

Part A MCQ (30%)

(5pts) Problem 1

Evaluate the improper integral $L = \int_2^\infty \frac{dx}{x \ln^2 x}$.

- (a) $L = \ln 2$
- $(b) \quad L = \frac{1}{\ln 2}$
- (c) $L = +\infty$
- (d) L = 2
- (e) $L = e^2$

Answer is (b)

(5pts) Problem 2

Evaluate the improper integral $A = \int_0^1 \frac{x}{\sqrt{1-x^2}} dx$

- $(a) \quad A = 1$
- (b) A = 2
- $(c) \quad A = -1$
- $(d) A = \frac{1}{2}$
- (e) $A = -\infty$

Answer is (a)

(5pts) Problem 3

Let a_n be the sequence given by

$$\cos(\pi)$$
, $\cos\left(\frac{\pi}{2}\right)$, $\cos\left(\frac{\pi}{3}\right)$, $\cos\left(\frac{\pi}{4}\right)$, ...

If $L = \lim_{n \to \infty} a_n$, then

- (a) L = 4
- (b) L = 3
- (c) L = 2
- (d) L = 1
- (e) L = 0

Answer is (d)

(5pts) Problem 4

The series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}$$

- (a) converges absolutely
- (b) converges conditionally
- (c) diverges
- (d) is a convergent geometric series
- (e) is a divergent telescoping series

Answer is (b)

(5pts) Problem 5

The radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^n}{n2^n}$ is

- (a) $\sqrt{2}$
- $(b) \quad \frac{1}{2}$
- (c) 1
- (d) ∞
- (e) 2

$Answer\ is\ (e)$

(5pts) **Problem 6**

The coefficient of x^3 in Maclaurin series of the function equal to

- $(a) \quad \frac{-1}{3}$
- $(b) \quad \frac{-1}{6}$
- (c) 1
- (d) 6
- (e) $\frac{-1}{2}$

$$f(x) = \sin(\pi - x) = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + O(x^7)$$

$$\underline{Answer\ is\ (b)}$$

Part B Written Questions (70%)

(15pts)Problem 1

Find the interval of convergence of the following power series

1.
$$\sum_{n=0}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$$
 2. $\sum_{n=0}^{\infty} \frac{x^n}{n^n}$.

Solution

1. $\sum_{n=0}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$ is a power series centered at a=-2.

$$\lim_{n \to \infty} \left| \frac{(x+2)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{(x+2)^n} \right| = \lim_{n \to \infty} \left| \frac{(x+2)^n (x+2)}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{(x+2)^n} \right|$$
$$= \lim_{n \to \infty} \sqrt{\frac{n}{n+2}} |x+2| = |x+2|.$$
$$R = 1 \qquad [\mathbf{2 points}]$$

$$a - R = -2 - 1 = -3$$
 and $a + R = -2 + 1 = -1$.

• When x = -3, the series becomes

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n}} \text{ converges by A.S.T} \qquad [\textbf{2 points}]$$

• When x = -1, the series becomes

$$\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}} \text{ diverges by p-test.} \qquad [2 \text{ points }]$$

$$IC = \begin{bmatrix} -3, -1 \end{bmatrix}$$
 [2 points]

2. $\sum_{n=0}^{\infty} \frac{x^n}{n^n}$ is a power series centered at a=0.

$$\lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)^{n+1}} \cdot \frac{n^n}{x^n} \right| = \lim_{n \to \infty} \left| \frac{x^n x}{(n+1)^n (n+1)} \cdot \frac{n^n}{x^n} \right|$$

$$= \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n \cdot \frac{1}{n+1} |x|$$

$$= \frac{1}{e} \cdot 0 = 0 \quad [\mathbf{3 points}]$$

$$R = \infty$$
 and IC = $(-\infty, \infty)$. [4 points]

(10pts)Problem 2

Show that the equation is separable and solve it.

$$y\frac{dy}{dx} - \left(1 + y^2\right)x^2 = 0$$

Solution

$$y \frac{dy}{dx} = (1+y^2) x^2,$$

$$\int \frac{y}{1+y^2} dy = \int x^2 dx \quad [\mathbf{5} \mathbf{points}]$$

$$\frac{1}{2} \ln (1+y^2) = \frac{x^3}{3} + C_1$$

$$\ln (1+y^2) = \frac{2x^3}{3} + C_2.$$

$$1+y^2 = e^{\frac{2x^3}{3} + C_2}$$

$$y^2 = e^{\frac{2x^3}{3} + C_2} - 1 \quad [\mathbf{5} \mathbf{points}]$$

(15pts)Problem 3

Show that the differential equation is exact and solve the initial value problem.

$$(y-x^3) dx + (x+y^3) dy = 0, \quad y(0) = \sqrt{2}$$

Solution

$$M = y - x^3 \text{ and } N = x + y^3.$$

$$M_y = 1, \quad N_x = 1$$

$$M_y = N_x \Rightarrow \text{Equation is exact.} \quad \left[\text{ 3 points } \right]$$

$$\left\{ \begin{array}{l} \frac{\partial f}{\partial x} = y - x^3 \\ \frac{\partial f}{\partial y} = x + y^3 \end{array} \right.,$$

$$\frac{\partial f}{\partial x} = y - x^3 \Rightarrow f(x,y) = xy - \frac{x^4}{4} + C(y). \quad \left[\text{ 4 points } \right]$$

Now using this temporary expression of f,

$$\frac{\partial f}{\partial y} = x + y^3 \Leftrightarrow x + C'(y) = x + y^3,$$

$$C'(y) = y^3 \Rightarrow C(y) = \frac{y^4}{4}.$$

Thus,

$$f(x,y) = xy - \frac{x^4}{4} + \frac{y^4}{4}$$
 [**5 points**]

and the solution is given by

$$xy - \frac{x^4}{4} + \frac{y^4}{4} = C.$$

Now using the initial condition, we obtain

$$y(0) = \sqrt{2} \Leftrightarrow C = \frac{\left(\sqrt{2}\right)^4}{4} = 1 \quad [\textbf{ 3 points }]$$

(15pts)Problem 4

Show that the equation is Bernoulli and solve it.

$$\frac{dy}{dx} = \frac{2y}{x} - x^2y^2$$

Solution

The given equation is equivalent to equivalent to

$$\frac{dy}{dx} - \frac{2y}{x} = -x^2y^2.$$

This is a Bernoulli equation with n=2.

We have

$$y^{-2}\frac{dy}{dx} - \frac{2y^{-1}}{x} = -x^2.$$

Put

$$u=y^{1-n}=y^{-1}$$
 [3 points]
$$\frac{du}{dx}=-\frac{dy}{dx}y^{-2},$$

$$y^{-2}\frac{dy}{dx}=-\frac{du}{dx}.$$

The equation becomes

$$-\frac{du}{dx} - \frac{2}{x}u = -x^2,$$

Equivalently,

$$\frac{du}{dx} + \frac{2}{x}u = x^2, \quad [5 \text{ points }]$$

This is a linear equation with

$$P(x) = \frac{2}{x}.$$
 IF $= e^{\int P(x)dx} = e^{2\ln x} = x^2$ $(x > 0).$ [2 points]
$$x^2 u = \int x^4 dx,$$

$$x^2 u = \frac{x^5}{5} + C.$$

$$u = \frac{x^3}{5} + \frac{C}{x^2},$$

$$y^{-1} = \frac{x^3}{5} + \frac{C}{x^2}.$$
 [3 points]
$$y = \frac{1}{\frac{x^3}{5} + \frac{C}{x^2}}.$$
 [2 points]

Hence,

(15pts)Problem 5

Show that the equation is homogeneous and solve it.

$$x^2 \frac{dy}{dx} = xy - y^2$$

Solution

$$x^2 \frac{dy}{dx} = xy - y^2$$

is equivalent to

$$\frac{dy}{dx} = \frac{xy - y^2}{x^2} = \left(\frac{y}{x}\right) - \left(\frac{y}{x}\right)^2 = F\left(\frac{y}{x}\right)$$

$$\Rightarrow \text{ equation is homogeneous } \begin{bmatrix} \mathbf{5} \text{ points} \end{bmatrix}$$

Put $u = \frac{y}{x} \Rightarrow y = xu$ and $\frac{dy}{dx} = u + x\frac{du}{dx}$. The equation becomes

$$u + x \frac{du}{dx} = u - u^2$$

 \Leftrightarrow

$$x\frac{du}{dx} = -u^2$$

$$\frac{-du}{u^2} = \frac{dx}{x}$$

$$\int \frac{-du}{u^2} = \int \frac{dx}{x}$$
 [5 points]
$$\frac{1}{u} = \ln|x| + C.$$

Now replacing u by $\frac{y}{x}$, we obtain

$$\frac{x}{y} = \ln|x| + C.$$

$$y = \frac{x}{\ln|x| + C}.$$
 [5 points]