9.2-7 8.449 < $\chi^2_{0.05}(4) = 9.488$ do not reject the null hypothesis; 0.05 < p -value < 0.10; p -value = 0.076

9.2-11 23.78 > 21.03, reject hypothesis of independence.

9.2-12
$$q = 8.792 > 7.378 = \chi^2_{0.025}(2)$$
, reject H_0 . $(p-\text{value} = 0.012.)$

9.3-2

Source	SS	DF	MS	F	<i>p</i> -value
Treatment	388.2805	3	129.4268	4.9078	0.0188
Error	316.4597	12	26.3716		
Total	704.7402	15			

 $F = 4.9078 > 3.49 = F_{0.05}(3, 12)$. Reject H_0 .

9.3-5

(a)

Source	SS	DF	MS	F	<i>p</i> -value
Treatment	31.112	2	15.556	22.33	0.000
Error	29.261	42	0.697		
Total	60.372	44			

(b) The respective means are 23.114, 22.556, and 21.120, with the eggs of the shortest lengths in the nests of the smallest bird.

9.3 - 9

(a) $F \ge 4.07$.

Source	SS	DF	MS	F	p-value
Treatment	3214.9	3	1071.6	4.1059	0.0489
Error	2088.0	8	261.0		
Total	5302.9	11			

(b) F = 4.1059 > 4.07. Reject H_0

- (c) F = 4.1059 < 5.42, do not reject H_0 .
- (d) 0.025 < p -value < 0.05, p -value ≈ 0.05

9.3 - 10

(a)
$$t = \frac{92.143 - 103.009}{\sqrt{\frac{6(69.139) + 6(57.669)}{12} \left(\frac{1}{7} + \frac{1}{7}\right)}} = -2.55 < -2.179, \text{ reject } H_0$$

F and the t tests give the same results since $t^2 = F$

(b)
$$F = \frac{86.3336}{114.8889} = 0.7515 < 3.55$$
, do not reject H_0 .

9.4 - 2

$$\alpha_1 = -2, \alpha_2 = 2, \alpha_3 = 0$$
 and $\beta_1 = 0, \beta_2 = -3, \beta_3 = 1, \beta_4 = 2$

9.4 - 3

- (a) 7.624 > 4.46, reject H_A .
- (b) 15.539 > 3.84, reject H_B .

9.4-4

$$\sum_{i=1}^{a} \sum_{j=1}^{b} (\overline{X}_{i}, -\overline{X}_{..}) (X_{ij} - \overline{X}_{i.} - \overline{X}_{.j} + \overline{X}_{..})$$

$$= \sum_{i=1}^{a} (\overline{X}_{i.} - \overline{X}_{..}) \sum_{j=1}^{b} [(X_{ij} - \overline{X}_{i.}) - (\overline{X}_{.j} - \overline{X}_{..})]$$

$$= \sum_{i=1}^{a} (\overline{X}_{i.} - \overline{X}_{..}) \left\{ \sum_{j=1}^{b} (X_{ij} - \overline{X}_{i.}) - \sum_{j=1}^{b} (\overline{X}_{.j} - \overline{X}_{..}) \right\}$$

$$= \sum_{i=1}^{a} (\overline{X}_{i.} - \overline{X}_{..}) (0 - 0) = 0$$

 $\sum_{i=1}^{a} \sum_{j=1}^{b} \left(\overline{X}_{\cdot j} - \overline{X}_{\cdot \cdot} \right) \left(X_{ij} - \overline{X}_{i \cdot} - \overline{X}_{\cdot j} + \overline{X}_{\cdot \cdot} \right) = 0,, \text{ similarly;}$

$$\sum_{i=1}^{a} \sum_{j=1}^{b} \left(\overline{X}_{i}. - \overline{X}_{..} \right) \left(\overline{X}_{.j} - \overline{X}_{..} \right) = \left\{ \sum_{i=1}^{a} \left(\overline{X}_{i}. - \overline{X}_{..} \right) \right\} \left\{ \sum_{j=1}^{b} \left(\overline{X}_{.j} - \overline{X}_{..} \right) \right\} = (0)(0) = 0$$

.

9.4-6

So $\alpha_1 = \alpha_2 = \alpha_3 = 0$ and $\beta_1 = 0, \beta_2 = -3, \beta_3 = 1, \beta_4 = 2$ as in Exercise 9.4 – 2. However, $\gamma_{11} = -2$ because 8 + 0 + 0 + (-2) = 6. Similarly we obtain the other γ_{ij} s:

9.4-7

- (a) 1.727 < 2.36, do not reject H_{AB} .
- (b) 2.238 < 3.26, do not reject H_A .
- (c) 2.063 < 2.87, do not reject H_B .

9.4-8

- (a) $F = 0.892 < F_{0.05}(1, 24) = 4.26$, do not reject H_{AB} .
- (b) $F = 4.307 > F_{0.05}(1, 24) = 4.26$, reject H_A .
- (c) $F = 5.167 > F_{0.05}(1, 24) = 4.26$, reject H_B .