PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-211351

(43)Date of publication of application: 03.08.2001

(51)Int.CI.

HO4N 5/225

(21)Application number: 2000-018136

(71)Applicant : FUJI PHOTO FILM CO LTD

(22)Date of filing:

27.01.2000

(72)Inventor: UENO TOSHIHARU

(54) IMAGE PICKUP DEVICE AND ITS OPERATION CONTROL METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To confirm that an image is in focus even on a relatively small display device. SOLUTION: When the shutter release button of a digital still camera is half-pressed, focus adjustment is carried out and an image of a focusing area A1 is enlarged as compared with an image of a visual angle confirmation image P1 which corresponds to the focusing area A1. The enlarged image P2 for focusing confirmation of the focusing area A1 is displayed on a display screen of a viewfinder. In the focus adjustment, the image P2 for focusing confirmation is enlarges as compared with the corresponding area of the visual angle confirmation image P1, so it becomes relatively easy to confirm whether the image is in focus.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-211351 (P2001-211351A)

(43)公開日 平成13年8月3日(2001.8.3)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H 0 4 N 5/225

H 0 4 N 5/225

A 5C022

審査請求 未請求 請求項の数8 OL (全 19 頁)

(21)出願番号

特願2000-18136(P2000-18136)

(22)出願日

平成12年1月27日(2000.1.27)

(71)出顧人 000005201

富士写真フイルム株式会社

神奈川県南足柄市中沼210番地

(72)発明者 上野 寿治

埼玉県朝霞市泉水三丁目11番46号 富士写

真フイルム株式会社内

(74)代理人 100080322

弁理士 牛久 健司 (外1名)

Fターム(参考) 50022 AA13 AB22 AC12 AC14 AC32

AC52

(54) 【発明の名称】 画像撮像装置およびその動作制御方法

(57)【要約】

【目的】 比較的小さな表示装置であっても合焦していることを確認できるようにする。

【構成】 ディジタル・スチル・カメラにおいて、シャッタ・レリーズ・ボタンが半押しされると焦点調節が行なわれ、画角確認用画像P1の合焦領域A1に対応する画像に比べて合焦領域A1の画像が拡大される。拡大された合焦領域A1の合焦確認用画像P2がビュー・ファインダの表示画面上に表示される。焦点調節時には合焦確認用画像P2は画角確認用画像P1の対応する領域に比べて拡大されるので、合焦しているかどうかが比較的確認しやすくなる。

【特許請求の範囲】

【請求項1】 フォーカシング・レンズを介して被写体を撮像し、受光面上に結像した被写体像を表す映像信号を出力する撮像手段、フォーカス領域内の画像が上記受光面上において合焦するように上記フォーカシング・レンズを制御するフォーカス制御手段、および上記撮像手段から出力された映像信号によって表される画角確認用被写体像を表示する第1の表示装置を備えた画像撮像装置において、上記画角確認用被写体像のうちの上記フォーカス領域に対応する合焦確認用画像が、上記画角確認 10用被写体像に比べて拡大されるように、上記撮像手段から出力された映像信号を拡大処理する拡大手段、ならびに上記拡大手段によって拡大された合焦確認用画像を表示する第2の表示装置、を備えた画像撮像装置。

【請求項2】 上記第1の表示装置と上記第2の表示装置とが同一のものである,請求項1に記載の画像撮像装置。

【請求項3】 上記画角確認用画像上に上記拡大された 合焦確認用画像を表示するように制御する第1の表示制 御手段をさらに備えた請求項2に記載の画像撮像装置。

【請求項4】 上記画角確認用画像と上記拡大された合 焦確認用画像の撮影時が時間的に前後または同一である 請求項3に記載の画像撮像装置。

【請求項5】 二段ストローク・タイプのシャッタ・レリーズ・ボタン,上記シャッタ・レリーズ・ボタンの第一段階の押し下げに応じて上記拡大されたフォーカス画像を上記第2の表示装置に表示する第2の表示制御手段,および上記シャッタ・レリーズ・ボタンの第二段階の押し下げに応じて上記撮像手段から出力された映像信号を記録媒体に記録するように制御する記録制御手段,をさらに備えた請求項1に記載の画像撮像装置。

【請求項6】 上記フォーカス領域の位置および上記拡大手段における拡大処理の拡大率の少なくとも一方を変更する第1の変更手段をさらに備えた請求項1に記載の画像最像装置。

【請求項7】 上記合焦確認用画像の表示位置および大きさのうち少なくとも一方を変更する第2の変更手段をさらに備えた請求項1に記載の画像撮像装置。

【請求項8】 フォーカシング・レンズを介して被写体を撮像し、受光面上に結像した被写体像を表す映像信号を出力する撮像手段、フォーカス領域内の画像が上記受光面上において合焦するように上記フォーカシング・レンズを制御するフォーカス制御手段、および上記撮像手段から出力された映像信号によって表される画角確認用被写体像を表示する表示装置を備えた画像撮像装置において、上記画角確認用被写体像のうちの上記フォーカス領域に対応する合焦確認用画像が、上記画角確認用被写体像に比べて拡大されるように、上記撮像手段から出力された映像信号を拡大処理し、拡大された合焦確認用画像を表示する、画像撮像装置の動作制御方法。

2

【発明の詳細な説明】

[0001]

【技術分野】この発明は、ディジタル・スチル・カメラ、ムービ・ビデオ・カメラなどのようにフォーカシング・レンズを介して被写体を撮像し、受光面上に結像した被写体像を表す映像信号を出力する撮像手段、フォーカス領域内の画像が受光面上において結像するようにフォーカシング・レンズを制御するフォーカス制御手段、および撮像手段から出力された映像信号によって表される画角確認用被写体像を表示する表示装置を備えた画像撮像装置およびその動作制御方法に関する。

[0002]

【発明の背景】ディジタル・スチル・カメラ,ムービ・ビデオ・カメラにおいては、カメラの背面などに液晶表示装置が設けられている。この液晶表示装置の表示画面上に撮像している被写体像が表示される。ユーザは、表示されている被写体像を見ながら、記録する被写体像の画角を決定する。

【0003】カメラの小型、軽量化が要求されることからカメラの背面に設けられる液晶表示装置の表示画面も小さくならざるを得ない。液晶表示装置の表示画面が小さくなると、画面上の被写体像を見ても合焦しているかどうかを確認することが難しい。

[0004]

【発明の開示】この発明は、比較的小さな表示装置であっても合焦していることを確認することができるようにすることを目的とする。

【0005】この発明は、フォーカシング・レンズを介して被写体を撮像し、受光面上に結像した被写体像を表す映像信号を出力する撮像手段、フォーカス領域内の画像が上記受光面上において合焦するように上記フォーカシング・レンズを制御するフォーカス制御手段、および上記撮像手段から出力された映像信号によって表される画角確認用被写体像を表示する第1の表示装置を備えた画像撮像装置において、上記画角確認用被写体像のうちの上記フォーカス領域に対応する合焦確認用画像が、上記画角確認用被写体像に比べて拡大されるように(倍率が大きくなるように)、上記撮像手段から出力された映像信号を拡大処理する拡大手段、ならびに上記拡大手段40によって拡大された合焦確認用画像を表示する第2の表示装置を備えていることを特徴とする。

【0006】この発明は、上記装置の動作制御方法も提供している。すなわち、この方法は、フォーカシング・レンズを介して被写体を撮像し、受光面上に結像した被写体像を表す映像信号を出力する撮像手段、フォーカス領域内の画像が上記受光面上において合焦するように上記フォーカシング・レンズを制御するフォーカス制御手段、および上記撮像手段から出力された映像信号によって表される画角確認用被写体像を表示する表示装置を備50 えた画像撮像装置において、上記画角確認用被写体像の

うちの上記フォーカス領域に対応する合焦確認用画像が、上記画角確認用被写体像に比べて拡大されるように、上記撮像手段から出力された映像信号を拡大処理し、拡大された合焦確認用画像を表示するものである。

【0007】この発明によると、上記第1の表示装置に表示される上記画角確認用被写体像のうちフォーカス領域に対応するフォーカス画像が上記画角確認用被写体像に比べて拡大されるように、上記撮像手段から出力された映像信号(アナログ映像信号、ディジタル画像データを含む)が拡大処理される。拡大処理されたフォーカス画像が上記第2の表示装置に表示される。

【0008】フォーカス画像は上記画角確認用被写体像に比べて拡大されているので、合焦している様子が比較的よく分かる。液晶表示装置の表示画面が小さくとも合焦しているかどうかを比較的簡単に確認することができる。

【0009】上記第1の表示装置と上記第2の表示装置とは同一のものであってもよいし、異なるものであってもよい。上記第1の表示装置と上記第2の表示装置とが異なるものの場合には、上記第1の表示装置に上記画角確認用被写体像が表示され、上記第2の表示装置に上記拡大されたフォーカス画像が表示されるので、上記画角確認用被写体像を見ながら、画角を決定し、上記拡大されたフォーカス画像を見ながら合焦しているかどうかを確認することができる。

【0010】上記画角確認用画像上に上記拡大されたフォーカス画像を表示してもよい。同一の表示装置の表示 画面を見るだけで、画角の決定と合焦の確認とができ る。

【0011】上記画角確認用画像と上記拡大されたフォーカス画像の撮影時は時間的に前後していてもよいし,同一であってもよい。

【0012】二段ストローク・タイプのシャッタ・レリーズ・ボタンが設けられているときには、上記シャッタ・レリーズ・ボタンの第一段階の押し下げに応じて上記拡大されたフォーカス画像を上記第2の表示装置に表示し、上記シャッタ・レリーズ・ボタンの第二段階の押し下げに応じて上記撮像手段から出力された映像信号を記録媒体に記録することができる。

【0013】上記フォーカス領域の位置および上記拡大 手段における拡大処理の拡大率の少なくとも一方を変更 可能とすることが好ましい。フォーカス領域の位置を変 更することにより、画角確認用画像のうちユーザの所望 の部分を合焦確認用画像として表示させることができ る。また拡大率を変更することにより、ユーザが見やす いように合焦確認用画像を拡大できる。

【0014】さらに、上記合焦確認用画像の表示位置および大きさのうち少なくとも一方を変更可能としてもよい。ユーザが見やすいように上記合焦確認用画像の表示位置または大きさを変更できる。

4

[0015]

【実施例の説明】 (1) 第1実施例

図1は、ディジタル・スチル・カメラの電気的構成を示すブロック図である。

【0016】ディジタル・スチル・カメラの全体の動作は、CPU3によって統括される。

【0017】ディジタル・スチル・カメラには、二段ストローク・タイプのシャッタ・レリーズ・ボタン1が含まれている。シャッタ・レリーズ・ボタン1の半押しおよび全押しを示す信号は、CPU3に入力する。

【0018】ディジタル・スチル・カメラには、被写体像を結像するためのフォーカス・レンズ4が含まれている。このフォーカス・レンズ4は、焦点調節装置2により被写体像が撮像装置5の受光面上に合焦するように制御される。

【0019】ディジタル・スチル・カメラの電源が投入されると、撮像モードとなり撮像装置5により被写体が撮像される。撮像装置5から被写体像を表す画像データが出力され、画像データ変換装置6に入力する。撮像装置5には水平方向2400画素垂直方向1800画素の約400万画素のCCDが内蔵されている。画像データ変換装置6にはデータ圧縮回路、画像データによって表される画像の大きさを拡大および縮小する補正回路などが含まれている。

【0020】画像データ変換装置6から出力された画像データは、画像表示用一時記憶装置7に与えられ、一時的に記憶される。画像データは画像表示用一時記憶装置6から読み出され、電子ビュー・ファインダ8に与えられる。電子ビュー・ファインダ8の表示画面上に被写体像が動画表示されることとなる。

【0021】シャッタ・レリーズ・ボタン1が半押しされると、撮像装置5の受光面上に被写体像が合焦するように焦点調節装置2によってフォーカス・レンズ4が調整される。

【0022】この実施例によるディジタル・スチル・カメラではフォーカス・レンズ4の焦点調節が行われている間に電子ビュー・ファインダ8の表示画面に表示されている画像の倍率はシャッタ・レリーズ・ボタン1が押されていないときに電子ビュー・ファインダ8の表示画面に表示されている画像の倍率に比べて大きくなるように、画像データ変換装置6によって画像データが補正される。焦点調節時には、電子ビュー・ファインダ8の表示画面(水平方向640画素垂直方向480画素)に表示される画像の倍率が大きくなるので、合焦しているかどうかの確認が比較的容易となる。電子ビュー・ファインダ8への画像表示の詳細について詳しくは後述する。

【0023】シャッタ・レリーズ・ボタン1が全押しされると、被写体像を表す画像データは、画像データ変換装置6においてデータ圧縮される。圧縮された画像データがメモリ・カードのような画像記録装置9に与えら

れ、記録される。

【0024】図2は、画像表示用一時記憶装置7の電気的構成を示すブロック図である。

【0025】画像表示用一時記憶装置7には同期信号生成装置4が含まれている。同期信号生成装置5により生成された同期信号は、画像表示用一時記憶装置7を構成する各回路ならびに画像データ変換装置6および電子ビュー・ファインダ8に与えられる。

【0026】画像表示用一時記憶装置7には、第1の画像メモリ11および第2の画像メモリ12が含まれている。これらの第1の画像メモリ11および第2の画像メモリ12は、いずれも一駒分の画像データを記憶する容量を有している。

【0027】画像データ変換装置6から出力された画像データは、第1の画像メモリ11または第2の画像メモリ12のうちのいずれか一方の画像メモリに書き込まれるように接続切替装置10によって切り替えられる。また、第1の画像メモリ11または第2の画像メモリ12のうち画像データを書き込んでいる画像メモリ以外の他方の画像メモリから書き込まれた画像データが読み出されるように接続切替装置13を介して読み出される。電子ビュー・ファインダ8に表示されている画像が切り替わるときに画像の乱れが生じるのを未然に防止できる。

【0028】図3および図4は、ディジタル・スチル・カメラの撮影時の処理手順を示すフローチャートである。図5は撮像画像と画角確認用画像P1との関係を示し、図6は撮像画像と合焦確認用画像P2との関係を示している。

【0029】上述したように、ディジタル・スチル・カメラの電源が投入され、振像モードとなると、振像装置5によって被写体が撮像される(ステップ21)。被写体像(撮像画像)を表す画像データが撮像装置5から出力され、画像データ変換装置6において撮影範囲全体の画像が電子ビュー・ファインダ8に表示するのに適切な画素数をもつ画像となるように画像データの間引き補正処理が行われる(ステップ22)。この間引き補正処理により、水平方向2400画素垂直方向1800画素の被写体像を表す画像データが水平方向640画素垂直方向480画素の画角確認用画像データとなる。

【0030】画角確認用画像データは、画像データ変換装置6から画像表示用一時記憶装置7に与えられ、上述したように第1の画像メモリ11または第2の画像メモリのいずれか一方の画像メモリに記憶される(ステップ23)。画角確認用画像データは画像表示用一時記憶装置7から読み出され、電子ビュー・ファインダ8に与えられる。電子ビュー・ファインダ8の表示画面上に撮像によって得られた画角確認用画像P1が表示される(ステップ24)(図5参照)。

【0031】シャッタ・レリーズ・ボタン1が半押しされると(ステップ25), 焦点調整装置 2によってフォー

6

カス・レンズ4のフォーカシングが制御される。撮像装 置5によって被写体が撮像され(ステップ26),被写体 像を表す画像データが画像データ変換装置6に入力す る。図6に示すように撮影範囲のうち水平方向の 600画 素垂直方向 450画素の合焦範囲A1の画像が電子ビュー ・ファインダ8の表示画面に表示される合焦確認用画像 P2となるように、画像データの間引き補正処理が施さ れる (ステップ27)。間引き補正が行われることによ り、合焦確認用画像 P 2 を表わす合焦確認用画像データ が画像表示用一時記憶装置7に書き込まれ、その後読み 出される(ステップ28)。読み出された合焦確認用画像 データは電子ビュー・ファインダ8に与えられる。これ により図6に示すように、合焦範囲の画像(合焦確認用 画像 P 2) については、図 5 に示すように通常のビュー ・ファインダ画像の大きさに比べて倍率が拡大されて表 示される(ステップ29)。合焦確認用画像P2は画角確 認用画像P1に比べて倍率が大きいので、液晶ビュー・ ファインダ8の表示画面が小さくとも合焦の確認が比較 的容易となる。

【0032】シャッタ・レリーズ・ボタン1が半押しされている間はステップ25から29の処理が繰り返される。シャッタ・レリーズ・ボタン1が全押しされると(ステップ30でYES),一定期間(たとえば1/60秒)後に撮像装置5によって被写体が再び撮像され被写体像を表す画像データが画像データ変換装置6に入力する(ステップ31)。撮影範囲の全体の画像を表す画像データは画像データ変換装置6においてデータ圧縮される(ステップ32)。データ圧縮された画像データが画像記録装置9に与えられ、記録されることとなる(ステップ33)。

【0033】(2)第2実施例

上述した第1実施例においては、図6に示すように合焦 領域A1内の画像が電子ビュー・ファインダ8の表示画 面全面に表示されるように補正処理がされているが、第 2実施例においては図7に示すように電子ビュー・ファ インダ8の表示画面全面に撮影範囲全体の被写体像の縮 小画像である画角確認用画像P1を表示し、かつその画 角確認用画像P1上に画角確認用画像P1の倍率に比べ て大きい合焦確認用画像P2を上書きして表示するもの である。

【0034】第2実施例においても図1に示す構成のディジタル・スチル・カメラを用いることができる。

【0035】上述したように図7は、撮影範囲全体の撮像画像と電子ビュー・ファインダ8の表示画面上に表示される画像とを示している。図8は、ビュー・ファインダ8に表示される画像が生成される様子を示している。図9は、ディジタル・スチル・カメラの撮影処理手順の一部を示すフローチャートである。

【0036】上述したように、シャッタ・レリーズ・ボタン1が半押しされると(ステップ41でYES)、時刻t1において撮像装置5により被写体が撮像され撮像画

像を表す画像データが画像データ変換装置6に入力する (ステップ42)。撮影範囲全体の画角確認用画像P1が 電子ビュー・ファインダ8の表示画面に表示されるよう に、水平方向2400画素垂直方向1800画素の撮影画像が水 平方向640画素垂直方向480画素の画角確認用画像P1 を表す画角確認用画像データが生成される(ステップ4 3)。生成された画角確認用画像データが画像表示用記 録装置7に書き込まれる(ステップ44)。

【0037】一定期間後の時刻 t 2に再び、被写体が撮像され撮影範囲全体の撮像画像を表す画像データが撮像装置 5 から出力される(ステップ45)。撮影範囲全体の被写体像を表す画像データのうち、合焦範囲 A 1 の画像が画角確認用画像 P 1 の対応する領域の画像よりも倍率が大きくなるように画像データ変換装置 6 において間引き補正処理が施される(ステップ46)。合焦確認用画像 P 2 が画角確認用画像 P 1 上に上書きされるように、合焦確認用画像データが画像表示用記憶装置 7 に書き込まれる(ステップ47)。

【0038】合焦確認用画像P2が画角確認用画像P1上に上書きされている画像(ビュー・ファインダ画像)を表すビュー・ファインダ画像データが、画像表示用一時記憶装置7から読み出され電子ビュー・ファインダ8に与えられる(ステップ48)。図7に示すように撮影範囲全体を表す画角確認用画像P1上に、合焦確認用画像P2が上書きされて電子ビュー・ファインダ8の表示画面上に表示される(ステップ49)。画角確認用画像P1により撮影範囲全体の画角を知ることができる。上書きされている合焦確認用画像P1に比べて倍率が拡大されているので合焦していることを比較的容易に確認することができる。

【0039】シャッタ・レリーズ・ボタン1が全押しされると(ステップ50でYES),上述したように撮影範囲全体の被写体像を表す画像データが圧縮されて画像記録装置9に記録されるのはいうまでもない(図4参照)。

【0040】(3)第3実施例

第2実施例においては図8に示すように別々の二駒の画像から拡大された合焦確認用画像P2が撮影範囲全体の画角確認用画像P1上に上書きされたビュー・ファインダ画像が生成されている。このために撮影範囲全体の画角確認用画像P1と上書きされた合焦確認用画像P2とは時間的にずれている(時刻t2-t1)。第3実施例は,同時に撮影された画像から得られるビュー・ファインダ画像を電子ビュー・ファインダ8の表示画面上に表示するものである。

【0041】図10は、ディジタル・スチル・カメラの電気的構成を示すブロック図、図11は、合焦確認用画像P2が上書きされている電子ビュー・ファインダ画像が生成される様子を示している。図12は、ディジタル・スチル・カメラの撮影処理手順の一部を示すフローチャート

R

である。図10において、図1に示すものと同一物には同一符号を付して説明を省略する。

【0042】第3実施例によるディジタル・スチル・カメラは、第1実施例および第2実施例に用いられるディジタル・スチル・カメラに比べて新たに合焦範囲画像記憶装置15が設けられている。

【0043】シャッタ・レリーズ・ボタン1が半押しされると(ステップ61),撮像装置5によって被写体が撮像され(ステップ62),画角確認用画像P1を生成するために間引き補正処理が施される(ステップ63)。画像データ変換装置6において生成された画角確認用画像データが画像表示用一時記憶装置7に書き込まれる(ステップ64)。また,画像データ変換装置6に入力した画像データと同一駒の画像データは,撮像装置5から合焦範囲画像記憶装置15において,撮影範囲全体のうち合焦領域A1の画像データが合焦範囲画像記憶装置15に記憶される(ステップ64)。

【0044】合焦範囲画像記憶装置15に記憶されている合焦領域A1の画像データが画像データ変換装置6に入力し、上述したように合焦確認用画像P2が画角確認用画像P1の対応する領域の画像よりも倍率が大きくなるように間引き補正処理が施される(ステップ65)。合焦確認用画像P2が画角確認用画像P1上に上書きされるように、合焦確認用画像データが画像表示用一時記憶装置7上に上書きされる(ステップ66)。

【0045】画像表示用一時記憶装置7から合焦確認用画像P2が上書きされた画角確認用画像P1を表わす画像データが読み出され(ステップ67),電子ビュー・ファインダ8に与えられる。電子ビュー・ファインダ8の表示画面上に合焦確認用画像P2が上書きされた画角確認用画像P1が表示される(ステップ68)。その後は、シャッタ・レリーズ・ボタン1の全押しがあったことにより(ステップ69でYES),撮影範囲全体を表す画像データが画像記録装置9に記録されるのは上述した実施例と同様である。

【0046】(4)第4実施例

図13および図14は第4実施例を示すものである。図13は、ディジタル・スチル・カメラの電気的構成を示すブロック図である。図14は、ディジタル・スチル・カメラの撮影時の処理手順の一部を示すフローチャートである。

【0047】図13において、図10に示すものと同一物には同一符号を付して説明を省略する。また、図14において図11に示す処理と同一の処理については同一の符号を付し、説明を省略する。

【0048】図13に示すディジタル・スチル・カメラに おいては、合焦範囲画像データ変換装置16が設けられて いる。この合焦範囲画像データ変換装置16は、撮像装置 9から出力された画像データのうち、合焦確認用画像デ ータについて上述したように画角確認用画像 P 1 内の合 焦範囲に対応する画像の倍率よりも大きくなるように間 引き補正処理を施すものである。

【0049】撮像装置5から出力された撮影範囲全体を表す画像データは、撮影範囲画像データ変換装置6において変換されて画像表示用一時記憶装置7に書き込まれる(ステップ64A)。

【0050】また、画像表示用一時記憶装置7に書き込まれた撮影範囲全体を表す画像データと同一の画像データが合焦範囲画像データ変換装置16に与えられる。上述したように合焦確認用画像データについて画角確認用画像P1内の合焦範囲に対応する画像の大きさよりも倍率が大きくなるように間引き合焦範囲画像データ変換装置16において補正処理が施される(ステップ65)。

【0051】間引き補正処理された合焦確認用画像データは、上述したように合焦範囲画像記憶装置15に与えられ、書き込まれる(ステップ66)。その後、合焦範囲画像記憶装置15から読み出され、画像表示用一時記憶装置7に与えられる。画角確認用画像P1上に合焦範囲内の画像の倍率よりも大きい倍率をもつ合焦確認用画像P2が上書きされるように、画角確認用画像データに合焦確認用画像データが上書きされる。

【0052】電子ビュー・ファインダ8の表示画面上には図7に示すように画角確認用画像P1上に倍率が大きい合焦確認用画像P2が上書きされて表示されることとなる。

【0053】図13に示す構成によると間引き補正処理数の画像データが合焦範囲画像記録装置15に書き込まれるので、小さい容量の合焦範囲画像記録装置15を用いることができる。

【0054】(5)第5実施例

図15から図20は、第5実施例を示すものである。第5実施例は、合焦範囲の移動および合焦範囲の拡大を可能とするものである。合焦確認用画像が表示される領域(合焦画像表示領域)の位置は固定である。もっとも後述のように合焦画像表示領域の位置を移動可能としてもよいのはいうまでもない。

【0055】図15は、ディジタル・スチル・カメラを背面から見た斜視図である。

【0056】ディジタル・スチル・カメラの背面には、そのほぼ全面にわたって上述した画像ビューファインダ8の表示画面8(表示画面も画像ビューファインダと同じ符号を用いる)が設けられている。表示画面8の左上には、光学的ビューファインダ95が形成されている。

【0057】表示画面8の右上には、合焦範囲を移動するための指令を与えるための移動ボタン91が設けられている。この移動ボタン91上には、上下左右の矢印が押下可能に形成されている。表示画面8の左下には、表示画面8に合焦確認用画像を表示する指令を与える合焦確認用画像表示ボタン92および合焦範囲の拡大指令を与える

10

合焦確認用画像拡大/縮小ボタン93が設けられている。 【0058】ディジタル・スチル・カメラの上面の右側 にはシャッタ・レリーズ・ボタン1が設けられ、左側に は電源スイッチ94が設けられている。

【0059】図16は、ディジタル・スチル・カメラの電気的構成を示すブロック図である。この図において、図1に示す回路と同一の回路については同一の符号を付し、説明を省略する。

【0060】上述した位置移動ボタン91,合焦確認用画像表示ボタン92および合焦確認用画像拡大/縮小ボタン93の押下を示す信号は、CPU3に入力する。これらのボタン91,92,および93からの信号にもとづいて、後述するように合焦範囲の移動および拡大または縮小が行われる。

【0061】図17は、位置移動ボタン91および合焦確認 用画像拡大/縮小ボタン93の押下と合焦範囲の移動およ び拡大/縮小との関係を示している。この図において〇 印がボタンが押されたことを示している。

【0062】合焦範囲の移動方向は、位置移動ボタン91の押下のみで決定する。位置移動ボタン91に形成されている矢印が押されるとその押された矢印の方向に合焦範囲が移動する。移動時間は、位置移動ボタン91に形成されている矢印の押下時間により決定する。押下時間が長いほど移動量が大きくなる。

【0063】合焦範囲の拡大または縮小は、位置移動ボタン91と合焦確認用画像拡大/縮小ボタンとの組み合わせにより拡大または縮小指令が実現される。たとえば、位置移動ボタン91の左矢印と合焦確認用画像拡大/縮小ボタン93とが同時に押されると、合焦範囲の幅が広げられる。位置移動ボタン91の右矢印と合焦確認用画像拡大/縮小ボタン93とが同時に押されると、合焦範囲の幅が狭められる。位置移動ボタン91の上矢印と合焦確認用画像拡大/縮小ボタン93とが同時に押されると、合焦範囲の高さが高くなる。位置移動ボタン91の下矢印と合焦確認用画像拡大/縮小ボタン93とが同時に押されると、合焦範囲の高さが低くなる。

【0064】図18は、ディジタル・スチル・カメラの電子ビューファインダ8にビューファインダ画像を表示する処理手順の一部を示すフローチャートである。この図は、図1に対応するもので、図1に示す処理と同じ処理については同じ符号を付し説明を省略する。図19および図20は、撮像画像と電子ビューファインダ8の表示画面に表示されるビューファインダ画像を示している。

【0065】上述したように、被写体が撮像され、電子ビューファインダ8に画角確認用画像P1が表示される(ステップ24)。合焦確認用画像表示ボタン92が押されると(ステップ71)、上述のようにして合焦領域A1内の画像が合焦確認用画像P2として、画角確認用画像P1上に重ねて電子ビューファインダ8に表示される(ステップ29)。

【0066】合焦確認用画像表示ボタンが押されないと (ステップ71でNO), シャッタ・レリーズ・ボタン1が押されたかどうかが確認される (ステップ72)。シャッタ・レリーズ・ボタン1が押されなければ (ステップ72でNO), ステップ21から71の処理が繰り返される。シャッタ・レリーズ・ボタン1が押されると (ステップ72でYES), 図4に示す処理に移行する。

【0067】位置移動ボタン91上に形成されている矢印が押されると、合焦範囲の移動指令が与えられたと判断される(ステップ73でYES)。ディジタル・スチル・カメラに合焦範囲の移動指令が与えられると、与えられた移動指令に応じて合焦範囲が移動する。たとえば図19に示すように、合焦範囲A1は、最初は撮像画像のほぼ中心に位置している。移動指令が与えられることにより、合焦範囲は撮像画像のほぼ中心から移動する(合焦範囲A2とする)(ステップ74)。この結果、移動した合焦範囲A2内の画像が合焦確認用画像P2として電子ビューファインダ8に画角確認用画像P1上に重ねて表示される。

【0069】シャッタ・レリーズ・ボタン1が押されるまで、ステップ71、26から29、73から76の処理が繰り返される(ステップ77)。

【0070】合焦範囲の位置を移動することができるので、所望の部分が合焦しているかどうかを比較的容易に確認することができるようになる。また、合焦範囲を拡大/縮小することができるので、合焦の確認が比較的簡単となる。

【0071】(6)第6実施例

図21から図23は、第6実施例を示すものである。第6実施例においては、合焦画像表示領域の表示位置および大きさを変えるものである。

【0072】図21は、ディジタル・スチル・カメラを背面から見た斜視図である。この図において、図15に示す部分と同一の部分については同一符号を付して説明を省略する。

12

【0073】電子ビューファインダの表示画面8の右上には、合焦表示領域の表示位置の移動指令を与えるための位置移動ボタン96が設けられている。位置移動ボタン96には、上下左右方向の矢印が形成されている。

【0074】電子ビューファインダの表示画面8の左側には、上述した合焦確認用画像表示ボタン92のほかに合 焦表示領域の拡大指令を与えるための領域拡大ボタン97 および合焦表示領域の縮小指令を与えるための領域縮小 ボタン98が設けられている。

【0075】図22は、ディジタル・スチル・カメラの電気的構成を示すブロック図である。この図において図16に示す回路と同一の回路については同一符号を付して説明を省略する。

【0076】上述した領域拡大ボタン97および領域縮小ボタン98からの指令を示す信号はCPU3に入力する。 入力した信号にもとづいて、合焦表示領域の移動または 拡大/縮小処理が行われる。

【0077】図23は、ディジタル・スチル・カメラの合 焦確認用画像の表示処理の手順を示すフローチャートで あり、図18に示すフローチャートに対応するものであ る。図23において図18に示す処理と同じ処理については 同じ符号を付し、説明を省略する。

【0078】位置移動ボタン96が押されると、合焦画像表示領域の移動指令となる(ステップ81でYES)。位置移動ボタン96に形成されている矢印のうち押下された矢印方向に合焦画像表示領域が移動する(ステップ82)。移動させられた位置に合焦確認画像P2が表示させられる。図24に示す例では、ほぼ中央にあった合焦画像表示領域が左上に移動している。

【0079】合焦画像表示領域をユーザの所望の位置に 移動できるので、見やすい位置に移動することができ る。

【0080】領域拡大ボタン97または領域縮小ボタン98が押されると(ステップ83),合焦画像表示領域は拡大または縮小する(ステップ84)。図24に示す例では合焦画像表示領域が拡大させられ、この結果合焦確認画像P2も拡大している。合焦確認画像P2を拡大できるので、合焦の確認が比較的容易となる。また、合焦確認画像P2を縮小することもできるので、合焦確認画像が大きくて邪魔になることを未然に防止することができる。

【図面の簡単な説明】

【図1】ディジタル・スチル・カメラの電気的構成を示すブロック図である。

【図2】画像表示用一時記憶装置の電気的構成を示すプロック図である。

【図3】ディジタル・スチル・カメラの撮像処理の処理 手順の一部を示すフローチャートである。

【図4】ディジタル・スチル・カメラの撮像処理の処理 手順の一部を示すフローチャートである。

50 【図5】撮像画像データによって表される撮像画像と電

子ビュー・ファインダに表示される画像との関係を示している。

【図6】撮像画像データによって表される撮像画像と電子ビュー・ファインダに表示される画像との関係を示している。

【図7】撮像画像データによって表される撮像画像と電子ビュー・ファインダに表示される画像との関係を示している。

【図8】電子ビュー・ファインダに表示される画像が生成される様子を示している。

【図9】ディジタル・スチル・カメラの撮像処理の処理 手順の一部を示すフローチャートである。

【図10】ディジタル・スチル・カメラの電気的構成を示すブロック図である。

【図11】電子ビュー・ファインダに表示される画像が 生成される様子を示している。

【図12】ディジタル・スチル・カメラの撮像処理の処理手順の一部を示すフローチャートである。

【図13】ディジタル・スチル・カメラの電気的構成を 示すブロック図である。

【図14】ディジタル・スチル・カメラの撮像処理の処理手順の一部を示すフローチャートである。

【図15】ディジタル・スチル・カメラの斜視図である。

【図16】ディジタル・スチル・カメラの電気的構成を示すプロック図である。

【図17】合焦範囲を移動または拡大/縮小させるため

14

のボタンの状態を示している。

【図18】ディジタル・スチル・カメラの処理手順の一部を示すフローチャートである。

【図19】撮像画像とビューファインダ画像とを示して いる。

【図20】撮像画像とビューファインダ画像とを示している。

【図21】ディジタル・スチル・カメラの斜視図であ る。

【図22】ディジタル・スチル・カメラの電気的構成を 示すブロック図である。

【図23】ディジタル・スチル・カメラの処理手順を示すフローチャートである。

【図24】撮像画像とビューファインダ画像とを示している。

【符号の説明】

- 1 シャッタ・レリーズ・ボタン
- 2 焦点調節装置
- 3 CPU
- 4 ズーム・レンズ
- 5 撮像装置
- 6 画像データ変換装置
- 7 画像表示用一時記憶装置
- 8 電子ビュー・ファインダ
- 15 合焦範囲画像記録装置
- 16 合焦範囲画像データ変換装置

A1 合焦範囲

【図1】

【図4】

【図2】

【図5】

【図6】

【図7】

【図13】

シャッタ 半押し ステップ21へ Υ 被写体を撮像する 42 撮影範囲全体の画像が 画角確認用画像となる 43 ように補正する 画像表示用記録装置に 画角確認用画像データ 44 を書き込む 被写体を撮像する 45 合焦確認用画像が画角確 認用画像の対応する領域 の画像よりも大きくなる ように補正する 46 画像表示用記録装置に 合焦確認用画像データ を上書きする 画像表示用記録装置から ビューファインダ画像 データを読み出し 48 電子ビューファインダに 画像を表示する 50 シャッタ 全押し ステップ25へ N

[図9]

【図17】

位置移動ボタン					
左	右	£	下	合無確認用函像 拡大/縮小ボタン	合無範囲
0	_		_		中心を左に移動
_	0	_		_	中心を右に移動
	_	0	_	_	中心を上に移動
	_	_	0	_	中心を下に移動
0		_	_	0	幅を広げる
_	0		_	0	幅を狭める
_		0	_	0	高さを増やす
_	_	_	0	0	高さを減らす

【図11】

【図16】

【図14】

【図18】

【図19】

【図20】

【図22】

【図24】

【図23】

