Отчёт по лабораторной работе №2

Простейший вариант

Тарутина Кристина Олеговна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Выводы	17
Список литературы		20

Список иллюстраций

<i>2</i> .1	предварительная конфигурация	6
2.2	Создание SSH-ключа	7
2.3	Копирование ключа в буфер обмена	7
2.4	Создание каталога	8
2.5	Создание репозитория	8
2.6	Клонирование репозитория	9
2.7	Настройка	9
2.8	Отправка файлов на сервер	9
2.9	Проверка	10
	Проверка	10
2.11	Создание отчёта	11
	отчёт № 2 в каталогк	11
	отчёт № 1 в каталоге	12
2.14	Загрузка на github	12
2.15	Установка gh	13
	Создание ключа рдр	13
2.17	Копирование отпечатка ключа	14
2.18	Настройка	14
	Авторизация	15
2.20	Создание шаблона рабочего пространства	15
2.21	Создание шаблона рабочего пространства	15
2.22	Настройка	16
2.23	Отправка	16

Список таблиц

1 Цель работы

Изучить идеологию и применение средств контроля версий. Освоить умения по работе c git.

2 Выполнение лабораторной работы

#Внимание:

Так как в данной лабораторной работе часть заданий совпадает с заданиями в лабораторной работе №2 прошлого семестра, то на место этих заданий будет установлен старый отчёт. Потом он будет продолжаться новым

Шаг 1: Настройка github

Так как у меня уже была учётная запись на github, то этот шаг я пропустила

Шаг 2: Базовая настройка git

Делаю предварительную конфигурацию git. Открываю терминал и ввожу следующие команды, указав своё имя и email Настраиваю utf-8 в выводе сообщений git Задаю имя начальной ветки, Параметр autocrlf и параметр safecrlf (рис. 2.1).

```
[kotarutina@fedora ~]$ git config --global user.name "<TiRisik>"
[kotarutina@fedora ~]$ git config --global user.email "<valentinrusso@mail>"
[kotarutina@fedora ~]$ git config --global core.quotepath false
[kotarutina@fedora ~]$ git config --global init.defaultBranch master
[kotarutina@fedora ~]$ git config --global core.autocrlf input
[kotarutina@fedora ~]$ git config --global core.safecrlf warn
[kotarutina@fedora ~]$ ssh-keygen -C "TiRisik <valentinrusso@mail>"
```

Рис. 2.1: Предварительная конфигурация

Шаг 3: Создание SSH ключа

Для последующей идентификации пользователя на сервере репозиториев генерирую пару ключей (приватный и открытый)(рис. 2.2).

```
kotarutina@fedora ~]$ ssh-keygen -C "TiRisik <valentinrusso@mail>"
Generating public/private rsa key pair.
Enter file in which to save the key (/home/kotarutina/.ssh/id_rsa):
/home/kotarutina/.ssh/id_rsa already exists.
Overwrite (y/n)? y
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Passphrases do not match. Try again.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
/our identification has been saved in /home/kotarutina/.ssh/id_rsa
/our public key has been saved in /home/kotarutina/.ssh/id_rsa.pub
The key fingerprint is:
```

Рис. 2.2: Создание SSH-ключа

Загружаю сгенерированный открытый ключ. Для этого захожу на сайт http://github.org/ под своей учётной записью и перехожу в меню Setting. После этого выбираю в боковом меню SSH and GPG keys и нажимаю кнопку New SSH key. Устанавливаю пакет xclip и копирую из локальной консоли ключ в буфер обмена (рис 3) (рис. 2.3)

```
kotarutina@fedora ~]$ cat ~/.ssh/id_rsa.pub | xclip -sel clip
 ash: xclip: команда не найдена...
становить пакет «xclip», предоставляющий команду «xclip»? [N/y] у
* Ожидание в очереди...
Следующие пакеты должны быть установлены:
родолжить с этими изменениями? [N/y] у
 * Ожидание в очереди...
 * Ожидание аутентификации...
 : Ожидание в очереди...
 Загрузка пакетов...
 * Запрос данных...
 Проверка изменений...
  Установка пакетов...
[kotarutina@fedora ~]$ cat ~/.ssh/id_rsa.pub | xclip -sel clip
[kotarutina@fedora ~]$
```

Рис. 2.3: Копирование ключа в буфер обмена

Вставляю ключ в появившееся на сайте поле и указываем для ключа имя (здесь я, к сожалению, забыла сделать скриншот)

Шаг 4: Создание рабочего пространства и репозитория курса на основе шаблона Создаю каталог для предмета «Архитектура компьютера» (рис. 2.4)

Рис. 2.4: Создание каталога

Перехожу на станицу репозитория с шаблоном курса, выбираю Use this template. В открывшемся окне задаю имя репозитория study_2022–2023_arh- рс и создаю репозиторий (рис. 2.5)

Рис. 2.5: Создание репозитория

В терминале перехожу в каталог курса, клонирую созданный репозиторий, ссылку для клонирования копирую на странице созданного репозитория(рис. 2.6).

```
[kotarutina@fedora Αρχωτεκτγρα κομπωστερα]$ git clone --recursive git@github.com:TiRisik/study_2022-2023_arh-pc.git arch-pc Knowuposawue B «arch-pc».
remote: Enumerating objects: 26, done.
remote: Enumerating objects: 100% (26/20), done.
remote: Compressing objects: 100% (25/25), done.
remote: Compressing objects: 100% (25/25), done.
remote: Total 26 (delta 0), reused 17 (delta 0), pack-reused 0
Nonyvewue obsertos: 100% (26/20), 16.39 Kw6 | 2.34 Mw6/c, roroso.
Nopaogyma stemplate/presentation»
Nopaogyma stemplate/presentation/work/study/2022-2023/Apxwrektypa κομπωστερα/arch-pc/template/presentation»...
remote: Counting objects: 100% (71/11), done.
remote: Counting objects: 100% (71/11), done.
remote: Counting objects: 100% (74/12), 8.39 kw6 | 948.00 Kw6/c, roroso.
Nopaogeneeue изменений: 100% (23/23), cone.
remote: Counting objects: 100% (78/78), done.
remote: Counting objec
```

Рис. 2.6: Клонирование репозитория

Шаг 5: Настройка каталога курса Перехожу в каталог курса, Удаляю лишние файлы, Создаю необходимые каталоги (рис. 2.7). Отправляю файлы на сервер (рис. 2.7 - рис. 2.8).

Рис. 2.7: Настройка

```
[kotarutina@fedora arch-pc]$ git push
lepeчисление объектов: 22, готово.
logсчет объектов: 100% (22/22), готово.
сжатие объектов: 100% (16/16), готово.
Запись объектов: 100% (20/20), 310.94 Киб | 1.87 Миб/с, готово.
Зсего 20 (изменений 1), повторно использовано 0 (изменений 0), повторно использовано пакетов 0 remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To github.com:TiRisik/study_2022-2023_arh-pc.git
0e74abe..2f983de master -> master
```

Рис. 2.8: Отправка файлов на сервер

Проверяю правильность создания иерархии рабочего пространства в локальном репозитории и на странице github. (рис. 2.9 - 2.10).

Рис. 2.9: Проверка

Рис. 2.10: Проверка

Далее идёт самостоятельная работп

1) Создайте отчет по выполнению лабораторной работы в соответствующем каталоге рабочего пространства (labs>lab03>report). Создала отчёт в соответствующем каталоге (рис. 2.11).

Рис. 2.11: Создание отчёта

2) Скопируйте отчеты по выполнению предыдущих лабораторных работ в соответствующие каталоги созданного рабочего пространства. Скопировала отчёты в соответствующие им каталоги (рис. 2.12 - 2.13).

Рис. 2.12: отчёт № 2 в каталогк

Рис. 2.13: отчёт № 1 в каталоге

3) Загрузите файлы на github.

Загрузила файлы с помощью изображённых ниже команд(рис. 2.14)

```
kotarutina@fedora ~]$ cd ~/work/study/2022-2023/"Архитектура компьютера"/arch-|
[kotarutina@fedora arch-pc]$ git add .
[kotarutina@fedora arch-pc]$ git commit -am "Добавила лабораторные работы 1 и 2"
[master e85ed43] Добавила лабораторные работы 1 и 2
2 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 labs/lab01/report/Тарутина_ла6_1_НПИ6д_02_22 (1).pdf
create mode 100644 labs/lab02/report/Ла6_2_Тарутина_НПИ6д_02_22.pdf
[kotarutina@fedora arch-pc]$ git push
Перечисление объектов: 15, готово.
Подсчет объектов: 100% (13/13), готово.
Сжатие объектов: 100% (9/9), готово.
Запись объектов: 100% (9/9), 2.60 МиБ | 1.29 МиБ/с, готово.
Всего 9 (изменений 3), повторно использовано 0 (изменений 0), повторно использов
ано пакетов 0
remote: Resolving deltas: 100% (3/3), completed with 2 local objects.
To github.com:TiRisik/study_2022-2023_arh-pc.git
  2f983de..e85ed43 master -> master
 kotarutina@fedora arch-pc]$
```

Рис. 2.14: Загрузка на github

На этом перенос старого отчёта закончен

Так как роль суперпользователя убирает из терминала надпись kotarutina (что мешает соглашению о наименовании), то я делаю снимок практически всего терминала, захватывая при этом kotarutina в самом верху окна. Иногда во избежании

путаницы с командами я замазываю ненужные чёрным.

Устанавливаю gh(рис. 2.15)

```
[kotarutina@fedora ~]$ dnf install gh
Ошибка: Эту команду нужно запускать с привилегиями суперпользователя (на больш
стве систем - под именем пользователя root).
[kotarutina@fedora ~]$ sudo -i
[sudo] пароль для kotarutina:
Попробуйте ещё раз.
[sudo] пароль для kotarutina:
Попробуйте ещё раз.
[sudo] пароль для kotarutina:
[root@fedora ~]# dnf install gh
Последняя проверка окончания срока действия метаданных: 0:34:49 назад, Вс 12 ф
2023 15:43:30.
Пакет gh-2.22.1-1.fc36.x86_64 уже установлен.
Зависимости разрешены.
Отсутствуют действия для выполнения.
Выполнено!
```

Рис. 2.15: Установка gh

Генерирую ключ Из предложенных опций выбираю: тип RSA and RSA; размер 4096; выбеираю срок действия; значение по умолчанию — 0 (срок действия не истекает никогда). Ввожу личную информацию по запросу(рис. 2.16)

Рис. 2.16: Создание ключа рдр

Вывожу список ключей и копирую отпечаток приватного ключа (рис. 2.17)

Рис. 2.17: Копирование отпечатка ключа

Копирую сгенерированный PGP ключ в буфер обмена, используя введёный email, указываю Git применять его при подписи коммитов(рис. 2.18)

Рис. 2.18: Настройка

Авторизовываюсь (рис. 2.19)

Рис. 2.19: Авторизация

Создаю шаблон рабочего пространства(рис. 2.20 - 2.21)

```
[kotarutina@fedora Операционные системы]$ gh repo create study_2022-2023_os-intr o --template=yamadharma/course-directory-student-template --public GraphQL: Your token has not been granted the required scopes to execute this que ry. The 'cloneTemplateRepository' field requires one of the following scopes: ['public_repo'], but your token has only been granted the: [''] scopes. Please mod ify your token's scopes at: https://github.com/settings/tokens.
```

Рис. 2.20: Создание шаблона рабочего пространства

```
⊞
        kotarutina@fedora:~/work/study/2022-2023/Операционные с...
                                                                            Q ≡
remote: Total 27 (delta 1), reused 11 (delta 0), pack-reused 0
Получение объектов: 100% (27/27), 16.93 КиБ | 8.46 МиБ/с, готово.
Определение изменений: 100% (1/1), готово.
Подмодуль «template/presentation» (https://github.com/yamadharma/academic-presen
tation-markdown-template.git) зарегистрирован по пути «template/presentation»
Подмодуль «template/report» (https://github.com/yamadharma/academic-laboratory-r
eport-template.git) зарегистрирован по пути «template/report»
Клонирование в «/home/kotarutina/work/study/2022-2023/Операционные системы/os-in
tro/template/presentation»..
remote: Enumerating objects: 82, done.
remote: Counting objects: 180% (82/82), done.
remote: Compressing objects: 180% (57/57), done.
remote: Total 82 (delta 28), reused 77 (delta 23), pack-reused θ
Получение объектов: 180% (82/82), 92.90 КиБ | 779.00 КиБ/с, готово.
Определение изменений: 180% (28/28), готово.
Клонирование в «/home/kotarutina/work/study/2022-2023/Onepaqионные системы/os-in
tro/template/report»..
remote: Enumerating objects: 101, done.
remote: Counting objects: 180% (181/101), done.
remote: Compressing objects: 180% (78/78), done.
remote: Total 101 (delta 40), reused 88 (delta 27), pack-reused 0
Получение объектов: 100% (101/101), 327.25 Киб | 1.74 НиБ/с, готово.
Определение изменений: 100% (40/40), готово.
```

Рис. 2.21: Создание шаблона рабочего пространства

Перехожу в каталог курса, удаляю лишние файлы, создаю необходимые ката-

логи(рис. 2.22)

```
[kotarutina@fedora Операционные системы]$ cd os-intro
[kotarutina@fedora os-intro]$ rm package.json
[kotarutina@fedora os-intro]$ echo os-intro > COURSE
[kotarutina@fedora os-intro]$ make
```

Рис. 2.22: Настройка

Отправляю файлы на сервер(рис. 2.23)

```
[kotarutina@fedora os-intro]$ gir add .
bash: gir: команда не найдена...
[kotarutina@fedora os-intro]$ git commit -am 'feat(main): make course structure'
[master fc9a537] feat(main): make course structure
2 files changed, 1 insertion(+), 14 deletions(-)
delete mode 100644 package.json
[kotarutina@fedora os-intro]$ git push
Перечисление объектов: 5, готово.
Подсчет объектов: 100% (5/5), готово.
Сжатие объектов: 100% (2/2), готово.
Запись объектов: 180% (2/2), готово.
Всего 3 (изменений 1), повторно использовано в (изменений 0), повторно использовано пакетов в
remote: Resolving deltas: 180% (1/1), completed with 1 local object.
To github.com:TiRisik/study_2022-2023_os-intro.git
be66ce6..fc9a537 master -> master
[kotarutina@fedora os-intro]$
```

Рис. 2.23: Отправка

3 Выводы

Изучение идеологии и применение средств контроля версий;освоение умения по работе с git прошло успешно

#Контрольные вопросы

Что такое системы контроля версий (VCS) и для решения каких задач они предназначаются?

Система управления версиями позволяет хранить несколько версий одного и того же документа, при необходимости возвращаться к более ранним версиям, определять, кто и когда сделал то или иное изменение, и многое другое. Такие системы наиболее широко используются при разработке программного обеспечения для хранения исходных кодов разрабатываемой программы.

Объясните следующие понятия VCS и их отношения: хранилище, commit, история, рабочая копия.

Хранилище или репозитарий, — место хранения всех версий и служебной информации Рабочая копия — текущее состояние файлов проекта, основанное на версии из хранилища (обычно на последней). Коммит - создание новой версии кода

Что представляют собой и чем отличаются централизованные и децентрализованные VCS? Приведите примеры VCS каждого вида.

Централизованные - Клиент-серверная модель: один центральный репозиторий, с которым разработчики взаимодействуют по сети Централизованные VCS: Примеры • CVS- одна из первых систем второго поколения (1986г.). Обладает множеством недостатков и считается устаревшей. • Subversion (SVN) – система

второго поколения, созданная для замены CVS. Одна из самых распространенных систем контроля версий.

Распределенные VCS - В отличие от централизованной модели, может существовать несколько экземпляров репозитория, которые время от времени синхронизируются между собой. Распределенные VCS: примеры • Git- распределенная система управления версиями, созданная Л. Торвальдсом для управления разработкой ядра Linux. • Mercurial- другая распределенная VCS. Создана в 2005 году М. Макалом с практически одновременно с началом разработке git'a и с аналогичными целями.

Каковы основные задачи, решаемые инструментальным средством git?

У Git две основных задачи: первая — хранить информацию о всех изменениях в вашем коде, начиная с самой первой строчки, а вторая — обеспечение удобства командной работы над кодом.

Назовите и дайте краткую характеристику командам git.

Команда git add добавляет содержимое рабочего каталога в индекс (staging area) для последующего коммита. Команда git status показывает состояния файлов в рабочем каталоге и индексе: какие файлы изменены, но не добавлены в индекс; какие ожидают коммита в индексе. Вдобавок к этому выводятся подсказки о том, как изменить состояние файлов. Команда git diff используется для вычисления разницы между любыми двумя Git деревьями. Команда git commit берёт все данные, добавленные в индекс с помощью git add, и сохраняет их коммит во внутренней базе данных, а затем сдвигает указатель текущей ветки на этот коммит. Команда git reset, как можно догадаться из названия, используется в основном для отмены изменений. Команда git rm используется в Git для удаления файлов из индекса и рабочей копии. Команда git mv В то всего лишь удобный способ переместить файл, а затем выполнить git add для нового файла и git rm для старого. Команда git clean используется для удаления мусора из рабочего каталога. Это могут быть результаты сборки проекта или файлы конфликтов слияний.

Что такое и зачем могут быть нужны ветви (branches)?

Ветка (англ. branch) — это последовательность коммитов, в которой ведётся параллельная разработка какого-либо функционала. Основная ветка— master Ветки в GIT. Ветки нужны, чтобы несколько программистов могли вести работу над одним и тем же проектом или даже файлом одновременно, при этом не мешая друг другу. Кроме того, ветки используются для тестирования экспериментальных функций: чтобы не повредить основному проекту, создается новая ветка специально для экспериментов.

Как и зачем можно игнорировать некоторые файлы при commit?

Игнорируемые файлы отслеживаются в специальном файле .gitignore, который регистрируется в корневом каталоге репозитория. В Git нет специальной команды для указания игнорируемых файлов: вместо этого необходимо вручную отредактировать файл .gitignore, чтобы указать в нем новые файлы, которые должны быть проигнорированы

Игнорировать файлы можно при их конфликте с чем-либо

Список литературы