Vereinbarte Konstanten:

Normaleingriffs- winkelwinkel:	Schrägungswinkel:	Überschlägiger Belastungswert:	Anwendungsfaktor:
$\alpha_n \coloneqq 20$ °	β:=20 °	$oldsymbol{B_{zul}} \coloneqq 4 \; rac{oldsymbol{N}}{oldsymbol{mm}^2}$	$K_A \coloneqq 2.0$
Druckkraft vom Boden:	Schaltdrehzahl:	Dauerfestigkeitssch	
$F_B = 1500 \ N$	n_s := 1400 rpm	$ au_{Tzul} \coloneqq 50 \; rac{N}{mm^2}$	(42CrMo4)
Antriebsdrehzahl:			
$n_{Antrieb} \coloneqq 2000 \frac{1}{m}$	$rac{1}{in}$		

Übersetzungsverhältnis:

Antriebsmoment:

$$T_{an} = 50 \ N \cdot m$$

Theoretisch benötigte Übersetzungen:

$$i_1 = 3.40$$

$$i_2 = 2.95$$

$$i_{Gesamt} \coloneqq i_1 \boldsymbol{\cdot} i_2$$

$$i_{Gesamt} = 10.03$$

Errechnete Übersetzungen (siehe Zahnraddaten):

$$i'_1 := 3.381$$

$$i'_2 = 2.964$$

$$i'_{Gesamt} \coloneqq {i'}_1 \cdot {i'}_2$$

$$i'_{Gesamt} = 10.021$$

Moment der Vorgelegewelle:

$$T_{Vorgelege} \coloneqq T_{an} \boldsymbol{\cdot} i'_1$$

$$T_{Vorgelege} = 169.05 \ N \cdot m$$

Abtriebsmoment:

$$T_{ab} \coloneqq T_{an} \cdot i'_{Gesamt}$$

$$T_{ab} = 501.064 \ N \cdot m$$

ehkraftkupplung:				
N_{FK} := 2	$oldsymbol{F_F}\coloneqq 15~oldsymbol{N}$	$n_s = 1400 \; rac{1}{min}$	$\omega_s = 2 \pi \cdot n_s = 146.608$	8
$r_{FK} = 50 \ mm$	$\mu_0 := 0.9$			
$m_{FK} \coloneqq 1 \; kg$	$\Delta l \coloneqq 2.5 \ mm$			
$d_R = 140 mm$				
Federsteifigkeit:	$C\!\coloneqq\!rac{F_F}{ riangle l}$		$C=6 \frac{N}{mm}$	
Bei Schaltdrehzahl:				
Fliehkraft:	$F_{Flieh} \! := \!$	$m_{FK}\!\cdot\!r_{FK}\!\cdot\!\omega_s{}^2$	$F_{Flieh} = 1.075 \ kN$	
Kontaktkraft:	F_N := $(F$	$F_{Flieh} - 2 ullet F_F ig)$	$F_N = 1.045 \ kN$	
Reibkraft eines Fliehk	örpers: $F_R \coloneqq \mu_0$	$oldsymbol{\cdot} F_N$	$F_R = 940.221 \ N$	
Reib-/Schaltmoment:	$T_R \!\coloneqq\! N_H$	$F_K \cdot F_R \cdot rac{d_R}{2}$	T _R =131.631 N∙m	

30.07.2022 Seite 2 von 32

Antriebswelle:	Vorgelegewelle:	Abtriebswelle:
$d_{min1} \coloneqq \sqrt[3]{rac{\left(16 \cdot T_{an} \cdot K_A ight)}{\pi \cdot au_{Tzul}}}$	$d_{min2} \coloneqq \sqrt[3]{rac{\left(16 m{\cdot} T_{Vorgelege}}{\pi m{\cdot} au_{Tzul}} ight)}}$	$egin{aligned} oldsymbol{\cdot} K_A \end{pmatrix} \ d_{min3} \coloneqq \sqrt[3]{ egin{pmatrix} (16 \cdot T_{ab} \cdot K_A) \\ \pi \cdot au_{Tzul} \end{aligned}}$
d _{min1} = 21.677 mm	$d_{min2} = 32.535 \ mm$	$d_{min3} = 46.735 \ mm$
Gewählt: $d_{W1} = 25 \ mm$	Gewählt: $d_{W2} = 35 mn$	n Gewählt: $d_{W3} = 50 mr$
nhnraddaten:		
Ritzelzähnezahlen:		
$z_1 \coloneqq 21$	z_3 := 28	
$z_2 = 71$	$z_4\!\coloneqq\!83$	
$i'_1 \coloneqq \frac{z_2}{z_1} = 3.381$	$i'_2 := \frac{z_4}{z_3} = 2$	2.964
Damit ist $i'_1 \sim i_1$ und $i'_2 \sim$		
orientiert an TB 21-12		
Modul 1,2:		
$m_{n12} \coloneqq \frac{\left(1.8 \cdot d_{W1} \cdot \cos\left(\beta\right)\right)}{z_1 - 2.5}$	$m_{n12} = 2.286 \ mm$	nach Gl. 21-63
Gerundet:	$m_{n12} \coloneqq 3.0 \; mm$	nach TB 21-1
Teilkreisdurchmesser 1,2:		
$egin{aligned} d_1 &\coloneqq rac{ig(z_1 \cdot m_{n12}ig)}{\cos{(eta)}} \ d_2 &\coloneqq rac{ig(z_2 \cdot m_{n12}ig)}{\cos{(eta)}} \end{aligned}$	$d_1 = 67.043 \ mm$	nach Gl. 21-38
$(z_2 \cdot m_{n12})$	$d_2 = 226.67 \ mm$	

Zahnradbreite 1	.,2:						
Zahnrad Z1:	$b_1 := 0$	$egin{pmatrix} ig(2 \cdot T_0 \ d_1^2 & E \end{matrix}$	$\left rac{\partial an}{\partial zul} ight $	$b_1 = 5.562 \ mm$	nach	Vei	reinbarung
Gewählt:		25 m ı	n		gewählt	na	ch TB-21-13 a/b.)
	b_2 :=	<i>b</i> ₁					
Null-Achsabstar	nd 1,2:						
$a_{d1} \coloneqq \frac{\left(d_1 + d_2\right)}{2}$	-			$a_{d1} = 146.857 \ mm$	nach	GI.	21-8
Modul 3,4:							
$m_{n34} \coloneqq \frac{\left(2 \cdot a_{d1}\right.}{\left(1 + \right.}$	$oldsymbol{\cdot}\cosig(oldsymbol{eta}ig)$))_		$m_{n34} = 2.495 \ mm$	nach	GI.	21-64
Gerundet:	$m_{n34} \coloneqq$		m		nach	ТВ	21-1
		, 11					
$d_3 \coloneqq \frac{(z_3 \cdot m_{n34})}{\cos(\beta)}$)			$d_3 = 74.492 \ mm$			
$d_4 \coloneqq \frac{(z_4 \cdot m_{n34})}{\cos(eta)}$)			$d_4 = 220.817 \ mm$	nach	Gl.	21-38
$\cos(\rho)$							

Zahnradbreite 3,4:

	(o T		
Zahnrad Z3:	$b_3 = \frac{(2 \cdot T_{Vorgelege})}{}$	$b_3 = 15.232 \ mm$	nach Vereinbarung
	J 2 D		

Gewählt:
$$b_3 = 25 \ mm$$
 gewählt nach TB-21-13 a/b.)

$$b_4 \coloneqq b_3$$

Null-Achsabstand 3,4:

$$a_{d2} := \frac{\left(d_3 + d_4\right)}{2}$$
 $a_{d2} = 147.655 \ mm$ $a_{d1} = 146.857 \ mm$ nach Gl. 21-8

$$a_{d1} - a_{d2} = -0.798 \ mm$$

Die Nullachsabstände sind verschieden, a_{d1} wird angeglichen. D.h. eine negative Profilverschiebung wird an den Zahnrädern z_1 und z_2 vorgenommen, damit keine Schwächung des Ritzels entsteht.

Profilverschiebung:

Stirneingriffswinkel:

$$\alpha_t \coloneqq \operatorname{atan}\left(\frac{\tan\left(\alpha_n\right)}{\cos\left(\beta\right)}\right)$$
 $\alpha_t = 21.173$ ° nach Gl. 21-35

Betriebseingriffswinkel:

$$\alpha_{wt} \coloneqq \operatorname{acos}\left(\cos\left(\alpha_{t}\right) \cdot \frac{a_{d1}}{a_{d2}}\right) \cdot \frac{360}{2 \cdot \pi}$$
 $\alpha_{wt} = 21.959$ nach Gl. 21-21

Summe Profilverschiebungsfaktoren:

$$invlpha_{wt} \coloneqq an(lpha_{wt}) - lpha_{wt} \cdot rac{2 \cdot \pi}{360^{\circ}}$$
 $invlpha_{t} \coloneqq an(lpha_{t}) - lpha_{t} \cdot rac{2 \cdot \pi}{360^{\circ}}$

$$inv\alpha_{wt} = 0.02$$
 $inv\alpha_t = 0.018$

$$\Sigma x \coloneqq \frac{inv\alpha_{wt} - inv\alpha_t}{2 \cdot \tan{(\alpha_n)}} \cdot (z_1 + z_2)$$
 nach Gl. 21-56

$$\Sigma x = 0.271$$

Ersatzzähnezahlen:

$\beta_b := a\cos\left(\cos\left(\beta\right) \cdot \frac{\cos\left(\alpha_n\right)}{\cos\left(\alpha_t\right)}\right)$	$\beta_b = 18.747$ °	nach Gl. 21-36
$\cos^2\left(\boldsymbol{\beta}_b\right) \coloneqq \frac{1}{2} \left(1 + \cos\left(2 \cdot \boldsymbol{\beta}_b\right)\right)$	$\cos^2\left(\beta_b\right) = 0.897$	Additionstheorem
$z_{n1} \coloneqq rac{z_1}{\cos^2\left(oldsymbol{eta}_b ight) \cdot \cos\left(oldsymbol{eta} ight)}$	$z_{n2} \coloneqq rac{z_2}{\cos^2\left(oldsymbol{eta}_b ight) \cdot \cos\left(oldsymbol{eta} ight)}$	nach Gl. 21-47
$z_{n1} = 24.922$	$z_{n2} = 84.26$	
Sinnvolle Wahl von x_1 nach Gl. 21.3 (z_2)		
$\boldsymbol{x}_1 \coloneqq \frac{\boldsymbol{\Sigma}\boldsymbol{x}}{2} + \left(0.5 - \frac{\boldsymbol{\Sigma}\boldsymbol{x}}{2}\right) \cdot \frac{\log\left(\frac{\boldsymbol{z}_2}{\boldsymbol{z}_1}\right)}{\log\left(\frac{\boldsymbol{z}_{n1} \cdot \boldsymbol{z}_{n2}}{100}\right)}$		nach Gl. 21-33
$x_1 = 0.281$		
$x_2\!\coloneqq\! \Sigma x\!-\!x_1$		
$x_2 \! = \! -0.01$		
Verschiebungen:		
$V_1 \coloneqq x_1 ullet m_{n12}$	$V_1 = 0.844 \ mm$	nach Gl. 21-49
$V_2 \coloneqq x_2 \cdot m_{n12}$	$V_2 = -0.031 \ \textit{mm}$	nden dii 21 19
$V_3 = 0 \ mm$		
$V_4 = 0 \ mm$		
daße der Zahnräder nach Profilve	erschiebung:	

30.07.2022 Seite 6 von 32

Kopfhöhenänderung:		
$c := a_{d2} - a_{d1} - m_{n12} \cdot (x_1 + x_2)$	$k = -0.014 \ mm$	nach Gl. 21-23
Kopfspiel (Soll):		
$e_{12}\!:=\!0.25\!\cdot\!m_{n12}$	$c_{12} = 0.75 \; mm$	nach S.769
$c_{34} \coloneqq 0.25 \cdot m_{n34}$	$c_{34} \! = \! 0.625 \; mm$	mach 3.709
Kopfkreisdurchmesser nach Profilvers	schiebung:	
$d_{a1} \coloneqq d_1 + 2 \cdot m_{n12} + 2 \cdot V_1 + 2 \cdot k$	$d_{a1} = 74.702 \ mm$	nach Gl. 21-24
$l_{a2} \coloneqq d_2 + 2 \cdot m_{n12} + 2 \cdot V_2 + 2 \cdot k$	$d_{a2} = 232.578 \ mm$	
$l_{a3} \coloneqq d_3 + 2 \cdot m_{n34}$	$d_{a3} = 79.492 \ mm$	nach Gl. 21-40
$l_{a4} \coloneqq d_4 + 2 \cdot m_{n34}$	$d_{a4} = 225.817 \ mm$	
Fußkreisdurchmesser nach Profilverso	chiebung:	
$m{d}_{f1}\!:=\!m{d}_1\!-\!2m{\cdot}ig(ig(m{m}_{n12}\!+\!c_{12}ig)\!-\!m{V}_1ig)$	$d_{f1} = 61.231 \ mm$	nach Gl. 21-25
$m{d}_{f2} \coloneqq m{d}_2 - 2 \cdot ig(ig(m{m}_{n12} + c_{12}ig) - m{V}_2ig)$	$d_{f2} = 219.107 \ mm$	
$l_{f3} \coloneqq d_3 - 2.5 \cdot m_{n34}$	$d_{f3} = 68.242 \ mm$	nach Gl. 21-41
$l_{f4}\!:=\!d_4\!-\!2.5\!ullet\!m_{n34}$	$d_{f4} = 214.567 \ mm$	
Kopfspiel nach Profilverschiebung:		
$a := a_{d2} - 0.5 \cdot (d_{a1} + d_{f2})$	c=0.75 mm	nach Gl. 21-22c

30.07.2022 Seite 7 von 32

tangentiales Modul:	$m_{t12} \coloneqq rac{m_{n12}}{\cos\left(eta ight)}$	
min. Kopfdicke des Zahnes:	$s_{a12min} \coloneqq 0.2 \cdot m_{n12}$	nach S.791
	$s_{a12min} = 0.6 \ mm$	

Stirnteilung:
$$p_{t12} = m_{t12} \cdot \pi$$
 nach Gl. 21-34

Stirnzahndicke:
$$s_{t1} \coloneqq \frac{p_{t12}}{2} + 2 \cdot V_1 \cdot \tan{(\alpha_t)}$$
 nach Gl. 21-51

" s_{t1} " ist in Bezug auf den tangentialen Stirnschnitt (S-S) durch das Zahnrad. (S.802 - Bild 21-14)

 \ddot{s}_{a1} " ist auf den Kopfkreis bezogen

Profilwinkel am Kopfkreis:
$$\alpha_{at1} \coloneqq a\cos\left(\frac{d_1 \cdot \cos\left(\alpha_t\right)}{d_{a1}}\right)$$
 nach S.806 " α_{at1} " entspricht " α_{yt1} " aus Roloff Matek in $v\alpha_{at1} \coloneqq \tan\left(\alpha_{at1}\right) - \alpha_{at1} \cdot \frac{2 \cdot \pi}{360^{\circ}}$ aus Vorlesung

Kopfdicke des Zahnes an den gewählten Zahnrädern (nach Profilverschiebung):

$$s_{a1} \coloneqq d_{a1} \cdot \left(\frac{s_{t1}}{d_1} + inv\alpha_t - inv\alpha_{at1}\right)$$
 $s_{a1} = 2.055$ mm nach Gl. 21-53

Stirnzahndicke:
$$s_{t2} \coloneqq \frac{p_{t12}}{2} + 2 \cdot V_2 \cdot an\left(\alpha_t\right)$$

Profilwinkel am Kopfkreis:
$$\alpha_{at2} \coloneqq \operatorname{acos}\left(\frac{d_2 \cdot \cos\left(\alpha_t\right)}{d_{a2}}\right)$$

$$inv\alpha_{at2} := \tan(\alpha_{at2}) - \alpha_{at2} \cdot \frac{2 \cdot \pi}{360}$$

Kopfdicke des Zahnes an den gewählten Zahnrädern (nach Profilverschiebung):

$$s_{a2} \coloneqq d_{a2} \cdot \left(\frac{s_{t2}}{d_2} + inv\alpha_t - inv\alpha_{at2} \right)$$
 $s_{a2} = 2.583 \ mm$

Sowohl s_{a1} als auch s_{a2} sind > s_{a12min} . Die Zahndicke am Kopfkreis ist damit ausreichend. Zusätzliche Prüfung über TB 21-8 R/M führt zum gleichen Ergebnis.

Grundkreisdurchmesser db:

(Der Durchmesser welcher von der Normalen N-N, die durch den Berührpunkt der Zahnflanken geht, tangiert wird - Bild 21.3)

<u> </u>	$d_{b1} = 62.517 \ mm$	
$\boldsymbol{d}_{b2} \coloneqq \boldsymbol{d}_2 \cdot \cos\left(\alpha_t\right)$	$d_{b2} = 211.369 \ mm$	nach Gl. 21-2
$\boldsymbol{d_{b3}} \coloneqq \boldsymbol{d_3} \cdot \cos\left(\boldsymbol{\alpha_t}\right)$	$d_{b3} = 69.464 \ mm$	Tidell Oil 21 2
$d_{b4} \coloneqq d_4 \cdot \cos\left(lpha_t ight)$	$d_{b4} = 205.911 \ mm$	

Profilüberdeckung:

Profilüberdeckung des ersten Zahnradpaares:

$$\varepsilon_{\alpha 1 2} \coloneqq \frac{\left(0.5 \cdot \left(\sqrt{d_{a1}^2 - d_{b1}^2} + \frac{z_2}{|z_2|} \cdot \sqrt{d_{a2}^2 - d_{b2}^2}\right) - a_{d2} \cdot \sin\left(\alpha_{wt}\right)\right)}{\pi \cdot m_{t1 2} \cdot \cos\left(\alpha_t\right)} \quad \text{nach Gl. 21-57}$$

$$\varepsilon_{\alpha 12} = 1.47$$

$$arepsilon_{eta12}\coloneqq rac{b_1\cdot an(eta)}{p_{t12}}$$
 nach Gl. 21-44

$$\varepsilon_{\gamma 12}\!\coloneqq\!\varepsilon_{\alpha 12}\!+\!\varepsilon_{\beta 12} \hspace{1.5cm} \text{nach Gl. 21-46}$$

-> Profilüberdeckung des ersten Zahnradpaares ist ausreichend (nach Erklärung S. 804)

Profilüberdeckung des zweiten Zahnradpaares:

$$\varepsilon_{\alpha 3 4} \coloneqq \frac{\left(0.5 \cdot \left(\sqrt{{d_{a3}}^2 - {d_{b3}}^2} + \frac{z_2}{\left|z_2\right|} \cdot \sqrt{{d_{a4}}^2 - {d_{b4}}^2}\right) - a_{d2} \cdot \sin\left(\alpha_{wt}\right)\right)}{\pi \cdot m_{t12} \cdot \cos\left(\alpha_t\right)}$$

$$\varepsilon_{\alpha 34} = 1.119$$

$$arepsilon_{eta34}\coloneqqrac{oldsymbol{b_3\cdot an(eta)}}{oldsymbol{p_{t12}}}$$
 $arepsilon_{eta34}=0.907$

$$\varepsilon_{\gamma 34}\!:=\!\varepsilon_{\alpha 34}\!+\!\varepsilon_{\beta 34} \qquad \qquad \varepsilon_{\gamma 34}\!=\!2.026$$

-> Profilüberdeckung des zweiten Zahnradpaares ist ausreichend (nach Erklärung S. 804)

30.07.2022 Seite 9 von 32

$d_{w1} \coloneqq rac{d_1 \cdot \cos\left(lpha_t ight)}{\cos\left(lpha_{wt} ight)}$	$d_{w1} \!=\! 67.408 \; m{mm}$		nach Gl. 21-22a
$d_{w2} \coloneqq rac{oldsymbol{d_2} \cdot \cos \left(oldsymbol{lpha_t} ight)}{\cos \left(oldsymbol{lpha_{wt}} ight)}$	$d_{w2} = 227.902 \; \pmb{mm}$		nach Gl. 21-22b
$d_{w3}\!\coloneqq\! oldsymbol{d_3}$	$d_{w3} = 74.492 \; mm$		
$d_{w4} \coloneqq d_4$	$d_{w4} \!=\! 220.817$ mm		
ontrolle Achsabstan	d:		
$a \coloneqq \frac{d_{w1} + d_{w2}}{2} = 147.6$	55 mm		
$a = {2} = 147.0$	identisch mi	t:	
	$a_{d2} = 147.65$	55 <i>mm</i>	
$a \coloneqq \frac{d_{w3} + d_{w4}}{2} = 147.6$	55 <i>mm</i>		
sammenfassung:			
$d_1 = 67.043 \ mm$	$d_{b1} = 62.517 \ mm$	$d_{a1} = 74.702 \ mm$	$d_{f1} = 61.231 \ mm$
$d_2 = 226.67 \ mm$	$d_{b2} = 211.369 \ mm$	$d_{a2} = 232.578 \ mm$	$d_{f2} = 219.107 \; m$
$d_3 = 74.492 \ mm$	$d_{b3} = 69.464 \ mm$	$d_{a3} = 79.492 \ mm$	$d_{f3} = 68.242 \; mm$
	$d_{b4} = 205.911 \ mm$	$d_{a4} = 225.817 \ mm$	$d_{f4} = 214.567 \; m$
$d_4 = 220.817 \ mm$			
$d_4 = 220.817 \ mm$ $b_1 = 25 \ mm$	$d_{w1} \!=\! 67.408 \; m{mm}$	$z_1 = 21$	$m_{n12}=3$ mm

30.07.2022 Seite 10 von 32

 $z_3 = 28$

 $z_4 = 83$

 $\varepsilon_{24} = 1.119$

 $m_{n34} = 2.5 \ mm$

 $x_1 = 0.281$

 $d_{w3} = 74.492 \ mm$

 $d_{w4} = 220.817$ mm

 $\varepsilon_{212} = 1.47$

 $b_3 = 25 \ mm$

 $b_4 = 25 \ mm$

 $V_1 = 0.844 \ mm$

$V_2 = -0$	0.031 <i>mm</i>	$arepsilon_{eta12} = 0.907$	$arepsilon_{eta34} = 0.907$	$x_2 = -0.01$
$V_3 = 0$	mm	$arepsilon_{\gamma 12} \! = \! 2.377$	$arepsilon_{\gamma 34} \!=\! 2.026$	
$V_4 = 0$	mm			
ssfede	erberechnung	g:		
Werkst	off Passfeder	E295 GC		
n	$S_F \coloneqq 1.1$ ach TB 12-1b	$Re := 420 \frac{N}{mm^2}$	p_{fzul} := $rac{Re}{S_F}$	$p_{fzul} = 381.818 \frac{N}{mm^2}$
	<i>φ</i> ≔ 1 für	$n=1$ $n_{Pass} \coloneqq 1$	$K_{\lambda} \coloneqq 1$	$K_A = 2$
fi		nmesser 25mm:	-Passfeder DIN 6885	- A8x7x28
h	$P_{ass} \coloneqq 7 \ mm$	l_{Pass} := 28 mm	<i>h</i> := 3.0 <i>mm</i>	
<i>b</i>	<i>Pass</i> := 8 <i>mm</i>	$l'_{Pass} \coloneqq l_{Pass} - b_{Pass}$	$d_{Kritisch1} \coloneqq 25 m$	m
$p_m \coloneqq rac{}{d}$	$2 \cdot K_A \cdot T_a$ $K_{ritisch1} \cdot h \cdot l'_{Po}$	$n \cdot K_{\lambda}$ $= 133.33$ $n \cdot n_{Pass} \cdot \varphi$	$p_m < p_{fzu}$	nach Gl. 12-1
Werkst	off Passfeder	E295 GC		
n	$S_F \coloneqq 1.1$ ach TB 12-1b	$Re := 420 \frac{N}{mm^2}$	$p_{fzul} \coloneqq rac{Re}{S_F}$	$p_{fzul} = 381.818 \frac{N}{mm^2}$
	$\varphi \coloneqq 1$ für	$n=1$ $n_{Pass} \coloneqq 1$	$K_{\lambda} \coloneqq 1$	$K_A = 2$
	swelle - Rutsc ür Wellendurcl	hkupplung nmesser 50mm:	-Passfeder DIN 6885	- A14x9x70
h	<i>Pass</i> ≔ 9 <i>mm</i>	<i>l_{Pass}</i> :=70 <i>mm</i>	h:=3.5 mm	
b	_{Pass} ≔14 mm	$l'_{Pass} \coloneqq l_{Pass} - b_{Pass}$	$d_{Kritisch1} \coloneqq 50 \; m$	m

30.07.2022 Seite 11 von 32

$p_m = \frac{2 \cdot K_A \cdot T_{ab} \cdot K_{\lambda}}{2 \cdot K_{ab} \cdot K_{ab}} = 204.510$	$6 \frac{N}{}$	
$oldsymbol{d_{Kritisch1}} oldsymbol{\cdot} h oldsymbol{\cdot} l'_{Pass} oldsymbol{\cdot} n_{Pass} oldsymbol{\cdot} arphi$	$m{mm}^2 p_m < p_{fzul}$	nach Gl. 12-1
	1 111 1 1 1 1 1 1 1 1 1	

Vorauswahl der Lagergrößen: (Vorauswahl erfolgte durch Sch Lagerung erfolgte nach Ermittlu			Anpassung der
Festlager Abtriebswelle:		. 1	
$P := 6 \ kN$ $p := 3$	$n_{Antrieb} = (2 \cdot 10^3)$	$\binom{3}{min}$	
	$n \coloneqq rac{n_{Antrieb}}{i'_{Gesamt}}$	$L_{10h} := 10000 \ hr$	
$C_{erf}\!\coloneqq\!P\!\cdot\!\sqrt[p]{rac{n\cdot L_{10h}}{10^6}}$	nach Gl. 14.1 (Faktor 60	$C_{erf} = 29.574 \ kN$	
	weggelassen		
Festlager Antriebswelle:	wegen den Einheiten)		
restrager with resolvence.			
<i>P</i> :=2.5 <i>kN</i>	$p \coloneqq 3$	$n \coloneqq n_{Antrieb}$	$L_{10h} \coloneqq 10000 \ hr$
$oldsymbol{C_{erf}} \coloneqq \! P \! \cdot \! \sqrt[p]{rac{n \cdot L_{10h}}{10^6}}$		$C_{erf}\!=\!26.566$ kN	Į.
Festlager Vorgelegewelle:			
<i>P</i> :=4 <i>kN</i>	p := 3	$n \coloneqq rac{n_{Antrieb}}{i^{'}_{1}}$	$L_{10h} := 10000 \; hr$
$C_{erf}\!\coloneqq\!P\!\cdot\!\sqrt[p]{rac{n\!\cdot\! L_{10h}}{10^6}}$	nach Gl. 14.1	C_{erf} = 28.321 k N	V
Loslager An-/Abtriebswelle:			
$P := 6 \ kN$	=3 eig.: <i>n</i> 3,3333	$:= n_{Antrieb} - rac{n_{Antrieb}}{i'_{Gesamt}}$	$L_{10h}\!\coloneqq\!10000\; hr$
$oldsymbol{C_{erf}} \coloneqq oldsymbol{P} \cdot \sqrt[p]{rac{oldsymbol{n} \cdot oldsymbol{L_{10h}}}{10^6}}$	_	$C_{erf}\!=\!61.564$ kN	7

30.07.2022 Seite 12 von 32

Loslager V	orgelegew	elle:		ar a			
P = 6.5 k/		p :=3	eig.: 3,3333	$n := \frac{1}{n}$	$rac{i'_{Antrieb}}{i'_{1}}$		$L_{10h} := 10000 \ hr$
C_{erf}	$:= \mathbf{P} \cdot \sqrt[p]{\frac{n \cdot n}{1}}$	L_{10h}		C_e	$_{rf} = 46.0$	021 kN	
mittlung de	er Lagerkrä	fte aus Frei	schnitt:				
igerkräfte a	n der Antri	iebswelle:					
Antriebsm	oment	$T_{an} = 50$	$N \cdot m$				
Wälzkreisc	lurchmesse	er $d_{w1} = 67$.	408 <i>mm</i>				
Wirkabstäi	nde	$X_1 \coloneqq 33$	mm			$X_2 \coloneqq 26$	mm
Zahnrad Z	$1 F_{tZ1} \coloneqq$	$rac{2 \cdot T_{an}}{d_{w1}}$	Umfa	ngskraft	nach G	. 21.70	$F_{tZ1} = 1.484 \ kN$
	F_{aZ1} :=	$F_{tZ1} \cdot anig($	<i>β</i>) Ax	ialkraft	nach G	. 21.72	$F_{aZ1} = 0.54 \ kN$
	${F}_{rZ1}$:=	$\frac{(F_{tZ1} \cdot \tan}{\cos(oldsymbol{eta})}$	$(lpha_n))$ Ra	dialkraft	nach G	. 21.71	$F_{rZ1} \!=\! 0.575$ kN
Loslager							$F_{L1y} = 0.654 \; kl$
	F_{L1z} :=	$F_{aZ1} \cdot \frac{d_{w1}}{2} + X_1 + X_2$	$F_{rZ1} \cdot X_1$ X_2				$F_{L1z}\!=\!0.013\; {\it kN}$
Festlager	$F_{F1x} \coloneqq F_a$	zZ1					$F_{F1x} = 0.54 \; kN$
	$F_{F1y} \coloneqq F_t$	$_{Z1}\!-\!F_{L1y}$					$F_{F1y} = 0.83 \; kN$
	$F_{F1z} = F_r$	$_{Z1}{-F_{L1z}}$					$F_{F1z} = 0.562 \ kN$
gerkräfte a	n der Vorg	elegewelle:					

30.07.2022 Seite 13 von 32

Wälzkreisdurchmesse	a_{w2} -	= 22	7.902	mm			d_{w3} =	= 74	.492	mr	n
Wirkabstände	X_3 :=	= 38	mm		$X_4 \coloneqq 33$	mm		X_{5}	;:=4	9 m	m
Zahnrad Z2	F_{aZ2}	, := -	$-F_{aZ1}$		$F_{tZ2} \coloneqq -$	F_{tZ1}			F_{rZ}	₂ :=-	$-F_{rZ1}$
Zahnrad Z3	F_{tZ3}	:=-	$2 \cdot T_{Vo}$	rgelege			F_{tZ3}	= 4.	539	kN	
				$an(\beta)$			F_{aZ3}	=1	.652	kN	
	F_{rZ3}	:=-	F_{tZ3} • t	$\frac{\operatorname{can}\left(\alpha_{n}\right)}{\operatorname{s}\left(eta\right)}$			F_{rZ3}	= 1.	758	kN	
Loslager	F		F_{tZ2}	$ullet X_3 + F_t$	$Z_3 \cdot (X_3 + X_5)$	$X_4 angle$					
Losiagei	L_{2y}	, • <u> </u>		X_3+X	$X_4 + X_5$		F_{L2y}	=-	2.21	6 k	N
		-	$-F_{rZ2}$	$\cdot X_3 + F_a$	$_{Z2} ext{-}rac{d_{w2}}{2}+$	F_{rZ3} •	$(X_3 +$	X_4	$\rangle + I$	aZ3	$-rac{d_{w3}}{2}$
	F_{L2z}	:=-			X_3+	$X_4 +$	X_5				
							F_{L2z}	=1.	222	kN	
Festlager	F_{F2x}	, := <i>I</i>	F_{aZ3} +	F_{aZ2}			F_{F2x}	=1	.112	kN	
	F_{F2y}	, := -	$-F_{tZ2}$	$-F_{tZ3}$ $-$	F_{L2y}		F_{F2y}	=-	0.84	ŀ k∧	г
	F_{F2z}	;≔ <i>I</i>	$\overline{r}_{rZ2}-$	$F_{rZ3} + F_1$	L2z		F_{F2z}	=-	1.11	kN	
Die Lagerkräfte herum orientiert ar weitere Berechnun daher folgt:	ngeno	mm	en, ďa	araus res		nega	tiver \	Ner	t. Fi	ir di	9
$egin{aligned} F_{L2y} &\coloneqq 4.707 \ \emph{kN} \ F_{F2y} &\coloneqq 0.051 \ \emph{kN} \ F_{F2z} &\coloneqq 1.303 \ \emph{kN} \end{aligned}$											

30.07.2022 Seite 14 von 32

Bodenkraft	$F_B \coloneqq 1.5 $ kN	
Abtriebsmoment	$T_{ab} = 501.064 \ N \cdot m$	
Wälzkreisdurchmess	er d_{w4} =220.817 mm	
Wirkabstände	$X_6 \coloneqq 42 \; mm$	$X_7 \coloneqq 52$ mm
Zahnrad Z4	$F_{aZ4} \coloneqq -F_{aZ3}$ $F_{tZ4} \coloneqq -F_{tZ}$	$F_{rZ4} = -F_{rZ3}$
	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	$F_{tZ4} = 4.538 \ kN$
	$F_{aZ4} = F_{tZ3} \cdot an(oldsymbol{eta})$	$F_{aZ4} = 1.652 \ kN$
	$F_{rZ4} \coloneqq \frac{F_{tZ4} \cdot \tan\left(\alpha_n\right)}{\cos\left(oldsymbol{eta} ight)}$	$F_{rZ4} = 1.758 \ kN$
Loslager	$F_{L3y} \coloneqq \frac{-F_{tZ4} \cdot X_7}{X_6 + X_7} \\ -F_{rZ4} \cdot X_7 - F_{aZ4} \cdot \frac{d_{w4}}{2} \\ F_{L3z} \coloneqq \frac{1}{X_6 + X_7}$	$F_{L3y} = -2.511 \; kN$
	$F_{L3z} \coloneqq rac{-F_{rZ4} \cdot X_7 - F_{aZ4} \cdot rac{3}{2}}{X_6 + X_7}$	$F_{L3z} = -2.913 \text{ kN}$
Festlager	$F_{F3x}\!\coloneqq\!-F_{aZ4}\!+\!F_B$	F_{F3x} = -0.152 kN
	$F_{F3y}\!\coloneqq\!-F_{tZ4}\!-\!F_{L3y}$	$F_{F3y} = -2.028 \; kN$
	$F_{F3z}\!\coloneqq\!-F_{rZ4}\!-\!F_{L3z}$	F_{F3z} =1.155 kN
herum orientiert and	F_{L3y} , F_{L3z} und F_{F3y} wurd genommen, daraus resultiert ihr negat wird die Orientierung der Kraftvektor	tiver Wert. Für die
$F_{L3y} = 3.564 \text{ kN}$ $F_{L3z} = 3.176 \text{ kN}$ $F_{F3y} = 3.406 \text{ kN}$		

30.07.2022 Seite 15 von 32

stlager Antriebswelle:			
$C_0 = 14.3 \ kN$		aus WLK	
$F_a \coloneqq F_{F1x} = 0.54 \ kN$		aus Freischnitt	
$F_r \coloneqq \sqrt[2]{F_{F1y}^2 + F_{F1z}^2} =$	1.002 kN		
F_a F_a		daraus ergibt sich nach T	
$\frac{F_a}{C_0} = 0.038$ $\frac{F_a}{F_r} = 0.5$	39 nach Seite 538	14-3a X und Y zu:	$X \coloneqq 1$ $Y \coloneqq 0.58$
			1 0.5
e := 1.14		aus TB14-3a	
$P \coloneqq X \cdot F_r + Y \cdot F_a = 1.29$	99 kN nach Gl. 14	1.6	
$p \coloneqq 3$ für Kugellager	nach Seite	563	
$C \coloneqq 21.6 \; kN$	nach WLK		
$10^6 (C)^p$			
$L_{10h} := \frac{10^6}{n_{Antrieh}} \cdot \left(\frac{C}{P}\right)^p =$	= 38317 <i>hr</i> nach Gl.	. 14.5a (Faktor 60	
Antrieb	weggela Einheite	assen wegen den en)	
slager Antriebswelle:			
$F_a = 0$ kN aus Freisch			
$F_r := \sqrt[2]{\left(F_{L1y} + F_{L1z}\right)^2} =$	= 0.667 kN		
$P \coloneqq F_r = 0.667 \text{ kN}$	Seite 538		
$p := \frac{10}{3}$	für Rollenlager		
$C \coloneqq 14 \text{ kN}$	aus WLK		
- 06	(G) n	Die Drehzahl am Loslager er	gibt sich
$L_{10h} := \frac{10^{\circ}}{}$	$-\cdot \left(\frac{C}{P}\right)^r = 236491 \ hr$	durch die gleiche Drehrichtu	ng der Welle
$n_{Antrieb} - rac{i'_{Antrie}}{i'_{Gesam}}$	<u>it</u>	Die Drehzahl am Loslager er durch die gleiche Drehrichtu zu: $n_{Antrieb} - \frac{n_{Antrieb}}{i'_{Gesamt}} = (1.8 \cdot$	$\left(10^3\right)\frac{1}{min}$
mit $i'_{Gesamt} = 10$			

Festlager Vorgelegewelle:

 $C_0 = 28 \, kN$

aus WLK

$$F_a \coloneqq \left| F_{F2x} \right| = 1.112 \ \emph{kN}$$
 aus Freischnitt

$$F_r := \sqrt[2]{F_{F2y}^2 + F_{F2z}^2} = 1.304 \text{ kN}$$

$$\frac{F_a}{C_0} = 0.04$$
 $\frac{F_a}{F_r} = 0.853$

weil 0.02< $\frac{F_a}{C_0}$ <=0.5 ergibt sich e zu:

$$e\coloneqq 0.51 \cdot \left(\frac{F_a}{C_0}\right)^{0.233} = 0.241$$
 aus TB14-3a Fußnote

daraus ergibt sich nach TB 14-3a X und Y zu: (weil Fa/Fr > e ist, siehe Fußnote)

$$X = 0.56$$

$$Y = 0.866 \left(\frac{F_a}{C_0}\right)^{-0.229} = 1.813$$

$$P \coloneqq X \cdot F_r + Y \cdot F_a = 2.746 \text{ kN}$$

p = 3

für Kugellager

$$C \coloneqq 40 \text{ kN}$$
 aus WLK

$$L_{10h} \coloneqq \frac{10^6}{\frac{n_{Antrieb}}{i'_1}} \cdot \left(\frac{C}{P}\right)^p = 87072 \; hr$$

 $mit i'_1 = 3.381$

$$n_{Antrieb} = \left(2 \cdot 10^3\right) \frac{1}{min}$$

Loslager Vorgelegewelle:

$$F_a = 0 \, \mathbf{kN}$$

aus Freischnitt

$$F_r = \sqrt[2]{F_{L2y}^2 + F_{L2z}^2} = 4.863 \text{ kN}$$

$$P \coloneqq F_r = 4.863 \text{ kN}$$

$$p = \frac{10}{3}$$

für Zylinderrollenlager

$$C = 35.8 \text{ kN}$$

aus WLK

Festlager Abtriebswelle:

$$C_0\coloneqq 47.5~\textbf{kN} \qquad \text{aus WLK}$$

$$F_a\coloneqq \left|F_{F3x}\right|=0.152~\textbf{kN} \qquad \text{aus Freischnitt}$$

$$F_r\coloneqq \sqrt[2]{\left(F_{L1y}+F_{L3y}\right)^2+\left(F_{L1z}+F_{L3z}\right)^2}=5.288~\textbf{kN}$$

$$\frac{F_a}{C_0} = 0.003 \qquad \frac{F_a}{F_r} = 0.029 \qquad \text{Seite 538} \qquad \qquad \text{daraus ergibt sich nach TB} \qquad X \coloneqq 1 \\ 14\text{-3a X und Y zu:} \qquad \qquad Y \coloneqq 0.55$$

nach Gl. 14.6

$$e\coloneqq 1.14$$
 aus TB14-3a

$$P := X \cdot F_r + Y \cdot F_a = 5.371$$
 kN nach Gl. 14.6
 $p := 3$ für Kugellager nach Seite 563

$$C \coloneqq 60 \text{ kN}$$
 nach WLK

$$L_{10h} \coloneqq \frac{10^6}{n_{Abtrieb}} \cdot \left(\frac{C}{P}\right)^p = 116409 \; \textit{hr} \qquad \qquad \text{mit} \quad n_{Abtrieb} \coloneqq \frac{n_{Antrieb}}{i'_{Gesamt}} = \frac{n_{Antrieb}}{i'_{Gesamt}}$$

Loslager Abtriebswelle:

 $F_a = 0$ **kN** aus Freischnitt $F_r = \sqrt[2]{F_{L3y}^2 + F_{L3z}^2} = 4.774 \text{ kN}$ $P \coloneqq F_r = 4.774 \text{ kN}$ Seite 538 p = 3für Kugellager $C = 69.5 \, kN$ aus WLK

	6 (51)	
$L_{10h} :=$ ———	10^6 $\left(\frac{C}{L}\right)^p$ =	= 28565 <i>hr</i>
	$n_{Antrieb}$ (P)	
n_{Ant}	i'_{Gesamt}	
	G 5500.700	

Die Drehzahl am Loslager ergibt sich durch die gleiche Drehrichtung der Wellen

zu:
$$n_{Antrieb} - \frac{n_{Antrieb}}{i'_{Gesamt}} = (1.8 \cdot 10^3) \frac{1}{min}$$

mit $i'_{Gesamt} = 10.021$

Zusammenfassung Lebensdauern:

Antriebswelle - Loslager	$L_{10h}\!:=\!21221$ hr
Antriebswelle - Festlager	$L_{10h}\!\coloneqq\!19374\; \pmb{hr}$
Vorgelegewelle - Loslager	$L_{10h}\!:=\!15981\; \pmb{hr}$
Vorgelegewelle - Festlager	$L_{10h} := 36486 \; hr$
Abtriebswelle - Loslager	$L_{10h}\!:=\!28568\; \pmb{hr}$
Abtriebswelle - Festlager	$L_{10h}\!\coloneqq\!80256\; \pmb{hr}$

Festigkeitsnachweis der Wellen:

Antriebswelle:

Kraft- und Momenter	nverläufe (siehe auch Isometrie der A	ntriebswelle):
Y-Z-Ebene:	X-Y-Ebene:	X-Z-Ebene:
Schnitt entlang s_1 (po $Mt\left(s_1\right)\coloneqq 0$	sitives Schnittufer) $s_{1max} \coloneqq 45.3 \cdot 7$ $N_x \coloneqq 0$	$egin{aligned} m{n}m{m} & s_{1min} \coloneqq 0 \cdot m{m}m{m} \ N_x \coloneqq 0 \end{aligned}$
	$Q_y(s_1) \coloneqq -F_{L1y} = -0.654 \text{ kN}$	$Q_zig(s_1ig)\!:=\!-F_{L1z}\!=\!-0.013$ kN
	$Mb_zig(s_1ig)\!\coloneqq\!-F_{L1y}\!ullet\!s_1$	$Mb_y\left(s_1 ight)\coloneqq -F_{L1z}ullet s_1$
	$Mb_z\left(s_{1max}\right) = -29.615 \ extbf{N} \cdot extbf{m}$	$Mb_y\left(s_{1max}\right) = -0.586 \; extbf{ extit{N}} \cdot extbf{ extit{m}}$
	$Mb_zig(s_{1min}ig)=0$ $oldsymbol{N}oldsymbol{\cdot}oldsymbol{m}$	$Mb_y\left(s_{1min}\right) = 0 \; oldsymbol{N} oldsymbol{\cdot} oldsymbol{m}$
Schnitt entland s_2 (ne	aatives Schnittufer) $s_{2max} \coloneqq 52.5 \cdot r$	$mm s_{2min} \coloneqq 0 \cdot mm$

$Mt(s_2) \coloneqq 50 \ \boldsymbol{N \cdot m}$	$N_x \coloneqq -F_{F1x} = -0.54$	4 <i>kN</i>	$N_x \coloneqq -F$	$f_{F1x} = -0.54 \ kN$
	$Q_y \left(s_2 \right) \coloneqq F_{F1y} = 0.8$	3 kN	$Q_z(s_2)$:=	$F_{F1z} = 0.562 \ kN$
	$Mb_z(s_2) \coloneqq -F_{F1y} \cdot s$	2	$Mb_{y}\left(s_{2} ight)$	$\coloneqq -F_{F1z} ullet s_2$
	$Mb_z\left(s_{2max}\right) = -43.5$	562 N·m	$Mb_y (s_{2m}$	$\langle aax \rangle = -29.487 N$
	$Mb_z\left(s_{2min}\right) = 0 oldsymbol{N} ullet c$	m	$Mb_y \left(s_{2m} ight)$	$_{iin}) = 0 \boldsymbol{N \cdot m}$
atischer & dynamischer	Festigkeitsnachweis Ar	ntriebswelle:		
$Rz := 6.3 \ \mu m$	$d_{Kritisch1} = 25$ mm	Rm := 11	$100 \frac{N}{mm^2}$	
π ,				
$Wb_1 \coloneqq \frac{\pi}{32} \cdot \left(d_{Kritisch1}\right)^3$	=1533.98 <i>mm</i> ³	$W_{t1} \coloneqq \frac{\gamma}{1}$	$\frac{1}{6} \cdot (d_{Kritisch1})$	$)^3 = 3067.96 \ mm$
	Flächenträgheitsmo	ment aus TE	311-3	
$Mb_{res1} \coloneqq \sqrt{Mb_z\left(s_{2max} ight)}$	$^{2}+Mb_{y}\left(s_{2max} ight) ^{2}$	T_{max} := T		s Anfahren mit fkupplung erfolgt
$R_{p0.2N} = 900 \frac{N}{100000000000000000000000000000000000$		<i>V</i> 1	$0.34 \cdot \log d$	Kritisch1 _ 0 034
mm		K_t -1-		$\left(\frac{Kritisch1}{6 \ mm}\right) = 0.934$
nach TB 1-1			nach TB 3-:	11
Biegung:		Torsion	1=	
$\sigma_{bmax} \coloneqq \frac{Mb_{res1}}{Wb_1} = 34.29$	N 2		T_{an}	N
<i>W 0</i> ₁	mm	$ au_{tmax}$:=-	$\frac{T_{an}}{W_{t1}} = 16.29$	$7\frac{1}{mm^2}$
	nach Bild 3-2			
$\sigma_{ba} \coloneqq \frac{K_A \cdot Mb_{res1}}{Wb_1} = 68.$	585 N	$ au_{ta} \coloneqq \frac{K_A}{T_{ta}}$	$\frac{\mathbf{V}_{an}}{W_{t1}} = 32.5$	695 N
Wb_1	mm²	- 50	${W}_{t1}$	mm^2
$\sigma_{bF} \!\coloneqq\! 1.2 \cdot \! R_{p0.2N} \!\cdot\! K_t \!=\!$	$1008.829 \frac{N}{mm^2}$	$ au_{tF}\coloneqqrac{1.2}{2}$	$2 \cdot R_{p0.2N} \cdot K_t$	$\frac{1}{1} = 582.448 \frac{N}{mm^2}$
	nach Flowcha	ort Bild 3-31	γ 3	

30.07.2022 Seite 20 von 32

$$\sigma_{bWN} \coloneqq 550 \frac{N}{mm^2} \qquad \text{aus TB 1-1}$$

$$\beta_{kb} \coloneqq 2.5 \qquad \beta_{kt} \coloneqq 2.2$$

$$\text{aus TB 3-8 mit Rm} = 1100N/\text{mm}^2 2, \text{ wegen Passfeder}$$

$$K_g \coloneqq 1 - 0.2 \cdot \frac{\log \left(\frac{d_{Kritisch1}}{7.5 \text{ mm}}\right)}{\log (20)} = 0.92 \qquad \text{aus TB 3-11c}$$

$$K_{0\sigma} \coloneqq 1 - 0.22 \log \left(\frac{Rz}{\mu m}\right) \cdot \left(\log \left(\frac{Rm}{20 \frac{N}{mm^2}}\right) - 1\right) = 0.87 \qquad \text{aus TB 3-10}$$

$$\text{aus TB 3-10} \qquad K_{0\tau} \coloneqq 0.575 \cdot K_{0\tau} + 0.425 = 0.925$$

$$K_V \coloneqq 1 \qquad \text{aus TB 3-12}$$

$$K_{Db} \coloneqq \left(\frac{\beta_{kb}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.868 \qquad K_{Dt} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} - 1\right) \cdot \frac{1}{K_V} = 2.473$$

$$\text{aus Bild 3-27} \qquad \text{nach Gl. 3-16}$$

$$\sigma_{bCW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 179.121 \frac{N}{mm^2} \qquad \tau_{tGW} \coloneqq K_t \cdot \frac{\tau_{tWN}}{K_{Dt}} = 124.637 \frac{N}{mm^2}$$

$$\text{nach Gl. 3-17} \qquad T_{tGW} \coloneqq K_t \cdot \frac{\tau_{tWN}}{K_{Dt}} = 124.637 \frac{N}{mm^2}$$

$$\text{nach Gl. 3-17} \qquad \text{nach Bild 3-30}$$

$$S_P \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{box}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tGW}}\right)^2}} = 2.2 \qquad \text{nach Bild 3-31}$$

$$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{box}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tGW}}\right)^2}} = 2.2 \qquad \text{nach Bild 3-31}$$

$$\text{Ergebnis: Die Antriebswelle ist dauerfest.}$$

orgelegewelle:				
Kraft- und Y-Z-Ebene:	d Momentenverläufe (X-Y-Ebene:	siehe auch Isome X-Z-Ebene		relle):
1-2-Lbene.	X-1-Lberie.	X-Z-LDEHE		
Schnitt entlang $Mt\left(s_3\right)\coloneqq 0$	s_3 (positives Schnittuf $N_x\!\coloneqq\!0$	er) $s_{3max} = 49$	$.85 \cdot mm \qquad s_{3mi}$ $N_x = 0$	$_{n}\coloneqq 0 \cdot mm$
	$Q_y\left(s_3 ight)\coloneqq -F_{L2y}$	= -4.707 kN	$Q_z \big(s_3 \big) \! \coloneqq \! F_{L2z} \! = \!$	1.222 kN
	$Mb_z(s_3) \coloneqq -F_{L2s}$	$_{y}$ • S_{3}	$Mb_y\left(s_3 ight)\!\coloneqq\!F_{L2z}$	• \$3
	$Mb_z \left(s_{3max} \right) = -2$	234.644 N·m	$Mb_y\left(s_{3max}\right) = 60$	0.922 N·m
	$Mb_zig(s_{3min}ig)=0$ I	$V \cdot m$	$Mb_y\left(s_{3min}\right) = 0$	$N \cdot m$
Schnitt entlang s_4 ($N_x\!\coloneqq\!-F_{aZ3}\!=\!-1.6$	positives Schnittufer) 52 <i>kN</i>	$s_{4max} \coloneqq 10$ $N_x \coloneqq -F_{aZ3} = -1$		$_{n}\coloneqq 0 \cdot mm$
$Q_y\left(s_4\right) \coloneqq -F_{L2y} + F_{L2y} + $	$F_{tZ3} = -0.168 \ kN$	$Q_z\left(s_4 ight)\!\coloneqq\!F_{L2z}\!-\!1$	$F_{rZ3} = -0.536 \ kN$	
$Mb_z\left(s_4 ight)\coloneqq -F_{L2y}$ •	$(s_{3max}+s_4)+F_{tZ3} \cdot s_4$	$Mb_y\left(s_4 ight)\coloneqq F_{L2z}$	$(s_{3max}+s_4)-F_{rZ3}$ • s	$s_4 - F_{aZ3} \cdot \frac{ds}{ds}$
$Mb_z\left(s_{4max}\right) = -25$	2.171 <i>N·m</i>	$Mb_y\left(s_{4max}\right) = -1$	56.419 N·m	
$Mb_z\left(s_{4min}\right) = -234$	1.644 N ⋅ m Y-Z-Ebe	$Mb_y\left(s_{4min}\right) = -0$	0.607 N·m	
		$_{rgelege} = 169.05 \ N$	· m	
Schnitt entlang	$s_{\scriptscriptstyle 5}$ (negatives Schnittu	fer) $s_{5max} = 48$	$.5 \cdot mm$ s_{5mi}	$_{n}\coloneqq0\cdot\boldsymbol{mm}$
$Mt\left(s_{5}\right)\coloneqq0$	$N_x \coloneqq -F_{F2x} = -1$		$N_x = -F_{F2x} = -$	
	$Q_y\left(s_5 ight)\coloneqq -F_{F2y}$	=-0.051 kN	$Q_z \left(s_5 \right) \coloneqq - F_{F2z}$	$=-1.303 \ k$
	$Mb_z(s_5) \coloneqq -F_{F25}$	y•S ₅	$Mb_y\left(s_5 ight)\!\coloneqq\!F_{F2z}$	$ullet s_5$
	$Mb_z\left(s_{5max}\right) = -2$	2.474 N·m	$Mb_y\left(s_{5max}\right) = 63$	3.196 N·m
	$Mb_zig(s_{5min}ig)=0$ I	$oldsymbol{v}oldsymbol{\cdot m}$	$Mb_y\left(s_{5min}\right) = 0$	$N \cdot m$

30.07.2022 Seite 22 von 32

$Rz = 6.3 \ \mu m$ d_{Kr}	$_{itisch2}\coloneqq 35$ mm	$Rm = 1100 \frac{N}{mm}$	<u>,</u> 2
$Wb_2\!\coloneqq\!rac{\pi}{32}\!ullet ig(d_{Kritisch2}ig)^3=$	=4209.24 <i>mm</i> ³	$W_{t2}\!\coloneqq\!rac{\pi}{16}\!ullet\! \left(d_{Krit} ight)$	$_{isch2}$) $^{3} = 8418.49 \; mm$
$Mb_{res2} \coloneqq \sqrt{Mb_z \left(s_{3max} ight)^2}$	$+Mb_{y}\left(s_{3max} ight) ^{2}$		
$R_{p0.2N} = 900 \; rac{N}{mm^2}$	nach TB 1-1	$K_t = 1 - 0.34 \cdot lo$	$g\left(\frac{d_{Kritisch2}}{16 \ \textit{mm}}\right) = 0.884$
Biegung		Torsion	
$\sigma_{bmax} \coloneqq \frac{Mb_{res2}}{Wb_2} = 15.443$	$\frac{N}{mm^2}$	$ au_{tmax} \coloneqq rac{T_{Vorgeleg}}{W_{t2}}$	$e = 20.081 \frac{N}{mm^2}$
$\sigma_{ba} \coloneqq \frac{\mathbf{K}_{A} \cdot Mb_{res2}}{Wb_{2}} = 30.8$		$ au_{ta} \!\coloneqq\! rac{K_A \!\cdot\! T_{Vorge}}{W_{t2}}$	$=40.162 \frac{N}{mm^2}$
$\sigma_{bF} \coloneqq 1.2 \cdot R_{p0.2N} \cdot K_t = 9$	$55.171 \frac{N}{mm^2}$	$ au_{tF} \coloneqq rac{1.2 \cdot R_{p0.2N}}{\sqrt{3}}$	$=551.468 \frac{N}{mm^2}$
$\sigma_{bWN} = 550 \; rac{N}{mm^2}$		$ au_{tWN} = 330 rac{N}{mm}$,2
$eta_{kb}\!\coloneqq\!2.8$		$eta_{kt}\!\coloneqq\!2.6$ Rm =	TB 3-8 mit =1100N/mm^2, wege erungsring
$K_g \coloneqq 1 - 0.2 \cdot rac{\log\left(rac{d_{Kritis}}{7.5} rac{m}{m} ight)}{\log\left(20 ight)}$	$\left(\frac{\operatorname{sch2}}{\operatorname{nm}}\right) = 0.897$		aus TB 3-11c
$K_{0\sigma} \coloneqq 1 - 0.22 \log \left(\frac{Rz}{\mu m} \right)$	$igg) oldsymbol{\cdot} \left(\log \left(rac{Rm}{20 rac{N}{mm^2}} ight) -$	$\begin{bmatrix} -1 \\ -1 \end{bmatrix} = 0.87$	aus TB 3-10
	aus TB 3-12	$K_{0 au} \coloneqq 0.575 \cdot K_{0c}$	
$K_{Db} \coloneqq \left(\frac{\beta_{kb}}{K_q} + \frac{1}{K_{0\sigma}} - 1\right)$	$\frac{1}{K_V} = 3.271$	$K_{Dt} := \left(\frac{\beta_{kt}}{K_o} + \frac{1}{K_o}\right)$	$\left(-1\right) \cdot \frac{1}{K_V} = 2.979$

$$\sigma_{bGW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 148.726 \ \frac{N}{mm^2} \qquad \tau_{tGW} \coloneqq K_t \cdot \frac{\tau_{tWN}}{K_{Dt}} = 97.973 \ \frac{N}{mm^2}$$

$$S_F \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bF}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tF}}\right)^2}} = 25.1$$

$$S_D \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bGW}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tGW}}\right)^2}} = 2.176$$
 Ergebnis: Die Vorgelegewelle ist dauerfest.

Abtriebswelle:		
Kraft- und I	Momentenverläufe (siehe auch Is	sometrie der Abtriebswelle):
Y-Z-Ebene:	X-Y-Ebene:	X-Z-Ebene:
Schnitt entlang s_6 (po	ositives Schnittufer)	
$Mt\left(s_{6}\right)\coloneqq-oldsymbol{T_{ab}}$	$N_x = -F_B = -1.5 \text{ kN}$	N_x := $-F_B$ = -1.5 kN
	$Q_y\left(s_6 ight)\coloneqq 0$	$Q_{z}\left(s_{6} ight)\coloneqq0$
	$Mb_z(s_6) \coloneqq 0$	$Mb_y\left(s_6 ight)\coloneqq 0$
Schnitt entlang s_7 (po	ositives Schnittufer) $s_{7max} = 5$	$1.65 \cdot mm \mid s_{7min} \coloneqq 0 \cdot mm$
$Mt\left(s_{7}\right)\coloneqq-oldsymbol{T}_{ab}$		$N_x = -F_B - F_{F3x} = -1.348 \ kN$
	$Q_y(s_7) := F_{F3y} = 3.406 \ kN$	$Q_z\left(s_7 ight)\!:=\!-F_{F3z}\!=\!-1.155~{\it kN}$
	$Mb_zig(s_7ig)\!\coloneqq\! F_{F3y}\!ullet\! s_7$	$Mb_y\left(s_7 ight)\!\coloneqq\!F_{F3z}\!\cdot\!s_7$
	$Mb_z\left(s_{7max}\right) = 175.92 \ \boldsymbol{N\cdot m}$	$Mb_y\left(s_{7max}\right) = 59.651 \; extbf{ extit{N}} \cdot extbf{ extit{m}}$
	$Mb_zig(s_{7min}ig)=0$ $m{N}m{\cdot}m{m}$	$Mb_y\left(s_{7min} ight) = 0 \; oldsymbol{N} oldsymbol{\cdot} oldsymbol{m}$
Schnitt entland s_{\circ} (no	eaatives Schnittufer) $s_{\circ} = 4$	$9.35 \cdot mm s_{\circ \dots \dots} \coloneqq 0 \cdot mm$

$Mt(s_8) \coloneqq 0$	$N_x = 0$	N_x := 0
	$Q_y(s_8) := -F_{L3y} = -3.5$	64 kN $Q_z(s_8) \coloneqq -F_{L3z} = -3.176$ kN
	$Mb_zig(s_8ig)\!\coloneqq\! F_{L3y}\!ullet\! s_8$	$Mb_yig(s_8ig)\!\coloneqq\!-F_{L3z}\!ullet\!s_8$
	$Mb_z(s_{8max}) = 175.883$	$oldsymbol{N \cdot m} \qquad Mb_y \left(s_{8max}\right) = -156.736 \; oldsymbol{N \cdot n}$
	$Mb_z\left(s_{8min} ight)=0$ $oldsymbol{N}ulletoldsymbol{m}$	$Mb_y\left(s_{8min} ight) = 0 \; oldsymbol{N} ullet oldsymbol{m}$
atischer & dyna	mischer Festigkeitsnachw	veis Abtriebswelle:
Rz:=6.3 μm	$d_{Kritisch3} = 55$ mm	$Rm \coloneqq 1100 \frac{N}{mm^2}$
$Wb_3 := \frac{\pi}{22} \cdot \left(\frac{d_{Krit}}{d_{Krit}} \right)$	$\left(\frac{d_{kisch3}^{4} - (42 \ mm)^{4}}{d_{Kritisch3}}\right) = 10779.$	46 mm ³
32 (
		4 (40) +
	$W_{t3} \coloneqq \frac{\pi}{16} \cdot \left(\frac{d_t}{dt} \right)$	$\left(\frac{d_{Kritisch3}^{4} - (42 \ mm)^{4}}{d_{Kritisch3}}\right) = 21558.93 \ mm^{3}$
$Mb_{res3} \coloneqq \sqrt{Mb_z(s)}$	$W_{t3}\!\coloneqq\!rac{oldsymbol{\pi}}{16}\!\cdot\!\left[rac{d_y}{d_y} ight]$ $\left[s_{8max} ight]^2+Mb_y\left(s_{8max} ight)^2$	$\left(\frac{d_{Kritisch3}^4 - \left(42 \hspace{0.1cm} mm\right)^4}{d_{Kritisch3}}\right) = 21558.93 \hspace{0.1cm} mm^3$
		$egin{aligned} & K_{ritisch3}^{4} - \left(42 \hspace{0.1cm} mm ight)^{3} \\ & d_{Kritisch3} \end{aligned} = 21558.93 \hspace{0.1cm} mm^{3} \\ & K_{t} \coloneqq 1 - 0.34 \cdot \log \left(rac{d_{Kritisch3}}{16 \hspace{0.1cm} mm} ight) = 0.818 \end{aligned}$
	$\left(s_{8max}\right)^2 + Mb_y \left(s_{8max}\right)^2$	
$R_{p0.2N} = 900 \frac{N}{mm}$	$\left(\frac{1}{a^2}\right)^2 + Mb_y \left(s_{8max}\right)^2$ nach TB 1-1	$K_t \coloneqq 1 - 0.34 \cdot \log \left(\frac{d_{Kritisch3}}{16 \ \textit{mm}} \right) = 0.818$
$R_{p0.2N} \coloneqq 900 \; rac{N}{mm}$ Biegung	$\left(\frac{1}{88max}\right)^2 + Mb_y \left(s_{8max}\right)^2$ nach TB 1-1 $\left(\frac{1}{2}\right)^2$ $\left(\frac{N}{mm^2}\right)^2$	$K_t \coloneqq 1 - 0.34 \cdot \log \left(rac{d_{Kritisch3}}{16 \ mm} ight) = 0.818$

 $\sigma_{bWN} \coloneqq 440 \; \frac{N}{mm^2}$ $au_{tWN} = 330 \; rac{N}{mm^2}$ aus TB 3-9b mit $Rm = 1100N/mm^2$ $\beta_{\iota\iota} := 2.3$ wegen Pressverband $\beta_{\iota,\iota} \coloneqq 1.55$

30.07.2022 Seite 25 von 32

/ KU / T	
$K_g \coloneqq 1 - 0.2 \cdot \frac{\log\left(\frac{d_{Kritisch3}}{7.5 \text{ mm}}\right)}{\log(20)} = 0.867$	aus TB 3-11c
$K_{0\sigma} := 1 - 0.22 \log \left(\frac{Rz}{\mu m}\right) \cdot \left(\log \left(\frac{Rm}{20 \frac{N}{mm^2}}\right) - 1\right) = 0.87$	aus TB 3-10
$K_{0\tau}\!\coloneqq\!0.575 \cdot\! K_{0\sigma}\!-\!$ $K_{V}\!\coloneqq\!1\qquad \text{aus TB 3-12}$	+0.425 = 0.925
$K_{Db} \coloneqq \left(\frac{\beta_{kb}}{K_g} + \frac{1}{K_{0\sigma}} - 1\right) \cdot \frac{1}{K_V} = 2.803 \qquad K_{Dt} \coloneqq \left(\frac{\beta_{kt}}{K_g} + \frac{1}{K_{0\tau}} + \frac{1}{K_{0\tau}}$	$\left(-1\right) \cdot \frac{1}{K_V} = 1.869$
$\sigma_{bGW} \coloneqq K_t \cdot \frac{\sigma_{bWN}}{K_{Db}} = 128.375 \frac{N}{mm^2} \qquad \tau_{tGW} \coloneqq K_t \cdot \frac{\tau_{tWN}}{K_{Dt}}$	$=144.394 \frac{N}{mm^2}$
$S_F \coloneqq \frac{1}{\sqrt{\left(\frac{\sigma_{bmax}}{\sigma_{bF}}\right)^2 + \left(\frac{\tau_{tmax}}{\tau_{tF}}\right)^2}} = 19.279$	
$S_D \coloneqq rac{1}{\sqrt{\left(rac{\sigma_{ba}}{\sigma_{bGW}} ight)^2 + \left(rac{ au_{ta}}{ au_{tGW}} ight)^2}} = 2.134$	
Ergobnica Dio Abtriobawallo ist dayorfast	
Ergebnis: Die Abtriebswelle ist dauerfest.	
Berechnung der Presspassung des Zahnrads der Abtriebswelle:	

30.07.2022 Seite 26 von 32

$$D_F \coloneqq 61 \ mm \qquad l_F \coloneqq 40 \ mm \qquad \mu \coloneqq 0.18 \qquad S_H \coloneqq 2 \qquad D_{Aa} \coloneqq 139.914 \ mm$$

$$F_t \coloneqq 2524 \ N \qquad F_t \coloneqq 6970 \ N$$

$$F_{res} \coloneqq \sqrt{F_t^2 + F_t^2} = 7.413 \ kN$$

$$F_{Bres} \coloneqq S_H \cdot F_{res} = 14.826 \ kN \qquad A_F \coloneqq D_F \cdot l_F \cdot \pi$$

$$p_{Fk} \coloneqq \frac{F_{Bres}}{D_{Aa}} = 10.745 \ \frac{N}{mm^2} \qquad \text{Erforderliche kleinste Fugenpressung}$$

$$Q_A \coloneqq \frac{D_F}{D_{Aa}} = 0.436 \qquad R_e \coloneqq 900 \ \frac{N}{mm^2} \quad \text{Für 42CrMo4} \qquad S_F \coloneqq 1.5$$

$$\frac{2 \cdot p_{Fk}}{1 - Q_A} = 26.534 \ \frac{N}{mm^2} \qquad \frac{2}{\sqrt{3}} \cdot \frac{R_e}{S_F} = 692.82 \ \frac{N}{mm^2}$$

$$26.534 \ \frac{N}{mm^2} \le 692.82 \ \frac{N}{mm^2} \qquad \text{Werkstoff geeignet}$$

$$Kleinstes \ \text{Haftma6}:$$

$$E_A \coloneqq 210000 \ \frac{N}{mm^2} \quad \text{Aus TB 1-1} \qquad K \coloneqq 2.5 \quad \text{Aus TB 12-7}$$

$$Z_k \coloneqq \frac{p_{Fk} \cdot D_F}{E_A} \cdot K = 7.803 \ \mu\text{m}$$

$$R_{ZAi} \coloneqq 6.3 \ \mu\text{m} \qquad R_{ZIa} \coloneqq 4 \ \mu\text{m} \qquad \text{Aus TB 2-12}$$

$$G \coloneqq 0.8 \cdot (R_{ZAi} + R_{ZIa}) = 8.24 \ \mu\text{m}$$

$$\mathring{U}_u \coloneqq Z_k + G = 16.043 \ \mu\text{m} \qquad \text{Messbares kleinstes zulässiges Überma6}$$

	$\frac{N}{mm^2}$ Größte zul. Flächenpressung des Zahnrads
	N Größte zul. Flächenpressung der Welle
$Z_G \coloneqq rac{p_{Fg} \cdot D_F}{E_A} \cdot K = 203.74$	3 μm Größtes zulässiges Haftmaß
$\ddot{U}_{ozul}\!\coloneqq\!Z_G\!+\!G\!=\!211.983$ μ	um Messbares größtes zulässiges Übermaß
\ddot{U}_{uzul} := Z_k + G =16.043 μr	m Messbares kleinstes zulässiges Übermaß
Für Passung H8/u8 für D=61	mm:
$EI \coloneqq 0 \ \mu m$ $ei \coloneqq ES \coloneqq 46 \ \mu m$ $es \coloneqq 6$	
	muss größer sein als $\ddot{U}_{uzul} = 16.043~\mu m$
$\ddot{U}_o \coloneqq es - EI = 133 \ \mu m$	muss kleiner sein als $\ddot{U}_{ozul}\!=\!211.983~\mu m$
Die Passung H8/u8 ist	geeignet!

30.07.2022 Seite 28 von 32

Berechnung der Presspassung des Zahnrads der Vorgelegewelle:

$$D_F\coloneqq 37$$
 mm $l_F\coloneqq 40$ mm $\mu\coloneqq 0.18$ $S_H\coloneqq 2$ $D_{Aa}\coloneqq 138.424$ mm

$$D_F \coloneqq 37$$
 mm $l_F \coloneqq 40$ mm

$$S_H \coloneqq 2$$

$$D_{Aa} := 138.424 \ mm$$

$$F_l = 793 \, N$$
 $F_t = 2179 \, N$

$$F_t \coloneqq 2179 \ N$$

$$F_{res} = \sqrt{F_l^2 + F_t^2} = 2.319 \text{ kN}$$

$$F_{Rres} := S_H \cdot F_{res} = 4.638 \ kN$$
 $A_F := D_F \cdot l_F \cdot \pi$

$$A_F \coloneqq D_F \cdot l_F \cdot \pi$$

$$p_{Fk} \coloneqq \frac{F_{Rres}}{A_F \cdot \mu} = 5.541 \frac{N}{mm^2}$$
 Erforderliche kleinste Fugenpressung nach Gl. 12.10

$$Q_A := \frac{D_F}{D_A} = 0.267$$

$$Q_A \coloneqq \frac{D_F}{D_{Aa}} = 0.267$$
 $R_e \coloneqq 900 \frac{N}{mm^2}$ Für 42CrMo4 $S_F \coloneqq 1.5$

$$S_F \coloneqq 1.5$$

$$\frac{2 \cdot p_{Fk}}{1 - Q_A^2} = 11.935 \frac{N}{mm^2}$$

$$\frac{2 \cdot p_{Fk}}{1 - Q_A^2} = 11.935 \frac{N}{mm^2} \frac{2}{\sqrt{3}} \cdot \frac{R_e}{S_F} = 692.82 \frac{N}{mm^2}$$

$$11.935 \frac{N}{mm^2} \le 692.82 \frac{N}{mm^2}$$
 Werkstoff geeignet

Kleinstes Haftmaß:

$$E_A = 210000 \frac{N}{mm^2}$$
 Aus TB 1-1 $K = 2.1$ Aus TB 12-7

$$K \coloneqq 2.1$$

$$Z_k \coloneqq \frac{p_{Fk} \cdot D_F}{E_A} \cdot K = 2.05 \; \mu m$$

$$R_{ZAi} = 6.3 \ \mu m$$
 $R_{ZIa} = 4 \ \mu m$ Aus TB 2-12

$$R_{ZIa} = 4 \mu m$$

$$G := 0.8 \cdot (R_{ZAi} + R_{ZIa}) = 8.24 \ \mu m$$

$$\ddot{U}_u \coloneqq Z_k + G = 10.29 \ \mu m$$

 $\ddot{U}_u \coloneqq Z_k + G = 10.29 \ \mu m$ Messbares kleinstes zulässiges Übermaß

$$R_e 1 - Q_A^2 - 321.66$$

 $n_{\rm T} := \frac{R_e}{1 - Q_A^2} = 321.66$ — Größte zul. Flächenbressung des Zahnrads

ГГУ	S_F	$\sqrt{3}$	mm^2	
p_{Fg}	$R_{I} \coloneqq \frac{R_{e}}{S_{F}} \cdot \frac{1}{A_{e}}$	$\frac{2}{\sqrt{3}} = 69$	$egin{aligned} & & & & & & & & & & & & & & & & & & &$	Größte zul. Flächenpressung der Welle
Z_G	$\coloneqq rac{p_{Fg} \cdot D}{E_A}$	$F \cdot K = 1$	19.014 μm	Größtes zulässiges Haftmaß
\ddot{U}_{oz}	$_{ul}\!\coloneqq\! Z_G+$	$G\!=\!127$.254 μm Με	essbares größtes zulässiges Übermaß
\ddot{U}_{uz}	$z_{ul} \coloneqq Z_k + 1$	G = 10.2	9 μm Με	essbares kleinstes zulässiges Übermaß
Für Pa	ssung H	3/u8 für	D=37mm:	
	EI := 0 μπ ES := 39 μ		$ei := 60 \ \mu m$ $es := 99 \ \mu m$	
l	$\ddot{U}_u\!\coloneqq\!ei-$	ES = 21	μm muss	größer sein als $\ddot{U}_{uzul}\!=\!10.29~\mu m$
l	$\ddot{U}_o\!\coloneqq\!es-$	EI = 99	μm muss	kleiner sein als \dot{U}_{ozul} = 127.254 μm
	Die Passu	ıng H8/u	ı8 ist geeignet	

30.07.2022 Seite 30 von 32

Schmierstoffberechnung

Für Auslegung eines Schmierstoffes für das Getriebe muss zuerst die benötigte kinematische Nennviskosität des Schmieröles bestimmt werden. Diese erhalten wir über TB 20-7 a) mit Hilfe des Kraft-Geschwindigkeits-Faktors $\frac{k_s}{v}$. Es wird die Umfangsgeschwindigkeit und Durchmesser von Zahnrad 4 gewählt.

$$u \coloneqq \frac{z_4}{z_3}$$
 $n_{Abtrieb} \coloneqq \frac{n_{Antrieb}}{i'_{Geomt}}$

$$\underline{k_s} \coloneqq \left(3 \cdot \frac{F_{tZ4}}{b_4 \cdot d_4} \cdot \frac{u+1}{u}\right) \cdot \frac{1}{\pi \cdot d_4 \cdot n_{Abtrieb}} = 1.429 \frac{s}{m} \cdot MPa$$

Durch das Ablesen von TB 20-7 a) ergibt sich ca. ein Wert von: $\nu_{40} = 2.3 \cdot 10^2 \cdot \frac{mm^2}{s}$

Gewähltes Schmieröl:

DIN 51517 - CLP 220: Umlaufschmieröl auf Basis eines Mineralöls (C) mit Zusatzstoffen für erhöhten Korrosionsschutz, Alterungsbeständigkeit (L), sowie Herabsetzung der Reibung und des

30.07.2022 Seite 31 von 32

30.07.2022 Seite 32 von 32