COMMON IMAGING EQUATION

Imaging Equation

PMAG =
$$\frac{h}{FOV}$$
 AFOV(°) = $2 \cdot tan^{-1} \left[\frac{h}{2 \cdot f} \right]$
FOV = $h \cdot \left[\frac{WD}{f} - 1 \right]$

f/# working = [1 + PMAG] • f/#
$$f/\# \text{ Image Space} = \frac{1}{2 \cdot \text{NA}} \qquad \text{NA Image Space} = \frac{1}{2 \cdot \text{f}/\#}$$

$$\text{NA Object Space} = n \cdot \sin{[a]}$$

Resolution
$$_{lmoge \ Space}$$
 (lp/mm) = $\frac{500 \mu m/mm}{pixel \ size \ (\mu m)}$
Resolution $_{0bject \ Space}$ = $\frac{pixel \ size \ (\mu m)}{system \ PMAG}$

Minimum Spot Size (
$$\mu$$
m) = 2.44 • λ (μ m) • f/#

Cutoff Frequency (μ mm) =
$$\frac{1000\mu m/mm}{f/\# \cdot \lambda}$$

$$\epsilon = 0.61 • \frac{\lambda}{NA}$$

Variable

 $\begin{array}{lll} n = Index \ of \ Refraction & f = Focal \ Length \\ FOV = Field \ of \ View & AFOV = Angular \ Field \ of \ View \\ WD = Working \ Distance & NA = Numerical \ Aperture \\ \lambda = Wavelength & PMAG = Primary \ Magnifcation \\ h = Sensor \ Size & a = Marginal \ Ray \\ \epsilon = Resolving \ Power \\ \end{array}$

All units are in mm unless stated otherwise

Lens Anatomy

Common Industry Sensor Format

Format Position Allocation

Calculator Link: https://optics.fujifilm.com/mvlens/en/selector/

PRIMARY & COMPLEMENTARY COLOR WHEEL

