CPEN 400Q Lecture 20 Hamiltonian simulation: error and resources in practice

Wednesday 20 March 2024

Announcements

- Assignment 3 due tonight at 23:59 (last technical assignment, except for two more hands-on)
- One more literacy assignment
- Quiz 9 Monday
- Monday's class: hands-on with variational eigensolver

Last time

We had two main questions:

1. How do we construct circuits for interaction terms like

$$\hat{H} = -\alpha Z_0 Z_1$$

2. How do we construct circuits where a qubit is acted on in more than one term?

$$\hat{H} = -\alpha Z_0 - \beta X_0$$

Last time

We answered the first one:

Last time

We saw an example that highlighted challenges of the second...

Learning outcomes

- perform Hamiltonian simulation with Trotterization
- describe pitfalls and consequences encountered in Trotterizing Hamiltonians with many interaction terms
- use QPE to estimate the ground state energy of a Hamiltonian, and quantify the resources required to do so

More generally, simulation of something like

$$e^{-i\alpha P - i\beta Q}$$

depends on whether the Paulis commute.

Exercise: evaluate the commutation relations for X, Y, Z.

- **■** [*X*, *Y*] =
- [Y, Z] =
- [Z, X] =
- [Y,X] =
- **■** [*Z*, *Y*] =
- [X, Z] =

Exercise: Do $X_0 Y_1 X_2$ and $Z_0 X_1 X_2$ commute?

Exercise: Do $Z_0Y_1X_3$ and $Z_0X_1Z_2$ commute?

Trick: check number of non-identity qubits on which they differ.

$$\# \times = 3 \Rightarrow DO NOT COMMUTE$$
(odd)

$$X I Z Z X Y X$$
 $Y Y Y X I Z X$
 $X X X X X X X$

#x = 4 \(\text{even}\)

#commute
(even)

(Under the hood: binary symplectic representation of Pauli terms, and symplectic inner products.)

When Paulis commute,

 We can split the exponential of the sum into a product of exponentials

$$e^{-i\alpha P - i\beta Q} = e^{-i\alpha P} e^{-i\beta Q}$$

■ We can evolve the terms individually in any order

$$e^{-i\alpha P - i\beta Q} = e^{-i\alpha P} e^{-i\beta Q} = e^{-i\beta Q} e^{-i\alpha P}$$

Example:

$$H = \frac{\theta}{2} X_0 Z_1 X_3 + \frac{\phi}{2} Y_0 Z_2 Y_3$$

$$e^{-i\frac{\theta}{2} X_0 Z_1 X_3} e^{-i\frac{\phi}{2} Y_0 Z_2 Y_3}$$

$$vs.$$

$$e^{-i\frac{\phi}{2} Y_0 Z_2 Y_3} e^{-i\frac{\theta}{2} X_0 Z_1 X_3}$$

Either works!

First, check that order doesn't matter. If [A, B] = 0,

Since e^A is sum of powers of A,

To show relationship with e^{A+B} :

To show relationship with e^{A+B} :

$$e^{A+B} = I + (A+B) + \frac{1}{2!}(A^2 + BA + AB + B^2) +$$

$$+ \frac{1}{3!}(A^3 + ABA + A^2B + AB^2 + BA^2 + B^2A + BAB + B^3) + \cdots$$

Summary:

only if
$$[A, B] = 0$$
.

In general, there are extra terms. This is summarized by the **Baker-Campbell-Hausdorff** formula and related Zassenhaus formula:

Trotterization

When Paulis don't commute, we can approximate evolution by Trotterizing:

Trotterization

The smaller N_T is, the better the approximation:

Can analytically derive expressions for the error and relationships with time and magnitude of commutator (see Codebook H.8):

Can use such relationships to determine N_T for a desired error.

Trotterization

"Higher-order" Trotter formulas also exist, e.g., second order:

Lower approximation error, at cost of more gates!

Other methods

Trotterization is not the only method, but is most straightforward to understand.

Other methods include:

- Linear combination of unitaries
- Qubitization

See Codebook H.6-H.9.

All these methods are more "long term" algorithms as they require huge amount of computational resources.

Example

Apply QPE and Hamiltonian simulation to estimate ground state energy of a deuteron.

Next time

Content:

- Quiz 9
- Hands-on with variational quantum eigensolver

Action items:

- 1. Finish assignment 3
- 2. Work on project

Recommended reading:

■ Codebook module H