SPA

Thinking about Data Systems

Reliable, Scalable and Maintainable Data Applications

Scaling with the traditional databases

Big Data Systems

Desired properties of Big Data Systems

Data Model for Big Data

Generalized Big Data System Architecture

Real time systems

Difference between Batch processing and Stream Processing

Difference between real time and streaming systems

Streaming Data Applications

Databases and Streams

Usage patterns of Streaming Data

Sources of Streaming Data Complex Event Processing Systems

Explore more on the nonfunctional requirements of Data Intensive Applications

-

Generalized Streaming Data Architecture

Lambda Architecture

Kappa Architecture

Streaming Data system Component

Features of Real time Architecture

A real-time architecture checklist

-

Service Configuration and Coordination Systems

Maintaining the state

Apache ZooKeeper

Data Flow Manager

Managing distributed data flows with Apache Kafka

Kafka Fundamentals Overview

Use-Cases and applications

Architecture

Kafka Topics, Producer and Consumer Using CLI

Programming Kafka

Simple Kafka Producer

Simple Kafka Consumer

Producer, Consumer Configuration

Producer, Consumer Execution

Kafka Consumer Groups

_

Streaming Data Processor Concepts

Timing Concepts

Windowing

Joins

√ questioning-the-lambdaarchitecture √ a-briefintroduction-to-two-dataprocessing architectures •
Explore the Java APIs exposed
by the following systems √
Apache ZooKeeper √ Apache
Kafka • Explore the data
models of NoSQL data systems
√ MongoDB √ Cassandra Selfstudy on other frameworks M3:
Streaming Data Frameworks

Key features of Streaming Data Frameworks

SELF Exploration/Assignment on the following • Apache Flink • Apache Samza • Apache Kafka Streaming • Apache Storm Spark Streaming Guide Flink Docs Samza Docs Kafka Streaming Guide Storm Docs

Apache Spark Streaming

Spark Streaming fundamentals

Motivation

Difference between Spark Streaming API and Spark API

Architecture

Components of Spark Engine

Spark Application Architecture

Fault Tolerance

Comparison with Traditional Streaming Systems

Spark + Kafka integration

Structured Streaming

Developing application in Databricks platform

Compare the different streaming data platforms and identify the use cases for which they are suitable • Implement the streaming data pipeline using the Kafka Streaming library • Implement a streaming data application with Spark streaming Kafka Streaming Guide Spark Streaming Guide M4: Streaming Analytics

Exact Aggregation of Streaming Data

Registers and Hash Functions
Study illustrations for
Streaming data concepts •
Explore algorithms for
aggregation of streaming data
• Explore more about the
streaming data processing
algorithms for exact results
Class Notes M5: Advanced
Streaming Applications

Necessity of Streaming SQL

Streaming SQL: Windows

Streaming SQL: Joins

Streaming SQL: Patterns

Streaming SQL for Apache Kafka

Streaming Analytics with Cloud

AWS Kinesis

Data Streams

Data Firehose

Data Analytics

AWS IoT / Streaming Analytics Service

Channels, Pipelines

Data stores & data sets

Streaming ML Frameworks

Get familiarized with

Streaming SQL tools ✓ Kafka

Streaming SQL • Build and

deploy machine learning models

using Spark structured

streaming ✓ structured
streaming-ml

BDS

Structured Data (Relational Databases), Semi-structured data (Object Stores), and Unstructured Data (File systems) What is Big Data? Characteristics of Big Data. Systems perspective -Processing: In-memory vs. (from) secondary storage vs. (over the) network Locality of Reference: Principle, examples Impact of Latency: Algorithms and data structures that leverage locality, data organization on disk for better locality

Parallel and Distributed
Processing: Motivation (Size
of data and complexity of
processing); Storing data in
parallel and distributed
systems: Shared Memory vs.
Message Passing; Strategies
for data access: Partition,
Replication, and Messaging.
Memory Hierarchy in

Memory Hierarchy in
Distributed Systems: In-node
vs. over the network
latencies, Locality,
Communication Cost.
Distributed Systems:
Motivation (size,
scalability, cost-benefit),
Client-Server vs. Peer-toPeer models, Cluster
Computing: Components and

Big Data Analytics: Requirements, constraints, approaches, and technologies.

Architecture

Big Data Systems -Characteristics: Failures; Reliability and Availability; Consistency -Notions of Consistency.

CAP Theorem and implications for Big data Analytics

Big Data Lifecycle: Data
Acquisition, Data Extraction
- Validation and Cleaning,
Data Loading, Data
Transformation, Data
Analysis and Visualization.
Case study - Big data
application

Distributed Computing Design Strategy: Divide-andconquer for Parallel /
Distributed Systems - Basic
scenarios and Implications.
Programming Patterns: Dataparallel programs and map as
a construct; Treeparallelism, and reduce as a
construct; Map-reduce model:
Examples (of map, reduce,
map-reduce combinations, and
Iterative map-reduce)

Hadoop: Introduction, Architecture, and Map-reduce Programming on Hadoop

Hadoop: Hadoop Distributed File System (HDFS), Scheduling in Hadoop (using YARN). Example - Hadoop application.

Hadoop Ecosystem: Databases and Querying (HBase, Pig, and Hive)

Hadoop Ecosystem:
Integration and coordination
(Sqoop, Flume, Zookeeper &
Oozie)

NoSQL databases: Introduction, Architecture, Querying, Variants, Case Study.

Spark: Introduction, Architecture and Features

Programming on Spark:
Resilient Distributed
Datasets, Transformation,
Spark SQL, Examples
Machine Learning (on Spark):
Regression, Classification,
Collaborative Filtering, and
Clustering.

Streaming: Stream Processing - Motivation, Examples, Constraints, and Approaches.

Streaming on Spark:
Architecture of Spark
Streaming, Stream Processing
Model, Example.
Cloud Computing: A brief

overview: Motivation,
Structure and Components;
Characteristics and
advantages - Elasticity,
Dynamic provisioning, Multitenancy. Services on the
cloud.

Storage as a Service: Forms of storage on the cloud, Cloud managed NoSQL databases.

Amazon's storage services: block storage, file system, and database; EBS, SimpleDB, S3

Case study - Amazon DynamoDB (Access/Querying model, Database architecture and applications on the cloud).

Fundamentals of Neural Network:

Fundamentals of Neural Network: Perceptron, Perceptron learning algorithm, Multilayer Perceptron (MLP), MLP on Boolean, reals and continuous values,

Fundamentals of Neural Network: MLP as classifiers, MLP as Universal approximators, Issue of Depth and Width,

Deep Feedforward Neural Network: MLP with hidden Layers, Forward Propagation, Backward Propagation, Training a DNN using Gradient Descent algorithm, Computational Graphs

Deep Feedforward Neural Network: Activation Functions, Softmax Regression, T1 - Ch4 and Ch3.4

Optimization algorithms for Deep models: Challenges - Saddle points and plateau, Non-convex optimization intuition, Stochastic Gradient Descent (SGD), Minibatch SGD, Overview of Rprop, Quickprop, Momentum, Nastrov's Accelarated Momentum, Algorithms with Adaptive Learning Rates, Adagrad, RMSprop, ADAM, T1 - Ch11

Regularization for Deep models:
Model Selection, Underfitting,
and Overfitting, L1 and L2
Regularization, Dropout,
Challenge - Vanishing and
Exploding Gradients, Parameter
Initialization, Challenge
Covariance Shift, Batch
Normalization, T1 - Ch4, 7.5

Convolutional Neural Network:
Basics of Computer Vision and
Invariance, Convolutions for
Images, Learning a Kernel,
Padding and stride, Channels,
Pooling, Designing a CNN, T1 Ch6

Popular CNN architectures: LeNet, AlexNet, VGG16, Network in Network (NiN), Inception Net, ResNet, DenseNet, Transfer Learning, Applications of CNN, T1 - Ch7 Sequence Models: Recurrent Neural Networks, Types of Sequences and RNNs, Backpropagation Through Time, Gates and Exploding / Vanishing gradient, T1 - Ch8

Popular RNN architectures: Gated Recurrent Units (GRU), Long Short-Term Memory (LSTM)
Networks, Bidirectional models, Sequence to sequence learning with an RNN encoder and an RNN decoder, T1 - Ch9

Attention Mechanism: Attention Pooling, Attention Scoring Functions, Multi-Head Attention, T1 - Ch10

Attention Mechanism: Self-Attention, Positional Encoding, Transformer architecture, Applications of Transformers, T1 - Ch10

Representation Learning: Review of PCA, Autoencoder, Denoising Autoencoders, Variational Autoencoders, Applications of Autoencoders, T1 - Ch14

Generative Adversarial Networks: An overview, applications of GAN, T1 - Ch19

- 1. Natural Language
 Understanding and
 Generation The Study of
 Language. Applications of
 Natural Language
 Understanding. Evaluating
 Language Understanding
 Systems. The Different
 Levels of Language
 Analysis. The
 Organization of Natural
 Language Understanding
 Systems.
- 2. N-gram Language
 Modelling N-Grams •
 Generalization and Zeros. •
 Smoothing The Web and
 Stupid Backoff Evaluating
 Language Models Smoothing
 The Web and Stupid
 Backoff
- 3 Neural networks and
 Neural language Models •
 Units The XOR problem •
 Feed-Forward Neural
 Networks Training Neural
 Nets Neural Language
 Models -expand spend more
 time
- 4. Part-of-Speech Tagging •
 (Mostly) English Word
 Classes The Penn Treebank
 Part-of-Speech Tag set •
 Part-of-Speech Tagging •
 Markov Chains The Hidden
 Markov Model HMM Part-ofSpeech Tagging Part-ofSpeech Tagging for
 Morphological Rich
 Languages
- 5. Hidden Markov Models and MEMM The Hidden Markov Model Likelihood Computation: The Forward Algorithm Decoding: The Viterbi Algorithm HMM Training: The Forward-Backward Algorithm Maximum Entropy Markov Models Bidirectionality
- 6. Topic Modelling ●
 Mathematical foundations
 for LDA: Multinomial and
 Dirichlet distributions ●

- Intuition behind LDA LDA
 Generative model Latent
 Dirichlet Allocation
 Algorithm and
 Implementation Gibbs
 Sampling
- 7. Vector semantics and Embedding Lexical semantics Vector semantics Word and Vectors TFIDF Word2Vec, Skip gram and CBOW Glove Visualizing Embedding's
- 8. Grammars and Parsing. •
 Grammars and Sentence
 Structure. What Makes a
 Good Grammar A Top-Down
 Parser. Bottom-Up Chart
 Parser. Top-Down Chart
 Parsing. Finite State
 Models and Morphological
 Processing. Grammars and
 Logic Programming.
- 9. Statistical Constituency
 Parsing Probabilistic
 Context-Free Grammars •
 Probabilistic CKY Parsing
 of PCFGs Ways to Learn
 PCFG Rule Probabilities •
 Problems with PCFGs •
 Improving PCFGs by
 Splitting Non-Terminals •
 Probabilistic Lexicalized
 CFGs
- 10. Dependency Parsing •
 Dependency Relations •
 Dependency Formalisms •
 Dependency Treebanks •
 Transition-Based Dependency
 Parsing Graph-Based
 Dependency Parsing •
 Dependency parser using
 neural network
- 11. Encoder-Decoder Models,
 Attention and Contextual
 Embeddings Neural
 Language Models and
 Generation EncoderDecoder Networks, Attention
 Applications of EncoderDecoder Networks SelfAttention and Transformer
 Networks BERT: Pretraining of Deep
 Bidirectional Transformers

- for Language Understanding
 Contextual Word
 Representations: A
 Contextual Introduction •
 The Illustrated BERT, ELMo,
 and co. XLM
- 12. Word sense
 disambiguation Word
 Senses Relations between
 Senses WordNet: A
 Database of Lexical
 Relations Word Sense
 Disambiguation Alternate
 WSD algorithms and Tasks •
 Using Thesauruses to
 Improve Embedding's Word
 Sense Induction
- 13. Semantic web ontology and Knowledge Graph •
 Introduction to semantic web Semantic web ontology Semantic web languages Ontology Engineering Ontology Learning Knowledge graph construction of graph
- 14. Introduction to NLP
 Applications Brief
 introduction of state of
 art applications Text
 Summarization Machine
 Translation