Tianjin International Engineering Institute

Formal Languages and Automata

Lesson 3: Finite Automata

Marc Gaetano Edition 2018

Example of a finite automaton

- There are states off and on, the automaton starts in off and tries to reach the "good state" on
- What sequences of fs lead to the good state?
- Answer: $\{f, fff, fffff, ...\} = \{f^n: n \text{ is odd}\}$
- This is an example of a deterministic finite automaton over alphabet {f}

Deterministic finite automata

- A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where
 - -Q is a finite set of states
 - $-\Sigma$ is an alphabet
 - $-\delta: Q \times \Sigma \to Q$ is a transition function
 - $-q_0 \in Q$ is the initial state
 - $F \subseteq Q$ is a set of accepting states (or final states).
- In diagrams, the accepting states will be denoted by double loops

alphabet $\Sigma = \{0, 1\}$ start state $Q = \{q_0, q_1, q_2\}$ initial state q_0 accepting states $F = \{q_0, q_1\}$

transition function δ :

Language of a DFA

The language of a DFA $(Q, \Sigma, \delta, q_0, F)$ is the set of all strings over Σ that, starting from q_0 and following the transitions as the string is read left to right, will reach some accepting state

• Language of M is $\{f, fff, fffff, \ldots\} = \{f^n : n \text{ is odd}\}$

What are the languages of these DFAs?

Construct a DFA that accepts the language

$$L = \{010, 1\}$$
 $(\Sigma = \{0, 1\})$

Construct a DFA that accepts the language

$$L = \{010, 1\}$$
 $(\Sigma = \{0, 1\})$

Answer

• Construct a DFA over alphabet $\{0, 1\}$ that accepts all strings that end in 101

• Construct a DFA over alphabet $\{0, 1\}$ that accepts all strings that end in 101

 Hint: The DFA must "remember" the last 3 bits of the string it is reading

• Construct a DFA over alphabet $\{0, 1\}$ that accepts all strings that end in 101

DFA processing

Input Tape

Transition Graph

Transition Graph

For <u>every</u> state, there is a transition for <u>every</u> symbol in the alphabet

Initial Configuration

Initial state

Last state determines the outcome

a b a

Input String

Input finished

Last state determines the outcome

Another rejection case

(λ)

Input Finished (no symbol read)

Tape is empty

reject

Acceptation/Rejection

To accept a string:

all the input string is scanned and the last state is accepting

To reject a string:

all the input string is scanned and the last state is non-accepting

Another Example

Input String

Input finished

b а b

Input String

Input finished

Another Example

Language Accepted:

$$L = \{a^n b : n \geq 0\}$$

