ON THE OUTER AUTOMORPHISM GROUPS OF TRIANGULAR ALTERNATION LIMIT ALGEBRAS

S. C. Power

Department of Mathematics

University of Lancaster

Lancaster LA1 4YF

England.

ABSTRACT

Let A denote the alternation limit algebra, studied by Hopenwasser and Power, and by Poon, which is the closed direct limit of upper triangular matrix algebras determined by refinement embeddings of multiplicity r_k and standard embeddings of multiplicity s_k . It is shown that the quotient of the isometric automorphism group by the approximately inner automorphisms is the abelian group \mathbb{Z}^d where d is the number of primes that are divisors of infinitely many terms of each of the sequences (r_k) and (s_k) . This group is also the group of automorphisms of the fundamental relation of A.

1 Introduction

In Hopenwasser and Power [HP] and in Poon [Po] the alternation limit algebras described below were classified. In this note we determine the quotient group $Out_{isom}A = Aut_{isom}A/I(A)$ for these algebras where $Aut_{isom}A$ is the group of isometric algebra automorphisms and I(A) is the normal subgroup of AutA of approximately inner automorphisms. An automorphism α is said to be approximately inner if there exists a sequence (b_k) of invertible elements such that $\alpha(a) = \lim_k b_k a b_k^{-1}$ for all a in A.

Let (r_k) , (s_k) be sequences of positive integers. Write $T(r_k, s_k)$ for the Banach algebra limit of the system

$$\mathbb{C} \to T_{r_1} \to T_{r_1s_1} \to T_{r_1s_1r_2} \to \dots,$$

where T_n is the algebra of upper triangular $n \times n$ complex matrices and where the embeddings are unital and are alternately of refinement type $(\rho(a) = (a_{ij}1_t)$, with 1_t the $t \times t$ identity and of standard type $(\sigma(a) = a \oplus \ldots \oplus a, t \text{ times})$.

Theorem 1 $Out_{isom}(T(r_k, s_k)) = \mathbb{Z}^d$ where d is the number of primes p that are divisors of infinitely many terms of each of the sequences (r_k) and (s_k) . (If $d = \infty$ interpret \mathbb{Z}^d as the countably generated free abelian group.)

The proof uses the methods of [HP]. A major step is to characterise the automorphism group of the fundamental relation, or semigroupoid, which is associated with an alternation algebra. This order-topological result is of independent interest and is stated and proved separately below.

Let r and s be the generalised integers $r_1r_2...$, and $s_1s_2...$ respectively and suppose that p is a prime satisfying the condition in the statement of the theorem. Then p^{∞} divides r and s. Thus we can arrange new formal products $r = t_1t_2...$, $s = u_1u_2...$, with $t_k = u_k = p$ for all odd k. As noted in [HP], because of the commutation of refinement and standard embeddings, we can easily display a commuting zig zag diagram to show that $T(r_k, s_k)$ and $T(t_k, u_k)$ are isometrically isomorphic. However, with the new formal product we can construct one of the generators of $Out_{isom}A$. Consider the automorphism α determined

by the following commuting diagram where the matrix algebras are omitted for notational economy.

It will be shown below that α provides a nonzero coset and that the totality of such cosets provides a generating set for the isometric outer automorphism group.

2 Proof of Theorem 1

Let X, or $X(r_k, s_k)$, be the Cantor space

$$X = \prod_{k=-\infty}^{-1} \{1, \dots, s_{-k}\} \times \prod_{k=1}^{\infty} \{1, \dots, r_k\},$$

where we have fixed the sequences (r_k) and (s_k) . Define the equivalence relation \tilde{R} on X to consist of the pairs (x,y) of points $x=(x_k),y=(y_k)$ in X with $x_k=y_k$ for all large enough and small enough k. \tilde{R} carries a natural locally compact Hausdorff topology (giving it the structure of an approximately finite groupoid). Write R, or $R(r_k,s_k)$, for the antisymmetric topologised subrelation of \tilde{R} consisting of pairs (x,y) in R for which x preceds y in the lexicographic order. Thus $(x,y) \in R$ if and only if $(x,y) \in \tilde{R}$ and, either x=y, or for the smallest k for which $x_k \neq y_k$ we have $x_k < y_k$.

An automorphism of $R(r_k, s_k)$ is a binary relation isomorphism (implemented by a bijection α of the underlying space X), which is a homeomorphism for the (relative groupoid) topology of $R(r_k, s_k)$. Necessarily α is a homeomorphism of X.

Theorem 2 The group of automorphisms of the topological binary relation $R(r_k, s_k)$

is \mathbb{Z}^d where d is the number of primes which divide infinitely many terms of each of the sequences (r_k) and (s_k) .

Proof: Let $\overline{\mathcal{O}(x)}$ denote the closure of the R-orbit of the point x in X. Here $\mathcal{O}(x) = \{y : (y,x) \in R\}$. Recall from [HP] that the pair of points x,x^+ is called a $gap\ pair$ if $x^+ \notin \overline{\mathcal{O}(x)}$ and

$$\overline{\mathcal{O}(x^+)} = \overline{\mathcal{O}(x)} \cup \{x\}.$$

Furthermore x, x^+ is a gap pair if and only if

- 1) there exists n such that $x_m = 1$ for all $m \le n$,
- 2) there exists p such that $x_q = r_q$ for all $q \ge p$.

Also if p is the smallest integer for which 2) holds (with $r_p = s_{-p}$ if p is negative), then x^+ is given by

$$(x^{+})_{j} = \begin{cases} x_{j} & \text{if } j$$

The usefulness of this for our purpose is that an automorphism α of R necessarily maps gap pairs to gap pairs and so the coordinate description of these pairs leads ultimately to a coordinate description of α .

Let α be an automorphism of R. Consider the (left) gap point $x_* = (\ldots, 1, 1, \hat{1}, r_1, r_2, \ldots)$ where $\hat{1}$ indicates the coordinate position for s_1 . Then $\alpha(x_*)$ is necessarily a (left) gap point, thus

$$\alpha(x_*) = (\ldots, 1, 1, z_{-t+1}, z_{-t}, \ldots, z_{t-1}, r_t, r_{t+1}, \ldots)$$

for some positive integer t. We have

$$\overline{\mathcal{O}(x_*)} = \{ x = (\dots, 1, \hat{1}, x_1, x_2, \dots) : x_k \le r_k \text{ for all } k \},$$

$$\overline{\mathcal{O}(\alpha(x_*))} = \{ y = (\dots, 1, w', y_t, y_{t+1}, \dots) \},$$

where $y_k \leq r_k$ for all $k \geq t$ and where w' is any word of length 2t - 2 which preceds (or is equal to) the word $w = z_{-t+1}, z_{-t}, \dots, z_{t-1}$ in the lexicographic order. Restating this, we

have natural homeomorphisms

$$\overline{\mathcal{O}(x_*)} \approx \prod_{k=1}^{\infty} \{1, \dots, r_k\}$$

$$\overline{\mathcal{O}(\alpha(x_*))} \approx \{1, \dots, n\} \times \prod_{k=t}^{\infty} \{1, \dots, r_t\}$$

where n is the number of words w'. Moreoever, these identifying homeomorphisms induce isomorphisms between the restrictions $R|\overline{\mathcal{O}(x_*)}$ and $R|\overline{\mathcal{O}(\alpha(x_*))}$ and the unilateral relations R_1 and R_2 , respectively, where $R_1 = R(r_k, u_k)$, with $u_k = 1$ for all k, and $R_2 = R(r'_k, u_k)$, with u_k as before, $r'_1 = n$, and $r'_k = r_{k+t-2}$ for $k = 2, 3, \ldots$ Since α induces an isomorphism between the restrictions, we obtain an induced isomorphism β between R_1 and R_2 . It is well-known that this means that r = r' where $r = r_1 r_2 \ldots$ and $r' = r'_1 r'_2 \ldots$ are generalised integers. (See [P2] for example). Thus we obtain the necessary condition that the integer n is a divisor of the generalised integer r.

We shall now improve on this necessary condition.

The isomorphism between $R|\overline{\mathcal{O}(x_*)}$ and $R|\overline{\mathcal{O}(\alpha(x_*))}$ is given explicity by

$$\alpha: (\dots 1, \hat{1}, x_1, x_2, \dots) \to (\dots 1, w', y_t, y_{t+1}, \dots)$$

where

$$\frac{\|w'\| - 1}{n} + \sum_{k=1}^{\infty} \frac{(y_{t+k-1} - 1)}{n m_{t+k-1}} m_{t-1} = \sum_{k=1}^{\infty} \frac{x_k - 1}{m_k},\tag{1}$$

where ||w'|| is the cardinality of the set of points in the order interval from the (2t-2)-tuple $(1,1,\ldots,1)$ to w', and where $m_k=r_1r_2\ldots r_k$ for $k=1,2\ldots$. The identity (1) follows from the fact that there are unique canonical R-invariant probability measures on $\overline{\mathcal{O}(x_*)}$ and on $\overline{\mathcal{O}(\alpha(x_*))}$ and the quantities in (1) are the measures of the subsets $\overline{\mathcal{O}(\alpha(x))}$ and $\overline{\mathcal{O}(x)}$ respectively.

To verify these facts one must recall how the topology of a topological binary relation is defined. In the case of $R_1 = R|\overline{\mathcal{O}(x_*)}$ fix two words

$$(x_1, x_2, \dots, x_\ell) \le (x'_1, x'_2, \dots, x'_\ell)$$

in lexicographic order. Then the set E of pairs

$$((x_1, x_2, \dots, x_{\ell}, z_{\ell+1}, z_{\ell+2}, \dots), (x'_1, x'_2, \dots, x'_{\ell}, z_{\ell+1}, z_{\ell+2}, \dots))$$

is, by definition, a basic open and closed subset for the topology. Notice that for this set, the left and right coordinate projection maps, $\pi_{\ell}: E \to \overline{\mathcal{O}(x_*)}$, $\pi_r: \to \overline{\mathcal{O}(x_*)}$, are injective. In the language of groupoids, E is a G-set. If λ is a Borel measure such that $\lambda(\pi_{\ell}(E)) = \lambda(\pi_r(E))$ for all closed and open G-sets E, then λ is said to be R-invariant. It is easy to see that this requirement forces λ to be the product measure $\lambda_1 \times \lambda_2 \times \ldots$ where λ_k is the uniformly distributed probability measure on $\{1, \ldots, r_k\}$. (One can also bear in mind that R-invariant measures are also \tilde{R} -invariant, where \tilde{R} is the topological equivalence relation (i.e. groupoid) generated by R, and that the \tilde{R} -invariant measures correspond to traces on the C*-algebra of \tilde{R} . In our context $C^*(\tilde{R})$ is UHF, and the R-invariant measure corresponds to the unique trace.)

Let $\nu(x)$ denote the right hand quantity of (1). Then the coordinates for $\alpha(x)$ are calculated from the identity (1), bearing in mind that the ambiguity arising from the equality $\nu(x) = \nu(x^+)$, for a gap pair x, x^+ , is resolved by the known correspondence of left and right gap points.

Note that if x is in $\overline{\mathcal{O}(x_*)}$, and $\alpha(x) = y = (y_k)$, and ||w'|| = 1 (so that $y_{-t+1}, y_{-t}, \dots, y_t$ are all equal to 1), then, by (1),

$$\nu(\alpha(x)) = \sum_{k=1}^{\infty} \frac{y_k - 1}{m_k} = \sum_{k=1}^{\infty} \frac{y_{t+k-1} - 1}{m_{t+k-1}} = \frac{n\nu(x)}{m_{t-1}}.$$

We have obtained the identity $\nu(\alpha(x)) = c\nu(x)$, with $c = n/m_{t-1}$, for all points x in $\overline{\mathcal{O}(x_*)}$ for which $\nu(x)$ is small. In fact, because of the R-invariance of the measures on $\overline{\mathcal{O}(x_*)}$ and $\overline{\mathcal{O}(\alpha(x_*))}$, which we shall call λ_1 and λ_2 respectively, it follows that $\nu(\alpha(x)) = c\nu(x)$ for all points x for which $\alpha(x) \in \overline{\mathcal{O}(x_*)}$. To be more precise about this, consider the left gap points

$$g = (\dots 1, \hat{1}, 1, \dots, 1, r_{\ell+1}, \dots),$$

$$x = (\dots 1, \hat{1}, w, r_{\ell}, r_{\ell+1}, \dots),$$

$$x' = (\dots 1, \hat{1}, w, r_{\ell} - 1, r_{\ell+1}, \dots),$$

where w is some word $w_1, w_2, \ldots, w_{\ell-1}$. Note that the set

$$E = \{((\ldots 1, \hat{1}, w, r_{\ell}, z_{\ell+1}, z_{\ell+2}, \ldots), (\ldots 1, \hat{1}, \ldots, 1, z_{\ell+1}, z_{\ell+2}, \ldots)) : z_j \le r_j\}$$

has $\pi_{\ell}(E) = \overline{\mathcal{O}(x)} \setminus \overline{\mathcal{O}(x')}$ and $\pi_r(E) = \overline{\mathcal{O}(g)}$, and so $\nu(g) = \nu(x) - \nu(x')$. Since α preserves orbits and G-sets we also deduce that

$$\nu(\alpha(g)) = \lambda_1(\overline{\mathcal{O}(\alpha(g))}) = \lambda_1(\pi_r((\alpha \times \alpha)(E)))$$

$$= \lambda_1(\pi_\ell((\alpha \times \alpha)(E))) = \lambda_1(\overline{\mathcal{O}(\alpha(x))} \setminus \overline{\mathcal{O}(\alpha(x'))})$$

$$= \nu(\alpha(x)) - \nu(\alpha(x')).$$

Thus, if we choose ℓ large, so that we know that $\nu(\alpha(g)) = c\nu(g)$, we deduce that

$$\nu(\alpha(x)) - \nu(\alpha(x')) = \nu(\alpha(g)) = c\nu(g) = c(\nu(x) - \nu(x')),$$

from which it follows that $\nu(\alpha(x)) = c(\nu(x))$ for general points x with $\alpha(x)$ in $\overline{\mathcal{O}(x')}$.

We can similarly extend this identity to points in the set

$$X_0 = \{(y_k) \in X : \exists k_0 \text{ such that } y_k = 1 \text{ for all } k \leq k_0\}$$

and the extension of ν given by

$$\nu(y) = \sum_{k=1}^{\infty} (y_{-k} - 1) s_0 s_1 \dots s_{k-1} + \sum_{k=1}^{\infty} \frac{y_k - 1}{m_k}$$

for y in X_0 , where $s_0 = 1$. The range of ν on the gap points of X_0 is the additive cone of rationals of the form ℓ/m_k for some $k = 1, 2, \ldots$ and some natural number ℓ . The identity $\nu(\alpha(x)) = c\nu(x)$ for x in X_0 shows that multiplication by c is a bijection of the cone. From this we obtain the necessary condition that c has the form

$$c = p_1^{a_1} \dots p_d^{a_d}$$

where $a_i \in \mathbb{Z}, 1 \leq i \leq d$, and where $p_1, \dots p_d$ are primes which divide infinitely many terms of the sequence (r_k) .

We now improve further on this condition by considering the fact that α is a homeomorphism of X and is determined by its restriction to X_0 .

Suppose, by way of contradiction, that $a_1 \neq 0$ and that p_1 does not divide infinitely many terms of the sequence (s_k) . Note that c only depends on α , thus, replacing α by its inverse if necessary, we may assume that $a_1 > 0$. By relabelling we may also assume that p_1 divides no terms of the sequence. Without loss of generality assume that $s_1 > 1$ and consider the proper clopen subset E of points $y = (y_k)$ in X with $y_{-1} = 1$. We show that $\alpha(E)$ is dense, which is the desired contradiction. Observe first that the range of ν on $E \cap X_0$ is the union of the intervals $[ks_1, ks_1 + 1]$ for $k = 0, 1, 2, \ldots$ Pick x in X_0 arbitrarily, pick j large, and consider the countable set

$$F_j(x) = \{x' \in X_0 : x' = (x'_k) \text{ and } x'_k = x_k \text{ for all } k \ge -j\}.$$

The range of ν on $F_j(x)$ is an arithmetic progression of period $s_1s_2...s_j$. In view of the identity $\nu(\alpha(y)) = c\nu(y)$, the range of ν on $\alpha(E) \cap X_0$ is the union of the intervals $[cks_1, cks_1 + c]$, which is an arithmetic progression of intervals of period cs_1 . It follows from our hypothesis on p_1 that one of these intervals contains a point in $\nu(F_j(x))$, and so $\alpha(E)$ meets $F_j(x)$. Since the intersection of the sets $F_1(x), F_2(x), \ldots$ is the singleton x, it follows that x lies in the closure of $\alpha(E)$. Since X_0 is dense it follows that $\alpha(E)$ is dense as desired.

We have now shown that if α is an automorphism of $R = R(r_k, s_k)$, then $\nu(\alpha(x)) = c\nu(x)$ for all x in X_0 where c has the form $c = p_1^{a_1} p_2^{a_2} \dots p_d^{a_d}$ where a_1, \dots, a_d are integers and where $p_1, \dots p_d$ are primes which divide infinitely many terms of (r_k) and of (s_k) . It is also clear from the above that for each such c there is at most one automorphism α satisfying the identity $\nu(\alpha(x)) = c\nu(x)$. It follows that the map

$$\alpha \to (a_1, \ldots, a_d)$$

is an injective group homomorphism from $\operatorname{Aut} R$ to \mathbb{Z}^d . (d may be infinite.) It remains to show that this map is surjective. One way to do this is to start with c of the required form above and to show that the bijection of X_0 induced by multiplication by c (that is, the bijection α satisfying $\nu(\alpha(x)) = c\nu(x)$) does extend to an order preserving homeomorphism of X which defines an automorphism of R. Another way, which we now follow, is to make the connection between $R(r_k, s_k)$ and $T(r_k, s_k)$, and to determine generators of $\operatorname{Aut} R$ in terms of commuting diagrams, as we indicated after the statement of Theorem 1.

Consider the diagram

$$\mathbf{C} \stackrel{\rho_{r_1}}{\to} M_{r_1} \stackrel{\sigma_{s_1}}{\to} M_{s_1} \otimes M_{r_1} \stackrel{\rho_{r_2}}{\to} M_{s_1} \otimes M_{r_1} \otimes M_{r_2} \stackrel{\sigma_{s_2}}{\to} \dots B$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathbf{C} \stackrel{\rho_{r_1}}{\to} T_{r_1} \stackrel{\sigma_{s_1}}{\to} T_{s_1r_1} \stackrel{\rho_{r_2}}{\to} T_{s_1r_1r_2} \stackrel{\sigma_{s_2}}{\to} \dots A$$

The vertical maps are inclusions, where $T_{s_1r_1r_2}$, for example, is realised in terms of the lexicographic order on the indices (i, j, k) of the minimal projections $e_{ii} \otimes e_{jj} \otimes e_{kk}$ in $M_{s_1} \otimes M_{r_1} \otimes M_{r_2}$. (For more detail concerning this discussion, read the introduction of [HP].) The maximal ideal space of the diagonal C*-algebra $A \cap A^*$ is naturally identified with the space X. Indeed, $x = (x_k)$ in X corresponds to the point in the intersection of the Gelfand supports of the projections

$$e(x, N) = e_{x_{-N-N}} \otimes \ldots \otimes e_{x_{-1,-1}} \otimes e_{x_{1,1}} \otimes \ldots \otimes e_{x_{N,N}}$$

for $N = 1, 2, \ldots$ Furthermore, (x, y) belongs to $R = R(r_k, s_k)$ if and only if for all large N there is a matrix unit in the appropriate upper triangular matrix algebra with initial projection e(y, N) and final projection e(x, N). (In fact R is the fundamental relation of the limit algebra A.)

Suppose now that $r_k = s_k = p$ for all odd k and let α be the isometric automorphism of $T(r_k, s_k)$ determined by the diagram given in the introduction. Let α also denote the induced automorphism of R. We prove that $\nu(\alpha(x)) = p^{-1}\nu(x)$, completing the proof of the theorem.

Let us calculate $\alpha(e(x,N))$, where N is even, $x=(\ldots,1,\hat{1},2,1,\ldots)$, and where we abuse notation somewhat and write e(x,N) for the image of e(x,N) in the limit algebra. Let $d(N)=s_N\ldots s_1r_1\ldots r_N$, and let e(x,N) occupy position a(N) in the lexicographic ordering of the d(N) matrix units. Consider the following part of the diagram defining α .

Then

$$\rho_p(e(x,N)) = \sum_{k=1}^p e(x,N) \otimes e_{kk}.$$

On the other hand $\sigma_p(e(x, N))$ is the summation of the diagonal matrix units in positions $a(N), a(N) + d(N), \ldots, a(N) + (p-1)d(N)$ in the lexicographic order. Let these projections correspond to the matrix unit tensors with subscripts $z^{(i)} = (z_{-N}^{(i)}, \ldots z_{N+1}^{(i)})$ for $1 \leq i \leq p$, and denote the projections themselves by $f_1, \ldots f_p$, respectively. It follows (from the partial diagram above) that the homeomorphism $\alpha: X \to X$ maps the support of e(x, N) onto the union of the supports of f_1, \ldots, f_p . Denote these supports by $E(x, N), F_1, \ldots, F_p$ respectively. Since X_0 is invariant for α ,

$$\alpha(E(x,N)\cap X_0) = \bigcup_{k=1}^p F_k \cap X_0.$$

Notice that x is the unique point in $E(x, N) \cap X_0$ with the property that if $y \in E(x, N) \cap X_0$ and $(x, y) \in \tilde{R}$ then $(x, y) \in R$. The point in the union of $F_1 \cap X_0, \dots, F_p \cap X_0$ with this minimum property is the point

$$u = (\dots 1 \ 1 \ z_{-N}^{(1)}, \dots, z_{N+1}^{(1)}, 1, 1, \dots)$$

and so $\alpha(x)=u$. Finally one can verify that $\nu(x)=p^{-1}$ and $\nu(u)=p^{-2}$, as desired. \square

Recall that the fundamental relation R(A) of a canonical triangular subalgebra A of an AF C*-algebra B is the topological binary relation on the Gelfand space $M(A \cap A^*)$ induced by the partial isometries of A which normalise $A \cap A^*$. (See [P2].) In [HP] we identified R(A), for $A = T(r_k, s_k)$, with $R(r_k, s_k)$. (This identification is also effected in the proof above by virtue of the fact that a matrix unit system determines R(A).) Let β be an isometric automorphism of A. Then β induces an automorphism of R(A) (because $\beta(A \cap A^*) = A \cap A^*$ and β maps the normaliser onto itself). Thus β determines an automorphism of $R(r_k, s_k)$ and so by the last theorem there is an isometric automorphism α of A such that $\gamma = \alpha^{-1} \circ \beta$ induces the trivial automorphism of $R(r_k, s_k)$. This means that γ is an isometric automorphism with γ equal to the identity map on $A \cap A^*$.

Lemma Let γ be an automorphism of $T(r_k, s_k)$ which is the identity on the diagonal subalgebra (and which is not necessarily isometric). Then γ is approximately inner.

Proof: Let $A = T(r_k, s_k)$ and let $A_1 \to A_2 \to \dots$ be the direct system defining A. The hypothesis is that $\gamma(c) = c$ for all c in $C = A \cap A^*$. This ensures that $\gamma(\tilde{A}_n) = \tilde{A}_n$ where \tilde{A}_n is the subalgebra generated by A_n and C. To see this,recall from Lemma 1.2 of [P1] that there are contractive maps $P_n : A \to \tilde{A}_n$ which are defined in terms of limits of sums of compressions by projections in C, and so, for a in \tilde{A}_n , $\gamma(a) = \gamma(P_n(a)) = P_n(\gamma(a))$. The restriction automorphism $\gamma|\tilde{A}_n$ is necessarily inner. Indeed identify \tilde{A}_n with $T_r \otimes D$, for appropriate r, where D is an abelian approximately finite C^* -algebra and let $u_i \in D$, $1 \le i \le r - 1$, be the invertible elements such that $\gamma(e_{i,i+1}) = e_{i,i+1} \otimes u_i$. Also set $u_0 = 1$. Then it follows that $\gamma(a) = u^{-1}au$, where

$$u = \sum_{i=1}^{r} e_{i,i} \otimes u_0 u_1 \dots u_{r-1}$$

Furthermore, since $\gamma(e_{1,r}) = e_{1,r} \otimes u_0 u_1 \dots u_{r-1}$, it follows that $||u|| \leq ||\gamma||$. Similarly $||u^{-1}|| \leq ||\gamma^{-1}||$. The inner automorphisms Adu^{-1} , for varying n, thus form a uniformly bounded sequence which converge pointwise on each A_n , and so determine an approximately innder automorphism.

It follows from Lemma 1 and the preceding discussion that

$$Aut_{isom}A/I(A) = AutR(A) = \mathbb{Z}^d.$$

Remark 1. Suppose that $\delta \in AutA$. Then δ determines a scaled group homomorphism $\delta_*: K_0(A) \to K_0(A)$ which preserves the algebraic order on the scale $\Sigma(A)$ of $K_0(A)$. Thus, by the main theorem of [P3], (which can also be found in [P4]) there is an isometric algebra automorphism of A, ϕ say, with $\phi_* = \delta_*$. In particular $\psi = \phi^{-1} \circ \delta$ has ψ_* trivial. This means that if $P: A \to A \cap A^*$ is the diagonal expectation, then $P(\psi(e)) = e$ for each projection e in $A \cap A^*$. Thus to show that $AutA/I(A) = \mathbb{Z}^d$ it remains only to show that such automorphisms ψ are approximately inner.

Remark 2. There are approximately inner automorphisms of alternation algebras which are not inner. To see this, consider the standard limit algebra $A = \lim_{\longrightarrow} (T_{2^n}, \sigma)$.

Let λ be a unimodular complex number and let $d_n = \lambda e_{1,1} + \lambda^2 e_{2,2} + \ldots + \lambda^{2^n} e_{2^n,2^n}$. Then

 $d_n a d_n^{-1} = d_m a d_m^{-1}$ if $a \in T_{2^n}$ and m > n, from which it follows that $\alpha(a) = \lim_n (d_n a d_n^{-1})$ is an isometric approximately inner automorphism.

Suppose now that α is inner, and $\alpha(a) = gag^{-1}$ for some invertible g in A. Since $\alpha(c) = c$ for all c in the masa C it follows that $g \in C$. In particular $\|\alpha - \beta\| \leq \frac{1}{4}$ for some inner automorphism β of the form $\beta(a) = hah^{-1}$ where, for some large enough $n, h \in T_{2^n} \cap (T_{2^n})^*$. However, in T_{2^m} , for large m, the diagonal element h has matrix entries which are periodic with period 2^n . One can now verify that if λ is chosen so that no power of order 2^k is unity then for large enough m there exist matrix units $e \in T_{2^m}$ such that $\|\lambda e - heh^{-1}\| > \frac{1}{4}$, a contradiction.

Remark 3. Let (x, y) be a point in $R(C^*(A(r_k, s_k)))$ with $x = (\ldots, x_{-2}, x_{-1}, x_1, x_2, \ldots)$, $y = (\ldots, y_{-2}, y_{-1}, y_1, y_2, \ldots)$. Then, although $\nu(x)$ and $\nu(y)$ may be infinite, we may define d(x, y) as the sum

$$\sum_{k=1}^{\infty} (y_{-k} - x_{-k}) s_0 s_1 \dots s_{k-1} + \sum_{k=1}^{\infty} \frac{y_k - x_k}{r_1 r_2 \dots r_k}$$

because only finitely many terms are nonzero. Since d(x,y) = d(x,z) + d(z,y), and $(x,y) \in R(r_k, s_k)$ if and only if $d(x,y) \ge 0$, it follows that d(x,y) is a continuous real valued cocyle determining $A(r_k, s_k)$ as an analytic subalgebra of $C^*(A(r_k, s_k))$. See [V], where some special cases are discussed as well as some general aspects of analyticity.

Added Dec 1992: Unfortunately the proof of the classification of alternation algebras given in [HP] and [P4] appears to be incomplete. (It is not clear, in [P4], whether q can be chosen with the desired properties.) However the present paper is independent of [HP] and the arithmetic progression argument above can be adapted, to the case of an isomorphism α between two alternation algebras, to show that the supernatural numbers for the standard multiplicities are finitely equivalent.

References

[HP] A. Hopenwasser and S.C. Power, Classification of limits of triangular matrix algebras, Proc. Edinburgh Math. Soc., to appear.

- [P1] S.C. Power, On ideals of nest subalgebras of C*-algebras, Proc. London Math. Soc., 50 (1985), 314-332.
- [P2] S.C. Power, The classification of triangular subalgebras of AF C*-algebras, Bull. London Math. Soc., 22 (1990), 269-272.

- [P3] S.C. Power, Algebraic orders on K_0 and approximately finite operator algebras, preprint 1989, to appear in J. Operator Th.
- [P4] S.C. Power, Limit Algebras: An Introduction to Subalgebras of C*-algebras, Pitman Research Notes in Mathematic Series, No. 278, Longman, 1992.
- [Po] Y.T. Poon, A complete isomorphism invariant for a class of triangular UHF algebras, preprint 1990.
- [V] B.A. Ventura, Strongly maximal triangular AF algebras, International J. Math., 2 (1991), 567-598.