Afledte og omvendte funktioner

Thursday, September 16, 2021 8:05 AM

Hvis $\frac{f(x)-f(x_0)}{x-x_0} \Rightarrow \alpha \quad \text{nor} \quad x \to x_0$

så er f difterentiabel i xo
og skriver a = f'(xo).

a er hældningskoefficienten for tangenten.

Hvis
$$\frac{f(x)-f(x_0)}{x-x_0}=a+\epsilon(x-x_0)$$

Hvis $\frac{f(x)}{x-x_0} = a + E(x-x_0)$ sû er f diff i x_0 og $a = f'(x_0)$ $f(x) = f(x_0) + a(x-x_0) + E(x-x_0)(x-x_0)$ $diff(x^2) = f'(x_0)$ er et komplekst tal.

Afledte Funktioner

F(x)	₹'(x)		
k	0		
X			
XZ	2×		
Xn	$n \cdot x_{n-1}$		
X	$-\frac{1}{\lambda}^2$		
ν×	2√x		
e^{\times}	e^{γ}		
ln× ,			
COSX	-sinx		
sinx	X2OJ		
Regneregler: $(F(x)\pm q(x))' = F'(x)\pm q'(x)$			
$(F(x)\pm q(x)) = F'(x)\pm q'(x)$			

$$\begin{aligned} & (f(x) \pm g(x))' = f'(x) \pm g'(x) \\ & (k \cdot f(x))' = k \cdot f'(x) \\ & (f(g(x)))' = f'(g(x)) \cdot g'(x) \\ & (f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x) \\ & (f(x))' = f'(x)g(x) - f(x)g'(x) \\ & (g(x))' = g(x)^2 \end{aligned}$$

Eks.
$$(\cos(7x^4))' = -\sin(7x^4) \cdot 7.4x^3$$

Eks.

$$\left(\frac{e^{x}}{x}\right)' = \left(e^{x} \cdot \frac{1}{x}\right)' = e^{x} \cdot \frac{1}{x} + e^{x} \cdot \left(-\frac{1}{x^{2}}\right)$$

Omvendte	funktioner	det margale
f(x)	F-'(x)	Dn (F-1)
XZ	$\sqrt{\times} = \times^{\frac{1}{2}}$	X Z O
Xn	$\sqrt[4]{x} = x^{\frac{1}{x}}$	x ≥ O
ex	ln(x)	X>0
COSX	arccos x	[-1,1]
SINX	arcsin x	[_1,1] R
tanx	arctanx	
0 f(x)=y =	> + (y)=x	

Los
$$e^{x}=5$$
 $\ln(5)=x$

Vi prover at diff. på begge sider i 3.

$$(F^{-1})'(F(x)) \cdot F'(x) = 1$$

Givet funktionen
$$y=e^{x}$$

 $\ln'(y) = \frac{1}{(e^{x})^{1}} = \frac{1}{e^{x}} = \frac{1}{y}$

$$\ln'(y) = \frac{1}{(e^{x})^{1}} = \frac{1}{e^{x}} = \frac{1}{y}$$

Konkl:

$$n'(x) = \frac{1}{x}$$

Givet
$$y = \cos x$$

$$arccos'(y) = \cos' x = -\sin x = -\frac{1}{\sin x}$$

$$= -\sqrt{1-\cos^2 x} = -\sqrt{1-y^2}$$

$$\cos^2 + \sin^2 = 1$$

$$\sin = \sqrt{1 - \cos^2}$$

Funktioner af typen R->C

$$f(t) = g(t) + i h(t)$$

$$f'(t) = g'(t) + i \cdot h'(t)$$

$$f(t) = i e^{(1+2i)t} + i$$

$$f'(t)=i\cdot (1+2i)e^{(1+2i)t}+0$$

 $f(0)=i+i=2i$
 $f'(0)=i(1+2i)=-2+i$ kompleks diff.kv.