1: Sets

(a) Examine the following formal descriptions of sets so that you understand which members they contain. Write a short informal English description of each set.

- {1,3,5,7,...}
- $\{n \mid n = 2m, \text{ for some } m \in \mathcal{N}\}$
- $\{n \mid n = 2m, \text{ for some } m \in \mathcal{N} \text{ and } n = 3k \text{ for some } k \in \mathcal{N}\}$
- $\{n|n=n+1, n\in\mathcal{Z}\}$

(b) Write the following sets using set notation

- The set containing the numbers 1, 10, and 100
- The set containing all integers that are greater than 5
- The set containing all natural numbers that are less than 5

(c) Let A be the set $\{x, y, z\}$ and B be the set $\{x, y\}$.

- Is $A \subseteq B$?
- Is $B \subseteq A$?
- What is $A \cup B$?
- What is $A \cap B$?
- What is $A \times B$?
- $\mathcal{P}(B)$? (powerset of B)

2: Functions

Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{6, 7, 8, 9, 10\}$. The unary function $f: X \to Y$ and the binary function $g: X \times Y \to Y$ are described in the following tables:

n	f(n)					9	
1	6	1	10	10	10	10	10
2	6 7 6 7	2	7	8	9	10 10	6
3	6	3	7	7	8	8 6	9
4	7	4	9	8	7	6	10
5	6	5	6	6	6	6	6

- What is the value of f(2)?
- What are the range and domain of f?
- What is the value of g(2,10)?
- What are the range and domain of g?
- What is the value of g(4, f(4))?

3: Proof by Contradiction

Prove the following Theorem: There is no largest even number

4: Graphs

Consider the undirected graph G = (V, E) where V, the set of nodes, is $\{1, 2, 3, 4\}$ and E, the set of edges, is $\{\{1, 2\}, \{2, 3\}, \{1, 3\}, \{2, 4\}, \{1, 4\}\}$.

Draw the graph G. What are the degrees of each node? Indicate a path from node 3 to node 4 on your drawing of G.

5: Languages and alphabets

Consider the Language described by the following regular expression over the binary alphabet i.e. $\Sigma = \{0, 1\}.$

$$(0 \cup 1)^*01(0 \cup 1)^*$$

- Give 2 strings that belong to the language.
- Give 2 strings that do not belong to the language.
- How would you describe this language in english.