4.2.3

Интерферометр Майкельсона

Егор Берсенев

1 Цель работы

Изучение двухлучевой интерференции, определение длины волны, проверка эффекта Доплера.

2 Оборудование

Интерферометр Майкельсона с подвижным зеркалом, лазер ЛГН-203, фотоумножитель ФЭУ-68 с блоком питания, частотомер ЧЗ-54, линзы.

3 Теоретическое введение

3.1 Интерференция волн двух точечных источников света

 $S_1\ (0,0,z_1),\ S_2\ (0,0,z_2)$ - изображения источника $S,\ (x,y,0)$ - координаты точки экрана. Разность хода лучей от источников S_1 и S_2 :

$$\delta = \sqrt{z_1^2 + x^2 + y^2} - \sqrt{z_2^2 + x^2 + y^2} \tag{1}$$

При заданной величине δ это уравнение определяет координаты x,y семейства точек, обладающих одной и той же разностью хода. Наибольшая разность хода достигается в центре интерференционной картины, в точке O:

$$\delta_0 = z_1 - z_2 = 2(BC - BD)$$

В нашей установке $\delta_0 = 8cm$. Для длины волны излучения лазера $\lambda = 0.6328$ мкм, разности хода соответствует порядок интерференции

$$m_0 = \frac{\delta_0}{\lambda} \approx 1.2 \cdot 10^5 \tag{2}$$

Вблизи центра экрана выражение (1) преобразуется в:

$$\delta \approx z_1 \left(1 + \frac{x^2 + y^2}{2z_1^2} \right) - z_2 \left(1 + \frac{x^2 + y^2}{2z_2^2} \right) = \delta_0 - \frac{\delta_0}{2z_1 z_2} (x^2 + y^2)$$
 (3)

Величина $n = (\delta - \delta_0)/\lambda$ соответствует номеру интерференционного кольца, отсчитанного от центра картины. Из (2) и (3) следует:

$$n = \frac{\delta_0}{2r_1r_2} \frac{r_n^2}{\lambda}$$
 или $r_n \approx \sqrt{\frac{2nz_1z_2}{m_0}}$ (4)

При $n\gg 1$ разность $r_{n+1}-r_n$ можно заменить на $\frac{dr_n}{dn}dn$. У соседних полос dn=1. Тогда расстояние между полосами:

$$\Delta = \frac{dr_n}{dn} = \sqrt{\frac{z_1 z_2}{2nm_0}} \tag{5}$$

Рис. 1: Схема интерферометра

При повороте зеркала 3_2 изображение S_2 переходит в S_2' с координатами $(0,y_2,z_2)$, центр интерференционной картины переходит в точку O'. Координата y' точки O' равна

 $y' = y_2 \frac{z_1}{\delta_0}$

. Для небольших углов поворота интерференционные полосы вблизи центра экрана можно приближенно считать кольцами. Номер интерференционного кольца n_1 можно определить, приравнивая радиус этого кольца r_n смещению центра интерференционной картины y'. Из (2) и (5):

$$y'^{2} = \frac{2nz_{1}z_{2}}{m_{0}} , n = \frac{\delta_{0}y'^{2}}{2z_{1}z_{2}}$$

$$\Delta = \frac{z_{1}z_{2}\lambda}{\delta_{0}y'} = \lambda \frac{z_{2}}{y_{2}} = \frac{\lambda}{\tan\varphi} \approx \frac{\lambda}{\varphi}$$
(6)

При смещении зеркала 3_1 на расстояние $\lambda/2$ интерференционная картина восстанавливается. При смещении зеркала 3_1 на расстояние L в центре картины возникнет или исчезнет

$$N = 2\frac{L}{\lambda} \tag{7}$$

Если при равномерном движении зеркала за время T зарегистрировано возникновение или исчезновение N колец, то скорость перемещения зеркала равна

$$v = \frac{\lambda}{2} \frac{N}{T} \tag{8}$$

3.2 Эффект Доплера

В системе движущегося со скоростью v навстречу экрану зеркала 3_1 частота излучения источника ω_1 отличается от исходной ω_0 :

$$\omega_1 = \omega_0 \sqrt{\frac{c+\upsilon}{c-\upsilon}}$$

. Частота отраженного сигнала ω_2 в ЛСО отличается от частоты ω_1 :

$$\omega_2 = \omega_1 \sqrt{\frac{c+v}{c-v}} = \omega_0 \frac{c+v}{c-v} \tag{9}$$

В центре экрана колебания с частотами ω_0 и ω_2 складываются. Суммарное колебание имеет вид:

$$E = E_0(\cos \omega_0 t + \cos \omega_2 t) = \left(2E_0 \cos \frac{\omega_2 - \omega_0}{2}t\right) \cos \frac{\omega_2 + \omega_0}{t}$$

. Следовательно, регистрируемая интенсивность колебаний меняется во времени как

$$\cos^2\frac{\omega_2 - \omega_0}{2}t = \frac{1 + \cos(\omega_2 - \omega_0)t}{2}$$

, т.е. с круговой частотой

$$\Delta\omega = \omega_2 - \omega_0 = \frac{2v}{c - v}\omega_0 \tag{10}$$

Число N периодов колебаний интенсивности, измеренное за время T, равно

$$N = \frac{(\omega_2 - \omega_0)T}{2\pi} = 2\frac{vT}{\lambda} \frac{1}{1 - \frac{v}{2}} \approx \frac{2vT}{\lambda}$$
 (11)

4 Экспериментальная установка

В нашей установке l=32mm

Таблица 1: Скорости движения 3₁

$N_{\overline{0}}$	t_1, ms	t_2 , ms	t_3 , ms	\bar{t} , ms	$v = l/\bar{t}, 10^{-3} \frac{mm}{s}$
1	87890	88160	88301	88117 ± 121	363 ± 1
2	39635	39232	39150	39339 ± 150	813 ± 3

5 Эксперимент

Для малых скоростей υ формула (11) справедлива и в случае отдаляющегося от экрана зеркала 3_1 . Найдем средние значения частот колебания интенсивности интерференционной картины и оценим погрешности.

Построим графики зависимости доплеровской частоты от скорости передвижения зеркала. Из графиков находим

Рис. 2: Схема интерферометра

Таблица 2: $v = v_1$

таолица 2. $v = v_1$					
$N/T, \mathrm{kHz}$					
от экрана			к экрану		
1.112	1.149	1.151	1.158	1.186	1.137
1.28	1.139	1.159	1.164	1.16	1.16
1.138	1.126	1.131	1.163	1.153	1159
1.124	1.145	1.157	1.161	1.165	1.156
1.131	1.129	1.111	1.171	1.173	1.172
1.135	1.131	1.129	1.159	1.157	1.182
1.155	1.156	1.137	1.183	1.163	1.171
1.145	1.149	1.119	1.187	1.154	1.15
1.139	1.122	1.141	1.176	1.159	1.164
1.162	1.151	1.122	1.168	1.175	1.15
1.13	1.124		1.174	1.17	1.186
1.143	1.141		1.168	1.165	1.159
1.149	1.158		1.167	1.164	1.12
1.124	1.136		1.173	1.178	1.155
1.132	1.137		1.158	1.149	1.163
1.165	1.138		1.142	1.145	1.125
1.121	1.118		1.159	1.139	1.144
1.135	1.118		1.162	1.172	

Таблица 3: $v = v_2$

N/T, kHz					
от эк	/ грана	к экрану			
2.633	2.608	2.518	2.533		
2.599	2.568	2.522	2.566		
2.584	2.601	2.579	2.582		
2.605	2.572	2.603	2.625		
2.571	2.563	2.623	2.644		
2.539	2.539	2.663	2.63		
2.555	2.549	2.62	2.628		
2.566	2.523	2.632	2.631		
2.636	2.69	2.478	2.509		
2.619	2.657	2.579	2.558		
2.609	2.636	2.592	2.576		
2.615	2.63	2.628	2.495		
2.581	2.608	2.669	2.67		
2.563	2.577	2.657	2.66		
2.537	2.608	2.643	2.68		
2.557	2.595	2.64	2.679		

Таблица 4: Средние частоты

$\langle N/T \rangle$,kHz				
v	от экрана	к экрану		
v_1	1.137 ± 0.002	1.162 ± 0.002		
v_2	2.590 ± 0.001	2.603 ± 0.01		

Рис. 3: от экрана

Рис. 4: к экрану

$$\lambda_{from} = 0.6349 \pm 0.0051 \,\text{nm}$$

$$\lambda_{to} = 0.6250 \pm 0.0002 \,\text{nm}$$

Полученные значения совпадают с фактической длиной волны лазера в нашей установке. Значит, формула (11) справедлива.

Рис. 5: Интерференционная картина

6 Вывод

В проделанной работе была получена интерференционная картина двухлучевой интерференции. Также была экспериментально определена длина волны источника и проверен эффект Доплера.