ANALIZA DANYCH ANKIETOWYCH, SEMESTR LETNI 2023/2024

Zadania do sprawozdania 1

Część I

zadanie 1. W pewnej dużej agencji reklamowej przeprowadzono ankietę mającą na celu ocenę poziomu satysfakcji z pracy. Wzięło w niej udział dwieście losowo wybranych osób (losowanie proste ze zwracaniem).

W pliku "ankieta.csv" umieszczono odpowiedzi na kilka z zadanych pytań:

- "W jakim działe jesteś zatrudniony?" zmienna **DZIAŁ** przyjmująca wartości: **HR** (Dział obsługi kadrowo-płacowej), **IT** (Dział utrzymania sieci i systemów informatycznych), **DK** (Dział Kreatywny) lub **DS** (Dział Strategii),
- "Jak długo pracujesz w firmie?" zmienna STAŻ przyjmująca wartości: 1 (Poniżej jednego roku), 2 (Między jednym rokiem a trzema latami) lub 3 (Powyżej trzech lat),
- "Czy pracujesz na stanowisku menedżerskim?" zmienna **CZY_KIER** przyjmująca wartości: **Tak** (Stanowisko menedżerskie) lub **Nie** (Stanowisko inne niż menedżerskie).
- "Jak bardzo zgadzasz się ze stwierdzeniem, że firma pozwala na elastyczne godziny pracy tym samym umożliwiając zachowanie równowagi między pracą a życiem prywatnym?"
 zmienna PYT_1 przyjmująca wartości: -2 (zdecydowanie się nie zgadzam), -1 (nie zgadzam się), 0 (nie mam zdania), 1 (zgadzam się), 2 (zdecydowanie się zgadzam).
- "Jak bardzo zgadzasz się ze stwierdzeniem, że twoje wynagrodzenie adekwatnie odzwierciedla zakres wykonywanych przez ciebie obowiązków?" zmienna PYT_2 przyjmująca wartości: -2 (zdecydowanie się nie zgadzam), -1 (nie zgadzam się), 1 (zgadzam się), 2 (zdecydowanie się zgadzam).

Dodatkowo w ramach metryczki ankietowani zostali poproszeni o wskazanie swojego wieku - zmienna **WIEK** przyjmująca wartości numeryczne, oraz wskazanie płci - zmienna **PŁEĆ** przyjmująca wartość **Kobieta** lub **Mężczyzna**.

Kilka tygodni później przeprowadzono rewizję wynagrodzeń, w wyniku której część pracowników otrzymała podwyżki. Ankietowanych biorących udział w badaniu poproszono wówczas o ponowną odpowiedź na pytanie dotyczące zadowolenia z wynagrodzenia - zmienna **PYT 3**.

- 1. Wczytaj dane i przygotuj je do analizy. Zadbaj o odpowiednie typy zmiennych, zweryfikuj czy przyjmują wartości zgodne z powyższym opisem, zbadaj czy nie występują braki w danych.
- 2. Utwórz zmienną **WIEK_KAT** przeprowadzając kategoryzację zmiennej **WIEK** korzystając z następujących przedziałów: do 35 lat, między 36 a 45 lat, między 46 a 55 lat, powyżej 55 lat.

- Sporządź tablice liczności dla zmiennych: DZIAŁ, STAŻ, CZY_KIER, PŁEĆ, WIEK_KAT.
- 4. Sporządź wykresy kołowe oraz wykresy słupkowe dla zmiennych: PYT_1 oraz PYT_2.
- 5. Sporządź tablice wielodzielcze dla par zmiennych: PYT_1 i DZIAŁ, PYT_1 i STAŻ, PYT_1 i CZY_KIER, PYT_1 i PŁEĆ oraz PYT_1 i WIEK_KAT.
- 6. Sporządź tablicę wielodzielczą dla pary zmiennych: PYT_2 i PYT_3.
- 7. Utwórz zmienną **CZY_ZADOW** na podstawie zmiennej **PYT_2** łącząc kategorie "nie zgadzam się" i "zdecydowanie się nie zgadzam" oraz "zgadzam się" i "zdecydowanie się zgadzam".
- 8. Korzystając z funkcji *mosaic* z biblioteki *vcd*, sporządź wykresy mozaikowe odpowiadające parom zmiennych: CZY_ZADOW i DZIAŁ, CZY_ZADOW i STAŻ, CZY_ZADOW i CZY_KIER, CZY_ZADOW i PŁEĆ oraz CZY_ZADOW i WIEK_KAT. Czy na podstawie uzyskanch wykresów można postawić pewne hipotezy dotyczące realicji między powyższymi zmiennymi? Spróbuj sformułować kilka takich hipotez.

Część II

- **zadanie 2.** Zapoznaj się z biblioteką *likert* i dostępnymi tam funkcjami *summary* oraz *plot* (wykresy typu "bar", "heat" oraz "density"), a następnie zilustruj odpowiedzi na pytanie "Jak bardzo zgadzasz się ze stwierdzeniem, że firma pozwala na (...)?" (zmienna **PYT_1**) w całej badanej grupie oraz w podgrupach ze względu na zmienną **CZY_KIER**.
- **zadanie 3.** Zapoznaj się z funkcją *sample* z biblioteki *stats*, a następnie wylosuj próbkę o liczności 10% wszystkich rekordów z pliku "ankieta.csv" w dwóch wersjach: ze zwracaniem oraz bez zwracania.
- **zadanie 4.** Zaproponuj metodę symulowania zmiennych losowych z rozkładu dwumianowego. Napisz funkcję do generowania realizacji, a następnie zaprezentuj jej działanie porównując wybrane teoretyczne i empiryczne charakterystyki dla przykładowych wartości paramertów rozkładu: n i p.
- **zadanie 5.** Zaproponuj metodę symulowania wektorów losowych z rozkładu wielomianowego. Napisz funkcję do generowania realizacji, a następnie zaprezentuj jej działanie porównując wybrane teoretyczne i empiryczne charakterystyki dla przykładowych wartości paramertów rozkładu: *n* i **p**.

Część III oraz IV

zadanie 6. Napisz funkcję do wyznaczania realizacji przedziału ufności Cloppera-Pearsona. Niech argumentem wejściowym będzie poziom ufności, liczba sukcesów i liczba prób lub poziom ufności i wektor danych (funkcja powinna obsługiwać oba przypadki).

zadanie 7. Korzystając z funkcji napisanej w zadaniu 6. wyznacz realizacje przedziałów ufności dla prawdopodobieństwa, że pracownik jest zadowolony z wynagrodzenia w pierwszym badanym okresie oraz w drugim badanym okresie. Skorzystaj ze zmiennych **CZY_ZADW** oraz **CZY_ZADW_2** (utwórz zmienną analogicznie jak w zadaniu 1.7). Przyjmij $1 - \alpha = 0.95$.

zadanie 8. Zapoznaj się z funkcjami *rbinom* z biblioteki *stats* oraz *binom.confint* z biblioteki *binom*.

zadanie 9. Przeprowadź symulacje, których celem jest porównanie prawdopodobieństwa pokrycia i długości przedziałów ufności Cloppera-Pearsona, Walda i trzeciego dowolnego typu zaimplementowanego w funkcji *binom.confint*. Rozważ $1-\alpha=0.95$, rozmiar próby $n\in\{30,100,1000\}$ i różne wartości prawdopodobieństwa p. Wyniki umieść na wykresach i sformułuj wnioski, które dla konkretnych danych ułatwią wybór konkretenego typu przedziału ufności.

Część V

zadanie 10. Zapoznaj się z funkcjami binom.test oraz prop.test z biblioteki stats.

zadanie 11. Dla danych z pliku "ankieta.csv" korzystając z funkcji z zadania 10., przyjmując $1-\alpha=0.95$, zweryfikuj następujące hipotezy i sformułuj wnioski:

- 1. Prawdopodobieństwo, że w firmie pracuje kobieta wynosi 0.5.
- 2. Prawdopodbieństwo, że pracownik jest zadowolony ze swojego wynagrodzenia w pierwszym badanym okresie jest większe bądź równe 0.7.
- 3. Prawdopodobieństwo, że kobieta pracuje na stanowisku menedżerskim jest równe prawdopodobieństwu, że mężczyzna pracuje na stanowisku menedżerskim.
- 4. Prawdopodobieństwo, że kobieta jest zadowolona ze swojego wynagrodzenia w pierwszym badanym okresie jest równe prawdopodobieństwu, że mężczyzna jest zadowolony ze swojego wynagrodzenia w pierwszym badanym okresie.
- 5. Prawdopodobieństwo, że kobieta pracuje w dziale obsługi kadrowo-płacowej jest większe lub równe prawdopodobieństwu, że mężczyzna pracuje w dziale obsługi kadrowo-płacowej.

zadanie 11. Wyznacz symulacyjnie moc testu dokładnego oraz moc testu asymptotycznego w przypadku weryfikacji hipotezy zerowej $H_0: p=0.9$ przeciwko $H_1: p\neq 0.9$ przyjmując wartość $1-\alpha=0.95$. Uwzględnij różne wartości alternatyw i różne rozmiary próby. Sformułuj wnioski.

Zadania dodatkowe

zadanie *1. Wyznacz granice asymptotycznego przedziału ufności dla prawdopodobieństwa sukcesu bazując na przekształceniu logit korzystając z metody delta. Zaimplementuj metodę oraz porównaj wyniki z funkcją *binom.confint*.