Investigating the mechanisms of DPR12-DIP δ interaction in the *Drosophila* mushroom body during development

Lior Lin
Rotation at Oren Schuldiner's Lab
02/05/24

The *Drosophila's* Mushroom Body

Stereotypical Neuronal remodeling of y-Kenyon cells in the mushroom body

Stereotypical Neuronal remodeling of y-Kenyon Cells in the mushroom body

Stereotypical Neuronal remodeling of y-Kenyon cells in the mushroom body

Stereotypical Neuronal remodeling of y-Kenyon cells in the mushroom body

Dpr12 in γ -Kenyon Cells and DIP- δ in PAM-DANs are required for $\gamma 4/5$ formation

Dpr12 in γ -Kenyon Cells and DIP- δ in PAM-DANs are required for $\gamma 4/5$ formation

Dpr12 and DIP- δ are predicted to be **GPI-anchored**

The attachment of a glycosyl-phosphatidyl-Inositol (GPI) anchor to a protein in the ER

Protein	Specificity	Sequence
Dpr12	99.9%	KFVQRRDHGMYECQVSTPTGIISHFVNLQVVVPEAFILGSGE LHVDMGSTINLVCIIEKSPTPPQYVYWQKNDRLINYVDSRRDITI ETTPGPRTQSRLIIREPQVTDSGNYTCSASNTEPASIYVFVSKGD NMAAISRRKTS SADRLTHIFRSMLAPCLLLNTVVVRHIFLT
DIP-δ	100%	QYGDFGNYRCISKNSLGETEGSIRVYEIPLPSTPSKQVTHTTV ESRENNIIPSSRNDTTKSLQTDVGYAMKNDLYPGSASSSSGGS SSAASSSSSMQTSALPGGVAGNSLSSMGSKGSLAIGKSTFYTE RPPNEYAASSVAGLLLHRALLFGSGIYLTLL
Ω site GPI attachment signal		

Molecular Biology of the Cell Bruce Alberts, Alexander Johnson et al, 2017

Made with PredGPI

Screen for enzymes that potentially cleave the GPI-anchor by silencing them in different subsets of neurons

Screen for enzymes that potentially cleave the GPI-anchor by silencing them in different subsets of neurons

Phospholipase C (PLC)

- NorpA
- Small wing (Sl)

Screen for enzymes that potentially cleave the GPI-anchor by silencing them in different subsets of neurons

Phospholipase C (PLC)

- NorpA
- Small wing (Sl)

Phospholipase D (PLD)

PLD

Screen for enzymes that potentially cleave the GPI-anchor by silencing them in different subsets of neurons

Phospholipase C (PLC)

- NorpA
- Small wing (Sl)

Phospholipase D (PLD)

PLD

ADAM Family

- Meltrin
- Kuzbanian
- Kuzbanian like
- Tace (ADAM 17)

The UAS-Gal4 binary system allows tissue-specific transgene expression

The UAS-Gal4 binary system allows tissue-specific transgene expression

Small wing (SI) PLC KD in all neurons results in membrane blebbing at the γ -lobe border

57C10-Gal4 **All neurons**

OK107-Gal4 **MB neurons**

DIPδ-T2A-Gal4 **DIPδ neurons**

SI RNAi

Small wing (SI) PLC KD in all neurons results in membrane blebbing at the γ -lobe border

57C10-Gal4 **All neurons**

OK107-Gal4 **MB neurons**

DIPδ-T2A-Gal4 **DIPδ neurons**

SI RNAi

OK107-Gal4

PLD KD results in membrane blebbing and sparsening of the γ-lobe

57C10-Gal4 **All neurons**

OK107-Gal4 **MB neurons**

DIPδ-T2A-Gal4 **DIPδ neurons**

PLD RNAi

Tace (ADAM 17) KD in DIP-δ expressing neurons shows γ-lobe regrowth abnormality

Screen summary

We did not observe a distinct γ-lobe zone formation regrowth defect

Screen summary

We did not observe a distinct y-lobe zone formation regrowth defect

- Some RNAi lines have limited efficiency.
- Post-translation modifications on the GPI-anchor might limit cleavage effectivity.
- Tace is suspected to cleaves Dpr12/DIP-δ in-vitro and should be further investigated with a stronger DIPδ-specific Gal4 driver.

Screen summary

We did not observe a distinct γ-lobe zone formation regrowth defect

- Some RNAi lines have limited efficiency.
- Post-translation modifications on the GPI-anchor might limit cleavage effectivity.
- Tace is suspected to cleaves Dpr12/DIP- δ *in-vitro* and should be further investigated with a stronger DIP δ -specific Gal4 driver.

We also observed pruning defects and different γ-lobe abnormalities such as membrane blebbing and potentially proliferation defects.

