K 10/13

ВНУТРЕННЯЯ ЭНЕРГИЯ

(1) Основные понятия

$$U=E_{\it K}+E_{\it n}$$
 $ightarrow$ если ид.газ, то $E_{\it n}{
ightarrow}0$

$$U = \overline{E}_1 \cdot N_A \cdot rac{m}{M} = rac{3}{2} kT \cdot N_A \cdot rac{m}{M} = rac{3}{2} rac{m}{M} \cdot RT \Longrightarrow \boxed{U = rac{3}{2} rac{m}{M} RT}$$

(2) Способы изменения $U\longrightarrow$ работа или теплопередача

3 Формулы для различных процессов

$$Q = C \cdot m \cdot {\scriptscriptstyle \Delta} t \, \longrightarrow$$
 нагревание, охлаждение

$$Q=q\cdot m$$
 $ightarrow$ сгорание топлива

$$Q=\lambda\cdot m$$
 — плавление, отвердевание

$$Q=L\cdot m$$
 — парообразование, конденсация

$$Q>0$$
 \longrightarrow при поглощении

$$Q < 0 \, \longrightarrow$$
 при выделении тепла

<u> I ЗАКОН ТЕРМОДИНАМИКИ</u>

ИЗОБАРНОЕ РАСШИРЕНИЕ

$$\{T^{\uparrow}\Rightarrow {\scriptstyle\Delta}U>0 \} \ Q={\scriptstyle\Delta}U+A_{\it 2a3}>0 \} \ Q$$
поглощение

ИЗОТЕРМИЧЕСКОЕ СЖАТИЕ

$$T-const\Rightarrow {\scriptstyle\Delta}U=0 \ V\downarrow \Rightarrow A_{\it 2a3} < 0 iggr\} egin{smallmatrix} -Q=-A_{\it 2a3} \ \downarrow \
brace$$
 выделение

ИЗОХОРНОЕ ОХЛАЖДЕНИЕ

$$\{V-const \Rightarrow \Delta U < 0 \}$$
 $\{V-const \Rightarrow A_{\it 2a3} = 0\}$ $\{V-const \Rightarrow A_{\it 2a3} = 0\}$ $\{U-const \Rightarrow A_{\it 2a3} = 0\}$

АДИАБАТНОЕ РАСШИРЕНИЕ

<u>РАБОТА В ТЕРМОДИНАМИКЕ</u>

Изобарный процесс

$$A = F \cdot d \cdot \cos(\widehat{\vec{F}, d}) = p \cdot S \cdot d = p \cdot \Delta V$$

$$A=p\cdot \Delta V$$
 $A>0$, если V^{\uparrow} $A<0$, если V^{\downarrow}

$$\left.egin{aligned} A &= p \cdot \Delta V \ S &= p \cdot \Delta V \end{aligned}
ight\} \Rightarrow A \stackrel{\scriptscriptstyle u}{=} S$$

2 Изотермический процесс

общем случае

$$A\stackrel{\eta_{\eta_{0}}}{=} S$$
 $A\stackrel{u}{=} \Delta S$ $A\stackrel{u}{=} \sum_{\Lambda} S$

$$A\stackrel{\eta_{\eta_{0}}}{=}S$$
 $A\stackrel{u}{=} S$ $\Delta A\stackrel{u}{=} \Sigma \Delta S$

Изохорный процесс

$$\Delta V=0\Longrightarrow A=0$$

примечание

- $U \longrightarrow$ внутренняя энергия
- $Q \longrightarrow$ количество теплоты
- $C \longrightarrow$ удельная теплоемкость на единицу масса
- $q \longrightarrow$ удельная теплота сгорания
- $\lambda \longrightarrow$ удельная теплота плавления
- $L \longrightarrow$ удельная теплота парообразования

ТЕПЛОВЫЕ ДВИГАТЕЛИ

Тепловые двигатели (ТД) \longrightarrow устройства, у которых часть $U \to A$

Устройство ТД

- Основные виды: турбинные, поршневые, реактивные
- Используют работу (A) расширения г/п
- Состоят из нагревателя, рабочего тела (г/п) и холодильника

нагреватель (Q_{μ}) холодильник $(Q_{_Y})$

$$Q_{\mathcal{H}} = A_{non} + Q_{\mathcal{X}} + Q_{nom}$$
 $\eta = rac{A_{non}}{Q} = rac{Q_{\mathcal{H}} - Q_{\mathcal{X}} - Q_{nom}}{Q}$

$$\eta = rac{A_{no\pi}}{Q_{\mathcal{H}}} = rac{Q_{\mathcal{H}} - Q_{\mathcal{X}} - Q_{no\pi}}{Q_{\mathcal{H}}}$$

Холодильник

Холодильник нужен для цикличности ТД

Идеальная тепловая машина \longrightarrow Сади Карно (фр. - 1824г)

$$\eta=rac{T_{\mathcal{H}}-T_{\mathcal{X}}}{T_{\mathcal{H}}}=1-rac{T_{\mathcal{X}}}{T_{\mathcal{H}}}=rac{Q_{\mathcal{H}}-Q_{\mathcal{X}}}{Q_{\mathcal{H}}}=1-rac{Q_{\mathcal{X}}}{Q_{\mathcal{H}}}$$

примечание

- $Q_{\scriptscriptstyle X}$ / $T_{\scriptscriptstyle X}$ \longrightarrow холодильника • г/п → газ или пар
- PT (Рабочее тело) \longrightarrow г/п
 - $Q_{\scriptscriptstyle H}$ / $T_{\scriptscriptstyle H}$ \longrightarrow нагревателя
- $Q_{nom} \longrightarrow$ потери • ТД — Тепловой двигатель