Summary Sheet: Continuous Random Variables (Based on Chapter 4)

Leonardo Tiditada Pedersen

19 October 2025

Contents

T	1. Continuous Random Variables (CRV)	2
2	2. PDF and CDF: definitions and connection	2
3	3. Expectation (Mean) and Variance	3
4	4. Worked example (detailed): general PDF	4
5	5. The Normal Distribution (in detail)	5
6	6. Practical tips & common mistakes	6
Oı	ptional: Extra Distributions	7
7	7. Exercises (3–5 worked examples with solutions)	7

Notation cheat-sheet

- $\bullet~Y~({\rm or}~X):$ continuous random variable.
- f(y): probability density function (PDF).
- F(y): cumulative distribution function (CDF), $F(y) = P(Y \le y)$.
- $E[\cdot]$: expectation (mean).
- $V(\cdot)$ or $Var(\cdot)$: variance.
- \mathbb{R} : set of real numbers.

1 1. Continuous Random Variables (CRV)

Definition and intuition

A random variable Y is *continuous* if its set of possible values forms an interval (finite or infinite). Intuitively, probabilities are represented by *areas under a curve* rather than by sums of point-masses.

Key property: For any specific number a,

$$P(Y = a) = 0.$$

That is, single points have zero probability; only intervals have non-zero probability. Because of this,

$$P(a \le Y \le b) = P(a < Y \le b) = P(a \le Y < b) = P(a < Y < b).$$

Visual intuition (sketch)

2 2. PDF and CDF: definitions and connection

Probability Density Function (PDF)

The PDF f(y) is a nonnegative function with total area 1:

1.
$$f(y) \ge 0$$
 for all y .

$$2. \int_{-\infty}^{\infty} f(y) \, dy = 1.$$

Probabilities for intervals are computed by integrals:

$$P(a \le Y \le b) = \int_a^b f(y) \, dy.$$

Cumulative Distribution Function (CDF)

The CDF is

$$F(y) = P(Y \le y) = \int_{-\infty}^{y} f(t) dt.$$

Differentiation gives back the density (where differentiable):

$$f(y) = F'(y).$$

$$F(y) = \int_{-\infty}^{y} f(t) dt$$
 and $f(y) = \frac{d}{dy} F(y)$.

Useful identities

$$P(Y > a) = 1 - F(a),$$
 $P(a < Y \le b) = F(b) - F(a).$

3 3. Expectation (Mean) and Variance

Expectation

The expected value (mean) of Y is

$$\mu = E(Y) = \int_{-\infty}^{\infty} y f(y) dy,$$

provided the integral converges.

More generally, for any measurable function g,

$$E[g(Y)] = \int_{-\infty}^{\infty} g(y) f(y) dy.$$

Variance

Variance measures spread:

$$Var(Y) = E[(Y - \mu)^2] = \int_{-\infty}^{\infty} (y - \mu)^2 f(y) \, dy.$$

Computational formula (often easier):

$$Var(Y) = E(Y^2) - [E(Y)]^2, \qquad E(Y^2) = \int_{-\infty}^{\infty} y^2 f(y) \, dy.$$

Linearity and scaling properties

For constant c and random variable Y:

$$E[c] = c,$$

$$E[cY] = cE[Y],$$

$$Var(c) = 0,$$

$$Var(Y + c) = Var(Y),$$

$$Var(cY) = c^2 Var(Y).$$

Example: compute mean and variance

Let $f(y) = \frac{1}{2}$ for $y \in [0, 2]$ (Uniform(0,2)). Then

$$E(Y) = \int_0^2 y \cdot \frac{1}{2} \, dy = \frac{1}{2} \left[\frac{y^2}{2} \right]_0^2 = \frac{1}{2} \cdot \frac{4}{2} = 1.$$
$$E(Y^2) = \frac{1}{2} \int_0^2 y^2 \, dy = \frac{1}{2} \cdot \frac{8}{3} = \frac{4}{3}.$$

Hence

$$Var(Y) = E(Y^2) - [E(Y)]^2 = \frac{4}{3} - 1^2 = \frac{1}{3}.$$

4 4. Worked example (detailed): general PDF

Problem statement

Let

$$f(y) = \begin{cases} k y(2-y), & 0 < y < 2, \\ 0, & \text{otherwise.} \end{cases}$$

Find k, $P(0.5 \le Y \le 1)$, and E[Y].

(A) Find k

Set total area to 1:

$$1 = \int_0^2 k(2y - y^2) \, dy = k \left[y^2 - \frac{y^3}{3} \right]_0^2 = k \left(4 - \frac{8}{3} \right) = k \cdot \frac{4}{3}.$$

Thus $k = \frac{3}{4}$.

(B) Probability on an interval

$$P(0.5 \le Y \le 1) = \int_{0.5}^{1} \frac{3}{4} (2y - y^2) \, dy = \frac{3}{4} \left[y^2 - \frac{y^3}{3} \right]_{0.5}^{1} = \frac{11}{32} \quad \text{(exact)}.$$

(C) Expectation E[Y]

$$E[Y] = \int_0^2 y \cdot \frac{3}{4} (2y - y^2) \, dy = \frac{3}{4} \int_0^2 (2y^2 - y^3) \, dy.$$

Compute:

$$\int_0^2 2y^2 - y^3 \, dy = \left[\frac{2y^3}{3} - \frac{y^4}{4} \right]_0^2 = \frac{16}{3} - 4 = \frac{4}{3}.$$

So

$$E[Y] = \frac{3}{4} \cdot \frac{4}{3} = 1.$$

5 5. The Normal Distribution (in detail)

Definition and parameters

A random variable Y has a normal distribution with mean μ and variance σ^2 if its PDF is

$$f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2\right), \quad y \in \mathbb{R}.$$

Notation: $Y \sim N(\mu, \sigma^2)$.

Properties and intuition

- Symmetric about μ . Mean = median = mode = μ .
- Empirical rule (approx): about 68% of mass within $\mu \pm \sigma$, 95% within $\mu \pm 2\sigma$ (approx), 99.7% within $\mu \pm 3\sigma$.
- Many sample means converge to normality (Central Limit Theorem); hence normality is very common in practice.

Standard normal

Let $Z \sim N(0,1)$. To standardize $X \sim N(\mu, \sigma^2)$,

$$Z = \frac{X - \mu}{\sigma}$$
.

Then $P(a < X < b) = P(\frac{a-\mu}{\sigma} < Z < \frac{b-\mu}{\sigma}).$

Sketch: normal PDF

Worked problems

1. Probability example. Let $X \sim N(50, 10^2)$. Find P(45 < X < 60).

Standardize:

$$z_1 = \frac{45 - 50}{10} = -0.5, \quad z_2 = \frac{60 - 50}{10} = 1.$$

So $P(-0.5 < Z < 1) = \Phi(1) - \Phi(-0.5) \approx 0.84134 - 0.30854 = 0.5328$ (using tables/software).

2. Quantile example. For $X \sim N(40, 5^2)$, find x with P(X > x) = 0.05. We want k with P(Z > k) = 0.05 so $k \approx 1.645$. Then solve

$$1.645 = \frac{x - 40}{5} \implies x \approx 40 + 1.645 \cdot 5 = 48.225.$$

6 6. Practical tips & common mistakes

- Always check whether a variable is discrete or continuous before integrating/summing.
- Remember P(Y = a) = 0 for continuous variables don't try to calculate point probabilities.
- Watch limits of integration: PDF support matters.
- When using normal tables, be careful whether they give left-tail, right-tail, or area from mean.
- Use continuity correction when approximating discrete distributions with continuous ones (Binomial \rightarrow Normal).

Optional: Extra Distributions (not required on exam)

Uniform distribution (continuous) U(a, b)

$$f(y) = \begin{cases} \frac{1}{b-a}, & a \le y \le b, \\ 0, & \text{otherwise.} \end{cases}$$

Properties: $E[Y] = \frac{a+b}{2}$, $Var(Y) = \frac{(b-a)^2}{12}$. **Example:** U(0,2) computed earlier.

$$\begin{array}{c|c}
 & \frac{1}{b-a} \\
 & \text{Uniform on } [1,3] \\
 & & y
\end{array}$$

Exponential distribution

PDF:

$$f(y) = \lambda e^{-\lambda y}, \quad y > 0, \ \lambda > 0.$$

Properties: $E[Y] = 1/\lambda$, $Var(Y) = 1/\lambda^2$. Memoryless property: $P(Y > s + t \mid Y > s) = P(Y > t)$.

Gamma and Beta (brief)

- Gamma $Y \sim \Gamma(\alpha, \beta)$: flexible family (includes Exponential as $\alpha = 1$), used for waiting times and shapes.
- Beta on [0,1]: flexible for modeling proportions; parameters $\alpha, \beta > 0$ shape the density.

7 7. Exercises (3–5 worked examples with solutions)

Exercise 1 (Normalisation & moments)

Let

$$f(y) = \begin{cases} k y^2, & 0 \le y \le 2, \\ 0, & \text{otherwise.} \end{cases}$$

7

(a) Find k. (b) Compute E[Y]. (c) Compute Var(Y).

Solution. (a) Normalisation:

$$1 = \int_0^2 ky^2 \, dy = k \left[\frac{y^3}{3} \right]_0^2 = k \cdot \frac{8}{3} \quad \Rightarrow \quad k = \frac{3}{8}.$$

(b) Mean:

$$E[Y] = \int_0^2 y \cdot \frac{3}{8} y^2 \, dy = \frac{3}{8} \int_0^2 y^3 \, dy = \frac{3}{8} \left[\frac{y^4}{4} \right]_0^2 = \frac{3}{8} \cdot \frac{16}{4} = \frac{3}{8} \cdot 4 = \frac{3}{2} = 1.5.$$

(c) Second moment and variance:

$$E[Y^2] = \frac{3}{8} \int_0^2 y^4 \, dy = \frac{3}{8} \left[\frac{y^5}{5} \right]_0^2 = \frac{3}{8} \cdot \frac{32}{5} = \frac{12}{5} = 2.4.$$

$$Var(Y) = E[Y^2] - [E[Y]]^2 = 2.4 - (1.5)^2 = 2.4 - 2.25 = 0.15 = \frac{3}{20}.$$

Exercise 2 (Normal probability)

Let $X \sim N(100, 15^2)$. Compute P(85 < X < 125).

Solution. Standardize:

$$z_1 = \frac{85 - 100}{15} = -1.0, \qquad z_2 = \frac{125 - 100}{15} = \frac{25}{15} \approx 1.6667.$$

Using standard normal table or software:

$$P(-1 < Z < 1.6667) = \Phi(1.6667) - \Phi(-1).$$

Numerical values: $\Phi(1.6667) \approx 0.9525$, $\Phi(-1) = 0.15866$. Therefore

$$P(85 < X < 125) \approx 0.9525 - 0.15866 = 0.79384 \approx 0.7938.$$

Exercise 3 (Normal quantile)

Let $X \sim N(50, 8^2)$. Find x such that P(X < x) = 0.90.

Solution. Find $z_{0.90}$ with $\Phi(z_{0.90}) = 0.90$. From tables/software $z_{0.90} \approx 1.2816$. Unstandardize:

$$x = 50 + 1.2816 \cdot 8 \approx 50 + 10.2528 = 60.2528.$$

Exercise 4 (Normal approximation to Binomial with continuity correction)

Let $X \sim \text{Binomial}(n = 100, p = 0.3)$. Approximate $P(X \leq 40)$ using the normal approximation (with continuity correction).

Solution. First compute mean and standard deviation:

$$\mu = np = 100 \cdot 0.3 = 30, \qquad \sigma = \sqrt{npq} = \sqrt{100 \cdot 0.3 \cdot 0.7} = \sqrt{21} \approx 4.5826.$$

Continuity correction: $P(X \le 40) \approx P(Y < 40.5)$ where $Y \sim N(\mu, \sigma^2)$. Standardize:

$$z = \frac{40.5 - 30}{4.5826} \approx \frac{10.5}{4.5826} \approx 2.2913.$$

Therefore $P(X \le 40) \approx \Phi(2.2913) \approx 0.9890$.

Exercise 5 (CDF inversion — median of exponential)

Let the CDF be $F(y) = 1 - e^{-y/2}$ for $y \ge 0$. Find the median m (value with 50% probability to the left).

Solution. Solve F(m) = 0.5:

$$1 - e^{-m/2} = 0.5$$
 \Rightarrow $e^{-m/2} = 0.5$ \Rightarrow $-\frac{m}{2} = \ln(0.5).$

Hence $m = -2\ln(0.5) = 2\ln 2 \approx 2 \cdot 0.6931 = 1.3862$.

Summary (one-page quick facts)

Concept	Formula / Notes
PDF	$f(y) \ge 0, \ \int f(y) dy = 1$
CDF	$F(y) = \int_{-\infty}^{y} f(t) dt$
Mean	$E[Y] = \int y f(y) dy$
Variance	$Var(Y) = E[Y^2] - [E[Y]]^2$
Normal	$N(\mu, \sigma^2)$, standardize via $Z = (X - \mu)/\sigma$
Uniform	$E = (a+b)/2$, $Var = (b-a)^2/12$
Exponential	$E = 1/\lambda$, memoryless

Final tip: practise converting between PDF/CDF, standardising normals, and integrating simple polynomials — those are the operations you will use most often.