Désintégration radioactive

F. Kany. ISEN-Brest & La Croix-Rouge

Position du problème

Soit N(t) le nombre de particules radioactives à l'instant t. Pendant un intervalle de temps $\Delta t, -\Delta N$ particules se désintègrent radioactivement. On appelle p la probabilité, pour chaque particule radioactive, de se désintégrer pendant un intervalle de temps unité. On a : $p = -\frac{\Delta N(t)}{N(t)} = \frac{\Delta t}{\tau}$ où τ est une constante. D'où : $\frac{\Delta N}{\Delta t} = -\frac{N(t)}{\tau}$

À la limite, lorsque N tend vers l'infini et Δt vers zéro, on a : $\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -\frac{N(t)}{\tau}$ et donc : $N(t) = N(0).e^{-t/\tau}$. τ est donc une constante de temps qui représente une sorte de "durée de vie" des particules radioactives ¹.

On veut vérifier que la description probabiliste du phénomène de désintégration radiaoactive correspond bien : à une loi exponentielle pour N grand ; à un phénomène chaotique pour N petit.

On prendra $N(0) = 10^5$ particules, $\Delta t = 1$ s et $\lambda = \frac{1}{\tau} = 0, 3$ s⁻¹. Tracer $N(t_k)$ avec $t_k = k.\Delta t$.

^{1.} Le processus de désintégration radioactif suit une loi exponentielle. Mais cela ne veut pas dire que les atomes "vieillissent". Un atome de ¹⁴C vieux de 3000 ans a rigoureusement la même probabilité de se désintégrer qu'un atome de ¹⁴C apparu il y a 5 minutes. Il ne faut donc pas en déduire que le temps de demi-vie désigne un "âge" des atomes radio-actifs. Pour l'homme, au contraire, le taux de mortalité augmente avec l'âge : plus on est vieux, plus on a de chance de mourir. Si nous suivions une loi exponentielle (i.e. un taux de mortalité constant comme les atomes radio-actifs), une demi-vie de 75 ans correspondrait à : 25% d'une classe d'âge atteignant l'âge de 150 ans et 0,1% d'une classe d'âge atteignant 750 ans!