MATH/MTHE 477/877 - Winter 2022

Homework 4

due Monday, March 28

1. (Linear prediction) Let Y, X_1, X_2, \ldots, X_m be random variables with finite second moments and and let $\hat{Y} = \sum_{i=1}^m a_i X_i$ be an *optimal* linear predictor for Y minimizing the mean square prediction error $E[(Y - \hat{Y})^2]$. Prove that

$$E[(Y - \hat{Y})^2] = E(Y^2) - E(\hat{Y}^2).$$

2. (Linear Prediction) Suppose X and Y are jointly distributed random variables with finite mean and variance. We want to estimate the value of Y by an affine function of X as $\hat{Y} = aX + b$ so that the mean squared error

$$E[(Y - \hat{Y})^2] = E[(Y - (aX + b))^2]$$

is minimized over all choices of $a, b \in \mathbb{R}$.

(a) Use the orthogonality principle to show that the optimal choice for a and b is

$$a = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}, \qquad b = E(Y) - aE(X).$$

(Hint: $\hat{Y} = aX + b$ is a linear predictor of Y from the random variables X and $X_0 = 1$ (constant 1 random variable) with prediction coefficients a and b.)

(b) Show also that this optimal \hat{Y} can be expressed as

$$\hat{Y} = m_Y + \frac{\rho \sigma_Y}{\sigma_X} (X - m_X)$$

where $m_X = E(X)$, $m_Y = E(Y)$, $\sigma_X = \sqrt{\operatorname{Var}(X)}$, $\sigma_Y = \sqrt{\operatorname{Var}(Y)}$, and $\rho = \rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X\sigma_Y}$ is the correlation of X and Y.

(c) Show that the resulting minimum mean squared error is

$$E[(Y - (aX + b))^2] = \sigma_Y^2 (1 - \rho^2).$$

3. (Predictive quantization) A discrete-time wide sense stationary process $\{X_n\}$ has zero mean and autocorrelation values $r_0 = 4$, $r_1 = 2$, $r_2 = 1$, and $r_k = 0$ if $k \ge 3$.

Two DPCM coders are designed for the input process $\{X_n\}$. In both coders, the predictor is designed to be optimal for $\{X_n\}$. Coder 1 uses a first-order predictor and a 64 level quantizer, Coder 2 uses a second-order predictor and a 256 level quantizer.

- (a) Use the orthogonality principle to determine the predictor coefficients for both DPCM coders.
- (b) In both coders, the quantizer design assumes approximately zero mean and uniform distribution for the prediction error over the interval [-B, B] where B is a sufficiently large number so that the overload distortion is negligible. What is approximately the SNR improvement achieved by switching from Coder 1 to Coder 2?

- 4. (Transform coder with uniform quantization and entropy coding) Let $X = (X_1, \ldots, X_k)^t$ be a zero-mean random vector and A a $k \times k$ orthogonal matrix. Consider the transform coder in which the the ith component of $(Y_1, \ldots, Y_k)^t = Y = AX$ is uniformly quantized with an infinite-level uniform quantizer Q_{Δ_i} having step size $\Delta_i > 0$. Since Q_{Δ_i} has infinitely many levels, in general its output cannot be losslessly encoded using finite binary strings of equal length. Suppose instead that we encode $\hat{Y}_i = Q_{\Delta_i}(Y_i)$ using an optimal variable-length binary lossless code. Then the rate of the quantizer r_i (in bits) is defined to be the expected code length of this binary code. At the decoder, the components $\hat{Y}_i = Q_{\Delta_i}(Y_i)$, $i = 1, \ldots, k$ are reconstructed and the system's output is $\hat{X} = A^{-1}\hat{Y}$.
 - (a) Assume the *i*th transform coefficient Y_i has pdf f_i . We make the following approximations:
 - (i) The MSE distortion of Q_{Δ_i} is given by

$$D_i = E[(Y_i - Q_{\Delta_i}(Y_i))^2] = \frac{\Delta_i^2}{12}.$$

(ii) The average code length r_i is equal to its theoretical lower bound, the entropy of $Q_{\Delta_i}(Y_i)$:

$$r_i = H(Q_{\Delta_i}(Y_i)).$$

(iii) The entropy $H(Q_{\Delta_i}(Y_i))$ can be calculated as

$$H(Q_{\Delta_i}(Y_i)) = h(Y_i) - \log \Delta_i$$

where $h(Y_i) = -\int f_i(x) \log f_i(x) dx$ is the differential entropy of Y_i , which is assumed to be finite.

(*Note*: We know from the lossless source coding theorem that (ii) is accurate within 1 bit. It can be shown that with some regularity assumption on f_i , the approximations (i) and (iii) become accurate as $\Delta_i \to 0$, i.e., for small distortions/large rates.)

Given an overall bit quota R>0, apply one of the techniques we used in class to prove the optimal bit allocation formula to find $\Delta_1,\Delta_2,\ldots,\Delta_k$ which minimize the overall distortion $\sum_{i=1}^k D_i$ subject to the rate constraint $\sum_{i=1}^k r_i \leq R$. Also, express the resulting minimum distortion as a function of R and the $h(Y_i)$'s and interpret the result.

- (b) Assume each Y_i is a zero-mean Gaussian random variable with positive variance σ_i^2 . Calculate $h(Y_i)$ and use the result to calculate the minimum overall distortion $\sum_{i=1}^k D_i$ in part (a).
- (c) Assume $\boldsymbol{X}=(X_1,\dots,X_k)^t$ is a zero-mean Gaussian random vector and suppose the uniform quantizers are chosen to minimize $\sum_{i=1}^k E[(Y_i-Q_{\Delta_i}(Y_i))^2]$ for a given bit quota R as in part (a). Combine your answer to (b) with the proof of optimality of the K-L transform (learned in class) to show that under the assumptions we have made the K-L transform is the optimal transform for this system in the sense of minimizing the total end-to-end distortion $E[\|\boldsymbol{X}-\hat{\boldsymbol{X}}\|^2]$. Justify each step of your proof. (Hint: Write out the distortion $E[\|\boldsymbol{X}-\hat{\boldsymbol{X}}\|^2] = D_{\boldsymbol{A}}$ of the system for an arbitrary orthogonal \boldsymbol{A} and show that $D_{\boldsymbol{A}} \geq D_{\boldsymbol{T}}$, where \boldsymbol{T} is the K-L transform matrix for \boldsymbol{X} .)