Model Predictive Control for Object Avoidance with UAVs: Literature Review

Kelvin Cui

Papers Reviewed:

- Constrained Model-Based Predictive Control For Obstacle Avoidance (Robotica 2017)
- Model Predictive Control for Aerial Collision Avoidance in dynamic environments (MED 2018)
- Nonlinear MPC for Collision Avoidance and Control of UAVs with Dynamic Obstacles (R-AL 2020)
- Nonlinear Model Predictive Control-Based Guidance Algorithm for Quadrotor Trajectory Tracking with Obstacle Avoidance (JSSC 2021)

Eric Boivin, Andre Desbiens, Eric Gagnon

- This paper uses a MPC to control a fixed-wing autonomous airplane.
- Obstacle avoidance is achieved through MPC constraints.
 - Obstacles are assumed to be ellipsoidal or fit within ellipsoidal bounds.
 - Shape and location of obstacles are known and fixed.
 - Collision avoidance is achieved with a hard constraint on path intersection.

UAV Modeling (Fixed Wing)

$$\Delta \mathbf{X}(k+1) = A\Delta \mathbf{X}(k) + B\Delta \mathbf{U}(k)$$
$$\Delta \mathbf{Y}(k) = C\Delta \mathbf{X}(k)$$

$$U(k) = \begin{bmatrix} u_{\rho}(k) & u_{\psi}(k) & u_{z}(k) \end{bmatrix}^{T}$$

$$\mathbf{Y}(k) = \begin{bmatrix} y_{\rho}(k) & y_{\psi}(k) & y_{z}(k) \end{bmatrix}^{T}$$

$$\mathbf{N}(k) = \begin{bmatrix} n_x(k) \\ n_y(k) \\ n_z(k) \end{bmatrix} \\
= \begin{bmatrix} n_x(k-1) + T_s y_\rho(k) \cos[y_\psi(k)] \\ n_y(k-1) + T_s y_\rho(k) \sin[y_\psi(k)] \\ y_z(k) \end{bmatrix}$$

- X is the state vector, and k is the current iteration
- U is the command vector, where deltaU(k) = U(k) U(k-1):
 - **u_rho** is the velocity set point,
 - **u_phi** is the heading set point,
 - **u_z** is the altitude set point,
- The output vector is **Y**:
 - **y_rho** is the velocity in the flat earth horizontal plane,
 - y_phi is the heading,
 - **Y_z** is the altitude.
- $= \begin{bmatrix} n_x(k-1) + T_s y_\rho(k) \cos[y_\psi(k)] \\ n_y(k-1) + T_s y_\rho(k) \sin[y_\psi(k)] \\ y_z(k) \end{bmatrix}$ **N** is the position vector in an xyz frame, with **k** being the current iteration, and **T_s** being the sample time
 - This position can be deduced from the output vector, as shown

Scenario Definition

- P contains all of the target waypoints, defined by a x,y,z coordinates
- M contains all of the x,y,z coordinates of the center of each obstacle
- **W** contains the ellipsoid semi-axis of each obstacle
 - **f_m** (>= 1) is a multiplicative safety factor
 - **f_a** (>= 0) is a additive safety factor
- delta_j represents the predicted distance between the vehicle and the jth target
 - **k** is the current time, while **tao** is a future time between 1 and the prediction horizon.

$$oldsymbol{P} = \left[egin{array}{c} oldsymbol{P}_1 \ oldsymbol{P}_2 \ dots \ oldsymbol{P}_p \end{array}
ight] = \left[egin{array}{cccc} \left[& p_{x1} & p_{y1} & p_{z1} &
ight]^T \ \left[& p_{x2} & p_{y2} & p_{z2} &
ight]^T \ dots & dots \ \left[& p_{xp} & p_{yp} & p_{zp} &
ight]^T \end{array}
ight]$$

$$\boldsymbol{M}(k) = \begin{bmatrix} \boldsymbol{M}_1 & \boldsymbol{M}_2 & \cdots & \boldsymbol{M}_m \end{bmatrix}^T$$

$$\boldsymbol{W}(k) = \begin{bmatrix} \boldsymbol{W}_1 & \boldsymbol{W}_2 & \cdots & \boldsymbol{W}_m \end{bmatrix}^T$$

$$m{W}_i = f_m \left[egin{array}{ccc} w_{xi} & 0 & 0 \ 0 & w_{yi} & 0 \ 0 & 0 & w_{zi} \end{array}
ight] + f_a$$

$$\delta_{j}(k+\tau/k) = \left| \hat{\mathbf{N}}(k+\tau/k) - \mathbf{P}_{j} \right|$$
$$= \sqrt{\left[\hat{\mathbf{N}}(k+\tau/k) - \mathbf{P}_{j} \right]^{T} \left[\hat{\mathbf{N}}(k+\tau/k) - \mathbf{P}_{j} \right]}$$

MPC Formation: Cost & Non-Linear Inequality Constraints

$$\Phi = \left[\Delta \boldsymbol{U}(k:k+h_c-1)\right]^T \boldsymbol{\lambda} \left[\Delta \boldsymbol{U}(k:k+h_c-1)\right] + \sum_{\tau=1}^{h_p} \delta_j(k+\tau/k)$$

$$\Delta U_{min}(k:k+h_{c}-1) \leq \Delta U(k:k+h_{c}-1)$$

$$\leq \Delta U_{max}(k:k+h_{c}-1)$$

$$U_{min}(k:k+h_{c}-1) \leq U(k:k+h_{c}-1)$$

$$\leq U_{max}(k:k+h_{c}-1)$$

$$N_{min}(k+1:k+h_p) \le \hat{N}(k+1:k+h_p/k)$$

 $\le N_{max}(k+1:k+h_p)$

$$0 \le \left| \mathbf{N}_R(k) - \hat{\mathbf{N}}(k + \tau/k) \right| \le h_s \quad \text{for } \tau \in [1, h_p]$$

$$y_{s-min}(k+1:k+h_p) \le \hat{y}_s(k+1:k+h_p/k)$$

 $\le y_{s-max}(k+1:k+h_p)$

- The cost function **Phi** minimizes both the distance to the jth target, while weighing the command input
 - Command inputs and rates are constrained for safe operation of autopilot with U_min, deltaU_min, U_max and deltaU_max
- The predicted position **N** is constrained over the prediction horizon
 - Also constrained over the sensor horizon relative to the current measured position
- The predicted velocity **y_s** is bounded over the prediction horizon as well, defined by:

$$\hat{y}_s(k+\tau/k) = \sqrt{\frac{(\hat{y}_\rho(k+\tau/k))^2 + (\hat{y}_z(k+\tau/k) - \hat{y}_z(k+\tau-1/k))^2}{(\hat{y}_z(k+\tau/k) - \hat{y}_z(k+\tau-1/k))^2}}$$

Aerospace Intelligent
Mechatronics Lab

MPC Formation: Obstacle Avoidance

- The point L(k + tao/k) exists on the line between N(k + tao 1/k) and N(k+tao/k) if 0 <= n(k+tao/k) <= 1.
- The surface of the ellipsoid of the obstacle is defined by the equation:

$$\left[\boldsymbol{E}_{i}-\boldsymbol{M}_{i}\right]^{T}\boldsymbol{W}_{i}^{-2}\left[\boldsymbol{E}_{i}-\boldsymbol{M}_{i}\right]=1$$

- If E_i = L(k+tao/k), then there is an intersection between the path and the obstacle.
 - This can be calculated with **n_1** and **n_2**.
 - If both are complex, then the line does not intersect. Otherwise, the line intersects the surface of the ellipsoid.
 - A binary variable is used to represent intersections, and is constrained to zero.

$$L(k+\tau/k) = \hat{N}(k+\tau-1/k) + \eta(k+\tau/k) \begin{bmatrix} \hat{N}(k+\tau/k) \\ -\hat{N}(k+\tau-1/k) \end{bmatrix}$$
$$\eta_{1i}(k+\tau/k) = \frac{-b_i(k+\tau/k) + \sqrt{\varphi(k+\tau/k)}}{2a_i(k+\tau/k)}$$

$$\eta_{2i}(k+\tau/k) = \frac{-b_i(k+\tau/k) - \sqrt{\varphi(k+\tau/k)}}{2a_i(k+\tau/k)}$$

$$\varphi(k+\tau/k) = b_i^2(k+\tau/k)$$

$$-4a_i(k+\tau/k)c_i(k+\tau/k)$$

$$\hat{\mathcal{M}} = \hat{\mathcal{N}}(k+\tau-1/k) - M_i$$

$$a_i(k+\tau/k) = \hat{\mathcal{N}}^T W_i^{-2} \hat{\mathcal{N}}$$

$$b_i(k+\tau/k) = 2\hat{\mathcal{N}}^T W_i^{-2} \hat{\mathcal{M}}$$

$$c_i(k+\tau/k) = \hat{\mathcal{M}}^T W_i^{-2} \hat{\mathcal{M}} - 1$$

Toronto

Metropolitan

University

Implementation and Results

- MPC was implemented on an off-the-shelf UAV autopilot
 - Ground control station constraints guidance algorithms
 - MPC is implemented in C++ using NAG package, allowing for real time computation.
- A hardware-in-the-loop test was first conducted to minimize risk & complexity of outdoor flights
 - XPlane is used as a 3D viewer over UDP
- Real flights were then conducted, with simulated obstacles
 - Obstacle detection is only valid within simulated sensor range
 - Plane was able to meet all targets and avoid all obstacles.

Manuel Castillo-Lopez, Seyed Amin Sajadi-Alamdari, Jose Luis Sanchez-Lopez, Miguel A. Olivares-Mendez, Holger Voos

- A Non-linear MPC is used in order to generate a control command for a Drone UAV.
- Obstacle avoidance is achieved through soft constraints.
 - Increased distance to obstacles is achieved by propagating obstacle position using a constant velocity model throughout prediction horizon.

UAV Modeling (Quadcopter)

$$\dot{x} = v_x cos(\psi) - v_y sin(\psi) \tag{2a}$$

$$\dot{y} = v_x \sin(\psi) + v_y \cos(\psi) \tag{2b}$$

$$\dot{z} = v_z \tag{2c}$$

$$\dot{\psi} = v_{\psi} \tag{2d}$$

$$\dot{v}_i = (-v_i + k_i u_i)/\tau_i, \quad i \in \{x, y, z, \psi\}$$
 (2e)

- Drone state: $\mathbf{x} = [x \ y \ z \ \psi \ v_x \ v_y \ v_z \ v_\psi]^T$
 - Phi represents the yaw angle, while xyz are ENU frame
 - **U** is the control input: $\mathbf{u} = [u_x \ u_y \ u_z \ u_{\psi}]^T$
- A Non-linear motion model is defined with **2**.
 - Model parameters k_i and t_i are chosen using the classical step response method:

$$k_i = \frac{v_i(\infty)}{u_i(\infty)}$$
 $\tau_i = \frac{3}{2}(t_{63} - t_{28})$

MPC Trajectory Tracking

- Two cost terms are proposed:
 - 4 is used for trajectory tracking
 - Where x* is the reference state, and
 N is the prediction horizon
 - **5** aims for stability and energy efficiency

$$J^{t} = \frac{1}{2} \sum_{i=0}^{N-1} \|\mathbf{x}_{i} - \mathbf{x}_{i}^{*}\|_{P}^{2} + \|\mathbf{x}_{N} - \mathbf{x}_{N}^{*}\|_{Q}^{2}$$
 (4)

$$J^{c} = \frac{1}{2} \sum_{i=0}^{N-1} \|\mathbf{u}_{i}\|_{R}^{2}$$
 (5)

MPC Collision Avoidance

- Soft constraints are used to quarantee feasible solutions in tight situations
 - (6) is used to avoid ellipsoidal obstacles
 - Ellipsoidal term is defined by:

-
$$\xi(\mathbf{r}_i, \mathbf{r}_i^o) = \sqrt{(\mathbf{r}_i - \mathbf{r}_i^o)^T Q_i(\mathbf{r}_i - \mathbf{r}_i^o)}$$

 $\mathbf{Q_i}$ is a metric from ellipsoidal dimensions, where $\mathbf{R_w}$ is the world frame transform.

-
$$Q_i = {}^{O}R_W^T M_i {}^{O}R_W M = diag(r_x^{-2}, r_y^{-2}, r_z^{-2})$$

- **S_i** is a slack term that relaxes the constraint with a sensitivity theta^epsilon, and is minimized by (10).
- Obstacles are assumed to have constant velocity such that:

$$- \mathbf{r}_i^o = \mathbf{r}_{i-1}^o + \dot{\mathbf{r}}_{i-1}^o \cdot \Delta t$$

(11) and (12) are used in a similar way to avoid walls and floor

$$\xi^2(\mathbf{r}_i, \mathbf{r}_i^o) + \theta^{\xi} s_i^{\xi} \ge 1 \tag{6}$$

$$J^{\xi} = \frac{1}{2} \sum_{i=0}^{N-1} \|\mathbf{s}_i^{\xi}\|_S^2$$
 (10)

$$\pi(\mathbf{r}_i) + \theta^{\pi} s_i^{\pi} \ge 0 \tag{11}$$

$$J^{\pi} = \frac{1}{2} \sum_{i=0}^{N-1} \|\mathbf{s}_i^{\pi}\|_T^2$$
 (12)

MPC Optimal Control Problem & Implementation

$$\begin{aligned} & \underset{X,U}{\text{minimize}} & J = J^t + J^c + J^\xi + J^\pi \\ & \text{subject to:} & \mathbf{x}_0 = \bar{x}_0 \\ & \mathbf{x}_{i+1} = \Phi_i(\mathbf{x}_i, \mathbf{u}_i) & i = 0, \dots, N-1 \\ & \xi(\mathbf{x}_i) + \theta^\xi s_i^\xi \geq 1 & i = 0, \dots, N-1 \\ & \pi(\mathbf{x}_i) + \theta^\pi s_i^\pi \geq 0 & i = 0, \dots, N-1 \\ & |\mathbf{u}_i| \leq \mathbf{u}_{max} & i = 0, \dots, N-1 \end{aligned}$$

- Combining previous equations, final form is a discrete nonlinear problem.
 - **u_max** introduces control limit constraints
- NMPC is implemented in C++ using the ACADO Toolkit.
 - Drone runs ROS, using V-REP as a SIL environment
- The implementation parameters are as follows:

Prediction horizon	4s
Discretization steps	20
Integrator type	Runge-Kutta 4
Maximum controls	1 m/s
Control Rate	20 Hz
Ellipsoidal obstacles sensitivity	0.15
Planar constraints sensitivity	0.25

t = 3.6s

t = 6.2s

Results - Street Crossing Scenario

- In a street crossing scenario, pedestrians are modeled with as a cylinder with infinite height, moving at a constant velocity.
- Two approaches were used:
 - The static approach samples the pedestrian position and assumes constant position throughout the prediction horizon
 - The dynamic approach propagates the pedestrian position with the constant velocity model.
- Dynamic approach was able to generate optimal paths that doesn't cross the future trajectory.

Aerospace Intelligent
Mechatronics Lab

Results - Multiple Obstacle Scenario

- In the multiple object scenario, aerial robots are added in addition to the pedestrians.
- The UAV is able to avoid multiple collisions, despite soft constraint violation.

Fig. 9: Risk variables in the multiple obstacle scenario

Bjorn Lindqvist , Sina Sharif Mansouri, Ali-akbar Agha-Mohammadi and George Nikolakopoulos

- Obstacle avoidance achieved through two novel methods:
 - Obstacle trajectory classification for more accurate trajectory prediction
 - Three classes for obstacles are proposed (static, linear, projectile)
 - Classification is done on-line to quickly and accurately predict different obstacle trajectories.
 - Increasing radius of safety sphere throughout prediction horizon
 - Accounts for sensor and prediction error

UAV Modeling (Quadcopter)

$$\begin{split} \dot{p}(t) &= v(t) \\ \dot{v}(t) &= R(\phi,\theta) \begin{bmatrix} 0 \\ 0 \\ T \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -g \end{bmatrix} - \begin{bmatrix} A_x & 0 & 0 \\ 0 & A_y & 0 \\ 0 & 0 & A_z \end{bmatrix} v(t) \\ \dot{\phi}(t) &= \frac{1}{\tau_{\theta}} (K_{\theta} \phi_{\text{ref}}(t) - \phi(t)), \\ \dot{\theta}(t) &= \frac{1}{\tau_{\theta}} (K_{\theta} \theta_{\text{ref}}(t) - \theta(t)), \end{split}$$

- p(t) represents the position in xyz coordinates, with v(t)
 representing the linear velocity, viewed in a global fixed frame
- **R(phi, theta)** is a rotation matrix that describes the attitude in Euler form.
 - **Phi** is the roll angle along the X axis, while **Theta** is the pitch angle along the Y axis.
 - **T** is the total thrust
 - **A_x**, **A_y** and **A_z** are linear damping terms.
 - **Phi_ref** and **Theta_ref** are the reference roll and pitch respectively.
 - The **K** and **Tao** values are gains and time constants respectively for the roll and pitch.

Cost Function

- The state vector is: $x = [p, v, \phi, \theta]^{\top}$
- With input controls as: $u = [T, \phi_{\mathrm{ref}}, \theta_{\mathrm{ref}}]^{ op}$
- The forward euler method is used to predict using discrete time steps, allowing for the following equation to be used as the cost function:

$$\begin{split} J(\boldsymbol{x}_k, \boldsymbol{u}_k, u_{k-1|k}) &= \sum_{j=0}^N \underbrace{\|\boldsymbol{x}_{\mathrm{ref}} - \boldsymbol{x}_{k+j|k}\|_{Q_x}^2}_{\text{State cost}} \\ &+ \underbrace{\|\boldsymbol{u}_{\mathrm{ref}} - \boldsymbol{u}_{k+j|k}\|_{Q_u}^2}_{\text{Input cost}} + \underbrace{\|\boldsymbol{u}_{k+j|k} - \boldsymbol{u}_{k+j-1|k}\|_{Q_{\Delta u}}^2}_{\text{Input smoothness cost}}, \end{split}$$

- where **Q_x**, **Q_u** and **Q_deltau** are positive definite weight matrices.
- The reference input is kept at steady-state hovering to minimize input commands:

$$u_{\rm ref} = [g, 0, 0]$$

Obstacle Avoidance Constraints

$$\begin{split} h_{\rm sphere}(p,\xi^{\rm obs}) &= [(r^{\rm obs} + r_{\rm s})^2 - (p_x - p_x^{\rm obs})^2 \\ &- (p_y - p_y^{\rm obs})^2 - (p_z - p_z^{\rm obs})^2]_+ = 0, \quad (3) \end{split}$$

$$\boldsymbol{h}_{\mathrm{sphere}}(\boldsymbol{p}_k, \boldsymbol{\xi}^{\mathrm{obs}}) = \overline{0},$$
 (4)

$$[\phi_{\text{ref},k+j-1|k} - \phi_{\text{ref},k+j|k} - \Delta\phi_{\text{max}}]_{+} = 0,$$
 (5a)

$$[\phi_{\text{ref},k+j|k} - \phi_{\text{ref},k+j-1|k} - \Delta\phi_{\text{max}}]_{+} = 0.$$
 (5b)

$$u_{\min} \le u_{k+j|k} \le u_{\max}$$
.

- In order to follow the constraint formulation structure, the following function is defined: $[h]_+ = \max\{0,h\}$.
 - (3) ensures that the drone position is outside of the position of the obstacle
 - **r_s** is a safety radius that linearly increases along the horizon **N**, accounting for measurement/prediction errors
 - r^obs and p^obs are the radius and centers of the obstacles respectively.
 - **(4)** extends 3 to allow for **N** positions that describe obstacle trajectory at time k.
- (6) **(5)** constrains the control delta for roll, and is extended for theta as well (pitch)
 - **(6)** places hard bounds on possible control inputs that the low-level controller can handle.

Aerospace Intelligent Mechatronics Lab

Obstacle Trajectory Classification

- Obstacle trajectory is divided into three classes:
 - Static, without any movement $(\dot{p}^{obs} = 0)$.
 - Linear motion, where $\dot{p}^{\text{obs}}(t) = v^{obs}(t)$,
 - Projectile motion, represented by (10).
 - **B** represents linear aerodynamic damping terms
 - Bouncing is simulated by applying a coefficient of restitution on the velocities to simulate energy loss
- Object motion is then discretized with forward euler, resulting in (11).
- Classification is achieved by comparing the **M** last measured positions to the backwards prediction.
 - **(12)** is used to generate an error using each of the three classes
 - Lowest error class is chosen for future prediction.

$$\dot{p}^{\text{obs}}(t) = v^{obs}(t),\tag{10a}$$

$$\dot{v}^{\text{obs}}(t) = \begin{bmatrix} 0\\0\\-g \end{bmatrix} - \begin{bmatrix} B_x & 0 & 0\\0 & B_y & 0\\0 & 0 & B_z \end{bmatrix} v^{obs}(t), \qquad (10b)$$

$$x_{k|k+n+1}^{obs} = \alpha_t(x_{k|k+n}^{obs}),$$

$$x_{k|k+n-1}^{obs} = \beta_t(x_{k|k+n}^{obs}).$$
(11)

$$e^{traj} = \sum_{j=1}^{M} |p_j^{prev} - p_{k|k-j}^{obs}| + |v_j^{prev} - v_{k|k-j}^{obs}|. \quad (12)$$

MPC Formulation and Implementation

$$\underset{\boldsymbol{u}_k, \boldsymbol{x}_k}{\text{Minimize}} J(\boldsymbol{x}_k, \boldsymbol{u}_k, u_{k-1|k})$$
(8a)

s. t.:
$$x_{k+j+1|k} = \zeta(x_{k+j|k}, u_{k+j|k}),$$

 $j = 0, \dots, N-1,$ (8b)

$$u_{\min} \le u_{k+j|k} \le u_{\max}, j = 0, \dots, N,$$
 (8c)

$$h_{\text{sphere}}^{i}(p_{k+j|k}, \xi_{j}^{\text{obs},i}) = 0, j = 0, \dots, N,$$
 (8d)

$$i = 1, \dots, N_s \tag{8e}$$

Constraints (5),
$$j = 0, ..., N$$
. (8f)

- The NMPC problem can be formulated with (8) assuming N_s spherical obstacles
 - Solved using the PANOC algorithm, leveraging the OpEn framework.
 - Vicon Motion capture is used to track UAV and obstacle.
- Computation is completed on a remote laptop running ROS.

Results

- Dynamic NMPC model is able to avoid thrown objects by predicting future trajectory.
 - Dynamic model is even able to avoid bouncing obstacle.
- Traditional methods are too slow to detect when objects enter collision sphere, resulting in collision.
- Can also accurately track and avoid multiple objects.
- Video demo: https://youtu.be/v03xjvMMNJ4

Fig. 6: Path of UAV and dynamic obstacle during experiment with bouncing ball.

Zhao ChunHui, Wang Dong, Hu JinWen, Pan Quan

- Trajectory Tracking performance is enhanced by adding stability constraints
 - Non-linear lyapunov stability constraints are added to increase tracking performance with disturbances compared to Lyapunov-based backstepping control.
- Obstacle avoidance is achieved with a simple switching cost function
 - Cost function activates when the drone is within a defined radius of a known, static target.

UAV Modeling (Quadcopter)

- The position and yaw vector is represented by $\boldsymbol{\eta} = [x, y, z, \psi]^{\mathrm{T}}$
 - Where **xyz** are ENU frame, while **phi** represents the rotation about the **z** axis.
- The kinematics are then represented by: $\dot{\eta} = \mathbf{R}(\psi)\mathbf{v}_b$,
 - Where

$$m{R}(\psi) = \left[egin{array}{cccc} \cos(\psi) & -\sin(\psi) & 0 & 0 \\ \sin(\psi) & \cos(\psi) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}
ight]$$

- v_b is the body frame velocity.
 - The velocity response and reference velocity commands can be approximated by $\dot{m{v}}_b = m{S}m{v}_b + m{F}m{u},$
 - $u = [u_x, u_y, u_z, u_\psi]^T$ is the control input, while **S** and **F** are parameters based on the gains and time constants from their corresponding first-order transfer functions.
- As a result, the dynamic model is defined as:

$$\dot{m{x}} = \left[egin{array}{c} m{R}(\psi)m{v}_b \ m{S}m{v}_b + m{F}m{u} \end{array}
ight] \stackrel{\Delta}{=} m{f}(m{x},m{u}),$$

Aerospace Intelligent Mechatronics Lab

NMPC Tracking

- The UAV is driven to follow a reference path $S(\theta) = [x_{rr}(\theta), y_{rr}(\theta), z_{rr}(\theta)]^{T}$
 - This is used to generate a time-parameterized reference trajectory: $\eta_r(t) = [x_r(t), y_r(t), z_r(t), \psi_r(t)]^{\mathrm{T}}$
 - Theta is time-dependant, following the predetermined timing law: $\theta(t) = v_t t$,
 - **v_t** > 0 to denote the forward velocity of the drone.
 - Singularities in the reference trajectory are avoided by assuming that the reference trajectory and its derivatives are bounded.
- NMPC is designed so that the real position of the drone converges to the reference trajectory: $\lim_{t\to\infty} ||\eta(t) \eta_r(t)|| = 0;$

NMPC Obstacle Avoidance

- Obstacles are defined with a position p_o and a safety radius r_s.
- Switching behavior between trajectory tracking and obstacle avoidance is achieved through $\begin{pmatrix} 1 & || \mathbf{r}(t) \mathbf{r}_t|| < r_t \end{pmatrix}$ (obstacle avoidance)

$$J^{oa}(\boldsymbol{x}(t)) = \begin{cases} \lambda, & ||\boldsymbol{p}(t) - \boldsymbol{p}_o|| < r_s & \text{(obstacle avoidance),} \\ 0, & ||\boldsymbol{p}(t) - \boldsymbol{p}_o|| \ge r_s & \text{(trajectory tracking),} \end{cases}$$
(5)

However, due to the lack of continuous differentiability, J^oa is defined instead
 by

$$J^{oa}(\boldsymbol{x}(t)) \approx \rho(t) = \frac{\lambda}{1 + e^{-k \cdot d(t)}},$$

- Where
$$d(t) = r_s^2 - ({m p}(t) - {m p}_o)^{
m T}({m p}(t) - {m p}_o)$$

Aerospace Intelligent Mechatronics Lab

NMPC Formation

$$\begin{split} \mathcal{P}_{0}(\boldsymbol{x}) : \min_{\widehat{\boldsymbol{u}}(\cdot)} J &= \int_{t_{k}}^{t_{k}+T} ||\widetilde{\boldsymbol{x}}(s;t_{k})||_{\boldsymbol{Q}}^{2} + J^{oa}(\widehat{\boldsymbol{x}}(s;t_{k})) + ||\widehat{\boldsymbol{u}}(s;t_{k})||_{\boldsymbol{R}}^{2} \ ds \\ \text{s.t.} \quad &\widehat{\boldsymbol{x}}(s;t_{k}) = \boldsymbol{f}(\widehat{\boldsymbol{x}}(s;t_{k}), \widehat{\boldsymbol{u}}(s;t_{k})), \quad s \in [t_{k},t_{k}+T], \\ &\widehat{\boldsymbol{x}}(t_{k};t_{k}) = \boldsymbol{x}(t_{k}), \\ &||\widehat{\boldsymbol{u}}(s;t_{k})||_{\infty} \leq u_{\max}, \quad s \in [t_{k},t_{k}+T], \\ &\frac{\partial V}{\partial \boldsymbol{x}} \boldsymbol{f}(\widehat{\boldsymbol{x}}(t_{k};t_{k}), \widehat{\boldsymbol{u}}(t_{k};\widehat{\boldsymbol{x}}(t_{k};t_{k}))) \leq \frac{\partial V}{\partial \boldsymbol{x}} \boldsymbol{f}(\widehat{\boldsymbol{x}}(t_{k};t_{k}), \boldsymbol{h}(\widehat{\boldsymbol{x}}(t_{k};t_{k}))), \end{split}$$

- The NMPC can now be formed as seen on the left.
 - The error state $\widetilde{m{x}} = \widehat{m{x}} m{x}_r$
 - t_k is the current time,
 - T is the prediction horizon,
 - Q and R are positive-definite matrices that define cost.
 - This formation also considers Lyapunov Stability:
 - **h(x)** is the lyapunov-based nonlinear tracking control law
 - **V(x)** is the corresponding Lyapunov function.

NMPC Implementation

- The NMPC is converted to a discrete-time version as seen on the right.
 - **delta** is the sampling period.
 - N is the number of steps in the sampling period.
 - c_in accounts for both the input and stability constraint.

NMPC Experimental Results

- Trajectory tracking was tested with and without the stability constraint (left)
 - Under wind gusting conditions, the stability constraint allows the drone to better track the given trajectory.
 - For collision avoidance, a static obstacle was placed with a known position (right).
 - As v_t increased, the controller was able to avoid the collision region.

