School of Computing National University of Singapore CS5340: Uncertainty Modeling in AI Semester 1, AY 2020/21

Online Quiz 2 (11 November 2020)

Total duration: 1 hour 15 minutes (Start: 7.30pm, End: 8.45pm)

(1 hour to answer the questions, 15 minutes to take and upload photos/scans of the answers)

Answer ALL questions.

Question 1:

Table 1.1 shows nine observations $\{\mathbf{x}_1, \dots, \mathbf{x}_9\}$ of 2-dimensional features [x,y], where each observation is generated from an image of 1-out-of-3 handwritten alphabets. We further assume the sampling of each image is fully independent, and the observations given the alphabet follow a bivariate Gaussian distribution (see Equation 1). Figure 1.1 shows a plot of the nine 2-dimensional features in Table 1.1. Given a new observation $\mathbf{x}_{\text{Test}} = [14.65, 11.00]$, find the probability distribution of the alphabet on its corresponding image. **Explain and show all your workings clearly.**

\mathbf{x}_n	[x,y]
\mathbf{x}_1	[3.83, 14.48]
\mathbf{x}_2	[0.31, 2.06]
\mathbf{x}_3	[13.62, 8.89]
\mathbf{x}_4	[5.74, 1.35]
X ₅	[4.02, 15.69]
\mathbf{x}_6	[11.82, 9.88]
X ₇	[12.39, 10.8]
X ₈	[1.64, 15.22]
X 9	[1.84, 0.68]

y 8 4 4 4 6 8 10 12 14 16

Table 1.1

Figure 1.1

Useful Equations:

1.
$$p(\mathbf{x}) = (2\pi)^{-1} \det(\Sigma)^{-0.5} \exp\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\},$$

2.
$$\det\begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix} = \sigma_{11}\sigma_{22} - \sigma_{12}\sigma_{21}$$
,

3.
$$\begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}^{-1} = \frac{1}{\sigma_{11}\sigma_{22} - \sigma_{12}\sigma_{21}} \begin{pmatrix} \sigma_{22} & -\sigma_{12} \\ -\sigma_{21} & \sigma_{11} \end{pmatrix}$$
.

(20 marks)

Question 2:

Figure 2.1 shows a three time-step Hidden Markov Model (HMM) with binary-state latent $Z_t \in \{0,1\}$ and observed $X_t \in \{0,1\}$ random variables. The local conditional and prior probabilities of the HMM are shown in Table 2.1. Using variational inference, find the approximate posterior distribution of $p(Z_1,Z_2,Z_3\mid X_1,X_2,X_3)$ using the mean-field approximation, i.e. $q(Z_1,Z_2,Z_3)=\prod_{t=1}^{t=3}q_t(Z_t)$ in one iteration. Assume the initial value of $q_2(Z_2=0)=0.5$, and $X_1=0,X_2=1,X_3=0$. Explain and show all your workings clearly.

Figure 2.1

z_1	$p(z_1)$
0	0.2
1	0.8

z_2	z_3	$p(z_3 \mid z_2)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

z_1	z_2	$p(z_2 \mid z_1)$
0	0	0.3
0	1	0.7
1	0	0.9
1	1	0.1

x_t	z_t	$p(x_t \mid z_t)$
0	0	0.6
0	1	0.7
1	0	0.4
1	1	0.3

Table 2.1