Задания

Задача 1:

Работа программы:

1

df ×								
^	N [‡]	Price [‡]	Dist [‡]	house [‡]	area [‡]	Eco [‡]		
1	1	300	20	400	22	1		
2	2	60	18	170	6	0		
3	3	14	90	60	11	1		
4	4	38	18	65	6	1		
5	5	85	25	320	20	0		

2

3

Связь линейная, зависимость сильная

Связь линейная, зависимость сильная

Связь обратная

Связь линейная, зависимость сильная

4

	N	Price	Dist	house	area	Eco
N	1.000000000	-0.06499258	-0.008453407	0.06047307	-0.0646424	0.07911124
Price	-0.064992575	1.00000000	-0.488128544	0.67060353	0.6252405	0.44005297
Dist	-0.008453407	-0.48812854	1.000000000	-0.50710087	-0.1482028	-0.24795666
house	0.060473075	0.67060353	-0.507100868	1.00000000	0.6133613	0.15187975
area	-0.064642396	0.62524045	-0.148202808	0.61336128	1.0000000	0.22488554
Eco	0.079111241	0.44005297	-0.247956659	0.15187975	0.2248855	1.000000000

Связь между ценой и расстоянием до дороги обратная средняя

Связь между ценой и площадью дома средняя прямая

Связь между ценой и площадью участка средняя прямая

Связь между ценой и наличием реки слабая

Связь между площадью дома и расстоянием до дороги средняя обратная

Связь между расстоянием до дороги с площадью участка или с наличием реки очень слабая.

Связь между площадью дома и площадью участка прямая средняя

Связь между площадью дома и наличием реки очень слабая

5

Pearson's product-moment correlation

Связь средняя обратная и значимая

```
Pearson's product-moment correlation
data: df$Dist and df$area
t = -1.1204, df = 48, p-value = 0.2681
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.4193607 0.1242193
sample estimates:
        cor
-0.1596484
Гипотеза о значимости коэффициента корреляции на уровне значимости 5% отвергается
         Pearson's product-moment correlation
data: df$Dist and df$Eco
t = -2.2789, df = 48, p-value = 0.02716
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.54353807 -0.03736593
sample estimates:
         cor
-0.3124638
Связь слабая обратная и значимая
         Pearson's product-moment correlation
data: df$house and df$area
t = 5.2436, df = 48, p-value = 3.5e-06
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3907810 0.7550081
```

0.6034858

Связь средняя прямая и значимая

sample estimates:

Pearson's product-moment correlation

data: df\$house and df\$Eco
t = 1.4248, df = 48, p-value = 0.1607
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.08148113 0.45431015
sample estimates:
 cor
0.2014352

Гипотеза о значимости коэффициента корреляции на уровне значимости 5% отвергается

Pearson's product-moment correlation

data: df\$area and df\$Eco
t = 1.7654, df = 48, p-value = 0.08385
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.03374086 0.49149272
sample estimates:
 cor
0.2469259

Гипотеза о значимости коэффициента корреляции на уровне значимости 5% отвергается

```
-0.297987
-0.9295039
0.9098297
0.7923927
-0.8894117
-0.6317296
0.8322456
```

Листинг:

```
df <- read.csv(file = "villa2.csv", sep=";")
View(df)
s<-as.vector(df$area);n <- gsub(",", ".", s);n<-as.numeric(n);df$area<-n
s<-as.vector(df$Price);n <- gsub(",", ".", s);n<-as.numeric(n);df$Price<-n
s<-as.vector(df$Dist);n <- gsub(",", ".", s);n<-as.numeric(n);df$Dist<-n
plot(df$Price, df$Dist, col = "tomato", xlab = "Цена", ylab="Район")
plot(df$house, df$Price, col = "green", xlab = "Площадь", ylab="Цена")
plot(df$house, df$area, col = "blue", xlab = "Площадь дома", ylab="площадь участка")
plot(df$house, df$Dist, col = "blue", xlab = "Площадь дома", ylab="Расстояние до дороги")
plot(df$area, df$Dist, col = "blue", xlab = "Площадь участка", ylab="Расстояние до дороги")
plot(df$area, df$Price, col = "blue", xlab = "Площадь участка", ylab="Цена")
cor(df)
corrplot(cor(df))
cor.test(df$Price, df$Dist)
cor.test(df$Price, df$house)
cor.test(df$Price, df$area)
cor.test(df$Price, df$Eco)
cor.test(df$Dist, df$house)
cor.test(df$Dist, df$area)
cor.test(df$Dist, df$Eco)
cor.test(df$house, df$area)
cor.test(df$house, df$Eco)
cor.test(df$area, df$Eco)
pcor(c(1,2), var(cor(df)))
pcor(c(2,3), var(cor(df)))
pcor(c(2,4), var(cor(df)))
pcor(c(2,5), var(cor(df)))
pcor(c(3,4), var(cor(df)))
pcor(c(3,5), var(cor(df)))
pcor(c(4,5), var(cor(df)))
```

Задача 2:

Работа программы:

1

```
[,1] [,2] [,3] [,4]
[1,]
        12
              12
                     6
                           1
[2,]
        15
              10
                     4
                           0
[3,]
        10
              20
                    25
                          15
         5
              25
[4,]
                    30
                          20
```

> chisq.test(matr)

Pearson's Chi-squared test

data: matr

X-squared = 47.321, df = 9, p-value = 3.42e-07

Листинг:

arr <- array(c(12, 12, 6, 1, 15, 10, 4, 0, 10, 20, 25, 15, 5, 25, 30, 20, 0, 5, 10, 15), dim = c(4, 5)) mat=matrix(data= arr,nrow=4,ncol=4,byrow=T) matr

chisq.test(matr)

mosaicplot(matr, shade = TRUE)