RailNL

Team Bonsai 👺

Programmeertheorie - Universiteit van Amsterdam

Daphne Westerdijk, Willem Henkelman & Lieke Kollen

Introductie

Lijnvoering intercity treinen

- Verbinding: verbinding tussen twee stations
- Traject: route bestaande uit gekoppelde verbindingen
- Lijnvoering: alle trajecten samen
- Noord- en Zuid-holland
 - 22 stations en 28 verbindingen
- Heel Nederland
 - o 61 stations en 89 verbindingen
- → Constrained optimization problem
 - Doelfunctie voor kwaliteit maximaliseren
 - Constraints: hard en soft

Onderzoek

- Hoge kwaliteit lijnvoering
 - Hard constraints:
 - Tijdsframe van het traject (2 uur/3 uur)
 - Aantal trajecten van de lijnvoering (7/20)
 - Soft constraints:
 - Alle verbindingen worden bereden
 - Elke verbinding wordt 1 keer bereden
 - Doelfunctie: K = P*10000 (T*100 + Min)
 - P = fractie gereden verbindingen
 - T = aantal trajecten
 - Min = totaal aantal minuten dat er gereden is
 - → Upperbound Holland: K = 1 * 10000 (4 * 100 + 381) = 9219
 - → Upperbound Nederland: K = 1 * 10000 (9 * 100 + 1551) = 7549

Algoritmes

- 1. Random
- 2. Random greedy
- 3. Hill climber
- 4. Depth first
- 5. Breadth first

Statespace

$$Statespace \ = (M_{verbindingen}^{\ \ M_{trajectlengte}})^{Max_{trajecten}}$$

Noord- en Zuid-holland

- Mediaan verbindingen per station = 3.5
- Mediaan trajectlengte = 9 (medaan is 12.5 min per verbindinding, dus 9 stations in 2 uur)
- Max trajecten = 7

Statespace = $(3.5^9)^7 = 1.89 * 10^{34}$

2

Nederland

- Mediaan verbindingen per station = 4
- Mediaan trajectlengte = 12 (medaan is 15 min per verbindinding, dus 12 stations in 3 uur)
- Max trajecten = 20

Statespace =
$$(4^{12})^{20}$$
 = 3.12 * 10^{144}

Methodes

Algoritmes - Random

- Maak trajecten zolang max. nog niet bereikt is
 - <u>Heuristiek:</u> Nieuw traject met random start station
 - <u>Heuristiek:</u> Eerst onbereden verbindingen
 - <u>Heuristiek:</u> Als er nog onbereden verbindingen zijn maar niet binnen het tijdsframe → stop traject
 - Anders kies er een random uit de al wel bereden verbindingen
 - Als het traject door de gekozen verbinding boven de maximale tijdsframe zou uitkomen
 - Stop traject
 - Voeg de gekozen verbinding toe aan het traject en haal deze uit de onbereden verbinding lijst
- Bereken de score

Algoritmes - Random greedy

- Zelfde code als random
 - Heuristiek: Random start station
 - <u>Heuristiek:</u> Eerst onbereden verbindingen
 - <u>Heuristiek:</u> Als er nog onbereden verbindingen zijn maar niet binnen het tijdsframe → stop traject
- Greedy
 - Heuristiek: Nog steeds een random start station
 - Connecties worden nu uitgekozen op basis van de min. of max. lengte

Algoritmes - Hill climber

- Er wordt eerst een oplossing gegenereerd (random/random-greedy)
 - Hill climber algoritme wordt 100x gerunt
 - Heuristiek: Muteer eerste verbinding in een random gekozen traject
 - <u>Heuristiek:</u> Muteer laatste verbinding in een random gekozen traject
 - Bereken de score
 - Sla de best gevonden score+traject op

Algoritmes - Depth first

- Zolang er nog items in de stack zitten
 - Pak het eerste startstation
 - Maak voor alle mogelijke verbindingen een nieuwe lijst ("kind") aan mits duration onder 120/180 min blijft
 - Voeg alle kinderen toe aan de stack
 - \circ Als het kind een volledig traject is \rightarrow voeg toe aan oplossingenlijst
- <u>Heuristiek:</u> Selecteer de trajecten met het hoogst aantal verbindingen uit de oplossingen per startstation
- <u>Heuristiek:</u> Selecteer daarna het traject met de kortste duration = best gevonden oplossing per startstation

Algoritmes - Breadth first

- Zelfde code als Depth first
 - Heuristiek: Selecteer de trajecten met het hoogst aantal verbindingen uit de oplossingen per startstation
 - <u>Heuristiek:</u> Selecteer daarna het traject met de kortste duration = beste oplossing per startstation
- → Alleen eerst alle neighbours af voordat je naar een nieuwe diepte gaat.

<u>Depth & Breadth first:</u> maak een lijnvoering met deze beste trajecten per startstation.

Resultaten

Resultaten - Holland

	Zonder Hill climber	Met Hill climber
Random (10.000)	9202 (99.8%*)	9202 (99.8%*)
Random greedy - kortste verb. (10.000)	9198 (99.8%*)	9200 (99.8%*)
Random greedy - langste verb. (10.000)	9202 (99.8%*)	9202 (99.8%*)
Depth first (20)	7954 (86.3%*)	
Breadth first (20)	7557 (81.9%*)	

^{*}upperbound = 9219

De Hill climber lijkt vooral lage scores te verbeteren

Zonder Hill climber

De distributie van de algoritmes verschilt weinig

Random

Random greedy

Resultaten - Nederland

	Zonder Hill climber	Met Hill climber
Random (10.000)	6805 (90.1%*)	6835 (90.5%*)
Random greedy - kortste verb. (10.000)	6739 (89.3%*)	6739 (89.3%*)
Random greedy - langste verb. (10.000)	6695 (88.7%*)	6727 (89.1%*)
Depth first (20)	3224 (42.7%*)	
Breadth first (20)	3551 (47.0%*)	

^{*}upperbound = 7549

De distributie van Random ligt meer naar rechts

Random

Random greedy

Conclusies

Conclusies

- De Hill climber lijkt vooral lage scores goed te verbeteren
- Holland: Random en Random greedy functioneren even goed
- Nederland: Random benadert de upper bound beter
- Holland vs Nederland: <u>variatie</u>
 - Holland zit procentueel dichter op de upper bound
 - Het hill climber algoritme laat een grotere verbetering zien in Nederland dan in Holland
 - Depth/Breadth first zijn beter voor Holland

Vervolgstappen

Hill climber

Hill climber optimaliseren

- → Grotere stukken traject iteratief aanpassen
- → Verbindingen verwijderen en toevoegen

Random greedy

Een optie dat hij de verbindingen pakt die het dichtst bij het gemiddelde ligt.

Constructief

Een combinatie van onze Depth/Breadth first algoritme met Hill climber Bedankt voor het luisteren!

Appendix

Holland - Random (10.000x)

Zonder hill climber

Holland - Random greedy min (10.000x)

Zonder hill climber

Holland - Random greedy max (10.000x)

Zonder hill climber

Nederland - Random (10.000x)

Zonder hill climber

Nederland - Random greedy min (10.000x)

Zonder hill climber

Nederland - Random greedy max (10.000x)

Zonder hill climber

Nederland - Depth first (20x)

1 miljoen runs van Random greedy

