CS 672: Data Science for Smart Cities

Rutgers University-Spring 2020

Information

Instructor: Desheng Zhang

Email: desheng.zhang AT cs.rutgers.edu

Office: CoRE 307

<u>Grader</u>: Dengpan Yuan

Email: dy209 AT scarletmail.rutgers.edu

<u>Lectures:</u> Monday, 1:40-4:40 pm

Classroom: Busch Science and Engineering Resource Center (SEC) 208

Office Hours:

Monday, 12:30-1:30pm

<u>Textbooks</u>: No books are required, and links for references and papers are provided.

Grading: 10% for Class Participation;

20% for Reading Summaries;20% for Topic Participation;

50% for Team Project (10% for Proposal Report; 20% for Final Report; 20% for

Presentation)

New Announcements

Week	Date	Topics and Reading Assignments
1	Jan 27	General Class Introduction
2		Summary Writing and Presentation Introduction Suggested Reading: Urban Computing: Concepts, Methodologies, and Applications

		Topic 1. Urban Sensing
		Reading:
	Feb 10	0. A Systematic Review for Smart City Data Analytics
3		1. MAC: Measuring the Impacts of Anomalies on Travel Time of Multiple Transportation Systems
		2. coSense: Collaborative Urban-Scale Vehicle Sensing based on Heterogeneous Fleets
		3. EXIMIUS: A Measurement Framework for Explicit and Implicit Urban Traffic Sensing
		4. MutliCell: Urban Population Modeling based on Multiple Cellphone Networks
		 5. CellTrans: Private Car or Public Transportation? Infer Users' Main Transportation Modes
		6. SharedEdge: GPS-Free Fine-Grained Travel Time Estimation in State-Level Highway Systems
	Feb 17	Topic 2. Data-Driven Modeling: Human Mobility
		Reading:
		O. Urban Human Mobility: Data-Driven Modeling and Prediction
		1. Human Mobility Modeling at Metropolitan Scales
4		2. Mobility Modeling and Prediction in Bike-Sharing Systems
		3. Inferring human mobility patterns from taxicab location traces
		 4. BuSCOPE: Fusing Individual & Aggregated Mobility Behavior for "Live" Smart City Services
		5. Route Prediction for Instant Delivery
		6. Returners and explorers dichotomy in human mobility
		Topic 3. Data-Driven Modeling: Urban Phenomena
	Feb 24	Reading:
5		O. Data-driven Human Mobility Modeling: A Survey and Engineering Guidance for Mobile Networking
		1. Understanding Long-Term Evolving Patterns of Shared Electric Vehicle Fleets

	 2. Discovering Regions of Different Functions in a City Using Human Mobility and POIs
	3. Inferring Gas Consumption and Pollution Emissions of Vehicles throughout a City
	4. U-Air: When Urban Air Quality Inference Meets Big Data
	• 5. CityGuard: Citywide Fire Risk Forecasting Using A Machine Learning Approach.
	6. Hard to Park? Estimating Parking Difficulty at Scale
	Topic 4. Data-Driven Modeling: Data Fusion
Mar 2	Reading:
	0. Methodologies for Cross-Domain Data Fusion: An Overview
	1. coMobile: Real-time Human Mobility Modeling at Urban Scale by Multi-View Learning
	2. Detecting Urban Anomalies Using Multiple Spatio-Temporal Data Sources
	3. Diagnosing New York City Noises with Ubiquitous Data
	4. Hydra: A Personalized and Context-Aware Multi-Modal Transportation Recommendation System
	5. PrivateHunt: Multi-Source Data-Driven Dispatching in For-Hire Vehicle Systems
	6. The Role of Urban Mobility in Retail Business Survival
	Topic 5. Data Visual Analytics
Mar 9	Reading:
	0. Visual Analytics in Urban Computing: An Overview
	 1. SmartAdP: Visual Analytics of Large-scale Taxi Trajectories for Selecting Billboard Locations
	2. Narrative Visualization: Telling Stories with Data
	3. Data Changes Everything: Challenges and Opportunities in Data Visualization Design Handoff
	4. What is Interaction for Data Visualization?
	5. TelCoVis: Visual Exploration of Co-occurrence in Urban Human Mobility Based on Telco Data

		6. AirVis: Visual Analytics of Air Pollution Propagation
Sprin	g Break	
8	Mar 23	Project Proposal Presentation No Reading Assignment
9	Mar 30	 Topic 6.Data-Driven Decision Making Reading: 0. Data Sets, Modeling and Decision Making in Smart Cities: A Survey 1. A Deep Reinforcement Learning-Enabled Dynamic Redeployment System for Mobile Ambulances 2. Towards Efficient Sharing: A Usage Balancing Mechanism for Bike Sharing Systems 3. Planning bike lanes based on Sharing-bike's trajectories. 4. sharedCharging: Data-Driven Shared Charging for Large-Scale Heterogeneous Electric Vehicles 5. Addressing the minimum fleet problem in on-demand urban mobility 6. Exploiting Heterogeneous Human Mobility Patterns for Intelligent Bus Routing
10	Apr 6	 Topic 7.Novel Services Reading: 0. Urban Computing Leveraging Location-Based Social Network Data: A Survey 1. Catch Me If You Can: Detecting Pickpocket Suspects from Large-Scale Transit Records 2. A Taxi Driving Fraud Detection System 3. Learning to Generate Maps from Trajectories 4. Growing the Charging Station Network for Electric Vehicles with Trajectory Data Analytics 5. Alleviating Users' Pain of Waiting: Effective Task Grouping for Online-to-Offline Food Delivery 6. Detecting Vehicle Illegal Parking Events using Sharing Bikes' Trajectories

	1	
11	Apr 13	 Topic 8. Transferability and Dependency Analyses 0. A Survey on Transfer Learning 1. pg-Causality: Identifying Spatiotemporal Causal Pathways for Air Pollutants with Urban Big Data. 2. Transfer Knowledge between Cities 3. Learning from Hometown and Current City: Cross-city POI Recommendation via Interest Drift 4. Cityresolver: a decision support system for conflict resolution in smart cities 5. CellRep: Usage Representativeness Modeling and Correction Based on Multiple Cellular Networks 6. Understanding the Evolution of City-Scale Ridesharing Services: A Perspective of EV Penetration
12	Apr 20	 Topic 9. Human-in-the-loop Reading: 0. People-Centric Urban Sensing 1. Taxi Driving Behavior Analysis in Latent Vehicle-to-Vehicle Networks: A Social Influence Perspective 2. Understanding User Behavior in Online Car Sharing Services Through the Lens of Mobility 3. Human Mobility, Social Ties, and Link Prediction 4. Friendship and Mobility: User Movement in Location-Based Social Networks 5. Community Interaction and Conflict on the Web 6. DeepAPP: A Deep Reinforcement Learning Framework for Mobile Application Usage Prediction
13	Apr 27	Topic 10.Privacy and Security Reading: O. The Long Road to Computational Location Privacy: A Survey

		 1. PrivateBus: Privacy Identification and Protection in Large-Scale Bus WiFi Systems
		 2. Anonymization of Location Data Does Not Work: A Large-Scale Measurement Study
		3. Elastic Pathing: Your Speed is Enough to Track You
		• 4. "Why Are They Collecting My Data?": Inferring the Purposes of Network Traffic in Mobile Apps
		5. CrowdPOI: A Crowdsourcing System for POI Location Fraud Corrections
		6. TrajGuard: A Comprehensive Trajectory Copyright Protection Scheme
14	May 4	Final Project Presentation
		No Reading Assignment
	May 11	Final project papers are due on May 11th 11:59PM EST.

"How to" List

- 1. How to Read a Paper by S. Keshav.
- 2. <u>How to Read a Research Paper</u> by Michael Mitzenmacher.
- 3. <u>Writing Reviews for Systems Conferences</u> by Timothy Roscoe.
- 4. How to Read an Engineering Research Paper by William Griswold.
- 5. How to Read a Research Paper by Spencer Rugaber.
- 6. <u>How to write a great research paper</u> by Simon Peyton Jones.
- 7. How to give a great research talk by Simon Peyton Jones.