Multi Notes

Atticus Kuhn

February 15, 2023

Contents

1	Jan	11. 2023	2			
	1.1	Syllabus	2			
	1.2	Overview of 1D	2			
		1.2.1 Topics Covered in 1D	2			
	1.3	Review from 1C	3			
		1.3.1 review of quartic surfaces	3			
		1.3.2 review of integrals	3			
	1.4	Multi-Variable integration	3			
		1.4.1 numerical approximation in multiple variables	4			
	1.5	Summary of surfaces	4			
2	Jan	uary 12, 2023	4			
3	Jan	uary 15, 2023	4			
4	Jan	uary 18, 2023	4			
	4.1	Integrating non-rectangular regions	4			
	4.2	Application of Double Integrals	5			
	4.3	Triple Integral	7			
5 January 19, 2023		uary 19, 2023	7			
	5.1	Review	7			
	5.2	16.4 – Polar Coordinates	7			
		5.2.1 Polar–Rectangular Conversions	8			
6	Cha	apter 16 Knowledge Check Practice	9			
7	Jan	uary 23, 2023	11			
	7.1	16.5 - Cylindrical and Spherical Coordinates	12			
		7.1.1 Cylindrical Coordinates	12			
		7.1.2 Spherical Coordaintes	13			
8	January 25, 2023					
9	Knowledge Check Solutions 1					
10	10 January 30, 2023 - Vector Fields					

11 Februrary 1 2023	19
11.1 17.3 - Flow Line	19
11.2 17.4 – Euler's Method	20
12 Chapter 17 Practice Knowledge Check	21
13 February 2 2023	22
13.1 18 – Line Integral	22
14 Februrary 6 2023	23
14.1 Gradient Field	23
14.2 Curl	25
15 Feb 8 2023	27
16 Feb 9 2023	30
17 Feb 13 2023	30
17.1 Chapter 19 - flu	32
18 Chapter 18 Knowledge Check Solutions	32

1 Jan 11. 2023

1.1 Syllabus

Learning opportunity is a waste of time. Teach your parents stuff, YHPL is not happy (it is meaningless). Each knowledge check is worth more (20%).

1.2 Overview of 1D

We are about to complete calculus. You want to take real analysis or complex analysis after 1D.

Class	Topic
1A	single variable derivatives
1b	single variable integrals
1C	multi-variable derivatives
1D	multi-variable integra;s

1.2.1 Topics Covered in 1D

Topics covered in 1D:

- 1. work
- 2. line integral = work done by force
- 3. vector fields
- 4. flux integral = rate of flow thru a thin net

- 5. Chapter 20: Green's Theorem, curl, divergenence
- 6. That's the end

If we meet YHPL, she will bake us a cake.

1.3 Review from 1C

1.3.1 review of quartic surfaces

Review quadric surfaces Review table that YHPL posted on quartic surfaces.

eqn name
$$z = x^2 - y^2$$
 Hyperbolic paraboloid
$$z = y^2$$
 Parabolic cylinder
$$z = \sqrt{4 - x^2 - y^2}$$
 half-hemisphere of a sphere
$$z = \sqrt{x^2 + y^2}$$
 elleptic cone
$$z = x^2 + y^2$$
 elliptic paraboloid
$$z = 1 - \sqrt{x^2 + y^2}$$
 elliptic cone
$$z = 6 - 3x - 2y$$
 plane
$$z = 6 - 2y$$
 plane thru (37.0.6) and normal vector is $\vec{n} = \langle 0, 2, 1 \rangle$
$$z = 4 - x^2 - y^2$$
 Elliptic Paraboloid

1.3.2 review of integrals

Recall that the definition of integral is

$$\int_{I} f(x) dx = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) partialtax_{i}$$

where $f(x_i^*)$ is the height of the i^{th} rectangle and $partialtax_i$ is the width of the i^{th} rectangle. We are summing up areas on many small rectangles. Note that area can be negative if the function goes below the x-axis (called signed area). Note that all the partialtaxs do not all have to be the same width.

Theorem 1 Average $avg = \frac{1}{|I|} \int_I f(x) dx$

1.4 Multi-Variable integration

Given that z = f(x, y), we find the area by splitting the region into rectangles under the curve. We split the x-axis and we split the y-axis. We integrate over a region R. Adding up the volume of all the little rectangular prisms approximates the volume of our original curve.

Definition 1 The definition of a multi-variable integral is

$$\iint_{R} f(x,y) dx dy = \int_{R} f(x,y) dA = \lim_{n \to \infty} \lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{i}^{*}, y_{j}^{*}) partialtax_{i} partialtay_{j}$$

In a double integral, you have to integral twice.

1.4.1 numerical approximation in multiple variables

Let's use this table as an example of a function

Let
$$R = [1, 10] \times [[0, 4]]$$
.

$$\int_{R} f dA \approx (14 + 6 + 9 + 37 + 12 + 7) \cdot 3 \cdot 2$$

Example: Let $z = e^{-(x^2+y^2)}$. If you sample the function using the bottom left approximation, then this is an overestimate because the rest of the rectangle with have higher z-values.

Given a contour map, we can approximate an integral. Divide up the graph and pick a point from each division to represent the whole.

1.5 Summary of surfaces

2 January 12, 2023

no class due to doctor's appointment

3 January 15, 2023

No class due to MLK day

4 January 18, 2023

If we are integrating over a non-rectangular region, the inner bounds must depend on the outer bounds.

4.1 Integrating non-rectangular regions

Example:

A strange region may be given by a triangle an semi-cirle

$$\int_{x=-1}^{x=0} \int_{y=1}^{y=x+2} f dy dx + \int_{x=0}^{x=\sqrt{3}} \int_{y=2}^{y=\sqrt{4-x^2}} f dy dx$$

But we could also do as y

$$\int_{y=1}^{y=2} \int_{x=-1}^{x=y-2} f dx dy + \int_{y=1}^{y=2} \int_{x=0}^{x=\sqrt{4-y^2}} f dx dy$$

Note that it could be (no need to split)

$$\int_{x=1}^{x=2} \int_{y=1}^{y=\sqrt{4-x^2}} f dx dy$$

Excercise: Given the integral

$$\int_{-1}^{0} \int_{1}^{4-x} f dy dx$$

reverse the order of the integrals

$$\int_{y=1}^{y=4} \int_{x=-1}^{x=0} f dx dy + \int_{y=4}^{y=5} \int_{x=-1}^{x=4-y} f dx dy$$

4.2 Application of Double Integrals

We use double integrals to find volume.

Example 1 Exercise: given this weird parabola, find volume.

$$s_1: z = 25 - x^2 - y^2, s_2: z = 16$$

To find volume

$$\int_{x=-3}^{x=3} \int_{y=-\sqrt{9-x^2}}^{y=\sqrt{9-x^2}} 9 - x^2 - y^2 dy dx$$

Pro =-Tip: always project orthoganly onto the xy plane

Another example

Example 2 Given the mass-density of

$$s(x,y) = \sqrt{x^2 + y^2}$$

the mass of a triangle is given by

$$\int_{x=0}^{x=2} \int_{y=0}^{y=4-2x} s(x,y) dy dx$$

Example 3 Example: Given a city with the shape of a semi-circle. Find the average distance from the city to the ocean.

YHPL strongly recommends reading ahead.

The average distance from the city to the ocean is given by

$$\frac{\int_{x=-3}^{x=3} \int_{y=0}^{y=\sqrt{9-x^2}} y \, dy dx}{\int_{x=-3}^{x=3} \int_{y=0}^{y=\sqrt{9-x^2}} 1 \, dy dx}$$

To get the average distance to the ocean, we get the total distance and then divide by the total area.

Example 4 Without computation, find the sign of

$$\int_{R} (y^3 - y) dA$$

and

where the region R is

Solution: Remember the definition. The first integral will be negative because $y < 0 \implies y^3 > y \implies y^3 - y > 0$. The second integral will be 0, because the negative x perfectly cancels out the positive x.

Example 5 What is the sign of

$$\int_{R} \cos(x) dA$$

where R is the same region as above? Solution: It is positive because $\cos x > 0$ for -1 < x < 1. Cosine only becomes 0 at $\pi/2 \approx 1.5$.

4.3 Triple Integral

Definition 2 Given a function w = f(x, y, z) and a region $W \subset \mathbb{R}^3$

$$\iiint_{w} f(x, y, z) dV$$

There are 3! = 6 different ways to integrate a triple integral. Where the inner integrals can depend on the outer integrals.

Example 6 Redo the parabola volume question using a triple integral.

$$\int_{x=-3}^{x=3} \int_{y=-\sqrt{9-x^2}}^{y=\sqrt{9-x^2}} \int_{z=16}^{z=25-x^2-y^2} 1 \, dz dy dx$$

5 January 19, 2023

5.1 Review

Review of what we learned last week

- 1. find volume by integrating over 1
- 2. determine sign of integral by using sign of integrand over region
- 3. You can swap the order of integration (either dxdy or dydx), and sometimes one order of integration will be easier than the other
- 4. When approximating a double integral, you pick a point from each region to approximate the entire region. From a contour map, you can choose the sample point and then multiply that by the area of the region.
- 5. you can find average function value by taking double integral over region and then divide by the area of that region.

Example 7 Here's an application problem: Estimate the average snowfall in Colorado based on this map. Sample based on the midpoint of each rectangular region.

$$\frac{1}{16}(16+16+19+13+8+28+18+13+2+24+17+11+0+16+8+7) = \frac{27}{2}$$

5.2 16.4 – Polar Coordinates

In polar coordinates, (r, θ) , a point is represented by its distance from the origin, r, and the angle it makes with the positive x-axis, θ .

Example 8 Let's revisit the problem of the average distance from the city to the ocean that we did last week. The same integral becomes

$$\int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=3} r^2 \sin(\theta) dr d\theta$$

$$= \int_0^{\pi} \sin \theta d\theta \cdot \int_0^3 r^2 dr$$

$$= (\cos \pi - \cos 0)(\frac{27}{3})$$

$$= -18$$

Example 9 Another example: We plot over the region

$$\int_{x=0}^{x=1} \int_{y=2x}^{y=2} x dy dx$$

$$= \int_{\theta=\arctan 2}^{\theta=\pi/2} \int_{r=0}^{r=2/\sin \theta} r^2 \cos \theta dr d\theta$$

If you want r to be the outer, then it's a bit harder We split it into 2 regions

$$\int_{r=0}^{r=2} \int_{\theta=\arctan 2}^{\theta=\pi/2} r^2 \cos \theta d\theta dr + \int_{r=2}^{r=\sqrt{5}} \int_{\theta=\arctan 2}^{\theta=\arcsin 2/r} r^2 \cos \theta d\theta dr$$

5.2.1 Polar–Rectangular Conversions

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$x^{2} + y^{2} = r^{2}$$
$$\theta = \arctan \frac{y}{x}$$

 $partialtaA \approx rpartialta\theta partialtar$

$$dA = r d\theta dr = r dr d\theta$$
$$\int_{R} f dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) dr d\theta$$

Chapter 16 Knowledge Check Practice

1. Consider the double integral $\int_R partialta(x,y)dA$ where partialta(x,y) is the distance from (x,y) to (0,0) and R is the region bounded by the y-axis, the line y=1, the line x=1 and the semi-cirle $y = \sqrt{5-x^2}$

(a) Draw R

Solution:

(b) find partialta(x, y). Solution: $partialta(x, y) = \sqrt{x^2 + y^2}$

(c) What is the practical meaning of the double integral Solution: the total mass of the region R.

(d) Write the double integral of the form dxdy. Do not evaluate. Solution:

$$\int_{y=1}^{y=2} \int_{x=0}^{x=1} \sqrt{x^2 + y^2} \, dx \, dy + \int_{y=2}^{y=\sqrt{5}} \int_{x=0}^{x=\sqrt{5-y^2}} \sqrt{x^2 + y^2} \, dx \, dy$$

(e) Write the double integral of the form dydx. Do not evaluate. Solution:

$$\int_{x=0}^{x=1} \int_{y=1}^{y=\sqrt{5-x^2}} \sqrt{x^2 + y^2} \, dy dx$$

(f) Write the double integral of the form $drd\theta$. Do not evaluate. Solution:

$$\int_{\theta=\pi/4}^{\theta=\arctan(2)} \int_{r=\sec\theta}^{r=\csc\theta} r^2 dr d\theta + \int_{\theta=\arctan 2}^{\theta=\pi/2} \int_{r=\sec\theta}^{r=\sqrt{5}} r^2 dr d\theta$$

(g) Write the double integral; of the form $d\theta dr$. Do not evaluate. Solution:

$$\int_{r=1}^{r=\sqrt{2}} \int_{\theta=\arccos(1/r)}^{\theta=\pi/2} r^2 d\theta dr + \int_{r=\sqrt{2}}^{r=\sqrt{5}} \int_{\theta=\arcsin(1/r)}^{\theta=\pi/2} r^2 d\theta dr$$

(h) Set up an integral to express the average mass density of r Solution:

$$\frac{\int_{x=0}^{x=1} \int_{y=1}^{y=\sqrt{5-x^2}} \sqrt{x^2 + y^2} \, dy dx}{\int_{x=0}^{x=1} \int_{y=1}^{y=\sqrt{5-x^2}} 1 \, dy dx}$$

9

B. A solid region W is bounded above by $z = 5 - x^2 - y^2$ and below by z = 1.

(a) Sketch W in \mathbb{R}^3 , and the projection of W onto the xy-plane

2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Solution:

C. Reverse the order of the integral

$$\int_{x=-1}^{x=0} \int_{y=1}^{y=4-x} f(x,y) dy dx$$

and

Solution: The first step is always to draw a picture of the region.

$$\int_{y=1}^{y=4} \int_{x=-1}^{x=0} f(x,y) dx dy + \int_{y=4}^{y=5} \int_{x=-1}^{x=4-y} f(x,y) dx dy$$

7 January 23, 2023

Example 10 Consider the region

The limits of the integral

$$\int_{x=-1}^{x=2} \int_{y=-3}^{y=4} f dy dx$$

are constant because we are using CARTESIAN coordinates. But, by contrast, consider a semicircle. This will have constant limits of integration in POLAR coordaintes

 ${\bf Example~11~} {\it Consider~the~region}$

4 different orders of integration First, dydx

$$\int_{x=-1}^{x=0} \int_{y=0}^{y=2} x \, dy dx + \int_{x=0}^{x=2} \int_{y=0}^{y=\sqrt{4-x^2}} x dy dx$$

 $Next \ dxdy$

$$\int_{y=0}^{y=2} \int_{x=-1}^{x=\sqrt{4-y^2}} x \, dx \, dy$$

 $Next\ drd\theta$

$$\int_{\theta=0}^{\theta=\pi/2} \int_{r=0}^{r=2} r^2 \cos\theta dr d\theta + \int_{\theta=\pi/2}^{\theta=\pi/2+\arctan(1/2)} \int_{r=0}^{r=2 \cot\theta} r^2 \cos\theta dr d\theta + \int_{\theta=\pi/2+\arctan(1/2)}^{\theta=\pi} \int_{r=0}^{r=-\sec\theta} r^2 \cos\theta dr d\theta$$

Finally $d\theta dr$

$$\int_{r=0}^{r=1} \int_{\theta=0}^{\theta=\pi} r^2 \cos\theta d\theta dr + \int_{r=1}^{r=2} \int_{\theta=0}^{\theta=\arccos(-1/r)} r^2 \cos\theta d\theta dr + \int_{r=2}^{r=\sqrt{5}} \int_{\theta=\arcsin(2/r)}^{\theta=\arccos(-1/r)} r^2 \cos\theta d\theta dr.$$

By the way, our first knowledge check on chapter 16 is on 01/26

Example 12 Imagine a circular dinner plate with radius 10cm where the mass density of the dinner plate is given by

$$partialta(x,y) = \sqrt{x^2 + y^2}$$

use polar coordinates to find the total mass of the plate. Solution:

$$\int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=10} r^2 dr d\theta$$

$$= \int_{\theta=0}^{\theta=2\pi} 1000/3 d\theta$$

$$= 2\pi * 1000/3 = \frac{2000\pi}{3}$$

Example 13 What is

$$\int_{-\infty}^{\infty} e^{-x^2} dx?$$

Solution: Let

$$I = \int_{-\infty}^{\infty} e^{-x^2} dx$$

Then

$$I^{2} = \int_{-\infty}^{\infty} e^{-x^{2}} dx \int_{-\infty}^{\infty} e^{-y^{2}} dy$$

$$= \int_{x=-\infty}^{x=\infty} \int_{y=-\infty}^{y=\infty} e^{-(x^{2}+y^{2})} dy dx$$

$$= \int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=\infty} e^{-r^{2}} r dr d\theta$$

So $I = \sqrt{\pi}$

7.1 16.5 - Cylindrical and Spherical Coordinates

7.1.1 Cylindrical Coordinates

Cylindrical coordinates are like polar coordinates in 3D. It uses 1 angle and 2 lengths. They are described by (r, θ, z) The conversion is Rectangular to cylindrical:

$$(x, y, z) \rightarrow (\sqrt{x^2 + y^2}, \arctan(y/x), z)$$

cylindrical to rectangular:

$$(r, \theta, z) \to (r \cos \theta, r \sin \theta, z)$$

The reason they are called cylindrical coordinates is because if you are trying to integrate a cylinder, the bounds of integration are constant

7.1.2 Spherical Coordaintes

Spherical Coordinates use 2 angles and 1 length. The coordinates are of the form (ρ, θ, ϕ) The conversions are

$$\rho^2 = x^2 + y^2 + z^2$$

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

$$r = \rho \sin \phi$$

$$\phi = \arccos(\frac{z}{\sqrt{x^2 + y^2 + z^2}})$$

$$dV = \rho^2 \sin \phi d\rho d\phi d\theta$$

8 January 25, 2023

Example 14 Find the volume of this cone using all integration methods.

Solution: Note that the equation for this cone is $x^2 + y^2 = z^2$

$$\int_{x=-2}^{x=2}, \int_{y=-\sqrt{4-x^2}}^{y=\sqrt{4-x^2}} 2 - \sqrt{x^2 + y^2} dy dx$$

$$\int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=2} r(2-r) dr d\theta$$

$$\int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=2} \int_{z=r}^{z=2} r dz dr d\theta$$

$$\int_{x=-2}^{x=2} \int_{y=-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{z=-\sqrt{x^2+y^2}}^{z=2} 1 dz dy dx$$
$$\int_{\theta=0}^{\theta=2\pi} \int_{\phi=0}^{\phi=\pi/4} \int_{\rho=0}^{\rho=2 \csc \phi} \rho^2 \sin \phi d\rho d\phi d\theta$$

Example 15 Consider the 3d solid which is a dome on the bottom and a cylinder on the top.

Find the mass given that the mass

density for a point is given by the distance from z = 2.

$$\int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=2} \int_{z=r}^{z=2} (2-z) r dz dr d\theta$$

$$\begin{split} &\int_{\theta=0}^{\theta=2\pi} \int_{\phi=0}^{\phi=\arctan 1/2} \int_{\rho=0}^{\rho=2\sec\phi} \rho^2 \sin\phi d\rho d\phi d\theta \\ &+ \int_{\theta=0}^{\theta=2\pi} \int_{\phi=2\csc\theta}^{\phi=\pi/2} \int_{\rho=0}^{\rho=\csc\phi} (2-\rho\sin\phi) \rho^2 \sin\phi d\rho d\phi d\theta \\ &+ \int_{\theta=0}^{\theta=2\pi} \int_{\phi=\arctan 1}^{\phi=\pi/2} \int_{\rho=0}^{\rho=\cos\phi/\sin^2\phi} (2-\rho\sin\phi) \rho^2 \sin\phi d\rho d\phi d\theta \end{split}$$

$$\int_{x=-1}^{x=1} \int_{y=-\sqrt{4-x^2}}^{y=\sqrt{4-x^2}} \int_{z=x^2+y^2}^{z=2} 2 - z dz dy dx$$

The spherical integral seems complicated, so you should break up the shape.

Example 16 Write an integral for f for the region which is bounded by $z=1-\sqrt{x^2+y^2}$ and $z=-1+x^2+y^2$

$$\int_{\theta=0}^{\theta=2\pi} \int_{r=0}^{r=1} \int_{z=r^2-1}^{1-r} fr \, dz dr d\theta$$

$$\int_{x=-1}^{x=1} \int_{y=-\sqrt{1-x^2}}^{y=\sqrt{1-x^2}} \int_{z=-1+x^2+y^2}^{1-\sqrt{x^2+y^2}} f \, dz dy dx$$

Remember that $z=1-\sqrt{x^2+y^2} \implies \rho=\frac{1}{\cos\phi+\sin\phi}$

$$\int_{\theta=0}^{\theta=2\pi} \int_{\phi=3\pi/4}^{\phi=\pi} \int_{\rho=0}^{\rho=}$$

9 Knowledge Check Solutions

Consider the double integral

$$\int_{1}^{2} \int_{1}^{\sqrt{9-x^2}} partialta(x,y) dA$$

where partialta(x, y) is the distance from the y-axis

1. Sketch R

2. find partialta(x, y)Solution: partialta(x, y) = x

3. What is the practical meaning of the integral? Solution: The total mass

4. dydx

$$\int_{1}^{2} \int_{1}^{\sqrt{9-x^2}} x dy dx$$

5. dx dy

$$\int_{1}^{\sqrt{5}} \int_{1}^{2} x dx dy + \int_{\sqrt{5}}^{\sqrt{8}} \int_{1}^{\sqrt{(9-y^2)}} x dx dy$$

6. $drd\theta$

$$\int_{\arctan(1/2)}^{\arctan(1/1)} \int_{1/\sin\theta}^{2/\cos\theta} r^2 \cos\theta dr d\theta + \int_{\arctan(1)}^{\arctan(\sqrt{5}/2)} \int_{1/\cos\theta}^{2/\cos\theta} r^2 \cos\theta dr d\theta + \int_{\arctan(\sqrt{5}/2)}^{\arctan(\sqrt{5})} \int_{1/\cos\theta}^{3} r^2 \cos\theta dr d\theta$$

7. $d\theta dr$

$$\int_{\sqrt{2}}^{\sqrt{5}} \int_{\arcsin(1/r)}^{\arccos(1/r)} r^2 \cos\theta d\theta dr + \int_{\sqrt{5}}^{3} \int_{\arccos(2/r)}^{\arccos(1/r)} r^2 \cos\theta d\theta dr$$

16

8. Let W be the solid defined by $z \le 8 - x^2 - y^2$, $x^2 + y^2 \le 4, z \ge -3$. Sketch W.

9. dydx Solution:

$$\int_{-2}^{2} \int_{\sqrt{4-x^2}}^{\sqrt{4-x^2}} (11 - x^2 - y^2)$$

10. $drd\theta$ Solution:

$$\int_{0}^{2\pi} \int_{0}^{2} r(11 - r^2) dr d\theta$$

11. dzdydx Solution:

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{-3}^{8-x^2-y^2} 1 dz dy dx$$

12. $dzdrd\theta$ Solution:

$$\int_0^{2\pi} \int_0^2 \int_{-3}^{8-r^2} r dz dr d\theta$$

13. $d\rho d\phi d\theta$ Solution :

$$\int_{0}^{2\pi} \int_{0}^{\arctan(2/4)} \int_{0}^{\frac{-\cos\phi + \sqrt{\cos^{2}\phi + 32\sin^{2}}}{2\sin^{2}\phi}} \rho^{2} \sin\phi d\rho d\phi d\theta
+ \int_{0}^{2\pi} \int_{\arctan(2/4)}^{\pi - \arctan(2/3)} \int_{0}^{2/\sin\phi} \rho^{2} \sin\phi d\rho d\phi d\theta
+ \int_{0}^{2\pi} + \int_{\pi - \arctan(2/3)}^{\pi} \int_{0}^{-3/\cos\phi} \rho^{2} \sin\phi d\rho d\phi d\theta
+ \int_{0}^{2\pi} + \int_{\pi - \arctan(2/3)}^{\pi} \int_{0}^{-3/\cos\phi} \rho^{2} \sin\phi d\rho d\phi d\theta$$

14. Use cylindrical coordinates to compute the total mass if the mass density is the distance from the origin Solution

$$\int_0^{2\pi} \int_0^2 \int_{-3}^{8-x^2-y^2} r(r^2+z^2) dz dr d\theta$$

10 January 30, 2023 - Vector Fields

Example 17 Remember that you can parameterize the graph of a circle by

$$\vec{r}(t) = \langle a\cos t, a\sin t\rangle, 0 \le t \le 2\pi`$$

If we add the angular frequency ω , we get a more generalized form

$$\vec{r}(t) = \langle a\cos\omega t, a\sin\omega t \rangle, 0 \le t \le \frac{2\pi}{\omega}$$

And the speed of this particle is $a\omega$

Remeber that $\vec{v} = \frac{d\vec{r}}{dt}$, so

$$\vec{v}(t) = \langle -a\omega \sin(\omega t), -a\omega \cos(\omega t) \rangle$$

 $so \|\vec{v}\| = a\omega$

Let's take the derivative again to get

$$\vec{a}(t) = \langle -a\omega^2 \cos(\omega t), -a\omega^2 \sin(\omega t) \rangle$$

Note that \vec{r} is always perpendicular to \vec{v} because $\vec{r} \cdot \vec{v} = 0$. Also note that $\vec{a} = -\omega^2 \vec{r}$.

Don't overgeneralize: \vec{v} is not always perpendicular to \vec{r} , but it is perpendicular in circular motion.

Example 18 Consider the following graph

Which is traced out by a particle over 5 seconds. Find the location of the particle at time t. Solution: The equation of the particle is

$$\vec{r}(t) = \langle 2\cos(-\pi t/5), 2\sin(-\pi t/5) \rangle$$

You can also parameterize (r, θ) by t.

$$r = 2,$$
 $\theta = \pi - \pi t/5$

Example 19 A particle moves in a circle of radius 2 at 5m/s. Find the equation of the particle. Solution:

$$\vec{r} = \langle 2\sin(5t/2), 2 - \cos(5t/2) \rangle, 0 \le t \le \pi/5$$

Definition 3 A vector field is a function from $\mathbb{R}^n \to \mathbb{R}^n$. It takes in a vector and spits out a vector. For example,

$$F(x,y) = \langle x+y, x-y \rangle$$

From now on, everything is about vector fields.

The way to sketch a vector field in \mathbb{R}^2 is to draw a little arrow at each point representing the output vector.

Example 20 For example, here is a sketch of $F(x,y) = \langle x+y, 2x-y \rangle$

Example 21 sketch $F(x,y) = \langle x,y \rangle$ and $F(x,y) = \langle -y,x \rangle$? Solution:

11 February 1 2023

11.1 17.3 - Flow Line

Definition 4 The **flow line** is how a particle in a vector field would "flow" (imagine the vector field is a force exerted on the particle). A path $\sigma(t) : \mathbb{R} \to \mathbb{R}^n$ is a flow-line in a vector field $\vec{F}(x) : \mathbb{R}^n \to \mathbb{R}^n$ iff

$$\sigma'(t) = \vec{F}(\sigma(t))$$

Let's review parametric functions

Example 22 Find the flow line defined by $\vec{r}(t)$ if the vector field is $\vec{F} = \langle 1, 3 \rangle$ and $\vec{r}(0) = \langle 2, 4 \rangle$ Solution:

$$\vec{r}(t) = \langle 2 + t, 4 + 3t \rangle$$

Example 23 Find the flow line of $\vec{r}(t)$ if the vector field is $\vec{F}(x,y) = \langle y, 2y \rangle$ and $\vec{r}(1) = \langle 3, 4 \rangle$ Solution:

$$r' = F \circ r$$
$$\langle x', y' \rangle = \langle y, 2y \rangle$$
$$\vec{r}(t) = \langle 2 e^{(2t)} + 1, 4 e^{(2t)} \rangle$$

Note that you can find flow lines in sage using

I am going to do this later
print('hello world')

Example 24 Find the flowline if the field is $\vec{F}(x,y) = \langle 2y, 1 \rangle$ and $\vec{r}(0) = \langle 3, 4 \rangle$ Solution:

Note that a sketch can help you find the solution

$$x' = 2y, y' = 1, x(0) = 3, y(0) = 4$$

 $y = t + 4$
 $x = t^2 + 8t + 3$
 $\vec{r}(t) = \langle t^2 + 3, t + 4 \rangle$

Example 25 Consider the vector field $\vec{F}(x,y) = \langle y, x \rangle$ and $\vec{r}(t) = \langle 3, 4 \rangle$ Solution:

$$x(t) = -\frac{1}{2}e^{(-t)} + \frac{7}{2}e^{t}, y(t) = \frac{1}{2}e^{(-t)} + \frac{7}{2}e^{t}$$

11.2 17.4 – Euler's Method

If we cannot find an exact solution, we can do a numerical approximation using Euler's Method (approximate differential equations with a tangent line). The main idea is that

$$f(a + partialtax) \approx f(a) + partialtax f'(a)$$

12 Chapter 17 Practice Knowledge Check

1. A particle moves in the direction of $\langle 4, 3 \rangle$ along a straight line at a constant speed of 10 and is located at (1,2) and (a,0) when t=k and t=5 respectively. Find \vec{r} Solution:

$$\vec{r}(t) = \langle -31 + 8t, -22 + 6t \rangle$$

2. A particle is located at (0, -4) and moves along a full circlular path clockwise centered at the origin at a cosntant speed of π . Find the particle's veclocity at t = 2 Solution:

$$4\pi$$

(note that this question was dumb and π referred to)

- 3. let $\vec{F}(x,y) = \langle 2,4y \rangle$ be ocean current. An ice berg is at (3,5) at t=0.
 - (a) Use Euler's Method with two steps to approximate the location of the iceberg at t=1. Solution:

$$r(0) = \langle 3, 5 \rangle$$

$$r(1/2) \approx \langle 3, r \rangle + 1/2 \rangle 2, 4 * 5 \rangle = \langle 4, 15 \rangle$$

$$r(1) \approx \langle 4, 15 \rangle + 1/2 \langle 2, 4 * 15 \rangle = \langle \rangle$$

(b) Find the exact location of the iceberg in the ocean current at t=1 Solution:

$$x' = 2, y' = 4y$$
$$x = 2t + 3, y = 5e^{4t}$$
$$r(1) = \langle 5, 5e^4 \rangle$$

(c) Sketch the vector field and draw the flow line starting at (3,5) on the vector field

Solution:

13 February 2 2023

13.1 18 – Line Integral

A line integral can be motivated by considering work from physics. In physics, $W = \vec{F} \cdot partialta\vec{x}$.

Definition 5 Given a vector field $\vec{F}: \mathbb{R}^n \to \mathbb{R}^n$ and a curve C parametrized by the parametric equation $\vec{r}(t): \mathbb{R} \to \mathbb{R}^n$, then the work done by the field along the curve is given by the **line integral**

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

Example 26 Given the vector field $\vec{F} = \langle 3, 4 \rangle$ and the path C which is a line from (0,0) to (0,5), find the work done.

Solution: Let $\vec{r}(t) = \langle 0, t \rangle, 0 \le t \le 5$.

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{0}^{5} \langle 3, 4 \rangle \cdot \langle 0, 1 \rangle dt = 20$$

Example 27 Find the work done by the vector field $\vec{F}(x,y) = \langle x+y,x \rangle$ along the curve

solution:

let $r_1(t) = \langle t, 2t + 2 \rangle, -1 \le t \le 0$ and $r_2(t) = \langle 2\sin t, 2\cos t \rangle, 0 \le t \le \pi/2$ Then

$$\int_{-1}^{0} \langle 3t + 2, t \rangle \cdot \langle 1, 2 \rangle dt + \int_{0}^{\pi/2} \langle 2\sin t + 2\cos t, 2\sin t \rangle \cdot \langle 2\cos t, -2\sin t \rangle dt$$

$$\int_{-1}^{0} 5t + 2dt + \int_{0}^{2} 4\sin t \cos t + 4\cos^{2} t - 4\sin^{2} t dt$$

$$-(\frac{5}{2} + 2) + (1 + 1) = \frac{3}{2}$$

Example 28 Given the vector field $\vec{F}(x,y) = \langle 2,x \rangle$ and the curve C which is a parabola given below

Solution:

Let $\vec{r}(t) = \langle t, t^2 \rangle, -1 \le t \le 2$ then

$$\int_{-1}^{2} \langle 2, t \rangle \cdot \langle 1, 2t \rangle dt$$

$$= 12$$

14 February 6 2023

Today we are going to talk about line integrals.

14.1 Gradient Field

How do we determine if a given vector field is a gradient vector field? First assume that

Definition 6 We say that \vec{F} is a gradient vector field iff

$$\exists \vec{F}, \vec{F} = \nabla f$$

Example 29 Let $\vec{F} = \langle 2xy + 1, x^2 + 3y \rangle$. Is \vec{F} a gradient field? Set up the partial equations.

$$\frac{\partial f}{\partial x} = 2xy + 1$$
 $\frac{\partial f}{\partial y} = x^2 + 3y$

Integrate both sides to get

$$f(x,y) = x^2y + x + c(y),$$
 $f(x,y) = x^2y + \frac{3}{2}y^2 + c(x)$

Derivate the first wrt to y to get

$$f_y = x^2 + c_y(y) \implies c = 37y + c_2$$

Then substitute that back in to get

$$f(x,y) = x^2y + x + 37y + c_2$$

so we may conclude that f is a gradient field.

Example 30 is $\vec{F} = \langle x, y \rangle$ a gradient field? Yes,

$$\vec{F} = \nabla(\frac{1}{2}x^2 + \frac{1}{2}y^2 + C)$$

Example 31 Is $\vec{F} = \langle -y, x \rangle$ a gradient field??

Assume there is such and f so that

$$f_x = -y$$
 $f_y = x$

Integrate to get

$$f = xy + c(x)$$
 $f = -xy + c(y)$

Then partially differentiate to get

$$f_x = y + c'(x) = -y$$

but this is a contradiction because

$$y \neq -y$$

so we conclude that \vec{F} is not a vector field.

Theorem 2 Fundamental Theorem of Calculus for Line Integrals: Given a vector field $\vec{F}: \mathbb{R}^n \to \mathbb{R}^n$ which is a gradient vector field (which means that $\vec{F} = \nabla f$) and given that C is an oriented curve in \mathbb{R}^n from p to q, then

$$\int_{C} \vec{F} \cdot d\vec{r} = f(q) - f(p)$$

You should think of this theorem as the analog of the fundamental theorem of calculus from single variable.

Example 32 Let $\vec{F} = \langle y^2, 2xy + 1 \rangle$.

Find the potential function

$$f_x = y^2 \qquad f_y = 2xy + 1$$

so

$$f = xy^2 + c(y) \implies f_y = 2xt + c'(y)$$

This means

$$c'(y) = 1 \implies c(y) = y$$

So

$$\vec{F} = \nabla(xy^2 + y)$$

Now find the line integral over the curve from before to find that it is

We use the FTC

$$1 - (-1 \cdot 0^2 - 0) = 1$$

Note that you have to pay attention to the orientation of the curve.

Definition 7 A vector field \vec{F} is called **path independent** (physicst would call it **conservative**) iff for all curve C_1 and C_2

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{c_2} \vec{F} \cdot d\vec{r}$$

when c_1 and c_2 have the same end-points.

In other words, for a path independent vector field, the work done by the vector field does not depend on the path taken.

Definition 8 Given a vector field \vec{F} and a closed curve C, the **circulation** of \vec{F} along C is

$$\oint \vec{F} \cdot d\vec{r}$$

which is just a line integral where we end up back where we started.

Note that for a conservative vector field, the circulation is always 0.

Definition 9 we call a vector field \vec{F} circulation free iff

$$\oint_{c} \vec{F} \cdot d\vec{r} = 0$$

for all closed curves c

Here is a big theorem

Theorem 3 The following statements are all equivalent

- 1. \vec{F} is a gradient field
- 2. \vec{F} is a path independent
- 3. \vec{F} is circulation free

So if you prove one of these statements, you've proved them all,

14.2 Curl

Definition 10 Given a vector field \vec{F} and a point (x,y), we defined the **curl** of \vec{F} at (x,y) to be

$$\nabla \times \vec{F}(x,y) = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$$

The physical interpretation is that the curl measures if you placed a windmill at (x, y), the curl measures the how much the vector field will turn the windmill. If the curl is positive, the rotation is counter-clockwise. If the curl is negative, the rotation is clockwise.

Another name for the curl is the **circulation density**.

Example 33 Let $\vec{F} = \langle 2xy + y^2, x^2 + x \rangle$. Find the curl of \vec{F} .

The curl is

$$\nabla \times \vec{F} = 1 - 2x - 2y + 2xy$$

Theorem 4

$$\vec{F}$$
 is a gradient field $\implies \nabla \times \vec{F} = 0$
 $\nabla \times \vec{F} \neq 0 \implies \vec{F}$ is not a gradient field

Don't misuse the theorem. The inverse of the theorem doesn't hold. If the curl is 0, we cannot conclude that the vector field is a gradient field. Consider the counter-example

$$\vec{F} = \langle \frac{-y}{\sqrt{x^2 + y^2}}, \frac{x}{\sqrt{x^2 + y^2}} \rangle$$

Now find the curl YHPL claims that the curl is 0, but I disagree. The field is not conservative Here is a useful theorem to compute a line integral.

Theorem 5 If $\|\vec{F}\|$ is constant along C and \vec{F} is tangent to C everywhere in the same direction, then

$$\int_{C} \vec{F} \cdot d\vec{r} = \|\vec{F}\|$$

Example 34 To use the previous theoerm, consider the vector field

$$\vec{F} = \langle \frac{-y}{\sqrt{x^2 + y^2}}, \frac{x}{\sqrt{x^2 + y^2}}$$

||F|| = 1, and \vec{F} is tangent to any circle centered at (0,0). So, for example

$$\oint_C \vec{F} \cdot d\vec{r} = 2\pi$$

How to find out if \vec{F} is a gradient field.

- 1. Find $\nabla \times \vec{F}$. If the curl is not 0, then \vec{F} is not a vector field. If the curl is 0, then inconclusive
- 2. Solve the differential equations to try and find a potential function

Theorem 6 Curl Test: If $\nabla \times \vec{F} = 0$ and the domain of \vec{F} has no holes then \vec{F} is a gradient vector field

15 Feb 8 2023

Note that you cannot use the Curl Test to conclude that a given vector field is not a gradient field. The implication goes one way. If you are applying the curl test, the conclusion is always "the field is a gradient field"

Theorem 7 Green's Theorem: Let \vec{F} be a smooth vector field Let C be a smooth, closed, simple, counter-clockwise curve, and let R be the region enclosed by C. Then

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_R \nabla \times \vec{F} dA$$

The proof for Green's Theorem is that the right side of the equality counts up all the little circulations inside a region, and the left side of the equality counts up the total circulation along the boundry of the region.

Example 35 Let $\vec{F} = \langle 2y, -2x \rangle$ and let C be the closed curve.

Compute

$$\oint_C \vec{F} \cdot d\vec{r}$$

Solution:

We can solve this integral in 3 different ways.

1. Using Green's Theorem

$$\iint_{R} \nabla \times \vec{F} dA$$

$$= -\int_{\theta=\pi/2}^{\theta=\pi/2} \int_{r=0}^{r=3} (-4)r dr$$

$$= 18\pi$$

Remeber to multiply by -1 because this curve is oriented clockwise

2. Using parametrization: Let

$$r(t) = (0, t), -3 \le t \le 3, r(t) = (3\cos(t), 3\sin(t)), -\pi/2 \le t \le \pi/2$$

$$\int_{t=0}^{t=3} F(r(t)) \cdot r'(t) dt + \int_{t=-\pi/2}^{t=\pi/2} F(r(t)) \cdot r'(t) dt$$

$$= \int_{t=0}^{t=3} \langle 2t, 0 \rangle \cdot \langle 0, 1 \rangle dt + \int_{t=-\pi/2}^{t=\pi/2} \langle -6\sin(t), 6\cos(t) \rangle \cdot \langle -3\sin(t), 3\cos(t) \rangle dt$$

$$= \int_{t=0}^{t=3} 0 dt + \int_{t=-\pi/2}^{\pi/2} 18 dt$$

$$= 18\pi$$

3. Geometric intuition: By theorem 5, it's just the path length, which is 3π . \vec{F} is perpendicular to C on the vertical section and \vec{F} is parallel to C on the circular section.

Sometimes we can even use Greens Theorem if the curve C is not closed by drawing in a new line.

Example 36 Let $\vec{F} = \langle xy + 1, x \rangle$ and let C be the curve

Solution:

First, by direct computation: Let

$$r(t) = \langle t, 3 - 3/2t \rangle, 0 \le t \le 2$$

$$\int_{t=0}^{t=2} \langle 3t - 3/2t^2 - 1, t \rangle \cdot \langle 1, -3/2 \rangle dt$$

= -(3 - 4 + 2) = -1

Now by Greens Theorem Draw in the other bases of the triangle. Let

$$r_1(t) = \langle t, 0, \rangle, 0 \le t \le 3$$

$$r_2(t) = \langle 0, t \rangle, 0 \le t \le 2$$

Then, Green's Theorem gives

$$\oint_{C-C_2+C_1} \vec{F} \cdot d\vec{r}
= \int_{x=0}^{x=2} \int_{y=0}^{y=3-3/2x} (1-x) dy dx
= -1$$

Now we compute the line integrals of C_1 and C_2 to subtract them out of the closed curve. We get

$$\begin{split} &\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{t=0}^{t=2} \langle 1, t \rangle \cdot \langle 1, 0 \rangle dt = 0 \\ &\int_{C_2} \vec{F} \cdot d\vec{r} \ int_{t=0}^{t=3} \langle 1, 0 \rangle \cdot \langle 0, 1 \rangle dt = 0 \end{split}$$

The orientation/sign of curves matters

We can find the area of any region if we have a function whose curl is 1. For example $\nabla \times \langle 0, x \rangle = 1$.

Example 37 Find the area of the region

Solution: By Green's Theorem

$$\int_{R} \nabla \times \vec{F} dA = \oint_{C_{1}+c_{2}} \langle 0, x \rangle \cdot d\vec{r}
= \int_{0}^{\pi} \langle 0, t, \rangle \cdot \langle 1, 0 \rangle dt + \int_{0}^{\pi} \langle 0, t \rangle \cdot \langle 1, \cos t \rangle dt$$

16 Feb 9 2023

No Class today due to 12 hour meeting.

17 Feb 13 2023

Example 38 Let $\vec{F}(x,y) = e^{xy}(y\cos(x) - \sin(x))\vec{i} + xe^{xy}\cos(x)\vec{j}$. C_2 is the half unit circle centered at (1,0) in the first quadrant, traced clockwise from (0,0) to (2,0). C_2 is the line from (0,0) to (2,0)

1. use the curl test to determine if \vec{F} is a gradient field. Solution

The curl test has 2 conditions. First

$$\nabla \times \vec{F} = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 0$$

- . Next the domain condition. The domain has no holes. By the curl test, \vec{F} is a gradient field
- 2. Find the potential function of \vec{f} Solution: Set up some differential equations.

$$f_x = e^{xy}(y\cos(x) - \sin(x))$$
 $f_y = xe^{xy}\cos(x)$

$$f = \cos(x)e^{xy} + K(x)$$
$$f_x = -y\sin(x)e^{xy} + K'(x)$$

so

$$f = e^{xy}\cos(x)$$

3. Set up the line integral $\int_{C_1} \vec{F} \cdot d\vec{r}$ using parametrization, do not evaluate. Solution:

Let

$$\vec{r}(t) = \langle 1 - \cos(t), \sin(t) \rangle, 0 \le t \le \pi$$

$$\int_{t=0}^{t=\pi} \vec{F}(\vec{r}(t))\vec{r}'(t)dt$$

4. Use the fundamental theorem of line integrals to evaluate $\int_{C_1} \vec{F} \cdot d\vec{r}$ This theorem says we just eval at the beginning and the end

$$\int_{C_1} \vec{F} \cdot d\vec{r} = f(2,0) - f(0,0) = \cos(2) - 1$$

5. evaluate $\int_{C_2} \vec{F} \cdot d\vec{r}$ using a parametrisation.

$$r(t) = \langle t, 0 \rangle 0 \le t \le 2$$

.

$$r'(t) = \langle 1, 0 \rangle 0 \le t \le 2$$
$$\int_{t=0}^{t=2} \langle -\sin(t), t\cos(t) \rangle \cdot \langle 1, 0 \rangle dt$$

6. is \vec{F} conservative? Yes \vec{F} is conservative because \vec{F} is a gradient vector field.

We already did the chapter 17 KC sample.

Example 39 Let C be the curve from (-1,0) to (1,0) on the curve $y=1-x^2$. Let $\vec{F}=\langle 2,e^{y^{2022}}+x^2+3$. Use Greens Theorem to find the work done by \vec{F} on C. Solution:

We need to close the curve in order to apply Greens Theorem. Note that $\nabla \times \vec{F} = 2x$

$$\oint_{C_2 - C_1} \vec{F} \cdot d\vec{r} = \iint 2x dA$$

The area integral is

$$\int_{x=-1}^{x=1} \int_{y=0}^{y=1-x^2} 2x dy dx = \int_{-1}^{1} 2x (1-x^2) dx = 0$$
$$\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_1} \vec{F} \cdot d\vec{r}$$

Let $\vec{r}(t) = \langle t, 0 \rangle - 1 \le t \le 1$

$$\int_{t=-1}^{t=1} \langle 2, t^2 + 4 \rangle \cdot \langle 1, 0 \rangle dt = 2$$

Example 40 Let $\vec{F} = \langle 2, e^{y^{2023}} + x^2 + 3 \rangle$ Let C be the clockwise region bounded by y = 1, x = 0, y = x. Find the clockwise circulation of the vector field around the boundry.

$$\int_{0}$$

Here we did some problems out of the textbook, and I couldn't type them up because they didn't give the equation.

17.1 Chapter 19 - flu

Chapter 19 is about flux. flux is the rate of flow of a vector field through a surface S. It is written $\int_{S} \vec{F} \cdot d\vec{A}$, where \vec{A} is vector normal to A whose length is equal to the area of A.

18 Chapter 18 Knowledge Check Solutions

- 1. Consider $F(x,y) = \langle y+1,x \rangle$ and $G(x,y) = \langle \frac{-y}{\sqrt{x^2+y^2}}, \frac{x}{\sqrt{x^2+y^2}} \rangle$
 - (a) Does the curl test apply to F?

Solution:

Yes, the curl test applies. The $\nabla \times F = 0$ and F has no holes in its domain.

(b) Is F conservative?

Solution:

Yes, F is conservative because of the Curl Test.

(c) Apply Fundamental Theorem of Calculus to evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve from $(01, e^{-1})$ to (1, e) along $y = e^x$

Solution:

We find that if $\nabla f = \vec{F}$, then f(x,y) = xy + x + c. The FTC says the answer is $f(1,e) - f(-1,e^{-1})$, which is $e + e^{-1} + 2$

(d) Does the curl test apply to \vec{G} ?

Solution:

No, \vec{G} has a hole at (0,0)

- (e) Find the work done by \vec{G} along the circle of radius 2 at the origin going counterclockwise, starting at the point (2,0)
 - i. using explicit parametrization of C Solution:

let

$$r(t) = \langle 2\cos t, 2\sin t \rangle$$
 $0 \le t \le 2\pi$

$$\oint_C \vec{G} \cdot d\vec{r} = \int_0^{2\pi} \langle -\sin t, \cos t \rangle \cdot \langle -2\sin t, 2\cos t \rangle dt$$

$$= \int_0^{2\pi} 2dt$$

$$= 4\pi$$

ii. using geometric intuition about \vec{G} and C Solution:

 \vec{G} is always perpendicular to C, so it's just

$$\|\vec{G}\||c| = 14\pi = 4\pi$$

(f) is \vec{G} conservative?

Solution:

No, because in the integral above, the circulation was not 0.

- 2. Let $\vec{F}(x,y) = \langle 2, e^{y^{2023}} + x^2 + 3 \rangle$
 - (a) Find the clockwise circulation of \vec{F} around the region bounded by $x=0,\,y=1,y=x$ Solution:

Just use Greens Theorem. Make sure to multiply by -1 because we are going clockwise.

$$\oint_{R} \vec{F} \cdot d\vec{r}$$

$$= \iint_{x=0} \nabla \times \vec{F} dA$$

$$= \int_{x=0}^{x=1} \int_{y=x}^{y=1} 2x dy dx$$

$$= -1/3$$

(b) Use Green's theorem to find the work done by the vector field along a curve C, where C is from (-1,0) to (1,0) along $y=1-x^2$.

Soltion:

You need to close the loop by drawing in an extra line. I suggest defining C_2 to be the line from (-1,0) to (1,0). Then, let R be the region enclosed by $C_2 - C$ By Green's Theorem

$$\oint_{R} \vec{F} \cdot d\vec{r} = \iint \nabla \times \vec{F} dA$$

$$\int_{C_{2}} \vec{F} \cdot d\vec{r} - \int_{C} \vec{F} \cdot d\vec{r} = \int_{-1}^{1} \int_{0}^{1-x^{2}} 2x dy dx$$

$$\int_{C_{2}} \vec{F} \cdot d\vec{r} = \int_{C} \vec{F} \cdot d\vec{r}$$

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{t=-1}^{t=1} \langle 2, t^{2} + 3 \rangle \cdot \langle 1, 0 \rangle dt$$

$$= 4$$

Name

Equation

Graph

Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2 2} = 1$$

 ${\rm Cone}$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

Elliptic Paraboloid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$$

Hyperboloid of One Sheet $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Hyperboloid of Two Sheets $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{a^2}$$

Hyperbolic Paraboloid

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$