Understanding Experimental Data

Chapter 20

Understanding Data

- Before we can utilize data for relations we must first understand the data itself
 - What are the characteristics of the data
 - Is it continuous or discrete?
 - Does it cluster or continue to trend?
 - Do two or more variables seem to be related
 - What is the scale?
 - What is the baseline?
 - Visualization is important!

What is the tallest mountain in the world?

How do you measure that?

http://www.geologyin.com/2017/07/mount-everest-is-not-tallest-mountain.html

Experiment #1 – Spring has sprung

- In 1676 English physicist Robert Hooke formulated a law of elasticity
 - Ut tensio, sic vis
 - As the tension, so the extension!
 - F = -kx
 - *k* is **Spring constant**
 - Unit the spring reaches an elastic limit

Determining k

- Not a universal constant
- Constant for a spring
 - Slinky and motorcycle springs have different ks
 - All Slinkies have the same *k*

• *k* must be calculated for a spring

Taking measurements

- Test a variety of inputs
- Measure the outcomes

Calculating the Spring Constant (k)

•
$$F = -kx$$

•
$$k = -\frac{F}{x}$$

•
$$F = ma$$

•
$$a = g = \frac{9.81m}{s^2}$$

$$\bullet \ k = -\frac{m * {9.81m}/_{s^2}}{x}$$

- m is the mass hung on the spring
- x is the distance traveled

Linear regression

- Hooke's Law tells us that Force and Mass are linearly related
- We should be able to fit a straight line to the data
- Define an objective function
 - Determine the "goodness" of fit
 - Minimize the error (optimization problem chapter 14)

Least Squares

- Most commonly used objective function
- $\sum_{i=1}^{len(observed)-1} (observed[i] predicted[i])^2$
- We need the same number of predictions and observations
 - Squaring emphasizes large differences
 - Squaring washes out sign differences
- How do we make the predictions?

Numpy and linear regression

- polyfit() performs our curve fitting
 - Arrays for x and y values
 - In our case, measured distances and calculated forces
 - The degree of the polynomial
 - Returns coefficients
- polyval() then applies a fit to a set of values
 - Coefficients
 - Set of values
 - Returns predicted values

Experiment #2 – Behavior of Projectiles

Which model fits better

- Fit gives us a function that relates an independent variable to a dependent variable
- What were they in our examples?
- Goodness of fit tells us how good our predictions are
- Linear regression minimizes Mean Square Error (MSE)

Linear MSE: 616.381680147 Quadratic MSE: 8.93245704374

• Is 8.932 good?

Coefficient of Determination \mathbb{R}^2

We need to normalize MSE

•
$$R^2 = 1 - \frac{\sum_i (y_i - p_i)^2}{\sum_i (y_i - \mu)^2}$$

• Specific to linear regression

- $R^2 = 1$ gives a perfect fit
- $R^2 = 0$ means there is absolutely no fit

Using a computational model

- How fast is our projectile moving when it hits the ground?
 - Distance is predicted by $ax^2 + bx + c$
 - Maximum height (peak altitude) is reached at the midpoint
 - At that time momentum is overcome by gravity
 - So, at the midpoint the projectile falls with an acceleration of $9.81 \, m/_{s^2}$
 - Peak altitude is $aMidPoint^2 + bMidPoint + c$
 - Time to fall from peak altitude $\sqrt{(2*peak \ altitude)}/g$
 - Vertical velocity at time of impact = g*t
 - Horizontal velocity = t / distance

Fitting exponential Data

Discussed in code review

When we can't measure

- Collect data
- Divide onto training and test sets

Summary

- We can use linear regression to fit a curve to data
 - Mapping a dependent variable to an independent variable
- The fit can be used to predict additional values
- R^2 can be used to evaluate a model
- We need to be cautious about overfitting the data
 - Remember the system we are modeling
- Choose complexity based on
 - Theory about the data
 - Cross validation
 - KISS