# Algebra SS16

## Prof Wedhorn, Mitschrift von Daniel Kallendorf

## 18. Februar 2017

## Inhaltsverzeichnis

| 1 | Erinnerung: Ringe und Ideale    |                                                              |     |  |
|---|---------------------------------|--------------------------------------------------------------|-----|--|
|   | 1A                              | Ideale, Primideal, maximale Ideale und Ring-Homomorphismen . | 2   |  |
|   | 1B                              | Operationen mit Idealen                                      | 5   |  |
|   | 1C                              | Radikal und Jakobson-Radikal                                 | 7   |  |
| 2 | Pol                             | ynomringe                                                    | 8   |  |
| 3 | Ten                             | sorprodukte                                                  | 10  |  |
|   | 3A                              | Erinnerung                                                   | 10  |  |
|   | 3B                              | Basiswechsel von Tensorprodukten                             | 14  |  |
| 4 | Lokalisierung                   |                                                              |     |  |
|   | 4A                              | Lokalisierung von Ringen und Moduln                          | 18  |  |
|   | 4B                              | Lokale Ringe und Restklassenkörper                           | 22  |  |
|   | 4C                              | Spektren                                                     | 23  |  |
|   |                                 | 4.24 Spielzeugmodell (der Funktionalanalysis)                | 24  |  |
|   | 4D                              | Lemma von Nakayama                                           | 26  |  |
| 5 | Noethersche und Artinsche Ringe |                                                              |     |  |
|   | 5A                              | Noethersche und Artinsche Moduln                             | 28  |  |
|   | 5B                              | Länge von Moduln                                             | 32  |  |
|   | 5C                              | Noethersche Ringe                                            | 34  |  |
|   | 5D                              | Artin-Ringe                                                  | 35  |  |
| 6 | Ganzheit                        |                                                              |     |  |
|   | 6A                              | Ganze Ring-Homomorphismen                                    | 37  |  |
|   | 6B                              | Ganzer Abschluss                                             | 39  |  |
|   | 6C                              | Going-Up                                                     | 40  |  |
| 7 | Irreduziblität                  |                                                              |     |  |
|   | 7A                              | Satz von Gauß                                                | 42  |  |
|   | 7D                              | Innoduziblitätelmitenien                                     | 4.4 |  |

| 8         | Alge                                      | ebraische Körpererweiterungen            | 45 |  |  |
|-----------|-------------------------------------------|------------------------------------------|----|--|--|
|           | 8A                                        | Körpererweiterungen                      | 45 |  |  |
|           | 8B                                        | Primkörper                               | 46 |  |  |
|           | 8C                                        | Endliche Algebren über Körper            | 46 |  |  |
|           | 8D                                        | Algebraische und transzendente Elemente  | 47 |  |  |
|           |                                           | 8.18 Bestimmung von $\mu_{a,K}$ I        | 48 |  |  |
|           | 8E                                        | Algebraische Erweiterungen               | 49 |  |  |
|           | 8F                                        | Algebraischer Abschluss                  | 49 |  |  |
|           | 8G                                        | Fortsetzung von Körperhomomorphismen     | 50 |  |  |
| 9         | Normale und separable Körpererweiterungen |                                          |    |  |  |
|           | 9A                                        | Zerfällungskörper                        | 52 |  |  |
|           | 9B                                        | Normale Erweiterungen                    | 53 |  |  |
|           | 9C                                        | Separabilitätsgrad                       | 55 |  |  |
|           | 9D                                        | Separable Polynome                       | 57 |  |  |
|           | 9E                                        | Separable Algebren                       | 58 |  |  |
|           | 9F                                        | Satz vom primitiven Element              | 60 |  |  |
| 10        |                                           | ois-Theorie                              | 61 |  |  |
|           | 10A                                       | Galois-Erweiterungen                     | 61 |  |  |
| 11        |                                           | vendung der Galois-Theorie               | 64 |  |  |
|           |                                           | Endliche Körper                          | 64 |  |  |
|           |                                           | Zyklische Erweiterungen                  | 64 |  |  |
|           |                                           | Konstruktion mit Zirkel und Lineal       | 67 |  |  |
|           | 11D                                       | Auflösbare Erweiterungen                 | 68 |  |  |
| <b>12</b> | Endlich erzeugt Algebren über Körper      |                                          |    |  |  |
|           |                                           | Hilbertscher Nullstellensatz             | 69 |  |  |
|           | 12B                                       | Affine Räume                             | 71 |  |  |
|           |                                           | 12.5 Affiner Raum: (nicht naive Version) | 71 |  |  |
|           |                                           | 12.6 Affiner Raum: (naive Version)       | 71 |  |  |
|           |                                           | Polynomiale Identitäten                  | 73 |  |  |
|           | 12D                                       | Universelle Identitäten                  | 74 |  |  |

## 1 Erinnerung: Ringe und Ideale

## 1A Ideale, Primideal, maximale Ideale und Ring-Homomorphismen

**Definition 1.-9.** Man nennt  $(A, +, \cdot)$  einen **Ring**(in dieser VL=kommutativer Ring), wenn

- 1. (A, +) abelsch
- 2. Es gibt ein neutrales Element der Multiplikation  $1 \in A: 1a = a \forall a \in A$
- 3. Die Multiplikation ist  $\cdot$ assoziativ und kommutativ
- 4. Distributivität

Definition 1.-8. Seien A,BRinge. Eine Abbildung  $\varphi:A\to B$ heißt Ringhomomorphismus, falls

- 1.  $\varphi(a+a') = \varphi(a) + \varphi(a')$  für alle  $a, a' \in A$
- 2.  $\varphi(aa') = \varphi(a)\varphi(a')$  für alle  $a, a' \in A$
- 3.  $\varphi(1) = 1$

**Definition 1.-7.** Ein A-Modul mit A-bilinearer, kommutativer und assoziativer Multiplikation und neutralem Element heißt A-Algebra

**Korollar 1.-6.** B ist A-Algebra genau dann wenn  $\varphi: A \to B$  ein Ringhomomporhismus ist.

**Definition 1.-5.** Man nennt  $\mathfrak{a} \subseteq A$  **Ideal**, falls

- 1.  $\mathfrak{a} \subseteq (A, +)$  Untergruppe
- 2.  $a \in A, b \in \mathfrak{a} \Rightarrow ab \in \mathfrak{a}$ .

Sei  $S \subseteq A$ , dann ist

$$AS = SA = (S) := \left\{ \sum_{i=1}^{n} a_i S_i \mid n \in \mathbb{N}_0, a_i \in A, s \in S \right\}$$

das Kleinste Ideal von A das S enthält.

**Korollar 1.-4.** Sei  $\mathfrak{a} \subseteq A$ . Es gilt  $1 \in \mathfrak{a}$  genau dann wenn  $\mathfrak{A}$ .

**Definition 1.-3.** Sei A Ring. A heißt **nullteilerfrei**, falls  $A \neq \{0\}$  und für  $a, b \in A$  mit  $a, b \neq 0$  auch  $ab \neq 0$  gilt.

Beispiel 1.-2. • Körper sind Nullteilerfrei

- $\bullet$   $\mathbb Z$  ist Nullteilerfrei
- Z ist HIR

**Definition 1.-1.** Sei A Ring. A heißt **Hauptidealring**(HIR), falls A nullteilrefrei ist und jeds Ideal  $\mathfrak{a} \subset A$  von einem Element erzeugt wird. (d.h.  $\mathfrak{a} = As = \{as \mid a \in A\}$  für ein  $s \in A$ )

Beispiel 1.0.

Körper sind Hauptidealringe (Ideale in einem Körper K sind nur  $(0)=\{0\}$  und (1)=K)

 $\mathbb{Z}, K[X] \text{ sind HIR}$ 

Z[X] ist nicht HIR (p, X) ist für  $p \in Prim$  nicht von einem Ideal erzeugt.

Erinnerung 1.1. Sei  $\varphi: A \to B$  ein Homomorphismus von Ringen

1.  $\varphi(A) \subset B$  ist Unterring.  $(0,1 \in \varphi(A), \ a,a' \in \varphi(A) \Rightarrow a+a',aa' \in \varphi(A))$   $\operatorname{Ker}(\varphi) = \{a \in A \mid \varphi(A) = 0\} \subseteq A \text{ ist Ideal } A/\operatorname{Ker}(\varphi) \xrightarrow{\sim} \varphi(A), \overline{a} \mapsto \varphi(a) \text{ ist ein Ring Homomorphismus.}$ 

2. Sei  $\mathfrak{b} \in B$  Ideal, dann  $\varphi^{-1}(\mathfrak{b}) = \{y \in A \mid \varphi(a) \in b\} \subseteq A$  Ideal und  $\varphi$  induziert einene injektiven Ring-Homomorphismus:

$$\overline{\varphi}: A/\varphi^{-1}(\mathfrak{b}) \leftrightarrow B/\mathfrak{b}, \quad \overline{a} \mapsto \varphi(a)$$

(wende 1) an auf  $A \to B \to B/\mathfrak{b}$ )

Falls  $\varphi$  surjektiv ist, ist  $\varphi$  ein Ring-Homomorphismus.

3. Sei  $\varphi$ surjektiv. Dann sind die Abbildungen

$$\{\mathfrak{a} \subseteq A \text{ Ideal mit } \operatorname{Ker}(\varphi) \subseteq \mathfrak{a}\} \leftrightarrow \{\mathfrak{b} \in B \text{ Ideal}\}$$
$$\varphi^{-1(a)} \leftrightarrow \mathfrak{b}$$
$$\mathfrak{a} \leftrightarrow \varphi(a)$$

zueinander Inverse Bijketionen.

### **Definition 1.2.** Sei A Ring

- 1. Das Ideal  $\mathfrak{p} \subseteq A$  heißt **Primideal** falls A/g Nullteilerfrei ist. (Äquivalent:  $\mathfrak{p} \subsetneq A$  und für alle  $a, b \notin \mathfrak{p}$  gilt  $ab \notin \mathfrak{p}$ )
- 2. Das Ideal  $m \subseteq A$  heißt **maximales Ideal**, falls A/m ein Körper ist. (Äquivalent: Es gibt kein Ideal  $\mathfrak{a}$ , sodass  $m \subsetneq \mathfrak{m} \subsetneq A$ ).

Jedes Maximale Ideal ist Primideal.

**Satz 1.3.** Sei A Ring,  $\mathfrak{a} \subsetneq A$  Ideal. Dann existiert ein maximales Ideal  $m \subset A$  mit  $\mathfrak{a} \subseteq m$ .

Beweis. Sei  $(I, \leq) = (\{\mathfrak{b} \subsetneq A \text{ Ideal } | \mathfrak{a} \subseteq b\}, \leq)$ Zu zeigen:  $(I, \leq)$  besitzt maximale Elemente:

- $\mathfrak{a} \in I \Rightarrow I \neq \emptyset$  erfüllt.
- Sei  $S \subseteq I$  total geordnet und sei  $\mathfrak{a}_0 = \bigcup_{\mathfrak{b} \in S} \mathfrak{b} \subseteq A$ . Seien  $x, y \in \mathfrak{a}_0$ , also existieren  $\mathfrak{b}, \mathfrak{b}' \in S$ , sodass  $x \in \mathfrak{b}, y \in \mathfrak{b}'$ . Sei O.E.  $\mathfrak{b} \subseteq \mathfrak{b}'$ , dann gilt, da S total geordnet ist, dass  $x + y\mathfrak{b} \leq \mathfrak{a}_0$ . Es gilt  $\mathfrak{a}_0 \neq A$ : Angenommen  $\mathfrak{a}_0 = A$ , dann  $1 \in \mathfrak{a}_0$ , dann gibt es  $b \in S$  mit  $1 \in \mathfrak{b}$ . dann folgt b = A.

Dann folgt mit 1.4, dass es ein maximales Elemente gibt, also maximale Ideal die  $\mathfrak{a}_0$  enthalten.

**Lemma 1.4** (Lemma von Zorn). Sei  $(I, \leq)$  eine partielle geordnete Menge. Für jede total geordnete Teilmenge  $S \subseteq I$  eine obere Schranke  $(d.h. \exists i \in I \text{ mit } s \leq i \forall s \in S)$ .

Dann beseitzt  $(I, \leq)$  maximale Elemente (d.h. Elemente, sodass für Elemente  $i \in I$  gilt, dass  $i_0 \leq i, i \neq i_0$ ).

Beispiel 1.5. Sei A ein Hauptidealring, sei  $\mathfrak{a} \subseteq A$  Ideal mit  $\mathfrak{a} = (a)\mathbf{f} + \mathbf{r}$   $a \in A$ .

1.  $\mathfrak a$  ist genau dann Primideal, wenn a irrduzibel (d.h.  $a \neq 0, a \notin A^{\times}$  und a = bc für  $b, c \in A$ , dann muss  $b \in A^{\times}$  oder  $c \in A^{\times}$ ) oder a = 0.

2. Sei  $\mathfrak{a}$ , dann ist a irreduzibel oder A ist Körper und a=0.

Beispiel 1.6. Sei A ein Ring. Dann ist A genau dann ein Körper, wenn  $\{0\} \subseteq A$  maximal ist.

Bemerkung 1.7. Sei  $\varphi: A \to B$  ein Ring-Homomorphismus

1. Sei  $q \subseteq B$  Primideal, dann ist  $\varphi^{-1}(q) \subset A$  ein Primideal.

Beweis 1. Wir wissen, dass  $\varphi$  einen injektiven Ring-Homomorphismus  $A/\varphi^{-1} \to B/q$  induziert.

Da B/q nullteilerfrei ist, folgt, dass  $A/\varphi^{-1}(q)$  nullteilerfrei ist. Dann folgt, dass  $\varphi^{-1}(q)$  Primideal ist.

Beweis 2. Inhalt Es gilt  $1 \notin \varphi^{-1}(q)$ . Sei nun  $x,y \in A$  mit  $x,y \in \varphi^{-1}(q)$ , also  $\varphi(x), \varphi(y) \notin q$ .

Dann folgt, da q Primideal ist, dass  $\varphi(xy) = \varphi(x)\varphi(y) \notin q$ , also auch  $xy \notin \varphi^{-1}(q)$ .

- 2. Sei  $\varphi$  surjektiv, dann ist  $A/\varphi^{-1}(q) = B/q$ . Also ist
  - (a) q genau dann Primideal, wenn  $\varphi^{-1}(q)$  Primideal ist.
  - (b) q genau dann maximales Ideal, wenn  $\varphi^{-1}(q)$  maximales Ideal ist.
  - (c) Es gibt zueinander Inverse Bijektionen:

$$\begin{cases} \mathfrak{a} \subseteq A \text{ Primideal/maximales Ideal} \\ \text{mit } \operatorname{Ker}(\varphi) = \mathfrak{a} \end{cases} \end{cases} \overset{1:1}{\longleftrightarrow} \begin{cases} \text{Primideal/maximales Ideal} \\ q \subset B \end{cases}$$
 
$$\mathfrak{p} \mapsto \varphi(\mathfrak{p})$$
 
$$q \longleftrightarrow \varphi^{-1}(q)$$

### 1B Operationen mit Idealen

Sei im folgende A ein Ring.

**Definition 1.8.** 1. Seien  $\mathfrak{a}, \mathfrak{b} \subseteq A$  Ideale.

Dann ist die Summe von Idealen

$$\mathfrak{a} + \mathfrak{b} := (\mathfrak{a} \cup \mathfrak{b})\{a + b | a \in \mathfrak{a}, b \in \mathfrak{b}\}\$$

Allgemein für eine Familie von Idealen  $(\mathfrak{a}_i)_{i\in I}$ 

$$\sum_{i \in I} := \left( igcup_{i \in I} \mathfrak{a}_i 
ight)$$

Bzw. das Kleinste Ideal  $\mathfrak{b}$  mit  $\mathfrak{a}_i \subseteq \mathfrak{b}$  für alle  $i \in I$ .

2. Sei  $(\mathfrak{a}_i)_{i\in I}$  eine Familie von Idealen. Dann ist der Schnitt von Idealen

$$\bigcap_{i\in I}\mathfrak{a}_i\subseteq A$$

auch ein Ideal.

3. Sei  $\mathfrak{a}, \mathfrak{b} \subseteq A$  Ideale.

Dann ist das Produkt von Idealen

$$\mathfrak{a} \cdot \mathfrak{b} := \left( \left\{ a \cdot b \mid a \in \mathfrak{a}, b \in \mathfrak{b} \right\} \right) = \left\{ \sum_{i=1}^{n} a_{i} b_{i} \mid n \in \mathbb{N}_{0}, a_{i} \in \mathfrak{a}, b_{i} \in \mathfrak{b} \right\}$$

Es folgt, dass

$$a \cdot b \subseteq a \cap b \subseteq a, b \subseteq a + b$$

Beispiel 1.9. Sei A ein Hauptidealring,  $a,b \in A$  und  $a,b \neq 0$ . Dann ist  $a = up_1^{k_1}p_2^{k_2}...p_r^{k_r}$  und  $b = vp_1^{l_1}p_2^{l_2}...p_r^{l_r}$  für  $u,v \in A^{\times}, p_i \in A$  irreduzibel,  $(p_i) \neq p_l$  für  $i \neq l$  und  $k_i, l_i \in \mathbb{N}_0$ .

- 1.  $(b) + (b) = \left(p_1^{\min(k_1, l_1)}...p_r^{\min(k_r, l_r)}\right)$  (Ähnlich dem ggT)
- 2.  $(a) \cap (b) = p_i^{\max k_1, l_1} ... p_r^{\max(k_r l_r)}$  (Ähnlich dem kgV)
- 3. (b)(b) = (ab) in jedem Ring.

**Theorem 1.10** (Chinesischer Restsatz). Seien  $\mathfrak{a}_1, ... \mathfrak{a}_n \subseteq A$  Ideale, sodass  $\mathfrak{a}_i + \mathfrak{a}_j = A$  für  $i \neq j$ . Dann gilt

1.

$$\bigcap_{i=1}^n \mathfrak{a}_i = \prod_{i=1}^n \mathfrak{a}_i$$

2.

$$A/\bigcap_{i=1}^{n} \mathfrak{a}_{i} \xrightarrow{\sim} \prod_{i=1}^{n} A/\mathfrak{a}_{i}$$
$$\overline{a} \mapsto (a \mod \mathfrak{a}_{1}, ..., a \mod \mathfrak{a}_{n})$$

**Proposition 1.11.** Sei  $\mathfrak{p} \subset A$  Primideal mit  $\bigcap_{i=1}^n \mathfrak{a}_i \subseteq \mathfrak{p}$  für Ideale  $\mathfrak{a}_i, ..., \mathfrak{a}_n \subseteq A$ .

Dann ist  $\mathfrak{a}_j \subseteq p$  für ein j.

Beweis. Angenommen für alle j=1,...,n exitsiert  $x_j \in \mathfrak{a}$ , sodass  $x_j \notin y$ . Dann ist  $x_1x_2...x_n \in \mathfrak{a}_1 \cap ... \cap \mathfrak{a}_n$ .

Da aber  $a_1x_2...x_n \notin \mathfrak{p}$  da  $\mathfrak{p}$  Primideal. Widerspruch!

**Proposition 1.11.** Sei  ${\mathfrak a}$  ein Ideal,  ${\mathfrak p}_1,...,{\mathfrak p}_n$  Primideale.

Es gelte  $\mathfrak{a} \not\subseteq \mathfrak{p}_i$  für alle i.

Dann gilt

$$\mathfrak{a} 
ot \subseteq \bigcup_{i=1}^n \mathfrak{p}_i$$

(= kein Ideal)

Beweis. Induktion nach n:

• n=1 erfüllt.

- Sei n > 0. Induktionsvoraussetzung für n-1: Für alle  $i \in \{1, ..., n\}$  existiere  $x_i \in \mathfrak{a}_i$ , sodass  $x_i \notin \bigcup_{j \neq i} \mathfrak{p}_j$
- Entweder es existiert ein i, sodass  $x_i \mathfrak{p}_i$ , oder für i gilt  $x_i \notin \mathfrak{p}_i$ . Definiere  $y \in \mathfrak{a}$  mit

$$y := \sum_{i=1}^{n} x_1 x_2 ... x_{i-1} x_{i+1} ... x_n$$

dann  $x \notin \mathfrak{p}_i$  für alle i = 1, ..., n.

## 1C Radikal und Jakobson-Radikal

Sei A weiterhin ein Ring

**Definition 1.12.** 1.  $x \in A$  heißt **nilpotent**, falls es ein  $n \in \mathbb{N}$  gibt, sodass  $x^n = 0$ 

2. A heißt **reduziert**, wenn er keine nilpotenten Elemente außer 0 enthält.

Beispiel. 1.  $\overline{2} \in \mathbb{Z}/8\mathbb{Z}$  ist nilpotent.

2. nullteilerfreie Ringe sind reduziert. Aber:  $\mathbb{Z}/6\mathbb{Z} = \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$  ist reduziert aber nicht nullteilerfrei

**Definition 1.13.** Sei  $\mathfrak{a} \subseteq A$  Ideal. Dann heißt das Ideal

$$rad(\mathfrak{a}) := \sqrt{\mathfrak{a}} := \{x \in A | \exists n \in \mathbb{N}_0 : x^n \in \mathfrak{a} \}$$

das Radikal von a.

Bemerkung 1.14. Sei  $\mathfrak{a} \subseteq A$  ein Ideal

- 1.  $\mathfrak{a} \subseteq rad(\mathfrak{a})$
- 2.  $\mathfrak{a} = \operatorname{rad}(\mathfrak{a})$  genau dann wenn  $A/\mathfrak{a}$  reduziert ist

Beweis. Es gilt  $\mathfrak{a} = \operatorname{rad} \mathfrak{a}$ 

genau dann wenn für alle  $a \in A$  gilt  $0^n \in \mathfrak{a}$  für ein  $n \in \mathbb{N}$ . Es folgt  $a \in \mathfrak{a}$ . Genau dann wenn für alle  $a \in A$  gilt  $\overline{a}^n := (a \mod \mathfrak{a})^n = 0$  für ein n. Es folgt  $\overline{a} = 0$ .

Ist also äquivalent dazu, dass  $A/\mathfrak{a}$  reduziert ist.

**Satz 1.15.** Sei  $\mathfrak{a} \subseteq A$  Ideal. Dann gilt

$$\mathrm{rad}(\mathfrak{a}) = \bigcap_{\substack{\mathfrak{g} \subset APrimideal \\ \mathfrak{a} \subseteq \mathfrak{g}}} \mathfrak{g}$$

Beweis. Wir zeigen durch beidseitige Inklusion

 $\subseteq$  Sei  $x\in A$ nil<br/>potent. Dann gibt es ein  $n\in\mathbb{N},$  sodas<br/>s $x^n=0\in g$  für alle Primideale g

Dann liegt auch  $x \in g$  für alle Primideale g.

- $\supseteq$  Sei  $x \in A$  nicht nilpotent
  - 1. Zz: Es gibt ein Primideal  $\mathfrak{g} \subset A$ , sodass  $x \notin \mathfrak{g}$ . ???...

**Definition 1.16.** Nil(A) := rad( $\{0\}$ ) =  $\{x \in A | x \text{ ist nilpotent}\}$  heißt das **Nilradikal** von A.

Mit 1.15 folgt die äquivalente Definition

$$\operatorname{Nil}(A) = \bigcap_{\substack{\mathfrak{g} \subset A \\ \mathfrak{g} \text{ Primideal}}} \mathfrak{g}$$

**Definition 1.17.** Das **Jacobson-Radikal** von A ist definiert als

$$\operatorname{Jac}(A) := \bigcap_{\substack{m \in A \\ m \text{ maximales Ideal}}}$$

Beispiel. 1.  $Jac(\mathbb{Z}) = \{0\} = Nil(\mathbb{Z})$ 

2.  $\operatorname{Jac}(\mathbb{Z}/8\mathbb{Z}) = 2\mathbb{Z}/8\mathbb{Z}$ 

**Proposition 1.18.**  $\operatorname{Jac}(A) = \{x \in A \mid 1 - xy \in A^{\times} \forall y \in A\}$ 

Beweis. Sei  $x \in A$ , sodass  $y \in A$  existiert mit  $1 - xy \notin A^{\times}$  und sei  $m \subset A$  maximal, sodass  $1 - xy \in m$ .

Wäre nun  $x \in Jac(a) \subseteq m$ , dann  $1 = 1 - xy + xy \in m$ . Widerspruch!

Sei also  $x \notin \operatorname{Jac}(a)$ , d.h. es existiert  $m \subset A$  mit  $x \notin m$ .

Dann ist m + (x) = A, d.h. es gibt eine Zerlegung der Eins 1 = z + yx.

Es folgt, dass es ein  $y \in A$  gibt, sodass  $1 - xy \in m$  und damit  $1 - xy \notin A^{\times}$ .  $\square$ 

## 2 Polynomringe

**Definition 2.1.** Sei  $A^{(\mathbb{N}_0)} := \{(a_n)_{n \in \mathbb{N}_0} \mid a_n \in A, \text{ fast alle } a_n = 0\}.$  Addition und Multiplikation:

$$(a_n) + (b_n) := (a_n + b_n)$$
  
 $(a_n) \cdot (b_n) := \sum_{k=0}^n a_k b_{n-k}$ 

Sei nun  $X=(0,1,0,\ldots).$  Dann is nur der n-te Eintrag von  $X^n=1.$  Dann gilt

$$(a_n)_n = \sum_{n=0}^{\infty} a_n X^n$$

Wir erhalten einen Kommutativen Ring und bezeichnen A[X] als den **Polynomring** über A in der Unbestimmten X.

Mit der Abbildung  $A \to A[X], a \mapsto a + 0X + 0X^2 + \dots$ erhält man eine A-Algebra.

**Definition 2.2.** Sei  $f = a_n X^n + ... + a_1 X + a_0 \in A[X]$ 

- 1.  $\deg(f) := \sup\{d \in \mathbb{N} | a_d \neq 0\}$  heißt der **Grad** von f (Es folgt  $\deg(0) = -\infty$ )
- 2. f heißt **normiert**, falls  $f = X^n + a_{n-1}X^{n-1} + ... + a_1X + a_0$ .
- 3.  $a_0$  heißt absoluter Koeffizient von f.

Bemerkung 2.3. Seien  $f, g \in A[X]$ 

- 1.  $deg(f+g) \le max(deg(f), deg(g))$
- 2.  $\deg(fg) \leq \deg(f) + \deg(g)$  (Da Ringe Nullteiler haben können. Gleichheit bei nullteilerfreien Ringen)
- 3. A ist genau dann nullteilerfrei wenn A[X] nullteilerfrei ist.

**Satz 2.4** (Division mit Rest). Sei  $g = a_d X^d + ... + a_0 \in A[X]$  mit  $a_d \in A^{\times}$ . Dann existieren für alle Polynome  $f \in A[X]$  eindeutige  $q, r \in A[X]$ , sodass f = qg + r mit  $\deg(r) < \deg(g) = d$ 

Beweis. 1. Da  $a_d \in A^{\times}$  ist gilt  $\deg(gs) = \deg(g) + \deg(s)$ 

- 2. Eindeutigkeit: Sei f = qg + r = q'g + r' mit  $\deg(r), \deg(r') < d$ . Dann folgt, dass 0 = (q q')g + (r r'). Und da  $\deg(r r') < d$  muss q = q' und r = r'.
- 3. Existenz: Induktion nach deg(f).

IA Sei  $\deg(f) < d$ , dann f = 0g + r und r = f.

IV Für Polynome  $f \in A[X]$  mit  $\deg(f) \leq n$  sind r, q eindeutig bestimmt.

IS Sei  $\deg(f) \geq d \dots$ 

**Definition 2.5.** Definiere rekursiv  $A[X_1, ..., X_N] := (A[X_1, ..., x_{n-1}])[X_n]$ . Also

$$A[X_1, ..., X_n] := \left\{ \sum_{k_1, ..., k_n} a_{k_1, ..., k_n} X_1^{k_1} \cdot ... \cdot X_n^{k_n} | a \in A \right\}$$

Elemente der Form  $X_1^{k_1} \cdot ... \cdot X_n^{k_n}$  heißen **Monome**.

Bemerkung 2.6.  $A[X_1,...,X_n]$  ist ein freier Modul. Die Monome bilden eine Basis.

Satz 2.7 (Universaleigenschaft des Polynomrings). Sei  $\phi: A \to B$  eine A-Algebra und seine  $b_1, ..., b_n \in B$  Elemente. Dann existiert genau ein A-Algebra-Homomorphismus  $\psi: A[X_1, ..., X_n] \to B$ , so dass  $\psi(x_i) = b_i$  für alle i = 1, ..., n, nämlich

$$\psi \underbrace{\left(\sum_{i_1, \dots, i_n \ge 0} a_{i_1, \dots, i_n} X_1^{i_1} \cdot \dots \cdot X_n^{i_1}\right)}_{=:f} = \underbrace{\sum_{i_1, \dots, i_n \ge 0} \phi(a_{i_1, \dots, i_n}) b_1^{i_1} \cdot \dots \cdot b_n^{i_n}}_{=f(b_1, \dots, b_n)}$$

Bemerkung 2.8.

$$\operatorname{Im}(\psi)=$$
kleinste A-Unteralgebra die  $b_1,...,b_n$  enthält
$$=A[b_1,...,b_n]\subset B$$

Beispiel 2.9. Sei  $\phi:A\to B$  eien A-Algebra,  $b\in B$ . Es existiere ein  $g\in A[X]$  mit g(b)=0. Sei g nomriert. Dann gilt

$$A[b] = \{f(b)| f \in A[x], \deg(f) < \deg(g)\}$$

Beispiel 2.10. Sei  $A = \mathbb{Q} \hookrightarrow \mathbb{C}, i \in \mathbb{C}$ .

Dann gilt g(i) = 0 wobei  $g = X^3 + X = X(X^2 + 1)$ . Es folgt:

$$\mathbb{Q}[i] = \{a_0 + q_1 i + a_2 i^2 | a_0, a_1, a_2 \in \mathbb{Q}\}\$$

$$\mathbb{Q}[i] = \operatorname{Im}(\mathbb{Q}[X] \xrightarrow{\psi} \mathbb{C})$$

Dann  $\tilde{g} \in \mathbb{Q}[X] : \psi(\tilde{g}) = 0 \Leftrightarrow \tilde{g}(i) = 0.$ 

Also  $g \in \text{Ker}(\psi) \Rightarrow (g) \subseteq \text{Ker}(\psi)$ .

In diesem Fall Ker  $\psi = (X^2 + 1)$ .

Begründung von 2.8:

$$(g) \subseteq \operatorname{Ker}\left(A[X] \xrightarrow{\psi} B\right)$$

Also  $\psi$  faktorisiert:

$$A[X]/(g) \xrightarrow{\overline{\psi}} A[b] \subseteq B$$

mit  $\overline{\psi}$  surjektiv.

**Proposition 2.11.** Sei  $g \in A[X]$  normiert. Dann ist

$$\{f \in A[X], \deg(f) < \deg(g)\} \hookrightarrow A[X] \to A[X]/(g)$$

bijektiv.

Beweis. Gilt, da für alle  $f \in A[X]$  genau ein  $r \in A[X]$  exitiert mit  $\deg(r) < \deg(g)$  mit  $f \in r + (g)$ 

## 3 Tensorprodukte

- (A) Tensorprodukte von Moduln
- (B) Tensorprodukte von Algebren und Basiswechsel
- (C) Exaktheitseigenschaften des Tensorprodukts

### 3A Erinnerung

**Definition 3.1.** Ein A-Modul ist ein Tripel  $(M, +, \cdot)$  wobei (M, +) abelsche Gruppe und  $\cdot : A \times X \to M$  eine Skalare Multiplikation ist.

Bemerkung. Ein  $\mathbb{Z}$ -Modul entspricht einer ableschen Gruppe. Beispiel. Sei I eine Menge

$$A^{(I)} = \{(a_i)_{i \in I} | a_i \in A, a_i = 0 \text{ für fast alle } i \in I\}$$

A-Modul mit Addition und Skalarprodukt.

Für  $i \in I : e_i \in A^{(I)}$  mit

$$e_i = \begin{cases} 1 \text{ an der i-ten Stelle} \\ 0 \text{ sonst} \end{cases}$$

**Definition 3.2.** Ein A-Modul heißt frei, falls  $M \cong A^{(I)}$  für eine Menge I

**Definition 3.3.** Sei M, N A-Modul. Dann heißt  $u: M \to N$  A-linear oder **Homomorphismus von** A-Moduln, falls

$$u(am + m') = au(m) + u(m') \forall a \in A, m, m' \in M$$

Bemerkung. Sei I eine Menge, M ein A-Modul  $\underline{m} = (m_i)_{i \in I}$  ein Tupel von Elementen  $m_i \in M$ . Dann Existiert genau eine Abbildung:

$$A^{(I)} \xrightarrow{u_{\underline{m}}} M$$

 $mit \ u_m(e_i) = m_i.$ 

 $(m_i)_i = \underline{m}$  heißt linear Unabhängig/ Erzeugende-System/ Basis, falls  $u_m$  injektiv/ surjektiv / bijektiv ist.

Bemerkung. Der A-Modul M ist endlich erzeugt, genau dann wenn ein  $n \in \mathbb{N}$ und eine A-lineare Surjektion  $A^n \to M$  existieren.

**Definition 3.4.** Sei  $r \in \mathbb{N}_0, M_1, ..., M_r, P$  A-Moduln.

Eine Abbildung  $\alpha: M_1 \times ... \times M_r \to P$  heißt r-multilinear, falls sie in jeder Komponente linear ist, d.h. Für alle i = 1, ..., r gilt:

$$\alpha(m_1,...,am_i+m_i',m_{i+1},...,m_r)=a\alpha(m_1,...,m_i,...,m_r)+\alpha(m_1,...,m_i',...,m_r)$$

Für alle  $m_i \in M_i, m_i \in M_i, a \in A$ .

(Insbesondere heißen r = 1: linear, r = 2: bilinear)

Wir definieren

$$L_a(M_1,...,M_r,P) := \{\alpha : M_1 \times ... \times M_r \to P \mid \alpha \text{ ist } r\text{-multlinear}\}$$

**Satz 3.3.** Sei  $r \ge 2$ ,  $M_1, ..., M_r$  A-Moduln.

Dann existiert ein A-Modul  $M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$  und eine r-multilineare Abbildung  $\tau: M_1 \times ... \times M_r \to M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$ , sodass für jede r-multilineaer Abbildung:

$$\alpha M_1 \times ... \times M_r \to P$$

wobei P ein A-Modul, genau ein A-lineare Abbildung

$$\overline{\alpha}: M_1 \otimes_A ... \otimes_A M_r \to P$$

existiert.

$$M_1 \times ... \times M_r \xrightarrow{\forall \alpha: r\text{-multilinear}} P$$

$$\downarrow^{\tau}$$

$$M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$$

**Definition 3.3.** Der A-Modul  $M_1 \otimes_A M_2 \otimes_A ... \otimes_A M_r$  heißt das **Tensorprodukt** von  $M_1, ..., M_r$ .

Beweis. • Eindeutigkeit des Tensorprodukts

Seien  $(T, \tau : M_1 \times ... \times M_r \to T)$  und  $(T', \tau')$  Tensorprodukte:



u existiert aufgrund der universellen Eigenschaft von  $(T,\tau)$ . v existiert aufgrund der universellen Eigenschaft von  $(T',\tau')$ .

Die Universelle Eigschaft von  $(T,\tau)$  zeigt, dass  $v\circ u=\mathrm{id}_T$ , genauso  $u\circ v=\mathrm{id}_T$ .

- Existenz des Tensorprodukts
  - 1. Suche einen A-Modul N und eine Abbildung  $c: M_1 \times ... \times M_r \to R$ , sodass

$$\operatorname{Hom}_A(N,P) \xrightarrow[u \mapsto u \circ \tau]{} \operatorname{Abb}(M_1 \times ... \times M_r, P)$$

Für alle A-Moduln P. Wähle also  $N := A^{(M_1 \times ... \times M_r)}$  und  $l: M_1 \times ... \times M_r \to N, i \mapsto e_i$ .

2. Wir wollen, dass  $(am_1+m'_1, m_2, ..., m_r)$  und  $a(m_1, ..., m_r)+(m'_1, ..., m_r)$  auf das gleiche Element abgebildet werden. Sei  $Q \subseteq N$  der von

$$e_{(m_1,\ldots,m_{i-1},am_i+m'_i,m_{i+1},\ldots,m_r)} - \left(ae_{(m_1,\ldots,m_i,\ldots,m_r)} + e_{(m_1,\ldots,m'_i,\ldots,m_r)}\right)$$

für alle i=1,...,r und  $m_i,m_i'\in M_i$  und  $a\in A$  erzeugt Untermodul. Dann setze T:=N/Q. Dann gilt

$$\operatorname{Hom}_{A}(T, P) = \{ u \in \operatorname{Hom}(N, P) | u(Q) = 0 \}$$
  
=  $L_{A}(M_{1}, ..., M_{r}, P)$ 

mit 
$$\tau: M_1 \times ... \times M_r \to N \to N/Q$$
.

Bemerkung 3.4.  $e_{(m_1,...,m_r)} \in A^{(M_1 \times ... \times M_r)}$  bilden ein Erzeugndensystem. Also bilden auch die  $\tau(m_1,...,m_r) =: m_1 \otimes ... \otimes m_r$  eine Erzeugenden-System des A-Moduls  $M_1 \otimes ... \otimes M_r$ .

**Aber:** Nicht jedes Element von  $M_1 \otimes ... \otimes M_r$  ist in dieser Form.

Also genügt es eine lineare Abbildung  $u:M_1\otimes ...\otimes M_r\to P$  auf den erzeugenden  $m_1\otimes ...\otimes m_r$  mit  $(m_i\in M_i)$  anzugeben.

Umgekehrt sei P ein A-Modul und es seien Elemente  $u(m_1 \otimes ... \otimes m_r) \in P$  gegeben für alle  $m_i \in M_i$ .

Genau dann existiert eine A-lineare Abbildung  $u:M_1\otimes ...\otimes M_r\to P$  mit

 $m_1 \otimes ... \otimes m_r \mapsto u(m_1 \otimes ... \otimes m_r)$ , wenn für alle  $i = 1, ..., r, a \in A, m_j \in M_j$  und  $m_i' \in M_i$  gilt:

$$u(m_1 \otimes ... \otimes am_i + m_i' \otimes ... \otimes m_r) = au(m_1 \otimes ... \otimes m_i \otimes ... \otimes m_r) + u(m_1 \otimes ... \otimes am_i' \otimes ... \otimes m_r)$$

**Satz 3.5** (Tensorprodukt linearer Abbildungen). Seien M, M', N, n' A-Moduln,  $u: M \to M', v: N \to N'$  A-lineare Abbildungen. Dann definiert

$$M \otimes_A N \to M' \otimes AN'$$
  
 $m \otimes n \mapsto u(m) \otimes u(n)$ 

eine A-lineare Abbildung bezüglich  $u \otimes v : M \otimes N \to M' \otimes N$ .

Beweis. Zu zeigen:  $u(am + m') \otimes v(n) = a(u(m) \otimes v(n)) + u(m') \otimes v(n)$ Es gilt da das Tensorprodukt r-linear ist.

$$u(am + m') \otimes v(n) = (au(m) + u(n)) \otimes v(n)$$
$$= (au(m) \otimes v(n)) + u(m') \otimes v(n)$$

Außerdem zu zeigen: 
$$u(m) \otimes v(an+n') = a(u(m) \otimes v(n)) + u(m) \otimes v(n)$$
 ( $\rightarrow$  Genauso.)

Bemerkung 3.6. 1.  $A \otimes_A M = M$ 

2.  $M \otimes_A N \xrightarrow{\sim} N \otimes_A M, m \otimes n \mapsto n \otimes m$  ist ... von A-Moduln.

3.

$$M \otimes_A N \otimes_A P \xrightarrow{\sim} (M \otimes_A N) \otimes_A P \qquad \xrightarrow{\sim} M \otimes_A (N \otimes_A P)$$
$$m \otimes n \otimes p \mapsto (m \otimes n) \otimes p \qquad (m \otimes (n \otimes P))$$

Beweis. 1. Sei  $u: a \otimes m \mapsto am, v: 1 \otimes m \leftarrow m$ 

- Z.z. u wohldefiniert, d.h.  $(a,m) \to am$  ist bilinear: Dann (ba+a') = bam + a'm für alle  $a,a',b \in A$  und  $m \in M$ . Analog gilt Linearität in m. Daraus folgt, dass u A-linear ist.
- Z.z. v ist wohldefiniert: analog zu u.
- Z.z.:  $v \circ u = \mathrm{id}_{A \otimes_A M}$ :

$$(v \circ u)(a \times m) = v(am) = 1 \otimes am = a(1 \otimes m) = a \otimes m$$

- Z.z.:  $u \circ v = \mathrm{id}_M$ :
- 2. Es gilt zu zeigen
  - Z.z. Wohldefiniertheit, also  $(m, n) \mapsto n \otimes m$  ist bilinear
  - Existenz der Umkehrabbildung  $n \otimes m \mapsto m \otimes n$

**Proposition 3.7.** 3.7 Sei  $(M_i)_{i \in I}$  eine Familie von A-Moduln, N ein A-Modul:

$$\left(\bigotimes_{i\in I} M_i\right) \otimes_A N \xrightarrow{\sim} \bigotimes_{i\in I} (M_1 \otimes_A N)$$
$$(m_i)_{i\in I} \otimes n \mapsto (m_i \otimes n)_{i\in I}$$

Beweis. Umkehrabbildung gegeben durch:

$$Inhalt..m_i \otimes n \mapsto (m_i)_{i \in I} \otimes n$$

$$\text{mit } m_j := \begin{cases} m_i, & j = i \\ 0 & j \neq i \end{cases}$$

## 3B Basiswechsel von Tensorprodukten

Satz 3.8. 1. Sei M ein A-Modul. Dann wird

$$\varphi^*(M) := B \otimes_A M$$

zu einerm B-Modul mit dem Skalarprodukt

$$B \times (B \otimes_A M) \to B \otimes_A M$$
$$(b, b' \otimes m) \mapsto bb' \otimes m$$

2. Sei  $U: M \to M'$  ein Homomorphismus von A-Moduln. Dann ist

$$id_B \otimes u : B \otimes M \to B \otimes_A M'$$
  
 $b \otimes m \mapsto b \otimes u(m)$ 

eine B-lineare Abbildung.S

**Proposition 3.9.** Sei  $\varphi:A\to B$  eine A-Algebra. Sei M ein freier A-Modul. Dann ist  $B\otimes_A M$  ein freier B-Modul und

$$\vartheta_A(M) = \vartheta_B(B \otimes_A M)$$

Beweis. Sei Mein freier A-Modul. Dazu ist äquivalent, dass  $M \simeq A^{(I)}.$  Daraus folgt, dass

$$B \otimes_A M \simeq B \otimes_A A^{(I)}$$

$$\simeq B \otimes_A \left( \bigoplus_{i \in I} A \right)$$

$$\simeq \left( \bigoplus_{i \in I} B \otimes_A A \right)$$

$$\simeq \bigoplus_{i \in I} B$$

$$- B^{(I)}$$

Also ist  $B \otimes_A M$  frei.

**Proposition 3.10.** Sei  $\mathfrak{a} \subseteq A$  ein Ideal, M ein A-Modul. Setze

$$\begin{split} \mathfrak{a} \cdot M &= \langle \{am | a \in \mathfrak{a}, m \in M \} \\ &= \left\{ \sum_{i=1}^{m} a_i m_i \mid n \in \mathbb{N}_0, a_i \in \mathfrak{a}, m_i \in M \right\} \\ &\subseteq M \quad \text{Untermodul} \end{split}$$

Dann ist

$$A/\mathfrak{a} \otimes_A M \xrightarrow{\sim} M/\mathfrak{a}M$$
$$\overline{a} \otimes m \mapsto \overline{a}\overline{m}$$

ein Homomorphismus von  $A/\mathfrak{a}$ -Moduln.

Beweis.  $\overline{a} \oplus m \mapsto \overline{am}$  ist wohldefiniert: Zu zeigen:

- 1. Sei  $a' \in A$  mit  $\overline{a'} = \overline{a} \in A/\mathfrak{a}$ . Dann ist  $\overline{am} = \overline{a'm} \in M/\mathfrak{a}M$ . Es gilt  $\overline{a}' = \overline{a}$  gena dann wenn es ein  $xi\mathfrak{a}$  gibt sodass a' = a + x.
  - Daruas folgt, dass a'm = am + xm, und da  $xm \in \mathfrak{a}M$  folgt  $\overline{a'm} = \overline{am}$ .
- 2.  $\overline{am}$  is linear in a, d.h.

$$\overline{(ba+a')m} = b\overline{am} + a'\overline{m} \quad \text{für } a, a' \in A, \ b \in A$$

3.  $\overline{am}$  ist linear in m, d.h.

$$\overline{a(bm+m')} = b\overline{am} + \overline{am'} \quad \text{für } m,m' \in M, \ b \in A$$

Proposition 3.11. Eine Umkehrabbildung ist gegeben durch

$$v: M \to A/\mathfrak{a} \otimes_A M$$
$$m \mapsto 1 \otimes m$$

Beweis. Zu zeigen:  $\mathfrak{a}M \subseteq Ker(v)$ , also für alle  $x \in \mathfrak{a}, m \in M$  gilt v(xm) = 0.

$$v(xm) = 1 \otimes xm = \overline{x} \otimes m = 0$$

da  $\overline{x} = \overline{0} \in A/\mathfrak{a}$ .

Noch zu zeigen:: v ist Umkehrabbildung zu  $\overline{a} \otimes m \mapsto \overline{am}$ .

**Definition 3.11** (Tensorprodukte von Algebren). Sei  $A \to B_1$ ,  $A \to B_2$  Algebren

Dann definieren wir auf dem A-Modul  $B_1 \otimes_A B_2$  eine Multiplikation:

$$(B_1 \otimes B_2) \times (B_1 \otimes B_2) \to B_1 \otimes B_1 \otimes B_2$$
$$(a_1 \otimes b_2, b_1' \otimes b_2') \mapsto b_1 b_1' \otimes b_2 b_2'$$

und erhalten die A-Algebra  $B_1 \otimes_A B_2$ .

Beispiel 3.12. Sei  $\varphi: A \to B$  eine A-Algebra und sei  $C = A[X_1, ..., X_n]/(f_1, ..., f_r)$  und  $f_i \in A[X-1, ..., X_n]$ . Dann ist

$$B \otimes_A A[X-1,...,X_n]/(f_1,...,f_r) = B[X_1,...,X_n]/(\tilde{f}_1,...,\tilde{d}_r)$$

wobei

$$f_i = \sum_{j \in \mathbb{N}_0^n} a_{\underline{j}} X^{\underline{j}} \to \tilde{f}_i = \sum_j \varphi(a_j)$$

Beispiel 3.13. 1. Sei  $A = \mathbb{Q}$ ,  $C = \mathbb{Q}[i] = \{a + b_i | a, b \in \mathbb{Q}\} = \mathbb{Q}[X]/(X^2 + 1)$ 

2. 
$$\mathbb{R} \otimes_Q Q[i] = \mathbb{R}[X]/(X^2+1) = \mathbb{C}$$

3.  $C \otimes_Q Q[i] = C[X]/(X^2+1) = \mathbb{C}[X]/(X+i) \times \mathbb{C}[X]/(X-i) \simeq \mathbb{C} \times \mathbb{C}$ Beispiel 3.14.  $A[X] \otimes_A A[Y] = (A[X])[Y] = A[X,Y]$  mit  $f \otimes g \mapsto fg$ . Dann ist die Umkehrabbildung

$$\sum a_{ij} X^i Y^j \mapsto \sum_{i,j} (a_{ij} X^i \otimes Y^j)$$

## C) Exaktheitseigenschaften

**Definition 3.11** (Homomorphismen-Funktor). Seien M,P A-Moduln. Wir Definiere auf  $\operatorname{Hom}_A(M,P):=\{u:M\to P\text{A-linear}\}$  die Struktur eines A-Moduls.

$$(u+v)(m) := u(m) + v(m) \qquad u, v \in \operatorname{Hom}_{A}(M, P)$$
$$(au)(m) := au(m) \qquad a \in A, m \in M$$

Sei  $u:M\to M'$  eine A-lineare Abbildung. Wir erhalten die A-lineare Abbildung

$$\operatorname{Hom}_A(u,P): \operatorname{Hom}_A(M',P) \to \operatorname{Hom}_A(M,P)$$
  
 $w' \mapsto w' \cdot u$ 

Sei  $v:P\to P'$  eine A-lineare Abbildung. Wir erhalten die A-lineare Abbildung

$$\operatorname{Hom}_A(M,v): \operatorname{Hom}_A(M,P) \to \operatorname{Hom}_A(M,P')$$
  
 $w' \mapsto v \cdot w$ 

Erinnerung 3.12. Eine Sequnez von A-lineare Abbildungen

$$\dots \to M_{i-1} \xrightarrow{u_{i-1}} M_i \xrightarrow{u_{u_i}} M_{i+1} \to \dots$$

heißt exakt, falls  $Ker(u_i) = Im(u_{i-1})$ 

Beispiel.  $0 \to M* \xrightarrow{u} M$  ist exakt genau dann wenn u injektiv ist.  $M \xrightarrow{v} M'' \to 0$  ist exakt genau dann wenn v surjektiv ist

Satz 3.12. 1. Sei  $0 \to M' \xrightarrow{u} M \xrightarrow{v} M''(*)$  eine Sequenz von A-Moduln.

Dann ist (\*) genau dann exakt, wenn für jeden A-Modul P die Sequenz

$$\operatorname{Hom}_A(P,(*)): 0 \to \operatorname{Hom}_A(P,M') \to \operatorname{Hom}_A(P,M) \longrightarrow \operatorname{Hom}_A(P,M'')$$
  
 $w' \mapsto u \circ w' \qquad w \mapsto v \circ w$ 

exakt ist.

2. Sei  $M' \to M \to M'' \to 0(**)$  eine Sequenz von A-Moduln. Dann ist (\*\*) genau dann exakt, wenn für jeden A-Modul P die Sequenz

$$0 \to \operatorname{Hom}_{A}(M'', P) \to \operatorname{Hom}_{A}(M, P) \qquad \to \operatorname{Hom}_{A}(M', P)$$
$$w'' \mapsto w'' \otimes v \qquad w \mapsto w \otimes u$$

Beweis. Wir beweisen Schrittweise:

- 1. "(\*) ist exakt  $\Rightarrow \operatorname{Hom}_A(P,(*))$  ist exakt "
  - (a)  $w' \mapsto u \circ w'$  injektiv: Sei  $w \in \operatorname{Hom}_A(P, M')$  mit  $u \circ w' = 0$ . Dann ist (da u injektiv) w' = 0. Also ist  $\operatorname{Ker}(w' \mapsto u \circ w') = 0$ .
  - (b)  $\operatorname{Im}(w' \mapsto u \circ w') \subseteq \operatorname{Ker}(w \mapsto v \circ w)$ : Komposition:  $w' \mapsto u \circ w' \mapsto \underbrace{(v \circ u)}_{=0} \circ w'$  ist Null.
  - (c)  $\operatorname{Im}(w \mapsto v \circ w) \subseteq \operatorname{Ker}(w' \mapsto u \circ w')$ : Sei  $w \in \operatorname{Hom}_A(P, M)$  mit  $v \circ w = 0$ , sodass  $\operatorname{Im}(w) \subseteq \operatorname{Ker}(v) = \operatorname{Im}(u)$ .



"⇔"

- (a) u injektiv: Sie  $m' \in M$  mit u(m') = 0,  $P := < m' >= Am' \subseteq M'$ ,  $w' : P \to M'$  Inklusion. Dann folgt aus  $u \circ w' = 0$ , da  $w' \mapsto u \circ w'$  injektiv ist, dass w' = 0 und damit P = 0 sodass m' = 0.
- (b)  $\operatorname{Im}(u) \subseteq \operatorname{Ker}(v)$ . Z.z.  $v \circ u = 0$ . Wir wissen bereits, dass für alls A-Moduln P die Abbildung  $\operatorname{Hom}_A(P, M') \to \operatorname{Hom}_A(P, M''), w' \mapsto v \circ u \circ w$  die Nullabbildung ist. Wähle P = M' und  $w' = \operatorname{id}_{M'}$ , dann ist  $v \circ u = 0$ .

- (c)  $\operatorname{Ker}(v) \subseteq \operatorname{Im}(u)$ :  $\operatorname{Sei} m \in \operatorname{Ker}(v), P : Am \subseteq M \text{ und sei } w : P \to M \text{ eine Inklusion.}$   $\operatorname{Dann} \text{ ist } v \circ u = 0, \text{ d.h. } w \in \operatorname{Ker}(w \mapsto v \circ w) = \operatorname{Im}(w' \mapsto u \circ w').$   $\operatorname{Also \ exitsiert \ } w' : P \to M' \text{ mit } u \circ w' = w.$  $\operatorname{Da\ } u(w'(m)) = w(m) = m \text{ gilt } m \in \operatorname{Im}(u).$
- 2. Übung

Bemerkung 3.13. Seiene M, N, P A-Moduln. Dann ist

$$\operatorname{Hom}_{A}(M \otimes_{A} N, P) = L_{A}(M, N; P)$$

$$= \operatorname{Hom}_{A}(M, \operatorname{Hom}_{A}(N, P))$$

$$(\alpha : M \times N \to P) \mapsto (n \mapsto \alpha(m, n))$$

$$(*)$$

Sei 
$$T_N: (A\text{-Modul}) \to (A\text{-Modul})$$

$$M \mapsto M \otimes_A N$$

$$(u: M \to M') \mapsto u \otimes id_N$$

$$N_N: (A\text{-Modul}) \to (A\text{-Modul})$$

$$P \mapsto \operatorname{Hom}_A(N, P)$$

Dann besagt (\*):

$$\operatorname{Hom}(T_M(M), P) = \operatorname{Hom}(M, H_N(P))$$

d.h.  $T_N$  ist linksadjungiert zu  $H_N$ .

Dann ist  $T_N$  rechtsexakt und  $H_N$  ist linksexakt.

**Proposition 3.14.** Sei  $M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$  eine exakte Sequenz von A-Moduln. Dann ist für jeden A-Modul N die Sequenz

$$M' \otimes N \xrightarrow{u \otimes id_N} M \otimes_A N \xrightarrow{u \otimes id_N} M'' \otimes_A N \to 0$$

exakt.

Beweis. Formal mit ??.

Sei  $M' \to M \to M'' \to 0$  exakt.

Dann gilt mit 3.13, dass für alle A-Mdouln P:

$$0 \to \operatorname{Hom}_A(M'', H_N(P)) \to \operatorname{Hom}_A(M, H_N(P)) \to \operatorname{Hom}_A(M', H_N(P))$$

Ist jeweils gleich (??)

$$0 \to \operatorname{Hom}_A(T_N(M''), P) \to \operatorname{Hom}_A(T_N(M), P) \to \operatorname{Hom}_A(T_N(M'), P)$$

exakt, sodass mit??

$$T_N(M') \to \underbrace{T_N(M)}_{=M \otimes_A N} \to T_N(M'') \to 0$$

exakt ist. 

 $\begin{array}{l} \textit{Beispiel 3.15. Sei } A = \mathbb{Z}, \, u : \mathbb{Z} \xrightarrow{x \mapsto 2x} \mathbb{Z}. \\ \text{Dann ist } 0 \to \mathbb{Z} \xrightarrow{u} \mathbb{Z} \text{ exakte und } A \otimes_A M = M. \end{array}$ 

Aber

$$0 \to \mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z} \xrightarrow{u \otimes id_{\mathbb{Z}/2\mathbb{Z}}} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$$
$$\mathbb{Z}/2\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z}/2\mathbb{Z}$$

ist nicht injektiv.

#### Lokalisierung 4

## Lokalisierung von Ringen und Moduln

**Definition 4.1.** Eine Teilmenge  $S \subseteq A$  heißt multiplikativ, falls  $1 \in S$  uns  $s, t \in S \Rightarrow st \in A$ .

Beispiel 4.2. 1.  $S = \mathbb{Z} \setminus \{0\} \subseteq A = \mathbb{Z}$ 

- 2. Sei  $f \in A$ , dann ist  $S_f = \{1, f, f^2, ..., \}$  eine multiplikative Teilmenge.
- 3. Sei  $y \subset A$  Primideal. Dann ist  $A \setminus y \subset A$  eine multiplikative Teilmenge.

**Definition 4.3.** Sei A ein Ring,  $S \subseteq A$  eine multiplikative Teilmenge. Definiere auf  $A \times S$  eine Äquivalenzrelation durch

$$(a,s) \sim (b,t) :\Leftrightarrow at = bs$$

Definiere  $S^{-1}A:=(A\times S)/\sim$ . Die Äquivalenzklasse von (a,s) wird mit  $\frac{a}{s}$  bezeichnet.

Beweis. Dies ist eine Äquivalenzrelation:

- Refelxivität
- Symmetrie
- Transitiv: Sei  $(a, s) \sim (b, t)$  und  $(b, t) \sim (c, u)$

Also  $\frac{a}{s} = \frac{b}{t}$  genau dann esnn es  $v \in S$  gibt sodass vat = vbs.

Bemerkung.  $S^{-1}A$  ist Ring mit

$$\frac{a}{s} + \frac{b}{t} := \frac{at + bs}{st} \qquad \qquad \frac{a}{s} \cdot \frac{b}{t} \qquad \qquad := \frac{ab}{st}$$

Dies ist Wohldefiniert und macht  $A^{-1}A$  zu einem kommutativen Ring mit Eins= $\frac{1}{1}$  und Null= $\frac{0}{1}$ .

Die Abbildung  $\iota:A\to S^{-1}A, a\mapsto \frac{a}{1}$  ist ein Ringhomomorphismus und heißt kanonisch.

Beispiel. Sei  $S = \mathbb{Z} \setminus \{\} \subseteq A = \mathbb{Z}$ . Dann ist  $S^{-1}A = \mathbb{Q}$ .

**Satz 4.4** (Universelle Eigenschaft). Sei  $S\subseteq A$  eine multiplikative Teilmenge und sei  $1:A\to S^{-1}$  kanonisch. Sei B ein Ring,  $\varphi:A\to B$  ein Ring-Homomorphismus mit  $\varphi(s)\in B^\times=\{b\in B\mid \exists c\in B:bc=1\}$  für alle  $s\in S$ . Dann existiert ein eindeutiger Ring-Homomorphismus  $\tilde{\varphi}S^{-1A\to B}$  mit  $\tilde{\varphi}\circ 1=\varphi:$ 

$$A^{\forall \varphi: \varphi(s) \subseteq B} \stackrel{\times}{\longrightarrow} B$$

$$\downarrow^{1} \stackrel{\exists! \tilde{\varphi}}{\longrightarrow} A$$

Beweis. Eindeutigkeit Für  $\frac{a}{s} - inS^{-1}A$  muss für  $\tilde{\varphi}$  gilt:

$$\tilde{\varphi}\left(\frac{a}{a}\right) = \tilde{\varphi}\left(\frac{a}{1}\left(\frac{s}{1}\right)^{-1}\right) = \tilde{\varphi}\left(\frac{a}{1}\right)\tilde{\varphi}\left(\frac{s}{1}\right)^{-1}$$

$$= \varphi(a)\varphi(s)^{-1}$$
(\*)

Eindeutigkeit Definiere  $\tilde{\varphi}$  durch (\*) Z.z.  $\tilde{\varphi}$  ist wohldefiniert.

Bemerkung 4.5. Sei  $S \subseteq A$  eine multilineare Teilmenge.

Dann gilt:  $1: A \to S^{-1}A$  ist injektive  $\Leftrightarrow$  S enthält keien Nullteiler.

Beweis.

1 ist injektiv

$$\Leftrightarrow \operatorname{Ker}(1) = 0$$

$$\Leftrightarrow (\forall a \in A: \frac{a}{1} = 1 \Rightarrow a = 0) \Leftrightarrow \quad (\forall a \in A: \exists s \in S: as = 0 \Rightarrow a = 0) \Leftrightarrow S \text{ enthält eine Nullteiler}$$

**Satz 4.6** (Lokalisierung von Moduln). Sei  $S \subseteq A$  ein multiplikative Teilmenge, M ein A-Modul. Definiere auf  $M \times S$  eine Äquivalenz Relation:

$$(m,s) \sim (n,t) \Leftrightarrow \exists v \in S : vtm = vsm$$

Man erhält den  $S^{-1}A$ -Modul  $S^{-1}M = (M \times S)/\sim$ :

- Mit Addition:  $\frac{m}{s} + \frac{n}{t} := \frac{tm + sn}{st}$
- Mit Skalarmultiplikation:  $\frac{a}{s} \cdot \frac{m}{t} := \frac{am}{st}$

**Satz 4.7** (Lokalisierung als Funktor). Sei  $u: M \to N$  eine A-lineare Abbildung,  $S \subseteq A$  ein multiplikative Teilgruppe. Dann ist

$$S^{-1}u:S^{-1}M\to S^{-1}N$$
 
$$\frac{m}{s}\mapsto \frac{u(m)}{s}$$

eine  $S^{-1}A$  lineare Abbildung.

**Satz 4.8** (Lokalisierung ist exakt). Sei  $M' \xrightarrow{u} M \xrightarrow{v} M''$  eine exakte Sequenz von A-Moduln,  $S \subseteq eine$  multilineare Teilmenge. Dann ist

$$S^{-1}M' \xrightarrow{S^{-1}u} S^{-1}M \xrightarrow{S^{-1}v} S^{-1}M''$$

eine exakte Segunez von  $S^{-1}A$  Moduln.

Beweis.  $v \circ u = 0$ . Also ist  $S^{-1}v \circ S^{-1}u = 0$ .

Noch zu zeigen:  $\operatorname{Ker}(S^{-1}v) \subseteq \operatorname{Im}(S^{-1}u)$ . Sei  $\frac{m}{s} \in S^{-1}M$  mit  $S^{-1}v\frac{v}{s} = \frac{v(m)}{s} = 0$ . Also gibt es  $t \in S : tv(m) = v(tm) = 0$ .

Damit liegt  $tm \in \text{Ker}(v) = \Im(u)$ .

Also existiert  $m \in M$ : u(m' = tm). Dann ist  $S^{-1}u\left(\frac{m'}{st}\right) = \frac{u(m')}{st} = \frac{m}{s}$  und damit  $\frac{m}{s} \in \operatorname{Im}(S^{-1}u)$ 

**Proposition 4.9.** Sei M ein A-Modul,  $S \subseteq A$  eine multiplikative Teilmenge, dann ist

$$u: S^{-1}A \otimes_A M \xrightarrow{\sim} S^{-1M}$$
$$\frac{a}{s} \otimes m \mapsto \frac{am}{s}$$

ist Homomorphismus von  $S^{-1}A$ -Moduln.

Beweis. 1. 1 ist wohldefiniert:

- (a) Z.z.  $\frac{a}{s} = \frac{b}{t} \Rightarrow \frac{am}{s} = \frac{bm}{t}$ : Sei  $\frac{a}{s} = \frac{b}{t}$ . Ist äquivalent dazu, dass es  $v \in S$  gibt mit vat = vbs. Dann erfüllt v auch vatm = vbsm für alle  $m \in M$ , also auch  $\frac{am}{s} = \frac{am}{s}$
- (b) Z.z.  $\frac{am}{s}$  ist linear in  $\frac{a}{s}$  und in m:
- 2. Existenz einer Umkehrabbildung:

Sei  $v: S^{-1}M \to S^{-1}A \otimes_A M$ ,  $m \mapsto \frac{1}{s} \otimes m$ . Aus  $\frac{m}{s} = \frac{n}{t}$  folgt, dass auch  $\frac{1}{s} \otimes m = \frac{1}{t} \otimes n$ . Also ist die Abbildung

Zusätzlich gilt  $v \circ u = \mathrm{id}_{S^{-1}A \otimes_A M}$  und  $u \circ v = \mathrm{id}_{S^{-1}M}$ 

**Satz 4.10** (Ideal in  $S^{-1}A$ ). Sei  $S \subseteq A$  eine multilineare Teilmenge.

$$\{Ideale\ in\ A\} \xrightarrow[b\mapsto \iota^{-1}(b)]{\mathfrak{a}\mapsto S^{-1\mathfrak{a}}} \{Ideale\ in\ S^{-1}A\}$$

$$1: A \to S^{-1}A, a \mapsto \frac{a}{1}$$

Nicht zu einander invers.

- 1. Sei  $\mathfrak{a} \subseteq A$  ein Ideal. Dann ist  $S^{-1\mathfrak{a}} = S^{-1}A$  genau dann wenn  $\mathfrak{a} \cap S \neq 0$ . Dann folgt auch, dass  $\mapsto S^{-1\mathfrak{a}}$  ist nur invertierbar, falls  $S \subseteq A^{\times}$ .
- 2. Für  $b \subseteq S^{-1}A$  Ideal gilt:

$$S^{-1}(\iota^{-1}(b)) = b$$

Dann folgt  $b \mapsto \iota^{-1}(b)$  ist injektiv und jedes Ideal von  $S^{-1}A$  ist von der Form  $S^{-1}\mathfrak{a}$  für einIdeal  $\mathfrak{a} \subseteq A$ .

- 3. Sei  $\mathfrak{a} \subseteq A$  ein Ideal. Dann gilt: Es gibt ein Ideal  $b \subseteq S^{-1}A$  mit  $\mathfrak{a} = \iota^{-1(b)}$ . Dies ist Äquivalent dazu, dass kein  $s \in S$  in  $A/\mathfrak{a}$  Nullteiler ist.
- 4. Man hat zueinander inverse Bijektionen:

$$\left\{q \subset S^{-1A} \mid Primideal\right\} \xrightarrow[\mathfrak{p} \mapsto S^{-1\mathfrak{p}}]{q \mapsto \iota^{-1(q)}} \left\{Primideale \ \mathfrak{p} \subset A \ mit \ \mathfrak{p} \cap S = \emptyset\right\}$$

Beweis. 1.  $\frac{1}{1} - inS^{/1A}$  ist genau dann wenn es ein  $a \in \mathfrak{a}, s \in S$  gibt, sodass

$$\Leftrightarrow \exists a \in \mathfrak{a}, s, t \in S : ta = ts$$
$$\Leftrightarrow \mathfrak{a} \cap S \neq 0$$

2. Sei  $\frac{a}{s} \in S^{-1}(\iota^{-1(b)})$ .

Ist äquivalent zu  $\exists t \in S$  und  $b \in A$  mit  $\frac{b}{1} \in b$ , so dass

$$\frac{a}{s} = \frac{b}{t} = \frac{b}{1} \frac{1}{t}$$

$$\Leftrightarrow \frac{a}{s} \in b$$

3. Sei  $\mathfrak{a} = \iota^{-1}(b)$  für ein Ideal  $b \subseteq S^{-1}A$ .

$$\Leftrightarrow \mathfrak{a} = \iota^{-1}(S^{-1}\mathfrak{a})$$
 
$$\Leftrightarrow A/\mathfrak{a} \xrightarrow{\overline{a} \mapsto \overline{\binom{a}{1}}} S^{-1}A/S^{-1}\mathfrak{a} = ^{4.8}S^{-1}A/\mathfrak{a} \quad \text{injektiv}$$

(Wende 4.8 an auf die exakte Sequenz  $0 \to \mathfrak{a} \to A \to A/\mathfrak{a} \to 0$ . Dann ist auch  $0 \to S^{-1}\mathfrak{a} \to S^{-1}A \to S^{-1}(A/\mathfrak{a}) \to 0$  exakt.) Mit 4.5 gilt äquivalenz dazu, dass kein  $s \in S$  in  $A/\mathfrak{a}$  Nullteiler ist.

4. Aus (2) und (3).

**Definition 4.11.** Sei A nullteilerfrei und  $S := A \setminus \{0\}$  eine multiplikative Teilmenge.

Dann heißt  $Quot(A): S^{-1}A$  Quotientenkörper.

Bemerkung. Für  $\frac{a}{s} \in (S^{-1}A) \setminus \{0\}$  gilt  $a \in S$ . Also existiert ein inverses Element:  $\frac{s}{s}$ .

 ${\rm Also}$  ist der  ${\rm Quot}(A)$  ein Körper.

Außerdem gilt, dass die Abbildung  $A \to \operatorname{Quot}(A), a \mapsto \frac{a}{1}$  injektiv ist.

**Satz 4.12** (Universelle Eigenschaft des Quotientenkörpern). Sei  $\iota: A \to \operatorname{Quot}(A)$  kanonisch und sei  $\varphi: A \to K$  ein injektiver Ring-Homomorphismus wobei K ein Körper.

Dann existiert genau ein Homomorphismus von Körpern  $\tilde{\varphi}: \operatorname{Quot}(A) \to K$ , sodass  $\tilde{\varphi} \circ \iota = \varphi$ .



Beweis. Da  $\varphi$  injektiv ist gilt  $\varphi(????) \subseteq K \setminus \{0\} = K^{\times}$ . Dann folgt mit ?? die Behauptung.

### 4B Lokale Ringe und Restklassenkörper

**Definition 4.13.** Ein Ring A heißt <u>lokal</u> wenn er genau ein Maximales Ideal besitzt.

Dann bezeichnet  $\mathfrak{m}_A$  dieses Maximales Ideal.

Der Körper  $\kappa(A) := A/\mathfrak{m}_A$  heißt Restklassenkörper von A.

Beispiel 4.14. • Jeder Körper ist ein lokaler Ring.

ullet Ein Hauptidealring A ist genau dann lokal, wenn bis auf Multiplikation mit Einheiten genau ein irreduzibles Element existiert. Oder wenn A Körper ist

Definition 4.15. Ein lokaler Hauptideal Ring der kein Körper ist, heißt diskreter Bewertungsring.

Beispiel 4.16. Sei  $\mathfrak{p} \subset A$  Primideal,  $S := A \backslash \mathfrak{p}$  multiplikative Teilmenge,  $A_{\mathfrak{p}} := S^{-1}A$ .

$$\{\text{Primideals in } A - \mathfrak{p}\} \leftrightarrow \{\text{Primideals } q \subset A \text{ mit } q \subseteq \mathfrak{p}\}$$

(mit 4).

Also ist  $A_{\mathfrak{p}}$  ein lokaler Ring mit maximalem Ideal  $S^{-1}\mathfrak{p}$ .

Der Körper  $\kappa(\mathfrak{p}) := A/S^{-1}\mathfrak{p}$  heißt Restklassenkörper in  $\mathfrak{p}$ .

Bemerkung 4.17. Seien  $q \subseteq \mathfrak{p} \subset A$  Primideale.

1.

{Primideale in  $A_{\mathfrak{p}}$ } = {Primideale in A, die in  $\mathfrak{p}$  enthalten sind} {Primideal in A/q} = {Primideal in A, die q enthalten.}

- 2. Sei  $S := S \backsim \mathfrak{p}$ . Dann ist  $S^{-1}(A/q) = S^{-1}A/S^{-1}q$  und {Primideal in  $S^{-1}(A/q)$ } = {Primideals in A die zwischen q und  $\mathfrak{p}$  liegen}
- 3. Speziell für  $q = \mathfrak{p}$ :

$$S^{-1}(A/\mathfrak{p}) = \kappa(\mathfrak{p})$$
$$= \operatorname{Quot}(A/\mathfrak{p})$$

## 4C Spektren

Erinnerung 4.18. Ein Topologischer Raum ist ein Paar  $(X; \mathfrak{T})$  wobei X eine Menge,  $\mathfrak{T} \subseteq \mathscr{P}(X)$ , sodass gilt:

- 1.  $\emptyset \in \mathfrak{T}, X \in \mathfrak{T}$
- 2. Sei  $(U_i)_{i\in I}$  eine Familie von Mengen  $U_i\in\mathfrak{T}$  dann gilt  $\forall i\in I:\bigcup_{i\in I}U_i\in\mathfrak{T}$
- 3.  $U, V \in \mathfrak{T}$ , dann  $U \cap V \in \mathfrak{T}$

Die Mengen in  $\mathfrak T$  heißen offen.

Erinnerung 4.19. Seine X, Y topologische Räume. Eine Abbildung  $f: X \to Y$  heißt stetig, falls  $f^{-1}(V) \subseteq X$  ist offen für alle offenen  $V \subseteq Y$ .

Erinnerung 4.20. Sei  $(X, \mathfrak{T})$  ein topologischer Raum  $B \subseteq \mathfrak{T}$  heißt Basis der Topologie, falls jeder offenen Teilmenge Vereinigung von Menge aus B ist.

Beispiel 4.21. Sei (X,d) eien metrischer Raum, dann heißt  $U\subseteq X$  offen, falls

$$\forall x \in U \exists \epsilon > 0 : B_{\epsilon}(x) \{ y \in X \mid M(x, y) < \epsilon \} \subseteq U$$

Basis der Topologie:  $\{B_{\epsilon}(x) \mid \epsilon \in \mathbb{R}^{>0}, x \in X\}$ 

**Definition 4.22.** Sein topologischer Raum X heißt <u>Hausdorffsch</u>, falls  $\forall x,y \in X$  mit  $x \neq y$  existieren  $x \in U \subseteq X$ ,  $y \in V \subseteq X$  offen, sodass  $U \cap V = \emptyset$ . Metrische Räume sind Hausdorffsch.

**Definition 4.23.** Ein topologischer Raum X heißt <u>quasikompakt</u>, falls jede offene Überdeckung  $(U_i)_{i\in I}$  von X (d.h.  $U_i\subseteq X$  offen für alle  $i\in I$  mit  $\bigcup_{i\in I}U_i=X$ ) eine endliche Teilüberdeckung besitzt. (d.h.  $\exists J\subseteq I$  endliche Teilmenge, sodass  $\bigcup_{i\in I}U_i=X$ .)

### 4.24 Spielzeugmodell (der Funktionalanalysis)

Sei X ein kompakter topologischer Raum,

$$A := A_X := \xi(X, \mathbb{C}) := \{ f : X \to \mathbb{C} \text{ stetig} \}$$

Sei  $x \in X$ , dann betrachte

$$\mathfrak{M}_x := \{ f \in A \mid f(x) = 0 \} \subseteq A$$

Dies ist ein Minimales Ideal, denn

$$A/\mathfrak{M}_x \xrightarrow{\sim} \mathbb{C}, \overline{f} \mapsto f(x)$$

Satz 4.25. Die Abbildung

$$X \to \operatorname{Max}(A) := \{ \mathfrak{M} \subset A \mid maximales \ Ideal \}$$
  
 $x \mapsto \mathfrak{M}_x$ 

ist bijektiv.

**Korollar 4.26.** Sei  $f \in A$  und für  $\mathfrak{M}_x \in \text{Max}(A)$  sie f(x) = Bild von f in  $A/\mathfrak{M}_x = \mathbb{C}$ .

$$D(f) = \{ \mathfrak{M} \in \text{Max}(A) \mid \overline{f} \text{ in } A/\mathfrak{M} \text{ ist } \neq 0 \}$$
$$= \{ \mathfrak{M} \in \text{Max}(A) \mid f \notin \mathfrak{M} \}$$
$$= \sigma(\{ x \in X \mid f(x) \neq 0 \})$$

**Definition 4.27.**  $U \subseteq \text{Max}(A)$  heißt **offen**, falls  $\exists F \subseteq \text{Max}(A)$  mit

$$U = \bigcup_{f \in F} D(f)$$

Dies ist die Topologie uf Max(A).

(Bemerke:  $D(f) \cap D(g) = D(fg)$ )

**Satz 4.28.**  $\sigma$  ist Homomorphismus Seien X,Y kompakte topologische Räume,  $F: X \to Y$  stetig.

Mann erhält den  $\mathbb{C}$ -Algebra-Homomorphismus:

$$\varphi: A_Y \to A_x$$
$$f \mapsto f \circ F$$

Habe Kommutierendes Diagramm

$$\begin{array}{ccc} X & \xrightarrow{F} & Y \\ \sigma \!\!\!\! \downarrow \sim & \sigma \!\!\!\! \downarrow \sim \\ \max(A_x) & \xrightarrow{\mathfrak{m} \mapsto \varphi^{-1}(\mathfrak{m})} \max(A_Y) \end{array}$$

Es folgt  $\forall \mathfrak{m} \subset A_x$  sind maximal, sodass  $\varphi^{-1}(\mathfrak{m}) \subset A$  maximal ist.

**Definition 4.17.** Sei A ein Ring. Setze  $X = \operatorname{Spec}(A) := \{y \subset A \mid \operatorname{Primideal \ von \ } A\}$  als das **Spektrum von** A.

Für  $x \in X$  bezeichne  $y_x \subset A$  das korrespondierene Primideal. Sei  $f \in A, x \in X$ . Dann definiere

$$f(x) := \text{Bild von } f \text{ unter } A \to A/y_x \hookrightarrow \text{Quot}(A/y_x) = \kappa(x)$$

Bemerkung 4.18. f ist keine Funktion  $X \rightarrow ?$ . Setze

$$D(f) := \{ x \in X \mid f(x) \neq 0 \}$$
  
= \{ x \in X \ \ f \notin y\_x \}

**Definition 4.19.** Eine Teilmenge  $U \subseteq X = \operatorname{Spec}(A)$  heißt **offen**, falls  $F \subseteq A$  Teilmenge existiert, sodass  $U = \bigcup_{f \in F} D(f)$ .

Wir erhalten die sogenannte Zanski-Topologie. Dabie

$$D(f) \cap D(g) = D(fg)$$
$$\emptyset = D(0)$$
$$x = D(x)$$

**Korollar 4.18** (D(f) als Spektrum). Sei  $f \in A$  und sei  $S_f := \{1, f, f^2, ..., \}$ . Dann ist

$$\operatorname{Spec}(S_f^{-1}A) = \{ y \in \operatorname{Spec}(A) \mid y \cap S_f = \emptyset \}$$
$$\{ y \in \operatorname{Spec}(A) \mid f \notin y \}$$
$$= D(f)$$

Satz 4.19 (Abgeschlossenen Teilmengen). Sei  $X = \operatorname{Spec}(A), Y \subseteq X$  Teilmenge. Dann

$$Y \subseteq X \ abgeschlossen \Leftrightarrow X \setminus Y \subseteq X \ of\! fen \Leftrightarrow \exists F \subseteq A : X \setminus Y = \bigcup_{f \in f} D(f)$$

Genau dann wenn

$$\exists F \subseteq A \qquad \qquad Y = \bigcap_{f \in F} (X \setminus D(f))$$

$$= \bigcap_{f \in F} \{y \in A \mid f \in y\}$$

$$= \{y \in A \ Primideal \mid (F) \subseteq y\}$$

$$\Leftrightarrow \exists \mathfrak{a} \subseteq A \ Ideal \qquad \qquad Y = \{y \in A \ Primiedeal \mid \mathfrak{a} \subseteq y\}$$

$$= \operatorname{Spec}(A/\mathfrak{a})$$

**Satz 4.20** (Funktorialität). Sei  $\varphi A \to B$  ein Homomorphismus on Ringen. Dann ist  $\varphi : \operatorname{Spec} B \to \operatorname{Spec}(A), q \mapsto \varphi^{-1}(q)$  stetiq.

Beweis. Für  $f \in A$  gilt

$$\begin{split} \varphi^{-1}(D(f)) &= \{ y \in \operatorname{Spec}(B) \mid \varphi(y) \in D(f) \} \\ &= \{ q \subset B \text{ Primideal } \mid \varphi^{-1}(q) \in D(f) \} \\ &= \{ q \subset B \text{ Primideal } \mid f \in \varphi^{-1}(q) \} \\ &= \{ q \subset B \text{ Primideal } \mid \varphi(f) \notin q \} \\ &= D(\varphi(f)) \subseteq \operatorname{Spec}(B) \text{ offen.} \end{split}$$

## 4D Lemma von Nakayama

**Definition 4.21.** Sei  $u:M\to N$  ein Homomorphismus von A-Moduln und sei  $(m_1,...,m_r)$  ein Erzeugendensystem von M und  $(n_1,...,n_s)$  von N. Dann exitsiert

$$T = (t_{ij})_{\substack{1 \le i \le s \\ 1 \le j \le r}} \in M_{s \times r}(A)$$

sodass

$$n(m_j) = \sum_{i=1}^{s} t_{ij} n_i$$

Dann heißt T eine Matrix von U bezüglich  $(m_1,...,m_r)$  und  $(n_1,...,n_s)$ .

Bemerkung. 1. T ist nicht eindeutig duch u bestimmt (es sei denn  $(n_1, ..., n_s)$  ist Basis)

2. Nicht jede Matrix in  $M_{s\times r}(A)$  ist eine Matrix von u bezüglich  $(m_1,...,m_r)$  und  $(n_1,...,n_s)$ . (Es sei denn  $m_1,...,m_r$  ist Basis von M)

Erinnerung 4.22. Sei  $T \in M_n(A) = A^{n \times m}$ ,  $n \in \mathbb{N}$ . Dann existiert  $S \in M_n(A)$ , sodass  $TS = ST = \det TI_m$ . Dann ist  $S = (s_{ij})$ 

$$s_{ij} = (-1)^{i+j} \det(T_{ji})$$

(T mit j-ter Spalte und i-ter Spalte gestrichen.) S heißt die Adjunkte von T.

Satz 4.23 (Cayley-Hamilton). Sei M ein A-Modul,  $(m_1, ..., m_n)$  ein Erzeugendensystem und sei  $u: m \to M$  eine A-Lineare Abbildung. Sei  $T \in M_r(A)$  eine Matrix von u bezüglich  $(m_1, ..., m_r)$ . Setze

$$\chi_T := \det \underbrace{(XI_r - A)}_{\in M_r(A[x])} = X^r + a_1 X^{r-1} + \dots + a_{r-1} X + a_r$$

Dann qilt

$$\chi_T(u) = u^r + a_1 u^{r-1} + \dots + a_{r-1} + a_r \operatorname{Id}_M = 0 \in \operatorname{End}_A(M)$$

1. Seo  $\mathfrak{a} \subseteq A$  Idela, sod ass  $u(M) \subseteq \mathfrak{a}M$ . Dann  $a_i \in \mathfrak{a}^i \forall i = 1, ..., r$ .

Beweis.  $u(M) \subseteq \mathfrak{a}M$ . Es folgt, dass die Koeffizienten von T in  $\mathfrak{a}$  liegen.  $a_i$  ist Summe von i-fachen Produkten von Koeffizienten von T. Also  $a \in \mathfrak{a}^i \forall i = 1, ..., r$ .

Sei nun  $T^T = (t_{ji})_{i \le i, j \le r}$  aber  $u(m_j) = \sum_i t_{ji} m_i$ .

$$\sum_{i} (u\delta_{ji}) - t_{ji}m_i = 0$$

Sei nun

$$C := (X\delta_{ii} - t_{ii})_{ii} \in M_r(A[X])$$

wobei  $\chi_T = \det(C)$ . Sei

$$D := (d_{ik})_{ik}$$

Die Adjungte von C, also

$$CD = \chi_T I_r \in M_r(A[X]) \tag{**}$$

Betrachte den Homomorphismus  $u \in \text{End}_A(A)$ 

$$A[X] \xrightarrow[f \mapsto f(u)]{} A[u] = \{f(u) \mid f \in A[x]\}$$

A[u] ist nun eine kommutative A-Algebra. Erhalte

$$C(u) = (u\delta_{ij} - t_{ji})_{i,j} \in M_r(A[u])$$
  

$$C(u) = (\delta_{kj}(u))_{k,j}$$

Multipliziere ( $\star$ ) mit  $\delta_{kj}(u)$ .

$$0 = \sum_{i=1}^{r} \sum_{j=1}^{r} \delta_{kj}(u) (u\delta_{ji} - t_{ji}) m_{i}$$
k-te Koeffizienten von
$$DC(u) = \chi_{T}(u)\delta_{i}.$$

Also ist  $0 = \sum_{i=1}^r (\chi_T(u)\delta_{ki})m_i = \chi_T(u)m_k$  für alle k=1,...,r. Für  $M=(m_1,...,m_r)$  folgt, dass  $\chi_T(u)(M)=0$ , also  $\chi_T(u)\in \operatorname{End}_A(M)$ .

**Lemma 4.24** (Lemma von Nakayama (1. Version)). Sei M eine endlich erzeugter A-Modul,  $\mathfrak{a} \subseteq A$  ein Ideal, sodass  $M = \mathfrak{a}M$ . Dann existiert  $f \in 1 + \mathfrak{a} = \{1 + x \mid x \in \mathfrak{a}\}$ , sodass fM = 0

Beweis. Wende 4.23 auf  $u = id_M$ : Mit 4.23.1 Gilt

$$u^{r} + a_{1}u^{r-1} + \dots + a_{r-1}u + a_{r} \operatorname{id} = 0$$

mit  $a_i \in \mathfrak{a}^i = \mathfrak{a}$ . Also ist  $f \operatorname{id}_M = 0$ , wobei

$$f = 1 + a_1 + a_2 + \dots + a_r \in 1 + \mathfrak{a}$$

sodass fM = 0

Bemerkung. (Einschränkung von A auf Spec $(A/\mathfrak{a})$ )

$$\dots = A/\mathfrak{a} \otimes_A M = M/\mathfrak{a}M = 0$$

Da  $f \in 1 + \mathfrak{a}$  folgt

$$\operatorname{Spec}(A/\mathfrak{a}) \subseteq^{(\star)} D(f) = \operatorname{Spec}(S_q^{-1}A)$$

wobe<br/>i $S_f = \{1, f, f^2, \ldots\},$  sodass

(Einschränkung von Maus  $D_f) = S_f^{-1} A \otimes_A M = S_f^{-1} M \stackrel{(\star\star)}{=} 0$ 

Zu  $(\star)$ : Sei  $x \in \operatorname{Spec}(A)$ .

$$x \in \operatorname{Spec}(A/\mathfrak{a}) \Leftrightarrow g(\lambda) = 0 \forall g \in \mathfrak{a}$$

Also gilt für  $f = 1 + g, g \in \mathfrak{a}$  und  $x \in \operatorname{Spec}(A/\mathfrak{a})$ :

$$f(x) = 1 + g(x) = 1 \neq 0$$
  
$$\Rightarrow \operatorname{Spec}(A/\mathfrak{a}) \subseteq \{x | f(x) \neq 0\} = D(f)$$

Zu  $(\star\star)$ : Sei M endlich erzeugt.

Dann  $S_f^{-1}M = 0$  genau dann wenn  $\exists g \in S_f : gM = 0$ .  $\Leftrightarrow \exists n \in \mathbb{N} : f^nM = 0 \Leftrightarrow fM = 0$ 

**Lemma 4.25** (Lemma von Nakayama (2.Version)). Sei M ein endlich erzeugter A-Modul,  $\mathfrak{a} \subseteq \operatorname{Jac}(A)$  ein Ideal mit  $M = \mathfrak{a}M$ . Dann M = 0.

Beweis. Sei  $\mathfrak{a} \subseteq \operatorname{Jac}(A)$  Dann ist mit ??  $1\mathfrak{a} \subseteq A^{\times}$  und mit 4.24 folgt die Behauptung.

Lemma 4.26 (Lemma von Nakayama (Wichtige Version)). Sei M ein endlich erzeugter A-Modul, N ein A-Modul,  $U: N \to M$  ein A-lineare Abbildung, sei  $\mathfrak{a}\subseteq A$  ein Ideal mit  $\mathfrak{a}\subseteq \operatorname{Jac}(A)$  (z.B. Alokal,  $\mathfrak{a}$  maximales Ideal), und sei  $id_{A/\mathfrak{a}}: A/\mathfrak{a} \otimes_A M$  sujektiv. Dann ist u surjektiv.

Beweis. Betrachte  $C := \operatorname{CoKer}(u) := M/\operatorname{Im}(u)$ . Da M endlich erzeugt ist ist auch C endlich erzeugt.

Beispiel. Sei  $A = \mathbb{Z}$ ,  $M = \mathbb{Z}$ . Dann ist die  $\mathbb{Z}$ -lineare Abbildung  $M \xrightarrow{\cdot 2} \mathbb{Z}$  injektiv aber nicht bijektiv.

**Satz 4.27.** Sei M ein endlich erzeugter A-Modul und sein  $U: M \to M$  eine surjektive A-lineare Abbildung. Dann ist u ein Isomorphismus.

Beweis. Fass (M, u) als A[X] Modul auf durch  $X \cdot m := u(m)$  für  $m \in M$ . Dann ist u genau dann surjektiv, wenn  $X \cdot M = M$  ist.

Es folgt durch 4.24 mit  $\mathfrak{a} = (X)$ , dass es ein  $g \in A[X]$  gibt, sodass (a+gX)(M) =

Sei  $m \in \text{Ker}(u)$ , dann

$$u = (1 + gX)(m) = m + \underbrace{g(u)(m)u(m)}_{=0} = m$$

Also ist u injektiv.

#### Noethersche und Artinsche Ringe 5

## Noethersche und Artinsche Moduln

**Lemma 5.1.** Sei  $(\Sigma, \leq)$  eine partiell geordnete Menge. Dann sind äquivalent:

- 1. Jede Aufsteigende Kette  $x_1 \leq x_1 \leq \dots$  von Elementen  $x_i \in \Sigma$  wird stationär.
- 2. Jede nicht leere Teilmenge von  $\Sigma$  besetzt ein maximales Element.

Beweis. nicht (2) $\Rightarrow$  nicht(1): Sei  $T \subseteq \Sigma$  nicht leer und beseitze kein maximales Element.

Dann gibt es  $x_1 \in T$  und  $x_1$  ist nicht maximal.

Also gibt es  $x_2 \in T$ , sodass  $x_1 < x_2$ . Dann ergibt sich induktiv die nicht stationäre Kette  $x_1 < x_2 < \dots$ 

(2) $\Rightarrow$  (1): Sei  $T := \{x_i \mid i \in \mathbb{N}_0\} \subseteq \Sigma$ . Dann besitzt T ein maximales Element  $x_n$  für ein  $n \in \mathbb{N}$ .

Dann ist  $x_n = x_{n+1} = ...$ , also jede Kette die in einer Teilmenge T enthalten ist stationär.

**Definition 5.2.** Ein A-Modul heißt **noethersch**, falls die folgenden äquivalenten Bedingungen erfüllt sind:

1. Jede Aufsteigende Kette von Untermodul<br/>n von  ${\cal M}$ 

$$N_2 \subseteq N_2 \subseteq ... \subseteq M$$

wird stationär

2. Jede Nichtleere Menge von Untermodul<br/>n von M beseitzt ein Maximales Element

Ein A-Modul heißt **artinsch**, falls die folgenden äquivalenten Bedingungen erfüllt sind:

1. Jede absteigende Kette von Untermodul<br/>n von  ${\cal M}$ 

$$N_2 \supseteq N_2 \supseteq \dots$$

wird stationär.

2. Jede Nichtleere Menge von Untermodul<br/>n von M beseitzt ein minimales Element.

**Definition 5.2.** Der Ring A heißt **noethersch**, wenn er als A-Modul noethersch ist. Äquivalent dazu sind:

- 1. Jede aufsteigende Kette von Idealen in A wird stationär.
- 2. Jede nichtleere Menge von Idealen in A besitzt eine maximales Element.

Der Ring A heißt **artinsch**, wenn er als A-Modul artinsch ist. Äquivalent dazu sind:

- 1. Jede absteigende Kette von Idealen in A wird stationär
- 2. Jede nichtleere Menge von Idealen in A besitzt eine minimales Element.

Beispiel 5.3. -1. 0 ist noethersch und artinsch.

- 0. Jeder Körper ist noethersch und artinsch.
- 1.  $\mathbb{Z}$  ist noethersch:

Sei  $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \subseteq \dots$  (\*) eine aufsteigende Kette.

Dann 
$$\mathfrak{a}_1 = (x_1), x_1 = p_1^{l_1} \cdot \dots \cdot p_r^{l_r}.$$

{Idealis die 
$$\mathfrak{a}_1$$
 enthalten}  $\underset{1:1}{\longleftrightarrow}$  {Teiler von  $x_1$ }/{Einheiten}

Diese Mengen sind endlich also wird  $(\star)$  stationär.

 $\mathbb{Z}$  ist nicht artinsch:

Sei  $x \in \mathbb{Z}$   $x \neq 0, 1, -1$ . Dann

$$(x) \supseteq (x^2) \supseteq (xs) \supseteq \dots$$

ist absteigenden Kette die nicht stationär wird.

2. Sei  $p \in \mathbb{Z}$  eine Primzahl. Dann ist der  $\mathbb{Z}$ -Modul

$$\{x \in \mathbb{Q}/\mathbb{Z} \mid \exists n \in \mathbb{N} : p^n x = 0\}$$

artinsch aber nicht noethersch. (Wir werden zeigen: A artinscher Ring  $\Rightarrow$  noethersch)

3. Sei  $\kappa$  Körper, dann ist  $\kappa[T_1, T_2, ...]$  neiht noethersch:

$$(T_1) \subsetneq (T_1, T_2) \subsetneq (T_1, T_2, T_3) \subsetneq \dots$$

Satz 5.4. Sei M ein A-Modul.

Dann ist M genau dann noethersch, wenn jeder A-Untermodul von M endlich erzeugt ist. (Dann ist auch M endlich erzeugt).

Insbesondere ist M genau dann noethersch, wenn jedes Ideal von A endlich erzeugt ist.

Korollar 5.5. Jeder Hauptidealring ist noethersch.

**Proposition 5.6.** Sei  $0 \to M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$  eine Exakte Sequenz von A-Moduln.

Dann gilt

- 1. M ist genau dann noethersch, wenn M', M'' noethersch.
- 2. M ist genau dann artinsch, wenn M', M'' artinsch.

Beweis. 1. " $\Rightarrow$ ": Es gilt  $M' = u(M') \subseteq M$ . Es folgt M' ist noethersch.

Sei  $N_1\subseteq N_2\subseteq\ldots\subseteq M''$  eine aufsteigende Kette von Untermoduln von M''. Da M noethersch ist, gibt es ein  $r\in\mathbb{N}$ , sodass  $v^{-1}(N_r)=v^{-1}(N_{r+1})=\ldots$ 

Da v surjektiv ist gilt dann

$$n_r = v(v^{-1}(N_r)) = v(v^{-1}(N_{r+1})) = N_{r+1}$$

Also wird  $N_1 \subseteq N_2 \subseteq ...$  stationär.

"<br/>—": Sei  $M_1\subseteq M_2\subseteq \ldots\subseteq M$ eine aufsteigende Kette von Untermoduln in <br/> M.

Dann sind auch  $u^{-1}(M_1) \subseteq u^{-1}(M_2) \subseteq ... \subseteq M'$  und  $v(M_1) \subseteq v(M_2) \subseteq ... \subseteq M''$  aufsteigende Ketten.

Da M, M'' gibt es  $r \in \mathbb{N}$ , sodass  $u^{-1}(M_r) = u^{-1}(M_{r+1}) = \dots$  und  $v(M_r) = v(M_{r+1}) = \dots$ 

Dies ist äquivalent (\*) dazu, dass  $M_r = M_{r+1} = \dots$  Also ist M noethersch.

Beweis von  $(\star)$ :

Seien  $P \subseteq Q \subseteq M$  Untermoduln mit  $u^{-1}(P) = u^{-1}(Q)$  und v(P) = v(Q), sei  $q \in Q$ .

Dann existiert ein  $p \in P$  mir v(p) = v(q). Dann gilt v(p-q) = 0, also  $p-q \in \text{Im}(u)$ .

Dann existier auch  $m' \in u^{-1}(Q) = u^{-1}(P)$  mit u(m') = p - q und es gilt  $u(m') \in P$ , also  $q \in P$ , also q = P - u(m').

Es folgt, dass P = Q.

2. analoge

**Korollar 5.7.** Seien  $_1,...,M_r$  A-Moduln und sei  $r \in \mathbb{N}$ . Dann gilt

- 1.  $\bigoplus_{i=1}^r M_r$  ist genau dann noethersch, wenn  $M_i$  noethersch für alle  $i=1,\dots,r$ .
- 2.  $\bigoplus_{i=1}^r M_r$  ist genau dann artinsch, wenn  $M_i$  artinsch für alle i=1,...,r.

Beweis. Induktion nach r:

Der Fall r=1 ist klar. Für r>1 betrachte die Sequenz

$$\begin{array}{cccc} 0 \to M_r & \to & \bigoplus_{i=1}^r M_i \to 0 \\ m_r & \mapsto & (0,...,0,m_r) \\ & & (m_1,...,m_r) \mapsto (m_1,...,m_{r-1}) \end{array}$$

Mit Proposition 5.6 folgt die Behauptung.

Korollar 5.8. Ein Ring A ist genau dann noethersch bzw artinsch, wenn jeder erzeugte A-Modul noethersch bzw. artinsch ist.

Beweis. Sei A noethersch bzw. artinsch und sei M ein endlich erzeugter A-Modul. Dann gilt  $M = A^n/N$  für  $n \in \mathbb{N}$  und  $N \subseteq A^n$  Untermodul. Dann ist die Sequnez  $0 \to N \to A^n \to M \to 0$  exakt.

Mit 5.7 folgt daraus dass A noethersch ist auch dass  $A^n$  noethersch ist.

Mit 5.6 folgt dann dass auch M noethersch ist.

**Korollar 5.9.** Sei A noethersch bzw artinsch und  $\mathfrak{a} \subseteq A$  ein Ideal, dann ist  $A/\mathfrak{a}$  noethersch bzw artinsch.

Bemerkung 5.10. Sei A noethersch bzw artinsch und S eine A multiplikative Teilmenge.

Dann ist  $S^{-1}A$  noethersch bzw artinsch.

Beweis. Beweis in Übung.

#### 5BLänge von Moduln

**Definition 5.11.** Sei G eine Gruppe und sei R ein (nicht notwendig kommutativer) Ring, sei M ein R-(links-)Modul.

- 1. Eine Kompositionsreihe von G (bzw von M) ist eine Folge  $G = G_0 \supsetneq$  $G_1 \supseteq ... \supseteq G_r = 1$  von Untergruppen, sodass für alle i = 1, ..., r die Gruppe G ein Normalteiler von  $G_{i-1}$  ist. (Analog für die Folge  $m=M_0 \supsetneq M_1 \supsetneq \dots \supsetneq M_r=0$  von R-Untermoduln) Dann heißt  $r \in \mathbb{N}_0$  die Länge der Kompositionsreihe.
- 2. G heißt einfach falls  $G \neq \{0\}$  und falls  $\{0\}$  und G die einzigen Normalteiler sind. M heißt **einfach**, falls  $M \neq 0$  und falls 0 und M die einzigen Untermoduln sind.
- 3. Eine Kompositionsreihe heißt maximal oder Jordan-Hölder Reihe falls keine echten Normalteiler (bzw. Untermoduln) eingefügt werden können. (Aquivalent:  $G_{i+1}/G_1$  bzw.  $m_{i+1}/M_i$  sind einfach für alle i=1,...,r)

1. Normalerweise existiert keine Jordan-Hölder-Reihe Bemerkung 5.12.

- 2. Sei R = K Körper und sei V ein K-Vektorraum. Dann ist V genau dann einfach, wenn  $\dim_K(v) = 0$ . Sei  $(v_1,...,v_r)$  eine Basis von V, dann ist  $V=\langle v_1,...,v_r\rangle \supseteq \langle v_1,...,v_{r-1}\rangle \supseteq$ ...  $\supseteq \langle v_1 \rangle \supseteq 0$  eine JH-Reihe.
- 3. Jede Endliche Gruppe besitzt eine JH-Reihe.

Beispiel 5.12. Sei  $R = \mathbb{Z} = M$  dann kann man in jede Folge  $\mathbb{Z} = n_o \mathbb{Z} \supseteq$  $n_1\mathbb{Z} \supseteq \dots \supseteq n_r\mathbb{Z} = 0$  mit  $n_0 = 1, n_1 > 1, n_r = 0$  zwischen  $n_{r-1}\mathbb{Z}$  und  $n_r\mathbb{Z}$  die Untergruppe  $2n_{r-1}\mathbb{Z}$  einfügen.

**Proposition 5.13.** Sei A kein kommutativer Ring, M ein A-Modul, dann gilt M ist genau dann ein einfacher A-Modul wenn M = A/m für maximales Ideal  $m \subset A$ .

Beweis. " $\Leftarrow$ ": gilt, da A/m Körper.

" $\Rightarrow$ ": Sei M einfach  $x \in M$ ,  $x \neq 0$ . Dann ist Ax = M also ist  $u : A \to M$ ,  $x \mapsto M$ ax surjektiv. Damit ist für  $\mathfrak{a} = \text{Ker}(u)$ , dass  $M = A/\mathfrak{a}$ . Da

$$\{ \text{Untermoduln von } A/\mathfrak{a} \} \underset{1:1}{\longleftrightarrow} \{ \text{Ideale } b \subseteq A \text{ mit } b \supseteq \mathfrak{a} \}$$

muss a maximal sein.

Satz 5.14 (Satz von Jordan-Hölder (simple Variante)). Sei G eine Gruppe (bzw. R ein nicht notwendig kommutativer Ring und M ein R-Modul). Dann besitzen je zwei JH-Reihen von G bzw. M dieselbe Länge.

In diesem Fall kann jede Kompositionsreihe zu einer JH-reihe ergänzt werden.

Bemerkung (Satz von Hölder (genaue Variante)). Seien  $G = G_0 \supsetneq \supsetneq G_1 \supsetneq \dots \supsetneq$ 

 $G_r = 1$  und  $G = G'_0 = \supseteq \supseteq G'_1 \supseteq \ldots \supseteq G'_s = 1$  JH-Reihen. Dann ist r = s und es existieren Permutationen  $\sigma \in S_r$ , sodass  $G_{i-1}/G_i = G'_{\sigma(i)-1}/G'_{\sigma(i)}$ .

**Definition 5.15.** Sei G eine Gruppe. Dann heißt

$$l(G) := \begin{cases} \infty & G \text{ beseitzt keine JH-Reihe} \\ r & G \text{ beseitzt eine JH-Reihe der Länge } r \end{cases}$$

die Länge von G.

Sei M eine R-Modul. Dann heißt

$$l(M) := \begin{cases} \infty & M \text{ beseitzt keine JH-Reihe} \\ r & M \text{ beseitzt eine JH-Reihe der Länge } r \end{cases}$$

die Länge von M.

Bemerkung. Dabei ist l(M) = 1 genau dann wenn M einfach und l(M) = 0 genau dann wenn M = 0.

Beweis. (für Moduln, für Gruppen analog)

Sei M ein R-Modul.

Setze  $l(M) := \inf\{\text{Längen von JH-Reihene von } M\} \in \mathbb{N}_0 \cup \{\infty\}$ 

1.  $N \subseteq M$  Untermodul  $\Rightarrow l(N) \leq l(M)$ .

Falls  $l(M) = \infty$ .

Man kann also annehmen, dass M eine JH-Reihe  $M=M_0 \supsetneq M_1 \supsetneq \dots \supsetneq M_r=0$  beitzt mit r=l(M).

Sei  $N_i := N \cap M_i, \forall i = 0, ..., r$ .

Die Einbettung  $N_{i-1}/N_i \hookrightarrow M_{i-1}/M_i$  ist injektiv, da  $M_i \cap N_{i-1} = N_i$ . Daraus folgt (da  $M_{i-1}/M_i$  einfach ist), dass  $N_{i-1}/N_i$  entweder einfach oder = 0 ist.

Dann kann die Reihe  $N=N_0\supseteq N_1\supseteq ...\supseteq N_r=0$  durch weglassen einger Terme zu einer JH-Reihe werden.

Dann gilt  $l(N) \leq l(M)$ .

- 2. Aus  $N\subseteq M$  Untermodul mit  $l(N)=l(M)<\infty$  folgt N=M: Wie in 1) gilt  $M_{i-1}/M_i\tilde{=}N_{i-1}/N_i$ , da l(N)=l(M). Aus  $M_r=N_r=0$  folgt  $M_{r-1}=N_{r-1}$  und da  $N_{r-2}/N_{r-1}=M_{r-2}/M_{r-1}$  folgt auch  $N_{r-2}=M_{r-2}$ . Induktiv gilt damit  $N_0=N=M_0=M$
- 3. Jede Kompositions Reihe von M besitzte Länge  $\leq l(M)$ : ( $\Rightarrow$  Alle JH-Riehen haben die selbe Länge) Sei  $M=M_0 \supsetneq M_1 \supsetneq \dots \supsetneq M_r=0$  eine Kompositions-Reihe. Aus 1), 2) folgt  $l(M_i) \leq l(M_{i-1})$  für alle  $i=1,\dots,r$ . Daraus folgt  $s \leq l(M)$ .
- 4. Sei  $M=M_0 \supsetneq M_1 \supsetneq \dots \supsetneq M_s=0$  eine Kompositions-Reihe,  $l(M)<\infty$ : Wenn s=l(M), dann ist  $(M_i)$  JH-Reihe. Wenn s< l(M), dann ist  $(M_i)$  keine JH-Reihe und die Kompositions-Reihe kann ergänzt werden.

**Satz 5.16.** Sei  $0 \to M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$  eine exakte Sequenz von R-Moduln. (Dabei ist R nicht notwendiger weise kommutativ) Dann ist l(M) = l(M') + l(M'').

(Insbesondere ist  $l(M) < \infty$  genau dann wenn  $l(M'), l(M'') < \infty$ ) Für Gruppen ergibt sich ein anderes Resultat. Beweis. Sei  $M=M_0 \supsetneq M_1 \supsetneq ... \supsetneq M_r=0$  eine Kompositions-Reihe von M'. Dann ist  $M \supsetneq u(M')=u(M'_0) \supsetneq ... \supsetneq u(M'_r)=0$  eine Kompositions-Reihe und  $(M''_i)$  ist eine Kompositionsreihe von M''. Dann folgt duch  $v^{-1}$ , dass es auch eine Kompositionsreihe von M.

Insbesondere folgt aus  $l(M')=\infty$  oder l(M'')=0, dass  $l(M)=\infty$ . Sei  $l(M'), l(M'')<\infty$  und sei  $M'=M'_0 \supsetneq M'_1 \supsetneq \dots \supsetneq M'_r=0$ die JH-Reieh von M' und  $M''=M''_0 \supsetneq M''_1 \supsetneq \dots \supsetneq M''_r=0$  von M''.

$$M = v^{-1}(M_0'') \supseteq \dots \supseteq v^{-1}(M_s'') = \operatorname{Ker}(v) = u(M') \supseteq u(M_1') \supseteq \dots \supseteq u(M_r') = 0$$

eine Kompositions-Reihe mit einfachen Subquotienten, also eine JH-Reihe. Diese hat Länge r+s=l(M')+l(M'').  $\Box$ 

Satz 5.17. Sei M ein A-Modul (A ist kommutativer Ring). Dann ist äquivalent:

- 1.  $l(M) < \infty$
- 2. M ist artinsch und noethersch.

Beweis.  $1 \Rightarrow 2$ :

 $\operatorname{Ausl}(My\infty)$  folgt , dass jede nicht stationäre Kette endlich ist und damit 2.  $2\Rightarrow 1$ :

Sei o.E.  $M \neq 0$ , M noethersch.

Dann folgt, dass  $\{N \subsetneq M$ Untermodul $\}$  besitzt maximale Elemente, etwas  $M_1$ . Induktiv gilt  $M = M_0 \subsetneq M_1 \subsetneq M_2 \subsetneq ...$ , woebi  $M_{i-1}/M$  ist einfach. Da M artinsch ist folgt, dass es ein  $r \in \mathbb{N}_0$  gibt, sodass  $M_r = 0$ .

Beispiel 5.18. Sei K Körper, V ein K-Vektorraum. Dann sind äquivalent:

- 1.  $\dim_K(V)y\infty$
- 2.  $l_k(V)y\infty$
- 3. V ist noethersch
- 4. V ist artinsch

Es folgt auch, dass dim V = l(V).

## 5C Noethersche Ringe

Wenn Anoethersch, so ist auch  $A/\mathfrak{a}$  noethersch für alle  $\mathfrak{a} \subseteq A$  Ideal und es auch  $S^{-1}A$  noethersch für alle  $S \subseteq A$  multiplikativ.

**Definition 5.19.** Sei  $\varphi: A \to B$  eine A-Algebra.

- 1. Die A-Algebra B heißt endlich erzeugt oder von endlichem  $\mathbf{Typ}(v.e.T.)$ , wenn  $b_1, ..., b_n \in B$  existierne, die B erzeugen. (Äquivalent:  $B = A[X 1, ..., X_n]/\mathfrak{a}$  für  $\mathfrak{a} \subseteq A[X 1, ..., n]$  Ideal.)
- 2. Die A-Algebra B heißt **endlich**, falls B als A-Modul endlich erzeugt ist.

Bemerkung 5.20. Sei  $\varphi: A \to B$  eine A-Algebra

- 1. B endliche A-Algebra, so folgt, dass B eine A-Algebra v.e. T.
- 2. Sei A=K Körper, dann ist K[X] eine K-Algebra v.e.T., aber K[X] ist nicht endliche K-Algebra, da  $\dim_K(K[X])=\infty$ .

**Satz 5.21** (Hilbertscher Basissatz). Sei  $\varphi:A\to B$  eine A-Algebra v.e.T. und sei A noethersch.

Dann ist B noethersch.

Beweis. 1. Es gilt B ist genau dann v.e.T. wenn  $B = A[X-1,...,X_n]/\mathfrak{a}$ . Also ist o.E.  $B = A[X-1,...,X_n] = (A[X-1,...,X_{n-1}])[X_n]$ . Induktiv folgt o.E. B = A[X].

2. Sei  $\mathfrak{a} \subseteq A[X]$  Ideal und sei

 $I = \{a \in A \mid \exists f \in \mathfrak{a} \text{ mit } f = aX^d + (\text{Terme niederen Grades})\}.$ 

Da  $\mathfrak{a}$  Ideal folgt, dass I Ideal und da A noethersch auch, dass I endlich erzeugt (etwa von  $a_1, ..., a_n$ ).

Wähle nun  $f_1, ..., f_n \in \mathfrak{a}$ , sodass  $f_i = a_i X^{r_i} + (\text{Terme niederer Ordnung})$ . Sei nun  $\mathfrak{a}' := (f_1, ..., f_n) \subseteq \mathfrak{a}$  und  $r := \max\{r_i \mid i = 1, ..., n\}$ 

3. Für alle  $f \in \mathfrak{a}$  existiert  $g \in \mathfrak{a}'$ , so dass  $\deg(f - g) < r$ : Sei  $f = aX^m + (\text{Terme niedere Ordnung}), s \in I$ .

Im Fall m < r folgt die Behauptung.

Falls  $m \ge r$  Setze  $a = b_1 a_+ ... + b_n a_n$  mit  $b_i \in A$ . Dann hat

$$f - \underbrace{\sum_{i=1}^{n} b_i f_i X^{m-r_r}}_{\in \mathfrak{a}}$$

Grad < m.

Induktiv folgt die Behauptung.

4. Sei  $M = A + AX + ... + AX^{n-1}$  eine endlich erzeugter A-Modul. 3 bedeutet, dass  $\mathfrak{a} = \mathfrak{a}' + (\mathfrak{a} \cap M)$ , sodass (da A noethersch)  $\mathfrak{a} \cap M$  als A-Modul endlich erzeugt von  $g_1, ..., g_r$ .

Dann ist  $\mathfrak{a} = (f_1, ..., f_n, g_1, ..., g_r).$ 

**Korollar 5.22.** Sei K Körper. Dann ist  $K[X_1,...,X_n]$  noethersch.

## 5D Artin-Ringe

**Lemma 5.23.** In einem Artinring A ist jedes Primideal ein maximales Ideal.

Beweis. Sei  $\mathfrak{p} \subset A$  Primiedeal, dann ist  $B := A/\mathfrak{p}$  eine nullteilerfreier Artinring. Behauptung: B ist Körper ( $\mathfrak{p}$  ist maximal).

Sei  $x \in B, 0 \neq x$ . Betraahte die Kette  $(x) \supseteq (x^2) \supseteq \dots$ 

Da B Artinring ist gibt es ein  $n \in \mathbb{N}$ , sodass  $(x^n) = x^{n+1}$ , also  $x^n = yx^{n+1}$  für ein  $y \in B$ .

Daraus folgt (da x kein Nullteiler) dass 1 = xy, also  $y \in B^{\times}$ .

Satz 5.24. Jeder Artinring beseitzt nur endlich viele Primideale.

Beweis. Sei  $\Sigma := \{m_1 \cap ... \cap m_r \mid r \geq 0 m m_i \subset A \text{ maximale Ideale}\}$ . Dann folgt aus  $A \in \Sigma$ , dass  $\sigma \neq \emptyset$ .

Da A artinsch folgt, dass  $\Sigma$  ein minimales Element beseitzt (etwa  $m_1 \cap ... \cap m_n$ ). Sei  $m \subset A$  ein maximales Ideal. Dann ist  $m \cap m_1 \cap ... \cap m_n = m_1 \cap ... \cap m_n$ .

Dann ist  $m \supset m_1 \cap ... \cap m_n = m_1 \cdot ... \cdot m_n$ . Dann gibt es mit ?? ein i, sodass  $m \supseteq m_i$ . Da  $m_i$  minimal folgt, dass es sogar ein i gibt mit  $m = m_i$ .

Also gilt  $\{m \subset A \text{maximales Ideal}\} = \{m_1, ..., m_n\}.$ 

Dann folgt, mit 5.23 die Behauptung.

**Lemma 5.25.** Sei A Artinring, dann exitsiert  $k \in N$ , sodass  $(Nil(A))^k = 0$ .

Beweis. Da A artinsch, wird  $Nil(A) \supseteq Nil(A)^2 \supseteq ...$  stationär.

Also exitsiert ein  $k \in \mathbb{N}$ , sodass  $Nil(A)^k = Nil(A)^{k+1} = \dots =: \mathfrak{a}$ .

Annahme:  $\mathfrak{a} \neq 0$ .

Sei  $\Sigma = \{b \supseteq A \text{ Ideal } | b\mathfrak{a} \neq 0\}$ . Dann g<br/>til  $A \in \Sigma$ . Da A artinsch gibt es ein maximales elemet<br/>n $b_0 \in \Sigma$ .

Sei nun  $x \in b_0$  mit  $x\mathfrak{a} \neq 0$ . Dann ist  $(x)\mathfrak{a} \neq 0$  und es folgt  $(\mathrm{da}\ (x) \subseteq b_0)$ , dass  $(x) = b_0$ .

Da auch  $(x\mathfrak{a})\mathfrak{a} = x\mathfrak{a}^2 = x\mathfrak{a} \neq 0$  gilt (da  $x\mathfrak{a} \subseteq (x)$ ), dass  $x\mathfrak{a} = (x)$ .

Also ist x = xy für ein  $y \in \mathfrak{a} = \text{Nil}(A)^k \subseteq \text{Nil}(A)$ .

Aber mit  $x = xy = xy^2 = \dots$  da y nilpotent folgt x = 0.

### Theorem 5.26. Sei A ein Ring dann sind äquivalent

- 1. A ist artinsch
- 2. A ist noethersch und jedes Primiedeal ist maximal
- 3.  $l_A(A) < \infty$ .

Beweis. 3)  $\Rightarrow$  1): gilt mit 5.17

- $3) \Rightarrow 2)$ : ???
- 1)  $\Rightarrow$  3): Aus 5.24 folgt, dass es endlich viele maximale Ideale gibt, etwa  $m_1 \cap \dots \cap m_n = m_1 \cdot \dots m \cdot m_n$ .

Mit 5.25 folgt, dass es ein  $k \in \mathbb{N}$  gibt, sodass  $m_1^k m_2^k \cdot ... \cdot m_n^k = \text{Nil}(A)^k = (0)$ . Schriebe  $(0) = M_1 M_2 ... M_s$  mit  $M_i \subset A$  maximal.

Behauptung: Für j = 0, ..., s gilt  $l_A(M_1, ..., M_j) < \infty$ :

Für j = s gilt die Behauptung.

Für  $j \leq s$  ist

$$0 \to \underbrace{M_1...M_j M_{j+1}}_{\text{Länge} < \infty} \to M_1...M_j \to \underbrace{\left(M_1...M_j / M_1...M_{j+1}\right)}_{A / M_{j+1} - VR} \to 0$$

$$\underset{\text{ist artinsch}}{\underbrace{A / M_{j+1} - VR}}$$

$$\underset{\text{ist artinsch}}{\text{ist artinsch}}$$
(?? hat endliche Länge

Es folgt, dass  $l_A(M_1...M_j) < \infty$ .

2)  $\Rightarrow$  3): Sei  $l_A(A) = \infty$  und Sei  $\Sigma := \{ \mathfrak{a} \subseteq A \mid l_A(A/\mathfrak{a}) = \infty \}$  mit  $(0) \in \Sigma$ .

Dann folgt, da A noethersch, dass  $\Sigma$  maximales Element  $\mathfrak{a}_0$  besitzt.

Behauptung:  $\mathfrak{a}_0$  ist Primideal.

Sei  $a, b \in A : ab \in \mathfrak{a}_0, a \notin \mathfrak{a}_0$ .

Betrachte nun die exakte Sequenz

$$0 \to A/\underbrace{\{x \in A \mid xa \in \mathfrak{a}_0\}}_{=:\mathfrak{a}'} \xrightarrow{\cdot a} A/\mathfrak{a}_0 \to \underbrace{A/(\mathfrak{a}_0 + (a))}_{l_A(\cdot) < \infty}$$

Dann folgt  $l_A(A/\mathfrak{a}') = \infty$ .

Wähle  $b \neq \mathfrak{a}_0$ .  $' \geq \mathfrak{a}_0 + (b) \supseteq \mathfrak{a}_0$ .

Dann folgt  $l(A/\mathfrak{a}') < l(A/\mathfrak{a}_0 + (b)) < \infty$ , da  $\mathfrak{a}_0$  maximal mit  $l(A/\mathfrak{a}_0) = \infty$ .

Aus dem Wiederspuch folgt, dass  $\mathfrak{a}_0$  ein maximales ideal ist,

sodass  $l(A/\mathfrak{a}_0) = 1 \neq \infty$ . Widerspruch!

Korollar 5.27. Sei A ein lokaler Artinring.

Dann Spec(A) =  $\{m\}m = Nil(A)$  und es gibt ein k, sodass  $m^k = 0$ ,  $A \setminus m = 0$  $A^{\times}$ .

Beispiel. Sei A ein lokaler noetherscher Ring und  $m \subset A$  maximal.

Dann gilt für alle  $n \ge 1$ , dass  $A/m^n$  ein lokaler Artinring ist.

Man kann zeigen, dass  $\bigcap_{n\geq 1} m^n = \{0\}$ . Definiere eine Metrik auf  $A: 0 < \rho 1, \rho \in \mathbb{R}$  mit  $d(x,y) := \rho^n$ , falls  $x-y \in \mathbb{R}$  $m^n \backslash m^{n+1}$ .

Approximation von

 $\hat{A} := \text{Vervollstädnigung von } A \text{ bezüglich } d \text{ durch } A/m^n$ 

Beispiel. Sei  $\mathbb{Z}(p) := \{\frac{a}{b} \in \mathbb{Q} \mid p \text{ teilt nicht } b\}$  für p Primzahl.

Satz 5.28 (Struktursatz für Artinringe). Jeder Artinring A ist Produkt von endlichen lokalen Artinringen.

Beweis. Seien  $m_1, ..., m_n \subset A$  die maximalen Ideal.

Dann existier ein  $k \in \mathbb{N}$ , sodass  $0=m_1^k...m_n^k=m_1^k\cap...\cap m_2^k$ . Mit derm Chinisischen Restsatz folge, dass

$$A \xrightarrow{\sim} \prod_{i=1}^{n} \underbrace{A/m_i^k}_{\substack{\text{lokale} \\ \text{Artin-Ringe}}}$$

ist ein Isomorphismus.

#### Ganzheit 6

## Ganze Ring-Homomorphismen

**Definition 6.1.** Sei  $\varphi: A \to B$  ein Ring Homomorphismus:

- 1. Ein Element  $b \in B$  heißt ganz über  $A(\text{bezüglich }\varphi)$  falls ein normiertes Polynom  $f \in A[X]$  exitsiert, sodass  $f(b) = b^n + \varphi(a_{n-1})b^{n-1} + ... + \varphi(a_0) =$ 0.
- 2.  $\varphi$  heißt ganz, falls jedes Elemtn  $b \in B$  ganz über A ist.

Bemerkung 6.2. 1. Sei  $\varphi: A \to B$  ein surjektiver Ring Homomorphismus.

Dann ist  $\varphi$  ganz:

Sei  $b \in B$ . Wähle  $a \in A$  mit  $\varphi(a) = b$ .

Dann f(b) = 0, wobei f = X - a.

2. Sei  $\varphi: A \to B$  ein Ring-Homomorphismus,  $b \in B$ . Dann ist b ganz über A genau dann wenn b ganz über  $\varphi(A)$ . Beispiel 6.3. Sei A ein faktorieller Ring, K = Quot(A). Dann ist  $x \in K$  ganz über A genau dann wenn  $x \in A$ .

Beweis.  $\Rightarrow$  Sei  $x=\frac{1}{b}$  mit  $a,b\in A,b\neq 0$ , sodass kein Primielement a und b teilt.

Da x ganz ist folgt

$$\left(\frac{a}{b}\right)^n + a_{n-1} \left(\frac{a}{b}\right)^{n-1} + \dots + a_1 \frac{a}{b} + a_0 = 0$$

für  $a_0, ..., a_{n-1} \in A$ : Multiplikaiton mit  $b^n$  ergibt:

$$a^{n} + ba_{n-1}a^{n-1} + \dots + b^{n-1}a_{1}a + b^{n}a_{0} = 0$$

Sei p ein Primteiler von b, also p teilt  $a^n$ . Dann teilt p auch a. Widerspruch! Also  $b \in A^{\times}$ , also  $x \in A$ .

Beispiel. Sei  $A = \mathbb{Z}$ ,  $x = \frac{1}{2}$ , f(x) = 0 mit f = 2X - 1

Bemerkung (Anwendung). Sei  $f = X^n + a_{n-1}X^{n-1} + ... + a_0 \in \mathbb{Z}[X]$ .

Falls f(x) = 0 für  $x \in \mathbb{Q}$ , dann  $x \in \mathbb{Z}$  und x Teiler von  $a_0$ .

**Satz 6.4.** Sei  $\varphi: A \to B$  ei Ring-Homomorphismus und  $b \in B$ . Dann ist äquivalent:

- 1. b ist ganz über A.
- 2.  $A[b] = \{f(b) \mid f \in A[T]\} = \{\sum_{i=1}^{n} \varphi(a_i)b^i \mid a_i \in A, n \in \mathbb{N}\}$  ist eine endliche A-Algebra (d.h. A[b] ist als A-Modul endlich erzeugt)
- 3. A[b] ist in einem Unterring  $C \subseteq B$  enthalten, sodass C eine endliche A-Algebra ist.

Beweis. • 1) $\Rightarrow$ 2): b ist ganz über A, also gibt es  $a_i \in A$ , sodass  $b^n = -(\varphi(a_{n-1})b^{n-1} + ... + \varphi(a_0))$ . Dann auch

$$b^{n+r} = -(\varphi(a_{n-1})b^{n-1+r} + \dots + \varphi(a_0)b^r)$$

für alle  $r \geq 0$ . Dann ist A[b] der A-Modul, der von  $1,b,...,b^{r-1}$  erzeugt wird.

- 2)  $\Rightarrow$  3): C = A[b].
- 3)  $\Rightarrow$  1): Sei  $U: C \to C, c \mapsto bc$ . Mit 4.23 folgt, dass es  $a_i \in A$  gibt, sodass  $u^n + a_{n-1}u^{n-1} + ... + a_0 = 0 \in \text{End}_A(C)$ . Dann ist aber (mit b = u(1))

$$b^{n} + \varphi(a_{n-1})b^{n-1} + \dots + \varphi(a_{0}) = 0$$

**Satz 6.5.** Sei  $\varphi: A \to B$  ein Ring Homomorphismus. Dann sind äquivalent:

- 1.  $\varphi$  endlich
- 2.  $\varphi$  ist von endlichem Typ und ganz
- 3. Es gibt  $b_1,...,b_n \in B$ , sodass  $b_i$  ganz über A ist und  $B = A[b_1,...,b_n]$

Beweis. durch Ringschluss:

- 1)  $\Rightarrow$  2): nach 6.4
- 2)  $\Rightarrow$  3): Betrachte die Abbildung  $A[T_1,...,T_n] \xrightarrow{\sim} B$ , wobei  $b_i := \psi(T)$ .
- 3)  $\Rightarrow$  1): Sei  $B = A[b_1, ..., b_n]$  mit  $b_i$  ganz über A. Wir wissen, dass  $A[b_1]$  eine endliche A-Algebra ist. Sei nun  $A_k := A[b_1, ..., b_k]$  für  $k \leq n$ . Dann ist  $A_k = A_{k-1}[b_k]$

**Satz 6.6.** Seien die Ring-Homomorphismen  $\varphi: A \to B$ ,  $\psi: B \to C$  ganz. Dann ist auch  $\psi \circ \varphi$  ganz.

Beweis. OE (referenz auf bem)  $A \subseteq B \subseteq C$ . Sei  $x \in C$ , also existieren  $b_0, ..., b_{n-1} \in B$  sodass  $x^n + b_{n-1}x^{n-1} + ... + b_0 = 0$ .

Betrachte nun  $B' = A[b_0, ..., b_{n-1}]$ . Dann ist B' ein endlich erzeugter A-Modul und B'[x] ist ein endlich erzeugter B'-Modul.

(d.h. es gibt surjektive Abbildungen  $A^r \to B', (B')^k \to B'[x],$  also auch surjektives  $B^{rk} \to B'[x])$ 

Also ist B'[x] ein endlich erzeugter A-Modul und damit ist nach 6.4 x ganz über A.

## 6B Ganzer Abschluss

**Korollar 6.7.** Sei  $\varphi: A \to B$  ein Ring-Homomorphismus. Dann ist

$$C := \{ b \in B \mid b \text{ ist ganu ""uber } A \}$$

$$(6.7.1)$$

ein Unterring von B.

Beweis. Sei  $x, y \in C$ . Betrachte A[x, y] (ist nach 6.5 endliche A-Algebra). Dann ist mit 6.5 die Abbildung  $A \to A[x, y]$  ganz. Insbesondere sind  $x \cdot y, x \pm y \in A[x, y]$  ganz über A.

**Definition 6.8.** 1. Sei  $\varphi A \to B$  ein Ring-Homomorphismus. Der Unterring C (aus 6.7.1) wird der **ganze Abschluss von** A **in** B genannt.

2. A heißt ganz abgeschlossen, falls  $C = \varphi(A)$ .

**Korollar 6.9.** Sei  $\varphi: A \to B$  ein Ring, Homomorphismus und sei C der ganze Abschluss von A in B, dann ist C ganz abgeschlossen.

Beweis. Sei  $b \in B$  und b ganz über C (bezüglich der Inklusion  $C \subseteq B$ ). Da C ganz über A ist, ist auch b ganz über A (vgl 6.6). Also ist  $b \in C$ .

Bemerkung6.10. Sei  $\varphi:A\to B$ ein ganzer Ring-Homomorphismus,  $\mathfrak{b}\subseteq B$ ein ideal. Dann ist

$$A/\varphi^{-1}(\mathfrak{b}) \to B/\mathfrak{b}$$

auch ganz.

Satz 6.11. Sei  $\varphi: A \to B$  ein Ring-Homomorphismus,  $C \subseteq B$  der Ganze Abschluss von A in B und sei  $S \subseteq A$  ein multiplikative Teilmenge. Dann ist  $\varphi(S)^{-1}C$  der ganze Abschluss von  $S^{-1}A$  in  $\varphi(S)^{-1}B$ . Insbesondere ist  $\varphi(S)^{-1}B$  ganz über  $S^{-1}A$ , falls  $\varphi$  ganz ist.

Beweis. OE  $A\subseteq B\subseteq C$ . Wir zeigen zuerst, dass  $S^{-1}C$  ganz über  $S^{-1}A$ . Sei dazu  $\frac{c}{s}\in S^{-1C}$ . Es existieren  $a_i$ , sodass  $c^na_{n-1}c^{n-1}+\ldots+a_0=0$ . Dann ist

$$\left(\frac{c}{s}\right)^n + \left(\frac{c}{s}\right)^{n-1} \underbrace{\left(\frac{a_{n-1}}{s}\right)}_{\in S^{-1}A} + \dots + \frac{a_0}{s^n}$$

ist Ganzheitsgleichung für  $\frac{c}{s}$  über  $S^{-1}A$ , also ist  $\frac{c}{s}$  ganz über  $S^{-1}A$ . Sei nun  $\frac{b}{s}\sin S^{-1}B$  ganz über  $S^{-1}A$ , d.h. es gibt  $a_i\in A, s_i\in S$ , sodass

$$\left(\frac{b}{s}\right)^n + \frac{a_{n-1}}{s_{n-1}} \left(\frac{b}{s}\right)^{n-1} + \dots + \frac{a_0}{s_0} = 0 \tag{*}$$

Sei  $t = s_0 \cdot ... \cdot s_{n-1}$ . Multipliziere  $(\star)$  mit  $(ts)^n$ , dann ist

$$(tb)^n + a_{n-1}x_1(tb)^{n-1} + \dots + x_n = 0$$

(wobei  $x_1, ..., x_n \in A$ )Ganzheitsgleichung von  $t \cdot B$  über A.

**Definition 6.12.** Ein Nullteiler freie Ring heißt **ganz Abgeschlossen**(ohne Spezifizierung worin) oder **normal**, falls A ganz abegschlossen in Quot(A).

Satz 6.13. Jeder faktorielle Ring ist normal

Beweis. in Beispiel 6.3.

## 6C Going-Up

**Satz 6.14.** Sei B ein nulltieiler freier Ring und  $A \subseteq B$  ein Unterring und sei B ganz über A.

Dann ist A genau dann ein Körper wenn B ein Körper ist.

Beweis. • Sei A Körper und  $y \in B$  mit  $y \neq 0$ . Nehem Ganzheitsgleichung von y über A mit minimalem Grad:

$$y^n + a_{n-1}y^{n-1} + \dots + a_0 = 0$$

Da B nullteilerfrei ist, gilt  $a_0 \neq 0$ .

(Nehme an , dass  $a_0 = 0$ , dann  $y(y^{n-1+a_{n-1}y^{n-2}+...+a_1}) = 0$  also Grad neith minimal)

Sei  $\delta := -a_0^{-1}(y^{n-1} + a_{n-1}y^{n-2} + ... + a_1) \in B$  mit  $\delta y = 1$ . Also ist B Körper.

• Sei nun B Körper,  $x \in A \setminus \{0\}$ . Es gilt  $x^{-1} \in B$ , also ganz über A. Also finden wir zur Gleichung  $x^{-m} + a_{m-1}x^{-m+1} + ... + a_0 = 0$  durch Multiplikation mit  $x^{m-1}$ 

$$x^{-1} + \underbrace{a_{m-1} + a_{m-2} + \dots + a_0 x^{m-1}}_{\in A} = 0$$

Also liegt  $x^{-1} \in A$ .

**Korollar 6.15.** Sei  $\varphi: A \to B$  eine ganzer RIng-Homomorphismus. Sei  $q \subseteq B$  Primideal,  $p:=\varphi^{-1}(q)$ . Damit ist q maximal gdw p maximal.

Beweis. Es gilt  $A/p \to B/q$  ist ganz. Satz 6.14 gibt uns, dass A/p genau dann Körper ist, wenn B/q Körper ist. Es folgt die Behauptung

**Korollar 6.16.** Sei  $\varphi: A \to B$  ein ganzer Ring-Homomorphismus, seien  $q \subseteq q' \subset B$  Primideale, so dass  $p := \varphi^{-1}(q) = \varphi^{-1}(q')$ . Dann gilt q = q'

Beweis. In  $A_p = S^{-1}A$ ,  $S = A \setminus p$  ist  $pA_p$  maximal. Betrachte

$$\begin{array}{ccc}
A & \xrightarrow{\varphi} & B \\
\downarrow a \mapsto \frac{a}{1} & & \downarrow b \mapsto \frac{b}{1} \\
A_p & \xrightarrow{\psi = S^{-1} \circ \rho} & B_p
\end{array}$$

Wobei  $pA_p \subset A_p$  und  $qB_p \subseteq B_p = \varphi^{-1}SB$  und auch  $qB_p \subseteq qB_p$  Primideal. Mit 6.11 folgt  $\psi$  ist ganz.

Also gilt OE  $p \subset A$  ist maximal, sodass mit 6.15 folgt, dass q, q' maximal sind und da  $q \subseteq q'$  gilt q = q'.

**Satz 6.17.** Sei  $\varphi: A \to B$  ein injektiver ganzer Ring Homomorphismus. Dann existiert für jedes Primideal  $p \in A$  ein Primideal  $q \in B$  mit  $\varphi^{-1}(q) = p$ .  $(D.h. \operatorname{Spec}(B) \to \operatorname{Spec}(A), q \mapsto \varphi^{-1}(q)$  ist surjektiv.)

Beweis. Ersetze A durch  $A_p$ , dann gilt OE, dass  $p \subset A$  maximal und A lokal ist.

Da  $\varphi$  injketiv ist folgt  $B \neq 0$ .

Also existiert ein maximales Ideal  $q \subseteq B$  und mit 6.15 ist  $\varphi^{-1}(q)$  maximal, also  $\varphi^{-1}(q) = p$ .

**Theorem 6.18** (Going Up). Sei  $\varphi: A \to B$  ein ganzer injektiver Ring-Homomorphismus und seien  $n \geq m \geq 0$  ganze Zahlen. Sei  $p_i \subsetneq \ldots \subsetneq p_m \subsetneq \ldots \subsetneq p_n \subset A$  eine Kette von Primidealen und sei  $q_1 \subseteq \ldots \subseteq q_n \subset B$  eine Kette von Primidealen mit  $\varphi(q_i) = p_i$  für  $i = 1, \ldots, m$ .

von Primidealen mit  $\varphi(q_i) = p_i$  für i = 1, ..., m. Dann gilt  $q_1 \subsetneq ... \subsetneq q_m$  und es existiert eine Kette von Primidealen  $q_1 \subsetneq ... \subsetneq q_m \subsetneq q_{m+1} \subsetneq ... \subsetneq q_n \subset B$  mit  $\varphi^{-1}(q) = p_i$  für alle i = 1, ..., n.

Beweis. Sei OE n > m,  $n_1 = 1, m = 0$ . Dann folgt mit 6.17, dass  $q_1 \subsetneq \ldots \subsetneq q_m$ : Vollständige Induktion: Sei OE m = 1, n = 2. Betrachte

$$\begin{array}{ccc} A & \stackrel{\varphi}{\longrightarrow} B \\ \downarrow & \downarrow \\ A/p_1 & \stackrel{\overline{\varphi}}{\longrightarrow} B/q \end{array}$$

Wobei  $\overline{\varphi}$  ganz und injektiv ist, da  $\varphi^{-1}(q_i) = p_1$  und  $p_2/p_1 \subseteq A/p_1$ . Dann folgt mit 6.17, dass es das Primideal  $\overline{q_2} \subset B/q_i$  gibt mit  $\overline{\varphi}^{-1}(\overline{q_2}) = p_2/p_1$ . Dass ist  $\overline{q_2} = q_2 \subset B$ , wobei  $q_2$  Primideal mir  $q_2 \supseteq q_1$  und  $\varphi^{-1}(q_2)p_2$ .

# 7 Irreduziblität

# 7A Satz von Gauß

Erinnerung 7.1. 1. Sei A ein nullteilerfreier Ring. Ein Element  $p \in A$  heißt

- (a) **irrefuzibel**, falls  $0 \neq p \notin A^{\times}$  und falls p = ab mit  $a, b \in A$ , so gilt  $a \in A^{\times}$  oder  $b \in A^{\times}$ .
- (b) **Primelelement**, falls  $p \neq 0$  und (p) ist Primideal.

Es gilt, wenn p Primelement ist, so ist p irreduzibel.

- 2. A heißt faktoriell, falls er die folgenden äquivalenten Bedingung erfüllt:
  - (a) Jedes  $0 \neq a \notin A^{\times}$  ist Produkt von irreduziblen Elemente und diese Zerlegung ist eindeutig bis auf Reihenfolge und Multiplikation mit Einheiten.
  - (b) Jedes Elemente  $o \neq a \notin A^{\times}$  ist Produkt von Primelemten.
  - (c) Jedes Irreduzible Element ist ein Primelement und jede aufsteigende Kette von Hauptidealen wird stationär.

Beweis. • b)⇒a): Einführung in die Algebra (Beweis HIR sind faktoriell)

- $\bullet$  a) $\Rightarrow$ c):
  - 1. Sei  $p \in A$  irreduzibel. Seien  $a, b \in A$  mit  $ab \in (p)$ . Setze ab = dp mit  $d \in A$ . Seien  $a = p_1...p_r$ ,  $b = q_1...q_s$  und  $d = l_1...l_t$  irreduzible Zerlegungen. Dann

$$p_1...p_rq_1...q_s = pl_1...l_t$$

Aus der eindeutigkeit folg, dass es ein i gibt sodass  $(p) = (p_i)$  oder ein j, sodass  $(p) = (q_j)$ .

Daraus folgt, p teilt a oder b.

2. gibt, dass j<br/>dese Elemente  $\neq 0$  hat nur endlich viele Teiler. (Bis auf Multiplikation mit Einheiten).

Mit Anderen Worten: Für jedes Hauptideal  $\mathfrak{a} \neq 0$  existieren nur endlich viele Hauptideal, die  $\mathfrak{a}$  enthalten.

 $\Rightarrow$  Jede aufsteigende Kette von Hauptidealen wird stationär.

• c) $\Rightarrow$  b): Sei  $\Sigma := \{(a) \mid 0 \neq a \in A^{\times} undaistnichtProduktvonirreduziblenElementen\}$ . Angenommen  $\Sigma \neq 0$ : Dann folgt mit 5.1

Beispiel 7.2. Jeder Hauptidealring ist faktoriell. Insbesondere auch  $\mathbb{Z}, K[X]$ 

**Definition 7.3.** Sei A ein Ring,  $f = a_m X^m + ... + a_1 X + a_0 \in A[X]$  heißt **primitiv**, falls  $(a_1, ..., a_n) = A$ .

- Beispiel. 1. Sei A faktoriell. Dann ist f genau dann Primitiv, wenn kein Primelement alle  $a_i$  teilt.
  - 2. Seien  $f, g \in A[X]$ . Dann sind f, g genau dann primity, falls fg primitiv.

**Definition 7.3.** Sei A faktoriell. Ein  $c(f) \in A$  heißt **Inhalt von** f, falls c(f) ein größter gemeinsammer Teiler von  $a_1, ..., a_0$  ist.

Bemerkung. Also ist g genau dann primitav, falls  $c(f) \in A^{\times}$ .

Für  $f \in A[X]$  gilt, dass  $f = c(f)\tilde{f}$  mit  $\tilde{f}$  primitv.

Bemerkung. Sei  $f = 3X^{1000} + 30X^7 + 21X + 27$ , dann c(f) = 3 oder -3. Dann  $f = 3\tilde{f}$ , also  $\tilde{f} = X^{1000} + 10X^7 + 7X + 9$ .

**Theorem 7.4** (Satz von Gauß). Sei A ein faktorieller Ring. Dann ist auch A[X] faktoriell.

Die irreduziblen Elemente von A[X] sind:

- 1.  $p \in A$  irreduzibel und
- 2.  $f \in A[X]$  primity, sodass  $f \in Quot(A)[X]$  irreduzibel ist.

Beispiel. Sei  $A = \mathbb{Z}$ ,

- $2X + 4 \in \mathbb{Z}[X]$  ist reduzibel, da 2X + 4 = 2(X + 2)
- $X^3 5 \in \mathbb{Z}[X]$  ist primity und irreduzibel in  $\mathbb{Q}[X]$

Beweis. 1. Seien  $f, g \in K[X] \setminus \{0\}$ . Schreibe  $f = c(f)\tilde{f}, g = c(g)\tilde{g}$  mit  $\tilde{f}, \tilde{g}$  primitiv. Dann  $fg = c(f)c(g)\tilde{g}\tilde{f}$ , sodass c(fg) = c(f) = c(g) gilt.

2. Behauptung: $p \in A$  ist irreduzibel, dann ist  $p \in A[X]$  Primelement:

$$A[X]/pA[X] = (A/p)[X]$$

ist nullteilerfrei (da A/p nullteilerfrei ist). Dann ist  $p \in A$  prim.

- 3. Sei  $q \in A[X]$  primitiv,  $q \in K[X]$  irreduzibel. Behauptung:  $qK[X] \cap A[X] = qA[X]$ :
  - $\bullet$  " $\supseteq$ " ist klar
  - " $\subseteq$ ": Sei  $f \in K[X]$  mit  $qf \in A[X]$ , sei  $f = c(f)\tilde{f}$  mit  $\tilde{f}$  primitv. Dann gilt  $c(qf) \in A$  und c(qf) = c(q)c(f) wobei  $c(q) \in A \times$ . Dann folgt, dass c(q)c(f) = c(f) und damit  $f \in A[X]$ .

Die Behauptung gilt also genau dann wenn  $A[X]/qA[X] \to K[X]/qK[X]$  injektiv ist.

Also ist  $q \in A[X]$  Primelemnt.

4. Jedes  $f \in A[X]$  mit  $0 \neq f \notin A^{\times}$  ist Produkt der Primelemente von (a) und (b).

Schrieeb  $f = c(f)\tilde{f}$ , c(f) ist Produkt von Primelementen in (a) und  $\tilde{f}$  ist primity

Sei  $\tilde{f} = g_1, ..., g_r$  mit  $g_i \in K[X]$  irreduzibel,  $g_i = c_i \tilde{g}_i, c_i \in K^{\times}, \tilde{g}_i$  primitiv.

Es folgt, dass  $\tilde{f} = c_1...c_r\tilde{g}_1...\tilde{g}_r$ . Da  $c(\tilde{f}) \in A^{\times}$  und  $c(\tilde{g}_1...\tilde{g}_r) \in A^{\times}$  ist auch  $c_1...c_r \in A^{\times}$ . Mit 7.1 folgt die Aussage.

**Korollar 7.5.** Sei A ein faktorieller Ring. Dann ist  $A[X_1, ..., X_n]$  faktoriell. Insbesondere folgt dies wenn A Körper.

### 7B Irreduziblitätskriterien

Sei K Körper,  $f \in K[X]$ ,  $f \neq 0$ .

- 0. Sei  $\deg(f) = 0$ , dann f nicht irreduzibel in K[X], da  $f \in K[X]^{\times} = K^{\times}$ .
- 1. Sei  $\deg(f) = 1$ , dann ist f immer irreduzibel in K[X].
- 2. Sei  $\deg(f)=2$  oder  $\deg(f)=3$ , dann ist f genau dann reduzibel, wenn f eine Nullstelle hat.
- 3. Sei deg(f) > 1 und f habe eine Nullstelle, dann ist f reduzibel

**Satz 7.6** (Reduziblitätskriterium). Sei A ein faktorieller Ring, K = Quot(A),  $f = a_n X^n + ... + a_1 X + a_0 \in A[X]$ ,  $zu \ p \in A$  Primelement mit p teilt nicht  $a_n$ . Sei  $\overline{f} \in A/p[X]$  das Bild von f.

Dann folgt aus  $\overline{f}$  irreduzibel in A/p[X], dass f in K[X] irreduzibel ist.

Beweis. Betrachte zuerst f primitiv:

Sei  $f \in K[X]$  reduzibel, dann folgt mit 7.4, dass f in A[X] reduzibel ist. Also gibt es  $g, h \in A[X]$ , mit  $\deg(g), \deg(g) \geq 1$ , sodass f = gh.

Da der Führende Koeffizient von f nach Voraussetzung nicht durch p teilbar ist, sind auch die Führenden Koeffizienten von g,h nicht durch p teilbar.

Da  $\deg(\overline{g}) = \deg(g) \ge 1$  und  $\deg(\overline{h}) = \deg(h) \ge 1$  folgt, dass  $\overline{f} = \overline{g}\overline{h}$  reduzibel ist.

Allgemeiner Fall: Schriebe  $f = c(f)\tilde{f}$  mit  $c(f) \in A \setminus \{0\}$  und  $\tilde{f}$  primitiv. f ist genau dann in K[X] reduzibel, wenn  $\tilde{f}$  in K[X] reduzibel ist.

Im gezeigten Spezialfall folgt aus  $\tilde{f}$  ist reduzibel in A/p[X], dass  $\overline{f}=\overline{c(f)}\overline{\tilde{f}}$  reduzibel ist.

Beispiel. 1. Sei  $f = 3X^4 + 2X^2 + 7X^2 + X - 5 \in \mathbb{Z}[X]$ . Dann gilt mod 2:

$$f = X^4 + X^3 + X^2 + X + 1 \in \mathbb{F}_2[X]$$

Betrachte nun die Reduziblen Polynome mit deg = 2:  $\{X^2 + X + 1, X^2 + 1, X^2\}$ , wobei deren Quadrate keien Teiler von f sind. Also ist f irreduzibel.

2. Sei  $f=X+Y^2+YX-2Y+3\in\mathbb{Q}[X,Y]$  ist gleich  $XY^2+(X-2)Y+3\in(\mathbb{Q}[X])[X]$  modulo X-2 gilt:  $2Y^2+3\in Q[Y]=\mathbb{Q}[X,Y]/(X-2)$  ist irreduzibel, also ist f irreduzibel.

**Satz 7.7** (Eisensteinkriterium). Sei A faktoriell,  $f = a_n X^n + ... + a_1 X + a_0 \in A[X]$  primitiv und es existiert ein Primelement  $p \in A$ , sodass

- 1. p teilt nicht  $a_n$
- 2. p teil  $a_i$  für alle i = 0, ..., n-1
- 3.  $p^2$  teilt nicht  $a_0$

Dann ist f irreduzibel in Quot(A)[X].

Beweis. Sei f reduzibel in A[X], f = gh für  $g, h \in A[X]$  mit  $\deg(g), \deg(f) \ge 1$  (und < n).

Modulo p gilt:  $\overline{a}_n X^n = \overline{f} = \overline{g} \overline{h} \in A/p[X]$  und  $a_n \neq 0$ .

Da die irreduzible Zerlegung Eindeutig in Quot(A/p)[X] ist:

 $\overline{g} = uX^m$ ,  $\overline{h} = vX^r$ , mit  $u, v \neq 0$  und m, r > 0.

Dann sind die Absoluten Koeffizienten von g,h duch p Teilbar, was einen Widerspruch zu 3) darstellt.  $\Box$ 

Beispiel 7.8. Sei A faktorielle  $p \in A$  prim,  $n \ge 1$ . Dann ist  $X^n - p$  irreduzibel.

# 8 Algebraische Körpererweiterungen

# 8A Körpererweiterungen

**Definition 8.1.** Eine K-Algebra  $\iota: K \leftarrow L$  heißst **Körpererweiterung**, falls L Körper ist. (Also  $K \rightarrow L$  injektiv).

Eine **Teilerweiterung** ist ein Unterkörper M von L, sodass  $\iota(K) \subset M$ .

Beispiel 8.2. 1.  $\mathbb{R}$  ist Körpererweitung von  $\mathbb{Q}$  und  $\mathbb{C}$  von  $\mathbb{R}$ .

- 2.  $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\$
- 3. Sei K ein Körper, dann ist  $K \leftarrow \operatorname{Quot}(K[X])$  Körpererweiterung.

**Definition 8.3.** Sei  $K \hookrightarrow L$  Körpererweiterung. Sei  $(M_i)_{i \in I}$  eine Familie von Teilerweiterungen  $M_i \subset L$  und  $S \subset L$  Teilmenge. Dann ist

$$K(S) := \bigcap_{M \subset L \text{Teilerweiterung} S \subset M} M$$

die kleinste Teilerweiterung die S enthält. Genannt die von S erzeugt Teilerweiterung.

$$K(S) = \left\{ \frac{f(s_1,...,s_n)}{g(t_1,...,t_m)} \middle| \begin{array}{l} f \in K[X_1,...,X_n] \\ g \in K[X_1,...,X_m] \end{array} \right. s_i, t_j \in S, \, g(t_1,...,t_m) \neq 0, \, m,n \in \mathbb{N}_0 \right\}$$

Bemerkung. Ist  $S = \{s_1, ..., s_n\}$ , schreibe  $K(s_1, ..., s_n) := K(\{s_1, ..., s_n\})$ 

**Definition 8.4.** Eine Körpererweiterung  $K \hookrightarrow L$  heißt **endlich erzeugt**(als Körpererweitung), falls eine endliche Teilmenge  $S \subset L$  existiert mit K(S) = L.

Beispiel 8.4.  $\mathbb{R}(i) = \mathbb{C} = R[i]$ 

# 8B Primkörper

**Definition 8.5.** Ein Körper K heißt Primkörper, falls  $K = \mathbb{Q}$  oder  $K = \mathbb{F}_p$  (p Primzahl)

**Definition 8.6.** Sei A ein Ring, K ein Körper und  $K \subseteq A$ . Sei  $\varphi : \mathbb{Z} \to A$  der eindeutige Ringhomomorphismus.

Dann ist char(A), die **Charakteristik** von A definiert als

- 1. Wenn  $Ker(\varphi) = \{0\}$ , dann ist char(A) = 0
- 2. Wenn  $\operatorname{Ker}(\varphi) = p\mathbb{Z}$ , für eine Primzahl p, dann ist  $\operatorname{char}(A) = p$ .

Bemerkung. Dann ist  $\varphi(\mathbb{Z})$  der kleinste Unterring von A. Insbesondere ist  $\varphi(\mathbb{Z}) \subset A$ , also ist  $\varphi(\mathbb{Z})$  nullteilerfrei. Da  $\varphi(K) = \mathbb{Z}/\operatorname{Ker}(\varphi)$  ist  $\operatorname{Ker}(\varphi)$  ein Primideal, also ist entweder  $\operatorname{Ker}(\varphi) = \{0\}$  oder  $\operatorname{Ker}(\varphi) = p\mathbb{Z}$  mit p Primzahl.

Bemerkung. Wenn  $(\mathbb{F}_p \to) A \to B \neq 0$  ein Ring-Homomorphismus ist, dann gilt  $\operatorname{char}(A) = \operatorname{char}(B)$ .

**Definition 8.7.** Sei p eine Primzahl, A ein Ring der Charakteristik p. Dann wird der Ring-Homomorphismus  $F:A\to A, x\mapsto x^p$  der **Frobenius-Homomorphismus** von A genannt.

Bemerkung. Es gilt  $p \cdot 1 = 0 \in A$ . Insbesondere gilt für  $x, y \in A$ , dass  $(x+y)^p = x^p + y^p$ , denn

$$(x+y)^p = \sum_{k=0}^p \left( \binom{p}{k} \right) x^{n-k} y^k$$

und  $\binom{p}{k} = \frac{p(p-1)\dots(p-k+1)}{k!}$  ist durch p teilbar, falls  $1 \le k \le p-1$ . Daraus folgt, dass die Abbildung ein Homomorphismus ist.

**Definition 8.8.** Ein Ring A heißt **perfekt**, falls A einen Körper enthält und falls (A) = I oder char(A) = p und  $FA \to A, x \mapsto x^p$  bijektiv ist.

Beispiel 8.9. 1. Sei  $K = \mathbb{F}_p$  ein endlicher Körper. Dann ist  $\operatorname{char}(K) = p$  und p ein Primzahl.

2. Sei K ein Körper der Charakteristik p. Dann ist K(X) = Quot(K[X]) nicht perfekt, denn  $X \in K[X]$  ist irreduzibel, also keine p-te Potenz.

## 8C Endliche Algebren über Körper

Erinnerung 8.10. Eine K-Algebra B heiß endlich, falls  $\dim_K(B) < \infty$ .

**Lemma 8.10.** Sei R ein Ring, A ein freier R-Modul,  $R \to A$  eine R-Algebra, M ein R-Modul.

Dann ist M ein freier R-Modul und  $\operatorname{rk}_M(R) = \operatorname{rk}_R(A) \operatorname{rk}_A(M)$ .

Beweis. Es gilt 
$$M = A^{(I)} = (R^{(I)})^{(J)} = R^{(I \times J)}$$

**Definition 8.11.** Sei A eine K-Algebra. Dann heißt  $[A:K] := \dim_K(A)$  der Grad der Körpererweiterung.

Bemerkung. Für den Grad der Körpererweiterung gilt:

- 1. Sei  $\varphi:K\to A$  eine K-Algebra. Dann ist [A:K]=1 genau dann wenn  $\varphi$  ein Isomorphismus ist.
- 2. Sei  $K \hookrightarrow L$  ein Körper-Erweiterung. Dann  $[L \otimes_K A : L] = [A : K]$ . (??)
- 3. Sei  $M \hookrightarrow K$  eine Körpererweiterung. Dannn ist [A:M] = [A:K][K:M]. (8.10)

Bemerkung 8.12. 1. Jeder nullteilerfreie Ring ist reduziert.

- 2. Jeder Unterring eine reduzierten Rings ist Reduziert
- 3. Seien  $A_1, A_2$  Ringe. Dann ist  $A_1 \times A_2$  genau dann reduziert, wenn  $A_1$  und  $A_2$  reduziert sind.

**Satz 8.13** (Struktur endlicher K-Algebran). Sei A eine endliche K-Algebran. Da jedes Ideal in A ein K-Untervektorraum in A ist und jede absteigende Kette von Idealen stationär ist, ist A artinsch.

Vorausgriff auf Kapitel 5D: A besitzt endlic viele Primideal  $\mathfrak{m}_1,...,\mathfrak{m}_r$ . Ides dieser Primideale ist maximal und es existieren  $x_1,...,r_x\in\mathbb{N}$ , mit

$$A = \prod_{i=1}^r (A/\mathfrak{m}_i) l_i$$

Dabei ist  $(A/\mathfrak{m}_i)l_i$  ein lokaler Artin-Ring mit Resklassenkörper  $A/\mathfrak{m}_i$ . Ferner gilt

- 1. A ist genau dann reduziert, wenn  $\mathfrak{m}_1 \cap ... \cap \mathfrak{m}_r = \{0\}$  bzw.  $l_1 = ... = l_r$ .
- 2. A ist genau dann nullteilerfrei, wenn r = 1 und  $l_1 = 1$ . Äquivalent dazu ist, dass A Körper ist.

Beispiel 8.14. 1. Sei K Körper,  $f \in K[X]$  mit  $\deg(f) \geq 1$ , sei A = K[X]. Dann ist  $[A:K] = \deg(f)$ .

2. Sei  $f = f_1^{l_1}...f_r^{l_r}$ , wobei  $f_i \in K[X]$  irreduzible, paarweise Teilerfremde Polynome sind und  $l_i \in \mathbb{N}$ .

Dann sind  $\mathfrak{m}_i := (\text{Bild von } f_i \text{ in } A)$  alle maximalen Ideale von A und es gilt

- (a) A ist reduziert  $\Leftrightarrow l_1, ..., l_r = 1$
- (b) A nullteilerfrei  $\Leftrightarrow A$  ist Körper

## 8D Algebraische und transzendente Elemente

**Definition 8.15.** Sei  $\varphi: K \to A$  eine K-Algebra. Dann heißt  $a \in A$  algebraisch über K, falls a ganz über K ist (d.h. es gibt  $f \in K[X]$ ,  $f \neq 0$  mit f(a) = 0)

**Definition 8.15.**  $a \in A$  heißt **transzendent** über K wenn es nicht algebraisch ist.

Beispiel 8.16. 1. Sei  $n \in \mathbb{N}$ ,  $q \in \mathbb{Q}$ . Dann ist jede n-te Wurzel  $\sqrt[n]{a} \in \mathbb{C}$  algebraisch über  $\mathbb{Q}$  (da Nullstelle des Polynoms  $X^n - a \in \mathbb{Q}[X]$ )

- 2.  $\sqrt[3]{2} + \sqrt{7}$  ist algebraisch über  $\mathbb{Q}$
- 3.  $\pi, e \in \mathbb{R}$  sind transzendent über  $\mathbb{Q}$ .

**Definition 8.17.** Sei A eine K-Algebra,  $a \in A$  algebraisch. Betrachte den K-Algebra Homomorphismus  $\varphi : K[X] \to A, f \mapsto f(a)$ . Dann ist  $\mu_{a,K} \in K[X]$  das **Minimal polynom von** a **über** K, wenn  $Ker(\varphi) = (\mu_{a,K})$ .

Bemerkung. Sei A eine K-Algebra,  $a \in A$ . Betrachte den K-Algebra Homomorphismus  $\varphi: K[X] \to A, \ f \mapsto f(a)$ . Dann ist

$$\operatorname{Im} \varphi = \{ f(a) \in A \mid f \in K[X] \} = K[a]$$

und es sind äquivalent:

- 1. a ist algebraisch
- 2.  $\varphi$  ist nicht injektiv
- 3.  $\operatorname{Ker}(\varphi) = (\mu_{a,K})$  für ein eindeutiges, normiertes Polynom  $\mu_{a,K} \in K[X]$ .
- 4.  $[K[a]:K] < \infty$ . In diesem Fall gilt  $[K[a]:K] = \deg(\mu_{a,K})$

Beweis. •  $1)\Leftrightarrow 2)\Leftrightarrow 3$ ) ist klar.

3)⇒4): Es gilt, 3) ist äquivalent dazu, dass K[a] = K[X]/(μ<sub>a,K</sub>) für normierte Polynome μ<sub>a,K</sub>.
 Es folgt, dass K[a] eine endliche K-Algebra ist mit [K[a]: K] = deg(μ<sub>a,K</sub>).

• 4) $\Rightarrow$ 2): gilt, da sonst K[a] = K[X].

8.18 Bestimmung von  $\mu_{a,K}$  I

Sei A eine K-Algebra,  $a \in A$  algebraisch. Sei  $f \in K[X]$  mit f(a) = 0, dann ist  $\mu_{a,K}$  ein Teiler von f. Also gilt für  $f \in K[X]$ :  $\mu_{a,K}$  ist genau dann gleich f, wenn f normiert f(a) = 0 und  $\deg(f) \leq [K[a] : K]$ . Beispiel. Sei  $A = K \times K$ , (mit  $x \mapsto (x,x)$ ), sei a = (1,0). Dann ist  $\mu_{a,K} = X^2 - X = X(X - 1)$ .

**Proposition 8.19.** Sei  $K \hookrightarrow K$  eine Körpererweiterung,  $a \in L$ . Dann ist a genau dann algebraisch über K, wenn K[a] = K(a) ( $\Leftrightarrow K[a]$  Körper).

# Bestimmung von $\mu_{a,K}$ II

Für  $f \in K[X]$ :

 $f = \mu_{a,K}$  genau dann wenn f normiert, f(a) = 0 und f irreduzibel ist.

Beweis. "⇒": Sei aalgebraisch, dann ist  $K[a]\subseteq L$ nullteilerfrei und ganz über K

Dann folgt mit ??, dass K[a] ein Körper ist, sodass K(a) = K[a].

Ferner gilt  $K[a] = K[X]/(\mu_{a,K})$  ist genau dann Körper wenn  $\mu_{a,K}$  eine maximales Ideal, was äquivalent dazu ist, dass  $\mu_{a,K}$  irreduzibel ist. " $\Leftarrow$ ": Sei a transzendent, dann folgt mit  $\ref{eq:K}$ , dass  $K[X] \xrightarrow{\sim} K[a]$ , dann ist K[a] kein Körper.  $\Box$ 

Beispiel 8.20. Sei  $K = \mathbb{Q}$ .

1. Sei  $a = \sqrt{2} \in \mathbb{R}$ , dann ist  $\mu_{a,\mathbb{Q}} = X^2 - 2$  (da  $X^2 - 2$  irreduzibel, normiert und  $(\sqrt{2})^2 - 2 = 0$  ist.)

Allgemein: Sei p Primzahl,  $a=\sqrt[n]{p}\in\mathbb{C}$ . Dann ist  $\mu_{a,\mathbb{Q}}=X^n-p$  (da  $X^n-p$  mit 7.7 irreduzibel ist.)

- 2. Sei  $a=\sqrt[4]{2}$ , dann ist  $\mu_{a,\mathbb{Q}[\sqrt{2}]}=X^2-\sqrt{2}\in\mathbb{Q}[\sqrt{2}][X]$ .
- 3. Sei p Primzahl,  $\zeta \in \mathbb{C}$ ,  $\zeta \neq 1$  mit  $\zeta^p = 1$ . (Dann  $\zeta = e^{\frac{2\pi i k}{p}}$  für k = 1, ..., p-1) Sei  $f = X^p 1$ , dann  $f(\zeta) = 0$  und

$$f = (X - 1)(X^{p-1} + \dots + X + 1)$$

ist irreduzible Zerlegung.

Da  $\zeta \neq 1$ , gilt  $\mu_{a,K} = X^{p-1} + ... + X + 1$ .

Also  $[\mathbb{Q}[\zeta] : \mathbb{Q}] = p - 1$ .

# 8E Algebraische Erweiterungen

**Definition 8.21.** Eine K-Algebrau A heißt **algebraisch über** K, falls A eine ganze K-Algebra ist. (d.h. jedes  $a \in A$  ist algebraisch über K).

**Proposition 8.22.** Sei A eine K-Algebra. Dann sind äquivalent:

- 1.  $[A:K] < \inf$  (d.h. A ist endliche K-Algebra)
- 2. A ist algebraisch und endlich erzeugt K-Algebra.
- 3. Es gibt algebraische Elemente  $a_1, ..., a_n \in A$ , sodass  $A = K[a_1, ..., a_n]$

Beweis. Siehe 6.4

**Proposition 8.23.** Sei  $K \hookrightarrow L$  eine Köerpererweiterung und  $L \hookrightarrow A$  ist L-Algebra, dann gilt:

A ist algebraisch über K genau dann, wenn L algebraische Erweiterung von K und A algebraisch über L.

Beweis. Siehe 6.6

## 8F Algebraischer Abschluss

**Definition 8.24.** Ein Körper K heißt **algebraisch abgeschlossen**, falls die folgenden äquivalenten Bedingungen erfüllt sind:

- 1. Jedes Polynom  $f \in K[X]$  mit  $\deg(f) \geq 1$  besitzt eine Nullstelle in K.
- 2. Jedes Polynom  $f \in K[X]$  mit  $\deg(g) \geq 1$  ist Produkt von Polynomen vom Grad 1.
- 3. Jedes irreduzible Polynom in K[X] hat Grad 1.
- 4. Jede algebraische Körpererweiterung von K hat Grad 1.

Beweis.  $\bullet$  1) $\Leftrightarrow$ 2) $\Leftrightarrow$ 3).

- 3) $\Rightarrow$ 4): Sei  $K \hookrightarrow L$  algebraische Körpererweiterung,  $a \in L$ . Dann folgt aus 3), dass  $\mu_{a,K}$  Grad 1 hat, also  $\mu_{a,K} = X - a \in K[X]$ . Also  $a \in K$ .
- 4) $\Rightarrow$ 3): Sei  $f \in K[x]$  irreduzibel. Dann ist K[X]/(f) eine endliche Körpererweiterung mit  $[K[X]/(f):f] = \deg(f)$ . Es folgt mit 4), dass  $\deg(f) = 1$ .

Beispiel 8.25.  $\mathbb{C}$  ist Algebraisch abgeschlossen.

**Definition 8.26.** Sei K Körper. Eine Algebraische Erweiterung  $K \hookrightarrow \overline{K}$  heißt algebraischer Abschluss von K, wenn  $\overline{K}$  abgeschlossen ist.

Beispiel. 1.  $\mathbb{R} \hookrightarrow \mathbb{C}$  ist algebraischer Abschluss.

2.  $\mathbb{Q} \hookrightarrow \mathbb{C}$  ist kein algebraischer Abschluss.

Theorem 8.27. Sei K Körper.

Dann existiert ein algebraischer Abschluss von K.

# 8G Fortsetzung von Körperhomomorphismen

Bemerkung 8.28. Seien  $K \hookrightarrow A_1, K \hookrightarrow A_2$  K-Algebren und sei

$$\operatorname{Hom}_{K-\operatorname{Alg}}(A_1A_2) = \{\varphi : A_1 \to A_2 | \varphi \text{ ist } K-\operatorname{Algebra-Homomorphismus} \}$$

Jedes  $\varphi \in \operatorname{Hom}_{K-Algebra}$  ist K-linear.

Falls A-1=L ein Körper,  $A_2\neq 0$ , dann ist  $\varphi$  injektiv und es gilt

- 1.  $[L:K] \leq [A_2:K]$
- 2. Falls  $[L:K]=[A_2:K]\leq \infty$ , dann ist  $\varphi$  ein Homomorphismus von K-Algebren.

**Satz 8.29.** Sei  $K \hookrightarrow L$  und  $K \hookrightarrow L'$  Körpererweiterungen. Sei  $a \in L$  algebraisch über K.

- 1. Sei  $\varphi: K[a] \to L'$  ein K-Algebra-Homomorphismus. Dann ist  $\varphi(a) \in L'$  algebraisch und  $\mu_{\varphi(a),K} = \mu_{a,K}$ .
- 2. Es gibt die Bijektion

$$Inhalt \operatorname{Hom}_{K-Algebra}(K[a], L') \to \{a' \in L' | \mu_{a,K} = 0\}$$
$$\varphi \mapsto \varphi(a)$$

Insbesondere gilt

$$\deg(\mu_{a,K}) = [K[a] : K] \ge \# \operatorname{Hom}_{K-Algebra}(K[a], L')$$

mit Gleichheit genau dann wenn  $\mu_{1,K}$  in L' vollständig in Linearfaktoren zerfällt und alle Nullstellen von  $\mu_{a,K}$  in L' paarweise verschieden sind.

Beweis. Sei  $\varphi: K[a] \to L'$  ein K-Algebra-Homomorphismus.

Dann ist  $\mu_{a,K} = 0$ , denn:

Sei  $\mu_{a,K} = X^+ \lambda_{n-1} X^{n-1} + \dots + \lambda_0 \in K[X].$ 

$$\mu_{a,K}(\varphi(a)) = \varphi(a)^n + \lambda_{n-1}\varphi(a)^{n-1} + \dots + \lambda_0$$

$$= \varphi(a^n) + \varphi(\lambda_{n-1}a^{n-1}) + \dots + \lambda_0$$

$$= \varphi(a^n + \lambda_{n-1} + \dots + \lambda_0)$$

$$= \varphi(0) = 0$$

Also ist  $\varphi(a)$  algebraisch und  $\mu_{\varphi(a),K}$  teilt  $\mu_{a,K}$ .

Da  $\mu_{a,K}$  irreduzibel ist folgt, dass  $\mu_{\varphi(a),K} = \mu_{a,K}$ .

Dies zeugt (1) und dass die Abbildung  $\varphi \mapsto \varphi(a)$  in (2) wohldefiniert ist.

Sei  $a' \in L'$  mit  $\mu_{a,K}(a) = 0$ , dann teilt  $\mu_{a',K}$  das Polynom  $\mu_{a,K}$ , also  $\mu_{a',K}\mu_{a,K}$ .

$$K[a] = \text{Ker}[X]/(\mu_{a,K}) = K[X]/(\mu_{a',K}) = K[a'] \subseteq L$$

stellen K-Algebra Homomorphismen  $\varphi: K[a] \to L'$  mit  $\varphi(a) = a'$  dar.  $\varphi$  ist eindeutig, da die K-Algebra K[a] durch a erzeugt wird.

**Satz 8.30.** Sei  $K \hookrightarrow L$  eine algebraische Erweiterung und sie L' eine algebraische abgeschlossene Erweiterung von K.

- 1. Dass existiert ein K-Algebra-Homomorphismus  $\varphi: L \hookrightarrow L'$ .
- 2. Falls L und L' algebraisch Abschlüssen von K sind, ist  $\varphi$  ein Homomorphismus.

**Korollar 8.31.** Sei  $\overline{K}$  und  $\overline{K}'$  algebraische Abschlüsse von K. Dann existiert ein K-Algebra-Homomorphismus  $\overline{K}_1 \xrightarrow{\sim} \overline{K}_2$ .

Beweis. Sei  $\mathfrak{F} := \{(Z,\tau) \mid K \hookrightarrow Z \subseteq L \text{ Teilk\"orper und } \tau : Z \hookrightarrow L' \text{ K-Algebra-Homomorphismen} \}.$  Für  $(Z,\tau).(Z',\tau')$  schreibe

$$(Z,\tau) < (Z',\tau') :\Leftrightarrow Z \subset Z', \tau = \tau'|_Z$$

Also ist  $\leq$  eine partielle Ordnungn auf  $\mathfrak{F}$ .

Und da  $(K, K \hookrightarrow L') \in \mathfrak{F}$  gilt  $\mathfrak{F} \neq \emptyset$ .

Sei nun  $\xi \subseteq \mathfrak{F}$  eine total geordnete Teilmenge, dass ist

$$\left(\bigcup_{(Z,\tau_Z)\in\xi}Z,\tau\right)$$

mit  $\tau|Z=\tau$  für alle  $(Z,\tau_Z)\in \xi$  eine obere Schranke in  $\mathfrak{F}.$ 

Mit 1.4 folgt, dass es ein maximales Element  $(Z_0, \tau_0) \in \mathfrak{F}$  gibt.

Behauptung:  $Z_0 = L$  (setze dann  $\varphi := \tau_0$ )

Angenommenes existert ein  $a \in L \setminus Z_0$ . Dann ist a algebraisch über  $Z_0$  und

$$\operatorname{Hom}_{Z_0}(Z_0[a], L') \stackrel{\leftrightarrow}{??} \{a' \in L' \mid \mu_{a,Z_0}(a') = 0\} \neq \emptyset$$

Also existiert ...

# 9 Normale und separable Körpererweiterungen

# 9A Zerfällungskörper

**Definition 9.1.** Sei  $\mathfrak{F} \subseteq K[x]$  eine Menge nicht konstanter Polynome. Eine Körpererweiterung  $K \hookrightarrow L$  heißt **Zerfällungskörper** von  $\mathfrak{F}$ , falls gilt

- 1. Jedes  $f \in \mathfrak{F}$  zerfällt über L vollstädnig ein Linearfaktoren
- 2. Für  $f \in \mathfrak{F}$  sei  $R_f := \{a \in L | f(a) = 0\}$ . Dann ist

$$L = K\left(\bigcup_{f \in \mathfrak{F}} R_f\right)$$

Bemerkung. Dann ist  $L = K \left[ \bigcup_{f \in \mathfrak{F}} R_f \right]$  eine algebraische Erweiterung von K.

Beispiel 9.2. Sei  $f \in K[X], \deg(f) \ge 1$  und Sei  $\overline{K}$  ein algebraischer Abschluss von K.

Seien  $a_1, ..., a_{\in} \overline{K}$  die Nullstellen von F.

Dann ist  $K[a_1, ..., a_n] \subseteq \overline{K}$  ein Zerfällungskörper von f.

**Proposition 9.3.** Sei  $\mathfrak{F} \subseteq K[X]$  eine Menge nicht konstanter Polynome.

- 1. Dann existiert ein Zerfällungskörper von  $\mathfrak{F}$ .
- 2. Seien  $L_1$  und  $L_2$  Zerfällungskörper von  $\mathfrak{F}$ , seien  $\overline{L}_1$  und  $\overline{L}_2$  algebraische Abschlüsse von  $L_1$  bzw  $L_2$  und sei  $\varphi: olL_1 \to \overline{L}_2$  ein K-Algebra-Homomorphismus. Dann ist  $\varphi(L_1) = L_2$

Beweis. 1. Sei  $\overline{K}$  ein algebraischer Abschluss und sei  $S:=\{a\in \overline{K}\mid \exists f\in \mathfrak{F}: f(a)=0\}.$ 

Dann ist K(S) Zerfällungskörper von  $\mathfrak{F}$ .

2. Seien  $\overline{L}_1$  und  $\overline{L}_2$  bereits algebraische Abgeschlüsse von K.

Dann folgt ??, dass  $\varphi$  Homomorphismus ist.

Sei  $S_1 := \{ a \in L_1 \mid \exists f \in \mathfrak{F} : f(a) = 0 \}.$ 

Es folgt, dass  $L_1 = K(S_1)$ .

Zeige:  $\varphi(S_1) \subseteq L_2$ . Sei:  $f \in \mathfrak{F}$ ,  $a \in L_1$  Nullstelle von f.

Dann ist  $f(\varphi(a)) = \varphi(f(a)) = 0$ . Also  $\varphi(a) \in \overline{L}_2$ , also Nullstelle von f ist.

Es folgt  $\varphi(a) \in L_2$ .

Also folgt  $\varphi(S_1) \subseteq L_2$ , dann ist  $\varphi(L_1) \subseteq L_2$ .

Analog für  $\varphi^{-1}$ :  $\varphi^{-1}(L_2) \subseteq L_1$ .

Zusammen folgt, dass  $\varphi(L_1) = L_2$ .

Korollar 9.4. Sei  $\mathfrak{F} \subseteq K[X]$  eine Menge nicht konstatnert Polyome, sei  $\Omega$  Körpererweiterung von K und seien  $L_1, L_2 \subseteq \Omega$  Zerfällngskörper von  $\mathfrak{F}$ . Dann ist  $L_1 = L_2$ .

Beweis. Übergang zu einem algebraischen Abschluss von  $\Omega$ :

Sei OE  $\Omega$  ein algebraischer Abgeschlossen.

Dann folgt aus  $L_1, L_2$  ist algebraisch über K, dass  $L_1, L_2 \subseteq \{q \in R \mid a \text{ algebraisch über } K\}$ . Also ist OE  $\Omega$  algebraischer Abschluss von K.

П

Dann ist  $\Omega$  ein algerischer Abschluss von  $L_1$  und von  $L_2$ .

Wende nun ?? an auf  $\overline{L}_1 = \overline{L}_2 \Omega$  und  $\varphi = \mathrm{id}_{\Omega}$ 

Beispiel 9.5. Sei  $p \in \mathbb{N}$  Primzahl, sei  $f = X^3 - p$ . (Es folgt f ist irreduzibel über  $K = \mathbb{Q}$ ) und sei  $\alpha = \sqrt[3]{p} \in \mathbb{R}_{>0}$ .

Sei  $\zeta := e^{\frac{2\pi i}{3}}$ . Dann sind  $\alpha, \zeta \alpha, \zeta^2 \alpha \in \mathbb{C}$  die Nullstellen von f.

Der Zerfällungskörper von f ist

$$\mathbb{Q}[\alpha, \zeta \alpha \zeta^2 \alpha] = \mathbb{Q}[\alpha, \zeta]$$



# 9B Normale Erweiterungen

**Definition 9.6.** Eine algebraische Körpererweiterung  $K \hookrightarrow L$  heißt **normal**, falls eine der folgenden äquivalenten Bedingungen erfüllt ist

- 1. Es existiert eine Menge  $\mathfrak{F}\subseteq K[X]$  mit konstanten Polynomen, sodass L der Zerfällungskörper von  $\mathfrak{F}$  in A ist.
- 2. Sei  $f \in K[X]$  irreduzibel mit Nullstelle in L, dann zerfällt f in L[X] vollständig in Linearfaktoren.
- 3. Für jede Körpererweiterung L' von L und für jeden K-Algebra-Homomorphismus  $\varphi: L \hookrightarrow L'$  gilt  $\varphi(L) = L$ .
- 4. Für jeden algebraischen Abschluss  $\Omega$  von L und für jeden K-Algebra-Automorphismus  $\varphi:\Omega\to\Omega$  gilt  $\varphi(L)=L$ .

Beweis. • 1) $\Rightarrow$ 2): Sei L Zerfällungskörper von  $\mathfrak{F}$ , dann folgt  $\varphi(L)$  ist zerfällungskörper von  $\mathfrak{F}$ . Dann folgt mit  $\ref{eq:property}$ , dass  $\varphi(L) = L$ .

- 3) $\Rightarrow$ 4): Sei  $\varphi: \Omega \xrightarrow{\sim} \Omega$  ein K-Algebra-Automorphismus. Wende 3) auf  $\varphi|_L: L \to \Omega$  an.
- $\bullet$  Sei OE L' algebraisch abgeschlossen. Ersetze L' durch

$$L'_{\text{alg}} := \{ a \in L' | a \text{ ist algebraisch ""uber } K \}$$

Da  $K\subseteq L$  algebraisch ist, folgt, dass  $\varphi(L)\subseteq L'_{\rm alg}$ . Also ist OE L' algebraischer Abschluss von L.

Aus ?? folgt die Exitsnez einer Fortsetzung  $\varphi':L'\to L'$  zu  $\varphi$  und  $\varphi'$  ist Automorphismus.

Also  $\varphi(L) = \varphi'(L) = L$ .

• 3) $\Rightarrow$ 2): Sei  $f \in K[X]$  irreduzible,  $a \in L$  mit f(a) = 0. Sei L' ein algebraischer Abschluss von L,  $b \in L'$  mit f(b) = 0. Zu Zeigen: auch  $b \in L$ . Sei OE f normiert. Dann  $f = \mu_{a,K}$ . Also exitsiert ein eindeutiger K-Algebra-Homomorphismus  $\overline{\varphi}: K[a] \to L'$  mit  $\overline{\varphi}(a) = b$ . Setze nun  $\overline{\varphi}$  fort mit  $\varphi: L \to L'$  (existenz durch  $\ref{quadratic}$ ). Dann folgt durch  $\ref{quadratic}$ ), dass  $\varphi(L) = L$ , also  $\varphi(a) = b \in L$ .

• Sei  $S \subseteq L$  Teilmenge und L = K(S). Sei  $\mathfrak{F} := \{\mu_{a,K} \mid a \in S\}$ . Aus 2) folgt, dass  $\mu_{a,K}$  über L für alle  $a \in S$  in Linearfaktoren zerfällt. Sei  $S' := \{b \in L \mid \exists f \in \mathfrak{F} : f(b) = 0\} \supseteq S$ . Dann ist K(s) = L,  $K(s) = \subseteq K(s') \subseteq L$ . Also L = K(s'), d.h. L ist Zerfällungskörper von  $\overline{f}$ .

Beispiel. Sei L = K[a] normal, dann ist L Zerfällungskörper von  $\mu_{a,K}$ .

**Proposition 9.7.** Sei  $K \hookrightarrow L$  eine normale Körpererweiterung. Sei  $M \subseteq L$  Teilkörpererweiterung.

1. Jeder K-Algebra-Homomorphismus  $\varphi: M \hookrightarrow L$  kann ein einem K-Algebra-Automorphismus  $\overline{\varphi}: L \xrightarrow{\sim} L$  fortgesetzt werden.

- 2.  $K \hookrightarrow M$  ist genau dann normal, wen für jeden K-Automorphims  $\sigma: L \xrightarrow{\sim} L$  gilt  $\sigma(M) = M$ .
- Beweis. 1. Betrachte  $\varphi': M \hookrightarrow L \hookrightarrow L'$  und L' ist algebraischer Abschluss von L.

Dann gibt ?? die Existenz einer Fortsetzung  $\overline{\varphi}':L'\xrightarrow{\sim}L',$  die K-Algebra-Automorphismus ist.

Dann folgt mit 9.6.3, dass  $\overline{\varphi}' = L$ , sodass  $\overline{\varphi} = \overline{\varphi'|_L}$  ein K-Algebra-Automorphismus von L ist.

2. " $\Rightarrow$  ist durch 9.6.3 gegeben. " $\Rightarrow$  Sei L' algebraischer Abgeschluss von L,  $\overline{\sigma}: L' \xrightarrow{\sim} L'$  Fortsetzung von  $\sigma$  und jeder Automorphismus von L ist Einschränkung eines Automorphismus von L'.

Also gilt  $\overline{\sigma}(M) = M$  für alle  $\overline{\sigma}$  Aut<sub>K-Algebra</sub>(L').

Dann folgt mit 9.6.3, dass  $K \hookrightarrow M$  normal ist.

Beispiel 9.8. 1. Sei  $\varphi: K \hookrightarrow L$  Körpererweiterung mit [L:K]=2. Dann ist  $\varphi$  normal.

Beweis. Sei  $f \in K[X]$  irreduzible,  $a \in L$  mit f(a) = 0. Dann ist  $f = \mu_{a,K}$ , also  $\deg(\mu_{a,K}) = [K[a] : K] \le 2$ . Wenn  $\deg(\mu_{a,K}) = 1$ , dann  $\mu_{a,K} = X - a$  mit  $a \in K$ .

Wenn  $\deg(\mu_{a,K}) = 2$  genau dann gilt  $a \in L \setminus K$ . Dann ist  $\mu_{a,K} = (X - a)g$  mit  $g \in L[X]$  vom Grad 1, also  $g = X - b \in L[X]$ .

Also sind ie Nullstellen von  $\mu_{a,K}$  beide in L.

Dann folgt mit 9.6.3, dass  $K \hookrightarrow L$  normal ist.

2. Sei  $K \hookrightarrow \overline{K}$  ein algebraischer Abschluss. Dann ist  $K \hookrightarrow \overline{K}$  eine normale Erweiterung.

(z.B. ist  $\overline{K}$  Zerfällungskörper von  $\{f \in K[x] \mid f \text{ nicht konstant}\}$ ).

3.  $\mathbb{Q} \subset \mathbb{Q}[\sqrt[3]{7}]$  ist nicht normal. Denn  $X^3 - 7$  hat Nullstelle in  $\mathbb{Q}[\sqrt[3]{7}]$ , aber nicht jede Nullstelle von  $X^3 - 7$  liegt in  $\mathbb{Q}[\sqrt[3]{7}]$ :

$$\mathbb{Q} \subset \mathbb{Q}[\sqrt[3]{7}] \subset \mathbb{Q}[\sqrt[3]{7}, \zeta]$$

$$f \ddot{u} r \zeta = e^{\frac{2\pi i}{3}}.$$

Bemerkung 9.9. Seien  $K \hookrightarrow L \hookrightarrow M$  Körpererweiterungen.

- 1. Wenn  $K \hookrightarrow M$  normal ist, dann ist  $L \hookrightarrow M$  normal. (M ist Zerfälllungskörper von  $\mathfrak{F} \subseteq K[X] \subseteq L[X]$ ).
- 2. Aus  $K \hookrightarrow M$  normal folgt i.A. **nicht**, dass  $K \hookrightarrow L$  normal ist mit ??.3.
- 3. Aus  $K \hookrightarrow L$ ,  $L \hookrightarrow M$  normal folgt i.A. **nicht**, dass  $K \hookrightarrow M$  normal.

# 9C Separabilitätsgrad

**Proposition 9.10.** Sei A ein Ring, sei  $E \neq 0$  ein freier A-Modul.

Dann ist die Sequenz  $0 \to M' \to M'' \to 0$  von A-Modul<br/>n genau dann exakt, wenn

$$0 \to E \otimes_A M' \to E \otimes_A M \to E \otimes_A M'' \to 0$$

exakt ist.

(Insbesondere  $E \otimes_A M = 0 \Leftrightarrow M = 0$ )

Beweis. E ist genau dann frei, wenn  $E = A^{(I)}$  mit  $I \neq \emptyset$ . Man erhält insbesondere die Isomorphismen

$$0 \longrightarrow E \otimes_A M' \xrightarrow{\operatorname{id}_E \otimes u} E \otimes_A M \xrightarrow{\operatorname{id}_E \otimes v} E \otimes_A M'' \longrightarrow 0$$

$$\downarrow^{\sim} \qquad \downarrow^{\sim} \qquad \downarrow^{\sim}$$

$$0 \longrightarrow (M')^{(\eta'_i)_{i \in I} \mapsto (u(m'_i)_{i \in I})_{i \in I}} M^{(I)} \longrightarrow (M'')^{(I)} \longrightarrow 0$$

Es folgt die Behauptung.

Bemerkung 9.11. Sei A eine endliche K-Algebra. Dann folgt mit  $\ref{eq:condition}$ , dass  $A = \prod_{i=1}^r A/m_i e_i$ , mit  $m_1, ..., m_r \subset A$  maxmimale Ideale. Sei B eine nullteilerfreie K-Algebra, sie  $\varphi: A \to B$ ein K-Algebra-Homomorphismus. Dann ist  $\varphi(A) \subseteq B$  nullteilerfrei, oder  $\operatorname{Ker}(\varphi) = m_i$  für ein  $I \in \{1, ..., r\}$ . Also faktorisiert  $\varphi$  in  $A \to A/m_i \hookrightarrow B$ - Insebsondere:

$$\operatorname{Hom}_{K-\operatorname{Algebra}}(A,B) = \bigcup_{i=1}^{r} \operatorname{Hom}_{k-\operatorname{Algebra}}(A/m_i,B)$$

Bemerkung 9.12. Sei  $K\hookrightarrow A$  eine K-Algebra,  $K\hookrightarrow K$  eine Körpererweiterung,  $L\hookrightarrow B$  ein L-Algebra. Dann hat man zueinander inverse Bijektionen:

$$\begin{array}{cccc} \operatorname{Hom}_{K\text{-}\operatorname{Algebra}}(A,B) & & \stackrel{1:1}{\leftrightarrow} & & \operatorname{Hom}_{L\text{-}\operatorname{Algebra}}(L\otimes_K A,B) \\ \varphi & & \mapsto & & (l\otimes a\mapsto l\varphi(a)) \\ (a\mapsto \varphi(1\otimes a)) & & \longleftrightarrow & \varphi \end{array}$$

Bemerkung9.15. Sei Aalgebraische  $K\text{-}Algebra,\ K\hookrightarrow L$ Körpererweiterung. Dann

$$[A \otimes_K L : L]_S = [A : K]_S$$

Beweis. Sei  $\Omega$ eine algebraisch abgeschlossene Erweiterung von L. Dann gibt es die Bijektion

$$\operatorname{Hom}_{K-\operatorname{Algebra}} \overrightarrow{1:1} \operatorname{Hom}_{L}(A \otimes_{K} L, \Omega)$$
$$\sigma \mapsto (a \otimes l \mapsto l\sigma(a))$$
$$a \mapsto \tau(a \otimes 1) \leftrightarrow \tau$$

**Lemma 9.16.** Sei A eine endliche K-Algebra. Dann ist  $(A:K)_S$  die Anzahl der maximalen Ideale von  $A \otimes_K \Omega$ . ( $\Omega$  als algebraisch abgeschlossene Erweiterung von K)

Beweis. Mit 9.15 folgt, dass OE  $\Omega = K$ .

Seien  $m_1, ..., m_r \subset A$  die maximalen Ideal. Dann ist  $A/m_i$  eine endliche Körpererweiterung von  $\Omega$ , also  $A/m_I = \Omega$ .

Dann folgt mit 9.11, dass

$$\#\operatorname{Hom}_{\Omega-\operatorname{Algebra}}(A,\Omega) = \#\bigcup_{i=1}^r \operatorname{Hom}_{\Omega-\operatorname{Algebra}}(\underbrace{A/m_i}_{=\Omega},\Omega) = r$$

**Proposition 9.17.** Sei a endliche K-Algebra. Dann gilt

$$[A:K]_S \le [A:K] (= \dim_K(A))$$

Beweis. Sei OE  $K = \Omega$  algebraisch abgeschlossen. Sei  $A = \prod_{i=1}^r A/m_i e_i$ . Also

$$[A:K]_S \stackrel{9.16}{=} r = \sum_{i=1}^r \dim_K \underbrace{(A/m_i)}_{=K}$$

$$\leq \sum_{i=1}^r \dim_K (A/m_i e_i) = [A:K]$$

Bemerkung 9.18. Der Beweis von 9.17 zeigt  $[A:K]_S = [A:K] \Leftrightarrow A \otimes_K \Omega$  ist reduziert  $\Leftrightarrow A \otimes_K \Omega = \Omega \times ... \times \Omega$  (r = [A:K] mal).

**Proposition 9.19.** Sei  $K \hookrightarrow L$  algebraische Körpererweiterung, A ganze L-Algebra.

Dann ist

$$[A:K]_S = [A:L]_S \cdot [L:K]_S$$

Beweis. Sie  $\Omega$  ein algebraischer Abschluss in L. Betrachte

$$\rho: \operatorname{Hom}_{K-\operatorname{Algebra}}(A; \Omega) \to \operatorname{Hom}_{K-\operatorname{Alg}}(L, \omega), \quad \sigma \mapsto \sigma|_{L}$$

 $\rho$ ist surjektiv (??). Sei  $\varphi:L\hookrightarrow\Omega$ ein K-Algebra-Homomorphismus. Dann ist

$$\rho^{-1}(\{\varphi\}) = \{ \sigma \in \operatorname{Hom}_{K-\operatorname{Algebra}}(A, \Omega) \mid \sigma|_{L} = \varphi \}$$
$$= \operatorname{Hom}_{L-\operatorname{Algebra}}(A, \Omega)$$

wobei  $\Omega$ von  $\varphi$ als  $L\text{-}\mathsf{Algebra}$ aufgefasst wird. Also

$$[A:K]_S = \# \operatorname{Hom}_{K-\operatorname{Alg}}(A,\Omega)$$

$$= \sum_{\varphi \in \operatorname{Hom}_{K-\operatorname{Alg}}(L,\Omega)} \# \varrho^{-1}(\{\varphi\})$$

$$= \sum_{\varphi} [A:L]_S$$

$$= [L_K]_S [A_L]_S$$

# 9D Separable Polynome

**Definition 9.20.** Sei  $f = a_n X^n + ... + a_1 X + a_0 \in A[X]$ . Definiere

$$f' := na_n X^{n-1} + (n-1)a_{n-1} X^{n-2} + \dots + 2a_2 X + a_1$$

f' heißt die (formale) **Ableitung** von f.

Bemerkung. Seien  $f, g \in A[X]$  und  $a, b \in A$ .

- Die Ableitung ist Linear: (af + bg)' = af' + bg'
- Es gilt die Leibnitz-Regel (fg)' = fg' + f'g

Beweis. • Linearität. klar.

- Aus der Linearität können wir OE annehmen, dass  $f = X^i, g = X^j$ .

$$(fg)' = (X^{i+j})' = (i+j)X^{i+j-1} = iX^{i-1}X^j + jX^iX^{j-1} = fg' + f'g$$

Beispiel. Sei dim(K) = p > 0. Dann folgt aus  $f = X^p + 1$ , dass  $f' = pX^{p-1} = 0$ .

**Definition 9.21.** Sei  $f \in K[X]$ ,  $a \in K$ . Dann ist

$$\operatorname{Ord}_a(f) := \sup\{n \ge 0 \mid (X - a)^n \text{ teilt } f\}$$

die Ordnung der Nullstelle a von f.

Bemerkung 9.21. •  $\operatorname{Ord}_a(f) = \infty \Leftrightarrow f = 0.$ 

- $\operatorname{Ord}_a(f) = 0 \Leftrightarrow f(a) \neq 0$ .
- $\operatorname{Ord}_a(f) = 1 \Leftrightarrow f(a) = 0 \text{ und } f'(a) \neq 0.$

Beweis. 
$$\operatorname{Ord}_a(f) = 1$$
 genau dann wenn  $f = (X - a)g$  mit  $g(a) \neq 0$ .  $\Leftrightarrow f(a) = 0$  und  $f'(a) = g(a) + g'(a)(a - a) = g(0) \neq 0$ .

**Definition 9.22.** Ein Polynom  $f \in K[X]$ ,  $f \neq 0$  heißt **separabel**, falls alle Nullstellen in einem Zerfällungskörper paarweise verschieden sind.

**Proposition 9.23.** Sei  $\Omega$  eine algebraisch abgeschlossen Erweiterung von K,  $f \in K[X], f \neq 0$ . Dann sind äquivalent:

- 1. f ist separabel
- 2. Alle Nullstellen von f in  $\Omega$  sind verschieden
- 3. f und f' haben in  $\Omega$  keine gemeinsame Nullstelle.
- 4. f und f' sind in K[X] teilerfremd

Beweis. (1) $\Leftrightarrow$  (2) Sei L ein Zerfällungskörper von f. Dann existiert (??) eine eindeutiges Körpererweiterung  $L \hookrightarrow \Omega$ .

- (ii)⇔(iii) aus 9.21
- (iii) $\Leftrightarrow$ (iv) f und f' zerfallen in  $\Omega[X]$  in Linearfaktoren.

Also ist (iii) äquivalent daszu, dass f und f' sind in  $\Omega[X]$  teilerfremd sind. Ist äquivalent  $\Omega \otimes_K K[X]/(f,f') = \Omega[X]/(f,f') = 0$ .

?? gibt uns dann die Äquivalenz zu K[X]/(f, f') = 0, genau dann wenn f, f' auch teilerfremd in K[X] sind.

Beispiel. 1.  $(X^3 - 2)(X - 1) \in \mathbb{Q}[X]$  ist separabel

2. Sei  $K=\mathrm{Quot}(\mathbb{F}_p[T])$  und  $f=X^p-T\in K[X]$  ist nach dem Eisensteinkriterium mit p=T irreduzibel.

Aber f ist nicht separabel:

Im Zerfällungskörper  $K[\sqrt[p]{T}]$  gilt  $f = (X - \sqrt[p]{T})^p$ .

Äquivalent: f ist nciht teilerfremd zu  $f' = pX^{p-1} = 0$ .

**Satz 9.24.** Sei  $f \in K[X]$  irreduzibel. Dann gilt

- 1. f ist separabel genau dann wenn  $f' \neq 0$ .
- 2. Sei char(K) = 0. Dann ist f separabel.

Beweis. 1. Sei f' = 0, dann sind f' und f zueinander teilerfremd und somit (9.23) f separabel.

2. Sei char(K) = 0, dann  $\deg(f') = \deg(f) - 1$ , also  $\deg(f' \ge 0)$ . Also ist  $f \ne 0$ , sodass (1) f separabel ist.

# 9E Separable Algebren

**Definition 9.25.** Eine algebraisch K-Algebra A.

Ein  $a \in A$  heißt **separabel**, falls  $\mu_{a,K}$  separabel ist.

A heißt **separabel**, falls jedes  $a \in A$  separabel ist.

**Theorem 9.26.** Sei A eine endliche K-Algebra und sei  $\Omega$  eine algebraisch abgeschlossen Erweiterung von K.

Dann sind äquivalent:

1. A ist separable K-Algebra

2. 
$$[A:K]_S = [A:K]$$

- 3.  $A \otimes_K \Omega$  ist reduziert.
- 4.  $A \otimes \Omega = \Omega^r$  also  $\Omega$ -Algebra.
- 5. Es existieren  $a_1, ..., a_n \in A$  separabel, sodass  $A = K[a_1, ..., a_n]$
- 6. Es exitsiert  $a \in A$  separabel, sodass A = K[a].

Beweis. Zeige:

(3) $\Rightarrow$ (1) Sei  $a \in A$ . (Zz. a ist separabel)

Dann ist  $K[a] = K[X]/\mu_{a,K} \hookrightarrow A$ .

Dass ist  $\Omega \otimes_K K[a] \hookrightarrow \Omega \otimes_K A$  injektiv.

Dann ist (mit (3))  $\Omega \otimes_K K[a] = \Omega[X]/(\mu_{a,K})$  ist reduziert.

Mit ?? folgt, dass alle Nullstellen von  $\mu_{a,K}$  in  $\Omega$  verschieden sind. Also ist  $\mu_{a,K}$  separabel, also auch a.

- (1)⇒(5) klar
- (6) $\Rightarrow$ (4) Es gelte (6), dann ist  $A = K[X]/(\mu_{a,K})$ . Dann ist

$$A\otimes_K\Omega=\Omega[X]/(\mu_{a,K})\tilde{=}\prod\Omega[X]/(X-\alpha_i)=\prod\Omega$$

Da  $\mu_{a,K}$  in  $\Omega$  in Linearfaktoren zerfällt.

(5) $\Rightarrow$ (4) Seien  $a_1, ..., a_n \in A$ . Wir verwenden (6) $\Rightarrow$ (4). Also gilt  $K[a_i] \otimes_{\Omega} \tilde{=} \Omega^{d}$  und  $\mu_{a,K} = \prod (x - a_i)$ . Dann gilt, dass

$$(K[a_1]) \otimes_K \dots \otimes_K K[a_n]) \otimes_{\Omega} \Omega = (K[a_i] \otimes_K \Omega) \otimes_K \dots \otimes_K (K[a_n] \otimes_K \Omega)$$
$$\tilde{=} \omega^{d_1} \otimes_{\Omega} \Omega^{d_2} \otimes_{\Omega} \dots \otimes_{\Omega}$$
$$= \Omega^{d_1 \cdot \dots \cdot d_n}$$

Wähle nun

$$\varphi: K[a_1]) \otimes_K \dots \otimes_K K[a_n] \to K[a_1, \dots, a_n]$$
$$x_1 \otimes \dots \otimes y_n \mapsto x_1 \cdot \dots \cdot x_n$$

Dann ist  $\varphi$  surjektiver K-Algebra-Homomorphismus.

Es folgt, dass  $A\otimes_K\Omega$  Quotient der  $\Omega$ -Algebra  $\Omega^{d_1\cdot\ldots\cdot d_n}$  und damit  $A\otimes_K\Omega\tilde{=}\Omega^m,\ m\leq d_1\cdot\ldots\cdot d_n$ 

**Definition 9.27.** Ein Körper K heißt **perfekt** wenn char(K) = 0 ist oder  $\operatorname{char}(K) = p > 0 \text{ und } x \mapsto x^p \text{ surjektiv ist.}$ 

Satz 9.27. Sei K perfekt. Dann ist jede endliche Körpererweiterung separabel

Beweis. Sei  $K \hookrightarrow L$  eine endliche Körpererweiterung,  $a \in L$ . Z.z.  $\mu_{a,K}$  ist separabel.

Wir wissen  $\mu_{a,K}$  ist irreduzibel und (9.24) falls char(K) = 0 auch separabel.

Sei nun char(K) = p > 0. Z.z.  $\mu_{a,K} \neq 0$ .

Sei  $\mu_{a,K} = X^n + a_{n-1}X^{n-1} + \dots + a_0$ . Angenommen  $\mu'_{a,K} = nX^n + (n-1)a_{n-1}X^{n-1} + \dots + a_1 = 0$  dann muss  $a_i = 0$ falls p nicht i teilt.

Dann ist  $\mu_{a,K}=X^{pk}+b_kX^{p(k-1)}+\ldots+b_0$  mit  $b_j=a_{p\cdot j}$ . Wähle nun  $\beta_j^p=b_j$ .

Dann ist

$$\mu_{a,K} = \sum_{j} \beta_{j}^{p} X^{pj} = \left(\sum_{j} \beta_{j} X^{j}\right)^{p}$$

Also ist  $\mu_{a,K}$  nicht irreduzibel. Widerspruch!

Beispiel 9.28. Sei  $K = \text{Quot}(\mathbb{F}_{\scriptscriptstyle{1}}[T])$ .

Dann ist  $K(\sqrt[p]{T})$  eine nicht separable Erweiterung von K.

**Proposition 9.29.** Sei  $K \leftarrow L$  eine endliche Körpererweiterung,  $L \leftarrow A$  endliche L-Algebra,  $A \neq 0$ . Dann gilt:

A ist genau dann separable K-Algebra, wenn A separabel L-Algebra und Lseparabel K-Algebra.

Beweis. Sei A separabel K-Algebra. Dies ist äquivalent (9.26)dazu, dass

$$[A:L][L:K] = [A:K] = [A:K]_S = [A:L]_S[L_K]_S$$

 $\Leftrightarrow$  A ist separable L-Algebra und L ist separable K-Algebra.

#### 9F Satz vom primitiven Element

**Satz 9.30.** Sei  $G \subseteq (K^{\times}, \cdot)$  eine endliche Untergruppe. Dann ist G zyklisch  $(\Leftrightarrow G = (\mathbb{Z}/n\mathbb{Z}, +))$ 

Beweis. Sei G endliche abelsche Gruppe.

Dann  $\prod_{i=1}^r \mathbb{Z}/n_i\mathbb{Z}$  mit  $1 < n_r$  und  $n_r|n_{r-1}$ :  $|n_1$ . ALso gilt für jedes  $g \in G \subseteq K^{\times}$ , dass g Nullstelle von  $X^{n_1} - 1 \in K[X]$ , Also  $\#G \subset n_1$ , Also  $G = \mathbb{Z}/n_1\mathbb{Z}$ .

**Definition 9.31.** Sei A eine endliche separable K-Algebra und sei  $a \in A$  mit A = K[a] dann heißt a **primitves** Element.

**Theorem 9.31** (Satz vom primitiven Element). Sei A eine endliche separable K-Algebra. Dann existiert ein primitives Element  $a \in A$ .

Beweis. Sei  $\Omega$  eine algebraisch abegschlossen Erweiterung von K zu  $\operatorname{Hom}_{K-\operatorname{Algebra}}(A,\Omega)=$  $\{\varphi_1, ..., \varphi_m\}, m = [A:K]_S = [A:K].$ 

- 1. Sei  $a \in A$ . Z.z. a ist primitives Element ist äquivalent  $\varphi_i(a) \neq \varphi_j(a)$  für alle  $i \neq j$ :
  - " $\Rightarrow$ " ist klar, da a Erzeuger von A als K-Algebra ist.
  - "<br/>-" Seien  $\varphi_i(a) \neq \varphi_j(a)$  für alle  $i \neq j$ , dann sind auch  $\varphi_I|_{K[a]}$  paarweise verschieden.

Also gilt

$$m \le [K[a]:K]_S \le [A:K]_S = [A:K] = m$$

Daraus folgt, dass [K[a]:K] = [A:K] und damit A = K[a].

2. Sei A endlich und separabel,  $\Leftrightarrow$  ( Übung )  $A = K_1 \times ... \times K_d$  für endliche separable Erweiterungen  $K_i$  von K.

Falls  $i = K[a_i]$ , so gilt  $A = K[a,...,a_d]$ .

Als ist A = L endliche separable Körpererweiterung.

- 3. Sei K endlich. Dannn ist L endlich, also  $L^{\times}=\{1=a^0,a,a^2,...\}$  für  $a\in L^{\times}$  (9.30). Dann ist L=K[a].
- 4. Sei nun K unendlich,  $L = [a_1, ..., a_n], a_i \in L$  separabel. Wir beweisen durch Induktion nach n.

n = 1 Klar.

$$n>1 \ L=K[a_1,...,a_{n-1}][a_n]=K[b,a_n].$$
 Also gilt  $\mathrm{OE}L=K[b,c]$ 

5. Z.z. Sei  $N:=\{\lambda\in K\mid \lambda b+c \text{ nicht primitiv}\},$  dann ist  $\#N\leq \frac{m(m-1)}{2}.$ 

$$N \stackrel{(1)}{=} \{\lambda \in K \mid \exists i < j : \varphi_i(\lambda b + b) = \varphi_j(\lambda b + c)\}$$

$$= \bigcup_{1 \le i < j \le m} \underbrace{\{\lambda \in K | \lambda(\varphi_i(b) - \varphi_j(b)) + \varphi_i(c) - \varphi_j(c) = 0\}}_{\text{hat} < 1 \text{ Elemente, da } b, c \ L \text{ erzeugen}}$$

Da K unendlich ist folgt die Behauptung

Beispiel 9.31. Sei  $L = \mathbb{Q}[\sqrt[3]{7}, \sqrt{5}], \varphi : L \to \mathbb{C}.$  (...)

# 10 Galois-Theorie

## 10A Galois-Erweiterungen

**Definition 10.1.** Eine algebraische Körpererweiterung  $K \hookrightarrow L$  heißt **Galois-Erweiterung** oder **galoisch**, falls sie normal und separabel ist.

**Definition 10.2.** Sei  $K \hookrightarrow L$  eine Körpererweiterung. Dann ist

$$\operatorname{Aut}_{K-\operatorname{Algebra}}(L) := \{ \sigma : L \to L, \text{ bijektiver } K\text{-Algebra-Homomorphismen} \}$$

Bemerkung. Sei  $K \hookrightarrow L$  eine Körpererweiterung. Dann ist  $\mathrm{Aut}_{K-\mathrm{Algebra}}(L)$  eine Gruppe bezüglich der Komposition.

 $Beispiel. \qquad 1. \ \operatorname{Aut}_{\mathbb{Q}-\operatorname{Algebra}}(\mathbb{Q}[\sqrt{7}]) = \{\operatorname{id}_{\mathbb{Q}[\sqrt{7}]}, a+b\sqrt{7} \mapsto a-b\sqrt{7}\}$ 

2. 
$$\operatorname{Aut}_{\mathbb{Q}-\operatorname{Algebra}}(\mathbb{Q}[\sqrt[3]{2}]) = \{\operatorname{id}\}$$

**Definition 10.2.** Sei  $K \hookrightarrow L$  eine Galois-Erweiterung. Dann heißt

$$\operatorname{Gal}(L/K) := \operatorname{Aut}_{K-\operatorname{Algebra}}(L)$$

Galoisgruppe von  $K \hookrightarrow L$ .

**Definition 10.3.** Sei  $K \hookrightarrow L$  eine Körpererweiterung und sei  $H \subseteq \mathrm{Aut}_{K-\mathrm{Algebra}}(L)$  eine Untergruppe. Dann heißt

$$L^H := \{ a \in L \mid \sigma(a) = a, \forall \sigma \in H \}$$

der **Fixkörper** von H.

# Hier könnte <del>Ihre Werbung</del> die VL vom 16.01.2016 stehen

**Satz 10.8.** Sei  $K \hookrightarrow L$  eine endliche Galoiserweiterung und  $M \subseteq L$  ein Zwischenkörper.

 $Dann \ ist \ K \hookrightarrow L \ normal \Leftrightarrow \operatorname{Gal}(L/M) \subseteq \operatorname{Gal}(L/K) \ ist \ Normalteiler.$ 

In diesem Fall ist die Sequenz

$$1 \to \operatorname{Gal}(L/M) \to \operatorname{Gal}(L/K) \to \operatorname{Gal}(M/K) \to 1$$
 
$$\sigma \mapsto \sigma|_M$$

Beweis. Sei  $\sigma \in \operatorname{Gal}(L/K)$ ,  $H \subseteq \operatorname{Gal}(L/K)$ . Dann ist

$$\begin{split} \sigma(L^H) &= \{\sigma(a) \mid a \in L^H\} \\ &= \{\sigma(a) \mid \forall \gamma \in H : \gamma(a) = a\} \\ &\stackrel{a' = \sigma(a)}{=} \{a' \in L \mid \forall \gamma \in H : \underbrace{\gamma(\sigma^{-1}(a')) = \sigma^{-1}(a')}_{\Leftrightarrow \sigma(\gamma(\sigma^{-1}(a'))) = a'} \} \\ &= L^{\sigma H \sigma^{-1}} \end{split}$$

Sei  $M = L^H$ . Dann ist  $K \hookrightarrow L$  normal  $\stackrel{??}{\Leftrightarrow}$  für alle  $\sigma \in \operatorname{Gal}(L/K)$  gilt  $L^{\sigma H \sigma^{-1}} \sigma(M) = M = L^H$ .

Da $H\mapsto L^H$ injektiv ist, folgt

$$K \hookrightarrow M = L^H \Leftrightarrow \forall \sigma \in \operatorname{Gal}(L/K) : \sigma H \sigma^{-1} = H$$
 
$$\Leftrightarrow H \subseteq \operatorname{Gal}(L/K) \text{ Normalteiler}$$

Dann folgt mit ??, dass  $\sigma \mapsto \sigma|_M$  ist surjektiv und  $\operatorname{Ker}(\sigma \mapsto \sigma|_M) = \operatorname{Gal}(L/M)$ .

Bemerkung 10.9. Bestimmung von  $L^H$ : Sei  $K \hookrightarrow L$  eine endliche Galois-Erweiterung,  $H \subseteq \operatorname{Gal}(L/K)$ .

1. Sei  $a \in L$ . Setze  $Z_a^H := \{ \sigma(a) \mid \sigma \in H \} \subseteq L$ . Dann ist

$$\mu_{a,L^H} = \prod_{b \in Z_a^H} (X - b)$$

- 2. Sei  $a\in L$  mit L=K[a] und sei  $S\subseteq L^H$  die Menge der Koeffizienten von  $\mu_{a,L^H}$ . Dann ist  $L^H=K[S]$ .
- Beweis. 1. Sei  $K\hookrightarrow L$  normal Dann zerfällt  $\mu_{a,L^H}$  über L' vollständig in Linearfaktoren. Die Nullstellen von  $\mu_{a,L^H}$  sind  $\{\sigma(a)\mid \sigma\in \mathrm{Gal}(L/L^H)=H\}$ . Es folgt die
  - 2. Es ist klar, dass  $K[S]\subseteq L^H$ . Zusätzlich ist  $\mu_{a,L^H}$  irreduzibel in K[S][X], also ist  $\mu_{a,L^H}=\mu_{a,K[S]}$ . Dann ist

$$\begin{split} [L:L^H] &\stackrel{L=K[a]}{=} [L^H[a]:L^H] = \deg \mu_{a,L^H} = \deg \mu_{a,K[S]} \\ &= [K[S][a]:K[S]] = [L:K[S]] \end{split}$$

Es folgt die Behauptung.

Behauptung

Beispiel 10.10. Sei  $g = X^3 + a_2X^2 + a_1 + a_0 \in K[X]$  und char $(K) \neq 3$ . Substituiere  $X \mapsto M_{\frac{1}{2}}a_2$ :

$$f = X^3 + aX + b \in K[X]$$

Beachte: f ist genau dann irreduzibel wenn g irreduzibel ist. (bzw separabel) Sei L ein Zerfällungskörper von f (dann ist  $K \hookrightarrow L$  normal) .  $f' = 3X^2 + ... \neq 0$ , also ist f separabel, also ist  $K \hookrightarrow L$  Galois-Erweiterung. Es gilt  $3 \leq [L:K]$  und [L:K] teil 3! = 6, also

- 1. Entweder [L:K]=3,
- 2. oder [L:K] = 6

Gal(L/K) ist isomorph zu einer Untergruppe von  $S_3$ . Also im Fall

- 1.  $Gal(L:K) = A_3 := \{ \sigma \in S_3 \mid sgn(\sigma) = 1 \}$
- 2.  $Gal(L/K) = S_3$

Seien  $a_1, a_2, a_3 \in L$  die Nullstellen von f. Schriebe

$$\delta_f = \prod_{i \le i < j \le 3} (a_i - a_j) = (a_1 - a_2)(a_1 - a_3)(a_2 - a_3)$$

 $\Delta_f:=\delta_f^2$ heißt die **Diskriminante** von f. Jedes  $\sigma\in \mathrm{Gal}(L/K)$ permutiert die Nullstellen und

$$\sigma(\delta_f) = \operatorname{sgn}(\sigma)\delta_f$$

Es folgt  $sgn(\Delta_f) = \Delta_f$ .

Also  $\Delta_f \in L^{\operatorname{Gal}(L/K)} = K$ . Es ist  $\Delta_f = -4a^3 - 27b^2$ :

und  $\delta_f \in K$  genau dann wenn  $\operatorname{Gal}(L/K) = A_3$ .

Fazit:  $[L:K] = 3 \Leftrightarrow \operatorname{Gal}(L:K) = A_3 \Leftrightarrow \Delta_f \text{ ist Quadrat.}$ 

### 11 Anwendung der Galois-Theorie

#### 11A Endliche Körper

Bemerkung 11.1. Sei K ein endlicher Körper.

- 1.  $\operatorname{char}(K) = p > 0$  dann ist  $\#K = p^m$  mit  $m = K : \mathbb{F}_p$
- 2. K ist perfekt. Insbesondere ist jede algebraische Erweiterung  $K \hookrightarrow L$ separabel.

**Satz 11.2.** Sei p Primzahl und  $\overline{\mathbb{F}_p}$  ein algebraischer Abschluss von  $\mathbb{F}_p$ . Dann ist für alle  $m \in \mathbb{N}$ :

$$K = \{ a \in \overline{\mathbb{F}_p} \mid a^{p^m} = a \}$$

ein Körper mit  $p^m$  Elementen.

Jeder Körper mit  $p^m$  Elementen ist Zerfällungskörper von  $X^p - X \in F_p[X]$ . (Dann ist K, K' Körper mit  $p^m$  Elementen, K = K'.)

Es gilt: K besteht genau aus den Nullstellen von  $X^p - X$ .

Beweis. Sei  $f = X^{p^m} - X$ , dann ist f' = -1, also ist f separabel. Es folgt  $\#\{a \in \overline{\mathbb{F}_p} \mid a^{p^m} = a\} = p^m$ .

Sei K ein beliebiger Körper mit  $p^m$  Elementen.

Wähle einen  $\mathbb{F}_p$ -Algebra-Homomorphismus  $K \hookrightarrow \overline{\mathbb{F}_p}$  (betrachte K als Unterkörper

Also 
$$K^{\times} = \{a \in \overline{F_p} \mid a^{p^m - 1} = 1\}$$
. Es folgt  $K = \{a \in \overline{\mathbb{F}_p} \mid a^{p^m} = a\}$ 

**Satz 11.3.** Sei K ein endlicher Körper, sei  $q := \#K, K \hookrightarrow L$  eine endliche Erweiterung und d := [L : K].

Dann ist  $K \hookrightarrow L$  Galois-Erweiterung mit  $Gal(L/K) = \mathbb{Z}/d\mathbb{Z}$  erzeugt von  $\varphi$ :  $X \mapsto x^q$ .

Beweis. Aus 11.2 folgt, dass  $K \hookrightarrow L$ . Dann ist

$$L = \{ a \in \overline{L} \mid a^{q^d} = a \}$$

$$K = \{a \in \overline{L} \mid a^q = a\}$$

Also  $\varphi \in \operatorname{Gal}(L/K)$  hat Ordnung d, und dann  $\operatorname{Gal}(L/K)$  ist zyklisch.

#### 11BZyklische Erweiterungen

**Definition 11.4.** Sei  $n \in \mathbb{N}$ . Ein  $\xi \in K$  heißt n-te **Einheitswurzel**, falls  $\xi^n = 1$ . Definiere  $\mu_n(K) := \{ \xi \in K \mid \xi^n = 1 \} \subseteq K^{\times}$  als Menge der n-ten Einheitswurzeln von K.

Bemerkung.  $\mu_n(K)$  ist Untergruppe von  $(K^{\times}, \cdot)$ .

Bemerkung 11.5. Sei  $n \in \mathbb{N}$ . Definiere m := n, falls  $\operatorname{char}(K) = 0$ . Falls  $\operatorname{char}(K) = p > 0$  schreibe  $n = p^r m$   $(r \in \mathbb{N}_0)$  mit m teilerfrems zu p.

- 1.  $\mu_n(K) = \mu_m(K)$
- 2.  $\mu_n(K)$  ist endlich erzeugte zyklische Gruppe und  $\#\mu_n(K)$  teilt m.
- 3. Ist K algebraisch abgeschlossen, dann ist  $\#\mu_n(K)$

Beweis. 1.  $\mu_n(K) = \{\text{Nullstellen von } X^n - 1 \text{ in } K\}. \text{ Nun gilt}$ 

$$X^{n} - 1 = (X^{m})^{p^{r}} - 1 = (X^{m} - 1)^{p^{r}}$$

Also gilt  $\mu_n(K) = \{ \text{Nullstellen von } X^m - 1 \text{ in } K \} = \mu_m(K).$ 

2.  $\mu_n(K)$  ist endlich, da  $X^n-1$  nur endlich viele Nullteiler hat. Dann folgt mit  $\ref{Mathematics}$ , dass  $\mu_n(K)$  zyklisch ist. Sei  $\overline{K}$  algebraischer Abschluss. Dann hat  $X^m-1$  genau m Nullstellen, da  $X^m-1$  separabel ist. (Denn  $mX^{m-1} \neq 0$  teilerfremd zu  $X^m-1$ ). Also ist  $\mu_n(\overline{K}) = \mu_n(\overline{K})$  und hat Ordnung m. Da  $\mu_n(K) \subseteq \mu_n(\overline{K})$  Untergruppe ist, folgt  $\#\mu_m(K)$  teilt m.

**Definition 11.6.** Sei  $n \in \mathbb{N}$ . Eine n-te Einheitswurzel  $\xi \in K$  heißt **primitv**, falls  $\operatorname{Ord}(\xi) = n$ .

Beispiel 11.7. 1. Sei  $K = \mathbb{C}$ .

$$\mu_n(\mathbb{C}) = \left\{ e^{\frac{2\pi i k}{n}} \mid k \in \mathbb{Z}/n\mathbb{Z} \right\} \tilde{=} \mathbb{Z}/n\mathbb{Z}$$

 $e^{\frac{2\pi i k}{n}}$ ist genau dann primitiv, wenn kteilerfremd zu mist. Genau dann wenn  $k\in(\mathbb{Z}/n\mathbb{Z})^{\times}$ 

2. Sei  $K = \mathbb{Q}$ 

$$\mu_m(\mathbb{Q}) = \mu_m(\mathbb{R}) = \begin{cases} \{+1, -1\} & n \text{ ist gerade} \\ \{1\} & n \text{ ist ungerade} \end{cases}$$

3. Sei q Primzahlpotenz. Dann

$$\mu_{q-1}(\mathbb{F}_q) = \mathbb{F}_q^{\times}$$

**Definition 11.8.** Die Abildung

$$\varphi: \mathbb{N}_0 \to \mathbb{N}$$
 
$$\varphi(n) \mapsto \#(\mathbb{Z}/n\mathbb{Z}) = \#\{0 \le k < n-1 \mid k \text{ teilerfrems zu } n\}$$

heißt Eulersche  $\varphi$ -Funktion

**Proposition 11.9.** 1. Seien  $m, n \in \mathbb{N}$  teilerfremd, dann

$$\varphi(mn) = \varphi(m)\varphi(n)$$

2. Sei p Primzahl,  $l\in\mathbb{N}.$  Dann ist

$$\varphi(p^l) = p^l - p^{l-1} = (p-1)p^{l-1}$$

Beweis. 1. Es gilt:

$$\varphi(mn) = \#(\mathbb{Z}/mn\mathbb{Z})^{\times} = \#((\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})^{\times}) = \varphi(m)\varphi(n)$$

2. 
$$\varphi(p^l) = \#\{0 \le < p^l \mid p \text{ teilt nicht } k\} = p^l - l^{-1}$$
 und  $p^{l-1} = \#\{0 \le k < p^l \mid p \text{ teilt nicht } k\}$ 

Beispiel.

$$\varphi(1200) = \varphi(3 \cdot 2^4 \cdot 5^2)$$

$$= \varphi(3) \cdot \varphi(2^4) \cdot \varphi(5^2)$$

$$= (3-1)(2^4 - 2^3)(5^2 - 5^1)$$

$$= 2 \cdot 8 \cdot 20 = 2^6 \cdot 5$$

**Satz 11.10.** Die Körpererweiterung  $K \hookrightarrow K[\zeta]$  ist endlich und galoisch. Die Abbildung

$$\alpha: \operatorname{Gal}(K[\zeta]/K) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$$

 $,\sigma\mapsto a_{\sigma},\ wobei\ \sigma(\zeta)=\zeta^{a_0}\ ist\ wohldefinierter\ injektiver\ Gruppen-Homomorphismus.$  Insbesondere  $[K[\zeta]:K]:\#\operatorname{Gal}(K[\zeta]/K)\ teilt\ \varphi(n).$ 

Beweis. •  $K \hookrightarrow K[\zeta]$  ist separabel, denn  $\mu_{\zeta,K}$  teilt  $X^n - 1$  und  $X^n - 1$  ist separabel, da  $n \in K^{\times}$ .  $K[\zeta]$  ist Zerfällunskörper von  $X^n - 1$ , also ist  $K \hookrightarrow K[\zeta]$  normal.

- Z.z  $\alpha$  ist wohldefiniert (insbesondere  $a_0 \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ ): Da Gruppen-Automorphismen die Ordnung erhalten ist  $\sigma(\zeta)$  primitv. Also  $\sigma(\zeta = \zeta^{a_0})$  Einheint von  $\mathbb{Z}/n\mathbb{Z}$ .
- Z.z.  $\alpha$  ist Gruppen-Homomorphismus: Seien  $\sigma, \tau \in \operatorname{Gal}(K[\zeta]/K)$ . Dann ist

$$\tau(\sigma(\zeta)) = \tau(\zeta^{a_0}) = \zeta^{a_\tau a_\sigma}$$

Es folgt, dass

$$\alpha(\tau\sigma) = a_{\tau}a_{\sigma} = \alpha(\tau)\alpha(\sigma)$$

• Z.z.  $\operatorname{Ker}(\alpha) = \{\operatorname{id}\}:$ Sei  $\sigma \in \operatorname{Ker}(\alpha)$  ist äquivalent  $\sigma(\zeta) = \zeta$ . Dann ist  $\sigma = \operatorname{id}$ .

**Theorem 11.11.** Sei  $K = \mathbb{Q}$ ,  $\zeta \in \mathbb{C}$  primitve n-te Einheitswurzel. Dann ist  $\mathbb{Q} \hookrightarrow \mathbb{Q}$  eine endliche Galois-Erweiterung und  $\operatorname{Gal}(\mathbb{Q}[\zeta]/\mathbb{Q}) = (\mathbb{Z}/n\mathbb{Z})^{\times}$  Insbesondere ist  $[\mathbb{Q}[\zeta]:Q] = \varphi(n)$ .

Beweis. Sei  $0 \le r < n$  mit (r, n) = 1

• Z.z. Es existiert  $\sigma \in G := \operatorname{Gal}(\mathbb{Q}[\zeta]/\mathbb{Q})$  mit  $\sigma(\zeta) = \zeta^r$ . Sei  $r = p_1 p_2 ... p_s$  Primfaktoerzerlegung,  $p_i$  Primzahlen mit  $(p_i, n) = 1$ . Falls ein  $\sigma_i \in G$  mit  $\sigma_i(\zeta) = \zeta^{p_i}$ . Dann schreiben  $\sigma = \sigma_1 \sigma_2 ... \sigma_s$ . Dann genügt es zu zeigen, dass  $f := \mu_{\zeta,\mathbb{Q}} = \mu_{\zeta^p,\mathbb{Q}} =: g$  für p Primzahl mit (p, n) = 1.

Sei  $f \neq g$ , dann  $X^n - 1 = fgu$  mit normiertem  $u \in \mathbb{Q}[X]$ . Mit 7.4(?Lemma)  $f, g, u \in \mathbb{Z}[X]$ . Reduktion modulo p ergibt

$$X^n - 1 = \overline{f}\overline{g}\overline{u} \in \mathbb{F}_p[X]$$

 $\overline{g}(X^p)=\overline{g}(X^p)=\overline{f}.$  Sei vein irreduzibbler Teiler von  $\overline{g}.$ 

Dann  $(\star)$  gilt  $v^2$  teilt  $X^n-1$  in  $\mathbb{F}_p[X]$ . Dann ist also  $X^n-1$  nicht separabel in  $\mathbb{F}_p[X]$ . Widerspruch zu (p,n)=1.

Also ist  $\alpha$  separabel und mit 11.10 folgt die Behauptung.

**Satz 11.12** (Satz von Konecker Weber). Sei  $\mathbb{Q} \hookrightarrow L$  eine endliche Galois-Erweiterung mit abelscher Galoisgruppe.

Dann existiert  $n \in \mathbb{N}$  und primitive n-te Einheitswurzeln  $\zeta \in \mathbb{C}$  und eine Einbettung  $L \hookrightarrow \mathbb{Q}[\zeta]$ 

Beweis. Nicht im Zeitrahmen der Vorlesung

## 11C Konstruktion mit Zirkel und Lineal

**Definition 11.13.** Sei  $M \subseteq \mathbb{C}$  Teilmenge.

Dann heißst  $z \in \mathbb{C}$  mit Zirkel und Lineal aus M konstruierbar, falls z durch endlich viele Elementarkonstruktionen aus Elementen von M konstruierbar ist.

### Als Elementarfunktionen aus S bezeichnet man

- 1. Schnittpunkte von zwei Geraden die jeweils durch Punkte in S gegeben sind.
- 2. Schnittpunkte von einer Geraden y durch zwei Punkte in S und einem Kreis mit Mittelpunkt in S und einem Radius der der Entfernung von zwei punkten in S entspricht
- 3. Schnittpunkt von Kreisen wie in (2).

 $K(M) := \{z \in \mathbb{C} \mid z \text{ kann aus } M \text{ mit Zirkel und Lineal konstruiert werden} \}$ 

**Theorem 11.14.** Seien  $0, 1 \in M$ . Setze  $\overline{M} := \{\overline{z} \mid z \in M\}$ .

- 1.  $\mathbb{Q}(M \cup \overline{M}) \hookrightarrow K(M)$  ist eine algebraische Körper-Erweiterung.
- 2. Für  $z \in \mathbb{C}$  sind äquivalent:

(a) 
$$z \in K(M)$$

(b) z ist enthalten in einer Galois-Erweiterung L von  $\mathbb{Q}(M \cup \overline{M})$ , sodass  $[L:\mathbb{Q}(M \cup \overline{M})] = 2^n$  für ein  $n \in \mathbb{N}$ .

Beweis. Bosch, Algebra, §6.3  $\square$ Beispiel 11.15. 1. Quadratur des Kreises: Es ist nicht möglich aus einem Kreis mit Radius 1 ein Quadrat mit gleichem Flächeninhalt mit Zirkel und Lineal zu Konstruieren. Äquivalent:  $\sqrt{\pi} \notin K(\{0,1\})$ .

Beweis. Durch "Satz von Lindemenn":  $\pi$  ist transzendent über  $\mathbb{Q}$ .

2. Verdopplung des Würfels: Es ist nicht möglich aus einem Würfel W mit Kantenlänge 1 einen Würfel W' zu konstruieren, sodass vol(W') = 2 vol(W). Äquivalent:  $\sqrt[3]{2} \notin K(\{0,1\})$ .

Beweis. Angenommen  $\sqrt[3]{2} \in K(\{0,1\})$ , dann  $\sqrt[3]{2} \in L$  mit  $[L:\mathbb{Q}]=2^n$  für ein  $n\in\mathbb{N}$ .

Aus  $\mathbb{Q}[\sqrt[3]{2}] \subseteq L$  folgt jedoch [L:Q] ist durch 3 teilbar. Widerspruch!  $\square$ 

3. Konstruktion eines regelmäßigen n-Ecks: Das in den Einheitskreis eingeschlossenen regelmäßige n-Eck mit Ecke 1 ist genau dann in  $K(\{0,1\})$ , wenn  $\varphi(n)$  eine 2-er Potenz ist.

Äquivalent:  $e^{\frac{2\pi i}{n}} \in K(\{0,1\}) \Leftrightarrow [Q[e^{2\pi i/n}:\mathbb{Q}]] = 2^k$  für ein  $k \in \mathbb{N}$ . Sei  $n = p_q^{l_1}...p_r^{l_r}$ , dann  $\varphi(n) = (p_1^{l_1} - p_1^{l_1-1})...(p_r^{l_r} - p_r^{l_r-1})$ .  $\varphi(n)$  ist 2-er Potenz  $\Leftrightarrow n = 2^k p_1...p_s$ , wobei  $p_i$  verschiedene Primzahlen von der Form  $2^{r_i} + 1$  für  $r_i \in \mathbb{N}$ .

## 11D Auflösbare Erweiterungen

**Definition 11.16.** Eine Körpererweiterung  $K \hookrightarrow L$  heißt **durch Radikale auflösbar**, falls es eine Kette von Erweiterungen  $K = K_0 \subseteq K_1 \subseteq ... \subseteq K_r = L$  gibt, sodass  $K_i = K_{i-1}[a_i]$ , wobei:

- 1. Falls char(K) = 0:  $a_i = \sqrt[n_i]{\alpha_i}$ ,  $\alpha_i \in K_{i-1}$ ,  $n_i \in \mathbb{N}$ .
- 2. Falls  $\operatorname{char}(K) = p > 0$ :  $a_i = \sqrt[n_i]{\alpha_i}$ ,  $\alpha_i \in K_{i-1}$ ,  $n_i \in \mathbb{N}$  mit  $(n_i, p) = 1$ Oder  $a_i$  ist Nullstelle eines Polynoms der Form  $X^p - X - \alpha_i$ ,  $\alpha_i \in K_{i-1}$ .

**Definition 11.17.** Eine Gruppe G heißt **auflösbar**, falls es eine Kompositionsreihe (Kette von Untergruppen)  $\{e\} = G_0 \subseteq g_1 \subseteq ... \subseteq G_r = G$  gibt, sodass  $G_i/G_{i-1}$  abelsch ist für alle i = 1, ..., r.

Bemerkung 11.18. Sei G auflösbar und  $H \subseteq G$  Untergruppe, dann ist H auflösbar. Beispiel 11.19. Die Symmetrische Gruppe  $S_n$  ist genau dann auflösbar, wenn  $n \leq 4$ .

**Definition 11.20.** Eine endliche separable Erweiterung von Körpern  $K \hookrightarrow L$  heißt **auflösbar**, wenn Erweiterung  $L \hookrightarrow M$  existiert, sodass  $K \hookrightarrow L$  galoisch und mit ausflösbarer Galois-Gruppe ist.

Beweis. Man kann M als normale Hülle von  $K \hookrightarrow L$  wählen.

**Theorem 11.21.** Sei  $K \hookrightarrow L$  endlich separabel.

Dann ist  $K \hookrightarrow K$  genau dann durch Radikale auflösbar, wenn  $K \hookrightarrow L$  auflösbar ist.

Beweis. Lang, Algebra, VI, §7

**Definition 11.22.** Sei  $f \in K[X]$  normiert und separabel. Dann heißt f durch Radikale auflösbar, falls der Zerfällungskörper L von f eine auflösbare Erweiterung von K ist.

**Korollar 11.22.**  $f \in K[X]$  ist genau dann durch Radikale auflösbar, wenn Gal(L/K) auflösbar ist.

Beispiel 11.23. Sei char(K) = 0,  $f \in K[X]$  irreduzibel und  $n := \deg(f)$ . Sei L Zerfällungskörper von f. Dann ist  $\operatorname{Gal}(L/K)$  isomorph zu Untergruppen von  $S_n$ .

Also folgt aus  $n \leq 4$ , dass f durch Radikale auflösbar ist.

Falls  $n \geq 5$  und  $\operatorname{Gal}(L/K) \xrightarrow{\sim} S_n$ , dann ist f nicht durch Radikale auflösbar.

Beispiel 11.24. Sei char(K) = 0, deg(f) = 3. Sei OE  $f = X^2 + 3pX + 2q$ , mit  $p, q \in K$ .

Berechnung der Nullstellen von f:

$$u := \sqrt[3]{-q + \sqrt{q^2 + p^3}}, \quad v := \sqrt[3]{-q - \sqrt{q^2 + p^3}}$$

So dass uv = -p.

Dann sind die Nullstellen von f:

$$x_1 = u + p, \quad x_2 = \zeta u + \zeta^2 v \quad x_3 := \zeta^2 u + \zeta v$$

Wobei  $\zeta$  primitive 3-te Einheitswurzel. (In einem Zerfällungskörper von f)

Beweis. Van der Waerden: Algebra(?)

# 12 Endlich erzeugt Algebren über Körper

(Oder: Lineare Algebra)

## 12A Hilbertscher Nullstellensatz

**Theorem 12.1** (Hilbertscher Nullstellensatz). Sei A ein nullteilerfreier Ring,  $K = \operatorname{Quot}(A)$ ,  $K \hookrightarrow L$  eine Körpererweiterung, so dass L als A-Algebra endlich erzeugt ist. Dann gilt

1.  $K \hookrightarrow L$  ist endlich.

2. 
$$\exists a \in A, a \neq 0 : K = A[a^{-1}] := S^{-1}A \text{ mit } S = \{1, a, a^2, ...\}.$$

Beweis. Sei  $M \subseteq L$  endlich, sodass A = A[M]. Induktion nach #M:

#M = 0 , dann ist A = K = L.

## $\#M \ge 1$ :

1. Fall: Alle Elemente aus M sind algebraisch über K.

Dann folgt mit 6.4 sofort (1).

Wähle nun eine K-Basis  $(e_1, ..., e_n)$  von L. Dann kann man als Linearkombination schreiben:

- 1.  $1 \in L$
- 2. Elemente von M
- 3.  $e_i e_j$  für  $1 \le i, j \le n$ .

Sei nun  $a \in A, a \neq 0$ , sodass für jeden Koeffizienten  $c \in K$  einer dieser Linearkombinationen gilt  $a \cdot c \in A$  und sei  $B := \{\sum_{i=1}^n a_i e_i \mid a_i \in A[a^{-1}]\} \subseteq L$ .

Dann ist B ein Unterring der A und M enthält.

Also gilt B = L und insbesondere folgt aus  $K \cdot e_1 \subseteq B$ , dass  $K = A[a^{-1}]$ .

**2. Fall:** Es gilt  $m \in M$ , sodass m transzendent über K ist.

Dann ist L als A[m]-Algebra von  $M \setminus \{m\}$  erzeugt.

Die Induktionsvoraussetzung gibt die Existenz von  $P \in A[X], P \neq 0$ , sodass  $A[m][P(m)^{-1}] = \text{Quot}(A[m])$ .

Sei  $\overline{K}$  ein algebraischer Abschluss von K. Da  $\overline{K}$  unendlich ist gibt es  $x \in \overline{K}$  mit  $P(x) \neq 0$ .

Also existiert ein A-Algebra-Homomorphismus

$$E := A[m][P(m)^{-1}] \to \overline{K}$$
$$m \mapsto x$$

Da $\overline{K}$ abgeschlossen über K ist folgt, dass Ealgebraisch über K ist. Widerspruch zu m transzendent!

**Korollar 12.2.** Sei K ein Körper, A eine endlich erzeugte K-Algebra und  $\mathfrak{m} \subset A$  ein maximales Ideal.

Dann ist  $K \to A/\mathfrak{m}$  eine endlich erzeugte Körpererweiterung.

Beweis. Sei A endlich erzeugt, dann ist  $C := A/\mathfrak{m}$  endlich erzeugte K-Algebra, sodass mit 12.1  $K \hookrightarrow K$  endlich ist.

**Korollar 12.3.** Sei K ein algebraisch abgeschlossener Körper und für  $x = (x_1, ..., x_n) \in K^n$  sei  $\mathfrak{m}_x := (T_1 - x_1, ..., T_n - x_n) \subseteq K[T_1, ..., T_n]$ . Dann ist  $\mathfrak{m}_x$  maximales Ideal von  $K[T_1, ..., T_n]$  und jedes maximale Ideal von

Beweis. Sei  $\varphi: K[T_1,...,T_n] \to K, T_o \mapsto x_i$ .

 $K[T_1,...,T_n]$  ist von dieser Form.

Dann folgt aus  $\operatorname{Ker}(\varphi) = \mathfrak{m}_x$  (da  $\varphi$  surjektiv), dass  $\mathfrak{m}_x$  maximales Ideal ist. Sei nun  $\mathfrak{m} \subset K[T_1,...,T_n]$  maximales Ideal. Dann ist mit  $12.2 \ K[T_1,...,T_n]/\mathfrak{m} = K$ , da K algebraisch abgeschlossen.

Sei nun  $x_i$  Das Bild von  $T_i$ , für i=1,...,m. Dann ist  $\mathfrak{m}_{(x_1,...,x_m)}\subseteq\mathfrak{m}$  und da schon  $\mathfrak{m}_x$  maximales Ideal ist  $\mathfrak{m}_x=\mathfrak{m}$ .

**Korollar 12.4.** Sei K ein Körper, A endlich erzeugte K-Algebra und  $\mathfrak{a} \subseteq A$ Ideal.

Dann ist

$$\mathrm{rad}(\mathfrak{a}) = \bigcap_{\substack{\mathfrak{m} \subset AMax \ Ideal}} \mathfrak{m}$$

Beweis. Aus ?? folgt, dass

$$\operatorname{rad}(\mathfrak{a}) = \bigcap_{\substack{\mathfrak{g} \subset A \\ \mathfrak{p} \text{ Primideal}}}$$

Also ist OE  $\mathfrak{a} = \mathfrak{p}$  Primideal und  $\mathfrak{p} = rad(\mathfrak{p})$ .

Ersetze nun A durch  $A/\mathfrak{p}$ .

Dann ist OE  $\mathfrak{p} = (0)$  und A nullteilerfrei.

Angenommen es gäbe  $x \neq 0$ 

$$x \in \bigcap_{\substack{\mathfrak{m} \subset A \text{Max. Ideal} \\ \mathfrak{a} \subseteq \mathfrak{m}}} \mathfrak{m}$$

Dann ist  $A[x^{-1}] \neq 0$  und endlich erzeugen K-Algebra.

Sei  $M \subseteq A[x^{-1}]$  maximales Ideal. Dann folgt mit 12.2, dass  $A[x^{-1}]/M$  endlicje Körpererweiterung von K ist.

Betrachte nun die Abbildungen

$$\varphi: A \to A[x^{-1}] \to A[x]/M =: L$$

Dann ist  $\operatorname{Im}(\varphi)$  Teilkörper von L und damit  $\operatorname{Ker}(\varphi) \subset A$  maximales Ideal. Da aber  $\varphi(x) \neq 0$ , also  $x \notin \text{Ker}(\varphi)$  ergibt sich ein Widerspruch! 

#### 12BAffine Räume

# Affiner Raum: (nicht naive Version)

Für ein  $n \in \mathbb{N}$  definiere

$$\mathbb{A}_{K}^{n} := (K[T_{1}, ..., T_{n}]) = \{ \mathfrak{p} \subset K[T_{1}, ..., T_{n}] \mid \mathfrak{p} \text{ Primideal} \}$$

als den affinen Raum. ???

Beispiel. Sei n=1:  $\mathbb{A}^1_K=\{(0)\}\cup\{(f)\mid f\in K[T] \text{ ist normiert und irreduzibel}\}.$  Dann sind Abgeschlossenen Teilmengen:  $V((\mathfrak{p}))$  für Polynome  $\mathfrak{p}\in K[T]$ 

$$V((\mathfrak{p})) = \{(f) \mid f \in K[T] \text{ normiert und irreduzible mit } f \text{ teilt } g\}$$

Es folgt, dass  $V((0)) = \mathbb{A}^1_K$ . Beachte: Wenn K endlich ist  $\#\mathbb{A}^1_K = \infty$ .

## Affiner Raum: (naive Version)

Betrachte  $\iota: K^n \to \mathbb{A}^n_K, x = (x_1, ..., x_n) \mapsto \mathfrak{m}_x := (T_1 - x_1, ..., T_n - x_n).$ Dann ist  $\iota$  injektiv. Nun versehen wir  $K^n$  mit der intuitiven Topologie:  $A \subseteq K^n$ ist abgeschlossen ist äquivalent dazu, dass es eine Teilmenge  $M \subseteq K[T_1,...,T_n]$ gibt, sodass

$$A = \{x \in K^n \mid M \subseteq \mathfrak{m}_x\} = \{x \in K^n \mid f(x) = 0 \forall f \in M\} =: V_0(M)$$

Bemerkung 12.7. Sei  $M \subseteq K[T_1,...,T_n]$ . Dann existieren  $f_1,...,f_r \in M$  mit  $(M) = (f_1, ..., f_r).$ 

Insbesondere  $V(M) = V(f_1, ..., f_r)$ .

Beweis. Der Hilbertsche Basissatz gibt die Existenz von  $g_1,...,g_s\in(M)$  mit  $(M) = (g_1, ..., g_s).$ 

Dann kann man  $g_i$  schreiben als  $g_i = \sum_{j=1}^r a_{ij} f_{ij}$ , wobei  $a_{ij} \in K[T_1, ..., T_m]$ und  $f_{ij \in M}$ .

Es folgt, dass  $(M) = (f_{ij})$ .

**Proposition 12.10.** Sei A ein Ring. Dann ist Spec(A) genau dann irreduzibel, wenn es genau ein minimales Primideal  $\mathfrak{p}$  gibt (d.h. wenn  $q \subseteq \mathfrak{p}$  Primideal ist, dann gilt  $q = \mathfrak{p}$ )

Insbesondere: A ist genau dann nullteilerfrei, wenn (0) ein Primideal ist, oder Spec(A) ist irreduzible und A ist reduziert.

Beweis. " $\Leftarrow$ " Sei  $\mathfrak{p} \in \operatorname{Spec}(A)$ , das eindeutige normale Primideal.

Sei  $Y\subseteq \operatorname{Spec}(A)$  abgeschlossen. Dann ist  $Y=V(\mathfrak{a})=\{\mathfrak{p}\in \operatorname{Spec}(A)\mid \mathfrak{a}\subseteq A\}$  $\mathfrak{p}$ } für Ideale  $\mathfrak{a} \subseteq A$ .

- Sei nun  $q \in Y$ ,  $q' \in \operatorname{Spec}(A)$  mit  $q \subseteq q'$ . Dann ist  $q' \in Y$ .
- Sei  $U \subseteq \operatorname{Spec}(A)$  offen,  $q \in U$ ,  $q' \in \operatorname{Spec}(A)$  mit  $q' \subseteq q$ , dann ist

Also gilt  $U \neq \emptyset$  genau dann wenn,  $\mathfrak{p} \in U$ .

"←" Algebraische Geometrie

**Korollar 12.11.** Sei  $n \in \mathbb{N}_0$ . Dann ist  $\mathbb{A}_K^n$  irreduzibel.

**Proposition 12.12.** Sei K ein unendlicher Körper. Dann ist  $K^n \subseteq \mathbb{A}^n_K$  dicht. (dann ist auch  $K^n$  irreduzibel)

Beweis. Sei  $Y=V(\mathfrak{a})\subseteq \mathbb{A}^n_K$  abgeschlossen mit  $K^n\subseteq V(\mathfrak{a})$ . Sei  $f\in \mathfrak{a},\ \mathfrak{m}_x:=(T_1-x_1,...,T_x-x_n)$ . Dann ist  $f\in \mathfrak{m}_x$  und f(x)=0 für alle  $x \in K^n$ .

Da K unendlich ist folgt, dass f = 0. Also ist  $\mathfrak{a} = (0)$  und  $V(\mathfrak{a}) = \mathbb{A}_K^n$ .

**Satz 12.13.** Sei A endlich erzeugte K-Algebra. Dann ist  $Max(A) := \{\mathfrak{m} \subseteq A \}$ A maximales Ideal  $\subseteq Spec(A)$  sehr dicht.. D.h.

$$\{U \subseteq \operatorname{Spec}(A) \ offen\} \to \{U' \subseteq \operatorname{Max}(A) \ offen\}$$
  
 $U \mapsto U \cap \operatorname{Max}(A)$ 

ist bijektiv.

**Korollar 12.14.** Sei K algebraisch abgeschlossen. Dann ist  $K^n \subseteq \mathbb{A}^n_K$  sehr

Beweis von 12.13 und 12.14. • Uu zeigen:

$$\{Y \subseteq \operatorname{Spec}(A) \text{ agbeschlossen}\} \to \{Y' \subseteq \operatorname{Max}(A) \text{ abgeschlossen}\}$$
$$Y \mapsto Y \cap \operatorname{Max}(A)$$

ist injektiv.

• Also ist zu zeigen:  $\overline{A \cap \text{Max}(A)} = Y$ : Sei  $Y = V(\mathfrak{a}), \mathfrak{a} \subseteq A$ Ideal.

$$Y \cap \operatorname{Max}(A) = \{ \mathfrak{a} \subset A \text{ maximal } | \mathfrak{a} \subseteq \mathfrak{m} \}$$

Dann (H18)

$$\overline{Y \cap \operatorname{Max}(A)} = V \left( \bigcap_{\mathfrak{p} \in Y \cap \operatorname{Max}(A)} \mathfrak{p} \right)$$

$$= V \left( \bigcap_{\mathfrak{m} \subset A \text{ maximal } \atop a \subseteq \mathfrak{m}} \mathfrak{m} \right)$$

$$= 12.4V(\operatorname{rad}(\mathfrak{a})) = V(\mathfrak{a}) = Y$$

# 12C Polynomiale Identitäten

Bemerkung 12.15. Inhalt...

**Satz 12.18.** Sei K algebraisch abgeschlossen,  $U := \{A \in M_n(K) \mid A \text{ hat } n \text{ verschiedene Eigenwerte}\} \subseteq M_n(K)$  ist offen und nicht leer.

Insbesondere liegt  $\{A \in M_n(K) \mid A \text{ ist diagonalisierbar}\} \subseteq M_n(K) \text{ dicht.}$ 

Beweis. Betrachte die stetige Abbildung

$$\sigma: M_n(K) \to P_n \to K^n/S_m$$

$$A \mapsto \chi_A \qquad f \mapsto \text{Nullstellen}(f)$$

Dann ist  $U = \sigma^{-1}(\{[a_1,...,a_n] \mid a_i \neq a_j \forall i \neq j\})$ . Dabei ist  $\{[a_1,...,a_n] \mid a_i \neq a_j \forall i \neq j\} \subseteq K^n/S_n$  offen. Also ist  $U \subseteq M_n(K)$  offen.

Bemerkung. Sei  $K = \mathbb{C}$ ,  $U \subseteq M_n(\mathbb{C})$  offen bezüglich der analytischen Topologie (also auch dicht).

**Satz 12.19** (Cailey-Hamilton). Sei K eine Körper. Dann gilt  $\chi_A(A) = 0$ 

Beweis. Ersetze K durch seinen algebraischen Abschluss. Sei nun also OE K algebraisch abgeschlossen.

$$M_n(K) \to M_n(K)$$
  
 $A \mapsto \chi_A(A)$ 

ist polynomial.

Mit 12.18 recht es zu zeigen, dass  $\chi_A(A) = 0$  für diagonaliserbares A.

Es gilt  $\chi_{S^{-1}AS} = \chi_A$  und  $p(S^{-1}AS) = S^{-1}p(A)S$  für alle Polynome  $p \in K[X]$ .

Also gilt OE, dass A Diagonalmatrix ist.

Da aber 
$$\chi_A = \prod_i (X - \lambda_i)$$
 für Eigenwerte  $\lambda_i$  folgt  $\chi_A(A) = 0$ .

**Proposition 12.20.** Seien  $A, B \in M_n(K)$ . Dann gilt  $\chi_{AB} = \chi_{BA}$ .

Beweis. Sei OE K algebraisch abgeschlossen. Es ist zu zeigen, dass für alle  $A_1M_n(K)$ :

$$(G_A):(B\mapsto \chi_{AB})=(B\mapsto \chi_{BA})$$

Mit 12.18 reicht es zu zeigen, dass  $(G_A)$  für diagonalisierbare B. Sei nun B diagonalisierbar,  $S \in GL_n(K)$ , mit  $SBS^{-1}$  ist Diagonalmatrix. Dann gilt (...?)

Bemerkung12.21. Sei Kein Körper Vein endlich-dimensionaler Vektorraum. Wähle eine Basis in V.

Dann gibt es einen Homomorphisus von K-Vektorräumen  $K^n \xrightarrow{\sim} V$ . Die Zariski-Topologie auf  $K^n$  liefert auch eine Topologie auf V.

Bemerkung. Diese Topologie ist unabhängig von der Wahl der Basis.

Beweis.

$$\begin{array}{ccc} V & \stackrel{\sim}{\longrightarrow} & K^n \\ & \downarrow^{\mathrm{id}_V} & & \downarrow^{\mathrm{Basiswechsel}} \\ V & \stackrel{\sim}{\longrightarrow} & K^n \end{array}$$

Da der Basiswechsel eine invertierbare, lineare Abbildung  $\Rightarrow$  Homomorphismus ist, folgt, dass id $_V$  ein Homäomorphismus ist.

**Proposition 12.22.** Sei K ein Körper, A eine endliche separable K-Algebra. Dann ist  $\{a \in A \mid K[a] = A\} \subseteq A$  offen und nicht leer.

Beweis. Mit 9.26 folgt, dass die Menge nicht leer ist.

Sei  $\Omega$  eine algebraisch abgeschlossene Erweiterung von K.

Dann ist  $a \in A$  primitiv  $\Leftrightarrow \varphi(a) \neq \psi(a)$  für alle K-Algebra-Homomorphismen  $\varphi \psi : A \to \Omega$  und  $\varphi \neq \psi$ . (9.26(1))

Es reicht also zu zeigen, dass  $\{a \in A \mid \varphi(a) \neq \psi(a)\} \subseteq A$  offen ist.

Wähle nun  $E \subseteq \Omega$  Unterkörper mit  $[E:K] < \infty$  und  $\varphi(A), \psi(A) \subseteq E$ .

$$\{a\in A\varphi(a)\neq \psi(a)\}=\{a\in A\mid (\varphi-\psi))a\neq 0\}\subseteq A$$

ist offen.  $\varphi, \psi$  sind K-lineare Abbildungen.

## 12D Universelle Identitäten

Beispiel 12.23. Es gilt mit  $A = (a_{ij}), B = (b_{ij}), c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$ , dass

$$\det(AB) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) c_{1,\sigma(1)} \dots c_{n\sigma(n)}$$

$$\det(A)\det(B) = \left(\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1,\sigma(1)} \dots a_{n\sigma(n)}\right) \left(\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) b_{1,\sigma(1)} \dots b_{n\sigma(n)}\right)$$

**Satz 12.24.** Sei  $N \in \mathbb{N}$ ,  $f, g \in \mathbb{Z}[X_1, ..., X_N]$ . Dann sind äquivalent

- 1. f = g
- 2. Für jeden Ring R und für alle  $a_1,...,a_N \in R$  gilt:  $f(a_1,...,a_N) = g(a_1,...,a_N)$ .

3. Es gibt eine offenen, nichtleere Menge  $U \subseteq \mathbb{C}^N$ , sodass f(z) = g(z) für alle  $z = (z_1, ..., z_N) \in U$ .

Beweis. 1) $\Rightarrow$  2) $\Rightarrow$  3) ist klar.

**3**  $\Rightarrow$  **1**) Sei f = g in  $\mathbb{Z}[X - 1, ..., X_N]$ , ist äquivalent zu f = g in  $\mathbb{C}[X_1, ..., X_N]$  und äquivalent zu  $f(z_1, ..., z_N) = g(z_1, ..., z_N)$  für alle  $(z_1, ..., z_n) \in \mathbb{C}^N$ . Da f, g analytisch sind folgt mit dem Identitätssatz, dass f = g auf einer offenen und abgeschlossenen Menge gelten muss, also auf der leeren Menge oder ganz  $\mathbb{C}^N$ .

**Satz 12.25.** Sei R ein Ring,  $A \in M_n(R)$ ,  $A^* = (a_{ij}^*)$  die Adjunkte,  $a_{ij}^* := (-1)^{i+j} \det(A_{ij})$  (streichen der j-ten Spalte und i-ten Zeile). Dann gilt  $AA^* = A^*A = \det(A)I_n$ 

Beweis. Der (i-j)-te Koeffizient von  $(AA^* \text{ oder } A^*A \text{ oder } \det(A)I_n \text{ ist Polynom}$  in den Koeffizienten von A.

Sei OE  $R = \mathbb{C}$ . Dann folgt mit 12.24 (...?)

Satz 12.26. Sei  $A \in M_n(R)$ , R ein Ring.

Für  $I, J \subseteq \{1, ..., n\}$  sei  $A_{I,J}$  die Matrix in der alle  $i \in I$ -ten Zeilen und  $j \in J$ -ten Spalten streicht.

Sei  $\chi_A(X) = X^n + a_1 X^{n-1} + ... + a_n$  und schreibe  $\Sigma_r := \{J \subseteq \{1, ..., n\} \mid \#J = r\}.$ 

Dann ist

$$a_r = (-1)^r \sum_{J \in \Sigma_r} \det(A_{J,J})$$

Beweis. Mit 12.24 und 12.18 folgt, dass OE  $R=\mathbb{C}$  und A diagonalisierbar ist.

**Satz 12.27.** Sei R ein Ring, M, N freie R-Moduln,  $f \in End_R(M)$  und  $g \in End_R(N)$ .

Dann ist

$$\operatorname{tr}(f \otimes g) = \operatorname{tr}(f) \operatorname{tr}(g)$$

und für  $n := \operatorname{rk}_R(N), m := \operatorname{rk}_R(M)$  gilt

$$\det(f \otimes g) = \det(f)^n \det(g)^m$$

Beweis. Wir wissen, das die Spur und Determinante von der Wahl der Basis unabhängig ist.

Also sei OE f gegeben durch  $A \in M_m(R)$ ,  $A = (a_{ij})_{ij}$  und g gegeben durch  $B \in M_m(R)$ .

Dann ist  $f \otimes g$  gegeben durch

$$(\underbrace{a_{ij}B}_{\in M_n(R)})_{1 \le i,j \le m} = \begin{pmatrix} a_{11}B & a_{21}B & \cdots & a_{1m}B \\ a_{21}B & & & \vdots \\ \vdots & & & & \\ a_{m1}B & \cdots & & a_{mm}B \end{pmatrix}$$

Aus 12.24 folgt, dass wir OE annehmen können, dass  $R=\mathbb{C}$  und A,B Diagonalmatrizen sind.

Also ist  $f \otimes g$  gegeben durch  $\operatorname{diag}(a_{ii}b_{jj})_{1 \leq i,j \leq m}$ . Dann

$$\operatorname{tr}(f \otimes g) = \sum_{i,j} a_{ii} b_{jj} = \left(\sum_{i} a_{ii}\right) \left(\sum_{jj} b_{jj}\right) = \operatorname{tr}(f) \operatorname{tr}(g)$$
$$\det(f \otimes g) = \prod_{i,j} a_{ii} b_{jj} = \prod_{i} \left(a_{ii}^{n} \prod_{j} b_{jj}\right) = \prod_{i} a_{ii}^{n} \det(g) = \det(g)^{m} \det(f)^{n}$$

Bemerkung 12.28. Sei R ein Ring,  $f = X^n + a_1 X^{n-1} + ... + a_n \in R[X]$ . Dann heißst

$$C_f = \begin{pmatrix} 0 & & -a_n \\ 1 & \ddots & & \vdots \\ & \ddots & 0 & -a_1 \\ & & 1 & -a_1 \end{pmatrix}$$

die Begleitmatrix von f und es gilt  $\chi_{C_f} = f$ 

Beweis. Wir können auch hier OE annehmen, dass  $R = \mathbb{C}$ . Dann ist der Satz aus der Linearen Algebra bekannt.

**Definition 12.29.** Sei R ein Ring,  $f,g\in R[X]$  normiert vom Grad m bzw n. Wähle die Matrizen  $A\in M_m(R)$  und  $B\in M_n(R)$  mit  $\chi_A=f$  und  $\chi_B=g$ . Dann heißt

$$red(f,g) := det(A \otimes I_m - I_m \otimes B)$$

**Resultante** von f und g.

Alternative Definition:

Sei  $f = a_1 X^n + ... + a_n$  und  $g = b_0 X^m + ... + b_m$ . Dann ist

$$red(f,g) = \det \begin{pmatrix} a_0 & a_1 & \cdots & a_n \\ & \ddots & \ddots & & \ddots \\ & & a_0 & a_1 & \cdots & a_n \\ b_0 & b_1 & \cdots & b_m & & \\ & \ddots & \ddots & & \ddots & \\ & & b_0 & b_1 & \cdots & b_m \end{pmatrix}$$

**Satz 12.30.** Sei R ein Ring,  $f,g \in R[X]$  normiert. Dann ist (f,g) = R[X] genau dann wenn  $red(f,g) \in R^{\times}$ .

Beweis. 1. Sei  $\varphi: R \to R'$  ein Ring-Homomorphismus. Dann folgt aus  $a \in R^{\times}$  auch  $\varphi(a) \in (R')^{\times}$ .

Sei  $f = X^n + a_1 X^{n-1} + ... + a_n \in R[X]$  und sei  $\varphi(f) := X^n + \varphi(a_1) X_{n-1} + ... + \varphi(a_n) \in R'[X]$  Dann gilt die Äquivalenzkette:

- (f,g) = R[X] ist Äquivalent zu:
- Es gibt  $s,t\in R[X]$ , mit sf+tg=1. (Daraus folgt die Existenz von  $s',t'\in R'[X]$ , mit  $s'\varphi(f)+t'\varphi(g)=1$ )

• Durch die Wahl von  $s'=\varphi(s)$  und  $t'=\varphi(t)$  folgt die Äquivalenz zu  $(\varphi(f),\varphi(g))=R'[X]$ 

2. Sei OE R noethersch:

Sei  $S \subseteq R$  die Menge der Koeffizienten von f und g, mit  $\#S < \infty$ .

"⇒" Seien  $f, g \in \mathbb{Z}[S][X]$ . Da  $\mathbb{Z}[S]$  nach dem Hilbertschen Basissatz (???) noethersch ist folgt, dass  $\operatorname{red}(f,g) \in \mathbb{Z}[S]^{\times} \subseteq R^{\times}$ .

"\in " Sei u Inverses von  $\operatorname{red}(f,g)$ , dann ist  $\operatorname{red}(f,g) \in \mathbb{Z}[S,n]^{\times}$ .

Da  $\mathbb{Z}[S,n]$  noethersch ist folgt, dass  $(f,g) = \mathbb{Z}[S,n][X]$  und da R noethersch folgt auch (f,g) = R[X].

3. Sei OE R reduziert und noethersch:

Sei R noethersch, dann ist  $Nil(R) = \{a \in R \text{ nilpotent}\}$  endlich erzeugt, etwa durch  $a_1, ..., a_t$  mit  $a_i^N = 0$  für alle i.

Dann ist  $Nil(R)^{tN} = (0)$ .

Mit dem Lemma von Nakayama folgt  $(f,g) \to R[X]$  ist surjektiv.

Dann ist  $R \xrightarrow{\cdot \operatorname{red}(f,g)} R$  surjektiv genau dann wenn modulo  $\operatorname{Nil}(R)$  surjektiv ist.

Also kann R durch R/Nil(R) entwickelt werden.

Also können wir OE annehmen, dass R reduziert ist.

4. Betrachte

$$\varphi: R \to \prod_{\mathfrak{p} \in \mathrm{Spec}(R)} K(\mathfrak{p})$$

Dann ist  $\varphi$  injektiv und

$$\left(\prod_{\mathfrak{p}\in\operatorname{Spec}(R)}K(\mathfrak{p})\right)^{\times}\cap R=R\setminus\left(\bigcup_{\mathfrak{p}\in\operatorname{Spec}(R)}\mathfrak{p}\right)=R^{\times}$$

Angenommen die Aussage sei bekannt für R=K Körper.

"⇒" Sei (f,g)=R[X], dann ist auch (1)  $(\varphi(f),\varphi(g)=R'[X]$ . Da R' das Produkt von Körpern ist folgt dass  $\operatorname{red}(\varphi(f),\varphi(g))=\varphi(\operatorname{red}(f,g))\in (R')^\times\cap R=R^\times.$ 

" $\Leftarrow$ " Sei  $(f,g) \to R[X]$  surjektiv. Die ist äquivalent dazu, dass alle  $\mathfrak{m} \subset R$  maximal sind.

Dann ist  $(f,g)_{\mathfrak{m}} \to R[X]_{\mathfrak{m}} = R_{\mathfrak{m}}[X].$ 

Also ist OE R lokal und neothersch.

Sei  $\mathfrak{m} \subseteq R$  ein maximales Ideal. Dann gibt es eine Norm

$$|a| := \rho^{\sup\{r \in \mathbb{N}_0 \mid a \in \mathfrak{m}^r\}}$$

für  $\rho \in (0,1)$ .

Dann kann man R zu einem Ring  $\tilde{R}$  vervollständigen und  $R \to \tilde{f}R$  ist treuflach.

Dann gilt für ein maximales Ideal  $\mathfrak{m} \in \tilde{R}$ , dass  $\lim_{m \to 0} \hat{R}/\hat{\mathfrak{m}}^n = \hat{R}$ .