

三端可调稳压电路

1. 概述与特点

CW431CS 是三端可调精密稳压器,输出电流 $1.0 \text{mA} \sim 100 \text{mA}$,输出电压可从 V ref(2.5 V) 调到 36 V,输出动态阻抗 $0.22 \, \Omega$ 。它采用 TO-92 塑封,可替代许多应用场合下的稳压二极管。

特点如下:

- 输出电压可调,从 Vref(2.5V)到 36V
- 参考电压源误差±1.0%
- 低动态输出阻抗,典型值 0.22 Ω
- 灌电流能力为 1.0mA ~ 100mA
- 全温度范围内温度特性平坦,典型值 50ppm/℃
- 全温度范围内工作温度补偿(零温漂)
- 低噪声输出电压

2. 功能框图与引出脚说明

2.1 功能框图

2.2 引出脚说明

引脚号	符号	功能			
1	R	电压基准端			
2	A	阳极端, 即地端			
3	K	阴极端,即输出端			

无锡华晶微电子股份有限公司

地址: 江苏省无锡市梁溪路 14号

电话: (0510) 5807123-5542

传真: (0510) 5803016

3. 电特性

3.1 极限参数

参数	符号	额定值	单位	
阴极电压	VKA	37	V	
连续阴极电流	IK	— 100 ~ 150	mA	
基准端输入电流	Iref	$-0.05 \sim 10$	mA	
工作环境温度	Ta	0 ~ 75	$^{\circ}$	
贮存温度	Tstg	− 65 ~ 150	$^{\circ}$	
功耗	PD	775	W	

3.2 推荐工作条件

推荐工作条件	符号	最小	最大	单位
阴阳极电压	VKA	Vref(2.5V)	36	V
阴极电流	Iĸ	1.0	100	mA

3.3 电参数

除非特别说明 Ta = 25℃

全 粉:	<i>な</i> た ロ.	条件		规范值			单
参数	符号			最小	典型	最大	位
基准电压	Vref	$V_{KA} = V_{ref,IK} = 10mA$		2.440	2.495	2.550	V
Vref 的 温度变化	∆ Vref	$V_{KA} = V_{ref}$, $I_{K} = 0$ mA $T_{a} = 0 \sim 70$ °C			3.0	17	mV
基准端 输入电流	Iref	$IK = 10mA,$ $R1 = 10k \Omega, R2 = \infty$			1.8	4.0	μА
Vref 电压对	Δ Vref /	Iĸ=	$\Delta V_{KA} = 10V \sim Vref$		-1.4	-2.7	mV / V
VKA 电压比	$\Delta { m V}_{ m KA}$	10mA	$\Delta V_{KA} = 36V \sim 10V$		- 1.0	-2.0	
基准输入电流 温度变化	Δ Iref	$I_{K} = 10 \text{mA},$ $R1 = 10 \text{k } \Omega, R2 = \infty$			0.4	1.2	μА
稳压必需的 最小阴极电流	Imin	V _{KA} = Vref			0.5	1.0	mA
关断阴极电流	Ioff	$V_{KA} = 36V, Vref = 0V$			2.6	1000	nA
动态阻抗	ZKA	$V_{KA} = Vref,$ $\Delta I_{K} = 1.0mA \sim 100mA$ $f \leq 1.0kHz$			0.22	0.5	Ω

4. 应用电路与说明

4.1 应用线路图

4.1.1 可调稳压电源

Vout 可在 2.5V ~ 36V 之间调节。Vo = Vref × (1 + R1/R2) ,其中 Vref = 2.5V。由于 Ro 承受的电压与 (V+-Vo) 有关,压差很大时,Ro 上的功耗随之增加,因而使用时应注意。

4.1.2 过电压保护线路

在过电压保护线路中,当 V+超过一定电压时,CW431CS 触发,使可控硅导通,并产生瞬间大电流。将保险丝烧断,从而保护后级电路。V 保护点=(1+R1/R2) Vref。

4.1.3 恒流源

Iout = Vref / RCL

图为灌电流负载恒流源。恒流值与 Vref 和外加电阻的阻值有关。功率晶体管选用时应留有余量。该恒流值如与稳压线路配接,则可作电流限制器使用。

4.1.4 比较器

图为用 CW431CS 构成的比较器,它巧妙地应用了 Vref 这个临界电压。当 Vi<Vref,Vo≈V+; 当 Vi>Vref,Vo=2V。由于 CW431CS 内阻很小,因而输入输出波形很好。

4.1.5 电压监视器

图中利用 CW431CS 的转移特性,组成一实用电压监视器。当电压处于上、下限电压之间时, LED 点亮。上、下限电压分别为(1+R1/R2)Vref 和(1+R3/R4)Vref。

4.1.6 音频电路

图为用 CW431CS 组成的 400mW 唱机放大器,由于 CW431CS 有良好的频率特性,输入阻抗又高,只要处理好偏置,可用在音频电路中。

4.1.7 与 7805 集成电路一起构成的稳压器

此电路输出电压完全由 CW431CS 特性决定,即输出电压最低值为 5V+2.5V=7.5V。可变电压值为 7.5V~18V [Vref(1+R2/R1)=2.5 \times 7.2=18V]。

4.2 特性曲线

特性曲线 2

特性曲线3

特性曲线 4

特性曲线 5

特性曲线 6

特性曲线7

五、外形尺寸图

第9页共9页