

Quadrilaterals Ex 14.4 Q10

 ΔABC is given with $BE \perp AC$ AD is any line from A to BC intersecting BE in H.

P,Q and R respectively are the mid-points of AH,AB and BC.

We need to prove that $\angle PQR = 90^{\circ}$

Let us extend QP to meet AC at M.

In $\triangle ABC$, R and Q are the mid-points of BC and AB respectively.

Theorem states, the line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.

Therefore, we get:

 $QR \parallel AC$

OH || *ME* (i)

Similarly, in $\triangle ABH$,

 $QP \parallel BH$

QM || HE (ii)

From (i) and (ii), we get:

 $QM \parallel HE$ and $QH \parallel ME$

We get, QHME is a parallelogram.

Also, $BE \perp AC$

Therefore, QHME is a rectangle.

Thus, $\angle MQH = 90^{\circ}$

Or,

$$\angle PQR = 90^{\circ}$$

Hence proved.

Quadrilaterals Ex 14.4 Q11

Answer:

We have the following given figure:

We have AB = AC and $CP \parallel BA$ and AP is the bisector of exterior angle $\angle CAD$ of $\triangle ABC$.

(i) We need to prove that $\angle PAC = \angle BCA$

In $\triangle ABC$,

We have AB = AC (Given)

Thus, $\angle ABC = \angle BCA$ (Angles opposite to equal sides are equal)

By angle sum property of a triangle, we get:

$$\angle 1 + \angle BCA + \angle ABC = 180^{\circ}$$

$$\angle 1 + \angle BCA + \angle BCA = 180^{\circ}$$

$$\angle 1 + 2 \angle BCA = 180^{\circ}$$
 (i)

Now,

 $\angle PAC = \angle PAD$ (AP is the bisector of exterior angle $\angle CAD$)

$$\angle 1 + \angle PAC + \angle PAD = 180^{\circ}$$
 (Linear Pair)

$$\angle 1 + \angle PAC + \angle PAC = 180^{\circ}$$

$$\angle 1 + 2 \angle PAC = 180^{\circ}$$
 (ii)

From equation (i) and (ii), we get:

$$\angle 1 + 2 \angle | RCA = \angle 1 + 2 \angle PAC$$

$$\angle BCA = \angle PAC$$

(ii) We need to prove that ABCP is a parallelogram.

We have proved that $\angle PAC = \angle BCA$

This means, $AP \parallel BC$

Also it is given that $CP \parallel BA$

We know that a quadrilateral with opposite sides parallel is a parallelogram.

Therefore, ABCP is a parallelogram.

