

Home Gameboard

Physics

Mechanics Dynamics

Essential Pre-Uni Physics F2.6

Essential Pre-Uni Physics F2.6

In a strange form of billiards, the cue ball is one third the mass of the other balls, which are stripey. There is no spin, and I hit a stripey ball centrally with the cue ball (travelling at $1.4\,\mathrm{m\,s^{-1}}$) such that the cue ball rebounds in the opposite direction with half of its initial speed. What is the speed of the stripey ball?

<u>Home</u> <u>Gameboard</u>

Physics

Mechanics Dynamics

Essential Pre-Uni Physics F2.7

Essential Pre-Uni Physics F2.7

I am stranded, <u>stationary</u>, in space, but near to my spacecraft. I detach my $30\,\mathrm{kg}$ oxygen cylinder, and fling it away from the spacecraft with a speed of $3.0\,\mathrm{m\,s^{-1}}$. If my mass (without the cylinder) is $80\,\mathrm{kg}$, how fast will I travel in the other direction towards my spacecraft?

Gameboard:

STEM SMART Double Maths 45 - Momentum, Impulse and Collisions

<u>Home</u>

Gameboard

Physics

Mechanics

Dynamics

Two Particles on a String

Two Particles on a String

Two particles P and Q, of masses 2m and m respectively, are joined by a <u>light inextensible</u> string (actually a string with a very high <u>spring constant</u>, so it can provide a large force for a very small extension). They rest on a <u>smooth</u> horizontal plane, with the string <u>slack</u>. The particle P is projected in a horizontal direction, directly away from Q, with speed u.

Part A Kinetic Energy Loss

Find the loss in kinetic energy	when the string becor	mes <u>taut</u> (and remai	ns taut as the pa	articles move
together) in terms of m and u .				

The following symbols may be useful: m, u

Part B Impulse

Calculate the impulse (which is equal to the change in momentum) that acts on the particle Q in terms of m and u when the string becomes <u>taut</u>.

The following symbols may be useful: m, u

Used with permission from UCLES, A Level Mathematics, Syllabus C, June 1986, Paper 2, Question 1.

Gameboard:

STEM SMART Double Maths 45 - Momentum, Impulse and Collisions

<u>Home</u> <u>Gameboard</u> Physics Mechanics Dynamics Restitution and a Wall

Restitution and a Wall

A particle, of mass $0.8\,\mathrm{kg}$, moves along a smooth horizontal surface. It hits a vertical wall, which is at right angles to the direction of motion of the particle, and rebounds. The speed of the particle as it hits the wall is $4\,\mathrm{m\,s^{-1}}$ and the coefficient of restitution between the particule and the wall is 0.3.

Part A Impulse Find the magnitude of the impulse that the wall exerts on the particle, giving your answer to 3 s.f.

Part B Loss of kinetic energy

Find the kinetic energy lost in the impact, giving your answer to 3 s.f.

Used with permission from UCLES, A Level, June 2012, Paper 4729, Question 1

Gameboard:

<u>STEM SMART Double Maths 45 - Momentum, Impulse and Collisions</u>

Home Gameboard Physics Mechanics Dynamics Three Collisions

Three Collisions

Three particles A, B, and C lie at rest in that order in a straight line on a <u>smooth</u> horizontal table. The particle A is then projected directly towards B with velocity u. Particle A collides with B which then collides with C. Each of the particles has mass m, and the collisions are elastic.

Part A Velocity of A after collision with B

What is the velocity v_1 of particle A immediately after the collision with particle B? Give your answer in terms of u and m.

The following symbols may be useful: m, u, v_1

Part B Velocity of B after collision with C

What is the velocity w_2 of the particle B immediately after the collision with particle C? Give your answer in terms of u and m.

The following symbols may be useful: m, u, w_2

Part C Velocity of C after collision with B

What is the velocity w_3 of the particle C immediately after the collision with particle B? Give your answer in terms of u and m.

The following symbols may be useful: m, u, w_3

Part D New masses - velocity of A

Now consider the same scenario but this time the masses of A, B, and C are m, 2m and 3m respectively.

Find the velocity \underline{v}_1 of A immediately after the collision with B, in terms of \underline{u} and m.

The following symbols may be useful: m, u, v_1

Part E New masses - velocity of B

Find the velocity \underline{w}_2 of B immediately after the collision with C, in terms of \underline{u} and m.

The following symbols may be useful: m, u, w_2

Part F New masses - velocity of C

Find the velocity \underline{w}_3 of C immediately after the collision with B, in terms of \underline{u} and m.

The following symbols may be useful: m, u, w_3

Part G Velocity after inelastic collision

What is the speed $v_{\rm f}$ of the composite particle after the second impact, if the balls, of mass m, 2m and 3m, collided completely inelastically instead?

The following symbols may be useful: m, u, v_f

Used with permission from UCLES, A Level Applied Mathematics, June 1969, Paper 2, Question 8.

Gameboard:

STEM SMART Double Maths 45 - Momentum, Impulse and Collisions

<u>Home</u>

Gameboard

Physics

Mechanics

Dynamics

Restitution and a Bouncing Ball

Restitution and a Bouncing Ball

A small ball of mass $0.5\,\mathrm{kg}$ is held at a height of $3.136\,\mathrm{m}$ above a horizontal floor. The ball is released from rest and rebounds from the floor (see **Figure 1**). The coefficient of restitution between the ball and floor is e. Throughout this question treat the acceleration due to gravity as $9.8\,\mathrm{m\,s^{-2}}$.

Figure 1: A ball above a horizontal floor.

Part A Speed of ball

Find in terms of e the speed of the ball immediately after the impact with the floor.

The following symbols may be useful: e

Part B Magnitude of impulse

Find the magnitude of the impulse that the floor exerts on the ball.					
The following symbols may be useful: e					
Part C First and second bounce					
Find the time between the first and second bounce in terms of \emph{e} .					
The following symbols may be useful: e					
Part D Second and third bounce					
Find, in terms of e , the time between the second and third bounce.					
The following symbols may be useful: e					
Part E Third and fourth bounce					
Write down, in terms of e , the time between the third and fourth bounce.					
The following symbols may be useful: e					

${\bf Part} \ {\bf F} \qquad {\bf Value} \ {\bf of} \ e$

Given that the time from the ball being released until it comes to rest is $5 \, \mathrm{s}$, find the exact value of e.

The following symbols may be useful: e

Used with permission from UCLES, A Level Maths, January 2012, OCR M2, Question 6

Gameboard:

STEM SMART Double Maths 45 - Momentum, Impulse and Collisions

<u>Home</u>

Gameboard

Physics

Mechanics Dynamics

Perpendicular Impulse

Perpendicular Impulse

A particle P of mass $0.05 \, \mathrm{kg}$ is moving on a smooth horizontal surface with speed $2 \, \mathrm{m \, s^{-1}}$, when it is struck by a horizontal blow in a direction perpendicular to its direction of motion. The magnitude of the impulse of the blow is I. The speed of P after the blow is $2.5 \, \mathrm{m \, s^{-1}}$.

Part A	Impulse			
Find the	e exact value of I .			

Part B Coefficient of restitution

Immediately before the blow P is moving parallel to a smooth vertical wall. After the blow P hits the wall and rebounds from the wall with speed $\sqrt{5}\,\mathrm{m\,s^{-1}}$.

Find the exact value of the coefficient of restitution between P and the wall.

The following symbols may be useful: e

Used with permission from UCLES, A Level, January 2012, Paper 4730, Question 1

Gameboard:

STEM SMART Double Maths 45 - Momentum, Impulse and Collisions

Home (

Gameboard

Physics

Mechanics

Dynamics

Impulse and an Inclined Plane

Impulse and an Inclined Plane

B is a point on a smooth plane surface inclined at an angle of 15° to the horizontal. A particle P of mass $0.45\,\mathrm{kg}$ is released from rest at the point A which is $2.5\,\mathrm{m}$ vertically above B. The particle P rebounds from the surface at an angle of 60° to the line of greatest slope through B, with a speed of u. The impulse exerted on P by the surface is \underline{I} and is in a direction making an angle of θ with the upward vertical through B, as shown in **Figure 1**.

Figure 1: The inclined plane onto which P falls, with the impulse \underline{I} and the rebound velocity \underline{u} shown.

Part A Modelling assumptions

Which modelling assumption allows us to find that $\theta=15^{\circ}$?

- Ignore air resistance.
- The plane is smooth.
- The collision is elastic.
- The plane is rough.

Part B Find u	
Find the magnitude of $\underline{oldsymbol{u}}$.	
Part C Find I	
Find the magnitude of $\underline{m{I}}$.	

Used with permission from UCLES, A Level, June 2012, Paper 4730, Question 2

Gameboard:

<u>STEM SMART Double Maths 45 - Momentum, Impulse and Collisions</u>

<u>Home</u> <u>Gameboard</u> Physics Mechanics Dynamics Restitution: Sphere Collision

Restitution: Sphere Collision

Two small uniform smooth spheres A and B, of equal radius, have masses 5m and 2m respectively. The spheres are moving on a smooth horizontal surface when they collide.

Before the collision A is moving with speed $1.3\,\mathrm{m\,s^{-1}}$ in a direction making an angle α with the line of centres, where $\tan\alpha=\frac{5}{12}$, and B is moving towards A in a direction making an angle of 60° with the line of centres. After the collision A moves in a direction at right angles to its original direction of motion, as shown in **Figure 1**.

The coefficient of restitution between A and B is $\frac{5}{6}$.

Figure 1: A diagram of the situation described in the question.

Part A Speed after collision

Find the speed of A after the collision.

Part B Component of velocity

Find the component of the velocity of B parallel to the line of centres after the collision.

Used with permission from UCLES, A Level, June 2018, Paper 4730, Question 5.

Gameboard:

STEM SMART Double Maths 45 - Momentum, Impulse and Collisions

Home Gameboard Physics Mechanics

Dynamics

Oblique Collisions and Walls

Oblique Collisions and Walls

Two uniform smooth spheres A and B, of equal radius, have masses 2m and 3m respectively. The spheres are approaching each other on a horizontal surface when they collide.

Before the collision A is moving with speed $5\,\mathrm{m\,s^{-1}}$ in a direction making an angle α with the line of centres, where $\cos\alpha=\frac{4}{5}$, and B is moving with speed $3.25\,\mathrm{m\,s^{-1}}$ in a direction making an angle β with the line of centres, where $\cos\beta=\frac{5}{13}$.

A straight vertical wall is situated to the right of B, perpendicular to the line of centres, as shown in **Figure 1**. The coefficient of restitution between A and B is $\frac{2}{3}$.

Figure 1: A and B collide with each other, with the line of centres shown. A wall is to right of B and is perpendicular to the line of centres.

Part A Speed of A

Find the exact value of the speed of A after the collision.

Part B Velocity of B

Find the exact value of the component of the velocity of B along the line of centres after the collision.

Part C Coefficient of restitution

B subsequently hits the wall.

Explain why A and B will have a second collision if the coefficient of restitution, e, between B and the wall is sufficiently large and find the set of values of e for which this second collision will occur.

Perpendicular to the line of centres, the velocity of A is $m \, s^{-1}$ and the velocity of B is $m \, s^{-1}$. Since these are $m \, s^{-1}$, a second collision between A and B will occur provided that, parallel to the line of centres, B is $m \, s^{-1}$. A. For this to occur, we find that $e \, s^{-1}$.

Items:

$\left[\begin{array}{c} \frac{1}{2} \end{array}\right]$	$\fbox{1.25}$		slower than	$\boxed{3.75}$	$\boxed{2.25} \boxed{\frac{4}{9}}$	faster than	the same	different	$oxed{5}$	$\left[\begin{array}{c} \underline{9} \\ \overline{5} \end{array}\right]$	
$\left[\begin{array}{c} \frac{5}{9} \end{array}\right]$	$\boxed{3.25}$	3	$\left[\begin{array}{c} \frac{13}{15} \end{array}\right] \left[\begin{array}{c} < \end{array}\right]$								

Used with permission from UCLES, A Level, June 2016, Paper 4730, Question 3