Let

$T = \{\langle M \rangle | M \text{ is a TM that accepts } w^{\mathcal{R}} \text{ whenever it accepts } w\}.$

Show that T is undecidable.

Step-by-step solution

	Step 1 of 4
Consider the problem statement provided	in the textbook.
Comment	
	Step 2 of 4
Let $T = \left\{ \begin{array}{l} < M > \mid M \text{ is a TM that accepts} \end{array} \right.$	w^R whenever it accepts w
• It is already known that $L = \{(w, M): w \text{ is } a \}$	$accepted$ by M $_{is undecidable.}$
$ullet$ Assume that $\ensuremath{\mathit{T}}$ is decidable, then there must	st exist a TM by which T can be decided. Let's say P is the Turing Machine that decides T .
Comment	
	Step 3 of 4
For any input (w,M) , M' can be constru	ueted as follows:
If $w = w^R$, simulate M on w . The Σ is the	
	then for input ab , M 'will reject all the other strings except ab .
Let M be the alphabet set of M . In Now, simulate M on W .	nen for input uv , M will reject all the other strings except uv .
• If M accepts w , M' rejects.	
• If M rejects w , M' accepts.	
Claim: P accepts M' iff M accepts w .	
Proof: If P accepts M' . Since, M' rejects a	all the other strings which include ba also, then M' rejects ab which implies M accepts w .
If w is accepted by M , then M 'rejects ab	b. Since, M 'rejects all the other strings, M 'is accepted by P .
Now, construct a TM, Q for L . Construct M	I on input (w,M) and run P on it. Q accepts iff P accepts.
This contradict the fact that $\ L$ is undecidable	
Comment	
	Step 4 of 4
Therefore, T is undecidable. Hence Prove	d.
Comments (2)	