Day 4: Vectors and Matrices

Ikuma Ogura

Ph.D. student, Department of Government, Georgetown University

August 22, 2019

Today

- Today
 - Vector & matrix algebra
 - ▶ Matrix calculus
 - Geometry of matrix algebra

Why Vectors and Matrices?

- Making notations & calculations simple
- Basis of multivariate statistical techniques

Why Vectors and Matrices? (cont.)

- We have so far dealt with algebra and calculus with scalars
- Suppose we want to use more than one independent variable (say 10) in regression analysis:

$$y_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{3i} + b_4 x_{4i} + b_5 x_{5i} + \dots + b_{10} x_{10i} + e_i$$

• Let's find $b_0, b_1, b_2, \cdots, b_{10}$ which minimize the sum of squared residuals

Why Vectors and Matrices? (cont.)

 As we covered yesterday, we need to solve the system of equations

$$\begin{cases} \frac{\partial}{\partial b_0} \sum_{i=1}^n \left\{ y_i - (b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_{10} x_{10i}) \right\}^2 = 0 \\ \frac{\partial}{\partial b_1} \sum_{i=1}^n \left\{ y_i - (b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_{10} x_{10i}) \right\}^2 = 0 \\ \vdots \\ \frac{\partial}{\partial b_{10}} \sum_{i=1}^n \left\{ y_i - (b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_{10} x_{10i}) \right\}^2 = 0 \end{cases}$$

Aww...!

Tips

- Keep track of vector/matrix dimensions.
- Become able to connect with scalar algebra/calculus

Vector

- A k-dimensional vector is a list of k numbers.
- Usually numbers are arranged in a column.
- ullet We usually represent a vector using a bold lower case. e.g., a

$$oldsymbol{a} = egin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \end{pmatrix}$$

Vector (cont.)

- To arrange numbers in a row, we transpose the vector.
- Transpose of a column vector a of dimension k, denoted as a' (also written as a^T), is a row vector

$$\mathbf{a}' = \begin{pmatrix} a_1 & a_2 \dots & a_k \end{pmatrix}$$

• Obviously, the transpose of a row vector is a column vector!

Vector (cont.)

Norm (or length) of vector a is defined as

$$\|\boldsymbol{a}\| = \sqrt{a_1^2 + a_2^2 + \dots + a_k^2}$$

- Related types of vectors
 - Normalized vector: a vector with norm 1
 - Zero vector (0): a vector whose elements are all 0

Matrix

• A $n \times k$ -dimensional matrix is a rectangle array of numbers

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix}$$

- ullet We usually represent a matrix using a bold upper case. e.g., A
- By convention, a_{ij} refers to an element in the ith row and the jth column.
- We can think of a k-dimensional column vector as a $k \times 1$ matrix and a k-dimensional row vector as a $1 \times k$ matrix.

- It is often useful to think of matrices as made up of a collection of column/row vectors.
- For example, we can represent matrix A as a collection of column vectors.

$$oldsymbol{A} = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \ a_{21} & a_{22} & \dots & a_{2k} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} = egin{pmatrix} oldsymbol{a_1} & oldsymbol{a_2} & \dots & oldsymbol{a_k} \end{pmatrix}$$

where

$$oldsymbol{a_i} = egin{pmatrix} a_{1i} \ a_{2i} \ dots \ a_{ni} \end{pmatrix}$$

 Similarly, we can represent matrix A as a collection of row vectors.

$$\boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\alpha}_1' \\ \boldsymbol{\alpha}_2' \\ \vdots \\ \boldsymbol{\alpha}_n' \end{pmatrix}$$

where α_i is a vector where elements of i th row of A are arranged in a column,

$$\boldsymbol{\alpha_i} = \begin{pmatrix} a_{i1} & a_{i2} & \dots & a_{ik} \end{pmatrix}' = \begin{pmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{ik} \end{pmatrix}$$

• Example: Matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 1 & -4 \end{pmatrix}$$

can be repsented as a collection of column vectors

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, a_2 = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

or as a collection of row vectors

$$\alpha_1 = \begin{pmatrix} 1 & 2 \end{pmatrix}' = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 & -4 \end{pmatrix}' = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$$

- A transpose of a matrix can be obtained by flipping its rows and columns.
- Transpose of a $n \times k$ matrix ${m A}$ is denoted as ${m A}'$ (also written as ${m A}^T$)

$$\mathbf{A'} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1k} & a_{2k} & \dots & a_{nk} \end{pmatrix}$$

where the dimension of A' is $k \times n$.

• Obviously, (A')' = A

• Example: The transpose of matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -4 & -2 \end{pmatrix}$$

is

$$\mathbf{A}' = \begin{pmatrix} 1 & 1 \\ 2 & -4 \\ 3 & -2 \end{pmatrix}$$

Matrix Addition/Subtraction

 Addition/subtraction of vectors of the same dimension is defined as

$$\mathbf{a} \pm \mathbf{b} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \\ \vdots \\ a_n \pm b_n \end{pmatrix}$$

ullet Similarly, if matrices A and B are of the same dimensions, we can define addition/subtraction as

$$\mathbf{A} \pm \mathbf{B} = \begin{pmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} & \dots & a_{1k} \pm b_{1k} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} & \dots & a_{2k} \pm b_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} \pm b_{n1} & a_{n2} \pm b_{n2} & \dots & a_{nk} \pm b_{nk} \end{pmatrix}$$

Matrix Multiplication

ullet We can multiply a vector $oldsymbol{a}$ by a scalar c as

$$c\mathbf{a} = \begin{pmatrix} ca_1 \\ ca_2 \\ \vdots \\ ca_k \end{pmatrix}$$

• Similarly, we can define the scalar multiplication of a matrix $m{A}$ by a scalar c as

$$c\mathbf{A} = \begin{pmatrix} ca_{11} & ca_{12} & \dots & ca_{1k} \\ ca_{21} & ca_{22} & \dots & ca_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{n1} & ca_{n2} & \dots & ca_{nk} \end{pmatrix}$$

Dot product/inner product for vectors of the same dimensions,
 a and b. is defined as

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = a_1 b_1 + a_2 b_2 + \dots + a_k b_k = \sum_{j=1}^{k} a_j b_j$$

Therefore, an inner product of two vectors is a scalar.

• Vector norm can be also expressed as $\|a\| = \sqrt{a \cdot a}$.

• If ${\bf A}$ is a $n \times k$ matrix and ${\bf B}$ is a $k \times m$ matrix, then we can define their product ${\bf C} = {\bf A}{\bf B}$ where

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj}$$

- ightharpoonup ij element of the resultant matrix C is the innner product of ith row of A and jth column of B.
- ▶ Therefore, C is a $n \times m$ matrix.

• Example: Let

$$\mathbf{A} = \begin{pmatrix} 3 & 8 \\ -5 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -4 & 6 \\ 2 & -7 \end{pmatrix}.$$

$$\mathbf{AB} = \begin{pmatrix} 3 & 8 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} -4 & 6 \\ 2 & -7 \end{pmatrix} = \begin{pmatrix} 3 \cdot (-4) + 8 \cdot 2 \\ \end{pmatrix}$$

• Example: Let

$$\mathbf{A} = \begin{pmatrix} 3 & 8 \\ -5 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -4 & 6 \\ 2 & -7 \end{pmatrix}.$$

$$\mathbf{AB} = \begin{pmatrix} 3 & 8 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} -4 & 6 \\ 2 & -7 \end{pmatrix} = \begin{pmatrix} 2 & 3 \cdot 6 + 8 \cdot (-7) \\ \end{pmatrix}$$

• Example: Let

$$\mathbf{A} = \begin{pmatrix} 3 & 8 \\ -5 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -4 & 6 \\ 2 & -7 \end{pmatrix}.$$

$$\mathbf{AB} = \begin{pmatrix} 3 & 8 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} -4 & 6 \\ 2 & -7 \end{pmatrix} = \begin{pmatrix} 2 & -38 \\ (-5) \cdot (-4) + 2 \cdot 2 \end{pmatrix}$$

• Example: Let

$$\mathbf{A} = \begin{pmatrix} 3 & 8 \\ -5 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -4 & 6 \\ 2 & -7 \end{pmatrix}.$$

$$AB = \begin{pmatrix} 3 & 8 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} -4 & 6 \\ 2 & -7 \end{pmatrix} = \begin{pmatrix} 2 & -38 \\ 24 & (-5) \cdot 6 + 2 \cdot (-7) \end{pmatrix}$$

• Example: Let

$$\mathbf{A} = \begin{pmatrix} 3 & 8 \\ -5 & 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -4 & 6 \\ 2 & -7 \end{pmatrix}.$$

$$\mathbf{AB} = \begin{pmatrix} 3 & 8 \\ -5 & 2 \end{pmatrix} \begin{pmatrix} -4 & 6 \\ 2 & -7 \end{pmatrix} = \begin{pmatrix} 2 & -38 \\ 24 & -44 \end{pmatrix}$$

- ullet AB is generally not equal to BA, even if both are defined.
- Common properties of transpose matrices
 - 1. (AB)' = B'A'
 - 2. (A'A)' = A'(A')' = A'A
- Thinking of vectors ${\boldsymbol a}$ and ${\boldsymbol b}$ as $k \times 1$ matrices, their inner product can also be written as their product

$$m{a} \cdot m{b} = m{a}' m{b} = \begin{pmatrix} a_1 & a_2 & \dots & a_k \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{pmatrix}$$

Matrix Calculation: Exercises

Let

$$\mathbf{A} = \begin{pmatrix} 2 & 5 \\ -3 & 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 4 & -2 & 7 \\ -3 & 1 & 0 \end{pmatrix},$$
$$\mathbf{C} = \begin{pmatrix} 5 & -1 \\ 0 & 4 \\ -2 & 1 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix}.$$

Calculate the following.

- 1. B' + C
- 2. *AD*
- 3. *DA*
- 4. BC
- 5. B'C'

Matrix Types

- Square Matrix: Number of rows and columns are the same.
- Symmetric Matrix: A square matrix where A = A'. Therefore, $a_{ij} = a_{ji}$.
- Triangular Matrix: A square matrix in which all the elements above or below the main diagonal are equal to 0.
 - ▶ Main diagonal: a_{ij} s where i = j
 - ➤ A square matrix where elements above the main diagonal are 0 are called lower triangular, and one where elements below the main diagonal equal 0 are called upper triangular.
- Diagonal Matrix: A square matrix where off-diagonal elements are all 0.

Matrix Types (cont.)

• Identity Matrix: A diagonal matrix where all diagonal elements are 1.

$$\boldsymbol{I} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

The identity matrix works like scalar 1. That is, for any matrices
 A that are conformable with I,

$$AI = IA = A$$

Matrix Types: Exercises

 Are the following matrices square, symmetric, triangular, and diagonal?

1.
$$\begin{pmatrix} 1 & 1 \\ 3 & -2 \end{pmatrix}$$

3.
$$\begin{pmatrix} 1 & 4 & 1 \\ 0 & 6 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

Trace

• The trace of a square matrix is the sum of its diagonal elements

$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i}^{k} a_{ii}$$

- Properties of trace
 - 1. $\operatorname{tr}(c\mathbf{A}) = c\operatorname{tr}(\mathbf{A})$
 - $2. \operatorname{tr}(\mathbf{A}') = \operatorname{tr}(\mathbf{A})$
 - 3. $\operatorname{tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) + \operatorname{tr}(\boldsymbol{B})$
 - 4. $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A})$

Determinant

- The determinant is another widely used operation to transform a square matrix to a scalar.
- ullet The determinant of matrix $oldsymbol{A}$ is represented as $\det oldsymbol{A}$ or $|oldsymbol{A}|$
- Properties of determinant: let \boldsymbol{A} be a $n \times n$ square matrix,
 - 1. $\det \mathbf{A} = \det \mathbf{A}'$
 - 2. if A is either diagonal or triangular, $\det A = \prod_{i=1}^n a_{ii}$
 - 3. $\det(c\mathbf{A}) = c^n \det \mathbf{A}$
 - 4. $\det AB = \det BA = \det A \det B$

Inverse

• If a square matrix \boldsymbol{A} is nonsingular (or invertible), a square matrix \boldsymbol{A}^{-1} exists which satisfies

$$AA^{-1} = A^{-1}A = I$$

- We call A^{-1} as the inverse of A.
- When we cannot define A^{-1} , A is called singular.
- Some properties of the inverse
 - 1. if A is nonsingular, A^{-1} is unique
 - 2. $(A^{-1})^{-1} = A$
 - 3. $(\mathbf{A}^{-1})' = (\mathbf{A}')^{-1}$
 - 4. $(AB)^{-1} = B^{-1}A^{-1}$
 - 5. $\det \mathbf{A} \neq 0 \Leftrightarrow \mathbf{A}$ is nonsingular

System of Linear Equations

- Matrices help us express and solve system of linear equations.
- For example, the system of linear equations

$$\begin{cases} x - y = 4 \\ 2x + y = 2 \end{cases}$$

can be expressed as

$${\bf A}{\bf x}={\bf b}$$
 where ${\bf A}=\begin{pmatrix}1&-1\\2&1\end{pmatrix}$, ${\bf x}=\begin{pmatrix}x\\y\end{pmatrix}$, and ${\bf b}=\begin{pmatrix}4\\2\end{pmatrix}$.

System of Linear Equations (cont.)

ullet More generally, a system of n linear equations with n unknowns

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

can be represented as

$$\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$$
 where $\boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$, $\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$

System of Linear Equations (cont.)

• Example: the system of regression equations

$$\begin{cases} y_1 = b_0 + b_1 x_{11} + \dots + b_k x_{1k} + e_1 \\ y_2 = b_0 + b_1 x_{21} + \dots + b_k x_{2k} + e_2 \\ \vdots \\ y_n = b_0 + b_1 x_{n1} + \dots + b_k x_{nk} + e_n \end{cases}$$

can be written as

$$y = Xb + e$$

$$\text{where } \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \text{, } \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1k} \\ 1 & x_{21} & \dots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{nk} \end{pmatrix} \text{, } \mathbf{b} = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{pmatrix} \text{, and } \mathbf{e} = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}.$$

lacktriangle Why is the elements in the first column of X are all 1?

System of Linear Equations (cont.)

Let's solve a system of linear equations written as

$$Ax = b$$

for x.

• Assuming that A is invertible, multiply A^{-1} from the left:

$$m{A}^{-1}m{A}m{x} = m{A}^{-1}m{b}$$
 $\Rightarrow \ m{x} = m{A}^{-1}m{b}$

System of Linear Equations (cont.)

• Example: Solving the system of linear equations

$$\begin{cases} x - y = 4 \\ 2x + y = 2 \end{cases}$$

using matrix inversion,

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{2}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

Matrix Calculus: Preparation

• We can also represent function $y = f(x_1, x_2, \dots, x_n)$ using vector notation:

$$y = f(\boldsymbol{x})$$

where x is the vector of inputs

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Matrix Calculus: Preparation (cont.)

• Example: linear function of x_1, x_2, \cdots, x_n can be written using vectors

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \boldsymbol{a}'\boldsymbol{x}$$

where a is the vector of coefficients and x is the vector of variables.

Matrix Calculus: Preparation (cont.)

 Another example: quadratic form is a polynomial in which each term is the monomial of degree 2, and can be written using vectors and a matrix

$$\mathbf{x}'\mathbf{A}\mathbf{x} = \sum_{i=j} a_{ii}x_i^2 + \sum_{i\neq j} (a_{ij} + a_{ji})x_ix_j$$

where
$$m{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 is the matrix of coefficients

and
$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 is the vector of variables.

Matrix Calculus: Preparation (cont.)

• Quadratic form of two variables $\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and coefficient matrix $oldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ is $\begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ $= ((a_{11}x_1 + a_{12}x_2) (a_{21}x_1 + a_{22}x_2))\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ $= (a_{11}x_1 + a_{12}x_2)x_1 + (a_{21}x_1 + a_{22}x_2)x_2$ $= a_{11}x_1^2 + a_{22}x_2^2 + (a_{12} + a_{21})x_1x_2$

Gradient

• Gradient of a function f(x) is a column vector of dimention n whose ith element is the partial derivative of f(x) with respect to x_i .

$$abla f(oldsymbol{x}) = rac{\partial}{\partial oldsymbol{x}} f(oldsymbol{x}) = egin{pmatrix} rac{\partial}{\partial x_1} f(oldsymbol{x}) \ rac{\partial}{\partial x_2} f(oldsymbol{x}) \ dots \ rac{\partial}{\partial x_n} f(oldsymbol{x}) \end{pmatrix}$$

▶ The operator ∇ is called nabla.

Gradient (cont.)

• Example: let $f(x,y) = x^2 - xy + y^2$. Then, its gradient vector is

$$\nabla f(x,y) = \begin{pmatrix} 2x - y \\ -x + 2y \end{pmatrix}$$

Gradient (cont.)

• Another example: we can write the normal equation for deriving the OLS coefficients using gradient. Let $S(\boldsymbol{b})$ be the function to compute the sum of squared residuals, where \boldsymbol{b} is the vector of coefficients. Then,

$$\nabla S(\boldsymbol{b}) = \frac{\partial}{\partial \boldsymbol{b}} S(\boldsymbol{b}) = \begin{pmatrix} \frac{\partial}{\partial b_0} S(\boldsymbol{b}) \\ \frac{\partial}{\partial b_1} S(\boldsymbol{b}) \\ \vdots \\ \frac{\partial}{\partial b_k} S(\boldsymbol{b}) \end{pmatrix} = \mathbf{0}$$

Hessian

• Hessian of function f(x) is a matrix whose ij entry is the second-order derivative of f(x) with regard to x_i and x_j .

$$\boldsymbol{H} = \frac{\partial^2}{\partial \boldsymbol{x} \partial \boldsymbol{x}'} f(\boldsymbol{x}) = \begin{pmatrix} \frac{\partial^2}{\partial x_1^2} f(\boldsymbol{x}) & \frac{\partial^2}{\partial x_1 \partial x_2} f(\boldsymbol{x}) & \dots & \frac{\partial^2}{\partial x_1 \partial x_k} f(\boldsymbol{x}) \\ \frac{\partial^2}{\partial x_2 \partial x_1} f(\boldsymbol{x}) & \frac{\partial^2}{\partial x_2^2} f(\boldsymbol{x}) & \dots & \frac{\partial^2}{\partial x_2 \partial x_k} f(\boldsymbol{x}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2}{\partial x_k \partial x_1} f(\boldsymbol{x}) & \frac{\partial^2}{\partial x_k \partial x_2} f(\boldsymbol{x}) & \dots & \frac{\partial^2}{\partial x_k^2} f(\boldsymbol{x}) \end{pmatrix}$$

ullet Based on the discussion yesterday... ightarrow Hessian is a symmetric matrix

Rules for Matrix Calculus

 Rules for linear functions and qudratic forms: let a and A be vector/matrix of coefficients and x the vector of variables, then

1.
$$\frac{\partial}{\partial x}(a'x) = \frac{\partial}{\partial x}(x'a) = a$$

2.
$$\frac{\partial}{\partial x}(x'Ax) = (A + A')x$$

3. $\frac{\partial^2}{\partial x \partial x'}(x'Ax) = A + A'$

3.
$$\frac{\partial^2}{\partial x \partial x'}(x'Ax) = A + A'$$

Rules for Matrix Calculus: Exercise

• Let
$$m{x}=egin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 and $m{A}=egin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. Demonstrate that

$$\frac{\partial}{\partial x}(x'Ax) = (A + A')x$$

and

$$\frac{\partial^2}{\partial \boldsymbol{x} \partial \boldsymbol{x'}} (\boldsymbol{x'} \boldsymbol{A} \boldsymbol{x}) = \boldsymbol{A} + \boldsymbol{A'}$$

Multivariate Optimization

First order condition

$$\nabla f(\boldsymbol{x}) = \mathbf{0}$$

 Second order condition... → we use the Hessian matrix to determine local min/max!

Multivariate Optimization (cont.)

- Specifically, we examine the sign of the quadratic form of the Hessian matrix evaluated at x^* where $\nabla f(x^*) = 0$.
 - $\mathbf{x}' \mathbf{H}^{\star} \mathbf{x}$ is the function of \mathbf{x}
- Second order condition:
 - $x'H^{\star}x > 0$ for any values of $x \to x^{\star}$ is local min
 - \star In this case, we say H^{\star} is positive definite
 - $igwedge x'H^\star x < 0$ for any values of $x o x^\star$ is local max
 - \star In this case, we say H^{\star} is negative definite
 - lacktriangle sign of $x'H^{\star}x$ depends on the values of $x o x^{\star}$ is saddle point
 - \star In this case, we say H^{\star} is indefinite

Multivariate Opimization (cont.)

- Saddle point: a point where satisfies the first order condition but neither local minimum nor local maximum
- Examples

 - ► $f(x) = x^3$ ► $f(x,y) = x^2 y^2$

Multivariate Opimization (cont.)

• Example: let $f(x,y) = x^2 - y^2$. Then, as

$$\nabla f(x,y) = \begin{pmatrix} 2x \\ -2y \end{pmatrix},$$

the point (x^*, y^*) satisfies the first order condition. Also, the Hessian matrix is

$$\boldsymbol{H} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

(continued from the previous slide)

Therefore, the quadratic form of \boldsymbol{H} at $(x^{\star}, y^{\star}) = (0, 0)$ is

$$(x \quad y) \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= (2x \quad -2y) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= 2(x^2 - y^2)$$

$$(1)$$

Since (1) is positive when |x| > |y| and negative |x| < |y|, \boldsymbol{H} is indefinite, suggesting that $(x^{\star}, y^{\star}) = (0, 0)$ is a saddle point.

Multivariate Opimization: Exercise

• Let $f(x,y) = x^2 + xy + y^2$. Demonstrate that (x,y) = (0,0) is a local minimum of this function.

Multivariate Optimization (cont.)

- Isn't it too cumbersome?
 - ► There's an easier way to determine the definiteness of the Hessian matrix (which uses eigen values)
- Global v. local
 - For (x^*, y^*) to be the global min/max, the Hessian matrix must be negative/positive definite at points other than (x^*, y^*) .
 - ▶ In such cases, f(x) is globally concave/convex.
- (In most (but not all) of the applications you encounter, you don't need to care about the second order condition...)

Geometry of Matrix Algebra

- All vector/matrix operations have geometric meanings.
- Here I use examples in two dimensional space, but the discussion naturally extends to d-dimensional space.

Geometry of Matrix Algebra: Vector

 A d-dimensional vector represents a point (more precisely, an arrow to the point) from the origin on the d-dimensional coordinate (Eucliean) space.

•
$$u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, v = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

- Vector norm represents the length of a vector
 - We can show this using the Pythagorean theorem

- Scalar product: stretching (|c| > 1) or contracting (|c| < 1) the original vector based on the size of the scalar.
- When c < 0, the original vector is reflected about the origin

- Scalar product: stretching (|c| > 1) or contracting (|c| < 1) the original vector based on the size of the scalar.
- When c < 0, the original vector is reflected about the origin

- Vector addition: move the starting point of the second vector to the end of the first vector, and draw a new arrow from the origin to the end of the second
- Vector subtraction: multiply the second vector by -1 and implement the addition

- Vector addition: move the starting point of the second vector to the end of the first vector, and draw a new arrow from the origin to the end of the second
- Vector subtraction: multiply the second vector by -1 and implement the addition

- Vector addition: move the starting point of the second vector to the end of the first vector, and draw a new arrow from the origin to the end of the second
- Vector subtraction: multiply the second vector by -1 and implement the addition

- Vector addition: move the starting point of the second vector to the end of the first vector, and draw a new arrow from the origin to the end of the second
- Vector subtraction: multiply the second vector by -1 and implement the addition

- Dot/inner product: describes the degree to which one vector overlaps another
- Product of the length of the first vector and that of the second one projected onto the first
- Dot product (or length of the projected vector) depends on the angle (θ) between the two
 - $\theta = 90^{\circ}$: dot product equals to 0

- Dot/inner product: describes the degree to which one vector overlaps another
- Product of the length of the first vector and that of the second one projected onto the first
- Dot product (or length of the projected vector) depends on the angle (θ) between the two
 - $\theta = 90^{\circ}$: dot product equals to 0

- Dot/inner product: describes the degree to which one vector overlaps another
- Product of the length of the first vector and that of the second one projected onto the first
- Dot product (or length of the projected vector) depends on the angle (θ) between the two
 - $\theta = 90^{\circ}$: dot product equals to 0

Vector Space

- We denote a set of points (i.e., real-valued vectors) on the d-dimensional coordinate/Euclidean space \mathbb{R}^d .
 - $ightharpoonup \mathbb{R}$: set of points on a real-number line
 - $ightharpoonup \mathbb{R}^2$: set of points on a 2-D plane
 - $ightharpoonup \mathbb{R}^3$: set of points in 3-D space
 - **...**
- A set of vectors spans a (vector) space if every points/vector in that psace can be written as a linear combination of vectors of that set.
 - ▶ linear combination: $c_1x_1 + c_2x_2 + \cdots + c_nx_n$

- When we cannot write any vector in a set as a linear combination of the others, we say they set of vectors is linearly independent.
- We call a set of linearly independent vectors which spans a (vector) space a basis.
 - ► The dimension of a space matches the number of vectors in its basis.

• Example:

$$oldsymbol{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, oldsymbol{v} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 spans

 \mathbb{R}^2 because all the points in \mathbb{R}^2 can be constructed as a linear combination of them.

- $\triangleright 2\boldsymbol{u} 3\boldsymbol{v}$
- -2u+2v
- $\mathbf{u} + 2\mathbf{v}$
- -u-v
- ..

• Example:

$$oldsymbol{u} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, oldsymbol{v} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 spans

 \mathbb{R}^2 because all the points in \mathbb{R}^2 can be constructed as a linear combination of them.

- $\triangleright 2u 3v$
- -2u+2v
- $\mathbf{u} + 2\mathbf{v}$
- -u-v
- **.**..

- u and v form a basis for \mathbb{R}^2 as they are linearly independent.
- They are not the only basis vectors for \mathbb{R}^2 .
 - ► Example:

$$\boldsymbol{a} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \boldsymbol{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

spans \mathbb{R}^2 and form a basis for \mathbb{R}^2

$$\star \frac{7}{3}\mathbf{a} - \frac{1}{3}\mathbf{b}$$

$$\star 0\mathbf{a} + \mathbf{b}$$

$$\star -2\boldsymbol{a} + 0\boldsymbol{b}$$

$$\star -\frac{1}{3}\boldsymbol{a} - \frac{2}{3}\boldsymbol{b}$$

* ..

- u and v form a basis for \mathbb{R}^2 as they are linearly independent.
- They are not the only basis vectors for \mathbb{R}^2 .
 - Example:

$$\boldsymbol{a} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \boldsymbol{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

spans \mathbb{R}^2 and form a basis for \mathbb{R}^2

$$\begin{array}{ccc} \star & \frac{7}{3}\boldsymbol{a} - \frac{1}{3}\boldsymbol{b} \\ \star & 0\boldsymbol{a} + \boldsymbol{b} \end{array}$$

$$\star -2\boldsymbol{a} + 0\boldsymbol{b}$$

$$\star -\frac{1}{3}\boldsymbol{a} - \frac{2}{3}\boldsymbol{b}$$

* ...

Matrix

- Geometrically, matrices describe linear transformation of the space/objects on the space
- Linear transformation: transformation of space while holding the origin
 - rotation
 - reflection
 - scaling
 - squeezing

Example: Matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

reflects and scales the space up.

$$Au = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, Av = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

Example: Matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

reflects and scales the space up.

$$Au = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, Av = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

Example: Matrix

$$\mathbf{B} = \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

rotates and scales the space up.

$$\mathbf{B} \boldsymbol{u} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \mathbf{B} \boldsymbol{v} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

• Example: Matrix

$$\mathbf{B} = \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix}$$

rotates and scales the space up.

$$\mathbf{B}\mathbf{u} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \mathbf{B}\mathbf{v} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

Determinant

- Determinant of a square matrix represents the scale factor and the reflection of the linear transformation defined by the matrix.
- Example: $|{\bm B}| = 7$
 - compare the area of rectangles defined by the basis vactors and one of the parallelogram by the transformed vectors

Determinant

- Determinant of a square matrix represents the scale factor and the reflection of the linear transformation defined by the matrix.
- Example: $|{\bf B}| = 7$
 - compare the area of rectangles defined by the basis vactors and one of the parallelogram by the transformed vectors

- Example: |A| = -2
 - area of orange parallelogram is 2
 - negative sign means that the linear transformation defined by A reflects the space

- Example: $|\mathbf{A}| = -2$
 - area of orange parallelogram is 2
 - negative sign means that the linear transformation defined by A reflects the space

- What happens when the determinant equals to 0?
- Example: The determinant of $C = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix}$ is 0.
- Transformed space degenerates to a lower dimensional space!

- What happens when the determinant equals to 0?
- Example: The determinant of $C = \begin{pmatrix} 2 & -1 \\ 2 & -1 \end{pmatrix}$ is 0.
- Transformed space degenerates to a lower dimensional space!

Matrix Rank

- Rank of a matrix is the number of linearly independent rows/columns.
- When $rank(\mathbf{A}) = min(n, k)$, we say \mathbf{A} is full rank.
- Rank, determinant, invertibility
 - when a square matrix A is full rank (= all the row/column vectors are linearly independent), $|A| \neq 0$, so we can invert the matrix.
 - lacktriangle when $m{A}$ is not full rank, $|m{A}|=0$ and $m{A}$ is singular.

Matrix Rank (cont.)

- Properties of matrix rank
 - 1. $rank(\mathbf{A}) = rank(\mathbf{A'})$
 - 2. $rank(\mathbf{A}\mathbf{A}') = rank(\mathbf{A}'\mathbf{A}) = rank(\mathbf{A})$
- Practical implications
 - ▶ if the coefficient matrix A of a system of linear equations is singular...
 - some of its row vectors can be written as a linear combination of others
 - number of equations is smaller than the number of unknowns!

Relationship with Statistical Analysis

- Dot product as a measure of similarity
 - ▶ between variables (e.g., correlation coefficient)
 - between observations (e.g., cosine similarity)
- Multicollinearity: data matrix is not full rank
 - some column (= variable) can be written as a linear combination of others
 - lackbox X'X is not full rank either o X'X is singular

Tomorrow

- Tomorrow
 - Probability
 - ▶ Random variable
 - Probability distribution
 - ▶ Moore and Siegel, Chapters 9-11.