Corporate Finance

Lecture 6: Stock Valuation

Yuan Shi ©

HSBC Business School Peking University

Review of Key Points

- V=D+E
- Cost of debt (YTM) is inferred from the bond price
- Expected return of holding bonds (YTM) = current yield + capital gains yield
- Now we examine the valuation of a firm's equity, and infer the cost of equity from the market value of equity.

Outline

Stock valuation:

Fundamental valuation:

Dividend Discount Model (today)

CAPM (Next class)

Relative Valuation:

Comparables (today)

- Stock holders are entitled with Dividend Payments
- Stock does not have maturity
 - Cash flows of stocks last forever unless the firm issued debt and go bankruptcy, in which case stockholders claims the residual values.
- Secondary Stock Market
 - E.g. Shanghai Stock Exchange, Shenzhen Stock Exchange, NYSE, NASDAQ, etc.

 Consider a company that pays dividend each period until infinite time

•
$$P_0 = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \frac{D_4}{(1+r)^4} + \cdots$$

Thus, the price of a share is given by

$$P_0 = \sum_{t=1}^{\infty} \frac{D_t}{(1+r)^t}$$

- The value of a stock is the present value of future expected dividend per share.
 - A preferred stock promises a fixed dividend per share every time the company pays a dividend.
 - Hence, the price of a preferred stock is

•
$$P_0 = \sum_{t=1}^{\infty} \frac{D}{(1+r)^t} = \frac{D}{r}$$

 A common stock is not associated with any fixed dividend obligations.

For a common stock:

 If dividend per share is expected to grow at the rate g per year, then the Gordon growth formula (the growing perpetuity formula) can be used to derive

$$P_0 = \frac{D_1}{r - g} = \frac{D_0(1 + g)}{r - g}$$

• where D_0 is the dividend paid last period.

How to estimate the long-term dividend growth rate, g?

- Regression method
- Theoretical method:

$$g = (1-payout ratio) x ROE$$

- $E_{t+1} = E_t + M_t \cdot ROE$ (M: retained earnings)
- g = retention ratio x ROE = (1- payout ratio) x ROE

Key Concept

- As with any financial asset, the discount rate for a stock is also the expected return to investors who buy the stock.
- $P = \frac{D_1}{r g} \leftrightarrow r = \frac{D_1}{P} + g$
- Expected return = expected cash yield + expected capital gain yield
 - $\frac{D_1}{P}$ = expected cash yield
 - g =expected capital gains yield = $\frac{P_1 P_0}{P_0}$
- Thus, the stock price is expected to appreciate at the same rate as the growth of dividends or earnings (under a fixed payout rate)
- r can be inferred from D_1 , P, and estimates of g, and used to find the NPV of projects.

Drawbacks of DDM

Discount Dividend Model

- Only applicable to the firms with (steady-growing) dividend payments
 - Some companies don't pay dividends
 - Won't apply to companies whose growth rate is not constant
- The risk of cash flows is not explicitly spelled out
 - hard to link the risk to the formula

Alternative method for stock valuation

 CAPM – more popular & possibly lower estimation errors (we will talk about it later)

Exercise

Ch9-31 Nonconstant Growth Storico Co. just paid a dividend of \$2.95 per share. The company will increase its dividend by 20 percent next year and will then reduce its dividend growth rate by 5 percentage points per year until it reaches the industry average of 5 percent dividend growth, after which the company will keep a constant growth rate forever. If the required return on the company's stock is 13 percent, what will a share of stock sell for today?

•
$$D_1 = 2.95 \times (1 + 20\%) = 3.54$$
; $D_2 = 3.54 \times (1 + 15\%) = 4.071$

•
$$D_3 = 4.071 \times (1 + 10\%) = 4.4781$$
; $D_4 = 4.4781 \times (1 + 5\%) = 4.7020$

•
$$D_5 = 4.702005 \times (1 + 5\%) = 4.9371; \dots$$

$$P_0 = \frac{D_0(1+g)}{r-g} \to$$

•
$$p_3 = \frac{D_3(1+5\%)}{r-5\%} = \frac{D_3(1+5\%)}{r-5\%} = \frac{4.4781 \times (1+5\%)}{13\% - 5\%} = $58.78$$

•
$$p_0 = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \frac{P_3}{(1+r)^3} = \frac{3.54}{1+13\%} + \frac{4.071}{(1+13\%)^2} + \frac{4.4781}{(1+13\%)^3} + \frac{58.78}{(1+13\%)^3} = \$50.16$$

Relative vs. Fundamental

Fundamental valuation:

- Valuation derived from fundamentals (cash flows, growth rate, risk, etc.)
 - Dividend discount model
 - CAPM

Relative valuation:

- Valuation based on the market valuation of similar or comparable assets
- Also called multiple valuation.

Steps

- Identify **comparable** firms /assets
 - Similar activity, industry, size, etc.
 - To make sure similar risk, growth, cash flow characteristics.
- Convert market values to standardized values by constructing multiples
 - Absolute market prices cannot be directly compared
- Compare the multiple for the asset being analyzed
 - Control for the differences

Multiples

- The commonly used multiples include
 - Earnings multiples
 - PE 市盈率 (Price/Earnings Ratio), PEG (PE / expected growth in earnings), Enterprise Value/EBITDA
 - Enterprise value 企业价值 = Market capitalization市值+ Debt- Cash holding
 - Revenues multiples
 - Enterprise Value/Sales, Enterprise Value/Customers
 - Book value multiples
 - Market Value of Equity/Book Value of Equity, Enterprise Value/Book Value of Assets, Tobin's Q
 - Tobin's Q = Total market value / Total book value of the firm

PE Ratio by Industry, China (2024/12/23)

板块名称	股票家数 ①	場実数 ① □	静态市盈率 >				
	I IXAGARA U	最新	1个月平均	3个月平均	6个月平均	1年平均	
沪深市场	5119	1070 16.85	16.98	16.69	15.36	14.93	

Data source: 中证指数

PE Ratio by Industry, China (2024/12/23)

行业代码/名称	证券数量①	「亏损数量 ①	静态市盈率 🗸 🛈				
1J 3E1 (483/1-499)			最新	1个月平均	3个月平均	6个月平均	1年平均
10 能源	81	17	10.75	10.72	10.76	10.85	10.49
15 原材料	721	136	19.65	20.22	19.95	18.58	17.19
⊕ 20 	1695	302	19.29	19.80	19.36	17.52	16.84
25可选消费	649	105	20.93	21.07	20.44	18.66	19.34
30主要消费	289	67	23.34	23.70	23.49	21.93	24.06
⊕ 35医药卫生	490	98	26.65	27.43	27.32	25.49	24.43
◆ 40金融	128	8	8.80	8.69	8.60	7.88	7.43
45信息技术	780	215	48.80	48.57	46.98	40.96	38.43
◆ 50通信服务	298	91	29.37	28.85	27.74	24.91	25.42
◆ 55公用事业	139	17	18.87	18.62	18.62	18.76	19.71
60房地产	110	36	16.59	17.67	17.43	15.36	13.70

PE ratio by country

Relative Valuation is Pervasive

- Most asset valuations are relative.
 - Almost 85% equity research reports based on multiples
 - More than 50% acquisition valuations
 - Although DCF is more common in consulting and corporate finance, multiple valuation can be good complement.
 - DCF may be used to back into a number obtained by multiple
 - The terminal value for cash flow valuation may be estimated using multiples.

Why Pervasive

"A little inaccuracy sometimes saves tons of explanation." -- H.H. Munro

"If you are going to screw up, make sure that you have lots of companies"

- Relative valuation is likely reflecting the market perceptions.
- Important in **IPO** and **acquisition** markets.
 - Since **portfolio managers** are judged by how they perform relative to other managers, relative valuation is more tailored to their needs.
- Relative valuation generally requires less information than discounted cash flow valuation. It could be applied as a screener.

- Pick the comparable firms
- Consistency of definition
- Distribution
- Adjustments for private firms
- Market may be wrong

Comparable Firms

- Ideally, as many as possible comparable publicly traded firms
- In practice, it is very difficult (and perhaps impossible) to find firms that share the same risk, growth, cash flow, capital structure, payout policy, etc.
- To see why they matter:

•
$$P_0 = \frac{D_0(1+g)}{r-g} = \frac{bE_0(1+g)}{r-g} \leftrightarrow \frac{P_0}{E_0} = \frac{b(1+g)}{r-g}$$

- Thus, P/E depends on earnings growth, payout ratio, discount rate.
- Financial policy affects risk and required returns (r), and maybe less obviously, growth rate g.

P/E and Fundamentals

Relationship to growth is positive but non-linear

Consistency

- Same methods to estimate inputs:
 - **Historical P/E**, based on last fiscal year's earnings
 - Trailing P/E, based on earnings of last four quarters
 - Forecasted P/E, based on consensus forecasted earnings for the next fiscal year
- Same accounting methods
 - Diluted vs. non-diluted P/E
 - Diluted EPS is based on the number of shares assuming all the convertible securities and employee options have been exercised.
- Make sure you understand how exactly it was calculated if it was done by someone else.

Distribution

- Check the cross sectional distribution of the multiple to judge whether a particular value is too high or low
 - Max and min, standard deviation?
 - Use median or mean?
 - Throw out outliers?

Public firms as the comparable for private firms

Control premium

- Public firm stock is traded in small stakes, while private firm transactions often involve a change in control.
- Control allows changing managers, setting their pay, determining firm's payout policy, even its strategy.
- Might be around 25-50%.

Marketability discount

- Takes time to find potential buyers of shares.
- Might be as high as 35-50%.

Private Firms - Deal Multiple

Alternatively, you can use multiples from past deals

- Recent transactions of the same type and similar firm
- E.g., M&A deal multiple: Transaction Value/Target Firm Earnings

But "no asset gets sold twice in the market, for it's not the same market and the asset is not the same asset"

 Sometimes there is a long time between transaction and valuation date, so be alert to the changing risks and growth expectations.

- In a relative valuation, you are only concluding that the stock is undervalued/overvalued compared to the market
- Multiples are certainly useful if market perception is what you actually need (e.g. in IPOs).
 - Hilton IPOed on Dec 12, 2013 at \$21bn (or \$32.4k per room)
 - Marriott and Starwoods, its two main rivals, were trading at \$30.8k per room on average