Topics in analyse en topologie: extra oefeningen

Wietse Vaes

1. Zi
jCde Cantor-verzamling, vind: $\overline{C},\ \mathring{C}\ \&\ \partial C$

Oplossing:

De Cantor verzameling is gesloten, dus is $C = \overline{C}$.

Stel dat $\mathring{C} \neq \emptyset$. Er bestaat dus een $x \in \mathring{C} \subset C$, dus bestaat er een $\delta > 0$ zodat $B = B(x, \delta) \subset C$. Hierbij is diam $(B) = 2\delta$. Verder weten we dat de cantor-verzameling de aftelbaar oneindige doorsnede is van verzamelingen F_n , wat de unie is van segmenten F_n^i $(i = 1, \ldots, 2^n)$ met lengte $\frac{1}{3^n}$. Dus $B \subset F_j$, $\forall j = 1, 2, 3, \ldots$ Echter $\lim_{n=\infty} \frac{1}{3^n} = 0$ en aangezien B in alle F_i zit en hiervan in één F_i^j , zou diam(B) = 0, maar dit is een contradictie. $\Rightarrow \mathring{C} = \emptyset$

$$\partial C = \overline{C} \backslash \mathring{C} = C$$

2. C de Cantor-verzameling, toon aan: C is overaftelbaar.

Oplossing:

We weten dat C niet eindig is. Stel dus dat C aftelbaar is. Dan kan C geschreven worden als $\{b_1, b_2, b_3, \dots\} = \{b_i\}_{i \in \mathbb{N}}$. We weten dat $C = \{a = \sum_{k=1}^{\infty} \frac{a_k}{3^k} | a_j = \in \{0, 2\} \forall j\}$. We kunnen $\sum_{k=1}^{\infty} \frac{a_k}{3^k}$ voorstellen als iets van de vorm $0.a_1a_2a_3a_4\ldots$. Alle elementen $a \in C$ kunnen dus zo voorgesteld worden. Stel nu b_i voor als $0.b_{i1}b_{i2}b_{i3}\ldots$ met $b_{ij} \in \{0, 2\}$ (Zoals elk element in C kan voorgesteld worden). Neem nu een $\tilde{a} \in C$ met $\tilde{a}_i = \begin{cases} 0 & b_{ii} = 2 \\ 2 & b_{ii} = 0 \end{cases}$. Dan weten we dat $\tilde{a} \notin \{b_i\}_{i \in \mathbb{N}}$. Echter $\tilde{a} \in C = \{b_i\}_{i \in \mathbb{N}}$, een contradicite. C is dus overaftelbaar.

3. Toon aan:]0,1[en \mathbb{R} zijn gelijkmachtig.

Oplossing:

Neem functie $f:]0,1[\to \mathbb{R}: x\mapsto \tan(\pi x-\frac{\pi}{2}).$ f is injectief: Zij $f(x)=f(y) \forall x,y\in]0,1[\Rightarrow \tan(\pi x-\frac{\pi}{2})=\tan(\pi y-\frac{\pi}{2})\Rightarrow \pi x-\frac{\pi}{2}=\pi y-\frac{\pi}{2},$ want $x,y\in]0,1[\Rightarrow x=y.$ Bovendien is $\lim_{x\to 0}f(x)=-\infty,$ $\lim_{x\to 1}f(x)=\infty,$ $f'(x)=\frac{\pi}{1+(\pi x-\frac{\pi}{2})^2}>0$ en continu, dus is het beeld \mathbb{R} (f is surjectief). Sterker nog: $f^{-1}:\mathbb{R}\to]0,1[:y\mapsto \frac{1}{\pi}\tan^{-1}(y)-\frac{1}{2}.$ Er bestaat dus een bijectie tussen]0,1[en \mathbb{R} , dus zijn ze gelijkmachtig.

4. Toon aan: [0,1] en [0,1] zijn gelijkmachtig.

Oplossing:

Definieer
$$f:[0,1] \to]0,1[:x \mapsto \begin{cases} \frac{1}{2} & x=0\\ \frac{1}{2^{n+2}} & x=\frac{1}{2^n},\ n\in\mathbb{N}.\\ x & \text{anders} \end{cases}$$

Zij $x \neq y$ dan is het triviaal om aan te zien dat $f(x) \neq f(y).f$ is dus injectief. Bovendien is $f(0) = \frac{1}{2}$, $f(1) = f(\frac{1}{2^0}) = \frac{1}{4}$, $f(\frac{1}{2}) = \frac{1}{8}$, $f(\frac{1}{2^2}) = \frac{1}{16}...$ Het is dus vrij duidelijk dat het ook surjectief is. f is dus een bijectie en dus zijn [0,1] en]0,1[gelijkmachtig.

5. Let F be the set of numbers in [0,1] whose decimal expansions contain the digit 5 infinitely many times. Show that F is a Borel set.

Ik toon aan dat F^c een borellverzamling is. Want dan is F een borelverzamling. F^c is de verzameling van getallen met een eindige hoeveelheid 5'en in het komma getal. We kunnen getallen voorstellen als $a_0.a_1a_2a_3a_4...$ met $a_0=1$ & $a_i=0 \forall i>0$ of $a_0=0$ & $a_i\in\{0,1...9\}(\forall i>0)$. Noteer nu A_{k_n} als de verzameling getallen met $a_{k_1}=a_{k_2}=\cdots=a_{k_n}=5$ en $a_j\neq 5$, $\forall j\notin\{k_1,\ldots k_n\}$. A_{k_n} is gesloten (en dus Borel). Dit omdat A_{k_n} de eindige unie is van gesloten segmenten. Zo is $A_{k_n}=\bigcup\{[a_0.a_1...a_{k_n-1}5,a_0.a_1...a_{k_n-1}6]|a_i\in\{1...4,6,\ldots 9\},\ \forall i\notin\{k_1,\ldots,k_n\}\}$. De laatste 6 hoort erbij aangezien, bijvoorbeeld: $0.59999\cdots=0.6$.

Nu is B_n de verzameling getallen met n 5's. Dit is een aftelbare unie van Borel verzameling A_{k_n} , en dus zelf Borel (B_0 is gesloten). Nu is $F^c = \bigcup_{i=0}^{\infty} B_i$ een aftelbare unie Borel verzamelingen, dus Borel. Ten slotte is F een Borel verzameling, omdat F^c dat is.

6. Zij $A_i(\subset \mathbb{R}^n) \in \mathcal{B}$ een stijgend rij verzamelingen en μ een maat op \mathbb{R}^n , dan is $\lim_{k\to\infty} \mu(A_k) = \mu(\bigcup_{i=1}^{\infty} A_i)$.

Oplossing:

We weten dat $A_1 \subset A_2 \subset \ldots$ Definieer nu $B_1 = A_1$ en $B_k = A_k \cap A_{k-1}^c$. Merk op dat B_n paarsgewijs disjunct zijn van elkaar. Vervolgens is $A_k = \bigcup_{i=1}^k B_i$ en dus $\bigcup_{i=1}^\infty A_i = \bigcup_{i=1}^\infty B_i$. Nu is $\mu(A_k) = \sum_{i=1}^k \mu(B_i)$ en $\mu(\bigcup_{i=1}^\infty A_i) = \sum_{i=1}^\infty \mu(B_i)$. Ten slotte is dus $\lim_{k\to\infty} \mu(A_k) = \lim_{k\to\infty} \sum_{i=1}^k \mu(B_i) = \sum_{i=1}^\infty \mu(B_i) = \mu(\bigcup_{i=1}^\infty A_i)$.

Dus: $\lim_{k\to\infty} \mu(A_k) = \mu(\bigcup_{i=1}^{\infty} A_i)$

7. H^s (de Haussdorf maat) is een maat op \mathbb{R}^n .

Oplossing:

Eerst gaan we na dat H^s_{δ} , $\forall \delta > 0$ en $s \geq 0$ met $H^s_{\delta}(F) := \inf\{\sum_{i=1}^{\infty} \operatorname{diam}(U_i)^s \mid \{U_i\}_{i \in \mathbb{N}} \text{is een } \delta - \text{overdekking van } F\}$ een maat is:

- (a) $H^s_{\delta}(\emptyset) = 0$. Dit is duidelijk aangezien voor elke $\delta \emptyset \subset \emptyset$ met diam $(\emptyset) = 0 < \delta$.
- (b) Zij $A, B \subset \mathbb{R}^n$ willekeurig zodat $A \subset B$, dan is elke δ -overdekking van B ook een δ -overdekking van A. Zij dus $U = \{U_i\}_{i \in \mathbb{N}}$ een δ -overdekking van B en $\tilde{U} = \{\tilde{U}_i\}_{i \in \mathbb{N}}$ een δ -overdekking van A, dan is $U \subset \tilde{U}$ en ook $\{\sum_{i=1}^{\infty} \operatorname{diam}(U_i)^s \mid \{U_i\}_{i \in \mathbb{N}}$ is een δ -overdekking van $B\} \subset \{\sum_{i=1}^{\infty} \operatorname{diam}(U_i)^s \mid \{U_i\}_{i \in \mathbb{N}}$ is een δ -overdekking van $A\}$. Dus is $H^s_{\delta}(A) \leq H^s_{\delta}(B)$.
- (c) Zij $A_k \subset \mathbb{R}^n$, $\forall k \in \mathbb{N}$, stel dat $\{U_i^k\}_{i \in \mathbb{N}}$ een δ -overdekking is van A_k $(A_k \subset \bigcup_{i=1}^\infty U_i^k)$. Nu is $\bigcup_{k=1}^\infty A_k \subset \bigcup_{k=1}^\infty \bigcup_{i=1}^\infty U_i^k = \bigcup_{i=1}^\infty \bigcup_{k=1}^\infty U_i^k$, dus is het een δ -overdekking van $\bigcup_{k=1}^\infty A_k$. Nu is $H_\delta^s(\bigcup_{k=1}^\infty A_k) = \inf\{\sum_{k,i=1}^\infty U_i^k \mid \{U_i^k\}_{k,i \in \mathbb{N}} \text{ is een } \delta$ overdekking van $\bigcup_{k=1}^\infty A_k\} = \inf\{\sum_{i=1}^\infty U_i^1 + \sum_{i=1}^\infty U_i^2 + \dots \mid \{U_i^k\}_{k,i \in \mathbb{N}} \text{ is een } \delta$ overdekking van $\bigcup_{k=1}^\infty A_k\} \leq \inf\{\sum_{i=1}^\infty U_i^1 \mid \{U_i^1\}_{i \in \mathbb{N}} \text{ is een } \delta$ overdekking van $A_1\}$ + $\inf\{\sum_{i=1}^\infty U_i^2 \mid \{U_i^2\}_{i \in \mathbb{N}} \text{ is een } \delta$ overdekking van $A_2\}$ + $\dots = \sum_{k=1}^\infty H_\delta^s(A_k)$. Dus: $H_\delta^s(\bigcup_{k=1}^\infty A_k) \leq \sum_{k=1}^\infty H_\delta^s(A_k)$

We weten dus dat H^s_{δ} een maat is $\forall \delta > 0$ en $s \geq 0$, dit omdat geen enkel van de voorwaarde voldaan zijn voor een zekere δ . Nu is:

- $\lim_{\delta \to 0} H_{\delta}^{s}(\emptyset) = \lim_{\delta \to 0} 0 = 0$
- Zij $A, B \subset \mathbb{R}^n$ willekeurig zodat $A \subset B \Rightarrow H^s_{\delta}(A) \leq H^s_{\delta}(B) \Rightarrow H^s(A) = \lim_{\delta \to 0} H^s_{\delta}(A) \leq \lim_{\delta \to 0} H^s_{\delta}(B) = H^s(B) \Rightarrow H^s(A) \leq H^s(B)$
- Zij $A_k \subset \mathbb{R}^n$, $\forall k \in \mathbb{N} \Rightarrow H^s_{\delta}(\bigcup_{k=1}^{\infty} A_k) \leq \sum_{k=1}^{\infty} H^s_{\delta}(A_k) \Rightarrow H^s(\bigcup_{k=1}^{\infty} A_k) = \lim_{\delta \to 0} H^s_{\delta}(\bigcup_{k=1}^{\infty} A_k) \leq \lim_{\delta \to 0} \sum_{k=1}^{\infty} H^s_{\delta}(A_k) = \sum_{k=1}^{\infty} H^s(A_k) \Rightarrow H^s(\bigcup_{k=1}^{\infty} A_k) \leq \sum_{k=1}^{\infty} H^s(A_k).$ (convergence som)

 H^s voldoet aan de voorwaardes om een maat te zijn (buiten 4), dus is het een maat (Het is ook een functie met variabele s).

8. Zij $F \subset \mathbb{R}^n$, toon aan:

$$H^{0}(F) = \begin{cases} r & |F| = r \\ +\infty & F \text{ is one indig} \end{cases}$$

Zij $|F|=r<\infty$ eindig, dan is al bewezen dat $H^0(F)=r$. Stel nu dat F oneindig is. Stel vervolgens dat $\exists m \in \mathbb{N}$ zo dat $H^0(F) = m < \infty$. Dit betekent dat $\inf\{\sum_{i=1}^N \operatorname{diam}(U_i)^0 \mid \{U_i\}_{i\in\mathbb{N}} \text{is een } \delta\text{-overdekking van } F \text{ en } N\in\mathbb{N}\cup\{\infty\} \text{ de hoeveelheid in de overdekking}\} = 0$ $\inf\{\sum_{i=1}^N 1\mid \{U_i\}_{i\in\mathbb{N}} \text{is een } \delta - \text{overdekking van } F \text{ en } N\in\mathbb{N}\cup\{\infty\} \text{ de hoeveelheid in de overdekking}\} = 0$ m, wat op zijn beurt betekent dat er een eindige familie δ – overdekking van F bestaat. Dit is echter een contradictie. Dus, $H^0(F) = \infty$ als F oneindig is.

9. Zij $F = \{[(0,0),(1,\frac{1}{k})]\}_{k\in\mathbb{N}} \bigcup \{(1,0)\}, \text{ Met } [(0,0),(1,\frac{1}{k})] \text{ de verzamling punten op een rechte lijn van } (0,0)$ naar $(1, \frac{1}{k})$. Toon aan: F is samenhangend, maar niet wegsamenhanged.

Oplossing:

Definieer $E=\{[(0,0),(1,\frac{1}{k})]\}_{k\in\mathbb{N}}$. We will en een continue functie $\varphi:[0,1]\to E:t\mapsto \varphi(t)$ met

$$\varphi(0) = (x_j, y_j) \ (\mathbf{x}_j \in [(0, 0), (1, \frac{1}{k})]) \text{ en } \varphi(1) = (x_i, y_i) \ (\mathbf{x}_j \in [(0, 0), (1, \frac{1}{i})]) \text{ hebben voor willekeurige}$$

$$(x_j, y_j) \text{ en } (x_i, y_i) \text{ . Definieer nu } \varphi := \begin{cases} ((1 - 2t)x_j, (1 - 2t)y_j) & 0 \le t < \frac{1}{2} \\ ((2t - 1)x_i, (2t - 1)y_i) & \frac{1}{2} \le t \le 1 \end{cases} \text{ Ook is } \lim_{t \to +\frac{1}{2}} \varphi(t) = \frac{1}{2}$$

 $\lim_{t\to^{-\frac{1}{2}}}\varphi(t)=\varphi(\frac{1}{2})=(0,0),\ \varphi(0)=(x_j,y_j),\ \varphi(1)=(x_i,y_i)\ \text{en}\ \varphi([0,1])\subset E.\ \varphi$ is dus een pad tussen 2 will ekeurige punten in E,E is dus wegsamenhangend aus samenhangend.

Merk op dat $(1,0) \in \overline{E}$, dit aangezien $\|(1,0)-(1,\frac{1}{k})\| = \frac{1}{k}$. Nu kan $\forall \delta > 0$ een $k \in \mathbb{N}$ gevonden worden zodat $\frac{1}{k} < \delta$ en dus zou $(0,\frac{1}{k}) \in B((1,0);\delta) \cap E$. Dus: $\forall \delta > 0$: $B((1,0);\delta) \cap E \neq \emptyset$. (1,0) is dus een afsluiting spunt. Nu is $E \subset F \subset \overline{E}$ met E samenhangend. F is dus samenhangend.

F is echter niet wegsamenhangend. Stel dat dat wel zo is, dan zou er een continue $\varphi:[0,1]\to F$ bestaan zodat $\varphi(0) = (1,0)$ en $\varphi(1) = (1,\frac{1}{h})$. $(1 \pm \delta,0) \notin F$ en $(1,-\delta) \notin F$, $\forall \delta > 0$, dus zou er een $\delta \in]0, \frac{1}{L}[$ moeten bestaan zodat $\exists t^* > 0 : \varphi(t^*) = (1, \delta) \ (\varphi \text{ is continu}).$ Dit is een contradictie, want:

- (a) δ is niet te schrijven als $\frac{1}{l}$, $l \in \mathbb{N}$: $\varphi(t^*) \notin F$.
- (b) δ is te schrijven als $\frac{1}{l}$, $l \in \mathbb{N}$: Er moet een $\tilde{\delta} < \delta$ bestaan zodat $(\tilde{t}) = (1, \tilde{\delta})$ met $\tilde{t} < t^*$. Uiteindelijke kan δ zo gekozen worden dat het niet te schrijven is als een $\frac{1}{l}$. (tussen elk rationaal getal is een reëel

Dus: $\varphi([0,1]) \not\subset F$. Een contradictie. Dus F is niet weg samenhangend.

10.
$$F = [0,1] \subset \mathbb{R} \Rightarrow H^1(F) \leq 1 < \infty$$

Oplossing:

 $H^1(F) = \lim_{\delta \to 0} H^1_{\delta}(F)$. Hierbij is $H^1_{\delta}(F) = \inf\{\sum_{i=1}^{\infty} \operatorname{diam}(U_i) \mid \{U_i\}_{i \in \mathbb{N}} \text{ is een } \delta\text{-overdekking van } F\}$

Definieer een rij $x_i=(i-1)\delta$ en $N_\delta=\lfloor\frac{1}{\delta}\rfloor$. Dan is $[0,1]\subset\bigcup_{i=1}^{N_\delta}([x_i,x_{i+1}])\cup[x_{N_\delta+1},1]$. Definieer dus $U_i=[x_i,x_{i+1}],\ \forall i=\{1,\ldots,N_\delta\}$ en $U_{N_\delta+1}=[x_{N_\delta+1},1]$. Het is duidelijk dat $\operatorname{diam}(U_i)\leq\delta,\ \forall i.\ \{U_i\}_{i\in\{1\ldots,N_\delta\}}$ is dus een $\delta-\text{overdekking van }[0,1]$. Tenslotte is $\sum_{i=0}^{N_\delta+1}\operatorname{diam}(U_i)=\sum_{i=0}^{N_\delta}\operatorname{diam}(U_i)+\operatorname{diam}(U_{N_\delta+1})=\sum_{i=0}^{N_\delta}\delta+(1-\delta N_\delta)=\delta N_\delta+1-\delta N_\delta=1$.

In conclusie:

$$1 \in \{\sum_{i=1}^{\infty} \operatorname{diam}(U_i) \mid \{U_i\}_{i \in \mathbb{N}} \text{ is een } \delta\text{-overdekking van } F\}$$

$$\Rightarrow H^1_{\delta}(F) = \inf\{\sum_{i=1}^{\infty} \operatorname{diam}(U_i) \mid \{U_i\}_{i \in \mathbb{N}} \text{ is een } \delta\text{-overdekking van } F\} \leq 1$$

$$\Rightarrow H^1(F) = \lim_{\delta \to 0} H^1_{\delta}(F) \leq 1$$

11. $F = \mathbb{R}$ dus $F \in \mathcal{B}$. Toon aan:

$$H^{s}(F) = \begin{cases} \infty & 0 \le s \le 1\\ 0 & s > 1 \end{cases}$$

Oplossing:

Het is gekend dat $H^1(F) = \frac{1}{c_1}l^1(F)$. Hierbij is $c_1 = 1$ en $l^1(F)$ de lengte van F, in dit geval ∞ . Dus is $H^1(F) = \infty$.

Aangezien $s \mapsto H^s(F)$ monotoom dalend is voor $s \in \mathbb{R}^+$. Is $H^s(F) = \infty$ voor $0 \le s \le 1$.

Definieer nu
$$U_i = \begin{cases} \left[\frac{i}{2}\delta, \left(\frac{i}{2}+1\right)\delta\right] & i \text{ is even} \\ \left[-\left(\frac{i-1}{2}+1\right)\delta, -\frac{i-1}{2}\delta\right] & i \text{ is oneven} \end{cases}$$

Definieer nu $U_i = \begin{cases} \left[\frac{i}{2}\delta, \left(\frac{i}{2}+1\right)\delta\right] & i \text{ is even} \\ \left[-\left(\frac{i-1}{2}+1\right)\delta, -\frac{i-1}{2}\delta\right] & i \text{ is oneven} \end{cases}$ Het is duidelijk dat diam $(U_i) = \delta$ en $\mathbb{R} \subset \bigcup_{i=0}^{\infty} U_i$. Dus is $\{U_i\}_{i \in \mathbb{N}}$ een δ -overdekking van \mathbb{R} . Aangezien we δ naar 0 willen nemen, kiezen we alvast $\delta < 1$. Voor een $\beta > 1$ geldt nu dat $\sum_{i=0}^{\infty} \operatorname{diam}(U_i)^{\beta}$ convergeert $(\delta < 1)$. Nu is

$$\lim_{\delta \to 0} \sum_{i=0}^{\infty} \operatorname{diam}(U_i)^{\beta} = \lim_{\delta \to 0} \sum_{i=0}^{\infty} \delta^{\beta} = \sum_{i=0}^{\infty} \lim_{\delta \to 0} \delta^{\beta} = \sum_{i=0}^{\infty} 0 = 0$$

Dus is $0 \in \{\lim_{\delta \to 0} \sum_{i=0}^{\infty} \operatorname{diam}(U_i)^{\beta} \mid \{U_i\}_{i \in \mathbb{N}} \text{ is een } \delta - \text{overdekking van } F\}$ en aangezien $0 \leq \lim_{\delta \to 0} \sum_{i=0}^{\infty} \operatorname{diam}(U_i)^{\beta}$ is $H^{\beta}(F) = 0, \ \forall \beta > 1.$

Hiermee kan ook aangetoond worden dat $\forall s \leq 1 \ H^s(F) = \infty$. (aangezien de som, voor elke $\delta > 0$ zal divergeren naar ∞)

12. Toon aan dat de coordinaat transformtie van het

$$\varphi := \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} c\cos(\theta) & -c\sin(\theta) \\ c\sin(\theta) & c\cos(\theta) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

is een gelijkaardigheid van ratio c, en beschrijf de geometrische transformatie. (We gebruiken de euclidische norm)

Oplossing:

$$\|\varphi(\mathbf{x}) - \varphi(\mathbf{y})\| = \sqrt{c^2(\cos(\theta)(x_1 - y_1) - \sin(\theta)(x_2 - y_2))^2 + c^2(\sin(\theta)(x_1 - y_1) + \cos(\theta)(x_2 - y_2))^2}$$

$$= |c|\sqrt{(\cos(\theta)^2 + \sin(\theta)^2)(x_1 - y_1)^2 + (\sin(\theta)^2 + \cos(\theta)^2)(x_2 - y_2)^2}$$

$$-2\cos(\theta)\sin(\theta)(x_1 - y_1)(x_2 - y_2) + 2\cos(\theta)\sin(\theta)(x_1 - y_1)(x_2 - y_2)$$

$$= |c|\sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} = |c|\|\mathbf{x} - \mathbf{y}\|$$

Stel we zien (x_1, x_2) als een vector. Dan roteert φ , (x_1, x_2) met θ $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \sin(\theta) \end{bmatrix}$ is de Givens rotatie matrix.), vermenigvuldigt het met een factor cen verschuift het met (a_1, a_2) .

13. Zij $f: X \to X$, X is een compacte metrische ruimte, d de metriek op X met d(f(x), f(y)) =d(x,y). Toon aan: f is surjectief.

Oplossing:

f is injectief: stel $f(x) = f(y) \Rightarrow 0 = d(f(x), f(y)) = d(x, y) \Rightarrow x = y$. Stel dat f niet surjectief is. $\exists y \in X$ zo dat $\forall x \in X : f(x) \neq y$. Echter omdat X compact is en X zowel het codomein als domein is, zou, volgens het duivenhok principe, $\exists x_1, x_2 \in X : f(x_1) = f(x_2)$ voor $x_1 \neq x_2$. Dit is een contradictie (f is injectief). f is dus surjectief.

14. Zij $f: U \subset \mathbb{R}^n \to \mathbb{R}^k$, met U open en convex, $F \subset U$ en f is differentieerbaar in U, $Df: U \to L_c(\mathbb{R}^n, \mathbb{R}^k)$ is begrensd op U ($\sup_{x \in [x, y]} ||Df(x)|| = M < \infty$). Toon aan:

$$\exists c > 0$$
, zodat $H^s(f(F)) \leq c^s H^s(F) \ \forall s \geq 0$

Oplossing:

Volgens de middelwaardestelling (gezien in de cursus Differentialen en differentiaalvergelijkingen) geldt, $\forall x,y \in U: \|f(x)-f(y)\| \overset{MWS}{\leq} \sup_{x \in [x,y]} \|Df(x)\| \|x-y\| = M \|x-y\|^1$. Hieruit volgt dat $H^s(f(F)) \leq M^s H^s(F)$, $\forall s>0$ (volgens propositie 2.2). Kies dus c=M en dan is het gevraagde bewezen.

15. Wat is de Hausdorff dimensie van de verzamelingen $\{0,1,2,\dots\}$ en $\{0,1,\frac{1}{2},\frac{1}{3},\dots\}$ in $\mathbb R$

Oplossing:

Beide verzamelingen zijn aftelbaar, volgende functies zijn namelijke bijecties: $f: \mathbb{N} \to \{0, 1, 2, \ldots\} : x \mapsto x - 1$ en $f: \mathbb{N} \to \{0, 1, \frac{1}{2}, \ldots\} : x \mapsto \begin{cases} 0 & x = 1 \\ \frac{1}{x-1} & \text{anders} \end{cases}$.

We weten dat $\dim_H(F) = 0$ als F aftelbaar opeindig is dus $\dim_H(\{0, 1, 2, \ldots\}) = 0$ en

We weten dat $\dim_H(F) = 0$ als F aftelbaar one indig is, dus $\dim_H(\{0,1,2,\dots\}) = 0$ en $\dim_H(\{0,1,\frac{1}{2},\dots\}) = 0$

16. Laat $f: \mathbb{R} \to \mathbb{R}$ een functie $f(x) = x^2$ zijn, en laat F een willekeurige subset van \mathbb{R} zijn. Toon aan dat $\dim_H(f(F)) = \dim_H(F)$.

Oplossing:

Stel $F = \emptyset \Rightarrow f(F) = \emptyset$, dan is $\dim_H(f(F)) = 0 = \dim_H(F)$. Stel F is eindig $\Rightarrow f(F)$ is ook eindig, dan is $\dim_H(f(F)) = 0 = \dim_H(F)$.* Definieer $F^- = \{x | x \in F, x < 0\}$ en $F^+ = \{x | x \in F, x > 0\}$, dus $F = F^- \cup F^+ \cup \{0\}$. Nu is dus $\dim_H(F) = \sup\{\dim_H(F^+), \dim_H(F^-)\}$ $(\dim_H(\{0\}) \stackrel{*}{=} 0)$.

Neem nu b > 0, a > 0, beschouw dan $f : [a,b] \cap F \to f([a,b] \cap F) : x \mapsto x^2$. De functie is bi-Lipschitz want: [a,b] is compact, f is bijectief $(a,b \neq 0), 2a \leq f'(x) = 2x \leq 2b$ en $\frac{1}{2b} \leq f^{-1}(x) = \frac{1}{2\sqrt{(x)}} \leq \frac{1}{2a}$, dus is $\dim_H(f([a,b] \cap F)) = \dim_H([a,b] \cap F)$.

Neem nu b < 0, a < 0, beschouw dan $f : [b, a] \cap F \to f([b, a] \cap F) : x \mapsto x^2$. De functie is bi-Lipschitz want: [b, a] is compact, f is bijectief $(a, b \neq 0), 2b \leq f'(x) = 2x \leq 2a$ en $\frac{1}{2a} \leq f^{-1}(x) = -\frac{1}{2\sqrt{(x)}} \leq \frac{1}{2b}$, dus is $\dim_H(f([b, a] \cap F)) = \dim_H([b, a] \cap F)$.

Merk nu op dat $F^+ = \bigcup_{m \in \mathbb{N}} F \cap [\frac{1}{m}, m]$ en $F^- = \bigcup_{m \in \mathbb{N}} F \cap [-m, \frac{-1}{m}]$. Dus, $\dim_H(F^+) = \sup_{m \in \mathbb{N}} \{\dim_H(F \cap [\frac{1}{m}, m])\} = \sup_{m \in \mathbb{N}} \{\dim_H(f(F \cap [\frac{1}{m}, m]))\} = \dim_H(f(F^+))$ en $\dim_H(F^-) = \sup_{m \in \mathbb{N}} \{\dim_H(F \cap [-m, -\frac{1}{m}])\} = \sup_{m \in \mathbb{N}} \{\dim_H(f(F^-))\}$. In conclusie:

$$\dim_H(F) = \sup\{\dim_H(F^+), \dim_H(F^-)\} = \sup\{\dim_H(f(F^+)), \dim_H(f(F^-))\} = \dim_H(f(F))$$

17. Laat $f:[0,1]\to\mathbb{R}$ een Lipschitz functie zijn. Zij $\operatorname{graf}(f)=\{(x,f(x)):0\leq x\leq 1\}$, toon aan dat $\dim_H(\operatorname{graf}(f))=1$. In het bijzonder is dit waar voor f een continue differentieerbare functie.

Oplossing:

Zij $g: [0,1] \to \text{graf}(f): x \mapsto (x, f(x))$, dan is g Lipschitz: neem $x, y \in [0,1]$ willekeurig, dan is $||g(x) - g(y)||_{\infty} = ||(x - y, f(x) - f(y))||_{\infty} \le ||(x - y, c(x - y))||_{\infty} = \max\{1, c\}||x - y||_{\infty}$. Het is dus al duidelijk dat $\dim_H(g([0,1])) \le \dim_H([0,1]) = 1$.

Verder kan men ook kijken naar de inverse functie van g, namelijk: $h : \operatorname{graf}(f) \to [0,1] : (x, f(x)) \mapsto x$. Het is duidelijk dat als $\forall (x, f(x)), (y, f(y)) \in \operatorname{graf}(f) : ||h((x, f(x))) - h((y, f(y)))|| = ||x - y|| \le ||(x, f(x)) - (y, f(y))||$. Dit is dus Lipschitz met constante 1, en dus is $\dim_H([0,1]) \le \dim_H(\operatorname{graf}(f))$.

In conclusie: $\dim_H(\operatorname{graf}(f)) = \dim_H([0,1]) = 1$

In het geval dat f continu differentieerbaar is, is graf(f) glad en dus $dim_H(graf(f)) = dim(graf(f)) = 1$. Of aangezien f continu differentieerbaar is, is het Lipschitz met constante $max\{1, \sup|f'|\}$.

18. Zij F de CV α . Toon aan: F is compact, volledig, niet samenhangend, $l^2(F) = 0$ en F is een Borrelverzameling.

Oplossing:

De cantor verzameling α is gedefinieerd als volgt:

Construeer $\mathbb{R}^2 \supset E_0 \supset E_1 \supset E_2 \supset \dots$ Met $E_0 = [0,1] \times [0,1]$ en $E_1 = E_1^1 \cup E_1^2 \cup E_1^3 \cup E_1^4$ met E_1^i een gesloten vierkant met diameter $\frac{\sqrt{2}}{4^1}$. Verder is $E_2 =_{i=1}^{4^2} E_2^i$ met E_2^i een gesloten vierkant met diameter $\frac{\sqrt{2}}{4^2}$. In conclusie is $E_n = \bigcup_{i=1}^{4^n} E_n^i$ met E_n^i een gesloten vierkant met diameter $\frac{\sqrt{2}}{4^n}$ (zijde $\frac{1}{4^n}$). Hieronder is de wijze waarop een bestaand vierkant van E_i wordt opgedeeld in E_{i+1} :

Nu is $F = \bigcap_{i=0}^{\infty} E_i$

Compact

 $\overline{E_n}$ is een eindige unie van gesloten delen voor alle n, dus is E_n gesloten $\forall n \geq 0$. F is de doorsnede van een familie gesloten delen, en dus is F gesloten. Tenslotte is $F \subset E_0 = [0,1] \times [0,1]$ (begrensd). In conclusie: F is gesloten en begrensd, dus is F compact.

Volledig

 \mathbb{R}^2 is volledig, $F \subset \mathbb{R}^2$ is een compacte en gesloten deelruimte van \mathbb{R}^2 , dus is F volledig.

Niet Samenhangend

Definieer, met $\delta > 0$

$$P =]-\delta, 0.25 + \delta[\times]0.5 - \delta, 0.75 + \delta[\cup]0.25 - \delta, 0.5 + \delta[\times] - \delta, 0.25 + \delta[\times]0.25 + \delta[$$

en

$$Q =]0.5 - \delta, 0.75 + \delta[\times]0.75 - \delta, 1 + \delta[\cup]0.75 - \delta, 1 + \delta[\times]0.25 - \delta, 0.5 + \delta[\cup]0.75 - \delta, 0.75 + \delta[\times]0.25 - \delta, 0.75 + \delta[\times]0.75 - \delta[\times]0.$$

Nu zijn P en Q de unie van 2 open delen, dus ook open en $P, Q \subset \mathbb{R}^2$. Merk eerst op dat $F \subset E_1 \subset P \cup Q$, $P \cap Q = \emptyset$ (δ kan klein genoeg gekozen worden) en $E_1 \not\subset P(of Q)$, vervolgens is $F \cap P \neq \emptyset$ en $F \cap Q \neq \emptyset$ en $F \cap P \cap Q = \emptyset$.

Borrel

F is gesloten en dus is $F \in \mathcal{B}$.

$$l^2(F) = 0$$

We weten dat $H^2(F) = 0$ aangezien $H^1(F) < \infty$. Aangezien $F \in \mathcal{B}$ en $F \subset \mathbb{R}^2$: $0 = H^2(F) = \frac{1}{c_2}l^2(F) = \frac{4}{\pi}l^2(F) \Rightarrow l^2(F) = 0$

19. Zij $F \subset \mathbb{R}^2$ de CV β , toon aan dat $\dim_H(F) = \frac{\ln(4)}{\ln(3)}$ en vindt een bovengrens voor $H^{\frac{\ln(4)}{\ln(3)}}(F)$.

Oplossing:

De cantor verzameling β is gedefinieerd als volgt:

Construeer $\mathbb{R}^2 \supset E_0 \supset E_1 \supset E_2 \supset \dots$ Gesloten. Hierbij is $E_0 = [0,1] \times [0,1]$ en $E_1 = E_1^1 \cup E_1^2 \cup E_1^3 \cup E_1^4$ met E_1^i een gesloten vierkant met diameter $\frac{\sqrt{2}}{3^1}$. Verder is $E_2 =_{i=1}^{4^2} E_2^i$ met E_2^i een gesloten vierkant met diameter $\frac{\sqrt{2}}{3^2}$. In conclusie is $E_n = \bigcup_{i=1}^{4^n} E_n^i$ met E_n^i een gesloten vierkant met diameter $\frac{\sqrt{2}}{3^n}$ (zijde $\frac{1}{3^n}$). Hieronder is de wijze waarop een bestaand vierkant van E_i wordt opgedeeld in E_{i+1} :

Nu is $F = \bigcap_{i=0}^{\infty} E_i$ Definieer nu

$$f_{LO}: \mathbb{R}^2 \to \mathbb{R}^2: (x,y) \mapsto (\frac{1}{3}x, \frac{1}{3}y)$$

 $f_{LB}: \mathbb{R}^2 \to \mathbb{R}^2: (x,y) \mapsto (\frac{1}{3}x, \frac{2}{3} + \frac{1}{3}y)$

7

$$f_{RO}: \mathbb{R}^2 \to \mathbb{R}^2: (x,y) \mapsto (\frac{2}{3} + \frac{1}{3}x, \frac{1}{3}y)$$

 $f_{RB}: \mathbb{R}^2 \to \mathbb{R}^2: (x,y) \mapsto (\frac{2}{3} + \frac{1}{3}x, \frac{2}{3} + \frac{1}{3}y)$

Nu is

$$||f_{LO}(x_1, x_2) - f_{LO}(y_1, y_2)|| = ||\frac{1}{3}(x_1 - y_1, x_2 - y_2)|| = \frac{1}{3}||(x_1, x_2) - (y_1, y_2)||, \quad \forall (x_1, x_2), (y_1, y_2) \in \mathbb{R}$$

Dit geldt voor alle opgenoemde functies. Vervolgens impliceert dit dat $H^s(f_i(\tilde{F})) = (\frac{1}{3})^s H^s(\tilde{F}), \ \forall \tilde{F} \subset \mathbb{R}^2 i \in \{LO, RO, RB, LB\} = \tilde{B} \text{ en } s \geq 0.$ Nu is $E_n = f_{LO}(E_{n-1}) \cup f_{RO}(E_{n-1}) \cup f_{LB}(E_{n-1}) \cup f_{RB}(E_{n-1}) \ \forall n \geq 1.$ Dus :

$$F = \bigcap_{n=0}^{\infty}$$

$$= E_0 \cap \bigcap_{n=1}^{\infty} (f_{LO}(E_{n-1}) \cup f_{RO}(E_{n-1}) \cup f_{LB}(E_{n-1}) \cup f_{RB}(E_{n-1}))$$

$$=^* E_0 \cap (f_{LO}(\bigcap_{i=1}^{\infty} E_{n-1}) \cup f_{RO}(\bigcap_{i=1}^{\infty} E_{n-1}) \cup f_{LB}(\bigcap_{i=1}^{\infty} E_{n-1}) \cup f_{RB}(\bigcap_{i=1}^{\infty} E_{n-1}))$$

$$= E_0 \cap (f_{LO}(F) \cup f_{RO}(F) \cup f_{LB}(F) \cup f_{RB}(F))$$

$$= f_{LO}(F) \cup f_{RO}(F) \cup f_{LB}(F) \cup f_{RB}(F)$$

=* geldt aangezien:

⊇:Dit geldt door de definietie van doorsnede.

 $\Rightarrow f_{LO}(E_{n-1}) \cap f_{RO}(E_{n-1}) \cap f_{LB}(E_{n-1}) \cap f_{RB}(E_{n-1}) = \emptyset \Rightarrow f_{LO}(E_i) \cap f_{RO}(E_j) \cap f_{LB}(E_k) \cap f_{RB}(E_l) = \emptyset, \ \forall i, j, k, l.$

Dus:

$$\bigcap_{n=1}^{\infty} (f_{LO}(E_{n-1}) \cup f_{RO}(E_{n-1}) \cup f_{LB}(E_{n-1}) \cup f_{RB}(E_{n-1})) \subseteq f_{RO}(\bigcap_{i=1}^{\infty} E_{n-1}) \cup f_{LB}(\bigcap_{i=1}^{\infty} E_{n-1}) \cup f_{RB}(\bigcap_{i=1}^{\infty} E_{n-1}))$$

Nu we weten dat

$$F = f_{LO}(F) \cup f_{RO}(F) \cup f_{LB}(F) \cup f_{RB}(F)$$

Aangezien $f_{LO}(F) \cap f_{RO}(F) \cap f_{LB}(F) \cap f_{RB}(F) = \emptyset$ en omdat H^s een maat is, is:

$$H^{s}(F) = H^{s}(f_{LO}(F)) + H^{s}(f_{RO}(F)) + H^{s}(f_{LB}(F)) + H^{s}(f_{RB}(F)), \ \forall s$$

Aangezien F gesloten is $(E_n$ is een unie van gesloten delen en F is een doorsnede van een familie aftelbare geslote delen), is het Borrel. Ook is het duidelijk dat f_i , $\forall i \in \tilde{B}$ continue bijecties zijn, en dus $f_i(F)$, $\forall i \in \tilde{B}$ gesloten en dus ook Borrel zijn. Nu is: $H^s(F) = 4\left(\frac{1}{3}\right)^s H^s(F)$.

Zij $s_0 = \dim_H(F)$, veronderstel dan dat $0 < H^{s_0}(F) < \infty$. Dan is:

$$4\left(\frac{1}{3}\right)^{s_0} = 1 \Rightarrow s_0 \ln(\frac{1}{3}) = \ln(\frac{1}{4}) \Rightarrow s_0 = \frac{\ln(\frac{1}{4})}{\ln(\frac{1}{3})} = \frac{\ln(4)}{\ln(3)}$$

Dus:
$$H^{s_0}(F) < \infty \Rightarrow s_0 = \frac{\ln(4)}{\ln(3)}$$

Indien geldt dat $H^{s_0}(F) < \infty$, vind ik nu een bovengrens:

Het is gekend dat E_n een unie is van 4^n gesloten vierkanten met diameter $\frac{\sqrt{2}}{3^n}$. $\{E_n^i\}_{i\in\{1,\dots 4^n\}}$ is dus een $\frac{\sqrt{2}}{3^n}$ —overdekking van F ($F \subset E_n$). Dus:

$$H_{\frac{\sqrt{2}}{3^n}}^{s_0}(F) \le \sum_{i=1}^{4^n} \operatorname{diam}(E_n^i)^{s_0} = \sum_{i=1}^{4^n} \left(\frac{\sqrt{2}}{3^n}\right)^{s_0} = 4^n \frac{\sqrt{2}^{s_0}}{3^{n \frac{\ln(4)}{\ln(3)}}} = 4^n 4^{-n} \sqrt{2}^{\frac{\ln(4)}{\ln(3)}} = \sqrt{2}^{\frac{\ln(4)}{\ln(3)}} = 2^{\frac{\ln(2)}{\ln(3)}}$$

In conclusie: $H^{s_0}(F) \leq 2^{\frac{\ln(2)}{\ln(3)}}$

20. Toon aan:

- Is Q totaal onsamenhangend?
- is $\mathbb{R}\setminus\mathbb{Q}$ total OSH?
- is de ruimte (\mathbb{R}, d) met de discrete metriek totaal OSH?

Oplossing:

Definitie totaal onsamenhangend:

Zij $A \subset \mathbb{R}^n$ een genormeerde ruimte, A is totaal onsamenhangend $\iff \forall x,y \in A, (x \neq y), \exists \text{ open } U,V \subset \mathbb{R}^n \text{ zodat } x \in U, \ y \in V, A = (U \cap A) \cup (V \cap A) \text{ en } (U \cap A) \cap (V \cap A) = \emptyset$ en $A \subset U \cup V$

- Zij $x,y\in\mathbb{Q}$ zodat $x\neq y$ willekeurig. Uit analyse 1 weten we dat tussen twee rationale getallen altijd een reel getal bestaat. Noem dit getal $a\in\mathbb{R}\setminus\mathbb{Q}$. Zonder verlies van algemeenheid nemen we aan dat x< a en y>a, definieer dan $U=]-\infty,a[$ en $V=]a,\infty[$. Nu is $x\in U$ en $y\in V$, U en V zijn duidelijk open, $\mathbb{Q}=(U\cap\mathbb{Q})\cup(V\cap\mathbb{Q}),$ $(U\cap\mathbb{Q})\cap(V\cap\mathbb{Q})=\emptyset$ aangezien $U\cap V=\emptyset$ en tenslotte is $\mathbb{Q}\subset U\cup V=\mathbb{R}\setminus\{a\}$. Ze bestaan, dus is \mathbb{Q} totaal onsamenhangend.
- Zij $x,y \in \mathbb{R} \setminus \mathbb{Q}$ zodat $x \neq y$ willekeurig. Uit analyse 1 weten we dat tussen twee reele getallen altijd een rationaal getal bestaat. Noem dit getal $a \in \mathbb{Q}$. Zonder verlies van algemeenheid nemen we aan dat x < a en y > a, definieer dan $U =]-\infty, a[$ en $V =]a, \infty[$. Nu is $x \in U$ en $y \in V$, U en V zijn duidelijk open, $\mathbb{Q} = (U \cap \mathbb{Q}) \cup (V \cap \mathbb{Q})$, $(U \cap \mathbb{Q}) \cap (V \cap \mathbb{Q}) = \emptyset$ aangezien $U \cap V = \emptyset$ en tenslotte is $\mathbb{Q} \subset U \cup V = \mathbb{R} \setminus \{a\}$. Ze bestaan, dus is $\mathbb{R} \setminus \mathbb{Q}$ totaal onsamenhangend.
- In ruimte met de discrete metriek is elke deelverzameling openen gesloten. Een singelton en $\mathbb{R}\setminus\{a\}$ zijn dus open. Zij nu $x,y\in\mathbb{R}$ zodat $x\neq y$ willekeurig. Definieer $U=\{x\}$ en $V=\mathbb{R}\setminus\{x\}$. Nu is $x\in U$ en $y\in V$ en U en V zijn open in de discrete metriek. Verder is $\mathbb{R}=(U\cap\mathbb{R})\cup(V\cap\mathbb{R}),\,(U\cap\mathbb{R})\cap(V\cap\mathbb{R})=\emptyset$ aangezien $U\cap V=\emptyset$ en tenslotte is $\mathbb{R}\subset U\cup V=\mathbb{R}$. Het bestaat, dus is \mathbb{R} totaal onsamenhangend met de discrete metriek.

21. Toon aan:

- (a) $\underline{\lim}_{x\to 0} f(x) \le \overline{\lim}_{x\to 0} f(x)$
- (b) Zij $\lim_{x\to 0} f(x) = \overline{\lim}_{x\to 0} f(x) \Rightarrow \lim_{x\to 0} f(x) = \lim_{x\to 0} f(x) = \overline{\lim}_{x\to 0} f(x)$
- (c) Zij $f(x) \le g(x), \ \forall x > 0 \Rightarrow \underline{\lim}_{x \to 0} f(x) \le \underline{\lim}_{x \to 0} g(x)$ (zelfde over $\overline{\lim}$)
- (d) $\underline{\lim}_{x\to 0} f(x) = -\overline{\lim}_{x\to 0} f(x)$
- (e) $\underline{\lim}_{x\to 0} \lambda f(x) = \lambda \underline{\lim}_{x\to 0} f(x)$, met $\lambda > 0$ constant

(f) $\underline{\lim}_{x\to 0} c + f(x) = c + \underline{\lim}_{x\to 0} f(x)$, met $c \in \mathbb{R}$

Oplossing:

Definitie:

- $\lim_{x \to 0} f(x) = \lim_{r \to 0} (\inf\{f(x) | 0 < x < r\})$
- $\overline{\lim}_{x \to 0} f(x) = \lim_{r \to 0} (\sup\{f(x) | 0 < x < r\})$
- (a) We weten dat $\inf\{f(x)|0 < x < r\} \le \sup\{f(x)|0 < x < r\}$, $\forall r \in \mathbb{R}_0^+$. Dus is het makkelijk in te zien dat $\lim_{r\to 0} (\inf\{f(x)|0 < x < r\}) \le \lim_{r\to 0} (\sup\{f(x)|0 < x < r\})$ en dus: $\underline{\lim}_{x\to 0} f(x) \le \overline{\lim}_{x\to 0} f(x)$
- (b) We weten dat $\inf\{f(x)|0 < x < r\} \le f(y) \le \sup\{f(x)|0 < x < r\}, \ \forall y \in]0, r[\& \forall r \in \mathbb{R}^+_0, \text{ dus: } \lim_{r \to 0} (\inf\{f(x)|0 < x < r\}) \le \lim_{x \to 0} f(\underline{x}) \le \lim_{x \to 0} f(x) = \lim_{x \to 0} f(x) =$
- (c) Aangezien $f(x) \le g(x)$, $\forall x > 0$ is $\inf\{f(x)|0 < x < r\} \le \inf\{g(x)|0 < x < r\}$, $\forall r \in \mathbb{R}_0^+$, dus: $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x)$
- (d) Als $a = \inf\{-f(x)|0 < x < r\}$, dan is $a \le -f(x) \Rightarrow f(x) \le -a \ \forall x \in]0, r[\Rightarrow a = -\sup\{f(x)|0 < x < r\}$, in conclusie: $\inf\{-f(x)|0 < x < r\} = -\sup\{f(x)|0 < x < r\}$ $\forall r \in \mathbb{R}^+_0$. Hieruit volgt uiteindelijk: $\underline{\lim}_{x\to 0} -f(x) = -\overline{\lim}_{x\to 0} f(x)$
- (e) Zij $a = \inf\{\lambda f(x) | 0 < x < r\}$ $\lambda \stackrel{\Rightarrow}{>} 0$ $\frac{a}{\lambda} = \inf\{f(x) | 0 < x < r\} \Rightarrow a = \lambda \inf\{f(x) | 0 < x < r\}$. Hieruit volgt: $\underline{\lim}_{x \to 0} \lambda f(x) = \lambda \underline{\lim}_{x \to 0} f(x)$
- (f) Zij $c \in \mathbb{R}$ is $a = \inf\{c + f(x)|0 < x < r\} \Rightarrow a c = \inf\{f(x)|0 < x < r\} \Rightarrow a = c + \inf\{f(x)|0 < x < r\}$. Aangezien $\lim_{r\to 0} c + h(r) = c + \lim_{r\to 0} h(r)$ volgt hieruit dat $\lim_{r\to 0} c + f(x) = c + \lim_{r\to 0} f(x)$, met $c \in \mathbb{R}$.
- 22. Zij $F \neq \emptyset$, begrensd en $F \subset \mathbb{R}^n$, dan is:

$$\underline{\dim}_{B}(F) = \underline{\lim}_{\delta \to 0} \frac{\ln(N_{\delta}'(F))}{\ln(\delta)}$$

$$\overline{\dim}_B(F) = \overline{\lim}_{\delta \to 0} \frac{\ln(N'_{\delta}(F))}{\ln(\delta)}$$

Toon aan dat $N_{\delta}'(F)$ gelijk kan zijn aan:

- Het kleinste aantal kubussen $\{\mathcal{U}_i\}_{i\in\mathbb{N}}$ met zijden $\delta>0$ zodat $F\subset\bigcup_{i=1}^{N_\delta'(F)}\mathcal{U}_i$.
- Het grootste aantal open bollen $B(x_i, \delta)$ zodat $x_i \in F$ en $B(x_i, \delta) \cap B(x_j, \delta) = \emptyset$, $\forall j \neq i$.

Oplossing:

• Definieer $N'_{\delta}(F)$ zoals gezegd en $N_{\delta}(F)$ als het kleinste aantal open verzamelingen U_i met diam $(U_i) \leq \delta$ zodat $F = \bigcup_{i=1}^{N_{\delta}(F)} U_i$.

 \geq Zij $U \neq \emptyset$, diam $(U) \leq \delta$ en $U \subset \mathbb{R}^n$ zodat $\exists i_0 : U \subset \mathcal{U}_{i_0}$, deze i_0 bestaat zodat als $x \in U$ er een kubus \mathcal{U}_{i_0} bestaat met centrum x want $F \subset \bigcup_{i=1}^{N'_{\delta}(F)} \mathcal{U}_i$ en zij $y \in U$ dan is $||x - y|| < \delta$ want beide zijn in U, dus $y \in \mathcal{U}_{i_0} \Rightarrow N'_{\delta}(F) \leq N_{\delta}(F) \stackrel{\delta < 1}{\Rightarrow} \frac{\ln(N'_{\delta}(F))}{-\ln(\delta)} \leq \frac{\ln(N_{\delta}(F))}{-\ln(\delta)} \Rightarrow \underline{\dim}_B(F) \geq \underline{\lim}_{\delta \to 0} \frac{\ln(N'_{\delta}(F))}{-\ln(\delta)}$ (enkel de laatste stappen verschillen voor $\underline{\dim}_B(F)$)

• Definieer $N'_{\delta}(F)$ zoals gezegd en $N_{\delta}(F)$ als het kleinste aantal open verzamelingen U_i met diam $(U_i) \leq \delta$ zodat $F = \bigcup_{i=1}^{N_{\delta}(F)} U_i$.

Laat $B_1, \ldots, B_{N'_{\delta}(F)}$ de disjuncte bollen met straal δ zijn en centrums in F zijn. Als $x \in F$ dan $\exists i_0 \in \{1, \ldots, N'_{\delta}(F)\} : d(x, B_{i_0}) \leq \delta$, indien dit niet het geval is, moet er een nieuwe bol gemaakt worden met centrum x. Hieruit moet volgen dat we F kunnen overdekken met de verzameling bollen met dezelfde centrums maar straal 2δ . Aangezien $N'_{\delta}(F)$ het grootste aantal ... is en $N_{4\delta}(F)$ het kleinste aantal ... en deze een hoeveelheid bollen gemeen hebben, is:

$$N_{4\delta}(F) \leq N_{\delta}'(F) \stackrel{4\delta \leq 1}{\Rightarrow} \frac{\ln(N_{4\delta}(F))}{-\ln(4\delta)} \leq \frac{\ln(N_{\delta}'(F))}{-\ln(4) - \ln(\delta)} \Rightarrow \underline{\dim}_{B}(F) \leq \underline{\lim}_{\delta \to 0} \frac{\ln(N_{\delta}'(F))}{-\ln(\delta)}$$

Stel dat $B_1, \ldots, B_{N'_{\delta}(F)}$ de disjuncte bollen met straal δ zijn en centrums in F zijn. Laat $U_1, \ldots, U_{N_{\delta}(F)}$ een δ -overdekking is van F. Aangezien U_j de centrums van de B_i moet bevatten en omdat diam $(U_j) \leq \delta$, moet elke B_i minstens een U_j bevatten, dus:

$$N_{\delta}(F) \geq N_{\delta}'(F) \stackrel{\delta \leq 1}{\Rightarrow} \frac{\ln(N_{\delta}(F))}{-\ln(\delta)} \geq \frac{\ln(N_{\delta}'(F))}{-\ln(\delta)} \Rightarrow \underline{\dim}_{B}(F) \geq \underline{\lim}_{\delta \to 0} \frac{\ln(N_{\delta}'(F))}{-\ln(\delta)}$$

(enkel de laatste stappen verschillen voor $\overline{\dim}_B(F)$)

23. Zij F de CV- α , toon aan: dim $_B F = 1$

Oplossing:

Definieer $\delta_k = \frac{\sqrt{2}}{4^k}$, dus $\delta_{k+1} = \frac{1}{4}\delta_k$ (1 > δ_1 > δ_2 > ... en $\lim_{k\to\infty} \delta_k = 0$). Nu is $F = \bigcap_{k=0}^{\infty} E_k$ met $E_k = \bigcup$ 4^k vierkanten E_k^i met diameter $\frac{\sqrt{2}}{4^k}$. Ook is $F \subset E_k = \bigcup_{i=1}^{4^k} E_k^i \Rightarrow I_k = \{E_k^i\}_{i=1,\dots,4^k}$ is een δ_k -overdekking van $F \ \forall k \geq 0 \Rightarrow N_{\frac{\sqrt{2}}{4^k}}(F) \leq 4^k \ \forall k \geq 0 \Rightarrow \frac{\ln(N_{\delta_k}(F))}{-\ln(\delta_k)} \leq \frac{\ln(4^k)}{-\ln(\sqrt{2}) + \ln(4^k)} \stackrel{k\to\infty}{=} 1 \Rightarrow \overline{\dim}_B(F) \leq 1$.

Verder is de afstand tussen de vierkanten van $E_k \geq \frac{1}{4^k}$. Stel nu dat met $\operatorname{diam}(U) \leq \frac{1}{4^k}$, $\forall k>0$ dan $A=\{i\in\mathbb{N}|i\in\{1,\dots,4^{k-1}\},E^i_{k-1}\cap U\neq\emptyset\}$. in A zit max 1 element. Want, indien er 2 elementen inzitten, dan betekent dat dat $\frac{1}{4^{k-1}}\leq |x_0-x_1|\leq \frac{1}{4^2}$ met x_0 en x_1 in twee verschillende vierkanten. Hieruit volgt: $N_{\frac{1}{4^k}}(F)\geq 4^{k-1}$ want $e^i_{k-1}\cap F\neq\emptyset$. Nu volgt:

$$\frac{\ln(N_{\frac{1}{4^k}}(F))}{-\ln(\frac{1}{4^k})} \ge \frac{\ln(4^{k-1})}{-\ln(\frac{1}{4^k})} = \frac{k-1}{k} \Rightarrow \underline{\dim}_B(F) \ge \lim_{k \to \infty} \frac{k-1}{k} = 1$$

Dus:

$$1 \le \underline{\dim}_B(F) \le \overline{\dim}_B(F) \le 1 \Rightarrow \dim_B(F) = 1$$

24. Zij $F \subset \mathbb{R}^2$ en F = B(0, r), bepaal: $\dim_B F$ en $\dim_B \overline{F}$

Oplossing:

Gebruikmakend van de propositie van Minkovski: $F \subset \mathbb{R}^2$ is begrensd en niet leeg. $F_{\delta} = \{x \in \mathbb{R}^2 | \exists y \in F \text{ zodat } ||x-y|| \leq \delta\}$ en dus $F_{\delta} = B(0,r+\delta)$, hieruit volgt dat $l^2(B(0,r+\delta)) = \pi(r+\delta)^2$. $\underline{\dim}_B(F) = 2 - \overline{\lim}_{\delta \to 0} \frac{\ln(\pi(r+\delta)^2)}{\ln(\delta)} = 2 - \overline{\lim}_{\delta \to 0} \frac{2\ln(\pi(r+\delta))}{\ln(\delta)} = 2$ (Hetzelfde geldt voor $\overline{\dim}_B(F) = 2$) In conclusie: $\dim_B(F) = 2$

Voor \overline{F} geldt: $\overline{F}_{\delta} = \overline{B}(0, r + \delta) \Rightarrow l^2(\overline{B}(0, r + \delta)) = \pi(r + \delta)^2$. Uiteindelijk is dan $\dim_B(F) = 2$.

25. Zij $F \subset \mathbb{R}^n, F \neq \emptyset$ en F is begrensd. Zij ook s > 0 en definieer:

$$M_*^s(F) = \underline{\lim}_{\delta \to 0} \frac{l^n(F_\delta)}{\delta^{n-s}}$$

$$M^{*s}(F) = \overline{\lim}_{\delta \to 0} \frac{l^n(F_\delta)}{\delta^{n-s}}$$

Dan is $\underline{\dim}_B(F) = \inf\{\delta \ge 0 | M_*^s(F) = 0\}$ en $\overline{\dim}_B(F) = \inf\{\delta \ge 0 | M^{*s}(F) = 0\}$

Bewijs:

(a)
$$M_*^s = M^{*s} = 0, \ \forall s > n$$

(b)
$$\exists s_0 > 0 \text{ zodat: } 0 < M_*^{s_0}(F) < +\infty \Rightarrow M_*^s(F) = \begin{cases} \infty & s < s_0 \\ 0 & s > s_0 \end{cases}$$

(c) Zij
$$F = \{a_0, \dots a_k\} \subset \mathbb{R}^2$$
, bepaal $M_*^0(F)$ en $M^{*0}(F)$.

- (a) Kies s>n willekeurig, F is begrensd, er bestaat dus een $R\in\mathbb{R}$ zodat $F\subset B(x,R)$ voor een $x\in F$. Nu is ook $F_\delta\subset B(x,R)_\delta$ en dus $l^n(F_\delta)\leq l^n(B(x,R)_\delta)=\frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}(R+\delta)^n$. Aangezien $s>n,\ 0>n-s$ is $\frac{l^n(F_\delta)}{\delta^{n-s}}\leq \pi\delta^{s-n}(R+\delta)^2\Rightarrow \lim_{\delta\to 0}\frac{l^n(F_\delta)}{\delta^{n-s}}=\lim_{\delta\to 0}\pi\delta^{s-n}(R+\delta)^2=0$. In conclusie: $M_*^s=M^{*s}=0,\ \forall s>n$
- (b) Stel $A = M_*^{s_0}(F)$, dan is $A = \underline{\lim}_{\delta \to 0} \frac{l^n(F_{\delta})}{\delta^{n-s_0}}$, We weten dus dat $l^n(F_{\delta}) = \mathcal{O}(\delta^{n-s_0})$ (Big-O). Hieruit volgt: $\frac{l^n(F_{\delta})}{\delta^{n-s}} = \mathcal{O}(\delta^{s-s_0})$, dus: $M_*^s(F) = \begin{cases} \infty & s < s_0 \\ 0 & s > s_0 \end{cases}$
- (c) Het is duidelijke dat $F_{\delta} = \bigcup_{i=1}^{k} \overline{B}(x_{i}, \delta) \Rightarrow l^{2}(F_{\delta}) \leq \sum_{i=1}^{k} \pi \delta^{2} = k\pi \delta^{2}, \ \forall \delta > 0.$ Echter, $\exists \delta_{0} \in \mathbb{R} \text{ zodat } \{\overline{B}(x_{i}, \delta_{0})\}_{i \in \{1, \dots, k\}} \text{ disjunct zijn, waardoor } l^{2}(F_{\delta}) = \sum_{i=1}^{k} \pi \delta^{2} = k\pi \delta^{2}, \ \forall \delta < \delta_{0}. \text{ Dus: } \frac{l^{2}(F_{\delta})}{\delta^{2}} = k\pi \Rightarrow M_{*}^{0}(F) = M^{*0}(F) = k\pi.$
- 26. Zij $E, F \subset \mathbb{R}^m, F \neq \emptyset \neq E$ en E en F zijn begrensd, dan:
 - (a) $\overline{\dim}_B(F)$, $\underline{\dim}_B(F) \in [0, m]$
 - (b) Zij $f: F \subset \mathbb{R}^n \to \mathbb{R}^k$ en $\exists c_1, c_2 > 0$ zodat $c_1 ||x-y|| \le ||f(x)-f(\underline{y})|| \le c_2 ||x-y||$, $\forall x, y \in F$. Dan is $\underline{\dim}_B(f(F)) = \underline{\dim}_B(F)$, $\forall x, y \in F$ (hetzelfde voor $\underline{\dim}_B$)
 - (c) $\exists \alpha, c < 0 \text{ zodat } \underline{\|f(x) f(y)\|} \le c \|x y\|^{\alpha}, \ \forall x, y \in F \Rightarrow \underline{\dim}_B(f(F)) \le \frac{1}{\alpha} \underline{\dim}_B(F)$ (hetzelfde voor $\overline{\dim}_B$)

Oplossing:

- (a) F is begrensd, er bestaat dus een U open (ook begrensd) zodat $F \subset U$. Aangezien U open is, is $\dim_B(U) = m$. Verder weten we dat, omdat $F \subset U \Rightarrow \dim_B(F) \leq \dim_B(U) = m$. Dus: $\dim_B(U) \in [0, m]$
- (b) Zij f: F(F) en $\exists c_1, c_2 > 0$ zodat $c_1 \| x y \| \le \| f(x) f(y) \| \le c_2 \| x y \|$, $\forall x, y \in F$. Aangezien $\| f(x) - f(y) \| \le c_2 \| x - y \|$, is f injectief, f is ook surjectief. Voor f^{-1} geldt: $\frac{1}{c_2} \| x - y \| \le \| f^{-1}(x) - f^{-1}(y) \| \le \frac{1}{c_1} \| x - y \|$, $\forall x, y \in f(F)$. Dus: $\| f(x) - f(y) \| \le c_2 \| x - y \|$, $\forall x, y \in F \Rightarrow \underline{\dim}_B(f(F)) \le \underline{\dim}_B(F)$ $\| f^{-1}(x) - f^{-1}(y) \| \le \frac{1}{c_1} \| x - y \|$, $\forall x, y \in f(F) \Rightarrow \underline{\dim}_B(f^{-1}(f(F))) \le \underline{\dim}_B(f(F)) \Rightarrow \underline{\dim}_B(F) \le \underline{\dim}_B(f(F))$

In conclusie: $\underline{\dim}_B(f(F)) = \underline{\dim}_B(F)$ (Analoog voor het bewijs voor $\overline{\dim}_B$)

(c) Neem $N_{\delta}(F)$ het kleinste aantal verzameling U_i met diam $(U_i) \leq \delta$ zodat $F = \bigcup_{i=1}^{N_{\delta}(F)} U_i$. Indien $x, y \in U_i$, $||f(x) - f(y)|| \leq c||x - y||^{\alpha} \leq c\delta^{\alpha}$. Hieruit volgt: $N_{c\delta^{\alpha}}(f(F)) \leq N_{\delta}(F)$, aangezien deze getallen de kleinste waardes zijn waaraan de voorwaarden voldaan zijn en $\{U_i\}_{i\in\{1...N_{\delta}(F)\}}$ behoort tot de families die voldoen aan voorwaarden voor $N_{c\delta^{\alpha}}(f(F))$. Nu is

$$\underline{\lim}_{\delta \to 0} \frac{\ln(N_{c\delta^{\alpha}}(f(F)))}{-\ln(c\delta^{\alpha})} \leq \underline{\lim}_{\delta \to 0} \frac{\ln(N_{\delta}(F))}{-\ln(c\delta^{\alpha})} = \underline{\lim}_{\delta \to 0} \frac{\ln(N_{\delta}(F))}{-\alpha\ln(\delta) - \ln(c)} = \frac{1}{\alpha} \underline{\lim}_{\delta \to 0} \frac{\ln(N_{\delta}(F))}{-\ln(\delta)}$$

In conclusie: $\underline{\dim}_B(f(F)) \leq \frac{1}{\alpha}\underline{\dim}_B(F)$ ($\underline{\lim}$ dient vervangen te worden door $\underline{\lim}$ voor $\underline{\dim}_B$)

27. Toon aan: $\underline{\lim}_{\delta \to 0} f(\delta) + \underline{\lim}_{\delta \to 0} g(\delta) \le \underline{\lim}_{\delta \to 0} f(\delta) + g(\delta) \le \overline{\lim}_{\delta \to 0} f(\delta) + g(\delta) = \overline{\lim}_{\delta \to 0} f(\delta) +$

Oplossing:

De eerste twee ongelijkheden zijn reeds bewezen.

Ter herhaling: $\overline{\lim}_{x\to 0} f(x) = \lim_{r\to 0} (\sup\{f(x)|0 < x < r\})$. Stel $M = \sup\{f(x) + g(x)|0 < x < r\} = f(x_0) + g(x_0)$ met $x_0 \in]0, r[$, $m_1 = \sup\{f(x)|0 < x < r\} = f(x_1)$ en $m_2 = \sup\{g(x)|0 < x < r\} = g(x_2)$ met $x_1, x_2 \in]0, r[$. Hierbij moet $x_0, x_1 \& x_2$ niet aan elkaar gelijk zijn. Uit de definitie van sup is $f(x_0) \leq f(x_1)$ en $g(x_0) \leq g(x_2)$, dus: $M \leq m_1 + m_2$.

In conclusie: $\sup\{f(x) + g(\underline{x})|0 < x < \underline{r}\} \leq \sup\{f(x)|0 < x < r\} + \sup\{g(x)|0 < x < r\} \Rightarrow \overline{\lim}_{\delta \to 0} f(\delta) + g(\delta) \leq \overline{\lim}_{\delta \to 0} f(\delta) + \overline{\lim}_{\delta \to 0} g(\delta)$

28. Zij $x_n = \frac{1}{2^{(2^n)}}$, bepaal dim_B ($\{x_n\}_{n \in \mathbb{N}}$).

Oplossing:

 $\frac{1}{2^{2^{n+1}}} = \frac{1}{2^{2^n}} - f(x_n) \Rightarrow f(x_n) = \frac{1}{2^{2^n}} - \frac{1}{2^{2^{n+1}}} = \frac{1}{2^{2^n}} - \frac{1}{(2^{2^n})^2} \stackrel{x=1/2^{2^n}}{\Rightarrow} f(x) = x(1-x). \ f \in \mathcal{C}^{\infty},$ $f(0) = 0, \ f(x) > 0, \forall x \in [0, \frac{1}{2}], \ f \text{ is monotoom stijgend } \forall x \in [0, \frac{1}{2}] \ (f'(x) = 1 - 2x),$ $f'(0) \neq 0, \ 0 < x(1-x) < x, \ \forall x \in]0, 1[, \ x_1 \in [0, 1[\text{ en } x_{n+1} = x_n - f(x_n). \text{ Dus:}$ $1 = \frac{1}{1 - \dim_B(\{x_n\})} \Rightarrow \dim_B(\{x_n\}_{n \in \mathbb{N}}) = \frac{1-1}{1} = 0$

29. Zij $F = \{0, 1, \frac{1}{4}, \frac{1}{9}, \dots\}$, vindt $\dim_H(F), \underline{\dim}_B(F)$ en $\overline{\dim}_B(F)$.

F is one indig aftelbaar, want $f: \mathbb{N} \to F: x \mapsto \begin{cases} 0 & x=1 \\ \frac{1}{(x-1)^2} & x \neq 1 \end{cases}$ is duidelijk een bijectieve functie. Dus: $\dim_H(F) = 0$.

 $F \subset [0,1] \subset \mathbb{R}$ is begrensd en niet leeg.

Zij $\delta_k = \frac{1}{(k-1)^2} - \frac{1}{k^2} = \frac{2k-1}{(k(k-1))^2}$ (dalende rij en convergeert naar 0), we hebben dan minstens k gesloten bollen met $\frac{\delta_k}{2}$ nodig om F te omvatten. Want de afstand tussen punten $\frac{1}{n^2}$ en $\frac{1}{(n-1)^2}$ is wordt kleiner als n groter wordt en dus hebben we zeker k bollen nodig om $0, 1, \frac{1}{4}, \ldots, \frac{1}{(k-1)^2}$ te omvatten. Dus:

$$N'_{\delta_k}(F) \ge k \Rightarrow \frac{\ln(N'_{\frac{\delta_k}{2}}(F))}{-\ln(\frac{\delta_k}{2})} \ge \frac{\ln(k)}{\ln(\frac{2(k(k-1))^2}{2k-1})} \stackrel{k \to \infty}{\to} \frac{1}{3} \Rightarrow \underline{\dim}_B(F) \ge \frac{1}{3}$$

Kies nu $\delta_k = \frac{1}{k^2} - \frac{1}{(k+1)^2} = \frac{2k+1}{(k(k+1))^2} \ge \frac{1}{(k+1)^3}$ (dalende rij en convergeert naar 0). Hierdoor kan alvast $[0, \frac{1}{(k+1)^2}]$ bevat worden door k+1 gesloten bollen met straal $\frac{\delta_k}{2}$. Verder kunnen we punten $1, \frac{1}{4}, \dots, \frac{1}{k^2}$ ook omvatten met k extra bollen. Dus:

$$N'_{\delta_k}(F) \le 2k + 1 \Rightarrow \frac{\ln(N'_{\frac{\delta_k}{2}}(F))}{-\ln(\frac{\delta_k}{2})} \le \frac{\ln(2k+1)}{\ln(\frac{2(k(k-1)^2}{2k+1})} \Rightarrow \overline{\dim}_B(F) \le \frac{1}{3}$$

In conclusie:

$$\frac{1}{3} \le \underline{\dim}_B(F) \le \overline{\dim}_B(F) \le \frac{1}{3} \Rightarrow \dim_B(F) = \frac{1}{3}$$

30. Laat F bestaan uit de getallen in [0,1] wiens decimale uitbreiding niet 5 bevat. Vindt $\dim_B(F)$, hiermee toon je aan dat de box dimensie ervan bestaat.

Oplossing:

 \leq : Zij $F \subset I_0 = [0,1] = [0,0.1[\cup ... \cup [0.5,0.6] \cup [0.6,0.7[\cup ... \cup [0.9,1]]]$ Hierbij bevat elke element van [0.5,0.6] altijd minstens een 5 $(0.6=0.5\overline{9})$. Indien we dit segment weg doen, blijft F een subset ervan, dus: zij $I_1 = [0,0.1] \cup ... \cup [0.4,0.5[\cup]0.6,0.7] \cup ... \cup [0.9,1]$, dan $F \subset I_1$. Wederom kunnen we elk segment opsplitsen in 10 delen met diameter $\frac{1}{10^2}$, bv, $[0,0.1] = [0,0.01] \cup ... \cup [0.09,0.1]$. Hieruit halen we wederom het segment [0.05,0.06] en houden we 9 segmenten over waarvan F een subset is. In totaal houden we dus 9^2 segmenten over.

Dus: $I_1 = \bigcup_{i=1}^9 I_1^i$, $I_2 = \bigcup_{i=1}^{9^2} I_2^i$ en uiteindelijk krijgen we $I_k = \bigcup_{i=1}^{9^k} I_k^i$ met diam $(I_k^i) = \frac{1}{10^k}$ en $F \subset I_k$, $\forall k \geq 1$. Verder weten we dat $F = \bigcap_{k \in \mathbb{N}} I_k$, want: $\bigcap_{k \in \mathbb{N}} I_k \supset F$ is duidelijk en $\bigcap_{k \in \mathbb{N}} I_k \subset F$ want, zij $x \in \bigcap_{k \in \mathbb{N}} I_k$, dan staat op 5 niet op het k'de decimaal getal $\forall k \in \mathbb{N}$, de decimale uitbreiding van x bevat geen 5, dus $x \in F$ Hieruit volgt:

$$N_{\frac{1}{10^k}}(F) \le 9^k, \ \forall k \in \mathbb{N} \Rightarrow \frac{\ln(N_{\frac{1}{10^k}}(F))}{-\ln(\frac{1}{10^k})} \le \frac{\ln(9^k)}{\ln(10^k)} = \frac{\ln(9)}{\ln(10)} \Rightarrow \overline{\dim}_B(F) \le \frac{\ln(9)}{\ln(10)}$$

 $I_0 = [0, 1[$. Merk op dat $f_4(1) = 0.5$, dit zit niet in I_k . Getallen zoals 0.1239874605 ook niet vanwege dezelfde reden. In conclusie:

$$F = \bigcap_{k=0}^{\infty} I_k \cup \{1\} = \left([0, 1[\cap \bigcap_{k \in \mathbb{N}} \bigcup_{i \in \mathcal{A}} f_i(I_{k-1}) \right) \cup \{1\} \stackrel{*}{=} ([0, 1] \cap \left(\bigcup_{i \in \mathcal{A}} f_i \left(\bigcap_{k \in \mathbb{N}} I_{k-1} \right) \cup \{1\} \right)$$
$$= \bigcup_{i \in \mathcal{A}} f_i \left(\bigcap_{k \in \mathbb{N}} I_{k-1} \right) \cup \{1\}$$

* kan analoog bewezen worden zoals in oef 19.

Verder is $f_j(F) \cap f_l(F) = \emptyset, \forall j \neq l$, dus is volgens de definitie van maat: $H^s(F) = \sum_{i \in \mathcal{A}} H^s(f_i(F))$ (Een aftelbare unie singeltons maken niet uit) $f_i(F)$ zijn Borel want F is gesloten en f_i continu voor alle i. Dus:

$$H^{s}(F) = 9\frac{1}{10}^{s}H^{s}(F) \stackrel{H^{s}(F)<\infty}{\Rightarrow} s = \frac{\ln(9)}{\ln(10)}$$

Nu is $H^{\frac{\ln(9)}{\ln(10)}}(F) \leq 1$. In conclusie: $\dim_H(F) = \frac{\ln(9)}{\ln(10)}$ en verder is dus

$$\frac{\ln(9)}{\ln(10)} = \dim_H(F) \le \underline{\dim}_B(F)$$

In conclusie: $\dim_B(F) = \frac{\ln(9)}{\ln(10)}$

31. Bewijs:

$$x \in \text{supp}(\mu) \iff \forall r > 0 : \mu(B(x,r)) > 0$$

Oplossing:

 \Rightarrow : We weten dat $\mu(\{x\}) = 0$ aangezien een singelton verwaarloosbaar is. Hieruit volgt dus dat $\forall r > 0$ $B(x,r) \cap \operatorname{supp}(\mu)$ niet enkel mag bestaan uit een aftelbare unie singeltons. Dus: $\mu(B(x,r) \cap \operatorname{supp}(\mu)) > 0$, $\forall r > 0$. Nu is $\mu(B(x,r)) = \mu(B(x,r) \cap \operatorname{supp}(\mu)) + \mu(B(x,r) \cap \operatorname{supp}(\mu)^c) = \mu(B(x,r) \cap \operatorname{supp}(\mu)) > 0$, $\forall r > 0$.

 \sqsubseteq : Stel dat $x \not\in \text{supp}(\mu)$, dan betekent dat dat $\text{supp}(\mu)$ niet gesloten is aangezien $\forall r > 0$: $\mu(B(x,r)) > 0$ en dus $B(x,r) \cap \text{supp}\mu \neq \emptyset$. Hieruit volgt dat $B(x,\delta) \not\subset \text{supp}(\mu)^C$ voor elke $\delta > 0$ klein genoeg, dus $\text{supp}(\mu)^C$ is niet open.

Dat $supp(\mu)$ niet gesloten is, is een contradictie met de definitie van drager.

32. Laat $f:[0,1]\to\mathbb{R}$ een continue functie zijn. Definieer $\mu(A)=\mathcal{L}\{x:(x,f(x))\in A\}$, voor $A\subset\mathbb{R}^2$ en \mathcal{L} de Lebesgue maat. Toon aan dat μ een massadistributie op \mathbb{R}^2 met $\operatorname{graf}(f)$ de drager.

Oplossing:

Aangezien f continu is, is $\{x | (x, f(x)) \in \mathbb{R}^2\} = [0, 1]$. Hieruit volgt: $\mu(\mathbb{R}^2) = \mathcal{L}([0, 1]) = 1$. μ is dus een massadistributie op \mathbb{R}^2 .

Merk nu op dat $\{x | (x, f(x)) \in \operatorname{graf}(f)^C\} = \emptyset$, dus $\mu(\operatorname{graf}(f)) = \mathcal{L}(\emptyset) = 0$. $\operatorname{graf}(f)$ is gesloten aangezien [0,1] gesloten is en f([0,1]) ook (f is continu). Verder is het ook de kleinste gesloten verzameling waarvoor $\mu(X^c) = 0$ geldt. Stel immers dat dit niet zo is en, als $A = ([0,1]\backslash]a, b[, f([0,1]\backslash]a, b[)), \ \mu(A^C) = 0, \ a < b \in [0,1] \ ([0,1]\backslash]a, b[, \ [0,1]\backslash]a, 1]$ of $[0,1]\backslash [0,b[$ zijn de enige opties, aangezien A gesloten moet zijn, de overige twee verlopen analoog). Anderzijds is $\mu(A^C) = \mathcal{L}\{x | (x,f(x)) \in A^C\} = \mathcal{L}(]a,b[) = b-a \neq 0$.

In conclusie: graf(f) is de drager van μ

33. $F \subset \mathbb{R}$, $F \neq \emptyset$ en F is begrensd en $\dim_H F = \overline{\dim}_B F$, definieer $D := \{x - y | x, y \in F\} \subset \mathbb{R}$. Bewijs dat $\dim_H(D) \leq \min\{1, 2\dim_H(F)\}$

Oplossing:

Definieer functie $f: F \times F \to D: (x,y) \mapsto x-y$. $|f(x_1,y_1)-f(x_2,y_2)| = |x_1-x_2+y_2-y_1| \le |x_1-x_2|+|y_1-y_2| = ||\mathbf{x}_1-\mathbf{x}_2||_1 \ \forall \mathbf{x}_1, \mathbf{x}_2 \in F \times F$. Nu is dus $\dim_H(D) = \dim_H(f(F \times F)) \le \dim_H(F \times F)$. Verder is, aangezien $F \subset \mathbb{R}$, $F \neq \emptyset$, F is begrensd en $\dim_H F = \overline{\dim}_B F$, $\dim_H(F \times F) = 2\dim_H(F)$.

Uit oefening 26 a weten we ook dat $\dim_H(D) \leq \underline{\dim}_B(D) \leq 1$ $D \subset \mathbb{R}$. In conclusie: $\dim_H(D) \leq \min\{1, 2\dim_H(F)\}$

34. Zij $f^{-1}:[-m,m]\times F\to f^{-1}([-m,m]\times F):(x,y)\mapsto (x,y+x^2).$ Toon aan: f^{-1} bi-Lipschitz continu.

Oplossing:

We weten dat $f: f^{-1}([-m,m] \times F) \to [-m,m] \times F: (x,y) \mapsto (x,y-x^2)$. Hierbij is

$$Df(x,y) = \begin{bmatrix} 1 & 0 \\ -2x & 1 \end{bmatrix} \le \begin{bmatrix} 1 & 0 \\ 2m & 1 \end{bmatrix} = A \qquad Df^{-1}(x,y) = \begin{bmatrix} 1 & 0 \\ 2x & 1 \end{bmatrix} \le \begin{bmatrix} 1 & 0 \\ 2m & 1 \end{bmatrix} = B$$

Nu weten we uit de middelwaardestelling van differentiale:

$$||f^{-1}(x) - f^{-1}(y)|| \le ||x - y|| \sup_{z \in [x_1, y_1] \times [x_2, y_2]} ||Df^{-1}|| \le ||x - y|| ||B||, \ \forall x, y \in [-m, m] \times F$$

$$||f(x) - f(y)|| \le ||x - y|| \sup_{z \in [x_1, y_1] \times [x_2, y_2]} ||Df|| \le ||x - y|| ||A||, \ \forall x, y \in f^{-1}([-m, m] \times F)$$

Hieruit volgt:

$$\frac{1}{\|A\|} \|x - y\| \le \|f^{-1}(x) - f^{-1}(y)\| \le \|B\| \|x - y\|, \quad \forall x, y \in [-m, m] \times F$$

Merk op dat $\forall m \geq 0 : \det(A) \neq 0 \neq \det(B)$ en ||A|| > 0, ||B|| > 0

35. $F' = \{(x,y) = (r\cos(\theta), r\sin(\theta)) | r \in F, 0 \le \theta \le 2\pi\} \subset \mathbb{R}^2$ met F de cantor-verzameling. Bewijs $\dim_H F' = 1 + \frac{\ln(2)}{\ln(3)}$

Oplossing:

Definieer $f: [\frac{1}{m}, 1] \cap F \times [0, 2\pi - \frac{1}{m}] \to F': (r, \theta) \mapsto (r\cos(\theta), r\sin(\theta)), (m \in \mathbb{N}).$ Het is duidelijk dat $f \in C^{\infty}$, want de componenten zijn het product van sin, cos en r. Het is duidelijk dat $F' = f(F, [0, 2\pi]) = \bigcup_{m \in \mathbb{N}} f([\frac{1}{m}, 1] \cap F \times [0, 2\pi - \frac{1}{m}]).$ Verder is $f^{-1}(x, y) = (x^2 + y^2, \tan^{-1}(\frac{y}{x})).$ Nu zijn:

$$Df(r,\theta) = \begin{bmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{bmatrix} \qquad Df^{-1}(x,y) = \begin{bmatrix} 2x & 2y \\ -\frac{y}{x^2+y^2} & \frac{x}{x^2+y^2} \end{bmatrix}$$

Indien we nu $f: [\frac{1}{m}, 1] \cap F \times [0, 2\pi] \to f([\frac{1}{m}, 1] \cap F \times [0, 2\pi - \frac{1}{m}])$ en $f^{-1}: f([\frac{1}{m}, 1] \cap F \times [0, 2\pi]) \to [\frac{1}{m}, 1] \cap F \times [0, 2\pi]$ met $m \in \mathbb{N}$ beschouwen, zijn beide differentialen begrensd. Op een gelijkaardige manier aan oefening 34 kan bewezen worden dat f bi Lipschitz is. Nu weten we dat $F' = \bigcup_{m \in \mathbb{N}} f([\frac{1}{m}, 1] \cap F \times [0, 2\pi - \frac{1}{m}]) = \bigcup_{m \in \mathbb{N}} f(F \times [0, 2\pi - \frac{1}{m}])$ en dus is $\dim_H(F') = \sup_{m \in \mathbb{N}} \{\dim_H(f(F \times [0, 2\pi - \frac{1}{m}]))\} = \sup_{m \in \mathbb{N}} \{\dim_H(F \times [0, 2\pi - \frac{1}{m}])\}$ met $\dim_H(F \times [0, 2\pi - \frac{1}{m}]) = \dim_H(F) + \dim_H([0, 2\pi - \frac{1}{m}]) = \frac{\ln(2)}{\ln(3)} + 1$.

In conclusie: $\dim_H(F') = 1 + \frac{\ln(2)}{\ln(3)}$

36. Zij f : [0,1] continu en $\exists c > 0$, $\delta_0 > 0$ en $1 \le s < 2$ zodat: $\forall t \in [0,1]$, $\forall \delta \in]0, \delta_0]$, $\exists u : [0,1]$ zodat $|t-u| \le \delta$ en $|f(t)-f(u)| \ge c\delta^{2-s}$, dan geldt:

$$s \leq \underline{\dim}_B \Gamma_f$$

Oplossing:

Zij $0 \le t_1 < t_2 \le 1$ met $|t_1 - t_2| \le \delta$ voor elke t_1 kan zo een t_2 gevonden worden, nu geldt: $R_f[t_1, t_2] = \sup_{t_1 < t, u < t_2} |f(t) - f(u)|^{|t-u| \le \delta} \ge c\delta^{2-s}$.*

Zij nu $m = \lfloor \frac{1}{\delta} \rfloor$ en $N_\delta = N_\delta(\Gamma_f)$ = aantal δ -kubussen $K_{k_1, k_2} = [k_1 \delta, (k_1 + 1) \delta] \times [k_2 \delta, (k_2 + 1) \delta]$ zodat $K_{k_1, k_2} \cap \Gamma_f \neq \emptyset$:

$$N_{\delta} \ge \sum_{i=0}^{m-1} \frac{R_f[i\delta, (i+1)\delta]}{\delta} \stackrel{*}{\ge} mc\delta^{1-s} \ge M\delta^{-s}, \qquad M \le mc\delta$$

Hierbij kan M>0 zijn (Merk op dat $1\leq s<2$). Nu is $\underline{\dim}_B(\Gamma_f)=\underline{\lim}_{\delta\to 0}\frac{\ln(N_\delta)}{-\ln(\delta)}\geq \underline{\lim}_{\delta\to 0}\frac{-s\ln(\delta)+\ln(M)}{-\ln(\delta)}=s$ In conclusie: $s\leq \underline{\dim}_B\Gamma_f$

37. Bewijs dat de Weierstrass functie continu is op [0, 1].

Oplossing:

De Weierstrass functie is gedefinieerd als : Zij $\lambda > 1, 1 < s < 2$ zodat

$$f:[0,1]\to\mathbb{R}:t\mapsto\sum_{k=1}^\infty\lambda^{(s-2)k}\sin(\lambda^kt)$$

Aangezien 1 < s < 2 is -1 < s - 2 < 0 en aangezien $\lambda > 1$ is $\lambda^{s-2} < 1$. Verder geldt dat $\forall k \in \mathbb{N}, \forall t \in [0,1] : (\lambda^{s-2})^k \sin(\lambda^k t) \leq (\lambda^{s-2})^k$. Nu is:

$$\sum_{k \in \mathbb{N}} (\lambda^{s-2})^k = \frac{1}{1 - \lambda^{s-2}} < \infty$$

Deze reeks convergeert dus. Volgens de Majorantie test convergeert $\sum_{k=1}^{\infty} \lambda^{(s-2)k} \sin(\lambda^k t)$ uniform. Verder is $\sum_{k=1}^{n} \lambda^{(s-2)k} \sin(\lambda^k t)$ met $n \in \mathbb{N}$ voor alle n continu (eindige som van continue functies).

In conclusie: aangezien de Weierstrass functie uniform convergeert en de partiële sommen continu zijn, is de Weierstrass functie continu.

38. Zij $F \subset \mathbb{R}$ en $F = \mathbb{N}$, bereken $P_0^1(F)$ en $P_0^1(\{i\})$ voor $i \in \mathbb{N}$.

Oplossing:

 $P_{\delta}^{1}(F) = \sup\{\sum \operatorname{diam}(B_{i})| \{B_{i}\} \text{ is een familie open bolle met } B_{i} = B_{i}(x_{i}, \delta_{i}) \text{ zodat } \delta_{i} \leq \delta, x_{i} \in F, B_{i} \cap B_{j} = \emptyset, \forall i \neq j\}.$

Merk op dat als $0 < \delta_i \le \frac{1}{2}$: $B_i = B(i, \delta_i) \subset B(i, \frac{1}{2}) =]i - \frac{1}{2}, i + \frac{1}{2}[$. Aangezien $i \in \mathbb{N}$ concluderen we dat $B_i \cap B_j = \emptyset$ als $i \ne j$ en $\delta_i, \delta_j \le \frac{1}{2}$. Aangezien de definitie sup gebruikt kunnen we een familie open bollen gebruiken met de zelfde straal δ en centrum i, dan is $\sum_{i \in \mathbb{N}} \operatorname{diam}(B_i) = \sum_{i \in \mathbb{N}} 2\delta = \infty$. De som is in ieder geval divergent voor alle $0 < \delta \le \frac{1}{2}$, dus $P_0^1(F) = \lim_{\delta \to 0} \sum_{i \in \mathbb{N}} 2\delta = \infty$.

Aangezien $\{i\}$ enkel 1 punt bevat, kan enkel $B(i, \delta_i)$ beschouwd worden. Vandaar is $P_{\delta}^1(\{i\}) = \sup\{\sum_{j=1}^1 B(i, \delta_i) | \delta_i \leq \delta\} = 2\delta$.

Hieruit volgt meteen dat $P_0^1(\{i\}) = \lim_{\delta \to 0} P_\delta^1(\{i\}) = 0$.

39. Bereken $P^1(\mathbb{N})$ en $P^1(\{i\})$ voor $i \in \mathbb{N}$.

Oplossing:

Eerst berekenen we $P^1(\{i\})$. $\{i\} \subset \{i\}$, aangezien P^s een maat is $\forall s \geq 0$. is P^1 dat ook en dus $0 \leq P^1(\{i\})$. Verder, omdat $P^1(\{i\}) = 0$ is $P^1(\{i\}) = 0$

Aangezien $\mathbb{N} = \bigcup_{i \in \mathbb{N}} \{i\}$ een aftelbare hoeveelheid disjuncte verzamelingen zijn, is $P^1(\mathbb{N}) = p^1(\bigcup_{i \in \mathbb{N}} \{i\}) = \sum_{i \in \mathbb{N}} P^1(\{i\}) = 0$.

- 40. (a) Zij $E \subset F \Rightarrow \dim_P(E) \leq \dim_P(F)$
 - (b) $\dim_P(\bigcup_{i\in\mathbb{N}} F_i) = \sup_{i\in\mathbb{N}} \{\dim_P F_i\}$

Oplossing:

- (a) Zij $E \subset F$, dan is $0 \le P^s(E) \le P^s(F)$ (het is een maat) voor alle s. Vervolgens, als $P^s(F) = 0$, dan is $P^s(E) = 0$. Dus: $\{s \ge 0 | P^s(F) = 0\} \subset \{s \ge 0 | P^s(E) = 0\} \Rightarrow \inf\{s \ge 0 | P^s(E) = 0\} \le \inf\{s \ge 0 | P^s(F) = 0\} \Rightarrow \dim_P(E) \le \dim_P(F)$.
- (b) $\supseteq: F_j \subset \bigcup_{i \in \mathbb{N}} F_i, \ \forall j \in \mathbb{N} \ \text{uit 1 volgt dan } \dim_P(F_j) \leq \dim_P\left(\bigcup_{i \in \mathbb{N}} F_i\right), \ \forall j \in \mathbb{N} \ \text{dus} \ \dim_P\left(\bigcup_{i \in \mathbb{N}} F_i\right) \geq \sup_{i \in \mathbb{N}} \left\{\dim_P F_i\right\}.$ $\subseteq: \text{Stel } \exists s > \dim_P(F_i), \ \forall i \Rightarrow P^s(F_i) = 0, \ \forall i \Rightarrow 0 \leq P^s(\bigcup_{i \in \mathbb{N}} F_i) \leq \sum_{i \in \mathbb{N}} P^s(F_i) = 0$ $\Rightarrow P^s(\bigcup_{i \in \mathbb{N}} F_i) = 0 \Rightarrow \left\{s \geq 0 \middle| s > \dim_P(F_i), \forall i\right\} \subset \left\{s \geq 0 \middle| P^s(\bigcup_{i \in \mathbb{N}} F_i) = 0\right\} \Rightarrow$ $\dim_P\left(\bigcup_{i \in \mathbb{N}} F_i\right) = \inf\left\{s \geq \middle| P^s(\bigcup_{i \in \mathbb{N}} F_i)\right\} \leq \inf\left\{s \geq 0 \middle| \dim_P(F_i) < s, \forall i\right\} = \sup\left\{\dim_P(F_i), \ \forall i\right\}.$ Stel dat s niet bestond dan is $\sup\left\{\dim_P(F_i) \middle| \forall i\right\} = \infty.$ In conclusie: $\dim_P\left(\bigcup_{i \in \mathbb{N}} F_i\right) = \sup_{i \in \mathbb{N}} \left\{\dim_P F_i\right\}$
- 41. Zij $U = \bigcup_{k \in \mathbb{N}}]\frac{1}{k+1}, \frac{1}{k}[$, bepaal ∂U en zij $\tilde{U} = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$, bepaal $\underline{\Delta}_{ext}(\tilde{U}), \overline{\Delta}_{ext}(\tilde{U})$ en $\overline{\Delta}_{int}(\tilde{U})$.

Oplossing:

U is een aftelbare unie open delen, dus het is open, dus $\mathring{U} = U$. In het eerste jaar zagen we dat $\overline{U} = [0,1]$. Het uitdagenste om dit aan te tonen, is aantonen dat $0 \in \overline{U}$. Dit is omdat voor elk reel getal a bestaat er een $\frac{1}{n}$ met $n \in \mathbb{N}$ zodat $a \leq \frac{1}{n}$.

In conclusie: $\partial U = [0,1] \setminus \mathring{U} = \{0,1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\dots\}.$

 $U^C =]-\infty,0] \cup \bigcup_{n\in\mathbb{N}} \{\frac{1}{n}\} \cup [1,\infty[$ en $\tilde{U}_{\delta} = \bigcup_{i\in\mathbb{N}}]\frac{1}{n}-\delta,\frac{1}{n}+\delta[$. Voor δ klein genoeg: $\tilde{U}_{\delta}\cap U^C = \bigcup_{i\in\mathbb{N}}\frac{1}{n+1}\cup[1,1+\delta[\Rightarrow l(\tilde{U}_{\delta}\cap U^C)=\delta.$ In conclusie:

$$\Delta_{ext}(\tilde{U}) = \lim_{\delta \to 0} \left(1 - \frac{\ln(l(\tilde{U}_{\delta} \cap U^C))}{\ln(\delta)} \right) = \lim_{\delta \to 0} \left(1 - \frac{\ln(\delta)}{\ln(\delta)} \right) = 0$$

Verder is, omdat $\dim_B(\tilde{U}) = \max\{\overline{\Delta}_{int}(\tilde{U}), \overline{\Delta}_{ext}(\tilde{U})\}$:

$$\frac{1}{2} = \dim_B(\tilde{U}) = \max\{\overline{\Delta}_{int}(\tilde{U}), 0\} = \overline{\Delta}_{int}(\tilde{U})$$

42. Bepaal $\overline{\dim}_B(F)$ met $F = \{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots\}$.

Oplossing:

Neem $x_n = \frac{1}{n^2}$, dan is $s_n = \frac{1}{n^2} - \frac{1}{(n+1)^2} = \frac{2n+1}{(n(n+1))^2} = \frac{2}{n(n+1)^2} + \frac{1}{n^2(n+1)^2} \le \frac{2}{n^3} + \frac{1}{n^4} \le \frac{3}{n^3}$. s_n is alvast een dalende rij en $\sum_{n\geq 1}\frac{3}{n^3}<\infty$, dus volgens de Majorantie test is $\sum_{n\geq 1}s_n$ ook convergent. Verder is $\frac{1}{(2n+1)^3}\le s_n$. Neem nu $f_s(z)=\sum_{n\geq 1}\left(\frac{2n+1}{(n(n+1))^2}\right)^z$, dan weten we dat $\sum_{n\geq 1}\left(\frac{1}{(2n+1)^3}\right)^z\le f_s(z)\le \sum_{n\geq 1}\left(\frac{3}{n^3}\right)^z$. Nu convergeert $\sum_{n\geq 1}\left(\frac{3}{n^3}\right)^z$ als $3z>1(z>\frac{1}{3})$ en $\sum_{n\geq 1}\left(\frac{1}{(2n+1)^3}\right)^z$ divergeert als $3z\le 1(z\le\frac{1}{3})$. Hieruit volgt dat $D(f_s)=\inf\{z\in\mathbb{R}|f_s(z)<\infty\}=\frac{1}{3}$ en dus ook dat $\overline{\dim}_B(F)=\frac{1}{3}$.