

Rural Wildfires – Statistical analysis and inferences

2022/2023 – Data Science Engineering Fundaments – Statistics

Authors:

- João Fragão
- Jorge Vieira
- Tomás Rodrigues

Structure of the project

Methodology for this project: 6 Steps Statistical Investigation

Step 1: Which factors can have an impact on a wider burned area and number of fire occurrences?

Variables of this study:

Type of cause – Qualitative/categorical

Region: Littoral/Interior - Qualitative/categorical

Fire duration - Quantitative

Burned area - Quantitative

Extinction time - Quantitative

Reaction time - Quantitative

Step 2: Getting the data - provided by the Professor

Step 3 – Exploring the data Data cleaning – Null and Error values

After cleaning the data there were no missing values or null values!

Step 3 – Exploring the data Univariate Analysis – Fire duration

- Histogram (Relationship between fire duration and number of occurrences)
- Mode fire duration: 80min (over 4500 times)
- Follows a right skewed distribution (Mode <Median<Mean)

- Boxplot for the Fire duration
- Note: Outliers removed
- 25%: 59
- Median(50%): 92
- 75%: 146
- Max: 1102
- Count: 15453
- Mean: 117,4

Step 3 – Exploring the data Univariate Analysis – Extinguishing time

- Mode for the extinguishing time: 80min (over 5000 times)
- Follows a right skewed distribution (Mode <Median<Average)

- Boxplot for the extinguishing time
- Note: Outliers removed
- 25%: 47
- Median(50%): 92
- 75%: 132
- Max: 1080
- Count: 15453
- Mean:104,4

Step 3 – Exploring the data Univariate Analysis – Burned area

- Mode for the burned area: 0,1 acres
- Follows a right skewed distribution (Mode <Median<Average)

- Boxplot for the burned area;
- Note: Outliers removed
- 25%: 0,01
- Median(50%): 0,07
- 75%: 0,5
- Max: 181,7
- Count: 15453
- Mean: 1,7

Step 3 – Exploring the data Universidate Analysis – Reaction time

- Histogram for the Reaction time;
- **Mode**: 15min;
- Follows a right skewed distribution (Mode <Median<Average)

- Boxplot for the Reaction time;
- Note: Outliers removed
- 25%: 7min
- Median(50%): 11min
- 75%: 17min
- Max: 59min
- Count: 15453
- Mean: 13min

Univariate Analysis – Region and Type cause

- Bar chart for the number of occurrences per region;
- What stands out? Littoral with many more occurrences (70%/30% Ratio approx.)

- Bar chart for the causes;
- Negligence and Unknown causes stand out (70%aprox);
- Intentional cause "in between" (almost 20%);
- Natural and Reignition are the lowest(10%aprox)

Step 3 – Exploring the data Multivariate Analysis – Region and Type cause

- Bar chart for the average burned area per region;
- What stands out? Interior with a wider burned area on average.

- Bar chart for the causes and burned area, split into littoral and interior;
- What stands out? The average burned area is higher in the interior than it is on the littoral;

Step 3 – Exploring the data Multivariate Analysis - Correlations

Correlations with type of cause

Correlations with the Regions

Step 3 – Exploring the data Multivariate Analysis - Correlations

Scatter plot that correlates the burned area and the extinguishing time

Scatter plot that correlates the burned area and the Reaction time

Step 4 – Draw inferences

1st Inference - Can we claim with 99% certainty that more than 71% of the fire outbreaks with an area below 10ha occur on the littoral?

- Histogram for the fire outbreak occurrences on the littoral;
- 29 samples, 50 rows each sample;
- ► Ho: $U \ge 0.71$ vs. H1: U < 0.71;
- Confidence interval = ((70,74;74,48)

Conclusion: Since 71% is within the confidence interval, we can claim with 99% certainty that more than 71% of the fire outbreaks with a burned area below 10 ha occur on the littoral.

Step 4 - Draw inferences

2nd Inference – Can we claim with 99% certainty that more than 35% of the fires with a burned area above 100ha have an intentional cause behind?

- Histogram for the number of occurrences intentionally out of 30 rows 20 samples;
- ► Ho: $U \ge 0.35$ vs. H1: U < 0.35
- Confidence interval = (34,8;37,2)

Conclusion: Since 35% is within the confidence interval, we have evidence to state that more than 35% of the fires with a burned area above 100ha have an intentional cause behind.

Step 4 - Draw inferences

3rd Inference – Can we claim with 99% certainty that the mean difference of the burned area in the interior is superior to the burned area on the coast?

- Boxplot for the burned area, both on the littoral and in the interior;
- $H0: \mu1 \ge \mu2$ $H0: \mu1 \mu2 \ge 0$
- \blacksquare *H*1: *μ*1 < *μ*2 *H*1: *μ*1 *μ*2 < 0

significance Level (a)	0,01
Pooled Variance	25771,06358
Tvalue	2,588238405
Margin of error	0,182310038
99% lower bound	2,537689962
99% upper bound	2,902310038

Conclusion: The results suggest that there is strong evidence that **the Mean difference** of the burned area in the **interior** will be **2,54 to 2,9 (ha)** higher than the burned area on the coast.

Step 4 - Draw inferences

4th Inference – Can we claim with 99% certainty that the mean difference of the burned area that has a natural cause behind is superior to the one with an intentional cause behind?

- Boxplot for the burned area, and the causes behind;
- $H0: \mu1 \ge \mu2$ $H0: \mu1 \mu2 \ge 0$
- $H1: \mu1 < \mu2 \ H1: \mu1 \mu2 < 0$

confidence Level	99%
significance Level (a)	0,01
Pooled Variance	4222,61
T value	2,600887278
Margin of error	2,664139735
99% lower bound	-2,124139735
99% upper bound	3,204139735
	-

Conclusion: We cannot claim with 99% certainty that **the mean difference** of the burned area caused **naturally** will be higher than the one caused **intentionally**, since the mean difference can vary from (-2,12; 3,2).

Step 5 - Conclusions (all in all)

More than 70% of the fire outbreaks with a burned area below 10ha occur on the littoral

More than 35% of the fires with a burned area above 100ha have an intentional cause behind

The **interior** has wider burned areas than the **littoral**, **on average**. 2,54 to 2,9 ha more

Step 6 - Look back and ahead

- Project had a small scale, couldn't study all variables
- Results could be different if we considered outliers
- Other interesting variables that could be studied?
 - Humidity, wind, temperature, vegetation density, terrain slope, proximity to fire department,...
- Other interesting studies? Evolution through the years (2022-2025)

