# RClone quickmanual one population

Diane Bailleul 2015-11-23

# "Eager Beginners" Manual for RClone package

 $RClone\ data\ format:\ one\ population$ 

• Simpson complement;

• Hill's Simpson reciprocal;

• Pareto index.

• Shannon-Wiener diversity and evenness indices;

| A. Introduction to RClone                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| RClone is a R package version of $GenClone$ program: to analyse data (SSR, SNP,), test for clonality and describe spatial clonal organisation. |
| RClone allows:                                                                                                                                 |
| 1. Description of data set                                                                                                                     |
| • discrimination of MLG (MultiLocus Genotypes);                                                                                                |
| • test for reliability of data (in terms of loci and sampling).                                                                                |
| 2. Determination of MLL (MultiLocus Lineages)                                                                                                  |
| • psex/psex Fis with pvalue computation;                                                                                                       |
| • genetic distance matrix computation and threshold definition.                                                                                |
| 3. Genotypic diversity and evenness indices calculation                                                                                        |

- 4. Spatial organisation of MLG/MLL
- spatial autocorrelation methods;
- clonal subrange estimation;
- Aggregation index and Edge Effect estimation.

Some of these analysis can be applied to dataset without clones.

# B. RClone data format: one population

RClone functions works on diploid/haploid, one or several populations dataset.

If you have several populations in your dataset, go to other vignette RClone\_qmsevpops.

#### C. General format

If you have haploid data, you can skip to 4, For GenClone users or D. Description of data set. An RClone table must look like:

library(RClone)
data(posidonia)

| Po15_1 | Po15_2 | Po4-3_1 | Po4-3_2 | Po5-10_1 | Po5-10_2 | Po5-39_1 | Po5-39_2 |
|--------|--------|---------|---------|----------|----------|----------|----------|
| 137    | 161    | 182     | 188     | 212      | 216      | 234      | 234      |
| 139    | 171    | 182     | 182     | 222      | 226      | 234      | 242      |
| 161    | 161    | 182     | 182     | 210      | 216      | 234      | 234      |
| 161    | 161    | 182     | 182     | 210      | 216      | 234      | 234      |
| 161    | 161    | 182     | 182     | 210      | 216      | 234      | 234      |
| 161    | 161    | 182     | 182     | 210      | 216      | 234      | 234      |
| 161    | 161    | 182     | 182     | 210      | 216      | 234      | 234      |
| 161    | 161    | 182     | 182     | 210      | 216      | 234      | 234      |
| 137    | 157    | 182     | 188     | 208      | 210      | 234      | 234      |
| 137    | 157    | 174     | 180     | 208      | 210      | 234      | 234      |

There is only one allele per column and, per locus, alleles are sorted by increasing order. This is **mandatory** for all *RClone* functions.

As formatting can be source of error, we included functions to help formatting your diploid data:

# 1, The simple case: you already have a one-allele per column table

```
data(posidonia)
sort_all(posidonia)
```

#### 2, The classic case: one locus per column

```
#Let's create your example table:
test <- matrix("232/231", ncol = 2, nrow = 2)
colnames(test) <- paste("locus", 1:2, sep = "_")

#Use :
data1 <- convert_GC(as.data.frame(test), 3, "/")</pre>
```

#### data1

| locus_1_1 | locus_1_2 | locus_2_1 | locus_2_2 |
|-----------|-----------|-----------|-----------|
| 231       | 232       | 231       | 232       |
| 231       | 232       | 231       | 232       |

We used "3" because this is the length of the allele (with 3 numbers). For allele separation, we used "/" because, of course, it was the separator.

#### 3, You already work with Adegenet

It's a kind of like the case number 2, but you have to export your genind data into table first:

```
#library(adegenet)
#with data1, a genind object from Adegenet:

test <- genind2df(data1)
data2 <- convert_GC(test, 3, "/")
#only if yours alleles are of length "3"</pre>
```

### 4, For GenClone users

Warning: your infile file must include all the informations available, as locus names and ploidy level (which is not mandatory for *GenClone*).

```
#This is nearly a GenClone file, type:
write.table(infile, "infile.csv", col.names = FALSE, row.names = FALSE, sep = ";")
#Now you have a formatted GenClone file:
res <- transcript_GC("infile.csv", ";", 2, 7, 3)
posidonia <- res$data_genet
coord_posidonia <- res$data_coord</pre>
```

You might need to edit your "infile.txt" into "infile.csv" and check if there's "." and not "," for geographic coordinates, and use ";" as separator element.

- "2" is for the ploidy level; should have been "1" for haploid data;
- "7" here is the number of loci;
- "3" is for allele length. Posidonia alleles are always of length "3".

# D. Description of data set

#### D.1 Discrimination of MLG

#### List unique alleles per locus:

Basic commands:

data(posidonia)

list\_all\_tab(posidonia)

or, for haploid data:

list\_all\_tab(haplodata, haploid = TRUE)

Results:

list\_all\_tab(posidonia)

| locus_1 | $locus\_2$ | $locus\_3$ | locus_4 | $locus\_5$ | locus_6 | locus_7 |
|---------|------------|------------|---------|------------|---------|---------|
| 137     | 182        | 212        | 234     | 165        | 170     | 178     |
| 139     | 174        | 222        | 242     | 159        | 168     | 180     |
| 161     | 188        | 210        | 236     | 163        | 172     |         |
| 151     | 180        | 208        |         |            |         |         |
| 157     |            | 216        |         |            |         |         |
| 159     |            | 226        |         |            |         |         |
| 171     |            | 218        |         |            |         |         |

#### List MLG:

Basic commands:

MLG\_tab(posidonia)

or, for haploid data:

MLG\_tab(haplodata)

Results:

MLG\_tab(posidonia)

| unit_1 | $unit\_2$ | $unit\_3$ | $unit\_4$ | unit_5 |
|--------|-----------|-----------|-----------|--------|
| 1      |           |           |           |        |
| 2      |           |           |           |        |
| 3      | 4         | 5         | 6         | 7      |
| 8      |           |           |           |        |
| 9      |           |           |           |        |
|        |           |           |           |        |

# Allelic frequencies:

Basic commands:

```
freq_RR(posidonia)
```

or, for haploid data:

```
freq_RR(haplodata, haploid = TRUE)
```

Options:

```
freq_RR(posidonia) #on ramets
freq_RR(posidonia, genet = TRUE) #on genets
freq_RR(posidonia, RR = TRUE) #Round-Robin methods
```

Results:

```
freq_RR(posidonia)
```

| locus      | allele | freq_ramet | freq_genet | freq_RR   |
|------------|--------|------------|------------|-----------|
| locus_1    | 137    | 0.1375     | 0.1607143  | 0.1666667 |
| $locus\_1$ | 139    | 0.0250     | 0.0357143  | 0.0370370 |
| $locus\_1$ | 151    | 0.1500     | 0.2142857  | 0.2222222 |
| $locus_1$  | 157    | 0.3375     | 0.2857143  | 0.2777778 |
| $locus_1$  | 159    | 0.0250     | 0.0357143  | 0.0370370 |
| $locus_1$  | 161    | 0.3125     | 0.2500000  | 0.2407407 |
| $locus\_1$ | 171    | 0.0125     | 0.0178571  | 0.0185185 |
|            |        |            |            |           |

# D.2 Test for reliability of data

#### On loci

Basic commands:

```
sample_loci(posidonia, nbrepeat = 1000)
```

or, for haploid data:

```
sample_loci(haplodata, haploid = TRUE, nbrepeat = 1000)
```

#### Options:

#### Results:

```
res <- sample_loci(posidonia, nbrepeat = 1000, He = TRUE) #time consuming
names(res)</pre>
```

#### > NULL

```
#Results: MLG
res$res_MLG
```

| $nb\_loci$ | $\min$ | max | $mean\_MLG$ | SE        |
|------------|--------|-----|-------------|-----------|
| 1          | 3      | 13  | 6.265       | 0.1046505 |
| 2          | 7      | 21  | 14.265      | 0.1362400 |
| 3          | 11     | 26  | 20.142      | 0.0966083 |
| 4          | 19     | 27  | 23.566      | 0.0617532 |
| 5          | 22     | 28  | 25.443      | 0.0460312 |
| 6          | 25     | 28  | 26.856      | 0.0311164 |
| 7          | 28     | 28  | 28.000      | 0.0000000 |

# #Results: alleles res\$res\_alleles

| nb_loci | min | max | $mean\_all$ | SE        | Не        | SE        |
|---------|-----|-----|-------------|-----------|-----------|-----------|
| 1       | 2   | 7   | 4.092       | NA        | 0.5491902 | NA        |
| 2       | 5   | 14  | 8.329       | 132.25780 | 0.5492449 | 1.2174962 |
| 3       | 8   | 18  | 12.416      | 88.28636  | 0.5503377 | 0.8028116 |
| 4       | 11  | 21  | 16.531      | 70.20927  | 0.5504794 | 0.6456283 |
| 5       | 15  | 24  | 20.699      | 60.66198  | 0.5504022 | 0.5523189 |
| 6       | 22  | 27  | 24.895      | 54.60655  | 0.5521684 | 0.4933410 |
| 7       | 29  | 29  | 29.000      | NA        | 0.5513110 | NA        |

#Results: raw data

#res\$raw\_He
#res\$raw\_MLG
#res\$raw\_all

# **Genotype accumulation curve**



#### Same on units

Basic commands:

```
sample_units(posidonia, nbrepeat = 1000)
```

or, for haploid data:

```
sample_units(haplodata, haploid = TRUE, nbrepeat = 1000)
```

# E Determination of MLL

E.1 psex/psex Fis with pvalue computation

pgen, psex and p-values

Basic commands:

```
pgen(posidonia)
data(factoR) #for psex
psex(posidonia)
```

or, for haploid data:

```
pgen(haplodata, haploid = TRUE)
data(factoR) #for psex
psex(haplodata, haploid = TRUE)
```

Options: (idem on psex and pgen)

```
#allelic frequencies computation:
psex(posidonia) #psex on ramets
psex(posidonia, genet = TRUE) #psex on genets
psex(posidonia, RR = TRUE) #psex with Round-Robin method
#psex computation
psex(posidonia) #psex with one psex per replica
psex(posidonia, MLGsim = TRUE) #psex MLGsim method
#pvalues:
psex(posidonia, nbrepeat = 100) #with p-values
psex(posidonia, nbrepeat = 1000, bar = TRUE) #with p-values and a progression bar
```

Results:

| pgen     | genet | psex                                    | pvalue            |
|----------|-------|-----------------------------------------|-------------------|
| 2.20e-06 |       |                                         |                   |
| 0.00e+00 |       |                                         |                   |
| 4.77e-05 |       |                                         |                   |
| 4.77e-05 | 3     | 0.00190284159898287                     | 0.392857142857143 |
| 4.77e-05 | 3     | $1.76851132496336\mathrm{e}\text{-}06$  | 0                 |
| 4.77e-05 | 3     | $1.06767920426143 \mathrm{e}\text{-}09$ | 0                 |

```
res[[2]] #sim psex values
```

```
    [1] 2.682915e-03 1.351209e-03 3.404466e-03 1.543552e-03 4.299086e-03
    [6] 6.265958e-03 9.866499e-03 1.920650e-03 2.045403e-03 5.527621e-04
    [11] 6.364326e-04 1.374158e-03 5.837434e-03 3.624390e-03 2.895358e-03
    [16] 5.969326e-03 9.347855e-04 7.666523e-04 6.671097e-05 2.522795e-03
    [21] 5.676186e-03 1.297853e-03 1.105800e-03 5.573546e-03 2.807860e-03
    [26] 4.025514e-03 1.851704e-03 5.309521e-03
```

#### Fis, pgen Fis, psex Fis and p-values

Not for haploid data!

Fis

Basic commands:

```
Fis(posidonia)
```

Options:

```
Fis(posidonia) #Fis on ramets

Fis(posidonia, genet = TRUE) #Fis on genets

Fis(posidonia, RR = TRUE) #Fis with Round-Robin methods

#RR = TRUE contains two results: a table with allelic frequencies

#and a table with Fis results
```

Results:

```
Fis(posidonia, RR = TRUE)[[2]]
```

| locus      | Hobs      | Hatt      | Fis        |
|------------|-----------|-----------|------------|
| locus_1    | 0.6666667 | 0.7994410 | 0.1660839  |
| $locus_2$  | 0.5185185 | 0.5024949 | -0.0318882 |
| $locus\_3$ | 0.8846154 | 0.8099548 | -0.0921788 |
| $locus\_4$ | 0.2962963 | 0.2620545 | -0.1306667 |
| $locus\_5$ | 0.3214286 | 0.5512987 | 0.4169611  |
| $locus\_6$ | 0.6400000 | 0.6555102 | 0.0236613  |
| $locus\_7$ | 0.3571429 | 0.3818182 | 0.0646259  |

#### pgen Fis, psex Fis and p-values

Basic commands: (idem for pgen\_Fis and psex\_Fis)

```
pgen_Fis(posidonia)
```

Options:

```
#allelic frequencies:
psex_Fis(posidonia) #psex Fis on ramets
psex_Fis(posidonia, genet = TRUE) #psex Fis on genets
psex_Fis(posidonia, RR = TRUE) #psex Fis with Round-Robin method
#psex computation
psex_Fis(posidonia) #psex Fis, one for each replica
psex_Fis(posidonia, MLGsim = TRUE) #psex Fis with MLGsim method
#pvalues
psex_Fis(posidonia, nbrepeat = 100) #with p-values
psex_Fis(posidonia, nbrepeat = 1000, bar = TRUE) #with p-values and a progression bar
```

Results:

| pgenFis  | genet | psexFis                                | pvalue            |
|----------|-------|----------------------------------------|-------------------|
| 1.05e-05 |       |                                        |                   |
| 0.00e+00 |       |                                        |                   |
| 4.39e-05 |       |                                        |                   |
| 4.39e-05 | 3     | 0.00175402908240928                    | 0.258064516129032 |
| 4.39e-05 | 3     | $1.50248895374508\mathrm{e}\text{-}06$ | 0                 |
| 4.39e-05 | 3     | 8.36013934496707e-10                   | 0                 |

#### res[[2]] #sim psex Fis values

```
    [1] 0.0040481045 0.0031602068 0.0092107387 0.0005867821 0.0078841578
    [6] 0.0016065540 0.0008205260 0.0037157779 0.0069945737 0.0013747738
    [11] 0.0025227684 0.0012591533 0.0131772838 0.0011010652 0.0016714224
    [16] 0.0036430883 0.0043642467 0.0009267953 0.0146375958 0.0097961140
    [21] 0.0056357471 0.0049308171 0.0105839008 0.0018554896 0.0057345994
    [26] 0.0180426243 0.0025966226 0.0045779356 0.0036178632 0.0088153811
    [31] 0.0076859203
```

#### E.2 MultiLocus Lineages

#### Genetic distance matrix computation and threshold definition

On a theoretical diploid population with c = 0.9999 (c, clonality rate).



```
p2 <- hist(ressim$distance_matrix, freq = FALSE, col = rgb(0.7,0.9,1,0.5), main = "popSR", xlab = "Genetic distances", breaks = seq(0, max(ressim$distance_matrix)+1, 1))
```



#### popSRWS





```
#determining alpha2
table(respop$distance_matrix)
>
                4 82 84
                           85
                               86
                                    97
                                        98 100 101 104 122 123 128 129 130
            7
                5
    8 12
                    1
                        5
                             8
                                 3
                                     1
                                         1
                                             5
                                                 4
                                                     3
                                                                      2
> 132 133 134 135 143 148 149 152 165 169 170 172 173 174 177 178 179
                                     2
\#alpha2 = 4
```

```
#creating MLL list:
MLLlist <- MLL_generator(popsim, alpha2 = 4)
#or
res <- genet_dist(popsim, alpha2 = 4)
MLLlist <- MLL_generator2(res$potential_clones, MLG_list(popsim))</pre>
```

For haploid data, theoretical example:

```
respop <- genet_dist(haplodata, haploid = TRUE)
ressim <- genet_dist_sim(haplodata, haploid = TRUE, nbrepeat = 1000)
MLLlist <- MLL_generator(haplodata, haploid = TRUE, alpha2 = 4)
#or</pre>
```

```
res <- genet_dist(haplodata, haploid = TRUE, alpha2 = 4)
MLLlist <- MLL_generator2(res$potential_clones, haploid = TRUE, MLG_list(haplodata))</pre>
```

# F. Genotypic diversity and evenness indices calculation

# F.1 Classic genotypic indices

Basic commands:

```
clonal_index(posidonia)
```

or, with MLL:

```
clonal_index(popsim, listMLL = MLLlist)
```

or, for haploid data:

```
clonal_index(haplodata)
```

Results:

clonal\_index(posidonia)

|     | N  | G  | R         | H"       | J'        | D         | V         | Hill     |
|-----|----|----|-----------|----------|-----------|-----------|-----------|----------|
| MLG | 40 | 28 | 0.6923077 | 3.149621 | 0.9452064 | 0.9705128 | 0.7921811 | 33.91304 |

#### F.2 Pareto index

Basic commands:

```
Pareto_index(posidonia)
```

or, with MLL:

```
Pareto_index(popsim, listMLL = MLLlist)
```

or, for haploid data:

```
Pareto_index(haplodata)
```

Options:

```
Pareto_index(posidonia, graph = TRUE) #classic graphic
Pareto_index(posidonia, legends = 2, export = TRUE) #export option
Pareto_index(posidonia, full = TRUE) #all results
```

```
res <- Pareto_index(posidonia, full = TRUE, graph = TRUE, legends = 2)
```

# Pareto distribution



# G. Spatial description of clonality

# G.1 Spatial autocorrelation

Basic commands:

```
autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE)
or, with MLL:
autocorrelation(popsim, coords = coord_sim, Loiselle = TRUE, listMLL = MLLlist)
or, for haploid data:
autocorrelation(haplodata, haploid = TRUE, coords = coord_haplo, Loiselle = TRUE)
Lot's of options:
data(posidonia)
data(coord_posidonia)
#kinship distances:
autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE)
autocorrelation(posidonia, coords = coord_posidonia, Ritland = TRUE)
#ramets/genets methods:
autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE) #ramets
autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE,
                    genet = TRUE, central_coords = TRUE)
                                            #genets, central coordinates of each MLG
autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE,
                genet = TRUE, random_unit = TRUE) #genets, one random unit per MLG
autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE,
                genet = TRUE, weighted = TRUE) #genets, with weighted matrix on kinships
#distance classes construction:
autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE)
                                                    #10 equidistant classes
distvec <-c(0,10,15,20,30,50,70,76.0411074)
                        #with 0, min distance and 76.0411074, max distance
autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE,
                    vecdist = distvec) #custom distance vector
autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE,
                    class1 = TRUE, d = 7) #7 equidistant classes
autocorrelation(posidonia, coords = coord_posidonia, Loiselle = TRUE,
                    class2 = TRUE, d = 7)
                    #7 distance classes with the same number of units in each
#graph options:
autocorrelation(posidonia, coords = coord_posidonia, Ritland = TRUE, graph = TRUE)
                                                                     #displays graph
autocorrelation(posidonia, coords = coord_posidonia, Ritland = TRUE, export = TRUE)
                                                                     #export graph
```

#pvalues computation

autocorrelation(posidonia, coords = coord\_posidonia, Ritland = TRUE, nbrepeat = 1000)

# Spatial aucorrelation analysis



# names(res)

- > [5] "Matrix\_kinship\_results" "Class\_kinship\_results"
- > [7] "Class\_distance\_results"

# res\$Main\_results #enables graph reproduction

| dist_min | $\operatorname{dist}_{-\operatorname{max}}$ | $dist\_mean$ | $\ln({\rm dist\_mean})$ | nb_pairs | $mean\_Ritland$ | pval_kin |
|----------|---------------------------------------------|--------------|-------------------------|----------|-----------------|----------|
| 0.50000  | 7.51665                                     | 4.683712     | 1.544091                | 97       | 0.0891802       | 0.000    |
| 7.61577  | 15.20691                                    | 11.148114    | 2.411270                | 157      | 0.0296031       | 0.000    |
| 15.23975 | 22.80351                                    | 18.807914    | 2.934278                | 119      | -0.0224115      | 0.390    |
| 22.94014 | 30.41381                                    | 26.648255    | 3.282724                | 110      | -0.0531668      | 0.000    |
| 30.50000 | 38.00329                                    | 34.206496    | 3.532416                | 121      | -0.0736379      | 0.000    |
| 38.02959 | 45.59879                                    | 41.524146    | 3.726275                | 64       | -0.0650049      | 0.000    |
| 46.09772 | 53.08484                                    | 49.568560    | 3.903357                | 34       | -0.0424233      | 0.144    |
| 53.53737 | 60.66144                                    | 57.055830    | 4.044030                | 29       | -0.0438132      | 0.154    |
| 61.00205 | 68.00184                                    | 64.657149    | 4.169099                | 31       | -0.0095349      | 0.800    |
| 68.52919 | 76.04111                                    | 70.912179    | 4.261442                | 18       | 0.0309692       | 0.106    |
|          |                                             |              |                         |          |                 |          |

```
apply(res$Main_results, 2, mean)[6] #mean Fij
```

- > mean\_Ritland
- > -0.01602399

res\$Slope\_and\_Sp\_index #gives b and Sp indices

|                | b          | b_log      | Sp         | Sp_log     |
|----------------|------------|------------|------------|------------|
| obs_value      | -0.0007007 | -0.0357734 | 0.0007693  | 0.0392760  |
| $mean\_sim$    | 0.0000020  | 0.0000347  | -0.0000008 | 0.0000097  |
| $sd\_sim$      | 0.0002752  | 0.0062994  | 0.0002726  | 0.0062438  |
| $0.95$ _inf    | -0.0006246 | -0.0141703 | -0.0004583 | -0.0098627 |
| $0.95$ _sup    | 0.0004646  | 0.0100574  | 0.0006179  | 0.0141312  |
| $0.9$ _inf     | -0.0004780 | -0.0112594 | -0.0004014 | -0.0087134 |
| $0.9$ _sup     | 0.0004031  | 0.0089617  | 0.0004759  | 0.0112549  |
| pval_upper     | 0.0150000  | 0.0000000  | 0.9890000  | 1.0000000  |
| pval_lower     | 0.9850000  | 1.0000000  | 0.0110000  | 0.0000000  |
| $pval\_2sides$ | 0.0300000  | 0.0000000  | 0.0220000  | 0.0000000  |

```
#raw data:
#res$Slope_resample
#res$Kinship_resample
#res$Matrix_kinship_results
#res$Class_kinship_results
#res$Class_distance_results
```

#### G.2 Clonal subrange

Basic commands:

```
clonal_sub(posidonia, coords = coord_posidonia)
```

or, with MLL:

```
clonal_sub(popsim, coords = coord_sim, listMLL = MLLlist)
```

or, for haploid data:

```
clonal_sub(haplodata, haploid = TRUE, coords = coord_haplo)
```

Options: same distance classes definition as autocorrelation:

```
#custom distance classes

clonal_sub(posidonia, coords = coord_posidonia, class1 = TRUE, d = 7)

#7 equidistant classes

clonal_sub(posidonia, coords = coord_posidonia, class1 = TRUE, d = 7)

#7 distance classes with the same number of units in each
```

```
res <- clonal_sub(posidonia, coords = coord_posidonia)
res[[1]] #Global clonal subrange</pre>
```

> [1] 11.6619

res\$clonal\_sub\_tab #details per class

| nb_pairs | $\operatorname{dist\_min}$ | $\operatorname{dist\_max}$ | $dist\_mean$ | $\operatorname{Fr}$ | $\log(\text{Fr})$ |
|----------|----------------------------|----------------------------|--------------|---------------------|-------------------|
| 97       | 0.5                        | 7.516648                   | 4.683712     | 0.1649485           | -0.7826518        |
| 157      | 7.615773                   | 15.20691                   | 11.14811     | 0.04458599          | -1.350802         |
| 119      | 15.23975                   | 22.80351                   | 18.80791     | 0                   | -Inf              |
| 110      | 22.94014                   | 30.41381                   | 26.64826     | 0                   | -Inf              |
| 121      | 30.5                       | 38.00329                   | 34.2065      | 0                   | -Inf              |
| 64       | 38.02959                   | 45.59879                   | 41.52415     | 0                   | -Inf              |
| 34       | 46.09772                   | 53.08484                   | 49.56856     | 0                   | -Inf              |
| 29       | 53.53737                   | 60.66144                   | 57.05583     | 0                   | -Inf              |
| 31       | 61.00205                   | 68.00184                   | 64.65715     | 0                   | -Inf              |
| 18       | 68.52919                   | 76.04111                   | 70.91218     | 0                   | -Inf              |

#### G.3 Aggregation index

Basic commands:

```
agg_index(posidonia, coords = coord_posidonia)
```

or, with MLL:

```
agg_index(popsim, coords = coord_sim, listMLL = MLLlist)
```

or, for haploid data:

```
agg_index(haplodata, coords = coord_haplo)
```

Options:

```
res <- agg_index(posidonia, coords = coord_posidonia, nbrepeat = 1000)
```

res\$results #Aggregation index

| Ac        | pval | nbrepeat |
|-----------|------|----------|
| 0.2272127 | 0    | 1000     |

#res\$simulation #vector of sim aggregation index

### G.4 Edge Effect

Basic commands:

```
#for posidonia, center of quadra is at 40,10
edge_effect(posidonia, coords = coord_posidonia, center = c(40,10))
```

or, with MLL:

```
edge_effect(popsim, coords = coord_sim, center = c(40,10), listMLL = MLLlist)
```

or, for haploid data:

```
edge_effect(haplodata, coords = coord_haplo, center = c(40,10))
```

Options:

Results:

```
res <- edge_effect(posidonia, coords = coord_posidonia, center = c(40,10), nbrepeat = 1000)
```

res\$results #Aggregation index

| Ee        | pval_Ee | nbrepeat |
|-----------|---------|----------|
| 0.0778672 | 0.434   | 1000     |

# H. BONUS

Summary function:

Basic commands:

```
genclone(posidonia, coords = coord_posidonia)
```

or, with MLL:

```
genclone(popsim, coords = coord_sim, listMLL = MLLlist)
```

or, for haploid data:

```
genclone(haplodata, haploid = TRUE, coords = coord_haplo)
```

Options:

Results:

```
GenClone(posidonia, coords = coord_posidonia)
```

| N  | Lineage | $nb\_L$ | $nb\_all$ | SE        | Fis        | $pval\_2sides$ | $Fis\_WR$  | $pval\_2sides.1$ | R         |
|----|---------|---------|-----------|-----------|------------|----------------|------------|------------------|-----------|
| 40 | MLG     | 28      | 4.142857  | 0.7693093 | 0.05076926 | NA             | 0.02568129 | NA               | 0.6923077 |

| ${\bf Pareto\_index}$ | $Sp\_Loiselle$ | $pval\_2sides$ | $\mathrm{Sp}\_\mathrm{L}\_\mathrm{WR}$ | $pval\_2sides.1$ | $Sp\_Ritland$ | $pval\_2sides.2$ |
|-----------------------|----------------|----------------|----------------------------------------|------------------|---------------|------------------|
| 1.180756              | 0.001230855    | NA             | 0.0012436                              | NA               | 0.0007693264  | NA               |

| Sp_R_WR      | pval_2sides | Н"       | J'        | D         | V         | Hill     |
|--------------|-------------|----------|-----------|-----------|-----------|----------|
| 0.0008031684 | NA          | 3.149621 | 0.9452064 | 0.9705128 | 0.7921811 | 33.91304 |