Game Al

Project 3: Behavior Programming

Alina Arunova Phil Matyash Marina Mircheska Aditya Kela Sattar Rahimbeyli

Outline

- □Connect four for large board
- *□Fuzzy-controller* for breakout
- ☐Self organizing maps
- ☐Bayesian imitation learning

Task 3.1: Minmax search for connect four 19X19

- 1) Implement the depth-restricted search to find the best move
 - a) Modify the depth-parameter to find the best case
- 2) Gather statistics with resized board (19x19)
 - a) Win/Loss statistics
 - b) Time statistics
 - c) The number of filled layers
 - d) Depth-parameter statistics

Task 3.1:Win/Loss statistics

Task 3.1:Win/Loss statistics

Task 3.1:Time statistics

500 samples

1000 samples

Task 3.1:The number of filled layers

500 Samples depth 1

	0	1	2	3
•••				
13		1	1	
14		5	1	
15	416	19	3	
16	444	21	3	
17	466	22	4	2
18	500	80	71	62

1000 Samples depth 1

	0	1	2	3
13		1		
14		12	1	
15	839	37	10	
16	898	40	14	
17	949	49	16	5
18	1000	148	134	112

Task 3.1:The number of filled layers

500 Samples depth 2

	0	1	2	3
•••				
13		3	1	
14		8	1	
15	432	17	2	
16	450	15	2	
17	473	17	1	
18	500	62	57	52

1000 Samples depth 2

	0	1	2	3
13				
14		7		
15	856	30	5	
16	900	30	7	
17	949	34	12	7
18	1000	140	126	104

Task 3.2: Fuzzy Controller for Breakout

Distance of Paddle from Predictor

The maximum distance (= 580 units) between the Paddle and the Predictor ball is divided into 4 rules

Task 3.2: Fuzzy Controller for Breakout

Velocity = 5 units/framecallVelocity = 10 units/framecall Velocity = 12.5 units/framecall Velocity = 15 units/framecall

The rule set for the divided distance is:

Task 3.2: Fuzzy Controller for Breakout

If the distance between the predictor ball and the paddle leads to two rules firing, then the velocity function is the weighted average:

Task 3.3: Self organizing maps

1) Fit self organizing maps to the datasets

- a) Self organizing map algorithm
 - i) Assign random values to neurons (centers)
 - ii) Choose random pattern from dataset
 - iii) Find the closest neuron to that pattern(custom metric)
 - (1) distance[winner] = distance(neuron,pattern)
 - iv) Update neurons(centers)
 - (1) $nrn[i] += lr(t)*e^{(dist(nrn[i],pat)/2*sig(t))*(pat nrn[i])}$
 - (2) Ir(t) = 1 (t/T)
 - (3) $sig(t) = e^{-(t/T)}$

Task 3.3: Self organizing maps (circle figure)

Task 3.3: Self organizing maps (figure 8)

Thank you for attention