Topologia Geral - T2

Nome completo:	

- 1. Defina espaço topológico Tychonoff. Enuncie o Teorema de Tychonoff.
 - Prove que a imagem contínua e aberta de um espaço topológico que satisfaz o segundo axioma de enumerabilidade também satisfaz o mesmo axioma.
- 2. Prove que o produto $X = \prod_{i \in I} X_i$ é um espaço T_0 se cada X_i o for.
 - Seja \mathcal{P} o espaço topológico $\mathbb{R} \times \mathbb{R}$ onde em cada componente é considerada a topologia de Sorgenfrey. Considerando o subespaço $\mathcal{D} \doteq \{(x, -x), x \in \mathbb{R}\}$, conclua que subespaços de espaços separáveis não são separáveis em geral.
- 3. Suponha que cada família de fechados de X com a propriedade da interseção finita tem interseção não vazia. Mostre que cada filtro em X tem um ponto de acumulação.
 - ullet Se Y é compacto, e o gráfico de f : X \to Y é fechado em X \times Y, prove que f é contínua.
- 4. Suponha que p : X → Y é uma aplicação contínua, fechada, sobrejetiva e, para cada y ∈ Y, tem-se que p⁻¹({y}) é compacto (chamada aplicação perfeita). Mostre que, nessas condições, se X é regular, então Y é regular.