DNA SEQUENCING

SURENDER RAWAT Msc. MICROBIAL BIOTECH ROLL NO. 1784

DNA SEQUENCING

Determining the precise order of nucleotides within a DNA molecule.

Pyrimidines

- Used to determine the sequence of individual genes, larger genetic regions, full chromosomes or entire genomes.
- The resulting sequences may be used by researchers in molecular biology or genetics to further scientific progress.

HISTORY OF DNA SEQUENCING

- 1972 Earliest nucleotide sequencing RNA sequencing of Bacteriophage MS2 by WALTER FIESERR
- Early sequencing was performed with tRNA through a technique developed by Richard Holley, who published the first structure of a tRNA in 1964.
- 1977 DNA sequencing FREDRICK SANGER by Chain termination method
- Chemical degradation method by ALLAN MAXAM and WALTER GILBERT
- 1977 First DNA genome t be sequenced of Bacteriophage ΦΧ174
- 1986 LOREY and SMITH gave Semiautomated sequencing
- 1987 Applied biosystems marketed Fully automated sequencing machines

 1995 – CRAIG VENTER, HAMILTON SMITH and collegues published first complete genome sequence of Haemophilus influenzae

•2003 – Human genome project

•2ND Generation of DNA sequencing

•3RD Generation of DNA sequencing

Determining the Sequence of DNA

Methods:

- 1) Maxam and Gilbert chemical degradation method
- 2) Chain termination or Dideoxy method
 - Fredrick Sanger
- Genome sequencing method
 - Shotgun sequencing
 - Clone contig approach
- 4) 2nd generation sequencing methods
 - Pyrosequencing
 - Nanopore sequencing
 - Illumina sequencing
 - Solid sequencing

SANGER SEQEUNCING

- Chain termination method of DNA sequencing.
- It involves following components:
- a) 1. Primer
- b) 2. DNA template
- c) 3. DNA polymerase
- d) 4. dNTPs(A,T,G,C)
- e) 5. ddNTPs

4 Steps:

- Denaturation
- Primer attachment and extension of bases
- Termination
- Poly acrylamide gel electrophoresis

SANGER'S METHOD

www.fadavis.com

Copyright & 2007 F.A. Davis Company

(a) Initiation of strand synthesis

(b) A dideoxynucleotide

(c) Strand synthesis terminates when a ddNTP is added

Chain Termination (Sanger) Sequencing

ddATP + four dNTPs

ddA dAdGdCdTdGdCdCdCdG

ddCTP + four dNTPs

dAdGddC dAdGdCdTdGddC dAdGdCdTdGdCddC dAdGdCdTdGdCdCdC

ddGTP +
G four dNTPs

dAddG dAdGdCdTddG dAdGdCdTdGdCdCdCddG

ddTTP + four dNTPs

dAdGdCddT dAdGdCdTdGdCdCdCdG

Determination of nucleotide sequence

SANGER'S METHOD

- Not all polymerases can be used as they have mixed activity of polymerizing and degrading.
- Both exonuclease activities are detrimental.
- Klenow fragment was used in original method but it has low processivity.
- So Sequenase from bacteriophage T7 was uesd with high processivity and no exonuclease added.
- Method requires ss DNA. So it is obtained by
 - Denaturation with alkali or boiling
 - DNA can be cloned in phagemid containg M13 ori and can take up DNA fragments of 10kb

PYROSEQUENCING

- Pyrosequencing is the second important type of DNA sequencing methodology in use today.
- The addition of a DNTP is accompanied by release of a molecule of pyrophosphate.
- Reaction mixture contains
- DNA sample to be sequenced
- Primers
- Deoxynucleotides
- DNA polymerase
- Sulfurylase
- The release of pyrophosphate is converted by the enzyme sulfurylase into a flash
 of chemiluminescence which is easily automated.

PYROSEQUENCING

□Advantages:

- □ Accurate
- □ Parallel processing
- ☐ Easily automated
- □Eliminates the need

for labeled primers

and nucleotides

□No need for gel

electrophoresis

DISADVANTAGES

- Smaller sequences
- ❖ Nonlinear light response after more than 5-6 identical nucleotides

MASSIVELY PARALLEL PYROSEQUENCING

- The DNA is broken down into fragments between 300 to 500bp
- Each fragment is ligated with a pair of adaptor
 - To attach to the beads
 - Provide annealing sites for the primers for performing PCR
- Adaptors are attached to beads by biotin-streptavidin linkage
- Just one fragment becomes attached to one bead
- Each DNA fragment is now amplified using
- PCR is carried out in a oil emulsion, each bead residing within own droplet in the emulsion
- Each droplet contains all the reagents for PCR and is physically seprated from all the other droplets by the barrier provided by the oil components in the emulsion.
- After PCR, the droplets are transferred on wells on plastic strip and pyrosequencing reactions are carried out

SHOTGUN SEQUENCING

- Shotgun sequencing, also known as shotgun cloning, is a method used for sequencing long DNA strands or the whole genome.
- In shotgun sequencing, DNA is broken up randomly into numerous small segments and overlapping regions are identified between all the individual sequences that are generated.
- Multiple overlapping reads for the target DNA are obtained by performing several rounds of this fragmentation and sequencing.
- Computer programs then use the overlapping ends of different reads to assemble them into a continuous sequence.
- The shotgun approach was first used successfully with the bacterium <u>Haemophilus influenzae</u>.
- Craig venter used this method to map the Human genome project in 2001.

Shotgun sequencing

NEXT GENERATION SEQUENCING

- The concept behind NGS the bases of small fragments of DNAare sequentially identified as signals emitted as eachfragment is resynthesized from a dna template strand
- NGS extends this process across millions of reactions in a massively parallel fashion rather than being limited to a single or a few dna fragments

A. Extracted gDNA.

B. gDNA is fragmented into a library of small segments that are each sequenced in parallel.

C. Individual sequence reads are reassembled by aligning to a reference genome.

D. The whole-genome sequence is derived from the consensus of aligned reads.

- 454 Sequencing / Roche
 - GS Junior System
 - GS FLX+ System
- Illumina (Solexa)
 - HiSeq System
 - Genome analyzer IIx
 - MySeq
- Applied Biosystems Life Technologies
 - SOLiD 5500 System
 - SOLiD 5500xl System
- Ion Torrent Life Technologies
 - Personal Genome Machine (PGM)
 - Proton
- Helicos
 - Helicos Genetic Analysis System
- Pacific Biosciences
 - PacBio RS
- Oxford Nanopore Technologies
 - GridION System
 - MinION

Next Generation Sequencing Amplified Single Molecule Sequencing

Third Generation Sequencing, Next Next Generation Sequencing, Single Molecule Sequencing

Differentiating Next Gen technologies

Illumina sequencing

Sequencing by Synthesis (SBS) Overview

