Representación del conocimiento

Métodos estructurados: Redes Semánticas

- 1. Introducción.
- 2. Redes semánticas.
- 3. Inferencia en Redes Semánticas.

1. Introducción

- Familia de métodos que utilizan grafos para la representación del conocimiento.
- Se basan en las relaciones entre los elementos de un dominio.
- Hacen explícita la estructura del dominio.
- Particularmente adecuados para representar conocimiento estructural.
- Principalmente, Redes Semánticas y Marcos.

Ejemplo de Red Semántica

Poole and Mackworth, 2010

Ejemplo de Sistema de Marcos

Suárez de Figueroa y Gómez, en Inteligencia Artificial: Técnicas, métodos y aplicaciones, 2008

Origen

- Representación del conocimiento mediante grafos.
- Antecedentes en filosofía, matemáticas
 - C.S Peirce (1839-1914), Grafos existenciales: notación gráfica sentencias lógicas.
- Primeros trabajos en IA
 - Organización de la memoria, lenguaje natural
 - R. Quillian: redes semánticas (1968)
 - M. Minsky: sistemas de frames (1975)

Evolución (1)

- Sistemas iniciales con semántica poco precisa.
 - Significado «ad hoc» de los arcos.
- Elaboración de la herencia como mecanismo de inferencia.
- Algunos sistemas con semántica bien definida:
 - Grafos conceptuales de Sowa, <u>http://conceptualgraphs.org/</u>
 - Diagramas entidad/relación.

Evolución (2)

- En la actualidad
 - Formalismos para representar conocimiento estructural.

- Tendencias
 - Redes semánticas: Web Semántica.
 - Marcos: Ontologías.
 - Clases, subclases, propiedades y restricciones de las mismas.

2. Redes Semánticas

Redes semánticas

- Formalismo gráfico basado en relaciones binarias
 - Lenguaje natural: Pepe es informático.
 - LPO: PROFESION(Pepe, Informático)
 - Red semántica:

- Permite una representación gráfica del formalismo
 Objeto-Atributo-Valor (individuos, propiedades, valores)
- Nodos: Concepto, entidades (objetos, valores)
- Arcos: Relaciones binarias (atributos)

Ejemplo de Red Semántica


```
prop(comp_2347 , owned_by , fran).
prop(comp_2347 , managed_by , sam).
prop(comp_2347 , model ,
lemon_laptop_10000).
prop(comp_2347 , brand ,
lemon_computer).
prop(comp_2347 , has_logo ,
lemon_disc).
prop(comp_2347 , color , green).
prop(comp_2347 , color , yellow).
prop(comp_2347 , weight , light).
prop(fran , has_office , r107).
prop(r107 , in_building , comp_sci).
```

Poole and Mackworth, 2010

- Grafo formado por:
 - Nodos etiquetados. Representan entidades, conceptos, valores.
 - Arcos unidireccionales etiquetados. Representan relaciones binarias.
- Se puede utilizar cualquier etiqueta para un nodo u arco.
 - Falta de estandarización.

Sintaxis Red Semántica (2)

- Dos tipos de arcos
 - Descriptivos: Proporcionan propiedades de las entidades.
 - Estructurales: Proporcionan la estructura de la red.
 - Cierto grado de estandarización.
 - Su significado es independiente del dominio concreto.
 - Ejemplos típicos
 - Generalización con arcos «subclase-de»
 - Un hombre es una persona.
 - Instanciación con arcos «instancia-de»
 - Pepe es un hombre.
 - Agregación con arcos «parte-de»
 - La cara forma parte de la cabeza.

Ejemplo de red semántica

Representación de predicados no binarios: reificación

- COMPRAVENTA(Pepe, Luis, Reloj1, 45, Euros)
- Reificación:
 - Crear elemento del dominio que representa una compraventa: compra-venta-1
 - Introducir relaciones binarias

- Las redes semánticas proporcionan mecanismos de inferencia asociados a los arcos de la red y a procedimientos que los manipulan.
- Dos tipos de inferencias.
- Equiparación. Permite resolver preguntas que se representan como una red semántica.
- Herencia de propiedades. Permite que nodos de la red obtengan las propiedades definidas en otros nodos mediantes los arcos instancia y subclase-de.

Equiparación

- Pregunta: ¿Existe algún hombre informático?
- Proceso
 - Crear subred pregunta, con nodos constantes, nodos variables y arcos etiquetados

- Se superpone la subred sobre la red original. Si se consigue una superposición perfecta (nodos constantes, arcos) se asigna a los nodos variables los valores encontrados en la red
- Respuesta: los valores de las variables (Hombre-?=Pepe)

Equiparación

Pregunta:«¿Existe algún hombre informático?»

Herencia de propiedades

- Ahora, buscamos propiedades de un nodo conocido
- Herencia: ¿Es Dumbo de color gris?
- Proceso
 - Se localiza el nodo Dumbo.
 - Se busca el arco De-Color.
 - Al no encontrarse, el motor de inferencias recorre los arcos Instancia y Subclase-De.
 - En cada camino, prevalece el nodo más próximo que tenga la propiedad.

Herencia de propiedades

Pregunta: «¿Es Dumbo de color gris?»

- Economía de la representación:
 - Evita repetir propiedades en instancias y subclases.
- Buena gestión de excepciones:
 - Se hereda el valor de la propiedad más cercano.
- Mala gestión contradicciones:
 - Valores contradictorios por distintos caminos.

Excepciones

¿Qué tipo de sangre tiene la arteria pulmonar izquierda?

Contradicciones

- Herencia: ¿Cómo se reproduce el Ornitorrinco?
- Respuesta: ?

