

Distribuições de Probabilidades

Felipe Figueiredo

Variáveis Aleatórias

Distribuições Discretas

Felipe Figueiredo

Distribuições de Probabilidades

Distribuições de Probabilidades Binomiais

Centro Universitário Anhanguera de Niterói

Sumário

Distribuições de Probabilidades

Felipe Figueiredo

Variáveis

Distribuiçõe Discretas

Variáveis Aleatórias

- Tipos de Variáveis
- Variáveis Discretas
- Variáveis Contínuas
- 2 Distribuições de Probabilidade Discretas
 - A distribuição binomial
 - Probabilidades binomiais
 - Valor esperado
 - Representação gráfica

Variáveis Aleatórias

Distribuições de Probabilidades

Felipe Figueiredo

Variáveis Aleatórias

Tipos de Variáveis Variáveis Discretas Variáveis Contínuas

Distribuições Discretas

Definition

Uma variável aleatória é uma variável (tipicamente representada por *x*) que tem um único valor numérico associada a um experimento aleatório

- Discretas
- Contínuas

Variáveis Discretas

Distribuições de Probabilidades

Felipe Figueiredo

Variáveis Aleatórias Tipos de Variáveis

Variáveis Discretas Variáveis Contínuas

Example

Definition

• Número de filhos em uma família

quantidade contável de valores

• Quantidade de pacientes em um dia no consultório

Uma variável aleatória discreta pode assumir uma

Representação em tabela

Distribuições de Probabilidades

Felipe Figueiredo

Variáveis Aleatórias

Tipos de Variáveis Variáveis Discretas Variáveis Contínuas

Example

Seja x o número de filhos em uma família.

O valor esperado E[x] (de filhos por família) é:

$$\sum xP(x) = 0 \times 0.15 + 1 \times 0.30 + 2 \times 0.40 \dots = 1.6$$

Distribuições de Probabili-

Felipe Figueiredo

Variáveis Aleatórias

Tipos de Variáveis Variáveis Discretas Variáveis Contínuas

Distribuições Discretas

Variáveis Contínuas

Definition

Uma variável aleatória contínua pode ser associada a medições em uma escala contínua (e infinita) de valores

Example

- Quantidade de leite produzido por uma vaca em um dia
- Expectativa de vida de um paciente terminal

Representação gráfica

Distribuições de Probabilidades

Felipe Figueiredo

Variáveis Aleatórias

Tipos de Variáveis Variáveis Discretas Variáveis Contínua

Distribuiçõe: Discretas

Figura: A distribuição de uma variável discreta (Fonte: Triola, 2004

Distribuições de Probabilidade

Definition

Uma distribuição de probabilidade é um gráfico, tabela ou fórmula que relaciona a cada valor que a variável aleatória pode assumir a sua probabilidade

Os pré-requisitos para uma função ser uma Função de Probabilidade são:

- $\sum P(x) = 1$, onde x percorre todos os valores possíveis
- $0 \le P(x) \le 1$, para todo x

Distribuições de Probabilidades

Felipe Figueiredo

Variáveis

Distribuições Discretas

A distribuição binomial Probabilidades binomiais Valor esperado Representação

A distribuição Binomial

Distribuições

de Probabili-

Felipe

Figueiredo

A distribuição

Representação gráfica

binomial

binomiais

Definition

Um experimento binomial é um experimento de probabilidade que possui as seguintes propriedades:

- O experimento é repetido por um n fixo de tentativas independentes
- Há apenas 2 resultados possíveis em cada tentativa (sucesso e fracasso)
- A probabilidade de sucesso P(S) é a mesma em todas as tentativas
- A variável aleatória x contabiliza o número de sucessos do experimento.

número de tentativas

contagem de sucessos

probabilidade de sucesso (por tentativa)

probabilidade de fracasso (por tentativa)

Fonte: Larson & Farber, 2010.

Exercício

Distribuições de Probabilidades

Felipe Figueiredo

Variáveis Aleatórias

Distribuições Discretas

> A distribuição binomial Probabilidades binomiais

Probabilidades binomiais Valor esperado Representação gráfica

Os seguintes experimentos são binomiais ou não?

- Um tipo de cirurgia tem 85% de chances de sucesso. Um médico realiza o procedimento em 8 pacientes. A variável aleatória representa o número de cirurgias bem sucedidas.
- Uma jarra contém 5 bolinhas de gude vermelhas, 9 azuis e 6 verdes. Você escolhe 3 bolinhas aleatoriamente sem reposição. A variável aleatória representa o número de bolinhas vermelhas.

A distribuição Binomial

Notação

Χ

p = P(S)

q = P(F)

Distribuições de Probabili-

Felipe Figueiredo

Variáveis

Distribuições Discretas

Probabilidades binomiais

Valor esperado Representação gráfica Fórmula

A distribuição Binomial

$$P(x) = \frac{n!}{(n-x)!x!} p^x q^{n-x}$$

Obs: n! é o fatorial de n.

Anhanguera

Distribuições de Probabilidades

Felipe Figueiredo

Variáveis Aleatórias

> Distribuições Discretas A distribuição

Probabilidades binomiais

Valor esperado Representação

Exemplo

Distribuições de Probabilidades

Felipe Figueiredo

Probabilidades binomiais

Representação gráfica

Example

Cirurgias de microfraturas no joelho tem 75% de chance de sucesso em pacientes com joelhos degenerativos. A cirurgia é realizada em 3 pacientes.

Qual é a probabilidade da cirurgia ser bem sucedida em exatamente 2 pacientes?

Valor esperado, variância e DP

• Variância: $\sigma^2 = npq$

• Desvio Padrão: $\sigma = \sqrt{npq}$

Anhanguera

Distribuições de Probabilidades

Felipe Figueiredo

Probabilidades

Valor esperado

Representação gráfica

Exemplo

Distribuições

de Probabili-

dades

Dados

- n = 3
- x = 2
- $p = 0.75 \Rightarrow q = 0.25$
- $P(x) = \frac{n!}{(n-x)!x!} p^x q^{n-x}$

Resolução

•
$$P(2) = \frac{3!}{(3-2)!2!}(0.75)^2(0.25)^{(3-2)}$$

•
$$P(2) = \frac{6}{(1)(2)}(0.75)^2(0.25)^1 \approx 0.422$$

Felipe Figueiredo

Probabilidades

binomiais Valor esperado

Exemplo

Example

Em uma cidade, cerca de 56% dos dias são nublados. Encontre o valor esperado de dias nublados no mês de junho.

Dados

- n = 30
- p = 0.56, q = 0.44

Resolução

$$E[x] = \mu = np = (30)(0.56) = 16.8$$

Distribuições de Probabilidades

Felipe Figueiredo

Probabilidades

Valor esperado Representação gráfica

Exemplo

Distribuições de Probabilidades

Felipe Figueiredo

binomial

Probabilidades Valor esperado

Representação gráfica

Representação gráfica

n = 10, p = 0.2

0.3

0.2

Distribuições de Probabilidades

Felipe Figueiredo

n = 10, p = 0.8

0.2

0.1

Probabilidade

Valor esperado Representação

Interpretação

Em média, há 16.8 dias nublados no mês de junho (valor esperado).

Aumentando o tamanho da amostra

dades Felipe Figueiredo

Distribuições

de Probabili-

binomial Probabilidades

Representação

• O histograma vai ficando cada vez mais parecido com uma curva

Aumentando o tamanho da amostra

0.25

0.20

0.15

0.10

n = 10, p = 0.5

(Vídeos: Galton board e Galton machine)

Distribuições de Probabili-

dades Felipe Figueiredo

binomial Probabilidades Valor esperado Representação