

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Metody Obliczeniowe w Nauce i Technice

Sprawozdanie z laboratorium 2b – Interpolacja Hermite'a

Michał Szafarczyk

gr. Śr. 17:50 – 19:20

Narzędzia i sprzęt wykorzystany do zrealizowania ćwiczenia

Komputer z systemem Windows 10 x64 Home

Procesor: Intel Core i7-10750H @2.60 GHz / 5.00 GHz

Pamięć RAM: 32 GB

Język: Python 3.9

Środowisko: PyCharm

Użyte biblioteki pythonowskie:

• Numpy – do wykonywania różnych operacji na liczbach

Matplotlib – dla rysowania wykresów

1. Zadana funkcja:

Przekazana wraz z zadaniem funkcja, którą będziemy interpolować, dana jest wzorem

$$f(x)=10\cdot m+\frac{x^2}{k}-10\cdot m\cdot \cos(k\cdot x)\,,\quad x\in[-3\pi,3\pi]$$
 gdzie $m=1,\ k=0$

Wykres 1.1 – Interpolowana funkcja

2. Interpolacja metoda Hermite'a:

Wielomian interpolujący będziemy wyznaczać według wzoru:

$$H_n(x) = \sum_{i=0}^n b_i \cdot p_i(x) = \sum_{i=0}^k \sum_{j=0}^{m_i - 1} b_{(s(i)+j)} \cdot P_{(s(i)+j)}(x)$$
 (2.1)

Gdzie $P_{(s(i)+j)}(x)$ jest wielomianem i dany jest w postaci:

$$P_{(s(i)+j)}(x) = (x - x_0)^{m_0} (x - x_1)^{m_1} \cdot \dots \cdot (x - x_{i-1})^{m_{i-1}} (x - x_i)^j$$
 (2.2)

Dla $i \in [0, 1, ..., k], j \in [0, 1, ..., m_i - 1]$ oraz

$$P_{(0)}(x) = 1 (2.3)$$

3. Wartości do testów:

W celu przeprowadzenia testów zostało ręcznie wyznaczonych 5 pierwszych pochodnych zadanej funkcji. W kodzie została zadana zmienna globalna $max_derivative$, która dla wygenerowanych punktów określa ile maksymalnie może zostać zdefiniowanych wartości pochodnych w nich. Samo określanie parametrów m_i odbywa się w sposób losowy – losowana jest liczba z przedziału $[0, \max_derivative]$, która określa ile wartości pochodnych zostanie policzone dla danego punktu.

4. Węzły Czebyszewa:

Oprócz klasycznych punktów równoodległych będziemy również generować dla testów punkty nazywane **węzłami Czebyszewa**, które spełniają wzór:

$$x_k = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos\left(\frac{2k-1}{2n}\pi\right), \quad k = 1, 2, ..., n$$
 (4.1)

Gdzie a,b są odpowiednio początkiem i końcem zadanego przedziału (w przypadku funkcji, którą będziemy interpolować, będą równe $-3\pi~oraz~3\pi$.

5. Wyznaczenie błędu interpolacji:

Miarami, którą przyjmiemy dla badania jak dokładne względem oryginalnej funkcji są funkcje sklejane będą:

Maksimum z różnic wartości pomiędzy funkcją interpolowaną, a funkcją sklejaną.
Liczymy je według wzoru:

$$max(|f(x) - S(x)|)$$

 Suma kwadratów różnic wartości funkcji interpolowanej i funkcji sklejanej, liczonej jako:

$$\sum_{i=0}^{n} [f(x) - S(x)]^{2}$$

Oczywiście nie jesteśmy w stanie dokładnie zbadać całego badanego obszaru zadanej funkcji pisząc program, dlatego różnice wartości będziemy badać w przyjętej liczbie punktów. Jak określiliśmy w punkcie 1., zadaną do testów funkcję interpolujemy w przedziale $x \in [-3\pi, 3\pi]$. Dla takiego przedziału postanowiliśmy przyjąć 500 równoodległych punktów dla badania błędów pomiędzy funkcjami (W kodzie liczba punktów została zdefiniowana jako wartość globalna, którą można zmienić w dowolnym momencie, jeśli przedział byłby większy).

6. Testy:

Węzły równoodległe:

Wykres 6.1.1 – Węzły równoodległe, n = 3

Wykres 6.1.3 – Węzły równoodległe, n = 5

Wykres 6.1.2 -Węzły równoodległe, n = 4

Wykres 6.1.4 -Węzły równoodległe, n = 7

Wykres 6.1.5 – Węzły równoodległe, n = 10

Wykres 6.1.7 – Węzły równoodległe, n = 20

Wykres 6.1.9 -Węzły równoodległe, n = 30

Wykres 6.1.6 – Węzły równoodległe, n = 15

Wykres 6.1.8 – Węzły równoodległe, n = 25

Wykres 6.1.10 -Węzły równoodległe, n = 40

Wykres 6.1.11 – Węzły równoodległe, n = 50

Wykres 6.1.13 – Węzły równoodległe, n = 70

Wykres 6.1.15 – Węzły równoodległe, n = 100

Wykres 6.1.12 – Węzły równoodległe, n = 50

Wykres 6.1.14 – Węzły równoodległe, n = 80

Węzły Czebyszewa:

Wykres 6.2.1 – Węzły równoodległe, n = 3

Wykres 6.2.3 -Węzły równoodległe, n = 5

Wykres 6.2.5 - Węzły równoodległe, n = 10

Wykres 6.2.2 – Węzły równoodległe, n = 4

Wykres 6.2.4 – Węzły równoodległe, n = 7

Wykres 6.2.6 – Węzły równoodległe, n = 15

Wykres 6.2.7 – Węzły równoodległe, n = 20

Wykres 6.2.8 – Węzły równoodległe, n = 25

Wykres 6.2.9 - Wezły równoodlegle, n = 30

Wykres 6.2.10 – Węzły równoodległe, n = 40

Wykres 6.2.11 – Węzły równoodległe, n = 50

Wykres 6.2.12 – Węzły równoodległe, n = 60

Wykres 6.2.13 -Węzły równoodległe, n = 70

Wykres 6.2.14 – Węzły równoodległe, n = 80

Wykres 6.2.15 – Węzły równoodległe, n = 100

Błędy interpolacji:

	regular		chebyshev	
n	max_diff	sqr_diff	max_diff	sqr_diff
3	19.9998	74850	26.54256	71130.29
4	19.9998	74850	46.37018	286334.5
5	16.59899	51239.23	31.3821	120585.7
7	19.9998	74850	32.29937	91201.23
10	336.4254	4121826	7.693367	5414.983
15	2.209649	105.138	0.001548	0.000345
20	0.00024	8.6E-07	0.000187	2.32E-07
25	0.000193	1.35E-07	0.001153	5.12E-06
30	0.01398	0.00157	0.006337	8.99E-05
40	9091.439	3.07E+08	382279.1	2.84E+11
50	1.01E+13	2.46E+26	5.66E+16	5.92E+33
60	1.21E+23	2.1E+46	2.88E+26	3.17E+53
70	2.43E+32	2.11E+65	2.81E+35	1.08E+71
80	3.37E+42	1.43E+85	8.06E+45	1.66E+92
100	2.45E+61	9.1E+122	1.89E+66	7.8E+132

Tabela 6.1 – Błędy interpolacji Hermite'a

7. Podsumowanie:

Za pomocą metody Hermite'a możemy w efektywny sposób wyznaczyć interpolację dla zadanego zbioru punktów. Istotną różnicą względem metod użytych w poprzednim laboratorium jest użycie węzłów Czebyszewa. W przypadku interpolacji Lagrange'a czy Newtona ich użycie istotnie zwiększało dokładność interpolacji. W interpolacji Hermite'a jednakże z pewnych przyczyn w testach wychodziły nam równie duże błędy, jak przy użyciu węzłów regularnych. Zauważalną różnicą było jednak to, że efekt Rungego nie występował z prawej, a jedynie z lewej strony wykresu.

Dla liczby węzłów $n \leq 30$ interpolacja jest bardzo dokładna.