Determina el valor de todos los numeros reales α tal que, para todo entero positivo n, se cumple que:

$$\lfloor \alpha \rfloor + \lfloor 2\alpha \rfloor + \ldots + \lfloor n\alpha \rfloor$$

es un multiplo de n. (Nota: $\lfloor x \rfloor$ equivale al mayor entero menor o igual a x. Por ejemplo, $\lfloor 3.14 \rfloor = 3$, $\lfloor -2.5 \rfloor = -3$ y $\lfloor 7 \rfloor = 7$.) (Nota: 0 es multiplo de cualquier entero positivo.)

- 1. Demuestra que $\alpha = 0$ es una solución.
- 2. Demuestra que $\alpha=1$ no es una solución.
- 3. Demuestra que $\alpha = 2$ es una solución.
- 4. Demuestra que $\alpha = 2k$, para todo k entero, es una solución(es decir, que todo entero par es solución).
- 5. Demuestra que $\alpha = 2k + 1$, para todo k entero, no es una solución.
- 6. Demuestra que $\alpha = 1/2$ no es una solución.
- 7. Demuestra que todo $\alpha \in (0,1]$ no es una solución.
- 8. Demuestra igualmente, que todo $\alpha \in [-1,0)$ no es una solución.
- 9. Para terminar, considera $\alpha = 2k + \beta$, donde k es un entero y $\beta \in [-1,1]$, primero demuestra que todo número real es representable de esta forma.
- 10. Demuestra que $\alpha=2k+\beta,$ donde k es un entero y $\beta\in[-1,1]$ nunca es solución, a menos que $\beta=0.$