Spectral Clustering, Graph Neural Networks, and Transformers CS 145: Introduction to Data Mining (Spring 2024)

Yanqiao Zhu

UCLA

May 17, 2024

Yanqiao Zhu (UCLA) Graphs and Networks May 17, 2024

Announcements

- HW4 scores have been released
- HW5 solution will be released tomorrow
- No more assignments!

Yanqiao Zhu (UCLA) Graphs and Networks May 17, 2024 2/23

Midterm Exam

Date

- May 20, 12:00PM-1:45PM
- In-person only; no online or make-up exams offered

Format

- Close-book but double-sided letter-sized cheat sheets allowed, up to 10 pages
- Simple calculators allowed
- Internet access strictly prohibited

Scope

- Supervised Learning: Linear Regression, Logistic Regression, MLP, Gradient Descent, Backpropagation, Regularization, Batch/Layer Norm, Decision Trees, Random Forests, Mixture-of-Expert, Ensemble (Bagging, Boosting, Adaboost), K-Nearst Neighbor
- Unsupervised Learning: K-Means, Gaussian Mixture Models, EM Algorithm, (Variational) Auto Encoders
- Graphs and Networks: Random Walks, Spectral Clustering, Graph Representation Learning

Midterm Exam

Structure

- Part A. True/False Questions (8 * 2 = 16 points)
- Part B. Multiple-Choice Questions (5 * 2 = 10 points)
- Part C. Fill-in-the-Blank Questions (21 * 1 = 21 points)
- Part D. Open-Answer Questions (63 points)
 - Problem 17. Linear Regression with Regularization (16 points)
 - Problem 18. Multilayer Perceptron and Backpropagation (15 points)
 - Problem 19. Decision Trees and Bagging (16 points)
 - Problem 20. K-Means and Gaussian Mixture Models (16 points)

Scores

• 110 points in total, with the additional 10 points serving as bonus points

Yangiao Zhu (UCLA) Graphs and Networks May 17, 2024 4

Outline

Spectral Clustering

② Graph Neural Networks

Transformers

Yanqiao Zhu (UCLA) Graphs and Networks May 17, 2024 5 / 23

Graph Representations and Notations

- ullet A graph is denoted as G=(V,E), where V is the set of vertices (nodes) and E is the set of edges
- ullet |V|=n is the number of vertices, and |E|=m is the number of edges
- Adjacency matrix $A \in \mathbb{R}^{n \times n}$: $A_{ij} = 1$ if $(i, j) \in E$, and 0 otherwise
- ullet Degree matrix $oldsymbol{D} \in \mathbb{R}^{n imes n}$: diagonal matrix with $oldsymbol{D}_{ii} = \sum_{j=1}^n oldsymbol{A}_{ij}$

6/23

Yanqiao Zhu (UCLA) Graphs and Networks May 17, 2024

Spectral Clustering

- Spectral clustering: K-Means in a transformed space
 - Preprocessing: Construct a graph and compute its Laplacian matrix
 - Transformation: Compute eigenvectors of the Laplacian matrix
 - Clustering: Run K-Means on the eigenvectors
- Motivation: Solve graph partitioning problems by optimizing graph cut objectives

Graph Laplacian and Spectrum

- Undirected weighted graph $G = (V, E, \mathbf{W})$
- ullet Degree matrix $oldsymbol{D}$: diagonal matrix with $oldsymbol{D}_{ii} = \sum_{j=1}^n oldsymbol{W}_{ij}$
- ullet Unnormalized Laplacian: $oldsymbol{L} = oldsymbol{D} oldsymbol{W}$
- Normalized Laplacians:
 - Symmetric: $\boldsymbol{L}_{\mathsf{sym}} = \boldsymbol{D}^{-1/2} \boldsymbol{L} \boldsymbol{D}^{-1/2}$
 - Random walk: $\boldsymbol{L}_{\mathsf{rw}} = \boldsymbol{D}^{-1} \boldsymbol{L}$
- Quadratic form: $\boldsymbol{x}^\mathsf{T} \boldsymbol{L} \boldsymbol{x} = \sum_{(i,j) \in E} \boldsymbol{W}_{ij} (x_i x_j)^2$
- ullet Spectrum: eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and eigenvectors $oldsymbol{v}_1, oldsymbol{v}_2, \ldots, oldsymbol{v}_n$
- Key properties:
 - ullet L, L_{sym} , L_{rw} : symmetric, positive semi-definite
 - $\lambda_1 = 0$, $\boldsymbol{v}_1 = \boldsymbol{1}$ (constant vector)
 - Number of connected components = multiplicity of $\lambda_1 = 0$
 - ullet Fiedler vector (eigenvector v_2) for bi-partitioning

Yanqiao Zhu (UCLA) Graphs and Networks May 17, 2024 8/23

Graph Laplacian and Spectrum

- Eigenvalues and eigenvectors of these matrices encode important structural properties of the graph
- The Fiedler vector shows a gradual change across the graph, indicating a smooth transition of values

- 0.1

-0.1

-0.2

Graph Cuts and Optimization

ullet Graph cut: $\operatorname{cut}(S,ar{S})=\sum_{i\in S,j\inar{S}}oldsymbol{W}_{ij}$

• Ratio cut objective: $\sum_{i=1}^k \frac{\operatorname{cut}(S_i,\bar{S}_i)}{|S_i|}$

ullet Relaxation: $\min_{oldsymbol{X}} \operatorname{tr}(oldsymbol{X}^{\mathsf{T}} oldsymbol{L} oldsymbol{X})$ s.t. $oldsymbol{X}^{\mathsf{T}} oldsymbol{X} = oldsymbol{I}$

ullet Solution: $oldsymbol{X} = [oldsymbol{v}_1, oldsymbol{v}_2, \ldots, oldsymbol{v}_k]$

• Normalized cut objective: $\sum_{i=1}^k \frac{\mathsf{cut}(S_i,\bar{S}_i)}{\mathsf{vol}(S_i)}$, where $\mathsf{vol}(S_i) = \sum_{j \in S_i} D_{jj}$

ullet Relaxation: $\min_{oldsymbol{X}} \operatorname{tr}(oldsymbol{X}^{\mathsf{T}} oldsymbol{L}_{\mathsf{rw}} oldsymbol{X})$ s.t. $oldsymbol{X}^{\mathsf{T}} oldsymbol{D} oldsymbol{X} = oldsymbol{I}$

ullet Solution: $oldsymbol{X} = [oldsymbol{u}_1, oldsymbol{u}_2, \ldots, oldsymbol{u}_k]$, where $oldsymbol{L}_{\sf rw} oldsymbol{u}_i = \lambda_i oldsymbol{D} oldsymbol{u}_i$

 Yanqiao Zhu (UCLA)
 Graphs and Networks
 May 17, 2024
 10 / 23

Spectral Clustering

Spectral Clustering Algorithms

- Unnormalized spectral clustering (Ratio cut):
 - lacktriangle Construct unnormalized Laplacian L
 - 2 Compute first k eigenvectors of L: v_1, v_2, \ldots, v_k
 - $lacksquare{3}$ Run K-Means on the rows of $oldsymbol{X} = [oldsymbol{v}_1, oldsymbol{v}_2, \ldots, oldsymbol{v}_k]$
- Normalized spectral clustering (Normalized cut):
 - lacktriangledown Construct normalized Laplacian $L_{\sf rw}$ (or $L_{\sf sym}$)
 - ② Compute first k generalized eigenvectors: $\boldsymbol{L}_{\mathsf{rw}}\boldsymbol{u}_i = \lambda_i \boldsymbol{D} \boldsymbol{u}_i$
 - **3** Run K-Means on the rows of $oldsymbol{X} = [oldsymbol{u}_1, oldsymbol{u}_2, \dots, oldsymbol{u}_k]$

Yanqiao Zhu (UCLA) Graphs and Networks May 17, 2024 11/23

Graph Neural Networks (GNNs)

- GNNs generalize convolutional operations to the graph domain
- Key idea: neighborhood aggregation
 - Update node representations by aggregating information from neighboring nodes
 - Repeated for multiple layers to capture higher-order dependencies

 Yanqiao Zhu (UCLA)
 Graphs and Networks
 May 17, 2024
 12 / 23

Graph Neural Networks (GNNs)

• Formally, a GNN layer can be decomposed into three functions:

13 / 23

Yangiao Zhu (UCLA) Graphs and Networks May 17, 2024

Three "Flavors" of GNNs

- Graph Convolutional Network (GCN):
 - Aggregate neighborhood information using convolutional filters
 - Simplifies spectral graph convolutions using first-order approximation
 - $\bullet \ \boldsymbol{H}^{(l+1)} = \sigma(\tilde{\boldsymbol{D}}^{-\frac{1}{2}}\tilde{\boldsymbol{A}}\tilde{\boldsymbol{D}}^{-\frac{1}{2}}\boldsymbol{H}^{(l)}\boldsymbol{W}^{(l)})$
- Graph Attention Network (GAT):
 - Introduces attention mechanism to assign different weights to neighbors
 - $\boldsymbol{h}_i^{(l+1)} = \sigma(\sum_{j \in \mathcal{N}(i)} \alpha_{ij}^{(l)} \boldsymbol{W}^{(l)} \boldsymbol{h}_j^{(l)})$
 - $\bullet \ \alpha_{ij}^{(l)} = \frac{\exp(\mathsf{LeakyReLU}(\boldsymbol{a}^{(l)\top}[\boldsymbol{W}^{(l)}\boldsymbol{h}_i^{(l)}\|\boldsymbol{W}^{(l)}\boldsymbol{h}_j^{(l)}]))}{\sum_{k \in \mathcal{N}(i)} \exp(\mathsf{LeakyReLU}(\boldsymbol{a}^{(l)\top}[\boldsymbol{W}^{(l)}\boldsymbol{h}_i^{(l)}\|\boldsymbol{W}^{(l)}\boldsymbol{h}_k^{(l)}]))}$
- Message Passing Neural Network (MPNN):
 - Unifies various GNN architectures under a general message passing framework
 - $m_i^{(l+1)} = \sum_{j \in \mathcal{N}(i)} M^{(l)}(h_i^{(l)}, h_j^{(l)}, e_{ij})$
 - \bullet $h_i^{(l+1)} = U^{(l)}(h_i^{(l)}, m_i^{(l+1)})$

Yanqiao Zhu (UCLA) Graphs and Networks May 17, 2024 14/23

Three "Flavors" of GNNs

Graph Tasks with GNN Embeddings

- Node-level tasks:
 - Node classification: $\hat{y}_i = f_c(\boldsymbol{h}_i)$, where f_c is a classifier
 - Node regression: $\hat{y}_i = f_r(\boldsymbol{h}_i)$, where f_r is a regression model
- Link-level tasks:
 - Link prediction: $\hat{y}_{ij} = f_l(\boldsymbol{h}_i \parallel \boldsymbol{h}_j)$, where f_l is a binary classifier and \parallel denotes concatenation
 - Edge classification: $\hat{y}_{ij} = f_e(\boldsymbol{h}_i \parallel \boldsymbol{h}_j)$, where f_e is a classifier
- Community-level tasks:
 - Community detection: $\{C_1, \ldots, C_K\} = \mathsf{Clustering}(\{\boldsymbol{h}_i \mid i \in V\})$
 - Subgraph classification: $\hat{y}_{S_k} = f_s(\mathbf{h}_{S_k})$, where $\mathbf{h}_{S_k} = \operatorname{Aggregate}(\{\mathbf{h}_i \mid i \in S_k\})$ and f_s is a classifier
- Graph-level tasks:
 - Graph classification: $\hat{y}_{G_i} = f_g(\boldsymbol{h}_{G_i})$, where $\boldsymbol{h}_{G_i} = \operatorname{Aggregate}(\{\boldsymbol{h}_i \mid i \in V_i\})$ and f_g is a classifier
 - Graph regression: $\hat{y}_{G_i} = f_r(\mathbf{h}_{G_i})$, where $\mathbf{h}_{G_i} = \text{Aggregate}(\{\mathbf{h}_i \mid i \in V_i\})$ and f_r is a regression model

Transformers

- Transformers are a type of deep learning model that rely heavily on the attention mechanism
- Introduced by Vaswani et al. (2017) for sequence-to-sequence tasks, particularly in natural language processing

Tokenization

- Tokenization is the process of breaking down a sequence (e.g., a sentence) into smaller units called tokens
- Tokens can be:
 - Words
 - Subwords (e.g., WordPiece, BPE)
 - Characters
- Each token is mapped to a unique integer ID, which is then used to look up the corresponding embedding vector

The quick brown fox jumps over the lazy dog

[The] [quick] [brown] [fox] [jumps] [over] [the] [lazy] [dog]

[12] [542] [1201] [783] [3120] [4500] [12] [7891] [1345]

Yanqiao Zhu (UCLA) Graphs and Networks May 17, 2024 18/23

Attention Mechanism

- Attention is a mechanism that allows the model to focus on different parts of the input sequence when generating each output token
- Mathematically, attention can be described as a weighted sum of values, where the weights are computed based on the query and keys:

$$\mathsf{Attention}(oldsymbol{Q}, oldsymbol{K}, oldsymbol{V}) = \mathsf{softmax}\left(rac{oldsymbol{Q} oldsymbol{K}^\mathsf{T}}{\sqrt{d_k}}
ight) oldsymbol{V}$$

- ullet Q (Query): The current hidden state
- ullet K (Keys): The hidden states of the input sequence
- ullet V (Values): The hidden states of the input sequence (same as keys)
- The attention weights are computed by taking the dot product between the query and keys, scaled by $\sqrt{d_k}$ (the dimensionality of the keys), and then passed through a softmax function

Positional Encoding

- Positional encoding is a way to inject position information into the input embeddings
- It allows the model to learn relative positions of tokens in a sequence
- Positional encodings are typically sinusoidal functions of different frequencies

$$\begin{aligned} \mathsf{PE}_{(pos,2i)} &= \sin\left(\frac{pos}{10000^{2i/d_{\mathsf{model}}}}\right) \\ \mathsf{PE}_{(pos,2i+1)} &= \cos\left(\frac{pos}{10000^{2i/d_{\mathsf{model}}}}\right) \end{aligned}$$

- pos: The position in the sequence
- i: The dimension index
- d_{model} : The dimensionality of the embeddings

4□ > 4□ > 4□ > 4 = > 4 = > 4 = 9 < 0</p>

20 / 23

Yanqiao Zhu (UCLA) Graphs and Networks May 17, 2024

Next Token Prediction

- Transformers are often used in a language modeling setup, where the goal is to predict the next token in a sequence given the previous tokens
- To perform next token prediction, the model:
 - Passes the input tokens through the Transformer layers
 - Takes the final hidden state corresponding to the last input token
 - Passes this hidden state through a linear layer followed by a softmax to produce a probability distribution over the vocabulary
 - Ohooses the token with the highest probability as the predicted next token
- During training, the model is typically trained using a cross-entropy loss between the predicted probabilities and the actual next token
- During inference, the predicted next token can be sampled from the output distribution or chosen deterministically (e.g., by taking the argmax)

Yangiao Zhu (UCLA) Graphs and Networks May 17, 2024 21/23

Transformer Architectures

- Encoder-only models:
 - Stack of encoder layers
 - Self-attention and feed-forward networks
 - Used for tasks like classification and extraction
- Decoder-only models:
 - Stack of decoder layers
 - Masked self-attention and feed-forward networks
 - Used for tasks like language modeling and generation
- Encoder-decoder models:
 - Encoder stack processes input sequence
 - Decoder stack attends to encoder output and generates output
 - Used for tasks like translation and summarization

Yanqiao Zhu (UCLA) Graphs and Networks May 17, 2024 22 / 23

Summary

Spectral Clustering

- Clustering based on graph Laplacian eigenvectors
- Partitions data using graph cut objectives
- Relies on the spectrum of the graph Laplacian matrix
- Algorithms: unnormalized, normalized spectral clustering

Graph Neural Networks

- Neural networks operating on graph-structured data
- Aggregate neighborhood information to update node representations
- Variants: convolutional, attentional, message-passing
- Applications: node classification, link prediction, graph classification

Transformers

- Sequence-to-sequence models based on attention mechanisms
- Architectures: encoder-only, decoder-only, encoder-decoder
- Key components: tokenization, attention mechanisms, positional encoding
- Applications: language modeling, machine translation, text generation