МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

УЧЕБНА ПРОГРАМА

ЗА ОТРАСЛОВА ПРОФЕСИОНАЛНА ПОДГОТОВКА

ПО

АЛГОРИТМИ И СТРУКТУРИ ОТ ДАННИ

УЧЕБНА ПРАКТИКА ПО: АЛГОРИТМИ И СТРУКТУРИ ОТ ДАННИ

ПРОФЕСИОНАЛНО НАПРАВЛЕНИЕ: 481 "КОМПЮТЪРНИ НАУКИ"

ПРОФЕСИИ: 481010 "ПРОГРАМИСТ" 481020 "СИСТЕМЕН ПРОГРАМИСТ" 481030 "ПРИЛОЖЕН ПРОГРАМИСТ"

София, 2017 година

І. ОБЩО ПРЕДСТАВЯНЕ НА УЧЕБНАТА ПРОГРАМА

Учебната програма по "Алгоритми и структури от данни" е предназначена за специалности:

- 4810101 "Програмно осигуряване"
- 4810201 "Системно програмиране"
- 4810301 "Приложно програмиране".

Учебното съдържание в програмата е структурирано в седем раздела, които дават възможност на учениците да получат знания, умения и компетентности за проектиране, анализиране и имплементиране на алгоритми и структури от данни.

II. ЦЕЛИ НА ОБУЧЕНИЕТО ПО ПРЕДМЕТА

Обучението по предмета има за цел учениците да придобият задълбочени знания за основните видове алгоритми и професионални компетентности за решаване на задачи. За постигане на основната цел на обучението по "Алгоритми и структури от данни", е необходимо изпълнението на следните под-цели:

- Задълбочаване на знанията и уменията за начините за проектиране, анализ, описание и реализация на алгоритмите;
- Задълбочаване на знанията и уменията за основни и по-сложни структури от данни и алгоритмични конструкции;
- Развитие на абстрактно, логическо и алгоритмично мислене.

III. УЧЕБНО СЪДЪРЖАНИЕ

Учебното съдържание е структурирано в раздели и теми. За всеки раздел в програмата е определен минимален брой учебни часове. Учителят разпределя броя учебни часове за нови знания, упражнения и оценяване, при спазване изискванията за минимален брой часове по раздели.

Разликата между броя на учебните часове в учебния план и общия минимален брой, предвиден в учебната програма определя резерва часове. Те се разпределят по теми в началото на учебната година от учителя.

Раздели:

Nº	Наименование на разделите	Минимален брой часове теория	Минимален брой часове практика
1.	Алчни алгоритми	4	6
2.	Рекурсия, пълно изчерпване и търсене с връщане назад	5	10

3.	Комбинаторни алгоритми	5	10
4.	Динамично оптимиране	5	10
5.	Дървовидни структури от данни и алгоритми върху тях	10	15
6.	Хеширане и хеш-таблици	4	6
7.	Графи и алгоритми върху графи	14	21
8.	Подготовка за практически изпит	2	3
9.	Практически изпит	2	3
	Общ минимален брой часове	51	84
	Резерв часове	7	3
	Общ брой часове	58	87

IV. ТЕМАТИЧЕН ПЛАН

Раздел 1. Алчни алгоритми

1. Алчни (greedy) алгоритми и приложение 2. Упражнения: алчни алгоритми

Раздел 2. Рекурсия, пълно изчерпване и търсене с връщане назад

- 1. Рекурсия и рекурсивни алгоритми. Упражнения
- 2. Пълно изчерпване и търсене с връщане назад (backtracking). Задача за осемте царици
- 3. Упражнения: имплементация на backtracking алгоритъм

Раздел 3. Комбинаторни алгоритми

- 1. Генериране на вариации, комбинации, пермутации
- 2. Упражнения: генериране на комбинации и вариации
- 3. Упражнения: генериране на пермутации и други комбинаторни обекти
- 4. Упражнения: комбинаторни задачи

Раздел 4. Динамично оптимиране

- 1. Методът "разделяй и владей". Динамично оптимиране въведение
- 2. Упражнения: задачи върху динамично оптимиране
- 3. Двумерно динамично оптимиране

4. Упражнения: по-сложни задачи върху динамично оптимиране

Раздел 5. Дървовидни структури от данни и алгоритми върху тях

- 1. Дървета и дървовидни структури. Подредени двоични дървета, балансирани дървета. В-дървета. Пирамиди
- 2. Упражнения: структура от данни "дърво", използване на класове и библиотеки за дървовидни структури
- 3. Обхождания в дълбочина и в ширина (DFS и BFS)
- 4. Упражнения: обхождане в дълбочина (DFS)
- 5. Упражнения: обхождане в ширина (BFS)

Раздел 6. Хеширане и хеш-таблици

- 1. Хеширане и хеш-таблици, справяне с колизиите
- 2. Упражнения: имплементация на хеш-таблица

Раздел 7. Графи и алгоритми върху графи

- 1. Начини на представяне на графите. Компоненти на свързаност
- 2. Упражнения: намиране на компоненти на свързаност
- 3. Топологично сортиране
- 4. Упражнения: топологично сортиране
- 5. Пътища в граф, алгоритъм на Дейкстра
- 6. Упражнения: пътища в граф
- 7. Други алгоритми върху графи
- 8. Упражнения: други алгоритми върху графи

V. ОЧАКВАНИ РЕЗУЛТАТИ ОТ ОБУЧЕНИЕТО

В края на обучението по учебния предмет, учениците придобиват компетентности за:

- речници и множества като структури от данни;
- дървета и пирамиди като структури от данни, заедно с основните алгоритми върху тях;
- графите като структури от данни, заедно с основните алгоритми върху тях;

VI. АВТОРСКИ КОЛЕКТИВ

Програмата е разработена от:

• д-р Светлин Наков, СофтУни, София

Програмата е обсъдена, коригирана и оформена от експертна група към Национална програма "Обучение за ИТ кариера" към МОН с представители на БАСКОМ, БАИТ, ИКТ

клъстер и Българска аутсорсинг асоциация в състав:

- д-р Стела Стефанова, ТУЕС към ТУ, София
- д-р Никола Вълчанов, Програмиста, ФМИ към ПУ, Пловдив
- Любомир Чорбаджиев, ТУЕС към ТУ, София
- Радослав Георгиев, HackSoft, HackBulgaria, София
- Веселина Карапеева, ОМГ "Акад. К. Попов", Пловдив
- Ангел Георгиев, СофтУни, София
- Ивайло Бъчваров, HackSoft, HackBulgaria, София
- Мирослав Миронов, Мусала Софт, София
- Владимир Начев, ЕРАМ, София
- Димитър Димитров, БАИТ, София

VII. ЛИТЕРАТУРА

- 1. Cormen, T. H.; Leiserson, C. E.; Rivest, R. L. & Stein, C. (2009), Introduction to Algorithms, MIT Press, ISBN: 978-0262033848
- 2. Sedgewick, R. & Wayne, K. (2011), Algorithms, 4th Edition., Addison-Wesley, ISBN: 978-0321573513
- 3. Наков, П.; Добриков П. (2002), Програмиране=++Алгоритми; Тор Теат Со., София, ISBN: 954-8905-06-X