Теория на игрите Задачи

Антагонистична игра между двама играчи с нулева сума

Пример 1

От всеки ред търсим минималното, после избираме максималното От всеки стълб търсим максималното, после избираме минималното

$$\begin{pmatrix} 10 & 17 \\ 9 & 23 \end{pmatrix} \frac{10}{9}$$
$$10 \quad 23$$

Тъй като двете са равни, то това е равновесие по Неш. Тоест имаме равновесие в чисти стратегии (1,1) и P(1,1)=10=v. Равновесните стратегии са редът и стълбът, за които се получава равновесната стойност. Цената на играта е намерената обща стойност.

Пример 2

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \frac{-1}{\underline{-1}}$$

$$\underline{1} \quad \underline{1}$$

Тук понеже подчертаните стойности не са равни, нямаме равновесие в чисти стратегии. Търсим в смесени, защото винаги има. Първият избира ред, тоест търсим вероятностите, с които ще избере всеки ред. Но тогава от свойство, за фиксирано x в чиста стратегия, P(i,y) е ред i умножен покомпонентно с y и е печалбата на първия играч. За втория аналогично решаваме система за $P(\overline{X},j)=v$.

Решаваме системите:

$$\begin{cases} P(1,\overline{y}) = v \\ P(2,\overline{y}) = v \\ \overline{y_1} + \overline{y_2} = 1 \end{cases} \Longleftrightarrow \begin{cases} -\overline{y_1} + \overline{y_2} = v \\ \overline{y_1} - \overline{y_2} = v \\ \overline{y_1} + \overline{y_2} = 1 \end{cases} \Longleftrightarrow \begin{cases} \overline{y_1} = \frac{1}{2} \\ \overline{y_2} = \frac{1}{2} \\ v = 0 \end{cases}$$

Аналогичната система и за x_1, x_2

Окончателно, равновесието по Неш е $((\frac{1}{2},\frac{1}{2}),(\frac{1}{2},\frac{1}{2}))$ и цената v=0

Пример 3

$$\begin{pmatrix} -3 & 5 \\ 7 & 1 \end{pmatrix} \frac{-3}{\underline{1}}$$

$$7 & \underline{5}$$

Нямаме равновесие в чисти стратегии.

Решаваме системите:

$$\begin{cases} P(1, \overline{y}) = v \\ P(2, \overline{y}) = v \\ \overline{y_1} + \overline{y_2} = 1 \end{cases} \iff \begin{cases} -3\overline{y_1} + 5\overline{y_2} = v \\ 7\overline{y_1} + \overline{y_2} = v \\ \overline{y_1} + \overline{y_2} = 1 \\ \overline{y_1}, \overline{y_2} > 0 \end{cases}$$

Аналогичната система и за x_1, x_2 и получаваме равновесието.

Пример 4

$$\begin{pmatrix} 1 & 4 & 7 & 2 \\ 2 & 3 & 3 & 1 \end{pmatrix} \frac{1}{1}$$

$$2 \quad 4 \quad 7 \quad 2$$

Нямаме равновесие в чисти стратегии

Понеже тук първият играч има две възможни стратегии, параметризираме по x и избираме x_2 . Правим чертеж, максимално точен, като свързваме двете стойности от всяка колона. След това понеже параметризираме по x, гледаме коя е най-високата точка в най-долната линия. Така намираме стойността за x_2 , откъдето $x_1=x_2-1$. Височината на тази точка е цената на играта. От това кои линии сме взели като най-долна се ориентираме кои са у-ците, които отговарят на тези линии. Всички други $y_j=0$. За тези y, които са останали можем да решим система и да ги намерим. За точно определяне на пресечната точка, която търсим, може да си намерим уравненията на правите и да намерим точно коя е точката, ако с други съображения не можем. Нагледно:

От тук виждаме, че $x_2=\frac{1}{2}$ откъдето $x_1=\frac{1}{2}$. Също така $v=\frac{3}{2}$. Виждаме че линиите за y_2 и y_3 не влизат във финалната ни линия, тоест $y_2=y_3=0$. Остана да намерим y_1 и y_4 .

Решаваме системата:

$$egin{cases} P(1,\overline{y}) = v \ P(2,\overline{y}) = v \ \overline{y_1} + \overline{y_4} = 1 \ \hline y_1,\overline{y_4} > 0 \end{cases} \Longleftrightarrow egin{cases} \overline{y_1} + 2\overline{y_4} = rac{3}{2} \ 2\overline{y_1} - \overline{y_4} = rac{3}{2} \ \overline{y_1} + \overline{y_4} = 1 \ \hline y_1,\overline{y_4} > 0 \end{cases} \Longleftrightarrow egin{cases} \overline{y_1} = rac{1}{2} \ \overline{y_4} = rac{1}{2} \ \hline \end{array}$$

Окончателно, равновесието по Неш е $((rac{1}{2},rac{1}{2}),(rac{1}{2},0,0,rac{1}{2}))$ и цената $v=rac{3}{2}$

Пример 5

$$\begin{pmatrix} 2 & 6 \\ 8 & 3 \\ -5 & 1 \\ -6 & 6 \end{pmatrix} \begin{array}{c} 2 \\ \underline{3} \\ -5 \\ -6 \\ 8 & 6 \end{array}$$

Нямаме равновесие в чисти стратегии

Понеже тук вторият играч Y има две възможни стратегии, параметризираме по y и избираме y_2 . Правим чертеж, максимално точен, като свързваме двете стойности от всеки ред. След това понеже параметризираме по y, гледаме коя е най-ниската точка в най-горната линия. Така намираме стойността за y_2 , откъдето $y_1=y_2-1$. От това кои линии сме взели като най-горна

се ориентираме кои са x-овете, които отговарят на тези линии. Всички други $x_i=0$. За тези x, които са останали можем да решим система и да ги намерим. Нагледно:

От тук виждаме, че $y_2=rac{2}{3}$ откъдето $y_1=rac{1}{3}$. Също така $v=rac{14}{3}$.

Виждаме че линиите за x_3 и x_4 не влизат във финалната ни линия, тоест $x_3=x_4=0$. Остана да намерим x_1 и x_2 .

Решаваме системата:

$$\begin{cases} P(\overline{x},1) = v \\ P(\overline{x},2) = v \\ \overline{x_1} + \overline{x_2} = 1 \\ \overline{x_1}, \overline{x_2} > 0 \end{cases} \Longleftrightarrow \begin{cases} 2\overline{x_1} + 8\overline{x_2} = \frac{14}{3} \\ 6\overline{x_1} + 3\overline{x_2} = \frac{14}{3} \\ \overline{x_1} + \overline{x_2} = 1 \\ \overline{x_1}, \overline{x_2} > 0 \end{cases} \Longleftrightarrow \begin{cases} \overline{x_1} = \frac{5}{9} \\ \overline{x_2} = \frac{4}{9} \end{cases}$$

Окончателно, равновесието по Неш е $((\frac{5}{9},\frac{4}{9},0,0),(\frac{1}{3},\frac{2}{3}))$ и цената $v=\frac{14}{3}$

Пример 6

$$\begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{pmatrix} \frac{-2}{-3}$$

$$2 \quad \underline{1} \quad 3$$

Няма равновесие в чисти стратегии. Понеже играта е симетрична, търсим равновесие от вида (x,x) и знаем че цената е 0, заради симетричността.

Първо гледаме дали е възможно да има стратегия, която със сигурност не играем $\left(x_{i}=0\right)$

Нека без ограниечение на общността

$$\begin{cases} \overline{x_3} = 0 \\ \overline{x_1} > 0 \Longrightarrow \begin{cases} P(1, \overline{x}) = 0 \\ P(2, \overline{x}) = 0 \end{cases} \Longleftrightarrow \begin{cases} 0\overline{x_1} + 1\overline{x_2} - 2\overline{x_3} = 0 \\ -\overline{x_1} + 0\overline{x_2} + 3\overline{x_3} = 0 \end{cases} \Longleftrightarrow \begin{cases} \overline{x_1} = 0 \\ \overline{x_2} = 0 \\ \overline{x_3} = 0 \end{cases}$$

Следователно, този случай не е възможен и гледаме да няма нито един $x_i=0$

$$egin{cases} P(1,\overline{x}) = 0 \ P(2,\overline{x}) = 0 \iff egin{cases} \overline{x_1} = rac{1}{2} \ \overline{x_2} = rac{1}{3} \ \overline{x_3} = rac{1}{6} \end{cases}$$

Окончателно, равновесието по Неш е $((\frac{1}{2},\frac{1}{3},\frac{1}{6}),(\frac{1}{2},\frac{1}{3},\frac{1}{6}))$ и цената v=0

Пример 7

$$A = \begin{pmatrix} 9 & 10 & 11 \\ 10 & 11 & 9 \\ 11 & 9 & 10 \end{pmatrix} \frac{9}{9}$$

$$11 & 11 & 11$$

Няма равновесие в чисти стратегии.

Можем да опростим играта като направим B=A-10

$$B = \begin{pmatrix} -1 & 0 & 1\\ 0 & 1 & -1\\ 1 & -1 & 0 \end{pmatrix}$$

Сега можем да разменим първия и втория ред на матрицата и получаваме

$$C = egin{pmatrix} 0 & 1 & -1 \ -1 & 0 & 1 \ 1 & -1 & 0 \end{pmatrix}$$

Сега получихме симетрична игра, която знаем как да решим

Като намерим за нея $\overline{x}=(\overline{x_1},\overline{x_2},\overline{x_3})$ то за да получим \overline{x} за играта B разменяме стойностите на $\overline{x_1},\overline{x_2}$. За да намерим окончателното решение на дадената игра, трябва да намерим цената

спрямо стойностите на дадената матрица с вече намерената стойност на \overline{x}

Пример 8

$$A = \begin{pmatrix} 144 & 60 & 84 \\ 60 & 144 & 124 \\ 84 & 112 & 110 \\ 70 & 126 & 116 \end{pmatrix}$$

Няма равновесие в чисти стратегии.

Можем да опростим играта като премахнем редове и колони.

Ако дадена изпъкнала комбинация на редове (всеки ред умножаваме с неотрицателна константа, като сбора на всички константи е 1) мажорира (е по-голям от) даден ред, то можем да го махнем.

В случая, $\frac{1}{2}a_2+\frac{1}{2}a_3\geq a_4$ (сравняваме покомпонентно), понеже се полува (72,128,117)>(70,126,116)

Тоест можем да премахнем четвъртия ред ($\overline{x_4} = 0$)

$$B = \begin{pmatrix} 144 & 60 & 84 \\ 60 & 144 & 124 \\ 84 & 112 & 110 \end{pmatrix}$$

Сега имаме, че $\frac{1}{3}a_1+\frac{2}{3}a_2\geq a_3$ (сравняваме покомпонентно), понеже се полува $(88,116,110)\geq (84,112,110)$

Тоест можем да премахнем третия ред ($\overline{x_3} = 0$)

$$B = \begin{pmatrix} 144 & 60 & 84 \\ 60 & 144 & 124 \end{pmatrix}$$

Сега искаме да махнем някой стълб, въпреки че и в този вид вече можем да я решим играта. За целта искаме да намерим стълб, който е по-малък от изпъкнала комбинация на другите стълбове.

Имаме, че $\frac{1}{4}b_1+\frac{3}{4}b_2\leq b_3$, понеже $(81,123)\leq (84,124)$, тоест можем да махнем третия стълб ($\overline{y_3}=0$)

$$C = \begin{pmatrix} 144 & 60\\ 60 & 144 \end{pmatrix}$$

Сега получихме 2х2 игра, която знаем как да решим.

Антагонистична игра между двама играчи - биматрична игра

Пример 1

Когато имаме две матрици, винаги по матрицата на първия играч търсим тах по стълбове, а по матрицата на втория играч тах по редове

$$A=egin{pmatrix}1&rac{7}{4}&rac{1}{6}&rac{6}{6}\end{pmatrix},B=egin{pmatrix}rac{3}{0}&2&0\0&2&rac{3}{2}\end{pmatrix}$$

Тъй като има съвпадащи подчертани елементи в двете матрици, то имаме равновесие в чисти стратегии, а именно (2,3) и печалбата на първия играч е v=6=P(2,3), а на втория w=3=Q(2,3)

Пример 2

Когато имаме две матрици, винаги по матрицата на първия играч търсим тах по стълбове, а по матрицата на втория играч тах по редове

$$A=egin{pmatrix}1&rac{7}{4}&rac{3}{5}&1\end{pmatrix},B=egin{pmatrix}rac{3}{0}&2&0\0&2&rac{3}{2}\end{pmatrix}$$

Нямаме равновесие в чисти стратегии.

Първият играч има 2 стратегии $x=(x_1,x_2)$, а вторията има 3 стратегии $y=(y_1,y_2,y_3)$

Затова параметризираме по ${\bf x}$ и избираме x_2 . Тогава на чертеж слагаме стойностите от матрицата B, тоест Q(x,j). Винаги гледаме линията най-отгоре и разглеждаме всички точки и интервали, ограничени от точките.

Нагледно:

Още от чертежа е ясно, че възможните стойности за x_2 са $\frac{1}{3}$ и $\frac{2}{3}$. Но трябва формално да разгледаме трите интервала и двете крайни стойности и да кажем, че там няма решения.

1. Да разгледаме сега първо случая $\overline{x}=(\frac{1}{3},\frac{2}{3})$ От тук директно следва от чертежа, че $\overline{y_1}=0$ и $\overline{y_2},\overline{y_2}>0$

Сега можем да премахнем първия стълб на A и остава $A=egin{pmatrix} 7 & 3 \ 5 & 1 \end{pmatrix}$

Решаваме системата

$$egin{cases} P(1,\overline{y})=v \ P(2,\overline{y})=v \end{cases} \Longleftrightarrow egin{cases} 7y_2+3y_3=v \ 5y_2+y_3=v \end{cases} \Longleftrightarrow egin{cases} \overline{y_2}=0 \ \overline{y_3}=0 \end{cases}
ightarrow$$
невъзможно

Следователно това не е ревновесие по Неш

2. Сега да разгледаме случая $\overline{x}=(\frac{2}{3},\frac{1}{3})$ От тук директно следва от чертежа, че $\overline{y_3}=0$ и $\overline{y_1},\overline{y_2}>0$

Сега можем да премахнем третия стълб на A и остава $A=egin{pmatrix} 1 & 7 \ 4 & 5 \end{pmatrix}$

Решаваме системата

$$egin{cases} P(1,\overline{y})=v \ P(2,\overline{y})=v \end{cases} \Longleftrightarrow egin{cases} y_1+7y_2=v \ 5y_1+y_2=v \end{cases} \Longleftrightarrow egin{cases} rac{\overline{y_1}=rac{2}{5}}{\overline{y_2}=rac{3}{5}}
ightarrow ext{равновесие} \ v=rac{23}{5} \end{cases}$$

Следователно това е ревновесие по Неш

Остана да сметнем печалбата на втория играч. Понеже $\overline{y_1}>0$, то имаме, че $Q(\overline{x},1)=w$. Тоест $\frac{2}{3}\cdot 3+\frac{1}{3}\cdot 0=w=2$

Окончателно, равновесието е $((\frac{2}{3},\frac{1}{3}),(\frac{2}{5},\frac{3}{5},0))$ и $v=\frac{23}{5},w=2$

- 3. Сега да разгледаме формалните интервали и стойности
 - При $x_2=0$ имаме, че $x_1=1$ и тогава втория играч ще играе винаги първата стратегия, тоест получаваме равновесие в чисти стратегии противоречие
 - При $x_2 = 1$ аналогично
 - При $x_2\in(0,\frac13)$ имаме от чертежа, че $\overline{y}=(1,0,0)$. Тогава щом $\overline{x_1},\overline{x_2}>0$ е вярно, че $\begin{cases} P(1,\overline{y})=v\\ P(2,\overline{y})=v \end{cases} \Longleftrightarrow \begin{cases} v=1\\ v=4 \end{cases}$ противоречие
 - Аналогично при $x_2 \in (\frac{1}{3}, \frac{2}{3})$ и $x_2 \in (\frac{2}{3}, 1)$
- Забележка: навсякъде системите имат и другите две условия че сборът на елементите на вектора е точно 1 и всеки компонент на вектора е по-голям или равен на нула

Пример 3

Когато имаме две матрици, винаги по матрицата на първия играч търсим тах по стълбове, а по матрицата на втория играч тах по редове

$$A = \begin{pmatrix} \underline{5} & 0 \\ 3 & 3 \\ 0 & \underline{5} \end{pmatrix}, B = \begin{pmatrix} 1 & \underline{2} \\ 3 & \underline{4} \\ \underline{4} & 1 \end{pmatrix}$$

Нямаме равновесие в чисти стратегии.

Вторията играч има 2 стратегии $y=(y_1,y_2)$, а пъвият има 3 стратегии $x=(x_1,x_2,x_3)$

Затова параметризираме по y и избираме y_2 . Тогава на чертеж слагаме стойностите от матрицата A, тоест P(i,y)

Чертежът е аналогичен с този от предната задача - оста само е по у2, и вместо 0,2,3 стойностите са 0,3,5

Още от чертежа е ясно, че възможните стойности за y_2 са $\frac{2}{5}$ и $\frac{3}{5}$. Но трябва формално да разгледаме трите интервала и двете крайни стойности и да кажем, че там няма решения.

1. Ако $0<\overline{y_2}<\frac25$ имаме от чертежа, че $\overline{x}=(1,0,0)$, тоест понеже $\overline{y_1},\overline{y_2}>0$ имаме, че $\begin{cases}Q(\overline{x},1)=w\\Q(\overline{x},2)=w\end{cases}$ o противоречие

- 2. Ако $\frac{2}{5}<\overline{y_2}<\frac{3}{5}$ имаме от чертежа, че $\overline{x}=(0,1,0)$, тоест понеже $\overline{y_1},\overline{y_2}>0$ имаме, че $\begin{cases}Q(\overline{x},1)=w\\Q(\overline{x},2)=w\end{cases}$ противоречие
- 3. Ако $\frac{3}{5}<\overline{y_2}<1$ имаме от чертежа, че $\overline{x}=(0,0,1)$, тоест понеже $\overline{y_1},\overline{y_2}>0$ имаме, че $\begin{cases}Q(\overline{x},1)=w\\Q(\overline{x},2)=w\end{cases}$ противоречие
- 4. Ако $\overline{y_2}=0$, то $\overline{y_1}=1$ и имаме от чертежа, че $\overline{x}=(1,0,0)$, тоест получаваме чиста стратегия (1,1) противоречие
- 5. Ако $\overline{y_2}=1$, то $\overline{y_0}=1$ и имаме от чертежа, че $\overline{x}=(0,0,1)$, тоест получаваме чиста стратегия (3,2) противоречие
- 6. Ако $\overline{y_2}=\frac25$, то $\overline{y}=(\frac35,\frac25)$ От тук директно следва от чертежа, че $\overline{x_3}=0$ и $\overline{x_1},\overline{x_2}>0$ Решаваме системата

$$egin{cases} Q(\overline{x},1)=w \ Q(\overline{x},2)=w \iff egin{cases} x_1+3x_2=w \ 2x_1+4x_2=w \end{cases} \Longleftrightarrow egin{cases} \overline{x_1}=0 \ \overline{x_2}=0 \end{cases}
ightarrow$$
 невъзможно

Следователно това не е ревновесие по Неш

7. Ако $\overline{y_2}=\frac35$, то $\overline{y}=(\frac25,\frac35)$ От тук директно следва от чертежа, че $\overline{x_1}=0$ и $\overline{x_2},\overline{x_3}>0$ Решаваме системата

$$egin{cases} Q(\overline{x},1)=w \ Q(\overline{x},2)=w \end{cases} \Longleftrightarrow egin{cases} 3x_2+4x_3=w \ 4x_2+x_3=w \end{cases} \Longleftrightarrow egin{cases} rac{\overline{x_2}=rac{3}{4}}{\overline{x_3}=rac{1}{4}}
ightarrow$$
равновесие $w=rac{13}{4}$

Следователно това е ревновесие по Неш

Остана да сметнем печалбата на първия играч. Понеже $\overline{x_2}>0$, то имаме, че $P(2,\overline{y})=v$. Тоест $\frac{2}{5}\cdot 3+\frac{3}{5}\cdot 3=v=3$

Окончателно, равновесието е $((0,\frac34,\frac14),(\frac25,\frac35))$ и $v=3,w=\frac{13}4$

• Забележка: навсякъде системите имат и другите две условия че сборът на елементите на вектора е точно 1 и всеки компонент на вектора е по-голям или равен на нула

Кооперативни игри с двама играчи - биматрични

Пример 1

Тук е удобно да гледаме двете матрици като една матрица от наредени двойки.

$$\begin{pmatrix} (1,4) & (-\frac{4}{3},-4) \\ (-3,1) & (-4,1) \end{pmatrix}$$

Определямае u_0 като цената на играта на матрицата

$$A = \begin{pmatrix} 1 & -\frac{4}{3} \\ -3 & 4 \end{pmatrix}$$

Няма равновесие в чисти стратегии, значи решаваме системата

$$\left\{egin{aligned} x_1 - 3x_2 &= v \ -rac{4}{3}x_1 + 4x_2 &= v \ x_1 + x_2 &= 1 \end{aligned}
ight.$$

Откъдето получаваме, че $u_0=v=0$

Определямае v_0 като цената на играта на матрицата

$$B^T = \begin{pmatrix} 4 & -1 \\ -4 & 1 \end{pmatrix}$$

Няма равновесие в чисти стратегии, значи решаваме система...

Откъдето получаваме, че $v_0=v=0$

Окончателно $(u_0, v_0) = (0, 0)$

Правим чертеж на множеството S, което представлява свързани с прави точките от дадената матрица. Разглеждаме само частта, от него, в която $(u,v) \geq (u_0,v_0) = (0,0)$. Спазвайки шестте аксиоми може да определим решението по 3 начина.

Решението е $(\overline{u},\overline{v})=(rac{5}{2},rac{5}{2})$

Най-лесният е като гледаме чертежа и намерим пресечната точка на ъглополовящата на първи квадрант със страната срещу нея(от симетричността).

Вторият вариант е да намерим решение на системата $egin{cases} uv o \max \ (u,v)\in S \ (u,v)\geq (u_0,v_0) \end{cases}$

Където u,v са координати на точките, удовлетворяващи уравнението на отсечката AB, спомената в горния метод (A+lpha(B-A))

Тоест
$$egin{pmatrix} u \\ v \end{pmatrix} = egin{pmatrix} 1 \\ 4 \end{pmatrix} + lpha egin{pmatrix} 4-1 \\ 1-4 \end{pmatrix}$$
 и $lpha \in [0,1]$

Тогава се получава, че $uv=alpha^2+blpha+c$

Когато намерим НГС на тази парабола за $\alpha \in [0,1]$, ще имаме координатите на точката, което е и решението ни.

Третият начин е чрез използване на множители на Лагранж. Тогава решаваме системата

$$egin{cases} (u-u_0)(v-v_0) o \max \ au+bv=c \ ext{(гореспоменатата отсечка)} \ (u,v) \geq (u_0,v_0) \end{cases}$$

Това се свежда до намиране на екстремум на

 $\mathbb{L}(u,v,\lambda)=(u-u_0)(v-v_0)+\lambda(au+bv-c)$. Решаваме като занулим едновременно частните производни по трите променливи. При намерените стойности, намираме и търсеното решение $(\overline{u},\overline{v})=(u,v)$.

.

Пример 2

$$\begin{pmatrix} (2,1) & (-1,-1) \\ (-1,-1) & (1,2) \end{pmatrix}$$

Определямае u_0 като цената на играта на матрицата $A = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$

Няма равновесие в чисти стратегии, значи решаваме системата $egin{cases} 2x_1-x_2=v \\ -x_1+x_2=v \\ x_1+x_2=1 \end{cases}$

Откъдето получаваме, че $u_0=v=rac{1}{5}$

Определямае v_0 като цената на играта на матрицата $B^T=\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$ Няма равновесие в чисти стратегии, значи решаваме системата $\begin{cases} x_1-x_2=v \\ -x_1+2x_2=v \end{cases}$ $x_1+x_2=1$

Откъдето получаваме, че $v_0=v=rac{1}{5}$

Окончателно $(u_0,v_0)=(rac{1}{5},rac{1}{5})$

Правим чертеж на множеството S, което представлява свързани с прави точките от дадената матрица. Разглеждаме само частта, от него, в която $(u,v)\geq (u_0,v_0)=(\frac{1}{5},\frac{1}{5})$. Спазвайки шестте аксиоми може да определим решението по 3 начина.

Най-лесният е като гледаме чертежа и намерим пресечната точка на ъглополовящата на първи квадрант със страната срещу нея (от симетричността).

Другите два варианта са аналогични с горния пример.

Кооперативни игри с повече от двама играчи

Пример 1

Имаме играта u, дефинирана с характеристичната си функция и $N=\{1,2,3\}$:

$$\begin{cases} u(\{i\}) = -2 \\ u(\{i,j\}) = 2 \\ u(N) = 0 \end{cases}$$

Искаме да направим (0,1)-нормализация на играта

За целта ползваме следните две формули:

•
$$r = \frac{1}{u(N) - \sum\limits_{i \in N} u(\{i\})}$$

•
$$\alpha_i = -u(\{i\}) \cdot r$$

$$egin{aligned} ullet & lpha_i = -u(\{i\}) \cdot r \ ullet & v(S) = r \cdot u(S) + \sum\limits_{i \in S} lpha_i \end{aligned}$$

За конкретната задача, имаме:

•
$$r = \frac{1}{0-3\cdot(-2)} = \frac{1}{6}$$

•
$$\alpha_i = -(-2) \cdot \frac{1}{6} = \frac{1}{3}$$

Тогава получаваме:

- ullet $v(\{i\}) = r \cdot u(\{i\}) + lpha_i = 0$ само за проверка(за всяка нормализирана игра едноелементните коалиции се характеризират с 0)
- $v(\{i,j\}) = r \cdot u(\{i,j\}) + \alpha_i + \alpha_j = 1$
- ullet $v(N) = r \cdot u(N) + lpha_1 + lpha_2 + lpha_3 = 1$ само за проверка(за всяка нормализирана игра съвместната коалиция се характеризира с 1)

Окончателно, нормализираната игра е $egin{cases} v(\{i\}) = 0 \ v(\{i,j\}) = 1 \ v(N) = 1 \end{cases}$

Пример 2

Имаме играта
$$v$$
, дефинирана с характеристичната си функция и $N=\{1,2\}$: $egin{cases} v(\{1\})=1 \\ v(\{2\})=2 \\ v(\{1,2\})=5 \end{cases}$

Търсим ядрото на играта.

За да намерим ядрото, винаги разглеждаме геометричния обект, зададен като сума на измеренията и равен на v(N). В този случай имаме N=2 затова сме в 2d и разглеждаме права. След това за всеки компонент образуван от сбора на измеренията на коалицията S слагаме ограничения да е по-голям от v(S)

Имаме, че
$$C(v)=\{(x,y)\in\mathbb{R}^2|x+y=5,x\geq 1,y\geq 2\}$$

На чертеж:

Пример 3

Имаме играта v, дефинирана с характеристичната си функция и $N=\{1,2,3\}$:

$$\begin{cases} v(\{1\}) = 1, v(\{2\}) = 0, v(\{3\}) = 1\\ v(\{1, 2\}) = 4, v(\{1, 3\}) = 3, v(\{2, 3\}) = 5\\ v(\{1, 2, 3\}) = 8 \end{cases}$$

Търсим ядрото на играта.

За да намерим ядрото, винаги разглеждаме геометричния обект, зададен като сума на измеренията и равен на v(N). В този случай имаме N=3 затова сме в 3d и разглеждаме равнина. След това за всеки компонент образуван от сбора на измеренията на коалицията S слагаме ограничения да е по-голям от v(S)

Имаме, че

$$C(v) = \{(x_1,x_2,x_3) \in \mathbb{R}^3 \mid x_1+x_2+x_3=8, \ x_1 \geq 1, x_2 \geq 0, x_3 \geq 1, \ x_1+x_2 \geq 4 \Rightarrow x_3 \leq 4 \ x_1+x_3 \geq 3 \Rightarrow x_2 \leq 5 \ x_2+x_3 \geq 5 \Rightarrow x_1 \leq 3 \}$$

На чертеж - в равнината $x_1 + x_2 + x_3 = 8$:

Пример 4

Имаме играта v, дефинирана с характеристичната си функция и $N=\{1,2,3\}$:

$$egin{cases} v(\{1\}) = v(\{2\}) = v(\{3\}) = 1 \ v(\{1,2\}) = v(\{1,3\}) = v(\{2,3\}) = 1 \ v(\{1,2,3\}) = 1 \end{cases}$$

Търсим ядрото на играта.

Ядрото се определя от системата
$$egin{cases} x_1+x_2+x_3=1 \ x_1+x_2\geq 1 \ x_1+x_3\geq 1 \ x_2+x_3\geq 1 \end{cases}$$
 — \to несъвместима

Тоест ядрото е празно и всяка делба е доминируема. Това означава, че играта няма решение.

Пример 5

Имаме играта v, дефинирана с характеристичната си функция и $N=\{1,2,3\}$:

$$\begin{cases} v(\{1\}) = v(\{2\}) = v(\{3\}) = 0 \\ v(\{1,2\}) = v(\{1,3\}) = v(\{2,3\}) = \alpha \\ v(\{1,2,3\}) = 1 \end{cases}$$

Търсим α , такова, че ядрото на играта е непразно.

Ядрото се определя от системата

$$egin{cases} x_1+x_2+x_3=1 \ x_1+x_2 \geq lpha \ x_1+x_3 \geq lpha \ x_2+x_3 \geq lpha \ x_1,x_2,x_3 \geq 0 \end{cases} \implies 2(x_1+x_2+x_3) \geq 3lpha \Longleftrightarrow lpha \leq rac{2}{3}$$

- При $\alpha>\frac{2}{3}$ ядрото е празно При $\alpha=\frac{2}{3}$ ядрото се състои от една точка $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ При $\alpha<\frac{2}{3}$ ядрото се състои от множество триъгълник

Пример 6

Да се определят доминациите на делбите

$$\begin{array}{l} x = (\frac{1}{4}, \frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}) \\ y = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{4}, \frac{1}{4}) \end{array}$$

Първо да кажем, че за да е делба един вектор x на игра с $N=\{1,\dots,n\}$ в (0,1)нормализация трябва:

- $\sum_{i=1}^{n} x_i = 1$

За конкретния случай, двата вектора са делби.

Също така покомпонентно като сравняваме, стигаме до извода, че:

$$x>_{\{1,2\}}y$$
 и $y>_{\{4,5\}}x$

Пример 7

Ако имаме игра задена с характеристичната си функция:

$$\begin{cases} v(\{1\}) = 200, & v(\{2\}) = 300, & v(\{3\}) = 0 \\ v(\{1,2\}) = 800, & v(\{1,3\}) = 500, & v(\{2,3\}) = 650 \\ v(\{1,2,3\}) = 1000 \end{cases}$$

Искаме да проверим дали векторите са в ядрото:

$$x = (330, 490, 180)$$

 $y = (330, 500, 190)$

Втората делба има сума на компонентите $1020 \neq 1000$ следователно не е в ядрото Първата делба има сума на компонентите 1000 и отговаря на условията за ядро, следователно е в ядрото

Проверка може да направим като си разпишем ядрото като система от условия и проверим дали дадените вектори удовлетворяват системата.

Пример 8

Нека имаме читирима акционери в едно дружество, които имат дялове съответно 10%, 20%, 30% и 40%. Решение се взима от мнозинство, държащо поне 50% от акциите. Искаме да видим делбата на участието в решения.

Това може да го тълкуваме като игра с $N=\{1,2,3,4\}$ и характеристична функция:

$$egin{cases} v(\{i\}) = 0 \ v(\{1,2\}) = v(\{1,3\}) = 0, \ v(\{i,j\}) = 1 \ v(\{i,j,k\}) = 1 \ v(N) = 1 \end{cases}$$

Сега търсим вектора на Шепли arphi(v)

Последователно:

$$arphi_1(v) = \sum_{\substack{T \subseteq N \ 1 \in T}} rac{(t-1)!(n-t)!}{n!} (v(T) - v(T\setminus\{1\})) = rac{1!2!}{4!} 1 = rac{1}{12}$$
 - понеже тук само

 $v(\{1,2,3\})-v(\{2,3\})>0$ от възможните T

$$arphi_2(v) = \sum_{\substack{T \subset N \ 2 \in T}} rac{(t-1)!(n-t)!}{n!} (v(T) - v(T \setminus \{2\})) = rac{1!2!}{4!} 1 + rac{2!1!}{4!} 1 + rac{2!1!}{4!} 1 = rac{1}{4}$$
 - понеже

тук
$$v(\{2,4\})-v(\{4\})=v(\{1,2,3\})-v(\{1,3\})=v(\{1,2,4\})-v(\{1,4\})=1$$
 и всички други $v(T)-v(T\setminus\{2\})=0$

$$arphi_3(v)=rac{1}{4}$$

$$\varphi_4(v) = \frac{5}{12}$$

Окончателно $arphi(v)=(rac{1}{12},rac{1}{4},rac{1}{4},rac{5}{12})$