

(FILE 'HOME' ENTERED AT 13:30:10 ON 14 DEC 2006)

FILE 'REGISTRY' ENTERED AT 13:30:22 ON 14 DEC 2006

L1 STRUCTURE UPLOADED
L2 4 S L1
L3 18 S L1 SSS FULL

FILE 'CAPLUS' ENTERED AT 13:31:13 ON 14 DEC 2006

L4 36 S L3
L5 0 S L4 AND LIBRARY
L6 3 S L4 AND INFLAMM?
L7 2 S L4 AND (NEURODEGEN? OR ALZHEIM? OR PARKINSON?)
L8 10 S L4 AND (CANCER OR TUMOR OR ANTITUMOR OR NEOPLAS? OR CARCINOMA

FILE 'USPATFULL' ENTERED AT 13:34:58 ON 14 DEC 2006

L9 1 S L3

FILE 'HOME' ENTERED AT 13:30:10 ON 14 DEC 2006

=> file registry		SINCE FILE	TOTAL
COST IN U.S. DOLLARS		ENTRY	SESSION
FULL ESTIMATED COST		0.21	0.21

FILE 'REGISTRY' ENTERED AT 13:30:22 ON 14 DEC 2006
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2006 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file
provided by InfoChem.

STRUCTURE FILE UPDATES: 13 DEC 2006 HIGHEST RN 915360-23-5
DICTIONARY FILE UPDATES: 13 DEC 2006 HIGHEST RN 915360-23-5

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 30, 2006

Please note that search-term pricing does apply when
conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and
predicted properties as well as tags indicating availability of
experimental property data in the original document. For information
on property searching in REGISTRY, refer to:

<http://www.cas.org/ONLINE/UG/regprops.html>

=>
Uploading C:\Program Files\Stnexp\Queries\10773903generic.str

L1 STRUCTURE uploaded

=> d l1
L1 HAS NO ANSWERS
L1 STR

G1 H, OH

Structure attributes must be viewed using STN Express query preparation.

```
=> s 11
SAMPLE SEARCH INITIATED 13:30:42 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 841 TO ITERATE
```

```
100.0% PROCESSED 841 ITERATIONS 4 ANSWERS
SEARCH TIME: 00.00.01
```

```
FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**
PROJECTED ITERATIONS: 15081 TO 18559
PROJECTED ANSWERS: 4 TO 200
```

L2 4 SEA SSS SAM L1

=> d 12 scan

```
L2 4 ANSWERS REGISTRY COPYRIGHT 2006 ACS on STN
IN 24,25,26,30-Tetranoroleana-1,3,5(10),7-tetraene-2,3-diol, 9,13-dimethyl-,
diacetate, (9β,13α,14β,20β)- (9CI)
MF C32 H44 O4
```

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

HOW MANY MORE ANSWERS DO YOU WISH TO SCAN? (1) :3

L2 4 ANSWERS REGISTRY COPYRIGHT 2006 ACS on STN
 IN 24,25,26-Trinoroleana-1,3,5(10),7-tetraen-29-oic acid,
 2,3-dihydroxy-9,13-dimethyl-, (9β,13α,14β,20α)-
 (9CI)
 MF C29 H40 O4

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L2 4 ANSWERS REGISTRY COPYRIGHT 2006 ACS on STN
 IN 24,25,26-Trinoroleana-1,3,5(10),7-tetraen-29-oic acid,
 2-hydroxy-3-methoxy-9,13-dimethyl-, methyl ester,
 (9β,13α,14β,20α)- (9CI)
 MF C31 H44 O4

Absolute stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

L2 4 ANSWERS REGISTRY COPYRIGHT 2006 ACS on STN
 IN 2-Picenemethanol, 1,2,3,4,4a,5,6,6a,8,12b,13,14,14a,14b-tetradecahydro-
 10,11-dihydroxy-2,4a,6a,9,12b,14a-hexamethyl- (7CI)
 MF C29 H42 O3

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

ALL ANSWERS HAVE BEEN SCANNED

```
=> s 11 sss full
FULL SEARCH INITIATED 13:31:07 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 16777 TO ITERATE
```

100.0% PROCESSED 16777 ITERATIONS
SEARCH TIME: 00.00.01

18 ANSWERS

L3 18 SEA SSS FUL L1

```
=> file caplus
COST IN U.S. DOLLARS
FULL ESTIMATED COST
```

SINCE FILE	TOTAL
ENTRY	SESSION
166.94	167.15

FILE 'CAPLUS' ENTERED AT 13:31:13 ON 14 DEC 2006

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 14 Dec 2006 VOL 145 ISS 25
FILE LAST UPDATED: 13 Dec 2006 (20061213/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

<http://www.cas.org/infopolicy.html>

=> s 13
L4 36 L3

=> s 14 and library
80365 LIBRARY
L5 0 L4 AND LIBRARY

=> s 14 and inflamm?
262425 INFLAMM?
L6 3 L4 AND INFLAMM?

=> d 16

L6 ANSWER 1 OF 3 CAPLUS COPYRIGHT 2006 ACS on STN
AN 2004:934338 CAPLUS
DN 141:388762
TI Derivatives of pentacyclic nortriterpene quinone methides as compounds useful in the treatment of inflammatory, neurodegenerative, and neoplastic diseases
IN Devlin, J. P.
PA USA
SO U.S. Pat. Appl. Publ., 4 pp.
CODEN: USXXCO
DT Patent
LA English
FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 2004220267	A1	20041104	US 2004-773903	20040206
PRAI US 2003-445717P	P	20030207		
OS MARPAT 141:388762				

=> d 16 1-3 ti abs bib

L6 ANSWER 1 OF 3 CAPLUS COPYRIGHT 2006 ACS on STN
TI Derivatives of pentacyclic nortriterpene quinone methides as compounds useful in the treatment of inflammatory, neurodegenerative, and neoplastic diseases
AB The uses of celastrol and pristimerin derivs. in the treatment of inflammatory, neurodegenerative and neoplastic diseases are

disclosed, including dihydro derivs. of celastrol and pristimerin, such as dihydrocelastrol and dihydropristimerin and their diacetates.

AN 2004:934338 CAPLUS
DN 141:388762
TI Derivatives of pentacyclic nortriterpene quinone methides as compounds useful in the treatment of inflammatory, neurodegenerative, and neoplastic diseases
IN Devlin, J. P.
PA USA
SO U.S. Pat. Appl. Publ., 4 pp.
CODEN: USXXCO
DT Patent
LA English
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2004220267	A1	20041104	US 2004-773903	20040206
PRAI	US 2003-445717P	P	20030207		
OS	MARPAT 141:388762				

L6 ANSWER 2 OF 3 CAPLUS COPYRIGHT 2006 ACS on STN
TI Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by triterpene Celastrol
AB Celastrol, which is a triterpene purified from Celastraceae plants, has anticancer and anti-inflammatory activities. In this study, the authors investigated to clarify whether Celastrol can induce apoptosis in a human leukemia HL-60 model system. Celastrol was found to induce apoptosis, and the rank order of the potency of Celastrol and its derivs. to induce internucleosomal DNA fragmentation was found to be Celastrol>Cela-H>the other derivs. = vehicle control. Many anticancer agents are known to possess the ability to inhibit topoisomerase II, so the inhibitory activities of Celastrol and its derivs. on topoisomerase II were also explored. The rank order of the inhibitory activity was found to be Celastrol>etoposide>Cela-H, indicating that the apoptosis-inducing activities of Cela derivs. correspond to their inhibitory activities on topoisomerase II. These data suggested that Celastrol may cause its effects such as anticancer activity by the mechanism of apoptosis along with topoisomerase II inhibition.

AN 2003:801130 CAPLUS
DN 140:192391
TI Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by triterpene Celastrol
AU Nagase, Masahiro; Oto, Jinsei; Sugiyama, Sin; Yube, Kouichi; Takaishi, Yoshihisa; Sakato, Nobuo
CS Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
SO Bioscience, Biotechnology, and Biochemistry (2003), 67(9), 1883-1887
CODEN: BBBIEJ; ISSN: 0916-8451
PB Japan Society for Bioscience, Biotechnology, and Agrochemistry
DT Journal
LA English

RE.CNT 17 THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 3 OF 3 CAPLUS COPYRIGHT 2006 ACS on STN
TI Novel cytokine release inhibitors. Part II: steroids
AB The authors studied the structure activity relationship of steroidal derivs. derived from testosterone as IL-1 β release inhibitors in human monocytes stimulated with LPS. Significant improvement of antiinflammatory activities was measured.
AN 1998:713038 CAPLUS
DN 130:60599
TI Novel cytokine release inhibitors. Part II: steroids
AU He, Wei; Huang, Fu-Chih; Morytko, Michael; Jariwala, Navin; Yu, Kin-Tak

CS Department of Medicinal Chemistry, Department of Inflammation Biology,
Rhone-Poulenc Rorer Central Research, Collegeville, PA, 19426, USA
SO Bioorganic & Medicinal Chemistry Letters (1998), 8(20), 2825-2828
CODEN: BMCLE8; ISSN: 0960-894X
PB Elsevier Science Ltd.
DT Journal
LA English

RE.CNT 10 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> s 14 and (neurodegen? or Alzheim? or Parkinson?)
22894 NEURODEGEN?
42555 ALZHEIM?
25436 PARKINSON?
L7 2 L4 AND (NEURODEGEN? OR ALZHEIM? OR PARKINSON?)

=> d 17 1-2 ti abs bib

L7 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2006 ACS on STN
TI Celastrols as Inducers of the Heat Shock Response and Cytoprotection
AB Alterations in protein folding and the regulation of conformational states have become increasingly important to the functionality of key mols. in signaling, cell growth, and cell death. Mol. chaperones, because of their properties in protein quality control, afford conformational flexibility to proteins and serve to integrate stress-signaling events that influence aging and a range of diseases including cancer, cystic fibrosis, amyloidoses, and neurodegenerative diseases. We describe here characteristics of celastrol, a quinone methide triterpene and an active component from Chinese herbal medicine identified in a screen of bioactive small mols. that activates the human heat shock response. From a structure/function examination, the celastrol structure is remarkably specific and activates heat shock transcription factor 1 (HSF1) with kinetics similar to those of heat stress, as determined by the induction of HSF1 DNA binding, hyperphosphorylation of HSF1, and expression of chaperone genes. Celastrol can activate heat shock gene transcription synergistically with other stresses and exhibits cytoprotection against subsequent exposures to other forms of lethal cell stress. These results suggest that celastrols exhibit promise as a new class of pharmacol. active regulators of the heat shock response.

AN 2004:1131225 CAPLUS
DN 142:211411
TI Celastrols as Inducers of the Heat Shock Response and Cytoprotection
AU Westerheide, Sandy D.; Bosman, Joshua D.; Mbadugha, Bessie N. A.; Kawahara, Tiara L. A.; Matsumoto, Gen; Kim, Soojin; Gu, Wenxin; Devlin, John P.; Silverman, Richard B.; Morimoto, Richard I.
CS Department of Biochemistry, Molecular Biology and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL, 60208, USA
SO Journal of Biological Chemistry (2004), 279(53), 56053-56060
CODEN: JBCHA3; ISSN: 0021-9258
PB American Society for Biochemistry and Molecular Biology
DT Journal
LA English

RE.CNT 60 THERE ARE 60 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L7 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2006 ACS on STN
TI Derivatives of pentacyclic nortriterpene quinone methides as compounds useful in the treatment of inflammatory, neurodegenerative, and neoplastic diseases
AB The uses of celastrol and pristimerin derivs. in the treatment of inflammatory, neurodegenerative and neoplastic diseases are disclosed, including dihydro derivs. of celastrol and pristimerin, such as

dihydrocelastrol and dihydropristimerin and their diacetates.
 AN 2004:934338 CAPLUS
 DN 141:388762
 TI Derivatives of pentacyclic nortriterpene quinone methides as compounds useful in the treatment of inflammatory, neurodegenerative, and neoplastic diseases
 IN Devlin, J. P.
 PA USA
 SO U.S. Pat. Appl. Publ., 4 pp.
 CODEN: USXXCO
 DT Patent
 LA English
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 2004220267	A1	20041104	US 2004-773903	20040206
PRAI US 2003-445717P	P	20030207		
OS MARPAT 141:388762				

=> s 14 and (cancer or tumor or antitumor or neoplas? or carcinoma or sarcoma or leukemia)

300059 CANCER
 392109 TUMOR
 213961 ANTITUMOR
 473802 NEOPLAS?
 152723 CARCINOMA
 38139 SARCOMA
 101069 LEUKEMIA

L8 10 L4 AND (CANCER OR TUMOR OR ANTITUMOR OR NEOPLAS? OR CARCINOMA OR SARCOMA OR LEUKEMIA)

=> d 18 1-10 ti

L8 ANSWER 1 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
 TI New phenolic triterpenes from Maytenus blepharodes. Semisynthesis of 6-deoxoblepharodol from pristimerin

L8 ANSWER 2 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
 TI Celastrols as Inducers of the Heat Shock Response and Cytoprotection

L8 ANSWER 3 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
 TI Derivatives of pentacyclic nortriterpene quinone methides as compounds useful in the treatment of inflammatory, neurodegenerative, and neoplastic diseases

L8 ANSWER 4 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
 TI Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by triterpene Celastrol

L8 ANSWER 5 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
 TI Catalytic inhibition of topoisomerase II α by demethylzeylasterone, a 6-oxophenolic triterpenoid from Kokoona zeylanica

L8 ANSWER 6 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
 TI Immunosuppressive terpenoids from extracts of Tripterygium wilfordii

L8 ANSWER 7 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
 TI Novel cytokine release inhibitors. Part III: truncated analogs of tripteterine

L8 ANSWER 8 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
 TI Triterpenoid inhibitors of interleukin-1 secretion and tumor -promotion from Tripterygium wilfordii var. regelii

L8 ANSWER 9 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
TI Structures of triterpene dimers and sesquiterpene polyesters from South American medicinal plants belonged to Maytenus sp.

L8 ANSWER 10 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
TI Biological study of triterpene quinones from Celastraceae

=> d 18 1-10 ti abs bib

L8 ANSWER 1 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
TI New phenolic triterpenes from Maytenus blepharodes. Semisynthesis of 6-deoxoblepharodol from pristimerin
AB Four new phenolic triterpenes with a 24-nor-D:A-friedoleane skeleton, isoblepharodol, 7-oxoblepharodol, blepharotriol and 6-deoxoblepharodol, were isolated from Maytenus blepharodes. Their structures were elucidated on the basis of spectroscopic anal., including homo and heteronuclear correlation NMR expts. (COSY, ROESY, HSQC, and HMBC). The semisynthesis of 6-deoxoblepharodol and its epimer at C-8 was achieved by catalytic reduction of pristimerin, a quinone-methide triterpene present in the plant. The biosynthetic formation of the phenolic triterpenes isolated from this species is also discussed. The compds. were assayed for antimicrobial and cytotoxic activities.

AN 2005:130783 CAPLUS
DN 142:370753

TI New phenolic triterpenes from Maytenus blepharodes. Semisynthesis of 6-deoxoblepharodol from pristimerin
AU Rodriguez, Felix M.; Lopez, Manuel R.; Jimenez, Ignacio A.; Moujir, Laila; Ravelo, Angel G.; Bazzocchi, Isabel L.
CS Instituto Canario de Investigacion del Cancer, Instituto Universitario de Bio-Organica Antonio Gonzalez, Universidad de La Laguna, Tenerife, 38206, Spain

SO Tetrahedron (2005), 61(9), 2513-2519
CODEN: TETRAB; ISSN: 0040-4020

PB Elsevier B.V.
DT Journal
LA English

RE.CNT 16 THERE ARE 16 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 2 OF 10 CAPLUS . COPYRIGHT 2006 ACS on STN
TI Celastrols as Inducers of the Heat Shock Response and Cytoprotection
AB Alterations in protein folding and the regulation of conformational states have become increasingly important to the functionality of key mols. in signaling, cell growth, and cell death. Mol. chaperones, because of their properties in protein quality control, afford conformational flexibility to proteins and serve to integrate stress-signaling events that influence aging and a range of diseases including cancer, cystic fibrosis, amyloidoses, and neurodegenerative diseases. We describe here characteristics of celastrol, a quinone methide triterpene and an active component from Chinese herbal medicine identified in a screen of bioactive small mols. that activates the human heat shock response. From a structure/function examination, the celastrol structure is remarkably specific and activates heat shock transcription factor 1 (HSF1) with kinetics similar to those of heat stress, as determined by the induction of HSF1 DNA binding, hyperphosphorylation of HSF1, and expression of chaperone genes. Celastrol can activate heat shock gene transcription synergistically with other stresses and exhibits cytoprotection against subsequent exposures to other forms of lethal cell stress. These results suggest that celastrols exhibit promise as a new class of pharmacol. active regulators of the heat shock response.

AN 2004:1131225 CAPLUS
DN 142:211411

TI Celastrols as Inducers of the Heat Shock Response and Cytoprotection
AU Westerheide, Sandy D.; Bosman, Joshua D.; Mbadugha, Bessie N. A.;
Kawahara, Tiara L. A.; Matsumoto, Gen; Kim, Soojin; Gu, Wenxin; Devlin,
John P.; Silverman, Richard B.; Morimoto, Richard I.
CS Department of Biochemistry, Molecular Biology and Cell Biology, Rice
Institute for Biomedical Research, Northwestern University, Evanston, IL,
60208, USA
SO Journal of Biological Chemistry (2004), 279(53), 56053-56060
CODEN: JBCHA3; ISSN: 0021-9258
PB American Society for Biochemistry and Molecular Biology
DT Journal
LA English
RE.CNT 60 THERE ARE 60 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 3 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
TI Derivatives of pentacyclic nortriterpene quinone methides as compounds
useful in the treatment of inflammatory, neurodegenerative, and
neoplastic diseases
AB The uses of celastrol and pristimerin derivs. in the treatment of
inflammatory, neurodegenerative and neoplastic diseases are
disclosed, including dihydro derivs. of celastrol and pristimerin, such as
dihydrocelastrol and dihydropristimerin and their diacetates.
AN 2004:934338 CAPLUS
DN 141:388762
TI Derivatives of pentacyclic nortriterpene quinone methides as compounds
useful in the treatment of inflammatory, neurodegenerative, and
neoplastic diseases
IN Devlin, J. P.
PA USA
SO U.S. Pat. Appl. Publ., 4 pp.
CODEN: USXXCO
DT Patent
LA English
FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 2004220267	A1	20041104	US 2004-773903	20040206
PRAI US 2003-445717P	P	20030207		
OS MARPAT 141:388762				

L8 ANSWER 4 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
TI Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by
triterpene Celastrol
AB Celastrol, which is a triterpene purified from Celastraceae plants, has
anticancer and anti-inflammatory activities. In this study, the authors
investigated to clarify whether Celastrol can induce apoptosis in a human
leukemia HL-60 model system. Celastrol was found to induce
apoptosis, and the rank order of the potency of Celastrol and its derivs.
to induce internucleosomal DNA fragmentation was found to be
Celastrol>Cela-H>the other derivs. = vehicle control. Many
anticancer agents are known to possess the ability to inhibit
topoisomerase II, so the inhibitory activities of Celastrol and its
derivs. on topoisomerase II were also explored. The rank order of the
inhibitory activity was found to be Celastrol>etoposide>Cela-H, indicating
that the apoptosis-inducing activities of Cela derivs. correspond to their
inhibitory activities on topoisomerase II. These data suggested that
Celastrol may cause its effects such as anticancer activity by the
mechanism of apoptosis along with topoisomerase II inhibition.
AN 2003:801130 CAPLUS
DN 140:192391
TI Apoptosis induction in HL-60 cells and inhibition of topoisomerase II by
triterpene Celastrol
AU Nagase, Masahiro; Oto, Jinsei; Sugiyama, Sin; Yube, Kouichi; Takaishi,

Yoshihisa; Sakato, Nobuo
CS Department of Life Sciences, Faculty of Agriculture, Kagawa University,
Kagawa, 761-0795, Japan
SO Bioscience, Biotechnology, and Biochemistry (2003), 67(9), 1883-1887
CODEN: BBBIEJ; ISSN: 0916-8451
PB Japan Society for Bioscience, Biotechnology, and Agrochemistry
DT Journal
LA English

RE.CNT 17 THERE ARE 17 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 5 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
TI Catalytic inhibition of topoisomerase II α by demethylzeylasterone, a
6-oxophenolic triterpenoid from Kokoona zeylanica
AB In a study to evaluate celastroloids as potential anticancer agents,
demethylzeylasterone (5), a 6-oxophenolic triterpenoid from Kokoona
zeylanica, was found to be an inhibitor of the enzyme topoisomerase
II α ($IC_{50} = 17.6 \mu M$). Studies of the relationship of this
inhibitor to both DNA and the enzyme resulted in 5 being classified as a
"catalytic inhibitor" of topoisomerase II. Demethylzeylasterone
selectively inhibits the growth of the breast cancer cell line
MCF-7 ($IC_{50} = 12.5 \mu M$) without inhibiting the growth of non-small cell
lung cancer (NCI-H460) and CNS glioma (SF-268) cell lines. This
is the first report of topoisomerase II inhibitory activity in a
celastroloid.

AN 2001:716938 CAPLUS
DN 136:31410

TI Catalytic inhibition of topoisomerase II α by demethylzeylasterone, a
6-oxophenolic triterpenoid from Kokoona zeylanica
AU Furbacher, Todd R.; Gunatilaka, A. A. Leslie
CS Southwest Center for Natural Products Research and Commercialization
Office of Arid Lands Studies, College of Agriculture and Life Sciences
University of Arizona, Tucson, AZ, 85706-6800, USA
SO Journal of Natural Products (2001), 64(10), 1294-1296
CODEN: JNPRDF; ISSN: 0163-3864

PB American Chemical Society
DT Journal
LA English

RE.CNT 26 THERE ARE 26 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 6 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
TI Immunosuppressive terpenoids from extracts of Tripterygium wilfordii
GI

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB The clin. used extract (TII) of Tripterygium wilfordii Hook f. gave 19 new
compds., including five kaurane diterpenes (e.g. I), one manoyl oxide
diterpene (II), and one abietane diterpene (III), three ursene triterpenes
(e.g. IV), six oleanane triterpenes (e.g. V), and three friedelane
triterpenes (e.g. VI), as well as 15 known compds. Their structures were
elucidated by spectroscopy and X-ray anal. The main components that are
responsible for the therapeutic effect of TII were identified based on
the screening of isolated compds. and other compds. reported in previous
papers.

AN 2001:709287 CAPLUS
DN 136:51067

TI Immunosuppressive terpenoids from extracts of Tripterygium wilfordii
AU Duan, H.; Takaishi, Y.; Momota, H.; Ohmoto, Y.; Taki, T.; Tori, M.;
Takaoka, S.; Jia, Y.; Li, D.

CS University of Tokushima, Faculty of Pharmaceutical Sciences, Tokushima,
770-8505, Japan
SO Tetrahedron (2001), 57(40), 8413-8424
CODEN: TETRAB; ISSN: 0040-4020
PB Elsevier Science Ltd.
DT Journal
LA English

RE.CNT 34 THERE ARE 34 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 7 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
TI Novel cytokine release inhibitors. Part III: truncated analogs of tripterine
AB Truncated analogs of tripterine as cytokine (IL-1 α , IL-1 β , TNF- α , IL-6, and IL-8) release inhibitors are discussed.
AN 1999:50750 CAPLUS
DN 130:231906
TI Novel cytokine release inhibitors. Part III: truncated analogs of tripterine
AU He, Wei; Huang, Fu-Chih; Gavai, Ashvin; Chan, Wan K.; Amato, George; Yu, Kin-Tak; Zilberstein, Asher
CS Department of Medicinal Chemistry, NW17 Rhone-Poulenc Rorer Central Research, Collegeville, PA, 19426, USA
SO Bioorganic & Medicinal Chemistry Letters (1998), 8(24), 3659-3664
CODEN: BMCLE8; ISSN: 0960-894X
PB Elsevier Science Ltd.
DT Journal
LA English

RE.CNT 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 8 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
TI Triterpenoid inhibitors of interleukin-1 secretion and tumor -promotion from *Tripterygium wilfordii* var. *regelii*
AB Three new triterpenoids, 2,3,22 β -trihydroxy-21-oxo-24-nor-D:A-friedooleana-1,3,5(10)-triene, 2 α ,6 β -dihydroxy-3-oxo-24-nor-D:A-friedooleana-4-ene-29-oic acid and 2,3,7-trihydroxy-6-oxo-24-nor-D:A-friedooleana-1,3,5(10),7-tetraene-29-oic acid, named rheol A, B and C, and nine known triterpenoids were isolated from *T. wilfordii* var. *regelii*. Their structures were established on the basis of the chemical reactions and spectroscopic evidence. Isolated compds. and derivs. were observed to inhibit Epstein-Barr virus early antigen activation and showed potent inhibitory activities against interleukin-1 α and β release from human peripheral mononuclear cells.
AN 1997:423692 CAPLUS
DN 127:173813
TI Triterpenoid inhibitors of interleukin-1 secretion and tumor -promotion from *Tripterygium wilfordii* var. *regelii*
AU Takaishi, Yoshihisa; Wariishi, Noriko; Tateishi, Hideo; Kawazoe, Kazuyoshi; Nakano, Kimiko; Ono, Yukihisa; Tokuda, Haruyuki; Nishino, Hoyoku; Iwashima, Akio
CS Faculty of Pharmaceutical Sciences, University of Tokushima, Tokushima, 770, Japan
SO Phytochemistry (1997), 45(5), 969-974
CODEN: PYTCAS; ISSN: 0031-9422
PB Elsevier
DT Journal
LA English

RE.CNT 23 THERE ARE 23 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L8 ANSWER 9 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN
TI Structures of triterpene dimers and sesquiterpene polyesters from South American medicinal plants belonged to *Maytenus* sp.

AB During the authors' studies on biol. active compds. in South American medicinal plants, the authors were interested in plants of the genus Maytenus, widely used as folk medicines. In this work, three medicinal plants belonged to Maytenus species were examined. From *M. ilicifolia*, which called "cangorosa" in Paraguay, four triterpene dimers (4-7), ten oligo-nicotinated sesquiterpene polyesters (8-17), three macrocyclic sesquiterpene pyridine alkaloids (18-20) and three other compds. were isolated. From *M. ebenifolia*, named "chuchuhuasi", which is used as for the treatments of rheumatism in Peru, twelve macrocyclic sesquiterpene pyridine alkaloids were isolated. Then from *M. chuchuhuasca*, obtained as "xuxua" at Brazil, used for the treatment of skin cancer, four triterpene dimers, two macrocyclic sesquiterpene pyridine alkaloids, along with an aromatic triterpene were isolated. These structures were determined by means of ¹H and ¹³C NMR spectroscopic studies mainly 2D expts., MS, IR, UV and CD spectra. Triterpene dimers, which have cytotoxic activities against tumor cell lines, were characteristic components of these plants, and were consisted of pristimerin or tingenone type quinoid-triterpenes, and two of them were related to be atropisomer separated by a barrier of 32.8 kcal/mol. Oligo-nicotinated sesquiterpene polyesters contained two or three nicotinyl groups in dihydroagarofuran skeleton. Macrocylic sesquiterpene pyridine alkaloids possess either a fifteen- or sixteen-membered ring structure in their mol., and the flexibilities of these ring systems were evaluated by measuring the spin-lattice relaxation time, T₁, by ¹³C NMR spectroscopy.

AN 1994:517451 CAPLUS

DN 121:117451

TI Structures of triterpene dimers and sesquiterpene polyesters from South American medicinal plants belonged to Maytenus sp.

AU Itokawa, H.; Shirota, O.; Morita, H.; Takeya, K.; Iitaka, Y.

CS Tokyo Coll. Pharm., Japan

SO Tennen Yuki Kagobutsu Toronkai Koen Yoshishu (1993), 35th, 614-21

CODEN: TYKYDS

DT Journal

LA English

L8 ANSWER 10 OF 10 CAPLUS COPYRIGHT 2006 ACS on STN

TI Biological study of triterpene quinones from Celastraceae

GI

AB The antitumor and antibacterial activities of 11 triterpene quinones from *Maytenus horrida* and *Rzedowskia tolantongensis* were studied in cultures of HeLa cells and several bacteria, resp. Netzahualcoyone (I) was the most active antitumor agent. The antibacterial activity was clearly related to the structural features of ring E.

AN 1989:264 CAPLUS

DN 110:264

TI Biological study of triterpene quinones from Celastraceae

AU Gonzales, A. G.; Ravelo, A. G.; Bazzocchi, I. L.; Jimenes, J.; Gonzales,

C. M.; Luis, J. G.; Ferro, E. A.; Gutierrez, A.; Moujir, L.; De las Heras, F. G.
CS Cent. Prod. Nat. Org. Antonio Gonzalez, Univ. Laguna, Tenerife, Spain
SO Farmaco, Edizione Scientifica (1988), 43(6), 501-5
CODEN: FRPSAX; ISSN: 0430-0920
DT Journal
LA English

=> file uspatfull			
COST IN U.S. DOLLARS	SINCE FILE	TOTAL	
	ENTRY	SESSION	
FULL ESTIMATED COST	71.70	238.85	
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE	TOTAL	
	ENTRY	SESSION	
CA SUBSCRIBER PRICE	-11.25	-11.25	

FILE 'USPATFULL' ENTERED AT 13:34:58 ON 14 DEC 2006
CA INDEXING COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

FILE COVERS 1971 TO PATENT PUBLICATION DATE: 14 Dec 2006 (20061214/PD)
FILE LAST UPDATED: 14 Dec 2006 (20061214/ED)
HIGHEST GRANTED PATENT NUMBER: US7150045
HIGHEST APPLICATION PUBLICATION NUMBER: US2006282930
CA INDEXING IS CURRENT THROUGH 12 Dec 2006 (20061212/UPCA)
ISSUE CLASS FIELDS (/INCL) CURRENT THROUGH: 14 Dec 2006 (20061214/PD)
REVISED CLASS FIELDS (/NCL) LAST RELOADED: Jun 2006
USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Jun 2006

=> s 13
L9 1 L3

=> d 19 ti abs bib

L9 ANSWER 1 OF 1 USPATFULL on STN
TI Derivatives of pentacyclic nortriterpene quinone methides as compounds useful in the treatment of inflammatory, neurodegenerative, and neoplastic diseases
AB The uses of celastrol and pristimerin derivatives in the treatment of inflammatory, neurodegenerative and neoplastic diseases are disclosed, including dihydro derivatives of celastrol and pristimerin, such as dihydrocelastrol and dihydropristimerin and their diacetates.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AN 2004:280966 USPATFULL
TI Derivatives of pentacyclic nortriterpene quinone methides as compounds useful in the treatment of inflammatory, neurodegenerative, and neoplastic diseases
IN Devlin, J. P., Bridgewater, CT, UNITED STATES
PI US 2004220267 A1 20041104
AI US 2004-773903 A1 20040206 (10)
PRAI US 2003-445717P 20030207 (60)
DT Utility
FS APPLICATION
LREP J. P. Devlin, Gaia Chemical, 23 George Washington Plaza, Gaylordsville, CT, 06755
CLMN Number of Claims: 6
ECL Exemplary Claim: 1
DRWN No Drawings
LN.CNT 215
CAS INDEXING IS AVAILABLE FOR THIS PATENT.