A számításelmélet alapjai I. (Második gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. február 20.

Tematika

- A generatív grammatika fogalma, generatív grammatikák típusai.
- A levezetés fogalma (közvetlen (egylépéses) levezetés, *k* lépéses levezetés, levezetés, mondatforma), generált nyelv.
- Chomsky-féle hierarchia.
- Nyelvosztályok zártsági tulajdonságai.

Generatív grammatika

Példa 1

Generatív grammatikák-e a következők? Indokoljuk!

- $\textbf{2} \quad \textit{G}_2 = (\{\textit{S},\textit{A},\textit{B}\},\{\textit{a},\textit{b}\},\{\textit{S}\rightarrow\textit{\varepsilon},\textit{S}\rightarrow\textit{AB},\textit{A}\rightarrow\textit{aA},\textit{B}\rightarrow\textit{ab},\textit{abb}\rightarrow\textit{aSb}\},\textit{S}).$

Példa 2

Milyen nyelvet generálnak a következő grammatikák? Adjunk példát egy-egy lehetséges levezetésre!

- $G_1 = (N, T, P, S)$, ahol $N = \{S\}$, $T = \{a, b\}$ és $P = \{S \rightarrow \varepsilon, S \rightarrow SS, S \rightarrow aS, S \rightarrow Sa, S \rightarrow aSb, S \rightarrow bSa\}$.
- ② $G_2 = (N, T, P, S)$, ahol $N = \{S\}$, $T = \{a, b\}$ és $P = \{S \rightarrow \varepsilon, S \rightarrow aSa, S \rightarrow bSb\}$.

Példa 3

Legyen $G_4 = (N, T, P, S)$, ahol $N = \{S\}$, $T = \{a, b\}$ és $P = \{S \to \varepsilon, S \to SS, S \to aSb, S \to bSa\}$. Milyen nyelvet generál a G_4 grammatika? Bizonyítsuk!

Chomsky-féle hierarchia

Definíció 1

A G = (N, T, P, S) generatív grammatika i-típusú, i = 0, 1, 2, 3, ha P szabályhalmazára teljesülnek a következők:

- 0 i = 0: nincs korlátozás,
- ② i=1: P minden szabálya $u_1Au_2 \to u_1vu_2$ alakú, ahol $u_1,u_2,v\in (N\cup T)^*$, $A\in N$, és $v\neq \varepsilon$, kivéve az $S\to \varepsilon$ alakú szabályt, feltéve, hogy P-ben ilyen szabály létezik. Ha P tartalmazza az $S\to \varepsilon$ szabályt, akkor S nem fordul elő P egyetlen szabályának jobb oldalán sem,
- 3 i=2: P minden szabálya $A \to v$ alakú, ahol $A \in N$ és $v \in (N \cup T)^*$,
- i = 3: P minden szabálya vagy $A \rightarrow uB$ vagy $A \rightarrow u$, alakú, ahol $A, B \in N$ és $u \in T^*$.

Grammatikák típusai

Példa 4

Legyen $G_1 = (\{S, A, B\}, \{a, b\}, P, S)$, ahol $P = \{S \rightarrow AB, A \rightarrow BSB, A \rightarrow BB, B \rightarrow aAb, B \rightarrow \varepsilon, B \rightarrow a, B \rightarrow b\}$. Milyen típusú G_1 grammatika?

Grammatikák típusai

Példa 5

Legyen $G_2=(\{S,A,B\},\{a\},P,S)$, ahol $P=\{S\to ABa,AB\to AaBB,B\to aaa,S\to AS,AAS\to ABS\}$. Milyen típusú G_2 grammatika?

Grammatikák típusai

Példa 6

Legyen $G_3=(\{S,A,B\},\{0,1\},P,S)$, ahol $P=\{S\to\varepsilon,S\to AB,A\to 1B0,0B\to 011,1B\to 10BS\}$. Milyen típusú G_3 grammatika?

Példa 7

Adjunk környezetfüggetlen grammatikát, amely az

•
$$L_1 = \{a^{2n}b^{3n} \mid n \ge 0\}$$

•
$$L_2 = \{u \in \{a, b\}^* \mid u = u^R\}$$

nyelvet generálja!

Példa 8

Konstruáljunk környezetfüggetlen G grammatikát, amely az alábbi nyelvet generálja: $L = \{a^m c^k b^n \mid 1 \leq m \leq n, k \geq 1\}!$ Igazoljuk állításunkat!

Példa 9

Konstruáljunk 3-típusú grammatikát a legfeljebb három a-t tartalmazó $\{a,b\}$ feletti szavak nyelvéhez! Adjuk meg babbaab egy lehetséges levezetését!

Példa 10

Legyen $V=\{a,b,c\}$ egy ábécé és L egy nyelv V felett, ahol $L=L_1L_2$ és $L_1=\{(ab)^n\mid n\geq 0\}$ és $L_2=\{b,cc\}$. Konstruáljunk a zártsági tulajdonságok felhasználásával egy G_c 3-as típusú grammatikát, úgy, hogy $L(G_c)=L$ legyen!

Példa 10

Megjegyzés

A P szabályhalmazból megkonstruálunk egy P_1 szabályhalmazt úgy, hogy minden $A \to u$ alakú szabályt, ahol $A \in N$ és $u \in T^*$ felcserélünk egy $A \to uS'$ alakú szabályra $(S' \notin (N \cup T))$ és a többi szabályt változatlanul hagyjuk. A $G_c = (N \cup N', T \cup T', P_1 \cup P', S)$ grammatika nyilvánvalóan 3–típusú és generálja az L(G)L(G') nyelvet.

teljesül, ahol L = L(G)!

Példa 11

Legyen G=(N,T,P,S) egy 3-as típusú grammatika, ahol $N=\{S,A,B\}$, $T=\{a,b\}$ és $P=\{S\rightarrow aB,S\rightarrow b,A\rightarrow bbS,A\rightarrow bB,B\rightarrow aA,B\rightarrow \varepsilon\}$. Konstruáljunk egy G' 3-as típusú grammatikát, amelyre $L(G')=L^*$

Példa 11

Megjegyzés

Definiáljuk a P'' szabályhalmazt úgy, hogy $A \to uS$ eleme P''-nek minden $A \to u$ P-beli szabályra, ahol $u \in T^*$. Akkor a $G' = (N \cup \{S_0\}, T, P'' \cup P \cup \{S_0 \to \varepsilon, S_0 \to S\}, S_0)$ grammatika generálja az L^* nyelvet.

Példa 12

Bizonyítsuk be a környezetfüggetlen nyelvek zártsági tulajdonságai alapján, hogy az $L = \{a^i b^j \mid i \neq j\}$ nyelv környezetfüggetlen!

Példa 13

Legyen G = (N, T, P, S), ahol $N = \{S, A, B\}$, $T = \{a, b\}$ és $P = \{S \rightarrow aAbB, A \rightarrow aA, B \rightarrow bBb, B \rightarrow bbb, A \rightarrow aa\}$. Legyen L = L(G). Konstruáljunk meg egy olyan $G_* = (N', T, P', S')$ környezetfüggetlen grammatikát, amelyre $L(G_*) = L^*$ teljesül!

Példa 13

Megjegyzés

Legyen $S_0 \notin N$. A $G_* = (N \cup \{S_0\}, T, P \cup \{S_0 \rightarrow \varepsilon, S_0 \rightarrow SS_0\}, S_0)$ generálja az L^* nyelvet.