10-701: Introduction to Machine Learning

Lecture 8 – Regularization

Hoda Heidari

* Slides adopted from F24 offering of 10701 by Henry Chai.

Feature Transforms

• Given D-dimensional inputs $\mathbf{x} = [x_1, ..., x_D]$, first compute some transformation of our input, e.g.,

$$\phi([x_1, x_2]) = [z_1 = (x_1 - 0.5)^2, z_2 = (x_2 - 0.5)^2]$$
(0.5, 0.5) is the center of the circle.

General Q^{th} -order Transforms

or D highest degree polynomial term allowed

- $\phi_{2,2}^{\prime}([x_1, x_2]) = [x_1, x_2, x_1^2, x_1 x_2, x_2^2]$
- $\phi_{2,3}([x_1, x_2]) = [x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3]$
- $\phi_{2,4}([x_1, x_2]) =$ $[x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3, x_1^4, x_1^3 x_2, x_1^2 x_2^2, x_1 x_2^3, x_2^4]$
- $\phi_{2,Q}$ maps a 2-D input to a $O(Q^2)$ -D output
- Scales even worse for higher-dimensional inputs...

If feature space is D-dinensional,
$$\Phi_{D,Q}$$
 is defined similarly how many features are in $\Phi_{D,Q}$? $O(-Q_0^D)$ (Q+D)

Feature Transforms: Tradeoffs

	Low-Dimensional Input Space	High-Dimensional Input Space
Training Error	High	Low
Generalization	Good	Bad

Test Error

Feature Transforms: Experiment

- $x \in \mathbb{R}, y \in \mathbb{R} \text{ and } N = 20$ $\mathbb{R} \left\{ (x, y) (x, y) (x, y) \right\}$
- Targets are generated by a 10^{th} -order polynomial in x with additive Gaussian noise:

$$y_{i} = \sum_{d=0}^{10} a_{d} x_{i}^{d} + \epsilon \text{ where } \epsilon \sim N(0, \sigma^{2})$$

• $\mathcal{H}_2 = 2^{\text{nd}}$ -order polynomials

$$\cdot \phi_{1,2}(x) = [x, x^2]$$

• $\mathcal{H}_{10} = 10^{\text{th}}$ -order polynomials

•
$$\phi_{1,10}(x) = [x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}]$$

In-Class Poll:

• $x \in \mathbb{R}$, $y \in \mathbb{R}$ and N = 20

$$y = \sum_{d=0}^{10} a_d x^d + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2)$$

- $\mathcal{H}_2 = 2^{\text{nd}}$ -order polynomials
- $\mathcal{H}_{10} = 10^{\text{th}}$ -order polynomials

Which hypothesis space (\mathcal{H}_2 or \mathcal{H}_{10}) is a better choice to fit to this data set?

- 10-dimensional target function with additive Gaussian noise
- $\mathcal{H}_2 = 2^{\mathrm{nd}}$ -order polynomial
- $\mathcal{H}_{10}=10^{\mathrm{th}}$ -order polynomial

- 10-dimensional target function with additive Gaussian noise
- $\mathcal{H}_2 = 2^{\mathrm{nd}}$ -order polynomial
- $\mathcal{H}_{10}=10^{\mathrm{th}}$ -order polynomial

- 10-dimensional target function with additive Gaussian noise
- $\mathcal{H}_2 = 2^{\mathrm{nd}}$ -order polynomial
- $\mathcal{H}_{10}=10^{\mathrm{th}} ext{-order}$ polynomial

- 10-dimensional target function with additive Gaussian noise
- $\mathcal{H}_2 = 2^{\mathrm{nd}}$ -order polynomial
- $\mathcal{H}_{10}=10^{\mathrm{th}} ext{-order}$ polynomial

More Data

		\mathcal{H}_2	\mathcal{H}_{10}
	Training Error	0.018	0.010
Tes?	True Error	0.009	0.003

Regularization

- Constrain models to prevent them from overfitting
- Learning algorithms are optimization problems and regularization imposes constraints on the optimization

•
$$\mathcal{H}_{10} = 10^{\text{th}}$$
-order polynomials $\mathbb{D} \cdot \{(\mathbf{x}_{10}, \mathbf{y}_{10}), -\cdot, (\mathbf{x}_{10}, \mathbf{y}_{10})\}$

•
$$\phi_{1,10}(x) = [x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}]$$

• Given X =
$$\begin{bmatrix} 1 & \phi_{1,10}(x^{(1)}) \\ 1 & \phi_{1,10}(x^{(2)}) \\ \vdots & \vdots \\ 1 & \phi_{1,10}(x^{(N)}) \end{bmatrix} \text{ and } \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix} \text{ find }$$

 $\boldsymbol{\omega} = [\omega_0, \omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6, \omega_7, \omega_8, \omega_9, \omega_{10}]$ that minimizes

$$\lim_{N \to \infty} \int_{\mathbb{R}^{N}} (\mathbf{x} \boldsymbol{\omega} - \boldsymbol{y})^{T} (\mathbf{x} \boldsymbol{\omega} - \boldsymbol{y})$$
Subject to
$$\lim_{N \to \infty} \omega_{4} = \omega_{5} = \omega_{6} = \omega_{7} = \omega_{8} = \omega_{9} = \omega_{10} = 0$$

• $\mathcal{H}_{10} = 10^{\text{th}}$ -order polynomials

•
$$\phi_{1,10}(x) = [x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}]$$

• Given
$$X = \begin{bmatrix} 1 & \phi_{1,10}(x^{(1)}) \\ 1 & \phi_{1,10}(x^{(2)}) \\ \vdots & \vdots \\ 1 & \phi_{1,10}(x^{(N)}) \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$ find

 $\boldsymbol{\omega} = [\omega_0, \omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6, \omega_7, \omega_8, \omega_9, \omega_{10}]$ that minimizes

$$\frac{1}{N} \sum_{n=1}^{N} \left(\left(\sum_{d=0}^{10} x_d^{(n)} \omega_d \right) - y^{(n)} \right)^2$$

Subject to

$$\omega_3 = \omega_4 = \omega_5 = \omega_6 = \omega_7 = \omega_8 = \omega_9 = \omega_{10} = 0$$

• $\mathcal{H}_{10} = 10^{\text{th}}$ -order polynomials

•
$$\phi_{1,10}(x) = [x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}]$$

• Given
$$X = \begin{bmatrix} 1 & \phi_{1,10}(x^{(1)}) \\ 1 & \phi_{1,10}(x^{(2)}) \\ \vdots & \vdots \\ 1 & \phi_{1,10}(x^{(N)}) \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$ find

 $\boldsymbol{\omega} = [\omega_0, \omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6, \omega_7, \omega_8, \omega_9, \omega_{10}]$

that minimizes

$$\underbrace{\frac{1}{N} \sum_{n=1}^{N} \left(\left(\sum_{d=0}^{2} x_d^{(n)} \omega_d \right) - y^{(n)} \right)^2}$$

Subject to nothing!

• $\mathcal{H}_2 = 2^{\text{nd}}$ -order polynomials

•
$$\phi_{1,2}(x) \neq [x, x^2]$$

$$\begin{bmatrix} 1 & \phi_{1,2}(x^{(1)}) \\ 1 & \phi_{1,2}(x^{(2)}) \end{bmatrix}$$

• Given X =
$$\begin{bmatrix} 1 & \phi_{1,2}(x^{(1)}) \\ 1 & \phi_{1,2}(x^{(2)}) \\ \vdots & \vdots \\ 1 & \phi_{1,2}(x^{(N)}) \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$ find

$$\boldsymbol{\omega} = [\omega_0, \omega_1, \omega_2]$$
 that minimizes

$$\ell_{\mathbb{D}}(\omega) = \frac{1}{N} (\mathbf{X} \boldsymbol{\omega} - \boldsymbol{y})^T (\mathbf{X} \boldsymbol{\omega} - \boldsymbol{y})$$

Subject to nothing!

Soft Constraints

• More generally, ϕ can be any nonlinear transformation, e.g., exp, log, sin, sqrt, etc...

transformed design untik

• Given
$$\mathbf{X} = \begin{bmatrix} 1 & \phi_1(\mathbf{x}^{(1)}) & \cdots & \phi_m(\mathbf{x}^{(1)}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \phi_1(\mathbf{x}^{(N)}) & \cdots & \phi_m(\mathbf{x}^{(N)}) \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$,

find **w** that minimizes

$$\mathcal{L}_{D}(\omega) = \frac{1}{N}(X\omega - y)^{T}(X\omega - y)$$

• Subject to: Some constraint on ω , e.g.,

Ridge
$$\|\boldsymbol{\omega}\|_{2}^{2} = \boldsymbol{\omega}^{T} \boldsymbol{\omega} = \sum_{d=0}^{D} \omega_{d}^{2} \leq C$$

constrained optimization

minimize
$$\ell_{\mathcal{D}}(\boldsymbol{\omega}) = (\mathbf{X}\boldsymbol{\omega} - \boldsymbol{y})^T(\mathbf{X}\boldsymbol{\omega} - \boldsymbol{y})$$

subject to $\boldsymbol{\omega}^T \boldsymbol{\omega} \leq C$

minimize
$$\ell_{\mathcal{D}}(\boldsymbol{\omega}) = (\mathbf{X}\boldsymbol{\omega} - \boldsymbol{y})^T(\mathbf{X}\boldsymbol{\omega} - \boldsymbol{y})$$

subject to $\boldsymbol{\omega}^T \boldsymbol{\omega} \leq C$

Soft **Constraints**

minimize
$$\ell_{\mathcal{D}}(\boldsymbol{\omega}) = (\mathbf{X}\boldsymbol{\omega} - \boldsymbol{y})^T(\mathbf{X}\boldsymbol{\omega} - \boldsymbol{y})$$

subject to $\boldsymbol{\omega}^T \boldsymbol{\omega} \leq C$

$$\nabla_{\boldsymbol{\omega}} \ell_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}_{MAP}) \propto -2\widehat{\boldsymbol{\omega}}_{MAP}$$

$$\nabla_{\boldsymbol{\omega}} \ell_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}_{MAP}) = -2\lambda_{C} \widehat{\boldsymbol{\omega}}_{MAP}$$

$$\nabla_{\boldsymbol{\omega}} \ell_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}_{MAP}) + 2\lambda_{C} \widehat{\boldsymbol{\omega}}_{MAP} = 0$$

$$\nabla_{\boldsymbol{\omega}}(\ell_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}_{MAP}) + \lambda_{C}(\widehat{\boldsymbol{\omega}}_{MAP})^{T}\widehat{\boldsymbol{\omega}}_{MAP}) = 0$$

Soft Constraints: Solving for $\widehat{\boldsymbol{\omega}}_{MAP}$

minimize
$$\ell_{\mathcal{D}}(\boldsymbol{\omega}) = (\mathbf{X}\boldsymbol{\omega} - \boldsymbol{y})^T(\mathbf{X}\boldsymbol{\omega} - \boldsymbol{y})$$
subject to $\boldsymbol{\omega}^T\boldsymbol{\omega} \leq C$

1

minimize
$$\ell_{D}^{AUG}(\omega) = \ell_{D}(\omega) + \lambda_{C}\omega^{T}\omega$$
 (*)

$$\nabla_{\omega} \ell_{D}^{AWG}(\omega) = (2x^{T}x\omega - 2x^{T}y + 2\lambda_{C}\omega)$$

$$\Rightarrow 2x^{T}x\omega_{MAP} - 2x^{T}y + 2\lambda_{C}\omega_{MAP} = 0$$

$$\Rightarrow x^{T}x\omega_{MAP} + \lambda_{C}\omega_{MAP} = x^{T}y$$

$$\Rightarrow (x^{T}x + \lambda_{C}T_{D+1})\omega_{MAP} = x^{T}y$$

$$\Rightarrow (x^{T}x + \lambda_{C}T_{D+1})\omega_{MAP} = x^{T}y$$

$$\Rightarrow (x^{T}x + \lambda_{C}T_{D+1})\omega_{MAP} = x^{T}y$$

minimize
$$\ell_{\mathcal{D}}^{AUG}(\boldsymbol{\omega}) = \ell_{\mathcal{D}}(\boldsymbol{\omega}) + \lambda_{\mathcal{C}}\boldsymbol{\omega}^{T}\boldsymbol{\omega}$$

Ridge Regression

Ridge Regression

minimize
$$\ell_{\mathcal{D}}^{AUG}(\boldsymbol{\omega}) = \ell_{\mathcal{D}}(\boldsymbol{\omega}) + \lambda_{\mathcal{C}} \boldsymbol{\omega}^{T} \boldsymbol{\omega}$$

$$\nabla_{\boldsymbol{\omega}} \ell_{\mathcal{D}}^{AUG}(\boldsymbol{\omega}) = 2(X^T X \boldsymbol{\omega} - X^T \boldsymbol{y} + \lambda_C \boldsymbol{\omega})$$

$$2(X^T X \widehat{\boldsymbol{\omega}}_{MAP} - X^T \boldsymbol{y} + \lambda_C \widehat{\boldsymbol{\omega}}_{MAP}) = 0$$

$$(X^TX + \lambda_C I_{D+1})\widehat{\boldsymbol{\omega}}_{MAP} = X^T \boldsymbol{y}$$

$$\widehat{\boldsymbol{\omega}}_{MAP} = (X^T X + \lambda_C I_{D+1})^{-1} X^T \boldsymbol{y}$$

Adding this positive ($\lambda_C \ge 0$) diagonal matrix can help if $X^T X$ is not invertible!

Ridge Regression

- 10-dimensional target function with additive Gaussian noise
- $\mathcal{H}_{10}=10^{ ext{th}}$ -order polynomial

Ridge Regression

 $\lambda_{\mathcal{C}} = \mathbf{0}$ True
Error
O.059
Overfit

Setting λ

Setting λ

Setting *λ*

Setting λ

Other Regularizers

$$\ell_{\mathcal{D}}(\boldsymbol{\omega}) + \lambda r(\boldsymbol{\omega})$$

$$r(\boldsymbol{\omega}) + \lambda r(\boldsymbol{\omega})$$
Ridge or $L2$

$$r(\boldsymbol{\omega}) = \|\boldsymbol{\omega}\|_2^2 = \sum_{d=0}^D \omega_d^2$$
Encourages small weights
$$r(\boldsymbol{\omega}) = \|\boldsymbol{\omega}\|_1 = \sum_{d=0}^D |\omega_d|$$
Encourages sparsity
$$r(\boldsymbol{\omega}) = \|\boldsymbol{\omega}\|_1 + \|\boldsymbol{\omega}\|_2^2$$
Encourages sparsity & sparsity & shrinkage

Other Regularizers

M(C)LE for Linear Regression

If we assume a linear model with additive Gaussian noise

$$y = \omega^T x + \varepsilon$$
 where $\epsilon \sim N(0, \sigma^2) \rightarrow y \sim N(\omega^T x, \sigma^2)$

• Then given
$$X = \begin{bmatrix} 1 & \boldsymbol{x}^{(1)} \\ 1 & \boldsymbol{x}^{(2)} \\ \vdots & \vdots \\ 1 & \boldsymbol{x}^{(N)} \end{bmatrix}$$
 and $\boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}^{(1)} \\ \boldsymbol{y}^{(2)} \\ \vdots \\ \boldsymbol{y}^{(N)} \end{bmatrix}$ the MLE of $\boldsymbol{\omega}$ is

47

$$\widehat{\boldsymbol{\omega}} = \underset{\boldsymbol{\omega}}{\operatorname{argmax}} \underbrace{\log P(\boldsymbol{y}|X,\boldsymbol{\omega})}$$

$$\vdots$$

$$= \underbrace{(X^TX)^{-1}X^T\boldsymbol{y}}$$

MAP for Linear Regression

If we assume a linear model with additive Gaussian noise

$$y = \boldsymbol{\omega}^T \boldsymbol{x} + \epsilon$$
 where $\epsilon \sim N(0, \sigma^2) \rightarrow y \sim N(\boldsymbol{\omega}^T \boldsymbol{x}, \sigma^2)$ and independent **Gaussian priors** on all the weights...

$$\omega_d \sim N\left(0, \frac{\sigma^2}{\lambda}\right)$$

• ... then, the MAP of ω is the ridge regression solution!

$$\widehat{\boldsymbol{\omega}} = \underset{\boldsymbol{\omega}}{\operatorname{argmax}} \log P(\boldsymbol{\omega}|X, \boldsymbol{y}) = \underset{\boldsymbol{\omega}}{\operatorname{argmax}} \log P(\boldsymbol{y}|X, \boldsymbol{\omega}) P(\boldsymbol{\omega})$$

$$\vdots$$

$$= (X^T X + \lambda_C I_{D+1})^{-1} X^T y = \text{ridge reg jointion}$$

MAP for Linear Regression

• If we assume a linear model with additive Gaussian noise

$$y = \boldsymbol{\omega}^T \boldsymbol{x} + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2) \rightarrow y \sim N(\boldsymbol{\omega}^T \boldsymbol{x}, \sigma^2)$$

and independent *Laplace* priors on all the weights...

$$\omega_d \sim \text{Laplace}\left(0, \frac{2\sigma^2}{\lambda}\right)$$

- ... then, the MAP of ω is the Lasso regression solution!
- No closed form solution exists but we can solve via (sub-)gradient descent

Key Takeaways

- Polynomial/non-linear feature transformations allow for learning non-linear functions/decision boundaries
 - Can lead to overfitting...
 - Address with regularization!
 - Analogous to constrained optimization, solve via method of Lagrange multipliers
 - Regularization level is a hyperparameter
 - Can be computationally expensive...
 - Address with kernels!
 - Alternative to explicitly computing feature transformations for inner product methods