

Regelungstechnik

für BEI4, BMEI4 und IBT

Prof. Dr. B. Wagner

Bild 2-17: Förderband als Beispiel für ein PTt-Glied

Kap. 2, Teil b: D-, I-, T_t-Systeme Allgemeine Zusammenhang Übertragungsfunktion ⇔ Sprungantwort

Wiederholung und Hinführung

Bisher in Kapitel 2:

Systemtypen (P, PI, PT2, IT3, PDT3, ...)?

Die Familie der Proportionalsysteme (P, PT₁, PT₂, PT_n)

Schwingfähige und nicht schwingfähige PT₂-Systeme

Die Sprungantwort von PT₁- und PT₂-Systemen

Ablesen der Parameter in Standardform (PT₁: V und T; PT₂ schwingfähig: V, ω_0 und D)

$b_0 = y(t \to \infty)$ 1 $0 \quad T_{an} \quad T_{max}$ t

Bild 2-6: Sprungantwort eines schwingfähigen PT₂-Glieds

In dieser Lehreinheit:

Integrierende, differenzierende und Totzeitsysteme

Was man so alles aus der Sprungantwort ablesen kann ...

Die Summenzeitkonstante von (nicht schwingfähigen) PT_n-Systemen

Beschreibung:

Sprungantwort:

Ableitungs-/Geschwindigkeitsbestimmung

Bild 2-14: RC-Hochpass als Beispiel für ein DT₁-Glied

Beschreibung:

Sprungantwort:

Totzeit- / Laufzeitsysteme (PT_t)

Transportvorgänge / Laufzeit

Bild 2-17: Förderband als Beispiel für ein PTt-Glied

Beschreibung:

Sprungantwort:

Was man einer Sprungantwort ansieht ...

Eigenschaften einer Sprungantwort

- Anfangswert
- Endwert
- Anfangssteigung
- Harmonischer Anteil
- Überschwinger
- Übergangs-/Einschwingdauer

Eigenschaften einer Übertragungsfunktion

- Zählergrad & Nennergrad ⇔ Differenzordnung = Nennergrad Zählergrad
- Anzahl Pole / Nullstellen bei Null
- Zahlenwerte von Koeffizienten
- Realteil / Imaginärteil von Polen

$$G(s) = \frac{3s^2 - 2s + 2}{3s^2 + 0.6s + 1}$$

Anfangs- / Endwert- und Differentiationssätze der Laplace-Transformation

Anfangswert der (Einheits-)Sprungantwort

Endwert der Sprungantwort

$$G(s) = \frac{b_n s^n + b_{n-1} s^{n-1} + ... + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + ... + a_1 s + a_0} \text{ mit } a_n \neq 0$$

Anfangswertsatz: $\lim_{t\to 0+} a(t) = \lim_{s\to\infty} s \cdot A(s)$

Endwertsatz: $\lim_{t\to\infty} a(t) = \lim_{s\to 0} s \cdot A(s)$

Differentiations satz: $\mathcal{L}\left\{\frac{du(t)}{dt}\cdot\sigma(t)\right\} = s\cdot U(s) - u(t=0+)$

Anfangssteigung der Sprungantwort

Allgemeine Formel:

1. Anfangssteigung der Sprungantwort bei $b_n \neq 0$

2. Anfangssteigung der Sprungantwort bei $b_n = 0$ und $b_{n-1} \neq 0$

3. Anfangssteigung der Sprungantwort bei $b_n = 0$ und $b_{n-1} = 0$

$$G(s) = \frac{b_n s^n + b_{n-1} s^{n-1} + ... + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + ... + a_1 s + a_0} \text{ mit } a_n \neq 0$$

Anfangswertsatz: $\lim_{t\to 0+} a(t) = \lim_{s\to\infty} s \cdot A(s)$

Endwertsatz: $\lim_{t\to\infty} a(t) = \lim_{s\to 0} s \cdot A(s)$

Differentiations satz: $\mathcal{L}\left\{\frac{du(t)}{dt}\cdot\sigma(t)\right\} = s\cdot U(s) - u(t=0+)$

Beispiel
$$G(s) = \frac{5s+2}{6s^2+2s+0.7}$$

$$b_2 = \dots \quad b_1 = \dots \quad b_0 = \dots \quad a_2 = \dots \quad a_1 = \dots \quad a_0 = \dots$$

⇒ Anfangswert der Sprungantwort

⇒ Endwert der Sprungantwort

⇒ Sprungfähigkeit bei t = 0

⇒ Knick bei t = 0 mit Steigung ...

Einige Bilder zum Zusammenhang Sprungantwort ⇔ Übertragungsfunktion

Endlicher Endwert von a(t) ungleich Null System hat P-Anteil, aber keinen I-Anteil Endwert von a(t) = G(0) = 2

$$G(s) = \frac{2}{1+3s}$$

$$\dot{a}(0_{+}) = \frac{\left(b_{n-1} - b_{n}a_{n-1} / a_{n}\right)}{a_{n}}.$$

Anfangswert = $0 \Leftrightarrow Differenzordnung > 0 \Leftrightarrow nicht sprungfähig$ Knick von a(t) bei t= $0 \Leftrightarrow Differenzordnung = 1 \Leftrightarrow Zählergrad = Nennergrad - 1$ $Anfangssteigung = <math>\dot{a}(0_+) = 2/3$

Endlicher Endwert von a(t) ungleich Null System hat P-Anteil, aber keinen I-Anteil

 $a(0) \neq 0 \Leftrightarrow$ sprungfähig \Leftrightarrow Differenzordnung = $0 \Leftrightarrow$ Zählergrad = Nennergrad Anfangswert = $G(\infty) = 1,5/3 = 0,5;$ Anfangssteigung nach Sprung = $\dot{a}(0_+) = 0,5$

Einige Bilder zum Zusammenhang Sprungantwort ⇔ Übertragungsfunktion

$$G(s) = \frac{5s}{1+3s}$$

Endwert = 0 ⇔ kein P- und kein I-Anteil Differenzierendes Grundverhalten Endwert von a(t) = G(0) = 0

2 Pole, keine Nullstellen ⇔ PT2 Differenzordnung r = 2Kein Überschwingen, da reelle Pole (bei -1)

$$G(s) = \frac{1}{(1+s)^2}$$

2 Pole, eine Nullstelle⇔ PDT2 Differenzordnung r = 1Kein Überschwingen, da reelle Pole und Nullstelle links der Pole liegt!

$$G(s) = \frac{1+0.5s}{(1+s)^2}$$

a(t) hat Knick bei t=0 ⇔ Differenzordnung = 1 ⇔ Zählergrad = Nennergrad -1 Anfangssteigung = 0,5

2 Pole, eine Nullstelle⇔ PDT2

Über"schwingen" (nicht periodisch!) da zwar reelle Pole, aber Nullstelle rechts der Pole!

a(t) hat Knick bei t=0 ⇔ Differenzordnung = 1 ⇔ Zählergrad = Nennergrad -1 ⇔ kann kein PT2 sein! Anfangssteigung = 2

a(t) hat Knick bei t=0 ⇔ Differenzordnung = 1 ⇔ Zählergrad = Nennergrad -1 Negative Anfangssteigung = -2

Noch ein quantitativer Trick: Die "Summenzeitkonstante" eines nicht schwingfähigen PTn-Systems

Beispiel aus der Projektarbeit "Temperaturregelung einer Brauanlage" (Kraus, Köhler, Schwarzkopf, 2016)

Übertragungsfunktion:

$$G_s(s) = \frac{1,54}{(8643,04s+1)(173,97s+1)(47s+1)}$$

groß klein klein

zsmfassen

--> kleine für Reglerentwicklung Zeitkonstanten:

- ⇒ "große" und "kleine" Zeitkonstanten
- \Rightarrow Zusammenfassen **der kleinen** Zeitkonstanten \Rightarrow T_{σ} Näherung für Reglerentwicklung (Kap. 7)
- ⇒ Zusammenfassen **aller** Zeitkonstanten Abschätzung der Einschwingdauer

$$\Rightarrow \mathsf{T}_{\Sigma}$$

Summe aller Zeitkonstanten x 3-5 = Einschwingdauer

Einschwingdauerabschätzung mit der Summenzeitkonstante T_{Σ} :

Aus dem Skript, Kap. 4.3:

$$G_{S}(s) = \frac{V_{S}}{(1+sT_{1})(1+sT_{2})(1+sT_{3})...(1+sT_{n})} = \frac{V_{S}}{1+s\underbrace{(T_{1}+T_{2}+T_{3}+\cdots+T_{n})}_{Summen - wird vernachlässigt}} \approx \frac{V_{S}}{1+sT_{\Sigma}}$$

$$\underbrace{Summen - wird vernachlässigt}_{zeitkonstante T_{\Sigma}}$$
(da es sich um Einschw

Abschätzung der Einschwingdauer eines PT_n -Systems anhand von T_{Σ} :

(da es sich um Einschwingdauer handelt und die weiteren Terme für langfristiges Verhalten verantwortlich sind)

... liefert gute Näherung bei nicht schwingfähigen bzw. nicht zu schwach gedämpften schwingfähigen Systemen

Beispiel 1:
$$G_s(s) = \frac{1,54}{(8643,04s+1)(173,97s+1)(47s+1)}$$

Beispiel 2:
$$G_S(s) = \frac{3}{as^2 + 7s + 2} = \frac{1,5}{\frac{a}{2}s^2 + 3,5s + 1} \approx \frac{1,5}{3,5s + 1}$$

Einschwingdauerabschätzung mit der Summenzeitkonstante T_{Σ} :

Reihenschaltung von n PT1-Blöcken => PTn – System Im Beispiel identische Zeitkonstanten

$$G(s) = \frac{1}{(sT+1)^n} mit T = \frac{T_{\Sigma}}{n}$$

Auslaufen aus Nullpunkt wird bei höherer Anzahl von Polen flacher

Wie geht es weiter?

- ⇒ Übungsaufgaben 2.3 ... zum Stoff dieser Lehreinheit
- ⇒ In den nächsten beiden Lehreinheiten:
 - ⇒ Frequenzgänge
 - ⇒ Bode-Diagramm und (Nyquist-) Ortskurven für einige Systeme (PT₁, PT₂, PD, I, D, PTt)
 - ⇒ Konstruktion von Bode-Diagrammen für beliebige Systeme Pl²DT₄T_t
 - ⇒ Kapitel 3 im Skript