Fiche méthode : Colinéarité et vecteur directeur

I. Colinéarité

Application 1 : Construction de vecteurs

Construire les points B et C tel aue :

Application 2 : Points alignés et vecteurs colinéaires

Vérifier si les trois points sont alignés

a.
$$A(-3;3), B(5;-3)$$
 et $C(1;0)$.

$$\begin{array}{|c|c|c|} \hline AB & \begin{pmatrix} 8 \\ -6 \end{pmatrix} \text{ et } \overline{AC} \begin{pmatrix} 4 \\ -3 \end{pmatrix} \\ \hline & \frac{1^{\text{bre}} \text{ méthode :}}{8} & \frac{2^{\text{ème}} \text{ méthode :}}{8 \times (-3) - (-6) \times 4} \\ \hline & -\frac{3}{-6} = \frac{1}{2} & = 0 \\ \hline \end{array}$$

Ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires alors les 3 points sont alignés.

b.
$$E(3;3), F(2;1) \text{ et } G(-1;-3).$$

$\overrightarrow{EF} \begin{pmatrix} -1 \\ -2 \end{pmatrix}$ et $\overrightarrow{EG} \begin{pmatrix} -4 \\ -6 \end{pmatrix}$	
1ère méthode :	2ème méthode :
$\frac{-4}{-1} = 4$	$\begin{vmatrix} -1 \times (-6) - (-2) \times (-4) \\ = 6 - 8 \end{vmatrix}$
$\frac{-6}{-2} = 3 \neq 4$	$=-2 \neq 0$

Ainsi les vecteurs \overrightarrow{EF} et \overrightarrow{EG} ne sont pas colinéaires alors les 3 points ne sont pas alignés.

Application 3 : Parallélisme et vecteurs colinéaires

Vérifier si les droites (AB) et (CD) sont parallèles.

a.
$$A(-3; 2), B(3; 3), C(-3; -3)$$
 et $D(5; -1)$.

$\overrightarrow{AB} \begin{pmatrix} 6 \\ 1 \end{pmatrix}$ et $\overrightarrow{CD} \begin{pmatrix} 8 \\ 2 \end{pmatrix}$	
1ère méthode :	2ème méthode :
8 4	$6 \times 2 - 1 \times 8 = 12 - 8$
$\frac{1}{6} = \frac{1}{3}$	$=4\neq0$
$\frac{2}{2} - 2 \neq \frac{4}{2}$	
1 - 2 - 3	

Ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ne sont pas colinéaires alors les droites (AB) et (CD) ne sont pas parallèles.

b.
$$A(0;5), B(3;0), C(-3;8)$$
 et $D(3;-2)$.

droites (AB) et (CD) sont parallèles.

Produit d'un vecteur par un réel k:

Soit \vec{u} un vecteur non nul. et k un réel strictement positif.

- 1) Le vecteur $k\vec{u}$ est tel que :
 - $k\vec{u}$ et \vec{u} ont la même direction
 - $k\vec{u}$ et \vec{u} ont le même sens
 - $||k\vec{u}|| = k||\vec{u}||$
- 2) Le vecteur $-k\vec{u}$ est tel que :
 - $-k\vec{u}$ et \vec{u} ont la même direction
 - $-k\vec{u}$ et \vec{u} ont des sens opposés $k\vec{u}$
 - $||-k\vec{u}|| = k||\vec{u}||$

Coordonnée du vecteur $k\vec{u}$:

Soient $\vec{u} \binom{x}{y}$ un point dans un repère et k un réel.

Le **vecteur** $k\vec{u}$ est le vecteur de coordonnées $\begin{pmatrix} kx \\ ky \end{pmatrix}$ dans le même repère.

Colinéarité :

- Deux vecteurs non nuls sont colinéaires lorsqu'ils ont la même direction.
- Deux vecteurs \vec{u} et \vec{v} sont **colinéaires** s'il existe un réel k tel que : $\vec{u} = k\vec{v}$ ou $\vec{v} = k\vec{u}$

Colinéarité et coordonnées :

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs. \vec{u} et \vec{v} sont **colinéaires** si et seulement si : xy' - x'y = 0

Remarque:

 $\overline{xy'-x'y}$ est appelé le **déterminant** de \vec{u} et \vec{v} . On le note : $det(\vec{u}; \vec{v}) = xy' - x'y$

Points alignés

A, B et C sont alignés si et seulement si :

 \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Remarque:

Il suffit de prendre deux vecteurs avec un point commun.

Droites parallèles

 $(AB) /\!\!/ (CD)$ si et seulement si \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Application 4 : Colinéarité en géométrie non repérée

ABCD est un parallélogramme. Les points E et F sont définis par $\overrightarrow{DE} = 3\overrightarrow{DC}$ et $\overrightarrow{AF} = -\frac{1}{2}\overrightarrow{AD}$

1. Exprimer \overrightarrow{FD} en fonction de \overrightarrow{DA}

 $\overrightarrow{FD} = \overrightarrow{FA} + \overrightarrow{AD}$ car on utilise la relation de Chasles $\overrightarrow{FD} = \frac{1}{2}\overrightarrow{AD} + \overrightarrow{AD}$ car on utilise : $\overrightarrow{AF} = -\frac{1}{2}\overrightarrow{AD}$ $\overrightarrow{FD} = \frac{3}{3}\overrightarrow{AD}$ $\overrightarrow{FD} = -\frac{3}{2}\overrightarrow{DA}$

2. Démontrer que les points B, F et E sont alignés.

$$\overrightarrow{BF} = \overrightarrow{BA} + \overrightarrow{AF}$$

$$\overrightarrow{BF} = \overrightarrow{BA} - \frac{1}{2}\overrightarrow{AD}$$

$$\overrightarrow{FE} = \overrightarrow{PD} + \overrightarrow{DE}$$

$$\overrightarrow{FE} = -\frac{3}{2}\overrightarrow{DA} + 3\overrightarrow{DC}$$

$$\overrightarrow{FE} = -\frac{3}{2}\overrightarrow{DA} + 3\overrightarrow{AB} \text{ car } ABCD \text{ est un parallélogramme}$$

$$\overrightarrow{BF} = \frac{1}{2}\overrightarrow{DA} + \overrightarrow{BA}$$

$$\overrightarrow{FE} = -\frac{3}{2}\overrightarrow{DA} - 3\overrightarrow{BA}$$
Ainsi $\overrightarrow{FE} = -3\overrightarrow{BF}$ donc les vecteurs \overrightarrow{FE} et \overrightarrow{BF} sont colinéaires c'est-à-dire les points \overrightarrow{B} . \overrightarrow{FE} et \overrightarrow

Ainsi $\overrightarrow{FE} = -3\overrightarrow{BF}$ donc les vecteurs \overrightarrow{FE} et \overrightarrow{BF} sont colinéaires c'est-à-dire les points B, F et E sont alignés.

II. Vecteurs directeurs

Application 5: Dans un repère $(0; \vec{i}, \vec{j})$, on considère les points A(5:-6) et B(2:-1).

1. Calculer les coordonnées du vecteur \overrightarrow{AB} .

 $\overrightarrow{AB}\begin{pmatrix} 2-5\\ -1+6 \end{pmatrix}$ soit $\overrightarrow{AB}\begin{pmatrix} -3\\ 5 \end{pmatrix}$ est un vecteur directeur de la droite (AB) par définition.

2. Parmi les vecteurs suivants lesquels sont des vecteurs directeurs de la droite (AB)?

$$\vec{u} \begin{pmatrix} -1,5 \\ 2,5 \end{pmatrix} \quad \vec{v} \begin{pmatrix} 0 \\ 8 \end{pmatrix} \quad \vec{w} \begin{pmatrix} 1 \\ -\frac{5}{3} \end{pmatrix} \quad \vec{t} \begin{pmatrix} -2 \\ 3,3 \end{pmatrix}$$

- $\overrightarrow{AB} = 2 \overrightarrow{u}$ ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{u} sont colinéaires donc le vecteur \vec{u} est directeur de la droite (AB).
- $-3 \times 8 5 \times 0 = -24 0 = -24 \neq 0$ ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{v} ne sont pas colinéaires donc le vecteur \vec{v} n'est pas directeur de la droite (AB).
- $\overrightarrow{AB} = -3 \overrightarrow{w}$ ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{w} sont colinéaires donc le vecteur \vec{w} est directeur de la droite (AB).
- $-3 \times 3.3 5 \times (-2) = -9.9 + 10 = 0.1 \neq 0$ ainsi les vecteurs \overrightarrow{AB} et \overrightarrow{t} ne sont pas colinéaires donc le vecteur \vec{t} n'est pas directeur de la droite (AB)

Application 6 : Le point appartient-il à la droite ?

On considère la droite d de vecteur directeur $\vec{u} \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ et passant par le point A(-4; 1).

Les points B(1; -7) et C(-1; -3,5) appartiennent-ils à d?

 $\overrightarrow{AC} \begin{pmatrix} -1+4 \\ -3,5-1 \end{pmatrix}$ soit $\overrightarrow{AB} \begin{pmatrix} 3 \\ -4,5 \end{pmatrix}$ $2 \times (-4,5) - (-3) \times 3 = -9 + 9 = 0$ Les vecteurs \overrightarrow{AC} et \overrightarrow{u} sont colinéaires ainsi $C \in d$.

Vecteur directeur :

Soit d une droite et A.B deux points distincts. On appelle **vecteur directeur de** *d* tout vecteur non nul \overrightarrow{AB} tel que les points A et B appartiennent à la droite d.

De plus:

Un vecteur est appelé vecteur directeur d'une **droite** lorsqu'il est **colinéaire** à tout vecteur \overrightarrow{AB} avec A et B appartenant à la droite.

Vecteur directeur et équation réduite de droites : Soit m et k deux réels.

- 1. Soit d la droite d'équation y = mx + p, le vecteur $\vec{u}inom{1}{m}$ est un vecteur directeur de d. 2. Soit d la droite horizontale d'équation y=k, le
- vecteur $\vec{i} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ est un vecteur directeur de d.
- 3. Soit d la droite verticale d'équation x = k, le vecteur $\vec{j} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ est un vecteur directeur de d.

Ensemble de points et droite :

Soit A un point, \vec{u} un vecteur non nul et d la droite passant par A et de vecteur directeur \vec{u} et M un point du plan.

 $M \in d \Leftrightarrow \vec{u}$ et \overrightarrow{AM} sont colinéaires.