

Template: Diagnostic testing diagram

		Predicted condition		Sources: [1][2][3][4][5][6][7][8]	
	Total population = P + N	Predicted positive	Predicted negative	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	$\frac{\text{Prevalence threshold}}{\frac{(PT)}{2}} = \frac{\sqrt{TPR \times FPR - FPR}}{TPR - FPR}$
Actual condition	Positive (P)	True positive (TP),	False negative (FN), miss, underestimation	$\frac{\text{True positive rate}}{(\text{TPR}), \text{ recall,}}$ $\frac{\text{sensitivity (SEN),}}{\text{probability of detection,}}$ hit rate, power $= \frac{TP}{P} = 1 - \text{FNR}$	False negative rate (FNR), miss rate type II error $\frac{[C]}{P} = \frac{FN}{P} = 1 - TPR$
	Negative (N) ^[d]	False positive (FP), false alarm, overestimation	True negative (TN), correct rejection [e]	$\frac{\text{False positive rate}}{(\text{FPR}),}$ probability of false alarm, $\frac{\text{fall-out}}{\text{type I error}} \frac{\text{[f]}}{\text{I}} = \frac{FP}{N} = 1 - TNR$	$\frac{\text{True negative rate}}{(\text{TNR}),}$ $\frac{\text{specificity}}{\text{selectivity}} \text{ (SPC)},$ $\frac{\text{selectivity}}{\text{N}} = 1 - \text{FPR}$
	$\frac{\text{Prevalence}}{=\frac{P}{P+N}}$	Positive predictive value (PPV), $= \frac{\frac{\text{precision}}{\text{TP}}}{\text{TP} + \text{FP}} = 1 - \text{FDR}$	$\frac{\text{Negative}}{\text{predictive value}}$ $\frac{\text{(NPV)}}{\text{TN}}$ $= \frac{\text{TN}}{\text{TN + FN}}$ $= 1 - \text{FOR}$	$\frac{\text{Positive likelihood}}{\text{ratio (LR+)}} = \frac{\text{TPR}}{\text{FPR}}$	$\frac{\text{Negative likelihood}}{\frac{\text{ratio (LR-)}}{=\frac{\text{FNR}}{\text{TNR}}}}$
	$\frac{\text{Accuracy}}{(\text{ACC})}$ $= \frac{\text{TP + TN}}{\text{P + N}}$	False discovery rate (FDR) $= \frac{FP}{TP + FP} = 1 - PPV$	$\frac{\text{False omission}}{\text{rate (FOR)}}$ $= \frac{\text{FN}}{\text{TN + FN}}$ $= 1 - \text{NPV}$	Markedness (MK), deltaP (Δp) = PPV + NPV – 1	$\frac{\text{Diagnostic odds ratio}}{\text{(DOR)}}$ $= \frac{LR+}{LR-}$
	Balanced accuracy (BA) $= \frac{TPR + TNR}{2}$	$= \frac{\frac{F_1 \text{ score}}{2 \text{ PPV} \times \text{TPR}}}{\frac{2 \text{ TP}}{2 \text{ TP} + \text{FP} + \text{FN}}}$	$\frac{\begin{array}{c} \text{Fowlkes-} \\ \text{Mallows index} \\ \hline \text{(FM)} \\ = \sqrt{\text{PPV} \times \text{TPR}} \end{array}$	phi or Matthews correlation coefficient (MCC) = √TPR × TNR × PPV × NPV - √FNR × FPR × FOR × FDR	Threat score (TS), critical success index (CSI), Jaccard index $= \frac{TP}{TP + FN + FP}$

- a. the number of real positive cases in the data
- b. A test result that correctly indicates the presence of a condition or characteristic
- c. Type II error: A test result which wrongly indicates that a particular condition or attribute is absent
- d. the number of real negative cases in the data
- e. A test result that correctly indicates the absence of a condition or characteristic
- f. Type I error: A test result which wrongly indicates that a particular condition or attribute is present

References

These references will appear in the article, but this list appears only on this page.

1. Fawcett, Tom (2006). "An Introduction to ROC Analysis" (http://people.inf.elte.hu/kiss/11dwhdm/roc.pdf) (PDF). *Pattern Recognition Letters*. **27** (8): 861–874. doi:10.1016/j.patrec.2005.10.010 (https://doi.org/10.1016%2Fj.patrec.2005.10.010). S2CID 2027090 (https://api.semanticscholar.org/CorpusID:2027090).

- 2. Provost, Foster; Tom Fawcett (2013-08-01). "Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking" (https://www.researchgate.net/publication/2564387 99). O'Reilly Media, Inc.
- 3. Powers, David M. W. (2011). "Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation" (https://www.researchgate.net/publication/228529307). Journal of Machine Learning Technologies. 2 (1): 37–63.
- 4. Ting, Kai Ming (2011). Sammut, Claude; Webb, Geoffrey I. (eds.). Encyclopedia of machine learning. Springer. doi:10.1007/978-0-387-30164-8 (https://doi.org/10.1007%2F978-0-387-30164-8). ISBN 978-0-387-30164-8.
- 5. Brooks, Harold: Brown, Barb: Ebert, Beth: Ferro, Chris; Jolliffe, Ian; Koh, Tieh-Yong; Roebber, Paul; Stephenson, David (2015-01-26). "WWRP/WGNE Joint Working Group on Forecast Verification Research" (https://www.cawcr.gov.au/projects/verification/). Collaboration for Australian Weather and Climate Research. World Meteorological Organisation. Retrieved 2019-07-17.
- 6. Chicco D, Jurman G (January 2020). "The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation" (https://www.ncbi.nlm.nih.go v/pmc/articles/PMC6941312). BMC Genomics. 21 (1): 6-1-6-13. doi:10.1186/s12864-019-6413-7 (https://doi.org/10.1186%2Fs12864-019-6413-7). PMC 6941312 (https://www.ncbi.nlm.nih.gov/pm c/articles/PMC6941312). PMID 31898477 (https://pubmed.ncbi.nlm.nih.gov/31898477).
- 7. Chicco D, Toetsch N, Jurman G (February 2021). "The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863449). BioData Mining. 14 (13): 13. doi:10.1186/s13040-021-00244-z (https://doi.org/10.1186%2Fs13040-021-002 44-z). PMC 7863449 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863449). PMID 33541410 (h ttps://pubmed.ncbi.nlm.nih.gov/33541410).
- 8. Tharwat A. (August 2018). "Classification assessment methods" (https://doi.org/10.1016%2Fj.aci.2 018.08.003). Applied Computing and Informatics. 17: 168–192. doi:10.1016/j.aci.2018.08.003 (http://doi.org/10.1016/j.aci.2018.08.003) s://doi.org/10.1016%2Fj.aci.2018.08.003).

{{1}}} Template documentation

This template's documentation is missing, inadequate, or does not accurately describe its functionality or the parameters in its code. Please help to expand and improve it (https://en.wikipedia.org/w/index.php?title=Template:Diagnostic testin g_diagram&action=edit).

Editors can experiment in this template's sandbox (edit | diff (https://en.wikipedia.org/w/index.php?title=Special%3A Compare Pages & page 1 = Template % 3A Diagnostic + testing + diagram & page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 3A Diagnostic + testing + diagram % 2Fs and the page 2 = Template % 2Fs and thendbox)) and testcases (create (https://en.wikipedia.org/w/index.php?title=Template:Diagnostic_testing_diagram/testcases&a ction=edit&preload=Template%3ADocumentation%2Fpreload-testcases)) pages. Subpages of this template.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Template:Diagnostic_testing_diagram&oldid=1291378863"