Machine Learning in Financial Markets:

Pitfalls & Solutions

Hi, I'm Serena! A bit about me...

Head of Operations at Al Socratic Circles

B.Sc., Mathematics & Biology McGill University

M.Sc., Mathematics Hong Kong University of Science and Technology

Soccer player

Areas I've worked in...

C Oceanography & Fluid Dynamics

Recommender Systems

Domain knowledge is important!

1. The past does not equal the future

1. The past does not equal the future

1. The past does not equal the future

Linear model

Simulate data

Don't take things so seriously

(a good motto for life in general!)

2. Perfect accuracy is not enough

2. Perfect accuracy is not enough

3. Memory is important

3. Memory is important

3. Memory is important

In summary, when applying machine learning to financial markets, remember:

The past does not equal the future

Thank you for listening!

Any questions?

Credit for images & code

Nemo: pixar.fandom.com

Tesla stock: Yahoo Finance

AiFML picture: Google Play store

Thank you:

https://jtsulliv.github.io/stock-movement/

And thank you:

https://github.com/philipperemy/fractional-differentiation-time-series/blob/master/fracdiff/fracdiff.py