# **CSE 5004**

COMPUTER NETWORKS

 $\circ \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$ 

## **VLSM** Assignment

L1+L2 | SJT418 WINTER SEMESTER 2020-21

by

**SHARADINDU ADHIKARI** 

19BCE2105

© Sharadindu Adhikari, 19BCE2105 sharadindu.adhikari2019@vitstudent.ac.in

#### Question 1

Make a table using this VLSM Network and upload the table itself. Write the table values for all the Nets. Assign IP addresses for all the Nets.

[Before writing the IP addresses, you should know about Host address, Mask address. (how to extract them) etc. Learn about how to configure VLSM, how to configure Subnetting & Supernetting]



#### Solution

The given figure shows a network with 11 networks; two block sizes of 64, one of 32, five of 16, and three of 4.

| Nets | IP            | Subnet | Mask            | Subnets | Hosts | Block      |
|------|---------------|--------|-----------------|---------|-------|------------|
| Α    | 192.16.10.32  | /27    | 255.255.255.224 | 8       | 30    | $2^5 = 32$ |
| В    | 192.16.10.0   | /28    | 255.255.255.240 | 16      | 10    | $2^4 = 16$ |
| С    | 192.16.10.16  | /28    | 255.255.255.240 | 16      | 12    | $2^4 = 16$ |
| D    | 192.16.10.244 | /30    | 255.255.255.252 | 64      | 2     | $2^2 = 4$  |
| Е    | 192.16.10.248 | /30    | 255.255.255.252 | 64      | 2     | $2^2 = 4$  |
| F    | 192.16.10.252 | /30    | 255.255.255.252 | 64      | 2     | $2^2 = 4$  |
| G    | 192.16.10.208 | /28    | 255.255.255.240 | 16      | 12    | $2^4 = 16$ |
| Н    | 192.16.10.64  | /26    | 255.255.255.192 | 4       | 60    | $2^6 = 64$ |
|      | 192.16.10.192 | /28    | 255.255.255.240 | 16      | 14    | $2^4 = 16$ |
| J    | 192.16.10.128 | /26    | 255.255.255.192 | 4       | 60    | $2^6 = 64$ |
| K    | 192.16.10.224 | /28    | 255.255.255.240 | 32      | 8     | $2^4 = 16$ |

© Sharadindu Adhikari, 19BCE2105 sharadindu.adhikari2019@vitstudent.ac.in

#### Question 2

Allocate the IP addresses.

Identify them in the entire diagram and which classes they belong to/required. Jot them in the form of a table.



#### **Solution**

The given network after allocating IP addresses:



© Sharadindu Adhikari, 19BCE2105 sharadindu.adhikari2019@vitstudent.ac.in

### All of them belongs to class C:

| Segments      | CIDR | Subnet Mask     | Host reqs. | Nearest block size  | Network address | Valid host addresses           |
|---------------|------|-----------------|------------|---------------------|-----------------|--------------------------------|
| LAN Segment 1 | /27  | 255.255.255.224 | 29         | $2^5 = 32$          | 192.168.1.0     | 192.168.1.1 to 192.168.1.30    |
| LAN Segment 2 | /27  | 255.255.255.224 | 21         | $2^5 = 32$          | 192.168.1.32    | 192.168.1.33 to 192.168.1.62   |
| LAN Segment 3 | /28  | 255.255.255.240 | 12         | 2 <sup>4</sup> = 16 | 192.168.1.64    | 192.168.1.65 to 192.168.1.78   |
| LAN Segment 4 | /28  | 255.255.255.240 | 8          | 2 <sup>4</sup> = 16 | 192.168.1.80    | 192.168.1.81 to 192.168.1.94   |
| WAN Link 1    | /30  | 255.255.255.252 | 2          | $2^2 = 4$           | 192.168.1.96    | 192.168.1.97 to 192.168.1.98   |
| WAN Link 2    | /30  | 255.255.255.252 | 2          | $2^2 = 4$           | 192.168.1.100   | 192.168.1.101 to 192.168.1.102 |
| WAN Link 3    | /30  | 255.255.255.252 | 2          | $2^2 = 4$           | 192.168.1.104   | 192.168.1.105 to 192.168.1.106 |
| WAN Link 4    | /30  | 255.255.255.252 | 2          | $2^2 = 4$           | 192.168.1.108   | 192.168.1.107 to 192.168.1.108 |