Corso di Algebra per Informatica

Lezione 11: Esercizi

- (1) Verificare se le seguenti parti di \mathbb{Z} sono parti chiuse in $(\mathbb{Z}, +)$ e in (\mathbb{Z}, \cdot) : $\mathbb{N}, \mathbb{Z} \setminus \mathbb{N}, \{0\}, \{1\}, \{0,1\}, \{-1,1\}, \{n \in \mathbb{Z} \mid -2 < n\}, \{n \in \mathbb{Z} \mid 2 < n\}, \{n \in \mathbb{Z} \mid (\exists m \in \mathbb{Z})(n = 2m)\}, \{n \in \mathbb{Z} \mid (\exists m \in \mathbb{Z})(n = 2m + 1)\}.$
- (2) Nel monoide delle parole sull'alfabeto $\{a,b,c\}$ sono o non sono parti chiuse le seguenti? L'insieme delle parole che contengono una sola a; l'insieme delle parole che contengono un numero pari di b; l'insieme delle parole che contengono un numero pari di b; l'insieme delle parole che contengono un numero pari di b e un numero dispari di c; l'insieme delle parole che non contengono alcuna a.
- (3) Sia F l'insieme delle parti finite di \mathbb{N} . F è una parte chiusa di $(P(\mathbb{N}), \cup)$, $(P(\mathbb{N}), \cap)$, $(P(\mathbb{N}), \Delta)$, $(P(\mathbb{N}), \setminus)$? E quello delle parti infinite?
- (4) $(P(\mathbb{N}), \Delta)$ è un gruppo? È abeliano? $E(P(\mathbb{N}), \cup)$ e $(P(\mathbb{N}), \cap)$ e $(P(\mathbb{N}), \setminus)$?
- (5) $(\mathbb{N}, +)$ è un sottogruppo di $(\mathbb{Q}, +)$? $\mathbb{E}(\mathbb{Z}, +)$?
- (6) $(P(\mathbb{N}), \cap)$ è un sottogruppo di $(P(\mathbb{Z}), \cap)$?
- (7) Sia $a = \{1, 2, 3\}$ ed indichiamo con Sym(a) l'insieme delle applicazioni biettive di a in a. Trovare tutti gli elementi di Sym(a) e mostrare che è un gruppo non abeliano.
- (8) Quali elementi hanno simmetrici in $(\mathbb{Z},\cdot,1)$ in $(\mathbb{Q},\cdot,1)$ e, se x è un insieme, in $(P(x),\setminus,\emptyset)$, in $(P(x),\cup,\emptyset)$ o in $(P(x),\cap,x)$?