CS2109S Matrix calculus Cheatsheet

Notation	Meaning	
$x, y, \epsilon \in \mathbb{R}$	scalar	
$oldsymbol{x},oldsymbol{y},oldsymbol{\epsilon}\in\mathbb{R}^d$	vector	
$oldsymbol{X}, oldsymbol{Y}, oldsymbol{W} \in \mathbb{R}^{d imes n}$	matrix	
$x_i(X_{ij})$	entries of vector(matrix)	
c, k	$\# { m classes}$	
d, m	$\# { m features}$	
n	#samples	
in, out	# input / output features	
b, w_0	bias	
l,ϵ	loss, error	

Scalar calculus

The entries of vector and matrix follow these rules as well. $f, g : \mathbb{R} \to \mathbb{R}$ are functions of $x. \ a \in \mathbb{R}$.

Expression	Derivative w.r.t. x	
\overline{a}	0	
$\frac{a \cdot f}{x^n}$	$rac{a\cdotrac{df}{dx}}{nx^{n-1}}$	
x^n	nx^{n-1}	
f + g	$\frac{\frac{df}{dx} + \frac{dg}{dx}}{\frac{df}{dx} - \frac{dg}{dx}}$	
f - g	$\frac{df}{dx} + \frac{dg}{dx}$ $\frac{df}{dx} - \frac{dg}{dx}$	
$f \cdot g$	$f \cdot \frac{dg}{dx} + \frac{df}{dx} \cdot g$	
f(g(x))	$\frac{df(u)}{du}\frac{du}{dx}$, let $u = g(x)$	

Matrix calculus

Using denominator layout $(y \in \mathbb{R}, \boldsymbol{x}, \frac{\partial y}{\partial \boldsymbol{x}} \in \mathbb{R}^d)$

$$\frac{\partial y}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_d} \end{bmatrix}$$

Hessian formulation

For vector-valued functions $\boldsymbol{y} = \boldsymbol{f}(\boldsymbol{x}) : \mathbb{R}^d \to \mathbb{R}^c$

$$\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial \boldsymbol{x}} & \frac{\partial y_2}{\partial \boldsymbol{x}} & \dots & \frac{\partial y_c}{\partial \boldsymbol{x}} \end{bmatrix}$$

Common vector derivatives

 $\boldsymbol{b} \in \mathbb{R}^d$ and $\boldsymbol{A} \in \mathbb{R}^{d \times c}$ are not functions on $\boldsymbol{x} \in \mathbb{R}^d$

f(x)	$rac{\partial m{f}}{\partial m{x}}$
$oldsymbol{A}^Toldsymbol{x}$	\boldsymbol{A}
$oldsymbol{b}^Toldsymbol{x}$	\boldsymbol{b}
$oldsymbol{x}^Toldsymbol{b}$	\boldsymbol{b}
$oldsymbol{x}^Toldsymbol{x}$	$2\boldsymbol{x}$
$oldsymbol{x}^T oldsymbol{A} oldsymbol{x}$	$2\boldsymbol{A}\boldsymbol{x}$

Chain rule in matrix form

Since matrix multiplication does not commute, the order of the derivatives matters in the chain rule.

For instance, given $y = \mathbf{b}^T (\mathbf{X}^T \mathbf{a})$. Let $\mathbf{h} = \mathbf{X}^T \mathbf{a}$ and $\mathbf{k} = \mathbf{X} \mathbf{b}$. Then,

$$\frac{\partial y}{\partial \boldsymbol{a}} = \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{a}} \frac{\partial y}{\partial \boldsymbol{h}} = \boldsymbol{X} \boldsymbol{b}, \quad \frac{\partial y}{\partial \boldsymbol{X}} = \frac{\partial y}{\partial \boldsymbol{k}} (\frac{\partial \boldsymbol{k}}{\partial \boldsymbol{X}})^T = \boldsymbol{a} \boldsymbol{b}^T.$$

The order the derivatives might vary, but it can be determined by a shape consistency check.

Matrix chain rule, for back propagation Given $Y = W^T X$, $\epsilon = l(Y)$ as a loss function.

• Derivative to update weight:

$$\frac{\partial \epsilon}{\partial \boldsymbol{W}} = \boldsymbol{X} \cdot (\frac{\partial \epsilon}{\partial \boldsymbol{Y}})^T$$

• Derivative to be carried to the previous layer:

$$\frac{\partial \epsilon}{\partial \boldsymbol{X}} = \boldsymbol{W} \cdot \frac{\partial \epsilon}{\partial \boldsymbol{Y}}$$

Note: Use the shape of matrices to determine the order.

Matrix derivatives

Scalar-by-Matrix: the shape of a scalar-by-matrix derivative is the same as that of the matrix.

For instance:

$$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1n}} \\ \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial X_{m1}} & \frac{\partial y}{\partial X_{m2}} & \cdots & \frac{\partial y}{\partial X_{mn}} \end{bmatrix}$$

The shape of the resulting derivative is the same as the shape of X.

Notation for models

Linear regression Hypothesis function: $h(\boldsymbol{w}^T \boldsymbol{x})$, where $\boldsymbol{x}, \boldsymbol{w} \in \mathbb{R}^d$.

Logistic regression Apply the same shape as above.

SVM Apply the same shape as above.

Neural Network One layer: $\boldsymbol{Y} = \boldsymbol{W}^T \boldsymbol{X}$, where $\boldsymbol{X} \in \mathbb{R}^{in \times n}, \boldsymbol{W} \in \mathbb{R}^{in \times out}, \boldsymbol{Y} \in \mathbb{R}^{out \times n}$.