Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total	
FEC203	Applied Chemistry – II	03	01		03	0.5		3.5	

Ī		Course Name	Examination Scheme							
			Theory							
	Course Code		Internal Assessment			End	Term			
			Test1	Test2	Av of Test 1 & 2	Sem Exam	Work	Pract	Oral	Total
	FEC203	Applied Chemistry – II	15	15	15	60	25		-	100

Objectives

- 1. To provide necessary background in applied chemistry relevant to chemical industries.
- 2. To provide exposure in conducting experiments and interpret and report the results in professional format.

Outcomes: Learner will be able to...

- 1. Identify types of corrosion and factors affecting it related to problems affecting all industries.
- 2. Identify different types of corrosion control methods to study corrosion control in various industries.
- 3. Apply the knowledge of different types of fuels, including their production and refining methods and combustion mechanisms.
- 4. Illustrate composition and properties of different types of alloys and the process of powder metallurgy
- 5. Illustrate principales of green chemistry.
- 6. Illustrate properties and applications of different types of composite materials.

Module	Detailed Contents	Hrs.
01	Corrosion: Introduction: Types of Corrosion- (I) Dry or Chemical Corrosion-i) Due to oxygen ii) Due to other gases (II) Wet or Electrochemical corrosion- Mechanism i) Evolution of hydrogen type ii) Absorption of oxygen. Types of Electrochemical Corrosion- Galvanic cell corrosion, Concentration cell corrosion (differential aeration), Pitting corrosion, Intergranular corrosion, Stress corrosion. Factors affecting the rate of corrosion- Nature of metal, position of metal in galvanic series, potential difference, overvoltage, relative area of anodic and cathodic parts, purity of metal, nature of the corrosion product, temperature, moisture, influence of pH, concentration of the electrolytes. Methods to decrease the rate of corrosion-Material selection, Proper designing, Use of inhibitors, Cathodic protection- i) Sacrificial anodic protection ii) Impressed current method, Anodic protection method, Metallic coatings- hot dipping- galvanizing and tinning, metal cladding, metal spraying, Electroplating, Cementation. Organic coatings — Paints (only constituents and their functions).	11
02	Alloys Introduction, purpose of making alloys, Ferrous alloys, plain carbon steel, heat resisting steels, stainless steels (corrosion resistant steels), effect of the alloying element- Ni, Cr, Co, Mn, Mo,W and V; Non-Ferrous alloys- Composition, properties and uses of- Alloys of Aluminium- i) Duralumin ii) Magnalium. Alloys of Cu- (I) Brasses-i) Commercial brass ii) German silver, (II) Bronzes- i) Gun metal ii) High phosphorous bronze. Alloys of Pb- i) Wood's metal ii)	07

03	Tinmann's solder. Powder Metallurgy- Introduction, (1)Methods of powder metal formation- i) Mechanical pulverization ii) Atomization iii) Chemical reduction iv) Electrolytic process v) Decomposition (2) Mixing and blending. (3) Sintering (4) Compacting- i) Cold pressing ii) Powder injection moulding (iii) Hot compaction. Applications of powder metallurgy. Shape Memory Alloys- Definition, properties and Uses. Fuels Definition, classification of fuels-solid, liquid and gaseous. Calorific value- Definition, Gross or Higher calorific value & Net or lower calorific value, units of heat (no conversions), Dulong's formula & numerical for calculations of Gross and Net calorific values. Characteristics of a good fuel. Solid fuels- Analysis of coal- Proximate and Ultimate Analysis with Significance and numericals. Liquid fuels- Crude petroleum oil, its composition and classification and mining (in brief). Refining of crude oil- i) Separation of water ii) Separation of 'S' & iii) Fractional Distillation with diagram and composition and uses table. Cracking- Definition, Types of cracking- I) Thermal cracking – (i) Liquid phase thermal cracking (ii) Vapour phase thermal cracking. Advantages of Catalytic cracking. Petrol- Refining of petrol, unleaded petrol (use of MTBE), Catalytic converter, Power alcohol, Knocking, Octane number, Cetane number, Antiknocking agents. Combustion- Calculations for requirement of only oxygen and air (by weight and by volume only) for given solid & gaseous fuels. Biodiesel- Method to obtain Biodiesel from vegetable oils (Trans-esterification), advantage	12
	and disadvantages of biodiesel. Fuel cell- Definition, types and applications.	
04	Composite Materials Introduction, Constitution- i) Matrix phase ii) Dispersed phase. Characteristic properties of composite materials. Classification- (A) Particle - reinforced composites- i) Large – particle reinforced composites ii) Dispersion – strengthened composites. (B) Fiber – reinforced composites- i) Continuous – aligned ii) Discontinuous – aligned (short)- (a) aligned (b) randomly oriented (C) Structural Composites- i) Laminates (ii) Sandwich Panels.	04
05	Green Chemistry Introduction, Twelve Principles of Green chemistry, numerical on atom economy, Conventional and green synthesis of Adipic acid, Indigo, Ibuprofen and Carbaryl. Green solvents (water, supercritical CO ₂) and products from natural materials.	06

Suggested Experiments: (Any five)

- 1. Estimation of Zn- Complexometric titration.
- 2. Estimation of Ni- Complexometric titration.
- 3. Estimation of Al- Complexometic titration.
- 4. Flue gas analysis using Orsat's apparatus.
- 5. Estimation of Fe from plain carbon steel
- 6. Estimation of Ni by gravimetric method.
- 7. Estimation of Sniodometrically.
- 8. Preparation of Biodiesel from edible oil.
- 9. Estimation of Cu- Iodometrically.
- 10. Estimation of percentage moisture in coal.
- 11. Estimation of percentage ash in coal.
- 12. To estimate the emf of Cu-Zn system by potentiometry.
- 13. Demonstration of Electroplating.

Term work

Term Work shall consist of minimum five experiments. The distribution of marks for term work shall be as follows:

Attendance (Practical and Theory) : 05 marks
 Laboratory Work (Experiments and journal) : 10 marks
 Assignments and Viva on practicals : 10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 15 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 15 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein sub-questions of 3 marks will be asked.
- 4. Remaining questions will be mixed in nature.(e.g. Suppose Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hrs as mentioned in the syllabus.

References:

- 1. Engineering Chemistry Jain & Jain (DhanpatRai)
- 2. Engineering Chemistry Dara & Dara (S Chand)
- 3. Engineering Chemistry Wiley India (ISBN 9788126519880)
- 4. A Text Book of Engineering Chemistry ShashiChawla (DhanpatRai)
- 5. A Text Book of Green Chemistry V.K. Ahluwalia (Springer)