练习一

一、填空题

(1)
$$\lim_{x \to 3} \frac{x^2 - 2x + k}{x - 3} = 4$$
, $\lim_{x \to 3} k = \underline{\qquad}$.

(2)
$$x = 1$$
 为 $y = \frac{x^2 - 1}{x - 1}$ 的_____ 间断点.

(3) 设
$$f(x) = e^{3x}$$
,则 $f^{(n)}(x) =$ ______.

(4)
$$\frac{d}{dx} \int_{x}^{x^{2}} \sqrt{1+t^{2}} dt = \underline{\hspace{1cm}}$$

(5)
$$\int_2^{+\infty} \frac{1}{x(\ln x)^p} dx$$
 收敛,则 p 的范围______.

二、选择题

(1)下列命题正确的是(

(A)有界数列必定收敛;

(B) 无界数列必定发散;

(C) 发散数列必定无界;

(D)单调数列必有极限.

(2) 设函数 y = f(x) 在 [a,b] 上连续,则由 y = f(x) 、 x 轴、 x = a 、 x = b 所围成的图形面积 为(

(A)
$$\int_{a}^{b} f(x) dx$$
;

(B)
$$\int_{a}^{a} |f(x)| dx$$

(C)
$$\left| \int_{a}^{b} f(x) dx \right|$$
;

(A)
$$\int_a^b f(x) dx$$
; (B) $\int_b^a |f(x)| dx$; (C) $\left| \int_a^b f(x) dx \right|$; (D) $\int_a^b |f(x)| dx$.

(3) 设在[0,1]上f''(x) > 0,则f'(0), f'(1), f(1) - f(0) 或f(0) - f(1) 的大小顺序是()

(A)
$$f'(1) > f'(0) > f(1) - f(0)$$
;

(B)
$$f'(1) > f(1) - f(0) > f'(0)$$
;

(C)
$$f(1) - f(0) > f'(1) > f'(0)$$
;

(D)
$$f'(1) > f(0) - f(1) > f'(0)$$
.

(4) 曲线 $y = \frac{x^2}{\sqrt{x^2 - 1}}$ 的垂直渐近线是 ()

- (A) $y = \pm 1$; (B) x = 0;
- (C) $x = \pm 1$; (D) y = 0.

(5) 若 f(x) 的一个原函数是 $\sin x$,则 $\int f'(x) dx = ($

- (A) $\sin x + C$;
- (B) $\cos x + C$;
- (C) $-\sin x + C$; (D) $-\cos x + C$.

三、计算题

(1)
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$$
.

(2) 设由
$$e^{-y} + x(y-x) = 1 + x$$
 确定函数 $y = y(x)$, 求 $y'(0)$.

$$(3) \int \frac{1}{1+e^x} dx.$$

$$(4) \int_1^e \cos(\ln x) dx.$$

四、证明: 当 $x \neq 0$ 时, 有不等式 $e^x > 1 + x$.

五、设
$$f(x)$$
对任意 x 有 $f(x+1)=2f(x)$,且 $f'(0)=\frac{1}{2}$,求 $f'(1)$.

六、 求函数
$$y = \frac{2x-1}{(x-1)^2}$$
 的凹凸区间及拐点.

七、设 f(x) 在 $\left[0,1\right]$ 上连续,在 $\left(0,1\right)$ 内可微,且 $8\int_{\frac{7}{8}}^{1}f(x)\mathrm{d}x=f\left(0\right)$,证明:存在 $\xi\in\left(0,1\right)$,使得 $f'\left(\xi\right)=0$. (本题满分 8 分)

八、设连续函数 f(x)满足 $f(x)+f(-x)=\sin^2 x$, 求 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f(x)\sin^6 x dx$.