МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

ЛАБОРАТОРНАЯ РАБОТА №3.7.3

Длинные линии

Пилюгин Л. С. Б02-212 Победин Н. К. Б02-212 20 октября 2023 г.

1 Аннотация

Цель работы: ознакомится и проверить на практике теорию распространения электрических сигналов вдоль длинной линии; измерить амплитудо- и фазово-частотные характеристики коаксиальной линии; определить погонные характеристики такой линии; на примере модели длинной линии изучить вопрос распределения амплитуды колебаний сигнала по длине линии.

Оборудование: осциллограф АКТАКОМ ADS-6142H; генератора АКИП 3420/1; бухта с коаксиальным кабелем pk 50-4-11; схематический блок «модель длинной линии»; магазин сопротивления P33, соединительные провода.

2 Теоритические сведения

Рассмотрим элемент dx длинного коаксиального кабеля. Этот элемент представляет собой изолированный коаксиальный проводящий (медный) цилиндр некоторого радиуса r_2 , на оси которого расположен сплошной тонкий проводник (медный) круглого сечения с радиусом r_1 . Пространство между этими проводниками заполнена средой, обладающей диэлектрической проницаемостью ε и магнитной восприимчивостью μ . Как известно, такой элемент обладает индуктивностью

$$dL = 2\mu \ln \left(r_2/r_1 \right) dx$$

Удельная (погонная) индуктивность единицы длины такого кабеля:

$$L_x = \frac{dL}{dx} = 2\mu \ln \left(r_2/r_1 \right)$$

Два проводника, образующих этот элемент dx коаксиального кабеля, должны обладать взаимной ёмкостью. Можно показать, что ёмкость элемента dx коаксиального кабеля определяется выражением:

$$dC = \frac{\varepsilon}{2\ln\left(r_2/r_1\right)} dx$$

а его удельная (погонная) ёмкость единицы длины равна:

$$C_x = \frac{dC}{dx} = \frac{\varepsilon}{2\ln(r_2/r_1)}$$

Когда по такому кабелю передаётся сигнал, в его центральной жиле и внешней оболочке возникают взаимно противоположные токи I(x), а также электрическое напряжение U(x) между внешним и внутренним проводниками. При высоких частотах ν сигналов, распространяющихся в кабеле (когда длина кабеля $l\gg V/\nu$, где V — характерная скорость распространения сигнала в кабеле, эта скорость, как правило, порядка скорости света) I(x) и U(x) вообще говоря зависят от координаты x.

Изменение напряжения на концах элемента dx вызваны возникновением ЭДС индукции и падением напряжения в результате омического сопротивления проводников:

$$U(x+dx) - U(x) = -\frac{L_x dx}{c^2} \frac{\partial I}{\partial t} - R_x dx I,$$

где погонное сопротивление

$$R_x = \frac{dR}{dx} = \frac{1}{\sigma S}$$

 σ — удельная проводимость материала проводников, S — площадь их поперечного сечения.

Изменение силы тока вызвано тем, что некоторая часть электрического заряда q как бы «перетекает на «обкладки» конденсатора, роль которых играют проводники коаксиального кабеля:

$$I(x+dx) - I(x) = -\frac{\partial q}{\partial t}$$

где $q = C_x dx U$.

Итого

$$\begin{cases}
U(x) = U(x + dx) + \frac{L_x dx}{c^2} \frac{\partial I}{\partial t} + R_x dxI \\
I(x) = I(x + dx) + \frac{\partial q}{\partial t}
\end{cases}$$
(1)

Эту систему уравнений называют телеграфными уравнениями. Разделим оба уравнения на dx и перепишем уравнения:

$$\begin{cases} \frac{\partial I}{\partial x} = -C_x \frac{\partial U}{\partial t} \\ \frac{\partial U}{\partial x} = -\frac{L_x}{c^2} \frac{\partial I}{\partial t} - R_x I \end{cases}$$
 (2)

Получаем волновое уравнение для напряжения

$$\frac{\partial^2 U}{\partial t^2} - V_{\Phi} \frac{\partial^2 U}{\partial x^2} + \gamma \frac{\partial U}{\partial t} = 0$$

где

$$V_{\Phi} = \frac{c}{\sqrt{L_x C_x}}$$
$$\gamma = R_x C_x V_{\Phi}^2$$

$$V_{\Phi} = \frac{c}{\sqrt{\varepsilon \mu}}$$

Решение удобно искать в виде

$$U(x,t) = U_0 e^{-iwt} e^{(-\alpha + ik)x}$$

$$I(x,t) = U_0 \frac{C_x w}{k + i\alpha} e^{-iwt} e^{(-\alpha + ik)x}$$

Волновое сопротивление

$$Z(w,k) = \frac{U(x,t)}{I(x,t)} = \frac{k + i\alpha}{C_x w}$$

не зависит от времени и координаты.

В пределах малых затуханий $\alpha \ll w$

$$Z(w,k) pprox rac{k}{C_x w} = rac{1}{C_x V_{
m th}} = rac{1}{c} \sqrt{rac{L_x}{C_x}}$$

Если в конце такую длинную линию замкнуть на сопротивление

$$R_0 = \frac{1}{c} \sqrt{\frac{L_x}{C_x}}$$

то бегущая вдоль длинной линии волна «будет воспринимать» нагрузку как бесконечное продолжение этой длинной линии. Другими словами, когда длинная линия подключена к нагрузке с сопротивлением R_0 , отражённой волны не возникает. Во всех остальных случаях, когда $R \neq R_0$ (в том числе и в частных случаях незамкнутого конца, когда $R \to \infty$ и короткозамкнутой линии, когда R = 0) возникает отражённая волна, описываемая выражением

$$U(x,t) = U_0 e^{-iwt} e^{-(\alpha+ik)x}$$

Характеристическое уравнение

$$-w^{2} - V_{\Phi}^{2} (-\alpha + ik)^{2} - iw\gamma = 0$$

Отсюда следует

$$\alpha \approx R_x C_x \frac{V_{\Phi}}{2}$$
$$k = \frac{w}{V_{\Phi}}$$

Таким образом, амплитуда напряжения на нагрузке (в конце длинной линии) будет иметь вид

$$U_{\rm h}(t) = U_0 e^{-\alpha l + ikl - iwt}$$

При этом амплитуда и набег фазы имеют вид

$$U_{\rm H} = U_0 e^{-\alpha l}$$

$$\Delta\varphi=kl$$

Так как модуль волнового вектора k прямо пропорционален частоте сигнала w, то $\Delta \varphi$ монотонно увеличивается с увеличением w.

Декремент затухания и волновое число легко определить из эксперимента

$$\alpha(w) = \frac{1}{l} \ln \left(\frac{U_0}{U_{\text{H}}} \right)$$
$$k = \frac{\Delta \varphi}{l}$$

Таблица 1. Резонансные частоты

синус согл., МГц	синус. без нагр., МГц	прям. согл., МГц	прям. без нагр., МГц
19,933	20,0	20,0	20,0
15,933	16,0	16,0	16,0
11,943	12,0	12,0	12,0
7,94	8,0	8,0	8,0
3,945	4,0	4,0	4,0

3 Результаты измерений

Фазовая скорость

$$V_{\Phi} = 2 \cdot 10^8 \; \mathrm{m/c}$$

Таблица 2. АЧХ

f , М Γ ц	<i>V</i> , B
1,0	25,2
2,0	25,0
3,0	24,4
4,0	24,2
5,0	23,8
6,0	23,4
7,0	23,0
8,0	22,8
9,0	22,6
10,0	22,6
11,0	22,2
12,0	22,1
13,0	21,8
14,0	21,8
15,0	21,4
16,0	21,4
17,0	21,2
18,0	21,2
19,0	21,0
20,0	21,0
21,0	20,6
22,0	20,6
23,0	20,2
24,0	20,3
25,0	19,8
26,0	20,0
27,0	19,4
28,0	19,7
29,0	19,2
30,0	19,2
31,0	19,0
32,0	19,0
33,0	18,6
34,0	18,6
35,0	18,4
36,0	18,2
37,0	17,8
38,0	17,9
39,0	17,7
40,0	17,4

Дисперсия почти отсутствует.

Для описания характеричтик коаксиального кабеля уравнения удобно переписать сле-

Таблица 3. ФЧХ

f , М Γ ц	ϕ
4,0	0,09948376736367678
4,2	0,4014257279586958
4,4	0,7330382858376184
4,6	1,0471975511965976
4,8	1,3508848410436112
5,0	1,6650441064025905
5,2	1,99142067652553
5,4	2,2689280275926285
5,6	2,6179938779914944
5,8	2,91469985083053
6,0	3,036872898470133
6,2	2,6878070480712677
6,4	2,356194490192345
6,6	2,059488517353309
6,8	1,7627825445142729
7,0	1,4486232791552935
7,2	1,117010721276371
7,4	0,8377580409572782
7,6	0,49741883681838395
7,8	0,19722220547535926
8,0	0,12217304763960307
8,2	0,4537856055185257
8,4	0,7504915783575618
8,6	1,0821041362364843
8,8	1,3788101090755203
9,0	1,6929693744344996

дующим образом:

$$y_1 = \frac{L_x C_x}{c^2} x^1$$
$$x_1 = w^2$$
$$y_1 = k(w)^2 - \alpha(w)^2$$

По наклону прямой можно определить $L_x C_x$, а зная волновое сопротивление кабеля, определить L_x и C_x .

$$k_1 = (2499894 \pm 2) \cdot 10^{-11} \ \mathrm{M}\Gamma \mathrm{H}^{-2} \cdot \mathrm{m}^{-2}$$
 $L_x \approx 2{,}75 \ \mathrm{mk}\Gamma \mathrm{H/m}$ $C_x \approx 0{,}1 \ \mathrm{H}\Phi/\mathrm{m}$

Из этих величин и геометрических параметров можно найти ε и μ .

$$\mu \approx 1.18$$
 $\varepsilon \approx 1.9$

Удельную проводимость σ материала проводников можно определить двумя методами. Метод ${\bf A}$

$$\alpha(w) = \frac{1}{l} \ln \left(\frac{U_0}{U_{\scriptscriptstyle \rm H}} \right) = R_x C_x \frac{V_\Phi}{2}$$

Если взять удельную проводимость для меди и подставить в известное выражение для

характерной толщины скин-слоя:

$$\delta = \frac{c}{2\pi\sqrt{\nu\sigma}}$$

то окажется, что даже при минимальной частоте $\nu=1$ М Γ ц эта толщина будет равна около 65 мкм, что примерно в десять раз меньше радиуса центрального проводника. При больших частотах характерная толщина скин-слоя ещё меньше. Поэтому для упрощения будем предполагать, что весь ток сосредоточен в приповерхностном слое и потери, связанные с джоулевым нагревом описываются следующим выражением:

$$dN = \frac{(dU)^2}{dR}$$
$$dR = \frac{dx}{\sigma\pi d} \frac{2}{\delta}$$

Погонное сопротивление с учётом скин-эффекта можно определить следующим образом:

$$R_x = \frac{2}{\sigma\pi d\delta} = \frac{4\sqrt{\nu}}{\sqrt{\sigma}cd}$$
$$\alpha(w) = \frac{4}{\sqrt{\sigma}d}C_x \frac{V_{\Phi}}{c}\sqrt{\nu}$$
$$y_2 = \frac{4}{\sqrt{\sigma}d}C_x \frac{V_{\Phi}}{c}x_2$$
$$x_2 = \sqrt{\nu}$$
$$y_2 = \alpha(w)$$

По наклону прямой можно определить σ

$$\sigma = \left(\frac{2C_x V_{\Phi}}{cd\left(\Delta y_2 / \Delta x_2\right)}\right)^2$$

$$k_2 = (114 \pm 2) \cdot 10^{-5} \text{ M}\Gamma \text{ц}^{-0.5} \cdot \text{m}^{-1.0}$$

 $\sigma = (66 \pm 3) \cdot 10^6 \text{ Cm/m}$

Метод Б

$$2\alpha k = wR_xC_x$$

Зная амплитуду колебаний и сдвиг фазы в конце длинной линии относительно входного сигнала экспериментально можно определить как $\alpha(w)$ так и k(w)

$$y_3 = \frac{4\pi C_x}{\sqrt{\sigma} dc} x_3$$

$$x_3 = \nu^{3/2}$$

$$y_3 = \alpha(w)k(w) = \frac{1}{l} \ln \left(\frac{U_0}{U_{\scriptscriptstyle \rm H}}\right) \frac{\Delta \varphi}{l}$$

По наклону прямой

$$\sigma = \left(\frac{4\pi C_x}{dc \left(\Delta y_3/\Delta x_3\right)}\right)^2$$

$$k_3 = (351 \pm 3) \cdot 10^{-7} \text{ M}\Gamma \text{m}^{-1.5} \cdot \text{m}^{-2.0}$$

$$\sigma = (68.7 \pm 1.1) \cdot 10^6 \text{ Cm/m}$$

Фазовая скорость связана с резонансной частотой формулой

$$V_{\Phi} = \frac{wl}{2\pi n}$$

График получился линейным (первая и последняя точки лежат на прямой с точностью до 2π), что соответствует формуле

$$k = \frac{\Delta \phi}{l}$$

4 Вывод

В работе была проверена теория распространения электрических сигналов по длинной линии и определены характеристики кабеля.

Таблица 4. Измерение фазы от амплитуды

f , К Γ ц	φ
10,0	2,0158552860534504
13,0	-2,5132741228718345
16,0	-1,9722220547535925
19,0	-1,4660765716752369
22,0	0,2617993877991494
25,0	1,1868238913561442
28,0	2,356194490192345
31,0	-2,059488517353309

Таблица 5. Резонансные частоты

$f_{R=0}$, КГц	$f_{R \to \infty}$, КГц
11,2	10,7
21,2	20,6
29,0	28,4
34,6	33,8

Таблица 6. Распределение напряжений

N	$V_{f=10,7 \text{ K}\Gamma \text{ц}}, \text{ B}$	$V_{f=20,6 \text{ K}\Gamma \text{ц}}, \text{ B}$	$V_{f=28,4 \text{ K}\Gamma \text{ц}}, \text{ B}$
1,0	19,0	13,0	9,0
2,0	10,0	6,4	12,8
3,0	5,0	14,6	6,4
4,0	9,4	7,0	7,6
5,0	17,8	11,2	7,4
6,0	13,6	8,6	5,8
7,0	9,6	4,4	6,2
8,0	6,0	9,0	4,2
9,0	9,3	7,2	5,4
10,0	13,8	8,6	4,6

