BANA 6043 Project

Summary:

- In the following project, two flight datasets were given to study what factors and how they would impact the landing distance of a commercial flight.
- The two datasets were firstly combined and trimmed in order to produce 950 observation and 8 variables.
- Looking at the dataset, it was observed there were few duplicate observations along with some abnormal values which were removed accordingly.
- Performed some basic summary analysis on each of the variables to detect whether there were any abnormal values and how were they distributed according to the aircraft type.
- In the next step, each predictor variable was plotted against landing_distance to detect any noticeable relation. Correlation Matrix was also computed to see the pearson correlation coefficients between our predictor and response.
- The variables which had relatively high values were then selected to be used in our linear regression model. However since speed_air and speed_ground were highly correlated among themselves, I decided to use Speed_air alone as it was giving me better R-Square and residual plots.
- The final model was built using Speed_air and height variable and the equation comes out to be:

 $Y = -5935.73 + 80.49 * X_1 + 12.54 * X_2$

Y = Landing distance

 X_1 = Speed air

 X_2 = Height

Ashutosh Singh

M13433470

Chapter 1: Data Understanding and Exploration

Dataset:

Landing data (landing distance and other parameters) from 950 commercial flights (not real data set but simulated from statistical models). Two Excel files: 'FAA-1.xls' (800 flights) and 'FAA-2.xls' (150 flights).

Variable Names:

```
Aircraft (Make of an Aircraft)
duration (Duration of the flight in Minutes)
no_pasg (Number of passengers)
speed_ground (ground speed of an aircraft in mph when passing over the threshold of the runway)
speed_air (air speed of an aircraft in mph when passing over the threshold of the runway)
height (height of an aircraft in meters when it is passing over the threshold of the runway)
pitch (Pitch angle of an aircraft in degrees)
distance (landing distance of an aircraft in feet)
```

Importing the Datasets:

Importing FAA1.xls file:

```
PROC IMPORT out = WORK.FAA1 datafile= "/folders/myfolders/FAA1.xls"
dbms=xls replace;
sheet="FAA1";
getnames=yes;
RUN;
PROC CONTENTS DATA=WORK.FAA1;
RUN;
```

After running the above command, we get Table "WORK.FAA1" with 800 rows and 8 columns.

The CONTENTS Procedure						
Data Set Name	WORK.FAA1	Observations	800			
Member Type	DATA	Variables	8			
Engine	V9	Indexes	0			
Created	11/13/2019 12:09:22	Observation Length	72			
Last Modified	11/13/2019 12:09:22	Deleted Observations	0			
Protection		Compressed	NO			
Data Set Type		Sorted	NO			
Label						
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64					
Encoding	utf-8 Unicode (UTF-8)					

	Alphabetic List of Variables and Attributes									
#	Variable	Туре	Len	Format	Informat	Label				
1	aircraft	Char	12	\$12.	\$12.	aircraft				
8	distance	Num	8	BEST12.		distance				
2	duration	Num	8	BEST12.		duration				
6	height	Num	8	BEST12.		height				
3	no_pasg	Num	8	BEST12.		no_pasg				
7	pitch	Num	8	BEST12.		pitch				
5	speed_air	Num	8	BEST12.		speed_air				
4	speed_ground	Num	8	BEST12.		speed_ground				

Importing FAA2.xls file:

```
PROC IMPORT out = WORK.FAA2 datafile= "/folders/myfolders/FAA2.xls"
dbms=xls replace;
sheet="FAA2";
getnames=yes;
RUN;
PROC CONTENTS DATA=WORK.FAA2;
RUN;
```

After running the above command, we get Table "WORK.FAA2" with 200 rows and 7 columns.

The CONTENTS Procedure							
Data Set Name	WORK.FAA2	Observations	200				
Member Type	DATA	Variables	7				
Engine	V9	Indexes	0				
Created	11/13/2019 12:16:16	Observation Length	64				
Last Modified	11/13/2019 12:16:16	Deleted Observations	0				
Protection		Compressed	NO				
Data Set Type		Sorted	NO				
Label							
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64						
Encoding	utf-8 Unicode (UTF-8)						

	Alphabetic List of Variables and Attributes									
#	Variable	Type	Len	Format	Informat	Label				
1	aircraft	Char	12	\$12.	\$12.	aircraft				
7	distance	Num	8	BEST12.		distance				
5	height	Num	8	BEST12.		height				
2	no_pasg	Num	8	BEST12.		no_pasg				
6	pitch	Num	8	BEST12.		pitch				
4	speed_air	Num	8	BEST12.		speed_air				
3	speed_ground	Num	8	BEST12.		speed_ground				

Removing Empty rows in FAA2 Table:

After looking into the FAA2 table, it was found that the table contained many empty rows at the end. So, the following command was used to remove the empty rows:

```
OPTIONS MISSING='';
DATA FAA2_CLEANED;
SET FAA2;
IF MISSING(CATS(of _all_)) THEN DELETE;
RUN;
```

After performing this step, the table FAA2 contained 150 rows and 7 columns.

Combining the Two Datasets:

```
DATA FAA_COMBINED;
SET FAA1 FAA2_CLEANED;
RUN;
```

After performing this step, we get combined dataset of **950 rows and 8 columns**.

Looking at the table however we see that there are number of duplicate rows except the duration column. So, there might be the case that there are lot of records in FAA2 which are already in FAA1 but they don't have the duration column.

```
PROC SORT DATA=FAA_COMBINED OUT=FAA_COMBINED_UNIQUE NODUPKEY;
BY aircraft no_pasg Speed_Ground Speed_Air height pitch distance;
RUN;
PROC CONTENTS DATA=FAA_COMBINED_UNIQUE;
RUN;
```

The CONTENTS Procedure							
Data Set Name	WORK.FAA_COMBINED_UNIQUE	Observations	850				
Member Type	DATA	Variables	8				
Engine	V9	Indexes	0				
Created	11/13/2019 14:09:37	Observation Length	72				
Last Modified	11/13/2019 14:09:37	Deleted Observations	0				
Protection		Compressed	NO				
Data Set Type		Sorted	YES				
Label							
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64						
Encoding	utf-8 Unicode (UTF-8)						

After performing the above step, we have removed 100 duplicate records from our dataset.

Finding the Number of Missing Values for Each Variable:

PROC MEANS DATA=FAA_COMBINED_UNIQUE NMISS N; TITLE NUMBER OF MISSING VALUES IN EACH VARIABLE; RUN;

NUMBER OF MISSING VALUES IN EACH VARIABLE

Variable	Label	N Miss	N
duration	duration	50	800
no_pasg	no_pasg	0	850
speed_ground	speed_ground	0	850
speed air	speed air	642	208
height	height	0	850
pitch	pitch	0	850
distance	distance	0	850

Here N Miss denotes the number of Missing values for each variable. As we can see, 'duration' and 'speed_air' are the two variables with the most missing values.

Before taking any action on missing values of duration and Speed_air, we need to see the percent of missing values for each variable.

PROC SQL; TITLE PERCENT OF MISSING VALUES FOR DURATION AND SPEED_AIR; SELECT (NMISS(Duration) / COUNT(*))*100 AS miss_Duration_pct , (NMISS(Speed_Air)/ COUNT(*))*100 AS miss_Speed_Air_pct from FAA_COMBINED_UNIQUE QUIT;

PERCENT OF MISSING VALUES FOR DURATION AND SPEED_AIR

miss_Duration_pct	miss_Speed_Air_pct
5.882353	75.52941

As we can see, the percent of missing values for Speed_Air is too high to remove them or to do any sort of Imputation as it will create unnecessary bias. In such cases, we have to report to the client about this situation and wait for their confirmation before dealing with the Speed Air variable.

Detecting Abnormal values for Each Variable:

Now that we have found out missing values, let us see whether our dataset contains abnormal values according to the guidelines provided to us.

For Duration

```
PROC SQL;
TITLE Number of Abnormal values for Duration;
SELECT count(*) as Abnormal_Values
FROM FAA_COMBINED_UNIQUE
WHERE duration < 40 AND MISSING(duration) = 0;
RUN;
```

Number of Abnormal values for Duration


```
PROC SQL;
TITLE Number of Abnormal values for Speed_Ground;
SELECT count(*) as Abnormal_Values
FROM FAA_COMBINED_UNIQUE
WHERE speed_ground NOT BETWEEN 30 AND 140;
RUN;
```

Number of Abnormal values for Speed_Ground

```
Abnormal_Values
3
```

```
PROC SQL;
TITLE Number of Abnormal values for Speed_Air;
SELECT count(*) as Abnormal_Values
FROM FAA_COMBINED_UNIQUE
WHERE (speed_air NOT BETWEEN 30 AND 140) AND MISSING(speed_air) = 0;
RUN;
```

Number of Abnormal values for Speed_Air


```
PROC SQL;
TITLE Number of Abnormal values for height;
SELECT count(*) as Abnormal_Values
FROM FAA_COMBINED_UNIQUE
WHERE height < 6;
RUN;
```

Number of Abnormal values for height


```
PROC SQL;
TITLE Number of Abnormal values for distance;
SELECT count(*) as Abnormal_Values
FROM FAA_COMBINED_UNIQUE
WHERE distance > 6000;
RUN;
```

Number of Abnormal values for distance

As we can see that each variable has some abnormal values, but they are not in large amount.

Removing the abnormal values:

Since there are few abnormal values, so we can delete the observations containing them.

```
DATA FAA_CLEANED;

SET FAA_COMBINED_UNIQUE;

IF duration <= 40 AND MISSING(duration) = 0 THEN DELETE;

IF height < 6 AND MISSING(height) = 0 THEN DELETE;

IF distance > 6000 AND MISSING(distance) = 0 THEN DELETE;

IF (speed_air < 30 OR speed_air > 140) AND MISSING(speed_air) = 0

THEN DELETE;

IF (speed_ground < 30 OR speed_ground > 140) AND

MISSING(speed_ground) = 0 THEN DELETE;

RUN;
```

After performing this operation, we get new dataset containing 831 rows and 8 columns.

```
PROC CONTENTS DATA=FAA_CLEANED;
RUN;
```

The CONTENTS Procedure							
Data Set Name	WORK.FAA_CLEANED	Observations	831				
Member Type	DATA	Variables	8				
Engine	V9	Indexes	0				
Created	11/13/2019 21:21:52	Observation Length	72				
Last Modified	11/13/2019 21:21:52	Deleted Observations	0				
Protection		Compressed	NO				
Data Set Type		Sorted	NO				
Label							
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64						
Encoding	utf-8 Unicode (UTF-8)						

Summarizing the Distribution of Each Variable:

Checking whether there are no more abnormal values and what is the range of each numeric variable:

```
PROC MEANS DATA = FAA_CLEANED N NMISS MEAN STD MIN MAX;
TITLE Basic Summary of each Variable;
RUN;
```

Basic Summary of each Variable									
The MEANS Procedure									
Variable	Label	N	N Miss	Mean	Std Dev	Minimum	Maximum		
duration	duration	781	50	154.7757191	48.3499237	41.9493694	305.6217107		
no pasg	no pasg	831	0	60.0553550	7.4913166	29.0000000	87.0000000		
speed ground	speed ground	831	0	79.5426997	18.7356754	33.5741041	132.7846766		
speed air	speed air	203	628	103.4850352	9.7362774	90.0028586	132.9114649		
height	height	831	0	30.4578695	9.7848114	6.2275178	59.9459639		
pitch	pitch	831	0	4.0051609	0.5265690	2.2844801	5.9267842		
distance	distance	831	0	1522.48	896.3381524	41.7223127	5381.96		

As we can see from the output, there are no abnormal values and all values are within the normal range.

Summarizing variables for each type of aircraft:

```
PROC MEANS DATA=FAA_CLEANED NOPRINT;
BY aircraft;
OUTPUT OUT=FAA_summary1 MEAN(duration speed_ground) =
MeanDuration MeanSpeed_G
STD(duration speed_ground) = StdDuration StdSpeed_G;
RUN;
PROC PRINT DATA=FAA_summary1;
Title Summary statistics of duration and speed for each airline;
RUN;
```

Summary statistics of duration and speed for each airline									
Obs	aircraft	_TYPE_	_FREQ_	MeanDuration	Mean Speed_G	StdDuration	StdSpeed_G		
1	airbus	0	444	156.90332993	80.249875727	49.18828988	16.954969277		
2	boeing	0	387	152.60962427	78.731366049	47.446717931	20.582498993		

```
PROC MEANS DATA=FAA_CLEANED NOPRINT;
BY aircraft;
OUTPUT OUT=FAA_summary2 MEAN(height distance) =
MeanHeight MeanDistance
STD(height distance) = StdHeight StdDistance;
RUN;
PROC PRINT DATA=FAA_summary2;
Title Summary statistics of height and distance for each airline;
RUN;
```

Summary statistics of height and distance for each airline									
Obs	aircraft	_TYPE_	_FREQ_	MeanHeight	MeanDistance	StdHeight	StdDistance		
1	airbus	0	444	30.589221821	1323.3169623	9.8543912304	791.92824815		
2	boeing	0	387	30.307170716	1750.9832977	9.7149203775	953.85003001		

Distribution Charts:

Frequency Distribution of Height

Wednesday, November 13, 2019 09:4 Frequency Distribution of Distance

distance

Summary of Chapter 1:

- The two datasets were combined to form a single consolidated dataset. The empty rows at the end were removed.
- The duplicates in both the tables were removed before calculating percent of missing values and number of abnormal values.
- Due to high percent of missing values in Speed_Air, the observations were not removed to avoid losing other useful information.
- After detecting abnormal values and removing them, our final dataset contained 831 rows and 8
- Finally, various summary tables and charts were used to summarize the distribution of each variable.

Chapter 2: Data Visualization and Descriptive Analysis

Now after cleaning the data and performing some basic summary analysis on each variable, it's time to perform some Exploratory Data Analysis to see how these predictors relate with our response variable (distance).

The following SAS code will generate various X-Y plots:

```
PROC PLOT DATA=FAA_CLEANED;
PLOT distance*Speed_ground='*';
PLOT distance*height='*';
PLOT distance*duration='*';
PLOT distance*Speed_air='*';
PLOT distance*no_pasg='*';
PLOT distance*pitch='*';
RUN;
```


Speed Ground ### First of distance-forestion. Symbol used in **. ### First of distance-forestion. ### First of distance-forestion. ### First of distance-forestion. ### First of dista

Duration Speed Air

Looking at the above graphs, the relationship between predictor variable and some response variables like speed_air and speed_ground seem to be clear. Similar cannot be said about other predictor variables. In order to have more detailed understanding of these linear relationships, we need to compute correlation matrix.

Computing the Correlation Matrix:

In order to know which predictors are highly correlated with our response variable – distance, we need to compute the Correlation Matrix. We will build separate Correlation Matrix for each type of aircraft to see whether there is any difference between boeing and airbus.

```
PROC CORR DATA=FAA_CLEANED;

VAR Speed_Ground Speed_Air height pitch no_pasg duration distance;

TITLE Pairwise correlation coefficients;

BY aircraft;

RUN;
```

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations										
	speed_ground	speed_air	height	pitch	no_pasg	duration	distance			
speed_ground speed_ground	1.00000 444	0.98169 <.0001 85	-0.03346 0.4819 444	-0.00493 0.9176 444	0.00906 0.8491 444	-0.06055 0.2305 394	0.90520 <.0001 444			
speed_air speed_air	0.98169 <.0001 85	1.00000 85	-0.00546 0.9604 85	0.00007 0.9995 85	-0.06372 0.5623 85	0.01575 0.8918 77	0.96411 <.0001 85			
height height	-0.03346 0.4819 444	-0.00546 0.9604 85	1.00000	0.05128 0.2809 444	0.02367 0.6189 444	-0.01319 0.7941 394	0.14494 0.0022 444			
pitch pitch	-0.00493 0.9176 444	0.00007 0.9995 85	0.05128 0.2809 444	1.00000 444	-0.11802 0.0128 444	-0.04402 0.3835 394	0.07330 0.1230 444			
no_pasg no_pasg	0.00906 0.8491 444	-0.06372 0.5623 85	0.02367 0.6189 444	-0.11802 0.0128 444	1.00000	-0.02499 0.6209 394	-0.00732 0.8777 444			
duration duration	-0.06055 0.2305 394	0.01575 0.8918 77	-0.01319 0.7941 394	-0.04402 0.3835 394	-0.02499 0.6209 394	1.00000 394	-0.07851 0.1198 394			
distance distance	0.90520 <.0001 444	0.96411 <.0001 85	0.14494 0.0022 444	0.07330 0.1230 444	-0.00732 0.8777 444	-0.07851 0.1198 394	1.00000 444			

Airbus

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations										
	duration	distance								
speed_ground speed_ground	1.00000 387	0.99048 <.0001 118	-0.08263 0.1046 387	-0.04755 0.3509 387	-0.01043 0.8379 387	-0.04361 0.3922 387	0.90050 <.0001 387			
speed_air speed_air	0.99048 <.0001 118	1.00000 118	-0.12922 0.1631 118	-0.02499 0.7882 118	0.02104 0.8211 118	0.05264 0.5713 118	0.97760 <.0001 118			
height height	-0.08263 0.1046 387	-0.12922 0.1631 118	1.00000 387	0.00492 0.9232 387	0.07297 0.1519 387	0.03558 0.4852 387	0.06920 0.1743 387			
pitch pitch	-0.04755 0.3509 387	-0.02499 0.7882 118	0.00492 0.9232 387	1.00000 387	0.11215 0.0274 387	-0.02132 0.6759 387	-0.06504 0.2017 387			
no_pasg no_pasg	-0.01043 0.8379 387	0.02104 0.8211 118	0.07297 0.1519 387	0.11215 0.0274 387	1.00000	-0.05091 0.3178 387	-0.01785 0.7262 387			
duration duration	-0.04361 0.3922 387	0.05264 0.5713 118	0.03558 0.4852 387	-0.02132 0.6759 387	-0.05091 0.3178 387	1.00000 387	-0.01064 0.8347 387			
distance distance	0.90050 <.0001 387	0.97760 <.0001 118	0.06920 0.1743 387	-0.06504 0.2017 387	-0.01785 0.7262 387	-0.01064 0.8347 387	1.00000			

Boeing

Summary of Chapter 2:

In both aircraft types, the correlation of distance is high with speed_air and speed_ground and also with height although not as high as the other two. The correlation of height is however greater in 'Airbus' as compared to 'Boeing'.

A very interesting observation from the above table is that two predictor variables speed_air and speed_ground are highly correlated among themselves in each of the case which may explain why both of them are also correlated equally with distance.

Chapter 3: Statistical Modeling

After performing the above steps, we will try to fit the model that best explains our data.

Generalized form of linear regression is:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Where

 β_0 = Intercept

 β_1 = Coefficient of Speed_Air, X_1 = Speed_Air

 β_2 = Coefficient of Height, X_2 = Height

We will build the model separately for each aircraft type to see if there is any difference between the two coefficient values.

PROC REG DATA=FAA_CLEANED;

MODEL distance=Speed_Air Height;

BY aircraft;

TITLE Regression analysis of the Flights data set;

RUN;

aircraft=airbus	
Number of Observations Read	444
Number of Observations Used	85
Number of Observations with Missing Values	359

Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
Model	2	38848283	19424141	1124.06	<.0001					
Error	82	1416988	17280							
Corrected Total	84	40265270								

Root MSE	131.45469	R-Square	0.9648
Dependent Mean	2600.86007	Adj R-Sq	0.9640
Coeff Var	5.05428		

Parameter Estimates									
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	Intercept	1	-6425.58744	191.16956	-33.61	<.0001			
speed_air	speed_air	1	82.60127	1.77303	46.59	<.0001			
height	height	1	13.31185	1.46766	9.07	<.0001			

For Boeing:

aircraft=boeing	
Number of Observations Read	387
Number of Observations Used	118
Number of Observations with Missing Values	269

		Analysis of \	/ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	89619398	44809699	2379.54	<.0001
Error	115	2165596	18831		
Corrected Total	117	91784994			

Root MSE	137.22708	R-Square	0.9764
Dependent Mean	2899.87705	Adj R-Sq	0.9760
Coeff Var	4.73217		

Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	Intercept	1	-5956.13890	134.83861	-44.17	<.0001		
speed_air	speed_air	1	81.99642	1.18876	68.98	<.0001		
height	height	1	13.99719	1.39327	10.05	<.0001		

In both of the aircraft types, the coefficients of speed_air and height are coming nearly same along with very small p-values which suggest that β_1 = β_2 \neq 0. Also, the residuals seem to follow constant variance with some outliers in the predictor and response variable. The R-Square and Adj-R-Sq are coming close to 1 which is an indication that our model is good.

Since there is not much difference between our two models, we can combine them to make model for our combined dataset.

PROC REG DATA=FAA_CLEANED;
MODEL distance=Speed_Air Height;
TITLE Regression analysis of the Flights data set;
RUN;

						Analysis of variance						
Number of Observ	Number of Observations Read			Source		DF	Sum of Squares	Mean Square	F Value	Pr > F		
Number of Observations Used		203	Model		2	123925115	61962557	988.01	<.0001			
			Error		200	12542854	62714	62714				
Number of Observations with Missing Values			es 628	Corrected	Total	202	136467968					
							Parameter Est	imates				
Root MSE	250.42817	R-Square	0.9081	Variable	Label	0	Paramet F Estima			Pr > t		
Dependent Mean	2774.67289	Adj R-Sq	0.9072	Intercept	Interce	pt	1 -5935.727	77 201.3393	4 -29.48	<.0001		
Coeff Var	eff Var 9.02550			speed_air	speed_	air	1 80.4949	1.8154	5 44.34	<.0001		
	J. UZ JJU			height	height		1 12.5452	2 1.8763	8 6.69	<.0001		

Summary of Chapter 3:

The final model equation (Model 1) that was built using above variables was:

 $Y = -5935.73 + 80.49*X_1 + 12.54*X_2$, Where $X_1 = Speed_Air$ and $X_2 = Height$.

Speed_Air was used instead of speed_ground because it was performing relatively better in terms of R-Square and Residual plots. However, it comes with its own problem that there are lot of missing values in speed_air.

Another model (**Model 2**) was built which used Speed_ground as X₁ instead of Speed_air. The equation for that model comes out to be:

 $Y = -2224.76 + 41.85*X_1 + 13.72*X_2$, Where X_1 =Speed_Ground and X_2 =Height.

The R-Square for the above equation comes out to be 0.7727 which is comparatively small as compared to the previous one.

Short Answers to these Questions

1. How many observations (flights) do you use to fit your final model? If not all 950 flights, why?

831 observations were used to fit my final model. All 950 observations were not used because there were some duplicate values and abnormal values which needed to be removed because they would affect our final model.

2. What factors and how they impact the landing distance of a flight?

The major factors that look like impacting the landing distance of the flight were coming out to be – speed_air, speed_ground and height from the correlation matrix.

However, since speed_air and speed_ground was highly correlated among themselves I decided to go with speed_air alone. Also, there was not any great amount of difference between two models built for each aircraft type so it was not a considerable factor in my model.

3. Is there any difference between the two makes Boeing and Airbus?

There were some differences between the distributions of variables like distance and pitch for the two makes as seen in the Box plots and summary tables. In Correlation Matrix, the same variables were showing large values in both cases although there was some difference in the height variable. However when the variables were used in my model, there is no significant difference between the estimated coefficients.