Indukcyjne metody analizy danych - Sprawozdanie z zajęć laboratoryjnych

April 15, 2020

Ćwiczenie 2. Indukcja drzew decyzyjnych C5.0 (C4.5) w R

Piotr Błoński 225959

Celem ćwiczenia było zapoznanie się z indukcjądrzew decyzyjnych C5.0 na platformie R. W tym celu wykorzystałem poniższe biblioteki:

```
[36]: options(warn=-1) #Wyłączenie warningów aby w sprawozdaniu niebyły drukowane library(tidyverse)
library(C50) #Drzewa decyzyjne C5.0
library(caret) #Pakiet do uczenia maszynowego
library(MLmetrics) # Pakiet zawierający metryki takie jak Fscore, Precision itp.
```

Należy zbudować model klasyfikatora na zbiorach danych: iris, wine, glass, seeds. Razem ze sprawozdaniem dołączone są pliki csv zawierające te zbiory.

```
[2]: iris_data = read.csv(file = "iris.csv") #załaduj do iris_data dane Iris.
head(iris_data,3) # 3 pierwsze rekordy z datasetu
```

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
1	1	5.1	3.5	1.4	0.2	Iris-setosa
2	2	4.9	3.0	1.4	0.2	Iris-setosa
3	3	4.7	3.2	1.3	0.2	Iris-setosa

Jak widać dane Iris posiadają kolumne z klasą - Species która nas interesuje, w R jest faktorem. Absolutnie nie interesuje nas kolumna Id ponieważ od Id nie ma żadnego wpływu na to jakiego gatunku rośliną będzie dany Irys. Będzie trzeba w procesie uczenia pominąć tą kolumne.

```
[38]: wine_data = read.csv(file = "wine.csv") #załaduj do wine_data dane Wine Quality head(wine_data,3)
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	7.4	0.70	0.00	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
2	7.8	0.88	0.00	2.6	0.098	25	67	0.9968	3.20	0.68	9.8	5
3	7.8	0.76	0.04	2.3	0.092	15	54	0.9970	3.26	0.65	9.8	5

```
[4]: glass_data = read.csv(file = "glass.csv") #zatqduj do glass_data dane Glass
head(glass_data,3)
```

	RI	Na	Mg	Al	Si	K	Ca	Ba	Fe	Туре
	<dbl></dbl>	<int></int>								
1	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0	0	1
2	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0	0	1
3	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0	0	1

W danych glass i wine ostatnie kolumny niestety mają w R typ Int co powoduje błędy! Typu jak w [1]. Aby tego uniknąć w funkcji uczące będziemy przerabiać tą kolumne na factor.

```
[5]: seed_data = read.csv(file = "seeds.csv") #załaduj do seed_data dane Seeds head(seed_data,3)
```

	Area	Perimeter	compactness	length of kernel	width of kernel	asymmetry coefficient	lenght of kernel groove	Туре
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	15.26	14.84	0.0710	E 7(2	0.010	2 221	5.00 0	1
_	10.20	14.04	0.8710	5.763	3.312	2.221	5.220	1
2	14.88	14.57	0.8710	5.763	3.312	2.221 1.018	5.220 4.956	1

W informacjach o danych Seeds, jest napisane że compactness jest zależne od Area i Perimeter jako: - compactness = $4 * pi * Area / Perimeter^2$

Dlatego też w procesie uczenia nie będziemy korzystać z tej kolumny za pomocą poniższej lini:

```
[6]: column_to_drop <- c("compactness")
seed_data <- seed_data[ , !(names(seed_data) %in% column_to_drop)]</pre>
```

W trakcie wykonywania crossvalidacji za pomocą biblioteki caret okazało się że jedyne metryki jakie nam zwraca to Accuracy i Kappa. A interesują nas Fscore, Accuracy, Precision i Recall. W tym celu zgodnie z dokumentacja biblioteki caret [2], stworzyłem własną funkcje z metrką.

Funkcja ta jest używana podczas caret'owego train w celu walidacji modelu. Przy użyciu caretowej crossvalidacji powinna sie wykonywać dla wszystkich foldów i zwrócić wartość średnią. Funkcja ta wykorzystuje funkcje metryki dostępne z biblioteki MLmetrics.

Funkcja odpowiedzialna za uczenie modelu naszego drzewa decyzyjnego zwraca metryki i pomiary na modelu jako dataframe. Przymuje następujące parametry: - Param-names - jest to string który zawiera informacje jakie parametry modelu będzie posiadało nasze drzewo decyzyjne. Ten parametr używany jest tylko i wyłącznie jako nazwa identyfikacyjna pomiaru. - dataset - np iris_data - dataframe którym będziemy uczyć. - model_type - 'tree' lub 'rules' - parametr przekazywany do funkcji train w celu wybrania czy drzewo ma być rule-based czy nie. - straing_col_number - kolumna startowa którą od której chcemy zacząć podawać dane. Najczęściej 1 w przypadku gdyby jednak kolumna Id była jako pierwsza (np Iris) to można ustawić np 2. Ten parametr pojawił się tylko i wyłącznie dlatego że w trakcie pisania tego skryptu dość późno nauczyłem się dropować kolumny. - last_col_number - ostatnia kolumna - formula - formuła R np 'Species ~.' przekazywana do train - folds - ilość foldów w crossvalidacji.

Parametry opisane pod kodem: - Winnowing - parametr True / False - jest odpowiedzialny za to czy powinna zostać użyta feature selection. - Fuzzy - pamater True / False - odpowiedzialny za fuzzyThreshold - GlobalPruning - parametr True / False - odpowiedzialny jest za przycinanie końcowe drzewa w celu jego uproszczenia. Nazwa parametru to w rzeczywistości noGlobabl-Pruning więc zaznaczenia na True oznacze brak przycinania.

```
[41]: TreeModel_caret <-
       →function(param_names,dataset,model_type,starting_col_number,last_col_number,formula,folds,wir
      ){
          #Selekcja danych
          test = dataset$last_col_number
          dataset[,ncol(dataset)] = as.factor(dataset[,ncol(dataset)])
          y = dataset[,(last_col_number-1)] #class column
          index = createDataPartition(y=y, p=0.7, list=FALSE)
          train.set = dataset[index,starting_col_number:last_col_number]
          test.set = dataset[-index,starting_col_number:last_col_number]
          #Ustawianie parametrów i Control
          train.control <- trainControl(#https://www.rdocumentation.org/packages/C50/
       \rightarrow versions/0.1.3/topics/C5.0Control
                         method = "cv",
                         number = folds,
                         savePredictions = "all",
                         summaryFunction = metrics)
          Control <- C5.0Control(</pre>
                         winnow = winnowing,
                         fuzzyThreshold = fuzzy,
                         noGlobalPruning = GlobalPruning)
          #uczenie
          tree <- train(</pre>
                         formula,
                         data=train.set,
                         method="C5.0",
                         control = Control,
                         tuneGrid = data.frame(trials = 1, model = c(model_type),__
       →winnow = winnowing),
```

```
trControl = train.control)
#wyciąganie metryk z results
f1 = tree$results$fScore
rec = tree$results$Recall
sen = tree$results$Sensitivity
acc = tree$results$Accuracy
prec= tree$results$Precision
size = tree$finalModel$size
# przygotowanie danych do zwrócenia
research_frame<-data.frame(param_names,f1,acc,rec,prec,size)
names(research_frame)<-c("params","f1","acc","rec","prec","Tree_size")
return(research_frame)
}</pre>
```

Najpierw jednak pokaże przykładowe ploty drzew decyzyjnych. Niestety wszystkich drzew nie moge umieścić w tym sprawozdaniu gdyż było by ich ponad 50.

```
[42]: in_train <- as.factor(sample(1:nrow(iris_data), size = (0.8*nrow(iris_data))))
    train_data <- iris_data[ in_train,]
    test_data <- iris_data[-in_train,]
    tree_mod_iris <- C5.0(x = train_data[, 2:5], y = train_data[,6])
    plot(tree_mod_iris)
    print(tree_mod_iris$size)</pre>
```

[1] 5


```
[43]: in_train <- as.factor(sample(1:nrow(glass_data), size = (0.8*nrow(glass_data))))
    glass_data[,ncol(glass_data)] <- as.factor(glass_data[,ncol(glass_data)])
    train_data <- glass_data[ in_train,]
    test_data <- glass_data[-in_train,]
    tree_mod_glass <- C5.0(x = train_data[, 1:9], y = train_data[,10])
    plot(tree_mod_glass)
    print(tree_mod_glass$size)</pre>
```

[1] 23


```
[44]: in_train <- as.factor(sample(1:nrow(wine_data), size = (0.8*nrow(wine_data))))
    wine_data[,ncol(wine_data)] <- as.factor(wine_data[,ncol(wine_data)])
    train_data <- wine_data[ in_train,]
    test_data <- wine_data[-in_train,]
    tree_mod_wine <- C5.0(x = train_data[, 1:11], y = train_data[,12])
    plot(tree_mod_wine)
    print(tree_mod_wine$size)</pre>
```

[1] 184


```
[45]: in_train <- as.factor(sample(1:nrow(seed_data), size = (0.8*nrow(seed_data))))
    seed_data[,ncol(seed_data)] <- as.factor(seed_data[,ncol(seed_data)])
    train_data <- seed_data[in_train,]
    test_data <- seed_data[-in_train,]
    tree_mod_seed <- C5.0(x = train_data[, 1:6], y = train_data[,7])
    plot(tree_mod_seed)
    print(tree_mod_seed$size)</pre>
```

[1] 7

Plan badania: Dla każdego z foldów (5 , 10 , 15) sprawdzić wartość metryk i każdej kombinacji parametrów (winnow,noGlobalPunning,fuzzyThreshold.

```
[47]: print('Iris')
research(iris_data,2,6,Species~.)
```

[1] "Iris"

	params	f1	acc	rec	prec	Tree_size
	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
4	Rules F=5 winnow=T fuzzy=F pruning=F	0.9846154	0.9242424	0.9714286	1	3
5	Rules F=10 winnow=T fuzzy=F pruning=F	0.9800000	0.9531313	0.9666667	1	3
6	Rules F=15 winnow=T fuzzy=F pruning=F	0.9644444	0.9452381	0.944444	1	3
8	Rules F=10 winnow=F fuzzy=T pruning=F	0.9800000	0.9432828	0.9666667	1	3
13	Rules F=5 winnow=T fuzzy=T pruning=F	0.9846154	0.9809524	0.9714286	1	3
16	Rules F=5 winnow=T fuzzy=F pruning=T	0.9846154	0.9332035	0.9714286	1	3
17	Rules F=10 winnow=T fuzzy=F pruning=T	0.9800000	0.9609091	0.9666667	1	3
19	Rule F=5 winnow=F fuzzy=T pruning=T	1.0000000	0.9513853	1.0000000	1	3
23	Rule F=10 winnow=T fuzzy=T pruning=T	0.9857143	0.9249495	0.9750000	1	3
1	Rules F=5 winnow=F fuzzy=F pruning=F	0.9512821	0.8964502	0.9142857	1	4
2	Rules F=10 winnow=F fuzzy=F pruning=F	0.9657143	0.9442424	0.9416667	1	4
3	Rules F=15 winnow=F fuzzy=F pruning=F	0.9866667	0.9079365	0.9777778	1	4
7	Rules F=5 winnow=F fuzzy=T pruning=F	0.9846154	0.9337662	0.9714286	1	4
9	Rules F=15 winnow=F fuzzy=T pruning=F	0.9866667	0.9075397	0.9777778	1	4
10	Rules F=5 winnow=F fuzzy=F pruning=T	0.9712821	0.9150216	0.9464286	1	4
11	Rules F=10 winnow=F fuzzy=F pruning=T	0.9800000	0.9268182	0.9666667	1	4
12	Rules F=15 winnow=F fuzzy=F pruning=T	0.9866667	0.9388889	0.9777778	1	4
14	Rules F=10 winnow=T fuzzy=T pruning=F	0.9857143	0.9040404	0.9750000	1	4
15	Rules F=15 winnow=T fuzzy=T pruning=F	0.9866667	0.9341270	0.9777778	1	4
18	Rules F=15 winnow=T fuzzy=F pruning=T	0.9644444	0.9161376	0.944444	1	4
20	Rul F=10 winnow=F fuzzy=T pruning=T	0.9657143	0.9239899	0.9416667	1	4
21	Rule F=15 winnow=F fuzzy=T pruning=T	0.955556	0.9162698	0.9333333	1	4
22	Rule F=5 winnow=T fuzzy=T pruning=T	0.9846154	0.9441558	0.9714286	1	4
24	Rule F=15 winnow=T fuzzy=T pruning=T	0.9777778	0.9105820	0.9666667	1	4


```
[48]: print('Seeds')
research(seed_data,1,7,Type~.)
```

[1] "Seeds"

	params	f1	acc	rec	prec	Tree_size
	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
9	Rules F=15 winnow=F fuzzy=T pruning=F	0.8593651	0.9056566	0.8722222	0.8996825	3
19	Rule F=5 winnow=F fuzzy=T pruning=T	0.8698574	0.9126437	0.8472727	0.9088267	3
1	Rules F=5 winnow=F fuzzy=F pruning=F	0.8910649	0.9195106	0.8757576	0.9189610	4
5	Rules F=10 winnow=T fuzzy=F pruning=F	0.8701515	0.9185119	0.8400000	0.9216667	4
7	Rules F=5 winnow=F fuzzy=T pruning=F	0.8338817	0.8927697	0.8888889	0.8277778	4
10	Rules F=5 winnow=F fuzzy=F pruning=T	0.8506366	0.9057471	0.8533333	0.8699134	4
13	Rules F=5 winnow=T fuzzy=T pruning=F	0.8393464	0.9010604	0.8288889	0.8578283	4
15	Rules F=15 winnow=T fuzzy=T pruning=F	0.8304989	0.8824579	0.7666667	0.8845238	4
17	Rules F=10 winnow=T fuzzy=F pruning=T	0.9053030	0.9402976	0.8800000	0.9500000	4
14	Rules F=10 winnow=T fuzzy=T pruning=F	0.8311328	0.8994048	0.8200000	0.8916667	5
16	Rules F=5 winnow=T fuzzy=F pruning=T	0.8363280	0.9050278	0.8244444	0.8784848	5
3	Rules F=15 winnow=F fuzzy=F pruning=F	0.8386243	0.9136700	0.7888889	0.9477778	6
4	Rules F=5 winnow=T fuzzy=F pruning=F	0.8424031	0.8923693	0.8109091	0.8886364	6
6	Rules F=15 winnow=T fuzzy=F pruning=F	0.8279365	0.8720539	0.855556	0.8377778	6
11	Rules F=10 winnow=F fuzzy=F pruning=T	0.8540404	0.9057143	0.8400000	0.8988095	6
18	Rules F=15 winnow=T fuzzy=F pruning=T	0.8385714	0.9088552	0.8333333	0.9122222	6
20	Rul F=10 winnow=F fuzzy=T pruning=T	0.8876612	0.9254625	0.8533333	0.9440476	6
21	Rule F=15 winnow=F fuzzy=T pruning=T	0.8140212	0.8914815	0.8111111	0.8766667	6
23	Rule F=10 winnow=T fuzzy=T pruning=T	0.7634343	0.8461905	0.7600000	0.7783333	6
2	Rules F=10 winnow=F fuzzy=F pruning=F	0.8273810	0.9131548	0.7950000	0.9150000	7
8	Rules F=10 winnow=F fuzzy=T pruning=F	0.8046032	0.8794048	0.7550000	0.9085714	7
12	Rules F=15 winnow=F fuzzy=F pruning=T	0.8559788	0.9127946	0.8611111	0.9011111	7
22	Rule F=5 winnow=T fuzzy=T pruning=T	0.8462932	0.8993103	0.8036364	0.9054545	7
24	Rule F=15 winnow=T fuzzy=T pruning=T	0.8262472	0.8652525	0.8111111	0.8321429	7


```
[49]: print('Glass')
research(glass_data,1,10,Type~.)
```

[1] "Glass"

	params	f1	acc	rec	prec	Tree_size
	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
4	Rules F=5 winnow=T fuzzy=F pruning=F	0.7277391	0.6966550	0.8090909	0.6773232	7
6	Rules F=15 winnow=T fuzzy=F pruning=F	0.6908466	0.6989562	0.6777778	0.7311111	7
17	Rules F=10 winnow=T fuzzy=F pruning=T	0.7227689	0.6904167	0.7800000	0.7168651	7
14	Rules F=10 winnow=T fuzzy=T pruning=F	0.6582900	0.6508899	0.6700000	0.6600000	8
24	Rule F=15 winnow=T fuzzy=T pruning=T	0.7930272	0.6597462	0.7833333	0.7411111	8
5	Rules F=10 winnow=T fuzzy=F pruning=F	0.6271605	0.6138130	0.6000000	0.6029101	10
12	Rules F=15 winnow=F fuzzy=F pruning=T	0.7571958	0.7077273	0.7666667	0.7833333	10
13	Rules F=5 winnow=T fuzzy=T pruning=F	0.7724211	0.6527253	0.8133333	0.7577778	10
15	Rules F=15 winnow=T fuzzy=T pruning=F	0.7127551	0.7087374	0.7055556	0.6976190	10
21	Rule F=15 winnow=F fuzzy=T pruning=T	0.6170899	0.6559790	0.5833333	0.7277778	10
8	Rules F=10 winnow=F fuzzy=T pruning=F	0.7645599	0.7145168	0.8266667	0.7376984	11
9	Rules F=15 winnow=F fuzzy=T pruning=F	0.6498299	0.6205387	0.6111111	0.6777778	11
10	Rules F=5 winnow=F fuzzy=F pruning=T	0.5800619	0.5665109	0.6200000	0.5800000	11
22	Rule F=5 winnow=T fuzzy=T pruning=T	0.6785590	0.6600371	0.7145455	0.6543323	11
1	Rules F=5 winnow=F fuzzy=F pruning=F	0.7567191	0.7206377	0.7854545	0.7340870	12
16	Rules F=5 winnow=T fuzzy=F pruning=T	0.5736916	0.6129403	0.6111111	0.5454545	12
23	Rule F=10 winnow=T fuzzy=T pruning=T	0.7613364	0.6869643	0.7866667	0.7571429	12
3	Rules F=15 winnow=F fuzzy=F pruning=F	0.7006803	0.6587205	0.7111111	0.7083333	13
11	Rules F=10 winnow=F fuzzy=F pruning=T	0.7255051	0.6858977	0.7850000	0.6847619	13
2	Rules F=10 winnow=F fuzzy=F pruning=F	0.7501515	0.6870238	0.7500000	0.7733333	14
20	Rul F=10 winnow=F fuzzy=T pruning=T	0.6558522	0.6379921	0.5900000	0.6353175	14
18	Rules F=15 winnow=T fuzzy=F pruning=T	0.7016402	0.6466667	0.7000000	0.725556	15
19	Rule F=5 winnow=F fuzzy=T pruning=T	0.6166947	0.6323174	0.5977778	0.6907359	15
7	Rules F=5 winnow=F fuzzy=T pruning=F	0.6685046	0.5956322	0.6600000	0.6825758	16


```
[50]: print('Wine quality')
research(wine_data,1,12,quality~.)
```

[1] "Wine quality"

	params	f1	acc	rec	prec	Tree_size
	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
2	Rules F=10 winnow=F fuzzy=F pruning=F	NaN	0.5782036	0.0000000	0.0000000	59
4	Rules F=5 winnow=T fuzzy=F pruning=F	0.6666667	0.5869362	0.2000000	0.1666667	60
23	Rule F=10 winnow=T fuzzy=T pruning=T	NaN	0.5808215	0.0000000	NaN	60
6	Rules F=15 winnow=T fuzzy=F pruning=F	NaN	0.5931423	0.0000000	0.0000000	61
10	Rules F=5 winnow=F fuzzy=F pruning=T	NaN	0.6022315	0.0000000	0.0000000	61
16	Rules F=5 winnow=T fuzzy=F pruning=T	NaN	0.5923418	0.0000000	0.0000000	61
20	Rul F=10 winnow=F fuzzy=T pruning=T	0.6666667	0.5895858	0.1250000	0.1666667	61
19	Rule F=5 winnow=F fuzzy=T pruning=T	NaN	0.5816187	0.0000000	0.0000000	63
1	Rules F=5 winnow=F fuzzy=F pruning=F	NaN	0.5656156	0.0000000	NaN	64
8	Rules F=10 winnow=F fuzzy=T pruning=F	NaN	0.5772336	0.0000000	0.0000000	65
24	Rule F=15 winnow=T fuzzy=T pruning=T	1.0000000	0.5993890	0.1000000	0.3333333	65
13	Rules F=5 winnow=T fuzzy=T pruning=F	NaN	0.6120293	0.0000000	NaN	67
5	Rules F=10 winnow=T fuzzy=F pruning=F	NaN	0.5896447	0.0000000	NaN	68
12	Rules F=15 winnow=F fuzzy=F pruning=T	NaN	0.5935395	0.0000000	0.0000000	69
18	Rules F=15 winnow=T fuzzy=F pruning=T	NaN	0.5664936	0.0000000	0.0000000	69
14	Rules F=10 winnow=T fuzzy=T pruning=F	1.0000000	0.5910375	0.1250000	1.0000000	70
21	Rule F=15 winnow=F fuzzy=T pruning=T	NaN	0.5939063	0.0000000	0.0000000	71
7	Rules F=5 winnow=F fuzzy=T pruning=F	NaN	0.5942742	0.0000000	0.0000000	72
15	Rules F=15 winnow=T fuzzy=T pruning=F	0.8333333	0.5974024	0.3333333	0.5000000	73
9	Rules F=15 winnow=F fuzzy=T pruning=F	NaN	0.5868618	0.0000000	0.0000000	74
11	Rules F=10 winnow=F fuzzy=F pruning=T	NaN	0.5860761	0.0000000	0.0000000	74
3	Rules F=15 winnow=F fuzzy=F pruning=F	NaN	0.5968108	0.0000000	0.0000000	80
22	Rule F=5 winnow=T fuzzy=T pruning=T	NaN	0.5513254	0.0000000	NaN	81
17	Rules F=10 winnow=T fuzzy=F pruning=T	NaN	0.5905675	0.0000000	0.0000000	82

1 Wnioski

- 1. Zawsze należy sprawdzać dany zbiór danych przez jego użyciem.
- 2. Drzewa decyzyjne można wizualizować przez co nie działają jak blackbox(np sieci NN).
- 3. Crossvalidacja pozwala na lepsze określenie dokladności modelu
- 4. Język R pozwala implementować różnego rodzaju uczenie maszynowe jednakże czasem potrafi być chaotyczny.
- 5. W przypadku kiepsko nauczonego modelu (w naszym przypadku Wine) pomimo accuracy na poziomie 60% recall potrafi być równy zero co skutku nieliczbami w pomiarach f1 itp.
- 6. Parametr globabPruning ma duży wpływ na końcowy rozmiar drzewa
- 7. W zależności od datasetu parametry dawały różne skuteczności modelu. Ale tylko dla nielicznych zbiór Wine dawał jakiekolwiek wyniki.
- 8. Dla wyższych wartości foldów w crosswalidacji osiągaliśmy lepsze wyniki na metrykach.
- 9. Wizualizacja dużych drzew może być bardzo nieczytelna z poziomu R.