Lecture 1

Crystals vs Lattices Lattices are the empty space that atoms can occupy, and crystals are crystals

Cells in 2D Primitive: 1 lattice point per cell

Double: 2 lattice points per cell Triple: 3 lattice points per cell

etc

Crystal families, systems

Families:

- Isometric
- Tetragonal
- Orthorhombic
- Monoclinic
- Anorthic
- Hexagonal

Systems:

- Cubic
- Tetragonal
- Orthorhombic
- Monoclinic
- Triclinic
- Hexagonal
- Trigonal

Hermann-Mauguin Space Lattice Letters P: primitive

C: base centered

I: body centered

F: face centered

R: simple rhombohedral

Lattice Symbols a: anorthic

m: monoclinic

o: orthogonal

t: tetragonal

h: hexagonal

c: cubic

Letter combination E.g. tI6, where t is for tetragonal, I for body centered, and there are 6 atoms per unit cell

Structure Report Designations (Strukturbericht) A: elements

B: AB compoundsC: AB2 compoundsD: AmBn compounds

A1 fcc ##### A2 bcc ##### A3 hcp

B1 Halite Structure, e.g. NaCl, Pearson Symbol cF8, Z: $4\{NaCl\}$ ##### C4 Rutile Structure, e.g. TiO2, Pearson Symbol tP6, Z: $2\{TiO2\}$ ###### C1 Fluorite Structure, e.g. CaF2, Pearson Symbol cF12, Z: $4\{CaF2\}$ ##### Urea Pearson: $tP16,Z=2\{CH4N2O\}$

Density of a Crystal $n_i = \text{number of atoms}, m_i = \text{mass of atom}$

$$\rho = \frac{\sum_{i=1}^{q} n_i m_i}{1000 \times N_A}$$

where the 1000 comes from converting grams to kilograms.