Lecture 13: Comparing types of convergence

Ciaran Evans

Recap: Convergence in probability

Definition: A sequence of random variables $X_1, X_2, ...$ converges in probability to a random variable X if, for every $\varepsilon > 0$,

$$\lim_{n\to\infty} P(|X_n-X|\geq \varepsilon)=0$$

We write $X_n \stackrel{p}{\to} X$.

Convergence in distribution

Definition: A sequence of random variables $X_1, X_2, ...$ converges in distribution to a random variable X if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

at all points where $F_X(x)$ is continuous. We write $X_n \stackrel{d}{\to} X$.

Example

For symmetry around 0:

$$P(X \le -t) = P(X \ge t)$$

Suppose that $X \sim N(0,1)$, and let $X_n = -X$ for n = 1, 2, 3, ...

Claim:
$$X_n \xrightarrow{d} X$$
, but X_n does *not* converge in probability to X

(a) WTS
$$F_{x_n}(t) \rightarrow F_{x_n}(t)$$
 \forall t where $F_{x_n}(t)$ is continuous symmetric around O $X - X$ have same

If
$$x$$
 is symmetric around $P(x \leftarrow -t) = P(x \geq t)$

(a) If $X_n \stackrel{d}{\to} c$, where c is a constant, then $X_n \stackrel{p}{\to} c$ (converge in probability is Stranger) (b) If $X_n \stackrel{p}{\to} X$, then $X_n \stackrel{d}{\to} X$ a distribution is a point mass at a (-) X~31 C

(a) If
$$X_n \stackrel{d}{\rightarrow} c$$
, where c is a constant, then $X_n \stackrel{p}{\rightarrow} c$
(b) If $X_n \stackrel{p}{\rightarrow} X$, then $X_n \stackrel{d}{\rightarrow} X$
PF of (a): wts $x_n \stackrel{p}{\rightarrow} c$, i.e. $\forall \xi > 0$ $P(1 \times x_n - c \mid \gamma \xi) \Rightarrow 0$
Let $\xi > 0$. $P(1 \times x_n - c \mid \gamma \xi) = 1 - P(1 \times x_n - c \mid \xi \xi)$
 $= 1 - P(c - \xi \stackrel{L}{\leftarrow} x_n + c + \xi)$
 $= 1 - (F_{x_n}(c + \xi) - F_{x_n}(c - \xi))$
We know that $x_n \stackrel{p}{\rightarrow} c \Rightarrow F_{x_n}(t) \Rightarrow F_{c}(t) \forall t \neq c$
 $\Rightarrow F_{x_n}(c + \xi) \Rightarrow F_{c}(c + \xi) = P(c + \xi + \xi) = 1$
 $F_{x_n}(c - \xi) \Rightarrow F_{c}(c - \xi) = P(c + \xi + \xi) = 0$
 $\Rightarrow F_{x_n}(c + \xi) \Rightarrow F_{c_n}(c - \xi) = 0$
 $\Rightarrow P(1 \times x_n - c \mid \gamma \xi) = \lim_{n \to \infty} (1 - (F_{x_n}(c + \xi) - F_{x_n}(c - \xi))$

(a) If
$$X_n \stackrel{d}{\to} c$$
, where c is a constant, then $X_n \stackrel{p}{\to} c$
(b) If $X_n \stackrel{p}{\to} X$, then $X_n \stackrel{d}{\to} X$
(b) WTS: $F_{X_n}(t) \Rightarrow F_{X_n}(t)$ $\forall t$ where $F_{X_n}(t)$ $f_{X_n}(t) \Rightarrow F_{X_n}(t) \Rightarrow F_{X_n}($

Let
$$\varepsilon > 0$$
, and let t be a continuity point of F_{x}

$$F_{xn}(t) = P(x_{n} = t) = P(x_{n} = t, x = t) + P(x_{n} = t, x > t + \epsilon)$$

$$= P(x_{n} = t, x > t + \epsilon) + P(x_{n} = t, x > t + \epsilon)$$

$$= P(x_{n} = t, x > t + \epsilon) + P(x_{n} = t, x > t > \epsilon)$$

$$= P(x_{n} = t, x > t > \epsilon) + P(x_{n} = t, x > t > \epsilon)$$

$$= F_{x_{n}}(t) = P(x_{n} = t, x > t > \epsilon) + P(x_{n} = t, x > t > \epsilon)$$

$$= F_{x_{n}}(t) = P(x_{n} = t, x > t > \epsilon) + P(x_{n} = t, x > \epsilon)$$

-> 0 es ~>> 00

(a) If
$$X_n \stackrel{d}{\to} c$$
, where c is a constant, then $X_n \stackrel{p}{\to} c$
(b) If $X_n \stackrel{p}{\to} X$, then $X_n \stackrel{d}{\to} X$

(b) If
$$X_n \to X$$
, then $X_n \to X$
(b) catioved...

$$F_{X_n}(t) = F_{X_n}(t+\xi) + P(|X_n-X|>\xi)$$

Similarly, Fx (t-E) = lim Fx, Lt)

lim FxLt-E) = lim FxLt) = lim Fx (+E) E>0

E>0

=> 11m Fx (t) = Fx (t)

Similarly)
$$F_{x}(t-\epsilon) = \lim_{n \to \infty} F_{x_n}(t)$$

So, $F_{x}(t-\epsilon) = \lim_{n \to \infty} F_{x_n}(t) = F_{x_n}(t+\epsilon)$ $\forall \epsilon > 0$