1		١
1	- •	1

	1 second	1 minute	1 hour	1 day	1 month
2log ₂ n	2 ^{500,000}	2 ^{3.0E7}	2 ^{3.6E10}	2 ^{8.64E10}	2 ^{5.92E12}
2n+1000	499500	29999500	1799999500	4.31999995E10	1.296E12
n ⁴ +n	100	391	1533	4421	13737
n ⁴	32	88	245	562	1269

2.) $2n^2+7n$ f(n)€ $\Theta(n^2)$

f(n)=
$$2n^2+7n$$

g(n)= n^2
 $2n^2+7n \le c1*n^2$ for all $n \ge k$ and $2n^2+7n \ge c2*n^2$ for all $n \ge k$
let k=1
 $2n^2/n^2+7n/n^2 \le c1$ for all $n \ge 1$ and $2n^2/n^2+7n/n^2 \ge c2$ for all $n \ge 1$
simplify
 $2+7/n \le c1$ for all $n \ge 1$ and $2+7/n \ge c2$ for all $n \ge 1$

As n approaches infinity, 7/n approaches 0. Therefore, the max value of 7/n would be as n>=1 is 7.

9≤c1 for all n≥ 1 and 9≥c2 for all n≥1 Therefore $2n^2+7n$ is $\Theta(n^2)$

3.) $\Theta(n)$ means $f_1(n)$ can be represented as the polynomial $C_1n + C_2$

 $O(n^3)$ means $f_2(n)$ can be represented as the polynomial $C_3n^3+C_4n^2+C_5n+C_6$ Therefore, $\Theta(n)+O(n^3)$ can represent

$$f(n)=f_1(n)+f_2(n)$$

$$f(n)=(c_1n+c_2)+(c_3n^3+c_4n^2+c_5n+c_6)$$

can be rewritten as

$$f(n)=c_3n^3+c_4n^2+(c_5+c_1)n+(c_2+c_6)$$

f(n) represents a polynomial equation equivalent to $O(n^3).$ Therefore $\Theta(n) + O(n^3)$ is in $O(n^2)$

4.) let f(n)=1

 $f(n)=O(n^3)$ (RHS) however, f(n) is not in $\Theta(n)+O(n^3)$ (LHS). There is no integer k such that for all n>=k or constant c that is positive so,

f(n) is not in $\Theta(n)+O(n^3)$ (LHS). Therefore, $\Theta(n)+O(n^3)\neq O(n^3)$

5.)
$$\lim_{n\to \inf} \frac{n^{n+1}}{(n+1)^n} = \infty$$

for any C>0, k>0 such that $\frac{n^{n+1}}{(n+1)^n}$ >C for all n>k is true which proves n^{n+1} is not in $\Theta((n+1)^n)$. This also proves that n^{n+1} is not in $\Theta((n+1)^n)$.