MPE Calculation Method

 $E (V/m) = (30*P*G)^{0.5}/d$

Power Density: Pd $(W/m2) = E^2/377$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = (30*P*G) / (377*d^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Calculated Result and Limit (WORSE CASE IS AS BELOW)

2.4 GHz

Directional	Peak Output	Power Density	Limit of Power	Test
Antenna Gain	Power (mW)	(S) (mW/cm2)	Density (S)	Result
(Numeric)			(mW/cm2)	
0.89(-0.5dBi)	57.3	0.01	1	Compiles
	(17.58 dBm)			

${\tt Calculated\ Result\ and\ Limit(WORSE\ CASE\ IS\ AS\ BELOW)}$

5 GHz

Directional	Peak Output	Power Density	Limit of Power	Test
Antenna	Power (mW)	(S) (mW/cm2)	Density (S)	Result
Gain			(mW/cm2)	
(Numeric)				
1(0dBi)	65.6	0.013	1	Compiles
	(18.17dBm)			