6-th Balkan Mathematical Olympiad

Split, Yugoslavia – April 29 - May 6, 1989

- 1. Let $1=d_1 < d_2 < \cdots < d_k = n$ be all divisors of a positive integer n. Find all n such that $k \ge 4$ and $d_1^2 + d_2^2 + d_3^2 + d_4^2 = n$. (Bulgaria)
- 2. Let $\overline{a_n \dots a_1 a_0} = 10^n a_n + \dots + 10 a_1 + a_0$ be the decimal representation of a prime number. If n > 1 and $a_n > 1$, prove that the polynomial

$$P(x) = a_n x^n + \dots + a_1 x + a_0$$

is irreducible (over $\mathbb{Z}[x]$).

(Yugoslavia)

3. A line l intersects the sides AB and AC of a triangle ABC at points B_1 and C_1 , respectively, so that the vertex A and the centroid G of $\triangle ABC$ lie in the same half-plane determined by l. Prove that

$$S_{BB_1GC_1} + S_{CC_1GB_1} \ge \frac{4}{9} S_{ABC}. (Greece)$$

- 4. Consider all families \mathscr{F} of subsets of $\{1,2,\ldots,n\}$ which satisfy:
 - (i) If $A \in \mathcal{F}$, then |A| = 3;
 - (ii) If $A, B \in \mathscr{F}$ and $A \neq B$, then $|A \cap B| \leq 1$.

Let f(n) denote the maximum value of $|\mathcal{F}|$ over all such \mathcal{F} . Prove that

$$\frac{1}{6}(n^2 - 4n) \le f(n) \le \frac{1}{6}(n^2 - n).$$
 (Romania)

