Traitement des Images Numériques

Contours - Morphologie 2019-2020

Extraction de contour

Originale

Débruitée avec filtre médian

Comparaisons

Filtre de Roberts Morpho gradient filter

Filtre de Prewitt Filtre de Sobel

Contours

Filtre de Sobel

Filtre laplacien

MORPHOLOGIE MATHÉMATIQUE

Les caractéristiques de base

- Théorie développée dans les laboratoires de l'Ecole des Mines de Paris
- Une approche ensembliste non linéaire
- Etude de l'action d'un élément connu sur une image ou une forme

$$X \to \Psi_B(X)$$

Application à l'étude des roches

Les contraintes

- Invariance des résultats
 - Par translation : $\Psi_B[T_h(X)] = T_h[\Psi_B(X)]$
 - Par changement d'échelle
 - de l'image : $\Psi_B(\lambda X) = \lambda \Psi_B(X)$
 - de l'élément de référence : $\Psi_{\lambda B}(X) = \lambda \Psi_{B}(\frac{1}{\lambda}X)$
- Utilisation d'un masque d'observation

$$[\Psi_{B}(X \cap Z)] \cap Z' = \Psi(X) \cap Z'$$

 Semi-continuité des résultats pour de faibles modifications

Les opérations ensemblistes

- Addition de Minkowski
 la translation d'un vecteur h
 X⊂P et h ∈P X ⊕h=X_h={x+h , x ∈X}
 X⊕Y={z∈P / ∃x∈X et ∃y∈Y et z=x+y}
- Soustraction de Minkowski

$$X-Y = \bigcap_{y \in Y} X_y$$

• symétrique $\widetilde{X} = \{z \in P \mid \exists x \in X : z = -x\}$

Elément structurant

- C'est un ensemble de référence, un masque
 - de forme connue
 - de position connue
- Exemples

La dilatation binaire

• D'une forme X par un élément structurant B

$$D_{B}(X) = \left\{ z \in P \mid \exists x \in X \text{ et } \exists b \in B \text{ et } z = x + b \right\}$$
$$D_{B}(X) = \left\{ z \in P \mid B_{Z} \cap X \neq \emptyset \right\}$$

- Exemples
- La dilatation n'augmente pas toujours la surface de la forme X

dilatation

• Élément structurant

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1		1	1	0	1	0
0	0	0	0	0	0	0	0	0	0

dilatation

Élément structurant

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1		1	1	0	1	0
0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	0	1	1	1	1	1	0
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	0	1	1	0	0	1	1	0	0
0	1	0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0	0	0
0	1	1	1		1	1	0	1	0
0	0	0	0	0	0	0	0	0	0

Propriétés de la dilatation

- X⊂Y alors D_B(X)⊂D_B(Y)
- B \subset B' alors $D_B(X)\subset D_{B'}(X)$
- $\bullet \ \mathsf{D}_{\mathsf{B}\oplus\mathsf{B}'}(\mathsf{X}) = \mathsf{D}_\mathsf{B}[\mathsf{D}_\mathsf{B'}(\mathsf{X})]$
- $D_B(X) = X \oplus \overline{B}$

 Dilatation par B s' obtient par un décalage de X et une réunion

Effet d'une dilatation

- Augmente la taille des formes
- Remplit les trous
- Rejoint des formes proches
- Les petits détails sur les frontières des formes sont accrus