Trygonometria

Określenie sinusa, cosinusa, tangensa i cotangensa w trójkącie prostokątnym Definicja 1.

Niech w trójkącie prostokątnym dany będzie kąt ostry α .

rzeciwprostokątną

- $tg\alpha = \frac{y}{x}$ b) Cotangensem kąta ostrego α w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej przyległej do kąta a do przyprostokątnej przeciwległej kątowi α : $ctg\alpha = \frac{x}{y}$
- c) Sinusem kąta ostrego α w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej przeciwległej do kąta α do przeciwprostokątnej: $sin\alpha = \frac{y}{r}$ d) Cosinusem kąta ostrego α w trójkącie prostokątnym
- Wartości sinusa, cosinusa, tangensa i cotangensa dla kątów 30°, 45° i 60°

45°

1

60°

nazywamy stosunek długości przyprostokątnej

przyległej do kąta α do przeciwprostokątnej:

 $cos\alpha = \frac{x}{-}$

 α

 $sin \alpha$

 $cos\alpha$

 $tg\alpha$

 $ctg\alpha$

Definicja 1.

Kat skierowany

 $\sqrt{3}$

Tabela wartości funkcji trygonometrycznych:

30°

półprosta OB^{\rightarrow} - ramieniem końcowym. Kąt skierowany | *⊲BOA* | nazywamy kątem przeciwnym do $| \triangleleft AOB |$.

czyli 405°.

 $45^{\circ} + 4 \cdot 360^{\circ}$.

Zapisujemy je w postaci:

dowolnego kąta

pierwszą z półprostych nazywamy ramieniem początkowym kąta, drugą - ramieniem końcowym. \boldsymbol{B} ramie końcowe O ramię początkowe A Kąt skierowany oznaczamy $| \triangleleft AOB |$. Wtedy punkt O jest

wierzchołkiem kąta, półprosta OA^{\rightarrow} ramieniem początkowym,

O kątach skierowanych możemy myśleć w następujący sposób:

dane są dwie półproste o wspólnym początku w punkcie O. Jedna

z nich (początkowe ramię kąta) jest nieruchoma, a druga (końcowe

Kątem skierowanym nazywamy uporządkowaną parę

półprostych o wspólnym początku. W kącie skierowanym

ramię kąta) obraca się wokół punktu O. Po zatrzymaniu się drugiego ramienia kąta mamy wyznaczony pewien kąt skierowany. Jak łatwo zauważyć druga półprosta może wykonywać dwa rodzaje obrotów: zgodnie z ruchem wskazówek zegara i przeciwnie do ruchu wskazówek zegara. W pierwszym przypadku mówimy o kącie skierowanym ujemnie miarę takiego kąta wyrażamy ujemną liczbą (stopni). W drugim przypadku mówimy o kącie skierowanym dodatnio - miarę takiego kąta wyrażamy dodatnią liczbą (stopni). O dwóch kątach skierowanych, z których jeden ma miarę dodatnią,

a drugi - miarę ujemną, powiemy, że są przeciwnie skierowane, w

Rozpatrzmy kąt skierowany z "ruchomym" ramieniem końcowym.

Załóżmy, że końcowe ramię kąta "obróciło się" o 45°, a następnie

jeszcze o 360°. Możemy temu kątowi przypisać miarę 45°+ 360°,

Zauważ, że otrzymalibyśmy taki sam kąt (czyli kąt przystający),

Tak więc przyjmujemy, że każdy kąt skierowany ma nieskończenie

wiele miar. Wszystkie te miary różnią się o wielokrotność 360°.

 $\alpha + k \cdot 360^{\circ}$, gdzie $\alpha \in (0,360^{\circ})$ i $k \in C$,

gdyby ramię "obróciło się" o $45^{\circ} + 2 \cdot 360^{\circ}$, $45^{\circ} + 3 \cdot 360^{\circ}$ lub

pozostałych przypadkach - że są zgodnie skierowane.

przy czym a nazywamy miarą główną kąta skierowanego. Powiemy, że dwa kąty skierowane są przystające, jeżeli ich miary główne są równe. Sinus, cosinus, tangens i cotangens

umiejscowionym kącie powiemy, że jest w położeniu standardowym. Definicja 1.

standardowym. Na końcowym ramieniu kąta wybieramy

a) Tangensem kąta α nazywamy liczbę będącą ilorazem

b) Cotangensem kąta nazywamy liczbę będącą ilorazem

rzędnej punktu P przez odciętą tego punktu; jeśli odcięta

odciętej punktu P przez rzędną tego punktu; jeśli rzędna

punktu P jest równa zeru, to cotangens kąta a nie istnieje,

odciętej punktu P przez odległość punktu P od początku

Znaki wartości funkcji trygonometrycznych kąta a zależą od tego,

ramię tego kąta. Ponieważ dla dowolnego punktu P(x, y) różnego

od punktu O(0,0) wyrażenie $\sqrt{x^2 + y^2}$ jest liczbą dodatnią, więc

współrzędnych punktu P. Jeśli końcowe ramię kąta a znajduje się

znaki wartości funkcji trygonometrycznych zależą od znaków

a) w pierwszej ćwiartce układu współrzędnych, to

sinus α i cosinus α są liczbami ujemnymi.

trygonometrycznych kąta a są ujemne.

d) w czwartej ćwiartce układu współrzędnych, to

Wtedy cosinus α jest dodatni, a pozostałe wartości funkcji

w której ćwiartce układu współrzędnych znajduje się końcowe

punktu P jest równa zeru, to tangens kąta α nie istnieje,

Niech dany będzie kąt skierowany α w położeniu

punkt P(x, y) różny od punktu O(0,0). Wówczas:.

 $tg\alpha = \frac{y}{x}, \qquad x \neq 0$

 $ctg\alpha = \frac{x}{y}, \qquad y \neq 0$

układu współrzędnych,

 $\cos\alpha = \frac{x}{\sqrt{x^2 + v^2}}$

x > 0 i y > 0.

x > 0 i y < 0.

Ostatecznie mamy:

określone).

Załóżmy, że mamy dany dowolny skierowany kąta. Umieszczamy

początkowe tego kąta pokrywa się z dodatnią półosią OX, a ramię

końcowe tego kąta znajduje się w pierwszej, drugiej, trzeciej albo

kąta w układzie współrzędnych w następujący sposób: ramię

w czwartej ćwiartce układu współrzędnych. O tak

c) Sinusem kata nazywamy liczbę będącą ilorazem rzędnej punktu P przez odległość punktu P od początku układu współrzędnych, $sin\alpha = \frac{y}{\sqrt{x^2 + y^2}}$ d) Cosinusem kąta nazywamy liczbę będącą ilorazem

Wtedy wszystkie funkcje trygonometryczne kąta a są dodatnie. b) w drugiej ćwiartce układu współrzędnych, to x < 0 i y > 0. Wówczas $sin\alpha$ jest liczbą dodatnią, a pozostałe funkcje trygonometryczne kąta α są ujemne. c) w trzeciej ćwiartce układu współrzędnych, to x < 0 i y < 0.

Zatem wartości tangensa α i cotangensa α są dodatnie, natomiast

Twierdzenie 1. 1) $sin^2\alpha + cos^2\alpha = 1$, jeśli α jest dowolnym kątem

Twierdzenie 2. 1) $tg(360^{\circ} - \alpha) = -tg\alpha$, 2) $ctg(360^{\circ} - \alpha) = -ctg\alpha$, 3) $sin(360^{\circ} - \alpha) = -sin\alpha$, 4) $cos(360^{\circ} - \alpha) = cos\alpha$, Twierdzenie 3. 1) $tg(180^{\circ} + \alpha) = tg\alpha$, 2) $ctg(180^{\circ} + \alpha) = ctg\alpha$, 3) $sin(180^{\circ} + \alpha) = -sin\alpha$,

Twierdzenie 4.

Twierdzenie 5.

1) $tg(-\alpha) = -tg\alpha$,

2) $ctg(-\alpha) = -ctg\alpha$,

3) $sin(-\alpha) = -sin\alpha$,

4) $cos(-\alpha) = cos\alpha$,

4) $cos(360^{\circ} + \alpha) = -cos\alpha$, 1) $tg(180^{\circ} - \alpha) = -tg\alpha$, 2) $ctg(180^{\circ} - \alpha) = -ctg\alpha$, 3) $sin(180^{\circ} - \alpha) = sin\alpha$, 4) $cos(360^{\circ} - \alpha) = -cos\alpha$,

jeśli $\alpha \neq 90^{\circ} + k \cdot 180^{\circ}$, $k \in C$ jeśli $\alpha \neq k \cdot 180^{\circ}$ i $k \in C$ jeśli α jest dowolnym kątem jeśli α jest dowolnym kątem. jeśli $\alpha \neq 90^{\circ} + k \cdot 180^{\circ}, k \in C$ jeśli $\alpha \neq k \cdot 180^{\circ}$ i $k \in C$ jeśli α jest dowolnym kątem jeśli α jest dowolnym kątem.

jeśli $\alpha \neq 90^{\circ} + k \cdot 180^{\circ}, k \in C$

jeśli α jest dowolnym kątem

jeśli α jest dowolnym kątem.

jeśli $\alpha \neq k \cdot 180^{\circ}$ i $k \in C$

jeśli $\alpha \neq 90^{\circ} + k \cdot 180^{\circ}, k \in C$

jeśli α jest dowolnym kątem

jeśli α jest dowolnym kątem.

jeśli $\alpha \neq 90^{\circ} + k \cdot 180^{\circ}, k \in C$

jeśli α jest dowolnym kątem

jeśli α jest dowolnym kątem.

jeśli $\alpha \neq k \cdot 180^{\circ}$ i $k \in C$

jeśli $\alpha \neq k \cdot 180^{\circ}$ i $k \in C$

4) $cos(90^{\circ} - \alpha) = sin\alpha$,

jeśli α jest dowolnym kątem. 4) $cos(90^{\circ} + \alpha) = sin\alpha$,

1) $tg(90^{\circ} + \alpha) = -ctg\alpha$,

2) $ctg(90^{\circ} + \alpha) = -tg\alpha$,

3) $sin(90^{\circ} + \alpha) = cos\alpha$,

Twierdzenie 6. 1) $tg(90^{\circ} - \alpha) = ctg\alpha$, jeśli $\alpha \neq 90^{\circ} + k \cdot 180^{\circ}, k \in C$ jeśli $\alpha \neq k \cdot 180^{\circ}$ i $k \in C$ 2) $ctg(90^{\circ} - \alpha) = -tg\alpha$, jeśli α jest dowolnym kątem 3) $sin(90^{\circ} - \alpha) = cos\alpha$,

Twierdzenie 1. (sinusów) W dowolnym trójkącie stosunek długości boku do sinusa

kąta leżącego naprzeciwko tego boku jest stały i równy

równy sumie kwadratów długości dwóch pozostałych

boków i cosinusa kąta zawartego między nimi.

 $a^2 = b^2 + c^2 - 2bc \cdot cos\alpha$

 $b^2 = a^2 + c^2 - 2ac \cdot \cos\beta$

 $c^2 = a^2 + b^2 - 2ab \cdot \cos \gamma$

boków, zmniejszonej o podwojony iloczyn długości tych

Twierdzenie sinusów

długości średnicy okręgu opisanego na tym trójkącie. $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

Twierdzenie cosinusów Twierdzenie 1. (cosinusów) W dowolnym trójkącie kwadrat długości jednego boku jest

 $Y \uparrow$ Nauczenie się znaków wartości $sin\alpha$ $sin\alpha$ funkcji trygonometrycznych w $cos\alpha$ $cos\alpha$ poszczególnych ćwiartkach ułatwi $tg\alpha$ $tg\alpha$ poniższa "rymowanka": $ctg\alpha$ + $ctg\alpha$ W pierwszej ćwiartce same plusy \overline{X} $sin\alpha$ $sin \alpha$ w drugiej - tylko sinus + $cos\alpha$ $cos\alpha$ + tgα tgα w trzeciej - tangens i cotangens $ctg\alpha$ $ctg\alpha$ a w czwartej zaś cosinus.

Podstawowe tożsamości trygonometryczne

Tożsamością trygonometryczną nazywamy równość, w której

dla wszystkich wartości tych zmiennych (dla których funkcje są

zmienne występują wyłącznie w argumentach funkcji

trygonometrycznych i która jest prawdziwa

2) $tg\alpha = \frac{\sin\alpha}{\cos\alpha}$, jeśli $\alpha \neq 90^{\circ} + k \cdot 180^{\circ}$, gdzie $k \in C$ 3) $ctg\alpha = \frac{cos\alpha}{sin\alpha}$, jeśli $\alpha \neq k \cdot 180^{\circ}$, gdzie $k \in C$ 4) $tg\alpha \cdot ctg\alpha = 1$, jeśli $\alpha \neq k \cdot 90^\circ$, gdzie $k \in C$ Wzory redukcyjne $\sin 120^{\circ} = \frac{\sqrt{3}}{2} = \sin 60^{\circ}$ $\cos 120^{\circ} = -\frac{1}{2} = -\cos 60^{\circ}$ $\cot 120^{\circ} = -\frac{\sqrt{3}}{2} = -\cot 60^{\circ}$ $\tan 120^\circ = -\sqrt{3} = -\tan 60^\circ$ Twierdzenie 1.