브레드보드 연결구조

https://codedragon.tistory.com/2437?category=120760

<이미지참고> https://codedragon.tistory.com/2437?category=120760

<이미지참고> https://kocoafab.cc/data/150116115147.png

LED Red DataSheet

http://www.farnell.com/datasheets/2861524.pdf

MCL053SRD

LED, Red, Through Hole, T-1 3/4 (5mm), 20 mA, 1.85 V, 643 nm

Parameter	Symbol	M	inimum	ı	Typical	M	aximur	n	Unit	Test
Forward Voltage	VF		1.5		1.85		2.5		V	IF = 20mA

<이미지참고> https://kr.element14.com/multicomp-pro/mcl053srd/led-5mm-36-super-red/dp/1581135?MER=sy-me-pd-mi-alte

<이미지참고> https://cdn.shopify.com/s/files/1/2822/2674/products/led_pinout_3a06d668-5766-4192-9e54-d0ab3b8a0692_1024x1024.png?v=1571711100

E-Switch DataSheet

https://kr.mouser.com/datasheet/2/140/P090002-267756.pdf

AA 건전지 DataSheet

https://data.energizer.com/pdfs/e91.pdf

ENERGIZER E91

1.5 volts Nominal Voltage:

Specifications

Classification: Alkaline

Chemical System: Zinc-Manganese Dioxide (Zn/MnO₂)

No added mercury or cadmium

Designation: ANSI-15A, IEC-LR6

Nominal Voltage: 1.5 volts

Nominal IR: 150 to 300 milliohms (fresh)
Operating Temp: -18°C to 55°C (0°F to 130°F)

Typical Weight: 23.0 grams (0.8 oz.)

Typical Volume: 8.1 cubic centimeters (0.5 cubic inch)

Jacket: Plastic Label
Shelf Life: 10 years at 21°C
Terminal: Flat Contact

브레드보드 위치

건전지(AA) 1.5V 2개 버튼 스위치 330Ω 1개

<이미지참고> https://www.tinkercad.com/

건전지(AA) 1.5V 1개 버튼 스위치 330Ω 1개

건전지(AA) 1.5V 1개 버튼 스위치 330Ω 1개

건전지(AA) 1.5V **2**개 버튼 스위치 330Ω 1개

건전지(AA) 1.5V 2개 버튼 스위치 330Ω 1개

<이미지참고> https://www.tinkercad.com/

건전지(AA) 1.5V 1개 버튼 스위치 330Ω 1개

<이미지참고> https://www.tinkercad.com/

건전지(AA) 1.5V 1개 버튼 스위치 330Ω 1개

<이미지참고> https://www.tinkercad.com/

건전지(AA) 1.5V 1개 버튼 스위치 330Ω 1개

<이미지참고> https://www.tinkercad.com/

실험 정리

$$20mA = 0.02A$$

20mA = 0.02A

실험 정리

$$1V = (0.02A) * (?\Omega)$$

 $1V / (0.02A) = * (?\Omega)$

20mA = 0.02A

= 약 1V

$$(?\Omega) = 1 \text{ / } (0.02\text{A})$$

= 1 / (2/100)
= 1 * (100/2)
= 50

실습에선 330Ω을 사용했음

<이미지참고> https://www.tinkercad.com/

실험 5 ● 엔트리 v2.0.36 \times 파일 편집 도움말 $e{n}t{r}y$ 210707_작품 ? - | 🔥 🤌 × 장면 1 블록코딩 (·) 불록 모양 X:236,8, Y:-123,0 엔트리파이선 # 엔트리봇 오브젝트의 파이선 코드 Ö def when_start(): import Entry def when_press_key(Q ▼): 흐름 4 4 def when_click_mouse_on(): def when_start(): 움직임 while True: 6 def when_click_mouse_off(): * Arduino.pin_digital(13, "on") 생김새 Entry.wait_for_sec(2) def when_click_object_on(): / 붓 Arduino.pin_digital(13, "off") × def when_click_object_off(): Entry.wait_for_sec(2)

조도센서

CDS특성

- 1. 감도
 - -빛의 파장에 따라 감도가 다름
- 2. 허용손실
 - -비교적 큰 전류를 흘릴 수 있음
- 3. 암 전류
 - -빛이 없어도 약간의 전류가 흐름
- 4. 명 전류
 - 빛을 비추면 흐르는 전류
- 5. 응답특성
 - 응답 시간 지연
 - 빛의 세기에 따라 응답시간 다름
- 6. 가변저항
 - -빛에 따른 가변저항

- <이미지참고> https://2.bp.blogspot.com/-rM3AcVshwnw/Vpg0lqm74ol/AAAAAAAAASY/f0T9mbqAQtl/s1600/S-0200.jpg
- <이미지참고> https://2.bp.blogspot.com/-s8StDQO9MAI/Vpg0zUrQd-I/AAAAAAAAAAGg/W11-hu9nqKw/s1600/cds2.png

조도센서

조도센서

엔트리봇 오브젝트의 파이선 코드

```
시작하기 버튼을 클릭했을 때
import Entry
                           LED ▼ 를 0 (으)로 정하기 ?
self.LED = 0
                           계속 반복하기
                             LED ▼ 를
                                           아날로그
                                                0 ▼ 번 센서값
                                   1023
                                                         / 1023
                                                                x 255
                                                                       (으)로 정하기
def when start():
                            디지털 (11 ▼ ) 번 핀을 (LED ▼ 값 (으)로 정하기 🤣
     self.LED = 0
    while True:
         self.LED = 1023 - Arduino.sensor value("A0") / 1023 * 255
         Arduino.set pin digital(11, self.LED)
```

스케일링

전류

https://youtu.be/cxkVxi9P0EA

<참고>https://youtu.be/cxkVxi9P0EA?t=66

전류

https://kocoafab.cc/tutorial/view/348

금속의 원자 원자사이의 자유전자의 이동

- <이미지참고> https://kocoafab.cc/data/150116043334.png
- <이미지참고> https://kocoafab.cc/data/150116043355.png

플로팅(Floating) 풀업(PULL-UP) 풀다운(PULL-DOWN)

https://kocoafab.cc/tutorial/view/526

<이미지참고> http://kocoafab.cc/data/201510051442154704.jpg

<이미지참고> http://kocoafab.cc/data/201510051626173888.jpg

<이미지참고> http://kocoafab.cc/data/201510051724506543.jpg

http://kocoafab.cc/data/201510051641337951.jpg

http://kocoafab.cc/data/201510051729021246.jpg