МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка параметров надежности программ по временным моделям обнаружения ошибок

Студент гр. 7304	 Шарапенков И.И
Преподаватель	Ефремов М.А.

Санкт-Петербург

2021

Задание.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой u i –ой ошибками (i=[1,30], также смотри примечание в п.3), в соответствии с:
- A) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, CKO $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
 - Б) экспоненциальным законом распределения

W(y) = b*exp(-b*y), y>=0, с параметром b=0.1 и соответственно $m_{3\kappa cn}=s_{3\kappa cn}=1/b=10$.

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t)/b$

В) релеевским законом распределения

 $W(y)=(y/c^2)^* exp(-y^2/(2^*c^2)), \qquad y>=0, \qquad c \qquad \text{параметром} \qquad c=8.0 \qquad \text{и}$ соответственно $m_{\text{pen}}=\ c^* \text{sqrt}(\pi/2), \ \ s_{\text{pen}}=\ c^* \text{sqrt}(2-\pi/2).$

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30,24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если B>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход выполнения.

1. Равномерный закон

а. Равномерный закон распределения (100% входных данных)

i	X	i	X	i	X
1	0.366	11	6.476	21	12.583
2	0.977	12	6.483	22	12.736
3	2.484	13	7.888	23	15.057
4	2.742	14	8.081	24	15.970
5	3.496	15	8.404	25	16.637
6	4.162	16	9.004	26	16.705
7	5.853	17	10.254	27	17.302
8	6.376	18	10.360	28	17.325
9	6.419	19	10.969	29	18.297
10	6.461	20	11.351	30	19.508

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_{i}}{\sum_{i=1}^{n} X_{i}} = 20.29$$

 $A > \frac{n+1}{2} = 15.5 = >$ существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n + 1$$
$$g(m, A) = \frac{n}{m-A}$$

m	f(m)	g(m, A)	f-g
31	3.99499	2.80308	1.19191
32	3.02725	2.56355	0.463696
33	2.5585	2.36173	0.19676
34	2.25546	2.18938	0.0660878

35	2.03488	2.04047	0.00558884
36	1.86345	1.91052	0.0470724

Минимум при m = 35,
$$\mathring{B} = m - 1 = 34$$

$$\hat{K} = \frac{n}{(\hat{B}-1)^* \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i^* X_i} = 0.00702$$

$$\hat{X}_{n+1} = \frac{1}{\hat{K} \cdot (\hat{B}-n)}$$

$$\hat{X}_{n+1} = \frac{1}{\hat{X} \cdot (\hat{A}-n)}$$

$$\hat{X}_{n+1} = \frac{1}{\hat{X} \cdot (\hat{A}-n)}$$

$$\hat{X}_{n+1} = \frac{1}{\hat{X} \cdot (\hat{A}-n)}$$

$$\hat{X}_{n+1$$

Время до завершения тестирования =
$$\sum_{i=31}^{33} \hat{X}_i = 296.83$$
 дней

Полное время тестирования
$$\sum_{i=1}^{30} \stackrel{\widehat{X}}{X_i} + \sum_{i=31}^{33} \stackrel{\widehat{X}}{X_i} = 587.56$$
 дней

b. Равномерный закон распределения (80% входных данных)

i	X	i	X	i	X
1	0.072	9	7.008	17	11.922
2	0.639	10	7.369	18	12.284
3	1.071	11	7.439	19	13.773
4	2.577	12	7.468	20	15.493
5	3.239	13	7.723	21	16.082
6	4.426	14	8.071	22	16.734
7	5.819	15	11.297	23	17.696
8	6.338	16	11.443	24	18.105

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_{i}}{\sum_{i=1}^{n} X_{i}} = 16.66$$

 $A > \frac{n+1}{2} = 12.5 = >$ существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, m \ge n + 1$$

 $g(m, A) = \frac{n}{m-A}$

m	f(m)	g(m, A)	f-g
25	3.77596	2.87645	0.899506
26	2.81596	2.5686	0.247358
27	2.35442	2.32027	0.0341469
28	2.05812	2.11573	0.057605

Минимум при m = 27,
$$\hat{B} = m - 1 = 26$$

Время до завершения тестирования = 138.4 дней Полное время тестирования = 352.49 дней

с. Равномерный закон распределения (60% входных данных)

i	X	i	X	i	X
1	1.110,	7	4.293,	13	12.361,
2	1.210,	8	11.904,	14	12.735,
3	1.216,	9	6.456,	15	14.791,

4	1.779,	10	7.414,	16	16.290,
5	2.827,	11	8.164,	17	18.220,
6	2.938,	12	8.510,	18	19.045

$$A = \frac{\sum_{i=1}^{n} i * X_{i}}{\sum_{i=1}^{n} X_{i}} = 13.13$$

$$A > \frac{n+1}{2} = 9.5 = >$$
 существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, m \ge n + 1$$

 $g(m, A) = \frac{n}{m-A}$

m	f(m)	g(m, A)	f-g
19	3.49511	3.06829	0.42682
20	2.54774	2.62144	0.0736968
21	2.09774	2.28819	0.190455

Минимум при m = 20,
$$\hat{B}$$
 = m – 1 = 19 = л
$$\hat{K} = \frac{n}{(\hat{B}-1)^* \sum\limits_{i=1}^n X_i - \sum\limits_{i=1}^n i^* X_i} = 0.017$$

$$\hat{X}_{n+1} = \frac{1}{\hat{K} \bullet (\hat{B}-n)}$$

$$\hat{X}_{n} = \frac{1}{\hat{X}_{n}}$$

$$\hat{X}_{n} = \frac{1}{\hat{X}_{n}}$$

Время до завершения тестирования = 57.70 дней Полное время тестирования = 208.96 дней

2. Экспоненциальный закон

а. Экспоненциальный закон (100% входных данных)

i	X	i	X	i	X
1	0.160	11	2.776	21	16.341
2	0.323	12	2.846	22	17.111
3	0.658	13	3.009	23	17.516
4	0.790	14	4.086	24	17.902
5	1.309	15	5.012	25	19.146
6	1.421	16	5.700	26	19.981
7	1.633	17	7.670	27	31.447
8	1.938	18	8.460	28	33.535
9	2.054	19	12.210	29	35.165
10	2.059	20	13.160	30	42.249

$$A = \frac{\sum_{i=1}^{n} i * X_{i}}{\sum_{i=1}^{n} X_{i}} = 23.86$$

$$A > \frac{n+1}{2} = 15.5 = >$$
 существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n + 1$$
$$g(m, A) = \frac{n}{m-A}$$

m	f(m)	g(m, A)	f-g
31	3.99499	4.20117	0.206182
32	3.02725	3.68511	0.657865

Минимум при m = 31,
$$\hat{B} = m - 1 = 30$$

$$\hat{K} = \frac{n}{(\hat{B}-1)^* \sum\limits_{i=1}^n X_i - \sum\limits_{i=1}^n i^* X_i} = 0.0128$$

Время до завершения тестирования = 0 дней

1		U		$(\Omega \Omega \Omega I)$		`
n.	Экспоненц	ияпьныи	зякон	(XI)%	ВХОЛНЫХ	панных
~	- Menoneng	11401111111111	Juiton	100/0	раодпріа	динивил

i	X	i	X	i	X
1	0.166	9	5.738	17	9.063
2	1.744	10	5.986	18	10.894
3	2.239	11	6.084	19	12.304
4	2.911	12	6.612	20	15.703
5	3.223	13	7.167	21	19.464
6	4.995	14	8.305	22	19.534
7	5.166	15	8.569	23	26.427
8	5.308	16	9.019	24	30.826

$$A = \frac{\sum_{i=1}^{n} i * X_{i}}{\sum_{i=1}^{n} X_{i}} = 17.46$$

$$A > \frac{n+1}{2} = 12.5 = >$$
 существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n + 1$$
$$g(m, A) = \frac{n}{m-A}$$

m	f(m)	g(m, A)	f-g
25	3.77596	3.18244	0.593514
26	2.81596	2.80985	0.00610596
27	2.35442	2.51536	0.160941

Минимум при m = 26, \mathring{B} = m – 1 = 25 = n

$$\hat{K} = \frac{n}{(\hat{B}-1)^* \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i^* X_i} = 0.0123$$

$$\hat{X}_{n+1} = \frac{1}{\hat{K} \cdot (\hat{B}-n)}$$

$$i \qquad 25$$

$$\hat{X}_{i} \qquad 80.9463$$

Время до завершения тестирования = 80.94 дней Полное время тестирования = 308.39 дней

с. Экспоненциальный закон (60% входных данных)

i	X	i	X	i	X
1	0.035	7	3.910	13	16.377
2	0.426	8	4.035	14	16.781
3	0.551	9	5.888	15	17.106
4	2.598	10	9.181	16	17.957
5	3.470	11	10.666	17	18.708
6	3.851	12	10.847	18	55.144

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_{i}}{\sum_{i=1}^{n} X_{i}} = 14.21$$

 $A > \frac{n+1}{2} = 9.5 = >$ существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, m \ge n + 1$$

 $g(m, A) = \frac{n}{m-A}$

m	f(m)	g(m, A)	f-g
19	3.49511	3.76093	0.265819

20	2.54774	3.11093	0.563189

Минимум при m = 19, $\mathring{B} = m - 1 = 18$

$$\hat{K} = \frac{n}{(\hat{B}-1)^* \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i^* X_i} = 0.019$$

Время до завершения тестирования: = 0 дней

Полное время тестирования = 197.531 дней

3. Релеевский закон

а. Релеевский закон (100% входных данных)

i	X	i	X	i	X
1	0.993	11	5.5031,	21	10.475,
2	1.649,	12	6.170,	22	13.311,
3	1.681,	13	6.704,	23	13.891,
4	3.052,	14	7.010,	24	16.176,
5	3.811,	15	7.508,	25	16.852,
6	4.305,	16	7.666,	26	17.113,
7	4.445,	17	8.966,	27	18.060,
8	4.584,	18	9.045,	28	19.461,
9	4.702,	19	9.425,	29	23.143,
10	5.181	20	9.430,	30	25.644

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_{i}}{\sum_{i=1}^{n} X_{i}} = 21.07$$

 $A > \frac{n+1}{2} = 15.5 = >$ существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, m \ge n + 1$$

 $g(m, A) = \frac{n}{m-A}$

m	f(m)	g(m, A)	f-g
31	3.99499	3.02228	0.972708
32	3.02725	2.74567	0.281572
33	2.5585	2.51545	0.0430424
34	2.25546	2.32085	0.065388

Минимум при m = 33,
$$\hat{B} = m - 1 = 32$$

$$\hat{K} = \frac{n}{(\hat{B}-1)^* \sum\limits_{i=1}^n X_i - \sum\limits_{i=1}^n i^* X_i} = 0.0088$$

$$\hat{X}_{n+1} = \frac{1}{\hat{K} \bullet (\hat{B}-n)}$$

i	31	32
\hat{X}_{i}	56.8399	113.68

Время до завершения тестирования = 170.52 дней Полное время тестирования = 456.47 дней

b. Релеевский закон (80% входных данных)

i	X	i	X	i	X
1	2.205,	9	8.222,	17	12.378,
2	2.924,	10	9.594,	18	12.865,
3	4.774,	11	9.676,	19	14.958,
4	5.898,	12	9.850,	20	15.214,
5	6.598,	13	9.972,	21	15.304,
6	7.264,	14	10.546,	22	17.477,
7	8.105,	15	11.352,	23	19.598,

8	8.167,	16	11.512,	24	22.711
---	--------	----	---------	----	--------

$$A = \frac{\sum_{i=1}^{n} i * X_{i}}{\sum_{i=1}^{n} X_{i}} = 15.57$$

 $A > \frac{n+1}{2} = 12.5 = >$ существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, m \ge n + 1$$

 $g(m, A) = \frac{n}{m-A}$

		111 11	
m	f(m)	g(m, A)	f-g
25	3.77596	2.54409	1.23187
26	2.81596	2.30026	0.515702
27	2.35442	2.09907	0.255347
28	2.05812	1.93025	0.127873
29	1.84384	1.78656	0.0572756
30	1.67832	1.66278	0.0155362
31	1.54499	1.55505	0.0100594
32	1.43439	1.46042	0.0260325

Минимум при m = 31, $\mathring{B} = m - 1 = 30$

$$\hat{K} = \frac{n}{(\hat{B}-1)^* \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i^* X_i} = 0.006$$

$$\hat{X}_{n+1} = \frac{1}{\hat{K} \cdot (\hat{B}-n)}$$

i	25	26	27	28	29	30
$\hat{X_i}$	27.5623	33.0748	41.3435	55.1246	82.6869	165.374

Время до завершения тестирования: = 405.16 дней

Полное время тестирования = 662.33 дней

с. Релеевский закон (60% входных данных)

i	X	i	X	i	X
1	2.043	7	5.337	13	11.327
2	2.409	8	5.959	14	11.895
3	2.880	9	9.911	15	12.469
4	3.771	10	10.265	16	14.358
5	4.455	11	10.631	17	16.303
6	4.474	12	11.318	18	20.750

Была выполнена оценка средних времён до завершения тестирования и полного времени тестирования для этого набора данных:

$$A = \frac{\sum_{i=1}^{n} i * X_{i}}{\sum_{i=1}^{n} X_{i}} = 12.398$$

$$A > \frac{n+1}{2} = 9.5 = >$$
 существует конечное решение

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}, \quad m \ge n + 1$$
$$g(m, A) = \frac{n}{m-A}$$

m	f(m)	g(m, A)	f-g
19	3.49511	2.72638	0.768726
20	2.54774	2.36775	0.17999
21	2.09774	2.0925	0.00524075
22	1.81203	1.87458	0.0625538

Минимум при
$$m = 21$$
, $\hat{B} = m - 1 = 20$

$$\hat{K} = \frac{n}{(\hat{B}-1)^* \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} i^* X_i} = 0.013$$

$$\hat{X}_{n+1} = \frac{1}{\hat{K} \cdot (\hat{B}-n)}$$

i	19	20
\hat{X}_{i}	38.3644	76.7288

Время до завершения тестирования: = 115.09 дней Полное время тестирования = 275.65 дней

4. Полученные результаты

Закон	N=30	N=24	N=18
распределения		·	
Равномерный	34	26	19
Экспоненциальный	30	25	18
Релеевский	32	30	20

Таблица 1 – Оценка первоначального числа ошибок

Закон	N=30	N=24	N=18
распределения		·	
Равномерный	587.56	352.49	208.96
Экспоненциальный	327.67	308.39	197.53
Релеевский	456.47	662.33	275.65

Таблица 2 – Оценка полного времени проведения тестирования (дней)

Выводы

В ходе выполнения лабораторной работы были исследованы показатели надёжности программ, характеризуемые моделью обнаружения ошибок Джелинского-Моранды для различных законов распределения времён обнаружения отказов и различного числа используемых для анализа данных.