课程讨论

TC第31章1、2、3、4、5、8

问题1: 大数相乘

- 何为大数相乘?
- 大数相乘的复杂度衡量?
 - 比特操作 (bit operation)
- 两个 β 比特的整数相乘的代价?
 - $\Theta(\beta^2)$

问题2: Euclid算法

- Euclid算法基本思想
 - gcd(a, b) = gcd(b, a mod b)
- 算法复杂性分析
 - 构造最坏输入(adversary)
 - Fib数列

Euclid Algorithm and Fibonacci

- If $m>n\geq 1$ and the invocation Euclid(m,n) performs $k\geq 1$ recursive calls, then $m\geq F_{k+2}$ and $n\geq F_{k+1}$.
 - Proof by induction
 - Basis: k=1, then $n\ge 1=F_2$. Since m>n, $m\ge 2=F_3$.
 - For larger k, Euclid(m,n) calls Euclid $(n, m \mod n)$ which makes k-1 recursive calls. So, by inductive hypothesis, $n \ge F_{k+1}$, $(m \mod n) \ge F_k$.

Note that
$$m \ge n + (m - \lfloor m/n \rfloor n) = n + (m \mod n) \ge F_{k+1} + F_k = F_{k+2}$$

问题3: Extended-Euclid算法

- E-Euclid算法的作用?
 - d = gcd(a, b) = ax + by
- E-Euclid算法的原理
 - $(d, x, y) = (d', y', x' \lfloor a/b \rfloor y')$

问题4:Z_n与Z_n*

- Z_n与Z_n*的基本含义
 - Z_n:模n加法群,有限交换群
 - Z_n*: 模n乘法群, 群中元素是Z_n中与n互质元素。
- $Z_n = \langle a \rangle$ 的条件是什么?
 - a与n互质
 - 如果a不能生成Z_n,那么<a>的特征是什么?
- $\Phi(n)$ 与 $\pi(n)$ 的含义
 - $\Phi(n)$ 为 Z_n *的规模。
 - $\pi(n)$ 为小于n的质数个数。

问题5: 元素的幂

- 模取幂,即 $a^b \mod n$
 - 反复平方法

```
MODULAR-EXPONENTIATION (a, b, n)

1 c = 0

2 d = 1

3 let \langle b_k, b_{k-1}, \dots, b_0 \rangle be the binary representation of b

4 for i = k downto 0

5 c = 2c

6 d = (d \cdot d) \mod n

7 if b_i == 1

8 c = c + 1

9 d = (d \cdot a) \mod n

10 return d
```

问题6: 素性判定

- 为什么要进行素性判定?
- 筛法为何不能有效用于判定素性?
- 伪素数测试过程

```
PSEUDOPRIME(n)

1 if MODULAR-EXPONENTIATION(2, n-1, n) \not\equiv 1 \pmod{n}

2 return COMPOSITE // definitely

3 else return PRIME // we hope!
```

• 欧拉定理与费马定理

```
Theorem 31.31 (Fermat's theorem) If p is prime, then a^{p-1} \equiv 1 \pmod{p} for all a \in \mathbb{Z}_p^*.
```

问题7: Miller-Rabin算法

- M-R算法对素性判定的改进体现在?
 - 多个随机选取的a值
 - 寻找非平凡平方根

```
WITNESS (a, n)

1 let t and u be such that t \ge 1, u is odd, and n - 1 = 2^t u

2 x_0 = \text{MODULAR-EXPONENTIATION}(a, u, n)

3 for i = 1 to t

4 x_i = x_{i-1}^2 \mod n

5 if x_i == 1 and x_{i-1} \ne 1 and x_{i-1} \ne n - 1

6 return TRUE

7 if x_t \ne 1

8 return TRUE
```

问题8: M-R算法的准确性

- M-R算法为什么出错?
 - 出错并不依赖于n, 也不存在坏的输入
 - 取决于s的大小与a值选择

Theorem 31.39

For any odd integer n > 2 and positive integer s, the probability that MILLER-RABIN(n, s) errs is at most 2^{-s} .