Universidad de la República.

Facultad de Ingeniería.

Examen de Matemática Discreta II

30 de julio de 2013. Duración 3:30 horas.

Número de Examen	Cédula	Nombre y Apellido							

Ejercicio 1 (28 puntos) Sea $a \in \mathbb{N}$ tal que el resto de dividir a entre 12 es 5.

- a) Probar que $a^3 + 4 \equiv 21 \mod(36)$
- b) Hallar y el resto de dividir $53^3 + 11$ entre 36.
- c) Siendo y el hallado en la parte anterior, resolver:

$$\begin{cases} x \equiv -1 \mod (10) \\ x + 3 \equiv y \mod (8) \\ x \equiv 4 \mod (9) \end{cases}$$

Ejercicio 2 (22 puntos)

Sea $G:=\{e,a,b,c,d\}$ y una operación binaria $\star:G\times G\to G,$ tal que:

$$a \star b = a$$

$$b \star c = \epsilon$$

- a) Hallar la tabla de Cayley de la operación, sabiendo que (G,\star) es un grupo y e es su neutro.
- b) Demostrar que (G, \star) es abeliano.
- c) Describir todos los morfismos de grupos $f:(G,\star)\longrightarrow (\mathbb{Z}_{12},+)$.
- d) Demostrar que existe $n \in \mathbb{N}$ tal que (G, \star) es isomorfo a $(\mathbb{Z}_n, +)$. Justificar.

Ejercicio 3 (30 puntos)

Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Dos interlocutores A y B acuerdan comunicarse estableciendo una clave privada mediante el método de Diffie-Hellman. Acuerdan usar el módulo primo p=97 y como base g=5. A elige además el entero m=3, enviándole a B g^m y recibiendo de éste 36.

a) ¿Cuál es la clave privada que acuerdan?

- b) Usando la correspondencia de la tabla inicial del ejercicio, la clave privada escrita en base 27 determina una palabra. ¿Cuál es esa palabra?
- c) B envía a A el siguiente mensaje: H CVDHROPTOCQ, el cuál está encriptado mediante el método de Vigenère, usando la palabra hallada en b). Determinar el mensaje original encriptado por B.
- $d)\ A$ responderá a $B{:}$ LO CONOZCO. Encriptar este mensaje mediante el mismo método usado por A.

Ejercicio 4 (20 puntos)

- a) Enunciar y demostrar el Teorema de Lagrange.
- b) Obtener el Teorema de Fermat como corolario del Teorema de Lagrange.