- 1. 函数 $f(x) = x^{-\frac{1}{2}}$ 的定义域是______.
- 2. 集合 $A = \{-1, 2m 1\}, B = \{m^2\}, 若 B \subseteq A, 则实数 <math>m = 2m 1$.
- 3. $(1+2x)^5 = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$, M $a_3 =$ ______
- 4. 如图, 若正四棱柱 $ABCD A_1B_1C_1D_1$ 的底面边长为 3, 高为 4, 则直线 BD_1 与平面 ABCD 所成角的正切 值为_____.

- 5. 方程 $\lg(x+2) = 2 \lg x$ 的解为_____.
- 6. 若 $\arccos x > \frac{\pi}{3}$, 则 x 的取值范围为_____.
- 7. 若函数 $f(x) = \sqrt{2x+1}$ 的反函数为 g(x), 则函数 g(x) 的零点为______.
- 8. 已知函数 $y=\sin(\omega x-\frac{\pi}{6})(\omega>0)$ 图像的一条对称轴为 $x=\frac{\pi}{6}$, 则 ω 的最小值为______
- 9. 已知圆锥的底面半径为 1, 其侧面展开图为一个半圆, 则该圆锥的母线长为_____
- 10. 7 人排成一行, 甲、乙相邻且丙不排两端的排法有_____ 种 (用数字作答).
- 11. 设 f(x) 是定义在 R 上的函数, 且满足 f(1) = 0. 若 $y = f(x) + a \cdot 2^x$ 是奇函数, $y = f(x) + 3^x$ 是偶函数, 则 a 的值为_
- 13. 下列是 "a > b" 的充分不必要条件的是 ().

A.
$$a > b + 1$$

B.
$$\frac{a}{b} > 1$$

C.
$$a^2 > b^2$$

D.
$$a^3 > b^3$$

14. 下列函数中, 既是奇函数, 又是减函数的是().

A.
$$y = x^{-1}$$

B.
$$y = -\arcsin x$$
 C. $y = \log_2 x$

C.
$$y = \log_2 x$$

D.
$$y = 2^{x}$$

15. 已知 $f(x) = \sin x$, 对任意 $x_1 \in [0, \frac{\pi}{2}]$, 都存在 $x_2 \in [0\frac{\pi}{2}]$, 使得 $f(x_1) - 2f(x_2 + \theta) = -1$ 成立, 则下列 θ 取值 可能的是(

A.
$$\frac{3\pi}{13}$$

B.
$$\frac{5\pi}{13}$$

C.
$$\frac{7\pi}{13}$$

D.
$$\frac{9\pi}{13}$$

- 16. 非空集合 $A \subseteq \mathbb{R}$, 且满足如下性质: 性质一: 若 $a,b \in A$, 则 $a+b \in A$; 性质二: 若 $a \in A$, 则 $-a \in A$, 则称集合 A 为一个 "群". 以下叙述:
 - ① 若 A 为一个 "群",则 A 必为无限集;② 若 A 为一个 "群",且 $a,b \in A$,则 $a-b \in A$;③ 若 A,B 都是 "群",则 $A \cap B$ 必定是 "群";④ 若 A,B 都是 "群",且 $A \cup B \neq A, A \cup B \neq B$,则 $A \cup B$ 必定不是 "群". 中,正确的个数为 ().

A. 1 B. 2 C. 3 D. 4

17. 如图, 在正三棱柱 $ABC - A_1B_1C_1$ 中, $AA_1 = 2$, AB = 3, 点 D 为 BC 的中点.

- (1) 求证: 直线 A₁B 与 C₁D 为异面直线;
- (2) 求三棱锥 $B AC_1D$ 的体积.
- 18. 已知代数式 $(\frac{2}{m} + \frac{m}{x})^n (m > 0, x > 0)$.
 - (1) 当 m=2, n=6 时, 求二项展开式中二项式系数最大的项;

(2) 若
$$(\frac{2}{m} + \frac{m}{r})^{10} = a_0 + \frac{a_1}{r} + \frac{a_2}{r^2} + \dots + \frac{a_{10}}{r^{10}}$$
, 且 $a_2 = 180$, 求 $a_i (0 \le i \le 10, i \in \mathbb{N})$ 的最大值.

19. 为实现"碳达峰", 減少污染, 某化工企业开发了一个废料回收项目. 经测算, 该项目日回收成本 p(元) 与日回收量 $x(吨)(x \in [0,50])$ 的函数关系可表示为 $p = \begin{cases} 20x, & 0 \leq x \leq 30, \\ x^2 + 16x - 780, & 30 < x \leq 50, \end{cases}$ 且每回收 1 吨废料, 转化

成其他产品可收入 80 元.

- (1) 设日纯收益为 y 元, 写出函数 y = f(x) 的解析式 (纯收益 = 收入 成本);
- (2) 该公司每日回收废料多少吨时, 获得纯收益最大?
- 20. 已知函数 $f(x) = 2^x + \frac{a}{2^x}$, a 为实常数.
 - (1) 若函数 f(x) 为奇函数, 求 a 的值;
 - (2) 若 $x \in [0,1]$ 时 f(x) 的最小值为 2, 求 a 的值;
 - (3) 若方程 f(x) = 6 有两个不等的实根 x_1, x_2 , 且 $|x_1 x_2| \le 1$, 求 a 的取值范围.
- 21. 若实数 $x,y\in[0,2\pi]$, 且满足 $\cos(x+y)=\cos x+\cos y$, 则称 x 与 y 是 "余弦相关"的.
 - (1) 若 $x = \frac{\pi}{2}$, 求出所有与之"余弦相关"的实数 y;
 - (2) 若存在实数 y, 与 x"余弦相关", 求 x 的取值范围;
 - (3) 若不相等的两个实数 x 与 y 是 "余弦相关"的, 求证: 存在实数 z, 使得 x 与 z 为 "余弦相关"的, y 与 z 也为 "余弦相关"的.

22.	函数 $y = \sin(2x + \frac{\pi}{3})$ 的最小正周期 $T = $	
-----	---	--

23. 已知集合
$$A = \{1, 2, 3, 4\}, B = \{x | x \leq \frac{5}{2}, x \in \mathbf{R}\}, 则 A \cap B = \underline{\hspace{1cm}}$$

24. 已知函数
$$f(x) = \frac{x-1}{x+2}$$
 的反函数为 $f^{-1}(x)$, 则 $f^{-1}(0) =$ ______.

25. 若双曲线
$$x^2 - \frac{y^2}{m} = 1$$
 的渐近线方程为 $y = \pm 2x$, 则实数 $m = _____$.

26. 在
$$(1+2x)^6$$
 的二项展开式中, x^2 项的系数为_____

28. 已知复数
$$z$$
 满足: $\mathrm{i} + \frac{2+\mathrm{i}}{\overline{z}} = 0 (\mathrm{i} \ \mathbf{为虚数单位}), 则 |z| = _____.$

29. 方程
$$\log_3(x^2-1)=2+\log_3(x-1)$$
 的解为 $x=$ _____.

31. 在
$$\triangle ABC$$
 中,三边 a 、 b 、 c 所对的三个内角分别为 A 、 B 、 C ,若 $a=3,\ b=2\sqrt{6},\ B=2A$,则边长 $c=$ _______.

32. 在平面直角坐标系中, 已知点
$$A(-1,0)$$
、 $B(0,3)$, EF 为圆 $x^2+y^2=4$ 上两个动点, 且 $|\overrightarrow{EF}|=4$, 则 $\overrightarrow{AE}\cdot\overrightarrow{BF}$ 的最大值为_______.

33. 无穷等差数列
$$\{a_n\}$$
 满足: ① $a_1<0,\ a_2>\frac{3}{2}$; ② 在区间 $(11,20)$ 中的项恰好比区间 $[41,50]$ 中的项少 2 项,则数列 $\{a_n\}$ 的通项公式为 $a_n=$ ______.

$$34.$$
 关于 x 、 y 的二元一次方程组
$$\begin{cases} x+2y=3, \\ 3x+4y=-1 \end{cases}$$
 的增广矩阵为 $($ $)$.
$$A. \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$B. \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$

$$C. \begin{pmatrix} 1 & 2 & -3 \\ 3 & 4 & 1 \end{pmatrix}$$

$$D. \begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & -1 \end{pmatrix}$$

A.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 B. $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$ C. $\begin{pmatrix} 1 & 2 & -3 \\ 3 & 4 & 1 \end{pmatrix}$

35. 记数列
$$\{a_n\}$$
 的通项公式为 $a_n = \begin{cases} (-1)^n, & n \leq 2021, \\ \frac{2n+1}{n+1}, & n \geq 2022, \end{cases}$ $n \in \mathbf{N}^*$,则数列 $\{a_n\}$ 的极限为 $($ $)$.

36. 如图, 在正方体
$$ABCD-A_1B_1C_1D_1$$
 中, 点 MN 分别在棱 AA_1CC_1 上, 则 "直线 MN \bot 直线 C_1B " 是 "直线 MN \bot 平面 C_1BD " 的 ().

A. 充分非必要条件

C. 充要条件

- B. 必要非充分条件
- D. 既不充分又不必要条件
- 37. 已知非空集合 A,B 满足: $A \cup B = R, A \cap B = \emptyset$, 函数 $f(x) = \emptyset$ 在唯一的非空集合对 (A,B), 使得 f(x) 为偶函数; ② 存在无穷多非空集合对 (A,B), 使得方程 f(x)=2 无
 - A. ① 正确, ② 错误

解. 下面判断正确的是().

- B. ① 错误, ② 正确 C. ① 、② 都正确
- D. (1) 、(2) 都错误
- 38. 如图, 直三棱柱 $ABC A_1B_1C_1$ 的底面为直角三角形且 $\angle ACB = 90^{\circ}$, 直角边 $CA \cdot CB$ 的长分别为 3、4, 侧棱 AA_1 的长为 4, 点 $M \times N$ 分别为线段 $A_1B_1 \times C_1B_1$ 的中点.

- (1) 求证: A, C, N, M 四点共面;
- (2) 求直线 AC_1 与平面 ACNM 所成角的大小.
- 39. 已知函数 $f(x) = \sin \omega x + \cos \omega x$.
 - (1) 若 $\omega = 2$, 求函数 f(x) 在 $[0, \pi]$ 上的零点;
 - (2) 已知 $\omega = 1$, 函数 $g(x) = (f(x))^2 + \sqrt{3}\cos 2x, x \in [0, \frac{\pi}{4}]$, 求函数 g(x) 的值域.
- 40. 为了防止某种新冠病毒感染, 某地居民需服用一种药物预防. 规定每人每天定时服用一次, 每次服用 m 毫克. 已知人的肾脏每 24 小时可以从体内滤除这种药物的 80%, 设第 n 次服药后 (滤除之前) 这种药物在人体内的 含量是 a_n 毫克, (即 $a_1 = m$).
 - (1) 已知 m = 12, 求 a_2 、 a_3 ;
 - (2) 该药物在人体的含量超过 25 毫克会产生毒副作用, 若人需要长期服用这种药物, 求 m 的最大值.

41. 如图, 椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左、右焦点分别为 F_1 、 F_2 , 过右焦点 F_2 与 x 轴垂直的直线交椭 圆于 MN 两点, 动点 P、Q 分别在直线 MN 与椭圆 C 上. 已知 $|F_1F_2| = 2$, $\triangle MNF_1$ 的周长为 $4\sqrt{2}$.

- (1) 求椭圆 C 的方程;
- (2) 若线段 PQ 的中点在 y 轴上, 求三角形 F_1QP 的面积;
- (3) 是否存在以 F_1Q 、 F_1P 为邻边的矩形 F_1PEQ , 使得点 E 在椭圆 C 上? 若存在, 求出所有满足条件的点 Q 的横坐标; 若不存在, 说明理由.
- 42. 给定区间 I 和正常数 a, 如果定义在 $\mathbf R$ 上的两个函数 y=f(x) 与 y=g(x) 满足: 对一切 $x\in I$, 均有 $|f(x)-g(x)|\leq a$, 称函数 y=f(x) 与 y=g(x) 具有性质 P(I,a).
 - (1) 已知 $I=(0,+\infty)$,判断下列两组函数是否具有性质 P(I,2)? ① $f_1(x)=\frac{1}{x^2+1}$, $g_1(x)=2$;② $f_2(x)=x^2+x+1$, $g_2(x)=x^2-x+1$;(不需要说明理由)
 - (2) 已知 f(x) = 0, y = g(x) 是周期函数,且对任意的 a > 0, 均存在区间 $I = (M, +\infty)$,使得函数 y = f(x) 与 y = g(x) 具有性质 P(I, a),求证: g(x) = 0;
 - (3) 已知 I = [1, m], $f(x) = x^2$, 若存在一次函数 y = g(x) 与 y = f(x) 具有性质 P(I, 1), 求实数 m 的最大值.
- 43. 已知 $\overrightarrow{a} = (-1,1)$, 则 $|\overrightarrow{a}| = \underline{\hspace{1cm}}$.
- 44. 函数 $y = \log_2(x+1)$ 的反函数为_____.
- 45. 若直线 $l_1: 2x + my + 1 = 0$ 与 $l_2: y = 3x 1$ 垂直, 则实数 m =______
- 46. 已知 2 + i(i 是虚数单位) 是实系数一元二次方程 $x^2 + px + q = 0$ 的根,则 p + q =______.
- 47. 已知 $\sin x = \frac{3}{5}, x \in (\frac{\pi}{2}, \pi),$ 则行列式 $\begin{vmatrix} \sin x & -1 \\ 1 & \sec x \end{vmatrix}$ 的值等于______.
- 48. 已知 $A = \{x | \frac{2}{x} > 1\}, B = \{x | \log_2(x-1) < 1\}, 则 A \cap B = _____.$
- 49. 在某次数学测验中, 5 位学生的成绩如下: 78,85, a,82,69, 他们的平均成绩为 80, 则他们的成绩的方差等于______.

- 50. 已知实数 x,y 满足 $\begin{cases} x+y \leq 4, \\ y \geq x, \\ x \geq 1, \end{cases}$ 51. 若 $(x+\frac{1}{\sqrt{x}})^n$ 的二项展开式中各项系数的和等于 64, 则其中 x^3 的系数是______.

 52. 三阶矩阵 $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ 中有 9 个不同的数 $a_{ij}(i=1,2,3,j=1,2,3)$,从中任取三个,则至少有两个数位于同行或同列的概率是 (结果用分数表示).
- 53. 已知抛物线 $y^2 = 4x$, 斜率为 k 的直线 l 经过抛物线的焦点 F, 与抛物线交于 $P \setminus Q$ 两点, 点 Q 关于 x 轴的 对称点为 Q', 点 P 关于直线 x=1 的对称点为 P', 且满足 $P'Q' \perp PQ$, 则直线 l 的方程为_____.
- 54. 若函数 $f(x) = \cos mx (m > 0)$ 在区间 $(2\pi, 3\pi)$ 内既没有取到最大值 1, 也没有取到最小值 -1, 则 m 的取值 范围为_____
- - A. 充分不必要条件

C. 充要条件

- D. 既不充分也不必要条件
- 56. 数列 $\{a_n\}$ 为等差数列, $a_1 > 0$ 且公差 d > 0, 若 $\lg a_1$, $\lg a_3$, $\lg a_6$ 也是等差数列, 则其公差为 (

- 57. 椭圆 $C: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左、右顶点分别为 A_1, A_2 , 点 P 在 C 上 (P 不与 A_1, A_2 重合) 且直线 PA_2 的斜率 的取值范围是 [-2, -1], 那么直线 PA_1 斜率的取值范围是 ().
 - A. $\left[\frac{1}{2}, \frac{3}{4}\right]$
- B. $\left[\frac{3}{8}, \frac{3}{4}\right]$ C. $\left[\frac{1}{2}, 1\right]$ D. $\left[\frac{3}{4}, 1\right]$
- 58. 定义域为 [a,b] 的函数 y=f(x) 图像的两个端点为 $A(a,f(a)),\,B(b,f(b)).\,\,M(x,y)$ 是 y=f(x) 图像上任意 一点, 过点 M 作垂直于 x 轴的直线 l 交线段 AB 于点 N(点 M 与点 N 可以重合), 我们称 $|\overrightarrow{MN}|$ 的最大值 为该函数的"曲径". 下列定义域为 [1,2] 的函数中, 曲径最小的是 ().
 - A. $y = x^2$
- B. $y = \frac{2}{x}$ D. $y = \sin \frac{\pi}{3}x$
- 59. 如图, 圆锥的顶点为 P, 底面圆心为 O, 线段 AB 和线段 CD 都是底面圆的直径, 且 $AB \perp CD$, 取劣弧 BC上一点 E, 使 $\angle COE = \frac{\pi}{3}$, 连结 PE. 已知 |OA| = 1, |PA| = 2.

- (1) 求该圆锥的体积;
- (2) 求异面直线 PE、BD 所成角的大小.
- 60. 已知函数 $f(x) = x^2 + mx + 3$, 其中 $m \in \mathbb{R}$.
 - (1) 若不等式 f(x) < 5 的解集是 (-1,2), 求 m 的值;
 - (2) 若函数 y = f(x) 在区间 [0,3] 上有且仅有一个零点, 求 m 的取值范围.
- 61. 如图, 有一块扇形草地 OMN, 已知半径为 4, $\angle MON = \frac{\pi}{2}$, 现要在其中圈出一块举行场地 ABCD 作为儿童 乐园使用, 其中点 A 、B 在弧 $\stackrel{\frown}{MN}$ 上, 且线段 AB 平行于线段 MN.

- (1) 若点 A 为弧 $\stackrel{\frown}{MN}$ 的一个三等分点, 求矩形 ABCD 的面积 S;
- (2) 当 A 在何处时, 矩形 ABCD 的面积 S 最大? 最大值为多少?
- 62. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$,过定点 T(t,0) 的直线交椭圆于 P,Q 两点,其中 $t \in (0,a)$.

- (1) 若椭圆短轴长为 $2\sqrt{3}$ 且经过点 $(-1, \frac{3}{2})$, 求椭圆方程;
- (2) 对 (1) 中的椭圆, 若 $t = \sqrt{3}$, 求 $\triangle OPQ$ 面积的最大值;
- (3) 在 x 轴上是否存在点 S(s,0) 使得 $\angle PST = \angle QST$ 恒成立? 如果存在, 求出 s,t 的关系; 如果不存在, 说明理由.

- - (1) $\leq a = 3$ 时, 求 $a_1 + a_2 + a_3 + a_4$ 的值;
 - (2) 求证: 存在正整数 n, 使得 $0 \le a_n \le 3$;
 - (3) 设 S_n 是数列 $\{a_n\}$ 的前 n 项和, 是否存在实数 a 满足: ① 数列 $\{a_n\}$ 为周期数列; ② 存在正奇数 k, 使 得 $S_k = 2k$. 若存在, 求出所有 a 的可能值; 若不存在, 说明理由.
- 64. 若集合 $A = (-\infty, 1), B = (0, +\infty),$ 则 $A \cap B =$ ______
- 65. 复数 z = 2 i, 则 |z| =_____
- 66. 直线 l 的参数方程为 $\begin{cases} x=2+t, & (t\in\mathbf{R}), \, \text{则直线 } l \text{ 的斜率为}___. \\ y=1+2t, & \end{cases}$
- 67. $(1+2x)^{10}$ 的二项展开式中, x^2 项的系数为______
- 68. 若圆锥的母线长为 5, 底面半径为 3, 则该圆锥的体积为_____.
- 69. 函数 $f(x) = 1 + \lg x$ 的反函数是 $f^{-1}(x) =$ _____
- 70. 设 $a, b, c, d \in \mathbf{R}$, 若行列式 $\begin{vmatrix} a & b & 1 \\ c & d & 2 \\ 0 & 0 & 3 \end{vmatrix} = 9$, 则行列式 $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ 的值为_____.
- 71. 已知集合 $A = \{-2, -1, -\frac{1}{2}, \frac{1}{3}, \frac{1}{2}, 1, 2, 3\}$, 从集合 A 中任取一个元素 a, 使函数 $y = x^a$ 是奇函数且在 $(0, +\infty)$ 上递增的概率为
- 72. 等差数列 $\{a_n\}$ 的前 n 项和为 S_n , 若 $S_5=S_7$, 且 $a_2+a_3=8$, 则 $\lim_{n\to\infty}\frac{S_n}{n^2}=$ _______.
- 73. 已知点 P 为正 $\triangle ABC$ 边上或内部的一点,且实数 x,y 满足 $\overrightarrow{AP}=x\overrightarrow{AB}+2y\overrightarrow{AC}$,则 x-y 的取值范围是______.
- 74. 设点 P 是曲线 $y=\sqrt{x^2+1}$ 上的动点,点 $F(0,-\sqrt{2}),\ A(\sqrt{2},0)$ 满足 $|PF|+|PA|=4,\ 则点\ P$ 的坐标为______.
- 75. 函数 $f(x) = \cos \omega x(\omega > 0, x \in \mathbf{Z})$ 的值域中仅有 5 个不同的值, 则 ω 的最小值为______.
- 76. " $\alpha \in (0, \frac{\pi}{2})$ " 是 " α 为第一象限角" 的 ().
 - A. 充分不必要条件

B. 必要不充分条件

C. 充要条件

D. 既不充分又不必要条件

77. 下列不等式恒成立的是().

A.
$$|x + y| \ge |x - y|$$

B.
$$\sqrt{x^2 + 1} + x > 0$$

C.
$$x + \frac{1}{x} \ge 2$$

D.
$$|x + y| + |x - y| \le |x| + |y|$$

- 78. 上海入夏的标准为: 立夏之后, 连续五天日平均气温不低于 22°C. 立夏之后, 测得连续五天的平均气温数据). 满足如下条件,其中能断定上海入夏的是(
 - A. 总体均值为 25°C, 中位数为 23°C
- B. 总体均值为 25° C, 总体方差大于 0° C 2
- C. 总体中位数为 23°C, 众数为 25°C
- D. 总体均值为 25° C, 总体方差为 1° C²
- 79. 对于定义在集合 D 上的两个函数 $y_1 = f_1(x)$ 与 $y_2 = f_2(x)$, 若对任意的 $x \in D$, 总有 $|f_2(x)| \le |f_1(x)|$ 成立, 则称函数 $f_1(x)$ 包裹函数 $f_2(x)$. 判断如下两个命题真假:
 - ① 函数 $f_1(x) = kx$ 包裹函数 $f_2(x) = x \cos x$ 的充要条件是 $|k| \ge 1$; ② 若对于任意 p > 0, $|f_1(x) f_2(x)| < p$ 对任意 $x \in D$ 都成立, 则函数 $f_1(x)$ 包裹函数 $f_2(x)$;

则下列选项正确的是().

A. ① 真, ② 假

B. ① 假, ② 真

C. (1)、(2) 全假 D. (1)、(2) 全真

80. 如图所示, 正四棱柱 ABCD - A₁B₁C₁D₁ 的底面边长 1, 侧棱长 4, AA₁ 中点为 E, CC₁ 中点为 F.

- (1) 求证: 平面 $BDE \parallel$ 平面 B_1D_1F ;
- (2) 连结 B_1D , 求直线 B_1D 与平面 BDE 所成的角的大小.
- 81. 已知函数 $f(x) = t \sin x + |\cos x|$, 其中常数 $t \in \mathbf{R}$.
 - (1) 讨论函数 f(x) 的奇偶性, 并说明理由;
 - (2) $\triangle ABC$ 中内角 A, B, C 所对的边分别为 a, b, c, 且 $a = 2, b = \sqrt{5}, f(A) = 2$, 求当 $t = \sqrt{3}$ 时, $\triangle ABC$ 的 面积.
- 82. 如图所示, 鸟类观测站需同时观测两处鸟类栖息地. A 地在观测站正北方向, 且距离观测站 2 公里处, B 地在 观测站北偏东 $\arcsin \frac{4}{5}$ 方向,且距离观测站 5 公里. 观测站派出一辆观测车 (记为点 M) 沿着公路向正东方 向行驶进行观测,记 ZAMB 为观测角.

- (1) 当观测车行驶至距观测站 1 公里时, 求观测角 ∠AMB 的大小 (精确到 0.1°);
- (2) 为了确保观测质量, 要求观测角 $\angle AMB$ 不小于 45° , 求观测车行驶过程中满足要求的路程有多长 (精确到 0.1 公里).
- 83. 如图, 中心在原点 O 的椭圆 Γ 的右焦点为 $F(2\sqrt{3},0)$, 长轴长为 8. 椭圆 Γ 上有两点 P,Q, 连结 OP,OQ, 记 它们的斜率为 k_{OP} 、 k_{OQ} ,且满足 $k_{OP}\cdot k_{OQ}=-\frac{1}{4}$.

- (1) 求椭圆 Γ 的标准方程; (2) 求证: $|OP|^2 + |OQ|^2$ 为一定值, 并求出这个定值; (3) 设直线 OQ 与椭圆 Γ 的 另一个交点为 R, 直线 RP 和 PQ 分别与直线 $x=4\sqrt{3}$ 交于点 M,N, 若 $\triangle PQR$ 和 $\triangle PMN$ 的面积相等, 求点 P 的横坐标.
- 84. 已知数列 $\{a_n\}$ 满足: $a_1=1$, $a_{n+1}=-a_n$ 或 $a_{n+1}=a_n+2$, 对一切 $n\in \mathbb{N}^*$ 都成立. 记 S_n 为数列 $\{a_n\}$ 的 前 n 项和. 若存在一个非零常数 $T\in \mathbb{N}^*$, 对于任意 $n\in \mathbb{N}^*$, $a_{n+T}=a_n$ 成立, 则称数列 $\{a_n\}$ 为周期数列, T 是一个周期.
 - (1) 求 a_2 、 a_3 所有可能的值, 并写出 a_{2022} 的最小可能值 (不需要说明理由);
 - (2) 若 $a_n>0,$ 且存在正整数 $p,q(p\neq q),$ 使得 $\frac{a_p}{q}$ 与 $\frac{a_q}{p}$ 均为整数, 求 a_{p+q} 的值;
 - (3) 记集合 $S=\{n|S_n=0,n\in {\bf N}^*\}$, 求证: 数列 $\{a_n\}$ 为周期数列的必要非充分条件为 "集合 S 为无穷集合".