

Processes Parametrised by an Algebraic Theory

Todd Schmid¹ Wojciech Rozowski¹ Alexandra Silva² Jurriaan Rot³

¹University College London

²Cornell University

³Radboud University Nijmegen

11 April 2022

An evil coffee machine from our basement

How it should be

In our office

Our coffee machine is trace equivalent to the good one, but not bisimilar

Milner's Algebra of Regular Behaviours

Syntax:

$$e, e_i ::= 0 | v | e_1 + e_2 | ae | \mu v e$$

Operational model:

$$Q \rightarrow \mathcal{P}_{\omega}(V + A \times Q)$$

Denotational model: Behaviours - Equivalence classes of bisimilar trees Star fragment:

$$1\mapsto \underline{u}$$

$$a\mapsto au$$

$$e_1 + e_2 \mapsto e_1 + e_2$$

$$e_1e_2\mapsto e_1[e_2/\underline{u}]$$

$$1 \mapsto \underline{\textit{u}} \qquad \textit{a} \mapsto \textit{a}\underline{\textit{u}} \qquad \textit{e}_1 + \textit{e}_2 \mapsto \textit{e}_1 + \textit{e}_2 \qquad \textit{e}_1 \textit{e}_2 \mapsto \textit{e}_1[\textit{e}_2/\underline{\textit{u}}] \qquad \textit{e}^* \mapsto \mu \textit{v} \; (\textit{e}[\textit{v}/\underline{\textit{u}}] + \underline{\textit{u}})$$

GKAT

Syntax:

$$e, e_i := 0 \mid 1 \mid b \in At \mid a \in \Sigma \mid e_1 +_b e_2 \mid e_1 e_2 \mid e^{(b)}$$

Operational model:

$$Q \rightarrow (2 + A \times Q)^{At}$$

Recent work by Schmid, Kappe, Kozen and Silva provided new axiomatisation omitting right cancellation and left distributivity and provided semantics in terms of trees

Why are those two related?

GKAT:

$$Q \rightarrow (2 + A \times Q)^{At} \cong Q \rightarrow (1 + (1 + A \times Q))^{At}$$

Star fragment of ARB:

$$Q \rightarrow \mathcal{P}_{\omega}(\mathbf{1} + \mathbf{A} \times \mathbf{Q})$$

Both \mathcal{P}_{ω} and $(1 + Id)^{At}$ are **monads**.

Our generic framework

Syntax:

$$e, e_i ::= 0 | v | \sigma(e_1, ..., e_n) | ae | \mu v e$$

Semantics:

$$\varepsilon(v) = \eta^{M}(v) \qquad \qquad \varepsilon(\sigma(e_{1}, \dots, e_{n})) = \sigma(\varepsilon(e_{1}), \dots, \varepsilon(e_{n}))
\varepsilon(ae) = \eta^{M}((a, e)) \qquad \qquad \varepsilon(\mu v e) = \varepsilon(e)[\mu v e//v]$$

Operational model: coalgebras for the endofunctor

$$B_M = M(V + A \times Id)$$

where M is a monad presenting algebraic theory (S, E), which has designated constant element and operations of finite arity

Example 1 - distribution monad

$$e = \mu v (a_1 u +_{\frac{1}{2}} (a_2 v +_{\frac{1}{3}} w))$$
 is

Example 2 - convex powerset monad

$$e = \mu v \left((a_1 v + \frac{1}{3} a_2 w) + a_2 v \right)$$

Probabilistic GKAT?

Syntax:

$$e, e_i := 0 \mid 1 \mid b \mid p \in P \mid e_1 +_p e_2 \mid e_1 ?_b e_2 \mid e_1; e_2 \mid e^{(b?)} \mid e^{(p)}$$

Operational model:

$$Q \rightarrow \mathcal{D}_{\omega}(2 + A \times Q)^{At}$$

Denotational model:

- Partial functions: At⁺ $\rightarrow \mathcal{D}_{\omega}(2 + A)$
- Probabilistic Guarded Languages: $(At \cdot [0, 1] \cdot P)^* \cdot At \cdot [0, 1] \cup (At \cdot [0, 1] \cdot P)^\omega$

Questions?