Typed Supertags and Semantic Parses for Dutch

Konstantinos Kogkalidis 1 , Michael Moortgat 1 , Richard Moot 2 January 2020

¹Utrecht University, ²Université de Montpellier

Overview

- λ Type-Logical Grammars why types?
- λ Type System how types?
- λ Type Lexicon
- λ Semantic Parses
- λ Usecases

Type-Logical Grammars

Idea

Words assigned formulas, parsing a process of deduction.

Syntax

Structural Well-Formedness \equiv Formal Derivability

Curry-Howard Isomorphism

 $Propositions \equiv Types$

 ${\sf Proofs} \equiv {\sf Functional} \ {\sf Programs}$

Syntax-Semantics Interface

 $\mathsf{Parse} \equiv \mathsf{Proof} \equiv \mathsf{Computational} \ \mathsf{Terms}$

Type System (1/2)

IILL

$$\mathcal{T} := A \mid T_1 \multimap T_2$$

$$A \in \mathcal{A}$$
 :: Atoms denoting complete phrases

$$T_1 \multimap T_2$$
 :: Linear functor from T_1 to T_2
$$NP \multimap S, NP \multimap NP, NP \multimap NP \multimap S, (NP \multimap NP) \multimap (NP \multimap NP)$$

$$\frac{\Gamma \vdash M : A \multimap B \quad \Delta \vdash N : A}{\Gamma, \Delta \vdash (M \ N) : B} E$$

$$\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x . M : A \multimap B} I$$

Type System (2/2)

Modal Decoration Refinement

$$\mathcal{T} := A \mid T_1 \multimap T_2 \mid \diamond^d T_1 \multimap T_2 \mid \Box^d T_1 \multimap T_2$$

 $\sqcap^{det} N \multimap NP$, $\sqcap^{mod} (\sqcap^{mod} NP \multimap NP) \multimap \sqcap^{mod} NP \multimap NP$

Ducks, in Alpino

Ducks, Proven

$$\frac{\frac{\sqrt{\text{subj }NP + \sqrt{\text{subj }NP}}}{\sqrt{\text{subj }NP + \sqrt{\text{subj }NP}}} \frac{Ax}{\sqrt{\text{subj }NP - \sqrt{S}}} \frac{Ax}{E} \frac{\frac{\text{sierlijk}}{\text{mod }S - \sqrt{S}}}{\frac{\text{mod }S - \sqrt{S}}{E}} \frac{Ax}{E} \frac{\frac{\text{sierlijk}}{\text{mod }S - \sqrt{S}}}{\frac{\text{mod }S - \sqrt{S}}{E}}} \frac{Ax}{E} \frac{\frac{\text{sierlijk}}{\text{mod }S - \sqrt{S}}}{\frac{\text{mod }S - \sqrt{S}}{E}} \frac{Ax}{E} \frac{Ax}{E} \frac{\frac{\text{sierlijk}}{\text{mod }S - \sqrt{S}}}{\frac{\text{mod }S - \sqrt{S}}{E}} \frac{Ax}{E} \frac{\frac{\text{sierlijk}}{\text{mod }S - \sqrt{S}}}{\frac{\text{mod }S - \sqrt{S}}{E}} \frac{Ax}{E} \frac{Ax$$

 $\operatorname{die}(\lambda x.(\operatorname{sierlijk}(\operatorname{zwemmen}x)))$ vogels

ÆTHEL

Extraction

From Lassy Parses to IILL Types & Theorems

arxiv: abs/1912.12635

Resources

 $\textbf{1} \;\; \mathsf{Type} \; \mathsf{Lexicon} \colon \mathsf{Word} \to \mathsf{Type} \; \mathsf{Distribution}$

 $\textbf{2} \; \mathsf{Proofs:} \; \mathsf{Lassy} \; \mathsf{DAG} \to \mathsf{IILL} \; \mathsf{Proof}$

 \sim 97% coverage

Wikipedia subset publicly available at github.com/konstantinosKokos/aethel-public

ÆTHEL: Lexicon

Stats

- $\bullet \sim$ 900 000 word & type pairs
- 81 730 unique words
- 5771 unique semantic types

Lexical Type Ambiguity Histogram (log10-log2)

ÆTHEL: Proofs

Formats

- N.D. Proofs
- S.S. Proofs
- Linear Proofnets
- λ -terms

Stats

- 65 020 Lassy DAGs
- 72 263 IILL Proofs

Proof coverage w.r.t. most frequent types (logit-linear)

Usecases & Applications

• Supertagging with no type lexicon

arxiv: abs/1905.13418

- Parsing with type hints
- Type-aware language modeling
- Text to λ -term translation
- Semantic Compositionality
- ...?