Real Variables

Textbook: Real Analysis, Modern Techniques

FRED YUAN

Fall 2024

Introduction to Measure Theory

Contents

1	8/26/2024			
	1.1	Orderings	4	
	1.2	Cardinality	7	
	1.3	Well Ordered Sets	10	
	1.4	real numbers	11	
	1.5	Metric Spaces	12	
	9/6/2024			
	2.1	σ -algebras	16	

1 8/26/2024

Definition 1.1

Limsup $E_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$ And

 $Liminf E_n = \bigcup_{k=1}^{\infty} \cap_{n=k}^{\infty} E_n$

Proof. For Limsup $E_n = \{x : x \in E_n \text{ For infinitely many } n\}$

It is the intersection of all sets formed from n onward. And it there must be infinitely many n's.

Liminf $E_n = \{x : x \in E_n \text{ For all but finitely many n} \}$

There's a sequecne $E_1, E_2, ... E_n$ where you are not in E_n and then from n onwards you are in.

Definition 1.2

Symmetric difference: $E \triangle F = (E \backslash F) \cup (F \backslash E)$

Equivalence relations: (From Analysis)

~ is an equivalence relation if

- 1. $x \sim x$ for all Ω
- 2. $x \sim y$ if and only if $y \sim x$
- 3. $x \sim y$ and $y \sim z \implies x \sim z$

Definition 1.3

A mapping $f: X \to Y$ is a relation from X to Y with the property that for every $x \in X$ there is a unique $y \in Y$ such that $x \sim y$. In this case, we can write y = f(x)

Example 1.4

If $f: X \to Y$ and $g: Y \to Z$ are mappings, we denote $f \circ g$ their **Composition** $g \circ f: X \to Z$ $g \circ f(x) = g(f(x))$

If $D \subset X$ and $E \subset Y$, we define the image of D and reverse image of E under a mapping $f: X \to Y$ by

$$f(D) = \{f(x) : x \in D\}, f^{-1}(E) = \{x : f(x) \in E\}$$

Here, we define f(D) as the mapping of the image $x \in D$ over f onto f(x) If $A \subset X$, we denote f|A the restriction of f to A:

$$(f|A): A \to Y$$
, $(f|A)(x)$ for $x \in A$

We define a finite sequence to be a map from $\{1, 2, ... n\}$ into X where $n \in \mathbb{N}$.

A subsequence is when g(n) < g(m) whenever n < m, then this is called a subsequence.

Definition 1.5

Cartesian Product: $\prod_{\alpha \subset A} X_{\alpha}$ is the set of maps $f: A \to \bigcup_{\alpha \in A} X_{\alpha}$ such that $f(\alpha) \in X_{\alpha}$ for every $\alpha \in A$

1.1 Orderings

Definition 1.6

A partial ordering on a non-empty set X is a relation R on X with the properties (same as equivalence). However, not every partial ordering needs to be comparable.

Example 1.7

Lets say we have $\{0, 1, 2, 3\}$. We can have $\{0\} \le \{0, 1\}$, but $\{1, 3\}$ and $\{2, 3\}$ can't be compared.

Definition 1.8

Well-Ordering.

This is similar to partial ordering, except every element is comparable. Formally, this is known as **Totality**.

For every $a, b \in S$, either $a \le b$ or $a \ge b$.

Because every set is comparable, we also have the well-foundedness principle where every non-empty subset of S has a least element.

Example 1.9

The set (0,1) is not well ordered because 0 is not in S and from analysis we can show there is no $n = \inf(S) \in S$

Linear (total) orderings have one more requirement: Everything can be compared.

E.g.: Fractions, Modulus, $\{nxn\}$ matrixes that can be row-reduced.

If R also satisfies $x, y \in X$, then either xRy or yRx

Two partially ordered sets X and Y are said to be **Order Isomorphic** if there is a bijection $f: X \to Y$ such that $x_1 \le x_2$ iff $f(x_1) \le f(x_2)$

Fundamental Principle of set theory and some consequences:

Definition 1.10

Hausdorff Maximal Principle

Every partially ordered set has a maximal linearly ordered subset.

Example 1.11

A chain is contained in the maximal chain (because it contains all of the chains)

Zorn's Lemma If X is a partially ordered set and every linearly ordered subset of X has an upper bound, then X has a maximal element

The Well Ordering Principle: Every nonempty set X can be well ordered.

Using Zorn's Lemma, we can say that there is a maximal element in W. And this maximal ordering must exist on the whole set X because otherwise there would be a larger chain.

The Axiom of Choice:

If
$$\{X_{\alpha}\}_{\alpha\in A}$$
 is a nonempty collection of nonempty sets, then $\prod_{\alpha\in A}X_{\alpha}$ is non-empty (1)

Proof. To prove H to Z: We can note that the maximal element in a maximal chain is still the maximal element of its subsets. Therefore, this maximal element is the maximal element we need from Zorn.

To prove Z to H: We need to look at the powerset of X, P(X).

We choose $E \subset P(X)$ Such that $c \in E$ is in Linear Order

With P(X), this contains every linearly ordered subset and has a maximal element. Therefore, we have partially ordered sets that are bounded by the maximal element X from P(X).

1.2 Cardinality

Definition 1.12

Injective (one to one): If different elements in the domain A map to different elements in the codomain B.

If
$$f(a_1) = f(a_2)$$
 then $a_1 = a_2$

Definition 1.13

Surjective (onto): If every element in the codomain B is the image of at least one element of the domain A.

For every $b \in B$, there exists $a \in A$ such that f(a) = b. From this, lets get the simple laws.

 $card(X) \le card(Y)$ iff $card(Y) \ge card(X)$

Definition 1.14

Schroder-Bernstein Theorem: For sets X, Y, either $Card(X) \le Card(Y)$ or $Card(Y) \le Card(X)$. This implies Card(X) = Card(Y)

Proof. Our gameplan is to bounce back and forth between smaller subsets of A and B. Let $f: X \to Y$ and $g: Y \to X$.

$$Let A_0 = A, B_0 = B$$

 $A_1 = g(B_0), B_1 = f(A_0)$

•••

We note that

$$A_0 \supseteq A_1 \supseteq A_2...$$

$$B_0 \supseteq B_1 \supseteq B_2...$$

$$A = A_0 \sim B_1 \sim A_2...$$

$$B = B_0 \sim A_1 \sim B_2...$$

We now need analogues that are pairwise disjoint. Define $A_n^* := A_n - A_{n+1}$

Now we can rewrite

$$A^* = A_0^* \sim B_1^* \dots B^* = B_0^* \sim A_1^* \dots$$
 (2)

Now we get

$$A_0^* \cup A_1^* \sim B_0^* \cup B_1^*$$

Taking the Union over all N gives us

$$\bigcup_{n\geq 0} A_n^* \sim \bigcup_{n\geq 0} B_n^*$$

Rewrite the lefthand side as \tilde{A} and the righthand side as \tilde{B} . Note that $A \neq \tilde{A}$

So finally we let $A = \Box$

Wow! We're finally done with that.

Here's an easier proposition: card(X) < card(P(X)). I think it's trivial.

Definition 1.15

A set X is countable (denumerable) if $card(X) \le card(N)$. In particular, all finite sets are countable, and for these it is convenient to interpret "card(X)" as the number of elements in X.

If X is countable but infintie, card(X) is countably-infinite.

Propositions with countability

- (a) If X and Y are countable, so is X x Y
- (b) If A is countable and X_a is countable for every $a \in A$, then $\bigcup_{a \in A} X_a$ is countable.
- (c) If X is countable infinite, then $card(X) = card(\mathbb{N})$

Z and Q are countable.

Proof. Z is the union of sets $\{-n : n \in \mathbb{N}\} \cup 0$. We can make the surjection $f: Z^2 \to \mathbb{Q}$ by $f(m, n) = \frac{m}{n}$

A set has the **cardinality of the continuum** if card(X) = card(R)

Definition 1.16

 $card(P(\mathbb{N})) = \varsigma$

Proof. If $A \in \mathbb{N}$, define $f(A) \in \mathbb{R}$

If $card(X) > \varsigma$, then X is uncountable.

1.3 Well Ordered Sets

Let X be a well ordered set. This set has an infinum and sup.

If $x \in X$, Define an initial segment to be:

$$I_x = \{ y \in X : y < x \} \tag{3}$$

The elements of I_x are called predecessors of x.

Principle of Transfinite Induction

Let X be well ordered. If A is a subset of X such that $x \in A$ whenever $I_x \subset A$ then A = X

Proof. If
$$X \neq A$$
, let $x = \inf(X \setminus A)$. Then $I_x \subset A$ but $x \notin A$

There are elements in X that are not in A. I_x is the set of all elements X that are strictly less than x. If $I_x \subset A$ then x must be in a. We have a contradiction.

Misconception The interval [0,10] is not a well-ordered set. It is a partially-ordered set. A subset of [0,10] is (0,10] which does not have a least element in the subset.

Definition 1.17

If X is well ordered and $A \subset X$, then $\bigcup_{x \in A} I_x$ is either an initial segment or X itself.

I think this is intuitively easy to understand, and the proof is that let $b = \inf(X \setminus J)$. We note that J = b.

Definition 1.18

Order Isomorphic means that there is a bijecetive mapping between them that preserves their order.

Formally, Let (A, \leq_A) and (B, \leq_B) be two ordered sets.

Every countable subset has an upper bound.

1.4 real numbers

$$\bar{R} = \mathbb{R} \cup \{-\infty, \infty\}$$

Define sup, inf, limsup, liminf to be what you expect:

$$\limsup_{n} := \inf_{k>1} (\sup_{n>k} x_n) \liminf_{n} x_n := \sup(\inf_{n} x_n)$$

A sequence x_n converges if its limsup = liminf + it is finite. (not infinity)

Right-continuous $f(a^+) := \lim_{x \downarrow a} f(x) = f(a)$ Left-continuous $f(a^-) := \lim_{x \uparrow a} f(x) = f(a)$

Open sets: (a, b) Not open set: [a, b]

Every open set in \mathbb{R} is a countable disjoint union of open intervals.

Proof.
$$x \in U$$
, $I_x := \bigcup \{openintervalscontaining x, contained in U\}$

Some notes on the Euclidian norm for n dimensions:

Definition 1.19

For a vector $\mathbf{v}=(v_1,v_2,v_3,...v_n)\in\mathbb{R}^n$ we define the Euclidian norm, $\|\mathbf{v}\|_3=\left(\sum_{i=1}^n|v_i|^n\right)^{1/n}$

Some examples: The V_2 euclidian norm looks like a circle: \circ

The V_1 euclidian norm is |x| + |y| = 1

The $|V_n|$ euclidian norm is $\max(|\mathbf{x}|, |\mathbf{y}|)$

1.5 Metric Spaces

A metric on a set X is a function $\rho: X \to X \to [0, \infty)$ such that

1.
$$\rho(x,y) = 0$$
 iff $x = y$

- 2. $\rho(x,y) = \rho(y,x)$ for all $x, y \in X$.
- 3. The distance thing

We can think of ρ as d(x,y)

A set equipped with a metric (ρ) is known as a metric space.

- 1. Euclidian Distance |x y|
- 2. $\rho_1(f,g) = \int_0^1 |f(x) g(x)| dx$ are metrics on the space of continuous functions [0,1].

Density (I am dense)

E(circle) is the largest open set contained in E \bar{E} is the smallest closed set containing E.

E is dense if $\bar{E} = X$ and is nowhere dnese if \bar{E} has empty interior

X is **Seperable** if it has a countable dense subset. Eg: $\{a+bi\}_{a,b\in\mathbb{Q}}$

Proposition: f: $X_1 \to X_2$ is continuous iff $f^{-1}(U)$ is open in X_1 for every open U $\subset X_2$ (preimage of any open set is open)

Proof. We have $x \in X_1$ and $\epsilon > 0$. The set $f^{-1}(B(\epsilon, f(x)))$ maps us back to x except now we have an open ball around x. Assume we are continuous. Then for $y \in U$ we can make $B(\epsilon_y, y) \in U$ since U is open. And since f is continuous, we let $x \in f^{-1}(\{y\})$ and define $\delta_x > 0$ s.t. $B(\delta_x, x) \subset f^{-1}(B(\epsilon_y, y)) \subset f^{-1}(u)$

Thus
$$f^{-1}(u) = \bigcup_{x \in f^{-1}(u)} B(\delta_x, x)$$
 is open.

For a counterexample, if f is not continuous, then we are unsure how f could map us.

Definition 1.20

A sequence $\{X_n\}$ in a metric space (X, p) is Cauchy if $p(X_n, X_m) \to 0$ as n, m $\to \infty$. A subset is called complete if every Cauhcy sequence in E converges and its limit is in E.

 \mathbb{R} is complete, and \mathbb{Q} is not.

A closed subsetof a complete metric space is complete, and a complete subset of an arbitrary metric space is closed.

Proof. If X is complete, $E \subset X$ is closed.

 $x \in \overline{E}$ HEY WHERES THE PROOF

True: intersection of finite open sets is open

False: intersection of all open sets is open. B/c $\{0, 1/n\} \rightarrow 0$

We can define distances from a point to a set and distances between two sets. Let's say we have E, $F \subset X$. Then we take the distance between the sets as $\inf(e \in E, f \in F)$.

The following are equivalent

- 1. E is complete and totally bounded
- 2. Every sequence in E has a subsequence that converges to a point of E.
- 3. Heine-Borel: If $\{V_a\}_{a\in A}$ is a cover of E by open sets, there is a finite set $F\subset A$ such that V_a covers E.

From (a) to (b): Suppose E can be covered by finitely many balls of radius 2^{-1} . At least one of them must contain X. We can keep making the balls smaller and we can become smaller than any $\epsilon > 0$.

From (b) to (a): If either condition in A fails, then (b) fails. If E is not complete, then there is some subsequence that won't converge in E. No subsequence can converge in E otherwise the whole sequence would converge.

Lets assume E can't be totally bounded: Let $\epsilon > 0$ such that E can't be covered by finitely many balls of radius ϵ . Assume $x_n \in E$ but then $x_{n+1} \notin$ the covered section of E. Then $p(x_n, x_m) > \epsilon$.

From (a, b) to (c): If (b) holds and $\{V_a\}_{a\in A}$ is a cover of E by open sets, **idk write** the rest of the proof later

From (c) to (b): If X_n is a sequence in E with no converging subsequence, then there are finitely many Balls such that $x_n \in B(B_{\epsilon}, x)$. Then $\{B_x\}_{x \in E}$ is a cover of E by open sets.

Definition 1.21

A set that is coverable is compact

If you look very closely then you will see this is true.

Fred Yuan 9/6/2024

2 9/6/2024

Motivation: For a function to be riemann integrable, it is almost everywhere continuous.

Reminder: Riemann sums are defined as: $\sum_{n=1}^{n=\infty} \left(G_j(x_{n+1} - x_n) \right) = \sum_{n=1}^{n=\infty} \left(g_j(x_{n+1} - x_n) \right)$ where g_n = is the lower end of a function and G_n is the upper end.

A function is defined to be riemann integratable if this lower and upper bound both converge to the same value.

We want to define a Lebesgue integral such that we don't run into these issues.

1. If $E_1, E_2, ...$ is a finite or infinite sequence of disjoint sets, then

$$\mu(E_1 \cup E_2 \cup ...) = \mu(E_1) + \mu(E_2) + ..., \tag{4}$$

- 2. If E is congruent to F (that is, if E can be transformed info F by translations, rotations, and reflections), then $\mu(E) = \mu(F)$.
- 3. $\mu(Q) = 1$, where Q is the unit cube

$$Q = \{x \in \mathbb{R}^n : 0 \le x_j < 1 \text{ for } j = 1,...n\}$$

TLDR: Sadly, we can't really define a measure like this.

Counterexample: consider a circular set on [0, 1) with equivalence relations being that $x \sim y$ if $x - y \in \mathbb{Q}$. This means x and y must be π away. Construct N_r to be this set transformed to the right by $r \in \mathbb{Q}$. We can construct all numbers in [0, 1) through the union of all N_r 's. Then we have $\mu([0, 1)) = \sum_{r \in R} \mu(N_r)$. But since $\mu(N) = \mu(N_r)$ by (ii) since translations shouldn't add or subtract measure from a set, we get $\mu([0, 1)) = \sum_{r \in R} \mu(N)$.

We have a contradiction since $\mu([0,1)) = 1$ by definition of a measure, and if $\mu(N) > 0$, then the sum goes to infinity, but if it equals 0, then the measure is 0.

Another comment: in higher dimensions with a weaker (i), Banach and Tarski proved that you can multiply a pea until infinite peas.

Fred Yuan 9/6/2024

2.1 σ -algebras

Let's start by defining a σ -algebra.

Definition 2.1

To be a σ -algebra on X means

- 1. (Closure under complements) If $A \in X$, then $A^c \in X$
- 2. (Closure under countable unions) If $A_1, A_2, ... A_n \in X$, then $\bigcup_{n=1}^{\infty} A_n \in X$
- 3. A is in X.

The intersection of any family of σ -algebras is another σ -algebra. (The textbook said this is Trivial, I do not think so)

Proof. A σ -algebra can't be empty. It must contain $\{\Omega,\emptyset\}$. If A is included in this σ -algebra, then A must have been included and also A^c . Then, A^c is in our new algebra and also the old ones, and our set now contains A alongside A^c to form another functional algebra.

Now, using this we have that if ϵ is in any subset of P(X) there must be a unique smallest σ -algebra M(ϵ) containing ϵ . Specifically, the intersection of all σ -algebras containing ϵ . M(ϵ) is called the σ -algebra generated by ϵ .

Proposition 2.1

If $\epsilon \subset M(\mathcal{F})$, then $M(\epsilon) \subset M(\mathcal{F})$

Bring up next class: Should it be \subseteq . Example: $M(F) = \{\emptyset, F, F^c, \Omega\} \in \{\emptyset, F\}$ Then $M(\epsilon) = M(F)$.