Ι

Загальна топологія

Частина I: Зміст

1	To	опологічні простори					
1	1.1	Нагадування: метрична топологія					
	1.2	Основні означення					
	1.3	Замикання					
	1.4	Шільність					
	1.5	Література					
2	Методи введення топології						
	2.1	Замикання і внутрішність					
	2.2	База топології					
	2.3	Література					
3	Збіжність і неперервність						
	3.1	Аксіоми зліченності					
	3.2	Збіжність					
	3.3	Неперервність					
	3.4	Гомеоморфізми					
	3.5	Література					
4	Аксіоми віддільності						
	4.1	Власне аксіоми					
	4.2	Наслідки з аксіом					
	4.3	Замкнені бази та функціональна віддільність					
	4.4	Література					
5	Ko	омпактність в топологічних просторах					
	5.1	Покриття і підпокриття					
	5.2	Компактні простори					
	5.3	Види компактності					
	5.4	Зв'язки між видами компактності					
	5.5	Література					

1 Топологічні простори

§1.1 Нагадування: метрична топологія

В курсі математичного аналізу [1, c. 26] уже розглядалися поняття околу точки, відкритої та замкненої множин, точки дотику, граничної точки, границі послідовності в просторі $\mathbb R$ тощо. Всі ці поняття визначалися за допомогою метрики простору $\mathbb R$ і відбивали певні властивості, притаманні множинам, за допомогою яких ми могли описувати основну концепцію цієї теорії — близькість між точками. Адже саме поняття близькості між точками (в розумінні малої відстані) є базовим для таких головних понять математичного аналізу як збіжність послідовностей і неперервність функцій.

Відносним недоліком цього підходу є очевидна залежність від метрики, уведеної в просторі. Тому постало питання, чи не можна побудувати більш абстрактну конструкцію, за допомогою якої можна було б описати ідеї, згадані вище. Серед дослідників цієї проблеми слід відзначити французьких математиків М. Фреше (1906), М. Рісса (1907–1908), німецького математика Ф. Хаусдорфа (1914), польського математика К. Куратовського (1922) і радянського математика П. Александрова (1924). В результаті досліджень цих та багатьох інших математиків виникла нова математична дисципліна — загальна топологія, предметом якої є вивчення ідеї про неперервність на максимально абстрактному рівні.

В цій та наступній лекціях ми введемо в розгляд ряд важливих топологічних понять. Це дозволить нам вийти на вищий рівень абстракції та опанувати ідеї, що пронизують майже всі розділи математики. Не буде великим перебільшенням сказати, що в певному розумінні топологія разом з алгеброю є скелетом сучасної математики, а функціональний аналіз — це розділ математики, головною задачею якого є дослідження нескінченновимірних просторів та їх відображень.

§1.2 Основні означення

Означення 1.1. Нехай X — множина елементів, яку ми будемо називати носієм. **Топологією** в X називається довільна система τ його підмножин, яка задовольняє таким умовам (аксіомам Александрова):

A1.
$$\varnothing, X \in \tau$$
.

А2. $G_{\alpha} \in \tau, \ \alpha \in A \implies \bigcup_{\alpha \in A} G_{\alpha} \in \tau, \ \text{де } A -$ довільна множина.

A3.
$$G_{\alpha} \in \tau$$
, $\alpha = 1, 2, \dots, n \implies \bigcap_{\alpha=1}^{n} G_{\alpha} \in \tau$.

Інакше кажучи, топологічною структурою називається система множин, замкнена відносно довільного об'єднання і скінченого перетину.

Означення 1.2. Пара $T = (X, \tau)$ називається **топологічним простором**.

Приклад 1.1 (топологічного простору)

Нехай X — довільна множина, $\tau = 2^X$ — множина всіх підмножин X. Пара $(X,2^X)$ називається простором з дискретною (максимальною) топологією.

Приклад 1.2 (топологічного простору)

Нехай X — довільна множина, $\tau = \{\emptyset, X\}$. Пара (X, τ) називається простором з тривіальною (мінімальною, або антидискретною) топологією.

Зрозуміло, що на одній і тій же множині X можна ввести різні топології, утворюючи різні топологічні простори. Припустимо, що на носії X введено дві топології — τ_1 і τ_2 . Вони визначають два топологічні простори: $T_1 = (X, \tau_1)$, і $T_2 = (X, \tau_2)$.

Говорять, що топологія τ_1 є **сильнішою**, або **тонкішою**, ніж топологія τ_2 , якщо $\tau_2 \subset \tau_1$. Відповідно, топологія τ_2 є **слабкішою**, або **грубішою**, ніж топологія τ_1 . Легко бачити, що найслабкішою є тривіальна топологія, а найсильнішою — дискретна

Зауваження 1.1 — Множина всіх топологій не є цілком упорядкованою, тобто не всі топології можна порівнювати одну з одною. Наприклад, наступні топології (зв'язні двокрапки) порівнювати не можна: $X = \{a,b\}, \ \tau_1 = \{\varnothing,X,\{a\}\}, \ \tau_2 = \{\varnothing,X,\{b\}\}.$

Означення 1.3. Множини, що належать топології τ , називаються **відкритими**. Множини, які є доповненням до відкритих множин, називаються **замкненими**.

Наприклад, множина всіх цілих чисел \mathbb{Z} замкнена в \mathbb{R} .

Зауваження 1.2 — Топологія містить всі відкриті множини. Водночас, треба зауважити, що поняття відкритих і замкнених множин не є взаємовиключними. Одна і та ж множина може бути одночасно і відкритою і замкненою (наприклад, \varnothing або X), або ані відкритою, ані замкненою (множини раціональних та ірраціональних чисел в \mathbb{R}). Отже, топологія може містити й замкнені множини, якщо вони одночасно є відкритими.

Як бачимо, поняття відкритої множини в топологічному просторі постулюється — для того щоб довести, що деяка множина M в топологічному просторі T є відкритою, треба довести, що вона належить його топології.

Означення 1.4. Нехай (X, τ) — топологічний простір, $M \subset X$. Топологія (M, τ_M) , де $\tau_M = \{U_M^{(\alpha)} = U_\alpha \cap M, U_\alpha \in \tau\}$, називається **індукованою**.

Означення 1.5. Топологічний простір (X, τ) називається **зв'язним**, якщо лише множини X і \varnothing є замкненими й відкритими одночасно.

Означення 1.6. Множина M топологічного простору (X, τ) називається **зв'язною**, якщо топологічний простір (M, τ_M) є зв'язним.

Приклад 1.3 (зв'язних просторів)

Тривіальний (антидиск
ретний) простір і зв'язна двокрапка є зв'язними просторами.

Зловживання позначеннями 1.1. Надалі ми будемо часто скорочувати (X, τ) просто як X або T.

Означення 1.7. Довільна відкрита множина $G \in T$, що містить точку $x \in T$, називається її **околом**.

Означення 1.8. Точка $x \in T$ називається **точкою дотику** множини $M \subset T$, якщо кожний окіл O(x) точки x містить хоча б одну точку із $M \colon \forall O(x) \in \tau : O(x) \cap M \neq \emptyset$.

Означення 1.9. Точка $x \in T$ називається **граничною точкою** множини $M \subset T$, якщо кожний окіл точки x містить хоча б одну точку із M, що не збігається з x: $\forall O(x) \in \tau : O(x) \cap M \setminus \{x\} \neq \emptyset$.

§1.3 Замикання

Означення 1.10. Сукупність точок дотику множини $M \subset T$ називається **замиканням** множини M і позначається \overline{M} .

Означення 1.11. Сукупність граничних точок множини $M \subset T$ називається похідною множини M і позначається M'.

Теорема 1.1 (про властивості замикання)

Замикання задовольняє наступним умовам:

- 1. $M \subset \overline{M}$;
- 2. $\overline{\overline{M}} = \overline{M}$ (ідемпотентність);
- 3. $M \subset N \implies \overline{M} \subset \overline{N}$ (монотонність);
- 4. $\overline{M \cup N} = \overline{M} \cup \overline{N}$ (адитивність).
- 5. $\overline{\varnothing} = \varnothing$.

Доведення.

1. $M \subset \overline{M}$.

Нехай $x \in M$. Тоді x — точка дотику множини M. Отже, $x \in \overline{M}$.

2. $\overline{M} = \overline{M}$.

Внаслідок твердження 1) $\overline{M} \subset \overline{\overline{M}}$. Отже, достатньо довести, що $\overline{\overline{M}} \subset \overline{M}$. Нехай $x_0 \in \overline{\overline{M}}$ і U_0 — довільний окіл точки x_0 . Оскільки $U_0 \cap \overline{M} \neq \varnothing$ (за означенням точки дотику), то існує точка $y_0 \in U_0 \cap \overline{M}$. Отже, множину U_0 можна вважати околом точки y_0 . Оскільки $y_0 \in \overline{M}$, то $U_0 \cap M \neq \varnothing$. Значить, точка x_0 є точкою дотику множини M, тобто $x_0 \in \overline{M}$.

3. $M \subset N \implies \overline{M} \subset \overline{N}$.

Нехай $x_0 \in \overline{M}$ і U_0 — довільний окіл точки x_0 . Оскільки $U_0 \cap M \neq \emptyset$ (за означенням точки дотику) і $M \subset N$ (за умовою), то $U_0 \cap N \neq \emptyset$. Отже, x_0 — точка дотику множини N, тобто $x_0 \in \overline{N}$. Таким чином, $\overline{M} \subset \overline{N}$.

4. $\overline{M \cup N} = \overline{M} \cup \overline{N}$.

3 очевидних включень $M\subset M\cup N$ і $N\subset M\cup N$ внаслідок монотонності операції замикання випливає, що $\overline{M}\subset \overline{M\cup N}$ і $\overline{N}\subset \overline{M\cup N}$. Отже, $\overline{M}\cup \overline{N}\subset \overline{M\cup N}$. Отже, $\overline{M}\cup \overline{N}\subset \overline{M\cup N}$. Отже, іншого боку, припустимо, що $x\not\in \overline{M}\cup \overline{N}$, тоді $x\not\in \overline{M}$ і $x\not\in \overline{N}$. Отже, існує такий окіл точки x, у якому немає точок з множини $M\cup N$, тобто $x\not\in \overline{M\cup N}$. Таким чином, за законом заперечення, $x\in \overline{M\cup N}\Longrightarrow x\in \overline{M\cup N}$, тобто $\overline{M\cup N}\subset \overline{M}\cup \overline{N}$.

5. $\overline{\varnothing} = \varnothing$.

Припустимо, що замикання порожньої множини не є порожньою множиною: $x \in \overline{\varnothing} \implies \forall O(x) : O(x) \cap \varnothing \neq \varnothing$. Але $\forall N \subset X : N \cap \varnothing = \varnothing$. Отже, $\overline{\varnothing} = \varnothing$. \square

Теорема 1.2 (критерій замкненості)

Множина M топологічного простору X є замкненою тоді й лише тоді, коли $M = \overline{M}$, тобто коли вона містить всі свої точки дотику.

Доведення. Необхідність. Припустимо, що M — замкнена множина, тобто $G = X \setminus M$ — відкрита множина. Оскільки, $M \subset \overline{M}$, достатньо довести, що $\overline{M} \subset M$. Дійсно, оскільки G — відкрита множина, вона є околом кожної своєї точки. До того ж $G \cap M = \emptyset$. Звідси випливає, то жодна точка $x \in G$ не може бути точкою дотику для множини M, отже всі точки дотику належать множині M, тобто $\overline{M} \subset M$.

$$G = X \setminus M \in \tau \implies G \cap M = \varnothing \implies \overline{M} \subset M.$$

Достатність. Припустимо, що $\overline{M}=M$. Доведемо, що $G=X\setminus M$ — відкрита множина (звідси випливатиме замкненість множини M). Нехай $x_0\in G$. З цього випливає, що $x_0\not\in M$, а значить $x_0\not\in \overline{M}$. Тоді за означенням точки дотику існує окіл U_{x_0} такий, що $U_{x_0}\cap M=\varnothing$. Значить, $U_{x_0}\subset X\setminus M=G$, тобто $G=\bigcup_{x\in G}U_x\in \tau$. \square

Наслідок 1.1

Замикання \overline{M} довільної множини M із простору X є замкненою множиною в X

Теорема 1.3

Замикання довільної множини M простору (X, τ) збігається із перетином всіх замкнених множин, що містять множину M.

$$\forall M \subset X : \overline{M} = \bigcap_{\alpha} F_{\alpha}, \quad F_{\alpha} = \overline{F}_{\alpha}, M \subset F_{\alpha}.$$

Доведення. Нехай M — довільна множина із (X,τ) і $N=\bigcap_{\alpha}F_{\alpha}$, де $F_{\alpha}=\overline{F}_{\alpha}$, $M\subset F_{\alpha}$.

Покажемо включення $\bigcap_{\alpha} F_{\alpha} \subset \overline{M}$.

$$N = \bigcap_{\alpha} F_{\alpha} \implies N \subset F_{\alpha} \forall \alpha \implies N \subset \overline{F}_{\alpha} \forall \alpha.$$

Оскільки $\{F_{\alpha}\}$ — множина усіх замкнених множин, серед них є множина \overline{M} : $\exists \alpha_0: F_{\alpha_0} = \overline{M}$. Отже,

$$N \in \overline{F}_{\alpha} \forall \alpha \implies N \in F_{\alpha_0} = \overline{M} \implies \bigcap_{\alpha} F_{\alpha} \subset \overline{M}.$$

Тепер покажемо включення $\overline{M} \subset \bigcap_{\alpha} F_{\alpha}$. Розглянемо довільну замкнену множину F, що містить $M \colon F = \overline{F}, M \subset F$. Внаслідок монотонності замикання маємо:

$$\overline{F} = F, M \subset F \implies \overline{M} \subset \overline{F} = F \implies \overline{M} \subset F_{\alpha}, F_{\alpha} = \overline{\forall} \alpha \implies \overline{M} \subset \bigcap_{\alpha} F_{\alpha}.$$

Порівнюючи обидва включення, маємо

$$\overline{M} = \bigcap_{\alpha} F_{\alpha}.$$

Наслідок 1.2

Замикання довільної множини M простору X є найменшою замкненою множиною, що містить множину M.

§1.4 Щільність

Означення 1.12. Нехай A і B — дві множини в топологічному просторі T. Множина A називається щільною в B, якщо $\overline{A} \supset B$.

Приклад 1.4 (щільних множин)

В топології числової прямої множина всіх раціональних чисел \mathbb{Q} є щільною в множині всіх ірраціональних чисел $\mathbb{R} \setminus \mathbb{Q}$, і навпаки.

Зауваження 1.3 — Множина A не обов'язково міститься в B: множина раціональних чисел є щільною в множині ірраціональних чисел і навпаки.

Означення 1.13. Якщо $\overline{A} = X$, множина A називається **скрізь щільною**.

Означення 1.14. Множина A називається **ніде не щільною**, якщо вона не є щільною в жодній непорожній відкритій підмножині множини X.

Приклад 1.5 (ніде не щільних множин)

Найпростішими прикладами ніде не щільних множин є цілі числа просторі \mathbb{R} і пряма в просторі \mathbb{R}^2 .

Множина A є щільною в кожній непорожній відкритій множині, якщо $\forall U \in \tau, U \neq \varnothing$: $\overline{A} \supset U$, тобто кожна точка множини U є точкою дотику множини A. Отже, $\forall x \in U \forall O(x) \in \tau O(x) \cap A \neq \varnothing$. Заперечення цього твердження збігається з означенням ніде не щільної множини. Формальний запис означення має такий вигляд:

$$\exists U_0 \in \tau, U_0 \neq \varnothing : \overline{A} \not\supset U_0 \implies \exists x_0 \in U_0 \exists O(x_0) \in \tau : O(x_0) \cap A = \varnothing$$

Означення 1.15. Простір T, що містить скрізь щільну зліченну множину, називається **сепарабельним**.

Приклад 1.6 (сепарабельного простору)

Зліченна множина всіх раціональних чисел \mathbb{Q} є скрізь щільною у просторі \mathbb{R} , отже простір \mathbb{R} є сепарабельним.

3 того, що $\overline{\mathbb{Q}} = \mathbb{R}$ і $\overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R}$, зокрема, випливає, що \mathbb{Q} і $\mathbb{R} \setminus \mathbb{Q}$ є ані відкритими, ані замкненими множинами.

Приклад 1.7 (сепарабельного простору)

Зліченна множина всіх поліномів з раціональними коефіцієнтами за теоремою Вейєрштрасса є скрізь щільною в просторі неперервних функцій C[a,b]. Отже, простір C[a,b] є сепарабельним.

§1.5 Література

- [1] **Ляшко И. И.** Основы классического и современного математического анализа / И. И. Ляшко, В. Ф Емельянов, А. К. Боярчук. К.: Вища школа, 1988 (стр. 26–27).
- [2] **Александрян Р.А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 10–20).
- [3] **Энгелькинг Р.** Общая топология / Р. Энгелькинг. М.: Мир, 1986 (стр. 32—50).

2 Методи введення топології

§2.1 Замикання і внутрішність

Система аксіом, наведена в означенні топології належить радянському математику П.С. Александрову (1925). Проте першу систему аксіом, що визначає топологічну структуру, запропонував польський математик К. Куратовський (1922).

Означення 2.1. Нехай X — довільна множина. Відображення $cl: 2^X \to 2^X$ називається **оператором замикання Куратовського на** X, якщо воно задовольняє наступні умови (аксіоми Куратовського):

K1. $\operatorname{cl}(M \cup N) = \operatorname{cl}(M) \cup \operatorname{cl}(N)$ (адитивність);

K2. $M \subset cl(M)$;

K3. $\operatorname{cl}(\operatorname{cl}(M)) = \operatorname{cl}(M)$ (ідемпотентність);

K4. $cl(\emptyset) = \emptyset$.

Теорема 2.1

Якщо в деякій множині X введено топологію в розумінні Александрова, то відображення cl, що задовольняє умові $\mathrm{cl}(M)=\overline{M}$ є оператором Куратовського на X.

Доведення. Неважко помітити, що аксіоми K1–K4 просто збігаються із властивостями замикання, доведеними в теоремі про властивості замикання.

Теорема 2.2 (про завдання топології оператором Куратовського)

Кожний оператор Куратовського cl на довільній множині X задає в X топологію $\tau = \{U \subset X : \operatorname{cl}(X \setminus U) = X \setminus U\}$ в розумінні Александрова, до того ж замикання \overline{M} довільної підмножини M із X в цій топології τ збігається з $\operatorname{cl}(M)$, тобто $\operatorname{cl}(M) = \overline{M}$.

Доведення. Побудуємо сімейство

$$\sigma = \{ M \subset X : M = X \setminus U, U \in \tau \},\$$

що складається із всіх можливих доповнень множин із системи τ , тобто таких множин, для яких $\mathrm{cl}(M)=\overline{M}.$ Інакше кажучи, система σ складається з нерухомих точок оператора замикання Куратовського. За принципом двоїстості де Моргана, для сімейства σ виконуються аксіоми замкненої топології

F1. $X, \emptyset \in \sigma$.

F2. $F_{\alpha} \in \sigma, \alpha \in A \implies \bigcap_{\alpha \in A} F_{\alpha} \in \sigma$, де A — довільна множина.

F3.
$$F_{\alpha} \in \sigma, \alpha = 1, 2, ..., n \implies \bigcup_{\alpha=1}^{n} G_{\alpha} \in \sigma.$$

Отже, щоб перевірити аксіоми Александрова для сімейства множин τ , достатньо перевірити виконання аксіом F1–F3 для сімейства множин σ .

- 1. Перевіримо аксіому F1: $X \in \sigma$? $\varnothing \in \sigma$? Аксіома K2 стверджує, що $M \subset \operatorname{cl}(M)$. Покладемо M = X. Отже, $X \subset \operatorname{cl}(X) \subset X \implies \operatorname{cl}(X) = X \implies X \in \sigma$. Аксіома K4 стверджує, що $\operatorname{cl}(\varnothing) = \varnothing \implies \varnothing \in \mathcal{S}$
- 2. Перевіримо виконання аксіоми F2.

Спочатку покажемо, що оператор cl є монотонним:

$$\forall A, B \in \sigma : A \subset B \implies \operatorname{cl}(A) \subset \operatorname{cl}(B).$$

Нехай $A, B \in \sigma$ і $A \subset B$. Тоді за аксіомою K1:

$$\operatorname{cl}(B) = \operatorname{cl}(B \cup A) = \operatorname{cl}(B) \cup \operatorname{cl}(A).$$

Отже,

$$\operatorname{cl}(A) \subset \operatorname{cl}(A) \cup \operatorname{cl}(B) = \operatorname{cl}(B \cup A) = \operatorname{cl}(B).$$

Використаємо це допоміжне твердження для перевірки аксіоми F3. З одного боку,

$$\forall F_{\alpha} \in \sigma: \bigcap_{\alpha \in A} F_{\alpha} \subset F_{\alpha} \quad \forall \alpha \in A \implies$$

$$\implies \operatorname{cl}\left(\bigcap_{\alpha \in A} F_{\alpha}\right) \in \operatorname{cl}(F_{\alpha}) = F_{\alpha} \quad \forall \alpha \in A \implies$$

$$\implies \operatorname{cl}\left(\bigcap_{\alpha \in A} F_{\alpha}\right) \subset \bigcap_{\alpha \in A} F_{\alpha}.$$

З іншого боку, за аксіомою К2

$$\bigcap_{\alpha \in A} F_{\alpha} \subset \operatorname{cl}\left(\bigcap_{\alpha \in A} F_{\alpha}\right).$$

Отже,

$$\operatorname{cl}\left(\bigcap_{\alpha\in A}F_{\alpha}\right)=\bigcap_{\alpha\in A}F_{\alpha}\in\sigma.$$

3. Перевіримо виконання аксіоми F3.

$$A, B \in \sigma \implies \operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B) = A \cup B \implies A \cup B \in \sigma.$$

Таким чином, σ — замкнена топологія, а сімейство τ , що складається із доповнень до множин із сімейства σ — відкрита топологія.

Залишилося показати, що в просторі (X, τ) , побудованому за допомогою оператора cl, замикання \overline{M} довільної множини M збігається з cl(M).

Дійсно, за критерієм замкненості, множина M є замкненою, якщо $\overline{M}=M$. З аксіом K2 і K3 випливає, що множина $\operatorname{cl}(M)$ є замкненою і містить M. Покажемо, що ця множина — найменша замкнена множина, що містить множину M, тобто є її замиканням.

Нехай F — довільна замкнена в (X, τ) множина, що містить M:

$$M \subset F$$
, $\operatorname{cl}(F) = F$.

Внаслідок монотонності оператора сІ отримуємо наступне:

$$M \subset F, \operatorname{cl}(F) = F \implies \operatorname{cl}(M) \subset \operatorname{cl}(F) = F.$$

Означення 2.2. Нехай X — довільна множина. Відображення int : $2^X \to 2^X$ називається **оператором взяття внутрішності множини** X, якщо воно задовольняє наступні умови:

K1. $int(M \cap N) = int(M) \cap int(N)$ (адитивність);

K2. $int(M) \subset M$;

K3. int(int(M)) = int(M) (ідемпотентність);

K4. $int(\emptyset) = \emptyset$.

Наслідок 2.1

Оскільки

$$int A = X \setminus \overline{X \setminus A},$$

оператор взяття внутрішності є двоїстим для оператора замикання Куратовського. Отже, система множин $\tau = \{A \subseteq X : \text{int } A = A\}$ утворює в X топологію, а множина int A в цій топології є внутрішністю множини A.

§2.2 База топології

Для завдання в множині X певної топології немає потреби безпосередньо указувати всі відкриті підмножини цієї топології. Існує деяка сукупність відкритих підмножин, яка повністю визначає топологію. Така сукупність називається базою цієї топології.

Означення 2.3. Сукупність β відкритих множин простору (X, τ) називається базою топології τ або базою простору (X, τ) , якщо довільна непорожня відкрита множина цього простору є об'єднанням деякої сукупності множин, що належать β :

$$\forall G \in \tau, G \neq \emptyset \quad \exists B_{\alpha} \in \beta, \alpha \in A : \quad G = \bigcup_{\alpha \in A} B_{\alpha}.$$

Зауваження 2.1 — Будь-який простір (X, τ) має базу, оскільки система всіх відкритих підмножин цього простору утворює базу його топології.

Зауваження 2.2 — Якщо в просторі (X, τ) існують ізольовані точки, вони повинні входити в склад будь-якої бази цього простору.

Теорема 2.3

Для того щоб сукупність β множин із топології τ була базою цієї топології, необхідно і достатньо, щоб для кожної точки $x \in X$ і довільної відкритої множини U, що містить точку x, існувала множина $V \in \beta$, така щоб $x \in V \subset U$.

Доведення. Необхідність. Нехай β — база простору $(X,\tau),\ x_0\in X,\ a\ U_0\in \tau,\$ таке що $x_0\in U_0.$ Тоді за означенням бази $U_0=\bigcup_{\alpha\in A}V_\alpha,\$ де $V_\alpha\in \beta.$ З цього випливає, що $x_0\in V_{\alpha_0}\subset U_0.$

$$\beta = \mathcal{B}(\tau), x_0 \in X, U_0 \in \tau, x_0 \in U_0 \implies U_0 = \bigcup_{\alpha \in A} V_\alpha, V_\alpha \in \beta \implies x_0 \in V_{\alpha_0} \subset U_0.$$

Достатність. Нехай для кожної точки $x \in X$ і довільної відкритої множини $U \in \tau$, що містить точку x, існує множина $V_x \in \beta$, така що $x \in V_x \subset U$. Легко перевірити, що $U = \bigcup_{x \in U} V_x$.

Дійсно, якщо точка $x \in U$, то за умовою теореми, вона належить множині $V_x \subset U$, а отже й об'єднанню таких множин $\bigcup_{x \in U} V_x$:

$$x \in U \implies \exists V_x \subset U : x \in V_x \implies x \in \bigcup_{x \in U} V_x.$$

I навпаки, якщо точка належить об'єднанню $\bigcup_{x\in U} V_x$, то вона належить принаймні одній із цих множин $V_x\subset U$, а отже — вона належить множині U:

$$x \in \bigcup_{x \in U} V_x \implies \exists V_x \subset U : x \in V_x \implies x \in U.$$

Таким чином, довільну відкриту множину $U \in \tau$ можна подати у вигляді об'єднання множин із β .

Приклад 2.1

Оскільки $\forall x \in \mathbb{R}^1$ і $\forall (a,b) \ni x \exists (a_0,b_0) \subset (a,b)$, то за попередньою теоремою сукупність всіх відкритих інтервалів утворює базу топології в \mathbb{R}^1 .

Приклад 2.2

Оскільки $\forall x \in \mathbb{R}^1$ і $\forall (a,b) \ni x \; \exists (r_1,r_2) \subset (a,b), \; r_1,r_2 \in \mathbb{Q}$, то за попередньою теоремою сукупність всіх відкритих інтервалів із раціональними кінцями також утворює базу топології в \mathbb{R}^1 .

З цієї теореми випливають два наслідки.

Наслідок 2.2

Об'єднання всіх множин, які належать базі β топології τ , утворює всю множину X.

Надалі будемо також називати цей наслідок першою властивістю бази топології.

Наслідок 2.3

Для довільних двох множин U і V із бази β і для кожної точки $x \in U \cap V$ існує множина W із β така, що $x \in W \subset U \cap V$.

Доведення. Оскільки $U \cap V \in \tau$, то за попередньою теоремою в множині $U \cap V$ міститься відкрита множина W із бази, така що $x \in W$.

Надалі будемо також називати цей наслідок другою властивістю бази топології.

Теорема 2.4 (про завдання топології за допомогою бази)

Нехай в довільній множині X задана деяка сукупність відкритих множин β , що має властивості бази топології. Тоді в множині X існує єдина топологія τ , однією з баз якої є сукупність β .

Доведення. Припустимо, що τ — сімейство, що містить лише порожню множину і всі підмножини множини X, кожна з яких є об'єднанням підмножин із сукупності β :

$$\tau = \left\{ \varnothing, G_{\alpha} \subset X, \alpha \in A, G_{\alpha} = \bigcup_{i \in I} B_{i}^{\alpha}, B_{i}^{\alpha} \in \beta \right\}.$$

Перевіримо, що це сімейство множин є топологією. Виконання аксіом топології 1 і 2 є очевидним: $\emptyset \in \tau, \ X \in \tau$ і

$$G_{\alpha} \in \tau, \alpha \in A \implies \bigcup_{\alpha \in A} G_{\alpha} \in \tau.$$

Аксіома 3 є наслідком властивостей. Не обмежуючи загальності, можна перевірити її для випадку перетину двох множин.

Нехай $U,U'\in \tau$. За означенням, $U=\bigcup_{i\in I}V_i$ і $U'=\bigcup_{j\in J}V_j'$, де $V_i,V_j'\in \beta$. Розглянемо перетин

$$U \cap U' = \left(\bigcup_{i \in I} V_i\right) \cap \left(\bigcup_{j \in J} V_i'\right) = \bigcup_{i \in I, j \in J} (V_i \cap V_j').$$

Доведемо, що $V_i \cap V_j' \in \tau$. Нехай $x \in V_i \cap V_j'$. Тоді, за другою властивістю, існує множина $W_x \in \beta$, така що $x \in W_x \subset V_i \cap V_j'$. Оскільки точка $x \in V_i \cap V_j'$ є довільною, то $V_i \cap V_j' = \bigcup_{x \in V_i \cap V_j'} W_x \in \tau$. Отже, $U \cap U' \in \tau$.

Таким чином, сімейство τ дійсно утворює топологію на X, а система β є її базою.

§2.3 Література

- [1] **Александрян Р.А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 14–22).
- [2] **Энгелькинг Р.** Общая топология / Р. Энгелькинг М.: Мир, 1986 (стр. 46–50).

Збіжність і неперервність

§3.1 Аксіоми зліченності

В основі поняття збіжності послідовностей в топологічних просторах лежать аксіоми зліченності, які своєю чергою використовують поняття локальної бази в точці.

Означення 3.1. Система β_{x_0} відкритих околів точки x_0 називається локальною базою в точці x_0 , якщо кожний окіл U точки x_0 містить її деякий окіл V із системи β_{x_0} .

Означення 3.2. Топологічний простір X називається таким, що задовольняє першій аксіомі зліченності, якщо в кожній його точці існує локальна база, що складається із не більш ніж зліченої кількості околів цієї точки.

Означення 3.3. Топологічний простір X називається таким, що задовольняє другій аксіомі зліченності, або простором зі зліченною базою, якщо він має базу, що складається із не більш ніж зліченої кількості відкритих множин.

Лема 3.1

Якщо простір X задовольняє другій аксіомі зліченності, то він задовольняє і першій аксіомі зліченності.

Доведення. Нехай $U_1, U_2, \ldots, U_n, \ldots$ – зліченна база в просторі X, тоді $\beta_{x_0} = \{U_k \in \beta : x_0 \in U_k\}$ — зліченна локальна база в точці x_0 .

Лема 3.2

Існують простори, що задовольняють першій аксіомі зліченності, але не задовольняють другій аксіомі зліченності.

Доведення. В якості контрприкладу розглянемо довільну **незліченну** множину X, в якій введено дискретну топологію $\tau = 2^X$.

Вправа 3.1. Переконайтеся що ви розумієте, чому цей простір задовольняє першій аксіомі зліченності, але не задовольняє другій аксіомі зліченності перед тим як читати далі.

Приклад 3.1

Простір \mathbb{R}^n , топологія якого утворена відкритими кулями, задовольняє першій аксіомі зліченності, оскільки в кожній точці $x_0 \in X$ існує зліченна локальна база $S(x_0, 1/n)$.

Очевидно, що цей простір задовольняє і другій аксіомі зліченності, оскільки має зліченну базу, що складається з куль $S(x_n,r)$, де центри куль x_n належать зліченній скрізь щільній множині (наприклад, мають раціональні координати), а r — раціональне число.

Поняття точки дотику і замикання множини відіграють основну роль в топології, оскільки будь-яка топологічна структура повністю описується в цих термінах.

§3.2 Збіжність

Проте поняття точки дотику занадто абстрактне. Набагато більше змістовних результатів можна отримати, якщо виділити широкий клас просторів, топологічну структуру яких можна описати виключно в термінах границь збіжних послідовностей.

Означення 3.4. Послідовність точок $\{x_n\}$ топологічного простору X називається збіжною до точки $x_0 \in X$, якщо кожний окіл U_0 точки x_0 містить всі точки цієї послідовності, починаючи з деякої. Точку x_0 називають границею цієї послідовності: $\lim_{n\to\infty} x_n = x_0$.

Приклад 3.2

В довільному тривіальному просторі послідовність збігається до будь-якої точки цього простору.

Довільна гранична точка множини A довільного топологічного простору X є точкою дотику. Проте в загальних топологічних просторах не для всякої точки дотику $x \in A$ існує послідовність $\{x_n\} \subset A$, що до неї збігається.

Приклад 3.3

Нехай X — довільна незліченна множина. Задамо в просторі X топологію, оголосивши відкритими порожню множину і всі підмножини, які утворені із X викиданням не більш ніж зліченної кількості точок.

$$\tau = \{\emptyset, X \setminus \{x_1, x_2, \dots, x_n, \dots\}\}.$$

Доведення. Спочатку покажемо, що в цьому просторі збіжними є лише стаціонарні послідовності.

Припустимо, що в просторі існує нестаціонарна послідовність $\{x_n\} \to x_0$. Тоді, взявши за окіл точки x_0 множину U, яка утворюється викиданням із X всіх членів послідовності $\{x_n\}$, які відрізняються від точки x_0 , ми дійдемо до суперечності з тим, що окіл U мусить містити всі точки послідовності $\{x_n\}$, починаючи з деякої.

Тепер розглянемо підмножину $A = X \setminus \{x_0\}$. Точка x_0 є точкою дотику множини A. Справді, якщо U — довільний відкритий окіл точки x_0 , то за означенням відкритих в X множин, доповнення $X \setminus U$ є не більш ніж зліченим.

$$U \in \tau \implies U = X \setminus \{x_1, x_2, \dots, x_n, \dots\} \implies$$

$$\implies X \setminus U = X \setminus (X \setminus \{x_1, x_2, \dots, x_n, \dots\}) = \{x_1, x_2, \dots, x_n, \dots\} \implies$$

$$\implies A \cap U \neq \emptyset,$$

оскільки |A|=c, а доповнення $X\setminus U$ і тому не може містити в собі незліченну множину A.

З іншого боку, оскільки в просторі X збіжними є лише стаціонарні послідовності, то із $x_0 \notin A$ випливає, що жодна послідовність точок із множини A не може збігатися до точки дотику $x_0 \notin A$.

Теорема 3.1

Якщо простір X задовольняє першій аксіомі зліченності, то $x_0 \in \overline{A}$ тоді й лише тоді, коли x_0 є границею деякої послідовності $\{x_n\}$ точок із A.

Доведення. Достатність. Якщо в довільному топологічному просторі послідовність $\{x_n\} \in A$, $\lim_{n\to\infty} x_n = x_0$, то $x_0 \in \overline{A}$.

Необхідність. Нехай $x_0 \in \overline{A}$. Якщо $x_0 \in A$, достатньо в якості $\{x_n\} \in A$ взяти стаціонарну послідовність.

Припустимо, що $x_0 \in \overline{A} \setminus A$ і $U_1, U_2, \ldots, U_n, \ldots$ — зліченна локальна база в точці x_0 , до того ж $\forall n \in \mathbb{N}$: $U_{n+1} \subset U_n$. (Якби ця умова не виконувалася, ми взяли б іншу базу $\{V_n\}$, де $V_n = \bigcap_{k=1}^n U_k$). Оскільки $A \cap U_n \neq \emptyset$, взявши за x_n довільну точку із $A \cap U_n$, ми отримаємо послідовність $\{x_n\} \in A$, $\lim_{n \to \infty} x_n = x_0$.

Дійсно, нехай V — довільний окіл точки x_0 . Оскільки $U_1,U_2,\ldots,U_n,\ldots$ база в точці x_0 , існує такий елемент U_{n_0} , який належить цій базі, що $U_{n_0} \subset V$. З іншого боку, для всіх $n \geq n_0$: $U_{n+1} \subset U_n$. Це означає, що $\forall n \geq n_0$: $x_n \in A \cap U_n \subset U_{n_0} \subset U$. Отже, $x_0 = \lim_{n \to \infty} x_n$.

§3.3 Неперервність

Поняття неперервного відображення належить до фундаментальних основ топології.

Означення 3.5. Відображення $f: X \to Y$ називається **сюр'єктивним**, якщо f(X) = Y, тобто множина X відображається на весь простір Y.

Означення 3.6. Відображення $f: X \to Y$ називається **ін'єктивним**, якщо з того, що $f(x_1) \neq f(x_2)$ випливає, що $x_1 \neq x_2$.

Означення 3.7. Відображення $f: X \to Y$, яке одночасно є сюр'єктивним та ін'єктивним, називається **бієктивним**, або взаємно однозначною відповідністю між X і Y.

Тепер нагадаємо основні співвідношення для образів та прообразів множин відносно функції $f:X \to Y$.

Якщо $A, B \subset X$, то

- 1. $A \subset B \implies f(A) \subset f(B) \not \Longrightarrow A \subset B$;
- 2. $A \neq \emptyset \implies f(A) \neq \emptyset$;
- 3. $f(A \cap B) \subset f(A) \cap f(B)$;
- 4. $f(A \cup B) \subset f(A) \cup f(B)$.

Якщо $A', B' \subset Y$, то

- 1. $A' \subset B' \implies f^{-1}(A') \subset f^{-1}(B')$;
- 2. $f^{-1}(A' \cap B') = f^{-1}(A') \cap f^{-1}(B')$;
- 3. $f^{-1}(A' \cup B') = f^{-1}(A') \cup f^{-1}(B')$.

Якщо $B' \subset A' \subset Y$, то

- 1. $f^{-1}(A' \setminus B') = f^{-1}(A') \setminus f^{-1}(B');$
- 2. $f^{-1}(Y \setminus B') = X \setminus f^{-1}(B');$

Для довільних множин $A\subset X$ і $B'\subset Y$

1. $A \subset f^{-1}(f(A));$

2.
$$f(f^{-1}(B')) \subset B'$$
.

Введемо поняття неперервного відображення.

Означення 3.8. Нехай X і Y — два топологічних простора. Відображення f : $X \to Y$ називається **неперервним в точці** x_0 , якщо для довільного околу V точки $y_0 = f(x_0)$ існує такий окіл U точки x_0 , що $f(U) \subset V$.

Означення 3.9. Відображення $f: X \to T$ називається **неперервним**, якщо воно є неперервним в кожній точці $x \in X$.

Інакше кажучи, неперервне відображення зберігає граничні властивості: якщо точка $x \in X$ є близькою до деякої множини $A \subset X$, то точка $y = f(x) \in Y$ є близькою до образу множини A.

Теорема 3.2

Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатнью, щоб прообраз $f^{-1}(V)$ будь-якої відкритої множини $V \subset Y$ був відкритою множиною в X.

Доведення. Необхідність. Нехай $f: X \to Y$ — неперервне відображення, а V — довільна відкрита множина в Y. Доведемо, що множина $U = f^{-1}(V)$ є відкритою в X.

Для цього візьмемо довільну точку $x_0 \in U$ і позначимо $y_0 = f(x_0)$. Оскільки множина V є відкритим околом точки y_0 в просторі Y, а відображення f є неперервним в точці x_0 , в просторі X існує відкритий окіл U_0 точки x_0 , такий що $f(U_0) \subset V$. Звідси випливає, що $U_0 \subset U$. Отже, множина U є відкритою в X.

$$f \in C(X,Y) \implies \exists U_0 \in \tau_X : x_0 \in U_0, f(U_0) \subset V \implies$$
$$\implies f^{-1}(f(U_0)) \subset f^{-1}(V) = U \implies U_0 \subset f^{-1}(f(U_0)) \subset U \implies U \in \tau_X.$$

Достатність. Нехай прообраз $f^{-1}(V)$ довільної відкритої в Y множини V є відкритим в X, а $x_0 \in X$ — довільна точка. Доведемо, що відображення f є неперервним в точці x_0 .

Дійсно, нехай $y_0=f(x_0)$, а V — її довільний відкритий окіл. Тоді $U=f^{-1}(V)$ за умовою теореми є відкритим околом точки x_0 , до того ж $f(U)\subset V$. Отже, відображення f є неперервним в кожній точці $x_0\in X$. Таким чином, f є неперервним в X

$$V \in \tau_X, U := f^{-1}(V) \in \tau_X \implies f(U) = f(f^{-1}(V)) \subset V \implies f \in C(X,Y).$$

Теорема 3.3

Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатньо, щоб прообраз $f^{-1}(V)$ будь-якої замкненої множини $V \subset Y$ був замкненою множиною в X.

Доведення випливає з того, що доповнення відкритих множин є замкненими, а прообрази множин, що взаємно доповнюють одна одну, самі взаємно доповнюють одна одну.

Теорема 3.4

Для того щоб відображення $f:X\to Y$ було неперервним, необхідно і достатньо, щоб $\forall A\subset X: f(\overline{A})\subset \overline{f(A)}.$

Доведення. Необхідність. Нехай відображення $f: X \to Y$ є неперервним, а $x_0 \in \overline{A}$. Покажемо, що $y_0 = f(x_0) \in \overline{f(A)}$.

Справді, нехай V — довільний окіл точки y_0 . Тоді внаслідок неперервності f існує окіл U, який містить точку x_0 такий, що $f(U) \subset V$. Оскільки $x_0 \in \overline{A}$, то в околі U повинна міститись точка $x' \in A$ (можливо, вона збігається з точкою x_0). Разом з тим, очевидно, що y' = f(x') належить одночасно множині f(A) і околу V, тобто $y_0 \in \overline{f(A)}$.

$$f \in C(X,Y) \implies \forall V \in \tau_Y : f(x_0) \in V : \exists U \in \tau_X : x \in U, f(U) \subset V.$$
$$x_0 \in \overline{A} \implies U \cap A \neq \varnothing \implies \exists x' \in U \cap A \implies$$
$$\implies f(x') \in f(U \cap A) \subset f(U) \cap f(A) \implies y_0 = f(x_0) \in \overline{f(A)}.$$

Достатність. Нехай $\forall A \subset X: f(\overline{A}) \subset \overline{f(A)}$ і B — довільна замкнена в Y множина. Покажемо, що множина $A = f^{-1}(B)$ є замкненою в X.

Нехай x_0 — довільна точка із \overline{A} . Тоді $f(x_0) \in f(\overline{A}) \subset \overline{f(A)}$. Разом з тим

$$A = f^{-1}(B) \implies f(A) = f(f^{-1}(B)) \subset B \implies \overline{f(A)} \subset \overline{B} = B.$$

Тому $f(x_0) \in B$, отже, $x_0 \in A$. Таким чином, $\overline{A} \subset A$, тобто A — замкнена множина. Звідси випливає, що відображення f є неперервним.

§3.4 Гомеоморфізми

Означення 3.10. Бієктивне відображення $f: X \to Y$ називається **гомеоморфим**, або **гомеоморфізмом**, якщо і само відображення f і обернене відображення f^{-1} є неперервними.

Означення 3.11. Топологічні простори X і Y називаються **гомеоморфними**, або **топологічно еквівалентними**, якщо існує хоча б одне гомеоморфне відображення $f: X \to Y$.

Цей факт записується так: $X \stackrel{f}{\equiv} Y$.

Приклад 3.4

Тривіальний приклад гомеоморфізму — тотожне перетворення.

Приклад 3.5

Відображення, що задається строго монотонними неперервними дійсними функціями дійсної змінної є гомеоморфізмами. Гомеоморфним образом довільного інтервалу є інтервал.

Означення 3.12. Неперервне відображення $f: X \to Y$ називається **відкритим**, якщо образ будь-якої відкритої множини простору X є відкритим в Y.

Означення 3.13. Неперервне відображення $f: X \to Y$ називається **замкненим**, якщо образ будь-якої замкненої множини простору X є замкненим в Y.

Зауваження 3.1 — Поняття відкритого і замкненого відображення не є взаємовиключними. Тотожне відображення одночасно є і відкритим, і замкненим.

Приклад 3.6

Відображення вкладення (ін'єктивне відображення) $i:A\subset X\to X$ є відкритим, якщо підмножина A є відкритою, і замкненим, якщо підмножина A є замкненою.

Теорема 3.5

Відображення $f:X\to Y$ є замкненим тоді й лише тоді, коли $\forall A\subset X:f(\overline{A})=\overline{f(A)}.$

Доведення. Необхідність. Оскільки замкнене відображення є неперервним (за означенням), то внаслідок теореми $3.4 \ \forall A \subset X : f(\overline{A}) \subset \overline{f(A)}$.

Разом з тим, очевидно, що $f(A)\subset f(\overline{A})$, тому внаслідок монотонності замикання $\overline{f(A)}\subset \overline{f(\overline{A})}$.

Оскільки відображення f є замкненим, то $\overline{f(\overline{A})}=f(\overline{A})$. Таким чином, $\overline{f(A)}=f(\overline{A})$.

Достатність. Функція f є неперервною внаслідок теореми 3.4. З умови $\overline{f(A)} = f(\overline{A})$ для замкненої множини $A \subset X$ отримуємо, що $f(A) = \overline{f(A)}$, тобто образ будь-якої замкненої множини є замкненим.

Теорема 3.6

Відкрите бієктивне відображення $f: X \to Y$ є гомеоморфізмом.

Доведення. Оскільки $f: X \to Y$ — бієктивне відображення, існує обернене відображення $f^{-1}: Y \to X$. Оскільки $\forall A \subset X: (f^{-1})^{-1}(A) = f(A)$ і, за умовою теореми, f — відкрите відображення, то прообрази відкритих підмножин із X є відкритими.

З теореми 3.2 випливає, що відображення f^{-1} є неперервним. Оскільки бієктивне відкрите відображення завжди є неперервним, доходимо висновку, що f — гомеоморфізм.

Теорема 3.7

Замкнене бієктивне відображення $f: X \to Y$ є гомеоморфізмом.

Доведення цілком аналогічне попередній теоремі.

Теорема 3.8

Гомеоморфие відображення $f: X \equiv Y$ одночасно є і відкритим, і замкненим.

Доведення. Нехай $f^{-1}: Y \to X$ — обернене відображення. Тоді $\forall A \subset X: f(A) = (f^{-1})^{-1}(A)$. Оскільки відображення f є гомеоморфізмом, відображення f і f^{-1} є неперервними.

Оскільки образ множини A при відображенні f є прообразом множини A при відображенні $(f^{-1})^{-1}$ і обидва ці відображення є неперервними, то відображення f є відкритим і замкненим одночасно, тобто відкриті множини переводить у відкриті, а замкнені — у замкнені.

Теорема 3.9

Бієктивне відображення $f:X\to Y$ є гомеоморфізмом тоді й лише тоді, коли воно зберігає операцію замикання, тобто $\forall A\subset X: f(\overline{A})=\overline{f(A)}.$

Необхідність випливає з теорем 3.5 і 3.8, а достатність — з теорем 3.5 і 3.7.

§3.5 Література

- [1] **Александрян Р.А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 24–28).
- [2] **Энгелькинг Р.** Общая топология / Р. Энгелькинг М.: Мир, 1986 (стр. 57—68).
- [3] **Колмогоров А.Н.** Элементы теории функций и функционального анализа. 5-е изд. / Колмогоров А.Н., С. В. Фомин М.: Наука, 1981 (стр. 89–91).

4 Аксіоми віддільності

Аналізуючи властивості різних топологічних просторів ми бачили, що їх структура може бути настільки "неприродною", що будь-яка послідовність збігається до будь-яких точок (тривіальний простір), існують точки дотику множин, які не є границями послідовностей їх елементів (простір Зариського) тощо. В математичному аналізі ми не зустрічаємо таких "патологій": там всі послідовності мають лише одну границю, кожна точка дотику є границею тощо. Отже, виникає потреба в інструментах, які дозволили б виділити серед топологічних просторів "природні" простори. Такими інструментами є аксіоми віддільності, які разом з аксіомами зліченності дають можливість повністю описати властивості топологічних просторів.

§4.1 Власне аксіоми

Аксіоми віддільності в топологічному просторі (X, τ) формулюються наступним чином.

• T_0 (Колмогоров, 1935). Для двох довільних різних точок x і y, що належать множині X, існує множина із топологічної структури τ , яка містить рівно одну з цих точок.

$$(\forall x \neq y \in X) : ((\exists V_x \in \tau : x \in V_x, y \notin V_x) \lor (\exists V_y \in \tau : y \in V_y, x \notin V_y)).$$

• T_1 (Picc, 1907). Для двох довільних різних точок x і y, що належать множині X, існують множина V_x із топологічної структури τ , яка містить точку x і не містить точки y, і множина V_y із топологічної структури τ , яка містить точку y і не містить точки x.

$$(\forall x \neq y \in X) : ((\exists V_x \in \tau : x \in V_x, y \notin V_x) \land (\exists V_y \in \tau : y \in V_y, x \notin V_y)).$$

• T_2 (Хаусдорф, 1914). Для двох довільних різних точок x і y, що належать множині X, існують множина V_x із топологічної структури τ , яка містить точку x, і множина V_y із топологічної структури τ , яка містить точку y, такі що не перетинаються.

$$(\forall x \neq y \in X) : (\exists V_x \sqcup V_y \in \tau) : (x \in V_x \land y \in V_y).$$

• T_3 (В'єторіс, 1921). Для довільної точки x і довільної замкненої множини F, що не містить цієї точки, існують дві відкриті множини V_x і V, що не перетинаються, такі що $x \in V_x$, а $F \subset V$.

$$(\forall x \in X, \overline{F} \subset X) : (\exists V_x \sqcup V \in \tau) : (x \in V_x \land \overline{F} \subset V).$$

• $T_{3\frac{1}{2}}$ (Урисон, 1925). Для довільної точки x і довільної замкненої множини \overline{F} , що не містить цієї точки, існує неперервна числова функція f, задана на просторі X, така що $0 \leq f(t) \leq 1$, до того ж f(x) = 0 і f(t) = 1, якщо $x \in \overline{F}$.

$$(\forall x \in X, \overline{F} \subset X : x \notin \overline{F}) : (\exists f : X \to \mathbb{R}^1 : 0 \le f(t) \le 1, f(x) = 0, f(\overline{F}) = 1).$$

• T_4 (В'єторіс, 1921). Для двох довільних замкнених множин $\overline{F_1}$ і $\overline{F_2}$ що не перетинаються, існують відкриті множини G_1 і G_2 , що не перетинаються, такі що $\overline{F_1} \subset G_1$, $\overline{F_2} \subset G_2$.

$$(\forall \overline{F_1}, \overline{F_2} \subset X : \overline{F_1} \cap \overline{F_2} = \varnothing) : (\exists G_1, G_2 \in \tau : \overline{F_1} \subset G_1, \overline{F_2} \subset G_2, G_1 \cap G_2 = \varnothing).$$

Означення 4.1 (Колмогоров, 1935). Топологічні простори, що задовольняють аксіому T_0 , називаються T_0 -просторами, або колмогоровськими.

Означення 4.2 (Рісс, 1907). Топологічні простори, що задовольняють аксіому T_1 , називаються T_1 -просторами, або досяжними.

Означення 4.3 (Хаусдорф, 1914). Топологічні простори, що задовольняють аксіому T_2 , називаються **хаусдорфовими**, або **віддільними**.

Означення 4.4 (В'єторіс, 1921). Топологічні простори, що задовольняють аксіоми T_1 і T_3 , називаються регулярними.

Означення 4.5 (Тихонов, 1930). Топологічні простори, що задовольняють аксіоми T_1 і $T_{3\frac{1}{3}}$, називаються **цілком регулярними**, або **тихоновськими**.

Означення 4.6 (Тітце (1923), Александров і Урисон (1929)). Топологічні простори, що задовольняють аксіоми T_1 і T_4 , називаються **нормальними**.

§4.2 Наслідки з аксіом

Розглянемо наслідки, які випливають з аксіом віддільності.

Теорема 4.1 (критерій досяжності)

Для того щоб топологічний простір (X, τ) був T_1 -простором необхідно і достатью, щоб будь-яка одноточкова множина $\{x\} \subset X$ була замкненою.

Доведення. Необхідність. Припустимо, що виконується перша аксіома віддільності: якщо $x \neq y$, то існує окіл $V_x \in \tau : x \notin V_y$. Тоді $\forall y \neq x, \ y \notin \overline{\{x\}}$, тобто $\overline{\{x\}} = \{x\}$.

Достатність. Припустимо, що $\overline{\{x\}} = \{x\}$. Тоді $\forall y \neq x : \exists V_y \in \tau : x \notin V_y$. Отже, виконується перша аксіома віддільності.

Наслідок 4.1

В просторі T_1 будь-яка скінченна множина є замкненою.

Теорема 4.2

Для того щоб точка x була граничною точкою множини M в T_1 -просторі необхідно і достатньо, щоб довільний окіл U цієї точки містив нескінченну кількість точок множини M.

Доведення. Необхідність. Якщо точка x є граничною точкою множини M, то

$$\forall O(x) \in \tau : O(x) \cap M \setminus \{x\} \neq \emptyset.$$

Припустимо, що існує такий окіл U точки x, що містить лише скінченну кількість точок $x_1, x_2, \ldots, x_n \in M$. Оскільки простір (X, τ) є T_1 -простором, то існує окіл і U точки x, що не містить точку x_i .

Введемо в розгляд множину $V = \bigcap_{i=1}^n U_i$. Ця множина є околом точки x, що не містить точок множини M, за винятком, можливо, самої точки x. Отже, точка x не є граничною точкою множини M, що суперечить припущенню.

Достатність. Якщо довільний окіл U точки x містить нескінченну кількість точок множини M, то вона є граничною за означенням.

Приклад 4.1

Зв'язна двокрапка є колмогоровским, але недосяжним простором.

Приклад 4.2

Простір Зариського є досяжним, але не хаусдорфовим.

Теорема 4.3 (критерій хаусдорфовості)

Для того щоб простір (X, τ) був хаусдорфовим необхідно і достатньо, щоб для кожної пари різних точок x_1 і x_2 в X існувало неперервне ін'єктивне відображення f простору X в хаусдорфів простір Y.

Доведення. Необхідність. Нехай простір (X,τ) є хаусдорфовим. Тоді можна покласти Y=X і f=I — тотожне відображення.

Достатність. Нехай (X, τ) — топологічний простір і

$$(\exists O(f(x_1)) \in \tau_Y, O(f(x_2)) \in \tau_Y) : (O(f(x_1)) \cap O(f(x_2)) = \emptyset),$$

де Y — хаусдорфів, а f — неперервне відображення. Оскільки простір Y є хаусдорфовим, то

$$(\exists O(f(x_1)), O(f(x_2)) \in \tau_Y) : (O(f(x_1)) \cap O(f(x_2)) = \emptyset).$$

Оскільки відображення f є неперервним, то

$$(\exists O(x_1) \in \tau_X, O(x_2) \in \tau_Y) : (f(O(x_1)) \subset O(f(x_1)) \land f(O(x_2)) \subset O(f(x_2))).$$

Тоді околи
$$V(x_1) = f^{-1}(f(O(x_1)))$$
 і $V(x_2) = f^{-1}(f(O(x_2)))$ не перетинаються. \square

Означення 4.7. Замкнена множина, що містить точку x разом з деяким її околом, називається **замкненим околом** точки x.

Теорема 4.4 (критерій регулярності)

Для того щоб T_1 -простір (X, τ) був регулярним необхідно і достатнью, щоб довільний окіл U довільної точки x містив її замкнений окіл.

Доведення. Необхідність. Нехай простір (X,τ) є регулярним, x — його довільна точка, а U — її довільний окіл. Покладемо $F = X \setminus U$. Тоді внаслідок регулярності

простору (X,τ) існує окіл V точки x і окіл W множини F, такі що $V\cap W=\varnothing$. Звідси випливає, що $V\subset X\setminus W$, отже, $\overline{V}=\overline{X\setminus W}=X\setminus W\subset X\setminus F=U$.

Достатність. Нехай довільний окіл довільної точки x містить замкнений окіл цієї точки, а F — довільна замкнена множина, що не містить точку x. Покладемо G = $X \setminus F \in \tau$. Нехай V — замкнений окіл точки x, що міститься в множині G. Тоді $W = X \setminus V$ є околом множини F, який не перетинається з множиною V.

Приклад 4.3

Розглянемо множину $X=\mathbb{R}$ і введемо топологію так: замкненими будемо вважати всі множини, що є замкненими у природній топології числової прямої, а також множину $A=\left\{\frac{1}{n},n=1,2,\ldots\right\}$. Точка нуль їй не належить, але будь-які околи точки нуль і довільні околи множини A перетинаються. Це означає, що побудований простір не є регулярним, але є хаусдорфовим.

§4.3 Замкнені бази та функціональна віддільність

Означення 4.8. Система $\gamma = \{A_i, i \in I\}$ замкнених підмножин простору X називається його **замкненою базою**, якщо будь-яку замкнену в X множину можна подати у вигляді перетину множин із системи γ .

Означення 4.9. Система $\delta = \{B_j\}$ замкнених підмножин B_j називається **замкненою передбазою**, якщо будь-яку замкнену в X множину можна подати у вигляді перетину скінченних об'єднань множин із системи δ .

Означення 4.10. Підмножини A і B простору X називаються функціонально віддільними, якщо існує дійсна неперервна функція $f: X \to [0,1]$ така, що

$$f(x) = \begin{cases} 0, & x \in A \\ 1, & x \in B. \end{cases}$$

Оскільки замкнені бази і передбази є двоїстими до відкритих, мають місце наступні твердження.

Лема 4.1

Для того щоб система $\gamma = \{A_i, i \in I\}$ замкнених множин із X була замкненою базою в X, необхідно і достатньо, щоб для кожної точки $x_0 \in X$ і для кожної замкненої множини F_0 , що не містить точку x_0 , існувала множина A_{j_0} така, що $x_0 \notin A_{j_0} \supset F_0$.

Вправа 4.1. Доведіть лему.

Лема 4.2

Для того щоб система $\delta = \{B_j, j \in J\}$ замкнених множин із X була замкненою передбазою в X, необхідно і достатнью, щоб для кожної точки $x_0 \in X$ і для кожної замкненої множини F_0 , що не містить точку x_0 , існував скінченний набір елементів $B_{j_1}, B_{j_2}, \ldots, B_{j_n}$ такий, що $x_0 \notin \bigcup k = 1^n B_{j_k} \supset F_0$.

Вправа 4.2. Доведіть лему.

Теорема 4.5 (критерій цілковитої регулярності)

Для того щоб (X, τ) був цілком регулярним (тихоновським) необхідно і достатньо, щоб кожна його точка x_0 була функціонально віддільною від усіх множин із деякої замкненої передбази $\delta = \{F_i, i \in I\}$, що її не містять.

Доведення. Необхідність. Якщо простір (X, τ) є цілком регулярним (тихоновським), то точка x_0 є функціонально віддільною від усіх замкнених множин, що її не містять, а значить, і від усіх множин із деякої замкненої передбази $\delta = \{F_i, i \in I\}$, що її не містять.

Достатність. Нехай F_0 — довільна замкнена в X множина, що не містить точку x_0 , і нехай $F_{i_1}, F_{i_2}, \ldots, F_{i_n}$ — скінченний набір елементів із δ такий, що $x_0 \notin \bigcup_{k=1}^n F_{j_k} \supset F_0$ (за другою лемою). За припущенням, існує неперервна функція $f_k: X \to [0,1]$, яка здійснює функціональну віддільність точки x_0 і замкненої множини F_{i_k} .

Покладемо $f(x) = \sup_k f_k(x)$ і покажемо, що функція f здійснює функціональну віддільність точки x_0 і множини F, а тим більше, точки x_0 і множини $F_0 \subset F$.

Дійсно, $f(x_0) = \sup_k f_k(x_0) = 0$. Далі, оскільки $\forall k = 1, 2, \dots, n$: $f_k(x) \leq 1$, із $x \in F$ випливає, що $f(x) = \sup_k f_k(x) = 1$. Крім того, із того що $x \in F = \bigcup_{k=1}^n F_{i_k}$ випливає, що, $x \in F_{i_m}$, $1 \leq m \leq n$, тобто $f_m(x) = 1$.

Залишилося показати неперервність побудованої функції. Для цього треба довести, що

$$(\forall x' \in X, \varepsilon > 0) : (\exists U \in \tau : X' \in U) : (\forall x \in U) : |f(x) - f(x')| < \varepsilon.$$

Оскільки f_k — неперервна функція, то існує окіл U_k точки x', такий що $\forall x \in U_k$: $|f_k(x) - f_k(x')| < \varepsilon$.

Покладемо $U = \bigcap_{k=1}^n U_k$. Тоді для кожного $x \in U$ і $\forall k = 1, 2, \dots, n$ виконуються нерівності

$$f_k(x') - \varepsilon < f_k(x) \le \sup_k f_k(x) = f(x),$$

$$f_k(x) < f_k(x') + \varepsilon \le f_k(x') + \varepsilon = f(x') + \varepsilon.$$

Звідси випливає, що $f(x' - \varepsilon < f(x) < f(x') + \varepsilon$.

Зауваження 4.1 — Побудова регулярних просторів, які не ε тихоновськими ε нетривіальною задачею.

Теорема 4.6 (Мала лема Урисона (критерій нормальності))

Досяжний простір X є нормальним тоді й лише тоді, коли для кожної замкненої підмножини $F \subset X$ і відкритої множини U, що її містить, існує такий відкритий окіл V множини F, що $\overline{V} \subset U$, тобто коли кожна замкнена підмножина має замкнену локальну базу.

Доведення. Необхідність. Нехай простір X нормальний. Розглянемо замкнену множину F та її окіл U. Покладемо $F' = X \setminus U$. Оскільки $F \cap F' = \varnothing$, то існує відкритий окіл V множини F і відкритий окіл V' множини F', такі що $V \cap V' = \varnothing$. Отже, $V \subset X \setminus V'$. З цього випливає, що $\overline{V} \subset \overline{X \setminus V'} = X \setminus V' \subset X \setminus F' = U$.

Достатність. Нехай умови леми виконані, а F і F' — довільні диз'юнктні замкнені підмножини простору X. Покладемо $U=X\setminus F'$. Тоді, оскільки множина U є відкритим околом множини F, то за умовою леми, існує окіл V множини F, такий що $\overline{V}\subset U$. Покладаючи $V'=X\setminus \overline{V}$ безпосередньо переконуємося, що множини V і V' не перетинаються і є околами множини F і F'.

Теорема 4.7 (Велика лема Урисона)

Будь-які непорожні диз'юнктні замкнені підмножини нормального простору є функціонально віддільними.

Зауваження 4.2 — Ця лема — критерій нормальності.

§4.4 Література

- [1] **Александрян Р.А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 191–206).
- [2] Колмогоров А.Н. Элементы теории функций и функционального анализа. 5-е изд. / Колмогоров А.Н., С. В. Фомин М.: Наука, 1981 (стр. 94–97).
- [3] **Энгелькинг Р.** Общая топология / Р. Энгелькинг М.: Мир, 1986 (стр. 69–85).

5 Компактність в топологічних просторах

Велику роль в топології відіграє клас компактних просторів, які мають дуже важливі властивості. Введемо основні поняття.

§5.1 Покриття і підпокриття

Означення 5.1. Система множин $S = \{A_i \subset X, i \in I\}$ називається покриттям простору X, якщо $\bigcup_{i \in I} A_i = X$.

Означення 5.2. Покриття S називається **відкритим** (**замкненим**), якщо кожна із множин A_i є відкритою (замкненою).

Означення 5.3. Підсистема P покриття S простору X називається **підпокриттям** покриття S, якщо сама P утворює покриття X.

Теорема 5.1 (Ліндельоф)

Якщо простір X має злічену базу, то із його довільного відкритого покриття можна виділити не більш ніж злічене підпокриття.

Доведення. Нехай $\beta = \{U_n\}$ — деяка злічена база простору X, а $S = \{G_i, i \in I\}$ — довільне відкрите покриття простору X. Для кожного $x \in X$ позначимо через $G_n(x)$ один з елементів покриття S, що містить точку x, а через $U_n(x)$ — один з елементів бази β , що містить точку x і цілком міститься у відкритій множині G_n (теорема 2.3).

$$x \in U_n(x) \subset G_n(x)$$
.

Відібрані нами множини $U_n(x) \in \beta$ утворюють злічену множину. Крім того, кожна точка x простору X міститься в деякій множині $U_n(x)$, отже

$$\bigcup_{x \in X} U_n(x) = X.$$

Вибираючи для кожного $U_n(x)$ відкриту множину $G_n(x)$, ми отримаємо не більш ніж злічену систему, яка є підпокриттям покриття S.

Означення 5.4. Топологічний простір (X, τ) , в якому із довільного відкритого покриття можна виділити не більш ніж злічене підпокриття, називається **ліндельофовим**, або фінально компактним.

§5.2 Компактні простори

Звузимо клас ліндельофових просторів і введемо наступне поняття.

Означення 5.5. Топологічний простір (X, τ) називається компактним (бікомпактним), якщо будь-яке його відкрите покриття містить скінченне підпокриття (умова Бореля—Лебега).

Приклад 5.1

Простір з тривіальною топологією є компактним.

Приклад 5.2

Простір з дискретною топологією є компактним тоді й лише тоді, коли він складається зі скінченної кількості точок.

Приклад 5.3

Простір Зариського є компактним.

Приклад 5.4

Простір \mathbb{R}^n , $n \ge 1$ не є компактним.

Теорема 5.2 (перший критерій компактності)

Для компактності топологічного простору (X, τ) необхідно і достатнью, щоб будь-яка сукупність його замкнених підмножин з порожнім перетином містила скінченну підмножину таких множин із порожнім перетином.

$$(X,\tau)-\text{компактний}\iff \\ \forall \left\{\overline{F}_{\alpha},\alpha\in A:\bigcap_{\alpha\in A}\overline{F}_{\alpha}=\varnothing\right\}\quad \exists \left\{\overline{F}_{\alpha_{1}},\overline{F}_{\alpha_{2}},\ldots,\overline{F}_{\alpha_{n}}\right\}:\quad \bigcap_{i=1}^{n}\overline{F}_{\alpha_{i}}=\varnothing.$$

Доведення. Необхідність. Нехай (X,τ) — компактний, а $\{\overline{F}_{\alpha}, \alpha \in A\}$ — довільна сукупність замкнених множин, що задовольняє умові $\bigcap_{\alpha \in A} \overline{F}_{\alpha} = \emptyset$. Розглянемо множини $U_{\alpha} = X \setminus F_{\alpha}$. За правилами де Моргана (принцип двоїстості) сукупність множин $\{U_{\alpha}, \alpha \in A\}$ задовольняє умові $\bigcup_{\alpha \in A} U_{\alpha} = X$, тобто утворює покриття простору (X,τ) . Оскільки, за припущенням, (X,τ) — компактний простір, то існує скінченна підмножина множин $\{U_{\alpha_1}, U_{\alpha_2}, \dots, U_{\alpha_n}\}$, які також утворюють покриття: $\bigcup_{i=1}^n U_{\alpha_i} = X$. Отже, за правилами де Моргана

$$X \setminus \bigcap_{i=1}^{n} \overline{F}_{\alpha_i} = \bigcup_{i=1}^{n} (X \setminus \overline{F}_{\alpha_i}) = \bigcup_{i=1}^{n} U_{\alpha_i} = X \implies \bigcap_{i=1}^{n} \overline{F}_{\alpha_i} = \emptyset.$$

Достатність. Нехай $\{U_{\alpha}, \alpha \in A\}$ — довільне відкрите покриття простору (X, τ) . Очевидно, що множини $\overline{F}_{\alpha} = X \setminus U_{\alpha}, \alpha \in A$ є замкненими, а їх сукупність має порожній перетин: $\bigcap_{\alpha \in A} \overline{F}_{\alpha} = \emptyset$. За умовою, ця сукупність містить скінченну підмножину множин $\{\overline{F}_{\alpha_1}, \overline{F}_{\alpha_2}, \dots, \overline{F}_{\alpha_n}\}$, таку що $\bigcap_{i=1}^n \overline{F}_{\alpha_i} = \emptyset$. Звідси випливає, що множини U_{α_n} , які є доповненнями множин \overline{F}_{α_n} , утворюють покриття простору (X, τ) , тобто простір (X, τ) є компактним.

Означення 5.6. Система підмножин $\{M_{\alpha} \subset X, \alpha \in A\}$ називається **центрованою**, якщо перетин довільної скінченної кількості цих підмножин є непорожнім.

$$\forall \{\alpha_1, \alpha_2, \dots, \alpha_n\} \in A \bigcap_{i=1}^n M_{\alpha_i} \neq \varnothing \implies \{M_\alpha \subset X, \alpha \in A\}$$
 — центрована система.

Теорема 5.3 (другий критерій компактності)

Для компактності топологічного простору (X,τ) необхідно і достатнью, щоб будь-яка центрована система його замкнених підмножин мала непорожній перетин

Доведення. Необхідність. Нехай простір (X,τ) — компактний, а $\{F_{\alpha}\}$ — довільна центрована система замкнених підмножин. Множини $G_{\alpha} = X \setminus F_{\alpha}$ відкриті. Жодна скінченна система цих множин $G_{\alpha_n}, n \in \mathbb{N}$ не покриває X, оскільки

$$\forall n \in \mathbb{N} \bigcap_{i=1}^{n} F_{\alpha_i} \neq \emptyset \implies X \setminus \bigcap_{i=1}^{n} F_{\alpha_i} = \bigcup_{i=1}^{n} G_{\alpha_i} \neq X \setminus \emptyset = X.$$

Отже, оскільки (X,τ) — компактний простір, система $\{G_{\alpha}\}$ не може бути покриттям компактного простору. Інакше ми могли б вибрати із системи $\{G_{\alpha}\}$ скінченне підпокриття $\{G_{\alpha_1},G_{\alpha_2},\ldots,G_{\alpha_n}\}$, а це означало б, що $\bigcap_{i=1}^n F_{\alpha_i}=\varnothing$. Але, якщо $\{G_{\alpha}\}$ — не покриття, то $\bigcap_{\alpha} F_{\alpha} \neq \varnothing$.

Достатність. Припустимо, що довільна центрована система замкнених множин із X має непорожній перетин. Нехай $\{G_{\alpha}\}$ — відкрите покриття (X,τ) . Розглянемо множини $F_{\alpha}=X\setminus G_{\alpha}$. Тоді

$$\bigcup_{\alpha} G_{\alpha} = X \implies X \setminus \bigcup_{\alpha} G_{\alpha} = X \setminus X = \emptyset \implies \bigcap_{\alpha} (X \setminus G_{\alpha}) = \bigcap_{\alpha} F_{\alpha} = \emptyset.$$

Це означає, що система $\{F_{\alpha}\}$ не є центрованою, тобто існують такі множини F_1, F_2, \ldots, F_N , що

$$\bigcap_{i=1}^{N} F_i = \varnothing \implies X \setminus \bigcap_{i=1}^{N} F_i = X \setminus \varnothing \implies \bigcup_{i=1}^{N} G_i = X.$$

Отже, із покриття $\{G_{\alpha}\}$ ми виділили скінчену підсистему

$$\{G_1,\ldots,G_N\}=\{X\setminus F_1,\ldots,X\setminus F_N\}$$

таку що $\bigcup_{i=1}^N G_i = X$. Це означає, що простір (X, τ) є компактним.

§5.3 Види компактності

Означення 5.7. Множина $M \subset X$ називається компактною (бікомпактною), якщо топологічний підпростір (M, τ_M) , що породжується індукованою топологією, є компактним.

Означення 5.8. Множина $M \subset X$ називається відносно компактною (відносно бікомпактною), якщо її замикання \overline{M} є компактною множиною.

Означення 5.9. Компактний і хаусдорфів простір називається **компактом** (бікомпактом).

Означення 5.10. Топологічний простір називається **зліченно компактним**, якщо із його довільного зліченного відкритого покриття можна виділити скінченне підпокриття (умова Бореля).

Означення 5.11. Топологічний простір називається **секвенційно компактним**, якщо довільна нескінченна послідовність його елементів містить збіжну підпослідовність (умова Больцано-Вейєрштрасса).

§5.4 Зв'язки між видами компактності

Теорема 5.4 (перший критерій зліченної компактності)

Для того щоб простір (X, τ) був зліченно компактним необхідно і достатньо, щоб кожна його нескінченна підмножина мала принаймні одну строгу граничну точку, тобто точку, в довільному околі якої міститься нескінченна кількість точок підмножини.

Доведення. Необхідність. Нехай (X,τ) — зліченно компактний простір, а M — довільна нескінченна множина в X. Припустимо, усупереч твердженню, що M не має жодної строгої граничної точки. Розглянемо послідовність замкнених множин $\Phi_n \subset M$, таку що $\Phi_n \subset \Phi_{n+1}$. Візьмемо $x_n \in \Phi_n$. За припущенням нескінченна послідовність точок $x_1, x_2, \ldots, x_n, \ldots$ не має строгих граничних точок. Побудуємо скінченну систему підмножин $\{F_n, n \in \mathbb{N}\}$, поклавши $F_n = \{x_n, x_{n+1}, \ldots\}$. Зі структури цих множин випливає, що будь-яка скінченна сукупність точок F_n має непорожній перетин, всі множини F_n є замкненими, але $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$. Отже, ми побудували зліченну центровану систему замкнених множин, перетин яких порожній, що суперечить припущенню, що простір (X,τ) зліченно компактним.

Достатність. Нехай в просторі (X,τ) кожна нескінченна множина M має строгу граничну точку. Доведемо, що простір (X,τ) є зліченно компактним. Для цього достатньо перевірити, що будь-яка зліченна центрована система $\{F_n\}$ замкнених множин має непорожній перетин. Побудуємо множини $\hat{F}_n = \bigcap_{i=1}^n F_i$. Оскільки система $\{F_n\}$ є центрованою, то замкнені непорожні множини \hat{F}_n утворюють послідовність $\hat{F}_1, \hat{F}_2, \ldots, \hat{F}_n, \ldots$, що не зростає. Очевидно, що $\bigcap_{n \in \mathbb{N}} F_n = \bigcap_{n \in \mathbb{N}} \hat{F}_n$. Можливі два варіанти: серед множин \hat{F}_n є лише скінченна кількість попарно різних множин, або нескінченна кількість таких множин. Розглянемо ці варіанти окремо.

- 1. Якщо серед множин \hat{F}_n є лише скінченна кількість попарно різних множин, то починаючи з деякого номера n_0 виконується умова $\hat{F}_{n_0} = \hat{F}_{n_0+1} = \dots$ Тоді твердження доведено, оскільки $\bigcap_{n\in\mathbb{N}} \hat{F}_n = \hat{F}_{n_0} \neq \varnothing$.
- 2. Якщо серед множин \hat{F}_n є лише нескінченна кількість попарно різних множин, то можна вважати, що $\hat{F}_n \backslash \hat{F}_{n+1} \neq \varnothing$. Оберемо по одній точці з кожної множини $\hat{F}_n \backslash \hat{F}_{n+1}$. Отже, ми побудували нескінченну множину різних точок, яка, за умовою, має граничну точку x^* . Всі точки x_n, x_{n+1}, \ldots належать множинам \hat{F}_n . Отже, $x^* \in \hat{F}_n' \forall n \in \mathbb{N}$, до того ж $\overline{\hat{F}_n} = \hat{F}_n$. З цього випливає, що $\bigcap_{n \in \mathbb{N}} \hat{F}_n \neq \varnothing$

Зауваження 5.1 — Вимогу наявності строгої граничної точки можна замінити аксіомою T_1 . Інакше кажучи, в досяжних просторах будь-яка гранична точка є строгою. Припустимо, що X — досяжний простір, а гранична точка x множини A не є строгою, і тому існує деякий окіл U, що містить лише скінчену кількість точок множини A, що відрізняються від x. Розглянемо множину $V = U \setminus ((A \cap U)\setminus\{x\})$, тобто різницю між множиною U і цим скінченним перетином. Оскільки простір X є досяжним, то в ньому будь-яка скінченна множина є замкненою. Отже, множина V0 є відкритою ($V = X \cap (U\setminus\{A\cap U\setminus\{x\}\}) = U\cap(X\setminus(U\cap A\setminus\{x\}))$, містить точку x1, а перетин множин дорівнює $A\cap V = \{x\}$ 3 або \emptyset 1. Це суперечить тому, що x1— гранична точка множини A1.

Зауваження 5.2 — Чому не можна взагалі зняти умову наявності строгої граничної точки? Розглянемо як контрприклад топологію, що складається з натуральних чисел на відрізку [1,n], тобто $\tau = \{\varnothing, \mathbb{N}, [1,n] \cap \mathbb{N} \forall n \in \mathbb{N}\}$. Цей простір не є зліченно компактним (порушується другий критерій компактності). Розглянемо нескінченну множину $A \subset \mathbb{N}$ і покладемо $n = \min A$. Тоді будь-який $m \in A \setminus \{n\}$ є граничною точкою множини A, тобто \mathbb{N} є слабко зліченно компактним простором.

Теорема 5.5 (другий критерій зліченної компактності)

Для того щоб досяжний простір (X, τ) був зліченно компактним необхідно і достатнью, щоб кожна нескінченна множина точок із X мала принаймні одну граничну точку (такі простори називаються слабко зліченно компактними). Інакше кажучи, в досяжних просторах слабка зліченна компактність еквівалентна зліченній компактності.

Доведення. Необхідність. Припустимо, що A — злічена підмножина X, що не має граничних точок (це не обмежує загальності, оскільки в будь-якій нескінченій підмножині ми можемо вибрати злічену підмножину). Множина A є замкненою в X (оскільки будь-яка точка множини $\overline{A} \setminus A$ є граничною точкою множини A, яка за припущенням не має граничних точок, тому $\overline{A} = A$). Нехай $A = \{a_1, s_2, \dots\}$ і $A_n = \{a_n, a_{n+1}, \dots\}$. Зі сказаного вище випливає, що $A_n = \overline{A}_n$, інакше $A' = \varnothing$. Покладемо $G_n = X \setminus A_n$. Ця множина є доповненням замкненої множини A_n , тому вона є відкритою. Розглянемо послідовність множин G_n . Вона зростає і покриває X, тому що кожна точка X із множини $X \setminus A$ належить G_1 , а значить, усім множинам G_n , а якщо $X \in A$, то вона дорівнює якомусь A_n , отже, належить $A_n \in A_n$. Таким чином, послідовність множин $A_n \in A_n$ 0, оскільки об'єднання елементів цього скінченне підпокриття $A_n \in A_n$ 1, оскільки об'єднання елементів цього скінченного підпокриття було б найбільшим серед усіх множин $A_n \in A_n$ 2, які утворюють зростаючу послідовність).

$$G_1 \subset G_2 \subset \cdots \subset \bigcup_{k=1}^n G_{i_k} = G_N = X.$$

У цьому випадку об'єднання $G_N = \bigcup_{k=1}^n G_{i_k}$ не може містити усі елементи a_i , номер яких перевищує N (за конструкцією), отже, воно не покриває X. У такому випадку простір X не є зліченно компактним. Отримана суперечність доводить бажане.

Достатність. Припустимо, що простір X не є зліченно компактним. Значить, існує зліченне відкрите покриття $\{G_n\}_{n\in\mathbb{N}}$, що не містить скінченного підпокриття. Жодна сукупність множин $\{G_1,G_2,\ldots,G_n\}$ не є покриттям, тому можемо вибрати з множин $X\setminus\bigcup_{k=1}^nG_i$ по одній точці x_i і утворити із них множину A.

Розглянемо довільну точку $x \in X$. Оскільки $\{G_n\}_{n \in \mathbb{N}}$ — покриття простору X, точка x належить якійсь множині G_N , яка своєю чергою може містити лише такі точки x_i із множини A, номер яких задовольняє умові i < N (оскільки за означенням точка x_i не належить жодному G_j , якщо $j \le i$). Отже, множина G_N є околом точки x, перетин якої із множиною A є лише скінченним. Водночас, оскільки простір є досяжним, в околі граничної точки будь-якої множини повинно міститись нескінченна кількість точок цієї множини. Отже, точка x не є граничною точкою множини A. Це твердження є слушним для будь-якої точки x, отже, множина A не має жодної граничної точки. Отримана суперечність доводить бажане.

Теорема 5.6 (про еквівалентність компактності та зліченої компактності)

Для топологічного простору (X, τ) зі зліченною базою компактність еквівалентна зліченній компактності.

Доведення. Необхідність. Нехай (X, τ) — компактний простір. Тоді із довільного відкритого покриття можна виділити скінченне покриття. Значить, скінченне покриття можна виділити зі зліченного відкритого покриття.

Достатність. Нехай (X,τ) є зліченно компактним простором, а $S = \{U_{\alpha}, \alpha \in A\}$ — його довільне відкрите покриття. Оскільки простори зі зліченою базою мають властивість Ліндельофа (теорема 5.1), то покриття S містить підпокриття S', яке, внаслідок, зліченної компактності простору (X,τ) містить скінченне підпокриття S''. Отже, простір (X,τ) є зліченно компактним.

Теорема 5.7 (про еквівалентність компактності, секвенційної компактності та зліченної компактності)

Для досяжних просторів зі зліченою базою компактність, секвенційна компактність і зліченна компактність є еквівалентними.

Доведення. З огляду на теорему 5.6, достатньо показати, що злічена компактність в досяжному просторі зі зліченною базою еквівалентна секвенційній компактності.

Необхідність. Розглянемо зліченно компактний простір (X,τ) . Нехай $A=\{x_n\}_{n\in\mathbb{N}}$ — довільна нескінченна послідовність (тобто послідовність, що містить нескінченну кількість різних точок), а простір є зліченно компактним. Отже, за теоремою 5.5, множина A має граничну точку x^* . Розглянувши зліченну локальну базу околів $\{G_k\}_{k\in\mathbb{N}}$ точки x^* , так що $G_{k+1}\subset G_k$, можна виділити послідовність x_{n_k} , що збігається до x^* . Отже, простір (X,τ) є секвенційно компактним.

Достатність. Нехай простір (X, τ) є секвенційно компактним. З теореми 5.4 випливає, що будь-яка зліченна нескінченна підмножина простору X має строгу граничну точку. Це означає, що будь-яка нескінченна зліченна послідовність має граничну точку, тобто із неї можна виділити збіжну підпослідовність.

§5.5 Література

- [1] **Александрян Р.А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 225–238).
- [2] **Колмогоров А.Н.** Элементы теории функций и функционального анализа. 5-е изд. / Колмогоров А.Н., С. В. Фомин М.: Наука, 1981 (стр. 98–105).
- [3] **Энгелькинг Р.** Общая топология / Р. Энгелькинг М.: Мир, 1986 (стр. 195—215).