، $K_N = K_P = 80^{-\mu A}/_{V^2}$ ، $V_{TP} = -1^v$ ، $V_{TN} = 1^v$ با CMOS با CMOS با را برای معکوس کننده t_{PLH} و خازن بار با ظرفیت $C_L = 0.1^{PF}$ محاسبه نمایید.

noise margin با مشخصات زیر در نظر بگیرید، سپس مقادیر V_{IH} ، V_{IL} ، V_{OH} ، V_{OL} ، سپس مقادیر CMOS با مشخصات زیر در نظر بگیرید، سپس مقادیر برای این گیت بیابید.

$$V_{DD} = 3.3^{v}$$
, $K_{N} = 200 \, {^{\mu A}/_{V^{2}}}$, $K_{P} = 8o \, {^{\mu A}/_{V^{2}}}$, $V_{TN} = 0.6^{v}$, $V_{TP} = -0.7^{v}$

3- در مدار روبرو به ازای مقادیر مختلف مقاومت Rx اندازه ولتاژ خروجی تغییر می کند. با استدلال بگویید به ازای مقادیر مختلف ولتاژ خروجی ترانزیستورهای Mn و Mp در کدام ناحیه کاری هستند؟ پاسخ را در قالب جدول ارایه کرده و حداکثر 3 سطر توضیح دهید.

A 0—1 5/2 B 0—1 5/2 V_{out} $V_{dd}=3.3^{v}$, $V_{tn}=0.8^{v}$, $V_{tp}=-0.9^{v}$, $V_$

4- برای گیت روبرو ولتاژ آستانه را بدست آورید.

5- در مدار روبرو سطوح ولتاژ صفر و یک منطقی را بدست آورید. V_{TNL} = -1.5 v , V_{TN} =+0.8 v , K_{D}/K_{L} =3 V_{L} =0 V_{L} =0

