UNIVERSITY ADMIT ELIGIBILITY PREDICTOR

ASSIGNMENT - 3

Date	4th October 2022
Team ID	PNT2022TMID27839
Student Name	Akash S (311519104007)
Domain Name	Education
Project Name	University Admit Eligibility Predictor
Maximum Marks	2 Marks

1.)IMPORT THE REQUIRED LIBRARIES

```
1.)IMPORT THE REQUIRED LIBRARIES

In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns
```

2.)DOWNLOAD AND UPLOAD THE DATASET

		= pd.read_csv('abalone.csv') head()													
Out[2]:		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings					
	0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15					
	1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7					
	2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9					
	3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10					
	4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7					

3.) HANDLE MISSING VALUES AND DEAL WITH THEM

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

5.) PERFORM VARIOUS VISUALISATIONS

a.) UNIVARIANTE ANALYSIS

b.) BI - VARIANTE ANALYSIS

c.) MULTI - VARIANTE ANALYSIS

In [13]:	df.corr()								
Out[13]:		Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
	Length	1.000000	0.986812	0.827554	0.925261	0.897914	0.903018	0.897706	0.556720
	Diameter	0.986812	1.000000	0.833684	0.925452	0.893162	0.899724	0.905330	0.574660
	Height	0.827554	0.833684	1.000000	0.819221	0.774972	0.798319	0.817338	0.557467
	Whole weight	0.925261	0.925452	0.819221	1.000000	0.969405	0.966375	0.955355	0.540390
	Shucked weight	0.897914	0.893162	0.774972	0.969405	1.000000	0.931961	0.882617	0.420884
	Viscera weight	0.903018	0.899724	0.798319	0.966375	0.931961	1.000000	0.907656	0.503819
	Shell weight	0.897706	0.905330	0.817338	0.955355	0.882617	0.907656	1.000000	0.627574
	Rings	0.556720	0.574660	0.557467	0.540390	0.420884	0.503819	0.627574	1.000000

6.) FIND AND REPLACE THE OUTLIERS


```
In [16]: for i in df.columns.drop('Sex'):
    Q1 = df[i].quantile(0.25)
    Q3 = df[i].quantile(0.75)
    IQR = Q3-Q1
    upper_limit = Q3 + (1.5*IQR)
    lower_limit = Q1 - (1.5*IQR)
    df[i] = np.where(df[i]>=upper_limit,Q3 + (1.5*IQR),df[i])
    df[i] = np.where(df[i]<=lower_limit,Q1 - (1.5*IQR),df[i])</pre>
In [17]: for i in df.columns.drop('Sex'):
    sns.boxplot(df[i])
    plt.show()
```


7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

8.) SPLIT DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

	= df. head(olumns=[ˈ	'Rings'])				
	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	
	= df. head(Rings							
0		.0							
1		.0							
2		0.0							
4		.0							

9.) SCALE THE INDEPENDENT VARIABLES

10.) SPLIT THE DATA INTO TRAINING AND TESTING

```
10.)SPLIT THE DATA INTO TRAINING AND TESTING DATA

In [23]: from sklearn.model_selection import train_test_split  
x_train , x_test , y_train , y_test = train_test_split(X_scaled,Y,test_size=0.2,random_state=0)
```

11.) BUILD THE MODEL

```
11.)BUILD THE MODEL

In [24]: from sklearn.linear_model import LinearRegression model = LinearRegression()
```

12.) TRAIN THE MODEL

```
12.)TRAIN THE MODEL

In [25]: model.fit(x_train,y_train)

Out[25]: LinearRegression()
```

13.) TEST THE MODEL

```
13.) TEST THE MODEL
In [26]: y_predict = model.predict(x_test)
In [27]: pd.DataFrame({"Actual":y_test,"Predicted":y_predict.round(0)})
Out[27]:
            Actual Predicted
        668 13.0 13.0
        1580 8.0
                     9.0
        3784 11.0 10.0
         463 5.0
                     5.0
        2615 12.0 10.0
        575 11.0 10.0
        3231 12.0
                     9.0
        1084 7.0 9.0
         290 15.5
                     12.0
        2713 4.0 6.0
        836 rows × 2 columns
```

14.) MEASURE THE PERFORMANCE USING METRICS

```
14.)MEASURE THE PERFORMANCE USING METRICS

In [28]: from sklearn import metrics metrics.r2_score(y_test,y_predict)

Out[28]: 0.58432381444787
```