Full DSA Roadmap for Students

Module 0: Introduction to DSA

Topics:

- What is Data Structures and Algorithms?
- Why is DSA important?
 - For problem-solving, efficiency, job interviews, competitive coding, logical thinking
- Real-life examples
 - o Maps, Auto-complete, Uber ETA, etc.
- How to learn DSA effectively
 - \circ Practice \rightarrow Understand \rightarrow Optimize \rightarrow Repeat
- Tools to use
 - o VS Code
 - o JS Console
 - o LeetCode
 - o SkillCaptain

Module 0.5: Basic Math for DSA

- Number Properties & Divisibility
 - o Prime numbers

- GCD & LCM (Euclidean Algorithm)
- o Divisibility rules
- Modular Arithmetic
 - Basics of % operator
 - o Properties: mod with addition and multiplication
 - Fast Exponentiation (Binary exponentiation)
- Bit Manipulation Basics
 - Binary representation
 - o AND, OR, XOR, NOT
 - Use-cases: check even/odd, count bits, XOR swap
- Basic Math Formulae
 - o Sum of N natural numbers
 - Sum of squares, cubes (briefly)

■ Module 1: Big-O Notation & Core Fundamentals

- Time and Space Complexity
- Big-O Notations:
 - O(1), O(n), O(log n), O(n log n), O(n²)
- Case analysis
 - Best, worst, average cases
- Analyze JS code snippets

Module 2: Arrays & Problem-Solving Patterns

Topics:

- Array Operations
 - o Traversal, Insert, Delete
 - o Built-in methods (push, pop, splice, slice, etc.)
- Two Pointer Technique
 - Reverse array
 - Pair sum
 - Move zeros
- Sliding Window
 - Max sum subarray
 - Longest substring without repeat
- Common Interview Questions
 - Duplicates
 - o Missing number
 - o Intersection

Module 3: Linked Lists

- Singly Linked List
 - o Insert at head/tail
 - Delete
 - Search

- Doubly Linked List
- Problems:
 - Reverse a list (iterative & recursive)
 - Merge two sorted lists
 - Detect cycle (Floyd's Tortoise and Hare)

Module 4: Stacks and Queues

Topics:

- Stack
 - LIFO, Use cases (undo, brackets)
 - Implementation with array
 - o Problems: Valid Parentheses, Next Greater Element
- Queue
 - FIFO, Use cases (scheduling, printers)
 - o Circular Queue concept
 - Implementation with array
- Practice Problems
 - Min Stack
 - o Queue using Stacks
 - Stack using Queues

Module 5: Hashing & Sets

- Hash Tables in JS
 - o Map, Object
- Set for uniqueness
- Frequency Counter Pattern
- Common Problems
 - o Anagrams
 - o First non-repeating character
 - Longest consecutive sequence
 - Count frequency
 - o Group anagrams

Module 6: Algorithms

Recursion

- Stack frames, base cases, tail recursion
- Factorial, Fibonacci, Array sum
- When to use recursion vs iteration

Backtracking

- Subsets, Permutations
- N-Queens
- Rat in a Maze
- Sudoku Solver
- Binary Strings without consecutive 1s

Searching Algorithms

- Linear Search
- Binary Search (sorted input required)

Sorting Algorithms

- Bubble, Selection, Insertion (intro sorts)
- Merge Sort (Divide & Conquer)
- Time/space comparisons

Kadane's Algorithm

• For max subarray sum

Module 7: Trees

- Basics
 - o Node, Root, Parent, Child, Leaf, Height, Depth
 - Binary Tree vs BST
- Tree Traversal Techniques
 - o Inorder (LNR), Preorder (NLR), Postorder (LRN)
 - Level Order Traversal (using Queue)
 - Recursive & Iterative implementation
- Common Problems
 - Max depth
 - Check balanced tree
 - Lowest Common Ancestor (LCA)

- o Path sum
- o Same tree check

Module 8: Graphs

Topics:

- Introduction
 - o Graph Terminology: nodes, edges, directed/undirected, weighted
 - o Adjacency List vs Matrix representation
- Graph Traversal Techniques
 - o BFS (Breadth First Search)
 - o DFS (Depth First Search) recursive & iterative
- Applications & Problems
 - Detect Cycle (directed & undirected)
 - Count connected components
 - Shortest Path (BFS-based for unweighted graphs)
 - Word Ladder
 - Number of Islands
 - Clone Graph

Module 9: Greedy Algorithms

Topics:

Activity Selection

- Minimum Coins
- Jump Game
- Interval Scheduling
- When Greedy fails vs when it works

Module 10: Dynamic Programming (DP)

- Introduction
 - Memoization vs Tabulation
 - o Overlapping subproblems & optimal substructure
- Classic Problems
 - Fibonacci (recursion → memoization → tabulation)
 - Climbing Stairs
 - o 0/1 Knapsack
 - Subset Sum
 - Longest Common Subsequence
 - Minimum Path Sum