

CS/IS F214 Logic in Computer Science

MODULE: PREDICATE LOGIC

Semantics

- Soundness and Completeness

06-10-2018 Sundar B. CS&IS, BITS Pilani 0

Predicate Logic: Proofs

- Recall:
 - Given sets F and P of functions and predicates,
 - Let ψ be a formula and
 - let Γ be a sequence of formulas $\phi_1, \phi_2, ..., \phi_n$ in predicate logic over $\emph{\textbf{F}}$ and $\emph{\textbf{P}}$.
 - Then
 - Γ |- ψ denotes that ψ is provable given ϕ_1 , ϕ_2 , ..., ϕ_n as premises
 - using proof rules (say, in Natural Deduction).

Predicate Logic: Soundness

- Claim (Soundness):
 - Predicate Logic is sound i.e.
 - if a formula can be proved it is true:
 - Let ψ be a formula and
 - let Γ be a sequence of formulas $\phi_1, \phi_2, ..., \phi_n$ in predicate logic over $\emph{\textbf{F}}$ and $\emph{\textbf{P}}$.
 - Then,
 - if $\Gamma \mid -\psi$ then $\Gamma \mid =\psi$
- Proof omitted.

Predicate Logic: Completeness

- Claim (Completeness):
 - Predicate Logic is complete i.e.
 - if a formula is true then it can be proved:
 - Let ψ be a formula and
 - let Γ be a sequence of formulas $\phi_1, \phi_2, ..., \phi_n$ in predicate logic over $\emph{\textbf{F}}$ and $\emph{\textbf{P}}$.
 - Then,
 - if $\Gamma \mid = \psi$ then $\Gamma \mid -\psi$
- Proof omitted.

Godel's Incompleteness Results

- Godel defined a set of axioms for natural numbers (including +, *, and induction) and
 - argued that there exists a formula ϕ such that neither ϕ nor $\neg \phi$ can be proved from the axioms.
- In other words the system was incomplete!
- What is the gap between vanilla first order logic and this system?

