

A Projected Lloyd's Algorithm for Coverage Control Problems

Yoav Palti, Supervisor: Associate Professor Daniel Zelazo

Faculty of Aerospace Engineering, Technion, Haifa, Israel

M.Sc. Seminar

December 10, 2018

Table of Contents

Introduction

Mathematical Background

Problem Solution

Simulations

Table of Contents

Introduction

Mathematical Background

Problem Solution

Simulations

About Me

- ▶ Yoav Palti, B.Sc in Aerospace Engineering, Technion, 2012
- Aeronautical algorithms engineer, IAF, since 2013
- M.Sc student since 2014

Motivation

Covering an area - (relatively) easy

Introduction 0000000 Motivation

- Covering an area (relatively) easy
- Covering an area with not sufficient amount of sensors not so easy
 - Requires better definition of behaviour

Motivation

- Covering an area (relatively) easy
- Covering an area with not sufficient amount of sensors not so easy
 - Requires better definition of behaviour
- Maintain contact with home base (at least in steady state) hard

Problem Formulation

- lacktriangle There is some area $A \in \mathbb{R}^2$ That we aim to cover
- ▶ We have set of sensors $S = \{s_1 \dots s_n\}$ located in positions $p_i \in \mathbb{R}^2$ (for $i = 1, \dots, n$) at time t
 - \triangleright Each sensor has coverage radius R (assuming all sensors are identical)
 - ▶ Each sensor can cover a disk $D\left(p_{i}\left(t\right),R\right)\subset\mathbb{R}^{2}$, centred at $p_i(t)$
- Thus, the coverage:

$$D(p_i(t), R) = D_i(t) = \{x \in \mathbb{R}^2 \mid ||x - p_i(t)| \le ||2R\}.$$
 (1)

ightharpoonup We also assume $D_i(t) < A$

Introduction

Problem Formulation

Coverage Constraint:

▶ A given area inside the area $A_m \subset A$ must be covered always (e.g. ground station).

A configuration: A configuration c at time t is the stack of the sensor positions at time t,

$$c(t) = \begin{bmatrix} p_1^T(t) & \cdots & p_n^T(t) \end{bmatrix}^T \in \mathbb{R}^{2n}.$$
 (2)

Notice

Since $D_{i}\left(t\right) < A$, there is no one configuration that can cover the entire area A at once

Problem Formulation

Our goal is to find the set of configuration C which contains configurations that all together provide full coverage of the area A, and yet maintains the coverage of A_m .

Problem

Find the set $\mathcal{C} = \begin{bmatrix} c_1^T(t_1) & \cdots & c_n^T(t_n) \end{bmatrix}^T$ that provide coverage at time i to some area $A_c(t_i)$, such that:

- 1. after time n, each point of A was visited at least once,
- 2. At each time there was coverage to some area $A_sm \subset A_m$.

Literature Review

Table of Contents

Introduction

Mathematical Background

Problem Solution

Simulations

Lyaponov Stability

Voronoi Partitioning

Let's start with a simple intuitive explanation...

Voronoi Partitioning

While being a method to partition an area with some cost function, the is a widely-used representation in the coverage problem 1 2 3 .

¹Cortes, J. and Martinez, S. (2004). Coverage control for mobile sensing networks. Robotics and Automation, Vol. 20, No. 2, 2004, p. 13, doi:10.1109/TRA.2004.824698

²Hussein, I. I. and Stipanovic, D. M., "Effective Coverage Control for Mobile Sensor Networks With Guaranteed Collision Avoidance," IEEE Transactions on Control Systems Technology, Vol. 15, No. 4, 2007, pp. 642–657, doi:10.1109/TCST.2007.899155

³Du, Q., Faber, V., and Gunzburger, M., "Centroidal Voronoi Tessellations: Applications and Algorithms," SIAM Review, Vol. 41, No. 4, 1999, pp. 637–676, doi:10.1137/S0036144599352836

Voronoi Partitioning

The Voronoi Diagram of a region $\Omega \subset \mathbb{R}^2$ is the set of partitions $\mathcal{V} = \{V_i \mid \cup V_i = \Omega\}$, generated by the generators $\mathcal{Z} = \{z_1, \ldots, z_n \mid z_i \in \Omega\}$, such that

$$V_i = \{ q \in \Omega \mid ||q - z_i|| \le ||q - z_j|| \forall z_i, z_j \in \mathcal{Z} \},$$
 (3)

where V_i corresponds to the i-th element of \mathcal{Z} , and $\|\cdot\|$ denotes the Euclidean distance.

Central Voronoi Tessellations

And yet again, let's have an intuitive explanation...

Central Voronoi Tessellations

Let us define a density function, ρ_i , for each Voronoi partition V_i . Then, we can define the center of mass for each partition as

$$z_i^* = \frac{\int_{V_i} y \rho(y) dy}{\int_{V_i} \rho(y) dy}.$$
 (4)

If a generator $z_i=z_i^*\,\forall\,V_i$, we call this partitioning a *centroidal Voronoi tessellation* (CVT).

Lloyd's Algorithm

Now that we know what Central Voronoi Tessellations are, we need to know how to calculate them.

Stuart P. Lloyd, an Electrical Engineer, invented an algorithm that deals with PCM quantization 4.

It appears that the algorithm is very useful for calculating CVT's. Moreover, It is possible to build a controller based on this algorithm.

⁴Lloyd, S., "Least squares quantization in PCM," IEEE Transactions on Information Theory, Information Theory, IEEE Transactions on, IEEE Trans. Inform. Theory, Vol. 28, No. 2, 1982, pp. 129-137, doi:10.1109/TIT.1982.1056489

Lloyd's Algorithm

Algorithm 1 Lloyd's Algorithm

- 1: Calculate the Voronoi diagram for the current agents positions.
- 2: Calculate the center of mass for every cell.
- 3: Move the agents to the center of mass.

According to Cortes et al., if we define agent i position as p_i and the i's partition centroid as C_{V_i} , then for some proportional constant k_{prop} , the controller can be defined as:

$$u_i = -k_{prop} \left(p_i - C_{V_i} \right) \tag{5}$$

Formation Control

Projection Operator

The projection linear operator is defined as a linear transformation P from a vector space to itself such as $P^2=P$. In other words, the transformation P is idempotent.

Table of Contents

Introduction

Mathematical Background

Problem Solution

Simulations

Problem Solution

Lloyd's Algorithm and Formation Control

Lloyd's Algorithm and Formation Control

Proof

Projected Lloyd's Algorithm

Proof

Problem Solution Algorithm

Problem Solution

Table of Contents

Introduction

Mathematical Background

Problem Solution

Simulations

Some Simulation

