1. The result is recorded in the following table:

	Data Pair 1	Data Pair 2	Data Pair 3
Model 1	0.22	0.23	0.11
Model 2	0.17	0.55	0.45
Model 3	0.24	0.55	0.05

The table shows that Model 1 has a very nice consistency. Model 2 and Model 3 perform very poorly for some pairs. I think this is because Model 2 and Model 3 make assumptions that violate the true population distribution. Model 2 assumes S1 = S2, and Model 3 averaged the variance of all parameters within a class. The classes can have different variance and the parameters can have different variance. Making these assumptions can lead to information loss and thus inaccurate predictions.

(parameters calculated is show in appendix)

2. (a)

```
k = 5 error rate:
>> script 2a
k = 1 error rate:
                            0.0438
   0.0539
                        k = 7 error rate:
k = 3 error rate:
                            0.0539
   0.0404
```

```
(b)
    >> script 2b
    min number of principle components that covers 0.9 variance: 21
     k = 1 error rate :
                                                                                                                                                                                                                                                                                                                                                                                    September 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
                                           0.0471
     k = 3 error rate:
                                                                                                                                                                                                                                                                                                               0.9
                                           0.0471
                                                                                                                                                                                                                                                                                                               0.8
     k = 5 error rate:
                                                                                                                                                                                                                                                                                                               0.7
                                           0.0539
                                                                                                                                                                                                                                                                                                               0.6
                                                                                                                                                                                                                                                                                                               0.5
     k = 7 error rate:
                                          0.0539
                                                                                                                                                                                                                                                                                                               0.4
                                                                                                                                                                                                                                                                                                                 0.3
                                                                                                                                                                                                                                                                                                               0.2
                                                                                                                                                                                                                                                                                                               0.1
                                                                                                                                                                                                                                                                                                                                                                            10
                                                                                                                                                                                                                                                                                                                                                                                                                         20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    70
```

(c)

(d)

$$L = 9, k = 1$$
 error rate : 0.0976

$$L = 9$$
, $k = 3$ error rate: 0.0909

$$L = 9, k = 5$$
 error rate: 0.0943

(e)

3.

(a)

(b)

>> script 3b

min number of principle components that covers 0.9 variance: 41

k = 1 error rate :
 0.0968

k = 3 error rate :
 0.2339

k = 5 error rate :
 0.4194

k = 7 error rate :
 0.4113

(c)

Appendix

Data Pair 1:

```
P(C1)=0.30, P(C2)=0.70
mu1:
    0.4306    2.0235    3.1758    -2.4272    -2.5234    3.2378    -5.5208    -6.6921
mu2:
    4.5841    6.4933    6.4265    1.6891    2.2943    8.3626    -0.1658    -1.8048
```

Model 1:

S1							
1.8640	0.2267	0.7462	0.9977	0.4178	1.2227	1.1337	-1.1909
0.2267	3.5370	0.3019	-0.1300	1.5294	0.9958	-0.1878	3.1664
0.7462	0.3019	7.8426	1.2902	-0.4143	1.7198	0.3431	0.2243
0.9977	-0.1300	1.2902	4.0886	0.9166	0.7222	1.0326	1.9150
0.4178	1.5294	-0.4143	0.9166	3.9976	0.9693	-0.5271	3.3238
1.2227	0.9958	1.7198	0.7222	0.9693	3.9339	-0.1894	2.2238
1.1337	-0.1878	0.3431	1.0326	-0.5271	-0.1894	4.0757	-1.6529
-1.1909	3.1664	0.2243	1.9150	3.3238	2.2238	-1.6529	16.5256
S2							
3.4237	2.0692	2.5707	2.6127	1.7732	1.8303	2.6792	2.9340
2.0692	5.7835	2.1793	2.7182	3.1575	2.8877	2.7564	5.8537
2.5707	2.1793	8.7126	3.3752	2.8256	2.2294	2.7535	5.1835
2.6127	2.7182	3.3752	8.1683	3.5774	2.6607	2.0204	8.3968
1.7732	3.1575	2.8256	3.5774	5.5677	2.9061	3.2500	4.8208
1.8303	2.8877	2.2294	2.6607	2.9061	3.7294	2.2349	4.4766
2.6792	2.7564	2.7535	2.0204	3.2500	2.2349	8.2148	4.3055
2.9340	5.8537	5.1835	8.3968	4.8208	4.4766	4.3055	19.8477

Model 2:

S1								
	2.9558	1.5164	2.0233	2.1282	1.3666	1.6480	2.2156	1.6965
	1.5164	5.1096	1.6161	1.8637	2.6690	2.3201	1.8731	5.0475
	2.0233	1.6161	8.4516	2.7497	1.8536	2.0765	2.0304	3.6957
	2.1282	1.8637	2.7497	6.9444	2.7792	2.0791	1.7240	6.4523
	1.3666	2.6690	1.8536	2.7792	5.0966	2.3251	2.1169	4.3717
	1.6480	2.3201	2.0765	2.0791	2.3251	3.7908	1.5076	3.8007
	2.2156	1.8731	2.0304	1.7240	2.1169	1.5076	6.9731	2.5180
	1.6965	5.0475	3.6957	6.4523	4.3717	3.8007	2.5180	18.8511
S2								
	2.9558	1.5164	2.0233	2.1282	1.3666	1.6480	2.2156	1.6965
	1.5164	5.1096	1.6161	1.8637	2.6690	2.3201	1.8731	5.0475
	2.0233	1.6161	8.4516	2.7497	1.8536	2.0765	2.0304	3.6957
	2.1282	1.8637	2.7497	6.9444	2.7792	2.0791	1.7240	6.4523
	1.3666	2.6690	1.8536	2.7792	5.0966	2.3251	2.1169	4.3717
	1.6480	2.3201	2.0765	2.0791	2.3251	3.7908	1.5076	3.8007
	2.2156	1.8731	2.0304	1.7240	2.1169	1.5076	6.9731	2.5180
	1.6965	5.0475	3.6957	6.4523	4.3717	3.8007	2.5180	18.8511

Model 3:

```
alpha1
5.7331
alpha2
7.9310
```

Yuanzhe Liu

Data pair 2:

P(C1))=0.30,	P(C2)=0.70						
	1.0658	2.6548	3.2977	-1.6793	-1.4987	4.3959	-4.2138	-4.9679
mu2:								
1	2.8221	4.4669	4.8537	0.5192	0.3764	6.2585	-2.6611	-3.8175

Model 1:

S1							
1.3355	-0.2649	0.6608	0.2725	0.9973	0.4623	-0.2879	0.2938
-0.2649	2.5453	2.0657	0.9204	1.0862	-0.4459	-0.0506	2.6920
0.6608	2.0657	6.9133	1.5145	0.8146	0.1927	2.6834	2.7168
0.2725	0.9204	1.5145	3.0526	0.6584	-0.4640	0.2391	2.3010
0.9973	1.0862	0.8146	0.6584	2.1990	-0.0037	-0.5659	0.7485
0.4623	-0.4459	0.1927	-0.4640	-0.0037	1.2053	0.6576	-0.1986
-0.2879	-0.0506	2.6834	0.2391	-0.5659	0.6576	4.0462	-0.7298
0.2938	2.6920	2.7168	2.3010	0.7485	-0.1986	-0.7298	10.4733
S2							
2.9283	1.0700	2.9092	0.5704	-0.0910	0.0666	0.8741	1.7632
1.0700	4.9901	2.4537	0.1758	2.7315	-0.3235	0.4943	0.0507
2.9092	2.4537	11.6572	0.0882	0.8252	0.1275	0.0219	-0.8332
0.5704	0.1758	0.0882	5.3310	0.0541	1.0103	4.3004	2.2958
-0.0910	2.7315	0.8252	0.0541	4.2550	1.0248	0.5376	1.6681
0.0666	-0.3235	0.1275	1.0103	1.0248	2.6892	1.7066	2.1595
0.8741	0.4943	0.0219	4.3004	0.5376	1.7066	11.3170	2.7119
1.7632	0.0507	-0.8332	2.2958	1.6681	2.1595	2.7119	12.9317

Model 2:

S	1							
	2.4505	0.6695	2.2347	0.4810	0.2355	0.1853	0.5255	1.3224
	0.6695	4.2567	2.3373	0.3992	2.2379	-0.3602	0.3308	0.8431
	2.2347	2.3373	10.2340	0.5161	0.8221	0.1471	0.8204	0.2318
	0.4810	0.3992	0.5161	4.6474	0.2353	0.5680	3.0820	2.2974
	0.2355	2.2379	0.8221	0.2353	3.6382	0.7162	0.2065	1.3922
	0.1853	-0.3602	0.1471	0.5680	0.7162	2.2440	1.3919	1.4521
	0.5255	0.3308	0.8204	3.0820	0.2065	1.3919	9.1358	1.6794
	1.3224	0.8431	0.2318	2.2974	1.3922	1.4521	1.6794	12.1942
S	2							
	2.4505	0.6695	2.2347	0.4810	0.2355	0.1853	0.5255	1.3224
	0.6695	4.2567	2.3373	0.3992	2.2379	-0.3602	0.3308	0.8431
	2.2347	2.3373	10.2340	0.5161	0.8221	0.1471	0.8204	0.2318
	0.4810	0.3992	0.5161	4.6474	0.2353	0.5680	3.0820	2.2974
	0.2355	2.2379	0.8221	0.2353	3.6382	0.7162	0.2065	1.3922
	0.1853	-0.3602	0.1471	0.5680	0.7162	2.2440	1.3919	1.4521
	0.5255	0.3308	0.8204	3.0820	0.2065	1.3919	9.1358	1.6794
	1.3224	0.8431	0.2318	2.2974	1.3922	1.4521	1.6794	12.1942

Model 3:

```
alpha1
3.9713
alpha2
7.0124
```

Yuanzhe Liu

Data Pair 3:

P(C1)=0.30, mu1:	P(C2)=0.70						
0.9747	2.6233	3.1770	-1.4652	-1.3053	4.5160	-4.3197	-5.5215
mu2:							
1.4916	3.1655	3.6504	-0.8162	-0.3515	5.1345	-3.2770	-4.7293

Model 1:

S1							
0.2555	0.0816	0.0591	-0.0825	-0.0058	-0.0738	-0.0155	0.0778
0.0816	0.4116	-0.0821	-0.1016	-0.0118	-0.0866	0.1126	-0.0733
0.0591	-0.0821	0.5861	-0.0364	-0.0894	-0.0322	0.0797	0.0128
-0.0825	-0.1016	-0.0364	0.4254	-0.0344	-0.1398	-0.1010	0.0721
-0.0058	-0.0118	-0.0894	-0.0344	0.4183	0.0516	-0.0964	0.0137
-0.0738	-0.0866	-0.0322	-0.1398	0.0516	0.5746	0.0684	-0.0237
-0.0155	0.1126	0.0797	-0.1010	-0.0964	0.0684	0.5261	-0.0294
0.0778	-0.0733	0.0128	0.0721	0.0137	-0.0237	-0.0294	0.3849
S2							
2.7546	0.4051	-0.3791	0.5899	-0.4070	0.1636	0.3523	-0.4814
0.4051	2.5008	-0.3447	-0.0362	-0.2919	0.0578	0.1757	0.0869
-0.3791	-0.3447	2.1297	-0.2523	-0.0483	-0.0299	0.0352	-0.2797
0.5899	-0.0362	-0.2523	2.9260	-0.8652	0.1012	-0.3376	-0.3223
-0.4070	-0.2919	-0.0483	-0.8652	3.4593	0.0735	-0.7518	0.1914
0.1636	0.0578	-0.0299	0.1012	0.0735	2.8776	0.6332	0.3468
0.3523	0.1757	0.0352	-0.3376	-0.7518	0.6332	2.9057	0.2744
-0.4814	0.0869	-0.2797	-0.3223	0.1914	0.3468	0.2744	2.5750

Model 2:

S1							
2.0048	0.3080	-0.2476	0.3882	-0.2866	0.0924	0.2419	-0.3136
0.3080	1.8741	-0.2660	-0.0558	-0.2079	0.0145	0.1568	0.0388
-0.2476	-0.2660	1.6666	-0.1875	-0.0607	-0.0305	0.0486	-0.1920
0.3882	-0.0558	-0.1875	2.1758	-0.6160	0.0289	-0.2666	-0.2040
-0.2866	-0.2079	-0.0607	-0.6160	2.5470	0.0670	-0.5552	0.1381
0.0924	0.0145	-0.0305	0.0289	0.0670	2.1867	0.4638	0.2357
0.2419	0.1568	0.0486	-0.2666	-0.5552	0.4638	2.1918	0.1832
-0.3136	0.0388	-0.1920	-0.2040	0.1381	0.2357	0.1832	1.9180
S2							
2.0048	0.3080	-0.2476	0.3882	-0.2866	0.0924	0.2419	-0.3136
0.3080	1.8741	-0.2660	-0.0558	-0.2079	0.0145	0.1568	0.0388
-0.2476	-0.2660	1.6666	-0.1875	-0.0607	-0.0305	0.0486	-0.1920
0.3882	-0.0558	-0.1875	2.1758	-0.6160	0.0289	-0.2666	-0.2040
-0.2866	-0.2079	-0.0607	-0.6160	2.5470	0.0670	-0.5552	0.1381
0.0924	0.0145	-0.0305	0.0289	0.0670	2.1867	0.4638	0.2357
0.2419	0.1568	0.0486	-0.2666	-0.5552	0.4638	2.1918	0.1832
-0.3136	0.0388	-0.1920	-0.2040	0.1381	0.2357	0.1832	1.9180

Model 3:

```
alpha1
0.4478
alpha2
2.7661
```