DIC L13: Delay (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

2.5. DC transfer (14)

Noise margin

Fig. 2.29

2.5. DC transfer (15)

2.5. DC transfer (16)

- Calculate $\frac{dV_{out}}{dV_{in}}$ with the channel length modulation
 - Assume the NMOS current.

$$I_{dn} = W_n C_{ox} v_{sat-n} (V_{in} - V_{tn}) (1 + \lambda_n V_{out})$$

Assume the PMOS current.

$$I_{dp} = -W_p C_{ox} v_{sat-p} (V_{in} - V_{DD} - V_{tp}) (1 + \lambda_p (V_{out} - V_{DD}))$$

- What is the determining factor for $\frac{dV_{out}}{dV_{in}}$?

2.5. DC transfer (17)

Pass transistor

4.1. Introduction (1)

Transient response

- DC analysis: V_{out} if V_{in} is a constant
- Transisent analysis: $V_{out}(t)$ if $V_{in}(t)$ changes
- A set of differential equations should be solved.
- Input is usually considered to be a step or ramp.
 - From 0 to V_{DD} or vice versa

4.1. Introduction (2)

$$V_{in}(t) = V_{out}(t < t_0) = \frac{dV_{out}(t)}{dt} = \frac{dV_{out}(t)}{dt}$$

$$I_{dsn}(t) = \begin{cases} t \leq t_0 \\ V_{out} > V_{DD} - V_t \\ V_{out} < V_{DD} - V_t \end{cases}$$

GIST Lecture on October 29, 2019

4.1. Introduction (3)

Definitions

- t_{pdr}: rising propagation delay
 - From input to rising output crossing V_{DD}/2
- t_{pdf}: falling propagation delay
 - From input to falling output crossing V_{DD}/2
- \mathbf{t}_{pd} : average propagation delay, $t_{pd} = (t_{pdr} + t_{pdf})/2$
- **t**_r: rise time
 - From output crossing 0.2 V_{DD} to 0.8 V_{DD}
- t_f: fall time
 - From output crossing Que Noot Re Q922 NoD

Fig. 4.1