Complexidade de Algoritmos I – 2022 - ATIVIDADE 3

Nome: VINICIUS MESQUINI DE OLIVEIRA RA: 009319

1) Sejam $T1(n) = 3n + 3n \log_2 n + 25 \log_3 n$, $T2(n) = 15n + 3n^2 + 9n^2 \log_2 n + 8$ e $T3(n) = 5n^3 + 7n^2 + 2$, apresente as equações que descrevem a ordem de complexidade de tempo dos algoritmos Alg1, Alg2 e Alg3, respectivamente, para entradas de tamanho n.

Alg1: n log n Alg2: n2 log n Alg3: n3

- 2) Um método de ordenação de complexidade $O(\log n)$ gasta exatamente 2 milissegundos para ordenar 10000 elementos. Supondo que o tempo T(n) para ordenar n desses elementos é diretamente proporcional a $\log n$, ou seja, $T(n) = c \cdot \log n$:
 - a) Estime a constante c utilizando uma base conveniente para o logaritmo.

b) Estime o tempo consumido por esse algoritmo, em segundos, para ordenar 1000000 elementos.

$$t(1000000) = 1/2 * log(1000000)$$
 $t(1000000) = 3 ms$
 $t(1000000) = 1/2 * 6$

3) Suponha que cada expressão abaixo represente o tempo T(n) consumido por um algoritmo para resolver um problema de tamanho n. Escreva os termos(s) dominante(s) para valores muito grandes de n e especifique o menor limite assintótico superior O(n) possível para cada algoritmo.

Expressão	Termo(s) Dominante(s)	0()
$5 + 0.01n^2 + 0.52n^4$	0.52n^4	O(n^4)
$100n + 0.01n^3$	0.01n³	O(n³)
$5n^2 + 10n^{1.5} + 5n$	5n²	O(n²)
$13n + 4n^2$	4n²	O(n²)
$0.3n + 5n^{1.5} + 2.5n^{1.75}$	2.5n^1.75	O(n^1.75)
$n^3 \log_2(n) + 5n(\log_3(n))^2$	n³ log n	O(n³ log n)
$2n + n^{1.5} + 0.5n^2$	0.5n ²	O(n²)
$n^2\log_3(n) + n^2\log_2(n)$	n² log n	O(n² log n)
$5n^2\log_2(n) + 2n^3 + 10n$	2n³	O(n³)
$5n^2 + n^3 \log n$	n³ log n	O(n³ log n)

4) Analise o algoritmo abaixo, escrito em C, que recebe dois vetores, a e b, de tamanhos iguais n e determine o menor limite assintótico superior para o pior caso em função do parâmetro n.

5) Encontre o menor limite assintótico superior para o algoritmo abaixo, escrito C:

- 6) Suponha que ofereçam a você dois pacotes de software, \mathbf{A} e \mathbf{B} , para processamento dos dados da sua empresa, que contêm 10^6 registros. Sabendo que o tempo de processamento médio do pacote \mathbf{A} é $T_A(n)=2n^2$ milissegundos, e o tempo médio de \mathbf{B} é $T_B(n)=1000n$ milissegundos, responda:
 - a) Qual desses pacotes é o mais indicado para processar os dados da empresa?
 - b) A partir de quantos registros um dos pacotes passa a ser melhor que o outro?

A:
$$Ta(10^{\circ}6) = 2(10^{\circ}6)^2$$

 $Ta(10^{\circ}6) = 2^{\circ}10^{\circ}12 \text{ ms}$
 $Ta(10^{\circ}6) = 2^{\circ}10^{\circ}12 \text{ ms}$
 $Ta(10^{\circ}6) = 2^{\circ}10^{\circ}9 \text{ seg}$

Calculo $Tb(n) = 1000n :$
 $Tb(10^{\circ}6) = 1000^{\circ}10^{\circ}6$
 $Tb(10^{\circ}6) = 100^{\circ}10^{\circ}7$
 $Tb(10^{\circ}6) = 10^{\circ}10^{\circ}8$
 $Tb(10^{\circ}6) = 1^{\circ}10^{\circ}9 \text{ ms}$
 $Tb(10^{\circ}6) = 10^{\circ}9 \text{ ms}$

o pacote B é melhor para empresa

Como valor 0 não corresponde, sobra o valor 500, podemos afirmar que o pacote B passa a ser melhor a partir de n = 500