β / γ	10^{-3}	10^{-1}	10	10^{3}
-1	$J_{uc} = 0.0041$	$J_{uc} = 0.0041$	$J_{uc} = 0.0041$	$J_{uc} = 0.0041$
	$J_c = 0.0002$	$J_c = 0.0033$	$J_c = 0.0040$	$J_c = 0.0041$
	Iter. $= 607$	Iter. $= 637$	Iter. $= 311$	Iter. $= 1$
0	$J_{uc} = 0.0104$	$J_{uc} = 0.0104$	$J_{uc} = 0.0104$	$J_{uc} = 0.0104$
	$J_c = 0.0005$	$J_c = 0.0086$	$J_c = 0.0104$	$J_c = 0.0104$
	Iter. $= 635$	Iter. $= 671$	Iter. $= 340$	Iter. $= 1$
1	$J_{uc} = 0.0195$	$J_{uc} = 0.0195$	$J_{uc} = 0.0195$	$J_{uc} = 0.0195$
	$J_c = 0.0011$	$J_c = 0.0164$	$J_c = 0.0195$	$J_c = 0.0195$
	Iter. $= 656$	Iter. $= 696$	Iter. $= 356$	Iter. $= 1$

Table 1

1 Some bits and pieces that are not part of the paper.

+++ Two additional nonlinear control problems below, may be deleted? +++

2 Neumann boundary conditions, Symmetric Example 1

Consider the following symmetric setup:

$$\widehat{\rho} = \frac{1}{2}(1 - t) + t\frac{1}{4}(\cos(\pi y) + 2)$$

$$\rho_0 = \frac{1}{2}$$

$$q_T = 0$$

$$\vec{w} = 0$$

$$f = 0$$

$$V_{ext} = 0$$

Table 1 summarizes the results for this example. The attractive interaction term causes ρ to move towards the centre of the domain. Since $\hat{\rho}$ is also centred in the domain, J_{uc} is small for $\gamma = -1$ in comparison to the problems with $\gamma = 0$ and $\gamma = 1$. This example illustrates that the particle interaction term can have a significant impact on the optimization problem considered.

β / γ	10^{-3}	10^{-1}	10	10^{3}
-1	$J_{uc} = 0.0209$	$J_{uc} = 0.0209$	$J_{uc} = 0.0209$	$J_{uc} = 0.0209$
	$J_c = 0.0009$	$J_c = 0.0168$	$J_c = 0.0209$	$J_c = 0.0209$
	Iter. $= 646$	Iter. $= 691$	Iter. $= 379$	Iter. $= 1$
0	$J_{uc} = 0.0104$	$J_{uc} = 0.0104$	$J_{uc} = 0.0104$	$J_{uc} = 0.0104$
	$J_c = 0.0005$	$J_c = 0.0086$	$J_c = 0.0104$	$J_c = 0.0104$
	Iter. $= 635$	Iter. $= 671$	Iter. $= 340$	Iter. $= 1$
1	$J_{uc} = 0.0047$	$J_{uc} = 0.0047$	$J_{uc} = 0.0047$	$J_{uc} = 0.0047$
	$J_c = 0.00034$	$J_c = 0.0040$	$J_c = 0.0047$	$J_c = 0.0047$
	Iter. $= 623$	Iter. $= 651$	Iter. $= 297$	Iter. $= 1$

Table 2

3 Neumann boundary conditions, Symmetric Example 2

Consider the following symmetric setup, which is the opposite of the first symmetric example:

$$\widehat{\rho} = \frac{1}{2}(1-t) + t\frac{1}{4}(-\cos(\pi y) + 2)$$

$$\rho_0 = \frac{1}{2}$$

$$q_T = 0$$

$$\vec{w} = 0$$

$$f = 0$$

$$V_{ext} = 0$$

This example can be compared to the Symmetric Example 1. Here, the desired state is having ρ clustered at both boundaries, which is similar to the effect of the repulsive interaction term $\gamma = 1$. Therefore, for this choice of interaction term, the value of the cost functional J_{uc} is smaller than the one for $\gamma = 0$ and $\gamma = -1$. This is the opposite to the observation made in the Symmetric Example 1, which is to be expected, given the two choices of desired state.