CS6713: Scalable Algorithms for Data Analysis

Fahad Panolan

Department of Computer Science and Engineering Indian Institute of Technology Hyderabad, India

27-Aug-2022

Classical Algorithms: Random Access Model (RAM)

Classical Algorithms: Random Access Model (RAM)

Streaming Model

- The input consists of m objects/items/tokens e_1, e_2, \ldots, e_m that are seen one by one by the algorithm.
- The algorithm has "limited" memory say for B tokens where B < m (often B << m) and hence cannot store all the input
- Want to compute interesting functions over input

Classical Algorithms: Random Access Model (RAM)

Streaming Model

- The input consists of m objects/items/tokens e_1, e_2, \ldots, e_m that are seen one by one by the algorithm.
- The algorithm has "limited" memory say for B tokens where B < m (often B << m) and hence cannot store all the input
- Want to compute interesting functions over input

Some examples:

- Each token is a number from [n]
- High-speed network switch: tokens are packets with source, destination IP addresses and message contents.
- Each token is an edge in graph (graph streams)
- Each token is a point in some feature space
- Each token is a row/column of a matrix

A data stream management system

["Mining of Massive Data Sets" by Leskovec, Rajaraman, Ullman]

Finding Majority Element

Given an array A of m integers, output an element that occurs more than m/2 times in A?

Finding Majority Element

Given an array A of m integers, output an element that occurs more than m/2 times in A?

Algorithm:

- Initialize $c \leftarrow 0$ and s = Null
- For i = 1 to m
 - If A[i] = s, then $c \leftarrow c + 1$.
 - If $A[i] \neq s$ and c > 0, then $c \leftarrow c 1$.
 - If $A[i] \neq s$ and c = 0, then $c \leftarrow 1$ and $s \leftarrow A[i]$.
- Check whether s is indeed the majority element and output accordingly.

Heavy Hitters Problem and Misra-Gries Algorithm

Heavy Hitters Problem: Find all elements i such that $f_i > m/k$.

Heavy Hitters Problem and Misra-Gries Algorithm

Heavy Hitters Problem: Find all elements i such that $f_i > m/k$.

- Initialize $D[1,\ldots,k] \leftarrow 0$ and $S[1,\ldots,k] = Null$
- For j=1 to m
 - If A[j] = S[r] for some r, then $D[r] \leftarrow D[r] + 1$.
 - Else If S[r] = Null for some r, then $D[r] \leftarrow 1$ and $S[r] \leftarrow A[j]$.
 - Else: for all $\ell \in [k]$, $D[\ell] \leftarrow D[\ell] 1$.
 - \bullet Remove elements from S whose counter values are 0
- Verify whether elements S have frequency at least m/k.

Space usage $O(k \log m)$ bits.

!

Space usage $O(k \log m)$ bits.

- $\bullet \ \ \text{For each} \ r \in [k] \text{,} \ \widehat{f}_{S[r]} = D[r].$
- For all other elements i, set $\hat{f}_i = 0$.

Space usage $O(k \log m)$ bits.

- For each $r \in [k]$, $\widehat{f}_{S[r]} = D[r]$.
- For all other elements i, set $\hat{f}_i = 0$.

Theorem

For each element i in A: $f_i - \frac{m}{k+1} \le \hat{f_i} \le f_i$.

Space usage $O(k \log m)$ bits.

- For each $r \in [k]$, $\widehat{f}_{S[r]} = D[r]$.
- For all other elements i, set $\hat{f}_i = 0$.

Theorem

For each element i in A: $f_i - \frac{m}{k+1} \le \hat{f}_i \le f_i$.

Corollary

Any item with $f_i > \frac{m}{k}$ is in D at the end of the algorithm.

Theorem

For each element i in A: $f_i - \frac{m}{k+1} \le \hat{f_i} \le f_i$.

Theorem

For each element i in A: $f_i - \frac{m}{k+1} \le \hat{f_i} \le f_i$.

Easy to see: $\hat{f}_i \leq f_i$. Why?

Theorem

For each element i in A: $f_i - \frac{m}{k+1} \le \hat{f}_i \le f_i$.

Easy to see: $\hat{f}_i \leq f_i$. Why?

Alternative view of algorithm:

- Assume $A \subseteq \{1, \ldots, n\}$ for some n and let $a_j = A[j]$
- Maintain counts C[i] for each $i \in \{1, ..., n\}$ (initialized to 0). Only k are non-zero at any time.
- During the jth iteration
 - If $C[a_j] > 0$ then increment $C[a_j]$ by one.
 - Elself: less than k positive counters then set $C[a_j] = 1$
 - **Else:** decrement all positive counters (exactly k of them)
- Output $\hat{f}_i = C[i]$ for each i

Want to show: $f_i - \hat{f}_i \leq \frac{m}{(k+1)}$

.

Want to show:
$$f_i - \hat{f}_i \leq \frac{m}{(k+1)}$$

• Suppose we have ℓ occurrences of k counters being decremented.

Want to show: $f_i - \hat{f}_i \leq \frac{m}{(k+1)}$

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k + \ell \leq m$ which implies $\ell \leq \frac{m}{(k+1)}$.
- Consider $\alpha=(f_i-\hat{f}_i)$ during the execution of the algorithms. Initially 0. Initially $\ell=0$. How big α can be?

Want to show:
$$f_i - \hat{f}_i \leq \frac{m}{(k+1)}$$

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k + \ell \leq m$ which implies $\ell \leq \frac{m}{(k+1)}$.
- Consider $\alpha=(f_i-\hat{f}_i)$ during the execution of the algorithms. Initially 0. Initially $\ell=0$. How big α can be?
 - If $a_j = i$ and C[i] is incremented α stays same

Want to show: $f_i - \hat{f_i} \leq \frac{m}{(k+1)}$

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k + \ell \leq m$ which implies $\ell \leq \frac{m}{(k+1)}$.
- Consider $\alpha=(f_i-\hat{f}_i)$ during the execution of the algorithms. Initially 0. Initially $\ell=0$. How big α can be?
 - If $a_j = i$ and C[i] is incremented α stays same
 - If $a_j=i$ and C[i] is not incremented then α increases by one and k counters decremented charge to ℓ

Want to show: $f_i - \hat{f}_i \leq \frac{m}{(k+1)}$

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k + \ell \leq m$ which implies $\ell \leq \frac{m}{(k+1)}$.
- Consider $\alpha=(f_i-\hat{f}_i)$ during the execution of the algorithms. Initially 0. Initially $\ell=0$. How big α can be?
 - If $a_j = i$ and C[i] is incremented α stays same
 - If $a_j=i$ and C[i] is not incremented then α increases by one and k counters decremented charge to ℓ
 - If $a_j \neq i$ and C[i] is decremented. Then α increases by 1 it is because C[i] is decremented charge to ℓ

Want to show: $f_i - \hat{f}_i \leq \frac{m}{(k+1)}$

- Suppose we have ℓ occurrences of k counters being decremented. Then $\ell k + \ell \leq m$ which implies $\ell \leq \frac{m}{(k+1)}$.
- Consider $\alpha=(f_i-\hat{f}_i)$ during the execution of the algorithms. Initially 0. Initially $\ell=0$. How big α can be?
 - If $a_j = i$ and C[i] is incremented α stays same
 - If $a_j=i$ and C[i] is not incremented then α increases by one and k counters decremented charge to ℓ
 - If $a_j \neq i$ and C[i] is decremented. Then α increases by 1 it is because C[i] is decremented charge to ℓ
- Hence total number of times α increases is at most ℓ .

Thank You.