

Общероссийский математический портал

К. П. Шустова, О преобразованиях Лагерра в трехмерном псевдоевклидовом пространстве и их аналогах в идеальной области пространства Лобачевского, $Tp.\ reom.\ cem.,\ 2003,\ tom\ 24,\ 187-194$

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 178.205.19.235

7 июня 2024 г., 16:20:55

К.П. Шустова

О ПРЕОБРАЗОВАНИЯХ ЛАГЕРРА В ТРЕХМЕРНОМ ПСЕВДОЕВКЛИДОВОМ ПРОСТРАНСТВЕ И ИХ АНАЛОГАХ В ИДЕАЛЬНОЙ ОБЛАСТИ ПРОСТРАНСТВА ЛОБАЧЕВСКОГО

Аннотация

В многообразии плоскостей трехмерного псевдоевклидова пространства построена 10-членная группа преобразований, индуцирующая группу Лагерра преобразований плоскостей в трехмерном псевдоевклидовом пространстве и показано, что эта группа действует в касательном расслоении комплексной проективной прямой, в 4-мерном псевдоевклидовом пространстве, и в многообразии орисфер идеальной области трехмерного пространства Лобачевского.

Abstract

K.P. Shustova On Laguerre transformations in three-dimensional pseudo-Euclidean space and their analogs in the ideal area of Lobachevskii space

In the present paper we construct a 10-dimensional group which induces the Laguerre transformations of planes in the three-dimensional pseudo-Euclidean space 1E_3 , and find action of this group on the tangent bundle of complex projective line, on the 4-dimensional pseudo-Euclidean space, and on the manifold of horospheres of the ideal area of three-dimensional Lobachevskii space.

1. Группа преобразований Лагерра в псевдоевклидовом пространстве как группа преобразований на комплексной проективной прямой. Пусть ${}^{1}E_{3}$ — трехмерное псевдоевклидово пространство сигнатуры (+,+,-) с ортогональными координатами x, y, z. Рассмотрим в ${}^{1}E_{3}$ сферу S_{2} мнимого радиуса i с центром в начале координат.

Точке $M_0(x_0, y_0, z_0) \in S_2$ поставим в соответствие плоскость Π_2 , ортогональную радиус-вектору \vec{n} этой точки и находящуюся на расстоянии p от начала координат, причем p может быть отрицательным (плоскости ориентированы).

Построим 10-членную группу преобразований Лагерра этих плоскостей в ${}^{1}E_{3}$ и покажем, что эта группа может быть представлена как группа преобразований на комплексной проективной прямой CP_{1} .

Осуществим стереографическую проекцию сферы S_2 из полюса N(0,0,1) на плоскость z=0. Тогда точке $M_0(x_0,y_0,z_0)$ этой сферы ставится в соответствие точка $M_0'(x_0'=\frac{x_0}{1-z_0},y_0'=\frac{x_0}{1-z_0},z_0'=0)$ с радиус-вектором $\vec{\rho}(\xi^1,\xi^2)$ на плоскости z=0. Уравнение плоскости Π_2 тогда можно представить в виде:

$$\frac{2\xi^1}{\vec{\rho}^2 - 1}x + \frac{2\xi^2}{\vec{\rho}^2 - 1}y + \frac{\vec{\rho}^2 + 1}{\vec{\rho}^2 - 1}z + p = 0. \tag{1.1}$$

Введем параметр $s^1 = \xi^1 + i\xi^2$, где $i^2 = -1$. Тогда в силу (1.1) уравнение плоскости Π_2 запишется в виде:

$$\frac{-(s^1+\bar{s}^1)}{s^1\bar{s}^1-1}x + \frac{i(s^1-\bar{s}^1)}{s^1\bar{s}^1-1}y - \frac{s^1\bar{s}^1+1}{s^1\bar{s}^1-1}z - p = 0, \tag{1.2}$$

где \bar{s}^1 — комплексное число, сопряженное к s^1 . Или, что то же самое, в виде:

$$-(s^{1} + \bar{s}^{1})x + i(s^{1} - \bar{s}^{1})y - (s^{1}\bar{s}^{1} + 1)z - \omega = 0, \tag{1.3}$$

где $\omega = p(\vec{\rho}^{\,2} - 1) = p(s^1 \bar{s}^1 - 1)$. Таким образом, пара (s^1, ω) диффеоморфно определяет в 1E_3 плоскость Π_2 .

Под преобразованиями Лагерра [1] в трехмерном псевдоевклидовом пространстве понимаются такие преобразования, которые ориентированные плоскости переводят в ориентированные плоскости, а плоскости, касающиеся сферы, — в плоскости, касающиеся сферы (вообще говоря отличной от исходной сферы). Преобразования Лагерра включают в себя, в частности, вращения и параллельные переносы. В трехмерном псевдоевклидовом пространстве рассмотрим группу движений G_6 с базисом операторов $V_{\alpha}(\alpha=\overline{1,6})$, где операторы $V_{\alpha}(\alpha=\overline{1,3})$ порождают в 1E_3 вращения относительно осей Ox, Oy, Oz соответственно, $V_{\alpha}(\alpha=\overline{4,6})$ задают в пространстве 1E_3 параллельные переносы вдоль осей Ox, Oy, Oz соответственно.

Предложение 1.1. Группа движений G_6 в трехмерном псевдоевклидовом пространстве 1E_3 индуцирует в многообразии плоскостей этого пространства группу преобразований, базис операторов которой имеет вид:

$$V_{1} = \frac{-i(s^{1^{2}} + 1)}{2} \frac{\partial}{\partial s^{1}} + \frac{i(\bar{s}^{1^{2}} + 1)}{2} \frac{\partial}{\partial \bar{s}^{1}} - \frac{i(s^{1} - \bar{s}^{1})}{2} \omega \frac{\partial}{\partial \omega},$$

$$V_{2} = \frac{(s^{1^{2}} - 1)}{2} \frac{\partial}{\partial s^{1}} + \frac{(\bar{s}^{1^{2}} - 1)}{2} \frac{\partial}{\partial \bar{s}^{1}} + \frac{(s^{1} + \bar{s}^{1})}{2} \omega \frac{\partial}{\partial \omega},$$

$$V_{3} = is^{1} \frac{\partial}{\partial s^{1}} - i\bar{s}^{1} \frac{\partial}{\partial \bar{s}^{1}}, \qquad V_{4} = -(s^{1} + \bar{s}^{1}) \frac{\partial}{\partial \omega}$$

$$V_{5} = i(s^{1} - \bar{s}^{1}) \frac{\partial}{\partial \omega} \qquad V_{6} = -(s^{1}\bar{s}^{1} + 1) \frac{\partial}{\partial \omega}.$$

$$(1.4)$$

Доказательство. При движении в трехмерном псевдоевклидовом пространстве плоскости (1.2) перейдут в близкие плоскости:

$$\frac{-(\tilde{s}^{1} + \tilde{\bar{s}}^{1})}{\tilde{s}^{1}\tilde{\bar{s}}^{1} - 1}\tilde{x} + \frac{i(\tilde{s}^{1} - \tilde{\bar{s}}^{1})}{\tilde{s}^{1}\tilde{\bar{s}}^{1} - 1}\tilde{y} - \frac{\tilde{s}^{1}\tilde{\bar{s}}^{1} + 1}{\tilde{s}^{1}\tilde{\bar{s}}^{1} - 1}\tilde{z} - \tilde{p} = 0.$$
 (1.5)

Здесь $(\tilde{x}, \tilde{y}, \tilde{z})$ — координаты той точки из 1E_3 , в которую переходит точка (x, y, z), принадлежащая плоскости (1.2), при преобразовании, порожденным оператором $V_{\alpha}(\alpha=\overline{1,6}),\ \tilde{s}^1=s^1+\delta s^1,\ \tilde{\bar{s}}^1=\bar{s}^1+\delta \bar{s}^1,\ \tilde{p}=p+\delta p\ (\delta s^1,\ \delta p$ — приращения параметров $(s^1,\ p)$, задающих плоскость Π_2 , при этом же преобразовании). Подставив в (1.2) вместо x,y,z их значения, определяемые оператором $V_{\alpha}(\alpha=\overline{1,6})$ группы G_6 , сравнив получившееся выражение с (1.5) и учтя, что $\omega=p(s^1\bar{s}^1-1)$, найдем вид рассматриваемого оператора в локальных координатах (s^1,\bar{s}^1,ω) . \square

Кроме этих шести операторов можно еще указать оператор дилатации

$$V_7 = (s^1 \bar{s}^1 - 1) \frac{\partial}{\partial \omega}$$

в ${}^{1}E_{3}$ (каждая плоскость смещается на одно и то же расстояние в направлении орта нормали \vec{n}).

Посмотрим иначе на преобразования (1.4). Рассмотрим комплексную проективную прямую CP_1 . Введем на этой прямой локальную координату s^1 . Тогда базис инфинитезимальных преобразований на прямой CP_1 составляют операторы:

$$\frac{d}{ds^1}, \quad s^1\frac{d}{ds^1}, \quad s^{12}\frac{d}{ds^1}, \quad i\frac{d}{ds^1}, \quad is^1\frac{d}{ds^1}, \quad is^{12}\frac{d}{ds^1}.$$

Первые три оператора из (1.4) есть не что иное, как запись в переменных $(s^1,\bar{s}^1,\omega=\sqrt{s^2\bar{s}^2})$ полных лифтов векторных полей

$$\frac{-i(s^{1^2}+1)}{2}\frac{d}{ds^1}, \quad \frac{(s^{1^2}-1)}{2}\frac{d}{ds^1}, \quad is^1\frac{d}{ds^1}$$

в касательное расслоение комплексной проективной прямой $T(CP_1)$, где (s^1,s^2) — локальные индуцированные координаты в расслоении $T(CP_1)$. На этом пути указанную 7-членную группу с базисом операторов $V_{\alpha}(\alpha=\overline{1,7})$ можно дополнить тремя операторами

$$V_{8} = \frac{(s^{1^{2}} + 1)}{2} \frac{\partial}{\partial s^{1}} + \frac{(\bar{s}^{1^{2}} + 1)}{2} \frac{\partial}{\partial \bar{s}^{1}} + \frac{(s^{1} + \bar{s}^{1})}{2} \omega \frac{\partial}{\partial \omega},$$

$$V_{9} = \frac{i(s^{1^{2}} - 1)}{2} \frac{\partial}{\partial s^{1}} - \frac{i(\bar{s}^{1^{2}} - 1)}{2} \frac{\partial}{\partial \bar{s}^{1}} + \frac{i(s^{1} - \bar{s}^{1})}{2} \omega \frac{\partial}{\partial \omega},$$

$$V_{10} = -s^{1} \frac{\partial}{\partial s^{1}} - \bar{s}^{1} \frac{\partial}{\partial \bar{s}^{1}} - \omega \frac{\partial}{\partial \omega},$$

$$(1.6)$$

являющимися записью в переменных $(s^1,\bar{s}^1,\omega=\sqrt{s^2\bar{s}^2})$ полных лифтов векторных полей

$$\frac{(s^{1^2}+1)}{2}\frac{d}{ds^1}, \quad \frac{i(s^{1^2}-1)}{2}\frac{d}{ds^1}, \quad -s^1\frac{d}{ds^1}$$

в касательное расслоение комплексной проективной прямой $T(CP_1)$. Операторы $V_{\alpha}(\alpha=\overline{1,10})$ образуют базис 10-членной группы Лагерра G_{10} в трехмерном псевдоевклидовом пространстве 1E_3 . Первые три оператора из (1.4) и операторы (1.6) порождают 6-параметрическую группу преобразований, изоморфную группе проективных преобразований комплексной проективной прямой CP_1 .

2. Группа преобразований Лагерра в трехмерном псевдоевклидовом пространстве как группа движений в четырехмерном псевдоевклидовом пространстве. В параграфе 1 была построена 10-членная группа Лагерра в трехмерном псевдоевклидовом пространстве. Представим эту группу как группу движений в четырехмерном псевдоевклидовом пространстве 1E_4 . Сделаем это следующим образом. Рассмотрим в 1E_3 семейство плоскостей Π_2 , касающихся некоторой сферы с центром (a,b,c) мнимого радиуса R (будем называть эту сферу циклом). Этому циклу поставим в соответствие точку (a,b,c,R) из 1E_4 сигнатуры (+,+,-,+) так, чтобы изотропный конус с вершиной в этой точке (a,b,c,R) пересекал гиперплоскость xyz по указанному выше циклу. Такое соответствие между сферами мнимого радиуса в 1E_3 и точками пространства 1E_4 назовем изотропной проекцией.

Предложение 2.1. 10-членная группа Лагерра в 1E_3 с базисом операторов $V_{\alpha}(\alpha=\overline{1,10})$ порождает в 1E_4 группу движений с базисом операторов:

$$\begin{split} V_1 &= c\frac{\partial}{\partial b} + b\frac{\partial}{\partial c}, \quad V_2 = c\frac{\partial}{\partial a} + a\frac{\partial}{\partial c}, \quad V_3 = -b\frac{\partial}{\partial a} + a\frac{\partial}{\partial b}, \quad V_4 = \frac{\partial}{\partial a}, \\ V_5 &= \frac{\partial}{\partial b}, \quad V_6 = \frac{\partial}{\partial c}, \quad V_7 = -\frac{\partial}{\partial R}, \quad V_8 = -R\frac{\partial}{\partial a} + a\frac{\partial}{\partial R}, \\ V_9 &= R\frac{\partial}{\partial b} - b\frac{\partial}{\partial R}, \quad V_{10} = R\frac{\partial}{\partial c} + c\frac{\partial}{\partial R}. \end{split}$$

Доказательство. Нас интересуют такие семейства плоскостей (1.3), которые задаются парами:

$$s^{1}, \omega = As^{1}\bar{s}^{1} + B\bar{s}^{1} + \bar{B}s^{1} + C,$$
 (2.1)

где A, C – вещественные числа, B –комплексное число. В этом случае огибающей двухпараметрического семейства плоскостей (1.3) является сфера мнимого радиуса. Координаты центра (a,b,c) и радиус R указанной огибающей связаны с A,B,\bar{B},C соотношениями:

$$A = -R - c$$
, $C = R - c$, $B = -a - ib$, $\bar{B} = -a + ib$. (2.2)

При преобразовании, порожденном оператором $V_{\alpha}(\alpha = \overline{1,10})$, плоскости семейства (1.3), где ω определяется формулой (2.1), переходят в семейство плоскостей:

$$(\tilde{s}^1 + \tilde{\tilde{s}}^1)\tilde{x} - i(\tilde{s}^1 - \tilde{\tilde{s}}^1)\tilde{y} + (\tilde{s}^1\tilde{\tilde{s}}^1 + 1)\tilde{z} + \tilde{\omega} = 0, \tag{2.3}$$

близких к исходному семейству, где

$$\tilde{s}^1, \tilde{\omega} = \tilde{A}\tilde{s}^1\tilde{\tilde{s}}^1 + \tilde{B}\tilde{\tilde{s}}^1 + \tilde{\tilde{B}}\tilde{\tilde{s}}^1 + \tilde{\tilde{C}}, \tag{2.4}$$

параметры, соответствующие этим близким плоскостям.

Подставив в (2.4) вместо \tilde{s}^1 , $\tilde{\bar{s}}^1$, $\tilde{\omega}$ их значения, определяемые оператором $V_{\alpha}(\alpha=\overline{1,10})$ (в локальных координатах s^1 , \bar{s}^1 , ω) и сравнивая получившееся выражение с (2.1), получим вид оператора $V_{\alpha}(\alpha=\overline{1,10})$ в координатах $A,\ B,\ \bar{B},\ C.$

При преобразованиях Лагерра с базисом операторов $V_{\alpha}(\alpha=\overline{1,10})$ цикл с центром (a,b,c) мнимого радиуса R перейдет в близкий цикл с центром $(\tilde{a},\tilde{b},\tilde{c})$ мнимого радиуса \tilde{R} , а семейство плоскостей (1.3), задаваемое параметрами s^1 , ω , где ω из (2.1), в семейство плоскостей (2.3), причем

$$\tilde{A} = -\tilde{R} - \tilde{c}, \ \tilde{C} = \tilde{R} - \tilde{c}, \ \tilde{B} = -\tilde{a} - i\tilde{b}, \ \tilde{\bar{B}} = -\tilde{a} + i\tilde{b}.$$
 (2.5)

Подставив (2.5) и (2.2) в выражения для \tilde{A} , \tilde{B} , \tilde{B} , \tilde{C} , определяемые оператором $V_{\alpha}(\alpha=\overline{1,10})$, выраженным через (A, B, \bar{B}, C) , получим вид оператора $V_{\alpha}(\alpha=\overline{1,10})$ в координатах (a,b,c,R). \square

Таким образом, 10-членная группа Лагерра в 1E_3 представлена как группа движений в четырехмерном псевдоевклидовом пространстве 1E_4 .

3. Плоскости в трехмерном псевдоевклидовом пространстве и орисферы в идеальной области пространства Лобачевского. Под идеальной областью ${}^1\Lambda_3$ пространства Лобачевского понимаем множество элементов — точек, изометричное множеству пар диаметрально противоположных точек 3-мерной сферы действительного радиуса псевдоевклидова пространства 1E_4 . Интерпретацию Пуанкаре идеальной области ${}^1\Lambda_3$ пространства Лобачевского можно получить стереографически проектируя сферу действительного радиуса из ее северного полюса на ее псевдоевклидову экваториальную плоскость, дополненную до пространства 1C_3 [2].

Мы будем рассматривать ${}^1\Lambda_3$ и пользоваться интерпретацией Пуанкаре этого пространства в полупространстве $\theta>0$ псевдоевклидова пространства 1E_3 , когда в качестве абсолюта выступает плоскость $\theta=0$. В этой интерпретации плоскостями в ${}^1\Lambda_3$ являются полусферы пространства 1E_3 , ортогональные абсолюту (а если радиус такой полусферы стремится к бесконечности, то имеем псевдоевклидову плоскость, ортогональную абсолюту), а прямыми — полуокружности пространства 1E_3 с центрами на абсолюте и ортогональные абсолюту (псевдоевклидовы прямые, ортогональные абсолюту — в предельном случае). Линейный элемент пространства ${}^1\Lambda_3$ в такой модели имеет вид $d\sigma^2=\frac{d\xi^2+d\eta^2-d\theta^2}{\theta^2}$. Движениями пространства ${}^1\Lambda_3$ в используемой интерпретации будем называть взаимно-однозначные отображения этого пространства на себя, сохраняющие вид линейного элемента.

В параграфе 1 было установлено диффеоморфное соответствие между парами $(\vec{\rho}, \omega)$ и плоскостями (1.1):

$$2\xi^{1}x + 2\xi^{2}y + (\vec{\rho}^{2} + 1)z + \omega = 0$$
(3.1)

из 1E_3 , где $\vec{\rho}=\xi^1\vec{i}+\xi^2\vec{j}$ $(\vec{i},\ \vec{j}-$ базисные векторы декартовой системы координат в плоскости z=0.)

С другой стороны, паре $(\vec{\rho}, \omega)$ можно поставить в соответствие орисферу идеальной области трехмерного пространства Лобачевского $^1\Lambda_3$.

Орисферу пространства ${}^1\Lambda_3$ зададим уравнением:

$$(\vec{\zeta} - \vec{\rho})^2 - (\theta - \frac{\omega}{2})^2 = -(\frac{\omega}{2})^2,$$
 (3.2)

где $\vec{\zeta}=(\xi,\eta),\;(\xi,\eta,\theta)$ — ортогональные координаты в 1E_3 $(\theta>0).$

В следующем предложении будет дана геометрическая характеристика этого отображения.

Предложение 3.1. Пусть (ξ, η, θ) — точка из ${}^1\Lambda_3$, $(\vec{\rho}, \omega)$ — параметры, соответствующие орисферам (3.2), проходящим через эту точку, (3.1) — плоскости, соответствующие этим же самым параметрам $(\vec{\rho}, \omega)$, (a, b, c, R) — точка из 1E_4 , соответствующая в 1E_3 циклу, который огибает указанное семейство плоскостей (3.1). Тогда эта точка (a, b, c, R) принадлежит сфере действительного радиуса $a^2 + b^2 - c^2 + R^2 = 1$, моделирующей идеальную область ${}^1\Lambda_3$ пространства Лобачевского.

Доказательство. Рассмотрим в ${}^1\Lambda_3$ все такие орисферы, которые проходят через точку (ξ, η, θ) , т. е. (ξ, η, θ) удовлетворяет уравнению (3.2). Выразив ω из (3.2), получим

$$\omega = \frac{-1}{\theta} \vec{\rho}^2 + 2 \frac{\vec{\zeta} \vec{\rho}}{\theta} - \frac{\vec{\zeta}^2}{\theta} + \theta. \tag{3.3}$$

С другой стороны, мы имеем семейство плоскостей (3.1). Так как точка (a,b,c) находится на расстоянии R от плоскостей (3.1), то $2\xi^1a + 2\xi^2b + (\bar{\rho}^2 + 1)c + \omega = R(\bar{\rho}^2 - 1)$. Выразив отсюда ω и сравнив получившееся выражение с (3.3), получим закон, по которому точке (ξ,η,θ) из ${}^1\Lambda_3$ ставится в соответствие точка $(a,b,c,R) \in {}^1E_4$, т. е. цикл в пространстве 1E_3 мнимого радиуса R с центром (a,b,c), который огибает семейство плоскостей (3.1). Этот закон имеет вид:

$$a = \frac{-\xi}{\theta}, \ b = \frac{-\eta}{\theta}, \ c = \frac{1}{2}(\frac{1}{\theta} + \frac{\vec{\zeta}^2}{\theta} - \theta), \ R = \frac{1}{2}(\frac{-1}{\theta} + \frac{\vec{\zeta}^2}{\theta} - \theta).$$

Отсюда видим, что $a^2+b^2-c^2+R^2=1$. Таким образом предложение 3.1 доказано. \square

Итак, с одной стороны, паре $(\vec{\rho},\omega)$ диффеоморфно ставится в соответствие плоскость (3.1) в 1E_3 , с другой стороны, — орисфера (3.2) в ${}^1\Lambda_3$. Т.е. плоскости (3.1) из 1E_3 диффеоморфно соответствует в ${}^1\Lambda_3$ орисферам (3.2).

В силу того, что установлено диффеоморфное соответствие (см. параграф 1) между парами $(\vec{\rho}, \omega)$ и (s^1, ω) можем также сказать, что пара (s^1, ω) диффеоморфно определяет, с одной стороны, плоскость

(3.1) в 1E_3 , с другой стороны, — орисферу (3.2) в $^1\Lambda_3$, а группа преобразований в многообразии плоскостей пространства 1E_3 с базисом операторов (1.4), V_7 , (1.6) также порождает группу преобразований в многообразии орисфер идеальной области $^1\Lambda_3$ пространства Лобачевского. Поэтому преобразования указанной выше 10-членной группы индуцируют одновременно и преобразования в многообразии орисфер идеальной области пространства Лобачевского, порождающие аналоги преобразований Лагерра в идеальной области трехмерного пространства Лобачевского.

Заметим также, что семейству плоскостей (1.3)=(3.1) из 1E_3 , которые задаются парами (2.1) и имеют огибающей сферу с центром (a,b,c) мнимого радиуса R (т.е. имеют место формулы (2.2)) диффеоморфно соответствует в $^1\Lambda_3$ семейство орисфер, которое имеет огибающей: 1) псевдоевклидову сферу — омбилическую поверхность постоянной кривизны пространства $^1\Lambda_3$ с уравнением: $\left(\xi+\frac{a}{R+c}\right)^2+\left(\eta+\frac{b}{R+c}\right)^2-\left(\theta+\frac{a^2+b^2}{R+c}\right)^2=-\left(\frac{a^2+b^2-1}{R+c}\right)^2$, если $A\neq 0$; 2) плоскость с точки зрения 1E_3 с уравнением: $2a\xi+2b\eta+\theta(1+a^2+b^2)+(c-R)=0$, если A=0.

Литература

- [1] Яглом И.М. Геометрические преобразования.-М.: ГИТТЛ.- 1956.-Т. .- $612~\mathrm{c}.$
- [2] Розенфельд Б.А. *Неевклидовы геометрии.*-М.:ГИТТЛ.-1955.-774 с.
- [3] Широков А.П. K геометрии орисфер пространства Лобачевского.//Тр. геом. семин.–Изд. Казанск. ун-та.–1991.–Вып. 21.–С. 118-124.
- [4] Широков А.П. Аналоги преобразований Лагерра в плоскости и в пространстве Лобачевского.//Сб. "Памяти Лобачевского посвящается".-Изд. Казанск. ун-та.-1992.-Вып. 2.-С. 107-118.

Адрес: Казанский государственный университет, механико-математический факультет, 420008, г. Казань, ул. Кремлевская, 18

Address: Kazan State University, Mathematical Department, Chair of Geometry, ul. Kremlevskaya, 18, Kazan: 420008, RUSSIA

E-mail: Ksenia.Shustova@ksu.ru