		Tipo de Prova Exame Teórico – Época Recurso	Ano letivo 2018/2019	Data 13-07-2019
P.PORTO	ESCOLA SUPERIOR	Curso Licenciatura em Engenharia Informática		Hora 10:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Inteligência Artificial		Duração 2:00 horas

Observações:

- Pode trocar a ordem das questões, desde que as identifique convenientemente.
- Qualquer tentativa de fraude implica a anulação do exame.
- A Parte 1 deste exame é constituída por questões de escolha múltipla. As mesmas devem ser respondidas na folha de resposta.
- O enunciado deve ser entregue juntamente com a folha de resposta.

Número:		Nome:
		PARTE I – 8 Valores
1. (1V)	Uma Ár	vore de Decisão:
	В.	Apenas lida com variáveis numéricas Apenas lida com enumerações Lida quer com variáveis numéricas quer com enumerações Nenhuma das anteriores
2. (1V)	Relativa	amente às Redes Neuronais, assinale a afirmação falsa:
· ,	B.	O número de outputs pode ser superior ao número de inputs O número de inputs pode ser superior ao número de outputs Pode existir mais que uma <i>hidden layer</i> Pode existir mais que uma <i>output layer</i>
3. (1V)	Assinal	e a afirmação correta
	B. C.	O treino de duas Árvores de Decisão com o mesmo dataset resulta sempre em dois modelos iguais O treino de duas Redes Neuronais com o mesmo dataset resulta sempre em dois modelos iguais O treino de duas Random Forest com o mesmo dataset resulta sempre em dois modelos iguais Nenhuma das anteriores
4. (1V)	A princi	oal razão para os sistemas de Instance Based Learning serem relativamente ineficientes é:
1. (1 •)		A necessidade de re-treinar frequentemente o modelo A necessidade de comparar os valores de grandes conjuntos de casos A necessidade da validação de cada caso por um Humano Nenhuma das anteriores
5. (1V)	Os Algo	ritmos Genéticos:
٥. (۱۷)		São especialmente indicados em domínios em que existam grandes quantidades de dados São especialmente indicados em domínios cujas restrições mudem com elevada frequência Garantem a identificação da solução ótima Encontram sempre uma solução para o problema
6. (1V)	Uma Re	ede Neuronal:
2.()	A. B. C. D.	Apenas pode ser utilizada para problemas de Regressão Apenas pode ser utilizada para problemas de Classificação Apenas pode ser utilizada para problemas de Segmentação Nenhuma das anteriores
7 (1\/)	Assinal	e a opção verdadeira:

ESTG-PR05-Mod013V2 Página1de3

É possível calcular as métricas *precision* e *recall* em qualquer problema de regressão

	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame Teórico – Época Recurso	Ano letivo 2018/2019	Data 13-07-2019
P.PORTO		Curso Licenciatura em Engenharia Informática		Hora 10:00
		Unidade Curricular Inteligência Artificial		Duração 2:00 horas

- B. É possível calcular as métricas *precision* e *recall* em qualquer problema de classificação
- C. É possível calcular as métricas *precision* e *recall* em qualquer problema de classificação binomial
- D. Nenhuma das anteriores

8. (1V)

Em lógica de primeira ordem, segundo o princípio do mundo fechado:

- A. Algo que não se consiga provar como verdadeiro é falso
- B. Algo que não se consiga provar como verdadeiro é desconhecido
- C. Algo que não se consiga provar como falso é verdadeiro
- D. Algo que não se consiga provar como falso ou verdadeiro é desconhecido

PARTE II – 12 Valores

9. (2V)

Comente a seguinte afirmação indicando ainda claramente se concorda ou não com ela:

"Uma vez que uma Rede Neuronal apenas é capaz de lidar com valores numéricos, este tipo de algoritmos não pode ser utilizado em datasets que contenham enumerações".

10.

Considere o excerto do dataset que se apresenta de seguida, que descreve algumas características dos alunos da Unidade Curricular de Inteligência Artificial. O dataset contém as seguintes variáveis:

- QI O nível de QI do aluno
- N_Irmaos O número de irmãos do aluno
- Sal_AgregadoF O salário, em euros, do agregado familiar
- Nota Uma enumeração com três valores possíveis {fraco, médio, bom} descrevendo a nota qualitativa do aluno na UC

QI	N_Irmaos	Sal_AgregadoF	Nota
80	2	1500	Fraco
120	1	2340	Bom
94	3	1400	Médio

10.1 (1.5V) Considere que se pretende utilizar este dataset para prever o QI de cada aluno em função das restantes variáveis utilizando um algoritmo de Random Forest. Indique, justificando, se é necessário transformar o dataset (e nesse caso qual a técnica a utilizar) ou se este pode ser utilizado tal e qual se encontra.

10.2 (1.5V) Considere que se pretende utilizar este dataset para prever o QI de cada aluno em função das restantes variáveis utilizando um algoritmo de Deep Learning. Desenhe uma possível arquitetura de uma Rede Neuronal para esta tarefa. Note que é suficiente desenhar cada uma das camadas que considerar necessárias e os seus neurónios, não sendo necessário desenhar as ligações entre os neurónios.

10.3 (1V) Considere que se pretende utilizar este dataset para prever o QI de cada aluno em função das restantes variáveis utilizando um qualquer algoritmo de classificação. Pretende-se que a previsão relativamente ao QI tenha dois valores possíveis: Alto ou Baixo. Indique, justificando, se é necessário transformar o dataset (e nesse caso qual a técnica a utilizar) ou se este pode ser utilizado tal e qual se encontra.

ESTG-PR05-Mod013V2 Página 2 de

		Tipo de Prova Exame Teórico – Época Recurso	Ano letivo 2018/2019	Data 13-07-2019
P.PORTO SUP	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Curso Licenciatura em Engenharia Informática		Hora 10:00
		Unidade Curricular Inteligência Artificial		Duração 2:00 horas

11. Considere a seguinte tabela que mostra os limites da taxa de álcool no sangue aplicáveis em Portugal.

Álcool no Sangue	Coima Min.	Coima Max.	Redução de Pontos na carta
=> 0.5 g/L e < 0.8 g/L	250€	1250€	3
=> 0.8 g/L e < 1.2 g/L	500€	2500€	5
>=1.2 g/L	2000€	5000€	6

Os limites (mínimos) de 0.5 g/L e 0.8 g/L acima referidos são reduzidos para 0.2 g/L e 0.5 g/L, respetivamente, para condutores com carta há menos de 3 anos.

11.1 (1.5V) Modele, em Prolog, a informação que consta na tabela acima.

11.2 (1.5V) Implemente, em Prolog, o predicado atualizaPontos/4 que, dado o volume de álcool no sangue de um condutor, a idade da sua carta e o número atual de pontos na sua carta, calcula o novo número de pontos da sua carta. Indique ainda um exemplo arbitrário de utilização do predicado implementado.

12 (3V) Considere que se pretende estudar, a nível Europeu, quais as melhores regiões para a produção de determinadas castas de vinho. Antes disto, torna-se necessário identificar áreas que tenham características semelhantes (e.g. meteorologia, solo) para, posteriormente, plantar nestas áreas as castas mais apropriadas. Admita que lhe era pedido que identificasse quantas áreas diferentes existem e quais as suas características. Para este problema indique:

- a) Que fontes de informação poderia utilizar e que variáveis seriam extraídas dessas fontes de informação
- b) (se aplicável) que tarefas de preparação de dados aplicaria
- c) Que algoritmo poderia utilizar para resolver o problema

ESTG-PR05-Mod013V2