#### AMENDMENTS TO THE CLAIMS

# 1. (Currently amended) A synthetic molecule of formula I:

Wherein A represents R, or a glyceride group having the formula Ia or Ib:

$$R_{1}$$
-O-CH<sub>2</sub>  $R_{1}$ -O-CH<sub>2</sub>  $R_{2}$ -O-CH  $R_{2}$ -O-CH<sub>2</sub>  $R_{2}$ -O-CH<sub>2</sub>  $R_{2}$ -O-CH<sub>2</sub>  $R_{3}$ -O-CH<sub>3</sub>  $R_{4}$ -O-CH<sub>3</sub>  $R_{4}$ -O-CH<sub>4</sub>  $R_{4}$ -O-CH<sub>4</sub>

wherein R is H-or a linear or branched alkyl of up to 40 carbon atoms;

R<sub>1</sub> and R<sub>2</sub> are independently H, alkyl or acyl and wherein the alkyl or acyl groups are linear or branched having up to 40 carbon atoms;

B is phosphate;

E comprises a spacer or linker group providing a linkage between groups B and D and is selected from the group consisting of: eyelohexyl- unsubstituted or substituted with a sugar moiety and  $C_aHR_3-C_bHR_4$ ;

 $-C_aHR_3-C_bH(CH_2G)-$ ;

 $-C_aH(CH_2G)-C_bHR_4-$ ;

 $-C_aH(CH_2G)-C_bH(CH_2G)-$ ;

wherein <u>carbon atom</u> C<sub>a</sub> is linked to B and <u>carbon atom</u> C<sub>b</sub> is linked to D, and wherein R<sub>3</sub> and R<sub>4</sub> are independently selected from the group consisting of H, CH<sub>2</sub>OH, <u>and (CH(OH))</u><sub>m</sub>-CH<sub>2</sub>OH, <u>and a CH<sub>2</sub>-group-linked to a group that consists of one or more sugar-moieties; and wherein m=1 to 6; and</u>

D\_and G\_independently consist[[s]] of one or more sugar moieties, each a glycosyloxy sugar or an oligoglycosyloxy sugar moiety of 2 to 12 α-1,2 and/or α-1,6 linked sugars, wherein the sugar(s) are selected from the group consisting of D-mannose, D-galactose, D-glucose, D-glucosamine, N-acetylglucosamine, and 6-deoxy-L-mannose, wherein an oligoglycosyloxy sugar moiety may comprise the same or different sugars;

with the proviso that when A is a diacyl or monacyl glyceride,  $R_3$  and  $R_4$  cannot both be H; and with the proviso that when  $R_3$  is H,  $R_4$  cannot be  $CH_2OH$ .

2. (Original) A synthetic molecule as claimed in claim 1, wherein R is a linear or branched alkyl of between 6 and 22 carbon atoms.

# 3. (Canceled)

- 4. (Currently amended) A synthetic molecule as claimed in claim  $\underline{12}$ , wherein R is a linear or branched alkyl of between 16 and 20 carbon atoms.
- 5. (Previously presented) A synthetic molecule as claimed in claim 1 wherein the alkyl or acyl groups of  $R_1$  and  $R_2$  are linear or branched having between 6 and 22 carbon atoms.
  - 6. (Canceled)
- 7. (Previously presented) A synthetic molecule as claimed in claim 4, wherein the alkyl or acyl groups of  $R_1$  and  $R_2$  are linear or branched having between 16 and 20 carbon atoms.
  - 8. (Canceled)
- 9. (Currently amended) A synthetic molecule as claimed in claim 1, wherein said one or more sugar moieties of D consists of an optionally acylated glycosyloxy sugar moiety or an optionally acylated oligoglycosyloxy sugar moiety of  $\Theta = 2$  to 6  $\alpha$ -1,2 and/or  $\alpha$ -1,6 linked sugar soptionally acylated sugar moieties.

### 10. (Canceled)

- 11. (Currently amended) A synthetic molecule as claimed in claim 1, wherein  $R_1$  and  $R_2$  are fatty acids independently selected from the group consisting of myristate, palmitate, heptadecanoate, stearate, tuberculostearate; E is  $\underline{-C_aHR_3CH(CH_2G)}$  or  $\underline{-C_aH(CH_2G)}$ - $\underline{C_bHR_4}$ - $\underline{CHR_3CHR_4}$ -, wherein one of  $R_3$  or and  $R_4$  are is H and  $\underline{D}$  and  $\underline{G}$  independently consist of a glycosyloxy mannose moiety or an oligoglycosyloxy mannose moiety of 2 to 12 the other-of- $R_3$  and  $R_4$  is a  $\underline{CH_2}$ -group linked to a group that consists of one or more sugar-moieties; and  $\underline{D}$  is one or more sugar moieties comprising  $\underline{D}$ -mannose or an oligosaccharide chain of  $\alpha$ -1,2 and/or  $\alpha$ -1,6-linked mannose sugarsresidues.
- 12. (Original) A pharmaceutical composition comprising at least one compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable salt thereof together with a pharmaceutically acceptable carrier.
- 13. (Withdrawn) A method of treating or preventing an inflammatory or immune cell-mediated disease or disorder comprising administering to a mammal in need thereof an effective amount of a compound of formula (I) as defined in claim 1, wherein said disease or disorder is selected from the group consisting of asthma, allergic rhinitis, dermatitis, psoriasis, inflammatory

bowel disease including Crohn's disease and ulcerative colitis, rheumatoid arthritis, multiple sclerosis, diabetes, systemic lupus erythmatosis and atherosclerosis.

# 14.-19. (Canceled)

- 20. **(Withdrawn)** A process for preparing synthetic molecules of formula (I) as defined in claim 1, comprising the steps of:
  - (i) modifying a benzylated allyl glycoside compound to form an intermediate by dihydroxylation of the double bond using a catalytic amount of osmium tetraoxide and excess N-methyl morpholine-1-oxide to give a glycosyl glycerol as an intermediate for further modification.
  - (ii) selectively benzoylating the glycosyl glycerol intermediate to form a glycosyl glycerol unit with the 2° hydroxyl group protected as a benzoyl ester;
  - (iii) glycosylating the 1° hydroxyl group of the intermediate compound and selective removal of the benzoyl protecting group;
  - (iv) phosphorylating the 1° or 2° hydroxyl groups of the intermediate compound; and
  - (v) removing the benzyl protecting groups to form a compound of formula (I).
- 21. (Withdrawn) A process as claimed in claim 20, wherein step (ii) is carried out by temporary tritylation of the 1° hydroxyl group using trityl chloride and pyridine, addition of benzoyl chloride and acidic hydrolysis of the trityl group.
- 22. (Withdrawn) A process as claimed in claim 20, wherein step III is carried out by an N-iodosuccimide trifluoromethanesulfonate promoted glycosylation reaction with a perbenzylated glycosyl phosphite, or a trimethylsilyl trifluoromethanesulfonate promoted glycosylation reaction with a perbenzylated glycosyl trichloroimidate.
  - 23. (Withdrawn) A process as claimed in claim 20, wherein step (iv) is carried out using:
    - (a) a 1,2-di-O-acyl-sn-glycero-3-H-phosphonate triethylammonium salt;
  - (b) N,N-diisopropyl 1,2-di-O-acyl-sn-glycero-3-phosphoramidite and subsequent oxidation with m-chloroperoxybenzoic acid; and
  - (c) N,N-diisopropyl alkylphosphoramidite and subsequent oxidation with m-chloroperoxybenzoic acid.

- 24. (Withdrawn) A process as claimed in claim 20, wherein step (v) is carried out by catalytic hydrogenolysis over palladium on carbon at either atmospheric or 300 psi pressure of hydrogen.
- 25. (Withdrawn) A process for preparing synthetic molecules of formula (I) as defined in claim 1 comprising the steps:
  - (i) glycosylating a benzylated mono-acetylated diol followed by deacetylation;
  - (ii) phosphorylating the 1° or 2° hydroxyl groups of the compound of step (i); and
    - (iii) removing the benzyl protecting groups to form a compound of formula (I).
- 26. (Withdrawn) A process as claimed in claim 25, wherein step (i) is carried out by an N-iodosuccimide trifluoromethanesulfonate promoted glycosylation reaction with a perbenzylated glycosyl phosphite, or a trimethylsilyl trifluoromethanesulfonate promoted glycosylation reaction with a perbenzylated glycosyl trichloroimidate.
  - 27. (Withdrawn) A process as claimed in claim 25, wherein step (ii) is carried out using:
    - (a) a 1,2-di-O-acyl-sn-glycero-3-H-phosphonate triethylammonium salt;
  - (b) N,N-diisopropyl 1,2-di-O-acyl-sn-glycero-3-phosphoramidite and subsequent oxidation with m-chloroperoxybenzoic acid; and
  - (c) N,N-diisopropyl alkylphosphoramidite and subsequent oxidation with m-chloroperoxybenzoic acid.
- 28. (Withdrawn) A process as claimed in claim 25, wherein step (iii) is carried out by catalytic hydrogenolysis over palladium on carbon at either atmospheric or 300 psi pressure of hydrogen.

### 29.-34. (Canceled)