Introducción

Organización Industrial

Instituto Tecnológico Autónomo de México

Verano 2021

Contenido

Organización Industrial

Mercado

Estrategias

Regulación

Repaso básico de conceptos de economía

Función de producción

Costos

Función de Demanda (lineal)

Excedente del Consumidor

La Empresa

La Función de Beneficios

Entenderemos por mercado al espacio en el que vendedores y compradores interactúan para intercambiar un producto (o servicio).

Se puede descomponer en:

- Estructura
- Conducta
- Desempeño

Caraterísticas del Mercado

Estructura

¿Cómo interactúan los agentes entre sí? ¿Un producto? ¿O varios? ¿Cuántos agentes? ¿Pueden entrar y salir del mercado?

Conducta

¿Cómo determinan las empresas su estrategia? ¿Precios? ¿Ventas? ¿Publicidad?

Desempeño

¿La interacción genera bienestar? ¿Se requiere la presencia de un regulador?

Industria

Al analizar una industria, nos interesan en particular 4 factores:

- Número de empresas
- Producto
 - Homogéneo
 - Heterogéneo
- Costos
- Tecnología

Mercado

Pregunta

¿Por qué en mercados competitivos hay pocas empresas grandes en lugar de muchas pequeñas?

Introducción

Agentes del mercado

Empresas

Deciden - Buscan maximizar beneficios

Consumidores

Reaccionan - Eligen qué y cuánto quieren comprar:

- eligen por precio
- eligen por calidad

•00

Organización Industrial

Las empresas toman decisiones en respuesta a las condiciones del mercado. Estas decisiones afectan el bienestar de los participantes del mismo.

La **organización industrial** es la rama de la economía que busca analizar dichas estrategias.

Poder de Mercado (Market Power)

El **poder de mercado** es la medida en la que una empresa puede subir el precio sin perder posición en el mercado (o perder muy poca posición).

¿Por qué las empresas tienen poder de mercado?

- Lugar geográfico
- Diferenciación de producto
- Información incompleta
- Contratos o regulación

Introducción

Estrategias

Las empresas son jugadores estratégicos:

Teoría de la Decisión

La empresa toma su decisión sin considerar a los demás agentes del mercado.

Monopolio

Teoría de Juegos

Las empresas interactúan entre sí y sus decisiones se ven influenciadas por las otras empresas.

- Oligopolio
- Monopolio bilateral

Regulación (Antitrust Law)

Antitrust Law

Nombre que recibe la estructura legal mediante la cual el gobierno interviene (monitorea, regula, etc.) a una industria

Origen: Sherman Antitrust Act (1890) en Inglaterra. Creada para atacar a los cárteles.

Función de producción

Partiremos de una función de producción simple en la que intervienen dos factores:

- ▶ trabajo (I)
- capital (k)

Ejemplo:

$$f(I,k) = AI^{\alpha}k^{1-\alpha}$$

$${\rm con} \ 0<\alpha<1$$

Función de producción

Sea
$$f(I, k) = AI^{\alpha}k^{1-\alpha}$$

Producto marginal de /

$$\frac{\partial f(l,k)}{\partial l} = A\alpha \left(\frac{k}{l}\right)^{1-\alpha}$$

Producto marginal de k

$$\frac{\partial f(l,k)}{\partial k} = A(1-\alpha) \left(\frac{l}{k}\right)^{\alpha}$$

Rendimientos decrecientes

Simplifiquemos un poco (sea $B=Ak^{1-\alpha}$ constante) nuestra nueva función es $f(I,k)=f(I)=BI^{\alpha}$.

Con producto marginal $P_{Mgl} = \frac{B\alpha}{l^{1-\alpha}}$.

Notemos que a mayor I, menor P_{MgI} . A esto se le llama rendimientos decrecientes.

Retornos a escala

Sea $f(l,k) = Al^{\alpha}k^{1-\alpha}$. Aumentemos l y k al mismo tiempo y ambos en la misma proporción λ .

$$f(\lambda I, \lambda k) = A(\lambda I)^{\alpha} (\lambda k)^{1-\alpha}$$

$$= A\lambda^{\alpha} I^{\alpha} \lambda^{1-\alpha} k^{1-\alpha}$$

$$= A\lambda^{\alpha} \lambda^{1-\alpha} I^{\alpha} k^{1-\alpha}$$

$$= A\lambda^{\alpha+1-\alpha} I^{\alpha} k^{1-\alpha}$$

$$= A\lambda I^{\alpha} k^{1-\alpha}$$

$$= \lambda f(I, k)$$

Esto se llama retornos constantes a escala.

Retornos a escala

Retornos constantes a escala

$$f(\lambda I, \lambda k) = \lambda f(I, k)$$

Retornos crecientes a escala

$$f(\lambda l, \lambda k) > \lambda f(l, k)$$

Retornos decrecientes a escala

$$f(\lambda I, \lambda k) < \lambda f(I, k)$$

Costos

Si bien aumentar el trabajo y el capital aumentan la producción, esto tiene un costo:

000000000

- ▶ aumentar / requiere un salario (w)
- ightharpoonup aumentar k requiere una renta (r)

Definimos nuestra función de costo variable:

$$CV(w, r; Q) = wl(Q) + rk(Q)$$

Y nuestra función de costo total:

$$CT(w, r; Q) = CF + CV(w, r; Q)$$

Costo Marginal y Costo Medio

Definimos al **costo marginal** como el cambio en el costo de producir una unidad más.

$$C_{MgI} = \frac{\partial CT}{\partial Q}$$

Definimos al **costo medio** como el costo unitario de cada unidad producida (el promedio).

$$C_{Me} = \frac{CT}{Q}$$

Costo

Ejemplo

En este caso
$$\mathit{C_{MgI}} = 2\mathit{cQ}$$
 y $\mathit{C_{Me}} = \frac{\mathit{F}}{\mathit{Q}} + \mathit{cQ}$

Ejemplo

Veamos cómo se comportan C_{Mgl} y C_{Me} .

El costo marginal es una recta.

Para ver cómo se comporta el costo medio, derivemos e igualemos a cero:

$$\frac{\partial C_{Me}}{\partial Q} = \frac{-F}{Q^2} + c = 0$$

entonces

$$Q^* = \sqrt{\frac{F}{c}}$$

De la segunda derivada del C_{Me} sabemos que encontramos un mínimo:

$$\frac{\partial^2 C_{Me}}{\partial Q^2} = \frac{2F}{Q^3} > 0$$

Ejemplo

Notemos que

$$C_{Mgl}\left(\sqrt{\frac{F}{C}}\right) = 2c\sqrt{\frac{F}{C}} = 2\sqrt{\frac{c^2F}{c}} = 2\sqrt{cF}$$

$$C_{Me}\left(\sqrt{\frac{F}{C}}\right) = \frac{F}{\sqrt{\frac{F}{C}}} + c\sqrt{\frac{F}{C}} = \sqrt{cF} + \sqrt{cF} = 2\sqrt{cF}$$

Costos

Teorema

Si Q^* es tal que minimiza a C_{Me} , entonces $C_{Me}(Q^*) = C_{Mgl}(Q^*)$.

Demostración

$$\frac{\partial C_{Me}}{\partial Q} = \frac{\partial \frac{CT}{Q}}{\partial Q}$$

$$= \frac{Q \frac{\partial CT}{\partial Q} - CT \frac{\partial Q}{\partial Q}}{Q^2}$$

$$= \frac{Q(C_{Mgl}) - CT}{Q^2}$$

$$= \frac{C_{Mgl}}{Q} - \frac{CT}{Q^2} = 0 \Rightarrow$$

$$C_{Mgl} = \frac{CT}{Q} = C_{Me}$$

Economías de escala

Se denomina economías de escala al momento en el que al aumentar la producción, disminuye el costo medio. Hay 2 tipos:

- Internas la empresa aumenta su propia producción y logra disminuir su costo medio.
- Externas el costo medio de la empresa disminuye por el aumento en la producción de otra empresa.

Costo

Economías de escala

Desglosemos al costo medio

$$C_{Me} = \frac{CT}{Q} = \frac{CF}{Q} + \frac{CV}{Q} = CF_{Me} + CV_{Me}$$

De la misma forma que en su mínimo

 $C_{Me} = C_{Mgl}$, una demostración similar puede mostrar que en su mínimo $CV_{Me} = C_{Mgl}$.

El punto de cierre

- En p' no cubrimos el C_{Me}, pero sí el CV_{Me}. Cada unidad producida cuesta más de lo que obtenemos por ella, aún así es posible que la empresa aún produzca.
- En p" ni siquiera alcanzamos a cubrir el CV_{Me}, bajo este escenario, la empresa ya no produce.

Al momento donde el costo variable medio se minimiza, se le llama **punto de cierre**.

Función de Demanda (lineal)

Definamos la función de demanda:

$$P(Q) = a - bQ$$

con a > 0 y b > 0.

Esta también puede ser escrita como

$$Q(P) = \frac{a-P}{b}$$

Función de Demanda (lineal)

Elasticidad

Nos indica qué tan rápido la cantidad se ajusta al haber un cambio en precio.

$$\eta_P(Q) = \frac{\partial Q(P)}{\partial P} \cdot \frac{P}{Q}$$

en el caso de la demanda lineal

$$\eta_P = -\frac{P}{bQ}$$

Elasticidad

Notemos que si

$$\triangleright P > bQ$$

$$P = bQ \qquad \Rightarrow \qquad |\eta_P| = 1$$

$$P < bQ \qquad \Rightarrow \qquad |\eta_P| < 1$$

$$\Rightarrow |\eta_P| > 1$$

$$|\eta P| \geq |\eta P| = 1$$

$$\Rightarrow$$

$$|\eta_P| < 1$$

En particular, cuando P = bQ

$$Q = \frac{1}{Q}$$
$$= \frac{a}{b} - Q$$

$$Q = \frac{a}{2b}$$

Elasticidad

Ingreso Total

Una vez hechas las transacciones los vendedores acumularán

$$P(Q) \cdot Q = a - bQ$$

Esta es nuestra función de ingreso total.

En el caso de nuestra demanda lineal:

$$IT = P(Q)Q = (a - bQ)Q = aQ - bQ^2$$

Función de Ingreso Marginal

Mide cuánto aumenta el ingreso total si los consumidores demandan una unidad más del producto.

$$I_{MgI} = \frac{\partial IT}{\partial Q}$$

En la demanda lineal

$$I_{Mgl} = \frac{\partial IT}{\partial Q} = a - 2bQ$$

Función de Ingreso Marginal

Relación entre Ingreso marginal y Elasticidad

Primero recordemos dos teoremas:

$$\frac{\partial u \cdot v}{\partial x} = u \cdot dv + v \cdot du$$

У

$$f'(x) = \frac{1}{f^{-1}(x)}$$

Relación entre Ingreso marginal y Elasticidad

$$I_{Mgl} = \frac{\partial P(Q)Q}{\partial Q} = P(Q)\frac{\partial Q}{\partial Q} + Q\frac{\partial P(Q)}{\partial Q}$$

$$= P(Q) + Q\frac{\partial P(Q)}{\partial Q}$$

$$= P(Q) + Q\frac{P(Q)}{P(Q)}\frac{\partial P(Q)}{\partial Q}$$

$$= P(Q)\left(1 + \frac{Q}{P(Q)}\frac{\partial P(Q)}{\partial Q}\right)$$

$$= P(Q)\left(1 + \frac{Q}{P(Q)}\frac{1}{\frac{\partial Q}{\partial P}}\right)$$

$$I_{Mgl} = P(Q)\left(1 + \frac{1}{\frac{\partial Q}{\partial Q}}\right)$$

Excedente del Consumidor

Excedente del Consumidor

Es una medida del bienestar que obtienen los consumidores al participar en el mercado.

Gráficamente, se puede ver como el área bajo la curva de demanda

La Empresa

Es el principal elemento de análisis en Organización Industrial.

No importa cuál sea la estructura del mercado, las empresas siempre buscarán maximizar sus beneficios.

La Función de Beneficios

La función de beneficios le indica a la empresa si está obteniendo ganancias por participar en una industria o si podr´ía estar mejor en una industria distinta.

Se define como el **ingreso total** obtenido por las ventas del producto, menos el **costo total** por la producción del mismo.

$$\Pi = IT - CT$$

En nuestro ejemplo de la demanda lineal

$$IT = P(Q)Q = aQ - bQ^2$$

y el ingreso marginal

$$I_{Mgl} = \frac{\partial IT}{\partial Q} = a - 2bQ$$

que alcanza un máximo cuando $Q=rac{a}{2b}$

Introducción

La Función de Beneficios

Notemos que con excepción del máximo, siempre hay dos valores que Q que nos permiten alcanzar el mismo ingreso total.

Las empresas buscarán maximizar sus beneficios

$$\Pi = IT - CT$$

La Función de Beneficios

Matemáticamente

Maximicemos la función de beneficios

$$\frac{\Pi}{\partial Q} = 0$$

$$\frac{\partial (IT - CT)}{\partial Q} = 0$$

$$\frac{\partial IT}{\partial Q} - \frac{\partial CT}{\partial Q} = 0$$

$$I_{Mgl} - C_{Mgl} = 0$$

$$I_{Mgl} = C_{Mgl}$$

La Función de Beneficios

Intuición

Si $I_{Mgl} > C_{Mgl} \Rightarrow$ puedo producir más y gano más de lo que me va a costar.

Produzco más.

Si $I_{Mgl} < C_{Mgl} \Rightarrow$ puedo producir más pero me va a costar más de los que le voy a ganar.

Produzco menos.

Conclusión

Las empresas maximizan beneficios cuando el ingreso marginal es igual al costo marginal.

<u>Recuérdenlo</u>