For 01205231 - Electronic Circuits & Systems I: sec 450

Due Date: April 21, 2016; 11.59 AM (no late submission)!!

Total	12	11	10	9	00	7	6	5	4	3	2	Problem#
												Points

Homework # 4 due date April 21, 2016: 11.59 AM

1. For the fixed-bias configuration of Figure:

- 8. Sketch the transfer characteristics of the device b. Superimpose the network equation on the same graph c. Determine I_{R_0} and V_{RR_0} .
- with the solutions of part (c). d. Using Shockley's equation, solve for I_{B_0} and then find V_{B_0} . Compare

(b) Use shorthand Method to find the point for plotlyroph @ Vos= Vp= -4", I0=0 mA.

@ Vos= 0V , Ib = Ipss = 12 mA

3 Vos= 0.5 Vp= -2 V , To= Toss/4 = 3 mA

@ Vors = 0.5 Vp = -1.2 V, Ib= Ions/2 = 6 mA

(c) From the circuit, there was constant 4==-1:5V

From graph Ing. 4.7mA. / Vos = Voo - I. R. = 14 - (4.7m)(1.8K) /

Vosa 5.54V. /

(d) Shockley's equation IDO = IDSS (1- VOS) = (12 mA) (1- 1-5)= 4.68 mA.

Vosa = VDD - IDARD = 14 - (4.68m)(1.8K)

Vosa = 5,57 V.

Given the measured value of F_p in Figure, determine;

"Flease show methods, equivalent circuit and early your angests with pen, then with your

c) V₀₀ = b) F = -

a)
$$V_{DD} = V_{D} + I_{D}R_{D}$$

$$T_{D} = V_{DD} - V_{D} = 12 - 6$$
b) F_{NDM} circultives = $V_{D} = 6V$

C) $V_{dW} = V_{dS}$

Shockley's eg; $I_{D} = I_{DSS}(1 - \frac{V_{WS}}{V_{DSS}})^{2}$

$$V_{dS} = \left(1 - \sqrt{\frac{I_{D}}{I_{DSS}}}\right)V_{D}$$

$$= \left(1 - \sqrt{\frac{2.75}{8}}\right)(-4)$$

$$= -1.66 V$$

- 3. For the self-bias configuration of Figure.
- a. Sketch the transfer curve for the device.
- b. Superimpose the network equation on the same graph.
- c. Determine In, and Vine.
- d. Calculate V.c., Fo, Vo, and V.

(b) $V_{ds} = Ov_{y} I_{Day} = 0 \text{ m.A.}$ $V_{vs} = V_{p} = -4V_{y} I_{D} = 0 \text{ m.A.}$ $V_{vs} = 0.5V_{p} = -1.2V_{y} I_{D} = 1_{0.55}/4 = 8.5 \text{ m.A.}$ $V_{ds} = 0.5V_{p} = -1.2V_{y} I_{D} = 1_{0.55}/2 = 5 \text{ m.A.}$ $V_{ds} = 0.5V_{p} = -1.2V_{y} I_{D} = 1_{0.55}/2 = 5 \text{ m.A.}$ (c) $V_{ds} = -V_{s} = -I_{D}R_{s} - \lim_{n \to \infty} (3.50) = -5.75 \text{ V.}$ At $I_{D} = 5 \text{ m.A.}$ $V_{ds} = -(5 \text{m.})(3550) = -5.75 \text{ V.}$ $V_{ds} = 18 - (3.7 \text{m.A.})(1.5K + 0.75K)$ $V_{ds} = 18 - V_{s} = 18 - (3.7 \text{m.})(1.5K) = 15.95 \text{ V.}$ $V_{ds} = V_{D} - I_{D}R_{D} = 18 - (3.7 \text{ m.})(1.5K) = 15.95 \text{ V.}$ $V_{ds} = V_{D} - V_{s} = 19.95 - 2.025 = 11.925 \text{ V.}$ $V_{Ds} = V_{Ds} - V_{s} = 19.95 - 2.025 = 11.925 \text{ V.}$

4. Determine In, for the network of Figure (Problems 3) using a purely mathematical approach. That is, establish a quadratic equation for Is and

choose the solution compatible with the network characteristics. Compare to the solution obtained in Problem 3.

From Shock
$$4ey^{1/s}$$
 eg.: $1_D = \Gamma_{DSS} (1 - \frac{V_{PS}}{V_P})^2 - \mathbb{O}$
 $V_{PS} = V_{e^-}V_{s} = -\Gamma_D R_S + (\Gamma_D R_S)^2$
 $V_{PS} = \Gamma_{DSS} (1 + \frac{2\Gamma_D R_S}{V_P})^2 + (\frac{R_S}{V_P})^2 \Gamma_{DS} \Gamma_D$
 $V_{PS} = \Gamma_{DSS} (1 + \frac{2\Gamma_D R_S}{V_P})^2 + (\frac{R_S}{V_P})^2 \Gamma_{DS} \Gamma_D$
 $V_{PS} = R_S E m A$
 $V_{PS} = -(R_S E m) (7550) = -(795 V)$

5. Find F. for the network of Figure.

6. For the network of Figure, determine:

**Please show intitlists, commutant circuit and circle your annexes with pen, then write your answer in the provided (red) box.

7. Determine the value of R_s for the network of Figure to establish $V_s = 10 V$.

From Shockley's Equation
$$|T_{0}=T_{0}, (1-\frac{V_{0}s}{V_{0}})| -0$$
From circuit!
$$T_{0}=|\frac{16-V_{0}}{R_{0}}| = \frac{16-10}{2K} = 3mA$$

$$V_{0}=\left[\frac{12KR}{(564\pi)KR}\right](16)=4V$$

$$V_{0}=(1-\sqrt{\frac{3}{12}})+3)$$

$$V_{0}=(1-\sqrt{\frac{3}{12}})+3)$$

$$V_{0}=V_{0}-4V$$

$$V_{0}=4-(-4)=8V$$
So
$$R_{0}=V_{0}=\frac{8}{3m}=2.69 \text{ k.s.} \rightarrow R_{0} \text{ is an vary.}$$

8. Given $F_{iii} = 4 F$ for the network of Figure, determine:

**Please show methods, equivalent circuit and circle your manyers with pen, then write your

D F _m =	c) V,	b) \(\mu_{\partial} = \ldots	a) 1,
*		1	
0			14
211	94	4.0	- 1
20	3.4	20	2.6
P	10	275	1.5
30	1.0	20	0.00
25	1.2	4	52
40	100	201	2.5
133	11.5	7.1	1.5
200	17	1	3.7
20	19	200	1.3
(F)	0.0	200	1.0
	34	100	32
20	172	* 1	1.5
200	0.8	2.5	1
40	35	A. /	12
90	0.2		12
7		711	
7		-	

Special Case: Fig. = 0 F

- 9. For the network of Figure.
 - a. Find Inc.
- b. Determine VA, and VIA.
- c. Find the power supplied by the source and dissipated by the device.

- (a) Because of Vosa = OV. So Ib Ibss = 4mA
- (b) $V_{DQ} = V_{DD} \Gamma_D R_D = 18 (4m)(1.8 \,\text{K}) = 10.8 \,\text{V}.$ $V_{DSQ} = V_{Da} - V_{SQ} = 10.8 - I_D R_S = 10.8 - (4m)(1.2k)$

=

22V 12kB Vormandd Vormandd Vorman
22 V 22 V 23 V 23 V 24 V 25
· ~ 111 . ~

(a)
$$I_{DQ} = K(V_{OS} - V_T)^2$$

 $F_{-10} V_{-1} = T_{-10}$

From
$$K = \frac{I_0(\sigma_0)}{(V_{e^{5}(\sigma_0)} - V_T)^2} = \frac{5mA}{(4-4)^2V^2} = 0.56 \times 10^{-3}A$$

 $\frac{1}{\sqrt{1}} = (0.52 \times 10^{-3})/V_{**} - 4)^2 - The transfer$

11. For the voltage-divider configuration of Figure, determine:

**Please show methods, equivalent susual and susde your anawers with pen, then write your unswer in the provided (rad) box.

12. Design a network such as appears in Figure using an enhancement-type MOSFET with $V_{\rm entro.}=4~V$ and $k=0.5\times10^{-3}~A/V^3$ to have a Q-point of $I_{\rm en}=6~mA$. Use a supply of 16 V and standard values.

Ra should have very high value. such as 1 M.D.I. In order to

.. Rp = Vop-Vdsa = 16-7.46 = 1,42ks /=1,42ks

l'mit the Is