Universal Rate-Distortion-Classification Representations for Lossy Compression

Nam Nguyen 1 , Thuan Nguyen 2 , Thinh Nguyen 1 , and Bella Bose 1

¹School of Electrical and Computer Engineering, Oregon State University, Corvallis, OR, 97331 ²Department of Engineering, Engineering Technology, and Surveying, East Tennessee State University, Johnson, TN, 37604

Multi-Task Learning Lossy Compression

Model:

- Source: $X \sim p_X(x)$.
- Target labels: $S_1, \dots, S_K \sim p_S(s_1, \dots, s_K)$, where $p_{X,S}(x,s_1,\dots,s_K)$.

Lossy Compression: $X_1, X_2, \cdots, X_n \stackrel{\text{i.i.d}}{\sim} p(x)$.

- Encoder: $f: \mathcal{X}^n \mapsto \{1, 2, \cdots, 2^{nR}\}$ maps the source X^n to a message M.
- Decoder: $g:\{1,2,\cdots,2^{nR}\}\mapsto \hat{\mathcal{X}}^n$ reproduces data \hat{X}^n .

Universal Rate-Distortion-Classification

Definition 1. DCR Function

$$D(C, R) = \min_{p_{\hat{X}|X}} \mathbb{E}[(X - \hat{X})^2]$$
 (1a)

s.t.
$$I(X; \hat{X}) \le R,$$
 (1b)

$$H(S|\hat{X}) \le C.$$
 (1c)

Let $\Omega(R) = \{(D, C) : R(D, C) \le R\}.$

Definition 2. Universal RDC Function

Let Z be a **representation** of X by $p_{Z|X}$. For each $(D, C) \in \Theta$, $\exists p_{\hat{X}_{D,C}|Z}$: $\mathbb{E}[\Delta(X, \hat{X}_{D,C})] \leq D$ and $H(S|\hat{X}_{D,C}) \leq C$.

$$R(\Theta) = \inf_{p_{Z|X} \in \mathcal{P}_{Z|X}(\Theta)} I(X; Z). \tag{2}$$

Definition 3. Rate Penalty

$$A(\Theta) = R(\Theta) - \sup_{(D,C)\in\Theta} R(D,C), \tag{3}$$

where
$$\Omega(p_{Z|X}) = \left\{ (D, C) : \exists p_{\hat{X}_{D,C}|Z} \text{ s.t. } \frac{\mathbb{E}[\Delta(X, \hat{X}_{D,C})] \leq D,}{H(S|\hat{X}_{D,C}) \leq C} \right\}.$$

• Ideally, $A(\Theta) = 0$ for each R, meaning a single encoder suffices for the entire tradeoff.

Theoretical Results

Theorem 1. DCR for a Gaussian Source

A source $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and a classification variable $S \sim \mathcal{N}(\mu_S, \sigma_S^2)$ with $\text{Cov}(X, S) = \theta_1$. $D(C, R) = \begin{cases} \sigma_X^2 e^{-2R}, & C > \frac{1}{2} \log \left(1 - \frac{\theta_1^2(\sigma_X^2 - \sigma_X^2 e^{-2R})}{\sigma_S^2 \sigma_X^4}\right) + h(S) \\ \sigma_X^2 - \frac{\sigma_S^2 \sigma_X^4}{\theta_1^2} \left(1 - e^{-2h(S) + 2C}\right), \\ \frac{1}{2} \log \left(1 - \frac{\theta_1^2}{\sigma_S^2 \sigma_X^2}\right) + h(S) \leq C \leq \frac{1}{2} \log \left(1 - \frac{\theta_1^2(\sigma_X^2 - \sigma_X^2 e^{-2R})}{\sigma_S^2 \sigma_X^4}\right) + h(S) \\ 0, & C > h(S) \text{ and } R > h(X). \end{cases}$

Theorem 2. No Rate-Penalty for a Gaussian Source

A source $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and a classification variable $S \sim \mathcal{N}(\mu_S, \sigma_S^2)$ with $Cov(X, S) = \theta_1$. $A(\Theta) = 0; \quad I(X; Z) = \sup_{(D,C) \in \Theta} R(D,C); \quad \Theta \subseteq \Omega(p_{Z|X}) = \Omega(I(X; Z)).$ (4)

Theorem 3. Universality for a General Source

Let $X \sim p_X$ and $S \sim p_S$ with $Cov(X, S) = \theta_1$. Define $\tilde{X} = \mathbb{E}[X|Z]$ as MMSE estimator.

$$\Omega(p_{Z|X}) \subseteq \left\{ (D,C) : D \ge \mathbb{E} \|X - \tilde{X}\|^2 + \inf_{\substack{p_{\hat{X}} \\ \text{s.t.}}} \frac{W_2^2(p_{\tilde{X}}, p_{\hat{X}})}{H(S|\hat{X}) \le C} \right\} \subseteq \text{cl}(\Omega(p_{Z|X})).$$
 (5)

Distortion Loss

Theorem 4. Quantitative Results

Let \hat{X}_{D_1,C_1} be optimal reconstruction at (D_1,C_1) on the conventional RDC trade-off curve, satisfying $I(X;\hat{X}_{D_1,C_1})=R(D_1,C_1)$. Then, $\Omega(p_{\hat{X}_{D_1,C_1}|X})$ satisfies $(D^{(a)},C^{(a)})=(D_1,C_1)$. Now, consider $(D^{(b)},C^{(b)})\in\Omega(p_{\hat{X}_{D_1,C_1}|X})$ and $(D_3,C_3)\in\Omega(R)$:

$$D_{3} - D^{(b)} \ge \sigma_{X}^{2} + \sigma_{\hat{X}_{D_{3},C_{3}}}^{2} - 2\sigma_{\hat{X}_{D_{3},C_{3}}} \overline{\sigma_{X}^{2} - D_{1}} - 2D_{1} \text{ and } \frac{D_{3}}{D^{(b)}} \ge \frac{\sigma_{X}^{2} + \sigma_{\hat{X}_{D_{3},C_{3}}}^{2} - 2\sigma_{\hat{X}_{D_{3},C_{3}}} \overline{\sigma_{X}^{2} - D_{1}}}{2D_{1}}.$$

If $W_2^2(p_X, p_{\hat{X}_{D_3,C_3}}) = 0$, i.e., $\sigma_X^2 = \sigma_{\hat{X}_{D_3,C_3}}^2$, the **distortion gap becomes small** under:

$$D_3 - D^{(b)} \approx 0$$
 if $D_1 \approx 0$ or $D_1 \approx \sigma_X^2$ and $\frac{D_3}{D^{(b)}} \approx 1$ if $D_1 \approx \sigma_X^2$. (7)

Experimental Results

Figure: An illustration of the universal RDC scheme.

- Dataset: MNIST; compression rate: $R = d \times \log_2(L)$.
- Classifier (c) is pre-trained. Training Encoder (f), Decoder (g), and Discriminator (d) with this loss function:

$$\mathcal{L} = \lambda_d \mathbb{E}[\|X - \hat{X}\|^2] + \lambda_c \operatorname{CE}(S, \hat{S}) + \lambda_p W_1(p_X, p_{\hat{X}}).$$

Acknowledgments: This work is supported in part by the National Science Foundation Grant CCF-2417898.

