Fondamenti di Elettronica per allievi INFORMATICI - AA 2007/2008 Parte I -1° appello -29 Febbraio 2008

Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) ...

Esercizio 1

Si consideri il circuito in figura basato su un diodo Zener con $V_z = 5V$.

Sia $V_1 = 0V$ e $V_2 = 6V \cdot \sin(2\pi ft)$ con f = 1 kHz.

- a) Si disegni in un grafico quotato l'andamento nel tempo della tensione Vout.
- b) Calcolare la massima potenza dissipata da R₁.

Sia ora $V_1 = 12V$ e $V_2 = 6V \cdot \sin(2\pi ft)$ con f = 1 kHz.

- c) Si disegni in un grafico quotato l'andamento nel tempo della tensione Vout.
- d) Calcolare la massima potenza dissipata da R₁.
- e) Qual è il valore minimo di R_2 che mantiene sempre acceso il diodo Zener?

Dati: $R_1 = 1 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$

Esercizio 2

Si consideri il circuito a transistore MOS in figura.

- a) Polarizzare il circuito, verificando la condizione di saturazione per il transistore MOS.
- b) Calcolare la carica statica nel canale del transistore.
- c) Calcolare il guadagno del circuito G=Vout/Vin e tracciare il diagramma di Bode del modulo e della fase.
- d) Viene applicato in ingresso un segnale V_{in} =0.5V*sin(2 π ft). Se f=10kHz, il transistore esce dalla condizione di saturazione? E a f=1MHz?
- e) Chiudendo l'interruttore sul nodo di uscita, si collega un circuito utilizzatore con resistenza equivalente R_L =200 Ω . Calcolare la corrente massima assorbita dall'utilizzatore nel secondo dei due casi del punto precedente (N.B. C_{∞} condensatore con capacità infinita).

 $V_T=1V$, k=1mA/ V^2 , $V_{DD}=-V_{SS}=6V$, $R_1=4k\Omega$, $R_2=8k\Omega$, $R_D=4k\Omega$, $R_S=6k\Omega$, $C_A=500$ nF, $C_S=1.2$ nF, $C_{MOS}=2$ fF.

Esercizio 3

Si consideri il circuito in figura.

- a) Determinare il livello di tensione Vout quando Vin=0V. Volendo un'uscita con tensione pari a 0.5V quando in ingresso viene applicata una tensione di 5V: in che condizione lavorerà il MOS n? Dimensionare opportunamente il W/L del mos n.
- b) Calcolare il tempo di salita 10-90% dell'escursione dell'uscita quando l'ingresso passa da 5V a 0V.
- c) Calcolare la potenza statica dissipata dalla porta con Vin=0V e Vin=5V.
- d) Scrivere l'espressione analitica della potenza dinamica dissipata, e calcolarla, quando all'ingresso è applicata un onda quadra 0-5V con frequenza pari a 1MHz.

 $Vdd=5V,Vpol=0V,~|Vt_n|=|~Vt_p|=1V,~1/2\mu_pCox=0.3mA/V^2~,1/2\mu_nCox=1mA/V^2~,~C=10pF,~(W/L)_p=5$

Es. 1.

Si consideri il circuito in figura basato su un diodo Zener con $V_Z = 5V$.

Sia
$$V_1 = 0V$$
 e $V_2 = 6V \cdot \sin(2\pi ft)$ con $f = 1$ kHz.

- a. Si disegni in un grafico quotato l'andamento nel tempo della tensione V_{out} .
- b. Calcolare la massima potenza dissipata da R₁.

Sia ora $V_1 = 12V$ e $V_2 = 6V \cdot \sin(2\pi ft)$ con f = 1 kHz.

- c. Si disegni in un grafico quotato l'andamento nel tempo della tensione Vout.
- d. Calcolare la massima potenza dissipata da R₁.
- e. Qual è il valore minimo di R₂ che mantiene sempre acceso il diodo Zener?

Soluzione:

a. Durante la semionda positiva la massima tensione in inversa che si può avere ai capi del diodo è $6V \cdot (R_2)/(R_1+R_2) = 4V$. Quindi il diodo Zener non si accende.

Durante la semionda negativa, la minima tensione V_{out} potrebbe arrivare a -6V·(R_2)/(R_1+R_2) = -4V, quindi il diodo si accende in diretta (avendo il catodo ad un potenziale minore rispetto all'anodo) e limita la tensione di uscita a -0.7V.

$$t_1$$
: T = 1/f = 1 ms, $4V \cdot \sin(2\pi f \cdot t^*) = 0.7V$, da cui $t_1 = t^* + T/2 = 528 \mu s$
 t_2 : $t_2 = T - t^* = 972 \mu s$

- b. R_1 dissipa la massima potenza durante la semionda negativa. La massima tensione su R_1 (in valore assoluto) è 6V 0.7V = 5.3V, quindi la massima potenza dissipata è $P_{R1,max} = (5.3V)^2/R_1 = 28.02 \text{ mW}$.
- c. Durante la semionda positiva la massima tensione che si può avere in inversa ai capi del diodo è $(12V+6V)\cdot(R_2)/(R_1+R_2)=12V$. Quindi il diodo Zener si accende e fissa la Vout a $V_Z=5V$.

Durante la semionda negativa, la minima tensione V_{out} che si potrebbe raggiungere è (12V-6V)· $(R_2)/(R_1+R_2) = 4V$. Quindi il diodo non si accende in diretta.

$$t_3$$
: T = 1/f = 1 ms, $(12V - 6V \cdot \sin(2\pi f \cdot t')) \cdot (R_2)/(R_1 + R_2) = 5V$, da cui $t_3 = t' + T/2 = 635 \mu s$
 t_4 : $t_4 = T - t' = 865 \mu s$

- d. R_1 dissipa la massima potenza durante la semionda positiva. La massima tensione su R_1 (in valore assoluto) è 18V 5V = 13V, quindi la massima potenza dissipata è $P_{R1,max} = (13V)^2/R_1 = 169$ mW.
- e. Affinchè il diodo Zener sia sempre acceso, è necessario che $(12V-6V)\cdot(R_2)/(R_1+R_2) > 5V$, da cui segue $R_2 > 5k\Omega$.

Fondamenti di Elettronica per allievi INFORMATICI - AA 2007/2008 Parte II – 1º appello – 29 Febbraio 2008

Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) ...

Esercizio 1

Si consideri lo stadio di amplificazione in figura (trascurare C₂ nei punti a), b) e c)):

- a) Sia $I_1(t)$ un gradino di ampiezza 10 μA . Assumendo l'A.O. ideale scrivere l'espressione di $V_{out}(t)$ e rappresentarne graficamente l'andamento.
- b) Sia R_L =100 Ω la resistenza di carico dello stadio. b1) Calcolare la corrente (i_0) erogata dall'A.O. con un gradino di ingresso di 10 μ A. b2) Determinare la massima ampiezza del gradino in ingresso compatibile con la limitazione $i_0|_{max}$ =1mA.
- c) Calcolare il margine di fase dell'amplificatore.
- d) Inserire la capacità C₂ e determinarne il valore che garantisca un margine di fase di 90 gradi.
- e) Mantenendo il valore trovato di C_2 e assumendo l'A.O. ideale, calcolare l'espressione della risposta $V_{out}(t)$ ad un gradino di ingresso di $10~\mu A$ e rappresentarne graficamente l'andamento.

Dati:

 R_1 =1 k Ω , R_2 =50 k Ω , C_1 =10 nF A_0 =100 dB, GBWP=10 MHz

Esercizio 2

Si consideri lo stadio ad operazionale in figura, in cui vale: V_{OH} =- V_{OL} =4V, R_1 =2 $k\Omega$, R_2 =8 $k\Omega$, R=3 $k\Omega$, C=90nF, V_D =0.7V.

- a) Tracciare la caratteristica ingresso/uscita Vo/Vi, sapendo che la dinamica di uscita dell'operazionale va da V_{OL} a V_{OH}.
- b) Si calcoli l'effetto sulla caratteristica ingresso/uscita di un offset in ingresso dell'operazionale Vos=100mV.
- c) Assumendo il condensatore C inizialmente scarico, tracciare le risposte temporali quotate V_O e V_{O2} al segnale in ingresso Vi rappresentato in figura. Calcolare la carica sul condensatore a fine ciclo (t=2ms).
- d) Se la corrente massima erogabile dall'operazionale è 1mA, la risposta considerata al punto precedente è ancora valida?

Esercizio 3

Si consideri il circuito a lato:

- a) Volendo che l'ADC converta solo il segnale prodotto dal generatore V_d , scegliereste R_x = KR_1 oppure R_x = KR_2 ? Giustificare la risposta.
- b) Assumendo $0 < V_d < 10V$ e $R_x = R_1 = R_2 = R_3 = 10k\Omega$, determinare la dinamica di ingresso dell'ADC, il numero dei bit (risoluzione richiesta 1 parte su 500) e il valore dell'LSB riferito all'ingresso.
- c) Assumendo RC= $(2\pi)^{-1}$ ms, quanto occorre ritardare l'inizio della conversione dalla chiusura degli switch di ingresso?
- d) Supponendo che a V_d sia sovrapposto un disturbo sinusoidale V_n =0.1Vsin(2 π 10kHz t), il codice di uscita dell'ADC risente o no di tale disturbo [RC=(2 π)⁻¹ms]? Giustificare la risposta.
- e) Se si utilizzasse un ADC a doppia rampa con tempo di integrazione di 0.3ms, si potrebbe eliminare la rete RC, senza che il codice di uscita risenta del disturbo del punto d)? Giustificare la risposta.
- f) Esprimere in LSB l'errore dovuto a V_{cm}=10V (Assumere per l'A.O. un CMRR=60dB e le R del punto b).

30) Bingue pome Rx = KR1 in woods the Vo = Vd (- RZ) + Vcm (R3 R1+R2 R2) = Vd R2
Rx+R3 R1 R1) = Vd R2 36) Dinamice ADC 0+10V; n=9; LSB = 20 mV (18,53mV) 3 c) Porto T = ntando e detta V_(t) la teurisme di ungions dell'ADC, poupo la condizione VFSASC - UC (T) = 45B = 20 mV done VFSAISC = 10 V VC(T) = VESAISC (1-e T/T) e T = RC = 1 mg CII T = _ 7 lu 2 15 3 - 6.215 ~ 1 ms (valere ma 0 989 ms)

Ly (0,992 ms cm LSB = 19,53 mb) 3d) Il polo di RC e fp = 1KHz, quiusi la nimoride a 10 KM2 e attenuata di un fattore 10. La rua ampierra multa jerus di 10 mV all'ugreno dell'AIDC, vori a 0,545B 3e) Si, il distirbo verrebbe integrato jer tre pariodi culteri e quille nouvelbre in uscita. 3f) La tennone di modo comme all'ugueno dell' A. O resulta Ven 40 = Vcm R3 = Vcm = 5-V Enne = Vango + 5 + 5 mV che, uporter all'agrano vale 10 mV ~ LSB