Higher category theory

Rune Haugseng January 26, 2024

Abstract

Invited contribution to the *Encyclopedia of Mathematical Physics*. We give an introduction to the homotopical theory of higher categories, focused on motivating the definitions of the basic objects, namely ∞ -categories and (∞, n) -categories.

Contents

Ι	What are higher categories?		3
	I.I	An informal description of <i>n</i> -categories	3
	I . 2	Some examples	4
	I.3	Strict and weak <i>n</i> -categories	6
	I.4	Homotopy types and fundamental <i>n</i> -groupoids	10
	1.5	The Homotopy Hypothesis	12
	1.6	Further reading	14
2	∞-categories		15
	2. I	\mathcal{O}	15
	2.2	Simplicial sets and simplicial categories	17
	2.3	Quasicategories	2 I
	2.4	Segal spaces	25
	2.5	Further reading	29
3	(∞, n) -categories		
	3.I	(∞, n) -categories as enriched ∞ -categories	30
	3.2	(∞, n) -categories as Θ_n -spaces	32
	3.3	(∞, n) -categories as n -fold Segal spaces	34
	3.4	Further reading	39

I What are higher categories?

Higher categories have recently become an important tool in several areas of mathematics. In this article we give a brief introduction to the modern, homotopical theory of higher categories, focusing on describing the basic objects of interest and explaining how they are defined. In this section we start by giving a first idea of what a higher category should be in §1.1 and informally describing some examples in §1.2. We then explain why it is non-trivial to give a useful definition of higher categories in §1.3. In §1.5 we introduce the homotopical approach to higher categories by discussing Grothendieck's Homotopy Hypothesis, after giving some topological background in §1.4.

1.1 An informal description of *n*-categories

The basic idea of a higher category is that it should be a structure that has, in addition to the objects and morphisms of an ordinary category, additional layers of "higher" morphisms. Thus an *n-category* is a structure where we have:

- ► objects¹ (•),
- ▶ morphisms (or 1-morphisms) between objects ($\bullet \to \bullet$),
- ▶ 2-morphisms between morphisms (with the same source and target), which we can depict as:

▶ 3-morphisms between 2-morphisms, which we can depict as:

► 4-morphisms between 3-morphisms, which we can depict as:

- **▶** ...,
- ▶ n-morphisms between (n-1)-morphisms.

¹It is sometimes convenient to think of objects as 0-morphisms.

We should be able to compose *i*-morphisms for all $0 < i \le n$, and an *i*-morphism should have an identity (i+1)-morphism for $0 \le i < n$. In particular, a 0-category is just a set and a 1-category is an ordinary category.

An *i*-morphism in an *n*-category has a unique source and target *j*-morphism for j = 0, 1, ..., i - 1, and we should in fact be able to compose two *i*-morphisms whose source and target *j*-morphisms agree for each choice of j — for example, we can combine 2-morphisms both vertically and horizontally:

These compositions must be compatible, so that there is for instance a unique way to compose a diagram of 1- and 2-morphisms such as

$$\bullet \xrightarrow{\psi} \bullet \longrightarrow \bullet \xrightarrow{\psi} \bullet \xrightarrow{\psi} \bullet$$

to a single 2-morphism.

Slightly more precisely, if \mathscr{C} is an *n*-category, then for any pair of objects x, y we have an (n-1)-category $\mathscr{C}(x,y)$ whose objects are morphisms from x to y, with morphisms being 2-morphisms among these, etc., and we can think of composition (with compatible source and target objects) as giving us functors of (n-1)-categories

$$\mathscr{C}(x,y) \times \mathscr{C}(y,z) \longrightarrow \mathscr{C}(x,z);$$

vertical composition of 2-morphisms is then the composition of 1-morphisms in these (n-1)-categories, and so forth.

1.2 Some examples

At first glance, the idea of an n-category might seem just as innocuous for general n as it is in the case n = 1, but it is in fact not so easy to give a good definition. Before we explain why, let us informally describe some structures that ought to give examples of n-categories:²

Example 1.2.1. The prototypical example of a category is the category of sets. In the same way, the prototypical example of a 2-category is the 2-category of categories. This has (small) categories as objects, functors as 1-morphisms, and natural transformations as 2-morphisms. More generally, we expect to have an (n+

²We revisit these examples in Remark 3.3.11 at the end of our discussion of (∞, n) -categories, and we postpone references to actual definitions until then.

1)-category of *n*-categories: Recall that a natural transformation between functors from C to D can be defined as a functor $C \times C_1 \to D$, where C_1 is the "universal morphism". Similarly, an *i*-morphism between *n*-categories should be a functor $C \times C_i \to D$ where C_i is the "universal *i*-morphism"; informally, C_i has two objects 0, 1 with

$$C_i(s,t) = \begin{cases} \{id_s\}, & s = t, \\ \emptyset, & s = 1, t = 0, \\ C_{i-1}, & s = 0, t = 1, \end{cases}$$

so that we have

$$C_0 = \bullet$$
, $C_1 = \bullet \longrightarrow \bullet$, $C_2 = \bullet \bigcirc \bullet$,

etc.

Example 1.2.2. Let R be a commutative ring. Then we can define the *Morita* 2-category Mor(R) of R. This has associative R-algebras as objects, a 1-morphism from A to B is an A-B-bimodule, and the 2-morphisms are bimodule homomorphisms. The composite of an A-B-bimodule M and a B-C-bimodule N is the relative tensor product $M \otimes_B N$.

Example 1.2.3. Let C be a category with pullbacks. Then we should have a *span* n-category $\operatorname{Span}_n(C)$ of C: This has the objects of C as its objects, but its morphisms from x to y are spans (or correspondences), that is diagrams

$$x \longleftarrow z \longrightarrow y$$

in C; we compose two spans by taking pullbacks, so that in the following diagram the composite of the two red spans is the outer blue span:

Next, the 2-morphisms in $\mathsf{Span}_n(\mathsf{C})$ are "spans of spans", that is diagrams of the form

Composition is again by taking pullbacks, and we keep considering iterated spans to define the *i*-morphisms; we can also say that the mapping (n-1)-category $\operatorname{Span}_n(\mathsf{C})(x,y)$ is $\operatorname{Span}_n(\mathsf{C}_{/x,y})$, where $\mathsf{C}_{/x,y}$ denotes the category of objects of C equipped with morphisms to both x and y.

Example 1.2.4. If M and N are two closed k-manifolds, a cobordism between M and N is a compact (k+1)-manifold with boundary X together with a diffeomorphism $\partial X \cong M \coprod N$. We can define the cobordism category $\mathsf{Cob}_{k,k+1}$ whose objects are closed (k-1)-manifolds and whose morphisms are k-dimensional cobordisms; composition is given by gluing cobordisms along their common boundary component. By considering manifolds with corners of higher codimensions we can extend this to define an n-category $\mathsf{Cob}_{k,k+n}$ where the 2-morphisms are (k+2)-dimensional manifolds whose boundary decomposes appropriately into two (k+1)-dimensional cobordisms between the same closed k-manifolds. In particular, there is an n-category $\mathsf{Cob}_{0,n}$ whose i-morphisms are i-dimensional cobordisms with corners. (One can also consider variants where all the manifolds involved are equipped with compatible additional structures, such as orientations.)

Remark 1.2.5. Although we do not have space to discuss applications of higher categories in physics in this article, we should at least mention that most of the examples we have just outlined are in fact highly relevant to mathematical physics: The cobordism n-category $Cob_{0,n}$ is central to the mathematical formalization of (extended) topological quantum field theories (TQFTs), and the Morita 2-category and its higher-dimensional cousins are relevant as targets for certain interesting TQFTs (in particular those defined by factorization homology); on the other hand, higher categories of spans are relevant when describing the structure of classical field theories. In fact, TQFTs were one of the main early motivations for the development of higher category theory. We refer to other articles in this volume for detailed discussion of these topics.

1.3 Strict and weak *n*-categories

We now want to explain why it is not so easy to give a "correct" definition of n-categories. To start, we note that an important feature of n-categories is that we get, by induction, an increasingly refined notion of when two objects in an n-category are "the same", and more generally of when an i-morphism is "invertible":

- ▶ In a set, two objects x, y are the same if they are equal: x = y
- ▶ In a category \mathscr{C} , two objects x, y are the same if they are *isomorphic*: there are morphisms $f: x \to y$, $g: y \to x$ such that $gf = \mathrm{id}_y$ in the set $\mathscr{C}(y, y)$ and $fg = \mathrm{id}_x$ in the set $\mathscr{C}(x, x)$; in this case we also say that f (and g) are *invertible* morphisms or *isomorphisms* in \mathscr{C} .

- In a 2-category \mathscr{C} , two objects x, y are the same if they are *equivalent*: there are morphisms $f: x \to y$, $g: y \to x$ such that gf is *isomorphic* to id_y in the category $\mathscr{C}(y, y)$ and fg is isomorphic to id_x in the category $\mathscr{C}(x, x)$; here we also say that f (and g) are *invertible* morphisms or *equivalences* in \mathscr{C} . We also define the invertible 2-morphisms to be those that are isomorphisms in the mapping categories $\mathscr{C}(x, y)$.
- In an *n*-category \mathscr{C} , two objects x, y are the same if they are *equivalent*: there are morphisms $f: x \to y$, $g: y \to x$ such that gf is *equivalent* to id_y in the (n-1)-category $\mathscr{C}(y,y)$ and fg is equivalent to id_x in the (n-1)-category $\mathscr{C}(x,x)$; here we again say that f (and g) are *invertible* morphisms or *equivalences* in \mathscr{C} . We also say that the invertible i-morphisms for i > 1 are those that give invertible (i-1)-morphisms in the mapping (n-1)-categories $\mathscr{C}(x,y)$.

In category theory, a key insight is that we should never ask for two objects of a category to be equal, only that they are isomorphic under a specified isomorphism. For example, the right notion of two functors being "the same" is that they are *naturally isomorphic*, not equal, and therefore the right notion of two categories C and D being "the same" is not that they are isomorphic, but that there exist functors $F\colon C\to D$ and $G\colon D\to C$ with natural isomorphisms $GF\cong \mathrm{id}_C$, $FG\cong \mathrm{id}_{uD}$. It is reasonable to expect the analogous principle to apply for n-categories: we should never ask for two objects of an n-category to be equal, or even isomorphic, but only *equivalent* in the sense we just discussed.

If we accept this principle, we can appreciate the key difficulty in defining n-categories "correctly": At first it may seem perfectly reasonable to demand that the composition of i-morphisms should be strictly associative, i.e. there should be associativity identities

$$f(gh) = (fg)h$$

for all composable *i*-morphisms; this gives the notion of *strict n*-categories.⁴ However, here we are asking for two objects in an (n-i)-category to be *equal* rather than equivalent — our principle tells us that we should instead supply an invertible (i+1)-morphism $f(gh) \rightarrow (fg)h$ (the "associator"). Now using these, there are

³Note that this is precisely the definition of C and D being equivalent in the 2-category of categories, functors, and natural transformations.

⁴These are also easy to define inductively, for example a strict n-category is precisely a category enriched in strict (n-1)-categories; see §3.1.

two ways to relate the different orders in which we may compose 4 i-morphisms:

To get a good notion of assocativity, these two composites $f(g(hk)) \to ((fg)h)k$ should be "the same", which means they ought to be related by a (specified) invertible (i+2)-morphism; using these we can in turn formulate a coherence condition for composites of 5 morphisms in terms of an invertible (i+3)-morphism, and so on for ever f(i) (or at least until we reach the f(i)-morphisms). This is the idea of weak f(i)-categories. Since this coherence data quickly becomes intractable to write out explicitly, we might think that the strict definition is the better one. Unfortunately, almost all interesting examples of f(i)-categories fail to be strict — this is true even in the simplest possible case:

Example 1.3.1. A 2-category \mathscr{C} with a single object * amounts to the data of a category $C = \mathscr{C}(*,*)$, equipped with a functor $- \otimes -: C \times C \to C$ (composition of endomorphisms of *) and an object $\mathbb{1} \in C$ (the identity morphism of *). We can ask for the "multiplication" \otimes to be strictly associative and unital, but such structures are exceedingly rare — in practice, the useful notion of a tensor product on a category is that of a *monoidal structure*, where we instead ask for *natural isomorphisms*

$$X \otimes (Y \otimes Z) \cong (X \otimes Y) \otimes Z,$$

 $\mathbb{1} \otimes X \cong X \cong X \otimes \mathbb{1},$

which must further satisfy certain coherence conditions; in particular, for the associativity isomorphisms the two compositions in the pentagon (I) must be equal for any quadruple tensor product.

More generally, almost all of the examples we mentioned earlier can only be defined as weak n-categories.⁶ For n = 2, it turns out that any weak 2-category is equivalent to a strict one⁷, so when working with 2-categories we can in a sense

⁵The shapes of the coherence diagrams for compositions of increasing length are precisely the so-called *associahedra*, which are a family of polyhedra first introduced by Stasheff [Sta63] to describe multiplications on topological spaces that are associative up to a coherent choice of higher homotopies.

⁶The only exception is that there is a strict (n + 1)-category of strict n-categories.

⁷The earliest explicit reference I have found for this result is [MLP85], but the authors there say it is a special case of [Bén68, Théorème 5.2.4]

"get away with" the strict theory, but this is false for $n \ge 3$. To get a theory of n-categories that encompasses the examples we are interested in, we therefore have no choice but to consider the weak version.

For n=2, it is not too hard to write out an explicit definition of a weak 2-category, and there is an extensive literature on both strict and weak 2-categories (often called *bicategories*); both were originally defined by Bénabou, in [Bén65] and [Bén67], respectively. There is also some work on weak 3-categories (or *tricategories*), with the first definition due to Gordon, Power and Street [GPS95], but the coherence data for composition in an n-category quickly becomes impossible to write out explicitly. However, it is possible to give systematic descriptions of the coherence data and thus obtain definitions of weak n-categories for general n. Various definitions of this type¹⁰ were the focus of work on higher categories in the 1990s and early 2000s; this includes in particular the definitions of Baez and Dolan [BD98], Batanin [Bat98], and Leinster [Lei04a], which were perhaps the most prominent.¹¹

Such definitions have turned out to be difficult to work with in practice, however, and often do not lend themselves easily to defining interesting examples of higher categories. A key insight for work on higher categories over the last two decades has been that instead of a "bottom-up" approach, where we try to combinatorially define n-categories for increasing n, it is much easier to start by defining $(\infty, 1)$ -categories and then use them to define more general higher categories. To explain what these objects are, we first need the following terminology:

Definition 1.3.2. Among the *n*-categories, we can single out those where all *i*-morphisms are invertible for i > k; these are called (n, k)-categories. In the extreme cases we recover all *n*-categories as (n, n)-categories, while for k = 0 we get those *n*-categories where all *i*-morphisms are invertible for all $i \le n$; these are also called *n*-groupoids¹².

Informally, we can imagine a version of higher categories where we keep going for ever and add *i*-morphisms for all *i* instead of stopping at some fixed n; such objects are called ω -categories or (∞, ∞) -categories. If we assume that the *i*-morphisms

⁸See [GPS95, §8.5] — there it is shown that weak 3-categories with one object and one 1-morphism are precisely braided monoidal categories [JS93]. On the other hand, the Eckmann–Hilton argument shows that a strict 3-category with one object and one 1-morphism is a strict symmetric monoidal category, which is a far more restrictive structure.

⁹The unconvinced reader may peruse Trimble's explicit definition of a weak 4-category [Trio6] ¹⁰The first definition of weak *n*-categories for arbitrary *n*, which was proposed by Street in [Str87], has a somewhat different flavour; see Remark 3.3.12.

¹¹All three of these definitions make use of various types of generalized *operads* to describe the coherence data. Operads are objects that describe different types of algebraic structures; they were first introduced by May [May72] and Boardman–Vogt [BV73] to describe multiplications on topological spaces that are homotopy-coherently commutative.

¹²Recall that a *groupoid* is a category where all morphisms are isomorphisms.

are in fact all invertible¹³ for i > k, we get the notion of (∞, k) -categories. For k = 0 these are also called ∞ -groupoids and for k = 1 we will call them ∞ -categories (following [Luro9a] and most of the subsequent literature).

Warning 1.3.3. In older literature, the term ∞ -category is also sometimes used for what we have called (∞, ∞) - or ω -categories. To avoid confusion it might therefore be preferable to only use the term " $(\infty, 1)$ -category", but this quickly gets rather cumbersome when these are the main objects being discussed.

At first it sounds rather counterintuitive that $(\infty, 1)$ -categories should be easier to define than n-categories for finite n. The reason for this is that there is an alternative approach to higher categories built on homotopy theory. Historically, homotopy theory began as the study of properties of topological spaces that are invariant under (weak) homotopy equivalence. The connection to higher categories arises through Grothendieck's *Homotopy Hypothesis*, which asserts that the homotopy-invariant information contained in a topological space is completely captured by an associated family of higher groupoids; we will discuss this in more detail in §1.5.

Turning this idea on its head then leads to a homotopical approach to higher categories: We can take the homotopical definition of ∞ -groupoids as a starting point for defining ∞ -categories, and then develop other types of higher categories far more easily within the setting of ∞ -categories. A key advantage of this approach is that it allows us to avoid working combinatorially with coherence data for associativity, as it is in a sense "hidden away" in the homotopy theory of spaces. We will discuss this in more detail in $\S 2$, where we consider homotopical definitions of ∞ -categories, and in $\S 3$, where we discuss how (∞, n) -categories for n > 1 can be defined within the setting of ∞ -categories.

Remark 1.3.4. Although strict n-categories do not suffice for the purposes we are interested in here, they do have interesting connections to rewriting algorithms in computer science; see for instance the book $[ABG^{+}24]$ for an introduction to this topic. Strict ω -categories also admit rather surprising algebraic descriptions, including that of Steiner [Steo4] in terms of chain complexes.

1.4 Homotopy types and fundamental *n*-groupoids

Before we can describe the Homotopy Hypothesis, we first need to recall some ideas from algebraic topology.

Definition 1.4.1. If X and Y are topological spaces and $f, g: X \to Y$ are continuous maps, a *homotopy* from f to g is a continuous map $h: X \times I \to Y$ (where I denotes

¹³Although our discussion here is very informal, to avoid confusion let us mention that there are problems with defining what it means for a morphism in an ω -category to be "invertible" in the bottom-up perspective we have so far considered; see Remark 3.1.2.

the closed interval [0, 1]) that restricts to f and g when the second coordinate is 0 and 1, respectively; a homotopy is thus a continuously varying family of maps $h_t = h(-, t)$ interpolating between $f = h_0$ and $g = h_1$. We say that the maps f and g are homotopic if there exists a homotopy between them; this is an equivalence relation on the set of continuous maps from X to Y.

Variant 1.4.2. We can similarly consider pointed versions of these notions: A pointed topological space is a pair (X, x) consisting of a topological space X and a base point $x \in X$; a continuous map between pointed spaces is called pointed if it preserves the given base points. For pointed continuous maps $f, g: (X, x) \to (Y, y)$ we say that a homotopy $h: X \times I \to Y$ is pointed if h takes all of $\{x\} \times I$ to the base point $g: (X, X) \to (X, Y)$ (so each of the maps $g: (X, X) \to (Y, Y)$). This is again an equivalence relation on the set of pointed continuous maps.

Definition 1.4.3. For a pointed topological space (X, x) we define the nth $homotopy\ group\ \pi_n(X, x)$ to be the set of equivalence classes of pointed continuous maps $(S^n, *) \to (X, x)$ under pointed homotopies (where S^n is the n-dimensional sphere with some base point *). Then $\pi_1(X, x)$ is the fundamental group of loops under concatenation, while for n > 1 the set $\pi_n(X, x)$ has a natural abelian group structure. We also write $\pi_0(X)$ for the set of path components of X.

Definition 1.4.4. Let X be a topological space. The fundamental groups of X (which depend on a choice of base point) can be combined into the so-called *fundamental groupoid* $\pi_{\leq 1}X$ of X. This category has the points of X as its objects, and a morphism from p to q is given by a homotopy class of paths in X from p to q; composition is given by concatenating paths. The fundamental groupoid is indeed a groupoid since traversing a path in the opposite direction gives its inverse.

From the space X we should also be able to extract an important family of higher groupoids, namely its fundamental n-groupoid $\pi_{\leq n}(X)$ for any $n \geq 0$, which also incorporates information about all the higher homotopy groups $\pi_i(X, x)$ in dimensions $i \leq n$. The n-groupoid $\pi_{\leq n}(X)$ should be an n-category where

- \blacktriangleright the objects are the points of X,
- ▶ the morphisms are paths in X, i.e. continuous maps $I \to X$
- ▶ the 2-morphisms are homotopies between paths, i.e. continuous maps¹⁴ $I^{\times 2} \rightarrow X$
- ▶ the 3-morphisms are homotopies between homotopies, and so on up to *n*-morphisms being equivalence classes of *n*-dimensional homotopies in X (i.e. continuous maps $I^{\times n} \to X$ satisfying certain constancy conditions).

¹⁴More precisely, we should impose a constancy condition on the components of $I \times \{0, 1\}$ so that the source and target are points in X.

Here we can also imagine that we keep going forever (and never take homotopy classes) to obtain the fundamental ∞ -groupoid $\pi_{\leq \infty}(X)$.

The homotopy hypothesis characterizes the information about X that should be contained in its fundamental n-groupoid $\pi_{\leq n}(X)$. To state this, we need some further terminology:

- A continuous map $f: X \to Y$ is a homotopy equivalence if there exists a continuous map $g: Y \to X$ and homotopies between gf and id_X and between fg and id_Y .
- ► More generally, the map f is a *weak homotopy equivalence* if it induces an isomorpism $\pi_0(X) \xrightarrow{\sim} \pi_0(Y)$ and isomorphisms $\pi_n(X,x) \to \pi_n(Y,f(x))$ for all $n \ge 1$ and $x \in X$.
- ▶ We say that two spaces have the same *homotopy type* if they are in the same equivalence class under weak homotopy equivalence.

Note that (by a theorem of Whitehead) a weak homotopy equivalence between CW-complexes is actually a homotopy equivalence, so to describe homotopy types we can either work with general topological spaces and weak homotopy equivalences, or with nice spaces and homotopy equivalences. All the invariants of algebraic topology are only sensitive to the homotopy type of a topological space.

Definition 1.4.5. A topological space X is an n-type if its homotopy groups $\pi_k(X, x)$ vanish for k > n for all $x \in X$.

For a topological space X we can construct an n-type (as a homotopy type) by "killing" the homotopy groups above level n; this n-type $\tau_{\leq n}X$ then admits a map $X \to \tau_{\leq n}X$ that induces isomorphisms on homotopy groups in degree $\leq n$.

1.5 The Homotopy Hypothesis

For small values of n, classical results in algebraic topology show that there is a close relationship between n-groupoids and n-types:

- ► A topological space is a 0-type precisely when it is weakly homotopy equivalent to a set with the discrete topology. Thus we can identify 0-types with sets, i.e. 0-groupoids.
- ▶ Given a group G, the Eilenberg–MacLane space [EM45] (or classifying space) BG is, up to weak homotopy equivalence, the unique connected space with $\pi_1(BG) \cong G$ and $\pi_n(BG) = 0$ for n > 1. Moreover, this construction gives an equivalence of categories between groups and pointed connected 1-types (with homotopy classes of maps). Since groupoids and general 1-types are disjoint unions of groups and connected 1-types, respectively, this correspondence extends to an equivalence between the (2, 1)-categories of 1-types and groupoids.

▶ MacLane and Whitehead [MW50] showed that connected 2-types can be described algebraically by *crossed modules*, which are also equivalent to strict 2-groupoids with a single object [BS76]. By taking disjoint unions, this again extends to an equivalence between 2-types and (strict) 2-groupoids.

In his unpublished manuscript *Pursuing stacks* [Gro22], Grothendieck conjectured that this relationship should extend to arbitrary values of *n*:

Conjecture 1.5.1 (Grothendieck's Homotopy Hypothesis). There is an equivalence between n-groupoids and n-types, such that the fundamental n-groupoid $\pi_{\leq n}X$ corresponds to the n-type of the space X. Moreover, if we let n go to infinity, there is an equivalence between (arbitrary) homotopy types and ∞ -groupoids, such that the homotopy type of X corresponds to the fundamental ∞ -groupoid $\pi_{\leq \infty}X$.

Remark 1.5.2. More recently, it has also been shown that 3-types are equivalent to weak 3-groupoids; see [Ber99] for a proof, though the result is originally due to the unpublished thesis of O. Leroy. This equivalence also gives a concrete explanation for why strict 3-groupoids are not sufficient to describe 3-types: the strict 3-groupoids only model those 3-types that split as a product of a 2-type and an Eilenberg-MacLane space K(G,3) [Ber99, Corollary 3.4]; for instance, the 3-type of the 2-dimensional sphere does not correspond to a strict 3-groupoid.¹⁵

Grothendieck originally formulated the Homotopy Hypothesis as a conjecture about a hypothetical definition of ∞ -groupoids. The basic idea of the homotopical approach to higher categories is to instead turn this relation on its head: we use homotopy types as a *definition* of ∞ -groupoids, and then build more complex notions of higher categories on top of them. This leads to a theory of higher categories where we can avoid working with the complicated coherence data we mentioned earlier: instead of making explicit choices of compositions (which we then have to specify coherence data for), we can instead merely assume that the space of possible composites is contractible, and similarly for iterated compositions. This approach to higher categories turns out to be much easier to work with in practice, both for developing the general theory and for defining and working with specific examples of higher categories.

Remark 1.5.3. A classical result that partially illustrates our claim that a topological space "hides" the complex algebraic structure of an ∞-groupoid is the recognition principle for iterated loop spaces of May [May72] and Boardman–Vogt [BV73]: This says that there is an equivalence (of homotopy theories) between pointed

¹⁵Simpson [Sim98] has proved that there is also no way to realize all 3-types by strict 3-groupoids in a more general sense. In a sense the insufficiency of strict 3-groupoids also goes back to work of Brown and Higgins [BH81]: they show that strict ∞-groupoids are equivalent to the algebraic structure of *crossed complexes*, which are known not to model all *n*-types for n > 2.

¹⁶We will see some ways of making this more precise below in §2.

(n-1)-connected spaces (meaning X such that $\pi_i X = 0$ for i < n) and E_n -algebras in topological spaces, which is a homotopy-coherent multiplicative structure with k-ary operations indexed by the configuration space of k points in \mathbb{R}^n . The E_n -algebra corresponding to a space X is given by its n-fold loop space $\Omega^n X$ (or equivalently the space of pointed maps from S^n to X). In fact, we can identify this E_n -algebra as precisely the structure arising from composition operations on the space of automorphisms of an identity (n-1)-morphism in X when we view it as an ∞ -groupoid.

To give a more concrete idea of how we may use the Homotopy Hypothesis to define higher categories, we might hope that, just as any weak 2-category is equivalent to a strict one, we can get away with one level of strict associativity also here. As a first guess, we can then simply take *topological categories* as a model of ∞ -categories. Here by a topological category C we mean a category *enriched* in topological spaces, so that C has a set of objects, and for all objects x, y a topological space C(x, y) of morphisms, such that the composition maps

$$C(x,y) \times C(y,z) \longrightarrow C(x,z)$$

are continuous. If we consider topological categories up to an appropriate notion of weak equivalence¹⁷, this does in fact turn out to be a correct way to define ∞ -categories, though it has some important drawbacks (and it certainly doesn't extend to a definition of (∞, n) -categories for n > 1).

In the next section we will discuss some better-behaved definitions of ∞ -categories, and also attempt to explain why ∞ -categories are the correct language for working with mathematical objects up to some notion of "equivalence" that is weaker than isomorphism.

1.6 Further reading

A good complement to the present article is Antolín Camarena's survey [AC16], which introduces higher categories, and especially $(\infty, 1)$ -categories, from a similar viewpoint to ours, but with more focus on their applications.

Baez's paper [Bae97] gives a more extensive introduction to the informal idea of an *n*-category than we gave here. Cheng and Lauda's text [CL04] is a very readable introduction to several of the early approaches to *n*-categories, while Leinster's article [Lei02] gives a brisk survey of about 10 such definitions; his book [Lei04b] gives a detailed description of generalized operads and their use in defining higher categories. For a detailed discussion of equivalences in and among higher categories, see the article [OR23] of Ozornova and Rovelli.

The first chapters of Simpson's book [Sim12] give a good introduction to the homotopy hypothesis and the need for weak n-groupoids. The lecture notes [BS10]

¹⁷Cf. Definition 2.2.7.

by Baez and Shulman on *n*-categories and cohomology also give a nice introduction to connections between topology, algebra, and higher categories in low dimensions.

See Lack's paper [Lac10] for an introductory survey of 2-categories and Johnson and Yau's book [JY21] for a textbook treatment. The reader not intimidated by the idea of weak 3-categories can consult the book [Gur13] by Gurski.

For more on the connection between higher categories and TQFTs, good starting points are the original article [BD95] of Baez and Dolan and Freed's expository article [Fre13]. See also [BL11] for an interesting historical discussion of connections between physics and higher category theory by Baez and Lauda.

2 ∞-categories

In this section we give an introduction to the homotopical theory of ∞-categories.¹⁸ In recent years, this has become an important tool in many areas of mathematics, including algebraic topology, algebraic geometry, and representation theory, and more generally wherever "derived" or "homotopical" structures are employed. What these applications have in common is that we want to consider certain objects as equivalent in a weaker sense than just being isomorphic, and work with constructions that are invariant under this notion of equivalence; key examples include (weak) homotopy equivalences between topological spaces, quasi-isomorphisms between chain complexes, and equivalences of categories. Here we will first explain in §2.1 why ordinary categories are not sufficient in these situations. We will then describe the two main approaches to ∞-categories, namely quasicategories and Segal spaces, in §2.3 and §2.4, respectively, after reviewing simplicial sets in \S 2.2, where we also discuss simplicial categories as a first definition of ∞ -categories. Along the way, we will attempt to motivate why ∞-categories are a good language for working with structures "up to weak equivalence", by explaining how they arise as localizations of ordinary categories.

2.1 Localizations of categories

Let us start by taking a quick look at the classical notion of localizations of categories, which is a way of making weak equivalences into isomorphisms in an ordinary category. A *relative category* is a pair (C, W) consisting of a category C and a collection C of morphisms that we think of as "weak equivalences". Given this data, we can always formally invert C: there is a universal functor $C \to C[W^{-1}]$

 $^{^{18}}Recall$ that we always use this as an abbreviation for $(\infty,1)\text{-categories},$ rather than $(\infty,\infty)\text{-categories}.$

that takes the weak equivalences to isomorphisms.¹⁹

This construction gives, for example, the homotopy category of spaces if we take W to be the weak homotopy equivalences in the category of topological spaces (or the homotopy equivalences if we restrict the objects to be CW-complexes), and the derived category of a ring R if we take chain complexes of R-modules with quasi-isomorphisms.

An abstract definition of $C[W^{-1}]$ is as the pushout $C \coprod_W W_{gpd}$ where W is the subcategory of C containing the morphisms in W and W_{gpd} is the groupoid obtained by formally inverting all morphisms in W (i.e., $(-)_{gpd}$ is the left adjoint to the inclusion of groupoids in categories). One can also define it as a category where the objects are those of C and the morphisms from x to y are given by zig-zags

$$x \longleftarrow w \longrightarrow u \longleftarrow \cdots \longrightarrow y$$
,

where the backwards maps lie in W, quotiented by a certain equivalence relation; this construction is due to Gabriel and Zisman [GZ67].

Remark 2.1.1. In general we have very little control over a localization $C[W^{-1}]$, but in many examples we can equip C with additional structure that gives us more information about the localization. In particular, if we can equip C with a *model structure* [Qui67], meaning certain classes of maps called "fibrations" and "cofibrations" that interact appropriately with the weak equivalences, then we can describe the set of morphisms $Hom_{C[W^{-1}]}(x,y)$ as a quotient of the set $Hom_{C}(x',y')$ where x' and y' are "good" objects weakly equivalent to x and y, and we mod out by an appropriate notion of "homotopies". For example, we can describe the localization of topological spaces at weak homotopy equivalences as taking homotopy classes of maps between CW-complexes, or the derived category of a ring as taking chain homotopy classes of maps between complexes of projective modules.

Unfortunately, experience shows that these "homotopy categories" lose a lot of important information: there are many constructions we can make in C and prove are invariant under weak equivalences, but that we can't carry out just working in $C[W^{-1}]$.²⁰

Example 2.1.2. Colimits of topological spaces are not invariant under homotopy equivalence. For example, the n-dimensional sphere S^n can be described as a pushout $D^n \coprod_{S^{n-1}} D^n$ of two copies of the n-dimensional unit disc D^n (the two hemispheres of S^n) along its boundary S^{n-1} (the "equator"). Here D^n is contractible, but the pushout pt $\coprod_{S^{n-1}}$ pt is just a point, and so not homotopy equivalent to S^n .

¹⁹This means that a functor $C \to D$ factors (uniquely) through $C[W^{-1}]$ if and only if it takes the morphisms in W to isomorphisms in D.

²⁰In the case of derived categories and similar "linear" examples, we can however equip the homotopy category with the structure of a *triangulated category*, which retains a lot more of this information.

Here it seems reasonable to feel that S^n is in some sense the "homotopically correct" pushout (and this can be made precise as the *homotopy pushout* in the sense of model categories), but it is *not* a pushout in the homotopy category. In general, there exists a homotopy-invariant version of (co)limits of topological spaces (called *homotopy (co)limits*), which we cannot see if we only look at the homotopy category.

Instead of working in the homotopy category $C[W^{-1}]$, we can instead try to work in C, but only make constructions that are invariant under W. If we can add certain additional data to C, such as a model category structure, we have a useful toolkit for working with C in this way. However, if we want to consider objects of C with additional structure that should be invariant under weak equivalences, such as associative or commutative algebra structures, model category theory becomes increasingly delicate, and it is not of much help when we want to study interactions between several categories that each have a notion of weak equivalence. In these situations, it is usually much more pleasant to work in the setting of ∞ -categories.

2.2 Simplicial sets and simplicial categories

Instead of using topological spaces as ∞ -groupoids, the definitions of ∞ -categories we will consider instead use *simplicial sets*, which serve as a more "combinatorial" description of homotopy types of topological spaces. Here we will first recall the basic definitions of these objects and some related notions, and then briefly consider *simplicial categories* as a first approach to defining ∞ -categories.

Definition 2.2.1. The *simplex category* Δ is the category whose objects are the non-empty ordered sets $[n] := \{0 < 1 < \dots < n\}$, and whose morphisms are the order-preserving functions. We also introduce notation for some basic morphisms in Δ :

▶ The *i*th coface map d_i : $[n-1] \rightarrow [n]$ is the inclusion that omits $i \in [n]$, that is

$$d_i(t) = \begin{cases} t, & t < i, \\ t+1, & t \ge i. \end{cases}$$

▶ The *i*th codegeneracy map s_i : $[n+1] \rightarrow [n]$ is the surjective map that repeats the value i, that is

$$s_i(t) = \begin{cases} t, & t \le i, \\ t-1, & t > i. \end{cases}$$

Definition 2.2.2. A *simplicial set* is a functor $\Delta^{op} \to Set$; we write

$$\mathsf{Set}_\Delta := \mathsf{Fun}(\Delta^{op}, \mathsf{Set})$$

for the category of these. For a simplicial set X we write $X_n := X([n])$ and call its elements the n-simplices of X; we also write $d_i : X_n \to X_{n-1}$ and $s_i : X_n \to X_{n+1}$ for the face and degeneracy maps that are the images of the morphisms d_i and s_i in Δ . We denote by Δ^n the simplicial set represented by $[n] \in \Delta$, so that $(\Delta^n)_k = \text{Hom}_{\Delta}([k], [n])$; by the Yoneda lemma, for any simplicial set X we then have a natural isomorphism $X_n \cong \text{Hom}_{\text{Set}_{\Delta}}(\Delta^n, X)$ so we can think of an n-simplex as a map $\Delta^n \to X$.

Definition 2.2.3. We can define a functor $\Delta \to \mathsf{Top}$ that takes [n] to the *topological n-simplex*

 $|\Delta^n| := \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} : 0 \le x_i \le 1, \sum x_i = 1\},\$

with the subspace topology from \mathbb{R}^{n+1} , and a morphism $\phi: [n] \to [m]$ to the continuous map given by

 $|\phi|(\mathbf{x})_i = \sum_{j \in \phi^{-1}(i)} x_j.$

This extends canonically to a colimit-preserving functor

$$|-|: \mathsf{Set}_{\Delta} \longrightarrow \mathsf{Top},$$

the *geometric realization*. The geometric realization has a right adjoint Sing, the *singular simplicial set* functor, with

$$Sing(X)_n = Hom_{Top}(|\Delta^n|, X).$$

We can think of a simplicial set as a "blueprint" for building a topological space out of simplices through the geometric realization. This construction also allows us to import the notion of weak homotopy equivalences from topological spaces: A morphism of simplicial sets $X \to Y$ is a *weak equivalence* if the induced continuous map on geometric realizations $|X| \to |Y|$ is a (weak) homotopy equivalence. For any topological space X, the counit map $|\operatorname{Sing}(X)| \to X$ is a weak homotopy equivalence, so that any homotopy type can be modelled by a simplicial set. Furthermore, the adjunction |-| | Sing actually induces an equivalence of homotopy categories

$$\mathsf{Top}[W^{-1}] \simeq \mathsf{Set}_{\Delta}[W^{-1}],$$

where W denotes the weak homotopy equivalences in **Top** or the weak equivalences in **Set**_{Δ}, as appropriate.²¹

It is also possible to develop the homotopy theory of spaces entirely within simplicial sets, without making reference to topological spaces. In this theory, a special role is played by the simplicial sets called *Kan complexes*:

²¹In fact, these homotopy theories are equivalent in a much stronger sense: the adjunction is a *Quillen equivalence* of model categories, which in particular means that they describe the same ∞ -category after the ∞ -categorical localization we will discuss below.

Definition 2.2.4. For $0 \le i \le n$, the simplicial set Λ_i^n (the *i*th *horn* of Δ^n) is the subobject of Δ^n obtained by removing the interior and the (n-1)-dimensional face that does not contain the *i*th vertex. A simplicial set X is a K an C any map $\Lambda_i^n \to X$, we can find a (not necessarily unique) C simplex of C that extends it. In other words, there exists some map that fills in the diagram

The Kan complexes are the most "space-like" objects in simplicial sets. In particular, the singular simplicial set of any topological space is a Kan complex, and for any simplicial set X we can find a weakly equivalent Kan complex — for example, the adjunction unit $X \to \operatorname{Sing}(|X|)$ is always a weak equivalence. For a Kan complex we can, for instance, define its homotopy groups without referring to topological spaces, and we think of the Kan complexes as providing an alternative model for ∞ -groupoids.

We can now turn to simplicial categories:

Definition 2.2.5. A *simplicial category* is a category enriched in simplicial sets. In other words, a simplicial category C consists of a set of objects, and for each pair of objects $x, y \in C$ a simplicial set C(x, y) of morphisms, together with identities $id_x \in C(x, x)_0$ and composition maps

$$C(x,y) \times C(y,z) \longrightarrow C(x,z)$$

that are strictly associative and unital; we write Cat_{Δ} for the category of simplicial categories. We define the *homotopy category hC* of a simplicial category C to be the ordinary category obtained by taking path-components of the simplicial sets of maps. That is,

$$h\mathsf{C}(x,y) = \pi_0(\mathsf{C}(x,y)),$$

where for a simplical set X, the set $\pi_0 X$ is the quotient of X_0 by the relation²² of "being the end points of an edge in X_1 "

Remark 2.2.6. We can fully faithfully embed sets in simplicial sets as the constant presheaves on Δ . Similarly, we can view categories as those simplicial categories where the simplicial sets of maps are all constant.

Given that Kan complexes can be thought of as ∞-groupoids, we should expect that simplicial categories provide a model for ∞-categories; at least this should be true for the simplicial categories whose Hom's are Kan complexes, which we call *fibrant*. In order to view simplicial categories as ∞-categories we need to consider them up to a natural notion of weak equivalences, however:

 $^{^{22}}$ If X is a Kan complex, then this is an equivalence relation.

Definition 2.2.7. We say a functor of simplicial categories $f: C \to D$ is a weak (or Dwyer-Kan) equivalence if

- (I) f is weakly fully faithful, i.e. for $x, y \in C$ the map $C(x, y) \to D(fx, fy)$ is a weak equivalence of simplicial sets,
- (2) f is essentially surjective up to homotopy, i.e. the induced functor of ordinary categories $hC \rightarrow hD$ is essentially surjective.

Any simplicial category is then weakly equivalent to one that is fibrant.

Let us consider some examples:

Example 2.2.8. We can enhance Set_Δ to a simplicial category by taking the simplicial set of maps from X to Y to be the *internal Hom* Y^X in Set_Δ ; this is the simplicial set $\mathsf{Hom}_{\mathsf{Set}_\Delta}(X \times \Delta^\bullet, Y)$. Let Kan denote the full simplicial subcategory of this where the objects are Kan complexes; this is a fibrant simplicial category, since the internal Hom to a Kan complex is again a Kan complex — we can think of Kan as an incarnation of the ∞ -category of ∞ -groupoids.

Example 2.2.9. Similarly, if C is a *simplicial model category*, meaning a model category that admits a compatible tensoring with simplicial sets, then we can enhance C to a simplicial category C_{Δ} : for objects $X, Y \in C$ the simplicial set of maps in C_{Δ} is $Hom_C(X \otimes \Delta^{\bullet}, Y)$. Restricting to "nice" (to be precise, fibrant and cofibrant) objects, we get a fibrant simplicial category C_{Δ}^{cf} . This turns out to be an incarnation of the ∞ -category obtained from C by inverting the weak equivalences (in a sense we will make more precise below).

Example 2.2.10. Dwyer and Kan [DK80a, DK80b] showed that for any relative category (C, W), the localization $C[W^{-1}]$ is the homotopy category of a simplicial category L_WC , defined by one of several weakly equivalent constructions; thought of as an ∞ -category this is again the ∞ -categorical localization of C at the weak equivalences.²³ If C is a simplicial model category, then L_WC (which is not fibrant) is weakly equivalent to the simplicial category C_Δ^{cf} from the previous example. For a general model category C we can still describe the simplicial sets of maps in L_WC as $Hom_C(X^{\bullet}, Y)$ using a more general kind of *cosimplicial replacement* X^{\bullet} of X. These comparisons are again due to Dwyer and Kan, in [DK80c].

If we are interested in developing a theory of ∞-categories, there are several disadvantages to working with simplicial categories. For example, it is hard to give any description of the correct mapping spaces between two simplicial categories, which means we can't define an ∞-category of ∞-categories. A related issue is

²³Making this precise as a universal property probably requires using a better notion of ∞ -categories than simplicial categories, but the paper [DK87] essentially proves a version of it.

that if we have a diagram $F: I \to C$ (where I is for simplicity an ordinary category) together with equivalences²⁴ $F(i) \xrightarrow{\sim} x_i$, then we can't necessarily find an equivalent diagram $I \to C$ that takes i to x_i . This was one of the motivations for introducing homotopy-coherent diagrams as a better-behaved notion of diagrams in a simplicial category (first defined by Boardman and Vogt [BV73] for diagrams of topological spaces). Roughly speaking, the idea of a homotopy-coherent diagram F of shape I in C is that we assign objects F(i) and morphisms $F(i) \to F(j)$ in C to objects F(i) and morphisms $F(i) \to F(i)$ in $F(i) \to F(i)$ in $F(i) \to F(i)$ and morphisms $F(i) \to F(i)$ in $F(i) \to F(i)$ and $F(i) \to F(i)$ and $F(i) \to F(i)$ in the simplicial set $F(i) \to F(i)$. Similarly, given four composable morphisms we want a pair of 2-simplices

relating (the images of) these edges, and so on for longer compositions. This data amounts to a functor of simplicial categories $I_{\rm coh} \to C$ from a "coherent" version of I; this idea can be made precise (see Remark 2.3.6), and one can define a simplicial set of homotopy-coherent diagrams of shape I in C that indeed gives the right homotopy type of diagrams. Cordier and Porter [CP97] developed analogues of many of the main concepts in category theory for homotopy-coherent diagrams, but the theory is rather cumbersome to work with — for example, it is not easy to define the composition of two homotopy-coherent diagrams in this language.

2.3 Quasicategories

We are now ready to introduce the first of the two main models of ∞ -categories in current use, namely *quasicategories*, which are a certain class of simplicial sets. To motivate the definition, let us see how to describe ordinary categories as simplicial sets:

Definition 2.3.1. Recall that any partially ordered set (S, \leq) can be regarded as a category: we take the set of objects to be S, and say that there is a (unique) morphism $x \to y$ precisely when $x \leq y$. Applying this to the ordered sets [n], we get a fully faithful embedding $\Delta \hookrightarrow \mathsf{Cat}$. This extends uniquely to a colimit-preserving functor $C \colon \mathsf{Set}_\Delta \to \mathsf{Cat}$ with a right adjoint $N \colon \mathsf{Cat} \to \mathsf{Set}_\Delta$, the *nerve*, given by

$$N(C)_n = Hom_{Cat}([n], C),$$

²⁴An equivalence in a simplicial category C can be defined as a map f such that composition with f gives weak equivalences on all simplicial sets of maps.

so that $N(C)_n$ is the set of composable strings of n morphisms in C (which we interpret to be simply objects for n = 0).

The nerve functor is in fact fully faithful, and we can characterize its essential image:

Proposition 2.3.2. A simplicial set X is isomorphic to the nerve of a category if and only if every inner horn $\Lambda_i^n \to X$ for 0 < i < n extends uniquely to an n-simplex, i.e. there is a unique way to fill in the diagram

$$\Lambda_i^n \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Delta^n.$$

Furthermore, X is isomorphic to the nerve of a groupoid if and only if there is a unique way to fill every horn $\Lambda_i^n \to X$ for $0 \le i \le n$.

Note that the definition of Kan complexes, which we expect to be a model for ∞ -groupoids, is obtained by dropping the uniqueness requirement in this characterization of nerves of groupoids. By analogy, we might guess that we should obtain a definition of ∞ -categories by similarly dropping the uniqueness in the characterization of categories:

Definition 2.3.3. A *quasicategory* is a simplicial set X such that every inner horn $\Lambda_i^n \to X$ can be extended to an n-simplex.

Remark 2.3.4. This class of simplicial sets was first considered by Boardman and Vogt [BV73], who called them *restricted Kan complexes*. They were first considered as a model of ∞-categories by Joyal.

Let us see how these objects relate to simplicial categories and homotopy-coherent diagrams:

Definition 2.3.5. Let $[n]_{coh}$ denote the simplicial category with objects $0, \ldots, n$ and

$$[n]_{\mathrm{coh}}(i,j) = \mathsf{NP}_{ij},$$

where P_{ij} is the partially ordered set of subsets of $\{i, i+1, \ldots, j\}$ that contain the end points; composition is induced by taking unions of subsets. This defines a functor $\Delta \to \mathsf{Cat}_\Delta$ that extends uniquely to a colimit preserving functor $\mathfrak{C} \colon \mathsf{Set}_\Delta \to \mathsf{Cat}_\Delta$. The functor \mathfrak{C} has a right adjoint $\mathfrak{N} \colon \mathsf{Cat}_\Delta \to \mathsf{Set}_\Delta$, given by $\mathfrak{N}(\mathsf{C})_n = \mathsf{Hom}_{\mathsf{Cat}_\Delta}([n]_{\mathsf{coh}},\mathsf{C})$; this is called the *coherent nerve*.

If C is a fibrant simplicial category, then $\mathfrak{N}C$ is a quasicategory, and the counit $\mathfrak{C}\mathfrak{N}C \to C$ is a weak equivalence of simplicial categories. In fact, the adjunction $\mathfrak{C} \dashv \mathfrak{N}$ induces an equivalence between the homotopy theories of simplicial categories and quasicategories.

Remark 2.3.6. A homotopy-coherent diagram of shape I in C, in the sense we described informally in the previous subsection, can be defined as a functor $\mathfrak{C}NI \to C$ — that is, the simplicial category $\mathfrak{C}NI$ is precisely the "coherent replacement" of I we mentioned there. Using the adjunction $\mathfrak{C} \dashv \mathfrak{N}$, we now see that a homotopy-coherent diagram of shape I in C is the same thing as a map of simplicial sets $NI \to \mathfrak{N}C$, i.e. a diagram of shape I in the quasicategory $\mathfrak{N}C$. Thus quasicategories are a setting where the basic notion of diagram is already a homotopy-coherent one.

This "built-in" homotopy-coherence suggests that quasicategories should be a very well-behaved description of ∞ -categories, which is in indeed the case. For example, it is also easy to define the correct quasicategory of functors between two quasicategories X and Y: this can be defined simply as the internal Hom in simplicial sets, i.e. Fun(X, Y) $_{\bullet}$ = Hom_{Set $_{\Delta}$}($X \times \Delta^{\bullet}, Y$), which is again a quasicategory. From this we can easily define a version of the ∞ -category of (small) ∞ -categories, which we could not do using simplicial categories:

- ▶ Any quasicategory & contains a maximal Kan complex & (corresponding to the ∞-groupoid of equivalences in an ∞-category).
- ► We define QCat to be the (fibrant) simplicial category whose objects are (small) quasicategories, with the simplicial set of maps from & to D given by Fun(&, D)~.25
- ▶ We define the quasicategory Cat_{∞} of (small) ∞ -categories to be $\mathfrak{N}(QCat)$.

Similarly, we can define a quasicategory **Spc** of spaces or ∞ -groupoids as $\mathfrak{N}(Kan)$.

The ∞ -categorical analogues of many constructions and theorems in category theory can be worked out in the setting of quasicategories; this theory was first developed by Joyal [Joyo8] and extended by Lurie [Luro9a] as well as many other authors since. We do not have space to go into any details, but we mention a few definitions to give some idea of the flavour of the theory²⁶:

▶ If \mathscr{C} is a quasicategory, we can define the mapping space $\mathscr{C}(x,y)$ for objects $x,y \in \mathscr{C}_0$ as the pullback

$$\mathscr{C}(x,y) \longrightarrow \operatorname{Fun}(\Delta^{1},\mathscr{C})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{(x,y)\} \longrightarrow \mathscr{C} \times \mathscr{C}.$$

(This is indeed a Kan complex.)

²⁶See for instance [Luro9a, §1.2] for a longer survey of basic notions.

²⁵If we instead use the full simplicial set Fun($\mathscr{C}, \mathfrak{D}$) we obtain a simplicial category where the maps form quasicategories, which models the $(\infty, 2)$ -category of ∞ -categories.

- We say that an object x in \mathcal{C}_0 is terminal if the mapping space $\mathcal{C}(x,y)$ is contractible for all $y \in \mathcal{C}_0$. We can define a Kan complex of terminal objects in \mathcal{C} and prove this is always either empty or contractible that is, if a terminal object exists then it is *unique* in the only way that makes sense if we are not allowed to distinguish between weakly equivalent Kan complexes.
- ▶ Given a functor (i.e. just a morphism of simplicial sets) $p: K \to \mathcal{C}$, we can define a quasicategory of *cones* over p as the pullback

$$\begin{array}{cccc} \mathsf{Cone}(p) & \longrightarrow & \mathsf{Fun}(K \times \Delta^1, \mathscr{C}) \\ & & \downarrow & & \downarrow \\ \mathscr{C} \times \{p\} & \longrightarrow & \mathsf{Fun}(K, \mathscr{C}) \times \mathsf{Fun}(K, \mathscr{C}), \end{array}$$

where we use the constant diagram functor $\mathscr{C} \to \operatorname{Fun}(K,\mathscr{C})$ (adjunct to the projection $\mathscr{C} \times K \to \mathscr{C}$).

▶ A *limit* of p is a terminal object in Cone(p); if the limit exists, it is unique up to a contractible space of choices.

Remark 2.3.7. If the ∞ -category $\mathscr C$ is obtained as the localization of a model category C, then the ∞ -categorical notion of limit in $\mathscr C$ agrees with the model-categorical notion of homotopy limit in C.

Remark 2.3.8. In the setting of quasicategories, we can also make precise the universal property that an ∞ -categorical localization should satisfy: a functor $L: \mathscr{C} \to \mathscr{C}'$ exhibits \mathscr{C}' as the localization of \mathscr{C} at a collection of morphisms W if and only if for every quasicategory \mathscr{D} , the functor $Fun(\mathscr{C}', \mathscr{D}) \to Fun(\mathscr{C}, \mathscr{D})$ is fully faithful²⁸, with image those functors $\mathscr{C} \to \mathscr{D}$ that take the morphisms in W to equivalences. We can show that, if we replace the simplicial localization $L_W C$ of Dwyer–Kan by a weakly equivalent fibrant simplicial category L, then the resulting functor $NC \to \mathfrak{N}L$ is indeed an ∞ -categorical localization in this sense.

Remark 2.3.9. In general, the theory of ∞ -categories (or quasicategories) works a lot like the familiar theory of categories — once one has some familiarity with ∞ -categories, it is indeed often easy to guess what the ∞ -categorical analogue of a definition or theorem from category theory should be. Working out the proofs can be rather more of a challenge, however! A key difference between ∞ -categories and ordinary categories is that we can't just "write down" ∞ -categories and functors between them — instead, we need to figure out from general principles why

²⁷This is not hard to see given the fact that the ∞ -category of diagrams Fun(K, \mathscr{C}) is obtained as a localization of Fun(K, C), but this is itself highly non-trivial; the proof is one of the main topics of Cisinski's book [Cisi9].

²⁸A functor of quasicategories $F: \mathcal{X} \to \mathcal{Y}$ is fully faithful if the induced maps of mapping spaces $\mathcal{X}(x,y) \to \mathcal{Y}(Fx,Fy)$ are all weak equivalences.

certain objects or functors should exist. For this, the description of functors to Spc and Cat_{∞} in terms of various kinds of *fibrations* of ∞ -categories becomes crucial; see [BS18] and [MG19] for introductions to this important topic, which we do not have space to go into here.

2.4 Segal spaces

We now consider another important description of ∞-categories, namely as *complete Segal spaces*, due to Rezk [Rezoɪ]. The starting point is an alternative characterization of nerves of categories:

Proposition 2.4.1. A simplicial set X is isomorphic to the nerve of a category if for every n, the maps $X_n \to X_1, X_0$ induced by the inclusions $\{i-1, i\} \hookrightarrow [n]$ and $\{i\} \hookrightarrow [n]$, exhibit X_n as an iterated fibre product. In other words, the induced map

$$X_n \longrightarrow X_1 \times_{X_0} \cdots \times_{X_0} X_1$$

is an isomorphism.

The analogue of a diagram of sets in ∞ -category theory is a diagram of ∞ -groupoids. If we model these as simplicial sets and replace ordinary limits by homotopy limits, we get the following definition:

Definition 2.4.2 (Rezk, [RezoI]). A *Segal space* is a functor $X: \Delta^{\operatorname{op}} \to \operatorname{Set}_{\Delta}$ such that for every n, the maps $X_n \to X_1, X_0$ induced by the inclusions $\{i-1, i\} \hookrightarrow [n]$ and $\{i\} \hookrightarrow [n]$, exhibit X_n as an iterated *homotopy* fibre product. In other words, the induced map

$$X_n \longrightarrow X_1 \times_{X_0}^h \cdots \times_{X_0}^h X_1$$

is a weak equivalence.

An advantage of this definition is that it also makes sense *internally*: if we assume we have already set up a theory of ∞ -categories (for instance using quasicategories), we can instead consider Segal spaces as diagrams in the ∞ -category of ∞ -groupoids:

Definition 2.4.3. A *Segal space* is a functor $X: \Delta^{\text{op}} \to \text{Spc}$ such that for every n, the maps $X_n \to X_1, X_0$ induced by the inclusions $\{i-1, i\} \hookrightarrow [n]$ and $\{i\} \hookrightarrow [n]$, exhibit X_n as an iterated fibre product. In other words, the induced map

$$X_n \longrightarrow X_1 \times_{X_0} \cdots \times_{X_0} X_1$$

is an equivalence of ∞ -groupoids. We write $Seg_{\Delta^{op}}(Spc)$ for the full subcategory of $Fun(\Delta^{op}, Spc)$ spanned by the Segal spaces.

Remark 2.4.4. This definition is "model-independent", in that it does not make any reference to a particular model of ∞ -categories (such as quasicategories or model categories), but is instead formulated internally to the ∞ -category of ∞ -categories. If we accept the idea that ∞ -categories give a good language for working with objects up to weak notions of equivalence, we ought to apply this idea to ∞ -categories themselves, which is what working with ∞ -categories model-independently amounts to. In practice, this typically results in much cleaner statements and proofs than if we think of ∞ -categories as quasicategories, for instance, though one must take care that the constructions one uses are ultimately supported by the basic ones implemented in a model.

The data of a Segal space *X* models exactly the algebraic structure we expect from a category:

▶ X_0 is the space of objects and X_1 is the space of morphisms, with $d_1, d_0: X_1 \to X_0$ indicating the source and target of each morphism. Given objects, that is points $x, y \in X_0$, we can thus define the space of morphisms from x to y as the fibre

$$X(x,y) \longrightarrow X_1$$

$$\downarrow \qquad \qquad \downarrow$$

$$\{(x,y)\} \longrightarrow X_0 \times X_0.$$

- ▶ The degeneracy map $s_0: X_0 \to X_1$ gives an identity morphism for each object.
- ► The equivalence $X_2 \simeq X_1 \times_{X_0} X_1$ identifies X_2 as the space of composable pairs of morphisms

$$x \xrightarrow{f} y \xrightarrow{g} z;$$

their composition is given the inner face map $d_1: X_2 \to X_1$.

▶ In general X_n can be described as the space of strings of n composable morphisms. The image of the commutative square

$$\begin{bmatrix}
3
\end{bmatrix}
\leftarrow \begin{bmatrix}
d_1 \\
d_2
\end{bmatrix}
\qquad \uparrow d_1 \\
\begin{bmatrix}
2
\end{bmatrix}
\leftarrow \begin{bmatrix}
d_1
\end{bmatrix}$$

in Spc gives a homotopy between the two ways of composing 3 maps in two steps, so the composition is associative up to a specified homotopy.

► The remaining data in the simplicial diagram then shows that the composition is homotopy-coherently associative and unital.

Just as for ordinary categories, the right notion of equivalence between Segal spaces is given by fully faithful and essentially surjective maps, which we can define as follows:

Definition 2.4.5. A morphism $F: X \to Y$ of Segal spaces (i.e. a natural transformation $\Delta^{op} \times [1] \to Spc$) is *fully faithful* if the commutative square

$$\begin{array}{ccc} X_1 & \longrightarrow & Y_1 \\ \downarrow & & \downarrow \\ X_0 \times X_0 & \longrightarrow & Y_0 \times Y_0 \end{array}$$

is a pullback.29

Definition 2.4.6. Informally, an *equivalence* in a Segal space X is a morphism that has an inverse under composition. More formally, an equivalence can be defined as a map to X from the quotient

$$J := \Delta^3 \coprod_{\Delta^1 \coprod \Delta^1} (\Delta^0 \coprod \Delta^0),$$

of Δ^3 where we identify the composite edges $0 \to 2$ and $1 \to 3$ with points — such a map to X amounts to a diagram of the shape

specifying a map f together with a left inverse l and a right inverse r; given $f: \Delta^1 \to X$, one can show that the space of extensions to J is either empty or contractible.

Definition 2.4.7. Let X be a Segal space. Two objects in X are equivalent if they are connected by an equivalence; this defines an equivalence relation \sim on $\pi_0 X_0$. We say a morphism of Segal spaces $F: X \to Y$ is essentially surjective if every object of Y is equivalent to one in the image of X — in other words, if the induced map

$$\pi_0 X_0 / \sim \longrightarrow \pi_0 Y_0 / \sim$$

is surjective.

To obtain the correct ∞ -category of ∞ -categories, we should invert the fully faithful and essentially surjective morphisms in $Seg_{\Lambda^{op}}(Spc)$. An advantage of the Segal space description is that we can accomplish this localization simply by passing to a full subcategory:

This is equivalent to all the maps on fibres being equivalences, which is to say that the induced maps $X(x,y) \to Y(Fx,Fy)$ should be equivalences, as expected.

Definition 2.4.8. Let X be a Segal space. We define X_1^{\sim} to be the subspace of X_1 consisting of equivalences. Since identities are always equivalences, the degeneracy map $X_0 \to X_1$ factors through a map $X_0 \to X_1^{\sim}$. We say that X is *complete* if this map is an equivalence, and write $\mathsf{CSeg}_{\Delta^{\mathrm{op}}}(\mathsf{Spc})$ for the full subcategory of $\mathsf{Seg}_{\Delta^{\mathrm{op}}}(\mathsf{Spc})$ spanned by the complete Segal spaces.

Thus X is complete when its 0th space is the "correct" space of objects and equivalences between them in X.

Theorem 2.4.9 (Rezk [RezoI]). The inclusion $CSeg_{\Delta^{op}}(Spc) \hookrightarrow Seg_{\Delta^{op}}(Spc)$ has a left adjoint, which exhibits $CSeg_{\Delta^{op}}(Spc)$ as the localization at the fully faithful and essentially surjective morphisms.

Theorem 2.4.10 (Joyal–Tierney [JT07]). There is an equivalence of ∞ -categories

$$\mathsf{CSeg}_{\Lambda^{\mathrm{op}}}(\mathsf{Spc}) \simeq \mathsf{Cat}_{\infty}$$

between the ∞ -category of complete Segal spaces and the ∞ -category Cat_∞ modelled by the fibrant simplicial category QCat of quasicategories.

Remark 2.4.11. Toën [Toëo5] has given axioms for the ∞-category of ∞-categories that characterize it uniquely (up to contractible choice as always when working with ∞-categories, and also up to the automorphism given by taking opposite categories).

Remark 2.4.12. While quasicategories and complete Segal spaces are the two most useful descriptions of ∞-categories, there are several other models that are worth mentioning briefly:

- ➤ Segal categories can be described as the Segal spaces X such that X₀ is a set. They were first considered as a model of higher categories by Tamsamani [Tam99], but today this model is perhaps mostly of historical interest; see Simpson's book [Sim12] for an extensive treatment of the theory.
- ► As a variant of simplicial categories, we can consider *internal* categories in simplicial sets. (Unlike an enriched category, which has a set of objects, an internal category has a simplicial set of objects.) Horel [Hor15] has shown that internal categories in Set_Δ give a model for ∞-categories.
- The idea of *derivators*, which goes back to Grothendieck [Gro22, Gro91] and Heller [Hel88], is that while the homotopy category of a relative category (C, W) does not capture much of the homotopy-invariant information from C, if we remember the homotopy categories of Fun(I, C) for all small categories I and the functors relating them we can capture a lot more in fact, we can recover the entire ∞-category from this data (see for instance [Reno9, FKKR19]).

 $^{{}^{30}\}mathrm{This}$ space can be shown to be equivalent to the space of maps $J\to X.$

- ▶ Barwick and Kan [BK12] have shown that the relationship between ∞-categories and localizations of ordinary categories is very close: one can in fact think of relative categories as a model of ∞-categories.
- ▶ An analogue of quasicategories where the simplex category Δ is replaced by a category of cubes has been developed by Doherty, Kapulkin, Lindsey, and Sattler [DKLS22].

2.5 Further reading

For readers previously unacquainted with simplicial sets we recommend Friedman's introductory article [Fri12]; a standard reference for the homotopy theory of simplicial sets is the book [GJ99] by Goerss and Jardine. Classic introductions to model categories include the article [DS95] by Dwyer and Spaliński and the book by Hovey [Hov99]. Riehl's article [Rie22] is a more recent introduction that focuses on the connection between model categories and higher categories; see also her article [Rie23] for further discussion of homotopy-coherent diagrams.

Groth's article [Gro20] is a short introductory survey of quasicategories. For longer introductions we recommend the books by Land [Lan21] and Cisinski [Cis19], and the lecture notes by Rezk [Rez21] and Hinich [Hin18]. The book by Riehl and Verity [RV22] develops many aspects of the theory of ∞-categories in terms of an axiomatization of the simplicial category of quasicategories (thought of as describing the (∞, 2)-category of ∞-categories) and its homotopy 2-category; see also their lecture notes [RV20] for an introduction to this approach. For more advanced topics the main source is still Lurie's book [Lur09a], but this will likely eventually be superseded by Lurie's online text in progress [Lur24], which already contains extensive discussions of many topics. The book [Ber18] by Bergner discusses the Quillen equivalences between quasicategories and several other models in detail.

Once the basic framework of ∞-categories is set up, one can develop homotopy-coherent versions of algebra and algebraic geometry in this setting. For more on this we suggest the introductory articles by Gepner [Gep20] and Rezk [Rez22]; Lurie's books [Luri7a, Luri7b] are the standard references for the full details.

(∞, n) -categories

In this section we discuss some approaches to defining (∞, n) -categories also for n > 1. We first explain how to view (∞, n) -categories (and (n, k)-categories in general) as *enriched* ∞ -categories in §3.1. Then we discuss two ways of extending the definition of Segal spaces to higher dimensions: Rezk's Θ_n -spaces in §3.2 and Barwick's n-fold Segal spaces in §3.3.

3.1 (∞, n) -categories as enriched ∞ -categories

Suppose $(V, \otimes, \mathbb{1})$ is a monoidal category, meaning that the category V is equipped with a tensor product $-\otimes -: V \times V \to V$ that is associative and unital with unit $\mathbb{1}$ up to natural isomorphism. Then a category C enriched in V has

- ► a set of objects,
- \blacktriangleright for each pair x, y of objects a morphism object C(x, y) in V,
- \blacktriangleright for each triple x, y, z of objects a composition map

$$C(x, y) \otimes C(y, z) \longrightarrow C(x, z),$$

▶ for each object x an "identity morphism" $\mathbb{1} \to C(x, x)$,

such that the composition is associative and unital.³¹

Many naturally occurring categories can be viewed as enriched categories — above we have already discussed both topological and simplicial categories, which are enriched in Top and Set_{Δ} with their cartesian products, while categories enriched in abelian groups or chain complexes (often called dg-categories) are ubiquitous in algebraic settings.

We can also view strict n-categories as enriched categories: if we start with sets as 0-categories, then a category enriched in **Set** is just an ordinary category, and we can inductively define strict n-categories to be categories enriched in strict (n-1)-categories.

This suggests that if we consider enrichment within the setting of ∞ -categories, where the only notions of monoidal and enriched structures that make sense are those that are fully homotopy-coherently associative, we can similarly use this machinery to define *weak* higher categories. Such enriched ∞ -categories were first defined by Gepner and the author in [GHI5]. We will not review the details of the definition³² here; instead, we content ourselves with noting how a number of higher-categorical structures can be defined in this framework:

▶ Viewing spaces as ∞-groupoids or $(\infty, 0)$ -categories, we can define (∞, n) -categories as ∞-categories enriched in $(\infty, n-1)$ -categories. (For n=1, we do indeed have that ∞-categories enriched in spaces are equivalent to ∞-categories, most naturally in the form of complete Segal spaces [GH15, $\S4.4$].)

³¹To make this definition completely precise, we must use the natural associativity and unitality isomorphisms for V.

 $^{^{32}}$ Roughly speaking, we can think of ordinary enriched categories as many-object versions of associative algebras (which can indeed be described as (pointed) enriched categories with a single object). Using the framework of *operads* we can in particular describe them as algebras for many-object versions of the operad for associative algebras. This definition extends natually to the ∞ -categorical setting, using Lurie's machinery of ∞ -operads [Luri7a].

- ▶ If we instead start with the category of sets, then the ∞-category of ∞-categories enriched in **Set** turns out to be the (2,1)-category of ordinary categories, functors, and natural isomorphisms. Iterating, we get an (n+1,1)-category of weak n-categories as that of ∞-categories enriched in weak n-categories.³³
- ▶ We can also inductively define (n,k)-categories for $k \le n$ as ∞-categories enriched in (n-1,k-1)-categories, where we define (n,0)-categories (or n-groupoids) as those (n,1)-categories where all morphisms are invertible. See [GHI5, \S 6.1] for more details; in particular, one can show that the "Homotopy Hypothesis" is satisfied for these objects: the resulting ∞-category of n-groupoids is equivalent to that of n-types.

Remark 3.1.1. It is often useful to extend the notion of n-type also to n = -2 and -1, by declaring that the point is the only -2-type and the -1-types are the point and the empty set. This is compatible with many results on n-types; for instance, it remains true that a space is an n-type if and only if all its loop spaces are (n-1)-types also for n = -1, 0. Viewing these n-types as n-groupoids or (n, 0)-categories also for n = -1, we can inductively extend the definition of (n, k)-categories as ∞ -categories enriched in (n-1, k-1)-categories to the case k = n+1.34 For instance, in a (0, 1)-category all the mapping spaces are either empty or contractible, so these are equivalent to partially ordered sets. See [BS10, 2 and 5] for more on this topic.

Remark 3.1.2. Having defined the ∞ -categories $\mathsf{Cat}_{(\infty,n)}$ of (∞,n) -categories, for example using enrichment, we also get a natural definition of (∞,∞) -categories: There are functors $\mathsf{Cat}_{(\infty,n)} \to \mathsf{Cat}_{(\infty,n-1)}$ that take an (∞,n) -category to its underlying $(\infty,n-1)$ -category (by forgetting the non-invertible n-morphisms), and we can define

$$Cat_{(\infty,\infty)} := \lim_{n \to \infty} Cat_{(\infty,n)}$$

as the limit along these functors. This means that an (∞, ∞) -category can be defined as a sequence $(\mathcal{C}_n)_{n\geq 0}$ where \mathcal{C}_n is an (∞, n) -category with \mathcal{C}_{n-1} as its underlying $(\infty, n-1)$ -category. We should note, however, that this notion of (∞, ∞) -categories differs from the "bottom-up" approach, where we define an (∞, ∞) -category as an algebraic structure with *i*-morphisms for all *i*, without defining (∞, n) -categories for finite *n* first. This is because there are problems with the concept of an *i*-morphism being invertible in the latter approach: we can only consider

 $^{^{33}}$ This notion of weak *n*-category is compared to the iterated Segal categories of Tamsamani and Simpson in [Hau15].

³⁴We can also allow k = n + 2, but for n > -2 this produces nothing new: in a (-1, 1)-category all mapping spaces are contractible, so it is either empty or equivalent to the point; these are both groupoids, so (-1, 1)-categories are the same thing as (-1)-groupoids. After enriching, we get in general that (n, n + 2)-categories are the same as (n, n + 1)-categories.

a *coinductive* notion of equivalences, where we "keep going forever" in the definition from §1.3. This notion may be appropriate in some contexts, but in general it has some very undesirable properties — for instance, it turns out that all *i*-morphisms in the cobordism (∞, ∞) -category are coinductive equivalences, so we cannot distinguish it from the ∞ -groupoid where we invert everything. In particular, this means that the cobordism (∞, n) -category is not the "underlying" (∞, n) -category of the cobordism (∞, ∞) -category in the coinductive setting. Goldthorpe [Gol23] has shown that both these versions of (∞, ∞) -categories have universal properties as fixed points for ∞ -categorical enrichment.

Remark 3.1.3. If V is a monoidal category with a compatible monoidal structure, then we can define a homotopy theory of V-categories, which under certain assumptions is again a model category. In [Hau15] it is shown that the corresponding ∞ -category is equivalent to that of ∞ -categories enriched in the ∞ -categorical localization of V.³⁵ For example, ∞ -categories enriched in chain complexes are equivalent to dg-categories after ∞ -categorical localization. Another approach to weak enrichment in chain complexes is that of A_∞ -categories, of particular importance in symplectic geometry; see for instance [Kelo1] for an introduction.

3.2 (∞, n) -categories as Θ_n -spaces

In this section we introduce a definition of (∞, n) -categories due to Rezk [Rezio], which generalizes Segal spaces to higher dimensions. These objects will again be defined as presheaves of ∞ -groupoids that take certain diagrams to limits, and our first task is to define the relevant indexing category:

Definition 3.2.1. For any category C, we define the *wreath product* $\Delta \in C$ as follows: The objects are of the form $[n](c_1, \ldots, c_n)$ for $c_i \in C$, and a morphism $[n](c_1, \ldots, c_n) \to [m](c'_1, \ldots, c'_n)$ consists of a morphism $\phi \colon [n] \to [m]$ in Δ and a morphism $\psi_{ij} \colon c_i \to c'_j$ for $\phi(i-1) < j \le \phi(j)$. We then inductively define the category Θ_n as $\Delta \in \Theta_{n-1}$, starting with $\Theta_0 = *$ (so $\Theta_1 = \Delta$).

Remark 3.2.2. The object $[m](X_1, ..., X_n)$ in Θ_n should be thought of as a strict n-category with objects 0, ..., n and with X_i as the (n-1)-category of maps from i-1 to i (and more generally with $X_i \times X_{i+1} \times \cdots \times X_j$ as the maps from i-1 to j). For example, the object [4]([3], [0], [1], [2]) in Θ_2 corresponds to the 2-category

$$\bullet \xrightarrow{\psi} \bullet \longrightarrow \bullet \xrightarrow{\psi} \bullet \xrightarrow{\psi} \bullet.$$

³⁵If V is symmetric monoidal, then there is an induced symmetric monoidal structure on V-categories, but this is generally *not* compatible enough with the model structure to iterate the process — thus this result does not contradict the difference between strict and weak 3-categories, for instance.

Interpreted in this way, Θ_n in fact defines a full subcategory of strict n-categories, whose objects are *free* n-categories in an appropriate sense (see [Bero7, Theorem 3.7]). We think of the objects of Θ_n as being all the basic diagram shapes built out of i-morphisms for $i \leq n$ that can be composed together in an n-category. For example, the free i-morphism C_i can be defined inductively in Θ_n as

$$C_0 := [0](), \qquad C_i := [1](C_{i-1}) \quad (i > 0).$$

Remark 3.2.3. The categories Θ_n were originally defined by Joyal [Joy97], who proposed a definition of higher categories using presheaves of sets on Θ_n . The inductive definition we have given is due to Berger [Ber07].

Now we can specify the "Segal conditions" we want for a presheaf on Θ_n :

Definition 3.2.4 (Rezk, [RezIo]). A Segal Θ_n -space is a functor $X \colon \Theta_n^{\text{op}} \to \operatorname{Spc}$ such that

- $ightharpoonup X([m](I_1,...,I_m)) \xrightarrow{\sim} X([1](I_1)) \times_{X(C_0)} \cdots \times_{X(C_0)} X([1](I_m)),$
- ► X([1](-)) is a Segal Θ_{n-1} -space.

We write $Seg_{\Theta_n^{op}}(Spc)$ for the full subcategory of $Fun(\Theta_n^{op}, Spc)$ spanned by the Segal Θ_n -spaces.

Remark 3.2.5. Here we think of $X(C_i)$ as the space of *i*-morphisms for $i \le 0 \le n$. Unwinding the definition, it then says that the value of X at some object $I \in \Theta_n$ is the space of composable diagrams of *i*-morphisms in X that fit together according to the shape I. For instance, for n = 2 we have

$$X\left(\bullet\longrightarrow\bullet\stackrel{\checkmark}{\longrightarrow}\bullet\right)=X([2]([0],[2]))\simeq X(C_1)\times_{X(C_0)}\left(X(C_2)\times_{X(C_1)}X(C_2)\right),$$

which is precisely the space consisting of a 1-morphism and two 2-morphisms that fit together in the prescribed way. The morphism $C_2 = [1]([1]) \rightarrow [2]([0], [2])$ given by $d_1 \colon [1] \rightarrow [2]$ and $(s_0 \colon [1] \rightarrow [0], d_1 \colon [1] \rightarrow [2])$ in $\Theta_1 = \Delta$ gives a composition map $X([2]([0], [2])) \rightarrow X(C_2)$. In general, the morphisms in Θ_n precisely encode the algebraic structure of an (∞, n) -category in terms of homotopy-coherently associative and unital compositions of i-morphisms.

Remark 3.2.6. As in the case n = 1, we need to invert a class of fully faithful and essentially surjective morphisms to obtain the correct ∞ -category of (∞, n) -categories. This can again be accomplished by restricting to a full subcategory of *complete* objects³⁶:

 $^{^{36}}$ This is proved using the comparison between Segal Θ_n -spaces and n-fold Segal we discuss below.

Definition 3.2.7. We say a Segal Θ_n -space X is *complete* if the following conditions hold:

- (i) The underlying Segal space of X, obtained by restricting along the fully faithful functor $\Delta \hookrightarrow \Theta_n$ that takes [n] to $[n](C_0, \ldots, C_0)$, is complete.
- (ii) The Segal Θ_{n-1} -space X([1](-)) is complete.

We write $\mathsf{CSeg}_{\Theta_n}(\mathsf{Spc})$ for the full subcategory of $\mathsf{Seg}_{\Theta_n}(\mathsf{Spc})$ spanned by the complete Segal Θ_n -spaces.

3.3 (∞, n) -categories as n-fold Segal spaces

In this section we will consider the description of (∞, n) -categories as n-fold complete Segal spaces, which are certain presheaves of spaces on Δ^n , first introduced by Barwick [Baros]. The starting point is the observation that in the definition of Segal spaces we did not use any special features of the ∞ -category of spaces:

Definition 3.3.1. Suppose $\mathscr C$ is an ∞ -category with finite limits. A *Segal* Δ -object (or *category object*) in $\mathscr C$ is a functor $X \colon \Delta^{\operatorname{op}} \to \mathscr C$ such that the Segal maps

$$X_n \longrightarrow X_1 \times_{X_0} \cdots \times_{X_0} X_1$$

are equivalences. We write $Seg_{\Delta^{op}}(\mathscr{C})$ for the full subcategory of $Fun(\Delta^{op},\mathscr{C})$ spanned by the Segal Δ -objects.

Remark 3.3.2. This defines an ∞ -categorical version of *internal categories*: If C is a category with finite limits, then an internal category X in C consists of:

- \blacktriangleright objects X_0, X_1 (thought of as the objects and morphisms, respectively),
- ▶ maps $s, t: X_1 \to X_0$ (assigning the source and target objects of the morphisms),
- ▶ a map $i: X_0 \to X_1$ such that si = id = ti (giving the identity morphisms of the objects),
- ▶ a map $c: X_1 \times_{X_0} X_1 \to X_1$, where the fibre product is over t and s in the two copies of X_1 , such that

$$sc = s \circ pr_1$$
, $tc = t \circ pr_2$, $c \circ (id \times_{X_0} i) = id = c \circ (i \times_{X_0} id)$

(giving the composites of composable pairs of morphisms),

▶ and such that we have a commutative square

representing the associativity of the composition.

Note that an internal category in Set is just an ordinary category.³⁷

Example 3.3.3. An internal category X in Cat is a *double category*: we think of the objects of X_0 as objects, the morphisms in X_0 as *vertical* morphisms, and the objects of X_1 as *horizontal* morphisms; the morphisms in X_1 we can then think of as *squares*:

with the top and bottom horizontal arrows representing the source and target objects in X_1 and the left and right vertical arrows the source and target morphisms in X_0 . We can compose these squares vertically (using the composition in X_1) and horizontally (using the composition functor $c: X_1 \times_{X_0} X_1 \to X_1$), and these compositions are compatible (since c is a functor).

We can iterate the internal category construction, and inductively define an n-uple category³⁸ as an internal category in (n-1)-uple categories (starting with sets as 0-uple categories). Then an n-uple category has objects, n different types of morphisms, $\binom{n}{2}$ different types of square-shaped 2-morphisms, and in general $\binom{n}{k}$ different types of k-morphisms in the form of k-dimensional cubes. We can also consider the analogous structures in the ∞ -categorical setting:

Definition 3.3.4. Suppose \mathscr{C} is an ∞ -category with finite limits. Then a $Segal \Delta^n$ -object (or n-uple category object) in \mathscr{C} is inductively defined to be a Segal Δ -object in the ∞ -category of Segal Δ^{n-1} -objects in \mathscr{C} . We write $Seg_{\Delta^{n,op}}(\mathscr{C})$ for the ∞ -category $Seg_{\Delta^{op}}(Seg_{\Delta^{n-1,op}}(\mathscr{C}))$ of Segal Δ^n -objects in \mathscr{C} ; this is a full subcategory of $Fun(\Delta^{n,op},\mathscr{C})$. We refer to Segal Δ^n -objects in the ∞ -category of spaces as $Segal \Delta^n$ -spaces (or n-uple Segal spaces).

³⁷An ordinary category is of course also a category *enriched* in **Set**, but in all other cases internal and enriched categories are very different!

 $^{^{38}}$ These are more commonly called *n-fold categories*, but to avoid confusion we reserve the word "*n*-fold" for *n*-fold Segal spaces.

Remark 3.3.5. Viewing Cat_{∞} as the ∞ -category of complete Segal spaces, we can think of the ∞ -category $Seg_{\Delta^{n-1}}(Cat)$ as a full subcategory of $Seg_{\Delta^n}(Spc)$. In practice, n-uple Segal spaces often arise as such Segal Δ^{n-1} - ∞ -categories (or n-uple ∞ -categories). Note, however, that it typically does not make sense to impose further completeness conditions, as the equivalences for the different types of morphisms are usually different.

To connect these structures to (∞, n) -categories, let us go back to the setting of ordinary double categories, and observe that we can identify strict 2-categories as the double categories where the only vertical morphisms are identities (or in other words, the double categories X where X_0 is a set); in effect, we think of the 2-morphisms as squares of the form

In the same way, we can identify strict n-categories as the n-uple categories where all but one type of i-morphism is trivial for each i. The idea of n-fold Segal spaces is to similarly identify (∞, n) -categories as n-uple Segal spaces satisfying certain constancy conditions:

Definition 3.3.6 (Barwick, [Baro5]). We inductively define the *n-fold Segal spaces* to be the Segal Δ^n -spaces $X: \Delta^{n, op} \to \operatorname{Spc}$ such that

- (i) $X_0: \Delta^{n-1,\text{op}} \to \text{Spc}$ is constant,
- (ii) $X_1: \Delta^{n-1,\text{op}} \to \text{Spc}$ is an (n-1)-fold Segal space.

If n = 1, any Segal space is a 1-fold Segal space. We write $Seg_{(n)}(Spc)$ for the full subcategory of $Seg_{\Lambda^{n,op}}(Spc)$ spanned by the n-fold Segal spaces.

Just as in the case n=1, we need to invert a class of "fully faithful and essentially surjective" morphisms to get the correct ∞ -category of (∞, n) -categories, and we can do this by restricting to a full subcategory of complete objects³⁹:

Definition 3.3.7. A morphism $X \to Y$ of *n*-fold Segal spaces is *fully faithful and essentially surjective* if

(i) $X_{\bullet,0,...,0} \to Y_{\bullet,0,...,0}$ is a fully faithful and essentially surjective morphism of Segal spaces in the sense of Definitions 2.4.5 and 2.4.7,

³⁹This localization follows from the inductive presentation of complete n-fold Segal spaces in [Luro9b].

(ii) $X_1 \rightarrow Y_1$ is a fully faithful and essentially surjective morphism of (n-1)-fold Segal spaces.

Definition 3.3.8. We say that an n-fold Segal space X is *complete* if

- (i) $X_{\bullet,0,\dots,0} : \Delta^{op} \to Spc$ is a complete Segal space in the sense of Definition 2.4.8,
- (ii) $X_1: \Delta^{n-1,\text{op}} \to \mathsf{Spc}$ is a complete (n-1)-fold Segal space.

We write $\mathsf{CSeg}_{(n)}(\mathsf{Spc})$ for the full subcategory of $\mathsf{Seg}_{(n)}(\mathsf{Spc})$ spanned by the complete n-fold Segal spaces.

Remark 3.3.9. The ∞ -category $\mathsf{CSeg}_{(n)}(\mathsf{Spc})$ is equivalent to the ∞ -category $\mathsf{Cat}_{(\infty,n)}$ defined by iterated enrichment; this is shown in [Hau15, $\S 7$].

Remark 3.3.10. For any category C we can define a functor from $\Delta \times C$ to the wreath product $\Delta \wr C$ of Definition 3.2.1 by taking ([n], I) to [n](I, ..., I); iterating this definition gives a functor $\tau_n \colon \Delta^n \to \Theta_n$. Composition with this functor restricts to equivalences

$$\tau_n^* \colon \mathsf{Seg}_{\Theta_n}(\mathsf{Spc}) \overset{\sim}{\longrightarrow} \mathsf{Seg}_{(n)}(\mathsf{Spc}), \qquad \tau_n^* \colon \mathsf{CSeg}_{\Theta_n}(\mathsf{Spc}) \overset{\sim}{\longrightarrow} \mathsf{CSeg}_{(n)}(\mathsf{Spc}).$$

This was first proved by Barwick and Schommer-Pries [BSP21]; other proofs have also been given by Bergner and Rezk [BR20] and the author [Hau18a].

Remark 3.3.11. We revisit the examples of *n*-categories we sketched in $\S 1.2$ and give some references for their (∞, n) -categorical versions:

- ▶ Example 1.2.1 generalizes to the $(\infty, n + 1)$ -category of (small) (∞, n) -categories; this is perhaps most naturally viewed as the self-enrichment of $Cat_{(\infty,n)}$ that follows from this being a cartesian closed ∞ -category. Such enrichments are obtained by a somewhat ad hoc construction in [GHI5, \S 7]; Hinich gives a more natural construction in [Hin20].
- ▶ The Morita 2-categories of algebras and bimodules from Example 1.2.2 can be extended to higher dimensions as Morita (∞ , n+1)-categories of E_n -algebras and iterated bimodules. See [Hau17] for an algebraic construction and Scheimbauer's thesis [Sch14] for a more geometric version defined using factorization algebras.
- ▶ The higher categories of spans from Example 1.2.3, and more generally (∞, n) -categories of iterated spans in an ∞ -category with finite limits, are defined in [Hau18b].
- ▶ The cobordism n-category of Example 1.2.4 naturally extends to an (∞, n) -category that includes diffeomorphisms, smooth homotopies, and so on as invertible i-morphisms for i > n. Such cobordism (∞, n) -categories are constructed in [CS19].

Remark 3.3.12. Let us briefly mention a few other models of (∞, n) -categories that we do not have space to discuss in detail:

A stratified simplicial set is a simplicial set equipped with a collection of "marked" n-simplices for each n>0, which must include the degenerate ones. erity [Vero8b] has proposed a definition of (∞,∞) -categories as stratified simplicial sets that satisfy a collection of lifting properties, called *complicial sets*. ⁴⁰ The basic idea, which goes back to work of Street [Str87] is that we think of 0- and 1-simplices of a simplicial set X as objects and morphisms, just as for quasicategories, but the 2-simplices should now be 2-categorical diagrams of the form

the 3-simplices should be tetrahedra whose faces have such 2-morphisms and which contain a 3-morphism, and so forth. The marked n-simplices then pick out those diagrams of this type where the n-morphism is invertible.⁴¹ If we assume further that all k-simplices are marked for k > n, then these n-trivial complicial sets should be a model for (∞, n) -categories. For n = 1, the 1-trivial complicial sets are just quasicategories marked by their equivalences. The comparison is also known for n = 2 by results of Lurie [Luro9b] and Gagna, Harpaz, and Lanari [GHL22], but is still open for n > 2.

- ► Campion, Kapulkin and Maehara [CKM20] have defined an analogue of complicial sets using cubical sets, which is compared to Verity's simplicial version in [DKM23].
- ▶ One can consider analogues of quasicategories in presheaves of *sets* on Θ_n ; this definition has been worked out by Ara [Ara14], who shows that it gives a model equivalent to Rezk's Segal Θ_n -spaces.
- ▶ Barwick and Schommer-Pries [BSP21] show that (∞, n) -categories can be viewed as presheaves of spaces on *gaunt n-categories*, which are the strict *n*-categories without any non-trivial invertible *i*-morphisms for all *i*.
- ▶ Barwick and Kan [BK13] show that (∞, n) -categories can be modelled by nrelative categories, which are defined to be certain categories equipped with n+1wide subcategories.

⁴⁰Or rather *weak* complicial sets in Verity's paper, with complicial sets originally referring to the stratified simplicial sets that describe strict (∞, ∞) -categories [Vero8a].

⁴¹The fact that the invertible *n*-morphisms must be specified in this way is closely related to the difficulty of defining invertible morphisms in an (∞, ∞) -category that we discussed in Remark 3.1.2; indeed, this data is in a sense superfluous if we only consider the complicial sets that describe (∞, n) -categories for some finite n.

Remark 3.3.13. An important topic of current research is lax transformations, lax functors, and Gray tensor products. For $(\infty, 2)$ -categories these notions can be defined both via 2-fold Segal spaces (viewed as fibrations over Δ^{op}), as in [GR17], and via scaled simplicial sets (i.e. 2-trivial complicial sets), as in [GHL21]; these two versions have recently been compared by Abellán [Abe23]. Many open questions remain, however, in particular regarding the equivalence of different versions of Gray tensor products and lax transformations for (∞, n) -categories, (including for n = 2, but especially for n > 2); see for instance [JFS17, ORV23, Cam23].

3.4 Further reading

Bergner's survey [Ber20] discusses several models of (∞, n) -categories from a model-categorical perspective, while Riehl's lecture notes [Rie18] give an introduction to Verity's complicial sets. The appendix of the book of Gaitsgory and Rozenblyum [GR17] discusses many constructions and results for $(\infty, 2)$ -categories, and has motivated a lot of recent work on the subject.

The theory of (∞, n) -categories is still under active development, and so far not too many expository texts have appeared; unlike in the previous sections we will therefore also point the reader to a few interesting research papers:

- ▶ Barwick and Schommer-Pries [BSP21] give axioms that uniquely characterize the ∞ -category of (∞, n) -categories (up to the automorphisms given by reversing *i*-morphisms).
- ▶ Nuiten [Nui23] proves a straightening theorem for fibrations of (∞, n) -categories.
- ▶ Important work on enriched ∞-categories includes the papers of Hinich [Hin20] on the Yoneda lemma and of Heine [Hei23] on enrichment from (weak) module structures.

Acknowledgments

I thank Joachim Kock for helpful comments on a draft of this article.

References

- [Abe23] Fernando Abellán, Comparing lax functors of (∞,2)-categories (2023), available at arXiv:2311.12746.
- [ACI6] Omar Antolín Camarena, *A whirlwind tour of the world of* (∞,1)-categories, Mexican mathematicians abroad: recent contributions, Contemp. Math., vol. 657, Amer. Math. Soc., Providence, RI, 2016, pp. 15–61, DOI 10.1090/conm/657/13088, available at arXiv:1303.4669. MR3466443

- [Ara14] Dimitri Ara, *Higher quasi-categories vs higher Rezk spaces*, J. K-Theory 14 (2014), no. 3, 701–749, DOI 10.1017/S1865243315000021. MR3350089
- [ABG⁺24] Dimitri Ara, Albert Burroni, Yves Guiraud, Philippe Malbos, François Métayer, and Samuel Mimram, *Polygraphs: From Rewriting to Higher Categories* (2024). Available from https://webusers.imj-prg.fr/~yves.guiraud/articles/polybook.pdf.
 - [Bae97] John C. Baez, *An introduction to n-categories*, Category theory and computer science (Santa Margherita Ligure, 1997), Lecture Notes in Comput. Sci., vol. 1290, Springer, Berlin, 1997, pp. 1–33, DOI 10.1007/BFb0026978. MR1640335
 - [BD95] John C. Baez and James Dolan, Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995), no. 11, 6073–6105, DOI 10.1063/1.531236. MR1355899
 - [BD98] _____, Higher-dimensional algebra. III. n-categories and the algebra of opetopes, Adv. Math. 135 (1998), no. 2, 145–206, DOI 10.1006/aima.1997.1695. MR1620826
 - [BLII] John C. Baez and Aaron D. Lauda, *A prehistory of n-categorical physics*, Deep beauty, Cambridge Univ. Press, Cambridge, 2011, pp. 13–128. MR2752518
 - [BS10] John C. Baez and Michael Shulman, *Lectures on n-categories and cohomology*, Towards higher categories, IMA Vol. Math. Appl., vol. 152, Springer, New York, 2010, pp. 1–68, DOI 10.1007/978-1-4419-1524-5_1, available at arXiv:math/0608420. MR2664619
 - [Baro5] Clark Barwick, (∞, n) -Cat as a closed model category, 2005. Thesis (Ph.D.)–University of Pennsylvania.
 - [BK12] C. Barwick and D. M. Kan, Relative categories: another model for the homotopy theory of homotopy theories, Indag. Math. (N.S.) 23 (2012), no. 1-2, 42-68, DOI 10.1016/j.indag.2011.10.002. MR2877401
 - [BK13] _____, n-relative categories: a model for the homotopy theory of n-fold homotopy theories, Homology Homotopy Appl. 15 (2013), no. 2, 281–300, DOI 10.4310/HHA.2013.v15.n2.a17. MR3138381
 - [BSP2I] Clark Barwick and Christopher Schommer-Pries, On the unicity of the theory of higher categories, J. Amer. Math. Soc. 34 (2021), no. 4, 1011–1058, DOI 10.1090/jams/972. MR4301559
 - [BS18] Clark Barwick and Jay Shah, Fibrations in ∞-category theory, 2016 MATRIX annals, MATRIX Book Ser., vol. 1, Springer, Cham, 2018, pp. 17–42. MR3792514
 - [Bat98] M. A. Batanin, Monoidal globular categories as a natural environment for the theory of weak n-categories, Adv. Math. 136 (1998), no. 1, 39–103, DOI 10.1006/aima.1998.1724. MR1623672
 - [Bén65] Jean Bénabou, Catégories relatives, C. R. Acad. Sci. Paris 260 (1965), 3824–3827 (French). MR0177019
 - [Bén67] ______, Introduction to bicategories, Reports of the Midwest Category Seminar, Lecture Notes in Math., vol. No. 47, Springer, Berlin-New York, 1967, pp. 1–77. MR0220789
 - [Bén68] _____, Structures algébriques dans les catégories, Cahiers Topologie Géom. Différentielle 10 (1968), 1–126. MR0244335
 - [Ber99] Clemens Berger, *Double loop spaces, braided monoidal categories and algebraic* 3-type of space, Higher homotopy structures in topology and mathematical physics (Poughkeepsie, NY, 1996), Contemp. Math., vol. 227, Amer. Math. Soc., Providence, RI, 1999, pp. 49–66, DOI 10.1090/conm/227/03252. MR1665460

- [Ber07] _____, Iterated wreath product of the simplex category and iterated loop spaces, Adv. Math. 213 (2007), no. 1, 230–270, DOI 10.1016/j.aim.2006.12.006. MR2331244
- [Ber18] Julia E. Bergner, *The homotopy theory of* $(\infty, 1)$ -categories, London Mathematical Society Student Texts, vol. 90, Cambridge University Press, Cambridge, 2018. MR3791455
- [Ber20] _____, A survey of models for (∞, n)-categories, Handbook of homotopy theory, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press, Boca Raton, FL, 2020, pp. 263–295, available at arXiv:1810.10052. MR4197987
- [BR20] Julia E. Bergner and Charles Rezk, *Comparison of models for* (∞, *n*)-categories, *II*, J. Topol. 13 (2020), no. 4, 1554–1581, DOI 10.1112/topo.12167. MR4186138
- [BV73] J. M. Boardman and R. M. Vogt, *Homotopy invariant algebraic structures on topological spaces*, Lecture Notes in Mathematics, vol. Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR0420609
- [BH81] Ronald Brown and Philip J. Higgins, *The equivalence of* ∞-*groupoids and crossed complexes*, Cahiers Topologie Géom. Différentielle 22 (1981), no. 4, 371–386. MR0639048
- [BS76] Ronald Brown and Christopher B. Spencer, *G-groupoids, crossed modules and the fundamental groupoid of a topological group*, Indag. Math. 38 (1976), no. 4, 296–302. Nederl. Akad. Wetensch. Proc. Ser. A 79. MR0419643
- [CS19] Damien Calaque and Claudia Scheimbauer, A note on the (∞,n)-category of cobordisms, Algebr. Geom. Topol. 19 (2019), no. 2, 533–655, DOI 10.2140/agt.2019.19.533. MR3924174
- [Cam23] Timothy Campion, The Gray tensor product of (∞, n) -categories (2023), available at arXiv:2311.00205.
- [CKM20] Tim Campion, Chris Kapulkin, and Yuki Maehara, A cubical model for (∞, n) -categories (2020), available at arXiv:2005.07603.
 - [CL04] Eugenia Cheng and Aaron Lauda, *Higher-dimensional categories: an illustrated guide book* (2004), available at https://eugeniacheng.com/wp-content/uploads/2017/02/cheng-lauda-guidebook.pdf.
 - [Cis19] Denis-Charles Cisinski, *Higher categories and homotopical algebra*, Cambridge Studies in Advanced Mathematics, vol. 180, Cambridge University Press, Cambridge, 2019. MR3931682
 - [CP97] Jean-Marc Cordier and Timothy Porter, *Homotopy coherent category theory*, Trans. Amer. Math. Soc. **349** (1997), no. 1, 1–54, DOI 10.1090/S0002-9947-97-01752-2. MR1376543
- [DKLS22] Brandon Doherty, Chris Kapulkin, Zachery Lindsey, and Christian Sattler, Cubical models of $(\infty, 1)$ -categories (2022), available at arXiv:2005.04853.
- [DKM23] Brandon Doherty, Krzysztof Kapulkin, and Yuki Maehara, Equivalence of cubical and simplicial approaches to (∞,n)-categories, Adv. Math. 416 (2023), Paper No. 108902, 81, DOI 10.1016/j.aim.2023.108902. MR4548425
- [DK80a] W. G. Dwyer and D. M. Kan, *Simplicial localizations of categories*, J. Pure Appl. Algebra 17 (1980), no. 3, 267–284, DOI 10.1016/0022-4049(80)90049-3. MR0579087
- [DK80b] _____, Calculating simplicial localizations, J. Pure Appl. Algebra 18 (1980), no. 1, 17–35, DOI 10.1016/0022-4049(80)90113-9. MR0578563
- [DK8oc] _____, Function complexes in homotopical algebra, Topology 19 (1980), no. 4, 427–440, DOI 10.1016/0040-9383(80)90025-7. MR0584566

- [DK87] _____, Equivalences between homotopy theories of diagrams, Algebraic topology and algebraic K-theory (Princeton, N.J., 1983), Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 180–205. MR0921478
- [DS95] W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126, DOI 10.1016/B978-044481779-2/50003-1. MRI361887
- [EM45] Samuel Eilenberg and Saunders MacLane, Relations between homology and homotopy groups of spaces, Ann. of Math. (2) 46 (1945), 480–509, DOI 10.2307/1969165. MR0013312
- [FKKR19] Daniel Fuentes-Keuthan, Magdalena Kędziorek, and Martina Rovelli, *A model structure on prederivators for* (∞, 1)-*categories*, Theory Appl. Categ. **34** (2019), Paper No. 39, 1220–1245. MR4039244
 - [Fre13] Daniel S. Freed, *The cobordism hypothesis*, Bull. Amer. Math. Soc. (N.S.) 50 (2013), no. 1, 57–92, DOI 10.1090/S0273-0979-2012-01393-9. MR2994995
 - [Fri12] Greg Friedman, Survey article: An elementary illustrated introduction to simplicial sets, Rocky Mountain J. Math. 42 (2012), no. 2, 353–423, DOI 10.1216/RMJ-2012-42-2-353. MR2915498
 - [GZ67] P. Gabriel and M. Zisman, *Calculus of fractions and homotopy theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. Band 35, Springer-Verlag New York, Inc., New York, 1967. MR0210125
- [GHL21] Andrea Gagna, Yonatan Harpaz, and Edoardo Lanari, *Gray tensor products and Lax functors of* (∞, 2)-*categories*, Adv. Math. **391** (2021), Paper No. 107986, 32, DOI 10.1016/j.aim.2021.107986. MR4305242
- [GHL22] _____, On the equivalence of all models for (∞, 2)-categories, J. Lond. Math. Soc. (2) 106 (2022), no. 3, 1920–1982, DOI 10.1112/jlms.12614. MR4498545
 - [GR17] Dennis Gaitsgory and Nick Rozenblyum, A study in derived algebraic geometry. Vol. I. Correspondences and duality, Mathematical Surveys and Monographs, vol. 221, American Mathematical Society, Providence, RI, 2017. MR3701352
- [Gep20] David Gepner, An introduction to higher categorical algebra, Handbook of homotopy theory, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press, Boca Raton, FL, 2020, pp. 487–548. MR4197993
- [GH15] David Gepner and Rune Haugseng, Enriched ∞-categories via non-symmetric ∞-operads, Adv. Math. 279 (2015), 575–716, DOI 10.1016/j.aim.2015.02.007. MR3345192
- [GJ99] Paul G. Goerss and John F. Jardine, *Simplicial homotopy theory*, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR1711612
- [Gol23] Zach Goldthorpe, Homotopy Theories of (∞, ∞)-Categories as Universal Fixed Points With Respect to Weak Enrichment, Int. Math. Res. Not. IMRN 22 (2023), 19592–19640, DOI 10.1093/imrn/rnad196. MR4669810
- [GPS95] R. Gordon, A. J. Power, and Ross Street, *Coherence for tricategories*, Mem. Amer. Math. Soc. 117 (1995), no. 558, vi+81, DOI 10.1090/memo/0558. MR1261589
- [Gro20] Moritz Groth, A short course on ∞-categories, Handbook of homotopy theory, CRC Press/Chapman Hall Handb. Math. Ser., CRC Press, Boca Raton, FL, 2020, pp. 549–617, available at arXiv:1007.2925. MR4197994

- [Gro22] Alexandre Grothendieck, *Pursuing stacks (à la poursuite des champs). Vol. I* (Georges Maltsiniotis, ed.), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 20, Société Mathématique de France, Paris, 2022 (English, with English and French summaries). Also available as arXiv:2111.01000. MR4468847
- [Gro91] _____, Les Dérivateurs, 1991.
- [Gur13] Nick Gurski, Coherence in three-dimensional category theory, Cambridge Tracts in Mathematics, vol. 201, Cambridge University Press, Cambridge, 2013. MR3076451
- [Hau15] Rune Haugseng, *Rectification of enriched* ∞-categories, Algebr. Geom. Topol. 15 (2015), no. 4, 1931–1982, DOI 10.2140/agt.2015.15.1931. MR3402334
- [Hau17] _____, The higher Morita category of \mathbb{E}_n -algebras, Geom. Topol. 21 (2017), no. 3, 1631–1730, DOI 10.2140/gt.2017.21.1631. MR3650080
- [Hau18a] _____, On the equivalence between Θ_n -spaces and iterated Segal spaces, Proc. Amer. Math. Soc. 146 (2018), no. 4, 1401–1415, DOI 10.1090/proc/13695. MR3754328
- [Hau18b] _____, Iterated spans and classical topological field theories, Math. Z. 289 (2018), no. 3-4, 1427–1488, DOI 10.1007/s00209-017-2005-x. MR3830256
 - [Hei23] Hadrian Heine, An equivalence between enriched ∞-categories and ∞-categories with weak action, Adv. Math. 417 (2023), Paper No. 108941, 140, DOI 10.1016/j.aim.2023.108941. MR4554672
 - [Hel88] Alex Heller, *Homotopy theories*, Mem. Amer. Math. Soc. 71 (1988), no. 383, vi+78, DOI 10.1090/memo/0383. MR0920963
 - [Hin18] Vladimir Hinich, Lectures on infinity categories (2018), available at arXiv:1709.06271.
- [Hin20] _____, Yoneda lemma for enriched ∞-categories, Adv. Math. **367** (2020), 107129, 119, DOI 10.1016/j.aim.2020.107129. MR4080581
- [Hov99] Mark Hovey, *Model categories*, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR1650134
- [Hor15] Geoffroy Horel, A model structure on internal categories in simplicial sets, Theory Appl. Categ. 30 (2015), Paper No. 20, 704–750. MR3356341
- [JY21] Niles Johnson and Donald Yau, 2-dimensional categories, Oxford University Press, Oxford, 2021. MR4261588
- [JFS17] Theo Johnson-Freyd and Claudia Scheimbauer, (Op)lax natural transformations, twisted quantum field theories, and "even higher" Morita categories, Adv. Math. 307 (2017), 147–223, DOI 10.1016/j.aim.2016.11.014. MR3590516
- [Joy97] André Joyal, *Disks*, *duality and* Θ-categories (1997), available at https://ncatlab.org/nlab/files/JoyalThetaCategories.pdf.
- [Joyo8] ______, *The theory of quasi-categories and its applications*, Advanced course on simplicial methods in higher categories, CRM Quaderns, vol. 45-2, 2008, available at http://mat.uab.cat/ kock/crm/hocat/advanced-course/Quadern45-2.pdf.
- [JS93] André Joyal and Ross Street, *Braided tensor categories*, Adv. Math. **102** (1993), no. 1, 20–78, DOI 10.1006/aima.1993.1055. MR1250465
- [JT07] André Joyal and Myles Tierney, *Quasi-categories vs Segal spaces*, Categories in algebra, geometry and mathematical physics, Contemp. Math., vol. 431, Amer. Math. Soc., Providence, RI, 2007, pp. 277–326, DOI 10.1090/conm/431/08278. MR2342834

- [Kelo1] Bernhard Keller, Introduction to A-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), no. 1, 1–35, DOI 10.4310/hha.2001.v3.n1.a1. MR1854636
- [Lan21] Markus Land, *Introduction to infinity-categories*, Compact Textbooks in Mathematics, Birkhäuser/Springer, Cham, 2021. MR4259746
- [Lacio] Stephen Lack, *A 2-categories companion*, Towards higher categories, IMA Vol. Math. Appl., vol. 152, Springer, New York, 2010, pp. 105–191, DOI 10.1007/978-1-4419-1524-5_4. MR2664622
- [Leio2] Tom Leinster, A survey of definitions of n-category, Theory Appl. Categ. 10 (2002), 1–70. MR1883478
- [Leio4a] _____, Operads in higher-dimensional category theory, Theory Appl. Categ. 12 (2004), No. 3, 73–194. MR2056094
- [Lei04b] ______, Higher operads, higher categories, London Mathematical Society Lecture Note Series, vol. 298, Cambridge University Press, Cambridge, 2004. MR2094071
- [Luro9a] Jacob Lurie, *Higher topos theory*, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. Available from http://math.ias.edu/~lurie/. MR2522659
- [Luro9b] ______, (\infty,2)-Categories and the Goodwillie Calculus I (2009), available at http://math.ias.edu/ lurie/papers/GoodwillieI.pdf.
- [Luri7a] _____, Higher Algebra, 2017. Available at http://math.ias.edu/~lurie/.
- [Lur17b] _____, Spectral Algebraic Geometry, 2017. Available at http://math.ias.edu/~lurie/.
- [Lur24] _____, Kerodon (2024). https://kerodon.net.
- [MLP85] Saunders Mac Lane and Robert Paré, Coherence for bicategories and indexed categories, J. Pure Appl. Algebra 37 (1985), no. 1, 59–80, DOI 10.1016/0022-4049(85)90087-8. MR0794793
- [MW50] Saunders MacLane and J. H. C. Whitehead, *On the 3-type of a complex*, Proc. Nat. Acad. Sci. U.S.A. **36** (1950), 41–48, DOI 10.1073/pnas.36.1.41. MR0033519
- [May72] J. P. May, *The geometry of iterated loop spaces*, Lecture Notes in Mathematics, vol. Vol. 271, Springer-Verlag, Berlin-New York, 1972. MR0420610
- [MG19] Aaron Mazel-Gee, A user's guide to co/cartesian fibrations, Grad. J. Math. 4 (2019), no. 1, 42–53. MR3999274
- [Nui23] Joost Nuiten, On straightening for Segal spaces (2023), available at arXiv:2108.11431.
- [OR23] Viktoriya Ozornova and Martina Rovelli, What is an equivalence in a higher category? (2023), available at arXiv:2303.00567.
- [ORV23] Viktoriya Ozornova, Martina Rovelli, and Dominic Verity, *Gray tensor product and saturated N-complicial sets*, High. Struct. 7 (2023), no. 1, 1–21. MR4600455
- [Qui67] Daniel G. Quillen, *Homotopical algebra*, Lecture Notes in Mathematics, vol. No. 43, Springer-Verlag, Berlin-New York, 1967. MR0223432
- [Reno9] Olivier Renaudin, *Plongement de certaines théories homotopiques de Quillen dans les dérivateurs*, J. Pure Appl. Algebra 213 (2009), no. 10, 1916–1935, DOI 10.1016/j.jpaa.2009.02.014 (French, with French summary). MR2526867
- [Rezoi] Charles Rezk, *A model for the homotopy theory of homotopy theory*, Trans. Amer. Math. Soc. 353 (2001), no. 3, 973–1007, DOI 10.1090/S0002-9947-00-02653-2. MR1804411

- [Rezio] _____, A Cartesian presentation of weak n-categories, Geom. Topol. 14 (2010), no. 1, 521–571, DOI 10.2140/gt.2010.14.521. MR2578310
- [Rez21] _____, Introduction to quasicategories (2021), available at https://rezk.web.illinois.edu/quasicats.pdf.
- [Rez22] _____, Spectral algebraic geometry, Stable categories and structured ring spectra, Math. Sci. Res. Inst. Publ., vol. 69, Cambridge Univ. Press, Cambridge, 2022, pp. 345–402. MR4439767
- [Rie18] Emily Riehl, Complicial sets, an overture, 2016 MATRIX annals, MATRIX Book Ser., vol. 1, Springer, Cham, 2018, pp. 49–76, available at arXiv:1610.06801. MR3792516
- [Rie22] _____, Homotopical categories: from model categories to (∞, 1)-categories, Stable categories and structured ring spectra, Math. Sci. Res. Inst. Publ., vol. 69, Cambridge Univ. Press, Cambridge, 2022, pp. 5–74. MR4439761
- [Rie23] _____, *Homotopy coherent structures*, Expositions in Theory and Applications of Categories I (2023), I-3I, available at arXiv:1801.07404.
- [RV20] Emily Riehl and Dominic Verity, *Infinity category theory from scratch*, High. Struct. 4 (2020), no. 1, 115–167. MR4074275
- [RV22] _____, Elements of ∞-category theory, Cambridge Studies in Advanced Mathematics, vol. 194, Cambridge University Press, Cambridge, 2022. MR4354541
- [Sch14] Claudia Scheimbauer, Factorization homology as a fully extended topological field theory (2014), available at http://www.scheimbauer.at/ScheimbauerThesis.pdf. Thesis (Ph.D.) Eidgenössische Technische Hochschule, Zürich.
- [Sim98] Carlos Simpson, *Homotopy types of strict 3-groupoids* (1998), available at arXiv:math/9810059.
- [Sim12] _____, Homotopy theory of higher categories, New Mathematical Monographs, vol. 19, Cambridge University Press, Cambridge, 2012. MR2883823
- [Sta63] James Dillon Stasheff, *Homotopy associativity of H-spaces. I, II*, Trans. Amer. Math. Soc. 108 (1963), 293–312, DOI 10.1090/s0002-9947-1963-0158400-5. 108 (1963), 275-292; ibid. MR0158400
- [Steo4] Richard Steiner, Omega-categories and chain complexes, Homology Homotopy Appl. 6 (2004), no. 1, 175–200. MR2061574
- [Str87] Ross Street, *The algebra of oriented simplexes*, J. Pure Appl. Algebra **49** (1987), no. 3, 283–335, DOI 10.1016/0022-4049(87)90137-X. MR0920944
- [Tam99] Zouhair Tamsamani, Sur des notions de n-catégorie et n-groupoïde non strictes via des ensembles multi-simpliciaux, K-Theory 16 (1999), no. 1, 51–99, DOI 10.1023/A:1007747915317 (French, with English summary). MR1673923
- [Toëo5] Bertrand Toën, Vers une axiomatisation de la théorie des catégories supérieures, K-Theory 34 (2005), no. 3, 233–263, DOI 10.1007/s10977-005-4556-6 (French, with French summary). MR2182378
- [Trio6] Todd Trimble, *Notes on tetracategories* (2006), available at https://math.ucr.edu/home/baez/trimble/tetracategories.html.
- [Vero8a] Dominic Verity, Complicial sets characterising the simplicial nerves of strict ω-categories, Mem. Amer. Math. Soc. 193 (2008), no. 905, xvi+184, DOI 10.1090/memo/0905. MR2399898

[Vero8b] D. R. B. Verity, Weak complicial sets. I. Basic homotopy theory, Adv. Math. 219 (2008), no. 4, 1081–1149, DOI 10.1016/j.aim.2008.06.003. MR2450607