CS 344: Design and Analysis of Computer Algorithms

(Spring 2022 — Sections 5,6,7,8)

Lecture 8:
Hashing, Dynamic
Programming

Hash Tables: Chaining

How to handle the collisions?

Chaining

- The hash table is an array with each cell being a linked-list
- Given the array A[1:n]:
 - For every i, we compute b(i) = h(A[i]) and add A[i] to the tail of the linked-list at T[b(i)]
- Given x to be searched:
 - We iterate over elements of the linked-list T[h(x)] to find x or output it does not exist

• $h(x) = (x \mod 4) + 1$

n=8

m=4

A:

20	150	16	71	31	51
----	-----	----	----	----	----

•
$$h(x) = (x \mod 4) + 1$$

n=8 m=4

• h(20) = 1

A: 20 150 16 71 31 51

•
$$h(x) = (x \mod 4) + 1$$

• h(20) = 1

A: 20 150 16 71 31 51

•
$$h(x) = (x \mod 4) + 1$$

n=8 m=4

• h(20) = 1

A: 20 150 16 71 31 51

• h(150) = 3

•
$$h(x) = (x \mod 4) + 1$$

n=8 m=4

• h(20) = 1

A: 20 150 16 71 31 51

• h(150) = 3

•
$$h(x) = (x \mod 4) + 1$$

n=8 m=4

•
$$h(20) = 1$$

A: 20 150 16 71 31 51

•
$$h(150) = 3$$

• h(16) = 1

•
$$h(x) = (x \mod 4) + 1$$

n=8 m=4

•
$$h(20) = 1$$

A: 20 150 16 71 31 51

•
$$h(150) = 3$$

• h(16) = 1

•
$$h(x) = (x \mod 4) + 1$$

•
$$h(20) = 1$$

•
$$h(150) = 3$$

•
$$h(16) = 1$$

• h(71) = 4

n=8

•
$$h(x) = (x \mod 4) + 1$$

•
$$h(20) = 1$$

•
$$h(150) = 3$$

•
$$h(16) = 1$$

•
$$h(71) = 4$$

•
$$h(x) = (x \mod 4) + 1$$

•
$$h(20) = 1$$

•
$$h(150) = 3$$

- h(16) = 1
- h(71) = 4
- h(31) = 4

A: 20 150 16 71 31 51

•
$$h(x) = (x \mod 4) + 1$$

•
$$h(20) = 1$$

•
$$h(150) = 3$$

- h(16) = 1
- h(71) = 4
- h(31) = 4

n=8 m=4

A: 20 150 16 71 31 51

•
$$h(x) = (x \mod 4) + 1$$

•
$$h(20) = 1$$

•
$$h(150) = 3$$

•
$$h(16) = 1$$

•
$$h(71) = 4$$

•
$$h(31) = 4$$

•
$$h(51) = 4$$

A: 20 150 16 71 31 51

•
$$h(x) = (x \mod 4) + 1$$

•
$$h(20) = 1$$

•
$$h(150) = 3$$

- h(16) = 1
- h(71) = 4
- h(31) = 4
- h(51) = 4

A: 20 150 16 71 31 51

• $h(x) = (x \mod 4) + 1$

Search for x=31

A: 20 150 16 71 31 51

- h(31) = 4

n=8

- $h(x) = (x \mod 4) + 1$
- Search for x=31 A: 20 150 16
 - h(31) = 4

m=4

71

31

51

- $h(x) = (x \mod 4) + 1$
- Search for x=31
 - h(31) = 4

n=8 m=4

A: 20 150 16 71 31 51

- $h(x) = (x \mod 4) + 1$
- Search for x=31

$$- h(31) = 4$$

- Search for x=64
 - h(64)=1

n=8 m=4

A: 20 150 16 71 31 51

- $h(x) = (x \mod 4) + 1$
- Search for x=31
 - h(31) = 4
- Search for x=64
 - h(64)=1

n=8 m=4

A: 20 150 16 71 31 51

- $h(x) = (x \mod 4) + 1$
- Search for x=31

$$- h(31) = 4$$

- Search for x=64
 - h(64)=1

n=8 m=4

A: 20 150 16 71 31 51

- $h(x) = (x \mod 4) + 1$
- Search for x=31

$$- h(31) = 4$$

- Search for x=64
 - h(64)=1

n=8 m=4

A: 20 150 16 71 31 51

- $h(x) = (x \mod 4) + 1$
- Search for x=31

$$- h(31) = 4$$

- Search for x=64
 - h(64)=1

n=8 m=4

A: 20 150 16 71 31 51

Chaining: Proof of Correctness

- Every element A[i] of is added to the linked-list of T[h(A[i])] and no other number appears in the linked-list
- For any number x, it can only be in the linked-list T[h(x)] and we search the entire list for it

• What is worst-case runtime of **search**(x)?

What is worst-case expected runtime of search(x)?

- Worst-case expected runtime of search(x) using near-universal hash functions:
 - Define $\ell(x)$ as the number of elements in A[1:n] mapped to x by the hash function h
 - Runtime of search(x) is $O(1 + \ell(x))$
- Worst-case expected runtime of search(x) is $O(1 + \mathbf{E}_{h \in \mathcal{H}}[\ell(x)])$

So worst-case expected runtime is:

$$O(1 + \mathbf{E}_{h \in \mathcal{H}}[\ell(x)]) = O(1 + \frac{n}{m})$$

Called Load
ratio of number of elements to
hash to the size of hash
table

Dynamic Programming: It is just Smart Recursion

Dynamic Programming?

- A technique for speeding up recursive algorithms
- Proof of correctness: exactly the same as recursive algorithms
- Runtime? Will become much faster typically

Fibonacci Numbers

Recursive Algorithm

- RecFibo(n):
 - If n=1 or n=2, return 1
 - Otherwise, return RecFibo(n-1) + RecFibo(n-2)

Recursive Algorithm

- RecFibo(n):
 - If n=1 or n=2, return 1
 - Otherwise, return RecFibo(n-1) + RecFibo(n-2)
- Proof of correctness: This is literally the same formula as F(n)!
- Runtime analysis?

RecFibo(6):

RecFibo(6)

RecFibo(6):

What is wrong with this figure?

What is wrong with this figure?

An "ideal" figure?

An "ideal" figure?

Memoization

- Pick an array S[1:n] initialized with 'undefined' in every entry
- Whenever we compute F(i), store it in S[i]
- Next time, instead of recomputing F(i), just return S[i]

Fibonacci Numbers with Memoization

- Initialize an array S[1:n] with 'undefined' in every entry
- MemFibo(n):
 - If $S[n] \neq$ 'undefined', return S[n]
 - If n=1 or n=2, let S[n] = 1
 - Otherwise, let S[n] = MemFibo(n-1) + MemFibo(n-2)
 - Return S[n]

Fibonacci Numbers with Memoization

- Proof of Correctness:
 - Nothing has changed in the logic of algorithm between
 MemFibo and RecFibo
 - So MemFibo is also correct

Fibonacci Numbers with Memoization

- Runtime Analysis:
 - We spend O(1) time, ignoring recursive calls, for each subproblem MemFibo(m) for any $1 \le m \le n$
 - We will **not** compute a subproblem more than once
 - So the runtime is O(n)

Beyond Memoization?

- Memoization is a form of dynamic programming
- We literally only need to store the answers to our recursive calls so we do not recompute them
- It is usually called top-down dynamic programming
- There is also a notion of bottom-up dynamic programming
 - A way of stating dynamic programming without recursive calls

Bottom-Up Dynamic Programming

- We can literally fill up the array of stored answers ourselves
- DynFibo(n):
 - Create an empty array S[1:n]
 - Let S[1] = S[2] = 1
 - For i = 3 to n: let S[i] = S[i-1] + S[i-2]
 - Return S[n]

Bottom-Up Dynamic Programming

- Runtime analysis?
 - A for-loop of length O(n)
 - O(1) runtime per each iteration of for-loop
 - O(n) time in total then

S[1]

S[2]

Elements of Dynamic Programming

Dynamic Programming?

- Write a recursive formula for the problem we want to solve
- Write a recursive function that computes the recursive formula
- Use a table to store the answer of recursive function for each recursive call and do not recompute them

Dynamic Programming?

- Write a recursive formula for the problem we want to solve
- Write a recursive function that computes the recursive formula
- Use a table to store the answer of recursive function for each recursive call and do not recompute them
- Two ways:
 - Memoization: Top-Down Dynamic Programming
 - Iterative: Bottom-Up Dynamic Programming

Dynamic Programming?

Write a recursive formula for the problem we want to solve

Iterative: Bottom-Up Dynamic Programming

Writing Recursive Formula

- Step One: Specification
 - Answer to the question of "What?"
 - Describe the problem you want to solve using your formula in plain English
 - Example: "For every $1 \le i \le n$, the formula F(i) is supposed to be the i-th Fibonacci number"
 - Describe how the answer to the original problem can be obtained IF we have a solution to the recursive formula
 - Example: Return F(n)"

Writing Recursive Formula

- Step Two: Solution
 - Answer to the question of "How?"
 - Give a recursive formula for solving for the problem you described in specification by solving the instances of the same problem
 - Example: "F(1) = F(2) = 1; for any i > 2, F(i) = F(i-1) + F(i-2)"
 - Prove that this recursive formula indeed matches the specification provided in the previous step
 - Answer to the question of "Why?"

Writing Recursive Formula

- Prove that this recursive formula indeed matches the specification provided in the previous step:
 - Prove that base case of recursive formula is correct
 - Prove that larger values of formula are computed correctly from the smaller values

Note: this is just induction in disguise

Next Steps?

- Step Three:
 - Use either memoization or bottom-up dynamic programming
 - The choice is entirely up to you
 - Just remember in bottom-up dynamic programming, you have to specify the order of evaluation also

Next Steps?

- Step Four:
 - Analyze the runtime of the algorithm
 - How many subproblems are there?
 - How much time solving each one takes?

- We are done! This is all there is to dynamic programming
- The only thing remained for us is to practice

Dynamic Programming

- Every time you do dynamic programming:
 - Clearly specify subproblems in plain English
 - Design a recursive formula for solving subproblems from smaller ones
 - Prove the correctness of your recursive formula
 - Turn the formula into a dynamic programming algorithm using either memoization or bottom-up approach
 - Analyze the runtime of your algorithm