import pandas as pd
import numpy as np
import warnings as wg
wg.filterwarnings('ignore')

df = pd.read_csv('/content/drive/My Drive/Colab Notebooks/titanic_data.csv')
df.head()

₽		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.:
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs	female	38.0	1	0	PC 17599	71.:

df.info()

<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

df.describe()

 \Box

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Far€
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75 %	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

df.describe(include='0')

₽		Name	Sex	Ticket	Cabin	Embarked
	count	891	891	891	204	889
	unique	891	2	681	147	3
	top	McMahon, Mr. Martin	male	CA. 2343	C23 C25 C27	S
	freq	1	577	7	4	644

▼ All of the data is self explonatory except SibSp, Parch, Embarked

Sib/Sp: It is the number of sibings or spouses

Parch: It is the number of Parents or childrens

Embarked: Port of Embarkation C= Cherboug, S= Southamptom, Q = Queenstown

```
Survived Pclass
                               Name
                                       Sex Age SibSp Parch
                                                                  Ticket
                                                                             Fare Cabin E
                             Braund,
     0
                0
                        3
                            Mr. Owen
                                       male 22.0
                                                      1
                                                                A/5 21171
                                                                           7.2500
                                                                                     NaN
                              Harris
                            Cumings,
                            Mrs John
# converting the Survived to Categorical column.
df['Survived'] = df['Survived'].astype('object')
#printing the categorical columns and numerical columns
cat = [x for x in df.columns if(df[x].dtype)=='object']
print("Categorical Columns: ", cat)
num = [x \text{ for } x \text{ in df.columns if } (df[x]. \text{ dtype } =='int64') \mid (df[x]. \text{ dtype } =='float64')
print("Numerical Columns: ", num)
    Categorical Columns: ['Survived', 'Name', 'Sex', 'Ticket', 'Cabin', 'Embarked']
    Numerical Columns: ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare']
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
cols = ['Sex', 'Ticket', 'Embarked']
for cn in cols:
  grid = sns.FacetGrid(df, 'Survived', palette='ch:.26', size = 3.2, aspect= 1.6)
  grid.map(sns.countplot, cn, palette='ch:.26')
  plt.show()
  print(20*'===')
 \Box
```

Observations:

- 1. When comes to sex There more Females who got surived but aslo there are more females who
- 2. Coming to Embarked Category of S Survivied more rathar than other two categories and catego

```
#segregating the Categorical and numerical columns
categorical = df.loc[:, cat]
numerical = df.loc[:, num]
print(categorical.head())
print(numerical.head())
```

 \Box

Survived Name ... Cabin Embarked

→ Handling the missing values in the Categorical Variables

```
# checking the Missing values in Categorical columns categorical.isnull().sum()
```

```
Survived 0
Name 0
Sex 0
Ticket 0
Cabin 687
Embarked 2
dtype: int64
```

Observations:

we drop the **Cabin** column in the Data Because there are lot of missing values in i the unique cabin number that generates too much bias in the model which we do

```
#dropping the Cabin column.
categorical = categorical.drop(labels='Cabin', axis = 1, inplace= False)
categorical.head(3)
```

Embarke	Ticket	Sex	Name	Survived	₽
:	A/5 21171	male	Braund, Mr. Owen Harris	0	
(PC 17599	female	Cumings, Mrs. John Bradley (Florence Briggs Th	1	
	STON/O2.				

```
#now we handle the missing values in the Embarked
categorical = categorical.apply(lambda x: x.fillna(x.value_counts().index[0]))
print(categorical.isnull().sum())
categorical.head()
```

С⇒

```
Survived 0
Name 0
Sex 0
Ticket 0
Embarked 0
dtype: int64
```

Sui	rvived	Name	Sex	Ticket	Embarke
0	0	Braund, Mr. Owen Harris	male	A/5 21171	

```
#Encoding the categorical into numerical values
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
for i in categorical:
   categorical[i] = le.fit_transform(categorical[i])
categorical.head()
```

₽		Survived	Name	Sex	Ticket	Embarked
	0	0	108	1	523	2
	1	1	190	0	596	0
	2	1	353	0	669	2
	3	1	272	0	49	2
	4	0	15	1	472	2

```
y = categorical.Survived
categorical = categorical.drop('Survived', axis =1 , inplace=False)
```

categorical.head(3)

₽		Name	Sex	Ticket	Embarked
	0	108	1	523	2
	1	190	0	596	0
	2	353	0	669	2

→ Handling the missing values in numercal Columns

```
Humer Tear Tallacci / Pamil /
```

```
Pclass 0
Age 177
SibSp 0
Parch 0
Fare 0
dtype: int64
```

#Replacing the missing value with the mean values
for i in numerical.columns:
 numerical[i] = numerical.apply(lambda x: x.fillna(numerical[i].median()))

print(numerical.isnull().sum())
numerical.describe()

Pclass 0
Age 0
SibSp 0
Parch 0
Fare 0
dtype: int64

	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000
mean	2.308642	2.308642	2.308642	2.308642	2.308642
std	0.836071	0.836071	0.836071	0.836071	0.836071
min	1.000000	1.000000	1.000000	1.000000	1.000000
25%	2.000000	2.000000	2.000000	2.000000	2.000000
50%	3.000000	3.000000	3.000000	3.000000	3.000000
75 %	3.000000	3.000000	3.000000	3.000000	3.000000
max	3.000000	3.000000	3.000000	3.000000	3.000000

```
df.groupby('Survived').median()
```

Г⇒

Pclass Age SibSp Parch Fare

→ Observation :

• The people with the highest **Fare** value and persons of **Pclass** 2 are the Survived ones.

```
df_final = pd.concat([categorical, numerical, y], axis =1)
df_final.head()
```

₽		Name	Sex	Ticket	Embarked	Pclass	Age	SibSp	Parch	Fare	Survived
	0	108	1	523	2	3.0	3.0	3.0	3.0	3.0	0
	1	190	0	596	0	1.0	1.0	1.0	1.0	1.0	1
	2	353	0	669	2	3.0	3.0	3.0	3.0	3.0	1
	3	272	0	49	2	1.0	1.0	1.0	1.0	1.0	1
	4	15	1	472	2	3.0	3.0	3.0	3.0	3.0	0

```
#Plotting the Heatmap to find the Correlation among the Columns
fig, ax = plt.subplots(figsize= (15, 10))
corr = df_final.corr()
sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns, annot=True)
plt.show()
```

 \Box

Observations:

- 1. Sex is the Highly Negatively correlated with the Survivied Column.
- 2. Age, Sibblings/ Spouses, Parents/Childern, Fare and Pclass are next Negatively correlated Varia
- 3. Ticket is the column which is Highly Positively Corralted with Age, Sibblings/ Spouses, Parents/lead multicollinearity.

```
X = df final.loc[:,df final.columns[:-1]]
print(X.shape, y.shape)
    (891, 9) (891,)
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_sta
print("Train: ", X_train.shape, "Test:", X_test.shape, y_train.shape, y_test.shape,
    Train:
           (712, 9)
                             Test: (179, 9)
                                                      (712,)
                                                              (179,)
print(X train.dtypes)
    Name
                   int64
Г⇒
    Sex
                   int64
    Ticket
                   int64
    Embarked
                   int64
    Pclass
                 float64
                 float64
    Age
                 float64
    SibSp
    Parch
                 float64
                 float64
    Fare
    dtype: object
```

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import f1 score, accuracy score, classification report
```

```
dc = DecisionTreeClassifier( splitter='random')
model = dc.fit(X_train, y_train)
y_train_pred = model.predict(X_train)
y_pred_dc= model.predict(X_test)

print("\n\n")
#checking the Accuracy During the validation phase
print("Test accuracy Score: ", accuracy_score(y_test, y_pred_dc))
print("Test F1 score: ", f1_score(y_test, y_pred_dc))

print("CONFUSION_MATRIX: ")
pd.crosstab(y_test, y_pred_dc, rownames=['True'], colnames=['Predicted'], margins=Tru
```

Test accuracy Score: 0.8268156424581006 Test F1 score: 0.7973856209150328

CONFUSION_MATRIX:

Predicted	0	1	All
True			
0	87	18	105
1	13	61	74
All	100	79	179

Observations

- 1. There are 36 mis classified labels with accuracy score of 80% and F1 score as 76%.
- 2. majority of miss classifications are observed in which 16 survivors are classifed as Non Survivor Survivors.
- 3. we use more classfication algorithms to see if we can improve the accuracy of the model.

```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
```

```
model = lr.fit(X_train, y_train)
y_pred = model.predict(X_test)

print("Test Accuracy: ", accuracy_score(y_test, y_pred))
print("F1 score: ", f1_score(y_test, y_pred))

print("CONFUSION MATRIX: ")
pd.crosstab(y_test, y_pred, rownames=['Actual'], colnames=['Predicted'], margins=True
```

Test Accuracy: 0.776536312849162
F1 score: 0.736842105263158

0 1 All

CONFUSION MATRIX:

Predicted

	•	_	
Actual			
0	83	22	105
1	18	56	74
All	101	78	179

observations

- 1. Here Total 40 labels are miss classified out of which 18 are classified as Non-Survivors but are a Survivors but are classified as Non-survivors.
- 2. Comparing to regression model DecisionTree classifier worked better.

```
from sklearn.neighbors import KNeighborsClassifier

kc = KNeighborsClassifier()
model = kc.fit(X_train, y_train)
y_pred = model.predict(X_test)

print("Accuracy Score: ", accuracy_score(y_test, y_pred))
print("F1 Score: ", f1_score(y_test, y_pred))

print("Confusion Matrix: ")
pd.crosstab(y_test, y_pred, rownames=["Actual"], colnames=["Predicted"], margins=True

□
```

```
Accuracy Score: 0.659217877094972
F1 Score: 0.5481481481482
Confusion Matrix:
```

Observations:

- 61 points are missclassified out of which are 37 are classified as Non-survivors but are Survivor classified as survivors.
- 2. Comparing Knearest neighbour classfier with the Decision tree and logistic Regression Decision

```
from sklearn.svm import SVC

sc = SVC()
model = sc.fit(X_train, y_train)
y_pred = model.predict(X_test)

print("Accuracy Score: ", accuracy_score(y_test, y_pred))
print("F1 Score: ", f1_score(y_test, y_pred))

print("Confusion Matrix")
pd.crosstab(y_test, y_pred, rownames=["Actual"], colnames=['Predicted'], margins=True
```

Accuracy Score: 0.664804469273743 F1 Score: 0.3877551020408163

0 1 All

Confusion Matrix

Predicted

Actual			
0	100	5	105
1	55	19	74
All	155	24	179

Observations

- 1. 55 number of Survivors are misclassified as non-survivors.
- 2. 5 number of non-survivors are misclassified as survivors.
- 3. But if we consider the situation of survivors this model performed good because we want more less accuracy the model is not preffered.
- 4. After comparing with all the algorithsm Decison Tree classifier has performed better than all the

С→

Bagging accuracy: 0.7877094972067039 Bagging f1 score: 0.7076923076923075

Boosting accuracy: 0.7877094972067039 Boosting f1 score: 0.7397260273972601

Confusion Matrix for Decision_Tree Classifier:

Decision Tree 0 1 All

print("Confusion Matrix for afte Bagging: ")
pd.crosstab(y_test, pred_bagging, rownames=['Actual'], colnames=['Bagging'], margins=

Confusion Matrix for afte Bagging:

Bagging	U	T	ALL
Actual			
0	95	10	105
1	28	46	74
All	123	56	179

print("Confusion Matrix for Boosting: ")
pd.crosstab(y_test, pred_boosting, rownames=['Actual'], colnames=['Boosting'], margin

ightharpoonup Confusion Matrix for Boosting:

Boosting 0 1 All

	-	_	
Actual			
0	87	18	105
1	20	54	74
All	107	72	179

Observations

- 1. Even after Applying bagging and boosting there was no such imporovement in the.
- 2. Decision tree classfier is the highest accuracte model within this context

```
val_acc= []
val_f1_c = []
min_samples_leaf = []
import numpy as np
for samples_leaf in range(1,30): ### Sweeping from 1% samples to 10% samples per leaf
    tree_clf = DecisionTreeClassifier(max_depth=3,min_samples_leaf = samples_leaf)
    tree_clf.fit(X_train,y_train)
    y_pred = tree_clf.predict(X_test)

    val_accuracy = accuracy_score(y_test,y_pred)
    val_f1 = f1_score(y_test,y_pred)

    val_acc.append(val_accuracy)
    val_f1_c.append(val_f1)
    min_samples_leaf.append(samples_leaf)
```

Tuning_min_samples_leaf = {"Validation Accuracy": val_acc, "Validation F1":val_f1_c,
Tuning_min_samples_leaf_df = pd.DataFrame.from_dict(Tuning_min_samples_leaf)

plot_df = Tuning_min_samples_leaf_df.melt('Min_Samples_leaf',var_name='Metrics',value
fig,ax = plt.subplots(figsize=(15,5))
sns.pointplot(x="Min_Samples_leaf", y="Values",hue="Metrics", data=plot_df,ax=ax)
plt.show()

