

Snowfall rates and their connection to cloud microphysics

Franziska Hellmuth¹, Anne Sophie Daloz², Trude Storelvmo¹

Objective

Mixed phase clouds are not well represented in GCMs.

Ice formation influences radiative effect, precipitation formation, and cloud lifetime.

Defining a mixed-phase cloud (MPC)

Pressure level where fraction

• Liquid / (Ice + Liquid) = 50% (SLF50)

Mixed phase-clouds (ERA5)

Temperature constant in all latitudes

Highest snowfall related to storm track area

30 year, season: DJF

Ice water path/Liquid water path (ERA5 - CMIP6)

Ice water path overestimate

Liquid water path underestimate

Snowfall (ERA5 - CMIP6)

Snowfall underestimate of ~20%

Key points

- Snowfall from MP clouds is highest in storm track areas
- GCM
 - o cloud phase Ice overestimated
 - Liquid underestimated
 - Snowfall Underestimated especially in storm track areas

Next steps

- Find MP clouds in CMIP6
- Include satellite data (CloudSat)

