

Dominando Big Data com o uso de Plataformas Gratuitas (nível intermediário)

Aula 1

Agenda da aula 1

- ✓ Apresentação do curso
- ✓ Revisão de conceitos: HPCC Systems e ECL
- ✓ Configuração do ambiente

Treinamento em ECL/HPCC: <u>learn.lexisnexis.com/hpcc</u>

- Introdução ao ECL (parte 1)
 - Conceitos e consultas
- Introdução ao ECL (parte 2)
 - ETL com ECL
- ECL Avançado (parte 1)
 - Dados relacionais
- ECL Avançado (parte 2)
 - Superarquivos, XML/JSON e PLN
- ECL Aplicado
 - Geração e automação de código ECL

- ROXIE ECL (parte 1)
 - Índices e consultas
- ROXIE ECL (parte 2)
 - Otimização de consultas
- Machine Learning com HPCC Systems
 - Tutoriais para uso de plugins
- Administração de Sistemas
 - Conceitos e operação básica
- HPCC para gestores
 - Visão geral e aplicações da plataforma

Suporte e operação

- Computador pessoal (ECL IDE v8.0.2/VSCode/GitPod)
- Cluster: http://54.215.2.79:8010/
- Slides de aula e livro de exercícios
- Moodle: https://ead.vanzolini.org.br/course/view.php?id=666
- Horários das aulas: 19:00hs às 22:00hs
- Dias das aulas: 22, 24, 26, 29 de novembro; 1 e 3 de dezembro
- Certificado USP e badges HPCC Systems

Coordenação

- Prof. Hugo Watanuki (<u>hwatanuki@usp.br</u>)
 - Doutor em engenharia de produção POLI-USP
 - Engenheiro de suporte técnico na LexisNexis Risk Solutions

- Prof. Renato Moraes (<u>remo@usp.br</u>)
 - Doutor em administração pela FEA-USP
 - Professor do depto. de engenharia de produção POLI-USP

Introdução

- ✓ Nome
- √Área de atuação
- ✓ Uso e interesse em Big Data

Revisão de conceitos: HPCC Systems e ECL

Extract, Transform, Load

"Stack" tecnológico

Ferramentas de consulta e visualização

Entrega online de consultas em Big Data

Bibliotecas de *Machine Learning*

Supervisionado, não-supervisionado, aprendizagem profunda

Ferramentas para manipulação de dados

Perfilamento, limpeza, consolidação de dados

ETL

Extração, transformação e carregamento de dados

ETL: Supercomputação

Ferramentas de *Profiling*

Bibliotecas de Machine Learning

Não supervisionado

Clusterização

DBSCAN K-Means

PLN

Text Vectors

Regressão

Regressão linear GLM

Regression Forest

Ferramentas de Consulta e Visualização

Conceitos básicos de ECL

- Paradigma declarativo (não-procedural)
- •Estrutura básica: Nome := Expressão ;
- •ECL <u>não é</u> sensível a caixa alta/baixa
- Espaço em branco é ignorado
- Comentários em linha (//) e em bloco (/* e */)
- •ECL utiliza sintaxe objeto.propriedade

```
Dataset.Campo // referencia um campo em um datasetNomedoDiretorio.Definicao // referencia uma definição em outro diretório
```


Ações vs. Definições

✓ O código ECL é constituído de:

```
    ✓ <u>Definições</u> estabelecem o que as coisas são (arquivos de definição ECL)
    A := 'People'; // não inicia uma WU
    ✓ <u>Ações</u> resultam em compilação e execução (arquivos BWR)
    OUTPUT ('People'); // inicia uma WU
```


Tipos de dados primitivos

```
BOOLEAN
  BOOLEAN Isfloridian := TRUE;
STRING[n]
   STRING1 Gender := 'M';
INTEGER[n], UNSIGNED[n],
  INTEGER1 ictr := -100; // -128 to 127
  UNSIGNED1 ctr := 0; // 0 - 255
REAL[n], DECIMALn[ y]
  REAL4 PI := 3.14159;
  DECIMAL7 2 Salary := 75000.00;
```


Tipos básicos de definição ECL

Booleana (boolean)

```
IsSeniorCitizen := People.birthdate>19600101;
```

Valor único (value)

```
MaleValue := 'M';
```

Conjunto de valores (set)

```
GenderValues := ['M','F'];
```

People

##	firstname	lastname	middlename	namesuffix	filedate	bureaucode	maritalstatus	gender	dependentcount	birthdate	streetaddress
1	Cherianne	Khatchatourian	N		19990922	24		M	0		69 BOULDER RIDGE RD # 25
2	Muyesser	Raplee	X		20001111	353		F	0		55 SWAMP RD
3	Roselin	Viceconte			19990325	344		F	0	19800113	107 HILL TER
4	Inda	Provines			20000909	13		U	0		290 W MOUNT PLEASANT AVE
5	Inderdeep	Laurence	D		20001228	344		М	0		44 PROSPECT PL
6	Chrystine	Mangiapane			19990827	315		F	0	19780306	1806 1ST AVE APT 8F
7	Adelene	Stock	R		20000827	252		М	0		1117 FARM RD
8	Mendy	Rufenblanchette			20000903	24		M	0		3 W 83RD ST APT 4C
9	Lannie	Amerantes	I		20001219	313		υ	0		200 W 20TH ST APT 909
10	Tare	Gonyeau	T		19930807	48		F	0	19750801	6 CANDLE CT

Conjunto de registros (recordset)

```
SeniorPeople := People(IsSeniorCitizen);
MalePeople := People(Gender = MaleValue);
FemaleMalePeople := People(Gender IN GenderValues);
```


Sintaxe Completa de uma Definição ECL

Nome := Expressão ;

[Escopo] [TipoValor] Nome [(parâmetros)] := Expressão [:ServiçoWorkflow] ;

EXPORT BOOLEAN | IsLeapYear | (INTEGER2 year) |

year % 4 = 0 AND (year % 100 != 0 OR year % 400 = 0) |

: STORED('LeapYearValue');

Escopo da definição (Visibilidade)

Global -

A palavra-chave **EXPORT** torna a definição disponível "globalmente" no repositório **EXPORT** PeopleCount := COUNT(People);

<u>Módulo</u> –

A palavra-chave **SHARED** torna a definição disponível somente no modulo/diretório que a contém

SHARED StateCount := 50;

Local -

A ausência dessas palavras-chave torna a definição disponível somente no arquivo que a contém e até a próxima definição ECL que contenha EXPORT ou SHARED

```
Num5 := 5;
```

EXPORT NumTotal := Num5 + 10 + StateCount;

Escopo da definição (Visibilidade)

IMPORT listadiretorios

listadiretorios – Uma lista de diretórios separados por vírgula.

A palavra-chave **IMPORT** define uma lista de diretórios cujos arquivos de definições exportados tornam-se diponíveis para uso no código.

Estrutura MODULE

A estrutura **MODULE** permite agrupar e fornecer parâmetros para um conjunto de definições ECL relacionadas.

```
nome [ ( parametros ) ] := MODULE definições;
END;
```

- Nome O nome da definição ECL do modulo.
- parametros Os parâmetros disponíveis para todas as definições.
- definições As definições ECL que compõem o módulo.

Começando a trabalhar com dados

Antes de começar a trabalhar com qualquer arquivo de dados na plataforma HPCC Systems, três passos devem ser executados:

Exemplo de estrutura de dados

```
EXPORT File Persons := MODULE
   EXPORT Layout := RECORD
                                                                                    middl... n... filedate
                                                                                                 bureaucode marit... gender dep... birthdate
      UNSIGNED8 ID:
                                                 9108218085885411565
                                                                 Cherianne Khatchatourian N
                                                                                           19990922 24
                                                                                                            М
                                                 16505326057200398078 Muyesser
                                                                                           20001111 353
                                                                                                            F
      STRING15
                         FirstName;
                                               3 2454818069645923666 Roselin
                                                                        Viceconte
                                                                                           19990325 344
                                               4 | 15880908289586509107 | Inda
                                                                                           20000909 13
                                                                                                            U
      STRING25
                       LastName;
                                                 6512705660523829539
                                                                Inderdeep Laurence
                                                                                           20001228 344
      STRING15
                         MiddleName;
                                                 9193989543268753887 | Chrystine Mangiapane
                                                                                           19990827 315
                                                                                                            F
                                                 12286552293562700162 Adelene
                                                                        Stock
                                                                                           20000827 252
                                                                                                            M
      STRING2 NameSuffix;
                                                 11459575736386985069 Mendy
                                                                        Rufenblanchette
                                                                                           20000903 24
                                                                                                            M
                                                                                                            U
                                                 8053906447536575038
                                                                        Amerantes
                                                                                           20001219 313
      STRING8 FileDate;
                                                 484768759680234166
                                                                                           19930807 48
                                                                        Gonyeau
                                               11 16156125023194932930 Finney
                                                                        Aristilde
                                                                                           19900621 344
                                                                                                            М
      UNSIGNED2 BureauCode;
                                               12 13804468446718957143 Oreoluwa
                                                                        Marthaler
                                                                                           19931006 358
                                                                                                            F
      STRING1 MaritalStatus;
                                               13 11995825474648190448 Surge
                                                                                           20000308 13
                                                                                                            F
                                                                        Abbottkrepp
                                                 15714117310244664573 Dave
                                                                                           20001129 238
                                                                                                            U
                                                                        Mejury
      STRING1 Gender;
                                               15 12587451362606486546 Ramsay
                                                                        Ping
                                                                                           20001129 238
                                                                                                            M
      UNSIGNED1 DependentCount;
      STRING8 BirthDate:
      STRING42
                         StreetAddress;
      STRING20
                         City:
      STRING2 State;
      STRING5 ZipCode;
      END;
   EXPORT File := DATASET('~CLASS::hmw::Intro::Persons', Layout,FLAT);
END;
```


streetaddress

55 SWAMP RD

44 PROSPECT PL

19780306 1806 1ST AVE APT 8F

19560920 222 1ST AVE APT 2B

19731201 176 CLAREMONT GDNS

22 LE PARC CT

404 AVENUE L

510 COOPER RD # 1

1117 FARM RD

3 W 83RD ST APT 4C

200 W 20TH ST APT 909

19800113 107 HILL TER

19750801 6 CANDLE CT

city

ENTERPRISE

GREENSBORO

WILLIAMSTON

CHARLESTON

EL PASO

AUBURN

TACOMA

TWINSBURG

MESQUITE

ARVADA

DOVER

69 BOULDER RIDGE RD # 25A HAWKINS

290 W MOUNT PLEASANT AVE LAVACA

state zipcode

54530

20747

97828

72941

32330

80007

19901

29697

25312

79924

31220

04210

44087

98402

89024

FL

CO

DE

OH

Estrutura RECORD

Uma estrutura **RECORD** define o layout de campos do DATASET.

```
Nome := RECORD campos; END;
```

- Nome O nome da estrutura RECORD.
- campos O tipo e o nome de cada campo.

Nota: As palavras-chave RECORD e END podem ser substituídas com chaves ({}) e os delimitadores de campos (;) podem ser substituídos por vírgulas (,).

Declaração DATASET

DATASET introduz um novo arquivo de dados no sistema com o layout *record* especificado.

```
nome := DATASET( arquivo, record, FLAT[THOR] [opções]);
nome := DATASET(arquivo, record, CSV [ (opções ) ] );
nome := DATASET(arquivo, record, XML( caminho, [opções] ) );
nome := DATASET(arquivo, record, JSON( caminho, [opções] ) );

✓ nome - O nome da definição pelo qual o arquivo passará a ser referenciado.
✓ arquivo - Uma constante string contendo o nome do arquivo lógico.
✓ record - A estrutura RECORD do dataset.
```

Nota: Um conjunto de registros pode ser definido inline entre colchetes (indicando uma definição set). Dentro dos colchetes, cada registro é delimitado por chaves ({}) e separado por virgulas. Os campos dentro de cada registo são delimitados por virgula.

```
Names := DATASET([{'John','Jones'}, {'Jane','Smith'}], {STRING first name, STRING last name});
```


Atenção! Escopo e Nomes de arquivos lógicos

 Nomes de arquivos sempre começam com um escopo (estrutura de diretórios) e terminando com o nome do arquivo.

•O HPCC busca por arquivos cujos nomes começam com um escopo padrão (THOR):

'DIR1::DIR2::NomeArquivo' //dado isso, HPCC procura por:

'THOR::DIR1::DIR2::NomeArquivo' //esse arquivo

•O sinal de "til" (~) indica a supressão do escopo padrão:

```
'~DIR1::DIR2::NomeArquivo' //dado isso, HPCC procura por:
```

'DIR1::DIR2:: NomeArquivo' //esse arquivo

Já posso ver os meus dados?

A ação **OUTPUT** grava o *recordset* em um arquivo e formatos especificados.

OUTPUT(recordset [,formato] [,arquivo [,OVERWRITE]]**)**

- recordset O conjunto de registros a processar.
- formato O formato de saída dos registros: uma estrutura RECORD previamente definida, ou um layout de registros "on-the-fly" entre chaves ({ }).
- arquivo Nome opcional do arquivo onde os registros serão gravados. Caso seja omitido, os dados formatados são mostrados na linha de comando ou no ECL IDE.
- OVERWRITE Permite sobreescrever o arquivo, caso ele já exista.

Exemplos de OUTPUT:

```
OUTPUT(File Accounts.File);
OUTPUT(Persons, {FirstName, LastName}, NAMED('Names Only'));
OUTPUT(MyRecordset,,'~CLASS::BMF::NewData', OVERWRITE);
//THOR é o formato padrão, mas também é possível gerar saída como:
OUTPUT(MyRecordset,,'~CLASS::BMF::NewData', CSV);
OUTPUT(MyRecordset,,'~CLASS::BMF::NewData', XML);
OUTPUT(MyRecordset,,'~CLASS::BMF::NewData', JSON);
```


Filtragem simples de dados

- Uma expressão booleana entre parênteses após um Dataset/Recordset é um filtro
- Múltiplos filtros podem ser especificados usando uma vírgula (,) ou usando "AND"

```
ValidNames := People(Lastname >= 'T', Lastname < 'U');

ValidTrades := Trades(Rate >= 7);

ValidPeople := People(NOT IsSeniorCitizen AND Lastname < 'U');

ValidPeople2 := People(state IN ['FL','NY']);</pre>
```


Operadores de comparação

Equivalência	. =
Diferente de	. <>
Diferente de	. ! =
Menor que	. <
Maior que	, >
Menor ou igual que	, <=
Maior ou igual que	>=
Comparação de equivalên <u>cia</u>	<=> retorna -1, 0, or 1

Operadores aritméticos:

Divisão	 /
Divisão Inteira	 DIV
Divisão Módulo	 %
Multiplicação	*
Adição	 +
Subtração	 -

Nota: Qualquer divisão por (0) resulta em zero (0). Esse comportamento pode ser alterado especificando-se #OPTION ('divideByZero', 'fail'); //Aborta e reporta erro

Funções de agregação

```
COUNT(recordset)
COUNT(listavalores)
MAX(recordset, campo)
MAX(listavalores)
MIN(recordset, campo)
MIN(listavalores)
SUM(recordset , campo )
SUM(listavalores)
AVE(recordset, campo)
AVE(listavalores)
```

- recordset O set ou conjunto de registros a serem processados.
- campo O campo ou expressão a partir dos quais o valor deve ser calculado.
- listavalores Uma lista de expressões separadas por vírgula a partir dos quais o valor deve ser calculado. Também pode ser um SET de valores.

```
OldCount:=COUNT(People(IsSeniorCitizen));
MaxVal := MAX(People, People.age);
MinVall := MIN(People, People.age);
```

Desafio: Lending Club

Lending Club

• LendingClub é uma empresa americana de empréstimos peer-to-peer, com sede em São Francisco, Califórnia.

 A empresa afirma que US \$ 15,98 bilhões em empréstimos foram originados por meio de sua plataforma até 31 de dezembro de 2015.

Dados: https://www.kaggle.com/ethon0426/lending-club-20072020q1

O que esperamos descobrir

• Identificar um modelo de predição baseado em atributos de operações financeiras que permitam aferir o risco de um pedido de crédito.

- As principais perguntas a serem respondidas são:
 - Quais variáveis podem ser utilizadas para estabelecer com precisão conhecida o risco de crédito?
 - Quais as caracterísiticas do modelo estatístico capaz de prever o risco de crédito?

Exercício prático:

Faça a extração do dataset do Lending Club

- Spray
- Estrutura RECORD
- Declaração DATASET

Até a próxima aula!!!

