4.8 Connect a 5-Ω resistor in parallel with the inductor in the circuit shown in Fig. P4.6. Suppose that $v_s(t) = 13 \cos(2t - 22.6^\circ) \text{ V. Find the voltage } v_o(t)$ across the inductor by using nodal analysis. Draw a phasor diagram. Is this circuit a lag network or a lead network?

4.13 For the RLC connection given in Fig. P4.13, find the impedance Z when ω is (a) 2, (b) 4, and (c) 8 rad/s.

$$Z = \frac{1}{\frac{1}{2} + \frac{j\omega}{8}} + \frac{j\omega}{4} = \frac{8}{4 + j\omega} + \frac{j\omega}{4}$$

$$= \frac{8(4 - j\omega)}{(4 + j\omega)(4 - j\omega)} + \frac{j\omega}{4} = \frac{32 - j\omega}{16 - j^2\omega^2} + \frac{j\omega}{4}$$

$$= \frac{32 - 8j\omega}{16 + \omega^2} + \frac{j\omega(16 + \omega^2)}{4(16 + \omega^2)}$$

$$= \frac{32}{16 + \omega^2} + \frac{j\omega(16 + \omega^2)}{4(16 + \omega^2)}$$

$$= \frac{32}{16+\omega^{2}} + \frac{3(6+\omega^{2})}{4(16+\omega^{2})}$$

$$= \frac{32}{16+\omega^{2}} + \frac{\omega[\omega^{2}+16-32]}{4(16+\omega^{2})}$$

$$= \frac{32}{16+\omega^{2}} + \frac{\omega[\omega^{2}-6]}{4(\omega^{2}+16)}$$

a)
$$\omega = 2\frac{red}{5}$$
 $2 = \frac{32}{20} + 5\frac{-24}{80} = (1.6 - 50.3) = 1.63 (-10.62)$

Vo (t) = 13.4 sin (2t - 26.51°) Volts

4.25 Use mesh analysis to find I_1 and I_2 for the circuit given in Fig. P4.25 when $V_{x1} = 250\sqrt{2/-30^{\circ}}$ V, $V_{x2} = 250\sqrt{2/-90^{\circ}}$ V, and $Z = 26 - j15 \Omega$.

$$\frac{2}{3} = \frac{26}{50} - \frac{15}{50} = \frac{30}{50} - \frac{30}{50}$$

$$V_{51} = \frac{250}{5} \sqrt{2} \left(\frac{\sqrt{3}}{2} - \frac{1}{2} \right)$$

$$V_{52} = \frac{250}{5} \sqrt{2} \left(-\frac{1}{5} \right)$$

Fig. P4.25

KUL around $12^{t}(for)$ loop: $V_{s,i} = \underline{I}_{i}\underline{z} + \cdot (\underline{I}_{z} + \underline{I}_{i})^{z}$ $V_{s,i} = 2\underline{I}_{i} + + I_{z}\underline{z}$ $2V_{s,i} = 4\underline{I}_{i} + 2I_{z}\underline{z}$ $-V_{s,i} = -\underline{I}_{i} + 2I_{z}\underline{z}$

KUL around bottom (00)!

Vin = I, 2+ (I, +I, 2) &

Vsi = 2I, 4+I, 2

 $\frac{-V_{51} = -T_{1} = +V_{22}}{2V_{51} - V_{52}} = 3T_{1} * T_{1} = \frac{500\sqrt{2}\left(\frac{\sqrt{5}}{L} - \frac{2}{2}\right) + 250\sqrt{2}}{3 - 30\left(-30^{2}\right)}$

From mesh andy 5.3.

$$\frac{2I_{2} = \sqrt{s_{1} - 2I_{1}}}{I_{2}} = \frac{\sqrt{s_{1} - 2I_{1}}}{I_{3}} = \frac{250\sqrt{2} \left(-\frac{3}{2}0^{\circ}\right)}{30\left(-\frac{3}{2}0^{\circ}\right)} = \frac{2(6)/30^{\circ}}{30\left(-\frac{3}{2}0^{\circ}\right)} = \frac{25\sqrt{2}}{\sqrt{3}} - \frac{13.4}{30} = \frac{21.8 - (11.8 + 16.8)}{1.8 + 16.8} = \frac{16.8}{1.8}$$

$$\frac{I_{2} = 6.8(-90^{\circ} A)}{I_{3}} = \frac{11.8 - (11.8 + 16.8)}{1.8 + 16.8} = \frac{16.8}{1.8}$$

4.32 For the op-amp circuit given in Fig. P4.22, when $v_i(t) = 3 \cos 2t$ V, then the output voltage $v_o(t) = 10.6 \cos(2t + 135^\circ)$ V. Find the average power absorbed by each element.

For the voitage source:
$$P_{s} = \frac{1}{2} |V_{s}| |I_{s}| cos(ang(V_{s}) - ang(I_{s})|$$

$$P_{s} = \frac{1}{2} (3)(3) cos(0 - 180°)$$

$$P_{s} = -9 = -4.5 W$$

4.42 A 115-V rms, 60-Hz electric hair dryer absorbs 500 W at a lagging pf of 0.95. What is the rms value of the current drawn by this dryer?

Optional Problems

8. (0 points) FoEE 4.6

4.6 For the ac circuit shown in Fig. P4.6, suppose that $v_s(t) = 13 \cos(2t - 22.6^\circ)$ V. Find $v_o(t)$ by using voltage division. Draw a phasor diagram. Is this circuit a lag network or a lead network?

Fig. P4.6

9. (0 points) FoEE 4.17

4.17 For the circuit shown in Fig. P4.17, find the Thévenin equivalent of the circuit in the shaded box when $v_s(t) = 4 \cos(4t - 60^\circ)$ V. Use this to determine $v_o(t)$.

First, we should find the freq. domain circuit

$$V_{oc} = \frac{-34 + 17 + 41-60^{\circ}}{8-34} = \frac{-3 + 1/60^{\circ}}{2-3} = \frac{1/-90^{\circ}}{55/-26.6^{\circ}}$$

$$V_{oc} = \frac{1/-90^{\circ}}{8-34} = \frac{1/-90^{\circ}}{1/-26.6^{\circ}} = \frac{1/-90^{\circ}}{1/-$$

$$\frac{7 = \frac{18(2-i)-3}{2-i} = \frac{16i+8-38}{2-i} = \frac{8i+8}{2-i} = \frac{8(i+1)}{2-i} = \frac{82/45}{\sqrt{6}(-264)}$$

$$\frac{2_0 = 5.06(71.6^{\circ})}{1.6+i} = 1.6+i$$

1.79 (-123° = 0.97/-164°)
$$\frac{1}{4}$$
 $\frac{1}{5.06}$ $\frac{1}{21.6}$ $\frac{1}{4}$ $\frac{1}{5.06}$ $\frac{1}{21.6}$ $\frac{1}{4}$ $\frac{1}{5.06}$ $\frac{1}{21.6}$ $\frac{1}{4}$ $\frac{1}{5.06}$ $\frac{1}{21.6}$ $\frac{1}{4}$ $\frac{1}{5.06}$ $\frac{1}{21.6}$ $\frac{1}{5.06}$ $\frac{1}$

10. (0 points) FoEE 4.23 4.23 For the op-amp circuit shown in Fig. P4. find $v_o(t)$ when $v_s(t) = 4 \cos(2t - 30^\circ)$ V. (See p.

FORE 4.23 & F. L. of Flower abouted by IS resider, each corned ond for the operate.

Us (+) = 4 cos (2+-30°) So Vs = 4 (-30°)

KCL of node (4): i= i+i3+i4 (1) KCL of node (6): i= is Using Ohm's Law (2) becomes: V,-Vi = Vi-Vo

Since openisided Vi=OV SD, Vi= -Vo = Vi=

Now, expending (1) with Ohn's Low:

$$\frac{V_{s} - v_{s}}{V_{t} = 0} = \frac{V_{s} - V_{t}}{1} = \frac{V_{t}}{-\frac{1}{2}j} + \frac{V_{t} - V_{s}}{2} + \frac{V_{t} - V_{o}}{2}$$

$$\frac{V_{s} - v_{t}}{V_{t}} = 2V_{o} + -\frac{j}{2}\frac{V_{o}}{2} - \frac{j}{2}\frac{V_{o}}{2} - \frac{V_{o}}{2}$$

$$\frac{V_{s} - v_{t}}{V_{s}} = 2V_{o} + -\frac{j}{2}\frac{V_{o}}{2} - \frac{j}{2}\frac{V_{o}}{2} - \frac{V_{o}}{2}$$

$$\frac{V_{s} - v_{o}}{2} = \frac{4\sqrt{-30^{\circ}}}{2 \cdot 5 \cdot 5 \cdot 15^{\circ}}$$

So, Vo = 1.6 (425.130 (.. V. (+) = 1.6 cos (2++23.13°) Volts Aug. Power absorbed by I'l resister:

When adding or subtracting phonons, we should leave then in rectangular San.

Aug. Power absorbed by each capacita = 0 W

Aug. Pone is ALWAYS O across a capacida or industre.

Est from PA = 1 | Vo | Io | Cos (eng (Va) - any (Io)) direction depends

$$T_{o} = \frac{V_{o}}{2} + \frac{V_{o} - V_{i}}{2} = \frac{V_{o,j}}{2} + \frac{V_{o}}{2} + \frac{1}{2} \frac{V_{o}}{2} = \frac{V_{o}(\frac{1}{2} + \frac{1}{3})}{2}$$

$$S_{o}, T_{o} = 1.6 \frac{1.5.13^{\circ}}{2} 1.12 \frac{1.63.43^{\circ}}{2}$$

PA=0.6383 W This is nagative power absorbed be cause the current is delivered by the op-emp!

11. (0 points) FoEE 4.28

FORE 4.28

$$V_{s}^{2} = 10\cos^{2}t$$

$$V_{s}^{2}$$