Due: Friday, October 30, 2015

Print your **name** and **NetID** legibly. Follow the guidelines and format given in the syllabus. Staple multiple pages. Show all units. Homework must be turned in at the **beginning** of class and any late homework assignments will not be accepted. Please contact the course director, Professor Dallesasse, should any issues with late homework arise.

1. Breakdown of P-N Junction

For a symmetric Si p-n junction ($N_A = N_D = 10^{17} \text{ cm}^{-3}$):

- (A). Determine the reverse breakdown voltage if the peak electric field in the junction at breakdown is 6×10^5 V/cm.
- (B). Calculate the depletion region thickness just prior to avalanche breakdown.

2. JUNCTION CAPACITANCE OF A SI P⁺-N JUNCTION

A Si p⁺-n junction has $N_D = 5 \times 10^{15}$ cm⁻³ and a cross-sectional area of $100 \, \mu m^2$.

- (A). Calculate the capacitance of the junction under reverse bias V_R of 1, 5, and 10V.
- (B). Plot $1/C^2$ vs. V_R for the three cases.
- (C). Demonstrate that the slope of the plot in (B) yields the donor concentration N_D .

3. Effect of Doping in a P-N⁺ Junction

The p-doping N_A of a p-n⁺ junction is quadrupled. How do the following change if everything else remains unchanged? Indicate only increase, decrease, or unchanged. Justify your answers.

- (A). Junction capacitance
- (B). Built-in potential
- (C). Breakdown voltage
- (D). Depletion width
- (E). Ohmic losses

4. SOLAR CELLS

A Si solar cell has the following parameters:

$$N_A = 6 \times 10^{16} \text{ cm}^{-3}$$

 $N_D = 2 \times 10^{15} \text{ cm}^{-3}$
 $D_n = 20 \text{ cm}^2/\text{s}$
 $D_p = 10 \text{ cm}^2/\text{s}$
 $\tau_n = 0.2 \mu\text{s}$
 $\tau_p = 0.1 \mu\text{s}$
Area = 1 cm²

The solar cell is under constant illumination which gives $g_{op} = 4 \times 10^{16} \text{ cm}^{-3} \text{s}^{-1}$.

- (A). Calculate the short circuit current.
- (B). Is the drift or diffusion photocurrent dominant? What fraction of the total current is due to the dominant mechanism?
- (C). What are the maximum concentration of the minority electrons and holes?

5. Photodiodes and Light Emitting Diodes

NOTE: Some of the topics in this problem will not be covered in lecture until Friday 10/30/2015. Please read ahead on sections 8.1, 8.2, and 8.4 from the Streetman textbook to find the information required.

- (A). The active area of a photodiode is governed by its depletion width. Describe the effect of depletion width on the sensitivity and response time of a photodiode.
- (B). Describe the trade-offs for high and low doping in a photodiode. How does one design a photodiode with large depletion width?
- (C). Explain why ternary and quarternary III-V alloys are more widely used as the active component in optoelectronic devices than group-IV or III-V semiconductors.
- (D). Determine the required composition x of $Al_xGa_{1-x}As$ to construct an LED operating at 650nm. Repeat for $GaAs_{1-x}P_x$. Refer to Fig. 3-6 and 8-11.