





## Intel Edison Demo Day, London

Getting Started With Intel Edison

Nandkishor (Nandu) Sonar Intel Corporation (UK) Ltd. 28-Nov-2014



# Agenda

- Intel<sup>®</sup> Edison overview
- Development platforms
- Development environment
- Libmraa & UPM libraries
- Cloud Analytics overview



### The Intel® Edison

- Development platform for IoT and Wearable computing.
- Designed for inventors, entrepreneurs, and consumer product designers to rapidly prototype.
- Packs a robust set of features into its small size, delivering great performance, durability, and a broad spectrum of I/O and software support.
- Versatile features help meet the needs of a wide range of customers.



## The Intel® Edison Offering









| Hardware  | Edison Module + Derivatives                                                                                    |
|-----------|----------------------------------------------------------------------------------------------------------------|
|           | Expansion Boards                                                                                               |
| Software  | Yocto + Various Runtimes, IDE & Developer Tools                                                                |
| Cloud     | Developer cloud solution and partner-based solutions for scale                                                 |
| Support   | Managed on-line community, trouble ticketing, drawings, schematics, datasheets, code libraries, webinars, etc. |
| Ecosystem | ISVs, Incubators, Crowd Source funders & SIs                                                                   |

### Intel® Edison module



### Desingened to be wireless, with compute performance and low power!

#### **Board**

- 22nm 2 core Intel® Atom™ Core™ @ 500MHz
- 1 Intel® Quark™ MCU @ 100MHz
- 35.5 × 25.0 × 3.9 mm
- 1 GB RAM (LPDDR3, 2ch @ 800 MT/s)
- 4 GB eMMC
- Wi-Fi (a/b/g/n) + BT 4.0 + antenna
- 40 GPIOs: UART, I2C, SPI, I2S, PWM, USB
   2.0, SD card, clock out, GPIO

#### **Software**

- Default OS: Yocto\* 1.6 Linux\*
  - Right now: 3.10.17 kernel
  - OTA upgradable
  - **libmraa**: IO abstraction layer
  - **UPM** repository: sensor libraries







## Intel® Edison Development Boards: Arduino\* expansion

Board I/O: Compatible with Arduino\* Uno (except only 4 PWM instead of 6 PWM)

- 20 digital I/O pins including 4 pins as PWM outputs
- 6 analog inputs
- 1 UART (RX/TX)
- 1 I2C
- 1 ICSP 6-pin header (SPI)
- Micro USB device connector
- Micro USB device (connected to UART)
- SD Card connector
- DC power jack (7V 15V DC input)

Board to board Press-fit connection (Hirose DF40)





## Intel® Edison Development Boards: Breakout board

61mm x 29mm x 12mm (2.4 x 1.1 x 0.5 inches)

### **Board I/O:**

- Exposes native 1.8V I/O of the Edison module
- .1" grid I/O array of through-hole solder points
- USB OTG with USB Micro Type-AB connector
- USB OTG power switch
- Battery Charger
- USB to device UART bridge with USB Micro Type-B connector

29mm







### Grove Starter Kit Plus - Intel® IoT Edition

- 1 Base Shield v2
- 2 Grove Buzzer V1.1
- 3 Grove Button
- 4 Grove-LED v1.3
- 5 Grove Sound Sensor\_V1.2
- 6 Grove Rotary Angle Sensor
- 7 Grove-Touch Sensor
- 8 Grove Smart Relay
- 9 Grove-Light Sensor
- 10 Grove Temperature Sensor\_V1.1
- 11 26AWG Grove Cable
- 12 Mini Servo
- 13 9V to Barrel Jack Adapter 126mm
- 14 DIP LED Blue-Blue
- 15 DIP LED Green-Green
- 16 DIP LED Red-Red
- 11 Grove LCD RGB Backlight





## **Intel® Edison Developer Options**

Coming end 4Q (subjected to change)





<sup>\*</sup> Names and brands may be claimed by the property of third party name and the notation.

### **Intel® IoT Developer Kit**

A complete solution for creating IoT applications targeted for Intel® IoT platforms such as Intel® Galileo board and Intel® Edison board.

- Multiple IDEs (XDK, Eclipse, Wyliodrin\*, Arduino\*)
- Cloud analytics & data management
- Mashery IoT Restful APIs
- Multiple Programming Languages (JavaScript, C/C++, Arduino\* Sketches, Visual programming)
- APIs that shields H/W complexity (libmraa)
- Sensor libraries with API bindings (UPM)
- Open & Standard Yocto Linux\* based OS
- Supports full range of Linux tools and libraries
- Full x86 support (Scale from Intel® Quark™ SoC to Intel® Core™ processor)
- Intel® Galileo (Gen1/ Gen 2), Intel® Edison



Intel Software Services Group

<sup>\*</sup> Names and brands may be claimed by the property of third party name and the notation.

#### Libmraa – Object API (Python)

```
from mraa import * # Import mraa library
x = Gpio(8) \# Create a GPIO object for pin 8
x.dir(DIR OUT) # Set GPIO direction to output
x.write(1) # Write to GPIO
x = "memory is not my problem!"
```

### Libmraa – Object API (NodeJS) ↑ • • • • •

```
var m = require("mraa") # Import mraa module
var x = new m.Gpio(8) # Create a GPIO object
for pin 8
x.dir(m.DIR OUT) # Set GPIO direction to output
x.write(1) # Write to GPIO
```

#### Libmraa / UPM: Makes GPIO & Sensors usage very easy

#### Libmraa C API

```
mraa gpio context gpio; // Pointer to GPIO context
gpio = mraa gpio init(8); // Create GPIO context for pin 8
mraa_gpio_dir(gpio, MAA_GPIO OUT); // Set GPIO direction to output
mraa gpio write(gpio, 1); // Write to GPIO
mraa qpio close(qpio); // Close GPIO
```



#### Libmraa C++ API

```
Maa::Aio* a0:
a0 = new mraa::Aio(0); // Create AIO object for pin0
std::cout << a0->read() << std::endl;</pre>
```

#### UPM API

using namespace upm; // instantiate an object GroveTemp on analog input 0 GroveTemp\* sensor = new GroveTemp(0); // print the value of the sensor in deg. centigrade std::cout << sensor->value() << std::endl;</pre>

### Intel® IoT Analytics - www.enableiot.com

- RESTful API
- iotkit-agent (UDP / TCP)



```
#! /usr/bin/env python
import socket
import sys
UDP PORT = 41234
sock = socket.socket(socket.AF INET, socket.SOCK DGRAM)
sock.sendto('{"n":"' + component +
\","v":"' + value + '"}', ('localhost', UDP PORT))
                           intel') Edison
                          What will you make?
```

### Resources & Call to Action

#### Resources:

- Intel® Edison: <a href="https://communities.intel.com/community/makers/edison">https://communities.intel.com/community/makers/edison</a>
- IoT Developer Zone Home: <a href="https://software.intel.com/en-us/iot">https://software.intel.com/en-us/iot</a>
- libmraa: <a href="https://github.com/intel-iot-devkit/mraa">https://github.com/intel-iot-devkit/mraa</a>
- UPM: <a href="https://github.com/intel-iot-devkit/upm">https://github.com/intel-iot-devkit/upm</a>



#### Call to Action:



- Visit Intel® Developer Zone IOT and join the Community/Forums/Hackathons.
- Create/develop/run/deploy IoT apps with easy to use HW and SW using Intel® IoT Developer Kit.
- Participate in challenges like <a href="http://makeitpro.intel.com/">https://makeit.intel.com/</a>



http://software.intel.com/IoT







Intel® IoT Developer Kit makes software development easy on Intel® IoT / Wearable platforms!

(intel<sup>2</sup>)



Thanks!