Individual Study Report

ที่มา

เนื่องจากเป็นการทำ Model Image Classification ครั้งแรก อาจารย์เลยให้ไปเรียนคอร์ส Fast AI แล้วนำมาใช้กับ โจทย์ปัญหาการ<u>ทำนายวัณโรคจากภาพ X-ray ปอด</u>

เตรียมข้อมูล

Dataset มีข้อมูลทั้งหมด 662 รูป ประกอบไปด้วยรูปที่เป็นปอดปกติ 326 รูป และปอดที่ไม่ปกติ 336 รูป โดยแบ่งเป็น Train-set 528 รูป, Valid-set 67 รูป และ Test-set 67 รูป ในสัดส่วน 80-10-10

หลังจากนั้นนำโมเดลมาทำ Image Augmentation โดยใช้วิธีดังนี้

รายการ	การตั้งค่า	เหตุผล	
Rotate	(max_deg=5, p=0.5)	เนื่องจากในโมเดลจะมีบางภาพที่ถ่ายไม่ตรงบ้าง หรือตัว คนนอนไม่ตรง เลยทำการหมุนรูปภาพเพียงเล็กน้อย เพื่อให้โมเดลไม่เรียนเฉพาะภาพตรงอย่างเดียว	
Zoom	(draw=1.1, draw_x=0.5,	บางถาพมีลักษณะการ zoom ถาพเข้าไป เลยทำให้ปอด	
	draw_y=1, p=0.5)	ใหญ่กว่าปกติ หรือปอดอยู่ตำแหน่งที่ไม่เหมือนกัน เลยทำ	
		การเพิ่มข้อมูลโดยการ zoom	
Flip	(p=0.5)	ตัวนี้มาจากสมมตุฐานที่ว่า อาจจะเกิดที่ปอดข้างใดข้าง	
หนึ่งเพียงข้างเดีย		หนึ่งเพียงข้างเดียว เลยทำให้การสลับข้างกัน อาจทำให้	
		เรียนรู้ข้อมูลที่หลากหลายขึ้น	

โมเดล

เนื่องจากเป็นการทำนาย Image เลยเลือกใช้ pre-trained model แล้วนำมา fine-tune อีกที โดยตอนแรกได้ลอง Resnet 50, 101 แต่ด้วยความสงสัยเลยได้ทำการลองทุกโมดเดล ที่ลองด้วยจำนวน epoch ที่ 10 epoch เพื่อดู แนวโน้มของ train-loss และ valid-loss โดยตารางที่นำมาให้ดูคือ loss ณ epoch ที่ 10

Model	Train_loss	Train_loss	
Squeezenet1_0	0.216178	0.557256	
squeezenet1_1	0.221542	0.636527	
densenet121	0.133444	0.604451	
densenet201	0.103078	0.509935	
Resenet18	0.14931	0.68364	
Resnet34	0.12266	0.54941	
Resnet50	0.12989	0.76821	
Resnet101	0.13693	0.65718	
Alexnet	0.26517	0.48681	
vgg11_bn	0.15768	0.53938	
vgg13_bn	0.12463	0.57773	
vgg16_bn	0.11085	0.48646	
vgg19_bn	0.1121	0.67435	

เทรน

เกณฑ์ที่ใช้ในการวัดผลคือ Accuracy ได้มาจากการนับจำนวนผลลัพธ์ที่ทำนายว่าตรงกับค่าจริง เป็นร้อยละเท่าไหร่ ในการเทรนจะเทรนเป็นจำนวน 30 epoch แล้วดูลักษณะของ loss ว่าเป็นอย่างไร ถ้าไม่ overfit ก็จะเทรนต่อไป โดยได้ลองแต่ ละโมเดล ดังนี้

Densenet201

จากการที่ลองเทรนจะเห็นตัว valid-loss ที่ลงไปต่ำ และ accuracy ของ valid-set สูงถึง 92% เลยเลือกมาเทรน

จากกราฟจะเห็นว่า valid loss เด้งไปมาแต่ก็พยายามลงเข้าหา train loss ตัว model ที่ดีที่สุดได้ Valid_loss ที่ 0.275327 และ Valid_accuracy ที่ 0.924

Squeezenet1 0

ตัวนี้ลองเพราะว่า เห็นว่าตัว train_loss และ valid_loss ไม่ต่างกันมาก และไม่ห่างกันเรื่อย เลยคิดว่าถ้าเทรนจำนวน epoch ที่เยอะขึ้น มันจะยังคงลงอย่างช้าๆ เรื่อยๆ ไม่ overfit

ผล loss ของทั้ง train และ valid ไม่ต่างกันมาก และเริ่มคงที่ไม่ลดลง ตัว model ที่ดีที่สุดได้ Valid_loss ที่ 0.0.44645 และ Valid_accuracy ที่ 0.8060

Vgg16_bn

ค่า valid loss และ accuracy ตอนเทสเคยได้ถึง 0.39456 และ 0.92424 ตามลำดับ เลยทำให้สนใจลองเทรน

เมื่อลองเทรนไประดับหนึ่ง ตัว valid loss และและ train loss กลับห่าง กันมากๆ เลยทำให้หยุดเทรน

Resnet34,50,101

ทั้ง 3 ตัวนี้ได้ลองแล้วพบว่าไม่ต่างกันมาก แต่ลักษณะของกราฟ Resnet 101 จะลงสวยกว่า คือ train-loss และ validloss ลงด้วยกันไปเรื่อยๆ

ผล โมเดลที่ดีที่สุด ตัว valid loss จะอยู่ที่ 0.231 และ valid accurac y อยู่ที่ 0.939

นำโมเดลที่ให้ valid loss และ valid accuracy ที่น่าสนใจมาเทสกับ Test set

Model	Valid loss	Valid accuracy	Test accuracy
Densenet201	0.2781	0.9242	0.8507
Resnet101	0.231	0.939	0.8507

สิ่งที่ได้เรียนรู้

- ได้มีการลองใช้ fatsia library ครั้งแรก และทำหลายๆโมเดล (resnet34, resnet50, resnet101, vgg, densnet etc.)
- การลองผิดลองถูกในการทำ Image Augmentation