

Lecture 9: Estimation

Lecturer: Jie Fu

EEL 3850

Motivating problem

height of 3rd strolents in paper to FLORIDA pols $E(X) = M_X$

Estimating the average height of 3rd grade students in schools

Average = 51.51 inches

6×4=24 students.

Average = 52.56 inches

$$X_i$$
: ith 3 rd grader's height. $M_X = \overline{B}(X_i)$ $\forall i$
 $M_n = M_{24} = \frac{1}{24} \sum_{i=1}^{24} X_i$

Classical inference

- unknown parameter θ as a deterministic (not random!) but unknown quantity.
 - Average height.

Mx = Average height.

"constant" that we don't know.

- The observation *X* is random and its distribution
 - $p_X(x;\theta)$ if X is discrete
 - $f_X(x;\theta)$ if X is continuous

 $\times i \sim N(M_X, 6_X^2) : \theta : (M_X, 6_X)$

• depends on the value of θ .

parameters used to define the distribution.

B~ Bemoulli (P).

Classical inference

$$\theta \to f_X(x; \theta) \xrightarrow{x_1, x_2, \dots, x_n} \text{Estimator} \to \hat{\theta}$$

$$\underbrace{\hat{\theta}}_{\text{estimated value for } \theta}$$

- Given observations $X = (X_1, ..., X_n)$, an estimator $\widehat{\Theta} = g(X)$ is function of X.
- Thus, $\widehat{\Theta}$ is a <u>random variable</u>.
- Let n be the number of observations, the mean and variance of $\widehat{\Theta}_n$ are denoted $E_{\theta}[\widehat{\Theta}_n]$ and $var_{\theta}[\widehat{\Theta}_n]$, respectively.

Terminology regarding estimators

output of estimator

Random variable (eg, Mn)

• The underlying parameter θ to be estimated is a constant.

• Estimation error: $\widetilde{\Theta}_n = \widehat{\underline{\Theta}}_n - \theta$.

• Bias of the estimator: $b_{\theta}(\widehat{\Theta}_n) = E_{\theta}[\widehat{\Theta}_n] - \theta$, is the expected value of the estimation error. \\

eg.
$$/\mathbb{E}(M_n) - M_X = 0$$

Estimation of the Mean

Suppose that the observations X_1,\ldots,X_n are i.i.d., with an algorithm unknown common mean μ_X .

• $\hat{\mu}_X = \frac{1}{n} \sum_{i=1}^n X_i$ is unbiased estimator
• for any n, the expected value of the average is equal to the true mean.

heights= np.array([121.92, 132.64, 113.31, 97.20, 140.94, 139.04, 115.98, 128.27, 121.84, 97.73])

The average height estimate

average = np.mean(heights)= 122.185

Properties of the Estimator of the mean

- $\hat{\mu}_X = \frac{1}{n} \sum_{i=1}^n X_i$ is unbiased estimator
 - for any n, the expected value of the average is equal to the true mean.

Estimating the variance

Let σ_X^2 denote the variance of the random variables. Then there are two cases that should be considered for estimating the variance.

Known mean: If the mean of the random variables, μ_X , is known. Let the sample-variance estimator for this case be defined by

$$\hat{\sigma_X^2} = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu_X)^2.$$

Estimating the variance

• Let's first determine if the sample variance estimator is biased when the true mean is known: (experiment validate)

Estimating the variance

Known mean: If the mean of the random variables, μ_X , is known. Let the sample-variance estimator for this case be defined by

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{i=1}^N (X_i - \mu_X)^2.$$

Unknown mean: it is natural to replace μ_X with its sample estimate $\hat{\mu}_X$:

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_{i=1}^N (X_i - \hat{\mu}_X)^2.$$

Estimating the varaince

• Let's first determine if the sample variance estimator is biased when we replace the true mean with its sample estimate: (experiment validate)

Estimating the varaince

Known mean: If the mean of the random variables, μ_X , is known. Let the sample-variance estimator for this case be defined by

$$\hat{\sigma_X^2} = \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu_X)^2.$$

Unknown mean: unbiased estimator:

$$\hat{\sigma}_X^2 = \frac{1}{N-1} \sum_{i=1}^N (X_i - \hat{\mu}_X)^2.$$

The change in denominator is often referred to as a *degrees-of-freedom (dof) correction*.

Example

- Suppose we have a sample of student scores from an exam, and we want to estimate the population mean score.
- Sample data: array([84, 78, 71, 74, 60, 76, 50, 86, 67, 82, 89, 93, 79, 72, 78, 76, 71, 85, 86, 52, 61, 63, 92, 71, 80, 60, 76, 81, 57, 88])
- Total 30 samples
- Using the same sample data, we want to estimate the population variance.

Point estimate vs interval estimate

- Instead of estimating a single value, an interval estimate is also used:
- For an unknown parameter

$$\theta \to f_X(x;\theta) \xrightarrow{x_1,x_2,\dots,x_n} \text{Interval Estimator } \to [\hat{\theta}^-,\hat{\theta}^+]$$

An interval contain the unknown parameter with high probability

Confidence intervals (CIs)

- The value of an estimator may not be informative enough
- Let us first fix a desired confidence level, 1α , where α is typically a small number.
- We then replace the point estimator $\widehat{\Theta}_n$ by a lower estimator $\widehat{\Theta}_n^-$ and an upper estimator $\widehat{\Theta}_n^+$, s.t.

$$P(\widehat{\Theta}_n^- \le \theta \le \widehat{\Theta}_n^+) \ge 1 - \alpha$$

for every possible value of θ .

• We call $\left[\widehat{\Theta}_{n}^{-}, \widehat{\Theta}_{n}^{+}\right]$ a $(1 - \alpha)$ confidence interval.

Confidence intervals (CIs)

$$\bullet \hat{\mu}_X = \frac{1}{n} \sum_{i=1}^n X_i$$

•Recall: the observations X_1, \dots, X_n are i.i.d., with an unknown common mean μ_X

$$\hat{\mu}_X \sim \mathcal{N}(\mu_X, \frac{\sigma^2}{n})$$

Recall CLT:

We call $[\hat{\mu}_X^-, \hat{\mu}_X^+]$ a $(1-\alpha)$ confidence interval if

$$P(\hat{\mu}_X^- \le \mu_X \le \hat{\mu}_X^+) > 1 - \alpha$$

Confidence intervals (CIs)

- Suppose $\, \alpha = 0.05 \,$
- Let's compute the 95% confidence interval about the mean of unknown RV using the samples.

Confidence interval for mean estimate with unknown variance

Recall if the variance is unknown, we have an unbiased estimate for the variance

Unknown mean: unbiased estimator:

$$\hat{\sigma_X^2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \hat{\mu}_X)^2.$$

$$\frac{\hat{\mu}_X - \mu_X}{\sigma_X / \sqrt{n}}$$

has a Student's t-distribution with $\nu = n - 1$ degrees of freedom (dof) t_{ν} . (Like a Gaussian, but more spread out!)

Summary

1. Point Estimation for Mean with prior knowledge of the population variance

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

2. Standard Error of the Mean with known population variance (not an estimate but can be computed based on the property of variance.)

$$SE = \frac{\sigma}{\sqrt{n}}$$

3. Point Estimation for Mean without prior knowledge of the population variance

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

4. Point Estimation for Variance without prior knowledge of the population variance

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

summary

Formula to compute confidence interval

For a population mean μ when the sample size is large $(n \geq 30)$, the confidence interval is given by:

$$\left(\hat{\mu}_X - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \quad \hat{\mu}_X + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) \tag{1}$$

where:

- $\hat{\mu}_X = \text{sample mean}$
- σ = population standard deviation (or sample standard deviation if unknown)
- n = sample size
- $z_{\alpha/2}$ = critical value from the standard normal table for a given confidence level