Вибір та обґрунтування елементної бази

Елемента база приладу складається з електро-радіо-компонентів, що входять до переліку схеми електричної принципової як комплектуючі приладу (звертаємося до переліку елементів)

Перелік компонентів може включати наступні типи електронних компонентів:

- конденсатори
- мікросхеми аналогові
- мікросхеми цифрові
- резистори
- стабілітрони
- транзистори
- роз'єми
- інше

Всі компоненти повинні бути вибрані а також переконливо обґрунтовано їх використання.

Методика вибору компонентів однакова. Основну увагу буде приділено до вибору основним компонентам - цифровим мікросхемам

Методу вибору IC по зрівнювальним параметрам та методу вибору по узагальненим критеріям приписують недолік — немає одного критерію, за допомогою якого можна було б виділити з множини елементів що розглядаються, такий конструктивний елемент, який володів би оптимальною сукупністю параметрів

Такого недоліку немає метод вибору IC по *матриці параметрів*. Цей метод включає два перших методи.

Для вибору необхідної ІС вибрані чотири 8-розрядних регістра різних серій (К555ІР27, SN74HC377, SN74ABT377A, SN74F377A) фірми Texas Instruments, які повністю аналогічні по свої функціональності.

Параметри вибраних мікросхем наведені в таблиці 1.1

Таблиця 1.1 - Основні параметри ІС, що порівнюються

Серія ІС	Параметри				
серія іс	I _{static} , mA	f _{max} , MHz	t _{BCT} , ns	t _{pd max} ns	Price, \$
LS (555)	28.0	30	20	27.0	0.81
НС	0.08	20	21	34.0	0.29
ABT	15.2	150	3.0	7.30	0.40
F	81.0	110	4.5	10.5	0.48
Ваговий коефіцієнт b _j	0.25	0.30	0.15	0.20	0.10

Виберемо вагові коефіцієнти у відповідності до важливості параметру.

Складемо матрицю параметрів |X| згідно таблиці 1.1

	-		-	-	-
	28.0	30	20	27	0.81
X =	0.08	20	21	34.0	0.29
	15.2	150	3.0	7.30	0.40
	81.0	110	4.5	10.5	0.48

Аналізуємо параметри (стовпчики) матриці |X| та приведемо їх до такого вигляду, щоб більшому значенню параметра відповідало найкраща якість ІС. Параметри, що не задовольняють цій умові, перераховуються за формулою:

$$Y_{ij} = \frac{1}{x_{ii}},$$

 $i=\overline{1,n}$ - кількість вибраних ІС

 $j = \overline{1,m}$ - кількість параметрів IC

Параметри, які більшому значенню не відповідає найкраща якість, відмічені в матриці |X| "-"

Тоді матриця приведених параметрів | Ү | має вигляд:

	0.036	30	0.05	0.037	1.235
Y =	12.5	20	0.048	0.029	3.448
	0.066	150	0.333	0.137	2.500
	0.012	110	0.222	0.095	2.083

Далі матрицю | Y | приведених параметрів приведемо до матриці | A | - нормованих параметрів.

Нормування параметрів виконуємо за наступною формулою:

$$a_{ij} = \frac{\max\limits_{j} y_{ij} - y_{ij}}{\max\limits_{j} y_{ij}},$$

де $\max_j y_{ij}$ - максимальний елемент в стовпчику |Y| y_{ij} - поточне значення елементу в стовпчику |Y|

	(12.5-0.036)/12.5 = 0.997	0.8	0.85	0.730	0.642
A =	0	0.867	0.857	0.785	0
	0.995	0	0	0	0.275
	0.999	0.267	0.333	0.305	0.396

Для узагальненого аналізу системи параметрів вводять оціночну функцію:

$$Q_i = \sum_{j=1}^m a_j b_j$$
$$\sum_{i=1}^m b_j = 1$$

b_i - ваговий коефіцієнт

$$\sum_{j=1}^{m} b_j = 1$$

 $Q_{LS(555)} = 0.997 \cdot 0.25 + 0.8 \cdot 0.3 + 0.85 \cdot 0.15 + 0.73 \cdot 0.2 + 0.642 \cdot 0.1 = 0.827$

Значення оціночної функції для вибраних ІС наведені в таблиці 2

Таблиця 2

Серія IC	Q
LS (555)	0.827
НС	0.546
ABT	0.276
F	0.480

Визначивши Q_і для кожної з порівнюваних серій ІС, виберемо ту серію, яка найбільш задовольняє вимогам, що пред'являються до ЕОА. Меншому значенню Q відповідає краща серія ІС.

3 аналізу значення Q робимо висновок, що оптимальною по розглянутим параметрам ϵ серія АВТ.

Далі вводимо вимоги розробника, виробника, користувача.

Як виявилося, на ринку України мікросхеми ABT та F (Fast Logic) присутні в дуже обмеженому асортименті, що вносить деякі незручності у виробництво та ремонт розробляємого продукту. З двох серій, що залишилися (LS та HC) по критерію швидкодії найкращою є LS. Враховуючи те, що пристрій не попаде в серійне виробництво фінансові затрати не мають значення.

Вибір інших компонентів за Вами. Тільки рекомендую в своїх схемах конденсатори замінити на чіп-конденсатори у відповідності до номіналів та Uроб. Резистори замінити на чіп-резистори з номіналом R та P_{po3}.

Задання

- 1. Вибрати по довіднику три типи різних ІС, які є аналогами по виконуваним функціям
- 2. Згідно ТЗ вибрати параметри, по яким виберете найкращу серія для Вашого пристрою
- 3. По матриці параметрів вибрати кращу серію ІС, га основі якої буде розроблятися
- 4. Виконати вибір типів інших компонентів (можна без матриці)
- 5. Скласти перелік елементів на схему

- 6. Заготувати посадкові місця для всіх типів ІС, інших КЕ
- 7. На посадкових місцях вказати перший вивід