Being Eve James Commons Diffie - Helewan What we know: g=7, p=97, $A=g^{x}$ mod p=53 $B=g^{y}$ mod p=92, should secret $=B^{x}$ mod $p=A^{y}$ mod pWe need to find X or Y. I will look for X and check my work by finding Y. Find X by running this python code: for χ in range(1,100)! if (7**1)%97 == 55: print(i) This found an x of 22 that works. This is the step that would have failed

Augusy, $X = 22 \implies 20evet = 92^{22} \mod 97 = 65$ Opcii. "A"

Not to brute boxce to find X.

if the numbers were larger because I

```
Doing the same steps for Y, I find
   Y=41 and the secret is again 65, confining
   I did things right.
  Bobs public Rey: (e=13, N=162991)
  all I need to do is decrypt the first number,
 then I will know I and can decrypt
 the rest.
 We know n=pq=162991. Now, since p and q are
prime, there is only one non-trivial solution. Since
the numbers are small enough, I can brute force it.
Here is the code I used for this approach.
Type "help", "copyright", "credits" or "license" for more information.
>>> n = 162991
>>> for p in range(2, 10000):
    if n \% p == 0: print(f'p = {p}, q = {n / p}')
p = 389, q = 419.0
p = 419, q = 389.0
So, p=389, 9=419.
Now, wolphran alpha has an RSA d calculator.
```

· la		0.4.4	+ ·	Λ	_	01	-0.			1,		4 1 .	G	0.1	
ON	J'	Ple	we,		con	yd i	Mas	Usi	e <i>j</i>	Che	lx	enda	E	celifi	lan
al	brit	1 1	m		rute	, 1	Olsa	oss	prosed L	6 .	low	t i	volp	lvan	
	,				1			1	,	()					
all	tha	W		2 9	rest.	U	t be	rud	d	= 125	1757				
1_	1.		1		•			,				a.d	L		
00	de	eryp	*	χ -	m	cypl	erte	xt,	U	90	M=	X	Moo	Ln.	
Her	e i	Ə	th.	Corde	A	len	tu	at:	U						
	c in c		- 0.		v										
[ext.appe	end((c**	d) % n)											
[>>> pla [17509,	24946,	8258, 2	28514, 1 802 259	1296, 25	5448, 25 56 2494	955, 27	424, 298 5 30561	300, 269 ¹	95, 8303 26670	30068	, 11808	, 26740, 21349	29808, 25888	29498,	12079, 3 11296, 16
	79, 259		,02, 23,	(1(-)	0, 2474	2, 2544	J, 30301	2,775	, 20070,	20771,	12004,	21547,	23000,	310/3, .	11270, 10
\sim		•	1		•										
$\bigcup \bigcup$	7 ,	· M	//	VX	•										
[>>> for	_			- 1											
0x4465 0x6172															
0x2042 0x6f62															
0x2c20															
0x6368 0x6563															
0x6b20 0x7468															
0x6973 0x206f						•	7/					~1	1		
0x7574						,	Jh	e Co	a	MAG	ans	L	LX	9	
0x2e20 0x6874)	1	_ /	٧.		V	- (_	
0x7470 0x733a						2	, 	lrı	tes	M		Dae	6		
0x2f2f 0x7777							1		-	- • ,			1		
0x772e							Alcor	ded	M	unh	er.				
0x7375 0x7276								•							
0x6569 0x6c6c															
0x616e						1	7	. 1	•						
0x6365 0x7761						K	um	Wy	1	, J	<i>t</i> .	0.740	1		
0x7463							/		fue	_		W C		09	
0x682e 0x696f						ΛΛ	0 مدم		ode	n	_	41			
0x2f20 0x5365						(7)	0 U	L	NUL	. H	7	July	1 90	1	
0x6520						4									
0x7961 0x2c20						10	uma	n s	rend	abli	, M	re {	per		
0x416c 0x6963															
0x6963 0x652e															

[>>> for p in plaintext:
[... print(chr(int(hex(p)[2:4], 16)), end='')
[... print(chr(int(hex(p)[4:], 16)), end='')
[...
Dear Bob, check this out, https://www.surveillancewatch.io/ See va. Alice.>>>

Decrypted message.

The part that would have been next to impossible to do with ligger numbers is finding p and q at the leginning. There is no known efficient way of fushing these numbers, even though the algorithm I used technially works.

Each number was everypted separately, Similar to ECB mode of operation. This means two character sequences that occur more than once result in the same number in ciphertext. For example, 120780 (corresponding to a comma and a space), shows up twice in ciphertext.