

KDD2018読み会 複数のデータセットを横断して重要な超パラメータの分析 Hyperparameter Importance Across Datasets

Jan N. van Rijn Albert-Ludwigs-Universität Freiburg Freiburg, Germany vanrijn@cs.uni-freiburg.de Frank Hutter
Albert-Ludwigs-Universität Freiburg
Freiburg, Germany
fh@cs.uni-freiburg.de

読み手:鹿島

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

Frank Hutter

☑ フォロー

引用先

Professor of Computer Science, <u>University of Freiburg</u>, Germany 確認したメール アドレス: cs.uni-freiburg.de - <u>ホームページ</u>

Machine Learning Artificial Intelligence Automated Algorithm Design Combinatorial Optimization

タイトル	引用先	年
Sequential model-based optimization for general algorithm configuration F Hutter, HH Hoos, K Leyton-Brown International Conference on Learning and Intelligent Optimization, 507-523	767	2011
ParamILS: an automatic algorithm configuration framework F Hutter, HH Hoos, K Leyton-Brown, T Stützle Journal of Artificial Intelligence Research 36, 267-306	674	2009
SATzilla: portfolio-based algorithm selection for SAT L Xu, F Hutter, HH Hoos, K Leyton-Brown Journal of artificial intelligence research 32, 565-606	652	2008
Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms C Thornton, F Hutter, HH Hoos, K Leyton-Brown Proceedings of the 19th ACM SIGKDD international conference on Knowledge	447	2013
Automatic algorithm configuration based on local search F Hutter, HH Hoos, T Stützle Aaai 7, 1152-1157	247	2007
Scaling and probabilistic smoothing: Efficient dynamic local search for SAT F Hutter, D Tompkins, H Hoos Principles and Practice of Constraint Programming-CP 2002, 241-249	228	2002
Algorithm runtime prediction: Methods & evaluation F Hutter, L Xu, HH Hoos, K Leyton-Brown Artificial Intelligence 206, 79-111	218	2014
Efficient and robust automated machine learning M Feurer, A Klein, K Eggensperger, J Springenberg, M Blum, F Hutter Advances in Neural Information Processing Systems, 2962-2970	193	2015

	すべて	2013 年以来
引用 h 指標 i10 指	6938 40 69	5402 36 68
2011 20	012 2013 2014 2015 2016	1400 1050 700 350 2017 2018
共著者	<u>z</u>	すべて表示
	Holger Hoos Professor of Computer	Science,
	Kevin Leyton-Brown Department of Computer	er Scienc >
	Lin Xu University of British Cole	umbia >
(1)	Katharina Eggensperge PhD Student, Machine I	
2	Aaron Klein PhD Student, University	of Freib

すべて表示

この論文の問いかけ: ある機械学習手法のどの超パラメータが重要?

- 機械学習手法にはいろいろな超パラメータがある:
 - SVM: (RBFカーネルの) 幅や正則化パラメータ、縮小ヒューリスティクスの使用など
 - ランダムフォレスト:分岐の基準や、各決定木での特徴量の使用割合、 葉頂点の最小データ数など
 - その他、手法とは独立に、欠損値の埋め方なども超パラメータとみなせる
- 超パラメータは「民間伝承」をもとに場当たり的に決定される
- リサーチクエスチョン:
 - どの超パラメータが重要?
 - (さらに) それらの値域のどのあたりが重要?

関連研究との比較: データ毎でなく学習手法レベルでの知見を得るのが目標

- 古くは: ランダムフォレストの重要パラメータの分析
- 最近では:
 - AutoML:実験を繰り返しながら特定のデータセットに最も良い超パラメータの値を見つける)
 - メタ学習:データセットのメタデータから良い超パラメータ値を予測
 - これらはその場限りの低レベルな知識
- 本研究では:データセットの別を超えた、一般的な、より抽象 度の高い知見(「SVMではカーネル幅が重要」)を見つける

結果: 有効な超パラメータの特定と、その知見を使った精度向上

- OpenMLの100データセットを使ってfunctional ANOVA分析
 - OpenML: 様々なデータを様々に分析した結果が集まっている
- 超パラメータ分析の結果:
 - SVMでは正則化パラメータとカーネル幅
 - ランダムフォレストでは各決定木で使用する特徴量数と、葉の 最大データ数
 - AdaBoostでは学習率と各決定木の最大深さが重要であることがわかり、民間伝承に一致
- さらに、よく効きそうな領域を事前分布として入れると精度向上

Functional ANOVA: 超パラメータの予測精度への貢献度を測れる分析法

- 目的:超パラメータ(の組合わせ)の予測精度への影響を推定
 - それぞれの超パラメータの貢献度
 - 超パラメータ2つの組み合わせの貢献度
 - 単一超パラメータの貢献を差し引いた貢献度として定義
 - 超パラメータ3つの組み合わせの貢献度
 - 超パラメータの2つの組み合わせの貢献は差し引いて定義
 - ____
- 方法: Functional ANOVA によってそれぞれの貢献が取り出せる
 - 「予測精度の分散」への寄与大→動かすと精度が大きく変わる

Functional ANOVA: モデル分解のイメージ

モデルを超パラメータの組み合わせの貢献分に分解する

補足: 各手法のハイパーパラメータ

Table 1: SVM Hyperparameters.

hyperparameter	values	description
complexity (or: 'C')	$[2^{-5}, 2^{15}]$ (log-scale)	Soft-margin constant, controlling the trade-off between model simplicity and model fit.
coef0	[-1, 1]	Additional coefficient used by the kernel (sigmoid kernel only).
gamma	$[2^{-15}, 2^3]$ (log-scale)	Length-scale of the kernel function, determining its locality.
imputation	{mean, median, mode}	Strategy for imputing missing numeric variables.
shrinking	{true, false}	Determines whether to use the shrinking heuristic (introduced in [24]).
tolerance	$[10^{-5}, 10^{-1}]$ (log-scale)	Determines the tolerance for the stopping criterion.

Table 2: Random Forest Hyperparameters.

hyperparameter	values	description
bootstrap	{true, false}	Whether to train on bootstrap samples or on the full train set.
max. features	[0.1, 0.9]	Fraction of random features sampled per node.
min. samples leaf	[1, 20]	The minimal number of data points required in order to create a leaf.
min. samples split	[2, 20]	The minimal number of data points required to split an internal node.
imputation	{mean, median, mode}	Strategy for imputing missing numeric variables.
split criterion	{entropy, gini}	Function to determine the quality of a possible split.

Table 3: Adaboost Hyperparameters.

hyperparameter	values	description
algorithm	{SAMME, SAMME.R}	Determines which boosting algorithm to use.
imputation	{mean, median, mode}	Strategy for imputing missing numeric variables.
iterations	[50, 500]	Number of estimators to build.
learning rate	[0.01, 2.0] (log-scale)	Learning rate shrinks the contribution of each classifier.
max. depth	[1, 10]	The maximal depth of the decision trees.

SVM(RBFカーネル)の超パラメータ分析結果: (言い伝えのとおり)カーネル幅や正則化が重要

- SVM(RBFカーネル)ではカーネル幅、次いで、正則化パラメータが重要
- こういう知見は知られていたが、初めての定量的な証拠だと

SVM(シクモイドカーネル)の超パラメータ分析結果: RBFカーネルと同様の結果だが、こちらは組み合わせが効く

- ここでもカーネル幅(1位)、正則化パラメータ(3位)は重要
- 特に、これらの「組み合わせ」(2位)が重要

ランダムフォレストの超パラメータ分析結果: 葉の最小データ数、使用特徴数、ブートストラップが効く

- 葉の最小データ数、各決定木で使う特徴数が効く
- ブートストラップ (サンプリングしたデータで訓練) も効く

AdaBoostの超パラメータ分析結果: 決定木の深さは深いほどいい

- 決定木の最大深さが劇的に効く(かつ、深いほどいい)
- 学習率も効く

全手法を通して得られた知見: 少数の超パラメータが独立に有効なケースが多い

- 多くのデータセットにおいて、少数の共通の超パラメータの影響が 大きい
- 超パラメータの組み合わせは意外に効かない
 - 結構独立に効く
- あと、欠損値の補完法の選択は割とどうでもいい
 - どの手法でも順位は低い
 - 補完が必要ないという意味ではない

超パラメータ最適化への応用: 得られた知見を事前分布として使って予測精度向上

効く超パラメータを動かしたときの予測精度を、事前分布として AutoML手法(hyperband)に与える

▪ 一様な事前分布よりも精度向上

まとめと所感: 機械学習法の超パラメータ重要度を実データで定量分析

- それぞれの機械学習法の超パラメータのうちどれが重要かを調べた
 - Functional ANOVA, OpenMLの100データセット
- さらに、超パラメータ最適化の事前分布に使ってみた
- 手法的には著者らの過去の結果をつかった「だけ」ともいえる
 - F. Hutter, H. H. Hoos, and K. Leyton-Brown. An efficient approach for assessing hyperparameter importance. In *Proc. of ICML*. 754–762 (2014).
- 本論文の貢献は、OpenMLデータの分析の部分
 - これまで皆がなんとなく思っていた「民間伝承」を定量的に分析
- 「この方法はどういうときにうまくいく(いかない)のか」を調べたい