Algebraic Methods in Combinatorics

Solutions 11

The aim of the homework problems is to help you understand the theory better by actively using it to solve exercises. **Do not read the solutions** before you believe you have solved the problems: it ruins your best way of preparing for the exam. The purpose of this write-up is merely to provide some guideline on how solutions should look like, and to help clean up hazy arguments. For hints, feel free to consult your teaching assistant.

Problem 1: We will imitate the proof of Lemma 2.37. Let v_1, \ldots, v_n be an orthonormal eigenbasis such that $Av_i = \lambda_i v_i$. Let us first show that $\lambda_k \geq \min_{\dim U = k-1} \max_{x \in U^{\perp} \setminus \{0\}} \frac{\langle Ax, x \rangle}{\langle x, x \rangle}$. To this end, take $U = \operatorname{span}\{v_1, \ldots, v_{k-1}\}$. Clearly, $U^{\perp} = \operatorname{span}\{v_k, \ldots, v_n\}$. Let $x \in U^{\perp} \setminus \{0\}$ be arbitrary. We may write $x := \sum_{i=k}^n \alpha_{i-k+1} v_i$ for some $\alpha = (\alpha_1, \ldots, \alpha_{n-k+1}) \in \mathbb{R}^{n-k+1} \setminus \{0\}$. Then, we derive that

$$\max_{x \in U^{\perp} \setminus \{0\}} \frac{\langle Ax, x \rangle}{\langle x, x \rangle} = \max_{\alpha \in \mathbb{R}^{n-k+1} \setminus \{0\}} \frac{(\sum_{i=k}^{n} \alpha_{i-k+1} v_i)^T A \sum_{i=k}^{n} \alpha_{i-k+1} v_i}{(\sum_{i=k}^{n} \alpha_{i-k+1} v_i)^T \sum_{i=k}^{n} \alpha_{i-k+1} v_i}$$
$$= \max_{\alpha \in \mathbb{R}^{n-k+1} \setminus \{0\}} \frac{\sum_{i=1}^{n-k+1} \lambda_{i+k-1} \alpha_i^2}{\sum_{i=1}^{n-k+1} \alpha_i^2}.$$

Recall that $\lambda_k \geq \cdots \geq \lambda_n$. It holds that $\max_{x \in U^{\perp} \setminus \{0\}} \frac{\langle Ax, x \rangle}{\langle x, x \rangle} = \lambda_k$, which means

$$\lambda_k \ge \min_{\dim U = k-1} \max_{x \in U^{\perp} \setminus \{0\}} \frac{\langle Ax, x \rangle}{\langle x, x \rangle}.$$

Next, we show that $\lambda_k \leq \min_{\dim U = k-1} \max_{x \in U^{\perp} \setminus \{0\}} \frac{\langle Ax, x \rangle}{\langle x, x \rangle}$. Let U be any (k-1)-dimensional subspace, and $V = \operatorname{span}\{v_1, \dots, v_k\}$. Note that $\dim V + \dim U^{\perp} = k + n - k + 1 > n$. This means there exists $v \in \mathbb{R}^n \setminus \{0\}$ such that $v \in V \cap U^{\perp}$. Write $v = \sum_{i=1}^k \beta_i v_i$ for some $\beta = (\beta_1, \dots, \beta_k) \in \mathbb{R}^k \setminus \{0\}$. Similar to the computation above,

$$\max_{x \in U^{\perp} \setminus \{0\}} \frac{\langle Ax, x \rangle}{\langle x, x \rangle} \ge \frac{\langle Av, v \rangle}{\langle v, v \rangle} = \frac{(\sum_{i=1}^k \beta_i v_i)^T A \sum_{i=1}^k \beta_i v_i}{(\sum_{i=1}^k \beta_i v_i)^T \sum_{i=1}^k \beta_i v_i} = \frac{\sum_{i=1}^k \lambda_i \beta_i^2}{\sum_{i=1}^k \beta_i^2} \ge \lambda_k.$$

Due to the arbitrariness of U, we acquire that

$$\lambda_k \le \min_{\dim U = k-1} \max_{x \in U^{\perp} \setminus \{0\}} \frac{\langle Ax, x \rangle}{\langle x, x \rangle}.$$

Altogether, it holds that

$$\lambda_k = \min_{\dim U = k-1} \max_{x \in U^{\perp} \setminus \{0\}} \frac{\langle Ax, x \rangle}{\langle x, x \rangle}.$$

Problem 2 (method 1): We will imitate the proof of Theorem 2.38, using Problem 1. We may w.l.o.g. assume that B is indexed by [m] and A by [n] (so that B is the $m \times m$ submatrix of A in the upper left corner of A). Let e_1, \ldots, e_n denote the standard basis vectors. For a vector $x \in \mathbb{R}^m$, let $x' \in \mathbb{R}^n$ be obtained by appending n - m zeros to x. For $U \subseteq \mathbb{R}^m$, let $U' := \{x' \mid x \in U\}$, so dim $U = \dim U'$. Putting $U_1 := \operatorname{span}\{v_{m+1}, \ldots, v_n\}$, it holds that $U' \perp U_1$ and $(U^{\perp})' = (U' + U_1)^{\perp}$.

$$\mu_{i}(B) = \min_{\substack{U \subseteq \mathbb{R}^{m} \\ \dim \overline{U} = i-1}} \max_{x \in U^{\perp} \setminus \{0\}} \frac{\langle Bx, x \rangle}{\langle x, x \rangle}$$

$$= \min_{\substack{U \subseteq \mathbb{R}^{m} \\ \dim \overline{U} = i-1 \\ U_{2} := U' + U_{1}}} \max_{x \in U_{2}^{\perp} \setminus \{0\}} \frac{\langle Ax, x \rangle}{\langle x, x \rangle}$$

$$\geq \min_{\dim U_{2} = n - m + i - 1} \max_{x \in U_{2}^{\perp} \setminus \{0\}} \frac{\langle Ax, x \rangle}{\langle x, x \rangle} = \lambda_{n - m + i}(A),$$

Where the inequality follows since we are taking a minimum over a larger set.

Problem 2 (method 2): Let A' := -A and B' := -B. Clearly, $\mu_i(B) = -\mu_{m-i+1}(B')$ and $\lambda_i(A) = -\lambda_{n-i+1}(A')$, where $\mu_1(B') \ge \cdots \ge \mu_m(B')$ are the eigenvalues of B' and $\lambda_1(A') \ge \cdots \ge \lambda_n(A')$ are the eigenvalues of A'. Now,

$$\mu_i(B) = -\mu_{m-i+1}(B') \ge -\lambda_{m-i+1}(A') = \lambda_{n-m+i}(A).$$

where the inequality is by the first half of Theorem 2.38 on A' and B'.

Problem 3:

- (a) Let S be an independent set in G of size $\alpha(G)$. It holds that $A_{S,S}$ is a zero-matrix, meaning $\lambda_{\alpha(G)}(A_{S,S}) = 0$. By Cauchy interlacing theorem, $\lambda_{\alpha(G)}(A) \geq \lambda_{\alpha(G)}(A_{S,S}) = 0$.
- (b) Let S be a clique in G of size $\omega(G)$. It holds that $A_{S,S} = J_S I_S$, where $J_S \in \mathbb{R}^{S \times S}$ is the all-ones matrix and $I_S \in \mathbb{R}^{S \times S}$ is the identity matrix. This means that $\lambda_{\omega(G)}(A_{S,S}) = -1$ if |S| > 1 and $\lambda_{\omega(G)}(A_{S,S}) = 0$ otherwise. In either case, by Cauchy interlacing theorem, $\lambda_{\omega(G)}(A) \geq \lambda_{\omega(G)}(A_{S,S}) \geq -1$.
- (c) Here, we need to assume that $\omega(G) > 1$. Similar to (b), let S be a clique in G of size $\omega(G)$. As $A_{S,S} = J_S I_S$, we know that $\lambda_2(A_{S,S}) = -1$. Thus, by Cauchy interlacing theorem, $\lambda_{n-\omega(G)+2}(A) \leq \lambda_2(A_{S,S}) = -1$.

(d) Let S be a vertex cover of G of size $\tau(G)$, and $T := [n] \setminus S$. By definition, T is an independent set of G, i.e. $A_{T,T} = 0$. This means $\lambda_1(A_{T,T}) = 0$. By Cauchy interlacing theorem, $\lambda_{\tau(G)+1}(A) = \lambda_{n-|T|+1}(A) \leq \lambda_1(A_{T,T}) = 0$.

Problem 4: For any graph H, we use the following convention: V(H) is the set of vertices and E(H) is the set of edges, and d(H) is the average degree.

Letting $\mathbb{1} \in \mathbb{R}^{V(G)}$ be the all-ones vector, it holds that $\lambda_1(G) \geq \frac{\langle A\mathbb{1}, \mathbb{1} \rangle}{\langle \mathbb{1}, \mathbb{1} \rangle} = \frac{2|E(G)|}{|V(G)|} = d(G)$. For any $S \subseteq V(G)$, denote G[S] to be the induced subgraph of G, i.e. the subgraph with vertex set S and edge set $\{e \in E(G) : e \in \binom{S}{2}\}$. Now, we apply Cauchy interlacing theorem on the adjacency matrices of G and of G[S] to derive $\lambda_1(G[S]) \leq \lambda_1(G)$. By the former discussion, $d(G[S]) \leq \lambda_1(G[S]) \leq \lambda_1(G)$.

We have proved that every induced subgraph of G has average degree at most $\lambda_1 = \lambda_1(G)$. This means that every induced subgraph H of G has some vertex with degree in H at most λ_1 . Putting n = |V(G)|, we can iteratively take a vertex from G to form a new graph, resulting in a permutation of vertices v_1, \ldots, v_n such that for each $i \in [n]$, v_i is incident to at most $\ell := \lfloor \lambda_1 \rfloor$ vertices among $\{v_{i+1}, \ldots, v_n\}$. Now, we greedily color the vertices in the order $v_n, v_{n-1}, \ldots, v_1$ with $(\ell+1)$ colors: color v_n arbitrarily; given the coloring of v_{i+1}, \ldots, v_n , note that v_i has at most ℓ neighbors have been colored (among v_{i+1}, \ldots, v_n), so we can color v_i so that its color differs from the colors of its neighbors among v_{i+1}, \ldots, v_n . In the end, we find a proper coloring of G with at most $(\ell+1)$ colors, i.e. $\chi(G) \leq \ell+1 \leq \lambda_1+1$.