

Universidad Técnica Nacional Sede Central Alajuela - Campus CUNA

CURSO: IEL-525 LABORATORIO DE ELECTRÓNICA I

GRUPO 02

III CUATRIMESTRE DE 2020

LABORATORIO No.5:

FECHA DE ENTREGA: 09/02/2021

NOMBRE ESTUDIANTE: Angie Marchena Mondell CARNÉ: 604650904

1. CUESTIONARIO PREVIO

Valores 741

	Output voltage swing	V _S = ±15 V	$R_L \ge 10 \text{ k}\Omega$	±12	±14	W]
			$R_L \ge 2 k\Omega$	±10	±13	v	

Circuito 1:

Figura 1: Circuito análisis de hoja de datos.

El valor de la impedancia de entrada es teóricamente infinito pero el 741 tiene una cercana a 100M.

Circuito 2:

Figura 3: Circuito Amplificador inversor

Como sabemos para calcular la ganancia tenemos lo siguiente:

ular la ganancia tenemos l
$$\frac{0-V_2}{1.5k} = \frac{V_2-V_{out}}{13.5k} \\ \frac{-V_{in}}{1.5k} = \frac{V_{in}-V_{out}}{13.5k} \\ \frac{-V_{in}}{1.5k} = \frac{V_{in}-V_{out}}{13.5k} \\ \frac{-13.5kV_{in}}{1.5k} = V_{in}-V_{out} \\ 9V_{in} = -V_{in}+V_{out} \\ V_{out} = -10V_{in}$$

Teóricamente el valor máximo será de $\pm 15\,V$, por lo que al ver la entrada no inversora será 10 veces menos que la salida ósea 1.5 V, o su equivalente en negativo.

El valor se calcula mediante la formula.

$$V_h = 2\frac{R_1}{R_1 + R_2}V_{SAT}$$

$$V_h = 2\frac{1.5k}{1.5k + 13.5k}15V = 3.1V$$

Circuito 3:

Figura 3: Amplificador no inversor

Se analiza de la siguiente manera con LCK en V del pin 2.

manera con LCK en V de
$$\frac{0-V_2}{10k} = \frac{V_2 - V_{out}}{30k}$$

$$\frac{-V_{in}}{10k} = \frac{V_{in} - V_{out}}{30k}$$

$$\frac{-V_{in}}{10k} = \frac{V_{in} - V_{out}}{30k}$$

$$\frac{-30kV_{in}}{10k} = V_{in} - V_{out}$$

$$3V_{in} = -V_{in} + V_{out}$$

Por lo que obtenemos al final:

$$V_{out} = 4V_{in}$$

Una ganancia ideal de 4.

Circuito 4:

Figura 4: Amplificador inversor

La ganancia se calcula de la siguiente manera mediante LCK, con el nodo de la patilla 2 del 741.

$$\frac{\frac{V_{in} - V_2}{10k}}{\frac{V_{in} - 0}{10k}} = \frac{\frac{V_2 - V_{out}}{30k}}{\frac{V_2 - 0}{30k}}$$
$$\frac{\frac{V_{in}}{10k}}{10k} = \frac{\frac{V_2 - V_{out}}{30k}}{30k}$$

Por lo que tenemos a la salida:

$$V_{out} = \frac{30k}{10k}V_{in} = 3V_{in}$$

Una ganancia teórica de 3.

2. PROCEDIMIENTO

Circuito 1.

Valor original

Valor obtenido: 13.5 V en la hoja de datos se puede ver que el valor mínimo con estos valores es de 12 V y máximo de 14 V.

Cambio R1 por 0 y medición de corriente

Valor de corriente obtenido 32.75 mA

De esta manera se comprobó la impedancia de entrada el cual da un valor muy alto.

Circuito 2.

Las imágenes comprueban el comportamiento, ya que es el contrario al teórico ya que este tiene invertido las alimentaciones.

Comparación con Histéresis

El valor se calcula mediante la fórmula.

$$V_h = 2\frac{R_1}{R_1 + R_2} V_{SAT}$$

$$V_h = 2\frac{1.5k}{1.5k + 13.5k} 14V = 2.9 V$$

	Teórico	Medido
Histéresis	3,10 V	2,9 V

Circuito 3

Se comprueba la ganancia es aproximadamente 3.2, y se puede ver claramente que se ve un aumento en ganancia ya que la salida es casi 4 veces la entrada.

Circuito 4

Se puede comprobar que la onda de salida del amplificador es 3 veces mayor que la entrada, además de que esta sale invertida tal y como se esperaba.

Ultima parte

En la hoja de datos se nos da la siguiente configuración, con un potenciómetro de 10k conectado a las patillas 1 – 5.

3. ANALISIS		
4. CONCLUSIONES.		

5. REFERENCIAS

- Behzad R. Fundamentals of Microelectronics, 2da ed. Wiley, 2013
 Ricardo C. Dorf y James A. Svoboda. (2015). Circuitos Eléctricos. New Jersey, USA: Alfaomega.