Name: Snadha Kedia Date of Examination: 16 December, 2021 Time of Examination: 9:00 am to 1:00 pm Examination Roll no : 20234757053 Semester: III Unique Papie Code: 223401301 Title of laper: Design and Analysis of Algorithm Email-Id: 200083@cs.du.ac.in Mobile no. of student: 200083 acs. du. ac. in 9899519848 dustion no : No of pages: 4 Name of the program: MCA Name of the Department: DVCS

5 (b)
$$f(n) = \int n^4 \quad 0 < n < 2000$$
 $\int n^{\log 8} \quad n > 2000$

$$g(n) = \int_{-\infty}^{\infty} \frac{n^5 \log n}{n^5 1000}$$

$$\int \int dx \quad 0 < n < 1000 \\
 \int (n) = n^4 \\
 \int (n) = n^5 \log n \\
 \vdots \quad n^4 < n^5 \log n \\
 \vdots \quad f(n) = 0 (g(n))$$

$$\int \int d^{2} x \int d^{2} x d^{2}$$

So, we sall see, for
$$\propto n < 1000$$
,
$$f(n) = O(g(n))$$
but ultimately after $n_0 = 1000$ and $c = 1$

$$g(n) = O(f(n))$$

$$f(n) = O(g(n)) \text{ is false}.$$

insurtion sort is a best choice over small inputs that is almost sorted. It doesn't take any intra space (internal sorting) and can have time complisity $O(n^2)$ in worst case since, sorted array is the best case of insurtion sort which takes O(n) time with O(1) space.

But another best case for insurtion sort is a array with all same elements

But another best case for insertion sort is a array with all same elements

(g-[1,1,1,...]

in this case, the algo will never go in second which loop and the time complexity will be o(n)

as arr [i] is ele tele in any case so it does not go in inner loop.

(a) let us start with werten D.

from D, werten A, C, E are commented

i. d(A) = 5

d(C) = 3

d(E) = 2

1 (P) - 0

d(E) is smallest in next node selected in E

from E, virtin C and B are connected.

d(E) + C(E,C) < 3

& + 1 < 3 false

: d(c)=3

 $d(E) + C(E,B) < \infty$ $2 + 3 < \infty$ $5 < \infty$... d(B) = 5

from c no outgoing edge is there.

it will remain as it is.

d(A) = 5 : nent vector is A from A, B, and C are connected C is already selected:

for B, d(A) + C(A,B) < 5 5+6 < 5

: nothing change

Nent verten is B, from B, no outgoing edge is there it will remain as it is.

start D, selected verten	A	B	CE
E	5	00	3 (2)
C	5	5	(3) (2)
A	(5)	5	(3) (2)
В	(3)	(3)	3 2
	6 6	3)	(3) (2)

		ruge 4	
	: shortest of from vertin	listance of verten A, B, C and E D is 5,5, 3 and 2.	
	if DC = -5 5 (A) Start	6 Start = 1	
	Selected Verten	A R C F	
	E A B	5 \(\infty \) (-5) \(2 \) 5 \(\infty \) (-5) \(2 \) (5) \(5 \) (-5) \(2 \) (6) \(5 \) (5) \(-5 \) (2)	
	Yes, it work As, there i the m any other	Red for DC=-5 also. 2 no outgoing edge from C ugature value is not affecting value of verten.	
ſ	brawback of or may not	not be true always. Dijkstra's Algo is that it or work for negative edges.	ay

Date.