Hw. 2 Problem 1

January 1, 2018

Find the image of the set $U=\{z\in\mathbb{C}:-\frac{\pi}{2}<\mathrm{Re}z<\frac{\pi}{2}\}$ under the function $f(z)=\sin z$.

1. What is the image of the line segment $L_1 = (-\frac{\pi}{2}, \frac{\pi}{2})$ under f?

Notice that the real function, $\sin x$, is continuous and increasing on L_1 , with $\sin(-\frac{\pi}{2}) = -1$ and $\sin(\frac{\pi}{2}) = 1$. Thus, $f(L_1) = (-1, 1)$.

2. What is the image of the imaginary axis $L_2 = \{iy : y \in \mathbb{R}\}$ under f?

We know that $\sin(iy) = \frac{e^{-y} - e^y}{2i}$. For each $y \in \mathbb{R}$, we have that $\sin(iy) \in i\mathbb{R} := \{ia : a \in \mathbb{R}\}$. Consider $g(y) = e^{-y} - e^y$. Note that g is continuous on \mathbb{R} . Also,

$$\lim_{y \to \infty} g(y) = -\infty$$

and

$$\lim_{y \to -\infty} g(y) = \infty$$

so $g(\mathbb{R}) = \mathbb{R}$ by the intermediate value theorem (IVT). Hence, $\sin(iy) = 2ig(y)$, so $f(L_2) = L_2$, the imaginary axis itself.

3. What is the image of the vertical line $L_3 = \{-\frac{\pi}{2} + iy : y \in \mathbb{R}\}$ under f?

First, observe that for $y \in \mathbb{R}$,

$$\sin(iy - \frac{\pi}{2}) = \sin(iy)\cos(-\frac{\pi}{2}) + \cos(iy)\sin(-\frac{\pi}{2})$$
$$= -\cos(iy)$$
$$= \frac{-e^{-y} - e^y}{2}.$$

Let $h(y) = e^{-y} + e^y$. Then $h'(y) = -e^{-y} + e^y$ and h''(y) = h(y) > 0. Thus, h' is strictly increasing on \mathbb{R} and hence, has at most one zero. Also, h'(0) = 0. We conclude that h is strictly decreasing on $(-\infty, 0)$, achieves a global minimum of 2 at 0, and is strictly increasing on $(0, \infty)$. Note that h is unbounded above as $\lim_{y\to\infty} h(y) = \infty$. Hence, $h(\mathbb{R}) = [2, \infty)$. Since $\sin(iy - \frac{\pi}{2}) = -\frac{1}{2}h(y)$, we have $f(L_3) = (-\infty, -1]$.

4. What is the image of the vertical line $L_4 = \{\frac{\pi}{2} + iy : y \in \mathbb{R}\}$ under f?

Computing $f(L_4)$ involves an argument similar to that for computing $f(L_3)$. We find that $\sin(iy + \frac{\pi}{2}) = \cos(iy)$ and conclude that $f(L_4) = [1, \infty)$.

5. Given your above observations, what do you guess the image of the set U is under f?

I believe it should be $\mathbb{C} - f(L_3) - f(L_4)$, which is

$$\mathbb{C} - \{ z \in \mathbb{C} : \operatorname{Im} z = 0, |z| \ge 1 \}.$$

This claim indeed makes sense. We know that f is entire, so $f(\mathbb{C}) = \mathbb{C}$. Given $S \subseteq \mathbb{C}$, let \overline{S} denote the closure of S, which is S, together with its boundary points. As with the situation in \mathbb{R} , $f(\overline{L_1}) = f(\mathbb{R})$. We can somehow view U as a analogue of L_1 for \mathbb{C} , and guess that $f(\overline{U}) = f(\mathbb{C}) = \mathbb{C}$. Notice that $U = \overline{U} - L_3 - L_4$, which is what guided my intuition to the above answer for f(U).