Измерение формактора распада $\Lambda_c \to \Lambda I \nu_I$

Карибджанов Матвей, Пахлов Павел

13 ноября 2024 г.

Мотивация

- Уточнение результата CLEO. Improved measurement of the form-factors in the decay $\Lambda_c^+ \to \Lambda e \nu_e$ J. W. Hinson et al. // Phys. Rev. Lett. 2005. Vol. 94. Iss. 19, 191801. 5 p.
- Проверка моделей HQET, LQCD проедсказывающие формфакторы распада $\Lambda_c \to \Lambda$.

Теория

$$\begin{split} \langle B_{\Lambda_c} | j_\nu^V | B_\Lambda \rangle &= u_\Lambda^\dagger \left(\mathfrak{F}_1^V \left(q^2 \right) \gamma_\nu + \frac{\mathfrak{F}_2^V}{M_{\Lambda_c}} \left(q^2 \right) \sigma_{\mu\nu} q^\nu + \frac{\mathfrak{F}_3^V}{M_{\Lambda_c}} \left(q^2 \right) q_\mu \right) u_{\Lambda_c} \\ \langle B_{\Lambda_c} | j_\nu^A | B_\Lambda \rangle &= u_\Lambda^\dagger \left(\mathfrak{F}_1^A \left(q^2 \right) \gamma_\nu + \frac{\mathfrak{F}_2^A}{M_{\Lambda_c}} \left(q^2 \right) \sigma_{\mu\nu} q^\nu + \frac{\mathfrak{F}_3^A}{M_{\Lambda_c}} \left(q^2 \right) q_\mu \right) \gamma_5 u_{\Lambda_c} \end{split}$$

Теория

$$H_{\lambda_{\Lambda}\lambda_{w}}=H_{\lambda_{\Lambda}\lambda_{w}}^{V}+H_{\lambda_{\Lambda}\lambda_{w}}^{A}$$

$$H_{\lambda_{\Lambda}\lambda_{w}}^{V,A} = \langle B_{\Lambda_{c}}(p_{\Lambda_{c}}, M_{\Lambda_{c}}) | j_{\nu}^{V,A} | B_{\Lambda}(p_{\Lambda}, M_{\Lambda}) \rangle \varepsilon^{\nu}(\lambda_{w})$$

Часть итоговой системы уравнений (для векторной части):

$$\begin{split} H_{\frac{1}{2}t}^{V} &= \frac{\sqrt{Q_{+}}}{\sqrt{q^{2}}} \left(F_{1}^{V} \left(M_{\Lambda_{c}} - M_{\Lambda} \right) + F_{3}^{V} \frac{q^{2}}{M_{\Lambda_{c}}} \right), \\ H_{\frac{1}{2}1}^{V} &= \sqrt{2Q_{-}} \left(-F_{1}^{V} - F_{2}^{V} \frac{M_{\Lambda_{c}} + M_{\Lambda}}{M_{\Lambda_{c}}} \right), \\ H_{\frac{1}{2}0}^{V} &= \frac{\sqrt{Q_{-}}}{\sqrt{q^{2}}} \left(F_{1}^{V} \left(M_{\Lambda_{c}} + M_{\Lambda} \right) + F_{2}^{V} \frac{q^{2}}{M_{\Lambda_{c}}} \right), \end{split}$$

Отбор событий

$$e^{+}e^{-} \rightarrow \Lambda_{c}^{-}X_{c}^{+}$$

$$X_{c}^{+} \rightarrow D^{0}p; \ D^{+}p\pi^{-}; D^{*0}p; \ D^{*+}p\pi^{-}$$

$$D^{+} \rightarrow K^{-}\pi^{+}\pi^{+};$$
 $K_{S}\pi^{+}; K_{S}\pi^{+}\pi^{+}\pi^{-};$
 $K^{+}K^{-}\pi^{+}$

$$D^{*0} \rightarrow D^0 \pi^0$$

$$D^{0} \to K^{-}\pi^{+}; K_{S}\pi^{0}$$

$$K^{-}\pi^{+}\pi^{+}\pi^{-}; K^{-}\pi^{+}\pi^{0}$$

$$K^{-}K^{+}; K_{S}\pi^{+}\pi^{-}$$

$$D^{*+} \to D^0 \pi^+; D^+ \pi^0$$

Тагирование Λ_c

$$\mathfrak{L}(a/b) = \frac{L_a}{L_b + L_a}$$

- $\mathfrak{L}(K/\pi, K/p) > \{0.6, 0.6\}$
- $\mathfrak{L}(p/\pi, p/K) > \{0.6, 0.4\}$
- $dz_K < 2cm$; $dr_K < 0.5cm$
- $dz_p < 2cm$; $dr_p < 0.5cm$
- $dz_{\pi} < 2cm$; $dr_{\pi} < 0.5cm$
- $E_{\gamma} > 50 MeV$
- goodBelleKshort = 1

- $|M_{\pi^0} M_{\pi^0}^{real}| < 15 MeV$
- $|M_{K_S} M_{K_S}^{PDG}| < 15 MeV$
- $\bullet \ \left| M_D M_D^{PDG} \right| < 15 MeV$
- $|M_{D^*} M_{D^*}^{PDG}| < 2MeV$

GoodBelleKshort

Table 1. The goodKs cuts

Momentum(Gev)	dr(cm)	$d\phi({ m rad.})$	$z_{-}dist(cm)$	fl(cm)
< 0.5	> 0.05	< 0.3	< 0.8	_
0.5 - 1.5	> 0.03	< 0.1	< 1.8	> 0.08
> 1.5	> 0.02	< 0.03	< 2.4	> 0.22

FIG. 1: $\mathrm{Good}K_S^0$ variables and their selection.

Bin	ϵ_{sig}	bkg rejection	ϵ_{sig}	bkg rejection	ϵ_{sig} (N. Dash)
	(%)	(%)	(%)	(%)	BN 1373
1	68.6 ± 0.0	99.3 ± 0.1	57.6 ± 0.0	97.8 ± 0.1	69.3 ± 0.9
2	83.0 ± 0.0	99.4 ± 0.1	76.0 ± 0.0	98.0 ± 0.1	85.2 ± 0.3
3	86.0 ± 0.1	99.5 ± 0.5	80.5 ± 0.1	98.7 ± 0.3	83.9 ± 0.2
Total	78.1 ± 0.0	99.4 ± 0.1	70.7 ± 0.0	98.0 ± 0.1	83.7 ± 0.2

TABLE I: $GoodK_S^0$ selection efficiency from BGx0 and BGx1 samples.

Тагирование Λ_c

$$F(x, args) = f_{continuum} + f_{signal} + f_{back ground}$$
 (1)

$$f_{\text{continuum}}(x) = \exp\left(\frac{x-\mu}{\lambda}\right) + a_0 + a_1 \cdot x$$
 (2)

$$f_{\text{signal}}(x) = G(x; M_{\Lambda_c}, \sigma_1) + G(x; \mu_2, \sigma_2) + G(x; \mu_3, \sigma_3)$$
 (3)

$$f_{\text{back ground}} = f_{\text{signal}}(x) \otimes \left(\sqrt{x - M_{\pi}} \cdot \theta(x - M_{\pi}) \cdot c_1 + \sqrt{x} \cdot \theta(x) \cdot c_2\right)$$
 (4)

Тагирование Λ_c на МС

$$f_{\text{signal}}(x) = G(x; M_{\Lambda_c}, \sigma_1) + G(x; \mu_2, \sigma_2) + G(x; \mu_3, \sigma_3)$$

Тагирование Λ_c на МС

$$f_{\text{back ground}} = f_{\text{signal}}(x) \otimes \left(\sqrt{x - M_{\pi}} \cdot \theta \left(x - M_{\pi}\right) \cdot c_1 + \sqrt{x} \cdot \theta \left(x\right) \cdot c_2\right)$$

Тагирование Λ_c на МС

$$f_{\text{continuum}}(x) = \exp\left(\frac{x-\mu}{\lambda}\right) + a_0 + a_1 \cdot x$$

Тагирование Λ_c на Data

$$F(x, args) = f_{continuum} + f_{signal} + f_{back ground}$$

Сравнение с С. Приваловым

