2: Computational Geometry I

COMP270: MATHEMATICS FOR 3D WORLDS & SIMULATIONS

Counting

- Humans first developed numbers as a way of counting things
- How many sheep do I have? 1, 2, 3, 4, ...
- This gives us the **natural numbers** i.e. the counting numbers

Counting

- Humans first developed numbers as a way of counting things
- How many sheep do I have? 1, 2, 3, 4, ...
- This gives us the natural numbers i.e. the counting numbers

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

- What if I have no sheep? This gives us the concept of zero
- Some people include 0 in the natural numbers, some don't
- You may also see

$$\mathbb{N}_0 = \{0, 1, 2, 3, 4, \dots\} \quad \mathbb{N}_+ = \{1, 2, 3, 4, \dots\}$$

Integers

- We can calculate with natural numbers
- What is the answer to 3 5? We need **negative numbers**
- Adding negative numbers to the natural numbers gives us the integers (or whole numbers)

 $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$

Why Z? From the German Zahlen, meaning numbers

Infinite sequence to the left as well as to the right

Fractions

- We can do some divisions with integers, e.g. $6 \div 3 = 2$
- But not others, e.g. $7 \div 3 = ?$
- To solve this we need fractions: $7 \div 3 = \frac{7}{3}$
- This gives us the rational numbers:

 \in means in, i.e. $x \in S$ means element x is in set S

Why Q? From the German (also English) *Quotient*, meaning *ratio* or *division*

Set builder notation: read as "the set of all $\frac{a}{b}$ where $a \in \mathbb{Z}$ and $b \in \mathbb{N}$ "

Fractions

- We can do some divisions with integers, e.g. $6 \div 3 = 2$
- But not others, e.g. $7 \div 3 = ?$
- To solve this we need fractions: $7 \div 3 = \frac{7}{3}$
- This gives us the rational numbers:

$$\mathbb{Q} = \left\{ \frac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{N} \right\}$$

• There are multiple ways to write the same fraction, for example $\frac{7}{3} = \frac{14}{6} = \frac{700}{300}$. Mathematically they are all considered to be identical.

Decimals

- In a fraction $\frac{a}{b}$, a is called the **numerator** and b the **denominator**
- Note that decimals are just fractions where the denominator is a power of 10
- E.g.

$$0.7 = \frac{7}{10}$$

$$12.345 = \frac{12345}{1000}$$

• So the decimal numbers are a subset of \mathbb{Q} (or equal to \mathbb{Q} if we allow recurring decimals)

Reals

- Some numbers cannot be written exactly as fractions, e.g. π , $\sqrt{2}$, e
- Such numbers are called irrational
- Putting together the rational and irrational numbers gives the **real** numbers \mathbb{R}
- (Definition is beyond the scope of this lecture involves limits of infinite sequences)
- The real numbers can be thought of as the points on an infinite line (from $-\infty$ to $+\infty$)
- Note however that all real numbers are finite

Named after René Descartes, 1596-1650, French mathematician

Cartesian product

• For two sets S and T, the Cartesian product $S \times T$ is defined as the set of all **pairs** of elements, the **first** from S and the **second** from T:

$$S \times T = \{(a, b) : a \in S, b \in T\}$$

- Generalises to products of 3, 4, ... sets
- Cartesian products of a set with itself give **Cartesian powers**:

$$S^2 = S \times S = \{(a, b) : a \in S, b \in S\}$$

 $S^3 = S \times S \times S = \{(a, b, c) : a \in S, b \in S, c \in S\}$

Cartesian coordinate systems

- $\mathbb{R}^1 = \mathbb{R}$ is 1-dimensional space, aka the space of scalars
- \mathbb{R}^2 is 2-dimensional space, aka the space of 2D **vectors**, aka the 2D **plane**
- Recall: a 2D vector is a pair of numbers, and \mathbb{R}^2 is the set of all pairs of numbers
- \mathbb{R}^3 is 3-dimensional space
- \mathbb{R}^n is n-dimensional space

Other number systems

- Complex numbers C
- Quaternions, octonians, ...

Functions

- In mathematics, a function is a mapping from one set to another
- If S and T are sets, then a function

$$f: S \to T$$

Maps each element of S to an element of T

$$s \in S$$
, $f(s) \in T$

- S is called the **domain** of f, and T is the **codomain**
- **Note:** f maps each element of S to one and only one element of T; however it could map multiple elements of S to the same element of T

Functions vs functions

In mathematics:

$$f: S \to T$$

In code:

• (Under the assumption that f is implemented to always give the same return value given the same argument – e.g. no internal or external state)

Functions vs functions

In mathematics:

$$f: \mathbb{R} \to \mathbb{Z}$$

• In code:

• OK, so $\mathbb Z$ and int aren't really the same, nor are $\mathbb R$ and float, but close enough for computing...

Multiple arguments

The domain of a function could be a Cartesian product:

$$f: A \times B \to C$$

In code:

What is a curve?

"The [curved] line is [...] the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which [...] will leave from its imaginary moving some vestige in length, exempt of any width."

Euclid, Elements (English translation from Wikipedia)

What is a curve?

"The [curved] line is [...] the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which [...] will leave from its imaginary moving some vestige in length, exempt of any width."

Euclid, Elements (English translation from Wikipedia)

What is a curve?

"The [curved] line is [...] the first species of quantity, which has only one dimension, namely length, without any width nor depth, and is nothing else than the flow or run of the point which [...] will leave from its imaginary moving some vestige in length, exempt of any width."

Euclid, Elements (English translation from Wikipedia)

Defining a curve

- For a function $f: \mathbb{R} \to \mathbb{R}$ we can plot the curve y = f(x)
- Formed of the points $\begin{pmatrix} x \\ f(x) \end{pmatrix}$ for x in some range
- NB can only have one point per x value, since f maps each x to one and only one y value

Defining a curve

- How do we define a circle of radius 1 (aka a unit circle)?
- The set of points $\begin{pmatrix} x \\ y \end{pmatrix}$ such that $x^2 + y^2 = 1$
- The pair of curves

$$y = \pm \sqrt{1 - x^2}$$

Or we can define it parametrically

Parametric curve

A curve defined by two functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$, with points

$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 with $x = f(t)$ and $y = g(t)$

for t in some range

t is called the parameter

Equivalently, defined by a single function $h: \mathbb{R} \to \mathbb{R}^2$ which takes a scalar parameter and returns a vector

$$h(t) = \begin{pmatrix} f(t) \\ g(t) \end{pmatrix}$$

Parametric definition of a unit circle

$$x = \cos(t)$$

$$y = \sin(t)$$

For $0 \le t < 2\pi$

Lines are curves too

• Line between points \mathbf{p}_1 and \mathbf{p}_2 can be defined parametrically by

$$f(t) = (1-t)\mathbf{p}_1 + t\mathbf{p}_2$$
 for $0 \le t \le 1$

Note:

$$t = 0 \Rightarrow f(0) = 1\mathbf{p}_1 + 0\mathbf{p}_2 = \mathbf{p}_1$$

$$t = 1 \Rightarrow f(1) = 0\mathbf{p}_1 + 1\mathbf{p}_2 = \mathbf{p}_2$$

This is a linear interpolation or lerp

Named after Pierre Bézier, 1910-1999, French engineer

Bézier curves

- Defined by a number of control points
- Commonly used in computer graphics and game development, as allows artists/designers good control over the precise shape of the curve
- See worksheet A...

