ME 266 THERMODYNAMICS 1

ENERGY, WORK AND HEAT

D. A. QUANSAH

Energy

A system may posses several types of energy:

✓ Kinetic Energy:
$$K.E = \frac{1}{2} \text{ mV}^2$$

- ✓ Potential Energy: P.E = m.g.h
- ✓ Internal Energy: U

The **Internal Energy** is the energy associated with the translation, rotation, and vibration of the molecules, electrons, protons, and neutrons, and the chemical energy due to bonding between atoms and between subatomic particles.

Conservation of Energy

- ✓ The law of conservation of energy states that the energy of an isolated system remains constant.
- ✓ Energy cannot be created or destroyed in an isolated system; it can only be transformed from one form to another.

$$\frac{KE + PE + U = Constant}{mV^{2}}$$

$$\frac{mV^{2}}{2} + mgh + U = Constant$$

WORK

- Work, designated W, is often defined as the product of a force and the distance moved in the direction of the force: the mechanical definition of work.
- Thermodynamic work (a broader sense of work) is done by a system if the sole external effect on the surroundings could be the raising of a weight.

Work

Sign Convention

Work is +ve if done on the surroundings

Work is -ve if done on the system by the environment

Example

A piston compressing a fluid is doing **negative** work on the system, whereas a fluid expanding against a piston is doing **positive** work.

Expansion Work

$$\delta W = PAdl$$
 or $\delta W = PdV$

$$W_{\mathbf{1-2}} = \int_{V_{\mathbf{1}}}^{V_{\mathbf{2}}} PdV$$

Work as a Path Function

Analysis of PdV Work

$$W_{1-2} = \int_{V_1}^{V_2} P dV$$

To evaluate this integral analytically, one has to establish a relationship between *P* and *V* during the expansion or compression process. Typically, the relation is given as:

$$PV^n = Constant$$

A quasi-equilibrium process described by such an expression is called a *polytropic process*, n is the **polytropic index**, and is constant for a given process.

Analysis of *PdV* Work

$$PV^n = Constant$$

When:

- ✓ n=0: P=constant i.e. isobaric process
- ✓ n=1: PV=constant, which is an isothermal process for a perfect gas
- √ n=∞: results in V=constant i.e. isochoric (Proof??)
- ✓ n=Y: which is a reversible adiabatic process for a perfect gas.

Analysis of *PdV* Work

$$PV^n = constant$$

0 to 1= constant pressure heating,

0 to 2= constant volume heating,

0 to 3= reversible adiabatic compression,

0 to 4= isothermal compression,

0 to 5= constant pressure cooling,

0 to 6= constant volume cooling,

0 to 7= reversible adiabatic expansion,

0 to 8= isothermal expansion.

Analysis of PdV Work

$$PV^{n} = constant$$

$$W = \int_{V_{1}}^{V_{2}} PdV = \int_{V_{1}}^{V_{2}} \frac{Constant}{V^{n}} dV$$

$$= \frac{(Constant)V_{2}^{1-n} - (Constant)V_{1}^{1-n}}{1-n}$$

$$Constant = P_{1}V_{1}^{n} = P_{2}V_{2}^{n}$$

$$= \frac{(P_{2}V_{2}^{n})V_{2}^{1-n} - (P_{1}V_{1}^{n})V_{1}^{1-n}}{1-n} = \frac{P_{2}V_{2} - P_{1}V_{1}}{1-n}$$

Other work modes: Electrical Work

Rate of Electrical Work (Power), W

$$\dot{W} = Vi$$

Electrical Work , J, over Δt is:

$$W = Vi\Delta t$$

Other work modes: Shaft work

Power transmitted from shaft to surroundings is:

$$\dot{W} = F_t V = (\mathfrak{I}/R)(R\omega) = \mathfrak{I}\omega$$

$$\mathfrak{I} = F_t R$$

$$V = R\omega$$

tangential force F_t and radius R; velocity at the point of application of the force is $V=R\omega$, ω is the angular velocity.

Other work modes: Shaft work

The work transferred in a given time t is given by

$$W = T\omega \Delta t$$

Other work modes: Spring work

The work necessary to stretch a linear spring with spring constant K from a length x_1 to x_2 can be found by using the relation for the force:

$$F = Kx$$

$$W = \int_{x_1}^{x_2} F \, dx = \int_{x_1}^{x_2} Kx \, dx = \frac{1}{2} K(x_2^2 - x_1^2)$$

HEAT

- ✓ Heat is energy transferred across the boundary of a system due to a difference in temperature between the system and the surroundings of the system.
- ✓ A process in which there is zero heat transfer is called an *adiabatic* process.

SIGN CONVENTION

- ✓ Heat transfer to system: +ve
- ✓ Heat transfer from system: -ve

HEAT

- There are three heat transfer modes: conduction, convection, and radiation
- ➤ Heat is a path function and is usually denoted as Q

HEAT

RECALL

- ✓ The unit for energy, both as heat and work is the Joule (J).
- ✓ The rate of transfer (of heat or work) is measured in J/s or W, which is Power.

A 2200-kg automobile traveling at 90 km/h (25 m/s) hits the rear of a stationary, 1000-kg automobile. After the collision the large automobile slows to 50 km/h (13.89 m/s), and the smaller vehicle has a speed of 88 km/h (24.44 m/s). What has been the increase in internal energy, taking both vehicles as the system?

The kinetic energy before the collision is:

$$KE_1 = \frac{1}{2} m_a V_a^2$$

$$= \frac{1}{2} \times 2200 \times 25^2$$

$$= 687 500 \text{ J}$$

After the collision the kinetic energy is:

$$KE_2 = \frac{1}{2} m_a V_a^2 + \frac{1}{2} m_b V_b^2$$

$$= \frac{1}{2} \times 2200 \times 13.89^2 + \frac{1}{2} \times 1000 \times 24.44^2$$

$$= 510 900 \text{ J}$$

The conservation of energy requires that:

$$E_1 = E_2$$
 or $KE_1 + U_1 = KE_2 + U_2$
 $U_2 - U_1 = KE_1 - KE_2$
 $= 687 500 - 510 900 = 176 600 J$

The drive shaft in an automobile delivers **100 N.m** of torque as it rotates at **3000 rpm**. Calculate the power transmitted.

The power (or work rate) is found from the expression:

$$P = T\omega$$

Where:

T is torque and ω is angular velocity expressed in rad/s

$$\omega = 3000 \times \frac{2\pi}{60} = 314.2 \, ra \, d/s$$

$$P = T\omega = 100 \times 314.2 = 31420 \, W$$

$$P = \frac{31420}{746} = 42.1 \, hp$$

The air in a **10-cm-**diameter cylinder shown is heated until the spring is compressed **50 mm**. Find the work done by the air on the frictionless piston. The spring is initially unstretched, as shown.

The pressure in the cylinder is initially found from a force balance as shown on the free-body diagram:

 $P_1 = 162\,500\,\mathrm{Pa}$

The air in a **10-cm-**diameter cylinder shown is heated until the spring is compressed **50 mm**. Find the work done by the air on the frictionless piston. The spring is initially unstretched, as shown.

To raise the piston a distance of 50 mm, without the spring, the work required would be force times distance:

$$W = PA \times d$$

= 162 500 × (π × 0.05²) × 0.05
= 63.81 J

The work required to compress the spring is calculated as:

$$W = \frac{1}{2}K(x_2^2 - x_1^2) = \frac{1}{2} \times 10\ 000 \times 0.05^2 = 12.5 \text{ J}$$

The total work is then found by summing the two values:

$$W_{total} = 63.81 + 12.5 = 76.31 \,\mathbf{J}$$

Energy is added to a piston-cylinder arrangement, and the piston is withdrawn in such a way that the temperature remains constant. The initial pressure and volume are 200 kPa and 2 m³, respectively. If the final pressure is 100 kPa, calculate the work done by the ideal gas on the piston.

Assuming the expnsion to be a quasi-equilibrium process, the work may be determined as:

$$W_{1-2} = \int_{V_1}^{V_2} P dV = \int_{V_1}^{V_2} \frac{C}{V} dV$$

But for an isothermal process:

$$PV = C$$

We may therefore compute the constant *C* as:

$$C = P_1 V_1$$

= 200 × 2 = 400 kJ

Also:

$$P_1 V_1 = P_2 V_2$$

$$V_2 = \frac{P_1 V_1}{P_2} = \frac{200 \times 2}{100} = 4 \text{ m}^3$$

$$W_{1-2} = \int_2^4 \frac{400}{V} dV = 400 \ln \frac{4}{2} = 277 \text{ kJ}$$