

UE: Energie Electrostatique (HLEE 204)

A- Outils mathématiques

Les vecteurs sont notés en gras

I- Opérations sur les vecteurs

Soit un repère d'axes (Ox, Oy, Oz) associés à une base unitaire (i, j, k) orthonormée,

On peut repérer un point M par les 3 coordonnées cartésiennes x, y, z relative au repère orthonormé (7, 7, 1/k).

Soit 2 points A et B de coordonnées respectives

* Norme d'un vecteur

Exemple: Déterminer la force résultante R

* Addition vectorielle

$$F_{3}^{7}$$
 $|F_{3n}=-F_{3} \approx 30 = -F_{3} = -60$ $|F_{3}|=-104$ $|F_{3}|=-104$ $|F_{3}|=-104$ $|F_{3}|=-104$ $|F_{3}|=-104$ $|F_{3}|=-104$

$$F_{2}^{7} | f_{2}x = f_{2} \text{ whish } s = f_{2} \frac{\sqrt{3}}{2} = .97$$

$$F_{7} = R$$

$$F_{1}y = F_{2} \text{ pinh } s = f_{2} \frac{1}{2} = 50$$

$$F_{7} = R$$

$$F_{1}y + F_{2}y + F_{3}y = \frac{f_{2}}{2} F_{4} + \frac{f_{3}}{2} F_{2} - \frac{f_{3}}{2} F_{3} = R_{3}$$

$$F_{1}y + F_{2}y + F_{3}y = \frac{f_{2}}{2} F_{4} + \frac{f_{3}}{2} F_{2} - \frac{f_{3}}{2} F_{3} = R_{3}$$

1

*Intégrale vectorielle ou circulation d'un vecteur sur une courbe orientée

Soit un arc AB sur une courbe C orientée parcouru par un point M. Soit a un vecteur du point M.

On appelle circulation du vecteur à le long de l'arc AB, la valeur de l'intégrale curviligne du produit scalaire a.dM: [a.dH : adH co.d

dM est le vecteur tangent à la courbe C au point M du du α est l'angle entre a et dM

La circulation entre 2 pts dépend du chemin suivi

On notera la circulation du vecteur a suivant un contour fermé : ba-dH

(19) si à at une farce os travail de cette force entre Act D.

Exemple: Soit \vec{a} le champ de vecteur qui associe au point M(x, y) le vecteur $\vec{a}(M) = -y \vec{i} + (x+1) \vec{j}$. Soit les points A(1,3), H(1,0). Calculer les circulations de a la la constant de la constant de

Pour x E (0,1) - y: 3x sur le requent (0A)

In = J-yola + (n+1) dy = / (-3n) de + (n+1) 3 du cor y: 3n -> dy=3 dx. = \(\langle \left(-3 \n + 3 \n + 3 \right) d\(\text{n} = \int \frac{1}{3} d\(\text{n} = \left(3 \n \right) \frac{1}{3} = 3 \).

* circulate de à misant (0H) - y=0 =) dy=0 denc Iz=0.

* would de à mount (4A) - a=1= de = dn=0 et y E(0,3). Is = |- yolu + (x+1)dy = | 3 2 dy = (2y) = 6.

* Flux d'un vecteur à travers une surface fermée

- Flux en un point P d'un vecteur à à travers la surface S orientée.

Le flux élémentaine surface élimentaire $\mathcal{I} = \int \int a'(P) ds$ au point ?. Surface Saventree' =) 15 : 18 17.

= | a(P) n. ds.

III- Fonctions de plusieurs variables

* Dérivées partielles - différentielles

Soit f(M) une fonction de point à valeurs scalaires définie sur un certain domaine de IR³. Soit le point M repéré par ses 3 coordonnées cartésiennes x, y, z relative au repère (1, j, k). La fonction f(M) est une fonction numérique des 3 variables scalaires x, y, z : f(x, y, z)

la différentielle df est égale:
$$df = \left(\frac{df}{dx}\right) dx + \left(\frac{df}{dy}\right) dy + \left(\frac{df}{dy}\right) dy$$

 $\frac{\partial f}{\partial x}$ est la dérivée partielle de f par rapport à x (on dérive f par rapport à x avec y et z constants) Exemple : 2 variable : $f(x,y) = 2x^2 + xy^2$

* Dérivés partielles d'ordre supérieur

Soit f(x, y) qui admet des dérivées partielles premières $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$, on peut calculer des dérivées secondes d'ordre $\int_{0}^{1} \left(\frac{\partial f}{\partial y}\right) dx dx$

$$\frac{3!}{5!} = \frac{3}{5} \left(\frac{3!}{5!} \right)$$

$$\frac{3!}{5!} = \frac{3}{5!} \left(\frac{3!}{5!} \right)$$

$$\frac{3!}{5!} = \frac{3!}{5!} \left(\frac{3$$

* Différentielle logarithmique

La différentielle log d'un produit (quotient) est la somme (différence) des différentielles log de chaque terme.

Exemple:
$$y = \frac{uv}{w} \rightarrow luy : lu\left(\frac{uv}{w}\right) = lu(uv) - luw$$

$$= luu + luv - luw$$

appin le valent obsprentel.

df = if du + if dy + if dz

* Application au calcul d'incertitude

Sent 1 familie f(x1713), andest effective de memo directes de x, y, 3. Terr determer l'aven alestre Sf, or

on du, dy at dy sout de infrie " putits la numere si la du, dy, d3 = golews An Dy $\Rightarrow \Delta f: \left| \frac{\partial f}{\partial x} \right| \Delta x + \left| \frac{\partial f}{\partial y} \right| \Delta y + \left| \frac{\partial f}{\partial y} \right| \Delta y$ rent numbble et Δz invertible alwhie

1- Soit la fonction $f = \frac{x}{x-y}$ donner l'expression de l'erreur absolue de f orteur relative de f. To inevitable relative en %

a) déthade de la déférentelle ordraire.
$$f = \frac{x}{n \cdot y}$$
.

$$\frac{\delta f}{\delta x} = \frac{n - y - x}{(n - y)^2} = \frac{-y}{(x - y)^2}$$

$$j = \frac{\delta f}{\delta y} = \frac{x}{(n - y)^2}$$

$$\rightarrow df = -\frac{y}{(n-y)^2} dn + \frac{n}{(n-y)^2} dy.$$

(3): 13:50

2) ser prend la defférentielle souhant pue d[lu(2)] =
$$\frac{d^2}{t^2}$$
wit $\frac{df}{f} = \frac{dn}{n-y}$

i) ou groupe la termes senslables:

$$\frac{df}{f} = dn \left[\frac{1}{n} - \frac{1}{n-y} \right] + dy \left[+ \frac{1}{n-y} \right]$$

4) ou prend la valeurs alaslus et ou remplace la se potite par de poteurs memalls

IV- Opérateurs mathématiques différentiels

* Vecteur Gradiant d'une fonction scalaire grad {(x,q, 2)

Le "gradiant de f", noté \overline{grad} f, est <u>le vecteur</u> dont les composantes sont les dérivées premières de la fonction f :

$$\operatorname{grad}_{x} = \frac{\partial f(x, y, z)}{\partial x} \qquad \operatorname{grad}_{y} = \frac{\partial f(x, y, z)}{\partial y} \qquad \operatorname{grad}_{z} = \frac{\partial f(x, y, z)}{\partial z} \qquad \operatorname{note} \quad \vec{y}$$

Si les coordonnées de M subissent des accroissements dx, dy, dz (ou composante de la différentielle \overrightarrow{dM} du rayon vecteur de M), alors

Scalare
$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz = \overline{grad} f.\overline{dM}$$

aire Laplacien d'une fonction scalaire

| discourse | dis

Le "Laplacien de f", noté Δf est <u>le scalaire</u> défini par : $\Delta f(x, y, z) = \frac{\partial^2 f(x, y, z)}{\partial x^2} + \frac{\partial^2 f(x, y, z)}{\partial y^2} + \frac{\partial^2 f(x, y, z)}{\partial z^2}$

* Scalaire Divergence d'un champ de vecteurs

Soit un champ de vecteurs $\vec{U}(M)$. Dans un repère orthonormé, M a pour coordonnées x, y, z et \vec{U} pour composantes U_x , U_y , U_z (3 fonctions scalaires de x, y, z). On définit <u>le scalaire</u> "divergence de U" notée div \vec{U} ou bien $\vec{\nabla}$, \vec{U} par :

Théorème de la divergence : Si S est une surface fermée quelconque qui enferme un volume V, le flux sortant de \vec{U} à travers S est égal à l'intégrale sur le volume de la divergence de \vec{U} dia L

Soit un champ de vecteurs $\vec{U}(M)$. On appelle "rotationnel de U", noté \vec{rot} \vec{U} ou bien $\vec{V} \wedge \vec{U}$, le vecteur de composantes:

* Théorème du rotationnel : Si C est une courbe quelconque, S'une surface quelconque s'appuyant sur C, la circulation du vecteur \vec{U} sur C est égale au flux de son rotationnel à travers S:

Remarque:

Remarque:

Prod f. off =
$$\int_{A}^{a} \int_{A}^{b} \int_{A}^{c} \int_{A}^{c$$

$$\Delta f = \operatorname{div}\left(\overrightarrow{\operatorname{grad}} f\right) \qquad \operatorname{div}\left(\overrightarrow{\operatorname{rot}} \overrightarrow{U}\right) = 0 \qquad \overrightarrow{\operatorname{rot}}\left(-\overrightarrow{\operatorname{grad}} f\right) = \overrightarrow{0}$$

donc si
$$\overrightarrow{div} \ \overrightarrow{W} = 0 \ alors \ \overrightarrow{W} = \overrightarrow{rot} \ \overrightarrow{U}$$
 si $\overrightarrow{rot} \ \overrightarrow{U} = \overrightarrow{0} \ alors \ \overrightarrow{U} = -\overrightarrow{grad} \ f$

Af : div (gradf)

= div
$$\left[\frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z} \vec{j} \right] = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

(a) $\vec{V}_A \vec{U}$
 $\frac{\partial U_A}{\partial y} - \frac{\partial U_B}{\partial y}$
 $\frac{\partial U_A}{\partial y} - \frac{\partial U_A}{\partial y}$

V- Systèmes de coordonnées

T- COORDONNEES CARTESIENNES : OM = x i + y j + z k

VI- Surfaces et volumes : Calculer surface et périmètre d'un disque, volume et surface d'une sphère.

VII-Angle solide : de même qu'un angle désigne une portion de plan limitée par 2 demi-droites issues d'un point, un angle solide $d\Omega$ désigne une portion de l'espace limitée par des demi-droites formant un cône : $d\Omega = dS/r^2$ (en stéradians Sr) ; dS étant l'aire que découpe le cône sur une sphère de rayon r dont le centre est au centre du cône

dimenstati

& demangle son legal en vot le cone

Elt de surface a'r : ete - dS: 12 ind do die.

dr: ds : mode de.

N: ||d N: | de | min del . = 2t [nin 8 d8 : 2t [- ws 8] x = 24 [1-cex].

d'air I : til (1-cost)

augle volide deuri augle vous lepur l'auvoit
d'I calotte splusque la surface.

- Pour 1 plure couplete =1 d= TI -> cosT =- 1 et 1:4 TSr - Pour 1 havispaie =1 L= m/ -1 can/2:0 et 1: 24 Sr.

€ ECt de sur force à r= te. ds = 5° sin 8 d8 dE. S= Solb = r2 Smuddo State = r2 20 [-40] = 40 = 40 =