1. Tabla de verdad de F1

n	D	С	В	Α	F_1
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	0

2. Expresión simplificada por Karnaugh.

$$F_1 = \overline{B}\overline{D} + \overline{A}D + \overline{A}C$$

3. F1 transformada para usar solo puertas NAND

$$\overline{\overline{F_1}} = \overline{\overline{B}\overline{D} + \overline{A}D + \overline{A}C}$$

$$F_1 = \overline{\overline{B}\overline{D}} \cdot \overline{\overline{A}D} \cdot \overline{\overline{A}C}$$

7. Tabla de verdad de F2

n	D	С	В	Α	F_2
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	1

8. Expresión simplificada por Karnaugh.

$$F_2 = (A + \overline{B})(A + \overline{D})(B + \overline{D})$$

9. F2 transformada para usar solo puertas NOR

$$\overline{\overline{F_2}} = \overline{(A + \overline{B})(A + \overline{D})(B + \overline{D})}$$

$$F_2 = \overline{\left(\overline{A + \overline{B}}\right) + \overline{\left(A + \overline{D}\right)} + \overline{\left(B + \overline{D}\right)}}$$