SEQUENCE LISTING

<110>	He, et a	al.											
<120>	Interleu	ıkin-1 E	Beta Convert	ting Enzyme	Like Apopto	osis Protease	3						
<130>	PF140P1	02											
<140> <141>	To Be As	_											
<150> <151>	09/613,5 2000-07-												
<150> <151>	08/462,969 1995-06-05												
<150> <151>	08/334,251 1994-11-01												
<160>	14												
<170>	PatentIn version 3.2												
<210><211><211><212><213>	1 1369 DNA Homo sap	oiens											
<400> gcacgag	1 gaaa cttt	gctgtg	cgcgttctcc	cgcgcgcggg	ctcaactttg	tagagcgagg	60						
ggccaad	cttg gcag	gagcgcg	cggccagctt	tgcagagagc	gccctccagg	gactatgcgt	120						
gcgggg	acac gggt	cgcttt	gggctcttcc	acccctgcgg	agcgcactac	cccgagccag	180						
gggcggt	gca agco	ccgccc	ggccctaccc	agggcggctc	ctccctccgc	agcgccgaga	240						
cttttag	gttt cgct	ttcgct	aaaggggccc	cagacccttg	ctgcggagcg	acggagagag	300						
actgtg	ccag tccc	agccgc	cctaccgccg	tgggaacgat	ggcagatgat	cagggctgta	360						
ttgaaga	agca gggg	gttgag	gattcagcaa	atgaagattc	agtggatgct	aagccagacc	420						
ggtcct	gtt tgta	ccgtcc	ctcttcagta	agaagaagaa	aaatgtcacc	atgcgatcca	480						
tcaaga	ccac ccgg	gaccga	gtgcctacat	atcagtacaa	catgaatttt	gaaaagctgg	540						
gcaaat	gcat cata	ataaac	aacaagaact	ttgataaagt	gacaggtatg	ggcgttcgaa	600						
acggaad	caga caa <i>a</i>	gatgcc	gaggcgctct	tcaagtgctt	ccgaagcctg	ggttttgacg	660						
tgattgt	cta taat	gactgc	tcttgtgcca	agatgcaaga	tctgcttaaa	aaagcttctg	720						
aagagga	acca taca	aatgcc	gcctgcttcg	cctgcatcct	cttaagccat	ggagaagaaa	780						
atgtaat	tta tggg	gaaagat	ggtgtcacac	caataaagga	tttgacagcc	cactttaggg	840						
gggata	atq caaa	accett	ttagagaaac	ccaaactctt	cttcattcag	acttaccaaa	900						

ggaccgagct	tgatgatgcc	atccaggccg	actcggggcc	catcaatgac	acagatgcta	960
atcctcgata	caagatccca	gtggaagctg	acttcctctt	cgcctattcc	acggttccag	1020
gctattactc	gtggaggagc	ccaggaagag	gctcctggtt	tgtgcaagcc	ctctgctcca	1080
tcctggagga	gcacggaaaa	gacctggaaa	tcatgcagat	cctcaccagg	gtgaatgaca	1140
gagttgccag	gcactttgag	tctcagtctg	atgacccaca	cttccatgag	aagaagcaga	1200
tcccctgtgt	ggtctccatg	ctcaccaagg	aactctactt	cagtcaatag	ccatatcagg	1260
ggtacattct	agctgagaag	caatgggtca	ctcattaatg	aatcacattt	ttttatgctc	1320
ttgaaatatt	cagaaattct	ccaggatttt	aatttcagga	aaatgtatt		1369

<210> 2

<211> 303

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Asp Asp Gln Gly Cys Ile Glu Glu Gln Gly Val Glu Asp Ser 1 5 10 15

Ala Asn Glu Asp Ser Val Asp Ala Lys Pro Asp Arg Ser Ser Phe Val 20 25 30

Pro Ser Leu Phe Ser Lys Lys Lys Lys Asn Val Thr Met Arg Ser Ile 35 40 45

Lys Thr Thr Arg Asp Arg Val Pro Thr Tyr Gln Tyr Asn Met Asn Phe 50 55 60

Glu Lys Leu Gly Lys Cys Ile Ile Ile Asn Asn Lys Asn Phe Asp Lys 65 70 75 80

Val Thr Gly Met Gly Val Arg Asn Gly Thr Asp Lys Asp Ala Glu Ala 85 90 95

Leu Phe Lys Cys Phe Arg Ser Leu Gly Phe Asp Val Ile Val Tyr Asn 100 105 110

Asp Cys Ser Cys Ala Lys Met Gln Asp Leu Leu Lys Lys Ala Ser Glu 115 120 125

Glu Asp His Thr Asn Ala Ala Cys Phe Ala Cys Ile Leu Leu Ser His 130 135 140

,																
Asp	Leu	Thr	Ala	His 165	Phe	Arg	Gly	Asp	Arg 170	Cys	Lys	Thr	Leu	Leu 175	Glu	
Lys	Pro	Lys	Leu 180	Phe	Phe	Ile	Gln	Ala 185	Cys	Arg	Gly	Thr	Glu 190	Leu	Asp	
Asp	Ala	Ile 195	Gln	Ala	Asp	Ser	Gly 200	Pro	Ile	Asn	Asp	Thr 205	Asp	Ala	Asn	
Pro	Arg 210	Tyr	Lys	Ile	Pro	Val 215	Glu	Ala	Asp	Phe	Leu 220	Phe	Ala	Tyr	Ser	
Thr 225	Val	Pro	Gly	Tyr	Tyr 230	Ser	Trp	Arg	Ser	Pro 235	Gly	Arg	Gly	Ser	Trp 240	
Phe	Val	Gln	Ala	Leu 245	Cys	Ser	Ile	Leu	Glu 250	Glu	His	Gly	Lys	Asp 255	Leu	
Glu	Ile	Met	Gln 260	Ile	Leu	Thr	Arg	Val 265	Asn	Asp	Arg	Val	Ala 270	Arg	His	
Phe	Glu	Ser 275	Gln	Ser	Asp	Asp	Pro 280	His	Phe	His	Glu	Lys 285	Lys	Gln	Ile	
Pro	Cys 290	Val	Val	Ser	Met	Leu 295	Thr	Lys	Glu	Leu	Tyr 300	Phe	Ser	Gln		
<210 <211 <212 <213	L>	3 1159 DNA Homo	sapi	iens												
<400		3											,			
gca	cgago	egg a	atgg	gtgci	ta ti	gtg	aggc	g gti	tgta	gaag	agti	ttcg	tga (gtgc	tcgcag	
ctca	ataco	etg 1	tggci	tgtg	ca to	ccgt	ggcc	a ca	gctg	gttg	gcg	tcgc	ctt	gaaat	tcccag	120
gcc	gtgag	gga g	gttag	gcga	gc c	ctgc	tcaca	a ct	cggc	gctc	tgg	tttt	cgg	tggg	tgtgcc	180
ctg	cacct	ege (ctcti	taca	gc at	tct	catta	a ata	aaag	gtat	cca	tgga	gaa	cact	gaaaac	240
tcaç	gtgga	att (caaa	atcca	at ta	aaaa	attt	g gaa	acca	aaga	tca	taca	tgg	aagc	gaatca	300
atg	gacto	ctg (gaata	atcc	ct g	gaca	acag	t ta	taaa	atgg	atta	atcc	tga (gatg	ggttta	360
tgta	ataat	taa 1	ttaai	taata	aa ga	aatt	ttca	t aa	aagca 3	actg	gaa	tgac	atc	tcgg	tctggt	420

Gly Glu Glu Asn Val Ile Tyr Gly Lys Asp Gly Val Thr Pro Ile Lys 145 150 150 155

acaqatgtcg atgcagcaaa cctcagggaa acattcagaa acttgaaata tgaagtcagg 480 aataaaaatg atcttacacg tgaagaaatt gtggaattga tgcgtgatgt ttctaaagaa 540 qatcacaqca aaaqqaqcaq ttttgtttgt gtgcttctga gccatggtga agaaggaata 600 atttttggaa caaatggacc tgttgacctg aaaaaaaataa caaacttttt cagaggggat 660 cqttqtaqaa qtctaactqq aaaacccaaa cttttcatta ttcaqqcctq ccqtqqtaca 720 gaactggact gtggcattga gacagacagt ggtgttgatg atgacatggc gtgtcataaa 780 ataccagtgg aggccgactt cttgtatgca tactccacag cacctggtta ttattcttgg 840 cgaaattcaa aggatggctc ctggttcatc cagtcgcttt gtgccatgct gaaacagtat 900 gccgacaagc ttgaatttat gcacattctt acccgggtta accgaaaggt ggcaacagaa 960 tttgagtcct tttcctttga cgctactttt catgcaaaga aacagattcc atgtattgtt 1020 tccatgctca caaaagaact ctatttttat cactaaagaa atggttggtt ggtggttttt 1080 tttagtttgt atgccaagtg agaagatggt atatttgggt actgtatttc cctctcattg 1140 gggacctact ctcatgctg 1159

<210> 4

<211> 277

<212> PRT

<213> Homo sapiens

<400> 4

Met Glu Asn Thr Glu Asn Ser Val Asp Ser Lys Ser Ile Lys Asn Leu 1 5 10 15

Glu Pro Lys Ile Ile His Gly Ser Glu Ser Met Asp Ser Gly Ile Ser 20 25 30

Leu Asp Asn Ser Tyr Lys Met Asp Tyr Pro Glu Met Gly Leu Cys Ile 35 40 45

Ile Ile Asn Asn Lys Asn Phe His Lys Ser Thr Gly Met Thr Ser Arg 50 55 60

Ser Gly Thr Asp Val Asp Ala Ala Asn Leu Arg Glu Thr Phe Arg Asn 65 70 75 80

Leu Lys Tyr Glu Val Arg Asn Lys Asn Asp Leu Thr Arg Glu Glu Ile 85 90 95

Val Glu Leu Met Arg Asp Val Ser Lys Glu Asp His Ser Lys Arg Ser

100 105 110

Ser Phe Val Cys Val Leu Leu Ser His Gly Glu Glu Gly Ile Ile Phe 115 120 125

- Gly Thr Asn Gly Pro Val Asp Leu Lys Lys Ile Thr Asn Phe Phe Arg 130 135 140
- Gly Asp Arg Cys Arg Ser Leu Thr Gly Lys Pro Lys Leu Phe Ile Ile 145 150 155 160
- Gln Ala Cys Arg Gly Thr Glu Leu Asp Cys Gly Ile Glu Thr Asp Ser 165 170 175
- Gly Val Asp Asp Met Ala Cys His Lys Ile Pro Val Glu Ala Asp 180 185 190
- Phe Leu Tyr Ala Tyr Ser Thr Ala Pro Gly Tyr Tyr Ser Trp Arg Asn 195 200 205
- Ser Lys Asp Gly Ser Trp Phe Ile Gln Ser Leu Cys Ala Met Leu Lys 210 215 220
- Gln Tyr Ala Asp Lys Leu Glu Phe Met His Ile Leu Thr Arg Val Asn 225 230 235 240
- Arg Lys Val Ala Thr Glu Phe Glu Ser Phe Ser Phe Asp Ala Thr Phe 245 250 255
- His Ala Lys Lys Gln Ile Pro Cys Ile Val Ser Met Leu Thr Lys Glu 260 265 270

Leu Tyr Phe Tyr His 275

- <210> 5
- <211> 31
- <212> DNA
- <213> Artificial sequence
- <220>
- <223> Contains a Bam HI restriction enzyme site (underlined) followed by 18 nucleotides of ICE-LAP-3 coding sequence starting from the presumed terminal amino acid of the processed protein codon
- <400> 5
 gatcggatcc atgcgtgcgg ggacacgggt c

```
<210> 6
 <211> 31
. <212> DNA
 <213> Artificial sequence
 <220>
 <223> Contains complementary sequences to an Xba I site followed by 21
       nucleotides of ICE-LAP-3
 <400> 6
gtactctaga tcattcaccc tggtggagga t
                                                                       31
 <210> 7
 <211> 31
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> Contains a Bam HI restriction enzyme site followed by 18
        nucleotides of ICE-LAP-4 coding sequence starting from the
        presumed terminal amino acid of the processed protein codon
 <400> 7
 gatcggatcc atggagaaca ctgaaaactc a
                                                                       31
 <210> 8
 <211> 31
 <212> DNA
 <213> Artificial sequence
 <223>
       Contains complementary sequences to an Xba I site followed by 21
        nucleotides of ICE-LAP-4
 <400>
 gtactctaga ttagtgataa aaatagagtt c
                                                                       31
 <210> 9
 <211> 22
 <212> DNA
 <213> Artificial sequence
 <220>
 <223>
        Contains the ICE-LAP-3 translational initiation site ATG followed
        by 5 nucleotides of ICE-LAP-3 coding sequence starting from the
        initiation codon
 <400>
                                                                       22
 gactatgcgt gcggggacac gg
 <210> 10
 <211> 53
 <212> DNA
 <213> Artificial sequence
```

<220> <223>	Contains translation stop codon, HA tag and the last 21 nucleotides of the ICE-LAP-3 coding sequence, not including the stop codon												
<400> aatcaa	<400> 10 aatcaagcgt agtctgggac gtcgtatggg tattcaccct ggtggaggat ttg 5												
<210><211><211><212><213>	11 21 DNA Artificial sequence												
<220> <223>	Contains the ICE-LAP-4 translational initiation site, ATG, followed by 15 nucleotides of ICE-LAP-4 coding sequence starting from the initiation codon												
<400> 11 accatggaga acactgaaaa c 23													
<211> <212>	12 53 DNA Artificial sequence												
<220> <223>													
<400> aatcaa	12 gcgt agtctgggac gtcgtatggg tagtgataaa aatagagttc ttt 5:												
<212>	<210> 13 <211> 503 <212> PRT <213> Caenorhabditis elegans												
<400>	13												
Met Me	t Arg Gln Asp Arg Arg Ser Leu Leu Glu Arg Asn Ile Met Met 5 10 15												
Phe Se	r Ser His Leu Lys Val Asp Glu Ile Leu Glu Val Leu Ile Ala 20 25 30												
Lys Gl:	n Val Leu Asn Ser Asp Asn Gly Asp Met Ile Asn Ser Cys Gly 35 40 45												
Thr Va	l Arg Glu Lys Arg Arg Glu Ile Val Lys Ala Val Gln Arg Arg 55 60												

Gly 65	Asp	Val	Ala	Phe	Asp 70	Ala	Phe	Tyr	Asp	Ala 75	Leu	Arg	Ser	Thr	Gly 80
His	Glu	Gly	Leu	Ala 85	Glu	Val	Leu	Glu	Pro 90	Leu	Ala	Arg	Ser	Val 95	Asp
Ser	Asn	Ala	Val 100	Glu	Phe	Glu	Cys	Pro 105	Met	Ser	Pro	Ala	Ser 110	His	Arg
Arg	Ser	Arg 115	Ala	Leu	Ser	Pro	Ala 120	Gly	Tyr	Thr	Ser	Pro 125	Thr	Arg	Val
His	Arg 130	Asp	Ser	Val	Ser	Ser 135	Val	Ser	Ser	Phe	Thr 140	Ser	Tyr	Gln	Asp
Ile 145	Tyr	Ser	Arg	Ala	Arg 150	Ser	Arg	Ser	Arg	Ser 155	Arg	Ala	Leu	His	Ser 160
Ser	Asp	Arg	His	Asn 165	Tyr	Ser	Ser	Pro	Pro 170	Val	Asn	Ala	Phe	Pro 175	Ser
Gln	Pro	Ser	Ser 180	Ala	Asn	Ser	Ser	Phe 185	Thr	Gly	Cys	Ser	Ser 190	Leu	Gly
Tyr	Ser	Ser 195	Ser	Arg	Asn	Arg	Ser 200	Phe	Ser	Lys	Ala	Ser 205	Gly	Pro	Thr
Gln	Tyr 210	Ile	Phe	His	Glu	Glu 215	Asp	Met	Asn	Phe	Val 220	Asp	Ala	Pro	Thr
Ile 225	Ser	Arg	Val	Phe	Asp 230	Glu	Lys	Thr	Met	Tyr 235	Arg	Asn	Phe	Ser	Ser 240
Pro	Arg	Gly	Met	Cys 245	Leu	Ile	Ile	Asn	Asn 250	Glu	His	Phe	Glu	Gln 255	Met
Pro	Thr	Arg	Asn 260	Gly	Thr	Lys	Ala	Asp 265	Lys	Asp	Asn	Leu	Thr 270	Asn	Leu
Phe	Arg	Cys 275	Met	Gly	Tyr	Thr	Val 280	Ile	Cys	Lys	Asp	Asn 285	Leu	Thr	Gly
Arg	Gly 290	Met	Leu	Leu	Thr	Ile 295	Arg	Asp	Phe	Ala	Lys 300	His	Glu	Ser	His

Gly Asp Ser Ala Ile Leu Val Ile Leu Ser His Gly Glu Glu Asn Val 305 310 315 320

Ile Ile Gly Val Asp Asp Ile Pro Ile Ser Thr His Glu Ile Tyr Asp 325 330 335

Leu Leu Asn Ala Ala Asn Ala Pro Arg Leu Ala Asn Lys Pro Lys Ile 340 345 350

Val Phe Val Gln Ala Cys Arg Gly Glu Arg Arg Asp Asn Gly Phe Pro 355 360 365

Val Leu Asp Ser Val Asp Gly Val Pro Ala Phe Leu Arg Arg Gly Trp 370 375 380

Asp Asn Arg Asp Gly Pro Leu Phe Asn Phe Leu Gly Cys Val Arg Pro 385 390 395 400

Gln Val Gln Gln Val Trp Arg Lys Lys Pro Ser Gln Ala Asp Ile Leu 405 410. 415

Ile Ala Tyr Ala Thr Thr Ala Gln Tyr Val Ser Trp Arg Asn Ser Ala 420 425 . 430

Arg Gly Ser Trp Phe Ile Gln Ala Val Cys Glu Val Phe Ser Thr His 435 440 445

Ala Lys Asp Met Asp Val Val Glu Leu Leu Thr Glu Val Asn Lys Lys 450 455 460

Val Ala Cys Gly Phe Gln Thr Ser Gln Gly Ser Asn Ile Leu Lys Gln 465 470 475 480

Met Pro Glu Met Thr Ser Arg Leu Leu Lys Lys Phe Tyr Phe Trp Pro 485 490 495

Glu Ala Arg Asn Ser Ala Val 500

<210> 14

<211> 404

<212> PRT

<213> Homo sapiens

<400> 14

Met Ala Asp Lys Val Leu Lys Glu Lys Arg Lys Leu Phe Ile Arg Ser

1

Met Gly Glu Gly Thr Ile Asn Gly Leu Leu Asp Glu Leu Leu Gln Thr 20 25 30

Arg Val Leu Asn Lys Glu Glu Met Glu Lys Val Lys Arg Glu Asn Ala 35 40 45

Thr Val Met Asp Lys Thr Arg Ala Leu Ile Asp Ser Val Île Pro Lys 50 60

Gly Ala Gln Ala Cys Gln Ile Cys Ile Thr Tyr Ile Cys Glu Glu Asp 65 70 75 80

Ser Tyr Leu Ala Gly Thr Leu Gly Leu Ser Ala Asp Gln Thr Ser Gly 85 90 95

Asn Tyr Leu Asn Met Gln Asp Ser Gln Gly Val Leu Ser Ser Phe Pro 100 105 110

Ala Pro Gln Ala Val Gln Asp Asn Pro Ala Met Pro Thr Ser Ser Gly
115 120 125

Ser Glu Gly Asn Val Lys Leu Cys Ser Leu Glu Glu Ala Gln Arg Ile 130 135 140

Trp Lys Gln Lys Ser Ala Glu Ile Tyr Pro Ile Met Asp Lys Ser Ser 145 150 155 160

Arg Thr Arg Leu Ala Leu Ile Ile Cys Asn Glu Glu Phe Asp Ser Ile 165 170 175

Pro Arg Arg Thr Gly Ala Glu Val Asp Ile Thr Gly Met Thr Met Leu 180 185 190

Leu Gln Asn Leu Gly Tyr Ser Val Asp Val Lys Lys Asn Leu Thr Ala 195 200 205

Ser Asp Met Thr Thr Glu Leu Glu Ala Phe Ala His Arg Pro Glu His 210 215 220

Lys Thr Ser Asp Ser Thr Phe Leu Val Phe Met Ser His Gly Ile Arg 225 230 235 240

Glu Gly Ile Cys Gly Lys Lys His Ser Glu Gln Val Pro Asp Ile Leu

- Gln Leu Asn Ala Ile Phe Asn Met Leu Asn Thr Lys Asn Cys Pro Ser 260 265 270
- Leu Lys Asp Lys Pro Lys Val Ile Ile Ile Gln Ala Cys Arg Gly Asp 275 280 285
- Ser Pro Gly Val Val Trp Phe Lys Asp Ser Val Gly Val Ser Gly Asn 290 295 300
- Leu Ser Leu Pro Thr Thr Glu Glu Phe Glu Asp Asp Ala Ile Lys Lys 305 310 315 320
- Ala His Ile Glu Lys Asp Phe Ile Ala Phe Cys Ser Ser Thr Pro Asp 325 330 335
- Asn Val Ser Trp Arg His Pro Thr Met Gly Ser Val Phe Ile Gly Arg 340 345 350
- Leu Ile Glu His Met Gln Glu Tyr Ala Cys Ser Cys Asp Val Glu Glu 355 360 365
- Ile Phe Arg Lys Val Arg Phe Ser Phe Glu Gln Pro Asp Gly Arg Ala 370 375 380
- Gln Met Pro Thr Thr Glu Arg Val Thr Leu Thr Arg Cys Phe Tyr Leu 385 390 395 400

Phe Pro Gly His