CONSIDERACIONES PARA RESOLVER LOS EJERCICIOS DE PASAJE DE MENSAJES SINCRÓNICO (PMS):

- Los canales son punto a punto y no deben declararse.
- No se puede usar la sentencia *empty* para saber si hay algún mensaje en un canal.
- Tanto el envío como la recepción de mensajes es bloqueante.
- Sintaxis de las sentencias de envío y recepción:

Envio: nombreProcesoReceptor!port (datos a enviar)

Recepción: nombreProcesoEmisor?port (datos a recibir)

El port (o etiqueta) puede no ir. Se utiliza para diferenciar los tipos de mensajes que se podrían comunicarse entre dos procesos.

- En la sentencia de comunicación de recepción se puede usar el comodín * si el origen es un proceso dentro de un arreglo de procesos. Ejemplo: Clientes[*]?port(datos).
- Sintaxis de la Comunicación guardada:

Guarda: (condición booleana); sentencia de recepción → sentencia a realizar

Si no se especifica la condición booleana se considera verdadera (la condición booleana sólo puede hacer referencia a variables locales al proceso).

Cada guarda tiene tres posibles estados:

Elegible: la condición booleana es verdadera y la sentencia de comunicación se puede resolver inmediatamente.

No elegible: la condición booleana es falsa.

Bloqueada: la condición booleana es verdadera y la sentencia de comunicación no se puede resolver inmediatamente.

Sólo se puede usar dentro de un *if* o un *do* guardado:

El *if* funciona de la siguiente manera: de todas las guardas *elegibles* se selecciona una en forma no determinística, se realiza la sentencia de comunicación correspondiente, y luego las acciones asociadas a esa guarda. Si todas las guardas tienen el estado de *no elegibles*, se sale sin hacer nada. Si no hay ninguna guarda elegible, pero algunas están en estado *bloqueado*, se queda esperando en el if hasta que alguna se vuelva elegible.

El *do* funciona de la siguiente manera: sigue iterando de la misma manera que el *if* hasta que todas las guardas hasta que todas las guardas sean *no elegibles*.

1. Suponga que existe un antivirus distribuido que se compone de R procesos robots Examinadores y 1 proceso Analizador. Los procesos Examinadores están buscando continuamente posibles sitios web infectados; cada vez que encuentran uno avisan la dirección y luego continúan buscando. El proceso Analizador se encarga de hacer todas las pruebas necesarias con cada uno de los sitios encontrados por los robots para determinar si están o no infectados.

- a) Analice el problema y defina qué procesos, recursos y comunicaciones serán necesarios/convenientes para resolver el problema.
- b) Implemente una solución con PMS.
- 2. En un laboratorio de genética veterinaria hay 3 empleados. El primero de ellos continuamente prepara las muestras de ADN; cada vez que termina, se la envía al segundo empleado y vuelve a su trabajo. El segundo empleado toma cada muestra de ADN preparada, arma el set de análisis que se deben realizar con ella y espera el resultado para archivarlo. Por último, el tercer empleado se encarga de realizar el análisis y devolverle el resultado al segundo empleado.
- 3. En un examen final hay N alumnos y P profesores. Cada alumno resuelve su examen, lo entrega y espera a que alguno de los profesores lo corrija y le indique la nota. Los profesores corrigen los exámenes respetando el orden en que los alumnos van entregando.
 - a) Considerando que P=1.
 - b) Considerando que P>1.
 - c) Idem b) pero considerando que los alumnos no comienzan a realizar su examen hasta que todos hayan llegado al aula.

Nota: maximizar la concurrencia y no generar demora innecesaria.

- 4. En una exposición aeronáutica hay un simulador de vuelo (que debe ser usado con exclusión mutua) y un empleado encargado de administrar su uso. Hay P personas que esperan a que el empleado lo deje acceder al simulador, lo usa por un rato y se retira. El empleado deja usar el simulador a las personas respetando el orden de llegada. Nota: cada persona usa sólo una vez el simulador.
- 5. En un estadio de fútbol hay una máquina expendedora de gaseosas que debe ser usada por E Espectadores de acuerdo al orden de llegada. Cuando el espectador accede a la máquina en su turno usa la máquina y luego se retira para dejar al siguiente. **Nota:** cada Espectador una sólo una vez la máquina.