

# **Lighting and Shading**

(Part I)

**Computer Graphics** Yu-Ting Wu

#### **Outline**

- Overview
- <u>Lights</u>
- Materials
- Material file format
- OpenGL implementation

(Part I)

(Part II)

#### **Outline**

- Overview
- Lights
- Materials
- Material file format
- OpenGL implementation

# **Shading: Materials and Lighting**



# **Shading: Materials and Lighting (cont.)**



# **Shading**

- Shading refers to the process of altering the color of an object/surface/polygon in the 3D scene
- In physically-based rendering, shading tries to approximate the local behavior of lights on the object's surface, based on things like
  - Surface orientation (normal) N
  - Lighting direction vL (and  $\Theta_i$ )
  - Viewing direction vE (and  $\Theta_o$ )
  - Material properties
  - Participating media
  - etc.



#### **Lambertian Cosine Law**

- Illumination on an oblique surface is less than on a normal one
- Generally, illumination falls off as cosθ



$$E = \frac{\Phi}{A'} = \frac{\Phi \cos \theta}{A}$$

#### **Outline**

- Overview
- Lights
- Materials
- Material file format
- OpenGL implementation

#### **Lights in Computer Graphics**

```
Point light
Spot light
Area light
```

Directional lightEnvironment lightdistant lights

### **Local Light**

- The distance between a light and a surface is NOT long enough compared to the scene scale
- The position of light needs to be considered during shading
  - Lighting direction vL = |P<sub>L</sub> P|
  - Lighting attenuation is proportional to the square of the distance between the light and the point



### **Local Light Attenuation**

- The length of the side of a receiver patch is proportional to its distance from the light
- As a result, the average energy per unit area is proportional to the square of the distance from the light



# **Point Light**





A scene illuminated by a point light

### Point Light (cont.)

- An isotropic point light source that emits the same amount of light in all directions
- Described by



# **Spot Light**





A scene illuminated by a spot light

# **Spot Light (cont.)**

- A handy variation on point lights
- Rather than shining illumination in all directions, it emits light in a cone of directions from its position
- Described by
  - Light position (P<sub>L</sub>, xyz)
  - Light intensity (I, rgb)
  - Light direction (D, xyz)
  - TotalWidth
  - FalloffStart



# **Area Light**



# **Area Light (cont.)**

- Defined by one or more shapes that emit light from their surface, with some directional distribution of energy at each point on the surface
- Require integration of lighting contribution across the light surface
  - In offline rendering, usually estimated by sampling
  - Expensive for real-time rendering
    - Heitz et al., SIGGRAPH 2016
    - Dupuy et al., SIGGRAPH 2017



#### **Distant Light**

- The distance between a light and a surface is long enough compared to the scene scale and can be ignored
  - Lighting direction is fixed
  - No lighting attenuation
- Directional light (sun) is the most common distant light



### **Directional Light**

- Describes an emitter that deposits illumination from the same direction at every point in space
- Described by
  - Light direction (D, xyz)



### **Environment Light**

- Use a texture (cube map or longitude-latitude image) to represent a spherical energy distribution
  - Each texel maps to a spherical direction, considered as a directional light
  - The whole map illuminates the scene from a virtual sphere at an infinite distance
- Also called image-based lighting (IBL)





## **Environment Light (cont.)**

· Widely used in digital visual effects and film production



# **Environment Light (cont.)**









#### Local, Direct, and Global Illumination

- Direct illumination considers only the direct contribution of lights
- Local illumination can be considered as direct lighting without occlusion (all lights are fully visible, no shadows)
- Global illumination includes multi-bounce illumination reflected from other surfaces (need recursive computation!)



# Local, Direct, and Global Illumination (cont.)



Comparison of direct and global illumination

#### **Outline**

- Overview
- Lights
- Materials
- Material file format
- OpenGL implementation

#### **Materials**



# Materials (cont.)

- Highly related to surface types
- The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflect the light













# Materials (cont.)

- Highly related to surface types
- The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflect the light



### **Phong Lighting Model**

- Diffuse reflection
  - Light goes everywhere; colored by object color
- Specular reflection
  - Happens only near mirror configuration; usually white
- Ambient reflection
  - Constant accounted for global illumination (cheap hack)



#### **Ambient Shading**

 Add constant color to account for disregarded illumination and fill black shadows



# **Ambient Shading (cont.)**

 Add constant color to account for disregarded illumination and fill black shadows



## **Diffuse Shading**

- Assume light reflects equally in all directions
  - The surface is rough with lots of tiny microfacets

Therefore, the surface looks the same color from all views (view independent)



- Assume light reflects equally in all directions
  - The surface is rough with lots of tiny microfacets
- Therefore, the surface looks the same color from all views (view independent)





Applies to diffuse or matte surface





diffuse-reflection model with different  $\,k_{
m d}$ 



ambient and diffuse-reflection model with different  $k_{\scriptscriptstyle a}$ 

$$I_a = 1.0$$
  $k_d = 0.4$ 

- For color objects, apply the formula for each color channel separately
- Light can also be non-white

Example:

white light: (0.9, 0.9, 0.9) yellow light: (0.8, 0.8, 0.2)

$$L_d = k_d \cdot I \cdot \max(0, N \cdot vL)$$

Example:

green ball: (0.2, 0.7, 0.2) blue ball: (0.2, 0.2, 0.7)



#### **Specular Shading**

- Some surfaces have highlights, mirror-like reflection
- View direction dependent
- Especially obvious for smooth shiny surfaces





Phong specular model [1975]



$$\begin{aligned} vR &= vL + 2((N \cdot vL)N - vL) \\ & \uparrow = 2(N \cdot vL)N - vL \\ & \text{perfectly reflected direction} \end{aligned}$$

(you can find the proof here)

- Phong specular model [1975]
  - Fall off gradually from the perfect reflection direction



$$vR = vL + 2((N \cdot vL)N - vL)$$
 $= 2(N \cdot vL)N - vL$ 
(scalar)
(R, G, B) specular exponent
$$L_s = k_s \cdot I \cdot \max(0, \cos\sigma)^n$$
 $= k_s \cdot I \cdot \max(0, vE \cdot vR)^n$ 
specular coefficient (R, G, B)
specularly reflected light (R, G, B)

Increase n narrows the lobe



#### Phong specular Variant: Blinn-Phong

- Rather than computing reflection directly, just compare to normal bisection property
- One can prove  $\cos^n(\sigma) = \cos^{4n}(\alpha)$



#### half vector

$$vH = bisector(vL, vE)$$

$$= \frac{(vL + vE)}{\|vL + vE\|}$$

$$L_s = k_s \cdot I \cdot \max(0, \cos \alpha)^n$$
  
=  $k_s \cdot I \cdot \max(0, N \cdot vH)^n$ 



#### **Complete Phong Lighting Model**

 Compute the contribution from a light to a point by including ambient, diffuse, and specular components

$$L = L_a + L_d + L_s$$
  
=  $k_a \cdot I_a + I(k_d \cdot \max(0, N \cdot vL) + k_s \cdot \max(0, N \cdot vH)^n)$ 



 If there are s lights, just sum over all the lights because the lighting is linear

$$L = k_a \cdot I_a + \sum_{i} (I_i(k_d \cdot \max(0, N \cdot vL_i) + k_s \cdot \max(0, N \cdot vH_i)^n))$$

#### Some Results with Phong Lighting Model





#### **Outline**

- Overview
- Lights
- Materials
- Material file format
- OpenGL implementation

## **Material Template Library**

A MTL file defines the materials of a \*.obj model

```
🧾 TexCube.obj - 記事本
檔案(\underline{F}) 編輯(\underline{F}) 格式(\underline{O}) 檢視(\underline{V}) 說明
# Blender v2.76 (sub 0) OBJ File: ''
# www.blender.org
v 1.0 -1.0 -1.0
                                specify material file
v 1.0 -1.0 1.0
v -1.0 -1.0 1.0
v -1.0 -1.0 -1.0
v 1.0 1.0 -1.0
v -1.0 1.0 1.0
v -1.0 1.0 -1.0
vt 0.0 0.0
vt 0.0 1.0
vt 1.0 0.0
vt 1.0 1.0
vn 0.0 - 1.0 0.0
vn 1.0 0.0 0.0
vn -0.0 0.0 1.0
```

vn -1.0 -0.0 -0.0 vn 0.0 0.0 -1.0

```
| declare a new group | f 2/4/1 3/2/1 4/1/1 | f 1/3/1 2/4/1 4/1/1 | f 2/3/4 6/4/4 3/1/4 | f 6/4/4 7/2/4 3/1/4 | f 5/4/3 6/2/3 2/1/3 | f 1/3/3 5/4/3 2/1/3 | f 3/3/5 7/4/5 8/2/5 | f 4/1/5 3/3/5 8/2/5 | f 5/2/6 1/1/6 8/4/6 | f 1/1/6 4/3/6 8/4/6 | cubeMtl" material | cubeMtl" | cubeMtl" material | cubeMtl" material | cubeMtl" material | cubeMtl" | cub
```



### **Material Template Library (cont.)**

- A model can have multiple groups (sub-meshes)
- The faces in the same group have the same material properties



```
檔案(E) 編輯(E) 格式(Q) 檢視(V) 說明 vn 0.0164 -0.9999 0.0000 usemt1 phongE1 f 1/1/1 29/2/2 32/3/3 2/4/4 f 2/4/4 32/3/3 33/5/5 3/6/6 f 3/6/6 33/5/5 34/7/7 4/8/8 f 4/8/8 34/7/7 3344/9/9 3345/f 29/2/2 30/11/11 35/12/12 32 第 253798 列,第 34 行 100% Unix (L
```

```
檔案(E) 編輯(E) 格式(Q) 檢視(V) 說明 vn 0.7047 0.0907 0.7036 vn 0.5859 0.0935 0.8050 vn 0.4528 0.0964 0.8864 usemt1 phong1 f 79857/93559/80376 80519/935 f 80519/93560/80377 79858/935 f 80839/93561/80378 80520/935 < 第337781 列,第24 行 100% Unix (L
```



### **Material Template Library (cont.)**

- The material template library (\*.mtl) used by a Wavefront OBJ (\*.obj) file describes material properties using
  - Phong lighting model (Ka, Kd, Ks, Ns)
  - Texture maps (mapKa, mapKd, mapKs, mapNs ...)
  - Transparency (d, Tr, Ni)
  - ... etc.
- You can refer to the wiki page for more information <a href="https://en.wikipedia.org/wiki/Wavefront\_.obj\_file">https://en.wikipedia.org/wiki/Wavefront\_.obj\_file</a>

# **Material Template Library (cont.)**

Rose.mtl 檢視(Ⅵ) 說明 編輯(<u>E</u>) 格式(<u>O</u>)



