Junior Problems

J451. Solve in positive integers the equation

$$2(6xy+5)^2 - 15(2x+2y)^2 = 2018.$$

Proposed by Adrian Andreescu, University of Texas at Austin, USA

J452. Let a, b, c > 0 and x, y, z be real numbers. Prove that

$$\frac{a\left(y^2+z^2\right)}{b+c}+\frac{b\left(z^2+x^2\right)}{c+a}+\frac{c\left(x^2+y^2\right)}{a+b}\geq xy+yz+zx.$$

Proposed by An Zhenping, Xianyang Normal University, China

J453. Let ABC be an acute triangle, O its circumcenter and H its orthocenter. Let D be the midpoint of BC. The perpendicular in H to DH intersects AB and AC in P and Q, respectively. Prove that

$$\overrightarrow{AP} + \overrightarrow{AQ} = 4\overrightarrow{OD}.$$

Proposed by Mihaela Berindeanu, Bucharest, România

J454. Let ABCD be a square and let M, N, P, Q be arbitrary points on the sides AB, BC, CD, DA, respectively. Prove that

$$MN + NP + PQ + QM \ge 2AC$$
.

When does the equality hold?

Proposed by Nguyen Viet Hung, Hanoi University of Science, Vietnam

J455. Let ABC be a triangle, Γ its circumcircle with center O and H its orthocenter. Let H_1 be the reflection of H about the line BC and H_2 be the reflection of H through the midpoint of the segment BC. Let S be the point on Γ such that $\angle SOH_2 = \frac{1}{3} \angle H_1OH_2$. Prove that the Simson line of point S is tangent to the Euler circle of the triangle ABC.

Proposed by Alexandru Gîrban, Constanta, România

J456. Let a, b, c, d be real numbers such that a+b+c+d=0 and $a^2+b^2+c^2+d^2=12$. Prove that $-3 \le abcd \le 9$.

Proposed by Marius Stănean, Zalău, România

Senior Problems

S451. Find all pairs (z, w) of complex numbers simultaneously satisfying the equations:

$$\frac{2018}{z} - w = 15 + 28i$$

$$\frac{2018}{w} - z = 15 - 28i.$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S452. Let a, b, c be positive real numbers such that a + b + c = 3. Prove that

$$abc\left(a\sqrt{a} + b\sqrt{b} + c\sqrt{c}\right) \le 3.$$

Proposed by Tran Tien Manh, Vinh City, Vietnam

S453. Let $a, b, c \in (-1, 1)$ such that $a^2 + b^2 + c^2 = 2$. Prove that

$$\frac{(a+b)(a+c)}{1-a^2} + \frac{(b+c)(b+a)}{1-b^2} + \frac{(c+a)(c+b)}{1-c^2} \ge 9(ab+bc+ca) + 6.$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

S454. Let a, b, c, d be positive real numbers such that

$$a+b+c+d = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$
.

Prove that

$$a^2 + b^2 + c^2 + d^2 + 3abcd \ge 7.$$

Proposed by Marius Stănean, Zalău, România

S455. Let a and b be real numbers such that all roots of the polynomial $f(X) = X^4 - X^3 + aX + b$ are real numbers. Prove that

$$f\left(-\frac{1}{2}\right) \le \frac{3}{16}.$$

Proposed by Vladimir Cerbu, România

S456. Let a, b, c be the sides of a triangle ABC and R, r its circumradius and inradius, respectively. Prove that

$$\left(\frac{a}{b+c}\right)^2 + \left(\frac{b}{c+a}\right)^2 + \left(\frac{c}{a+b}\right)^2 + \frac{3r}{4R} \ge \frac{9}{8}$$

Proposed by Titu Zvonaru, Comănești, România

Undergraduate Problems

U451. Let x_1, x_2, x_3, x_4 be the roots of the polynomial $2018x^4 + x^3 + 2018x^2 - 1$. Evaluate

$$(x_1^2 - x_1 + 1)(x_2^2 - x_2 + 1)(x_3^2 - x_3 + 1)(x_4^2 - x_4 + 1).$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

U452. Find all finite groups whose all proper subgroups have order 2 or 3.

Proposed by Mihai Piticari, Câmpulung Moldovenesc, România

U453. Let A be a $n \times n$ matrix such that $A^7 = I_n$. Prove that $A^2 - A + I_n$ is invertible and find its inverse.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

U454. Let $f:[0,1] \longrightarrow [0,1)$ be an integrable function. Prove that

$$\lim_{n \to \infty} \int_0^1 f^n(x) dx = 0.$$

Proposed by Mihai Piticari and Sorin Rădulescu, România

U455. For two square matrices $X, Y \in M_n(\mathbb{C})$ we denote by [X, Y] = XY - YX their commutator. Prove that if $A, B, C \in M_n(\mathbb{C})$ satisfy the identity ABC + A + B + C = AB + BC + AC then

$$[A, BC] = [A, B] + [A, C].$$

Proposed by Dorin Andrica, Babes-Bolyai University, Cluj-Napoca, România

U456. Let $a_1 > \cdots > a_m$ be positive integers and $P_1(x), \ldots, P_m(x)$ be rational functions with rational coefficients. Assume that

$$P_1(n)a_1^n + \cdots + P_m(n)a_m^n$$

is an integer for all sufficiently large n. Prove that $P_1(x), \ldots, P_m(x)$ are polynomials.

Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran

Olympiad Problems

O451. Let ABC be a triangle, Γ its circumcircle, ω its incircle and I the incenter. Let M be the midpoint of BC. The incircle ω is tangent to AB and AC at F and E, respectively. Suppose EF meets Γ at distinct points P and Q. Let I denote the point on EF such that II is perpendicular on EF. Show that II and the radical axis of (MPQ) and (AII) intersect on Γ .

Proposed by Toni Wen, USA

O452. Let a, b, c be nonnegative real numbers, at most one being zero. Prove that

$$\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} + \frac{3}{a+b+c} \ge \frac{4}{\sqrt{ab+bc+ca}}$$

Proposed by An Zhenping, Xianyang Normal University, China

O453. Let a, b, c be positive real numbers such that abc = 1. Prove that

$$\frac{ab}{a^5 + b^5 + c^2} + \frac{bc}{b^5 + c^5 + a^2} + \frac{ca}{c^5 + a^5 + b^2} \le 1.$$

Proposed by Florin Rotaru, Focşani, România

O454. Let a, b, c be positive real numbers. Prove that

$$\frac{1}{18} \left(\frac{a^2}{b^2} + \frac{b^2}{c^2} + \frac{c^2}{a^2} \right) + \frac{a}{2a+b+c} + \frac{b}{a+2b+c} + \frac{c}{a+b+2c} \ge \frac{11}{12}$$

Proposed by Titu Zvonaru, Comănești, România

O455. Let a_1, a_2, \ldots, a_n be positive real numbers such that $a_1 + a_2 + \ldots + a_n = n, n \ge 4$. Prove that

$$\sum_{1 \le i \le j \le n} 2 a_i a_j \ge (n-1) \sqrt{n a_1 a_2 \cdots a_n (a_1^2 + a_2^2 + \cdots + a_n^2)}.$$

Proposed by Marius Stănean, Zalău, România

O456. Find all positive integers n for which the equation

$$x^2 + [x]^2 + \{x\}^2 = n$$

has solutions $x \ge 0$. (Here, [x] and $\{x\}$ denotes the integer part and the fractional part of the real number x, respectively.)

Proposed by Dorin Andrica and Dan-Stefan Marinescu, România.