Module-1 Information Measures

Dr. Markkandan S

School of Electronics Engineering (SENSE)

Vellore Institute of Technology

Chennai

Outline

- Introduction to Information Theory
- Review of Probability Theory
- Self-Information and Average Information
- Mutual Information
- Entropy
- Marginal Entropy
- Joint Entropy and Conditional Entropy
- 8 Relationship between Entropy and Mutual Information
- Markov Statistical Model for Information Source
- Information Measures of Continuous Random Variables

Introduction to Information Theory

Introduction to Information Theory

- Information Theory, developed by Claude Shannon in 1948, is a mathematical framework for quantifying information, studying data compression, error correction, and cryptography.
- It deals with the fundamental limits on data compression and communication, providing tools to measure information content, uncertainty, and the relationships between variables.
- Key concepts include entropy, mutual information, channel capacity, and coding theory, with applications in communication systems, data science, and cryptography.
- Information Theory has profound implications in various fields, from telecommunications to neuroscience, shaping modern technologies and communication systems.

Review of Probability Theory

Review of Probability Theory

- Probability theory provides the foundation for Information Theory, describing the behavior of uncertain events and random variables.
- Random Variables (RVs) are variables whose values depend on the outcome of a random experiment.
- Probability Distributions describe the likelihood of different outcomes of a random variable.
- Expectation (E), also known as the mean, represents the average value of a random variable.
- Variance (Var) measures the dispersion of values around the mean.
- Covariance (*Cov*) measures the degree to which two random variables change together.

Review of Probability Theory

- Sample Space: The set of all possible outcomes of a random experiment, denoted by Ω .
- **Events**: Subsets of the sample space, denoted by A, B, C, \ldots
- Probability Axioms:
 - **1** Non-negativity: $P(A) \ge 0$ for all events A.
 - **2** Normalization: $P(\Omega) = 1$.
 - 3 Additivity: For mutually exclusive events A and B, $P(A \cup B) = P(A) + P(B)$.
- Probability Distributions:
 - Discrete: Assigns probabilities to individual outcomes.
 - Continuous: Described by probability density functions (PDFs).

Probability Distributions

Discrete Probability Distribution:

- Assigns probabilities to individual outcomes of a discrete random variable.
- Probability mass function (PMF): P(X = x) for each possible value x.
- Example: Coin toss, dice roll.

Continuous Probability Distribution:

- Describes probabilities over intervals for continuous random variables.
- Probability density function (PDF): f(x) such that

$$P(a \le X \le b) = \int_a^b f(x) dx.$$

• Example: Normal distribution, exponential distribution.

• Expectation and Variance:

- **Expectation**: Average value of a random variable, denoted by $\mathbb{E}[X]$.
- **Variance**: Measure of dispersion, denoted by Var[X].
- Calculation: $\mathbb{E}[X] = \sum_{x} x P(X = x)$ for discrete, $\mathbb{E}[X] = \int_{-\infty}^{\infty} xf(x) dx$ for continuous.

Conditional Probability and Bayes' Theorem

Conditional Probability:

- Probability of an event A given that another event B has occurred, denoted by P(A|B).
- Calculated as $P(A|B) = \frac{P(A \cap B)}{P(B)}$ if P(B) > 0.
- Example: Probability of rain given cloudy skies.

Bayes' Theorem:

- Relates conditional probabilities of events.
- States: $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$.
- Useful for updating beliefs based on new evidence.
- Widely used in statistics, machine learning, and data analysis.

Self-Information and Average Information

Self-Information and Average Information

- **Self-Information** (I(x)) measures the amount of surprise or uncertainty associated with a specific outcome x of a random variable X.
- It is defined as:

$$I(x) = -\log(P(x))$$

where P(x) is the probability of occurrence of outcome x.

- For example, if the probability of raining tomorrow is 0.2, then the self-information associated with this event is $-\log(0.2)\approx 2.32$ bits.
- Average Information (H(X)) represents the expected amount of information conveyed by a random variable X.
- It is calculated as the expected value of self-information over all possible outcomes:

$$H(X) = E[I(x)] = -\sum_{i=1}^{n} P(x_i) \log(P(x_i))$$

where x_i are the possible outcomes of X.

Average information provides a measure of the uncertainty Measures

Mutual Information

Mutual Information

- **Definition**: Mutual information measures the amount of information that one random variable contains about another random variable.
- Formula: For two discrete random variables X and Y, mutual information I(X;Y) is given by:

$$I(X;Y) = \sum_{x_i} \sum_{y_j} P(X = x_i, Y = y_j) \log \left(\frac{P(X = x_i, Y = y_j)}{P(X = x_i)P(Y = y_j)} \right)$$

• Properties:

- Symmetric: I(X; Y) = I(Y; X)
- Non-negative: $I(X; Y) \ge 0$
- Zero mutual information implies independence

Mutual Information

 For continuous random variables, the summation is replaced by integration:

$$I(X;Y) = \iint f(x,y) \log \left(\frac{f(x,y)}{f_X(x)f_Y(y)}\right) dx dy$$

 Mutual information provides insights into the statistical dependence between variables and is used in various applications such as feature selection and clustering.

Example Problem: Mutual Information

Consider two random variables X and Y with a joint probability distribution given by:

$$P(X,Y) = \begin{cases} \frac{1}{4}, & \text{for } X = 0 \text{ and } Y = 0, \\ \frac{1}{4}, & \text{for } X = 1 \text{ and } Y = 0, \\ \frac{1}{4}, & \text{for } X = 0 \text{ and } Y = 1, \\ \frac{1}{4}, & \text{for } X = 1 \text{ and } Y = 1. \end{cases}$$

Calculate the mutual information I(X; Y).

Solution:

$$I(X;Y) = -\sum_{x,y} P(x,y) \log \left(\frac{P(x,y)}{P(x)P(y)} \right)$$

$$I(X;Y) = -\left(\frac{1}{4}\log\left(\frac{1}{4}\right) + \frac{1}{4}\log\left(\frac{1}{4}\right) + \frac{1}{4}\log\left(\frac{1}{4}\right) + \frac{1}{4}\log\left(\frac{1}{4}\right) \right)$$

$$I(X;Y) = -4 \times \frac{1}{4}\log\left(\frac{1}{4}\right) = -\log\left(\frac{1}{4}\right) = 2 \text{ bits}$$

$$I(X;Y) = -4 \times \frac{1}{4}\log\left(\frac{1}{4}\right) = -\log\left(\frac{1}{4}\right) = 2 \text{ bits}$$

Entropy

Entropy

- Definition: Entropy is a measure of uncertainty or randomness in a probability distribution.
- It is defined as the average amount of information generated by a random variable:
- **Shannon's Entropy**: For a discrete random variable X with probability mass function $P(X = x_i)$, Shannon's entropy is defined as:

$$H(X) = -\sum_{i} P(X = x_i) \log P(X = x_i)$$

where $P(x_i)$ is the probability of the *i*-th outcome of X.

• Properties:

• Non-negativity: $H(X) \ge 0$

• Maximum entropy: Uniform distribution

Minimum entropy: Deterministic distribution

Entropy

- **Entropy** (H(X)) is a fundamental concept in Information Theory, quantifying the uncertainty or randomness associated with a random variable X.
- Entropy is measured in bits for discrete random variables and nats or bits for continuous random variables.
- High entropy implies high uncertainty, while low entropy indicates low uncertainty or high predictability.
- For example, a fair coin toss has maximum entropy (H(X) = 1 bit), indicating maximum uncertainty, whereas a biased coin has lower entropy, reflecting higher predictability.
- Entropy plays a crucial role in various applications, including data compression, cryptography, and communication systems.

Example Problems and Solutions

Example Problem 1:

Suppose we have a random variable X representing the outcome of rolling a fair six-sided die. Calculate the self-information and average information associated with each outcome.

Solution:

Given that the die is fair, each outcome has a probability of $P(x_i) = \frac{1}{6}$.

1. Self-Information:

$$I(x_i) = -\log\left(\frac{1}{6}\right) = \log(6) \approx 2.58 \text{ bits}$$

2. Average Information:

$$H(X) = -\sum_{i=1}^{6} \frac{1}{6} \log \left(\frac{1}{6} \right) = \log(6) \approx 2.58 \text{ bits}$$

Example Problems and Solutions

Example Problem 2:

Consider a biased coin with a probability of heads (H) being 0.8 and tails (T) being 0.2. Calculate the entropy of the coin.

Solution:

Given P(H) = 0.8 and P(T) = 0.2.

Entropy is given by:

$$H(X) = -P(H)\log(P(H)) - P(T)\log(P(T))$$

$$H(X) = -(0.8)\log(0.8) - (0.2)\log(0.2)$$

$$H(X) \approx -(0.8)(-0.322) - (0.2)(-1.609)$$

$$H(X) \approx 0.257 + 0.322$$

$$H(X) \approx 0.579 \text{ bits}$$

Example Problems and Solutions

Example Problem 3:

Consider a continuous random variable X with a probability density function (pdf) given by $f(x) = \frac{1}{\pi(1+x^2)}$ for $-\infty < x < \infty$. Calculate the entropy of X.

Solution:

The entropy for a continuous random variable is given by:

$$H(X) = -\int_{-\infty}^{\infty} f(x) \log(f(x)) dx$$

Calculating the integral may involve more advanced techniques such as substitution or integration by parts, making it a challenging problem.

Example Problems and Solutions (continued)

Example Problem 4:

A communication channel has three possible symbols: A, B, and C. The probabilities of transmitting these symbols are P(A) = 0.4, P(B) = 0.3, and P(C) = 0.3, respectively. Calculate the entropy of the communication channel.

Solution:

Given probabilities P(A) = 0.4, P(B) = 0.3, and P(C) = 0.3. The entropy is calculated as:

$$H(X) = -\sum_{i=1}^{3} P(x_i) \log(P(x_i))$$

$$H(X) = -(0.4) \log(0.4) - (0.3) \log(0.3) - (0.3) \log(0.3)$$

$$H(X) \approx -(0.4)(-0.699) - (0.3)(-1.204) - (0.3)(-1.204)$$

$$H(X) \approx 0.279 + 0.361 + 0.361$$

$$H(X) \approx 1.001 \text{ bits}$$

Example Problems and Solutions (continued)

Example Problem 5:

A continuous random variable X has a uniform distribution on the interval [0,1]. Calculate the entropy of X.

Solution:

Given that X follows a uniform distribution on [0,1], the probability density function is f(x) = 1 for $0 \le x \le 1$.

The entropy for a continuous random variable is given by:

$$H(X) = -\int_0^1 f(x) \log(f(x)) dx$$

$$H(X) = -\int_0^1 1 \cdot \log(1) dx$$

$$H(X) = -\int_0^1 0 dx$$

$$H(X) = 0$$

The entropy of X is 0 bits, indicating no uncertainty as X is completely determined.

Dr. Markkandan S

Module-1 Information Measures

Marginal Entropy

Marginal Entropy

- Marginal Entropy H(X) represents the average uncertainty of a single random variable without considering any other variables.
- For a discrete random variable X with joint probability distribution P(X,Y), the marginal entropy is computed by summing the entropy over all possible values of X:

$$H(X) = -\sum_{x} P(x) \sum_{y} P(y|x) \log P(y|x)$$

• For a continuous random variable X with joint probability density function f(x, y), the marginal entropy is computed by integrating over all possible values of X:

$$H(X) = -\int_{X} \int_{Y} f(x, y) \log f(x, y) \, dy \, dx$$

 Marginal entropy provides insights into the uncertainty associated with individual variables, disregarding their relationship with other variables.

Example Problem: Marginal Entropy

Example Problem:

Consider two random variables X and Y with a joint probability distribution given by:

$$P(X,Y) = \begin{cases} \frac{1}{4}, & \text{for } X = 0 \text{ and } Y = 0, \\ \frac{1}{4}, & \text{for } X = 1 \text{ and } Y = 0, \\ \frac{1}{4}, & \text{for } X = 0 \text{ and } Y = 1, \\ \frac{1}{4}, & \text{for } X = 1 \text{ and } Y = 1. \end{cases}$$

Calculate the marginal entropy H(X).

Example Problem: Marginal Entropy (Solution)

To calculate the marginal entropy H(X), we need to sum over all possible values of Y and compute the entropy for each value of X. For X=0:

$$P(X = 0) = P(X = 0, Y = 0) + P(X = 0, Y = 1) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

For X=1:

$$P(X = 1) = P(X = 1, Y = 0) + P(X = 1, Y = 1) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

Now, we can calculate the entropy for each value of X:

$$H(X = 0) = -\frac{1}{2}\log\left(\frac{1}{2}\right) - \frac{1}{2}\log\left(\frac{1}{2}\right) = 1$$
 bit

$$H(X = 1) = -\frac{1}{2}\log\left(\frac{1}{2}\right) - \frac{1}{2}\log\left(\frac{1}{2}\right) = 1$$
 bit

Finally, the marginal entropy H(X) is the sum of the entropies for each value of X:

$$H(X) = 1 + 1 = 2$$
 bits Module-1 Information Measure

Joint Entropy and Conditional Entropy

Joint Entropy and Conditional Entropy

- **Joint Entropy** H(X, Y) measures the uncertainty associated with two random variables X and Y considered together.
- It is calculated similarly to marginal entropy but with the joint probability distribution or density function.
- Conditional Entropy H(Y|X) measures the average uncertainty of Y given the value of X.
- It is calculated as the difference between the joint entropy and the marginal entropy of *X*:

$$H(Y|X) = H(X,Y) - H(X)$$

- Conditional entropy quantifies the remaining uncertainty in Y after observing X.
- These measures play a crucial role in understanding the relationship and dependencies between random variables.

Joint Entropy

- **Joint Entropy** H(X, Y) measures the uncertainty associated with two random variables X and Y considered together.
- It is calculated similarly to marginal entropy but with the joint probability distribution or density function.

$$H(X,Y) = -\sum_{x} \sum_{y} P(x,y) \log(P(x,y))$$

(for discrete case)

$$H(X,Y) = -\int_X \int_Y f(x,y) \log f(x,y) \, dy \, dx$$

(for continuous case)

• Joint entropy provides insights into the total uncertainty associated with the joint behavior of two variables.

Example Problems: Joint Entropy

Consider two random variables X and Y with a joint probability distribution given by:

$$P(X,Y) = \begin{cases} \frac{1}{4}, & \text{for } X = 0 \text{ and } Y = 0, \\ \frac{1}{4}, & \text{for } X = 1 \text{ and } Y = 0, \\ \frac{1}{4}, & \text{for } X = 0 \text{ and } Y = 1, \\ \frac{1}{4}, & \text{for } X = 1 \text{ and } Y = 1. \end{cases}$$

Calculate the joint entropy H(X, Y).

Solution:

The joint entropy H(X, Y) is calculated using the formula:

$$H(X,Y) = -\sum_{x} \sum_{y} P(x,y) \log(P(x,y))$$

$$H(X,Y) = -\left(\frac{1}{4}\log\left(\frac{1}{4}\right) + \frac{1}{4}\log\left(\frac{1}{4}\right) + \frac{1}{4}\log$$

Conditional Entropy

- Conditional Entropy H(Y|X) measures the average uncertainty of Y given the value of X.
- It is calculated as the difference between the joint entropy and the marginal entropy of X:

$$H(Y|X) = H(X,Y) - H(X)$$

- Conditional entropy quantifies the remaining uncertainty in Y after observing X.
- These measures play a crucial role in understanding the relationships and dependencies between random variables.

Example Problems: Conditional Entropy

Example Problem:

Consider two random variables X and Y with a joint probability distribution given by:

$$P(X,Y) = \begin{cases} \frac{1}{4}, & \text{for } X = 0 \text{ and } Y = 0, \\ \frac{1}{4}, & \text{for } X = 1 \text{ and } Y = 0, \\ \frac{1}{4}, & \text{for } X = 0 \text{ and } Y = 1, \\ \frac{1}{4}, & \text{for } X = 1 \text{ and } Y = 1. \end{cases}$$

Calculate the conditional entropy H(Y|X).

Solution:

To calculate H(Y|X), we need to find H(X,Y) and H(X) first. From previous slides, H(X)=2 bits.

$$H(Y|X) = H(X, Y) - H(X) = 2 - 2 = 0$$
 bits

Relationship between Entropy and Mutual Information

Relationship between Entropy and Mutual Information

• Entropy and Mutual Information:

- Entropy measures the average uncertainty in a single random variable.
- Mutual information measures the amount of information shared between two random variables.

Connection:

• Mutual information I(X; Y) between X and Y can be expressed in terms of their entropies as:

$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

Interpretation:

Mutual information quantifies the reduction in uncertainty about one variable due to the knowledge of the other variable.

Markov Statistical Model for Information Source

Markov Statistical Model for Information Source

Markov Chain:

- A stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.
- Characterized by a transition probability matrix P, where P_{ij} represents the probability of transitioning from state i to state j.

Markov Source Model:

- Extension of the Markov chain concept to information theory.
- Each symbol emitted by the source depends only on the previous symbol.
- Provides a way to model correlated data sources.

Markov Process

A discrete stochastic process $X_1, X_2, ...$ is said to be Markov Chain or a Markov Process if, for n=1,2,...

$$P(X_{n+1} = x_{n+1} | X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_1 = x_1) = P(X_{n+1} = x_{n+1} | X_n = x_n)$$

for all $x_1, x_2, ... x_n, x_{n+1} \in X$.

The probability density function of a Markov process can be written as

$$p(x_1, x_2, ... x_n) = p(x_1)p(x_2|x_1)p(x_3|x_2)...p(x_n|x_{n-1})$$

Entropy Rate

The Entropy Rate of a stochastic process X is given by

$$H(X) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots X_n)$$

provided the limit exists.

Example: Two-State Markov Chain

Consider a two-state Markov chain with a probability transition matrix

$$P = \begin{bmatrix} 1 - p_1 & p_1 \\ p_2 & 1 - p_2 \end{bmatrix}$$

Fig. 1.18 The state transition graph of a two-state Markov chain.

For stationary distribution, the net probability distribution across any cut set in the state transition graph should be zero. Let α and β be the stationary probabilities of the two states. Thus, the stationary distribution is given by

$$\alpha = \frac{p_2}{p_1 + p_2}$$
 and $\beta = \frac{p_1}{p_1 + p_2}$ (1.85)

Note that $\alpha + \beta = 1$. The entropy of the state X_n at time n will be

$$H(X_n) = H\left(\frac{p_2}{p_1 + p_2}, \frac{p_1}{p_1 + p_2}\right) = H(\alpha, \beta)$$
 (1.86)

The entropy rate of this two-state Markov chain is given by

$$H(X) = H(X_2 \mid X_1) = \frac{p_2}{p_1 + p_2} H(p_1) + \frac{p_1}{p_1 + p_2} H(p_2)$$
 (1.87)

Entropy and Information Rate of Markov Source

- Markov Source is a type of information source where the probability of generating a symbol depends only on the previous symbol or symbols.
- The entropy *H* of the Markov source is given by:

$$H = -\sum_{i} \pi_{i} \sum_{i,j} P_{ij} \log P_{ij}$$

where p_i is the transition probability of symbol i. π_i is stationary distribution

• The **information rate** of a Markov source is the average rate of information production and is given by:

$$R = H(X)/T$$

where T is the time interval.

Example Problem: Markov Source Model

Example Problem:

Consider a binary information source with the following transition probabilities:

$$P = \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix}$$

Calculate the entropy H of the Markov source.

Solution:

The stationary distribution π of the Markov chain can be obtained by solving $\pi P = \pi$. Solving the equations, we get $\pi = \begin{pmatrix} 0.5714 & 0.4286 \end{pmatrix}$. The entropy H of the Markov source is given by:

$$H = -\sum_{i} \pi_{i} \sum_{i,i} P_{ij} \log P_{ij}$$

Substituting the values, we get:

$$H = -(0.5714 \times 0.7 \log 0.7 + 0.5714 \times 0.3 \log 0.3 + 0.4286 \times 0.4 \log 0.4 + 0$$

Example Problem: Markov Source Model

Example Problem:

Consider a binary Markov source with transition probabilities P(0|0) = 0.7, P(1|0) = 0.3, P(0|1) = 0.4, and P(1|1) = 0.6. Find the entropy of the source.

Solution:

To find the entropy of the Markov source, we first need to determine the stationary distribution π of the Markov chain. Then, we can use the entropy formula to calculate the entropy.

The stationary distribution π satisfies the equation $\pi = \pi P$, where P is the transition probability matrix. we find that $\pi = (0.5714, 0.4286)$. The entropy of the Markov source is then given by:

$$H(X) = -\sum_{i} \pi_{i} \sum_{j} P(i|j) \log_{2} P(i|j)$$

$$= -(0.5714 \cdot 0.7 \log_{2} 0.7 + 0.5714 \cdot 0.3 \log_{2} 0.3 + 0.4286 \cdot 0.4 \log_{2} 0.4 + 0.4286 \cdot 0.6 \log_{2} 0.6)$$

Constructing the Transition Probability Matrix

Given Probabilities:

- P(0-0) = 0.7
- P(1-0) = 0.3
- P(0-1) = 0.4
- P(1-1) = 0.6

Matrix Structure:

$$P = \begin{pmatrix} P_{00} & P_{01} \\ P_{10} & P_{11} \end{pmatrix}$$

Resulting Matrix:

$$P = \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix}$$

Properties:

- Each row sums to 1
- P_ij is probability of transitioning from state i to j
 - Describes Markov chain behavior

Usage:

- Find stationary distribution
- Calculate entropy
- Analyze long-term behavior

Example Problem: Entropy and Information Rate

Consider a Markov source with two symbols A and B where P(A|B)=0.3 and P(B|A)=0.4. The initial symbol A is chosen with probability 0.5 and B with probability 0.5. Calculate the entropy H(X) and information rate R. Solution:

First, we calculate the stationary probabilities $\pi(A)$ and $\pi(B)$ for the Markov source. Let $\pi(A) = p$ and $\pi(B) = 1 - p$. Using the equilibrium condition:

$$\pi(A) = P(A|A)\pi(A) + P(A|B)\pi(B)$$

$$\pi(B) = P(B|B)\pi(B) + P(B|A)\pi(A)$$

Given P(A|A) = 0.6 and P(B|B) = 0.7:

$$p = 0.6p + 0.3(1 - p)$$

$$p = 0.6p + 0.3 - 0.3p$$

$$p - 0.3p = 0.3$$

$$0.7p = 0.3$$

$$p = \frac{3}{7}$$

$$\pi(A) = \frac{3}{7}, \quad \pi(B) = \frac{4}{7}$$

Now, we calculate the entropy H(X):

$$H(X) = -[\pi(A)P(A|B)\log P(A|B) + \pi(B)P(B|A)\log P(B|A) + \pi(A)P(A|A)\log P(A|A) + \pi(B)P(B|B)\log P(B|B)]$$

Substituting the values, we get:

$$H(X) = -\left[\frac{4}{7} \times 0.3 \log_2 0.3 + \frac{3}{7} \times 0.4 \log_2 0.4 + \frac{3}{7} \times 0.6 \log_2 0.6 + \frac{4}{7} \times 0.7 \log_2 0.7\right]$$

pprox 0.9177 bits per symbol

Next, we calculate the information rate R:

Information Measures of Continuous Random Variables

Entropy for Continuous Random Variables

Definition:

- Extension of Shannon's entropy to continuous probability distributions.
- Defined using probability density functions (PDFs) instead of probability mass functions (PMFs).

• Formula:

• Entropy H(X) for a continuous random variable X with PDF f(x) is

$$H(X) = -\int_{-\infty}^{\infty} f(x) \log f(x) dx$$

Mutual Information for Continuous Random Variables

Definition:

- Extension of mutual information to continuous random variables.
- Similar formula as for discrete random variables, but integrals are used instead of summations.

Formula:

 Mutual information I(X; Y) between continuous random variables X and Y with PDFs f(x) and g(y) is

$$I(X;Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \log \left(\frac{f(x,y)}{f(x)f(y)} \right) dx dy$$

Example Problem: Entropy for Continuous Random Variable

Example Problem:

Let X be a continuous random variable with PDF, Calculate the entropy H(X) of X.

$$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}, & \text{for } -\infty < x < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

Solution:

$$H(X) = -\int_{-\infty}^{\infty} f(x) \log f(x) dx$$

Substituting the given PDF, we have:

$$\begin{split} H(X) &= -\int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \right) \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \right) \, dx \\ &= -\int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \right) \left[\log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) + \log \left(e^{-\frac{x^2}{2\sigma^2}} \right) \right] \, dx \\ &= -\int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \right) \left[-\frac{1}{2} \log(2\pi\sigma^2) - \frac{x^2}{2\sigma^2} \right] \, dx \\ &= \frac{1}{2} \log(2\pi\sigma^2) \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \right) \, dx + \frac{1}{2\sigma^2} \int_{-\infty}^{\infty} x^2 \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \right) \, dx \\ &= \frac{1}{2} \log(2\pi\sigma^2) \cdot 1 + \frac{1}{2\sigma^2} \cdot \sigma^2 = \frac{1}{2} \log(2\pi\sigma^2) + \frac{1}{2} \int_{-\infty}^{\infty} x^2 \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \right) \, dx \end{split}$$

Conditional Entropy for Continuous Random Variables

Definition:

- Conditional entropy measures the average uncertainty of a random variable given the value of another random variable.
- It quantifies the remaining uncertainty about one variable after observing the other variable.

Formula:

• Conditional entropy H(Y|X) for continuous random variables X and Y with joint PDF f(x, y) and marginal PDF f(x) is given by:

$$H(Y|X) = -\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \log \left(\frac{f(x, y)}{f(x)}\right) dx dy$$

Interpretation:

- Conditional entropy measures the average uncertainty in Y given the value of X.
- It is a measure of the remaining uncertainty in Y after X has been observed.

Example Problem: Mutual Information for Continuous Random Variables

Example Problem:

Let X and Y be continuous random variables with joint PDF:

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}\exp\left(-\frac{1}{2(1-\rho^2)}\left[\frac{x^2}{\sigma_X^2} + \frac{y^2}{\sigma_Y^2} - \frac{2\rho xy}{\sigma_X\sigma_Y}\right]\right)$$

Calculate the mutual information I(X; Y) between X and Y.

Solution:

The mutual information I(X; Y) for continuous random variables X and Y with joint PDF f(x, y), and marginal PDFs f(x) and g(y) is given by:

$$I(X;Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \log \left(\frac{f(x,y)}{f(x)f(y)} \right) dx dy$$

The solution involves numerical evaluation, and for jointly Gaussian distributions, the mutual information can be simplified:

$$I(X;Y) = -\frac{1}{2}\log(1-\rho^2)$$

where ρ is the correlation coefficient between X and Y.

Example Problem: Information Measures

Let X and Y be continuous random variables with joint PDF $f(x,y) = 2e^{-x-y}$ for $0 < x < \infty$ and $0 < y < \infty$. Calculate the mutual information I(X;Y). Solution:

The marginal PDFs are given by:

$$f_X(x) = \int_0^\infty f(x, y) \, dy = \int_0^\infty 2e^{-x-y} \, dy = 2e^{-x} \int_0^\infty e^{-y} \, dy = 2e^{-x}$$
$$f_Y(y) = \int_0^\infty f(x, y) \, dx = \int_0^\infty 2e^{-x-y} \, dx = 2e^{-y} \int_0^\infty e^{-x} \, dx = 2e^{-y}$$

Thus, the mutual information is:

$$I(X;Y) = \iint f(x,y) \log \left(\frac{f(x,y)}{f_X(x)f_Y(y)} \right) dx dy = \iint 2e^{-x-y} \log \left(\frac{2e^{-x-y}}{(2e^{-x})(2e^{-y})} \right) dx dy$$

$$= \iint 2e^{-x-y} \log \left(\frac{2e^{-x-y}}{2e^{-x} \cdot 2e^{-y}} \right) dx dy = \iint 2e^{-x-y} \log \left(\frac{2e^{-x-y}}{4e^{-x-y}} \right) dx dy$$

$$= \iint 2e^{-x-y} \log \left(\frac{1}{2} \right) dx dy = \iint 2e^{-x-y} (-1) dx dy = -2 \iint e^{-x-y} dx dy$$

We split the double integral into two single integrals:

$$-2\int_0^\infty \int_0^\infty e^{-x-y} dx dy = -2\left(\int_0^\infty e^{-x} dx\right) \left(\int_0^\infty e^{-y} dy\right)$$
$$\int_0^\infty e^{-x} dx = \left[-e^{-x}\right]_0^\infty = 1$$
$$\int_0^\infty e^{-y} dy = \left[-e^{-y}\right]_0^\infty = 1$$

Relative Entropy (Kullback-Leibler Divergence)

Definition:

- Relative entropy, also known as Kullback-Leibler (KL) divergence, measures the difference between two probability distributions.
- It quantifies the information lost when one distribution is used to approximate another.

• Formula:

• Relative entropy $D_{KL}(P||Q)$ between probability distributions P and Q is given by:

$$D_{\mathsf{KL}}(P||Q) = \sum_{i} P(i) \log \left(\frac{P(i)}{Q(i)}\right)$$

for discrete distributions, and:

$$D_{\mathsf{KL}}(P||Q) = \int_{-\infty}^{\infty} p(x) \log \left(\frac{p(x)}{q(x)}\right) dx$$

for continuous distributions.

Properties of Relative Entropy

Non-negativity:

- Relative entropy $D_{KL}(P||Q)$ is always non-negative.
- $D_{\mathsf{KL}}(P||Q) \geq 0$ for all probability distributions P and Q.
- The minimum value of $D_{KL}(P||Q)$ is 0, attained if and only if P=Q.

Asymmetry:

- Relative entropy is not symmetric: $D_{KL}(P||Q) \neq D_{KL}(Q||P)$ in general.
- This property indicates that the divergence between P and Q may not be the same as the divergence between Q and P.

Example Problem: Relative Entropy for Discrete Distributions

Let P and Q be two discrete probability distributions defined as follows:

$$P = \left\{ \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right\}, \quad Q = \left\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{4} \right\}$$

Calculate the relative entropy $D_{\mathsf{KL}}(P \| Q)$.

Solution:

The relative entropy $D_{KL}(P||Q)$ between two discrete distributions P and Q is given by:

$$D_{\mathsf{KL}}(P||Q) = \sum_{i} P(i) \log_2 \left(\frac{P(i)}{Q(i)} \right)$$

Substituting the given distributions, we have:

$$D_{\mathsf{KL}}(P \| \, Q) = \frac{1}{3} \log_2 \left(\frac{1/3}{1/2} \right) + \frac{1}{3} \log_2 \left(\frac{1/3}{1/4} \right) + \frac{1}{3} \log_2 \left(\frac{1/3}{1/4} \right)$$

Calculating each term separately:

$$\begin{split} &\frac{1}{3}\log_2\left(\frac{1/3}{1/2}\right) = \frac{1}{3}\log_2\left(\frac{2}{3}\right) \approx \frac{1}{3}(-0.58496) = -0.19499 \\ &\frac{1}{3}\log_2\left(\frac{1/3}{1/4}\right) = \frac{1}{3}\log_2\left(\frac{4}{3}\right) \approx \frac{1}{3}(0.41504) = 0.13835 \\ &\frac{1}{3}\log_2\left(\frac{1/3}{1/4}\right) = \frac{1}{3}\log_2\left(\frac{4}{3}\right) \approx \frac{1}{3}(0.41504) = 0.13835 \end{split}$$

Summing these values:

 $D_{\text{KI}}(P||Q) = -0.19499 + 0.13835 + 0.13835 \approx 0.08171$

Example: Relative Entropy-Continuous Distributions

Let P(x) and Q(x) be two continuous probability density functions (PDFs) defined as follows, Calculate the relative entropy

$$P(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, \quad Q(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}$$

Solution:

The relative entropy $D_{KL}(P||Q)$ between two continuous distributions P(x) and Q(x) is given by:

$$D_{\mathsf{KL}}(P||Q) = \int_{-\infty}^{\infty} P(x) \log \left(\frac{P(x)}{Q(x)}\right) dx$$

$$D_{\mathsf{KL}}(P||Q) = \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \right) \log \left(\frac{\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}}{\frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{x^2}{2\sigma^2}}} \right) dx$$

Simplifying the logarithm term:

$$\frac{\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}}{\frac{1}{\sqrt{2\pi^2}}e^{-\frac{x^2}{2\sigma^2}}} = \frac{1}{\sqrt{\sigma^2}}e^{\frac{x^2}{2\sigma^2} - \frac{x^2}{2}} = \frac{1}{\sigma}e^{\frac{x^2}{2}\left(\frac{1}{\sigma^2} - 1\right)}$$

So the integral becomes:

$$D_{KL}(P||Q) = \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\right) \left(\log\left(\frac{1}{\sigma}\right) + \log\left(e^{\frac{x^2}{2}\left(\frac{1}{\sigma^2} - 1\right)}\right)\right) dx$$
$$= \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\right) \left(-\log(\sigma) + \frac{x^2}{2}\left(\frac{1}{\sigma^2} - 1\right)\right) dx$$

Example: Relative Entropy-Continuous Distributions

Splitting the integral, we get:

$$D_{\mathsf{KL}}(P\|Q) = -\log(\sigma) \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}\right) dx + \frac{1}{2} \left(\frac{1}{\sigma^2} - 1\right) \int_{-\infty}^{\infty} x^2 \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}\right) dx$$

The first integral evaluates to 1 because the integral of a PDF over its entire range is 1:

$$\int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \right) \, dx = 1$$

The second integral is a known result for the Gaussian distribution:

$$\int_{-\infty}^{\infty} x^2 \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \right) dx = 1$$

Therefore:

$$D_{\mathsf{KL}}(P||Q) = -\log(\sigma) + \frac{1}{2}\left(\frac{1}{\sigma^2} - 1\right)$$

Simplifying further:

$$D_{\mathsf{KL}}(P||Q) = -\log(\sigma) + \frac{1}{2\sigma^2} - \frac{1}{2}$$

Hence, the relative entropy is:

$$D_{\mathsf{KL}}(P||Q) = \log(\sigma) + \frac{1}{2} - \frac{1}{2\sigma^2}$$

Information Theory in Communication Systems

Overview:

- Information theory plays a crucial role in the design and analysis of communication systems.
- It provides tools to quantify and optimize the transmission of information over noisy channels.

Applications:

- Error-correcting codes: Information theory guides the design of efficient codes that can detect and correct errors during transmission.
- Channel capacity: Information theory helps determine the maximum rate at which information can be reliably transmitted over a communication channel.
- Source coding: It addresses the problem of efficiently representing information for transmission or storage.

Entropy Coding

Definition:

- Entropy coding is a technique used in information theory for lossless data compression.
- It exploits the statistical properties of the source data to assign shorter codes to more frequent symbols and longer codes to less frequent symbols.

• Example Algorithms:

- Huffman coding: A widely used entropy coding technique that constructs prefix codes based on the probability of symbols.
- Arithmetic coding: An alternative to Huffman coding that represents a message as a single floating-point number in the interval [0, 1].

Performance:

- Entropy coding achieves compression efficiency close to the entropy of the source data.
- It is widely used in data compression applications such as image and video compression, file compression, and communication systems