Aula 23 - Multimídia: RTP, RTCP, SIP

Diego Passos

Universidade Federal Fluminense

Redes de Computadores II

Na Última Aula (I)...

- Redes de Distribuição de Conteúdo:
 - Conteúdos replicados em vários servidores.
 - Servidores distribuídos geograficamente.
 - Cada cliente é servidor por bom servidor.
 - Evita:
 - Ponto único de falha.
 - Congestionamento gerado por concentração do tráfego.
 - Caminhos longos para certos clientes.

- Estudo de caso: Netflix.
 - Três tipos de servidores:
 - Registro/pagamento.
 - Navegação de catálogo.
 - Entrega de conteúdo.
 - CDN.
 - Usa streaming adaptativo.
- VoIP:
 - Fortes requisitos de latência.
 - Evitar prejuízo da conversação.
 - Alternância entre fala e silêncio.
 - Em período de fala, pacotes gerados (tipicamente) a cada 20 ms.
 - Pacotes pequenos, overheads significativos.

Na Última Aula (II)...

- VoIP (mais):
 - Perda de pacotes:
 - Por perda **efetiva** do datagrama.
 - Ou simplesmente por atraso excessivo.
 - Certo grau de tolerância, varia com a codificação.
 - Jitter:
 - Dificulta gerência do atraso.
 - Sem jitter, bastaria atraso de reprodução fixo.
 - Com *jitter*, certos pacotes podem expirar (perdidos).
 - Alternativa: atraso de reprodução **adaptativo**.
 - Estimar atraso, média movente.
 - Usar momentos de **silêncio** para alterar atraso de reprodução.
 - Perda de pacotes.
 - Requisitos temporais fortes, **retransmissões inviáveis**.
 - Soluções:
 - FEC 1: inserir **redundância**, **corrigir** erros.
 - FEC 2: transmitir fluxo adicional de baixa qualidade.

• Interleaving: transmitir partes de trechos de forma embaralhada.

Protocolos para Apricações de forma embaralhada.

Real-Time Protocol (RTP)

- RTP especifica estrutura para pacotes que carregam áudio, vídeo.
- RFC 3550.
- Pacotes RTP proveem:
 - Identificação do tipo do payload.
 - Números de sequência.
 - Timestamps.

- RTP roda nos sistemas finais.
- Pacotes encapsulados em segmentos UDP.
- Interoperabilidade: se duas aplicações VoIP rodam sob RTP, elas podem ser capazes de interoperar.

RTP Roda Sobre UDP

- Bibliotecas RTP proveem interface de camada de transporte que estende UDP:
 - Número de porta, endereços IP.
 - Identificação do tipo de payload.
 - Número de sequência.
 - Timestamp.

RTP: Exemplo

- Exemplo: enviar fluxo de voz de 64 kb/s usando codificação PCM sobre RTP.
- Aplicação coleta dados codificados em trechos de 20 ms = 160 bytes.
- Trecho de áudio + cabeçalho RTP formam pacote RTP, encapsulado em segmento UDP.

- Cabeçalho RTP indica tipo de codificação de áudio em cada pacote.
 - Transmissor pode alterar codificação durante a chamada.
- Cabeçalho RTP também contém números de sequência, *timestamps*.

RTP e QoS

- RTP **não** provê qualquer mecanismo para garantir prazos de entrega dos pacotes ou qualquer outro requisito de QoS.
- Encapsulamento RTP só é visto nos sistemas finais (i.e., **não** é visto pelos roteadores intermediários).
 - Roteadores proveem serviço de melhor esforço.
 - Não há qualquer esforço especial para garantir entrega dos pacotes no prazo.
 - Nem em ordem.
 - Alias, nem sequer a entrega é garantida!

Cabeçalho RTP (I)

- Payload type (7 bits): indica o tipo de codificação em uso.
 - Se o transmissor altera codificação, receptor é informado por este campo.
 - Tipo 0: PCM μlaw, 64 kb/s.
 - Tipo 3: GSM, 13 kb/s.
 - Tipo 7: LPC, 2.4 kb/s.
 - Tipo 26: MJPEG.
 - Tipo 31: H.261.
 - Tipo 33: MPEG2.
- Sequence Number (16 bits): incrementado em 1 a cada novo pacote RTP.
 - Detecção de pacotes perdidos.

Cabeçalho RTP (II)

- Timestamp (32 bits): momento em que primeiro byte deste trecho foi amostrado.
 - Para áudio, relógio do *timestamp* é incrementado em uma unidade a cada novo período de amostragem.
 - e.g., a cada 125 μs para uma frequência de 8 KHz.
 - Se a aplicação gera trechos de 160 amostras, timestamp é aumentado em 160 unidades por pacote RTP **durante período de atividade**.
 - Durante períodos de silêncio, relógio do timestamp continua sendo incrementado normalmente.
- SSRC (32 bits): identifica a fonte do fluxo RTP. Cada fluxo em uma seção RTP tem um SSRC único.
 - Exemplo: um fluxo de áudio e outro de vídeo.

Real-Time Control Protocol (RTCP)

- Trabalha em conjunto com o RTP.
- Cada participante em uma sessão RTP periodicamente envia pacotes de controle RTCP para todos os outros participantes.
- Cada pacote RTCP contém relatórios do transmissor e/ou receptor.
 - Reportam estatísticas úteis para a aplicação: #
 de pacotes enviados, # de pacotes perdidos,
 jitter.
- Feedback usado para controlar o desempenho.
 - Transmissor pode alterar transmissão com base neste feedback.

RTCP: Vários Transmissores Multicast

- Cada sessão RTP: tipicamente um único endereço multicast; todos os pacotes RTP/RTCP da sessão usam o endereço multicast.
- Pacotes RTP, RTCP são diferenciados através dos números de porta.
- Para limitar o tráfego, cada participante reduz o tráfego RTCP a medida que o número de participantes aumenta.

RTCP: Tipos de Pacotes

- Pacotes de relatório do receptor:
 - Fração de pacotes perdidos.
 - Último número de sequência.
 - Jitter médio.
- Pacotes de relatório do transmissor:
 - SSRC do fluxo RTP.
 - Tempo atual.
 - Número de pacotes enviados.
 - Número de bytes enviados.

- Pacotes de descrição da fonte:
 - Endereço de e-mail do transmissor.
 - Nome do transmissor.
 - SSRC do fluxo RTP associado.
- Provê mapeamento entre SSRC e o nome do usuário/host.

RTCP: Sincronização de Fluxos

- RTCP pode sincronizar vários fluxos de mídia diferentes em uma mesma sessão RTP.
- *e.g.*, aplicação de videoconferência: cada transmissor gera um fluxo de áudio e um fluxo de vídeo.
- Timestamps nos pacotes RTP associados ao relógio de amostragem do áudio/vídeo.
 - Não ao tempo de parede.

- Cada pacote de relatório do transmissor contém (para o pacote mais recente gerado no fluxo correspondente):
 - Timestamp do pacote RTP.
 - Tempo de parede do momento de geração do pacote.
- Receptores casam informações para sincronizar reprodução de áudio e vídeo.

RTCP: Limitação da Banda Consumida

- RTCP tenta limitar seu tráfego a 5% da banda da sessão.
 - Exemplo: um transmissor, enviando vídeo a 2 Mb/s.
 - RTCP tenta limitar seu tráfego de controle a 100 kb/s.
 - Limite é dividido na proporção de 75% para receptores e 25% para transmissor.

- Os 75 kb/s são igualmente divididos pelos receptores.
 - Com R receptores, cada um pode gerar tráfego RTCP a 75/R kb/s.
- Transmissor pode enviar tráfego RTCP a taxa de 25 kb/s.
- Participantes determinam período de transmissão dos pacotes RTCP calculando tamanho médio dos pacotes e dividindo pela taxa alocada.

SIP: Session Initiation Protocol [RFC 3261]

Visão a longo prazo:

- Todas as chamadas de telefone, videoconferências acontecem via Internet.
- Pessoas identificadas por nome ou endereço de e-mail, ao invés de números de telefone.
- É possível alcançar o destinatário (se ele assim deseja), independentemente de sua localização e de qual dispositivo IP ele usa no momento.

Serviços SIP

- SIP provê mecanismos para configuração de chamadas:
 - Para que a origem permita ao destinatário saber que deseja estabelecer uma chamada.
 - Para que origem e destinatário concordem sobre o tipo de mídia e codificação.
 - Para terminar a chamada.

- Determina o endereço IP atual do destinatário.
 - Mapeia identificador mnemônico ao IP atual.
- Gerenciamento de chamada:
 - Adição de novos fluxos de mídia durante a chamada.
 - Alteração da codificação durante a chamada.
 - Convite a outros usuários.
 - Transferência de chamadas, chamada em espera.

Exemplo: Configuração de Chamada para Endereço IP Conhecido

- Mensagem SIP de convite gerada por Alice indica o seu número de porta, endereço IP, codificação preferencial (PCM μlaw).
- A mensagem 200 OK gerada por Bob indica o seu número de porta, endereço IP, codificação preferencial (GSM).
- Mensagens SIP podem ser enviadas por TCP ou UDP; no exemplo, é usado UDP.
- Número de porta padrão do SIP é a 5060.

Configuração de Chamada (Mais)

- Negociação de codificador:
 - Suponha que Bob não possua o codificador PCM µlaw.
 - Bob responderá com a mensagem 606 Not Acceptable Reply, listando suas codificações suportadas.
 - Alice pode, então, enviar uma nova mensagem de convite, anunciando uma codificação diferente.

- Rejeitando uma chamada:
 - Bob pode rejeitar chamadas com respostas "busy", "gone", "payment required", "forbidden".
- Mídia pode ser transmitida via RTP ou algum outro protocolo.

Exemplo de uma Mensagem SIP

INVITE sip:bob@domain.com SIP/2.0

Via: SIP/2.0/UDP 167.180.112.24

From: sip:alice@hereway.com

To: sip:bob@domain.com

Call-ID: a2e3a@pigeon.hereway.com

Content-Type: application/sdp

Content-Length: 885

c=IN IP4 167.180.112.24 m=audio 38060 RTP/AVP 0

- Notas:
 - Sintaxe de mensagem HTTP.
 - sdp = Session Description Protocol.
 - Campo Call-ID é único para cada chamada.

- Aqui, n\u00e3o conhecemos o endere\u00e7o IP de Bob.
 - Servidores SIP intermediários são necessários.
- Alice envia e recebe mensagens SIP usando a porta padrão 5060.
- Alice especifica no cabeçalho que o cliente SIP envia e recebe mensagens sobre UDP.

Tradução de Nomes, Localização de Usuários

- Origem deseja chamar destinatário, mas conhece apenas o nome ou e-mail.
- Precisa obter endereço IP do host atual do destinatário.
 - Mobilidade.
 - DHCP.
 - Usuário possui vários dispositivos (PC, smartphone, ...).

- Resultado pode ser baseado em:
 - Horário do dia (trabalho, casa).
 - Origem da chamada (não quer o chefe ligando para a sua casa).
 - Status do destinatário (chamadas podem ir para a secretária eletrônica, quando destinatário já está em outra ligação).

Registrador SIP

- Uma das funcionalidades de um servidor SIP: registrador.
 - Quando Bob inicia seu cliente SIP, cliente envia mensagem de registro para o servidor de registro de Bob.
- Mensagem de registro:

REGISTER sip:domain.com SIP/2.0

Via: SIP/2.0/UDP 193.64.210.89

From: sip:bob@domain.com

To: sip:bob@domain.com

Expires: 3600

Proxy SIP

- Outra função do servidor SIP: proxy.
- Alice envia mensagem de convite ao seu servidor proxy.
 - Contém endereço sip:bob@domain.com.
 - Proxy é responsável por rotear mensagens SIP para o destinatário, possivelmente através de outros proxies.
- Bob envia resposta de volta através da mesma sequência de proxies SIP.
- Proxy retorna a resposta de Bob para Alice.
 - Contém o endereço IP de Bob.
- Proxy SIP é análogo a um DNS local mais o estabelecimento de uma conexão TCP.

Exemplo do Protocolo SIP: jim@umass.edu Chama keith@poly.edu

Comparação com o H.323

- H.323: outro protocolo de sinalização para multimídia interativa, em tempo real.
- H.323: solução completa, integrada, composta de vários protocolos conferência multimídia: sinalização, registro, controle de admissão, transporte, codificação.
- SIP: componente único. Funciona em conjunto com RTP, mas não é mandatório. Pode ser combinado com outros protocolos, serviços.

- H.323 vem da ITU (telefonia).
- SIP vem do IETF: empresta vários conceitos do HTTP.
 - SIP tem "cara" de Web.
 - H.323 tem "cara" de telefonia.
- SIP usa o princípio KISS: Keep It Simple Stupid.

Resumo da Aula...

- RTP: Real-Time Protocol.
 - Define estrutura de pacote de áudio, vídeo.
 - Timestamp, # de sequência, codificação, ...
 - Roda **sobre UDP**.
 - Padrão, permite **interoperabilidade**.
 - Não provê garantias de entrega.
- RTCP: Real-Time Control Protocol.
 - Trabalha em conjunto com o RTP.
 - Pacotes de controle são enviados periodicamente.
 - Transmissores e receptores.
 - Estatísticas, informações ajudam em sincronização, adaptação.

- SIP: Session Initiation Protocol.
 - Configuração de chamadas.
 - Localização do destinatário.
 - Acordo sobre codificações.
 - **Gerenciamento** de chamadas.
 - Adição de **novos fluxos**.
 - Alteração de codificação.
 - Convide a novos usuários.
 - **Transferência** de chamadas.
 - Chamada em espera.
 - Utiliza servidores para:
 - Proxy.
 - Registro de localização de usuários.
 - Simples, mensagens de texto, filosofias da web.

Leitura e Exercícios Sugeridos

- RTP, RTCP, SIP, H.323:
 - Páginas 453 a 464 do Kurose (Seção 7.4).
 - Exercício de fixação 10, 11 e 12 do capítulo 7 do Kurose.
 - Problemas 15 a 20 do capítulo 7 do Kurose.

Próxima Aula...

- Última aula sobre multimídia.
- Discutiremos como a rede provê (ou poderia prover) suporte às aplicações.
 - *i.e.*, dar garantias de **qualidade de serviço**.
 - e.g., atraso máximo, banda mínima, ...