国原事務局

特許協力条約に基づいて公開された国際出願

A1

TP

JP

JP

JP

(51) 国際特許分類6

C07D263/32,C07D413/04,A61K31/42,C07D207/333, 265/30,295/10,307/46,333/22,C07C251/48,49/782, 49/792,49/813,317/14,311/16,311/29,233/61,233/76

(11) 国際公開番号

W096/19463

(43) 国際公開日

1996年6月27日(27.06.96)

(21) 国際出版番号

PCT/JP95/02600

(22) 国桑出版日

1995年12月18日(18.12.95):

(30) 優先権データ

1994年12月20日(20.12.94) 特數平6/335338 特膜平7/93099 1995年3月27日(27.03.95) 1995年6月6日(06.06.95)

特顧平7/164656 特顯平7/326571·

1995年11月20日(20.11.95)

(71) 出版人 (米国を除くすべての指定国について) 日本たばこ産業株式会社(JAPAN TOBACCO INC.)[JP/JP] 〒105 東京都港区虎ノ門二丁目2番1号 Tokyo, (JP)

(72) 発明者:および

(75) 発明者/出職人(米国についてのみ)

春田純一(HARUTA, Junichi)[JP/JP]

橋本宏正(HASHIMOTO, Hiromasa)[JP/JP]

松下睦佳(MATSUSHITA, Mutsuyoshi)[JP/JP]

〒569 大阪府高槻市紫町1番1号。

heterogramatic соппроил

sait

TECHE.

日本たばこ産業株式会社 医薬総合研究所内 Osaka, (JP)

(74) 代理人

弁理士 高島 一(TAKASHIMA, Hajime) 〒541 大阪府大阪市中央区平野町三丁目3番9号 (過木ビル) Osaka, (JP)

(81) 指定国

AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, KG, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TT, UA, US, UZ, VN, 欧 州特許(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT. SE), OAPINFIT(BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO特許(KE, LS, MW, SD, SZ, UG).

添付公開書類

国際調査報告書

(54) TIE: HETEROAROMATIC OXAZOLE COMPOUNDS AND USE THEREOF

(54) 発明の名称 オキサソール系複素環式芳香族化合物およびその用途

(2)

Rg-SO2 Re

R1 represented by represents
(a), (wherein R2 represents
alkyl, ammo or
and wer aikyl, am wer aikylamino; Rs. Rs and Rr may be same or different and anoty, tribotomicity, hydroxy or smino, provided that at least one of R., Rs., Rs. and Rr is not hydrogen), while another of optionally submitted heresocyclic group optionally substituted and R₁ represents alkyl or halogenated The o ocutically thereof calloca

(57) Abstract

sented by gener (I) of a pharm acceptable said

oxygen; one of

effect and, in particular, selectively inhibits cyclosty Ocyclossygenese 2 (COX-2). Thus it is expected to be useful as an anti-inflaramatory agent, or ocus such ta sustroinestinal disorders. This Page Blank (uspto)

(57) 要約

一般式(I)

$$R_1$$
 R_2 R_2 R_3 R_4 R_2 R_3

[式中、Zは酸素原子であり、R又はR)の一方は

(式中、R』は低級アルキル基、アミノ基又は低級アルキルアミノ基であり、R、R。、R。又はR,は同一又はそれぞれ異なってよく水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、トリフルオロメチル基、水酸基又はアミノ基である。但し、R。、R。、R。又はR,の少なくとも1つは水素原子ではない)で表わされる基であり、他方が置換されてもよいシクロアルキル基、置換されてもよい複素環遇又は置換されてもよいアリール基であり、R。は低級アルキル基又はハロゲン化低級アルキル基である〕で表わされるオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩。 該オキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩は、解熱・鎮痛作用及び抗炎症作用、特にシクロオキシゲナーゼー2(COX-2)を選択的に阻害する作用を有し、消化管障害等の副作用の少ない抗炎症剤等として有用性が期待される。

情報とし1	ての用途のみ	•
PCTに基づいて公開される国際出版をパンフレットは	5一頁にPCT加盟国を固定するために	「梅田されるコール
クア・アーニンテス スアー・ファン・アーニンテス スアーニンテス スアーニンテス スアーニンテス スアーニンテス スアーニンテス スアーニンテス ステーニン ドド アンス ステーニン アーニン アーニン アーニン アーニン アーニン アーニン アーニー アーニー	LLLLLLLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	TOUDEGIKNZDGJMRTAGSZN PRRSSSSSSSSTTTTTTTTTTTTTTTTTTTTTTTTTTTT

明細書

オキサゾール系復業環式芳香族化合物およびその用途「技術分野」

本発明は、新規なオキサゾール系複素環式芳香族化合物に関するものであり、 更に詳しくは、解熱作用、鎮痛作用、抗炎症作用、特にシクロオキシゲナーゼー 2 (COX-2) の選択的阻害作用を有するオキサゾール系複素環式芳香族化合 物又はその医薬上許容し得る塩、それらを製造するための中間体化合物、並びに それらオキサゾール系複素環式芳香族化合物を含有してなる消化管障害等の副作 用の少ない抗炎症剤等として有用な医薬に関する。

「背景技術」

従来より、アラキドン酸代謝産物であるプロスタグランジンE₂(PGE₂)、プロスタグランジンI₂(PGI₂)又はトロンボキサンB₂(TXB₂)が炎症に密接に関与していることは知られている。このアラキドン酸代謝経路の中で主要な酵素となるのがシクロオキシゲナーゼである。シクロオキシゲナーゼは、アラキドン酸からプロスタグランジンG₂(PGG₂)を経てプロスタグランジンH₂(PGH₂)を生成する合成酵素であり、シクロオキシゲナーゼー1(COX-1)及びシクロオキシゲナーゼー2(COX-2)の2種類が知られている。

COX-1については、1988年にcDNAクローニングが行われ、その一次構造や種々の因子による誘導が明らかになった[Yokoyama, C. et al.: Biochem. Biophys. Res. Commun., 165: 888-894 (1989): Smith, W. L. et al.: Biochim. Biophys. Acta, 1083: 1-17 (1991): DeWitt, D. L.: Biochim. Biophys. Acta, 1083: 121-134 (1991)]。一方、1989年にはCOX-1のアイソザイム、即ちCOX-2の存在が示唆され[Holtzman, M. J. et al.: J. Biol. Chem., 267: 21438-21445 (1992)]、1991年以降二ワトリ、マウス、ヒトのCOX-2の cDNAがクローニングされた[Xie, W. et al.: Proc. Natl. Acad. Sci. USA. 88: 2692-2696 (1991): Kujubu, D. A. et al.: J. Biol. Chem., 266: 12866-12872 (1991): Hla, T. et al.: Proc. Natl. Acad. Sci. USA. 89: 7384-7388

(1992)]。更に、COX-2は、ホルボールエステルやリポポリサッカライド(LPS)等で速やかに誘導され、炎症や気管支喘息等との関連が想定された。

COX-1は、殆どすべての細胞に全身的に恒常的に存在し、生理的作用として、例えば胃、腎臓等の機能に必要なプロスタグランジン(PG)生成に関与している。従って、COX-1を阻害した場合、胃粘膜を保護している血管拡張性のPGE。やPGI。のPG生合成が抑制され、胃粘膜の保護作用が低下し、その結果潰瘍を生じる等の悪影響があった。また、一般に腎血流量の低下している病態においては、体内における血管拡張性PGE。の産生増加により腎血流量が増加され、それによって糸球体濾過値が適正に維持されているのに対し、COX-1の阻害によってこの血管拡張性PGの産生が抑制された場合、腎血流量が低下し、虚血性急性腎不全を発症する等といった副作用が生じる場合がある。

一方、COX-2は単球、滑膜細胞、顆粒膜細胞、静脈内皮細胞等の特定の部位に存在し、炎症時に局所的に発現され、COX-2により生成されたPGが炎症や組織障害に大きく関与しているものと考えられている。

現在、非ステロイド性抗炎症剤(NSAID)としては、例えばアスピリン、メフェナム酸、ジクロフェナック、インドメタシン、イブプロフェン又はナプロキセン等が、広く臨床で用いられている。これらNSAIDの多くは、シクロオキシゲナーゼ(COX)を選択的に阻害する抗炎症剤であるにもかかわらず、同時に消化管障害等の副作用も生じていた。これは、COXを選択的に阻害はするものの、COX-I及びCOX-2の両方を阻害するために副作用が生じると考えられている。

従って、COX-1を阻害することなく炎症部位に特異的に誘導されるCOX-2のみを選択的に阻害すれば、潰瘍のごとき消化管障害等の副作用のない優れた抗炎症剤を提供することができる。

このような消化管障害等の副作用の低減を目的とした、即ちCOX-2選択的 阻害活性を有する抗炎症剤について様々な報告がなされている。

例えば、WO94/15932号公報には、COX-2阻害剤としてチオフェ

ン、フラン、ピロール等のヘテロ5 貝環化合物のビスアリール置換体、例えば3 - (4-メチルスルホニルフェニル) - 4-(4-フルオロフェニル) チオフェ ンが開示されている。しかしながら、同公報は、単に3位、4位にアリール基又 はヘテロアリール基を有するチオフェン等のヘテロ5 貝環化合物を示すに止まる ものである。

また、シクロオキシゲナーゼ阻害作用、プロスタグランジン合成抑制作用又は トロンボキサンA2合成阻害作用を有する抗炎症剤についての報告も種々なされ ている。

例えば、特開平3-141261号公報には、1-(4-フルオロフェニル) -5-[4-(メチルスルホニル)フェニル]ピラゾール-3-カルボン酸エチ ルエステル等のピラゾール誘導体が、特開昭57-183767号公報には、2 -メチルチオー5-フェニルー4-(3-ピリジル)-チアゾール等のチアゾー ル誘導体が、特開昭60-58981号公報には、2-エチルー4-(4-メト キシフェニル)-5-(3-ピリジル)-1,3-チアゾール等のチアゾール誘 導体が開示されている。しかしながら、これら公報には、抗炎症剤として有用で あるとの記載はあるものの、副作用の低減を目的とした、即ちCOX-2選択的 阻害作用を有する旨の記載は勿論、それを示唆する記載もない。

その他にも下記のことき複素環式芳香族化合物等についての報告がなされている。

例えば、US4632930号明細書には、5-シクロヘキシルー4-(4-メチルスルホニルフェニル)ーα、αービス(トリフルオロメチル)オキサゾール-2-メタノール等のオキサゾール系化合物等が開示されている。しかしながら、同公報開示の化合物は、高血圧症に有効な化合物であり、抗炎症としての有用性の開示は勿論、それを示唆する記載も見当たらない。

特表昭5g-500054号公報には、2-[4-フェニル-5-(3-ピリジル)ーオキサゾール-2-イル]ープロピオン酸エチルエステル等のオキサゾール環の4位及び5位にヘテロアリール基又は炭素環式アリール基を有し、かつ

2位に低級アルキレン等を介したカルボキシ基、エステル基又はアミド化カルボキシ基を有するオキサゾール誘導体が開示され、特表昭59-500055号公報には、2-[4-フェニル-5-(3-ピリジル)-イミダゾール環の4位又は5位にヘテロアリール基及び/又は炭素環式アリール基を有し、かつ2位には低級アルキレン等を介したホルミル又はアセタール化ホルミルを有するイミダゾール誘導体が開示されている。しかしながら、これらの文献にはこれら化合物が炎症性皮膚疾患用皮膚消炎剤又は粘膜消炎剤として有効である旨の記載があるのみで、COX-2選択的阻害作用を有する旨の記載は勿論、それを示唆する記載も見当たらない。

特開平5-70446号公報には、N-[5-シクロヘキシルー4-(4-メトキシフェニル)チアゾールー2ーイル]トリフルオロメタンスルホンアミド等のN-チアゾリルスルホンアミド誘導体が開示され、特開平2-83372号公報には、4-シクロヘキシルー5-フェニルー2-t-プチルーイミダゾール等のシクロヘキシルイミダゾール誘導体が開示されている。しかしながら、これらの文献には置換基としてのシクロヘキシル基が例示されているのみで、アミノスルホニル基、低級アルキルアミノスルホニル基又は低級アルキルスルホニル基で置換されたフェニル基で置換する点に関しては何の示唆もない。

また、WO94/27980号公報には、COX-2阻害剤として2-フェニルー4ーシクロヘキシルー5ー(4-メチルスルホニルフェニル)オキサゾール等のオキサゾール化合物が開示されている。しかしながら、これら公報に記載される化合物は、オキサゾール環の4位及び5位における4-フルオロフェニル基、4-メチルスルホニルフェニル基を主たる特徴とするものであって、本発明のごとき特定の置換基を組み合わせてなる化合物を示唆するものでない。

なお、COX-2阻害剤に限らず抗炎症剤の分野においては、5貝復素環骨格に対するフェニル置換基としては、従来より4-メチルスルホニルフェニル基や4-メトキシフェニル基等の1置換フェニル基がよいとされており、2置換フェ

ニル基については殆ど試みがなされていなかった。(例えば、英国特許第120 6403号明細書)

「発明の開示」

本発明者等は、前記のごとく消化管障害等の副作用のない解熱、鎮痛、抗炎症作用を有する新規な化合物を提供すべく鋭意検討した結果、驚くべきことにオキサゾールの置換基としての4 - 低級アルキルスルホニルフェニル基、4 - アミノスルホニルフェニル基又は4 - 低級アルキルアミノスルホニルフェニル基等のフェニル基に、更に第2の置換基としてハロゲン原子、特にフッ素原子を導入した化合物が優れたCOX-2選択的阻害作用を有することを見出し、本発明を完成するに至った。

即ち、本発明は、下記(1)乃至(21)に示すオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩、それら化合物を製造するための中間体化合物、及びそれらオキサゾール系複素環式芳香族化合物を含んでなる医薬組成物に関する。

(1)一般式(I)

$$R_1$$
 R_2 R_2 R_2 R_2 R_2 R_2 R_2 R_2

[式中、Zは酸素原子であり、R又はR₁の一方は

(式中、R、は低級アルキル基、アミノ基又は低級アルキルアミノ基であり、R、R、R、又はR、は同一又はそれぞれ異なってよく水素原子、ハロゲン原子、

低級アルキル基、低級アルコキシ基、トリフルオロメチル基、水酸基又はアミノ基である。但し、R.、R. R. 又はR. の少なくとも1つは水素原子ではない)で表わされる基であり、他方が置換されてもよいシクロアルキル基、置換されてもよい複素環基又は置換されてもよいアリール基であり、R. は低級アルキル基又はハロゲン化低級アルキル基である]で表わされるオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩。

(2) R₁が

(式中、R: が低級アルキル基又はアミノ基であり、R: 、R: 及びR: のうち少なくとも一つがハロゲン原子又は低級アルキル基であり、残りが水素原子又はハロゲン原子である)で表わされる基である上記(1)記載のオキサゾール系復素環式芳香族化合物又はその医薬上許容し得る塩。

(3) R₁が

(式中、R。"がメチル基又はアミノ基であり、R。"がフッ素原子であり、R。"が水素原子又はフッ素原子である)で表わされる基であり、R。がメチル基である上記(1)記載のオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩。

(4) R₁が

- 1) 記載のオキザソール米俊素環式方合族化合物又はその医薬上計谷し待る塩。
- (5) R、 がアミノ基である上記(4)記載のオキサゾール系復素環式芳香族 化合物又はその医薬上許容し得る塩。
- (6) Rが置換されてもよい炭素原子数5万至7個のシクロアルキル基、置換されてもよいフェニル基又は置換されてもよいチエニル基である上記(4)記載のオキサゾール系復素環式芳香族化合物又はその医薬上許容し得る塩。
- (7) Rがシクロヘキシル基又は4-フルオロフェニル基であり、R, か4-アミノスルホニル-3-フルオロフェニル基、4-アミノスルホニル-3, 5-ジフルオロフェニル基、3-フルオロ-4-メチルスルホニルフェニル基又は3, 5-ジフルオロ-4-メチルスルホニルフェニル基である上記(4)記載のオキサゾール系復素環式芳香族化合物又はその医薬上許容し得る塩。
- (8) 4-シクロヘキシル-5-(3-フルオロー4-メチルスルホニルフェニル) <math>-2-メチルオキサゾール:
- 5-(4-rミノスルホニルー3-フルオロフェニル)-4-シクロヘキシル-2-メチルオキサゾール:
- 5-(4-アミノスルホニル-3, 5-ジフルオロフェニル)-4-シクロヘ キシル-2-メチルオキサゾール;

4-シクロヘキシルー5-(3,5-ジフルオロー4-メチルスルホニルフェニル)-2-メチルオキサゾール;

5-(4-アミノスルホニル-3-フルオロフェニル)-4-(4-フルオロフェニル)-2-メチルオキサゾールからなる群から選ばれる上記(1)記載のオキサゾール系復素環式芳香族化合物又はその医薬上許容し得る塩。

(9)下記一般式(XI')

$$R''$$
 \rightarrow R_1'' (XI')

[式中、Ri'は

(式中、 R_4 、 R_5 、 R_6 及び R_7 は上記(1)に記載と同じ)であり、R''は置換されてもよいシクロアルキル基又は置換されてもよいアリール基である]で表わされるオキシム化合物。

(10) R_1 が3-フルオロフェニル基又は3, $5-ジフルオロフェニル基であり、<math>R_1$ がシクロヘキシル基又は4-フルオロフェニル基である上記(9) 記載のオキシム化合物。

(11)下記一般式(IV'')

$$R'' \longrightarrow R_1''$$
 (IV")

(式中、R₁''及びR''はそれぞれ上記(9)に記載と同じ)で表わされるケトン化合物。

(12) R_1 "が3-フルオロフェニル基又は3,5-ジフルオロフェニル基であり、R"がシクロヘキシル基又は4-フルオロフェニル基である上記(11)記載のケトン化合物。

(13)下記一般式(IV'')

[式中、R'''は置換されてもよい炭素原子数5万至7個のシクロアルキル基、 置換されてもよいフェニル基又は置換されてもよいチエニル基であり、R₁'''は

(式中、 R_s '、 R_s ' R_s ' R

(14) R'''がシクロヘキシル基であり、 R_1''' が 4-Tミノスルホニルー 3 ーフルオロフェニル基、4-Tミノスルホニルー 3 、5-ジフルオロフェニル基、 3 ーフルオロー 4-メチルスルホニルフェニル基又は 3 、5-ジフルオロー 4 ーメチルスルホニルフェニル基である上記(13)記載のケトメチレン化合物。

(15) 下記一般式 (V)

(式中、R、R、R、及びZは上記(1)に記載と同じ)で示されるエステル化合物。

(16) Rがシクロアルキル基であり、 R_2 が低級アルキル基である上記 (15) 記載のエステル化合物。

(17) 下記一般式 (XVIII')

$$R'' \xrightarrow{Z} R_1''$$

$$HN \xrightarrow{R_2} R_2$$

$$O$$

(式中、 R_1 ''及びR''はそれぞれ上記(9)に記載と同じであり、Z及び R_2 は上記(1)に記載と同じ)で表わされるアミド化合物。

- (18) R_1 "が3ーフルオロフェニル基又は3,5ージフルオロフェニル基であり、 R_2 "がシクロヘキシル基又は4ーフルオロフェニル基であり、 R_2 が低級アルキル基である上記(17)記載のアミド化合物。
- (19) 医薬上許容し得る担体及び上記(1) 記載のオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩を含んでなる医薬組成物。
- (20) 医薬上許容し得る担体及び上記(1) 記載のオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩を有効成分としてなるシクロオキシゲナーゼー2阻害剤。
- (21)医薬上許容し得る担体及び上記(1)記載のオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩を有効成分としてなる抗炎症剤。

ここで、「低級アルキル基」とは、分技してもよい炭素原子数1乃至4個のアルキル基を意味し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、プチル基、イソプチル基、sec-プチル基、tert-プチル基である。

好ましくはメチル基である。

「低級アルキルアミノ基」とは、アミノ基が上記低級アルキル基で置換されたものであり、具体的にはメチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、プチルアミノ基、イソプチルアミノ基、secーブチルアミノ基、tertープチルアミノ基である。好ましくはメチルアミノ基、ジメチルアミノ基である。

「ハロゲン原子」とは、塩素原子、臭素原子、フッ素原子等であり、好ましく は塩素原子、フッ素原子であり、特に好ましくはフッ素原子である。

「低級アルコキシ基」とは、分枝してもよい炭素原子数1乃至4個のアルコキシ基を意味し、具体的にはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、プトキシ基、イソプトキシ基、secープトキシ基、tertープトキシ基である。好ましくはメトキシ基である。

「シクロアルキル基」とは、炭素原子数3万至8個のシクロアルキル基を意味 し、具体的にはシクロプロピル基、シクロプチル基、シクロペンチル基、シクロ ヘキシル基、シクロヘプチル基、シクロオクチル基である。好ましくは炭素原子 数5万至7個のシクロアルキル基、具体的にはシクロペンチル基、シクロヘキシ ル基、シクロヘプチル基である。特に好ましくはシクロヘキシル基である。

「複素環基」とは、環を構成する原子として炭素原子以外に窒素原子、酸素原子、硫黄原子から選ばれる1万至3個の複素原子を含む5員乃至6員の芳香族複素環、飽和複素環又はこれら複素環とベンゼン環が縮合した縮合複素環を意味し、具体的には、チエニル基、フリル基、ピロリル基、イミダブリル基、ピラブリル基、チアブリル基、イソチアブリル基、オキサブリル基、イソオキサブリル基、モルホリノ基、ピペラジニル基、ピペリジル基、ピラニル基、チオピラニル基、ピリジル基、ベンプチエニル基、ベンプフラニル基、インドール基、4,5,6,7ーテトラヒドロインドール基、4,5,6,7ーテトラヒドロベンプチエニル基、4,5,6,7ーテトラヒドロベンプチエニル基、1,5,6,7ーテトラヒドロベンプフラニル基等である。好ましくはチエニル基、フリル基、ピロリル基、モルホリノ基、ピペラジニル基、ピペリジル基

である。特に好ましくはチエニル基である。

「アリール基」とは、例えばフェニル基、ナフチル基、ビフェニル基等であり、 好ましくはフェニル基である。

「ハロゲン化低級アルキル基」とは、低級アルキル基が上記ハロゲン原子で置換されたものであり、具体的にはフルオロメチル基、クロロメチル基、プロモメチル基、ヨードメチル基、ジフルオロメチル基、ジクロロメチル基、トリフルオロメチル基、トリクロロメチル基、ジフルオロエチル基、クロロエチル基、ジフルオロエチル基、シクロロエチル基、デトラクロロエチル基、ペンタフルオロエチル基、フルオロプロピル基等であり、好ましくはフルオロメチル基、クロロメチル基、ジクロロメチル基、ジフルオロメチル基、トリクロロメチル基、シフルオロメチル基、トリクロロメチル基、トリフルオロメチル基である。

「置換されてもよい」とは、1個乃至3個の置換基により置換されてもよいこ とを意味し、該置換基は同一又は異なっていてもよい。また、置換基の位置は任 意であって、特に制限されるものではない。具体的には叉チル基。エチル基、プ ロピル基、イソプロピル基、ブチル基、 tert-ブチル基等の低級アルキル基; 水酸基;メトキシ基、エトキシ基、プロポキシ基、プトキシ基等の低級アルコキ シ基:フッ素、塩素、臭素等のハロゲン原子;ニトロ基:シアノ基:ホルミル基、 アセチル基、プロピオニル基等のアシル基;ホルミルオキシ基、アセチルオキシ 基、プロピオニルオキシ基等のアシルオキシ基;メルカプト基;メチルチオ基、 エチルチオ基、プロピルチオ基、プチルチオ基、イソプチルチオ基等のアルキル チオ基;アミノ基;メチルアミノ基、エチルアミノ基、プロピルアミノ基、プチ ルアミノ基等のアルキルアミノ基:ジメチルアミノ基、ジエチルアミノ基、ジブ ロピルアミノ基、ジプチルアミノ基等のジアルキルアミノ基:カルボニル基:メ トキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基等のアル コキシカルボニル基:アミド基;トリフルオロメチル基;メチルスルホニル基、 エタンスルホニル基等のアルキルスルホニル基;アミノスルホニル基;シクロペ ンチル基、シクロヘキシル基等のシクロアルキル基:フェニル基;アセトアミド

基、プロピオニルアミド基等のアシルアミド基等であり、好ましくは水酸基、低級アルキル基、低級アルコキシ基、メルカプト基、低級アルキルチオ基、ハロゲン原子、トリフルオロメチル基、アルキルカルボニル基、アルコキシカルボニル基、アシルアミド基である。

より具体的には、「置換されてもよいアリール基」とは、ハロゲン原子、水酸基、低級アルキル基、低級アルコキシ基、低級アルキルスルホニル基、アミノスルホニル基等で置換されてもよいアリール基、特にフェニル基を意味し、例えばフェニル基、フルオロフェニル基、メチルフェニル基、メトキシフェニル基、メチルスルホニルフェニル基、アミノスルホニルフェニル基等、好ましくはフェニル基、4-フルオロフェニル基を挙げることができる。

「置換されてもよい復素環基」とは、同様にハロゲン原子、水酸基、低級アルキル基、低級アルコキシ基、低級アルキルスルホニル基、アミノスルホニル基等で置換されてもよい復素環基、特にチエニル基、フリル基、5ーメチルチエニル基、5ークロロチエニル基を意味し、また、「置換されてもよいシクロアルキル基」とは、これらと同様の置換基で置換されてもよいシクロアルキル基を意味し、好ましくはシクロヘキシル基である。

本発明のオキサゾール系復素環式芳香族化合物のRとして好ましいのは、シクロヘキシル基、4-フルオロフェニル基、5-クロロチエニル基であり、特に好ましくはシクロヘキシル基である。また、R, として好ましいのは、式

(式中、R₂、R₄、R₅、R₆及びR₇は前述のとおりである)で表される基であり、特にR₂がアミノ基又はメチル基であり、R₆及びR₇が水素原子であり、R₆又はR₆の少なくとも一方がフッ素原子である場合で、より具体的には

4-アミノスルホニル-3-フルオロフェニル基、3-フルオロ-4-メチルスルホニルフェニル基、4-アミノスルホニル-3,5-ジフルオロフェニル基又は3,5-ジフルオロ-4-メチルスルホニルフェニル基であり、特に好ましくは4-アミノスルホニル-3-フルオロフェニル基である。更にR。として好ましくはメチル基である。

「医薬上許容し得る塩」とは、上記一般式(I)で示されるオキサゾール誘導体と無毒性の塩を形成するものであれば如何なるものであってもよいが、例えばナトリウム塩、カリウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩等のアルカリ土類金属塩;アンモニウム塩;トリメチルアミン塩、トリエチルアミン塩、ピリジン塩、ピコリン塩、ジシクロヘキシルアミン塩、N, N'ージベンジルエチレンジアミン塩等の有機塩基塩;リジン塩、アルギニン塩等のアミノ酸塩を挙げることができる。また、場合によっては水和物であってもよい。

本発明化合物は、特に優れたCOX-2選択的阻害作用を有し、消化管障害等の副作用のない優れた解熱・鎮痛、抗炎症等に有用な治療薬として期待される。

一般式(I)で示される本発明化合物又はその医薬上許容し得る塩を医薬製剤として用いる場合には、通常、それ自体公知の薬理学的に許容される担体、賦形剤、希釈剤、増量剤、崩壊剤、安定剤、保存剤、緩衝剤、乳化剤、芳香剤、着色剤、甘味剤、粘稠剤、矮味剤、溶解補助剤、その他の添加剤、具体的には水、植物油、エタノール又はベンジルアルコールのようなアルコール、ポリエチレングリコール、グリセロールトリアセテートゼラチン、ラクトース、デンプン等のような炭水化物、ステアリン酸マグネシウム、タルク、ラノリン、ワセリン等と混合して、常法により錠剤、丸剤、散剤、顆粒剤、座剤、注射剤、点眼剤、液剤、カプセル剤、トローチ剤、エアゾール剤、エリキシル剤、懸濁剤、乳剤、シロップ剤等の形態となすことにより、経口又は非経口的に投与することができる。

投与量は、疾患の種類及び程度、投与する化合物並びに投与経路、患者の年齢、性別、体重等により変わり得るが、経口投与の場合、通常、成人1日当たり化合物(1)を0.1~1000mg、特に1mg~300mgを投与するのが好ま

Llia

本発明の化合物は例えば下記の方法によって製造することができるが、本発明の化合物の製造方法は、これらに限定されるものではないことは勿論である。

[式中、R₂'は低級アルキル基又はハロゲン化低級アルキル基(ここで、R₂'はR₂と同一又は異なってもよい)、X及びX'は同一又は異なって、臭素原子、塩素原子等のハロゲン原子を意味し、X₁はハロゲン原子又は水酸基を、またX₁'はハロゲン原子、又は水酸基若しくはそのアルカリ金属誘導体を意味し、R、R₇、R₂及びZは前述のとおりである]

(工程1)

化合物 (IV) は、化合物 (II) と亜鉛又はマグネシウム等の金属の存在下、化合物 (III)を1, 2-ジメトキシエタン、ジオキサン、エーテル、テトラヒドロフラン、塩化メチレン、ベンゼン又はトルエン等の不活性溶媒中、室温で反応させることにより合成することができる。また、この時、パラジウム (O) 錯体又

は銅(1) 錯体等の触媒を加えてもよい。

(工程2)

化合物(V)は、化合物(IV)を四酢酸鉛の存在下に酢酸溶媒中で反応させるか、又は酢酸マンガン等の錯体存在下、R.COOH(式中、R.は前述のとおりである)に対応する酢酸、プロピオン酸、安息香酸等の低級アルカンカルボン酸中、或るいは必要に応じベンゼン等の溶媒とともに加熱還流することにより合成することができる。

(工程3)

化合物(I)は、化合物(V)を酢酸アンモニウム、ギ酸アンモニウム等の低級アルカンカルボン酸アンモニウム又は炭酸アンモニウム等の無機酸アンモニウム等のアンモニウム塩存在下、ギ酸、酢酸、プロピオン酸等の低級アルカンカルボン酸等の酸性溶媒中、加熱還流することにより合成することができる。なお、この反応において、R又はR」が芳香族復素環の場合、4位のRと5位のR」が逆転した異性体ができることがある。

また、化合物(1)は下記の経路でも合成可能である。

(工程4) (X1 が水酸基の場合)

この工程及び工程 6、工程 7 は、R2(例えばメチル基)を他のR2(R2、例えばエチル基)に変換する場合に有益である。

X1 が水酸基の場合、化合物 (VI) は、化合物 (V) を炭酸カリウム、水酸化リチウム、水酸化ナトリウム又は水酸化カリウム等の塩基存在下、メタノール、エタノール、ジオキサン等の有機溶媒、水又はこれらの混合溶媒中、冷却下乃至加温下で反応させることにより合成することができる。

ところで、化合物 (VI) は下記の工程5でも合成できる。

(工程5) (X, がハロゲン原子又は水酸基の場合)

化合物(VI)は、化合物(IV)を臭素、塩素又はN-プロムスクシンイミド等のハロゲン化剤存在下、酢酸、1,2-ジメトキシエタン、ジオキサン、エーテル、テトラヒドロフラン、塩化メチレン、ベンゼン又はトルエン等の不活性溶媒

中で反応させることによってX」がハロゲン原子である化合物(VI)を合成することができる。また、X」が水酸基である化合物(VI)は、酢酸ヨードベンゼン等の酸化剤で化合物(IV)を酸化することによって、或るいは上記のようにして得られたハロゲン化体(VI)をアセトン、1,2-ジメトキシエタン、ジオキサン、エーテル、テトラヒドロフラン、ベンゼン又はトルエン等の不活性溶媒中、水で処理することによっても合成することができる。

(工程 6)

化合物(V')は、公知の方法に従って化合物(VI)と化合物(VII')とを反応させることにより得られる。具体的には、Xiが水酸基である化合物(VI)とXiがハロゲン原子である化合物(VII')を、又はXiがハロゲン原子である化合物(VII')をピリジン中、又はトリエチルアミン、水酸化ナトリウム等の塩基の存在下に塩化メチレン、クロロホルム、エタノール等の有機溶媒中、冷却下乃至加温下で反応させることにより合成することができる。また、Xiがハロゲン原子である場合、カルボン酸化合物(VII')の代わりにそのアルカリ金属塩、例えば酢酸ナトリウムを用いてもよい。この場合、塩基は加えても加えなくてもよい。

(工程7.)

化合物 (I')は、化合物 (V')を工程 3 と同様に処理することによって得られる。

なお、R又はR」の一方が4-アミノスルホニル-3-フルオロフェニル基であるような化合物を所望の場合は、対応する3-フルオロ-4-メチルスルホニールフェニル基を有する化合物から公知の方法に従って製造することもできる。

ところで、上記のようにR又はR」として、

(式中、R₂、R₄、R₅、R₆及びR₇は前述のとおりである)を有する化合物(II)又は(III)を用いて化合物(IV)を得る代わりに、

(式中、R, R, R, R, QびR, は前述のとおりである)を有する化合物(II') 又は(III')を出発原料として工程10に従って化合物(IV')を得た後、更にこれを工程15の方法に従ってアミノスルホニル化又はメチルスルホニル化することによって化合物(IV)を得てもよいし、或るいはこのような出発原料(II')及び(III')を用いて工程1乃至工程7に従って最終化合物(I)又は(I')に対応する非スルホニル化オキサゾール化合物(XIII)を得た後、工程15と同様にしてスルホニル化することによって目的化合物(I)又は(I')を得てもよい。

また、R、R₁の一方がアルキルアミノスルホニル基又はアミノスルホニル基で置換されたフェニル基を有する化合物を所望の場合は、R₁又はR₂の一方がメトキシスルホニルフェニル基である化合物(X)から、下記のごとき工程 8 及び工程 9 に従うことによっても化合物(IV)を合成することができる。

[式中、R. 及びR. の一方は式

(式中、R₄、R₅、R₄及びR₇は前述のとおりである)で示されるメトキシスルホニルフェニル基であり、他方は置換されてもよいシクロアルキル基、置換されてもよい複素環基又は置換されてもよいアリール基であり、R、R₁、X及びX'は前述のとおりである]

(工程8)

化合物(X)は、化合物(VIII)及び化合物(IX)を用い、工程1と同様にすることで合成することができる。

(工程9)

R、R1の少なくとも一方がアミノスルホニル基又はアルキルスルホニル基を4位に有するフェニル基である場合、化合物(IV)は、化合物(X)をピリジン中で加熱するか、又はヨウ化ナトリウム、ヨウ化カリウム、ヨウ化リチウム等の存在下にアセトン、テトラヒドロフラン等の有機溶媒中で加熱遠流した後、チオニルクロライド又はオキザリルクロライド等を加温下で反応させる。次いで、その生成物を公知の方法に従ってアミノ化若しくはアルキルアミノ化、又はアルキル化することによって合成することができる。より具体的には、アミノ化又はアルキルアミノ化の反応は、アンモニア水若しくはアルキルアミン存在下、又は酢酸ナトリウム等の塩基及びアルキルアミン塩酸塩等のアンモニウム塩存在下、テトラヒドロフラン、エーテル、トルエン、ベンゼン、塩化メチレン、ジオキサン等の有機溶媒中、冷却下乃至加温下で反応させることにより合成することができる。また、アルキル化する場合は、J. Org. Chem., 56:4974-4976(1991)記載の方法によって合成することができる。

更に、化合物(I)は下記工程10乃至工程15に示すような方法でも合成できる。

この方法は、最終段階の第15工程においてスルホニル基を最終的に導入する 方法である。

[式中、R'及びRiの一方は式

(式中、R.、R. R. 及びR、は前述のとおりである)で示されるフェニル基であり、他方はR、R1の一方に対応する、置換基、即ち低級アルキル基等の置換基で置換されてもよいシクロアルキル基、低級アルキル基若しくはハロゲン原子等の置換基で置換されてもよいチェニル基又はフリル基等の複素環基、又はハロゲン原子、低級アルキル基、低級アルコキシ基等の置換基で置換されてもよいアリール基であり、R、R1、R2、X、X'及びZは前述のとおりである](工程10)

化合物(IV')は、工程1と同様にして化合物(II')と化合物(III')を亜鉛又はマグネシウム等の金属の存在下、1,2-ジメトキシエタン、ジオキサン、エ

ーテル、テトラヒドロフラン、塩化メチレン、ベンゼン又はトルエン等の不活性 溶媒中、室温で反応させることにより合成することができる。また、この時、パ ラジウム(O)錯体又はヨウ化第一顕等の触媒を加えてもよい。

(工程11)

化合物(XI)は、化合物(IV)とヒドロキシルアミン塩酸塩を酢酸ナトリウム、水酸化ナトリウム又は炭酸カリウム等の塩基存在下、メタノール、エタノール若しくはテトラヒドロフラン等の有機溶媒、水又はこれらの混合溶媒中、加熱還流することにより合成することができる。

(工程12)

化合物 (XII)は、化合物 (XI) を無水酢酸、塩化アセチル等のアシル化剤の存在下、ピリジン中、又はトリエチルアミン等の塩基存在下に塩化メチレン、クロロホルム等の有機溶媒中、冷却下乃至加温下で反応させることにより合成することができる。

(工程13)

化合物 (XIII) は、化合物 (XII)を半酸、酢酸等の酸性溶媒中、加熱還流することにより合成することができる。このとき、硫酸マグネシウム、硫酸ナトリウム等の脱水剤を加えてもよい。

(工程14)

この工程は化合物(XI)から一工程で化合物(XIII)を合成する工程であり、 化合物(XIII)は、Indian J. Chem., 20B:322-323(1981)記載の方法により化合物(XI)と酢酸クロライド等のカルボン酸クロ ライドから合成することができる。また、R2がメチル基の場合は、酢酸中で化 合物(XI)と無水酢酸を加熱反応させることによって化合物(XIII)を合成する ことができる。

(工程15)

化合物 (I)は、化合物 (XIII)をクロロスルホン酸等のクロロスルホニル化剤 存在下、クロロホルム、塩化メチレン等の有機溶媒中又は無溶媒で反応させ、次 いで、その生成物を公知の方法に従ってアミノ化若しくはアルキルアミノ化、又はアルキル化することによって合成できる。工程15におけるアミノ化又はアルキルアミノ化の反応は、より具体的には、アンモニア水若しくはアルキルアミン存在下に、又は酢酸ナトリウム等の塩基及びアルキルアミン塩酸塩等のアンモニウム塩存在下に、テトラヒドロフラン、エーテル、トルエン、ベンゼン、塩化メチレン、ジオキサン等の有機溶媒中で、冷却下乃至加温下で反応させることにより達成することができる。また、アルキルスルホニル化する場合は、J. Org. Chem., 56:4974-4976 (1991) 記載の方法によって合成することができる。

なお、上記は最終段階である工程15において、アルキルスルホニル化又はアミノスルホニル化する例を挙げたが、出発原料(II')及び(III')の代わりに、化合物(II)及び(III)を用いて化合物(IV)を得た後、工程11乃至工程14に従ってオキサゾール化合物(I)を得てもよい。この場合は、工程15は不要である。

また、工程15で用いる化合物(XIII)は下記の経路でも合成可能である。

$$\begin{array}{c|c} & & & & \\ & & & \\ R' & & & \\ \hline & & &$$

(式中、R'、R'、R2 及びZは前述のとおりである)

(工程16)

化合物(V'')は、工程 2 と同様にして化合物(IV')を四酢酸鉛の存在下に酢酸溶媒中で反応させるか、又は酢酸マンガン等の錯体存在下、 R_2 COOH(式中、 R_2 は前述のとおりである)に対応する酢酸、プロピオン酸、安息香酸等の低級アルカンカルボン酸中、或るいは必要に応じベンゼン等の溶媒とともに加熱することにより合成することができる。

(工程17)

化合物 (XIII) は、工程3と同様にして化合物 (V'') を酢酸アンモニウム、 ギ酸アンモニウム等の低級アルカンカルボン酸アンモニウム又は炭酸アンモニウム等の無機酸アンモニウム等のアンモニウム塩存在下、ギ酸、酢酸、プロピオン酸等の低級アルカンカルボン酸等の酸性溶媒中、加熱還流することにより合成することができる。この反応において、R'又はR'が芳香族復素環の場合、4位のR'と5位のR'が逆転した異性体ができることがある。

更に、化合物(1)は下記の工程18乃至工程21に示すような方法でも合成することができる。

(式中、 X_2 はハロゲン原子であり、R、 R_1 、 R_1 、 R_2 及びZは前述のとおりである)

R,

CIIIX

(工程18)

化合物(XV)は、化合物(XIV)をテトラヒドロフラン、トルエン、酢酸エチル等の不活性溶媒中、トリエチルアミン等の塩基存在下、クロロ炭酸エチル等のク

WO 96/19463 PCT/JP95/02600

ロロ炭酸エステルと反応させるか、又は無水酢酸中で加熱することにより合成することができる。

(工程19)

化合物(XVII)は、化合物(XV)をテトラヒドロフラン、アセトニトリル、酢酸エチル、トルエン等の不活性溶媒中、塩化マグネシウム等のマグネシウム塩及びトリエチルアミン、ピリジン、炭酸カリウム等の塩基の存在下、化合物(XVI)又は化合物(XVI)に対応する酸無水物と反応させることにより合成することができる。また、化合物(XVII)はChem. Ber., 102:883-898(1969)記載の方法によっても合成することができる。

(工程20)

化合物 (XVIII)は、化合物 (XVII) をテトラヒドロフラン、ジオキサン、塩化メチレン、トルエン等の不活性溶媒中、1N乃至4N塩酸、しゅう酸、希硫酸等の酸で処理するか、又はピリジン及び酢酸の存在下で加熱することにより合成することができる。

(工程21)

化合物(I)は、化合物(XVIII)をクロロホルム、塩化メチレン等の有機溶媒中、又は無溶媒中でクロロスルホン酸等のクロロスルホニル化剤と反応させる。 次いで、その生成物をテトラヒドロフラン、エーテル、トルエン、塩化メチレン、ジオキサン等の有機溶媒中、アンモニア水又はアルキルアミンと反応させるか、 酢酸ナトリウム、ピリジン、水酸化ナトリウム等の塩基の存在下、アルキルアミン塩酸塩等のアンモニウム塩と反応させることにより合成することができる。

また、化合物(I)は、化合物(XVIII)から下記の工程22万至工程23の経路でも合成することができる。

(工程 2 2)

化合物(XIII)は、化合物(XVIII)を無水酢酸中又は無溶媒中で、濃硫酸又はポリリン酸等の無機酸と室温乃至加温下で反応させることにより合成することができる。

(工程23)

化合物(I)は、化合物(XIII)を前述の工程15と同様の方法で反応させる。 ことにより合成することができる。

なお、上記工程22万至工程23は最終段階である工程23において、アルキルスルホニル化又はアミノスルホニル化する例を挙げたが、R'及びR'を有する化合物の代わりにR及びR」を有する化合物を用いて、工程18万至工程20に従って反応を行った後、工程22に従ってオキサゾール化合物(I)を得てもよい。この場合は工程23は不要である。

このようにして得られた化合物(I)は公知の分離精製手段、例えば、濃縮、 減圧濃縮、溶媒抽出、晶析、再結晶又はクロマトグラフィー等により、単離精製 することができる。

次に実施例及び試験例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。

実施例1

工程1) 2-クロロー4-メチルスルホニルベンジル シクロヘキシルケトン (式 (IV); R=シクロヘキシル、 $R_1=2-$ クロロー4-メチルスルホニルフェニル)

テトラキストリフェニルホスフィンパラジウム (1.29g) 及び亜鉛末 (2.19g) の1, 2-ジメトキシエタン (10ml) 溶液にシクロヘキサンカルボニルクロライド (3.60g) の1, 2-ジメトキシエタン (10ml) 溶液を

窒素雰囲気下室温で加える。これに室温中、攪拌しながら2-クロロー4-メチルスルホニルベンジルプロマイド(9.40g)の1,2-ジメトキシエタン(20ml)溶液をゆっくりと滴下した後、さらに室温で3時間攪拌した。不溶物を濾過して除去した後、濾液を減圧濃縮した。その後、残留物に酢酸エチル(20ml)を加え、1N塩酸、次いで飽和重曹水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去後、酢酸エチルとジイソプロピルエーテルを加え、析出した固体を減取することにより白色固体の表題化合物(3.47g)を得た。

工程 5) $2-プロモー2-(2-クロロー4-メチルスルホニルフェニル)-1-シクロヘキシルー1-エタノン(式(VI); R=シクロヘキシル、R, = 2-クロロー4-メチルスルホニルフェニル、<math>X_1=臭素原子$)

上記工程1)で得られた化合物(3.40g)のベンゼン(20m1)溶液に、 氷冷攪拌下、臭素(1.73g)のベンゼン(20m1)溶液を滴下した後、1 時間攪拌した。この溶液を水に移した後、酢酸エチルで抽出した。有機層を飽和 重曹水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留 去することで表題化合物(4.20g)を得た。

工程 6) 1-(2-0ロロー 4-メチルスルホニルフェニル) -2-シクロヘキシルー 2-オキソエチル アセテート (式 (V'); R=シクロヘキシル、 R_1 = 2-0ロロー 4-メチルスルホニルフェニル、 $R_2'=$ メチル、Z=酸素原子)

上記工程 5) で得られた化合物(4.20g)に酢酸ナトリウム(1.06g)とエタノール(40ml)を加え、4時間加熱還流した後、溶媒を減圧留去した。 残留物に酢酸エチルを加え、水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで 乾燥した。溶媒を留去することで表題化合物の租生成物(3.85g)を得た。

工程 7) 5-(2-2-1-4-3) カスルホニルフェニル) -4-3 ロロー 4 -3 アンルー 2 -3 テルオキサゾール (式 (I'); R=3 アロロー 4 -3 テルスルホニルフェニル、 R_{3} = 3 テル、 2 = 酸素原子)

上記工程 6) で得られた化合物 (3.85g)と酢酸アンモニウム (2.08g)の酢酸 (40m1)溶液を5時間加熱還流した後、溶媒を減圧留去した。残留物に酢酸エチルを加えた後、これを水、飽和重曹水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去することで表題化合物 (1.95g、収率53%)を得た。

実施例2

テトラキストリフェニルホスフィンパラジウム(2.00g)及び亜鉛末(17.98g)の1,2ージメトキシエタン(50ml)溶液にシクロヘキサンカルボニルクロライド(20.00g)の1,2ージメトキシエタン(50ml)溶液を窒素雰囲気下室温で加える。これに氷冷中、攪拌しながら3ーフルオロベンジルプロマイド(26.00g)の1,2ージメトキシエタン(100ml)溶液をゆっくりと滴下した後、さらに氷冷下で30分、室温で2時間攪拌した。不溶物を濾過して除去した後、濾液を減圧濃縮した。その後、残留物に酢酸エチル(200ml)を加え、1N塩酸、次いで飽和重曹水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を留去後、油状の粗生成物(29.20g)を得た。

工程 16) $2-シクロヘキシル-1-(3-フルオロフェニル) -2-オキソエチル アセテート(式(V''); R'=シクロヘキシル、<math>R_1'=3-フルオロフェニル、<math>R_2'=3$ +ル、Z=酸素原子)

上記工程10)で合成した化合物(29.20g)の酢酸(300m1)溶液に、四酢酸鉛(75.00g)を加え、1.5時間加熱還流した後、溶媒を減圧留去した。残留物に酢酸エチルを加えた後、水、飽和重曹水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン:酸酸エチル=9:1)で精製することにより油状物の表題化合物(18.30g、収率50%)を得た。

工程 17) $4-シクロヘキシル-5-(3-フルオロフェニル) -2-メチルオキサゾール (式 (XIII); R'=シクロヘキシル、<math>R_1'=3-フルオロフェニル、R_2=メチル、<math>Z=$ 酸素原子)

上記工程16)で得られた化合物(18.00g)と酢酸アンモニウム(15.00g)の酢酸(100m1)溶液を5時間加熱還流した後、溶媒を減圧留去した。残留物に酢酸エチルを加えた後、これを水、飽和重曹水及び飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去することで油状物の租生成物(17.20g)を得た。

上記工程17)で得られた化合物(17.00g)のクロロホルム(80m1)溶液に氷冷攪拌下、クロロスルホン酸(27m1)を滴下した後、100℃で3時間加熱した。室温に冷却後、反応溶液を氷水(300m1)に攪拌しながら滴下する。有機層を分離した後、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、粗生成物(20.31g)を得た。

次いで、得られた化合物(10.00g)のテトラヒドロフラン(40m1) 溶液に室温攪拌下、28%アンモニア水を加え、室温で1時間攪拌した。溶媒を 減圧留去し、残留物に酢酸エチルを加え、水及び飽和食塩水で洗浄した後、無水 硫酸ナトリウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラ 上記工程11)で得られた化合物(158g)の酢酸(900m1)溶液に、室温提拌下、無水酢酸(95ml)を滴下した後、7時間加熱還流した。溶媒を減圧留去した後、残留物にn-ヘブタンを加え、これを水、飽和重曹水、飽和食塩水及びアセトニトリルで洗浄した。溶媒を減圧留去した後、油状物の表題化合物(119g)を得た。

実施例3

4-シクロヘキシル-5-(3-フルオロ-4-メチルスルホニルフェニル)-2-メチルオキサゾール(式(I):R=シクロヘキシル、R:=3-フルオロ-4-メチルスルホニルフェニル、R:=メチル、<math>Z=酸素原子)の合成

工程 15) 4-シクロヘキシル-5-(3-フルオロ-4-メチルスルホニルフェニル) <math>-2-メチルオキサゾール(式(I):R=シクロヘキシル、R₁=3-フルオロ-4-メチルスルホニルフェニル、R₂=メチル、<math>Z=酸素原子)

上記実施例2の工程17)で得られた化合物 (17.00g)のクロロホルム (80m1)溶液に氷冷攪拌下、クロロスルホン酸 (27m1)を滴下した後、100℃で3時間加熱した。室温に冷却後、反応溶液を氷水 (300m1) に攪拌しながら滴下した。有機層を分離した後、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、粗生成物 (20.31g)を得た。

次いで、得られた化合物 (3.66g) に水 (25m1) を加え、室温攪拌下、

亜硫酸ナトリウム(1.42g)、次いで炭酸水素ナトリウム(1.89g)を加え、70℃で2時間加熱した。これにエタノール(25m1)、ヨウ化メチル(2.20g)を加え、100℃で2時間加熱した。室温に冷却後、酢酸エチルで抽出し、抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒;ヘキサン:酢酸エチル=2:1)で分離精製することにより表題化合物(0.82g、収率24%)を得た。

実施例 4 乃至 6

実施例1乃至実施例3と同様にして、或るいは後述の実施例7の方法に従って 実施例4乃至6の化合物を得た。

実施例1乃至6の構造式及び物性値を次表に示す。式中、Meはメチル基を示す。

					 		· · · · · · · · · · · · · · · · · · ·
	元素分析			計算值 C 56.79% H 5.66%	M 8.28% 建定值 C 56.41% H 5.73% N 8.19%	叶单位 C 60.52% H 5.97% N 4.15%	C 60.70 % H 6.10 % N 4.12 %
	MS	PAB+ 354 (MIT*)		FAB+ 339 (MH†)		FAB+ 338 (MH⁺)	
	IR cm ⁻¹	neat 2928 1578 1317 1155 1100	960	neat 3280 2929 1613	1343 1170		1144
※ 1	¹ H NMR (8) ppm	CDCI ₃ 300MHz 1.1 - 1.2 (3H, m) 1.6 - 1.8 (7H, m) 2.48 (1H, m) 2.51 (3H, s) 3.12 (3H, s)	7.55 (1H, d, J=8.1Hz) 7.88 (1H, dd, J=1.8, 8.1Hz) 8.07 (1H, d, J=1.8Hz)	CDC! ₃ 300MHz 1.3 - 1.5 (3H, m) 1.6 - 1.9 (7H, m) 2.51 (3H, s)	2.79 (1H, tt, J=3.7, 11.3Hz) 5.11 (2H,s) 7.36 - 7.44 (2H, m) 7.94 (1H, t, J=7.9Hz)	CDCI3 300MHz 1.3 - 1.5 (3H, m) 1.6 - 1.8 (7H, m) 2.52 (3H, s) 2.80 (1H, u, J=4.0, 11.4Hz)	3.25 (3H, s) 7.40 (1H, dd, J=1.6, 11.2Hz) 7.48 (1H, dd, J=1.6, 8.3Hz) 7.99 (1H, dd, J=8.3, 8.4Hz)
	一般点	119~ 121 で 白色結晶			167 ℃ 自色結晶	111 ~	也 整 整
	化合物	N N	MeO ₂ S CI		F O Me	N. N.	MeO ₂ S
	東施6	-			8	က	

3 3

N 200 201 C 2.51 C 2.72 C 2.51 C 2.5				2				Г
CI CDCy 300Mffz KBr FAB+ 指 1.28 - 1.44 (44, m) 3353 355 (MH*) C L 1.62 - 1.92 (64, m) 2928 N N L 1.62 - 1.92 (64, m) 2928 N N L 1.63 - 1.92 (64, m) 1.92 (74, m) 1.93 (74,	大型	化合物	被 点	H NMR (3) ppm	IR cm.	MS	元素分析	
1.28 - 1.44 (4H, m) 3353 335 (MH***) 1.25 - 1.22 (6H, m) 200		<		CDCl ₃ 300MHz	KBr	FAB+	計算値	_
CI		_		1.28 - 1.44 (4H, m)	3353	355 (MH²)	C 54.16 %	
CI		 		1.62 - 1.92 (6H, m)	3255			
C		\	200 ~ 200 ~	<u> </u>	2928	· .		
H ₂ NO ₂ S H ₃ NO ₄ H ₂ H ₂ NO ₂ S H ₃ NO ₄ H ₂ H ₂ NO ₂ S H ₃ NO ₄ H ₂ H ₂ NO ₂ S H ₃ NO ₄ H ₂ H ₂ NO ₂ S H ₃ NO ₄ H ₂ H ₂ NO ₂ S H ₃ NO ₄ H ₂ H ₂ NO ₂ S H ₃ NO ₄ H ₂ H ₂ NO ₂ S H ₃ NO ₄ H ₂ H ₃ NO ₂ S H ₃ NO ₄ H ₂ H ₃ NO ₂ S H ₃ NO ₄ H ₂ H ₃ NO ₂ S H ₃ NO ₄ H ₂ H ₃ NO ₂ S H ₃ NO ₄ H ₂ H ₃ NO ₂ S H ₃ NO ₄ H ₂ H ₃ NO ₂ S H ₃ NO ₄ H ₂ H ₃ NO ₂ S H ₃ NO ₄ H ₂ H ₃ NO ₂ S H ₃ NO ₄ H ₂ H ₃ NO ₂ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₄ H ₂ H ₃ NO ₅ S H ₃ NO ₅ S H ₃ NO ₄ S H ₃ NO ₅ S H	4	- Me	רוש <i>י</i>		9091		過冷觀	
H ₂ NO ₂ S		5	白色結晶	5.18 (2H, e)	1342		C 54.11 %	
H ₂ NO ₂ S H ₂ NO ₂ S Me Me Me Me Me Me Me Me Me M				7.53 (1H, dd, J=8.4, 1.6Hz)	9911		H 5.45%	
R13 (1H, d, J=8.4Hz) RB FAB+ B13 (1H, d, J=8.4Hz) RB FAB+ B13 (1H, d, J=8.4Hz) 3294 333 (MH*) C C C C C C C C C C C C C C C C C C		H,NO,S		7.69 (1H, d, J=1.6Hz)				•
No 183.2				8.13 (1H, d, J=8.4Hz)	-		**	
1.3 - 1.5 (34, m) 3294 335 (MH*) C (270 (34, p) 1.7 - 1.9 (74, m) 2929 335 (MH*) C (270 (34, p) 1.7 - 1.9 (74, m) 1.7 - 1.9 (74, m) 1.7 - 1.9 (74, m) 1.7 - 1.9 (74, p) 1.8 (74, p) 1.7 (74, p) 1.8 (74, p) 1.7 (74, p)		〈		CDCI, 300MHz	KBr	FAB+	計算值	·
Harring 1.7-1.9 (7H, m) 1.929 Harring 1.7-1.9 (7H, m) 1609 N 184.2		_		1.3 - 1.5 (3H, m)	3294	335 (MH ⁺)	C 61.05 %	_:_
1842 C 2.50 (3H, s) 1609 N 1842 C 2.73 (3H, s) 1299 M 1842 C 2.73 (3H, s) 1299 M 1842 C 2.73 (3H, s) 1299 M 1842 C 2.73 (3H, s) 1170 C G G G G G G G G G G G G G G G G G G		- -		1.7 - 1.9 (7H, m)	2929		Н 6.63 %	
H ₂ NO ₂ S H ₂ NO ₂ S H ₂ NO ₂ CH, a) H ₂ NO ₂ S H ₂ NO ₂ CH, a) H ₂ NO ₂ S H ₂ NO ₂ CH, a) H ₂ NO ₂ S F ₂ CH, a) H ₃ NO ₂ CH, a) H ₂ NO ₂ S F ₃ CH, a) F ₄ CDC ₃ CH, a) B ₄ CDC ₄ CH, a) B ₄ CDCC ₄ CH, a) B ₄			183.2 ~	2.50 (3H, s)	809		N 8.38 %	
H ₂ NO ₂ S H ₂ NO ₂ S H ₂ NO ₂ S H ₃ NO ₂ S H ₂ NO ₂ S H ₃ NO ₂ S H ₂ NO ₂ S	വ	M	184.2 C	2.73 (3H, s)	1299		遊浴街	
H ₂ NO ₂ S H ₂ NO	**		白色結晶	2.80 (1H, m)	1170		C 61.24 %	<u> </u>
H ₂ NO ₂ S Ros (1H, d, 1=8.3Hz) Ros (1H, d, 1=8.3Hz) Ros (1H, d, 1=8.3Hz) CDC ₃ 300MHz 1.28 - 1.47 (3H, m) 1.28 - 1.47 (3H, m) 1.57 - 1.95 (7H, m) 2.51 (3H, s) 1.57 - 1.95 (7H, m) 2.51 (3H, s) 1.57 - 1.95 (7H, m) 1.58 - 1.47 (3H, s) 1.59 - 1.57 (MIH ²) 1.18 (2H, ddd, 1=9.9, 1.7, 1.4Hz) 1.135				4.92 (2H, s)	-		H 6.73 %	_
8.05 (1H, d, J=8.3Hz) CDC3, 300MHz 1.28 - 1.47 (3H, m) 1.57 - 1.95 (7H, m) 1.58 - 1.77 (7.14 (7.1		H,NO,S	. :	7.43 - 7.49 (2H,m)				
CDCI ₃ 300MHz 1.28 - 1.47 (3H, m) 1.57 - 1.95 (7H, m) 1.57 - 1.95 (7H, m) 1.57 - 1.95 (7H, m) 1.57 - 1.95 (1H, m) 1.53 - 1.95 (1H, m) 1.55 - 1.95				8.05 (1H, d, J=8.3Hz)				٠.
F		<		CDCJ ₃ 300MHz	KBr	FAB+		r -
H ₂ NO ₂ S F 1.57 - 1.95 (7H, m) 2.51 (3H, s) 7 ± 1/7 7 X 2.68 - 2.80 (1H, m) 5.37 (2H, brs) 7.18 (2H, ddd, 1=9.9, 1.7, 1.4Hz)				1.28 - 1.47 (3H, m)	2931	357 (MIH*)	•	`
F		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1.57 - 1.95 (7H, m)	7291			
F	8	- Me		2.51 (3H, 6)	1557			
5.37 (2H, brs) 7.18 (2H, ddd, f=9.9, 1.7, 1.4Hz)	9	F / / /	アモルファス	2.68 - 2.80 (1H, m)	1422		•	
7.18 (2H, ddd, <i>I</i> =9.9, 1.7, 1.4Hz)) -		5.37 (2H, brs)	1359		.· .	_
→				7.18 (2H, ddd, f=9.9, 1.7, 1.4Hz)	1175			
		H2NO2S			1035			<u> </u>
		L						٠.

3 4

実施例7

5-(4-r) スルホニルー3ーフルオロフェニル) -4-(4-r) フェニル) -2-x チルオキサゾール(式(1); R=4-r フェニル、 $R_1=4-r$ ミノスルホニルー3ーフルオロフェニル、 $R_2=x$ チル、x=x 原子) の合成

前記のごとき方法に従って得られた5-(3-フルオロフェニル)-4-(4-フルオロフェニル)-2-メチルオキサゾール(1.10g)とクロロスルホン酸(1.6ml)のクロロホルム(2ml)溶液を90℃で2時間加熱撹拌した。反応液を氷水中にあけ、クロロホルムで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮し、5-(4-クロロスルホニルー3-フルオロフェニル)-4-(4-フルオロフェニル)-2-メチルオキサゾールの租生成物(1.06g)を得た。

次に、この租生成物(1.06g)のテトラヒドロフラン(6ml)溶液に28%アンモニア水(0.6ml)を加え、室温で2時間撹拌した。この反応液を 濃縮し、酢酸エチルを加え、水、飽和食塩水で洗浄した。無水硫酸マグネシウムー で乾燥後、濃縮することにより租生成物(981mg)を得た。この租生成物を エタノールから再結晶することにより表題化合物(629mg、収率44%)を 得た。この化合物の構造式及び物性値を次表に示す。

	/	1	H NMR (&) ppm	R cm.	WS	JC#2750F
7			CDC1, 300MHz	neat	FAB+	計算值
\\ \			2,58 (3H, s)	3278	351 (M*+1)	C 54.74 %
			5.07 (2H, s)	2359		Н 3.86 %
	Z\/	708	7.14 (2H, u, J=2.2, 8.8Hz)	1613		N 7.66 %
,	- M-	}	7.36 (1H, dd, J=1.5, 11.0Hz)	1562	· ·	置加倉
	\ =\ =\	口色林岛	7.47 (1H, dd, J=1.8, 7.7Hz)	1510		C 54.40 %
>=	-		7.59 (2H, ddd, J=2.2, 5.5, 8.8Hz) 1342	1342		H 3.74 %
		_	7.88 (1H, t, J=7.7Hz)	11711		N 7.59 %
H2NC25						,

実施例 2'

実施例 2 の化合物(式(I);R= シクロヘキシル、 $R_1=4-$ アミノスルホニルー3-フルオロフェニル、 $R_2=$ メチル、Z=酸素原子)を別の合成法に従って合成した。

工程18) $4-シクロヘキシル-2-メチル-5-オキサゾロン (式 (XV) : R' = シクロヘキシル、<math>R_2 = メチル$)

 $\alpha-$ アミノフェニル酢酸から公知の方法[Collect. Czeck. Chem. Commun. 31: 4563 (1966)]に従って合成されたDL-N-アセチルー2-シクロヘキシルグリシン (10.00g)の酢酸エチル (50ml) 懸濁液にトリエチルアミン (8.39ml)を加え、氷冷下、クロロ炭酸エチル (5.28ml)を滴下した。氷冷下で1時間攪拌した後、酢酸エチル (150ml)を加え、水及び飽和食塩水で順次洗浄した。酢酸エチル溶液を減圧濃縮することにより油状物の表題化合物 (9.86g)を得た。

工程19) $4-シクロヘキシル-4-(3-フルオロベンゾイル)-2-メチル-5-オキサゾロン(式(XVII); R'=シクロヘキシル、<math>R_1=3-フルオロフェニル、R_2=メチル、Z=酸素原子)$

塩化マグネシウム (3.56g) のテトラヒドロフラン (20ml) 懸濁液に、

上記工程18)で得られた化合物(9.86g)のテトラヒドロフラン(15m1)溶液を加え、次いで氷冷撹拌下、トリエチルアミン(9.49m1)を加え、15分間攪拌した。これに3ーフルオロベンゾイルクロライド(4.55m1)を滴下し、氷冷下で1時間攪拌した。反応液を酢酸エチルで希釈した後、水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去することにより油状物の表題化合物(11.69g)を得た。

工程20) $2-N-アセチルアミノ-2-シクロヘキシル-3'-フルオロアセトフェノン(式(XVIII); R'=シクロヘキシル、<math>R_1'=3-フルオロフェニル、R_2=メチル、<math>Z=酸素原子$)

上記工程19)で得られた化合物(527mg)のテトラヒドロフラン(3.5ml)溶液に1N塩酸(0.35ml)を加え、室温下で1時間攪拌した後、酢酸エチルを加え、水、飽和重曹水及び飽和食塩水で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去することにより固体の表題化合物(404mg、収率84%)を得た。n-ヘプタンから再結晶することにより、融点116~117℃の白色結晶が得られた。

工程21) 5-(4-r) スルホニルー3-7 ルオロフェニル) -4-2 ロヘキシルー2- メチルオキサゾール(式(1); R= シクロヘキシル、 $R_1=$ 4-r ミノスルホニルー3- フルオロフェニル、 $R_2=$ メチル、2= 酸素原子)

上記工程20)で得られた化合物(200mg)のクロロホルム(2m1)溶液に、氷冷攪拌下、クロロスルホン酸(0.34m1)を加え、更に5時間加熱 還流した。反応液をクロロホルムで希釈し、氷水に加えた後、有機層を分離した。これを水及び飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を 減圧留去することにより租生成物(181mg)を得た。

次いで、得られた化合物(169mg)のテトラヒドロフラン(2m1)溶液に、室温攪拌下、28%アンモニア水(0.1m1)を加え、30分間攪拌した。溶媒を減圧留去し、残留物に酢酸エチルを加え、水及び飽和食塩水で順次洗浄した後、無水硫酸ナトリウムで乾燥した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン:酢酸エチル=6:1)で分離精製することにより表題化合物(126mg、収率55%)を得た。実施例2"

実施例 2 の化合物(式(I);R= シクロヘキシル、 $R_1=4-$ アミノスルホニルー3-フルオロフェニル、 $R_2=$ メチル、Z=酸素原子)を別の合成法に従って合成した。

工程22) $4-シクロヘキシル-5-(3-フルオロフェニル) -2-メチルオキサゾール (式 (XIII): R'=シクロヘキシル、<math>R_1'=3-フルオロフェニル、R_2=メチル)$

上記実施例の工程20)で得られた化合物(141mg)の無水酢酸(2ml) 懸濁液に濃硫酸(30μl)を加え、100℃で30分間攪拌した。反応液を減 圧濃縮した後、炭酸カリウム水溶液を加え、酢酸エチルで抽出した。有機層を水 で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去することにより油状

物の表題化合物(135mg)を得た。

工程23) $5-(4-r \in JZ N ホニル-3-J N オロフェニル) -4-シクロヘキシル-2-メチルオキサゾール(式(<math>I$); R=シクロヘキシル、R1 = $4-r \in JZ N ホニル-3-J N オロフェニル、R$ 2 = J4 = J7 = J7 = J8 = J8 = J8 = J9 = J8 = J9 = J9 = J9 = J1 = J1 = J1 = J2 = J3 = J4 = J5 = J7 = J8 = J8 = J9 = J9 = J9 = J1 = J1 = J1 = J2 = J3 = J4 = J5 = J7 = J8 = J8 = J9 = J9 = J1 = J1 = J1 = J2 = J3 = J4 = J7 = J7 = J8 = J9 = J1 = J1 = J1 = J1 = J1 = J1 = J2 = J3 = J3 = J4 = J3 = J4 = J5 = J5 = J7 = J7 = J8 = J9 = J1 = J1 = J1 = J2 = J3 = J3 = J4 = J3 = J4 = J5 = J5 = J7 = J8 = J8 = J9 = J1 = J1 = J2 = J3 = J3 = J4 = J4 = J5 = J5 = J5 = J5 = J5 = J7 = J7 = J7 = J8 = J8 = J9 = J9 = J1 = J1 = J2 = J3 = J4 = J3 = J4 = J5 = J5 = J5 = J7 = J7 = J8 = J8 = J9 = J1 = J1 = J3 = J4 = J5 = J7 = J

上記工程 2 2)で得られた化合物を上記実施例 2 の工程 15)と同様に反応することにより、実施例 2 の化合物(式 (I) ; R= シクロヘキシル、 $R_1=4$ ーアミノスルホニルー 3 ーフルオロフェニル、 $R_2=$ メチル、Z= 酸素原子)を得た。

試験例1 (シクロオキシゲナーゼに対する阻害活性試験)

酵素活性は「Cアラキドン酸のプロスタグランジンH』(PGH』)及びその分解物への変換率より求めた。即ち、ヘマチン(2μM)及びトリプトファン(5mM)を含む100mMトリスー塩酸緩衝液(pH8)140μ1に検体(20μ1)、酵素液(20μ1)及び蒸留水(10μ1)を加え、よく攪拌した後、24℃で5分間プレインキュベーションを行った。更に、「Cアラキドン酸溶液(10μ1)を加え、24℃で反応させた後、-20℃に氷冷したエチルエーテル/メタノール/1Mクエン酸(30/4/1)溶液(40μ1)を加えることにより反応を停止させた。その後、3000rpmで5分間遠心することにより得られたエーテル層を薄層プレートに載せ、エチルエーテル/メタノール/酢酸(90/2/0.1)で展開し、アラキドン酸からPGH』及びその分解物への変換率(A)を測定した。また検体を加えない場合の変換率(B)も測定し、下記のごとき数式により阻害率を算出し、検体の50%阻害に必要な濃度(IC₃。)を求めた。

阻害率= (1-A/B) × 100

シクロオキシゲナーゼー1の酵素液としてはヒト血小板より調整した酵素を用い、シクロオキシゲナーゼー2の酵素液としてはInvitrogen社のキットを使用してヒトシクロオキシゲナーゼー2のcDNAを酵母に組み込み発現させた酵素を用いた。なお、ここで対照化合物1は我々が先に出願した5-(4-アミノスルホニルフェニル)ー4-シクロヘキシルー2-メチルオキサゾールであり、対照化合物2は公知の類似化合物5-(4-アミノスルホニルフェニル)ー4-(4-フルオロフェニル)ー2-メチルオキサゾールである。

結果を表4に示した。

対照化合物1と実施例2の化合物との比較、或るいは対照化合物2と実施例7の化合物との比較から明らかなように、特にフッ素原子を導入することによりCOX-2に対する活性はそのまま維持しながら、COX-1に対する作用を著しく低減することが可能となった。

250

実施例	構造式	IC ₂₀ (µ M)		COX-1/COX-2
×4571	特坦人	COX-2	COX-1	COX-1/COX-2
2		0.07	>100	>1, 428
3	, Society	0.3	>100	>333
4	NAMES OF THE PARTY	>10		
5		>10	-	
6		0.16	>100	>625
7		0.03	3 7	1, 233
インドメタシン		8	0.5	0.063
対照1		0.07	4 5	643

表4 試験例1 (シクロオキシゲナーゼに対する阻害活性)

試験例2 (カラゲニン誘発足浮腫に対する効果試験)

対照2

Donryu系
建性ラットの左後肢足に生理食塩水で調整した1%カラゲニン(0.05ml)を皮下注射し、足浮腫を誘発させた。足浮腫の程度はカラゲニン投与3時間後の足容積を測定することにより評価した。検体(1、3、10、

30mg/kg)は、カラゲニン投与1時間前に経口投与しておき、その抑制程度を検討した。阻害活性は対照群に比べ検体が30%阻害するのに必要な用量(ED₂₀)で表示した。結果を表5に示した。

表5 試験例2 (ラットカラゲニン誘発足浮腫に対する効果)

実施例	ラットカラゲニン誘発足浮腫 E D ₂₀ (mg/kg p.o.)		
2	5. 5		
インドメタシン	2. 9		

「産業上の利用可能性」

本発明化合物、特にR。がメチル基又はアミノ基であり、R。がフッ素原子であり、R。が水素原子又はフッ素原子であり、更にR。、R。が水素原子であるような化合物又はその医薬上許容し得る塩は、COX-2のみを驚くほど選択的に阻害し、一方COX-1に対しては殆ど阻害活性を示さない。従って、本発明化合物は従来品に見られない優れた解熱作用、鎮痛作用、抗炎症作用を有する一方、消化管等に対しては殆ど副作用を有しない優れた化合物であるといえる。

よって、今までにない優れた抗炎症剤の開発が可能であり、また、COX-2 産物が因子となる得る疾患、例えば、喘息、リウマチ等の治療剤としての実用化 が大いに期待できるものである。

請求の範囲

1. 一般式(I)

$$R_1$$
 R_2 R_2 R_3 R_4 R_2 R_3

[式中、2は酸素原子であり、R又はR1の一方は

(式中、R、は低級アルキル基、アミノ基又は低級アルキルアミノ基であり、R、R。 R。 又はR、は同一又はそれぞれ異なってよく水素原子、ハロゲン原子、低級アルキル基、低級アルコキシ基、トリフルオロメチル基、水酸基又はアミノ基である。但し、R、R。 R。 又はR、の少なくとも1つは水素原子ではない)で表わされる基であり、他方が置換されてもよいシクロアルキル基、置換されてもよい複素環基又は置換されてもよいアリール基であり、R。 は低級アルキル基である」で表わされるオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩。

2. R₁ が

(式中、R」が低級アルキル基又はアミノ基であり、R」、R」、R」及びRi

のうち少なくとも一つがハロゲン原子又は低級アルキル基であり、残りが水素原子又はハロゲン原子である)で表わされる基である請求の範囲第1項記載のオキサゾール系復業環式芳香族化合物又はその医薬上許容し得る塩。

3. R」が

(式中、R:'がメチル基又はアミノ基であり、R:'がフッ素原子であり、R:'が水素原子又はフッ素原子である)で表わされる基であり、R:がメチル基である請求の範囲第1項記載のオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩。

4. R. が

(式中、R.'、R.'、及びR.'は請求の範囲第3項に記載と同じ)で表わされる基であり、Rが置換されてもよい炭素原子数5乃至7個のシクロアルキル基、置換されてもよいチエニル基、置換されてもよいフリル基、置換されてもよいピペラジニル基、置換されてもよいピペラジニル基、置換されてもよいピペリジル基、置換されてもよいフェニル基、置換されてもよいアフェニル基、置換されてもよいアフェニル基であり、R. がメチル基である請求の範囲第1項記載のオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩。

5. R. がアミノ基である請求の範囲第4項記載のオキサゾール系復素環式芳香族化合物又はその医薬上許容し得る塩。

- 6. Rが置換されてもよい炭素原子数5万至7個のシクロアルキル基、置換されてもよいフェニル基又は置換されてもよいチエニル基である請求の範囲第4項記載のオキサゾール系復素環式芳香族化合物又はその医薬上許容し得る塩。
- 7. Rがシクロヘキシル基又は4ーフルオロフェニル基であり、R₁が4ーアミノスルホニルー3ーフルオロフェニル基、4ーアミノスルホニルー3,5ーシフルオロフェニル基、3ーフルオロー4ーメチルスルホニルフェニル基又は3,5ージフルオロー4ーメチルスルホニルフェニル基である請求の範囲第4項記載のオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩。
- 8. 4-シクロヘキシルー5ー(3-フルオロー4-メチルスルホニルフェニル) -2-メチルオキサゾール;
- 5-(4-r) スルホニルー3-7ルオロフェニル) -4-9クロヘキシルー2-3 チルオキサゾール:
- 5-(4-r) (4- ν) $-4-\nu$) $-4-\nu$ 0 $-4-\nu$ 1 $-4-\nu$ 1 -
- 4-シクロヘキシルー5-(3, 5-シフルオロー4-メチルスルホニルフェニル) -2-メチルオキサゾール;
- 5-(4-アミノスルホニル-3-フルオロフェニル)-4-(4-フルオロフェニル)-2-メチルオキサゾールからなる群から選ばれる請求の範囲第1項記載のオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩。
- 9. 下記一般式 (XI')

[式中、R, ''は

(式中、R、、R。、R。及びR、は請求の範囲第1項に記載と同じ)であり、R''は置換されてもよいシクロアルキル基又は置換されてもよいアリール基である]で表わされるオキシム化合物。

10. R: が3-フルオロフェニル基又は3,5-ジフルオロフェニル基であり、R' がシクロヘキシル基又は4-フルオロフェニル基である請求の範囲第9項記載のオキシム化合物。

11. 下記一般式 (IV')

(式中、R1'及びR'はそれぞれ請求の範囲第9項に記載と同じ)で表わされるケトン化合物。

12. R₁''が3-フルオロフェニル基又は3, 5-ジフルオロフェニル基であり、R''がシクロヘキシル基又は4-フルオロフェニル基である請求の範囲第1 1項記載のケトン化合物。

13. 下記一般式 (IV'')

[式中、R'''は置換されてもよい炭素原子数5万至7個のシクロアルキル基、 置換されてもよいフェニル基又は置換されてもよいチエニル基であり、R'''は

(式中、 R_* 、 R_* 、 R_* 、 R_* 、 R_* 及び R_* は請求の範囲第 2 項に記載と同じ)で表わされる基である]で表わされるケトメチレン化合物。

14. R'''がシクロヘキシル基であり、R₁'''が4-アミノスルホニル-3-フルオロフェニル基、4-アミノスルホニル-3,5-ジフルオロフェニル基、3-フルオロ-4-メチルスルホニルフェニル基又は3,5-ジフルオロ-4-メチルスルホニルフェニル基である請求の範囲第13項記載のケトメチレン化合物。

15. 下記一般式 (V)

$$R \xrightarrow{R_1} R_2$$
 (V)

(式中、R、R1、R2及びZは請求の範囲第1項に記載と同じ)で示されるエステル化合物。

- 16. Rがシクロアルキル基であり、R2 が低級アルキル基である請求の範囲第 15項記載のエステル化合物。
- 17. 下記一般式 (XVIII')

$$R'' \xrightarrow{Z} R_1'' \qquad (XVIII')$$

$$HN \xrightarrow{R_2} R_2$$

(式中、R1'及びR'はそれぞれ請求の範囲第9項に記載と同じであり、乙及びR1は請求の範囲第1項に記載と同じ)で表わされるアミド化合物。

- 18. R''が3-フルオロフェニル基又は3,5-ジフルオロフェニル基であり、R''がシクロヘキシル基又は4-フルオロフェニル基であり、R₂が低級アルキル基である請求の範囲第17項記載のアミド化合物。
- 19. 医薬上許容し得る担体及び請求の範囲第1項記載のオキサゾール系復素環式芳香族化合物又はその医薬上許容し得る塩を含んでなる医薬組成物。
- 20. 医薬上許容し得る担体及び請求の範囲第1項記載のオキサゾール系複素環式芳香族化合物又はその医薬上許容し得る塩を有効成分としてなるシクロオキシゲナーゼー2阻害剤。
- 21. 医薬上許容し得る担体及び請求の範囲第1項記載のオキサゾール系復素環式芳香族化合物又はその医薬上許容し得る塩を有効成分としてなる抗炎症剤。

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (second sheet) (July 1992)

International application No.

PCT/JP95/02600 Clo CLASSIFICATION OF SUBJECT MATTER Int. C07D263/32, C07D413/04, A61K31/42, C07D2O7/333, 265/30, 295/10, 307/46, 333/22, C07C251/48, 49/782, 49/792, 49/813, 317/14, 311/16, 311/29 According to International Patent Classification (IPC) or to both national classification and IPC 233/61, 233/76 Minimum documentation searched (classification system followed by classification symbols) Int. Clo C07D263/32, C07D413/04, A61K31/42, C07D207/333, 265/30, 295/10, 307/46, 333/22, C07C251/48, 49/782, 49/792, 49/813, 317/14, 311/16, 233/61 233/76 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category* Relevant to claim No. Α WO, 94/27980, Al (P. D. SEARLE & Co.), 1 - 21December 8, 1994 (08. 12. 94) & US, 5380738, A Х US, 4782058, A (Pennwalt Corporation), 9, 11 November 1, 1988 (01. 11. 88), Particularly refer to pages 8, 5 (Family: none) X · JP, 62-138485, A (CIBA-Geigy AG.), June 22, 1987 (22. 06. 87), 11 Particularly refer to compound of formula (III) & EP, 225290, A & US, 4849007, A X JP, 59-155365, A (Shionogi & Co., Ltd.), 11 September 4, 1984 (04. 09. 84), Particularly refer to page 3 & EP, 117578, A & GB, 2136800, A X J. Org. Chem., Vol. 43, No. 15, (1978) 11 . Paul D. Seemuch, et al. "a-Hetero-Substituted Phosphonate Carbanions. 7. Synthesis of Deoxy X Further documents are listed in the continuation of Box C. See patent family annex. later document published after the international filing date or priority date and not in conflict with the application but cited to understand Special categories of cited documents: document defining the general state of the art which is not considered the principle or theory underlying the invention to be of particular relevance earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) -L" ered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive sup when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosure, use, exhibition or other document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report March 6, 1996 (06. 03. 96) April 2, 1996 (02. 04. 96) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Facsimile No. Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP95/02600

·			P95/02600
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
Category*	Citation of document, with indication, where appropriate, of the relev	ani bassages	Relevant to ciaita ivo.
	benzoins and Benzo(b) furans p. 3063-3 particularly refer to compound of (3)	065	
X	J. Org. Chem., Vol. 53, No. 24, (1988) Scott C. Berk, et al. "General approachighly functionalized benzylic organom of zinc and copper" p. 5789-5791 partirefer to page 5790	etallics	.11
x	J. Am. Chem. Soc., Vol. 115, No. 8 (19) Taehee Noh et al. "Photochemistry of α acetone and some derivatives: Triplet α-cleavage and singlet δ-hydrogen abst p. 3105-3110 particularly refer to page	raction"	11
. :			
		:	
			:
			-
*			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

A. 発明の裏する分野の分類(国際特許分類(IPC))

Int. CL⁶ C07D263/32, C07D413/04, A61K31/42, C07D207/333, 265/30, 295/10, 307/46,

B. 調査を行った分野

調査を行った最小模質料(国際特許分類(IPC))

Int. CL^o C07D263/32, C07D413/04, A61K31/42, C07D207/333, 265/30, 295/10, 307/46,

最小展資料以外の資料で調査を行った分野に含まれるもの。

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS ON LINE

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の復所が間違するときは、その間違する箇所の表示	関連する 請求の範囲の番号
A %	WO, 94/27980, A1(P.D. SEARLE&Co.), 8.12月.1994(08.12.94) &US, 5380738, A	1-21
X	US. 4782058, A(Pennwalt Corporation), 1.11月, 1988(01.11.88), 特に第8頁。第5頁参照 (ファミソーなし)	9, 11
x	JP, 62-138485, A(テベーガイギー アクチェンゲゼル	

C額の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」先行文献ではあるが、国際出籍日以後に公表されたもの
- 「L」優先権主張に投稿を提起する文献又は他の文献の発行日 若しくは他の特別な理由を確立するために引用する文献 (理由を付す)
- 「〇」口頭による関示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日 の後に公表された文献
- 「T! 国際出願日又は優先日後に公表された文献であって出題と 矛盾するものではなく、発明の原理又は理論の理解のため に引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規 性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の | 以上の文献との、当業者にとって自明である組合せによって適多性がないと考えられるもの
- 「色」同一パテントファミリー文献

国際調査を完了した日

06.03.96

国際調査報告の発送日

02.04.96

名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100

東京都千代田区数が関三丁目4番3号

特許庁害至官(権限のある職員)

4 C 9 2 8 3

女 摩 主 仄

電話番号 03-3581-1101 内線 3453

種式PCT/ISA/210 (第2ページ) (1992年7月)

C (統合),	製造すると認められる文献	02000
	ME) CCEUSICOLM	
引用文献の カテゴリーキ	引用文献名 及び一部の個所が関連するときは、その関連する個所の表示	関連する 請求の範囲の番号
	シャフト)。 22.6月、1987(22.06.87) 時に式(囚)の化合物参照 &EP.225290, A&US, 4849007, A	
x	JP, 59-155365, A(塩野穀製業株式会社), 4.9月, 1984(04.09.84) 特に第3页参照 &EP, 117578, A&GB, 2136800, A	1.1
x	J. Org. Chem., 第43卷, 第15号, (1978) Paul D. Seemuch, et al. 「α—Hetero-Substituted Phosphonate Carbanions. 7. Synthesis of Deoxy benzoins and Benzo(b) furans 」 p. 3063-3065 特に(3)の化合物参照	11
x	J. Org. Chem., 第53卷, 第24号, (1988) Scott C. Berk, et al. [General approach to highly functionalized benzylic organometallics of zine and copper] p. 5789-5791 特に p. 5790参照	11
x	J. Am. Chem. Soc.,第115卷,第8号(1993) Tachee Noh et al. 「Photochemistry of α-(-Tolyl) acetone and some derivatives: Triplet α-cleavage and singlet 3-hydrogen abstraction 」 p. 3105-3110 存に p. 3106参照	
		_

第2ページ▲欄の続き

333/22, 0070251/48, 49/782, 49/792, 49/813, 317/14, 311/16, 311/29, 233/61, 233/76

第2ページB櫃の続き

333/22, 0070251/48, 49/782, 49/792, 49/813, 317/14, 311/16, 311/29, 233/61, 233/76

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspic,