

State Trajectory Abstraction and Visualization Method for Explainability in Reinforcement Learning

Yoshiki Takagi, Roderick Tabalba, Jason Leigh Laboratory for Advanced Visualization & Applications, University of Hawaii at Manoa

Motivation

 Create a visual representation of RL agents' behavior understandable to domain experts without ML expertise

Approach

- Use replay to provide non descriptive knowledge about an agent
- Abstract & visualize it as a trajectory

Methodology

- Used β-VAE & ST-DBSCAN
- Tested to various Atari applications

Result

- \bullet Extracted trajectories of several pre-trained agents with $\beta\textsc{-VAE}$
- Explored visualization ideas of abstracted trajectories

Raw trajectory

Clustering & Edge bundling

Abstracted trajectory #1

Abstracted trajectory #2

User Study Plan

 Evaluate how well a user's mental model obtained from the proposed abstract trajectory agrees with agents' complete trajectory

Evaluation

- ✓ Accuracy
- ✓ Confidence
- ✓ Response time
- ✓ Preference

