PAT-NO:

JP02002276364A

DOCUMENT-IDENTIFIER: JP 2002276364 A

TITLE:

COOLING SYSTEM FOR HYBRID ELECTRIC VEHICLE

PUBN-DATE:

September 25, 2002

INVENTOR-INFORMATION:

NAME

COUNTRY

OTA, MASATAKA N/A TAKAHASHI, EIZO N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

DENSO CORP N/A

APPL-NO: JP2001072609 APPL-DATE: March 14, 2001

F01P007/14 , B60K006/02 , B60K011/04 , F01P003/12 , INT-CL

F01P003/18 (IPC):

US-CL-CURRENT: 903/903 , 903/905 , 903/906 , 903/926 , 903/948

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a cooling system for hybrid electric vehicle capable of being simply constituted at a low cost by integrating an internal combustion engine to the cooling system of an electric motor.

SOLUTION: An electric motor cooling water passage 180 branched and combined so as to be parallel to the downstream water passage 171 of a main radiator 130 is provided in an engine cooling water passage 180, and a sub- radiator 140 and the electric motor 120 are arranged in the passage 180 successively to the cooling water flowing direction. A flow regulating valve 210 for regulating the flow distribution of the cooling water passing through the downstream water passage 171 and the passage 180 and the electric pump 220 for

circulating the cooling water to the engine cooling water passage 170 are provided in the branch part 171a of the downstream water passage 171, and the opening of the flow regulating valve 210 and the discharge flow rate from the electric pump 220 are controlled by a control means 230 according to the load state of an engine 110 and the electric motor 120.

COPYRIGHT: (C) 2002, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-276364 (P2002-276364A)

(43)公開日 平成14年9月25日(2002.9.25)

(51) Int.Cl.'	識別記号	F I デーマコート (多考)
F01P 7/1	4	F01P 7/14 Z 3D038
B60K 6/02	ZHV	B 6 0 K 11/04 H
11/0	4	F 0 1 P 3/12
F01P 3/1	2	3/18 Q
3/18	8	B60K 9/00 ZHVC
		審査請求 未請求 請求項の数4 OL (全 7 頁)
(21)出願番号	特顧2001-72609(P2001-72609)	(71)出顧人 000004260
		株式会社デンソー
(22)出廢日	平成13年3月14日(2001.3.14)	愛知県刈谷市昭和町1丁目1番地
		(72)発明者 太田 政孝
		爱知県刈谷市昭和町1丁目1番地 株式会
		社デンソー内
		(72)発明者 高橋 榮三
		爱知県刈谷市昭和町1丁目1番地 株式会
		社デンソー内
		(74)代理人 100096998
		弁理士 碓氷 裕彦 (外1名)
		Fターム(参考) 30038 AA10 AB01 AC11

(54) 【発明の名称】 ハイブリッド電気自動車の冷却装置

(57)【要約】

【課題】 内燃機関と電動機の冷却装置の統合化により、簡素で安価にできるハイブリッド電気自動車の冷却 装置を提供することにある。

【解決手段】 エンジン冷却水路170の内、メインラジエータ130の下流側水路171に対して並列となるように分岐、合流する電動機冷却水路180を設け、その電動機冷却水路180を冷却水流れ方向に対して順に配設する。そして、下流側水路171の分岐部171aに、この下流側水路171および電動機冷却水路180を流通する冷却水の流量配分を調整する流量調整弁210と、エンジン冷却水路170に冷却水を循環させる電動ボンプ220を設け、エンジン110および電動機120の負荷状態に応じて、制御手段230により流量調整弁210の弁開度および電動ボンプ220の吐出流量を制御する。

【特許請求の範囲】

【請求項1】 内燃機関(110)および電動機(12 0)を動力装置として備えるハイブリッド電気自動車で あって、

前記内燃機関(110)を流通する冷却水を冷却する第 1ラジエータ(130)と、

前記電動機(120)を流通する冷却水を冷却する第2 ラジエータ (140) とを有するハイブリッド電気自動 車の冷却装置において、

前記内燃機関(110)および前記第1ラジエータ(1 30)の間を冷却水が循環する内燃機関冷却水路(17 0)と、

前記第1ラジエータ(130)の下流側となる下流側水 路(171)に対して並列となるように分岐、合流する と共に、前記第2ラジエータ(140)および前記電動 機(120)が配設される電動機冷却水路(180) と、

前記下流側水路 (171) の分岐部 (171a) に設け られると共に、前記下流側水路(171)および前記電 動機冷却水路(180)を流通する冷却水の流量配分を 20 調整する流量調整弁(210)と、

前記内燃機関冷却水路(170)に冷却水を循環させる 電動ポンプ(220)と、

前記流量調整弁(210)および前記電動ポンプ(22 0)の作動を制御する制御手段(230)とを有し、

前記制御手段(230)は、前記内燃機関(110)お よび前記電動機(120)の負荷状態に応じて、前記流 量調整弁(210)の弁開度および前記電動ポンプ(2 20) の吐出流量を制御するようにしたことを特徴とす るハイブリッド電気自動車の冷却装置。

【請求項2】 前記第2ラジエータ(140)および前 記電動機(120)は、前記電動機冷却水路(180) の冷却水流れ方向に対して前記第2ラジエータ(14 0)、前記電動機(120)の順に配設されるようにし たことを特徴とする請求項1に記載のハイブリッド電気 自動車の冷却装置。

【請求項3】 前記第2ラジエータ(140)は、前記 第1ラジエータ(130)の放熱の影響を受けない位置 に配設されるようにしたことを特徴とする請求項1また の冷却装置。

【請求項4】 前記内燃機関冷却水路(170)は、前 記第1 ラジエータ (130) をバイパスするバイパス水 路(172)を有し、

前記バイパス水路(172)の下流側を前記流量調整弁 (210)に接続し、

前記流量調整弁(210)は、前記下流側水路(17 1)、前記電動機冷却水路(180)に加えて、前記第 1ラジエータ (130) および前記バイパス水路 (17 2)を流通する冷却水の流量配分も調整するようにした 50 関と電動機の冷却装置の統合化により、簡素で安価にで

ことを特徴とする請求項1~3のいずれかに記載のハイ ブリッド電気自動車の冷却装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ハイブリッド電気 自動車の冷却装置に関するものである。

[0002]

【従来の技術】従来のハイブリッド電気自動車の冷却装 置としては、特開平10-252464号公報に示され るように、動力装置としての内燃機関および電動機を冷 却する冷却装置をそれぞれ独立して設け、各々の冷却装 置が冷却能力を超えるような場合に、もう一方の冷却装 置も追加使用するようにしたものが知られている。

【0003】具体的には、図5に示すように、エンジン 冷却水路170、メインラジエータ130、第1ポンプ 220aを有する内燃機関冷却装置101と、電動機冷 却水路180、サブラジエータ140、第2ポンプ22 0bを有する電動機冷却装置102とをそれぞれ設け、 更にエンジン冷却水路170と電動機冷却水路180と を連通させる連絡水路173と各水路170、173を 開閉する水流制御弁211とをそれぞれ複数設けるよう にしている。また、水温センサ241、242やアクセ ルセンサ243の検出信号に基づいて、複数の水流制御 弁211を開閉制御する水温制御ECU230aが設け られている。

【0004】そして、通常、内燃機関110および電動 機120は、それぞれの冷却装置101、102によっ て冷却されるが、内燃機関110あるいは電動機120 を冷却するのに必要とされる冷却能力が各々の冷却装置 30 101あるいは102の冷却能力を超えるような場合 に、水温制御ECU230aにより複数の水流制御弁2 11が開閉制御され、連絡水路173によってもう一方 の冷却装置102あるいは101も追加使用するように

【0005】これにより、冷却能力の増強ができ、稀に 発生する高発熱時に備えて、各冷却装置101、102 の冷却能力を上げておく必要が無くなり、実質的に内燃 機関110、電動機120の各々の冷却装置101、1 02に必要とされる冷却能力の低減をはかり、その結果 は請求項2のいずれかに記載のハイブリッド電気自動車 40 各々の冷却装置101、102のコスト、重量低減を図 ることができるようにしている。

[0006]

【発明が解決しようとする課題】しかしながら、通常は 内燃機関110と電動機120をそれぞれ冷却するため に各々の冷却水路170、180やポンプ220a、2 20bを備えるようにしており、また高発熱時に備えて 複数の連絡水路173や水流制御弁211を設けている ので、全体構成が複雑で、高価なものとなっている。

【0007】本発明の目的は、上記問題に鑑み、内燃機

3

きるハイブリッド電気自動車の冷却装置を提供すること にある。

[0008]

【課題を解決するための手段】本発明は上記目的を達成 するために、以下の技術的手段を採用する。

【0009】請求項1に記載の発明では、内燃機関(1 10)および電動機(120)を動力装置として備える ハイブリッド電気自動車に適用するものであり、内燃機 関(110)を流通する冷却水を冷却する第1ラジエー タ(130)と、電動機(120)を流通する冷却水を 10 冷却する第2ラジエータ (140) とを有するハイブリ ッド電気自動車の冷却装置において、内燃機関(11 0) および第1ラジエータ(130) の間を冷却水が循 環する内燃機関冷却水路(170)と、第1ラジエータ (130)の下流側となる下流側水路(171)に対し て並列となるように分岐、合流する電動機冷却水路(1 80) とを設け、その電動機冷却水路(180) に第2 ラジエータ(140)および電動機(120)を配設す る。そして、下流側水路(171)の分岐部(171 a) に、この下流側水路 (171) および電動機冷却水 20 路(180)を流通する冷却水の流量配分を調整する流 量調整弁(210)と、内燃機関冷却水路(170)に 冷却水を循環させる電動ポンプ(220)と、流量調整 弁(210)および電動ポンプ(220)の作動を制御 する制御手段(230)とを設け、この制御手段(23 0) によって、内燃機関(110) および電動機(12 0)の負荷状態に応じて、流量調整弁(210)の弁開 度および電動ポンプ(220)の吐出流量が制御される ようにしたことを特徴としている。

けなくても、流量調整弁(210)を設けることで内燃 機関冷却水路(170)から分岐する電動機冷却水路 (180)が形成でき、また、1つの電動ポンプ (22 0)で両冷却水路(170、180)の冷却水の循環が 可能と成り、簡素で安価な冷却装置として対応できる。 【0011】また、流量調整弁(210)により下流側 水路(171)と電動機冷却水路(180)への流量配 分を調整することや、電動ポンプ(220)により吐出 流量を可変することで、各ラジエータ(130、14 0) に必要とされる冷却水を流通させることができるの で、内燃機関(110)および電動機(120)の負荷

【0010】これにより、内燃機関(110)および電 30

動機(120)の冷却装置として、それぞれ独立して設

【0012】請求項2に記載の発明では、第2ラジエー タ(140)および電動機(120)は、電動機冷却水 路(180)の冷却水流れ方向に対して第2ラジエータ (140)、電動機(120)の順に配置されるように したことを特徴としている。

状態に応じた冷却が可能となる。

【0013】これにより、第1ラジエータ(130)お よび第2ラジエータ(140)によって順次冷却された 50 【0021】エンジン冷却装置101は、エンジン11

冷却水で電動機(120)を冷却できるので、通常、内 燃機関(110)に対して電動機(120)の方が低い 温度で制御されるもの(内燃機関が100℃付近に対し て電動機は70℃付近)に対して効果的に冷却できる。 【0014】また、請求項3に記載の発明のように、第 2ラジエータ(140)は、第1ラジエータ(130) の放熱の影響を受けない位置に配置されるようにすれ ば、冷却空気と冷却水との温度差を大きくし、冷却水の 温度降下分を大きくできるので、更に効果的に電動機 (120)を冷却できる。

【0015】更に、請求項4に記載の発明では、内燃機 関冷却水路 (170) には、第1ラジエータ (130) をバイパスするバイパス水路(172)が設けられてお り、このバイパス水路(172)の下流側を流量調整弁 (210)に接続し、流量調整弁(210)は、下流側 水路(171)、電動機冷却水路(180)に加えて、 第1ラジェータ (130) およびバイパス水路 (17 2) を流通する冷却水の流量配分も調整するようにした ことを特徴としている。

【0016】これにより、通常バイパス水路(172) に設けられるサーモスタットの機能を流量調整弁(21 0) に統合することができるので、更に安価な冷却装置 とすることができる。

【0017】尚、上記各手段の括弧内の符号は、後述す る実施形態記載の具体的手段との対応関係を示すもので ある。

[0018]

【発明の実施の形態】 (第1実施形態) 本発明の第1実 施形態を図1、図2に示す。本発明に係わるハイブリッ ド電気自動車は、動力装置として、内燃機関(以下、エ ンジン)110と電動機120を有しており、走行モー ドに応じてエンジン110と電動機120を使い分ける ようにしている。

【0019】因みに、電動機120は、バッテリからの 直流電力を交流電力に変換するインバータ、交流電力に より車両のドライブシャフトを駆動する電動モータ、上 記エンジン110の動力を得て交流電力を発生させる発 電機、発電された交流電力を直流電力に変換しバッテリ に充電するコンバータ等から成るものである。また、イ 40 ンバータおよびコンバータには、発生する大電流を高速 で切替え制御する半導体素子を有しており、この半導体 素子および上記の電動モータが電動機120の主たる発 熱源となっている。

【0020】ハイブリッド電気自動車の冷却装置100 は、エンジン110を冷却するエンジン冷却装置101 と電動機120を冷却する電動機冷却装置102とから 成り、エンジン110の冷却水温を100℃付近、電動 機120の冷却水温を70℃付近で制御するようにして いる。

0内を流通する冷却水を冷却する第1ラジエータとして のメインラジエータ130を有しており、エンジン11 0とメインラジエータ130との間で冷却水が循環する エンジン冷却水路170が設けられている。

【0022】また、エンジン冷却水路170には、メイ ンラジエータ130をバイパスするバイパス水路172 が設けられており、このバイパス水路172の下流側は 後述する流量調整弁210に接続されている。

【0023】一方、電動機冷却装置102は、電動機1 20を冷却する第2ラジエータとしてのサブラジエータ 140を有しており、電動機120と共に上記エンジン 冷却水路170の内、メインラジエータ130の下流側 となる下流側水路171に対して並列となるように分 岐、合流する電動機冷却水路180内に配設されるよう にしている。ここで、サブラジエータ140には、後述 するようにメインラジエータ130あるいはバイパス水 路172を経由するエンジン110からの高温(100 ℃付近)の冷却水が流入されるので、電動機120を冷 却するのに必要とされる水温 (70℃付近)まで大きく 温度降下させる必要があり、基本冷却能力を大きくし、 流通する冷却水の流量は少量と成るように設定してい る。そして、図中矢印で示す冷却水の流れ方向に対し て、サブラジエータ140、電動機120の順に配設さ れるようにしている。

【0024】バイパス水路172と下流側水路171と の合流部172aおよび、下流側水路171と電動機冷 却水路180との分岐部171aには、流量調整弁21 Oが設けられている。流量調整弁210は、図2に示す ように、後述する制御手段230によって駆動されるモ るロータリー式の第1弁210b、第2弁210cが内 部に設けられたものであり、以下詳述するようにメイン ラジエータ130、バイパス水路172、下流側水路1 71、電動機冷却水路180内を流通する冷却水の流量 配分を調整するものとしている。

【0025】第1弁210bは、メインラジエータ13 Oを流通する流量(以下、ラジエータ流量Vr)とバイ パス水路172を流通する流量(以下、バイパス流量V b) との割合を可変するものである。メインラジエータ 130 側が全閉状態から全開状態に回動されると、バイ 40 パス水路172側は全開状態から全閉状態となり、ラジ エータ流量Vrが順次増加し、逆にバイパス流量Vbは 順次減少するようにしている。

【0026】また、第2弁210cは、下流側水路17 1を流通する流量 (以下、下流側流量Vr1)と電動機 冷却水路180を流通する流量(以下、電動機流量V e)との割合を可変するものである。電動機冷却水路1 80側が全閉状態から全開状態に回動されると、下流側 水路171側は全開状態から全閉状態となり、電動機流 量Veが順次増加し、逆に下流側流量Vr1は順次減少 50 【0035】また、流量調整弁210内の第2弁210

するようにしている。

【0027】そして、メインラジエータ130の下流側 水路171と電動機冷却水路180とが合流する合流部 180aの下流側には、エンジン冷却水路170に冷却 水を循環させる電動ポンプ220が設けられており、後 述する制御手段230により内部のモータおよび羽根車 が回転駆動され、冷却水の吐出流量、即ち循環流量を可 変するようにしている。 尚、上記流量調整弁210の第 2弁210 cが電動機冷却水路180側を開くことによ り、電動ポンプ220により電動機冷却水路180にも 冷却水が循環されることになる。当然のことながら、モ ータの回転数に応じて循環流量は増加することになる。 【0028】尚、電動ポンプ220の吐出流量をVpと すると、上記の各流量Vr、Vb、Vr1、Veとの関

 $V_p = V_r + V_b = V_r + V_e$ となる。

【0029】制御手段としての電子制御装置(以下、E CU) 230は、エンジン110および電動機120の 20 負荷状態に応じて、上記流量調整弁210および電動ポ ンプ220の作動を制御するものである。

【0030】エンジン110の負荷状態としては、ここ ではエンジン水温、エンジン回転数、エンジン吸気圧か ら判定するようにしており、これらを検出する水温セン サ241、回転数センサ244、圧力センサ245から の検出信号をECU230に入力するようにしている。 【0031】また、電動機120の負荷状態としては、 ここでは電動モータの回転数、バッテリ電圧、インバー タおよびコンバータを制御する半導体素子の電流値から ータ210aと、このモータ210aによって回動され 30 判定するようにしており、これらを検出する回転数セン サ246、電圧検出部247、電流検出部248からの 検出信号をECU230に入力するようにしている。 【0032】加えて、車両の走行速度を検出する車速セ ンサ249からの検出信号もECU230に入力するよ うにしている。当然のことながら、上記の各検出信号値 が大きい程エンジン110、電動機120の負荷は高い

> 【0033】上記の各種検出信号を受けて、ECU23 0は、流量調整弁210の弁開度と電動ポンプ220の 回転数を可変させるようにしている。

ことになる。

【0034】具体的には、流量調整弁210内の第1弁 210bは、冬季時等エンジン水温が所定温度より低い 場合あるいはエンジン110の負荷が低い場合、バイパ ス水路172側を全開とし、メインラジエータ130側 を全閉にするように回動される。そして、エンジン水温 が所定温度以上となった場合あるいはエンジン110の 負荷が高くなるにつれてバイパス水路172側を閉じ、 メインラジエータ130側が順次開くように回動され

には、エンジン110が主体で作動している場合、下流 側水路171側を全開とし、電動機冷却水路180側を 全閉にするように回動される。そして、電動機120が 主体で作動している場合は、電動機冷却水路180側を 全開とし、下流側水路171側を全閉とするように回動 される。更に、エンジン110および電動機120が併 用されて作動する場合は、下流側水路171および電動 機冷却水路180の両者を所定の開度で開くように回動 される。

【0036】電動ポンプ220については、エンジン1 10 10および電動機120の負荷が低い場合、低回転側に 制御され、負荷が高くなるにつれて高回転側に制御され る。

【0037】尚、メインラジエータ130とサブラジエータ1400配置については、サブラジエータ140側が熱交換により温度上昇した空気の影響を受けないように、冷却空気の流れ方向に対して、サブラジエータ140をメインラジエータ130の上流側にしている。因みに、サブラジエータ140とメインラジエータ130との間には、図示しない冷凍サイクルを構成するコンデン 20サ150を介在させており、内部を流通する冷媒を冷却するようにしている。

【0038】また、暖房装置を構成するヒータコア16 0が、上記エンジン冷却水路170、電動機冷却水路1 80とは別に設けられたヒータコア水路190内に配置 されている。ヒータコア160の下流側は、電動ポンプ 220の上流側に接続されるようにしており、電動ポン プ220によりヒータコア水路190内の冷却水が循環 され、ヒータコア160を通過する空気を加熱するよう にしている。

【0039】次に、上記構成に基づく作動について説明 する。

【0040】ハイブリッド電気自動車は、エンジン11 0および電動機120のそれぞれの作動効率が最適なポイントを活用して両者の作動を使い分けて、あるいは組合わせて使用するようにしているが、具体的な走行条件に対する作動について以下説明する。

【0041】 0エンジン始動時

特に冬期時等エンジン水温が低い場合、エンジン110 の暖気を促進するために、エンジン110から流出され 40 る冷却水は、流量調整弁210によってバイパス水路172を軽由してエンジン110に戻るように循環され、ラジエータ130で冷却されること無く短時間で所定の水温に昇温される。(この間電動機120は停止されている)その後、エンジン110は停止される。この場合の電動ポンプ220吐出流量は小さく制御される。(本実施形態では5L/minレベル)

2発進時および軽負荷時

作動トルクを大きく発生できる電動機120の電動モータを主体として作動する (エンジン110は停止する)

モードとなり、エンジン110から流出する冷却水は、メインラジエータ130あるいはバイパス水路172を流通した後、流量調整弁210の第2弁210cにより電動機冷却水路180側に導かれ、更にサブラジエータ140で冷却され、この冷却水によって電動機120は冷却される。その後、冷却水は合流部180aでラジエータ130の下流側水路171に戻り、エンジン110に流入する。この時、電動機120自信の負荷は低いので電動ボンプ220の吐出流量は小さく制御される。

10 (本実施形態では5L/minレベル)

③ 通常走行時

低トルクでの走行が可能であり、燃料消費効率が最適となるエンジン110を主体として作動する(電動機120は停止する)モードとなり、エンジン110から流出する冷却水は、メインラジエータ130で冷却され、その後、流量調整弁210の第2弁210cにより下流側水路171を流通し、エンジン110を冷却する。この時、エンジン110自信の負荷は低いので電動ポンプ220の吐出流量は、中間的な量に制御される。(本実施形態では60L/minレベル)

@全開負荷時

高速走行や登坂走行のような場合は、上記エンジン110主体での作動に対して、電動機120を併用するモードとなり、エンジン110から流出する冷却水は、メインラジエータ130で冷却され、その後、流量調整弁210の第2弁210cにより一部の冷却水は電動機冷却水路180側に導かれ、更にサブラジエータ140で冷却され、この冷却水によって電動機120は冷却され

30 る。その後、この冷却水は、下流側水路171を流通する冷却水と合流部180aで合流し、エンジン110に流入する。この時、エンジン110、電動機120自信の負荷は高いので電動ポンプ220の吐出流量は大きく制御される。

【0042】本実施形態では、電動ポンプ220の全吐出流量は65L/minレベルとしており、そのうち、流量調整弁210の第2弁210cでの流量配分は、それぞれ下流側水路171に60L/min、電動機冷却水路180に5L/minとしている。

) 【0043】5減速、制動時

この場合は、逆に車両のドライブシャフト側の駆動力が 電動機120に加えられ、電動機120内の発電機が作動する(エンジン110は停止する)モードとなり、上記**2**のモードと同様の作動をする。

【0044】以上より、本実施形態においては、エンジン110および電動機120の冷却装置として、それぞれ独立して設けなくても、流量調整弁210を設けることでエンジン冷却水路170から分岐する電動機冷却水路180が形成でき、また、1つの電動ボンプ220で50両冷却水路170、180の冷却水の循環が可能と成

り、簡素で安価な冷却装置として対応できる。

【0045】また、流量調整弁210により下流側水路171と電動機冷却水路180への流量配分を調整することや、電動ボンプ220により吐出流量を可変することで、各ラジエータ130、140に必要とされる冷却水を流通させることができるので、エンジン110および電動機120の負荷状態に応じた冷却が可能となる。

【0046】特に、発進時、軽負荷時の電動機120主体での走行モードの場合や、全開負荷時のエンジン11 0および電動機120併用での走行モードの場合では、メインラジエータ130とサブラジエータ140の両者を用いて冷却水を冷却できるので充分な冷却効果を得ることができる。

【0047】また、電動機冷却水路180に上流側からサブラジエータ140、電動機120の順で配置しているので、メインラジエータ130およびサブラジエータ140によって順次冷却された冷却水で電動機120を冷却でき、エンジン110に対して電動機120の方が低い温度で制御されるもの(内燃機関が100℃付近に対して電動機は70℃付近)に対して効果的に冷却でき20

【0048】また、サブラジエータ140を、メインラジエータ130の冷却空気流れの上流側に配置し、メインラジエータ130の放熱の影響を受けないようにしているので、冷却空気と冷却水との温度差を大きくし、冷却水の温度降下分を大きくでき、更に効果的に電動機120を冷却できる。

【0049】図3に従来技術および本実施形態における全開負荷時のエンジン110の出口水温および電動機120の入口水温をシュミレーション検討した結果を示す。ここでは、本実施形態のサブラジエータ140の体格は、従来技術に対して全面面積で約3倍にしており、循環流量は従来技術の8L/minに対して5L/minとしている。また、メインラジエータ130への循環流量は、従来技術の60L/minに対して65L/minとしている。

【0050】電動機入口水温においては、上記のように サブラジエータ140の冷却能力に対する少流量化によ る温度降下増加、およびエンジン出口水温においては、 メインラジエータ130、サブラジエータ140の両ラ ジエータでの冷却による水温低減の効果が得られてい る。

【0051】そして、流量調整弁210には、ラジエー 夕流量Vrとバイパス流量Vbを調整する第1弁210 bを設けるようにしているので、従来のサーモスタット の機能を流量調整弁210に統合することができ、更に 安価な冷却装置とすることができる。

0 【0052】(その他の実施形態)図4に示すように、 流量調整弁210として、第1弁210bを廃止し、第 2弁210cのみを有するものとし、バイパス水路17 2と下流側水路171との合流部172aには周知のサ ーモスタット200を設けるようにしても良い。これに より、流量調整弁210の構造を簡略化できる。

【図面の簡単な説明】

【図1】本発明の第1実施形態の全体構成を示す模式図である。

【図2】流量調整弁の構造を示す概略図である。

② 【図3】従来技術と本実施形態における全開負荷時のエンジン出口水温と電動機入口水温をシュミレーション比較した結果である。

【図4】その他の実施形態の全体構成を示す模式図である

【図5】従来技術の全体構成を示す模式図である。 【符号の説明】

110 エンジン (内燃機関)

120 電動機

130 メインラジエータ (第1ラジエータ)

30 140 サブラジエータ (第2ラジエータ)

170 エンジン冷却水路(内燃機関冷却水路)

171 下流側水路

171a 分岐部

172 バイパス水路

180 電動機冷却水路

210 流量調整弁

220 電動ポンプ

230 電子制御装置(制御手段)

【図2】

【図3】

【図1】

【図4】

【図5】

