

Capacidad y condensadores

1.- Un condensador de aire se compone de dos placas paralelas muy próximas y tiene una capacidad de 1 nF. La carga de cada lámina es de 1 μ C. Hallar: a) La diferencia de potencial entre las láminas. b) Si se mantiene constante la carga, determinar la diferencia de potencial entre las láminas si duplicamos la distancia entre ellas. c) El cambio ΔU en la energía almacenada en el condensador al efectuar este desplazamiento.

Solución: a) V = 1000 voltios, b) V = 2000 voltios, c) $\Delta U = 5 \times 10^{-4} J$.

2.- Un condensador de capacidad $C_1 = 1 \mu F$ y otro de capacidad $C_2 = 2 \mu F$ se conectan en serie a una red de suministro de 900 V. Se pide: a) Calcular la carga de cada condensador, la diferencia de potencial entre las armaduras de cada uno de ellos y la energía electrostática almacenada en cada condensador. b) Los condensadores cargados se desconectan de la red y se vuelven a conectar entre sí, con las armaduras del mismo signo unidas. Calcular la carga, el voltaje final y la variación de energía electrostática total ΔU al efectuar este montaje. c) Si se desconectan de la red, y en lugar de unir las armaduras del mismo signo, se unen las de signo contrario, calcular la carga final y el voltaje final de cada uno de los condensadores.

Solución: a)
$$Q_1 = Q_2 = 6 \times 10^{-4} \text{ C}$$
, $V_1 = 600 \text{ voltios}$, $V_2 = 300 \text{ voltios}$, $U_1 = 0.18 \text{ J}$, $U_2 = 0.09 \text{ J}$
b) $Q_1 = 4 \times 10^{-4} \text{ C}$, $Q_2 = 8 \times 10^{-4} \text{ C}$, $V_1 = V_2 = 400 \text{ voltios}$, $\Delta U = -0.03 \text{ J}$, c) $Q_1 = Q_2 = V_1 = V_2 = 0$.

3.- Un condensador de capacidad $C_1 = 1 \mu F$ y otro de capacidad $C_2 = 2 \mu F$ se conectan en paralelo a una red de suministro de 900 voltios. Se pide: a) Calcular la carga de cada condensador, la diferencia de potencial entre las armaduras de cada uno de ellos y la energía electrostática almacenada en cada condensador. b) Los condensadores cargados se desconectan de la red y se vuelven a conectar entre sí, con las armaduras del mismo signo unidas. Calcular la carga, el voltaje final y la variación de energía electrostática total ΔU al efectuar este montaje. c) Si se desconectan de la red, y en lugar de unir las armaduras del mismo signo, se unen las de signo contrario, calcular la carga, el voltaje final y la variación de energía electrostática total ΔU al efectuar este montaje.

```
Solución: a) Q_1 = 9 \times 10^{-4} \text{ C}, Q_2 = 18 \times 10^{-4} \text{ C}, V_1 = V_2 = 900 \text{ voltios}, U_1 = 0.405 \text{ J}, U_2 = 0.81 \text{ J},
b) Q_1 = 9 \times 10^{-4} \text{ C}, Q_2 = 18 \times 10^{-4} \text{ C}, V_1 = V_2 = 900 \text{ voltios}, \Delta U = 0 \text{ J},
c) Q_1 = 300 \mu\text{C}, Q_2 = 600 \mu\text{C}, V_1 = V_2 = 300 \text{ voltios}, \Delta U = -1.08 \text{ J}.
```

4.- Un condensador de $20~\mu F$ está cargado a una diferencia de potencial de 1000~V. Las armaduras del condensador cargado se conectan a las de otro condensador descargado de $5 \mu F$. Calcular: a) La carga inicial del sistema. b) La diferencia de potencial final entre las armaduras de cada condensador. c) La energía final del sistema. d) La disminución ΔE de la energía cuando se conectan los condensadores.

Solución: a)
$$Q = 2 \times 10^{-2} C$$
, b) $V = 800$ voltios, c) $U = 8 J$, d) $\Delta U = -2 J$.

5.- Los condensadores de la figura, de capacidades $C_1,\,C_2,\,C_3$ y C_4 son de idéntica forma y dimensiones y tienen por dieléctricos aire ($\kappa_1 = 1$), parafina ($\kappa_2 = 2.3$) azufre ($\kappa_3 = 3$) y mica $(\kappa_4 = 5)$, respectivamente. Calcular la diferencia de potencial entre las armaduras de cada uno de los cuatro condensadores y la carga almacenada por cada uno de ellos. Datos: $V_o = 100 \text{ voltios}, C_2 = 10^{-9} F.$

Solución: $V_1 = 71.3$ voltios, $V_2 = V_3 = 13.47$ voltios, $V_4 = 14.26$ voltios, $Q_1 = Q_4 = 31 \times 10^{-9}$ C, Universidad de La Rioje $Q_2 = 13.47 \times 10^{-9} \ C, \ Q_3 = 17.53 \times 10^{-9} \ C.$

6.- En el circuito de la figura $C_1=C_3=C_4=C_6=2~\mu F, C_2=C_5=4~\mu F$ y V = 870 voltios Calcular: a) La capacidad equivalente C_{equiv} de la red. b) La carga en cada condensador. c) La diferencia de potencial entre las placas de cada condensador.

Solución: a) $C_{equiv} = 8.27 \times 10^{-7} \ F$; b) $Q_1 = Q_3 = 7.2 \times 10^{-4} \ C$, $Q_2 = 6 \times 10^{-4} \ C$, $Q_4 = Q_5 = Q_6 = 1.2 \times 10^{-4} C;$

c) $V_1 = V_3 = 360$ voltios, $V_2 = 150$ voltios, $V_4 = V_6 = 60$ voltios, $V_5 = 30$ voltios.

7.- Una lámina dieléctrica se introduce una distancia x entre las placas de un condensador plano-paralelo, las cuales están separdas una distancia d y tienen dimensiones laterales a y b. Demostrar que la capacidad del condensador es $C = \varepsilon_o b(\kappa x + a - x)/d$, donde κ es la constante del dieléctrico.

8.- Un condensador de placas plano-paralelas tiene una capacidad C_o . Se insertan entre las placas dos lámibas dieléctricas de constantes κ_1 y κ_2 cada una de ellas, de espesor d/2 y de la misma área que las placas. Demostrar que la capacidad del condensador es $C = 2C_o[\kappa_1\kappa_2/(\kappa_1 + \kappa_2)].$

9.- Demostrar que la capacidad equivalente del sistema de condensadores de la figura es C_{eq}

10.- Un condensador esférico está formado por dos superficies conductoras esféricas, concéntricas de radios a y b, y cargadas con cargas iguales y opuestas +Q y -Q, respectivamente. a) Determinar la capacidad C de este condensador. b) Estimar la capacidad de la Tierra supuesta un condensador esférico donde la esfera interna fuera el núcleo (el NiFe). Datos: Radio de la Tierra: $R_T \approx 6400$ km; radio del NiFe: $R_{NiFe} \approx 5100$ km.

Solución: a) C = a b/k(b-a). b) $C \approx 2.79 \mu F$.

11.-Problemas de examen

En el circuito de la figura, con el conmutador S en la posición 1, el condensador $C_1 = 4~\mu F$ está inicialmente cargado a una diferencia de potencial $V_o = 100$ voltios. Si el conmutador se coloca en la posición 2, la carga final Q_2 y la diferencia de potencial V_2 en el condensador $C_2 = 6\mu F$ es:

b)
$$Q_2 = 10^{-3} \text{ C}$$
, $V_2 = 166.67 \text{ voltios}$.

c)
$$Q_2 = 2.4 \times 10^{-4} \text{ C}, V_2 = 40 \text{ voltios}.$$

d)
$$Q_2 = 1.6 \times 10^{-4} \text{ C}, V_2 = 40 \text{ voltios}.$$

a)
$$Q_1 = 8\mu \text{C y } V_1 = 4 \text{ voltios.}$$

b)
$$Q_1 = 8\mu \text{C y } V_1 = 2 \text{ voltios.}$$

c)
$$Q_1 = 1\mu \text{C y } V_1 = 2 \text{ voltios.}$$

d)
$$Q_1 = 4\mu \text{C y } V_1 = 2 \text{ voltios.}$$

