1. Magnetfeld eines asymmetrischen Leiters

a)
$$r = \sqrt{x^2 + y^2}$$

 $I_{+} = I(1 + \frac{a^2}{R^2})$
 $I_{-} = -I\frac{a^2}{R^2}$
 $B_{+} = \frac{\mu_0 I_{+}}{2r\pi} = \frac{\mu_0 I_{+}}{2\pi\sqrt{x^2 + y^2}}$
 $B_{-} = \frac{\mu_0 I_{-}}{2r\pi} = \frac{\mu_0 I_{-}}{2\pi\sqrt{(x - b)^2 + y^2}}$
 $B = B_{+} + B_{-} = \frac{\mu_0 I_{+}}{2\pi\sqrt{x^2 + y^2}} + \frac{\mu_0 I_{-}}{2\pi\sqrt{(x - b)^2 + y^2}} = \frac{\mu_0 I}{2\pi} \left[\frac{1}{\sqrt{x^2 + y^2}} + \frac{a^2}{R^2} \left(\frac{1}{\sqrt{x^2 + y^2}} - \frac{1}{\sqrt{(x - b)^2 + y^2}} \right) \right]$
 $B(2R, 0) = \frac{\mu_0 I}{4R\pi} \left[1 + \frac{a^2}{R} \left(\frac{1}{R} - \frac{1}{R - b} \right) \right]$

b)

$$B(0,2R) = \frac{\mu_0 I}{2R\pi} \left[\frac{1}{2} + \frac{a^2}{R} \left(\frac{1}{2R} - \frac{1}{\sqrt{b^2 + 4R^2}} \right) \right]$$

2. Induktion

a)

b)

3. Indunktionsspannung - Stab

	 	_	 	 	 	 _	 	 	 _	 	 		 _		 _	 	 	 	_	 		 		 	 _	 _		 	 	
		a)																												
	 		 	 	 	 -	 	 -	 -	 	 	-	 -	-	 -	 	 	 	-	 -	 	 	-	 -	 -	 -	 -	 	 -	
		b)																												