Semi/Self-Supervised Learning on a Pediatric Pneumonia Dataset

by Team Semi-Super CV

Wing Poon Sundeep Bhimireddy Sinem Erisken

Agenda

- 1. Problem: Pediatric Pneumonia
- 2. Project Goal
- 3. Dataset
- 4. Current SOTA
- 5. ML Workflow
- 6. Results
- 7. Demo
- 8. Summary

PROBLEM: Pediatric Pneumonia

- Pneumonia accounts for 14% of all deaths of children <5yo
- Pediatric pneumonia is often missed and left untreated
- Deaths more prevalent in developing countries where resources are scarce
- Often diagnosed with chest X-ray

SOLUTION:

Semi-Supervised Learning

AI can automatically surface *urgent cases*, helping save lives

Challenge: Fully supervised approaches need large, densely annotated dataset

Only hospitals that **can afford** to collect large annotated datasets **can utilize** these approaches to aid their physicians

PROJECT GOAL:

Utilize **Semi-Supervised Learning** to significantly reduce the need for fully labelled data

The Data

5855 Total Monochromatic Images

(Train: 5232, Test: 623)

Pneumonia: (Train: 74%, Test: 62%)

Normal: (Train: 26%, Test: 38%)

Widely Varying Resolutions

- Widely Varying Aspect-Ratios
- Splits remixed for consistent
 Train / Validation / Test

NORMAL

Current State of the Art (Fully Supervised)

Kermany et al. (2018)	Transfer learning	Accuracy	92%
Stephen et al. (2019)	Pure CNN	Validation Accuracy	93.7%
Labhane et al. (2020)	Transfer learning	Accuracy	97%, 98%

ML Workflow

Pre-Process Images

Homogenize Train/Val/Test

Distributions

ResNet-50-2X (140M Params)

STAGE 1:

Self-supervised Contrastive Learning

Active Learning (Labeling)

STAGE 2a:

Supervised Fine-Tuning (Few labels)

Docker Container

WEB APP:

Prediction Visualization

ResNet-50 (24M Params)

STAGE 3:

Knowledge Distillation

SimCLR (v2)

Google Cloud Platform (8 TPU Cores)

Results

Classification Accuracy (%)

SimCLR (v2)

(Num Labels)	Labels	FSL¹	FixMatch	Stage 2 (Fine-tuning)	Stage 3 (Distillation)
(52)	1%	85.2	92.1	<u>94.5</u>	<u>96.3</u>
(104)	2%	87.2	95.0	<u>96.8</u>	<u>97.6</u>
(260)	5%	86.0	98.2	<u>97.1</u> *	<u>98.1</u> *
(4708)	100%	98.9		-	-

¹ Fully-Supervised Learning

^{*} Active Learning

Demo

Summary

- SSL Model Accuracy of 97.6% with just 2% Labels, vs FSL at 87.2% @2% Labels and 98.9% @100% Labels
- Hyper-parameter Tuning (i.e. Validation Set) is necessary for good performance
- Random Cropping Area must be sufficiently large due to small relevance region in subject images
- SimCLR (v2) had better results than FixMatch on this dataset

Future Work

Self-supervised learning (SSL) is one of the most promising ways to build background knowledge and approximate a form of common sense in AI systems

- Yann LeCun

- More augmentations during fine tuning to improve active learning
- Explore generalizability of hyperparameters to other datasets
- Different active learning labeling selection algorithms
- Try other SoTA self-supervised frameworks