

Maximum Likelihood Estimator For Object Localization and Parameter Estimation

Yazhou Zhang 5/2/2018

Motivation

From a computer vision project:
Predict the center position of a smart phone

Machine Learning vs Estimation Theory?

Task Description

Assume a gray-scale image with $M \times N$ pixels, x[m, n], where m = 0, 1, ..., M - 1 n = 0, 1, ..., N - 1. An object of size is given by $L_1 \times L_2$, L_1 , L_2 are known.

A is an unknown amplitude, $[m_0, n_0]$ is an unknown center position

Task Description

 R_{θ} is a rotation operator.

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

The background noise is given by: $\omega[m, n] = \mu + u[m, n]$. Where u[m, n] is white Gaussian noise sample with variance σ^2 . Assume μ and σ^2 are unknown.

$$x[m, n] = AR_{\theta}(g[m-m_0, n-n_0]) + \mu + \mu[m, n]$$

Sample Image Generation

No rotation:

Known: M=100, N=68, L_1 =20, L_2 =12

Need to estimate: μ =0.2, A=1, σ ² =0.01, m₀=50, n₀=38

$$g[m-m_{0}, n-n_{0}] = \begin{cases} 1 & |m-m_{0}| < \frac{L_{1}}{2} & |n-n_{0}| < \frac{L_{2}}{2} \\ 0 & otherwise \end{cases}$$

No rotation:

Known: M=100, N=68, L₁=20, L₂=12, μ =0.2, A=1, σ ² = 0.01

Need to estimate: m_0 , n_0

$$P(x[m,n]) = \frac{1}{(2\pi\sigma^2)^{\frac{MN}{2}}} e^{-\frac{1}{2\sigma^2} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (x[m,n] - g[m-m_0,n-n_0] - \mu)^2}$$

According to MLE, we need to minimize:

$$\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (x [m, n] - g [m - m_0, n - n_0] - \mu)^2$$

Grid Search $\Rightarrow \hat{m}_0, \hat{n}_0$

$$\hat{m}_0, \ \hat{n}_0$$

Real Center	(50, 38)
Estimated Center	(50, 38)

No rotation:

Known: M=100, N=68, L_1 =20, L_2 =12, μ =0.2, A=1,

Unknown: m_0 , n_0 , σ^2

$$\ln P(x[m, n]) = \ln \frac{1}{(2\pi\sigma^2)^{\frac{MN}{2}}} - \frac{1}{2\sigma^2} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (x[m, n] - g[m - m_0, n - n_0] - \mu)^2$$

$$\Rightarrow \hat{m}_0, \hat{n}_0$$

Grid Search
$$\Rightarrow \hat{n}_0, \hat{n}_0 \stackrel{\text{Minimize}}{===} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (x[m,n]-g[m-m_0,n-n_0]-\mu)^2$$

$$\frac{\partial \ln P}{\partial \sigma^{2}} = \frac{(2\pi\sigma^{2})^{\frac{MN}{2}} \left(-\frac{MN}{2}\right)}{(2\pi\sigma^{2})^{\frac{MN}{2}+1}} \cdot 2\pi + \frac{\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left(x \left[m, n\right] - g \left[m - \hat{m}_{0}, n - \hat{n}_{0}\right] - \mu\right)^{2}}{2\sigma^{2}}$$

$$= -\frac{MN}{2\sigma^{2}} + \frac{\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left(x \left[m, n\right] - g \left[m - \hat{m}_{0}, n - \hat{n}_{0}\right] - \mu\right)^{2}}{2\sigma^{2}} = 0$$

No rotation:

Known: M=100, N=68, L_1 =20, L_2 =12, μ =0.2, A=1,

Unknown: m_0 , n_0 , σ^2

$$\hat{\sigma}^{2} = \frac{\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (x [m, n] - g [m - \hat{m}_{0}, n - \hat{n}_{0}] - \mu)^{2}}{MN}$$

The simulation results are:

	Center Position	σ^2
Real Value	(50, 38)	0.01
Estimated Value	(50, 38)	0.0099

No rotation:

Known: M=100, N=68, L_1 =20, L_2 =12, μ =0.2,

Unknown: m_0 , n_0 , σ^2 , A

$$\ln P(x[m, n]) = \ln \frac{1}{(2\pi\sigma^2)^{\frac{MN}{2}}} - \frac{1}{2\sigma^2} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (x[m, n] - Ag[m - m_0, n - n_0] - \mu)^2$$

$$\begin{split} \frac{\partial \ln P}{\partial A} &= \frac{1}{\sigma^2} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left(x[m,n] - Ag[m-m_0,n-n_0] - \mu \right) \cdot g[m-m_0,n-n_0] \\ &= \frac{1}{\sigma^2} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left((x[m,n] - \mu) g[m-m_0,n-n_0] - Ag[m-m_0,n-n_0] g[m-m_0,n-n_0] \right) \\ &= 0 \end{split}$$

$$A = \frac{\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left((x [m, n] - \mu) \cdot g [m - m_0, n - n_0] \right)}{\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left(g [m - m_0, n - n_0] \cdot g [m - m_0, n - n_0] \right)}$$

No rotation:

Known: M=100, N=68, L_1 =20, L_2 =12, μ =0.2,

Unknown: m_0 , n_0 , σ^2 , A

$$A = \frac{\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left((x [m, n] - \mu) \cdot g [m - m_0, n - n_0] \right)}{\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left(g [m - m_0, n - n_0] \cdot g [m - m_0, n - n_0] \right)} \qquad \hat{A}$$

$$\hat{m}_0, \ \hat{n}_0$$

$$\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left(x [m, n] - Ag [m - m_0, n - n_0] - \mu \right)^2 \qquad \text{Grid Search}$$

$$\hat{\sigma}^{2} = \frac{\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left(x \left[m, n \right] - \hat{A} g \left[m - \hat{m}_{0}, n - \hat{n}_{0} \right] - \mu \right)^{2}}{MN}$$

	Center	σ^2	А
Real Value	(50, 38)	0.01	1
Estimated Value	(50, 38)	0.0099	1.002

No rotation:

Known: M=100, N=68, L_1 =20, L_2 =12,

Unknown: m_0 , n_0 , σ^2 , A, μ

$$P(x[m,n]) = \frac{1}{(2\pi\sigma^2)^{\frac{MN}{2}}} e^{-\frac{1}{2\sigma^2} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (x[m,n] - Ag[m-m_0,n-n_0] - \mu)^2}$$

We can write it in a linear model representation:

$$P(\mathbf{x},\Theta) = \frac{1}{(2\pi\sigma^2)^{\frac{MN}{2}}} e^{-\frac{1}{2\sigma^2}(\mathbf{x} - \mathbf{H}\Theta)^T (\mathbf{x} - \mathbf{H}\Theta)}$$

Obviously, to get the MLE, we need to minimize:

$$(\mathbf{x} - \mathbf{H}\mathbf{\Theta})^T (\mathbf{x} - \mathbf{H}\mathbf{\Theta})$$

No rotation:

Known: M=100, N=68, L_1 =20, L_2 =12,

Unknown: m_0 , n_0 , σ^2 , A, μ

$$(\mathbf{x} - \mathbf{H}\mathbf{\Theta})^T (\mathbf{x} - \mathbf{H}\mathbf{\Theta})$$

Where we flatten 2 dimensional $\mathbf{x}[m,n]$ to a one dimensional vector,

$$\mathbf{x} = [x[0,0], x[1,0], ..., x[m, 0], x[0,1], ..., x[m,1], ..., x[m,n]]^{T}$$

$$\mathbf{g} = [g[0,0], g[1,0], ..., g[m, 0], g[0,1], ..., g[m,1], ..., g[m,n]]^{T}$$

$$\mathbf{H} = [\mathbf{g}, \mathbf{1}] \qquad \Theta = [A, \mu]^{T}$$

where 1 represent a vector of all ones with a length of $M \times N$:

According to the MLE solution to the general linear model:

$$\mathbf{\Theta} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x}$$

No rotation:

Known: M=100, N=68, L_1 =20, L_2 =12,

Unknown: m_0 , n_0 , σ^2 , A, μ

$$\hat{\sigma}^2 = \frac{(\mathbf{x} - \hat{\mathbf{H}}\hat{\mathbf{\Theta}})^T (\mathbf{x} - \hat{\mathbf{H}}\hat{\mathbf{\Theta}})}{MN}$$

The simulation results are:

	Center	σ^2	Α	μ
Real	(50, 38)	0.01	1	0.2
Estimated	(50, 38)	0.0099	1.003	0.1989

No rotation:

Known: M=100, N=68, L_1 =20, L_2 =12,

Unknown: m_0 , n_0 , σ^2 , A, μ

Compare with original image:

	Center	σ^2	Α	μ
Real	(50, 38)	0.01	1	0.2
Estimated	(50, 38)	0.0099	1.003	0.1989

Known: M=100, N=68, L_1 =20, L_2 =12,

Unknown: $m_0, n_0, \sigma^2 = 0.3, A, \mu$

Compare with original image:

	Center	σ^2	А	μ
Real	(50, 38)	0.3	1	0.2
Estimated	(50, 38)	0.2977	0.9680	0.1960

No rotation:

Known: M=100, N=68, L_1 =20, L_2 =12,

Unknown: m_0 , n_0 , σ^2 , A, μ

Change $\sigma^{\scriptscriptstyle 2}$, show the variance curve of $\hat{A}^{\scriptscriptstyle 2}$ and $\hat{\mu}^{\scriptscriptstyle 2}$:

Rotation:

Known: M=100, N=68, L_1 =20, L_2 =12,

Unknown: m_0 , n_0 , σ^2 , A, μ , θ

Rotation: anti-closewise 60 degree

Rotation:

Known: M=100, N=68, L_1 =20, L_2 =12,

Unknown: m_0 , n_0 , σ^2 , A, μ , θ

$$P(x[m,n]) = \frac{1}{(2\pi\sigma^2)^{\frac{MN}{2}}} e^{-\frac{1}{2\sigma^2} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (x[m,n] - AR_{\theta}(g[m-m_0,n-n_0]) - \mu)^2}$$

To get the MLE, we need to minimize:

$$\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} (x [m,n] - AR_{\theta} (g [m-m0,n-n0]) - \mu)^{2}$$

Here we also transform it to a general linear model representation:

$$(\mathbf{x} - \mathbf{H}\mathbf{\Theta})^T (\mathbf{x} - \mathbf{H}\mathbf{\Theta})$$

Rotation:

Known: M=100, N=68, L_1 =20, L_2 =12,

Unknown: m_0 , n_0 , σ^2 , A, μ , θ

$$(\mathbf{x} - \mathbf{H}\mathbf{\Theta})^T (\mathbf{x} - \mathbf{H}\mathbf{\Theta})$$

where:

$$\mathbf{x} = [x[0,0], x[1,0], ..., x[m,0], x[0,1], ..., x[m,1], ..., x[m,n]]^T$$

 $\mathbf{R}_{\theta}\mathbf{g} = [R_{\theta}(g[0,0]), R_{\theta}(g[1,0]), ..., R_{\theta}(g[m,0]), R_{\theta}(g[0,1]), ..., R_{\theta}(g[m,1]), ..., R_{\theta}(g[m,n])]^{T}$

$$\mathbf{H} = \left[\mathbf{R}_{\theta} \mathbf{g}, \mathbf{1} \right] \qquad \Theta = \left[A, \mu \right]^{T}$$

According to the MLE solution to the general linear model:

$$\Theta = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \mathbf{x}$$

Rotation:

Known: M=100, N=68, L_1 =20, L_2 =12,

Unknown: m_0 , n_0 , σ^2 , A, μ , θ

	(m ₀ , n ₀)	σ^2	А	μ	θ
Real	(50, 38)	0.01	1	0.2	60°
Estimated	(50, 38)	0.0099	0.9452	0.1987	59.4°

THINK BIG WE DO"

Compare with original image:

Known: M=100, N=68, L_1 =20, L_2 =12,

Unknown: m_0 , n_0 , σ^2 , A, μ , θ

Let $\sigma^2 = 0.3$:

	(m ₀ , n ₀)	σ^2	Α	μ	θ
Real	(50, 38)	0.3	1	0.2	60°
Estimated	(50, 38)	0.29	0.476	0.1973	59.4°

Known: M=100, N=68, L_1 =20, L_2 =12,

Unknown: m_0 , n_0 , σ^2 , A, μ , θ

Let $\sigma^2 = 1$:

	(m_0, n_0)	σ^2	Α	μ	θ
Real	(50, 38)	1	1	0.2	60°
Estimated	(50, 38)	0.99	0.517	0.1735	61.28°

Compare with Machine Learning:

Advantages:

- 1. Give a clear picture of the process of estimation
- 2. Free from training, perform well on small amount of samples
- 3. Better accuracy
- 4. Provide more information of the image

Disadvantages:

- 1. Need strong assumptions on the background noise model
- 2. Prior knowledge about the object

Thank you! Questions and suggestions?