《离散数学》

2019-2020 学年第二学期期末考试 A 卷
一、选择题(共 10 分, 共 10 题, 每题 1 分)
1.命题逻辑中,公式 H 是 G_1 , G_2 , , G_n 的逻辑结果当且仅当公式是(G_1 ∧ G_2 ∧∧ G_n)→H 是 ()的。
(1)、永真 (2)、永假 (3)、可满足 (4)、不可满足
2.如果命题公式 G=P∧Q,则有 G= ()。
$(1), \neg (P \rightarrow Q) \qquad (2), \neg (P \rightarrow \neg Q) \qquad (3) \neg (\neg P \rightarrow Q) \qquad (4), \neg (\neg P \rightarrow \neg Q)$
3.命题公式是永真公式,当且仅当等价于它的主析取范式中()。
(1)、包含所有极大项 (2)、不包含任何极大项
(3)、包含所有极小项 (4)、不包含任何极小项
4.设 A={a,b,c,d},A 上的等价关系 R={ <a,b>,<b,a> ,<c,d>,<d,c>}∪I_A,则对应于 R 的 A 的划分是</d,c></c,d></b,a></a,b>
().
$(1), \{\{a\},\{b,c\},\{d\}\} $ $(2), \{\{a,b\},\{c\},\{d\}\} $ $(3), \{\{a\},\{b\},\{c\},\{d\}\} $ $(4), \{\{a,b\},\{c,d\}\} $
5.设集合 X 为人的全体,在 X 上定义关系 R、S 为 R={ <a,b> a,b∈X∧a 是 b 的父亲}, S={<a,b> a,b</a,b></a,b>
\in X 且 a 是 b 的母亲},那么关系{ <a,b> a,b∈X∧a 是 b 的祖母}的表达式为()。</a,b>
(1), RoS (2), $R^{-1}osS$ (3), SoR (4), RoS^{-1}
6.下面()不能成为图的度数序列。
(1), (1,2,3,4) (2), (1,2,3,6) (3), (1,3,5,7) (4), (1,3,4,9)
7.设3元完全树T有13片树叶,则T有())个分支点。
(1), 4 (2), 5 (3), 6 (4), 7
8.设 <z,+>是代数系统,其中 Z 是整数集合,"+"是普通的加法运算,则下列()不成立。</z,+>
(1) 存在 4 元 (2) 存在 零元 (3) 存在 幂等 元 (4) 每个 元 都 存在 逆 元

三、简答题(10分)

1、试述命题公式的定义。(2.5 分)

2、试述单射的定义。(2.5 分)

3、试述生成子图的定义。(2.5分)

4、试述代数系统同构的定义。(2.5分)

四、判断分析改错题(如果正确,说明理由,如果不正确,举例说明)(16分)

- 1、试判断下列推导是否正确,若不正确,请改正。(4分)
- (1) P
- (2) ES (1)
- (3) P
- (4) US (3)
- (5) $P(c) \land Q(c)$ T (1) (2) I
- (6) $(\forall x)$ $(P(x) \land Q(x))$ UG (5)
- 2、R、S 是集合 A 上的反对称关系,R∪S 是否是 A 上的反对称关系? 为什么? (4分)

3、右图是否是偶图? 为什么? (4分)

4、设 R 为实数集合,在 R 上定义二元运算*为: a*b=a+b-ab, $\forall a,b \in R$ 。代数系统<R,*>是否是半群? 为什么? (4分)

五、计算题(35分)

1、计算 $(P \rightarrow Q)$ ∧ $(¬P \rightarrow R)$ 的主析取范式和主合取范式。(7 分)

2、设集合 $A=\{a,b,c,d,e,f,g,h\}$ 上偏序关系的哈斯图如下图所示,求 A 的最大元和最小元,并分别求 A 的子集 $B=\{a,b,c,d\}$ 的最大元、最小元、极大元和极小元以及上确界和下确界。(7分)

3、下图为一连通赋权图,计算该图的最小生成树和权值。(7分)

4、求8阶剩余类加群G=<8,+8>的所有生成元和所有子群。(7分)

5、求下图的所有强分图、单向分图和弱分图。(7分)

	(1), 0	(2), 1	(3), 2	(4), 3			
10.	12 阶循环群有	()个不	同的子群。				
	(1), 3	(2), 6	(3), 9	(4), 12			
=,	多项选择题(共5分,共5题	, 每题 1 分)				
1,	设 $G = -P \lor Q$,则 G 一定是一	个(),			
	(1)、文字	(2)、短语	(3)、子句	(4)、合取范	式	(5) 析取范式	
2、	下列谓词的蕴涵	函公式中,错误的]有()	•			
	$(1), (\forall x)G(x)$	$(x) \lor (\forall x) H(x) =$	\Rightarrow $(\forall x) (G(x) \lor$	(H(x))			
	(2), $(\forall x)$ (G	$f(x) \vee H(x)) \Rightarrow$	$(\forall x)G(x) \lor (\forall x)$	x)H(x)			
	$(3), (\exists x) (G$	$G(x) \wedge H(x)) \Rightarrow$	$(\exists x)G(x) \wedge (\exists$	x)H(x)			
	$(4), (\exists x)G($	$(x) \wedge (\exists x) H(x)$	$\Rightarrow (\exists x) (G(x) / G(x))$	$\setminus H(x))$			
	(5) , $(\forall x)$ (\exists	$y)G(x,y)\Rightarrow (\exists$	$y) (\forall x) G(x,y)$				
3,	设R都是定义在	E集合A上的二元	E关系,则下列 _F	成立的有()		
	(1)、若R是日	自反的,则 <i>R</i> -1也	已是自反的	(2)、若R是	反自反的,	则R-1也是反自反	的
	(3)、若R是死	对称的,则 R^{-1} 也	已是对称的	(4)、若R是	反对称的,	则 R^{-1} 也是反对称	的
	(5)、若R是作	传递的,则 <i>R</i> -1也	已是传递的				
4、	下列简单图中,	哪些不是平面图	图图。()			
	$(1), K_4$	(2), K_5	$(3), K_{3,3}$	(4), (5, 10)) 图	(5)、(5, 11) 图	
5,	在有补分配格〈	<i>L</i> , ∗, ⊕⟩ 中	, $orall a$, $b \in L$,	$a \leq b$ 当且仅当	下列()成立。	
	(1), a * b =	a (2), $a \oplus b$	a = a (3), a	y * b = 0 (4)	$a' \oplus b = 1$	1 (5), $b' \leq a'$	

三、简答题(10分)

1、试述约束变元的定义。(2.5分)

2、试述关系的传递性的定义。(2.5分)

3、试述偶图的定义。(2.5分)

3、判断右图是否哈密顿图,为什么? (4分)

4、设 $\langle C, + \rangle$ 是一个代数系统,C是复数集合,"+"是一般的加法运算,R上的函数f为: f(x)=2x-1,则函数f能构成代数系统的自同构吗?为什么?(4 分)

五、计算题 (35分)

1、设解释I为: $D = \{a, b\}$, P(a, a) = 0, P(b, b) = 1, P(a, b) = 1, P(b, a) = 0, 求公式($\exists x$) ($\forall y$) ($P(x,y) \rightarrow P(y,x)$)的真值。(7分)

2、求集合 $A = \{\Phi, 1, \{2\}\}$ 的幂集P(A)。(7分)

3、求右图中b到c长度为3和4的通路数和所有长度为3和4的回路总数。

4、设代数系统 $\langle A, * \rangle$,其中 $A = \{a, b, c, d\}$,*如运算表定义。问*是否是可交换的,A是否有幺元,如果有幺元,指出哪些元素是可逆的,并给出它们的逆元。

*	а	b	С	d
а	а	b	С	d
a b	b	С	d	а
С	С	d	а	b
d	d	а	b	С

2、设R是集合A上的对称和传递关系,且对任意的x \in A ,存在y \in A ,使得 $\langle x, y \rangle$ \in R ,证明R 是等价关系。(8分)

3、设Z为整数集合,"*"为任意a, $b \in Z$,a*b=a+b-2,这里"+"、"-"为数的加法和减法运算。证明: $\langle Z$,* \rangle 是一个群。(8分)

《高散数学》历年题

群的是(三、简答题(8分) 1.试述演绎推理中的全称特指规则(US)(2分) 2). R+中的无理数 3). R+中的自然数 4). {1,2,3} 1). R+中的有理数 10.设集合A={1,2,3},格<P(A),⊆>的子格有($1). \ \ \{ \boldsymbol{\varPhi}, \{1,2\}, \{2,3\} \} \qquad \qquad 2). \ \ \{ \boldsymbol{\varPhi}, \{1\}, \{1,2,3\} \} \qquad \qquad 3). \ \ \{ \{1\}, \{2\}, \{1,2\} \} \qquad \qquad 4). \ \ \{ \{1\}, \{2\}, \{3\} \}$ 二、多项选择题题(共 5 分, 共 5 题, 每题 1 分) 1.设集合A={1,2,3},则 A上的双射函数有() 1). $f = \{ <1, 2>, <2, 3>, <3, 1> \}$ 2). $f = \{ <1, 2>, <2, 2>, <3, 1> \}$ 2.试述满射的定义。(2 分) 3). $f = \{ <1, 2>, <2, 1>, <3, 3> \}$ 4). $f = \{ <1, 1>, <2, 2>, <3, 3> \}$ 5).f=(<1,1>,<2,1>,<3,1>) 2. 设 P,Q的真值为0, R,S的真值为1, 则下列公式中真值为真的是()。 2). $P \to (R \lor S)$ 3). $(P \leftrightarrow Q) \land \neg R$ 5). $\neg (P \lor R) \leftrightarrow (R \lor \neg S)$ 1). $P \lor (Q \land R)$ 4). $Q \rightarrow (R \land \neg P)$ 3. 说F(x): x为火车,G(y): y为汽车,B(x,y): x比y快,命题"并不是所有的火车都比所有的汽车快" 的符号化形式为()。 1). $\neg(\forall x) \left(F(x) \rightarrow \left((\forall y) \left(G(y) \rightarrow H(x,y) \right) \right) \right)$ 2). $(\exists x) \left(F(x) \land (\exists y) \left(G(y) \land H(y,x) \right) \right)$ $3). \ (\exists \, x) \left(F(x) \wedge (\exists \, y) \left(G(y) \wedge \neg H(x,y) \right) \right) \\ \qquad 4). \ \neg (\exists \, x) \left(F(x) \rightarrow (\forall y) \left(G(y) \wedge H(x,y) \right) \right) \\$ 5), $\neg(\forall x) (F(x) \rightarrow (\forall v) (G(v) \land H(v,x)))$ 4.下列图中,是偶图的有() 1). 2). 3). 4). 5). 5). 5). 4.试述二元代数系统中零元的定义。(2 分) 1). 《高散数学》历年题 《商勤教学》历年颢 四、判断分析改错题(如果正确,说明理由,如果不正确,举例说明)(15分) 2.集合 $A = \{a,b,c,d,e,f\}$ 上的等价关系 1.考虑R,S是集合A上的等价关系,则 $R \cup S$ 是否一定是等价关系?为什么? (5分) $R = \{\langle a,a \rangle, \langle a,b \rangle, \langle b,a \rangle \ \langle b,b \rangle, \langle c,c \rangle, \langle c,f \rangle, \langle f,c \rangle \ \langle f,f \rangle, \langle c,c \rangle, \langle c,d \rangle, \langle d,c \rangle \ \langle d,d \rangle \}, \quad \text{if \widehat{p} in $\#$ A/R . (7 $\%)$}$ 2.表达式 $(P \to R) \land (Q \to R) = (P \lor Q) \to R$ 是否成立? 为什么?。(5 分) 3 图 G=(V.E)如右图所示,利用G的邻接铅阵或G中从V.到V.长度为4的通路条数。(7分) 3."树是一个偶图",这个说法对吗?为什么?。(5 分) 4.试写出右图的平面图的各个面的边界,并计算每个边界的长度。(7分) 五、计算题(35分) 1.计算 $(P \lor Q) \to (R \land -Q)$ 的主析取范式和主合取范式。(7 分)

31

《寵散教学》历年顯 《寓散数学》历年题

5.设有代数系统(Z, *),运算****定义如下:Ya,be Z, 有: a * b = a + b + 5. 计算该代数系统中的幺元. 2.设尼是实数集, F 为启到[0,1]函数的全体。若f,ge F,定义<f,g> e S 当且仅当对任意z e R, 幂等元、可逆元及其逆元。(7分) $f(z)-g(z) \ge 0$, 证明S是一个偏序关系。 (9分)

3.设 $\langle A,* \rangle$ 是一个半群, ϵ 是左幺元且对每个 $x \in A$ 存在 x^{-1} * $x = \epsilon$ 证明:

(a)对任意的 $a,b,c \in A$, 如a*b=a*c, 则b=c;

1.符号化下列语句,并用演绎法验证其推论是否正确。(9 分)

(b)〈A,*〉是一个群。 桌上的每本书都是杰作;写出杰作的人都是天才;某个不出名的人写了桌上的某本书。因此,某个

不出名的人是天才。

(离飲数学) 历年題

2、下列命题公式中为合取范式的为()

 $A.\ P\vee \neg Q \qquad B.\ (P\to R)\wedge P \qquad C.\ \neg (\neg Q\wedge P) \qquad D.\ (Q\wedge P)\wedge R$

3、在下列等价式中,正确的是 ()

B. $\neg(\forall x)A(x) = (\forall x)\neg A(x)$ $A : (\exists x) (A \lor B(x)) = (\exists x) B(x) \lor A$

 $C\,,\;\; (\exists x)\big(A(x)\wedge B(x)\big) = \big(\exists x\big)A(x)\wedge (\exists x)B(x) \qquad D\,.\;\; A\to (\exists x)B(x) = (\forall x)\big(A\to B(x)\big)\,,$

役 A ⊆ B 、 则有 ()

A, $B-A=\Phi$ B, $A-B=\Phi$ C, $A \cap B=B$ $D. A \cup B = A$

5、设R,R,是非空有限集合A上的两个关系,则下列说法错误的是()

 $A. \ r(R_1 \cap R_2) = r(R_1) \cap r(R_2) : \qquad B. \ s(R_1 \cap R_2) = s(R_1) \cap s(R_2) :$

 $C.r(R_1 \cup R_2) = r(R_1) \cup r(R_2);$ $D. s(R_1 \cup R_2) = s(R_1) \cup r(R_2).$ 6、设 $f:X \to Y, g:Y \to Z$ 是函数,则下列说法正确的是 ()

A. 若 $f \circ g$ 是满射,则 $f \cap ng$ 都是满射;

B. 若f和g都是满射,则 $f \circ g$ 是满射;

C. 若 $f \circ g$ 是单射,则 $f \cap g$ 都是单射;

D. 若f和g都是单射,则 $f \circ g$ 是单射。

下列图中,是欧拉图的是()

9. 下列图中,是可平面图的图的是(

《高散数学》历年题

三、计算题 (共40分)

1、(8 分) 求公式 $G = (P \lor Q) \lor (\neg P \land R)$ 的主析取和主合取范式。

2、(8 分) 设 $R = \{<0,1>,<0,2>,<0,3>,<1,2>,<1,3>,<2,3>\}$ 是 $A = \{0,1,2,3\}$ 上的二元关系。(1) 计 算 $R \circ R = R^{-1}$; (2) 计算R的自反闭包r(R)和对称闭包s(R)。

3、(6分) 设 $A = \{a,b,c,d,e,f\}$, " \leq "为A上的偏序关系,且:

" \leq " = $\{$ $< a, d >, < a, c >, < a, b >, < a, e >, < b, e >, < c, e >, < d, e >\} <math>\bigcup I_A$

(1) 画出 < A, <> 的哈斯图: (2) 求出 A 的极大元、极小元、最大元和最小元。

4、(6分) 已知有向图D的邻接矩阵为: $A(D) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

(1)、画出D的图形: (2)、根据邻接矩阵计算出D的可达矩阵P(D)。

5、(7分) 求下图G的最小生成树,并给出生成树的权值。

四、证明题 (共 14 分)

(7分)构造下列推理证明。
人都喜欢吃蔬菜,但不是所有的人都喜欢吃鱼。所以存在喜欢吃蔬菜但不喜欢吃鱼的人。

解: 设F(x):x为人: G(x):x喜欢吃蔬菜: H(x):x喜欢吃鱼。 则前提: $\forall x \big(F(x) \rightarrow G(x)\big), \qquad \neg \forall x \big(F(x) \rightarrow H(x)\big):$

结论: $\exists x (F(x) \land G(x) \land \neg H(x))$

6

《禽散数学》历年题

五、应用题 (6分)

今有 a,b,c,d,e,f,g 七个人围圆桌开会,已知: a 会讲英语,b 会讲英语和汉语,c 会讲英语、意大利语和俄语,d 会讲日语和汉语,e 会讲德语和意大利语,f 会讲法语、日语和俄语,g 会讲法语与德语。给出一种排座方法,使每个人能够和他身边的人交流(用图论方法求解)。

9、下列哈斯图所表示的格中, () 是布尔代数。

10.存在()个非同构的4阶群。

- (1), 1 (2), 2 (3), 3 (4), 4

二、多项选择题(共5分,共5题,每题1分)

1.在整数个体域上,下列各式中,真值为真的有()。

- $(1), (\forall x) (\exists y) (xy=1)$ $(2), (\forall x) (\exists y) (xy=x)$ $(3), (\exists y) (\forall x) (xy=0)$
- $(4), (\forall x) (\exists y) (\forall z) (x+y=z)$ (5), $(\forall x) (\forall y) (\exists z) (x-y=z)$

2.下列命题中,()是真命题。

- (1)、海水是咸的当且仅当蝙蝠是瞎子 (2)、若太阳从西边落下,则2是奇数
- (3)、如果3是奇数,那么1+1=3 (4)、夏天冷当且仅当冬天热
- (5) 如果成都是直辖市,那么北京是中国的首都

3.集合 A={1,2,3}上的下列关系矩阵中具有自反性和对称性的是(

$$(1) \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (2) \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad (3) \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad (4) \cdot \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \quad (5) \cdot \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

4.下列节点子集导出的子集图中,哪些是右图的强分量图。()

(3), {5} (4), {6} (5), {5, 6}

- 5.设 H 是群 G 的子群,则 H 是 G 的不变子群当且仅当()。
 - (1)、 $\forall a \in G$,有 $aha^{-1} \in H$ (2)、 $\forall a \in H$,有 aH=Ha (3)、 $\forall a \in G$,有 aH=Ha

- (4)、 $\forall a \in G$, $\forall h \in H$, 有 $aha^{-1} \in H$ (5)、 $\forall a \in H$, $\forall h \in H$, 有 $aha^{-1} \in H$

2011-2012 学年第二学期期末考试 A 卷

								-				
-	填空题	(共20分,	共	10 题,	每题	2	分)					

- 1、n元集合 A 的子集个数为 ____。
- 2、对于集合 A,B,S ,集合 A,B 均是集合 S 的子集,且 |S|=8 , $|A|=3,|B|=2,|A\cap B|=1$,则 $|\overline{A} \cap \overline{B}| = \underline{\hspace{1cm}}$.
- 3、设P:小王是通信专业学生,q:小李是数学学院学生,则符号 $\neg p \rightarrow \neg q$ 用自然语言可以表示 为____。
 - 4、设F(x):x是火车;G(x):x是汽车;L(x,y):x比y快,则语句"火车都比汽车快"可符号化为
 - 5、缩小量词的辖域($\forall x$)($P(x,y) \land R(z) \lor B$)=___。
 - 6、序偶< x, y+5 >=< y-1, 2x >,则 $x = ____$, $y = ____$ 。
 - 7、设A是有限集合,|A|=n,则A上不同的二元关系共有____个。
 - $8 \times n$ 阶 k 正则图 G 的边数为 _____。

 - 10、在下图G中,点a到点b的距离是_

二、选择题(共20分,共10题,每题2分)

- 1、设P: 天下大雨,Q: 他乘公共汽车上班,命题"除非天下大雨,否则他不乘公共汽车上班" 的符号化正确的是()
 - $A. P \rightarrow Q$
- $B. P \vee Q \qquad C.Q \rightarrow P$
- $D. \neg P \lor \neg Q$

2017-2018 学年第一学期期末考试 A 卷

一、单项选择题(共1	0 分, 共 10 题, 每题	[1分)			
1.设集合X = {1, {1}},则	下列关于集合的运算	,正确的是	()		
1). $X - \{1\} = \{1\}$	$2). X - \{1\} = \{\{1\}\}$	3). $X - \{1, \dots \}$	$\{1\}, 2\} = \{2\}$	$4).\bar{X}\cup\{1,\{1\}\}=\varnothing$	
2.设集合 $A = \{a,b,c\},A$	上的关系 $R = \{ \langle a, a \rangle \}$	$, < b, b > $ },则	R是()。	
1).是等价关系但不是偏	请序关系	2).是偏原	亨关系但不是等	萨价关系	
3).既是等价关系又是偏	扁序关系	4).既不是	是等价关系又不	是偏序关系	
3. 设 f,g 都是自然数	集 N 上的函数,对	任意 $x \in N$, f(x) = x + 1, g((x)=2x。下列说法正确的	的是
().					
1). fog 既是满射又是单	射	2). fog 5	尺是满射		
3). fog 是单射		4). fog 🖟	既不是满射也不	是单射	
4.设 P: 今天是星期-	-, Q: 明天是星期二	,命题"只有	「 今天是星期一	,明天才是星期二"的符	号化
形式为()。					
1). $P \rightarrow Q$	2). $Q \rightarrow P$	3). ¬P ¬	Q	4). $\neg Q \rightarrow P$	
5.设B不含有x,(∃x) (B	ightarrow A(x))等价于().			
1). $B \rightarrow (\forall x) A(x)$	2). $(\exists x)$	$(A(x) \vee B)$	3). $B \rightarrow 0$	$(\exists x)A(x)$	4).
$(\exists x) (A(x) \land B)$					
6.设图G的邻接矩阵为	$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$,则 G 的补 $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	图 \bar{G} 的邻接知	巨阵为().	
1). $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ 2).	$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} $ 3).	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$	4). $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 - 1 \\ 1 & 1 & 0 \end{bmatrix}$		
7.简单连通图 G中, 若	结点数为5,边数为	() 则 <i>G</i> 不可能是	上平面图。	
1). 7	2), 8	3). 9	4).	. 10	
8.设 $A = \{1, 2, 3\}$, 在 A	上可定义()个不同的	2 元运算。		
1). 3³	2). 99	3). 9 ³	4).	3 ⁹	

9.设 R^+ 为正实数集合,*是数的乘法运算,< R^+ ,*>是一个群,则下列集合关于*运算能构成该群的子

一、单项选择题(共10分,共10题,每题1分)

2019-2020 学年第二学期期末考试 B 卷

1、量词的约束范围称为量词的()。
(1)、定义域 (2)、个体域 (3)、辖域 (4)、值域
2、命题公式是永假公式,当且仅当在等价于它的析取范式中,每个()均至少包含一个 _命 题变元及其否定。
(1)、短语 (2)、子句 (3)、极小项 (4)、极大项
3、下列公式()是永真公式。
(1), $P \lor \neg P$ (2), $P \land \neg P$ (3), $P \rightarrow \neg P$ (4), $P \leftrightarrow \neg P$
4、设 Φ 是一个空集,则下列之一哪一个不成立()。
(1), $\Phi \in \Phi$ (2), $\Phi \subseteq \Phi$ (3), $\Phi \in \{\Phi\}$ (4), $\Phi \subseteq \{\Phi\}$
5、设 $A = \{1, 2, 3\}$, A 上二元关系 $S = \{<1, 1>, <2, 2>, <2, 3>, <3, 2>\}$,则
<i>S</i> 是()
(1)、自反关系 (2)、对称关系 (3)、反对称关系 (4)、传递关系
6、下列图中,()是单向连通,而不是强连通的。
$(1), \qquad (2), \qquad (3), \qquad (4), \qquad $
7、设 G 是具有 n 个结点的无向完全图,则 G 中有()条边。
(1), $n(n+1)$ (2), $n(n+1)/2$ (3), $n(n-1)$ (4) $n(n-1)/2$
8、设 G 是 12 阶群, $a\in G$,则 a 的周期一定不是()。
(1), 2 (2), 4 (3), 6 (4), 8 $a \neq b \neq c$
9、在右图的有界格中, a 的补元共有 () 个。
14