STATUS OF THE CLAIMS

1

23

24

2	Claims 1-5 are pending in the application.
3	Claims 1-5 were rejected under 35 USC§102(b) as being anticipated by Rabenau
4	'101 .
5	Claims 1-5 were rejected under 35 USC§102(e) as being anticipated by Reschnar
6	et al. '824.
7	Claims 1-3 are currently amended by this Amendment.
8	Claims 1-3 (currently amended), and original Claims 4 and 5 are pending in the
9	application following entry of this Amendment.
10	
11	
12	<u>REMARKS</u>
13	SUMMARY OF THE INVENTION
14 15	Laminates consisting of a high-damping core material sandwiched between two
16	stiff, weldable skins. The laminates are comprised of 100% metal constituents, and do
17	not rely on epoxy or low-melting point solders. To make the laminate structures, a first
18	alloyable metal is deposited on the surface of a dissimilar metal. The coated surface is
19	then placed in contact with a second alloyable metal and allowed to interdiffuse at an
20	elevated temperature that is less than the melting point of the base metal(s). The metals
21	are chosen such that diffusion creates an alloy with a melting point lower than either of
22	the constituents. The processing temperature is set so that the alloy melts but leaves the

base metals in solid form, causing a thin layer of liquid to form and wet both sides of the

interface. External pressure is applied to the opposing base metals in such a way as to