Lernkontrolle 5 MUSTERLÖSUNG

HINWEIS: Zur Lösung der Aufgaben kann das Buch, Seite 98 und 99, beigezogen werden.

Aufgabe 1)

a) Entscheiden Sie, ob die folgenden Gleichungen nur Nullstellen in der linken offenen Halbebene aufweisen:

1)
$$7s^3 + s^2 + 2s + 1 = 0$$
 L: instabil, da $H_2 = \begin{vmatrix} 2 & 7 \\ 1 & 1 \end{vmatrix} = 2 - 7 = -5 > 0$

2)
$$-s^4 - 2s^3 = 2s^2 + 3s$$
 L: instabil, da Term in s^0 fehlt

3)
$$s^3 + s^2 + s + 1 = 0$$
 \mathbb{L} : instabil, da $H_2 = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 1 - 1 = 0 > 0$

4)
$$s^2 + 3s^4 + 2 + s^3 + 2s = 0$$
 L: instabil, da $H_2 = \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} = 2 - 2 = 0 > 0$

- 5) $\sqrt{s}-2=0$ \mathbb{L} : instabil, Hurwitz kann hier jedoch nicht angewendet werden. Die Instabilität ist etwa anhand der Beziehung $\frac{1}{\sqrt{s}+a}$ \bullet \circ $\frac{1}{\sqrt{\pi t}}-ae^{a^2t}$ erfc $(a\sqrt{t})$ ersichtlich.
- 6) $s^2 + 2s = \sin(2)$ L: instabil, da Term in s^0 negativ ist $(-\sin(2) = -0.035)$

b) Bestimmen Sie den jeweiligen Bereich von α so dass alle Nullstellen der Polynome in der linken offenen Halbebene liegen:

1)
$$\alpha s^3 + s^2 + 2s + 1$$
 L: stabil für $0 < \alpha < 2$

2)
$$-s^4-\alpha s^3+s^2-4s-5$$
 $\mathbb L$: instabil, unabhängig von α

4)
$$s^3 + \alpha s^2 + s + \alpha$$
 \mathbb{L} : instabil unabhängig von α , da $H_2 = \begin{vmatrix} 1 & 1 \\ \alpha & \alpha \end{vmatrix} = \alpha - \alpha = 0 \geqslant 0$

5)
$$s^5 - \alpha s^4 + 2s^3 + s^2 + 5s + 1$$
 L: instabil unabhängig von α , da

$$H_4 = \begin{vmatrix} 5 & 2 & 1 & 0 \\ 1 & 1 & -\alpha & 0 \\ 0 & 5 & 2 & 1 \\ 0 & 1 & 1 & -\alpha \end{vmatrix} = -25\alpha^2 - 16\alpha - 4 < 0 \text{ ist, } \forall \alpha \in \mathbb{R}$$

Aufgabe 2)

Bestimmen Sie k jeweils so, dass der Regelkreis stabil ist.

a)
$$\mathcal{A} = k$$
 $\mathcal{B} = \frac{1}{s(s+2)^2}$ $\Rightarrow G_g = \frac{k}{s^3 + 4s^2 + 4s + k}$ $H = \begin{vmatrix} 4 & 1 & 0 \\ k & 4 & 0 \\ 0 & 4 & 1 \end{vmatrix}$

 \mathbb{L} : Das Polynom $s^3 + 4s^2 + 4s + k$ hat gemäss Hurwitz für 0 < k < 16 die Nullstellen in der linken offenen Halbebene.

b)
$$A = k$$
 $B = \frac{10}{s(s+3)(s+12)}$ $\Rightarrow G_g = \frac{10k}{s^3+15s^2+36s+10k}$ $H = \begin{vmatrix} 36 & 1 & 0 \\ 10k & 15 & 0 \\ 0 & 36 & 1 \end{vmatrix}$

 \mathbb{L} : Das Polynom $s^3+15s^2+36s+10k$ hat gemäss Hurwitz für 0< k< 54 die Nullstellen in der linken offenen Halbebene.

c)
$$A = \frac{k}{s+1}$$
 $B = \frac{s+1}{s-2}$ $\Rightarrow G_g = \frac{k(s+1)}{s^2-s-2+k(s+1)} = \frac{k+ks}{s^2+s(k-1)+(k-2)}$

 \mathbb{L} : Das Polynom $s^2 + s(k-1) + (k-2)$ hat gemäss Hurwitz für 2 < k die Nullstellen in der linken offenen Halbebene.

d)
$$\mathcal{A} = \frac{k}{s+1}$$
 $\mathcal{B} = \frac{1}{(s+1)(s-3)}$ $\Rightarrow G_g = \frac{k}{(s^2+2s+1)(s-3)+k} = \frac{k}{s^3-s^2-5s+(k-3)}$

 \mathbb{L} : Das Polynom $s^3-s^2-5s+(k-3)$ hat gemäss Hurwitz, unabhängig von k, Nullstellen ausserhalb der linken offenen Halbebene.