svm-using-car-acceptability

March 30, 2025

```
[5]: import pandas as pd
     from sklearn.svm import SVC
     from sklearn.preprocessing import LabelEncoder
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import accuracy_score,confusion_matrix
     df=pd.read_csv("/content/car_acceptability.csv")
[5]:
          buying price maintenance cost
                                           number of doors
                                                              number of persons
                  vhigh
                                    vhigh
                                                          2
                                                                               2
     1
                  vhigh
                                    vhigh
                                                          2
                                                                               2
     2
                                                          2
                                                                               2
                  vhigh
                                    vhigh
                                                          2
                                                                               2
     3
                  vhigh
                                    vhigh
     4
                                                          2
                                                                               2
                  vhigh
                                    vhigh
                    low
                                                                               5
     1722
                                      low
                                                          5
     1723
                                                          5
                                                                               5
                    low
                                      low
     1724
                    low
                                      low
                                                          5
                                                                               5
     1725
                                                          5
                                                                               5
                    low
                                      low
     1726
                    low
                                      low
                                                          5
                                                                               5
          lug_boot safety evaluation
     0
             small
                       med
                                 unacc
     1
             small
                      high
                                 unacc
     2
                med
                       low
                                 unacc
     3
                med
                       med
                                 unacc
     4
                med
                      high
                                 unacc
     1722
                med
                       med
                                  good
     1723
                med
                      high
                                 vgood
     1724
                big
                       low
                                 unacc
     1725
                                  good
                big
                       med
     1726
                big
                      high
                                 vgood
     [1727 rows x 7 columns]
```

[16]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1727 entries, 0 to 1726
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	buying price	1727 non-null	int64
1	maintenance cost	1727 non-null	int64
2	number of doors	1727 non-null	int64
3	number of persons	1727 non-null	int64
4	lug_boot	1727 non-null	int64
5	safety	1727 non-null	int64
6	evaluation	1727 non-null	object

dtypes: int64(6), object(1)
memory usage: 94.6+ KB

[6]: df.isnull()

[6]:	hurring price	maintananca cost	number of deers	number of persons \
[0]:	buying price	maintenance cost	number of doors	number of persons \
0	False	False	False	False
1	False	False	False	False
2	False	False	False	False
3	False	False	False	False
4	False	False	False	False
•••	•••	•••	•••	
1722	False	False	False	False
1723	False	False	False	False
1724	False	False	False	False
1725	False	False	False	False
1726	False	False	False	False

	lug_boot	safety	evaluation
0	False	False	False
1	False	False	False
2	False	False	False
3	False	False	False
4	False	False	False
•••	•••	•••	•••
1722	False	False	False
1723	False	False	False
1724	False	False	False
1725	False	False	False
1726	False	False	False

[1727 rows x 7 columns]

[8]: df=df.drop_duplicates() df

```
[8]:
           buying price maintenance cost number of doors number of persons
     0
     1
                        3
                                           3
                                                              2
                                                                                   2
     2
                        3
                                           3
                                                              2
                                                                                   2
     3
                        3
                                           3
                                                              2
                                                                                   2
                                           3
                                                              2
                                                                                   2
     4
                        3
                                                              5
                                                                                   5
     1722
                        1
                                           1
     1723
                        1
                                           1
                                                              5
                                                                                   5
     1724
                                                              5
                                                                                   5
                        1
                                           1
                                                              5
                                                                                   5
     1725
                        1
                                           1
     1726
                        1
                                           1
                                                              5
                                                                                   5
            lug_boot
                      safety evaluation
     0
                            2
                                    unacc
                   2
                            0
     1
                                    unacc
     2
                   1
                            1
                                    unacc
                            2
     3
                   1
                                    unacc
     4
                   1
                            0
                                    unacc
     1722
                            2
                   1
                                    good
     1723
                   1
                            0
                                    vgood
     1724
                   0
                            1
                                    unacc
     1725
                   0
                            2
                                     good
     1726
                   0
                            0
                                    vgood
     [1727 rows x 7 columns]
[7]: l=LabelEncoder()
     df['buying price']=1.fit_transform(df['buying price'])
     df['maintenance cost']=1.fit_transform(df['maintenance cost'])
     df['lug_boot']=1.fit_transform(df['lug_boot'])
     df['safety']=1.fit_transform(df['safety'])
     df
[7]:
                          maintenance cost number of doors number of persons
           buying price
     0
                                           3
                                                              2
                                                                                   2
                        3
                        3
                                           3
                                                              2
                                                                                   2
     1
                        3
                                           3
                                                              2
                                                                                   2
     2
     3
                        3
                                           3
                                                              2
                                                                                   2
     4
                        3
                                           3
                                                              2
                                                                                   2
     1722
                        1
                                           1
                                                              5
                                                                                   5
     1723
                                           1
                                                              5
                                                                                   5
                        1
     1724
                        1
                                           1
                                                              5
                                                                                   5
                                                              5
                                                                                   5
     1725
                        1
                                           1
     1726
                                                                                   5
                        1
                                           1
                                                              5
```

```
lug_boot safety evaluation
0
             2
                      2
                              unacc
             2
                      0
1
                              unacc
2
             1
                      1
                              unacc
3
             1
                      2
                              unacc
4
              1
                      0
                              unacc
                      2
1722
              1
                               good
1723
             1
                      0
                              vgood
1724
             0
                              unacc
                      1
1725
             0
                      2
                               good
1726
                      0
             0
                              vgood
```

[1727 rows x 7 columns]

[10]: X

```
[10]:
            buying price maintenance cost number of doors number of persons \
                                            3
      1
                        3
                                            3
                                                              2
                                                                                   2
      2
                        3
                                            3
                                                              2
                                                                                   2
      3
                        3
                                            3
                                                              2
                                                                                   2
      4
                         3
                                            3
                                                              2
                                                                                   2
      1722
                                                              5
                                                                                   5
                         1
                                            1
      1723
                                            1
                                                              5
                                                                                   5
                         1
                                                              5
                                                                                   5
      1724
                         1
                                            1
                                                              5
                                                                                   5
      1725
                                            1
                         1
      1726
                                                              5
                                                                                   5
                         1
                                            1
```

	lug_boot	safety
0	2	2
1	2	0
2	1	1
3	1	2
4	1	0
•••	•••	
1722	1	2
1723	1	0
1724	0	1
1725	0	2
1726	0	0

[1727 rows x 6 columns]

```
[11]: Y
[11]: 0
              unacc
      1
              unacc
      2
              unacc
      3
              unacc
      4
              unacc
      1722
              good
      1723
              vgood
      1724
              unacc
      1725
             good
      1726
              vgood
     Name: evaluation, Length: 1727, dtype: object
[12]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,__
       →random_state=42)
[13]: svm_model=SVC(kernel='linear')
      svm_model.fit(X_train,Y_train)
[13]: SVC(kernel='linear')
[14]: Y_pred=svm_model.predict(X_test)
[15]: print("Accuracy:",accuracy_score(Y_test,Y_pred))
      print("\nconfusion Matrix:",confusion_matrix(Y_test,Y_pred))
     Accuracy: 0.7138728323699421
     confusion Matrix: [[ 12 0 65
                                       0]
                     0]
      [ 0
             0 15
      [ 2
             0 235
                     0]
      [ 12
             0
                 5
                     0]]
```