A_4

Assignment IV

Prof. Dr. P. Tang; Computer Organization I

Connor Taffe

November 12, 2015

1. The block diagram is sketched and attached to this assignment. The function table in figure 1 shows the output of the ALU in relation to the inputs x, y, and z and the controls S_{0-2} . Note the x in the controls column is a placeholder for any value, and not the input x.

S_0	S_1	S_2	ALU
0	0	0	x+y
0	0	1	x-y
0	1	0	$x \wedge y$
0	1	1	x
1	0	x	y
1	1	x	z'

Figure 1: Truth table for ALU

- 2. Figure 2 shows the internal circuitry of the ALU. Notice that I have made a design descision alternate to that made in lecure five by bundling the negation of z into the ALU. I understand that in a real situation, the Control Unit would have to coordinate the operations of more than one operational unit e.g. an FPU. For this reason, I will use an external not to create z', to give the Control Unit something else to control.
- 3. The datapath diagram is sketched and attached to this assignment. The control points are S_{0-2} for controlling the operation of the ALU, and loads for x, y, and z.
- 4. Figure 3 shows the internal circuitry of the datapath.
- 5. Figure 4 is the control point table which includes all six operations and their relevant control points settings.
- 6. Figure 6 shows the internal circuitry of the Control Unit.

Figure 2: Internal circuit of the ALU

- 7. (a) I set the registers to the appropriate numbers. The testing circuit in the next question is photographed with those properties.
 - (b) Figure 7 shows the testing circuit.
 - (c) The calculations are shown in figure 8.
 - (d) Figure 9 waveform shows the testing. As you can see, the registers simulate with a fuzzy value after a few iterations. I have used those same registers before and they performed well. The circuit seems valid and the CU is making correct decisions. I also tested the ALU several times and it also seems to function properly. I have no idea what is causing the blurring. I have retried the simulation several times. Also the g signal for x is not shown properly as it is possibly labeled incorrectly. But you can see from the values propogating to it that it is functioning properly.

Figure 3: Internal circuit of the datapath

		S_0	S_1	S_2	load x	load y	load z	ALU to bus	not to bus
α	$x \leftarrow x + y$	0	0	0	1	0	0	1	0
β	$y \leftarrow x - y$	0	0	1	0	1	0	1	0
γ	$x \leftarrow x \land y$	0	1	0	1	0	0	1	0
δ	$z \leftarrow x$	0	1	1	0	0	1	1	0
ϵ	$x \leftarrow y$	1	0	0	1	0	0	1	0
θ	$x \leftarrow z'$	1	1	0	1	0	0	0	1

Figure 4: Control Point table

$$S_0 = \epsilon + \theta \tag{1}$$

$$S_1 = \gamma + \delta + \theta \tag{2}$$

$$S_2 = \beta + \delta \tag{3}$$

$$\log x = \alpha + \gamma + \epsilon + \theta \tag{4}$$

$$\log y = \beta \tag{5}$$

$$\log z = \delta \tag{6}$$
ALU to bus = $\alpha + \beta + \gamma + \delta + \epsilon \tag{7}$
not to bus = θ (8)

Figure 5: Boolean equations for controls

Figure 6: Internal circuit of the control unit

Figure 7: Testing circuit

$x \leftarrow 4 + 1 = 5$	(10)
$y \leftarrow 5 - 1 = 4$	(11)
$x \leftarrow 5 \land 4 = 4$	(12)
$z \leftarrow 4$	(13)
$x \leftarrow 4$	(14)
$x \leftarrow 4' = 11$	(15)
x = 11	(16)
y = 4	(17)
z = 4	(18)
	(19)

Figure 8: Calculations of value changes.

Figure 9: Waveform for circuit