

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME								
CENTRE NUMBER				CANDIDATE NUMBER				
MATHEMATICS							97	09/32
Paper 3 Pure M	athematics	s 3 (P3)				Мау	/June	e 2017
					1	hour	45 m	inutes
Candidates answ	ver on the	Question	Paper.					
Additional Mater	ials: L	ist of Form	nulae (MF9)					

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

•	• •
•	
•	
•	••
•	••
•	••
•	• •
•	• •
•	••
•	••
•	
•	 ••
	••

•••••

and c are constants to be determined.	
	 •••••
	 •••••
	 •
	 ••••••
	 •••••
	•••••
	 •
	 •
	 .

for $90^{\circ} < \theta < 180^{\circ}$.	
	•••••

4 The parametric equations of a curve	4	curve are
---------------------------------------	---	-----------

$$x = t^2 + 1$$
, $y = 4t + \ln(2t - 1)$.

(i)	Express $\frac{dy}{dx}$ in terms of t .	[3]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		• • • •

	Find the equation of the normal to the curve at the point where $t = 1$. Give your answer if form $ax + by + c = 0$.
_	
•	
• •	
•	
•	
• •	
•	
• •	
•	
• •	
• •	
• •	
• •	
•	
• •	

5

In a certain chemical process a substance A reacts with and reduces a substance B. The masses of A

and <i>B</i> at time <i>t</i> after the start of $x = \frac{10}{(1+t)^2}$. At the beginning	of the process are x and y respectively. It is given that $\frac{dy}{dt}$ g of the process $y = 100$.	= -0.2xy and
	tion in y and t , and solve this differential equation.	[6]

•		
•		
•		• • • • • • • • • • • • • • • • • • • •
•		• • • • • • • • • • • • • • • • • • • •
•		
•		
I	Find the exact value approached by the mass of R as t becomes large. State what bappe	ne to the
I	Find the exact value approached by the mass of B as t becomes large. State what happen has of A as t becomes large.	
I	Find the exact value approached by the mass of B as t becomes large. State what happen ass of A as t becomes large.	ns to the
	Find the exact value approached by the mass of B as t becomes large. State what happen ass of A as t becomes large.	
. ·	Find the exact value approached by the mass of B as t becomes large. State what happen has of A as t becomes large.	
	Find the exact value approached by the mass of B as t becomes large. State what happen ass of A as t becomes large.	
	Find the exact value approached by the mass of B as t becomes large. State what happen ass of A as t becomes large.	
	Find the exact value approached by the mass of B as t becomes large. State what happen ass of A as t becomes large.	
	Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happen ass of <i>A</i> as <i>t</i> becomes large.	
	Find the exact value approached by the mass of B as t becomes large. State what happen ass of A as t becomes large.	
	Find the exact value approached by the mass of B as t becomes large. State what happe mass of A as t becomes large.	
	Find the exact value approached by the mass of <i>B</i> as <i>t</i> becomes large. State what happe nass of <i>A</i> as <i>t</i> becomes large.	
	Find the exact value approached by the mass of B as t becomes large. State what happenass of A as t becomes large.	
	Find the exact value approached by the mass of B as t becomes large. State what happe hass of A as t becomes large.	
	Find the exact value approached by the mass of B as t becomes large. State what happe hass of A as t becomes large.	
I 1	Find the exact value approached by the mass of B as t becomes large. State what happe nass of A as t becomes large.	
	Find the exact value approached by the mass of B as t becomes large. State what happenass of A as t becomes large.	

6 7	Throughout	this au	estion th	ie use o	f a c	alculator	is not	permitted.
-----	-------------------	---------	-----------	----------	-------	-----------	--------	------------

The complex number 2 - i is denoted by u.

eal.	Find the	e values	s of <i>a</i> ar	$\operatorname{ad} b$.									
•••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	
										•••••			
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • •
										•••••			
•••••				•••••				•••••		•••••		•••••	• • • • • •
	•••••	•••••	••••••				•••••	•••••		•			••••
										•••••			
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
										•••••			
•••••	••••••	•••••	•••••	••••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
• • • • • • •	•••••	•••••		•••••	•••••	•••••		•••••		•••••		•••••	
•••••			• • • • • • • • • • • • • • • • • • • •				•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • •
•••••	••••••	•••••	••••••	••••••	•••••	••••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
										• • • • • • • • • • • • • • • • • • • •			
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	••••••	•••••		•••••		••••••	•••••
•••••	•••••						•••••			•••••		••••••	

(ii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying both the inequalities |z - u| < 1 and |z| < |z + i|. [4]

	Prove that if $y = \frac{1}{\cos \theta}$ then $\frac{dy}{d\theta} = \sec \theta \tan \theta$.	
		•••••
(ii)	Prove the identity $\frac{1 + \sin \theta}{1 - \sin \theta} = 2 \sec^2 \theta + 2 \sec \theta \tan \theta - 1$.	

(iii)	Hence find the exact value of $\int_0^{\frac{1}{4}\pi} \frac{1 + \sin \theta}{1 - \sin \theta} d\theta.$ [4]

8	Let $f(x) = \frac{5x^2 - 7x + 4}{(3x + 2)(x^2 + 5)}$.
	(i) Express $f(x)$ in partial fractions

••••																														[
	•••••			•••••				••••		••••	••••	••••	• • • •				· • • • •		••••	••••	••••	••••	••••				••••		••••	
								••••																					••••	
•••	•••••	•••••	•••••	•••••	•••••	••••	•••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	•••••	•••••	••••
• • •	•••••	•••••	•••••	•••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • •	• • • •	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • • •	••••	••••
	•••••	•••••		•••••	••••	••••	••••	••••		••••	••••	• • • •	• • • •		••••	••••		••••	••••	••••		••••	••••	••••	• • • • •	• • • • •	••••	• • • • • •	••••	
							••••	••••		••••	••••	••••							• • • •			••••					••••		••••	
												••••															••••			
•••	•••••	•••••	•••••	•••••	••••	•••••	••••	••••	••••	••••	••••	••••	• • • •	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	••••	• • • • •	••••	• • • • •	••••	••••
•••	•••••	•••••	•••••	•••••	••••	••••	••••	••••	••••	••••	••••	• • • •	• • • •		••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	••••	• • • • •	••••	••••
•••	•••••	•••••		•••••	••••	••••	••••	••••		••••	••••	••••	• • • •		••••	••••		••••	• • • •	••••	••••	••••	••••	••••		••••	••••	•••••	••••	••••
•••								••••		••••	••••	••••	• • • •			••••						••••					••••	••••	••••	
•••		•••••			••••		••••	••••	••••	••••	••••	••••		••••	••••	••••	••••	••••	••••	••••	••••	••••	••••				•	•••••	••••	
•••	•••••	•••••	•••••	•••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • •	••••	••••	••••	••••	••••	• • • •	••••	••••	••••	••••	• • • • •	••••	• • • • •	••••	• • • • •	••••	••••
•••	•••••	•••••	•••••	•••••	••••	••••	••••	••••		••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	••••	••••	••••	••••	••••		••••	••••	•••••	••••	•••••
•••		•••••	•••••	•••••			••••	••••		••••	••••	••••	••••	••••		••••			• • • • •	••••	••••	••••	••••				••••	•••••	••••	
								••••				••••	••••														••••		••••	
																													••••	
•••	•••••	•••••	•••••	•••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	•••••	•	•	••••	• • • • • •	••••	••••
•••	•••••	•••••	•••••	•••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • •	••••	••••	••••	••••	••••	••••	••••	••••	• • • • • •	••••	••••
•••	•••••	•••••		•••••	••••	••••	••••	••••		••••	••••	••••	• • • •		••••	••••		••••	••••	••••		••••	••••	••••	••••	• • • • •	••••	•••••	••••	
				•••••			••••	••••		••••	••••	••••					· • • •		••••			••••					••••		••••	
																											••••			

	Find the position vector of the foot of the perpendicular from A to l . Hence find the position
	vector of the reflection of A in l . [5]
•	
•	
•	
•	
•	
•	
••	
•	
•	
••	
•	
•	
•	
•	
•	
•	

	ax + by + cz = d.
•	
•	
•	
•	
•	
]	Find the exact value of the perpendicular distance of A from this plane.
•	
•	
•	
•	

10

The diagram shows the curve $y = x^2 \cos 2x$ for $0 \le x \le \frac{1}{4}\pi$. The curve has a maximum point at M where x = p.

(i)	Show that p satisfies the equation $p = \frac{1}{2} \tan^{-1} \left(\frac{1}{p} \right)$.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

(ii)	Use the iterative formula $p_{n+1} = \frac{1}{2} \tan^{-1} \left(\frac{1}{p_n} \right)$ to determine the value of p correct to 2 decimal
	places. Give the result of each iteration to 4 decimal places. [3]

x-axis.								
•••••				•••••	•••••	•••••		•••••
•••••				•••••				
					••••••	•••••		•••••
••••••				•••••	•••••	••••••		
••••••						••••••		••••
	•••••		,			•••••		
				•••••		•••••		•••••
•••••				•••••		•••••		
						•••••		
						•••••		
••••••				••••••	••••••	••••••		•••••
••••••	•••••••••••••••••••••••••••••••••••••••	••••••	•••••	•••••		•••••	••••••	•••••
•••••				•••••	•••••	•••••	••••••	•••••
			•••••	•••••		•••••	•••••	•••••
•••••	•••••				•••••	•••••		•••••
•••••			•••••	•••••	•••••	•••••		•••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.