

Precision 500 mA regulators

IPAK

Features

- Output current to 0.5 A
- Output voltages of 5; 6; 8; 9; 10; 12; 15; 24 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection
- Output voltage tolerance: 2 % (AB and AC versions) or 4 % (C version)
- Guaranteed in extended temperature range

Description

The L78M series of three-terminal positive regulators is available in TO-220, TO-220FP, DPAK and IPAK packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shutdown and safe area protection, resulting it essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Maturity status link

L78M

1 Diagram

Figure 1. Block diagram

DS0425 - Rev 24 page 2/45

2 Pin configuration

Figure 2. Pin connections (top view)

DS0425 - Rev 24 page 3/45

Figure 3. Schematic diagram

AMG080320171802MT

DS0425 - Rev 24 page 4/45

3 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter		Value	Unit
VI	DC input voltage	for $V_0 = 5$ to 18 V		V
۷۱	DC input voltage	for V _O = 20, 24 V	40	V
I _O	Output current	Internally limited	mA	
P _D	Power dissipation	Internally limited	mW	
T _{STG}	Storage temperature range		- 65 to 150	°C
		for L78MxxAC	0 to 125	
T_{OP}	Operating junction temperature range	for L78MxxAB	-40 to 125	°C
		for L78MxxC	0 to 150	

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2. Thermal data

Symbol	Parameter	TO-220	TO-220FP	DPAK	IPAK	Unit
R _{thJC}	Thermal resistance junction-case	5	5	8	8	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	60	100	100	°C/W

Figure 4. Application circuit

AMG080320171803MT

DS0425 - Rev 24 page 5/45

4 Test circuits

Figure 5. DC parameter

AMG080320171804MT

Figure 6. Load regulation

AMG080320171805MT

Figure 7. Ripple rejection

AMG080320171806MT

DS0425 - Rev 24 page 6/45

5 Electrical characteristics

Refer to the test circuits, T_J = 25 °C, V_I = 10 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 3. Electrical characteristics of L78M05C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		4.8	5	5.2	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 7 to 20 V	4.75	5	5.25	V
ΔV _O	Line we would then	V _I = 7 to 25 V, I _O = 200 mA			100	>/
	Line regulation	V _I = 8 to 25 V, I _O = 200 mA			50	mV
ΔV_{O}	Land on what are	I _O = 5 to 500 mA, T _J = 25 °C			100	>/
	Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			50	mV
I _d	Quiescent current				6	mA
A.I.		I _O = 5 to 350 mA			0.5	
$\Delta l_{\sf d}$	Quiescent current change	I _O = 200 mA, V _I = 8 to 25 V			0.8	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA, T _J = 0 to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 8 to 18 V, f = 120 Hz, I _O = 300 mA	62			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		40		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		300		mA

DS0425 - Rev 24 page 7/45

Refer to the test circuits, V_I = 10 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 4. Electrical characteristics of L78M05A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	4.9	5	5.1	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 7 to 20 V	4.8	5	5.2	V
41/	Line resculation	V_I = 7 to 25 V, I_O = 200 mA, T_J = 25 °C			100	
ΔV_{O}	Line regulation	V_I = 8 to 25 V, I_O = 200 mA, T_J = 25 °C			50	mV
41/		I _O = 5 to 500 mA, T _J = 25 °C			100	> /
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			50	mV
I _d	Quiescent current	T _J = 25 °C			6	mA
41		I _O = 5 to 350 mA			0.5	^
ΔI_d	Quiescent current change	I _O = 200 mA, V _I = 8 to 25 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 8 to 18 V, f = 120 Hz, I _O = 300 mA, T _J = 25°C	62			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25 °C		40		μV
V_d	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	T _J = 25 °C, V _I = 35 V		300		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 11 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 5. Electrical characteristics of L78M06C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		5.75	6	6.25	V
V _O	Output voltage	I _O = 5 to 350 mA, V _I = 8 to 21 V	5.7	6	6.3	V
۸\/-	Line regulation	V _I = 8 to 25 V, I _O = 200 mA			100	m) /
ΔV_{O}	Line regulation	V _I = 9 to 25 V, I _O = 200 mA			50	mV
41/	Lood non defice	I _O = 5 to 500 mA, T _J = 25 °C			120	\
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			60	mV
I _d	Quiescent current				6	mA
A1.		I _O = 5 to 350 mA			0.5	m A
Δl_d	Quiescent current change	I _O = 200 mA, V _I = 9 to 25 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA, T _J = 0 to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 9 to 19 V, f = 120 Hz, I _O = 300 mA	59			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		45		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		270		mA

DS0425 - Rev 24 page 8/45

Refer to the test circuits, V_I = 11 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 6. Electrical characteristics of L78M06A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	5.88	6	6.12	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 8 to 21 V	5.75	6	6.3	V
DV	Line versulation	V_I = 8 to 25 V, I_O = 200 mA, T_J = 25 °C			100	\/
DV_O	Line regulation	V_I = 9 to 25 V, I_O = 200 mA, T_J = 25 °C			30	mV
41/	Load regulation	I _O = 5 to 500 mA, T _J = 25 °C			120	>/
ΔV _O		I _O = 5 to 200 mA, T _J = 25 °C			60	mV
I _d	Quiescent current	T _J = 25 °C			6	mA
41.	0	I _O = 5 to 350 mA			0.5	0
Δl_d	Quiescent current change	I _O = 200 mA, V _I = 9 to 25 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V_I = 9 to 19 V, f = 120 Hz, I_O = 300 mA, T_J = 25 °C	59			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		45		μV
V _d	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	T _J = 25 °C, V _I = 35 V		270		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 14 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 7. Electrical characteristics of L78M08C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		7.7	8	8.3	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 10.5 to 23 V	7.6	8	8.4	V
ΔV_{O}	Line regulation	V _I = 10.5 to 25 V, I _O = 200 mA			100	m)/
	Line regulation	V _I = 11 to 25 V, I _O = 200 mA			50	mV
ΔV _O	Load regulation	I _O = 5 to 500 mA, T _J = 25 °C			160	m\/
		I_{O} = 5 to 200 mA, T_{J} = 25 °C			80	mV
I _d	Quiescent current				6	mA
Al		I _O = 5 to 350 mA			0.5	A
ΔI_{d}	Quiescent current change	$I_O = 200 \text{ mA}, V_I = 10.5 \text{ to } 25 \text{ V}$			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA, T _J = 0 to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz, I _O = 300 mA	56			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		52		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		250		mA

DS0425 - Rev 24 page 9/45

Refer to the test circuits, V_I = 14 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 8. Electrical characteristics of L78M08A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	7.84	8	8.16	V
V _O	Output voltage	I _O = 5 to 350 mA, V _I = 10.5 to 23 V	7.7	8	8.3	V
41/	Line regulation	V_I = 10.5 to 25 V, I_O = 200 mA, T_J = 25 °C			100	\/
ΔV_{O}		$V_{\rm I}$ = 11 to 25 V, $I_{\rm O}$ = 200 mA, $T_{\rm J}$ = 25 °C			30	mV
41/	1 1 1 - 6	$I_{\rm O}$ = 5 to 500 mA, $T_{\rm J}$ = 25 °C			160	> /
ΔV_{O}	Load regulation	I_O = 5 to 200 mA, T_J = 25 °C			80	mV
I _d	Quiescent current	T _J = 25 °C			6	mA
A.1		I _O = 5 to 350 mA			0.5	^
Δl_d	Quiescent current change	I _O = 200 mA, V _I = 10.5 to 25 V			0.8	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V_I = 11.5 to 21.5 V, f = 120 Hz I $_O$ = 300 mA, T_J = 25 °C	56			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25 °C		52		μV
V_d	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	T _J = 25 °C, V _I = 35 V		250		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 15 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 9. Electrical characteristics of L78M09C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		8.65	9	9.35	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 11.5 to 24 V	8.55	9	9.45	V
AV/ -	Line negation	V _I = 11.5 to 25 V, I _O = 200 mA			100	
ΔV_{O}	Line regulation	V _I = 12 to 25 V, I _O = 200 mA			50	mV
ΔV_{O}	Load regulation	I _O = 5 to 500 mA, T _J = 25 °C			180	
		$I_{\rm O}$ = 5 to 200 mA, $T_{\rm J}$ = 25 °C			90	mV
I _d	Quiescent current				6	mA
41		I _O = 5 to 350 mA			0.5	A
Δl_{d}	Quiescent current change	I _O = 200 mA, V _I = 11.5 to 25 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA, T _J = 0 to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 12.5 to 23 V, f = 120 Hz, I _O = 300 mA	56			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		58		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		250		mA

DS0425 - Rev 24 page 10/45

Refer to the test circuits, V_I = 15 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 10. Electrical characteristics of L78M09A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	8.82	9	9.18	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 11.5 to 24 V	8.64	9	9.36	V
۸۱/ -	Line regulation	V_I = 11.5 to 25 V, I_O = 200 mA, T_J = 25 °C			100	mV
ΔV _O	Line regulation	$V_{\rm I}$ = 12 to 25 V, $I_{\rm O}$ = 200 mA, $T_{\rm J}$ = 25 °C			30	IIIV
۸۱/ -	Land namedation	I _O = 5 to 500 mA, T _J = 25 °C			180	mV
ΔV _O	Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			90	mv
I _d	Quiescent current	T _J = 25 °C			6	mA
A1.	O de control de control	I _O = 5 to 350 mA			0.5	mA
ΔI_{d}	Quiescent current change	I _O = 200 mA, V _I = 11.5 to 25 V			0.8	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V_{I} = 12.5 to 23 V, f = 120 Hz, I_{O} = 300 mA, T_{J} = 25 °C	56			dB
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		52		μV
V_d	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25 °C		250		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, V_I = 16 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 11. Electrical characteristics of L78M10A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	9.8	10	10.2	V
V _O	Output voltage	I _O = 5 to 350 mA, V _I = 12.5 to 25 V	9.6	10	10.4	V
ΔV_{O}	Line regulation	V_{I} = 12.5 to 30 V, I_{O} = 200 mA, T_{J} = 25 °C			100	mV
	Line regulation	V_{I} = 13 to 30 V, I_{O} = 200 mA, T_{J} = 25 °C			30	IIIV
ΔV _O	Load regulation	I _O = 5 to 500 mA, T _J = 25 °C			200	mV
		I _O = 5 to 200 mA, T _J = 25 °C			100	IIIV
I _d	Quiescent current	T _J = 25 °C			6	mA
A1 .	Quicecent current change	I _O = 5 to 350 mA			0.5	m A
ΔI_d	Quiescent current change	I _O = 200 mA, V _I = 12.5 to 30 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V_I = 13.5 to 24 V, f = 120 Hz, I_O = 300 mA, T_J = 25 °C	56			dB
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		64		μV
V_d	Dropout voltage	T _J = 25 °C		2		V

DS0425 - Rev 24 page 11/45

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25 °C		245		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 19 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 12. Electrical characteristics of L78M12C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		11.5	12	12.5	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 14.5 to 27 V	11.4	12	12.6	V
۸۷/ -	Line regulation	V _I = 14.5 to 30 V, I _O = 200 mA			100	mV
ΔV _O	Line regulation	V _I = 16 to 30 V, I _O = 200 mA			50	IIIV
4)/-	Load regulation	I _O = 5 to 500 mA, T _J = 25 °C			240	mV
ΔV _O	Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			120	mv
I _d	Quiescent current				6	mA
A.L.	Outros and autros at all and a	I _O = 5 to 350 mA			0.5	A
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 14.5 to 30 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA, T _J = 0 to 125 °C		-1		mV/°C
SVR	Supply voltage rejection	V _I = 15 to 25 V, f = 120 Hz, I _O = 300 mA	55			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		75		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		240		mA

Refer to the test circuits, V_I = 19 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 13. Electrical characteristics of L78M12A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25 °C	11.75	12	12.25	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 14.5 to 27 V	11.5	12	12.5	V
۸۱/-	Line regulation	V_I = 14.5 to 30 V, I_O = 200 mA, T_J = 25 °C			100	mV
ΔV_{O}	Line regulation	V_{I} = 16 to 30 V, I_{O} = 200 mA, T_{J} = 25 °C			30	IIIV
ΔVO	AV 1 1 1 1 1	I _O = 5 to 500 mA, T _J = 25 °C			240	m\/
ΔνΟ	Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			120	mV
I _d	Quiescent current	T _J = 25 °C			6	mA
Δ1.	Quiagget gurrant shangs	I _O = 5 to 350 mA			0.5	m 1
$\Delta l_{\sf d}$	Quiescent current change	I _O = 200 mA, V _I = 14.5 to 30 V			0.8	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
SVR	Supply voltage rejection	V_{I} = 15 to 25 V, f = 120 Hz, I_{O} = 300 mA, T_{J} = 25 °C	55			dB

DS0425 - Rev 24 page 12/45

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
eN	Output noise voltage	B = 10 Hz to 100 kHz, T_J = 25 °C		75		μV
V _d	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25 °C		240		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 23 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 14. Electrical characteristics of L78M15C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		14.4	15	15.6	V
V _O	Output voltage	I _O = 5 to 350 mA, V _I = 17.5 to 30 V	14.25	15	15.75	V
41/	Line regulation	V _I = 17.5 to 30 V, I _O = 200 mA			100	\/
ΔV_{O}	Line regulation	V _I = 20 to 30 V, I _O = 200 mA			50	mV
41/		I _O = 5 to 500 mA, T _J = 25 °C			300	>/
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			150	mV
I _d	Quiescent current				6	mA
41	O discount and a large	I _O = 5 to 350 mA			0.5	4
$\Delta l_{\sf d}$	Quiescent current change	I _O = 200 mA, V _I = 17.5 to 30 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA, T _J = 0 to 125 °C		-1		mV/°C
SVR	Supply voltage rejection	V _I = 18.5 to 28.5 V, f = 120 Hz, I _O = 300 mA	54			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		90		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		240		mA

Refer to the test circuits, V_I = 23 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 15. Electrical characteristics of L78M15A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	T _J = 25 °C	14.7	15	15.3	V	
V _O	Output voltage	I _O = 5 to 350 mA, V _I = 17.5 to 30 V	14.4	15	15.6	V	
۸۱/۰	Line regulation	V_I = 17.5 to 30 V, I_O = 200 mA, T_J = 25 °C			100	m\/	
ΔνΟ	ΔV_{O} Line regulation		V_I = 20 to 30 V, I_O = 200 mA, T_J = 25 °C			30	mV
ΔV_{Ω}	Land no mulation	I _O = 5 to 500 mA, T _J = 25 °C			300	mV	
ΔνΟ	Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			150	IIIV	
I _d	Quiescent current	T _J = 25 °C			6	mA	
ΔI _d Quiescent	Quiagant gurrant abanga	I _O = 5 to 350 mA			0.5	m A	
	Quiescent current change	I _O = 200 mA, V _I = 17.5 to 30 V			0.8	mA	

DS0425 - Rev 24 page 13/45

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
SVR	Supply voltage rejection	V_{I} = 18.5 to 28.5 V, f = 120 Hz, I_{O} = 300 mA, T_{J} = 25 °C	54			dB
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		90		μV
V _d	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25 °C		240		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 33 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 16. Electrical characteristics of L78M24C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		23	24	25	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 27 to 38 V	22.8	24	25.2	V
41/	Lie e e e e dette e	V _I = 27 to 38 V, I _O = 200 mA			100	
ΔV_{O}	Line regulation	V _I = 28 to 38 V, I _O = 200 mA			50	mV
437		I_{O} = 5 to 500 mA, T_{J} = 25 °C			480	
ΔνΟ	ΔV _O Load regulation	I_{O} = 5 to 200 mA, T_{J} = 25 °C			240	mV
I _d	Quiescent current				6	mA
41	Outro and account also are	I _O = 5 to 350 mA			0.5	A
ΔI_d	Quiescent current change	I _O = 200 mA, V _I = 27 to 38 V			0.8	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I_O = 5 mA, T_J = 0 to 125 °C		-1.2		mV/°C
SVR	Supply voltage rejection	V _I = 28 to 38 V, f = 120 Hz, I _O = 300 mA	50			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		170		μV
V_d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		240		mA

Refer to the test circuits, V_I = 33 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 17. Electrical characteristics of L78M24A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25 °C	23.5	24	24.5	V
Vo	Output voltage	I_O = 5 to 350 mA, V_I = 27 to 38 V	23	24	25	V
ΔV _O	l in a manufation	V_I = 27 to 38 V, I_O = 200 mA, T_J = 25 °C			100	mV
7,0	Line regulation	V_I = 28 to 38 V, I_O = 200 mA, T_J = 25 °C			30	IIIV
ΔV_{O}	Load regulation	I_O = 5 to 500 mA, T_J = 25 °C			480	mV
700	Load regulation	I_O = 5 to 200 mA, T_J = 25 °C			240	IIIV
I _d	Quiescent current	T _J = 25 °C			6	mA

DS0425 - Rev 24 page 14/45

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
A1.	Quiaccent current change	I _O = 5 to 350 mA			0.5	mA
Δl_d	Quiescent current change	I _O = 200 mA, V _I = 27 to 38 V			0.8	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1.2		mV/°C
SVR	Supply voltage rejection	V_1 = 28 to 38 V, f = 120 Hz, I_O = 300 mA, T_J = 25 °C	50			dB
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25 °C		170		μV
V _d	Dropout voltage	T _J = 25 °C		2		V
I _{sc}	Short circuit current	V ₁ = 35 V, T _J = 25 °C		240		mA
I _{scp}	Short circuit peak current	T _J = 25 °C		700		mA

DS0425 - Rev 24 page 15/45

6 Typical performance

DS0425 - Rev 24 page 16/45

Figure 12. Supply voltage rejection vs frequency SVR(dB) L78M05 80 60 40 $V_i = 8$ to 18VI₀ =500mA T_J =25°C V₀=5V 20 0 L 10

1000

10000

f(Hz) AMG080320171823MT

100

Figure 13. Quiescent current vs junction temperature CS22490 $I_d(mA)$ L78M05 4.7 4.3 4.1 $V_1 = 10V$ V₀=5V I₀=200mA -50 0 50 100 T_J (°C) AMG080320171824MT

Figure 14. Load transient response $\Delta V_{0}(V)$ 10(A) $V_1 = 10V$ V₀=5V L78M05 LOAD CURRENT 0 OUTPUT VOLTAGE DEVIATION 0 0 10 20 30 40 50 t (µs) AMG080320171825MT

Figure 16. Quiescent current vs input voltage

DS0425 - Rev 24 page 17/45

7 Applications information

7.1 Design considerations

The L78M series of fixed voltage regulators are designed with thermal overload protection that shuts down the circuit when subjected to an excessive power overload condition, internal short-circuit protection that limits the maximum current the circuit will pass, and output transistor safe-area compensation that reduces the output short-circuit as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead

Figure 17. Fixed output regulator

AMG080320171807MT

Note: Although no output capacitor is need for stability, C_0 improve transient response if present. C_1 is required if regulator is located an appreciable distance from power supply filter.

Figure 18. Constant current regulator

AMG080320171808MT

DS0425 - Rev 24 page 18/45

Figure 19. Circuit for increasing output voltage

Figure 20. Adjustable output regulator (7 to 30 V)

AMG080320171811MT

Figure 21. 0.5 to 10 V regulator

DS0425 - Rev 24 page 19/45

Figure 22. High current voltage regulator

Figure 23. High output current with short circuit protection

AMG080320171828MT

Figure 24. Tracking voltage regulator

AMG080320171814MT

DS0425 - Rev 24 page 20/45

Figure 25. High input voltage circuit

AMG080320171815MT

Figure 26. Reducing power dissipation with dropping resistor

AMG080320171816MT

Figure 27. Power AM modulator (unity voltage gain, I_O ≤ 0.5)

AMG080320171817MT

Note: The circuit performs well up to 100 kHz.

DS0425 - Rev 24 page 21/45

Figure 28. Adjustable output voltage with temperature compensation

AMG080320171818MT

Note: Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the temperature. C allows a slow rise time of the V_0 .

DS0425 - Rev 24 page 22/45

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

8.1 TO-220 (single gauge) package information

Figure 29. TO-220 (single gauge) package outline

DS0425 - Rev 24 page 23/45

Table 18. TO-220 (single gauge) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
E	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	0.51		0.60
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

DS0425 - Rev 24 page 24/45

8.2 TO-220 (dual gauge) package information

Figure 30. TO-220 (dual gauge) package outline

DS0425 - Rev 24 page 25/45

Table 19. TO-220 (dual gauge) mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

DS0425 - Rev 24 page 26/45

8.3 TO-220FP type A package information

Figure 31. TO-220FP package outline

7012510_type_A

DS0425 - Rev 24 page 27/45

Table 20. TO-220FP package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

DS0425 - Rev 24 page 28/45

8.4 DPAK (TO-252) package information

Table 21. DPAK (TO-252) mechanical data (type A)

Dim.	mm		
Dim.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
E	6.40		6.60
E1	4.60	4.70	4.80
е	2.159	2.286	2.143
e1	4.445	4.572	4.699
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

DS0425 - Rev 24 page 29/45

Figure 32. DPAK (TO-252) package outline A

DS0425 - Rev 24 page 30/45

Table 22. DPAK(TO-252) mechanical data (type E)

Dim.	mm		
om.	Min.	Тур.	Max.
Α	2.18		2.39
A2			0.13
b	0.65		0.884
b4	4.95		5.46
С	0.46		0.61
c2	0.46		0.60
D	5.97		6.22
D1	5.21		
E	6.35		6.73
E1	4.32		
е		2.286	
e1		4.572	
Н	9.94		10.34
L	1.50		1.78
L1		2.74	
L2	0.89		1.27
L4			1.02

DS0425 - Rev 24 page 31/45

Figure 33. DPAK (TO-252) package outline E

DS0425 - Rev 24 page 32/45

Table 23. DPAK (TO-252) mechanical data type I

Di		mm		
Dim.	Min.	Тур.	Max.	
А	2.20	2.30	2.38	
A1	0.90	1.01	1.10	
A2	0.00	-	0.10	
b	0.77	-	0.89	
b1	0.76	0.81	0.86	
b2	0.77	-	1.10	
b3	5.23	5.33	5.43	
С	0.47	-	0.60	
c1	0.46	0.51	0.56	
c2	0.47	-	0.60	
D	6.00	6.10	6.20	
D1	5.25	5.40	5.60	
E	6.50	6.60	6.70	
E1	4.70	4.85	5.00	
е		2.286 BSC		
Н	9.80	10.10	10.40	
L	1.40	1.50	1.70	
L1		2.90 REF		
L2	0.90	-	1.25	
L3		0.51 BSC		
L4	0.60	0.80	1.00	
L5	0.90	-	1.50	
L6	1.80 BSC			
Θ	0°	-	8°	
Θ1	3°	5°	7°	
Θ2	1°	3°	5°	

DS0425 - Rev 24 page 33/45

BASE BETAL BI

Figure 34. DPAK (TO-252) package outline I

Table 24. DPAK footprint data

SECTION C-C

(L1)

Values				
	mm.	inch.		
Α	6.70	0.264		
В	6.70	0.64		
С	1.80	0.070		
D	3.00	0.118		
E	1.60	0.063		
F	2.30	0.091		
G	2.30	0.091		

DS0425 - Rev 24 page 34/45

Figure 35. DPAK footprint recommended data

DS0425 - Rev 24 page 35/45

8.5 DPAK packing information

Figure 36. DPAK tape

AM08852v1

DS0425 - Rev 24 page 36/45

Figure 37. DPAK reel

Table 25. DPAK tape and reel mechanical data

Таре		Reel			
Dim.	m	mm		mm	mm
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	А		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
E	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base qty.		2500
P1	7.9	8.1	Bulk qty.		2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

DS0425 - Rev 24 page 37/45

8.6 IPAK package information

Figure 38. IPAK package outline

0068771_K

DS0425 - Rev 24 page 38/45

Table 26. IPAK mechanical data

Dim	mm		
Dim.	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.30	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
E	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10°	

DS0425 - Rev 24 page 39/45

9 Ordering information

Table 27. Order code

Order codes					Output valtages
TO-220 (single gauge)	TO-220 (dual gauge)	TO-220FP	DPAK	IPAK	Output voltages
L78M05ABV	L78M05ABV-DG		L78M05ABDT-TR		5 V
			L78M05ACDT-TR		
L78M05CV	L78M05CV-DG	L78M05CP	L78M05CDT-TR	L78M05CDT-1	5 V
			L78M06ABDT-TR		6 V
			L78M06CDT-TR		6 V
			L78M08ABDT-TR		8 V
L78M08CV	L78M08CV-DG		L78M08CDT-TR		8 V
			L78M09ABDT-TR		9 V
L78M09CV	L78M09CV-DG		L78M09CDT-TR		9 V
			L78M10ABDT-TR		10 V
			L78M12ABDT-TR		12 V
			L78M12ACDT-TR		12 V
L78M12CV	L78M12CV-DG		L78M12CDT-TR		12 V
L78M15ABV	L78M15ABV-DG		L78M15ABDT-TR		15 V
L78M15CV	L78M15CV-DG		L78M15CDT-TR		15 V
			L78M24ABDT-TR		24 V
			L78M24ACDT-TR		24 V
L78M24CV	L78M24CV-DG		L78M24CDT-TR		24 V

DS0425 - Rev 24 page 40/45

Revision history

Table 28. Document revision history

Date	Revision	Changes
21-Jun-2004	6	Document updating.
30-Aug-2006	7	Order codes updated.
29-Nov-2006	8	DPAK mechanical data updated and add footprint data.
06-Jun-2007	9	Order codes updated.
10-Dec-2007	10	Added Table 25.
19-Feb-2008	11	Modified: Table 25 on page 44.
15-Jul-2008	12	Modified: Table 25 on page 44 and Table 26 on page 45.
07-Apr-2009	13	Modified: Figure 9 on page 22 and Figure 15 on page 23.
14-Jun-2010	14	Added: Table 18 on page 26, Figure 29 on page 27, Figure 30 on page 28, Figure 31 and Figure 32 on page 29.
11-Nov-2010	15	Modified: R _{thJC} value for TO-220 Table 2 on page 5.
08-Feb-2012	16	Added: order codes L78M05CV-DG, L78M12CV-DG and L78M15CV-DG Table 25 on page 44.
09-Mar-2012	17	Added: order codes L78M08CV-DG and L78M09CV-DG Table 25 on page 44.
15-May-2012	18	Added: order codes L78M24CV-DG Table 25 on page 44.
19-Apr-2013	19	Removed: Available on request footnote 2 Table 25 on page 44.
		Part numbers L78MxxAB, L78MxxAC and L78MxxC changed to L78M.
		Updated the title and the features in cover page.
04-Jun-2014	20	Canceled Table 1.Device summary. Updated Section 3: Maximum ratings, Section 5: Electrical characteristics, Section 6: Typical performance and Section 8: Package mechanical data.
		Added Section 7: Applications information and Section 9: Packaging mechanical data.
		Minor text changes.
21-Mar-2017	21	Updated Section 8: "Package information" (DPAK package information changed from type F to type I).
		Minor text changes.
12-Jun-2019	22	Updated Section 8.4 DPAK (TO-252) package information.
26-Nov-2019	23	Added Table 21. DPAK (TO-252) mechanical data (type A), Table 22. DPAK(TO-252) mechanical data (type E) and Table 23. DPAK (TO-252) mechanical data type I
		Updated Figure 34. DPAK (TO-252) package outline I.
07-Sep-2020	24	Updated Table 21. DPAK (TO-252) mechanical data (type A).

DS0425 - Rev 24 page 41/45

Contents

1	Diag	gram	
2	Pin	configuration	
3	Max	ximum ratings	
4	Test	t circuits	6
5	Elec	ctrical characteristics	
6	Тур	ical performance	16
7	App	olications information	18
	7.1	Design considerations	18
8	Pac	kage information	23
	8.1	TO-220 (single gauge) package information	
	8.2	TO-220 (dual gauge) package information	25
	8.3	TO-220FP package information	27
	8.4	DPAK (TO-252) package information	29
	8.5	DPAK packing information	36
	8.6	IPAK package information	
9	Ord	lering information	40
Rev	ision	history	41
Cor	ntents	S	42
List	of ta	ables	43
l ief	of fic	aures	11

List of tables

Table 1.	Absolute maximum ratings	. 5
Table 2.	Thermal data	
Table 3.	Electrical characteristics of L78M05C	. 7
Table 4.	Electrical characteristics of L78M05A	. 8
Table 5.	Electrical characteristics of L78M06C	
Table 6.	Electrical characteristics of L78M06A	. 9
Table 7.	Electrical characteristics of L78M08C	. 9
Table 8.	Electrical characteristics of L78M08A	10
Table 9.	Electrical characteristics of L78M09C	10
Table 10.	Electrical characteristics of L78M09A	11
Table 11.	Electrical characteristics of L78M10A	11
Table 12.	Electrical characteristics of L78M12C	12
Table 13.	Electrical characteristics of L78M12A	12
Table 14.	Electrical characteristics of L78M15C	13
Table 15.	Electrical characteristics of L78M15A	13
Table 16.	Electrical characteristics of L78M24C	14
Table 17.	Electrical characteristics of L78M24A	14
Table 18.	TO-220 (single gauge) mechanical data	24
Table 19.	TO-220 (dual gauge) mechanical data	26
Table 20.	TO-220FP package mechanical data	28
Table 21.	DPAK (TO-252) mechanical data (type A)	29
Table 22.	DPAK(TO-252) mechanical data (type E)	31
Table 23.	DPAK (TO-252) mechanical data type I	33
Table 24.	DPAK footprint data	34
Table 25.	DPAK tape and reel mechanical data	37
Table 26.	IPAK mechanical data	39
Table 27.	Order code	40
Table 28	Document revision history	41

DS0425 - Rev 24 page 43/45

List of figures

Figure 1.	Block diagram	. 2
Figure 2.	Pin connections (top view)	. 3
Figure 3.	Schematic diagram	. 4
Figure 4.	Application circuit	. 5
Figure 5.	DC parameter	. 6
Figure 6.	Load regulation	. 6
Figure 7.	Ripple rejection	. 6
Figure 8.	Dropout voltage vs junction temp	16
Figure 9.	Dropout characteristics	16
Figure 10.	Peak output current vs input-output differential voltage	16
Figure 11.	Output voltage vs junction temperature	16
Figure 12.	Supply voltage rejection vs frequency	17
Figure 13.	Quiescent current vs junction temperature	17
Figure 14.	Load transient response	17
Figure 15.	Line transient response	17
Figure 16.	Quiescent current vs input voltage	17
Figure 17.	Fixed output regulator	18
Figure 18.	Constant current regulator	18
Figure 19.	Circuit for increasing output voltage	19
Figure 20.	Adjustable output regulator (7 to 30 V)	19
Figure 21.	0.5 to 10 V regulator	19
Figure 22.	High current voltage regulator	20
Figure 23.	High output current with short circuit protection	
Figure 24.	Tracking voltage regulator	20
Figure 25.	High input voltage circuit	21
Figure 26.	Reducing power dissipation with dropping resistor	21
Figure 27.	Power AM modulator (unity voltage gain, $I_0 \le 0.5$)	21
Figure 28.	Adjustable output voltage with temperature compensation	22
Figure 29.	TO-220 (single gauge) package outline	23
Figure 30.	TO-220 (dual gauge) package outline	
Figure 31.	TO-220FP package outline	
Figure 32.	DPAK (TO-252) package outline A	30
Figure 33.	DPAK (TO-252) package outline E	32
Figure 34.	DPAK (TO-252) package outline I	
Figure 35.	DPAK footprint recommended data	
Figure 36.	DPAK tape	36
Figure 37.	DPAK reel	37
Figure 38.	IPAK package outline	38

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DS0425 - Rev 24 page 45/45