FONCTIONS TRIGONOMÉTRIQUES

Rappels du cours de l^{ère} en vidéo : <u>https://youtu.be/wJjb3CSS3cg</u>

I. Rappels

1) Définitions:

Dans le plan muni d'un repère orthonormé $(0:\vec{\imath},\vec{\imath})$ et orienté dans le sens direct, on considère un cercle trigonométrique de centre O.

Pour tout nombre réel x, considérons le point N de la droite orientée d'abscisse x. À ce point, on fait correspondre un point M sur le cercle trigonométrique.

On appelle H et K les pieds respectifs des perpendiculaires à l'axe des abscisses et à l'axe des ordonnées passant par M.

Définitions :

- Le **cosinus** du nombre réel *x* est l'abscisse de M et on note cos *x*.
- Le **sinus** du nombre réel x est l'ordonnée de M et on note sin x.

Propriétés :

Pour tout nombre réel x, on a :

1)
$$-1 \le \cos x \le 1$$
 2) $-1 \le \sin x \le 1$ 3) $\cos^2 x + \sin^2 x = 1$

3)
$$\cos^2 x + \sin^2 x = 1$$

2) Valeurs remarquables des fonctions sinus et cosinus :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

II. Propriétés des fonctions cosinus et sinus

1) Périodicité

Propriétés:

1) $\cos x = \cos(x + 2k\pi)$ où k entier relatif 2) $\sin x = \sin(x + 2k\pi)$ où k entier relatif

Démonstration:

Aux points de la droite orientée d'abscisses x et $x + 2k\pi$ ont fait correspondre le même point du cercle trigonométrique.

Remarque:

On dit que les fonctions cosinus et sinus sont périodiques de période 2π .

Conséquence:

Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus, il suffit de la tracer sur un intervalle de longueur 2π et de la compléter par translation.

Méthode: Résoudre une équation et une inéquation trigonométrique

Vidéo https://youtu.be/p6U55YsS440

■ Vidéo https://youtu.be/PcgvyxU5FCc

■ Vidéo https://youtu.be/raU77Qb -lw

1) Résoudre dans \mathbb{R} l'équation : $\cos^2 x = \frac{1}{2}$.

2) Résoudre dans $[-\pi; \pi]$, l'inéquation : $\sin x \le \frac{\sqrt{3}}{2}$.

1)
$$\cos^2 x = \frac{1}{2}$$

 $\cos^2 x - \frac{1}{2} = 0$
 $\left(\cos x - \frac{\sqrt{2}}{2}\right) \left(\cos x + \frac{\sqrt{2}}{2}\right) = 0$
En effet : $\sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{1 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{2}}{2}$

Donc:

$$\cos x = \frac{\sqrt{2}}{2} ou \cos x = -\frac{\sqrt{2}}{2}$$

$$\begin{cases} x = \frac{\pi}{4} + 2k_1\pi, & k_1 \in \mathbb{Z} \\ x = -\frac{\pi}{4} + 2k_2\pi, & k_2 \in \mathbb{Z} \end{cases} \quad ou \quad \begin{cases} x = \frac{3\pi}{4} + 2k_3\pi, & k_3 \in \mathbb{Z} \\ x = -\frac{3\pi}{4} + 2k_4\pi, & k_4 \in \mathbb{Z} \end{cases}$$

$$S = \left\{ \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{Z} \right\}$$

$$2) \sin x \le \frac{\sqrt{3}}{2}$$

$$2) \sin x \le \frac{\sqrt{3}}{2}$$

- On commence par résoudre l'équation $\sin x = \frac{\sqrt{3}}{2}$ dans $[-\pi \; ; \; \pi]$.

Soit :
$$x = \frac{\pi}{3}$$
 ou $x = \frac{2\pi}{3}$.

- On utilise le cercle trigonométrique pour conclure sur les solutions de l'inéquation $\sin x \le \frac{\sqrt{3}}{2}$.

Cela correspond à la zone du cercle situées en dessous de la droite passant par les points du cercle correspondant aux valeurs $\frac{\pi}{3}$ et $\frac{2\pi}{3}$.

$$S = \left[-\pi \; ; \; \frac{\pi}{3} \right] \cup \left[\frac{2\pi}{3} \; ; \; \pi \right]$$

2) Parité

Propriétés:

Pour tout nombre réel x, on a :

$$1)\cos(-x) = \cos x$$

$$2)\sin(-x) = -\sin x$$

On dit que la fonction cosinus est paire et que la fonction sinus est impaire.

<u>Rappels</u>: Une fonction f est **paire** lorsque pour tout réel x de son ensemble de définition D, -x appartient à D et f(-x) = f(x).

Une fonction f est **impaire** lorsque pour tout réel x de son ensemble de définition D, -x appartient à D et f(-x) = -f(x).

Conséquences:

- Dans un repère orthogonal, la courbe représentative de la fonction cosinus est symétrique par rapport à l'axe des ordonnées.
- Dans un repère orthogonal, la courbe représentative de la fonction sinus est symétrique par rapport à l'origine.

Méthode : Etudier la parité d'une fonction trigonométrique

Vidéo https://youtu.be/hrbgxnCZW_I

Démontrer que la fonction f définie sur \mathbb{R} par $f(x) = \sin x - \sin(2x)$ est impaire.

Pour tout *x* réel, on a :

$$f(-x) = \sin(-x) - \sin(-2x) = -\sin x + \sin(2x) = -f(x).$$

La fonction f est donc impaire.

Sa représentation graphique est symétrique par rapport à l'origine du repère.

III. <u>Dérivabilité et variations</u>

1) <u>Dérivabilité</u>

<u>Théorème</u>: Les fonctions cosinus et sinus sont dérivables sur \mathbb{R} et on a : (cos(x))' = -sin(x) et (sin(x))' = cos(x)

Remarque : (cos(x))' se note également cos'(x)

2) Variations

X	0		π
$\cos'(x) = -\sin x$	0	_	0
$\cos x$	1	***	-1

x	0		$\frac{\pi}{2}$		π
$\sin'(x) = \cos x$	1	+	0	-	-1
sin x	0		▼ 1 >		0

3) Représentations graphiques

Yvan Monka – Académie de Strasbourg – <u>www.maths-et-tiques.fr</u>

Fonction cosinus

Méthode: Etudier une fonction trigonométrique

Vidéo https://youtu.be/uOXv5XnAiNk

Vidéo https://youtu.be/s3S85RL06ks

Vidéo https://youtu.be/X6vJog xQRY

► Vidéo https://youtu.be/ol6UtCpFDQM

On considère la fonction f définie sur \mathbb{R} par $f(x) = \cos(2x) - \frac{1}{2}$.

- 1) Etudier la parité de f.
- 2) Démontrer que la fonction f est périodique de période π .
- 3) Etudier les variations de f sur $\left[0; \frac{\pi}{2}\right]$.
- 4) Représenter graphiquement la fonction f sur $\left[0; \frac{\pi}{2}\right]$ et prolonger de part et d'autre la représentation par symétrie et par translation.
- 1) Pour tout x de \mathbb{R} , on a : $f(-x) = \cos(-2x) \frac{1}{2} = \cos(2x) \frac{1}{2} = f(x)$

La fonction f est donc paire. Dans un repère orthogonal, sa représentation graphique est donc symétrique par rapport à l'axe des ordonnées.

2) Pour tout x de \mathbb{R} , on a :

$$f(x + \pi) = \cos(2(x + \pi)) - \frac{1}{2}$$
$$= \cos(2x + 2\pi) - \frac{1}{2}$$
$$= \cos(2x) - \frac{1}{2} = f(x)$$

On en déduit que la fonction f est périodique de période π .

3) On pose :
$$u(x) = 2x \rightarrow u'(x) = 2$$

 $v(x) = \cos x \rightarrow v'(x) = -\sin x$

$$f(x) = v(u(x)) - \frac{1}{2}$$

Donc:
$$f'(x) = u'(x) \times v'(u(x))$$

$$f'(x) = 2 \times (-\sin(2x)) = -2\sin(2x)$$

 $f'(x) = 2 \times (-\sin(2x)) = -2\sin(2x)$ Si $x \in \left[0; \frac{\pi}{2}\right]$, alors $2x \in \left[0; \pi\right]$ et donc $\sin(2x) \ge 0$.

Donc si $x \in [0; \frac{\pi}{2}]$, alors $f'(x) \le 0$. Ainsi f est décroissante sur $[0; \frac{\pi}{2}]$.

x	0	$\frac{\pi}{2}$
f'(x)	0 –	0
f(x)	$\frac{1}{2}$	$-\frac{3}{2}$

- 4) On commence par tracer la courbe sur l'intervalle $\left[0; \frac{\pi}{2}\right]$.
- La fonction f est paire, donc sa courbe représentative est symétrique par rapport à l'axe des ordonnées.

On peut ainsi prolonger la courbe par symétrie axiale sur l'intervalle $\left|-\frac{\pi}{2};0\right|$.

- La fonction f est périodique de période π , on peut ainsi prolonger la courbe en translatant horizontalement la portion de courbe déjà tracée. En effet, la portion déjà tracée se trouve sur l'intervalle $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ de longueur π .

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur. www.maths-et-tiques.fr/index.php/mentions-legales