日期 科目 班级 姓名 学号

2022 年 12 月 11 日 泛函分析 强基数学 002 吴天阳 2204210460

第十二次作业

题目 1. 设 X 为 B 空间, $T \in \mathfrak{C}(X)$,则 $Ker(I-T) = \{\theta\} \Rightarrow R(I-T) = X$.

证明. 反设 $R(I-T) \subsetneq X$. 则 $\exists x \in X$ 没有 I-T 下的原像,断言 $R(I-T)^2 \subsetneq R(I-T)$,反设 $R(I-T)^2 = R(I-T)$,由于 $(I-T)x \in R(I-T)$,则 $\exists y \in X$ 使得 $(I-T)^2y = (I-T)x \Rightarrow (I-T)\big((I-T)y-x\big) = \theta$,由于 $Ker(I-T) = \{\theta\}$,则 (I-T)y = x 与 x 没有 I-T 下的原像 矛盾,则 $R(I-T)^2 \subsetneq R(I-T)$.

依此类推,由 Riesz 引理, $\exists y_n \in R(I-T)^n$ 且 $||y_n||=1$ 使得 $\rho(y_n,R(I-T)^{n+1})>1/2$,于 是 $\forall p\geqslant 1,\ n\geqslant 1$ 有

$$||Ty_{n+p} - Ty_n|| = ||Ty_{n+p} - y_{n+p} + y_{n+p} - y_n + y_n - Ty_n|| \ge \rho(y_n, R(I-T)^{n+1}) > 1/2$$

上述第一个不等号是因为: $Ty_{n+p} - y_{n+p} = (T-I)y_{n+p} \in R(I-T)^{n+p+1} \subsetneq R(I-T)^{n+1}, \ y_{n+p} \in R(I-T)^{n+p} \subsetneq R(I-T)^{n+1}, \ y_n - Ty_n = (I-T)y_n \in R(I-T)^{n+1}.$

故 $\{Ty_n\}$ 没有收敛子列,与 T 是紧算子矛盾. 所以 I-T 是满射.