Основи диференціальних ігор

Н. Фордуй, О. Галганов

Основні поняття

Рішення, що їх приймають гравці, полягають у виборі так званих **керувань**, від яких залежать **фазові координати**: їх значення у будь-який момент часу повністю визначає хід гри, характеризуючи положення гравців у деякому просторі — **фазовому просторі**.

Поточні значення фазових координат завжди відомі гравцям — тобто, це ігри з повною інформацією. Невідомим зазвичай є характер їх зміни: тобто, **керування** фазовими змінними гравцями.

Приклад

Положення матеріальної точки на площині описується двома координатами x_1 та x_2 . Нехай швидкість руху точки є сталою v, а гравець обирає напрямок швидкості φ та може змінювати його у будь-який момент часу — тобто, φ є керуванням. Тоді рух точки описується системою диференціальних рівнянь

$$\begin{cases} \dot{x_1} = v\cos\varphi \\ \dot{x_2} = v\sin\varphi \end{cases}$$

Приклад

Геометричне положення автомобіля на декартовій площині описується трьома фазовими координатами: x_1, x_2 — положення деякої точки автомобіля, x_3 — кут, який утворює вісь вздовж автомобіля з деяким фіксованим напрямком — наприклад, x_1 .

Продовження приклада

Нехай A — максимальне можливе прискорення автомобіля, тоді прискорення може набувати значень $A\varphi_1$, де $\varphi_1\in[0;1]$ і знаходиться під контролем гравця-водія. Можна ввести ще одну фазову координату x_4 — швидкість автомобіля. Таким чином, можна ввести кривину як ще одну фазову координату x_5 (фізично — це кут повороту передніх коліс), керуванням якої є $W\varphi_2$, де $\varphi_2\in[-1;1]$, а W — максимальна швидкість зміни x_5 .

Система задає рух автомобіля у деякій диференціальній грі:

$$\begin{cases} \dot{x_1} = x_4 \cos x_3 \\ \dot{x_2} = x_4 \sin x_3 \\ \dot{x_3} = x_4 x_5 \\ \dot{x_4} = A\varphi_1, \ \varphi_1 \in [0; 1] \\ \dot{x_5} = W\varphi_2, \ \varphi_2 \in [-1; 1] \end{cases}$$

Опис руху

Вважаємо, що гра відбувається у фазовому просторі \mathcal{E} — деякій області в \mathbb{R}^n та на її межі. Рух точки $x=(x_1,x_2,...,x_n)$ у фазовому просторі описується системою диференціальних рівнянь

$$\begin{cases} \dot{x_1}(t) = f_1(x_1(t),...,x_n(t),u_1(x,t),...,u_P(x,t),v_1(x,t),...,w_E(x,t)) \\ \dot{x_2}(t) = f_2(x_1(t),...,x_n(t),u_1(x,t),...,u_P(x,t),v_1(x,t),...,w_E(x,t)) \\ ... \\ \dot{x_n}(t) = f_n(x_1(t),...,x_n(t),u_1(x,t),...,u_P(x,t),v_1(x,t),...,w_E(x,t)) \\ x_1(0) = x_1^0,x_2(0) = x_2^0,...,x_n(0) = x_n^0 \end{cases}$$

або, коротше,

$$\begin{cases} \dot{x}(t) = f(x(t), u(x, t), v(x, t)) \\ x(0) = x_0 \end{cases}$$

Ці рівняння називаються *рівняннями руху*. Функції f_j є заданими та вважаються достатньо гладкими.

Приклад

Якщо позначити через (x_P,y_P) координати гравця P, через (x_E,y_E) — гравця E, через w_P та w_E їх сталі швидкості руху, а керування напрямком швидкості через u(t) та v(t) відповідно, то отримаємо такі рівняння руху:

$$\begin{cases} \dot{x_P}(t) = w_P \cos u(t) \\ \dot{y_P}(t) = w_P \sin u(t) \\ \dot{x_E}(t) = w_E \cos v(t) \\ \dot{y_E}(t) = w_E \sin v(t) \\ (x_P(0), y_P(0)) = (x_P^0, y_P^0) \\ (x_E(0), y_E(0)) = (x_E^0, y_E^0) \end{cases}$$

Такий рух називається «переслідуванням на площині з простим рухом гравців».

Виграші

Мета диференціальної гри визначається виграшем, який залежить від траєкторій гравців. Позначимо ці траєкторії як функції від часу як x(t) та y(t). Зауважимо, що диференціальні ігри є антагоністичними (або ж, *іграми з нульовою сумою*).

Якщо гра триває деякий заздалегідь визначений час T, то виграш гравця E визначається як H(x(t),y(T)), де $H:\mathbb{R}^n imes \mathbb{R}^n o \mathbb{R}$ — деяка функція (нагадаємо, що розмірність $\mathcal{E}-n$).

Приклади виграшів

- $2 \ H(x(T),y(T)) = \min_{0 \le t \le T} \|x(t) y(t)\|$
- 3 $H(x(T), y(T)) = t_* = \min\{t \ge 0 : (x(t), y(t)) \in \mathcal{T}\}$

Приклад

Розглянемо переслідування на площині з простим рухом, що описується системою

$$\begin{cases} \dot{x_1} = u_1, \dot{x_2} = u_2, \ u_1^2 + u_2^2 \le \alpha^2 \\ \dot{y_1} = v_1, \dot{y_2} = v_2, \ v_1^2 + v_2^2 \le \beta^2 \\ x_1(0) = x_1^0, x_2(0) = x_2^0, y_1(0) = y_1^0, y_2(0) = y_2^0 \end{cases}$$

Якщо $\alpha>\beta$, то гравець P може гарантувати

$$\forall l \ge 0 : \min \{ t \ge 0 : ||P(t) - E(t)|| \le l \} < +\infty$$

Якщо $\alpha \leq \beta$, то в разі $\|P(0)-E(0)\|>l$ для всіх $l\geq 0$ гравець E, рухаючись від P по прямій з максимальною швидкістю, зможе уникнути захоплення гравцем P.

Поняття стратегії

Означення

Стратегіями у диференціальній грі є вибір керувань u та v як функцій від часу t та фазових координат x у системі рівнянь руху

$$\begin{cases} \dot{x}(t) = f(x(t), u(x, t), v(x, t)) \\ x(0) = x_0 \end{cases}$$

Керування вважаються кусково-гладкими як компроміс між забезпеченням існування розв'язку, (його може не існувати у класі неперервних функцій) та його єдиності (вона може порушуватися, якщо не вимагати неперервності розв'язку).

Позначатимемо через P та E множини кусково-неперервних стратегій (керувань) гравців P та E.

Ситуація

Надалі для спрощення розглядатимемо не один вектор x, а два вектори x та y, що відповідатимуть руху кожного з гравців. Тоді систему можна записати як

$$\begin{cases} \dot{x}(t) = f(x(t), u(x, y, t)) \\ \dot{y}(t) = g(x(t), v(x, y, t)) \\ x(0) = x_0, y(0) = y_0 \end{cases}$$

<u>Оз</u>начення

Набір $S=\{x_0,y_0,u(\cdot),v(\cdot)\}$, де x_0,y_0 — початкові умови, а $u\in P$, $v\in E$ — керування, називається *ситуацією* в диференціальній грі.

Умова існування та єдиності траекторій

Якщо розглядати траєкторії, що залежать лише від часу t та накладати на f та g умови обмеженості та ліпшицевості по x та y, тобто

$$||f(x_1, u) - f(x_2, u)|| \le \alpha \cdot ||x_1 - x_2||,$$

 $||g(y_1, v) - g(y_2, v)|| \le \beta \cdot ||y_1 - y_2||,$

то за теоремою про існування та єдиність роз'язку задачі Коші, для кожної ситуації S буде існувати єдина пара траєкторій x(t),y(t), для якої

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ \dot{y}(t) = g(y(t), v(t)) \\ x(0) = x_0, y(0) = y_0 \end{cases}$$

Формальне визначення виграшів та їх види

Означення

Користуючись означенням ситуації, можна ввести виграш в ситуації $S=\{x_0,y_0,u(\cdot),v(\cdot)\}$ як функцію $K(x_0,y_0,u(\cdot),v(\cdot)).$

Наведемо строгі означення 4 видів виграшів.

<u>Оз</u>начення

1 *Термінальний виграш.* Задано деяке число t>0 та неперервна по x та y функція H(x,y). Виграш в ситуації $\{x_0,y_0,u(\cdot),v(\cdot)\}$ визначається як:

$$K(x_0, y_0, u(\cdot), v(\cdot)) = H(x(T), y(T))$$

Види виграшів

Означення

2 *Мінімальний результат.* Задано деяке число t>0 та неперервна по x та y функція H(x,y). Виграш в ситуації $\{x_0,y_0,u(\cdot),v(\cdot)\}$ визначається як

$$K(x_0, y_0, u(\cdot), v(\cdot)) = \min_{0 \le t \le T} H(x(t), y(t))$$

3 Інтегральний виграш. Нехай \mathcal{T} — деяка підмножина $\mathbb{R}^n \times \mathbb{R}^n$, H(x,y) — неперервна функція. Нехай в ситуації $\{x_0,y_0,u(\cdot),v(\cdot)\}$ t_* — перший момент потрапляння траєкторії (x(t),y(t)) на \mathcal{T} . Тоді

$$K(x_0, y_0, u(\cdot), v(\cdot)) = \int_0^{t_*} H(x(t), y(t)) dt$$

де при $t_* = +\infty$ покладається $K = +\infty$.

Види виграшів

Означення

4 Якісний виграш. Нехай $\mathcal T$ та $\mathcal L$ — деякі підмножини $\mathbb R^n \times \mathbb R^n$, а t_* — перший момент потрапляння траєкторії (x(t),y(t)) на $\mathcal T$ в ситуації $\{x_0,y_0,u(\cdot),v(\cdot)\}$. Тоді

$$K(x_0,y_0,u(\cdot),v(\cdot)) = \begin{cases} 1, & \text{ якщо } (x(t_*),y(t_*)) \in \mathcal{L} \\ 0, & \text{ якщо } t_* = +\infty \\ -1, & \text{ якщо } (x(t_*),y(t_*)) \notin \mathcal{L} \end{cases}$$

Нормальна форма диференціальної гри

Нарешті, можна дати означення нормальної форми диференціальної гри.

Означення

Нормальною формою диференціальної гри $\Gamma(x_0,y_0)$, заданої на просторі стратегій $P \times E$, називається система

$$\Gamma(x_0, y_0) = \langle x_0, y_0, P, E, K(x_0, y_0, u(\cdot), v(\cdot)) \rangle$$

де $K(x_0,y_0,u(\cdot),v(\cdot))$ — функція виграшу, визначена будь-який з чотирьох способів вище.

Кожній парі $(x_0,y_0)\in\mathbb{R}^n imes\mathbb{R}^n$ відповідає своя гра в нормальній формі, тобто, фактично, визначається двопараметрична сім'я ігор, що залежать від (x_0,y_0) .

Простий рух на площині

Розглянемо найпростіші моделі задач переслідування — диференціальні ігри на площині з двома учасниками: переслідувачем P та утікачем E, траєкторії яких відповідно позначатимемо x(t) та y(t). Під простим рухом мається на увазі, що закони їх руху описуються системою

$$\begin{cases} \dot{x} = u, & ||u|| \le \alpha \\ \dot{y} = v, & ||v|| \le \beta \end{cases}$$

Тут $\|z\|=\sqrt{z_1^2+z_2^2}$. Такі закони руху означають, що гравці рухаються з обмеженою швидкістю, але напрямок руху можуть змінювати довільно. Проінтегрувавши рівняння, можна явно записати траєкторії руху як

$$x(t) = x(0) + \int_{0}^{t} u(s)ds, \ y(t) = y(0) + \int_{0}^{t} v(s)ds$$

Приклад

Умова

Нехай
$$u(t)=\begin{pmatrix} -\sin t \\ 2\cos 2t \end{pmatrix}$$
, $v(t)=\begin{pmatrix} -\sqrt{2}\sin t \\ \sqrt{2}\cos t \end{pmatrix}$, $x(0)=\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $y(0)=\begin{pmatrix} \sqrt{2} \\ 0 \end{pmatrix}$, а гра триває до моменту $T=2\pi$. Знайти значення функції виграшу мінімального результату з $H(x,y)=\|x-y\|$.

Знайдемо рівняння траєкторій:

$$x(t) = \begin{pmatrix} 1\\0 \end{pmatrix} + \int_{0}^{t} \begin{pmatrix} -\sin s\\2\cos 2s \end{pmatrix} ds = \begin{pmatrix} 1\\0 \end{pmatrix} + \begin{pmatrix} \cos s\\\sin 2s \end{pmatrix} \Big|_{0}^{t} = \begin{pmatrix} \cos t\\\sin 2t \end{pmatrix}$$

$$y(t) = \begin{pmatrix} \sqrt{2} \\ 0 \end{pmatrix} + \int_{0}^{t} \begin{pmatrix} -\sqrt{2}\sin s \\ \sqrt{2}\cos s \end{pmatrix} ds = \begin{pmatrix} \sqrt{2}\cos t \\ \sqrt{2}\sin t \end{pmatrix}$$

Приклад

На декартовій площині ці траекторії матимуть вигляд:

Значення $K=\min_{0\leq t\leq 2\pi}\|x(t)-y(t)\|$ можна знайти чисельно: $K\approx 0.282394$ при $t\approx 0.850448.$

Простий рух в \mathbb{R}^n

Тепер розглянемо гру переслідування вже не на площині \mathbb{R}^2 , а в \mathbb{R}^n :

$$\begin{cases} \dot{x} = u, & ||u|| \le \alpha \\ \dot{y} = v, & ||v|| \le \beta \\ x(0) = x_0, \ y(0) = y_0 \end{cases}$$

Тут усі величини є n-вимірними векторами, і, як раніше, x(t) — траєкторія руху переслідувача P, y(t) — утікача E.

Нехай $\alpha>\beta$, тобто, переслідувач може рухатися швидше за утікача. Тоді можна довести, що яку б стратегію v(t) не обрав утікач E, переслідувач P наздожене його не пізніше, ніж за $\frac{\|x_0-y_0\|}{\alpha-\beta}$, використовуючи стратегію $u(t)=-\frac{\alpha}{\|x(t)-y(t)\|}(x(t)-y(t))$, причому переслідування буде найдовшим, якщо E обере «раціональну» стратегію $v(t)=-\frac{\beta}{\|x(t)-y(t)\|}(x(t)-y(t))$ (див. повний текст).

Приклад

Умова

Нехай $\alpha=3,\beta=1$, гра починається з $x_0=\begin{pmatrix} 0\\0\end{pmatrix}$ та $y_0=\begin{pmatrix} 1\\1\end{pmatrix}$, утікач обирає «нераціональне» керування $\dot{y}=-\beta\begin{pmatrix}\cos t\\\sin t\end{pmatrix}$, інший гравець обирає керування вказане вище.

Приклад

Розв'яжемо чисельно (методом Рунге-Кутта) відповідну систему диференціальних рівнянь і подивимося на графіки x(t) та y(t) в залежності від часу. Отримаємо такі траекторії руху:

୬୧୯ _{21/43}

Лінійна диференціальна гра

Означення

Лінійною диференціальною грою називається гра з фазовим простором \mathbb{R}^n , що описується рівнянням

$$\begin{cases} \dot{z}(t) = Az(t) - u(t) + v(t) \\ z(0) = z_0 \\ u \in U, \ v \in V \end{cases}$$

де A — деяка стала матриця порядку $n\times n$, U та V — опуклі компактні підмножини \mathbb{R}^n . Також задано матрицю π , що є матрицею проекції на ортогональне доповнення до термінальної множини.

Лінійна диференціальна гра

Ця гра відбувається таким чином: в кожний момент часу t утікач E знає параметри гри (A,U,V,z_0,π) та обирає своє керування $v(t)\in V$, повідомляючи про свій вибір переслідувача P, який, в свою чергу, обирає керування $u(t)\in U$. Якщо існує такий момент часу T>0, коли переслідувач P за будь-яких дій утікача E забезпечує виконання умови $\pi z(\tau)=0$ для деякого $\tau\in[0;T]$, то кажуть, що в переслідувач наздоганяє утікача. Отримаємо умови, за яких це відбувається. Для цього треба ввести декілька нових означень.

Операції над множинами

Означення 1

Сумою множин (за Мінковським) A і B називається множина $C=A+B=\{a+b:a\in A,b\in B\}.$

Означення 2

Pізницею множин (за Мінковським) A і B називається найбільша така множина $C=A \dot{-} B$, що $B+C \subset A$

Означення 3

Добутком множини A на число $\lambda \in \mathbb{R}$ називається множина $\lambda \cdot A = \{\lambda \cdot a : a \in A\}.$

Приклад

Нехай $B_r(a)=\{x\in\mathbb{R}^n:\|x-a\|\leq r\}$ — куля радіуса r з центром в точці a. Для $r\in\mathbb{R}$ та $a\in\mathbb{R}^n$ має місце $r\cdot B_1(0)+\{a\}=B_{|r|}(a)$. Сумою двох куль $B_{r_1}(a_1)$ та $B_{r_2}(a_2)$ є множина

$$M = B_{r_1}(a_1) + B_{r_2}(a_2) = \{x_1 + x_2 : ||x_1 - a_1|| \le r_1, ||x_2 - a_2|| \le r_2\}$$

Для $x=x_1+x_2\in M$: $\|(x_1+x_2)-(a_1+a_2)\|\leq \|x_1-a_1\|+\|x_2-a_2\|\leq r_1+r_2$, тобто $M=B_{r_1+r_2}(a_1+a_2)$.

Інтеграл багатозначного відображення

Означення

Нехай W(t) — неперервна функція з дійсним аргументом, значеннями якої є компактні підмножини \mathbb{R}^n (багатозначне відображення). Інтегралом за проміжком [a;b] від неї називається множина $\int\limits_a^b W(t)dt$, яку можна розуміти в сенсі ріманової суми $\lim_{n\to\infty} \sum_{i=0}^n \Delta t_i \cdot W(t_i^*), \text{ де } \left\{\Delta t_i\right\}_{i=1}^n$ — довжини відрізків, на які розбивається [a;b], $t_i^* \in \Delta t_i$ — деякі точки з цих відрізків, а сума розуміється в сенсі суми множин за Мінковським.

Умови того, що P дожене E

Нехай у лінійній диференціальній грі виконуються дві умови:

- 1 Для всіх t > 0: $W(t) = \pi e^{At}U \pi e^{At}V \neq \varnothing$.
- $oxed{2}$ Існує такий момент часу T_0 , що $\pi e^{AT_0}z_0\in\int\limits_0^TW(T_0-s)ds.$

Можна довести, що в разі виконання цих умов переслідувач наздожене утікача.

Розв'язок задачі Коші та його образ під дією π мають вигляд

$$z(t) = e^{At}z_0 + \int_0^t e^{A(t-s)}(-u(s) + v(s))ds$$

$$\pi z(t) = \pi e^{At} z_0 + \int_0^t \pi e^{A(t-s)} (-u(s) + v(s)) ds$$

Метод Понтрягіна

Наведемо алгоритм застосування методу Понтрягіна:

- **1** Знайти множину $W(t) = \pi e^{At}U \pi e^{At}V$.
- f 3 Знайти T_0 , для якого $\pi e^{AT_0}z_0\in \Omega(T_0).$
- 4 Знайти функцію $w(t) \in W(t)$ таку, що $\pi e^{AT_0} z_0 = \int\limits_0^{T_0} w(s) ds$.
- 5 Знайти керування u(t) як розв'язок $\pi e^{A(T_0-s)}u(s) \pi e^{A(T_0-s)}v(s) = w(T_0-s)$ при заданому керуванні $v(t) \in V$.
- $\mbox{ \ \, }$ Знайти розв'язок задачі Коші $\dot{z}=Az-u(t)+v(t),\;z(0)=z_0$ на відрізку $[0;T_0].$

Контрольний метод Понтрягіна

Умова

Нехай рух гравців в \mathbb{R}^n , $n \geq 2$, описується системою

$$\begin{cases} \ddot{x} + \alpha \dot{x} = a, & ||a|| \le \rho \\ \ddot{y} + \beta \dot{y} = b, & ||b|| \le \sigma \end{cases}$$

де α,β,ρ,σ — додатні числа. Переслідувач наздоганяє утікача, якщо x=y. Ця система описує рух точки одиничної маси під дією сили-керування з урахуванням тертя, що лінійно залежить від швидкості.

Перейдемо до системи диференціальних рівнянь першого порядку за допомогою замін $z^1=x-y,\ z^2=\dot x,\ z^3=\dot y$:

$$\begin{cases} \dot{z}^1=z^2-z^3\\ \dot{z}^2=-\alpha z^2+a\\ \dot{z}^3=-\beta z^3+b \end{cases}$$

Керування u та v задаються формулами $u=(0,-a,0)^T$, $v=(0,0,b)^T$, тому $U=\left\{(0,-a,0)^T:\|a\|\leq\rho\right\}$, $V=\left\{(0,0,b)^T:\|b\|\leq\sigma\right\}$. Оператор π задано як $\pi:(z^1,z^2,z^3)^T\mapsto(z^1,0,0)^T$, а матриця A дорівнює x0, y1, y2, y3, y3, y4, y5, y6, y7, y8, y9, y9,

$$\begin{pmatrix} 0 & 1 & -1 \\ 0 & -\alpha & 0 \\ 0 & 0 & -\beta \end{pmatrix}.$$

Знайдемо e^{At} (за допомогою перетворення Лапласа):

$$e^{At} = \mathcal{L}\left\{ (pI - A)^{-1} \right\} \Leftrightarrow (pI - A)^{-1} = \mathcal{L}^{-1}\left\{ e^{At} \right\}$$
$$pI - A = \begin{pmatrix} p & -1 & 1\\ 0 & p + \alpha & 0\\ 0 & 0 & p + \beta \end{pmatrix}$$

$$(pI - A)^{-1} = \frac{1}{p(p+\alpha)(p+\beta)} \begin{pmatrix} (p+\alpha)(p+\beta) & (p+\beta) & -(p+\alpha) \\ 0 & p(p+\beta) & 0 \\ 0 & 0 & p(p+\alpha) \end{pmatrix} =$$

$$= \begin{pmatrix} \frac{1}{p} & \frac{1}{p(p+\alpha)} & -\frac{1}{p(p+\beta)} \\ 0 & \frac{1}{p+\alpha} & 0 \\ 0 & 0 & \frac{1}{p+\beta} \end{pmatrix} \Rightarrow e^{At} = \begin{pmatrix} 1 & \frac{1-e^{-\alpha t}}{\alpha} & -\frac{1-e^{-\beta t}}{\beta} \\ 0 & e^{-\alpha t} & 0 \\ 0 & 0 & e^{-\beta t} \end{pmatrix}$$

Тепер можна записати $\pi e^{At}(z^1,z^2,z^3)=z^1+\frac{1-e^{-\alpha t}}{\alpha}z^2-\frac{1-e^{-\beta t}}{\beta}z^3$, звідки

$$\pi e^{At} U = \left\{ \frac{1 - e^{-\alpha t}}{\alpha} \cdot (-a) : ||a|| \le \rho \right\}$$
$$\pi e^{At} V = \left\{ -\frac{1 - e^{-\beta t}}{\beta} \cdot b : ||b|| \le \sigma \right\}$$

Отже, $\pi e^{At}U$ — куля з радіусом $\frac{1-e^{-\alpha t}}{\alpha} \rho$ і центром в нулі, а $\pi e^{At}V$ — куля з радіусом $\frac{1-e^{-\beta t}}{\beta} \sigma$ і центром в нулі, тому $W(t) = \pi e^{At}U \div \pi e^{At}V$ — куля з радіусом $\frac{1-e^{-\alpha t}}{\alpha} \rho - \frac{1-e^{-\beta t}}{\beta} \sigma$ і центром теж в нулі. Радіус W(t) буде додатнім при $\rho > \sigma$ та $\frac{\rho}{\alpha} > \frac{\sigma}{\beta}$.

 $\Omega(t) = \int\limits_0^t W(s) ds$ буде кулею з радіусом:

$$\begin{split} \int\limits_0^t \left(\frac{1-e^{-\alpha s}}{\alpha}\rho - \frac{1-e^{-\beta s}}{\beta}\sigma\right) ds &= \rho \int\limits_0^t \frac{1-e^{-\alpha s}}{\alpha} ds - \sigma \int\limits_0^t \frac{1-e^{-\beta s}}{\beta} ds = \\ &= \frac{\rho}{\alpha^2} \left(\alpha t + e^{-\alpha t} - 1\right) - \frac{\sigma}{\beta^2} \left(\beta t + e^{-\beta t} - 1\right) = r(t) \end{split}$$

Далі необхідно знайти таке (найменше) значення T_0 , для якого точка $\pi e^{AT_0}(z_0^1,z_0^2,z_0^3)$ належить $\Omega(T_0)$. З геометричних міркувань це буде найменший корінь рівняння

$$\frac{\rho}{\alpha^2} \left(\alpha t + e^{-\alpha t} - 1 \right) - \frac{\sigma}{\beta^2} \left(\beta t + e^{-\beta t} - 1 \right) = \left\| \pi e^{At} z_0 \right\|$$

Наступний крок будемо проводити на конкретному прикладі. Нехай гра відбувається на площині з $\alpha=1,\ \beta=2,\ \rho=2,\ \sigma=1$ та початковими умовами $x(0)=\begin{pmatrix}3\\2\end{pmatrix},\dot{x}(0)=\begin{pmatrix}1\\1\end{pmatrix},y(0)=\begin{pmatrix}1\\0\end{pmatrix},\dot{y}(0)=\begin{pmatrix}0\\1\end{pmatrix}.$ Чисельно можна знайти значення $T_0\approx 3.715.$

Метод розв'язуючих функцій

Метод розв'язуючих функцій належить А.О. Чикрію. Розглядається не просто лінійна диференціальна гра, а більш загальна *квазілінійна* гра виду:

$$\begin{cases} \dot{z} = Az + \varphi(u, v) \\ z(0) = z_0 \\ z \in \mathbb{R}^n, u \in U, v \in V \end{cases}$$

де $\varphi(u,v):U imes V o \mathbb{R}^n$ — неперервна за обома змінними функція.

Зауваження

У випадку $\varphi(u,v)=-u+v$ отримуємо лінійну диференціальну гру.

Метод розв'язуючих функцій

Термінальна множина має вид $M^*=M^0+M$, де M^0 — деякий лінійний підпростір \mathbb{R}^n , а M — компактна підмножина ортогонального доповнення M^0 , π — проектор на $(M^0)^\perp$.

Нехай $\varphi(U,v)=\{\varphi(u,v):u\in U\}$ для фіксованої $v\in V$, $W(t,v)=\pi e^{At}\varphi(U,v)$, $W(t)=\bigcap_{v\in V}W(t,v),t\geq 0.$

Зауваження

У випадку $\varphi(u,v) = -u + v \; W(t) = \pi e^{At} U - \pi e^{At} V.$

Позначення

Вводяться позначення:

$$\gamma(t)\in W(t) - \text{ вимірна функція}$$

$$\xi(t,z,\gamma(\cdot)) = \pi e^{At} + \int\limits_0^t \gamma(\tau)d\tau$$

$$\alpha(t,\tau,z,v,\gamma(\cdot)) =$$

$$= \sup\left\{\alpha\geq 0: [W(t-\tau,v)-\gamma(t-\tau)]\cap\alpha\left[M-\xi(t,z,\gamma(\cdot))\right]\neq\varnothing\right\}$$

$$T(z,\gamma(\cdot)) = \inf\left\{t\geq 0: \int\limits_0^t \inf\limits_{v\in V} \alpha(t,\tau,z,v,\gamma(\cdot))d\tau\geq 1\right\}$$

Означення

 $lpha(t, au,z,v,\gamma(\cdot))$ називається розв'язуючою функцією.

Метод розв'язуючих функцій

Можна довести наступне: якщо $W(t) \neq \varnothing$ для всіх $t \geq 0$, M — опукла множина, $T(z_0,\gamma_0(\cdot)) < +\infty$ для деякого початкового положення z_0 та деякої $\gamma_0(\cdot)$, то за час $T(z_0,\gamma_0(\cdot))$ гравці потрапляють у термінальну множину.

Також можна довести, що якщо гра є лінійною, $W(t)=\pi e^{At}U\doteq\pi e^{At}V\neq\varnothing$, існує неперервна $r(t):[0;+\infty)\to[0;+\infty)$ та число $l\geq0$ такі, що $\pi e^{At}U=r(t)S$, M=lS, де S — одинична куля в $(M^0)^\perp$ з центром в нулі, то при $\xi(t,z,\gamma(\cdot))\notin lS$, розв'язуюча функція α може бути знайдена як найбільший додатний корінь квадратного рівняння

Як і у минулому розв'язку цього прикладу перейдемо від системи

$$\begin{cases} \ddot{x} + \alpha \dot{x} = \rho u, & ||a|| \le 1 \\ \ddot{y} + \beta \dot{y} = \sigma v, & ||b|| \le 1 \end{cases}$$

до системи з $z_1 = x - y$, $z_2 = \dot{x}$, $z_3 = \dot{y}$:

$$\begin{cases} \dot{z}_1 = z_2 - z_3 \\ \dot{z}_2 = -\alpha z_2 + \rho u \\ \dot{z}_3 = -\beta z_3 + \sigma v \end{cases}$$

Термінальна множина $M^*=\{z:z_1=0\}=M^0+\{0\}$, ортогональне доповнення $(M^0)^\perp=\{z:z_2=z_3=0\}$, тому $\pi=\begin{pmatrix}I&0&0\\0&0&0\\0&0&0\end{pmatrix}$, де I та 0 — тотожній та нульовий оператор відповідно.

Оскільки у вихідній системі рівнянь $x,y\in\mathbb{R}^n$, то $z\in\mathbb{R}^{3n}$, то $\pi:\mathbb{R}^{3n}\to (M^0)^\perp$. Матриця системи $A=\begin{pmatrix} 0 & E & -E \\ 0 & -\alpha E & 0 \\ 0 & 0 & -\beta E \end{pmatrix}$, $U=\begin{pmatrix} 0 \\ \rho u \\ 0 \end{pmatrix}:\|u\|\leq 1$, $V=\{\begin{pmatrix} 0 \\ 0 \\ \sigma v \end{pmatrix}:\|v\|\leq 1$. Аналогічно минулому прикладу,

$$\pi e^{At}U = \frac{1 - e^{-\alpha t}}{\alpha} \rho S, \ \pi e^{At}V = \frac{1 - e^{-\beta t}}{\beta} \sigma S$$
$$W(t) = \left(\frac{1 - e^{-\alpha t}}{\alpha} \rho - \frac{1 - e^{-\beta t}}{\beta} \sigma\right) S = \omega(t)S$$

Радіус цієї кулі невід'ємний при $ho \geq \sigma$ та $rac{
ho}{lpha} \geq rac{\sigma}{eta}.$

Поклавши $\gamma(t)=0$, отримаємо $\xi(t,z,0)=z_1+\frac{1-e^{-\alpha t}}{\alpha}z_2-\frac{1-e^{-\beta t}}{\beta}z_3$. Ця задача задовольняє всі умови для пошуку розв'язуючої функції через:

$$\left\| \frac{1 - e^{-\beta t}}{\beta} \sigma v - \alpha \cdot \xi(t, z, 0) \right\| = \frac{1 - e^{-\alpha t}}{\alpha} \rho$$

Можна показати, що

$$\min_{\|v\| \le 1} \alpha(t, \tau, z, v, 0) = \frac{\omega(t - \tau)}{\|\xi(t, z, 0)\|}$$

і мінімум досягається при $v = - \frac{\xi(t,z,0)}{\|\xi(t,z,0)\|}$

Час, коли переслідувач наздожене утікача, визначається як

$$T(z,0) = \min \left\{ t \ge 0 : \int_{0}^{t} \frac{\omega(t-\tau)}{\|\xi(t,z,0)\|} d\tau = 1 \right\}$$

або ж як найменший додатний корінь рівняння

$$\|\xi(t,z,0)\| = \int_{0}^{t} \left(\frac{1 - e^{-\alpha\tau}}{\alpha}\rho - \frac{1 - e^{-\beta\tau}}{\beta}\sigma\right) d\tau$$

Розглянемо тепер конкретний приклад. Нехай ця гра відбувається на площині з $\alpha=1$, $\beta=2$, $\rho=2$, $\sigma=1$ та початковими умовами $x(0)=\begin{pmatrix}3\\2\end{pmatrix}, \dot{x}(0)=\begin{pmatrix}1\\1\end{pmatrix}, y(0)=\begin{pmatrix}1\\0\end{pmatrix}, \dot{y}(0)=\begin{pmatrix}0\\1\end{pmatrix}$. Чисельно можна знайти значення $T_0\approx 3.715$.

