

组合逻辑1

刘鹏

浙江大学

信息与电子工程学院

Email: liupeng@zju.edu.cn

© Digital System Design

复习

- □逻辑化简
 - ■卡诺图

本节内容

- □组合电路概念
- □组合电路设计方法
- □ 组合电路模块:编码器和译码器

基本公式

□ 根据与、或、非的定义,得布尔恒等式

序号	公 式	序号	公 式
		10	1' = 0; 0'= 1
1	0 A = 0	11	1 + A= 1
2	1 A = A	12	0 + A = A
3	AA=A	13	A + A = A
4	A A'= 0	14	A + A' = 1
5	AB=BA	15	A + B = B + A
6	A(BC) = (AB)C	16	A + (B + C) = (A + B) + C
7	A (B + C) = A B + A C	17	A + B C = (A +B)(A +C)
8	(A B)' = A' + B'	18	(A + B)' = A'B'
9	(A ') ' = A		

最小项的编号

最小项	取值	对应	编号	
	ABC	十进制数		
A'B'C'	0 0 0	0	m_0	
A'B'C	0 0 1	1	m_1	
A'BC'	0 1 0	2	m_2	
A'BC	0 1 1	3	m_3	
AB'C'	1 0 0	4	m_4	
AB'C	1 0 1	5	m_5	
ABC'	1 1 0	6	m_6	
ABC	1 1 1	7	m_7	

最大项的编号

最大项	取值	对应	编号
	ABC	十进制数	
A'+B'+C'	1 1 1	7	M_7
A'+B'+C	1 1 0	6	M_6
A'+B+C'	1 0 1	5	M_5
A'+B+C	1 0 0	4	M_4
A+B'+C'	0 1 1	3	M_3
A+B'+C	0 1 0	2	M_2
A+B+C'	0 0 1	1	M_1
A+B+C	0 0 0	0	M_{O}

卡诺图化简法

逻辑函数的卡诺图表示法

□ 实质: 将逻辑函数的最小项之和的以图形的方式表示出来

□ 以2ⁿ个小方块分别代表 n 变量的所有最小项,并将它们排列成矩阵,而且使**几何位置相邻**的两个最小项在**逻辑上也是相邻的**(只有一个变量不同),就得到表示n变量全部最小项的卡诺图

表示最小项的卡诺图

□ 2变量卡诺图

□ 4变量的卡诺图

□ 3变量的卡诺图

$\ \ CD$)			•
AB	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_8	<i>m</i> ₉	m_{11}	m_{10}

用卡诺图化简函数

- □依据: 具有相邻性的最小项可合并, 消去不同因子
- □ 在卡诺图中,最小项的相邻性可以从图形中直观地反映出来
- □合并最小项的原则:
 - 两个相邻最小项可合并为一项,消去一对因子
 - 四个排成矩形的相邻最小项可合并为一项,消去两对因子
 - 八个相邻最小项可合并为一项,消去三对因子

3-bit 二进制码和格雷码(Gray code)

B ₂	B ₁	B ₀	G ₂	G ₁	G ₀
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0
			ı		

Decimal	Binary	Hexadecimal	BCD	GRAY
0	0	0	0000	0000
1	1	1	0001	0001
2	10	2	0010	0011
3	11	3	0011	0010
4	100	4	0100	0110
5	101	5	0101	0111
6	110	6	0110	0101
7	111	7	0111	0100
8	1000	8	1000	1100
9	1001	9	1001	1101
10	1010	Α	0001 0000	1111
11	1011	В	0001 0001	1110
12	1100	С	0001 0010	1010
13	1101	D	0001 0011	1011
14	1110	E	0001 0100	1001
15	1111	F	0001 0101	1000

组合逻辑的内容

- □组合电路的设计步骤
- □基本组合电路单元
 - 编码器Encoder
 - 译码器Decoder
 - 选择器Multiplexer
 - 比较器Comparator
 - 加法器Adder
 - 乘法器Multiplier (可选)
- □电路HDL描述

□组合逻辑电路的特点

功能

电路结构

任意时刻的输出仅 取决于该时刻的输入 没有反馈

不含存储单元

□逻辑功能的描述

组合逻辑电路的框图

$$Y = F(A)$$

$$y_1 = f_1(a_1, a_2, ..., a_n)$$

 $y_2 = f_2(a_1, a_2, ..., a_n)$

$$y_m = f_m(a_1, a_2, \dots, a_n)$$

组合逻辑电路的设计方法

- 一、逻辑抽象
 - 分析因果关系,确定输入/输出变量
 - 定义逻辑状态的含意 (赋值)
 - 列出定义输出和输入之间关系的真值表
- 二、写出函数的最简表达式
 - 写出每个输出为1的乘积项
 - 写出乘积项之和
 - 简化逻辑表达式
- 三、用逻辑门电路或集成电路模块实现表达式

设计举例

□ 设计一个监视交通信 号灯状态的逻辑电路

设计举例

- 1. 抽象
- □ 输入变量:

红 (R)、黄 (A)、绿 (G)

- □ 输出变量: 故障信号 (Z)
- 2. 写出逻辑表达式

Z = R'A'G' + R'AG + RAG' + RAG' + RAG

箱	沙变	量	输出
R	A	G	Z
0	0	0	1
0	0	~	0
0	1	0	0
0	~	~	1
1	0	0	0
1	0	~	1
1	1	0	1
1	1	1	1

设计举例

化简

$$Z = R'A'G'+RA+RG+AG$$

3. 画出逻辑图

编码器

编码:将输入的每个高/低电平信号变成一个对应的二进制代码

□普通编码器 □优先编码器

普通编码器

- □ 特点:任何时刻 只允许输入一个 编码信号
- □ 例: 3位二进制 普通编码器

		输		入				输出		
I ₀	I ₁	I ₂	I ₃	I ₄	I ₅	I ₆	I ₇	Y ₂	Y ₁	Y ₀
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

$$Y_{2} = I_{7}^{'}I_{6}^{'}I_{5}^{'}I_{4}^{'}I_{3}^{'}I_{2}^{'}I_{1}^{'}I_{0}^{'} + I_{7}^{'}I_{6}^{'}I_{5}^{'}I_{4}^{'}I_{3}^{'}I_{2}^{'}I_{1}^{'}I_{0}^{'}$$
$$+ I_{7}^{'}I_{6}^{'}I_{5}^{'}I_{4}^{'}I_{3}^{'}I_{2}^{'}I_{1}^{'}I_{0}^{'} + I_{7}^{'}I_{6}^{'}I_{5}^{'}I_{4}^{'}I_{3}^{'}I_{2}^{'}I_{1}^{'}I_{0}^{'}$$

利用无关项化简

$$Y_2 = I_4 + I_5 + I_6 + I_7$$

 $Y_1 = I_2 + I_3 + I_6 + I_7$
 $Y_0 = I_1 + I_3 + I_5 + I_7$

任何时候只有一个输入时激活的,或有两个输入同时激活,则输入就会产生一个没有定义的组合。对于这个不确定因素,编码器必须建立优先机制,使得只有一个输出被编码

优先编码器

- □ 特点: 允许同时输入两个以上的编码信号, 但只对其中优先权最高的一个进行编码
- □ 例: 8线-3线优先编 码器
- □ 设I₇优先权最高…I₀ 优先权最低

		输		λ				输出		
I ₀	I ₁	I ₂	I_3	I ₄	I ₅	I ₆	I ₇	Y ₂	Y ₁	Y_0
X	X	X	X	X	X		1	1	1	1
X	X	X	X	X	X	1	0	1	1	0
X	X	X	X	X	1	0	0	1	0	1
X	X	X	X	1	0	0	0	1	0	0
X	X	X	1	0	0	0	0	0	1	1
X	X	1	0	0	0	0	0	0	1	0
X	1	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	0	0

$$Y_2 = I_7 + I_7 I_6 + I_7 I_6 I_5 + I_7 I_6 I_5 I_4$$

$$A + A'B = A + B$$

$$Y_2 = I_7 + I_6 + I_5 + I_4$$

实例: 74HC148

$$Y_{2}' = [(I_{7} + I_{6} + I_{5} + I_{4})S]'$$

 $Y_{1}' = [(I_{7} + I_{6} + I_{5}I_{4}'I_{3}' + I_{2}I_{4}'I_{5}')S]'$
 $Y_{0}' = [(I_{7} + I_{6}'I_{5} + I_{3}I_{4}'I_{6}' + I_{1}I_{2}I_{4}'I_{6}')S]'$

$$Y_S' = (I_7'I_6'I_5'I_4'I_3'I_2'I_1'I_0'S)'$$

$$Y_{EX}' = [(I_7'I_6'I_5'I_4'I_3'I_2'I_1'I_0'S)'S]'$$

 $= [(I_7 + I_6 + I_5 + I_4 + I_3 + I_2 + I_1 + I_0) \square S]^{'}$

为0时,电路工作有编码输入

			输		λ						输出	出	
S	I_{0}	$I_1^{'}$	$I_{2}^{'}$	$I_3^{'}$	$I_4^{'}$	$I_{5}^{'}$	$I_6^{'}$	$I_7^{'}$	Y_2	$oldsymbol{Y}_1$	Y_{0}	$oldsymbol{Y_S}$	Y_{EX}
1	X	X	X	X	X	X	X	X	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	0	1
0	X	X	X	X	X	X	X	0	0	0	0	1	0
0	X	X	X	X	X	X	0	1	0	0	1	1	0
0	X	X	X	X	X	0	1	1	0	1	0	1	0
0	X	X	X	X	0	1	1	1	0	1	1	1	0
0	X	X	X	0	1	1	1	1	1	0	0	1	0
0	X	X	0	1	1	1	1	1	1	0	1	1	0
0	X	0	1	1	1	1	1	1	1	1	0	1	0
0	0	1	1	1	1	1	1	1	1	1	1	1	0

附加输出信号的状态及含义

Y_S	Y_{EX}	状态
1	1	不工作
0	1	工作,但无输入
1	0	工作,且有输入
0	0	不可能出现

控制端扩展功能举例

□例:用两片8线-3线优先编码器

16线-4线优先编码器

其中, A, 的优先权最高…

译码器

□ 译码:将每个输入的二进制代码译成对应的输出高、低电平信号

□ 常用的有: 二进制译码器, 二-十进制译码器, 显示译码器等

一、二进制译码器

例:3线—8线译码器

输		入		输出						
A_2	A_1	A_0	Y ₇	Y_6	Y_5	Y_4	Y_3	Y_2	Y ₁	Y_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

真值表 —

逻辑表达式

输入		输 出								
A_2	A_1	A_0	Y ₇	Y_6	Y ₅	Y_4	Y_3	Y_2	Y ₁	Y_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

$$Y_0 = A_2' A_1' A_0' = m_0$$
 $Y_1 = A_2' A_1' A_0 = m_1$
 $Y_2 = A_2' A_1 A_0' = m_2$
...
 $Y_7 = A_2 A_1 A_0 = m_7$

集成译码器实例: 74HC138

74HC138的功能表

输入							输			出		
S ₁	$S_2' + S_3'$	A ₂	A ₁	A_0	Y_7	Y ₆	Y_5	Y_4	Y_3	Y_2	Y ₁ '	Y_0
0	X	X	X	X	1	1	1	1	1	1	1	1
X	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	1	1	1	1	1	1	0	1	1	1
1	0	1	0	0	1	1	1	0	1	1	1	1
1	0	1	0	1	1	1	0	1	1	1	1	1
1	0	1	1	0	1	0	1	1	1	1	1	1
1	0	1	1	1	0	1	1	1	1	1	1	1

□利用附加控制端进行扩展

例:用74HC138 (3线—8线译码器)

二一十进制译码器

□ 将输入BCD码的10个代码译成10个高、低电平的输出信号 BCD码以外的伪码,输出均无低电平信号产生

□ 74HC42

$$Y_i' = m_i' \quad (i = 0 \sim 9)$$

用译码器设计组合逻辑电路

1. 基本原理

3位二进制译码器给出3变量的全部最小项

0 0 0

n位二进制译码器给出n变量的全部最小项

任意逻辑函数

将n位二进制译码输出的最小项组合起来,可获得任何形式的输入变量不大于n的组合函数

$$Y = \sum m_{i}$$

用译码器设计组合电路例

利用74HC138设计一个多输出的组合逻辑电路, 输出逻辑

函数式为:
$$Z_1 = AC' + A'BC + AB'C'$$

$$Z_2 = BC + A'B'C$$

$$Z_3 = A'B + AB'C$$

$$Z_A = A'BC' + B'C' + ABC$$

$$Z_1 = AC' + A'BC + AB'C = \sum m(3,4,5,6)$$

$$Z_2 = BC + A'B'C = \sum m(1,3,7)$$

$$Z_3 = A'B + AB'C = \sum m(2,3,5)$$

$$Z_4 = A'BC' + B'C' + ABC = \sum m(0,2,4,7)$$

$$Z_1 = \sum m(3,4,5,6) = (m_3 m_4 m_5 m_6)$$

$$Z_2 = \sum m(1,3,7) = (m_1 m_3 m_7)$$

$$Z_3 = \sum m(2,3,5) = (m_2 m_3 m_5)$$

$$Z_4 = \sum m(0,2,4,7) = (m_0 m_2 m_4 m_7)$$

组合逻辑

刘鹏

浙江大学

信息与电子工程学院

Email: liupeng@zju.edu.cn

