Supplementary Online Content

Ophir Y, Rosenberg H, Tikochinski R, Dalyot S, Lipshits-Braziler Y. Screen time and autism spectrum disorder: a systematic review and meta-analysis. *JAMA Netw Open*. 2023;6(12):e2346775. doi:10.1001/jamanetworkopen.2023.46775

- **eAppendix.** Formulas Used for Conversion of the Various Effect Sizes Into Log Odds Ratios
- eFigure 1. Forest Plot of All 66 Effect Sizes by Screen Type
- eFigure 2. Forest Plot by Age Groups of the 28 Effect Sizes of General Screen Use
- **eFigure 3.** Forest Plot by the Type of Autism Spectrum Disorder (ASD) Measure of 28 Effect Sizes of General Screen Use
- eFigure 4. Forest Plot of the 6 Effect Sizes of Longitudinal Studies
- **eFigure 5.** Forest Plot by Type of Screen of 66 Effect Sizes Using Fisher z Scores
- **eFigure 6.** Forest Plot by Age Groups of the 28 Effect Sizes of General Screen Use Based on Fisher *z* Scores
- **eFigure 7.** Forest Plot by Type of Autism Spectrum Disorder (ASD) Measure of the 28 Effect Sizes of General Screen Use Based on Fisher *z* Scores

This supplementary material has been provided by the authors to give readers additional information about their work.

eAppendix. Formulas Used for Conversion of the Various Effect Sizes Into Log Odds Ratios

From Cohen's *d*:

1.
$$\log Odds \ Ratio = d \frac{\pi}{\sqrt{3}}$$

2.
$$V_{logOddaRatio} = V_d \frac{\pi^3}{3}$$

From Pearson's *r*:

Pearson's r is first transformed to d and V_d as follows:

$$3. \quad d = \frac{2r}{\sqrt{1-r^2}}$$

4.
$$V_d = \frac{4V_r}{(1-r^2)^3}$$
,

Next, d and V_d are converted to log OR and $V_{logOddaRatio}$ using formulas (1) and (2).

eFigure 1. Forest Plot of All 66 Effect Sizes by Screen Type

eFigure 2. Forest Plot by Age Groups of the 28 Effect Sizes of General Screen Use

eFigure 3. Forest Plot by the Type of Autism Spectrum Disorder (ASD) Measure of 28 Effect Sizes of General Screen Use

eFigure 4. Forest Plot of the 6 Effect Sizes of Longitudinal Studies

Author(s) and Year		Log OR [95% CI]
Aishworiya et al., 2022 ¹⁰	⊢■→	1.23 [0.73, 1.72]
Kushima et al., 2022 ¹¹	•	0.09 [0.06, 0.11]
Heffler et al., 2020 ¹²	H al l	0.34 [0.19, 0.49]
Dahlgren et al., 2021 ³¹		0.56 [0.02, 1.10]
Dahlgren et al., 2021 ³¹	⊢ 1	0.79 [0.24, 1.34]
Krishnan et al., 2021 ⁴⁵	├─■ ─┤	1.28 [0.62, 1.95]
RE Model for All Studies (Q = 51.37, df = 5, p < 0.001; l^2 = 94.3%, t^2 = 0.1	9) 🕳	0.65 [0.26, 1.05]
	0 0.5 1 1.5 2	
	Log Odds Ratio	

eFigure 5. Forest Plot by Type of Screen of 66 Effect Sizes Using Fisher z Scores

eFigure 6. Forest Plot by Age Groups of the 28 Effect Sizes of General Screen Use Based on Fisher *z* Scores

eFigure 7. Forest Plot by Type of Autism Spectrum Disorder (ASD) Measure of the 28 Effect Sizes of General Screen Use Based on Fisher *z* Scores

uthor(s) and Year		Fisher's z [95% (
Ninted Dispussion		
Clinical Diagnosis ardy et al., 2021 ²⁶	; ;	0.25.0.1.25.0
ardy et al., 2021	⊢	0.36 [0.27, 0.4
	; = ;	0.53 [0.37, 0.6
reyer Gillette et al., 2015 ³⁷	•	0.01 [-0.00, 0.0
yuboglu and Eyuboglu, 2020 ³⁶	 = 	0.65 [0.47, 0.8
unes et al., 2023 38	; - 	0.58 [0.49, 0.6
ealy et al., 2020 ⁴¹	₩ :	0.05 [0.01, 0.0
ealy et al., 2017 ⁴²	} = 	0.20 [0.04, 0.3
rishnan et al., 2021 ⁴⁵	 ■	0.35 [0.17, 0.8
lacMullin et al., 2016 ⁵⁰	Ħ	-0.07 [-0.19, 0.0
lenear and Ernest, 2020 ⁵⁴	•	0.27 [0.26, 0.2
lenear and Ernest, 2020 ⁵⁴	•	0.25 [0.24, 0.3
lenear and Ernest, 2020 ⁵⁴	•	0.23 [0.21, 0.3
lontes, 2016 ⁵⁶	•	0.10 [0.09, 0.
lust et al., 2014 ⁵⁷	 ■ 	0.32 [0.13, 0.9
u et al., 2023 ¹³	•	0.22 [0.21, 0.2
eynaud et al. , 2022 ⁵⁹	H	0.13 [0.08, 0.
ao et al., 2022 ⁶⁶	 = 	0.10 [-0.06, 0.2
E Model for Subgroup (Q = 2435.88, df = 16, p < 0.001; l^2 = 99.8%, t^2 = 0.03)	•	0.24 [0.15, 0.3
SD Symptoms		
ishworiya et al., 2022 ¹⁰	 - 	0.33 [0.20, 0.4
Irahili et al., 2021 ²⁶	; } =	0.14 [0.03, 0.3
erard et al., 2022 ²⁷	; =	0.06 [-0.05, 0.
hen et al., 2021 ²⁹		0.04 [0.03, 0.0
ong et al., 2021 ³⁴	•	0.19 [0.18, 0.2
alladay , 2021 ³⁹	; · 	0.12 [-0.11, 0.3
ill et al., 2020 ⁹	 	0.31 [0.11, 0.9
lelchoir et al., 2022 ⁵³		0.04 [0.02, 0.0
adeghi et al., 2023 ⁶⁰		0.44 [0.19, 0.6
uleman et al., 2023 ⁶¹) = 1) = 1	0.17 [0.03, 0.
/u et al., 2017 ⁶⁴	;=: : <u></u>	0.17 [0.03, 0.3
u et al., 2017	•	0.13[0.11, 0.
E Model for Subgroup (Q = 532.37, df = 10, p < 0.001; l^2 = 98.3%, t^2 = 0.01)	•	0.15 [0.09, 0.2
E Model for All Studies (Q = 3100.18, df = 27, p < 0.001; l ² = 99.7%, t ² = 0.03)	•	0.21 [0.15, 0.20
est for Subgroup Differences: Q _M = 1.26, df = 1, p = 0.26		
	тітт	
_	0.2 0.8	