ТРАНСПОРТНАЯ ЗАДАЧА

План темы «Транспортная задача»:

- 1. Постановка задачи, основные определения
- 2. Закрытая и открытая транспортная задача
- 3. Метод северо-западного угла
- 4. Метод минимального тарифа
- 5. Метод потенциалов

Цель транспортной задачи

- разработка наиболее рациональных путей и способов транспортировки товаров, устранение чрезмерно дальних, встречных и повторных перевозок.

Исторические этапы исследований транспортной задачи

І.ЭТап. Задача национального плана перевозок, позволяющего минимизировать суммарный километраж в железнодорожных перевозках при наличии не более двух поставщиков Толстой А. Н. Методы устранения нерациональных перевозок при планировании. - Социалистический транспорт, 1939, № 9.

II.Этап. Одну из разновидностей транспортной задачи в 1941 г. Поставил американец Хичкок. Детально разобрал **Тьяллинг Чарльз Купманс**, который работал членом Объединенного комитета перевозок во время Второй мировой войны.

III этап. Первый общий, законченный метод решения транспортной задачи («метод потенциалов») разработан <u>Леонидом Канторовичем</u>.

Канторович Л. В., Гавурин М. К., Применение математических методов в вопросах анализа грузопотоков, Сб. ст. Проблемы повышения эффективности работы транспорта, АН СССР, 1949

На практике существуют <u>3 основные</u> постановки транспортной задачи:

1. Необходимо найти оптимальную структуру транспортных средств, обеспечивающую минимизацию издержек на транспортировку.

эксплуатационные и экономические показатели зависят от состава транспорта

На практике существуют <u>3 основные</u> постановки транспортной задачи:

2. Необходимо установить такое распределение грузов между имеющимися в хозяйстве видами транспорта, при котором затраты на перевозки всего объёма грузов были бы минимальными

На практике существуют <u>3 основные</u> постановки транспортной задачи:

3. Задача прикрепления потребителей к поставщикам

экономичный план перевозок однородного груза из пункта производства в пункты потребления

Минимум приведенных затрат 4. Критерии оптимизации транспортной задачи

минимум затрат времени на перевозки

минимум объёма транспортных работ Однородный продукт, сосредоточенный в m пунктах отправления в количествах $a_1, a_2, ... a_m$ единиц соответственно, необходимо доставить в каждый из n пунктов назначения в количествах $b_1, b_2, ... b_n$ единиц соответственно.

Стоимость (расстояние) перевозки единицы продукта из **i-20** пункта отправления в **j-й** пункт назначения равна **Cij** (стоимость доставки) и известна для каждого маршрута.

Пусть \mathbf{x}_{ij} – количество продукта, перевозимого из \mathbf{i} - \mathbf{z}_{i} 0 пункта отправления в \mathbf{j} - \mathbf{u} 0 пункт назначения.

Содержательная постановка задачи

Задача заключается в определении таких величин **X**ij для всех маршрутов, при которых суммарная стоимость или расстояние перевозок были бы минимальными.

МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ТРАНСПОРТНОЙ ЗАДАЧИ Обозначения:

т – количество пунктов отправления (поставщиков);

і – номер поставщика;

n – количество пунктов назначения (потребителей);

ј – номер потребителя;

 a_i – объем однородного груза і-го поставщика (запасы);

 $m{b_i}$ – объем однородного груза, требуемого ј-ому потребителю (спрос);

С*ij* – стоимость доставки единицы груза і-го поставщика јому потребителю;

 \mathbf{x}_{ij} — количество груза, доставляемое от і-го поставщика к ј-му потребителю;

 $oldsymbol{C}$ – общие затраты на перевозки.

поставщики

потребители

	•					•
Потреб.	1	•••	j	•••	n	3anac
Поставщ.						
1	c_{11}		c_{ij}	• • •	\mathbf{c}_{in}	a_1
	X ₁₁		X_{1j}		X _{1n}	
•••		•••	•••	•••	•••	•••
i	c_{i1}		c_{ij}		Cin	a_{i}
	X _{i1}		X _{ij}		X _{in}	
•••	•••		•••	•••	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	•••
m	c_{m_1}	•••	c_{mj}	• • •	c _{mn}	$a_{\rm m}$
	X_{m1}		X_{mj}		X _{mn}	
Cnpoc	b_1	•••	b_{j}	•••	b_n	$\sum_{n=0}^{\infty} a = \sum_{n=0}^{\infty} b$
						$\sum_{i=1}^{n} a = \sum_{j=1}^{n} b$

стоимость доставки единицы груза от *i-го* поставщика к *j-ому* потребителю

Стоимость перевозок можно выразить так

$$\mathbf{C} = \mathbf{c}_{11}\mathbf{X}_{11} + \dots + \mathbf{c}_{ij}\mathbf{X}_{ij} + \dots + \mathbf{c}_{mn}\mathbf{X}_{mn} \rightarrow min$$

или более компактно

$$C = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow min$$

это целевая функция, которая позволяет определить численное значение критерия оптимальности на всех этапах расчетов и в оптимальном плане

Необходимо найти минимальное значение целевой функции при следующих возможных условиях:

1 условие. Вывоз всего груза от каждого поставщика:

$$x_{11} + \dots + x_{1j} + \dots + x_{1n} = a_1$$
 $\dots \dots \dots \dots \dots \dots$
 $x_{i1} + \dots + x_{ij} + \dots + x_{in} = a_i$
 $\dots \dots \dots \dots \dots \dots \dots$
 $x_{m1} + \dots + x_{mj} + \dots + x_{mn} = a_m$

или

$$\sum_{j=1}^n \mathbf{x}_{ij} = \mathbf{a}_i$$
где $i = 1 \dots m$

Необходимо найти минимальное значение целевой функции при следующих возможных условиях:

2 условие. Удовлетворение спроса каждого потребителя:

или

$$\sum_{i=1}^{m} x_{ij} = b_{j}$$
где $j = 1 \dots m$

Необходимо найти минимальное значение целевой функции при следующих возможных условиях:

3 условие. Равенство запаса и спроса:

$$\boldsymbol{a}_{1} + \dots + \boldsymbol{a}_{i} + \dots + \boldsymbol{a}_{m} = \boldsymbol{b}_{1} + \dots + \boldsymbol{b}_{j} + \dots + \boldsymbol{b}_{n}$$

или

$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$$

Равенство запаса и спроса есть необходимое и достаточное условие совместимости и, следовательно, разрешимости транспортной задачи.

Закрытая модель транспортной задачи

Открытая модель транспортной задачи

Спрос равен запасу

$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$$

<u>Спрос не равен</u> <u>запасу</u>

$$\sum_{i=1}^m a_i \neq \sum_{j=1}^n b_j$$

Модель закрытой транспортной задачи

$$C = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow min$$

При ограничениях:

$$\begin{cases} \sum_{i=1}^{n} \mathbf{x}_{ij} = \mathbf{a}_{i}, i = \overline{1, m} \\ \sum_{i=1}^{m} \mathbf{x}_{ij} = \mathbf{b}_{j}, j = \overline{1, n} \\ \mathbf{x}_{ij} \ge \mathbf{0} \end{cases}$$

Открытая модель транспортной задачи

1. Запас превышает $\sum_{i=1}^{m} a_{i} > \sum_{j=1}^{n} b_{j}$

2. Спрос превышает $\sum_{i=1}^{m} a_i < \sum_{j=1}^{n} b_j$ запас

1. Запас превышает спрос

$$C = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow min$$

<u>При ограничениях:</u>

$$\sum_{i=1}^m a_i > \sum_{j=1}^n b_j$$

$$\begin{cases} \sum_{i=1}^{m} \mathbf{x}_{ij} \leq \mathbf{a}_{i} \\ \sum_{i=1}^{m} \mathbf{x}_{ij} = \mathbf{b}_{j} \\ \mathbf{x}_{ij} \geq \mathbf{o} \end{cases}$$

Не требуется весь имеющийся груз вывозить от поставщика, после удовлетворения спроса часть его может остаться не вывезенной

Потребности (спрос) каждого потребителя необходимо удовлетворить полностью

1. Запас превышает спрос

Решение

$$\sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j = b_{n+1}$$
 $c_{n+1} = 0$ Фиктивный потребитель

При введении <u>фиктивного потребителя</u> открытая модель преобразуется в закрытую

2. Спрос превышает запас

$$C = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \rightarrow min$$

При ограничениях:

если
$$\sum_{i=1}^m a_i < \sum_{j=1}^n b_j$$

$$\begin{cases} \sum_{i=1}^{n} \mathbf{x}_{ij} = \mathbf{a}_{i}, i = \overline{1, m} \\ \sum_{i=1}^{m} \mathbf{x}_{ij} \leq \mathbf{b}_{j}, j = \overline{1, n} \\ \mathbf{x}_{ij} \geq \mathbf{0} \end{cases}$$

2. Спрос превышает запас

Решение

$$\sum_{j=1}^{n} b_j - \sum_{i=1}^{m} a_i = \underbrace{a_{m+1}}$$

Фиктивный поставщик

«Метод северо-западного угла» на примере: <u>Пример:</u>

С 3-х баз требуется доставить в магазины однородный товар. Пусть на базе А1 имеется 50 единиц груза, на базе А2 – 40 единиц, на базе А3 – 20 единиц. Указанный товар нужно отгрузить 4-м потребителям: В1, В2, В3, В4, потребности которых составляют соответственно 35, 25, 30, 25 единиц товара. Стоимость перевозки от базы до потребителей представлена в таблице:

	B1	B2	В3	B4
A1	3	2	4	6
A2	2	3	1	2
A3	3	2	7	4

<u>Требуется</u> составить такой план перевозок, который обеспечит минимальные транспортные расходы.

Решение:

1 этап. Составление распределительной таблицы

	B1	B2	В3	B4	Наличие товара
A1	3	2	4	6	50
A2	2	3	1	2	40
<i>A</i> 3	3	2	7	4	20
Потребность в товаре	30	25	30	25	110

Решение:

2 этап. Составление модели

Целевая функция (стоимость всей перевозки):

$$C = 3x_{11} + 2x_{12} + 4x_{13} + 6x_{14} + 2x_{21} + 3x_{22} + x_{23} + 2x_{24} + 3x_{31} + 2x_{32} + 7x_{33} + 4x_{34} \rightarrow min$$

Проверяем задачу на разрешимость: $\sum_{i=1}^{3} a_i = \sum_{i=1}^{4} b_i$

$$\sum_{i=1}^{3} a_i = 50 + 40 + 20 = 110, \sum_{i=1}^{4} b_i = 30 + 25 + 30 + 25 = 110$$

Ограничения по поставкам

$$\begin{cases} x11 + x12 + x13 + x14 = 50 \\ x21 + x22 + x23 + x24 = 40 \\ x31 + x32 + x33 + x34 = 20 \end{cases}$$

$$x_{ij} \ge 0, i = \overline{1,3}, j = \overline{1,4}$$

Ограничения по потребителям

$$\begin{cases} x11 + x21 + x31 = 30 \\ x12 + x22 + x32 = 25 \\ x13 + x23 + x33 = 30 \\ x14 + x24 + x34 = 25 \end{cases}$$

Условимся:

- 1. Построение опорных решений системы, а также преобразования этих решений будут производиться в таблицах.
- 2. Если базисное неизвестное $x_{ij} = a$, то это число записывается в соответствующей клетке (i, j), и эта клетка называется <u>загруженной</u>, если же переменная не базисная, то $x_{ij} = o$ и соответствующая клетка остается свободной

3 этап. Составление плана

Метод северо-западного угла заключается в том, что заполнение таблицы начинают с левого верхнего угла, двигаясь далее по строке вправо или по столбцу вниз.

<u>Метод северо-западного угла заключается</u> в том, что заполнение таблицы начинают с левого верхнего угла, двигаясь далее по строке вправо или по столбцу вниз.

	B1	B2	В3	B4	Наличие товара
A1	30 3	20	4	6	50
A2	min (5	, 40) = 5 5	1	2	40
A ₃	3	2	7	4	20
Потреб					
ность в товаре	30	25	30	25	110
	30-30 = 0	25 - 20 =	5		

Метод северо-западного угла заключается в том, что заполнение таблицы начинают с левого верхнего угла, двигаясь далее по строке вправо или по столбцу вниз.

Метод северо-западного угла заключается в том, что заполнение таблицы начинают с левого верхнего угла, двигаясь далее по строке вправо или по столбцу вниз.

<u>Метод северо-западного угла заключается</u> в том, что заполнение таблицы начинают с левого верхнего угла, двигаясь далее по строке вправо или по столбцу вниз.

	B1		В	2	В	3	В	4		ичие вара
A1	30	3	20	2		4		6	Į	50
A2		2	5	3	30	1	_5_	2	4	40
A3		3		2	min (2	25, 20)	= 20 20	4	2	20
Потреб										
ность в	30			5	3	0	2	5	1	.10
3	0-30 = 0		5 - 5 =	0	35 - 3	35 = o	25	- 25 =	o	

Исчерпаны все запасы и удовлетворены все потребности

	В	B 1	В	32	В	3	В	84	Наличие товара
A1		3		2		4		6	50
	30		20						
A2		2		3		1		2	40
			5		30		5		
A ₃		3		2		7		4	20
							20		
Потребн ость в товаре	3	0	2	5	3	0	2	5	110

Условия разрешимости задачи:

1 условие -

число загруженных клеток должно быть равно (m+n-1)

2 условие -

загруженные клетки не должны образовывать замкнутого цикла

4 этап. Подсчет стоимости перевозки

	В	B 1	В	32	В	3	В	4	запас
A1		3		2		4		6	50
	30		20						
A2		2		3		1		2	40
			5		30		5		
A3		3		2		7		4	20
							20		
cnpoc	3	0	2	5	3	0	2	5	110

$$C = 30 \bullet 3 + 20 \bullet 2 + 5 \bullet 3 + 30 \bullet 1 + 5 \bullet 2 + 20 \bullet 4 = 265$$

Ответ: Общие затраты на доставку всей продукции, для начального решения, составляют **265 ден. ед.**

<u>Метод минимального тарифа</u>

учитывает величины затрат на грузоперевозки, позволяет найти опорный план транспортной задачи, при котором общая стоимость перевозок груза меньше, чем стоимость перевозок при плане северо-западного угла

Этапы метода минимального тарифа

Этап 1

Выбирается клетка, имеющая минимальную стоимость перевозок (минимальный тариф). Если таких клеток более одной, то выбирается первая по порядку.

	B 1	B2	B3	B4
A1	3	2	4	6
A2	2	3	$\begin{pmatrix} 1 \end{pmatrix}$	2
A3	3	2)7	4

	B 1	B2	B3	B4
A1	3	$\left(\begin{array}{c}2\end{array}\right)$	4	6
A2	2	3	5	2
A3	3	2	7	4

В клетку с наименьшим тарифом помещается наименьшее из чисел ai или bj

	B1	B2	В3	B4	запасы
A1	3	2	4	6	50
		min (30, 40	0) = 30		
A2	2	3	30	2	40
			30		
A ₃	3	2		4	20
cnpoc	30	25	30	25	110

Затем из рассмотрения исключается строка, соответствующая поставщику, запасы которого полностью израсходованы, или столбец, соответствующий потребителю, спрос которого полностью удовлетворен.

	B1	B2	В3	B4	запасы
A1	3	2	4	6	50
A2	2	3	30	2	40
A3	3	2	- 7	4	20
cnpoc	30	25	30	25	110

Из оставшихся клеток таблицы снова выбирается клетка с наименьшим тарифом, и процесс распределения запасов продолжается до тех пор, пока все они не будут распределены, а спрос удовлетворен.

	min (25,	50) = 25	Вз	В4	запасы
A1	3	25 2	- 4	6	50
A2	2	3	30	2	40-30 = 10
A3	3	2		4	20
cnpoc	30	25	30	25	110

Из оставшихся клеток таблицы снова выбирается клетка с наименьшим тарифом, и процесс распределения запасов продолжается до тех пор, пока все они не будут распределены, а спрос удовлетворен.

		B1	B2	Вз	B4	запасы	
	A1	3	2 25	- 4	6	50 -3	25 = 25
min (3	30, 10) = 2, A2	5 2 10	- 3	30	2	40-	30 = 10
	Аз	3	_ 2	- 7	4	20	
	cnpoc	30	25	30	25	110	

Из оставшихся клеток таблицы снова выбирается клетка с наименьшим тарифом, и процесс распределения запасов продолжается до тех пор, пока все они не будут распределены,

min (20, 25) = 20 спрос удовлетворен. **B2 B**1 **B3** B4 запасы 50-25 = 25A₁ **50** 20 25 1 40-10-30 =0 **A2** 10 30 3 A3 20 30 30 110 25 25

Из оставшихся клеток таблицы снова выбирается клетка с наименьшим тарифом, и процесс распределения запасов продолжается до тех пор, пока все они не будут распределены, а спрос удовлетворен.

	В	81	В	2	В	3	E	34	запа	сы	
A1		3		2		Δ		6		50-	45 = 5
	20	<u> </u>	25		_	_ т_			50		
A2		2		3		1		2	40		
	10		-	•	0.05	-) 0					
A3		3		2 _	0, 25	5) = 2	\	4	20		
	_		_		-		20				
L cnpoc	3	0	2	5	$oxed{3}$	0		5 2	5-20 = 5	5	

Из оставшихся клеток таблицы снова выбирается клетка с наименьшим тарифом, и процесс распределения запасов продолжается до тех пор, пока все они не будут распределены, а спрос удовлетворен.

	B1	min ((5, 5) = 5	B4	запасы	_ =
A1	20	25	4	5 6	50-45 50	= 5
A2	10	- 3	30	2	40	
Аз	- 3	_ 2	- 7	20	20	
cnpoc	30	25	30	25 2	5-20 = 5	

Получается оптимальный план грузоперевозок по минимальному тарифу

	В	31	В	32	В	3	В	4	запасы
A1		3		2		4		6	50
	20		25		_		5		
A2		2		3		1		2	40
	10		_		30		_		
A ₃		3		2		7		4	20
	_		_		_		20		
cnpoc	3	0	2	5	3	0	2	5	110

В завершении проверяется число загруженных клеток (m+n-1).

Если число загруженных клеток будет меньше, то следует загрузить нулем клетку с наименьшим тарифом, но такую, чтобы она не образовывала замкнутого цикла.

Ответ:

Оптимальный опорный план грузоперевозок:

	В	31	В	B2		3	В	84	запасы
A1		3		2		4		6	50
	20		25		-		5		
A2		2		3		1		2	40
	10		_		30		_		
A ₃		3		2		7		4	20
	_		_		-		20		
cnpoc	3	0	2	5	3	0	2	5	110

Минимальная стоимость грузоперевозок:

$$C = 20 \bullet 3 + 25 \bullet 2 + 5 \bullet 6 + 10 \bullet 2 + 30 \bullet 1 + 20 \bullet 4 = 270$$

Метод потенциалов - процесс последовательного улучшения исходного плана грузоперевозок до оптимального

Автор метода: Л. В. Канторович 1949 год

Теорема:

Если для некоторого плана транспортной задачи можно набрать систему из *m+n* чисел *Ui*, называемых потенциалами поставщика и *Vj*, называемыми потенциалами потребителя, удовлетворяющим условиям

$$\mathbf{V}_{j} - \mathbf{u}_{i} = \mathbf{C}_{ij}$$
, если $\mathbf{x}_{ij} > \mathbf{0}$

$$\mathbf{V}\mathbf{j}$$
 - $\mathbf{U}\mathbf{i} \leq \mathbf{C}\mathbf{i}\mathbf{j}$, если $\mathbf{X}_{ij} = \mathbf{o}$,

то план оптимальный.

Экономический смысл выражения

 $\mathbf{v}_j - \mathbf{u}_i = \mathbf{c}_{ij}$, если $\mathbf{x}_{ij} > \mathbf{o}$

Для поставщиков и потребителей, между которыми запланированы перевозки, разность потенциалов совпадает с затратами на транспортировку единицы груза.

Экономический смысл выражения

 $\mathbf{v}_j - \mathbf{u}_i \leq \mathbf{c}_{ij}$, если $\mathbf{x}_{ij} = \mathbf{o}$

Для всех остальных пар поставщиков и покупателей, между которыми перевозки не запланированы, разности потенциалов не превосходят затраты по транспортировке. Если план перевозок *оптимален*, то можно присвоить грузам в пунктах отправления и пунктах назначения потенциалы при которых перевозка из любого пункта отправления в любой пункт назначения не могла дать «прибыль», и чтобы в то же время перевозки, внесенные в план, являлись безубыточными

Экономическ ий смысл потенциалов

Определения:

- **1.** <u>Набор</u> произвольная совокупность клеток в матрице перевозок.
- **2.** <u>Цепь</u> последовательный набор клеток, в котором каждые две соседние клетки расположены в одном ряду (строке или столбце).
- **3.** <u>Щикл</u> замкнутая цепь, последняя клетка которой расположена в одном ряду с первой.

1 шаг. После того как найден исходный опорный план перевозок, каждому поставщику **а** ставится в соответствие потенциал **u**, а каждому потребителю

 $oldsymbol{b_j}$ ставится в соответствие потенциал $oldsymbol{V_{j'}}$

Числа **u**_i и **v**_j выбираются так, чтобы в любой загруженной клетке сумма потенциалов равнялась стоимости перевозки в этой клетке:

$$\mathbf{V}_j + \boldsymbol{u}_i = \boldsymbol{c}_{ij}$$

	B1	B2	В3	B4	запасы
A -	3	2	4	6	
A1	U1+V1=3	U1+V2=2	_	U1+V4=6	50
A -	2	3	1	2	
A2	U2+V2=2		$U_2+V_3=1$	_	40
A 0	3	2	7	4	
A3	-] -	-	U3+V4=4	20
cnpoc	30	25	30	25	110

Предполагается, что U1 = 0, тогда

$$U1 = 0$$
 $U2 = 0$
 $U3 = -2$

$$\mathbf{V1} = \mathbf{3}$$

$$V2 = 2$$

$$V_3 = 2$$

$$V4 = 6$$

2 шаг. Для оценки плана необходимо просмотреть **свободные клетки**, для которых определяются косвенные тарифы $\mathbf{C}'_{ij} = \mathbf{u}_i + \mathbf{V}_j$

	В	31	В	2	В	3	В	84	запас
									ы
A1		3		2		4		6	50
	20		25		_		5		
A2		2		3		1		2	40
	10		-		30		_		
A3		3		2		7		4	20
	-		_		_		20		
cnpoc	3	0	2	5	3	0	2	5	110

$$C'_{13}$$
 = U1+V3 = 0+1=1
 C'_{22} = U2+V2 = 0+2=2
 C'_{24} = U2+V4=0+6=6
 C'_{31} = U3+V1=-2+3=1
 C'_{32} = U3+V2=-2+2=0
 C'_{33} = U3+V3= -2+1=1

3 шаг. Для каждой свободной клетки вычисляется оценка — разность между тарифом клетки и ее косвенным тарифом:

$$\Delta_{ij} = \mathbf{c}_{ij} - \mathbf{c}'_{ij}$$

План оптимален тогда, когда по каждой свободной клетке эта оценка <u>неотрицательна.</u>

$$\Delta_{13} = C_{13} - C'_{13} = 4-1=3$$

$$\Delta_{22} = C_{22} - C'_{22} = 3-2=1$$

$$\Delta_{24} = C_{24} - C'_{24} = 2-6=-4$$

$$\Delta_{31} = C_{31} - C'_{31} = 3-1=2$$

$$\Delta_{32} = C_{32} - C'_{32} = 2-0=2$$

$$\Delta_{33} = C_{33} - C'_{33} = 7-1=6$$

Полученный план перевозок **не является оптимальным**, так как среди оценок Δ_{ij} имеется отрицательная оценка Δ_{24}

4 шаг. Если есть хоть одна отрицательная оценка, то план надо улучшить, то есть построить новый план.

Загружается та клетка, у которой оценка отрицательная. Если будет несколько отрицательных оценок, то выбирается клетка для загрузки, у которой отрицательная оценка наибольшая по абсолютной величине.

	В	1	В	B2 B3 B4		запасы			
A1		3		2		4		6	50
	20		25		-		5		
A2		2		3		1		2	40
	10		_		30		-		
A ₃		3		2		7		4	20
	_		_		_		20		
cnpoc	3	0	2	5	3	0	25	5	110

$$\Delta_{24} = C_{24} - C'_{24} = 2 - 6 = -4$$

Для выбранной клетки строится замкнутый цикл, то есть замкнутый путь, соединяющий выбранную незаполненную клетку с ней же самой и проходящий через заполненные клетки.

Для каждой свободной клетки существует только один цикл.

	I	31	В	2	В	3	F	3 4	запасы
A1		3		2		4		6	50
	20		25		-		5		
A2		2		3		1		2	40
	10		-		30		-		
A ₃		3		2		7		4	20
	_		_		-		20		
cnpoc	3	30	2	5	3	0	2	25	110

В каждой клетке цикла, начиная со свободной проставляются поочередно знаки «+» и «-». В клетках со знаком «-» (четные клетки) выбирается наименьший груз, который «перемещается» по клеткам замкнутого цикла, т.е.

прибавляется к поставкам \mathbf{x}_{ij} в клетках со знакам «+» (включая свободную) и вычитается в клетках со знаком «-».

	B1		B2		В3		B4		запасы
A1	+	3		2		4	-	6	50
	20		25		_		5		
A2	-	2		3		1	-	<u></u>	40
	10		-		30				
A3		3		2		7		4	20
	_		_		_		20		

В резудътате такого перемещения груза по циклу получим новый план перевозок.

Строится новый план

	B1		B2		В3		B4		запасы
A1		3		2		4		6	50
	25		25		-		-		
A2		2		3		1		2	40
	5		-		30		5		
A ₃		3		2		7		4	20
	-		-		-		20		
cnpoc	30		25		30		25		110

Вычисления по методу потенциалов повторяются с <u>1 этапа</u>

	B1]	32		В3		B4	запас
									ы
A1		3		2		4		6	50
	$\mathbf{U}_{1}+\mathbf{V}_{1}$	1=3	U1+	$\overline{\mathbf{V2=2}}$	_		_		
A2		2		3		1		2	40
	U2+V2	2=2	_		U2 -	+V3=1	U2	+V4=2	
A3		3		2		7		4	20
			_		_		U3+V4=4		
cnpoc	30		25		30		25		110

Предполагается, что U1 = 0, тогда

$$U1 = 0$$
 $U2 = 0$
 $U3 = 2$

$$V1 = 3$$
 $V2 = 2$
 $V3 = 1$
 $V4 = 2$

		B1		В	B2		В3		4	запас
										ы
A1			3		2		4		6	50
	2	5		25		-		-		
A2			2		3		1		2	40
	5	5		-		30		5		
A3			3		2		7		4	20
		-		-] -		20		
cnpoc	?	30		25		30		25		110

$$C'_{13}$$
 = U1+V3 = 0+1=1
 C'_{14} = U1+V4 = 0+2=2
 C'_{22} = U2+V2=0+2=2
 C'_{31} = U3+V1=2+3=5
 C'_{32} = U3+V2=2+2=4
 C'_{33} = U3+V3= 2+1=3

$$\Delta_{13} = C_{13} - C'_{13} = 4-1=3$$

$$\Delta_{14} = C_{14} - C'_{14} = 6-2=4$$

$$\Delta_{22} = C_{22} - C'_{22} = 3-2=1$$

$$\Delta_{31} = C_{31} - C'_{31} = 3-5=-2$$

$$\Delta_{32} = C_{32} - C'_{32} = 2-4=-2$$

$$\Delta_{33} = C_{33} - C'_{33} = 7-3=4$$

Полученный план перевозок не макленся оптимальным, так как среди оценок **Ді** имеется отрицательная оценка **Д31, Д32**

План необходимо улучшить и построить новый

	B1	B2	Вз	B4	запасы
A1	3	2	4	6	50
	25	25	-	-	
A2	2	3	1	2	40
	5] -	30	5	
A ₃	3	2	7	4	20
	-) -	-	20	
cnpoc	30	25	30	25	110

Загружается та клетка, у которой оценка отрицательная.

$$\Delta 31 = C31 - C'31 = 3-5=-2$$

 $\Delta 32 = C32 - C'32 = 2-4=-2$

	I	31	B2		В3		B4		запасы
A1		3		2		4		6	50
	25		25		-		-		
A2	_	2		3		1		2	40
	_							-	
	5		-		30		5		
A ₃	+	3		2		7	20	_4	20
	- "		-		-				
cnpoc	3	30	2	5	3	30		25	110

Строится новый план

	B1		В	B2		В3		4	запасы
A1		3		2		4		6	50
	25		25		-		-		
A2		2		3		1		2	40
			-		30		10		
A ₃		3		2		7		4	20
	5		-		-		15		
cnpoc	30		25		30		25		110

Предполагается, что U1 = 0, тогда

$$U1 = 0$$
 $U2 = -2$
 $U3 = 0$

$$V1 = 3$$
 $V2 = 2$
 $V3 = 3$
 $V4 = 4$

	В	B1		2	В3		B4		запас
									ы
A1		3		2		4		6	50
	25		25		_		_		
A2		2		3		1		2	40
	_		_		30		10		
A3		3		2		7		4	20
	5		_		_		15		
cnpoc	30		25		30		25		110

$$\Delta_{13} = C_{13} - C'_{13} = 4-3=1$$

$$\Delta_{14} = C_{14} - C'_{14} = 6-4=2$$

$$\Delta_{21} = C_{21} - C'_{31} = 2-1=1$$

$$\Delta_{22} = C_{22} - C'_{22} = 3-0=3$$

$$\Delta_{32} = C_{32} - C'_{32} = 2-2=0$$

$$\Delta_{33} = C_{33} - C'_{33} = 7-3=4$$

Полученный план перевозок **является оптимальным**, так как среди оценок **⊿ij** нет отрицательных оценок

Ответ:

Оптимальный план грузоперевозок:

	B1		B2		В3		B4		запасы
A1		3		2		4		6	50
	25		25		_		_		
A2		2		3		1		2	40
	-		-		30		10		
A ₃		3		2		7		4	20
	5		_		_		15		
cnpoc	30		25		30		25		110

Минимальная стоимость грузоперевозок:

$$C = 25 \bullet 3 + 25 \bullet 2 + 30 \bullet 1 + 10 \bullet 2 + 5 \bullet 3 + 15 \bullet 4 = 250 \, \partial e \mu . e \partial .$$

СПАСИБО ЗА ВНИМАНИЕ!