Homework 3 (due Feb. 12)

MATH 110 | Introduction to Number Theory | Winter 2023

Whenever you use a result or claim a statement, provide a **justification** or a **proof**, unless it has been covered in the class. In the later case, provide a **citation** (such as "by the 2-out-of-3 principle" or "by Coro. 0.31 in the textbook").

You are encouraged to *discuss* the problems with your peers. However, you must write the homework by yourself using your words and acknowledge your collaborators.

Problem 1. For this problem, you may want to review one-variable Calculus

(a) (3 pts) Recall the definition (In this course, $\log = \log_e$ denotes the natural logarithm)

$$\operatorname{Li}(x) := \int_2^x \frac{\mathrm{d}t}{\log t} \qquad (x > 2).$$

Question: What is the $\frac{d}{dx} \text{Li}(x)$ of Li(x)?

(b) (5 pts) Two real functions f(x) and g(x) are asymptotically equal if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1.$$

Prove that: Li(x) and $\frac{x}{\log x}$ are asymptotically equal.

Problem 2 (5 pts). Let p be a prime number and k, l be two natural numbers. Show that

$$\sum_{i=0}^{k} \sigma_i(p^l) = \sum_{i=0}^{l} \sigma_i(p^k).$$

Problem 3 (5 pts). Let n be a positive integer and k a natural number. Show that

$$\sigma_k(n) = \sigma_{-k}(n)n^k$$
.

Conclude that n is perfect if and only if $\sigma_{-1}(n) = 2$.

Problem 4. We say that a positive integer n is **square-free** if n is not divisible by p^2 for any prime number p. (E.g. 15 and 37 are square-free, but 24 and 49 are not.) Consider the arithmetic function μ (named after A.F. Möbius, popularly known for his strip) as follows:

$$\mu(n) := \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{if } n \text{ is NOT sqaure-free,} \\ (-1)^t & \text{if } n \text{ is sqaure-free and has exactly } t \text{ prime divisors.} \end{cases}$$

(a) (3 pts) Compute $\mu(n)$ for $n = 1, \dots, 15$.

(b) (4 pts) **Prove that** μ is multiplicative. That is, $\mu(ab) = \mu(a)\mu(b)$ whenever a, b are coprime.

Hint. Proceed by cases, taking cue from the definition of μ .

Problem 5. Recall that an *integer polynomial* is an expression of the form $P(T) = c_d T^d + \cdots + c_1 T + c_0$, where each c_i is an integer.

- (a) (5 pts) **Find** a nonzero integer polynomial P(T) that has $\sqrt{3} + \sqrt[3]{5}$ as a root.
- (b) (5 pts) **Prove that** $\sqrt{3} + \sqrt[3]{5}$ is irrational using 5.(a).

Problem 6. By evaluating the Taylor series for the exponential function:

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

at x = 1, we get the formula

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$$

In this problem, you will prove that e is *irrational*.

(a) (5 pts) Let $s_n := \sum_{k=0}^n \frac{1}{k!}$, the *n*-th partial sum of above series. Show that

$$0 \le e - s_n \le \frac{1}{n} \cdot \frac{1}{n!}.$$

(b) (5 pts) Assume e is rational, and say a/b is the reduced fraction representing e. Apply the previous result to n = b and arrive at a contradiction.