Desde apiladores a gramáticas

Clase 27

IIC2223 / IIC2224

Prof. Cristian Riveros

Outline

Desde CFG a PDA (clase anterior)

Desde PDA a CFG

Outline

Desde CFG a PDA (clase anterior)

Desde PDA a CFG

Desde CFG a un PDA

Teorema

Para toda gramática libre de contexto \mathcal{G} , existe un autómata apilador alternativo \mathcal{D} :

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{D})$$

¿cómo construimos \mathcal{D} desde \mathcal{G} ?

CFG → PDA: Construcción

Sea $G = (V, \Sigma, P, S)$ una CFG.

Construimos un PDA alternativo \mathcal{D} que acepta $\mathcal{L}(\mathcal{G})$:

$$\mathcal{D} \ = \ \left(\ V \cup \Sigma \cup \{q_0,q_f\}, \Sigma, \Delta, q_0, \{q_f\} \right)$$

La relación de transición Δ se define como:

$$\begin{array}{lll} \Delta & = & \big\{ \left(q_0, \epsilon, S \cdot q_f \right) \big\} & & \cup \\ & & \big\{ \left(X, \epsilon, \gamma \right) \, \big| \, X \to \gamma \in P \, \big\} & \cup & \big(\textbf{Expandir} \big) \\ & & & \big\{ \left(a, a, \epsilon \right) \, \big| \, a \in \Sigma \, \big\} & & \big(\textbf{Reducir} \big) \end{array}$$

¿qué esta haciendo el autómata apilador \mathcal{D} ?

CFG → PDA: Demostración

Por demostrar:

$$\mathcal{L}(\mathcal{G})$$
 = $\mathcal{L}(\mathcal{D})$

Dos direcciones:

1.
$$\mathcal{L}(\mathcal{G}) \subseteq \mathcal{L}(\mathcal{D})$$

2.
$$\mathcal{L}(\mathcal{D}) \subseteq \mathcal{L}(\mathcal{G})$$

CFG \rightarrow PDA: Demostración $\mathcal{L}(\mathcal{D}) \subseteq \mathcal{L}(\mathcal{G})$

Para cada $w \in \mathcal{L}(\mathcal{D})$ debemos encontrar un árbol de derivacíon \mathcal{G} para w.

¿cómo encontramos un árbol de derivación para w?

Idea

Si tenemos una ejecución de $\mathcal D$ sobre w de la forma:

$$(X \cdot q_f, w) \vdash_{\mathcal{D}}^* (q_f, \epsilon)$$

entonces $X \stackrel{\star}{\Rightarrow} w$

Inducción en la cantidad de pasos de la ejecución.

$CFG \rightarrow PDA$: Demostración $\mathcal{L}(\mathcal{D}) \subseteq \mathcal{L}(\mathcal{G})$

Hipótesis de inducción

Para toda ejecución de \mathcal{D} sobre w de largo k de la forma:

$$(X \cdot q_f, w) = (\gamma_0, w_0) \vdash_{\mathcal{D}} (\gamma_1, w_1) \vdash_{\mathcal{D}} \cdots \vdash_{\mathcal{D}} (\gamma_k, w_k) = (q_f, \epsilon)$$

entonces $X \stackrel{\star}{\underset{\mathcal{G}}{\Rightarrow}} w$.

Ejercicio: terminar la demostración.

Outline

Desde CFG a PDA (clase anterior)

Desde PDA a CFG

Recordatorio: Autómatas apiladores

Definición

Un autómata apilador (PushDown Automata, PDA) es una estructura:

$$\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de **input**.
- $q_0 \in Q$ es el estado inicial.
- *F* es el conjunto de estados **finales**.

- Γ es el alfabeto de stack.
- $\bot \in \Gamma$ es el símbolo inicial de stack.
- $\Delta \subseteq (Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$ es una relación finita de transición.

Recordatorio: Autómatas apiladores

Definición

Un autómata apilador (PushDown Automata, PDA) es una estructura:

$$\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$$

Intuitivamente, la transición:

$$((p,a,A),(q,B_1B_2\cdots B_k)) \in \Delta$$

si el autómata apilador está:

- en el estado **p**,
- leyendo **a**, y
- en el tope del stack hay una A

entonces:

- cambia al estado **q**, y
- modifico el tope **A** por $B_1B_2\cdots B_k$.

Recordatorio: Ejecución de un autómata apilador

Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un autómata apilador.

Definición

Se define la relación $\vdash_{\mathcal{P}}$ de **siguiente-paso** entre configuraciones de \mathcal{P} :

$$(q_1 \cdot \gamma_1, w_1) \vdash_{\mathcal{P}} (q_2 \cdot \gamma_2, w_2)$$

si, y solo si, existe una transición $(q_1, a, A, q_2, \alpha) \in \Delta$ y $\gamma \in \Gamma^*$ tal que:

- $w_1 = a \cdot w_2$
- $\gamma_1 = A \cdot \gamma$
- $\gamma_2 = \alpha \cdot \gamma$.

Se define $\vdash_{\mathcal{P}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{P}}$.

 $(q_1\gamma_1, w_1) \vdash_{\mathcal{P}}^* (q_2\gamma_2, w_2)$ si uno puede ir de $(q_1\gamma_1, w_1)$ a $(q_2\gamma_2, w_2)$ en **0 o más pasos**.

Recordatorio: Lenguajes de un autómata apilador

Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un autómata apilador y $w \in \Sigma^*$.

Definiciones

- \mathcal{P} acepta w si, y solo si, $(q_0\bot, w) \vdash_{\mathcal{P}}^* (q_f, \epsilon)$ para algún $q_f \in \mathcal{F}$.
- El lenguaje aceptado por \mathcal{P} se define como:

$$\mathcal{L}(\mathcal{P}) = \{ w \in \Sigma^* \mid \mathcal{P} \text{ acepta } w \}$$

Desde PDA a un CFG

Teorema

Para todo autómata apilador \mathcal{P} , existe una gramática libre de contexto \mathcal{G} :

$$\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{G})$$

Estrategia de la demostración

Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA (normal).

- 1. Convertir \mathcal{P} a un PDA \mathcal{P}' con UN solo estado.
- 2. Convertir \mathcal{P}' a una gramática libre de contexto \mathcal{G} .

¿cómo hacemos cada paso?

Paso 2: Convertir \mathcal{P}' a una CFG \mathcal{G}

Sea $\mathcal{P}' = (\{q\}, \Sigma, \Gamma, \Delta, q, \bot, \{q\})$ con UN solo estado.

Construimos la gramática:

$$\mathcal{G} = (V, \Sigma, P, \bot)$$

- $V = \Gamma$.
- Si $qA \stackrel{\epsilon}{\to} q\alpha \in \Delta$ entonces: $A \to \alpha \in P$
- Si $qA \stackrel{a}{\rightarrow} q\alpha \in \Delta$ entonces: $A \rightarrow a\alpha \in P$

Demostración: ejercicio.

Paso 1: Convertir \mathcal{P} a un PDA \mathcal{P}' con UN solo estado

Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA.

¿cómo guardamos la información de los estados en el stack?

Pregunta principal

"Si el PDA esta en el estado p y en el tope del stack hay una A entonces, ¿a cuál estado llegaré al remover A del stack?"

Solución

Podemos adivinar (no-determinismo) el estado que vamos a llegar cuando removamos *A* del stack.

Paso 1: Convertir $\mathcal P$ a un PDA $\mathcal P'$ con UN solo estado

Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA.

Sin perdida de generalidad podemos asumir que:

1. Todas las transiciones son de la forma:

$$qA \stackrel{c}{\rightarrow} pB_1B_2$$
 o $qA \stackrel{c}{\rightarrow} p\epsilon$

con
$$c \in (\Sigma \cup \{\epsilon\})$$
.

¿por qué?

2. Existe $q_f \in Q$ tal que si $w \in \mathcal{L}(\mathcal{P})$ entonces:

$$(q_0 \bot, w) \vdash_{\mathcal{D}}^* (q_f, \epsilon)$$

¿por qué?

Siempre llegamos al **mismo estado** q_f .

Paso 1: Convertir \mathcal{P} a un PDA \mathcal{P}' con UN solo estado

Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA.

Construimos el autómata apilador \mathcal{P}' con un solo estado:

$$\mathcal{P}' = (\{q\}, \Sigma, \Gamma', \Delta', \{q\}, \bot', \{q\})$$

- $\Gamma' = Q \times \Gamma \times Q.$
 - " $(p, A, q) \in \Gamma'$ si desde p leyendo A en el tope de stack llegamos a q al hacer pop de A"
- $\perp' = (q_0, \perp, q_f)$
 - "El autómata parte en q_0 y al hacer pop de \bot llegará a q_f "

Paso 1: Convertir \mathcal{P} a un PDA \mathcal{P}' con UN solo estado

Sea $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ un PDA.

Construimos el autómata apilador \mathcal{P}' con un solo estado:

$$\mathcal{P}' = (\{q\}, \Sigma, \Gamma', \Delta', \{q\}, \bot', \{q\})$$

■ Si $pA \stackrel{c}{\rightarrow} p'B_1B_2 \in \Delta$ con $c \in (\Sigma \cup \{\epsilon\})$, entonces para todo $p_1, p_2 \in Q$:

$$q(p, A, p_2) \stackrel{c}{\to} q(p', B_1, p_1)(p_1, B_2, p_2) \in \Delta'$$

■ Si $pA \stackrel{c}{\rightarrow} p' \in \Delta$ con $c \in (\Sigma \cup \{\epsilon\})$, entonces:

$$q(p,A,p') \stackrel{c}{\rightarrow} q \in \Delta'$$

PDA \rightarrow CFG: Demostración $\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{P}')$

Hipótesis de inducción (en el número de pasos n)

Para todo $p, p' \in Q$, $A \in \Gamma$, y $w \in \Sigma^*$ se cumple que:

$$(pA, w) \vdash_{\mathcal{P}}^{n} (p', \epsilon)$$
 si, y solo si, $(q(p, A, p'), w) \vdash_{\mathcal{P}'}^{n} (q, \epsilon)$

donde $\vdash_{\mathcal{P}}^{n}$ es la relación de **siguiente-paso** de \mathcal{P} *n*-veces.

Si demostramos esta hipótesis habremos demostrado que $\mathcal{L}(\mathcal{P})$ = $\mathcal{L}(\mathcal{P}')$

¿por qué?

PDA \rightarrow CFG: Demostración $\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{P}')$

Caso base: n = 1

Para todo $p, p' \in Q$ y $A \in \Gamma$ se cumple que:

$$(pA,c) \vdash_{\mathcal{P}} (p',\epsilon)$$
 si, y solo si, $(q(p,A,p'),c) \vdash_{\mathcal{P}'} (q,\epsilon)$

para todo $c \in (\Sigma \cup \{\epsilon\})$.

¿por qué?

PDA \rightarrow CFG: Demostración $\mathcal{L}(\mathcal{P}) = \mathcal{L}(\mathcal{P}')$

Caso inductivo:

Sin perdida de generalidad,

suponga que $pA \stackrel{a}{\rightarrow} p_1 A_1 A_2$ y w = auv, entonces:

$$(pA,\underbrace{auv}_{w}) \vdash_{\mathcal{P}}^{n} (p',\epsilon) \quad \text{ssi} \quad (pA,auv) \vdash_{\mathcal{P}} (p_{1}A_{1}A_{2},uv) \vdash_{\mathcal{P}}^{i} (p_{2}A_{2},v) \vdash_{\mathcal{P}}^{j} (p',\epsilon)$$

$$\text{ssi} \quad (p_{1}A_{1},u) \vdash_{\mathcal{P}}^{i} (p_{2},\epsilon) \quad \text{y} \quad (p_{2}A_{2},v) \vdash_{\mathcal{P}}^{j} (p',\epsilon)$$

$$\text{ssi} \quad (q(p_{1},A_{1},p_{2}),u) \vdash_{\mathcal{P}'}^{i} (q,\epsilon) \quad \text{y} \quad (q(p_{2},A_{2},p'),v) \vdash_{\mathcal{P}'}^{j} (q,\epsilon)$$

$$\text{ssi} \quad (q(p,A,p'),auv) \vdash_{\mathcal{P}} (q(p_{1},A_{1},p_{2})(p_{2},A_{2},q)),uv) \vdash_{\mathcal{P}}^{i+j} (q,\epsilon)$$

Cierre de clase

En esta clase:

- 1. Terminamos equivalencia entre gramáticas y apiladores.
- 2. Apiladores pueden recorrer los árboles de derivación en profundidad.
- 3. Gramáticas pueden simular apiladores al remover el uso de estados.

Próxima clase: Parsing