Surface sampling and the intrinsic Voronoi diagram

Ramsay Dyer Hao Zhang Torsten Möller

GrUVi Lab Faculty of Applied Science School of Computing Science Simon Fraser University

20080703

Sampling terminology

Extrinsic vs intrinsic

Sampling radius

Maximum distance to the nearest sample

Sizing function

- ullet Positive function, ho on S
- Used to specify a sampling radius: $\epsilon \rho(x)$

Contributions

Our contributions

- improved intrinsic sampling criteria
- relate extrinsic and intrinsic sampling criteria

Outline

- Introduction
- 2 Intrinsic sampling criteria
- Relating intrinsic and extrinsic criteria
- 4 Discussion

Edelsbrunner and Shah (1994)

- V(p) is a topological disk $\forall p \in P$
- $\mathcal{V}(p) \cap \mathcal{V}(q)$ is empty or a single Voronoi edge
- $\mathcal{V}(p) \cap \mathcal{V}(q) \cap \mathcal{V}(s)$ is empty or a single point

Edelsbrunner and Shah (1994)

- ullet $\mathcal{V}(p)$ is a topological disk $\forall p \in P$
- $\mathcal{V}(p) \cap \mathcal{V}(q)$ is empty or a single Voronoi edge
- $V(p) \cap V(q) \cap V(s)$ is empty or a single point

Edelsbrunner and Shah (1994)

- V(p) is a topological disk $\forall p \in P$
- $\mathcal{V}(p) \cap \mathcal{V}(q)$ is empty or a single Voronoi edge
- $V(p) \cap V(q) \cap V(s)$ is empty or a single point

Edelsbrunner and Shah (1994)

- V(p) is a topological disk $\forall p \in P$
- $\mathcal{V}(p) \cap \mathcal{V}(q)$ is empty or a single Voronoi edge
- $\mathcal{V}(p) \cap \mathcal{V}(q) \cap \mathcal{V}(s)$ is empty or a single point

Edelsbrunner and Shah (1994)

- V(p) is a topological disk $\forall p \in P$
- $\mathcal{V}(p) \cap \mathcal{V}(q)$ is empty or a single Voronoi edge
- $\mathcal{V}(p) \cap \mathcal{V}(q) \cap \mathcal{V}(s)$ is empty or a single point (redundant)

redundant

Definition (Strong convexity radius)

An intrinsic sizing function:

$$\rho_{\mathsf{sc}}(x) = \sup \{ \rho \mid B_{\mathcal{S}}(x; r) \text{ is strongly convex } \forall r < \rho \}$$

Voronoi cells and convexity

Voronoi cells are not convex • q because Voronoi boundaries are not geodesics

Theorem

The intrinsic Voronoi diagram is well formed if each Voronoi cell can be contained in a strongly convex set.

A sampling criterion

A sufficient sampling radius

If P satisfies a sampling radius of $\frac{1}{2}\rho_{sc}(x)$ then the intrinsic Voronoi diagram of P on S is well formed.

Weakening the criterion

Is $\rho_{sc}(x)$ a sufficient sampling radius?

Voronoi cells are topological disks

If $\rho_{sc}(x)$ is a sampling radius for P then the Vornonoi cells of P on S are topological disks.

unique geodesics ⇒ contractible

The second closed-ball criterion?

- can Voronoi cells share more than one Voronoi edge?
- not if they can share no more than 2 Voronoi vertices

Pseudo-disks

Pseudo-disks (Boissonnat and Oudot 2005)

Boundaries intersect transversely twice, tangentially once or not at all.

Pseudo-disks suffice $\mathcal{V}(p)$ and Disks $\mathcal{V}(q)$ within cannot sampling \Rightarrow share radius are three pseudo-Voronoi disks vertices

The scr and pseudo-disks

The scr and pseudo-disks

Main sampling result

Injectivity radius

Injectivity radius: $\rho_i(x)$

 $d_S(x,y) < \rho_i(x) \Rightarrow$ unique minimal geodesic between x and y

Intrinsic sampling radius

$$\rho_m(x) = \min\left\{\rho_{\rm sc}(x), \frac{1}{2}\rho_i(x)\right\}$$

Theorem (Intrinsic sampling)

If $\rho_m(x)$ is a sampling radius for P, then the intrinsic Voronoi diagram of P on S is well formed.

Introduction

Intrinsic sampling criteria

3 Relating intrinsic and extrinsic criteria

4 Discussion

Local feature size

Bounded by curvature

local feature size (Ifs)

 $\rho_f(x) = \text{distance to medial}$ axis

Lipschitz continuity

$$|\rho_f(x)-\rho_f(z)|\leq d_{\mathbb{R}^3}(x,z)$$

Bounded by curvature

- radius of medial ball ≤ radius of osculating ball
- $\rho_f(x) \leq \rho_\kappa(x)$

Relating intrinsic sizing functions and the Ifs

To show

$$\rho_m(x) \ge C \rho_f(x)$$

Proof idea

 $\rho_m(x)$ small \Rightarrow curvature large $\Rightarrow \rho_f(x)$ small

- get curvature bound
- convert to Ifs
- bring home via Lipschitz

The result

Relating to local feature size

$$\rho_m(x) \ge \left(\frac{\pi}{4+3\pi}\right) \rho_f(x)$$

Comparing sampling criteria

- bound geodesic distances in terms of Euclidean: $B_S(x; \delta r) \subset B_{\mathbb{R}^3}(x; r)$
- Morvan and Thibert (2004):

Introduction

2 Intrinsic sampling criteria

3 Relating intrinsic and extrinsic criteria

4 Discussion

Comparing with Leibon and Letscher (2000)

We require

 $\rho_m(x)$ is a sampling radius for P

(Leibon and Letscher 2000) require

For any $y \in B_S(x; \frac{4}{5}\rho_{sc}(x))$, there is a $p \in P$ contained in $B_S(y; \frac{1}{5}\rho_{sc}(x))$.

Comparison

- more complicated cannot be expressed via a sampling radius
- stronger than a sampling radius of $\frac{1}{5}\rho_{\rm sc}(x)$
- details of proof did not appear
- however, it does apply to higher dimensions

Comparing other sampling criteria

Relating extrinsic and intrinsic sampling criteria

- Vertical axis: ϵ_f for extrinsic sampling radius $\epsilon_f \rho_f(x)$
- Horizontal axis: ϵ for intrinsic sampling radius $\epsilon \rho_m(x)$

Open questions

Tighter bounds

• larger C in $\rho_m(x) \geq C\rho_f(x)$

Higher dimensions

- extending the sampling criteria
- extending the sizing function comparisons

Acknowledgments

Thank you to:

- A. Bobenko Voronoi boundaries are not geodesics
- reviewers
- SFU Faculty of Applied Science travel funding
- NSERC

Thank You!