Visualizing regressions

INTRODUCTION TO DATA VISUALIZATION IN PYTHON

Bryan Van de VenCore Developer of Bokeh

Seaborn

seaborn 0.10.1 Gallery Tutorial API Site → Page → Search

seaborn: statistical data visualization

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative

Contents

Features

http://seaborn.pydata.org/

Recap: pandas DataFrames

- Labelled tabular data structure
- Labels on rows: index
- Labels on columns: columns
- Columns are pandas Series

Tips DataFrame

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.5	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
•••	•••	•••	•••	•••	•••	•••	•••

Linear regression plots

• 95% confidence interval highlighted

Using Implot()

Factors

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.5	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
•••	•••	•••	•••	•••	•••	•••	•••

Grouping factors (same plot)

Using hue

Grouping factors (subplots)

Using col

Residual plots

Using residplot()

- Similar arguments as Implot() but more flexible
- x , y can be arrays or strings
- data is DataFrame (optional)
- Optional arguments (e.g., color) as in matplotlib

Let's practice!

INTRODUCTION TO DATA VISUALIZATION IN PYTHON

Visualizing univariate distributions

INTRODUCTION TO DATA VISUALIZATION IN PYTHON

Bryan Van de VenCore Developer of Bokeh

Visualizing data

- Univariate → "one variable"
- Visualization techniques for sampled univariate data
 - Strip plots
 - Swarm plots
 - Violin plots

Strip plot

Using stripplot()

```
sns.stripplot(y='tip', data=tips)
plt.ylabel('tip ($)')
plt.show()
```


Grouping with stripplot()

Spreading out strip plots

Swarm plot

Using swarmplot()

More grouping

More grouping with swarmplot()

Changing orientation

Changing orientation

Violin plot

Using violinplot()

```
plt.subplot(1,2,1)
sns.boxplot(x='day',
            y='tip', data=tips)
plt.ylabel('tip ($)')
plt.subplot(1,2,2)
sns.violinplot(x='day',
               y='tip', data=tips)
plt.ylabel('tip ($)')
plt.tight_layout()
plt.show()
```


Combining plots

Combining plots

```
sns.violinplot(x='day',
               y='tip', data=tips,
               inner=None,
               color='lightgray')
sns.stripplot(x='day',
              y='tip', data=tips,
              size=4,
              jitter=True)
plt.ylabel('tip ($)')
plt.show()
```


Let's practice!

INTRODUCTION TO DATA VISUALIZATION IN PYTHON

Visualizing multivariate distributions

INTRODUCTION TO DATA VISUALIZATION IN PYTHON

Bryan Van de VenCore Developer of Bokeh

Visualizing data

- Bivariate → "two variables"
- Multivariate → "multiple variables"
- Visualizing relationships in multivariate data
 - Joint plots
 - Pair plots
 - Heat maps

Joint plot

Using jointplot()

Joint plot using KDE

Using kde=True

Pair plot

Using pairplot()

```
sns.pairplot(tips)
plt.show()
```


Using pairplot() with hue

Covariance heat map of tips data

Using heatmap()

```
print(covariance)
```

```
total_bill tip size
total_bill 1.0000000 0.675734 0.598315
tip 0.675734 1.000000 0.489299
size 0.598315 0.489299 1.000000
```

```
sns.heatmap(covariance)
plt.title('Covariance plot')
plt.show()
```


Let's practice!

INTRODUCTION TO DATA VISUALIZATION IN PYTHON

