Flávio Araújo

- O processo de filtragem consiste de:
 - Uma vizinhança;
 - Uma operação pré-definida realizada sobre os pixels da imagem incluídos na vizinhança.
- A filtragem cria um novo pixel com coordenadas iguais ao do centro da vizinhança e cujo valor é resultado da operação de filtragem.

- O processamento sobre uma vizinhança consiste de:
 - Definir um ponto central (x, y);
 - Executar uma operação que envolva apenas os pixels da vizinhança prédefinida sobre o ponto central;
 - Considerar o resultado da operação como sendo a resposta do processo no ponto (x, y);
 - Repetir o processo para todo o ponto da imagem.
- O processo de mover o ponto central cria novas vizinhanças para cada pixel na imagem de entrada. Esta operação é referida como processamento de vizinhança ou filtragem espacial;

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s, y+t)$$

a=(m-1)/2 e b=(n-1)/2, $m \times n$ (números impares)

- •Para x = 0,1,...,M-1 e y = 0,1,...,N-1
- Também chamada de *Convolução* (especialmente no domínio da frequência)

FIGURE 3.32 The mechanics of spatial filtering. The magnified drawing shows a 3 × 3 mask and the image section directly under it; the image section is shown displaced out from under the mask for ease of readability.

 O procedimento básico é somar os produtos entre os coeficientes da máscara e os valores de cinza no local específico da imagem.

$$R = w_1 z_1 + w_2 z_2 + \dots + w_9 z_9$$

(para um filtro 3 x 3)

w_1	w_2	w_3	
w_4	w_5	w_6	
w_7	w_8	w_9	

FIGURE 3.32 The mechanics of spatial filtering. The magnified drawing shows a 3 × 3 mask and the image section directly under it; the image section is shown displaced out from under the mask for ease of readability.

Filtragem Espacial: limites da imagem

- **Problema**: Os limites da imagem devem ser propriamente tratados
 - Ignorar os pixels para os casos em que a operação não possa ser realizada. Borda não processada;
 - Utilizar uma máscara modificada nas regiões de borda. Aumenta complexidade da operação;
- Solução: Expandir a imagem criando a = (m 1)/2 linhas e b = (n 1)/2 colunas, preenchendo-as:
 - Com valor fixo (podendo ser zero);
 - Por replicação: copiar os pixel da borda;
 - Por simetria: refletir os pixels da borda;

Filtros não lineares

- São baseados em operações sobre uma vizinhança;
- Operações não-lineares são executadas sobre a vizinhança:
 - Mediana: consiste em substituir a intensidade de cada pixel pela mediana das intensidades na sua vizinhança;
 - São adequados para reduzir ruídos impulsivos.
 - Max: consiste em substituir a intensidade de cada pixel pela maior intensidade na sua vizinhança;
 - Aumenta a área das regiões claras, dominando as regiões escuras.
 - Min: consiste em substituir a intensidade de cada pixel pela menor intensidade na sua vizinhança;
 - Aumenta a área das regiões escuras, dominando as regiões claras.
 - Moda: consiste em substituir a intensidade de cada pixel pela intensidade que ocorre com maior frequência na sua vizinhança.

Filtros não lineares: filtro da mediana

5 5 6
3 4 5
$$\rightarrow$$
 (3,3,4,4,5,5,5,6,7) \rightarrow 3 5 5
3 4 7

Sorting

Original

Filtered

Filtros de suavização

- São usados para:
 - Borrar a imagem tarefa de pré-processamento, como reduzir detalhes pequenos ou fechar pequenos gaps em linhas ou curvas;
 - Reduzir ruídos;
- Filtros Lineares de Suavização:
 - A saída é a média dos pixels contidos na vizinhança da máscara
 - Reduz transições abruptas na intensidade:
 - Reduz ruído;
 - Causa borramento das bordas da imagem;
 - Suaviza falsos contornos, resultantes de uma quantização com número insuficiente de níveis de cinza;
 - Reduz detalhes irrelevantes na imagem (regiões menores que o tamanho da máscara).

Filtros de suavização lineares

Filtro da média:

$$R=\frac{1}{9}\sum_{i=1}^9 z_i$$

Filtro da média ponderada:

$$g(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)}$$

	1	2	1
$\frac{1}{16}$ ×	2	4	2
	1	2	1

Filtros de suavização lineares

9x9 filtro

35x35 filtro

a b c

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 × 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

Comparação filtro da média x mediana

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3 × 3 averaging mask. (c) Noise reduction with a 3 × 3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Filtros Espaciais de Aguçamento

Primeira derivada:
$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

Segunda derivada:
$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

a b

FIGURE 3.38

(a) A simple image. (b) 1-D horizontal gray-level profile along the center of the image and including the isolated noise point. (c) Simplified profile (the points are joined by dashed lines to simplify interpretation).

Filtros Espaciais de Aguçamento

Primeira derivada:

- 0 em segmentos de níveis de cinza constante;
- Diferente de 0 no limiar de uma rampa ou escada;
- Diferente de 0 em rampas;
- A primeira derivada é mais usada para extração de bordas.

Segunda derivada:

- 0 em segmentos de níveis de cinza constante;
- Diferente de 0 no limiar de uma rampa ou escada;
- 0 em rampas de declive constante;
- Na maioria das aplicações a segunda derivada é melhor que a primeira para o realce de imagens, pois ela melhora os detalhes mais finos das imagens.

Laplaciano:
$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1, y) + f(x-1, y) - 2f(x, y)$$

$$\frac{\partial^{2} f}{\partial y^{2}} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

$$\nabla^2 f = [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1)] - 4f(x, y)$$

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1

Nota: o somatório é zero o que define valores nulos nas regiões homogêneas e valores mais elevados próximos aos seus contornos.

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

a b c d

FIGURE 3.39

(a) Filter mask used to implement the digital Laplacian, as defined in Eq. (3.7-4). (b) Mask used to implement an extension of this equation that includes the diagonal neighbors. (c) and (d) Two other implementations of the Laplacian.

- O Laplaciano enfatiza regiões de descontinuidade e ameniza regiões de variação lenta de níveis de intensidade;
- Esta característica tende a produzir imagens que apresentam arestas e outras descontinuidades na cor cinzenta sobreposta a um fundo sem características;
- O fundo pode ser reconstruído, preservando as descontinuidades, somando a imagem Laplaciana à imagem original (cuidado com o sinal). Uso do filtro Laplaciano para realçar imagens:

$$g(x,y) = f(x,y) + c \left[\nabla^2 f(x,y) \right]$$

• Em que, f(x, y) e g(x, y) são as imagens de entrada e saída, c é uma constante: c = -1 se o centro da máscara for negativo e c = 1, caso contrário

a b c d

moon.

(d) Image

courtesy of NASA.)

Máscara de Nitidez e Filtragem high-boost

- Usado na indústria publicitária (impressa) para realçar imagens:
 - Subtrai uma versão suavizada de uma imagem da sua original;
- O processo consiste de:
 - Borrar a imagem original;
 - Subtrair a imagem borrada da original (resultado é chamado de máscara);
 - Somar a máscara à imagem original.

Máscara de Nitidez e Filtragem high-boost

Seja $\overline{f}(x, y)$ uma imagem borrada. A máscara de descontinuidade g_m é obtida:

$$g_m = f(x, y) - \overline{f}(x, y).$$

Acrescentando uma porção ponderada da máscara à imagem original:

$$g_m = f(x, y) + k * g_m(x, y).$$

para k = 1, a máscara é somada à imagem original; para k < 1, reduz a contribuição da máscara; para k > 1, o processo é conhecido como *high-boost filtering* (filtro com ênfase).

Máscara de Nitidez e Filtragem high-boost

imagem original

DIP-XE

suavização com filtro gaussiano

DIP-XE

máscara de nitidez

resultado da máscara de nitidez

DIP-XE

filtragem *high-boost*

DIP-XE