שאלה 1

<u>טעיף א':</u>

עבור הדקדוק אל ידי הוספת כלל התחלתי LR0 - הרחבתי את הדקדוק על ידי הוספת כלל התחלתי עבור הדקדוק המשתנה ההתחלתי הינו S':

 $S' \to S$, $S \to zBA$, $B \to bB \mid \varepsilon$, $A \to BM \mid a$, $M \to z$

<u>סעיף ב':</u>

כעת אבנה טבלת פיסוק SLR1 עבור הדקדוק מסעיף א' לפי האלגוריתם לבניית טבלת פיסוק SLR1: לצורך הנוחות נכתוב את כללי הגזירה כרשימה:

- 1. $S' \rightarrow S$
- 2. $S \rightarrow zBA$
- 3. $A \rightarrow BM$
- 4. $A \rightarrow a$
- 5. $B \rightarrow bB$
- 6. $B \rightarrow \varepsilon$
- 7. $M \rightarrow z$

	a	ь	Z	\$	S'	S	A	В	M
0			s2			1			
1				accept					
2	r6	s3, r6	r6					4	
3	r6	s3, r6	r6					5	
4	s6, r6	s3, r6	r6				10	7	
5	r5	r5	r5						
6				r4					
7			s 8						9
8				r7					
9	r3	r3	r3						
10				r2					

נחשב את Follow של משתני הדקדוק:

 $Follow(A) = \{\$\}$

 $Follow(B) = \{a, b, z\}$

 $Follow(M) = \{\$\}$

 $Follow(S) = \{\$\}$

.acb :של הדקדוק הנתון, עבור ה-parser של הדקדוק הנתון, עבור הקלט

Stack	Input	Action
-------	-------	--------

[.] אלגוריתם 4.46, עמוד 253 בספר הלימוד 1

[.] אלגוריתם 4.44, עמוד 251 בספר הלימוד. 2

0	acb\$	shift 3
0 a 3	cb\$	reduce $C \to \varepsilon$ (note $ \varepsilon = 0$)
0 a 3 C 7	cb\$	shift 8
0 a 3 C 7 c 8	b\$	reduce $C \to Cc$ ($goto(3, C)$)
0 a 3 C 7	b\$	reduce $A \rightarrow aC$
0 A 2	b\$	shift 6
0 A 2 b 6	\$	reduce $B \rightarrow b$
0 A 2 B 5	\$	reduce $S \to AB$
0 S 1	\$	accept

:(עבור הדקדוק מסעיף א'): בנות אוטומט פריטי LR1 (עבור הדקדוק מסעיף א'):

נשים לב כי בדקדוק זה:

- reduce-reduce conflict אין.1
- נמצאים [$B o ., \ b$] וגם [$B o .bB, \ a/b/z$] נמצאים shift reduce conflict נשים לב כי קיים .2

לכן דקדוק זה איננו ב-LR1.

:'סעיף ה

נחשב את כמות המצבים של דקדוק זה עבור מפרש LALR1: נתבונן במכונת המצבים מסעיף קודם, המצבים אשר ניתן לאחד הם:

- 13, או מצבים 17.
- 18, *I*9 מצבים. 2

לכן יהיו 11 מצבים למכונת המצבים.

שאלה 3

```
נתון הדקדוק G בעל כללי הגזירה הבאים: S \to cABc \mid Ba A \to acA \mid bbSA \mid cbS B \to bA \mid \epsilon
```

אכתוב recursive decent parser עבור דקדוק זה (אתבסס על הפסאודו-קוד המתואר בספר $^{\epsilon}$ עם שינויים recursive decent parser הנוכחי כנגד כללי הדקדוק ואם זה אכן קלים - במקום לבצע backtracking, אני אבדוק את ה-stip אני אבדוק את הביטוי באופן רקורסיבי, אחרת התוכנית תצא עם הודעת שגיאה. מתאים לכלל - אמשיך לפרש את הביטוי באופן רקורסיבי, אחרת התוכנית תצא עם הודעת שגיאה. למעשה, אפשר לומר כי המימוש שלי הינו recursive descent parser עם backtracking של 2 , זה לצורך הנוחות - כדי להימנע מ-backtracking מורכב).

ראשית, נעזר בטבלת המעברים מהממ"ן הקודם:

	a	ь	С	\$
S	$S \rightarrow Ba$	$S \rightarrow Ba$	$S \rightarrow cABc$	
A	$A \rightarrow acA$	$A \rightarrow bbSA$	$A \rightarrow cbS$	
В	$B \to \varepsilon$	$B \rightarrow bA$	$B \to \varepsilon$	

מצורף קוד **חלקי** בשפת פייתון המממש Recursive descent parser עבור הדקדוק הנתון, עם הערות ליד כל תנאי איזה ביטוי הוא מבטא - **הוספתי את קוד הפייתון המקורי בקובץ נפרד.**

נניח כי INPUT הוא משתנה גלובאלי המייצג את הקלט הנתון.

נניח כי error היא פונקציה היוצאת מהתכנית במקרה של שגיאה.

נתחיל מהפונקציה A:

```
def A():

if lookahead() == 'a': # A \rightarrow acA

match("a")

match("c")

A()

elif lookahead() == 'b': # A \rightarrow bbSA

match('b')

match('b')

S()

A()

elif lookahead() == 'c': # A \rightarrow cbS

match('c')

match('b')

S()

else:
```

 $^{^{3}}$ פרק 4.4.1 עמוד 219 בספר הלימוד.

```
error()
```

הפונקציה S:

:B הפונקציה

```
def S():
 if lookahead() == "c": \# S \rightarrow cABc
  match('c')
  A()
  B()
  match("c")
 elif lookahead() in ('a', 'b'): # S \rightarrow Ba
  match("a")
 else:
  error()
def B():
if lookahead() == "b": # B \rightarrow bA
  match("b")
  A()
 # This is the rule B -> epsilon.
 elif lookahead() in ('a', 'c'):
  pass
 else:
  error()
```

שאלה 4

נתון הדקדוק הבא (אמספר את החוקים לצורך הנוחות):

```
S \rightarrow 1A0 .1
```

 $S \rightarrow B1$.2

 $S \rightarrow 2$.3

 $A \rightarrow 0A$.4

 $A \rightarrow 2B0$.5

 $B \rightarrow 2B$.6

 $B \rightarrow 1$.7

 $B \rightarrow \epsilon$.8

:LL1 - סעיף א': יש להראות כי הדקדוק הנתון איננו שייך

: של שני כללים אלו הגזירה של S ובפרט החשב את ה- $1A0\mid B1$ ובפרט אלו ובפרט כללים אלו הגזירה של S ובפרט אלו אלו אלו

ולכן $First(1A0) \cap First(B1) = \{1\}$ מכאן קל לראות כי $First(1A0) = \{1\}$, $First(B1) = \{1, 2, \epsilon\}$ דקדוק זה איננו שייך ל-LL1 (לו היינו בונים טבלת פיסוק, היה תא המכיל 2 כללי גזירה וזה מצב לא חוקי).

?LL2-סעיף ב׳: האם דקדוק זה שייך ל

נבנה טבלת פיסוק עבור 2 טרמינרלים, כאשר ערך בתא יהיה מספר כלל הגזירה - לפי המיספור המופיע למעלה.

	0\$	00	01	02	1\$	10	11	12	2\$	20	21	22	\$
S					2	1	2	1	3		2	2	
A		4		4						5	5	5	
В		8			7,8				6		6	6	

 $Follow_2(B)$ אהיה צריך אהיה (כלל מספר 8) אהיה את (כלל מספר 8) אהיה את נשים לב כי עבור הכלל

 $Follow_2(B) = \{1\$, 00\}$

.LL2- יש שני כללים, ולכן הדקדוק שני $M[B,\ 1\$]$ יש שני לב כי בתא