Matrix Norm Essentials

- Matrix norms have vector norm properties:
 - $\circ \|A\| \ge 0$ and $\|A\| = 0 \implies A = 0$
 - $\circ \|A + B\| \le \|A\| + \|B\|$
 - $\circ \|\alpha A\| = |\alpha| \|A\|$
- There are really only four norms to know:

$$\|\cdot\|_1, \quad \|\cdot\|_2, \quad \|\cdot\|_{\infty}, \quad \|\cdot\|_{\text{Frob}}$$

- \circ 3 are induced from vector norms: $1, 2, \infty$
- \circ 3 have easy-to-compute formulas: $1, \infty$, Frob
- Induced norms and the Frobenius norm have an additional multiplicative property:

$$\circ \|AB\| \le \|A\| \|B\|$$

- Induced norms satisfy $\rho(A) \leq ||A||$.
 - Recall $\rho(A) = \max |\lambda|$ where λ is an eigenvalue.
 - \circ However, $\rho(A) \ll \|A\|$ is common. The norm can a very conservative estimate of $\rho(A)$.
- The $\|\cdot\|_2$ norm is best for Euclidean ideas and hermitian/normal matrices. Reasons:
 - $|QA|_2 = ||A||_2$ if Q is unitary $(Q^*Q = I)$.
 - $\circ \ \sigma_1(A) = ||A||_2.$
 - \circ If $A^* = A$ then $\rho(A) = ||A||_2$.
- Iteration v, Av, A^2v, \ldots converges if and only if $\rho(A) < 1$.
 - \circ Thus if ||A|| < 1 then convergence.
 - But not conversely!