

Elements of a "Good" Radionuclidic Standardization Program

An Overview

R. Collé

Ionizing Radiation Division

Physics Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899 USA

Given title of "Certification of Reference Materials"

EASY TALK FOR ME / pristine, single nuclide SRMs

i decide what std. to do

ii make it

iii standardize it

iv write certificate based on data

Instead I'll talk about

By "good" I mean Elements of a "Good" Radionuclidic Standardization Program

I'll give talk backwards

.... summary & conclusions first

then show you examples

Characteristic Elements

- 1. Choice of nuclides / standards based on identified user needs
- 2. Standardization based on at least one primary method
- (3.) Validity of #2 supported & confirmed by one or more independent confirmatory methods
- 4. Standardizations typically utilize <u>many trials</u>, with widely varying experimental conditions, minimizing type-B uncertainty assessments
- **5.** Any new standardization <u>linked back</u> to all previous ones (when possible) through stored solutions or calibration factors for 2ndary instruments
- **6.** <u>Disseminated standards</u> from primary methods used as SRM transfer standards and/or employed as sources for quality assurance, & proficiency testing programs
- 7. Primary standardization <u>uncertainties</u> (k = 2) are typically < 1 % (few tenths at k = 1)
- **8.** Comparisons with others metrology labs to demonstrate & ensure international consistency

long time

Primary Standardizations

means

Realization of the SI unit Becquerel

- Direct measure number of nuclear transformations per unit time
 - Only in terms of base SI units of frequency, time, mass (sometimes length)
 - No use of other radioactivity calibration or standard
 - Sometimes called "direct" or "absolute" (sic)

Our principal product...

solution standards of radionuclides

60⁺ nuclides

calibrations in many other geometries and states too

Natural Matrix SRMs

for Environmental Radioactivity Measurement

- Rocky Flat Soil I (1981)
- River Sediment (1981)
- Peruvian Soil (1982)
- **Human Lung (1982)**
- **Human Liver (1982)**
- Lake Sediment (1986)
- Ocean Sediment (1997)
- Bone Ash (2000)
- Seaweed (2005)
- Rocky Flats Soil II (2007)
- Shell Fish (underway)
- Peruvian Soil II (underway)

130⁺ nuclides

Radionuclides standardized at NIST

	_					
H-3	Fe-55	Sr-90	Sb-124	Ce-141	Hg-197	Th-229
Be-10	Co-56	Nb-93	I-124	Ce-144	Au-198	Th-230
C-14	Mn-56	Nb-94	I-125	Pm-147	TI-201	Th-232
F-18	Co-57	Nb-95	Sb-125	Gd-148	Hg-203	U-232
Na-22	Co-58	Zr-95	Te-125m	Eu-152	Pb-203	U-234
Na-24	Fe-59	Mo-99	I-126	Gd-153	TI-204	U-235
Al-26	Co-60	Tc-99	Xe-127	Sm-153	Bi-207	Np-237
P-32	Cu-62	Tc-99m	I-129	Eu-154	Po-208	U-238
P-33	Ni-63	Pd-103	I-130	Eu-155	Po-209	Pu-238
S-35	Zn-65	Ru-106	I-131	Eu-156	Bi-210	Pu-239
CI-36	Ga-67	Ag-108m	Ba-131	Ho-166	Po-210	Pu-240
Ar-37	Se-75	Cd-109	Xe-131m	Ho-166m	Pb-210	Pu-241
Ar-39	Kr-79	Ag-110m	Ba-133	Yb-169	At-211	Am-241
K-40	Sr-82	In-111	Xe-133	Lu-177	Bi-214	Pu-242
K-42	Kr-85	In-113m	Xe-133m	Re-184	Pb-214	Am-243
Ca-45	Sr-85	Sn-113	Cs-134	Re-186	Rn-222	Cm-243
Sc-46	Rb-86	Sn-117m	Cs-137	Re-188	Ra-223	Cm-244
V-49	Y-88	Sn-121m	Ce-139	W-188	Ra-226	
Cr-51	Sr-89	I-123	Ba-140	lr-192	Ra-228	
Mn-54	Y-90	Te-123m	La-140	Au-195	Th-228	

high-pressure re-entrant ion chamber

our SRM work horse -- calibration factors for 40+ nuclides for 30+ years

LS counters (Beckam, Wallac, Packard) – our other SRM work horses!

3-phototube TDCR system

isothermal microcalorimeter (a low-temp 8K calorimeter is inactive)

high-resolution γ spectrometry with HPGe & Si (4 systems)

defined-geometry $0.8\pi\alpha$ counter

NaI(TI) x-ray counting system

$4\pi\beta$ (LS)-γ(NaI) anticoincidence counting system

 $4\pi\beta$ -coincidence counting system

sum-peak -- 2 NaI(TI) -- counting system

NaI(TI) pin-well detector

coupled large (8") Nal(TI) detectors in 4π geometry for total efficiency counting and γ - γ coincidence counting

length-compensated proportional counters for gas counting

RIMS + TIMS

primary radon measurement system (pulse ionization chambers + gas handling)

secondary NaI(TI)-based radon counting system

 α -table with PIPS detector

large-area proportional counter & the α "pancake" counter

Various $2\pi\alpha$ surface-barrier detectors, gas-flow β proportional counters; and γ NaI(TI) well counters

Fuji phosphor-imaging system

commercial "dose calibrator" ion chambers (6+)

windowless Si(Li) x-ray detector

many measurement systems used at NIST

Primary methods (Pommé Classification)

realization of the SI unit Becquerel

not based or referenced to other standards or calibrations) *

high-geometry methods

- • 4π or 2π proportional counting of particles
- •internal gas counting with length-compensated tubes
- • $4\pi\gamma$ counting with large NaI(Tl) or CsI(Tl) sandwich detectors
- •liquid scintillation (LS) counting
- •and both classical and cryogenic calorimetry

defined-solid-angle methods

•use strictly controlled geometric constructions incorporating a large variety of detectors with known detection efficiencies

classical coincidence counting methods

- including the variants of anticoincidence, sum-peak, and correlation counting,
- LS-based triple-to-double-coincidence ratio (TDCR) method.
 - * Exceptions: efficiency tracing by ³H-standard CNET & coincidence counting (e.g. ⁹⁹Tc w/ ⁶⁰Co)coinicidence)

β - γ coincidence

A decays per second

$$\beta$$
- γ β - x e - x α - γ

$$\cdot x$$

$$\alpha$$
- γ

$$R_{\beta} = \varepsilon_{\beta} A$$

$$R_c = \varepsilon_\beta \ \varepsilon_\gamma \ A$$

$$\frac{R_{\beta}R_{\gamma}}{R_{c}} = \frac{\varepsilon_{b}A \varepsilon_{\gamma}A}{\varepsilon_{b}\varepsilon_{\gamma}A}$$

$$= A$$

NaI sandwich detector coincidence & near total absorption

 $oldsymbol{eta}$ e

TDCR 3-phototubes

$$R_{\beta} = A \left(1 - k \left(1 - \frac{R_{c}}{R_{\gamma}} \right) \right)$$

Primary method ?

Two exceptions

- Simultaneously measure 2 nuclides in coin. system trace pure β with β - γ case (e.g., 99 Tc with 60 Co)
- LS based ³H-standard efficiency tracing (CNET)

 CIEMAT /NIST method

 same model as LS

Now some examples

55Fe

Pure EC – low Z – low E (really hard)

primary standardization by microcalorimetry

linked to SRM

international intercomparison

Calorimetry

13 independent determinations

LS intercomparisons

776 activity ratios; variables include:

- 3 counters
- 3 scintillators
- 44 matched cocktails
- 4 distinct aq. fraction (+Fe) compositions
- 2 NIST solution dilutions
- 97 days of aging

NIST Uncertainty Analysis for ⁵⁵Fe Microcalorimetric Standardization of NIST Solution Standards

			Relative standard uncertainty
Item	Uncertainty component	Assessment	contribution on massic
		Type	activity of 55Fe (%)
1	Measurement precision for 13 independent		
	calorimetric determinations of the power of	A	0.25
	solid source C; includes precision in the		
	calibrations & baseline measurements for each		
	determination; std. dev mean for v=12 degrees		
	freedom (passes Normal test)		
2	Gravimetric (mass) linkage of source C to		
	NIST standard solutions	В	0.07
3	Activity loss in source C preparation	В	0.15
4	Power calibration of calorimeter, includes any		
	systemic heat losses	В	0.05
5	Possible heat defect / excess effects	В	0.1
6	55Fe decay corrections during calorimetric		
	measurements	В	0.02
7	55Fe decay corrections from calorimetric	В	0.08
	reference time to BIPM reference time.		
8	Average energy per decay for 55Fe (to convert		
	calorimetric power to activity)	В	0.17
	COMBINED STANDARD UNCERTAINT	0.39	

Results of the international comparison of activity concentration of a solution of 55Fe by a participant for each method. The arithmetic mean value (—), the sample standard deviation (- -) and the standard deviation of the mean $(\cdot \cdot \cdot)$ are also drawn.

Summary of some recent NIST primary standardizations and comparison to confirmatory measurements.

Nuclide	Method	relative standard uncertainty	Confirmatory Measurement	Difference (%)
⁶³ Ni	4π LS TDCR (NIST)	0.16 %	4πβ LS TDCR (LNHB) 4πβ LS CNET (NIST)	-0.31 -0.77
⁵⁵ Fe (NIST)	4π calorimetry (linked by LS)	0.39 %	4π LS TDCR (Polatom) 4π LS TDCR (LNHB)	-0.87 -0.43
⁵⁵ Fe (BIPM)	4π calorimetry (linked by LS)	0.39 %	weighted mean value of 15 NMI labs	-0.37
²¹⁰ Pb	4παβ LS CNET	1.2 %	4παβ(LS)-γ(NaI) anticoin. counting ²¹⁰ Po α spect. (102 a ²⁰⁹ Po tracer) ²¹⁰ Po α spect. (128 a ²⁰⁹ Po tracer) HPGe photon spect.	+0.7 -3.0 -1.3 +4.7
²⁴¹ Pu	4πβ LS CNET	1.9 %	LS (241 Am ingrowth) $4\pi\beta$ LS TDCR (NIST) $4\pi\beta$ LS TDCR (LNHB)	+1.2 -7.9 * -7.7 *
²¹⁰ Pb	4παβ LS CNET	1.2 %	compare to NPL standard (5 methods) see Table2	-0.3
⁹⁰ Sr	4πβ LS TDCR	0.51 %	4πβ LS CNET	+ 0.09
²⁴¹ Am	4πα LS	0.22 %	$4\pi\alpha\beta(LS)$ -γ(NaI) ACC $4\pi\alpha$ LS (independent) $4\pi\alpha$ LS (independent)	-0.05 -0.01 -0.15
²²⁹ Th	4παβ(LS)-γ(NaI) anticoincidence counting	0.28 %	$4\pi\alpha\beta$ LS CNET $4\pi\alpha\beta$ LS TDCR 2π α proportional counting HPGe photon spectrometry	-0.09 -1.7 -0.09 +2.1

^{*} Values are discrepant, and not considered to have confirmed

63Ni

medium energy pure β

often used for international comparisons

Test LS methods

 $T_{1/2}$ by decay 40+ years

linked to all ⁶³Ni SRM

38 years of ⁶³Ni results

Summary of some recent NIST primary standardizations and comparison to confirmatory measurements.

Nuclide	Method	relative standard uncertainty	Confirmatory Measurement	Difference (%)
⁶³ Ni	4π LS TDCR (NIST)	0.16 %	4πβ LS TDCR (LNHB) 4πβ LS CNET (NIST)	-0.31 -0.77
⁵⁵ Fe (NIST)	4π calorimetry (linked by LS)	0.39 %	4π LS TDCR (Polatom) 4π LS TDCR (LNHB)	-0.87 -0.43
⁵⁵ Fe (BIPM)	4π calorimetry (linked by LS)	0.39 %	weighted mean value of 15 NMI labs	-0.37
²¹⁰ Pb	4παβ LS CNET	1.2 %	$4\pi\alpha\beta(LS)$ -γ(NaI) anticoin. counting 210 Po α spect. (102 a 209 Po tracer) 210 Po α spect. (128 a 209 Po tracer) HPGe photon spect.	+0.7 -3.0 -1.3 +4.7
²⁴¹ Pu	4πβ LS CNET	1.9 %	LS (241 Am ingrowth) $4\pi\beta$ LS TDCR (NIST) $4\pi\beta$ LS TDCR (LNHB)	+1.2 -7.9 * -7.7 *
²¹⁰ Pb	4παβ LS CNET	1.2 %	compare to NPL standard (5 methods) see Table2	-0.3
⁹⁰ Sr	4πβ LS TDCR	0.51 %	4πβ LS CNET	+ 0.09
²⁴¹ Am	4πα LS	0.22 %	$4\pi\alpha$ LS (independent) $4\pi\alpha$ LS (independent)	-0.05 -0.01 -0.15
²²⁹ Th	4παβ(LS)-γ(NaI) anticoincidence counting	0.28 %	$4\pi\alpha\beta$ LS CNET $4\pi\alpha\beta$ LS TDCR 2π α proportional counting HPGe photon spectrometry	-0.09 -1.7 -0.09 +2.1

^{*} Values are discrepant, and not considered to have confirmed

with 2006 result

210Pb

Difficult case

rarely done by metrology labs

different methods used

Comparisons with NPL standard (via PTB too)

²⁰⁶Pb

Need to detect

- •low medium energy β
- •conversion e
- •High energy β
- $\bullet \alpha$

Summary of some recent NIST primary standardizations and comparison to confirmatory measurements.

Nuclide	Method	relative standard uncertainty	Confirmatory Measurement	Difference (%)
⁶³ Ni	4π LS TDCR (NIST)	0.16 %	4πβ LS TDCR (LNHB) 4πβ LS CNET (NIST)	-0.31 -0.77
⁵⁵ Fe (NIST)	4π calorimetry (linked by LS)	0.39 %	4π LS TDCR (Polatom) 4π LS TDCR (LNHB)	-0.87 -0.43
⁵⁵ Fe (BIPM)	4π calorimetry (linked by LS)	0.39 %	weighted mean value of 15 NMI labs	-0.37
²¹⁰ Pb	4παβ LS CNET	1.2 %	$4\pi\alpha\beta(LS)$ -γ(NaI) anticoin. counting 210 Po α spect. (102 a 209 Po tracer) 210 Po α spect. (128 a 209 Po tracer) HPGe photon spect.	+0.7 -3.0 -1.3 +4.7
²⁴¹ Pu	4πβ LS CNET	1.9 %	LS (241 Am ingrowth) $4\pi\beta$ LS TDCR (NIST) $4\pi\beta$ LS TDCR (LNHB)	+1.2 -7.9 * -7.7 *
²¹⁰ Pb	4παβ LS CNET	1.2 %	compare to NPL standard (5 methods) see Table2	-0.3
⁹⁰ Sr	4πβ LS TDCR	0.51 %	4πβ LS CNET	+ 0.09
²⁴¹ Am	4πα LS	0.22 %	$4\pi\alpha\beta(LS)$ - $\gamma(NaI)$ ACC $4\pi\alpha$ LS (independent) $4\pi\alpha$ LS (independent)	-0.05 -0.01 -0.15
²²⁹ Th	4παβ(LS)-γ(NaI) anticoincidence counting	0.28 %	4παβ LS CNET 4παβ LS TDCR 2π α proportional counting HPGe photon spectrometry	-0.09 -1.7 -0.09 +2.1

^{*} Values are discrepant, and not considered to have confirmed

Comparison of the NIST and NPL ²¹⁰Pb standards by five measurement methods.

method	NPL / NIST ratio	relative standard uncertainty	difference
NPL and NIST certified values from primary standardizations	0.037484	1.5 %	
4πγ(NaI)	0.037373	0.56 %	- 0.30 %
HPGe spectrometry.	0.036542	0.71 %	- 2.6 %
4παβ(LS)	0.037249	0.17 %	- 0.63 %
²¹⁰ Po assay (2πα spect.)	0.03736	0.75 %	- 0.33 %
Si(Li) low-energy spectrometry	0.0381	1.9 %	+ 1.6 %

Comparison of the NIST and NPL ²¹⁰Pb standards by five measurement methods.

method	NPL / NIST ratio	relative standard uncertainty
NPL and NIST certified values from primary standardizations	0.037484	1.5 %
4πγ(NaI)	0.037373	0.56 %
HPGe spectrometry.	0.036542	0.71 %
4παβ(LS)	0.037249	0.17 %
²¹⁰ Po assay (2πα spect.)	0.03736	0.75 %
Si(Li) low-energy spectrometry	0.0381	1.9 %

209Po

LINKED

In applications

– use of ²¹⁰Po tracer for ²¹⁰Pb assays

In our standardization measurements

²⁰⁹Po half-life in error by 25 %!!

Result supported by work on ²¹⁰Pb – previous story

15 march 1994
$$R_{\alpha} = (85.42 \pm 0.18) \text{ s}^{-1}\text{g}^{-1}$$

15 November 2005

$$R_{\alpha} = (80.20 \pm 0.22) \text{ s-1g-1}$$

2 point fit gives

$$T_{1/2} = 128 \text{ a}$$

$$U = 5.5 \% (7 a)$$

Not considered a new determination

Collé, et al., *Appl. Radiat. Isot.* **65**, 728 (2007)

241Pu

very low energy β (like 3H)

thought would be easy by LS methods

Wasn't!

Extant problem with method discrepancy

Work planned

Summary of some recent NIST primary standardizations and comparison to confirmatory measurements.

241Pu

very recent LTAC
agrees with
241 Am ingrowth
to ≈ 0.2 %

Nuclide	Method	relative standard uncertainty	Confirmatory Measurement	Difference (%)
⁶³ Ni	4π LS TDCR (NIST)	0.16 %	4πβ LS TDCR (LNHB) 4πβ LS CNET (NIST)	-0.31 -0.77
⁵⁵ Fe (NIST)	4π calorimetry (linked by LS)	0.39 %	4π LS TDCR (Polatom) 4π LS TDCR (LNHB)	-0.87 -0.43
⁵⁵ Fe (BIPM)	4π calorimetry (linked by LS)	0.39 %	weighted mean value of 15 NMI labs	-0.37
²¹⁰ Pb	4παβ LS CNET	1.2 %	$4\pi\alpha\beta(LS)$ -γ(NaI) anticoin. counting 210 Po α spect. (102 a 209 Po tracer) 210 Po α spect. (128 a 209 Po tracer) HPGe photon spect.	+0.7 -3.0 -1.3 +4.7
²⁴¹ Pu	4πβ LS CNET	1.9 %	LS (241 Am ingrowth) $4\pi\beta$ LS TDCR (NIST) $4\pi\beta$ LS TDCR (LNHB)	+1.2 -7.9 * -7.7 *
²¹⁰ Pb	4παβ LS CNET	1.2 %	compare to NPL standard (5 methods) -0.3 see Table2	
⁹⁰ Sr	4πβ LS TDCR	0.51 %	$4\pi\beta$ LS CNET	+ 0.09
²⁴¹ Am	4πα LS	0.22 %	$4\pi\alpha\beta(LS)$ -γ(NaI) ACC -0.0 $4\pi\alpha$ LS (independent) -0.0 $4\pi\alpha$ LS (independent) -0.1	
²²⁹ Th	$4\pi\alpha\beta(LS)$ -γ(NaI) anticoincidence counting	0.28 %	$4\pi\alpha\beta$ LS CNET $4\pi\alpha\beta$ LS TDCR 2π α proportional counting HPGe photon spectrometry	

^{*} Values are discrepant, and not considered to have confirmed

90Sr & 241Am

Both really easy β & pure α cases (near 100% efficiency)

Summary of some recent NIST primary standardizations and comparison to confirmatory measurements.

90Sr

²⁴¹Am

Nuclide	Method	relative standard uncertainty	Confirmatory Measurement	Difference (%)
⁶³ Ni	4π LS TDCR (NIST)	0.16 %	4πβ LS TDCR (LNHB) 4πβ LS CNET (NIST)	-0.31 -0.77
⁵⁵ Fe (NIST)	4π calorimetry (linked by LS)	0.39 %	4π LS TDCR (Polatom) 4π LS TDCR (LNHB)	-0.87 -0.43
⁵⁵ Fe (BIPM)	4π calorimetry (linked by LS)	0.39 %	weighted mean value of 15 NMI labs	-0.37
²¹⁰ Pb	4παβ LS CNET	1.2 %	4παβ(LS)-γ(NaI) anticoin. counting ²¹⁰ Po α spect. (102 a ²⁰⁹ Po tracer) ²¹⁰ Po α spect. (128 a ²⁰⁹ Po tracer) HPGe photon spect.	+0.7 -3.0 -1.3 +4.7
²⁴¹ Pu	4πβ LS CNET	1.9 %	LS (241 Am ingrowth) $4\pi\beta$ LS TDCR (NIST) $4\pi\beta$ LS TDCR (LNHB)	+1.2 -7.9 * -7.7 *
²¹⁰ Pb	4παβ LS CNET	1.2 %	compare to NPL standard (5 methods) see Table2	
⁹⁰ Sr	4πβ LS TDCR	0.51 %	$4\pi\beta$ LS CNET +	
²⁴¹ Am	4πα LS	0.22 %	$4\pi\alpha\beta(LS)$ -γ(NaI) ACC -0.05 $4\pi\alpha$ LS (independent) -0.01 $4\pi\alpha$ LS (independent) -0.15	
²²⁹ Th	$4\pi\alpha\beta(LS)$ -γ(NaI) anticoincidence counting	0.28 %	4παβ LS CNET 4παβ LS TDCR 2π α proportional counting HPGe photon spectrometry	-0.09 -1.7 -0.09 +2.1

^{*} Values are discrepant, and not considered to have confirmed

229Th

hard case with 9 member decay chain two nuclides (4 μs ²¹³Po & 32 ms ²¹⁷At) – resolving time issues ²²⁸Th impurity (8 member chain) requires correction many methods

$$u_c = 0.30 \%$$

- extrapolation (0.2 %)
- ²²⁸Th impurity (0.2 %)

method	Δ (%)	u_c (%)
anticoincidence		0.3
CNET	-0.1	0.7
TDCR	-2.6	0.3
2πα	0.0	1.4
α-spec.	0.0	0.9
1986 SRM	+ 0.3	0.6

Pu

Features of our standardization work

Available "transfer standards" (SRMs, etc.) are based on identified "needs"

Standardized by primary method

Usually at least one confirmatory determination

Establish links to previous calibrations, if possible

Develop & maintain secondary calibrations

Uncertainties (k = 2) typically < 1 %

u (k = 1) few tenths of %

Comparisons with other metrology labs

N.B. — "National Standards" are <u>not artifacts</u> but are our (NIST's) ability to perform primary standardizations with our instruments, procedures, people, etc...

There are **NO"International Standards**" – censuses of equivalent labs doing primary standardizations

Lizbeth Laureano-Perez (NIST)

Ryan Fitzgerald (NIST)

Iisa Outola (NIST)

Dan Golas (NIST)

Brian Zimmerman (NIST)

Philippe Cassette (LNHB, France)

Lena Johansson (NPL, UK)

Leticia Pibida (NIST)

Peter Volkovitsky (NIST)

Lynne King (NIST)

Denis Bergeron (NIST)

Lonnie Cumberland (NIST)

Michelle Hammond (NIST)

Evan Crawford (NIST)

Jerry LaRos (NIST)

Ken Inn (NIST)

Svetlana Nour (NIST)

Bruce Norman (NIST)

.....others (world))

Backup slides only follow