Unification for the Functional Machine Calculus

June 28, 2023

Introduction

todo

Unification

The unification calculus is given as follows. For a first-order signature Σ consisting of a set Σ_n of terms for each arity $n \in \mathbb{N}$, values are first-order terms t, u, as given by the first grammar below, and computation terms M, N are given by the second grammar.

$$t, u ::= x \mid f(t_1, \dots, t_n) \ (f \in \Sigma_n)$$

$$M, N ::= \star \mid \langle t \rangle. M \mid [t]. M \mid \nu x. M$$

The unification machine is given by the following transition rules:

$$\frac{\left(\begin{array}{ccc}S&,&[t].M\end{array}\right)}{\left(\begin{array}{ccc}St&,&M\end{array}\right)}\tag{1}$$

$$\frac{\left(Sf(t_1,\ldots,t_n),\langle f(u_1,\ldots,u_n)\rangle,M\right)}{\left(St_n\ldots t_1,\langle u_1\rangle\ldots\langle u_n\rangle,M\right)}$$
(2)

$$\frac{(Sx, \langle x \rangle.M)}{(St, M)}$$
 (3)

$$\frac{\left(\begin{array}{ccc}St&,&\langle x\rangle.M\end{array}\right)}{\left(\begin{array}{ccc}\{t/x\}S&,&\{t/x\}M\end{array}\right)}&\frac{\left(\begin{array}{ccc}Sx&,&\langle t\rangle.M\end{array}\right)}{\left(\begin{array}{ccc}\{t/x\}S&,&\{t/x\}M\end{array}\right)}&(x\notin t)$$

$$\frac{\left(S, \frac{\nu x. M}{(S, \{y/x\}M)}\right)}{\left(S, \{y/x\}M\right)} \qquad (y \notin S, M) \tag{5}$$

Proposition 1. For t and u with free variables x_1, \ldots, x_n ,

$$\frac{(x_1 \dots x_n t, \langle u \rangle)}{(w_1 \dots w_n, \star)}$$

if and only if $\{w_i/x_i\}_{i\leq n}$ is a most general unifier of t and u.

Proof. Each state in the run of $(x_1 ldots x_n t, \langle u \rangle)$ is of the form $(v_1 ldots v_n t_m ldots t_1, \langle u_1 \rangle ldots (u_m))$. We first define a map U sending a state to a stack of equations $E = [t_1 = u_1, \dots, t_m = u_m]$ and substitution $\theta = \{\{v_1/x_1\}, \dots, \{v_n/x_n\}\}$. Note that rules (2), (3) and (4) then correspond to those of the unification algorithm given in [Sterling & Shapiro, 1986] (modulo occurrences of $\{x/x\}$ in the substitution) under this translation. Given two first-order terms t and u, the algorithm is initialized with the stack E = [t = u] and substitution $\theta = \{\}$. Termination with failure=false then occurs iff E reaches the empty stack, in which case $\theta = \{\{w_1/x_1\}, \dots, \{w_n/x_n\}\}$ is the most general unifier of t and u. Since the translation of $(x_1 \dots x_n t, \langle u \rangle)$ corresponds to the initialization of this algorithm, the result follows by induction and noting that if the algorithm terminates successfully on (E, θ) , then $U^{-1}((E, \theta)) = (w_1 \dots w_n, \star)$.

Interaction nets

The interaction calculus [Fernandez & Mackie, 1999] describes interaction nets as follows. Given a first-order signature Σ , a *net* is a pair $\langle \vec{t} \mid \Delta \rangle$ where \vec{t} is a vector of first-order terms over Σ , and $\Delta = \{t_1 = u_1, \ldots, t_n = u_n\}$ is a set of equations between terms such that each variable occurs at most twice in the net. For vectors \vec{t} and \vec{u} of equal length, we may write $\vec{t} = \vec{u}$ for their pairwise equations.

Nets are rewritten according to a set of rules \mathcal{R} , given by pairs of terms $f(\vec{s}) \bowtie g(\vec{u})$ where $f \neq g$ and where each occurring variable occurs exactly twice, and such that there is at most one rule for each combination f, g in \mathcal{R} . Rules are considered modulo renaming of variables, and to use fresh variables when they are applied.

The evaluation relation $\rightarrow_{\mathcal{R}}$ for the rule set \mathcal{R} is generated by the following two rules, adapted from the four of [Fernandez & Mackie, 1999].

$$\langle \vec{t} \mid \Delta, x = u \rangle \implies \langle \{u/x\}\vec{t} \mid \{u/x\}\Delta \rangle$$

$$\langle \vec{t} \mid \Delta, f(\vec{r}) = g(\vec{v}) \rangle \implies \langle \vec{t} \mid \Delta, \vec{r} = \vec{s}, \vec{u} = \vec{v} \rangle \quad (f(\vec{s}) \bowtie g(\vec{u}) \in \mathcal{R})$$

The interaction calculus embeds into the unification calculus by taking an equation t = u to a redex [t]. (u). Given a set of ordered equations Δ , the map ψ is defined as follows:

$$t_1 = u_1, \ldots, t_n = u_n \mapsto [t_1] \cdot \langle u_1 \rangle \cdot \cdot \cdot [t_n] \cdot \langle u_n \rangle$$

The translation then sends $\langle \vec{s} \mid \Delta \rangle$ to $(\vec{s}, \psi(\Delta))$. To evaluate a translated net on the machine, for every rule $f(\vec{s}) \bowtie g(\vec{u}) \in \mathcal{R}$ with variables \vec{x} we add the following machine step:

$$\frac{(Sf(\vec{r}), \langle g(\vec{v}) \rangle. M)}{(Sf(\vec{r}), (\nu \vec{x}. \langle f(\vec{s}) \rangle. [g(\vec{u})]); \langle g(\vec{v}) \rangle. M)}$$
(6)

where the new construct νx . M is used to capture the idea that variables in a rule $f(\vec{s}) \bowtie g(\vec{u})$ are bound. The machine evaluation relation $\downarrow_{\mathcal{R}}$ consists of the basic rules for the unification machine plus the rules induced by \mathcal{R} . (Note that since rules are symmetric, for each rule $f(\vec{s}) \bowtie g(\vec{u})$ we also add the transition rule for $g(\vec{u}) \bowtie f(\vec{s})$.)

Note that

where the free variables \vec{x} in $f(\vec{s})$ and $g(\vec{u})$ are fresh. The rule (6) is therefore equivalent to

$$\frac{(Sf(\vec{r}), \langle g(\vec{v}) \rangle, M)}{(Sf(\vec{r}), \langle f(\vec{s}) \rangle, [g(\vec{u})], \langle g(\vec{v}) \rangle, M)}$$
(7)

To define a read-back function, consider the following rewrite rule on tuples $(S \mid \Delta)$ of machine states and net equations:

$$\begin{array}{c} ((\vec{t}\,a,\langle b\rangle,M)\mid \Delta) \\ ((\vec{t},[a],\langle b\rangle,M)\mid \Delta) \end{array} \\ \\ \stackrel{\frown}{\sim} \begin{cases} ((\vec{t},M)\mid \Delta,\vec{r}=\vec{v}) & \text{if } a=f(\vec{r}) \text{ and } b=f(\vec{v}) \\ ((\vec{t},M)\mid \Delta,a=b) & \text{otherwise} \end{cases}$$

Since this rule is deterministic, it induces a partial function ϕ from the set of machine states to the set of nets, where $\phi((\vec{t}, M)) = \langle \vec{t} \mid \Delta \rangle$ whenever $((\vec{t}, M) \mid \varnothing) \rightsquigarrow^* ((, \star) \mid \Delta)$. Note in particular that $\phi((\vec{t}, \psi(\Delta))) = \langle \vec{t} \mid \Delta \rangle$.

Proposition 2. For a set of rules \mathcal{R} and a net $\langle \vec{t} \mid \Delta \rangle$, we have the following:

$$(\vec{t}, \psi(\Delta)) \Downarrow_{\mathcal{R}} (\vec{u}, \star) \iff \langle \vec{t} \mid \Delta \rangle \twoheadrightarrow_{\mathcal{R}} \langle \vec{u} \mid \rangle$$

Forward direction: Our goal is to prove $(\vec{t}, \psi(\Delta)) \Downarrow_{\mathcal{R}} (\vec{u}, \star) \Longrightarrow \langle \vec{t} \mid \Delta \rangle \twoheadrightarrow_{\mathcal{R}} \langle \vec{u} \mid \rangle$. We first show that for any machine state S such that $\phi(S)$ is defined, if $S \Downarrow_{\mathcal{R}} S'$ after some sequence of machine steps m then there exists a sequence of interaction net evaluations n acting on $\phi(S)$ such that the following diagram commutes:

$$S \xrightarrow{m} S'$$

$$\phi \downarrow \qquad \qquad \downarrow \phi$$

$$N \xrightarrow{n} N'$$
(8)

Commutativity follows by case analysis on S:

Rule (1): If $S = (\vec{t}, [a], M)$, then $\phi(S) = \phi((\vec{t} a, M))$.

Rule (2): If $S = (\vec{t} f(\vec{r}), \langle f(\vec{v}) \rangle, M)$, then $\phi(S) = \langle \vec{t} \mid \Delta, \vec{r} = \vec{v} \rangle$, and $\phi((\vec{t} r_1 \dots r_n, \langle v_1 \rangle \dots \langle v_n \rangle, M)) = \langle \vec{t} \mid \Delta, \vec{r} = \vec{v} \rangle$.

Rules (3) and (4): If $S = (\vec{t} \, a, \langle x \rangle, M)$, then $\phi(S) = \langle \vec{t} \mid \Delta, a = x \rangle$, and we have $\phi((\{a/x\}\vec{t}, \{a/x\}M)) = \langle \{a/x\}\vec{t} \mid \{a/x\}\Delta\rangle$ and $\langle \vec{t} \mid \Delta, a = x \rangle \rightarrow \langle \{a/x\}\vec{t} \mid \{a/x\}\Delta\rangle$. Likewise for the cases $S = (\vec{t} \, x, \langle a \rangle, M)$ and $S = (\vec{t} \, x, \langle x \rangle, M)$.

Rule (5): If $S = (\vec{t}, \nu x.M)$, then $\phi(S)$ is not defined. Contradiction.

Rule (7): If $S = (\vec{t} f(\vec{r}), \langle g(\vec{v}) \rangle, M)$, then we have $\phi(S) = \langle \vec{t} \mid \Delta, f(\vec{r}) = g(\vec{v}) \rangle$ and that $f(\vec{s}) \bowtie g(\vec{u})$. So $\phi((\vec{t} f(\vec{r}), \langle f(\vec{s}) \rangle, [g(\vec{u})], \langle g(\vec{v}) \rangle, M)) = \langle \vec{t} \mid \Delta, \vec{r} = \vec{s}, \vec{u} = \vec{v} \rangle$ and $\langle \vec{t} \mid \Delta, f(\vec{r}) = g(\vec{v}) \rangle \rightarrow \langle \vec{t} \mid \Delta, \vec{r} = \vec{s}, \vec{u} = \vec{v} \rangle$.

The result then follows by diagram pasting:

$$(\vec{t}, \psi(\Delta)) \xrightarrow{m_0} S_1 \xrightarrow{m_1} \dots \xrightarrow{m_k} (\vec{u}, \star)$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\phi} \qquad \qquad \downarrow^{\phi} \qquad \qquad \downarrow^{\phi}$$

$$\langle \vec{t} \mid \Delta \rangle \xrightarrow{n_0} N_1 \xrightarrow{n_1} \dots \xrightarrow{n_k} \langle \vec{u} \mid \rangle$$

Backwards direction: We look to prove $\langle \vec{t} \mid \Delta \rangle \rightarrow_{\mathcal{R}} \langle \vec{u} \mid \rangle \Longrightarrow (\vec{t}, \psi(\Delta)) \Downarrow_{\mathcal{R}} (\vec{u}, \star)$. Given an interaction net N, suppose $\phi^{-1}(N)$ is nonempty. We now show that either $N = \langle \vec{u} \mid \rangle$, or for all elements $S = c(\phi^{-1}(N))$ of $\phi^{-1}(N)$ there exists an N' such that $N \rightarrow N'$, a sequence of machine steps m acting on S, and an element $S' = c'(\phi^{-1}(N'))$ of $\phi^{-1}(N')$ such that the following diagram commutes:

$$\begin{array}{ccc}
N & \longrightarrow & N' \\
\downarrow c \circ \phi^{-1} \downarrow & & \downarrow c' \circ \phi^{-1} \\
S & \stackrel{m}{\longrightarrow} & S'
\end{array}$$

Suppose $N = \langle \vec{t} \mid \Delta \rangle$ with $\Delta \neq \emptyset$. Pick an element S of $\phi^{-1}(N)$ - if $S = (\vec{t} f(\vec{r}), \langle f(\vec{v}) \rangle, M)$, apply transition rule (2) to get that $S \downarrow_{\mathcal{R}} S'$ with $S' \in \phi^{-1}(N)$. By induction on tree heights, we are guaranteed to reach some $S'' \in \phi^{-1}(N)$ matching either case (4) or (7) in a finite number of machine steps. At this point, we may apply a final machine step to obtain the state S''' after some sequence of steps m acting on N, with $N' = \phi(S''')$ and $S''' = c'(\phi^{-1}(N'))$ making the diagram commute (by commutativity of (8).)

The evaluation relation $\to_{\mathcal{R}}$ is known to be confluent, so by strong normalisation of $\langle \vec{t} \mid \Delta \rangle$ we have that $\langle \vec{t} \mid \Delta \rangle$ will always reach $\langle \vec{u} \mid \rangle$ after finitely many applications of \to . Note also that

 $(\vec{t}, \psi(\Delta)) \in \phi^{-1}(\langle \vec{t} \mid \Delta \rangle)$ and $\phi^{-1}(\langle \vec{u} \mid \rangle) = \{(\vec{u}, \star)\}$, so by setting $c_0 \circ \phi^{-1}(\langle \vec{t} \mid \Delta \rangle) = (\vec{t}, \psi(\Delta))$ and diagram pasting we obtain the result:

$$\begin{array}{ccccc}
\langle \vec{t} \mid \Delta \rangle & \longrightarrow & N_1 & \longrightarrow & \dots & \longrightarrow & \langle \vec{u} \mid \rangle \\
\downarrow^{c_0 \circ \phi^{-1}} & & \downarrow^{c_1 \circ \phi^{-1}} & \downarrow^{c_{k-1} \circ \phi^{-1}} & \downarrow^{c_k \circ \phi^{-1}} \\
(\vec{t}, \psi(\Delta)) & \xrightarrow{m_0} & S_1 & \xrightarrow{m_1} & \dots & \xrightarrow{m_{k-1}} & (\vec{u}, \star)
\end{array}$$

Prolog

A model of Prolog can be defined using the following objects:

Terms:	$t \coloneqq x \mid f(t_1, \dots, t_n)$
Atoms:	$A \coloneqq P(t_1, \dots, t_n)$
Clauses:	$C \coloneqq A \coloneq A_1 \dots A_n$
Programs:	$L \coloneqq C_1 \dots C_n$

The corresponding abstract interpreter is then given in [Sterling & Shapiro, 1986]:

```
Input: A query ?- A. and program L
Output: An instance of A that is a logical consequence of L, otherwise fail
R \leftarrow \{G\}
while R \neq \emptyset do
    c hoose a goal B' from R
   if there exists a clause B := B_1 \dots B_m in L such that B and B' unify with mgu \theta then
       assign fresh variables to B := B_1 \dots B_m
       R \leftarrow (R - B) \cup B_1 \cup \cdots \cup B_m
       apply \theta to A and each element of R
   else
       exit while loop
   end if
end while
if R = \emptyset then
   output A
else
    output fail
end if
```

To simulate this in the unification machine, given a program L we introduce the following transition rule for stacks in which the top is an *atom* rather than a term:

$$\frac{\left(SP(t_1,\ldots,t_m), \frac{\star}{(SP(t_1,\ldots,t_m), \nu\vec{x}.\langle A\rangle.[A_n]\ldots[A_1])}\right)}{\left(SP(t_1,\ldots,t_m), \nu\vec{x}.\langle A\rangle.[A_n]\ldots[A_1]\right)}$$
(9)

corresponding to a non-deterministic choice of clause $A := A_1 \dots A_n$ in L with free variables \vec{x} such that $A = P(t'_1, \dots, t'_m)$ unifies with $P(t_1, \dots, t_m)$. Note that it doesn't matter what the rule is: Prolog would select only rules where $A = P(t'_1, \dots, t'_m)$, but selecting another rule would immediately fail, so we can ignore that.

Proposition 3. Given a query ?- A. with free variables x_1, \ldots, x_n and program L,

$$\frac{(x_1 \dots x_n A, \star)}{(t_1 \dots t_n, \star)}$$

if and only if the abstract interpreter (with input ?- A. and L) outputs an instance of A with free variables t_1, \ldots, t_n .

Proof. By proposition 1, we have that

$$\frac{(SP(t_1,\ldots,t_m), \nu\vec{x}.\langle A\rangle.[A_n]\ldots[A_1])}{((SA_n\ldots A_1)[\theta], \star)}$$

where θ is the mgu of $P(t_1, ..., t_m)$ and A. We may therefore replace applications of (9) by a rule of the form:

$$\frac{\left(SP(t_1,\ldots,t_m),\star\right)}{\left((SA_n\ldots A_1)[\theta],\star\right)} \tag{10}$$

where again $A := A_1 \dots A_k$ is in L and θ is the mgu of $P(t_1, \dots, t_m)$ and A. By induction, each state in the run of $(x_1 \dots x_n A, \star)$ must then be of the form $(y_1 \dots y_n B_m \dots B_1, \star)$, and each step an instance of (10). Mapping each state $(y_1 \dots y_n B_m \dots B_1, \star)$ to the resolvant set $R = \{B_m, \dots, B_1\}$ gives a straightforward correspondence between machine steps and iterations of the while loop in an instance of the abstract interpreter with a fixed scheduling policy.

Proposed research

- Signatures modulo theory?
- Reduction on terms?
- Types?
- Confluence?