Algoritmo	Seg Rate	WinDiff	P_k	Acurcia	Preciso	Revocao	F^1	#Segs
C99 10 3 T	0.100	0.508	0.491	0.542	NaN	0.086	0.143	3.167
C99 15 3 T	0.150	0.472	0.454	0.570	0.666	0.176	0.270	4.667
C99 20 3 T	0.200	0.463	0.445	0.581	0.672	0.242	0.339	6.083
C99 25 3 T	0.250	0.445	0.423	0.602	0.675	0.324	0.421	7.750
C99 30 3 T	0.300	0.434	0.407	0.607	0.655	0.376	0.457	9.250
C99 35 3 T	0.350	0.425	0.395	0.623	0.651	0.449	0.512	10.750
C99 40 3 T	0.400	0.452	0.422	0.604	0.610	0.479	0.515	12.083
C99 44 3 T	0.450	0.479	0.447	0.587	0.569	0.519	0.525	13.833
C99 49 3 T	0.500	0.499	0.458	0.577	0.547	0.566	0.539	15.500
C99 54 3 T	0.550	0.489	0.447	0.587	0.559	0.622	0.567	16.750
C99 60 3 T	0.600	0.487	0.440	0.592	0.555	0.678	0.591	18.417
C99 65 3 T	0.650	0.481	0.431	0.603	0.562	0.743	0.618	19.833
C99 70 3 T	0.700	0.485	0.431	0.602	0.553	0.797	0.633	21.417
C99 75 3 T	0.750	0.493	0.420	0.606	0.554	0.853	0.651	23.000
C99 80 3 T	0.800	0.502	0.417	0.603	0.548	0.892	0.659	24.417
C99 85 3 T	0.850	0.522	0.421	0.592	0.542	0.934	0.664	25.917
C99 90 3 T	0.900	0.556	0.439	0.567	0.523	0.957	0.656	27.500
C99 95 3 T	0.950	0.594	0.459	0.539	0.508	0.975	0.648	29.000
MinCutSeg SRate:0.10 LCO:9	0.100	0.527	0.508	0.526	NaN	0.040	0.073	2.667
MinCutSeg SRate:0.15 LCO:9	0.150	0.538	0.515	0.522	NaN	0.091	0.144	4.000
MinCutSeg SRate:0.20 LCO:9	0.200	0.516	0.490	0.545	0.564	0.189	0.268	5.833
MinCutSeg SRate:0.25 LCO:9	0.250	0.487	0.449	0.575	0.631	0.273	0.362	7.250
MinCutSeg SRate:0.30 LCO:9	0.300	0.484	0.445	0.579	0.607	0.331	0.409	8.667
MinCutSeg SRate:0.35 LCO:9	0.350	0.462	0.428	0.595	0.627	0.413	0.469	10.250
MinCutSeg SRate:0.40 LCO:9	0.400	0.451	0.415	0.607	0.620	0.475	0.512	11.750
MinCutSeg SRate:0.45 LCO:9	0.450	0.461	0.415	0.597	0.599	0.523	0.529	13.167
MinCutSeg SRate:0.50 LCO:9	0.500	0.454	0.401	0.611	0.599	0.580	0.564	14.500
MinCutSeg SRate:0.55 LCO:9	0.550	0.469	0.404	0.602	0.575	0.627	0.577	16.333
MinCutSeg SRate:0.60 LCO:9	0.600	0.501	0.428	0.579	0.551	0.663	0.577	17.917
MinCutSeg SRate:0.65 LCO:9	0.650	0.525	0.444	0.568	0.533	0.699	0.583	19.333
MinCutSeg SRate:0.70 LCO:9	0.700	0.567	0.473	0.535	0.509	0.712	0.570	21.000
MinCutSeg SRate:0.75 LCO:9	0.750	0.566	0.467	0.534	0.506	0.770	0.589	22.500
MinCutSeg SRate:0.80 LCO:9	0.800	0.563	0.454	0.551	0.518	0.839	0.618	24.000
MinCutSeg SRate:0.85 LCO:9	0.850	0.568	0.450	0.549	0.514	0.883	0.629	25.583
MinCutSeg SRate:0.90 LCO:9	0.900	0.597	0.470	0.529	0.504	0.909	0.627	27.000
MinCutSeg SRate:0.95 LCO:9	0.950	0.623	0.484	0.516	0.494	0.945	0.630	28.500
TextSeg	0.100	0.509	0.492	0.542	NaN	0.093	0.152	3.167
TextSeg	0.150	0.492	0.474	0.553	0.592	0.164	0.250	4.667

TextSeg	0.200	0.461	0.440	0.584	0.668	0.257	0.355	6.083
TextSeg	0.250	0.467	0.437	0.587	0.620	0.329	0.415	7.750
TextSeg	0.300	0.480	0.445	0.574	0.587	0.358	0.427	9.250
TextSeg	0.350	0.477	0.435	0.582	0.579	0.428	0.474	10.750
TextSeg	0.400	0.477	0.431	0.585	0.577	0.477	0.501	12.083
TextSeg	0.450	0.445	0.396	0.616	0.605	0.566	0.563	13.833
TextSeg	0.500	0.476	0.415	0.595	0.565	0.606	0.565	15.500
TextSeg	0.550	0.496	0.432	0.576	0.545	0.628	0.561	16.750
TextSeg	0.600	0.536	0.465	0.549	0.515	0.655	0.557	18.417
TextSeg	0.650	0.543	0.463	0.545	0.513	0.698	0.571	19.833
TextSeg	0.700	0.552	0.461	0.545	0.511	0.748	0.588	21.417
TextSeg	0.750	0.584	0.485	0.521	0.493	0.771	0.582	23.000
TextSeg	0.800	0.598	0.493	0.515	0.489	0.805	0.590	24.417
TextSeg	0.850	0.610	0.492	0.514	0.493	0.851	0.604	25.917
TextSeg	0.900	0.610	0.482	0.521	0.496	0.915	0.624	27.500
TextSeg	0.950	0.629	0.495	0.510	0.491	0.956	0.629	29.000
BayesSeg Pr:0.08 dp:0.50 sr:0.100	0.100	0.489	0.472	0.562	NaN	0.122	0.201	3.167
BayesSeg Pr:0.08 dp:0.50 sr:0.150	0.150	0.467	0.450	0.573	0.660	0.197	0.297	4.667
BayesSeg Pr:0.08 dp:0.50 sr:0.200	0.200	0.466	0.447	0.576	0.616	0.255	0.347	6.083
BayesSeg Pr:0.08 dp:0.50 sr:0.250	0.250	0.441	0.420	0.597	0.650	0.342	0.431	7.750
BayesSeg Pr:0.08 dp:0.50 sr:0.300	0.300	0.428	0.399	0.614	0.662	0.409	0.485	9.250
BayesSeg Pr:0.08 dp:0.50 sr:0.350	0.350	0.412	0.378	0.641	0.676	0.483	0.542	10.750
BayesSeg Pr:0.08 dp:0.50 sr:0.400	0.400	0.412	0.378	0.641	0.659	0.535	0.565	12.083
BayesSeg Pr:0.08 dp:0.50 sr:0.450	0.450	0.404	0.365	0.649	0.644	0.602	0.599	13.833
BayesSeg Pr:0.08 dp:0.50 sr:0.500	0.500	0.423	0.373	0.643	0.618	0.646	0.610	15.500
BayesSeg Pr:0.08 dp:0.50 sr:0.550	0.550	0.436	0.380	0.636	0.607	0.682	0.618	16.750
BayesSeg Pr:0.08 dp:0.50 sr:0.600	0.600	0.480	0.416	0.598	0.559	0.702	0.601	18.417
BayesSeg Pr:0.08 dp:0.50 sr:0.650	0.650	0.492	0.419	0.596	0.556	0.745	0.614	19.833
BayesSeg Pr:0.08 dp:0.50 sr:0.700	0.700	0.516	0.432	0.579	0.537	0.776	0.615	21.417
BayesSeg Pr:0.08 dp:0.50 sr:0.750	0.750	0.542	0.445	0.564	0.524	0.808	0.615	23.000
BayesSeg Pr:0.08 dp:0.50 sr:0.800	0.800	0.548	0.443	0.564	0.522	0.851	0.628	24.417
BayesSeg Pr:0.08 dp:0.50 sr:0.850	0.850	0.586	0.468	0.537	0.508	0.872	0.620	25.917
BayesSeg Pr:0.08 dp:0.50 sr:0.900	0.900	0.645	0.517	0.490	0.478	0.878	0.600	27.500
BayesSeg Pr:0.08 dp:0.50 sr:0.950	0.950	0.654	0.514	0.488	0.479	0.928	0.613	29.000