

11th International Symposium on Atmospheric Sciences – ATMOS'24

23-25 October 2024 – Istanbul, Türkiye

Comparing Model Results for Predicting Temporal Variations of SST and Rainfall Rate

A. DWIKAT, O. SAWALHA, S. MOLA, Z. ASLAN, N. AHMED, M. YETER

Istanbul Aydin University

Faculty of Engineering, Dept. of Comp. Eng.

abdallahdwikat@stu.aydin.edu.tr, omarsawalha@stu.aydin.edu.tr, zaferaslan@aydin.edu.tr

SST heat affects of the water density

The warmer the water, the more space it takes up, and the lower its density.

1) Sea Level Rise
2) Impact on Marine Life
3) Stratification (Lower density stays at surface, lesser exchange with deep water)
4) Ocean Circulation

Study Area

- Antalya
- Adana

 Th study focused on 2 areas, Eastern and Western part in Türkiye at the Mediterranean sea

Project Methodology

1. Data Collection

Coordinates-Dates-Files Conversion

2. Data Cleaning & Pre-Processing

3. Exploratory Data Analysis (EDA)

Feature Engineering

4. Model Building

5. Results

Correlation Matrix Heatmap

Strong Cross Relation
with Average Air
Tempreature and Dew
Point.

General Analysis -Trends

SST-Antalya

SST-Adana

SST for Antalya

 August is the warmest and March is the coldest.

SST(°C) by Year and Season

 Importance of understanding un-usual events and linkage between other natural atmospheric activities in the region.

Specific Analysis

SST-Antalya

Precipitation - Antalya

Machine Learning Models

Antalya

A) LSTM

B) Linear Regression

C) Decision Tree

D) SVM

variable

Linear Regression

 The relation between SST and itself after shifting 365 days.

94.70%

Decision Tree - Feature Engineering

Before:

- Year
- Month
- Day of Year

After:

Date

SST Results

LSTM

98.78%

E1D1 ==> Sequence to Sequence Model with one encoder layer and one decoder layer.

Random-Forest

98.9%

Test set 2021 - 2023

Future Work - Early Warning System

	SL	SST	Air-Temp	Tot-Prec	Event
SL	1.000	0.618	0.276	-0.073	0.004
SST	0.618	1.000	0.869	-0.188	-0.081
Air-Temp	0.276	0.869	1.000	-0.202	-0.117
Tot-Prec	-0.073	-0.188	-0.202	1.000	0.209
Event	0.004	-0.081	-0.117	0.209	1.000

United Nations Strategic Development Goals

We All Win,
If we Succeed.

Acknowledgement

This study is supported by The North Atlantic Treaty Organization (NATO) the Science for Peace and Security (SPS) Multi-Year Project number G5970 named Cube4EnvSec: "Big Earth Data-cube Analytics for Transnational Security and Environment Protection".

Thanks for listening!

abdallahdwikat@stu.aydin.edu.tr, omarsawalha@stu.aydin.edu.tr, zaferaslan@aydin.edu.tr

References

[1] Yang, N., Wang, C., & Li, X. (2024). Improving tropical cyclone precipitation forecasting with deep learning and

satellite image sequencing. Journal of Geophysical Research: Machine Learning and Computation, 1, e2024JH000175. https://doi.org/10.1029/2024JH000175.

[2] NASA MODIS Adaptive Processing System, Goddard Space Flight Center

Shalev-Shwartz, S., Ben-David, S. (2014). Understanding Machine Learning - From Theory to Algorithms..

Cambridge University Press. ISBN: 978-1-10-705713-5.

[3] Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and

prediction. 2nd ed. New York, Springer.

[4] Das, S., R. Chakraborty and A. Maitra, (2017): A random forest algorithm for now-casting of intense precipitation

events, Advances in Space Research, Volume 60, Issue 6, 15 September 2017, Pages 1271-1282.

[5] Han J. and M. Kanber, (2006): Data Mining Concepts and Techniques, Elsevier, Morgan-Kaufmann Publisher. pp.

743, CA, USA.