TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI THÀNH PHỐ HỒ CHÍ MINH KHOA CƠ BẢN – BỘ MÔN TOÁN

CHƯƠNG II. KHÔNG GIAN VECTO

§2. Cơ sở, số chiều và tọa độ trong không gian vectơ

ThS. Đinh Tiến Dũng

NỘI DUNG

- 1. Sự độc lập tuyến tính và phụ thuộc tuyến tính.
- 2. Hạng của một hệ vecto.
- 3. Cơ sở và số chiều của không gian.
- 4. Cách tìm cơ sở và số chiều của một không gian vecto.
- 5. Tọa độ trong không gian vectơ

§2. Cơ sở, số chiều và tọa độ trong không gian vectơ

I. SỰ ĐỘC LẬP TUYẾN TÍNH (đltt), PHỤ THUỘC TUYẾN TÍNH (pttt)

1) Định nghĩa

Trong không gian vecto V, cho hệ vecto $S = \{u_1, u_2, ..., u_n\}$.

- Hệ vectơ S gọi là đltt nếu với bộ số thực bất kỳ $x_1, x_2, ..., x_n$ làm thỏa mãn đẳng thức $x_1u_1 + x_2u_2 + \cdots + x_nu_n = 0$ thì $x_1 = x_2 = \cdots = x_n = 0$.
- Hệ vecto S gọi là pttt nếu nó không đltt.

Chú ý:

- Trong \mathbb{R}^2 , hai vecto cùng phương là 2 vetor pptt; hai vetor không cùng phương là 2 vecto \mathbb{R}^2 đltt.
- Trong R³, ba vecto đồng phẳng là 3 vetor pptt; ba vetor không đồng phẳng là 3 vecto đltt.

2) Định lý 1

Nếu trong hệ vecto $S = \{u_1, u_2, ..., u_n\}$ có một vecto biểu thị tuyến tính được qua n-1 vecto còn lại của hệ thì S phụ thuộc tuyến tính.

Chứng minh: Không mất tính tổng quát, giả sử u_n biểu thị tuyến tính được qua n-1 vectơ còn lại, tức là tồn tại bộ số thực $x_1, x_2, ..., x_{n-1}$:

$$u_n = x_1 u_1 + x_2 u_2 + \dots + x_{n-1} u_{n-1}$$

$$\Rightarrow x_1 u_1 + x_2 u_2 + \dots + x_{n-1} u_{n-1} - 1. u_n = 0 \quad (*)$$

Khi đó đẳng thức (*) thỏa mãn với $x_n = -1 \neq 0$ nên hệ S pttt.

2) Định lý 2 (tương đương định nghĩa)

Trong không gian vecto V, cho hệ vecto $S = \{u_1, u_2, ..., u_n\}$.

- Hệ S đltt nếu hệ phương trình $x_1u_1 + x_2u_2 + \cdots + x_nu_n = 0$ có nghiệm duy nhất nghiệm tầm thường $x_1 = x_2 = \cdots = x_n = 0$.
- Hệ S pttt nếu hệ phương trình $x_1u_1 + x_2u_2 + \cdots + x_nu_n = 0$ có nghiệm không tầm thường $(x_1, x_2, \dots, x_n) \neq (0, 0, \dots, 0)$.

VD1: Trong R², xét sự độc lập tuyến tính hay phụ thuộc tuyến tính của hệ các hệ vectơ:

a)
$$S = \{u_1 = (2; 3); u_2 = (5, -4)\};$$
 b) $U = \{u_1 = (2; 3); u_2 = (4, 6)\}$

Giải

a) Xét hệ
$$x_1u_1 + x_2u_2 = 0$$

 $\Leftrightarrow x_1(2;3) + x_2(5;-4) = (0;0)$
 $\Leftrightarrow (2x_1 + 5x_2; 3x_1 - 4x_2) = (0;0)$
 $\Leftrightarrow \begin{cases} 2x_1 + 5x_2 = 0 \\ 3x_1 - 4x_2 = 0 \end{cases}$
 $\det \begin{pmatrix} 2 & 5 \\ 3 & -4 \end{pmatrix} = -23 \neq 0$ nên hệ phương trình có duy nhất nghiệm tầm thường $x_1 = x_2 = 0$. Vậy S đltt.

3) Định lý 3

Trong kgvt
$$R^n$$
 cho hệ vecto S có n vecto
$$\begin{cases} u_1 = (a_{11}, a_{12}, ..., a_{1n}) \\ u_2 = (a_{21}, a_{22}, ..., a_{2n}) \\ ... \\ u_n = (a_{n1}, a_{n2}, ..., a_{nn}) \end{cases}$$

$$Gọi \ A = \begin{bmatrix} u_1 \\ u_2 \\ ... \\ u_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn} \end{bmatrix}$$
 là ma trận dòng toạ độ của hệ S .

Khi đó:

- S độc lập tuyến tính \Leftrightarrow $det(A) \neq 0$.
- S phụ thuộc tuyến tính \Leftrightarrow det(A) = 0.

❖Ví dụ: Xét sự đltt và pttt của các họ vectơ sau:

a)
$$U = \{u_1 = (2; -3; 5); \ \bar{u}_2 = (-4, 1, 7); \ u_3 = (1, -4, 11)\};$$

b)
$$S = \{v_1 = (1,2,-4,3); v_2 = (2,-1,5,6); v_3 = (-3,7,6,9); v_4 = (8,1,3,0)\}.$$

Giải

a) Đặt
$$A = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 2 & -3 & 5 \\ -4 & 1 & 7 \\ 1 & -4 & 11 \end{bmatrix}.$$

Ta thấy det(A) = 0 nên U pptt.

b) Đặt B=
$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} 1 & 2-4 & 3 \\ 2-1 & 5 & 6 \\ -3 & 7 & 6 & 9 \\ 8 & 1 & 3 & 0 \end{bmatrix}.$$

Ta thấy $det(B) = 2976 \neq 0$ nên S độc lập tuyến tính.

Hệ quả

- Nếu trong hệ S có chứa vectơ-không thì hệ S pttt.
- Nếu trong hệ S có một bộ phận của hệ pttt thì hệ S pttt.
- Nếu hệ S chỉ chứa một vecto khác vecto-không thì S đltt.

\bullet VD: Trong \mathbb{R}^3 :

- S= {u₁ = (1; 2; 3); u₂ = (4,5; 6); u₃ = (0; 0; 0)} là hệ pptt vì: $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{vmatrix} = 0.$
- Xét hệ U= $\{u_1 = (1; 2; 3); u_2 = (2,4; 6); u_3 = (1; 0; -1)\}$, ta thấy: $u_2 = 2u_1$ nên bộ phận 2 vecto $\{u_1 = (1; 2; 3); u_2 = (2,4; 6)\}$ pptt. Khi đó u_2 biểu thị tuyến tính được qua các vecto còn lại: $u_2 = 2.u_1 + 0.u_3$ nên theo Định lý 1 ta kết luận U pttt.
- $T = \{u_1 = (1; 2; 3)\}$ chỉ chứa một vectơ khác vectơ-không nên nó đltt.

II. HẠNG CỦA MỘT HỆ VECTƠ

1) Định nghĩa

Cho S là một họ vectơ trong không gian vectơ V. Khi đó, hạng của S là số tối đa vectơ độc lập tuyến tính có thể lấy ra từ họ S.

Ký hiệu: rank(S) hoặc r(S).

❖Nhận xét:

Nếu rank(S)=r thì trong S có họ gồm r vectơ độc lập tuyến tính và bất kỳ họ vectơ nào có nhiều hơn r vectơ trong S đều phụ thuộc tuyến tính.

2) Định lý

Cho S là một họ vectơ trên không gian vectơ V. Khi đó:

- a) S độc lập tuyến tính \Leftrightarrow rank(S) = |S|.
- b) S phụ thuộc tuyến tính \Leftrightarrow rank(S) < |S|. (trong đó, ký hiệu |S| để chỉ số vecto của hệ S)
- c) Nếu S là hệ có m vectơ đã cho toạ độ

$$\begin{cases} u_1 = (a_{11}, a_{12}, \dots, a_{1n}) \\ u_2 = (a_{21}, a_{22}, \dots, a_{2n}) \\ \dots & \dots \\ u_m = (a_{m1}, a_{m2}, \dots, a_{mn}) \end{cases} thi \ rank(S) = rank \\ \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

❖Nhận xét: Trong Rⁿ hệ nào chứa nhiều hơn n vectơ đều pttt.

❖VD1: Trong \mathbb{R}^4 , xét sự đltt hay pttt của hệ vector $S = \{(-1; -2; 3; -3), (2; -1; 0; -2), (2; 4; -1; 3)\}.$

Giải. Xét ma trận dòng toạ độ:

$$A = \begin{pmatrix} -1 & -2 & 3 & -3 \\ 2 & -1 & 0 & -2 \\ 2 & 4 & -1 & 3 \end{pmatrix}$$

$$\xrightarrow{2d1+d2\to d2} \begin{pmatrix} -1 & -2 & 3 & -3 \\ 0 & -5 & 6 & -8 \\ 0 & 0 & 5 & -3 \end{pmatrix}.$$

Ta có rank(S)=rank(A)=3=|S|. Vậy S là hệ đltt.

VD2: Trong \mathbb{R}^4 , xét sự đltt hay pttt của hệ vector $U = \{(1; 2; -1; 1), (2; -1; 3; 0), (3; 1; 2; 1)\}$.

Giải. Xét ma trận dòng toạ độ:

$$B = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & -1 & 3 & 0 \\ 3 & 1 & 2 & 1 \end{pmatrix} \xrightarrow{\begin{array}{c} -2d1+d2\to d2 \\ -3d1+d3\to d3 \\ \end{array}} \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -5 & 5 & -2 \\ 0 & -5 & 5 & -2 \\ \end{array}$$
$$\xrightarrow{\begin{array}{c} -d2+d3\to d3 \\ 0 & 0 & 0 & 0 \\ \end{array}} \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -5 & 5 & -2 \\ 0 & 0 & 0 & 0 \\ \end{array}$$

Ta có rank(U)=rank(B)=2<|U|. Vậy U là hệ pttt.

III. CƠ SỞ VÀ SỐ CHIỀU CỦA KHÔNG GIAN

1) Định nghĩa

Cho V là một không gian vectơ trên R. Khi đó:

- V gọi là không gian vectơ n chiều nếu trong V tồn tại ít nhất một họ gồm n vectơ độc lập tuyến tính và mọi họ có nhiều hơn n vectơ đều phụ thuộc tuyến tính. Ký hiệu: dim(V).
- Nếu dim(V) = n thì mỗi họ gồm n vecto đltt trong V được gọi là một cơ sở của không gian vecto V.

2) Định lý 1

Cho V là một không gian vectơ trên R. Hệ vectơ S là một cơ sở của V khi và chỉ khi S là hệ sinh của V (tức là V=span(S)) và S độc lập tuyến tính.

3) Định lý 2

 $H\hat{e} \ vector E = \{e_1 = (1, 0, ..., 0); e_2 = (0, 1, 0, ..., 0); ...; e_n = (0, ..., 0, 1)\}$ là một cơ sở của R^n do đó $dimR^n = n$. Ngoài ra, E gọi là cơ sở chính tắc của R^n .

Chứng minh:

Lấy bất kỳ $u \in \mathbb{R}^n$ thì u có dạng: $u = (x_1, x_2, ..., x_n)$ với $x_1, x_2, ..., x_n \in \mathbb{R}$. $\Rightarrow u = (x_1, 0, ..., 0) + (0, x_2, 0, ..., 0) + ... + (0, 0, ..., 0, x_n)$ $= x_1(1, 0, ..., 0) + x_2(0, 1, 0, ..., 0) + ... + x_n(0, 0, ..., 0, 1)$

 $= x_1e_1 + x_2e_2 + \cdots + x_ne_n$.

Vậy mọi vectơ trong \mathbb{R}^n đều biểu thị tuyến tính được qua hệ vectơ \mathbb{E} nên \mathbb{E} là một hệ sinh của \mathbb{R}^n . (1)

$$X\acute{e}t\ ma\ tr\^{a}n: A = egin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}. \ Ta\ th\^{a}y\ \mathrm{det}(A) = 1 \neq 0 \Rightarrow E\ \rlap{d}ltt.$$

 $T \dot{w}$ (1) $v \dot{a}$ (2) $suy \ ra \ E \ l \dot{a} \ m \hat{o}t \ so \ so \ c \dot{u} \ a \ R^n$. $Suy \ ra \ dim R^n = n$.

Nhận xét:

• Không gian đa thức $P_n[x] = \{a_0 + a_1x + \dots + a_nx^n : a_0, a_1, \dots, a_n \in R\}$ là không gian n+1 chiều vì với cơ sở chính tắc là

$$F = \{f_0 = 1; \ f_1 = x; \ f_2 = x^2; \ ...; \ f_n = x^n\}.$$

• Không gian các ma trận vuông $M_2[R]$ cấp 2 hệ số thực là không gian 4 chiều với cơ sở chính tắc là:

$$E = \left\{ E_1 = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}; E_2 = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}; E_3 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{bmatrix}; E_4 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \right\}.$$

* CÁCH TÌM CƠ SỞ VÀ SỐ CHIỀU CỦA KHÔNG GIAN

- Bước 1: Tìm một hệ sinh S của V. Tức là V = span(S).
- Bước 2: Tính rank(S) = k v a suy ra k vecto đltt của span(S) là $\{u_1, u_2, ..., u_k\}$. Do đó $V = span(\{u_1, u_2, ..., u_k\})$
- Bước 3: Kết luận $\{u_1, u_2, ..., u_k\}$ là cơ sở của V và $\dim(V) = k$.

Chú ý:

- Nếu W={0} thì ta quy ước dim(W)=0.
- Nếu W=span({a}) mà a≠ 0 thì {a} là một cơ sở của W và dim(W)=1.
- Mỗi không gian con cũng là một không gian vectơ nên thuật toán trên cũng áp dụng để tìm cơ sở và số chiều của không gian vectơ con.

❖VD2: Trong kgvt R³ cho tập hợp vectơ:

$$W = \{(\alpha + 3\beta + 2\gamma; \beta; -2\alpha - 3\beta - 4\gamma)/\alpha, \beta, \gamma \in \mathbb{R}\}\$$

CMR: W là không gian vectơ con của R^3 . Tìm cơ sở của W và dim(W).

Giải:

$$W = \{ (\alpha; 0; -2\alpha) + (3\beta; \beta; -3\beta) + (2\gamma; 0; -4\gamma)/\alpha, \beta, \gamma \in \mathbb{R} \}$$
$$= \{ \alpha(1; 0; -2) + \beta(3; 1; -3) + \gamma(2; 0; -4)/\alpha, \beta, \gamma \in \mathbb{R} \}$$

- \Rightarrow W = span({(1; 0; -2), (3; 1; -3), (2; 0; -4)})
- \Rightarrow W là kgyt con sinh bởi hệ $S = \{(1; 0; -2), (3; 1; -3), (2; 0; -4)\}.$

Xét ma trận dòng tọa độ của S:
$$A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 1 & -3 \\ 2 & 0 & -4 \end{pmatrix} \xrightarrow{\begin{array}{l} -3d1+d2\to d2 \\ -2d1+d3\to d3 \\ 0 & 0 & 0 \\ \end{array}} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ \end{array}$$
.

- \Rightarrow r(S) = r(A) = 2 và bộ phận đltt tối đại $\{u_1 = (1; 0; -2), u_2 = (3; 1; -3)\}$ là một cơ sở của W \Rightarrow dim(W)=2.
- * Chú ý: Hệ vectơ đttt { $v_1 = (1; 0; -2), v_2 = (0; 1; 3)$ } $\subset W$ nên nó cũng là một cơ sở của W.

VD2: Tìm tập nghiệm T của hệ phương trình tuyến tính thuần nhất

$$\begin{cases} x + y + z - t = 0 \\ -x - y + z + t = 0 \end{cases}$$

Chứng tỏ rằng T là không gian vevtơ con của \mathbb{R}^4 (không gian nghiệm). Tìm cơ sở và số chiều của T.

Giải

Giải hệ:
$$\begin{cases} x + y + z - t = 0 & (1) \\ -x - y + z + t = 0 & (2) \end{cases} \xrightarrow{(1)+(2)\to(2)} \begin{cases} x + y + z - t = 0 \\ 2z = 0 \end{cases} \begin{cases} x = -\alpha + \beta \\ y = \alpha \\ z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + y + z - t = 0 \\ z = 0 \end{cases} \Leftrightarrow \begin{cases} x + y + 0 - t = 0 \Leftrightarrow \begin{cases} z = 0 \\ t = \beta \end{cases} \end{cases} (\alpha, \beta \in R)$$

Suy ra tập nghiệm của hệ: $T = \{(-\alpha + \beta; \alpha; 0; \beta)/\alpha, \beta \in R\}$.

• Ta thấy:
$$T = \{(-\alpha + \beta; \alpha; 0; \beta)/\alpha, \beta \in R\}$$

 $= \{(-\alpha; \alpha; 0; 0) + (\beta; 0; 0; \beta)/\alpha, \beta \in R\}$
 $= \{\alpha(-1; 1; 0; 0) + \beta(1; 0; 0; 1)/\alpha, \beta \in R\}$
Đặt $\mathbf{u} = (-1; 1; 0; 0), \mathbf{v} = (1; 0; 0; 1)$ thì:
 $\mathbf{T} = \{\alpha. \, u + \beta. \, \mathbf{v}/\alpha, \beta \in R\} \Rightarrow \mathbf{T} = \mathrm{span}(\{u, \mathbf{v}\})$

Vậy T là một k.gian vectơ con của \mathbb{R}^4 và $S=\{u,v\}$ là hệ sinh của T. (1)

• Xét ma trận:
$$A = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{d1+d2\to d2} \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \mathbf{r}(\mathbf{S}) = \mathbf{r}(\mathbf{A}) = \mathbf{2} = |\mathbf{S}| \Rightarrow \mathbf{S} \text{ là hệ vector độc lập tuyến tính.}$$
 (2)

• Từ (1) và (2) \Rightarrow S là một cơ sở của T. Do đó dim(T) = 2.

Lưu ý: Cơ sở của không gian nghiệm hệ phương trình tuyến tính thuần nhất ta còn gọi là hệ nghiệm cơ bản.

BÀI TẬP

Tìm số chiều không gian nghiệm của hệ:
$$\begin{cases} 2x - y + z = 0 \\ 4x - 2y + 2z = 0 \\ 6x - 3y + 3z = 0 \end{cases}$$

IV. TỌA ĐỘ CỦA VECTƠ ĐỐI VỚI CƠ SỞ

1) Định nghĩa

Giả sử $S = \{u_1, u_2, ..., u_n\}$ là một cơ sở **có thứ tự** của không gian vectơ V. Khi đó, mỗi vectơ **u** thuộc V đều có thể biểu thị tuyến tính một cách duy nhất qua cơ sở S dạng:

$$u = x_1 \cdot u_1 + x_2 \cdot u_2 + \cdots + x_n \cdot u_n$$

 $B\hat{\rho}$ n $s\hat{o}$ thực $c\hat{o}$ thứ tự $(x_1, x_2, ..., x_n)$ được gọi là toạ $d\hat{\rho}$ của vecto u $d\hat{o}$ i với co $s\hat{o}$ S.

$$Ký hiệu: (\mathbf{u})_S = (x_1, x_2, ..., x_n) hoặc ở dạng cột $[\mathbf{u}]_S = \begin{bmatrix} x_2 \\ ... \\ x_n \end{bmatrix}$.$$

2. Các ví dụ:

a) Trong không gian \mathbb{R}^n với cơ sở chính tắc:

$$E = \{e_1 = (1, 0, ..., 0); e_2 = (0, 1, 0, ..., 0); ...; e_n = (0, ..., 0, 1)\},$$

$$n\hat{e}u \ u = x_1e_1 + x_2e_2 + ... + x_ne_n \ thi \ (u)_E = (x_1, x_2, ..., x_n).$$

b) Trong k.gian đa thức:

$$P_{n}[x] = \{a_{0} + a_{1}x + \dots + a_{n}x^{n} : a_{0}, a_{1}, \dots, a_{n} \in R\}$$

$$v \acute{o}i \ co \ s \acute{o} \ ch \acute{n}h \ t \check{a}c : F = \{f_{0} = 1; \ f_{1} = x; \ f_{2} = x^{2}; \ \dots; \ f_{n} = x^{n}\}, \ n \acute{e}u$$

$$f(x) = a_{0} + a_{1}x + \dots + a_{n}x^{n} \in P_{n}[x]$$

$$thì \ f(x) = a_{0}. f_{0} + a_{1}. f_{1} + \dots + a_{n}. f_{n} \ n \acute{e}n \ (f)_{F} = (a_{0}, a_{1}, \dots, a_{n}).$$

c) Trong không gian các ma trận vuông $M_2[R]$ cấp 2 hệ số thực với cơ sở chính tắc:

$$E = \left\{ E_1 = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}; E_2 = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}; E_3 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{bmatrix}; E_4 = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \right\},$$

$$n\hat{e}u\ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2[R] \ thi\ A = a.E_1 + b.E_2 + c.E_3 + d.E_4$$

nên toạ độ của ma trận A đối với cơ sở chính tắc là

$$(A)_E = (a; b; c; d).$$

*Chú ý:

- Mỗi không gian vectơ V≠ {0} đều có vô số cơ sở khác nhau vì vậy toạ độ của một vectơ đối với mỗi cơ sở là khác nhau.
- Khi người ta viết $\mathbf{u} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ thì ta hiểu đó là tọa độ của \mathbf{u} đối với cơ sở chính tắc của \mathbb{R}^3 .

VD2: Trong không gian vector R^3 cho họ vector $S = \{u_1 = (1,0,0); u_2 = (1,1,0); u_3 = (1,1,1)\}$ và vector $u = (1;-2;3) \in R^3$.

- a) CMR: S là một cơ sở của R^3 .
- b) Tìm toạ độ của u = (1; -2; 3) đối với cơ sở S.

Giải

a) Xét ma trận
$$A = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
.

Ta thấy $det(A) = 1 \neq 0$ suy ra hệ S độc lập tuyến tính.

Mặt khác $dim(R^3) = 3 = |S|$ nên S là một cơ sở của R^3 .

b) Tìm toạ độ của
$$\mathbf{u} = (\mathbf{1}; -\mathbf{2}; \mathbf{3}) \in \mathbb{R}^3$$
 đối với cơ sở $\mathbf{S} = \{\mathbf{u_1} = (\mathbf{1}, \mathbf{0}, \mathbf{0}); \mathbf{u_2} = (\mathbf{1}, \mathbf{1}, \mathbf{0}); \mathbf{u_3} = (\mathbf{1}, \mathbf{1}, \mathbf{1})\}$

Giải

b) Giả sử $u = x \cdot u_1 + y \cdot u_2 + z \cdot u_3$ với x,y,z là các số thực.

$$\Rightarrow (1; -2; 3) = x. (1, 0, 0) + y. (1, 1, 0) + z. (1, 1, 1)$$

$$\Leftrightarrow (1; -2; 3) = (x, 0, 0) + (y, y, 0) + (z, z, z)$$

$$\Leftrightarrow (1; -2; 3) = (x + y + z; y + z; z) \Leftrightarrow \begin{cases} x + y + z = 1 \\ y + z = -2 \Leftrightarrow \\ z = 3 \end{cases}$$

Vậy toạ độ của u đối với cơ sở S là $(u)_S = (3; -5; 3)$.

BÀI TẬP NHÓM

Trong không gian vecto R^3 *cho họ vecto*:

$$S = \{u_1 = (1,0,0); u_2 = (1,-1,0); u_3 = (1,2,3)\} \ v \hat{a} \ u = (2;-1;1).$$

- a) CMR: S là một cơ sở của R³.
- b) Tìm toạ độ của u đối với cơ sở S.

BÀI TẬP VỀ NHÀ

Câu 1: Xét sự đltt, pttt của hệ vecto:

a)
$$S = \{(1,2,3,-1), (2,0,-1,0), (-2,1,0,3)\};$$

b)
$$T = \{(1,2,0), (0,2,3), (3,0,1)\};$$

c)
$$U = \{p_1 = 2x^2 - 3x + 1; p_2 = x^2 + 2x\}.$$

Câu 2: Tìm hạng của họ vectơ sau đây trong \mathbb{R}^4

$$S = \{u_1 = (4, -5, 2, 6); u_2 = (2, -3, 1, 3); u_3 = (2, -1, 1, 3); u_4 = (4, -1, 5, 6)\}$$

<u>Câu 3</u>: Trong \mathbb{R}^3 cho tập hợp: $W = \{u = (a, b, c): a + b - c = 0\}.$

Chứng minh tập hợp W là không gian con của \mathbb{R}^3 . Tìm số chiều và một cơ sở của W.

BÀI TẬP VỀ NHÀ

Câu 4: Tìm số chiều và một cơ sở của không gian con sinh bởi họ vectơ sau: $S = \{(1,2,0,2); (-2,1,3,0); (3,1,4,-2); (6,7,18,-4)\}.$

Câu 5: Trong không gian \mathbb{R}^3 cho họ véc tơ

$$S = \{v_1 = (2; 1; m), v_2 = (0; -m; 1); v_3 = (m; 1; 0)\}$$

- a) Tìm tất cả các giá trị thực của tham số m để họ S phụ thuộc tuyến tính.
- b) Chứng tỏ rằng với m = 2 thì S là một cơ sở của \mathbb{R}^3 .

<u>Câu 6</u>: Cho $W = \{u = (a - 3b + 2c, -a + 2b + 13c, 2a - 4b - 26c): a, b, c \in$

 \mathbb{R} } là không gian vectơ con của \mathbb{R}^3 . Tìm số chiều và một cơ sở của W.

Câu 7: Gọi W là không gian nghiệm của hệ: $\begin{cases} x + 2y + z - 6t = 0 \\ 3x + 5y + 4z + 7t = 0 \\ x + y + 2z + 19t = 0 \end{cases}$

Tìm cơ sở và số chiều của W.

<u>Câu 8</u>: Trong không gian vector \mathbb{R}^3 , cho họ vector

$$S = \{u_1 = (-1; 1; -2), u_2 = (0; 3; 1), u_3 = (4; -3; 0)\}$$

- a) Chứng minh rằng S là một cơ sở của \mathbb{R}^3 .
- b) Tìm $[v]_S$ biết $v = (17; -5; -2) \in \mathbb{R}^3$.

<u>Câu 9</u>: Dùng công thức đổi toạ độ tìm toạ độ của vecto u = (1; 2; 3) đối với cơ sở $S = \{u_1 = (1, -1, 0); u_2 = (1, 0, 3); u_3 = (0, 1, 2)\}$ trong kgvt R^3 .