

UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO ALGORITMOS BIOINSPIRADOS

Problema da Mochila Binária com Algoritmos Genéticos Combinatórios

Gustavo Henriques da Cunha

São João del-Rei 2024

Lista de Figuras

1	tabela com comparação entre os testes p 07	3
2	tabela com comparação entre os testes p08	3
3	representação gráfica de execuções do melhor p07	4
4	representação gráfica do melhor p07	4
5	representação gráfica de execuções do melhor p08	5
6	representação gráfica do melhor p08	5

Sumário

1	INTRODUÇÃO	1
	1.1 Objetivo	1
2	ABORDAGEM DO PROBLEMA	1
3	ANÁLISE DE DESEMPENHO	2
4	CONCLUSÃO	6

1 INTRODUÇÃO

Este é um trabalho prático da disciplina de Algoritmos Bioinspirados no curso de Ciência da Computação na UFSJ.

1.1 Objetivo

Neste trabalho, temos como objetivo aprender a construir e testar algoritmos genéticos, buscando resolver o problema da mochila binária com o uso de algoritmos genéticos combinatórios.

Além disso, focamos na análise da calibragem dos parâmetros, buscando melhorar a eficiência do algoritmo.

2 ABORDAGEM DO PROBLEMA

Para resolver o problema, utilizaremos de um algoritmo genético combinatório, onde a partir de uma população inicial, constituida de um vetor de zeros e ums, usaremos a função matemática a baixo como função de avaliação para calcularmos seu fitness, onde temos que quanto maior o fitness, melhor é o indivíduo. Devemos levar em conta que no problema da mochila, temos soluções inválidas, assim aplicamos uma penalização para elas. Existe também o método sem penalização, mas testando ele nas entradas grandes, as soluções inválidas diminaram, assim foi usado o método abaixo.

$$fitness = \sum_{\forall i \in X} v[i] - (\sum_{\forall i \in X} v[i] * (\sum p[i] - c))$$

Depois disso, passamos para a parte de seleção de pais, onde selecionamos individuos da população, preferencialmente os melhores, e os utilizamos para gerarem novos indivíduos. O método para seleção de pais utilizado foi o método do torneio.

Com os pais escolhidos, vamos para a etapa de cruzamento, onde são gerados os indivíduos para a próxima geração. Nessa etapa, foi implementado o cruzamento por pontos, onde foi utilizado 2 pontos.

Seguimos então para as etapas de mutação e elitismo. Para fazer a mutação, foi utilizado o método de flip de um valor a ser mutado aleatoriamente. A mutação tem uma taxa que diz se esse número vai ser trocado ou não. Para testar o algoritmo, podemos

ajustá-la. Já no elitismo, simplesmente escolhemos os melhores indivíduos da população, onde nos testes, podemos ajustar esse número.

3 ANÁLISE DE DESEMPENHO

O algoritmo genético gera resultados diversos conforme especificamos seus parâmetros. Assim, para verificar qual o melhor conjunto de parâmetros para conseguirmos o melhor resultado, devemos realizar diferentes testes com diferentes conjuntos de parâmetros e fazer uma análise estatística em cima dos resultados obtidos.

Assim, calibrando os parâmetros de taxa de mutação, taxa de cruzamento, tamanho da população, número de gerações e elitismo, foram feitos testes, principalmente com as entradas maiores, cada um sendo executado 10 vezes, sendo coletado o melhor indivíduo de cada execução, para podermos calcular a média e o desvio padrão dos melhores resultados por conjunto de parâmetros, com o intuito de que quem tiver a maior média está consistentemente produzindo os melhores resultados.

Com isso, temos a tabela a baixo, que mostra ordenadamente os resultados desses testes com as entradas p07 e p08, onde vemos que os dois melhores testes em cada uma delas são os mesmos, com exeção do tamanho da população e número de gerações, que foi ajustado conforme o tamanho da entrada. Assim, podemos notar principalmente que o algoritmo produz melhores rrosultados com mutações altas.

Usando então o melhor conjunto de parâmetros de cada entrada, montamos dois gráficos por entrada, onde observarmos o comportamento do algoritmo ao longo de suas gerações.

Podemos observar claramente a melhora do melhor indivíduo em cada geração, com todas as execuções produzindo bons resultados, mas devido a grandeza das entradas, certa variação nos resultados finais.

Vemos no outro gráfico também como a estratégia de cálculo do fitness penaliza soluções inválidas, onde a pior soluções em todas as gerações é bem ruim, variando bastante, que mostra o efeito da mutação alta, e que nos diz também a importância do elitismo, pois a melhor soluções está com uma curva bem estabilizada.

	Gerações	População	Prob. de Cruzamento	Prob. de Mu	ıtação	N Elite	Media	Desvio
	250	200	0.6	 	0.2	2	1457.6	0.8
ı	250	200	0.8	l	0.2	2	1457.5	1.0247
ı	200	200	0.8	1	0.15	2	1456.7	1.1
ı	200	200	0.8	1	0.1	2	1453.9	3.59026
ı	150	150	1	İ	0.1	1	1452.6	2.61534
ı	150	100	1	İ	0.05	<u>1</u>	1444.7	6.38827

Figura 1: tabela com comparação entre os testes p
07 $\,$

Gerações	População	Prob. de Cruzamento	Prob. de Mutação	N Elite	Media	Desvio
350	300	0.8	0.2	2	1.34364e+07	43199.5
350	300	0.6	0.2	2	1.34262e+07	39312.7
250	200	0.6	0.1	2	1.33479e+07	58371.7
150	200	0.8	0.1	2	1.33382e+07	62966.7
150	200	0.8	0.05	2	1.32504e+07	128681
200	150	0.8	0.01	1	1.31666e+07	78160.7
200	300	1	0.01	1	1.31601e+07	127401
150	200	0.8	0.01	2	1.31456e+07	83799.2
200	150	1	0.01	1	1.31295e+07	99079.8
150	200	0.8	0.01	1	1.31174e+07	46262.9
200	150	1	0.05	1	1.30969e+07	82434.4
200	150	0.6	0.01	1	1.30806e+07	141099

Figura 2: tabela com comparação entre os testes p08

Figura 3: representação gráfica de execuções do melhor p07

Figura 4: representação gráfica do melhor p07

Figura 5: representação gráfica de execuções do melhor p08

Figura 6: representação gráfica do melhor p08

4 CONCLUSÃO

Com a análise de performace com as entradas maiores, conseguimos achar facilmente parâmetros bons que funcionam para as entradas menores, e que provavelmente funcionariam bem para entradas maiores ainda, que se aproximariam de problemas do mundo real.