Doppler-free spectroscopy using saturated absorption

Yichao Yu

MIT

April 28, 2013

Introduction

- Saturated absorption.
- Precise spectrum measurement.
- Frequency stabilization and locking.

Introduction

- Saturated absorption.
- Precise spectrum measurement.
- Frequency stabilization and locking.

Introduction

- Saturated absorption.
- Precise spectrum measurement.
- Frequency stabilization and locking.

- Doppler broadening and saturated absorption.
- Apparatus and measurement.

- Data and result.
- Conclusion.

- Natural line width.
- Doppler broadening.

$$\Delta f = \frac{v}{c} f_0 \approx 100 MHz$$

- Cooling.
- He-Ne spectral whole burning discovered by Bennett in 1962.
- Saturated absorption in vapor cell.

- Natural line width.
- Doppler broadening.

$$\Delta f = \frac{v}{c} f_0 \approx 100 MHz$$

- Cooling.
- He-Ne spectral whole burning discovered by Bennett in 1962.
- Saturated absorption in vapor cell.

- Natural line width.
- Doppler broadening.

$$\Delta f = \frac{v}{c} f_0 \approx 100 MHz$$

- Cooling.
- He-Ne spectral whole burning discovered by Bennett in 1962.
- Saturated absorption in vapor cell.

- Natural line width.
- Doppler broadening.

$$\Delta f = \frac{v}{c} f_0 \approx 100 MHz$$

- Cooling.
- He-Ne spectral whole burning discovered by Bennett in 1962.
- Saturated absorption in vapor cell.

- Natural line width.
- Doppler broadening.

$$\Delta f = \frac{v}{c} f_0 \approx 100 MHz$$

- Cooling.
- He-Ne spectral whole burning discovered by Bennett in 1962.
- Saturated absorption in vapor cell.

- Natural line width.
- Doppler broadening.

$$\Delta f = \frac{v}{c} f_0 \approx 100 MHz$$

- Cooling.
- He-Ne spectral whole burning discovered by Bennett in 1962.
- Saturated absorption in vapor cell.

- Saturation intensity.
- Saturate absorption with two beams and Lamb dip.
- Crossover peaks.

- Saturation intensity.
- Saturate absorption with two beams and Lamb dip.
- Crossover peaks.

- Saturation intensity.
- Saturate absorption with two beams and Lamb dip.
- Crossover peaks.

- Saturation intensity.
- Saturate absorption with two beams and Lamb dip.
- Crossover peaks.

- Pump beam
- Probe and reference beam.
- Fabry-Pérot cavity

- Pump beam
- Probe and reference beam.
- Fabry-Pérot cavity

- Pump beam
- Probe and reference beam.
- Fabry-Pérot cavity

- Pump beam
- Probe and reference beam.
- Fabry-Pérot cavity

Hyperfine structure of Rubidium D_2 line.

- D_2 line $5^2S_{1/2} \to 5^2P_{3/2}$
- 2 "doppler distinguishable" "ground states", each couples with 3 non-"doppler distinguishable" excited states.

$$\Delta E_{hfs} = \frac{1}{2} A_{hfs} K + B_{hfs} \frac{3K(K+1) - 2I(I+1)J(J+1)}{8I(2I-1)J(2J-1)}$$
$$K = F(F+1) - I(I+1) - J(J+1)$$

• Quantities to measure $A_{5^2S_{1/2}}$, $A_{5^2P_{3/2}}$ and $B_{5^2P_{3/2}}$ for ^{85}Rb and ^{87}Rb

Hyperfine structure of Rubidium D_2 line.

- D_2 line $5^2S_{1/2} \to 5^2P_{3/2}$
- 2 "doppler distinguishable" "ground states", each couples with 3 non-"doppler distinguishable" excited states.

$$\Delta E_{hfs} = \frac{1}{2} A_{hfs} K + B_{hfs} \frac{3K(K+1) - 2I(I+1)J(J+1)}{8I(2I-1)J(2J-1)}$$
$$K = F(F+1) - I(I+1) - J(J+1)$$

• Quantities to measure $A_{5^2S_{1/2}}, A_{5^2P_{3/2}}$ and $B_{5^2P_{3/2}}$ for ^{85}Rb and ^{87}Rb

Hyperfine structure of Rubidium D_2 line.

- D_2 line $5^2S_{1/2} \to 5^2P_{3/2}$
- 2 "doppler distinguishable" "ground states", each couples with 3 non-"doppler distinguishable" excited states.

0

$$\Delta E_{hfs} = \frac{1}{2} A_{hfs} K + B_{hfs} \frac{3K(K+1) - 2I(I+1)J(J+1)}{8I(2I-1)J(2J-1)}$$

$$K = F(F+1) - I(I+1) - J(J+1)$$

• Quantities to measure $A_{5^2S_{1/2}}$, $A_{5^2P_{3/2}}$ and $B_{5^2P_{3/2}}$ for ⁸⁵Rb and ⁸⁷Rb

Hyperfine structure of Rubidium D_2 line.

- D_2 line $5^2S_{1/2} \to 5^2P_{3/2}$
- 2 "doppler distinguishable" "ground states", each couples with 3 non-"doppler distinguishable" excited states.

0

$$\Delta E_{hfs} = \frac{1}{2} A_{hfs} K + B_{hfs} \frac{3K(K+1) - 2I(I+1)J(J+1)}{8I(2I-1)J(2J-1)}$$
$$K = F(F+1) - I(I+1) - J(J+1)$$

• Quantities to measure $A_{5^2S_{1/2}}$, $A_{5^2P_{3/2}}$ and $B_{5^2P_{3/2}}$ for ⁸⁵Rb and ⁸⁷Rb.

Spectrum measurment.

Probe beam intensity of the whole scan.

Spectrum measurment.

Probe beam intensity of the whole scan.

Difference between probe and reference beam intensity of the ^{87}Rb F=2 lines.

Hyperfine Structure Constants.

Hyperfine Structure Constants.

Isotrope	Constant	Measured	Expected	Deviation
⁸⁵ Rb	$A_{5^2S_{1/2}}$	0.986(40) <i>GHz</i>	1.0119 <i>GHz</i>	0.6σ
	$A_{5^2P_{3/2}}$	24.44(81) <i>MHz</i>	25.0020(99) <i>MHz</i>	0.7σ
	$B_{5^2P_{3/2}}$	32.2(4.8) <i>MHz</i>	25.790(93) <i>MHz</i>	1.3σ
⁸⁷ <i>Rb</i>	$A_{5^2S_{1/2}}$	3.285(65) <i>GHz</i>	3.4173 <i>GHz</i>	2σ
	$A_{5^2P_{3/2}}$	84.58(52) <i>MHz</i>	84.7185(20) <i>MHz</i>	0.2σ
	$B_{5^2P_{3/2}}$	16.03(80) <i>MHz</i>	12.4965(37) <i>MHz</i>	4σ

Conclusion.

- Observed Lamb dip.
- Measured hyperfine splitting and the hyperfine structure constants.

Conclusion.

- Observed Lamb dip.
- Measured hyperfine splitting and the hyperfine structure constants.

12 / 12