

- 1. Show that the function $\psi(x,t)=f_1(ct-x)+f_2(ct+x)$ satisfies the one-dimensional wave equation.
- 2. Consider the one-dimensional wave equation

$$\frac{\partial^2 \psi}{\partial t^2} = c^2 \frac{\partial^2 \psi}{\partial x^2}.\tag{1}$$

Find the traveling wave solution satisfying the initial conditions $\psi(x,0)=g(x)$ and $\dot{\psi}(x,0)=0$.

- 3. For gravity waves in a liquid, the phase velocity c depends on the wavelength λ as $c = A\sqrt{\lambda}$, A is a constant. Show that the group velocity is half the phase velocity.
- 4. The phase velocity c of deep water waves obeys the relationship

$$c^2 = \frac{g\lambda}{2\pi} + \frac{2\pi S}{\rho\lambda},\tag{2}$$

where g, ρ , and S are the acceleration due to gravity, the density of water, and the surface tension of water, respectively.

- (a) Find the wavelength λ_0 at which the waves do not disperse in water.
- (b) Show that for $\lambda \ll \lambda_0$, $c_q = 3c/2$.
- (c) Show that for $\lambda >> \lambda_0$, $c_g = c/2$.