EA614 - Análise de Sinais

Tópico 1 - Sinais e Sistemas

Levy Boccato Renan Del Buono Brotto

2 de Agosto de 2024

Conteúdo

1	Sinais e Sistemas: Introdução	2
2	Potência e Energia de um Sinal	3
3	Transformação da Variável Independente	5
4	Periodicidade	7
5	Simetria: Sinais Pares e Ímpares	8
6	Sinais e Sequências Exponenciais	g
7	Degrau e Impulso	12
8	Sistemas Contínuos e Discretos no Tempo 8.1 Exemplos	16 17

1 Sinais e Sistemas: Introdução

Definição: Um sinal é uma manifestação física que carrega informação. **Exemplos:**

- Tanto a variação de pressão do ar, quanto as variações elétricas correspondentes, observadas na saída do microfone, são exemplos de sinais (no caso, transportando a mesma informação);
- fumaça em conclaves;
- voz e áudio;
- imagem (fotografia, radiografia, tomografia etc.);
- sinais biomédicos: ECG, EEG, PCG, EMG etc.;
- vídeo.

Em geral, os sinais são representados como funções matemáticas de uma ou mais variáveis independentes:

- voz: função da variável tempo;
- imagem: função no espaço bidimensional, e.g., dos eixos cartesianos x e y;
- ullet vídeo: depende não só das variáveis x e y, mas também do tempo.

Classificação:

- sinais contínuos no tempo: $x(t), t \in \mathbb{R}$;
- sinais discretos no tempo: $x[n], n \in \mathbb{Z}$.

Figura 1: O sinal discreto x[n] contém observações de x(t) tomadas em instantes de tempo pré-fixados. Logo, a variável independente n é discreta e aponta o índice da amostra na sequência: $n \in \mathbb{Z}$.

Os sinais digitais são um caso particular dos discretos, nos quais a amplitude também é discreta.

2 Potência e Energia de um Sinal

As noções de potência e energia podem ser aplicadas a qualquer tipo de sinal, não apenas para tensão e corrente em um dispositivo.

Definições: Seja x(t) um sinal contínuo no tempo.

• Potência instantânea: $|x(t)|^2$

• Energia de um sinal em um intervalo:

• Energia total:

 $\int_{-\infty}^{\infty} |x(t)|^2 dt$

• Potência média em um intervalo:

$$\frac{\int_{t_1}^{t_2} |x(t)|^2 dt}{t_2 - t_1}$$

• Potência média total:

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

Para um sinal x[n] a tempo discreto:

• Potência instantânea: $|x[n]|^2$

• Energia em intervalo

• Energia total

$$\sum_{n=n_1}^{n_2} |x[n]|^2$$

$$\sum_{n=-\infty}^{\infty} |x[n]|^2$$

• Potência média em um intervalo:

$$\frac{1}{n_2 - n_1 + 1} \sum_{n=n_1}^{n_2} |x[n]|^2$$

• Potência média total:

$$\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

Exemplo: bateria de carro de 12 volts.

• Potência instantânea normalizada (pressupõe uma resistência de 1 Ω): $|x(t)|^2 = 144$;

- Energia (t_1, t_2) : $144(t_2 t_1)$;
- Energia total: ∞ ;
- Potência média total:

$$\lim_{T \to \infty} \frac{1}{2T} (144).(2T) = 144$$

Com base nestas definições, podemos classificar os sinais em dois tipos:

1. Sinais de Energia: apresentam energia total finita; consequentemente, a potência média total é nula.

Exemplo:

$$x(t) = \begin{cases} A, & 0 < t < \tau, \\ 0, & \text{caso contrário} \end{cases}$$

$$E_{TOTAL} = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{0}^{\tau} A^2 dt = A^2 \tau$$

2. Sinais de Potência: apresentam potência média total finita e diferente de zero. Para isso, a energia total deve tender ao infinito.

Exemplo: $x(t) = A\cos(\omega_0 t)$, $\omega_0 = \frac{2\pi}{T_0}$. Trata-se de um sinal periódico, com período T_0 .

0

• Potência instantânea:

$$|x(t)|^2 = A^2 \cos^2(\omega_0 t) = A^2 \left(\frac{1}{2} + \frac{1}{2}\cos(2\omega_0 t)\right)$$

• Potência média em um período:

$$\frac{1}{T_0} \int_0^{T_0} |x(t)|^2 dt = \frac{A^2}{2} \frac{1}{T_0} \int_0^{T_0} dt + \underbrace{\int_0^{T_0} \frac{A^2}{2T_0} \cos(2\omega_0 t) dt}_{\text{integral ao longo de um múltiplo do período da}}^0 \frac{A^2}{2T_0} \int_0^{T_0} dt dt = \frac{A^2}{2} \int_0^{T_0} dt dt = \frac{A$$

Se fizermos o cálculo da potência média total por período, vamos encontrar o valor $\frac{A^2}{2}$.

OBS.: O sinal x(t) = t, $\forall t$ possui $E_{\text{TOTAL}} \to \infty$ e, ao mesmo tempo, $P_{\text{M\'edia}} \to \infty$.

3 Transformação da Variável Independente

a) Deslocamento Dado um sinal x(t), o sinal $x(t-t_0)$ é idêntico a x(t) deslocado no eixo do tempo.

b) Inversão no eixo do tempo

Dado um sinal x(t), o sinal x(-t) é o resultado da rotação de x(t) em torno do eixo vertical.

c) Escalonamento

Dado um sinal x(t), o sinal x(at), a > 0, é uma versão ampliada ou reduzida de x(t).

Exemplo: queremos obter $x\left(\frac{3}{2}t+1\right)$ e x(-t+1).

 $x\left(\frac{3}{2}t+1\right)=x\left(\frac{3}{2}(t+2/3)\right)$. A partir de x(t), geramos $x\left(\frac{3}{2}t\right)$ e, em seguida, aplicamos o deslocamento $t_0=-2/3$ para obter $x\left(\frac{3}{2}(t+2/3)\right)$.

x(-t+1) = x(-(t-1)). A partir de x(t), geramos x(-t) e, em seguida, aplicamos o deslocamento para obter x(-t+1).

4 Periodicidade

on belief

Um sinal contínuo x(t) é periódico com período T se, e somente se, $\underline{x(t) = x(t - nT)}, \forall t \in \mathbb{R}, \forall n \in \mathbb{Z}.$

• se x(t) é periódico com período T, então x(t) também é periódico com período kT, onde k é um número inteiro. A rigor, um sinal periódico possui infinitos períodos. Por isso, o menor período positivo é utilizado para descrever o sinal e é chamado de período fundamental.

Exemplo: onda quadrada.

Um sinal discreto x[n] é periódico com período N se, e somente se, $x[n]=x[n-kN], \ \forall \ n\in\mathbb{Z}, \ \forall \ k\in\mathbb{Z}$ e $N\in\mathbb{Z}.$

Exemplo: $x[n] = A\cos\left(\frac{2\pi n}{N}\right)$

$$x[n+kN] = A\cos\left(\frac{2\pi(n+kN)}{N}\right) = \underbrace{A\cos\left(\frac{2\pi n}{N} + k.2\pi\right)}_{\text{Periódico com período } 2\pi} = A\cos\left(\frac{2\pi n}{N}\right).$$

Portanto, x[n] é um sinal discreto, periódico, com período fundamental N.

5 Simetria: Sinais Pares e Ímpares

- x(t) é par se e somente se $x(t) = x(-t), \ \forall \ t.$
- x(t) é impar se e somente se $x(t) = -x(-t), \ \forall \ t.$

Exemplos:

Qualquer sinal x(t) pode ser escrito como a combinação de duas componentes, $x_p(t)$ e $x_i(t)$, que apresentem simetria par e ímpar, respectivamente.

$$x(t) = x_p(t) + x_i(t), \tag{1}$$

onde

$$x_p(t) = \frac{x(t) + x(-t)}{2}$$
, é a componente par, (2)

$$x_i(t) = \frac{x(t) - x(-t)}{2}$$
, é a componente impar. (3)

6 Sinais e Sequências Exponenciais

Uma classe particularmente importante de sinais e sequências para este curso está associada às funções exponenciais complexas. Começaremos caracterizando as exponenciais complexas contínuas, passando, então, às sequências exponenciais.

(A) Exponenciais Complexas Contínuas

Forma geral: $x(t) = ce^{at}, a, c \in \mathbb{C}$.

• exponenciais reais: $a, c \in \mathbb{R}$

• exponenciais complexas periódicas: a é um número puramente imaginário, c real. Por simplicidade, vamos adotar c=1.

Então
$$x(t) = e^{at} \xrightarrow{a=j\omega_0} x(t) = e^{j\omega_0 t}, -\infty < t < \infty.$$

Este tipo de exponencial é periódica em t com período fundamental $T_0 = \frac{2\pi}{\omega_0}$, pois:

$$e^{j\omega_0(t+2\pi n/\omega_0)} = e^{j\omega_0 t} \cdot e^{j2\pi n} \stackrel{1}{=} e^{j\omega_0 t}$$

 T_0 : período fundamental (em segundos);

 f_0 : frequência fundamental (em Hertz), $f_0 = \frac{1}{T_0}$;

$$\omega_0 = \frac{2\pi}{T_0} = 2\pi f_0$$
: frequência angular (em rad/s).

Wo = Stylo

Fórmula de Euler:
$$e^{j\omega_0 t} = \underbrace{\cos(\omega_0 t) + j \sin(\omega_0 t)}_{\text{também periódicos}}$$

Cos (ubt) +jsen (uct)

diς
→ Energia em um período:

– Energia total: ilimitada

– Potência média em um período:
$$\frac{E_{\rm período}}{T_0}=1$$

- Potência média total: 1

• Exponenciais complexas gerais: $c, a, \in \mathbb{C}$.

Seja
$$c = |c|e^{j\theta}$$
 e $a = r + j\omega$. Então, $x(t) = \underbrace{|c|e^{rt}}_{\text{variação}}$. $\underbrace{e^{j(\omega t + \theta)}}_{\text{periódica}}$

Usando a fórmula de Euler: $x(t) = |c|e^{rt}(\cos(\omega t + \theta) + j\sin(\omega t + \theta)).$

Exemplo: r < 0: amplitude amortecida

Dica para manipulação matemática:

$$x(t) = e^{j\theta_1 t} + e^{j\theta_2 t} = e^{j\left(\frac{\theta_1 + \theta_2}{2}\right)t} \left(e^{j\left(\frac{\theta_1 - \theta_2}{2}\right)t} + e^{-j\left(\frac{\theta_1 - \theta_2}{2}\right)t}\right)$$
 (5)

$$=2e^{j\left(\frac{\theta_1+\theta_2}{2}\right)t}\frac{\left(e^{j\left(\frac{\theta_1-\theta_2}{2}\right)t}+e^{-j\left(\frac{\theta_1-\theta_2}{2}\right)t}\right)}{2} \tag{6}$$

$$=2e^{j\left(\frac{\theta_1+\theta_2}{2}\right)t}\cos\left(\frac{(\theta_1-\theta_2)t}{2}\right). \tag{7}$$

(B) Sequências Exponenciais Complexas

Forma Geral: $x[n] = c\alpha^n = ce^{\beta n}, -\infty < n < \infty, n \text{ inteiro, } e^{\beta} = \alpha.$

• exponenciais reais: $c, \alpha \in \mathbb{R}$. Ilustramos o comportamento desse tipo de sequência na Figura 2, considerando, sem perda de generalidade, o caso em que c = 1.

Para o caso em que $\alpha > 0$ temos dois possíveis comportamentos: (1) a amplitude decai para zero à medida que n aumenta, se $0 < \alpha < 1$ e (2) a sequência diverge, se $\alpha > 1$.

Já quando $\alpha < 0$, passamos a ter os dois comportamentos descritos acima, ou seja, convergência para zero se $-1 < \alpha < 0$ e divergência se $\alpha < -1$, mas com uma alternância de sinal nos valores da sequência.

Figura 2: Possíveis comportamentos para as exponenciais reais.

• exponenciais complexas com amplitude constante: $c = 1, \beta = j\omega_0$.

$$x[n] = e^{j\omega_0 n}$$

Como $e^{j\omega_0 n} = \cos[\omega_0 n] + j \operatorname{sen}[\omega_0 n]$, temos que $\cos[\omega_0 n] = \operatorname{Re}\{e^{j\omega_0 n}\}$ e $\operatorname{sen}[\omega_0 n] = \operatorname{Im}\{e^{j\omega_0 n}\}$.

Energia total: $\sum_{n=-\infty}^{\infty} |e^{j\omega_0 n}|^2 \to \infty$.

Potência média total: $\lim_{N\to\infty}\frac{1}{2N+1}\sum_{n=-N}^N|e^{j\omega_0n}|^2=1.$

Vamos, então, analisar as propriedades de periodicidade de $e^{j\omega_0 n}$, destacando as suas semelhanças e diferenças em relação a $e^{j\omega_0 t}$.

Periodicidade:

a) $e^{j\omega_0t}$ é distinta para cada valor de ω_0 . Contudo, $e^{j\omega_0n}$ é periódica em ω_0 com período fundamental 2π , pois

$$e^{j(\omega_0 + 2\pi k)n} = e^{j\omega_0 n} e^{j2\pi kn} = e^{j\omega_0 n}.$$

Assim, todas as possíveis exponenciais complexas do tipo $e^{j\omega_0 n}$ são descritas em um intervalo de tamanho 2π em ω_0 , *i.e.*, $\theta \leq \omega_0 \leq \theta + 2\pi$. Ou seja, os valores de ω_0 em um intervalo de duração 2π são suficientes para caracterizar todas as exponenciais discretas.

b) $e^{j\omega_0 t}$ é periódica em t para qualquer valor de ω_0 , com período $T_0 = \frac{2\pi}{\omega_0}$. Todavia, $e^{j\omega_0 n}$ nem sempre é periódica em n, pois exige-se que $\exists N$ inteiro tal que $e^{j\omega_0(n+N)} = e^{j\omega_0 n}$, $\forall n$. Para que isto seja verdade, $e^{j\omega_0 N} = 1 \rightarrow \omega_0 N = 2\pi k$, para algum inteiro k. Para que

esta última igualdade se verifique é preciso

$$\omega_0 = \frac{k}{N} 2\pi \to \omega_0 = \text{(racional)} \times \pi.$$

Sendo assim:

- se $\omega_0=$ (racional) \times $\pi,$ então $e^{j\omega_0n}$ é periódico, com período $N_0.$ Mas qual o valor de $N_0?$

$$e^{j\omega_0 n} = e^{j\omega_0(n+N_0)} \rightarrow e^{j\omega_0 n} = e^{j\omega_0 n} e^{j\omega_0 N_0} \rightarrow e^{j\omega_0 N_0} = 1.$$

Logo,

$$\omega_0 N_0 = (\text{inteiro positivo}) \times 2\pi$$

 N_0 será o período fundamental quando tomarmos o menor inteiro positivo que preserve a igualdade acima.

Assim,

$$N_0 = \min_{\text{inteiros positivos}} \left\{ \text{inteiro positivo} \times \frac{2\pi}{\omega_0} \right\}$$

Ou seja, para um valor fixo de ω_0 , devemos encontrar o menor inteiro positivo que quando multiplicado por $\frac{2\pi}{\omega_0}$ resulte em um número natural, o qual representará o período fundamental.

c) $e^{j\omega_0 t}$ oscila com frequência $\omega_0 = 2\pi f_0$. Quanto maior o valor de ω_0 , maior o número de oscilações por segundo e menor o período $T_0 = \frac{2\pi}{\omega_0}$.

Porém, para $e^{j\omega_0 n}$, $\omega_0 = \text{racional} \times \pi$, a frequência cresce com $0 \le \omega_0 \le \pi$, mas decresce com ω_0 para $\pi \le \omega_0 \le 2\pi$. Afinal, devido à periodicidade em ω_0 , o comportamento ao redor de $\omega_0 = 2\pi$ é igual ao comportamento ao redor de $\omega_0 = 0$.

Corolário: seja $x_k[n] = e^{j\left(\frac{2\pi}{N}k\right)n}$, com $\omega_k = \frac{2\pi}{N}k$, k inteiro. Quantas exponenciais discretas periódicas com frequências múltiplas de $\frac{2\pi}{N}$ diferentes existem ?

Como frequências afastadas de 2π são equivalentes, o índice k deve percorrer um conjunto de apenas N valores diferentes. Isto quer dizer que existem somente N exponenciais complexas que são distinguíveis com frequências múltiplas de $\frac{2\pi}{N}$.

7 Degrau e Impulso

Vamos apresentar dois tipos de sinais teóricos que serão importantes para o desenvolvimento do curso.

a) Sequência impulso unitário:

$$\delta[n] = \begin{cases} 1, & n = 0\\ 0, & \text{caso contrário} \end{cases}$$

b) Sequência degrau unitário:

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & \text{caso contrário} \end{cases}$$

Essa sequência pode ser usada como delimitadora:

$$y[n] = x[n].u[n] \rightarrow y[n] = 0, \text{ para } n < 0.$$

Relações entre $\delta[n]$ e u[n]:

•
$$\delta[n] = u[n] - u[n-1];$$

•
$$u[n] = \sum_{m=-\infty}^{n} \delta[m]$$

•
$$u[n] = \sum_{m=-\infty}^{n} \delta[m];$$

• $u[n] = \sum_{k=0}^{\infty} \delta[n-k] = \delta[n] + \delta[n-1] + \delta[n-2] + \cdots$

Propriedade:

$$\sum_{k=-\infty}^{\infty} x[k]\delta[n-k] = \cdots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \cdots + \underbrace{x[n]\delta[0]}_{\substack{\text{unico} \\ \text{termo} \\ \text{pagnable}}} + \cdots = x[n].$$

c) Função degrau

$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & \text{caso contrário} \end{cases}$$

d) Impulso unitário (Delta de Dirac)

Considere
$$\tau > 0$$
 e $u_{\tau}(t) = \begin{cases} 0, & t < 0 \\ t/\tau, & 0 \le t < \tau \\ 1, & t > \tau \end{cases}$

Seja
$$\delta_{\tau}(t) = \frac{du_{\tau}(t)}{dt}$$
.

Definimos a "função" impulso unitário como

$$\delta(t) \stackrel{\Delta}{=} \lim_{\tau \to 0} \delta_{\tau}(t)$$

<u>Características:</u> amplitude ilimitada (diverge), largura zero e área unitária. O impulso será representado como mostrado abaixo

<u>OBS</u>: $x(t) = a\delta(t)$ - a constante a passa a definir a área do impulso; sua amplitude continua divergente e a largura é zero.

Vejamos mais algumas propriedades do impulso $\delta(t)$:

•
$$\int_{-\infty}^{\infty} \delta(t)dt = 1 \text{ e } \int_{-\epsilon}^{\epsilon} \delta(t)dt = 1, \forall \epsilon > 0$$

•
$$\delta(t) = \frac{du(t)}{dt}$$

$$\delta(t) = \lim_{\tau \to 0} \delta_{\tau}(t) = \lim_{\tau \to 0} \frac{du_{\tau}(t)}{dt} = \frac{d}{dt} \left[\lim_{\tau \to 0} u_{\tau}(t) \right] = \frac{du(t)}{dt}$$

•
$$\delta(t) = \delta(-t)$$

•
$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$

•
$$u(t) = \int_0^\infty \delta(t - \alpha) d\alpha$$

•
$$x(t).\delta(t-t_0) = x(t_0).\delta(t-t_0)$$

•
$$\int_{-\infty}^{\infty} x(t)\delta(t-t_0)dt = \int_{-\infty}^{\infty} x(t_0)\delta(t-t_0)dt = x(t_0)\int_{-\infty}^{\infty} \delta(t-t_0)dt = x(t_0)$$

Exemplo: escrever x(t) como uma combinação de degraus.

$$x(t) = 2u(t-1) - 3u(t-2) + 2u(t-3).$$

Aplicando a derivada:

$$\frac{dx(t)}{dt} = 2\delta(t-1) - 3\delta(t-2) + 2\delta(t-3)$$

8 Sistemas Contínuos e Discretos no Tempo

<u>Definição</u>: um sistema pode ser visto como um processo ou transformação que mapeia um sinal de entrada em uma resposta observável, que corresponde ao sinal de saída.

$$\begin{array}{c|c} x(t) & T\{x(t)\} & y(t) \\ \hline x[n] & T\{x[n]\} & y[n] \end{array}$$

Exemplos:

• amplificador: y(t) = ax(t);

• atrasador: $y(t) = x(t - t_0)$;

• discreto: y[n] = x[n] + ay[n-1].

Caracterização de Sistemas:

a) Sem memória: a saída em um instante t depende da entrada somente no instante t; se amostras passadas influenciam a saída atual, o sistema possui memória.

Exemplos: $y[n] = x^2[n]$ (sem memória), y[n] = x[n-2] (com memória).

- b) <u>Causalidade</u>: a saída em um instante t_0 depende da entrada somente nos instantes $t \le t_0$.
 - o sistema nunca é antecipativo;
 - todo sistema que opera em tempo real (isto é, que produz a saída à medida que a entrada evolui no tempo) é causal.
 - sistemas que não operam em tempo real podem não ser causais (e.g., sistemas que processam dados armazenados em disco ou memória).

- c) Estabilidade BIBO (Bounded Input, Bounded Output): um sistema é estável se e somente se qualquer entrada com amplitude limitada produz uma saída com amplitude limitada.
 - Se $|y(t)| \le B_y < \infty$ para todo t, em resposta à entrada x(t) limitada, para a qual $|x(t)| \le B_x < \infty$, então o sistema é estável (observe que essa condição deve valer para qualquer x(t)).
- d) Invariância com o tempo: um sistema é invariante com o tempo se e somente se suas características (no tocante à transformação entrada-saída) não mudam com o tempo. Isto é, se $x(t) \iff y(t)$, então necessariamente $x(t-t_0) \iff y(t-t_0)$.
- e) <u>Linearidade:</u> um sistema é linear se e somente se a sua resposta a uma combinação linear de entradas for a combinação linear das respectivas saídas (sobreposição dos efeitos).

$$ax_1(t) + bx_2(t) \iff ay_1(t) + by_2(t)$$
, onde $y_1(t) = T\{x_1(t)\} \in y_2(t) = T\{x_2(t)\}$.

8.1 Exemplos

a)
$$y[n] = x[-n]$$

Vamos analisar quais propriedades são válidas para este sistema discreto.

Linearidade

Para checar se o sistema é linear, vamos considerar duas entradas, $x_1[n]$ e $x_2[n]$, e as saídas correspondentes, $y_1[n] = x_1[-n]$ e $y_2[n] = x_2[-n]$. Então, vamos analisar qual é a resposta do sistema para uma entrada $x'[n] = \alpha x_1[n] + \beta x_2[n]$:

$$y'[n] = x'[-n] = \alpha x_1[-n] + \beta x_2[-n] = \alpha y_1[n] + \beta y_2[n].$$

Observe que a saída é equivalente à combinação linear das saídas individuais $(y_1[n] e y_2[n])$. Logo, concluímos que **o sistema é linear**.

Causalidade

Devemos verificar se a saída y[n] depende da entrada em instantes futuros (n+1, n+2, ...). Note que quando n > 0, a saída y[n] depende da entrada em instantes negativos (e.g., y[2] = x[-2]). Por outro lado, para n < 0, a saída y[n] depende da entrada em instantes positivos (e.g., y[-4] = x[-(-4) = x[4]). Neste caso, o sistema precisa conhecer a entrada em um instante futuro para determinar a saída. Logo, **o sistema não é causal**.

Estabilidade

Considere uma entrada x[n] limitada em amplitude, i.e., $|x[n]| \leq B_x < \infty, \forall n$. A magnitude da saída é dada por |y[n]| = |x[-n]|. Como $|x[n]| \leq B_x$ para todo instante de tempo, |y[n]| também é inferior ao limitante B_x . Ou seja, a saída também é limitada em amplitude. Portanto, o sistema é estável.

• Memória

A saída y[n] para instantes n > 0 depende da entrada em instantes negativos (e.g., y[5] = x[-5]). Logo, o sistema possui memória.

• Invariância com o tempo

Para avaliarmos se o sistema é invariante com o tempo, temos que obter: (1) a saída do sistema para uma entrada deslocada, aqui denotada por $z[n] = x[n-n_0]$; e (2) a saída deslocada no tempo (ou seja, $y[n-n_0]$).

Considerando a entrada $z[n] = x[n - n_0]$, a saída do sistema corresponde a:

$$y_{n_0}[n] = z[-n] = x[-n - n_0].$$

Por sua vez, sabendo que y[n] = x[-n], podemos escrever que a saída do sistema deslocada no tempo é dada por:

$$y[n - n_0] = x[-(n - n_0)] = x[-n + n_0].$$

Observe que $y[n-n_0] \neq y_{n_0}[n]$. Ou seja, a saída do sistema para uma entrada deslocada $x[n-n_0]$ não é igual à saída original deslocada pelo mesmo intervalo n_0 . Portanto, concluímos que o sistema não é invariante com o tempo.

b)
$$y(t) = \frac{dx(t)}{dt}$$

Neste caso, vamos analisar apenas a validade de duas propriedades: linearidade e invariância com o tempo.

• Linearidade

Seja $x'(t) = \alpha x_1(t) + \beta x_2(t)$ a entrada do sistema. Então, a saída corresponde a:

$$y'(t) = \frac{dx'(t)}{dt} = \frac{d}{dt} \left[\alpha x_1(t) + \beta x_2(t) \right].$$

Como a derivada é um operador linear,

$$y'(t) = \alpha \frac{dx_1(t)}{dt} + \beta \frac{dx_2(t)}{dt} = \alpha y_1(t) + \beta y_2(t),$$

onde $y_1(t) = \frac{dx_1(t)}{dt}$ e $y_2(t) = \frac{dx_2(t)}{dt}$ representam as saídas do sistema para as entradas $x_1(t)$ e $x_2(t)$, respectivamente. Vemos, portanto, que **o sistema é linear**.

• Invariância com o tempo

Considerando a entrada $z(t) = x(t - t_0)$, a saída do sistema corresponde a:

$$y_{t_0}(t) = \frac{dz(t)}{dt} = \frac{dx(t - t_0)}{dt}.$$

Por sua vez, a saída do sistema deslocada no tempo por t_0 é dada por:

$$y(t-t_0) = \frac{dx(t-t_0)}{dt}.$$

Como $y(t - t_0) = y_{t_0}(t)$, concluímos que o sistema é invariante com o tempo.

c)
$$y(t) = \int_{-\infty}^{t} x(\tau) d\tau$$

Novamente, vamos verificar somente as propriedades da linearidade e da invariância com o tempo.

• Linearidade

Seja $x'(t) = \alpha x_1(t) + \beta x_2(t)$ a entrada do sistema. Então, a saída corresponde a:

$$y'(t) = \int_{-\infty}^{t} x'(\tau)d\tau = \int_{-\infty}^{t} (\alpha x_1(\tau) + \beta x_2(\tau)) d\tau.$$

Como a integral é um operador linear,

$$y'(t) = \alpha \int_{-\infty}^{t} x_1(\tau)d\tau + \beta \int_{-\infty}^{t} x_2(\tau)d\tau = \alpha y_1(t) + \beta y_2(t),$$

onde $y_1(t) = \int_{-\infty}^t x_1(\tau) d\tau$ e $y_2(t) = \int_{-\infty}^t x_2(\tau) d\tau$ representam as saídas do sistema para as entradas $x_1(t)$ e $x_2(t)$, respectivamente. Vemos, portanto, que **o sistema é linear**.

• Invariância com o tempo

Considerando a entrada $z(t) = x(t - t_0)$, a saída do sistema corresponde a:

$$y_{t_0}(t) = \int_{-\infty}^t x(\tau - t_0) d\tau.$$

Reescrevendo a integral em termos da variável $\nu=\tau-t_0$, temos que:

$$y_{t_0}(t) = \int_{-\infty}^{t-t_0} x(\nu) d\nu.$$

Por sua vez, a saída do sistema deslocada no tempo por t_0 é dada por:

$$y(t - t_0) = \int_{-\infty}^{t - t_0} x(\tau) d\tau.$$

Como $y(t - t_0) = y_{t_0}(t)$, concluímos que o sistema é invariante com o tempo.