CHE 320 Spring 2017 Exam 3 Study Guide

Chapter 6

- 1. Given a multiple linear regression model and sample values, be able to predict the response (6-1)
- 2. Be able to complete an ANOVA table for significance of regression (simple/multiple) (Table 6-3, 6-3.2)
 - (a) Calculate Sum of Squares, Mean Squares, Degrees of Freedom
 - (b) Construct F-ratio test for significance of regression
 - (c) Draw conclusions using P-value
- 3. Be able to calculate confidence intervals on model parameters, mean response, and future observations (simple/multiple) (6-2.3, 6-3.2)
- 4. Understand how to use residual plots to check for model adequacy, and ways to remedy inadequacies (simple/multiple) (6-2.5, 6-3.3)
- 5. Understand multicollinearity, its effects on the model, and ways to remedy (6-3.3)
- 6. Be familiar with variable selection techniques (Backward elimination, Forward Selection, All possible regressions) and how they operate (6-4.3)

Chapter 7

- 1. Understand importance and uses of factorial experiments (7-2)
- 2. Given a set of data or JMP/Minitab output, be able to: (7-3.1, 7-3.2, 7-3.4)
 - (a) Calculate main effects and their standard errors
 - (b) Determine a t ratio for coefficient significance
 - (c) Test hypotheses with P-values
- 3. Use residuals to qualitatively evaluate model assumptions (independence, normality) (7-3.3)

Exam 3 Raview:

A NOVA Multiple Regression:

Model K
$$\frac{2}{5}(\hat{y}_i - \hat{y})^2$$
 SSM/DFn -7 MSm $\frac{2}{5}(\hat{y}_i - \hat{y})^2$ SSE/DFE $\frac{9}{5}$ MS $\frac{1}{5}$ M

Calculating Main Effects / Std Error of effects:

2) From Regression:

Variable Coeff Estimate Se(coeff) T-valio p-val Int.
$$\beta_0$$
 Se(β_0) $\frac{\beta_0}{\text{Se}(\beta_0)}$ χ_1 β_1 Se(β_1) χ_2 β_2 Se(β_2)

Multicollinearity: when >2 variables are highly correlated and can be linearly predicted from the others

Ex: "F vs "C

$$R_j^2 \pm R_j^2 \Rightarrow regressing X_j against k-1$$
regressors

VIF >10 => multicollinearity

Model Adequacy:

Assumptions:

Normality:

1) Normal prob. plot of residuals

z) Residuals us g

Independence: Residuals vs time/run order

variance to over time

4 transformations

model inadequacy

Existence of Outliers:

- Standardize residuals

$$d:=\frac{+i}{\sqrt{\hat{s}^2}} \rightarrow 95\%$$
 should be within $(-2,+2)$

- Studentized residuals (more sensitive)

$$r_i = \frac{e_i}{se(e_i)}$$

- Cook's distance

$$D_i = \frac{v_i^2}{P} \frac{h_{ii}}{(1-h_{ii})}$$

> | nears point was influential