

中国科学技术大学计算机学院

2013 级研究生《算法设计与分析》期终考试试题

学号或单位:	姓名:	成绩:
注意: 试卷须交回, 否则无分。		
一. 单项选择题 (每空3分,共30:	分)	
1、下列陈述错误的是。		
(a) 数值概率算法一般是求数值计算问题的近似 (b) Monte Carlo 总能求得问题的一个解,但该确 (c)Las Vegas 算法的一定能求出问题的正确解 (d) Sherwood 算法的主要作用是减少或是消除效	肾未必正确	N
2、下述算法的估计值是。		
Darts(n) { $k := 0$; for $i := 1$ to n do { $x := uniform(0,1)$; $y := x$; $if(x^2 + y^2 <= 1)$ $k + +$; } return $4k/n$;		
(a) π (b) $\sqrt{2}$ (c) $2\sqrt{2}$ (d)) $1/\sqrt{2}$	
3、若 A 是一个偏真的的 MC 算法,则下述陈述正	确的是。	
(a) 只有 A 返回 true 时解正确; (b) (c) A 返回 true 时解必正确,A 返回 false 时(d) A 返回 true 时解必正确,A 返回 false 时	解必错误;	16 ;
4、重复调用一个一致的、p-正确的、偏真的 MC	算法k次,可以得到一个	
(a) (1-p)-正确 (b) (1-p) ^k -正确 (c) (1-(1-p) ^k)-正确	(d) 正确概率不能确定
5、用 Las Vegas 算法求解 n 皇后问题的形式为:		
obstinate (T, n) { //求出的解存放在 1 repeat		
(a) n<4 (b) n=4 (c) n=8		
、在下述因素中,已知有3个阻碍分布式系统了解	系统的全局状态,与全局	局状态无关的是。
(a) 非即时的通信 (b) 相对性影响	(c) 中断 (d)	算法的正确性

- 7、下述说法错误的是 (a) 在一个无错的异步系统中,一个算法的执行只取决于初始配置 (b) 在一个无错的同步系统中,一个算法的执行只取决于初始配置 (c) 在一个无错的异步系统中,对于相同的初始配置,一个算法可能有不同的执行 (d) 异步系统中的消息延迟是不确定的
- 8、在异步环上,leader 选举算法的消息复杂性下界是_ (a) O(logn) (b) O(n) (c) O(nlogn)

- 9、己知事件 e1、e2、e3 和 e4 的向量时戳分别为(4,0,0,0)、(3,5,0,0)、(3,4,1,2)、(3,6,4,3),与 e3 有因果
 - (a) e1
- (b) e2
- (c) e4
- (d) 都无关系

- 10、下列陈述错误的是_
 - (a) P 类问题可用多项式时间的确定性算法求解;
 - (b) NP 类问题可用多项式时间的非确定性算法求解;
 - (c) 所有需要指数阶时间求解的问题均属于NP类问题;
 - (d) NP 完全问题也是 NP-hard 问题。

二. 简要回答下述问题(每题8分,共40分)

1、 在分布式算法中, bit 复杂性是指算法发送的所有消息中 bit 的总数;消息链复杂性是 指算法的任何执行中最长消息链的长度,若某消息链是 mi, me, ..., mi, 则 mi 在因果关系 上领先于 mi-i, 该消息链的长度为 k。请问这两种复杂性应分别属于通信复杂性和时间复 杂性中的哪一种? 并简述其理由。

指算法的任何执行中最长消息链的长度,若某消息链是 mi, m2, ..., mi, 则 mi 在因果关系上领先于 min, 该消息链的长度为 k。请问这两种复杂性应分别属于通信复杂性和时间复 杂性中的哪一种?并简述其理由。

- 2、已知事件e1、e2、e3 和 e4 的向量时戳分别为 (1,0,0,0)、(3,5,0,0)、(0,0,1,2)、(3,6,43),与 e3 有 因果关系的是哪个事件? 若该事件发生在 c3 之前,则会发生什么情况?
- 3、对于一个优化问题 Π ,最佳可达性能比 $R_{MIN}(\Pi)$ (定义如下)分别为何值时,问题 Π 易于近 似和难于近似?

 $R_{MIN}(\Pi) = \inf\{r \ge 1 \mid \exists \Pi$ 的多项式时间算法A使R** $\le r\}$

- 4、对于一个优化问题,什么情况下其近似算法的绝对性能比和渐近性能比相同?
- 5、 装箱问题是将 n 件物品放入尽可能少的若干个箱子中。不妨设每个箱子的容量均为 1。 物品 I_j(1≤j≤n, n=6)的大小依次为: 0.5, 0.6, 0.3, 0.7, 0.5, 0.4, 请给出其最优解。 以及采用首次适应 (First Fit) 策略得到的近似解。这里, 解是指使用了几个箱子, 每个箱子中放了哪些物品。

三. 算法题(共30分)

1、设一个同步匿名的单向环有 n 个结点,每个结点均知道 n,每个结点的初始均状态 相同,每个结点上的程序相同且开始于同一时刻。

- (1) 请问是否存在一个确定的算法选出一个 leader? 请简述理由。(5分)
- (2) 试设计一个概率的 leader 选举算法。提示: 算法由若干个 phase 构成,每个 phase 包括 n 轮, 可用 phase 和轮控制算法流程。每个结点可以设置一个随机 数发生器 uniform (1..m), 这里 m 是局部变量, 初值等于 n。(20分)
- 请问你设计的概率算法属于哪一类算法? (5分) (3)

法型: 京条领水区
在型: 武卷须交回, 否则无分。 一、单项选择服 / 6
一、单项选择雕(身空3分、共33分) 1、下列制建正确的是
(d) 概率算法的每本與空時可是可法執行和的的上界 2、 当问题只有 1 个正确的制、不存在证据时间,某概率算法总是给出一个未必正确的制。但是随着 调用该算法次复杂增加,可将错误的核果控制在任意给定的范围内。 (d) Sherwood 算法 (a) 數字概率算法 (b) Las Vegas 算法 (c) Monte Carlo 算法
3. Las Vegas 1772(1) - NORECUL obstinate (x) { repeat LV(x, y, success) until success; return y
);
设 $ p(x)$ 是 LV 成功的概率, $ s(x)$ 和 $ e(x)$ 分别是 LV 成功和失败时的期望时间, $ t(x)$ 是算法 obstinate 到一个正确解的期望时间,则 $ t(x) $ 的表达式应该是
TV TI PARTY PARTY
(a) p<0 (b) p>0 (c) p>=1/2 (d) p>1/2
5、若 A 是一个偏真的的 MC 算法,则下述陈述正确的是
6. 用 Las Vegas 算法求解某问题,已知 obstinate (x)找到正确解的期望时间为 288。其中 LV 成率为 p(x)为 0.2,成功时的期望时间 s(x)是 8,则失败时的期望时间 e(x)是 (a) 70 (b) 102 (c) 210 (d) 280
7、一个 MC 算法是一致的、3/5-正确,偏 yo 的,若要求出错概率不超过 ε ,则重复调用 MC 至少为
(a) $\lg(1/\epsilon) \lg(2/5)$ (b) $\lg(1/\epsilon) \lg(5/2)$ (c) $\lg \epsilon \lg(5/2)$ (d) $\lg \epsilon \lg \epsilon \lg(5/2)$
算法设计与分析 2013.1.5 第1页 共2

(a) 花材10个10[0, n-1], 均有x和y,机器 (b) 若对每个i年[0, n-1]. 均有 x 和 y, 相 y) (c) 若isj. 则有x<x。且yi<yi1 (d) 要求 xi xi xi xi 和 yi yi yi yi 均从有产序外。 16、将逐序列代表的环中,没有空期的环丛 (ii) 10,30,20,40,60,90,80,100 (65 10,20,30,40,50,60,70,89 (c) 1,930,40,50,60,70,80 (a) X他序列 11、设正整数d; 由 ... 电是由个结点的标识符集合。x = min(d, 由 ... 电)。y = max(d, d ... 电),则 网络耳上骨幼分的 leader 选择算这个即们可复杂性是((b) O(xn) (c) O(yn) (a) (X n) 二. 简要回答下述问题(每数8分; 井32分) 1. 设F(x)是一个 XC 算法, 若F(x)以大下 1/2 的概率返回 true, 比靠回 true 时算法证明, 侧下述算法 P2(x)是偏直的还是偏信的? 消分析 P3(x)出情的概率仍多是影心? (6.分) if F(x) then return trues else return F(x) 2、已知事件 e1, e2, e3 和 m 的例至时数分形为 (1,0,0,0), (2,5,0,0), (0,0,1,2), (3,6,4,3)。诸州出所有并发事件,以及所有应果相关事件。 3、对于同步环。一个均匀的 leader 选举算点的消息复杂性是多少工算法中一个 id 为 i 的 msm (1) 以少速率被转发的目的是什么。熵途撤倒。實效的制制复杂性是多少7 4、 试學例说明 Causal Mag delivery 異法可能出现的死機输沉。并分析为什么该算证通常 被应用于组器通信的一部分?

三. 算法题(共35分)

- 设网络的生成柯己建立、各节点及的证为1、并持有初值x。且证未持有的初值均互不相同、该写一个分布式算法使得模节点知道柯中持有塑值最大的节点。以及特有初度最小的节点。
- 2、设集合 S和 T 中各有 n 个互不相同元素。要求:
 - 河一Monte Carlo 算法判定 S 和 T 是否相等;
 - 分析算法出借的概率:(3分)
 - 算法是否有偏。若有偏。偏什么?

of received and moreover the

	、选择或填空题(每空2分。	共30分)				
	1、下列陈述错误的是	<u></u>	Pw-16.			
	(a) 数值概率算法一般是求数	在 计算问题的近似解				
	(b) Monte Carlo总能求得问题		Win the second s			
	(c) Las Vegas算法的 定能》		12 Ha			
	(d) Sherwood算法的工变作门	是被发展是消除方的和环				
	(a) Sileiwood) istiis × ii v					
उन्हर्भाष्ट)	2、下列陈述错误的是	7				
相时间		显指反复解同一个输入实	则所花的平均执行时间。 6			
型時间	(a) 概率算法的期望执行时间是指反复解同一个输入实例所花的平均执行时间 (b) 概率算法的平均期望时间是指所有输入实例上的平均期望执行时间 (
(c) 概率算法的最坏期望时间是指最坏输入实例上的期望执行时间 /						
	cas mess west-ordin out the constitut	思比所有输入实例上的所有	安的平均执行时间~			
	反	网头0解一同种	所布纳平均松行时间.			
	3,下述算法是求有限集X的势n	= X 、请选择正确语句填图	它,算法的时间复杂性是			
γ	之类外SetCount(X) {k:=0;S:		时间空间 0(元)、			
	a:=uniform()					
	do { k:=k+1;	8:=S#fa}	: a:=uniformix)			
		(2至風下0				
	return 2k*k/pi;	//p	i=3.14159			
	}					
	(a) S:=Ś并{a}.	(b)a属于S	(c)a不属于S			
	(d)a:=uniform(X)	(e)S:={a}				
	(f)n量级	(g) n^2量级				
	(h)n^(1/2)量级	(i)lgn量级	(j)常数量级			
		(70				
	4,Sherwood算法中随机预处理	提供了某种加密计算f(x)f	的可能,其步骤是 1947			
	(a) 使用显数 (b)					
	(h) N 21 45 to 0	ah lata ah n	to At			
	(1) 其以林龙松子	以 ¥ 显 (M)	SKI-TH .			
	(c) 使用函数 V 軽	MAKE				
1000						

5. Las Vegas等法的一般形式为obstinate(x){repeat LV(x,y,success) until} sucess; return y;}; 当用他来解8皇后问题时,设LV成功的概率p= S(x) 税助时间 pas(x) + (+p) (e(x)+(ix) = tix)

七xx 福州城山河 ... 简要回答下述问题(每题8分,共32分)

1 若要将一个偏y的,55%一正确的。一致的MC算法改进到95%一正确的算法,需要重复

调用MC算法多少次?并给出推导过程。

电(x) 和如何间

1-1-55%) = 95%

布式算法中(bit复杂性是指算法发送的所有消息中bit的总数:消息链复杂性是 为 海 算法的任何执行中最长消息链的长度,若某消息链是m^1, m^2, ..., m^k, 则消息 m^i在因果关系上领先于消息m^(i-1),该消息链的长度为k。请问这两种复杂度应分别属 于通信复杂性和时间复杂性中的哪一种?并简述其理由。

3. 在分布式算法的时间复杂性和ont一time复杂性中,一个msg的延迟分别假定为至多1 个时间单位和恰好1个时间单位,但有时后者是前者的一个下界。为什么?举例说明。

在echo等位型1-time 智性图010),时间复杂性目(N),时度通道经为1的1网络 4,对于同步环,在一个均匀的leader选举算法中,为什么一个id为i的msg是以2^i速率 被转发的? 其目的是什么?

- 三, 算法设计题:
- 1, 量子运动的随机聚集过程可用量子赌博来描述。其规则是:
- (1) 开始时, A和B的赌本分别为x和y;
- (2) 每次通过掷一枚神奇的硬币来决定输赢,设正面A赢,反面B赢,但每次仍出硬币 的正反面的概率正比于A和B当前的赌本;
- (3) 每次的输家将按固定的比例k从自己的赌本中付给赢家;
- (4) 设最小的赌本单位为1, 若输家当前的赌本小于等于1, 他付出自己的赌本后, 游 戏结束。

例如: 设x和y的初值分别为20分和80分。k=10%。则第一次硬币仍由正面和反面的概 率分别是20%和80%。 告扔出的是正面,则B要付8分给A:第二次赌博时。x=28, y=72, 硬币扔出正面和反面的概率将分别是28%和72%。赌博依此规则进行,直至一方赌光为止。

要求:

1--写一算法实现赌博游戏: (15分)

2--A和B最終输贏取决于什么? (3分)

一请分析A、B最终输赢的概率。(5分)

2--分析算法出错的概率: (3分)

3--算法是否有偏,若有偏,偏什么? (2分)

STEGNAL 1 3. T) 1 a (uniform () ; for i from 1 to n 1 if a=Tzi)

return true;

return fasse; 沒有 x 行連捆。 (一首)

确设

white (XSIH4SI) while (x>1 & 4 71) { a & uniform (1, x+y) it (asx &) X= x+0.14;

9= 4+0.1x 3 Hand while

it (x =1) ? y= 4+x; 原水水为马

(451)5 K=xty;