17 | Tychonoff Theorem

17.1 Tychonoff Theorem. If $\{X_s\}_{s\in S}$ is a family of topological spaces and X_s is compact for each $s\in S$ then the product space $\prod_{s\in S}X_s$ is compact.

17.2 Definition. Let \mathcal{A} be a family of subsets of a space X. The family \mathcal{A} is *centered* if for any finite number of sets $A_1, \ldots, A_n \in \mathcal{A}$ we have $A_1 \cap \cdots \cap A_n \neq \emptyset$

- **17.5 Lemma.** Let X be a topological space. The following conditions are equivalent:
 - 1) The space X is compact.
 - 2) For any centered family A of closed subsets of X we have $\bigcap_{A \in A} A \neq \emptyset$.

17.6 Definition. A partially ordered set (or poset) is a set S equipped with a binary relation \leq satisfying

- (i) $x \le x$ for all $x \in S$ (reflexivity)
- (ii) if $x \le y$ and $y \le x$ then y = x (antisymmetry)
- (iii) if $x \le y$ and $y \le z$ then $x \le z$ (transitivity).

17.8 Definition. A *linearly ordered set* is a poset (S, \leq) such that for any $x, y \in S$ we have either $x \leq y$ or $y \leq x$.

17.9 Definition. If (S, \leq) is a poset then an element $x \in S$ is a *maximal element* of S if we have $x \leq y$ only for y = x.

17.13 Definition. Let (S, \leq) is a poset and let $T \subseteq S$. An <i>upper bound of</i> T is an element $x \in S$ such that $y \leq x$ for all $y \in T$.
17.14 Definition. If (S, \leq) is a poset. A <i>chain</i> in S is a subset $T \subseteq S$ such that T is linearly ordered
17.15 Zorn's Lemma . If (S <) is a non-empty poset such that every chain in S has an upper bound
in S then S contains a maximal element.
Proof. See any book on set theory.

Proof of Theorem 17.1.

17.16 Proposition. If X_i is a Hausdorff space for each $i \in I$ then the product space $\prod_{i \in I} X_i$ is als Hausdorff.	0
Proof. Exercise.	
17.17 Corollary. If X_i is a compact Hausdorff space space for each $i \in I$ then the product space $\prod_{i \in I} X_i$ is also compact Hausdorff.	e