In [6]: H import pandas as pd import numpy as np In [7]: df = pd.read_csv('CarPrice.csv') df In [8]: Out[8]: car_ID symboling CarName fueltype aspiration doornumber carbody drivewhe alfa-romero 0 1 3 std two convertible gas r٧ giulia alfa-romero 2 3 convertible gas std two r٧ stelvio alfa-romero 2 3 std two hatchback gas r٧ Quadrifoglio 3 4 2 audi 100 ls f۷ std four sedan gas 2 5 audi 100ls gas std four sedan 4٧ volvo 145e 200 201 -1 std four sedan gas r٧ (sw) 201 202 volvo 144ea gas turbo four sedan r٧ 202 203 volvo 244dl std four sedan gas r٧ 203 volvo 246 204 diesel turbo four sedan 204 205 volvo 264gl turbo four sedan gas r٧ 205 rows × 26 columns

In [4]:

DATA PREPROCESSING

In [5]: 🕨	df.	head()							
Out[5]:		car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel
	0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd
	1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd
	2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd
	3	4	2	audi 100 ls	gas	std	four	sedan	fwd
	4	5	2	audi 100ls	gas	std	four	sedan	4wd
In [6]: ▶	4	ows × 20 tail()	columns						•
Out[6]:									
		car_II) symbolin	g CarName	fueltype	aspiration	doornumber	carbody	drivewheel
	200			volvo	fueltype gas	aspiration	doornumber	carbody sedan	drivewheel rwd
	200	20	1 -	1 volvo 145e (sw)					
		20 1 20	1 -	volvo 1 volvo 1 volvo 1 volvo	gas	std	four	sedan	rwd
	20 ⁻	20 1 20 2 20	1 - 2 - 3 -	volvo 145e (sw) 1 volvo 144ea 1 volvo	gas	std	four	sedan sedan	rwd

5 rows × 26 columns

Car Price Prediction - Jupyter Notebook In [7]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 205 entries, 0 to 204 Data columns (total 26 columns): Non-Null Count # Column Dtype -----0 car ID 205 non-null int64 1 symboling 205 non-null int64

2 CarName 205 non-null object 3 fueltype 205 non-null object 4 aspiration 205 non-null object 5 doornumber 205 non-null object 6 205 non-null object carbody 7 drivewheel object 205 non-null 8 enginelocation 205 non-null object 9 wheelbase 205 non-null float64 10 carlength 205 non-null float64 11 carwidth 205 non-null float64 12 carheight 205 non-null float64 13 curbweight 205 non-null int64 14 enginetype object 205 non-null 15 cylindernumber 205 non-null object enginesize 205 non-null int64 16 17 fuelsystem 205 non-null object 18 boreratio 205 non-null float64 19 stroke 205 non-null float64 20 compressionratio 205 non-null float64 21 horsepower 205 non-null int64 22 peakrpm 205 non-null int64 23 citympg 205 non-null int64 24 highwaympg 205 non-null int64 25 price 205 non-null float64

dtypes: float64(8), int64(8), object(10)

memory usage: 41.8+ KB

```
    df.duplicated().sum()

In [10]:
    Out[10]: 0
In [11]:

    df.isnull().sum()

   Out[11]: car_ID
                                   0
              symboling
                                   0
              CarName
                                   0
                                   0
              fueltype
              aspiration
                                   0
                                   0
              doornumber
              carbody
                                   0
              drivewheel
                                   0
              enginelocation
                                   0
                                   0
              wheelbase
              carlength
                                   0
                                   0
              carwidth
              carheight
                                   0
                                   0
              curbweight
              enginetype
                                   0
              cylindernumber
                                   0
              enginesize
                                   0
              fuelsystem
                                   0
                                   0
              boreratio
                                   0
              stroke
              compressionratio
                                   0
                                   0
              horsepower
              peakrpm
                                   0
              citympg
                                   0
                                   0
              highwaympg
              price
                                   0
              dtype: int64
```

In [4]: ## VISUALIZATION

import matplotlib.pyplot as plt
import seaborn as sns
sns.pairplot(df)

Out[4]: <seaborn.axisgrid.PairGrid at 0x223fd082520>

In [6]: plt.hist(df["wheelbase"], bins=25, rwidth=0.8)
plt.show()

In [8]: plt.hist(df["carlength"], bins=10, rwidth=0.8)
 plt.show()


```
185
gas
diesel
           20
Name: fueltype, dtype: int64
std
         168
turbo
          37
Name: aspiration, dtype: int64
four
        115
         90
two
Name: doornumber, dtype: int64
sedan
                96
hatchback
                70
                25
wagon
hardtop
                 8
convertible
                 6
Name: carbody, dtype: int64
       120
fwd
        76
rwd
4wd
Name: drivewheel, dtype: int64
mpfi
2bbl
        66
idi
        20
1bbl
        11
         9
spdi
4bbl
         3
mfi
         1
spfi
         1
Name: fuelsystem, dtype: int64
four
          159
six
           24
five
           11
            5
eight
             4
two
             1
three
twelve
             1
Name: cylindernumber, dtype: int64
```

localhost:8888/notebooks/Car Price Prediction.ipynb

/ \(\v)		
Out[14]:	68	19
	70	11
	69	10
	116	9
	110	8
	95	7
	114	6 6
	160 101	6
	62	6
	88	6
	145	5
	76	5
	97	5
	84 90	5
	82	5
	102	5
	92	4
	111	4
	123	5 5 5 5 5 4 4 4
	86	4
	207 73	პ ვ
	182	3
	121	3
	85	3
	152	3
	176	3 3 3 3 2 2 2 2 2 2
	94 56	2
	112	2
	161	2
	184	2
	155	2
	156	2
	52 100	2 2
	162	2
	140	1
	115	1
	134	1
	78	1
	142 288	1 1
	143	1
	48	1
	200	1
	58	1
	55	1
	60 175	1
	175 154	1 1
	72	1
	120	1
	64	1
	135	1

262 1106 1

Name: horsepower, dtype: int64

```
Out[15]: 3.400
                     20
             3.230
                     14
             3.150
                     14
             3.030
                     14
             3.390
                     13
             2.640
                     11
             3.290
                       9
             3.350
                       9
             3.460
                       8
             3.110
                       6
             3.270
                       6
             3.410
                       6
             3.070
                       6
             3.580
                       6
             3.190
                       6
             3.500
                       6
                       5
             3.640
             3.520
                       5
             3.860
                       4
             3.540
                       4
             3.470
                       4
             3.255
                       4
             3.900
                       3
             2.900
                       3
                       2
             3.100
                       2
             4.170
                       2
             2.800
             2.190
                       2
                       2
             3.080
                       2
             2.680
             2.360
                       1
             3.160
                       1
             2.070
                       1
             3.210
                       1
             3.120
                       1
             2.760
                       1
             2.870
                       1
             Name: stroke, dtype: int64
```

```
df['compressionratio'].value_counts()
In [16]:
    Out[16]: 9.00
                        46
              9.40
                        26
              8.50
                        14
              9.50
                        13
              9.30
                        11
              8.70
                         9
              8.00
                         8
              9.20
                         8
                         7
              7.00
                         5
              8.60
                         5
              21.00
                         5
              8.40
                         5
              7.50
              23.00
                         5
                         5
              9.60
              21.50
                         4
              7.60
                         4
                         3
              10.00
              22.50
                         3
              8.30
                         3
              8.80
                         3
                         2
              7.70
                         2
              8.10
              9.10
                         1
                         1
              9.31
              7.80
                         1
              9.41
                         1
              21.90
                         1
              22.00
                         1
              22.70
                         1
              10.10
                         1
              11.50
                         1
```

Name: compressionratio, dtype: int64

```
M df['citympg'].value_counts()
In [17]:
    Out[17]: 31
                     28
               19
                     27
                     22
               24
               27
                     14
               17
                     13
               26
                     12
               23
                     12
               21
                      8
                      8
               25
                      8
               30
               38
                      7
               28
                      7
               16
                      6
               37
                      6
               22
                      4
               29
                      3
                      3
               15
                       3
               20
               18
                      3
                      2
               14
               34
                      1
               35
                      1
               32
                      1
               36
                      1
               45
                      1
               13
                      1
               49
                      1
               47
                      1
               33
              Name: citympg, dtype: int64
```

```
    df['highwaympg'].value_counts()

In [18]:
   Out[18]: 25
                    19
              38
                    17
              24
                    17
              30
                    16
              32
                    16
              34
                    14
              37
                    13
              28
                    13
              29
                    10
              33
                     9
                     8
              22
              31
                     8
              23
                     7
              27
                     5
              43
                     4
              42
                     3
              26
                     3
                     3
              41
              19
                     2
              39
                     2
              18
                     2
                     2
              16
                     2
              20
                     2
              36
              47
                     2
                     2
              46
              54
                     1
              17
                     1
              53
                     1
              50
                     1
              Name: highwaympg, dtype: int64
In [19]:
           ## CHANGING THE CATEGORICAL ATTRIBUTES INTO NUMERIC DATA FOR BETTER ANALYS
             df.replace({'fueltype':{'gas':0,'diesel':1}},inplace=True)
             df.replace({'aspiration':{'std':0,'turbo':1}},inplace=True)
              df.replace({'doornumber':{'two':0,'four':1}},inplace=True)
              df.replace({'carbody':{'convertible':0,'hatchback':1,'sedan':2, 'wagon':3}
              df.replace({'drivewheel':{'rwd':0,'fwd':1,'4wd':2}},inplace=True)
              df.replace({'fuelsystem':{'mpfi':0,'2bbl':1,'1bbl':2,'mfi':3, 'spf1':4, ':
```

Out[9]:

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize
C	1	3	88.6	168.8	64.1	48.8	2548	130
1	2	3	88.6	168.8	64.1	48.8	2548	130
2	3	1	94.5	171.2	65.5	52.4	2823	152
3	4	2	99.8	176.6	66.2	54.3	2337	109
4	5	2	99.4	176.6	66.4	54.3	2824	136
200	201	-1	109.1	188.8	68.9	55.5	2952	141
201	202	-1	109.1	188.8	68.8	55.5	3049	141
202	203	-1	109.1	188.8	68.9	55.5	3012	173
203	204	-1	109.1	188.8	68.9	55.5	3217	145
204	205	-1	109.1	188.8	68.9	55.5	3062	141

205 rows × 191 columns

4

```
In [10]: ## Splitting the data ##

x = df.drop(['price'], axis=1)
y = df['price']
print(len(x), len(y))
print(x)
print(y)
print(y)
print(x.shape)
print(y.shape)
```

205											
eigh [.]	car_ID + \	symbo	oling	whe	elbase	carl	ength	carw	uidth	carheight	curbw
0 2548	1		3		88.6		168.8		64.1	48.8	
1 2548	2		3		88.6		168.8		64.1	48.8	
2 2 2823	3		1		94.5		171.2		65.5	52.4	
3 2337	4		2		99.8		176.6		66.2	54.3	
4 2824	5		2		99.4		176.6		66.4	54.3	
•••	•••		•••		•••		•••		• • •	•••	
200 2952	201		-1		109.1		188.8		68.9	55.5	
201 3049	202		-1		109.1		188.8		68.8	55.5	
202 3012	203		-1		109.1		188.8		68.9	55.5	
203 3217	204		-1		109.1		188.8		68.9	55.5	
204 3062	205		-1		109.1		188.8		68.9	55.5	
	engines	ize ŀ	orera	tio	stroke		cyli	inderr	number	_three \	
0		130		.47	2.68					0	
1		130		.47	2.68	• • •				0	
2		152			3.47	• • •				0	
3		109		.19	3.40					0	
4		136		.19	3.40	• • •				0	
200		 141		 .78	3.15					0	
201		141		.78	3.15					0	
202		173		.58	2.87					0	
203		145		.01	3.40					0	
204		141	3	.78	3.15	•••				0	
0	cylinde	rnumbe	er_twe	lve 0	cylinde	ernum	ber_tw	vo fi 0	elsys	tem_2bbl 0	\
1				0				0		0	
2				0				0		0	
3				0				0		0	
4				0				0		0	
								. •		• • •	
200				0				0		0	
201				0				0		0	
202				0				0		0	
203 204				0 0				0 0		0 0	
	fuelsys	tem_4	obl f	uels	ystem_i	di f	uelsys	stem_n	ıfi f	uelsystem_	mpfi \
0	-	_	0	·	_	0	-		0	_	1
1			0			0			0		1
2			0			0			0		1
3			0			0			0		1

```
4
                        0
                                         0
                                                          0
                                                                            1
    . .
    200
                        0
                                         0
                                                          0
                                                                            1
                                         0
    201
                                                          0
                                                                            1
                        0
    202
                                         0
                                                          0
                                                                            1
                        0
    203
                                         1
                                                          0
                                                                            0
    204
                                         0
                        0
                                                          0
                                                                            1
         fuelsystem_spdi
                           fuelsystem_spfi
    0
    1
                        0
                                          0
    2
                        0
                                          0
    3
                        0
                                          0
    4
                        0
                                          0
    200
                        0
                                          0
    201
                        0
                                          0
    202
                        0
                                          0
    203
                        0
    204
    [205 rows x 190 columns]
           13495.0
    0
    1
           16500.0
    2
           16500.0
    3
           13950.0
    4
           17450.0
            . . .
    200
           16845.0
    201
           19045.0
    202
           21485.0
    203
           22470.0
    204
           22625.0
    Name: price, Length: 205, dtype: float64
    (205, 190)
    (205,)
## Training and Test Data ##
    from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test=train_test_split(x,y,test_size=1/10,rando
## Linear Regression ##
    from sklearn.linear_model import LinearRegression
    model = LinearRegression()
    model.fit(x_train,y_train)
```

Out[12]: LinearRegression()

In [11]:

In [12]:

```
In [24]:
          ▶ | from sklearn.linear model import LinearRegression
             regressor = LinearRegression()
             regressor.fit(x_train, y_train)
   Out[24]: LinearRegression()

★ t data predic = regressor.predict(x train)

In [25]:
In [26]:
             ## Error Calculation ##
             from sklearn import metrics
             error_score = metrics.r2_score(y_train, t_data_predic)
             print("R squared Error : ", error_score)
             R squared Error: 0.9982334777472928
In [28]:
              ## prediction on Test data ##
             t_data_predic = regressor.predict(x_test)
In [30]:
             plt.scatter(y_test, t_data_predic)
             plt.xlabel("Actual Price")
             plt.ylabel("Predicted Price")
             plt.title(" Actual Prices vs Predicted Prices")
             plt.show()
```



```
Coefficient: [ 1.96509785e+02 6.44936604e+02 6.43751612e+03 -1.846823
73e+02
 9.62864785e+02 3.51905038e+02 1.47578359e+02 -2.76898277e+02
 1.30471318e+03 -4.90883212e+02
                                 1.01640031e+01
                                                 2.07277966e+01
 -2.61585478e+03 -1.46815247e+03 -9.51029627e+02 -2.58646302e+00
                 4.72045187e+02 -2.83591892e+02
 2.42849538e+00
                                                 2.23256072e+04
 1.60797850e+04
                 1.88882752e+04
                                 2.16973985e+04
                                                 7.65695439e+03
 1.02018548e+04 -2.04272510e-09
                                 5.52651730e+03 -3.35398909e-09
 2.37820393e+04
                 6.77573553e-10
                                                 3.68539059e+04
                                 3.50549631e+04
 4.56932926e+04
                 3.43660050e+04
                                 1.89276813e+03
                                                 2.29997800e+03
 7.59529123e+03
                 1.14404830e+02
                                  2.14823528e+03
                                                 1.22054853e+04
 3.46955061e+03 -4.04518514e+03 -3.54134500e-11
                                                 9.33059554e+03
 9.01911563e+03 9.92581143e+03
                                 7.63789167e+03
                                                 6.91740145e+03
 9.24904326e+03
                 4.63287726e+03
                                 1.06968981e+04
                                                  1.42257065e+04
 7.39882614e+03
                 7.34533606e+03
                                 2.02150903e+04
                                                 8.09450285e-10
 1.48353204e+04
                 1.24647316e+04
                                 6.49764458e+03
                                                  1.56359652e+04
 1.57687221e+04
                 1.22894361e+04
                                                 6.51504408e+03
                                 1.61300267e+04
 1.38243195e-10
                                 2.19892515e+04
                 1.06638524e+04
                                                  1.88857612e+04
 2.13645926e+03
                 6.23869197e+03
                                 4.12374372e+03
                                                  5.87180380e+03
 1.24491438e+04
                 6.07284177e+03
                                 6.44050795e+03
                                                 4.32427242e+03
                 6.15724511e+03
                                 1.40018140e+04 -3.27418093e-11
 7.00253541e+03
  5.56319813e+03 -2.10148582e+03 -3.23059905e+03 3.29237082e-10
 -2.72483607e+03 -3.98786800e+03 -3.48772963e+03 -3.39093791e+03
 -2.16371492e+03 -1.64521400e+03 -6.96119570e+02 -1.02350858e+03
 -2.73538678e+02 -3.50329927e+03 -9.36155914e+02 1.87282882e+02
 3.21383449e+02 -1.99899510e+03 -9.72803154e+02 -8.19781102e+02
 -7.49423634e-10 5.89554629e+02 -3.24370948e+03 -1.10929919e+03
 -2.15366884e+02
                 9.72617050e+01 -1.24322448e+03 -9.65972082e+03
 -1.08984822e+04 -1.05788393e+04 -1.18093123e+04 -9.08037847e+03
 -4.41656453e+03 5.61981388e+03 7.80571692e+03 6.92330409e+03
 -1.79391100e+03 -1.52837459e-09 -7.63639974e+03 -3.74613207e+03
 -2.66239910e+03 -5.25487633e+03 -5.66331032e+03 -2.34515357e+03
 -3.20881020e+03 -3.84748368e+03 -5.39207732e+03 -2.54882668e+03
 -5.36876918e+03 -2.18861445e+03 -1.77123462e+04 -1.57492574e+04
 -1.87165226e+04 -1.40786664e+04 -1.44430878e+04 4.69055864e-10
 -1.42069626e+04 -1.85044657e+04 -1.46322479e+04 -1.08615203e+04
 -1.51889079e+04 -1.56209964e+04 -1.23557763e+04 -1.42267862e+04
 -1.23749457e+04 -8.20364221e-10 -1.36697054e-09 -1.80671048e+04
 -1.74424691e+04 -1.91456875e+04 -1.72969657e+04 -1.92334812e+04
 -2.83890813e+04 -1.65182732e+04 -1.90617839e+04 -1.86088455e+04
 -1.69993612e+04 -1.79981202e+04 -1.51780806e+04 -1.50203418e+04
 -1.19135692e+04 -1.37402866e+04 -1.35996658e+04 -1.97564832e+04
 -1.95290640e+04 -1.73213477e+03 -1.20782794e+03 -2.20250857e+03
 -1.47386125e+03 2.03488349e+04 0.00000000e+00 -5.71433833e+03
 -2.69459650e+03 -1.02142105e+04 2.12168539e+03 -2.84346726e+03
 2.77294682e+03 -6.79229506e+03 -1.31774704e+04 -1.70530257e-13
 2.13645926e+03 -2.84346726e+03 2.12654196e+03 -5.77284403e+03
 4.63287726e+03 6.43751612e+03 -8.91630903e+03 1.49167956e+03
 1.27849341e+03]
```

Intercept : -45068.74680415792