<< To page 298

Table of Contents

Subject Index

<u>To page 300 >></u>

ERROR FUNCTION AND FRESNEL INTEGRALS

If $R_n(z)$ is the remainder after n terms then

7.1.24

$$R_{n}(z) = (-1)^{n} \frac{1 \cdot 3 \dots (2n-1)}{(2z^{2})^{n}} \theta,$$

$$\theta = \int_{0}^{\infty} e^{-t} \left(1 + \frac{t}{z^{2}}\right)^{-n-\frac{1}{2}} dt \qquad \left(|\arg z| < \frac{\pi}{2}\right)$$

$$|\theta| < 1 \qquad \left(|\arg z| < \frac{\pi}{4}\right) \qquad \text{where}$$

$$erf (x+iy) = erf x + \frac{e^{-x^{2}}}{2\pi x} [(1-\cos 2xy) + i \sin x]$$

$$+ \frac{2}{\pi} e^{-x^{2}} \sum_{n=1}^{\infty} \frac{e^{-\frac{1}{2}n^{2}}}{n^{2} + 4x^{2}} [f_{n}(x,y) + ig_{n}(x,y)]$$

$$|\theta| < 1 \qquad \left(|\arg z| < \frac{\pi}{4}\right) \qquad \text{where}$$

For x real, $R_n(x)$ is less in absolute value than the first neglected term and of the same sign.

Rational Approximations 2 ($0 \le x < \infty$)

7.1.25

erf
$$x=1-(a_1t+a_2t^2+a_3t^3)e^{-x^2}+\epsilon(x), t=\frac{1}{1+px}$$

$$|\epsilon(x)| \leq 2.5 \times 10^{-5}$$

$$p=.47047$$
 $a_1=.34802$ 42 $a_2=-.09587$ 98 $a_3=.74785$ 56

erf
$$x=1-(a_1t+a_2t^2+a_3t^3+a_4t^4+a_5t^5)e^{-x^2}+\epsilon(x)$$
,

$$t=\frac{1}{1+px}$$

$$|\epsilon(x)| \leq 1.5 \times 10^{-7}$$

$$p=.32759 \ 11$$
 $a_1=.25482 \ 9592$ $a_2=-.28449 \ 6736$ $a_3=1.42141 \ 3741$ $a_4=-1.45315 \ 2027$ $a_5=1.06140 \ 5429$

7.1.27

erf
$$x=1-\frac{1}{[1+a_1x+a_2x^2+a_3x^3+a_4x^4]^4}+\epsilon(x)$$

 $|\epsilon(x)| \le 5 \times 10^{-4}$

$$a_1 = .278393$$
 $a_2 = .230389$ $a_3 = .000972$ $a_4 = .078108$

7.1.28

erf
$$x=1-\frac{1}{[1+a_1x+a_2x^2+\cdots+a_6x^6]^{16}}+\epsilon(x)$$

 $|\epsilon(x)| \le 3 \times 10^{-7}$

$$a_1 = .07052 \ 30784$$
 $a_2 = .04228 \ 20123$ $a_3 = .00927 \ 05272$ $a_4 = .00015 \ 20143$ $a_5 = .00027 \ 65672$ $a_6 = .00004 \ 30638$

Infinite Series Approximation for Complex Function [7.19]

erf
$$(x+iy) = \text{erf } x + \frac{e^{-x^2}}{2\pi x} [(1-\cos 2xy) + i \sin x] + \frac{2}{\pi} e^{-x^2} \sum_{n=1}^{\infty} \frac{e^{-\frac{1}{2}n^2}}{n^2 + 4x^2} [f_n(x,y) + ig_n(x,y)]$$

where

 $f_n(x,y) = 2x - 2x \cosh ny \cos 2xy + n \sinh n$ $g_n(x,y) = 2x \cosh ny \sin 2xy + n \sinh ny \cos 2xy + n$ $|\epsilon(x,y)| \approx 10^{-16} |\operatorname{erf}(x+iy)|$

7.2. Repeated Integrals of the Error F

Definition

$$i^n \operatorname{erfc} z = \int_z^{\infty} i^{n-1} \operatorname{erfc} t \ dt$$
 $(n=0,1,1)$

$$i^{-1} \operatorname{erfc} z = \frac{2}{\sqrt{\pi}} e^{-z^2}, \ i^0 \operatorname{erfc} z = \operatorname{erfc}$$

Differential Equation

7.2.2
$$\frac{d^2y}{dz^2} + 2z \frac{dy}{dz} - 2ny = 0$$
$$y = Ai^n \operatorname{erfc} z + Bi^n \operatorname{erfc} (-z)$$

(A and B are constants.)

Expression as a Single Integral

7.2.3 in erfc
$$z = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} \frac{(t-z)^{n}}{n!} e^{-t^{2}} dt$$

Power Series 3

7.2.4 iⁿ erfc
$$z = \sum_{k=0}^{\infty} \frac{(-1)^k z^k}{2^{n-k} k! \Gamma\left(1 + \frac{n-k}{2}\right)}$$

Recurrence Relations

7.2.5

$$i^{n}$$
 erfc $z = -\frac{z}{n} i^{n-1}$ erfc $z + \frac{1}{2n} i^{n-2}$ erfc z

$$(n=1,2)$$

7.2.6

$$2(n+1)(n+2)i^{n+2} \operatorname{erfc} z$$

= $(2n+1+2z^2)i^n \operatorname{erfc} z - \frac{1}{2}i^{n-2} \operatorname{erfc}$

² Approximations 7.1.25-7.1.28 are from C. Hastings, Jr., Approximations for digital computers. Princeton Univ. Press, Princeton, N. J., 1955 (with permission).

(n=1, 2

³ The terms in this series corresponding to n+4, n+6, . . . are understood to be zero.