ECH4905 ChemE Optimization HW 6

Andres Espinosa

April 20, 2025

1 Problem 1

Consider the following problem:

minimize
$$Z_1(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2,$$

$$Z_2(\mathbf{x}) = 3x_1 + 2x_2 - x_3^3 + 0.01(x_4 - x_5)^3,$$
subject to:
$$x_1 + 2x_2 - x_3 - 0.5x_4 + x_5 = 2,$$

$$4x_1 - 2x_2 + 0.8x_3 + 0.6x_4 + 0.5x_5^2 = 0,$$

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 < 10.$$

1.1 Part A

Use the epsilon-constraint method to solve the above nonlinear programming (NLP) problem in GAMS. Upload your code.

Solution: To solve this with the epsilon-constraint method, we can take the first objective Z_1 and set that as our primary objective, while we take the second objective Z_2 and turn that into a constraint. The optimization problem now looks like this:

minimize
$$Z_1(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2$$

subject to $x_1 + 2x_2 - x_3 - 0.5x_4 + x_5 = 2$,
 $4x_1 - 2x_2 + 0.8x_3 + 0.6x_4 + 0.5x_5^2 = 0$,
 $x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 \le 10$
 $3x_1 + 2x_2 - x_3^3 + 0.01(x_4 - x_5)^3 \le \varepsilon$

Below is the GAMS code that was used for this problem.

```
Sets
n / 1*30 /;
Parameters
epsilon_n(n)
pareto_z1(n)
pareto_z2(n);
```

```
Scalars
          z2_{min}
          z2_{max}
          epsilon /1/;
Variables
x 1
x_2
x_3
x_4
x_5
z_1
z_2;
x_1.10 = -4; x_1.up = 4;
x_2.10 = -4; x_2.up = 4;
x_3.10 = 0; x_3.up = 4;
x_4.10 = -4; x_4.up = 4;
x_5.10 = -4; x_5.up = 4;
z_1.10 = -1000; z_1.up = 1000;
z_2.10 = -1000; z_2.up = 1000;
Equations
z_1_eq
z_2_{eq}
constraint_1
constraint_2
constraint_3
non_neg_power_constraint
epsilon_constraint
z_1_{eq..} z_1_{eq..}
z_2_{eq}...z_2_{ee} = 3*x_1 + 2*x_2 - x_3**3 + 0.01*(x_4 - x_5)**3;
constraint_1.. x_1 + 2*x_2 - x_3 - 0.5*x_4 + x_5 = e = 2;
constraint_2.. 4*x_1 - 2*x_2 + 0.8*x_3 + 0.6*x_4 + 0.5*x_2**2 = 0;
constraint_3.. z_1 =l= 10;
non_neg_power_constraint.. x_4 =g= x_5;
epsilon_constraint.. z_2 =1= epsilon;
Model FullModel / all / ;
model BoundedModel / all - epsilon_constraint / ;
option NLP=baron;
option optcr = 0.00001;
```

```
option limrow = 4000;
* First, solve BoundedModel to get min and max z_2
solve BoundedModel using MINLP minimizing z_1;
z2_{min} = z_{2.1};
solve BoundedModel using MINLP minimizing z_2;
z2_{max} = z_{2.1};
* Now loop to build Pareto front
loop(n,
    epsilon_n(n) = z2_min + (z2_max - z2_min)*(ord(n)-1)/(card(n)-1);
    epsilon = epsilon_n(n);
    solve FullModel using MINLP minimizing z_1;
    pareto_z1(n) = z_1.1;
    pareto_z2(n) = z_2.1;
);
* Save results
execute_unload 'pareto_front.gdx', pareto_z1, pareto_z2, epsilon_n;
```

1.2 Part B

Create a plot with the Pareto front.

Solution: The plot is available in Figure 1

Problem 1 Pareto Optimality Front

Figure 1: Problem 1 Pareto Chart

2 Problem 2

Consider the same problem that we explored in the previous homework in Figure 2.

Figure 2: Problem 2 superstructure

In which the total cost of a distillation column was calculated as follows:

$$\cos t_k = \alpha_k + \beta_k F_k + \gamma_{\text{Hot}} Q_k^{\text{Hot}} + \gamma_{\text{Cold}} Q_k^{\text{Cold}},$$

where:

- α_k represents a fixed capital cost,
- β_k represents the variable investment cost,
- $\gamma_{\rm Hot}/\gamma_{\rm Cold}$ is the cost of hot/cold utilities,
- $Q_k^{
 m Hot}/Q_k^{
 m Cold}$ is the total demand of hot and cold utilities (assume they are equal).

Considering an initial feed of 1000 Kmol/h, and a composition of the feed stream (mole fraction) of A = 0.15, B = 0.3, C = 0.35, and D = 0.2, and the following data in Figure 3:

Scenario	Probability	$\gamma_{\rm Hot} (10^3 \$/10^6 {\rm KJ-y})$	$\gamma_{\rm Cold} (10^3 \$/10^6 {\rm KJ-y})$
1	0.025	0.1	3
2	0.05	0.1	10
3	0.1	0.1	34
4	0.15	1.3	3
5	0.35	1.3	10
6	0.15	1.3	34
7	0.1	3	3
8	0.05	3	10
9	0.025	3	34

Unlike the previous case, assume that the parameters γ_{Hot} and γ_{Cold} are known with uncertainty. The probability of occurrence in different scenarios is as follows:

Formulate a stochastic optimization problem in GAMS and solve the problem.

		Investment cost		Heat duty
k	Separator	α_k , fixed	β_k , variable	coefficients, Kk,
		(10^3/yr)	(103\$hr/kmol yr)	(106kJ/kgmol)
1	A/BCD	145	0.42	0.028
2	AB/CD	52	0.12	0.042
3	ABC/D	76	0.25	0.054
6	A/BC	125	0.78	0.024
7 .	AB/C	44	0.11	0.039
4	B/CD	38	0.14	0.040
5	BC/D	66	0.21	0.047
10	A/B	112	0.39	0.022
9	B/C	37	0.08	0.036
8	C/D	58	0.19	0.044

Cost of utilities:

Cooling water $C_C = 1.3 (10^3 \$/10^6 \text{kJyr})$ Steam $C_H = 34 (10^3 \$/10^6 \text{kJyr})$

Figure 3: Problem 2 Data table

Solution:

minimize
$$\sum_{s \in S} p_s \cdot \left(\sum_{k=1}^{10} \left(\alpha_k y_k + \beta_k x_k + \gamma_{\text{Hot},s} Q_k^{\text{Hot}} + \gamma_{\text{Cold},s} Q_k^{\text{Cold}} \right) \right)$$

subject to:

Flow balance constraints (as defined in the problem)

Binary constraints for y variables

Big-M constraints for x variables

Supply and demand constraints

Non-negativity constraints for x variables.

We can rearrange the summations

minimize
$$\sum_{k=1}^{10} (\alpha_k y_k + \beta_k x_k) + \sum_{s \in S} p_s \cdot \sum_{k=1}^{10} \left(\gamma_{\text{Hot},s} Q_k^{\text{Hot}} + \gamma_{\text{Cold},s} Q_k^{\text{Cold}} \right)$$

Previously, in HW5 I didn't successfully incorporate the Q and γ values. Here, the γ values are provided per scenario. I believe the Q values are equal to the amount of flow passing through the distillation column times the heat duty coefficients. So, using the same variables y and x per distillation column that I had previously, we have the below full problem:

minimize
$$\sum_{k=1}^{10} (\alpha_k y_k + \beta_k x_k) + \sum_{s \in S} p_s \cdot \sum_{k=1}^{10} (\gamma_{\text{Hot},s} K_k x_k + \gamma_{\text{Cold},s} K_k x_k)$$
subject to:

Flow balance constraints (as defined in the problem)

Binary constraints for y variables

Big-M constraints for x variables

Supply and demand constraints

Non-negativity constraints for x variables.

There are no constraints affected by the uncertainty in the γ values. Therefore, we solve the same problem as previously but augment the objective function to include this uncertainty. For simplicity, we also split the first section $\sum_{k=1}^{10} (\alpha_k y_k + \beta_k x_k)$ into z_1 as the first stage component and the rest $\sum_{s \in S} p_s \cdot \sum_{k=1}^{10} (\gamma_{\text{Hot},s} K_k x_k + \gamma_{\text{Cold},s} K_k x_k)$ as the second stage component z_2 . Now, $z_T = z_1 + z_2$ is the total objective component.

Another rearrangement we do for simplicity is factoring out the Kx term in the second stage component.

minimize
$$\sum_{k=1}^{10} (\alpha_k y_k + \beta_k x_k) + \sum_{k=1}^{10} K_k x_k \sum_{s \in S} p_s \cdot (\gamma_{\text{Hot},s} + \gamma_{\text{Cold},s})$$

Since this parameter $\sum_{s \in S} p_s \cdot (\gamma_{\text{Hot},s} + \gamma_{\text{Cold},s})$ is only comprised of parameters, we can actually calculate a new parameter as the expectation of this term. Instead of incorporating this into the GAMs, I created a new parameter $E[\gamma] = \sum_{s \in S} p_s \cdot (\gamma_{\text{Hot},s} + \gamma_{\text{Cold},s})$ and use that to solve the stochastic program below

minimize
$$\sum_{k=1}^{10} (\alpha_k y_k + \beta_k x_k) + \sum_{k=1}^{10} K_k x_k E[\gamma]$$

subject to:

Flow balance constraints (as defined in the problem)

Binary constraints for y variables

Big-M constraints for x variables

Supply and demand constraints

Non-negativity constraints for x variables.