Math Computing

Chakali Suresh

NCERT 9.7.1.7

This question is from class 9 ncert chapter 7.triangles

- 1. **AB** is a line segment and **P** is its mid-point. **D** and **E** are points on the same side of **AB** such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. Show that
 - (a) $\triangle \mathbf{DAP} \cong \triangle \mathbf{EBP}$
 - (b) AD = BE

Figure 1: $\triangle \mathbf{DAP}$ and $\triangle \mathbf{EBP}$

Construction steps:

(i) Let point $\bf A$ be the reference point whose coordinates are at origin.

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{1}$$

(ii) Let the distance between point $\bf A$ and $\bf B$ be x, and also considering the point $\bf B$ on same axis .

$$||A - B|| = x \tag{2}$$

So, the coordinates of point **B** be,

$$\mathbf{B} = \begin{pmatrix} x \\ 0 \end{pmatrix} \tag{3}$$

(iii) Given the point **P** is the mid-point of line segment **AB**,

$$\mathbf{P} = \left(\frac{A+B}{2}\right) \tag{4}$$

$$\mathbf{P} = \begin{pmatrix} a \\ b \end{pmatrix} \tag{5}$$

(iv) Let the coordinate points of **D** and **E** are,

$$\mathbf{D} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},\tag{6}$$

$$\mathbf{E} = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} \tag{7}$$

(v) Let assume the distance between points (\mathbf{A}, \mathbf{D}) and (\mathbf{B}, \mathbf{E}) be r, the line $\mathbf{A}\mathbf{B}$ makes an angle θ_1 anticlock-wise from point \mathbf{A} and makes the same angle in clock-wise from point \mathbf{B} with the lines $(\mathbf{A}\mathbf{D}, \mathbf{B}\mathbf{E})$.

$$||A - D|| = r = ||B - E|| \tag{8}$$

$$\angle BAD = \theta = \angle ABE \tag{9}$$

 \therefore Now the coordinates of point \mathbf{D}, \mathbf{E} are,

$$\mathbf{D} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} r \cos \theta \\ r \sin \theta \end{pmatrix} \tag{10}$$

$$\mathbf{E} = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -r\cos\theta \\ r\sin\theta \end{pmatrix} \tag{11}$$

(vi) Similarly, the mid-point ${\bf P}$ also makes an angle θ_2 with the points ${\bf D}$ and ${\bf E}$

$$\angle BAD = \theta = \angle ABE \tag{12}$$

(vii) Let assume,

Symbol	Value	Description
θ_1	30°	$\angle BAD = \angle ABE$
θ_2	60°	$\angle EPA = \angle DPB$
A	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Reference point at origin
В	$\begin{pmatrix} 5 \\ 0 \end{pmatrix}$	point ${f B}$ on the same axis of ${f A}$

Table 1: Input Parameters

Symbol	Value	Description
r	A - B	Length of AB
P	$\frac{A+B}{2}$	Mid-point of AB
D	$A + \begin{pmatrix} r\cos\theta_1 \\ r\sin\theta_1 \end{pmatrix}$	From point A makes an angle θ_1 in anticlock-wise with line
		AB, AD
E	$B + \begin{pmatrix} -r\cos\theta_1\\r\sin\theta_1 \end{pmatrix}$	From point B makes an angle θ_1 in clock-wise with line
	()	AB, BE
D	$P + \begin{pmatrix} r\cos\theta_2 \\ r\sin\theta_2 \end{pmatrix}$	From point P makes an angle θ_2 in anticlock-wise with line BP , DP
	(0)	BF, DF
E	$P + \begin{pmatrix} -r\cos\theta_2 \\ r\sin\theta_2 \end{pmatrix}$	From point P makes an angle θ_2 in anticlock-wise with line \mathbf{AP}, \mathbf{EP}

Table 2: Output Parameters

Joining these points forms the required figure

Figure 2: $\triangle \mathbf{DAP}$ and $\triangle \mathbf{EBP}$