

EIE 2050 Digital Logic and Systems

Chapter 2: Number Systems, Operations, and Codes

Simon Pun, Ph.D.

Last update: 2023/1/11

Announcements

□ NO tutorials and homework for the second week EITHER;

Last Week

- ☐ Analog versus Digital
- ☐ Bits (Binary digits), Logic Levels and Digital Waveforms
- ☐ Basic logic functions: NOT, AND and OR
- ☐ Combinational & sequential logic functions: comparator, adder, encoder/decoder, (de)multiplexer, flip-flops, registers, counter
- ☐ Integrated circuit (IC): Programmable versus Fixed-function
 - Package: Surface-mounted and Through-hole
 - Programmable: PLD (SPLD and CPLD) and FPGA
 - ◆ Fixed-function: SSI/MSI/VLSI/ULSI
- ☐ Instruments: Oscilloscope, logic analyzer, signal/waveform gen., digital multimeter, DC power supply.

Decimal versus Binary Numbers

☐ Weighted number systems : Decimal, Binary, Hexadecimal and Octal

Decimal Numbers

Each digit takes a value btw 0~9

Fractional numbers

$$10^2 10^1 10^0.10^{-1} 10^{-2} 10^{-3} \dots$$
Decimal point

$$568.23 = (5 \times 10^{2}) + (6 \times 10^{1}) + (8 \times 10^{0}) + (2 \times 10^{-1}) + (3 \times 10^{-2})$$

$$= (5 \times 100) + (6 \times 10) + (8 \times 1) + (2 \times 0.1) + (3 \times 0.01)$$

$$= 500 + 60 + 8 + 0.2 + 0.03$$

Binary Numbers

Each digit takes a value either 0 or 1

Fractional numbers

$$2^{n-1} \dots 2^3 2^2 2^1 2^0 \dots 2^{-1} 2^{-2} \dots 2^{-n}$$
Binary point

$$0.1011_2 = 2^{-1} + 2^{-3} + 2^{-4}$$

= $0.5 + 0.125 + 0.0625 = 0.6875$

Counting in Binary

- □ Largest decimal number can be represented by n bits: 2ⁿ 1
- ☐ MSB: Most Significant Bit
- ☐ LSB: Least Significant Bit
- □ Example: Putting 9 balls in each box with four bits while displaying the # of balls in the current box

TABLE 2-1				
Decimal Number	MSB	Number	LSB	
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
1 0	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Decimal-to-Binary Conversion

☐ Sum-of-Weights Method

$$0.625 = 0.5 + 0.125$$

= $2^{-1} + 2^{-3}$
= 0.101_2

What about 19.625 and 0.626?

☐ Repeated Division/Multiplication-by-2 Method

Continue to the desired number of decimal places or stop when the fractional part is all zeros.

Binary	inary weights. https://www.rapidtables.c							nary weights. https://www.rapidtables.com/convert/number/decimal-to-binary.l							nary.htm	ıl <u> </u>
Positive Powers of Two (Whole Numbers)						Negative Powers of Two (Fractional Number)										
28	27	2^6	25	2^4	2^3	2^2	21	20	2-1	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}		
256	128	64	32	16	8	4	2	1	1/2 0.5	1/4 0.25	1/8 0.125	1/16 0.0625	1/32 0.03125	1/64 0.015625		

Binary Arithmetic

☐ Basic rules

Addition

0 + 0 = 0	Sum of 0 with a carry of 0
0 + 1 = 1	Sum of 1 with a carry of 0
1 + 0 = 1	Sum of 1 with a carry of 0
1 + 1 = 10	Sum of 0 with a carry of 1

Subtraction

$$0 - 0 = 0$$

 $1 - 1 = 0$
 $1 - 0 = 1$
 $10 - 1 = 1$ $0 - 1$ with a borrow of 1

Multiplication

$$0 \times 0 = 0$$

 $0 \times 1 = 0$
 $1 \times 0 = 0$
 $1 \times 1 = 1$

Addition

Carry Carry

Subtraction

$$\frac{101}{-011}$$
010

Multiplication

111

Division

$$\begin{array}{r}
 11 \\
 10)110 \\
 \underline{10} \\
 10 \\
 \underline{10} \\
 00
 \end{array}$$

Complements of Binary Numbers

☐ 1's Complements & 2's Complements

By definition

- □ Alternative method of finding the 2's compliment (recommended)
 - Start at the right with the LSB and write the bits as they are up to and including the first 1
 - ◆ Take the 1's complements of the remaining bits.

Signed Numbers (I)

- ☐ Sign-Magnitude Form
 - lacktriangle Sign bit: $0 \rightarrow$ positive; $1 \rightarrow$ negative
 - Sign bit and Magnitude bits.
- ☐ Representation Forms
 - ◆ 1's Complement

Using 8 bits to represent -25

00011001 25:

-25: 11100110

♦ 2's Complement

11100111 -25:

Why this method gives the right answer?

$$2^{n} + 2^{n-1} + ... + 2^{0} = 2^{n+1} - 1$$

Magnitude bits Sign' bit

■ EXAMPLE 2–16 : Determine the decimal value of the signed binary number: 11101000 expressed in 1's complement

Adding 1 to the result, -24 + 1 = -23

2⁷-1

 $x + y = 2^7 - 1$

 $-y = -2^7 + x + 1$

Signed Numbers (II)

■ EXAMPLE 2–17: Determine the decimal value of the signed binary number: 10101010 expressed in 2's complement

Compared to the 1's complement, the add-one step is skipped

- ☐ Range of Signed Integer Numbers
 - n-bit numbers $[-2^{n-1}, +2^{n-1}-1]$
 - e.g. 8-bit numbers [-128, +127](8 bits = 1 byte)

Brutal approach
$$\frac{0\ 1\ 0\ 1\ 0\ 1}{0\ 1\ 0\ 1\ 0\ 1}$$
 $\frac{0\ 1\ 0\ 1\ 0\ 1}{0\ 1\ 0\ 1\ 0\ 1\ 0\ 1}$ $\frac{0\ 1\ 0\ 1\ 0\ 1}{0\ 1\ 0\ 1\ 0\ 1\ 0\ 1}$ $\frac{1}{0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1}$ $\frac{1}{0\ 1\ 0\ 1\$

Addition with Signed Numbers (I)

☐ 3-step procedures:

- 1 Convert the decimal numbers into the binary form with negative numbers expressed in the 2's compliment form
- Perform binary addition
- Sign: If both numbers positive (negative) → the result positive (negative). Otherwise, overflow indicates the result is positive.

Addition with Signed Numbers (II)

One negative number

$$\begin{array}{c} 6_{10} = 00000110_{2} \\ 00001111 \\ 2 + 11111010 \\ \text{Carry} \rightarrow 1 \quad 00001001 \\ \hline \\ 3 \quad 00001001_{2} = 9_{10} \\ \end{array} \begin{array}{c} 1 \\ 15_{10} = 000001111_{2} \\ + -6 \\ 9 \\ \hline \end{array} \begin{array}{c} -6_{10} = 11111010_{2} \\ \hline \\ 0 \text{ Overflow indicates the result is positive} \\ \end{array}$$

Why Complement + Adding One Works?

Avoid the borrowing process with 2's complement

Subtraction with Signed Numbers

- ☐ Change the sign of the subtrahend and add the numbers
- \Box If the subtrahend is in the binary format \rightarrow 2's compliment

EXAMPLE 2-20

Perform each of the following subtractions of the signed numbers:

(a) 00001000 - 00000011

(b) 00001100 - 11110111

(c) 11100111 - 00010011

(d) 10001000 - 11100010

Solution

Like in other examples, the equivalent decimal subtractions are given for reference.

(a) In this case, 8-3=8+(-3)=5.

$$\begin{array}{c} 00001000 & \text{Minuend (+8)} \\ + 11111101 & \text{2's complement of subtrahend (-3)} \\ \hline \text{Discard carry} \longrightarrow \hline 1 \ 00000101 & \text{Difference (+5)} \end{array}$$

(b) In this case, 12 - (-9) = 12 + 9 = 21.

Multiplication with Signed Numbers

□ Direct addition :

- Very lengthy if the multiplier is a large number
- both numbers must be in true (uncomplemented) form.

☐ Partial product

- ◆ Same sign → Positive;
- ◆ Different signs → Negative

```
A Decimal Example 
\begin{array}{r}
239 \\
\times 123 \\
\hline
717 \\
478 \\
+ 239 \\
\hline
29,397
\end{array}
```


Division with Signed Numbers

- □ Division operation in computers is accomplished using subtraction
- ☐ Quotient and Reminder
 - When to stop the subtraction: the reminder is a zero or a negative number
 - Quotient: # of times of subtraction performed
- ☐ Sign of the quotient
 - ◆ Same sign → Positive;
 - ◆ Different signs → Negative

What about dividing 100 by -25?

Floating-Point Numbers

☐ A floating-point number expressed with mantissa and exponent

0.2415068 X 10⁹

☐ Single-precision Floating-point binary numbers

Biased exponent: adding 127 to the actual exponent

EXAMPLE 2–18 : Convert 3.248 \times 10⁴ to a singleprecision floating-point binary number $3.248 \times 10^4 = 11111101111000000_2 = 111111101111_2 \times 2^{14}$ Biased exponent = $14 + 127 = 141 = 10001101_0$ (23 bits) 1111101110000000000000000 10001101

32480	Reminder	LSB
16240	0	A
8120	0	
4060	0	
2030	0	
1015	0	
507	1	
253	1	
126	1	
63	0	
31	1	
15	1	
7	1	
3	1	
1	1	
0	1	MSB <i>j</i>

The range of the biased exponent [-127, +128]

Extremely large or Small numbers can be represented in this way

Hexadecimal Numbers

- □ A number system of a base of sixteen composed of 10 numeric digits and 6 alphabetic characters
- ☐ Binary-to-Hexadecimal Conversion
 - ◆ Divide the binary number into 4-bit groups, starting at the right-most bit
 - Replace each 4-bit group with the equivalent hexadecimal symbol

TABLE 2-3		
Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	Е
15	1111	F

EXAMPLE 2-24

Two zeros have been added in part (b) to complete a 4-bit group at the left.

Hexadecimal-based Conversion

☐ Hexadecimal-to-Binary Conversion

☐ Hexadecimal-to-Decimal Conversion

$$E5_{16} = (E \times 16) + (5 \times 1)$$

$$= (14 \times 16) + (5 \times 1) = 224 + 5 = 229_{10}$$

TABLE 2-3		
Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F

□ Decimal-to-Hexadecimal

Conversion

$$\frac{650}{16} = 40.625 \rightarrow 0.625 \times 16 = (10) = A$$
Why this must be an integer?
$$\frac{40}{16} = 2.5 \longrightarrow 0.5 \times 16 = 8 = 8$$

$$\frac{2}{16} = 0.125 \longrightarrow 0.125 \times 16 = 2 = 2$$
MSD

Hexadecimal Operations

☐ Hexadecimal addition

```
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
```

EXAMPLE 2–29

(d)
$$DF_{16}$$
 right column: $F_{16} + C_{16} = 15_{10} + 12_{10} = 27_{10}$ $27_{10} - 16_{10} = 11_{10} = B_{16}$ with a 1 carry $D_{16} + A_{16} + A_{16} = 13_{10} + 10_{10} + 1_{10} = 24_{10}$ $24_{10} - 16_{10} = 8_{10} = 8_{16}$ with a 1 carry

☐ Hexadecimal subtraction

◆ 2's compliment of the hexadecimal subtrahend before addition

(a)
$$2A_{16} = 00101010$$

2's complement of $2A_{16} = 11010110 = D6_{16}$ (using Method 1)

$$84_{16}$$
 $+ D6_{16}$
 $1/5A_{16}$
Add
Drop carry, as in 2's complement addition

The difference is $5A_{16}$.

C3₁₆ - OB₁₆
(b)
$$0B_{16} = 00001011$$

2's complement of $0B_{16} = 11110101 = F5_{16}$
C3₁₆
+ F5₁₆ Add
 $1/188_{16}$ Drop carry

The difference is B8₁₆.

Octal Numbers (I)

☐ A number system of a base of eight composed of 3 digits

Octal-to-Decimal Conversion Weight: $8^3 8^2 8^1 8^0$ Octal number: 2 3 7 4 $2374_8 = (2 \times 8^3) + (3 \times 8^2) + (7 \times 8^1) + (4 \times 8^0)$ $= (2 \times 512) + (3 \times 64) + (7 \times 8) + (4 \times 1)$ $= 1024 + 192 + 56 + 4 = 1276_{10}$

Octal Numbers (II)

- ☐ Octal-to-Binary Conversion
 - Replace each octal digit with three bits

TABLE 2-4	TABLE 2-4										
Octal/binary conversion.											
Octal Digit	0	1	2	3	4	5	6	7			
Binary	000	001	010	011	100	101	110	111			

Convert each of the following octal numbers to binary: **EXAMPLE 2-31** (a) 13_8 (b) 25_8 (c) 140_8 (d) 7526₈ Solution (a) 001100000 11110101010110

- ☐ Binary-to-Octal Conversion
 - Convert each 3-bit group to the equivalent octal digit

Binary Coded Decimal (BCD)

- ☐ Express each of the decimal digits with a binary code.
- The 8421 code

TABLE 2-5											
Decimal/BCD conversion.											
Decimal Digit	0	1	2	3	4	5	6	7	8	9	
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	

- □ BCD-to-Decimal Conversion
 - Starting from the right-most bit and divide the code into groups of four bits

BCD Addition

- 1. Add the two BCD numbers, using the rules for binary addition
- 2. If a 4-bit sum $\leq 9 \rightarrow \text{Valid BCD number}$
- 3. Otherwise, add 6 (0110) to the 4-bit sum

TABLE 2-5											
Decimal/BCD conversion.											
Decimal Digit	0	1	2	3	4	5	6	7	8	9	
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	

Digital Codes: The Gray Code (I)

☐ Only a single bit change from one code word to the next in sequence

TABLE 2-6

Four-bit Gray code.

Decimal	Binary	Gray Code	Decimal	Binary	Gray Code
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

Digital Codes: The Gray Code (II)

EXAMPLE 2-37

- (a) Convert the binary number 11000110 to Gray code.
- (b) Convert the Gray code 10101111 to binary.

Solution

(a) Binary to Gray code:

(b) Gray code to binary:

Without gray code

Encoding transmit symbols with the Gray Code

- Transmitter sends one of the four symbols;
- Transmitted symbols are distorted by noise;

Why Gray Code has an advantage?

- The receiver tries to decode the distorted symbols;
- The probability of making a symbol detection error is *inversely* proportional to the symbol distance

Digital Codes: Alphanumeric Codes

☐ ASCII: American Standard Code for Information Interchange

TABLE 2-7
American Standard Code for Information Interchange (ASCII).

	Control	Characters							Graphi	c Symbols					
Name	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	Symbol	Dec	Binary	Hex
NUL	0	0000000	00	space	32	0100000	20	@	64	1000000	40	,	96	1100000	60
SOH	1	0000001	01	!	33	0100001	21	A	65	1000001	41	a	97	1100001	61
STX	2	0000010	02	,,	34	0100010	22	В	66	1000010	42	b	98	1100010	62
ETX	3	0000011	03	#	35	0100011	23	C	67	1000011	43	С	99	1100011	63
EOT	4	0000100	04	\$	36	0100100	24	D	68	1000100	44	d	100	1100100	64
ENQ	5	0000101	05	%	37	0100101	25	Е	69	1000101	45	e	101	1100101	65
ACK	6	0000110	06	&	38	0100110	26	F	70	1000110	46	f	102	1100110	66
BEL	7	0000111	07	,	39	0100111	27	G	71	1000111	47	g	103	1100111	67
BS	8	0001000	08	(40	0101000	28	Н	72	1001000	48	h	104	1101000	68
HT	9	0001001	09)	41	0101001	29	I	73	1001001	49	i	105	1101001	69
LF	10	0001010	0A	*	42	0101010	2A	J	74	1001010	4A	j	106	1101010	6A
VT	11	0001011	0B	+	43	0101011	2B	K	75	1001011	4B	k	107	1101011	6B
FF	12	0001100	0C	,	44	0101100	2C	L	76	1001100	4C	1	108	1101100	6C
CR	13	0001101	0D	_	45	0101101	2D	M	77	1001101	4D	m	109	1101101	6D
SO	14	0001110	0E		46	0101110	2E	N	78	1001110	4E	n	110	1101110	6E
SI	15	0001111	0F	/	47	0101111	2F	О	79	1001111	4F	0	111	1101111	6F
DLE	16	0010000	10	0	48	0110000	30	P	80	1010000	50	р	112	1110000	70
DC1	17	0010001	11	1	49	0110001	31	Q	81	1010001	51	q	113	1110001	71
DC2	18	0010010	12	2	50	0110010	32	R	82	1010010	52	r	114	1110010	72
DC3	19	0010011	13	3	51	0110011	33	S	83	1010011	53	s	115	1110011	73
DC4	20	0010100	14	4	52	0110100	34	T	84	1010100	54	t	116	1110100	74
NAK	21	0010101	15	5	53	0110101	35	U	85	1010101	55	u	117	1110101	75
SYN	22	0010110	16	6	54	0110110	36	V	86	1010110	56	v	118	1110110	76
ETB	23	0010111	17	7	55	0110111	37	W	87	1010111	57	w	119	1110111	77
CAN	24	0011000	18	8	56	0111000	38	X	88	1011000	58	X	120	1111000	78
EM	25	0011001	19	9	57	0111001	39	Y	89	1011001	59	У	121	1111001	79
SUB	26	0011010	1A	:	58	0111010	3A	Z	90	1011010	5A	z	122	1111010	7A
ESC	27	0011011	1B	;	59	0111011	3B	[91	1011011	5B	{	123	1111011	7B
FS	28	0011100	1C	<	60	0111100	3C	\	92	1011100	5C	1	124	1111100	7C
GS	29	0011101	1D	=	61	0111101	3D]	93	1011101	5D	}	125	1111101	7D
RS	30	0011110	1E	>	62	0111110	3E	^	94	1011110	5E	~	126	1111110	7E
US	31	0011111	1F	?	63	0111111	3F	_	95	1011111	5F	Del	127	1111111	7F

Error Codes: Parity Bit for Error Detection

☐ A parity bit is attached to a group of bits to make the total number of 1's in a group always even or always odd.

TABLE 2-8

The BCD code with parity bits.

Even Parity		Odd Parity	
P	BCD	\boldsymbol{P}	BCD
0	0000	1	0000
1	0001	0	0001
1	0010	0	0010
0	0011	1	0011
1	0100	0	0100
0	0101	1	0101
0	0110	1	0110
1	0111	0	0111
1	1000	0	1000
0	1001	1	1001

EXAMPLE 2–40

An odd parity system receives the following code groups: 10110, 11010, 110011, 110101110100, and 1100010101010. Determine which groups, if any, are in error.

	# of 1's
10110	3
11010	3
110011	4
110101110100	7
1100010101010	6

Since odd parity is required, any group with an even number of 1s is incorrect. The following groups are in error: 110011 and 1100010101010.

Error Codes: Cyclic Redundancy Check

- □ Cyclic Redundancy Check (CRC):
 an error detection method that
 can detect multiple errors in data
 blocks
- ☐ At the sending end, a checksum is appended to a block of data.
- ☐ At the receiving end, the check sum is generated and compared to the sent checksum. If the check sums are the same, no error is detected.

Chapter Review

- ☐ Binary, Decimal, Hexadecimal and Octal numbers
- □ Binary/Hexadecimal/Octal/Decimal Conversion
 - Binary/Hexadecimal/Octal-to-Decimal Conversion
 - ◆ Decimal-to-Binary/Hexadecimal/Octal Conversion: Repeated Division/Multiplication-by-2/16/8 (LSD→ MSD)
- ☐ Most Significant Digit (MSD) and Least Significant Digit (LSD)
- ☐ Floating-Point numbers: Mantissa and (biased) Exponent
- ☐ Binary Arithmetic
 - ◆ Addition, Subtraction, Multiplication and Division
 - ◆ Unsigned versus Signed numbers
- ☐ Binary coded decimal (BCD)
- ☐ Digital codes: Gray/Alphanumeric/Error Codes

True/False Quiz

- ☐ The octal number system is a weighted system with eight digits.
- The binary number system is a weighted system with two digits.
- MSB stands for most significant bit.
- \Box In hexadecimal, 9 + 1 = 10.
- \Box The 1's complement of the binary number 1010 is 0101.
- ☐ The 2's complement of the binary number 1111 is 0000.
- \Box The right-most bit in a signed binary number is the sign bit.
- ☐ The hexadecimal number system has 16 characters, six of which are alphabetic characters.
- BCD stands for binary coded decimal.
- An error in a given code can be detected by verifying the parity bit.
- CRC stands for cyclic redundancy check.
- \Box The modulo-2 sum of 11 and 10 is 100.

True/False Quiz

The octal number system is a weighted system with eight digits.

The binary number system is a weighted system with two digits.

MSB stands for most significant bit.

In hexadecimal, 9 + 1 = 10.

The 1's complement of the binary number 1010 is 0101.

The 2's complement of the binary number 1111 is 0000.

The right-most bit in a signed binary number is the sign bit.

The hexadecimal number system has 16 characters, six of which are alphabetic characters.

BCD stands for binary coded decimal.

An error in a given code can be detected by verifying the parity bit.

CRC stands for cyclic redundancy check.

The modulo-2 sum of 11 and 10 is 100.