Perspective Projection

CS 418: Interactive Computer Graphics
Professor Eric Shaffer

Linear

Perspective Projection

Perception relies on shape constancy

- Real world objects do not resize
- Change in size due to depth

Closer objects larger

Farther objects smaller

Gustave Caillebotte - Paris Street, Rainy Day Art Institute of Chicago

A Change Of Scenery by Rob Gonsalves

Perspective Distortion

Orthographic

Perspective Projection

- Brain depends on shape constancy
 - Real world objects do not resize
 - Change in size due to depth
- Closer objects larger
- Farther objects smaller

How large, how small?

More Durer, swiped from Fredo Durand's Art of Depiction

The two triangles are *similar* (two angles are obviously congruent)

This means corresponding sides are in the same proportions

$$y_{\text{clip}} = d \frac{y_{\text{view}}}{-z_{\text{view}}} = \frac{y_{\text{view}}}{-z_{\text{view}}/d}$$

Same process derives the projection for the x coordinate.

What is z_{clip}?

$$x_{clip} = \frac{x_{view}}{-z_{view}/d}$$

- 1. This transformation is not invertible
- 2. It does preserve lines (except when?)
- It is not an affine transformation

 (it does not preserve ratios of distances)

Distance

Perspective Distortion and Distance

To change degree of perspective distortion, need to change distance from eye to scene,

...by moving scene closer or farther to eye,

... along z axis in viewing coordinates

