

# Ph.D. Application Presentation

Embodied Agent

Zhiying Qiu



Experience Plan

### Personal Introduction



### Education Background

- ➤ Bachelor of Engineering in Software Engineering, University of Electronic Science and Technology of China 2022 Present
- > Average score: 90.71
- Ranking: 6 / 109 (Top 5%)
- Selected Coursework: Calculus I (94), Calculus II (96), Discrete Mathematics (98), Computer Architecture (98), Programming and Algorithms I (96), ARM Architecture Fundamentals (95)

### Honor & Award

- National Endeavor Scholarship
- First-Class Excellent Student Scholarship
- Academic Excellence Scholarship



Experience

Plan

### Research Experience



- Title: Fast and Stable Diffusion Planning through Variational Adaptive Weighting
- Time: Dec 2024 May 2025
- > Advisor: Prof. Tao Lin, Westlake University
- ➤ **Task**: Maze2D involves guiding a ball through a maze to a target location, where the reward function is defined as follows:
  - $\checkmark$  r = 0: The ball has not reached the target position.
  - ✓ r = 1: The ball has reached the target, defined as being within a Euclidean distance of less than 0.5 meters from the goal.



Experience

Plan

### Research Experience







#### **Motivation**

- We identify a research gap: No systematic study on training efficiency in diffusion planning.
- $\blacktriangleright$  Our work aims to address this gap by proposing an uncertainty-aware weighting function  $\omega(t)$  under the flow-based generative modeling framework. As shown in Figure 1:
  - ✓ MLP-based weighting fails to capture the true importance of samples at early training stages.
  - ✓ In contrast, our variational weighting function better approximates the target  $u^*(\sigma)$ , leading to significantly faster convergence.



Experience

Plan

### Research Experience

**Table 1: Performance of various offline-RL methods.** Our method achieves the best performance across all benchmark tasks. Our results are averaged over 150 episode seeds. We omit the variance over seeds for simplicity. The best average performance on each task set is marked in bold fonts.

| Dataset | Env     | BC   | CQL  | IQL  | SfBC | DQL  | IDQL | Diffuser | AD    | DD   | HD    | DV*   | FV (Ours) |
|---------|---------|------|------|------|------|------|------|----------|-------|------|-------|-------|-----------|
| Kitchen | Mixed   | 47.5 | 51.0 | 51.0 | 45.4 | 62.6 | 66.5 | 52.5     | 51.8  | 75.0 | 71.7  | 72.0  | 72.5      |
|         | Partial | 33.8 | 49.8 | 46.3 | 47.9 | 60.5 | 66.7 | 55.7     | 55.5  | 56.5 | 73.3  | 80.1  | 82.1      |
|         | avg.    | 40.7 | 50.4 | 48.7 | 46.7 | 61.6 | 66.6 | 54.1     | 53.7  | 65.8 | 72.5  | 76.1  | 77.3      |
| Maze2D  | Large   | 0.0  | 57.5 | 43.6 | 74.4 | _    | 90.1 | 123.0    | 167.9 | _    | 128.4 | 203.0 | 222.6     |
|         | Medium  | 0.0  | 15.4 | 70.6 | 73.8 | -    | 89.5 | 121.5    | 129.9 | _    | 135.6 | 150.7 | 164.8     |
|         | Umaze   | 0.0  | 36.4 | 57.1 | 73.9 | _    | 57.9 | 113.9    | 135.1 | _    | 155.8 | 134.5 | 157.9     |
|         | avg.    | 5.0  | 12.5 | 58.6 | 74.0 | -    | 79.2 | 119.5    | 144.3 | -    | 139.9 | 163.6 | 181.8     |



### **Performance and Results**

- Outperforms VP-SDE across diverse tasks
- ➤ Achieves 5×-40× speedup in training convergence
- Consistently reaches SOTA performance with significantly fewer steps



### Experience

Plan

### Research Experience

| 2. Natural Language Understanding (Roberta-base                              |                      |                             |           |             |           |          |           |           |       |
|------------------------------------------------------------------------------|----------------------|-----------------------------|-----------|-------------|-----------|----------|-----------|-----------|-------|
| All LoRA methods are intergrated on all linear layers of the transformer exc | cept embedding layer | and the lm head. We set rai | nk as 8.  |             |           |          |           |           |       |
| (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                      | MRPC (Acc)           | COLA (Mc)                   | RTE (Acc) | STSB(SPEAR) | SST2(Acc) | QQP(Acc) | QNLI(Acc) | MNLI(Acc) | AVG   |
| FT (All layers)                                                              | 89.95                | 62.01                       | 80.87     | 90.07       | 94.84     | 91.98    | 92.97     | 87.66     | 86.29 |
| FT (All layers except embedding layer and the lm head)                       |                      |                             |           |             |           |          |           |           |       |
| LoRA variants                                                                |                      | Phrase                      | The same  | Phone       |           | Bherry   | Physical  |           | Epico |
| AdaLoRA                                                                      | 89.71                | 63.86                       | 81.59     | 91.00       | 94.61     | 90.03    | 92.82     | 88.06     | 86.46 |
| DoRA                                                                         | 89.46                | 60.27                       | 81.28     | 90.57       | 95.07     | 91.07    | 91.28     | 87.62     | 85.83 |
| LoRA                                                                         | 89.46                | 63.36                       | 81.28     | 90.45       | 94.61     | 91.43    | 92.51     | 86.92     | 86.25 |
| Init Trick                                                                   |                      |                             |           |             |           | 一十颗      |           |           |       |
| PISSA                                                                        | 89.22                | 63.77                       | 78.70     | 90.48       | 94.50     | 91.27    | 92.72     | 87.35     | 86.00 |
| LoRA-GA                                                                      | 90.69                | 66.52                       | 80.87     | 90.49       | 94.72     | 91.34    | 92.73     | 87.30     | 86.83 |
| LR Trick                                                                     |                      | 印志鄉                         |           |             | 田志和       |          | 印志教       | 邱志颖       |       |
| LoRA+                                                                        |                      |                             |           |             | 94.5      | 90.6     | 92.49     | 87.72     |       |
| Merging Weight                                                               |                      | 四主劉                         | en till   | rotill.     |           | en till  | - 0 主劉    |           | radi  |
| LoRA-RC-abla1                                                                | 90.93                | 65.63                       | 80.80     | 90.83       | 95.41     | 91.34    | 92.81     | 87.19     | 86.87 |

- Title: Systematic Evaluation of Fine-Tuning Strategies for Foundation Models
- > **Time**: Aug 2024 Nov 2024
- Advisor: Prof. Tao Lin, Westlake University
- > Contributions:
  - ✓ Reproduced 8+ LoRA-based fine-tuning variants on RoBERTa-base
  - ✓ Benchmarks: GLUE, SQuAD v1/v2
  - ✓ Internal reports written to support lab-wide fine-tuning practices



### Experience

Plan

### Research Plan

## **WOOP Framework: From Vision** to Reality

- ➤ Wish: Bring Baymax to life realworld general-purpose robot assistants
- Outcome: Build embodied world models for on-device, real-time decision-making
- ➤ **Obstacle**: Diffusion models are too slow step-by-step sampling hampers real-time use
- Plan: Speed up inference for embodied world models to enable real-time robotics







# Thank You!

**Zhiying Qiu** 

June 2025