Méthodes des éléments finis Modélisation et Simulation Numérique, Méthode des éléments finis,

S. EL HAJJI (FSR, LabMiA) Université Mohammed V de Rabat

2017-2018

1 Introduction : Classification des EDPs

- 1 Introduction : Classification des EDPs
- $\textbf{ 0 D\'efintion des espaces de Sobolev } \ \textit{H}^{\textit{m}}\left(\Omega\right)$

- Introduction : Classification des EDPs
- **②** Défintion des espaces de Sobolev $H^m(\Omega)$
- Formulation faible de l'équation de Poisson

- Introduction : Classification des EDPs
- **②** Défintion des espaces de Sobolev $H^{m}(\Omega)$
- Formulation faible de l'équation de Poisson
- Existence et unicité de la solution faible : Théorème de Lax-Milgram

- Introduction : Classification des EDPs
- $\textbf{ 0 D\'efintion des espaces de Sobolev } \ \textit{H^m}\left(\Omega\right)$
- Formulation faible de l'équation de Poisson
- Existence et unicité de la solution faible : Théorème de Lax-Milgram
- Discrétisation par éléments finis (1D)

- Introduction : Classification des EDPs
- Formulation faible de l'équation de Poisson
- Existence et unicité de la solution faible : Théorème de Lax-Milgram
- Oiscrétisation par éléments finis (1D)
- Mise en oeuvre sur Matlab (1D)

- Introduction : Classification des EDPs
- $\textbf{ 0 D\'efintion des espaces de Sobolev } \ \textit{H^m}\left(\Omega\right)$
- Formulation faible de l'équation de Poisson
- Existence et unicité de la solution faible : Théorème de Lax-Milgram
- Discrétisation par éléments finis (1D)
- Mise en oeuvre sur Matlab (1D)
- Discrétisation par éléments finis P1 (2D)

- Introduction : Classification des EDPs
- $\textbf{ 0 D\'efintion des espaces de Sobolev } \ \textit{H^m}\left(\Omega\right)$
- Formulation faible de l'équation de Poisson
- Existence et unicité de la solution faible : Théorème de Lax-Milgram
- Discrétisation par éléments finis (1D)
- Mise en oeuvre sur Matlab (1D)
- Discrétisation par éléments finis P1 (2D)
- Mise en oeuvre sur Matlab (2D)

Références

 Sobolev Spaces John J. F. Fournier, Second éedition 2003, Elsevier, Pure and Applied Mathematics series.

Références

- Sobolev Spaces John J. F. Fournier, Second éedition 2003, Elsevier, Pure and Applied Mathematics series.
- Méthode des éléments finis, De la théorie à la pratique. II, Complément. Eliane Bécache, Patrick Ciarlet, Cristophe Hazard, Eric Lunéville Les presses de L'ENSTA.

Références |

- Sobolev Spaces John J. F. Fournier, Second éedition 2003, Elsevier, Pure and Applied Mathematics series.
- Méthode des éléments finis, De la théorie à la pratique. II, Complément. Eliane Bécache, Patrick Ciarlet, Cristophe Hazard, Eric Lunéville Les presses de L'ENSTA.
- Equations aux dérivées partielles, cours et exercices corrigés. Claire Davide, Pierre Gosselet. Dunod (2012)

Résolution de l'équation de Poisson

• Soit le problème de Dirichlet : trouver *u* solution de

$$\begin{cases}
-\Delta u(x) + u(x) &= f & x \in]0, 1[\times]0, 1[\\ u &= 0 & \text{sur } \partial\Omega
\end{cases}$$
(1)

on suppose que

Résolution de l'équation de Poisson

• Soit le problème de Dirichlet : trouver *u* solution de

$$\begin{cases}
-\Delta u(x) + u(x) &= f & x \in]0, 1[\times]0, 1[\\ u &= 0 & \text{sur } \partial\Omega
\end{cases}$$
(1)

on suppose que

• $f \in L^2(\Omega)$

Résolution de l'équation de Poisson

• Soit le problème de Dirichlet : trouver *u* solution de

$$\begin{cases}
-\Delta u(x) + u(x) &= f & x \in]0, 1[\times]0, 1[\\ u &= 0 & \text{sur } \partial\Omega
\end{cases}$$
(1)

on suppose que

- $f \in L^2(\Omega)$
- La formulation variationnelle associée est

Résolution de l'équation de Poisson

$$V=H_0^1\left(\Omega\right)$$

Résolution de l'équation de Poisson

$$V=H_0^1\left(\Omega\right)$$

$$a(u,v) = \int_{\Omega} \left(\sum_{1 \leq i \leq 2} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} + u.v \right) .dx$$

Résolution de l'équation de Poisson

$$V=H_0^1\left(\Omega\right)$$

•

$$a(u,v) = \int_{\Omega} \left(\sum_{1 \le i \le 2} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} + u.v \right) .dx$$

•

$$L(v) = \int_{\Omega} f.v.dx$$

Résolution de l'équation de Poisson

• La formulation au dessus est obtenue de la même manière qu'en dimension 1,

Résolution de l'équation de Poisson

- La formulation au dessus est obtenue de la même manière qu'en dimension 1,
- sauf qu'au lieu d'intégrer par partie, on utilise le théorème de Green :

Résolution de l'équation de Poisson

- La formulation au dessus est obtenue de la même manière qu'en dimension 1,
- sauf qu'au lieu d'intégrer par partie, on utilise le théorème de Green :

•

$$\forall u, v \in H^{1}(\Omega) \int_{\Omega} \frac{\partial u}{\partial x_{i}} v.dx = -\int_{\Omega} \frac{\partial v}{\partial x_{i}} u.dx + \int_{\Gamma} \frac{\partial u}{\partial x_{i}} .n_{i}.v.d\Gamma$$

Résolution de l'équation de Poisson

- La formulation au dessus est obtenue de la même manière qu'en dimension 1,
- sauf qu'au lieu d'intégrer par partie, on utilise le théorème de Green :

•

$$\forall u, v \in H^{1}(\Omega) \int_{\Omega} \frac{\partial u}{\partial x_{i}} v.dx = -\int_{\Omega} \frac{\partial v}{\partial x_{i}} u.dx + \int_{\Gamma} \frac{\partial u}{\partial x_{i}} .n_{i}.v.d\Gamma$$

• sachant que n_i désigne la *ième* coordonnée de la normale extérieure à Γ .

Résolution de l'équation de Poisson

Remarque

Le théorème de Lax-Milgram assure l'existence et l'unicté de la solution du problème (1).

Résolution de l'équation de Poisson

• l'idée consiste à recouvrir le domaine Ω par des éléments T_k avec $k \in \{1,...,N\}$ de petite taille (déstinée à tendre vers zéro) et de forme simple : ce seront essentiellement des rectangles ou des triangles.

Résolution de l'équation de Poisson

- l'idée consiste à recouvrir le domaine Ω par des éléments T_k avec $k \in \{1,...,N\}$ de petite taille (déstinée à tendre vers zéro) et de forme simple : ce seront essentiellement des rectangles ou des triangles.
- On notera $h\left(T_{k}\right)$ le diamètre de l'élément T_{k} , $h=\max_{k\in\{1,...,N\}}h\left(T_{k}\right)$ et τ_{h} l'ensemble de les éléments T_{k} , $k\in\{1,...,N\}$.

Résolution de l'équation de Poisson

- l'idée consiste à recouvrir le domaine Ω par des éléments T_k avec $k \in \{1,...,N\}$ de petite taille (déstinée à tendre vers zéro) et de forme simple : ce seront essentiellement des rectangles ou des triangles.
- On notera $h\left(T_{k}\right)$ le diamètre de l'élément T_{k} , $h=\max_{k\in\{1,...,N\}}h\left(T_{k}\right)$ et τ_{h} l'ensemble de les éléments T_{k} , $k\in\{1,...,N\}$.
- \bullet τ_h s'appelle une triangulation.

Résolution de l'équation de Poisson : élaboration du maillage

Définition

Une triangulation est admissible si

① l'intersection entre deux éléments T_k et $T_{k'}$ est soit vide, soit réduite à un point, soit réduite à un côté tout entier.

Résolution de l'équation de Poisson : élaboration du maillage

Définition

Une triangulation est admissible si

- ① l'intersection entre deux éléments T_k et $T_{k'}$ est soit vide, soit réduite à un point, soit réduite à un côté tout entier.
- 2 Tous les coins de $\partial\Omega$ sont des sommets des éléments de τ_h .

Résolution de l'équation de Poisson : élaboration du maillage

Définition

Une triangulation est admissible si

- ① l'intersection entre deux éléments T_k et $T_{k'}$ est soit vide, soit réduite à un point, soit réduite à un côté tout entier.
- **②** Tous les coins de $\partial\Omega$ sont des sommets des éléments de au_h .
- Inversement, soit $\Omega_h = \bigcup_{k=1}^N T_k$; tous les coins de $\Gamma_h = \partial \Omega_h$ sont des points de $\partial \Omega$.

Résolution de l'équation de Poisson : élaboration du maillage

Définition

Une triangulation est admissible si

- ① l'intersection entre deux éléments T_k et $T_{k'}$ est soit vide, soit réduite à un point, soit réduite à un côté tout entier.
- **②** Tous les coins de $\partial\Omega$ sont des sommets des éléments de au_h .
- **1** Inversement, soit $\Omega_h = \bigcup\limits_{k=1}^N T_k$; tous les coins de $\Gamma_h = \partial \Omega_h$ sont des points de $\partial \Omega$.
- 4 Les éléments ne sont pas dégénérés.

Résolution de l'équation de Poisson : élaboration du maillage

Figure: Exemples de triangulations non admissibles

Résolution de l'équation de Poisson : élaboration du maillage

Résolution de l'équation de Poisson : élaboration du maillage

Remarque

• En général $\overline{\Omega} \neq \overline{\Omega}_h$ mais pour simplification on supposera que $\overline{\Omega} = \Omega_h$, ceci revient àsupposer que Ω est un domaine à frontière polygonale.

Résolution de l'équation de Poisson : élaboration du maillage

Remarque

- En général $\Omega \neq \Omega_h$ mais pour simplification on supposera que $\overline{\Omega} = \Omega_h$, ceci revient àsupposer que Ω est un domaine à frontière polygonale.
- Pour la convergence de la méthode nous supposerons également que

$$\exists c > 0 \text{ tel que } \forall h > 0 \sup_{T \in \tau_h} \frac{h(T)}{\varrho(T)} \leq c$$

Résolution de l'équation de Poisson : élaboration du maillage

Remarque

- En général $\overline{\Omega} \neq \overline{\Omega}_h$ mais pour simplification on supposera que $\overline{\Omega} = \Omega_h$, ceci revient àsupposer que Ω est un domaine à frontière polygonale.
- Pour la convergence de la méthode nous supposerons également que

$$\exists c > 0 \text{ tel que } \forall h > 0 \sup_{T \in \tau_h} \frac{h(T)}{\varrho(T)} \leq c$$

 avec ρ (T) désigne le diamètre du plus grand cercle inscrit dans l'élément T.

Résolution de l'équation de Poisson : élaboration du maillage

Remarque

- En général $\Omega \neq \Omega_h$ mais pour simplification on supposera que $\overline{\Omega} = \Omega_h$, ceci revient àsupposer que Ω est un domaine à frontière polygonale.
- Pour la convergence de la méthode nous supposerons également que

$$\exists c > 0 \text{ tel que } \forall h > 0 \sup_{T \in \tau_h} \frac{h(T)}{\varrho(T)} \leq c$$

- avec \(\rho \) désigne le diamètre du plus grand cercle inscrit dans l'élément T.
- on souhaite résoudre le problème (1) de manière approchée.

Résolution de l'équation de Poisson : élaboration du maillage

Remarque

- En général $\Omega \neq \Omega_h$ mais pour simplification on supposera que $\overline{\Omega} = \Omega_h$, ceci revient àsupposer que Ω est un domaine à frontière polygonale.
- Pour la convergence de la méthode nous supposerons également que

$$\exists c > 0 \text{ tel que } \forall h > 0 \sup_{T \in \tau_h} \frac{h(T)}{\varrho(T)} \leq c$$

- avec ρ (T) désigne le diamètre du plus grand cercle inscrit dans l'élément T.
- on souhaite résoudre le problème (1) de manière approchée.
- on désigne par (x_1, x_2) les coordonnées dans le plan.

El Hajji , LabMiA, FSR () MEF 12 / 46

Résolution de l'équation de Poisson : élaboration du maillage

• Soit N_1 , $N_2 \in \mathbb{N}^*$

- Soit N_1 , $N_2 \in \mathbb{N}^*$
- ullet on pose $h_1=rac{1}{ extstyle N_1+1}$ et $h_2=rac{1}{ extstyle N_2+1}$

- Soit $N_1, N_2 \in \mathbb{N}^*$
- ullet on pose $h_1=rac{1}{ extstyle N_1+1}$ et $h_2=rac{1}{ extstyle N_2+1}$
- Ainsi on peut obtenir un recouvrement de $\overline{\Omega}$ par $N_T = (N_1+1) \, (N_2+1)$ éléments rectangulaires R_k de taille h_1 dans la direction x_1 et de taille h_2 dans la direction x_2

Résolution de l'équation de Poisson : élaboration du maillage

• On note $q^{(i)}$ $i \in \{1, ..., N_s = (N_1 + 2) (N_2 + 2)\}$ les points du maillage, i.e, les sommets des rectangles de la triangulation.

- On note $q^{(i)}$ $i \in \{1, ..., N_s = (N_1 + 2) (N_2 + 2)\}$ les points du maillage, i.e, les sommets des rectangles de la triangulation.
- on désigne par

- On note $q^{(i)}$ $i \in \{1, ..., N_s = (N_1 + 2) (N_2 + 2)\}$ les points du maillage, i.e, les sommets des rectangles de la triangulation.
- on désigne par
 - $N_f = 2(N_1 + N_2) + 4$ le nombres de sommets situés sur le bord de Ω (sommets frontières)

- On note $q^{(i)}$ $i \in \{1, ..., N_s = (N_1 + 2) (N_2 + 2)\}$ les points du maillage, i.e, les sommets des rectangles de la triangulation.
- on désigne par
 - $N_f = 2(N_1 + N_2) + 4$ le nombres de sommets situés sur le bord de Ω (sommets frontières)
 - $N_i = N_s N_f = N_1.N_2$ le nombre de sommets qui ne sont pas situés sur la frontière (sommets internes)

Résolution de l'équation de Poisson : élaboration du maillage

Exemple de Maillage

15 / 46

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

• On note Q^1 l'espace vectoriel des polynômes à deux variables qui sont de degré ≤ 1 par rapport à chacune des deux variables x_1 et x_2 .

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

- On note Q^1 l'espace vectoriel des polynômes à deux variables qui sont de degré ≤ 1 par rapport à chacune des deux variables x_1 et x_2 .
- Les polynômes 1, x_1 , x_2 , x_1x_2

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

- On note Q¹ l'espace vectoriel des polynômes à deux variables qui sont de degré ≤ 1 par rapport à chacune des deux variables x₁ et x₂.
- Les polynômes 1, x_1 , x_2 , x_1x_2
- On introduit l'espace

$$V_h = \left\{ v \in C^0\left(\overline{\Omega}
ight) ext{ tel que } v|_{R_k} \in Q^1 \ k=1$$
, , , $N_T
ight\}$

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

- On note Q¹ l'espace vectoriel des polynômes à deux variables qui sont de degré ≤ 1 par rapport à chacune des deux variables x₁ et x₂.
- Les polynômes 1, x_1 , x_2 , x_1x_2
- On introduit l'espace

$$V_h = \left\{ v \in C^0\left(\overline{\Omega}
ight) ext{ tel que } v|_{R_k} \in Q^1 \ k=1$$
, , , $N_T
ight\}$

• et l'espace

$$V_{0h}=\{v\in V_h ext{ tel que } v|_{\Gamma}=0\}$$

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

- On note Q¹ l'espace vectoriel des polynômes à deux variables qui sont de degré ≤ 1 par rapport à chacune des deux variables x₁ et x₂.
- Les polynômes 1, x_1 , x_2 , x_1x_2
- On introduit l'espace

$$V_h = \left\{ v \in C^0\left(\overline{\Omega}
ight) ext{ tel que } v|_{R_k} \in Q^1 \ k=1$$
, , , $N_T
ight\}$

• et l'espace

$$V_{0h}=\{v\in V_h ext{ tel que } v|_{\Gamma}=0\}$$

• $h = \max(h_1, h_2)$

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

Proposition

1 Les fonctions de V_h sont entièrement détérminées par les valeurs qu'elles prennent en chacun des N_s sommets $q^{(i)}$ du maillage.

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

Proposition

- Les fonctions de V_h sont entièrement détérminées par les valeurs qu'elles prennent en chacun des N_s sommets $q^{(i)}$ du maillage.
- 2 La dimension de l'espace V_h est $N_s = (N_1 + 2)(N_2 + 2)$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り Q で

17 / 46

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

Proposition

- Les fonctions de V_h sont entièrement détérminées par les valeurs qu'elles prennent en chacun des N_s sommets $q^{(i)}$ du maillage.
- 2 La dimension de l'espace V_h est $N_s = (N_1 + 2)(N_2 + 2)$
- lacktriangledown La famille de fonctions $\left\{\omega^{(i)}
 ight\}_{1\leq i\leq N_s}$ de V_h donnée par

$$\omega^{(i)}\left(q^{(j)}\right) = \delta_{ij}$$

définit une base de l'espace V_h et on a pour tout $v_h \in V_h$

$$v_h = \sum_{i=1}^{N_s} v_h \left(q^{(i)} \right) \omega^{(i)}$$

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

Définition

Les scalaires $v_h\left(q^{(i)}
ight)$ sont appelés les degrés de liberté de la fonction v_h

Proposition

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

Définition

Les scalaires $v_h\left(q^{(i)}\right)$ sont appelés les degrés de liberté de la fonction v_h

Proposition

- 2 Pour tout $v_h \in V_h$ on a au sens des distributions

$$\frac{\partial v_h}{\partial x_i} = \sum_{i=1}^{N_T} \chi_{\stackrel{\circ}{R_K}} \frac{\partial}{\partial x_i} \left(v_h |_{\stackrel{\circ}{R_K}} \right)$$

avec $\chi_{\stackrel{\circ}{R_{K}}}$ la fonction indicatrice de $\stackrel{\circ}{R_{K}}$

El Hajji , LabMiA, FSR ()

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

Proposition

• Les fonctions de V_{0h} sont entièrement détérminées par les valeurs qu'elles prennent en chacun des sommets $q^{(i)}$ internes du maillage.

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

Proposition

- Les fonctions de V_{0h} sont entièrement détérminées par les valeurs qu'elles prennent en chacun des sommets $q^{(i)}$ internes du maillage.
- ② La dimension de l'espace V_{0h} est égale au nombres de sommets internes du maillage : N_i ($N_i = N_s N_f = N_1 N_2$)

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

Proposition

- Les fonctions de V_{0h} sont entièrement détérminées par les valeurs qu'elles prennent en chacun des sommets $q^{(i)}$ internes du maillage.
- 2 La dimension de l'espace V_{0h} est égale au nombres de sommets internes du maillage : N_i ($N_i = N_s N_f = N_1 N_2$)
- **3** Les fonctions $\omega^{(i)}$ correspondantes aux sommets internes du maillage forment une base de V_{0h} et

$$\forall v_h \in V_{0h}$$
 tel que $v_h = \sum_{i/q^i \notin \Gamma} v_h\left(q^{(i)}\right)\omega^{(i)}$

Résolution de l'équation de Poisson : construction de l'espace variationnel discret

Proposition

- Les fonctions de V_{0h} sont entièrement détérminées par les valeurs qu'elles prennent en chacun des sommets $q^{(i)}$ internes du maillage.
- 2 La dimension de l'espace V_{0h} est égale au nombres de sommets internes du maillage : N_i ($N_i = N_s N_f = N_1 N_2$)
- **3** Les fonctions $\omega^{(i)}$ correspondantes aux sommets internes du maillage forment une base de V_{0h} et

$$\forall v_h \in V_{0h} \text{ tel que } v_h = \sum_{i/q^i \notin \Gamma} v_h \left(q^{(i)}\right) \omega^{(i)}$$

Résolution de l'équation de Poisson : calcul de la solution approchée

• On suppose que les indices des sommets internes du maillage sont numérotés de 1 à N_i

Résolution de l'équation de Poisson : calcul de la solution approchée

- On suppose que les indices des sommets internes du maillage sont numérotés de 1 à N;
- Ainsi, on cherche u_h de la forme

$$u_h = v_h = \sum_{j=1}^{N_i} u_j \omega^{(j)}$$

Résolution de l'équation de Poisson : calcul de la solution approchée

- On suppose que les indices des sommets internes du maillage sont numérotés de 1 à N_i
- Ainsi, on cherche u_h de la forme

$$u_h = v_h = \sum_{j=1}^{N_i} u_j \omega^{(j)}$$

• Les composantes $(u_1, ..., u_{N_i})$ sont alors solution du système linéaire

$$AU = b$$

Résolution de l'équation de Poisson : calcul de la solution approchée

avec

$$A_{ij} = \int_{\Omega} \left(
abla \omega^{(i)}
abla \omega^{(j)} + \omega^{(i)} \omega^{(j)}
ight) dx$$

Résolution de l'équation de Poisson : calcul de la solution approchée

avec

$$A_{ij} = \int_{\Omega} \left(
abla \omega^{(i)}
abla \omega^{(j)} + \omega^{(i)} \omega^{(j)} \right) dx$$

et

$$b_i = \int_{\Omega} f.\omega^{(i)}.dx$$

Résolution de l'équation de Poisson : calcul de la solution approchée

d'une manière plus explicite

$$A_{ij} = \sum_{k=1}^{N_T} \underbrace{\int_{R_k} \left(\nabla \omega^{(i)} \nabla \omega^{(j)} + \omega^{(i)} \omega^{(j)} \right) dx}_{A_{ij}(R_k)}$$

Résolution de l'équation de Poisson : calcul de la solution approchée

d'une manière plus explicite

$$A_{ij} = \sum_{k=1}^{N_T} \underbrace{\int_{R_k} \left(\nabla \omega^{(i)} \nabla \omega^{(j)} + \omega^{(i)} \omega^{(j)} \right) dx}_{A_{ij}(R_k)}$$

et

$$b_{i} = \sum_{k=1}^{N_{T}} \underbrace{\int_{R_{k}} f.\omega^{(i)}.dx}_{b_{i}(R_{k})}$$

Résolution de l'équation de Poisson : calcul de la solution approchée

d'une manière plus explicite

$$A_{ij} = \sum_{k=1}^{N_T} \underbrace{\int_{R_k} \left(\nabla \omega^{(i)} \nabla \omega^{(j)} + \omega^{(i)} \omega^{(j)} \right) dx}_{A_{ij}(R_k)}$$

et

$$b_{i} = \sum_{k=1}^{N_{T}} \underbrace{\int_{R_{k}} f.\omega^{(i)}.dx}_{b_{i}(R_{k})}$$

• Cette écriture montre que le calcul des coéfficients de la matrice et du second membre se ramène à une somme de contributions élémentaires $A_{ij}(R_k)$ et $b_i(R_k)$ sur chacun des rectangles de la triangulation

Résolution de l'équation de Poisson : calcul de la solution approchée

Contribution des éléments élémentaires

Résolution de l'équation de Poisson : calcul des fonctions de base

• Soit un rectangle R_k de la triangulation et on note par $A^{(1)}$, $A^{(2)}$, $A^{(3)}$ et $A^{(4)}$ ses sommets.

Résolution de l'équation de Poisson : calcul des fonctions de base

- Soit un rectangle R_k de la triangulation et on note par $A^{(1)}$, $A^{(2)}$, $A^{(3)}$ et $A^{(4)}$ ses sommets.
- On calcule 4 polynômes $p^{(1)}$, $p^{(2)}$, $p^{(3)}$ et $p^{(4)}$ définis sur le rectangle R_k vérifiant

Résolution de l'équation de Poisson : calcul des fonctions de base

- Soit un rectangle R_k de la triangulation et on note par $A^{(1)}$, $A^{(2)}$, $A^{(3)}$ et $A^{(4)}$ ses sommets.
- On calcule 4 polynômes $p^{(1)}$, $p^{(2)}$, $p^{(3)}$ et $p^{(4)}$ définis sur le rectangle R_k vérifiant

•

$$p^{(i)} \in Q^1$$
 et $p^{(i)}\left(A^{(j)}
ight) = \delta_{ij}$ i, $j=1,...,4$

Résolution de l'équation de Poisson : calcul des fonctions de base

Si on pose X = (x, y), on trouve

$$\begin{cases}
 p^{(1)}(X) &= \frac{1}{h_1 \cdot h_2} \left(x - x_1^{(2)} \right) \left(y - x_2^{(4)} \right) \\
 p^{(2)}(X) &= -\frac{1}{h_1 \cdot h_2} \left(x - x_1^{(1)} \right) \left(y - x_2^{(4)} \right) \\
 p^{(3)}(X) &= \frac{1}{h_1 \cdot h_2} \left(x - x_1^{(1)} \right) \left(y - x_2^{(1)} \right) \\
 p^{(4)}(X) &= -\frac{1}{h_1 \cdot h_2} \left(x - x_1^{(2)} \right) \left(y - x_2^{(1)} \right)
\end{cases} \tag{2}$$

avec $\left(x_1^{(i)}, x_2^{(i)}\right)$ les coordonnées du sommet $A^{(i)}.$

El Hajji , LabMiA, FSR ()

Résolution de l'équation de Poisson : calcul des fonctions de base

Définition

Un élément fini c'est la donnée d'un triplet $(T, P(T), \Sigma(T))$, où

T est une partie compacte connexe et d'intérieur non vide du plan;

Résolution de l'équation de Poisson : calcul des fonctions de base

Définition

Un élément fini c'est la donnée d'un triplet $(T, P(T), \Sigma(T))$, où

- T est une partie compacte connexe et d'intérieur non vide du plan;
- P(T) est un espace vectoriel de dimension finie formé de polynôme définis sur T à valeurs réelles;

Résolution de l'équation de Poisson : calcul des fonctions de base

Définition

Un élément fini c'est la donnée d'un triplet $(T, P(T), \Sigma(T))$, où

- T est une partie compacte connexe et d'intérieur non vide du plan;
- P(T) est un espace vectoriel de dimension finie formé de polynôme définis sur T à valeurs réelles;
- **3** $\Sigma(T)$ est un espace vectoriel de dimension d finie formé de formes linéaires définies sur P(T).

Résolution de l'équation de Poisson : calcul des fonctions de base

Définition

• Un élément fini $(T, P(T), \Sigma(T))$ est dit unisolvant si étant donnés d nombres réels $\alpha_1, ..., \alpha_d$, il existe un unique polynôme p de l'espace P(T) tel que pour chaque $i \in \{1, ..., d\}$ on ait $\varphi_i(p) = \alpha_i$,où $(\varphi_1, ..., \varphi_d)$ est une base $\Sigma(T)$. L'espace $\Sigma(T)$ définit alors ce qu'on appelle les degrés de liberté des fonctions de P(T).

Remarque

Résolution de l'équation de Poisson : calcul des fonctions de base

Définition

• Un élément fini $(T, P(T), \Sigma(T))$ est dit unisolvant si étant donnés d nombres réels $\alpha_1, ..., \alpha_d$, il existe un unique polynôme p de l'espace P(T) tel que pour chaque $i \in \{1, ..., d\}$ on ait $\varphi_i(p) = \alpha_i$,où $(\varphi_1, ..., \varphi_d)$ est une base $\Sigma(T)$. L'espace $\Sigma(T)$ définit alors ce qu'on appelle les degrés de liberté des fonctions de P(T).

Remarque

• On peut associer aux polynômes définis par (2) les formes linéaires suivantes

$$\left(p^{(i)}\right)^*: Q^1 \longrightarrow \mathbb{R}$$
 $p \longrightarrow p\left(A^{(i)}\right)$
 $i = 1, , , 4$

Résolution de l'équation de Poisson : calcul des fonctions de base

Remarque

Par abus de notation on confondera $\left(p^{(i)}
ight)^*$ avec $p\left(A^{(i)}
ight)$ (i=1,,,4)

Proposition

L'élément fini $(T, P(T), \Sigma(T))$ où

 $T = R_k$

est unisolvant.

Résolution de l'équation de Poisson : calcul des fonctions de base

Remarque

Par abus de notation on confondera $\left(p^{(i)}
ight)^*$ avec $p\left(A^{(i)}
ight)$ (i=1, , , 4)

Proposition

L'élément fini $(T, P(T), \Sigma(T))$ où

- $T = R_k$
- **2** $P(T) = Q^1$

est unisolvant.

Résolution de l'équation de Poisson : calcul des fonctions de base

Remarque

Par abus de notation on confondera $\left(p^{(i)}
ight)^*$ avec $p\left(A^{(i)}
ight)$ (i=1, , , 4)

Proposition

L'élément fini $(T, P(T), \Sigma(T))$ où

- $T = R_k$
- **2** $P(T) = Q^1$
- $\mathbf{3} \; \Sigma \left(\mathit{T} \right) = \left\{ \mathit{p} \left(\mathit{A}^{(1)} \right) , \mathit{p} \left(\mathit{A}^{(2)} \right) , \mathit{p} \left(\mathit{A}^{(3)} \right) , \mathit{p} \left(\mathit{A}^{(4)} \right) \right\}$

est unisolvant.

Résolution de l'équation de Poisson : calcul des fonctions de base

Exemple

Elément fini non unisolvant

Résolution de l'équation de Poisson : calcul des fonctions de base

Exemple

Elément fini non unisolvant

• avec
$$P(T) = Q^1 = vect\{1, x, y, xy\}$$

El Hajji , LabMiA, FSR ()

Résolution de l'équation de Poisson : calcul des fonctions de base

Exemple

Elément fini non unisolvant

- avec $P(T) = Q^1 = vect\{1, x, y, xy\}$
- il suffit de considérer p(x, y) = xy

Résolution de l'équation de Poisson : calcul des fonctions de base

Remarque

Soit $q^{(i)}$ un sommet , $\omega^{(i)}$ la fonction chapeau associé et R_k un élément de la triangulation de sommets $\left\{A^{(1)},A^{(2)},A^{(3)},A^{(4)}\right\}$

• si $q^{(i)} \in R_k$ alors $\omega^{(i)}\Big|_{R_k}$ coincide avec l'un des $p^{(i)}$ définis par (2)

Résolution de l'équation de Poisson : calcul des fonctions de base

Remarque

Soit $q^{(i)}$ un sommet , $\omega^{(i)}$ la fonction chapeau associé et R_k un élément de la triangulation de sommets $\left\{A^{(1)},A^{(2)},A^{(3)},A^{(4)}\right\}$

- left si $q^{(i)} \in R_k$ alors $\omega^{(i)}\Big|_{R_k}$ coincide avec l'un des $p^{(i)}$ définis par (2)
 - si par exmple $q^{(i)}$ coincide avec le sommet $A^{(1)}$ de R_k alors $\omega^{(i)}\Big|_{R_k} = p^{(1)}$

Résolution de l'équation de Poisson : calcul des fonctions de base

Remarque

Soit $q^{(i)}$ un sommet , $\omega^{(i)}$ la fonction chapeau associé et R_k un élément de la triangulation de sommets $\left\{A^{(1)},A^{(2)},A^{(3)},A^{(4)}\right\}$

- si $q^{(i)} \in R_k$ alors $\omega^{(i)}\Big|_{R_k}$ coincide avec l'un des $p^{(i)}$ définis par (2)
 - si par exmple $q^{(i)}$ coincide avec le sommet $A^{(1)}$ de R_k alors $\omega^{(i)}\Big|_{R_k} = p^{(1)}$
- $oxed{2}$ si $q^{(i)}
 otin R_k$ alors $\omega^{(i)}\Big|_{R_k} = 0$

Résolution de l'équation de Poisson : calcul des fonctions de base

 Parfois on est amené à utiliser des polynômes de degré elevé (ex : EDP d'ordre supérieur à 2)

- Parfois on est amené à utiliser des polynômes de degré elevé (ex : EDP d'ordre supérieur à 2)
- Les calculs deviennent compliqués

- Parfois on est amené à utiliser des polynômes de degré elevé (ex : EDP d'ordre supérieur à 2)
- Les calculs deviennent compliqués
- Solution?

- Parfois on est amené à utiliser des polynômes de degré elevé (ex : EDP d'ordre supérieur à 2)
- Les calculs deviennent compliqués
- Solution?
- Calculer les fonctions de base ω_i une fois pour toutes sur l'élément de référence $[0,1] \times [0,1]$

- Parfois on est amené à utiliser des polynômes de degré elevé (ex : EDP d'ordre supérieur à 2)
- Les calculs deviennent compliqués
- Solution?
- Calculer les fonctions de base ω_i une fois pour toutes sur l'élément de référence $[0,1] \times [0,1]$
- Puis transposer les calculs par homotétie et translation à tous les rectangles de la triangulation.

Résolution de l'équation de Poisson : Notion d'élément de référence

correspondance avec l'élément de référence C

Résolution de l'équation de Poisson : Notion d'élément de référence

Soit C le carré unité de sommets $A^{(1)}$, $A^{(2)}$, $A^{(3)}$, $A^{(4)}$ et R_k un réctangle quelconque de la triangulation de sommets $A^{(1)}\left(R_k\right)$, $A^{(2)}\left(R_k\right)$, $A^{(3)}\left(R_k\right)$, $A^{(4)}\left(R_k\right)$ Soit $x=\left(\begin{array}{c}x_1\\x_2\end{array}\right)\in\mathbb{R}^2$ on pose

$$F(x) = A^{(1)}(R_k) + x_1.\overrightarrow{A^{(1)}(R_k)} A^{(2)}(R_k) + x_2.\overrightarrow{A^{(1)}(R_k)} A^{(4)}(R_k)$$

on a

$$F(C) = R_k$$

Résolution de l'équation de Poisson : Notion d'élément de référence

Sur le carré C, les fonctions de base de l'approximation par éléments finis Q^1 associées aux degrés de liberté $\left\{p\left(A^{(1)}\right),p\left(A^{(2)}\right),p\left(A^{(3)}\right),p\left(A^{(4)}\right)\right\}$ sont données par

$$\begin{cases}
p_1(x) &= (1 - x_1) (1 - x_2) \\
p_2(x) &= x_1 (1 - x_2) \\
p_3(x) &= x_1.x_2 \\
p_4(x) &= (1 - x_1) x_2
\end{cases}$$

Résolution de l'équation de Poisson : Notion d'élément de référence

et on a

$$p^{(i)}(x) = p_i \left(\frac{x_1 - x_1^{(1)}(R_k)}{x_1^{(2)}(R_k) - x_1^{(1)}(R_k)}, \frac{x_2 - x_2^{(1)}(R_k)}{x_2^{(4)}(R_k) - x_2^{(1)}(R_k)} \right)$$

Résolution de l'équation de Poisson : Notion d'élément de référence

et on a

$$p^{(i)}(x) = p_i \left(\frac{x_1 - x_1^{(1)}(R_k)}{x_1^{(2)}(R_k) - x_1^{(1)}(R_k)}, \frac{x_2 - x_2^{(1)}(R_k)}{x_2^{(4)}(R_k) - x_2^{(1)}(R_k)} \right)$$

• on souligne que les fonctions $p^{(i)}$ sont celles données par (2)

Résolution de l'équation de Poisson : Notion d'élément de référence

On se propose de calculer l'élément A_{ii} de la matrice A sur un élément R_k du maillage, en effet

$$A_{ii} = \int_{R_k} \left| \nabla \omega^{(i)} \right|^2 . dx + \int_{R_k} \left[\omega^{(i)} \right]^2 dx$$

pour simplifier, on supposera que le noeud $q^{(i)}$ coincide avec le sommet $A^{(3)}\left(R_{k}\right)$

donc pour
$$x \in R_k \ \omega^{(i)}(x) = p_3(x) = p_3(y) = y_1.y_2$$

avec $y = F^{-1}(x) = \left(\frac{x_1 - x_1^{(1)}(R_k)}{h_1}, \frac{x_2 - x_2^{(1)}(R_k)}{h_2}\right)$

on rappel que $p^{(3)}\circ F=p_3$ i.,e., $p^{(3)}=p_3\circ F^{-1}$

Résolution de l'équation de Poisson : Notion d'élément de référence

 \Longrightarrow

$$\int_{R_k} \left| \nabla \omega^{(i)} \right|^2 . dx = \frac{h_1 . h_2}{3} \left[\left(\frac{1}{h_1} \right)^2 + \left(\frac{1}{h_2} \right)^2 \right]$$

et

$$\int_{R_k} \left[\omega^{(i)} \right]^2 dx = \frac{h_1 \cdot h_2}{9}$$

le résultat est indépendant de k d'où

$$A_{ii} = 4.A_{ii} (R_k) = 4.\frac{h_1.h_2}{3} \left[\left(\frac{1}{h_1} \right)^2 + \left(\frac{1}{h_2} \right)^2 \right] + 4.\frac{h_1.h_2}{9}$$

Résolution de l'équation de Poisson : Lien avec l'approximation par éléments finis P1 en dimension $\bf 1$

les fonctions de base p_i (i=1,...,4) sont exactement les produits tensoriels des fonctions de base ω_0 et ω_1 de l'approximation par éléments finis P1 en dimension 1 sur le segment unité

on a

$$\begin{array}{rcl}
p_{1}(x) & = & \omega_{0}(x_{1}) \, \omega_{0}(x_{2}) \\
p_{2}(x) & = & \omega_{1}(x_{1}) \, \omega_{0}(x_{2}) \\
p_{3}(x) & = & \omega_{1}(x_{1}) \, \omega_{1}(x_{2}) \\
p_{4}(x) & = & \omega_{0}(x_{1}) \, \omega_{1}(x_{2})
\end{array}$$

Résolution de l'équation de Poisson : Lien avec l'approximation par éléments finis P1 en dimension $\bf 1$

De même pour

$$\omega^{(i)}(x) = \omega^{(i_1)}(x_1) \omega^{(i_2)}(x_2)$$

avec

$$q^{(i)} = \begin{pmatrix} x_1^{(i)} \\ x_2^{(i)} \end{pmatrix} = \begin{pmatrix} i_1 h_1 \\ i_2 h_2 \end{pmatrix}$$

le support de de $\omega^{(i)}$ est la réunion des 4 réctangles qui ont $q^{(i)}$ comme sommet commun : $R_1^{(i)}$, $R_2^{(i)}$, $R_3^{(i)}$ et $R_4^{(i)}$ et donc

Résolution de l'équation de Poisson : Lien avec l'approximation par éléments finis P1 en dimension $\bf 1$

El Hajji , LabMiA, FSR () MEF 40 / 46

Lien avec l'approximation par éléments finis P1 en dimension 1

$$\omega_{1}\left(\frac{x_{1}-(i_{1}-1)h_{1}}{h_{1}}\right)\omega_{1}\left(\frac{x_{2}-(i_{2}-1)h_{2}}{h_{2}}\right) \quad si \ x \in R_{1}^{(i)}$$

$$\omega_{0}\left(\frac{x_{1}-i_{1}h_{1}}{h_{1}}\right)\omega_{1}\left(\frac{x_{2}-(i_{2}-1)h_{2}}{h_{2}}\right) \quad si \ x \in R_{2}^{(i)}$$

$$\omega^{(i)}(x) = \begin{cases} \omega_{0}\left(\frac{x_{1}-i_{1}h_{1}}{h_{1}}\right)\omega_{0}\left(\frac{x_{2}-i_{2}h_{2}}{h_{2}}\right) \quad si \ x \in R_{3}^{(i)} \end{cases}$$

$$\omega_{1}\left(\frac{x_{1}-(i_{1}-1)h_{1}}{h_{1}}\right)\omega_{0}\left(\frac{x_{2}-i_{2}h_{2}}{h_{2}}\right) \quad si \ x \in R_{4}^{(i)}$$

$$0 \quad sinon$$

Résolution de l'équation de Poisson : structure de la matrice

la structure de la matrice dépend bien sûr de la numérotation des fonctions de base $\omega^{(i)}$

Par exemple, on numérote ces $N_i=N_1.N_2$ fonctions $\omega^{(i)}=\omega^{(i_1)}\otimes\omega^{(i_2)}$. avec $i_1\in\{1,...,N_1\}$ et $i_2\in\{1,...,N_2\}$ en balayant le maillage ligne par ligne.

$$\begin{array}{l} \boldsymbol{\omega}^{(1)} \otimes \boldsymbol{\omega}^{(1)}, \boldsymbol{\omega}^{(2)} \otimes \boldsymbol{\omega}^{(1)}, ... \boldsymbol{\omega}^{(N_1)} \otimes \boldsymbol{\omega}^{(1)} \\ \boldsymbol{\omega}^{(1)} \otimes \boldsymbol{\omega}^{(1)}, \boldsymbol{\omega}^{(2)} \otimes \boldsymbol{\omega}^{(1)}, ... \boldsymbol{\omega}^{(N_1)} \otimes \boldsymbol{\omega}^{(1)} \\ \\ \boldsymbol{\omega}^{(1)} \otimes \boldsymbol{\omega}^{(N_2)}, \boldsymbol{\omega}^{(2)} \otimes \boldsymbol{\omega}^{(N_2)}, ... \boldsymbol{\omega}^{(N_1)} \otimes \boldsymbol{\omega}^{(N_2)} \end{array}$$

Résolution de l'équation de Poisson : structure de la matrice

Aisi la matrice A a une structure de N_2^2 bloc chaque bloc est de taille N_1^2 Evidement, si la numérotation du balayage est faite colonne par colonne, les roles de N_1 et N_2 s'inversent.

Résolution de l'équation de Poisson : structure de la matrice

$$A = \begin{pmatrix} A^{(1,1)} & A^{(1,1)} & 0 & \cdots & & 0 \\ A^{(2,1)} & A^{(2,2)} & A^{(2,3)} & \cdots & & & \vdots \\ \vdots & 0 & & & & & \\ 0 & & \ddots & & & 0 \\ 0 & \vdots & & A^{(N_2-1,N_2-2)} & A^{(N_2-1,N_2-1)} & A^{(N_2-1,N_2)} \\ 0 & 0 & \cdots & 0 & A^{(N_2,N_2-1)} & A^{(N_2,N_2)} \end{pmatrix}$$

Résolution de l'équation de Poisson : structure de la matrice

Sachant

$$A^{(k,l)} = \begin{pmatrix} A_{11}^{(k,l)} & A_{12}^{(k,l)} & 0 & \cdots & 0 \\ A_{21}^{(k,l)} & A_{22}^{(k,l)} & A^{(k,l)}_{23} & \cdots & \vdots \\ \vdots & 0 & & & & \\ 0 & & \ddots & & & 0 \\ 0 & \vdots & & A_{N_1-1N_1-2}^{(k,l)} & A_{N_1-1N_1-1}^{(k,l)} & A_{N_1-1N_1}^{(k,l)} \\ 0 & 0 & \cdots & 0 & A_{N_1N_1-1}^{(k,l)} & A_{N_1N_1}^{(k,l)} \end{pmatrix}$$

$$\mathsf{et}\,\left(\mathsf{A}^{(k,l)}\right)_{ij} = \mathsf{a}\left(\omega^{(j)}\otimes\omega^{(l)},\omega^{(i)}\otimes\omega^{(k)}\right)$$

Mises en oeuvres sur des exemples

Séances de TP sur Matlab