Are we making the assumption that, given $x_{\leq T}$, $z_{\leq T}$ and $x_{>T}$ are conditionally independent? Without this assumption, equation (10) in the paper should have been

$$q(z_{\leq T}|x_{\leq T}) = \prod_{t=1}^T q(z_t|x_{\leq T},z_{< t})$$

instead of

$$q(z_{\leq T}|x_{\leq T}) = \prod_{t=1}^T q(z_t|x_{\leq t},z_{< t})$$

And the objective in equation (11) wouldn't hold as well.

- A Recurrent Latent Variable Model for Sequential Data
- Junyoung Chung, Yoshua Bengio

Motivation

Traditional RNNs models $p(x_t|x_{< t})$ directly. This limits the form $p(x_t|x_{< t})$ can take. However, in practice, $p(x_t|x_{< t})$ maybe extremely multi-model and exhibit extreme variability. In this case, directly modeling $p(x_t|x_{< t})$ is insufficient.

Sequence modeling with RNN

RNN models the joint distribution $x=(x_1,x_2,\ldots,x_T)$ be modeling $p(x_t|x_{< t})$ recursively. A hidden state h_t is used to remember x_1,\ldots,x_t , and this is recursively defined as

$$h_t = f_{\theta}(x_t, h_{t-1})$$

Given this, we can define the conditional distribution $p(x_t|x_{< t})$ as

$$p(x_t|x_{\leq t}) = g_{\tau}(x_t, h_{t-1})$$

since h_{t-1} is a deterministic function of x_{t-1} , this makes sense.

The main representational power of an RNN comes from g_{τ} . This determines how complex the distribution can be. Typically, g_{τ} is defined in terms of a function that gives the parameter of a parametric distribution, like a mixture of gaussian, or multinomial distribution.

However, since we can only use a relatively simple g_{τ} , the model's modeling ability is significantly limited. When modelling sequences that are highly variable and highly structured, this is inadequate.

Variational Recurrent Neural Network

Preview. Instead of modelling $p(x_{\leq t})$, we will introduce a number of latent variables $p(z_{\leq t})$. And we assume the process of generating x_t given $z_{\leq t}$ and $x_{\leq t}$:

- 1. z_t is drawn from $p(z_t|x_{< t}, z_{< t})$
- 2. x_t is drawn from $p(x_t|z_{\leq t}, x_{\leq t})$

This is a typical VAE formulation. With this formulation, $p(x_t|x_{< t}, z_{< t})$ can be highly complex yet structured.

Generation The VRNN contains a VAE at every timestep. However, these VAEs are conditioned on the state variable h_{t-1} of an RNN. To define $p(x_t, z_t | x_{< t}, z_{< t})$, we will first define h_{t-1} to be deterministic function of $x_{< t}, z_{< t}$ as

$$h_t = f_{\theta}(\varphi_{\tau}^x(x), \varphi_{\tau}^x(z), h_{t-1})$$

Given this, we define

$$[z_t \sim \mathcal{N}(\mu_{z,t}, diag(\sigma_{z,t}^2)) \quad [\mu_{z,t}, \sigma_{z,t}] = arphi_{ au}^{prior}(h_{t-1})$$

and

$$x_t|z_t \sim \mathcal{N}(\mu_{x,t}, diag(\sigma_{x\,t}^2)) \quad [\mu_{x,t}, \sigma_{x,t}] = arphi_{ au}^{dec}(arphi_{ au}^z(z), h_{t-1})$$

Note the above two distributions are actually condition on $x_{\leq t}, z_{\leq t}$.

Given these, the join distribution $p(x_{\leq T}, z_{\leq T})$ is then given be

$$p(x_{\leq T}, z_{\leq T}) = \prod_{t=1}^T p(x_t|z_{\leq t}, x_{< t}) p(z_t|z_{< t}, x_{< t})$$

Inference. Given $x_{< t}, z_{< t}$, we try to approximate z_t given x_t , namely $q(z_t|x_{< t}, z_{< t})$. We then define

$$|z_t| x_t \sim \mathcal{N}(\mu_{z,t}, diag(\sigma_{z,t}^2)) \quad [\mu_{z,t}, \sigma_{z,t}] = arphi_{ au}^{dec}(arphi_{ au}^x(x), h_{t-1})$$

Given this, the approximate posterior over the whole sequence is then

$$q(z_{\leq T}|x_{\leq T}) = \prod_{t=1}^T q(z_t|x_{\leq T},z_{< t})$$

It seems that we are assuming z_t and $x_{>t}$ are conditionally independent given $x_{< T}, z_{< t}$. So this is

$$q(z_{\leq T}|x_{\leq T}) = \prod_{t=1}^T q(z_t|x_{\leq t},z_{< t})$$

Learning. The training objective is given by

$$\mathbb{E}_{q(z_{\leq T}|x_{\leq T})}[\lograc{p(z_{\leq T},x_{\leq T})}{q(z_{< T}|x_{< T})}]$$

With the above three equations, and the assumption that $z_{\leq T}$ and $x_{>T}$ and conditionally independent given $x_{\leq T}$, we can derive the following objective:

$$\mathbb{E}_{q(\mathbf{z} \leq T | \mathbf{x} \leq T)} \left[\sum_{t=1}^{T} \left(-\text{KL}\left(q\left(\mathbf{z}_{t} \middle| \mathbf{x}_{\leq t}, \mathbf{z}_{< t}\right) \middle\| p\left(\mathbf{z}_{t} \middle| \mathbf{x}_{< t}, \mathbf{z}_{< t}\right) \right) + \log p\left(\mathbf{x}_{t} \middle| \mathbf{z}_{\leq t}, \mathbf{x}_{< t}\right) \right) \right]$$

This is a good graph

Figure 1: Graphical illustrations of each operation of the VRNN: (a) computing the conditional prior using Eq. (5); (b) generating function using Eq. (6); (c) updating the RNN hidden state using Eq. (7); (d) inference of the approximate posterior using Eq. (9); (e) overall computational paths of the VRNN.