

InvenSense Inc.

1745 Technology Drive, San Jose, CA 95110 U.S.A. Tel: +1 (408) 988-7339 Fax: +1 (408) 988-8104 Website: www.invensense.com Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

ICM-20618 Datasheet
Revision 1.0

Document Number: DS-000107

Revision: 1.0 Release Date: 12/02/2015

TABLE OF CONTENTS

1	DOC	UMENT INFORMATION	9
	1.1	REVISION HISTORY	9
	1.2	PURPOSE AND SCOPE	10
	1.3	PRODUCT OVERVIEW	10
2	FEAT	URES	
	2.1	GYROSCOPE FEATURES.	11
	2.2	ACCELEROMETER FEATURES) 11
	2.3	DMP FEATURES	11
	2.4	ADDITIONAL FEATURES	11
3	ELEC	TRICAL CHARACTERISTICS	12
	3.1	GYROSCOPE SPECIFICATIONS	12
	3.2	ACCELEROMETER SPECIFICATIONS.	13
	3.3	ELECTRICAL SPECIFICATIONS	14
	3.4	I2C TIMING CHARACTERIZATION	18
	3.5	SPI TIMING CHARACTERIZATION	19
	3.6	ABSOLUTE MAXIMUM RATINGS	20
4	APPL	ADDITIONAL FEATURES CTRICAL CHARACTERISTICS GYROSCOPE SPECIFICATIONS ACCELEROMETER SPECIFICATIONS ELECTRICAL SPECIFICATIONS I2C TIMING CHARACTERIZATION SPI TIMING CHARACTERIZATION ABSOLUTE MAXIMUM RATINGS LICATIONS INFORMATION PIN OUT DIAGRAM AND SIGNAL DESCRIPTION	21
	4.1	THE COLD MOTOR WITH COUNTY PROCESSING TO SECTION AND COLOR OF THE COLO	
	4.2	TYPICAL OPERATING CIRCUIT	22
	4.3	BILL OF MATERIALS FOR EXTERNAL COMPONENTS	22
	4.4	EXPOSED DIE PAD PRECAUTIONS	
	4.5	BLOCK DIAGRAM OVERVIEW	23
	4.6	OVERVIEW	23
	4.7	THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING	24
	4.8	THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING	24
	4.9	DIGITAL MOTION PROCESSOR	24
	4.10	PRIMARY 12C AND SPI SERIAL COMMUNICATIONS INTERFACES	24
	4.11	AUXILIARY I2C SERIAL INTERFACE	26
	4.12	Self-Test	27
	4.13	CLOCKING	27
	4.14	SENSOR DATA REGISTERS	28
	4.15	FIFO	28
	4.16	Interrupts	28

Document Number: DS-000107 Revision: 1.0 Release Date: 12/02/2015

4.17	DIGITAL-OUTPUT TEMPERATURE SENSOR	28
4.18	BIAS AND LDOS	28
4.19	CHARGE PUMP	28
4.20	STANDARD POWER MODES	29
PROG	GRAMMABLE INTERRUPTS	30
DIGIT	AL INTERFACE	31
6.1	I2C AND SPI SERIAL INTERFACES	31
6.2		
6.3	I2C COMMUNICATIONS PROTOCOL	31
	I ² C TERMS	34
6.5	SPI Interface	35
SERIA	AL INTERFACE CONSIDERATIONS	36
7.4	IOM 00040 Cuppopted lutters of	00
ORIE	NTATION OF AXES	37
PACK	AGE DIMENSIONS	38
PART	NUMBER PART MARKINGS	40
USE N	NOTES	41
11.1	GYROSCOPE MODE TRANSITION	41
	LP_EN BIT-FIELD IN REGISTER PWR_MGMT	41
11.3	POWER MANAGEMENT 1 REGISTER SETTING	41
11.4	DMP MEMORY ACCESS	41
11.5	TIME BASE CORRECTION	41
	I ² C MASTER CLOCK FREQUENCY	
REGIS	STER MAP	43
REGIS	STER DESCRIPTIONS	47
13.1	USR BANK 0 REGISTER MAP	47
13.1.1	WHO_AM_T	47
13.1.2	USER_CTRL	47
13.1.3	LP_CONFIG	48
13.1.4	PWR_MGMT_1	48
13,15	PWR_MGMT_2	49
13.1.6	INT_PIN_CFG	49
13.1.7	INT_ENABLE	50
13.1.8	INT_ENABLE_1	50
	DIGIT 6.1 6.2 6.3 6.4 6.5 SERIA 7.1 ORIE PACK PART USE I 11.1 11.2 11.3 11.4 11.5 11.6 REGIS 13.1 13.1.1 13.1.2 13.1.3 13.1.4 13.1.5 13.1.6 13.1.7	4.18 BIAS AND LDOS 4.19 CHARGE PUMP 4.20 STANDARD POWER MODES PROGRAMMABLE INTERRUPTS DIGITAL INTERFACE 6.1 I2C AND SPI SERIAL INTERFACES 6.2 I2C INTERFACE 6.3 I2C COMMUNICATIONS PROTOCOL 6.4 I ² C TERMS 6.5 SPI INTERFACE 6.5 SPI INTERFACE CONSIDERATIONS 7.1 ICM-20618 SUPPORTED INTERFACES ORIENTATION OF AXES PACKAGE DIMENSIONS PART NUMBER PART MARKINGS USE NOTES 11.1 GYROSCOPE MODE TRANSITION 11.2 LP_EN BIT-FIELD IN REGISTER PWR_MGMT 11.3 POWER MANAGEMENT 1 REGISTER SETTING 11.4 DMP MEMORY ACCESS 11.5 IIME BASE CORRECTION 11.6 I ² C MASTER CLOCK FREQUENCY REGISTER MAP REGISTER MAP REGISTER MAP REGISTER DESCRIPTIONS 13.1 USR BANK O REGISTER MAP 13.1.1 WHO_AM_1 13.1.2 USER_CTRL 13.1.3 LP_CONFIG 13.1.4 PWR_MGMT_2 13.1.6 INT_PIN_CFG 13.1.7 INT_ENABLE

Document Number: DS-000107

Revision: 1.0 Release Date: 12/02/2015

13.1.9	INT_ENABLE_2	51
13.1.10	INT_ENABLE_3	51
13.1.11	I2C_MST_STATUS	51
13.1.12	INT_STATUS	52
13.1.13	INT_STATUS_1	52
13.1.14	INT_STATUS_2	52
13.1.15	INT_STATUS_3	53
13.1.16	ACCEL_XOUT_H	53
13.1.17	ACCEL_XOUT_L	
13.1.18	ACCEL_YOUT_H	54
13.1.19	ACCEL_YOUT_L	54
13.1.20	ACCEL_ZOUT_H	54
13.1.21	ACCEL_ZOUT_L	54
13.1.22	GYRO_XOUT_H	55
13.1.23	GYRO_XOUT_L	55
13.1.24	GYRO_YOUT_H	55
13.1.25	GYRO_YOUT_L	56
13.1.26	GYRO_ZOUT_H	56
13.1.27	GYRO_ZOUT_L TEMP_OUT_H	56
13.1.28	TEMP_OUT_H	56
13.1.29	TEMP OUT L	57
13.1.30	EXT_SLV_SENS_DATA_00	57
13.1.31	EXT_SLV_SENS_DATA_01	57
13.1.32	EXT_SLV_SENS_DATA_02	58
13.1.33	EXT_SLV_SENS_DATA_03	58
13.1.34	EXT_SLV_SENS_DATA_04	58
13.1.35	EXT_SLV_SENS_DATA_05	58
13.1.36	EXT_SEV_SENS_DATA_06	59
13.1.37	EXT_SLV_SENS_DATA_07	59
13.1.38	EXT_SLV_SENS_DATA_08	59
13,1.39	EXT_SLV_SENS_DATA_09	59
13.1.40	EXT_SLV_SENS_DATA_10	60
13.1.41	EXT_SLV_SENS_DATA_11	60
13.1.42	EXT_SLV_SENS_DATA_12	60

Document Number: DS-000107 Revision: 1.0 Release Date: 12/02/2015

13.1.43	EXT_SLV_SENS_DATA_13	60
13.1.44	EXT_SLV_SENS_DATA_14	61
13.1.45	EXT_SLV_SENS_DATA_15	61
13.1.46	EXT_SLV_SENS_DATA_16	61
13.1.47	EXT_SLV_SENS_DATA_17	62
13.1.48	EXT_SLV_SENS_DATA_18	62
13.1.49	EXT_SLV_SENS_DATA_19	62
13.1.50	EXT_SLV_SENS_DATA_20	62
13.1.51	EXT_SLV_SENS_DATA_21	63
13.1.52	EXT_SLV_SENS_DATA_22	
13.1.53	EXT_SLV_SENS_DATA_23	63
13.1.54	FIFO_EN_1	63
13.1.55	FIFO_EN_2	64
13.1.56	FIFO_RST	64
13.1.57	FIFO_MODE	65
13.1.58	FIFO_COUNTH	
13.1.59	FIFO_COUNTL	65
13.1.60	FIFO_R_W	
13.1.61	DATA_RDY_STATUS	66
13.1.62	FIFO_CFG	66
13.1.63	REG_BANK_SEL	67
13.2 U	SR BANK 1 REGISTER MAP	67
13.2.1	SELF_TEST_X_GYRO	67
13.2.2	SELF_TEST_Y_GYRO	67
13.2.3	SELF_TEST_Z_GYRO	68
13.2.4	SELF_TEST_X_ACCEL	68
13.2.5	SELF_TEST_Y_ACCEL	68
13.2.6	SELF_TEST_Z_ACCEL	68
13.2.7	XA_OFFS_H	68
13.2.8	XA_OFFS_L	69
13.2.9	YA_OFFS_H	69
13.2.10	YA_OFFS_L	69
13.2.11	ZA_OFFS_H	70
13.2.12	ZA_OFFS_L	70

Document Number: DS-000107 Revision: 1.0 Release Date: 12/02/2015

13.2.13	TIMEBASE_CORRECTION_PLL	70
13.2.14	REG_BANK_SEL	70
13.3 U	ISR BANK 2 REGISTER MAP	71
13.3.1	GYRO_SMPLRT_DIV	71
13.3.2	GYRO_CONFIG_1	71
13.3.3	GYRO_CONFIG_2	
13.3.4	XG_OFFS_USRH	
13.3.5	XG_OFFS_USRL	.) 74
13.3.6	YG_OFFS_USRH	74
13.3.7	YG_OFFS_USRL	74
13.3.8	ZG_OFFS_USRH	74
13.3.9	ZG UFFO UORL	
13.3.10	ACCEL_SMPLRT_DIV_1	75
13.3.11	ACCEL_SMPLRT_DIV_2 ACCEL_INTEL_CTRL ACCEL_WOM_THR	75
13.3.12	ACCEL_INTEL_CTRL	76
13.3.13	ACCEL_WOM_THR	76
13.3.14	ACCEL_CONFIG	76
13.3.15	ACCEL_WOM_THR ACCEL_CONFIG ACCEL_CONFIG_2	77
13.3.16	FSYNC_CONFIG TEMP_CONFIG MOD_CTRL_USR REG_BANK_SEL	78
13.3.17	TEMP_CONFIG	79
13.3.18	MOD_CTRL_USR	79
13.3.19	REG_BANK_SELL	80
13.4 U	ISR BANK 3 REGISTER MAP	80
13.4.1	I2C_MST_ODR_CONFIG	80
13.4.2	I2C_MST_CTRL	80
13.4.3	I2C_MST_DELAY_CTRL	81
13.4.4	I2C_SLV0_ADDR	82
13.4.5	12C_SLV0_REG	82
13.4.6	J2C_SLV0_CTRL	82
13.4.7	I2C_SLV0_DO	83
13,4.8	I2C_SLV1_ADDR	84
13.4.9	I2C_SLV1_REG	84
13.4.10	I2C_SLV1_CTRL	84
13.4.11	I2C_SLV1_DO	85

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

13.4.12	I2C_SLV2_ADDR.			 	85
13.4.13	I2C_SLV2_REG			 	85
13.4.14	I2C_SLV2_CTRL.			 	86
13.4.15	I2C_SLV2_DO			 	86
13.4.16	I2C_SLV3_ADDR.			 	87
13.4.17	I2C_SLV3_REG			 	87
13.4.18	I2C_SLV3_CTRL.				87
13.4.19	I2C_SLV3_DO			 	88
13.4.20	I2C_SLV4_ADDR.				88
13.4.21					
13.4.22	I2C_SLV4_CTRL.				89
13.4.23	I2C_SLV4_DO		<u>.</u>		89
13.4.24	I2C_SLV4_DI				89
13.4.25	REG_BANK_SEL.				90
14 REFER	ENCES				91
o, e	minaryDr	en Sense	cedinion		
•					

Document Number: DS-000107

Revision: 1.0 Release Date: 12/02/2015

Table of Figures

Figure 1 I2C Bus Timing Diagram	
Figure 2 SPI Bus Timing Diagram	19
Figure 3 Pin out Diagram for ICM-20618 3x3x0.75mm QFN	
Figure 4 ICM-20618 Application Schematic. (a) I2C operation,	
Figure 5 ICM-20618 Block Diagram	23
Figure 6 ICM-20618 Solution Using I ² C Interface	
Figure 7 ICM-20618 Solution Using SPI Interface	26
Figure 8 START and STOP Conditions	
Figure 9 Acknowledge on the I ² C Bus	
Figure 10 Complete I ² C Data Transfer	33
Figure 11 Typical SPI Master / Slave ConfigurationFigure 12 I/O Levels and Connections	35
Figure 13 Orientation of Axes of Sensitivity and Polarity of Rota	ation37
Table of Tables Table 1 Gyroscope Specifications	rential offor
Table of Tables	O
Table 1 Gyroscope Specifications	12
Table 2 Accelerometer Specifications	13
Table 3 D.C. Electrical Characteristics	&O 14
Table 3 D.C. Electrical Characteristics Table 4 A.C. Electrical Characteristics Table 5 Other Electrical Specifications Table 6 I ² C Timing Characteristics Table 7 SPI Timing Characteristics Table 8 Absolute Maximum Ratings	
Table 5 Other Electrical Specifications	17
Table 6 I ² C Timing Characteristics	18
Table 7 SPI Timing Characteristics	19
Table 8 Absolute Maximum Ratings	20
Table 9 Signal Descriptions	21
Table 10 Bill of Materials	22
Table 11 Standard Power Modes for ICM-20618	29
Table 12 Table of Interrupt Sources	30
Table 13 Serial Interface	31
Table 14 I ² C Terms	34
Preliminary Drai.	

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Document Information

1.1 **Revision History**

Revision Date	Revision	Description	
12/02/2015	1.0	Initial Release	

Preliminary Draft Advanced Information for CHIC Onto

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

1.2 Purpose and Scope

This document is a preliminary product specification, providing a description, specifications, and design related information on the ICM-20618 MotionTracking device.

Specifications are subject to change without notice. Final specifications will be updated based upon characterization of production silicon. For references to register map and descriptions of individual registers, please refer to the ICM-20618 Register Map and Register Descriptions document.

1.3 Product Overview

The ICM-20618 is a MotionTracking device that combines a 3-axis gyroscope, 3-axis accelerometer, and a Digital Motion Processor™ (DMP) all in a small 3x3x0.75mm QFN package. The device supports the following features:

- FIFO of size 512 bytes (FIFO size will vary depending on DMP feature-set)
- Runtime Calibration

ICM-20618 devices, with their 6-axis integration, on-chip DMP, and run-time calibration firmware, enable manufacturers to eliminate the costly and complex selection, qualification, and system level integration of discrete devices, guaranteeing optimal motion performance for consumers.

The gyroscope has a programmable full-scale range of ±250, ±500, ±1000, and ±2000 degrees/sec. The accelerometer has a user-programmable accelerometer full-scale range of ±2g, ±4g, ±8g, and ±16g. Factory-calibrated initial sensitivity of both sensors reduces production-line calibration requirements.

Other key features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The device features I²C and SPI serial interfaces, a VDD operating range of 1.71 to 3.6V, and a separate digital IO supply, VDDIO from 1.71V to 3.6V.

Communication with all registers of the device is performed using I²C at up to 100kHz (standard-mode) or up to 400kHz (fast-mode), or SPI at up to 2MHz.

By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the package size down to a footprint and thickness of 3x3x0.75mm (24-pin QFN), to provide a very small yet high performance low cost package. The device provides high robustness by supporting 10,000*g* shock reliability.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

2 Features

2.1 Gyroscope Features

The triple-axis MEMS gyroscope in the ICM-20618 includes the following features:

- Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with a user-programmable fullscale range of ±250, ±500, ±1000, and ±2000°/sec and integrated 16-bit ADCs
- User-selectable ODR; User-selectable low pass filters
- Self-test

2.2 Accelerometer Features

The triple-axis MEMS accelerometer in ICM-20618 includes the following features:

- Digital-output X-, Y-, and Z-axis accelerometer with a programmable full scale range of ±2g, ±4g, ±8g and ±16g and integrated 16-bit ADCs
- User-selectable ODR; User-selectable low pass filters
- Wake-on-motion interrupt for low power operation of applications processor.
- Self-test

2.3 DMP Features

The DMP in ICM-20618 includes the following capabilities:

- Offloads computation of motion processing algorithms from the host processor. The DMP can be used to minimize power, simplify timing, simplify the software architecture, and save valuable MIPS on the host processor for use in applications.
- The DMP enables ultra-low power run-time and background calibration of the accelerometer, gyroscope, and compass, maintaining optimal performance of the sensor data for both physical and virtual sensors generated through sensor fusion. This enables the best user experience for all sensor enabled applications for the lifetime of the device.
- DMP features simplify the software architecture resulting in a more robust overall solution.
- DMP features are OS, Platform, and Architecture independent, supporting virtually any AP, MCU, or other embedded architecture.

2.4 Additional Features

The ICM-20618 includes the following additional features:

- I²C at up to 100kHz (standard-mode) or up to 400kHz (fast-mode) or SPI at up to 2MHz for communication with registers
- Auxiliary master C bus for reading data from external sensors (e.g. magnetometer)
- Digital-output temperature sensor
- 10,000 g shock tolerant
- MEMS structure hermetically sealed and bonded at wafer level
- RoHS and Green compliant

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

3 Electrical Characteristics

3.1 Gyroscope Specifications

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

Note: All specifications apply to Standard (Duty-Cycled) Mode and Low-Noise Mode, unless noted otherwise

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	GYROSCOPE SENSITIVITY					11,2
Full-Scale Range	GYRO_FS_SEL=0		±250		º/s	1
	GYRO_FS_SEL=1		±500		%s_	1
	GYRO_FS_SEL=2		±1000		%	1
	GYRO_FS_SEL=3		±2000		º/s	1
Gyroscope ADC Word Length			16		bits	1
Sensitivity Scale Factor	GYRO_FS_SEL=0		131		LSB/(º/s)	1
	GYRO_FS_SEL=1		65.5		LSB/(º/s)	1
	GYRO_FS_SEL=2	. (2)	32.8)	LSB/(º/s)	1
	GYRO_FS_SEL=3	X	16.4		LSB/(º/s)	1
Sensitivity Scale Factor Tolerance	25°C	-ვ		+3	%	2
Sensitivity Scale Factor Variation Over Temperature	-40°C to +85°C	X	±4		%	2
Nonlinearity	Best fit straight line; 25°C	~0	±0.2		%	2, 3
Cross-Axis Sensitivity			±2		%	2, 3
	ZERO-RATE OUTPUT (ZRO)					
Initial ZRO Tolerance	25°C	-20		+20	º/s	2
ZRO Variation Over Temperature	-40°C to +85°C	-0.24		+0.24	º/s/°C	2
GYROS	COPE NOISE PERFORMANCE (GYF	RO_FS_SE	L=0)			
Total RMS Noise	GYRO_DLPFCFG=2 (Noise Bandwidth = 154Hz) Calculated from Noise Spectral Density		0.25		%s-rms	2, 3
Noise Spectral Density	Based on Noise Bandwidth = 10Hz		0.02		°/s/√Hz	2
GYROSCOPE MECHANICAL FREQUENCIES		25	27	29	kHz	2
LOW PASS FILTER RESPONSE	Programmable Range	5.7		197	Hz	1, 3
GYROSCOPE START-UP TIME	From Full-Chip Sleep mode		35		ms	2, 3
	Low power (duty-cycled)	4.4		562.5	Hz	
OUTPUT DATA RATE	Programmable, Normal (Filtered) mode GYRO_FCHOICE=1; GYRO_DLPFCFG=x	4.4		1.125k	Hz	1
	GYRO_FCHOICE=0; GYRO_DLPFCFG=x			9k	Hz	

Table 1 Gyroscope Specifications

Notes:

- 1. Guaranteed by design
- 2. Derived from validation or characterization of parts, not guaranteed in production
- 3. Low-noise mode specification

Page 12 of 91

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

3.2 Accelerometer Specifications

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

Note: All specifications apply to Standard (Duty-Cycled) Mode and Low-Noise Mode, unless noted otherwise

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	NOTES
	ACCELE	ROMETER SENSITIVIT	ſΥ				14
	ACCEL_FS=0			±2		g	1
Full Ocale Decem	ACCEL_FS=1			±4		g	1
Full-Scale Range	ACCEL_FS=2			±8		g	1
	ACCEL_FS=3			±16		g 1	1
ADC Word Length	Output in two's comp	lement format		16		bits	1
	ACCEL_FS=0			16,384		LSB/g	1
Operation the Operator France	ACCEL_FS=1			8,192		LSB/g	1
Sensitivity Scale Factor	ACCEL_FS=2			4,096		LSB/g	1
	ACCEL_FS=3			2,048		LSB/g	1
Initial Tolerance	Component-level	Component-level 40°C to +85°C ACCEL_FS=0			3.25	%	2
Sensitivity Change vs. Temperature	-40°C to +85°C ACC Component-level	EL_FS=0	1110	+3		%	2
Nonlinearity	Best Fit Straight Line					%	2, 3
Cross-Axis Sensitivity				±2		%	2, 3
	Z	ERO-G OUTPUT	Mo				
	Component-level	X and Y axes		±80		m <i>g</i>	2
Initial Talaranas		Z axis		±100		m <i>g</i>	2
Initial Tolerance	Board-level	X and Y axes		±120		m <i>g</i>	2
		Z axis		±180		m <i>g</i>	2
Zero-G Level Change vs. Temperature	-40°C to +85°C	X and Y axes		±0.64		m <i>g</i> /°C	2
Zero o Lever oriange vs. Temperature	40 0 10 103 0	Zaxis		±2		m <i>g</i> /°C	2
	ACCELEROM	TER NOISE PERFORI	MANCE				
Total RMS Noise	ACCEL_DLPFCFG= (Noise Bandwidth = 1 Calculated from Nois	136Hz)		3.5		mg-rms	2, 3
Noise Spectral Density	Based on Noise Band	dwidth = 10Hz		300		µ <i>g</i> /√Hz	2
LOW PASS FILTER RESPONSE	Programmable Rang	е	5.7		246	Hz	1, 3
INTELLIGENCE FUNCTION INCREMENT	(0)			32		mg/LSB	
ACCELEROMETER STARTUP TIME	From Sleep mode From Cold Start, 1ms	s V _{DD} ramp			0.75 30	ms ms	2, 3 2, 3
7	Low power (duty-cyc		0.27		563	Hz	
OUTPUT DATA RATE	Low power (duty-cycled) Low noise (active) ACCEL_FCHOICE=1; ACCEL_DLPFCFG=x		4.5		1.125k	Hz	1
in.	ACCEL_FCHOICE=0; ACCEL_DLPFCFG=x				4.5k	Hz	

Table 2 Accelerometer Specifications

Notes:

- 1. Guaranteed by design
- 2. Derived from validation or characterization of parts, not guaranteed in production
- 3. Low-noise mode specification

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

3.3 **Electrical Specifications**

D.C. Electrical Characteristics

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	Units	Notes	
SUPPLY VOLTAGES							
VDD		1.71	1.8	3.6	V	1	
VDDIO		1.71	1.8	3.6	V	1	
	SUPPLY CURRENTS						
Gyroscope Only (DMP & Accelerometer disabled)	102.3Hz update rate, 1x averaging filter		1.29		mA	2, 3	
Accelerometer Only (DMP & Gyroscope disabled)	102.3Hz update rate, 1x averaging filter		252	4 0	μΑ	2, 3	
Gyroscope + Accelerometer (DMP disabled)	102.3Hz update rate, 1x averaging filter		1.33),	mA	2, 3	
Full-Chip Sleep Mode		1110	8		μA	2	
TEMPERATURE RANGE							
Specified Temperature Range	Performance parameters are not applicable beyond Specified Temperature Range	-40		+85	°C	1	

Table 3 D.C. Electrical Characteristics

Notes:

- 1. Guaranteed by design
- 2. Derived from validation or characterization of parts, not guaranteed in production
- .acteriza .own here is .esponding cun 3. The 102.3Hz ODR value shown here is an example, please see the Register Map for the full list of ODRs supported and corresponding current values

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

4.2 A.C. Electrical Characteristics

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A =25°C, unless otherwise noted.

Parameter	Conditions	MIN	TYP	MAX	Units	NOTES			
	SUP	PLIES							
Supply Ramp Time	Monotonic ramp. Ramp rate is 10% to 90% of the final value	0.1		100	ms	KID			
	TEMPERATI	JRE SENSOR),			
Operating Range	Ambient	-40		85	, °C				
Sensitivity	Untrimmed		333.87		LSB/°C	1			
Room Temp Offset	21°C		0	C	LSB				
Power-On RESET									
Supply Ramp Time (T _{RAMP})	Valid power-on RESET	0.01	20.	100	ms	1			
Start-up time for register read/write	From power-up		11	100	ms	1			
I ² C ADDRESS	AD0 = 0 AD0 = 1	76	1101000 1101001						
	DIGITAL INPUTS (FSY	NC, ADO, SCLK	~'()			I			
V _{IH} , High Level Input Voltage		0.7*VDDIO			V				
V _{IL} , Low Level Input Voltage		$\frac{\mathcal{S}}{\mathcal{S}}$,	0.3*VDDIO	V	1			
C _I , Input Capacitance			< 10		pF				
	DIGITALOUT	PUT (SDO, INT)							
V _{OH} , High Level Output Voltage	R _{LOAD} =1MΩ;	0.9*VDDIO			V				
V _{OL1} , LOW-Level Output Voltage	R _{LOAD} =1MΩ;			0.1*VDDIO	V				
V _{OLINT1} , INT Low-Level Output Voltage	OPEN=1, 0.3mA sink Current			0.1	V	1			
Output Leakage Current	OPEN=1		100		nA				
t _{INT} , INT Pulse Width	LATCH_INT_EN=0		50		μs				
	12C I/O (S	SCL, SDA)							
V _{IL} , LOW Level Input Voltage		-0.5V		0.3*VDDIO	V				
V _{IH} , HIGH-Level Input Voltage	10	0.7*VDDIO		VDDIO + 0.5V	V				
V _{hys} , Hysteresis	V		0.1*VDDIO		V				
V _{OL} , LOW-Level Output Voltage	3mA sink current	0		0.4	V	1			
I _{OL} , LOW-Level Output Current	V _{OL} =0.4V V _{OL} =0.6V		3 6		mA mA				
Output Leakage Current			100		nA]			
t_{of} , Output Fall Time from V_{IHmax} to V_{ILmax}	C _b bus capacitance in pf	20+0.1C _b		250	ns				
· Olli	AUXILLIARY I/O (AUX_CL, AUX_	DA)						
V _{IL} , LOW-Level Input Voltage		-0.5V		0.3*VDDIO	V				
V _{IH} , HIGH-Level Input Voltage		0.7* VDDIO		VDDIO + 0.5V	V				
V _{hys} , Hysteresis			0.1* VDDIO		V	1			
V _{OL1} , LOW-Level Output Voltage	VDDIO > 2V; 1mA sink current	0		0.4	V				

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Parameter	Conditions	MIN	TYP	MAX	Units	NOTES			
V _{OL3} , LOW-Level Output Voltage	VDDIO < 2V; 1mA sink current	0		0.2* VDDIO	V				
I _{OL} , LOW-Level Output Current	$\begin{array}{ccc} V_{OL} & = & 0.4V \\ V_{OL} = 0.6V & & \end{array}$		3 6		mA mA				
Output Leakage Current			100		nA				
$t_{\text{of}},$ Output Fall Time from V_{IHmax} to V_{ILmax}	C _b bus capacitance in pF	20+0.1C _b		250	ns				
INTERNAL CLOCK SOURCE									
	Accelerometer Only Mode	-2		+2	%	1			
Clock Frequency Initial Tolerance	Gyroscope or 6-Axis Mode WITHOUT Timebase Correction	-9		+9	%	1			
	Gyroscope or 6-Axis Mode WITH Timebase Correction	-1		+1					
Frequency Variation over Temperature	Accelerometer Only Mode	-10		+10	%	1			
rrequericy variation over Temperature	Gyroscope or 6-Axis Mode		±1 🎤	4	%	1			

Table 4 A.C. Electrical Characteristics

Notes:

1. Derived from validation or characterization of parts, not guaranteed in production.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Other Electrical Specifications

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

SPI Operating Frequency, All Registers Read/Write Low Speed Characterization	SPI Operating Frequency, All Registers Read/Write Low Speed Characterization High Speed Characterization 2 ±10% MHz All registers, Fast-mode All registers, Standard-mode Table 5 Other Electrical Specifications otes:
Compariting Frequency, All Registers Read/Write High Speed Characterization ±10% MHz	Compariting Frequency, All Registers Read/Write High Speed Characterization ±10% MHz
Registers Read/Write High Speed Characterization 2 ±10% MHz I²C Operating Frequency All registers, Fast-mode 400 kHz All registers, Standard-mode 100 kHz Table 5 Other Electrical Specifications	Registers Read/Write High Speed Characterization 2 ±10% MHz I²C Operating Frequency All registers, Fast-mode 400 kHz All registers, Standard-mode 100 kHz Table 5 Other Electrical Specifications
All registers, Fast-mode 400 kHz All registers, Standard-mode 100 kHz Table 5 Other Electrical Specifications	All registers, Fast-mode 400 kHz All registers, Standard-mode 100 kHz Table 5 Other Electrical Specifications
All registers, Standard-mode 100 kHz Table 5 Other Electrical Specifications	All registers, Standard-mode 100 kHz Table 5 Other Electrical Specifications
•	•
1. Derived from validation or characterization of parts, not guaranteed in production.	1. Derived from validation or characterization of parts, not guaranteed in production.
Derived from validation or characterization of parts, not guaranteed in production.	1. Derived from validation or characterization of parts, not guaranteed in production.
	Invensellances Walt Advances

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

3.4 I2C Timing Characterization

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A =25°C, unless otherwise noted.

Parameters	Conditions	Min	Typical	Max	Units	Notes
I ² C TIMING	I ² C FAST-MODE					
f _{SCL} , SCL Clock Frequency				400	kHz	
t _{HD.STA} , (Repeated) START Condition Hold Time		0.6			μs	14
t _{LOW} , SCL Low Period		1.3			μs	
t _{HIGH} , SCL High Period		0.6			μs),
t _{SU.STA} , Repeated START Condition Setup Time		0.6			μs	
t _{HD.DAT} , SDA Data Hold Time		0			μs	
t _{SU.DAT} , SDA Data Setup Time		100			ns	
t _r , SDA and SCL Rise Time	C _b bus cap. from 10 to 400pF	20+0.1C _b		300	ns	
t _f , SDA and SCL Fall Time	C _b bus cap. from 10 to 400pF	20+0.1C _b		300	ns	
t _{SU.STO} , STOP Condition Setup Time		0.6	ر (μs	
t _{BUF} , Bus Free Time Between STOP and START Condition		1.3			μs	
C _b , Capacitive Load for each Bus Line			400		pF	
t _{VD.DAT} , Data Valid Time	20	UX		0.9	μs	
t _{VD.ACK} , Data Valid Acknowledge Time	O/3			0.9	μs	

Table 6 I²C Timing Characteristics

Notes:

- 1. Timing Characteristics apply to both Primary and Auxiliary I2C Bus
- 2. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

3.5 SPI Timing Characterization

Typical Operating Circuit of section 4.2, VDD = 1.8V, VDDIO = 1.8V, T_A=25°C, unless otherwise noted.

Parameters	Conditions	Min	Typical	Max	Units	Notes
SPI TIMING						
f _{SCLK} , SCLK Clock Frequency				2	MHz	1
t _{LOW} , SCLK Low Period		224			ns	1
t _{HIGH} , SCLK High Period		224			ns	
t _{SU.CS} , CS Setup Time		8			ns	1
t _{HD.CS} , CS Hold Time		500			ns	1
t _{SU.SDI} , SDI Setup Time		5			ns	1
t _{HD.SDI} , SDI Hold Time		7		C	ns	1
t _{VD.SDO} , SDO Valid Time	C _{load} = 20pF			59	ns	1
t _{HD.SDO} , SDO Hold Time	C _{load} = 20pF	6 . (<i>y</i>	V	ns	1
t _{DIS.SDO} , SDO Output Disable Time				50	ns	1

Table 7 SPI Timing Characteristics

Notes:

3. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets

Figure 2 SPI Bus Timing Diagram

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Absolute Maximum Ratings

Stress above those listed as "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

	Rating
Supply Voltage, VDD	-0.5V to +4V
Supply Voltage, VDDIO	-0.5V to +4V
REGOUT	-0.5V to 2V
Input Voltage Level (AUX_DA, AD0, FSYNC, INT, SCL, SDA)	-0.5V to VDD + 0.5V
Acceleration (Any Axis, unpowered)	10,000g for 0.2ms
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	-40°C to +125°C
Electrostatic Discharge (ESD) Protection	2kV (HBM); 200V (MM)
Latch-up	JEDEC Class II (2),125°C ±100mA
Table 8 Absolute Maximum Ratings	

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

4 Applications Information

4.1 Pin Out Diagram and Signal Description

Pin Number	Pin Name	Pin Description
7	AUX_CL	I ² C Master serial clock, for connecting to external sensors
8	VDDIO	Digital I/O supply voltage
9	AD0 / SDO	I ² C Slave Address LSB (AD0); SPI serial data output (SDO)
10	REGOUT	Regulator filter capacitor connection
11	FSYNC	Frame synchronization digital input. Connect to GND if unused.
12	INT	Interrupt digital output (totem pole or open-drain)
13	VDD	Power supply voltage
18	GND	Power supply ground
19	RESV	Reserved. Do not connect.
20	RESV	Reserved. Connect to GND.
21	AUX_DA	I ² C master serial data, for connecting to external sensors
22	nCS	Chip select (SPI mode only)
23	SCL / SCLK	I ² C serial clock (SCL); SPI serial clock (SCLK)
24	SDA / SDI	I ² C serial data (SDA); SPI serial data input (SDI)
1 – 6, 14 - 17	NC	No Connect pins. Do not connect.

Table 9 Signal Descriptions

Note: Power up with SCL/SCLK and nCS pins held low is not a supported use case. In case this power up approach is used, software reset is required using the PWR_MGMT_1 register, prior to initialization.

Figure 3 Pin out Diagram for ICM-20618 3x3x0.75mm QFN

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

4.2 Typical Operating Circuit

Figure 4 ICM-20618 Application Schematic (a) I2C operation, (b) SPI operation.

Note: I2C lines are open drain and pullup resistors (e.g. $10k\Omega$) are required.

4.3 Bill of Materials for External Components

Component	X	abel	Specification	Quantity
Regulator Filter Capacitor	0,0	1	X7R, 0.1μF ±10%	1
VDD Bypass Capacitor	С	:2	X7R, 0.1μF ±10%	1
VDDIO Bypass Capacitor	С	:3	X7R, 0.1μF ±10%	1

Table 10 Bill of Materials

4.4 Exposed Die Pad Precautions

InvenSense products have very low active and standby current consumption. The exposed die pad is not required for heat sinking, and should not be soldered to the PCB. Failure to adhere to this rule can induce performance changes due to package thermo-mechanical stress. There is no electrical connection between the pad and the CMOS.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

4.5 Block Diagram

Figure 5 CM-20618 Block Diagram

4.6 Overview

The ICM-20618 is comprised of the following key blocks and functions:

- Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning
- Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning
- Digital Motion Processor (DMP) engine
- Primary I²C and SPI serial communications interfaces
- Auxiliary (2) serial interface
- Self-Test
- Clocking
- Sensor Data Registers
- FIFO
- Interrupts
- Digital-Output Temperature Sensor
- Bias and LDOs
- Charge Pump
- Standard Power Modes

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

4.7 Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning

The ICM-20618 consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about the X-, Y-, and Z- Axes. When the gyros are rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip 16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro sensors may be digitally programmed to ±250, ±500, ±1000, or ±2000 degrees per second (dps).

4.8 Three-Axis MEMS Accelerometer with 16-bit ADCs and Signal Conditioning

The ICM-20618's 3-Axis accelerometer uses separate proof masses for each axis. Acceleration along a particular axis induces displacement on the corresponding proof mass, and capacitive sensors detect the displacement differentially. The ICM-20618's architecture reduces the accelerometers' susceptibility to fabrication variations as well as to thermal drift. When the device is placed on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-axis. The accelerometers' scale factor is calibrated at the factory and is nominally independent of supply voltage. Each sensor has a dedicated sigma-delta ADC for providing digital outputs. The full scale range of the digital output can be adjusted to $\pm 2g$, $\pm 4g$, $\pm 8g$, or $\pm 16g$.

4.9 Digital Motion Processor

The embedded Digital Motion Processor (DMP) within the ICM-20618 offloads computation of motion processing algorithms from the host processor. The DMP acquires data from accelerometers, gyroscopes, and additional 3rd party sensors such as magnetometers, and processes the data. The resulting data can be read from the FIFO. The DMP has access to one of the MPU's external pins, which can be used for generating interrupts.

The purpose of the DMP is to offload both timing requirements and processing power from the host processor. Typically, motion processing algorithms should be run at a high rate, often around 200Hz, in order to provide accurate results with low latency. This is required even if the application updates at a much lower rate; for example, a low power user interface may update as slowly as 5Hz, but the motion processing should still run at 200Hz. The DMP can be used to minimize power, simplify timing, simplify the software architecture, and save valuable MIPS on the host processor for use in applications.

4.10 Primary I2C and SPI Serial Communications Interfaces

The ICM-20618 communicates to a system processor using either a SPI or an I²C serial interface. The ICM-20618 always acts as a slave when communicating to the system processor. The LSB of the of the I²C slave address is set by pin 9 (AD0).

4.4 ICM-20618 Solution Using I2C Interface

In the figure below, the system processor is an I²C master to the ICM-20618. In addition, the ICM-20618 is an I²C master to the optional external compass sensor. The ICM-20618 has limited capabilities as an I²C Master, and depends on the system processor to manage the initial configuration of any auxiliary sensors. The ICM-20618 has an interface bypass multiplexer, which connects the system processor I²C bus pins 23 and 24 (SDA and SCL) directly to the auxiliary sensor I²C bus pins 6 and 7 (AUX_DA and AUX_CL).

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Once the auxiliary sensors have been configured by the system processor, the interface bypass multiplexer should be disabled so that the ICM-20618 auxiliary I²C master can take control of the sensor I²C bus and gather data from the auxiliary sensors.

For further information regarding I²C master control, please refer to section 6.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

4.5 ICM-20618 Solution Using SPI Interface

In the figure below, the system processor is an SPI master to the ICM-20618. Pins 8, 9, 23, and 24 are used to support the CS, SDO, SCLK, and SDI signals for SPI communications. Because these SPI pins are shared with the I²C slave pins (9, 23 and 24), the system processor cannot access the auxiliary I²C bus through the interface bypass multiplexer, which connects the processor I²C interface pins to the sensor I²C interface pins. Since the ICM-20618 has limited capabilities as an I²C Master, and depends on the system processor to manage the initial configuration of any auxiliary sensors, another method must be used for programming the sensors on the auxiliary sensor I²C bus pins 6 and 7 (AUX_DA and AUX_CL).

When using SPI communications between the ICM-20618 and the system processor, configuration of devices on the auxiliary I²C sensor bus can be achieved by using I²C Slaves 0-4 to perform read and write transactions on any device and register on the auxiliary I²C bus. The I²C Slave 4 interface can be used to perform only single byte read and write transactions. Once the external sensors have been configured, the ICM-20618 can perform single or multi-byte reads using the sensor I²C bus. The read results from the Slave 0-3 controllers can be written to the FIFO buffer as well as to the external sensor registers.

For further information regarding the control of the ICM-20618's auxiliary I²C interface, please refer to the ICM-20618 Register Map and Register Descriptions document.

Figure 7 ICM-20618 Solution Using SPI Interface

4.11 Auxiliary 12C Serial Interface

The ICM-20618 has an auxiliary I²C bus for communicating to an off-chip 3-Axis digital output magnetometer or other sensors. This bus has two operating modes:

- Master Mode: The ICM-20618 acts as a master to any external sensors connected to the auxiliary I²C bus
- <u>Pass-Through Mode</u>: The ICM-20618 directly connects the primary and auxiliary I²C buses together, allowing the system processor to directly communicate with any external sensors.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Auxiliary I²C Bus Modes of Operation:

• <u>I²C Master Mode</u>: Allows the ICM-20618 to directly access the data registers of external digital sensors, such as a magnetometer. In this mode, the ICM-20618 directly obtains data from auxiliary sensors without intervention from the system applications processor.

For example, in I²C Master mode, the ICM-20618 can be configured to perform burst reads, returning the following data from a magnetometer:

- X magnetometer data (2 bytes)
- Y magnetometer data (2 bytes)
- Z magnetometer data (2 bytes)

The I²C Master can be configured to read up to 24 bytes from up to 4 auxiliary sensors. A fifth sensor can be configured to work single byte read/write mode.

Pass-Through Mode: Allows an external system processor to act as master and directly communicate to the external sensors connected to the auxiliary I²C bus pins (AUX_DA and AUX_CL). In this mode, the auxiliary I²C bus control logic (3rd party sensor interface block) of the ICM-20618 is disabled, and the auxiliary I²C pins AUX_DA and AUX_CL (Pins 6 and 7) are connected to the main I²C bus (Pins 23 and 24) through analog switches internally. Pass-Through mode is useful for configuring the external sensors.

4.12 Self-Test

Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can be activated by means of the gyroscope and accelerometer self-test registers (registers 13 to 16).

When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is used to observe the self-test response.

The self-test response is defined as follows.

Self-test response = Sensor output with self-test enabled – Sensor output without self-test enabled

The self-test response for each gyroscope axis is defined in the gyroscope specification table, while that for each accelerometer axis is defined in the accelerometer specification table.

When the value of the self-test response is within the specified min/max limits, the part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test. It is recommended to use InvenSense MotionApps software for executing self-test.

4.13 Clocking

The internal system clock sources include: (1) an internal relaxation oscillator, and (2) a PLL with MEMS gyroscope oscillator as the reference clock. With the recommended clock selection setting (CLKSEL = 1), the best clock source for optimum sensor performance and power consumption will be automatically selected based on the power mode. Specifically, the internal relaxation oscillator will be selected when operating in accelerometer only mode, while the PLL will be selected whenever gyroscope is on, which includes gyroscope and 6-axis modes.

As clock accuracy is critical to the preciseness of distance and angle calculations performed by DMP, it should be noted that the internal relaxation oscillator and PLL show different performances in some aspects. The internal relaxation oscillator is trimmed to have a consistent operating frequency at room temperature, while the PLL clock frequency varies from part to part. The PLL frequency deviation from the nominal value in percentage is captured in register TIMEBASE_CORRECTION_PLL (detailed in section 12.5), and users

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

can factor it in during distance and angle calculations to not sacrifice accuracy. Other than that, PLL has better frequency stability and lower frequency variation over temperature than the internal relaxation oscillator.

4.14 Sensor Data Registers

The sensor data registers contain the latest gyro, accelerometer, auxiliary sensor, and temperature measurement data. They are read-only registers, and are accessed via the serial interface. Data from these registers may be read anytime.

4.15 FIFO

The ICM-20618 contains a FIFO of size 512 bytes that is accessible via the Serial Interface. The FIFO configuration register determines which data is written into the FIFO. Possible choices include gyro data, accelerometer data, temperature readings, auxiliary sensor readings, and FSYNC input.

A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO. The FIFO register supports burst reads. The interrupt function may be used to determine when new data is available.

For further information regarding the FIFO, please refer to the ICM-20618 Register Map and Register Descriptions document.

4.16 Interrupts

Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the INT pin configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an interrupt are (1) Clock generator locked to new reference oscillator (used when switching clock sources); (2) new data is available to be read (from the FIFO and Data registers); (3) accelerometer event interrupts; and (4) the ICM-20618 did not receive an acknowledge from an auxiliary sensor on the secondary I²C bus. The interrupt status can be read from the Interrupt Status register.

For further information regarding interrupts please refer to the ICM-20618 Register Map and Register Descriptions document.

4.17 Digital-Output Temperature Sensor

An on-chip temperature sensor and ADC are used to measure the ICM-20618 die temperature. The readings from the ADC can be read from the FIFO or the Sensor Data registers.

4.18 Bias and LDOs

The bias and LDO section generates the internal supply and the reference voltages and currents required by the ICM-20618. Its two inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO output is bypassed by a capacitor at REGOUT. For further details on the capacitor, please refer to the Bill of Materials for External Components.

4.19 Charge Pump

An on-chip charge pump generates the high voltage required for the MEMS oscillators.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

4.20 Standard Power Modes

The following table lists the user-accessible power modes for ICM-20618.

Mode	Name	Gyro	Accel	DMP		
1	Sleep Mode	Off	Off	Off		
2	Accelerometer Mode	Off	Low-Noise or Duty- Cycled	Duty-Cycled or Off		
3	Gyroscope Mode	Low-Noise or Duty- Cycled	Off	Duty-Cycled or Off		
4	6-Axis Mode	Low-Noise or Duty- Cycled	Low-Noise or Duty- Cycled	Duty-Cycled or Off		
5	DMP only mode	Off	Off	Duty-Cycled		

Table 11 Standard Power Modes for ICM-20618

Notes:

lotes:

1. Power consumption for individual modes can be found in section 4.1.

Preliminary

Preliminary

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Programmable Interrupts

The ICM-20618 has a programmable interrupt system which can generate an interrupt signal on the INT pin. Status flags indicate the source of an interrupt. Interrupt sources may be enabled and disabled individually.

Interrupt Name	Module
Motion Detection	Motion
FIFO Overflow	FIFO
FIFO Watermark	FIFO
Data Ready	Sensor Registers
I ² C Master errors: Lost Arbitration, NACKs	I ² C Master
I ² C Slave 4	I ² C Master
DMP	DMP

egisters and flag inent.

egisters and flag inent.

Preliminary Draft Advanced

Preliminary Draft Advanced For information regarding the interrupt enable/disable registers and flag registers, please refer to the ICM-20618 Register Map and Register Descriptions document.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

6 Digital Interface

6.1 I2C and SPI Serial Interfaces

The internal registers and memory of the ICM-20618 can be accessed using either I²C at 400 kHz or SPI at 2MHz. SPI operates in four-wire mode.

Pin Number	Pin Name	Pin Description	
9	AD0/SDO	I ² C Slave Address LSB (AD0); SPI serial data output (SDO)	
22	nCS	Chip select (SPI mode only)	
23	SCL / SCLK	I ² C serial clock (SCL); SPI serial clock (SCLK)	- 1
24	SDA / SDI	I ² C serial data (SDA); SPI serial data input (SDI)	

Table 13 Serial Interface

Note:

To prevent switching into I²C mode when using SPI, the I²C interface should be disabled by setting the I2C_IF_DIS configuration bit. Setting this bit should be performed immediately after waiting for the time specified by the "Start-Up Time for Register Read/Write" in Section 6.3.

For further information regarding the *I2C_IF_DIS* bit, please refer to the ICM-20618 Register Map and Register Descriptions document.

6.2 I2C Interface

I²C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bi-directional. In a generalized I²C interface implementation, attached devices can be a master or a slave. The master device puts the slave address on the bus, and the slave device with the matching address acknowledges the master.

The ICM-20618 always operates as a slave device when communicating to the system processor, which thus acts as the master. SDA and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400 kHz.

The slave address of the ICM-20618 is b110100X which is 7 bits long. The LSB bit of the 7 bit address is determined by the logic level on pin AD0. This allows two ICM-20618s to be connected to the same I²C bus. When used in this configuration, the address of the one of the devices should be b1101000 (pin AD0 is logic low) and the address of the other should be b1101001 (pin AD0 is logic high).

6.3 I2C Communications Protocol

START (S) and STOP (P) Conditions

Communication on the I²C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see figure below).

Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Figure 8 START and STOP Conditions

Data Format / Acknowledge

I²C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse.

If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line (refer to the following figure).

Figure 9 Acknowledge on the I²C Bus

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Communications

After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, with the exception of start and stop conditions.

Figure 10 Complete PC Data Transfer

To write the internal ICM-20618 registers, the master transmits the start condition (S), followed by the I²C address and the write bit (0). At the 9th clock cycle (when the clock is high), the ICM-20618 acknowledges the transfer. Then the master puts the register address (RA) on the bus. After the ICM-20618 acknowledges the reception of the register address, the master puts the register data onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the ICM-20618 automatically increments the register address and loads the data to the appropriate register. The following figures show single and two-byte write sequences.

Single-Byte Write Sequence

Master	S	AD+W		RA		DATA		Р
Slave			ACK		ACK		ACK	

Burst Write Sequence

Master	S	AD+W		RA		DATA		DATA		Р
Slave			ACK		ACK		ACK		ACK	

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

To read the internal ICM-20618 registers, the master sends a start condition, followed by the I²C address and a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the ICM-20618, the master transmits a start signal followed by the slave address and read bit. As a result, the ICM-20618 sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the 9th clock cycle. The following figures show single and two-byte read sequences.

Single-Byte Read Sequence

Master	S	AD+W		RA		S	AD+R			NACK	Р
Slave			ACK		ACK			ACK	DATA		

Burst Read Sequence

Master	S	AD+W		RA		S	AD+R	20		AC	K)		NACK	Р
Slave			ACK		ACK			ACK DATA	4	Ó		D.	ATA		

I²C Terms

	Signal	Description
	S	Start Condition: SDA goes from high to low while SCL is high
	AD	Slave I ² C address
	W	Write bit (0)
	R	Read bit (1)
	ACK	Acknowledge: SDA line is low while the SCL line is high at the 9th clock cycle
	NACK	Not-Acknowledge: SDA line stays high at the 9 th clock cycle
	RA	JCM-20618 internal register address
	DATA	Transmit or received data
	Р	Stop condition: SDA going from low to high while SCL is high
	INA	Table 14 I ² C Terms
Prelin		

Table 14 I²C Terms

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

6.5 SPI Interface

SPI is a 4-wire synchronous serial interface that uses two control lines and two data lines. The ICM-20618 always operates as a Slave device during standard Master-Slave SPI operation.

With respect to the Master, the Serial Clock output (SCLK), the Serial Data Output (SDO) and the Serial Data Input (SDI) are shared among the Slave devices. Each SPI slave device requires its own Chip Select (CS) line from the master.

CS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one CS line is active at a time, ensuring that only one slave is selected at any given time. The CS lines of the non-selected slave devices are held high, causing their SDO lines to remain in a high-impedance (high-z) state so that they do not interfere with any active devices.

SPI Operational Features

- 1. Data is delivered MSB first and LSB last
- 2. Data is latched on the rising edge of SCLK
- 3. Data should be transitioned on the falling edge of SCLK
- 4. The maximum frequency of SCLK is 2MHz
- 5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Read (1) or Write (0) operation. The following 7 bits contain the Register Address. In cases of multiple-byte Read/Writes, data is two or more bytes:

SPI Ad	ldress	form	at	O,	60						
MSB					7		LSB				
R/W	A6	A5	A4	A3	A2	A1	Α0				
SPI Data format											
MSB);		ļ				LSB				
D7	D 6	D5	D4	D3	D2	D1	D0				

6. Supports Single or Burst Read/Writes.

Figure 11 Typical SPI Master / Slave Configuration

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

7 **Serial Interface Considerations**

ICM-20618 Supported Interfaces 7.1

The ICM-20618 supports I²C communications on both its primary (microprocessor) serial interface and its auxiliary interface..

The ICM-20618's I/O logic levels are set to be VDDIO.

The figure below depicts a sample circuit of ICM-20618 with a third party magnetometer attached to the auxiliary I²C bus. It shows the relevant logic levels and voltage connections.

Note: Actual configuration will depend on the auxiliary sensors used.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Orientation of Axes 8

The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier (•) in the figure.

Figure 13 Orientation of Axes of Sensitivity and Polarity of Rotation

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

9 Package Dimensions

This section provides package dimensions for the device. Information for the 24 Lead QFN 3x3x0.75 package is below.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

		Symbol	Com	mon Dimens	sions	
			MIN.	NOM.	MAX.	
Total Thickness		Α	0.7	0.75	0.8	
Stand Off		A1	0	0.02	0.05	
Mold Thickness		A2		0.6		
L/F Thickness		A3		0.152 REF		
Lead Width		b	0.2	0.25		
Rody Ciza		D	2.9	3	3.1	
Body Size	Y	E	3	3.1		
Lead Pitch		е		0.4 BSC		
EP Size	X	J	1.65	1.7	1.75	
EP Size	Y	K	1.49	1.54	1.59	
Lead Length		L	0.25	0.3	0.35	
		s ¿O	~ O	0.25 REF		
		R	0.075			
		(b) (0)		0.12 REF		
		Q P		0.22 REF		
Mold Flatness		bbb		0.1		
Coplanarity		Cocc		0.075		
Lead Offset		ddd		0.1		
Exposed Pad Offse	et	eee		0.1		
Prelimit	Jary Drag					

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Part Number	Part Number Part Marking
ICM-20618	IC2618

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

11 Use Notes

11.1 Gyroscope Mode Transition

When gyroscope is transitioning from standard to low-noise mode, several unsettled output samples will be observed at the gyroscope output due to filter switching and settling. The number of unsettled gyroscope output samples depends on the filter and ODR settings.

11.2 LP_EN Bit-Field in Register PWR_MGMT_1

When accelerometer alone is operating in standard mode, LP_EN bit in register PWR_MGMT_1 should be set to 1 to achieve minimum power consumption. When both gyroscope and accelerometer are operating in standard mode the LP_EN bit should be set to 0. LP_EN should also be set to 0 when the gyroscope is operating in standard mode and the accelerometer is off.

11.3 Power Management 1 Register Setting

CLKSEL[2:0] has to be set to 001 to achieve the datasheet performance.

11.4 DMP Memory Access

Reading/writing DMP memory and FIFO through I2C in a multithreaded environment can cause wrong data being read. To avoid the issue, one may use SPI instead of I2C, or use I2C with mutexes.

11.5 Time Base Correction

The system clock frequency at room temperature in gyroscope mode and 6-Axis mode varies from part to part, and the clock rates specified in datasheet are the nominal values. The percentage of frequency deviation from the nominal values for each part is logged in register TIMEBASE_CORRECTION_PLL, and the range of the code is +/- 10% with each LSB representing a step of 0.079%. For example, if on one part TIMEBASE_CORRECTION_PLL = 0x00 = d'12, it means the clock frequency in gyroscope mode and 6-Axis mode is -0.94% faster than the nominal value.

When operating in accelerometer only mode, the system clock frequency at room temperature is the nominal frequency over parts, and it is independent of the value stored in TIMEBASE_CORRECTION_PLL register.

11.6 I²C Master Clock Frequency

 I^2C master clock frequency can be set by register I2C_MST_CLK as shown in the table below. Due to temperature variation and part to part variation of system clock frequency in different power modes, I2C_MST_CLK should be set such that in all conditions the clock frequency will not exceed what a slave device can support. To achieve a targeted clock frequency of 400 kHz, MAX, it is recommended to set I2C_MST_CLK = 7 (345.6 kHz / 46.67% duty cycle).

I2C_MST_CLK	Nominal CLK Frequency [kHz]	Duty Cycle
0	370.29	50.00%
1	-	-

Page 41 of 91

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

2	370.29	50.00%
3	432.00	50.00%
4	370.29	42.86%
5	370.29	50.00%
6	345.60	40.00%
7	345.60	46.67%
8	304.94	47.06%
9	432.00	50.00%
10	432.00	41.67%
11	432.00	41.67%
12	471.27	45.45%
13	432.00	50.00%
14	345.60	46.67%
15	345.60	46.67%

Preliminary Draft Advanced Information for CHIIC Only

Document Number: DS-000107

Revision: 1.0 Release Date: 12/02/2015

12 Register Map

The following table lists the register map for the ICM-20618, for user banks 0, 1, 2, 3.

User Bank 0 Register Map:

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00	0	WHO_AM_I	R		•		WHO_A	M_I[7:0]	•		17
03	3	USER_CTRL	R/W	DMP_EN	FIFO_EN	I2C_MST_E N	I2C_IF_DIS	DMP_RST	SRAM_RST	I2C_MST_R ST	
05	5	LP_CONFIG	R/W	-	I2C_MST_C YCLE	ACCEL_CY CLE	GYRO_CY CLE				
06	6	PWR_MGMT_1	R/W	DEVICE_R ESET	SLEEP	LP_EN	-	TEMP_DIS	•	CLKSEL[2:0]	
07	7	PWR_MGMT_2	R/W		-		DISABLE_ACCE	L		DISABLE_GYRO)
0F	15	INT_PIN_CFG	R/W	ACTL	OPEN	LATCH_INT _EN	INT_ANYR D_2CLEAR	ACTL_FSY NC	FSYNC_INT _MODE_EN	BYPASS_E N	-
10	16	INT_ENABLE	R/W	REG_WOF _EN		-		WOM_INT_ EN	PLL_RDY_ EN	DMP_INT_ EN	I2C_MST_I NT_EN
11	17	INT_ENABLE_1	R/W				dis				RAW_DATA _0_RDY_E N
12	18	INT_ENABLE_2	R/W		-			FIFC	_OVERFLOW_E	N[4:0]	
13	19	INT_ENABLE_3	R/W		-				FIFO_WM_EN[4:	0]	
17	23	I2C_MST_STATUS	R/C	PASS_THR OUGH	I2C_SLV4_ DONE	I2C_LOST_ ARB	I2C_SLV4_ NACK	I2C_SLV3_ NACK	I2C_SLV2_ NACK	I2C_SLV1_ NACK	I2C_SLV0_ NACK
19	25	INT_STATUS	R/C			0, 6	0	WOM_INT	PLL_RDY_I NT	DMP_INT	I2C_MST_I NT
1A	26	INT_STATUS_1	R/C		-8)	110			•		RAW_DATA _0_RDY_IN T
1B	27	INT_STATUS_2	R/C		~S).	-0-		FIFO	_OVERFLOW_IN	IT[4:0]	•
1C	28	INT_STATUS_3	R/C			7)		F	FIFO_WM_INT[4:	0]	
2D	45	ACCEL_XOUT_H	R	60	70		ACCEL_X	OUT_H[7:0]			
2E	46	ACCEL_XOUT_L	R	2			ACCEL_X	OUT_L[7:0]			
2F	47	ACCEL_YOUT_H	R		10		ACCEL_YC	OUT_H[7:0]			
30	48	ACCEL_YOUT_L	R	7	7		ACCEL_Y	OUT_L[7:0]			
31	49	ACCEL_ZOUT_H	R	6	<i>y</i>		ACCEL_Z	OUT_H[7:0]			
32	50	ACCEL_ZOUT_L	R	, V			ACCEL_Z	OUT_L[7:0]			
33	51	GYRO_XOUT_H	R				GYRO_XC	OUT_H[7:0]			
34	52	GYRO_XOUT_L	R)			GYRO_XC	OUT_L[7:0]			
35	53	GYRO_YOUT_H	R				GYRO_YC	OUT_H[7:0]			
36	54	GYRO_YOUT_L	R				GYRO_YO	OUT_L[7:0]			
37	55	GYRO_ZOUT_H	R					OUT_H[7:0]			
38	56	GYRO_ZOUT_L	R					OUT_L[7:0]			
39	57	TEMP_OUT_H	R					UT_H[7:0]			
3A	58	TEMP_OUT_L	R				TEMP_O	UT_L[7:0]			
3B	59	EXT_SLV_SENS_DATA_ 00	R		EXT_SLV_SENS_DATA_00[7:0]						
3C	60	SLV_SENS_DATA_ 01	R				EXT_SLV_SEN	S_DATA_01[7:0]			
3D	61	EXT_SLV_SENS_DATA_ 02	R				EXT_SLV_SEN:	S_DATA_02[7:0]			
3E	62	EXT_SLV_SENS_DATA_ 03	R				EXT_SLV_SEN	S_DATA_03[7:0]			
3F	63	EXT_SLV_SENS_DATA_ 04	R		EXT_SLV_SENS_DATA_04[7:0]						

Document Number: DS-000107

Revision: 1.0 Release Date: 12/02/2015

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
40	64	EXT_SLV_SENS_DATA_ 05	R				EXT_SLV_SEN	S_DATA_05[7:0]					
41	65	EXT_SLV_SENS_DATA_ 06	R				EXT_SLV_SENS_DATA_06[7:0]						
42	66	EXT_SLV_SENS_DATA_ 07	R				EXT_SLV_SEN	SLV_SENS_DATA_07[7:0]					
43	67	EXT_SLV_SENS_DATA_ 08	R				EXT_SLV_SEN	S_DATA_08[7:0]			717		
44	68	EXT_SLV_SENS_DATA_ 09	R				EXT_SLV_SEN:	S_DATA_09[7:0]		C			
45	69	EXT_SLV_SENS_DATA_ 10	R				EXT_SLV_SEN:	S_DATA_10[7:0]		.()			
46	70	EXT_SLV_SENS_DATA_ 11	R				EXT_SLV_SEN:	S_DATA_11[7:0]	V				
47	71	EXT_SLV_SENS_DATA_ 12	R				EXT_SLV_SEN:	S_DATA_12[7:0]	(Q)				
48	72	EXT_SLV_SENS_DATA_ 13	R				EXT_SLV_SEN:	S_DATA_13[7:0]	~(
49	73	EXT_SLV_SENS_DATA_ 14	R				EXT_SLV_SEN	S_DATA_14[7:0]	,				
4A	74	EXT_SLV_SENS_DATA_ 15	R				EXT_SLV_SEN:	S_DATA_15[7:0]					
4B	75	EXT_SLV_SENS_DATA_ 16	R			5.5	EXT_SLV_SEN	S_DATA_16[7:0]					
4C	76	EXT_SLV_SENS_DATA_ 17	R			"Lile	EXT_SLV_SEN:	S_DATA_17[7:0]					
4D	77	EXT_SLV_SENS_DATA_ 18	R			0, 0	EXT_SLV_SEN:	S_DATA_18[7:0]					
4E	78	EXT_SLV_SENS_DATA_ 19	R				EXT_SLV_SEN:	S_DATA_19[7:0]					
4F	79	EXT_SLV_SENS_DATA_ 20	R		S	7	EXT_SLV_SEN	S_DATA_20[7:0]					
50	80	EXT_SLV_SENS_DATA_ 21	R	- 0		S	EXT_SLV_SEN:	S_DATA_21[7:0]					
51	81	EXT_SLV_SENS_DATA_ 22	R	S	200		EXT_SLV_SEN:	S_DATA_22[7:0]					
52	82	EXT_SLV_SENS_DATA_ 23	R		7.0		EXT_SLV_SEN	S_DATA_23[7:0]					
66	102	FIFO_EN_1	RW	7	•	-		SLV_3_FIF O_EN	SLV_2_FIF O_EN	SLV_1_FIF O_EN	SLV_0_FIF O_EN		
67	103	FIFO_EN_2	R/W	K,	-		ACCEL_FIF O_EN	GYRO_Z_FI FO_EN	GYRO_Y_F IFO_EN	GYRO_X_F IFO_EN	TEMP_FIF O_EN		
68	104	FIFO_RST	R/W)	-			F	FIFO_RESET[4:0]			
69	105	FIFO_MODE	R/W		-				FIFO_MODE[4:0]			
70	112	FIFO_COUNTH	R		-				FIFO_CNT[12:8]				
71	113	FIFO_COUNTL	R				FIFO_C	CNT[7:0]					
72	114	FIFO_R_W	R/W					R_W[7:0]					
74	116	DATA_RDY_STATUS	R/C	WOF_STAT US	WOM_STA TUS				RAW_DAT	A_RDY[3:0]			
76	118	FIFO_CFG	R/W		I	1	-	I.			FIFO CFG		
7F	127	REG_BANK_SEL	R/W	- USER E			ANK[1:0]			-	=		
			l					l .					

User Bank 1 Register Map:

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
02	2	SELF_TEST_X_GYRO	R/W	XG_ST_DATA[7:0]							
03	3	SELF_TEST_Y_GYRO	R/W	YG_ST_DATA[7:0]							

Document Number: DS-000107

Revision: 1.0 Release Date: 12/02/2015

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
04	4	SELF_TEST_Z_GYRO	R/W				ZG_ST_[DATA[7:0]			
0E	14	SELF_TEST_X_ACCEL	R/W				XA_ST_0	DATA[7:0]			
0F	15	SELF_TEST_Y_ACCEL	R/W		YA_ST_DATA[7:0]						
10	16	SELF_TEST_Z_ACCEL	R/W		ZA_ST_DATA[7:0]						
14	20	XA_OFFS_H	R/W		XA_OFFS[14:7]						\
15	21	XA_OFFS_L	R/W		XA_OFFS[6:0]						
17	23	YA_OFFS_H	R/W				YA_OF	FS[14:7]			
18	24	YA_OFFS_L	R/W				YA_OFFS[6:0]				-
1A	26	ZA_OFFS_H	R/W				ZA_OF	FS[14:7]		.()	
1B	27	ZA_OFFS_L	R/W		ZA_OFFS[6:0]					-	
28	40	TIMEBASE_CORRECTIO N_PLL	R/W	TBC_PLL[7:0]							
7F	127	REG_BANK_SEL	R/W		- USER_BANK[1:0] -						

User Bank 2 Register Map:

		J	•				X/C		•		
Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00	0	GYRO_SMPLRT_DIV	R/W				GYRO_SMP	LRT_DIV[7:0]			
01	1	GYRO_CONFIG_1	R/W		-	G	RO_DLPFCFG[2	2:0]	GYRO_FS	S_SEL[1:0]	GYRO_FCH OICE
02	2	GYRO_CONFIG_2	R/W			XGYRO_CT EN	YGYRO_CT EN	ZGYRO_CT EN	G,	/RO_AVGCFG[2	:0]
03	3	XG_OFFS_USRH	R/W) ×	X_OFFS_L	JSER[15:8]			
04	4	XG_OFFS_USRL	R/W				X_OFFS_	USER[7:0]			
05	5	YG_OFFS_USRH	R/W		(0)	7 /	Y_OFFS_U	JSER[15:8]			
06	6	YG_OFFS_USRL	R/W	4	3	20	Y_OFFS_	USER[7:0]			
07	7	ZG_OFFS_USRH	R/W	C		0	Z_OFFS_U	JSER[15:8]			
08	8	ZG_OFFS_USRL	R/W	S	~		Z_OFFS_	USER[7:0]			
10	16	ACCEL_SMPLRT_DIV_1	R/W	7		-			ACCEL_SMPI	_RT_DIV[11:8]	
11	17	ACCEL_SMPLRT_DIV_2	R/W	\ \{\bar{\chi}{\chi}\}	70		ACCEL_SMP	PLRT_DIV[7:0]			
12	18	ACCEL_INTEL_CTRL	RW	No.	•		-			ACCEL_INT EL_EN	ACCEL_INT EL_MODE_ INT
13	19	ACCEL_WOM_THR	R/W				WOM_THRE	SHOLD[7:0]			
14	20	ACCEL_CONFIG	R/W)	-	AC	CEL_DLPFCFG[2:0]	ACCEL_FS	S_SEL[1:0]	ACCEL_FC HOICE
15	21	ACCEL_CONFIG_2	R/W		-		AX_ST_EN _REG	AY_ST_EN _REG	AZ_ST_EN _REG	DEC3_0	CFG[1:0]
52	82	FSYNC_CONFIG	R/W		-	WOF_DEG LITCH_EN	WOF_EDG E_INT		EXT_SYNC	C_SET[3:0]	
53	83	TEMP_CONFIG	R/W			-			TE	MP_DLPFCFG[2	::0]
54	84	MOD_CTRL_USR	R/W				-				REG_LP_D MP_EN
7F	127	REG_BANK_SEL	R/W		-	USER_E	ANK[1:0]			-	

User Bank 3 Register Map:

	Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Ī	00	0	I2C_MST_ODR_CONFIG	R/W	- 12				I2C_MST_ODF	R_CONFIG[3:0]		
Ī	01	1	I2C_MST_CTRL	R/W	MULT_MST _EN							

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

02 2 03 3 04 4 05 5 06 6	I2C_SLV0_ADDR	R/W	DELAY_ES							
04 4 05 5 06 6			_SHADOW		-	I2C_SLV4_ DELAY_EN	I2C_SLV3_ DELAY_EN	I2C_SLV2_ DELAY_EN	I2C_SLV1_ DELAY_EN	I2C_SLV0_ DELAY_EN
05 5 06 6	I2C SLV0 REG	R/W	I2C_SLV0_ RNW				I2C_ID_0[6:0]			
06 6	120_0210_1120	R/W				I2C_SLV0	_REG[7:0]			
	I2C_SLV0_CTRL	R/W	I2C_SLV0_ EN	I2C_SLV0_ BYTE_SW	I2C_SLV0_ REG_DIS	I2C_SLV0_ GRP		I2C_SLV0	_LENG[3:0]	N
	I2C_SLV0_DO	R/W		•	•	I2C_SLV	D_DO[7:0]			$U_{i,j}$
07 7	I2C_SLV1_ADDR	R/W	I2C_SLV1_ RNW				I2C_ID_1[6:0]		C	
08 8	I2C_SLV1_REG	R/W		•		I2C_SLV1	_REG[7:0]		. (1	
09 9	I2C_SLV1_CTRL	R/W	I2C_SLV1_ EN	I2C_SLV1_ BYTE_SW	I2C_SLV1_ REG_DIS	I2C_SLV1_ GRP		I2C_SLV1	LENG[3:0]	
0A 10	I2C_SLV1_DO	R/W			•	I2C_SLV	1_DO[7:0]	(2)	•	
0B 11	I2C_SLV2_ADDR	R/W	I2C_SLV2_ RNW				I2C_ID_2[6:0]	<u>مر</u>		
0C 12	l2C_SLV2_REG	R/W				I2C_SLV2	_REG[7:0]	O'		
0D 13	I2C_SLV2_CTRL	R/W	I2C_SLV2_ EN	I2C_SLV2_ BYTE_SW	I2C_SLV2_ REG_DIS	I2C_SLV2_ GRP		I2C_SLV2	_LENG[3:0]	
0E 14	I2C_SLV2_DO	R/W				I2C_SLV2	2_DO[7:0]			
0F 15	i I2C_SLV3_ADDR	R/W	I2C_SLV3_ RNW		6.0		l26_ID_3[6:0]			
10 16	I2C_SLV3_REG	R/W				I2C_SLV3	_REG[7:0]			
11 17	I2C_SLV3_CTRL	R/W	I2C_SLV3_ EN	I2C_SLV3_ BYTE_SW	I2C_SLV3_ REG_DIS	I2C_SLV3_ GRP		I2C_SLV3	_LENG[3:0]	
12 18	I2C_SLV3_DO	R/W			X	I2C_SLV	3_DO[7:0]			
13 19	I2C_SLV4_ADDR	R/W	I2C_SLV4_ RNW	01			I2C_ID_4[6:0]			
14 20	I2C_SLV4_REG	R/W		5	0	I2C_SLV4	_REG[7:0]			
15 21	I2C_SLV4_CTRL	R/W	I2C_SLV4_ EN	I2C_SLV4_ BYTE_SW	I2C_SLV4_ REG_DIS		12	C_SLV4_DLY[4:	0]	
16 22	l2C_SLV4_DO	R/W	5	~~		I2C_SLV4	4_DO[7:0]			
17 23	I2C_SLV4_DI	R			_	I2C_SLV	4_DI[7:0]			
7F 127	7 REG_BANK_SEL	R/W		70	USER_E	BANK[1:0]			-	
	reliminar		AT AC							

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

13 Register Descriptions

This section describes the function and contents of each register within the ICM-20618.

Note: The device will come up in sleep mode upon power-up.

13.1 USR Bank 0 Register Map

13.1.1 WHO AM I

Name: WHO AM I Address: 0 (00h) Type: USR0 Bank: 0 Serial IF: R

Reset Value: 0xA0

BIT	NAME	FUNCTION
7:0	WHO_AM_I[7:0]	Register to indicate to user which device is being accessed.
		The value for ICM-20618 is 0xA0
13.1.	2 USER_CTRL	allo Ma
	e: USER CTRL	CO, (U)
	ress: 3 (03h)	
Туре	e: USR0	0, 1
Banl	c : 0	
	al IF: R/W	
Rese	et Value: 0	Co. 700
BIT	NAME	FUNCTION

13.1.2 USER_CTRL

Name: USER_CTR
Address: 3 (03h)
Type: USR0
Bank: 0
Serial IF: R/W
Reset Value: 0

Rese	t Value: 0	60, 00
BIT	NAME	FUNCTION
7	DMP_EN	1 – Enables DMP features.
	~~	0 – DMR features are disabled after the current processing round has
		completed.
6	FIFO_EN	Enable FIFO operation mode.
		Disable FIFO access from serial interface.
		To disable FIFO writes by DMA, use FIFO_EN register. To disable
		possible FIFO writes from DMP, disable the DMP.
5	I2C_MST_EN	1 – Enable the I2C Master I/F module; pins ES_DA and ES_SCL are
		isolated from pins SDA/SDI and SCL/ SCLK.
		0 – Disable I2C Master I/F module; pins ES_DA and ES_SCL are
		logically driven by pins SDA/SDI and SCL/ SCLK.
4	I2C_IF_DIS	1 – Reset I2C Slave module and put the serial interface in SPI mode
		only.
3	DMB_RST	1 – Reset DMP module. Reset is asynchronous. This bit auto clears
		after one clock cycle of the internal 20MHz clock.
2	SRAM_RST	1 – Reset SRAM module. Reset is asynchronous. This bit auto clears
		after one clock cycle of the internal 20MHz clock.
1	I2C_MST_RST	1 – Reset I2C Master module. Reset is asynchronous. This bit auto
		clears after one clock cycle of the internal 20MHz clock.
		NOTE: This bit should only be set when the I2C master has hung. If

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

		this bit is set during an active I2C master transaction, the I2C slave will hang, which will require the host to reset the slave.
0	-	Reserved

13.1.3 LP CONFIG

Name: LP_CONFIG Address: 5 (05h) Type: USR0 Bank: 0 Serial IF: R/W

Reset Value: 1000000

		· · · · · · · · · · · · · · · · · · ·
BIT	NAME	FUNCTION
7	-	Reserved
6	I2C_MST_CYCLE	1 - Operate I2C master in duty cycled mode. ODR is determined by I2C_MST_ODR_CONFIG register. 0 - Disable I2C master duty cycled mode.
5	ACCEL_CYCLE	1 – Operate ACCEL in duty cycled mode. ODR is determined by ACCEL_SMPLRT_DIV register. 0 – Disable ACCEL duty cycled mode.
4	GYRO_CYCLE	1 – Operate GYRO in duty cycled mode. ODR is determined by GYRO_SMPLRT_DIV register 0 – Disable GYRO duty cycled mode.
3:0	-	Reserved

13.1.4 PWR_MGMT_1

3:0	-	Reserved
Name Addr Type Bank Seria	4 PWR_MGMT_1 e: PWR_MGMT_1 ess: 6 (06h) : USR0 :: 0 II IF: R/W tt Value: 0x41	en Advanceo
BIT	NAME	FUNCTION
7	DEVICE_RESET	1 – Reset the internal registers and restores the default settings. Write a 1 to set the reset, the bit will auto clear.
6	SLEEP	When set, the chip is set to sleep mode (in sleep mode all analog is powered off). Clearing the bit wakes the chip from sleep mode.
5	LP_EN	When accelerometer alone is operating in low-power mode, LP_EN bit should be set to 1 to achieve minimum power consumption. When both gyroscope and accelerometer are operating in low-power mode the LP_EN bit should be set to 0. LP_EN should also be set to 0 when the gyroscope is operating in low-power mode and the accelerometer is off.
4	-	Reserved

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

3	TEMP_DIS	When set to 1, this bit disables the temperature sensor.
2:0	CLKSEL[2:0]	Code: Clock Source 0: Internal 20MHz oscillator 1-5: Auto selects the best available clock source – PLL if ready, else use the Internal oscillator 6: Internal 20MHz oscillator 7: Stops the clock and keeps timing generator in reset NOTE: CLKSEL[2:0] should be set to 1~5 to achieve full gyroscope performance.

13.1.5 PWR_MGMT_2

		NOTE: CLKSEL[2:0] should be set to 1~5 to achieve full gyroscope performance.
13.1.	5 PWR_MGMT_2	
Nam Addr Type Bank Seria	e: PWR_MGMT_2 :ess: 7 (07h) : USR0	atial a for Give
BIT	NAME	FUNCTION
7:6	-	Reserved
5:3	DISABLE_ACCEL	Only the following values are applicable: 111 – Accelerometer (all axes) disabled 000 – Accelerometer (all axes) on
2:0	DISABLE_GYRO	Only the following values are applicable: 111 – Gyroscope (all axes) disabled 000 – Gyroscope (all axes) on

13.1.6 INT_PIN_CFG

		000 – Gyroscope (all axes) disabled
13.1.	6 INT_PIN_CFG	COLOCO
Name Addr Type Bank	e: INT_PIN_CFG ess: 15 (0Fh) : USR0 :: 0	SUSTAN
	ll IF: R/W t Value: 0	K'
BIT	NAME	FUNCTION
7	ACTL	1 – The logic level for INT pin is active low. 0 – The logic level for INT pin is active high.
6	OPEN	1 – INT pin is configured as open drain. 0 – INT pin is configured as push-pull.
5	LATCH INT_EN	1 – INT pin level held until interrupt status is cleared. 0 – INT pin indicates interrupt pulse is width 50us.
4	INT ANYRD_2CLEAR	1 – Interrupt status in INT_STATUS is cleared (set to 0) if any read operation is performed.
		0 - Interrupt status in INT_STATUS is cleared (set to 0) only by reading INT_STATUS register.
		This bit only affects the interrupt status bits that are contained in the register INT_STATUS, and the corresponding hardware interrupt.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

		This bit does not affect the interrupt status bits that are contained in registers INT_STATUS_1, INT_STATUS_2, INT_STATUS_3, and the corresponding hardware interrupt.
3	ACTL_FSYNC	1 – The logic level for the FSYNC pin as an interrupt to the ICM-20618 is active low.
		0 – The logic level for the FSYNC pin as an interrupt to the ICM-20618 is active high.
2	FSYNC_INT_MODE_EN	1 – This enables the FSYNC pin to be used as an interrupt. A transition to the active level described by the ACTL_FSYNC bit will cause an interrupt. The status of the interrupt is read in the I2C Master Status register PASS_THROUGH bit. 0 – This disables the FSYNC pin from causing an interrupt.
1	BYPASS_EN	When asserted, the I2C_MASTER interface pins (ES_CL and ES_DA) will go into 'bypass mode' when the I2C master interface is disabled.
0	-	Reserved

13.1.7 INT_ENABLE

0		Reserved
U	_	Reserved
	7 INT_ENABLE	
	e: INT_ENABLE	10 x10
	ess: 16 (10h)	CO CO
Bank	: USR0 :- 0	Couldernation
	al IF: R/W	
Rese	et Value: 0	
BIT	NAME	FUNCTION (2)
		ζ λ ΄
7	REG_WOF_EN	1 – Enable wake on FSYNC interrupt
		0 – Function is disabled.
6:4	-	Reserved
3	WOM_INT_EN	Enable interrupt for wake on motion to propagate to interrupt pin.
		0 – Function is disabled.
2	PLL_RDY_EN	1 – Enable PLL RDY interrupt (PLL RDY means PLL is running and in
		use as the clock source for the system) to propagate to interrupt pin.
	Ť	0 - Function is disabled.
1	DMP_INT_EN	P = Enable DMP interrupt to propagate to interrupt pin.
		0 – Function is disabled.
0	I2C_MST_INT_EN	1 – Enable I2C master interrupt to propagate to interrupt pin.
	N	0 – Function is disabled.

13.1.8 INT_ENABLE_1

Name: INT_ENABLE_1 Address: 17 (11h) Type: USR0 Bank: 0

Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:1	-	Reserved

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

0	RAW_DATA_0_RDY_E	1 – Enable raw data ready interrupt from any sensor.
	N	0 – Function is disabled.

13.1.9 INT_ENABLE_2

Name: INT_ENABLE_2 Address: 18 (12h) Type: USR0

Bank: 0 Serial IF: R/W Reset Value: 0

		· · · · · · · · · · · · · · · · · · ·
BIT	NAME	FUNCTION
7:5	-	Reserved
4:0	FIFO_OVERFLOW_EN[4:0]	1 – Enable interrupt for FIFO overflow to propagate to interrupt pin. 0 – Function is disabled.
13.1.	10 INT_ENABLE_3	ider atio.
	e: INT_ENABLE_3	
	ress: 19 (13h) :: USR0	
Bank	c: 0	Co Mo
Seria	al IF: R/W	
Rese	et Value: 0	25° 26'
BIT	NAME	FUNCTION

13.1.10 INT_ENABLE_3

BI	T NAME	FUNCTION
7:	5 -	Reserved
4:0	FIFO_WM_EN[4:0]	1 - Enable interrupt for FIFO watermark to propagate to interrupt pin. 0 - function is disabled

13.1.11 I2C_MST_STATUS

Name: I2C_MST_STATUS Address: 23 (17h) Type: USR0

Bank: 0 Serial IF: R/C Reset Value: 0

BIT	NAME	FUNCTION
7	PASS_THROUGH	Status of FSYNC interrupt – used as a way to pass an external interrupt through this chip to the host. If enabled in the INT_PIN_CFG register by asserting bit FSYNC_INT_MODE_EN, this will cause an interrupt. A read of this register clears all status bits in this register.
6	I2C_SLV4_DONE	Asserted when I2C slave 4's transfer is complete, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted, and if the SLV4_DONE_INT_EN bit is asserted in the I2C_SLV4_CTRL register.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

		_ _
5	I2C_LOST_ARB	Asserted when I2C slave loses arbitration of the I2C bus, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted.
4	I2C_SLV4_NACK	Asserted when slave 4 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted.
3	I2C_SLV3_NACK	Asserted when slave 3 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted.
2	I2C_SLV2_NACK	Asserted when slave 2 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted.
1	I2C_SLV1_NACK	Asserted when slave 1 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted.
0	I2C_SLV0_NACK	Asserted when slave 0 receives a NACK, will cause an interrupt if bit I2C_MST_INT_EN in the INT_ENABLE register is asserted.

13.1.12 INT_STATUS

13.1.	12 INT_STATUS	
Nam	e: INT_STATUS	. (1) (0)
	ess: 25 (19h)	XIO V
	:: USR0	
Bank	=	
	al IF: R/C et Value: 0	
Rese	t value. V	
BIT	NAME	FUNCTION
7:4	-	Reserved
3	WOM_INT	1 – Wake on motion interrupt occurred.
2	PLL_RDY_INT	1 – Indicates that the PLL has been enabled and is ready (delay of
		4ms ensures lock).
1	DMP_INT	1 Indicates the DMP has generated an interrupt
0	I2C_MST_INT	Indicates I2C master has generated an interrupt

13.1.13 INT_STATUS_1

Name: INT_STATUS_1
Address: 26 (1Ah)
Type: USR0
Bank: 0
Serial IF: R/C Serial IF: R/C Reset Value: 0

	~0	
BIT	NAME	FUNCTION
7:1	- 1111	Reserved
0	RAW_DATA_0_RDY_IN	1 – Sensor Register Raw Data, from all sensors, is updated and ready to be read.

13.1.14 INT_STATUS_2

Name: INT_STATUS_2 Address: 27 (1Bh) Type: USR0

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

	k: 0 al IF: R/C et Value: 0		
BIT	NAME	FUNCTION	
7:5	-	Reserved	
4:0	FIFO_OVERFLOW_INT[4:0]	1 – FIFO Overflow interrupt occurred.	

13.1.15 INT_STATUS_3

Name: INT_STATUS_3 Address: 28 (1Ch) Type: USR0 Bank: 0 Serial IF: R/C Reset Value: 0

BIT	NAME	FUNCTION
7:5	-	Reserved
4:0	FIFO_WM_INT[4:0]	1 – Watermark interrupt for FIFO occurred
13.1.	16 ACCEL_XOUT_H	Collifori
	e: ACCEL_XOUT_H ress: 45 (2Dh)	35 -0
	e: USR0 `	
Seria	al IF: R	
	et Value: 0	81° 24°
BIT	NAME	FUNCTION
7:0	ACCEL_XOUT_H[7:0]	High Byte of Accelerometer X-axis data

13.1.16 ACCEL_XOUT_H

BIT	NAME	FUNCTION
7:0	ACCEL_XOUT_H[7:0]	High Byte of Accelerometer X-axis data

13.1.17 ACCEL_XOUT_L

Name: ACCEL XOUT L Address: 46 (2Eh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0

BIT	NAME	FUNCTION
7:0	ACCEL_XOUT_L[7:0]	Low Byte of Accelerometer X-axis data
		To convert the output of the accelerometer to acceleration measurement use the formula below:

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

			X_acceleration = ACCEL_XOUT/Accel_Sensitivity
--	--	--	---

13.1.18 ACCEL_YOUT_H

Name: ACCEL_YOUT_H Address: 47 (2Fh) Type: USR0

Bank: 0 Serial IF: R Reset Value: 0

BIT	NAME	FUNCTION	J
7:0	ACCEL_YOUT_H[7:0]	High Byte of Accelerometer Y-axis data	

13.1.19 ACCEL_YOUT_L

7:0 ACCEL_YOUT_H[7:0] High Byte of Accelerometer Y-axis data 13.1.19 ACCEL_YOUT_L Name: ACCEL_YOUT_L Address: 48 (30h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0 BIT NAME 7:0 ACCEL_YOUT_L[7:0] Low Byte of Accelerometer Y-axis data To convert the output of the accelerometer to acceleration measurement use the formula below: Y_acceleration = ACCEL_YOUT/Accel_Sensitivity 13.1.20 ACCEL_ZOUT_H Name: ACCEL_ZOUT_H Address: 49 (31h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0					
Name: ACCEL_YOUT_L Address: 48 (30h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0 BIT NAME FUNCTION 7:0 ACCEL_YOUT_L[7:0] Low Byte of Accelerometer Y-axis data To convert the output of the accelerometer to acceleration measurement use the formula below: Y_acceleration = ACCEL_YOUT/Accel_Sensitivity 13.1.20 ACCEL_ZOUT_H Name: ACCEL_ZOUT_H Address: 49 (31h) Type: USR0 Bank: 0 Serial IF: R	7:0	ACCEL_YOUT_H[7:0]	High Byte of Accelerometer Y-axis data		
Address: 48 (30h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0 BIT NAME FUNCTION 7:0 ACCEL_YOUT_L[7:0] Low Byte of Accelerometer Y-axis data To convert the output of the accelerometer to acceleration measurement use the formula below: Y_acceleration = ACCEL_YOUT/Accel_Sensitivity 13.1.20 ACCEL_ZOUT_H Name: ACCEL_ZOUT_H Address: 49 (31h) Type: USR0 Bank: 0 Serial IF: R	13.1.	19 ACCEL_YOUT_L			
BIT NAME FUNCTION 7:0 ACCEL_YOUT_L[7:0] Low Byte of Accelerometer Y-axis data To convert the output of the accelerometer to acceleration measurement use the formula below: Y_acceleration = ACCEL_YOUT/Accel_Sensitivity 13.1.20 ACCEL_ZOUT_H Name: ACCEL_ZOUT_H Address: 49 (31h) Type: USR0 Bank: 0 Serial IF: R	Addr	ess: 48 (30h)	dialorio		
7:0 ACCEL_YOUT_L[7:0] Low Byte of Accelerometer Y-axis data To convert the output of the accelerometer to acceleration measurement use the formula below: Y_acceleration = ACCEL_YOUT/Accel_Sensitivity 13.1.20 ACCEL_ZOUT_H Name: ACCEL_ZOUT_H Address: 49 (31h) Type: USR0 Bank: 0 Serial IF: R	Bank: 0 Serial IF: R		a del agilo		
To convert the output of the accelerometer to acceleration measurement use the formula below: Y_acceleration = ACCEL_YOUT/Accel_Sensitivity 13.1.20 ACCEL_ZOUT_H Name: ACCEL_ZOUT_H Address: 49 (31h) Type: USR0 Bank: 0 Serial IF: R	BIT	NAME	FUNCTION		
measurement use the formula below: Y_acceleration = ACCEL_YOUT/Accel_Sensitivity 13.1.20 ACCEL_ZOUT_H Name: ACCEL_ZOUT_H Address: 49 (31h) Type: USR0 Bank: 0 Serial IF: R	7:0	ACCEL_YOUT_L[7:0]	Low Byte of Accelerometer Y-axis data		
13.1.20 ACCEL_ZOUT_H Name: ACCEL_ZOUT_H Address: 49 (31h) Type: USR0 Bank: 0 Serial IF: R					
Name: ACCEL_ZOUT_H Address: 49 (31h) Type: USR0 Bank: 0 Serial IF: R			Y_acceleration = ACCEL_YOUT/Accel_Sensitivity		
Address: 49 (31h) Type: USR0 Bank: 0 Serial IF: R	13.1.	13.1.20 ACCEL_ZOUT_H			
Bank: 0 Serial IF: R	Addr	ess: 49 (31h)	'x P		
	Bank	:: 0			
I NESEL VAIUE. V					

13.1.20 ACCEL_ZOUT_H

	t talasi s	▼
BIT	NAME	FUNCTION
7:0	ACCEL_ZOUT_H[7:0]	High Byte of Accelerometer Z-axis data

13.1.21 ACCEL_ZOUT_L

Name: ACCEL ZOUT L Address: 50 (32h) Type: USR0

Bank: 0 Serial IF: R Reset Value: 0

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

BIT	NAME	FUNCTION
7:0	ACCEL_ZOUT_L[7:0]	Low Byte of Accelerometer Z-axis data
		To convert the output of the accelerometer to acceleration measurement use the formula below:
		Z_acceleration = ACCEL_ZOUT/Accel_Sensitivity

13.1.22 **GYRO_XOUT_H**

Name: GYRO_XOUT_H Address: 51 (33h)

Type: USR0 Bank: 0 Serial IF: R Reset Value: 0

		A\ XU
BIT	NAME	FUNCTION
7:0	GYRO_XOUT_H[7:0]	High Byte of Gyroscope X-axis data
13.1.	23 GYRO_XOUT_L	Allow Math
Addr	e: GYRO_XOUT_L ress: 52 (34h) :: USR0	Collifor
Bank Seria		- ense ced li
BIT	NAME	FUNCTION
7:0	GYRO XOUT L[7:0]	low Byte of Gyroscope X-axis data

13.1.23 **GYRO_XOUT_L**

BIT	NAME	FUNCTION
7:0	GYRO_XOUT_L[7:0]	Low Byte of Gyroscope X-axis data To convert the output of the gyroscope to angular rate measurement
	14,	use the formula below:
		angular_rate = GYRO_XOUT/Gyro_Sensitivity

13.1.24 GYRO_YOUT_H

Name: GYRO_YOUT_H Address: 53 (35h) Type: USR0

Bank: 0 Serial IF: R Reset Value: 0

BIT	NAME	FUNCTION
7:0	GYRO_YOUT_H[7:0]	High Byte of Gyroscope Y-axis data

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

13.1.25 GYRO_YOUT_L

Name: GYRO YOUT L Address: 54 (36h)

Type: USR0 Bank: 0 Serial IF: R Reset Value: 0

BIT	NAME	FUNCTION	
7:0	GYRO_YOUT_L[7:0]	Low Byte of Gyroscope Y-axis data	
		To convert the output of the gyroscope to angular rate measurement use the formula below:	t
		Y_angular_rate = GYRO_YOUT/Gyro_Sensitivity	

13.1.26 GYRO_ZOUT_H

		use the formula below.
		Y_angular_rate = GYRO_YOUT/Gyro_Sensitivity
13.1	.26 GYRO_ZOUT_H	
Add Type Ban Seri	ne: GYRO_ZOUT_H ress: 55 (37h) e: USR0 k: 0 al IF: R et Value: 0	c.onfidentiation,
BIT	NAME	FUNCTION
7:0	GYRO_ZOUT_H[7:0]	High Byte of Gyroscope Z-axis data
Nam Add Typ Ban Seri Res	al IF: R et Value: 0	oft Advance
BIT	NAME	FUNCTION

13.1.27 GYRO_ZOUT_L

	t value.	^
BIT	NAME	FUNCTION
7:0	GYRO_ZOUT_L[7:0]	Low Byte of Gyroscope Z-axis data
	dinai.	To convert the output of the gyroscope to angular rate measurement use the formula below:
		Z_angular_rate = GYRO_ZOUT/Gyro_Sensitivity

13.1.28 TEMP_OUT_H

Name: TEMP OUT H Address: 57 (39h) Type: USR0 Bank: 0 Serial IF: R

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Reset Value: 0		
BIT	NAME	FUNCTION
7:0	TEMP_OUT_H[7:0]	High Byte of Temp sensor data

13.1.29 TEMP_OUT_L

Name: TEMP_OUT_L Address: 58 (3Ah) Type: USR0 Bank: 0 Serial IF: R

Reset Value: 0

BIT NAME

FUNCTION

TEMP_OUT_L[7:0]

Low Byte of Temp sensor data

To convert the output of the temperature sensor to degrees C use the following formula:

TEMP_degC = ((TEMP_OUT_RoomTemp_Offset)/Temp_Sensitivity) + 21degC

13.1.30 EXT_SLV_SENS_DATA_00

Name: EXT_SLV_SENS_DATA_00

Address: 59 (3Bh) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0

FUNCTION

7:0 EXT_SLV_SENS_DATA Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.31 EXT_SLV_SENS_DATA_01

Name: EXT_SLV_SENS_DATA_01

Address: 60 (3Ch) Type: USR0

Bank: 0 Serial IF: R Reset Value: 0

BIT NAME	FUNCTION
7:0 EXT_SLV_SENS_DATA _01[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

13.1.32 EXT_SLV_SENS_DATA_02

Name: EXT SLV SENS DATA 02

Address: 61 (3Dh) Type: USR0

Bank: 0 Serial IF: R Reset Value: 0

BIT	NAME	FUNCTION	
7:0	EXT_SLV_SENS_DATA _02[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDF I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers	₹,

13.1.33 EXT_SLV_SENS_DATA_03

	_02[7.0]	Interface. The data stored is controlled by the IZC_SLV(0-4)_ADDR,
		I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers
13.1.	33 EXT_SLV_SENS_DATA	Z_03
Name	e: EXT_SLV_SENS_DATA	_03
Addr	ess: 62 (3Eh)	
Type	: USR0	
Bank	c: 0	
Seria	il IF: R	
Rese	t Value: 0	
DIT	N. A. A. C.	FINATION
BIT	NAME	FUNCTION
7:0	EXT_SLV_SENS_DATA	Sensor data read from external 12C devices via the I2C master
	_03[7:0]	interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR,
		I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers
40.4	A FYT OLV OFNO DATA	
	34 EXT_SLV_SENS_DATA	
	e: EXT_SLV_SENS_DATA	_04
	ess: 63 (3Fh)	
	: USR0	
Bank	c: 0	
Seria	il IF: R	
Rese	et Value: 0	X Y
BIT	NAME	FUNCTION
7:0	EYT SLV SENS DATA	Sensor data read from external I2C devices via the I2C master

13.1.34 EXT_SLV_SENS_DATA_04

BIT	NAME	FUNCTION
7:0	EXT_SLV_SENS_DATA _04[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.35 EXT_SLV_SENS_DATA_05

Name: EXT SLV SENS DATA 05

Address: 64 (40h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0

BIT	NAME	FUNCTION	
7:0	EXT_SLV_SENS_DATA	Sensor data read from external I2C devices via the I2C master	

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

_05[7:0]	interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR,
	I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.36 EXT_SLV_SENS_DATA_06

Name: EXT_SLV_SENS_DATA_06

Address: 65 (41h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0

E	BIT	NAME	FUNCTION
7	':0	EXT_SLV_SENS_DATA _06[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.37 EXT_SLV_SENS_DATA_07

	_06[7:0]	interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR,	
		I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_C7RL registers	
13.1.	37 EXT_SLV_SENS_DATA		
Name	Name: EXT_SLV_SENS_DATA_07		
Addr	ess: 66 (42h)		
Type	: USR0		
Bank	Bank: 0		
Seria	Serial IF: R		
Rese	Reset Value: 0		
	-		
BIT	NAME	FUNCTION	
7:0	EXT_SLV_SENS_DATA	Sensor data read from external I2C devices via the I2C master	
	_07[7:0]	interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR,	
		I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers	

13.1.38 EXT_SLV_SENS_DATA_08

Name: EXT_SLV_SENS_DATA_08 Address: 67 (43h)

Address: 67 (43h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0

BIT	NAME	1	FUNCTION
7:0	EXT_SLV_SENS_[_08[7:0]	DATA	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.39 EXT_SLV_SENS_DATA_09

Name: EXT_SLV_SENS_DATA_09

Address: 68 (44h) Type: USR0 Bank: 0 Serial IF: R

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Rese	Reset Value: 0	
BIT	NAME	FUNCTION
7:0	EXT_SLV_SENS_DATA _09[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.40 EXT_SLV_SENS_DATA_10

Name: EXT SLV SENS DATA 10

Address: 69 (45h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0

BIT	NAME	FUNCTION
7:0	EXT_SLV_SENS_DATA _10[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers
13.1.	41 EXT_SLV_SENS_DATA	L11 SHOWAL
Addr	e: EXT_SLV_SENS_DATA ress: 70 (46h) :: USR0	_11
Bank Seria		ense ced li
BIT	NAME	FUNCTION

13.1.41 EXT_SLV_SENS_DATA_11

BIT	NAME	FUNCTION
7:0		Sensor data fead from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.42 EXT_SLV_SENS_DATA_12

Name: EXT_SLV_SENS_DATA_12

Address: 71 (47h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0

BIT	NAME	FUNCTION
	EXT_SLV_SENS_DATA 12[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.43 EXT_SLV_SENS_DATA_13

Name: EXT SLV SENS DATA 13

Address: 72 (48h)

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Bank Seria	e: USR0 k: 0 al IF: R et Value: 0	
BIT	NAME	FUNCTION
7:0	EXT_SLV_SENS_DATA _13[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers
Nam	44 EXT_SLV_SENS_DATA e: EXT_SLV_SENS_DATA	
	ress: 73 (49h) :: USR0	
	c: 0 al IF: R et Value: 0	tial rol
BIT	NAME	FUNCTION
7:0	EXT_SLV_SENS_DATA _14[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR,

13.1.44 EXT_SLV_SENS_DATA_14

BI	NAME	FUNCTION
7:0	EXT_SLV_SENS_DATA _14[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.45 EXT_SLV_SENS_DATA_15

Name: EXT_SLV_SENS_DATA_15 Address: 74 (4Ah) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0 BIT NAME 7:0 EXT_SLV_SENS_DATA Sensor data read from external I2C devices via the I2C master _15[7:0] interface. The data stored is controlled by the I2C SLV(0-4) ADDR.

12C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.46 EXT_SLV_SENS_DATA_16

Name: EXT_SLV_SENS_DATA_16

Address: 75 (4Bh) 7

Type: USR0 Bank: 0 Serial IF: R Reset Value: 0

BIT	NAME	FUNCTION
7:0	EXT_SLV_SENS_DATA _16[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

13.1.47 EXT_SLV_SENS_DATA_17

Name: EXT SLV SENS DATA 17

Address: 76 (4Ch) Type: USR0

Bank: 0 Serial IF: R Reset Value: 0

BIT	NAME	FUNCTION	
7:0	EXT_SLV_SENS_DATA _17[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDF I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers	₹,

13.1.48 EXT_SLV_SENS_DATA_18

	_17[7.0]	I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers	
13.1.	48 EXT_SLV_SENS_DATA	_18	
	e: EXT_SLV_SENS_DATA	_18	
	ess: 77 (4Dh)		
	: USR0	XIO. V	
	Bank: 0		
	Serial IF: R Reset Value: 0		
Rese	et value: 0		
BIT	NAME	FUNCTION	
7:0	EXT_SLV_SENS_DATA	Sensor data read from external 12C devices via the I2C master	
	_18[7:0]	interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR,	
		I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers	

		12C_SEV(0-4)_REG, and IZC_SEV(0-4)_CTRE registers
13.1.4	49 EXT_SLV_SENS_DATA	_19
Name	e: EXT_SLV_SENS_DATA	19 6
	ess: 78 (4Eh)	
	: USR0	
Bank		
	I IF: R	
Rese	t Value: 0	A Y
DIT	NAME	LINCTION
BIT	NAME	FUNCTION
7:0	EXT_SLV_SENS_DATA	Sensor data read from external I2C devices via the I2C master
	_19[7:0]	interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR,
	_10[1:0]	I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers
1		120_3LV(0-4)_NEG, and 120_3LV(0-4)_CTRL registers

13.1.50 EXT_SLV_SENS_DATA_20

Name: EXT SLV SENS DATA 20

Address: 79 (4Fh) Type: USR0 Bank: 0 Serial IF: R

Reset Value: 0

L			
	BIT	NAME	FUNCTION
	7:0	EXT_SLV_SENS_DATA	Sensor data read from external I2C devices via the I2C master

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

_20[7:0]	interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR,
	I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.51 EXT_SLV_SENS_DATA_21

Name: EXT_SLV_SENS_DATA_21

Address: 80 (50h) Type: USR0 Bank: 0 Serial IF: R Reset Value: 0

BIT	NAME	FUNCTION
7:0	EXT_SLV_SENS_DATA _21[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.52 EXT_SLV_SENS_DATA_22

	_21[7:0]	interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR,
	_21[7.0]	
		I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_C7RL registers
13.1.	52 EXT_SLV_SENS_DATA	_22
Name	e: EXT_SLV_SENS_DATA	_22
Addr	ess: 81 (51h)	
Туре	: USR0	
Bank	k: 0	
Seria	ıl IF: R	
Rese	t Value: 0	C.O. 70,
BIT	NAME	FUNCTION
7:0	EXT_SLV_SENS_DATA	Sensor data read from external I2C devices via the I2C master
	_22[7:0]	interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR,
		I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.53 EXT_SLV_SENS_DATA_23

Name: EXT_SLV_SENS_DATA_23

Address: 82 (52h)

Type: USR0

Bank: 0

Serial IE- D Serial IF: R Reset Value: 0

BIT	NAME	FUNCTION
7:0	EXT_SLV_SENS_DATA _23[7:0]	Sensor data read from external I2C devices via the I2C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

13.1.54 FIFO_EN_1

Name: FIFO_EN_1 Address: 102 (66h) Type: USR0

Bank: 0 Serial IF: R/W

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

at the sample rate; 0 – function is disabled 0 SLV_0_FIFO_EN 1 – write EXT_SENS_DATA registers associated to SLV_0 (as determined by I2C_SLV0_CTRL) to the FIFO at the sample rat 0 – function is disabled 13.1.55 FIFO_EN_2 Name: FIFO_EN_2 Address: 103 (67h) Type: USR0 Bank: 0 Serial IF: R/W	Rese	t Value: 0	
3 SLV_3_FIFO_EN 1 - write EXT_SENS_DATA registers associated to SLV_3 (as determined by I2C_SLV2_CTRL, I2C_SLV1_CTRL, and I2C_SL20_CTRL) to the FIFO at the sample rate; 0 - function is disabled 2 SLV_2_FIFO_EN 1 - write EXT_SENS_DATA registers associated to SLV_2 (as determined by I2C_SLV0_CTRL, I2C_SLV1_CTRL, and I2C_SL20_CTRL) to the FIFO at the sample rate; 0 - function is disabled 1 SLV_1_FIFO_EN 1 - write EXT_SENS_DATA registers associated to SLV_1 (as determined by I2C_SLV0_CTRL and I2C_SLV1_CTRL) to the at the sample rate; 0 - function is disabled 0 SLV_0_FIFO_EN 1 - write EXT_SENS_DATA registers associated to SLV_0 (as determined by I2C_SLV0_CTRL) to the FIFO at the sample rate determined by I2C_SLV0_CTRL) to the FIFO at the sample rate 0 - function is disabled 13.1.55 FIFO_EN_2 Name: FIFO_EN_2 Name: FIFO_EN_2 Name: FIFO_EN_2 Name: FIFO_EN_2 Name: FIFO_EN_2 SENS_DATA registers associated to SLV_0 (as determined by I2C_SLV0_CTRL) to the FIFO at the sample rate 0 - function is disabled	BIT	NAME	FUNCTION
determined by I2C_SLV2_CTRL, I2C_SLV1_CTRL, and I2C_SL20_CTRL) to the FIFO at the sample rate; 0 - function is disabled 2 SLV_2_FIFO_EN	7:4	-	Reserved
determined by I2C_SLV0_CTRL, I2C_SLV1_CTRL, and I2C_SL20_CTRL) to the FIFO at the sample rate; 0 - function is disabled 1 SLV_1_FIFO_EN 1 - write EXT_SENS_DATA registers associated to SLV_1 (as determined by I2C_SLV0_CTRL and I2C_SLV1_CTRL) to the at the sample rate; 0 - function is disabled 0 SLV_0_FIFO_EN 1 - write EXT_SENS_DATA registers associated to SLV_0 (as determined by I2C_SLV0_CTRL) to the FIFO at the sample rat 0 - function is disabled 13.1.55 FIFO_EN_2 Name: FIFO_EN_2 Address: 103 (67h) Type: USR0 Bank: 0 Serial IF: R/W	3	SLV_3_FIFO_EN	determined by I2C_SLV2_CTRL, I2C_SLV1_CTRL, and I2C_SL20_CTRL) to the FIFO at the sample rate;
determined by I2C_SLV0_CTRL and I2C_SLV1_CTRL) to the at the sample rate; 0 - function is disabled 0 SLV_0_FIFO_EN 1 - write EXT_SENS_DATA registers associated to SLV_0 (as determined by I2C_SLV0_CTRL) to the FIFO at the sample rat 0 - function is disabled 13.1.55 FIFO_EN_2 Name: FIFO_EN_2 Address: 103 (67h) Type: USR0 Bank: 0 Serial IF: R/W	2	SLV_2_FIFO_EN	determined by I2C_SLV0_CTRL, I2C_SLV1_CTRL, and I2C_SL20_CTRL) to the FIFO at the sample rate;
determined by I2C_SLV0_CTRL) to the FIFO at the sample rat 0 – function is disabled 13.1.55 FIFO_EN_2 Name: FIFO_EN_2 Address: 103 (67h) Type: USR0 Bank: 0 Serial IF: R/W	1	SLV_1_FIFO_EN	determined by I2C_SLV0_CTRL and I2C_SLV1_CTRL to the FIFO at the sample rate;
Name: FIFO_EN_2 Address: 103 (67h) Type: USR0 Bank: 0 Serial IF: R/W	0	SLV_0_FIFO_EN	determined by I2C_SLV0_CTRL) to the FIFO at the sample rate;
Name: FIFO_EN_2 Address: 103 (67h) Type: USR0 Bank: 0 Serial IF: R/W	13.1.	55 FIFO EN 2	afide Math
Bank: 0 Serial IF: R/W	Name Addre	e: FIFO_EN_2 ess: 103 (67h)	CO FOLL
	Bank: 0		ce y In.
DIT NAME ELECTION	Rese	t Value: 0	ella cen

13.1.55 FIFO_EN_2

Name: FIFO_EN_2
Address: 103 (67h)
Type: USR0
Bank: 0
Serial IF: R/W
Reset Value: 0

Rese	t Value: 0	
BIT	NAME	FUNCTION
7:5	-	Reserved
4	ACCEL_FIFO_EN	1 - write ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L to the PIFO at the sample rate; 0 - function is disabled
3	GYRO_Z_FIFO_EN	 Write GYRO_ZOUT_H and GYRO_ZOUT_L to the FIFO at the sample rate function is disabled
2	GYRO_Y_FIFO EN	1 – Write GYRO_YOUT_H and GYRO_YOUT_L to the FIFO at the sample rate 0 – function is disabled
1	GYRO_X_PIFO_EN	1 – Write GYRO_XOUT_H and GYRO_XOUT_L to the FIFO at the sample rate 0 – function is disabled
0	TEMP_FIFO_EN	1 – Write TEMP_OUT_H and TEMP_OUT_L to the FIFO at the sample rate 0 – function is disabled

13.1.56 FIFO_RST

Name: FIFO RST

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Address: 104 (68h) Type: USR0 Bank: 0 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:5	-	Reserved
4:0	FIFO_RESET[4:0]	S/W FIFO reset.

13.1.57 FIFO_MODE

7.0		C/W 1 II & 1000t.
13.1.	57 FIFO_MODE	
	e: FIFO MODE	
	ess: 105 (69h)	
	: USR0	
Bank		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
	il IF: R/W	
• • • • • • • • • • • • • • • • • • • •	et Value: 0	
BIT	NAME	FUNCTION
7:5	-	Reserved
4:0	FIFO_MODE[4:0]	0 - Stream
		1 - Snapshot
		When set to '1', when the FIFO is full, additional writes will not be
		written to FIFO. When set to '0', when the FIFO is full, additional
		writes will be written to the FIFO, replacing the oldest data.
		Sellice
13.1.	58 FIFO_COUNTH	
Nam	e: FIFO_COUNTH	
Addr	ess: 112 (70h)	
Туре	: USR0	A V
Bank	:: 0	
Seria	ıl IF: R	
Rese	t Value: 0	
DIT	NIANE	FUNCTION

13.1.58 FIFO_COUNTH

BIT	NAME	FUNCTION
7:5	. 0,	Reserved
4:0	FIFO_CNT[12:8]	High Bits, count indicates the number of written bytes in the FIFO. Reading this byte latches the data for both FIFO_COUNTH, and FIFO_COUNTL.

13.1.59 FIFO_COUNTL

Name: FIFO_COUNTL Address: 113 (71h) Type: USR0

Bank: 0 Serial IF: R

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Reset Value: 0		
BIT	NAME	FUNCTION
7:0	FIFO_CNT[7:0]	Low bits, count indicates the number of written bytes in the FIFO.

13.1.60 FIFO R W

Name: FIFO_R_W Address: 114 (72h) Type: USR0 Bank: 0

Serial IF: R/W Reset Value: 0

		(Δ)
BIT	NAME	FUNCTION
7:0	FIFO_R_W[7:0]	Reading from or writing to this register actually reads/writes the FIFO. For example, to write a byte to the FIFO, write the desired byte value to FIFO_R_W[7:0]. To read a byte from the FIFO, perform a register read operation and access the result in FIFO_R_W[7:0].
13.1.	61 DATA_RDY_STATUS	Elde Wall
Addr	e: DATA_RDY_STATUS ress: 116 (74h) :: USR0	Colliforni
Bank	·	
	al IF: R/C	
Rese	et Value: 0	
BIT	NAME	FUNCTION

13.1.61 DATA_RDY_STATUS

BIT NAME **FUNCTION** Wake on FSYNC interrupt status. Cleared on read. 7 WOF_STATUS WOM_STATUS Wake on motion interrupt status. Cleared on read. 6 5:4 Reserved 3:0 RAW_DATA_RDY[3:0] Data from sensors is copied to FIFO or SRAM. Set when sequence controller kicks off on a sensor data load. Only bit 0 is relevant in a single FIFO configuration. Cleared on read.

13.1.62 FIFO CFG

Name: FIFO CFG Address: 118 (76h) Type: USR0 Bank: 0

Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:1	-	Reserved
0	FIFO_CFG	This bit should be set to 1 if interrupt status for each sensor is

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

required.	req	uired.
-----------	-----	--------

13.1.63 REG_BANK_SEL

Name: REG_BANK_SEL **Address: 127 (7Fh)**

Type: ALL Bank: 0 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION		
7:6	-	Reserved		
5:4	USER_BANK[1:0]	Use the following values in this bit-field to select a USER BANK		
		0: Select USER BANK 0		
		1: Select USER BANK 1		
		2: Select USER BANK 2		
		3: Select USER BANK 3		
3:0	-	Reserved		
13.2 USR Bank 1 Register Map 13.2.1 SELF_TEST_X_GYRO				
Nam	e: SELF_TEST_X_GYRO	60 7		
Addı	ress: 2 (02h)			
Туре	e: USR1`			
Banl	c: 1			
Seria	al IF: R/W			
Rese	et Value: 0	101, 470		
BIT	NAME	FUNCTION		
7:0	XG_ST_DATA[7:0]	The value in this register indicates the self-test output generated		

13.2 USR Bank 1 Register Map

13.2.1 SELF_TEST_X_GYRO

BIT	NAME	FUNCTION
7:0	XG_ST_DATA[7:0]	The value in this register indicates the self-test output generated
		during manufacturing tests. This value is to be used to check against
		Subsequent self-test outputs performed by the end user.

13.2.2 SELF_TEST_Y_GYRO

Name: SELF_TEST_Y_GYRO

Address: 3 (03h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:0	YG_ST_DATA[7:0]	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

13.2.3 SELF_TEST_Z_GYRO

Name: SELF TEST Z GYRO

Address: 4 (04h) Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION	C
7:0	ZG_ST_DATA[7:0]	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check again subsequent self-test outputs performed by the end user.	ıst

13.2.4 SELF_TEST_X_ACCEL

		subsequent self-test outputs performed by the end user.
13.2.	4 SELF_TEST_X_ACCE	L
Nam	e: SELF_TEST_X_ACCE	
Addr	ess: 14 (0Eh)	
Туре	: USR1	
Bank	:: 1	
Seria	ıl IF: R/W	
Rese	t Value: 0	cide all
BIT	NAME	FUNCTION
7:0	XA_ST_DATA[7:0]	Contains self-test data for the X Accelerometer.

13.2.5 SELF_TEST_Y_ACCEL

7:0	XA_ST_DATA[7:0]	Contains self-test data for the X Accelerometer.		
13.2.	13.2.5 SELF_TEST_Y_ACCEL			
Nam	Name: SELF_TEST_Y_ACCEL			
Addr	ress: 15 (0Fh)			
Туре	Type: USR1 \			
Bank	Bank: 1			
Seria	Serial IF: R/W			
Rese	Reset Value: 0			
BIT	NAME	FUNCTION		
7:0	YA_ST_DATA[7:0]	Contains self-test data for the Y Accelerometer.		

13.2.6 SELF_TEST_Z_ACCEL

Name: SELF_TEST_Z_ACCEL

Address: 16 (10h)

Type: USR1 Bank: 1 Serial IF: R/W Reset Value: 0

11000		
BIT	NAME	FUNCTION
7:0	ZA_ST_DATA[7:0]	Contains self-test data for the Z Accelerometer.

13.2.7 XA_OFFS_H

Name: XA_OFFS_H

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Address: 20 (14h) Type: USR1 Bank: 1 Serial IF: R/W

Reset Value: Trimmed on a per-part basis for optimal performance

BIT	NAME	FUNCTION
7:0	XA_OFFS[14:7]	Upper bits of the X accelerometer offset cancellation.

13.2.8 XA_OFFS_L

Name: XA_OFFS_L Address: 21 (15h) Type: USR1 Bank: 1

Serial IF: R/W

Reset Value: Trimmed on a per-part basis for optimal performance

BIT	NAME	FUNCTION
7:1	XA_OFFS[6:0]	Lower bits of the X accelerometer offset cancellation.
0	-	Reserved

13.2.9 YA_OFFS_H

Name: YA_OFFS_H Address: 23 (17h) Type: USR1 Bank: 1 Serial IF: R/W

Reset Value: Trimmed on a per-part basis for optimal performance

BIT	NAME	FUNCTION
7:0	YA_OFFS[14:7]	Upper bits of the Y accelerometer offset cancellation.

13.2.10 YA_OFFS_L

Name: YA_OFFS_L Address: 24 (18h) Type: USR1 Bank: 1 Serial IF: R/W

Reset Value: Trimmed on a per-part basis for optimal performance

BIT	NAME	FUNCTION
7:1	YA_OFFS[6:0]	Lower bits of the Y accelerometer offset cancellation.
0	-	Reserved

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

13.2.11 ZA_OFFS_H

Name: ZA_OFFS_H Address: 26 (1Ah) Type: USR1

Bank: 1 Serial IF: R/W

Reset Value: Trimmed on a per-part basis for optimal performance

BIT	NAME	FUNCTION
7:0	ZA_OFFS[14:7]	Upper bits of the Z accelerometer offset cancellation.

13.2.12 ZA_OFFS_L

Name: ZA_OFFS_L Address: 27 (1Bh) Type: USR1

Bank: 1 Serial IF: R/W

Reset Value: Trimmed on a per-part basis for optimal performance

BIT	NAME	FUNCTION
7:1	ZA_OFFS[6:0]	Lower bits of the Z accelerometer offset cancellation.
0	-	Reserved

13.2.13 TIMEBASE_CORRECTION_PLL

Name: TIMEBASE_CORRECTION_PLL Address: 40 (28h)

Type: USR1
Bank: 1
Serial IF: R/W
Reset Value: 0

BIT	NAME	FUNCTION
7:0	TBC_PLL[7:0]	System PLL clock period error (signed, [-10%, +10%])

13.2.14 REG_BANK_SEL

Name: REG_BANK SEL Address: 127 (7Fb)

Type: Bank: 1 Serial IF: R/W Reset Value: 0

E	ЗІТ	NAME	FUNCTION
7	7 :6	-	Reserved
5	5:4	USER_BANK[1:0]	Use the following values in this bit-field to select a USER BANK

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

		0: Select USER BANK 0 1: Select USER BANK 1 2: Select USER BANK 2 3: Select USER BANK 3
3:0	-	Reserved

13.3 USR Bank 2 Register Map

13.3.1 GYRO_SMPLRT_DIV

3:0	13.3 USR Bank 2 Regist	er Map			
13.3.1 GYRO_SMPLRT_DIV Name: GYRO_SMPLRT_DIV Address: 0 (00h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0					
BIT	NAME	FUNCTION			
7:0	GYRO_SMPLRT_DIV[7: 0]	Gyro sample rate divider. Divides the internal sample rate to generate the sample rate that controls sensor data output rate, FIFO sample rate, and DMP sequence rate. NOTE: This register is only effective when FCHOICE = 1'b1 (FCHOICE_B register bit is 1'b0), and (0 < DLPF_CFG < 7). ODR is computed as follows: 1.1kHz/(1+GYRO_SMPLRT_DIV[7:0])			
	2 GYRO_CONFIG_1 e: GYRO_CONFIG_1	Solato			
Addr	ess: 1 (01h)	0.797			
Bank	: USR2 :: 2 il IF: R/W	KK K			

13.3.2 GYRO_CONFIG_1

BIT	NAME	FUNCTION
7:6	- 20	Reserved
5:3	GYRO_DLPFCFG[2:0]	Gyro low pass filter configuration as shown in the table below
2:1	GYRO FS_SEL[1:0]	Gyro Full Scale Select:
		$00 = \pm 250 \text{ dps}$
	Cili	$01 = \pm 500 \text{ dps}$
	10	$10 = \pm 1000 \text{ dps}$
		$11 = \pm 2000 \text{ dps}$
0	GYRO_FCHOICE	0 – bypass gyro DLPF
		1 – enable gyro DLPF

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

The gyroscope DLPF is configured by GYRO_DLPFCFG, when GYRO_FCHOICE = 1. The gyroscope data is filtered according to the value of GYRO_DLPFCFG and GYRO_FCHOICE as shown in the table below.

		Output			
GYRO_FCHOICE	GYRO_DLPFCFG	3dB BW [Hz]	NBW [Hz]	Rate [Hz]	
0	Х	12106	12316	9000	
1	0	196.6	229.8	1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,255	
1	1	151.8	187.6	1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,255	
1	2	119.5	154.3	1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,255	
1	3	51.2	73.3	1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,255	
1	4	23.9	35.9	1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,255	
1	5	11.6	17.8	1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,255	
1	6	5.7	08.9	1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,255	
1	7	361.4	376.5	1125/(1+GYRO_SMPLRT_DIV)Hz where GYRO_SMPLRT_DIV is 0, 1, 2,255	

13.3.3 GYRO_CONFIG_2 Name: GYRO_CONFIG_2

Address: 2 (02h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0					
BIT	NAME	FUNCTION			
7:6	-	Reserved			
5	XGYRO_CTEN	X Gyro self-test enable			
4	YGYRO_CTEN	Y Gyro self-test enable			
3	ZGYRO_CTEN	Z Gyro self-test enable			
2:0	GYRO_AVGCFG[2:0]	Averaging filter configuration settings for low-power mode			
		0: 1x averaging			
		1: 2x averaging			
		2: 4x averaging			

Page **72** of **91**

3: 8x averaging4: 16x averaging5: 32x averaging6: 64x averaging

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

	7: 128x averaging

The following table lists the gyroscope filter bandwidths available in the low-power mode of operation. In the low-power mode of operation, the gyroscope is duty-cycled.

	Averages	1x	2x	4x	8x	16x	32x	64x	128x
	GYRO_FCHOIC E	1	1	1	1	1	1	1	10
	GYRO_AVGCFG	0	1	2	3	4	5	6	7
	Ton (ms)	1.15	1.59	2.48	4.26	7.82	14.9	29.1 5	57.5 9
	NBW (Hz)	773.5	469. 8	257. 8	134. 8	68.9	34.8	17.5	8.8
GYRO_SMPLRT_DI V	ODR (Hz)	Current	Consu	mption	[mA]	101			
255	4.4	1.15	1.16	1.]7	1.18	1.20	1.25	1.35	1.54
64	17.3	1.18	1.19	1.21	1.26	1.35	1.54	1.91	N/A
									IN/A
63	17.6	1.18	1.19	1.21	1.26	1.35	1.54	1.91	
32	34.1	1.21	1.23	1.27	1.36	1.55	1.91	N/A	
31	35.2	1.21	1.24	1.28	1.37	1.55	1.93		
16	66.2	1.26	1.30	1.39	1.57	1.92	N/A	_	
15	70.3	1.26	1.32	1.41	1.59	1.97			
10	102(3	1.29	1.41	1.58	1.80	2.50	-		
8	125.0	1.36	1.44	1.61	1.94	N/A			
7	140.6	1.39	1.49	1.66	2.04				
5	187.5	1.47	1.59	1.84	2.54				
4	225.0	1.58	1.69	2.12	N/A				
3	281.3	1.72	1.94	2.39					
2	375.0	1.94	2.24	N/A					
1	562.5	2.39	N/A						

Note 1: The current values shown above are TYP values.

Note 2: Ton is the ON time for motion measurement when the gyroscope is in duty cycle mode.

Note 3: The gyroscope current values shown above correspond to the default device configuration with LP_EN (bit 5 of register 0x06, USR bank 0) set to 0.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

13.3.4 XG_OFFS_USRH

Name: XG OFFS USRH Address: 3 (03h) Type: USR2

Bank: 2 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:0	X_OFFS_USER[15:8]	Upper byte of X gyro offset cancellation

13.3.5 XG_OFFS_USRL

Name: XG_OFFS_USRL Address: 4 (04h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:0	X_OFFS_USER[7:0]	Lower byte of X gyro offset cancellation

13.3.6 YG_OFFS_USRH

ы	NAME	FUNCTION		
7:0	X_OFFS_USER[7:0]	Lower byte of X gyro offset cancellation		
13.3.	13.3.6 YG_OFFS_USRH			
Name	e: YG_OFFS_USRH			
Addr	ess: 5 (05h)	25 20		
Type	: USR2			
Bank	:: 2			
Seria	I IF: R/W			
Rese	t Value: 0	of Mo		
BIT	NAME	FUNCTION		
7:0	Y_OFFS_USER[15:8]	Upper byte of Y gyro offset cancellation		

13.3.7 YG_OFFS_USRL

Name: YG_OFFS_USRL Address: 6 (06h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value 0

BIT	NAME	FUNCTION
	10	
7:0	Y_OFFS_USER[7:0]	Lower byte of Y gyro offset cancellation

13.3.8 ZG_OFFS_USRH

Name: ZG OFFS USRH

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Address: 7 (07h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:0	Z_OFFS_USER[15:8]	Upper byte of Z gyro offset cancellation

13.3.9 ZG_OFFS_USRL

Name: ZG_OFFS_USRL Address: 8 (08h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION	
7:0	Z_OFFS_USER[7:0]	Lower byte of Z gyro offset cancellation	

13.3.10 ACCEL_SMPLRT_DIV_1

7:0	Z_OFFS_USER[7:0]	Lower byte of Z gyro offset cancellation		
	13.3.10 ACCEL_SMPLRT_DIV_1			
Name	e: ACCEL_SMPLRT_DIV_1			
	ess: 16 (10h)			
	: USR2			
	Bank: 2			
	Serial IF: R/W			
Rese	Reset Value: 0			
BIT	NAME	FUNCTION		
7:4		Reserved		
3:0	ACCEL_SMPLRT_DIV[1	MSB for ACCEL sample rate div		
	1:8]			

13.3.11 ACCEL_SMPLRT_DIV_2

Name: ACCEL_SMPLRT_DIV_2

Address: 17 (11h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:0	ACCEL_SMPLRT_DIV[7 :0]	LSB for ACCEL sample rate div ODR is computed as follows: 1.125kHz/(1+ACCEL_SMPLRT_DIV[11:0])

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

13.3.12 ACCEL_INTEL_CTRL

Name: ACCEL INTEL CTRL

Address: 18 (12h) Type: USR2 Bank: 2

Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION		
7:2	-	Reserved		
1	ACCEL_INTEL_EN	Enable the WOM logic		
0	ACCEL_INTEL_MODE_I NT	Selects WOM algorithm 1 = Compare the current sample with the previous sample. 0 = Initial sample is stored, all future samples are compared to the initial sample		
13.3.	13.3.13 ACCEL_WOM_THR			
Addr	Name: ACCEL_WOM_THR Address: 19 (13h) Type: USR2			
Bank	Bank: 2			
Seria	al IF: R/W			
Rese	Reset Value: 0			
BIT	NAME	FUNCTION		
7:0	WOM_THRESHOLD[7:0	This register holds the threshold value for the Wake on Motion		

13.3.13 ACCEL_WOM_THR

BIT	NAME	FUNCTION
7:0	WOM_THRESHOLD[7:0]	This register holds the threshold value for the Wake on Motion Interrupt for ACCEL x/y/z axes. LSB = 4mg. Range is 0mg to 1020mg

13.3.14 ACCEL_CONFIG

Name: ACCEL_CONFIG Address: 20 (14h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 1

Kese	Reset value. I					
BIT	NAME	FUNCTION				
7:6		Reserved				
5:3	ACCEC_DLPFCFG[2:0]	Accelerometer low pass filter configuration as shown in the table below				
2:1	ACOEL_FS_SEL[1:0]	Accelerometer Full Scale Select: 00: ±2g 01: ±4g 10: ±8g 11: ±16g				
0	ACCEL_FCHOICE	0: bypass accel DLPF 1: enable accel DLPF				

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

		Output			
ACCEL_FCHOICE	ACCEL_DLPFCFG	3dB BW [Hz]	NBW [Hz]	Rate [Hz]	
0	Х	1209	1248	4500	
1	0	246.0	265.0	1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,255	
1	1	246.0	265.0	1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,1255	
1	2	111.4	136.0	1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,255	
1	3	50.4	68.8	1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,255	
1	4	23.9	34.4	1125/(4+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,255	
1	5	11.5	17.0	125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,255	
1	6	5.7	8.3	1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,255	
1	7	473	499	* 1125/(1+ACCEL_SMPLRT_DIV)Hz where ACCEL_SMPLRT_DIV is 0, 1, 2,255	

The data rate out of the DLPF filter block can be further reduced by a factor of 1.125kHz/(1+ACCEL_SMPLRT_DIV[11:0]) where ACCEL_SMPLRT_DIV is a 12-bit integer.

13.3.15 ACCEL_CONFIG_2_

Name: ACCEL_CONFIG_2 Address: 21 (15h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:5	·	Reserved
4	AX_ST_EN_REG	X Accel self-test enable
3	AY2ST_EN_REG	Y Accel self-test enable
2	AZ_ST_EN_REG	Z Accel self-test enable
1:0	DEC3_CFG[1:0]	Controls the number of samples averaged in the accelerometer decimator:
		0: average 1 or 4 samples depending on ACCEL_FCHOICE (see table below)

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

	1: average 8 samples
	2: average 16 samples
	3: average 32 samples

The following table lists the accelerometer filter bandwidths available in the low-power mode of operation. In the low-power mode of operation, the accelerometer is duty-cycled.

	Averages	1x	4x	8x	16x	32x
	ACCEL_FCHOICE	0	1	1	1	1
	ACCEL_DLPFCFG	Х	7	7	7	7
	DEC3_CFG	0	0	1	2	3
	Ton (ms)	0.821	1.488	2.377	4.154	7.71
	NBW (Hz)	1237.5	496.8	264.8	136.5	69.2
ACCEL_SMPLRT_DIV	ODR [Hz]	Current Consumption [μΑ]				
4095	0.27	222.9	223.1	223.3	223.9	224.9
2044	0.55	223.0	223.2	223.4	223.9	225.0
1022	1.1	223.2	223.6	224.1	225.0	227.1
513	2.19	223.6	224.3	225.3	227.3	231.5
255	4.4	224,2	225.6	227.7	231.7	240.2
127	8.79	225.8	228.5	232.4	240.2	255.5
63	17.6	229.0	234.7	242.0	258.7	288.3
31	35.2	235.1	246.5	261.6	291.6	351.9
15	70.3	247.8	270.1	299.9	360.4	480.4
10	102	252.0	291.3	335.3	433.0	612.0
7	141	272.6	317.5	377.5	497.4	N/A
3	281	322.4	412.2	N/A		
1	563	422.1	N/A			

Note 1: The current values shown above are TYP values.

Note 2: Ton is the ON time for motion measurement when the accelerometer is in duty cycle mode.

Note 3: The accelerometer current values shown above correspond to the default device configuration with LP_EN (bit 5 of register 0x06, USR bank 0) set to 0.

13.3.16 FSYNC CONFIG

Name: FSYNC_CONFIG Address 82 (52h) Type: USR2

Bank: 2 Serial IF: R/W Reset Value: 0

BIT NAME FUNCTION

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

5	WOF_DEGLITCH_EN	Enable digital deglitching of FSYNC input for Wake on FSYNC.
4	WOF_EDGE_INT	0: FSYNC is a level interrupt for Wake on FSYNC 1: FSYNC is an edge interrupt for Wake on FSYNC
		actl_fsync is used to set the polarity of the interrupt
3:0	EXT_SYNC_SET[3:0]	Enables the FSYNC pin data to be sampled.
		EXT_SYNC_SET FSYNC bit location 0: Function disabled 1: TEMP_OUT_L[0] 2: GYRO_XOUT_L[0] 3: GYRO_YOUT_L[0] 4: GYRO_ZOUT_L[0] 5: ACCEL_XOUT_L[0] 6: ACCEL_YOUT_L[0] 7: ACCEL_ZOUT_L[0]

13.3.17 TEMP_CONFIG

		6: ACCEL_YOUT_L[0]		•		
		7: ACCEL_ZOUT_L[0]		kO'		
13.3.	17 TEMP_CONFIG		410			
Addr	13.3.17 TEMP_CONFIG Name: TEMP_CONFIG Address: 83 (53h) Type: USR2 Bank: 2 Serial IF: R/W Reset Value: 0					
Bank Seria		con	*Othor			
BIT	NAME	FUNCTION				
2:0	TEMP_DLPFCFG[2:0]	Low pass filter configurate table below:	ion for temperature s	sensor as shown in the		
		TEMP_DLPCFG<2:0>		Sensor		
		10.	NBW (Hz)	Rate (kHz)		
		000	7932.0	9		
		X Y 1	217.9	1.125		
	e C	2	123.5	1.125		
	O_{I}	3	65.9	1.125		
	N	4	34.1	1.125		
	airais	5	17.3	1.125		
	illi	6	8.8	Rate (kHz)		
	in	7	7932.0	9		

13.3.18 MOD_CTRL_USR

Name: MOD_CTRL_USR Address: 84 (54h)

Type: USR2 Bank: 2 Serial IF: R/W

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Rese	Reset Value: 11					
BIT	NAME	FUNCTION				
7:1	-	Reserved				
0	REG_LP_DMP_EN	Enable turning on DMP in Low Power Accelerometer mode. Note that DMP still needs to be globally enabled in MOD_CTRL and USER_CTRL registers.				

13.3.19 REG_BANK_SEL

Name: REG_BANK_SEL **Address: 127 (7Fh)** Type: USR2

Bank: 2 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:6	-	Reserved
5:4	USER_BANK[1:0]	Use the following values in this bit-field to select a USER BANK 0: Select USER BANK 0 1: Select USER BANK 1 2: Select USER BANK 2 3: Select USER BANK 3
3:0	-	Reserved

13.4 USR Bank 3 Register Map

13.4.1 I2C_MST_ODR_CONFIG

Name: I2C_MST_ODR_CONFIG

Address: 0 (00h)

Type: USR3

Bank: 3

Serial IF: R/W

Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:4	- 00	Reserved
3:0	I2C_MST_ODR_CONFIG[3:0]	ODR configuration for external sensor when gyroscope and accelerometer are disabled. ODR is computed as follows:
	.01	1.1kHz/(2^((odr_config[3:0])))
		When gyroscope is enabled, all sensors (including I2C_MASTER) use the gyroscope ODR. If gyroscope is disabled then all sensors (including I2C_MASTER) use the accelerometer ODR.

13.4.2 I2C MST CTRL

Name: I2C_MST_CTRL

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Address: 1 (01h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0

BIT	NAME		FUNCTION			
7	MULT_MST_EN		120		ster capability. When disabled, clocking to the be disabled when not in use and the logic to detect disabled.	
6:5	-		Re	served		
4	I2C_MST_P_NSR		ne: 0 -	This bit controls the I2C Master's transition from one slave read to the next slave read. 0 - there is a restart between reads. 1 - there is a stop between reads.		
3:0	I2C_MST	_CLK[3:0]	Se	ts I2C master	clock frequency as shown in the table below	
I2C_	MST_CLK	Nominal CLK Frequency [kH		Duty Cycle	Confidentiation	
	0	370.29		50.00%	Cli Mi	
	1	-		-	-0' KO'	
	2 370.29			50.00%		
	3 432.00			50.00%		
	4 370.29			42,86%		
	5	370.29		50.00%		
			_	~ · · · / P		

I2C_MST_CLK	Nominal CLK Frequency [kHz]	Duty Cycle
0	370.29	50.00%
1	-	-
2	370.29	50.00%
3	432.00	50.00%
4	370.29	42,86%
5	370.29	50.00%
6	345.60	40.00%
7	345.60	46.67%
8	304.94	47.06%
9	432.00	50.00%
10	432.00	41.67%
11	432.00	41.67%
12	471.27	45.45%
13	432.00	50.00%
14	345.60	46.67%
15	345.60	46.67%

13.4.3 I2C_MST_DELAY_CTRL

Name: I2C_MST_DELAY_CTRL

Address: 2 (02h) Type: USR3

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Bank: 3 Serial IF: R/W Reset Value: 0

INCOC	et value. U	
BIT	NAME	FUNCTION
7	DELAY_ES_SHADOW	Delays shadowing of external sensor data until all data is received
6:5	-	Reserved
4	I2C_SLV4_DELAY_EN	When enabled, slave 4 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG
3	I2C_SLV3_DELAY_EN	When enabled, slave 3 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG
2	I2C_SLV2_DELAY_EN	When enabled, slave 2 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG
1	I2C_SLV1_DELAY_EN	When enabled, slave 1 will only be accessed (1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG
0	I2C_SLV0_DELAY_EN	When enabled, slave 0 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG

13.4.4 I2C_SLV0_ADDR

0	I2C_SLV0_DELAY_EN	when enabled, slave 0 will only be accessed 1/(1+I2C_SLC4_DLY) samples as determined by I2C_MST_ODR_CONFIG
13.4	4 I2C_SLV0_ADDR	antilo rinia
Nam	e: I2C_SLV0_ADDR	C.O. 80.
Add	ess: 3 (03h)	0,0
Туре	e: USR3	
Banl	c: 3	
Seria	al IF: R/W	
Rese	et Value: 0	
BIT	NAME	FUNCTION
7	I2C_SLV0_RNW	1 - Transfer is a read
		0 – Transfer is a write
6:0	I2C_ID_0[6:0]	Physical address of I2C slave 0

13.4.5 I2C_SLV0_REG

Name: I2C_SLV0_REG Address: 4 (04h) Type: USR3

Bank: 3 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:0	12C_SLV0_REG[7:0]	I2C slave 0 register address from where to begin data transfer

13.4.6 I2C_SLV0_CTRL

Name: I2C SLV0 CTRL Address: 5 (05h)

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0

Rese	et Value: 0	
BIT	NAME	FUNCTION
7	I2C_SLV0_EN	1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register, which is always EXT_SENS_DATA_00 for I2C slave 0. 0 – function is disabled for this slave
6	I2C_SLV0_BYTE_SW	1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV0_REG[0] = 1, or if the last byte read has a register address lsb = 0. For example, if I2C_SLV0_REG = 0x1, and I2C_SLV0_LENG = 0x4: 1) The first byte read from address 0x1 will be stored at EXT_SENS_DATA_00, 2) the second and third bytes will be read and swapped, so the data read from address 0x2 will be stored at EXT_SENS_DATA_02, and the data read from address 0x3 will be stored at EXT_SENS_DATA_01, 3) The last byte read from address 0x4 will be stored at EXT_SENS_DATA_03. 0 – no swapping occurs, bytes are written in order read.
5	I2C_SLV0_REG_DIS	When set, the transaction does not write a register value, it will only read data, or write data
4	I2C_SLV0_GRP	External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave's register address 0 and 1, 2 and 3, etc, or if the groups are address 1 and 2, 3 and 4, etc 0 indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address.
3:0	I2C_SLV0_LENG[3:0]	Number of bytes to be read from I2C slave 0

13.4.7 I2C_SLV0_DO

Name: I2C_SLV0_DO Address: 6 (06h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:0	I2C_SLV0_DO[7:0]	Data out when slave 0 is set to write

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

13.4.8 I2C_SLV1_ADDR

Name: I2C_	_SLV1 _.	_addr
Address: 7	(07h)	
Type: USR:	3	

Bank: 3 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION	O'
7	I2C_SLV1_RNW	1 – Transfer is a read 0 – Transfer is a write	.0
6:0	I2C_ID_1[6:0]	Physical address of I2C slave 1	7//

13.4.9 I2C_SLV1_REG

6:0	I2C_ID_1[6:0]	Physical address of I2C slave 1
13.4.	9	
Name: I2C_SLV1_REG Address: 8 (08h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0		dentialionfol
BIT	NAME	FUNCTION
7:0	I2C_SLV1_REG[7:0]	I2C slave 1 register address from where to begin data transfer

13.4.10 I2C SLV1 CTRL

7:0	I2C_SLV1_REG[7:0]	I2C slave 1 register address from where to begin data transfer	
13.4.	13.4.10 I2C_SLV1_CTRL		
	e: I2C_SLV1_CTRL		
	ess: 9 (09h)		
Bank	: USR3 - 3		
	il IF: R/W	S, 71	
Rese	t Value: 0		
BIT	NAME	FUNCTION	
7	I2C_SLV1_EN	1 – Enable reading data from this slave at the sample rate and storing	
		data at the first available EXT_SENS_DATA register as determined by	
		I2C_SLV0_EN and I2C_SLV0_LENG.	
6	I2C_SLV1_BYTE_SW	0 – function is disabled for this slave	
О	12C_SLV 1_B 7 B_SVV	1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if	
		I2C_SLV1_REG[0] = 1, or if the last byte read has a register address	
		lsb = 0.	
	KO	For example, if I2C_SLV0_EN = 0x1, and I2C_SLV0_LENG = 0x3 (to show swap has to do with I2C slave address not EXT_SENS_DATA	
		address), and if I2C_SLV1_REG = 0x1, and I2C_SLV1_LENG = 0x4:	
	V	5, und 120_02	
		1) The first byte read from address 0x1 will be stored at	
		EXT_SENS_DATA_03 (slave 0's data will be in	
		EXT_SENS_DATA_00, EXT_SENS_DATA_01, and	

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

		EXT_SENS_DATA_02), 2) the second and third bytes will be read and swapped, so the data read from address 0x2 will be stored at EXT_SENS_DATA_04, and the data read from address 0x3 will be stored at EXT_SENS_DATA_05, 3) The last byte read from address 0x4 will be stored at EXT_SENS_DATA_06
		0 – no swapping occurs, bytes are written in order read.
5	I2C_SLV1_REG_DIS	When set, the transaction does not write a register value, it will only read data, or write data
4	I2C_SLV1_GRP	External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave's register address 0 and 1, 2 and 3, etc, or if the groups are address 1 and 2, 3 and 4, etc 0 indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address.
3:0	I2C_SLV1_LENG[3:0]	Number of bytes to be read from I2C slave 1

13.4.11 I2C_SLV1_DO

Name: I2C_SLV1_DO Address: 10 (0Ah) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0

7:0 I2C_SLV1_DO[7:0] Data out when slave 1 is set to write

13.4.12 I2C_SLV2_ADDR

Name: I2C_SLV2_ADDR Address: 11 (0Bh) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7	I2C_SLV2_RNW	1 – Transfer is a read 0 – Transfer is a write
6:0	I2C_ID_2[6:0]	Physical address of I2C slave 2

13.4.13 I2C_SLV2_REG

Name: I2C_SLV2_REG

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

Address: 12 (0Ch) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:0	I2C_SLV2_REG[7:0]	I2C slave 2 register address from where to begin data transfer

13.4.14 I2C_SLV2_CTRL

BIT	NAME	FUNCTION	
7:0	I2C_SLV2_REG[7:0]	I2C slave 2 register address from where to begin data transfer	
	13.4.14 I2C_SLV2_CTRL		
Addr	e: I2C_SLV2_CTRL ess: 13 (0Dh) : USR3 :: 3	GKI,	
	ni IF: R/W ot Value: 0		
BIT	NAME	FUNCTION	
7	I2C_SLV2_EN	1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register as determined by I2C_SLV0_EN, I2C_SLV0_LENG, I2C_SLV1_EN and I2C_SLV1_LENG. 0 – function is disabled for this slave	
6	I2C_SLV2_BYTE_SW	1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV2 REG[0] = 1, or if the last byte read has a register address ISD = 0. See I2C_SLV1 CTRL for an example. 0 – no swapping occurs, bytes are written in order read.	
5	I2C_SLV2_REG_DIS	When set, the transaction does not write a register value, it will only read data, or write data	
4	I2C_SLV2_GRP	External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave's register address 0 and 1, 2 and 3, etc, or if the groups are address 1 and 2, 3 and 4, etc	
	Minary	0 indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address.	
3:0	I2C_SLV2_LENG[3:0]	Number of bytes to be read from I2C slave 2	

13.4.15 I2C_SLV2_DO

Name: I2C_SLV2_DO Address: 14 (0Eh) Type: USR3 Bank: 3

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

	nl IF: R/W et Value: 0	
BIT	NAME	FUNCTION
7:0	I2C_SLV2_DO[7:0]	Data out when slave 2 is set to write

13.4.16 I2C_SLV3_ADDR

Name: I2C_SLV3_ADDR Address: 15 (0Fh)

Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION	
7	I2C_SLV3_RNW	1 – Transfer is a read	
		0 – Transfer is a write	
6:0	I2C_ID_3[6:0]	Physical address of I2C slave 3	
Sign Color			
	13.4.17 I2C_SLV3_REG		
	Name: I2C_SLV3_REG		
	Address: 16 (10h)		
	Type: USR3		
	Bank: 3		
	Serial IF: R/W		
Rese	et Value: 0		
BIT	NAME	FUNCTION	

13.4.17 I2C_SLV3_REG

FUNCTION BIT NAME 7:0 I2C_SLV3_REG[7:0] 2C slave 3 register address from where to begin data transfer

13.4.18 I2C_SLV3_CTRL

Name: I2C_SLV3_CTRL Address: 17 (11h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0

Nesc	iveset value. V	
BIT	NAME	FUNCTION
7	I2C_SLV3_EN	1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register as determined by I2C_SLV0_EN, I2C_SLV0_LENG, I2C_SLV1_EN, I2C_SLV1_LENG, I2C_SLV2_EN and I2C_SLV2_LENG. 0 – function is disabled for this slave
6	I2C_SLV3_BYTE_SW	1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV3_REG[0] = 1, or if the last byte read has a register address Isb = 0.

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

		·
		See I2C_SLV1_CTRL for an example. 0 – no swapping occurs, bytes are written in order read.
	100 011/0 050 010	,, ,
5	I2C_SLV3_REG_DIS	When set, the transaction does not write a register value, it will only
		read data, or write data
4	I2C_SLV3_GRP	External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave's register address 0 and 1, 2 and 3, etc, or if the groups are address 1 and 2, 3 and 4, etc 0 indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address.
3:0	I2C_SLV3_LENG[3:0]	Number of bytes to be read from I2C slave 3

13.4.19 I2C_SLV3_DO

3:0	I2C_SLV3_LENG[3:0]	Number of bytes to be read from I2C slave 3
13.4	.19 I2C_SLV3_DO	
Nam	e: I2C_SLV3_DO	70, 410
Add	ress: 18 (12h)	
Туре	e: USR3	
Banl		
	al IF: R/W	
Rese	et Value: 0	
BIT	NAME	FUNCTION
7:0	I2C_SLV3_DO[7:0]	Data out when slave 3 is set to write
		Solo
13.4	.20 I2C_SLV4_ADDR	
Nam	e: I2C_SLV4_ADDR	10, 70
	ress: 19 (13h)	
Type: USR3		
Bank: 3		
	Serial IF: R/W	
Rese	et Value: 0	

13.4.20 I2C_SLV4_ADDR

Name: I2C_SLV4_ADDR Address: 19 (13h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7	I2C_SLV4_RNW	1 – Transfer is a read 0 – Transfer is a write
6:0	I2C_ID_4[6:0]	Physical address of I2C slave 4

Note: The PC Slave 4 interface can be used to perform only single byte read and write transactions.

13.4.21 I2C_SLV4_REG

Name: I2C_SLV4_REG Address: 20 (14h) Type: USR3 Bank: 3

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

	ni IF: R/W nt Value: 0	
BIT	NAME	FUNCTION
7:0	I2C_SLV4_REG[7:0]	I2C slave 4 register address from where to begin data transfer

13.4.22 I2C_SLV4_CTRL

Name: I2C_SLV4_CTRL Address: 21 (15h)

Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0

Neset value.		
BIT	NAME	FUNCTION
7	I2C_SLV4_EN	1 – Enable data transfer with this slave at the sample rate. If read command, store data in I2C_SLV4_DI register, if write command, write data stored in I2C_SLV4_DO register. Bit is cleared when a single transfer is complete. Be sure to write I2C_SLV4_DO first 0 – function is disabled for this slave
6	I2C_SLV4_INT_EN	 1 – Enables the completion of the I2C slave 4 data transfer to cause an interrupt. 0 – Completion of the I2C slave 4 data transfer will not cause an interrupt.
5	I2C_SLV4_REG_DIS	When set, the transaction does not write a register value, it will only read data, or write data
4:0	I2C_SLV4_DLY[4:0]	When enabled via the I2C_MST_DELAY_CTRL, those slaves will only be enabled every1/(1+I2C_SLV4_DLY) samples as determined by I2C_MST_ODR_CONFIG
13.4.23 I2C_SLV4_DO		
Name: I2C_SLV4_DO Address: 22 (16h) Type: USR3 Bank: 3 Serial IF: R/W		

13.4.23 I2C_SLV4_DO

Name: I2C_SLV4_DO Address: 22 (16h) Type: USR3 Bank: 3 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:0	I2C_SLV4_DO[7:0]	Data out when slave 4 is set to write

13.4.24 I2C_SLV4_DI

Name: I2C_SLV4_DI Address: 23 (17h) Type: USR3 Bank: 3 Serial IF: R Reset Value: 0

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

BIT	NAME	FUNCTION
7:0	I2C_SLV4_DI[7:0]	Data read from I2C Slave 4.

13.4.25 REG_BANK_SEL

Name: REG_B	ANK_SEL
Address: 127	(7Fh)

Type: Bank: 3 Serial IF: R/W Reset Value: 0

BIT	NAME	FUNCTION
7:6	-	Reserved
5:4	USER_BANK[1:0]	Use the following values in this bit-field to select a USER BANK
		0: Select USER BANK 0 1: Select USER BANK 1 2: Select USER BANK 2
3:0	-	Reserved
	relininary	3: Select USER BANK 3 Reserved

Document Number: DS-000107

Revision: 1.0

Release Date: 12/02/2015

14 References

Please refer to "InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)" for the following information:

- Manufacturing Recommendations
 - Assembly Guidelines and Recommendations
 - PCB Design Guidelines and Recommendations
 - MEMS Handling Instructions
 - ESD Considerations
 - Reflow Specification
 - Storage Specifications
 - Package Marking Specification
 - Tape & Reel Specification
 - Reel & Pizza Box Label
 - Packaging
 - Representative Shipping Carton Label
- Compliance
 - **Environmental Compliance**
 - **DRC** Compliance
 - **Compliance Declaration Disclaimer**

'e accurate and re'

This of third pr

Take chan'

Tovens'

L. Ir This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the intringement of patents, copyrights, mask work and/or other intellectual property rights.

Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.

InvenSense® is a registered trademark of InvenSense, Inc. ICS[™], ICM-20618[™], Digital Motion Processor[™], DMP Motion Processing Unit™, MotionFusion™, MotionInterface™, MotionTracking™, and MotionApps™ are trademarks of InvenSense, Inc.

©2014 InvenSense, Inc. All rights reserved.

