MA2000: OTML

Nachiketa Mishra

Indian Institute of Information Technology, Design & Manufacturing, Kancheepuram

Definition

A set $X \subseteq \mathbb{R}^n$ is said to be convex if it contains all of its segments, that is

$$\lambda x + (1 - \lambda)y \in X, \quad \forall (x, y, \lambda) \in X \times X \times [0, 1].$$

Definition

A set $X \subseteq \mathbb{R}^n$ is said to be convex if it contains all of its segments, that is

$$\lambda x + (1 - \lambda)y \in X$$
, $\forall (x, y, \lambda) \in X \times X \times [0, 1]$.

Definition

A set $X \subseteq \mathbb{R}^n$ is said to be convex if it contains all of its segments, that is

$$\lambda x + (1 - \lambda)y \in X$$
, $\forall (x, y, \lambda) \in X \times X \times [0, 1]$.

Definition

A set $X \subseteq \mathbb{R}^n$ is said to be convex if it contains all of its segments, that is

$$\lambda x + (1 - \lambda)y \in X$$
, $\forall (x, y, \lambda) \in X \times X \times [0, 1]$.

Definition

A set $X \subseteq {\rm I\!R}^{\rm n}$ is said to be convex if it contains all of its segments, that is

$$\lambda x + (1 - \lambda)y \in X$$
, $\forall (x, y, \lambda) \in X \times X \times [0, 1]$.

Definition

A set $X \subseteq {\rm I\!R}^{\rm n}$ is said to be convex if it contains all of its segments, that is

$$\lambda x + (1 - \lambda)y \in X$$
, $\forall (x, y, \lambda) \in X \times X \times [0, 1]$.

Definition

A set $X \subseteq {\rm I\!R}^{\rm n}$ is said to be convex if it contains all of its segments, that is

$$\lambda x + (1 - \lambda)y \in X$$
, $\forall (x, y, \lambda) \in X \times X \times [0, 1]$.

Definition (Extreme point or vertex of a convex set)

An Extreme point (vertex) of a convex set is a point of the set which does not lie on any segment joining two other point of the set

Definition (convex combination of vectors)

Given a set of vectors $\{x_1, x_2, \dots, x_k\}$, a linear combination

$$x = \lambda_1 x_1 + \lambda_2 x_2, \dots + \lambda_k x_k$$

is called convex combination of given vectors, if

$$\lambda_1, \lambda_2, \dots, \lambda_k \ge 0$$
, and $\sum_{i=1}^k \lambda_i = 1$

Theorem

The Set of all convex combination of finite number of points of $S \subset \mathbb{R}^n$ is a convex set

Proof.

Let

$$S = \left\{ x : x = \sum_{i=1}^{m} \lambda_i x_i, \sum_{i=1}^{m} \lambda_i = 1 \right\}$$

we have to show that S is convex. Let x' and x'' be in S, so that

$$x' = \sum_{i=1}^{m} \lambda'_i x_i$$
, where $\lambda'_i \ge 0$, $\sum_{i=1}^{m} \lambda'_i = 1$

$$x'' = \sum_{i=1}^{m} \lambda_i'' x_i$$
, where $\lambda_i'' \ge 0$, $\sum_{i=1}^{m} \lambda_i'' = 1$

Consider now the vector

$$x = \lambda x' + (1 - \lambda)x'', \quad 0 \le \lambda \le 1$$

proof continue ...

$$= \lambda \sum_{i=1}^{m} \lambda_i' x_i + (1 - \lambda) \sum_{i=1}^{m} \lambda_i'' x_i,$$

$$= \sum_{i=1}^{m} [\lambda \lambda_i' + (1 - \lambda) \lambda_i''] x_i = \sum_{i=1}^{m} \mu_i x_i$$

where $\mu_i = \lambda \lambda_i' + (1 - \lambda) \lambda_i'$, $i = 1, 2, \dots, m$.

Since $0 \le \lambda \le 1$, $\lambda_i' \ge 0$, $\lambda_i'' \ge 0$ therefore $\mu_i \ge 0$. Also

$$\sum_{i=1}^{m} \mu_i = \sum_{i=1}^{m} [\lambda \lambda_i' + (1 - \lambda) \lambda_i']$$
$$= \lambda \sum_{i=1}^{m} \lambda_i' + (1 - \lambda) \sum_{i=1}^{m} \lambda_i''$$
$$= \lambda + (1 - \lambda) = 1$$

proof continue ···

- We have proved that $\mu_i \ge 0, \ \forall \ i \ \text{and} \ \sum_{i=1}^m \mu_i = 1$
- x is the convex combination of vectors x_1, x_2, \dots, x_k or $x \in S$.
- ▶ Thus each pair of points $x', x'' \in S$ that we consider
- ▶ The line segment joining them is connected in the set.
- ► Hence *S* is convex set

Example-: 01

Prove that $C = \{(x_1, x_2) : 2x_1 + 3x_2 = 7\} \subset \mathbb{R}^2$ is a convex set.

SOLUTION:

Assume that $X, Y \in C$, where $X = (x_1, x_2), Y = (y_1, y_2)$. The line segment connecting X and Y is the set.

From the definition of convex sets, we can write the following:

$$W=W:W=\theta X+(1-\theta)Y, 0\leq\theta\leq1$$

For some $0 \le \theta \le 1$, assume that $W = (w_1, w_2)$ is the point of set W. Hence, we can write

$$w_1 = \theta x_1 + (1 - \theta)y_1$$

 $w_2 = \theta x_2 + (1 - \theta)y_2$

As $x, y \in C$, we can write

$$2x_1 + 3x_2 = 7$$
$$2y_1 + 3y_2 = 7$$

But, from the formula,

$$2w_1 + 3w_2 = 2[\theta x_1 + (1 - \theta)y_1] + 3[\theta x_2 + (1 - \theta)y_2]$$

Now, take the common terms outside, we get

$$= \theta[2x_1 + 3x_2] + (1 - \theta)[2y_1 + 3y_2]$$
$$= \theta \times 7 + (1 - \theta) \times 7 = 7 \qquad [2x_1 + 3x_2 = 7]$$

Hence, $W = (w_1, w_2)$ belongs to C Since W is any point of C, and $X, Y \in C$ This can be written as $[X : Y] \subset C$. Therefore, set C is convex.

Example-: 02

Show that the following set is convex

$$S = \{(x_1, x_2) : 3x_1^2 + 2x_2^2 \le 6\}$$

SOLUTION:

Let $\mathbf{x}, \mathbf{y} \in S$ where $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$.

The line segment joining \mathbf{x} and \mathbf{y} is the set:

$$\left\{ \boldsymbol{u}:\boldsymbol{u}=\lambda\boldsymbol{x}+\big(1-\lambda\big)\boldsymbol{y},\quad 0\leq\lambda\leq1\right\}$$

For some $\lambda, 0 \le \lambda \le 1$, let $\mathbf{u} = (u_1, u_2)$ be a point of this set, so that

$$u_1 = \lambda x_1 + (1 - \lambda)y_1$$
 and $u_2 = \lambda x_2 + (1 - \lambda)y_2$

Now,

$$3u_1^2 + 2u_2^2 = 3[\lambda x_1 + (1 - \lambda)y_1]^2 + 2[\lambda x_2 + (1 - \lambda)y_2]^2$$
$$= \lambda^2 (3x_1^2 + 2x_2^2) + (1 - \lambda)^2 (3y_1^2 + 2y_2^2) + 2\lambda (3x_1y_1 + 2x_2y_2)$$
$$\leq 6\lambda^2 + 6(1 - \lambda)^2 + 12\lambda (1 - \lambda)$$

Since
$$(3x_1y_1 + 2x_2y_2) \le \sqrt{(x_1\sqrt{3})^2 + (x_2\sqrt{2})^2} \sqrt{(y_1\sqrt{3})^2 + (y_2\sqrt{2})^2}$$

Thus, $3u_1^2 + 2u_2^2 \le 6$ and hence $\mathbf{u} = (u_1, u_2)$ is a point on S

Hence S is convex set

Definition

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y), \forall (x,y,\lambda) \in X \times X \times [0,1].$$

Definition

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y), \forall (x,y,\lambda) \in X \times X \times [0,1].$$

Definition

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y), \forall (x,y,\lambda) \in X \times X \times [0,1].$$

Definition

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y), \forall (x,y,\lambda) \in X \times X \times [0,1].$$

We say a function is strictly convex if $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ holds with strict inequality for any $x \ne y$ and $\lambda \in (0,1)$. We say that f is concave if -f is convex, and similarly that f is strictly concave if -f is strictly convex.

Some examples of convex functions are given as follows.

- 1. Exponential, f(x) = exp(ax); for any $a \in \mathbb{R}^n$.
- 2. Negative logarithm, $f(x) = -\log x$ with x > 0
- 3. Affine functions, $f(x) = w^T x + b$
- 4. Quadratic functions, $f(x) = \frac{1}{2}X^TAX$ with $A \in S_+^n, A \ge 0$
- 5. Norms f(x) = ||x||
- 6. Non-negative weighted sums of convex functions. Let f_1, f_2, \dots, f_k be convex functions and w_1, w_2, \dots, w_k be non-negative real numbers. Then $f(x) = \sum_{i=1}^n w_i f_i(x)$

Example

Is the function, f(x) = |x| a convex function?

SOLUTION:

To prove this we need to check the definition:

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y), \, \forall (x,y,\lambda) \in X \times X \times \left[0,1\right]$$

Furthermore, these inequalities have to be true for all $x, y \in \mathbb{R}^n$ and every $\lambda \in [0,1]$. It is not enough to simply pick a few values randomly and check the equations. So, we have to work symbolically. In this case,

$$f(\lambda x + (1 - \lambda)y) = |\lambda x + (1 - \lambda)y|$$

$$\leq |\lambda x| + |(1 - \lambda)y|$$

$$= \lambda |x| + (1 - \lambda)|y|, \quad \lambda, 1 - \lambda \geq 0$$

$$= \lambda f(x) + (1 - \lambda)f(y)$$

 $\Rightarrow f$ is convex.

Example

Show that $f(x) = x^2, x \in \mathbb{R}$ is strictly convex.

SOLUTION:

Pick x_1, x_2 so that $x_1 \neq x_2$, and pick $\lambda \in (0, 1)$.

$$f((1-\lambda)x_1 + \lambda x_2) = ((1-\lambda)x_1 + \lambda x_2)^2$$
$$= (1-\lambda)^2 x_1^2 + \lambda^2 x_2^2 + 2(1-\lambda)\lambda x_1 x_2$$

Since, $x_1 \neq x_2$, $(x_1 - x_2)^2 > 0 \Rightarrow x_1^2 + x_2^2 > 2x_1x_2$

Thus,

$$(1 - \lambda)^{2}x_{1}^{2} + \lambda^{2}x_{2}^{2} + 2(1 - \lambda)\lambda x_{1}x_{2} < (1 - \lambda)^{2}x_{1}^{2} + \lambda^{2}x_{2}^{2} + (1 - \lambda)\lambda(x_{1}^{2} + x_{2}^{2})$$

$$= (1 - 2\lambda - \lambda^{2} + \lambda + \lambda^{2})x_{1}^{2} + (\lambda - \lambda^{2} + \lambda^{2})x_{2}^{2}$$

$$= (1 - \lambda)x_{1}^{2} + \lambda x_{2}^{2}$$

$$= (1 - \lambda)f(x_{1}) + \lambda f(x_{2})$$

Example

Verify the f(x, y) = x + y, $\forall x, y \in \mathbb{R}$ is convex or concave.

SOLUTION:

For any two points $A = (x_1, y_1)$, $B = (x_2, y_2)$ and pick $\lambda \in (0, 1)$ we have

$$f((1-\lambda)A + \lambda B) = f\left((1-\lambda)\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \lambda \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}\right)$$

$$= f\left((1-\lambda)x_1 + \lambda x_2 \\ (1-\lambda)y_1 + \lambda y_2 \end{pmatrix}$$

$$= \{(1-\lambda)x_1 + \lambda x_2\} + \{(1-\lambda)y_1 + \lambda y_2\}$$

$$= (1-\lambda)(x_1 + x_2) + \lambda(y_1 + y_2)$$

$$= (1-\lambda)f(A) + \lambda f(B)$$

Equality implies the function is both convex and concave

UnConstrained Optimization

Definition

Let $f: I \to \mathbb{R}$, I an interval. A point $x_0 \in I$ is a local maximum of f if there is a $\delta > 0$ such that $f(x) \le f(x_0)$ whenever $x \in I \cap (x_0 - \delta, x_0 + \delta)$. Similarly, we can define local minimum.

Necessary Condition for local extrema:

First derivative test

Theorem

Suppose $f:[a,b] \to \mathbb{R}$ and suppose f has either a local maximum or a local minimum at $x_0 \in (a,b)$. If f is differentiable at x_0 then $f'(x_0) = 0$.

Proof: Necessary Condition for extrema

- ▶ Suppose f has a local maximum at $x_0 \in (a, b)$
- ▶ For small h we have $f(x_0 + h) \le f(x_0)$.
- ▶ If *h* > 0 then

$$\frac{f(x_0+h)-f(x_0)}{h}\leq 0$$

▶ If *h* < 0 then

$$\frac{f(x_0+h)-f(x_0)}{h}\geq 0$$

• Given f is differentiable at x_0 , hence the following

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$$

exist and unique at $x = x_0$

From above two inequalities we have

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = 0$$

The sufficient conditions only for local maximum and the sufficient conditions for local minimum are similar. In the following results we assume $f:(a,b)\to\mathbb{R}$.

Theorem (A)

Let $c \in (a,b)$ and f be continuous at c. If for some $\delta > 0$, f is increasing on $(c-\delta,c)$ and decreasing on $(c,c+\delta)$, then f has a local maximum at c.

Theorem (B)

Let $c \in (a,b)$ and f be continuous at c. If $f'(x) \ge 0$ for all $x \in (c-\delta,c)$ and $f'(x) \le 0$ for all $x \in (c,c+\delta)$ then f has a local maximum at c.

Theorem (C)

Let $c \in (a,b)$. If f'(c) = 0 and f''(c) < 0 then f has a local maximum at c.

Proof: Sufficient Condition for maximum

Theorem: A

- Choose any x_1 and x such that $c \delta < x_1 < x < c$.
- ▶ Then $f(x_1) \le f(x)$ and by the continuity of f at c we have

$$f(x_1) \le \lim_{x \to c^-} f(x) = f(c)$$

▶ Similarly, if $c < x_2 < c + \delta$ then $f(x_2) \ge \lim_{x \to c^+} f(x) = f(c)$.

Theorem: C

Given:
$$f'(c) = 0 \& f''(c) < 0$$

Claim: f has a local maximum at c

$$\lim_{x \to c} \frac{f'(x)}{x - c} = \lim_{x \to c} \frac{f'(x) - f'(c)}{x - c} = f''(c) < 0$$

- f'(x) > 0 for $x \in (c \delta, c)$, hence increasing.
- f'(x) < 0 for $x \in (c, c + \delta)$, hence decreasing.

Converse of theorem not true

If f is continuous at c and f has a local maximum at c, then f need not be increasing on $(c - \delta, c)$ or decreasing on $(c, c + \delta)$ for any $\delta > 0$.

Example:

$$f(x) = -(x\sin(1/x))^2$$
 if $x \ne 0$ and $f(0) = 0$ for $c = 0$

If f has a maximum at c and f is twice differentiable at c, then f''(c) need not be less than 0.

Example:

$$f(x) = -x^4 \text{ for } c = 0$$

Convexity & Concavity of a Function

- If the first derivative of a function f(x) at x is $f'(x_0)$.
- ▶ Convexity and Concavity: The smile test for maximum/minimum ⑤ or ⑥.
- ▶ If f''(x) < 0 for all x, then strictly concave. Critical points are global maxima ③
- ▶ If f''(x) > 0 for all x, then strictly convex. Critical points are global minima ③

Nth Derivative test:

- If the first nonzero derivative value at x_0 encountered in successive derivation is that of the N^{th} derivative, $f^{(n)}(x) \neq 0$,
- ▶ Then the stationary value $f(x_0)$ will be:
 - 1. A relative max if N is even and $f^{(n)}(x_0) < 0$
 - 2. A relative min if N is even and $f^{(n)}(x_0) > 0$
 - 3. An inflection point if N is odd

Taylor series analysis 1D

x is for all possible points in the neighbourhood of x_0 .

$$f(x) - f(x_0) \approx \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2$$

Necessary condition $f'(x_0) = 0$

$$f(x) - f(x_0) \approx \frac{f''(x_0)}{2!} (x - x_0)^2$$

- If x_0 is a local minima: $f(x) f(x_0) > 0 \Rightarrow f''(x_0) > 0$
- If x_0 is a local maxima: $f(x) f(x_0) < 0 \Rightarrow f''(x_0) < 0$

Taylor series analysis 2D

x is for all possible points in the neighbourhood of x_0 .

$$f(x,y) - f(x_{0}, y_{0}) \approx \frac{f_{x}(x_{0}, y_{0})}{1!} (x - x_{0}) + \frac{f_{y}(x_{0}, y_{0})}{1!} (y - y_{0})$$

$$+ \frac{f_{xx}(x_{0}, y_{0})}{2!} (x - x_{0})^{2} + f_{xy}(x_{0}, y_{0})(x - x_{0})(y - y_{0}) + \frac{f_{yy}(x_{0}, y_{0})}{2!} (y - y_{0})^{2}$$

$$= h^{T} \begin{pmatrix} f_{x} \\ f_{y} \end{pmatrix}_{(x_{0}, y_{0})} + \frac{1}{2} h^{T} H h, \text{ for } h = \begin{pmatrix} x - x_{0} \\ y - y_{0} \end{pmatrix} \text{ and } H = \begin{pmatrix} f_{xx} & f_{yx} \\ f_{xy} & f_{yy} \end{pmatrix}_{(x_{0}, y_{0})}$$
(1)

Necessary condition for Local Extrema: $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$

$$f(x,y) - f(x_0,y_0) \approx \frac{1}{2}h^T H h$$

- ▶ If (x_0, y_0) is a local minima: $f(x, y) f(x_0, y_0) > 0 \Rightarrow \frac{1}{2} h^T H h > 0 \quad \forall h \neq 0$
- If (x_0, y_0) is a local maxima: $f(x, y) f(x_0, y_0) < 0 \Rightarrow \frac{1}{2}h^T H h < 0 \quad \forall h \neq 0$

A real symmetric matrix is positive definite iff all its eigenvalue are positive

- **▶** (⇒):
 - Let $\lambda \in \mathbb{R}$ be an eigenvalue of $A \in \mathbb{R}^{n \times n}$, and $x \in \mathbb{R}^n$ be the corresponding eigenvector, i.e.,

$$Ax = \lambda x. (2)$$

- ▶ Also given that *A* is positive definite, i.e., $x^T Ax > 0$, $\forall x \in \mathbb{R}^n$.
- ▶ Claim: All eigenvalues are A, is positive, i.e., $\lambda_i > 0$.
- Multiplying x^T both sides of (2), we get

$$x^T A x = \lambda x^T x = \lambda ||x||^2$$
.

- From the above, the left side is positive and $||x||^2$ is positive. Hence λ is real-positive.
- ▶ (<==)
 - Assume that all eigenvalues are positive, i.e., $\lambda_i > 0$.
 - ▶ **Claim:** The matrix A is positive definite.i.e., $x^T Ax > 0$, $\forall x \in \mathbb{R}^n$
 - We know, the real symmetric matrix is diagonalizable by an orthogonal matrix. So there exists an orthogonal matrix Q, such that $Q^TAQ = D$.
 - Here $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix, whose all diagonal entries are positive real no.

A real symmetric matrix is positive definite iff all its eigenvalue are positive

- Let $x \in \mathbb{R}^n$ be any nonzero vector.
 - Now, $x^T A x = x^T Q D Q^T x$. Putting $y = Q^T x$, we get

$$x^T A x = y^T D y.$$

Let
$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
, then we have

$$x^{T}Ax = y^{T}Dy$$

$$= \begin{bmatrix} y_{1} & y_{2} & \cdots & y_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & \cdots & \\ 0 & \lambda_{2} & 0 & \cdots \\ \vdots & & & \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$= \lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + \cdots + \lambda_{n}y_{n}^{2} > 0.$$

• Since x is a nonzero vector and Q is invertible, $y = Q^T x$ is not a zero vector. Therefore A is positive definite.