Initial value problems

Euler's method, Runge-Kutta, and Runge-Kutta-Fehlberg

David A.W. Barton

University of Bristol

Initial value problems

Integration of differential equations over time starting from some initial value

$$\frac{dx}{dt} = f(t, x), \qquad x(0) = A$$

It gives x(t) over a desired time interval, e.g., $0 \le t \le T$

Visualise as a time series or a phase portrait

Initial value problems – example

Van der Pol oscillator

$$\frac{d^2x}{dt^2} - \mu(1 - x^2)\frac{dx}{dt} + x = 0$$

Or in first-order form

$$x_1' = x_2$$

$$x_2' = \mu(1 - x_1^2)x_2 - x_1$$

With
$$x_1(0) = 1$$
 and $x_2(0) = 0$

Van der Pol – time series and phase portrait

Euler's method

Euler's method is simplest ODE integrator; for any ODE

$$\frac{dx}{dt} = f(t, x)$$

We have

$$t_{n+1} = t_n + h$$

$$x_{n+1} = x_n + hf(t_n, x_n)$$

x can be a vector and f(t,x) a vector-valued function

Classic Runge-Kutta

Forth Order

Most common version

$$x_{n+1} = x_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

where

$$k_1 = f(t_n, x_n),$$
 $k_2 = f\left(t_n + \frac{h}{2}, x_n + h\frac{k_1}{2}\right),$ $k_3 = f\left(t_n + \frac{h}{2}, x_n + h\frac{k_2}{2}\right),$ $k_4 = f(t_n + h, x_n + hk_3)$

Butcher Tableau

Explicit Runge-Kutta methods are given by their Butcher Tableau

$$x_{n+1} = x_n + h \sum_{i=1}^{S} b_i k_i$$

where s is the number of stages and

$$k_{1} = f(t_{n}, x_{n})$$

$$k_{2} = f(t_{n} + c_{2}h, x_{n} + (a_{2,1}k_{1})h)$$

$$k_{3} = f(t_{n} + c_{3}h, x_{n} + (a_{3,1}k_{1} + a_{3,2}k_{2})h)$$

$$\vdots$$

 $k_s = f(t_n + c_s h, x_n + (a_{s,1}k_1 + \dots + a_{s,s-1}k_{s-1})h)$

$$c_{2}$$
 $a_{2,1}$ c_{3} $a_{3,1}$ $a_{3,2}$ \vdots \vdots \ddots c_{s} $a_{s,1}$ $a_{s,2}$ \cdots $a_{s,s-1}$ b_{1} b_{2} \cdots b_{s-1} b_{s}

Runge-Kutta family of methods

Fourth Order

Euler's method

0	
	1

Classical Runge-Kutta

3/8 rule

Writing out the 3/8 rule

Following the pattern of classic Runge-Kutta (RK4)

$$x_{n+1} = x_n + \frac{h}{8}(k_1 + 3k_2 + 3k_3 + k_4)$$

where

$$k_{1} = f(t_{n}, x_{n}), \qquad k_{2} = f\left(t_{n} + \frac{1}{3}, x_{n} + \frac{h}{3}k_{1}\right)$$
$$k_{3} = f\left(t_{n} + \frac{2}{3}, x_{n} - \frac{h}{3}k_{1} + hk_{2}\right)$$
$$k_{4} = f(t_{n} + h, x_{n} + hk_{1} - hk_{2} + hk_{3})$$

Slightly better error properties than RK4

0				
1/3	1/3			
2/3	$-1/_{3}$	1		
1	1	-1	1	
	1/8	3/8	3/8	1/8

Checking the error

- Could run two separate integrations to determine accuracy
 - One with stepsize h
 - One with stepsize h/2

This is very inefficient!

- Instead, use an extended Butcher Tableau
 - Two integration methods that use (almost) the same tableau
 - The higher-order method has an extra line in the tableau
 - Calculate the difference and adjust the stepsize accordingly

Runge-Kutta-Fehlberg (ode45)

Adaptive step sizes

Calculate the difference between the base solution x and the higher accuracy solution x^*

Set the new step size to be

$$\epsilon = |x - x^*|$$
De desired tolerance
$$h_{\text{new}} = \beta h \left(\frac{\epsilon_{\text{tol}}}{\epsilon}\right)^{1/5} \left(\frac{1}{5}\right)^{1/5} \left(\frac{1}{5}\right)^{1/5}$$

where $\beta \approx 1$ is a safety parameter (often $\beta = 0.9$)

If the step size is decreased, the step just calculated should be performed again with the smaller step size

Summary

- Recapped Euler's method and classic Runge-Kutta
- Introduced Butcher Tableau
- Shown that extended tableau can give efficient ways for estimating error
- Runge-Kutta-Fehlberg is an accurate adaptive step size method
 - Takes bigger steps when error is low
 - Takes smaller steps when error is high