HW 1.1 1.2.3,4,5,8

1.2.3. Let $x = (\xi_i) \in l^2$ and $y = (\eta_i) \in l^2$. Then the Cauchy-Schwarz inequality yields

$$\sum_{j=1}^{\infty} |\xi_j \eta_j| \le \sqrt{\sum_{k=1}^{\infty} |\xi_k|^2} \sqrt{\sum_{m=1}^{\infty} |\eta_m|^2}.$$

Let $x = (\xi_1, ..., \xi_n)$ and y = (1, 1, ..., 1) where y has length n. Then the Cauchy Schwarz inequality gives

$$\sum_{i=1}^{n} |\xi_i(1)| \le \sqrt{\sum_{k=1}^{n} |\xi_k|^2} \sqrt{\sum_{k=1}^{n} 1^2}$$
 (1)

$$\left(\sum_{i=1}^{n} |\xi_i|\right)^2 \le n \sum_{k=1}^{n} |\xi_k|^2,\tag{2}$$

- by squaring both sides and note that $\sum_{k=1}^{n} 1^2 = n$. **1.2.4.** Consider the sequence $S_n = (\frac{1}{\log(n)})$. Since $\log(n)$ is increasing as $n \to \infty$, then S_n converges to 0. However, note that $\sum_{n=1}^{\infty} \frac{1}{n} < \sum_{n=1}^{\infty} \frac{1}{\log(n)^p}$ for all p > 0. Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, so does S_n for all $p \ge 1$. So $S_n \notin l^p$ for all $p \ge 1$.
- **1.2.5.** Consider the sequence $S_n = (\frac{1}{n})$. It is commonly know that for p = 1, then $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (i.e. the harmonic series). However we see that the series $\sum_{n=1}^{\infty} 2^n (\frac{1}{2^n})^p = \sum_{n=1}^{\infty} 2^n (1-p)$. This series converges if and only if p > 1. If this series converges, then by the Cauchy test, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges. Thus for all p > 1, $S_n \in l^p$. (This was found on accident on wikipedia while looking for convergence tests to check results. All work was done without referring to the result though.)
 - **1.2.8.** Let $A = \{0, 1\}$ and $B = \{-1, 0\}$. Then D(A, B) = 0 but $A \neq B$ since $-1 \notin A$ and $-1 \in B$.