Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	5	/	0	1	Signature	

Paper Reference(s)

6665/01

Edexcel GCE

Core Mathematics C3

Advanced

Thursday 11 June 2009 – Morning

Time: 1 hour 30 minutes

Materials	required	for	examination
Mathamati	aal Earman	1100	(Orongo or

Items included with question papers

Mathematical Formulae (Orange or

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

Green)

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

H34264A
W850/R6665/57570 4/5/5/3

Examiner's use only

Team Leader's use only

1

3

4

5

6

7

Turn over

1.

Figure 1

Figure 1 shows part of the curve with equation $y = -x^3 + 2x^2 + 2$, which intersects the x-axis at the point A where $x = \alpha$.

To find an approximation to α , the iterative formula

$$x_{n+1} = \frac{2}{(x_n)^2} + 2$$

is used.

(a) Taking $x_0 = 2.5$, find the values of x_1 , x_2 , x_3 and x_4 . Give your answers to 3 decimal places where appropriate.

(3)

blank

(b) Show that $\alpha = 2.359$ correct to 3 decimal places.

(3)

Question 1 continued	Ldbi
	Q1

2. (a) Use the identity $\cos^2 \theta + \sin^2 \theta = 1$ to prove that $\tan^2 \theta = \sec^2 \theta - 1$.		
. (, 222 222) 222.3 S.m. v . 2 to prove that v v . 500 v . 1.	(2)	
(b) Solve, for $0 \le \theta \le 360^{\circ}$, the equation		
$2\tan^2\theta + 4\sec\theta + \sec^2\theta = 2$		
	(6)	

Question 2 continued	Lea blar
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	-
	-
	_
	-
	_
	_
	_
	_
	_
	_
	_
	_
	_
	-
	-
	-
	-
	Q2

3.	Rabbits were introduced onto an island. The number of rabbits, P , t years after they were introduced is modelled by the equation
	$P = 80e^{\frac{1}{8}t}, \qquad t \in \mathbb{R}, \ t \geqslant 0$
	(a) Write down the number of rabbits that were introduced to the island. (1)
	(b) Find the number of years it would take for the number of rabbits to first exceed 1000.
	(2)
	(c) Find $\frac{dP}{dt}$.
	(d) Find P when $\frac{dP}{dt} = 50$.
_	

Question 3 continued	Leave

Question 3 continued	bl

Question 3 continued	Leave blank
	Q3
(Total 8 marks)	

Leave
blank
Olding

4.	(i)	Differentiate with respect to x
		(a) $x^2 \cos 3x$
		(b) $\frac{\ln(x^2+1)}{x^2+1}$

(ii) A curve C has the equation

$$y = \sqrt{(4x+1)}, \ x > -\frac{1}{4}, \ y > 0$$

The point P on the curve has x-coordinate 2. Find an equation of the tangent to C at P in the form ax + by + c = 0, where a, b and c are integers.

(6)

(3)

(4)

	Leave
Question 4 continued	Oldlik
	1

Question 4 continued	

Question 4 continued	Leave blank
	Q4
(Total 13 marks)	

5.

Leave blank

Figure 2

Figure 2 shows a sketch of part of the curve with equation y = f(x), $x \in \mathbb{R}$. The curve meets the coordinate axes at the points A(0,1-k) and $B(\frac{1}{2}\ln k,0)$, where k is a constant and k > 1, as shown in Figure 2.

On separate diagrams, sketch the curve with equation

(a)
$$y = |f(x)|,$$
 (3)

(b)
$$y = f^{-1}(x)$$
. (2)

Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes.

Given that $f(x) = e^{2x} - k$,

(c) state the range of f, (1)

(d) find $f^{-1}(x)$, (3)

(e) write down the domain of f^{-1} . (1)

Question 5 continued	Leave blank

Question 5 continued	b

Question 5 continued	Leav
	-
	-
	-
	-
	_
	_
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	_
	_
	_
	_
	_
	_
	_
	-
	-
	-
	-
	-
	-
	Q:
(Total 10 marks)	

Leave
11 1

(a) Use the identity $\cos(A+B) = \cos A \cos B - \sin A \sin B$, to show that	
$\cos 2A = 1 - 2\sin^2 A$	(2)
The curves C_1 and C_2 have equations	
C_1 : $y = 3\sin 2x$	
$C_2: y = 4\sin^2 x - 2\cos 2x$	
(b) Show that the x-coordinates of the points where C_1 and C_2 intersect satis equation	fy the
$4\cos 2x + 3\sin 2x = 2$	(3)
	< 90°,
giving the value of α to 2 decimal places.	(3)
(d) Hence find, for $0 \le x < 180^{\circ}$, all the solutions of	
$4\cos 2x + 3\sin 2x = 2$	
giving your answers to 1 decimal place.	(4)
	The curves C_1 and C_2 have equations $C_1: y=3\sin 2x$ $C_2: y=4\sin^2 x-2\cos 2x$ (b) Show that the x -coordinates of the points where C_1 and C_2 intersect satisfied equation $4\cos 2x+3\sin 2x=2$ (c) Express $4\cos 2x+3\sin 2x$ in the form $R\cos (2x-\alpha)$, where $R>0$ and $0<\alpha$ giving the value of α to 2 decimal places. (d) Hence find, for $0\leqslant x<180^\circ$, all the solutions of $4\cos 2x+3\sin 2x=2$

18

Question 6 continued	Leave blank

Question 6 continued	

Question 6 continued	Leave blank
	Q6
(Total 12 marks)	

7. The function f is defined by

$$f(x) = 1 - \frac{2}{(x+4)} + \frac{x-8}{(x-2)(x+4)}, \quad x \in \mathbb{R}, \ x \neq -4, \ x \neq 2$$

(a) Show that $f(x) = \frac{x-3}{x-2}$ (5)

The function g is defined by

$$g(x) = \frac{e^x - 3}{e^x - 2}, \quad x \in \mathbb{R}, \ x \neq \ln 2$$

- (b) Differentiate g(x) to show that $g'(x) = \frac{e^x}{(e^x 2)^2}$ (3)
- (c) Find the exact values of x for which g'(x) = 1 (4)

Question 7 continued	Leave blank

Question 7 continued	

Question 7 continued	Leav blan
	\mathbf{Q}'
(Total 12 marks)	

	L
8. (a) Write down $\sin 2x$ in terms of $\sin x$ and $\cos x$.	(1)
(b) Find, for $0 < x < \pi$, all the solutions of the equation	
$\csc x - 8\cos x = 0$	
giving your answers to 2 decimal places.	(5)

Question 8 continued	Leave blank

Question 8 continued		bla
Question o continueu		
		Q8
	(Total 6 ma	rks)
	TOTAL FOR PAPER: 75 MAR	RKS
	END	