

F. Bornemann, C. Ludwig

22. January 2016

Assignment 28 (basis for nullspace and image)

Use the complete singular value decomposition $A = U\Sigma V'$ of $A \in \mathbb{R}^{m\times n}$ to compute

- (a) an orthogonal basis of the nullspace of A and
- (b) an orthogonal basis of the image of A.

Solution

For $A \in \mathbb{R}^{m \times n}$ the complete singular value decomposition is given by $A = U\Sigma V'$ with $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{m \times n}$. If $\sigma_1, \ldots, \sigma_r$ are all singular values that are non-zero, then we do the following partitioning for m > n

and for m < n:

In both cases we have u_1, \ldots, u_r is an orthogonal basis for the image of A and v_{r+1}, \ldots, v_n is an orthogonal basis for the nullspace of A. Matlab code, see zip-file.

Assignment 29

In the (x, y) plane a cat is hunting a mouse: The speed of the cat is always $v_C = 2$ and it is always heading in the direction of the mouse. At time t = 0 the mouse is starting at point (0, 0) and it is running straight in the direction (0, 1) with speed $v_M = 1$. The cat is starting at point (1, 0).

- (a) Write down the differential equations for the path of the cat and the mouse, respectively.
- (b) Use Matlab's ode45 to calculate, when the distance between the cat and the mouse is 10^{-5} . (Hint: see the help of the Events option in odeset for the event detection.)

Solution

(a) For the mouse we have

$$\begin{pmatrix} x_M' \\ y_M' \end{pmatrix} = \begin{pmatrix} 0 \\ v_M \end{pmatrix}, \qquad \begin{pmatrix} x_M(0) \\ y_M(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The direction of the cat is given by

$$r := \begin{pmatrix} x_M \\ y_M \end{pmatrix} - \begin{pmatrix} x_C \\ y_C \end{pmatrix}.$$

Hence we obtain for the cat

$$\begin{pmatrix} x_C' \\ y_C' \end{pmatrix} = v_C \cdot r / \|r\|_2.$$