Instruções do Z80

Grupo Load de 8 bits

Mnem	ónica	Operação	Simbólica
LD	r, r'	r = r'	
LD	r, n	r = n	
LD	r, m	r = m	
LD	m, r	m = r	
LD	m, n	m = n	
LD	A, (BC)	A = (BC)	
LD	A, (DE)	A = (DE)	
LD	A, (nn)	A = (nn)	
LD	(BC), A	(BC) = A	
LD	(DE), A	(DE) = A	
LD	(nn), A	(nn) = A	
LD	A, I	A = I	
LD	A, R	A = R	
LD	I, A	I = A	
LD	R, A	R = A	

Grupo Load de 16 bits

Mnem	ónica	Operação Simbólica
LD	dd, nn	dd = nn
LD	IX, nn	IX = nn
LD	IY, nn	IY = nn
LD	HL, (nn)	H = (nn+1)
		L = (nn)
LD	dd, (nn)	$dd_H = (nn+1)$
		$dd_L = (nn)$
LD	IX, (nn)	$IX_H = (nn+1)$
		$IX_L = (nn)$
LD	IY, (nn)	$IY_H = (nn+1)$
		$IY_L = (nn)$
LD	(nn), HL	(nn+1) = H
		(nn) = L
LD	(nn), dd	$(nn+1) = dd_H$
		$(nn) = dd_L$
LD	(nn), IX	$(nn+1) = IX_H$
		$(nn) = IY_L$
LD	(nn), IY	$(nn+1) = IX_H$
		$(nn) = IY_L$
LD	SP, HL	SP = HL
LD	SP, IX	SP = IX
LD	SP, IY	SP = IY
PUSH	dd	$(SP-2) = qq_L$
		$(SP-1) = qq_H$
		SP = SP-2

PUSH IX	$(SP-2) = IX_L$
	$(SP-1) = IX_H$
	SP = SP-2
PUSH IY	$(SP-2) = IY_L$
	$(SP-1) = IY_H$
	SP = SP-2
POP qq	$qq_H = (SP+1)$
	$qq_L = (SP+2)$
	SP = SP+2
POP IX	$IX_H = (SP+1)$
	$IX_L = (SP+2)$
	SP = SP+2
POP IY	$IY_H = (SP+1)$
	$IY_L = (SP+2)$
	SP = SP+2

Grupo de Troca, Transferência de Blocos e Procura de Blocos

Mnem	ónica	Operação Simbólica
EX	DE, HL	DE = HL
EX	AF, AF'	AF = AF'
EXX		BC = BC'
		DE = DE'
		HL = HL'
EX	(SP), HL	H = (SP+1)
		L = (SP)
EX	(SP), IX	$IX_H = (SP+1)$
		$IX_L = (SP)$
EX	(SP), IY	$IY_H = (SP+1)$
		$IY_L = (SP)$
LDI		(DE) = (HL)
		DE = DE+1
		HL = HL+1
		BC = BC-1
LDIR		(DE) = HL
		DE = DE+1
		HL = HL+1
		BC = BC-1
		repete até BC=0
LDD		(DE) = (HL)
		DE = DE-1
		HL = HL-1
		BC = BC-1
LDDR		(DE) = HL
		DE = DE-1
		HL = HL-1
		BC = BC-1
		repete até BC=0
CPI		A - (HL)
		HL = HL+1
		BC = BC-1

```
CPIR A - (HL)
HL = HL+1
BC = BC-1
repete até A=(HL) ou BC=0
A - (HL)
HL = HL-1
BC = BC-1
CPDR A - (HL)
HL = HL-1
BC = BC-1
repete até A=(HL) ou BC=0
```

Grupo de Aritmética a 8 bits e Lógica

Mnem	ónica	Operação Simbólica			
ADD	A, r	A = A + r			
ADD	A, n	A = A + n			
ADD	A, (HL)	A = A + (HL)			
ADD	A, (IX+d)	A = A + (IX+d)			
ADD	A, (IY+d)	A = A + (IY+d)			
ADC	A, s	A = A + s + CY			
SUB	S	A = A - s			
SBC	A, s	A = A - s - CY			
AND	S	A = A ? s			
OR	S	A = A ? s			
XOR	S	A = A ? s			
CP	S	A - s			
INC	r	r = r+1			
INC	(HL)	(HL) = (HL) + 1			
INC	(IX+d)	(IX+d) = (IX+d)+1			
INC	(IY+d)	(IY+d) = (IY+d)+1			
DEC	m	m = m-1			

Grupo de Aritmética em geral e Controlo da CPU

<u>Mnemónica</u>	Operação Simbólica
DAA	Converte o conteúdo de ADD para operandos
	em BCD, seguido de adição ou subtracção
	com os operandos em BCD.
CPL	A = A
NEG	A = 0 - A
CCF	$CY = \overline{CY}$
SCF	CY = 1
NOP	Nenhuma operação
HALT	CPU suspenso
DI *	IFF = 0
EI *	IFF = 1
IM 0	Activa o modo de interrupção 0
IM 1	Activa o modo de interrupção 1
IM 2	Activa o modo de interrupção 2

Grupo de Aritmética a 16 bits

Mnemónica			Ope	era	ação	2	3iml	oó]	Lica	3	
ADD	HL,	ss		$_{ m HL}$	=	$_{ m HL}$	+	ss			
ADC	HL,	SS		$_{ m HL}$	=	$_{ m HL}$	+	SS	+	CY	
SBC	HL,	SS		$_{ m HL}$	=	$_{ m HL}$	-	SS	-	CY	
ADD	IX,	pp		IX	=	IX	+	рp			
ADD	IY,	rr		IX	=	IX	+	rr			
INC	ss			SS	=	ss-	⊦1				
INC	IX			IX	=	IX-	⊦1				
INC	ΙΥ			ΙY	=	IY-	⊦1				
DEC	ss			SS	=	ss-	-1				
DEC	IX			IX	=	IX-	-1				
DEC	ΙY			ΙY	=	IY-	-1				

Grupo de Rotação e Deslocamento

Ver manual de instruções do Z80.

Grupo de Bit de Teste, Set e Reset

Mnemónica	Operação Simbólica
BIT b, r	$Z = \sim r_b$
BIT b, (HL)	$Z = \sim (HL)_b$
BIT b, (IX+d)	$Z = \sim (IX+d)_b$
BIT b, (IY+d)	$Z = \sim (IX+d)_b$
SET b, r	$r_b = 1$
SET b, r	$r_b = 1$
SET b, r	$r_b = 1$
SET b, r	$r_b = 1$
RESET b, m	$m_b = 0$
	m = r, (HL), (IX+d), (IY+d)

Grupo de Saltos

Mnemónica		Operação Simbólica
JP	nn	PC = nn
JP	cc, nn	Se a condição cc fôr verdadeira, então PC
		= nn, caso contrário continua.
JR	е	PC = PC + e
JR	С, е	Se C=0, continua; se C=1, PC = PC + e
JR	NC, e	Se C=1, continua; se C=0, PC = PC + e
JP	Z, e	Se Z=0, continua; se Z=1, PC = PC + e
JR	NZ, e	Se Z=1, continua; se Z=0, PC = PC + e
JP	(HL)	PC = HL
JP	(IX)	PC = IX
JP	(IY)	PC = IY
DJNZ	е	B = B - 1; Se $B=0$ continua; se $B?0$, PC =
		PC + e

Grupo de Chamada e de Retorno

Mnemónica	Operação Simbólica
CALL nn	$(SP-1) = PC_H$
	$(SP-2) = PC_L$
	PC = nn
CALL cc, nn	Se a condição cc for falsa, continua,
	caso contrário o mesmo que CALL nn
RET	$PC_{L} = (SP)$
	$PC_{H} = (SP+1)$
RET CC	Se a condição cc for falsa, continua,
	caso contrário o mesmo que RET
RETI	Retorna de uma interrupção
RETN	Retorna de uma interrupção não-mascarável
RST p	$(SP-1) = PC_H$
	$(SP-2) = PC_L$
	$PC_{H} = 0$
	$PC_{L} = p$

Grupo de Entrada e de Saída

Mnemónica	Operação Simbólica
IN A, (n)	A = (n)
IN r, (C)	r = (C)
	Se r=110 só serão afectadas as flags.
INI	(HL) = (C)
	B = B - 1
	HL = HL + 1
INIR	(HL) = (C)
	B = B - 1
	HL = HL + 1
	Repete até B=0
IND	(HL) = (C)
	B = B - 1
	HL = HL - 1
INDR	(HL) = (C)
	B = B - 1
	HL = HL - 1
	Repete até B=0
OUT (n), A	(n) = A
OUT (C), r	(C) = r
OUTI	(C) = (HL)
	B = B - 1
	HL = HL + 1
OUTIR	(C) = (HL)
	B = B - 1
	HL = HL + 1
	Repete até B=0

OUTD (C) = (HL) B = B - 1 HL = HL - 1OUTDR (C) = (HL) B = B - 1 HL = HL - 1Repete até B=0

Notação Simbólica

- Z flag Zero; Z=1 se o resultado da operação for 0.
- C flag Carry; C=1 se a operação produziu um carry do MSB do operando ou do resultado.
- r qualquer um dos registos do CPU A, B, C, D, E, H, L.
- s qualquer localização de 8 bits para todos os modos de endereçamento permitidos pelo processador.
- ss qualquer localização de 16 bits para todos os modos de endereçamento permitidos pelo processador.
- n valor de 8 bits da gama 0..255
- nn valor de 16 bits da gama 0..65535