## Any non-finite sigma algebra is not countable

## Rafael Polli Carneiro

Let's prove the statement of the title. But first

**Definition 1.** Let  $\Omega$  be a non-empty set. Then any collection of subsets of  $\Omega$ , namely  $\mathcal{A}$ , is a  $\sigma$ -algebra of  $\Omega$  if it the satisfies following properties

- (i)  $A \in \mathcal{A} \implies A \subseteq \Omega$ ;
- (ii)  $\emptyset \in \Omega$ ;
- (iii) For any countable subset of A we have that its union is still an element of A. That is:

$$\forall \mathcal{F} \subseteq \mathcal{A}$$
, if  $\mathcal{F}$  is countable  $\Longrightarrow \bigcup \mathcal{F} \in \mathcal{A}$ .

(iv) For any  $A \in \mathcal{A}$  we have  $A^c \in \mathcal{A}$ .

Now, given the definition of a  $\sigma$ -algebra, we will prove the desired.

**Proposition 1.** Any non-finite  $\sigma$ -algebra of a set  $\Omega$  is not countable.

Demonstração. Let  $\mathcal{A}$  be a non-finite σ-algebra of subsets of  $\Omega$  ( $\Omega$  non-empty). We start noticing that it must exist a subset  $A_0 \in \mathcal{A}$  such that

$$A_0 \neq \emptyset$$
 and  $A_0 \neq \Omega$ .

With that we can break  $\Omega$  into two slices  $A_0$  and  $A_0^c$ . Here  $A_0^c \in \mathcal{A}$  because of the property of a  $\sigma$ -algebra. That is

$$A_0$$
  $A_0^c$ 

Now, it comes from the hypothesis that A is not finite that either

$$\operatorname{card}\{A \in \mathcal{A}; A \subseteq A_0\} < \infty \quad \text{or} \quad \operatorname{card}\{A \in \mathcal{A}; A \subseteq A_0^c\} < \infty.$$

This is true due to the fact that for all  $A \in \mathcal{A}$  we have  $A = (A \cap A_0) \cup (A \cap A_0^c)$  which means

$$\mathcal{A} = (\mathcal{A} \cap A_0) \bigcup (\mathcal{A} \cap A_0^c),$$

where

$$A \cap B := \{A \cap B; A \in \mathcal{B}\}$$

and  $B \subseteq \Omega$  a set. Then, if both  $A \cap A_0$ ,  $A \cap A_0^c$  were finite A would be also finite, which is impossible by hypothese.

Let's consider, without loss of generalization, that  $\mathcal{A} \cap A_0$  is not finite. What we will observe is that we can continue this argument recursively. This is so beacuse  $\mathcal{A} \cap A_0$  is also a sigma-algebra, which as showed before is not finite. Therefore, we can build by induction a sequence of  $\sigma$ -algebras

$$\mathcal{A} \cap A_0 \supseteq \mathcal{A} \cap A_1 \supseteq \mathcal{A} \cap A_2 \supseteq \cdots \supseteq \mathcal{A} \cap A_n \supseteq \mathcal{A} \cap A_{n+1} \cdots$$

where for each index  $i \in \mathbb{N} \cup \{0\}$  there is a point  $x_i$  such that  $x_i \notin A_{i+1}$ . In other words, we have the following



Notice that this property is merely a consequence of what was showed at the beggining and used at the induction.

Now comes the interesting part. Firstly, we must look at the sequence of non-empty measurable sets

$$B_0 = A_0 \setminus A_1 \in \mathcal{A}, B_1 = A_1 \setminus A_2 \in \mathcal{A}, \dots B_i = A_i \setminus A_{i+1} \in \mathcal{A}, \dots$$

which satisfies  $B_i \cap B_j = \emptyset$ , for indexes  $i \neq j$ . Now, for convinience we will define the collections

$$\mathcal{F}_i := \{B_{2i-1}, B_{2i-2}\}, \forall i \in \mathbb{N}$$

which will look like

$$\mathcal{F}_1 = \{B_1, B_0\}, \mathcal{F}_2 = \{B_3, B_2\}, \mathcal{F}_3 = \{B_5, B_4\}, \dots$$

Then, remember that the set

$$\mathcal{C} := \{f : \mathbb{N} \to \{0, 1\}; f \text{ a function}\}\$$

is not countable (check the Cantor's diagonal argument to prove this fact <sup>1</sup>). and define the sequence of functions

$$\xi_i : \{0, 1\} \to \mathcal{F}_i = \{B_{2i-1}, B_{2i-2}\}\$$

$$j \mapsto \begin{cases} B_{2i-2} & \text{if } j = 0; \\ B_{2i-1} & \text{if } j = 1, \end{cases}$$

with  $i \in \mathbb{N}$ . Notice that the set  $\mathcal{C}$  is the key to prove the proposition successfully.

Finally, we just need to prove that the following function

$$\phi: \mathcal{C} \to \mathcal{A}$$
$$f \mapsto \bigcup_{i \in \mathbb{N}} \xi_i(f(i)).$$

is injective. Whenever the injection is proved we conclude that

$$\operatorname{card}(\mathcal{C}) = \operatorname{card}(\operatorname{Im}(\phi)) < \operatorname{card}(\mathcal{A})$$

Let  $f, g \in \mathcal{C}$  be two different functions. That is, we can find a natural number  $j \in \mathbb{N}$  such that  $f(j) \neq g(j)$ . Without loss of generalization, lets assume that f(j) = 0 and g(j) = 1. This gives us

$$\xi_i(f(j)) = B_{2i-2}, \text{ and } \xi_i(g(j)) = B_{2i-1}.$$

<sup>1</sup>https://en.wikipedia.org/wiki/Cantor's\_diagonal\_argument

Thus, from the fact that

$$\forall i \neq j, \ B_i \cap B_j = \emptyset$$

we obtain

$$B_{2j-2} \cap \bigcup_{i \in \mathbb{N}} \xi_i(g(i)) = \bigcup_{i \in \mathbb{N}} (\xi_i(g(i)) \cap B_{2j-2}) = (B_{2j-1} \cap B_{2j-2}) \cup \bigcup_{i \in \mathbb{N} \setminus \{j\}} (\xi_i(g(i)) \cap B_{2j-2}) = \emptyset.$$

Consequently,  $\xi(f) \neq \xi(g)$  and  $\xi$  is a injective function. Hence, the  $\sigma$ -algebra is not countable!!!  $\square$