Prédiction de revenus

A la recherche de prospects

Objectif

recherche de nouveaux clients

Qui?

- → Jeune
- → Premier compte
- → Futur hauts revenus

Où?

Le monde entier

Comment?

modèle prédictif

revenu parents
pays de l'individu

revenu moyen de son pays indice de Gini de son pays

▼revenu de l'enfant

Sommaire

Données pays

- → Préparation mission 1
- → Analyse mission 2

Données individus mission 3

- → Revenu des parents sachant celui des enfants?
- → Création des individus

Modèles statistiques mission 4

Sommaire

Données pays

- → Préparation mission 1
- → Analyse mission 2

Données individus mission 3

- → Revenu des parents sachant celui des enfants?
- → Création des individus

Modèles statistiques mission 4

Données pays - Distribution des revenus

	country	year_survey	quantile	nb_quantiles	income	gdpppp
3300	FRA	2008	1	100	2958.3040	30357.0
3301	FRA	2008	2	100	4412.6753	30357.0

116 pays - référence

Centiles

→ classes de revenus

Avantages

- → Inégalités intra-pays
- → comparaison inter-pays

Valeurs manquantes

- → GDP PPP pour 3 pays
- → Quantile 41 de la Lithuanie

Données pays - Indice de Gini

	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	 2007	2008	2009
Country Code													
AGO	NaN	 NaN	42.7	NaN									
ALB	NaN	 NaN	30.0	NaN									

166 pays

5 pays manquants → ajout manuel

Gini de référence

- → Plus petit intervalle d'années avec au moins une valeur
- → **Moyenne** par pays

Données pays - Population

	1960	1961	1962	1963	1964	1965
Country Code						
ABW	5.421100e+04	5.543800e+04	5.622500e+04	5.669500e+04	5.703200e+04	5.736000e+04
AFG	8.996351e+06	9.166764e+06	9.345868e+06	9.533954e+06	9.731361e+06	9.938414e+06

263 pays & régions du monde

Population de référence → année 2011

Population couverte?

- → jointure gauche sur les pays de référence
- → Gini & revenu de 91% de la population

Données pays - Coefficient d'élasticité

Élasticité intergénérationnelle

- → mesure **l'impact** des revenu des **parents** sur celui de leurs **enfants**
- → valeur de 0 (forte mobilité sociale) à 1 (faible mobilité sociale)

Sommaire

Données pays

- → Préparation mission 1
- → Analyse mission 2

Données individus mission 3

- → Revenu des parents sachant celui des enfants ?
- → Création des individus

Modèles statistiques mission 4

Analyse des pays - Sélection de pays types

5 pays illustrant les inégalités ? → Classification non-supervisée

1. **dataframe** code_pays | gini de référence | GDP PPP → jointure sur code_pays

normalisation des données → preprocessing.scale()*

3. **kmeans** sur 5 clusters → Kmeans()*

on garde le pays le proche de chaque centroïdes → pairwise_distance_agmin_min()*

* librairie python sickitlearn

→ l'Autriche, Taiwan, l'Equateur, l'Arménie et le Maroc

Analyse des pays - Courbes de Lorenz

Analyse des pays - Indice de Gini

Analyse des pays - Indice de Gini

Plus fortes inégalités

Botswana - 62.0

Afrique du Sud - 61.7

Namibie - 61.1

Bélize - 57.7

Suriname - 57.6

Plus faible inégalités

Azerbaïdjan - 23.4

Slovénie - 25.3

Tchéquie - 26.4

Slovaquie - 26.7

Danemark - 26.7

La France

indice Gini de **32.1**

33ème pays dans le monde

Sommaire

Données pays

- → Préparation mission 1
- → Analyse mission 2

Données individus mission 3

- → Revenu des parents sachant celui des enfants?
- → Création des individus

Modèles statistiques mission 4

Comment former les données d'individus ?

classe de revenu de l'enfant

	country	year_survey	quantile	nb_quantiles	income	gdpppp
3300	FRA	2008	1	100	2958.3040	30357.0
3301	FRA	2008	2	100	4412.6753	30357.0

$$\rightarrow$$
 1 ligne = 1 individu

Comment déterminer la classe de revenu du parent ?

- → depuis la classe de revenu enfant
- → avec le coefficient d'élasticité

	elasticite
iso3	
CAN	0.269333
DNK	0.145146
FIN	0.112876

Sommaire

Données pays

- → Préparation mission 1
- → Analyse mission 2

Données individus mission 3

- → Revenu des parents sachant celui des enfants ?
- → Création des individus

Modèles statistiques mission 4

Revenu des parents sachant celui des enfants

 $ilde{m au}$ Fonction permettant de calculer $\ P(c_{i,parent} | c_{i,child}, p_j = x)$

Formule liant le revenu d'un parent à son enfant

$$Y_{child} = e^{p_j imes ln(y_{parent}) + \epsilon}$$

→ Génération de **couples de revenus parent/enfant** pour **p**_j donné

Parents sachant enfants - Exemple

- on fixe p_i a **0.9**
- \succ Génération gaussienne de **10 000** *In(Y*_{parent}) & erreur \mathcal{E}

y_child, y_parents = generate_incomes(n, pj)

calcul de Y_{child} selon l'équation

On fixe nb_{quantiles} à 10 et on discrétise les revenus

sample = compute_quantiles(y_child, y_parents, nb_quantiles)

	y_child	y_parents	c_i_child	c_i_parent
0	0.783328	0.336317	5	2
1	1.617195	2.499539	7	9

Parents sachant enfants - Exemple

c_i_child	c_i_parent
5	2
7	9

10 000 lignes

fréquence des C
$$_{ ext{i,parents}}$$
 pour un C $_{ ext{i,child}}$ fixé $ightharpoonup P(c_{i,parent}|c_{i,child}=x,p_j=0.9)$

cd = conditional_distributions(sample, nb_quantiles)

Parents sachant enfants - Généralisation de la démarche

```
def create_conditional_distributions_matrice(pj, nb_quantiles):
    n = 1000*nb_quantiles
    y_child, y_parents = generate_incomes(n, pj)
    sample = compute_quantiles(y_child, y_parents, nb_quantiles)
    return conditional_distributions(sample, nb_quantiles)
```

 \rightarrow retourne une matrice M de dimension $nb_{quantiles} \times nb_{quantiles}$ où

$$M_{i,j} = P(c_{i,parent} = i | c_{i,child} = j, p_j = x)$$

Sommaire

Données pays

- → Préparation mission 1
- → Analyse mission 2

Données individus mission 3

- → Revenu des parents sachant celui des enfants?
- → Création des individus

Modèles statistiques mission 4

Liste d'individus - Initialisation

	country	yeai		country	c_i_child	income_child	come gdpppp
3300	FRA		0	ALB	1	728.89795	.3040 30357.0
3301	FRA		1	ALB	2	916.66235	. 5 75 500 30357.0
			2	ALB	3	1010.91600	
			3	ALB	4	1086.90780	

Optimisation

- → classes d'individus en int8
- → Code pays en *Category*

177 → 60 Mo

Liste d'individus - Classe de revenu parents

 $\texttt{create_conditional_distributions_matrice()} \rightarrow \texttt{fr\'equence d'apparition des } \textbf{C}_{i,\texttt{parent}} \text{ sachant } \textbf{C}_{i,\texttt{child}}$

Comment créer **500** c_{i parents} depuis cette fréquence ?

```
def get_values_from_frequencies(n, values, frequencies):
    nb_values = iteround.saferound(np.array(frequencies) * n, 0)
    nb_values = [int(x) for x in nb_values]
    return np.concatenate([ np.full(nb, value) for value, nb in zip(values, nb_values) ])
```

Problème : il faut retourner **n** valeurs

get_values_from_frequencies(
$$\mathbf{7}$$
, [a, b, c], [$\frac{1}{3}$, $\frac{1}{3}$]) [a, a, b, b, c, c] $\mathbf{6}$ X [a, a, a, b, b, c, c] $\mathbf{7}$ OK

Liste d'individus - Classe de revenu parents

Pour chaque pays:

```
p_j = coefficient d'élasticité du pays
```

```
distribution_conditionnelle = create_conditional_distributions_matrice(p_j, 100)
```

Optimisation → Calculé en amont & résultat stocké dans un fichier

Optimisation → country et c_i_child mis en multi-index

affectation des c_i_parents aux individus du pays et du c_i_child de l'itération

	country	c_i_child	income_child	c_i_parent
1222019	CZE	45	7011.11670	6
2386553	IRN	74	6818.36430	20

Liste d'individus - Finalisation

→ ajout de l'indice de Gini et GDP PPP

country	income_child	c_i_parent	gdpppp	gini_ref
HUN	5533.59230	79	18004.0	29.646154
KEN	720.09247	12	1429.0	46.580000
FRA	13469.08700	50	30357.0	32.092308

Sommaire

Données pays

- → Préparation mission 1
- → Analyse mission 2

Données individus mission 3

- → Revenu des parents sachant celui des enfants ?
- → Création des individus

Modèles statistiques mission 4

Y a-t-il une différence de revenu entre les pays?

 $ANOVA \rightarrow income_child à partir de pays$

ols() de statsmodel

f-valeur = 4935p-valeur = 0.00

 $\eta^2 = 0.50$

Il y a une différence de revenu entre les pays

Selon l'ANOVA, 50% de la variation de revenu est expliquée par le pays d'origine

Régression linéaire - income_child à partir de GDP (PPP), gini_ref statsmodel.OLS()

Les **résidus** ne semblent pas **gaussiens**

Les **résidus** n'ont pas de **variance constante**

Régression linéaire → log(income_child) à partir de log(GDP PPP), gini_ref

Les **résidus** semblent **gaussiens**

Les résidus ont une variance constante

Dep.	Dep. Variable:		me_child	R-	squared	l:		0.654
	Model:		OLS	Adj. R-squared:		l:	0.654	
	Method:	Least	Squares	F	-statistic):	5.473	8e+06
	Date	Thu, 24	Jan 2019	Prob (F-	statistic):		0.00
	Time		13:53:02	Log-Li	kelihood	l: -7	.0274	le+06
No. Obse	rvations		5800000		AIC	: :	1.405e+07	
Df R	Df Residuals:		5799997		BIC	: :	1.405	5e+07
Ι	Of Model:	f	2					
Covariar	ce Type:	n	onrobust					
	coef	std err	t	P> t	[0.025	0.97	5]	
const	0.9657	0.003	278.182	0.000	0.959	0.9	72	
gdpppp	0.8586	0.000	2973.284	0.000	0.858	0.8	59	
gini_ref	-0.0177	4.34e-05	-407.754	0.000	-0.018	-0.0	18	

Régression linéaire → log(income_child) à partir de log(GDP PPP), gini_ref

Facteurs d'inflation de la variance

variable	FIV
GDP PPP	1.12
gini_ref	1.12

Les variables sont **linéairement indépendantes**

Distance de Cooks

get_influence() du modèle

$$seuil = rac{4}{nb_{ind} - nb_{variable}} = 6.9e - 07$$

5.8% des individus sont influents

 \rightarrow on les garde

Régression linéaire → log(income_child) à partir de log(GDP PPP), gini_ref

$$SCT = SCE + SCR$$

11 062 517 **7** 231 145 **3** 831 372

 $R^2 = SCE/SCT = 0.65$

Selon le modèle,

65% de la variation de revenu est expliquée par

le salaire moyen et l'indice de Gini du pays de naissance

Régression linéaire → log(income_child) à partir de log(GDP PPP), gini_ref et log(C_{i,parent})

Les **résidus** semblent **gaussiens**

Les résidus ont une variance constante

Régression linéaire → log(income_child) à partir de log(GDP PPP), gini_ref et log(C_{i,parent})

Facteurs d'inflation de la variance

variable	FIV
GDP PPP	1.12
gini_ref	1.12
C _{i,parent}	1.00

Les variables sont **linéairement indépendantes**

Distance de Cooks

5.8% des individus sont influents

→ on les garde

Dep. Va	riable:	income_child			R-sq	uared:	0.700	
Model:		OLS /		Ac	Adj. R-squared:		0.700	
Method:		Least Squares			F-statistic:		4.509e+06	
	Date:		Thu, 24 Jan 2019 Pro		b (F-statistic):		0.00	
Time:		13:53:58 L o		og-Likelihood:		-6.6118e+06		
No. Observations:		5800000			AIC:		1.322e+07	
Df Residuals:		5799996			BIC:		1.322e+07	
Df Model:			3					
Covariance Type:		nonrobust						
	coef	std err		t	P> t	[0.025	0.975]	
const	-0.2029	0.003	-58.6	557	0.000	-0.210	-0.196	
gdpppp	0.8585	0.000	3193	736	0.000	0.858	0.859	
gini_ref	-0.0177	4.04e-05	-437.2	275	0.000	-0.018	-0.018	
c_i_parent	0.3213	0.000	945.3	316	0.000	0.321	0.322	

coefficient de gini_ref (-0.018):

si pour toute autres variables constante,

il augmente de n,

income_child sera divisé par e^{n x 0.018}

(exemple)

Régression linéaire → log(income_child) à partir de log(GDP PPP), gini_ref et log(C_{i,parent})

$$SCT = SCE + SCR$$

11 062 517 **7** 742 646 **3** 319 870

Selon le modèle,

 $R^2 = 0.70$

70% de la variation de revenu est expliquée par

le pays de naissance et le revenu des parents

Conclusion

- →Coefficients significatifs
- → Homoscédasticité
- → Variables non-colinéaires

$$R^2 = 0.70$$

