ISA 414 – Managing Big Data

Lecture 13 – Data Analysis

Supervised Learning (Part II)

Dr. Arthur Carvalho arthur.carvalho@miamioh.edu

Copyright © 2021 Arthur Carvalho

Announcements

- Information Systems & Analytics Seminar Series
 - Applying Machine Learning & Artificial Intelligence to Ecommerce/Digital Business Operations across Marketing, Merchandising, and Customer Support
 - Tuesday, October 12, 2021, 7:00 pm
 - https://miamioh.zoom.us/j/81146372341?pwd=SzJldk1PTWdhVDhBcXZ OSTZFVVV3UT09
 - By Matt Fritz
 - Senior Director, Machine Learning & Artificial Intelligence @ Samsung Electronics

Announcements

Python cheat sheet available on Canvas

- Assignment 3
 - I messed up with the server and connection string last Thursday
 - Please redownload the assignment description

Lecture Objectives

Learn about predictive models for regression problems

Lecture Instructions

- Download the following files available on Canvas
 - Lecture 13.ipynb
 - energy_data.csv
 - Description of the variables.xlsx
- Place the above files inside the same folder
- > Open the file *Lecture 13.ipynb* with VS Code

Machine Learning

- The solutions to the category of problems we will be working on are based on a paradigm called <u>supervised learning</u>
 - Assumption: there is a clear target variable whose values we are trying to <u>predict</u>

	Problem	Supervised	Unsupervised
Previous class	Classification	X	
Our focus today -	Regression	X	
	Clustering		X
	Co-occurrence grouping		X
	Profiling		X
	•••		

Supervised Learning

- Classification (or class probability estimation)
 - Goal: determine which class a new observation (likely) belongs to
 - The target variable is qualitative (categorical/factor)
 - Example: given a data set containing data about previous and current clients, can we build a statistical model to suggest an electricity tariff to a new client?
 - Categorical target

Supervised Learning

- Regression problems
 - Goal: predict the value of a target variable using a model structure that relates the target with informative attributes
 - The target variable is quantitative (numeric)
 - Example: what will be the annual electricity consumption for a 4-bedroom house in Oxford having 2 adults and 2 kids, an electric vehicle, ...?
 - Clear numeric target (consumption)

Supervised Learning

- Illustrative problem
 - An energy (electricity) provider has historical data with information about current clients
 - E.g., Age, salary, marital status, etc.
 - Each client (observation) in the data set is associated with an annual-consumption value
 - Business question:
 - Can we build a model to predict the annual consumptions of future and current clients?
 - Why? To determine whether new power plants are required

- Potential solution:
 - Translate this problem into a regression problem
 - Collect the data
 - Query internal databases
 - Build a statistical model to predict future consumption
 - Use the model to predict the consumption for all new and current clients

- Decision trees and random forests can also be applied to regression problems
 - For example, a predicted value can simply be the average consumption for all the clients in a partition created by a decision tree

Example:

- New client's age > x AND new client's salary > y
 - Prediction = average consumption of the blue clients
- New client's age > x AND new client's salary < y
 - Prediction = average consumption of the purple clients
- New client's age < x AND new client's salary > y
 - Prediction = average consumption of the green clients
- New client's age < x AND new client's salary < y
 - Prediction = average consumption of the red clients

➤ The resulting model is often called *regression tree*, *i.e.*, a decision tree for regression problems

Regression trees also create if-else rules

- There are many algorithms for building regression trees from a data set
 - These are part of a field called machine learning
 - Beyond the scope of this course

- We take a more applied approach
 - Let's build a regression tree to predict annual consumption

- Regression Trees in Python
 - Let's build a regression tree using the module sklearn
 - Load pandas and the data set we use today

```
import pandas as pd
energy_data = pd.read_csv("energy_data.csv")
```

- Before analyzing the data, always check whether each attribute is of the right type (class)
 - If it is not, then change attribute types energy_data.dtypes

- Let's create dummies for the qualitative predictors
 - Remember that we do this because sklearn does not accept qualitative predictors, regardless of the model

- Note that our target is now AnnualConsumption
 - Hence, we create dummies for Tariff

Let's split the data now intro training and test sets

```
from sklearn.model_selection import train_test_split

x = energy_data.drop(columns=["AnnualConsumption"])

y = energy_data["AnnualConsumption"]

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.34)
```


Building a decision tree using the training set

from sklearn.tree import DecisionTreeRegressor

```
tree_model = DecisionTreeRegressor()

tree_model = tree_model.fit(x_train, y_train)
```

 Pay attention to the function DecisionTreeRegressor instead of DecisionTreeClassifier

Let's now use our model to predict the consumption of the clients left out in the test set

```
y_pred = tree_model.predict(x_test)
```

- Now, we have two lists of interest
 - y_pred contains the predictions made by our model
 - y_test contains the true consumption values
 - How do we compare them?
 - Can we simply check how often these values agree with other?

- > Example: Consider the values in the table
 - What is the accuracy of the model if we just compare whether the predicted values are equal to the true value?

- We must use a <u>distance metric</u> to measure how accurate models are in regression problems
 - Different metrics, e.g., MSE, RMSE, MAD, ...

Predictions on the test data (\hat{y}_t)	True values in the test data (y_t)
10,009 kWh	9,993 kWh
11,057 kWh	10,990 kWh
12,781 kWh	13,163 kWh
11,800 kWh	11,789 kWh
9,783 kWh	9,999 kWh

Approach #1: Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \times \sum_{t} (y_t - \hat{y}_t)^2$$

- MSE penalizes large errors because the errors are squared
- It is not in the same units as the data

	Client 1	Client 2	Client 3	Client 4	Client 5	Client 6	Client 7	Client 8	Client 9	Client 10
Consumption in 1,000 kWh	2.444	2.801	2.993	2.963	3.046	3.033	2.637	2.319	2.287	2.38
Forecast	2.3565	2.399	2.6225	2.897	2.978	3.0045	3.0395	2.835	2.478	2.303
Error	0.0875	0.402	0.3705	0.066	0.068	0.0285	-0.4025	-0.516	-0.191	0.077
Error ²	0.0077	0.1616	0.1373	0.0044	0.0046	0.0008	0.1620	0.2663	0.0365	0.0059

MSE $\approx (0.0077 + 0.1616 + 0.1373 + 0.0044 + 0.0046 + 0.0008 + 0.1620 + 0.2663 + 0.0365 + 0.0059)/10$ ≈ 0.07871

Approach #2: Root Mean Square Error (RMSE)

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{n} \times \sum_{t} (y_t - \hat{y}_t)^2}$$

- RMSE is in the same units as the data
- It assigns more weight to large deviations such as outliers (same as MSE)
 - Large squared differences become larger
 - · Small squared differences become smaller

	Client 1	Client 2	Client 3	Client 4	Client 5	Client 6	Client 7	Client 8	Client 9	Client 10
Consumption in 1,000 kWh	2.444	2.801	2.993	2.963	3.046	3.033	2.637	2.319	2.287	2.38
Forecast	2.3565	2.399	2.6225	2.897	2.978	3.0045	3.0395	2.835	2.478	2.303
Error	0.0875	0.402	0.3705	0.066	0.068	0.0285	-0.4025	-0.516	-0.191	0.077
Error ²	0.0077	0.1616	0.1373	0.0044	0.0046	0.0008	0.1620	0.2663	0.0365	0.0059

Approach #3: Mean Absolute Deviation (MAD) or Mean Absolute Error (MAE)

$$MAD = \frac{1}{n} \times \sum_{t} |y_t - \hat{y}_t|$$

- MAD is in the same units as the data and it is easy to interpret
- Assigns less weight to outliers

	_		_							
	Client 1	Client 2	Client 3	Client 4	Client 5	Client 6	Client 7	Client 8	Client 9	Client 10
Consumption in 1,000 kWh	2.444	2.801	2.993	2.963	3.046	3.033	2.637	2.319	2.287	2.38
Forecast	2.3565	2.399	2.6225	2.897	2.978	3.0045	3.0395	2.835	2.478	2.303
Error	0.0875	0.402	0.3705	0.066	0.068	0.0285	-0.4025	-0.516	-0.191	0.077
Error	0.0875	0.402	0.3705	0.066	0.068	0.0285	0.4025	0.516	0.191	0.077

MAD \approx (0.0875 + 0.402 + 0.3705 + 0.066 + 0.068 + 0.0285 + 0.4025 + 0.5160 + 0.191 + 0.077)/10 \approx 0.22

Approach #4: Mean Absolute Percentage Error (MAPE)

$$MAPE = 100 \times \frac{1}{n} \times \sum \frac{|y_t - \hat{y}_t|}{|y_t|}$$

- MAPE compares the absolute errors to the magnitude of the estimated quantity
- It is easy to interpret because it is a percentage, independent of the unit of the target variable

	Client 1	Client 2	Client 3	Client 4	Client 5	Client 6	Client 7	Client 8	Client 9	Client 10
Consumption in 1,000 kWh	2.444	2.801	2.993	2.963	3.046	3.033	2.637	2.319	2.287	2.38
Forecast	2.3565	2.399	2.6225	2.897	2.978	3.0045	3.0395	2.835	2.478	2.303
Error	0.0875	0.402	0.3705	0.066	0.068	0.0285	-0.4025	-0.516	-0.191	0.077
Error / y _t	0.0358	0.1435	0.1238	0.0223	0.0223	0.0094	0.1526	0.2225	0.0835	0.0324

MAPE \approx (0.0358 + 0.1435 + 0.1238 + 0.0223 + 0.0223 + 0.0094 + 0.1526 + 0.2225 + 0.0835 + 0.0324)*100/10 \approx 8.48%

- Which error measure should one use?
 - It depends on a few factors
 - Penalize outliers, interpretability, etc.
 - It is common practice to report forecast errors using more than one measure when evaluating models
 - For example, RMSE plus MAD

- Let's evaluate our model using the MAE metric
 - mean_absolute_error function from the metrics submodule from sklearn.metrics import mean_absolute_error mean_absolute_error(y_test, y_pred)
- Interpretation
 - A MAE equal to, say, 887 means that the predictions from the model are expected to be 887 units away from the true predictions
 - I.e., our model is on average 887 kWh off

Random Forests

- Let's build a second model using the same data
 - Random forests: 200 trees

```
from sklearn.ensemble import RandomForestRegressor

model = RandomForestRegressor(n_estimators=200)

model = model.fit(x_train,y_train)
```

Pay attention to the function RandomForestRegressor instead of RandomForestClassifier

Random Forests

- Let's build a second model using the same data
 - Predictions and evaluation

```
#predictions
y_pred = model.predict(x_test)

#evaluation
mean_absolute_error(y_test, y_pred)
```


- Recall that we are evaluating models based only on accuracy
 - Interpretation is another possible evaluation aspect
 - Predictions by regression/decision trees are explainable
 - For example, look at the function plot_tree in the sklearn.tree module
 - It might take a long time to run that function

Summary

- Summary
 - Data-analytics problems: regression problems
 - Regression trees and random forests
 - Evaluation: training and test sets
- Useful references
 - http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
 - https://docs.google.com/presentation/d/1kSuQyW5DTnkVaZEjGYCkfOxvzCqGEFzW By4e9Uedd9k/edit
- Next class: text mining

Copyright 2021 Arthur Carvalho. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed without explicit written consent.

