密码学多签系列

第5课: Li17两方签名与密钥刷新

lynndell 博士

新火科技 密码学专家 lynndell2010@gmail.com

目录

密码学基础系列

- 1. 对称加密与哈希函数
- 2. 公钥加密与数字签名
- 3. RSA、环签名、同态加密
- 4. 承诺、零知识证明、BulletProof 范围证明、Diffie-Hellman 密钥协商

多签系列

- 5. Li17 两方签名与密钥刷新
- 6. GG18 多方签名
- 7. GG20 多方签名
- 8. CMP20 多方签名
- 9. DKLs18 两方/20 多方签名
- 10. Schnorr/EdDSA 多方签名

zk 系列

- 11. Groth16 证明系统
- 12. Plonk 证明系统
- 13. UltraPlonk 证明系统
- 14. SHA256 查找表技术
- 15. Halo2 证明系统
- 16. zkSTARK 证明系统

1.预备知识

1.1 Paillier 同态加密

困难假设 1: 因子分解困难问题

对于两个长度相等的大素数 p,q, $p \neq q$, 计算 $N = p \cdot q$ 。 公开 N , 求 p,q 是困难的。 需要指数时间暴力搜索,在多项式时间内不可行。

困难假设 2: 判决复合冗余 Decisional Composite Residuosity (DCR)困难问题

不存在概率多项式时间攻击者 \mathcal{A} 能够以不可忽略的优势概率区分以下 2 个分布

$$\{[N,c], c = r^N \mod N^2\}, \{[N,c], c = g^m \cdot r^N \mod N^2\}$$

其中, $m, r \in \mathbb{Z}_N, N = p \cdot q, g = N + 1$ 。

密钥生成: 生成两个长度相同的**大素数** p,q ,满足 $\gcd(pq,(p-1)(q-1))=1$,该性质确保 这两个素数长度相同;计算 $N\coloneqq pq$,最小公倍数 $\lambda=lcm(p-1,q-1)$;分式除法函数 L(y)=(y-1)/N;选择正整数 $g=1+N\in Z_{N^2}^*$,使得 $\mu=\left(L(g^\lambda\bmod N^2)\right)^{-1}\bmod N$ 存在。公钥为 N ,私钥为 p,q 或 λ 。

加密: 消息 $m \in Z_N$, 选择随机数 $r \in Z_N^*$, 计算密文 $c := g^m \cdot r^N \mod N^2$ 。

解密: 输入密文 $c \in Z_{N^2}$, 如下计算解密 $m \coloneqq L(c^{\lambda} \mod N^2) \cdot \mu \mod N$ 。

$$c = g^{m} \cdot r^{n} \mod n^{2}$$

$$c^{\lambda} \mod n^{2} = g^{\lambda m} \cdot r^{\lambda n} \mod n^{2} = g^{\lambda m} \cdot 1 \mod n^{2} = (1+n)^{m\lambda} \mod n^{2} = 1 + nm\lambda \mod n^{2}$$

$$g^{\lambda} \mod n^{2} = (1+n)^{\lambda} \mod n^{2} = 1 + n\lambda \mod n^{2}$$

$$L(c^{\lambda} \mod n^{2}) = \frac{c^{\lambda} \mod n^{2} - 1}{n} = m\lambda \mod n^{2}$$

$$L(g^{\lambda} \mod n^{2}) = \frac{g^{\lambda} \mod n^{2} - 1}{n} = \lambda \mod n^{2}$$

$$m = \frac{L(c^{\lambda} \mod n^{2})}{L(g^{\lambda} \mod n^{2})} \mod n$$

同态性: 给定两个密文 $c_1, c_2 \in Z_{N^2}$, $c_1 = Enc_{nk}(m_1), c_2 = Enc_{nk}(m_2)$

● 定义密文同态加法 ⊕

$$c_1 \oplus c_2 = c_1 c_2 \mod N^2 = g^{m_1 + m_2} \cdot (r_1 r_2)^N \mod N^2$$

因此, $c_1 \oplus c_2 = c_1 c_2 \mod N^2 = Enc_{pk}(m_1 + m_2 \mod N)$ 。

● 给定 $a \in Z_N, c = Enc_{pk}(m)$, 定义随机数与密文的同态乘法⊗:

$$a \otimes c = c^a \mod N^2 = g^{am} \cdot (r^a)^N \mod N^2 = Enc_{nk}(a \cdot m \mod N)$$

1.2 ECDSA

初始化: 椭圆曲线生成元为G,群的阶 $|F_r|$;标量域为 F_r ,基域为 F_q 。 **横纵经**称取值室阅

密钥生成: 输入安全参数 λ , 输出私钥 $x \in F_r$ 和公钥 PK , 且满足以下离散对数关系

$$PK = x \cdot G$$

签名: 输入任意消息 M ,计算 $m \coloneqq Hash(M)$ 选择随机数 $k \in F_r$,计算 $R \coloneqq k \cdot G$,取 R mod $|f_V|$

横坐标为 $r \coloneqq R_x \mod |F_r|$; 计算 $s \coloneqq k^{-1}(m+xr) = (k^{-1}m+k^{-1}xr) \mod |F_r|$,则签名为 (r,s)。

ECDSA 目标 1 计算: $R := k \cdot G$

ECDSA 目标 2 计算: $s := k^{-1}(m + xr) = k^{-1}m + k^{-1}xr$

验证: 输入消息M, 计算 $m \coloneqq Hash(M)$; 校验 $r,s \in F_r$, 计算 $R' \coloneqq (s^{-1}m) \cdot G + (s^{-1}r) \cdot PK$,

取 R' 横坐标为 $r' := R' x \mod |F_r|$; 校验 r == r'。如果相等,则接受,否则拒绝。

公式推导过程如下:

$$R' = (s^{-1}m) \cdot G + (s^{-1}r) \cdot PK$$
$$= (s^{-1}m) \cdot G + (s^{-1}rx) \cdot G$$
$$= (s^{-1}(m+rx)) \cdot G$$
$$= k \cdot G$$

ECDSA 的验证本质:

$$s = k^{-1}(m + xr)$$

$$k = s^{-1}(m + xr)$$

$$k \cdot G = s^{-1}m \cdot G + s^{-1}xr \cdot G$$

$$R = s^{-1}m \cdot G + s^{-1}r \cdot PK$$

检测 $(r, |F_r| - s)$ 是否为合法的签名:

$$|F_r| - s = k^{-1}(m + xr)$$

$$k(|F_r| - s) = (m + xr)$$

$$k(|F_r| - s) \cdot G = m \cdot G + xr \cdot G$$

$$-ks \cdot G = m \cdot G + r \cdot PK$$

$$-R = s^{-1}m \cdot G + s^{-1}r \cdot PK$$

计算出-R, **纵坐标是负的无所谓,**取横坐标得到的就是 $r' := R'_x \mod |F_r|$, 校验

r == r'。如果相等,则接受,否则拒绝。因此, $(r, |F_r| - s)$ 是合法签名。既然有 2 个合

法签名,所以 Li17/BTC/ETH 等系统均计算 $s = \min\{s', |F_r| - s'\}$,两个签名,确定一个小的作为正确签名,另外一个大的是错误签名。

1.3 零知识证明

椭圆曲线密码学

1.3.1 zk-Schnorr 证明知道 ECC 私钥

zk-Schnorr 证明协议 A 版

(Elliptic Curve Cryptography)

证明方的私钥为sk, 公钥为PK, 满足离散对数关系 $PK = sk \cdot G$ 。

- 1: (**承诺**) 选择随机数 $r \in F_r$, 计算 $R := r \cdot G$;
- 2: (挑战) 计算随机数 $c := hash(PK, R) \mod |F_r|$;
- 3: (响应)计算 $z = r + c \cdot sk \mod |F_r|$,发送 (R, z);

△> 右横,纵坐标

4: (验证) 计算随机数 $c := hash(PK, R) \mod |F_r|$,校验 $z \cdot G \Longrightarrow R + c \cdot PK$ 。 公式推导:

$$z \cdot G = (r + c \cdot sk) \cdot G = R + c \cdot PK$$

zk-Schnorr 证明协议 B 版

证明方的私钥为sk, 公钥为PK, 满足离散对数关系 $PK = sk \cdot G$ 。

- 1: (承诺) 选择随机数 $r \in F_r$, 计算 $R := r \cdot G$;
- 2: (挑战) 计算随机数 $c := hash(PK, R) \mod |F_r|$;
- 3: (响应) 计算 $z := r + c \cdot sk \mod |F_r|$, 发送 (c, z);
- 4: (验证) 计算 $R := z \cdot G c \cdot PK$, 校验 $c == hash(PK, R) \mod |F_r|$ 。

图 1. 交互式 Schnorr 协议

z*G == R + c*PK

private: sk=a public: PK

public : PK=a*G

random : r

$$R = r*G$$

$$c = hash(PK, R)$$

$$z = r + c*sk$$

$$verify:$$

$$c = hash(PK, R)$$

$$z*G == R + (c*PK)$$

Bob

图 2. 非交互式 Schnorr 协议 A版

public: PK private: sk=a

public : PK=a*G

random : r

$$R = r*G$$

$$c = hash(PK, R)$$

$$z = r + c*sk$$

$$verify:$$

$$R = z*G - (c*PK)$$

$$c == hash(PK, R)$$

图 3. 非交互式 Schnorr 协议 B版

gcd (N, Q(N)) = 1

1.3.2 zk-Paillier-N 证明知道 Paillier 私钥

1.3.2.1 预备知识 1: 初等数论

(1) 原根 g 存在性

成立的最小整数(P(P)

设 g 为模数 p 的一个原根,原根满足 $g^{\varphi(p)} \equiv 1 \mod p$,则 $g^x, g^{x+1}, ..., g^{x+p-2}$ 在模 p 对应 [1,p-1]中的每一项。

素数 p 必定有原根 g。

原根 g 的求解方法:

根据费马小定理 $g^{p-1} \equiv 1 \mod p$, 则枚举 g;

然后枚举 p-1 的质因子 Δ ; 如果 $g^{\frac{p-1}{\Delta}} \equiv 1 \mod p$,则不是原根,否则原根。

分析: ①如果 $g^{\frac{p-1}{\Delta}} \equiv 1 \mod p$,则 $\frac{p-1}{\Delta} < \varphi(p)$,与原根定义 $\varphi(p)$ 最小矛盾。

②原根通常很小,枚举g是可行的。大多数原根在300以内.

(2) BSGS 算法 (Baby-Step Giant-Step)

g与 p 互素, g 是原根,则同余方程 $g' \equiv a \mod p$,能够快速求 t,计算复杂度 $O(\sqrt{p})$ 。

求解方法: 选择 $A,B \in [0,\sqrt{p}]$, 令 $t = A[\sqrt{p}] - B$ 带入同余方程

$$g^{A\left\lceil\sqrt{p}\right\rceil-B} \equiv a \bmod p$$

同余方程转换为

$$g^{A\lceil \sqrt{p} \rceil} \equiv ag^B \bmod p$$

已知g,a,枚举A,B计算同余方程两边的取值,存入表中。如果表中的值发生碰撞,则找到方程的解。因此,计算复杂度为 $O(\sqrt{p})$ 。

(3) 同余方程

定理: 如果 gcd(N,(p-1))=1,则同余方程 $Ny_1 \equiv t \mod(p-1)$ 有唯一解。

证明: 因为gcd(N,(p-1))=1, 所以根据**欧拉定理**

$$N^{\phi(p-1)} \equiv 1 \mod(p-1)$$

$$N^{\phi(p-1)-1+1} \equiv 1 \mod(p-1)$$

$$N \cdot N^{\phi(p-1)-1} \equiv 1 \mod(p-1)$$

$$N \cdot N^{-1} \equiv 1 \mod(p-1)$$

则 存 在 模 反 逆 元 $N^{-1} = N^{\varphi(p-1)-1}$ 。 模 反 逆 元 N^{-1} 满 足 $NN^{-1} \equiv 1 \operatorname{mod}(p-1)$, 令 $y_1 = N^{-1}t \operatorname{mod}(p-1)$, 则 y_1 是方程 $Ny_1 \equiv t \operatorname{mod}(p-1)$ 的一个解。如果还有另外一个解 y_1 ',则 $Ny_1 \operatorname{mod}(p-1) \equiv t \operatorname{mod}(p-1) \equiv Ny_1 \operatorname{mod}(p-1)$ 。 因 为 $\operatorname{gcd}(N,(p-1)) = 1$, 所 以 $y_1 \equiv y_1 \operatorname{mod}(p-1)$ 两个解相等。因此,解是唯一的。

♥(4) N 次剩余

令 $m \ge 2$, $\gcd(a,p)=1$, $N \ge 2$,如果同余方程 $x^N \equiv a \bmod p$ 有解 x,则称 a 是模 p 的 N 次剩余,否则 a 是模 p 的 N 次非剩余。

定理: 设原根为g,则同余方程 $x^N \equiv a \mod p$ 能够求解,且解唯一。

求解方法: 设 $x_1 \mod p$ 是同余方程 $x^N \equiv a \mod p$ 的解,由于 $\gcd(a,p)=1$,则 $\gcd(x_1^N,p)=1$,则 $\gcd(x_1,p)=1$ 。因此,存在 y_1 满足

$$x_1 \equiv g^{y_1} \bmod p$$

则有

力什仏有 mod (p-1)
$$x_1^N = g^{\frac{Ny_1 \mod (p-1)}{2}} \equiv a \mod p$$

构造同余方程 $g^t \equiv a \bmod p$,使用 **Baby-Step Giant-Step 算法**计算唯一解 t 。 所以有

$$g^{Ny_1 \operatorname{mod}(p-1)} \equiv g^t \operatorname{mod} p$$

因此,同余方程 $Ny_1 \equiv t \mod(p-1)$ 求解唯一 y_1 后,则能够求解唯一 x_1 。

1.3.2.2 预备知识 2: ns 次方证明协议

双方公共输入为n,s,u;

证明方知道秘密v,满足关系 $u = v^{n^s} \mod n^{s+1}$,或证明知道u的 n^s 次根是v。

证明方	验证方
承诺: 选择随机数 $r \in \{0,,n^{s+1}\}$, 计算	
$a = r^{n^s} \mod n^{s+1}$; 发送 a	
	挑战: 选择 k-bit 的随机数 e; 发送 e
响应: 计算 $z := rv^e \mod n^{s+1}$; 发送 z	

校验:
$$z^{n^s} == au^e \mod n^{s+1}$$

分析:看作 Sigma 协议的具体实例,都是 4 步骤:承诺、挑战、响应、验证。

公式推导: $au^e \mod n^{s+1} = r^{n^s} v^{n^s \cdot e} \mod n^{s+1} = (rv^e)^{n^s} \mod n^{s+1} = z^{n^s}$

1.3.2.3zk-Paillier-N 证明知道 Paillier 私钥

或证明拥有正确的 Paillier 密钥对,即 $N \subseteq \varphi(N)$ 互素, $\gcd(N, \varphi(N)) = 1$ 。

证明方	验证方
生成 Paillier 私钥 $\lambda = \varphi(N)$ 和公钥 N 。	
发送 Paillier 公钥 N。	选择随机数 y ,基于 Paillier 公钥 N 计算 $x = y^N \mod N^2$;使用 n^s 次方证明协议 $(s=1)$ 证明其知道 x 的 N 次根是 y ,生成 $proof$;发送 x , $proof$;
校验 $proof$; 因为 $gcd(N, \varphi(N))=1$, 所以可以 N 次剩余求解,使用 Paillier 私钥 $\varphi(N)$ 计算 x 的 N 次根 y' ; $gcd(N, (P^{-1}))=$ 分析: 如果不知道 Paillier 私钥,无法 N 次剩余求解;如果 Paillier 密钥对错误,则 N 次剩余无法求解。	$z = y^{N} \mod N^{2} \qquad \gcd(z, N^{2}) = 1$
	接收 y' ; 校验 $y'==y$ 。校验成功,则确保对方知道 Paillier 私钥。

分析:看作 Sigma 协议的具体实例,都是 4 步骤:承诺、挑战、响应、验证。

1.2 1.3.3 zk-Paillier-Enc 证明加密 ECC 私钥且 ECC 私钥范围正确

ECC 私钥 256bit; Paillier 加密 2048bit 数据,空间更大。

初始化:椭圆曲线生成元为G,标量域为 F_r ,基域为 F_q ; **鲜的**剂[私]

证明方拥有的保密信息为 Paillier 私钥 sk 和 ECC 私钥 x_1 ,满足运算关系

$$c_{kev} = Enc_{pk}(\mathbf{x}_1), Q_1 = \mathbf{x}_1 \cdot G, \mathbf{x}_1 \in F_r$$

证明方	验证方
①生成 Paillier 密钥对为(pk,sk)和 ECC 密	
钥对 (\mathbf{x}_1, Q_1) , 其中 $Q_1 = \mathbf{x}_1 \cdot G$;	
②计算 Paillier 加密 $c_{key} = Enc_{pk}(x_1)$;	
发送 c_{key}, pk, Q_1 ;	
	接收 $c_{key}, pk, Q_1;$
	①选择2个随机数 $a \in F_r, b \in F_{r^2}$, 计算 Paillier
	加密 $c_b \coloneqq Enc_{pk}(b)$;
	②同态计算
	$c' := (a \otimes c_{key}) \oplus c_b = Enc_{pk}(ax_1 + b)$
	③计算承诺与打开承诺 $(C_1, D_1) := Com(a, b)$
	④计算 $Q' := a \cdot Q_1 + b \cdot G$;
	分析: (1) c _{key} 关联 x _l ;
	(2) $Q' = a \cdot Q_1 + b \cdot G = (ax_1 + b) \cdot G$ 证明方
	的公钥 Q_1 关联 x_1 ,且 Q' 对应的私钥为
	$ax_1 + b$.
	发送密文 c '和承诺 C_1 ;
接收密文 c '和承诺 C_1 ;	
② 解密 $\alpha := Dec_{sk}(c') = ax_1 + b$	
②计算 $\hat{Q} := \alpha \cdot G = (a\mathbf{x}_1 + b) \cdot G$;	
分析: \hat{Q} 关联的 x_1 来自 c_{key} ;	
③计算承诺与打开承诺 $(C_2, D_2) := Com(\hat{Q})$	
5 ć né f 值 发送承诺 C_2 ;	

	接收承诺 C_2
	发送 打开承诺 <i>D</i> ₁ ;
获得 打开承诺 <i>a</i> , <i>b</i> ;	
①校验 $\alpha == a \cdot x_1 + b$;	
② zk 范围证明: $ZK\left\{x_1 \middle x_1 \in F_r\right\}$, 生成	
proof; (Paillier 能够加密 1024bit, 而离散	
对数中的 x ₁ 仅 256bit)。	
发送打开承诺 D_2 和 $proof$	
	接收 \hat{Q} 和 $proof$;
	校验 $proof$,确保 x_1 范围正确;
	$\hat{Q} = Q'$,确保 c_{key} 中的 x_1 等于 Q_1 中的 x_1 ;
	分析: 左边 \hat{Q} 关联的私钥 x_1 来自 c_{key} ,
	右边 $Q' = a \cdot Q_1 + b \cdot G$ 关联私钥 x_1 来自 Q_1 ;

分析: 看作 Sigma 协议的扩展版

1.3 1.3.4 zk-RangeProof 范围证明【基础版】

Boudot F. Efficient proofs that a committed number lies in an interval [C]//Eurocrypt. 2000, 1807: 431-444.

Section1.2.2

说明:基础版有负数空间,升级版是正数空间。

应用场景: 大数的范围证明,发表于 2000,而不是 ECC 的 Pedersen 承诺信息中的 BulletProof 2018。BlletProof 2018 的 size 更短。使用向量内积承诺计算折半响应,降低 size。

初始化: 1024bit 的大素数 p ,1023bit 的大素数 q ,且 $q \mid p-1$ 。 g,h 为群的生成元,阶为 q 。秘密 x 的承诺为 $E=E(x,r)=g^x\cdot h^r \bmod p$,其中,随机数 $r\in Z_p^*$ 。

Alice 秘密为x,证明秘密属于某个范围 $x \in [-b,2b]$ (有负数空间)。

证明方	验证方
承诺: ①选择正随机数 $\omega_l \in [0,b]$, 其中 b	
为 512bit,计算负随机数	
$\omega_2 := \omega_1 - b \in [-b, 0]$	
②选择两个随机数 $\eta_1,\eta_2\in[0,q-1]$, 计	
算 2 个 Pedersen 承诺	
$W_1 := g^{\omega_1} h^{\eta_1} \bmod p$	
$W_2 \coloneqq g^{\omega_2} h^{\eta_2} \bmod p$	
发送 Pedersen 承诺 W_1, W_2 。	
	挑战:发送随机位 $c \in \{0,1\}$;
响应: ①如果 $c = 0$,则发送打开 Pedersen 承诺	
$\omega_1, \omega_2, \eta_1, \eta_2;$	
②如果 $c == 1$,则对 $x \in [-b, 2b]$ 寻找	
$j \in \{1,2\}$,满足范围 $x + \omega_j \in [0,b]$,计算	
响应 $u := \mathbf{x} + \omega_j, v := r + \eta_j$,发送 u, v ;	
分析: 存下以下3种情况: 对于	
有负数空间的 $x \in [-b, 2b]$	
如果 $x \in [-b,0]$, 则需要使用 $\omega_{\mathbf{l}} \in [0,b]$,	
使得 $x+\omega_j \in [0,b]$;	
如果 $x \in [b, 2b]$,则需要使用 $\omega_2 \in [-b, 0]$,	
使得 $x+\omega_j \in [0,b]$;	
如果 $x \in [0,b]$,则需要使用 $\omega_{l} \in [0,b]$ 或	
$\omega_2 \in [-b,0]$, $\notin \{x+\omega_j \in [0,b]$.	
	验证:

①如果 $c=0$,则接收 Pedersen 打开承诺
$\omega_{\!\scriptscriptstyle 1},\omega_{\!\scriptscriptstyle 2},\eta_{\!\scriptscriptstyle 1},\eta_{\!\scriptscriptstyle 2}$, 校验 Pedersen 打开承诺
$W_1 == g^{\omega_1} h^{\eta_1} \mod p, W_2 == g^{\omega_2} h^{\eta_2} \mod p$
作用: Pedersen 打开承诺一致性,确保
ω_1,ω_2 范围是正确的,且没泄露秘密 x,r ;
②如果 $c == 1$,则接收到 u,v ,则校验承诺
$E \cdot W_j == g^u h^v \mod p$,范围校验 $u \in [0, b]$ 。
公式推导:
$g^u \cdot h^v = g^{x+\omega_j} \cdot h^{r+\eta_j}$
$= (g^{x}h^{r}) \cdot (g^{\omega_{j}}h^{\eta_{j}}) = E \cdot W_{j}$
作用: 范围校验 $u \in [0,b]$ 确保 x 的范围正
确,且随机数 ω_j 对 x 随机化,实现零知识。

分析:看作 Sigma 协议的具体实例,都是 4 步骤:承诺、挑战、响应、验证。

分析: c=0 确保随机数 ω_j 范围正确性,c=1确保x 范围正确性。该协议**并行运行** t=40 次,则证明方作弊且全都成功的概率为 2×2^{-t} ,概率忽略。

反之,校验 t=40 次全正确,则证明方每次都诚实执行协议,且x范围正确。

1.4 1.3.5 zk-RangeProof*范围证明【升级版】

令 $l = \lfloor q/3 \rfloor$, $x \in \{0,...,l\}$ 。双方知道 $|F_r|, l = |F_{r/3}|, t = 40$ 次,令 $i = \{1,...,t\}$;

zk 范围证明 $zk\{x \in F_r\}$ (正数空间)。

证明方	验证方
①生成 Paillier 密钥对 $(N, \varphi(N))$;	
②选择随机数 $r_0 \in \mathbb{Z}_n$, 对 ECC 私钥 x 进行	
Paillier 加密 $c = Enc_{pk}(x, r_0)$; 发送 (c, N)	
	选择位宽为 t 的随机数
	$e \leftarrow \{0,1\}^t, e = \{e_1,,e_t\}$, 计算承诺与打
	开承诺 $(C_1,D_1) := Com(e)$,发送承诺 C_1 ;

①选择 t 个大随机数 $w_1^l,...w_1^l \leftarrow \{l,...,2l\}$,

计算 t 个小随机数 $w_2^i := w_1^i - l \in \{0,...,l\}$;

②将大小随机数 wi, wi 以 1/2 的概率进行随

机互换 $w_1^i \rightleftharpoons w_2^i$;

③选择随机数 $r_1^i, r_2^i \in Z_N$,计算 Paillier 加密

$$c_1^i := Enc_{pk}(w_1^i, r_1^i),$$

$$c_2^i := Enc_{pk}(w_2^i, r_2^i)$$

发送密文承诺 c_1^i, c_2^i 。

接收 c_1^i, c_2^i ,则发送打开承诺 D_1 ;

接收 $e = \{e_1, ..., e_t\}$ 。

①如果 $e_i == 0$,则**发送** $z_i = (w_1^i, r_1^i, w_2^i, r_2^i)$;

②如果 $e_i == 1$,则寻找 $j \in \{1,2\}$ 使得

 $u = x + w_i^i \in \{l, ..., 2l\}$ 成立,发送

 $z_i := (j, \mathbf{u}, r_0 \cdot r_i^i \mod N)$.

分析: $w_1^i \leftarrow \{l,...,2l\}, w_2^i \leftarrow \{0,...,l\}$ 且

 $x \in \{0,...,l\}$, 所以存在 $u \in \{l,...,2l\}$

根据 e_i 解析出 z_i 。

① 如果 $e_i == 0$,则接收到

 $z_i = (w_1^i, r_1^i, w_2^i, r_2^i)$,校验密文承诺

$$c_1^i == Enc_{pk}(w_1^i, r_1^i)$$

$$c_2^i == Enc_{pk}(w_2^i, r_2^i)$$

且 (w_1^i, w_2^i) 中的一个属于 $\{l, ..., 2l\}$, 另一

个属于 $\{0,...,l\}$; 作用:承诺打开一致性,

两个随机数都打开,确保 (w_1^i,w_2^i) 范围是正确的。
② 如 果 $e_i == 1$, 则 接 收 到 $z_i = (j,u,r_0 \cdot r_j^i \mod N)$,则**同态校验** $c \oplus c_j^i = Enc_{pk}(x,r_0) \oplus Enc_{pk}(w_j^i,r_j^i)$ $= Enc_{pk}(u,r_0 \cdot r_j^i)$ 且**范围校验** $u \in \{l,...,2l\}$ 。
作用: (1) paillier 同态校验,确保打开承诺正确; (2) u 范围正确,则确保x 的范围正确性。(3) 随机数 ∞ 是对x 随机化,实现零知识。

分析: 看作 Sigma 协议的扩展版

该协议**并行运行 t=40 次**,则证明方作弊且全都成功的概率为 2×2^{-t} ,概率可忽略。反之,如果校验 t=40 次全正确,则证明方每次都诚实执行协议,且x范围正确。

1.4 Diffie-Hellman 密钥交换系列

1.5 1.4.1 Diffie-Hellman 密钥交换(诚实版)

Alice	Bob
生成私钥 $x_1 \in F_r$, 计算公钥 $Q_1 = x_1 \cdot G$;	生成私钥 $x_2 \in F_r$, 计算公钥 $Q_2 = x_2 \cdot G$;
发送 <i>Q</i> ₁ ;	发送 Q_2 ;
接收 Q_2 ,计算 $Q_{common} := x_1 \cdot Q_2$	接收 Q_1 ,计算 $Q_{common} \coloneqq x_2 \cdot Q_1$
协商结果: $Q_{common} \coloneqq x_1 x_2 \cdot G$	

因此,Alice 与 Bob 计算出相同的**公共密钥** $Q_{common}=x_1x_2\cdot G$,也能计算用于对称加密的**会** 话密钥 $key=hash(nonce,Q_{common})$ 。

如果Q公开,则称为公共公钥;对应的 x_1x_2 ,称为公共私钥(不出现)。

Alice	Bob
生成私钥 $x_1 \in F_r$, 计算公钥 $Q_1 = x_1 \cdot G$;	生成私钥 $x_2 \in F_r$, 计算公钥 $Q_2 = x_2 \cdot G$;

发送 Q_1 ;	发送 Q_2 ;
接收 Q_2 ,计算 $Q_{common}\coloneqq Q_1+Q_2$	接收 Q_1 ,计算 $Q_{common} \coloneqq Q_1 + Q_2$
公共公钥 $Q_{common} := Q_1 + Q_2 = (x_1 + x_2) \cdot G$	
公共私钥 $x_{common} = x_1 + x_2$ 不出现	

上述协议要求双方均诚实!如果有一方不诚实。如 Alice 不诚实,对后续不利。

1.6 1.4.2 Diffie-Hellman 密钥交换(非诚实版)

Alice	Bob
被黑客攻击,选择随机点 Q_1 作为公钥,不	生成私钥 $x_2 \in F_r$, 计算公钥 $Q_2 = x_2 \cdot G$;
知道 (Q_1,G) 离散对数关系 x_1 ; 发送 Q_1 ;	发送 <i>Q</i> ₂ ;
接收 Q_2 ,无法计算 $Q_{common} \coloneqq x_1 \cdot Q_2$	接收 Q_1 ,计算 $Q_{common} \coloneqq x_2 \cdot Q_1$

因此,Alice 无法计算公共密钥 $Q_{common} = x_1 x_2 \cdot G$,也无法计算用于对称加密的**会话密钥** $key = hash(nonce, Q_{common})$ 。因此,Alice 与 Bob 后续不能保密通信,也不能基于**公共密钥** Q_{common} 计算其他信息。

1.7 1.4.3Diffie-Hellman 密钥交换(强制诚实版)

Alice	Bob
私钥 $x_1 \in F_r$, 公钥 $Q_1 = x_1 \cdot G$;	私钥 $x_2 \in F_r$, 公钥 $Q_2 = x_2 \cdot G$;
z k-Schnorr 证明知道私钥 x_1 , 生成 $proof_1$ 。	z k-Schnorr 证明知道私钥 x_2 ,生成 $proof_2$ 。
发送 $(proof_1,Q_1)$	发送 $(proof_2, Q_2)$
校验: $(proof_2,Q_2)$ 有效性,然后计算	校验: $(proof_1, Q_1)$ 有效性,然后计算
$Q_{common} := x_1 \cdot Q_2 = x_1 x_2 \cdot G ;$	$Q_{common} := x_2 \cdot Q_1 = x_1 x_2 \cdot G ;$

因此,Alice 和 Bob 均一定能计算公共密钥 $Q_{common} = x_1x_2 \cdot G$,也一定能计算用于对称加密的会话密钥 $key = hash(nonce, Q_{common})$ 。因此,Alice 与 Bob 后续一定能能保密通信,也一定能能基于公共密钥 Q_{common} 计算其他信息。

1.5 理想函数 F

协议一:存在可信第三方TrustParty

Alice	可信第三方 T	Bob
用可信第三方公钥加密私钥		用可信第三方公钥加密私钥
x ₁ 并 发送 给可信第三方 T;		<i>x</i> ₂ 并 发送 给可信第三方 T;
	接收,解密 获得 x ₁ 和 x ₂ ;	
	计算 公共密钥 $x_1x_2\cdot G$,使	
	用 Alice 和 Bob 的公钥加密	
	并发送给双方	
解密获得 公共密钥 为		解密获得 公共密钥 为
$Q_{common} = x_1 x_2 \cdot G \ .$		$Q_{common} = x_1 x_2 \cdot G \ .$

协议二:不存在可信第三方 NoTrustParty (Diffie-Hellman 密钥交换协议强制诚实版)

Alice	Bob
私钥 $x_1 \in F_r$, 公钥 $Q_1 = x_1 \cdot G$;	私钥 $x_2 \in F_r$, 公钥 $Q_2 = x_2 \cdot G$;
z k-Schnorr 证明知道私钥 x_1 ,生成 $proof_1$ 。	z k-Schnorr 证明知道私钥 x_2 ,生成 $proof_2$ 。
发送 $(proof_1, Q_1)$	发送 $(proof_2, Q_2)$
校验 $proof_2$ 有效性,然后计算	校验 proof ₁ 有效性,然后计算
$Q_{common} := x_1 \cdot Q_2 = x_1 x_2 \cdot G$	$Q_{common} := x_2 \cdot Q_1 = x_1 x_2 \cdot G$

分析: 协议 1 与协议 2 实现功能相同,但是协议 2 的安全性仅基于密码算法困难假设(更安全),而协议 1 要额外依赖可信第三方,安全性不完备。

見管理员,是人

协议三: Diffie-Hellman 理想函数 $\mathcal{F}_{\!\scriptscriptstyle Diffie-Hellman}$

理想函数 \mathcal{F} 理解为以太坊上的<mark>智能合约</mark>(严格执行设定的规则,对该保密的数据保密,该发送的数据发送)。

Alice	理想函数 $\mathcal{F}_{ extit{Diffie-Hellman}}$	Bob
私钥 x_1 使用理想函数 F 的		私钥 x_2 使用理想函数 F 的
公钥加密并发送给 F		公钥加密并发送给 F
	接收,解密并计算 公共密钥	
	$x_1x_2\cdot G$,使用 Alice 和 Bob	
	的公钥加密并发送给双方;	
获得 Diffie-Hellman 公共密		获得 Diffie-Hellman 公共密
钥为 $Q_{common} = x_1 x_2 \cdot G$		钥为 $Q_{common} = x_1 x_2 \cdot G$

协议二与协议三实现相同功能,安全性也相等。

分析: Diffie-Hellman 理想函数 $\mathcal{F}_{Diffie-Hellman}$ 是对可信第三方 TrustParty 的安全升级。

目前有大量的**密码协议**(如承诺协议 Com、零知识证明协议 ZK、数字签名协议 Sig、公钥加 密 协 议 PKEnc 、 不 经 意 传 输 协 议 ObliviousTransfer 等) 与 理 想 函 数 \mathcal{F}_{com} , \mathcal{F}_{ZK} , \mathcal{F}_{Sig} , \mathcal{F}_{PKEnc} , \mathcal{F}_{OT} 实现相同功能,相等安全性。

关键结论:

因此,调用理想函数等价于 (黑盒子)调用对应的安全的密码协议。

使用理想函数 \mathcal{F} 的三个原因:

- 1. **描述简洁性:** 由于密码协议描述的步骤较多,为描述简洁,使用理想函数 \mathcal{F}_{com} , \mathcal{F}_{ZK} , \mathcal{F}_{sig} , \mathcal{F}_{PKE} , \mathcal{F}_{OT} 替换描述简洁。
- 2. 用于协议设计:设计安全的理想函数,有利于设计安全的密码协议/框架;通用组合安全 Universally Composable Security: 子协议是安全的,设计一个大框架,多次调用子协议。如果大框架是安全的,则整个系统都安全。(目前有些协议单个运行安全,并行运行、并发运行不一定安全。这样的组合安全,达到的安全性非常高。) 基础整,各项区分宽层
- 3. **密码协议的安全性证明:**使用分布不可区分的概率模型,从攻击者角度,获得的全是随机数,攻击者无法提取有用信息。因此,能够用于证明协议/框架的安全性。

强制诚实版的 Diffie-Hellman 密钥交换协议: 把零知识证明和公钥发送给对方。 强制诚实版的 Diffie-Hellman 密钥交换协议升级版(发起方数据加密发送,时刻防着对方):

1. (强制版)害怕对方不知道公钥对应的私钥,所以步骤 1 和 2 都要求双方 zk-Schnorr 证明知道私钥;

2.两方密钥生成

	用户 P ₁	服务方 P_2
	①选择随机数 $x_1 \in F_{r/3}$, 计算	
	$Q_1 = x_1 \cdot G$	
	称为:分片私钥为 x_1 ,分片公钥为 Q_1	
	②zk-Schnorr 证明知道分片私钥 x_1	
1	$proof_1 = ZK \left\{ x_1 \left Q_1 = x_1 \cdot G \right\} \right.$	
	③对 Q_1 和 $proof_1$ 生成承诺与打开承诺	
	$[KGC_1, KGD_1] = Com(Q_1, proof_1)$	
	发送承诺 KGC ₁	
		接收承诺 KGC ₁
		①选择随机数 $x_2 \in F_r$, 计算
		$Q_2 = x_2 \cdot G$
2		称为: 分片私钥为 x_2 , 分片公钥为 Q_2
		②zk-Schnorr 证明知道分片私钥 x_2
		$proof_2 = ZK \left\{ x_2 \left Q_2 = x_2 \cdot G \right\} \right.$
		发送证明 $(proof_2, Q_2)$
3	接收证明 $proof_2$,校验,获得 Q_2 ;	

	①生成 Paillier 密码公钥和私钥(pk,sk),	
	公钥长度为 $\max\{3\log r +1,n\}$;	
	②计算 Paillier 加密 $c_{key} := Enc_{pk}(x_1)$ 为签	
	名的同态计算做准备。 ③zk-Paillier-N 证明知道 Paillier 私钥	
	$proof_{Paillier,1} = ZK \left\{ sk \mid pk = N = p_1 \cdot p_2 \right\}$	
	④zk-Paillier-Enc 证明正确加密 ECC 私钥	
	$proof_{Paillier,2} = $ $\begin{cases} (c_{1} & \text{pk} \ O_{1} \ C_{2} \) c_{2} & \text{for } (r, r) \end{cases}$	
	$ZK \begin{cases} (c_{key}, pk, Q_1, G) \middle c_{key} = Enc_{pk}(x_1, r), \\ (x_1, r) \middle Q_1 = x_1 \cdot G \end{cases}$	
	发送	
	$KGD_1, pk, c_{key}, proof_{Paillier,1}, proof_{Paillier,2}$	
		接收打开承诺 KGD_1 , 获得 Q_1 和
		<i>proof</i> ₁ 并验证;
4		接收 <i>proof</i> _{Paillier,1} 并验证;
		接收 proof _{Paillier,2} 并验证;
		校验 pk 长度为 $\max\{3\log r +1,n\}$ 。
	计算 Diffie-Hellman 公共密钥	计算 Diffie-Hellman 公共密钥
5	$Q_{common} = x_1 \cdot Q_2$,存储 (x_1, Q_{common})	$Q_{common} = x_2 \cdot Q_1$,存储
	. I Secondo	$(x_2, Q_{common}, c_{key})$
	分析: 公共私钥 $x_{common} = x_1 x_1$ 不出现,双方各自拿 50%。	
	公共公钥 $Q_{common} = x_1 x_2 \cdot G$ 。	
	Unbound: 公共公钥 $Q_{common} = Q_1 + Q_2$, 公共私钥 $x_{common} = x_1 + x_2$;	

步骤 1: 参与方 P₁

1. 选择随机数 $x_1 \in F_{r/3}$, 计算 $Q_1 = x_1 \cdot G$

- 2. zk-Schnorr 证明 $proof_1 = ZK\{x_1|Q_1 = x_1 \cdot G\}$
- 3. 对 Q_1 和 $proof_1$ 生成承诺与打开承诺 $\left[\mathit{KGC}_1, \mathit{KGD}_1 \right] = \mathit{Com}(Q_1, \mathit{proof}_1)$
- 4. 发送承诺 KGC_1 给**理想函数** $\mathcal{F}^{R_{DL}}_{com-zk}$

步骤 2: 参与方 P₂

- 1. 从理想函数 $\mathcal{F}_{com-zk}^{R_{DL}}$ 接收到承诺 KGC_1
- 2. 选择随机数 $x_2 \in F_r$, 计算 $Q_2 = x_2 \cdot G$
- 3. zk-Schnorr 证明 $proof_2 = ZK\{x_2 | Q_2 = x_2 \cdot G\}$
- 4. 发送($proof_2, Q_2$) 给**理想函数** $\mathcal{F}_{a}^{R_{DL}}$

步骤 3: 参与方 P_1

- 1. 从理想函数 $\mathcal{F}_{zk}^{R_{DL}}$ 接收到 $proof_2$,校验,获得 Q_2 ;
- 2. 发送打开承诺 KGD_1 给**理想函数** $\mathcal{F}_{com-zk}^{R_{DL}}$
- 3. 生成 Paillier 密码公钥和私钥 (pk,sk),长度为 $\max\{3\log|r|+1,n\}$, 计算 Paillier 同态加密 $c_{kev} := Enc_{pk}(x_1)$,(为签名的同态计算做准备)。
 - 4. zk-Paillier 证明 $proof_{Paillier,1} = ZK \left\{ sk \middle| pk = N = p_1 \cdot p_2 \right\}$,发送 $proof_{Paillier,1}$ 给理想函数 $\mathcal{F}_{sk}^{R_{Paillier}}$ (原文证明生成了正确的公钥)
- 5. 发送 c_{kev} 给参与方 P_2

步骤 4: 参与方 P

1. 发送 zk-Paillier-Enc 证明

$$proof_{\textit{Paillier},2} = ZK\left\{(c_{\textit{key}}, pk, Q_1, G), (x_1, r) \middle| c_{\textit{key}} = Enc_{\textit{pk}}(x_1, r), Q_1 = x_1 \cdot G\right\}$$
证明密文 $c_{\textit{key}}$ 中包含的 $c_{\textit{key}}$ 中

Unbound: zk-Paillier-Enc 证明: 1. 密文 $c_{key}=Enc_{pk}(x_1)$ 中 x_1 的范围是 $F_{r/3}$; 2.与 $Q_1=x_1\cdot G$ 使用的 x_1 是同一个;

步骤 5: 参与方 P,

- 从理想函数 $\mathcal{F}^{R_{DL}}_{com-zk}$ 获得打开承诺 KGD_1 ,从而获得 Q_1 和 $proof_1$,验证有效性
- 从理想函数 $\mathcal{F}_{sk}^{R_{paillier}}$ 获得 $proof_{paillier1}$,验证有效性
- 3. 从参与方 P_1 获得 $proof_{Paillier}$, 验证有效性
- 4. 校验 pk 长度为 $\max\{3\log|r|+1,n\}$

步骤 6: 公共公钥为 Q

- 1. 参与方 P_1 计算 Diffie-Hellman 公共密钥 $Q_{common} = x_1 \cdot Q_2$,存储 (x_1, Q_{common}) ;
- 参与方 P_2 计算 Diffie-Hellman **公共密钥** $Q_{common} = x_2 \cdot Q_1$,存储 $(x_2, Q_{common}, c_{kev})$;

注释: 公共公钥 $Q_{common}=x_1x_2\cdot G$,公共私钥 $x_{common}=x_1x_1$ 不出现,双方各自拿 50%。

Unbound: 公共公钥 $Q_{common} = Q_1 + Q_2$, 公共私钥 $x_{common} = x_1 + x_2$

3.两方签名 烘 險帆点

ECDSA 需要计算R 和 s

- 相同点: 与上一节的强制诚实版 Diffie-Hellman 密钥交换协议升级版相同(计算 Diffie-Hellman 随机点 R)
- 不同点: 额外添加 Paillier 密文计算(不泄露任何信息), 计算 s

两方需要签名的消息为 $m' = Hash(m) \mod |F_r|$

	用户 P_1	服务方 P_2
	①选择随机数 $k_1 \in F_{r/3}$, 计算 $R_1 = k_1 \cdot G$	
	②zk-Schnorr 证明知道随机数 k_1	
	$proof_1 = ZK \left\{ k_1 \middle R_1 = k_1 \cdot G \right\}$	
1	③对 R_1 和 $proof_1$ 生成承诺与打开承诺	
	$[KGC_1, KGD_1] = Com(R_1, proof_1)$	
	发送承诺 KGC_1	

		接收承诺 KGC ₁	
		①选择随机数 $k_2 \in F_r$, 计算 $R_2 = k_2 \cdot G$	
2		②zk-Schnorr 证明知道随机数 k_2	
		$proof_2 = ZK \left\{ k_2 \middle R_2 = k_2 \cdot G \right\}$	
		发送 R ₂ , proof ₂	
	接收R ₂ , proof ₂ , 校验;		
3	发送打开承诺 KGD_1		
		接收 R ₁ , proof ₁ , 校验;	
		① 计算 Diffie-Hellman 公共随机点	
		$R \coloneqq k_2 \cdot R_1$,解析 $(r_x, r_y) \coloneqq R$,计算	
		$r := r_x \bmod F_r $	
		(实现 ECDSA 目标 1: R)	
4		②选择随机数 $ ho\in Z_{F_r^2}$,Paillier 同态加密	
		$c_1 := Enc_{pk} \left(\rho \cdot F_r + \left[k_2^{-1} \cdot m \operatorname{'mod} F_r \right] \right)$	
		$v := k_2^{-1} \cdot r \cdot x_2 \bmod F_r ,$	
		③同态计算 $c_2 := v \otimes c_{key}$,	
		$c_3 \coloneqq c_1 \oplus c_2$	
		发送 c_3 ;	
	注 释:		
	$ ho\cdot F_r $ 取值范围是 $Z_{F_r^3}$ 是一个非常大的随机数,对 $\left[k_2^{-1}\cdot m' \operatorname{mod} F_r ight]$ 随机化,且		
	在 Paillier 加密范围内。后面 P_1 解密获得后会模 $ F_r $ 去掉该项。		
	$c_{key} := Enc_{pk}(x_1)$		
	$c_2 := v \otimes c_{key} = Enc_{pk} \left(\mathbf{x}_1 \cdot k_2^{-1} \cdot r \cdot \mathbf{x}_2 \text{ mod} \right)$	$1 F_r , x_{common} = x_1 x_2$	
	$c_3 := c_1 \oplus c_2 = Enc_{pk} \left(\left(\rho \cdot F_r + \left[k_2^{-1} \cdot m \operatorname{'mod} F_r \right] \right) + \left(x_1 \cdot k_2^{-1} \cdot r \cdot x_2 \operatorname{mod} F_r \right) \right)$		
	$= Enc_{pk} \left(\left(\rho \cdot F_r + \left[k_2^{-1} \cdot m \operatorname{'mod} F_r \right] \right) + \left(x_{common} \cdot k_2^{-1} \cdot r \operatorname{mod} F_r \right) \right)$		

取值范围分析:

$$(1)c_1 := Enc_{pk}\left(\rho \cdot |F_r| + \lceil k_2^{-1} \cdot m \operatorname{'mod} |F_r| \rceil\right)$$

$$\rho \cdot |F_r| + \lceil k_2^{-1} \cdot m \mod |F_r| \rceil \in F_{r^3}$$

 $(2)v \in |F_r|,$

 $(3)c_2 := v \otimes c_{key}$

 $\mathbf{x}_1 \cdot k_2^{-1} \cdot r \cdot x_2 \mod |F_r| \in |F_r|$

 $(4)c_3 := c_1 \oplus c_2$

$$s' = Dec(c_3) = \left(\rho \cdot |F_r| + \left[k_2^{-1} \cdot m \operatorname{mod} |F_r|\right]\right) + \left(x \cdot k_2^{-1} \cdot r \operatorname{mod} |F_r|\right) \in |F_{r^3}| + |F_{r^2}|$$

$$s' < N_{2048bit}$$

密文运算中,对应明文的取值范围远远超过 $|F_{\nu}|$,但是不能在密态情况下计算模系

数, 仅当接收方解密后, 才能模系数。

选择 $\rho \in Z_{F^2}$ 的原因:

在 $Z_{F_{c}^{2}}$ 范围s'在密态下计算范围恰好在 $N_{2048bit}$ 范围内。

但是,扩大取值范围,如 $\rho \in Z_{F^3}$,则需要更大范围的 $N_{>2048bit}$,降低效率。

$$\rho \cdot |F_r| \in |F_{r^4}|$$

 $c_3 := c_1 \oplus c_2$

$$s' = Dec(c_3) = \left(\rho \cdot |F_r| + \left[k_2^{-1} \cdot m \operatorname{'mod}|F_r|\right]\right) + \left(x \cdot k_2^{-1} \cdot r \operatorname{mod}|F_r|\right) \in |F_{r^4}| + |F_{r^2}| + |F_{r^4}| + |$$

ECC 中的每个倍点运算 $H := x \cdot G$ 都是严格的离散对数运算,是严格的指数困难,仅需要 256bit 就安全。由于存在大量的合数,排除合数后,大整数因子分解困难问题是亚指数困难,而不是严格的指数困难。

安全性分析: 因子分解 2048bit 达到的安全等级与 256bit 的 ECC 相同。因此,这里的公钥 pk 中的 N 需要 2048bit。提高 N 的取值范围,则效率降低。

接收 c;;

① 计算 Diffie-Hellman 公共随机点

 $R := k_1 \cdot R_2$,解析 $(r_x, r_y) := R$,计算

 $r := r_r \mod |F_r|$;

(实现 ECDSA 目标 1: R)

②Paillier 解密 c_3 获得 $s' = Dec_{sk}(c_3)$,

计 第
$$s" = k_1^{-1} \cdot s \mod |F_r|$$
 。 令

$$s = \min\{s'', |F_r| - s''\};$$

校验签名(m',(r,s),Q)正确性

发送签名(r,s)给P, (不一定执行)

注释:

 $\rho \cdot |F_r|$ 是 $|F_r|$ 的整数倍, $s'' = k_1^{-1} \cdot s' \mod |F_r|$ 运算模系数后,则去掉这个整数倍的随机项。

$$s' = \left(\rho \cdot |F_r| + \left[k_2^{-1} \cdot m' \mod |F_r|\right]\right) + \left(x_1 \cdot k_2^{-1} \cdot r \cdot x_2 \mod |F_r|\right)$$

$$s'' = k_1^{-1} s' \mod |F_r| = \left[k_1^{-1} k_2^{-1} \cdot m' \mod |F_r|\right] + \left[x_1 \cdot k_1^{-1} k_2^{-1} \cdot r \cdot x_2 \mod |F_r|\right]$$

$$= \left[k^{-1} m' \mod |F_r|\right] + \left[k^{-1} x_{common} r \mod |F_r|\right]$$

$$= \left[k^{-1} m' + k^{-1} x_{common} r\right] \mod |F_r|$$

$$s = \min\{s'', |F_r| - s''\}$$

(实现 ECDSA 目标 2: $s := k^{-1}(m + x_{common}r) = k^{-1}m + k^{-1}x_{common}r$)

取值范围分析:

$$s' = Dec_{sk}(c_3) \in |F_{r^3}| + |F_{r^2}|$$

 $s'' = k_1^{-1} \cdot s' \mod |F_r| \in |F_r|$

密文运算过程中,对应明文的取值范围远远超过 $|F_r|$,但是不能在密态情况下计算模系数。 P_r 解密后,进行明文运算是才可以模系数,将范围变小。

分析:两个参与方权利不一样; P_1 权利更大,计算签名 (r,s),可以不发送给 P_2 。 所以产品方案: P_1 为用户, P_2 为服务方。 P_1 生成签名, P_2 提供签名服务。

校验签名 $(m',(r,bool,s),Q_{common})$ 正确性(不一定执行)

6

两方需要签名的消息为 $m' = Hash(m) \mod |F_r|$

步骤 1: 参与方 P_1

- 1. 选择一次性随机数 $k_1 \in F_{r/3}$, 计算 $R_1 = k_1 \cdot G$
- 2. zk-Schnorr 证明 $proof_1 = ZK\{k_1 | R_1 = k_1 \cdot G\}$
- 3. 对 R_1 和 $proof_1$ 生成承诺与打开承诺 $[KGC_1, KGD_1] = Com(R_1, proof_1)$
- 4. 发送承诺 KGC_1 给**理想函数** $\mathcal{F}_{com-zk}^{R_{DL}}$

步骤 2: 参与方 P_2

- 1. 从理想函数 $\mathcal{F}^{R_{DL}}_{com-zk}$ 接收到承诺 KGC_1
- 2. 选择一次性随机数 $k_2 \in F_r$, 计算 $R_2 = k_2 \cdot G$
- 3. zk-Schnorr 证明 $proof_2 = ZK\{k_2 | R_2 = k_2 \cdot G\}$
- 4. 发送 $proof_2$ 、 R_2 给**理想函数** $\mathcal{F}_{zk}^{R_{DL}}$

步骤 3: 参与方 P₁

- 1. 从理想函数 $\mathcal{F}_{z_k}^{R_{DL}}$ 接收到 $proof_2$ 、 R_2 , 校验, 获得 R_2 ;
- 2. 发送打开承诺 KGD_1 给**理想函数** $\mathcal{F}_{com-zk}^{R_{DL}}$

步骤 4: 参与方 P。

- 1. 从理想函数 $\mathcal{F}^{R_{DL}}_{com-zk}$ 接收到打开承诺 KGD_1 ,获得 R_1 和 $proof_1$,校验;
- 2. 计算 Diffie-Hellman 公共随机点 $R \coloneqq k_2 \cdot R_1$,解析 $(r_x, r_y) \coloneqq R$, 计算 $r \coloneqq r_x \mod |F_r|$ (实现 ECDSA 目标 1: R)
- 3. 选择随机数 $\rho \in Z_{F_r^2}$, Paillier 同态加密 $c_1 \coloneqq Enc_{pk} \left(\rho \cdot |F_r| + \left[k_2^{-1} \cdot m' \operatorname{mod} |F_r| \right] \right)$, 然 后计算 $v \coloneqq k_2^{-1} \cdot r \cdot x_2 \operatorname{mod} |F_r|, c_2 \coloneqq v \otimes c_{kev}, c_3 \coloneqq c_1 \oplus c_2$ (密文计算)
- 4. 发送 c_3 给 P_1

步骤 5: 参与方 P. 输出签名

1. 计算 Diffie-Hellman 公共随机点 $R \coloneqq k_1 \cdot R_2$,解析 $(r_x, r_y) \coloneqq R$, 计算 $r \coloneqq r_x \mod |F_r|$ (实现 ECDSA 目标 1: R)

- 2. Paillier 解密 c_3 获得 $s' = Dec_{sk}(c_3)$, 计算 $s'' = k_1^{-1} \cdot s' \mod |F_r|$ 。 令 $s = \min\{s'', |F_r| s''\}$ 。
- 3. 校验签名 $(m',(r,s),Q_{common})$ 正确性
- 4. 发送签名(r,s)给 P_{s} (不一定执行)

分析: 两个参与方权利不一样; P_1 权利更大,计算出签名(r,s)后,可以不发送给 P_2 。 所以产品会让 P_1 为终端用户, P_2 为服务方。 P_1 生成签名, P_2 不需要签名。

步骤 6: 参与方 P, (不一定执行)

1. 校验签名 $(m',(r,bool,s),Q_{common})$ 正确性

4.分片私钥派生

核心思想:基于旧分片私钥和旧分片公钥,计算新分片私钥和新分片公钥,而不需要重新运行**密钥生成协议**。

旧分片私钥和旧分片公钥作为预计算。

初始状态:

- 1. 用户 P_1 的公钥为 Q_1 ,私钥为 x_1 ;
- 2. 服务方 P_2 的公钥为 Q_2 , 私钥为 x_2 ;
- 3. 双方的公共公钥为 $Q_{common} = x_1 x_2 \cdot G = x_{common} \cdot G$;

步骤 1: 双方运行强制诚实版的 Diffie-Hellman 密钥交换协议的升级版:

双方获得 Diffie-Hellman 会话密钥为 $ilde{Q}_{common}$,然后计算哈希值,称为:链码 chain code

$$cc = sha256(\tilde{Q}_{common})$$

该链码用于密钥更新。

步骤 2: 双方均计算

对于一个给定的公开计数器 counter, 双方均计算:

$$f = HMAC512(cc, Q_{common}, counter)$$
 $f = f_l \mid\mid f_r, where \mid f_l \mid=\mid f_r \mid= 256$
 $Q_{l,new} := f_l \cdot Q_l$
 $Q_{common,new} := f_l \cdot Q_{common}$
 $cc_{new} = f_r \cdot cc$

计算后产生的结果:

- 用户 P_1 分片私钥派生为 $X_{1,new} = f_l \cdot X_1$,分片公钥派生为 $Q_{1,new} = f_l \cdot Q_1$
- 服务方 P_2 分片私钥和分片公钥均**不变**;
- **公共公钥派生**为 $Q_{common,new} \coloneqq f_l \cdot Q_{common}$; 公共私钥也派生,但是不出现。

公式推导:

$$Q_{common,new} := f_l \cdot Q_{common} = (f_l \cdot x_1)x_2 \cdot G = x_{1,new}x_2 \cdot G$$

 $cc_{\mathit{new}} = f_r \cdot cc$ 为新链码 chain code,不再需要运行强制诚实版的 Diffie-Hellman 密钥交换协 议升级版。

5.分片私钥刷新

分片私钥刷新, 但公共私钥不变、公共公钥不变

$$9_{common} = 6 + 3 = 5 + 4 = 7 + 2 = 8 + 1$$

$$x_{common} = x_1 x_2 = (r^{-1} x_1)(r x_2)$$

$$x_{common} = x_1 + x_2 = (x_1 + \Delta) + (x_2 - \Delta)$$

Step1: 双方进行掷币协议

初始化: 椭圆曲线生成元为G,标量域为 F_r ,基域为 F_q 。

P_1	P_2
选择随机数 $r_1 \in F_r$, 计算承诺与打开承诺	
$[C,D] := Com(r_1)$,发送承诺 C ;	
	选择一个随机数 $r_2 \in F_r$, 发送 r_2 ;
计算 $r := r_1 \oplus r_2 \in F_r$, 发送打开承诺 D ;	
	校验承诺 $Verify(C,D)$ 后,计算
	$r := r_1 \oplus r_2 \in F_r$

运行结果: 双方获得公共随机数 $r \in F_r$ 。

分析:使用 Diffie-Hellman 协议效果一样,但是需要 zk-Schnorr,计算复杂度更高。

Step2: 双方分片私钥刷新,公共公钥和公共私钥不变

Step2: 双万分片私钥刷新,公共公钥和公共私	切个文 「	
$P_{\scriptscriptstyle 1}$	P_{2}	
分片私钥和分片公钥更新为		
$x_{1,new} := r^{-1}x_1, Q_{1,new} = x_{1,new} \cdot G$		
生成新的 Paillier 密钥对 (pk_{new}, sk_{new}) ,用于		
签名过程中的同态计算。 ①zk-Schnoor 证明知道 ECC 新的分片私钥		
$proof_1 = ZK \left\{ x_{1,new} \middle Q_{1,new} = x_{1,new} \cdot G \right\}$		
②zk-Paillier-N 证明知道 Paillier 新的私钥		
$proof_{Paillier,1} = ZK \left\{ sk \mid pk = N = p_1 \cdot p_2 \right\} ;$		
③zk-Paillier-Enc 正确加密 ECC 私钥且 ECC 私钥范围正确		
$proof_{Paillier,2} = ZK \left\{ c_{key}, pk, Q_1' \in L_{PDL} \right\}$		
发送 $proof_1, proof_{Paillier,1}, proof_{Paillier,2};$		
	接收 proof ₁ , proof _{Paillier,1} , proof _{Paillier,2} 并	
	校验;	
	分片私钥和分片公钥刷新为	
	$x_{2,new} := rx_2, Q_{2,new} = x_{2,new} \cdot G$	
	zk-Paillier-N 证明知道 ECC 分片私钥	
	$proof_2 = ZK\left\{x_{2,new} \middle Q_{2,new} = x_{2,new} \cdot G\right\};$	
	发送 $proof_2$ 。	
接收 proof ₂ 并校验。		
分析:		
用户 P_1 私钥和公钥刷新为 $x_{1,new} := r^{-1}x_1, Q_{1,new} = x_{1,new} \cdot G$		
用户 P_2 私钥和公钥刷新为 $x_{2,new} := rx_2, Q_{2,new} = x_{2,new} \cdot G$		
公共公钥不变:		

$$Q_{new} = x_{1,new} \cdot Q_{2,new} = x_{2,new} \cdot Q_{1,new} = x_{1,new} x_{2,new} \cdot G = (r^{-1}x_1)(rx_2) \cdot G = x_1x_2 \cdot G = Q_{old}$$

Unbound 差异:

由于: 公共公钥 $Q_{common} = Q_1 + Q_2$, 公共私钥 $x_{common} = x_1 + x_2$

用户 P_1 分片私钥和分片公钥刷新为 $x_{1,new} := x_1 - r, Q_{1,new} = (x_{1,new} - r) \cdot G$

用户 P_2 分片私钥和分片公钥刷新为 $X_{2 \text{ new}} := (x_2 + r), Q_{2 \text{ new}} = (x_{2 \text{ new}} + r) \cdot G$

$$x_{common} = x_{1,new} + x_{2,new} = x_1 + x_2,$$

 $Q_{new} = Q_{1,new} + Q_{2,new} = (x_1 + x_2) \cdot G = Q_{common}$

刷新分片私钥,公共公钥不变。

6.恢复公共私钥

应用需求:服务方不work,用户恢复公共私钥。交备需求。

托管方的私钥和公钥分别为 $(k_e, Q_e), Q_e = k_e \cdot G$ 。

步骤 1: 服务方 P_2 将私钥 x_2 分为n个片段 $\{x_{2,1},...,x_{2,n}\}$ 使得离散对数计算**不再困难,暴**例如 20 bit / 32 bit Mrb

力搜索时间很短。使用托管方的公钥 Q_e 对n个片段分别进行 ElGamal 加密

$$(D_i, E_i) := (x_{2,i} \cdot G + r_i \cdot Q_e, r_i \cdot G)_{i \in \{1, \dots, n\}}$$

将密文发送给 P_1 。

步骤 2: 服务方P,发送三个zk给用户P

$$ZK \left\{ x_{2,i} \middle| x_{2} = \sum_{i=1}^{n} x_{2,i} \right\}_{i \in \{1,\dots,n\}}$$

$$ZK \left\{ x_{2,i}, r_{i} \middle| \begin{pmatrix} D_{i} = x_{2,i} \cdot G + r_{i} \cdot Q_{e}, \\ E_{i} = r_{i} \cdot G \end{pmatrix}_{i \in \{1,\dots,n\}} \right\}$$

$$Bullet _proofs \left\{ x_{2,i} \middle| 0 \le x_{2,i} < K \right\}_{i \in \{1,\dots,n\}}$$

其中, K为一个范围较小的常量。

步骤 3: 托管方周期性使用私钥 k_e 对当天新闻签名并发送给用户;用户验证签名;表明

托管方一直拥有正确的私钥 k_a 。

步骤 4: 如果**托管方**检测到服务方 P_2 长时间不工作,则托管方公开私钥 k_e ,则用户 P_1 获得 k_e 后,计算

$$x_{2,i} \cdot G := (D_i - k_e \cdot E_i)_{i \in \{1,\dots,n\}}$$

并暴力搜索 $x_{2,i} \leftarrow \{x_{2,i} \cdot G\}_{i=1,\dots,n}$,然后计算服务方的私钥 $x_2 \coloneqq \sum_{i=1}^n x_{2,i}$,然后恢复完整 私钥 $x=x_1x_2$ 。

KZen T. Bitcoin Wallet Powered by Two-Party ECDSA-Extended Abstract[J]. Retrieved March, 2021.

lynndell 新火科技 密码学专家 lynndell2010@gmail.com