LOS DOS PROBLEMAS DEBEN ESTA SUBIDO COMO UNA CAPTURA DE PANTALLA DE "SPYDER" DONDE APAREZCA EL COGIDO Y EN LA CONSOLA SALGAN LOS RESULTADOS SOLICITADOS. (POR LO CUAL CUANDO TENGAN EL CODIGO PUEDEN "REINICIAR EL NUCLIO" Y VOLVER A CORRER)

ADEMAS SE DEBE SUBIR EL CODIGO COMO UN ARCHIVO DE TEXTO O WORD.

Problema 1

Ayuda para la explicación de las preguntas:

La matriz 80x50 que esta adjunto con el nombre "Matriz 1.csv" tiene valores desde 50 a 500 colocados aleatoriamente convierte la misma a una matriz que tenga unos, doses y treses. (70%)

Para la conversión utilice los siguientes criterios:

- 1. si el valor es menor o igual a 150 este pertenece a la primera categoría y su valor tiene que ser remplazado por 1,
- 2. si el valor esta mayor a 150 y menor o igual a 300 pertenece a la segunda categoría y su valor tiene que ser remplazado por 2,
- 3. finalmente, si no se cumple ninguno de los criterios anteriores el valor tiene que ser remplazado por 3.

Además, se requiere determinar la cantidad de números en cada categoría. (30%)

Se debe imprimir un DataFrame con los nuevos valores de matriz nuevo (de unos doses y treses) y otra DataFrame con los numero de valores en cada categoría.

Resultados esperados

	Columna 1	Columna 2	Columna 3	 Columna 48	Columna 49	Columna 50		Columna 1	Columna 2	Columna 3	 Columna 48	Columna 49	Columna 50
0	140	109	381	 329	93	399	0	1	1	3	 3	1	3
1	434	478	497	 261	178	374	1	3	3	3	 3	2	3
2	59	449	182	 465	292	323	2	1	3	2	 3	3	3
3	474	99	495	 246	190	423	3	3	1	3	 2	2	3
4	458	79	284	 119	412	195	4	3	1	3	 1	3	2
75	97	181	383	 86	473	457	75	1	2	3	 1	3	3
76	383	193	237	 295	386	58	76	3	2	2	 3	3	1
77	309	492	51	 345	306	361	77	3	3	1	 3	3	3
78	80	163	100	 341	52	371	78	1	2	1	 3	1	3
79	59	275	128	 71	369	499	79	1	3	1	1	3	3

0	1	1	3	 3	1	3
1	3	3	3	 3	2	3
2	1	3	2	 3	3	3
3	3	1	3	 2	2	3
4	3	1	3	 1	3	2
75	1	2	3	 1	3	3
76	3	2	2	 3	3	1
77	3	3	1	 3	3	3
78	1	2	1	 3	1	3
79	1	3	1	 1	3	3

DataFrame original

DataFrame Final

	Categorias	Repeticinoes
0	Rango1	790
1	Rango2	982
2	Rango3	2228

DataFrame de Repeticiones

Problema 2:

Realiza un cogido que importe a spyder los datos de la hoja "Nombres_Provincia_Datos.xlsx" y genere un DataFrame con la cantidad de personas en cada provincia

RESULTADO ESPERRADO

	Provincia	# de Personas
0	Azuay	15
1	Pichincha	8
2	El Oro	9
3	Santa Elena	8

Entregar una captura de pantalla

Problema 1:

Problema 2:

