М

ICP 1 - Series RC Circuit

- Consider the series RC circuit in Fig. 15.33, analyze the circuit similar to the RL circuit.
 - 1. Write the current I in phasor form.
 - 2. Calculate the total impedance Z_T of the circuit
 - 3. Find the voltage across the current source, Vin and the voltages V_R and V_C
 - 4. Find the power delivered to the loads and the total power delivered

FIG. 15.33
Series R-C ac circuit.

М

Electrical Engineering Technology

Use the table below to check your analysis of the series RC circuit

FIG. 15.33

		Series			ies R-C ac circuit.
		R	С	Total	
E	Polar	30 ∠53.13°	40∠ – 36.87°	50 ∠0°	V_rms
	Rectangular	18 + <i>j</i> 24	32 <i>– j</i> 24	50 + <i>j</i> 0	
I	Polar	5 ∠53.13°	5 ∠53.13°	5 ∠53.13°	A_rms
	Rectangular	3 + <i>j</i> 4	3 + <i>j</i> 4	3 + <i>j</i> 4	
Z	Polar	6 ∠0°	8∠−90°	10 ∠ − 53.13°	Ohms
	Rectangular	6 + <i>j</i> 0	0 <i>– j</i> 8	6 – <i>j</i> 8	
Р		150	0	150	Watts

$$F_P = \cos \theta_T = \frac{R}{Z_T}$$
 = $\cos(53.13) = \frac{6\Omega}{10\Omega} = 0.6$ leading

Ŋ

ICP 2 – Voltage Divider Rule

■ Using the voltage divider rule, find the unknown voltages V_R , V_L , V_C , and V_1 for the circuit shown below.

FIG. 15.44 Example 15.12.

М

ICP 2 – Voltage Divider Rule

■ Using the voltage divider rule, find the unknown voltages V_R , V_L , V_C , and V_1 for the circuit shown below.

$$V_R = \frac{Z_R E}{Z_R + Z_L + Z_C} = \frac{(6\Omega \angle 0^{\circ})(50Vpk \angle 30^{\circ})}{(6\Omega \angle 0^{\circ}) + (9\Omega \angle 90^{\circ}) + (17\Omega \angle -90^{\circ})}$$

$$V_R = 30V_{pk} \angle 83.13^{\circ}$$

$$V_{L} = \frac{Z_{L}E}{Z_{T}} = \frac{(9\Omega \angle 90^{\circ})(50V_{pk} \angle 30^{\circ})}{10\Omega \angle -53.13^{\circ}}$$
$$V_{L} = 45V_{pk} \angle 173.13^{\circ}$$

$$V_{C} = \frac{Z_{C}E}{Z_{T}} = \frac{(17\Omega \angle -90^{\circ})(50V_{pk} \angle 30^{\circ})}{10\Omega \angle -53.13^{\circ}}$$
$$V_{C} = 85V_{pk} \angle -6.87^{\circ}$$

FIG. 15.44 Example 15.12.

☐ Check: Sum VR, VL and Vc = E, KVL

ICP 2 – Voltage Divider Rule

■ Using the voltage divider rule, find the unknown voltages V_R , V_L , V_C , and V_1 for the circuit shown below.

$$V_{1} = \frac{(Z_{L} + Z_{c})E}{Z_{T}} = \frac{(9\Omega \angle 90^{\circ} + 17\Omega \angle -90^{\circ})(50V_{pk} \angle 30^{\circ})}{(10\Omega \angle -53.13^{\circ})}$$

$$V_{1} = \frac{(8\Omega \angle -90^{\circ})(50V_{pk} \angle 30^{\circ})}{(10\Omega \angle -53.13^{\circ})}$$

$$E = 50 \text{ V} \angle 30^{\circ}$$

$$V_{1} = 40V_{pk} \angle -6.87^{\circ}$$
FIG. 15.44

Example 15.12.