CLOUD NATIVE WORKFLOWS

AWS BATCH

AZURE BATCH
GCP PROCESSING PIPELINES
DATA LIFECYCLE

CLOUD NATIVE WORKFLOWS

Batch workflows

- AWS batch
- Azure batch

Data processing pipelines

- GCP processing pipelines
- GCP data lifecycle

AWS BATCH

AWS BATCH AZURE BATCH GCP PROCESSING PIPELINES DATA LIFECYCLE

AWS BATCH

Fully managed batch processing at any scale enables developers, scientists, and engineers to easily and efficiently run hundreds of thousands of batch computing jobs on AWS

There is no additional charge for AWS Batch

BENEFITS

Fully managed
Integrated with AWS
Cost optimized resource provisioning

LIFE SCIENCES: DRUG SCREENING FOR BIOPHARMA

AZURE BATCH AZURE BATCH GCP PROCESSING PIPELINES DATA LIFECYCLE

AZURE BATCH

Cloud-scale job scheduling and compute management

- Scale to tens, hundreds, or thousands of virtual machines
- Cloud-enable batch and HPC applications
- Stage data and execute compute pipelines
- Choose Linux or Windows to run jobs
- Autoscale on work in the queue
- Pay for what you use with no capital investment

BENEFITS

Get batch computing power when you need it
Choose your operating system and tools
Cloud-enable your cluster applications
Imagine running at 100x scale

MORE BENEFITS

Tell us what to execute

high-scale job scheduling engine that's available to you as a managed service. Use
the scheduler in your application to dispatch work. Batch can also work with cluster
job schedulers or behind the scenes of your software as a service (SaaS). You don't
need to write your own work queue, dispatcher, or monitor. Batch gives you this as a
service.

Let Batch take care of scale for you

Batch starts a pool of compute virtual machines

Deliver solutions as a service

Batch processes jobs on demand, not on a predefined schedule

GCP PROCESSING PIPELINES

AWS BATCH
AZURE BATCH
GCP PROCESSING PIPELINES
DATA LIFECYCLE

ELASTIC DATA PROCESSING PIPELINE

OPEN-SOURCE API, GOOGLE INFRASTRUCTURE

SAME CODE DOES REAL-TIME AND BATCH

DATAFLOW DOES INGEST, TRANSFORM, AND LOAD

A PIPELINE IS A DIRECTED GRAPH OF STEPS

Read in data, transform it, write out

· Can branch, merge, use if-then statements, etc.

```
import org.apache.beam.sdk.Pipeline; // etc.
public static void main(String[]args){
    // Create a pipeline parameterized by commandline flags.
    Pipeline p=Pipeline.create(PipelineOptionsFactory.fromArgs(args));

p.apply(TextIO.read().from("gs://...")) // Read input.
    .apply(new CountWords()) // Do some processing.
    .apply(TextIO.write().to("gs://...")); // Write output.
    // Run the pipeline.
    p.run();
}
```

PYTHON API CONCEPTUALLY SIMILAR

Read in data, transform it, write out

Pythonic syntax

```
import apache_beam as beam
if name == ' main ':
 # create a pipeline parameterized by commandline flags
  p = beam.Pipeline(argv=sys.argv)
     beam.io.ReadFromText('gs://...') # read input
     beam.FlatMap(lambda line: count_words(line)) # do some processing
     beam.io.WriteToText('gs://...') # write output
  p.run() # run the pipeline
```

APPLY TRANSFORM TO PCOLLECTION

Data in a pipeline are represented by PCollection

- Supports parallel processing
- Not an in-memory collection; can be unbounded

```
1 PCollection<String> lines = p.apply(...) //
```

Apply Transform to PCollection; returns PCollection

```
PCollection<Integer> sizes =
   lines.apply("Length", ParDo.of(new DoFn<String, Integer>() {
    @ProcessElement
   public void processElement(ProcessContext c) throws Exception {
    String line = c.element();
    c.output(line.length());
}
```

APPLY TRANSFORM TO PCOLLECTION (PYTHON)

- Data in a pipeline are represented by PCollection
 - Supports parallel processing
 - Not an in-memory collection; can be unbounded

```
lines = p | ...
```

Apply Transform to PCollection; returns PCollection

```
sizes = lines | 'Length' | beam.Map(lambda line: len(line) )
```

INGESTING DATA INTO A PIPELINE

- Read data from file system, GCS, BigQuery, Pub/Sub
 - Text formats return String

PCollection<String | lines = p.apply(TextIO.read().from('gs://.../input-*.csv.gz');

PCollection<String | lines = p.apply(PubsubIO.readStrings().fromTopic(topic));

BigQuery returns a TableRow

String javaQuery = 'SELECT x, y, z FROM [project:dataset.tablename]';
PCollection<TableRow | javaContent = p.apply(BigQuerylO.read().fromQuery(javaQuery))

CAN WRITE DATA OUT TO SAME FORMATS

Write data to file system, GCS, BigQuery, Pub/Sub

lines.apply(TextIO.write().to('/data/output').withSuffix('.txt'))

Can prevent sharding of output (do only if it is small)

.apply(TextIO.write().to('/data/output').withSuffix('.csv').withoutSharding())

May have to transform PCollection<Integer1, etc.
 to PCollection<String1 before writing out

EXECUTING PIPELINE (JAVA)

Simply running main() runs pipeline locally

```
java -classpath ... com...

mvn compile -e exec:java -Dexec.mainClass= MAIN
```

To run on cloud, submit job to Dataflow

```
mvn compile -e exec:java \
-Dexec.mainClass= MAIN \
-Dexec.args='--project= PROJECT \
--stagingLocation=gs:// BUCKET/staging/ \
--tempLocation=gs:// BUCKET/staging/ \
--runner=DataflowRunner
```

EXECUTING PIPELINE (PYTHON)

Simply running main() runs pipeline locally

```
python ./grep.py
```

To run on cloud, specify cloud parameters

```
python ./grep.py \
--project= PROJECT \
--job_name=myjob \
--staging_location=gs:// BUCKET/staging/ \
--temp_location=gs:// BUCKET/staging/ \
--runner=DataflowRunner
```

EXAMPLE TEMPLATES FOR BASIC TASKS

WordCount

Cloud Pub/Sub to BigQuery

Cloud Storage Text to Cloud Pub/Sub

Cloud Pub/Sub to Cloud Storage Text

Cloud Datastore to Cloud Storage Text

Cloud Storage Text to BigQuery

Cloud Storage Text to Cloud Datastore

Bulk Decompress Cloud Storage Files

DATAPREP

CREATE PIPELINES IN DATAPREP FLOWS

26

CLEANUP, STRUCTURING, AND TRANSFORMATION

DATAPREP TO GENERATE DATAFLOW PIPELINES

OPEN-SOURCE API, GOOGLE INFRASTRUCTURE

DATA LIFECYCLE

AWS BATCH
AZURE BATCH
GCP PROCESSING PIPELINES
DATA LIFECYCLE

GCP DATA LIFECYCLE

Ingest:

pull in the raw data

Store:

data needs to be stored in a format that is durable and can be easily accessed.

Process and analyze:

the data is transformed from raw form into actionable information.

Explore and visualize:

 The final stage is to convert the results of the analysis into a format that is easy to draw insights from and to share with colleagues and peers.

LIFECYCLE TOOLS

INGEST

App:

Data from app events, such as log files or user events

Streaming:

The data consists of a continuous stream of small, asynchronous messages.

Batch: Large amounts of data are stored in a set of files

that are transferred to storage in bulk.

INGEST

Streaming Applications Batch Pub/Sub Logging Cloud Storage Pub/Sub Storage Transfer Service Cloud SQL BigQuery Data Transfer Service Datastore Transfer Appliance Cloud Bigtable Cloud Firestore Cloud Spanner

INGESTING STREAMING DATA

Telemetry data:

Internet of Things (IoT) devices

User events and analytics:

A mobile app might log events

INGESTING BULK DATA

Scientific workloads:

Genetics data stored in Variant Call Format (VCF)

Migrating to the cloud:

Moving data stored in an on-premises Oracle database

Backing up data:

Replicating data stored in an AWS bucket

Importing legacy data:

Copying ten years worth of website log data

STORE

PROCESS AND ANALYZE

Processing:

Data from source systems is cleansed, normalized

Analysis:

Processed data is stored in systems that allow for ad-hoc querying

Understanding: train and test

CONGRATS ON COMPLETION

TODO

Will you discuss running BEAM on AWS and Azure? E.g., using AWS Kinesis with BEAM and/or Flink?

Could you say anything about Airflow as compared to BEAM, and when to use which (general task execution vs. dataflows)? E.g., is it worth mentioning Amazon Managed Workflows for Apache Airflow (MWAA), or GCP CloudComposer (built on Airflow)?

I like the discussion of BEAM and GCP, but not all workflows are dataflows.

40