STRAIGHT OBJECTIVE TYPE

- 1. The value of $3^{2 \log_3 4}$
 - (A) 9/4

(B) 1/4

(C) 16

- (D) 81
- 2. If $\frac{\log 125}{\log 25} = x$, then the value of x is
 - (A) 5

(B) 3/2

(C) 100

(D) 10

- 3. If $a^X = b^Y$; then
 - (A) $y \log_a m = x \log_b m$

(B) $x \log_a m = y \log_b m$

(C) $a \log_v m = b \log_x m$

- (D) none of these
- 4. Given $\log_{10} 2 = a$ and $\log_{10} 5 = b$, then the value of is $\log_8 \sqrt{125}$:
 - (A) $\frac{a}{2b}$

(B) $\frac{b}{2a}$

(C) $\frac{2a}{b}$.

- (D) none of these
- 5. The equation has $\frac{\log_{10}(2x-5)}{\log_{10}(x^2-8)} = 0.5$
 - (A) No solution

(B) one solution

(C) two solutions.

- (D) none of these
- 6. If $\log_{30}3 = c$, $\log_{30}5 = d$ then the value of $\log_{30}8$.
 - (A) 3(1-c-d)

(B) 3(1+c+d)

(C) 3(1+c-d)

- (D) none of these.
- 7. $7\log\left(\frac{16}{15}\right) + 5\log\left(\frac{25}{24}\right) + 3\log\left(\frac{81}{80}\right)$ is equal to
 - (A) 0

(B) 1

(C) log 2

- (D) log 3
- 8. The value of $\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + ... + \frac{1}{\log_{43} n}$ is
 - $(A) \frac{1}{\log_{_{43!}} n}$

 $(B) \ \frac{1}{\log_{_{43}} n}$

(C) $\frac{1}{\log_{42} n}$

(D) $\frac{1}{\log_{43}(n!)}$

- 9. $\log_{10} \tan 1^{\circ} + \log_{10} \tan 2^{\circ} + ... + \log_{10} \tan 89^{\circ} =$
 - (A) 0

(B) 1

(C) 27

- (D) 81
- 10. If $\log_{12} 27 = a$ then $\log_6 16 =$
 - (A) $2\left(\frac{3-a}{3+a}\right)$

(B) $3 \cdot \left(\frac{3-a}{3+a} \right)$

(C) $4\left(\frac{3-a}{3+a}\right)$

(D) $5\left(\frac{3-a}{3+a}\right)$

MULTIPLE CORRECT ANSWER TYPE

- 11. If $\log_3 x + \log_3 y = 2 + \log_3 2$ and $\log_3 (x + y) = 2$ then
 - (A) x = 1

(B) y = 1

(C) x = 3

- (D) y = 6
- 12. The value of $\log_5 \log_2 \log_3 \log_2 512$ is
 - (A) 0

(B) log₅1

(C) 5

- (D) 3.
- 13. The value of log_ba. log_cb log_dc log_ad is
 - (A 0)

(B) logabcd

(C) log 1

(D) 1

MATRIX & MATCHING

- 14. Column I Column II
 - (A) $\frac{\log 1000}{\log 100}$ is equal to

(p) 3/2

(B) $\frac{\log 125}{\log 25}$ is equal to

(q) - 3/2

(C) $\log_{1/3} 243$ is equal to

(r) 7/6

(D) $\log_{64} 128$ is equal to

- (s) 5
- 15. Column II Column II
 - (A) The solution of the equation $2^{3/\log_3 x} = \frac{1}{64}$ is
- (p) 2, 3
- (B) The solution set of the equation $log_2(3 x) + log_2(1 x) = 3$ is
- (q) 4
- (C) The solution of $\log_7 \log_5 \left(\sqrt{x+5} + \sqrt{x} \right) = 0$ is
- (r) -1

(D) If
$$7^{\log_7(x^2-4x+5)} = x - 1$$
, then x may have values (s) $\frac{1}{\sqrt{3}}$

INTEGER ANSWERS TYPE

- 16. The value of $3^{2\log 9}$.
- 17. The value of $log_2(log_2(log_2(log_3 81)))$.
- 18. If $a = \log_{12} 18$, $b = \log_{24} 54$ then the value of ab + 5 (a b) is
- 19. The value of $\frac{\log_2 24}{\log_{96} 2} \frac{\log_2 192}{\log_{12} 2}$ is
- 20. $\log_x y \log_y z \log_z x$ is equal to

COMPREHENSION TYPE

$$log_a mn = log_a m + log_a n$$

$$log_a \frac{m}{n} = log_a m - log_a n$$

$$log_a m^n = nlog a^m$$

- 21. $\log_{10} 100$
- 22. log₁₀ 1000
- $23. \qquad \frac{\log 10000}{\log 10}$
- $24. \qquad \frac{\log 25}{\log 5}$

Solution

- 1. (C)
- 2. (B)
- 3. (A)
- 4. (B)
- 5. (B)
- 6. (A)
- 7. (C)
- 8. (A)

DPP LOGARITHM BACKLOG /REVISION COURSE

- 9. (A)
- 10. (C)
- 11. (C, D)
- 12. (A, B)
- 13. (A, C)
- 14. (A-p), (B-p), (C-s), (D-r)
- 15. (A-s), (B-r), (C-q), (D-p)
- 16. 3
- 17. 0
- 19. 2
- 20. 1
- 21. 2
- 22. 3
- 23. 4
- 24. 2