Hinweis: Manche (sehr wenige) der folgenden Aufgaben sind falsch, manche enthalten offene Fragen, manche sind besonders schwierig. Die Lösung einer falschen Aufgabe besteht in einer Erklärung, was bzw. warum etwas falsch ist. (Ein falscher Allsatz kann zB durch ein Gegenbeispiel widerlegt werden.)

Naive Mengenlehre

- 1. Welche der folgenden Aussagen gelten allgemein (d.h., für beliebige $x, x_1, y, ...$)? Begründen Sie Ihre Antwort (Beweis oder Gegenbeispiel).
 - a. Wenn $\{x\} = \{y\}$, dann ist auch x = y.
 - b. Wenn $\{x, z\} = \{y, z\}$, dann ist auch x = y.
 - c. Wenn $\{x_1,x_2\}=\{y_1,y_2\}$, dann gilt zumindest eine der folgenden beiden Aussagen: (12) $x_1=y_1$ und $x_2=y_2$; (21) $x_1=y_2$ und $x_2=y_1$.
 - d. Wenn $\{x_1,x_2,x_3\}=\{y_1,y_2,y_3\}$, dann ist zumindest eine der folgenden 6 Aussagen wahr:

```
(123)  x_1 = y_1, x_2 = y_2, x_3 = y_3.
```

- (132) $x_1 = y_1, x_2 = y_3, x_3 = y_2.$
- (213) $x_1 = y_2, x_2 = y_1, x_3 = y_3.$
- $(231) x_1 = y_2, x_2 = y_3, x_3 = y_1.$
- $(312) x_1 = y_3, x_2 = y_1, x_3 = y_2.$
- (321) $x_1 = y_3, x_2 = y_2, x_3 = y_1.$
- 2. Von der Eigenschaft E wissen wir bereits, dass sie auf alle Singletons (=einelementige Mengen) zutrifft. Nehmen wir an, dass E immer dann auf eine Menge $A \cup \{b\}$ zutrifft, wenn E auf A zutrifft (und b beliebig ist). Können wir daraus schließen,
 - ullet ... dass E für alle endlichen nichtleeren Mengen gilt?
 - \bullet ... dass E für alle nichtleeren Mengen gilt?
 - \bullet ... dass E für alle höchstens abzählbaren nichtleeren Mengen gilt?
- 3. Zeigen oder widerlegen Sie: Wenn $\{\{x\}, \{x,y\}\} = \{\{x'\}, \{x',y'\}\}, \text{ dann gilt } x = x' \text{ und } y = y'.$
- 4. Zeigen oder widerlegen Sie: Wenn $\{x, \{x, y\}\} = \{x', \{x', y'\}\}\$, dann gilt x = x' und y = y'.
- 5. Zeigen oder widerlegen Sie: Sei $* := \{\emptyset\}$. Wenn $\{\{\emptyset, x\}, \{*, y\}\} = \{\{\emptyset, x'\}, \{*, y'\}\}$, dann gilt x = x' und y = y'.

Sei \mathscr{A} eine Menge von Mengen. Eine Auswahlfunktion für A ist eine Funktion f, die jedem Element $B \in \mathscr{A} \setminus \{\emptyset\}$ eines seiner Elemente zuweist, d.h. es muss also für alle nichtleeren¹ $B \in \mathscr{A}$ die Beziehung $f(B) \in B$ gelten. Geben Sie in den folgenden Aufgaben explizite Auswahlfunktionen für die jeweiligen Mengenfamilien an.

- 6. \mathscr{A}_6 sei die Familie aller Teilmengen von \mathbb{N} .
- 7. \mathscr{A}_7 sei die Familie aller Teilmengen von \mathbb{Z} .
- 8. \mathcal{A}_8 sei die Familie aller endlichen Teilmengen von \mathbb{R} .
- 9. \mathscr{A}_9 sei die Familie aller Teilmengen von \mathbb{R} .
- 10. \mathscr{A}_{10} sei die Familie aller Äquivalenzklassen von Cauchyfolgen rationaler Zahlen. (Zwei Cauchyfolgen $(x_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ heißen äquivalent, wenn die Folge $(x_n y_n)_{n=1}^{\infty}$ ihrer Differenzen eine Nullfolge bildet.)

 $^{^{1}}$ Oft wird vorausgesetzt, dass die leere Menge ∅ kein Element von \mathscr{A} ist.

- 11. $A \times B := \{(x,y) : x \in A, y \in B\}$, wobei $(x,y) := \{\{x\}, \{x,y\}\}$. Zeigen Sie $A \times B \subseteq \mathfrak{P}(\mathfrak{P}(A \cup B))$ (wobei $\mathfrak{P}(X) := \{Y : Y \subseteq X\}$).
- 12. Wir schreiben B^A für die Menge aller Funktionen von A nach B. Welche der folgenden Aussagen ist richtig?

$$B^A \subseteq A \times B$$
, $B^A \subseteq \mathfrak{P}(A \times B)$, $B^A \subseteq \mathfrak{P}(\mathfrak{P}(A \cup B))$, $B^A \subseteq \mathfrak{P}(\mathfrak{P}((A \times B)))$

13. Berechnen Sie $\bigcup A$, $\bigcup \bigcup A$, $\bigcap A$, $\bigcap \bigcap A$ für jede der folgenden Mengen A:

$$A_1 = \{0, 1, 2, 3, 4\}, A_2 = \{0, 2, 4, 6, \ldots\}, A_3 = \{1, 3, 5, \ldots\}, A_4 = \{3, 4, 5, 6\}$$

(Verwenden Sie die Definitionen
$$0 := \emptyset, 1 := \{0\}, \dots, 5 = \{0, 1, 2, 3, 4\}, \dots$$
)

In der ("offiziellen") Sprache der Mengenlehre verwenden wir neben dem zweistelligen Relationssymbol ε das Gleichheitszeichen, beliebig viele prädikatenlogische Variable $x, x_1, A, B, \mathcal{C}$, etc, die logischen Konstanten \top und \bot , die Junktoren $\land, \lor, \neg, \rightarrow, \leftrightarrow$ sowie die Quantoren \forall und \exists , nicht aber die Symbole \emptyset , $\{\cdots\}$, \cup , \cap , etc.

- 14. Übersetzen Sie die folgenden Formeln in die offizielle Sprache der Mengenlehre:
 - a. $A = \{x\}$
 - b. $B = \{x, y\}$
 - c. $C = P \cap Q$
 - d. $D = \bigcup \mathcal{E}$, wobei die rechte Seite als $\{x : \exists E \in \mathcal{E}(x \in E)\}$ definiert ist.
 - e. $F = \bigcup \{U, V\}.$

Aussagenlogik

15. Geben Sie für jede der folgenden Formeln eine Baumdarstellung an, sowie Präfix- und Post-fixform. (Präfix=polnische Notation, Postfix=umgekehrte polnische Notation.)

$$p_1 \rightarrow \neg p_2 \qquad (\neg p_1) \rightarrow p_2 \qquad \neg (p_1 \rightarrow p_2) \qquad \neg (\neg (p_1 \rightarrow p_2)) \qquad p_1 \rightarrow \neg (\neg (p_1 \rightarrow p_2)) \qquad p_2 \rightarrow \neg (\neg (p_1 \rightarrow p_2)) \qquad p_3 \rightarrow \neg (\neg (p_1 \rightarrow p_2)) \qquad p_4 \rightarrow \neg (\neg (p_1 \rightarrow p_2)) \qquad p_4 \rightarrow \neg (\neg (p_1 \rightarrow p_2)) \qquad p_5 \rightarrow \neg (\neg (p_1 \rightarrow p_2)) \qquad p_6 \rightarrow \neg (\neg (p_1 \rightarrow p_2)) \qquad p_$$

- 16. Geben Sie alle zweistelligen Operationen auf der 2-elementigen Menge $M := \{ wahr, falsch \}$ an (das heißt: alle Funktionen $f : M \times M \to M$, und finden Sie treffende Namen für jede dieser Abbildungen. (Die Abbildung, die dem Paar (wahr, wahr) den Wert wahr zuordnet, den drei anderen Paaren der Wert falsch, könnte man zum Beispiel "Konjunktion", oder "und-Verknüpfung", oder "beide", oder "Serienschaltung" nennen.)
- 17. Wie viele dreistellige Operationen gibt es auf einer zweielementigen Menge? Wie viele n-stellige?
- 18. Zeigen Sie:
 - a. $\neg (p_1 \land p_2) \Leftrightarrow \neg p_1 \lor \neg p_2$.
 - b. Für alle Formeln A und B gilt $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$.
- 19. Zeigen Sie: $(p \land q) \lor (\neg p \land \neg q) \Leftrightarrow (p \to q) \land (q \to p)$.
- 20. Seien A und B aussagenlogische Formeln.
 - a. Die Aussage " $A\Rightarrow B$ " ist genau dann wahr, wenn " $\top\Rightarrow A\to B$ " gilt, d.h., wenn die Formel $A\to B$ eine Tautologie ist.
 - b. Die Aussage " $A \Rightarrow B$ " ist genau dann wahr, wenn " $A \land (\neg B) \Rightarrow \bot$ " gilt.

- 21. Welche der folgenden Formeln sind Tautologien?
 - a. $(p_1 \to p_2) \to (p_3 \to p_4) \to ((p_1 \lor p_3) \to (p_2 \lor p_4))$. (Implikationen werden von rechts nach links geklammert; $A \to B \to C$ ist als als Abkürzung für $(A \to (B \to C))$ zu lesen, NICHT als $((A \to B) \to C)$, und auch NICHT als $(A \to B) \land (B \to C)$.
 - b. $(p_1 \to p_3) \to (p_2 \to p_3) \to ((p_1 \lor p_2) \to p_3)$.
 - c. $(p_1 \to p_3) \to (p_2 \to p_3) \to ((p_1 \land p_2) \to p_3)$.
 - d. $(p_1 \to p_2 \to p_3) \to ((p_1 \land p_2) \to p_3)$
 - e. $(p_1 \to p_2) \lor (p_2 \to p_1)$.

Belegungen

Sei b eine Belegung, A eine Formel. Statt $\hat{b}(A) = 1$ sagen wir auch "b erfüllt die Formel A". In den nächsten 3 Aufgaben verstehen wir unter einer "Belegung" eine Funktion von der Menge $\{p_1, \ldots, p_n\}$ nach $\{0, 1\}$.

22. Sei $n \geq 2$. Wieviele Belegungen (der Variablen p_1, \ldots, p_n) erfüllen die Formel

$$(p_1 \to p_2) \land (p_2 \to p_3) \land \cdots \land (p_{n-1} \to p_n)$$
?

- 23. Sei $n \geq 2$. Geben Sie eine Formel (in den Variablen p_1, \ldots, p_n) an, die von genau n Belegungen erfüllt wird.
- 24. Sei n groß, $k \leq 2^n$. Geben Sie eine Formel (in den Variablen p_1, \ldots, p_n) an, die von genau k Belegungen erfüllt wird. Versuchen Sie, eine möglichst kleine Formel zu finden (mit etwa O(n) Symbolen).

Erfüllbarkeit

Eine Menge Σ von aussagenlogischen Formeln heißt "erfüllbar", wenn es eine Belegung b der in Σ vorkommenden Variablen gibt, die für alle $A \in \Sigma$ die Bedingung $\hat{b}(A) = 1$ erfüllt. Wir nennen eine Menge Σ *erfüllbar, wenn jede endliche Teilmenge von Σ erfüllbar ist.

- 25. Sei $\Sigma \cup \{A\}$ eine Menge von aussagenlogischen Formeln. Zeigen Sie:
 - (a) Σ ist genau dann erfüllbar, wenn zumindest eine der Mengen $\Sigma \cup \{A\}$, $\Sigma \cup \{\neg A\}$ erfüllbar ist.
 - (b) Σ ist genau dann *erfüllbar, wenn zumindest eine der Mengen $\Sigma \cup \{A\}$, $\Sigma \cup \{\neg A\}$ *erfüllbar ist.
- 26. Geben Sie eine *-erfüllbare Menge an, die nicht erfüllbar ist.
- 27. Zeigen Sie:
 - (a) Wenn Σ *erfüllbar ist, und für jede aussagenlogische Variable p entweder $p \in \Sigma$ oder $(\neg p) \in \Sigma$ gilt, dann ist Σ auch erfüllbar (und zwar durch genau eine Belegung).
 - (b) Wenn Σ *erfüllbar ist, dann gibt es eine *erfüllbare Menge $\Sigma' \supseteq \Sigma$, die die Bedingung in (a) erfüllt.

Überabzählbare Mengen

Wir betrachten eine aussagenlogische Sprache mit einer (möglicherweise überabzählbaren) festen Variablenmenge V. (Formeln und Klauseln sind weiterhin endlich, Formelmengen dürfen auch unendlich groß sein, sogar überabzählbar.)

Eine Menge Σ von Formeln heißt *erfüllbar, wenn jede endliche Teilmenge erfüllbar ist. Σ heißt "maximal *erfüllbar", wenn Σ zwar *erfüllbar ist, aber es keine echte Obermenge von Σ gibt, die auch noch *erfüllbar ist.

- 28. Für jede *erfüllbare Menge Σ gibt es eine maximal *erfüllbare Obermenge $\Sigma' \supseteq \Sigma$. (Hinweis: Wohlordnung, oder Lemma von Zorn, oder Lemma von Tukey.)
- 29. Sei Σ maximal *erfüllbar. Dann ist Σ erfüllbar, und es gibt genau eine Belegung b, die Σ erfüllt.

CNF, DNF

30. Welche der folgenden Formeln sind in CNF, welche in DNF?

$$\neg p_1, \ \neg p_1 \lor p_2, \ \neg (p_1 \lor p_3), \ \neg p_1 \land p_4, \ \neg p_1 \to p_5, \ (\neg p_1 \lor p_6) \land p_7, \ (((p_1 \land p_2) \lor p_3) \land p_4))$$

Anmerkung: "¬" bindet stärker als die anderen Junktoren; Daher: ¬ $p_1 \lor p_2 := ((\neg p_1) \lor p_2)$.

- 31. Geben Sie zu den Formeln in der vorigen Aufgabe, die nicht in CNF sind, eine äquivalente Formel in CNF an.
- 32. Detto für DNF.

Interpolation

33. Sei A eine Formel, die nur die Variablen p_1, \ldots, p_n verwendet, und sei B eine Formel, die nur die Variablen $p_k, \ldots, p_{k+\ell}$ verwendet, $1 < k \le n < k + \ell$.

Nehmen wir weiters an, dass $A \Rightarrow B$ gilt.

Zeigen Sie, dass es dann eine Formel C geben muss, die nur die Variablen p_k, \ldots, p_n verwendet, sodass sowohl $A \Rightarrow C$ als auch $C \Rightarrow B$ gilt.

(Wir nennen so eine Formel C einen "Interpolanten".)

Hinweis: Betrachten Sie alle dualen Klauseln D in den Variablen p_k, \ldots, p_n , für die $D \Rightarrow B$ gilt. Sei C die Disjunktion dieser dualen Klauseln. Zeigen Sie nun $C \Rightarrow B$ (leicht) und $A \Rightarrow C$ (schwieriger, indirekt).

Oder: Betrachten Sie alle Klauseln E in den Variablen p_k, \ldots, p_n , für die $A \Rightarrow E$ gilt; sei C die Konjunktion dieser Klauseln. Zeigen Sie nun $A \Rightarrow E$ und $E \Rightarrow C$.

- 34. Sei A eine Formel, die nur die Variablen p_1, \ldots, p_n verwendet, und sei B eine Formel, die nur die Variablen $p_k, \ldots, p_{k+\ell}$ verwendet, mit n < k. Nehmen wir weiters an, dass $A \Rightarrow B$ gilt. Dann gilt zumindest eine der folgenden Aussagen:
 - $A \Rightarrow \bot$. (Mit anderen Worten: A ist Kontradiktion.)
 - $\top \Rightarrow B$. (Mit anderen Worten: B ist Tautologie.)

(Insbesondere gibt es also eine Formel C, die keine Variablen verwendet, und die $A \Rightarrow C$ und $C \Rightarrow B$ erfüllt.)

König

Ein Baum (T, <) ist eine partiell geordnete Menge mit kleinstem Element, in der für alle $t \in T$ die Menge $T_{< t} := \{x : x < t\}$ endlich und linear geordnet ist. Ein Ast ist eine maximale linear geordnete Teilmenge. Wir definieren $Lev(n, T) := \{t \in T : T_{< t} \text{ hat } n \text{ Elemente}\}.$

35. Sei (T, <) ein unendlicher Baum, sodass Lev(n, T) für alle n endlich ist. Zeigen Sie, dass T einen unendlichen Ast hat.

Unendliche "Klauseln"

Für die nächsten beiden Aufgaben betrachten wir eine Sprache mit abzählbar vielen aussagenlogischen Variablen. Eine $_{\infty}$ Klausel ist eine endliche oder unendliche Menge von Literalen. Eine Belegung b erfüllt eine $_{\infty}$ Klausel C, wenn es ein Literal $L \in C$ mit $\hat{b}(L) = 1$ gibt. Eine Menge M von $_{\infty}$ Klauseln heißt erfüllbar, wenn es eine Belegung gibt, die alle $_{\infty}$ Klauseln in M erfüllt; M ist *erfüllbar, wenn jede endliche Teilmenge von M (diese darf also endliche viele ∞ -Klauseln enthalten) erfüllbar ist.

- 36. Geben Sie eine *erfüllbare Menge von $_{\infty}$ Klauseln an, die nicht erfüllbar ist.
- 37. Geben Sie eine unerfüllbare Menge M von $_{\infty}$ Klauseln an, die unter Resolution abgeschlossen ist, aber nicht die leere Klausel enthält. ("Unter Resolution abgeschlossen" heißt: Wann immer $p \in C \in M$, $\neg p \in D \in M$, dann ist auch $(C \setminus \{p\}) \cup (D \setminus \{\neg p\})$ in M.) Wenn möglich, wählen Sie M so, dass
 - (a) die Menge der Klauseln (=endliche $_{\infty}$ Klauseln) in M endlich ist.
 - (b) oder: dass die Menge der unendlichen $_{\infty}$ Klauseln in M endlich ist.
 - (c) oder sogar: dass M endlich ist. (D.h., (a) und (b) gelten.)

Topologischer Zugang

Die Menge \mathscr{B} aller totalen Belegungen $b:\{p_1,p_2,\ldots\}\to\{0,1\}$ trägt eine natürliche Topologie, die so genannte Produkttopologie; eine Basis für diese Topologie besteht aus den Mengen $O_c:=\{b:b\text{ setzt }c\text{ fort}\}$, wobei c alle endlichen partiellen Belegungen durchläuft. (\mathscr{B} wird dadurch zu einem kompakten Hausdorff-Raum, und sogar homöomorph zur Cantormenge.)

Sei $K \subseteq \mathcal{B}$ eine Menge von totalen Belegungen. Wir nennen eine Menge Σ von Formeln (oder Klauseln) K-erfüllbar, wenn es eine Belegung $b \in K$ gibt, die Σ erfüllt. Eine Menge ist K-*erfüllbar, wenn jede endliche Teilmenge K-erfüllbar ist.

38. Charakterisieren Sie die Eigenschaft "Jede K-*erfüllbare Menge ist auch K-erfüllbar" durch eine topologische Bedingung an die Menge K.

Resolution

39. Sei M die folgenden Menge von Klauseln:

$$M := \{ \{ \neg p, q \}; \{ \neg r, s \}; \{ p, r \} \}$$

Finden Sie die kleinste Menge von Klauseln, die M enthält und unter Resolution abgeschlossen ist.

40. Zeigen Sie, dass die leere Klausel mit (mehrfach ausgeführter) Resolution aus den Klauseln $\{ \{\neg p, q\}; \{\neg r, s\}; \{p, r\}; \{\neg q\}; \{\neg s\} \}$ herleitbar ist. Was hat dies mit Aufgabe 21 zu tun?

- 41. Geben Sie eine unerfüllbare (nichtleere) Menge von Klauseln an, die weder die leere Klausel noch einelementige Klauseln enthält.
- 42. Wir interpretieren $p \to q$ als Abkürzung für $\neg (p \land \neg q)$. Bilden Sie unter Verwendung der Regel $\neg \neg A \Leftrightarrow A$ eine zur Negation von

$$(\neg p \lor q) \to (p \to q)$$

äquivalente Formel in konjunktiver Form, schreiben Sie sie als Klauselmenge, und zeigen Sie dann mit dem Resolutionsverfahren, dass diese Klauselmenge unerfüllbar (und somit die ursprüngliche Formel eine Tautologie) ist.

- 43. Analog für $(p \to q) \to ((q \to r) \to (p \to r))$.
- 44. Gegeben ist die Klauselmenge $M=\{\{p,q\};\{p,\neg q,r\};\{p,\neg q,\neg r\};\{\neg p,q\};\{\neg p,\neg q,\neg r\}\}$. Ist die leere Klausel in \hat{M} enthalten? (Erinnerung: \hat{M} ist definiert als die kleinste unter Resolution abgeschlossenen Menge, die M enthält.)
- 45. Sei M eine Klauselmenge und $M' = \{C \in M \mid \text{es gibt keine Variable } p \text{ mit } p \in C \text{ und } \neg p \in C\}$. Zeigen Sie dass M und M' äquivalent sind. (Das heißt: Jede Belegung b, die M erfüllt, erfüllt auch M', und umgekehrt.)
- 46. Sei M eine Klauselmenge und $C, D \in M$ wobei C echte Teilmenge von D ist $(C \subset D)$. Zeigen Sie dass M und $M' = M \setminus \{D\}$ äquivalent sind.
- 47. Zeigen Sie dass die Klauselmenge $M = \{\{\neg p_1, p_3\}; \{p_1, p_2\}; \{\neg p_3\}; \{\neg p_2, p_3\}; \}$ unerfüllbar ist a) durch Angabe ihres semantischen Baumes und b) durch Angabe einer Resolutionswiderlegung.
- 48. Seien $A = \{a_1, \ldots, a_n\}$ und $B = \{b_1, \ldots, b_k\}$ endliche Mengen. Sei $P = \{p_{i,j} \mid 1 \leq i \leq n, 1 \leq j \leq k\}$ eine Menge aussagenlogischer Variablen. Jede Belegung b von P induziert eine Relation $R_b \subseteq A \times B$ durch $(a_i, b_j) \in R_b$ gdw $b(p_{i,j}) = 1$. Finden Sie aussagenlogische Formeln $\varphi_1, \varphi_2, \varphi_3, \varphi_4$ so dass:
 - 1. $\hat{b}(\varphi_1) = 1$ gdw R_b ist eine Funktion
 - 2. $\hat{b}(\varphi_2) = 1$ gdw R_b ist eine injektive Funktion
 - 3. $\hat{b}(\varphi_3) = 1$ gdw R_b ist eine surjektive Funktion
 - 4. $\hat{b}(\varphi_4) = 1$ gdw R_b ist eine bijektive Funktion

Für welche $(n, k) \in \mathbb{N} \times \mathbb{N}$ ist φ_2 unerfüllbar?

(Anmerkung: Die Größe der Formeln hängt von n und k ab.)

- 49. Ein Sudoku ist eine Matrix $S=(s_{i,j})\in\{\lambda,1,\ldots,9\}^{9\times 9}$ wobei das Symbol λ für "leer" stehen soll. Eine Lösung von S ist eine Matrix $L=(l_{i,j})\in\{1,\ldots,9\}^{9\times 9}$ so dass gilt:
 - 1. $s_{i,j} \neq \lambda$ impliziert $l_{i,j} = s_{i,j}$, und
 - 2. Für die folgenden $K\subseteq\{1,\dots,9\}\times\{1,\dots,9\}$ gilt:

$$(i_1, j_1), (i_2, j_2) \in K, (i_1, j_1) \neq (i_2, j_2)$$
 implicient $l_{i_1, j_1} \neq l_{i_2, j_2}$

- (a) Für jede Zeile,
- (b) Für jede Spalte,
- (c) Für jede 3x3-Matrix mit Startkoordinaten kongruent 1 modulo 3

Finden Sie, ähnlich wie in Aufgabe 48, eine Menge P aussagenlogischer Variablen, eine Bijektion von Belegungen von P mit Relationen über $\{1, \ldots, 9\} \times \{1, \ldots, 9\} \times \{1, \ldots, 9\}$ sowie eine Formel φ_S so dass $\hat{b}(\varphi_S) = 1$ gdw b eine Lösung von S induziert.