Conceptos fundamentales de electromagnetismo

1.1 Ecuaciones de Maxwell

Son ecuaciones lineales de modo que vale la superposición (con **E**, **B** y cualquier vector relacionado linealmente con ellos).

$$\begin{split} \nabla \cdot \mathbf{D} &= 4\pi \rho_{\ell} \qquad \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} &= -\frac{1}{c} \frac{\partial B}{\partial t} \qquad \nabla \times \mathbf{H} = \frac{4\pi}{c} \mathbf{J}_{\ell} + \frac{1}{c} \frac{\partial D}{\partial t} \\ \mathbf{F} &= q \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right) \end{split}$$

Los vectores pueden ser polares (tienen físicamente bien definido el sentido) o axiales (se les atribuye un sentido por convención).

Las ecuaciones son invariantes ante transformaciones del tipo: rotación y reflexión espacial y temporal.

1.2 Electrostática

La ley de Coulomb reza que

$$\mathbf{F}_{12} = q_1 q_2 \frac{(\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3}$$

que es la fuerza sobre 1 debido a 2. De la ley de Coulomb se puede definir

$$\mathbf{E}_{12}(\mathbf{x}_1) \equiv \mathbf{F}_{12}/q_1$$

y tomando $\mathbf{x}_1 \equiv \mathbf{x}$ y haciendo el límite $q_1 \to 0$ se tiene

$$\mathbf{E}(\mathbf{x}) = \sum_{i=1}^{N} \, q_i \frac{(\mathbf{x} - \mathbf{x}_i)}{|\mathbf{x} - \mathbf{x}_i|^3}$$

que es el campo eléctrico y que en el paso al continuo resulta

$$\mathbf{E}(\mathbf{x}) = \int_{V'} \rho(\mathbf{x}) \frac{(\mathbf{x} - \mathbf{x}_i)}{|\mathbf{x} - \mathbf{x}_i|^3} dV'$$

siendo ${\bf x}$ punto campo y ${\bf x}_i$ punto fuente.

Figura 2.1

1.2.1 Conservación de la carga

La carga total sale de una integral

$$Q = \int_{V'} \rho(\mathbf{x}') dV'$$

como muestra la imagen y si el volumen es fijo podemos tomar la derivada con respecto al tiempo que pasa el interior como derivada parcial,

$$\frac{dQ}{dt} = \int_{V'} \frac{\partial \rho}{\partial t}(\mathbf{x}') dV' = -\int_{S \equiv \partial V'} \mathbf{J} \cdot d\mathbf{S}$$

Figura 2.2

y el miembro extremo derecho se debe a que si la carga varía es a consecuencia de que se va en forma de flujo. Aplicando el teorema de la divergencia en el miembro derecho,

$$\int_{V'} \frac{\partial \rho}{\partial t}(\mathbf{x}') dV' = - \int_{V'} \nabla \cdot \mathbf{J} \; dV'$$

lo cual vale para todo volumen y entonces esto significa que

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0$$

que es la ecuación de continuidad de la carga. Si fuera $\nabla \cdot \mathbf{J} = 0$ esto significa que las líneas de \mathbf{J} no tienen principio ni fin.

1.3 Interacción magnética

Cuando se da $\nabla \cdot \mathbf{J} = 0$ hablamos de una corriente estacionaria (no hay acumulación de carga en ninguna parte). Las corrientes estacionarias producen efectos magnéticos dados por la ley de Biot-Savart

$$\mathbf{B}(\mathbf{x}) = \frac{1}{c} \int_{\Gamma} \frac{Id\ell' \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3}$$

que es válida para un circuito Γ , que es una curva que se recorre en sentido CCW. En el caso de un volumen la expresión es

$$\mathbf{B}(\mathbf{x}) = \frac{1}{c} \int_{\mathbf{x}'} \frac{\mathbf{J}(\mathbf{x}') \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} dV'$$

mientras que la fuerza sobre un circuito Γ es

$$F = \frac{1}{c} \int_{\Gamma} I d\ell \times \mathbf{B}$$

y sobre un volumen

$$F = \frac{1}{c} \int_{V} \mathbf{J} \times \mathbf{B} dV$$

La transformación entre estas integrales puede hacerse merced al siguiente razonamiento,

$$Id\ell \times \mathbf{B} = \mathbf{J} \cdot d\mathbf{S}d\ell \times \mathbf{B} = \cos(\theta)dS\mathbf{J}d\ell \times \mathbf{B} =$$
$$\mathbf{J} \times \mathbf{B}\cos(\theta)dSd\ell = \mathbf{J} \times \mathbf{B}d\mathbf{S} \cdot d\ell = \mathbf{J} \times \mathbf{B}dV$$

1.3.1 Fuerza de un circuito sobre otro

La fuerza de un circuito 2 sobre otro circuito 1 puede calcularse con un poco de paciencia como sigue

$$\begin{split} F_{12} &= \frac{1}{c} \int_{\Gamma_1} I_1 d\ell_1 \times \left\{ \frac{1}{c} \int_{\Gamma_2} \frac{I_2 d\ell_2 \times (\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \right\} \\ F_{12} &= \frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} d\ell_1 \times \left\{ \frac{d\ell_2 \times (\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \right\} \\ F_{12} &= \frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} d\ell_2 \left\{ \frac{d\ell_1 \cdot (\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \right\} - \int_{\Gamma_1} \int_{\Gamma_2} \frac{(\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \left\{ d\ell_1 \cdot d\ell_2 \right\} \end{split}$$

donde el primer término se comprueba nulo si se reescribe utilizando que

$$\frac{(\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} = \nabla_{\mathbf{x}_2} \frac{1}{|\mathbf{x}_1 - \mathbf{x}_2|} = -\nabla_{\mathbf{x}_1} \frac{1}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

de manera que entonces

$$-\int_{\Gamma_2} d\ell_2 \int_{\Gamma_1} d\ell_1 \cdot \nabla_{\mathbf{x}_1} \frac{1}{|\mathbf{x}_1 - \mathbf{x}_2|}$$

donde se ve que es nula la última integral dado que

$$\int_{\Gamma_1} d\ell_1 \cdot \nabla_{\mathbf{x}_1} = 0.$$

Entonces, se tiene

$$F_{12} = -\frac{I_1I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} \frac{(\mathbf{x}_1 - \mathbf{x}_2)}{|\mathbf{x}_1 - \mathbf{x}_2|^3} \left(d\ell_1 \cdot d\ell_2 \right)$$

que vale lo mismo si intercambiamos Γ_1 con Γ_2 en la integración. Podemos decir que con corrientes estacionarias vale el principio de acción y reacción: las fuerzas son iguales y de sentido opuesto.

1.4 Teorema de Helmholtz

Nos dice que un campo vectorial está completamente determinado por su divergencia y su rotor. Por ejemplo, para un campo eléctrico

$$\mathbf{E} = \int_{V'} \rho \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^3} dV' = -\int_{V'} \rho \nabla_{\mathbf{x}} \frac{1}{|\mathbf{x} - \mathbf{x}'|} dV' = -\nabla_{\mathbf{x}} \int_{V'} \frac{\rho}{|\mathbf{x} - \mathbf{x}'|} dV' =$$

y esta última es la integral de Poisson

$$\mathbf{E} = -\nabla_{\mathbf{x}}\phi(\mathbf{x}).$$

Entonces E es un gradiente y por ello

$$\nabla \times \mathbf{E} = 0$$

de manera que $\bf E$ es conservativo, cumple $\int {\bf E} \cdot d\ell = 0$ o lo que es lo mismo, $\bf E$ es irrotacional. Hemos hecho la construcción de un potencial electrostático.

1.5 Ley de Gauss

Figura 5.3

$$\mathbf{E} \cdot \hat{n} = q \frac{\cos(\theta)}{r^2}$$

y el ángulo sólido es

$$\mathbf{E} \cdot \hat{n}dS = q \frac{\cos(\theta)}{r^2} dS$$

$$\mathbf{E} \cdot \hat{n} dS = q d\Omega \qquad \longrightarrow \qquad \int_{S \equiv \partial V} \mathbf{E} \cdot \hat{n} \ dS = q \int_{S} d\Omega = \begin{cases} 0 & \text{carga exterior} \\ 4\pi & \text{carga interior} \end{cases}$$

$$\int_{S} \mathbf{E} \cdot \hat{n} \ dS = 4\pi \sum_{i} q_{i}$$

La ley de Gauss es

$$\int_{S} \mathbf{E} \cdot \hat{n} \ dS = 4\pi Q_n$$

donde Q_n es la carga neta dentro de la superficie S. Al continuo pasa como

$$\int_{S} \mathbf{E} \cdot \hat{n} \ dS = 4\pi \int_{V} \rho \, dV$$

de manera que

$$\int_{V} \boldsymbol{\nabla} {\cdot} \mathbf{E} \; dV = \int_{V} 4\pi \rho \, dV$$

y entonces

$$\nabla \cdot \mathbf{E} = 4\pi \rho.$$

Por otro lado si ${\bf E}$ es el gradiente de un potencial ϕ se tiene

$$\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla \phi) = -\nabla^2 \phi = 4\pi \rho$$

y se desprenden las ecuaciones de Poisson,

$$\nabla^2 \phi = -4\pi \rho$$

y de Laplace

$$\nabla^2 \phi = 0$$

que es el caso particular de la anterior con cargas nulas.

La solución de la ecuación no homogénea es suma de una solución del homogéneo más una solución particular. La carga está relacionada a la solución particular.

1.5.1 Gauges

Dado que $\nabla \cdot \mathbf{B} = 0$ entonces existe un \mathbf{A} tal que

$$\nabla \times A = \mathbf{B}$$

pero para caracterizar totalmente el ${f A}$ tengo la libertad de definir a conveniencia

$$\nabla \cdot \mathbf{A} \equiv$$
 "el gauge".

Casos particulares importantes son el gauge de Coulomb,

$$\nabla \cdot \mathbf{A} = 0$$

de manera que como

$$\nabla \times (\nabla \times A) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = \frac{4\pi}{c} \mathbf{J}$$

se llega para el potencial electromagnético, bajo el gauge de Coulomb, a que

$$\nabla^2 \mathbf{A} = -\frac{4\pi}{c} \mathbf{J}$$

$$\mathbf{E} = \int_{V'} \frac{\rho(\mathbf{x}')(\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} dV' \quad \mathbf{B} = \frac{1}{c} \int_{V'} \frac{\mathbf{J}(\mathbf{x}') \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} dV'$$
Ley de Gauss
$$\int_{S} \mathbf{E} \cdot d\mathbf{S} = 4\pi Q_n \qquad \int_{\Gamma} \mathbf{B} \cdot d\ell = \frac{4\pi}{c} I_c$$

$$\nabla \cdot \mathbf{E} = 4\pi \rho$$

$$\nabla \times E = 0 \qquad \nabla \times B = 0$$

$$\nabla \times B = \frac{4\pi}{c} \mathbf{J}$$

$$\mathbf{E} = -\nabla \phi \qquad \mathbf{B} = \nabla \times A$$

Tabla 1.1

La operación de tomar rotor y el producto vecrtorial cambian el carácter de los vectores: de polares pasan a axiales y viceversa.

La fuerza general sobre una distribución de carga es

$$\mathbf{F} = \int_{V'} \rho \mathbf{E} dV' + \frac{1}{c} \int_{V'} \mathbf{J} \times \mathbf{B} dV'.$$

Figura 5.4