HG3051 Corpus Linquistics

Multimodal and Multilingual Corpora

Francis Bond

Division of Linguistics and Multilingual Studies

http://www3.ntu.edu.sg/home/fcbond/bond@ieee.org

Lecture 3

https://github.com/bond-lab/Corpus-Linguistics

Overview

- > Revision of Annotation
 - ➤ Mark-up
 - > Annotation
 - > Regular Expressions
 - > The Hinoki Corpus
- > Multi-modal Corpora
- ➤ Multi-lingual Corpora

Revision of Annotation

Corpus Annotation vs. Mark-Up

- > Mark up provides objectively verifiable information
 - Authorship
 - > Publication dates
 - Paragraph boundaries
 - > Source text (URL, Book, ...)
 - > License
- > Annotation provides interpretive linguistic information
 - Sentence/Utterance boundaries
 - > Tokenization
 - ➤ Part-of-speech tags, Lemmas, Concepts
 - Sentence structure (syntax, co-reference, roles)
 - > Domain, Genre

Dublin Core Ontology

> Goals

- > Provides a semantic vocabulary for describing the "core" information properties of resources (electronic and "real" physical objects)
- > Enables intelligent resource discovery systems
- > Fifteen Elements:
 - ➤ Content (7)
 - * Title, Subject, Description, Type, Source, Relation and Coverage
 - ➤ Intellectual property (4)
 - * Creator, Publisher, Contributor, Rights
 - > Instantiation (4)
 - * Date, Language, Format, Identifier
- > OLAC Lang. Resource Catalog: http://search.language-archives.org/

Geoffrey Leech's Seven Maxims of Annotation

- 1. Annotation should be separable from text, leaving the raw corpus.
- 2. It should be possible to extract just the annotations from the text.
- 3. The annotation guidelines should be available.
- 4. Who did the annotation and how should be made clear.
- 5. The possibilities of errors should be made clear.
- 6. Annotation schemes should be theory-neutral
- 7. Standards emerge through practical consensus.

Types of Corpus Annotation

- > Tokenization, Lemmatization
- > Part-of-speech
- > Syntactic analysis (chunks, parses)
- Semantic analysis (word senses, semantic roles)
- > Discourse and pragmatic analysis (co-reference, time)
- > Phonetic, phonemic, prosodic annotation
- > Error tagging

How is Corpus Annotation Done?

- > Mainly semi-automatic (done first by computer programs; post-edited)
 - 1. An small annotated corpus is built, entirely by humans
 - 2. Then a computer program is **trained** on this corpus
 - 3. Now new corpora can be automatically annotated using this program
- ➤ Large corpora often fully automatic
 - > Segmentation
 - ➤ Part-of-speech tagging: accuracy of 97%
 - Lemmatization
- Corpora should indicate reliability of tags
 - Inter-annotator agreement, kappa (human)
 - Tagger accuracy (machine)

How are corpora represented?

- > Far too many encoding schemes (TEI is common)
 - > Header: for mark up
 - ➤ Body: for annotation
- > Text: one sentence per line, POS affixed can_VV
- >> XML: <s sid='1'><w wid = '1' pos='vv'>can</w></s>
- > XML standoff:

> Often stored in a database in applications

Best Practices

- > XML
- > Header and documentation
- ➤ Open license
- > Maintained (errors corrected, dynamic updates)

Case Study: the Hinoki Corpus

- Grammar-based syntactic annotation using discriminants
 - > Parse the corpus and select the best parse
 - * discriminant-based selection is efficient
 - Guarantees consistency
 - Loses some trees

Discriminant-based Treebanking

- ➤ Calculate elementary discriminants (Carter 1997)
 - Basic contrasts between parses
 - Mostly independent and local
 - > Can be syntactic or semantic
- > Select or reject discriminants until one parse remains
 - ightharpoonup |decisions| $\propto \log$ |parses|
- > Alternatively reject all parses
 - > i.e, the grammar can not parse successfully

Derivations of $k\bar{a}ten$ "curtain"₂ (4/6)

Hinoki — Summary

- > 5,000 sentences are annotated by three different annotators
- > average inter-annotator agreement
 - > 65.4% (sentence)
 - > 83.5% using labeled precision bracket with same label in the same place
 - > 96.6% on ambiguous annotated trees most disagreement is in if the tree is good or not
- ➤ Hinoki corpus was then extended to another 30,000 trees

Regular Expressions

> Regular expressions: a formal language for matching things.

Symbol	Matches
	any single character
[]	a single character that is contained within the brackets.
	[a-z] specifies a range which matches any letter from "a" to "z".
[^]	a single character not in the brackets.
^	the starting position within the string/line.
\$	the ending position of the string/line.
*	the preceding element zero or more times.
?	the preceding element zero or one time.
+	the preceding element one or more times.
	either the expression before or after the operator.
	escapes the following character.

Wild Cards

- > a wildcard character substitutes for any other character or characters in a string.
 - > Files and directories (Unix, CP/M, DOS, Windows)
 - * matches zero or more characters
 - ? matches one character
 - [] matches a list or range of characters
 - * E.g.: Match any file that ends with the string ".txt" or ".tex".

```
ls *.txt *.tex
```

- Structured Query Language (SQL)
 - % matches zero or more characters
 - _ matches a single character

BYU Interface Specialties

Pattern	Explanation	Example	Matches
word	One exact word	mysterious	mysterious
[pos]	Part of speech	[vvg]	going, using
[pos*]	Part of speech	[v*]	find, does, keeping, started
[lemma]	Lemma	[sing]	sing, singing, sang
[=word]	Synonyms	[=strong]	formidible, muscular, fervent
word wurd	Any of the words	stunning gorgeous	stunning, gorgeous
x?xx*	wildcards	on*ly	only, ontologically, on-the-fly,
x?xx*	wildcards	s?ng	sing, sang, song
-word	negation	-[nn*]	the, in, is
word.[pos]	Word AND pos	can.[v*]	can, canning, canned (verbs)
		can.[n*]	can, cans (nouns)

Multi-Modal Corpora

Multi-modal Corpora

- ➤ Language is not the only channel for communication: It is often combined with other modalities
 - > speech
 - > gesture
 - > facial expression
 - > gaze
 - body posture ECG (Electrocardiogram), HR (Heart Rate), GSR (Galvanic Skin Response)
 - > activity: nursing, drawing, building
 - > orthographic cues (color, size, font choice, ...)
- Corpora that include more than one of these are multi-modal

HCRC Map Task

- > Early, influential dialog corpus (with maps)
- > Task
 - Two speakers sit opposite one another
 - > Each has a map which the other cannot see
 - > The Instruction Giver has a route marked on their map
 - > The Instruction Follower has no route
 - ➤ The goal is to reproduce the Instruction Giver's route on the Instruction Follower's map
 - > The maps are not identical and the speakers are told this
- Conditions
 - > familiar (friends) vs non-familiar
 - gaze vs no-gaze

The Maps

Some design points

- > Landmarks chosen for phonetic properties
 - ➤ /t/-deletion eg *vast meadow*
 - ➤ /d/-deletion eg *reclaimed fields*
 - > glottalisation eg chestnut tree
 - > nasal assimilation eg broken gate

Making the data maximally useful

- Annotation
 - > POS, parse
 - Discourse structure
 - ➤ Gaze
- Now replicated in many languages and dialects (Dutch, Italian, Japanese, Swedish, Occitan, Portuguese, Australian, American and British English)

E-Nightingale: Nursing Task Corpus

- > Japanese project to analyze Nursing tasks and dialogs
- > recorder worn all day
- > beeps at ten minute intervals (event-driven recording)
 - Nurse records what they are doing
- > Linked to location
- > Very hard speech to decode

Hiromi Itoh Ozaku; Akinori Abe; Noriaki Kuwahara; Futoshi Naya; Kiyoshi Kogure; Kaoru Sagara *Building Dialogue Corpora for Nursing Activity Analysis* in LINC-2005

VACE Multimodal Meeting Corpus

Lei Chen (2007) VACE Multimodal Meeting Corpus Virginia Polytechnic Institute and State University (Video online at: http://videolectures.net/mlmi04uk_chen_vmmc/ accessed 2010-02-10)

VACE comments

- > They had me at 'attacked and occupied by wombats'
- ➤ Industrial scale coding:
 - > motion capture
 - gaze
 - > speech automatic; OOV by experts; further checking
 - detailed information about the participants
 - detailed information about the task
- > I think there should be newer corpora than this, but could not find one with such complete description.

British Sign Language Corpus

- ➤ Collection of sign language recordings (2008–2011)
 - ➤ 249 deaf signers of BSL from 8 regions around the UK: London (L), Bristol (BL), Cardiff (CF), Birmingham (BM), Newcastle (N), Manchester (M), Glasgow (G) and Belfast (BF).
 - mixed for gender, age group, age of BSL acquisition, social class and ethnicity
 - > interviews (i); conversation (c); narrative followed by conversation (n-c)
- Marked up with the above information
- ➤ Not yet annotated or searchable
 - > some annotation available
 - done in different sites

Multi-Lingual Corpora

Bitexts and more

- > Multilingual corpora are useful for
 - Contrastive linguistic analysis
 - * Comparing distributions between languages
 - * Learning about translations
 - * using one language to describe the other
 - ➤ Language learning
 - * Teaching new phenomena in terms of what you already know
 - Machine translation training
 - * Learning translations directly

Europarl

- > Large automatically aligned corpus of European parliament proceedings
- > Translation between EU languages (EU funded project)
- > 18-40 million words, .6–1.3 million sentences
- > Freely available text in all European Languages
- Used in the Euro Matrix MT project

Europarl: A Parallel Corpus for Statistical Machine Translation, Philipp Koehn, MT Summit 2005

Euro Matrix SMT Results

Euro Matrix Discussion

- > Linguistic similarity affects the statistical machine translation score:
 - ightharpoonup Highest: Spanish ightharpoonup French (BLEU = 40.27)
 - ightharpoonup Lowest: Italian ightharpoonup Finnish (BLEU = 11.08)
- Translation done using the open source SMT System:
 Moses <statmt.org>
- ightharpoonup Creating all n(n-1) language pairs took a week
 - > It is easy to train new systems if you have a multi-lingual corpus

Interesting facts

- > Also used for lexicon and thesaurus construction
- > Several English on-line translations are actually French and no-one had noticed
- > Almost entirely constructed automatically
- > New languages being added to the EU means more data

OPUS

- ➤ On-line collection of multilingual text
- Mainly automatically created
 - > OPUS multilingual
 - > Europarl
 - ➤ OpenSubtitles
 - > EUconst
 - ➤ Word Alignment Database
- > Slightly hard to use interface

Opus Downloads & Samples

- > EMEA European Medicines Agency documents (5.0 GB)
- > EUconst The European constitution (67 MB)
- EUROPARL European Parliament Proceedings (3.6 GB)
- > 00 the OpenOffice.org corpus (34 MB)
- OpenSubs the opensubtitles.org corpus (1.3 GB)
- > KDE4 KDE4 localization files (v.2) (1.4 GB)
- > KDEdoc the KDE manual corpus (35 MB)
- > PHP the PHP manual corpus (172 MB)
- SETIMES A parallel corpus of the Balkan languages 2.3 GB)
- > SPC Stockholm Parallel Corpora (3.5 MB)

Taoteba

- > User generated corpus of example sentences
 - ➤ Not authentic at all
 - Short and well aligned (thus easy to process)
- ➤ Used for teaching, learning and MT research

(1)

(jp)

ano ki no eda ni suu hiki no tori ga tomatte iru . that tree of branch on some wing of bird SBJ stop be .

"Some birds are sitting on the branch of that tree." (en)

"Des oiseaux se reposent sur la branche de cet arbre." (fr)

(also Hebrew, Esperanto, Italian: added since 2009)

http://tatoeba.org/

Task

- ➤ Pick a couple of relatively basic words: *dog*, *tree*, *all* for which you know the translation in some language.
- > Look at the word in the OPUS subtitle corpus and Tatoeba
 - How often is it translated into a word you know?
 - ➤ How often is it not translated at all?
- > Now try one of the more technical corpora

Other Large Multilingual Corpora

- Canadian Hansard
- ➤ Hong Kong Hansard
- ➤ Bible Translation Corpus
- Universal Declaration of Human Rights
- > Swadesh list
- > GALE Chinese-English, Japanese-English (DoD)
- > NICT Japanese-English, Japanese-Chinese
- > NTU Multilingual Corpus

Sentence Alignment

- > Various ways to align sentences
- ➤ Length-based
 - > Gale-Church algorithm (basically match sentence length in characters)
- > Other lexical methods are also popular
 - match using a dictionary
 - content words only
- > The better the alignment, the easier it is to extract information

Word Alignment

- ➤ GIZA++ match words depending on shared position
 - > How many times to two words appear in the same sentence pair
 - > Hard to match very free translations, also MWEs
- > Lexically-based (using dictionaries and thesauruses) are also common
- > Typically newspapers may have length differences of up to a third
- > The more direct the translation, the easier it is to align
 - ➤ Many things do not align clearly

Introduce Lab 2

- > Prepare a short intro to a corpus
- > Present in class