Solution 6: Macroeconomic Indicators

Problem 1 (Gross Domestic Product)

(i) Output Method: GDP is the sum of market values of all final goods produced domestically in a given period of time (net of intermediate goods produced abroad or in previous periods).

$$\mathrm{GDP}_R = \underbrace{600}_{\mathrm{Market\ Value}} + \underbrace{400}_{\mathrm{Market\ Value}} = 1,000$$
 $\mathrm{GDP}_F = \underbrace{800}_{\mathrm{Market\ Value}} + \underbrace{400}_{\mathrm{Market\ Value}} = 1,200$
 $\mathrm{Market\ Value}_{\mathrm{of\ Coconuts}} = \underbrace{400}_{\mathrm{Market\ Value}} = 1,200$

(ii) Income Method: GDP is the sum of incomes from domestic production in a given period of time.

$$\begin{aligned} \text{GDP}_R &= \underbrace{200}_{\text{Capital Income}} + \underbrace{800}_{\text{Labor Income}} = 1,000 \\ \text{Capital Income}_{\text{of Robinson}} &+ \underbrace{100}_{\text{Capital Income}} + \underbrace{600}_{\text{Capital Income}} = 1,200 \end{aligned}$$

(iii) Expenditure Method: GDP is the sum of expenditures on final goods produced domestically in a given period of time (net of expenses for intermediate goods produced abroad or in previous periods).

$$\begin{aligned} \text{GDP}_R &= \underbrace{300 + 300}_{\text{Consumption of goods produced in R and F}} + \underbrace{400}_{\text{Investment of goods produced in R}} + \underbrace{300}_{\text{Exports to Imports from }F} = \underbrace{300 + 300}_{\text{Consumption of goods produced in F}} + \underbrace{200 + 400}_{\text{Investment of goods produced in F}} + \underbrace{300}_{\text{Exports to Imports from }R} = 1,200 \end{aligned}$$

Problems 2-4 (Price Level)

Base Period: 2020

	Nominal GDP	Real GDP	Cost of base-period consumer basket
2020	550,000	550,000	550,000
2021	687,500	550,000	687,500
2022	643,500	495,000	1,100,000

$$\label{eq:GDP-Deflator} \begin{aligned} \text{GDP-Deflator} &= \frac{\text{Nominal GDP}}{\text{Real GDP}} \end{aligned}$$

 $\label{eq:cpi} \text{CPI} = \frac{\text{Cost of base-period consumer basket at current prices}}{\text{Cost of base-period consumer basket at base-period prices}}$

Problem 2

Price Indices in 2021:

GDP-Deflator =
$$\frac{687,500}{550,000}$$
 = 1.25,
CPI = $\frac{687,500}{550,000}$ = 1.25.

 \Rightarrow (B) is correct.

Problem 3

Price Indices in 2022:

GDP-Deflator =
$$\frac{643,500}{495,000}$$
 = 1.3,
CPI = $\frac{1,100,000}{550,000}$ = 2.

 \Rightarrow (D) is correct.

Problem 4

Inflation rates between 2021 and 2022

based on GDP-Deflator:
$$\frac{1.3-1.25}{1.25}=0.04,$$
 based on CPI:
$$\frac{2-1.25}{1.25}=0.6.$$

 \Rightarrow (B) is correct.

Problems 5-6 (Unemployment)

The labor force participation rate is

$$e = \frac{L}{N} = \frac{E + U}{N}. (1)$$

The unemployment rate is

$$u = \frac{U}{L} = \frac{U}{E + U}. (2)$$

Problem 5

Rearranging (1) and substituting N = 70, U = 2.1, and e = 0.5 yields

$$E = e \cdot N - U \implies E = 0.5 \cdot 70 - 2.1 = 32.9.$$

 \Rightarrow (A) is correct.

Problem 6

Rearranging (2) and substituting U = 2.1 and u = 0.05 yields

$$L = \frac{U}{u} \implies L = \frac{2.1}{0.05} = 42.$$

Substituting L = 42 into (1) yields

$$e = \frac{42}{70} = 0.6.$$

 \Rightarrow (C) is correct.