

Technical Paper

HYDRAULICS OF RIVER FLOW UNDER ARCH BRIDGES

REPORT NO. 5

V D bloods Dissesses

10.	Highway Research Project	oum zi, iyor
FROM:	Michael, Assistant Director Highway Research Project	File No: 9-8-2 Project No: 6-36-62B

Attached is a technical paper which is a discussion on a recent ASCE paper titled "Roughness Spacing in Rigid Open Channels". This discussion is by Mesers. P. F. Biery and J. W. Delleur of our staff and reports some results obtained from the research project on hydraulics of river flow under arch bridges.

The paper is submitted to the Board for the record and for release as a discussion for publication by the American Society of Civil Engineers. It will, upon approval by the Board, be submitted to the State Highway Commission of Indiana and the Bureau of Public Roads for review and release.

Respectfully submitted,

Hould 2 mulas

Harold L. Michael, Secretary

HI Malone

Attachment

:0:	F.	Lo	Ashbaucher		G.	A.	Hawkins (M.	B.	Scott)
	J.	R.	Coopsr		J.	F.	McLaughlin		
	We	L	Dolch		R.	D.	Miles		
	W.	H.	Goetz		R.	E.	Hills		
	F.	F.	Havey		J.	V.	Smythe		
	F.	S.	Hill		J.	L	daling		
	G.	A.	Leonards		E.	Ja	Yodor		

HYDRAULICS OF RIVER FLOW UNDER ARCH BRIDGES

REPORT NO. 5

Discussion on

"Roughness Spacing in Rigid Open Channels"

by

F. F. Biery Research Engineer, Johns Manville, Inc., Manville, New Jersey formerly Research Assistant, Furdue University

e.md

J. W. Delleur Associate Professor of Hydraulic Engineering

State Highway Department of Indiana in Cooperation with U.S. Department of Commerce Bureau of Public Roads

Joint Highway Research Project Project No. C-36-62B File No. 9-8-2

Purdue University School of Civil Engineering Hydraulic Laboratory

June, 1961

Digitized by the Internet Archive in 2011 with funding from LYRASIS members and Sloan Foundation; Indiana Department of Transportation http://www.archive.org/details/hydraulicsofrive6121bier

ROUGHNESS SPACING IN RIGID OPEN CHANNELS

Liscussion by P. F. Biery and J. W. Delleur

P. F. JETY 27, AN. ASCE and J. W. DELLEUR 28, M. ASCE

The authors are to be congratulated for a very lucid presentation on the effect of lengitudinal and transverse spacing of roughness on the flow in rigid open channels. The discussers wish to extend the paper by showing the result of applying Sayre and Albertson's analysis to a different type of roughness element consisting of round bars, and to consider a possible extension to field conditions.

The tests were performed in a steel tilting flume 5 feet wide,

2 feet deep and 64 feet long. Uniform flow tests were run with two
different boundary roughness patterns. The first roughness pattern,
which will be referred to as smooth boundary, consisted of the steel
flums talls finished with an epoxy resin paint. The second roughness
pattern, which will be referred to as rough boundary, consisted of 4-inch
aluminum rods as follows: a) along the bottom a layer of longitudinal
bars placed 12 inches on center and a top layer of transverse bars 6
inches on center, b) along the side walls one layer of vertical bars
6 inches on center placed \(\frac{1}{4}\) inch from the wall. The bottom layer of
bars were tied together with wire. The vertical bars were tied at the
bottom to the transverse bars and clamped to the walls above the free
surface. Figure 13 shows the artificial roughness in place.

May, 1961, by William W. Sayre and Maurice L. Albertson, (Proc. Paper 2823)
Research Engineer, Johns Manville, Inc., Manville, N. J.; formerly Research
Assistant, School of Civil Engineering, Purdue University

Associate Professor of Hydraulic Engineering, School of Civil Engineering, Purdue University

Uniform flow tests were run for smooth and rough boundaries. The Darcy-Weisbach friction factor, f, was calculated from the equation

$$f = 8gR_n S/V_n^2$$
(32)

where V_n is the average velocity, R_n is the hydraulic radius, and S is the slope. In figure 14 the friction factor, f, is plotted versus the disynolds number $R_e = \frac{V_n R_n}{V}$ where γ is the kinematic viscosity of the fluid

The roughness elements used here are different from those used by sayre and libertson. In particular, there is a definite amount of flow under the roughness elements. Figure 15 shows a qualitative sketch of the flow around the transverse bars. Centerline velocity profiles measured very close to a transverse bar and at a point midway between transverse bars are shown in fig. 16.

Six tests were run to determine the roughness parameter, χ . In order to have fully rough turbulent flow, the flume was set to its maximum slope of 0.0125. The test data are given in table II.

A plot of C/\sqrt{g} against $\log y_n/a$ similar to fig. 5 was prepared. Caking the roughness height, a, equal to $\frac{1}{2}$ inch, (that is, the total height of the two layers of bars along the bottom), it was found that the points plotted slong a straight line with a slope of 6.06 confirming the empirical constant in equ. (17). The extrapolated value of C_2 was 3.15. With these values of C_2 and a, χ was determined to be 0.0126 feet.

Centerline velocity profiles were taken at a slope of 0.0125 and a discharge of 3.714 cfs. The profile is shown in dimensionless form in figure 17, where it is compared to the velocity profile presented in fig. 9 and equ. (20). The equation obtained for round bar roughness was

$$\frac{v}{\sqrt{z_0}} = 6.06 \log \frac{y}{.0126} + 4.6 \tag{33}$$

It is interesting to note that with the change of roughness pattern the first of the empirical constants, 6.06, checked; but the second constant changed from 2.6 to 4.6. The difference is attributed to that fact that the roughness baffles used by Sayre and Albertson were placed in such a way that there was no flow beneath the roughness elements, whereas there was a certain amount of flow underneath the transverse bars used in experiments reported in this discussion.

If equ. (20) is accepted for the bar roughness, it would be possible to find the value of an equivalent roughness height, a, for the round bar roughness. Equating equs. (20) and (33), the equivalent roughness parameter, χ , for the round bars is found to be .0059 ft.Replacing this value of χ in equ. (19) with $C_2 = 3$ 15, and solving for a, one obtains a = .0195 ft. = .234 in., which is close to the diameter of the bar of 0.25 in. It may then be concluded that equ. (20) for the velocity distribution may also be used for round bar roughness with a reasonable degree of accuracy by considering the roughness height equal to the diameter of the transverse bars.

Fig. 18 shows a portion of the general resistance diagram of Fig. 10, with test data for the bar roughness added, where the values of y/χ indicated correspond to a value of χ of 0.0126 ft. There is a generally good agreement.

It is probable that the roughness parameter, χ , may also be used in natural streams, where it could be determined from velocity measurements at 0.2 y_n and 0.8 y_n which are commonly used in field measurements. Equations (20) or (33) can be rewritten as

$$v = 6.06 V_f \log \frac{y}{\xi \chi} = 6.06 V_f \log \frac{y/y_n}{\xi \chi/y_n}$$
 (34)

The state of the

$$\overline{\mathbf{v}}_{(2)} = \mathbf{v}_{(2)} = \mathbf{v}_{(35)}$$

The state of the s

(37)

In section of the sec

the latter marky of the contract of the velocities at 0.2 y_n and 0.8 y_n . Using equ. (34, in

it follows that

$$\alpha = \frac{G(U)}{(\log U \in)^3} \tag{39}$$

where $U = y_n / \epsilon \chi$ and

$$G(U) = (\log U)^3 - 3(\log U)^2 - 6 \log U - 6$$
 (40)

Based on the velocity profile of fig. 13, the value of ox computed by equ (39) was found to be 1.01.

The authors have shown that equ. (17) is more accurate than Manning's formula over the range of conditions tested. The discussers have shown that equ. (17) is also applicable to a different type of roughness, and that the χ parameter may be used for field conditions where it can be obtained from velocity measurements at two and eight tenths of the depth. The discussers hope that sufficient information on the roughness parameter, χ , may be collected in the near future so that designing engineers can use it reliably for field channels and natural streams, perhaps even including channels in alluvial terrains.

TABLE II - TESTS FOR THE ROUGHNESS PARAMETER X

A) Normal Depth Tests

Run No.	y _n cm	Q efs		C/√g	y _n /a	y _n /χ
1	8,66	3.714	0.0125	8.3.69	6.829	22,548
2	3.44.	3.574	11	8.162	6,650	21.976
3	8.05	3.273	12	8,005	6.348	20,960
4	7.72	3.066	11	7,982	6.086	20,095
5	7.07	2,586	11	7,646	5.574	18,405
6	6.06	1.969	11	7.283	4.779	15.778

B) Velocity Profile Data (y neasured from the bottom)

$$0 = 3.714 \text{ cfs}$$
; $y_n = 0.275 \text{ ft}$; $S = 0.0125$:

y ft,	у/х	fps	V/72.19
0.010 0 015 0.020 0.025 0.030 0 035 0.040 0.045 0.055 0.065 0.065 0.065 0.080 0.090 0.100 0.120 0.130 0.140 0.180 0.200	0.794 1.190 1.587 1.984 2.381 2.778 3.175 3.571 3.968 4.365 4.762 5.159 5.56 6.349 7.143 7.937 8.730 9.524 10.317 11.111 12.698 14.286 15.873	1.39 1.94 2.00 2.17 2.25 2.31 2.42 2.59 2.69 2.74 2.83 2.94 2.99 3.10 3.27 3.38 3.48 3.57 3.65 3.65 3.68 3.75 3.86 3.94	5 985 6 143 6 333 6 872 7 125 7 315 7 .663 8 .201 8 .518 8 .676 8 .961 9 310 9 .468 9 .816 10 .355 10 .703 11 .020 11 .305 11 .653 11 .653 11 .875 12 .223 12 .476
0,220 0,240	17,460 19,048	4.00 4.06	12,666 12,856

Acknowledgment

The study of roughness effect described in this discussion was made in connection with the model testing of arch bridge constrictions sponsored by the State Highway Department of Indiana in cooperation with the U.S. Department of Commerce, Bureau of Public Roads.

WITH ARTIFICIAL ROUGHNESS. TESTING FLUME FIGURE 13.

FIGURE 14 - f - Re RELATION FOR NORMAL DEPTH TESTS

FIGURE 15-QUALITATIVE SKETCH OF FLOW AROUND ROUGHNESS ELEMENTS.

FIGURE 16 - EFFECT OF BARS ON VELOCITY.

FIGURE 17 - DIMENSIONLESS VELOCITY PROFILE

FIGURE 18 - GENERAL RESISTANCE DIAGRAM FOR UNIFORM
FLOW IN OPEN CHANNELS (SAYRE)

