Programming languages are essential for software development. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. Integrated development environments (IDEs) aim to integrate all such help. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Following a consistent programming style often helps readability. Scripting and breakpointing is also part of this process. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. There exist a lot of different approaches for each of those tasks. Normally the first step in debugging is to attempt to reproduce the problem. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. Unreadable code often leads to bugs, inefficiencies, and duplicated code. Techniques like Code refactoring can enhance readability. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Code-breaking algorithms have also existed for centuries. There are many approaches to the Software development process. One approach popular for requirements analysis is Use Case analysis. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language.