Passzív alkatrészek vizsgálata mérési jegyzőkönyv

Mátyás Antal (Supervisor:Attila Tihanyi)

Pázmány Péter Catholic University, Faculty of Information Technology and Bionics 50/a Práter street, 1083 Budapest, Hungary

antal.matyas.gergely@hallgato.ppke.hu

Abstract—A mérés célja volt ismerkedni a passzív elektromos alkatrészek tulajdonságaival, vizsgálatával, valamint az ELVIS mérőműszer és a hozzá tartozó szoftvercsomag használatával. A mérésre való felkészülés során átismételtük a középiskolában az ellenállásról, kondenzátorról, valamint az induktivitásról tanultakat, továbbá ezek mérési lehetőségeit.

I. MÉRENDŐ OBJEKTUMOK

A mérés kezdetén 6 darab ismeretlen áramköri elemet kaptunk, első feladatunk ezeknek felismerése volt. Ahhoz, hogy az egyes passzív alkatrészekről eldöntsük, ellenállással, kondenzátorral, vagy induktivitással van dolgunk az ELVIS mérőműszer Impedance Analyzerét használtuk. A leírás szerint a műszer DUT+ és DUT- kimenete közé bekötöttük az egyes elemeket, majd különböző frekvenciákon vizsgáltuk, figyelve az impedancia analizátor diagramját. Amennyiben a Magnitude értéke közel megegyezett az ellenállás értékével, valamint a Reaktancia elhanyagolható volt az ellenálláshoz képest, azaz a fázisszög nagyon kis értékű volt, arra következtethettünk, hogy a mért alkatrész Ohmos ellenállás. Az ismeretlen elemet induktivitásnak jelöltük, amennyiben a fázisszög 0 és 90 fok kötötti értéket vett fel, valamint az ellenállás és a reaktancia értéke nagyságrendileg megegyezett. Ha a fáziszög értéke 270 és 360 fok közé esett, valamint a reaktancia negatív értéket vett fel, kapacitást vizsgáltunk. Ezen mérések segítségével megállapítottuk, hogy 2 ellenállás, 2 induktivitás, valamint 2 kondenzátor a 6 mérendő objektum. Az alábbiakban az ELVIS digitális multiméter használatakor minden mérés előtt megmértük a műszer eredeti belső ellenállását, induktivitását, valamint kapacitását, majd a DMM Null Offset funkcióját használva ezt mindig kivontuk a mérési eredményből, ezzel is pontosítva azt.

II. ELLENÁLLÁS MÉRÉSE

A. DMM - ellenállás mód

A két ismeretlen ellenállás értékének meghatározásához az ELVIS DMM(digitális multiméter)-t használtuk. A műszert ellenállás módba kapcsolva követtük a kapcsolási utasítást, ennek megfelelően a panel oldalán található V és COM csatlakozók közé kapcsoltuk az ismeretlen ellenállásokat. Az első ellenállás - jelölje innentől R_1 - értéke a digitális multiméter mérése alapján $21.9k\Omega$, a második ellenállás - R_2 - értéke: 50.7Ω

B. DMM - induktivitás, kapacitás mód

Az ellenállásokat a digitális multiméter utasítása alapján a DUT+ és DUT- kimeneti pontok közé kötve megvizsgáltuk induktivitás, majd kapacitás üzemmódban is. Az ellenállásokat kapacitás üzemmódban mérve az értékek igen ingadozóak voltak, így nem voltak mérhetőek. Az induktivitás üzemmódban való vizsgálat során a mért érték mindkét esetben +Over volt.

TABLE I R_1 ELLENÁLLÁS

	100Hz	1000Hz	10000Hz
Magnitude	$21.81k\Omega$	$21.81k\Omega$	$21.81k\Omega$
Phase(deg)	0.02	0.17	1.68
Resistance	$21.8k\Omega$	$21.8k\Omega$	$21.8k\Omega$
Reaktance	6.44Ω	63.46Ω	639.79Ω

TABLE II R_2 ELLENÁLLÁS

	100Hz	1000Hz	10000Hz
Magnitude	51.32Ω	51.32Ω	51.31Ω
Phase(deg)	0.16	1.60	0.02
Resistance	51.35Ω	51.34Ω	51.32Ω
Reaktance	$143.35m\Omega$	1.43Ω	$14.84m\Omega$

C. Impedance Analyzer

Az ellenállásokat ezt követően az ELVIS Impedance Analyzerével is megvizsgáltuk 100, 1000 valamint 10000 Hzes mérési frekvencián. A mérési eredményeket ellenállásokra lebontva a táblázatok szemléltetik.

D. Soros és párhuzamos kapcsolás

A feladat utolsó pontja volt a vizsgált ellenállásokat soros és párhuzamos kapcsolásban is megmérni. Az ellenállás méréséhez itt egyszerre használtuk az ELVIS mérőegység modellező lapját, valamint a digitális multiméter oldalsó kivezetéseit. A soros kapcsolás során elméleti számítások szerint, az $R_e = \sum_{k=1}^n R_k$ képlet alapján $21939+50=21989\Omega$ értéket kellett, hogy kapjunk, a mérés során pontosan ez lett az eredmény.

A párhuzamos kapcsolásnál az eredmény 51.7Ω lett, ami a $\frac{1}{R_e}=\sum_{k=1}^n\frac{1}{R_k}$ egyenlet alapján megfelelő eredmény.

III. INDUKTIVITÁS MÉRÉSE

A. DMM - induktivitás mód

A két ismeretlen értékű induktivitás meghatározásához az ELVIS DMM-t használtuk. Az induktivitás üzemmódban való méréshez tartozó utasítás szerint az ismeretlen induktivitásokat egymás után a DUT+ és DUT- kimenetek közé csatlakoztatuk, majd a digitális multiméter használatával megmértük az értéküket. Az első indutivitás - jelölje innentől L_1 - értéke 0.0220mH, a másodiké - legyen L_2 - 0.223mH lett a műszer mérése alapján.

B. DMM - ellenállás, kapacitás mód

A digitális multimétert kapacitás üzemmódba állítva is megvizsgáltuk az induktivitásokat, mindkét esetben +Over értékeket kapva.

TABLE III L_1 INDUKTIVITÁS

	100Hz	1000Hz	10000Hz
Magnitude	1.05Ω	1.06Ω	$1.77k\Omega$
Phase(deg)	0.79	7.77	53.69
Resistance	1.05Ω	1.05Ω	1.05Ω
Reaktance	$14.63m\Omega$	$143.67m\Omega$	1.43Ω

TABLE IV L_2 induktivitás

	100Hz	1000Hz	10000Hz
Magnitude	2.04Ω	1.97Ω	2.49Ω
Phase(deg)	0.39	4.21	35.50
Resistance	2.04Ω	1.96Ω	2.03Ω
Reaktance	$13.77m\Omega$	$144.48m\Omega$	1.45Ω

Az ellenállás üzemmódban való méréshez természetesen módosítottunk a mérési összeállításon, az induktivitások két végét rögítettük a V és COM kimenetek közé. Az L_1 induktivitás esetében az ellenállás $R=0.429\Omega$, az L_2 induktivitás esetében pedig $R=0.016\Omega$ lett a mérési eredmény.

C. Impedance Analyzer

A két induktivitást ezután az ELVIS Impedance Analyzerrel is vizsgáltuk különböző frekvenciákon, a III. és IV. táblázat szemlélteti a mérési eredményeket.

D. Soros és párhuzamos kapcsolás

A feladat utolsó pontjaként a két induktivitást sorosan valamint párhuzamos kapcsolással is megmértük a digitális multiméter segítségével, a kapcsolásokat az ELVIS mérőegység modellező lapján létrehozva és a DUT+ és DUT- kivezetések közé kötve. Soros kapcsolású mérés során a mért eredmény L=0.0322mH lett, párhuzamos kapcsolás esetén pedig L=0.0179mH. A mérési értékeket az elméleti számítások is alátámasztják: Soros kapcsolás esetén $L_e=\sum_{k=1}^n \frac{1}{L_k}$, párhuzamos kapcsolás esetén pedig $\frac{1}{L_e}=\sum_{k=1}^n \frac{1}{L_k}$.

IV. KAPACITÁS MÉRÉSE

A. DMM - kapacitás mód

A két ismeretlen értékű kapacitás méréséhez a digitális multiméter utasítása alapján a kapacitásokat a DUT+ és DUT-kivezetések közé kötöttük, majd DMM kapacitás üzemmódban leolvastuk az értékeiket. Az első kapacitás - legyen mostantól C_1 - értéke $C_1 = 0.1011nF,\$ a másodiké - innentől C_2 - $C_2 = 4.443nF.$

B. DMM - ellenállás, induktivitás mód

A két kapacitás értékét megvizsgáltuk továbbá a digitális multiméter ellenállás, majdpedig induktivitás üzemmódját használva. Az ellenállás méréséhez természetesen az ELVIS mérőegység oldalsó kivezetéseit (V és COM) használtuk. A mérés eredménye mindkét esetben +Over lett.

C. Impedance Analyzer

Ezt követően a két kapacitást az ELVIS Impedance Analyzer segítségével vizsgáltuk, különböző frekvenciákon. A mérési eredményeket az V. és VI. táblázat tartalmazza.

TABLE V
C₁ KAPACITÁS

	100Hz	1000Hz	10000Hz
Magnitude	$1.523k\Omega$	$1.55k\Omega$	155.71Ω
Phase(deg)	272.08	271.42	272.08
Resistance	5.66Ω	376.1Ω	74.94Ω
Reaktance	-155.61 $k\Omega$	$-15.22k\Omega$	$-1.55k\Omega$

TABLE VI C_2 KAPACITÁS

	100Hz	1000Hz	10000Hz
Magnitude	$357.47k\Omega$	$36.04k\Omega$	$3.65k\Omega$
Phase(deg)	271.31	271.3	271.48
Resistance	$8.2k\Omega$	814.87Ω	94.49Ω
Reaktance	$-357.37k\Omega$	$-36.03k\Omega$	$-3.65k\Omega$

D. Soros és párhuzamos kapcsolás

Az utolsó feladat a kapacitások soros valamint párhuzamos kapcsolás melletti mérése volt. A kapcsolásokat az ELVIS mérőegység modellezőtábláján állítottuk össze, a digitális multiméterrel való kapacitás méréséhez a DUT+ és DUT-kivezetések közé kapcsolva. A digitális multiméterről leolvasott értékek szerint soros kapcsolás esetén $C_e=4.550nF$, párhuzamos kapcsolás esetén pedig $C_e=0.1050F$. A kapott értékek helyességét alátámasztják ez elméleti számítások is: Soros kapcsolás $C_e=\sum_{k=1}^n \frac{1}{C_k}$ valamint párhuzamos kapcsolás $C_e=\sum_{k=1}^n C_k$.