Executive Summary

Analysis of Competitive EBAY Auctions

This paper analyzes specific attributes of auctions in order to classify them as competitive or noncompetitive. A competitive auction is defined as an auction with at least two bids placed on the item auctioned. The dataset includes attributes that describe the item (Category), rate the seller (sellerRating), outline the auction terms (currency, Duration, endDay, OpenPrice), and provide the price at which the auction closed (ClosePrice).

CART Decision Tree (Appendix B)

The prediction algorithm generated results with an 87.35% accuracy for training and 85.13% accuracy for testing sets. They have 92% and 91.5% precision respectively. In Appendix B, you can see a pictorial representation of the decision tree model. The model predicted that Open Price, followed by Close Price, are by far the most important predictors in determining whether an auction is competitive or not. Looking at the rules, it alternated between OpenPrice and ClosePrice in decreasing ranges to narrow down to a pure tree until it had to use other attributes.

C 4/5.0 Decision Tree (Appendix C)

The prediction algorithm generated results with an 88.82% accuracy for training and 88.56% accuracy for testing sets. In Appendix C you can see a pictorial representation of the decision tree model. The model predicted that Open Price, followed by Close Price, are by far the most important predictors in determining whether an auction is competitive or not. Looking at the rules, it alternated between OpenPrice and ClosePrice in ranges to narrow down to a pure tree until it had to use other attributes.

Bayes Net (Appendix D)

The model had performance metrics of 70.59% accuracy, 69.35% recall, 27.90% FP rate, 75.16% precision. The accuracy, recall, and precision are decent, but the FP rate is relatively high. An ROC curve was produced to further evaluate the performance of the Bayesian Network. The area under the curve is a measure of the predictive accuracy of the model. In this case, the area under the curve appears to be about 0.75, which is relatively accurate.

Neural Net (Appendix E)

Neural networks predict a continuous or categorical target based on one or more predictors by finding unknown and possibly complex patterns in the data. We predicted that the training dataset will be competitive 76.84% of the time and the testing set 77.9%. The models have 71.2 and 75.6% precision in their prediction respectively. We also know that close price is the most important variable in making a product competitive.

Apriori Modelling (Appendix F)

The network automatically generated five association rules, all of which with the same end goal: to see how competitive the products are. We can determine if each rule is a good or poor rule based on calculating improvement/lift. According to the generated rules, the two best predictors are endDay= "Monday" and currency="US" based on their support, confidence and lift.

Conclusions

Looking at all of the models, it seems that Open and Close Prices are important factors in whether an auction is competitive or not. The apriori results suggest that there is a correlation in competitive auctions closing on Mondays and in US dollars. The C4/5.0 decision Tree was the most accurate at 88.82% and 88.56% accurate for training and testing. Overall, both decision tree models did better than the Bayesian or Neural Network models in terms of recall, accuracy, specificity, and precision.

2

Appendix A:

Data Collection

Data collected for each auction includes the category of the auction, the currency, the seller's Rating, the duration of the sale, the day of the week if ended, the price the auction closed at, the price it opened at, and whether it was competitive or not.

	Category	currency	sellerRating	Duration	endDay	ClosePrice	OpenPrice	Competitive?
1	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
2	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
3	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
4	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
5	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
6	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
7	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
8	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
9	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
10	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
11	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
12	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
13	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
14	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
15	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
16	Music/Movie/Game	US	3249.000	5.000	Mon	0.010	0.010	0.000
17	Automotive	US	3115.000	7.000	Tue	0.010	0.010	0.000
18	Automotive	US	3115.000	7.000	Tue	0.010	0.010	0.000
19	Automotive	US	3115.000	7.000	Tue	0.010	0.010	0.000
20	Automotive	US	3115.000	7.000	Tue	0.010	0.010	0.000
21	Automotive	US	3115.000	7.000	Tue	0.010	0.010	1.000
22	Automotive	US	3115.000	7.000	Tue	0.010	0.010	1.000
23	Music/Movie/Game	US	37727.000	7.000	Mon	0.010	0.010	0.000
24	Music/Movie/Game	US	3249.000	5.000	Mon	0.060	0.010	1.000
25	Music/Movie/Game	US	3249.000	5.000	Mon	0.100	0.010	1.000
26	SportingGoods	US	34343.000	1.000	Sun Fri	0.110	0.010	1.000

Appendix B:

CART Decision Tree

Examples of Some Rules: The root is Open Price. It seems that the model alternates between ranges of OpenPrice and Close Price attributes to gain better results until it is too narrow and must resort to other attributes to make decisions for a pure tree.

Antecedent	Consequence	Support	Confidence
If (Open Price)>2.450	Then	390/989	390/641
	Competitive=0		
If (Open Price)<=2.450	Then	294/989	294/348
	Competitive=1		
If (Open Price<=2.450) ^(Close Price<=2.070)	Then	84/989	54/84
	Competitive=0		
If (Open Price<=2.450) ^(Close Price>2.070)	Then	264/989	100%
	Competitive=1		
If (Open Price<=2.450) ^(Close	Then	42/989	24/42
Price<=2.070)^(OpenPrice<=1.228)	Competitive=1		
If (Open Price<=2.450) ^(Close	Then	42/989	36/42
Price<=2.070)^(OpenPrice>1.228)	Competitive=0		
If (Open Price<=2.450) ^(Close	Then	26/989	18/26
Price<=2.070)^(OpenPrice<=1.228)^(ClosePrice<=0.995)	Competitive=o		
If (Open Price<=2.450) ^(Close	Then	16/989	100%
Price<=2.070)^(OpenPrice<=1.228)^(ClosePrice>0.995)	Competitive=1		

Gain Chart: At about 50% of the sample, we have around 85% gain for training and testing.

'Competitive?' = 1.0

	Training:	Testing:
Accuracy: TP+TN)/(TP+TN+FP+FN)	(611+577)/(577+53+119+611)=87.3%	(270+251)/(251+25+66+270)=85.13%
Specificity: FP/(TN+FP)	53/(577+53)=8.3%	(25/(25+251)=9%
Recall: TP/(TP+FN)	611/(611+119)=83.69%	270/(270+66)=80.35%
Precision: TP/(TP+FP)	611/(611+53)=92%	270/(270+25)=91.5%

Appendix C:

C 4/5.0 Decision Tree

Samples of Decision Tree Rules: Much like the CART tree, this tree uses OpenPrice as root and alternates between Open and Close price for most of its decisions.

Antecedent	Consequence	Support	Confidence
If (Open Price>1.230	Then	1541/1972	865/1541
	Competitive=0		
If (Open Price<=1.230	Then	390/1972	390/431
	Competitive=1		
If (Open Price)>1.230^(Close Price<=1.160)	Then	59/1972	41/59
	Competitive=0		
If (Open Price>1.230) ^(Close Price>1.160)	Then	372/1972	100%
	Competitive=1		
If (Open Price)>1.230^(Close Price<=1.160)^ (Close	Then	23/1972	21/23
Price<=0.035)	Competitive=0		
If (Open Price)>1.230^(Close	Then	36/1972	20/36
Price<=1.160)^(ClosePrice>0.035)	Competitive=0		
If (Open Price)>1.230^(Close	Then	11/1972	100%
Price<=1.160)^(ClosePrice>0.035)^(OpenPrice<=0.617)	Competitive=1		
If (Open Price)>1.230^(Close	Then	25/1972	20/25
Price<=1.160)^(ClosePrice>0.035)^(OpenPrice>0.617)	Competitive=0		

Training: Testing:

Accuracy: (608+600)/(608+600+122+30)=88.82% (267+275)/(267+9+61+275)=88.56% (7P+TN)/(TP+TN+FP+FN)

Specificity: FP/(TN+FP) 30/(30+600)=4.76% 9/(267+9)=3.26%

Recall: TP/(TP+FN) 608/(608+122)=83.28% 275/(275+61)=81.84%

Precision: TP/(TP+FP) 608/(608+30)=95.29% 275/(275+9)=96.8%

Appendix D:

Bayes Net

Bayesian Network

ROC Curve:

	Training:	Testing:
Accuracy:	(431+493)/(431+493+237+199)=67.9%	(199+233)/(199+77+103+233) = 70.59%
TP+TN)/(TP+TN+FP+FN)		
Specificity: FP/(TN+FP)	199/(431+199)=31.5%	77/(199+77)=27.8%
Recall: TP/(TP+FN)	493/(493+237)=67.5%	233/(233+103) = 69.35%
Precision: TP/(TP+FP)	(493/(493+199)=71.2%	233/(233+77) = 75.16%

Appendix E:

Neural Net

	Training:	Testing:
Accuracy:	(555+490)/(555+490+175+140)=76.8%	(259+218)/(259+218+58+77)=77.9%
TP+TN)/(TP+TN+FP+FN)		
Specificity: FP/(TN+FP)	140/(490+140)=22.22%	58/(218+58)=21%
Recall: TP/(TP+FN)	555/(555+175)=76%	259/(259+77)=77.1%
Precision: TP/(TP+FP)	555/(555+140)=79.8%	259/(259+58)=81.7%

■ Results for output field Competitive?

Comparing \$N-Competitive? with Competitive?

'Partition'	1_Training		2_Testing	
Correct	1,045	76.84%	477	77.94%
Wrong	315	23.16%	135	22.06%
Total	1,360		612	

Coincidence Matrix for \$N-Competitive? (rows show actuals)

	'Partition' = 1_Training	0.000000	1.000000
	0.00000	490	140
	1.000000	175	555
	'Partition' = 2_Testing	0.000000	1.000000
i	0.000000	218	58
	1.000000	77	259

Performance Evaluation

'Partition' = 1_Training	
0.000000	0.464
1.000000	0.397
'Partition' = 2_Testing	
0.00000	0.494
1.000000	0.398

Classification for Competitive?

Overall Percent Correct = 76.8%

Obse	Pred	Predicted		
rved	0.000	1.000	100.00	
0.000	77.8%	22.2%	80.00 60.00 40.00	
1.000	24.0%	76.0%	0.00	

Model Summary

Predictor Importance

Target: Competitive?

Appendix F:

Apriori Net

Rule #1 has the most confidence and lift, which make it the best predictor, while rule #2 has lower confidence but more support and a similar lift. Both rules use "endDay= Monday" as a predictor, and the top 3 rules are very similar. The two best predictors are thus "endDay= Monday" and currency="US"

Consequent	Antecedent	Support %	Confidence %	Rule Support %	Lift
Competitive?	endDay = Mon currency = US	22.363	68.481	15.314	1.267
Competitive?	endDay = Mon	27.789	67.336	18.712	1.246
Competitive?	Category = M currency = US	13.844	63.37	8.773	1.172
Competitive?	endDay = Thu	10.243	60.396	6.187	1.117
Competitive?	Category = M	20.436	60.298	12.323	1.115

