DATA MINING & DATA WAREHOUSING

Module III

- Association Rule Mining
 - • What is AR
 - • Methods to discover AR
 - • Apriori algo
 - • Partition algo
 - • Pincer seaarch algo
 - • FPtree growth algo
 - • Incremental algo
 - Border algo
 - • Generalized ARs

- Algorithm Apriori Advantages and Disadvantages
 - Advantages
 - Easy to parallelize and implement
 - Use frequent itemset property
 - finds all the rules with the specified support and confidence
 - Disadvantages
 - Requires many database scans
 - Assumes transaction DB is memory resident
 - Very slow

Improving the Efficiency of Apriori

- Many variations of the Apriori algorithm have been proposed that focus on improving the efficiency of the original algorithm.
 - Some of the variations are
 - Hash-based technique (hashing itemsets into corresponding buckets):
 - Transaction reduction (reducing the number of transactions scanned in future iterations):
 - Sampling (mining on a subset of the given data):
 - Dynamic itemset counting (adding candidate itemsets at different points during a scan):

- Interesting Properties of frequent itemsets for a given D wrt given min_sup value
 - <u>Downward closure</u> any subset of a frequent set is a frequent set
 - <u>Upward closure</u> any superset of an infrequent set is an infrequent set
 - Discovering all FIs and their support is significant
 - if |A| and T are large
 - where A is set of literals or items and |A| is the cardinality of A
 - & T is the transaction DB
 - If |A|=m then the number of possible distinct itemsets is 2^m

- Interesting Properties of frequent itemsets for a given D wrt given min_sup value
 - Maximal Frequent Set(MFS)
 - An itemset is MFS
 - if it is a frequent set
 - and no superset of this is a frequent set
 - If we can find set of all MFS wrt min_sup then we can find all frequent sets witout extra scan of the DB
 - Border set
 - An itemset is a border set
 - If it is not a frequent set
 - but all its proper subsets are frequent sets

Lattice of subsets

- If A={a,b,c,d} the lattice is given as
- There are 2^{k-1} non-empty subsets of a k-item set

Lattice of Subsets:

In this lattice the set of MFSs acts as a boundary between the set of all frequent sets and set of all infrequent sets

Partition Algorithm

Partitioning

- Here we discuss Partitioning Algorithm that is introduced
 - to overcome the following disadvantage of Apriori algo
 - 'Assumes transaction DB is memory resident'
- The partition algorithm was proposed when the large transaction DB can not be accommodated in the memory

- A partitioning technique
 - doesn't require the entire DB to be in the memory
 - It requires two database scans to mine the frequent itemsets.
- The algorithm subdivides the transactions of D into 'n' nonoverlapping partitions.

- For each partition, all frequent itemsets within the partition are found,
 - referred to as <u>local frequent itemsets</u>.
 - A local frequent itemset may or may not be frequent wrt the entire database, D.
- Any itemset that is potentially frequent wrt D must occur as a frequent itemset in at least one of the partitions.
- Therefore, all <u>local frequent itemsets are candidate</u> <u>itemsets</u> with respect to D.

- The collection of frequent itemsets from all partitions
 - forms the global candidate itemsets with respect to D.
- Partition size and the number of partitions are set
 - so that each partition can fit into main memory
 - & therefore be read only once in each phase.

Algorithm

- In Partitioning the set of transactions are divided into smaller segments
- Whole segment can be read at once for calculating support values
- Two scans are used
 - One scan to collect the frequent itemsets –
 - Next scan to count support value

Algorithm

- Two phases
- I phase (includes merge phase):
 - divide the database into non-overlapping partitions
 - For each partiiton find the frquent itemset
 - If 'n' partitions $(T_1,T_2...T_n)$ 'n' iterations n local frquent itemsets $(L_1,L_2...L_n)$
 - At the end these n local frequent itemsets are merged to generate global candidates CG
- · II phase:
 - $^-$ Actual support for these candidate itemsets in \mathbb{C}^G are counted wrt entire D
 - Then identify frequent itemsets

Partition Algorithm

```
P = \text{partition} \text{ database}(T); n = \text{Number of partitions}
// Phase I
     for i = 1 to n do begin
            read in partition(T_i in P)
            L^i = generate all frequent itemsets of T_i using a priori method in main memory.
      end
// Merge Phase
     for (k = 2; L_k^i \neq \emptyset, i = 1, 2, ..., n; k++) do begin
            C_k^G = \bigcup_{i=1}^n L_i^k
      end
// Phase II
     for i = 1 to n do begin
            read_in_partition(T_i in P)
            for all candidates c \in C^G compute s(c)_{T_i}
      end
      L^G = \{c \in C^G \mid s(c)_{T_i} \ge \sigma\}
      Answer = L^G
```

