补充题 1:

右侧所示二极管稳压电路中,若击穿电压 Vz=6V,

- 输入电压 V₁的变化范围为: 10~12V
- 负载电阻 R_L的变化范围为: 1KΩ~ ∞
- 稳压二极管的工作范围为: 10uA~10mA 请计算电阻 R 的取值范围。

参考:

当 V、取最大值, R_L 取最大值时,二极管达到最大电流; 当 V、取最小值, R_L 取最小值时,二极管达到最小电流。 故可以列写不等式组:

$$\begin{cases} \frac{V_{imax}-V_{Z}}{R} - \frac{V_{Z}}{R_{Lmax}} < I_{Dmax} = 10mA \\ \frac{V_{imin}-V_{Z}}{R} - \frac{V_{Z}}{R_{Lmin}} > I_{Dmin} = 10\mu A \end{cases}$$
 整理得:
$$\begin{cases} \frac{12-6}{R} - 0 < 10mA \\ \frac{10-6}{R} - \frac{6}{1K} > 10\mu A \end{cases}$$
, 即: $\frac{2K}{3} > R > 600$

补充题 2:

导能带间隙电压参照电路中,已知 BJT 的结压降 V_{BE} 有负温度特性: V_{BE} ≈1.205 + α T,其中 α = -2mV/ $^{\circ}$ C。 如果已知室温 T=300 开尔文, R_1 =1k, R_2 =3k,则 R_3 如何取值?

参考:

本题可以先经过推导,也可以直接套用课上已经推导的结果,即:

 $R_2V_T/R_3\cdot ln(R_2/R_1) + \alpha T = 0$ 将数值代入,注意 $V_T \approx 26 mV$,即可得到: $R_3 \approx -R_2V_T\cdot ln(R_2/R_1) / \alpha T \approx 143 \Omega$

【建议:尝试自行推导一下上述约束关系,即】

$$rac{R_2}{R_1}pprox rac{I_{C1}}{I_{C2}}\cong e^{rac{V_{BE1}-V_{BE2}}{V_T}}pprox e^{rac{I_{C2}R_3}{V_T}}$$

补充题 3:

下图的线性稳压电路中,输入 V_{in} 为正弦电源, $D_1 \sim D_4$ 的导通压降可以忽略, D_5 的击穿电压为 6V。 $R_1 = 100 K \Omega$, $R_2 = R_3 = R_4 = 100 K \Omega$, $R_L = 1 K \Omega$ 。假设调节 R_3 时,电路一直能正常输出稳定电压。

- a) 若深度负反馈成立,则相对于负载 RL而言,稳压电路的输出电阻是多少?
- b) 请推算, RL能获得的电压范围是多少?
- c) 输入正弦电源 Vin 幅度取多少为宜?请简要说明理由;
- d) 若已知电容滤波电路中,当 $CR \approx 3T/2$ 时, V_{OAV} 约为峰值的 0.9 倍。那么,此电路输入峰值 25V 的正弦波时,C 如何取值比较合理?
- e) 在 d)的条件下,调节 R₃,估算 T₁的功耗范围是多少?

参考:

- a) 深度负反馈(电压串联组态)成立时,R_L所得的电压与其阻值无关,故近似 R_o≈0
- b) 当 R₃滑至顶端时: V_{RL} * (R₃+R₄)/(R₂+R₃+R₄) ≈ V_z → V_{RL}≈ 6 * 3 /2 = 9V 当 R₃滑至底端时: V_{RL} * (R₄)/(R₂+R₃+R₄) ≈ V_z → V_{RL}≈ 6 * 3 = 18V 故 R_L所得的电压范围为: [9,18]V
- c) 前面第二问要求输出最大电压达到 18V,而一般要求使得使调整管 Vce>2V, 故滤波后的平均电压 VoAV 需达到 20V 以上。 另外,采用电容滤波时,输出脉动直流电的 Vin > VoAV > Vin • 0.64 因此,反推可知,Vin 的取值范围是: [20, 31.25] V 【按理, Vo取得更大些,电路也能工作。但这样效率更低,调整管功耗更大】
- d) 注意,题设中的 R 为滤波电路的后级电路的等效直流电阻【等效直流电阻不能使用微扰模型计算,而是应该用直流电压和电流来估算】。 当输入 25V 正弦波时, $V_{OAV} \approx 25 \cdot 0.9 = 22.5V$,输出最大电流时 $V_{RL} = 18V$, $I_{RL} \approx 18/1k = 18mA$,等效 $R = 22.5V/18mA \approx 1.25k$ 由此, $C \approx 30ms / 1.25k = 24uF$
- e) 当输出电压为 VRL时, T1的功耗可估计为:

$$P_{T1} = (V_{OAV} - V_{RL})I_{RL} = (V_{OAV} - V_{RL})\frac{V_{RL}}{R_L}$$

代入 $V_{OAV} \approx 22.5V$,当 V_{RL} 在[9,18]V之间变化时,这是一个二次函数。可以算出,T1 的功耗范围为 [81. 126.56]mW,其中最大值在 $V_{RL} \approx 11.2V$ 时取得