Recap

- Curve fitting is logical way of looking at regression problems
- •Line, plane & hyperplane one form $y=w^Tx+b$
- Learning algorithm & hypothesis function
- How many degrees is just right
- Underfitting, Overfitting and just right fit
- Bias Variance Tradeoff
- Overfitting discovered by Cross validation and error increasing beyond a point
- Overfitting learns noise

Geometric Perspective of Classification

Classification: Diabetic dataset

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	Diabetes Pedigree Function	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1

- •Geometric perspective is the most intuitive way of looking at classification problems
- •Classic decision boundary in linear form $\ w^Tx+b=0$

Nearest Centroid

Called Learning with Protoype (LwP)

- Binary classification
 - Given height and weight predict South Asian or not

Represent each class with a prototype vector

Mean is called class prototype

classification

How to calculate mean vector?

$$\bar{x} = \frac{1}{4} \left(x^{(1)} + x^{(2)} + x^{(3)} + x^{(4)} \right) \qquad \bar{x} = \begin{bmatrix} 75 \\ 125 \\ 37.625 \end{bmatrix}$$

How to calculate mean vector?


```
avg_patient = (1/patients.shape[0]) * np.sum(patients, axis=0)
```

```
avg_patient = np.mean(patients, axis=0)
```

Mean vector is centroid of dataset

	HR	ВР	Temp
Patient-2 Patient-3 Patient-4	76	126	38.0
Patient-2	74	120	38.0
Patient-3	72	118	37.5
Patient-4	78	136	37.0

$$\bar{x} = \begin{bmatrix} 75 \\ 125 \\ 37.625 \end{bmatrix}$$

How to find the distance between vectors?

•https://www.geogebra.org/calculator/qmayzjm9

Nearest Centroid observations

- •Model based (Centroids and class mappings are the model), parametric
- Pros: Fast and easy
- Cons: Primitive Classifier
- Not really a machine learning model as such
- Just statistical data analysis & a simple pattern usage
- •What is there to "LEARN"?
 - Weighted distances can be learnt (more on this later)

Nearest Centroid – Failure cases

Fix: Can use any of

- a. Feature scaling (FS)
- b. Weighted distance (such as Mahalanobis distance)
- c. Probability distribution
- Test e.g. x logically belongs to red class (Euclidean)
- Nearest Centroid predicts green class

Feature Scaling

Feature Scaling

- Important data pre-processing step
- Prevents feature with large values dominate training
- Features should not dominate by
 - Units
 - Sheer variance in different scale
- Features should dominate by coefficient of variation $\frac{\sigma}{\mu}$

NOTE: If scaling is applied at training time, then scaling should be applied on test data during prediction also

Feature Scaling (contd.)

- All distance based algorithms are sensitive to feature scale
 - Linear Regression to Neural Networks
 - Everything in between
- Information Theory based algorithms are insensitive
 - Decision Tree, Random Forest

z-transformation

Also called Standardization

Available in sklearn

as StandardScaler

$$z = \frac{x - \mu}{\sigma}$$

- Feature vector is mean centered $\ x-\mu$
 - Makes the feature zero centered
- •Scale feature vector by reciprocal of standard deviation $\frac{1}{\sigma}$

14

z-transform (contd.)

- •Z-transform does not change the distribution
- Only zero centers and rescales
- Can be applied to nongaussian data
- Makes the data unit-less
- Mean = 0
- Variance = 1

Other transformations

- Major ones (to be covered later)
 - Min-Max Normalization
 - Robust Scaling
 - Log Transformation
 - Power Transformation
- Selected based on characteristics of data and end goal
- Chain transformations

Three confusing terms

- Feature Selection, Feature Engineering, Feature Extraction
- Feature Selection: Select raw features based on importance
- Feature Engineering: Convert raw features into refined features to improve prediction
 - E.g.: Transformations
- Feature Extraction: Create synthetic features by combining
 - raw/engineered features
 - Principal Component Analysis (PCA)

Weighted distances

Nearest Centroid – Weighted distance

• n is number of features $a, b \in \mathbb{R}^n$

$$d_2(\mathbf{a}, \mathbf{b}) = ||a - b||_2 = \sqrt{\sum_{i=1}^n (a_i - b_i)^2}$$

$$= \sqrt{(a-b)^T(a-b)} = \sqrt{a^Ta + b^Tb - 2a^Tb}$$

Mahalanobis distance

 $d_2(\mathbf{a}, \mathbf{b}) = \sqrt{(a-b)^T W(a-b)}$

n x n any symmetric matrix then Mahalanobis-like distance

Other symmetric matrices can be learnt

 $W = \Sigma^{-1}$ Σ is covariance matrix, then Mahalanobis distance

Covariance matrix is symmetric.
Inverse also symmetric

$$\Sigma = \begin{bmatrix} \sigma_1^2 & Cov_{12} & \dots & Cov_{1n} \\ Cov_{21} & \sigma_2^2 & \dots & Cov_{2n} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ Cov_{(n-1)1} & \dots & \sigma_{n-1}^2 & Cov_{(n-1)n} \\ Cov_{n1} & Cov_{n2} & \dots & \sigma_n^2 \end{bmatrix}$$

Impact of weighted symmetric matrix

Mahalanobis distance weights & rotates the axis

Nearest Centroid – Failure cases

- Learning non linear distance metric using kernels (shortly)
- •Learning distance metric with neural networks

Linear decision boundary

Support Vector Machine

Logistic Regression

Only a conceptual decision boundary.

Not mathematically modelled like that

- Class 1
- O Class 1

Logistic Regression is Classification

Logistic Regression naam sunke Regression samjha kya

Regression nahin classification hai

One v/s all decision boundary

BUT BUT BUT....

- Real world data almost never linearly separable
- •Shouldn't ML focus on non-linear separability?
 - Yes and No

Non linear decision boundary

Directly create a non linear decision boundary

Non linear decision boundary

The hard problem

- Solving in non linear domain is hard
- •That's why we do complex Feature Transformation
 - Not just simple transformation covered earlier
 - Kernel transformation
 - Complex distance metric
 - Involves stretching, squishing & folding the space
- •Finally solve the problem in linear domain ©

Non linear decision boundary

- https://www.geogebra.org/calculator/ve2earrn
- •https://www.geogebra.org/m/pO4JcWPz

Arbitrary transformations

With neural network

Arbitrary transformations

By folding the space to apply linear classifier

https://cs.stanford.edu/people/karpathy/convnetjs/d

emo/classify2d.html

Optional reading

- Neural Networks Manifold and Topology
- A tutorial on distance metric learning

Unsupervised Learning

Clustering

Clustering

Clustering

