Project Part II: MIP Callbacks and TSP as a Service

Ross Anderson and Iain Dunning

Massachusetts Institute of Technology

Operations Research Center

January 30, 2014

Outline

Introduction

MIP Callbacks

TSP

TSPaaS

Deployment

User Request


```
 \begin{array}{c|c} & & (lat_1, lng_1) \\ \hline \text{User} & & (lat_2, lng_2) \\ \hline \text{Request} & & \text{Julia Server} \end{array}
```


► The internet

- ► The internet
- Databases

- ► The internet
- Databases
- Name Service

- ► The internet
- Databases
- Name Service
- ▶ Stations Service: (lat, lng) for all hubway stations in a box

► MIP callbacks

- ► MIP callbacks
- ► TSP

- ► MIP callbacks
- ► TSP
- Convert Stations Service to TSP Service

- MIP callbacks
- ► TSP
- Convert Stations Service to TSP Service
- ▶ Deploying MIP solvers in the real world

Callbacks interrupt the MIP solver to run custom code.

Callbacks interrupt the MIP solver to run custom code.

Things you can do with MIP callbacks:

Add constraints to the problem

Callbacks interrupt the MIP solver to run custom code.

Things you can do with MIP callbacks:

- Add constraints to the problem
- Suggest new integer solutions

Callbacks interrupt the MIP solver to run custom code.

Things you can do with MIP callbacks:

- Add constraints to the problem
- Suggest new integer solutions
- Control branching & node selection

Callbacks interrupt the MIP solver to run custom code.

Things you can do with MIP callbacks:

- Add constraints to the problem
- Suggest new integer solutions
- Control branching & node selection
- ▶ Log **anything** about solver progress for offline analysis

Add LP relaxation to node stack;
Incumbent = null;
while node stack not empty do
Pop LP from node stack & solve;

The Lazy Constraint Callback

Add the "lazy" constraints only once they have been violated by an integer solution.

When to make a family of constraints lazy

Good idea when:

- Family of constraints is large (e.g. n³, 2ⁿ, |ℝ|)
- Integer solutions quickly separated
- Most constraints not violated

When to make a family of constraints lazy

Good idea when:

- Family of constraints is large (e.g. n^3 , 2^n , $|\mathbb{R}|$)
- Integer solutions quickly separated
- Most constraints not violated

Problems:

- Hard to find an integer solution
- Best bound improves slowly if many lazy constraints needed

Simple Lazy IP:

Julia Solution:

TSP

$$\begin{array}{ll} \max & x_1+2x_2 \\ \mathsf{lazy:} & x_1+x_2 \leq 1 \\ & x_1,x_2 \in \{0,1\} \end{array}$$

Lazy Constraints in Julia

Simple Lazy IP:

```
\begin{array}{ll} \mathsf{max} & x_1 + 2x_2 \\ \mathsf{lazy:} & x_1 + x_2 \leq 1 \\ & x_1, x_2 \in \{0, 1\} \end{array}
```

Julia Solution:

```
m = Model(solver=GurobiSolver(LazyConstraints=1)
@defVar(m,x[1:2],Bin)
@setObjective(m,Max, x[1] + 2*x[2])
function lazy(cb)
    xVal = getValue(x)
    if xVal[1] + xVal[2] > 1 + 1e-4
        @addLazyConstraint(cb, x[1] + x[2] <= 1)
    end
end
setlazycallback(m,lazy)
solve(m)</pre>
```


Exercise: the feasible circle

Input: radius r, direction $\mathbf{c} = (c_1, c_2)$

Goal: maximize $\mathbf{c} \cdot \mathbf{x}$ on integer inside radius r circle.

Exercise: the feasible circle

Input: radius r, direction $\mathbf{c} = (c_1, c_2)$

Goal: maximize $\mathbf{c} \cdot \mathbf{x}$ on integer inside radius r circle.

$$r=5, \mathbf{c}=(2,1)$$

max $\mathbf{c}\mathbf{x}$ subject to: $\|\mathbf{x}\|_2 \le r$ $\mathbf{x} \in \mathbb{Z}_2$

Solving the feasible circle with Lazy Constraint Callbacks

Lazy Formulation:

s.t.
$$-r \le x_i \le r$$
 $i = 1, 2$
lazy: $\mathbf{d} \cdot \mathbf{x} \le r$ $\forall \|\mathbf{d}\|_2 = 1$

$$\textbf{x} \in \mathbb{Z}_2$$

Solving the feasible circle with Lazy Constraint Callbacks

Lazy Formulation:

max
$$\mathbf{c} \cdot \mathbf{x}$$

s.t. $-r \le x_i \le r$ $i = 1, 2$

lazy:
$$\mathbf{d} \cdot \mathbf{x} \leq r \quad \forall \|\mathbf{d}\|_2 = 1$$
 $\mathbf{x} \in \mathbb{Z}_2$

$$\begin{array}{c|c}
 & d \cdot x \leq 5 \\
\hline
 & c \\
\hline
 & 5
\end{array}$$

Solving the feasible circle with Lazy Constraint Callbacks

Lazy Formulation:

max **c** · **x**

s.t.
$$-r \le x_i \le r$$
 $i = 1, 2$

lazy:
$$\mathbf{d} \cdot \mathbf{x} \le r \quad \forall \|\mathbf{d}\|_2 = 1$$

$$\textbf{x} \in \mathbb{Z}_2$$

Implementing Lazy Constraints:

Uncountably many!

Solving the feasible circle with Lazy Constraint Callbacks

Lazy Formulation:

s.t.
$$-r \le x_i \le r$$
 $i = 1, 2$

lazy:
$$\mathbf{d} \cdot \mathbf{x} \leq r \quad \forall \|\mathbf{d}\|_2 = 1$$

$$\mathbf{x} \leq r \quad \forall \|\mathbf{d}\|_2 = \mathbf{x} \in \mathbb{Z}_2$$

Implementing Lazy Constraints:

- Uncountably many!
- ▶ If $\|\mathbf{x}\|_2 > r$, take $\mathbf{d} = \frac{1}{\|\mathbf{x}\|_2} \mathbf{x}$, as

$$\mathbf{d} \cdot \mathbf{x} = \frac{1}{\|\mathbf{x}\|_2} \mathbf{x} \cdot \mathbf{x} = \|\mathbf{x}\|_2 > r$$

Solving the feasible circle with Lazy Constraint Callbacks

Lazy Formulation:

$$\begin{array}{ll} \max & \mathbf{c} \cdot \mathbf{x} \\ \text{s.t.} & -r \leq x_i \leq r \qquad i = 1, 2 \\ \text{lazy:} & \mathbf{d} \cdot \mathbf{x} \leq r \quad \forall \|\mathbf{d}\|_2 = 1 \\ & \mathbf{x} \in \mathbb{Z}_2 \end{array}$$

$\mathbf{d} \cdot \mathbf{x} \leq 5$

Implementing Lazy Constraints:

- Uncountably many!
- If $\|\mathbf{x}\|_2 > r$, take $\mathbf{d} = \frac{1}{\|\mathbf{x}\|_2} \mathbf{x}$, as

$$\mathbf{d} \cdot \mathbf{x} = \frac{1}{\|\mathbf{x}\|_2} \mathbf{x} \cdot \mathbf{x} = \|\mathbf{x}\|_2 > r$$

Psuedo code: if $\|\mathbf{x}\|_2 > r$ then $\mathbf{d} = \frac{1}{\|\mathbf{x}\|_2} \mathbf{x};$ add lazy constraint $\mathbf{d} \cdot \mathbf{x} < r$; end

Lazy constraints vs. Lazy constraint callbacks

Some solvers support lazy constraints without callbacks. However, they have the following limitations:

- ► All constraints must be generated at start
- ► Each constraint is checked manually against integer solutions.

Wouldn't work for the "feasible circle."

User Cut Callback

Heuristic Callback

Other callbacks

- ► Incumbent Callback: optionally reject solutions, improvement heuristics
- ▶ Branching Callback: select variable/constraint to branch on
- ▶ Node Selection Callback: select node from node stack

The Traveling Salesman Problem

The TSP:

- n cities
- ► cii cost between cities
 - ► (Euclidean distance)
- Visit each city once
- Minimize total cost

Optimal tour, geometric c_{ii} .

IP for TSP

- Graph G = (V, E)
- \triangleright $\delta(v) = \text{edges incident to } v$
- ▶ For $S \subset V$, $\delta(S) =$ edges with **one** endpoint in S

- Graph G = (V, E)
- $\delta(v) =$ edges incident to v
- ▶ For $S \subset V$, $\delta(S) =$ edges with **one** endpoint in S

min
$$\sum_{e \in F} c_e x_e$$

s.t.
$$\sum x_e = 2 \quad \forall v \in V$$

$$\sum_{e \in \delta(S)} x_e \ge 2 \quad \forall S \subset V,$$

$$S \neq \emptyset, V$$

$$x_e \in \{0, 1\}$$

 $e \in \delta(v)$

IP for TSP

- ▶ Graph G = (V, E)
- $\delta(v) =$ edges incident to v
- ▶ For $S \subset V$, $\delta(S) =$ edges with **one** endpoint in S

min
$$\sum_{e \in E} c_e x_e$$
s.t.
$$\sum_{e \in E} x_e =$$

$$\sum_{e \in \delta(v)} x_e = 2 \quad \forall v \in V$$

$$\sum_{e \in \delta(S)} x_e \ge 2 \quad \forall S \subset V,$$

$$S \neq \emptyset, V$$

$$x_e \in \{0, 1\}$$

A violated cutset constraint

Exercise: Solving TSP in Julia w/o cutset constraints

Input: a symmetric 2d matrix c_{ij} with $c_{ii} = 0$

Output: the optimal cost, and an array with the city indices in order

Step 1: Ignore the cutset constraints, make sure it works.

- ▶ Create variables x_{ij} for i = 1, ..., n, j = 1, ..., n
- Add constraints

$$x_{ii}=0$$

$$x_{ij}=x_{ji}$$

- ► Add degree = 2 constraints & objective
- ▶ Use extractCycle to get the optimal tour when you are done

Exercise: Check your work

- ▶ 3 cities (in testTspSolver.jl)
- ▶ 6 cities with subtours (in testTspSolver.jl)
- Try plotTour

Don't check each of $2^V - 2$ cutsets! Use separation!

Don't check each of $2^V - 2$ cutsets! Use separation!

▶ Degree constraints ⇒ integer solution degree two graph

Don't check each of $2^V - 2$ cutsets! Use separation!

- ▶ Degree constraints ⇒ integer solution degree two graph
- ▶ Degree two graphs are a collection of cycles

Don't check each of $2^V - 2$ cutsets! Use separation!

- ▶ Degree constraints ⇒ integer solution degree two graph
- Degree two graphs are a collection of cycles
- \triangleright Each cycle is a violated cutset, S = nodes in cycle

Don't check each of $2^{V} - 2$ cutsets! Use separation!

- ▶ Degree constraints ⇒ integer solution degree two graph
- ▶ Degree two graphs are a collection of cycles
- ightharpoonup Each cycle is a violated cutset, S = nodes in cycle
- ▶ Use connectedComponents to get a list of cycles

Don't check each of $2^V - 2$ cutsets! Use separation!

- ▶ Degree constraints ⇒ integer solution degree two graph
- Degree two graphs are a collection of cycles
- ightharpoonup Each cycle is a violated cutset, S = nodes in cycle
- ▶ Use connectedComponents to get a list of cycles
- ▶ If k > 1 cycles, add cutset constraint for first k 1 cycles

Don't check each of $2^{V} - 2$ cutsets! Use separation!

- ▶ Degree constraints ⇒ integer solution degree two graph
- Degree two graphs are a collection of cycles
- ightharpoonup Each cycle is a violated cutset, S = nodes in cycle
- Use connectedComponents to get a list of cycles
- ▶ If k > 1 cycles, add cutset constraint for first k 1 cycles
- Check your work on 6 cities
- ► Try a larger instance from TSPLIB (in tsplib.jl)

Aside: the TSP and separation

The *separation problem* for a polyhedron *P*:

▶ Given x show $x \in P$, or find a violated constraint

Aside: the TSP and separation

The separation problem for a polyhedron P:

• Given x show $x \in P$, or find a violated constraint

For lazy constraints, we assumed in addition that \mathbf{x} was integer, a much easier problem!

Use the separation problem for user cut callbacks.

For TSP, the separation by n Max-Flow Min-Cut computations.

Challenge: use Julia (make n LPs in each callback)!

Aside: more callbacks for TSP

Easy heuristic callback:

- Sort edges by LP relaxation value
- For each edge, add if it does not make a cycle

Aside: more callbacks for TSP

Easy heuristic callback:

- Sort edges by LP relaxation value
- For each edge, add if it does not make a cycle

Two-Opt: given an integer TSP solution:

- Find a better solution by changing at most two edges
- Repeat until no improvement

Aside: more callbacks for TSP

Easy heuristic callback:

- Sort edges by LP relaxation value
- ► For each edge, add if it does not make a cycle

Two-Opt: given an integer TSP solution:

- Find a better solution by changing at most two edges
- Repeat until no improvement

Incumbent callback + heuristic callback + two-opt:

- Use incumbent callback to grab integer solutions
- Run two-opt
- ▶ If solution improves, add with heuristic callback

Software-as-a-Service (SaaS)

Sending a solver is hard

- Licenses
- Compiling
- Data/Databases
- One time revenue

Software-as-a-Service (SaaS)

Sending a solver is hard

- Licenses
- Compiling
- Data/Databases
- One time revenue

Bring problem to the solver!

TSP-as-a-Service

Code is ready. Lets try it!

- ▶ Navigate to cd winstonWorks
- Run julia tsp_service_winston.jl
- ▶ Wait for terminal output Listening on 8000...
- ► Go to http://localhost:8000/stationservice/42.3/42.4/-71.2/-71.0

TSP-as-a-Service

Code is ready. Lets try it!

- ▶ Navigate to cd winstonWorks
- Run julia tsp_service_winston.jl
- ▶ Wait for terminal output Listening on 8000...
- ► Go to http://localhost:8000/stationservice/42.3/42.4/-71.2/-71.0

It worked! Now lets look at tsp_service_winston.jl

Considerations for deploying MIPs

- ► Real time or offline MIP solving
- Number of simultaneous users
- Solver licenses
- ► Reliability/maximum solve time

Deployment Options

Option		Pros	Cons
Personal computer	Easy	,	Spilled coffee Two concurrent users Blackouts International lag Data Safety
Rent a box	c Pret	ty Easy	Two concurrent users International lag Data safety
Cloud (Amazon/	Data Google) Low	e up for many users a safety latency itoring/uptime	Set up time Learn a system Can be \$\$
Gurobi a la (Amazon) (Solver on	Scal	for what you use e up for many users	Can be \$\$ No callbacks

