Nombres complexes

Partie réelle, partie imaginaire

QCOP CPLX.1

- **1.** Soit $z \in \mathbb{C}$.
 - a) Définir $\mathfrak{Re}(z)$ et $\mathfrak{Im}(z)$.
 - **b)** Exprimer ces quantités en fonction de z et \overline{z} .
- **2.** Soit $z \in \mathbb{C}$. Compléter et démontrer les équivalences suivantes :

$$z + \overline{z} = 0 \iff z \in \dots \text{ et } z - \overline{z} = 0 \iff z \in \dots$$

3. On admet que

$$\forall a,b \in \mathbb{R}, \quad \mathrm{e}^{\mathrm{i} a} + \mathrm{e}^{\mathrm{i} b} = 2 \cos \left(\frac{a-b}{2} \right) \mathrm{e}^{\mathrm{i} \frac{a+b}{2}}.$$

 $\mbox{ Déterminer } \big\{(a,b) \in \mathbb{R}^2 \quad \Big| \quad \mathrm{e}^{\mathrm{i} a} + \mathrm{e}^{\mathrm{i} b} \in \mathbb{R} \big\}.$

Inégalité triangulaire

QCOP CPLX.2

Soient $z, z' \in \mathbb{C}$.

1. Montrer que

$$\mathfrak{Re}(z) \leqslant |z|$$
 et $\mathfrak{Im}(z) \leqslant |z|$.

2. Montrer que

$$|z + z'|^2 = |z|^2 + 2 \Re(z\overline{z'}) + |z'|^2.$$

3. Montrer que

$$|z+z'|\leqslant |z|+|z'|.$$

4. Montrer que

$$\Big||z|-|z'|\Big|\leqslant |z-z'|.$$

QCOP CPLX.3 *

- 1. Énoncer l'inégalité triangulaire complexe.
- **2.** Soient $z, z' \in \mathbb{C}$.

Compléter et démontrer :

$$|z+z'|=|z|+|z'|\iff \ldots$$

3. Soient A, B et C trois points du plan.

Montrer que A, B et C sont alignés dans cet ordre si, et seulement si,

$$\|\overrightarrow{AB}\| + \|\overrightarrow{BC}\| = \|\overrightarrow{AC}\|.$$

Exponentielle complexe

QCOP CPLX.4

E/%

Soit $z \in \mathbb{C}$.

- **1.** Exprimer le nombre e^z sous forme trigonométrique.
- 2. Déterminer le module et un argument de e^z .
- 3. Compléter et démontrer :

$$|e^z| = 1 \iff \dots$$

4. Montrer que $\overline{e^z} = e^{\overline{z}}$.

QCOP CPLX.5

1. Soit $Z \in \mathbb{C}^*$, de module R > 0 et d'argument principal $\theta \in \mathbb{R}$.

Écrire Z sous forme trigonométrique.

2. Soit $Z \in \mathbb{C}$. Déterminer

$$\{z\in\mathbb{C} \mid e^z=Z\}.$$

3. Résoudre

$$e^z = 1 + i$$
.

Racines de l'unité et équations polynomiales

QCOP CPLX.6

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$.

- **1.** Définir l'ensemble \mathbb{U}_n .
- 2. Montrer que

$$\mathbb{U}_n = \left\{ e^{\frac{2ik\pi}{n}} \; ; \; k \in \llbracket 0, n-1 \rrbracket \right\}.$$

3. Calculer $\sum_{\omega \in \mathbb{U}_n} \omega$ et $\prod_{\omega \in \mathbb{U}_n} \omega$.

QCOP CPLX.7 ★

Soit $n \in \mathbb{N}$ tel que $n \geqslant 2$.

- **1.** Définir et décrire l'ensemble \mathbb{U}_n .
- **2.** Soit $Z \in \mathbb{C}^*$ que l'on écrit $Z = Re^{i\theta}$ avec R > 0 et $\theta \in \mathbb{R}$.

Décrire
$$A := \{z \in \mathbb{C} \mid z^n = Z\}.$$

3. Calculer $\sum_{\omega \in A} \omega$ et $\prod_{\omega \in A} \omega$.

QCOP CPLX.8

Soit $a \in \mathbb{C}$.

- **1.** À l'aide de \mathbb{U}_2 , justifier l'existence de $z \in \mathbb{C}$ tel que $z^2 = a$.
- **2.** Soit $z \in \mathbb{C}$ tel que $z^2 = a$. On note $x, y \in \mathbb{R}$ tels que z = x + iy.
 - a) Compléter et démontrer :

$$z^{2} = a \iff \begin{cases} x^{2} - y^{2} = \dots \\ x^{2} + y^{2} = \dots \\ \operatorname{signe}(xy) = \dots \end{cases}$$

b) En déduire les expressions, sous forme algébrique, des valeurs possibles de *z*.

QCOP CPLX.9

Soient $a, b, c \in \mathbb{C}$ avec $a \neq 0$. On considère $az^2 + bz + c = 0$. (E)

- **1.** On note $\Delta := b^2 4ac$.
 - a) Déterminer $\delta \in \mathbb{C}$ tel que $\delta^2 = \Delta$.
 - **b)** Déterminer $u, v \in \mathbb{C}$ tel que z vérifie (E) \iff $(z u)^2 = v^2$.
 - c) En déduire les solutions de (E).
- **2.** Soient $d_1,d_2\in\mathbb{C}$. Comment peut-on calculer les solutions du système

$$\begin{cases} z_1 + z_2 = d_1 \\ z_1 \times z_2 = d_2 \end{cases}$$
?