

# Dog Emotion Prediction Based On Transfer Learning

Team: Tree New Bee

Wei Shan, Jeff Zhuo, Xi Du, Tianrui Ye, Yuewei Wang

# Introduction

- Motivation
  - We love Dogs
- Objective
  - Image Classification
    - 4 classes
- Background
  - Transfer Learning









## Introduction

- Motivation
  - We love Dogs
- Objective
  - Emotion Classification
    - 4 classes
- Background
  - Transfer Learning





Relaxed



Нарру



Sad



# Introduction

- Motivation
  - We love Dogs
- Objective
  - Image Classification
    - 4 classes
- Background
  - Transfer Learning











Image Credit: Prof. Li

- Task A and B have similar input x.
- You have a lot more data for Task A than
   Task B.
- Low level features from A could be helpful for learning B.



Works cited: Dr. Andrew Ng, <a href="https://www.youtube.com/watch?v=yofjFQddwHE">https://www.youtube.com/watch?v=yofjFQddwHE</a> Image Credit: Prof. Li

- Model trained by big dataset?



- Model trained by big dataset?
- How to transfer knowledge?



Q: Model trained by big dataset?



Q: Model trained by big dataset?

A: Pre-trained Model!

- ResNet
- VGG
- AlexNet
- MobileNet
- GoogLeNet



Q: Model trained by big dataset?

A: Pre-trained Model!

- ResNet
- VGG
- AlexNet
- MobileNet
- GoogLeNet

Q: How to transfer knowledge?



Q: Model trained by big dataset?

A: Pre-trained Model!

- ResNet
- VGG
- AlexNet
- MobileNet
- GoogLeNet

Q: How to transfer knowledge?



Q: Model trained by big dataset?

A: Pre-trained Model!

- ResNet
- VGG
- AlexNet
- MobileNet
- GoogLeNet

Q: How to transfer knowledge?

A: Freeze convolutional layers' parameters!



Q: Model trained by big dataset?

A: Pre-trained Model!

- ResNet
- VGG
- AlexNet
- MobileNet
- GoogLeNet

Q: How to transfer knowledge?

A: Freeze convolutional layers' parameters!



Image Credit: https://www.analyticssteps.com/blogs/how-transfer-learning-done-neural-networks-and-convolutional-neural-networks

# Review of Literature

## Review of Literature: Image-based Sentiment Analysis

- Lei Zhang, Shuai Wang, & Bing Liu. (2018). Deep Learning for Sentiment Analysis : A Survey.
- Mittal, N., Sharma, D., & Joshi, M. (2018). Image Sentiment Analysis Using Deep Learning. In 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI) (pp. 684-687).
- Cetinic, E., Lipic, T., & Grgic, S. (2019). A Deep Learning Perspective on Beauty, Sentiment, and Remembrance of Art. IEEE Access, 7, 73694-73710.

### Review of Literature: Pre-trained Models

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. (2015). Deep Residual Learning for Image Recognition.
- Karen Simonyan, & Andrew Zisserman. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition.
- Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks.
- Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, & Hartwig Adam. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
- Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, & Andrew Rabinovich. (2014). Going Deeper with Convolutions.

## Review of Literature: Transfer Learning

- Pan, S., Tsang, I., Kwok, J., & Yang, Q. (2011). Domain Adaptation via Transfer Component Analysis. IEEE Transactions on Neural Networks, 22(2), 199-210.
- Jason Yosinski, Jeff Clune, Yoshua Bengio, & Hod Lipson. (2014). How transferable are features in deep neural networks?
- Y. Zhang and Q. Yang. A Survey on Multi-Task Learning.

- Pre-trained Model
  - ResNet
  - VGG
  - AlexNet
  - MobileNet
  - GoogLeNet

- Pre-trained Model
  - ResNet
  - VGG
  - AlexNet
  - MobileNet
  - GoogLeNet



#### More conv ...



- Pre-trained Model
  - ResNet
  - VGG
  - AlexNet
  - MobileNet
  - GoogLeNet



Parameters Freezed

- Pre-trained Model
  - ResNet
  - VGG
  - AlexNet
  - MobileNet
  - GoogLeNet
- Change the last fully connected (fc) layer
  - Output size: 1000 -> 4



- Pre-trained Model
  - ResNet
  - VGG
  - AlexNet
  - MobileNet
  - GoogLeNet
- Change the last fully connected (fc) layer
  - Output size: 1000 -> 4
- Accuracy Comparison



| Model                | ResNet18 | ResNet50 | VGG16 | AlexNet | MobileNet | GoogLeNet |
|----------------------|----------|----------|-------|---------|-----------|-----------|
| Training<br>Accuracy | 44%      | 54%      | 58%   | 47%     | 51%       | 46%       |

| Model                | ResNet18 | ResNet50 | VGG16 | AlexNet | MobileNet | GoogLeNet |
|----------------------|----------|----------|-------|---------|-----------|-----------|
| Training<br>Accuracy | 44%      | 54%      | 58%   | 47%     | 51%       | 46%       |

| Model                | ResNet18 | ResNet50 | VGG16 | AlexNet | MobileNet | GoogLeNet |
|----------------------|----------|----------|-------|---------|-----------|-----------|
| Training<br>Accuracy | 44%      | 54%      | 58%   | 47%     | 51%       | 46%       |



Image Credit: http://jaree.its.ac.id/index.php/jaree/article/view/191

| Model                | ResNet18 | ResNet50 | VGG16 | AlexNet | MobileNet | GoogLeNet |
|----------------------|----------|----------|-------|---------|-----------|-----------|
| Training<br>Accuracy | 44%      | 54%      | 58%   | 47%     | 51%       | 46%       |



Image Credit: http://jaree.its.ac.id/index.php/jaree/article/view/191

# Methodology

- Classifier Modification
- Multi Task Learning
- Fine-tuning
- Unsupervised Domain Adaptation

# Methodology

- Classifier Modification
- Multi Task Learning
- Fine-tuning
- Unsupervised Domain Adaptation

- Fully Connected Layer



- Fully Connected Layer
- Naive Bayes Classifier (LDA/QDA)
- KNN
- SVM
- Random Forest



Parameters Freezed



Parameters
Freezed



Naive Bayes Classifier (LDA/QDA)





Parameters
Freezed







Parameters Freezed







Parameters Freezed



**Random Forest** 



# Result (Classifier Modification)

| Model                | FC  | LDA | QDA | KNN | SVM | Random<br>Forest |
|----------------------|-----|-----|-----|-----|-----|------------------|
| Training<br>Accuracy | 54% | 79% | 82% | 48% | 79% | 61%              |

# Result (Classifier Modification)

| Model                | FC  | LDA | QDA | KNN | SVM | Random<br>Forest |
|----------------------|-----|-----|-----|-----|-----|------------------|
| Training<br>Accuracy | 54% | 79% | 82% | 48% | 79% | 61%              |
| Testing<br>Accuracy  | 53% | 31% | 35% | 20% | 59% | 27%              |

## Methodology

- Classifier Modification
- Multi Task Learning
- Fine-tuning
- Unsupervised Domain Adaptation





Tasks should be related.

Image Credit: I made them Works Cited: Y. Zhang and Q. Yang, "A Survey on Multi-Task Learning,"











# Result (Multi Task Learning)

- 35%

## Methodology

- Classifier Modification
- Multi Task Learning
- Fine-tuning
- Unsupervised Domain Adaptation

### Methodology (Fine-Tuning)

Big Idea: Low-Level features are general and High-level features are more specific.

- Low-Level features learnt are transferable
- Higher Layers capture features specialized to the original training tasks



Figure 1: <u>Hierarchy of Features in CNNs</u>

# Methodology (Fine-Tuning)

#### ResNet50

- Previously: freeze all feature layers
  - Train only classification layer



Methodology (Fine-Tuning)

#### ResNet50

- Previously: freeze all feature layers
  - Train only classification layer
- Higher layer may capture features that are specialized for ImageNet task
  - Train last Feature Layer & FC Layer
- Use initial pre-train weights leads to better performance and generalization (Yosinski)

Input image Size 224 7x7 Conv. 64/2 Size 112 2x2 Pool Size 56 1x1 Conv. 64 3x3 Conv. 64 1x1 Conv. 256 Freeze Size 28 Freeze 1x1 Conv. 128/2 3x3 Conv. 128 1x1 Conv. 512 Size 14 1x1 Conv, 256/2 3x3 Conv. 256 1x1 Conv. 1024 Size 7 1x1 Conv. 512/2 3x3 Conv. 512 1x1 Conv. 2048 Train 2x2 Pool Train FC4

Jason Yosinski, Jeff Clune, Yoshua Bengio, & Hod Lipson. (2014). How transferable are features in deep neural networks?

# Results (Fine-Tuning)

| Method              | Training on FC Layer | Training on FC + Stage 4 | Accuracy Increase |
|---------------------|----------------------|--------------------------|-------------------|
| Training Accuracy   | 54.5%                | 63.8%                    | 9.3%              |
| Test Accuracy       | 53.3%                | 57.6%                    | 4.3%              |
| Accuracy Difference | -1.2%                | -6.2%                    |                   |

## Methodology

- Classifier Modification
- Multi Task Learning
- Fine-tuning
- Unsupervised Domain Adaptation

### Methodology (Unsupervised Domain Adaptation)







#### What is Domain Adaptation

- Source domain → target domain
- Two features: brightness, raindrop
- Bright + No raindrop = Sunny
- Dark + Rain drop = Rainy
- Dark + No raindrop = ?
- simple/single knowledge → complex situation

#### Why Domain Adaptation useful

- Pre-trained model is trained on a specific dataset
- Our dataset contains real world pictures

### Methodology (Unsupervised Domain Adaptation)



### Methodology (Unsupervised Domain Adaptation)



## Results(Unsupervised Domain Adaptation)

#### **ResNet50 Accuracy**

Training Accuracy: 62.8%

Testing Accuracy: 53%

Training Accuracy Increase: 9.8%

### Conclusion

- Introduced Pre-train Models and Transfer Learning
- Selected best Pre-train Model
- Classifier Modification
- Multi-task Learning
- Fine-Tuning
- Unsupervised Domain Adaptation