Influential spreaders in multilayer networks

Supervisore
Alberto Montresor

Laureando Gabriele Masina

Dipartimento di Ingegneria e Scienza dell'Informazione

Corso di Laurea in Informatica

Trento, Luglio 2020

Le reti nel mondo reale

Molti sistemi reali possono essere rappresentati con una rete.

Alcuni esempi

- Reti sociali
- Reti dei trasporti
- Reti biologiche

Problema

Un singolo grafo permette di rappresentare un unico tipo di relazione tra le entità

Multilayer network

Definizione

Una multilayer network è formata da un insieme di grafi detti layer ed un insieme di inter-connessioni tra nodi appartenenti a layer differenti

Alcuni esempi

- Profili online in diversi social network
- Stazioni di reti dei trasporti differenti

Influential spreaders

Processi di diffusione

Lo studio degli spreading process in una rete permette di comprendere le dinamiche di diversi scenari

Esempi

- Fake news in social network
- Notizie in reti di contatti
- Ritardi tra le stazioni di una città

Definizione

Gli influential spreaders sono quei nodi che in uno spreading process riescono a raggiungere la porzione di rete maggiore

Algoritmi di centralità

Obiettivo

Simulare gli spreading process è computazionalmente costoso. Si è cercato di individuare gli influential spreaders usando algoritmi di centralità

Sul grafo aggregato

- PageRank
- k-core
- Degree Centrality

Separatamente su ogni layer

- Additive PageRank
- Sum k-core

Sull'intera struttura multilayer

- Versatility PageRank
- Versatility Betweenness Centrality
- Multiplex k-core
- Minimal-layers PCI
- All-layers PCI
- Layer-symmetric PCI
- Layer-agnostic PCI

Algoritmi di centralità

Power Community Index

 $mIPCI_n(v, I)$ è il massimo numero k tale che esistono almeno k vicini di v nel layer I con numero di vicini in almeno n layer maggiore o uguale a k

minimal-layers PCI

$$\sum_{n=1}^{L} mIPCI_n(v, l)$$

layer-symmetric PCI

$$n = k$$

all-layers PCI

n = L

layer-agnostic PCI

L'informazione dei layer viene ignorata

Dataset

Dataset utilizzati

Sono state analizzate le prestazioni dei vari algoritmi su reti di vario tipo:

- Reti sociali
- Reti biologiche
- Reti generate a partire da reti applicazioni peer-to-peer

Spreading process

Probabilità di contagio

Un valore importante da impostare per riconoscere efficacemente gli influential spreaders è la epidemic probability λ

Critical epidemic point

Il critical epidemic point (c.e.p.) in un grafo è il valore $\lambda_c=\frac{\langle k \rangle}{\langle k^2 \rangle}$ Sono state impostati:

- λ_{ii} al c.e.p. del layer i
- λ_{ij} al c.e.p. del grafo aggregato

Spreading process

Per ogni rete sono state fatte 100 simulazioni di spreading process partendo da ogni nodo

Spreading process

Probabilità di contagio

Un valore importante da impostare per riconoscere efficacemente gli influential spreaders è la epidemic probability λ

Critical epidemic point

Il critical epidemic point (c.e.p.) in un grafo è il valore $\lambda_c = \frac{\langle k \rangle}{\langle k^2 \rangle}$ Sono state impostati:

- λ_{ii} al c.e.p. del layer i
- λ_{ij} al c.e.p. del grafo aggregato

Spreading process

Per ogni rete sono state fatte 100 simulazioni di spreading process partendo da ogni nodo

Metodo di valutazione

Confronto dei risultati

I vettori S (simulazioni) ed A (algoritmo) ottenuti sono stati confrontati usando il coefficiente Kendall's Tau:

$$\tau = \frac{n_c - n_d}{n(n-1)}$$

- n_c è il numero di coppie concordanti nei due vettori $(A_i > A_i \in S_i > S_i)$ oppure $(A_i < A_i \in S_i < S_i)$
- n_d è il numero di coppie discordanti nei due vettori $(A_i > A_i \in S_i < S_i)$ oppure $(A_i < A_i \in S_i > S_i)$
- Se $A_i = A_i$ oppure $S_i = S_i$ la coppia i, j non viene contata.

	DLN _{0.3,} 0.3, 0.3	DLN _{0.3,} 0.3, 0.8	DLN _{0.3,} 0.8, 0.3	DLN _{0.3,} 0.8, 0.8	DLN _{0.8,} 0.3, 0.3	DLN _{0.8,} 0.3, 0.8	DLN _{0.8,} 0.8, 0.3	DLN _{0.8,} 0.8, 0.8
addPR	0.4885	0.4844	0.4888	0.4860	0.4872	0.4874	0.4853	0.4848
aggCore	0.5575	0.5376	0.5552	0.5379	0.5596	0.5391	0.5578	0.5416
aggDeg	0.6620	0.6402	0.6607	0.6401	0.6274	0.6201	0.6297	0.6179
aggPR	0.5316	0.4958	0.5296	0.4972	0.5214	0.4879	0.5195	0.4869
alPCI	0.6945	0.7036	0.7043	0.7109	0.6565	0.6694	0.6776	0.6800
laPCI	0.7145	0.7157	0.7113	0.7158	0.6759	0.6910	0.6783	0.6868
IsPCI	0.6313	0.6285	0.6354	0.6335	0.6840	0.6848	0.6879	0.6895
mIPCI	0.7344	0.7406	0.7305	0.7427	0.6980	0.7114	0.7027	0.7095
multiCore	0.3551	0.3574	0.3554	0.3576	0.3551	0.3549	0.3553	0.3550
sumCore	0.5225	0.5350	0.5259	0.5346	0.5279	0.5350	0.5259	0.5334
verBC	0.6586	0.5605	0.6610	0.5639	0.6275	0.5404	0.6309	0.5441
verPR	0.5275	0.5141	0.5261	0.5136	0.5195	0.5078	0.5162	0.5064

Tabella: Kendall's Tau dei vari algoritmi in reti DLN

	SLN _{0.3,} 0.3, 0.3	SLN _{0.3} , 0.3, 0.8	SLN _{0.3,} 0.8, 0.3	SLN _{0.3} , 0.8, 0.8	SLN _{0.8,} 0.3, 0.3	SLN _{0.8,} 0.3, 0.8	SLN _{0.8} , 0.8, 0.3	SLN _{0.8} , 0.8, 0.8
addPR	0.4225	0.4293	0.4216	0.4295	0.4198	0.4309	0.4178	0.4287
aggCore	0.4066	0.3684	0.4158	0.3731	0.4010	0.3795	0.4117	0.3841
aggDeg	0.6073	0.5520	0.6009	0.5460	0.6147	0.5490	0.6134	0.5412
aggPR	0.4275	0.3619	0.4313	0.3695	0.4229	0.3713	0.4294	0.3779
alPCI	0.6550	0.6152	0.6379	0.5971	0.6675	0.6300	0.6555	0.6203
la PCI	0.6243	0.5761	0.6195	0.5687	0.6685	0.6208	0.6662	0.6092
IsPCI	0.5901	0.5681	0.5728	0.5479	0.5962	0.5678	0.5897	0.5584
mIPCI	0.6265	0.5810	0.6222	0.5771	0.6660	0.6169	0.6627	0.6057
multiCore	0.3481	0.3560	0.3498	0.3576	0.3506	0.3535	0.3472	0.3513
sumCore	0.4209	0.4288	0.4211	0.4273	0.4164	0.4291	0.4171	0.4267
verBC	0.5589	0.4528	0.5480	0.4506	0.5868	0.4842	0.5739	0.4796
verPR	0.3650	0.3479	0.3697	0.3579	0.3200	0.3297	0.3317	0.3374

Tabella: Kendall's Tau dei vari algoritmi in reti SLN

	Drosophila	Homo	MA2013	NYCM2014	SacchCere	SacchPomb	
addPR	0.0398	0.3424	0.0059	-0.1313	0.3300	0.3410	
aggCore	0.0646	0.4132	0.0572	-0.0453	0.4384	0.1046	
aggDeg	0.7355	0.7096	0.5711	0.6150	0.6886	0.7656	
aggPR	0.0417	0.3857	0.0164	-0.0771	0.3944	0.2562	
alPCI	0.3682	0.1588	0.0493	0.1124	0.0455	0.4502	
laPCI	0.6040	0.6859	0.5534	0.6178	0.6980	0.6853	
IsPCI	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
mIPCI	0.6947	0.7191	0.5532	0.6028	0.7073	0.7729	
multiCore	0.0497	0.1962	0.0428	0.0230	0.1925	-0.0170	
sumCore	0.0658	0.4575	0.0616	-0.0487	0.4546	0.1000	
verBC	0.5243	0.5653	0.1726	0.2045	0.5666	0.6550	
verPR	-0.3505	-0.0606	-0.2707	-0.4107	0.0004	-0.4201	

Tabella: Kendall's Tau dei vari algoritmi in reti multiplex

	Reti DLN											Reti	DLN			Reti multiplex						
addPR	0.4885	0.4844	0.4888	0.4860	0.4872	0.4874	0.4853	0.4848	0.4225	0.4293	0.4216	0.4295	0.4198	0.4309	0.4178	0.4287	0.0398	0.3424	0.0059	-0.1313	0.3300	0.3410
aggCore	0.5575	0.5376	0.5552	0.5379	0.5596	0.5391	0.5578	0.5416	0.4066	0.3684	0.4158	0.3731	0.4010	0.3795	0.4117	0.3841	0.0646	0.4132	0.0572	-0.0453	0.4384	0.1046
aggDeg aggPR	0.6620	0.6402	0.6607	0.6401	0.6274	0.6201	0.6297	0.6179	0.6073	0.5520	0.6009	0.5460	0.6147	0.5490	0.6134	0.5412	0.7355	0.7096	0.5711	0.6150	0.6886	0.7656
aggPR	0.5316	0.4958	0.5296	0.4972	0.5214	0.4879	0.5195	0.4869	0.4275	0.3619	0.4313	0.3695	0.4229	0.3713	0.4294	0.3779	0.0417	0.3857	0.0164	-0.0771	0.3944	0.2562
alPCI	0.6945	0.7036	0.7043	0.7109	0.6565	0.6694	0.6776	0.6800	0.6550	0.6152	0.6379	0.5971	0.6675	0.6300	0.6555	0.6203	0.3682	0.1588	0.0493	0.1124	0.0455	0.4502
laPCI	0.7145	0.7157	0.7113	0.7158	0.6759	0.6910	0.6783	0.6868	0.6243	0.5761	0.6195	0.5687	0.6685	0.6208	0.6662	0.6092	0.6040	0.6859	0.5534	0.6178	0.6980	0.6853
IsPCI	0.6313	0.6285	0.6354	0.6335	0.6840	0.6848	0.6879	0.6895	0.5901	0.5681	0.5728	0.5479	0.5962	0.5678	0.5897	0.5584	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
mIPCI	0.7344	0.7406	0.7305	0.7427	0.6980	0.7114	0.7027	0.7095	0.6265	0.5810	0.6222	0.5771	0.6660	0.6169	0.6627	0.6057	0.6947	0.7191	0.5532	0.6028	0.7073	0.7729
multiCore	0.3551	0.3574	0.3554	0.3576	0.3551	0.3549	0.3553	0.3550	0.3481	0.3560	0.3498	0.3576	0.3506	0.3535	0.3472	0.3513	0.0497	0.1962	0.0428	0.0230	0.1925	-0.0170
sumCore	0.5225	0.5350	0.5259	0.5346	0.5279	0.5350	0.5259	0.5334	0.4209	0.4288	0.4211	0.4273	0.4164	0.4291	0.4171	0.4267	0.0658	0.4575	0.0616	-0.0487	0.4546	0.1000
verBC	0.6586	0.5605	0.6610	0.5639	0.6275	0.5404	0.6309	0.5441	0.5589	0.4528	0.5480	0.4506	0.5868	0.4842	0.5739	0.4796	0.5243	0.5653	0.1726	0.2045	0.5666	0.6550
verPR	0.5275	0.5141	0.5261	0.5136	0.5195	0.5078	0.5162	0.5064	0.3650	0.3479	0.3697	0.3579	0.3200	0.3297	0.3317	0.3374	-0.3505	-0.0606	-0.2707	-0.4107	0.0004	-0.4201

Osservazione

Due algoritmi hanno mostrato una buona capacità di riconoscere gli influential spreaders in tutte le reti analizzate:

- layer-agnostic Power Community Index
- minimal-layers Power Community Index

	Reti DLN						Reti DLN									Reti multiplex						
addPR	0.4885	0.4844	0.4888	0.4860	0.4872	0.4874	0.4853	0.4848	0.4225	0.4293	0.4216	0.4295	0.4198	0.4309	0.4178	0.4287	0.0398	0.3424	0.0059	-0.1313	0.3300	0.3410
aggCore	0.5575	0.5376	0.5552	0.5379	0.5596	0.5391	0.5578	0.5416	0.4066	0.3684	0.4158	0.3731	0.4010	0.3795	0.4117	0.3841	0.0646	0.4132	0.0572	-0.0453	0.4384	0.1046
aggDeg aggPR	0.6620	0.6402	0.6607	0.6401	0.6274	0.6201	0.6297	0.6179	0.6073	0.5520	0.6009	0.5460	0.6147	0.5490	0.6134	0.5412	0.7355	0.7096	0.5711	0.6150	0.6886	0.7656
aggPR	0.5316	0.4958	0.5296	0.4972	0.5214	0.4879	0.5195	0.4869	0.4275	0.3619	0.4313	0.3695	0.4229	0.3713	0.4294	0.3779	0.0417	0.3857	0.0164	-0.0771	0.3944	0.2562
alPCI	0.6945	0.7036	0.7043	0.7109	0.6565	0.6694	0.6776	0.6800	0.6550	0.6152	0.6379	0.5971	0.6675	0.6300	0.6555	0.6203	0.3682	0.1588	0.0493	0.1124	0.0455	0.4502
laPCI	0.7145	0.7157	0.7113	0.7158	0.6759	0.6910	0.6783	0.6868	0.6243	0.5761	0.6195	0.5687	0.6685	0.6208	0.6662	0.6092	0.6040	0.6859	0.5534	0.6178	0.6980	0.6853
IsPCI	0.6313	0.6285	0.6354	0.6335	0.6840	0.6848	0.6879	0.6895	0.5901	0.5681	0.5728	0.5479	0.5962	0.5678	0.5897	0.5584	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
mIPCI	0.7344	0.7406	0.7305	0.7427	0.6980	0.7114	0.7027	0.7095	0.6265	0.5810	0.6222	0.5771	0.6660	0.6169	0.6627	0.6057	0.6947	0.7191	0.5532	0.6028	0.7073	0.7729
multiCore	0.3551	0.3574	0.3554	0.3576	0.3551	0.3549	0.3553	0.3550	0.3481	0.3560	0.3498	0.3576	0.3506	0.3535	0.3472	0.3513	0.0497	0.1962	0.0428	0.0230	0.1925	-0.0170
sumCore	0.5225	0.5350	0.5259	0.5346	0.5279	0.5350	0.5259	0.5334	0.4209	0.4288	0.4211	0.4273	0.4164	0.4291	0.4171	0.4267	0.0658	0.4575	0.0616	-0.0487	0.4546	0.1000
verBC	0.6586	0.5605	0.6610	0.5639	0.6275	0.5404	0.6309	0.5441	0.5589	0.4528	0.5480	0.4506	0.5868	0.4842	0.5739	0.4796	0.5243	0.5653	0.1726	0.2045	0.5666	0.6550
verPR	0.5275	0.5141	0.5261	0.5136	0.5195	0.5078	0.5162	0.5064	0.3650	0.3479	0.3697	0.3579	0.3200	0.3297	0.3317	0.3374	-0.3505	-0.0606	-0.2707	-0.4107	0.0004	-0.4201

Osservazione

Due algoritmi hanno mostrato una buona capacità di riconoscere gli influential spreaders in tutte le reti analizzate:

- layer-agnostic Power Community Index
- minimal-layers Power Community Index

Riepilogo

- Sono state selezionate diverse reti multilayer biologiche, sociali e di applicazioni peer-to-peer
- Per ognuna sono stati simulati degli spreading process per individuare i nodi più influenti nella diffusione
- Sono stati selezionati e testati diversi algoritmi di centralità
- Sono stati individuati due algoritmi in grado di riconoscere gli influential spreaders sulle reti del dataset

Grazie per l'attenzione