COLLE 4 = ÉQUATIONS DIFFÉRENTIELLES ET SUITES NUMÉRIQUES

Connaître son cours:

- 1. Montrer que la somme et le produit terme à terme de deux suites bornées sont bornées.
- 2. Montrer que si une suite converge, alors sa limite est unique.
- 3. Soit $(u_n)_n$ et $(v_n)_n$ deux suites convergentes. Alors, la suite $(u_n \times v_n)_n$ est convergente et sa limite est $\lim_{n \to +\infty} u_n \times \lim_{n \to +\infty} v_n$.

Équations différentielles:

Exercice 1.

On considère

$$y'' - 4y' + 4y = d(x)$$

- 1. Résoudre l'équation homogène, puis trouver une solution particulière lorsque $d(x) = e^{-2x}$, puis $d(x) = e^{2x}$.
- 2. Donner la forme générale des solutions quand $d(x) = \frac{1}{2} \text{ch}(2x)$.

Exercice 2.

Prouver que toute solution de l'équation différentielle $y' + e^{x^2}y = 0$ admet une limite nulle en $+\infty$.

Exercice 3.

Déterminer les fonctions $y,z:\mathbb{R}\to\mathbb{R}$ dérivables et qui vérifient le système suivant :

$$\begin{cases} y' - y &= z \\ z' + z &= 3y \end{cases}$$

Suites numériques :

Exercice 4.

Posons $u_2 = 1 - \frac{1}{2^2}$ et pour tout entier $n \ge 3$,

$$u_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right).$$

Niveau: Première année de PCSI

Calculer u_n et en déduire sa limite.

Exercice 5.

Soit u une suite complexe et v la suite définie par $v_n = |u_n|$. On suppose que la suite $(\sqrt[n]{v_n})$ converge vers un réel positif l. Montrer que si $0 \le l < 1$, la suite (u_n) converge vers 0 et si l > 1, la suite (v_n) tend vers $+\infty$. Montrer que si l = 1, tout est possible.

Exercice 6.

On considère la suite

$$u_n = \left(2\sin\left(\frac{1}{n}\right) + \frac{3}{4}\cos(n)\right)^n$$

- 1. Justifier qu'il existe $l \in]0,1[$ et $N \in \mathbb{N}$ tels pour tout $n \in \mathbb{N}, n \ge N \Rightarrow |u_n| \le l$
- 2. Quelle est la nature de la suite u_n ?