```
In []: import pandas as pd
   import numpy as np
   from sklearn.tree import DecisionTreeClassifier
   from sklearn import tree
   import matplotlib.pyplot as plt
   import dtreeviz
   from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, accuracy_scor
```

Data Preparation

Note: Python's sklearn decision trees functionality can only work with numeric data.

Looking at our columns above, the only non-numeric columns that *could* contribute to our decision trees are:

- genres
- spoken_languages
- release date

It's not a huge deal if we disregard genres and spoken_languages, since we already have num_genres and num_languages respectively.

However, the release_date could prove very useful in our supervised learning. Let's convert this column to its unix timestamp equivalent:

[]:		runtime	vote_count	log_popularity	title_length	num_languages	num_genres	İı
	count	13894.000000	13894.000000	13894.000000	13894.000000	13894.000000	13894.000000	13
	mean	79.427235	411.985605	1.287343	16.518497	1.194185	1.886066	
	std	39.160793	1570.239035	0.958684	9.578765	0.589630	1.022621	
	min	0.000000	0.000000	0.470004	1.000000	1.000000	1.000000	
	25%	70.000000	1.000000	0.470004	10.000000	1.000000	1.000000	
	50%	90.000000	6.000000	0.875469	14.000000	1.000000	2.000000	
	75 %	101.000000	79.000000	1.963013	20.000000	1.000000	3.000000	
	max	540.000000	27894.000000	8.270913	112.000000	8.000000	8.000000	

Now we have our numeric data.

Out

For most machine learning techniques (including this one), we need to separate our data into a training and testing set.

```
In [ ]: # Separate into train and test
    train = df.sample(frac=0.8,random_state=1612)
    test = df.drop(train.index)
```

Additionally, we need to assign labels to our data.

For this, we can use the IMDB ratings, putting them into bins.

Let's do 1-5.99 and 6-10 as bad(0) and good(1) respectively:

```
In []: def num_ranking(entry):
    if entry['imdb_rating'] >= 6:
        return 1
    else:
        return 0

    class_names = ['bad', 'good']

# Apply to train and test separately
    train_labels = train.apply(num_ranking, axis=1)
    test_labels = test.apply(num_ranking, axis=1)

# Now, drop the imdb_rating column from each
    train = train.drop('imdb_rating', axis=1)

test = test.drop('imdb_rating', axis=1)

display(train_labels.value_counts())

test_labels.value_counts()
```

```
1 6502
0 4613
dtype: int64
```

```
Out[]: 1 1651
0 1128
dtype: int64
```

Perfect! Now we can apply a decision tree to this data.

Decision Tree

```
In [ ]: # Prepare the decision tree
        film_DT = DecisionTreeClassifier(criterion='gini',
                                     splitter='best',
                                     max depth=4,
                                     min samples split=2,
                                     random_state=None,
                                     max_leaf_nodes=None,
                                     min_impurity_decrease=0.0)
        # Fit to our training data
        film_DT.fit(train, train_labels)
        # Plot our tree
        fig = plt.figure(figsize=(15, 6))
        tree.plot_tree(film_DT,
                        max_depth=None,
                        feature names=train.columns,
                        class_names=class_names,
                        fontsize=5)
        fig.tight_layout()
        plt.savefig('./imgs/dt_ims/tree_plot.png')
```


We can also visualize this tree based on distributions of values within each node:

C:\Users\Peter\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2k fra8p0\LocalCache\local-packages\Python310\site-packages\sklearn\base.py:450: User Warning: X does not have valid feature names, but DecisionTreeClassifier was fitte d with feature names

And we can calculate metrics for our Decision Tree performance on the test set

```
In [ ]: feature names = train.columns
        # Show the predictions from the DT on the test set
        DT pred = film DT.predict(test)
        # Show the confusion matrix
        bn matrix = confusion matrix(test labels, DT pred)
        print("\nThe confusion matrix is:")
        disp = ConfusionMatrixDisplay(bn matrix, display labels=class names)
        disp.plot()
        plt.savefig('./imgs/dt ims/confusion matrix.png')
        plt.show()
        # Print out metrics
        print("Metrics for Test Data")
        print("----")
        print(f"Accuracy: {accuracy_score(test_labels, DT_pred)}")
        test_prec, test_recall, test_f1, test_support = precision_recall_fscore_support(tes
        print("Precision:")
        for idx, i in enumerate(class names):
            print(f" ->{i}: {test_prec[idx]}")
        print("Recall:")
        for idx, i in enumerate(class names):
            print(f" ->{i}: {test_recall[idx]}")
        print("F1 Score:")
        for idx, i in enumerate(class_names):
            print(f" ->{i}: {test_f1[idx]}")
        print("Support:")
        for idx, i in enumerate(class_names):
            print(f" ->{i}: {test_support[idx]}")
        FeatureImp = film_DT.feature_importances_
        indices = np.argsort(FeatureImp)[::-1]
        # Print out the important features:
        print("\nImportant Features:")
        for f in range(train.shape[1]):
            if FeatureImp[indices[f]] > 0:
                print(f"{f+1}. Feature {feature names[indices[f]]} ({FeatureImp[indices[f]]}
```

The confusion matrix is:

Metrics for Test Data

Accuracy: 0.6707448722562073

Precision:

->bad: 0.5840568271507498 ->good: 0.7433862433862434

Recall:

->bad: 0.6560283687943262 ->good: 0.6807995154451847

F1 Score:

->bad: 0.6179540709812109 ->good: 0.7107176730951629

Support:

->bad: 1128 ->good: 1651

Important Features:

- 1. Feature runtime (0.6160903553221975)
- 2. Feature release_unix (0.1928014704755356)
- 3. Feature vote_count (0.171723134749567)
- 4. Feature combined budget (0.011483644968251055)
- 5. Feature title_length (0.007901394484448878)

We also want to show what happens when we don't limit the depth of our tree:


```
In [ ]: print(f'The large, un-restricted decision tree has depth {film_DT_large.get_depth()
```

The large, un-restricted decision tree has depth 31

And show the metrics:

```
In [ ]: feature_names = train.columns
        # Show the predictions from the DT on the test set
        DT pred = film DT large.predict(test)
        # Show the confusion matrix
        bn_matrix = confusion_matrix(test_labels, DT_pred)
        print("\nThe confusion matrix is:")
        disp = ConfusionMatrixDisplay(bn_matrix, display_labels=class_names)
        disp.plot()
        plt.savefig('./imgs/dt_ims/confusion_matrix_large.png')
        plt.show()
        # Print out metrics
        print("Metrics for Test Data (Large model)")
        print("----")
        print(f"Accuracy: {accuracy_score(test_labels, DT_pred)}")
        test prec, test recall, test f1, test support = precision recall fscore support(tes
        print("Precision:")
        for idx, i in enumerate(class_names):
```

```
print(f" ->{i}: {test_prec[idx]}")
print("Recall:")
for idx, i in enumerate(class_names):
   print(f" ->{i}: {test recall[idx]}")
print("F1 Score:")
for idx, i in enumerate(class_names):
   print(f"
              ->{i}: {test f1[idx]}")
print("Support:")
for idx, i in enumerate(class_names):
   print(f"
              ->{i}: {test_support[idx]}")
FeatureImp = film_DT.feature_importances_
indices = np.argsort(FeatureImp)[::-1]
# Print out the important features:
print("\nImportant Features:")
for f in range(train.shape[1]):
   if FeatureImp[indices[f]] > 0:
        print(f"{f+1}. Feature {feature_names[indices[f]]} ({FeatureImp[indices[f]]}
```

The confusion matrix is:


```
Metrics for Test Data (Large model)
-----
Accuracy: 0.6513134220942786
Precision:
    ->bad: 0.5695538057742782
    ->good: 0.7084352078239609
Recall:
    ->bad: 0.5771276595744681
    ->good: 0.7019987886129618
F1 Score:
    ->bad: 0.5733157199471598
    ->good: 0.7052023121387284
Support:
    ->bad: 1128
    ->good: 1651
Important Features:
1. Feature runtime (0.6160903553221975)
2. Feature release_unix (0.1928014704755356)
3. Feature vote_count (0.171723134749567)
4. Feature combined budget (0.011483644968251055)
5. Feature title_length (0.007901394484448878)
```

Interestingly, this shows that making our tree better doesn't necessarily help our performance.

Next, let's construct a decision tree on our data, splitting the data into 3 categories instead of 2.

Let's do 1-3.99, 4-6.99, 7-10, as bad(0), average(1), good(2):

```
In [ ]: # We need to re-separate into train and test
        train = df.sample(frac=0.8, random_state=1612)
        test = df.drop(train.index)
        def num_ranking(entry):
            if entry['imdb_rating'] >= 7:
                return 2
            elif entry['imdb_rating'] >= 4:
                return 1
            else:
                return 0
        class_names = ['bad', 'average', 'good']
        # Apply to train and test separately
        train_labels = train.apply(num_ranking, axis=1)
        test_labels = test.apply(num_ranking, axis=1)
        # Now, drop the imdb rating column from each
        train = train.drop('imdb_rating', axis=1)
        test = test.drop('imdb_rating', axis=1)
```

Now, construct the tree for this 3-class data:

```
In [ ]: #Prepare the decision tree
        film DT three = DecisionTreeClassifier(criterion='gini',
                                     splitter='best',
                                     min samples split=2,
                                     max_depth=4,
                                     random state=None,
                                     max leaf nodes=None,
                                     min impurity decrease=0.0)
        # Fit to our training data
        film DT three.fit(train, train labels)
        # Plot our tree
        fig = plt.figure(figsize=(15, 6))
        tree.plot_tree(film_DT_three,
                       max depth=None,
                        feature_names=train.columns,
                       class names=class names,
                       fontsize=5)
        fig.tight_layout()
        plt.savefig('./imgs/dt_ims/tree_plot_three.png')
```



```
In [ ]: feature_names = train.columns
        # Show the predictions from the DT on the test set
        DT_pred = film_DT_three.predict(test)
        # Show the confusion matrix
        bn_matrix = confusion_matrix(test_labels, DT_pred)
        print("\nThe confusion matrix is:")
        disp = ConfusionMatrixDisplay(bn_matrix, display_labels=class_names)
        disp.plot()
        plt.savefig('./imgs/dt_ims/confusion_matrix_three.png')
        plt.show()
        # Print out metrics
        print("Metrics for Test Data (Three class)")
        print("----")
        print(f"Accuracy: {accuracy_score(test_labels, DT_pred)}")
        test_prec, test_recall, test_f1, test_support = precision_recall_fscore_support(tes
        print("Precision:")
        for idx, i in enumerate(class names):
```

```
print(f" ->{i}: {test_prec[idx]}")
print("Recall:")
for idx, i in enumerate(class_names):
   print(f" ->{i}: {test_recall[idx]}")
print("F1 Score:")
for idx, i in enumerate(class_names):
   print(f"
              ->{i}: {test f1[idx]}")
print("Support:")
for idx, i in enumerate(class_names):
   print(f"
               ->{i}: {test_support[idx]}")
FeatureImp = film_DT.feature_importances_
indices = np.argsort(FeatureImp)[::-1]
# Print out the important features:
print("\nImportant Features:")
for f in range(train.shape[1]):
   if FeatureImp[indices[f]] > 0:
        print(f"{f+1}. Feature {feature_names[indices[f]]} ({FeatureImp[indices[f]]}
```

The confusion matrix is:


```
Metrics for Test Data (Three class)
```

Accuracy: 0.6210867218423893

Precision:

->bad: 0.0

->average: 0.6451327433628319 ->good: 0.5163776493256262

Recall:

->bad: 0.0

->average: 0.8606847697756789 ->good: 0.33004926108374383

F1 Score:

->bad: 0.0

->average: 0.7374810318664644 ->good: 0.4027047332832457

Support:

->bad: 273 ->average: 1694 ->good: 812

Important Features:

- 1. Feature runtime (0.6160903553221975)
- 2. Feature release_unix (0.1928014704755356)
- 3. Feature vote_count (0.171723134749567)
- 4. Feature combined_budget (0.011483644968251055)
- 5. Feature title_length (0.007901394484448878)

C:\Users\Peter\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.10_qbz5n2k fra8p0\LocalCache\local-packages\Python310\site-packages\sklearn\metrics_classifi cation.py:1334: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` paramete r to control this behavior.

As we can see, we do a poor job predicting on the "bad" category when we extend this to 3 classes.