EE655: Computer Vision & Deep Learning

Lecture 06

Koteswar Rao Jerripothula, PhD Department of Electrical Engineering IIT Kanpur

CREDITS: Prof. Shree Nayar, Columbia University

How would you recognize the following types of objects?

Template

Rich 2D image

Find and Match "Interesting Points or Features"

Scale Invariant Feature Transform (SIFT) and its use for image alignment and 2D object recognition.

Topics:

- (1) What is an Interest Point?
- (2) Detecting Blobs
- (3)SIFT Detector
- (4) SIFT Descriptor

Raw Images are Hard to Match

Different size, orientation, lighting, brightness, etc.

Removing Sources of Variation

Matching becomes easier if we can remove variations like size and orientation.

Some Patches are not "Interesting"

What is an Interesting Point/Feature?

- Has rich image content (brightness variation, color variation, etc.) within the local window
- Has well-defined representation (signature) for matching/comparing with other points
- Has a well-defined position in the image
- Should be invariant to image rotation and scaling
- Should be insensitive to lighting changes

Are Lines/Edges Interesting?

Cannot "Localize" an Edge

What about corners?

They are interesting, but:

- They don't appear often enough
- Useful for simple applications
- Not unique enough

Are Blobs Interesting?

Possible to define the appearance in a unique way

Yes! Blobs have fixed position and definite size.

Blobs as Interest Points

For a Blob-like Feature to be useful, we need to:

- Locate the blob
- Determine its size
- Determine its orientation
- Formulate a description or signature that is independent of size and orientation

Review: Gaussian Filter

Review: Derivative of Gaussian

Extremum of Derivative of Gaussian denotes an Edge

Review: 2nd Derivative of Gaussian

Zero Crossing in 2nd Derivative of Gaussian denote an Edge

1D Blobs

Examples of 1D Blob-like structures

1D Blob and 2nd Derivative of Gaussian Blob A Blob B Blob C f(x)

Sigma

1D Blob and 2nd Derivative of Gaussian

@SigmaA

1D Blob and 2nd Derivative of Gaussian

@SigmaB

1D Blob and 2nd Derivative of Gaussian Blob A Blob B Blob C f(x)

@SigmaC

1D Blob and 2nd Derivative of Gaussian

1D Blob and 2nd Derivative of Gaussian

Characteristic Scale and Blob Size

Characteristic Scale: The σ at which σ -normalized 2^{nd} derivative attains its extreme value.

$$\frac{\text{Size of Blob A}}{\text{Size of Blob B}} = \frac{\sigma_A^*}{\sigma_B^*}; \quad \frac{\text{Size of Blob B}}{\text{Size of Blob C}} = \frac{\sigma_B^*}{\sigma_C^*}$$

1D Blob Detection Summary

Given: 1D signal f(x)

Compute: $\sigma^2 \frac{\partial^2 n_{\sigma}}{\partial x^2} * f(x)$ at many scales $(\sigma_0, \sigma_1, \sigma_2, ..., \sigma_k)$.

Find:
$$(x^*, \sigma^*) = \underset{(x,\sigma)}{\arg \max} \left| \sigma^2 \frac{\partial^2 n_{\sigma}}{\partial x^2} * f(x) \right|$$

x*: Blob Position

 σ^* : Characteristic Scale (Blob Size)

2D Blob Detector

Normalized Laplacian of Gaussian (NLoG) is used as the 2D equivalent for Blob Detection.

Location of Blobs given by Local Extrema after applying Normalized Laplacian of Gaussian at many scales.

Scale-Space

Increasing σ , Higher Scale, Lower Resolution

Scale Space: Stack created by filtering an image with Gaussians of different sigma (σ)

$$S(x, y, \sigma) = n(x, y, \sigma) * I(x, y)$$

Creating Scale-Space

Increasing σ , Higher Scale, Lower Resolution

Selecting sigmas to generate the scale-space:

$$\sigma_k = \sigma_0 s^k \qquad k = 0,1,2,3,...$$

s: Constant multiplier σ_0 : Înitial Scale

Blob Detection using Local Extrema

Blob Detection using Local Extrema

2D Blob Detection Summary

Given an image I(x, y)

Convolve the image using NLoG at many scales σ

Find:

$$(x^*, y^*, \sigma^*) = \underset{(x,y,\sigma)}{\operatorname{arg max}} |\sigma^2 \nabla^2 n_{\sigma} * I(x, y)|$$

 (x^*, y^*) : Position of the blob σ^* : Size of the blob

Fast NLoG Approximation: DoG

Difference of Gaussian (DoG) = $(n_{s\sigma} - n_{\sigma}) \approx (s - 1)\sigma^2 \nabla^2 n_{\sigma}$ NLoG

 $DoG \approx (s-1) NLoG$

Extracting SIFT Interest Points

Extracting SIFT Interest Points

Difference of Gaussians (DoG)

 $\approx (s-1)\sigma^2 \nabla^2 S(x,y,\sigma)$

Find Extremum in every 3x3x3 grid

Interest Point
Candidates
(includes weak extrema)

Extracting SIFT Interest Points

Interest Point
Candidates
(includes weak extrema)

SIFT
Interest Points
(after removing weak extrema)

SIFT Detection Examples

SIFT Detection Examples

SIFT Scale Invariance

Computing the Principal Orientation

Use the histogram of gradient directions

Image gradient directions

$$\theta = \tan^{-1} \left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x} \right)$$

Computing the Principal Orientation

Use the histogram of gradient directions

Image gradient directions

$$\theta = \tan^{-1} \left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x} \right)$$

Computing the Principal Orientation

Use the histogram of gradient directions

Image gradient directions

$$\theta = \tan^{-1} \left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x} \right)$$

SIFT Rotation Invariance

Use the principal orientation to undo rotation

SIFT Rotation Invariance

Use the principal orientation to undo rotation

SIFT Descriptor

Histograms of gradient directions over spatial regions Image gradients

What about the brightness?

By neglecting the magnitude of the gradient, the SIFT process becomes invariant to brightness as well.

Comparing SIFT Descriptors

Essentially comparing two arrays of data.

Let $H_1(k)$ and $H_2(k)$ be two arrays of data of length N.

L2 Distance:

$$d(H_1, H_2) = \sqrt{\sum_{k} (H_1(k) - H_2(k))^2}$$

Smaller the distance metric, better the match.

Perfect match when $d(H_1, H_2) = 0$

Comparing SIFT Descriptors

Essentially comparing two arrays of data.

Let $H_1(k)$ and $H_2(k)$ be two arrays of data of length N.

Intersection:

$$d(H_1, H_2) = \sum_{k} \min(H_1(k), H_2(k))$$

Larger the distance metric, better the match.

SIFT Results: Scale Invariance

SIFT Results: Rotation Invariance

SIFT Results: Robustness to Clutter

SIFT for 3D Objects?

Reliable with only slight changes of viewpoints for 3D objects

Implementation @ multiple sizes (octaves)

- Any octave is created by reducing the original size to half.
- We double the standard deviation as we create the next octaves.
- 5 blurred images in an octave.

FIGURE 11.57 Illustration using images of the first three octaves of scale space in SIFT. The entries in the table are values of standard deviation used at each scale of each octave. For example the standard deviation used in scale 2 of octave 1 is $k\sigma_1$, which is equal to 1.0. (The images of octave 1 are shown slightly

overlapped to fit in the figure space.)

 $\sigma_1 = \sqrt{2}/2 = 0.707$ $k = \sqrt{2} = 1.414$

Octave	Scale				
	1	2	3	4	5
1	0.707	1.000	1.414	2.000	2.828
2	1.414	2.000	2.828	4.000	5.657
3	2.828	4.000	5.657	8.000	11.314

Octave 1

DoG (for an octave)

Sample DOGs from each octave

