Übungen zur Algebra I

Wintersemester 2020/21

Universität Heidelberg Mathematisches Institut Prof. Dr. A. Schmidt Dr. M. Leonhardt

Blatt 06

Abgabetermin: Freitag, 18.12.2020, 9:15 Uhr

Aufgabe 1. (Vollkommene Körper und Frobenius) (6 Punkte) Es sei K ein Körper mit char(K) = p > 0. Zeigen Sie, dass K genau dann vollkommen ist, wenn der Frobenius-Homomorphismus $\sigma \colon K \to K$, $a \mapsto a^p$, surjektiv (und damit bijektiv) ist.

Aufgabe 2. (Vollkommenheit vererbt sich) (6 Punkte; je 2 Punkte) Es sei L/K eine algebraische Körpererweiterung. Zeigen Sie:

(a) Ist K vollkommen, so auch L.

Für den Rest dieser Aufgabe sei L/K endlich und L vollkommen. Wir wollen zeigen, dass dann auch K vollkommen ist. Wir nehmen $\operatorname{char}(K) = p > 0$ an.

- (b) Wir nehmen zunächst an, dass L/K separabel ist. Zeigen Sie, dass dann K vollkommen ist. (Hinweis: Für eine beliebige endliche Erweiterung M/K betrachten Sie das Kompositum LM (vgl. Blatt 5, Aufgabe 4).)
- (c) Zeigen Sie nun, dass L/K separabel ist. (Hinweis: Zeigen Sie zunächst, dass es ein $n \in \mathbb{N}$ gibt $mit \ x^{p^n} \in K_s \subset L$ für alle $x \in L$. Benutzen Sie dann Aufgabe 1.)

Aufgabe 3. (Quadratische Erweiterungen) (6 Punkte; je 2 Punkte) Es sei K ein Körper mit char $(K) \neq 2$. Wir nennen eine Erweiterung L/K quadratisch, falls [L:K] = 2. Zeigen Sie:

- (a) Jede quadratische Erweiterung L ist von der Form $L = K(\sqrt{a})$ für ein $a \in K^{\times} \setminus (K^{\times})^2$.
- (b) Zwei Erweiterungen $K(\sqrt{a})$ und $K(\sqrt{b})$ sind genau dann K-isomorph, wenn $\frac{a}{b} \in (K^{\times})^2$.
- (c) Nun sei p eine ungerade Primzahl und $a \in \mathbb{F}_p^{\times}$. Zeigen Sie, dass

$$a^{\frac{p-1}{2}} = \begin{cases} 1, & \text{falls } a \in (\mathbb{F}_p^{\times})^2, \\ -1, & \text{falls } a \notin (\mathbb{F}_p^{\times})^2. \end{cases}$$

Folgern Sie daraus, dass es eine eindeutige quadratische Erweiterung von \mathbb{F}_p gibt.

Aufgabe 4. (Irreduzible Polynome über \mathbb{F}_p) (6 Punkte) Es sei p eine Primzahl. Für $n \in \mathbb{N}$ sei $a_n(p)$ die Anzahl der irreduziblen, normierten Polynome in $\mathbb{F}_p[X]$ vom Grad n.

- (a) (3 Punkte) Zeigen Sie, dass ein irreduzibles Polynom $f \in \mathbb{F}_p[X]$ genau dann $X^{p^n} X$ teilt, wenn $\deg(f)$ ein Teiler von n ist.
- (b) (1 Punkt) Folgern Sie, dass

$$X^{p^n} - X = \prod_f f(X),$$

wobei f die irreduziblen, normierten Polynome in $\mathbb{F}_p[X]$ mit $\deg(f)|n|$ durchlaufe.

- (c) (1 Punkt) Folgern Sie, dass $\sum_{d|n} da_d(p) = p^n$.
- (d) (1 Punkt) Bestimmen Sie die Anzahl der irreduziblen Polynome von Grad 6 in $\mathbb{F}_2[X]$.

Bonusaufgabe 5. (Inseparable Erweiterung) (6 Punkte; je 1,5 Punkte) Es sei $K = \mathbb{F}_3(Y)$ der Funktionenkörper über \mathbb{F}_3 in der Variablen Y. Weiter sei $\alpha \in \overline{K}$ mit $\alpha^6 + Y\alpha^3 + Y = 0$ und $L = K(\alpha)$.

- (a) Bestimmen Sie das Minimalpolynom von α über K. Ist α separabel über K?
- (b) Bestimmen Sie $[L:K]_s$.
- (c) Bestimmen Sie den Körper $K_s := \{x \in L \mid x \text{ ist separabel über } K\} \subset L.$
- (d) Bestimmen Sie das Minimalpolynom von α über K_s .