Sprawozdanie-Algorytm Mini Max z odcięciem alfa-beta

Dane autora

Marcin Polewski 331 425

Cel zadania

Celem zadania było zaimplementowanie algorytmu mini max z odcięciem alfa-beta, które ogranicza konieczność przeszukiwania pod drzew drzewa gry, które przy optymalnej grze obu graczy były nieosiągalne. Następnie należało zbadać wpływ głębokości przeszukiwań na jakość rezultatów

Specyfika problemu

Przegrywa ten co zabierze ostatnią zapałkę

Dla gry nim definiuje się pojęcie nimsuma – czyli dla danego kopca zamieniamy liczbę elementów na system binarny, a potem robimy XOR.

Jeśli ten nim sum na początku jest różny od zera, to drugi gracz ma wygrywającą pozycje pod warunkiem że gra optymalnie. A jeśli nim sum na początku jest równy zero, to pierwszy gracz ma wygrywającą pozycje

Analiza gry - specyficzne sytuacje na bazie wiedzy eksperckiej

Jedna kupka z dowolną liczbą elementów

- gracz którego to jest ruch jest na wygrywającej pozycji – wystarczy że zabierze wszytkie zapałki oprócz jednej. Jest to bardzo dobra pozycja

Wszystkie kupki mają po jednym elemencie

- Jeśli liczba kupek jest nieparzysta, to aktualny gracz jest na przegranej pozycji
- jeśli liczba kupek jest parzysta, aktualny gracz jest na wygrywającej pozycji

W przeciwnych przypadkach oceniamy pozycje na podstawie nimsuma

- Nimsum == 0 <- W takiej sytuacji obecny gracz jest na przegranej pozycji
- Nimsum != 0 <- W takiej sytuacji obecny gracz jest na wygranej pozycji

(stworzono na podstawie link)

Badania dla wyboru pierwszego, a nie losowego ruchu z równie dobrych

Co ciekawe, w tym przypadku algorytmy dają lepsze efekty w przypadku, gdy bierze pierwszy, najlepszy ruch, a nie losowy. Dzieje się tak moim zdaniem, gdyż funkcja zwracająca możliwe ruchy na początku zwraca te, w których wyciągamy mniej elementów z kupki, co za pewne jest pożądanym zachowaniem

Eksperyment dla nimsum!=0, dla domyślnej planszy(7,7,7)

Na wykresie widoczna jest zależność między głębokością przeszukiwań, a wygraną – im większa głębokość przeszukiwań, tym większa szansa na wygraną. Widoczna jest lekka przewaga gracza drugiego, która prawdopodobnie wynika ze specyfiki gry – to znaczy zaczyna on z wygranej pozycji i jeśli gra optymalnie to wygra

Eksperyment dla nimsum=0, dla planszy (1,3,5,7)

Na wykresie jest widoczna analogiczna zależność między głębokością przeszukiwań, a wynikiem. Tym razem jednak gracz pierwszy zaczyna z korzystniejszej pozycji, co odzwierciedla jego większa liczba zwycięstw niż w poprzednim wypadku

Eksperyment dla nimsum!=0, dla domyślnej planszy(10,10,10)

Ponownie, zależność zostaje zachowana, z drobnymi zakłóceniami.

Badania dla wyboru losowego ruchu z równie dobrych

W tym przypadku wykonano każdy eksperyment 10 razy, a następnie wyniki uśredniono, a następnie wyniki uśredniono

Eksperyment dla nimsum!=0, dla domyślnej planszy(7,7,7)

Nie jest to wielkie zaskoczenie, że zależność wciąż zostaje zachowana. Dodatkowo widzimy, że dla równych wartości głębokości przeszukiwań, każdy z graczy wygrywa mniej więcej tyle samo razy

Eksperyment dla nimsum == 0, dla planszy (1,3,5,7)

Wynik tego przypadku jest analogiczny do poprzedniego

Podsumowanie:

- Zaobserwowano, że większa głębokość przeszukiwań prowadzi do lepszych rezultatów
- W grze nim wychodzi na to, że opłaca się raczej wykonywać ruchy, w których zabieramy jak najmniej elementów