Algebra

Sei \mathcal{B} eine Boolesche Algebra mit der Trägermenge B.

(a) Zeigen Sie das erste Gesetz von de Morgan für \mathcal{B} .

$$\sim(a)\cdot\sim(b)=\sim(a+b)$$
.

[8 Punkte]

(b) Gilt die gezeigte Aussage auch für die Mengenalgebra?

[2 Punkte]

Hinweis. Verwenden Sie für den Beweis die Eindeutigkeit des Komplements in der Booleschen Algebra. Für alle $a, b \in B$:

Wenn
$$a + b = 1$$
 und $ab = 0$, dann $b = \sim(a)$.

Komplexitätstheorie

Sudoku, wörtlich "Ziffern dürfen nur einmal vorkommen" ist ein populäres japanischen Zahlenpuzzle, das auf einem 9×9 Gitter gespielt wird. Wie der Name schon sagt, dürfen die Ziffern von 1 bis 9 jeweils nur einmal in den (i) Zeilen, (ii) Spalten und (iii) 3×3 Blöcken vorkommen. Zeigen Sie dass Sudoku in NP liegt. Das heißt, Sie fassen Sudoku als formale Sprache

$$SUDOKU := \{S \mid S \text{ ist ein lösbares Sudokupuzzle} \},$$

auf und zeigen $SUDOKU \in NP$.

[10 Punkte]

Hinweis. Sie können eine beliebige Codierung von Sudokus annehmen, zum Beispiel ist S durch eine 9×9 Matrix repräsentierbar, wobei für die Einträge gilt $x_{ij} \in \{1, \dots, 9, \sqcup\}$.

Der Eintrag \sqcup bedeutet, dass die entsprechende Zelle leer ist.