Computació Numèrica

Laboratori 12. Integració numèrica amb Matlab

M. Àngela Grau Gotés

Departament de Matemàtiques Universitat Politècnica de Catalunya · BarcelonaTech.

15 de maig de 2018

drets d'autor

"Donat el caràcter i la finalitat exclusivament docent i eminentment il·lustrativa de les explicacions a classe d'aquesta presentació, l'autor s'acull a l'article 32 de la Llei de propietat intel·lectual vigent respecte de l'ús parcial d'obres alienes com ara imatges, gràfics o altre material contingudes en les diferents diapositives"

2 / 14

Fórmules de Newton-Côtes

Mètode de Romberg

Referències

Fórmula del Rectangle o punt mig.

$$\int_{a}^{b} f(x) dx = \underbrace{h \cdot f\left(\frac{a+b}{2}\right)}_{R(f,h)} + \underbrace{\frac{E\{f\}}{(b-a)}h^{2} f''(\xi)}_{f''(\xi)},$$

$$h = b - a$$
, $a < \xi < b$.

M. A. Grau Laboratori 12. Matlab 1

Fórmula del trapezi.

$$\int_{a}^{b} f(x) \ dx = \underbrace{\frac{h}{2} \cdot (f(a) + f(b))}_{T(f,h)} - \underbrace{\frac{(b-a)}{12} h^{2} f''(\xi)}_{E\{f\}},$$

$$h = b - a$$
, $a < \xi < b$.

M. A. Grau Labor

5 / 14

Fórmula de Simpson.

$$\int_a^b f(x) dx = \underbrace{\frac{h}{3} \cdot \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)}_{S(f,h)} - \underbrace{\frac{(b-a)}{180} h^4 f^{iv}(\xi)}_{E\{f\}},$$

$$h = \frac{b-a}{2}, \qquad a < \xi < b.$$

6 / 14

Exercici 1

Comproveu que:

a)
$$S(f,h) = \frac{2}{3}R(f,h) + \frac{1}{3}T(f,h)$$

b)
$$S(f,h) = \frac{4}{3}T(f,\frac{h}{2}) - \frac{1}{3}T(f,h)$$

Exercici 2

Trobeu la distància que ha recorregut un mòvil a partir de les dades de la següent taula:

t min	0	0.1	0.2	0.3	0.4	0.5	0.6
v m/s	1	8	4	3.5	5	1	0

- Representa gràficament les dades de la taula.
- Explica l'estratègia i dona el resultat pel mètode del punt mig.
- Explica l'estratègia i dona el resultat pel mètode dels trapezis.
- Explica l'estratègia i dona el resultat pel mètode de Simpson.

Exercici 3

- R(f,h) Escriviu un script per avaluar integrals mitjançant la fórmula composta del rectangle.
- T(f,h) Escriviu un script per avaluar integrals mitjançant la fórmula composta dels trapezis. Consulteu l'ajuda de Matlab per la comanda trap.
- S(f,h) Escriviu un script per avaluar integrals mitjançant la fórmula composta de Simpson.

Les dades han d'ésser a, b, i n, així com una function que avalui f(x) per a qualsavol $x \in [a,b]$ i el resultat un valor aproximat de

$$\int_a^b f(x) \ dx.$$

M. A. Grau Laboratori 12. Matlab 1

Joc de proves

Joc de proves per als programes d'integració numèrica.

a)
$$I = \int_1^2 \ln(x) dx$$
, $\int \ln(x) dx = x \ln(x) - x$.

b)
$$I = \int_0^{\pi/4} \cos^2(x) dx$$
, $\int \cos^2(x) dx = \frac{\sin(2x)}{4} + \frac{x}{2}$.

Mètode de Romberg

Per h = (b - a)/n, $x_k = a + kh$ i $k = 0 \div n$ calculem

$$T(h), T\left(\frac{h}{2}\right), T\left(\frac{h}{4}\right), \cdots, T\left(\frac{h}{2^p}\right)$$

llavors, l'esquema d'extrapolació de Richardson per $L \geq 1$, és:

$$egin{split} {\cal T}_{ ext{L}+1}(h) &= {\cal T}_{ ext{L}}(h) + rac{{\cal T}_{ ext{L}}(h) - {\cal T}_{ ext{L}}(2h)}{4^{ ext{L}} - 1} \ & {\cal T}_{1}(h) &= {\cal T}(h) \,. \end{split}$$

Taula d'extrapolació

$\mathcal{O}(h^2)$	$\mathcal{O}(h^4)$	$\mathcal{O}(h^6)$	$\mathcal{O}(h^8)$
$1:T_1(h)$			
$2:T_1(h/2)$	3 : $T_2(h/2)$		
4 : $T_1(h/4)$	$5:T_2(h/4)$	6 : $T_3(h/4)$	
7 : $T_1(h/8)$	8 : $T_2(h/8)$	9 : $T_3(h/8)$	10 : T ₄ (h/8)
:			•••

Taula: Mètode de Romberg

Exemple

$$\int_0^{0.8} \frac{\sin t}{t} dt \approx 0.772095 \pm 0.0000005$$

h	T_1	T_2	T_3
0.8	0.758680		
0.4	0.768760	0.772120	
0.2	0.771262	0.772096	0.772095
0.1	0.771887	0.772095	0.772095

Taula: Mètode de Romberg

Guies de MATLAB

- MathWorks Documentation Center, Matlab Users's Guide online
- MathWorks Documentation Center, Matlab Functions's Guide online
- MathWorks Documentation Center, Matlab Users's Guide in pdf
- MathWorks Documentation Center, Tutorials