

Figure 54.5: Figure (1) illustrates the case of u_i contained in the margin and occurs when $\epsilon_i = 0$. Figure (1) also illustrates the case of v_j contained in the margin when $\xi_j = 0$. The left illustration of Figure (2) is when u_i is inside the margin yet still on the correct side of the separating hyperplane $w^{\top}x - b = 0$. Similarly, v_j is inside the margin on the correct side of the separating hyperplane. The right illustration depicts u_i and v_j on the separating hyperplane. Figure (3) illustrations a misclassification of u_i and v_j .

separating hyperplane $H_{w,b}$; if $\xi_j \leq \delta$, then v_j is classified correctly, and if $\xi_j > \delta$, then v_j is misclassified (v_j lies on the wrong side of the separating hyperplane, the blue side). See Figure 54.5.

(3) If $\lambda_i = 0$, then $\epsilon_i = 0$ and the *i*-th inequality may or may not be active, so

$$w^{\top}u_i - b - \delta > 0.$$

Thus u_i is in the closed half space on the blue side bounded by the blue margin hyperplane $H_{w,b+\delta}$ (of course, classified correctly).

Similarly, if $\mu_j = 0$, then

$$w^{\mathsf{T}}v_i - b + \delta \leq 0$$

and v_j is in the closed half space on the red side bounded by the red margin hyperplane $H_{w,b-\delta}$ (of course, classified correctly). See Figure 54.6.