

Peptide Detectability Prediction Based on Interpretable Classification Model

Junjie Dong

Applied Chemistry

DLI, Dalian University of Technology

Supervisor: Zengyou He May 21, 2022

Introduction

Background Research Purpose and Motivation State-of-the-art Contribution

2 Interpretable Peptide Detectability Prediction Model

Workflow of Model Sequential Patterns Mining Module Decision Rule Set Learning Module

3 Experiment and Discussion

Setup
Results and Evaluation

4 Reference

Reference

Outline

• Introduction

Background Research Purpose and Motivation State-of-the-art Contribution

2 Interpretable Peptide Detectability Prediction Model

3 Experiment and Discussion

A Reference

Background

Proteomics^[1]

Obtain protein information about cells, tissues and organisms.

Significance:

Figure 1: Disease mechanisms.

Figure 2: Drug discovery.

Figure 3: Genetic language.

Purpose and Motivation

Proteomics

- Protein identification and inference
- "Bottom-up" and "Top-down"
- · How do we infer protein correctly?
- Necessary to ensure the peptide detectability!

Figure 4: A "bottom-up" approach for protein identification.

Purpose and Motivation

Proteomics

- Protein identification and inference
- "Bottom-up" and "Top-down"
- How do we infer protein correctly?
- Necessary to ensure the peptide detectability!

Figure 4: A "bottom-up" approach for protein identification.

State-of-the-art

Mainstream method

Figure 5: Categories for mainstream method.

Disadvantage on these model:

- Traditional machine learning e.g. AP3^[2]
 - Rely on prior knowledge and featurization
 - Novel deep learning, e.g. Pepformer^[3], DeepMSPeptide^[4].
 - High computing resources

Not interpretable!

State-of-the-art

Introduction

Mainstream method

Figure 5: Categories for mainstream method.

Disadvantage on these model:

- Traditional machine learning e.g. AP3^[2].
 - Rely on prior knowledge and featurization
- Novel deep learning, e.g. Pepformer^[3], DeepMSPeptide^[4].
 - · High computing resources

Not interpretable!

Contribution

Why interpretbility is necessary^[5]?

- 1 Promote trust in the model
 - Understanding the decision step
 - Debugged and audited
- 2 Human curiosity and learning
 - Scientific purpose
- 3 Ascertain the mechanism of peptide detection.
 - · Improve the experimental procedure.

This project presented a **interpretable** peptide detectability prediction model.

Outline

• Introduction

2 Interpretable Peptide Detectability Prediction Model

Workflow of Model Sequential Patterns Mining Module Decision Rule Set Learning Module

3 Experiment and Discussion

A Reference

Model Structure

Main structure

- Sequential Patterns Mining Module
- Decision Rule Set Learning Module

Sequential Patterns

A sequence is an ordered list of symbols.

A peptide sequence is a combination of itemset of amino acid list in the table below.

Example: AERANVELDH

Table 1: Twenty kinds of amino acids.

Amino acid	Abbreviation	Sign		Amino acid	Abbreviation	Sign
Alanine	Ala	A	-	Leucine	Leu	L
Arginine	Arg	R		Lysine	Lys	K
Asparagine	Asn	N		Methionine	Met	M
Aspartic acid	Asp	D		Phenylalanine	Phe	F
Cysteine	Cys	C		Proline	Pro	P
Glutamic acid	Glu	E		Serine	Ser	S
Glutamine	Gln	Q		Threonine	Thr	T
Glycine	Gly	G		Tryptophan	Trp	W
Histidine	His	Н		Tyrosine	Tyr	Y
Isoleucine	Ile	I		Valine	Val	V

Goal: finding all subsequences that appear frequently in a sequence database. Example: $\langle AE \rangle$, $\langle AR \rangle$, $\langle ER \rangle$ etc.

k-mer

Extracting patterns based on substring.

Example: $\langle AER \rangle$, $\langle ERA \rangle$, $\langle RAN \rangle$ etc. in AERANVELDH

Advantage:

- · Strict location information
- · Simply implement.

Algorithm 2.1: k-mers (String Seq, Integer k)

- 1: $L \leftarrow length(seq)$
- 2: $k-mers \leftarrow \text{new array of } L-k+1 \text{ empty strings}$
- 3: **for** $n \leftarrow to L k$ **do**
- 4: $k mers[n] \leftarrow$ subsequence of seq from letter n inclusive to letter n + k exclusive
- 5: end for
- 6: **return** k mers

PrefixSpan^[6]

Advantage:

- Only consider patterns *exist* in the database.
- uses the concept of database projection and depth-first search.

Procedure:

- \bullet Select top-k frequent patterns
- 2 Filter patterns
 - Redundancy
 - Difficult for the training process of next module.

Discriminant Patterns Filter

Definition 2.1: Discriminant value^[7]

$$Disc(s,D) = \frac{Occ(s,D_{positive})}{|D_{positive}|} - \frac{Occ(s,D_{negative})}{|D_{negative}|}, \tag{1}$$

where Disc(s, D) refers to the discriminant ability of pattern s to positive and negative classes in a database D.

$\textbf{Algorithm 2.2: contrast}(P_{pos},\!P_{neg},\!\textbf{threshold}\;\theta,D)$

- 1: res← new list
- 2: for all $i \in P_{pos}$ and P_{pos} do
- 3: **if** $Disc(i, D) >= \theta$ **then**
- 4: res.append(i)
- 5: end if
- 6: end for
- 7: return res

Decision Rule Network^[8]

Main workflow in decision rule network

Input: feature vector generated from sequential patterns mining module **Output:** rules set for predicting peptide detectability

Figure 6: Workflow of generating rules for peptide prediction.

Outline

1 Introduction

Background
Research Purpose and Motivation
State-of-the-art
Contribution

2 Interpretable Peptide Detectability Prediction Model

Workflow of Model Sequential Patterns Mining Module Decision Rule Set Learning Module

3 Experiment and Discussion

Setup
Results and Evaluation

4 Reference

Reference

Parameter Setting-k-mer^[9]

k is set to be 3 according to "elbow" method.

Figure 7: Number of k-mers versus k value.

Parameter Setting: PrefixSpan

Setting top-20000 under threshold 0.02.

(a) Homo sapiens,

(b) Mus musculus,

Figure 8: Number of patterns versus constrain θ

Parameter Setting: rule number

Number of rule number is set to be 200.

Figure 9: Accuracy versus epoch

Parameter Determination: rule number

Number of rule number is set to be 200.

Figure 10: Rule number in decision set versus epoch.

Results and Evaluation

Table 2: Experiment results on Homo sapiens.

Models	ACC	SP	SN	MCC
iBCM+RF	0.5767	0.6190	0.5215	0.1573
AP3 ¹	0.6416	0.5949	0.6881	0.2843
2-mer-DRN	0.6800	0.7664	0.5973	0.3692
SeqDT	0.7151	0.7089	0.7213	0.4345
PrefixSpan-DRN	0.7201	0.7873	0.6470	0.4414
PepFormer ¹	0.8066	0.7213	0.8915	0.6221

¹ The comparison result are from the work of Pepformer^[3].

Table 3: Experiment results on Mus musculus.

Models	ACC	SP	SN	MCC
iBCM+RF	0.5767	0.6190	0.5215	0.1573
2-mer-DRN	0.5956	0.8864	0.3047	0.2349
PrefixSpan-DRN	0.6447	0.8127	0.4799	0.3099
$AP3^1$	0.6462	0.5993	0.6928	0.2934
SeqDT	0.6537	0.6467	0.6568	0.3035
PepFormer ¹	0.7521	0.6421	0.8629	0.5176

The comparison result are from the work of Pepformer^[3].

Details of Rules in Decision Set

Table 4: Details of rules in decision sets.

Models	Rule numbers	Rule length	N. conditions ¹	P. conditions ²	Accuracy
Homo100	6	10.33	50	12	0.6483
Homo200	17	11.76	168	32	0.7201
Homo500	49	10.53	372	144	0.7150
Mus100	2	5.5	7	4	0.5184
Mus200	22	8.45	130	56	0.6447
Mus500	94	14.11	453	309	0.6050

¹ Negative conditions.

² Positive conditions.

Outline

1 Introduction

Background Research Purpose and Motivation State-of-the-art Contribution

2 Interpretable Peptide Detectability Prediction Model

Workflow of Model Sequential Patterns Mining Module Decision Rule Set Learning Module

3 Experiment and Discussion

Results and Evaluation

4 Reference

Reference

[3]

Reference I

- [1] WASINGER V C, CORDWELL S J, CERPA-POLJAK A, et al. Progress with Gene-Product Mapping of the Mollicutes: Mycoplasma Genitalium[J]. Electrophoresis, 1995, 16(1): 1090-1094.
- [2] GAO Z, CHANG C, YANG J, et al. AP3: An Advanced Proteotypic Peptide Predictor for Targeted Proteomics by Incorporating Peptide Digestibility[J]. Analytical Chemistry, 2019, 91(13): 8705-8711.
- Network to Predict and Enhance Peptide Detectability Based on Sequence Only[J].

 Analytical Chemistry, 2021, 93(16): 6481-6490.

CHENG H, RAO B, LIU L, et al. PepFormer: End-to-End Transformer-Based Siamese

- [4] SERRANO G, GURUCEAGA E, SEGURA V. DeepMSPeptide: Peptide Detectability Prediction Using Deep Learning[J]. Bioinformatics, 2020, 36(4): 1279-1280.
- [5] MOLNAR C. Interpretable Machine Learning[M]. 2021.
- [6] Jian Pei, Jiawei Han, MORTAZAVI-ASL B, et al. PrefixSpan,: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth[C]. in: Proceedings 17th International Conference on Data Engineering. Heidelberg, Germany: IEEE Comput. Soc, 2001: 215-224.

Reference II

- HE Z, ZHANG S, WU J. Significance-Based Discriminative Sequential Pattern [7] Mining[J]. Expert Systems with Applications, 2019, 122: 54-64.
- QIAO L. Learning Accurate and Interpretable Decision Rule Sets from Neural [8] Networks[C]. in: 35th AAAI Conference on Artificial Intelligence. 2020.
- [9] DEOROWICZ S, GUDYŚ A, DŁUGOSZ M, et al. Kmer-Db: Instant Evolutionary Distance Estimation[J]. Bioinformatics (Oxford, England), 2019, 35(1): 133-136.

Thanks!