应用数学导论大作业

敖睿成

1 摘要

考虑方程

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u \\ \text{边值条件} \end{cases}$$

本次实验中,依次针对一维情形, $\Omega = [0,1] \times [0,1]$,L-型区域上的泊松问题,分别使用有限元方法,和中心差分方法求解方程,并给出相关理论分析和实验结果。

2 一维自适应有限元方法

对一维问题

$$\begin{cases}
-u'' = f & \Omega = (0, L) \\
u'(0) = \kappa_0(u(0) - g_0) \\
u'(L) = \kappa_L(u(L) - g_L)
\end{cases}$$

对于 N+1 个结点 $x_0=0, x_1=\frac{L}{N}, ...x_N=L$, 在子区间 $[x_{i-1},x_{i+1}](i=1,2,...,N-1)$ 上取分段线性函数:

$$\phi_i(x) = \begin{cases} \frac{x - x_{i-1}}{h_i}, & x \in [x_{i-1}, x_i] \\ \frac{x_{i+1} - x}{h_{i+1}}, & x \in [x_i, x_{i+1}] \\ 0, & x \notin [x_{i-1}, x_{i+1}] \end{cases}$$

其中 $h_i=x_i-x_{i-1}$, 对于边界两个结点,考虑 $x_0,x_1;x_{N-1},x_N$ 对应的两个两点线性插值函数,这样得到 N+1 个基函数 $\phi_0,\phi_1,...,\phi_N$, 现求解 $v(x)=\sum_{j=0}^N u_j\phi_j(x)$, 使得

$$-\int_{0}^{1} u''(x)v(x)dx = \int_{0}^{1} f(x)v(x)dx$$

成立,通过变分方法得到:

$$\begin{cases} -\frac{u_{i-1}}{h_i} + (\frac{1}{h_i} + \frac{1}{h_{i+1}})u_i - \frac{u_{i+1}}{h_{i+1}} = \int_{x_{i-1}}^{x_{i+1}} f\phi'(x)dx & i = 1, 2, ..., N - 1 \\ & (\frac{1}{h_1} + \kappa_0)u_0 - \frac{u_1}{h_1} = f_0 \\ & (\frac{1}{h_N} + \kappa_L)u_N - \frac{u_{N-1}}{h_N} = f_N \end{cases}$$

$$\Leftrightarrow a_i = \frac{1}{h_i} + \frac{1}{h_{i+1}}, i = 1, 2, ..., N-1,$$

$$A = \begin{pmatrix} \frac{1}{h_1} + \kappa_0 & -\frac{1}{h_1} \\ -\frac{1}{h_1} & a_1 & -\frac{1}{h_2} \\ & -\frac{1}{h_2} & a_2 & \ddots \\ & & \ddots & \ddots & -\frac{1}{h_N} \\ & & -\frac{1}{h_N} & \frac{1}{h_N} + \kappa_L \end{pmatrix}$$

得到方程

$$Au = F$$

分别应用均匀剖分和自适应方法,在总点数 N=10,20,80 时得到如下结果: $\kappa_0=10^6, k_1=0, g_0=0, f(x)=e^{-100(x-0.5)^2}$ 时,

图 1: 均匀剖分 10

图 2: 自适应 10

图 3: 均匀剖分 20

图 4: 自适应 20

0.0800 0.0700 0.0600 0.0400 0.0300 0.0200 0.0100 0.0100 0.0100 0.0000 0.0100

图 5: 均匀剖分 80

图 6: 自适应 80

$$\kappa_0=10^6, k_1=10^5, g_0=0, g_L=0, f(x)=e^{-100(x-0.5)^2}$$
 时,

图 7: 均匀剖分 10

图 8: 自适应 10

图 9: 均匀剖分 20

图 10: 自适应 20

图 11: 均匀剖分 80

图 12: 自适应 80

$$\kappa_0=10^6, k_1=0, g_0=-1, f(x)=e^{-100(x-0.5)^2}$$
 时,

图 13: 均匀剖分 10

图 15: 均匀剖分 20

图 17: 均匀剖分 80

图 14: 自适应 10

图 16: 自适应 20

图 18: 自适应 80

可以看到,相比较均匀剖分,自适应方法在曲率大的点附近加密得较细,所得函数也更为平滑。

3 正方形区域泊松方程

3.1 问题

考虑热传导方程:

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u \\ u|_{\partial\Omega\times[0,1]} = 0, \Omega = [0,1] \times [0,1] \\ u|_{t=0} = \sin(\pi x)\sin(\pi y) \end{cases}$$

它有解析解 $u = e^{-2\pi^2 t} \sin(\pi x) \sin(\pi y)$,下面我们使用不同数值方法计算方程近似解,并给出相关分析。

3.2 稳定性分析

考察 Laplace 算子

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

我们使用中心差分方法

$$L_{h_x,h_y}U_{i,j}^m \stackrel{\text{def}}{=} \frac{U_{i-1,j}^m - 2U_{i,j}^m + U_{i+1,j}^m}{h_x^2} + \frac{U_{i,j-1}^m - 2U_{i,j}^m + U_{i,j+1}^m}{h_y^2}$$

这里 h_x, h_y 为对应分量的区间步长,对于 $\frac{\partial u}{\partial t}$,我们使用一阶向前差分方法:

$$D_k U_{i,j}^m \stackrel{\text{def}}{=} \frac{U_{i,j}^{m+1} - U_{i,j}^m}{k}$$

这里 k 为时间步长。现在考虑等式:

$$(1 - \theta)L_{h_x, h_y}U_{i,j}^m + \theta L_{h_x, h_y}U_{i,j}^{m+1} = D_k U_{i,j}^m$$

当 $\theta=1$ 时,为隐式格式, $\theta=0.5$ 时,为 Crank-Nicolson 格式, $\theta=0$ 时,为显式格式。令

$$\tilde{U} = u\left(ih_x, jh_y, \left(m + \frac{1}{2}\right)k\right)$$

应用 Taylor 公式,可以得到

$$\begin{split} L_{hx,hy}U^{m}_{i,j} = & \tilde{U}_{xx} + \tilde{U}_{yy} + \frac{2}{3!} \left(3\tilde{U}_{txx} \left(-\frac{1}{2}k \right) + 3\tilde{U}_{tyy} \left(-\frac{1}{2}k \right) \right) \\ & + \frac{2}{4!} \left(\tilde{U}_{xxxx} h_{x}^{2} + \tilde{U}_{yyyy} h_{y}^{2} \right) + O(k^{2} + h_{x}^{4} + h_{y}^{4}) \\ L_{hx,hy}U^{m+1}_{i,j} = & \tilde{U}_{xx} + \tilde{U}_{yy} + \frac{2}{3!} \left(3\tilde{U}_{txx} \frac{1}{2}k + 3\tilde{U}_{tyy} \frac{1}{2}k \right) \\ & + \frac{2}{4!} \left(\tilde{U}_{xxxx} h_{x}^{2} + \tilde{U}_{yyyy} h_{y}^{2} \right) + O(k^{2} + h_{x}^{4} + h_{y}^{4}) \end{split}$$

从而有:

$$(1 - \theta)L_{h_x,h_y}U_{i,j}^m + \theta L_{h_x,h_y}U_{i,j}^{m+1} - \Delta \tilde{U} = \left(\left(\theta - \frac{1}{2}\right)k + \frac{h_x^2}{12}\right)\tilde{U}_{xxxx} + \left(\left(\theta - \frac{1}{2}\right)k + \frac{h_y^2}{12}\right)\tilde{U}_{yyyy} + (2\theta - 1)k\tilde{U}_{xxyy} + O(k^2 + h_x^4 + h_y^4)$$

这样截断误差 € 满足

$$\mathcal{E} = \begin{cases} O(k^2 + h_x^2 + h_y^2) & \theta = 0.5 \\ O(k + h_x^2 + h_y^2) & \theta \neq 0.5 \\ O(k + h_x^4 + h_y^4) & h_x = h_y, \theta = 0.5 - 1/12\lambda \end{cases}$$

可以看出, C-N 方法具有较高的截断误差阶数, 现在考虑 Fourier 函数

$$U_{j,k}^{m} = \lambda_{\alpha}^{m} e^{i(\alpha_{x}x_{j} + \alpha_{y}y_{k})}, \quad \alpha = (\alpha_{x}, \alpha_{y})$$

解得

$$\lambda_k = \frac{1 - 4(1 - \theta) \left(\lambda_x \sin^2(\alpha_x h_x/2) + \lambda_y \sin^2(\alpha_y h_y/2)\right)}{1 + 4\theta \left(\lambda_x \sin^2(\alpha_x h_x/2) + \lambda_y \sin^2(\alpha_y h_y/2)\right)}$$

因此, 我们有稳定性条件

$$\begin{cases} 2(\lambda_x + \lambda_y)(1 - 2\theta) \le 1 & 0 \le \theta < 1/2 \\$$
无条件收敛
$$1/2 \le \theta \le 1 \end{cases}$$

这表明当 $h_x = h_y = h$ 时,对于显式格式,我们需要选取 $\lambda \leq \frac{1}{4}$, 即 $h^2 \geq 4k$,才能得到收敛结果。

3.3 数值实验

考虑由中间 $(N-1)\times (N-1)$ 个点,其中 $N=\frac{1}{h}$ 为单元网格长,则对应的差分矩阵

$$L_{h} = \begin{pmatrix} A_{h} & I_{N-1}/h \\ I_{N-1}/h^{2} & A_{h} & I_{N-1}/h^{2} \\ & I_{N-1}/h^{2} & A_{h} & \ddots \\ & & \ddots & \ddots & I_{N-1}/h^{2} \\ & & & I_{N-1}/h^{2} & A_{h} \end{pmatrix}$$

$$A_{h} = \begin{pmatrix} -2/h^{2} - 2/h^{2} & 1/h^{2} & & & \\ 1/h^{2} & -2/h^{2} - 2/h^{2} & 1/h^{2} & & & \\ & 1/h^{2} & -2/h^{2} - 2/h^{2} & \ddots & & \\ & & \ddots & \ddots & 1/h^{2} \\ & & & 1/h^{2} & -2/h^{2} - 2/h^{2} \end{pmatrix}$$

这样,得到如下方程

$$(I - k\theta L_h)U^{m+1} = (I + k(1 - \theta)L_h)U^m$$

其中 U 为对应的网格向量化。下面考虑几种求解对应方程的方法。

Cholesky 分解

考察方程 Ax = b, 其中 A 为对称正定矩阵,则我们有如下 Cholesky 分解用以求解方程:

Algorithm 1: 利用向量外积的 cholesky 分解

```
Input: A \in \mathbb{R}^{n \times n}

Output: L \in \mathbb{R}^{n \times n}, LL^{\mathrm{T}} = A

1 for j = 1 : n do

2  if j > 1 then

3  A(j : n, j) = A(j : n, j) - A(j : n, 1 : j - 1)A(j, 1 : j - 1)^{\mathrm{T}}

4  A(j : n, j) = A(j : n, j) / \sqrt{A(j, j)}
```

 $\mathbf{5}$ return tril(A);

计算量约为 $O(n^3/3)$, 是直接进行 Gauss 消元法的一半,在矩阵阶数较小时具有很快速度,但当矩阵阶数较大时,可以使用分块的方法加快速度。

Gauss-Seidel 迭代法

令 A = D - L - U, 其中 D, L, U 分别为对角矩阵、下三角矩阵和上三角矩阵,则我们有如下算法:

Algorithm 2: G-S 迭代法

Input: $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$, TOLERANCE tol, INITIALVALUE x_0 MAXITERATION ite

Output: $x \in \mathbb{R}^n$, $Ax \approx b$

- ı Divide A into D,L and U
- $res = res_0 = b Ax$
- 3 while $norm(res)/norm(res_0) > tol \ or \ ite_{number} \leq ite \ do$

```
4 Update y \leftarrow Ux

5 Get x by solving (D - L)x = y + b

6 Update res = -y

7 Update Ux \leftarrow res + y

8 if norm(res) \le tol * norm(res_0) then

9 return x
```

10 return x;

这里利用到了 $res = b - Ax^{m+1} = b - (D - L)x^{m+1} + Ux^{m+1} = Ux^{m+1} - Ux^m$ 。可以证明,当 A 为对称正定矩阵时,G-S 迭代法是收敛的。

多重网格法

对于单元格长为 h = 1/N 的细网格,我们希望找到一个较好的初始值,从而加快迭代法收敛的速度,故考虑在细网格上先进行若干次迭代,将误差限制在粗网格上,在粗网格解关于误差的方程,再把近似解提升回细网格,这样两者相加,可以认为得到了更近的初值,再重复这样的操作,直到误差满足要求,这里可以重复迭代,算法如下:

Algorithm 3: 多重网格法

Input: $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$, EDGE h, MAXITERATION ite_1 , INITIALVALUE x_0

Output: $x \in \mathbb{R}^n$, $Ax \approx b$

1 if size(x) < threshold then

Solve Ax = b by **G-S** with **INITIALVALUE** x_0

3 else

- Solve Au = b by G-S with INITIALVALUE x_0 and MAXITERATION ite_1
- 5 Get residue: $res \leftarrow b Au$
- 6 Get coarse residue: $\widehat{res} \leftarrow I_h^{2h} res$
- $\widehat{A} \leftarrow I_h^{2h} A I_{2h}^h$
- 8 Solve $\widehat{A}\widehat{e} = \widehat{res}$ with **EDGE** 2*h, **INITIALVALUE** 0 and **MAXITERATION** ite by **G-S**
- $e \leftarrow I_{2h}^h \hat{e}$
- 10 Update $u \leftarrow u + e$
- Solve Ax = b by **G-S** with **INITIALVALUE** u and **MAXITERATION** ite_2

12 return x;

这里 I_h^{2h}, I_{2h}^h 分别为限制和提升矩阵。当初始值较差时,多重网格的速度一般比直接 G-S 迭代快。

数值结果

对于近似解 \tilde{U}_h , 在每个单元上使用双线性函数来逼近原区域。对于单元 K, 定义映射:

$$\tilde{F}: \xi = \frac{2(x - x_c)}{h_x}, \eta = \frac{2(y - y_c)}{h_y}, \quad (x, y) \in K, (\xi, \eta) \in \tilde{K}$$

定义如下的基函数:

$$\Phi_1 = \frac{(1-\xi)(1-\eta)}{4}, \Phi_2 = \frac{(1-\xi)(1+\eta)}{4}$$
$$\Phi_3 = \frac{(1+\xi)(1-\eta)}{4}, \Phi_4 = \frac{(1+\xi)(1+\eta)}{4}$$

令 $u_h(x,y)|_K = \hat{u}(\xi,\eta) = \sum_{i=1}^4 u_i \Phi_i(\xi,\eta)$, 我们计算误差

$$||u(x,y,1) - u_h(x,y,1)||_0 = (\int_{\Omega} (u(x,y,1) - u_h(x,y,1))^2 dxdy)^{1/2}$$

和相对误差

$$||u(x,y,1) - u_h(x,y,1)||_0/|\int_{\Omega} u dx dy|$$

数值结果如下:

空间步长 h	时间步长 k	μ	相对误差		
			显式格式	隐式格式	Crank-Nicolson 格式
1/64	1/256	16	$+\infty$	2.6179	4.5217e-2
	1/512	8	$+\infty$	0.9134	7.5452e-3
	1/2048	2	$+\infty$	0.2626	5.3124e-3
	1/4096	1	$+\infty$	7.6823e-2	5.2517e-3
	1/16384	1/4	3.1562e-2	3.2415e-2	5.4135e-3
1/128	1/1024	16	$+\infty$	5.3681	5.3268e-3
	1/4096	4	$+\infty$	0.4588	3.6782e-3
	1/16384	1	$+\infty$	7.6582e-2	2.5796e-3
	1/65536	1/4	8.3725e-3	8.2373e-3	4.7599e-3

表 1: 不同离散格式在最终时间层 t=1 的稳定性比较

100 50 0 -50 -100 1 0.5 0.6 0.8 1

图 19: t = 1 时图像

图 20: $\mu > 1/4$ 时显式格式

可以看到,与理论分析相同,当网格比 $\mu > \frac{1}{4}$ 时,显式格式是不稳定的,而 C-N 方法在网格比较大时就有很好的稳定性,但随着网格比和步长的减小,三者的表现最终接近。

现在取 h=1/32,1/128,1/512,k=1/512,分别应用 Cholesky 分解,G-S 迭代法和 V-cycle 多重网格 法求解 t=1 的解,对于迭代法,每次以上一个时间层的解为初始值,所得时间分别如下:

时间步长 k	空间步长 h	总时间 (s)			
		多重网格 V	Cholesky	Gauss-Seidel	
	1/32	1.3298e + 1	7.2836	7.0681	
1/512	1/128	3.6337e + 2	1.0274e + 2	2.3415e+3	
	1/512	6.3446e + 3	7.5289e + 3	\	

表 2: 时间步长 k=1/512 时,三种方法求方程在 t=1 解的总时间

可以看出多重网格的时间大致为 $O(N^2)$ 。

对每个固定的 h, 分别用三种格式求近似解, 对每一种格式, 令 k 从大到小依次取 2 的幂, 比较取不同 k 时求解的误差, 取出其中最小的, 并且计算误差

$$||u(x,y,1)-u_h(x,y,1)||_0$$

所得结果如下:

图 21: 对不同的 h, 选取最佳步长所得误差

可以发现,虽然显式格式在 $\lambda > 1/4$ 时是发散的,但在适当的网格比下,反而可以得到很好的结果。

4 L 型区域上的泊松方程

4.1 问题

考虑如下泊松问题:

$$\begin{cases}
-\Delta = f & (x, y) \in \Omega, \\
u|_{\partial\Omega} = 0
\end{cases}$$

其中 Ω 为如下 L 型区域, $u(x,y) = r^{\frac{2}{3}} sin(\frac{2}{3}\theta)(1-x^2)(1-y^2)$ 。

图 22: L 型区域

它的函数值和 Δ 在 $[0,1] \times [0,1]$ 区间上的图像如下:

可以看到,在 (0,0) 的邻域内 $\Delta \to +\infty$ 。下面我们分别使用均匀剖分和自适应剖分,利用差分方法求方程的近似解。

4.2 数值实验

LDL 分解

考察方程 Ax = b,对于对称非正定矩阵 A, Cholesky 分解不再可行,此时可以考虑同样利用了对称性的 LDL

分解,得到 $A = LDL^{T}$,依次求解 Lz = b, Dy = z, $L^{T}x = y$ 得到方程的解,这三个方程分别为下三角、对角、上三角的,可以在 $O(n^{2})$ 时间内求解,故 LDL 分解所需要的运算时间约为 $O(n^{3}/3)$ 的,下面给出算法:

Algorithm 4: 利用向量外积的 LDL 分解

Output: $L, D \in \mathbb{R}^{n \times n}, LDL^{\mathrm{T}} = A$

Input: $A \in \mathbb{R}^{n \times n}$

```
1 for j = 1 : n - 1 do
      A(j+1:n,j) = A(j+1:n,j)/A(j,j)
      A(j+1:n,j+1:n) = A(j+1:n,j+1:n) - A(j+1:n,j) * A(j,j+1:n)
4 L = tril(A, -1); D = diag(A)
5 return L, D;
   当矩阵较大时,可以采用分块 LDL 分解,算法如下:
Algorithm 5: 分块 LDL 分解
   Input: A \in \mathbb{R}^{n \times n}, MINISIZE, NUM
   Output: L, D \in \mathbb{R}^{n \times n}, LDL^{\mathrm{T}} = A
1 if n \leq MINISIZE then
      Solve A = LDL^{T} with LDL
\mathbf{s} subsize = \mathbf{ceil}(n/\mathbf{NUM})
4 for j = 1 : subsize : n do
      if j+subsize > n then
5
          Solve A(j:n,j:n) = LDL^{T} with LDL, update tril(A(j:n,j:n)) with L,D
 6
      else
7
          Solve A(j:j+\text{subsize}-1, j:j+\text{subsize}-1) = LDL^{T} with algorithm 5
 8
          Update tril(A(j:j+subsize-1,j:j+subsize-1)) with L, D
9
          Solve LV = A(j: j+subsize-1, j+subsize: n)
10
          Solve DU^{\mathrm{T}} = V
11
          Update A(j+\text{subsize: } n, j: j+\text{subsize-1}) \leftarrow U
12
          Update A(j+\text{subsize: }n, j+\text{subsize: }n) \leftarrow A(j+\text{subsize: }n, j+\text{subsize: }n) - UV
13
14 L = tril(A, -1), D = diag(A)
15 return L, D;
```

数值结果

将 L 型区域分别以步长 $h = h_x = h_y = 2/N, N = 32,64,128,256,512$ 进行均匀剖分,使用 LDL 分解,G-S 迭代,松弛因子为 1.5 的超松弛迭代法,V-cycle 多重网格法求解差分离散方程 $A_hU_h = F_h$ 的解 U_h 或近似解 \tilde{U}_h ,其中系数矩阵为稀疏的对称正定矩阵,形如下图:

图 25: L 型差分系数矩阵

编号的顺序是从右上角 (1-h,1-h) 开始,从上到下,从右往左编号。迭代法的初始值为全零网格,近似解 \tilde{U}_h 满足误差关系

$$||A_h \tilde{U}_h - F_h||_2 / ||F_h||_2 \le 10^{-8}$$

所花的时间如下:

N = 2/h	总时间 (s)				
N = 2/h	LDL 分解	G-S 迭代 V	超松弛迭代	多重网格	
32	5.1174e-2	1.3309e-2	8.5721e-3	3.4924e-3	
64	2.9712e-1	2.9704	7.6794e-2	1.5284e-2	
128	1.3829	6.1109	2.2015	6.6295e-2	
256	1.7325e+1	1.0036e+2	3.6239e+1	2.6981e-1	
512	1.9108e + 2	2.1589e + 3	7.5086e + 2	1.0992	

表 3: 时间步长 k=1/512 时,三种方法求方程在 t=1 解的总时间

接下来使用自适应剖分差分方法求解方程。格式如下:

Algorithm 6: L型区域自适应方法

Input: INITIALGRID U_0 , ERROR Γ_0, θ , TOLERANCE $\epsilon, k = 0$

Output: U, N

1 Update $\eta(\Gamma_{k-1}) \leftarrow \eta(\Gamma_k)$

 $_2$ while TRUE do

3 | if
$$\eta(\Gamma_k) \leq \epsilon$$
 then
4 | $N = k, U = U_k$ Return

Find minimal subset unit set \mathcal{M}_k such that $\eta(\mathcal{M}_k)^2 \geq \theta \eta(\Gamma_k)^2$

6 Update $\Gamma_k \leftarrow \Gamma_{k+1}$

7 Update $k \leftarrow k+1$

s return N, U;

这里 $\eta(\Gamma)$ 为后验误差估计因子:

$$\eta_K^2 = h_K^2 ||f||_{L^2(K)}^2 + \sum_{e \in \mathcal{E}_K} h_e ||[\frac{\partial u_h}{\partial n_e}]||_{L^2(e)'}^2$$

其中 h_K 是单元 K 最长边的长度, \mathcal{E} 是 K 所有不在边界的边的集合, h_e 是边 e 的长度, n_e 是 e 上的外法向方向, $\left[\frac{\partial u_h}{\partial n_e}\right]$ 是法向导数跨过 e 的跳跃,即

$$\frac{\partial u_h}{\partial n_e}|_{K^+} - \frac{\partial u_h}{\partial n_e}|_{K^-}$$

 $\eta(G)$ 表示单元集合 G 中所有单元的后验误差之和。每次剖分把所选集合中的单元加细,并将边界上有两个 悬点的单元也加细,使得任意一个单元的边界上只有至多一个悬点。需要注意的是,在计算中悬点取边两端 点函数值的均值。分别以 $\theta=0.8,0.6,0.3,0.2,0.1,\epsilon=10^{-6}$,一般来说, θ 越大,每次加密得网格越多,单步时间越长,收敛到精确解所需的步数越少。得出网格剖分图如下:

图 26: $\theta = 1.1$ 次剖分

图 27: $\theta = 1.2$ 次剖分

图 28: $\theta = 1,3$ 次剖分

图 30: $\theta = 0.8,4$ 次剖分

图 32: $\theta = 0.8,8$ 次剖分

图 29: $\theta = 1.4$ 次剖分

图 31: $\theta = 0.8,7$ 次剖分

图 33: $\theta = 0.8,10$ 次剖分

图 34: $\theta = 0.6,8$ 次剖分

图 36: $\theta = 0.6,12$ 次剖分

图 38: $\theta = 0.3,10$ 次剖分

图 35: $\theta = 0.6,10$ 次剖分

图 37: $\theta = 0.6,18$ 次剖分

图 39: $\theta = 0.3,15$ 次剖分

图 40: $\theta = 0.3,20$ 次剖分

图 42: $\theta = 0.2,10$ 次剖分

图 44: $\theta = 0.2,30$ 次剖分

图 41: $\theta = 0.3,30$ 次剖分

图 43: $\theta = 0.2,20$ 次剖分

图 45: $\theta = 0.2,50$ 次剖分

图 46: $\theta = 0.1,20$ 次剖分

图 47: $\theta = 0.1,40$ 次剖分

图 48: $\theta = 0.1,60$ 次剖分

图 49: $\theta = 0.1,80$ 次剖分

误差比较

用结点插值的分片线性函数 u_h 逼近原函数,得到误差

$$e_{h,0} = (\int_{\Omega} (u(x,y) - u_h(x,y))^2 dx dy)^{\frac{1}{2}}$$

和

$$e_{h,1} = \left(\int_{\Omega} |\nabla u(x,y) - \nabla u_h(x,y)|^2 dx dy \right)^{\frac{1}{2}}$$

对于均匀剖分,计算 h=2/N 取不同值时的 $\ln e_{h,0}/\ln h$,对于自适应方法,计算 $\ln e_{h,0}/\ln h_l$,其中 $h_l=1/|\Gamma_l|^{\frac{1}{2}},|\Gamma_l|$ 是网格 Γ_l 中的正方形个数。结果如下:

室间步长 $h=2/N$	$e_{h,0}$	$e_{h,1}$	$\ln e_{h,0}/\ln h$
1/16	3.6513e-3	3.4570	2.0243
1/32	1.3800e-3	1.7254	1.9002
1/64	5.4831e-4	8.5952e-1	1.8054
1/128	2.2694e-4	4.2760e-1	1.7293
1/256	9.7381e-5	2.2001e-1	1.6657

表 4: 均匀剖分不同步长时的误差

一阶误差与步长的对数关系大致上是线性关系,而梯度误差与 N 出现了线性关系,推测出现这种现象的原因是原函数的梯度在原点处趋近于无穷,导致在原点附近用线性插值函数逼近梯度的误差反而增大,也可能是积分方法的选取造成的。

単元格数 Γ _l	$e_{h,0}$	$e_{h,1}$	$\ln e_{h,0}/\ln h$
5	0.1237	9.3110e+1	2.5960
16	0.1086	4.6557e + 1	1.6014
27	0.1077	2.3284e+1	1.3515
49	5.4296e-2	1.1644e+1	1.4971
131	3.7989e-2	5.8239	1.3416
364	2.1777e-2	2.8210	1.3666
1088	1.1274e-2	1.8207	1.3804

表 5: 自适应网格在不同单元格数时的误差

在编写代码的过程中,我所碰到的困难和花费的精力主要在如何判断悬点、进行自适应剖分和建立差分方程上,而解方程则使用的 matlab 基本的求解器。推测可能是在自适应加细的过程中,在原点附近由于梯度趋近于无穷,相对于其他地方就更密,这就导致建立差分方程时,一部分步长的倒数的阶数远大于另一部分,由于解方程的方法是使用的 matlab 基本求解器 (没有想到有很好的方法处理不规则稀疏矩阵),且系数矩阵没有经过整理 (没有想到该怎么去整理,因为后面的单元格剖分不规则),导致形状很差,可能解方程的舍入误差占了主导地位,而第二题均匀剖分的系数矩阵形如图 25,近似于分块三角阵,形状是很好的,而且各个系数大小相近,使得解得的结果就相对好。因此,自适应方法中再加细很难得到更好的结果,所耗费的时间也远远超过了均匀剖分,除非采用更好的存储系数矩阵和求解的方法。从这次实验看出,简单地套用自适应方法不一定能得到比均匀剖分更好的结果,也应该考虑如何让存储和求解方程更加有效。