

Wprowadzenie do uczenia maszynowego

Karta przedmiotu

Informacje podstawowe

Kierunek studiów matematyka stosowana	Cykl kształcenia Zima 2025/2026
Specjalność -	Kod przedmiotu W13MST-SI2500G
Jednostka organizacyjna Wydział Matematyki	Grupa zajęć Tak
Poziom kształcenia studia pierwszego stopnia (inżynier)	Języki wykładowe polski
Forma studiów studia stacjonarne	Obligatoryjność Wybieralny
Profil studiów profil ogólnoakademicki	Blok zajęciowy Przedmioty kierunkowe
	Przedmiot powiązany z badaniami naukowymi Tak

Semestr	Forma zaliczenia	Liczba punktów
Semestr 4	Zaliczenie na ocenę	ECTS 6.0
	Forma dydaktyczna i godziny zajęć Wykład: 30 Laboratorium: 30	

Przedmiotowe efekty uczenia się

Efekt przedmiotowy	Treść	Efekt kierunkowy
Z zakresu wiedzy		
PEU_W01	Student objaśnia rodzaje i metody uczenia maszynowego.	K1_MST_W05
PEU_W02	Student odtwarza proces przygotowania, wdrożenia i utrzymania narzędzi uczenia maszynowego.	K1_MST_W10
Z zakresu umiejętności		
PEU_U01	Student dobiera algorytm uczenia maszynowego, stosowny dla zadania do rozwiązania.	K1_MST_U07

PEU_U02	Student projektuje i implementuje programy wykorzystujące algorytm uczenia maszynowego, odpowiednie dla zadań i dopasowane do posiadanych danych.	K1_MST_U09	
	Z zakresu kompetencji społecznych		
PEU_K01	Student jest otwarty na poznawanie nowych technologii.	K1_MST_K01	
PEU_K02	Student identyfikuje ryzyka i ograniczenia wynikające z zastosowania określonej klasy narzędzi uczenia maszynowego.	K1_MST_K04	

Treści programowe zapewniające uzyskanie efektów uczenia się

Treści programowe obejmują zaawansowaną wiedzę z zakresu metod uczenia maszynowego, ich trenowania oraz optymalizacji, oraz typowych obszarów zastosowań. Duży nacisk położony zostanie na implementacje zaawansowanych modeli wykorzystujących uczenie maszynowe w języku programowania Python. Omówione zostaną metody przygotowania danych, najważniejsze algorytmy tradycyjnego uczenia maszynowego, dotyczące analizy skupień, klasyfikacji i regresji oraz popularne algorytmy uczenia głębokiego.

Nakład pracy studenta

Rodzaje zajęć studenta	Średnia liczba godzin przeznaczonych na zrealizowane aktywności
Wykład	30
Laboratorium	30
Przygotowanie do egzaminu/zaliczenia	10
Przygotowanie do zajęć	40
Samodzielne doskonalenie umiejętności praktycznych	40
Całkowity nakład pracy studenta (CNPS)	Liczba godzin 150

Informacje rozszerzone

Koordynator przedmiotu

Janusz Szwabiński

Szczegółowe treści programowe

Lp.	Treści programowe	Forma dydaktyczna i liczba godzin
1.	Wstęp do uczenia maszynowego. Warsztat pracy. Przykłady zastosowań.	Wykład: 2 godz.

		Laboratorium: 2 godz.
2.	Przygotowanie danych. Dane kategoryczne i numeryczne. Zbiory treningowe, testowe i walidacyjne.	Wykład: 2 godz. Laboratorium: 2 godz.
3.	Analiza skupień. Popularne algorytmy klastrowania (k-means, hierarchiczne, DBSCAN, GMM, spektralne, k-medoids). Miary odległości/podobieństwa (euklidesowa, MAPE, DTW, LB_Keogh). Miary jakości grupowania.	Wykład: 8 godz. Laboratorium: 8 godz.
4.	Klasyfikacja i regresja. Popularne algorytmy (regresja liniowa, MLP, regresja logistyczna, metody Bayesa, drzewa decyzyjne, lasy losowe, wzmacnianie gradientowe, SVM). Redukcja wymiarowości (PCA,LDA). Ewaluacja modeli i dostrajanie ich parametrów.	Wykład: 10 godz. Laboratorium: 10 godz.
5.	Studium przypadku - badanie wydźwięku metodami uczenia maszynowego.	Wykład: 2 godz. Laboratorium: 2 godz.
6.	Wstęp do uczenia głebokiego. Architektura sieci neuronowych. Przepływ danych w sieci. Funkcje straty. Optymalizacja sieci neuronowych. Główne typy sieci i ich zastosowania. Praktyczne aspekty treningu sieci neuronowych.	Wykład: 6 godz. Laboratorium: 6 godz.

Forma dydaktyczna Metody i narzędzia dydaktyczne	
Wykład	Prezentacja multimedialna, Case study, Wykład informacyjny, Wykład problemowy
Laboratorium	Dyskusja, Problem based learning, Ćwiczenia problemowe

Forma dydaktyczna	Warunki i sposób zaliczenia poszczególnych form dydaktycznych
Wykład	Kolokwium pisemne.
Laboratorium	Zadania problemowe publikowane w formie list zadań.

Wymagania wstępne

Student powinien znać podstawowe pojęcia rachunku prawdopodobieństwa i statystyki, oraz analizy matematycznej funkcji wielu zmiennych. Student powinien posiadać umiejętność programowania w języku Python.

Literatura

Obowiązkowa

- 1. C. Conway, J.M. White, Uczenie maszynowe dla programistów
- 2. M. Szeliga, Data Science i uczenie maszynowe
- 3. S. Raschka, Python.Uczenie maszynowe
- 4. Goodfellow I., Bengio Y. und Courville, A.: Deep Learning

Dodatkowa

- 1. E. Alpaydin, Introduction to Machine Learning
- 2. J. Lescovec, Mining of Massive Datasets
- 3. T. Mitchell, Machine Learning

Efekt kierunkowy

Kod	Treść
K1_MST_W05	Zna techniki obliczeniowe, wspomagające pracę matematyka i rozumie ich ograniczenia
K1_MST_W10	Zna metody komputerowego modelowania i symulacji
K1_MST_U07	Potrafi konstruować modele matematyczne i algorytmy, wykorzystywane w różnych problemach techniki i praktyki inżynierskiej
K1_MST_U09	Potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
K1_MST_K01	Zna ograniczenia własnej wiedzy i rozumie potrzebę dalszego kształcenia
K1_MST_K04	Rozumie podstawowe uwarunkowania społeczne, prawne i ekonomiczne w zakresie swojej pracy