Lezione del 11 Dicembre del Prof. Frigerio

Osservazione 1. Con un abuso, notazionale, d'ora in poi indicheremo con $\alpha \star \beta \star \gamma$ il cammino $(\alpha \star \beta) \star \gamma$ o il cammino $\alpha \star (\beta \star \gamma)$, il che non crea problemi a meno di riparametrazione, dunque a meno di omotopie di cammini, stessa convenzione per giunzioni multiple

Lemma 0.1. 1_a è l'elemento neutro

Dimostrazione. $1_a \star \alpha \in \alpha \star 1_a$ sono riparametrazione di $\alpha \forall \alpha \in \Omega(a, a)$

$$[1_a] \cdot [\alpha] = [1_a \star \alpha] = [\alpha] = [\alpha \star 1_a] = [\alpha] \cdot [1_a]$$

Lemma 0.2. Sia $\alpha \in \Omega(a,a)$ allora $\overline{\alpha}$ è l'inverso di α

Dimostrazione. Mostriamo che $\alpha \star \overline{\alpha} \sim 1_a$.

$$H(t,s) = \begin{cases} \alpha(2t) \text{ se } t \leq \frac{s}{2} \\ \alpha(s) \text{ se } \frac{s}{2} \leq t \leq 1 - \frac{s}{2} \\ \overline{\alpha}(2t - 1) \text{ se } t > 1 - \frac{s}{2} \end{cases}$$

In modo analogo si prova che $\overline{\alpha} \star \alpha \sim 1_a$

Teorema 0.3. Abbiamo dimostrato che $\pi_1(X, a)$ dotato dell'operazione $[\alpha] \cdot [\beta] := [\alpha \star \beta]$ è un gruppo.

Tale gruppo prende il nome di gruppo fondamentale

Osservazione 2. D'ora in avanti, se non diversamente esplicitato, assumiamo X connesso per archi (in quanto se Y è la componente connnessa per archi di a in X allora $\pi_1(X, a) \cong \pi_1(Y, a)$)

Definizione 0.1. Siano $a, b \in X$ e sia $\gamma \in \Omega(a, b)$.

Poniamo

$$\gamma_{\sharp}: \pi_1(X, a) \to \pi_1(X, b) \qquad \gamma_{\sharp}([\alpha]) = [\overline{\gamma} \star \alpha \star \gamma]$$

Osservazione3. Osserviamo che γ_{\sharp} è ben definita.

$$\alpha \sim \beta \quad \Rightarrow \quad \overline{\gamma} \star \alpha \sim \overline{\gamma} \star \beta \quad \Rightarrow \qquad \overline{\gamma} \star \alpha \star \gamma \sim \overline{\gamma} \star \beta \star \gamma$$

Teorema 0.4. γ_{\sharp} è un isomorfismo di gruppi

Dimostrazione. Mostriamo che è un omomorfismo di gruppi

$$\gamma_{\sharp}([\alpha] \cdot [\beta]) = \gamma_{\sharp}([\alpha \star \beta]) = [\overline{\gamma} \star \alpha \star \beta \star \gamma] = [\gamma \star \alpha \star (\gamma \star \overline{\gamma}) \star \beta] = [(\overline{\gamma} \star \alpha \star \gamma) \star (\overline{\gamma} \star \beta \star \gamma)] = \gamma_{\sharp}([\alpha]) \cdot \gamma_{\sharp}([\beta])$$

 $\overline{\gamma}_{\sharp}$ è l'inversa di γ_{\sharp} infatti

$$\overline{\gamma}_{\sharp}\left(\gamma_{\sharp}([\alpha])\right) = \overline{\gamma}_{\sharp}\left(\left[\overline{\gamma}\star\alpha\star\gamma\right]\right) = \left[\left(\overline{\overline{\gamma}}\star\gamma\right)\star\alpha\star\left(\gamma\star\overline{\gamma}\right)\right] = \left[1_{a}\star\alpha\star1_{a}\right] = \left[\alpha\right]$$

Analogamente si mostra che vale $\gamma_{\sharp} \left(\overline{\gamma}_{\sharp} ([\beta]) \right) = [\beta]$

Corollario 0.5. Il tipo di isomorfismo trovato precedentemente non dipende da a, per cui a volte si parla di "gruppo fondamentale di X" e lo si denota con $\pi_1(X)$

Definizione 0.2.

$$\Omega(S^1,a) = \{ \gamma: \, S^1 \to X \text{ con } \gamma(1) = a \}$$

dove $S^1 \subseteq \mathbb{C}$ da cui $1 \in S^1$ è $(1,0) \in \mathbb{R}^2$

Esiste una bigezione canonica tra $\Omega(a, a)$ e $\Omega(S^1, a)$. Se $\alpha \in \Omega(a, a)$ poichè $\alpha(0) = \alpha(1)$, α definisce

$$\hat{\alpha}: \frac{[0,1]}{\{0,1\}} \to X$$

continua.

Identifichiamo $\frac{[0,1]}{\{0,1\}}$ con S^1 $(t \to e^{2\pi i t})$ da cui

$$\hat{\alpha}: S^1 \to X$$

 $e\hat{\alpha}(1) = a$.

L'invero di $\alpha \to \hat{\alpha} e \alpha(t) = \hat{\alpha} (e^{2\pi i t})$

Lemma 0.6. Sia $Q = [0,1] \times [0,1]$ e $C = \{s = 1\} \cup \{t = 0\} \cup \{t = 1\}$ (t, s sono le coordinate di Q)

$$\frac{Q}{C} \cong D^2$$

tramite un omeomorfismo che manda [t,0] in $e^{2\pi it}$

Proposizione 0.7. $\alpha \in Omega(a, a)$

 $[\alpha] = 1 \quad \Leftrightarrow \quad \hat{\alpha} \text{ si estende in mondo continuo a } D^2$

 $Dimostrazione. \Rightarrow se \alpha \sim 1_a$ allora esiste

$$H:\,Q\to X\quad H(t,0)=\alpha(t)\,\,{\rm e}\,\,H(C)=\{a\}$$

H definisce per passaggio al quoziente

$$\tilde{H}: \frac{Q}{C} \to X$$

e tramite l'identificazione del lemma precedente otteniamo

$$\tilde{H}: D^2 \to X$$

Osserviamo che si ha $\tilde{H}_{|S^1}=\hat{\alpha}$ dunque $\hat{\alpha}$ si estende a D^2

 \Leftarrow Se $\hat{\alpha}$ si estende a $f: D^2 \to X$.

La mappa $H:\,Q\to X$ data da $H=f\circ\pi$ ($\pi:Q\to \frac{Q}{C}=D^2$) da un'omotopia a estremi fissi tra α e 1_a

Corollario 0.8. Sia $P \subseteq \mathbb{R}^2$ un poligono convesso con lati l_1, \dots, l_n parametrizzati da φ_i : $[0,1] \to l_i$ e sia $\theta : \partial P \to X$ e poniamo $\alpha_i = \theta \circ \varphi_i$

$$\alpha_1 \star cdots \star \alpha_n \sim 1_{\alpha_1(0)} \quad \Leftrightarrow \quad \theta \text{ si estende in modo continuo a } P$$

Dimostrazione. Esiste un omeomorfismo $f:P\to D^2$ con $f(\partial P)=S^1$ per cui la tesi segue da quanto già visto