

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
ATTY. DOCKET NO. 74618-18

In re Patent Application of JUDY E. ANDERSON

United States Serial No. 09/936, 609 Group Art Unit: 1653

Filing Date: 01/07/2002 Examiner: NOT YET ASSIGNED

For: NITRIC OXIDE MANIPULATION OF MUSCLE SATELLITE CELL ACTIVATION

RECEIVED
OCT 25 2002

TECH CENTER 1600/2900

#8
J.G.J
10/21/02

INFORMATION DISCLOSURE STATEMENT

This Information Disclosure Statement is being filed in the manner prescribed by 37 CFR 1.97(b) - (d) to satisfy the duty under 37 CFR 1.56 to disclose to the Office information, known to individuals associated with the filing and prosecution of the subject application, which is material to the examination of the application.

In accordance with 37 CFR 1.97(g) and (h), this statement is not to be construed as a representation that a search has been made or an admission that the information cited herein is, or is considered to be, material to patentability as defined in 37 CFR 1.56(b).

In compliance with 37 CFR 1.98(a)(1), a list of all patents, publications or other information submitted for consideration by the Office is hereby provided by way of the attached Form PTO 1449.

In compliance with 37 CFR 1.98(a)(2), also enclosed is a legible copy of:

- i) each United States and foreign patent;
- ii) each publication or that portion which caused it to be listed; and
- iii) all other information or that portion which caused it to be listed excluding any copies of a United States patent application.

It is respectfully requested that the information be expressly considered by the Examiner
and that the references be made of record and appear among the "References Cited" on
any patent to issue therefrom.

Respectfully submitted,

Thuy N. Nguyen
Reg. No. 47,336

Smart & Biggar
P.O. Box 2999, Station D
900 - 55 Metcalfe Street
Ottawa, Ontario
Canada
K1P 5Y6

Encl.: Form PTO-1449
All references listed on Form PTO-1449

RECEIVED
OCT 25 2002
TECH CENTER 1600/2900

Form PTO-1449 (Modified)

**LIST OF PATENTS AND PUBLICATIONS
FOR APPLICANT'S INFORMATION**
DISCLOSURE STATEMENT
(Use several sheets if necessary)

Atty. Docket No. 74618-18

Serial No. 09/936,609

Applicant JUDY E. ANDERSON

Filing Date 01/07/2002

Group 1653

RECEIVED

OCT 25 2002

TECH CENTER 1600/2900

OTHER ART (including Author, Title, Date, Pertinent Pages, Etc.)

A1		Allen, Ronald E. <i>et al.</i> , Muscle Biology Group, Methods in Cell Biology, Skeletal Muscle Satellite Cell Cultures, vol. 52, 1998, pp. 155-176
A2		Alway, Stephen E., Journal of Gerontology: Biological Sciences, Overload-Induced C-Myc Oncoprotein Is Reduced in Aged Skeletal Muscle, 1997, vol. 52A, No. 4, pp. B203-B211
A3		Anderson, Judy E., Molecular Biology of the Cell, A Role of Nitric Oxide in Muscle Repair: Nitric Oxide-mediated Activation of Muscle Satellite Cells, vol. 11, pp. 1859-1874, May 2000
A4		Anderson, Judy E., Biochemistry Cell Biology, Studies of the dynamics of skeletal muscle regeneration: the mouse came back!, vol. 76, (1998), pp. 13-26
A5		Anderson, Judy E. <i>et al.</i> , Muscle & Nerve, Dystrophy and Myogenesis in mdx Diaphragm muscle, 1998, vol. 21, pp. 1153-1165
A6		Anderson, Judy E. <i>et al.</i> , Muscle & Nerve, Deflazacort But Not Prednisone Improves Both Muscle Repair and Fiber Growth in Diaphragm and Limb Muscle in Vivo in the Mdx Dystrophic Mouse, 1996, vol. 19, pp. 1576-1585
A7		Anderson, Judy E. <i>et al.</i> , Experimental Cell Research, The Time Course of Basic Fibroblast Growth Factor Expression in Crush-Injured Skeletal Muscle of SJL/J and BALB/c Mice, (1995), vol. 216, pp. 325-334
A8		Anderson, Judy E. <i>et al.</i> , Cell Transplantation, Deflazacort Increases Laminin Expression and Myogenic Repair, and Induces Early Persistent Functional Gain in mdx Mouse Muscular Dystrophy, vol. 9, 2000, pp. 551-564
A9		Appell, H.-J <i>et al.</i> , Int. J. Sports Med., Satellite Cell Activation in Human Skeletal Muscle After Training: Evidence for Muscle Fibre Neoformation, vol. 9, (1998), pp. 297-299
A10		Balon, Thomas W. <i>et al.</i> , J. Appl. Physiol., Nitric oxide release is present from incubated skeletal muscle preparations, vol. 77(6), 1994, pp. 2519-2521
A11		Beckman, Joseph S. <i>et al.</i> , Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am. J. Physiol, vol. 271 (Cell Physiol. 40), 1996, pp. C1424-C1437
A12		Beesley, Julian E., Histochemical Journal, Histochemical methods for detecting nitric oxide synthase, vol. 27, (1995), pp. 757-769
A13		Bischoff, Richard., Developmental Biology, A Satellite Cell Mitogen from Crushed Adult Muscle, vol. 115, (1986), pp. 140-147
A14		Bischoff, Richard., Developmental Biology, Proliferation of Muscle Satellite Cells on Intact Myofibers in Culture, vol. 115, (1986), pp. 129-139
A15		Bischoff, Richard., The Journal of Cell Biology, Cell Cycle Commitment of Rat Muscle Satellite Cells, vol. 111, July 1990, pp. 201-207
A16		Bischoff, Richard., Development, Interaction between satellite cells and skeletal muscle fibers, vol. 109, (1990), pp. 943-952
A17		Blandino, G. <i>et al.</i> , J. Exp. Clin. Cancer Research., BCL-2: the Pendulum of the Cell Fate, vol. 16, 1997, pp. 3-10
A18		Brennan, Jay E., <i>et al.</i> , Cell, Interaction of Nitric Oxide Synthase with the Postsynaptic Density Protein PSD-95 and $\alpha 1$ -Syntrphin Mediated by PDZ Domains, vol. 84, March 8, 1996, pp. 757-767
A19		Brennan, Jay E., <i>et al.</i> , Cell, Nitric Oxide Synthase Complexed with Dystrophin and Absent from Skeletal Muscle Sarcolemma in Duchenne Muscular Dystrophy, vol. 82, September 8, 1995, pp. 743-752
A20		Buonanno, Andres, <i>et al.</i> , Nucleic Acids Research, The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA, vol. 20, No. 3, 1991, pp. 539-544
A21		Busse, Rudi <i>et al.</i> , J Vasc Res, Pulsatile Stretch and Shear Stress: Physical Stimuli Determining the Production of Endothelium-Derived Relaxing Factors, vol. 35, 1998, pp. 73-84

RECEIVED

OCT 2 2002 TECH CENTER 1000/2000	A22		Cazzani, Cristina <i>et al.</i> , Biochemical and Biophysical Research Communications, Increase of Neuronal Nitric Oxide Synthase in Rat Skeletal Muscle during Ageing, vol. 245, (1998), pp. 216-219, Article No. RC988404
	A23		Chambers, Rebecca L. <i>et al.</i> , Can. J. Appl. Physiol., Molecular Basis of Skeletal Muscle Regeneration, vol. 21(3), 1996, pp. 155-184
	A24		Chang, Wen-Jinn, <i>et al.</i> , Proc. Natl. Acad. Sci. USA, Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy, vol. 93, August 1996, pp. 9142-9147
	A25		Chao, Daniel S. <i>et al.</i> , J. Exp. Med, Selective Loss of Sarcolemmal Nitric Oxide Synthase in Becker Muscular Dystrophy, vol. 184, August 1996, pp. 609-618
	A26		Chen, Long-En <i>et al.</i> , Am J. Physiol., Effects of S-nitroso-N-acetylcysteine on contractile function of reperfused skeletal muscle, vol. 274 (Regulatory Integrative Comp. Physiol. 43), 1998, pp. R822-R829
	A27		Chien, Shu, <i>et al.</i> , Hypertension, Effects of Mechanical Forces on Signal Transduction and Gene Expression in Endothelial Cells, 1998, vol. 31[part 2], pp. 162-169
	A28		Cornelison D.D.W. <i>et al.</i> , Developmental Biology, Single-Cell Analysis of Regulatory Gene Expression in Quiescent and Activated Mouse Skeletal Muscle Satellite Cells, vol. 191, (1997), pp. 270-283, Article No. DB978721
	A29		Crosbie, Rachelle H. <i>et al.</i> , Human Molecular Genetics, mdx muscle pathology is independent of nNOS perturbation, vol. 7, 1998, pp. 823-829
	A30		Darr, Kevin C. <i>et al.</i> , J. Appl. Physiol., Exercise-induced satellite cell activation in growing and mature skeletal muscle, vol. 63(5), 1987, pp. 1816-1821
	A31		Darr, Kevin C. <i>et al.</i> , J. Appl. Physiol., Hindlimb suspension suppresses muscle growth and satellite cell proliferation, vol. 67(5), 1989, pp. 1827-1834
	A32		Decary, Stephanie <i>et al.</i> , Human Gene Therapy, Telomere Length as a Tool to Monitor Satellite Cell Amplification for Cell-Mediated Gene Therapy, vol. 7, (July 10, 1996), pp. 1347-1350
	A33		Decary, S. <i>et al.</i> , Human Gene Therapy, Replicative Potential and Telomere Length in Human Skeletal Muscle: Implications for Satellite Cell-Mediated Gene Therapy, vol. 8, (August 10, 1997), pp. 1429-1438
	A34		Decrouy, A. <i>et al.</i> , Gene Therapy, Mini- and full-length dystrophin gene transfer induces the recovery of nitric oxide synthase at the sarcolemma of mdx4 ^{cav} skeletal muscle fibres, vol. 5, (1998), pp. 59-64
	A35		Graaf, J.C. de <i>et al.</i> , Circulation, Nitric Oxide Functions as an Inhibitor of Platelet Adhesion Under Flow Conditions, vol. 85, 1992, pp. 2284-2290
	A36		Dimmeler, Stephanie <i>et al.</i> , Nature, Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation, June 1999, vol. 399, pp. 601-605
	A37		Evan, Gerard <i>et al.</i> , Science, A Matter of Life and Cell Death, vol. 281, August 1998, pp. 1317-1326
	A38		Floss, Thomas <i>et al.</i> , Genes & Development, A role for FGF-6 in skeletal muscle regeneration, vol. 11, 1997, pp. 2040-2051
	A39		Gal-Levi, Ronit <i>et al.</i> , Biochimica et Biophysica Acta, Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation, vol. 1402, (1998), pp. 39-51
	A40		Garthwaite, J. <i>et al.</i> , Annu. Rev. Physiol., Nitric Oxide Signaling in the Central Nervous System, vol. 57, 1995, pp. 683-706
	A41		Gossrau, Reinhart, Acta Histochem., Caveolin-3 and nitric oxide synthase I in healthy and diseased skeletal muscle, vol. 100, (1998), pp. 99-112
	A42		Grounds, Miranda D. <i>et al.</i> , Cell Tissue Research, Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes, vol. 267, (1992), pp. 99-104
	A43		Grounds, Miranda D. <i>et al.</i> , Cell Tissue Research, A model of myogenesis in vivo, derived from detailed autoradiographic studies of regenerating skeletal muscle, challenges the concept of quantal mitosis, vol. 250, (1987), pp. 563-569
	A44		Grounds, Miranda D. <i>et al.</i> , Cell Tissue Research, A comparison of muscle precursor replication in crush-injured skeletal muscle of Swiss and BALBc mice, vol. 255, (1989), pp. 385-391
	A45		Grozdanovic, Zarko <i>et al.</i> , Acta histochemica, Nitric oxide synthase I (NOS-I) is deficient in the sarcolemma of striated muscle fibers in patients with Duchenne muscular dystrophy, suggesting an association with dystrophin, vol. 98, (1996), pp. 61-69
	A46		Grozdanovic, Z. <i>et al.</i> , Histology and Histopathology, Nitric oxide synthase in skeletal muscle fibers: a signaling component of the dystrophin-glycoprotein complex, vol. 14, (1999), pp. 243-256

RECEIVED

JC139
OCT 24 2002
PATENT & TRADEMARK OFFICE

	A47	Huang, Martin E., Cell, Dystroglycan Versatility, vol. 7, May 28, 1999, pp. 543-546
	A48	Huang, Paul L. <i>et al.</i> , Cell, Targeted Disruption of the Neuronal Nitric Oxide Synthase Gene, vol. 75, December 31, 1993, pp. 1273-1286
	A49	Irintchev, A. <i>et al.</i> , Developmental Dynamics, Expression Pattern of M-Cadherin in Normal, Denervated, and Regenerating Mouse Muscles, vol. 199, (1994), pp. 326-337
TECH CENTER 1600 (2900)	A50	Ishikawa, Harunori, Zeitschrift fur Anatomie und Entwicklungsgeschichte, Electron Microscopic Observations of Satellite Cells with Special Reference to the Development of Mammalian Skeletal Muscles, vol. 125, (1966), pp. 43-63
OCT 25 2002	A51	Joyner, Michael J. <i>et al.</i> , J. Appl. Physiol., Nitric oxide and vasodilation in human limbs, vol. 83(6), 1997, pp. 1785-1796
	A52	Kami, Katsuya, Cell Tissue Research, Localization of myogenin, c-fos, c-jun, and muscle-specific gene mRNAs in regenerating rat skeletal muscle, vol. 280, (1995) pp. 11-19
	A53	Kanner, Joseph <i>et al.</i> , Archives of Biochemistry and Biophysics, Nitric Oxide as an Antioxidant, vol. 289, No. 1, August 15, 1991, pp. 130-136
	A54	Kapur, Sonia <i>et al.</i> , Diabetes, Expression of Nitric Oxide Synthase in Skeletal Muscle, vol. 46, November 1997, pp. 1691-1700
	A55	Kleinogus, Catherine <i>et al.</i> , Cell Tissue Research, Preliminary observations of satellite cells in undamaged fibres of the rat soleus muscle assaulted by a snake-venom toxin, vol. 230, (1983), pp. 671-676
	A56	Kobzik, Lester <i>et al.</i> ; Nature, Nitric oxide in skeletal muscle, vol. 372, December 8, 1994, pp. 546-548
	A57	Kroncke, Klaus-D. <i>et al.</i> , Nitric Oxide: Biology and Chemistry, Nitric Oxide: Cytotoxicity versus Cytoprotection-How, Why, When, and Where?, vol. 1, No. 2, April 1997, pp. 107-120, Article No. NO970118
	A58	Kubes, P. <i>et al.</i> , Proc. Natl. Acad. Sci. USA, Nitric oxide: An endogenous modulator of leukocyte adhesion, vol. 88, June 1991, pp. 4651-4655
	A59	Lancaster, J.R. Jr., Nitric Oxide: Biology and Chemistry, A tutorial on the Diffusibility and Reactivity of Free Nitric Oxide, vol. 1, No. 1, February 1997, pp. 18-30
	A60	Lancaster, J.R. Jr., Proc. Natl. Acad. Sci. USA, Simulation of the diffusion and reaction of endogenously produced nitric oxide, vol. 91, August 1994, pp. 8137-8141
	A61	Landauer, JA <i>et al.</i> , Aviation, Space, and Environmental Medicine, A Proposed Cause for and Prevention of Bone and Muscle Wasting in Microgravity, vol. 69, No. 7, July 1998, pp. 699-702
	A62	Li, Zhenlin <i>et al.</i> , The Journal of Cell Biology, Desmin Is Essential for the Tensile Strength and Integrity of Myofibrils but Not for Myogenic Commitment, Differentiation, and Fusion of Skeletal Muscle, vol. 139, No. 1, October 6 1997, pp. 129-144
	A63	Lowenstein, Charles J. <i>et al.</i> , Cell, Nitric Oxide, A Novel Biologic Messenger, vol. 70, September 4, 1992, pp. 705-707
	A64	Lowenstein, Charles J. <i>et al.</i> , Ann Intern Med., Nitric Oxide, A Physiologic Messenger, vol. 120, 1994, pp. 227-237
	A65	Mauro, Alexander, J. Biophys Biochem cytol, Satellite Cell of Skeletal Muscle Fibers, vol. 19, 1961. pp. 493-495
	A66	McCall, Therese B. <i>et al.</i> , Eur. J. Immunol., Induction of nitric oxide synthase in rat peritoneal neutrophils and its inhibition by dexamethasone, vol. 21, 1991, pp. 2523-2527
	A67	McIntosh, L.M., <i>et al.</i> , Biochemistry Cell Biology, Hypothyroidism prolongs and increases mdx muscle precursor proliferation and delays myotube formation in normal and dystrophic limb muscle, vol. 73, 1995, pp. 181-190
	A68	McIntosh, Laura M. <i>et al.</i> , The Anatomical Record, Regeneration and Myogenic Cell Proliferation Correlate With Taurine Levels in Dystrophin- and MyoD-Deficient Muscles, vol. 252, 1998, pp. 311-324
	A69	McIntosh, L.M. <i>et al.</i> , Muscle & Nerve, The Effects of Altered Metabolism (Hypothyroidism) on Muscle Repair in the mdx Dystrophic Mouse, vol. 17, 1994, 444-453
	A70	Megeney, Lynn A., Genes & Development, MyoD is required for myogenic stem cell function in adult skeletal muscle, vol. 10, 1996, pp. 1173-1183
	A71	Miyazawa, Keiji <i>et al.</i> , The Journal of Biological Chemistry, Proteolytic Activation of Hepatocyte Growth Factor in Response to Tissue Injury, vol. 269, No. 12, Issue of March 25, 1994, pp. 8966-8970
	A72	Moor, A.N. <i>et al.</i> , Microscopy Research and Technique, Cell Cycle Behavior and MyoD Expression in Response to T3 Differ in Normal and mdx Dystrophic Primary Muscle Cell Cultures, vol. 48, (2000), pp. 204-212

RECEIVED

JC139
OCT 24 2002
PATENT & TRADEMARK OFFICE

	A73	Milner, Robert <i>et al.</i> , Development, The Cell adhesion molecule M-cadherin is specifically expressed in developing and regenerating, but not denervated skeletal muscle, vol. 117, (1993), pp. 1409-1420
	A74	Nakane, Masaki, <i>et al.</i> , Federation of European Biochemical Societies, Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle, vol. 316, no. 2, 1993, pp. 175-180
	A75	Nathan, Carl <i>et al.</i> , Cell, Nitric Oxide Synthases: Roles, Tolls, and Controls, vol. 78, September 23, 1994, pp. 915-918
	A76	Palmer, Richard M.J., Arch Surg., The Discovery of Nitric Oxide in the Vessel Wall, vol. 128, April 1993, pp. 396-401
	A77	Pernitsky, A.N. <i>et al.</i> , Experimental Cell Research, Differential Effects of 3,5,3'-Triiodothyronine on Control and mdx Myoblasts and Fibroblasts: Analysis by Flow Cytometry, vol. 227, (1996), pp. 214-222, Article No. 0270
OCT 25 2002 TECH CENTER 1800/2000	A78	Pernitsky, A.N., <i>et al.</i> , Biochemistry Cell Biology, Hyperthyroidism impairs early repair in normal but not dystrophic mdx mouse tibialis anterior muscle. An in vivo study, vol. 74, (1996), pp. 315-324
	A79	Reid, M.B., Acta Physiol Scand, Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance, vol. 162, 1998, pp. 401-409
	A80	Ribera, Joan <i>et al.</i> , Journal of Neuroscience Research, Nitric Oxide Synthase in Rat Neuromuscular Junctions and in Nerve Terminals of Torpedo Electric Organ: Its Role as Regulator of Acetylcholine Release, vol. 51, (1998), pp. 90-102
	A81	Rong, Sing <i>et al.</i> , Proc. Natl. Acad. Sci. USA, Invasiveness and metastasis of NIH 3T3 cells induced by Met-Hepatocyte growth factor/ scatter factor autocrine stimulation, vol. 91, May 1994, pp. 4731-4735
	A82	Rose, Olaf <i>et al.</i> , Developmental Dynamics, Expression of M-Cadherin Protein in Myogenic Cells During Prenatal Mouse Development and Differentiation of Embryonic Stem Cells in Culture, vol. 201, (1994), pp. 245-259
	A83	Rubanyi, Gabor M. <i>et al.</i> , Am. J. Physiol., Flow-induced release of endothelium-derived relaxing factor, vol. 250 (Heart Circ. Physiol. 19), 1986, pp. H1145-H1149
	A84	Rubinstein, Irit <i>et al.</i> , J. Clin. Invest., Involvement of Nitric Oxide System in Experimental Muscle Crush Injury, vol. 101, No. 6, March 1998, pp. 1325-1333
	A85	Rudnicki, Michael A. <i>et al.</i> , BioEssays, The MyoD family of transcription factors and skeletal myogenesis, vol. 17, no. 3, 1995, pp. 203-209
	A86	Schmidt, Harald H.H. W. <i>et al.</i> , Cell, NO at Work, vol. 78, September 23, 1994, pp. 919-925
	A87	Schultz, Edward, Am. J. Anat., Fine Structure of Satellite Cells in Growing Skeletal Muscle, vol. 147, 1976, pp. 49-70
	A88	Schultz, Edward <i>et al.</i> , The Journal of Experimental Zoology, Satellite Cells are Mitotically Quiescent in Mature Mouse Muscle: an EM and Radioautographic Study, vol. 206, no. 3, December 1978, pp. 451-456
	A89	Schultz, Edward <i>et al.</i> , Muscle & Nerve, Response of Satellite Cells to Focal Skeletal Muscle Injury, vol. 8, 1985, pp. 217-222
	A90	Schultz, Edward <i>et al.</i> , Rev. Physiol. Biochem. Pharmacol., Skeletal Muscle Satellite Cells, vol. 123, 1994, pp. 213-257
	A91	Shen, Weiqun <i>et al.</i> , Medicine and Science in Sports and Exercise, Nitric oxide production and NO synthase gene expression contribute to vascular regulation during exercise, vol. 27, No. 8, 1995, pp. 1125-1134
	A92	Silvagno, Francesca <i>et al.</i> , The Journal of Biological Chemistry, Neuronal Nitric-oxide synthase- μ , an Alternatively Spliced Isoform Expressed in Differentiated Skeletal Muscle, vol. 271, no. 19, Issue of May 10, 1996, pp. 11204-11208
	A93	Snow, Mikel H., Cell and Tissue Research, The Effects of Aging on Satellite Cells in Skeletal Muscles of Mice and Rats, vol. 185, (1977), pp. 399-408
	A94	Snow, Mikel H., The Anatomical Record, Satellite Cell Response in Rat Soleus Muscle Undergoing Hypertrophy Due to Surgical Ablation of Synergists, vol. 227, 1990, pp. 437-446
	A95	Tatsumi, Ryuichi, <i>et al.</i> , Developmental Biology, HGF/SF Is Present in Normal Adult Skeletal Muscle and Is Capable of Activating Satellite Cells, vol. 194, (1998), pp. 114-128
	A96	Tews, Dominique S. <i>et al.</i> , Clinical Immunology and Immunopathology, Cell Death and Oxidative Damage in Inflammatory Myopathies, vol. 87, no. 3, June 1998, pp. 240-247
	A97	Tews, Dominique S. <i>et al.</i> , Journal of Neuropathology and Experimental Neurology, Expression of Different Isoforms of Nitric Oxide Synthase in Experimentally Denervated and Reinnervated Skeletal Muscle, vol. 56, no. 12, December 1997, pp. 1283-1289

	A98	Toussaint, Dominique S. et al., Experimental Neurology, Expression Profile of Stress Proteins, Intermediate Filaments, and Adhesion Molecules in Experimentally Denervated and Reinnervated Rat Facial Muscle, vol. 146, (1997), pp. 125-134
	A99	Tidball, James G. et al., Am. J. Physiol., Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle, vol. 275(Cell Physiol. 44), 1998, C260-C266
	A100	Traub, Oren, et al., Arterioscler Thromb Vasc Biol., Laminar Shear Stress Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force, vol. 18, 1998, pp. 677-685
	A101	Wakayama, Yoshihiro et al., Acta Neuropathol, Ultrastructural localization of α -1-syntrophin and neuronal nitric oxide synthase in normal skeletal myofiber, and their relation to each other and to dystrophin, vol. 94, (1997), pp. 455-464
	A102	Wang, Helen H. et al., Can. J. Physio. Pharmacol., Evidence of nitric oxide, a flow-department factor, being a trigger of liver regeneration in rats, vol. 76, 1998, pp. 1-8
	A103	Wang, Ti et al., Nature, Nitric oxide mediates activity-dependent synaptic suppression at developing neuromuscular synapses, vol. 374, March 16, 1995, pp. 262-266
	A104	Weis, Joachim, Acta Neuropathol, Jun, Fos, MyoD1, and Myogenin proteins are increased in skeletal muscle fiber nuclei after denervation, vol. 87, (1994), pp. 63-70
	A105	White, Timothy P. et al., Medicine and Science in Sports and Exercise, Satellite Cell and Growth Factor Involvement in Skeletal Muscle Growth, vol. 21, No. 5 (Supplement), 1989, pp. S158-S163
	A106	Winchester, P.K. et al., Am. J. Physiol., Satellite cell activation in the stretch-enlarged anterior latissimus dorsi muscle of the adult quail, vol. 260 (Cell Physiol. 29), 1991, pp. C206-C212
	A107	Young, M. E., et al., Biochem. J., Evidence for altered sensitivity of the nitric oxide/cGMP signalling cascade in insulin-resistant skeletal muscle, vol. 329, (1998), pp. 73-79
	A108	Yun, Kyuson, Current Opinion in Cell Biology, Skeletal muscle determination and differentiation: story of a core regulatory network and its context, vol. 8, 1996, pp. 877-889
	A109	Zacharias, J.M. et al., Journal of the Neurological Sciences, Muscle regeneration after imposed injury is better in younger than older mdx dystrophic mice, vol. 104, 1991, pp. 190-196
EXAMINER		DATE CONSIDERED

EXAMINER:

Initial if reference considered, whether or not citation is in conformance with MPEP 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

RECEIVED
OCT 25 2002
TECH CENTER 1600/2900

1653

**TRANSMITTAL OF INFORMATION DISCLOSURE STATEMENT
(Under 37 CFR 1.97(b) or 1.97(c))**

Docket No.
74618-18 /ala

In Re Application Of: **JUDY E. ANDERSON**

Serial No.
09/936,609

Filing Date
01/07/02

Examiner

Group Art Unit
1653

Title: **NITRIC OXIDE MANIPULATION OF MUSCLE SATELLITE CELL ACTIVATION**

Address to:
Assistant Commissioner for Patents
Washington, D.C. 20231

37 CFR 1.97(b)

1. The Information Disclosure Statement submitted herewith is being filed within three months of the filing of a national application other than a continued prosecution application under 37 CFR 1.53(d); within three months of the date of entry of the national stage as set forth in 37 CFR 1.491 in an international application; before the mailing of a first Office Action on the merits, or before the mailing of a first Office Action after the filing of a request for continued examination under 37 CFR 1.114.

37 CFR 1.97(c)

2. The Information Disclosure Statement submitted herewith is being filed after the period specified in 37 CFR 1.97(b), provided that the Information Disclosure Statement is filed before the mailing date of a Final Action under 37 CFR 1.113, a Notice of Allowance under 37 CFR 1.311, or an Action that otherwise closes prosecution in the application, and is accompanied by one of:

the statement specified in 37 CFR 1.97(e);

OR

the fee set forth in 37 CFR 1.17(p).

RECEIVED
OCT 25 2002
TECH CENTER 1600/2900

TRANSMITTAL OF INFORMATION DISCLOSURE STATEMENT
(Under 37 CFR 1.97(b) or 1.97(c))

Docket No.
74618-18 /ala

In Re Application: **JUDY E. ANDERSON**

Serial No.
09/936,609

Filing Date
01/07/02

Examiner

Group Art Unit
1653

NITRIC OXIDE MANIPULATION OF MUSCLE SATELLITE CELL ACTIVATION

RECEIVED
OCT 25 2002
TECH CENTER 1600/2900

Payment of Fee

(Only complete if Applicant elects to pay the fee set forth in 37 CFR 1.17(p))

A check in the amount of _____ is attached.

The Assistant Commissioner is hereby authorized to charge and credit Deposit Account No. 19-2550 as described below. A duplicate copy of this sheet is enclosed.

Charge the amount of _____

Credit any overpayment.

Charge any additional fee required.

Certificate of Transmission by Facsimile*

I certify that this document and authorization to charge deposit account is being facsimile transmitted to the United States Patent and Trademark Office (F

(Date)

Signature

Typed or Printed Name of Person Signing Certificate

Certificate of Mailing by First Class Mail

I certify that this document and fee is being deposited with the U.S. Postal Service as first class mail under 37 C.F.R. 1.8 and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Signature of Person Mailing Correspondence

Typed or Printed Name of Person Mailing Certificate

*This certificate may only be used if paying by deposit account.

Signature

Dated: October 23, 2002

Thuy H. Nguyen (Reg. No. 47,336)

SMART & BIGGAR

P.O. Box 2999, Station D

900-55 Metcalfe Street

Ottawa, Ontario

K1P 5Y6 Canada

CC: