This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

L2: Entry 127 of 859

File: JPAB

Oct 10, 2000

PUB-NO: JP02000280200A

DOCUMENT-IDENTIFIER: JP 2000280200 A

TITLE: BORING METHOD FOR PRINTED CIRCUIT BOARD

PUBN-DATE: October 10, 2000

INVENTOR-INFORMATION:

NAME

COUNTRY

OZAKI, TOMOAKI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

HITACHI VIA MECHANICS LTD

APPL-NO: JP11086402

APPL-DATE: March 29, 1999

INT-CL (IPC): B26 F 1/16; B23 B 41/00; B23 B 47/18; H05 K 3/00

ABSTRACT:

PROBLEM TO BE SOLVED: To improve the working efficiency in the case where a difference between depth of a hole

to be bored and a total of cutting quantity is positive and smaller than the predetermined allowable value by

increasing the cutting quantity by the difference for working.

SOLUTION: An NC device obtains a coordinate S of a surface of a top plate, and obtains the depth H expressed as

B-S. B means a coordinate of a working concluding position. The depth H and a total >>hm, hi+1 is stored as

hi+1=k, and processing is concluded. h1+k is controlled at a value less than the allowable cutting quantity hm

so as to prevent the lowering of the lifetime of a drill.

COPYRIGHT: (C)2000,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-280200 (P2000-280200A)

(43)公開日 平成12年10月10日(2000.10.10)

(51) Int.Cl.7		識別記号	F I		7 -	73~}*(参考)
B 2 6 F	1/16		B 2 6 F	1/16		3 C 0 3 6
B 2 3 B	41/00		B 2 3 B	41/00	D	3 C 0 6 0
	47/18			47/18	Α	
H05K	3/00		H05K	3/00	K	

H 0 5 K 3/0	00	H05K 3/00		K			
		審査請求	未請求	請求項の数2	OL	(全 5 頁)	
(21)出願番号	特顯平11-86402	(71)出顧人		32 アメカニクス株:	式会社		
(22)出顧日	平成11年3月29日(1999.3.29)	(72)発明者 (74)代理人	神奈川県海老名市上今泉2100 「尾崎 友昭 神奈川県海老名市上今泉2100番地 日立り 工株式会社内 、100078134 弁理士 武 顕次郎 参考) 30036 AA01 DD02			条地 日立精	
		17 2(9		60 AAI1 BAO5 E	BG13 BH	01	

(54) 【発明の名称】 プリント基板の穴明け方法

(57)【要約】

【課題】 加工能率を向上させることができるプリント 基板の穴明け方法を提供すること。

【解決手段】 予め第i回($i=1\sim n$ の整数)の切り込み量h i と、許容値 α を定めておく。そして、加工すべき穴の深さHとh $1\sim h$ n n0総和 Σh i との差k が許容値 α よりも小さい場合には、第i 回の切り込み量をh $i+\alpha$ にする。また、許容値 α に代えて、許容値 β を定めておき、差k01/n1が β よりも小さい場合には、各切り込み量h i をh i + k/nに置き換える。この結果、最終回の切り込み量が微小な場合には、切り込み回数を増加させることがなく、加工能率を向上させることができる。

[図1]

1

【特許請求の範囲】

【請求項1】 予め第i回(i=1~nの整数)の切り 込み量hiを定めておき、深さが前記切り込み量hiの 総和Σhiの穴をn回に分けて穴明けをするプリント基 板の穴明け加工方法において、加工すべき穴の深さHと 前記総和Σh i との差k (k=H-Σh i)が正で、か つ予め定める許容値αよりも小さい場合は、前記切り込 み量hiのいずれか1つをkだけ増加させて加工するこ とを特徴とするプリント基板の穴明け方法。

【請求項2】 予め第i回(i=1~nの整数)の切り 10 込み量hiを定めておき、深さが前記切り込み量hiの 総和Σhiの穴をn回に分けて穴明けをするプリント基 板の穴明け加工方法において、加工すべき穴の深さHと 前記総和 Σ h i との差k (k=H- Σ h i)が正で、か Ok/nが予め定める許容値 β よりも小さい場合は、前 記各切り込み量h i を切り込み量h i + k/nに置き換 えて加工することを特徴とするプリント基板の穴明け方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、予め第i回(i= 1~nの整数)の切り込み量hiを定めておき、深さが 前記切り込み量hiの総和Σhiの穴をn回に分けて穴 明けをするプリント基板の穴明け加工方法に関する。

[0002]

【従来の技術】プリント基板に貫通穴を加工をする場 合、複数枚のプリント基板を重ねて加工することによ り、加工速度を向上させている。図3は、プリント基板 に穴明けを行う場合の構成を示す側面図である。図で、 1は上板で、板厚が0.1mm程度のアルミニウム板で 30 ある。2はプリント基板である。3は下板で、板厚が 1.6 mm程度の合成樹脂板である。そして、上板1、 複数枚(図では3枚)のプリント基板2および下板3 は、周囲を図示を省略するテープ等により一体にまとめ られ、1個のワークとして、プリント基板穴明機のテー ブル4に固定されている。

【0003】深い穴を1回で加工すると、切粉の排出が 悪くなるため、穴の真直度が低下し、下側のプリント基 板2の穴位置精度が低下する。また、摩擦熱が増加して 穴内面が粗くなり、スミアの発生が増加する。そこで、 深い穴を加工をする場合は、ドリルの径毎に第i回(i =1~nの整数)の切り込み量hiと、後述する引出距 離fを予め定めておき、複数回に分けて加工をする。こ のような加工手順を図4により説明する。

【0004】図4は、深さしの穴を3回に分けて加工す る場合の手順を示す図であり、縦軸はドリル(図中の 5) 先端の位置座標、横軸は時間である。縦軸の20は ドリル5先端の待機位置の座標であり、移動原点であ る。Aは引出位置の座標、Sは上板1表面の座標、M1 とM2は第1と第2の中間位置の座標、Rは下板3表面 50 そして、(a)に示すように、位置測定装置7を座標2

の座標、Bは加工終了位置の座標、Ztはテーブルの表 面の座標である。また、mは座標ZOから座標Aまでの 距離、fは座標Aから座標Sまでの距離、h1は座標S から座標M1までの距離、h2は座標M1から座標M2 までの距離、h3は座標M2から座標Bまでの距離であ る。また、qは座標Rから座標Bまでの距離である。そ して、LはΣhiすなわち距離h1~h3の総和に等し

【0005】加工が開始されると(時刻T0)、ドリル 5は座標ZOから座標Aまで早送り速度VOで下降され る。座標Aに到達すると(時刻T1)、切り込み速度V 1または切削速度V2に切り換えられ、座標M1まで下 降する。座標M1に到達すると(時刻T2)、早送り速 度VOに切り換えられ、上昇して座標Aに戻る(時刻T 3)。次に、切削速度V2に切り換えられ、座標M2ま で下降する。座標M2に到達すると(時刻T4)、早送 り速度VOに切り換えられ、上昇して座標Aに戻る(時 刻T5)。次に、切削速度V2に切り換えられ、座標B まで下降する。座標Bに到達すると(時刻T6)、早送 20 り速度VOに切り換えられ、上昇して座標Aに戻り(時 刻T7)、引き続き座標20に戻り(時刻T8)、加工 を終了する。

【0006】そして、ドリル5に付着した切粉は、ドリ ル5が距離fを往復する間に除去される結果、真直度に 優れ、穴の内面が滑らかな高品質な穴を加工することが できる。

【0007】ところで、プリント基板は、製造過程で板 厚が5~10%程度ばらつく。下板の厚さを均一にそろ えると、テーブル4の表面に対する座標Bは、プリント 基板の板厚がばらついても変わらない。したがって、テ ーブル4の表面を基準とし、ドリルの先端を座標Bまで 切り込ませれば、プリント基板の板厚にばらつきがあっ ても、最下層のプリント基板に貫通穴を加工することが できる。なお、座標Rから座標Bまでの距離 gは0.5 mm程度に設定される。また、引出位置Aを、プリント 基板の板厚の最大公差に合わせて、高い位置に設定して おけば、プリント基板の板厚がばらついても、切粉を確 実に排除できる。

【0008】しかし、プリント基板に加工する穴数は数 万に及ぶことがある。しかも、1個の穴を複数回で加工 する場合、引出距離 f を長くすると、加工時間が大幅に 増加する。

【0009】加工時間を縮めるには、引出距離fを最小 にすることが有効である。そこで、ワークが換わる毎に 座標Sを求め、この位置を基準として引出位置Aを定め る。

【0010】図5は、座標Sすなわち座標20から上板 1の表面までの距離を測定する手順を示す図である。図 で、6は測定子で、位置測定装置7に支持されている。

3

Oに配置する。この時、測定子6の先端は、ZOからa だけ下方の位置にある。次に、(b)に示すように、位 置測定装置7を座標20からりだけ下げる。この時、測 定端子6が押し込まれた量がcであるとする。すると、 座標20を原点とし、切り込み方向をプラスとすると、 座標 S は式 1 により求められる。また、座標 S から座標 Bまでの距離、すなわち穴の深さHは式2により求めら

 $S = a + b - c \cdots \vec{x} 1$

H=B-S······式2

なお、座標Aの、A=S-fとして求められる。

【0011】しかし、切り込み量hiは固定されている から、プリント基板2の板厚が公差内で厚い場合、ドリ ル5の先端が座標Bに到達しないことがある。そこで、 以下のようにして、切り込み回数を決定する。

【0012】図6は、従来の切り込み回数 i を決定する 手順を示すフローチャートである。NC装置は、まず、 座標Sを求め(手順S100)、深さHをH=B-Sと して求める(手順S110)。次に、深さHとΣhiを 比較し(手順S120)、H≦Σhiの場合は処理を終 20 了し、 $H>\Sigma h$ i の場合は手順S130の処理を行う。 手順S130では $hi+1=H-\Sigma hi$ としてから、hi+1を記憶して(手順S140)処理を終了する。す なわち、座標Sと座標Bの距離HがΣiよりも大きい場 合は、切り込み回数を1回増加させる。

【0013】なお、プリント基板2の材質、およびドリ ル5の材質により、適切な切り込み量が異なるため、実 験を行い、その結果に基づいて各切り込み量が決定され る。通常、h1≥h2≥h3に決められることが多く、 場合、f=1.0mm、h1=2.0mm、h2=1.

[0014]

【発明が解決しようとする課題】しかし、従来の方法で は、最終の切り込み深さhi+1が0に近い値であって も、切り込み回数を1回増加させるから、加工時間が大 幅に増加し、作業能率が低下した。

【0015】本発明の目的は、上記従来技術における課 題を解決し、加工能率を向上させることができるプリン ト基板の穴明け方法を提供するにある。

[0016]

【課題を解決するための手段】上記の目的を達成するた め、請求項1の発明は、予め第i回(i=1~nの整 数)の切り込み量hiを定めておき、深さが前記切り込 み量h i の総和Σh i の穴をn回に分けて穴明けをする プリント基板の穴明け加工方法において、加工すべき穴 の深さHと前記総和∑hiとの差k(k=H-∑hi) が正で、かつ予め定める許容値αよりも小さい場合は、 前記切り込み量hiのいずれか1つをkだけ増加させて 加工することを特徴とする。

【0017】また、請求項2の発明は、予め第i回(i =1~nの整数)の切り込み量hiを定めておき、深さ が前記切り込み量hiの総和Shiの穴をn回に分けて 穴明けをするプリント基板の穴明け加工方法において、 加工すべき穴の深さΗと前記総和Σhiとの差k(k= $H-\Sigma h i$)が正で、かつk/nが予め定める許容値 β

よりも小さい場合は、前記各切り込み量hiを切り込み 量hi+k/nに置き換えて加工することを特徴とす

10 [0018]

る。

【発明の実施の形態】以下、本発明を図示の実施の形態 に基づいて説明する。この実施の形態では、図示を省略 するプリント基板穴明機のNC装置に、予め従来と同様 の諸元、すなわち、ドリルの径毎の第i回の切り込み量 hiと、座標ZO、Bおよび引出距離fに加え、許容量 αおよび使用するドリルの許容切削量hmが記憶させて ある。

【0019】図1は、本発明の第1の実施の形態に係る 切り込み回数および各切り込み量を決定する手順を示す フローチャートである。NC装置は、まず、座標Sを求 め(手順S200)、深さHをB-Sとして求める(手 順S210)。次に、深さHとΣhiを比較し(手順S 220)、H≦∑h i の場合は処理を終了し、H>∑h iの場合は手順S230の処理を行う。手順S230で ab は α と k (ただし、 $k = H - \Sigma h i$) とを比較し、 $k \le H - \Sigma h i$ α の場合は手順S240の処理を行い、 $k>\alpha$ の場合は 手順S260の処理を行う。手順S240では、h1+ kとhmとを比較し、h1+k≤hmの場合はすでに記 憶してあるh1をh1+kに置き換えて処理を終了し、 例えば0.5mmのドリルで深さ4mmの穴を加工する 30 h1+k>hmの場合は手順S260の処理を行う。手 順S260ではhi+1=kとしてhi+1を記憶し、 処理を終了する。

> 【0020】この実施の形態では、第1の中間位置M1 までの切り込み量を変えるだけであり、他の切り込み量 は変えないから、切り込み回数が多い場合でも、穴の内 面の品質が低下することはほとんどない。

【0021】また、h1+kが許容切削量hmを越えな いようにしたからドリルの寿命が短くなることもない。 【0022】なお、通常はh1≥h2≥…h i≥…h n 40 とするから、h1に代えて他の切り込み量、例えばhn を変えても良い。

【0023】図2は、本発明の第2の実施の形態に係 る、切り込み回数iおよび各切り込み量hiを決定する 手順を示す他のフローチャートである。この第2の実施 の形態では、上記第2の実施の形態における許容量αに 代えて許容量βが記憶させてある。NC装置は、まず、 座標Sを求め(手順S300)、深さHをH=B-Sと して求める(手順S310)。次に、深さHとΣhiを 比較し(手順S320)、H≦Σhiの場合は処理を終 50 了し、H>Σh i の場合は手順S330の処理を行う。

5

手順S330では β とk/n(ただし、 $k=H-\Sigma h$ i)とを比較し、 $k/n \le \beta$ の場合は手順S340の処理を行い、 $k/n > \beta$ の場合は手順S350の処理を行う。手順S340ではすでに記憶してある各hiをhi = hi + k/nに置き換えて処理を終了する。また、手順S350ではhi + 1 = kとしてhi + 1を記憶し、処理を終了する。

【0024】この第20実施の形態では、各切り込み量 hiek/nだけ長くするから、上記第1の実施の形態 に比べ、nが大きい場合には β の値を α より大きくしても、切り込み回数が増加しない。また、例えば、 $\beta=\alpha$ /3にしておくと、3回で加工する場合には、第1回の切り込み量が上記第1の実施の形態の1/3になり、ドリルに加わる負荷を小さくできる。

[0025]

【発明の効果】以上説明したように、本発明によれば、予め第i回($i=1\sim n$ の整数)の切り込み量hiを定めておき、深さが前記切り込み量hiの総和 Σ hiの穴をn回に分けて穴明けをするプリント基板の穴明け加工方法において、加工すべき穴の深さHと前記総和 Σ hiとの差k($k=H-\Sigma$ hi)が正で、かつ予め定める許容値 α よりも小さい場合は、前記切り込み量hiのいずれか1つをkだけ増加させ、あるいは差kが正で、かつk/nが予め定める許容値 β よりも小さい場合は、前記各切り込み量hiを切り込み量hiを切り込み量hiを切り込み量hiを初り込み量hiを初り込み量hiを初り込み量hiを初り込み量

て加工するから、最終回の切り込み量が微小な場合に は、切り込み回数が増加せず、加工能率を向上させるこ とができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態に係る、切り込み回数および各切り込み量を決定する手順を示すフローチャートである。

【図2】本発明の第2の実施の形態に係る、切り込み回数および各切り込み量を決定する手順を示すフローチャ10 ートである。

【図3】プリント基板に穴明けを行う場合の構成を示す側面図である。

【図4】深さHを3回に分けて加工する場合の手順を示す図である。

【図5】テーブルの表面から上板の表面までの高さPを 測定する手順を示す図である。

【図6】従来の切り込み回数 i を決定する手順を示すフローチャートである。

【符号の説明】

- 20 h i 第 i 回の切り込み量
 - k 差(H-Σhi)
 - H 穴の深さ
 - n 切り込み回数
 - α 許容値
 - β 許容値

【図1】

【図2】

[図1]

[図2]

