

Hierarchical modeling of annual rainfall data with spatial covariates

STA 702 Fa24 Course Project

Arijit Dey

Department of Statistical Science

Duke University

November 26, 2024

Data Set

Data set

■ Y_{ij} ; i = 1901, ..., 2022 and j = 1, ..., 357. Annual rainfall at j-th location in i-th year.

Data Set

Data set

■ Y_{ij} ; i = 1901, ..., 2022 and j = 1, ..., 357. Annual rainfall at j-th location in i-th year.

Initial Models EDA Model Description MCMC Diagnostistics Prediction

Data Set

Data set

■ Y_{ij} ; $i = 1901, \dots, 2022$ and $j = 1, \dots, 357$. Annual rainfall at j-th location in i-th year.

Hard to model as time series.

Initial Models

Simple Linear Regression

F.i is the fitted regression line with time variable taken up to i-th order

Initial Models EDA Model Description MCMC Diagnostistics Prediction

Initial Models

Simple Linear Regression

Basis Spline Regression

- Fitted Line - Ovserved Data

ta set Initial Models EDA Model Description MCMC Diagnostistics Prediction

Initial Models

Simple Linear Regression

Basis Spline Regression

Fitted Line — Ovserved Data

Gaussian Process

ata set Initial Models EDA Model Description MCMC Diagnostistics Prediction

ata set Initial Models EDA Model Description MCMC Diagnostistics Prediction

set Initial Models EDA Model Description MCMC Diagnostistics Prediction

ta set Initial Models EDA Model Description MCMC Diagnostistics Prediction

Model Description

■ Model:

For
$$i=1,\ldots,T$$
, and $j=1,\ldots,S$,
$$Y_{ij}=\beta_{j1}\bar{Y}_{ij,1}+\beta_{j2}\bar{Y}_{ij,2}+\beta_{j3}\bar{Y}_{i,1}+\beta_{j4}\bar{Y}_{i,2}+\epsilon_{ij}.$$
 $\Rightarrow Y_{ij}=\boldsymbol{x}_{j}^{T}\beta_{j}+\epsilon_{ij}, \text{ where } \epsilon_{ij}\overset{\text{iid}}{\sim}N(0,\sigma^{2}).$ Here $\boldsymbol{x}_{j}^{T}=[\bar{Y}_{ij,1},\bar{Y}_{ij,2},\bar{Y}_{i,1},\bar{Y}_{i,2}]'$ and $\beta_{j}=[\beta_{j1},\ldots,\beta_{j4}]'.$ $\beta_{1},\ldots,\beta_{S}\overset{\text{iid}}{\sim}N_{4}(\theta,\Sigma)$

Model Description

■ Model:

For
$$i=1,\ldots,T$$
, and $j=1,\ldots,S$,
$$Y_{ij}=\beta_{j1}\bar{Y}_{ij,1}+\beta_{j2}\bar{Y}_{ij,2}+\beta_{j3}\bar{Y}_{i,1}+\beta_{j4}\bar{Y}_{i,2}+\epsilon_{ij}.$$

$$\Rightarrow Y_{ij}=\boldsymbol{x}_{j}^{T}\beta_{j}+\epsilon_{ij}, \text{ where } \epsilon_{ij}\overset{\text{iid}}{\sim}N(0,\sigma^{2}).$$
 Here $\boldsymbol{x}_{j}^{T}=[\bar{Y}_{ij,1},\bar{Y}_{ij,2},\bar{Y}_{i,1},\bar{Y}_{i,2}]'$ and $\beta_{j}=[\beta_{j1},\ldots,\beta_{j4}]'.$
$$\beta_{1},\ldots,\beta_{S}\overset{\text{iid}}{\sim}N_{4}(\theta,\Sigma)$$

Description:

 $\bar{Y}_{ij,1}$: Mean of Near-1-Neighbor

 $\bar{Y}_{ij,2}$: Mean of Near-2-Neighbor

$$ar{Y}_{i,1} = \sum_{i=1}^{\mathcal{S}} ar{Y}_{ij,1},$$
 and $ar{Y}_{i,2} = \sum_{i=1}^{\mathcal{S}} ar{Y}_{ij,2}$

Model Description

Model:

For
$$i=1,\ldots,T$$
, and $j=1,\ldots,S$,
$$Y_{ij}=\beta_{j1}\bar{Y}_{ij,1}+\beta_{j2}\bar{Y}_{ij,2}+\beta_{j3}\bar{Y}_{i,1}+\beta_{j4}\bar{Y}_{i,2}+\epsilon_{ij}.$$
 $\Rightarrow Y_{ij}=\boldsymbol{x}_{j}^{T}\beta_{j}+\epsilon_{ij}, \text{ where } \epsilon_{ij}\overset{\text{iid}}{\sim}N(0,\sigma^{2}).$ Here $\boldsymbol{x}_{j}^{T}=[\bar{Y}_{ij,1},\bar{Y}_{ij,2},\bar{Y}_{i,1},\bar{Y}_{i,2}]'$ and $\beta_{j}=[\beta_{j1},\ldots,\beta_{j4}]'.$ $\beta_{1},\ldots,\beta_{S}\overset{\text{iid}}{\sim}N_{4}(\theta,\Sigma)$

Description:

 \bar{Y}_{ii} : Mean of Near-1-Neighbor

 $Y_{ii,2}$: Mean of Near-2-Neighbor

$$ar{Y}_{i,1} = \sum_{i=1}^{\mathcal{S}} ar{Y}_{ij,1}$$
, and $ar{Y}_{i,2} = \sum_{i=1}^{\mathcal{S}} ar{Y}_{ij,2}$

Prior:

$$oldsymbol{ heta} \sim \mathcal{N}(oldsymbol{\mu}_0, oldsymbol{\Lambda}_0)$$

$$\Sigma \sim \text{Inv-Wish}(\eta_0, \mathbf{S}_0)$$

$$\sigma^2 \sim \mathsf{Inv\text{-}Gam}\Big(rac{
u_0}{2}, rac{
u_0 \sigma_0^2}{2}\Big)$$

MCMC Diagnostistics

■ Traceplot:

Initial Models EDA Model Description MCMC Diagnostistics Prediction

MCMC Diagnostistics

Traceplot:

■ ACF Plot:

MCMC Diagnostistics

■ Traceplot:

ACF Plot:

ESS:

$$ESS(\sigma^2) = 5249$$
$$ESS(\theta) = 3255$$

	Min	Q1	Mean	Q3	Max
β	5010	5775	5938	6000	6000
Σ	5715	5719	5912	6000	6000

itial Models EDA Model Description MCMC Diagnostistics Prediction

Prediction

