Bounded ACh Unification

Guilherme Borges Brandão

Advisor: Daniele Nantes Sobrinho Department of Mathematics Universidade de Brasília Funded by a CNPq Masters scholarship

February 7th, 2024

- 1 Motivation and Problem
- 2 ACh unification algorithm
 - Definitions
 - Inference Rules
 - The Algorithm Unify_{ACh}
- 3 Proof of Correctness
 - Termination
 - Soundness
 - Completeness

- Motivation and Problem
- 2 ACh unification algorithm
 - Definitions
 - Inference Rules
 - The Algorithm Unify_{ACh}
- 3 Proof of Correctness
 - Termination
 - Soundness
 - Completeness

Unification

Unification is a method to find solutions for a set of equations.

Example

Consider the equation $f(X,Y) \stackrel{?}{=} f(a,b)$, where X,Y are variables and a,b are constants. If f is an uninterpreted function symbol, the solution for this equation is $\{X \mapsto a, Y \mapsto b\}$.

Unification Modulo ACh

We're interested in the problem of ACh Unification, i.e. unification when we have an homomorphism h and the function symbol + is associative and commutative.

Example

The set of equations

$$\Gamma = \{h(h(X_1) + X_2)\} = {}^{?} h(Y_1 + h(Y_2))\}$$

is an ACh unification problem.

A Step Back

- Unfortunately, it has been proved that this problem is undecidable [Nar96].
- But, recently, Eeralla and Lynch [EL20] proposed an approximation of the ACh Unification problem by introducing a bound on the number of h symbols occurring in a term.
- Our goal is to verify the proof of correctness of the ACh Unification algorithm presented in [EL20].

- Motivation and Problem
- 2 ACh unification algorithm
 - Definitions
 - Inference Rules
 - The Algorithm Unify_{ACh}
- 3 Proof of Correctness
 - Termination
 - Soundness
 - Completeness

- Motivation and Problem
- 2 ACh unification algorithm
 - Definitions
 - Inference Rules
 - The Algorithm Unify_{ACh}
- Proof of Correctness
 - Termination
 - Soundness
 - Completeness

Flattened form

For convenience, we assume that our unification problem is always in flattened form, that is, every equation has one the following forms:

- $X \stackrel{?}{=} Y$ or
- $X \stackrel{?}{=} X_1 + \ldots + X_n$ or
- $X \stackrel{?}{=} f(X_1, \dots, X_n)$ or
- $X \stackrel{?}{=} h(Y)$

where X, Y, X_1, \ldots, X_n are variables.

h-depth of a variable

- Given: A unification problem Γ , $X \in var(\Gamma)$ and h a unary function symbol.
- **Define:** the h-depth of X as the maximum number of h symbols along a path to X.
- **Define:** the h-depth set of Γ as

$$\Delta := \{ (X, h_d(X, \Gamma)) | X \in var(\Gamma) \}$$

• **Define:** $MaxVal(\Delta) := \max\{c \mid (X,c) \in \Delta\}$

Problem Format

- For our problem we use a set triple $\Gamma||\Delta||\sigma$ where
 - Γ is our ACh-unification problem
 - Δ is an h-depth set of Γ , where all the elements initially have the form (V,0), with $V \in Var(\Gamma)$
 - σ is a substitution.
- Given a bound $\kappa \in \mathbb{N}$: $\Gamma ||\Delta|| \sigma$ is said to be in *solved form* if $\Gamma = \emptyset$ and $MaxVal(\Delta) \leq \kappa$.

- Motivation and Problem
- 2 ACh unification algorithm
 - Definitions
 - Inference Rules
 - The Algorithm Unify_{ACh}
- Proof of Correctness
 - Termination
 - Soundness
 - Completeness

Flattening Rules

The first step is to put the equations in Γ in flattened form. The rules are:

FLATTEN BOTH SIDES

$$\frac{\{t_1\stackrel{?}{=} t_2\} \cup \Gamma||\Delta||\sigma}{\{V\stackrel{?}{=} t_1, V\stackrel{?}{=} t_1\} \cup \Gamma||\{(V,0)\} \cup \Delta||\sigma} \text{if } t_1, t_2 \notin \mathcal{V}$$

FLATTEN RIGHT (LEFT IS SIMILAR)

$$\frac{\{t\stackrel{?}{=}t_1+t_2\}\cup\Gamma||\Delta||\sigma}{\{t\stackrel{?}{=}t_1+V,V\stackrel{?}{=}t_2\}\cup\Gamma||\{(V,0)\}\cup\Delta||\sigma}\text{if }t_2\notin\mathcal{V}$$

FLATTEN UNDER h

$$\frac{\{t \stackrel{?}{=} h(t_1)\} \cup \Gamma||\Delta||\sigma}{\{t \stackrel{?}{=} h(V), V \stackrel{?}{=} t_1\} \cup \Gamma||\{(V, 1)\} \cup \Delta||\sigma} \text{if } t_1 \notin \mathcal{V}$$

Update Δ

UPDATE
$$h$$

$$\frac{\{X \stackrel{?}{=} h(Y)\} \cup \Gamma || \{(X, c_1), (Y, c_2)\} \cup \Delta || \sigma}{\{X \stackrel{?}{=} h(Y)\} \cup \Gamma || \{(X, c_1), (Y, c_1 + 1)\} \cup \Delta || \sigma} \text{if } c_2 < c_1 + 1$$

UPDATE RIGHT + (LEFT IS SIMILAR)

$$\frac{\{X \stackrel{?}{=} Y_1 + Y_2\} \cup \Gamma||\{(X, c_1), (Y_1, c_2), (Y_2, c_3)\} \cup \Delta||\sigma}{\{X \stackrel{?}{=} Y_1 + Y_2\} \cup \Gamma||\{(X, c_1), (Y_1, c_2), (Y_2, c_1)\} \cup \Delta||\sigma} \text{if } c_3 < c_1$$

Bound Check

• Given κ as a bound for our problem:

Bound Check
$$\frac{\Gamma||\Delta||\sigma}{\frac{1}{2}} \qquad \text{if } MaxVal(\Delta) > \kappa.$$

Splitting Rule

This rule takes homomorphism theory into consideration

Splitting (Split)

$$\{X \stackrel{?}{=} h(Y), X \stackrel{?}{=} X_1 + \dots + X_n\} \cup \Gamma||\Delta||\sigma$$

$$\overline{\{X \stackrel{?}{=} h(Y), Y \stackrel{?}{=} V_1 + ... + V_n, X_1 \stackrel{?}{=} h(V_1), ..., X_n \stackrel{?}{=} h(V_n)\} \cup \Gamma||\Delta'||\sigma|}$$

where $X \neq Y$, $X \neq X_i$ for any i = 1, ..., n and

$$\Delta' := \{(V_1, 1), ..., (V_n, 1)\} \cup \Delta$$

AC Unification Rule

Remarks:

- This rule invokes any AC unification algorithm to unify the AC part of the problem.
- We will use the standard algorithm by Fages and Stickel [Fag87] and the work by Gabriel Silva et. al. [AFSS22]

AC Unification Rule

AC UNIFICATION (AC)
$$\frac{\Psi \cup \Gamma||\Delta||\sigma}{GetEqs(\theta_1) \cup \Gamma \vee \ldots \vee GetEqs(\theta_n) \cup \Gamma||\Delta||\sigma}$$
 where $Unify(\Psi) = \{\theta_1, \ldots, \theta_n\}$

- Here Ψ represents all the equations with the + on the right hand side
- \bullet Unify is a function that returns one of the complete set of unifiers returned by the AC unification algorithm.
- GetEqs is a function that takes a substitution and returns one's equational form.

- Motivation and Problem
- 2 ACh unification algorithm
 - Definitions
 - Inference Rules
 - The Algorithm Unify_{ACh}
- Proof of Correctness
 - Termination
 - Soundness
 - Completeness

Algorithm

Algorithm 1: UnifyAC.

Begin

End

the problem has no solution.

do not match then return \bot ; (h) If (DEC) is applicable then apply the rule and go to (a); (i) If there is at least one variable X occurring left side in at least two equations of the form $X \stackrel{\perp}{=} Y_1 + ...Y_n$ and $X \stackrel{\perp}{=} Z_1 + ... + Z_n$, then apply the (AC) rule and go

to (d) else go to next step;
(j) Apply (VE2) exhaustively and return the output;

Input: An equation set Γ , an empty h-depth set Δ , an empty set σ and a bound $\kappa \in \mathbb{N}$ Output: A complete set of κ -bounded ACh unifiers $\{\sigma_1, ..., \sigma_n\}$ or \bot indicating that

(g) Apply (CLASH), i.e., If the top symbols of the left and right sides of an equation

We're currently studying the Algorithm which gives an order to the application of the rules

Apply Algorithm 2 (Flattening) on Γ (Apply (VE1) exhaustively after each of the following rule applications) (a) Apply (TRIV) exhaustively to eliminate equations of the form $t \stackrel{?}{=} t$; Algorithm 2: Flattening (b) Apply the (OC), i.e., If any variable on the left side occurs on the right then Input: An equation set Γ return 1: Output: An equation set Γ' where all of the equations are in flattened form. (c) Apply the (BC), i.e., If MaxVal(Δ) > κ then return ±: 1 while any of the flattening rules can be applied do (d) If at least one of the h-depth update rules ((Uh), (UL) or (UR)) is applicable Apply (FBS) then applly the rule and go to (c) else go to next step; Apply (FL) (e) Apply (OR) exhaustively: Apply (FR) (f) If (SPLIT) is applicable then apply the rule and go to (a); Apply (FU)

Apply (FLFUN)

- Motivation and Problem
- 2 ACh unification algorithm
 - Definitions
 - Inference Rules
 - The Algorithm Unify_{ACh}
- 3 Proof of Correctness
 - Termination
 - Soundness
 - Completeness

Summary

	Results	Status
Termination	Lemma 2, Theorem 4	X fix the measure/proof
		new definition
Soundness	Theorem 9	✓ proofs verified
Completeness	Theorem 11	✓ completed omitted proofs
	Theorem 12	🗡 imprecision. Open.

- Motivation and Problem
- 2 ACh unification algorithm
 - Definitions
 - Inference Rules
 - The Algorithm Unify_{ACh}
- Proof of Correctness
 - Termination
 - Soundness
 - Completeness

Termination of Unify_{AC_b}- Measure

Let $\Gamma \parallel \Delta \parallel \sigma$ be a triple. Consider the following measure for $\Gamma \parallel \Delta \parallel \sigma$:

$$\mathbb{M}_{\mathfrak{I}_{ACh}}(\Gamma, \Delta, \sigma) := (\kappa - a, n_X, |\mathcal{S}ym(\Gamma)|, m, p, |\Gamma|, \overline{h_d}(\Delta)), \text{ where}$$

- κ the given bound.
- a is be the number of applications of the (AC) rule.
- m: number of equations on the form $t \stackrel{?}{=} X \in \Gamma$, with $t \notin \mathcal{V}$.
- p: number of isolated variables in Γ $(X \stackrel{?}{=} t, X \notin \mathcal{V}ar(t))$.

Imprecision found

Lemma 2. Let $\Gamma||\Delta||\sigma$ be a set triple, and κ be a natural number (bound) given as an input to the algorithm. Then, the maximum number of times the AC unification applied is κ .

Proof. The only time the AC unification is invoked on the problem is when there is at least one non-solved variable in the problem. A variable x occurs at least in two equations as $x \stackrel{?}{=} y_1 + \cdots + y_n +$

prg/10.1017/S0960129520000183 Published online by Cambridge University Press

678 A.K. Eeralla and C. Lynch

 y_n and $x \stackrel{\checkmark}{=} z_1 + \dots + z_m$. On each application of the AC unification, the lowest depth of non-solved variables get solved, and there is no other rule that makes these variables non-solved again. Hence, the maximum number of times the AC unification could be applied is the κ .

Here the authors claim that there are no rules that makes a solved variable non-solved without defining what a solved variable is.

Imprecision found

- We figured that the concept of solved/non variable is related to the AC part of the problem.
- We came up with a definition for AC-solved variable;
- With that, we managed to prove the affirmation and that the measure decreases;

- Motivation and Problem
- 2 ACh unification algorithm
 - Definitions
 - Inference Rules
 - The Algorithm Unify_{ACh}
- Proof of Correctness
 - Termination
 - Soundness
 - Completeness

Soundness

Definition (Satisfability)

Let $\Gamma \parallel \Delta \parallel \sigma$ be a set triple and $\kappa \in \mathbb{N}$ be a given bound.

A substitution θ satisfies $\Gamma \parallel \Delta \parallel \sigma$ iff

- $\bullet \vdash \Gamma, (s \stackrel{?}{=} t \in \Gamma \text{ implies } s\theta = t\theta)$

(Notation: $\theta \models \Gamma \parallel \Delta \parallel \sigma$)

Soundness

Then, by induction on the number of steps, we obtain:

Theorem 1

Let $\Gamma \parallel \Delta \parallel \sigma$ and $\Gamma' \parallel \Delta' \parallel \sigma' = \bigvee_{i \in I} (\Gamma_i \parallel \Delta_i \parallel \sigma_i)$ be two ACh unification problems such that

$$\Gamma \parallel \Delta \parallel \sigma \Rightarrow_{\mathfrak{I}_{ACh}}^* \Gamma' \parallel \Delta' \parallel \sigma'.$$

If θ is a substitution such that $\theta \vDash \Gamma_i \parallel \Delta_i \parallel \sigma_i$, then $\theta \vDash \Gamma \parallel \Delta \parallel \sigma$.

Soundness

Corollary 1 (Soundness)

Let Γ be a set of equations. Suppose that

$$\Gamma \parallel \Delta \parallel \sigma \Rightarrow_{\mathfrak{I}_{ACh}}^* \bigvee_{i \in I} (\Gamma_i \parallel \Delta_i \parallel \sigma_i),$$

where for each i, there are no applicable rules to $\Gamma_i \parallel \Delta_i \parallel \sigma_i$ and let $S = \{\sigma_i \mid \Gamma_i = \emptyset\}.$

Then, any element of S is an ACh-unifier of Γ .

Proof: For all $\sigma_i \in \mathcal{S}$, we have that $\sigma_i \models \Gamma_i \parallel \Delta_i \parallel \sigma_i$. Hence, by Theorem 1, $\sigma_i \models \Gamma \parallel \Delta \parallel \sigma$. Therefore, σ_i is an ACh-unifier of Γ .

- Motivation and Problem
- 2 ACh unification algorithm
 - Definitions
 - Inference Rules
 - The Algorithm Unify_{ACh}
- Proof of Correctness
 - Termination
 - Soundness
 - Completeness

Considering all the possible forms of Γ (in flattened form), we can prove

Lemma 1

Let $\Gamma \parallel \Delta \parallel \sigma$ be a set triple which is not in solved form, and θ be a substitution such that $\theta \vDash \Gamma \parallel \Delta \parallel \sigma$. Then, there exists an inference

$$\Gamma \parallel \Delta \parallel \sigma \Rightarrow_{\mathfrak{I}_{ACh}} \bigvee_{i \in I} (\Gamma_i \parallel \Delta_i \parallel \sigma_i),$$

an i and θ_0 such that $\mathcal{D}om(\theta_0) \subset \mathcal{V}ar(\Gamma_i) \setminus \mathcal{V}ar(\Gamma)$ and $\theta\theta_0 \models \Gamma_i \parallel \Delta_i \parallel \sigma_i$.

Since $Unify_{AC_h}$ terminates, we obtain the following result by construction:

Theorem 2

Let $\Gamma \parallel \Delta \parallel \sigma$ be a triple which is not in solved form, and θ be a substitution such that $\theta \vDash \Gamma \parallel \Delta \parallel \sigma$. Then, there exists a sequence of inferences

$$\Gamma \parallel \Delta \parallel \sigma \Rightarrow_{\mathfrak{I}_{ACh}}^{+} \bigvee_{i \in I} (\Gamma_i \parallel \Delta_i \parallel \sigma_i),$$

and an i and θ_0 such that $\theta\theta_0 \vDash \Gamma_i \parallel \Delta_i \parallel \sigma_i$.

Corollary 2 (Completeness)

Let $\Gamma \parallel \Delta \parallel \sigma$ be a triple. Suppose that

$$\Gamma \parallel \Delta \parallel \sigma \Rightarrow_{\mathfrak{I}_{ACh}}^* \bigvee_{i \in I} (\Gamma_i \parallel \Delta_i \parallel \sigma_i),$$

where, for each i, there are no rules left to be applied. Let $S = \{\sigma_i \mid \Gamma_i = \emptyset\}$. Then, for each ACh Unifier θ of Γ , there exists a $\sigma_j \in S$, such that $\sigma_j \lesssim_{ACh}^{Var(\Gamma)} \theta$

Proof: Let θ be an ACh Unifier of Γ , then, by Theorem 2 we have that there exist inferences such that

$$\Gamma \parallel \Delta \parallel \sigma \Rightarrow_{\mathfrak{I}_{ACh}}^* \bigvee_{i \in I} (\Gamma_i \parallel \Delta_i \parallel \sigma_i),$$

and there exists $j \in I$, and θ_0 such that $\theta\theta_0 \models \Gamma_j \parallel \Delta_j \parallel \sigma_j$ and $\Gamma_j = \emptyset$. For any $X \in \mathcal{D}om(\sigma_j)$, consider that $X \mapsto t_X \in \sigma_j$, that is, $X\sigma_j = t_X(*)$. Since $\theta\theta_0 \models \sigma_j$, by definition, we have

$$X\theta\theta_0 =_{ACh} t_X\theta\theta_0.$$

By (*), we obtain

$$X\theta\theta_0 =_{ACh} X\sigma_j\theta\theta_0.$$

But we cannot guarantee that it is possible to remove $\theta_0!!!$

Next steps

For future work would like to

- Investigate the imprecision found in the last proof. (Open for suggestions)
- Refine the definition of AC-solved variables.

References

Mauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira Silva, and Daniele Nantes Sobrinho.

A certified algorithm for ac-unification.

In Amy P. Felty, editor, 7th FSCD 2022, August 2-5, 2022, Haifa, Israel, volume 228 of LIPIcs, pages 8:1–8:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

Ajay Kumar Eeralla and Christopher Lynch.

Bounded ach unification.

Math. Struct. Comput. Sci., 30(6):664-682, 2020.

François Fages.

Associative-commutative unification.

J. Symb. Comput., 3(3):257-275, 1987.

Paliath Narendran.

Solving linear equations over polynomial semirings.

In Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996, pages 466–472. IEEE Computer Society, 1996.

Graph $\mathbb{G}(\Gamma)$

• For convenience, we can assume that our problem is in *flattened* form, that is, every equation is in the form

$$X \stackrel{?}{=} Y, X \stackrel{?}{=} h(Y), X \stackrel{?}{=} f(Y_1, ..., Y_n) \text{ or } X \stackrel{?}{=} Y_1 + ... + Y_n.$$

- So, given an unification problem Γ in flattened form, we may define the Graph of Γ where
 - each node represents a variable;
 - each edge represents a function symbol;

(a)
$$X = {}^{?} Y$$

(b)
$$X = h(Y)$$

(b)
$$X = {}^{?} h(Y)$$
 (c) $X = {}^{?} f(X_1, ..., X_n)$

Graph $\mathbb{G}(\Gamma)$

Consider $\Gamma = \{h(h(X_1) + X_2)\} = h(Y_1 + h(Y_2))\}$

- In flattened form we have $\Gamma = \{V_1 \stackrel{?}{=} h(V_2), V_1 \stackrel{?}{=} h(V_3), V_2 \stackrel{?}{=} V_4 + X_2, V_3 \stackrel{?}{=} Y_1 + V_5, V_4 \stackrel{?}{=} h(X_1), V_5 \stackrel{?}{=} h(Y_2)\};$
- So, $\mathbb{G}(\Gamma)$ should be like the figure below

Variable Elimination Rules

VARIABLE ELIMINATION 1 (VE1)

$$\frac{\{X\stackrel{?}{=}Y\}\cup\Gamma||\Delta||\sigma}{\Gamma\{X\mapsto Y\}||\Delta||\sigma\{X\mapsto Y\}\cup\{X\mapsto Y\}} \text{if } X\neq Y$$

Variable Elimination 2 (VE2)

$$\frac{\{X\stackrel{?}{=}t\}\cup\Gamma||\Delta||\sigma}{\Gamma\{X\mapsto t\}||\Delta||\sigma\{X\mapsto Y\}\cup\{X\mapsto t\}} \text{if } X\notin Var(t)$$