#21: Type-directed Synthesis

Sankha Narayan Guria

EECS 700: Introduction to Program Synthesis

Last week

This week

Type-driven program synthesis

programmer-friendly informative

Type-driven program synthesis

informative

the search space

Which program do I have in mind?

split string at custom separator

list with n copies of input value

Type-driven program synthesis

This week

intro to type systems enumerating well-typed terms bidirectional type systems synthesis with types and examples polymorphic types refinement types synthesis with refinement types

This week

intro to type systems

enumerating well-typed terms bidirectional type systems synthesis with types and examples polymorphic types refinement types synthesis with refinement types

What is a type system?

Deductive system for proving facts about programs and types Defined using *inference rules* over *judgments*

"under context Gamma, term e has type T"

A simple type system: syntax

$$e := 0 | e + 1 | x | e e | \lambda x . e - expressions$$

example program: increment by two

$$\lambda x.(x + 1) + 1$$

A simple type system: syntax

$$e := 0 | e + 1 | \times | e e | \lambda \times .e - expressions$$

$$T := Int | T \rightarrow T - types$$

$$\Gamma := \cdot | x : T, \Gamma - contexts$$

Inference rules = typing rules

$$\frac{\Gamma, x: T_1 + e:: T_2}{\Gamma + \lambda x. e:: T_1 \rightarrow T_2} \leftarrow \frac{\Gamma + e_1:: T' \rightarrow T}{\Gamma + e_1 e_2:: T}$$

A derivation of $\Gamma \vdash e :: T$ is a tree where

- 1. the root is $\Gamma \vdash e :: T$
- 2. children are related to parents via inference rules
- 3. all leaves are axioms

let's build a derivation of

$$\cdot \vdash \lambda x. x + 1 :: Int \rightarrow Int$$

we say that $\lambda x. x + 1$ is well-typed in the empty context and has type Int \rightarrow Int

$$\cdot \vdash \lambda x. x + 1 :: Int \rightarrow Int$$

is $(\lambda x. x) + 1$ well-typed (in the empty context)?

no! no way to build a derivation of $\cdot \vdash (\lambda x.x) + 1 :: _$ we say that $(\lambda x.x) + 1$ is ill-typed

Let's add lists!

```
e ::= ... | [] | e:e | match e with [] \rightarrow e | X:X \rightarrow e

T ::= Int| List | T \rightarrow T
```

Example program: head with default

 λx . match x with $nil \rightarrow 0 \mid y: ys \rightarrow y$

Typing rules

what should the t-match tule be?

t-match
$$e_0$$
:: $T + e_1$:: $T + e_2$:: $T + e_2$:: $T + e_2$:: $T + e_3$::