Discrete Distributions

X	1	3	5	7
$F(X \leq x)$.5	.75	.9	1

- a) What is $P(X \le 3)$?
- b) What is P(X = 3)?

Answers

- a) 0.75
- b) 0.75-0.5 = 0.25

Expectation

- a) Would you accept a gamble that offers a 10% chance to win \$95 and a 90% chance of losing \$5?
- b) Would you pay \$5 to participate in a lottery that offers a 10% chance to win \$100 and a %90 percent chance to win nothing?

Partial Answers

This is the same calculation twice:

$$0.1 \times 95 - 0.9 \times 5 = 9.5 - 4.5 = 5$$

Memorylessness

Assume that $X \sim Geometric(p)$. Show that the geometric distribution is memoryless (or stationary), i.e. show that

$$P(X = n + k | X \ge n) = P(X = k)$$

where n, k > 0.

Answer

- ▶ By definition : $P(X = n + k | X \ge n) = \frac{P(X = n + k, X \ge n)}{P(X \ge n)}$
- We calculate $P(X \ge n)$ as $(1-p)^n$

$$\frac{P(X = n + k, X \ge n)}{P(X \ge n)} = \frac{P(X = n + k)}{P(X \ge n)}$$
$$= \frac{p(1 - p)^{n+k}}{(1 - p)^n} = p(1 - p)^k$$

Variance

X	1	2	3	4	5
P(X = x)	.1	.2	.4	.2	.1

- a) Compute the variance and standard deviation $\sigma(X)$ of X.
- b) What are the variance and standard deviation of $\frac{X}{\sigma(X)}$?

Answers

- a) $\mathbb{E}(X)=3$ and thus $var(X)=.1\times 4+.2\times 2+.1\times 4=1.2$. It follows that $\sigma(X)=\sqrt{var(X)}=\sqrt{1.2}$.
- b) For any real RV Y we have $var\left(\frac{Y}{\sigma(Y)}\right) = \sigma(Y)^{-2}\sigma(Y)^2 = 1$. This is called normalisation.