Correction

Mines de Sup 2000

1. $T: E \to \mathbb{R}$.

Soit
$$\lambda, \mu \in \mathbb{R}$$
 et $A = (a_{i,j}), B = (b_{i,j})$ dans E

$$\lambda . A + \mu . B = (\lambda . a_{i,j} + \mu . b_{i,j})_{i,j}$$
 donc

$$T(\lambda . A + \mu . B) = \sum_{i=1}^{n} (\lambda . a_{i,i} + \mu . b_{i,i}) = \lambda \sum_{i=1}^{n} a_{i,i} + \mu . \sum_{i=1}^{n} b_{i,i} = \lambda . T(A) + \mu . T(B)$$

Donc $T \in E^*$.

Soit $U \in E$. $T_U : E \to \mathbb{R}$.

Soit $\lambda, \mu \in \mathbb{R}$ et $A, B \in E$.

$$T_{U}(\lambda . A + \mu . B) = T((\lambda . A + \mu . B)U) = T(\lambda . A U + \mu . B U) = \lambda T(A U) + \mu T(B U) = \lambda . T_{U}(A) + \mu . T_{U}(B)$$

Donc $T_U \in E^*$.

2.a
$$AB = (c_{i,j})$$
 avec $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$ donc $T(AB) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{i,k} b_{k,i}$.

On conclut en réindexant les sommes.

2.b
$${}^{t}A = (a'_{ij}) \text{ avec } a'_{ij} = a_{ij}$$
.

$$T(^{t}AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a'_{j,i}b_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}b_{i,j}$$
.

$$T(AB) = T(^{t}AB) = T(^{t}(^{t}AB)) = T(^{t}B^{t}A) = T(^{t}BA) = T(BA).$$

3.a
$$\ker T_{U} = E$$
.

3.b Si $U \neq 0$ elle possède au moins un coefficient non nul. Notons (i, j) son indice et λ sa valeur.

Pour
$$(i_0, j_0) = (j, i) : T_U(E_{i_0, j_0}) = T(UE_{i_0, j_0}) = \lambda \neq 0$$
.

 $\operatorname{Im} T_{U}$ est un sous-espace vectoriel de R non réduit à $\{0\}$ c'est donc R.

Par le théorème du rang : $\dim H_U = \dim E - 1 = n^2 - 1$.

4.a
$$T_{i,j}(E_{k,l}) = T(E_{j,i}E_{k,l}) = T({}^tE_{i,j}E_{k,l})$$
 se voit égal au coefficient d'indice (i,j) de $E_{k,l}$ c'est à dire $\delta_{i,k}\delta_{j,l}$.

4.b Montrons que la famille est libre.

Si
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i,j} T_{i,j} = 0$$
 alors

$$\forall 1 \leq k, l \leq n$$
, on a $\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i,j} T_{i,j}(E_{k,l}) = 0$

d'où
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i,j} \delta_{i,k} \delta_{j,l} = 0$$
 puis $\lambda_{k,l} = 0$.

La famille des $T_{i,j}$ est libre et formée de $n^2 = \dim E$ éléments de E, c'est donc une base de E.

4.c $\varphi: E \to E^*$ est bien définie.

Soit $\lambda, \mu \in \mathbb{R}$ et $U, V \in E$.

$$\forall M \in E, \varphi(\lambda.U + \mu.V)(M) = T((\lambda.U + \mu.V)M) = \lambda.T(UM) + \mu T(VM) = \lambda \varphi(U)(M) + \mu \varphi(V)(M).$$

Donc
$$\varphi(\lambda . U + \mu . V) = \lambda . \varphi(U) + \mu . \varphi(V)$$
.

 φ est une application linéaire.

De plus φ transforme la base $(E_{i,j})_{1 \le i,j \le n}$ de E en $(T_{j,i})_{1 \le i,j \le n}$ qui est une base (E,*), φ est donc un isomorphisme de \mathbb{R} -espace vectoriel.

5.a Comme $A \notin H$, la matrice A est non nulle et donc dim Vect(A) = 1.

Soit $M \in H \cap \text{Vect}(A)$.

M s'écrit λA avec $\lambda \in \mathbb{R}$.

Si $\lambda \neq 0$ alors $A = \frac{1}{\lambda} . M \in H$ ce qui est exclu.

Nécessairement $\lambda = 0$ puis A = 0.

Ainsi $H \cap \operatorname{Vect}(A) = \{0\}$, de plus $\dim H + \dim \operatorname{Vect}(A) = n^2$, on peut conclure que H et $\operatorname{Vect}(A)$ sont supplémentaires dans E.

5.b $\forall M \in E, \exists ! (X, \alpha) \in H \times \mathbb{R} \text{ tel que } M = X + \alpha.A.$

Posons $\ell(M) = \alpha$, on définit ainsi une application $\ell: E \to \mathbb{R}$.

Montrons sa linéarité :

Soit $\lambda, \mu \in \mathbb{R}$ et $M, N \in E$.

 $\exists ! (X, \alpha) \in H \times \mathbb{R}$ et $\exists ! (Y, \beta) \in H \times \mathbb{R}$ tels que :

$$M = X + \alpha . A$$
 et $N = Y + \beta . A$.

On a $\ell(M) = \alpha$ et $\ell(N) = \beta$. Calculons $\ell(\lambda M + \mu N)$.

On a $\lambda . M + \mu . N = (\lambda . X + \mu . Y) + (\lambda \alpha + \mu \beta) . A$ avec $\lambda . X + \mu . Y \in H$ ceci permet de reconnaître :

$$\ell(\lambda . M + \mu . N) = \lambda \alpha + \mu \beta = \lambda \ell(M) + \mu \ell(N).$$

Ainsi ℓ est une forme linéaire sur E .

De plus $\ker \ell = H$ puisque les matrices M qui annulent ℓ sont celles qui s'écrivent : M = X + 0.A avec $X \in H$.

- 5.c Pour $U=\varphi^{-1}(\ell)\neq 0$, on a $H_U=\ker T_U=\ker \varphi(U)=\ker \ell=H$.
- 6.a rg(A) = n donc A est inversible.

6.b
$$T_{J_r}(A) = T(J_r A) = \sum_{i=1}^r T(E_{i,i} A) = 0$$
.

7. Soit H un hyperplan de E et $U \in E \setminus \{0\}$ telle que $H = H_U$.

Posons r = rg(U), on sait qu'il existe des matrices inversibles P,Q telles que $PUQ = J_r$.

Pour tout
$$M \in E$$
, $T_U(M) = T(UM) = T(P^{-1}J_rQ^{-1}M) = T(J_rQ^{-1}MP^{-1})$.

Pour M = QAP, qui est une matrice inversible, on a $T_U(M) = T(J_xA) = 0$ et donc $M \in H_U$.

Ainsi $H=H_{\scriptscriptstyle U}\,$ possède au moins une matrice inversible, la matrice M .