

Jiaming Song, Chenlin Meng, Stefano Ermon ICLR 2021

■ Table of Contents

- What is Diffusion Model?
- Denoising Diffusion Probabilistic Models
- Denoising Diffusion Implicit Model
- Experiments
- Conclusions

What is Diffusion Model?

Diffusion

• Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration.

Reference: https://en.wikipedia.org/wiki/Diffusion

What is Diffusion Model?

Diffusion Process

 A (forward) diffusion process converts any complex data distribution into a simple, tractable, distribution.

What is Diffusion Model?

Diffusion Model

- Diffusion Process: gradually adds noise to input
- Reverse Process: learns to generate data by denoising

Diffusion Process

Reference: https://cvpr2023-tutorial-diffusion-models.github.io/

Diffusion Process

• How to sample x₊?

Reference: https://cvpr2023-tutorial-diffusion-models.github.io/

Diffusion Process

Codes

```
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
```

```
@autocast(enabled = False)
def q_sample(self, x_start, t, noise = None):
    noise = default(noise, lambda: torch.randn_like(x_start))

return (
    extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
    extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
```


Reverse Process

Reverse Process with Diffusion Model

• Diffusion model consists of U-Net architectures with ResNet blocks and self-attention layers to represent $\epsilon_{\theta}(\mathbf{x}_t, t)$.

ullet We can generate $old{x}_{ exttt{t-1}}$ image with $old{x}_{ exttt{t}}$ and $oldsymbol{\epsilon}_{oldsymbol{ heta}}(\mathbf{x}_t,t)$.

Reverse Process with Predicted Noise

$$q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = \begin{array}{c} \mathsf{Bayes' \, Rule} \\ q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) \times q(\mathbf{x}_{t-1} \mid \mathbf{x}_0) \\ \hline q(\mathbf{x}_t \mid x_0) \end{array} \qquad \qquad \begin{array}{c} q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) \times q(\mathbf{x}_{t-1} \mid \mathbf{x}_0) \\ \hline q(\mathbf{x}_t \mid x_0) \\ \hline q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \sqrt{\bar{\alpha}_{t-1}} \mathbf{x}_0, (1 - \bar{\alpha}_{t-1})I) \\ \hline q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})) \end{array}$$

$$\begin{aligned} \text{where} \quad q(\mathbf{x}_t|\mathbf{x}_{t-1}) &= \frac{1}{\sqrt{2\pi\beta_t}} \text{exp}\bigg(-\frac{(\mathbf{x}_t - \sqrt{1-\beta_t}\mathbf{x}_{t-1})^2}{2\beta_t} \bigg) \\ q(\mathbf{x}_t|\mathbf{x}_0) &= \frac{1}{\sqrt{2\pi(1-\bar{\alpha}_t)}} \text{exp}\bigg(-\frac{(\mathbf{x}_t - \sqrt{\bar{\alpha}_t}\mathbf{x}_0)^2}{2(1-\bar{\alpha}_t)} \bigg) \\ q(\mathbf{x}_{t-1}|\mathbf{x}_0) &= \frac{1}{\sqrt{2\pi(1-\bar{\alpha}_{t-1})}} \text{exp}\bigg(-\frac{(\mathbf{x}_{t-1} - \sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_0)^2}{2(1-\bar{\alpha}_{t-1})} \bigg) \end{aligned}$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) pprox rac{1}{\sqrt{2\pi rac{eta_t(1-ar{lpha}_{t-1})}{1-ar{lpha}_t}}} \mathrm{exp} \Bigg(-rac{1}{2eta_t(rac{1-ar{lpha}_{t-1}}{1-ar{lpha}_t})} \left[\mathbf{x}_{t-1} - \overline{\left(rac{\sqrt{ar{lpha}_{t-1}}eta_t}{1-ar{lpha}_t}\mathbf{x}_0 + rac{\sqrt{lpha_t}(1-ar{lpha}_{t-1})}{1-ar{lpha}_{t-1}}\mathbf{x}_t
ight)}
ight]^2 \Bigg) \ ilde{eta}_t$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0), \tilde{\beta}_t \mathbf{I})$$

Reference: https://cvpr2023-tutorial-diffusion-models.github.io/

Reverse Process with Predicted Noise

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0),\tilde{\boldsymbol{\beta}}_t\mathbf{I}),$$
 where $\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0) \coloneqq \frac{\sqrt{\bar{\alpha}_{t-1}}\boldsymbol{\beta}_t}{1-\bar{\alpha}_t}\mathbf{\bar{x}}_0 + \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}\mathbf{x}_t$ and $\tilde{\boldsymbol{\beta}}_t \coloneqq \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t}\boldsymbol{\beta}_t$
$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{(1-\bar{\alpha}_t)} \ \epsilon \quad \text{where} \ \epsilon \sim \mathcal{N}(\mathbf{0},\mathbf{I}) \longrightarrow \begin{bmatrix} x_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} \times x_t - \frac{\sqrt{1-\bar{\alpha}_t}}{\sqrt{\bar{\alpha}_t}} \times \epsilon \end{bmatrix}$$

▶ Above equation also can be used for predicted $\epsilon_{\theta}(\mathbf{x}_t,t)$

Reverse Process

```
@torch.inference mode()
def p_sample(self, x, t: int, x_self_cond = None):
   b, *_, device = *x.shape, self.device
   batched_times = torch.full((b,), t, device = device, dtype = torch.long)
   model_mean, _, model_log_variance, x_start = self.p_mean_variance(x = x, t = batched_times, x_self_cond = x_self_cond, clip_denoised = True)
   noise = torch.randn like(x) if t > 0 else 0. # no noise if t == 0
   pred_img = model_mean + (0.5 * model_log_variance).exp() * noise
   return pred_img, x_start
@torch.inference mode()
def p_sample_loop(self, shape, return_all_timesteps = False):
   batch, device = shape[0], self.device
   img = torch.randn(shape, device = device)
   imgs = [img]
   x start = None
    for t in tqdm(reversed(range(0, self.num_timesteps)), desc = 'sampling loop time step', total = self.num_timesteps):
        self cond = x start if self.self condition else None
        img, x_start = self.p_sample(img, t, self_cond)
        imgs.append(img)
   ret = img if not return all timesteps else torch.stack(imgs, dim = 1)
    ret = self.unnormalize(ret)
    return ret
```

Reference: https://github.com/lucidrains/denoising-diffusion-pytorch/blob/main/denoising diffusion pytorch/denoising diffusion pytorch.pv#L660-L686

Diffusion Loss

Main Idea

- Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps in order to produce a sample.
- Denoising diffusion implicit models (DDIMs) used Non-Markovian processes that can correspond to generative processes that are deterministic, giving rise to implicit models that produce high quality samples much faster.

Non-Markovian Diffusion Process

$$(x_3) \xrightarrow{q(x_3|x_2,x_0)} (x_2) \xrightarrow{q(x_2|x_1,x_0)} (x_1) \longrightarrow (x_0)$$

$$q_{\sigma}(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0}) := q_{\sigma}(\boldsymbol{x}_{T}|\boldsymbol{x}_{0}) \prod_{t=2}^{n} q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})$$

$$q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})q(\boldsymbol{x}_{2}|\boldsymbol{x}_{1},\boldsymbol{x}_{0})q(\boldsymbol{x}_{3}|\boldsymbol{x}_{2},\boldsymbol{x}_{0})...q(\boldsymbol{x}_{T}|\boldsymbol{x}_{T-1},\boldsymbol{x}_{0})$$

Bayes' Rule
$$q_{\sigma}(m{x}_t|m{x}_{t-1},m{x}_0) = rac{q_{\sigma}(m{x}_{t-1}|m{x}_t,m{x}_0)q_{\sigma}(m{x}_t|m{x}_0)}{q_{\sigma}(m{x}_{t-1}|m{x}_0)}$$

$$rac{q_{\sigma}(x_{1}|x_{2},x_{0})q_{\sigma}(x_{2}|x_{0})}{q_{\sigma}(x_{1}|x_{0})} imes rac{q_{\sigma}(x_{2}|x_{3},x_{0})q_{\sigma}(x_{3}|x_{0})}{q_{\sigma}(x_{2}|x_{0})} imes \cdots imes rac{q_{\sigma}(x_{T-1}|x_{T},x_{0})q_{\sigma}(x_{T}|x_{0})}{q_{\sigma}(x_{T-1}|x_{0})}$$

Non-Markovian Diffusion Process

$$q_{\sigma}(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0}) := q_{\sigma}(\boldsymbol{x}_{T}|\boldsymbol{x}_{0}) \prod_{t=2}^{T} q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})$$

$$\downarrow \text{ Proof: Appendix B}$$

$$q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) = \mathcal{N}\left(\sqrt{\alpha_{t-1}}\boldsymbol{x}_{0} + \sqrt{1-\alpha_{t-1}-\sigma_{t}^{2}}\cdot\frac{\boldsymbol{x}_{t}-\sqrt{\alpha_{t}}\boldsymbol{x}_{0}}{\sqrt{1-\alpha_{t}}},\sigma_{t}^{2}\boldsymbol{I}\right)$$

$$\downarrow \boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}}\left(\underbrace{\frac{\boldsymbol{x}_{t}-\sqrt{1-\alpha_{t}}\epsilon_{\theta}^{(t)}(\boldsymbol{x}_{t})}{\sqrt{\alpha_{t}}}}_{\text{"predicted }\boldsymbol{x}_{0}"}\right) + \underbrace{\sqrt{1-\alpha_{t-1}-\sigma_{t}^{2}}\cdot\epsilon_{\theta}^{(t)}(\boldsymbol{x}_{t})}_{\text{"direction pointing to }\boldsymbol{x}_{t}"} + \underbrace{\sigma_{t}\epsilon_{t}}_{\text{random nois}}$$

$$\boldsymbol{x}_{0} = \frac{1}{\sqrt{\alpha_{t}}}\times\boldsymbol{x}_{t} - \underbrace{\sqrt{1-\alpha_{t}}}_{\sqrt{\alpha_{t}}}\times\epsilon_{\theta}(\boldsymbol{x}_{t},t)}\right]$$

$$\boldsymbol{x}_{t} = \sqrt{\alpha_{t}}\times\boldsymbol{x}_{0} - \sqrt{1-\alpha_{t}}\times\epsilon_{\theta}(\boldsymbol{x}_{t},t)$$

Reference: Denoising Diffusion Implicit Model, ICLR, 2021

Deterministic Generative Process

Accelerated Generation Processes

Figure 2: Graphical model for accelerated generation, where $\tau = [1, 3]$.

In the previous sections, the generative process is considered as the approximation to the reverse process; since of the forward process has T steps, the generative process is also forced to sample T steps. However, as the denoising objective L_1 does not depend on the specific forward procedure as long as $q_{\sigma}(x_t|x_0)$ is fixed, we may also consider forward processes with lengths smaller than T, which accelerates the corresponding generative processes without having to train a different model.

Table 1: CIFAR10 and CelebA image generation measured in FID. $\eta=1.0$ and $\hat{\sigma}$ are cases of DDPM (although Ho et al. (2020) only considered T=1000 steps, and S< T can be seen as simulating DDPMs trained with S steps), and $\eta=0.0$ indicates DDIM.

	343	Y	CIFA	CIFAR10 (32 × 32)			CelebA (64 × 64)				
S		10	20	50	100	1000	10	20	50	100	1000
	0.0	13.36	6.84	4.67	4.16	4.04	17.33	13.73	9.17	6.53	3.51
	0.2	14.04	7.11	4.77	4.25	4.09	17.66	14.11	9.51	6.79	3.64
η	0.5	16.66	8.35	5.25	4.46	4.29	19.86	16.06	11.01	8.09	4.28
	1.0	41.07	18.36	8.01	5.78	4.73	33.12	26.03	18.48	13.93	5.98
	$\hat{\sigma}$	367.43	133.37	32.72	9.99	3.17	299.71	183.83	71.71	45.20	3.26

Figure 3: CIFAR10 and CelebA samples with $\dim(\tau) = 10$ and $\dim(\tau) = 100$.

Figure 5: Samples from DDIM with the same random x_T and different number of steps.

Figure 6: Interpolation of samples from DDIM with $\dim(\tau) = 50$.

Conclusions

Conclusions

 DDIMs can produce high quality samples 10× to 50× faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality applying non-Markovian processes.

 After training with DDPM, we can use DDIM for inference, because they have the same training procedure.

Thank you

Appendix C.1

C.1 ACCELERATED SAMPLING PROCESSES

In the accelerated case, we can consider the inference process to be factored as:

$$q_{\sigma,\tau}(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0) = q_{\sigma,\tau}(\boldsymbol{x}_{\tau_S}|\boldsymbol{x}_0) \prod_{i=1}^{S} q_{\sigma,\tau}(\boldsymbol{x}_{\tau_{i-1}}|\boldsymbol{x}_{\tau_i},\boldsymbol{x}_0) \prod_{t \in \bar{\tau}} q_{\sigma,\tau}(\boldsymbol{x}_t|\boldsymbol{x}_0)$$
(52)

where τ is a sub-sequence of $[1, \ldots, T]$ of length S with $\tau_S = T$, and let $\bar{\tau} := \{1, \ldots, T\} \setminus \tau$ be its complement. Intuitively, the graphical model of $\{x_{\tau_i}\}_{i=1}^S$ and x_0 form a chain, whereas the graphical model of $\{x_t\}_{t\in\bar{\tau}}$ and x_0 forms a star graph. We define:

$$q_{\sigma,\tau}(\boldsymbol{x}_t|\boldsymbol{x}_0) = \mathcal{N}(\sqrt{\alpha_t}\boldsymbol{x}_0, (1-\alpha_t)\boldsymbol{I}) \quad \forall t \in \bar{\tau} \cup \{T\}$$
 (53)

$$q_{\sigma,\tau}(\boldsymbol{x}_{\tau_{i-1}}|\boldsymbol{x}_{\tau_i},\boldsymbol{x}_0) = \mathcal{N}\left(\sqrt{\alpha_{\tau_{i-1}}}\boldsymbol{x}_0 + \sqrt{1 - \alpha_{\tau_{i-1}} - \sigma_{\tau_i}^2} \cdot \frac{\boldsymbol{x}_{\tau_i} - \sqrt{\alpha_{\tau_i}}\boldsymbol{x}_0}{\sqrt{1 - \alpha_{\tau_i}}}, \sigma_{\tau_i}^2\boldsymbol{I}\right) \ \forall i \in [S]$$

where the coefficients are chosen such that:

$$q_{\sigma,\tau}(\boldsymbol{x}_{\tau_i}|\boldsymbol{x}_0) = \mathcal{N}(\sqrt{\alpha_{\tau_i}}\boldsymbol{x}_0, (1-\alpha_{\tau_i})\boldsymbol{I}) \quad \forall i \in [S]$$
(54)

i.e., the "marginals" match.

Appendix C.1

The corresponding "generative process" is defined as:

$$p_{\theta}(\boldsymbol{x}_{0:T}) := \underbrace{p_{\theta}(\boldsymbol{x}_{T}) \prod_{i=1}^{S} p_{\theta}^{(\tau_{i})}(\boldsymbol{x}_{\tau_{i-1}} | \boldsymbol{x}_{\tau_{i}})}_{\text{use to produce samples}} \times \underbrace{\prod_{t \in \bar{\tau}} p_{\theta}^{(t)}(\boldsymbol{x}_{0} | \boldsymbol{x}_{t})}_{\text{in variational objective}}$$
(55)

where only part of the models are actually being used to produce samples. The conditionals are:

$$p_{\theta}^{(\tau_i)}(\boldsymbol{x}_{\tau_{i-1}}|\boldsymbol{x}_{\tau_i}) = q_{\sigma,\tau}(\boldsymbol{x}_{\tau_{i-1}}|\boldsymbol{x}_{\tau_i}, f_{\theta}^{(\tau_i)}(\boldsymbol{x}_{\tau_{i-1}})) \quad \text{if } i \in [S], i > 1$$
 (56)

$$p_{\theta}^{(t)}(\boldsymbol{x}_0|\boldsymbol{x}_t) = \mathcal{N}(f_{\theta}^{(t)}(\boldsymbol{x}_t), \sigma_t^2 \boldsymbol{I}) \quad \text{otherwise,}$$
 (57)

where we leverage $q_{\sigma,\tau}(\boldsymbol{x}_{\tau_{i-1}}|\boldsymbol{x}_{\tau_i},\boldsymbol{x}_0)$ as part of the inference process (similar to what we have done in Section 3). The resulting variational objective becomes (define $\boldsymbol{x}_{\tau_{L+1}} = \varnothing$ for conciseness):

$$J(\epsilon_{\theta}) = \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q_{\sigma,\tau}(\boldsymbol{x}_{0:T})}[\log q_{\sigma,\tau}(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0}) - \log p_{\theta}(\boldsymbol{x}_{0:T})]$$
(58)

$$= \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q_{\boldsymbol{\sigma},\tau}(\boldsymbol{x}_{0:T})} \left[\sum_{t \in \bar{\tau}} D_{\mathrm{KL}}(q_{\boldsymbol{\sigma},\tau}(\boldsymbol{x}_t|\boldsymbol{x}_0) || p_{\boldsymbol{\theta}}^{(t)}(\boldsymbol{x}_0|\boldsymbol{x}_t) \right]$$
(59)

$$+ \sum_{i=1}^{L} D_{ ext{KL}}(q_{\sigma, au}(m{x}_{ au_{i-1}}|m{x}_{ au_{i}},m{x}_{0}) \|p_{ heta}^{(au_{i})}(m{x}_{ au_{i-1}}|m{x}_{ au_{i}}))) igg]$$

where each KL divergence is between two Gaussians with variance independent of θ . A similar argument to the proof used in Theorem 1 can show that the variational objective J can also be converted to an objective of the form L_{γ} .