

Analysis of Salary Data

Data Scientist: Natalia María Bonilla Villalobos

Agenda

Findings of linear regression modeling with tech salary data

- Data Description
- Regression Results
- Interpretation and Next Steps

The dataset has 375 rows and 6 columns with the below variables:

- Age = float
- Gender = String
- Education Level = String
- Job Title = String
- Years of Experience = float
- Salary = float

So, we find 3 quantitative variables and 3 categorical variables (qualitative), that eventually we'll transform due to the regression model.

The data has 12 missing and 50 duplicate values, so that was handled using 'dropna' and also 'drop_duplicates' in order to clean the dataset.

Now, the dataset has 324 rows with 6 columns.

<pre>df.isnull().sum()</pre>	
Age	2
Gender	2
Education Level	2
Job Title	2
Years of Experience	2
Salary	2
dtype: int64	

```
df.duplicated().sum()

49

(324, 6)
```


Then going through the Salary variable, it has a range of \$350.00 to \$250,000.00. So, one employee earns \$99,985.65 in average, but this one is affected for extreme variables, that means that not all of the earns it.

In other hand, we have \$95,000.00 as a median, in comparison is not too far to the average. In statistical terms, the salaries stray more or less \$48,652.27 from the average.

Finally, the Salary does not have a normal distribution, it is a distribution skewed to the right. Consequently, we find extreme values far from the peak on the high end more frequently than on the low.

Here we can see a Salary comparison between the Bachelor's, Master's and PhD and it outliers or extreme values.

Regression Results

Because of the categorical variables, a transformation technique was applied using dummy variables for "Gender", "Educational Level" and "Job Title".

Taking as a baseline:

Gender: is_Not

Education Level: is_director

Job Title: Bachelor's

Age	Education Level	Years of Experience	Salary	is_junior	is_senior	is_manager	is_analyst	is_engineer	is_Male	Education_Master's	Education_PhD
32.0	Bachelor's	5.0	90000.0	0	0	0	0	1	1	0	0
28.0	Master's	3.0	65000.0	0	0	0	1	0	0	1	0
45.0	PhD	15.0	150000.0	0	1	1	0	0	1	0	1
36.0	Bachelor's	7.0	60000.0	0	0	0	0	0	0	0	0
52.0	Master's	20.0	200000.0	0	0	0	0	0	1	1	0

Regression Results

Four variables were found to have high p-values that are not statistically significant. Therefore, they will be removed from the model.

Variables:

- is_junior 0.207 > p = 0.05
- is_manager 0.800 > p = 0.05
- is_analyst 0.170 > p = 0.05
- is_engineer 0.947 > p = 0.05

=======================================						=======
	coef	std err	t	P> t	[0.025	0.975]
is_Male	8652.8528	1819.677	4.755	0.000	5072.551	1.22e+04
Years of Experience	5640.4798	190.999	29.531	0.000	5264.680	6016.280
is junior	-3609.6775	2855.816	-1.264	0.207	-9228.631	2009.277
is_senior	6458.6657	2151.545	3.002	0.003	2225.399	1.07e+04
is_manager	558.7344	2205.951	0.253	0.800	-3781.579	4899.048
is_analyst	-3586.7326	2607.052	-1.376	0.170	-8716.232	1542.767
is_engineer	-294.8188	4441.613	-0.066	0.947	-9033.904	8444.266
Education_Master's	1.78e+04	2322.145	7.665	0.000	1.32e+04	2.24e+04
Education_PhD	2.259e+04	3397.078	6.649	0.000	1.59e+04	2.93e+04
intercept	2.962e+04	2824.282	10.489	0.000	2.41e+04	3.52e+04
				=======		=

Regression Results

With a new model fitted, we can see that the rest of p-values are statistically significant related with salary

			=========	=======		========
	coef	std err	t	P> t	[0.025	0.975]
is_Male	8382.5480	1778.387	4.714	0.000	4883.658	1.19e+04
Years of Experience	5803.5032	165.127	35.146	0.000	5478.624	6128.383
is_senior	7313.5528	1929.856	3.790	0.000	3516.654	1.11e+04
Education_Master's	1.814e+04	2272.966	7.980	0.000	1.37e+04	2.26e+04
Education_PhD	2.215e+04	3241.223	6.833	0.000	1.58e+04	2.85e+04
intercept	2.647e+04	1930.575	13.711	0.000	2.27e+04	3.03e+04

Interpretation and Next Steps

Having a PhD Education (compared to the baseline education level: Bachelor's) the salary increase by \$22,150.00, holding all else constant.

We are confident that the salary increase for PhD Education oscillates between \$15,800.00 and \$28,500.00.

=======================================	coef	std err	======= t	P> t	[0.025	0.975]
is_Male	8382.5480	1778.387	4.714	0.000	4883.658	1.19e+04
Years of Experience	5803.5032	165.127	35.146	0.000	5478.624	6128.383
is_senior	7313.5528	1929.856	3.790	0.000	3516.654	1.11e+04
Education Master's	1.8140+04	2272.966	7.980	0.000	1.37e+04	2.26e+04
Education_PhD	2.215e+04	3241.223	6.833	0.000	1.58e+04	2.85e+04
intercept	2.647e+04	1930.575	13.711	0.000	2.27e+04	3.03e+04
==============	========			=======	========	=

Interpretation and Next Steps

Similarly, having a Master's Education compared to the baseline the salary increase by \$18,140.00, holding all else constant. With a 95% of confidence, the salary increase oscillates between \$13,700.00 and \$22,600.00.

=======================================				=======		=======
	coef	std err	t	P> t	[0.025	0.975]
is_Male	8382.5480	1778.387	4.714	0.000	4883.658	1.19e+04
Years of Experience	5803.5032	165.127	35.146	0.000	5478.624	6128.383
is senior	7313.5528	1929.856	3.790	0.000	3516.654	1.11e+04
Education_Master's	1.814e+04	2272.966	7.980	0.000	1.37e+04	2.26e+04
Education_PhD	2.215e+04	3241.223	6.833	0.000	1.58e+04	2.85e+04
intercept	2.647e+04	1930.575	13.711	0.000	2.27e+04	3.03e+04
=======================================	========			=======	========	=

