

Commitment schemes, Identification Protocols and Fiat-Shamir Signatures

Applied Cryptography - Spring 2024

Simona Samardjiska

April 15, 2024

Institute for Computing and Information Sciences Radboud University

Summary

Last time:

- Public key encryption
- Key Encapsulation Mechanisms
- Digital Signatures from trapdoor permutations

Summary

Last time:

- Public key encryption
- Key Encapsulation Mechanisms
- Digital Signatures from trapdoor permutations

Today:

- Commitment schemes
- Zero-Knowledge protocols
- Identification Protocols
- Fiat-Shamir Signatures
- DSA and ECDSA

Commitment schemes

• Alice and Bob are getting a divorce!

- Alice and Bob are getting a divorce!
- They are at the point where they cannot even stand facing each other, so they have to discuss over the phone how to split the furniture, the kids, etc.

- Alice and Bob are getting a divorce!
- They are at the point where they cannot even stand facing each other, so they have to discuss over the phone how to split the furniture, the kids, etc.
- But one problem remains: who gets the car?

- Alice and Bob are getting a divorce!
- They are at the point where they cannot even stand facing each other, so they have to discuss over the phone how to split the furniture, the kids, etc.
- But one problem remains: who gets the car?
- They decide to flip a coin over the phone. . .

- Alice and Bob are getting a divorce!
- They are at the point where they cannot even stand facing each other, so they have to discuss over the phone how to split the furniture, the kids, etc.
- But one problem remains: who gets the car?
- They decide to flip a coin over the phone. . .
- First attempt:

- Alice and Bob are getting a divorce!
- They are at the point where they cannot even stand facing each other, so they have to discuss over the phone how to split the furniture, the kids, etc.
- But one problem remains: who gets the car?
- They decide to flip a coin over the phone. . .
- First attempt:

Alice

Bob

You guess, I flip

$$b_B \stackrel{\$}{\leftarrow} \{heads, tails\}$$

If $b_A \stackrel{?}{=} b_B$ Bob wins otherwise, Alice wins

• Wait a minute, Alice can cheat!

• Second attempt:

• Second attempt:

• Wait a minute, Bob can cheat!

• Second attempt:

- Wait a minute, Bob can cheat!
- A deadlock! Any ideas?

- Third attempt: Use a commitment (a locked box):
 - Commit to value c = commit(b)

- Third attempt: Use a commitment (a locked box):
 - Commit to value c = commit(b)
 - Reveal (open) value b = open(c)

- Third attempt: Use a commitment (a locked box):
 - Commit to value c = commit(b)
 - Reveal (open) value b = open(c)

When does this protocol work?

- Third attempt: Use a commitment (a locked box):
 - Commit to value c = commit(b)
 - Reveal (open) value b = open(c)

Alice Bob

$$b_{A} \stackrel{\$}{\leftarrow} \{heads, tails\}$$

$$c_{A} = commit(b_{A}) \qquad \qquad \underbrace{c_{A}(commit)}_{b_{B}} \qquad b_{B} \stackrel{\$}{\leftarrow} \{heads, tails\}$$

$$\underbrace{b_{A}(open)}_{b_{A}(open)} \qquad \qquad \text{If } b_{A} \stackrel{?}{=} b_{B} \text{ Bob wins}$$
otherwise, Alice wins otherwise, Alice wins

- When does this protocol work?
 - If Alice can find another b'_A such that $commit(b'_A) = commit(b_A)$, then Alice can cheat! (commit should be binding!)
 - If Bob can find b_A given $commit(b_A)$, then Bob can cheat! (commit should be hiding!)

Commitment scheme – formally

Given security parameter $\lambda \in \mathbb{N}$ and two finite sets $\mathcal{M}, \mathcal{R} \subseteq \{0,1\}^*$, a commitment scheme Comm = (Setup, Comm, Open) consists of three algorithms:

- Setup pk \leftarrow Setup(1 $^{\lambda}$)
- Commitment algorithm: Takes random $r \in \mathcal{R}$, the message $M \in \mathcal{M}$ and outputs $(C, D) \leftarrow \mathsf{Comm}(\mathsf{pk}, M, r)$. C is said to be the commitment of M, and D is the opening (decommitment).
- Opening (verification) algorithm: Takes as input the commitment of M, the opening D, and outputs $M' = \operatorname{Open}(\operatorname{pk}, C, D) \in \mathcal{M}$ or $\bot \notin \mathcal{M}$ to indicate an invalid commitment.

Commitment scheme – formally

Given security parameter $\lambda \in \mathbb{N}$ and two finite sets $\mathcal{M}, \mathcal{R} \subseteq \{0,1\}^*$, a commitment scheme Comm = (Setup, Comm, Open) consists of three algorithms:

- Setup pk \leftarrow Setup(1 $^{\lambda}$)
- Commitment algorithm: Takes random $r \in \mathcal{R}$, the message $M \in \mathcal{M}$ and outputs $(C, D) \leftarrow \mathsf{Comm}(\mathsf{pk}, M, r)$. C is said to be the commitment of M, and D is the opening (decommitment).
- Opening (verification) algorithm: Takes as input the commitment of M, the opening D, and outputs $M' = \operatorname{Open}(\operatorname{pk}, C, D) \in \mathcal{M}$ or $\bot \notin \mathcal{M}$ to indicate an invalid commitment.

Correctness: For all $M \in \mathcal{M}$

$$Open(pk, (Comm(pk, M, r))) = M$$

Note:

- Often the opening simply contains the message M and the random coins r used in the commitment generation,
- Now, the verification consists of running again the Comm algorithm and checking whether it matches

Binding property: The sender can not change their mind after committing

Binding property: The sender can not change their mind after committing

• **Unconditional/statistical binding:** Even with an infinite computational power, it is not possible to change mind!

Binding property: The sender can not change their mind after committing

- Unconditional/statistical binding: Even with an infinite computational power, it is not possible
 to change mind! In this case b is uniquely determined/is determined with overwhelming
 probability by Comm(pk, b, r)
- Computational binding: (Limited to computationally bounded senders.) For every PPT algorithm $\mathcal A$ the probability of finding two different valid openings of a commitment is negligible.

Binding property: The sender can not change their mind after committing

- Unconditional/statistical binding: Even with an infinite computational power, it is not possible
 to change mind! In this case b is uniquely determined/is determined with overwhelming
 probability by Comm(pk, b, r)
- Computational binding: (Limited to computationally bounded senders.) For every PPT algorithm $\mathcal A$ the probability of finding two different valid openings of a commitment is negligible.

Hiding property: a commitment to b reveals (almost) no information about b

Binding property: The sender can not change their mind after committing

- Unconditional/statistical binding: Even with an infinite computational power, it is not possible
 to change mind! In this case b is uniquely determined/is determined with overwhelming
 probability by Comm(pk, b, r)
- Computational binding: (Limited to computationally bounded senders.) For every PPT algorithm $\mathcal A$ the probability of finding two different valid openings of a commitment is negligible.

Hiding property: a commitment to b reveals (almost) no information about b

• Unconditional/statistical hiding: for every $M_0, M_1 \in \mathcal{M}$ the two distribution ensembles

$$\{C_0|(C_0,D_0)\leftarrow\mathsf{Comm}(\mathsf{pk},M_0,R_0)\}\quad\text{ and }\quad \{C_1|(C_1,D_1)\leftarrow\mathsf{Comm}(\mathsf{pk},M_1,R_1)\}$$

are identical/statistically indistinguishable, i.e. the statistical distance between the two is zero/negligible.

Binding property: The sender can not change their mind after committing

- Unconditional/statistical binding: Even with an infinite computational power, it is not possible
 to change mind! In this case b is uniquely determined/is determined with overwhelming
 probability by Comm(pk, b, r)
- ullet Computational binding: (Limited to computationally bounded senders.) For every PPT algorithm ${\cal A}$ the probability of finding two different valid openings of a commitment is negligible.

Hiding property: a commitment to b reveals (almost) no information about b

• Unconditional/statistical hiding: for every $M_0, M_1 \in \mathcal{M}$ the two distribution ensembles

$$\{\mathit{C}_0|(\mathit{C}_0,\mathit{D}_0) \leftarrow \mathsf{Comm}(\mathsf{pk},\mathit{M}_0,\mathit{R}_0)\} \quad \text{ and } \quad \{\mathit{C}_1|(\mathit{C}_1,\mathit{D}_1) \leftarrow \mathsf{Comm}(\mathsf{pk},\mathit{M}_1,\mathit{R}_1)\}$$

are identical/statistically indistinguishable, i.e. the statistical distance between the two is zero/negligible.

• Computational hiding: (Limited to computationally bounded receivers.) For every PPT algorithm \mathcal{A} and every $M_0, M_1 \in \mathcal{M}$ the two distribution ensembles above are computationally indistinguishable.

Perfectly binding and perfectly hiding commitment:

Perfectly binding and perfectly hiding commitment:

• perfectly binding \Rightarrow there exist no different R_0, R_1, M_0, M_1 s.t. $Comm(pk, M_0, R_0) = Comm(pk, M_1, R_1)$

Perfectly binding and perfectly hiding commitment:

- perfectly binding ⇒ there exist no different R₀, R₁, M₀, M₁ s.t.
 Comm(pk, M₀, R₀) = Comm(pk, M₁, R₁)
- \Rightarrow An unbounded adversary can always find M given Comm(pk, M, R) (by brute-forcing all M and R)

Perfectly binding and perfectly hiding commitment:

- perfectly binding ⇒ there exist no different R₀, R₁, M₀, M₁ s.t.
 Comm(pk, M₀, R₀) = Comm(pk, M₁, R₁)
- \Rightarrow An unbounded adversary can always find M given Comm(pk, M, R) (by brute-forcing all M and R)
- ⇒ Such commitment scheme does not exist!

Perfectly binding and perfectly hiding commitment:

- perfectly binding ⇒ there exist no different R₀, R₁, M₀, M₁ s.t.
 Comm(pk, M₀, R₀) = Comm(pk, M₁, R₁)
- \Rightarrow An unbounded adversary can always find M given Comm(pk, M, R) (by brute-forcing all M and R)
- ⇒ Such commitment scheme does not exist!

Hash based commitment:

$$\mathsf{Comm}(\mathsf{pk}, M, R) = H(R||M) \text{ where } R \overset{\$}{\leftarrow} \{0, 1\}^{t\lambda}$$

- Computationally binding if H- collision resistant
- Computationally hiding if H- preimage resistant
 In the ROM:
- If message length is bounded statistical binding can be achieved
- Statistical hiding can be achieved for $t \ge 5$

Pedersen bit-commitment:

$$\mathsf{Comm}(\mathsf{pk},B,R) = g^R \cdot h^B \text{ where } R \xleftarrow{\$} \mathbb{Z}_n \text{ and } h \in \langle g \rangle, |\langle g \rangle| = n$$

Pedersen bit-commitment:

$$\mathsf{Comm}(\mathsf{pk},B,R) = g^R \cdot h^B \text{ where } R \xleftarrow{\$} \mathbb{Z}_n \text{ and } h \in \langle g \rangle, |\langle g \rangle| = n$$

h is such that $\log_g h$ is unknown to the parties

• Computationally binding under DL assumption

Pedersen bit-commitment:

$$\mathsf{Comm}(\mathsf{pk},B,R) = g^R \cdot h^B \text{ where } R \xleftarrow{\$} \mathbb{Z}_n \text{ and } h \in \langle g \rangle, |\langle g \rangle| = n$$

- Computationally binding under DL assumption
 - $\mathsf{Comm}(\mathsf{pk},B,R_0) = \mathsf{Comm}(\mathsf{pk},1-B,R_1) \Rightarrow g^{R_0} \cdot h^B = g^{R_1} \cdot h^{1-B}$

Pedersen bit-commitment:

$$\mathsf{Comm}(\mathsf{pk},B,R) = g^R \cdot h^B \text{ where } R \xleftarrow{\$} \mathbb{Z}_n \text{ and } h \in \langle g \rangle, |\langle g \rangle| = n$$

- Computationally binding under DL assumption
 - Comm(pk, B, R_0) = Comm(pk, 1 B, R_1) $\Rightarrow g^{R_0} \cdot h^B = g^{R_1} \cdot h^{1-B}$
 - $\bullet \Rightarrow \log_g h = (R_0 R_1)/(1 2B)$

Pedersen bit-commitment:

$$\mathsf{Comm}(\mathsf{pk},B,R) = g^R \cdot h^B \text{ where } R \xleftarrow{\$} \mathbb{Z}_n \text{ and } h \in \langle g \rangle, |\langle g \rangle| = n$$

- Computationally binding under DL assumption
 - Comm(pk, B, R_0) = Comm(pk, 1 B, R_1) $\Rightarrow g^{R_0} \cdot h^B = g^{R_1} \cdot h^{1-B}$
 - $\bullet \Rightarrow \log_g h = (R_0 R_1)/(1 2B)$
 - \Rightarrow DL broken!

Pedersen bit-commitment:

$$\mathsf{Comm}(\mathsf{pk},B,R) = g^R \cdot h^B \text{ where } R \xleftarrow{\$} \mathbb{Z}_n \text{ and } h \in \langle g \rangle, |\langle g \rangle| = n$$

- Computationally binding under DL assumption
 - Comm(pk, B, R_0) = Comm(pk, 1 B, R_1) $\Rightarrow g^{R_0} \cdot h^B = g^{R_1} \cdot h^{1-B}$
 - $\bullet \Rightarrow \log_g h = (R_0 R_1)/(1 2B)$
 - ⇒ DL broken!
- ullet Perfectly hiding g^R and $g^R h$ are perfectly indistinguishable

Zero Knowledge Protocols

- Most common type of authentication using passwords
- Typical flow:

- Most common type of authentication using passwords
- Typical flow:

• Many things can go wrong when password is sent to server and hash stored at server

- Most common type of authentication using passwords
- Typical flow:

- Many things can go wrong when password is sent to server and hash stored at server
 - insecure communication
 - insecure storage
- Alice would rather not send her password...

- Most common type of authentication using passwords
- Typical flow:

- Many things can go wrong when password is sent to server and hash stored at server
 - insecure communication
 - insecure storage
- Alice would rather not send her password... but still be able to prove she knows it

- Most common type of authentication using passwords
- Typical flow:

- Many things can go wrong when password is sent to server and hash stored at server
 - insecure communication
 - insecure storage
- Alice would rather not send her password...but still be able to prove she knows it
- Solution?

• Alice (the prover \mathcal{P}) wants to prove the knowledge of a secret to Bob (the verifier \mathcal{V})

- Alice (the prover \mathcal{P}) wants to prove the knowledge of a secret to Bob (the verifier \mathcal{V})
- They engage in an interactive proof protocol
- Important:
 - Alice should (almost) always be able to convince Bob if she knows the secret (completeness)

- Alice (the prover \mathcal{P}) wants to prove the knowledge of a secret to Bob (the verifier \mathcal{V})
- They engage in an interactive proof protocol
- Important:
 - Alice should (almost) always be able to convince Bob if she knows the secret (completeness)
 - Alice should (almost) never be able to convince Bob if she doesn't know the secret, even if she cheats (soundness)

- Alice (the prover \mathcal{P}) wants to prove the knowledge of a secret to Bob (the verifier \mathcal{V})
- They engage in an interactive proof protocol
- Important:
 - Alice should (almost) always be able to convince Bob if she knows the secret (completeness)
 - Alice should (almost) never be able to convince Bob if she doesn't know the secret, even if she cheats (soundness)
 - The interaction should leak the secret as little as possible even if Bob cheats

- Alice (the prover \mathcal{P}) wants to prove the knowledge of a secret to Bob (the verifier \mathcal{V})
- They engage in an interactive proof protocol
- Important:
 - Alice should (almost) always be able to convince Bob if she knows the secret (completeness)
 - Alice should (almost) never be able to convince Bob if she doesn't know the secret, even if she cheats (soundness)
 - The interaction should leak the secret as little as possible even if Bob cheats
 - Ideally, not at all Zero-Knowledge (ZK) property

Interactive proof/argument systems

Let L be a language. The pair $(\mathcal{P}, \mathcal{V})$ is an interactive proof system for L (proving membership of statement) if it satisfies the following two conditions:

- Completeness: If $x \in L$, then the probability that $(\mathcal{P}, \mathcal{V})$ rejects x is negligible in the length of x.
- Soundness: If $x \notin L$ then for any prover \mathcal{P}^* , the probability that $(\mathcal{P}^*, \mathcal{V})$ accepts x is negligible in the length of x. This probability is called **soundness error**.

Some terminology:

• Cheating parties will be denoted by \mathcal{P}^* , \mathcal{V}^* - they don't follow the protocol (may use a cheating strategy)

Interactive proof/argument systems

Let L be a language. The pair $(\mathcal{P}, \mathcal{V})$ is an interactive proof system for L (proving membership of statement) if it satisfies the following two conditions:

- Completeness: If $x \in L$, then the probability that $(\mathcal{P}, \mathcal{V})$ rejects x is negligible in the length of x.
- Soundness: If $x \notin L$ then for any prover \mathcal{P}^* , the probability that $(\mathcal{P}^*, \mathcal{V})$ accepts x is negligible in the length of x. This probability is called **soundness error**.

Some terminology:

- Cheating parties will be denoted by \mathcal{P}^* , \mathcal{V}^* they don't follow the protocol (may use a cheating strategy)
- Transcript a record of the entire conversation between the parties

Interactive proof/argument systems

Let L be a language. The pair $(\mathcal{P}, \mathcal{V})$ is an interactive proof system for L (proving membership of statement) if it satisfies the following two conditions:

- Completeness: If $x \in L$, then the probability that $(\mathcal{P}, \mathcal{V})$ rejects x is negligible in the length of x.
- Soundness: If $x \notin L$ then for any prover \mathcal{P}^* , the probability that $(\mathcal{P}^*, \mathcal{V})$ accepts x is negligible in the length of x. This probability is called **soundness error**.

Some terminology:

- Cheating parties will be denoted by \mathcal{P}^* , \mathcal{V}^* they don't follow the protocol (may use a cheating strategy)
- Transcript a record of the entire conversation between the parties
- The verifier is always polynomial time bounded
- The prover may be unbounded (proof systems) or polynomial time bounded (argument systems)
- In practice we will be always interested in arguments

• Whatever strategy the verifier follows, and whatever a priori knowledge he may have, he learns nothing except for the truth of the prover's claim

- Whatever strategy the verifier follows, and whatever a priori knowledge he may have, he learns nothing except for the truth of the prover's claim
- if nothing is leaked, this means that the verifier can **simulate** the conversation with the prover without even interacting with him!

- Whatever strategy the verifier follows, and whatever a priori knowledge he may have, he learns nothing except for the truth of the prover's claim
- if nothing is leaked, this means that the verifier can **simulate** the conversation with the prover without even interacting with him!

An interactive proof system or argument $(\mathcal{P}, \mathcal{V})$ for language L is **zero-knowledge** if for every PPT verifier \mathcal{V}^* , there is a simulator $\mathcal{S}_{\mathcal{V}^*}$ running in expected probabilistic polynomial time, such that:

For $x \in L$ the distribution of transcripts output by $\mathcal{S}_{\mathcal{V}^*}$ on input x is

- perfectly (perfect ZK)
- statistically (statistical ZK)
- computationally (computational ZK)

indistinguishable from the distribution of transcripts produced by $(\mathcal{P}, \mathcal{V}^*)$ on input x (given to \mathcal{V}^*).

- Whatever strategy the verifier follows, and whatever a priori knowledge he may have, he learns nothing except for the truth of the prover's claim
- if nothing is leaked, this means that the verifier can **simulate** the conversation with the prover without even interacting with him!

An interactive proof system or argument $(\mathcal{P}, \mathcal{V})$ for language L is **zero-knowledge** if for every PPT verifier \mathcal{V}^* , there is a simulator $\mathcal{S}_{\mathcal{V}^*}$ running in expected probabilistic polynomial time, such that:

For $x \in L$ the distribution of transcripts output by $\mathcal{S}_{\mathcal{V}^*}$ on input x is

- perfectly (perfect ZK)
- statistically (statistical ZK)
- computationally (computational ZK)

indistinguishable from the distribution of transcripts produced by $(\mathcal{P}, \mathcal{V}^*)$ on input x (given to \mathcal{V}^*).

• the simulator can generate messages of a transcript in any order it wants

- Given p-prime, q|p-1, $g \in \mathbb{Z}_p^*$ of order q, $w \in \mathbb{Z}_q$ and $v = g^w \pmod{p}$.
- The prover $\mathcal P$ wants to prove to the verifier $\mathcal V$ knowledge of w without revealing any information about it

- Given p-prime, q|p-1, $g \in \mathbb{Z}_p^*$ of order q, $w \in \mathbb{Z}_q$ and $v = g^w \pmod{p}$.
- ullet The prover ${\mathcal P}$ wants to prove to the verifier ${\mathcal V}$ knowledge of w without revealing any information about it

- Inside of circle addition
- Outside of circle multiplication

- Given p-prime, q|p-1, $g \in \mathbb{Z}_p^*$ of order q, $w \in \mathbb{Z}_q$ and $v = g^w \pmod{p}$.
- ullet The prover ${\mathcal P}$ wants to prove to the verifier ${\mathcal V}$ knowledge of w without revealing any information about it

- Inside of circle addition
- Outside of circle multiplication
- Prover shows they can close circle, by revealing only one of purple values

- Given p-prime, q|p-1, $g \in \mathbb{Z}_p^*$ of order q, $w \in \mathbb{Z}_q$ and $v = g^w \pmod{p}$.
- ullet The prover ${\mathcal P}$ wants to prove to the verifier ${\mathcal V}$ knowledge of w without revealing any information about it

- Inside of circle addition
- Outside of circle multiplication
- Prover shows they can close circle, by revealing only one of purple values

- Given p-prime, q|p-1, $g \in \mathbb{Z}_p^*$ of order q, $w \in \mathbb{Z}_q$ and $v = g^w \pmod{p}$.
- ullet The prover ${\mathcal P}$ wants to prove to the verifier ${\mathcal V}$ knowledge of w without revealing any information about it

- Inside of circle addition
- Outside of circle multiplication
- Prover shows they can close circle, by revealing only one of purple values

- Given p-prime, q|p-1, $g \in \mathbb{Z}_p^*$ of order q, $w \in \mathbb{Z}_q$ and $v = g^w \pmod{p}$.
- ullet The prover ${\mathcal P}$ wants to prove to the verifier ${\mathcal V}$ knowledge of w without revealing any information about it

 $\mathcal{P}(\mathsf{pk} = \mathsf{v}, \mathsf{sk} = \mathsf{w})$

V(pk = v)

- Inside of circle addition
- Outside of circle multiplication
- Prover shows they can close circle, by revealing only one of purple values

- Given p-prime, q|p-1, $g \in \mathbb{Z}_p^*$ of order q, $w \in \mathbb{Z}_q$ and $v = g^w \pmod{p}$.
- ullet The prover ${\mathcal P}$ wants to prove to the verifier ${\mathcal V}$ knowledge of w without revealing any information about it

- Inside of circle addition
- Outside of circle multiplication
- Prover shows they can close circle, by revealing only one of purple values

- Given p-prime, q|p-1, $g \in \mathbb{Z}_p^*$ of order q, $w \in \mathbb{Z}_q$ and $v = g^w \pmod{p}$.
- ullet The prover ${\mathcal P}$ wants to prove to the verifier ${\mathcal V}$ knowledge of w without revealing any information about it

- Inside of circle addition
- Outside of circle multiplication
- Prover shows they can close circle, by revealing only one of purple values

- Given p-prime, q|p-1, $g \in \mathbb{Z}_p^*$ of order q, $w \in \mathbb{Z}_q$ and $v = g^w \pmod{p}$.
- ullet The prover ${\mathcal P}$ wants to prove to the verifier ${\mathcal V}$ knowledge of w without revealing any information about it

- Inside of circle addition
- Outside of circle multiplication
- Prover shows they can close circle, by revealing only one of purple values

- Given p-prime, q|p-1, $g \in \mathbb{Z}_p^*$ of order q, $w \in \mathbb{Z}_q$ and $v = g^w \pmod{p}$.
- ullet The prover ${\mathcal P}$ wants to prove to the verifier ${\mathcal V}$ knowledge of w without revealing any information about it

- Inside of circle addition
- Outside of circle multiplication
- Prover shows they can close circle, by revealing only one of purple values

- Given p-prime, q|p-1, $g \in \mathbb{Z}_p^*$ of order q, $w \in \mathbb{Z}_q$ and $v = g^w \pmod{p}$.
- ullet The prover ${\mathcal P}$ wants to prove to the verifier ${\mathcal V}$ knowledge of w without revealing any information about it

- Inside of circle addition
- Outside of circle multiplication
- Prover shows they can close circle, by revealing only one of purple values

• Completeness: Trivially satisfied. If indeed $v = g^w$ and $a = g^u$, then the verifier will always accept. Why?

- Completeness: Trivially satisfied. If indeed $v = g^w$ and $a = g^u$, then the verifier will always accept. Why?
- Soundness: Suppose the prover does not know w. \mathcal{P} can always answer one challenge, if they prepare well. How?

- Completeness: Trivially satisfied. If indeed $v = g^w$ and $a = g^u$, then the verifier will always accept. Why?
- Soundness: Suppose the prover does not know w. \mathcal{P} can always answer one challenge, if they prepare well. How?
 - \mathcal{P} makes a guess which challenge they will receive, say ch*, and they prepare for it by calculating resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and then $a = g^{\text{resp}}/v^{\text{ch}^*}$.

- Completeness: Trivially satisfied. If indeed $v = g^w$ and $a = g^u$, then the verifier will always accept. Why?
- Soundness: Suppose the prover does not know w. \mathcal{P} can always answer one challenge, if they prepare well. How?
 - \mathcal{P} makes a guess which challenge they will receive, say ch*, and they prepare for it by calculating resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and then $a = g^{\text{resp}}/v^{\text{ch}^*}$.
 - \mathcal{P} commits to a.

- Completeness: Trivially satisfied. If indeed $v = g^w$ and $a = g^u$, then the verifier will always accept. Why?
- Soundness: Suppose the prover does not know w. \mathcal{P} can always answer one challenge, if they prepare well. How?
 - \mathcal{P} makes a guess which challenge they will receive, say ch*, and they prepare for it by calculating resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and then $a = g^{\text{resp}}/v^{\text{ch}^*}$.
 - \mathcal{P} commits to a.
 - If the real challenge ch = ch*, the verifier accepts, otherwise it rejects.

- Completeness: Trivially satisfied. If indeed $v = g^w$ and $a = g^u$, then the verifier will always accept. Why?
- Soundness: Suppose the prover does not know w. \mathcal{P} can always answer one challenge, if they prepare well. How?
 - \mathcal{P} makes a guess which challenge they will receive, say ch*, and they prepare for it by calculating resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and then $a = g^{\text{resp}}/v^{\text{ch}^*}$.
 - \mathcal{P} commits to a.
 - If the real challenge ch = ch*, the verifier accepts, otherwise it rejects.
 - $\Rightarrow \mathcal{P}$ convinces the verifier with probability 1/2 soundness error.

- Completeness: Trivially satisfied. If indeed $v = g^w$ and $a = g^u$, then the verifier will always accept. Why?
- Soundness: Suppose the prover does not know w. \mathcal{P} can always answer one challenge, if they prepare well. How?
 - \mathcal{P} makes a guess which challenge they will receive, say ch*, and they prepare for it by calculating resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and then $a = g^{\text{resp}}/v^{\text{ch}^*}$.
 - \mathcal{P} commits to a.
 - If the real challenge ch = ch*, the verifier accepts, otherwise it rejects.

 $\Rightarrow \mathcal{P}$ convinces the verifier with probability 1/2 - soundness error.

Can \mathcal{P} successfully answer both challenges?

- Completeness: Trivially satisfied. If indeed $v = g^w$ and $a = g^u$, then the verifier will always accept. Why?
- Soundness: Suppose the prover does not know w. \mathcal{P} can always answer one challenge, if they prepare well. How?
 - \mathcal{P} makes a guess which challenge they will receive, say ch*, and they prepare for it by calculating resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and then $a = g^{\text{resp}}/v^{\text{ch}^*}$.
 - \mathcal{P} commits to a.
 - If the real challenge ch = ch*, the verifier accepts, otherwise it rejects.

 $\Rightarrow \mathcal{P}$ convinces the verifier with probability 1/2 - soundness error.

Can \mathcal{P} successfully answer both challenges?

ullet Suppose they can. Let $resp_0$ and $resp_1$ be the two correct answers to the challenges 0 and 1.

- Completeness: Trivially satisfied. If indeed $v = g^w$ and $a = g^u$, then the verifier will always accept. Why?
- Soundness: Suppose the prover does not know w. \mathcal{P} can always answer one challenge, if they prepare well. How?
 - \mathcal{P} makes a guess which challenge they will receive, say ch*, and they prepare for it by calculating resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and then $a = g^{\text{resp}}/v^{\text{ch}^*}$.
 - \mathcal{P} commits to a.
 - If the real challenge ch = ch*, the verifier accepts, otherwise it rejects.

 $\Rightarrow \mathcal{P}$ convinces the verifier with probability 1/2 - soundness error.

Can \mathcal{P} successfully answer both challenges?

- Suppose they can. Let resp₀ and resp₁ be the two correct answers to the challenges 0 and 1.
- Then we get $w = \text{resp}_1 \text{resp}_0$, which is a contradiction the prover can easily calculate w.

- Completeness: Trivially satisfied. If indeed $v = g^w$ and $a = g^u$, then the verifier will always accept. Why?
- Soundness: Suppose the prover does not know w. \mathcal{P} can always answer one challenge, if they prepare well. How?
 - \mathcal{P} makes a guess which challenge they will receive, say ch*, and they prepare for it by calculating resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and then $a = g^{\text{resp}}/v^{\text{ch}^*}$.
 - \mathcal{P} commits to a.
 - If the real challenge ch = ch*, the verifier accepts, otherwise it rejects.

 $\Rightarrow \mathcal{P}$ convinces the verifier with probability 1/2 - soundness error.

Can \mathcal{P} successfully answer both challenges?

- Suppose they can. Let resp₀ and resp₁ be the two correct answers to the challenges 0 and 1.
- Then we get $w = resp_1 resp_0$, which is a contradiction the prover can easily calculate w.

To reduce the error to negligible in a security parameter λ , the protocol needs to be repeated λ times.

- Completeness: Trivially satisfied. If indeed $v = g^w$ and $a = g^u$, then the verifier will always accept. Why?
- Soundness: Suppose the prover does not know w. \mathcal{P} can always answer one challenge, if they prepare well. How?
 - \mathcal{P} makes a guess which challenge they will receive, say ch*, and they prepare for it by calculating resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and then $a = g^{\text{resp}}/v^{\text{ch}^*}$.
 - \mathcal{P} commits to a.
 - If the real challenge ch = ch*, the verifier accepts, otherwise it rejects.

 $\Rightarrow \mathcal{P}$ convinces the verifier with probability 1/2 - soundness error.

Can \mathcal{P} successfully answer both challenges?

- Suppose they can. Let resp₀ and resp₁ be the two correct answers to the challenges 0 and 1.
- Then we get $w = resp_1 resp_0$, which is a contradiction the prover can easily calculate w.

To reduce the error to negligible in a security parameter λ , the protocol needs to be repeated λ times. The soundness error becomes $1/2^{\lambda}$.

- Completeness: Trivially satisfied. If indeed $v = g^w$ and $a = g^u$, then the verifier will always accept. Why?
- Soundness: Suppose the prover does not know w. \mathcal{P} can always answer one challenge, if they prepare well. How?
 - \mathcal{P} makes a guess which challenge they will receive, say ch*, and they prepare for it by calculating resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and then $a = g^{\text{resp}}/v^{\text{ch}^*}$.
 - \mathcal{P} commits to a.
 - If the real challenge ch = ch*, the verifier accepts, otherwise it rejects.

 $\Rightarrow \mathcal{P}$ convinces the verifier with probability 1/2 - soundness error.

Can \mathcal{P} successfully answer both challenges?

- Suppose they can. Let resp₀ and resp₁ be the two correct answers to the challenges 0 and 1.
- Then we get $w = resp_1 resp_0$, which is a contradiction the prover can easily calculate w.

To reduce the error to negligible in a security parameter λ , the protocol needs to be repeated λ times. The soundness error becomes $1/2^{\lambda}$.

• Zero-Knowledgness: We will show the protocol is zero-knowledge.

- **Zero-Knowledgness:** We will show the protocol is zero-knowledge. We build a simulator S (no knowledge of the secret w, and is polynomially bounded) as follows:
 - lacktriangledown S starts the verifier \mathcal{V}^* by giving it the parameters p,q,g and the public v

- **Zero-Knowledgness:** We will show the protocol is zero-knowledge. We build a simulator S (no knowledge of the secret w, and is polynomially bounded) as follows:
 - $oldsymbol{0}$ S starts the verifier \mathcal{V}^* by giving it the parameters p,q,g and the public v
 - **2** S makes a guess which challenge it will receive, say ch*, and it prepares for it by calculating $a = g^{\text{resp}}/v^{\text{ch}^*}$ for randomly chosen resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$.

- **Zero-Knowledgness:** We will show the protocol is zero-knowledge. We build a simulator S (no knowledge of the secret w, and is polynomially bounded) as follows:
 - $oldsymbol{0}$ S starts the verifier \mathcal{V}^* by giving it the parameters p,q,g and the public v
 - **2** S makes a guess which challenge it will receive, say ch*, and it prepares for it by calculating $a = g^{\text{resp}}/v^{\text{ch}^*}$ for randomly chosen resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$. S sends com = a to \mathcal{V}^* .

- **Zero-Knowledgness:** We will show the protocol is zero-knowledge. We build a simulator S (no knowledge of the secret w, and is polynomially bounded) as follows:
 - **1** S starts the verifier \mathcal{V}^* by giving it the parameters p, q, g and the public v
 - **2** \mathcal{S} makes a guess which challenge it will receive, say ch*, and it prepares for it by calculating $a = g^{\text{resp}}/v^{\text{ch}^*}$ for randomly chosen resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$. \mathcal{S} sends com = a to \mathcal{V}^* .
 - **3** $\mathcal S$ gets a challenge ch from $\mathcal V^*$. If $\mathsf{ch}=\mathsf{ch}^*$, $\mathcal S$ outputs $(a,\mathsf{ch}^*,\mathsf{resp})$.

- **Zero-Knowledgness:** We will show the protocol is zero-knowledge. We build a simulator S (no knowledge of the secret w, and is polynomially bounded) as follows:
 - **1** S starts the verifier \mathcal{V}^* by giving it the parameters p, q, g and the public v
 - 2 S makes a guess which challenge it will receive, say ch*, and it prepares for it by calculating $a = g^{\text{resp}}/v^{\text{ch}^*}$ for randomly chosen resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$. S sends com = a to \mathcal{V}^* .
 - 3 S gets a challenge ch from V^* . If ch = ch*, S outputs (a, ch*, resp). If ch \neq ch*, S rewinds the verifier V^* to the point before it receives com, and goes to step 2.

- **Zero-Knowledgness:** We will show the protocol is zero-knowledge. We build a simulator S (no knowledge of the secret w, and is polynomially bounded) as follows:
 - **1** S starts the verifier \mathcal{V}^* by giving it the parameters p, q, g and the public v
 - 2 S makes a guess which challenge it will receive, say ch*, and it prepares for it by calculating $a = g^{\text{resp}}/v^{\text{ch}^*}$ for randomly chosen resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$. S sends com = a to \mathcal{V}^* .
 - § \mathcal{S} gets a challenge ch from \mathcal{V}^* . If ch = ch*, \mathcal{S} outputs (a, ch*, resp). If ch \neq ch*, \mathcal{S} rewinds the verifier \mathcal{V}^* to the point before it receives com, and goes to step 2.
- Rewinding of adversaries/cheating parties:

- **Zero-Knowledgness:** We will show the protocol is zero-knowledge. We build a simulator S (no knowledge of the secret w, and is polynomially bounded) as follows:
 - $oldsymbol{0}$ S starts the verifier \mathcal{V}^* by giving it the parameters p,q,g and the public v
 - **2** \mathcal{S} makes a guess which challenge it will receive, say ch*, and it prepares for it by calculating $a = g^{\text{resp}}/v^{\text{ch}^*}$ for randomly chosen resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$. \mathcal{S} sends com = a to \mathcal{V}^* .
 - § S gets a challenge ch from V^* . If ch = ch*, S outputs (a, ch*, resp). If ch \neq ch*, S rewinds the verifier V^* to the point before it receives com, and goes to step 2.
- Rewinding of adversaries/cheating parties: We always consider these to be probabilistic Turing machines, so rewinding is possible, until a desired output is produced

- **Zero-Knowledgness:** We will show the protocol is zero-knowledge. We build a simulator S (no knowledge of the secret w, and is polynomially bounded) as follows:
 - $oldsymbol{0}$ S starts the verifier \mathcal{V}^* by giving it the parameters p,q,g and the public v
 - **2** \mathcal{S} makes a guess which challenge it will receive, say ch*, and it prepares for it by calculating $a = g^{\text{resp}}/v^{\text{ch}^*}$ for randomly chosen resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$. \mathcal{S} sends com = a to \mathcal{V}^* .
 - § \mathcal{S} gets a challenge ch from \mathcal{V}^* . If ch = ch*, \mathcal{S} outputs (a, ch*, resp). If ch \neq ch*, \mathcal{S} rewinds the verifier \mathcal{V}^* to the point before it receives com, and goes to step 2.
- Rewinding of adversaries/cheating parties: We always consider these to be probabilistic Turing
 machines, so rewinding is possible, until a desired output is produced
- S is expected probabilistic polynomial time:

- **Zero-Knowledgness:** We will show the protocol is zero-knowledge. We build a simulator S (no knowledge of the secret w, and is polynomially bounded) as follows:
 - **1** S starts the verifier \mathcal{V}^* by giving it the parameters p, q, g and the public v
 - 2 S makes a guess which challenge it will receive, say ch*, and it prepares for it by calculating $a = g^{\text{resp}}/v^{\text{ch}^*}$ for randomly chosen resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$. S sends com = a to \mathcal{V}^* .
 - § S gets a challenge ch from V^* . If ch = ch*, S outputs (a, ch*, resp). If ch \neq ch*, S rewinds the verifier V^* to the point before it receives com, and goes to step 2.
- Rewinding of adversaries/cheating parties: We always consider these to be probabilistic Turing
 machines, so rewinding is possible, until a desired output is produced
- S is expected probabilistic polynomial time: One round is expected to be repeated 2 times, hence whole simulation takes expected 2λ time.

- **Zero-Knowledgness:** We will show the protocol is zero-knowledge. We build a simulator S (no knowledge of the secret w, and is polynomially bounded) as follows:
 - $oldsymbol{0}$ S starts the verifier \mathcal{V}^* by giving it the parameters p,q,g and the public v
 - 2 S makes a guess which challenge it will receive, say ch*, and it prepares for it by calculating $a = g^{\text{resp}}/v^{\text{ch}^*}$ for randomly chosen resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$. S sends com = a to \mathcal{V}^* .
 - § \mathcal{S} gets a challenge ch from \mathcal{V}^* . If ch = ch*, \mathcal{S} outputs (a, ch*, resp). If ch \neq ch*, \mathcal{S} rewinds the verifier \mathcal{V}^* to the point before it receives com, and goes to step 2.
- Rewinding of adversaries/cheating parties: We always consider these to be probabilistic Turing
 machines, so rewinding is possible, until a desired output is produced
- S is expected probabilistic polynomial time: One round is expected to be repeated 2 times, hence whole simulation takes expected 2λ time.
- Distributions of simulated and real protocol are exactly the same:

- **Zero-Knowledgness:** We will show the protocol is zero-knowledge. We build a simulator S (no knowledge of the secret w, and is polynomially bounded) as follows:
 - **1** S starts the verifier \mathcal{V}^* by giving it the parameters p, q, g and the public v
 - 2 S makes a guess which challenge it will receive, say ch*, and it prepares for it by calculating $a = g^{\text{resp}}/v^{\text{ch}^*}$ for randomly chosen resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$. S sends com = a to \mathcal{V}^* .
 - § S gets a challenge ch from V^* . If ch = ch*, S outputs (a, ch*, resp). If ch \neq ch*, S rewinds the verifier V^* to the point before it receives com, and goes to step 2.
- Rewinding of adversaries/cheating parties: We always consider these to be probabilistic Turing
 machines, so rewinding is possible, until a desired output is produced
- S is expected probabilistic polynomial time: One round is expected to be repeated 2 times, hence whole simulation takes expected 2λ time.
- Distributions of simulated and real protocol are exactly the same: The candidate commitments a are uniform over the group $\langle g \rangle$, as well as the responses, just as in the real protocol. The challenge is produced just as in the real protocol (it is produced by \mathcal{V}^*). Hence the distributions are identical (we say the protocol is perfect zero-knowledge.)

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given $\mathcal{G}_0, \mathcal{G}_1$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given \mathcal{G}_0 , \mathcal{G}_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given $\mathcal{G}_0, \mathcal{G}_1$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given \mathcal{G}_0 , \mathcal{G}_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given \mathcal{G}_0 , \mathcal{G}_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given $\mathcal{G}_0, \mathcal{G}_1$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given $\mathcal{G}_0, \mathcal{G}_1$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given $\mathcal{G}_0, \mathcal{G}_1$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given $\mathcal{G}_0, \mathcal{G}_1$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given $\mathcal{G}_0, \mathcal{G}_1$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given \mathcal{G}_0 , \mathcal{G}_1 , the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given $\mathcal{G}_0, \mathcal{G}_1$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

Note:

• No probabilistic polynomial-time algorithms are known for the GI problem

- Let ϕ be an isomorphism between two graphs \mathcal{G}_0 and \mathcal{G}_1 s.t. $\mathcal{G}_1 = \phi(\mathcal{G}_0)$.
- Given $\mathcal{G}_0, \mathcal{G}_1$, the prover \mathcal{P} wants to prove to the verifier \mathcal{V} knowledge of ϕ without revealing any information about it

Note:

- No probabilistic polynomial-time algorithms are known for the GI problem
- This generalizes to other isomorphisms on different objects
- Homework: Show in detail that the above protocol is Zero-Knowledge!

- Whenever we need to prove knowledge of secrets without revealing them
- Hence, for protecting confidentiality, privacy, anonymity
- Indispensible tool in Privacy-enhancing technologies (PETs)

- Whenever we need to prove knowledge of secrets without revealing them
- Hence, for protecting confidentiality, privacy, anonymity
- Indispensible tool in Privacy-enhancing technologies (PETs)

- For anonymous, verifiable voting
 - voters can be sure their vote is anonymous (their identity is not connected to the cast vote) and that their vote is included in the tally.

- Whenever we need to prove knowledge of secrets without revealing them
- Hence, for protecting confidentiality, privacy, anonymity
- Indispensible tool in Privacy-enhancing technologies (PETs)

- For anonymous, verifiable voting
 - voters can be sure their vote is anonymous (their identity is not connected to the cast vote) and that their vote is included in the tally.
- For user authentication
 - as identification schemes without revealing or exchanging the passwords

- Whenever we need to prove knowledge of secrets without revealing them
- Hence, for protecting confidentiality, privacy, anonymity
- Indispensible tool in Privacy-enhancing technologies (PETs)

- For anonymous, verifiable voting
 - voters can be sure their vote is anonymous (their identity is not connected to the cast vote) and that their vote is included in the tally.
- For user authentication
 - as identification schemes without revealing or exchanging the passwords
- In multi-party computation
 - to make sure parties don't cheat and follow the protocol specs

- Whenever we need to prove knowledge of secrets without revealing them
- Hence, for protecting confidentiality, privacy, anonymity
- Indispensible tool in Privacy-enhancing technologies (PETs)

- For anonymous, verifiable voting
 - voters can be sure their vote is anonymous (their identity is not connected to the cast vote) and that their vote is included in the tally.
- For user authentication
 - as identification schemes without revealing or exchanging the passwords
- In multi-party computation
 - to make sure parties don't cheat and follow the protocol specs
- For preserving privacy of data
 - for example, to show to the bank you have enough income to repay a loan, without revealing the actual income

- Whenever we need to prove knowledge of secrets without revealing them
- Hence, for protecting confidentiality, privacy, anonymity
- Indispensible tool in Privacy-enhancing technologies (PETs)

- For anonymous, verifiable voting
 - voters can be sure their vote is anonymous (their identity is not connected to the cast vote) and that their vote is included in the tally.
- For user authentication
 - as identification schemes without revealing or exchanging the passwords
- In multi-party computation
 - to make sure parties don't cheat and follow the protocol specs
- For preserving privacy of data
 - for example, to show to the bank you have enough income to repay a loan, without revealing the actual income
- In Blockchain technologies
 - · for privacy and anonymity

Sigma protocols

Σ protocols

Given a relation $R = V \times W$, where $\mathsf{sk} \in W$ is called **witness** and language $L_R = \{v \in V | \exists w \in W, (v, w) \in R\}$ for the relation, a Σ protocol is a three move protocol as above satisfying:

- Completeness: (as before)
- Special soundness: There exists a PPT algorithm \mathcal{K} knowledge extractor, that given two valid transcripts trans = (com, ch, resp), trans' = (com, ch', resp'), ch \neq ch', extracts the witness sk with non-negligible probability
- Special Honest Verifier ZK: Same as before, except, the verifier is honest (follows the protocol), and the simulator S needs to output a valid transcript for a given challenge ch.

Recall Schnorr's protocol

 $p ext{-prime, }q|p-1,\,g\in\mathbb{Z}_p^* ext{ of order }q.\,\,w\in\mathbb{Z}_q ext{ and }v=g^w$ (mod p)

• Soundness error - 1/2, so needs many rounds to achieve negligible soundness error

Recall Schnorr's protocol

 $p ext{-prime},\ q|p-1,\ g\in\mathbb{Z}_p^* \ ext{of order} \ q.\ w\in\mathbb{Z}_q \ ext{and} \ v=g^w \ ext{(mod } p)$

- Soundness error 1/2, so needs many rounds to achieve negligible soundness error
- Each round performs expensive exponentiations in a group of order q

Recall Schnorr's protocol

 $p ext{-prime},\ q|p-1,\ g\in\mathbb{Z}_p^* \ ext{of order} \ q.\ w\in\mathbb{Z}_q \ ext{and} \ v=g^w \ ext{(mod } p)$

- Soundness error 1/2, so needs many rounds to achieve negligible soundness error
- Each round performs expensive exponentiations in a group of order q
- Can we do better?

Schnorr identification protocol

A more efficient single round variant - Schnorr identification protocol

- ullet We show Schnorr identification protocol is Σ -protocol
- ullet Completeness: Prover that knows w always succeeds

$$w = \frac{\text{resp} - \text{resp}'}{(\text{ch} - \text{ch}')}$$
 \Rightarrow the witness can be extracted with probability 1.

- Not known to be ZK: (but no known attacks)
 - One round implies that the challenge space must be exponentially large

$$w = \frac{\text{resp} - \text{resp}'}{(\text{ch} - \text{ch}')}$$
 \Rightarrow the witness can be extracted with probability 1.

- Not known to be ZK: (but no known attacks)
 - One round implies that the challenge space must be exponentially large
 - This implies "rewinding until challenge is guessed" requires exponential time

$$w = \frac{\text{resp} - \text{resp}'}{(\text{ch} - \text{ch}')}$$
 \Rightarrow the witness can be extracted with probability 1.

- Not known to be ZK: (but no known attacks)
 - One round implies that the challenge space must be exponentially large
 - This implies "rewinding until challenge is guessed" requires exponential time
 - This implies PPT simulator as previously will fail!

$$w = \frac{\text{resp} - \text{resp}'}{(\text{ch} - \text{ch}')}$$
 \Rightarrow the witness can be extracted with probability 1.

- Not known to be ZK: (but no known attacks)
 - One round implies that the challenge space must be exponentially large
 - This implies "rewinding until challenge is guessed" requires exponential time
 - This implies PPT simulator as previously will fail!
- **Special HVZK**: For given $ch \in \mathbb{Z}_q$
 - ullet Choose resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and calculate $a \leftarrow g^{\mathsf{resp}} v^{-\mathsf{ch}}$

$$w = \frac{\text{resp} - \text{resp}'}{(\text{ch} - \text{ch}')}$$
 \Rightarrow the witness can be extracted with probability 1.

- Not known to be ZK: (but no known attacks)
 - One round implies that the challenge space must be exponentially large
 - This implies "rewinding until challenge is guessed" requires exponential time
 - This implies PPT simulator as previously will fail!
- **Special HVZK**: For given $ch \in \mathbb{Z}_q$
 - ullet Choose resp $\stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and calculate $a \leftarrow g^{\mathsf{resp}} v^{-\mathsf{ch}}$
 - The distributions of the real transcripts and the simulated transcripts are the same in both a given valid transcript occurs with prob. 1/q (in one first u is chosen a random, in the other first resp is chosen at random.)

Fiat-Shamir signatures

$\Sigma\text{-protocol}$

FS signature

Let $\lambda \in \mathbb{N}$ the security parameter, IDS = (KGen, \mathcal{P}, \mathcal{V}) an identification scheme that is a Σ -protocol (special sound with knowledge error κ and HVZK).

Let $H: \{0,1\}^* \to \{0,1\}^r$ be modelled as a random oracle. The **Fiat-Shamir signature scheme** derived from IDS is the triplet of algorithms (KGen, Sign, Vf) s.t.:

- $(\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{KGen}(1^k)$,
- $\bullet \ \ \sigma = (\mathsf{com}, \mathsf{resp}) \leftarrow \mathsf{Sign}(\mathsf{sk}, m) \ \ \mathsf{where} \ \ \mathsf{com} \leftarrow \mathcal{P}_0^r(\mathsf{sk}), \ \ h = H(m, \mathsf{com}), \ \ \mathsf{resp} \leftarrow \mathcal{P}_1^r(\mathsf{sk}, \mathsf{com}, h).$
- Vf(pk, m, σ) parses $\sigma = (com, resp)$, computes h = H(m, com), and outputs $V^r(pk, com, h, resp)$.

Let $\lambda \in \mathbb{N}$ the security parameter, IDS = (KGen, \mathcal{P}, \mathcal{V}) an identification scheme that is a Σ -protocol (special sound with knowledge error κ and HVZK).

Let $H: \{0,1\}^* \to \{0,1\}^r$ be modelled as a random oracle. The **Fiat-Shamir signature scheme** derived from IDS is the triplet of algorithms (KGen, Sign, Vf) s.t.:

- $(\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{KGen}(1^k)$,
- $\bullet \ \ \sigma = (\mathsf{com}, \mathsf{resp}) \leftarrow \mathsf{Sign}(\mathsf{sk}, m) \ \ \mathsf{where} \ \ \mathsf{com} \leftarrow \mathcal{P}_0^r(\mathsf{sk}), \ \ h = H(m, \mathsf{com}), \ \ \mathsf{resp} \leftarrow \mathcal{P}_1^r(\mathsf{sk}, \mathsf{com}, h).$
- Vf(pk, m, σ) parses $\sigma =$ (com, resp), computes h = H(m, com), and outputs V^r (pk, com, h, resp).
- The number of rounds r is chosen such that $\kappa^r < \frac{1}{2^{\lambda}}$.

Let $\lambda \in \mathbb{N}$ the security parameter, IDS = (KGen, \mathcal{P}, \mathcal{V}) an identification scheme that is a Σ -protocol (special sound with knowledge error κ and HVZK).

Let $H: \{0,1\}^* \to \{0,1\}^r$ be modelled as a random oracle. The **Fiat-Shamir signature scheme** derived from IDS is the triplet of algorithms (KGen, Sign, Vf) s.t.:

- $(\mathsf{sk}, \mathsf{pk}) \leftarrow \mathsf{KGen}(1^k)$,
- $\bullet \ \ \sigma = (\mathsf{com}, \mathsf{resp}) \leftarrow \mathsf{Sign}(\mathsf{sk}, m) \ \ \mathsf{where} \ \ \mathsf{com} \leftarrow \mathcal{P}_0^r(\mathsf{sk}), \ \ h = H(m, \mathsf{com}), \ \ \mathsf{resp} \leftarrow \mathcal{P}_1^r(\mathsf{sk}, \mathsf{com}, h).$
- Vf(pk, m, σ) parses $\sigma = (com, resp)$, computes h = H(m, com), and outputs $V^r(pk, com, h, resp)$.
- The number of rounds r is chosen such that $\kappa^r < \frac{1}{2^{\lambda}}$.
- Note that the "full" signature is (com, h, resp), but h can be omitted, since it can be recreated from m and com.

Security of FS signatures [Pointcheval & Stern '96]

Structure of proof:

Security of FS signatures [Pointcheval & Stern '96]

Structure of proof:

Proof in ROM (see additional literature if interested!)

Schnorr signature

KeyGen:

- **2** Choose a random $w \in \mathbb{Z}_q$ and compute $v = g^w \pmod{p}$
- **3** Output public key pk = v and private key sk = w

Sign: Given message M,

- 2 Set ch = H(M, com) and calculate resp $\leftarrow u + ch \cdot w$
- **4** Output message signature pair (M, σ)

Verify: To verify the message - signature pair (M, σ)

- **1** Parse $\sigma = (com, resp)$ and calculate ch = H(M, com)
- **2** Check $g^{\text{resp}} \stackrel{?}{=} a \cdot v^{\text{ch}}$ and output Accept if check succeeds, otherwise Fail

- Schnorr signature proposed in 1990
 - simple, efficient, provably secure,

- Schnorr signature proposed in 1990
 - simple, efficient, provably secure,unfortunately, patented (1990-2010)

- Schnorr signature proposed in 1990
 - simple, efficient, provably secure, unfortunately, patented (1990-2010)
- In 1990's RSA signature also patented

- Schnorr signature proposed in 1990
 - simple, efficient, provably secure, unfortunately, patented (1990-2010)
- In 1990's RSA signature also patented
- NIST proposes in 1991 the Digital Signature Algorithm (DSA)
 - NIST standard from 1994 Federal standard (FIPS 186) and ANSI X9.30 Part 1

- Schnorr signature proposed in 1990
 - simple, efficient, provably secure, unfortunately, patented (1990-2010)
- In 1990's RSA signature also patented
- NIST proposes in 1991 the Digital Signature Algorithm (DSA)
 - NIST standard from 1994 Federal standard (FIPS 186) and ANSI X9.30 Part 1
 - Very similar to Schnorr, but initially no proof!!!

- Schnorr signature proposed in 1990
 - simple, efficient, provably secure, unfortunately, patented (1990-2010)
- In 1990's RSA signature also patented
- NIST proposes in 1991 the Digital Signature Algorithm (DSA)
 - NIST standard from 1994 Federal standard (FIPS 186) and ANSI X9.30 Part 1
 - Very similar to Schnorr, but initially no proof!!!
 - Modified versions under suitable models later shown to be provably secure . . .
 - In ISO/IEC 14888, h = H(M) replaced by h = H(M, r)

- Schnorr signature proposed in 1990
 - simple, efficient, provably secure, unfortunately, patented (1990-2010)
- In 1990's RSA signature also patented
- NIST proposes in 1991 the Digital Signature Algorithm (DSA)
 - NIST standard from 1994 Federal standard (FIPS 186) and ANSI X9.30 Part 1
 - Very similar to Schnorr, but initially no proof!!!
 - Modified versions under suitable models later shown to be provably secure . . .
 - In ISO/IEC 14888, h = H(M) replaced by h = H(M, r)
 - ECDSA elliptic curve version over the elliptic curve group $E(\mathbb{Z}_p)$
 - additive notation, otherwise same as DSA (see assignment)

- Schnorr signature proposed in 1990
 - simple, efficient, provably secure, unfortunately, patented (1990-2010)
- In 1990's RSA signature also patented
- NIST proposes in 1991 the Digital Signature Algorithm (DSA)
 - NIST standard from 1994 Federal standard (FIPS 186) and ANSI X9.30 Part 1
 - Very similar to Schnorr, but initially no proof!!!
 - Modified versions under suitable models later shown to be provably secure . . .
 - In ISO/IEC 14888, h = H(M) replaced by h = H(M, r)
 - ECDSA elliptic curve version over the elliptic curve group $E(\mathbb{Z}_p)$
 - additive notation, otherwise same as DSA (see assignment)
 - ECDSA is widely used today in blockchain, iOS, secure messaging apps, in TLS (but not even close to RSA signatures)!
 - Faster signing, slower verification than RSA, significantly smaller keys

- Schnorr signature proposed in 1990
 - simple, efficient, provably secure, unfortunately, patented (1990-2010)
- In 1990's RSA signature also patented
- NIST proposes in 1991 the Digital Signature Algorithm (DSA)
 - NIST standard from 1994 Federal standard (FIPS 186) and ANSI X9.30 Part 1
 - Very similar to Schnorr, but initially no proof!!!
 - Modified versions under suitable models later shown to be provably secure . . .
 - In ISO/IEC 14888, h = H(M) replaced by h = H(M, r)
 - ECDSA elliptic curve version over the elliptic curve group $E(\mathbb{Z}_p)$
 - additive notation, otherwise same as DSA (see assignment)
 - ECDSA is widely used today in blockchain, iOS, secure messaging apps, in TLS (but not even close to RSA signatures)!
 - Faster signing, slower verification than RSA, significantly smaller keys

Digital Signature Algorithm (DSA)

KeyGen: Same as for Schnorr with private key $x \in \mathbb{Z}_q$ and public key $y = g^x \pmod p$

- **1** Choose two primes p, q s.t. q|p-1, and $g \in \mathbb{Z}_p^*$ of order q.
- **2** Choose a random $x \in \mathbb{Z}_q$ and compute $y = g^w \pmod{p}$
- **3** Output public key pk = y and private key sk = x

Sign: Given message M,

- 2 Set h = H(M) and calculate $s \leftarrow (h + xr)k^{-1}$ (In Schnorr: h = H(M, r) and $s \leftarrow k + h \cdot x$)
- **3** Set $\sigma = (r, s)$ and output message signature pair (M, σ)

Verify: To verify the message - signature pair (M, σ)

- **1** Parse $\sigma = (r, s)$, verify 0 < r, s < q and calculate h = H(M)
- **2** Compute $u_1 = H(m)s^{-1} \pmod{q}$ and $u_2 = rs^{-1} \pmod{q}$
- **3** Check $(g^{u_1}g^{u_2} \pmod{p}) \pmod{q} \stackrel{?}{=} r$ and output Accept if check succeeds, otherwise Fail

Sensitive security of DSA and ECDSA

- ullet DSA and ECDSA are very sensitive regarding the ephimeral key k
- Must not be reused, and should be unpredictable for attackers

Sensitive security of DSA and ECDSA

- DSA and ECDSA are very sensitive regarding the ephimeral key k
- Must not be reused, and should be unpredictable for attackers
- In December 2010, a group calling itself failOverflow announced recovery of ECDSA private key used by Sony to sign software for PlayStation 3
 - Sony's "epic fail": k was static instead of random!
- Suppose $s_1 = (H(M_1) + xr)k^{-1}$ and $s_2 \leftarrow (H(M_1) + xr)k^{-1}$ use same k for two messages M_1 and M_2
- Now: $s_1 s_2 = (H(M_1) H(M_2))k^{-1}$
- I.e., $k = (H(M_1) H(M_2))(s_1 s_2)^{-1}$
- Once k is known, the secret key can be easily derived: $x = (s_1k - H(M_1))(r)^{-1}$

int getRandomNumber() { return 4; // chosen by fair dice roll. // guaranteed to be random. }

Recommendations for key sizes and usage by NIST, ECRYPT

Algorithm	Param.	Key	Classical	Usage
		length	security	
RSA-1024	N	1024	80 bits	disallowed for key transport
RSA-1024/DSA-1024	N/q	1024	80 bits	disallowed signature key gen./legacy
				signature verification
RSA-2048/DSA-2048	N/q	2048	112 bits	acceptable
RSA-3072/DSA-3072	N/q	3072	128 bits	recommended
RSA-7680/DSA-7680	N/q	7680	192 bits	long term
RSA-15360/DLP-15360	N/q	15360	256 bits	long term
ECDSA-160	р	80	80 bits	disallowed signature key gen./legacy
				signature verification
ECDSA-224	р	224	112 bits	acceptable
ECDSA-256	р	256	128 bits	recommended
ECDSA-384	р	384	192 bits	long term
ECDSA-512	р	512	256 bits	long term

Summary

Today:

- Commitments
- Zero-Knowledge protocols
- Identification Protocols
- Fiat-Shamir Signatures
- DSA and ECDSA

Summary

Today:

- Commitments
- Zero-Knowledge protocols
- Identification Protocols
- Fiat-Shamir Signatures
- DSA and ECDSA

Next time:

- Post-Quantum Cryptography
- Hash-Based signatures