

Break Point of an Hypothesis Set

- ullet Given an hypothesis set ${\cal H}$
- A hypothesis set \mathcal{H} shatters N points $\iff m_{\mathcal{H}}(N) = 2^N$
 - ullet There is a position of N points and a class assignment that you can classify using $h \in \mathcal{H}$
 - It does not mean all sets of N points can be classified in any way
- k is a **break point** for $\mathcal{H} \iff m_{\mathcal{H}}(k) < 2^k$
 - I.e., no data set of size k can be shattered by $\mathcal H$
 - E.g.,
 - For 2D perceptron: a break point is 4
 - For positive rays: a break point is 2
 - For positive intervals: a break point is 3
 - For convex set on a plane: there is no break point

Break Point for an Hypothesis Set and Learning

- If there is a break point for a hypothesis set \mathcal{H} , it can be shown that:
 - $m_{\mathcal{H}}(N)$ is polynomial in N
 - Instead of Hoeffding's inequality for learning

$$\Pr(|E_{in}(g) - E_{out}(g)| > \varepsilon) \le 2Me^{-2\varepsilon^2N}$$

you can use the Vapnik-Chervonenkis inequality:

$$\Pr(\text{bad generalization}) \leq 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\varepsilon^2N}$$

- Since m_H(N) is polynomial in N, it will be dominated by the negative exponential, given enough examples
- You can have a generalization bound: machine learning works!
- A hypothesis set can be characterized from the learning point of view by the existence and value of a break point

- The VC Dimension
- Overfitting
- Bias Variance Analysis

VC Dimension of an Hypothesis Set

- The VC dimension of a hypothesis set \mathcal{H} , denoted as $d_{VC}(\mathcal{H})$, is defined as the largest value of N for which $m_{\mathcal{H}}(N) = 2^N$
 - ullet I.e., the VC dimension is the most points ${\cal H}$ can shatter
- **Properties** of the VC dimension: if $d_{VC}(\mathcal{H}) = N$ then
 - ullet Exists a constellation of N points that can be shattered by ${\mathcal H}$
 - Not all sets of N points can be shattered
 - ullet If N points were placed randomly, they could not be necessarily shattered
 - \mathcal{H} can shatter N points for any $N \leq d_{VC}(\mathcal{H})$
 - The smallest break point is $d_{VC}-1$
 - The growth function in terms of the VC dimension is $m_{\mathcal{H}} \leq \sum_{i=0}^{d_{VC}} \binom{N}{i}$
 - ullet The VC dimension is the order of the polynomial bounding $m_{\mathcal{H}}$

VC Dimension: Interpretation

- The VC dimension measures the complexity of a hypothesis set in terms of effective parameters
- E.g.,
 - A perceptron in a d-dimensional space has $d_{VC} = d + 1$
 - In fact d_{VC} is the number of perceptron parameters!
 - E.g., for a 2D perceptron (d=2), the break point is 2, so $d_{VC}=3$
- The VC dimension considers the model as a black box in order to estimate effective parameters
 - How many points N a model can shatter, not the number of parameters
- Not all parameters contribute to degrees of freedom
 - E.g., combining N 1D perceptrons gives 2N parameters, but the effective degrees of freedom remain 2
- A complex hypothesis \mathcal{H} :
 - Has more parameters (higher VC dimension d_{VC})
- SCIENCE Requires more examples for training

VC Generalization Bounds

- How many data points are needed to obtain $\Pr(|E_{in} E_{out}| > \varepsilon) \le \delta$?
- The VC inequality states

$$\Pr(\text{bad generalization}) \leq 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\varepsilon^2N}$$

- N^d e^{-N} abstracts the upper bound term
 - Plot N^d e^{-N} vs. N: Power dominates for small N, exponential for large N and brings it to 0
 - Vary d (VC dimension) function peaks for larger N, then approaches
- Plot intersection of $N^a e^{-N}$ with a probability as a function of d
 - Examples N needed are proportional to d
 - Rule of thumb: $N \ge 10 d_{VC}$ for generalization

VC Generalization Bounds

The VC inequality

$$\Pr(|E_{in} - E_{out}| > \varepsilon) \le 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\varepsilon^2N}$$

can be used in several ways to relate ε , δ , and N, e.g.,

- Examples
 - "Given $\varepsilon=1\%$ error, how many examples N are needed to get $\delta=0.05$?"
 - "Given N examples, what's the probability of an error larger than ε ?"
- You can equate δ to $4m_{\mathcal{H}}(2N)e^{\frac{1}{8}\varepsilon^2N}$ and solve for ε , getting

$$\Omega(\textit{N},\mathcal{H},\delta) = \sqrt{rac{8}{\textit{N}} \ln rac{4m_{\mathcal{H}}(2\textit{N})}{\delta}}$$

- Then you can say $|E_{out} E_{in}| \leq \Omega(N, \mathcal{H}, \delta)$ with probability $\geq 1 \delta$
 - The generalization bounds are then: $\Pr(E_{out} \leq E_{in} + \Omega) \geq 1 \delta$

How to Void the VC Analysis Guarantee

- Consider the case where data is genuinely non-linear
 - E.g., "o" points in the center and "x" in the corners
- Transform to high-dimensional $\mathcal Z$ with:

$$\Phi: \underline{\mathbf{x}} = (x_0, ..., x_d) \rightarrow \underline{\mathbf{z}} = (z_0, ..., z_{\tilde{d}})$$

- $d_{VC} \leq \tilde{d} + 1$; smaller \tilde{d} improves generalization
 - Use $\underline{z} = (1, x_1, x_2, x_1x_2, x_1^2, x_2^2)$
 - Why not $\underline{z} = (1, x_1^2, x_2^2)$?
 - Why not $\underline{z} = (1, x_1^2 + x_2^2)$?
 - Why not $\underline{z} = (x_1^2 + x_2^2 0.6)$?
- Some model coefficients were zero and discarded, leaving machine learning the rest
 - VC analysis is a warranty, forfeited if data is examined before model selection (data snooping)
 - From VC analysis, complexity is that of the initial hypothesis set

- The VC Dimension
- Overfitting
- Bias Variance Analysis

Overfitting: Definition

- Overfitting occurs when the model fits the data more than what is warranted
- Surpass point where E_{out} is minimal (optimal fit)
 - Model complexity too high for data/noise
 - Noise in training set mistaken for signal
- Fitting noise instead of signal is not useless but harmful
 - Model infers in-sample pattern that, when extrapolated out-of-sample, deviates from target function

 poor generalization

Optimal Fit

- The opposite of overfitting is optimal fit
 - Train a model with the proper complexity for the data
- The optimal fit:
 - Implies that E_{out} is minimal
 - Does not imply that generalization error $E_{out} E_{in}$ is minimal (e.g., no training at all implies generalization error equal to 0)
- The generalization error is the additional error E_{out} - E_{in} you see when you go from in-sample to out-of-sample

Overfitting: Diamond Price Example

- Predict diamond price as a function of carat size (regression problem)
- True relationship:

price
$$\sim$$
 (carat size)² + ε

where:

- Square function: price increases more with rarity
- Noise: e.g., market noise, missing features
- Fit with:
 - Line
 - Underfit
 - High bias (large error)
 - Low variance (stable model)
 - Polynomial of degree
 - right fit
 - Polynomial of degree 10

Overfit (wiggly curve)Low bias

Overfitting: 2-Features Classification Example

- Assume:
 - We want to separate 2 classes using 2 features x_1, x_2
 - The class boundary of sample points has a parabola shape
- We can use logistic regression and a decision boundary equal to:
 - A line logit($w_0 + w_1x + w_2y$) \rightarrow underfit
 - High bias, low variance
 - A parabola logit $(w_0 + w_1x + w_2x^2 + w_3xy + w_4y^2) \rightarrow \text{right fit}$
 - A wiggly decision boundary logit(w_0 + high powers of x_1, x_2) \rightarrow overfit
 - Low bias, high variance

Margin in Classification

- Classification margin is the difference between the chosen class and the next predicted class
- Even if the error on training data gets to 0, one can improve out-of-sample performance by increasing the margin
 - More robust to noise

- The VC Dimension
- Overfitting
- Bias Variance Analysis

VC Analysis vs Bias-Variance Analysis

- \bullet Both VC analysis and bias-variance analysis are concerned with the hypothesis set ${\cal H}$
 - VC analysis:

$$E_{out} \leq E_{in} + \Omega(\mathcal{H})$$

Bias-variance analysis:

 $E_{out} = \text{bias and variance}$

Number of Data Points, N
Bias-Variance Analysis

Hypothesis Set and Bias-Variance Analysis

- Learning consists in finding $g \in \mathcal{H}$ such that $g \approx f$ where f is an unknown function
- The tradeoff in learning is between:
 - Bias vs variance
 - Overfitting vs underfitting
 - More complex vs less complex ${\cal H}$ / h
 - Approximation (in-sample) vs generalization (out-of-sample)

- Consider machine learning problem
 - Regression set-up: target is a real-valued function
 - Hypothesis set $\mathcal{H} = \{h_1(\underline{x}), h_2(\underline{x}), ...h_n(\underline{x})\}$
 - Training data D with N examples
 - Error is squared error $E_o ut = \mathbb{E}[(g(\underline{x}) f(\underline{x}))^2]$
 - ullet Choose the best function g from ${\mathcal H}$ that approximates f
- What is the out-of-sample error $E_{out}(g)$ as function of $\mathcal H$ for a training set of N examples?

• The final hypothesis g depends on the training set D, so we make the dependency explicit $g^{(D)}$:

$$E_{out}(g^{(D)}) \triangleq \mathbb{E}_{\mathbf{x}}[(g^{(D)}(\underline{\mathbf{x}}) - f(\underline{\mathbf{x}}))^2]$$

- We are interested in:
 - The hypothesis set \mathcal{H} rather than the specific h; and
 - In a training set D of N examples, rather than the specific D
- Therefore we Remove the dependency from D by averaging over all the possible training sets D with N examples:

$$E_{out}(\mathcal{H}) \triangleq \mathbb{E}_D[E_{out}(g^{(D)})] = \mathbb{E}_D[\mathbb{E}_{\mathbf{x}}[(g^{(D)}(\underline{\mathbf{x}}) - f(\underline{\mathbf{x}}))^2]]$$

• Switch the order of the expectations since the quantity is non-negative:

$$E_{out}(\mathcal{H}) = \mathbb{E}_{\mathbf{x}}[\mathbb{E}_{D}[(g^{(D)}(\underline{\mathbf{x}}) - f(\underline{\mathbf{x}}))^{2}]$$

- Focus on $\mathbb{E}_D[(g^{(D)}(\underline{x}) f(\underline{x}))^2]$ which is a function of \underline{x}
- Define the average hypothesis over all training sets as:

$$\overline{g}(\underline{x}) \triangleq \mathbb{E}_D[g^{(D)}(\underline{x})]$$

• Add and subtract it inside the \mathbb{E}_D expression:

$$\begin{split} E_{out}(\mathcal{H}) = & \mathbb{E}_{\underline{x}} \left[\mathbb{E}_D \left[\left(g^{(D)}(\underline{x}) - f(\underline{x}) \right)^2 \right] \right] \\ = & \mathbb{E}_{\underline{x}} \mathbb{E}_D [\left(g^{(D)} - \overline{g} + \overline{g} - f \right)^2] \\ = & \mathbb{E}_{\underline{x}} \mathbb{E}_D [\left(g^{(D)} - \overline{g} \right)^2 + (\overline{g} - f)^2 + 2 (g^{(D)} - \overline{g}) (\overline{g} - f)] \\ (\mathbb{E}_D \text{ is linear and } (\overline{g} - f) \text{ doesn't depend on } D) \end{split}$$

• The cross term:

$$\mathbb{E}_D[(g^{(D)}-\overline{g})](\overline{g}-f)$$

disappears since applying the expectation on D, it is equal to:

$$(g^{(D)} - \mathbb{E}_D[\overline{g}])(\overline{g} - f) = 0 \cdot (\overline{g} - f) = 0 \cdot \text{constant}$$

Finally:

$$\begin{split} E_{out}(\mathcal{H}) &= \mathbb{E}_{\underline{\mathbf{x}}}[\mathbb{E}_D[(g^{(D)} - \overline{g})^2] + (\overline{g}(\underline{\mathbf{x}}) - f(\underline{\mathbf{x}}))^2] \\ &= \mathbb{E}_{\underline{\mathbf{x}}}[\mathbb{E}_D[(g^{(D)} - \overline{g})^2]] + \mathbb{E}_{\underline{\mathbf{x}}}[(\overline{g} - f)^2] \quad (\mathbb{E}_{\underline{\mathbf{x}}} \text{ is linear}) \\ &= \mathbb{E}_{\underline{\mathbf{x}}}[\text{var}(\underline{\mathbf{x}})] + \mathbb{E}_{\underline{\mathbf{x}}}[\text{bias}(\underline{\mathbf{x}})^2] \\ &= \text{variance} + \text{bias} \end{split}$$

Interpretation of Average Hypothesis

• The average hypothesis over all training sets

$$\overline{g}(\underline{\mathbf{x}}) \triangleq \mathbb{E}_D[g^{(D)}(\underline{\mathbf{x}})]$$

can be interpreted as the "best" hypothesis from ${\cal H}$ training on ${\it N}$ samples

- Note: \overline{g} is not necessarily $\in \mathcal{H}$
- In fact it's like ensemble learning:
 - Consider all the possible data sets D with N samples
 - Learn g from each D
 - Average the hypotheses

Interpretation of Variance and Bias Terms

• The out-of-sample error can be decomposed as:

$$E_{out}(\mathcal{H}) = bias^2 + variance$$

- ::: columns :::: {.column width=60%}
 - Bias term

$$\mathsf{bias}^2 = \mathbb{E}_{\underline{\boldsymbol{x}}}[(\overline{\boldsymbol{g}}(\underline{\boldsymbol{x}}) - f(\underline{\boldsymbol{x}}))^2]$$

- Does not depend on learning as it is not a function of the data set D
- ullet Measures how limited ${\cal H}$ is
 - ullet I.e., the ability of ${\cal H}$ to approximate the target with infinite training sets
- Variance term

variance =
$$\mathbb{E}_{\mathbf{x}} \mathbb{E}_{D}[(g^{(D)}(\underline{\mathbf{x}}) - \overline{g}(\underline{\mathbf{x}}))^{2}]$$

- Measures variability of the learned hypothesis from D for any x
 - With infinite training sets, we could focus on the "best" g, which is \overline{g}
 - But we have only one data set *D* at a time, incurring a cost :::: :::: {.column width=35%}

