Secure Routing

Kai Bu kaibu@zju.edu.cn http://list.zju.edu.cn/kaibu/netsec2022

Secure Routing

How does routing work?

How is routing attacked?

How is routing secured?

Delivery Scheme

unicast deliver msg to a single node

broadcast
deliver msg to all nodes in network

multicast
deliver msg to a group of nodes

anycast deliver msg to any one of a group

Delivery Scheme

deliver msg to a single node

broadcast deliver msg to all nodes in network geocast

deliver a message to a group of nodes delivebased on geographic location

anycast deliver msg to any one of

Delivery Scheme

unicast
deliver msg to a single node

dominant form of msg delivery on inet

Routing Scheme

unicast
deliver msg to a single node

how to find a feasible path?

Routing Scheme

- Intra-domain routing inside an autonomous system
- Inter-domain routing between autonomous systems

Routing Scheme

- Intra-domain routing consider A-F as routers
- Inter-domain routing consider A-F as autonomous systems

Route Computation

Link-state algorithms

each router knows complete topology & link cost information;

independently run routing algorithm to calculate shortest path to each destination;

- c(i,j) link cost from i to j (∞ if unknown)
- D(v) current value of cost of path from source to destination v;
- p(v) predecessor node along path from source to v;
- N' set of nodes whose least 5 cost path is already known; 3

```
Initialization:
                    Dijkstra
  N' = \{A\}
   for all nodes v
    if v adjacent to A
5
     then D(v) = c(A,v)
6
     else D(v) = \infty
8
   Loop
   find w not in N' such that D(w) is
    minimum
10 add w to N'
11
   update D(v) for all v adjacent to w and not in N':
12
      D(v) = \min(D(v), D(w) + c(w,v))
    /* new cost to v is either the old cost, or known
   shortest path cost to w plus cost from w to v3*/
   until all nodes in N'
```

St	ер	start N'	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	infinity	infinity
	1	AD	2,A	4,D		2,D	infinity
	2	ADE	2,A	3,E			4,E
	3	ADEB		3,E			4,E
	4	ADEBC					4,E
		ADEDOE					

5 ADEBCF

St	tep	start N'	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	infinity	infinity
	1	AD	2,A	4,D		2,D	infinity
	2	ADE	2,A	3,E			4,E
	3	ADEB		3,E			4,E
	4	ADEBC					4,E
		ADEDOE					

5 ADEBCF

resulting shortest-path tree for A:

St	tep	start N'	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	infinity	infinity
	1	AD	2,A	4,D		2,D	infinity
	2	ADE	2,A	3,E			4,E
	3	ADEB		3,E			4,E
	4	ADEBC					4,E
		ADEDOE					

5 ADEBCF

resulting shortest-path tree for A:

destination	link
В	(A, B)
D	(A, D)
Е	(A, D)
С	(A, D)
F	(A, D)

what if no global view?

Route Computation

 Distance-vector algorithms each router knows direct neighbors & link costs to neighbors; independently calculate shortest path to each destination through an iterative process based on neighbors' distances to dest;

Bellman-Ford

 $D_x(y)$ cost of least-cost path from x to y $D_x(y) = min\{c(x,v) + D_v(y)\}$

for all neighbors v of x

Bellman-Ford

 $D_x(y)$ cost of least-cost path from x to y

Bellman-Ford

 $D_x(y)$ cost of least-cost path from x to y

$$D_x(y) = min\{c(x,v) + D_v(y)\}$$

for all neighbors v of x

intra-domain vs inter-domain

Hierarchical Routing

inter-AS border (exterior gateway) routers

intra-AS (interior gateway) routers

Hierarchical Routing

inter-AS border (exterior gateway) routers

intra-AS (interior gateway) routers

AS: autonomous system

each AS uses its own IGP internal routing protocol;

border routers run BGP as well;

IGP: Interior Gateway Prot

- RIP
 routing information protocol
- OSPF
 open shortest path first

- Distance-vector algorithm
 distance metric: # of hops (max=15)
- Neighbor routers exchange routing advertisement every 30 seconds
- Failure and recovery
 if no update from neighbor N after
 180s invalidate routes via N, notify
 neighbors

D: routing table

destination network	next router	# of hops to destination
W	Α	2
у	В	2
Z	В	7
X		1

dest	hops
W	1
X	1
Z	4

advertisement from A to D

D: routing table

destination network	next router	# of hops to destination
W	Α	2
у	В	2
Z	В	7
X		1

dest	hops
W	1
X	1
z	4

advertisement from A to D

D: routing table

destination network	next router	# of hops to destination
W	Α	2
у	В	2
Z	B→A	7 →5
X		1

Link-state algorithm
 each node knows its direct neighbors
 & the link distance to each(link-state);
 each node periodically broadcasts its
 link-state to the entire network;

LSP (Link-State Packet)
 one entry per neighbor router:
 ID of the node that created the LSP;
 a list of direct neighbors, with link cost;
 sequence number for this LSP (SEQ);
 time-to-live (TTL) for info in this LSP;

 Build a complete map using link states everyone broadcasts a piece of topology put all pieces together → complete map

- Each node stores and forwards LSPs
- Decrement TTL of stored SLPs
- Discard info when TTL=0
- Compute routes using Dijkstra
- Generate LSPs periodically with increasing SEQ

Reliable flooding of LSP

forward each received LSP to all neighbors but the one that sent it; use the source-ID and SEQ to detect duplicates;

- All OSPF messages are authenticated
- Multiple same-cost paths are allowed
- Hierarchical OSPF is used in large dom

Hierarchical OSPF

Hierarchical OSPF

Hierarchical OSPF

Hierarchical OSPF

inter-domain routing

BGP: Border Gateway Protocol

Path-vector protocol among border routers

each border router broadcasts to neighbors entire path of AS sequence to destination:

e.g., Path(B,C) = B, A, C

For each AS:

- Obtain subnet reachability information from neighbor ASes;
- Propagate the reachability information to all internal routers;
- Determine routes to subnets based on reachability information and policy

Example: forwarding table entry for d→x

Example: forwarding table entry for d→x
 AS A learns from BGP that subnet x is
 reachable from AS B via border router
 A.c;

 Example: forwarding table entry for d→x router d determines from intra-domain routing info that its interface I is on the least cost path to c;

Example: forwarding table entry for d→x

destination	next hop
X	I

Distribute reachability information:

 with eBGP session 3a-to-1c,
 AS3 sends prefix reachability info to AS1

Distribute reachability information:

 1c uses iBGP sessions to distribute this new prefix reachability info to all routers in AS1;

Distribute reachability information:

 1b re-advertises the new reachability info to AS2

over the 1b-to-2a eBGP session;

Distribute reachability information:

 1b re-advertises the new reachability info to AS2

over the 1b-to-2a eBGP session; when a router learns about a new prefix, it creates a forwarding table entry for the prefix

- Provider networks: A, B, C
- Customer networks (of provider networks): X, Y, W

- Provider networks: A, B, C
- Customer networks (of provider networks): X, Y, W
- X is dual-homed: attached to two networks

X does not want to carry traffic from B to C, so X will not advertise to B a provider route to C. networks A customer networks

- Provider networks: A, B, C
- Customer networks (of provider networks): X, Y, W
- X is dual-homed: attached to two networks

- A advertises to B the path AW
- B advertises to X the path BAW

- A advertises to B the path AW
- B advertises to X the path BAW
- Should B advertise to C the path BAW?

No way!

- A advertises to B the path AW
- B advertises to X the path BAW
- Should B advertise to C the path BAW?

routing attacks

distance-vector

link-state

BGP

routing attacks

distance-vector:

announce 0 distance to all other nodes

link-state:

drop links; claim direct link to other routers

BGP:

announce arbitrary prefix; alter paths

Prefix Hijacking: Case 1

Here's what should have happened....

Block your own customers.

But here's what Pakistan ended up doing...

Prefix Hijacking: Case 2

April 2010: China Telecom intercepts traffic

Path Tampering

Remove ASes from the AS path

Add ASes to the AS path

701 88 → 701 3715 88

how to secure routing?

RPKI

Resource Public Key Infrastructure

certified mapping

S-BGP

- Each AS on the path cryptographically signs its announcement
- Guarantees that each AS on the path made the announcement in the path:
 AS path indicates the order ASes were traversed;
 No intermediate ASes were added or removed;

S-BGP

Deployment challenges:

- Complete, accurate registries
- Public key infrastructure
- Cryptographic operations
- Need to perform operations quickly
- Difficulty of incremental deployment

Readings

- BGP Hijack Explained by Jorge Ribas
- Why Is It Taking So Long to Secure
 Internet Routing? by Sharon Goldberg

Thank You