一. 随机事件和概率

1、概率的定义和性质

(1) 概率的公理化定义

设 Ω 为样本空间,A为事件,对每一个事件A都有一个实数P(A),若满足下列三个条件:

$$1^{\circ}$$
 $0 \leq P(A) \leq 1$,

$$2^{\circ}$$
 P(Ω) =1

3° 对于两两互不相容的事件 A_1 , A_2 , …有

$$P\left(\sum_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

常称为可列 (完全) 可加性。

则称 P(A) 为事件 A 的概率。

(2) 古典概型 (等可能概型)

1°
$$\Omega = \{\omega_1, \omega_2 \wedge \omega_n\},$$

$$2^{\circ} P(\omega_1) = P(\omega_2) = \Lambda P(\omega_n) = \frac{1}{n}$$

设任一事件A,它是由 $\omega_1, \omega_2 \Lambda \omega_m$ 组成的,则有 $P(A)=\{(\omega_1) Y(\omega_2) Y \Lambda Y(\omega_m)\}$

$$=P(\omega_1)+P(\omega_2)+\Lambda+P(\omega_m)$$

$$=\frac{m}{n}=\frac{A$$
所包含的基本事件数
基本事件总数

2、五大公式(加法、减法、乘法、全概、

贝叶斯)

(1) 加法公式

P(A+B)=P(A)+P(B)-P(AB)

当 P(AB) = 0 时, P(A+B) = P(A) + P(B)

(2) 减法公式

P(A-B)=P(A)-P(AB)

当 B ⊂ A 时, P (A-B) = P (A) - P (B)

当 A=Ω时, $P(\overline{B})$ =1- P(B)

(3) 条件概率和乘法公式

定义 设 A、B 是两个事件,且 P(A)>0,则称 $\frac{P(AB)}{P(A)}$ 为事件

A 发生条件下,事件 B 发生的条件概率,记为

$$P(B/A) = \frac{P(AB)}{P(A)} .$$

条件概率是概率的一种,所有概率的性质都适合于条件概率。

(4) 全概公式

设事件 B_1, B_2, Λ , B_n 满足

 $_1$ 。 B_1, B_2, Λ , B_n 两 页 不 相 容 , $P(B_i) > 0 (i = 1, 2, \Lambda$,n) .

$$A \subset \overset{n}{\underset{i=1}{\mathbf{Y}}} B_i$$

 $P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \Lambda + P(B_n)P(A \mid B_n)$

此公式即为全概率公式。

(5) 贝叶斯公式

2, ..., n,

设事件 B_1 , B_2 , ..., B_n 及 A 满足 1° B_1 , B_2 , ..., B_n 两两互不相容, $P(Bi)_{>0}$, i = 1,

$$\begin{array}{ccc}
A \subset \overset{n}{\underset{i=1}{\mathbf{Y}}} B_i \\
& & \\
Bill & & \\
\end{array}, \quad P(A) > 0,$$

$$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{\sum_{j=1}^{n} P(B_j)P(A/B_j)}, \text{ i=1, 2, } \dots \text{n.}$$

此公式即为贝叶斯公式。

 $P(B_i)$,(i=1,2,...,n),通常叫先验概率。 $P(B_i/A)$,(i=1,2,...,n),通常称为后验概率。如果我们把A 当作观察的"结果",而 B_1 , B_2 ,..., B_n 理解为"原因",则贝叶斯公式反映了"因果"的概率规律,并作出了"由果朔因"的推断。

3、事件的独立性和伯努利试验

(1) 两个事件的独立性

设事件A、B满足P(AB) = P(A)P(B),则称事件A、B是相互独立的(这个性质不是想当然成立的)。

若事件A、B相互独立,且P(A) > 0,则有

$$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$$

所以这与我们所理解的独立性是一致的。

若事件A、B相互独立,则可得到 \overline{A} 与 \overline{B} 、 \overline{A} 与 \overline{B} 也都相互独立。(证明)

由定义,我们可知必然事件 Ω 和不可能事件 \emptyset 与任何事件都相互独立。(证明)

同时, Ø与任何事件都互斥。

(2) 多个事件的独立性

设 ABC 是三个事件,如果满足两两独立的条件,

P(AB)=P(A)P(B); P(BC)=P(B)P(C); P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。 两两互斥→互相互斥。 两两独立→互相独立?

(3) 伯努利试验

定义 我们作了n次试验,且满足

- lacktriangle 每次试验只有两种可能结果,A发生或A不发生;
- ◆ n次试验是重复进行的,即 A 发生的概率每次均一样:
- lacktriangle 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否是互不影响的。

这种试验称为伯努利概型,或称为n重伯努利试验。

用 P 表示每次试验 A 发生的概率,则 \overline{A} 发生的概率为 1-p=q ,用 $P_n(k)$ 表示 n 重伯努利试验中 A 出现 $k(0 \le k \le n)$ 次的概率,

二. 随机变量及其分布

1、随机变量的分布函数

(1) 离散型随机变量的分布率

设离散型随机变量 X 的可能取值为 $X_k(k=1,2,\cdots)$ 且取各个值的概率,即事件 $(X=X_k)$ 的概率为

 $P(X=x_k)=p_k, k=1, 2, \dots,$

则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:

$$\frac{X}{P(X=x_k)} \left| \frac{x_1, x_2, \Lambda, x_k, \Lambda}{p_1, p_2, \Lambda, p_k, \Lambda} \right|_{\circ}$$

显然分布律应满足下列条件:

(1)
$$p_k \ge 0$$
, $k = 1, 2, \Lambda$,

$$\sum_{k=1}^{\infty} p_k = 1$$

(2) 分布函数

对于非离散型随机变量,通常有P(X=x)=0,不可

能用分布率表达。例如日光灯管的寿命 X, $P(X = x_0) = 0$ 。

所以我们考虑用X落在某个区间(a,b]内的概率表示。

定义 设X 为随机变量,x 是任意实数,则函数 $F(x) = P(X \le x)$

称为随机变量 X 的分布函数。

$$P(a < X \le b) = F(b) - F(a)$$
 可以得到 X 落入区

间 (a,b] 的概率。也就是说,分布函数完整地描述了随机变量 X 随机取值的统计规律性。

分布函数 F(x) 是一个普通的函数,它表示随机变量落入区间(- ∞ , x]内的概率。

F(x) 的图形是阶梯图形, x_1, x_2, Λ 是第一类间断

点,随机变量 X 在 x_k 处的概率就是 F(x) 在 x_k 处的跃度。

分布函数具有如下性质:

$$1^{\circ}$$
 $0 \le F(x) \le 1$, $-\infty < x < +\infty$;

 2° F(x) 是单调不减的函数,即 $x_1 < x_2$ 时,有

$$F(x_1) \leq F(x_2);$$

$$3^{\circ} \qquad F(-\infty) = \lim_{x \to \infty} F(x) = 0$$

$$F(+\infty) = \lim_{x \to +\infty} F(x) = 1;$$

$$4^{\circ}$$
 $F(x+0) = F(x)$, 即 $F(x)$ 是右连续的;

$$5^{\circ}$$
 $P(X = x) = F(x) - F(x - 0)$.

(3) 连续型随机变量的密度函数

定义 设F(x)是随机变量X的分布函数,若存在非负函数f(x),对任意实数x,有

$$F(x) = \int_{-\infty}^{x} f(x) dx$$

则称 X 为连续型随机变量。 f(x) 称为 X 的概率密度函数或密度函数,简称概率密度。 f(x) 的图形是一条曲线,称为密度(分布)曲线。

由上式可知,连续型随机变量的分布函数F(x)是连续函数。

所以,

$$P(x_1 \le X \le x_2) = P(x_1 < X \le x_2) = P(x_1 \le X < x_2) = P(x_1 < X < x_2) = F(x_2) - F(x_1)$$

密度函数具有下面 4 个性质:

$$1^{\circ}$$
 $f(x) \ge 0$

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

 $F(+\infty) = \int_{-\infty}^{+\infty} f(x)dx = 1$ 的几何意义;在横轴上面、密度曲线下面的全部面积等于 1。

如果一个函数 f(x) 满足 1° 、 2° ,则它一定是某个随机变量的密度函数。

3°
$$P(x_1 < X \le x_2) = F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(x) dx$$

 4° 若 f(x) 在 x 处连续,则有 F'(x) = f(x)。

$$P(x < X \le x + dx) \approx f(x)dx$$

它在连续型随机变量理论中所起的作用与 $P(X = x_k) = p_k$ 在离散型随机变量理论中所起的作用相类似。

$$E \to \omega, \Omega \to A \to P(A)$$
,(古典概型, 五大公式,

$$X(\omega) \to X(\omega) \le x \to F(x) = P(X \le x)$$

对于连续型随机变量 X ,虽然有 P(X=x)=0 ,但事件 $(X=x)_{\dot{H}} = 1$ 非是不可能事件 \emptyset 。

$$P(X = x) \le P(x < X \le x + h) = \int_{x}^{x+h} f(x)dx$$

令 $h \to 0$,则右端为零,而概率 $P(X = x) \ge 0$,故得 P(X = x) = 0 。

不可能事件(\emptyset)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为 1,而概率为 1的事件也不一定是必然事件。

2、常见分布

①0-1 分布

P(X=1) = p, P(X=0) = q

②二项分布

在n 重贝努里试验中,设事件A 发生的概率为p。事件A 发生的次数是随机变量,设为X,则X 可能取值为 $0,1,2,\Lambda$,n。

$$P(X = k) = P_n(k) = C_n^k p^k q^{n-k}$$
 , 其 中 $q = 1 - p, 0 , n ,$

则称随机变量 X 服从参数为n,p 的二项分布。记为

$$X \sim B(n, p)$$
.

$$\frac{X}{P(X=k)} | \frac{1}{q^{n}, npq^{n-1}, C_{n}^{2} p^{2} q^{n-2}, \Lambda, C_{n}^{k} p^{k} q^{n-k}, \Lambda, p^{n}}$$

容易验证,满足离散型分布率的条件。

当n=1时, $P(X=k)=p^kq^{1-k}$,k=0.1,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。

③泊松分布

设随机变量 X 的分布律为

$$P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}$$
, $\lambda > 0$, $k = 0,1,2\Lambda$,

独立性)

则称随机变量 X 服从参数为 λ 的泊松分布,记为 $X \sim \pi(\lambda)$ 或者 $P(\lambda)$ 。

泊松分布为二项分布的极限分布 $(np=\lambda, n\to\infty)$ 。

④超几何分布

$$P(X = k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, \frac{k = 0.1.2\Lambda, l}{l = \min(M, n)}$$

随机变量 X 服从参数为 n, N, M 的超几何分布。

⑤几何分布

 $P(X = k) = q^{k-1}p, k = 1,2,3,\Lambda$,其中 p \geqslant 0,q=1-p。

随机变量 X 服从参数为 p 的几何分布。

⑥均匀分布

设随机变量 X 的值只落在[a, b]内,其密度函数 f(x) 在 [a, b]上为常数 k,即

$$f(x) = \begin{cases} k, & \text{a < x < b} \\ 0, & \text{ 其他,} \end{cases}$$

其中
$$k=\frac{1}{h-a}$$
,

则称随机变量 X 在[a, b]上服从均匀分布,记为 $X^U(a, b)$

分布函数为

$$\begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \le x \le b \end{cases}$$

Edited by 杨凯钧 2005年10月

$$F(x) = \int_{-\infty}^{x} f(x)dx =$$
1, x>b.

当 a \leq x₁ \leq x₂ \leq b 时, X 落在区间 (X_1 , X_2) 内的概率为

$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} f(x) dx = \int_{x_1}^{x_2} \frac{1}{b-a} dx = \frac{x_2 - x_1}{b-a}$$

⑦指数分布

设随机变量 X 的密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

其中 $\lambda > 0$,则称随机变量 X 服从参数为 λ 的指数分布。 X 的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

记住几个积分:

$$\int_{0}^{+\infty} xe^{-x} dx = 1,$$

$$\int_{0}^{+\infty} x^{n-1} e^{-x} dx = (n-1)!$$

$$\Gamma(\alpha) = \int_{0}^{+\infty} x^{\alpha-1} e^{-x} dx, \qquad \Gamma(\alpha+1) = \alpha \Gamma(\alpha)$$

⑧正态分布

设随机变量X的密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < +\infty,$$

其中 μ 、 $\sigma>0$ 为常数,则称随机变量X 服从参数为 μ 、 σ 的 正 态 分 布 或 高 斯 (Gauss) 分 布 , 记 为 $X\sim N(\mu,\sigma^2)$

f(x) 具有如下性质:

f(x) 的图形是关于 $x = \mu$ 对称的;

$$2^{\circ}$$
 当 $x = \mu$ 时, $f(\mu) = \frac{1}{\sqrt{2\pi\sigma}}$ 为最大值;

f(x) 以 ox 轴为渐近线。

特别当 σ 固定、改变 μ 时,f(x)的图形形状不变,只是集体沿ox轴平行移动,所以 μ 又称为位置参数。当 μ 固定、改变 σ 时,f(x)的图形形状要发生变化,随 σ 变大,f(x)图形的形状变得平坦,所以又称 σ 为形状参数。

$$_{\stackrel{.}{H}}X \sim N(\mu,\sigma^2)$$
,则 X 的分布函数为

$$F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
, $-\infty < x < +\infty$,

分布函数为

$$\Phi(x) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
 。 $\Phi(x)$ 是不可求积函数,其函数值,

已编制成表可供查用。

Φ(x)和 Φ(x)的性质如下:

1° $\phi(x)$ 是偶函数, $\phi(x) = \phi(-x)$;

$$2^{\circ}$$
 当 $x=0$ 时, $\Phi(x) = \frac{1}{\sqrt{2\pi}}$ 为最大值;

3°
$$\Phi(-x) = 1 - \Phi(x) \perp \Phi(0) = \frac{1}{2}$$
.

如果
$$X^{\sim}N(\mu,\sigma^2)$$
,则 $\frac{X-\mu}{\sigma}^{\sim}N(0,1)$ 。

所以我们可以通过变换将 F(x) 的计算转化为 $\Phi(x)$ 的计算,而 $\Phi(x)$ 的值是可以通过查表得到的。

$$P(x_1 < X \le x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right)$$

分位数的定义

3、随机变量函数的分布

随机变量Y是随机变量X的函数Y = g(X), 若X的分

布函数 $F_{x}(x)$ 或密度函数 $f_{x}(x)$ 知道, 则如何求出

Y = g(X)的分布函数 $F_Y(y)$ 或密度函数 $f_Y(y)$ 。

(1) X 是离散型随机变量

已知X的分布列为

$$\frac{X}{P(X=x_i)} \left| \frac{x_1, x_2, \Lambda, x_n, \Lambda}{p_1, p_2, \Lambda, p_n, \Lambda} \right|,$$

显然, Y = g(X) 的 取 值 只 可 能 是 $g(x_1), g(x_2), \Lambda, g(x_n), \Lambda$,若 $g(x_i)$ 互不相等,则 Y 的 分布列如下:

$$\frac{Y}{P(Y=y_i)} \left| \frac{g(x_1), g(x_2), \Lambda, g(x_n), \Lambda}{p_1, p_2, \Lambda, p_n, \Lambda} \right|,$$

若有某些 $g(x_i)$ 相等,则应将对应的 P_i 相加作为 $g(x_i)$ 的概率。

(2) X 是连续型随机变量

先利用 X 的概率密度 $f_x(x)$ 写出 Y 的分布函数 $F_Y(y)$,再利用 变上下限积分的求导公式求出 $f_Y(y)$ 。

三. 二维随机变量及其分布

1、二维随机变量的基本概念

(1) 二维连续型随机向量联合分布密度及边缘分布

对于二维随机向量 $\xi=(X,Y)$, 如果存在非负函数

 $f(x,y)(-\infty < x < +\infty, -\infty < y < +\infty)$,使对任意一个其邻边分别平行于坐标轴的矩形区域 D,即 D={(X,Y)|a<x<b,c<y<d}有

$$P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy,$$

则称 ξ 为连续型随机向量;并称 f(x,y)为 $\xi=(X,Y)$ 的分布密度或称为 X 和 Y 的联合分布密度。

分布密度 f(x, y) 具有下面两个性质:

(1) $f(x, y) \ge 0$;

(2)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$$

一般来说,当(X, Y)为连续型随机向量,并且其联合分布密度为 f(x, y),则 X 和 Y 的边缘分布密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy, f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$$

注意: 联合概率分布→边缘分布

(2) 条件分布

当(X, Y)为离散型,并且其联合分布律为

$$P\{(X,Y) = (x_i, y_j)\} = p_{ij}(i, j = 1,2,\Lambda),$$

在已知 $X=x_i$ 的条件下,Y 取值的条件分布为

$$P(Y = y_j \mid X = x_i) = \frac{p_{ij}}{p_{i\bullet}},$$

其中 p_i , p_i 分别为 X, Y 的边缘分布。

当(X,Y)为连续型随机向量,并且其联合分布密度为 f(x,y),则在已知 Y=v 的条件下,X 的条件分布密度为

$$f(x \mid y) = \frac{f(x, y)}{f_y(y)}$$

在已知 X=x 的条件下, Y 的条件分布密度为

$$f(y \mid x) = \frac{f(x, y)}{f_x(x)}$$

其中 $f_X(x) > 0$, $f_Y(y) > 0$ 分别为 X, Y 的边缘分布密度。

(3) 常见的二维分布

①均匀分布

设随机向量(X, Y)的分布密度函数为

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & 其他 \end{cases}$$

其中 S_D 为区域 D 的面积,则称 (X, Y) 服从 D 上的均匀分布,记为 $(X, Y) \sim U$ (D)。

②正态分布

设随机向量(X, Y)的分布密度函数为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]},$$

其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, |\rho| < 1$, 共 5 个参数,则称 (X, Y) 服从二维正态分布,

记为 (X, Y)
$$\sim$$
N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$).

由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,反推则错。

即 X~N (
$$\mu_1, \sigma_1^2$$
), $Y \sim N(\mu_2, \sigma_2^2$).

(5) 二维随机向量联合分布函数及其性质

设(X, Y)为二维随机变量,对于任意实数 x, y, 二元函数

$$F(x, y) = P\{X \le x, Y \le y\}$$

称为二维随机向量(X,Y)的分布函数,或称为随机变量 X 和 Y 的联合分布函数。

分布函数是一个以全平面为其定义域,以事件 $\{(\omega_1,\omega_2)|-\infty < X(\omega_1) \le x,-\infty < Y(\omega_2) \le y\}$ 的概率为函数值的一个实值函数。分布函数 F(x,y) 具有以下的基本性质:

(1)
$$0 \le F(x, y) \le 1$$
;

(2) F(x,y) 分别对 x 和 y 是非减的,即 当 $x_2 > x_1$ 时,有 $F(x_2,y) \ge F(x_1,y)$; 当 $y_2 > y_1$ 时,有 $F(x,y_2) \ge F(x,y_1)$;

(3) F(x,y) 分别对 x 和 y 是右连续的,即

$$F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);$$
(4)

$$F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$$

2、随机变量的独立性

(1) 连续型随机变量

 $f(x, y) = f_X(x) f_Y(y)$

联合分布→边缘分布→ $f(x, y)=f_x(x)f_y(y)$

直接判断, 充要条件:

- ①可分离变量
- ②正概率密度区间为矩形

(2) 二维正态分布

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]},$$

 $\rho = 0$

(3) 随机变量函数的独立性

若 X 与 Y 独立, h, g 为连续函数, 则: h (X) 和 g (Y) 独立。

四. 随机变量的数字特征

(1) 一维随机变量及其函数的期望

①设 X 是离散型随机变量,其分布律为 $P(X = x_k) = p_k$,

 $k=1,2,\cdots,n$

$$E(X) = \sum_{k=1}^{n} x_k p_k$$

期望就是平均值。

②设 X 是连续型随机变量, 其概率密度为 f(x),

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

- ③数学期望的性质
 - (1) E(C)=C
 - (2) E(CX)=CE(X)

(3)
$$E(X+Y)=E(X)+E(Y), E(\sum_{i=1}^{n} C_i X_i) = \sum_{i=1}^{n} C_i E(X_i)$$

- (4) E(XY)=E(X) E(Y), 充分条件: X 和 Y 独立; 充要条件: X 和 Y 不相关。
- (5) Y=g(X)

离散:
$$E(Y) = \sum_{i=1}^{n} g(x_k) p_k$$

连续:
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$E(Y) = \int_{-\infty}^{+\infty} g(x)f(x)dx$$

(2) 方差

D(X)=E[X-E(X)]², 方差

$$\sigma(X) = \sqrt{D(X)}$$
 , 标准差

①离散型随机变量

$$D(X) = \sum_{k} [x_k - E(X)]^2 p_k$$

②连续型随机变量

$$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$$

- ③方差的性质
 - (1) D(C)=0; E(C)=C
 - (2) $D(aX)=a^2D(X)$; E(aX)=aE(X)
 - (3) $D(aX+b)=a^2D(X); E(aX+b)=aE(X)+b$
 - (4) $D(X)=E(X^2)-E^2(X)$
 - (5) D(X+Y)=D(X)+D(Y), 充分条件: X 和 Y 独立; 充要条件: X 和 Y 不相

关。

D(X ± Y)=D(X)+D(Y) ± 2E[(X-E(X))(Y-E(Y))], 无条件成立。

E(X+Y)=E(X)+E(Y),无条件成立。

(3) 常见分布的数学期望和方差

分布 名称	符号	均值	方差
0-1 分布	<i>B</i> (1, <i>p</i>)	p	p(1-p)
二项 分布	B(n, p)	np	np(1-p)
泊松 分布	$P(\lambda)$	λ	λ
几何 分布	G(p)	$\frac{1}{p}$	$\frac{1-p}{p^2}$

			有 则
超几 何分 布	H(n,M,N)	$\frac{nM}{N}$	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N-n}{N-1} \right)$
均匀 分布	U(a,b)	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数 分布	$e(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
正态 分布	$N(\mu,\sigma^2)$	μ	σ^2

①0-1分布

X	0	1	
	q	р	

$$E(X) = p$$
, $D(X) = pq$

②二项分布 X~B(n,p),
$$P_n(k) = C_n^k p^k q^{n-k}$$
, (k=0, 1, 2···n)

$$E(X) = np$$
, $D(X) = npq$

③泊松分布
$$P(\lambda)$$
 $P(X=k) = \frac{\lambda^k e^{-x}}{k!}$, k=0, 1, 2…

$$E(X) = \lambda$$
, $D(X) = \lambda$

④超几何分布
$$P(X = k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}$$

$$E(X) = \frac{nM}{N}$$

⑤几何分布
$$P(X = k) = pq^{k-1}$$
, k=0, 1, 2…

$$E(X) = \frac{1}{p}, \quad D(X) = \frac{q}{p^2}$$

⑥均匀分布 X~U[a,b],
$$f(x) = \frac{1}{b-a}$$
, [a, b]

$$E(X) = \frac{a+b}{2}$$
, $D(X) = \frac{(b-a)^2}{12}$

⑦指数分布 $f(x) = \lambda e^{-\lambda x}$, (x>0)

$$E(X) = \frac{1}{\lambda}$$
, $D(X) = \frac{1}{\lambda^2}$

⑧正态分布 X~N(µ,
$$\sigma^2$$
), $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

$$E(X)= \mu$$
, $D(X)= \sigma^2$

2、二维随机变量的数字特征

(1) 协方差和相关系数

对于随机变量 X 与 Y,称它们的二阶混合中心矩 μ_{11} 为 X

与 Y 的协方差或相关矩,记为 σ_{xx} 或 cov(X,Y),即

$$\sigma_{yy} = \mu_{11} = E[(X - E(X))(Y - E(Y))].$$

与记号 σ_{xy} 相对应, X与Y的方差D(X)与D(Y)也

可分别记为 σ_{XX} 与 σ_{YY} 。

协方差有下面几个性质:

- (i) $\operatorname{cov}(X, Y) = \operatorname{cov}(Y, X);$
- (ii) cov(aX, bY) = ab cov(X, Y);
- (iii) $cov(X_1+X_2, Y) = cov(X_1, Y) + cov(X_2, Y)$;
- (iv) cov(X, Y) = E(XY) (E(X))(E(Y)).

对于随机变量 X 与 Y, 如果 D (X) >0, D(Y)>0, 则称

$$\frac{\sigma_{_{XY}}}{\sqrt{D(X)}\sqrt{D(Y)}}$$

为 X 与 Y 的相关系数,记作 ρ_{XY} (有时可简记为 ρ)。 $|\rho| \leq 1$,当 $|\rho| = 1$ 时,称 X 与 Y 安全相关:

而当 $\rho = 0$ 时,称 X 与 Y 不相关。

与相关系数有关的几个重要结论

- (i) 若随机变量 X 与 Y 相互独立,则 $\rho_{XY}=0$; 反之不真。
- (ii) 若 $(X, Y) \sim N (\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,则 X 与 Y 相互独立的充要条件是 $\rho = 0$,即 X 和 Y 不相关。
- (iii) 以下五个命题是等价的:
- (2)cov (X, Y) = 0;

 $\mathfrak{S}E(XY) = E(X)E(Y)$;

(4)D(X+Y)=D(X)+D(Y);

(5)D(X-Y) = D(X) + D(Y).

(2) 二维随机变量函数的期望

$$E[G(X,Y)] = \begin{cases} \sum_{i} \sum_{j} G(x_{i}, y_{j}) p_{ij}, (X,Y)$$
为离散型;
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x, y) f(x, y) dx dy, (X,Y)$$
为连续型。

(3) 原点矩和中心矩

①对于正整数 k,称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点矩,记为 v_k 即

$$u_k=E(X^k)$$
, $k=1, 2, \cdots$.

于是,我们有

$$u_k = \begin{cases} \sum_i x_i^k p_i & \exists X \text{为离散型时,} \\ \int_{-\infty}^{+\infty} x^k p(x) dx, & \exists X \text{为连续型时.} \end{cases}$$

②对于正整数 k,称随机变量 X 与 E (X) 差的 k 次幂的数学期望为 X 的 k 阶中心矩,记为 μ_k ,即

$$\mu_k = E(X - E(X))^k, k = 1, 2, \Lambda$$
.

于是,我们有

$$u_k = \begin{cases} \sum_i (x_i - E(X))^k p_i & \exists X$$
为离散型时,
$$\int_{-\infty}^{+\infty} (x - E(X))^k p(x) dx, & \exists X$$
为连续型时.

③对于随机变量 X 与 Y, 如果有 $E(X^kY^l)$ 存在,则称之为 X

与 Y 的 k+1 阶混合原点矩,记为 u_{kl} ,即

$$u_{kl} = E[(X - E(X))^k (Y - E(Y))].$$

五. 大数定律和中心极限定理

1、切比雪夫不等式

设随机变量 X 具有数学期望 $E(X) = \mu$,方差 $D(X) = \sigma^2$,则对于任意正数 ϵ ,有下列切比雪夫不等式

$$P(|X - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

切比雪夫不等式给出了在未知X的分布的情况下,对概

家

$$P(|X - \mu| \ge \varepsilon)$$

的一种估计,它在理论上有重要意义。

2、大数定律

(1) 切比雪夫大数定律

(要求方差有界)

设随机变量 X_1 , X_2 , …相互独立,均具有有限方差,且被同一常数 C 所界: $D(X_i) < C(i=1,2,\cdots)$,则对于任意的正数 ε ,有

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right| < \varepsilon\right) = 1.$$

特殊情形: 若 X_1 , X_2 , …具有相同的数学期望 $E(X_1)$ = μ , 则上式成为

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| < \varepsilon\right) = 1.$$

或者简写成:

$$\lim_{n\to\infty} P(|\overline{X}-\mu|<\varepsilon)=1.$$

切比雪夫大数定律指出,n个相互独立,且具有有限的相同的数学期望与方差的随机变量,当 n 很大时,它们的算术平均以很大的概率接近它们的数学期望。

(2) 伯努利大数定律

设 μ 是 n 次独立试验中事件 A 发生的次数,p 是事件 A 在每次试验中发生的概率,则对于任意的正数 ε ,有

$$\lim_{n\to\infty} P\left(\left|\frac{\mu}{n}-p\right|<\varepsilon\right)=1.$$

伯努利大数定律说明,当试验次数 n 很大时,事件 A 发生的频率与概率有较大判别的可能性很小,即

$$\lim_{n\to\infty} P\left(\left|\frac{\mu}{n}-p\right|\geq\varepsilon\right)=0.$$

这就以严格的数学形式描述了频率的稳定性。

(3) 辛钦大数定律

(不要求存在方差)

设 X_1 , X_2 , …, X_n , …是相互独立同分布的随机变量序列, A_n , A_n , 则对于任意的正数 A_n

$$\lim_{n\to\infty} P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| < \varepsilon\right) = 1.$$

3、中心极限定理

(1) 列维一林德伯格定理

设随机变量 X_1 , X_2 , …相互独立,服从同一分布,且具有 相 同 的 数 学 期 望 和 方 差 : $E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \Lambda)$,则随机变量

$$Y_n = \frac{\sum_{k=1}^{n} X_k - n\mu}{\sqrt{n\sigma}}$$

的分布函数 $F_n(x)$ 对任意的实数 x,有

$$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$$

或者简写成: $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \xrightarrow{n \to \infty} N(0,1)$

此定理也称为独立同分布的中心极限定理。

(2) 棣莫弗-拉普拉斯定理

设随机变量 X_1 , … X_n 均为具有参数 n, p(0 的二项分布,则对于任意实数 <math>x, 有

$$= \lim_{n \to \infty} P \left\{ \frac{X_n - np}{\sqrt{np(1-p)}} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$$

4、二项定理和泊松定理

(1) 二项定理

若当
$$N$$
 → ∞ 时, $\frac{M}{N}$ → $p(n, k$ 不变),则

$$\frac{C_M^k C_{N-M}^{n-k}}{C_N^N} \to C_n^k P^k (1-p)^{n-k} \qquad (N \to \infty).$$

可见,超几何分布的极限分布为二项分布。

(2) 泊松定理

若当n → ∞时,np → λ > 0,则

$$C_n^k P^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}$$
 $(n \to \infty).$

其中 k=0, 1, 2, ···, n, ···。

六. 数理统计的基本概念

1、总体、个体和样本

(1) 总体与样本

总体 在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体(或母体);而把总体中的每一个单元称为样品(或个体)。在以后的讨论中,我们总是把总体看成一个具有分布的随机变量(或随机向量)。

(2) 样本函数与统计量

设 x_1, x_2, Λ, x_n 为总体的一个样本,称

$$\varphi = \varphi$$
 (x_1, x_2, Λ, x_n)

为样本函数,其中 φ 为一个连续函数。如果 φ 中不包含 任何未知参数,则称 φ (x_1, x_2, Λ , x_n)为一个统计量。

2、统计量

(1) 常用统计量

样本均值

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

样本方差

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$

(与概率论中的方差定义不同)

样本标准差

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

样本k阶原点矩

$$M_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \Lambda$$
.

样本k阶中心矩

$$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{k}, k = 2,3,\Lambda$$
.

(二阶中心矩

$$S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 与概率论中的方差定义相同)

(2) 统计量的期望和方差

$$E(\overline{X}) = \mu$$
, $D(\overline{X}) = \frac{\sigma^2}{n}$,

$$E(S^{2}) = \sigma^{2}, \quad E(S^{*2}) = \frac{n-1}{n}\sigma^{2},$$

其中
$$S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
,为二阶中心矩。

3、三个抽样分布(x²、t、F分布)

(1) x²分布

设 n 个随机变量 X_1, X_2, Λ, X_n 相互独立,且服从**标准正态**

分布,可以证明:它们的平方和

$$W = \sum_{i=1}^{n} X_i^2$$

的分布密度为

$$f(u) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} u^{\frac{n}{2} - 1} e^{-\frac{u}{2}} & u \ge 0, \\ 0, & u < 0. \end{cases}$$

我们称随机变量 W 服从自由度为 n 的 κ^2 分布,记为 W~

 κ^2 (n), 其中

$$\Gamma\left(\frac{n}{2}\right) = \int_0^{+\infty} x^{\frac{n}{2}-1} e^{-x} dx.$$

所谓自由度是指独立正态随机变量的个数,它是随机变量分 布中的一个重要参数。

 κ^2 分布满足可加性: 设

$$Y_i - \kappa^2(n_i),$$

则

$$Z = \sum_{i=1}^{k} Y_i \sim \kappa^2 (n_1 + n_2 + \Lambda + n_k).$$

注意两个结果: E(x²)=n, D(x²)=2n

(2) t 分布

设 X, Y 是两个相互独立的随机变量,且

$$X \sim N(0,1), Y \sim \kappa^{2}(n),$$

可以证明:函数

$$T = \frac{X}{\sqrt{Y/n}}$$

的概率密度为

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$$

我们称随机变量 T 服从自由度为 n 的 t 分布,记为 $T \sim t(n)$ 。

注意两个结果: E(T)=0, $D(T)=\frac{n}{n-2}$ (n>2)

(3) F 分布

设 $X \sim \kappa^2(n_1), Y \sim \kappa^2(n_2)$, 且 X 与 Y 独立, 可以证明:

$$F = \frac{X/n_1}{Y/n_2}$$
的概率密度函数为

$$f(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2}-1} \left(1 + \frac{n_1}{n_2}y\right)^{-\frac{n_1+n_2}{2}}, \\ 0, \end{cases}$$

我们称随机变量 F 服从第一个自由度为 n_1 ,第二个自由度为 n_2 的 F 分布,记为 F \sim f (n_1, n_2) .

正态分布 $\mu_{1-\alpha} = -\mu_{\alpha}$,

$$t_{1-\alpha}(n) = -t_{\alpha}(n) ,$$

$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$$

4、正态总体下统计量的分布和性质

注意一个定理: \overline{X} 与 S^2 独立。

(1) 正态分布 设 x_1, x_2, Λ, x_n 为来自正态

总体 $N(\mu,\sigma^2)$ 的一个样本,则样本函数

$$u = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$$

(2) t-分布 设 x_1, x_2, Λ , x_n 为来自正态总体 Edited by 杨凯钧 2005 年 10 月

 $N(\mu, \sigma^2)$ 的一个样本,则样本函数

$$t = \frac{\overline{x} - \mu}{S / \sqrt{n}} \sim t(n-1),$$

其中 t (n-1)表示自由度为 n-1 的 t 分布。

(3) κ^2 分布 设 x_1, x_2, Λ, x_n 为来自正态总

 (Ψ, σ^2) 的一个样本,则样本函数

$$w^{\frac{def}{n}} \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1),$$

其中 $\kappa^2(n-1)$ 表示自由度为 n-1 的 κ^2 分布。

(4) **F** 分布 设 x_1, x_2, Λ, x_n 为 来 自 正 态 总 体 $N(\mu, \sigma^2)$ 的一个样本,而 y_1, y_2, Λ, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本函数

$$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$$

其中

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$$

 $F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为 n_2-1 的 F 分布。

七. 参数估计

1、点估计的两种方法

(1) 矩法

所谓矩法就是利用样本各阶原点矩与相应的总体矩,来 建立估计量应满足的方程,从而求得未知参数估计量的方 法。

设总体 X 的分布中包含有未知数 θ_1 , θ_2 , Λ , θ_m , 则其分 布函数可以表成 $F(x;\theta_1,\theta_2,\Lambda$, θ_m). 显示它的 k 阶原点矩 $v_k = E(X^k)(k=1,2,\Lambda$, m) 中 也 包 含 了 未 知 参 数

$$\theta_1, \theta_2, \Lambda$$
 , θ_m , 即 $v_k = v_k(\theta_1, \theta_2, \Lambda$, θ_m) 。 又 设

 x_1, x_2, Λ , x_n 为总体 X 的 n 个样本值,其样本的 k 阶原 点矩为

$$\hat{v}_k = \frac{1}{n} \sum_{i=1}^n x_i^k$$
 $(k = 1, 2, \Lambda, m).$

这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩"的原则建立方程,即有

$$\begin{cases} v_1(\hat{\theta_1}, \hat{\theta_2}, \Lambda, \hat{\theta_m}) = \frac{1}{n} \sum_{i=1}^n x_i, \\ v_2(\hat{\theta_1}, \hat{\theta_2}, \Lambda, \hat{\theta_m}) = \frac{1}{n} \sum_{i=1}^n x_i^2, \\ \Lambda \\ v_m(\hat{\theta_1}, \hat{\theta_2}, \Lambda, \hat{\theta_m}) = \frac{1}{n} \sum_{i=1}^n x_i^m. \end{cases}$$

由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{\theta_1},\hat{\theta_2},\Lambda,\hat{\theta_m})$ 即为参数 $(\theta_1,\theta_2,\Lambda,\theta_m)$ 的矩估计量。

(2) 最大似然法

所谓最大似然法就是当我们用样本的函数值估计总体参数时,应使得当参数取这些值时,所观测到的样本出现的概率为最大。

当总体 X 为连续型随机变量时,设其分布密度为 $f(x;\theta_1,\theta_2,\Lambda,\theta_m)$,其中 $\theta_1,\theta_2,\Lambda,\theta_m$ 为未知参数。

又设 x_1, x_2, Λ, x_n 为总体的一个样本,称

$$L_n(\theta_1, \theta_2, \Lambda, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \Lambda, \theta_m)$$

为样本的似然函数,简记为 L_m

当总体 X 为离型随机变量时,设其分布律为 $P\{X=x\}=p(x;\theta_1,\theta_2,\Lambda_1,\theta_m),$ 则称

$$L(x_1, x_2, \Lambda, x_n; \theta_1, \theta_2, \Lambda, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \Lambda, \theta_m)$$

为样本的似然函数。

若 似 然 函 数 $L(x_1, x_2, \Lambda, x_n; \theta_1, \theta_2, \Lambda, \theta_m)$ 在 $\hat{\theta}_1, \hat{\theta}_2, \Lambda, \hat{\theta}_m$ 处取到最大值,则称 $\hat{\theta}_1, \hat{\theta}_2, \Lambda, \hat{\theta}_m$ 分别为

 $\theta_1, \theta_2, \Lambda$, θ_m 的最大似然估计值,相应的统计量称为最大似

然估计量。我们把使 L_n 达到最大的 $\hat{\theta}_1$, $\hat{\theta}_2$, Λ , $\hat{\theta}_m$ 分别作为 θ_1 , θ_2 , Λ , θ_m 的估计量的方法称为最大似然估计法。

由于 lnx 是一个递增函数,所以 L_n 与 lnL_n 同时达到最大值。我们称

$$\frac{\partial \ln L_n}{\partial \theta_i}\bigg|_{\theta_i = \hat{\theta}_i} = 0, i = 1, 2, \Lambda, m$$

为似然方程。由多元微分学可知,由似然方程可以求出 $\hat{\theta}_i = \hat{\theta}_i(x_1, x_2, \Lambda, x_n) (i = 1, 2, \Lambda, m)$ 为 θ_i 的最大似然估计量。

容易看出,使得 L_n 达到最大的 $\hat{\theta}_i$ 也可以使这组样本值出现的可能性最大。

2、估计量的评选标准

(1) 无偏性

设 $\hat{\theta} = \hat{\theta}(x_1, x_2, \Lambda, x_n)$ 为求知参数 θ 的估计量。若 E ($\hat{\theta}$) = θ , 则称 $\hat{\theta}$ 为 θ 的无偏估计量。

若总体 X 的均值 E(X) 和方差 D(X) 存在,则样本均值 x 和样本方差 S^2 分别为 E(X) 和 D(X) 的无偏估计,即

$$E(\bar{x}) = E(X), E(S^2) = D(X).$$

(2) 有效性

设
$$\hat{\theta}_1 = \hat{\theta}_1(x_1, x_{,2}, \Lambda, x_n)$$
和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_{,2}, \Lambda, x_n)$

是未知参数 θ 的两个无偏估计量。若 $D(\hat{\theta}_1) < D\hat{\theta}_2$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。

(3) 一致性(相合性)

设 $\overset{\wedge}{ heta}_n$ 是heta的一串估计量,如果对于任意的正数heta,都有

$$\lim_{n\to\infty} P(|\stackrel{\wedge}{\theta}_n - \theta| > \varepsilon) = 0,$$

则称 $\hat{\theta}_n$ 为 θ 的一致估计量(或相合估计量)。

3、区间估计

(1) 置信区间和置信度

设总体 X 含有一个待估的未知参数 θ 。如果我们从样本 $x_1,x,_2,\Lambda$ $,x_n$ 出 发 , 找 出 两 个 统 计 量

$$\theta_1 = \theta_1(x_1, x_{2}, \Lambda, x_n)$$

 $\theta_2 = \theta_2(x_1, x, 2, \Lambda, x_n)$ $(\theta_1 < \theta_2)$,使得区间[θ_1, θ_2]以

 $1-\alpha(0<\alpha<1)$ 的概率包含这个待估参数 θ ,即

$$P\{\theta_1 \leq \theta \leq \theta_2\} = 1 - \alpha$$

那么称区间 $[\theta_1, \theta_2]$ 为 θ 的置信区间, $1-\alpha$ 为该区间的置信度(或置信水平)。

(2) 单正态总体的期望和方差的区间估计

设 $x_1, x_{,2}, \Lambda, x_n$ 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,在置信度为 $1-\alpha$ 下,我们来确定 μ 和 σ^2 的置信区间[θ_1, θ_2]。具体步骤如下:

- (i) 选择样本函数:
- (ii) 由置信度 $1-\alpha$, 查表找分位数;
- (iii) 导出置信区间[θ_1, θ_2]。

下面分三种情况来讨论。

① 已知方差,估计均值

(i) 选择样本函数

设方差 $\sigma^2 = \sigma_0^2$, 其中 σ_0^2 为已知数。我们知道

 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ 是 μ 的一个点估计,并且知道包含未知参数

μ的样本函数。

$$u = \frac{\overline{x} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1).$$

(ii) 查表找分位数

对于给定的置信度 $1-\alpha$,查正态分布分位数表,找出分位数 λ ,使得

$$P(|u| \le \lambda) = 1 - \alpha$$
.

即

12

$$P\left(-\lambda \leq \frac{\bar{x} - \mu}{\sigma_2 / \sqrt{n}} \leq \lambda\right) = 1 - \alpha.$$

(iii) 导出置信区间

由不等式

$$-\lambda \leq \frac{(\bar{x} - \mu)\sqrt{n}}{\sigma_2} \leq \lambda$$

推得

$$\bar{x} - \lambda \frac{\sigma_0}{\sqrt{n}} \le \mu \le \bar{x} + \lambda \frac{\sigma_0}{\sqrt{n}},$$

这就是说, 随机区间

$$\left[-\frac{1}{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, -\frac{1}{x} + \lambda \frac{\sigma_0}{\sqrt{n}} \right]$$

以 $1-\alpha$ 的概率包含 μ 。

② 未知方差,估计均值

(i) 选择样本函数

设 x_1, x_2, Λ, x_n 为总体 $N(\mu, \sigma^2)$ 的一个样本,由于

 σ^2 是未知的,不能再选取样本函数 u。这时可用样本方差

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

来代替 σ^2 , 而选取样本函数

$$t = \frac{\overline{x} - \mu}{S / \sqrt{n}} \sim t(n - 1).$$

(ii)查表找分位数

对于给定的置信度 $1-\alpha$, 查t 分位数表, 找出分位数 λ , 使得

$$P(|u| \leq \lambda) = 1 - \alpha$$
.

即

$$P\left(-\lambda \le \frac{\bar{x} - \mu}{S / \sqrt{n}} \le \lambda\right) = 1 - \alpha.$$

(iii) 导出置信区间

由不等式

$$-\lambda \leq \frac{(\bar{x}-\mu)\sqrt{n}}{\sigma} \leq \lambda$$

推得

$$\bar{x} - \lambda \frac{S}{\sqrt{n}} \le \mu \le \bar{x} + \lambda \frac{S}{\sqrt{n}}$$

这就是说, 随机区间

$$\left[\frac{1}{x} - \lambda \frac{S}{\sqrt{n}}, \frac{1}{x} + \lambda \frac{S}{\sqrt{n}} \right]$$

以 $1-\alpha$ 的概率包含 μ 。

③ 方差的区间估计

(i) 选择样本函数

设 x_1, x_2, Λ, x_n 为来自总体 $N(\mu, \sigma^2)$ 的一个样本,

我们知道
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

是 σ^2 的一个点估计,并且知道包含未知参数 σ^2 的样本函数

$$\omega = \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1).$$

(ii) 查表找分位数

对于给定的置信度 $1-\alpha$,查 κ^2 分布分位数表,找 出两个分位数 λ_1 与 λ_2 ,使得由于 κ^2 分布不具有对称性, 因此通常采取使得概率对称的区间,即

$$P(\lambda_1 \le \omega \le \lambda_2) = 1 - \alpha$$
.

于是有

$$P\left(\lambda_1 \le \frac{(n-1)S^2}{\sigma^2} \le \lambda_2\right) = 1 - \alpha.$$

(iii) 导出置信区间

$$\lambda_1 \leq \frac{(n-1)S^2}{\sigma^2} \leq \lambda_2$$

由不等式

$$\frac{(n-1)S^2}{\lambda_2} \le \sigma^2 \le \frac{(n-1)S^2}{\lambda_1}$$

以 $1-\alpha$ 的概率包含 σ^2 , 而随机区间

$$\left[\sqrt{\frac{n-1}{\lambda_2}}S, \sqrt{\frac{n-1}{\lambda_1}}S\right]$$

以 $1-\alpha$ 的概率包含 σ 。