A framework for enabling instructors to create effective, customized learning designs with visualization (CuVIS)

Thesis Defence Seminar
Presented by
Gargi BANERJEE

Supervisor
Prof. Sahana MURTHY
Indian Institute of Technology Bombay, INDIA

Well-designed visualizations (animation/simulation/video): Effective teaching-learning resource

How should instructors teach with visualization to achieve these objectives?

<u>Problem</u>: Instructors unable to create effective student-centred learning designs with ICT (Agneli & Valanides, 2009; Tsai &

Chai, 2012; Ertmer et.al, 2012; Bennett et.al, 2015)

- Need to design student-centred learning designs (LDs) that incorporate:
 - = Constructive Alignment [Biggs, 1996]
 - = 5 dimensions of Meaningful Learning with ICT [Howland et.al, 2012]

[Active Learning, Constructivist, Intentional, Authentic & Cooperative]

What help exists to enable instructors to create effective LDs?

EXISTING SOLUTIONS

GAPS

Teacher training programs

- Mostly school level [Bennett et.al, 2015]
- Short in-service workshops at tertiary level
- Insufficient to develop design expertise [Conole & Alevizou, 2010]

Learning Taxonomies & Teaching Principles

- Difficult for instructors to translate to practice [Laurillard, 2012]
- Not customizable

Online Portals – Sharing of best practices

 Difficult for instructors to adapt to their context [Shaffer et.al., 2011]

Learning
Design (LD) Tools

- No guidance on how to achieve constructive alignment & customization in LDs
- Do not cater to instructor-mediated classrooms

The Research Objective of This Thesis

Develop a framework that will enable instructors to create
effective, customized LDs
for teaching using visualizations
in instructor-mediated classroom setting

What is the scope of the research?

- Setting = Instructor-mediated classrooms
- ICT tool = Visualizations (experiment videos, animations, simulations)
- Target user population = Tertiary level science & engineering instructors
- Learning Design = Focused on teaching-learning activities using visualization

Solution approach to build the framework

Design and Development Research (DDR) Methodology

Research questions in each phase of DDR

Phase

Answering RQ1: Qualitative Study to identify design impediments

Answering RQ1: What design impediments faced by instructors?

Design impediment identified:	At the level of :			
Instructors unable to –				
(i) Operationalize	a) Activity question not mapped to objective			
Constructive alignment	b) Teaching - Learning activity not mapped to objective			
(ii) Operationalize Meaningful Learning with ICT	All 5 dimensions			
	Not exploiting visualization:			
•	a) Content to design group activity			
visualization	b) Affordances to design group activity			
(iv) Design implementation of active learning strategies	a)Framing activity question as per strategy protocol b)'What students should do' not adequately specified			

The building blocks of the framework

Objectives

Customization parameters

Learning Designs

Research questions in each phase of DDR

Phase

What should be the specifications of the building blocks of the framework? (Study 2) (Banerjee et.al, 2012)

	* Purposive Sampling
Sampling Criteria	(i) Aware of benefits of active learning
	(ii) Have taught with visualization before (iii) Novice Designers
Sample Characteristics	* N = 28 Sc. & Engineering instructors
	(i) Teaching experience = 5 - 20 years (ii) Domain = Multi-domain
Research Methodology: QUAL	> Semi-structured instructor interviews > Instructors show visualizations they used > Gave verbal description of their LDs > Different instructional settings covered > Interview time duration = 45 mins.
Data Collected	Instructor interview transcripts
	mediate interview danceripte
Data Analysis Technique	Thematic Analysis of Instructor interviews

Gathering Specifications of objectives for CuVIS framework

Objectives	Example	Bloom's Level
Visualize to explain a concept with illustration	Explain the theory behind asymmetric key cryptography with illustration	Understand
2. Visualize to explain the working of a process/algorithm or compare multiple processes	What is the difference between 2-stroke and 4-stroke engine?	
3. Write/Draw alternate representations (like	Given mathematical function, draw the	
graph to equation) from the given visualization	vector field & vice-versa.	Apply
or vice-versa.		
4. Use a given visualization to compute the	Given the input signal & output signal	
solution to the given problem involving multiple	equations, write the transformation	
processes	equations of the intermediate steps.	
5. Predict output of next step or a set of steps	Predict the output of the given program	
in a multi-step process/ output of a	for the given set of input variable values	
phenomenon		
6. Devise an explanation for a given process or phenomena from observations made from the visualization, before the topic has been taught	Derive the plot of I_D vs. V_{GS} for junction field effect transistors (JFET) from the visualization	Analyze

Gathering Specifications of objectives for CuVIS framework

Objectives	Bloom's Level	Skill Targeted	
1. Visualize to explain a concept with illustration	Understand	Conceptual Understanding	
2. Visualize to explain the working of a process/algorithm or compare multiple processes	Procedural Understanding		
3. Write/Draw alternate representations (like graph to equation) from the given visualization or vice-versa.	Apply	Multiple Representation	
4. Use a given visualization to compute the solution to the given problem involving multiple processes		Multi-process problem solving	
5. Predict output of next step or a set of steps in a multi- step process/ output of a phenomenon		Prediction	
6. Devise an explanation for a given process or phenomena from observations made from the visualization, before the topic has been taught	Analyze	Inquiry	

Gathering Specifications for CuVIS framework

Customization

Instructional Setting = Instructor-mediated classroom

Activity Time duration = (~10mins./~20mins.)

Visualization type = Video/Animation/Simulation

Learning
Design

Design steps of maximum 5 minutes duration

Specify roles of instructor, students & visualization affordance at each step

Research questions in each phase of DDR

Phase

Design & Development Phase of CuVIS Framework

(Banerjee et.al, 2014)

Design impediment identified: Instructors unable to –	To explain
(i)Operationalize Constructive alignment	-
(ii)Operationalize Meaningful Learning with ICT	_
(iii) Frame group activity questions based on visualization	
(iv) Design implementation of active learning strategies	_

Addressing Impediment 3 - Framing group activity question based on visualization

Addressing Impediment 3 - Framing group activity question based on visualization

Aim is to equip instructors to frame student-centered group activity questions using visualization themselves:

- should become adept at the basic building blocks of active learning
- so that they can adapt and build on these strategies for their context

Option 1

Give them a larger set of strategies to pick-n-choose

Option 2

Train them on a small set of representative strategies, for various customization parameters

Example of Guidelines for Framing Group Activity Questions for objective = 'Prediction' in CuVIS Framework

Objective	Activity Time (mins.)	Strategy Suggested	Activity Constructor Prompts	Guidelines	Examples
4. Predict output of next step or a set of steps in a multi-step process or a	Lik	9	s, in the fr		Domain =EE Q. Two traveling waves 1 and 2 seen in visualization, are described by the equations: $y1(x,t) = 2 \sin(2x - t)$
phenomenon	objective	objective	d] Answer options should prompt students to look for covariation to identify causal variables + causal relationship e] The clear deliverable should be student predictions with reasoning f] You can consult questions from existing question banks like: http://www.cwsei.ubc.ca/resources/clickers.htm#questions	$y2(x,t) = 4\sin(x - 0.8 t)$ All the numbers are in the appropriate SI (mks) units. Predict, with reasoning, which wave has the higher speed? A) wave 1 B) wave 2 C) Both have the same speed.	

The Customized Visualization Integration (CuVIS) framework

• Provides operationalized guided steps for instructors at the conceptual and implementation levels.

Objective	Visualizat ion Selection Checklist	Activity Time Duration (mins.)	Strategy Suggested	Activity Constructor Prompts	Guidelines	Examples	LD Blueprint	Concept	
1. Visualize to explain a concept with illustratio n	a] Covers difficult to understan d/visualize part of the chosen topic or where there is change in the system with motion/ time	5-10	Peer Instruction (PI)	Decide the difficult part of the topic to target with visualization	1. Think of aspects of the topic students generally find difficult to understand/ visualize & which is covered in your selected visualization 2. Focus the activity with the visualization on this difficult to understand part of the topic you identified.	Domain = EE If topic = Coding Theory Students unable to decide if position of source coding block & channel coding block in a digital communication block diagram can be interchanged. Domain = CS If topic = Travelling salesman problem, Students able to construct a tour but unsure whether the chosen tour is the minimum cost tour.	CU PLppt	· ·	ementati elines
	b]Shows (video/ animation) Or, Allows (simulatio	15-20	Think- Pair-Share (TPS)	3. Decide what multiple condition sets	a] You need to play the visualization to show effect of varying the value (s) of multiple variables on the system.	Domain = EE, Topic = Digital Modulation Show the simulation output for AM, PM, FM (digital amplitude	CU_TPS.		2

The CuVIS framework

The Customized Visualization Integration System (CuVIS) tool

- This is a digital interface for instructors to interact with the CuVIS framework
- A semi-automatic LD authoring tool based on CuVIS framework
- Automaticity = Filling up relevant LD Blueprint template with appropriate activity constructor prompt response of instructor

CuVIS Tool Demo

Research questions in each phase of DDR

Study 3: Methodology followed to develop instructor's design expertise using CuVIS Framework

Methodology followed to develop instructor's design expertise using CuVIS Framework

Training workflow (Adapted from Kali & Ronen-Fuhrmann's model)

3 elements:

- i) ADDIE structure
- ii) Access to CuVIS framework database
- iii) Open-ended design activities (non-collaborative)

Answering RQ2: Effectiveness in developing instructor's design expertise (Study 3) (Banerjee & Murthy, 2015)

Sampling Criteria

- Have taught with visualization before
- Attended a 2-week blended pedagogy workshop
- Novices in terms of designing active learning activities with visualization

Sample Characteristics

- In-service Electrical and Computer Engineering instructors
- 16 instructors volunteered, 6 instructors (Female = 5, Male = 1) completed this semester-long study
- 1:1 representation of Tier 1 & Tier II cities
- Instructor-mediated classrooms of 70 100 students

Study 3: Range of data analysis done to determine development of instructors' design expertise

Answering RQ 2.1: Effectiveness of CuVIS Framework on TPACK

Data Analysis Technique

- Evaluate TPACK for competency in designing LDs
- At each of the 3 time points

Rubric Used

- Modified version of TPACK rubric (Koh, 2013)
- Inter-rater reliability = 0.81 (Cohen's kappa)

Conclusion

- TPACK score (Transfer phase) = 20 - 23 (out of 24)
- Increase along all dimensions for all instructors (except Authentic)

Results

TEACHER T2

—

— Authentic

Intentional

Constructive

Answering RQ 2.2: Impact of CuVIS framework on Pedagogic practice

Change in Pedagogic Practice (Warmup -> Transfer)

Data Analysis
Techniques

Time Allocation Analysis (Kong et. al, 2011)

Sequence of Activities (Laurillard, 2011)

Phase 1

Category 1:
Lecturing without student interaction

Category 2: Guided Interactive Activity with viz.

Category 3: Interactive Activity without viz.

Phase 2

Category 2 Sub-category Instructor Percentage of time allocated (%)

Warmup Transfer Increase Mean

Conclusion:

Mean increase of 32.06% for Category 2 while going from warmup -> transfer round

T		16	0	23.33	55.33	
ı	Feedback	T1	3.45	24	20.55	16.84
1	through	T2	0	22.7	22.7	
ı	visualization	T3	20	28.57	8.57	
ı		T4	0	10	10	
ı		T5	0	5.9	5.9	
1		T6	0	33.33	33.33	

Answering RQ 2.2: Impact of CuVIS TEL system on Pedagogic practice

Change in Pedagogic practice (Pretest -> Transfer)

Data Analysis
Techniques

Time Allocation Analysis (Kong et. al, 2011)

Sequence of Activities (Laurillard, 2011)

Study 3: Sample LDs generated by same instructor

Warmup round LD

Topic – Diode Function

LO = Illustrate application of diodes

Step No.	Time (mins.)		What student will do	Which visualization feature used, if any
1	5 mins. 5 mins. 7 mins. 3 mins.	Explain the basic symbol of diode Explain the p-n junction concept Explain the need of biasing Will take the quiz	The student will be able to understand the working of diode	Animation
2	10 mins.	List the applications of diodes	List diode application	

Scaffold round LD (CuVIS)

Topic – Diode Function

LO = Illustrate application of diodes

Transfer round LD

Topic – Resistive Circuit

LO = Define voltage-current relationship

Research questions in each phase of DDR___

Stage

CuVIS Framework

Answering RQ3: What is the effectiveness of CuVIS framework LDs on student learning with visualization?

(Banerjee et.al, 2015; Banerjee et.al, 2014, Banerjee et.al, 2013)

Answering RQ3: Effect of CuVIS LDs on student learning (Expts. 1 & 2)

Results: Effect of CuVIS LDs on student learning

Mann-Whitney U test for 'Pointer Arithmetic'

Mann-Whitney U test for 'Signal Transformation'

Dimensi on	Group	Standard Deviation	Mean	Effect Size	U- value	p- value	Learning Objective	Experiment Mean (SD) [Total Marks]	Control Mean (SD)	Effect Size (Cohen 's d)	Is difference significant ?
				(Cohen' s d)			Visualize to explain a specified concept	2.86 (0.43) [3 marks]	2.42 (0.84)	0.66	U=1853; p= 0.00
Rate of problem solving	Prediction (N= 136)	0.26	0.62	1.45	966.5	0.00	Use a given visualization to compute the solution	4.36 (1.18) [5 marks]	3.47 (1.71)	0.605	U=1883; p=0.001
	Viewing (N=95)	0.13	0.32				to the given problem by executing multiple processes				
Average post-test score	Prediction	2.55	6.18	0.06	6435	0.96	Write/Draw alternate	2.56 (0.77)	1.86	0.72	U= 1744;
	Viewing	2.52	6.35				representations from the given visualization or vice-versa.	[3 marks]	(1.15)		p= 0.00

Conclusion: Experimental group taught with CuVIS framework LDs had significantly higher post-test scores/rate of problem solving than students in Control group

Research questions in each phase of DDR

Phase

CuVIS Tool

Answering RQ 4: What is the instructor perception on usefulness & usability of CuVIS tool? (Expt.3)

Answering RQ4: Usefulness & Usability of CuVIS Tool

Sample Characteristics

- Sc. & Engineering instructors from multiple domains
- Teaching experience = 1 30 yrs.
- A:

Conclusion: Instructors perceive CuVIS tool to be

useful and usable.

Usefulness

- Highly useful (90%)
- N = 1422 Sc. &

Methodology

- Instructors used CuVIS tool to create LDs
- Uploaded LDs as Moodle assignment
- Then responded to the surveys in Moodle
- Optional activity (Submitted LDs = 1780)
- Researcher did random check on 10% of submissions to ensure responses valid

USaviilly

- SUS score = 78.86
- N= 1290 Sc. & Engg. instructors
- SUS Survey (Brooke, 1996)

Generalizability & Limitations of CuVIS framework

Generalizability of CuVIS Framework

CuVIS framework?

MOOC:

(i) Conceptual Guidelines applicable (i.e. 3 design impediments addressed)

- (ii) Implementation Guidelines X
- (iii) Tested with 2 TAs in EE MOOC

9 Sc. & Engg. Domains:

- (i) Able to apply CuVIS framework in their domains (i.e. guidelines domains generic)
- (ii) But SUS score fell to 60.2 (N = 236)

Novice Instructors:

(i) Able to apply CuVIS framework

(ii) Difficult to predict if not attended pedagogy workshop

Limitations of CuVIS Framework

Prescriptive:

- to a certain degree like choosing from a given set of objectives or suggesting a strategy to design the LD

Completeness of objective list:

- Includes 6 objective types. Does not cover design type objectives like 'visualize a banking scenario and design an appropriate solution.'

Strategy choice:

- set of 3 active learning strategies (PI, TPS, POE) included after filtration through 5 filters mapped to our research context.

Effectiveness assessment:

- Control group experiments with 375 students but involves 1 topic in each domain
- Design expertise study with 6 instructors involving 12 topics from EE & CSE

IMS-LD specification:

- Technical aspects were not the focus areas of CuVIS framework. The focus is more on the pedagogy of teaching using visualization.

Contributions of the Thesis

- Major Contributions:
 - CuVIS Framework
 - Identifying 4 design impediments to LD creation
 - Scaffolds helpful in developing design expertise
 (Activity Constructor prompts, LD Blueprint, Self-evaluation checklist)
 - Framework evaluation along multiple axes
 (impact on design expertise –TPACK, Pedagogic Practice & impact on student learning, Usefulness & Usability)
- Minor Contributions:
 - CuVIS tool
 - Design recommendations for scaffolds targeting instructor design expertise

Future Work from CuVIS Framework

- Extending to other instructional settings like MOOC :
 - Conceptual guidelines adaptable to other settings
 - But researchers need to design a new set of implementation level guidelines specific to the setting, specially for the cooperative dimension

- Create a framework of design scaffolds for instructors of different TPACK levels:
 - Guidelines can be customized to different TPACK levels of instructors
 - Thus create an adaptive training framework for instructors based on TPACK

Future Work from CuVIS Framework

- Extending CuVIS tool to a collaborative TEL system :
 - Incorporate features like automatic group formation, peer feedback mechanism, discussion forums for collaborative activity etc.

List of publications from Thesis

Journal Paper

1. Banerjee, G., Murthy, S., & Iyer, S. (2015). Effect of active learning using program visualization in technology-constrained college classrooms. *Research and Practice in Technology Enhanced Learning*, 10(1), 1-25.

Conference Papers

- 2. Banerjee G. & Murthy S. (2015). "CuVIS Tool to Develop Instructors' Competency in Creating Meaningful Learning Designs", 23rd International Conference on Computers in Education (ICCE).
- 3. Banerjee G., Patwardhan M. & Murthy S. (2014). "Learning Design Framework for Constructive Strategic Alignment with Visualizations", 22nd International Conference on Computers in Education (ICCE).
- 4. Banerjee, G., Kenkre, A., Mavinkurve, M., & Murthy, S. (2014, July). "Customized Selection and Integration of Visualization (CVIS) Tool for Instructors", In *Advanced Learning Technologies (ICALT), 2014 IEEE 14th International Conference on* (pp. 399-400).
- 5. Banerjee, G., Patwardhan, M., & Mavinkurve, M. (2013, December). Teaching with visualizations in classroom setting: Mapping Instructional Strategies to Instructional Objectives. In *Technology for Education (T4E), 2013 IEEE Fifth International Conference on* (pp. 176-183).
- 6. Banerjee G., Murthy S. & Iyer S. (2013), "Program Visualization: Effect of viewing vs. responding on student learning", 21st International Conference on Computers in Education (ICCE).
- 7. Banerjee G., Murthy S. (2012), "Effect of Instructors' Pedagogy and TPACK on integration of computer based visualizations", Workshop Proceedings of 20th International Conference on Computers in Education (ICCE), Singapore. Available at: http://www.lsl.nie.edu.sg/icce2012/wp-content/uploads/2012/11/WORKSHOP-E-BOOK.pdf
- 8. Kenkre, A., Banerjee, G., Mavinkurve, M., & Murthy, S. (2012, July). Identifying Learning Object pedagogical features to decide instructional setting. In *Technology for Education (T4E), 2012 IEEE Fourth International Conference on* (pp. 46-53).

Thank You!

17 July 2015 et aiitb