Thanapoom Phatthanaphan

5.2

a. Find the 16-bit 2's complementary binary representation for the decimal number 1987.

Solution:

1987 / 2 = 993	remainder 1
993 / 2 = 496	remainder 1
496 / 2 = 248	remainder 0
248 / 2 = 124	remainder 0
124 / 2 = 62	remainder 0
62 / 2 = 31	remainder 0
31 / 2 = 15	remainder 1
15 / 2 = 7	remainder 1
7 / 2 = 3	remainder 1
3 / 2 = 1	remainder 1
1 / 2 = 0	remainder 1

 $1987_{10} = 11111000011$

As 1987 is the positive number, the 16-bit 2's complementary binary representation for the decimal number 1987 is 0000011111000011.

Answer: 0000011111000011

b. Find the 16-bit 2's complementary binary representation for the decimal number -1987.

Solution:

From (a): $1987_{10} = 11111000011$

From 1's complement method: Covert every 0 to 1 and every 1 to 0

 $-1987_{10} = 00000111100$

From the equation: 2's complement = 1's complement + 1

 $-1987_{10} = 00000111101$

As -1987 is the negative number, the 16-bit 2's complementary binary representation for the decimal number -1987 is 1111100000111101

Answer: 1111100000111101

c. From your answer in (b), find the six-digit 16's complement hexadecimal representation for the decimal number -1987.

Solution:

As the answer from (b): $-1987_{10} = 1111100000111101$

Therefore, the six-digit 16's complement hexadecimal representation for the decimal number -1987 = FFF83D; Add two of "F" to the left of the number because this is the negative number.

Answer: FFF83D

Thanapoom Phatthanaphan

5.5 What are the 16-bit 1's and 2's complements of the following binary numbers?

a. 10000

Solution:

16-bit of 10000: 000000000010000

Answer:

2's complement (1's complement plus 1): 1111111111110000

b. 100111100001001

Solution:

16-bit of 100111100001001: 0100111100001001

Answer:

1's complement: 1011000011110110 2's complement: 1011000011110111

c. 0100111000100100

Solution:

0100111000100100 is already in 16-bit format.

Answer:

1's complement: 1011000111011011 2's complement: 1011000111011100