$(X_{\rm h})_{\rm h21}$ homogene Ml and $(\Omega, \overline{5}, \overline{\rm IP})^{\frac{N_2}{2}}$ $(\Omega, \overline{\rm IP})^$

2.B.: N(w) = inf 2 u = 0: Xn = 3 ? (4)

2B: X = # Kopf" bis true u-ten Minzwett

7) dil- des Ereignis SN=u? liengt hur von X1,-- Xn ab.

(#) ist line Stopperit nach de Def.

 $4N = u = \frac{\pi}{3} \text{ inffm20: } X_{m} = \frac{\pi}{33} = u = \frac{\pi}{3} = \frac{\pi}{33} \times \frac{\pi}{33} = \frac{\pi}{33} =$

wobei $\mathcal{X} = 321, 22...$ abstallbarer 2R du Marhorbette and $\mathcal{Y}^{n+1} = 321, 221...$ $3^{n+1} = 3(y_1, ..., y_{n+1})$; $y_1 \in \mathcal{X}$

2B. Z= No

 $X_{0} = 0 \in \mathbb{N}_{0}$ $(X_{0}, X_{1}) \in \mathbb{N}_{0}^{2}$ $X_{1} = 1 \in \mathbb{N}_{0}$ $(X_{0}, X_{1}, X_{2}) \in \mathbb{N}_{0}^{3}$ $X_{2} = 1 \in \mathbb{N}_{0}$ = (0, 1, 1)

Anderes Beispiel:

New determinished 2B N=5 bzw $N(\omega)=5$ $\forall \omega \in \Omega$. => $\exists N \in \mathbb{R}$ set. $N(\omega) = \widehat{N} \quad \forall \omega \in \Omega$. $\Rightarrow P[N=n] = \begin{cases} 0 & n \neq \widehat{N} \\ 1 & n \neq 0 \end{cases}$

falls n=5 claum $(b) = 9 \omega \in \Omega : N(\omega) = 5$ = $9 \omega \in \Omega : 5 = 5$ $= 9 \omega \in \Omega : 5 = 5$ $= 9 \omega \in \Omega : 5 = 5$ $= 9 \omega \in \Omega : 5 = 5$ $= 9 \omega \in \Omega : 5 = 5$ $= 9 \omega \in \Omega : 5 = 5$