2

Нека $L = \{\alpha.\beta.\alpha \mid \alpha \in \{a,b\}^+ \& \beta \in \{a,b\}^+\}.$

Нека \mathfrak{p} ∈ \mathbb{N}_+ и \mathfrak{p} е произволно.

Избираме $\alpha=\alpha^p b$ и $\beta=b$ и нека $\omega=\alpha.\beta.\alpha.$ Тогава $\omega\in L$ и $|\omega|=2(p+1)+1=2p+3>p.$

Нека $x,y,z \in \{a,b\}^*$ са такива, че $\alpha = xyz$, $|xy| \le p$ и $y \ne \varepsilon$. Тогава xy е префикс на a^p , от където $z = a^{p-|xy|}bba^pb$. Също $0 < |y| \le |x| + |y| = |xy| \le p$. Тогава $xy^iz = a^{|x|}.a^{i|y|}.a^{p-|xy|}.bba^pb = a^{|x|+i|y|+p-|x|-|y|}.bba^pb = a^{p+(i-1)|y|}.bba^pb$.

Нека изберем i=2. Тогава $xy^2z=a^{p+|y|}.bba^pb$. Искаме да покажем,

че $xy^2z \notin L$. Да допусем, че $xy^2z \in L$. Нека тогава ρ , $\sigma \in \{a,b\}^+$ са такива, че $\rho.\sigma.\rho = a^{p+|y|}.bba^pb$.

Възможни са няколко случая спрямо краят на ρ (всеки суфикс на ρ е суфикс на $\mathfrak{a}^{p+|y|}.bb\mathfrak{a}^pb$).

6.1 Случай 1. $\rho = b$

Тогава xy^2z започва с b, което не е вярно. Достигаме до Абсурд!

6.2 Случай 2. за някое $k \in \{1, 2, \dots, p\}$ е в сила, че $\rho = \mathfrak{a}^k \mathfrak{b}$

Тогава xy^2z започва с a^kb , което не е вярно понеже първото b е след p+|y| на брой a-та и p+|y|>k. Достигаме до Абсурд!

6.3 Случай 3. за някоя дума $\gamma \in \{\mathfrak{a},\mathfrak{b}\}^*$ е в сила, че $\mathfrak{o} = \gamma.\mathfrak{b}.\mathfrak{a}^\mathfrak{p}.\mathfrak{b}$

Тогава $xy^2z=(\gamma.b.a^p.b).\sigma.(\gamma.b.a^p.b)$ и значи $\mathcal{N}_b(xy^2z)\geq 4>3=\mathcal{N}_b(xy^2z).$ Това е Абсурд!

Следователно $xy^2z \notin L$.

От лемата за покачването заключваме, че L не е регулярен език.

7 Пример 3

Нека $L = \{\alpha.\gamma \mid \alpha, \gamma \in \{\alpha, b, c\}^* \& \mathcal{N}_b(\alpha) = 2\mathcal{N}_a(\alpha) \& \mathcal{N}_c(\gamma) = 3\mathcal{N}_b(\gamma)\}.$

Нека $\mathfrak{p} \in \mathbb{N}_+$ и \mathfrak{p} е произволно.

Избираме $\alpha=a^pb^{2p}$ и $\gamma=c^{3p}b^p$ и нека $\omega=\alpha.\gamma=a^pb^{2p}c^{3p}b^p$. Тогава $\omega\in L$ и $|\omega|=p+2p+3p+p>7p>p$.

Нека $x,y,z\in\{a,b,c\}^*$ са такива, че $\alpha=xyz$, $|xy|\le p$ и $y\ne \varepsilon$. Тогава xy е префикс на a^p , от където $z=a^{p-|xy|}b^{2p}c^{3p}b^p$. Също

 $0<|y|\le |x|+|y|=|xy|\le p.$ Тогава $xy^iz=a^{|x|}.a^{i|y|}.a^{p-|xy|}b^{2p}c^{3p}b^p=a^{|x|+i|y|+p-|x|-|y|}.b^{2p}c^{3p}b^p=a^{p+(i-1)|y|}.b^{2p}c^{3p}b^p.$

Нека изберем $\mathfrak{i}=0$. Тогава $xy^0z=\mathfrak{a}^{p-|y|}.\mathfrak{b}^{2p}c^{3p}\mathfrak{b}^p$. Искаме да покажем, че $xz\notin L$. Да допусем, че $xz\in L$. Нека тогава $\rho,\sigma\in\{\mathfrak{a},\mathfrak{b},c\}^*$ са такива, че $\rho.\sigma=xz=\mathfrak{a}^{p-|y|}.\mathfrak{b}^{2p}c^{3p}\mathfrak{b}^p$ и $\mathcal{N}_{\mathfrak{b}}(\rho)=2\mathcal{N}_{\mathfrak{a}}(\rho)$ и $\mathcal{N}_{\mathfrak{c}}(\sigma)=3\mathcal{N}_{\mathfrak{b}}(\sigma)$.

Възможни са два случая спрямо р.

7.1 Случай 1. $\rho = \varepsilon$

Тогава $\sigma=xz=\mathfrak{a}^{p-|y|}.\mathfrak{b}^{2p}c^{3p}\mathfrak{b}^p$. Но $\mathcal{N}_c(\sigma)=3\mathfrak{p}$ и $\mathcal{N}_b(\sigma)=3\mathfrak{p}$ и $3\mathfrak{p}<9\mathfrak{p}$. Така $xz\notin L$. Достигаме до Абсурд!

7.2 Случай 2. $\rho \neq \epsilon$

Тогава $\mathcal{N}_{\mathfrak{a}}(\rho)>0$ от където $\mathcal{N}_{\mathfrak{b}}(\rho)>0$ Тогава $\rho=\mathfrak{a}^{\mathfrak{p}-|\mathfrak{y}|}.\mathfrak{b}^{2\mathfrak{p}-2|\mathfrak{y}|}$ и $\sigma=\mathfrak{b}^{2|\mathfrak{y}|}c^{3\mathfrak{p}}.\mathfrak{b}^{\mathfrak{p}}$. Така $\mathcal{N}_{\mathfrak{b}}(\sigma)=\mathfrak{p}+2|\mathfrak{y}|>\mathfrak{p}$ и значи $3\mathcal{N}_{\mathfrak{b}}(\sigma)>3\mathfrak{p}=\mathcal{N}_{\mathfrak{c}}(\sigma)$, което е Абсурд!

Следователно $xy^0z = xz \notin L$.

От лемата за покачването заключваме, че L не е регулярен език.

8 Пример 4

Нека $L=\{c^n.a^k.b^s\ |\ n\in\mathbb{N}_+\ \&\ s\in\mathbb{N}_+\ \&\ (\exists l\in\mathbb{N}_+)(k=ls)\}.$

Нека $\mathfrak{p} \in \mathbb{N}_+$ и \mathfrak{p} е произволно.

Избираме $\alpha=c\alpha^pb^p$ и $|\omega|=2p+1>p.$ Понеже p=1.p, то $\omega\in L.$

Нека $x,y,z\in\{a,b\}^*$ са такива, че $\alpha=xyz$, $|xy|\leq p$ и $y\neq \epsilon$. Тогава xy е префикс на ca^{p-1} . Възможни са два случая.

Случай 1. $x=\varepsilon$. Тогава $\alpha=xyz=yz=c\alpha^pb^p$ и понеже $|y|=|xy|\le p$, то $z=\alpha^{p-|y|+1}b^p$. Тогава $xy^iz=y^iz=(c\alpha^{|y|-1})^i\alpha^{p-|y|+1}b^p$.

Избираме $\mathfrak{i}=0$ тогава $xy^{\mathfrak{i}}z=z=\mathfrak{a}^{p-|y|+1}\mathfrak{b}^p$, защото тогава $\mathcal{N}_{c}(xy^{\mathfrak{i}}z)=0\notin\mathbb{N}_{+}$ и $xy^{\mathfrak{i}}z\notin\mathbb{L}.$

Случай 2. $x \neq \varepsilon$. Тогава $z = a^{p-|xy|+1}b^p$ и 0 < |y| < p, понеже $|xy| \le p$. Тогава $xy^iz = ca^{|x|-1+i|y|+p-|xy|+1}b^p = ca^{p+(i-1)|y|}b^p$. Търсим такова $i \in \mathbb{N}$, че $xy^iz \notin L$. За целта пресмятаме

$$\frac{p + (i-1)|y|}{p} = 1 + \frac{(i-1)|y|}{p}$$

Ако i=2 получаваме $1+\frac{|y|}{p}\notin\mathbb{N}$. Ако i=p получаваме $1+|y|-\frac{|y|}{p}\notin\mathbb{N}$. Тоест не зависимо какво изберем i=2 или i=p думата xy^iz не е в L.

От лемата за покачването заключваме, че L не е регулярен език.

9 Пример 5.

Нека $L = \{\alpha \# \beta \mid \alpha \in \{0,1\}^+ \& \beta \in \{0,1\}^+ \& \alpha_{(2)} + \beta_{(2)} = 3\alpha_{(2)}\}$, където (бинарна дума) $_{(2)}$ е числото с двойчен запис бинарна дума. Тоест

$$egin{aligned} 0_{(2)} &= 0_{\mathbb{N}} \ 1_{(2)} &= 1_{\mathbb{N}} \ (\omega.0)_{(2)} &= 2_{\mathbb{N}} * \omega_{(2)} \ (\omega.1)_{(2)} &= 2_{\mathbb{N}} * \omega_{(2)} + 1_{\mathbb{N}} \end{aligned}$$

Например $1000_{(2)} = 8$ и $100_{(2)} = 4$ и значи $1000\#100 \in L$, защото 8+4=12=3.4. Условието на L същност се свежда до решенията на уравнението 2x+x=3x, които са безкрайно много.

Нека $\mathfrak{p} \in \mathbb{N}_+$ и \mathfrak{p} е произволно.

Избираме $\omega=100^p\#10^p$, която е в езикът, защото $100^p_{(2)}=2_\mathbb{N}*10^p_{(2)}$. Дължината на ω е 2+p+1+1+p, което е поне \mathfrak{p} .

Нека $x,y,z \in \{0,1\}^*$ и са такива, че $\omega = x.y.z$ и $|x.y| \le p$ и $|y| \ge 1$.

Възможни са два случая.

Случай 1. $x=\varepsilon$. Тогава $z=0^{p+1-|y|+1}\#10^p=0^{p+2-|y|}\#10^p$. В този случай избираме $\mathfrak{i}=0$, защото $x.y^0.z=\varepsilon.\varepsilon.z=0^{p+2-|y|}\#10^p$ и $0^{p+2-|y|}_{(2)}=0_\mathbb{N}$ и $10^p_{(2)}\neq 0_\mathbb{N}$ и значи $x.y^0.z\notin \mathsf{L}$.

Случай 2. $x \neq \varepsilon$. Тогава $z=0^{p+1-|xy|+1}\#10^p=0^{p+2-|xy|}\#10^p$. В този случай избираме $\mathfrak{i}=2$, защото $x.y^2.z=100^{p+|y|}\#10^p$ и

$$100_{(2)}^{p+|y|} = 2_{\mathbb{N}}^{|y|+1} * 10_{(2)}^{p} > 2_{\mathbb{N}} * 10_{(2)}^{p}$$

и значи $x.y^2.z \notin L$.