DT15 Rec'd PCT/PTO 2 1 DEC 2004

SEQUENCE LISTING

```
<110> SCHUTZ, MICHAEL
      MEYER, ROMAN
       GRALLERT, HOLGER
      MILLER, STEFAN
<120> METHOD FOR DETECTING AND FOR REMOVING ENDOTOXIN
<130> DEBE:046US
<140> UNKNOWN
<141> 2004-12-21
<150> PCT/DE2003/002096
<151> 2003-06-24
<150> DE 103 07 793.6
<151> 2003-02-24
<150> DE 102 28 133.5
<151> 2002-06-24
<160> 8
<170> PatentIn version 3.1
<210> 1
<211>
      78
<212> DNA
<213> artificial sequence
<220>
<223> Primer
<400> 1
gaaggaacta gtcatatggc tagctggagc cacccgcagt tcgaaaaaagg cgccagtaat
                                                                     60
aatacatatc aacacgtt
                                                                     78
<210> 2
<211> 54
<212> DNA
<213> artificial sequence
<220>
<223> Primer
<400> 2
acgcgcaaag cttgtcgacg gatcctatca ttcttttacc ttaattatgt agtt
                                                                     54
<210> 3
<211> 78<212> DNA
<213> artificial sequence
<220>
<223> Primer
```

```
<400> 3
gaaggaacta gtcatatggc ttgttggagc cacccgcagt tcgaaaaaagg cgccagtaat
                                                                      60
aatacatatc aacacgtt
                                                                      78
<210> 4
<211> 78
<212> DNA
<213> artificial sequence
<220>
<223> Primer
<400> 4
gaaggaacta gtcatatggc tagctggagc cacccgcagt tcgaaaaaagg cgcctgtaat
                                                                      60
aatacatatc aacacgtt
                                                                      78
<210> 5
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> Tag for targeted Biotinylation
<400> 5
Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
Thr Tyr Gln
<210> 6
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> Tag for targeted Biotinylation
<400> 6
Met Ala Cys Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn
               5
                                   10
Thr Tyr Gln
<210> 7
<211> 19
<212> PRT
<213> artificial sequence
<220>
<223> Tag for targeted Biotinylation
```

<400> 7

Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Cys Asn Asn 1 5 10 15 Thr Tyr Gln

<210> 8

<211> 539

<212> PRT

<213> artificial sequence

<220>

<223> P12 with a tag for targeted Biotinylation

<400> 8

Met Ala Ser Trp Ser His Pro Gln Phe Glu Lys Gly Ala Ser Asn Asn 1 5 10 15

Thr Tyr Gln His Val Ser Asn Glu Ser Arg Tyr Val Lys Phe Asp Pro 20 25 30

Thr Asp Thr Asn Phe Pro Pro Glu Ile Thr Asp Val Gln Ala Ala Ile 35 40 45

Ala Ala Ile Ser Pro Ala Gly Val Asn Gly Val Pro Asp Ala Ser Ser 50 55 60

Thr Thr Lys Gly Ile Leu Phe Leu Ala Thr Glu Glu Val Ile Asp 65 70 75 80

Gly Thr Asn Asn Thr Lys Ala Val Thr Pro Ala Thr Leu Ala Thr Arg 85 90 95

Leu Ser Tyr Pro Asn Ala Thr Glu Ala Val Tyr Gly Leu Thr Arg Tyr
100 105 110

Ser Thr Asp Asp Glu Ala Ile Ala Gly Val Asn Asn Glu Ser Ser Ile 115 120 125

Thr Pro Ala Lys Phe Thr Val Ala Leu Asn Asn Val Phe Glu Thr Arg 130 135 140

Val Ser Thr Glu Ser Ser Asn Gly Val Ile Lys Ile Ser Ser Leu Pro 145 150 155 160

Gln Ala Leu Ala Gly Ala Asp Asp Thr Thr Ala Met Thr Pro Leu Lys

165 170 \$\sim 175\$

Thr Gln Gln Leu Ala Val Lys Leu Ile Ala Gln Ile Ala Pro Ser Lys
180 185 190

Asn Ala Ala Thr Glu Ser Glu Gln Gly Val Ile Gln Leu Ala Thr Val 195 200 205

Ala Gln Ala Arg Gln Gly Thr Leu Arg Glu Gly Tyr Ala Ile Ser Pro 210 215 220

Tyr Thr Phe Met Asn Ser Thr Ala Thr Glu Glu Tyr Lys Gly Val Ile

					00-										
225					230					235					240
Lys	Leu	Gly	Thr	Gln 245	Ser	Glu	Val	Asn	Ser 250	Asn	Asn	Ala	Ser	Val 255	Ala
Val	Thr	Gly	Ala 260	Thr	Leu	Asn	Gly	Arg 265	Gly	Ser	Thr	Thr	Ser 270	Met	Arg
Gly	Val	Val 275	Lys	Leu	Thr	Thr	Thr 280	Ala	Gly	Ser	Gln	Ser 285	Gly	Gly	Asp
Ala	Ser 290	Ser	Ala	Leu	Ala	Trp 295	Asn	Ala	Asp	Val	Ile 300	His	Gln	Arg	Gly
Gly 305	Gln	Thr	Ile	Asn	Gly 310	Thr	Leu	Arg	Ile	Asn 315	Asn	Thr	Leu	Thr	Ile 320
Ala	Ser	Gly	Gly	Ala 325	Asn	Ile	Thr	Gly	Thr 330	Val	Asn	Met	Thr	Gly 335	Gly
Tyr	Ile	Gln	Gly 340	Lys	Arg	Val	Val	Thr 345	Gln	Asn	Glu	Ile	Asp 350	Arg	Thr
Ile	Pro	Val 355	Gly	Ala	Ile	Met	Met 360	Trp	Ala	Ala	Asp	Ser 365	Leu	Pro	Ser
Asp	Ala 370	Trp	Arg	Phe	Cys	His 375	Gly	Gly	Thr	Val	Ser 380	Ala	Ser	Asp	Cys
Pro 385	Leu	Tyr	Ala	Ser	Arg 390	Ile	Gly	Thr	Arg	Tyr 395	Gly	Gly	Ser	Ser	Ser 400
Asn	Pro	Gly	Leu	Pro 405	Asp	Met	Arg	Gly	Leu 410	Phe	Val	Arg	Gly	Ser 415	Gly
Arg	Gly	Ser	His 420	Leu	Thr	Asn	Pro	Asn 425	Val	Asn	Gly	Asn	Asp 430	Gln	Phe
Gly	Lys	Pro 435	Arg	Leu	Gly	Val	Gly 440	Cys	Thr	Gly	Gly	Tyr 445	Val	Gly	Glu
Val	Gln 450	Lys	Gln	Gln	Met	Ser 455	Tyr	His	Lys	His	Ala 460	Gly	Gly	Phe	Gly
Glu 465	Tyr	Asp	Asp	Ser	Gly 470	Ala	Phe	Gly	Asn	Thr 475	Arg	Arg	Ser	Asn	Phe 480
Val	Gly	Thr	Arg	Lys 485	Gly	Leu	Asp	Trp	Asp 490	Asn	Arg	Ser	Tyr	Phe 495	Thr
Asn	Asp	Gly	Tyr 500	Glu	Ile	Asp	Pro	Ala 505	Ser	Gln	Arg	Asn	Ser 510	Arg	Tyr
Thr	Leu	Asn 515	Arg	Pro	Glu	Leu	Ile 520	Gly	Asn	Glu	Thr	Arg 525	Pro	Trp	Asn
Ile	Ser 530	Leu	Asn	Tyr	Ile	Ile 535	Lys	Val	Lys	Glu					