

UNIVERSIDADE FEDERAL DO AMAZONAS FACULDADE DE TECNOLOGIA ENGENHARIA DA COMPUTAÇÃO

CLASSIFICAÇÃO DE SÉRIES TEMPORAIS COM APRENDIZAGEM PROFUNDA

CLEMILTON VASCONCELOS PEREIRA

MANAUS-AM

CLEMILTON VASCONCELOS PEREIRA

CLASSIFICAÇÃO DE SÉRIES TEMPORAIS COM APRENDIZAGEM PROFUNDA

Monografia apresentada à Coordenação do Curso de Engenharia da Computação da Universidade Federal do Amazonas, como parte dos requisitos necessários à obtenção do título de Engenheiro de Computação.

Orientador: RAFAEL GIUSTI

MANAUS-AM

Ficha Catalográfica

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

C957s

Cruz Junior, António César Vieira da Sistema de detecção de frequência fundamental para música / António César Vieira da Cruz Junior. 2018 66 f.: il. color; 31 cm.

Orientador: Waldir Sabino da Silva Júnior TCC de Graduação (Engenharia da Computação) - Universidade Federal do Amazonas.

1. Frequência fundamental. 2. Processamento digital de áudio. 3. Transcrição musical. 4. Detecção automática. I. Silva Júnior, Waldir Sabino da II. Universidade Federal do Amazonas III. Título

CLASSIFICAÇÃO DE SÉRIES TEMPORAIS COM APRENDIZAGEM PROFUNDA

Clemilton Vasconcelos Pereira

MONOGRAFIA SUBMETIDA AO CORPO DOCENTE DO CURSO DE ENGENHARIA DA COMPUTAÇÃO DA UNIVERSIDADE FEDERAL DO AMAZONAS COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE ENGENHEIRO.

Aprovada por:		
_		
	Prof. Rafael Giusti, D. Sc.	
_	Prof., M. Sc.	
_	Prof. , D. Sc.	

Manaus Julho de 2018

Dedico este trabalho à minha mãe Lúcia, "In memoriam", também aos meus pais, Antonio e Elenir, e às minhas avós Jacyra e Maria, meus exemplos de vida.

Agradecimentos

Antes de tudo, a Deus, autor da vida, cujo a bondade e a misericórdia me seguem a cada dia. Tu és fiel, Senhor!

Aos meus pais, Antonio e Elenir, que sempre me apoiaram de todas as maneiras possíveis, à minha amada esposa Yasmin, sempre ao meu lado, e aos meus famíliares, que sempre me incentivaram a persistir.

Ao meu orientador, prof. Dr. Waldir Sabino, pela paciência, disposição e direcionamento durante a execução deste projeto, e também pelos conselhos que levo para minha vida profissional.

A todos os professores da UFAM, em especial o prof. Dr. César Melo, aos amigos de turma Rosmael, Helton, João Victor, Gabriel, Jordan, Kabashima, Eduardo, Luiz Henrique, Micael e Clemilton, e aos demais amigos e colegas da UFAM pelo convívio, aprendizado e cooperação durante todos esses anos. Vocês foram essenciais nessa caminhada.

À família Machado, por todo o cuidado no momento em que mais precisei, e aos irmãos da Segunda Igreja Batista de Manaus, que me adotaram assim que cheguei nesta cidade. Também à Keyseane, que me ajudou em momentos importantes na escrita deste trabalho, e aos meus amigos José Eduardo, Vanessa e Débora.

A todos que, de algum modo, colaboraram para que este momento se concretizasse:

Muito obrigado!

"Se algum de vocês tem falta de sabedoria, peça-a a Deus, que a todos dá livremente, de boa vontade; e lhe será concedida."

Resumo

Existem diferentes caminhos para o reconhecimento automático de uma notas musical, e um deles é por meio da frequência fundamental (f_0) . Muitas soluções e métodos de detecção automática de f_0 já foram desenvolvidas e apresentadas, obtendo resultados positivos. Todavia, é difícil que uma única solução de detecção seja de fato eficaz em ambientes muito diferentes daqueles para o qual a solução foi proposta. Diante disso, o presente projeto aborda o desenvolvimento de um sistema de detecção de f_0 para áudios musicais monofônicos, através de processamento digital de sinais, com o intuito de mapear os áudios, fornecendo as frequências fundamentais soadas em cada instante de tempo. Este trabalho também avaliou o sistema desenvolvido, por meio de experimentação a partir de uma base de dados construída para este fim. Percebeu-se que o sistema proposto apresenta boas respostas, sendo necessário melhorias em relação ao tratamento do efeito de ressonância.

Palavras-chave: Detecção automática de frequência fundamental, Processamento digital de áudio, Transcrição musical.

Abstract

There are different ways for a automatic recognition of musical note, one of them is through fundamental frequency (f_0) . Many solutions and methods of automatic detection of f_0 already developed and presented, getting positive results. However, it's hard that one only solution has been effective in environments much different from these that it was proposed. Therefore, the present project approaches the development of a f_0 detector system for monophonic musical audios through digital signal processing, with the intention of mapping it, recording the fundamental frequencies sounded at every instant time. This work also evaluated the system developed, through experiments using a database built for it. It was perceived that the proposed system presents good answers, being necessary improvements in the treatment of the resonance effect.

Keywords: Automatic Detection of fundamental frequency, Digital Audio Processing, Musical transcription.

Lista de Figuras

2.1	Codificação One-hot	6
2.2	Princípio dos k-vizinhos mais próximos	7
2.3	Representação simplificada de um neurônio	8
2.4	Modelo matemático de um neurônio	9
2.5	Multilayer Perceptron. Cada círculo representa um neurônio mostrado an-	
	teriormente	10

Lista de Tabelas

2.1	Representação	da	base	de	dados																								5
-----	---------------	----	------	----	-------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Lista de Abreviaturas e Siglas

PDS	Processamento Digital de Sinais
MIDI	Interface Digital de Instrumentos Musicais – do inglês ${\it Musical~Instrument}$
WIIDI	$oldsymbol{D}igital$ $oldsymbol{I}nterface$
DTFT	Transformada de Fourier em Tempo Discreto – do inglês $\boldsymbol{Discret\text{-}\boldsymbol{T}ime\;\boldsymbol{Fourier}}$
DILI	$oldsymbol{T} ransform$
\mathbf{DFT}	Transformada Discreta de Fourier – do inglês ${\it Discret Fourier Transform}$
\mathbf{FFT}	Transformada Rápida de Fourier – do inglês ${\it Fast Fourier Transform}$
STFT	Transformada de Fourier de Tempo Curto – do inglês $\textit{Short-Time Fourier}$
5111	$oldsymbol{T} ransform$

Lista de Símbolos

Símbolos Matemáticos

c	T ^ •	1	
t_s	Frequencia	de	amostragem
IS	I I Oquonora	ac	annostragoni

 f_0 Frequência fundamental

Hz Hertz - Unidade do Sistema Internacional (SI) para frequência

bpm Batidas por minutos

Sumário

1	Intr	roduçã	0	1
	1.1	Organ	ização do Trabalho	2
	1.2	Objeti	ivo	į
2	Fun	ıdamer	ntação Teórica	4
	2.1	Apren	dizado de Máquina	4
		2.1.1	Aprendizado Supervisionado	Ę
		2.1.2	Normalização e One-Hot Enconding	6
		2.1.3	K-Nearest Neighbors (KNN)	7
	2.2	Redes	Neurais Artificiais	8
		2.2.1	Inspiração Biológica e Perceptron	8
		2.2.2	Perceptron multicamadas	Ć
		2.2.3	Camada Softmax	11
		2.2.4	Hiperparâmetros de uma Rede Neural	11
			2.2.4.1 Mini-batches	11
			2.2.4.2 Taxa de aprendizado	11
			2.2.4.3 Função de Perda(Loss Function)	12
			2.2.4.4 Otimizadores	12
	2.3	Séries	Temporais	12
		2.3.1	Aplicações de Séries Temporais	13
	2.4	Classi	ficação de Séries Temporais	13
3	Sist	ema P	roposto	14
	3.1	Visão	geral	14

SUMÁRIO	vi

4	Exp	perimentos	15
	4.1	Métricas	15
	4.2	Objetivos	15
	4.3	Resultados Obtidos	15
5	Con	uclusão	16
Re	eferê	ncias Bibliográficas	17

Introdução

Como em todas as outras áreas, a música também vem progredindo com a tecnologia, tornando-se com maior praticidade, acessibilidade e inovações. A praticidade pode ser vista através das inúmeras ferramentas musicais que estão disponíveis no mercado, como os afinadores digitais, que podem ser encontrados até mesmo em aplicativos para smartphone. A evolução do poder computacional também reduziu o custo de desenvolvimento nesse setor, e ampliou os horizontes para uma infinidade de novas possibilidades para as ferramentas musicais. Atualmente, a transcrição de fala já é uma realidade em processamento digital de sinais, e tem-se empreendido grande esforço na tentativa de transcrever notas musicais[1] [2] [3].

Existem diferentes caminhos para o reconhecimento de notas musicais, e um deles é por meio da frequência fundamental (f_0) . Muitas soluções e métodos de detecção automática de f_0 já foram desenvolvidas e apresentadas, obtendo resultados positivos. Todavia, é difícil que uma única solução de detecção de f_0 seja de fato eficaz em todos os contextos possíveis. Deste modo, cada solução de detecção tem sua aplicação para a qual é ideal, e não há garantias de bons resultados em alguns outros contextos, como, por exemplo, ambientes ruidosos. Por isso, cada contexto demanda que as soluções propostas sejam analisadas, tendo em vista os fenômenos ao qual o sistema será submetido, para só então eleger-se o ideal para tal situação.

Dentro dessa realidade, o presente projeto aborda o desenvolvimento de um sistema de detecção de f_0 para áudios musicais monofônicos, através de processamento digital de sinais, com o intuito de mapear os áudios, fornecendo as frequências fundamentais soadas em cada instante de tempo e identificando os fenômenos aos quais um sistema nesse

contexto é submetido. A detecção de f_0 será realizada por meio da Transformada de Fourier de Curto Tempo (STFT), considerando f_0 como a frequência de maior amplitude dentro de cada janela. Foi construída uma base de dados com áudios de 4 tipos de instrumentos musicais para a realização de experimentos, visando validar as detecções realizadas pelo sistema. Este trabalho propõe-se ainda a avaliar a metodologia adotada por meio desses experimentos realizados.

1.1 Organização do Trabalho

Este trabalho escrito está organizado 3 capítulos, onde discorrem-se os fundamentos teóricos, os detalhes do sistema proposto e os experimentos realizados.

No Capítulo 2, Fundamentação Teórica, são abordados, de modo sucinto, os termos e conceitos utilizados na execução deste projeto. Serão tratado os conceitos de sinal de som e suas características, frequência fundamental e sua detecção, *pitch*, digitalização de um sinal, mencionando os processos de amostragem, quantização e codificação, conceitos de notas musicais, ressonância, domínios e transformadas, transformada discreta de fourier, transformada rápida de fourier e transformada de curto-tempo, além dos espectrogramas e suas formas.

O Capítulo 3, Sistema Proposto, detalha o desenvolvimento do sistema, especificando a metodologia adotada para o projeto. É apresentado, inicialmente, uma visão geral do sistema, com uso de diagrama de blocos. Os blocos de pré-processamento e de detecção da frequência fundamental são abordados de forma mais detalhada e expõe-se também o algoritmo usado para a detecção da f_0 . Explica-se ainda como foi implementada a análise por janelas de curto-tempo, bem como a forma de visualização dos resultados obtidos. O capítulo aborda ainda como foi desenvolvida a interface de experimentação e como construiu-se a base de dados.

Por fim, o Capítulo 4, Experimentos, explica as métricas utilizadas para a avaliação do sistema, os objetivos do experimento, os resultados obtidos e as discussões acerca desses resultados. Os resultados são apresentados de forma detalhada, para cada áudio da base de dados, separados por instrumento. Os resultados vão sendo analisados à medida em que são apresentados, sendo feito, ao fim de todos os experimentos, uma discussão mais detalhada acerca das informações obtidas por meio da experimentação.

1.2 Objetivo

Este projeto tem por objetivo desenvolver um sistema de detecção de frequência fundamental para áudios musicais monofônicos, através de processamento digital de sinais, com o intuito de mapear os áudios, fornecendo as fundamentais soadas em cada instante de tempo. Para isso, faz-se necessário:

- Implementar um sistema de processamento digital de áudio que, por meio da STFT, possibilite uma análise do sinal no domínio da frequência.
- Construir uma base de dados contendo áudios monofônicos para diferentes instrumentos, e seus respectivos arquivos de registro dos tempos de notas soadas e suas frequências fundamentais.
- Desenvolver uma interface gráfica de experimentação para avaliar o sistema desenvolvido.

Fundamentação Teórica

Este capítulo aborda, de forma sucinta, os fundamentos teóricos que foram aplicados no planejamento e implementação deste projeto.

2.1 Aprendizado de Máquina

Aprendizado de máquina (AM) é uma área da inteligência artificial cujo objetivo é o desenvolvimento de técnicas computacionais sobre o aprendizado, bem como a construção de sistemas capazes de adquirir conhecimento de forma automática. Um sistema baseado em aprendizado trabalha por meio de experiências acumuladas e de soluções bem-sucedidas de problemas anteriores [4]. Normalmente, algoritmos de aprendizado utilizam experiências anteriores, denominadas conjunto de treino, para auxiliar no processo de tomada de decisão.

Existem três diferentes tipos de aprendizado: supervisionado, não-supervisionado e semi-supervisionado. A diferença entre esses tipos de aprendizado é se o método utiliza ou não utiliza o rótulo de teino. No aprendizado supervisionado, esse rótulo é conhecido, enquanto que no aprendizado não-supervisionado os exemplos não vistos. Já no aprendizado semi-supervisionado, o conjunto de treinamento consiste de uns poucos exemplos rotulados e muitos não rotulados[5]. O escopo deste trabalho se encontra no aprendizado supervisionado.

	A_1	A_2		A_M	Classe(Y)
E_1	x_{11}	x_{12}	:	x_{1M}	y_1
E_2	x_{21}	x_{22}	÷	x_{2M}	y_2
:	:	:	٠.	:	:
E_N	x_{N1}	x_{N2}	:	x_{NM}	y_N

Tabela 2.1: Representação da base de dados

2.1.1 Aprendizado Supervisionado

O objetivo do aprendizado supervisionado é construir um modelo que consegue fazer predição através de instâncias de uma base de dados rotuladas. Cada instância é representada por um conjunto de características. Na Tabela 2.1 é mostrada a estrutura de uma base. Neste exemplo cada vetor $E_i = [x_{i1}, ..., x_{iM}]$ se refere a classe y_i .

A idéia da aprendizagem supervisionada é o conseguir encontrar uma função desconhecida f(função conceito) tal que $y=f(\mathbf{x})$, onde o vetor \mathbf{x} são os atributos de uma instância específica. Na prática, a função f deve conseguir prever o valor correto y_i de uma instância E_i não vista. Normalmente, o número de exemplos da base de dados não é suficiente para descrever a função conceito. Nesse caso, o classificador é visto como uma hipótese h que aproxima f, ou seja, $h(x) \approx f(x)$. Caso os valores dos rótulos $y_1, y_2, ..., y_N$ sejam numéricos o problema é denominado de regressão, caso sejam valores categóricos o problema é denominado de classificação.

De maneira geral, a base de dados é dividida em dois conjuntos: conjunto de treino e conjunto de teste. O conjunto de treinamento é utilizado para ajustar o classificador. Como dito anteriormente, o classificador é uma hipótese da função conceito f ,logo, é fundamental que o conjunto de treinamento tenha uma distribuição o mais semelhante possível do conjunto original. O conjunto de teste é utilizado para avaliar o modelo construído. Idealmente, esse conjunto não deve ter exemplos em comum com o conjunto de treinamento.

Em alguns casos, pode ser necessário utilizar um conjunto de *validação*, extraído do conjunto de treinamento, para realizar ajustes no modelo construído pelo algoritmo de aprendizado. Logo tem-se três conjuntos: *treino*, *validação* e *teste*. O treino é utilizado para aprendizagem do algoritmo. O modelo é avaliado através do conjunto de validação. É feita uma alteração dos parâmetros do classificador e outro treinamento é realizado.

O intuito é melhorar o desempenho do modelo através desses "ajustes". Dessa maneira os exemplos de validação são indiretamente "vistos" durante o processo de aprendizado, o que obriga que esses exemplos sejam diferentes dos exemplos de testes.

2.1.2 Normalização e One-Hot Enconding

Os algoritmos de aprendizagem de máquina aprendem através dos dados. Dados do mundo real apresentam valores que estão em distintas faixas. A fim de evitar que algum atributo predomine sobre outro ou que inclua alguma ponderação indesejada ao induzir um modelo de AM, é comum fazer uma normalização dos valores de cada atributo. Um forma de normalizar os dados é mostrada na Equação 2.1:

$$x_{ij} = \frac{x_{ij} - \overline{x}}{\sigma_j} \tag{2.1}$$

onde \overline{x} representa a média do atributo e σ_j representa o desvio padrão.

Os algoritmos de AM geralmente possuem como entrada e saída valores numéricos, portanto é necessário converter os valores categóricos da base de dados para valores numéricos. A codificação one-hot é um processo que converte rótulos em vetores binários como mostrado na Figura 2.1. Uma vantagem dessa codificação é que não cria uma "ordem" numérica nos dados. Essa ordem poderia interferir na indução do classificador, podendo dar maior importância para valores maiores, o que não faz sentido para variáveis categóricas.

Figura 2.1: Codificação One-hot

2.1.3 K-Nearest Neighbors (KNN)

Um classificador bastante popular é o K-Nearest Neighbors (K-Vizinhos mais próximos). O KNN utiliza os próprios dados de treinamento como modelo de classificação. Para classificar uma instância de teste, procura-se entre os dados de treinamento os K mais próximos da instância de teste. Por fim, verifica-se qual a classe predominante desses K dados de treinamento, e instância de teste é classificada com essa mesma classe. A cada nova exemplo a ser classificado faz-se uma varredura nos dados de treinamento, o que provoca um grande esforço computacional

O princípio do classificador k-NN é a "regra dos vizinhos mais próximos". A hipótese é que, dado um conjunto de exemplos distribuídos sobre o espaço de dados X, a "vizinhança" de um exemplo $x \in X$ estabelecida por uma função de distância apropriada tende a ser ocupada por exemplos que pertencem à mesma classes que x [6], como ilustrado na Figura 2.2. Desse modo a informação fornecida pelos exemplos conhecidos que são mais similares a x.

Figura 2.2: Princípio dos k-vizinhos mais próximos

Para encontrar os vizinhos mais próximos é necessário definir uma medida de similaridade entre dois exemplos. Uma medida de similaridade bastante popular é a distância euclidiana. Tal medida calcula a raiz quadrada da norma do vetor diferença entre os vetores x e y:

$$d(x,y) = \sum_{i=1}^{K} (x_i - y_i)^2$$
(2.2)

2.2 Redes Neurais Artificiais

Redes Neurais Artificais são modelos computacionais que buscam simular o processamento de informação pelo cérebro humano. Elas são compostas por unidades simples de processamento, os neurônios, que se unem por meio de conexões sinápticas [7]. Cada conexão, além de ser altamente especializada, é responsável pelo envio de sinais de um neurônio para outro. Segundo (*Haykin* 2009[8]), os neurônios e suas conexões podem ser implementados utilizando-se de componentes eletrônicos ou via simulação programada em computador.

2.2.1 Inspiração Biológica e Perceptron

Um bloco básico de uma rede neural tem algumas semelhanças com um neurônio biológico. O neurônio biológico é uma célula formada por três seçoes com funções específicas e complementares: corpo, dentritos e axônio. Os dentritos captam os estímulos recebidos em um determinado período de tempo e os transmitem ao corpo do neurônio, onde são processados. Quando tais estímulos atingirem determinado limite, o corpo da célula envia um novo impulso que se propaga pelo axônio e é transmitido às células vizinhas por meio de sinapses. Este processo pode se repetir em várias camadas de neurônios. Como resultado, a informação de entrada é processada, podendo levar o cérebro a comandar reações físicas. [9]. A figura 2.3 ilustra de forma simplificada as partes de um neurônio.

Figura 2.3: Representação simplificada de um neurônio

O modelo de um neurônio artifical é apresentado na Figura ??. Este modelo é composto por três elementos:

- Um cojunto de entradas $(x_1, x_2, ..., x_n)$ que são multiplicadas por um conjunto e pesos $(p_1, p_2, ..., p_n)$;
- \bullet Um somador ($\sum)$ para acumular o sinais de entrada;

• Uma função de ativação que (φ) limita o intervalo permissível de amplitude do sinal de saída (y) a um valor fixo.

Figura 2.4: Modelo matemático de um neurônio

Esse modelo foi proposto por McCulloch and Pitts em 1943 [10] e é conhecido como perceptron. A função de ativação (φ) tem a seguinte definição:

$$\varphi = \begin{cases} 1 & \text{if } \sum_{i=1}^{n} p_i x_i^k \ge T, \\ 0 & \text{if } \sum_{i=1}^{n} p_i x_i^k < T \end{cases}$$
 (2.3)

Os valores dos pesos podem ser positivos ou negativos e eles refletem se aquela conexão é inibitória ou excitatória. Um valor positivo ou negativo reflete a importância da respectiva entrada para o processamento. Frequentemente é adicionado um *viés b* na entrada da função de ativação. A forma geral do modelo é descrito como:

$$y(k) = \varphi(\sum_{i=1}^{n} p_i(k)x_i(k) + b(k))$$
 (2.4)

Os pesos sinápticos do Perceptron podem ser adaptados empregando um processo de aprendizado com um número finito de iterações. A aprendizagem é conduzida pela regra de correção de erro conhecida como algoritmo de convergência do Perceptron. Esse algoritmo visa encontrar um vetor de pesos w tal que as duas igualdades da função degrau sejam satisfeitas(Lippmann, 1987 [11])

2.2.2 Perceptron multicamadas

O Perceptron multicamadas ($Multi-Layer\ Perceptron - MLP$) é uma generalização da rede perceptron. Novas camadas são adicionadas o que possibilita a solução de problemas que não sejam linearmente separáveis. O vetor de entradas \mathbf{x} passa pela camada inicial,

cujos valores de saída são ligados a camada seguinte. Esse processo se repete até chegar na última camada.(Figura 2.5) Pode-se arranjar a rede em várias camadas, tornando-a profunda e capaz de aprender relações cada vez mais complexas.

Figura 2.5: Multilayer Perceptron. Cada círculo representa um neurônio mostrado anteriormente

Em 1986, Rumelhart, Hinton e Williams [12] desenvolveram o algoritmo backpropagation, que utiliza o gradiente descendente para treinar uma MLP. Este método é composto pelas fases forward e backward. O objetivo do backpropagation é otimizar os pesos para que a rede neural possa aprender a mapear corretamente as entradas para as saídas. A primeira fase é a "propragação adiante" (forward), onde as entradas inseridas na rede se propagam entre as camadas, uma a uma, até a produção das respectivas saídas, portanto a função dessa fase é gerar uma resposta considerando as entradas e os respectivos pesos sinápticos, os quais permanecem inalterados.

Na fase backward é onde a aprendizagem dos pesos é realizada. Esse aprendizado se dá através da otimização (minimização) da função loss, a qual determina a qualidade da classificação do dado de entrada. Essa otimização é realizada através de um método chamado *Gradiente Descendente* que busca a minimização da função *loss* ao alterar os pesos na direção de maior declive do gradiente. O gradiente é calculado na última camada e então é retro-propragado para as camadas intermediárias anteriores que contribuem diretamente para a formação da saída. Cada elemento da camada intermediária recebe é responsável apenas por uma porção do gradiente total. Este processo se repete, camada por camada, até que cada elemento tenha a sua parcela de gradiente para o gradiente total. Baseado no gradiente, é feita uma alteração dos valores dos pesos e bias de modo que a rede aprenda os padrões do conjunto de treinamento.

2.2.3 Camada Softmax

Como explicado em *GoodFellow*, *Bengio*, e *Courville*(2016 [13]), a camada softmax é utilizada como um classificador na camada de saída e tem como objetvio representar a probabilidade de cada classe para cada valor de entrada.

Pela Equação 3.5 nota-se que os valores de saída da camada softmax estão entre 0 e 1, e que a soma de de todas as saídas é igual a 1. Desta forma, cada neurônio de saída representa representa a probabilidade da entrada pertencer a uma determinada classe.

$$softmax(z_i) = \frac{exp(z_i)}{\sum_{j} exp(z_j)}$$
 (2.5)

2.2.4 Hiperparâmetros de uma Rede Neural

A maioria dos algoritmos de AM envolvem "hiperparâmetros", que são varíaveis definidas para o algoritmo antes do treinamento com o objetivo de otimizá-lo. Definir os valores de hiperparâmetros pode ser visto como uma seleção de modelos, ou seja, escolher qual modelo usar do conjunto hipotético de modelos possíveis. Em redes neurais os hiperparâmeteros determinam a estrutura da rede (Ex: Número de neurônios em uma camada) ou como a rede será treinada(Ex: Taxa de aprendizado)

2.2.4.1 Mini-batches

O treinamento geralmente é realizado em batches também conhecidos como minibatches que são subconjuntos do treino. As razões de utilizar batches e não o treino inteiro são: diminuição do tempo de treinamento; caso o conjunto de treino seja suficientemente grande, uma amostra desse conjunto pode representar de forma boa o conjunto original. A tamanho dessa amostra é um hiperparâmetro da rede, sendo geralmente aceito que o treinamento com batches maiores resulta numa melhor performance.

2.2.4.2 Taxa de aprendizado

A taxa de aprendizado é um parâmetro constante no intervalo de [0,1] que interfere na convergência do aprendizado. Ela determina o quão "rápido" as atualizações dos pesos irão em direção do gradiente. Se a taxa de aprendizado for muito pequena, o modelo convergirá muito lentamente; Se a taxa de aprendizado for muito grande, o modelo irá

divergir.

2.2.4.3 Função de Perda(Loss Function)

A função de perda compara a saída da rede para um exemplo de treinamento com o rótulo verdadeiro. Uma função de perda comum é o erro médio quadrático dado pela Equação 2.6

$$MSE = \frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{N}$$
 (2.6)

Quando a saída da rede neural está sendo tratada como uma distribuição de probabilidade é comum utilizar entropria cruzada *cross-entropy*. A entropia cruzada indica a distância das distribuições de probabilidade entre o que a rede prevê e os dados reais. Ele é definida como:

$$L = -\sum_{i} y_i log(z_i) \tag{2.7}$$

2.2.4.4 Otimizadores

- Stochastic Gradient Descent
- Momentum
- RMSprop
- AdaDelta
- Adam

Neste trabalho foi utilizado o otimizador Adam, além de ser

2.3 Séries Temporais

Série temporal é uma sequência de observações de um fenômeno ao longo do tempo. Geralmente essas medições são feitas em um intervalo de tempo regular. A ordem das amostras é crucial, pois há um dependência entre os dados e uma alteração da ordem pode modificar o significado dos dados. Uma série temporal pode ser definida como:

$$X(t) = (x_1, x_2, ..., x_n)$$
(2.8)

onde x_n representa uma observação no instante t, n o número de observações e X(t) a função que descreve a série temporal em termos de t. Caso a série seja constituída de uma observação em cada instante de tempo ela é chamada de univariada. Caso a série foi obtida por uma coleta simultânea de dois ou mais fenômenos ela é chamada de multivariada.

As séries temporais estão em diversas áreas do conhecimento como Economia (preços diários dea ações, taxa mensal de desemprego, produção industrial), Medicina (eletrocardiograma, eletroencefalograma), Epidemiologia (número mensal de novos casos de meningite), Meteorologia (precipitação pluviométrica, temperatura diária, velocidade do vento).

2.3.1 Aplicações de Séries Temporais

A análise de séries temporais tem atraído muitos pesquisadores em aprendizado de máquina ao redor do mundo. As principais tarefas envolvendo séries temporais na qual se utiliza aprendizagem de máquina são as seguintes:

- Classificação: cada série temporal representa uma classe distinta de objetos. Dada uma série temporal, o objetivo é descobrir qual é a classe de objetos ela representa;
- Agrupamento: Dado um conjunto de séries temporais, o objetivo é encontrar uma estrutura natural que permita distribuir as séries em grupos;
- Detecção de Motivos: também conhecido como detecção de *motifs*; o objetivo é encontrar uma ou mais subsequências que aparecem frequentemente na séries;
- Detecção de Anomalias: encontrar subsequências ou séries que são inesperadas em algum contexto.

Este trabalho está inserido na tarefa de classificações de séries temporais.

2.4 Classificação de Séries Temporais

Sistema Proposto

Neste capítulo é abordado o sistema de detecção de f_0 proposto neste projeto, com a descrição da metodologia e dos materiais utilizados no desenvolvimento.

3.1 Visão geral

Experimentos

- 4.1 Métricas
- 4.2 Objetivos
- 4.3 Resultados Obtidos

Conclusão

Referências Bibliográficas

- [1] VASS, J. Automatic Transcription of Audio Signals. Master of Science Thesis, Czech Technical University in Prague, Prague, 2004.
- [2] AMADO, R. G.; FILHO, J. V. Pitch Detection Algorithms Based on Zero-Cross Rate and Autocorrelation Function for Musical Notes. *Sao Paulo State University*, São Paulo, 2008.
- [3] AOQUI, C. J. et al. Methods to Musical Notes Recognition from Sheet Music: Preliminary Results. X Workshop de Visão Computacional Universidade Estadual de São Paulo, São Paulo, 2014.
- [4] MONARD, M.; BARANAUSKAS, J. Conceitos sobre aprendizado de máquinas. Em Sistemas Inteligentes: Fundamentos e Aplicações. 1º. ed. [S.l.]: Editora Manole, 2003.
- [5] CHAPELLE, O.; SCHÖLKOPF, B.; ZIEN, A. Semi-Supervised Learning. 1º. ed. [S.l.]: MIT Press, Cambridge, 2006. 12 13 p.
- [6] COVER, T.; HART, P. Nearest neighbor pattern classification. Information Theory, IEEE Transaction on, 1967.
- [7] ZHANG, G.; PATUWO, B. E.; HU, M. Y. Forecasting with artificial neural networks: The state of art. *International Journal of Forecasting*, 1998.
- [8] HAYKIN, S. S. Neural networks and learning machines. 3º. ed. Upper Saddle River, United States of America: Prentice Hall.
- [9] FERNEDA, E. Redes neurais e sua aplicação em sistemas de recuperação de informação. *Ciência da Informação*, v. 35, n. 1, 2006. ISSN 1518-8353. Disponível em: http://revista.ibict.br/ciinf/article/view/1149.

- [10] MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 1943. ISSN 1522-9602. Disponível em: https://doi.org/10.1007/BF02478259.
- [11] LIPPMANN, R. An introduction to computing with neural nets. *IEEE ASSP Magazine*, v. 4, n. 2, 1987.
- [12] RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by back-propagating errors. *Nature*, Nature Publishing Group, v. 323, p. 533–, out. 1986. Disponível em: http://dx.doi.org/10.1038/323533a0.
- [13] GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press, 2016. http://www.deeplearningbook.org.