Users's guide NEMMO

Line Colin

Problem

Imput parameters:

r_body	radius of the body
r_core	core radius of the body
albedo	albedo
rho	density
gravity	gravity acceleration
initial_heat_production	initial heat production
с0	initial composition in anorthite component
ce	eutectic composition
k_crust	thermal conductivity of the crust
D	partition coefficient of the heat producing elements
heat_source	False for a global magma ocean
	True for a non-global magma ocean
r_flottability	None for a global magma ocean
	radius of the depth of the magma ocean
distance_sun_object	distance Sun-body
n_factor	factor to increase the precision of the resolution in the cumulates
overturn	False without overturn
	True with overturn
	None without overturn and negglect flux from cumulates
t_overturn	factor to modify the decay of the overturn

Table 1: input problem

run Stage#1

Import the class Stage1Analysis from evolution.py
Define the problem (see Section Problem) stage1 = Stage1Analysis(...)
Run the analysis analysis = stage1.run_stage1_analysis()
Output table 1

run Stage#2

Import the class Stage2Analysis from evolution.py
Define the problem (see Section Problem) stage2 = Stage2Analysis(...)
Run the analysis analysis = stage2.run_stage2_analysis()
Output table 2

getter functions for the temporal evolution (ndarray)			
<pre>get_time_history()</pre>	time		
<pre>get_r_history()</pre>	radius		
<pre>get_T_history()</pre>	temperature		
<pre>get_Ts_history()</pre>	surface temperature		
<pre>get_h_solid_history()</pre>	heat producion in the solid		
<pre>get_h_lmo_history()</pre>	heat production in the cumulates		
getter functions for the radial profile (ndarray)			
get_hr_history	radial distribution of heat producing elements		
get_T_profil	temperature		

Table 2: output stage 1

getter functions for the temporal evolution (ndarray)		
<pre>get_time_history()</pre>	time	
<pre>get_radius_history()</pre>	2 variables: crust radius and cumulates radius	
<pre>get_temp_history()</pre>	2 variable: surface temperature and core temperature	
<pre>get_h_history()</pre>	3 variables: heat production of the LMO, crust and cumulates	
<pre>get_drdt_history()</pre>	2 variables: growth rate of the crust and cumulates	
<pre>get_flux_history()</pre>	5 varibales: flux of the crust, cumulates, LMO, latent heat and overturn	
<pre>get_boundary_temp()</pre>	2 varibales: boundary temperature at the bottom of the crust and top of cumulates	
getter functions for the radial profile (ndarray)		
<pre>get_crust_profil()</pre>	3 variables: radius, temperature profile and heat production profile of the crust	
<pre>get_solid_profil()</pre>	variables: radius, temperature profile and heat production profile of the cumulates	
getter functions for the overturn constant (float)		
<pre>get_overturn_constant()</pre>	3 variables: heat stored in the cumulates, initial flux and decay	

Table 3: output stage 2