

LECTURE 4:

CONVOLUTIONAL NEURAL NETWORKS

University of Washington, Seattle

Fall 2024

Previously in EEP 596...

Previously in EEP 596...

Previously in EEP 596...

Optimizers

- Vanilla SGD
- Momentum
- AdaGrad
- RMSProp
- Adam

Optimization Techniques

- Data splitting (Train/Val/Test)
- Regularization
- Data normalization
- Batch-normalization
- Network initialization
- Hyperparameter tunings

OUTLINE

Part 1: Need for CNNs

- Limitation of MLP
- Convolution Layer

Part 2: Convolution Filters

- 2D convolution
- Stride
- Padding
- Volume convolutions

Part 3: Composing Convolutional Neural Networks

- Convolution Layer
- Pooling Layers
- Benefits and challenges of CNNs
- Historical CNN examples

PART 1:

Need for CNNs

Great at Classification

Not as good with Extracting image features

Too many parameters when Flattening images

Specialized Layers for Feature Extractions

Fully connected layers (Classifier)

Full CNN Architecture

Convolution Layers + Pooling Layers (Image feature extraction)

Fully connected layers (Classifier)

PART 2:

Convolution Filters

Image Convolution

Input Image

Kernel

Convoluted Feature

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	6

CNNs Learn these features instead of us guessing

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

CNNs Learn these features instead of us guessing

1000 filters 3x3=9*1000 = 9K parameters

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

CNNs Learn these features instead of us guessing

1000 filters 3x3=9*1000 = 9K parameters

14M vs 9k Several orders of magnitude of difference in parameters

Convolution Dimensions

Input Image (5 x 5)

Filter (3 x 3)

Convoluted Feature (3 x 3)

Convolution Dimensions

Convoluted Feature

$$(3 \times 3)$$

 $(n-f+1) \times (n-f+1)$

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

Input Image

Filter

Convoluted Feature

 1
 0
 1

 0
 1
 0

 1
 0
 1

4 3

Input Image

Filter

Convoluted Feature

4	3	4

Input Image

Filter

Convoluted Feature

Input =
$$5 \times 5$$

	1	1	1	0	0
•	0	1	1	1	0
	0	0	1	1	1
	0	0	1	1	0
	0	1	1	0	0

*

1	0	1
0	1	0
1	0	1

Output = 3×3

4	3	4
3		

Input Image

Filter

Convoluted Feature

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

4

Input Image

Filter

Convoluted Feature

		•		
1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

*

1	0	1
0	1	0
1	0	1

4 4

Input Image

Filter

Convoluted Feature

Input = 5×5

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

*

1	0	1
0	1	0
1	0	1

Output = 2×2

4	4
2	

Input Image

Filter

Convoluted Feature

Padding

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

0	0	0	0	0	0	0
0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	0	1	1	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0

Input Image (5x5)

Padding = 1

Padded Image (7x7)

Padding

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	1	1	1	0	0
0	0	0	0	1	1	0	0	0
0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Input Image (5x5)

Padding = 2

Padded Image (9x9)

Generalized Dimensions

$$(n) * (n)$$

$$\left(\frac{n+2p-f}{s}+1\right) * \left(\frac{n+2p-f}{s}+1\right)$$

n: original image dimensions

p: padding size

f : filter dimension

s: stride

Volume Convolution

Input (5x5x3)

Volume Convolution

Input Filters Output (5x5x3) (2x2x3) (4x4x1)

(Height x Width x Channels)

Volume Convolution (multiple filters)

PART 3:

Composing CNNs

CNN example

Typical CNN Layers

Convolutional Layer (CONV)

Pooling Layer (POOL)

Fully Connected (FC)

Normalization (NORM)

Typical CNN Layers

Convolutional Layer (CONV)

Pooling Layer (POOL)

Fully Connected (FC)

Normalization (NORM)

Typical CNN Layers

- Convolutional Layer (CONV)
- Pooling Layer (POOL)
- Fully Connected (FC)
- Normalization (NORM)
 Not commonly used

Max Pooling and Average Pooling

4	9	2	5
5	6	2	4
2	4	5	4
5	6	8	4

Max pool

4	9	2	5
5	6	2	4
2	4	5	4
5	6	8	4

Average pool

1	2	5	10	7
0	5	1	4	0
0	4	9	3	15
0	0	2	4	5
0	7	2	0	0

Input Image

Max pool

Pooled Feature

Dim= 3×3

1	2	5	10	7
0	5	1	4	0
0	4	9	3	15
0	0	2	4	5
0	7	2	0	0

Input Image

Max pool

Pooled Feature

Dim= 3×3

1	2	5	10	7
0	5	1	4	0
0	4	9	3	15
0	0	2	4	5
0	7	2	0	0

Input Image

Max pool

Pooled Feature

Dim= 3×3

1	2	5	10	7
0	5	1	4	0
0	4	9	3	15
0	0	2	4	5
0	7	2	0	0

Input Image

Avg pool

Pooled Feature

Dim= 3×3

1	2	5	10	7
0	5	1	4	0
0	4	9	3	15
0	0	2	4	5
0	7	2	0	0

Input Image

Avg pool

Pooled Feature

Dim= 3×3

1	2	5	10	7
0	5	1	4	0
0	4	9	3	15
0	0	2	4	5
0	7	2	0	0

Input Image

Avg pool

Pooled Feature

Dim= 3×3

Full CNN example

self.cnn1

- In-channel # : 1
- Out-channel # : 16
- Kernel size : 5
- Stride = 1
- Padding = 2
- ReLU

self.maxpool1

Kernel size: 2

• In-channel # : 16

• Out-channel #: 32

self.cnn2

• Kernel size : 5

- Stride = 1
- Padding = 2
- ReLU

self.maxpool2

Kernel size: 2

Flatten

self.fc1

 $1568 \rightarrow 10$

Benefits of CNNs

Parameter Sharing

Filter can be useful in different parts of the input (image)

Sparsity of Connections

- In each layer each output value depends only on small number of inputs (local)
- Translation invariance

Challenges of CNNs

Computational Complexity

Convolutions are expensive O(N²n⁴)

Deeper Structure Needed

In each layer each output value depends only on small number of inputs (local)

Popular CNN Architectures (LeNet 5)

Yann LeCun

Leon Bottou

Yoshua Bengio

Patrick Haffner

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 1998.

LeNet-5 (1998)

LeNet-5 (1998)

Layer 1:

- Convolutional Layer with 6 kernels
- kernel size of 5x5
- Padding = 2, stride = 1

Layer 2:

Average pooling (2x2 kernel)

Layer 3:

- Convolutional layer with 16 kernels
- kernel size of 5x5
- Padding = 0, stride = 1

LeNet-5 (1998)

Layer 4:

Average pooling (2x2 kernel)

Layer 5:

- Convolutional layer with 120 kernels
- Kernel size of 5x5
- Padding = 0, stride = 1

Layer 6:

- Fully Connected Layer
- Input dimension = 120
- Output dimension = 84

Layer 7:

- Fully Connected Layer
- Input dimension = 84
- Output dimension = 10

AlexNet (2012)

AlexNet (2012)

Alex Krizhevsky

Ilya Sutskever

Jeoffrey Hinton

Krizhevsky et al., Imagenet classification with deep convolutional neural networks, 2012

Parameters (AlexNet)

Layer Name	Tensor Size	Weights	Biases	Parameters
Input Image	227x227x3	0	0	0
Conv-1	55x55x96	34,848	96	34,944
MaxPool-1	27x27x96	0	0	0
Conv-2	27x27x256	614,400	256	614,656
MaxPool-2	13x13x256	0	0	0
Conv-3	13x13x384	884,736	384	885,120
Conv-4	13x13x384	1,327,104	384	1,327,488
Conv-5	13x13x256	884,736	256	884,992
MaxPool-3	6x6x256	0	0	0
FC-1	4096×1	37,748,736	4,096	37,752,832
FC-2	4096×1	16,777,216	4,096	16,781,312
FC-3	1000×1	4,096,000	1,000	4,097,000
Output	1000×1	0	0	0
Total				62,378,344

Parameters (AlexNet)

- Much bigger than LeNet (60M parameters)
- ReLU
- Multiple GPUs
- Local Response Normalization (LRN)

VGG-16 (2014)

CONV: f=3, s=1, same

POOL: f=2, s=2

Order: CCP CCP CCCP CCCP FFS

Nf: 2⁶ 2⁷ 2⁸ 2⁹ 2⁹

~138 mil parameters

VGG-16 (2014)

CONV: f=3, s=1, same

POOL: f=2, s=2

Order: CCP CCP CCCP CCCP FFS

Nf: 2⁶ 2⁷ 2⁸ 2⁹ 2⁹

~138 mil parameters

- Multiple convolution layers
- Smaller convolution filters
- Modularized architecture (VGG-19)

Next episode in EEP 596...

Recurrent Neural Networks