

Leistungselektronik Cheat Sheet

1. Allgemeines

Allgemeines Tastverhältnis: $D = \frac{\tau_i}{m}$ $U_{di\alpha} = U_{di0} \cdot \cos \alpha$

Physikalische Größen

- Un: Gleichspannung
- û: Scheitelwert
- u(t): zeitabhängige Spannung
- T: Periodendauer
- t_i : Impulszeit
- \overline{U} : Arithmetischer Mittelwert

2. Mathematische Verfahren

2.1. Mittel- & Effektivwert

Arith. Mittelwert einer Mischspannung: $\overline{u}_{di} = U_{di} = \frac{1}{T}\int\limits_{c}^{t}u_{d}(t)\,dt$ Effektivwert: $U_{RMS} = \sqrt{\frac{1}{T} \cdot \int_{-T}^{P} u_d^2(t) dt}$

Effektivwert einer diskreten Spannung

- 1. Spannung in Spannungen mit gleichem \hat{U} aufteilen.
- 2. Effektivwerte der Einzelspannungen berechnen: $U_{xRMS} = \sqrt{D}\hat{U}$
- 3. Quadratische Summe aller U_{xRMS} berechnen:

$$U_{RMS} = \sqrt{U_{xRMs}^2 + U_{x+1RMs}^2} \dots$$

2.2. Welligkeit, Klirr und Formfaktor

Welligkeit (Ripple)

$$w_{U} = \frac{U_{RMS}}{U_{d}} = \sqrt{\frac{U_{RMS\,ges}^{2}}{U_{d}^{2}} - 1} \qquad w_{I} = \frac{I_{RMS}}{I_{d}} = \sqrt{\frac{I_{RMS\,ges}^{2}}{I_{d}^{2}} - 1}$$

Welligkeit reiner Gleichgrößen: w = 0.

Welligkeit reiner Wechselgrößen: w = sehr groß.

Klirrfaktor (THD) & Formfaktor

17111111				œ
$K_U =$	$\frac{U_{RM}}{U_{RM}}$	SO.	<u>s</u>	I

& Formfaktor
$$K_I = \frac{I_{RMSOS}}{I_{RMS}}$$

$$F = \frac{U_{d\,RMS}}{U_{di}}$$

2.3. Mittel- und Effektivwerte

$$\overline{U} = \frac{\hat{U}_S \cdot t_i}{T} \mid U = \frac{\hat{U}_S}{\sqrt{2}} \qquad \qquad \overline{U} = \frac{\hat{U}_S}{2} \mid U = \frac{\hat{U}_S}{\sqrt{2}}$$

$$\overline{U} = \frac{\hat{U}_S}{2} \mid U = \frac{\hat{U}_S}{\sqrt{2}}$$

 $\overline{U} = \frac{\hat{U}_{S} \cdot t_{i}}{2T} \mid U = \hat{U}_{S} \cdot \sqrt{\frac{t_{i}}{3T}}$

$$\bigcap \bigcap \overline{U} = \frac{\dot{\mathcal{U}}_S}{\pi} \ | \ U = \frac{\dot{\mathcal{U}}_S}{2} \qquad \qquad \bigcap \overline{U} = \frac{2 \cdot \dot{\mathcal{U}}_S}{\pi} \ | \ U = \frac{\dot{u}}{\sqrt{2}}$$

3. Leistungsberechnung

3.1. Leistungsarten

 $S = U_{0RMS} \cdot I_{ORMS}$

Für rein sinusförmige Verläufe gilt:

 $\lambda = \frac{P}{S} = \cos \phi$

 $S = \sqrt{P^2 + Q^2}$

 $Q = \sin(\phi)$

3.2. Betriebsquadranten

4. Wärmemanagement

4.1. Verlustleistung

Thermische Energie: Q Momentanleistung am PN Übergang: $p_v = u \cdot i$

$$Q = \int_{0}^{t} p(t) dt$$

Bauelement	Kennbuchstabe	Temperatur
Siliziumkristall - Junction	J	ϑ_J
Gehäuse - case	С	ϑ_C
Kühlkörper - heatsink	K	ϑ_K
Kühlmedien - ambient	U / A	ϑ_A

5. Mittelpunktschaltungen

5.1. Nomenklatur

id ud: Zeitverläufe von Strom und Spannung

 $I_d U_d$: In den Zeitverläufen von i_d und u_d enthaltene Mittelwerte

u_T: Zeitlicher Verlauf der Spannung an einem Thyristor

us: Zeitlicher Verlauf der Netzspannung

 U_S : Effektivwert der Netzspannung

 U_N : Effektivwert der verketteten Spannung

d: Ausgangsgröße

T: Transistor

S: Strang

N: verkettet Größe

5.2. Einphasige Mittelpunktschaltung M1

5.2.1. Aufbau und Funktion

5.2.2. Steuergesetz

Rein ohmsche Last: $U_{di\alpha} = \frac{\hat{U}_S}{2\pi} \cdot (1 + \cos \alpha)$

5.3. Zweiphasige Mittelpunktschaltung M2C

 $u_{s12} = u_{s1} - u_{s2} = u_N \cdot \frac{N_2}{N_1}$

Bei induktiver Last gilt: $u_d = u_R + u_L = i_d \cdot R + L \cdot \frac{di_d}{dt}$

5.3.2. Steuergesetz Bei nicht lückendem Betrieb ergibt sich

$$U_{di\alpha} = \frac{1}{\pi} \int_{\alpha}^{\pi + \alpha} u_d(\omega t) d(\omega t) = \frac{2 \cdot \hat{U}_S}{\pi} \cdot \cos \alpha$$

5.4. Dreiphasige Mittelpunktschaltung M3C

$$U_{RMS} = \hat{U}_S \sqrt{\left[\frac{1}{2} + \frac{3}{4\pi} \cdot \frac{\sqrt{3}}{2}\right]} = 0,8405 \cdot \hat{U}_S$$

$$U_{di0} = \frac{3 \cdot \sqrt{3} \cdot \hat{U}_S}{2\pi}$$

Für nicht lückenden Betrieb $\alpha < 30^{\circ}$: $U_{dia} = \frac{3 \cdot \sqrt{3} \cdot \hat{U_S}}{2\pi} \cdot \cos \alpha$ Für lückenden Betrieb($\alpha < 30^{\circ}$): $U_{di\alpha} = U_{di0} \cdot \frac{1 + \cos(30^{\circ} + \alpha)}{1 + \sqrt{3}/2}$

6. Gleichstromsteller im Einquadrantenbetrieb

6.1. Tiefsetzsteller

$$\frac{U_{SZ}}{T_{S}} \cdot t_{ein} = U_{Steu}$$

Übersetzungsverhältnis:
$$\delta = \frac{U_0}{U_d} = \frac{i_T}{i_L}$$

Tastgrad:
$$D = \frac{t_{Ein}}{T_c}$$

Schaltbedingung:

 $u_{Komp} > 0 \Rightarrow MOSFET$ eingeschaltet $u_0(t) = U_d$ $u_{Komp} < 0 \Rightarrow \text{MOSFET}$ ausgeschaltet $u_0(t) = 0$

Mittelwert der Ausgangsspannung: $U_0 = \frac{t_{ein}}{T_c} \cdot U_d = D \cdot U_d$

$$T_{S} = \frac{1}{f_{S}}$$

$$t_{Ein} = \frac{U_{Steuer}}{\hat{U}_{SZ}} \cdot T_{S}$$

Resonanzfrequenz:
$$f_C = \frac{1}{2\pi\sqrt{L \cdot C}}$$

L und C sind so zu wählen: $f_C/f_S=0.01\Rightarrow \frac{1}{2\pi\sqrt{L\cdot C}}=0.01\cdot f_S$

Stromwelligkeit: $\Delta_{iL} = \frac{u_L}{L} \cdot t_{ein} = \frac{U_d - U_0}{L} \cdot t_{ein}$

6.1.1. Lückender Betrieb

$$\begin{split} I_{Lg} &= \frac{1}{2} \cdot i_{L \, peak} = \frac{t_{eim}}{2L} \cdot (U_d - U_0) = \frac{D \cdot T_S}{2L} \cdot (U_d - U_0) = I_{0g} \\ \frac{U_0}{U_D} &= \frac{D^2}{D^2 + \frac{1}{4} \cdot \frac{I_0}{I_{L \, gmax}}} \qquad D = \frac{U_0}{U_d} \cdot \sqrt{\frac{\frac{I_0}{I_L \, gmax}}{\frac{I_0}{U_d}}} \\ \end{split}$$

$$\frac{U_0}{U_D} = \frac{D^2}{D^2 + \frac{1}{4} \cdot \frac{I_0}{I_{L gmax}}}$$

6.2. Hochsetzsteller

Der Mittelwert der Ausgangsspannung U_0 ist höher als der Mittelwert der Eingangsspannung U_d .

$$U_d = U_L = L \cdot \frac{di_L}{dt}$$

$$U_0 = T_S = 1$$

6.2.1. Lückender Betrieb

$$I_{Lg} = \tfrac{1}{2} \cdot i_{L\,peak} = \tfrac{t_{ein}}{2L} \cdot U_d = \tfrac{D}{2L} \cdot T_S \cdot U_d = \tfrac{T_S}{2L} \cdot D \cdot U_0 \cdot (1-D)^2$$

7. Gleichstromsteller im Zweiguadrantenbetrieb

7.1. Zweiguadrantensteller mit Stromumkehr

7.2. Zweiquadrantensteller mit Spannungsumkehr

7.2.1. Steuergesetz

Nicht lückender Betrieb:
$$\frac{U_0}{U_d} = 2 \cdot D_{TA+} - 1$$

$$\mbox{ Versetzte Taktung: } \frac{U_0}{U_d} = (D-1)$$

8. Gleichstromsteller im Vierquadrantenbetrieb

8.1. Grundlagen

Die Verriegelungszeit bezeichnet das Zeitintervall, in dem beide Schalter einer Halbbrücke gleichzeitig abgeschaltet sind. $u_0(t) = u_{AN}(t) - u_{BN}(t)$

8.2. Pulsbreitenmodulation mit zwei Spannungsniveaus

Mittelwerte U_{AN} und U_{BN}

$$U_{AN} = \frac{U_d \cdot t_{ein} + 0 \cdot t_{aus}}{T_S} = U_d \cdot \frac{t_{ein}}{T_S} = U_d \cdot D_{TA+}$$

$$U_{BN} = \frac{U_d \cdot t_{ein} + 0 \cdot t_{aus}}{T_S} = U_d \cdot \frac{t_{ein}}{T_S} = U_d \cdot D_{TB+}$$

Schaltbedingungen

 T_{A+}, T_{B-} ein wenn: $u_{Steuer} > u_{\Delta}$

$$u_{\Delta} = \hat{U}_{\Delta} \cdot \frac{t}{T_S/4} \text{ mit } -\frac{T_S}{4} < t < \frac{T_S}{4}$$

$$t_1 = \frac{u_{Steuer}}{\hat{r}_1} \cdot \frac{T_S}{4}$$

$$D_{TA+} = \frac{t_{ein}}{T_S} = \frac{2 \cdot t_1 + \frac{T_S}{2}}{T_S} = 2 \cdot \frac{t_1}{T_S} + \frac{1}{2} = \frac{1}{2} \left(1 + \frac{u_{Steuer}}{\hat{U}_\Delta} \right)$$

$$U_0 = U_{AN} - U_{BN} = U_d \cdot D_{TA+} - U_d \cdot D_{TB+} = U_d \cdot \frac{U_{Steeuer}}{\hat{U}_{\Delta}}$$

8.3. Pulsbreitenmodulation mit drei Spannungsniveaus (PWM3)

Schaltbedingungen

 T_{A+} ein, wenn $u_{Steuer} \geq u_{\Delta}$, T_{A-} ein, wenn $u_{Steuer} < u_{\Delta}$

$$T_{B+}$$
ein, wenn $-u_{Steuer} \geq u_{\Delta}$, T_{B} ein, wenn $-u_{Steuer} < u_{\Delta}$

$$D_{TB+} = \frac{\frac{TS}{2} - 2t_1}{TS} = \frac{1}{2} - \frac{2t_1}{TS}$$

9. Umrichter

9.1. Grundlagen

 $\hat{U}_{0,1}$: Sinusförmige Grundschwingung.

F der Grundschwingung = F der Rechteckspannung.

9.2. Einphasige spannunngseinprägende Wechselrichter

$$\hat{U}_{0,1} = \frac{2}{\pi} \cdot U_d.$$

9.3. Vierquadrantensteller mit Grundfrequenztaktung

$$\hat{U}_{0,1} = \frac{4}{\pi} \cdot U_d$$
.

9.4. Unterschwingungsverfahren

$$U_0 = U_d \cdot \frac{{}^uSteuer}{\hat{U}_{\Delta}}$$