Digital Logic Theoretical Assignment 3 Solution

1.

State Equation:

$$A(t+1) = J_A A' + K'_A A = (Bx + B'y')A' + (B'xy')'A$$

$$B(t+1) = J_B B' + K'_B B = (A'x)B' + (A+xy')'B$$

Output Equation:

$$z = Ax'y' + Bx'y'$$

State and Output Table

Pres	ent State	Inj	put	Nex	kt State	Output
\overline{A}	B	\overline{x}	y	\overline{A}	В	\overline{z}
0	0	0	0	1	0	0
0	0	0	1	0	0	0
0	0	1	0	1	1	0
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	1	0
1	0	0	0	1	0	1
1	0	0	1	1	0	0
1	0	1	0	0	0	0
1	0	1	1	1	0	0
1	1	0	0	1	0	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	1	0	0

Also, you can use FF's inputs to derive state table, instead of using state equations

$$A(t+1) = J_A A' + K'_A A$$

$$B(t+1) = J_B B' + K'_B B$$

$$z = Ax'y' + Bx'y'$$

Curre	ent State	In	put	Fl	ip-Flo	p Inp	outs	Next	State	Output
A(t)	B(t)	X	у	J_A	K_A	J_B	K_B	A(t+1)	B(t+1)	Z
0	0	0	0	1	0	0	0	1	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	1	1	1	1	1	0
0	0	1	1	0	0	1	0	0	1	0
0	1	0	0	0	0	0	0	0	1	1
0	1	0	1	0	0	0	0	0	1	0
0	1	1	0	1	0	1	1	1	0	0
0	1	1	1	1	0	1	0	1	1	0
1	0	0	0	1	0	0	1	1	0	1
1	0	0	1	0	0	0	1	1	0	0
1	0	1	0	1	1	0	1	0	0	0
1	0	1	1	0	0	0	1	1	0	0
1	1	0	0	0	0	0	1	1	0	1
1	1	0	1	0	0	0	1	1	0	0
1	1	1	0	1	0	0	1	1	0	0
1	1	1	1	1	0	0	1	1	0	0

2.

Input Equation:

$$T_A = A + B$$
$$T_B = A' + B$$

State Equation:

$$A(t+1) = A \oplus T_A = A \oplus (A+B)$$

$$B(t+1) = B \oplus T_B = B \oplus (A'+B)$$

State Table:

Prese	ent State	Next State		
\overline{A}	\overline{A} B		В	
0	0	0	1	
0	1	1	0	
1	0	0	0	
1	1	0	0	

3.

a)

Input Equation:

$$J_1 = X$$
 $K_1 = (XQ'_2)'$
 $J_2 = X$ $K_2 = (XQ_1)'$

State Equation:

$$Q_1(t+1) = J_1 Q_1' + K_1' Q_1 = X Q_1' + X Q_1 Q_2'$$

$$Q_2(t+1) = J_2 Q_2' + K_2' Q_2 = X Q_2' + X Q_1 Q_2$$

Output Equation:

$$F = X \oplus Q_2'$$

State Table:

Prese	ent State	Input	Next	t State	Output
$\overline{Q_1}$	$\overline{Q_2}$	\overline{X}	$\overline{Q_1}$	Q_2	\overline{F}
0	0	0	0	0	1
0	0	1	1	1	0
0	1	0	0	0	0
0	1	1	1	0	1
1	0	0	0	0	1
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Also, you can use FF's inputs to derive state table, instead of using state equations

$$Q_1(t+1) = J_1 Q_1' + K_1' Q_1$$

$$Q_2(t+1) = J_2 Q_2' + K_2' Q_2$$

$$F = X \oplus Q_2'$$

Currer	nt State	Input	Fli	p-Flo	p Inp	outs	Next State		Output
$Q_1(t)$	$Q_2(t)$	X	J_1	K_1	J_2	K_2	$Q_1(t+1)$	$Q_2(t+1)$	F
0	0	0	0	1	0	1	0	0	1
0	0	1	1	0	1	1	1	1	0
0	1	0	0	1	0	1	0	0	0
0	1	1	1	1	1	1	1	0	1
1	0	0	0	1	0	1	0	0	1
1	0	1	1	0	1	0	1	1	0
1	1	0	0	1	0	1	0	0	0
1	1	1	1	1	1	0	0	1	1

b)

This is a Mealy machine, because the output is determined by the input and the present state. For example, when the present state is 00, the output is different when the input is 0 or 1.

$\mathbf{c})$

4. Simplified Version

State Table:

Present State	Input	Next State
\overline{Q}	\overline{X}	\overline{Q}
\overline{a}	0	b
a	1	a
b	0	d
b	1	c
c	0	d
c	1	c
d	0	a
d	1	d

Reduced State Table:

Present State	Input	Next State
\overline{Q}	\overline{X}	\overline{Q}
\overline{a}	0	b
a	1	a
b	0	d
b	1	b
d	0	a
d	1	d

Let $a=00,\,b=01,\,d=10,$ then the reduced state table is: State Table with TFF Input:

Prese	ent State	Input	Next	State	TFF	Input
$\overline{Q_1}$	Q_2	\overline{X}	$\overline{Q_1}$	Q_2	$\overline{T_1}$	T_2
0	0	0	0	1	0	1
0	0	1	0	0	0	0
0	1	0	1	0	1	1
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	0	1	1	0	0	0
1	1	0	X	X	X	X
_1	1	1	X	X	X	X

Derive Input Equation:

S. S.	≯ 00	01	11	10
0	0	0	0	1
1	1	0	X	X

0,00	⊁ 00	01	11	10
0	1	0	0	1
1	0	0	X	X

 T_2

 T_1

$$T_1 = Q_1 X' + Q_2 X'$$

$$T_2 = Q'_1 X'$$

4. Non-Simplified Version

State Table:

Present State	Input	Next State
\overline{Q}	\overline{X}	Q(t+1)
\overline{a}	0	b
a	1	a
b	0	d
b	1	c
c	0	d
c	1	c
d	0	a
d	1	d

Let $a=00,\,b=01,\,c=10,\,d=11$ then the reduced state table is: State Table with TFF Input:

Prese	ent State	Input	Next	State	TFF	Input
$\overline{Q_1}$	Q_2	\overline{X}	$\overline{Q_1}$	Q_2	$\overline{T_1}$	T_2
0	0	0	0	1	0	1
0	0	1	0	0	0	0
0	1	0	1	1	1	0
0	1	1	1	0	1	1
1	0	0	1	1	0	1
1	0	1	1	0	0	0
1	1	0	0	0	1	1
1	1	1	1	1	0	0

Derive Input Equation:

 T_1 T_2

$$T_1 = Q_1'Q_2 + Q_2X'$$

 $T_2 = Q_2'X' + Q_1'Q_2X + Q_1X'$

State Table:

Present State	Input		Next State
\overline{Q}	\overline{En}	\overline{D}	\overline{Q}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Derive Input Equation:

$$Q(t+1) = EnD + QEn'$$

Block Diagram:

6.

a)

Characteristic Table:

\overline{A}	. <i>B</i>	Q(t+1)	Operation
0	0	0	Reset
0	1	Q(t)	No Change
1	0	Q(t)'	Complement
1	1	1	Set

b)

State Table:

Current State	Inp	out	Next State
\overline{Q}	\overline{A}	B	\overline{Q}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Simplify Characteristic Equation:

OB	00	01	11	10
0	0	0	1	1
1	0	1	1	0

$$Q(t+1) = Q'A + QB$$

 $\mathbf{c})$

Excitation Table:

Q(t)	Q(t+1)	A	В	Operation
0	0	0	X	No Change
0	1	1	X	Set
1	0	X	0	Reset
1	1	Χ	1	No Change

d)

State Table with JKFF Input:

Current State	JKFF Input		Next State	New FF Input	
\overline{Q}	\overline{J}	K	\overline{Q}	\overline{A}	B
0	0	0	0	0	X
0	0	1	0	0	X
0	1	0	1	1	X
0	1	1	1	1	X
1	0	0	1	X	1
1	0	1	0	X	0
1	1	0	1	X	1
1	1	1	0	X	0

Simplify New FF Input:

The simplified JKFF input is:

$$A = J$$
$$B = K'$$

Block Diagram:

7.

Reduced State Table:

Present State	Next	State	Output		
Tresent State	$\overline{X} = 0$	X = 1	$\overline{X} = 0$	X = 1	
a	f	b	0	0	
b	d	a	0	0	
d	g	a	1	0	
f	f	b	1	1	
g	g	d	0	1	

State Diagram:

Let a = 000, b = 001, d = 010, f = 011, g = 100. State Table with JKFF Input:

Pres	sent S	State	Input	Ne	xt St	ate		J	KFF	Inpu	ıt		Output
$\overline{Q_1}$	Q_2	$\overline{Q_3}$	\overline{X}	$\overline{Q_1}$	Q_2	$\overline{Q_3}$	$\overline{J_1}$	K_1	J_2	K_2	J_3	K_3	\overline{F}
0	0	0	0	0	1	1	0	Χ	1	Χ	1	Χ	0
0	0	0	1	0	0	1	0	X	0	Χ	1	Χ	0
0	0	1	0	0	1	0	0	X	1	Χ	X	1	0
0	0	1	1	0	0	0	0	X	0	X	X	1	0
0	1	0	0	1	0	0	1	X	X	1	0	X	1
0	1	0	1	0	0	0	0	X	X	1	0	X	0
0	1	1	0	0	1	1	0	X	X	0	X	0	1
0	1	1	1	0	0	1	0	X	X	1	X	0	1
1	0	0	0	1	0	0	X	0	0	X	0	X	0
1	0	0	1	0	1	0	X	1	1	X	0	X	1
1	0	1	0	X	X	X	X	X	X	X	X	X	X
1	0	1	1	X	X	X	X	X	X	X	X	X	X
1	1	0	0	X	X	X	X	X	X	X	X	X	X
1	1	0	1	X	X	X	X	X	X	X	X	X	X
1	1	1	0	X	X	X	X	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X	X	X	X	X

Simplify JKFF Input:

65 63 63	×00	01	11	10
00	X	X	X	X
01	X	X	X	X
11	X	X	X	X
10	0	1	X	X

 J_1

 K_1

Q3,	⊁ 00	01	11	10
00	1	0	0	1
01	X	X	X	X
11	X	X	X	X
10	0	1	X	X

Q3,Q3 00	⊁ 00	÷00 01		10
00	X	X	X	X
01	1	1	1	0
11	X	X	X	X
10	X	X	X	X

 J_2

K_2

6, 63, 63, 63, 63, 63, 63, 63, 63, 63, 6	₹00	01	11	10
00	X	X	1	1
01	X	X	0	0
11	X	X	X	X
10	X	X	X	X

 J_3

 K_3

The simplified JKFF input is:

$$J_1 = Q_2 Q_3' X'$$

$$J_2 = Q_1' X' + Q_1 X$$

$$J_3 = Q_1' Q_2'$$

$$K_1 = X$$

$$K_2 = Q_3' + X$$

$$K_3 = Q_2'$$

Let a = 000, b = 001, c = 010, d = 011, e = 100.

State Table with DFF Input:

Pres	sent S	State	Input	Next State		DFF Input			
$\overline{Q_1}$	Q_2	Q_3	\overline{X}	$\overline{Q_1}$	Q_2	$\overline{Q_3}$	$\overline{D_1}$	D_2	$\overline{D_3}$
0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	0	0	1
0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	1	0	0	1	0
0	1	0	0	0	1	1	0	1	1
0	1	0	1	0	1	0	0	1	0
0	1	1	0	0	0	0	0	0	0
0	1	1	1	1	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	1	0
1	0	1	0	X	X	X	Χ	X	X
1	0	1	1	X	X	X	X	X	X
1	1	0	0	X	X	X	Χ	X	X
1	1	0	1	X	Χ	Χ	Χ	X	X
1	1	1	0	X	X	X	X	X	X
_ 1	1	1	1	X	Χ	X	Χ	X	X

Simplify DFF Input:

 D_1 D_2 D_3

The simplified DFF input is:

$$D_1 = Q_2 Q_3 X$$

$$D_2 = Q_2 Q_3' + Q_1 X + Q_2' Q_3 X$$

$$D_3 = Q_2 Q_3' X' + Q_1' Q_2' Q_3' X$$