Counter-diabatic driving using Floquet engineering

Mohit

February 5, 2018

1 CD driving

$$H_0 = -J\sum_{j} (c_{j+1}^{\dagger} c_j + \text{h.c}) + \sum_{j} V_j(\lambda) c_j^{\dagger} c_j$$

$$\tag{1}$$

For this problem, approximate gauge potential is chosen to be $A_{\lambda}^* = i \sum_j \alpha_j (c_{j+1}^{\dagger} c_j - h.c)$. On minimizing action, we get

$$-3J^{2}(\alpha_{j+1}+\alpha_{j-1})+(6J^{2}+(V_{j+1}-V_{j})^{2})\alpha_{j}=-J\partial_{\lambda}(V_{j+1}-V_{j})$$

Figure 1: a) α_j for linear potential with vanishing boundary condition b) Effective hopping strength

$$H_{CD} = H_0 + \dot{\lambda}A_{\lambda} = \sum_{i} J_{j}^{CD}(c_{i+1}^{\dagger}c_i + h.c) + \sum_{i} U_{j}c_{i}^{\dagger}c_i$$

where

$$J_j^{CD} = J\sqrt{1 + (\dot{\lambda}\alpha_j/J)^2} \quad U_j = V_j(\lambda) - \sum_i^j \frac{J}{J^2 + (\dot{\lambda}\alpha_i/J)^2} (\ddot{\lambda}\alpha_j + \dot{\lambda}^2 \partial_{\lambda}\alpha_j)$$

Over here, I am going to work with $\dot{\lambda} = 1$ and L = 1024.

2 Floquet driving

$$H = H_0 + H_1 = J \sum_{j} (c_{j+1}^{\dagger} c_j + \text{h.c}) + \cos(\omega t) \sum_{j} A_j c_j^{\dagger} c_j$$

We would go to the rotating frame $|\psi_{rot}\rangle = V^{\dagger}|\psi_{lab}\rangle$ where $V = \exp(-i\sin(\omega t)/\omega\sum_{j}A_{j}c_{j}^{\dagger}c_{j})$.

$$H_{rot} = V^{\dagger}HV - iV^{\dagger}\dot{V}$$

$$= V^{\dagger}H_{0}V + \cos(\omega t) \sum_{j} A_{j}c_{j}^{\dagger}c_{j} + i^{2}\cos(\omega t) \sum_{j} A_{j}c_{j}^{\dagger}c_{j}$$

$$= V^{\dagger}H_{0}V = V^{\dagger}c_{j+1}^{\dagger}VV^{\dagger}c_{j}V + \text{h.c}$$
a and $[c_{j}, c_{j}^{\dagger}] = c_{j}^{\dagger}$

Using
$$[n_j, c_j] = -c_j$$
 and $[n_j, c_j^{\dagger}] = c_j^{\dagger}$

$$\begin{split} H_{rot} &= J \sum_{j} (g^{j,j+1} c_{j+1}^{\dagger} c_{j} + \text{h.c}) \quad \text{where} \quad g^{j,j+1} = \exp\left(i \sin(\omega t) \frac{A_{j+1} - A_{j}}{\omega}\right) \\ H_{F}^{(0)} &= \frac{1}{T} \sum_{j} \int_{t_{0}}^{T+t_{0}} (c_{j+1}^{\dagger} c_{j} \exp\left(i \sin(\omega t) \frac{A_{j+1} - A_{j}}{\omega}\right) dt + \text{h.c}) \\ &= \sum_{j} J_{j}^{F} (c_{j+1}^{\dagger} c_{j} + \text{h.c}) \quad \text{where} \quad J_{j}^{F} = J^{F} \mathcal{J}_{0} \left(\frac{A_{j+1} - A_{j}}{\omega}\right) \end{split}$$

3 Linear potential

We choose $V(j, \lambda) = j\lambda$.

Figure 2: a) Driving field amplitude A_j b) Comparison of effective hopping strength from floquet and CD driving

4 Eckart potential

4.1 Inserting potential

 $V(\lambda, j) = \frac{\lambda(t)}{\cosh^2 j/\xi}$ where ξ is the localization length.

4.2 Moving potential

$$V(\lambda, j) = \frac{V_0}{\cosh^2[(j-\lambda)/\xi]} \text{ where } \xi \text{ is the localization length. We will use } V_0 = 2J. \text{ And } \partial_{\lambda}V = \frac{2V_0 \sinh[(j-\lambda)/\xi]}{\xi \cosh^3[(j-\lambda)/\xi]} = \frac{2V_0 \tanh[(j-\lambda)/\xi]}{\xi \cosh^2[(j-\lambda)/\xi]}.$$

Figure 3: Eckart potential with $\lambda = 1$

Figure 4: α_j for Eckart potential with vanishing boundary condition with a) $\xi = 8$ b) $\xi = 50$

I still don't know why my numerical simulation is not consistent with Dries's calculation.

A Magnus expansion

For a Hamiltonian which is periodic in time, it's unitary operator over a full driving cycle is given by:

$$U(T+t_0,t_0) = \mathcal{T}_t \exp(-\frac{i}{\hbar} \int_{t_0}^T dt H(t)) = \exp(-\frac{i}{\hbar} H_F[t_0]T)$$
 (2)

 $H_F[t_0] = \sum_n H_F^{(n)}[t_0]$ where

$$H_F^{(0)} = \frac{1}{T} \int_{t_0}^{T+t_0} H(t)dt$$

$$H_F^{(1)} = \frac{1}{2!Ti\hbar} \int_{t_0}^{T+t_0} dt_1 \int_{t_0}^{t_1} dt_2 [H(t_1), H(t_2)]$$

Hence,

$$|\psi(T)\rangle = U|\psi(0)\rangle$$

Figure 5: a) Effective hopping strength b) $(A_{j+1} - A_j)/\omega$ c)Driving field's amplitude A_j/ω d) Comparison of effective hopping strength from floquet and CD driving

$$= \exp(-\frac{i}{\hbar}H_F T)|\psi(0)\rangle$$
$$= \lim_{\omega \to \infty} \exp(-\frac{i}{\hbar}H_F^{(0)}T)|\psi(0)\rangle$$

B Numerics of a single body problem

Consider the Hamiltonian operator \mathbf{H} on lattice

$$\mathbf{H} = \sum_{n} V_n |n\rangle \langle n| + \sum_{n} (u_{n,n+1}|n\rangle \langle n+1| + u_{n,n+1}^* |n+1\rangle \langle n|)$$
(3)

In units of $\hbar = 1$, time-evolution is given by

$$\mathbf{H}|\Psi\rangle = i\frac{d}{dt}|\Psi\rangle \tag{4}$$

We choose $|\Psi\rangle = \sum_n \psi_n |n\rangle$, where ψ_n is the probability amplitude for the quantum particle on n-th lattice site. Hence, we find time-evolution of ψ_n is given by:

$$i\frac{d\psi_n}{dt} = u_{n,n+1}\psi_{n+1} + u_{n-1,n}^*\psi_{n-1} + V_n\psi_n \tag{5}$$

With this, we have converted the problem of solving SE into a problem of solving an ODE.

For us, $u_{j,j+1} = \exp\left(i\sin(\omega t)\frac{A_{j+1}-A_j}{\omega}\right)$ as we are interested in studying the dynamics of this Hamiltonian:

$$H = J \sum_{j=0}^{L-1} (u^{j,j+1} c_{j+1}^{\dagger} c_j + \text{h.c})$$

where periodic boundary condition is assumed. Let's suppose $A_j = j$ where j goes from 0 to L-2 and $A_{j=L-1} = 0$ so that $A_{j+1} - A_j = 1$ for all values of $j = \{0, L-1\}^{-1}$. For a lattice-size of L = 51, I did numerical simulation with initial condition as $|\psi(t=0)\rangle = \delta_{i,(L-1)/2}$.

$$\begin{split} |\psi(t=T)_{num}\rangle &= U|\psi(0)\rangle & |\psi_F(T)\rangle = U_F|\psi(0)\rangle \\ &= \exp(-\frac{i}{\hbar}HT)|\psi(0)\rangle & \simeq \exp(-\frac{i}{\hbar}H_F^{(0)}T)|\psi(0)\rangle \end{split}$$
 where $H_F^{(0)} = \sum_{j=0}^{L-1} J_j^F(c_{j+1}^\dagger c_j + \text{h.c})$ with $J_j^F = J^F \mathcal{J}_0\left(\frac{A_{j+1} - A_j}{\omega}\right)$

Figure 6: $\psi_{num}(T)$ is the wavefunction obtained after solving numerically and $\psi_F(T)$ is the wevfunction-obtained using zeroth term of Magnus expansion

C Bessel's function of first kind

Integral representation of Bessel's function of first kind $\mathcal{J}_n(x)$ is given by:

$$\mathcal{J}_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\tau e^{i(n\tau - x\sin\tau)} = \frac{1}{T} \int_{-T/2}^{T/2} d\tau e^{i(n\omega\tau - x\sin\omega\tau)}$$

$$\tag{6}$$

For $x \ll 1$, $\mathcal{J}_0(x) = 1 - \frac{x^2}{2}$

Figure 7: Bessel's function

We should be careful with the boundary terms. For $j = 0, L - 1, A_1 - A_0 = 1$. But $A_L - A_{L-1} = A_0 - (L-1) = 1 - L$