Discrete Structures Lab01: Hints **Lemma 1:** For all propositions a, $\neg \neg a \rightarrow a$. **Proof:**

- Assume that $\neg \neg a$ is true.
- We sort two cases by "classic" axiom (Excluded Middle): either *a* or ¬*a* must be true.
- If a is true, we are happy.
- Otherwise $\neg a$ is true (along with $\neg \neg a$ obtained before). This is a contradiction.
- Therefore *a* must be true in all cases (it is either trivial, or a contradiction).

Lemma 2: For all propositions a and b, $\neg(a \rightarrow b) \rightarrow a$.

Proof:

- Assume that $\neg(a \rightarrow b)$ is true.
- We have to prove that a is true. By Lemma 1, we will prove instead that ¬nega is true, then it will also imply a.
- We will assume that $\neg a$ is true, and attempt to get a contradiction (this means that $\neg \neg a$ must be true).
- Let's prove now that $a \to b$ is true this would be an immediate contradiction with $\neg(a \to b)$.

- To prove $a \to b$, assume that a is true and let's prove b. But earlier we assumed that $\neg a$.
- a and ¬a cannot be simultaneously true. This is a contradiction.

Peirce Lemma: For all propositions a and b, $((a \rightarrow b) \rightarrow a) \rightarrow a$.

Hint. Just use Lemma 1 and 2 for this. And also the "classic" axiom: Sort 2 cases when $(a \rightarrow b)$ or $\neg (a \rightarrow b)$ are true.

Lemma 4: For all propositions a and b, $(\neg b \rightarrow \neg a) \rightarrow (a \rightarrow b)$.

This is the opposite direction from a well-known contrapositive ($\neg b \rightarrow a$ and $a \rightarrow b$ mean the same thing.)

Hint. Use "classic" axiom (Excluded middle) on b. **Lemma 5:** For all propositions a, b, c, d, e,

$$((((a \rightarrow b) \rightarrow (\neg c \rightarrow \neg d)) \rightarrow c) \rightarrow e) \rightarrow \neg a \rightarrow (d - > e).$$

Hint. Indeed, assume that $(((a \rightarrow b) \rightarrow \neg c \rightarrow \neg d) \rightarrow c) \rightarrow e$; also assume $\neg a$ and d. Then you can prove $(((a \rightarrow b) \rightarrow \neg c \rightarrow \neg d) \rightarrow c)$ which is similar to what you need.

After all this, you can do Sample20 from the Coq lab.