云南大学 2015 至 2016 学年下学期软件学院 2015 级

《线性代数》期末考试(闭卷)试卷 A 卷

满分 100 分 考试时间: 120 分钟 任课教师: 张艳 张一凡 谢仲文

题号	_	_	=	四四	总分
得分					

得 分:

一、单项选择题(每小题2分,共20分) (请把答案写在横线上,否则不予计分。)

- 1.____ 2.___ 3.___ 4.___ 5.___ 6.___ 7.___ 8.___ 9.___ 10.
- 1. 设A,B为n阶矩阵,下列运算正确的是

A.
$$(AB)^k = A^k B^k$$
; B. $|-A| = -|A|$;

B.
$$|-A| = -|A|$$

C.
$$A^2 - B^2 = (A - B)(A + B)$$
;

- C. $A^2 B^2 = (A B)(A + B)$; D. 若 A 可逆, $k \neq 0$,则 $(kA)^{-1} = k^{-1}A^{-1}$.
- 2. 设矩阵 A 经过初等行变换变为矩阵 B ,则有

$$B. R(A) = R(B)$$

C.
$$R(A) > (B)$$

- A. R(A) < R(B) B. R(A) = R(B) C. R(A) > (B) D. 无法判定。
- 3. 矩阵 $A = \begin{pmatrix} 3 & -1 & 2 \\ 1 & 0 & -1 \\ -2 & 1 & 4 \end{pmatrix}$, A^* 是 A 的伴随矩阵,则 A^* 中位于第 1 行第 2 列的元素

- A. -6 B. 6 C. 2 D. -2
- 4. 设行列式 $\mathbf{D} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 3$, $\mathbf{D}_1 = \begin{vmatrix} a_{11} & 5a_{11} + 2a_{12} & a_{13} \\ a_{21} & 5a_{21} + 2a_{22} & a_{23} \\ a_{31} & 5a_{31} + 2a_{32} & a_{33} \end{vmatrix}$, 则 \mathbf{D}_1 的值为 A. -15 B. -6 C. 6 D. 15
- 5. 设向量组 α_1 , α_2 , α_3 , α_4 线性相关,则向量组中
 - A. 至少有一个向量可以表为其余向量的线性组合
 - B. 至少有两个向量可以表为其余向量的线性组合
 - C. 至少有三个向量可以表为其余向量的线性组合
 - D. 每一个向量都可以表为其余向量的线性组合

6. 设A是m×n矩阵,B是S×n矩阵,C是m×s矩阵,则下列运算有意义的是

A. AB B. BC C. AB^T D. AC^T

7. 设 A, B 均为 n 阶可逆矩阵,则下列各式中不正确的是

A.
$$(A+B)^T = A^T + B^T$$
 B. $(A+B)^{-1} = A^{-1} + B^{-1}$

B.
$$(A+B)^{-1} = A^{-1} + B^{-1}$$

C.
$$(AB)^{-1} = B^{-1}A^{-1}$$
 D. $(AB)^{T} = B^{T}A^{T}$

D.
$$(AB)^T = B^T A^T$$

8. 设 A 为 n 阶正交矩阵,则行列式 $|A^2|=$

A. -2 B. -1 C. 1 D. 2

9. n 阶方阵 A 可对角化的充分必要条件是

A. A 有 n 个不同的特征值 B. A 为实对称矩阵

C. A 有 n 个不同的特征向量 D. A 有 n 个线性无关的特征向量

10. 四元二次型 $f(x_1,x_2,x_3,x_4) = x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_1x_4$ 的秩为

A. 4 B. 3 C. 2 D. 1

得 分:

二、填空题 (每小题 2 分,共 10 分)

1. 设A是3阶方阵,且 | A | =-1,则 | 2A | =_____

2. 设矩阵 $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$,则行列式 $|A^TA| = ______$

4. 设A 是 4×5 矩阵, A 的秩 R(A)=2, 则齐次线性方程组 Ax=0 的基础解系中含有_____ 线性无关的解向量.

5. 二次型 $f(x_1,x_2,x_3) = 2x_1^2 + 3x_2^2 + 5x_3^2 + 2x_1x_2 - 2x_1x_3 + 8x_2x_3$ 的矩阵是

三、证明题 (每小题 10 分,共 20 分)

- 1. 设向量组 a_1 , a_2 线性无关,证明向量组 $\beta_1 = a_1 + a_2$, $\beta_2 = a_1 a_2$ 也线性无关。
- 2. 设 ξ_1,ξ_2 是矩阵 A 的属于特征值 λ 的特征向量,证明 $\xi_1+\xi_2$ 也是矩阵 A 属于特征值 λ 的特征向量。

得 分: 四、计算题(5小题,每小题10分,共50分)

- 1. 计算行列式 $D = \begin{bmatrix} a_1 & a_2 & a_3 & 1+a_4 \\ a_1 & a_2 & 1+a_3 & a_4 \\ a_1 & 1+a_2 & a_3 & a_4 \\ 1+a_1 & a_2 & a_3 & a_4 \end{bmatrix}$
- 2. $\mathfrak{P} A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}, \mathfrak{R} A^{-1}$
- $3.求方程组 \begin{cases} x_1 + x_2 + x_3 + 2x_4 = 0 \\ 2x_1 x_2 4x_3 + x_4 = 0 \end{cases}$ 的通解. $x_1 - x_3 + x_4 = 0$
- 4. 求向量组 $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 6 \\ 2 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} -2 \\ 4 \\ 5 \end{pmatrix}$ 的秩与一个极大线性无关组.
- 5. 求矩阵 $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 的特征值和对应的特征向量.