CS528

Workload Prediction and Budget Aware Scheduling

A Sahu Dept of CSE, IIT Guwahati

A Sahu 1

Outline

- Work load Prediction
 - -EWMA, FUSD
- Dynamic Resource Management
 - —Scale up and Scale Down
- SLAV

Reference

F. Farahnakian et. al, "Energy Aware VM Consolidation in Cloud using Prediction Model", IEEE Trans. On Cloud Computing, June 2019

Energy Aware VM Consolidation in Cloud using Prediction Model

- Virtual Machine (VM) consolidation
 - Promising approach to save energy and
 - improve resource utilization in data centers.
- Many heuristic algorithms for VM consolidation as
 - Vector Bin-Packing Problem.

VM consolidation: Vector Bin Packing

- Given A set of N VMs with resource requirements (r_c, r_m, r_{db}, r_{nb}, etc)
 - CPU, memory, disk BW, net BW, etc
- Given a set of homogenous host/machines with capacity (C_c, C_m, C_{db}, C_{nb}, etc)
 - CPU Capacity, memory, disk BW, net BW available
- Pack this VMs to minimum number of host
- Simple examples: 2D case or 2 resources case
 - 10 VM with CPU and Mem requirement vm_i(r_c, r_m)
 need to map to hosts with 4CPU+4GB of RAM
 - Minimize number of CPU

Energy Aware VM Consolidation in Cloud using Prediction Model

- Focused mostly on number of active PM minimization //Static Problem
 - According current resource requirements and neglected the future resource demands.
- So, they generate unnecessary VM migrations
 - increase the rate of SLA violations in data centers.
- Needs VM consolidation approach
 - That takes into account both the current and future utilization of resource
- Simple regression-based model may be enough
 - to approximate the future CPU and memory utilization of VMs and PMs

Utilization Prediction-aware VM Consolidation (UP-VMC)

- VM consolidation as 2D vector bin packing
- UP-VMC consider
 - CPU utilization and Memory utilization
 - Also, considers current & future resource utilization
- Approximate the future utilization
 - two regression-based prediction models
 - linear prediction model and k-nearest neighbor.
- Prediction model in order to predict
 - Resource utilization of VMs;
 - resource utilization of PMs;
 - resource utilization of both VMs and PMs.

UtilPred-VM Consolidation

- VM selection methods: affect on performance
 - in terms of the energy consumption,
 - the number of SLA violations and
 - the number of migrations
- Performance of VM consolidation is increased
 - Selects a VM that requires the minimum time for migration to another PM

- A data center consists of m heterogeneous
 P = { p₁, p₂, ..., p_m}.
- Each PM with D type of resources
 - CPU, memory, network I/O and storage capacity.
- Multiple VMs can be allocated to each PM
 - through Virtual Machine Monitor (VMM).
- At any given time, users submit their requests
 - for provisioning of *n* VMs, $V = \{v_1, v_2, \dots, v_n\}$
 - which are allocated to the PMs.

- As requested utilization of VMs and PMs vary over time
 - An initial efficient allocation approach needs to be augmented
 - with a VM consolidation algorithm that can be applied periodically.
- In order to adapt and optimize
 - the VM placement periodically according to the workload.
 - We need to monitor and predict the workload of all the VMs and PMs
 - Local agent at PM, Global agent at scheduler level

System Arch. consists of two kind of agents:

- Fully distributed Local Agents (LAs) in PMs
- Global Agent (GA) resides in a master node

Each LA monitor and predict

- Monitors the current resource utilization of all VMs in a PM periodically.
- Approximates the future utilization of all VMs in a PM using a regression-based prediction model

GA collects info. LAs

- to maintain the overall view of current and future resource utilization of VMs.
- GA builds a global best migration plan to optimize VM placement

Solution Approaches

- Each PM with d type of resources
 - CPU, memory, network I/O and storage capacity.
- Each PM p has a d-dimensional total capacity vector

$$Cp = < C_{p}^{1}, C_{p}^{2}, \dots C_{p}^{d} >$$

- where C_p^d is total d_{th} resource capacity of PM p.
- Used capacity vector of the PM p as

$$U_p =$$

- where U_p^d denotes used capacity of the resource type d : simplicity d=2, CPU, memory
- For instance, used CPU capacity of a PM is estimated
 - as the sum of the CPU utilization of the three VMs if three
 VMs are hosted by the same PM

Solution Approaches

Each VM v has a d-dimensional total capacity vector

$$Cv = \langle C^{1}_{v}, C^{2}_{v}, \dots C^{d}_{v} \rangle$$

- where C_{v}^{d} is total d_{th} resource capacity of VM v.
- Used capacity vector of the VM v as

$$U_v =$$

- where U_v^d denotes used capacity of the resource type d : simplicity d=2, CPU, memory
- As the resource utilization of VMs
 - vary over time due to dynamic workloads,
 - the VM placement need to be optimized periodically

Solution Approaches: Step 1

- Aims to migrate some VMs from
 - over-loaded PMs and
 - predicated over-loaded PMs.
- If at least one resource (i.e., CPU or memory)
 - Exceeds total capacity, PM is over-loaded
 - Belongs to overloaded PMs set (Pover).
- If at least one resource predicted utilization value
 - is larger than capacity, PM is predicted overloaded
 - Belongs to Predicted over-loaded PMs set (P^o_{over})

Prediction Model

- Predicted Util Vector of PM: $PU_{p_{de}} = \propto +\beta U_{p_{de}}$
 - Current used capacity vector : $U_{p_{de}}$
- Regression coefficients can be estimated

$$\beta = \frac{\sum_{i=1}^{n} (Xi - Xb)(Yi - Yb)}{\sum_{i=1}^{n} (X_i - Xb)^2}$$

$$\propto = Y^b - \beta X^b$$

- where X^b is the mean value of $X_1, X_2, \ldots X_n$, and
- $-Y^b$ is the mean value of $Y_1, Y_2, ..., Y_n$

Prediction Model

- Predicted Util Vector of VM: $PU_v = \propto + \beta U_v$
 - Current used Util vector : U_{v}
 - \propto and β derived using linear regression
- PM load $Load_p = \sum_{d \in \{1,2,\dots,|D|\}} R_p^d$
 - where $R_p^d = \frac{U_p^d}{C_p^d}$ where U, C are Utilized & Capacity
- VM load $Load_v = \sum_{d \in \{1,2,\dots,|D|\}} R_v^d$ where $R_v^d = \frac{U_v^d}{C^d}$

Constraints on Consolidation

 Constraint 1: Used Capacity of destination and added with used capacity of VM should be less than threshold

$$U_{p_{de}} + U_v \leq T.C_{p_{de}}$$

 Constraint 2: Predicted Capacity of destination and Predicted capacity of VM should be less than threshold

$$PU_{p_{de}} + PU_{v} \leq T.C_{p_{de}}$$

Both should hold

Scale up and Scale Down

- Scale UP: demand is high
 - If required switch on more PM to serve better
- Scale down: Demand is less
 - If require power off some PM to save power

Algorithm: Consolidation and Scale Up

```
Set M_1 = \Phi;
for p<sub>so</sub> in P<sub>over</sub> U P<sub>over</sub> do //Over loaded
Sort VMs V_m on PM p_{so} in ascending order based on U_{mem} for v in V_m do  | \text{for } p_{de} \text{ in } P - (P_{over} \cup P_{over}^*) \text{ do } // \text{Non-overloaded}   | \text{if } U_{pde} \text{ in } P - (P_{over} \cup P_{over}^*) \text{ do } // \text{Non-overloaded}   | \text{if } U_{pde} + U_v \leq T. C_{pde} \otimes PU_{pde} + PU_v \leq T. C_{pde}   | M_1 = M_1 \cup [(p_{so}, v, p_{de})]   | Update \cup U_{so} \text{ and } U_{pde} \text{ ; break}  if not able to find any destination PM Switch on the dormant PM p; //Scale UP
```

Algorithm: Consolidation-Scale Down

```
Sort P<sub>active</sub> in descending of Load<sub>p</sub>;
for PM_{so} = |P_{active}| to 1 do //Start from Light loaded one
  V_{m} = sort VMs on PM_{so} in descending order of Load<sub>v</sub>;
Set M_2 = \Phi;

for v in V_m do

| success=false; | for p_{de} in P_{active} - PM_{so} do

| f U_{pde} + U_v \le T. C_{pde} \otimes PU_{pde} + PU_v \le T. C_{pde} \otimes M_2 = M_2 \cup [(p_{so}, v, p_{de})]; success=True; | Update Up<sub>so</sub> and Up<sub>de</sub>; break
  if success = false; Recover U_{pso} and U_{pde}: M_2 = \Phi;
   else Switch PMso to the sleep mode
```

Performance Metrics

- SLA Violation (SLAV) SLAV = SLAVO * SLAVM
 - due to Overload (SLAVO),
 - due to Migration (SLAVM)

• SLAVO =
$$\frac{1}{M} \sum_{i=1}^{m} \frac{T_{S_i}}{T_{a_i}}$$

- M number of PM, T_{si} total time PM I experienced CPU/Mem utilization above 100%

• SLAVM =
$$\frac{1}{N} \sum_{j=1}^{n} \frac{C_{d_j}}{C_{r_j}}$$

– Experience performance degradation of $_{\rm j}$ the VM by migration $C_{\rm ri}$ total capacity requested by VM

Reference:

Wu et.al, End to End Delay Minimization for Scientific Workflow in cloud under Budget Constraints, IEEE Trans. On Cloud Computing. 2015.

Introduction

- With emergence of cloud computing and rapid deployment of cloud infrastructures
 - Number of scientific workflows have been shifted to cloud environments.
- Challenges:
 - Reducing financial cost in addition
 - to meeting the traditional goal : performance
- Quick evaluation of scientific workflow
 - to minimize the workflow end-to-end delay under a user-specified financial constraint

Scientific Workflow: SWF

- Large-scale scientific computing tasks
 - for data generation, processing, and analysis are
 - often assembled and constructed as Workflows
 - comprised of many interdependent modules
- Workflow (WF) module communicates
 - with others through the sharing of data sets,
 - which are either stored in shared file system or
 - transferred from node to node by WF management system
- Scientific Workflows are
 - typically executed in a distributed manner
 - in heterogeneous network environments

WF in Clouds System

- It is essential construct analytical models
 - to quantify the network performance of scientific workflows
 - in laaS cloud environments,
 - and formulate a task scheduling problem
- Scheduling Problems: WF on Cloud
 - to minimize the workflow end-to-end delay
 - under a user-specified financial cost constraint,
- Referred to as Minimum End-to-end Delay under Cost Constraint (MED-CC)

Workflow Execution in Cloud

- Workflow is represented as
 - a directed acyclic graph (DAG),
- Submitted to the workflow engine
 - for executing, scheduling, tracking and reporting
- Workflow (WF) have independent tasks (Work/W), and
 - Execution model with inter-module dependencies
 - Identify and quantify the key financial and time cost

Cost Model: time and financial

 Time Cost or simply Time: overall time to execute Work W_i on VM_j

$$T_{i,j}=T(I_j)+T(E_{i,j})+T(R_i)$$

- T_{i,j} = overall time to execute Work W_i on VM_j
- $-T(I_j)$ = Startup Time for VM_j
- $-T(E_{i,j})$ = time to execute W_i on VM_j
- $-T(R_i)$ = time of upload/download data from/to VM_i

Cost Model: time and financial

 Financial Cost (or simply Cost): Overall time to execute Work W_i on VM_j

$$C_{i,j}=C(I_j)+C(E_{i,j})+C(R_i)+C(S_i)$$

- $-C(S_i)$ = data storage cost of W_i
- C(I_j), C(E_{i,j}), C(R_i) cost of Init VMj, execution of Wi on VMj and download/upload data to/from VM_j for W_i
- Set of Available VM type VT={vt₀,vt₁,...vt_{n-1}}
 - vt_j have processing power p_j and cost c_j
- Cost of executing W_i on VM_j

$$C(E_{i,j})=T(E_{i,j})*c_j$$

Modeling Workflow Exe in Cloud

