ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

1	2	3	4	5	Σ

Для студентов 2-го курса МФТИ.

6 июня 2007 года

ВАРИАНТ А

1А. В параллельный пучок радиоизлучения с длиной волны $\lambda=3$ см (см. рис.) установили диск из диэлектрика с показателем преломления n=1,5, диаметром D=60 см. В точке P, находящейся на оси диска на расстоянии L=1 м от него, требуется получить нулевую интенсивность излучения. Для этого предлагается вплотную к диску поместить соосно с ним круглую металлическую пластину. Каким надо взять диаметр пластины? Какой при этом должна быть толщина h диска?

2А. При просвечивании тонкой плёнки толщиной d=1,0 мкм. в диапазоне ближнего ИК и видимого света была получена зависимость коэффициента пропускания $\tau=f(1/\lambda)$, изображённая на рисунке. Покажите, что в данном диапазоне длин волн показатель преломления плёнки можно приближённо описать выражением $n(\lambda)=$

 $= B/\lambda$, где B — некоторая постоянная величина, и определите значение этой величины.

3А. Источник света излучает в спектральном интервале $\Delta\lambda=200$ нм со средней длиной волны $\lambda=600$ нм. Требуется выполнить исследование спектрального состава излучения источника с высоким разрешением не хуже $\delta\lambda=2\cdot 10^{-3}$ нм. Для этой цели может быть использован спектрограф с дифракционной решёткой. В лаборатории имеются три высокока-

$N_{\overline{0}}$	n	L	b	
	ш/мм	(cm)	(MKM)	
1	500	10	0,4	
2	1000	10	$0,\!25$	
3	2000	10	0,25	

чественные решётки, их параметры указаны в таблице, в которой n — число штрихов на миллиметр, L — полный размер решётки, b — ширина прозрачных щелей каждого периода решётки. Какую из этих решёток следует использовать для проведения указанных исследований?

4А. На рисунке показана оптическая система, состоящая Π_3 из двух одинаковых линз Π_1 и Π_2 с фокусным расстоянием f=50 см. В их общей фокальной плоскости Φ установлена решётка с узкими щелями и периодом $d_0=2,5\cdot 10^{-2}$ см. Предмет («пешка», изображённая на рисунке) располагается во «входной» плоскости Π_1 (передняя фокальная плоскость линзы Π_2) и освещается параллельным пучком света ($\lambda=5\cdot 10^{-5}$ см). При этом в «выходной» плоскости Π_2 (задней фокальной плоскости линзы Π_2) возникает сфокусированное и при этом размножен-

ное (мультиплицированное) изображение предмета. Определите: 1) период возникающей в выходной плоскости периодической структуры — мультиплицированного изображения; 2) при каком смещении предмета влево от входной плоскости (из Π_1 в некоторую плоскость Π_3) изображение предмета (и при этом мультиплицированное) вновь окажется сфокусированным.

5А. Излучение точечного источника неполяризованного света в интерферометре Майкельсона содержит две близкие спектральные линии одинаковой интенсивности $\lambda_1=5000$ Å и $\lambda_2=5050$ Å. В одно из плеч интерферометра устанавливается «монохроматор» — два скрещенных поляроида (с ортогональными разрешёнными направлениями), между которыми располагается кристаллическая пластинка в $\lambda/2$ для линии λ_1 . Главные оси пластинки составляют

угол 45° с разрешёнными направлениями поляроидов, а $\Delta n = n_e - n_o = 0{,}005$. 1) При какой минимальной толщине пластинки «монохроматор» не пропустит (отфильтрует) компоненту λ_2 ? 2) Какова при этом будет видность наблюдаемой интерференционной картины?

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

1	2	3	4	5	Σ

Для студентов 2-го курса МФТИ.

6 июня 2007 года

ВАРИАНТ Б

1Б. В параллельный пучок радиоизлучения с длиной волны $\lambda=3$ см и интенсивностью I_0 внесли диск из диэлектрика с показателем преломления n=1,5, диаметром D=60 см и толщиной h=2 см (см. рис.). В точке P, находящейся на оси диска на расстоянии L=1,5 м от него, расположен приёмник излучения. Для повышения интенсивности излучения в точке P вплотную к диску приставили соосно с ним круглую металлическую пластину диаметром d. Определить этот диаметр, обеспечивший максимум интенсивности в этих условиях. Чему равен этот максимум $I_{\rm max}$?

2Б. При изучении спектра пропускания тонкой диэлектрической плёнки была получена зависимость коэффициента пропускания τ от длины волны λ , изображённая на рисунке. Предполагая, что диэлектрическая постоянная ε плёнки не зависит от длины волны в данном диапазоне и равна $\varepsilon=2,25$, опреде-

лите толщину плёнки d. Покажите, что экспериментальная кривая приближённо соответствует предположению $\varepsilon = \mathrm{const.}$

3Б. Спектральная линия некоторого вещества имеет среднюю длину волны $\lambda=630$ нм и спектральную ширину $\Delta f=3\cdot 10^9$ Гц. Требуется выполнить исследование тонкой структуры этой линии с разрешением не хуже $\delta\lambda=2\cdot 10^{-5}$ нм. Для этой цели в лаборатории имеются три интерферометра Фабри–Перо со следующими параметрами: базы интерферометров (расстояние между зеркалами) $L_1=10$ см, $L_2=5$ см, $L_3=2,5$ см; энергетический коэффициент отражения зеркал $r_1=99\%, r_2=95\%, r_3=99,5\%$. Какой из этих интерферометров следует использовать для проведения указанных исследований?

4Б. В интерференционной схеме (см. рис.) используется точечный источник естественного света, излучение которого содержит две близкие спектральные линии $\lambda_1=5000$ Å и $\lambda_2=5100$ Å одинаковой интенсивности. В одном из плеч интерференционной схемы установлен фильтр, представляющий собой два поляроида Π_1 и Π_2 с совпадающими разрешёнными направлениями, между которыми расположена кристаллическая пластинка в $\lambda/2$ для линии

 λ_2 . Главные направления пластинки составляют угол 45° с разрешёнными направлениями поляроидов, а $\Delta n = n_e - n_o = 0{,}005$. 1) Какова минимальная толщина кристаллической пластинки, если на выходе пластинки свет с длиной волны λ_1 оказался поляризованным по кругу? 2) Какова при этом видность наблюдаемой на экране Э интерференционной картины?

5Б. В оптической системе, изображённой на рисунке, в общей фокальной плоскости линз Π_1 и Π_2 (плоскость Φ) расположена решётка с узкими щелями. При этом в выходной плоскости Π_2 возникает мультиплицированное (размноженное) изображение объекта, расположенного во входной плоскости Π_1 и освещённого параллельным пучком света с длиной волны $\lambda=5\cdot 10^{-5}$ см. Фокусное расстояние линз f=25 см. Определите период фильтрующей решётки в плоскости Φ , если расстояние между соседними элементами размноженного изображе-

ния (период мультипликации) d=0.25 мм. На какое расстояние L влево от входной плоскости Π_1 можно сдвинуть объект, чтобы в плоскости Π_2 вновь возникло прежнее сфокусированное мультиплицированное изображение.