Histogramm:

Ein erster Hinweis auf die Güte der Items ist sicherlich eine grobe Annäherung der Rohdaten an eine Normalverteilung

```
fallprozeile <- read.csv2
("https://paul-koop.org/fallprozeilenurdaten.csv", header=FALSE,
dec=",");

for (i in 1:36){
   hist(fallprozeile[,i],
        freq=FALSE,
        main=paste("Histogram item",i),
        xlab=paste("item",i)
        )
   x <- seq(1,4,0.01)

curve(dnorm(x,mean=mean(fallprozeile[,i]),sd=sd(fallprozeile[,i])),add
=TRUE)
}</pre>
```


Ein erstes objektives Merkmal der Validität eines Tests ist die Trennschärfe der Items. Valide ist ein Test dann, wenn er auch tatsächlich die Variable misst, die er auch vorgibt zu messen. Unter der Trennschärfe eines Items versteht man die Korrelation des Items mit dem Gesamtergebnis der jeweils gemessenen Dimension eines Tests.

Fachkompetenz:

```
fachkompetenz <- read.csv2 ("https://paul-koop.org/SV.csv",</pre>
header=TRUE, dec=",");
fachkompetenz$ts <- rowSums(fachkompetenz[,-1])</pre>
round(cor(fachkompetenz[,-1]),2)
                   X24
                        X25
                             X26
                                  X27
                                       X28
         X22
              X23
X21 1.00 0.61 0.47 0.49 0.48 0.39 0.46 0.42 0.75
X22 0.61 1.00 0.45 0.50 0.47 0.50 0.47 0.36 0.75
X23 0.47 0.45 1.00 0.42 0.56 0.42 0.44 0.41 0.72
X24 0.49 0.50 0.42 1.00 0.54 0.28 0.46 0.27 0.68
X25 0.48 0.47 0.56 0.54 1.00 0.45 0.43 0.40 0.75
X26 0.39 0.50 0.42 0.28 0.45 1.00 0.52 0.46 0.70
X27 0.46 0.47 0.44 0.46 0.43 0.52 1.00 0.56 0.76
```

```
X28 0.42 0.36 0.41 0.27 0.40 0.46 0.56 1.00 0.68
ts 0.75 0.75 0.72 0.68 0.75 0.70 0.76 0.68 1.00
Arbeitsverhalten:
arbeitsverhalten <- read.csv2 ("https://paul-koop.org/AV.csv",
header=TRUE, dec=",");
arbeitsverhalten$ts <- rowSums(arbeitsverhalten[,-1])</pre>
round(cor(arbeitsverhalten[,-1]),2)
    X1
         X2
              X3
                   X4
                        X5
                             X6
                                 X7
                                       X8
                                            χ9
                                                 X10
   1.00 0.41 0.45 0.40 0.41 0.43 0.55 0.40 0.39 0.43 0.69
X1
   0.41 1.00 0.44 0.56 0.36 0.35 0.35 0.49 0.51 0.35 0.69
X2
Х3
   0.45 0.44 1.00 0.60 0.42 0.35 0.34 0.54 0.56 0.41 0.75
   0.40 0.56 0.60 1.00 0.43 0.31 0.36 0.61 0.46 0.49 0.76
Χ4
X5
   0.41 0.36 0.42 0.43 1.00 0.29 0.45 0.53 0.43 0.43 0.68
   0.43 0.35 0.35 0.31 0.29 1.00 0.64 0.27 0.31 0.26 0.59
X6
   0.55 0.35 0.34 0.36 0.45 0.64 1.00 0.33 0.28 0.43 0.66
X7
   0.40 0.49 0.54 0.61 0.53 0.27 0.33 1.00 0.55 0.52 0.76
X8
X9 0.39 0.51 0.56 0.46 0.43 0.31 0.28 0.55 1.00 0.37 0.72
X10 0.43 0.35 0.41 0.49 0.43 0.26 0.43 0.52 0.37 1.00 0.67
   0.69 0.69 0.75 0.76 0.68 0.59 0.66 0.76 0.72 0.67 1.00
Sozialverhalten:
sozialverhalten <- read.csv2 ("https://paul-koop.org/SV.csv",</pre>
header=TRUE, dec=",");
sozialverhalten$ts <- rowSums(sozialverhalten[,-1])</pre>
round(cor(sozialverhalten[,-1]),2)
    X21 X22 X23 X24 X25 X26 X27 X28 ts
X21 1.00 0.61 0.47 0.49 0.48 0.39 0.46 0.42 0.75
X22 0.61 1.00 0.45 0.50 0.47 0.50 0.47 0.36 0.75
X23 0.47 0.45 1.00 0.42 0.56 0.42 0.44 0.41 0.72
X24 0.49 0.50 0.42 1.00 0.54 0.28 0.46 0.27 0.68
X25 0.48 0.47 0.56 0.54 1.00 0.45 0.43 0.40 0.75
X26 0.39 0.50 0.42 0.28 0.45 1.00 0.52 0.46 0.70
X27 0.46 0.47 0.44 0.46 0.43 0.52 1.00 0.56 0.76
X28 0.42 0.36 0.41 0.27 0.40 0.46 0.56 1.00 0.68
ts 0.75 0.75 0.72 0.68 0.75 0.70 0.76 0.68 1.00
Lernverhalten:
lernverhalten <- read.csv2 ("https://paul-koop.org/LV.csv",</pre>
header=TRUE, dec=",");
```

```
lernverhalten$ts <- rowSums(lernverhalten[,-1])</pre>
round(cor(lernverhalten[,-1]),2)
                                                 X20
   X11 X12 X13 X14 X15 X16 X17
                                      X18
                                           X19
X11 1.00 0.54 0.52 0.47 0.55 0.47 0.53 0.50 0.46 0.46 0.77
X12 0.54 1.00 0.53 0.48 0.50 0.49 0.45 0.29 0.53 0.42 0.73
X13 0.52 0.53 1.00 0.35 0.51 0.45 0.48 0.44 0.48 0.46 0.74
X14 0.47 0.48 0.35 1.00 0.50 0.38 0.43 0.28 0.52 0.48 0.68
X15 0.55 0.50 0.51 0.50 1.00 0.39 0.34 0.34 0.44 0.44 0.71
X16 0.47 0.49 0.45 0.38 0.39 1.00 0.49 0.33 0.52 0.42 0.69
X17 0.53 0.45 0.48 0.43 0.34 0.49 1.00 0.45 0.48 0.42 0.71
X18 0.50 0.29 0.44 0.28 0.34 0.33 0.45 1.00 0.46 0.45 0.64
X19 0.46 0.53 0.48 0.52 0.44 0.52 0.48 0.46 1.00 0.55 0.76
X20 0.46 0.42 0.46 0.48 0.44 0.42 0.42 0.45 0.55 1.00 0.71
ts 0.77 0.73 0.74 0.68 0.71 0.69 0.71 0.64 0.76 0.71 1.00
```

Interkorrelation:

Einen weiteren ersten qualitativen Hinweis auf die Güte der Items bieten ihre Interkorrelationen innerhalb der Dimensionen, denen die Items zugeordnet sind. Denn wenn die Items eine gemeinsame Dimension messen, müssen sie positiv miteinander korreliert sein.

```
install.packages("psych", repos='http://cran.us.r-project.org')
library(psych)
options(max.print = 9999)
interkorrelation <- read.csv2 ("https://paul-koop.org/rohdaten.csv",</pre>
header=TRUE, dec=",");
round(cor(interkorrelation[,-1]),2)
Installing package into '/srv/rlibs'
(as 'lib' is unspecified)
                     X4
                                               Х9
    X1
          X2
               Х3
                          X5
                                X6
                                     X7
                                          X8
                                                    X10 ... X27
                                                                  X28
X29 X30
     1.00 0.41 0.45 0.40 0.41 0.43 0.55 0.40 0.39 0.43 ...
X1
                                                                   0.22
0.12 0.32
     0.41 1.00 0.44 0.56 0.36 0.35 0.35 0.49 0.51 0.35 ... 0.18
X2
                                                                   0.33
0.12 0.36
Х3
     0.45 0.44
                1.00 0.60 0.42 0.35 0.34 0.54 0.56 0.41 ... 0.24
                                                                   0.30
0.08 0.43
Χ4
     0.40 0.56 0.60 1.00 0.43 0.31 0.36 0.61 0.46 0.49 ...
                                                            0.30
                                                                   0.31
0.06 0.43
     0.41 0.36 0.42 0.43 1.00 0.29 0.45 0.53 0.43 0.43 ...
X5
                                                            0.08
                                                                   0.10
0.12 0.27
     0.43 0.35 0.35 0.31 0.29 1.00 0.64 0.27 0.31 0.26 ... 0.32
X6
                                                                   0.21
```

```
0.31 0.29
                0.34 0.36 0.45 0.64 1.00 0.33 0.28 0.43 ... 0.21
Χ7
     0.55 0.35
                                                                   0.18
0.30 0.31
     0.40 0.49
                0.54 0.61 0.53 0.27 0.33 1.00 0.55 0.52 ...
                                                             0.21
                                                                   0.18
X8
0.06 0.44
Χ9
     0.39 0.51
                0.56 0.46 0.43 0.31 0.28 0.55 1.00 0.37 ...
                                                             0.20
                                                                   0.30
0.15 0.38
                0.41 0.49 0.43 0.26 0.43 0.52 0.37 1.00 ...
X10 0.43 0.35
                                                             0.30
                                                                   0.27
0.08 0.36
                0.48 0.49 0.41 0.33 0.34 0.52 0.48 0.49 ...
                                                                   0.23
X11
     0.44 0.56
                                                             0.27
0.04 0.42
X12
     0.47 0.49
                0.43 0.38 0.45 0.34 0.43 0.45 0.54 0.36 ...
                                                             0.26
                                                                   0.36
0.08 0.25
X13
                0.44 0.38 0.49 0.42 0.43 0.42 0.48 0.49 ...
     0.55 0.42
                                                             0.29
                                                                   0.37
0.09 0.34
X14 0.33 0.39
                0.45 0.51 0.37 0.33 0.36 0.46 0.37 0.45 ...
                                                             0.38
                                                                   0.32
0.13 0.37
X15
    0.48 0.44
                0.54 0.49 0.44 0.38 0.36 0.52 0.40 0.46 ...
                                                             0.27
                                                                   0.28
0.07 0.27
                0.44 0.53 0.38 0.38 0.44 0.38 0.42 0.38 ...
X16 0.46 0.44
                                                             0.24
                                                                   0.31
0.06 0.31
X17
                0.42 0.46 0.43 0.39 0.41 0.47 0.53 0.47 ...
                                                             0.23
                                                                   0.30
     0.41 0.54
0.15 0.44
X18 0.30 0.39
                0.32 0.39 0.33 0.32 0.36 0.41 0.46 0.50 ...
                                                             0.29
                                                                   0.25
0.13 0.44
X19 0.44 0.49
                0.45 0.54 0.46 0.41 0.50 0.47 0.48 0.45 ...
                                                             0.33
                                                                   0.35
0.15 0.39
X20
    0.37 0.40
                0.41 0.43 0.43 0.42 0.48 0.46 0.37 0.48 ...
                                                             0.33
                                                                   0.21
0.19 0.42
X21 0.43 0.37
                0.37 0.38 0.29 0.34 0.43 0.29 0.24 0.24 ...
                                                             0.46
                                                                   0.42
0.27 0.34
X22
                0.30 0.34 0.18 0.37 0.37 0.27 0.19 0.24 ...
    0.30 0.29
                                                             0.47
                                                                   0.36
0.19 0.33
X23
     0.21 0.26
                0.30 0.38 0.26 0.25 0.26 0.36 0.27 0.29 ...
                                                             0.44
                                                                   0.41
0.14 0.34
                0.22 0.25 0.22 0.40 0.40 0.30 0.21 0.19 ...
X24 0.41 0.21
                                                             0.46
                                                                   0.27
0.20 0.25
X25 0.40 0.27
                0.32 0.32 0.23 0.32 0.33 0.31 0.18 0.31 ...
                                                             0.43
                                                                   0.40
0.11 0.38
X26
    0.31 0.25
                0.30 0.39 0.07 0.15 0.15 0.23 0.19 0.29 ...
                                                             0.52
                                                                   0.46
0.09 0.31
X27
     0.28 0.18
                0.24 0.30 0.08 0.32 0.21 0.21 0.20 0.30 -
                                                             1.00
                                                                   0.56
0.19 0.24
                                                             0.56
X28 0.22 0.33
                0.30 0.31 0.10 0.21 0.18 0.18 0.30 0.27 ...
                                                                   1.00
0.07 0.28
                0.08 0.06 0.12 0.31 0.30 0.06 0.15 0.08 ...
X29 0.12 0.12
                                                             0.19
                                                                   0.07
1.00 0.28
X30
     0.32 0.36 0.43 0.43 0.27 0.29 0.31 0.44 0.38 0.36 ... 0.24
                                                                   0.28
0.28 1.00
     0.02 0.15 -0.07 0.03 0.13 0.06 0.16 0.06 0.06 0.11 - -0.13 -0.07
X31
```

```
0.12 0.17
                 0.14 0.23 0.10 0.22 0.24 0.11 0.08 0.20 ... 0.11
X32
     0.10 0.06
                                                                      0.07
0.12 0.28
X33
    0.00 0.07
                 0.10 0.10 0.02 0.14 0.20 0.05 0.08 0.25 ...
                                                               0.01
                                                                      0.01
0.20 0.27
X34 0.07 0.05
                 0.18 0.11 0.16 0.31 0.31 0.13 0.08 0.18 ...
                                                               0.09
                                                                      0.03
0.33 0.35
X35 -0.01 0.11
                 0.12 0.11 0.25 0.08 0.27 0.15 0.00 0.15 - -0.18 -0.09
0.08 0.27
X36 0.19 0.09
                 0.11 0.21 0.16 0.22 0.30 0.21 0.00 0.22 ... 0.05 -0.05
0.12 0.28
    X31
          X32
                X33
                      X34
                             X35
                                   X36
     0.02 0.10
X1
                 0.00
                       0.07 - 0.01
                                    0.19
X2
     0.15 0.06
                       0.05
                                    0.09
                 0.07
                              0.11
Х3
    -0.07 0.14
                 0.10
                       0.18
                              0.12
                                    0.11
Χ4
     0.03 0.23
                 0.10
                       0.11
                              0.11
                                    0.21
X5
     0.13 0.10
                 0.02
                       0.16
                              0.25
                                    0.16
X6
     0.06 0.22
                 0.14
                       0.31
                              0.08
                                    0.22
                              0.27
X7
     0.16 0.24
                 0.20
                       0.31
                                    0.30
X8
     0.06 0.11
                 0.05
                       0.13
                              0.15
                                    0.21
X9
                                    0.00
     0.06 0.08
                 0.08
                       0.08
                              0.00
                                    0.22
X10
     0.11 0.20
                 0.25
                       0.18
                              0.15
X11
     0.08 0.06
                 0.05
                       0.16
                              0.00
                                    0.17
X12
     0.10 \ 0.15 \ -0.13
                       0.14
                              0.09
                                    0.08
X13 -0.02 0.09
                       0.11
                 0.01
                              0.01
                                    0.09
X14
     0.03 0.16
                 0.08
                       0.27
                              0.18
                                    0.19
                       0.20
X15
     0.03 0.05 -0.05
                              0.10
                                    0.19
X16 -0.08 0.23
               -0.07
                      -0.01
                              0.01
                                    0.01
                       0.12
X17
     0.10 0.15
                 0.12
                              0.07
                                    0.18
X18
     0.23 0.12
                 0.22
                       0.18
                              0.09
                                    0.25
X19 -0.03 0.22
                 0.02
                       0.13
                              0.05
                                    0.11
X20
     0.07 0.21
                 0.19
                       0.30
                              0.23
                                    0.23
     0.01 0.04
                       0.25
X21
                 0.10
                              0.09
                                    0.15
X22
     0.04 0.20
                 0.03
                       0.30
                              0.16
                                    0.14
X23 -0.12 0.06
                 0.08
                       0.10 - 0.06
                                    0.08
                       0.13 -0.06
                                    0.08
X24 -0.16 0.11
                 0.08
X25 -0.03 0.14
                 0.14
                       0.16
                              0.08
                                    0.15
                       0.15 - 0.04
X26
    0.04 0.17
                 0.00
                                    0.11
X27 -0.13 0.11
                       0.09 - 0.18
                 0.01
                                    0.05
X28 -0.07 0.07
                 0.01
                       0.03 -0.09
                                   -0.05
X29
     0.12 0.12
                 0.20
                       0.33
                              0.08
                                    0.12
X30
     0.17 0.28
                 0.27
                       0.35
                              0.27
                                    0.28
X31
     1.00 0.26
                 0.24
                       0.26
                              0.47
                                    0.36
                       0.37
X32
     0.26 1.00
                 0.14
                              0.46
                                    0.37
X33
     0.24 0.14
                       0.44
                                    0.30
                 1.00
                              0.31
X34
     0.26 0.37
                 0.44
                       1.00
                              0.49
                                    0.49
X35
     0.47 0.46
                 0.31
                       0.49
                              1.00
                                    0.42
X36
     0.36 0.37
                 0.30
                       0.49
                              0.42
                                    1.00
```

Cronbachs Alpha:

Ein Test muss eine Variable aber auch möglichst genau messen. Ein Maß für die Genauigkeit der Messung ist die Reliabilität. Wenn es nicht möglich ist, an derselben Testgruppe einen Wiederholungstest zu machen oder die Testergebnisse mit anderen bereits als valide und reliabel eingestuften Tests zu korrelieren, wird häufig der Split-Half Test und die Konsistenzanalyse nach Cronbach durchgeführt. Bei der Split-Half Analyse wird der Test über alle Dimensionen in zwei Hälften aufgeteilt und diese beiden Hälften werden miteinander korreliert.

```
install.packages("psych", repos='http://cran.us.r-project.org')
library(psych)
cronalpha <- read.csv2 ("https://paul-koop.org/rohdaten.csv",</pre>
header=TRUE, dec=",");
alpha(cronalpha[,-1])#paket psych
cronalpha <- cronalpha[,-1]</pre>
erste haelfte <- cronalpha[,1:18]
zweite haelfte <- cronalpha[,19:36]</pre>
cor(rowSums(erste haelfte), rowSums(zweite haelfte))
Installing package into '/srv/rlibs'
(as 'lib' is unspecified)
Reliability analysis
Call: alpha(x = cronalpha[, -1])
  raw alpha std.alpha G6(smc) average r S/N
                                                 ase mean
                                                             sd median r
                         0.96
                                   0.29 15 0.0057 2.8 0.43
      0.94
                0.94
                                                                   0.31
    95% confidence boundaries
         lower alpha upper
Feldt
                0.94
          0.92
                       0.95
Duhachek 0.93
                0.94
                       0.95
Reliability if an item is dropped:
    raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
         0.93
                    0.93
X1
                            0.96
                                      0.29
                                             14
                                                  0.0059 0.025
                                                                 0.30
                                      0.29
X2
         0.93
                    0.93
                            0.96
                                             14
                                                  0.0060 0.025
                                                                 0.30
Х3
                                      0.29
         0.93
                    0.93
                            0.96
                                             14
                                                  0.0060 0.025
                                                                 0.30
Χ4
         0.93
                    0.93
                            0.96
                                      0.28
                                             14
                                                  0.0060 0.025
                                                                 0.30
X5
         0.93
                    0.93
                            0.96
                                      0.29
                                             14
                                                  0.0059 0.026
                                                                 0.31
X6
         0.93
                    0.93
                            0.96
                                      0.29
                                             14
                                                  0.0059 0.026
                                                                 0.30
X7
         0.93
                    0.93
                            0.96
                                      0.29
                                             14
                                                  0.0060 0.026
                                                                 0.30
X8
         0.93
                    0.93
                            0.96
                                      0.29
                                             14
                                                  0.0060 0.025
                                                                 0.31
X9
         0.93
                    0.93
                            0.96
                                      0.29
                                             14
                                                  0.0059 0.025
                                                                 0.31
```

X10	0 02	0 02	0.96	0.20	1 /	0 0060 0 026	0 21
	0.93	0.93		0.29		0.0060 0.026	0.31
X11	0.93	0.93	0.96	0.28	14	0.0060 0.025	0.30
X12	0.93	0.93	0.96	0.29	14	0.0060 0.025	0.31
X13	0.93	0.93	0.96	0.29	14	0.0060 0.025	0.30
X14	0.93	0.93	0.96	0.29	14	0.0060 0.026	0.30
X15	0.93	0.93	0.96	0.29	14	0.0060 0.025	0.30
X16	0.93	0.93	0.96	0.29	14	0.0059 0.025	0.30
X17	0.93	0.93	0.96	0.29	14	0.0060 0.026	0.30
X18	0.93	0.93	0.96	0.29	14	0.0059 0.026	0.31
X19	0.93	0.93	0.96	0.28	14	0.0060 0.025	0.30
X20	0.93	0.93	0.96	0.28	14	0.0060 0.026	0.30
X21	0.93	0.93	0.96	0.29	14	0.0059 0.026	0.30
X22	0.93	0.93	0.96	0.29	14	0.0059 0.026	0.31
X23	0.93	0.93	0.96	0.29	14	0.0059 0.026	0.31
X24	0.94	0.93	0.96	0.29	14	0.0059 0.026	0.31
X25	0.93	0.93	0.96	0.29	14	0.0059 0.026	0.30
X26	0.94	0.93	0.96	0.29	14	0.0058 0.026	0.31
X27	0.94	0.93	0.96	0.29	14	0.0058 0.025	0.31
X28	0.94	0.94	0.96	0.29	14	0.0058 0.025	0.31
X29	0.94	0.94	0.96	0.30	15	0.0057 0.025	0.32
X30	0.93	0.93	0.96	0.29	14	0.0059 0.026	0.30
X31	0.94	0.94	0.96	0.30	15	0.0056 0.023	0.32
X32	0.94	0.94	0.96	0.30	15	0.0057 0.025	0.32
X33	0.94	0.94	0.96	0.30	15	0.0056 0.024	0.32
X34	0.94	0.94	0.96	0.29	15	0.0057 0.025	0.31
X35	0.94	0.94	0.96	0.30	15	0.0056 0.024	0.32
X36	0.94	0.94	0.96	0.30	15	0.0057 0.025	0.32
, , 5 0	0.5.	0.5.	0.55	0.50		0.000, 0.025	0.52

Item statistics

	n	raw.r	std.r	r.cor	r.drop	mean	sd
X1	240	0.62	0.63	0.62	0.60	3.2	0.72
X2	240	0.64	0.63	0.62	0.60	2.9	0.77
Х3	240	0.66	0.65	0.64	0.63	2.7	0.85
Χ4	240	0.70	0.69	0.69	0.67	2.8	0.89
X5	240	0.59	0.58	0.57	0.55	3.0	0.80
Х6	240	0.59	0.60	0.59	0.56	3.1	0.74
X7	240	0.65	0.66	0.66	0.63	3.3	0.67
X8	240	0.66	0.66	0.65	0.64	2.7	0.76
Х9	240	0.61	0.60	0.59	0.57	2.6	0.95
X10	9 240	0.65	0.64	0.64	0.62	2.7	0.75
X1:	1 240	0.69	0.68	0.68	0.66	2.8	0.83
X12	2 240	0.64	0.64	0.63	0.61	2.9	0.76
X13	3 240	0.66	0.65	0.64	0.62	2.8	0.83
X14	4 240	0.67	0.67	0.66	0.64	2.9	0.76
X15	5 240	0.65	0.64	0.63	0.61	2.8	0.87
X16	6 240	0.62	0.61	0.60	0.58	3.0	0.80
X17	7 240	0.66	0.66	0.65	0.63	2.7	0.74
X18	8 240	0.61	0.61	0.60	0.58	2.7	0.79
X19	9 240	0.71	0.71	0.70	0.68	3.0	0.79
X20	9 240	0.70	0.70	0.69	0.67	2.9	0.74

```
X21 240
         0.61
                0.62
                      0.61
                              0.58
                                    3.3 0.75
X22 240
         0.60
                      0.60
                              0.57
                                    3.3 0.69
                0.61
X23 240
         0.54
                0.55
                      0.53
                              0.51
                                    3.0 0.75
X24 240
         0.52
                0.53
                      0.51
                              0.48
                                    3.3 0.68
X25 240
         0.59
                0.59
                      0.58
                              0.55
                                    3.1 0.70
X26 240
         0.51
                0.51
                      0.50
                              0.47
                                    2.9 0.74
X27 240
                              0.45
                                    2.8 0.80
         0.49
                0.49
                      0.48
X28 240
                              0.44
         0.48
                0.48
                      0.46
                                    3.0 0.74
X29 240
         0.29
                0.30
                      0.27
                              0.25
                                    2.2 0.75
                                    2.6 0.77
X30 240
         0.63
                      0.62
                              0.60
                0.63
X31 240
         0.18
                0.18
                      0.16
                              0.13
                                    2.4 0.71
X32 240
         0.33
                0.34
                      0.32
                              0.29
                                    2.3 0.78
X33 240
         0.23
                0.24
                      0.22
                              0.19
                                    2.3 0.75
X34 240
                              0.35
         0.40
                0.41
                      0.39
                                    2.4 0.72
X35 240
         0.27
                0.27
                      0.26
                              0.22
                                    2.5 0.79
X36 240
         0.35
                0.36
                      0.34
                              0.31
                                    2.3 0.61
Non missing response frequency for each item
             2
                  3
       1
                       4 miss
    0.00 0.19 0.46 0.35
Х1
                             0
X2
    0.02 0.32 0.45 0.22
                             0
X3
    0.05 0.37 0.37 0.20
                             0
X4
    0.06 0.34 0.35 0.25
X5
    0.02 0.29 0.40 0.29
                             0
X6
    0.01 0.19 0.46 0.34
                             0
    0.00 0.12 0.48 0.40
X7
                             0
X8
    0.03 0.38 0.43 0.15
                             0
    0.12 0.38 0.30 0.21
X9
X10 0.03 0.35 0.46 0.16
                             0
X11 0.04 0.38 0.38 0.21
                             0
X12 0.02 0.29 0.48 0.21
                             0
X13 0.04 0.34 0.39 0.23
                             0
X14 0.03 0.27 0.50 0.20
                             0
X15 0.06 0.34 0.38 0.23
                             0
X16 0.03 0.25 0.44 0.29
X17 0.02 0.39 0.44 0.16
                             0
X18 0.05 0.36 0.44 0.16
                             0
X19 0.03 0.25 0.45 0.27
                             0
X20 0.01 0.30 0.47 0.22
                             0
X21 0.01 0.15 0.39 0.45
                             0
X22 0.01 0.11 0.46 0.42
                             0
X23 0.01 0.22 0.47 0.30
X24 0.00 0.11 0.45 0.43
                             0
X25 0.00 0.19 0.51 0.30
                             0
X26 0.02 0.27 0.50 0.21
                             0
X27 0.04 0.30 0.45 0.21
                             0
X28 0.02 0.25 0.50 0.23
                             0
X29 0.11 0.69 0.10 0.10
                             0
```

0

0

X30 0.06 0.38 0.44 0.12

X31 0.03 0.67 0.20 0.10

```
X32 0.05 0.69 0.12 0.14 0
X33 0.07 0.70 0.11 0.11 0
X34 0.03 0.67 0.19 0.11 0
X35 0.02 0.60 0.21 0.17 0
X36 0.03 0.69 0.23 0.05 0
[1] 0.674236
```

Hauptkomponentenanalyse PCA

Die Hauptkomponentenanalyse (abgekürzt: PCA) ist eine Methode der multivariaten Statistik und strukturiert Datensätze durch Approximation einer großen Anzahl statistischer Variablen mit einer kleineren Anzahl korrelierter linearer Hauptkomponenten.

```
install.packages("stats", repos='http://cran.us.r-project.org')
library(psych)
tabellePCAMVS <- read.csv2 ("https://paul-koop.org/PCAMVS.csv",
header=TRUE, dec=",");
PCAbeobachtung <- tabellePCAMVS;
PCAMVSnr <- PCAbeobachtung[,1]; PCAbeobachtung <- PCAbeobachtung[,-
11:
PCAMVSart <- PCAbeobachtung[,1]; PCAbeobachtung <- PCAbeobachtung[,-1];
MVS <-cmdscale(dist(PCAbeobachtung));</pre>
plot (MVS, type = "p", col = 1);
text(MVS[,1],
     MVS[,2],
     PCAMVSart,
     col=1)
PCA<-prcomp(scale(PCAbeobachtung))
biplot(PCA, choices=c(1,2))
Installing package into '/srv/rlibs'
(as 'lib' is unspecified)
Warning message:
"package 'stats' is a base package, and should not be updated"
```


Faktorenanalyse:

Mithilfe der Faktorenanalyse wird überprüft, ob sich die Items in mehrere Subskalen unterteilen lassen.

```
install.packages("psych", repos='http://cran.us.r-project.org')
library(psvch)
rohdaten <- read.csv2 ("http://paul-koop.org/rohdaten.csv",</pre>
header=TRUE, dec=",");
rohdaten <- rohdaten[,-1]</pre>
KMO(rohdaten)
scree(rohdaten)
print(factanal(rohdaten, factors=4, rotation="varimax",
scores="Bartlett"), digits=2, cutoff=.3)
print(factanal(rohdaten, factors=6, rotation="varimax",
scores="Bartlett"), digits=2, cutoff=.3)
Installing package into '/srv/rlibs'
(as 'lib' is unspecified)
Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = rohdaten)
Overall MSA = 0.9
MSA for each item =
                     X5
  X1
      X2
           X3
                Χ4
                          X6
                               X7
                                    X8
                                         X9 X10 X11 X12 X13 X14
X15
   X16
0.91 0.92 0.94 0.93 0.93 0.88 0.89 0.93 0.91 0.91 0.92 0.91 0.95 0.95
0.94 0.94
X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30
X31 X32
0.96 0.90 0.94 0.95 0.90 0.90 0.92 0.87 0.90 0.85 0.89 0.85 0.76 0.93
0.68 0.70
X33 X34
         X35
              X36
0.68 0.82 0.68 0.85
Call:
factanal(x = rohdaten, factors = 4, scores = "Bartlett", rotation =
"varimax")
Uniquenesses:
 X1
      X2
           Х3
                Χ4
                     X5
                          X6
                               X7
                                    X8
                                         X9 X10 X11 X12 X13 X14
X15 X16
0.50 0.53 0.51 0.45 0.53 0.48 0.24 0.44 0.48 0.56 0.45 0.52 0.50 0.53
0.55 0.53
X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30
```

```
X31 X32
0.52 0.63 0.46 0.52 0.49 0.45 0.56 0.51 0.52 0.48 0.45 0.59 0.83 0.57
0.69 0.73
 X33 X34
          X35
               X36
0.75 0.46 0.42 0.60
Loadings:
    Factor1 Factor2 Factor3 Factor4
                              0.43
X1
X2
     0.66
Х3
     0.66
X4
     0.67
X5
     0.62
X6
     0.33
                              0.58
X7
     0.40
                              0.70
     0.72
X8
Χ9
     0.71
X10
    0.60
X11
     0.69
     0.63
X12
X13
     0.62
X14
     0.51
             0.40
X15
     0.62
X16
     0.57
     0.65
X17
X18
     0.53
X19
    0.61
             0.30
X20
    0.51
X21
             0.58
                              0.31
X22
             0.65
X23
             0.59
X24
             0.52
                              0.43
X25
             0.60
             0.67
X26
X27
             0.71
X28
             0.57
X29
X30 0.44
             0.30
                     0.38
X31
                     0.53
X32
                     0.49
X33
                     0.50
X34
                     0.70
X35
                     0.75
X36
                     0.62
               Factor1 Factor2 Factor3 Factor4
SS loadings
                   7.88
                           4.19
                                   2.89
                                           2.01
```

Proportion Var

Cumulative Var

0.22

0.22

0.12

0.34

0.08

0.42

0.06

0.47

```
Test of the hypothesis that 4 factors are sufficient. The chi square statistic is 1022.46 on 492 degrees of freedom. The p-value is 2.15e-39
```

Call:

factanal(x = rohdaten, factors = 6, scores = "Bartlett", rotation =
"varimax")

Uniquenesses:

X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X1 X2 X3 X15 X16 0.50 0.52 0.47 0.39 0.51 0.47 0.26 0.37 0.46 0.52 0.44 0.31 0.47 0.48 0.51 0.53 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30 X31 X32 0.49 0.41 0.46 0.51 0.47 0.37 0.53 0.48 0.51 0.46 0.43 0.55 0.81 0.53 0.53 0.72 X33 X34 X35 X36 0.59 0.49 0.30 0.61

Loadings:

	Ings.	F42	F43	5 4	F4F	F C
X1	Pactori 0.53	Factor2	Factor3	Pactor4 0.42	Factor5	Factor6
X2	0.65			0.12		
Х3	0.66					
X4	0.68					
X5	0.63					
X6	0.33			0.60		
X7	0.40			0.69		
X8	0.74					
X9	0.71					
X10	0.59					
X11 X12	0.68 0.65				-0.34	
X13	0.61				-0.54	
X14	0.52	0.42				
X15	0.62					
X16	0.58					
X17	0.63					
X18	0.51				0.45	
X19	0.61	0.30				
X20	0.51	0 57		0 22		
X21		0.57		0.32		
X22 X23		0.67 0.57				
X24		0.37		0.46		
X25		0.58		0.40		
X26		0.69				
X27		0.71				
X28		0.58				

X29			0.32		
X30	0.42	0.35			
X31		0.57			0.34
X32		0.50			
X33		0.45		0.44	
X34		0.67			
X35		0.81			
X36		0.58			

	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6
SS loadings	7.83	4.17	2.87	2.14	0.91	0.60
Proportion Var	0.22	0.12	0.08	0.06	0.03	0.02
Cumulative Var	0.22	0.33	0.41	0.47	0.50	0.51

Test of the hypothesis that 6 factors are sufficient. The chi square statistic is 810.71 on 429 degrees of freedom. The p-value is 7.64e-26

Scree plot

