Convex Optimization - Al2101

Assignment - X

Bhuvan Chandra K

AI23BTECH11013

May 7, 2025

Question 4.4

Symmetries and convex optimization. Suppose $G = \{Q_1, \dots, Q_k\} \subseteq \mathbb{R}^{n \times n}$ is a group, i.e., closed under products and inverse. We say that the function $f : \mathbb{R}^n \to \mathbb{R}$ is G-invariant, or symmetric with respect to G, if $f(Q_ix) = f(x)$ holds for all x and $i = 1, \dots, k$.

We define $\bar{x} = \frac{1}{k} \sum_{i=1}^{k} Q_i x$, which is the average of x over its G-orbit. We define the fixed subspace of G as

$$F = \{x \mid Q_i x = x, i = 1, ..., k\}.$$

- (a) Show that for any $x \in \mathbb{R}^n$, we have $\bar{x} \in F$.
- (b) Show that if $f: \mathbb{R}^n \to \mathbb{R}$ is convex and *G*-invariant, then $f(\bar{x}) \leq f(x)$.
- (c) We say the optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$ (1)

is G-invariant if the objective f_0 is G-invariant, and the feasible set is G-invariant, which means

$$f_1(x) \le 0, \dots, f_m(x) \le 0 \Rightarrow f_1(Q_i x) \le 0, \dots, f_m(Q_i x) \le 0, \text{ for } i = 1, \dots, k.$$

Show that if the problem is convex and G-invariant, and there exists an optimal point, then there exists an optimal point in F. In other words, we can adjoin the equality constraints $x \in F$ to the problem, without loss of generality.

(d) As an example, suppose f is convex and symmetric, i.e., f(Px) = f(x) for every permutation matrix P. Show that if f has a minimizer, then it has a minimizer of the form $\alpha 1$. (This means to minimize f over $x \in \mathbb{R}^n$, we can just as well minimize f(t1) over $t \in \mathbb{R}$.)

Solution:

Let

$$G = \{Q_1, \dots, Q_k\} \subset \mathbb{R}^{n \times n}$$

be a finite group of invertible matrices.

Define for any $x \in \mathbb{R}^n$ its average over its *G*-orbit as

$$\bar{x} = \frac{1}{k} \sum_{i=1}^{k} Q_i x$$

The fixed subspace is denoted as

$$F = \{x : Q_i x = x \ \forall i = 1, ..., k\}$$

We have to show:

$$Q_j \bar{x} = \bar{x} \quad \forall j$$

$$Q_j(\bar{x}) = Q_j \left(\frac{1}{k} \sum_{i=1}^k Q_i x\right) = \frac{1}{k} \sum_{i=1}^k (Q_j Q_i x)$$

For any element $Q_m \in G$, we want to find i such that

$$Q_jQ_i=Q_m$$

$$Q_i = Q_j^{-1} Q_m$$

Since $Q_j^{-1} \in G$ and $Q_m \in G$, their product $Q_j^{-1}Q_m$ must also be in G (by closure property of groups).

So $Q_i^{-1}Q_m = Q_n$ for some $n \in \{1, 2, ..., k\}$

So we choose the index n (i.e., $Q_i = Q_n$) as the choice for i. (Each Q_i is unique)

So $\{Q_iQ_i: i=1,\ldots,k\}$ is just a permutation of $\{Q_1,Q_2,\ldots,Q_k\}$

From this result, we get:

$$\sum_{i} Q_{j}Q_{i}x = \sum_{i} Q_{i}x$$

$$Q_{j}\bar{x} = \frac{1}{k} \left(\sum_{i=1}^{k} Q_{j}Q_{i}x \right) = \frac{1}{k} \left(\sum_{i=1}^{k} Q_{i}x \right)$$

$$Q_{j}\bar{x} = \bar{x} \Rightarrow \bar{x} \in F$$

$$\therefore \quad \bar{x} \in F$$

(b)

Given $f: \mathbb{R}^n \to \mathbb{R}$ is convex and *G*-invariant

$$f(\bar{x}) = f\left(\frac{1}{k}\sum_{i}Q_{i}x\right)$$

We know that for any finite set of points y_1, \ldots, y_k and weights $\alpha_i \ge 0$ summing to 1:

$$f\left(\sum_{i=1}^{k} \alpha_i y_i\right) \le \sum_{i=1}^{k} \alpha_i f(y_i)$$

Here we take $\alpha_i = \frac{1}{k}$ So,

$$f\left(\frac{1}{k}\sum_{i}Q_{i}x\right) \leq \frac{1}{k}\sum_{i=1}^{k}f(Q_{i}x)$$

Since f is G-invariant, i.e., $f(Q_ix) = f(x)$ for all i, we get:

$$f(\bar{x}) \le \frac{1}{k} \sum_{i=1}^{k} f(x) = f(x)$$

$$\therefore f(\bar{x}) \leq f(x)$$

We have the optimization problem:

minimize
$$f_0(x)$$

subject to $f_j(x) \le 0$, for $j = 1, ..., m$ (2)

and these assumptions:

- (i) Each f_i is convex.
- (ii) An optimal x^* exists.
- (iii) The problem is *G*-invariant, i.e.,

$$f_0(Q_i x) = f_0(x), \quad f_j(Q_i x) \le 0 \Leftrightarrow f_j(x) \le 0 \quad \forall i.$$

We will define *G*-orbit average as:

$$\bar{x}^* = \frac{1}{k} \sum_i Q_i x^*$$

For each constraint $f_i(\bar{x}^*)$, by similar argument from (b):

$$f_j(\bar{x}^*) \le \frac{1}{k} \sum_{i=1}^k f_j(Q_i x^*)$$

From condition $f_i(Q_i x^*) = f_i(x^*)$

$$f_j(\bar{x}^*) \le f_j(x^*)$$
$$f_j(\bar{x}^*) \le 0$$

So \bar{x}^* is feasible.

$$f_0(\bar{x}^*) \le \frac{1}{k} \sum_i f_0(Q_i x^*)$$

 $f_0(\bar{x}^*) \le f_0(x^*)$

So \bar{x}^* attains the same minimum value, also $\bar{x}^* \in F$ from (a).

Thus we may (without loss of generality) consider $x \in F$ when searching for an optimal solution.

(d)

Let x^* be a minimizer of $f: \mathbb{R}^n \to \mathbb{A}$

$$x' = \frac{1}{n!} \sum_{P \in S_n} Px^*$$

The sum is over all $n \times n$ permutation matrices P.

So for every permutation *P*,

$$Px' = \frac{1}{n!} \sum_{Q \in S_n} P(Qx^*) = \frac{1}{n!} \sum_{Q \in S_n} (PQ)x^* = x'$$

x' lies in the fixed subspace of all permutations:

$$x' = \alpha \mathbf{1}$$
 for some $\alpha \in \mathbb{R}$

Since f is symmetric and using Jensen's inequality,

$$f(x') = f\left(\frac{1}{n!}\sum_{p}Px^*\right) \le \frac{1}{n!}\sum_{p}f(Px^*)$$

$$\frac{1}{n!} \sum_{p} f(Px^*) = \frac{1}{n!} \sum_{p} f(x^*) = f(x^*)$$

We have $f(x') \le f(x^*)$

 \therefore Since x^* was a minimizer, x' must also be a minimizer.

Question 4.6

Handling convex equality constraints. A convex optimization problem can have only linear equality constraint functions. In some special cases, however, it is possible to handle convex equality constraint functions, i.e., constraints of the form g(x) = 0, where g is convex. We explore this idea in this problem.

Consider the optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h(x) = 0$ (3)

where f_i and h are convex functions with domain \mathbb{R}^n . Unless h is affine, this is not a convex optimization problem. Consider the related problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h(x) \le 0$ (4)

where the convex equality constraint has been relaxed to a convex inequality. This problem is, of course, convex. Now suppose we can guarantee that at any optimal solution x^* of the convex problem, we have $h(x^*) = 0$, i.e., the inequality $h(x) \le 0$ is always active at the solution. Then we can solve the (nonconvex) problem by solving the convex problem.

Show that this is the case if there is an index r such that

- f_0 is monotonically increasing in x_r ,
- f_1, \ldots, f_m are nonincreasing in x_r ,
- h is monotonically decreasing in x_r .

Solution:

Considering the given constraints:

Let x^* be an optimal solution to (4.66) and $h(x^*) < 0$.

We denote x^* as

$$x^* = (x_1, x_2, \dots, x_r, \dots, x_n)$$

We are given that h is monotonically decreasing in x_r . So if we decrease x_r , the value of h will increase (since it's monotone, and as we go right, h decreases).

Let's take a new point x'. This is a tweaked version of x^* . We decrease x_r by γ in x^* and take it as x'.

$$x' = (x_1, x_2, \dots, x_r - \gamma, \dots, x_n)$$
 for some $\gamma > 0$

We know h is continuous (also a convex function), we will make sure to choose a small γ so that $h(x') \leq 0$ still holds. [This is from $h(x^*) < 0$]

From the condition that each f_i is non-increasing in x_r , we can write:

$$f_i(x') \le f_i(x^*)$$

$$f_i(x') \leq 0$$

We can see that x' satisfies all inequalities.

Since f_0 is monotonically increasing in x_r and we have decreased x_r by γ ,

$$f_0(x') < f_0(x^*)$$

So we minimized f_0 more with x' than x^* . But this contradicts that x^* is optimal. So our assumption $h(x^*) < 0$ is false. We are left with $h(x^*) = 0$

 \therefore At any optimal solution x^* of (4.66), we must have $h(x^*) = 0$.

Question 4.7 (a)

Convex-concave fractional problems. Consider a problem of the form

minimize
$$\frac{f_0(x)}{c^Tx + d}$$
 subject to $f_i(x) \le 0$, $i = 1, ..., m$ $Ax = b$

where f_0, f_1, \ldots, f_m are convex, and the domain of the objective function is defined as

$$\{x \in \operatorname{dom} f_0 \mid c^T x + d > 0\}.$$

(a) Show that this is a quasiconvex optimization problem.

Solution:

First we show that the objective function is quasiconvex.

A function φ is quasiconvex if and only if all its sublevel sets are convex.

$$S_{\alpha} = \{ x \in D \mid \varphi(x) \le \alpha \}$$

Here $D = \{x \mid x \in \text{dom } f_0, c^T x + d > 0\}$

Let

$$\varphi(x) = \frac{f_0(x)}{c^T x + d}$$

and we will show S_{α} is convex for all $\alpha \in \mathbb{R}$.

dom f_0 is convex since f_0 is convex,

 $\{x \mid c^T x + d > 0\}$ is convex [It is open half space]

We know their intersection is also convex.

So we can write $\varphi(x) \leq \alpha$ as:

$$\varphi(x) \le \alpha \Rightarrow \begin{cases} c^T x + d > 0 \\ f_0(x) \le \alpha (c^T x + d) \end{cases}$$

Redefine S_{α} as:

$$S_{\alpha} = \{x \mid c^T x + d > 0, \ f_0(x) - \alpha(c^T x + d) \le 0\}$$

As seen before, the set $\{x \mid c^T x + d > 0\}$ is convex.

 $\alpha(c^Tx + d)$ is affine, $f_0(x)$ is convex.

We know that convex minus affine is also convex:

$$f_0(x) - \alpha(c^T x + d)$$
 is convex.

So the side $f_0(x) - \alpha(c^Tx + d) \le 0$ is also convex.

Intersection of the two convex sets giving S_{α} is also convex.

 \therefore We found S_{α} is convex, so φ is quasiconvex. This is a quasiconvex optimization problem.