Definition. Composite Hypotheses When alternative hypothesis is of form $\mathcal{H}_1: \theta \in \Theta_1$, where Θ_1 , the composite alternative, consists of more than a single possible value.

Definition. Power function of a statistical test os

$$\pi(\theta^*) = \mathbb{P}\left(reject \ \mathcal{H}_0 \mid \theta = \theta^*\right)$$

where $\theta^* \in \Theta_1$.

Example. Likelihood ratio test (Right tail test) for $\mathcal{H}_0: \mu = \mu_0$ vs $\mathcal{H}_1: \mu > \mu_0$ for Normal data with known variance,

$$\pi(\mu^*) = \mathbb{P}(\underline{X} \in \mathcal{C}|\mu = \mu^*) = 1 - \Phi\left(\frac{-\sqrt{n}(\mu^* - \mu_0)}{\sigma} + z_{1-\alpha}\right)$$

where $\mu^* > \mu_0$

- 1. larger n, test becomes more powerful
- 2. The further apart null hypothesis and alternatives are, the greater the power
- 3. larger σ , less powerful the test
- 4. smaller α , the smaller the power (the α - β trade-off)

Now we can maximize power π by increasing sample size n. We keep the probability of Type II error at less than β (i.e. having power greater than $1-\beta$) beyond differences larger than $\delta = \mu_1 - \mu_0$

$$1 - \beta \le \pi(\mu_1) = 1 - \Phi\left(-\frac{\sqrt{n}(\mu_1 - \mu_0)}{\sigma} + z_{1-\alpha}\right)$$

$$\Rightarrow -\frac{\sqrt{n}(\mu_1 - \mu_0)}{\sigma} = z_{1-\alpha} \le z_{\beta} = -z_{1-\beta}$$

$$\Rightarrow n \ge \left\{\frac{\sigma(z_{1-\alpha} + z_{1-\beta})}{\mu_1 - \mu_0}\right\}^2$$

Definition. Uniformly Most Poweful (UMP) Test A test that is MP for every simple alternative $\theta \in \Theta_1$ is UMP. Consider testing $\mathcal{H}_0: \theta = \theta_0$ vs. $\mathcal{H}_1: \theta \in \Theta_1$ (a composite alternative). We say that a test at level α with power function $\pi(\theta)$ is a uniformly most powerful (UMP) test, if for any other test at level α with power function $\pi'(\theta)$, we have $\pi'(\theta) \leq \pi(\theta)$ for all $\theta \in \Theta_1$.

Example. For $X_1, \dots, X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2)$, the rejection region

$$C = \left\{ \underline{x} \in \mathbb{R}^n : \overline{x} \ge \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \right\}$$

for testing simple hypothesis $\mathcal{H}_0: \mu = \mu_0$ vs. $\mathcal{H}_1: \mu = \mu_1 (\mu_1 > \mu_0)$ is the most powerful test at level α by Pearson-Neyman Lemma. Since rejection region does not depend on μ_1 , it is therefore the most powerful test for any $\mu \in \Theta_1$ where $\Theta_1 = (\mu_0, \infty]$. Hence the likelihood ratio test with above rejection region is the UMP test for testing $\mathcal{H}_0: \mu = \mu_0$ vs. one-tailed alternative $\mathcal{H}_1: \mu > \mu_1$.

Consider testing $\mathcal{H}_0: \mu = \mu_0$ vs. $\mathcal{H}_1: \mu \neq \mu_0$. Because the respective one tailed test is UMP, the test for two-sided alternative is not same for every alternative, hence it is not UMP. Usually, composite hypothesis has no UMP test.

Definition. *p-value* the probability of observing an effect at least as extreme as the one in observed data, assuming the truth of \mathcal{H}_0 .

$$p\text{-value} = \mathbb{P}(Type\ I\ Error) = \mathbb{P}(\underline{X} \in \mathcal{C} \mid \theta = \theta_0) \qquad where \qquad \mathcal{C} = \{T(\underline{X}) \geq t(\underline{x})\}$$

where T(X) the test statistic. Hence if p-value is very low, then \mathcal{H}_0 is most likely false. Alternatively, it is the minimum α for which \mathcal{H}_0 will be rejected.

Reject
$$\mathcal{H}_0$$
 at level $\alpha \iff p-value \leq \alpha$

Remark. This avoids having to re-calculate the rejection region based on different α . Now we reject \mathcal{H}_0 at α if and only if p-value is less than α . However, this does not prove that the \mathcal{H}_1 is true. Also, The p-value does not support reasoning about the probabilities of hypotheses but is only a tool for deciding whether to reject the null hypothesis.

Definition. Composite Null Hypothesis It is more sensible to write

$$\begin{cases} \mathcal{H}_0 : \mu \le \mu_0 \\ \mathcal{H}_1 : \mu > \mu_0 \end{cases} \qquad \begin{cases} \mathcal{H}_0 : \mu \ge \mu_0 \\ \mathcal{H}_1 : \mu < \mu_0 \end{cases}$$

for right-tailed and left-tailed test respectively. Correspondingly, we re-define alpha to be

$$\alpha = \sup_{\theta \in \Theta_0} \pi(\theta)$$

as an example, for right tailed test for $\mathcal{H}_0: \mu \leq \mu_0$ vs $\mathcal{H}_1: \mu > \mu_0$ in case of Normal distribution with known variance, we have

$$\pi(\mu^*) = 1 - \Phi\left(\frac{\sqrt{n}(\mu_0 - \mu^*)}{\sigma} + z_{1-\alpha}\right)$$

where $\mu^* \leq \mu_0$, Note $\pi(\mu^*)$ is monotonically increasing and achieves max at right endpoint when $\mu^* = \mu_0$, hence $\alpha = \sup_{\theta \in \Theta_0} \pi(\theta)$ holds.

Example. Two-tailed test for Normal Mean

1. **Rejection region** Large values of $|\overline{X} - \mu_0|$ is a strong evidence against \mathcal{H}_0

$$C = \left\{ |\overline{X} - \mu_0| \ge \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} \right\} = \left\{ \overline{X} \le \mu_0 - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} \right\} \cup \left\{ \overline{X} \ge \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} \right\}$$

Note we have $1 - \alpha/2$ instead of $1 - \alpha$ for one tailed test. In general, its easier to reject one tailed test than to reject two tailed test

2. p-value

p-value =
$$\mathbb{P}\left(\left|\overline{X} - \mu_0\right| \ge \left|\overline{x} - \mu_0\right| \middle| \mu = \mu_0\right) = 2(1 - \Phi(\frac{\left|\overline{x} - \mu_0\right|}{\sigma/\sqrt{n}}))$$

We then plug in observed \overline{x} and given parameter μ_0 , σ , n to calculate the p-value. The result exactly doubles that of the one tailed test. Since α has to be larger than p-value for rejection to happen, it becomes harder to reject two tailed test than one tailed test (ex. an arbitrarily small p-value can be rejected by any α specified).

3. Power Function

$$\pi(\mu^*) = \mathbb{P}(\underline{X} \in \mathcal{C} | \mu = \mu^*)$$

$$= \mathbb{P}(\overline{X} \ge \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} | \mu = \mu^*) + \mathbb{P}(\overline{X} \le \mu_0 - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} | \mu = \mu^*)$$

$$= 1 - \Phi(-\frac{\sqrt{n}(\mu^* - \mu_0)}{\sigma} + z_{1-\alpha/2}) + \Phi(-\frac{\sqrt{n}(\mu^* - \mu_0)}{\sigma} - z_{1-\alpha/2})$$

A plot of $\pi(\mu^*)$ to μ^* resembles an upside down bell curve, where global minimum happens at $\mu^* = \mu_0$. Also note that two tail tests are not UMP test because one tail test are UMP test in their respective domains by Neyman-Pearson lemma.

4. Confidence Intervals Acceptance region and $(1 - \alpha)\%$ confidence interval for μ are equivalent.

Do not reject
$$\mathcal{H}_0: \mu = \mu_0 \iff \overline{X} \not\subseteq \mathcal{C}$$

 $\iff \overline{X} - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} \le \mu_0 \le \overline{X} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}$
 $\iff \overline{X} - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2} \le \mu_0 \le \overline{X} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}$
 $\iff \mu_0 \text{ contained in the } (1-\alpha)\% \text{ confidence interval for } \mu$

Confidence interval consists of precisely of all those values of μ_0 for which the null hypothesis $\mathcal{H}_0: \mu = \mu_0$ is accepted, i.e. a set of plausible value for μ . If we reject $\mathcal{H}_0: \mu = \mu_0$ then μ_0 is not a plausible value. In general, the set of all θ_0 for which $\mathcal{H}_0: \theta = \theta_0$ would not get rejected in a two-tailed set at level α forms a $(1 - \alpha)\%$ confidence set for θ . Every confidence set has a corresponding two-tailed test.

Theorem. Suppose that for every $\theta_0 \in \Theta$ there is a test at level α of the hypothesis \mathcal{H}_0 : $\theta = \theta_0$. Denote the acceptance region of the test by $A(\theta_0) = \Omega \setminus \mathcal{C}$, then the set

$$I(\underline{X}) = \{\theta : \underline{X} \in A(\theta)\}\$$

is a $100(1-\alpha)\%$ confidence region for θ . That is for every θ_0

$$\mathbb{P}(\theta_0 \in I(\underline{X}) \mid \theta = \theta_0) = 1 - \alpha$$

Remark. A confidece region for θ consists of all those value θ_0 for which the hypothesis that θ end euqules θ_0 will be rejected at level α . The hypothesis that $\theta = \theta_0$ is accepted if θ_0 lies in the confidence interval I.