Université Natitingou

École Normale Supérieure de Natitingou

Master 1

 $Ann\'ee\ acad\'emique: 2022-2023$

Travaux Dirigés NÂ °2 d'Algèbre Commutative

Exercice 1

- 1. Démontrer que tout groupe abélien a une structure de \mathbb{Z} -module.
- 2. On désigne par \mathcal{A}^S l'ensemble des applications d'un ensemble non vide S dans un anneau commutatif \mathcal{A} et par $\mathcal{A}^{(S)}$ l'ensemble des $u \in \mathcal{A}^S$ telles que les $x \in S$ vérifiant $u(x) \neq 0$ soient en nombre fini.
 - (a) Montrer que \mathcal{A}^S est un \mathcal{A} -module et que $\mathcal{A}^{(S)}$ en est un sous-module.
 - (b) Préciser $\mathbb{R}^{\mathbb{N}}$ et $\mathbb{R}^{(\mathbb{N})}$.
- 3. Soit \mathcal{A} un anneau commutatif et soit M un \mathcal{A} —module. On appelle annulateur de M et on note Ann(M), l'ensemble défini par

$$Ann(M) = \{ a \in \mathcal{A} / \forall x \in M, \quad ax = 0_M \}.$$

On dit qu'un module sur \mathcal{A} est fidèle si son annulateur est réduit au singleton $\{0_{\mathcal{A}}\}.$

- (a) Le \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} est-il fidèle? de torsion? sans torsion?
- (b) Montrer que l'annulateur Ann(M) est un idéal de \mathcal{A} .
- (c) Montrer que pour toute famille finie $(N_i)_{1 \le i \le n}$ de sous-modules de M, l'on a :

$$Ann\left(\sum_{i=1}^{n} N_i\right) = \bigcap_{i=1}^{n} Ann(N_i).$$

(d) Montrer que si \mathcal{I} est un idéal de \mathcal{A} contenu dans Ann(M), alors M a une structure de $\mathcal{A}/\mathcal{I}-$ module.

Exercice 2

Soit $M = \{(x,y) \in \mathbb{Z}^2 / x + y \equiv 0 \pmod{2}, x - y \equiv 0 \pmod{4} \}.$

1. Prouver que M est un $\mathbb{Z}-$ module libre de rang 2 dont on donnera une base.

- 2.(a) Expliciter le module quotient \mathbb{Z}^2/M .
 - (b) Ce module est-il fidèle? de torsion? sans torsion?

Exercice 3

Soit \mathcal{A} un anneau commutatif. Un \mathcal{A} —module \mathcal{M} de \mathcal{A} est dit simple lorqu'il n'admet pas de sous-module propre non trivial (c'est-à-dire les seuls sous-modules de \mathcal{M} sont $\{0_M\}$ et M lui-même.)

- 1. Montrer que tout \mathcal{A} -module simple est monogène. En déduire que si E un K- espace vectoriel et que $\mathcal{A} = End(E)$, alors E est un \mathcal{A} -module simple.
- 2. Soient \mathcal{M} un \mathcal{A} -module et \mathcal{N} un sous-module de M.

Prouver que le module quotient \mathcal{M}/\mathcal{N} est simple si et seulement si \mathcal{N} est un sous-module maximal dans l'ensemble des sous-modules de \mathcal{M} distincts de \mathcal{M} .

Examiner le cas particulier où $\mathcal{M} = \mathcal{A}$ et $\mathcal{N} = \mathcal{I}$ un idéal de \mathcal{A} .

- 3. Prouve que tout \mathcal{A} -module simple est isomorphe à Â \mathcal{A}/\mathcal{I} , pour un certain idéal maximal \mathcal{I} de \mathcal{A} .
- 4. Montrer que tout \mathcal{A} -morphisme $f: \mathcal{M}_1 \longrightarrow \mathcal{M}_2$ entre deux \mathcal{A} -modules simples \mathcal{M}_1 et \mathcal{M}_2 est soit nul, soit un isomorphisme.
- 5. Montrer que l'anneau des endomorphismes d'un module simple est un corps.

Exercice 4

1. Soit \mathcal{A} un anneau commutatif.

Montrer qu'un idéal \mathcal{I} de \mathcal{A} est un sous-module libre de \mathcal{A} si et seulement si \mathcal{I} est principal engendré par un élément non diviseur de zéro de \mathcal{A} .

2. On suppose que \mathcal{A} est un anneau intègre, \mathcal{K} son corps des fractions et que $\mathcal{K} \neq \mathcal{A}$. Montrer que \mathcal{K} n'est pas libre comme \mathcal{A} —module.

Exercice 5

 \mathcal{A} un anneau intègre.

1. Montrer que l'ensemble T(M) des torsion d'un \mathcal{A} -module M est un sousmodule de M. 2. Démontrer que si

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M"$$

est une suite exacte de A-morphismes, alors

$$0 \longrightarrow T(M') \longrightarrow T(M) \longrightarrow T(M")$$

est aussi une suite exacte.

3. Soit

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M"$$

une suite exacte de \mathcal{A} -morphismes de modules. Comparer Ann(M), Ann(M') et Ann(M'').

Exercice 6

Soit \mathcal{A} un anneau commutatif. On considère le diagramme commutatif suivant de \mathcal{A} -morphismes, où les deux lignes sont des suites exactes courtes.

$$0 \longrightarrow M \xrightarrow{s} N \xrightarrow{t} P \longrightarrow 0$$

$$\downarrow v \qquad \omega \downarrow \qquad \qquad \downarrow 0 \longrightarrow M' \xrightarrow{s'} N' \xrightarrow{t'} P' \longrightarrow 0$$

- 1. Montrer que si u et ω sont injectifs, alors v l'est aussi.
- 2. Montrer que si u et ω sont surjectifs, alors v l'est aussi.

Exercice 7(Lemme de la puissance domptée)

On dit qu'un module sur un anneau est fidèle lorsque son annulateur est réduit $\hat{u}A$ {0}. Soit A un anneau commutatif et soit M un A— module. Pour tout idéal \mathcal{I} de A, on définit l'ensemble $\mathcal{I}M$ par :

$$\mathcal{IM} = \Big\{ \sum_{i=1}^{n} a_i x_i / n \in \mathbb{N}, (a_i, x_i) \in \mathcal{A} \times \mathcal{M}, \forall i \in \{0, 1, ..., n\} \Big\}.$$

1. Démontrer que pour tout idéal \mathcal{I} de \mathcal{A} , \mathcal{IM} est un sous-module de \mathcal{M} et que le module quotient \mathcal{M}/\mathcal{IM} est \mathcal{A}/\mathcal{I} -module.

- 2. On suppose que \mathcal{M} est un $\mathcal{A}-$ module de type fini engendré par n éléments, \mathcal{I} , \mathcal{J} deux idéaux de A.
 - (i) Démontrer le lemme de la puissance domptée : Si $\mathcal{IM} \subset \mathcal{JM}$, alors $\mathcal{I}^n \subset \mathcal{J} + Ann(\mathcal{M})$.
 - (ii) Examiner le cas particulier lorsque \mathcal{M} est $\mathcal{A}-$ module monogène et fidèle.

Exercice 8

Soit A un anneau commutatif. Un module sur A est dit noethérien si toute suite ascendante de ses sous-modules est stationnaire.

Soient M et N deux A-modules.

- 1. Démontrer que les conditions suivantes sont équivalentes.
 - (i) M est noethérien.
 - (ii) Tout sous-module de M est de type fini.
 - (iii) Tout ensemble non vide sous-modules de M admet un élément maximal (pour l'inclusion).
- 2. On note $Hom_A(M,N)$ l'ensemble des morphismes de M dans N. Justifier que $Hom_A(M,N)$ a une structure de A-module.
- 3.(a) Soit $M_1 \xrightarrow{\varphi_1} M_2 \xrightarrow{\varphi_2} M_3$ une suite exacte de morphismes de A-modules. Prouver que si M_1 et M_3 sont noethériens, alors M_2 l'est.
 - (b) En déduire que si M est noethérien, alors pour tout entier naturel non nul n, M^n est un A-module noethérien.

Exercice 9

Soit A un anneau commutatif, M un A-module, I, J des idéaux de A, K, N des sous-modules de M. On appelle résiduel de I par J ou le transporteur de J dans I noté I:J et défini par $I:J=\{a\in A/aJ\subset I\}$. On définit de même le transporteur de N dans K par $K:N=\{a\in A/aN\subset K\}$ et $K:I=\{x\in M/Ix\subset K\}$. Le sous-module N est dit primaire si :

 $N \neq M$ et $\forall a \in A, \forall x \in M, (ax \in N \text{ et } x \notin N) \Longrightarrow \exists r \in \mathbb{N}^* : a^r M \subseteq N.$ $a^r M \subset N \Longleftrightarrow a^r \in N : M$. En posant M = A et N = I, idéal de A, on retrouve la définition d'idéal primaire.

- 1. Démontrer que K:N est un idéal de A, I:J un idéal de A contenant I et que K:I est un sous-module de M contenant K.
- 2. Démontrer que la division résiduelle est croissante à gauche et décroissante à Â droite.
- 3. Démontrer que :
 - (a) $(I:J)J\subset I$,
 - (b) (N:I): J = N:IJ,
 - (c) si I et J sont de type fini, alors pour toute partie multiplicative S de A, on a : $S^{-1}(I:J) = S^{-1}I:S^{-1}J$.
- 4. Déterminer le transporteur de \mathbb{R} dans \mathbb{Q} et celui de \mathbb{Q} dans \mathbb{R} , en tant que \mathbb{Z} modules.
- 5. Démontrer que si N est un sous-module primaire de M, alors N:M est un idéal primaire et en déduire que $\sqrt{N:M}$ est un idéal premier P de A. On dit alors que N est P- primaire.
- 6. Soit P un idéal premier de A, N un sous-module P- primaire de M, I un idéal de A, K un sous-module quelconque de M.
 - (a) Démontrer que : $\forall a \in A, \forall x \in M, ax \in N \Longrightarrow a \in P \text{ ou } x \in N.$
 - (b) En déduire que si $IK \subset N$, alors $I \subset P$ ou $K \subset N$.
 - (c) Justifier que si I n'est pas contenu dans P, alors N:I=N.
- 7. Soit N un sous-module propre de M et soit P un idéal de A. On suppose vérifiées les conditions suivantes :
 - (i) $\forall a \in A, \forall x \in M, ax \in N \Longrightarrow a \in P \text{ ou } x \in N.$
 - (ii) $\forall a \in P, \exists r \in \mathbb{N}^*/a^rM \subset N.$ Démontrer que P est un idéal premier de A et N un sous-module P-primaire de M.
- 8. Soit P un idéal premier de A, N un sous-module P- primaire de M.

 Démontrer que pour tout sous-module K de M non contenu dans N et pour tout idéal I de A non contenu dans M:N,N:K est un idéal P- primaire de A et N:I un sous-module P- primaire de M.

Dr. TCHAMMOU Euloge, TD Algèbre commutativ 5-M1/ENS-Natitingou-© avril 2023

- 9. Soient $\varphi: M \longrightarrow M'$ un épimorphisme de A- modules, N' un sous-module de M', P un idéal premier de A et $N = \varphi^{(-1)}(N')$.
 - Prouver que N' est P- primaire si et seulement si N est P- primaire.
- 10. Démontrer qu'une intersection finie de sous-modules P- primaires de M est un sous-module P- primaire de M.
- 11. Une décomposition primaire de N est une écriture de N sous la forme $N = \bigcap_{i=1}^{n} N_i$, où $\forall i \in \{1,2,...,n\}$, N_i est un sous-module primaire de M. Une telle décomposition, où $\forall i \in \{1,2,...,n\}$, N_i est P_i primaire est dite réduite si aucun des N_i n'est superflu dans l'intersection et pour tout $(i,j) \in \{1,2,...,n\}^2$, avec $i \neq j$, on a $P_i \neq P_j$.
 - (a) Dans l'anneau \mathbb{Z} des entiers, justifier que pour tout $n \in \mathbb{N} \setminus \{1\}$, l'idéal $n\mathbb{Z}$ admet une décomposition primaire dont on précisera.
 - (b) Prouver que si N admet une décomposition primaire, alors N admet une décomposition primaire réduite.
 - (c) On suppose que M est un A- module noethérien et N un sous-module propre de M et non primaire.
 - Démontrer qu'il existe deux sous-modules propres N' et N'' de M contenant strictement N tels que $N=N'\cap N''$.
 - (d) Prouver que si M est un A- module noethérien, alors tout sous-module propre de M admet une décomposition primaire.
 - En déduire que si A est un anneau noethérien, alors tout idéal propre de A admet une décomposition primaire.

Exercice 10

- 1. Soit M un groupe abélien et EndM, l'anneau des endomorphismes de M.
 - (a) Montrer que M est un EndM-module.
 - (b) Soit A un anneau. Montrer que M est un A-module si et seulement s'il existe un morphisme d'anneaux de A vers EndM.
 - (c) Montrer que $End\mathbb{Q}$ est isomorphe au corps \mathbb{Q} .
- 2. Soit $f:M\to N$ et $g:N\to P$ des A-morphismes et R et S des A sous modules de M et N respectivement. Etablir :

(a)
$$^{-1}f(f(R)) = R + kerf$$

(b)
$$f(^{-1}f(S)) = S \cap Imf$$

(c)
$$f(R \cap^{-1} f(S)) = f(R) \cap S$$

(d)
$$Imf \cap Kerg = f(Ker(g \circ f))$$

(e)
$$Imf + Kerg = ^{-1} g(Im(g \circ f))$$

- 3. Un A-morphisme $f: M \to N$ est dit essentiel lorsque pour tout sous module non nul S de N, $^{-1}f(S)$ est un sous module non nul de M et un A-module L est une extension essentielle de M lorsque M est un sous module de L et l'injection canonique est essentielle. Montrer que :
 - (a) \mathbb{Q} est une extension essentielle de \mathbb{Z} .
 - (b) \mathbb{R} n'est pas une extension essentielle de \mathbb{Q} .
- 4. Soit M un A module. Pour tout A-morphisme $f: A \to M$, on définit $\lambda f: A \to M$ / $a \mapsto f(\lambda a), \forall \lambda \in A$
 - (a) Montrer que $\lambda f \in Mor_A(A, M)$ et montrer que $Mor_A(A, M)$ est un A-module.
 - (b) Montrer que $\varphi: Mor_A(A, M) \to M$ / $f \mapsto \varphi(f) = f(1_A)$ est un A-isomorphe.
- 5. Soit $(m,n) \in (\mathbb{N} \setminus \{0,1\})^2$ et $\Phi : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/nm\mathbb{Z}$ / $x+m\mathbb{Z} \mapsto nx+nm\mathbb{Z}$
 - (a) Montrer que Φ est un \mathbb{Z} morphisme.
 - (b) Montrer que le \mathbb{Z} module $Mor_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z},\mathbb{Z}/nm\mathbb{Z})$ est monogène et engendré par $\{\Phi\}$
 - (c) En déduire que $Mor_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/nm\mathbb{Z}) \cong \mathbb{Z}/m\mathbb{Z}$

Exercice 11(Lemme du serpent)

Soit \mathcal{A} un anneau commutatif. On rappelle que pour tout \mathcal{A} —morphisme $f: M \longrightarrow N$, le conoyau de f est défini par Coker f = N/Im f.

1. Montrer que pour tout carré de commutatif de $\mathcal{A}-$ module,

$$M' \xrightarrow{f} M$$

$$v \downarrow \qquad \qquad \downarrow u$$

$$N' \xrightarrow{h} N$$

on a des applications induites naturelles $Kerv \longrightarrow Keru$ et $Cokerv \longrightarrow Cokeru$.

2. Soit un diagramme commutatif avec des suites exactes :

$$M' \xrightarrow{f} M \xrightarrow{g} M" \longrightarrow 0$$

$$\downarrow v \qquad \downarrow u \qquad \omega \qquad \downarrow \downarrow \qquad 0$$

$$0 \longrightarrow N' \xrightarrow{h} N \xrightarrow{k} N"$$

Démontrer qu'avec les applications définies à la question précédente, il existe un \mathcal{A} -morphisme $\varphi: Ker\omega \longrightarrow Cokerv$ telle que la suite

$$Kerv \longrightarrow Keru \longrightarrow Ker\omega \longrightarrow Cokerv \longrightarrow Cokeru \longrightarrow Coker\omega$$

est exacte.

Fais un dessin du diagramme commutatif complet.

Exercice 12

- 1. $M' \xrightarrow{\tau} M \xrightarrow{\pi} M''$ est une suite exacte telle que $^{-1}\tau(N) = ^{-1}\tau(P)$ et $\pi(N) = \pi(P)$
 - (a) Donner un exemple où $N \neq P$
 - (b) Montrer que si $N \subset P$ alors N = P
- 2. Etablir que la suite ci-après est exacte :

$$0 \longrightarrow N \cap P \xrightarrow{f} N \oplus P \xrightarrow{g} N + P \longrightarrow 0$$
 où $f: x \mapsto (x,x)$ et $g: (y,z) \mapsto y - z$

3. Etablir l'existence d'une suite exacte :

$$0 \longrightarrow M/N \cap P \longrightarrow M/N \oplus M/P \longrightarrow M/(N+P) \longrightarrow 0$$

Exercice 13

Soit A un anneau commutatif. Pour tout A— module M, on désignera par Tor(M) l'ensemble des éléments de torsion de M et par $End_A(M)$ l'ensemble des endomorphismes de M. Soient M et N deux A— modules.

1. Montrer Tor(M) est le plus petit sous-module de M tel que le A- module quotient M/Tor(M) est sans torsion.

- 2. Démontrer que si $\varphi: M \longrightarrow N$ est un A- morphisme, alors $\varphi(Tor(M)) \subset Tor(N)$.
- 3. Soit $(u,\omega) \in (End_A(M))^2, v \in End_A(N)$.
 - (a) Démontrer qu'il existe une unique structure de A[X]— module sur M telle que X.m = u(m) et $1_{A[X]}.m = m$ pour tout $m \in M$. On note M_u le A[X]— module muni de cette structure.
 - (b) Montrer que l'application $u \mapsto M_u$ induit une bijection entre l'ensemble des A[X]— modules sur M et l'ensemble $End_A(M)$ des endomorphismes de M.
 - (c) Déterminer tous les A[X]— morphismes de M_u dans N_v puis préciser à quelle condition $M_u \cong M_\omega$.
 - (d) Examiner la condition précédente dans le cas particulier où $A = \mathbb{K}$ est un corps et $M = \mathbb{K}^n$ est l'espace vectoriel standard de dimension n sur $\mathbb{K}(n \in \mathbb{N}^*)$.

Prouver que le A[X] — module M_u est de torsion dans ce cas.

Dr. TCHAMMOU Euloge, TD Algèbre commutativ9-M1/ENS-Natitingou-© avril 2023