STA 522, Spring 2022 Introduction to Theoretical Statistics II

Lecture 6

Department of Biostatistics University at Buffalo

AGENDA

- ► Method of maximum likelihood
- ► Bayesian approach to Statistics

Review: Method of Estimation

- ▶ **Method of Moments:** Equate population moments with the sample moments, then solve for parameters.
- ▶ **Method of Maximum Likelihood:** For each sample point \underline{x} , let $\hat{\theta}(\underline{x})$ be a parameter value at which the likelihood function $L(\theta \mid \underline{x})$ attains its maximum as a function of θ , with \underline{x} held fixed. A **maximum likelihood estimator (MLE)** of the parameter θ based on a sample \underline{X} is $\hat{\theta}(\underline{X})$.
- ▶ **Note:** since the logarithm function is strictly increasing on $(0, \infty)$ (and so one-to-one), the value which maximizes $\log L(\theta \mid \underline{x})$ is the same value that maximizes $L(\theta \mid \underline{x})$.
- ▶ **Example:** $X_1, X_2, \ldots, X_n \sim \text{iid Bernoulli}(p)$, for $0 \leq p \leq 1$. The MLE of p is $\hat{p} = \frac{1}{n} \sum_{i=1}^n X_i$

Example: Let $X_1, X_2, \ldots, X_n \sim \text{iid Poisson}(\theta)$, where $\theta > 0$. Find the MLE of θ .

The likelihood of θ is

$$L(\theta \mid \underline{x}) = \prod_{i=1}^{n} \exp(-\theta) \frac{\theta^{x_i}}{x_i!} = \exp(-n\theta) \frac{\theta^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!}$$

The log likelihood is:

$$I(\theta \mid \underline{x}) = \log L(\theta \mid \underline{x}) = -n\theta + \left(\sum_{i=1}^{n} x_{i}\right) \log \theta - \log \left(\prod_{i=1}^{n} x_{i}!\right)$$

Therefore,

$$\frac{d \log L(\theta \mid \underline{x})}{d\theta} = -n + \left(\sum_{i=1}^{n} x_i\right) \frac{1}{\theta} \gtrsim 0 \text{ according as } \theta \lesssim \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

Therefore, $\hat{\theta} = \overline{x}$ is the MLE of θ .

Example: Let $X_1, X_2, \ldots, X_n \sim \text{iid N}(\theta, 1)$ for $-\infty < \theta < \infty$. Find the MLE of θ .

The likelihood function for θ is given by

$$L(\theta \mid \underline{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(x_i - \theta)^2\right] = \left(\frac{1}{2\pi}\right)^{n/2} \exp\left[-\frac{1}{2}\sum_{i=1}^{n}(x_i - \theta)^2\right]$$

Therefore the log likelihood is:

$$\log L(\theta \mid \underline{x}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}(x_i - \theta)^2 = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}(\theta - x_i)^2$$

which implies

$$\frac{d \log L(\theta \mid \underline{x})}{d \theta} = \frac{1}{2} \sum_{i=1}^{n} 2 (x_i - \theta) \gtrsim 0 \text{ according as } \theta \lesssim \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

Thus the MLE of θ is $\hat{\theta} = \overline{x}$.

Example (Restricted Range MLE): Let $X_1, X_2, \dots, X_n \sim \text{iid N}(\theta, 1)$, where $\theta > 0$. Find the MLE of θ .

With no restrictions on θ the MLE of θ is \overline{X} .

However, if \overline{X} < 0, it will be outside the range of the parameter.

log likelihood:

$$\log L(\theta \mid \underline{x}) = -\frac{n}{2} \log (2\pi) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \theta)^2$$
$$= -\frac{n}{2} \log (2\pi) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \overline{x})^2 - \frac{n}{2} (\theta - \overline{x})^2$$

If $\overline{x} < 0$ then $L(\theta \mid \underline{x}) \leq L(0 \mid \underline{x})$ for all $\theta \in [0, \infty)$.

Therefore, the MLE of θ is

$$\hat{ heta} = egin{cases} \overline{x} & ext{if } \overline{x} \geq 0 \\ 0 & ext{if } \overline{x} < 0 \end{cases}$$

Example (MLE where the likelihood function is non-differentiable):

Consider $X_1, X_2, \dots, X_n \sim \text{iid Uniform}(0, \theta)$. Find the MLE of θ .

The likelihood function is given by:

$$L(\theta \mid \underline{x}) = \prod_{i=1}^{n} \frac{1}{\theta} I(0 \le x_i \le \theta) = \frac{1}{\theta^n} I(\theta \ge x_{(n)}) I(0 \le x_{(1)})$$

Clearly, $L(\theta \mid \underline{x})$ is not continuous (and hence non-differentiable) because of the indicator function.

Note that $L(\theta \mid \underline{x})$ is zero at $\theta < x_{(n)}$, jumps to $\frac{1}{\theta^n}$ at $\theta = x_{(n)}$ and then steadily declines.

Hence the MLE for θ is $\hat{\theta} = X_{(n)}$.

Example (Problem 7.6): Let $X_1, X_2, \dots, X_n \sim \text{iid Pareto}(\theta, 1)$ with pdf

$$f(x \mid \theta) = \theta x^{-2}; \quad 0 < \theta \le x < \infty$$

Find (a) a sufficient statistic for θ , (b) the MLE of θ and (c) the method of moments estimator of θ .

(a) The joint pdf is
$$f(\underline{x} \mid \theta) = \underbrace{\theta^n I(x_{(1)} \ge \theta)}_{=g(T(\underline{x} \mid \theta))} \prod_{i=1}^n x_i^{-2}$$
. Hence by

Factorization theorem, $T(\underline{X}) = X_{(1)}$ is sufficient for θ .

(b) The likelihood function for θ is

$$L(\theta \mid \underline{x}) = \theta^n I(\theta \le x_{(1)}) \prod_{i=1}^n x_i^{-2}$$

This is maximum when $\theta = x_{(1)}$. Hence the MLE for θ is $\hat{\theta} = X_{(1)}$.

(c) Note that here $\mu_1' = \mathsf{E}_{\theta}(X_1) = \int_{\theta}^{\infty} \theta \frac{dx}{x} = \infty$. Hence method of moment estimator for θ does not exist.

Example (Binomial with unknown number of trials): Let

 $X_1, X_2, \dots, X_n \sim \text{iid Binomial}(k, p)$, where p is known and k is unknown.

The likelihood function is:

$$L(k \mid \underline{x}, p) = \prod_{i=1}^{n} {k \choose x_i} p^{x_i} (1-p)^{k-x_i} I(x_i \in \{0, 1, \dots, k\})$$

Maximizing with differentiation is not possible because of factorials and because k is integer.

Note on the outset that $L(k \mid \underline{x}, p) = 0$ if $k < \max_i x_i$. So the MLE must be an integer $\hat{k} \ge \max_i x_i$ such that

$$\frac{L(\hat{k}\mid\underline{x},p)}{L(\hat{k}-1\mid\underline{x},p)}\geq 1 \ \ \text{and} \ \ \frac{L(\hat{k}\mid\underline{x},p)}{L(\hat{k}+1\mid\underline{x},p)}>1$$

Note that

$$\frac{L(k \mid \underline{x}, p)}{L(k-1 \mid \underline{x}, p)} = \frac{(k(1-p))^n}{\prod_{i=1}^n (k-x_i)}$$

Condition for maximum is

$$(k(1-p))^n \geq \prod_{i=1}^n (k-x_i) \;\; ext{and} \;\; ((k+1)(1-p))^n < \prod_{i=1}^n (k+1-x_i)$$

Divide by k^n and set z = 1/k. We want to solve

$$(1-p)^n = \prod_{i=1}^n (1-x_i z)$$

The RHS is strictly decreasing in z and RHS = 1 if z = 0 and RHS = 0 if $z = 1/\max_i x_i$.

Thus there is a unique z, say \hat{z} that solves the equation. The unique solution is not analytically tractable. Must be approximated using numeric methods in practice.

The quantity $1/\hat{z}$ may not be an integer. The MLE \hat{k} of k, is the largest integer $\leq 1/\hat{z}$.

Invariance Property of Maximum Likelihood

Consider a distribution indexed by a parameter θ . Interest is in finding an estimator for some function of θ , say $\tau(\theta)$.

Invariance property of MLEs says that if $\hat{\theta}$ is the MLE of θ , then $\tau(\hat{\theta})$ is the MLE of $\tau(\theta)$.

For example, if θ is the mean of a normal distribution then the MLE of $\sin(\theta)$ is $\sin(\overline{X})$.

Need to be careful when τ is NOT one-to-one.

Definition: Let $\eta = \tau(\theta)$ be any function of θ . The **induced likelihood** function L^* is given by

$$L^*(\eta \mid \underline{x}) = \sup_{\{\theta : \tau(\theta) = \eta\}} L(\theta \mid \underline{x}).$$

The value $\hat{\eta}$ that maximizes $L^*(\eta \mid \underline{x})$ will be called the MLE of $\eta = \tau(\theta)$. Note that the maxima of L^* and L coincide.

Theorem (7.2.10)

If $\hat{\theta}$ is the MLE of θ , then for any function $\tau(\theta)$, the MLE of $\tau(\hat{\theta})$ is $\tau(\hat{\theta})$.

Examples of the invariance property of MLE:

- If X_1, X_2, \dots, X_n iid $N(\theta, 1)$ then the MLE of θ^2 is \overline{X}^2 .
- ▶ If $X_1, X_2, ..., X_n$ iid Bernoulli(p) then the MLE of $\sqrt{p(1-p)}$ is $\sqrt{\hat{p}(1-\hat{p})}$ where $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

MLE of multiple parameters

Using calculus is tedious. In two parameter case, finding Local Maxima of a function $H(\theta_1, \theta_2)$ involves:

- (a) Compute the first-order partial derivatives of $H(\theta_1, \theta_2)$, set them equal to 0, and solve for θ_1 and θ_2 . Denote the solution by $(\hat{\theta}_1, \hat{\theta}_2)$.
- (b) Show that the Jacobian of the second-order partial derivatives, evaluated at $(\hat{\theta}_1, \hat{\theta}_2)$, is positive (recall the Jacobian is $H_{11}H_{22} H_{12}H_{21}$, where H_1 means $\frac{\partial H}{\partial \theta_1}$, and so on).
- (c) Show that at least one of H_{11} or H_{22} , evaluated at $(\hat{\theta}_1, \hat{\theta}_2)$, is negative.

Instead, successive maximizations, if possible, usually makes the problem easier.

Example: Suppose $X_1, X_2, ..., X_n \sim \text{iid N}(\mu, \sigma^2)$. Find the MLEs for μ and σ^2 .

The likelihood function is

$$L(\mu, \sigma^2 \mid \underline{x}) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2}(x_i - \mu)^2\right]$$
$$= \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2\right]$$

First fix σ . The log likelihood is

$$\log L(\mu, \sigma^2 \mid \underline{x}) = -\frac{n}{2} \log (2\pi) - \frac{n}{2} \log (\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

$$\frac{\partial \log L(\mu, \sigma^2 \mid \underline{x})}{\partial \mu} = \frac{1}{2} \sum_{i=1}^{n} 2 (x_i - \mu) \gtrsim 0 \text{ according as } \mu \lesssim \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

So, for each σ , $\hat{\mu} = \overline{x}$ is the MLE of μ .

Plug in $\hat{\mu}$ into $\log L(\mu, \sigma^2 \mid \underline{x})$ to obtain the profile log-likelihood of σ :

$$\log \tilde{L}(\sigma^2 \mid \underline{x}) = \log L(\hat{\mu}, \sigma^2 \mid \underline{x}) = -\frac{n}{2} \log (2\pi) - \frac{n}{2} \log (\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$\frac{\partial \log L(\sigma^2 \mid \underline{x})}{\partial (\sigma^2)} = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \overline{x})^2 \geq 0$$

according as

$$\sigma^2 \leq \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

which means the MLE for σ^2 is $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$.

Therefore, the MLE for the (μ, σ^2) is $(\hat{\mu}, \hat{\sigma}^2) = (\overline{x}, \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2)$.

Bayesian Approach to Statistics

(a) In the classical approach, the parameter θ is thought to be an unknown, but fixed, quantity.

- (b) In the Bayesian approach, θ is considered to be a quantity whose variation can be described by a probability distribution (called the **prior distribution**).
- (c) The prior distribution is subjective and is based on the experimenter's belief. It is formulated before the data are seen.

(d) A sample is then taken from a population indexed by θ , and the prior distribution is updated (using Bayes' Rule) with the sample information. The updated prior is called the **posterior distribution**.

(e) Denote the prior distribution by $\pi(\theta)$ and the sampling distribution by $f(\underline{x} \mid \theta)$.

(f) The posterior distribution is the conditional distribution of θ , given the sample x:

$$\pi(\theta \mid \underline{x}) = \frac{f(\underline{x} \mid \theta)\pi(\theta)}{m(\underline{x})}$$
$$= \frac{f(\underline{x}, \theta)}{m(x)},$$

where $m(\underline{x})$ is the marginal distribution of \underline{X} :

$$m(\underline{x}) = \int f(\underline{x} \mid \theta) \pi(\theta) d\theta.$$

Example (Binomial Bayes estimation): Let

$$X_1, X_2, \dots, X_n \sim \text{iid Bernoulli}(p)$$
, and let $Y = \sum_{i=1}^n X_i$. Then

 $Y \sim \text{binomial}(n, p)$.

Assume the prior distribution on p to be beta (α, β) . Determine the Bayes estimator of p.

The joint distribution of Y and p is

$$f_{Y,p}(y,p) = \left[\binom{n}{y} p^{y} (1-p)^{n-y} \right] \left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1} \right]$$

$$= \binom{n}{y} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{y+\alpha-1} (1-p)^{n-y+\beta-1}; \ y = 0, 1, \dots, n; \ 0 \le p \le 1$$

The marginal pmf of Y is:

$$f_Y(y) = \int_0^1 f(y, p) \ dp = \binom{n}{y} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(y + \alpha)\Gamma(n - y + \beta)}{\Gamma(n + \alpha + \beta)}$$

The posterior pdf of p is

$$f_{p|Y}(p \mid y) = \frac{f_{Y,P}(y,p)}{f_{Y}(y)} = \frac{\Gamma(n+\alpha+\beta)}{\Gamma(y+\alpha)\Gamma(n-y+\beta)} p^{y+\alpha-1} (1-p)^{n-y+\beta-1}$$

which is Beta $(y + \alpha, n - y + \beta)$.

A natural Bayesian (point) estimator is the mean of the posterior distribution, given by

$$\hat{p}_B = \mathsf{E}(p \mid Y) = \frac{y + \alpha}{n + \alpha + \beta}$$

Note that

$$\hat{p}_{B} = \left(\frac{n}{n+\alpha+\beta}\right) \underbrace{\left(\frac{y}{n}\right)}_{\text{=sample mean}} + \left(\frac{\alpha+\beta}{n+\alpha+\beta}\right) \underbrace{\left(\frac{\alpha}{\alpha+\beta}\right)}_{\text{=prior mean}}$$