Pompe oscillante ★

C2-06

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ et $\overrightarrow{CA} = H\overrightarrow{j_0}$. De plus, R = 40 mm et H = 60 mm. Par ailleurs, on note $\overrightarrow{CB} = \lambda(t)\overrightarrow{i_2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\lambda(t)$ en fonction de $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour un piston de diamètre $D=10\,\mathrm{mm}$.

```
Indications:

1. .

2. \lambda(t) = \pm \sqrt{R^2 + H^2 + 2HR\sin\theta(t)}

3. \dot{\lambda}(t) = \frac{1}{2} \left( -2HR\dot{\theta}(t)\cos\theta(t) \right) \left( R^2 + H^2 + 2HR\sin\theta(t) \right)^{-\frac{1}{2}}

4. q(t) = S\dot{\lambda}(t)

5. .
```

Corrigé voir .