Introduction to Al

February 6, 2019

Figure: MNIST database [LeCun and Cortes, 2010]

► Boston Dynamics robot (video)

Figure: Go game, beaten by AlphaGo in 2017 [Silver et al., 2016]

- Boston Dynamics robot
 - MINST classification
 - AlphaGo
- ▶ All do different things but are gathered under the term "Al".

► People doing "AI" can actually come from rather different scientific communities. Which ones according to you?

- ► People doing "AI" can actually come from rather different scientific communities:
 - Statistics

- ▶ People doing "Al" can actually come from rather different scientific communities:
 - Statistics
 - Optimization

- People doing "Al" can actually come from rather different scientific communities:
 - Statistics
 - Optimization
 - Other mathematical fields :

- ▶ People doing "Al" can actually come from rather different scientific communities:
 - Statistics
 - Optimization
 - Other mathematical fields: graph theory, combinatorics, information theory

- ▶ People doing "Al" can actually come from rather different scientific communities:
 - Statistics
 - Optimization
 - ▶ Other mathematical fields : graph theory, combinatorics
 - Statistical physics

- ▶ People doing "Al" can actually come from rather different scientific communities:
 - Statistics
 - Optimization
 - ▶ Other mathematical fields : graph theory, combinatorics
 - Statistical physics
 - Robotics

- People doing "Al" can actually come from rather different scientific communities:
 - Statistics
 - Optimization
 - Other mathematical fields : graph theory, combinatorics
 - Statistical physics
 - Robotics
 - Cognitive sciences / neuroscience / psychology

- ▶ People doing "Al" can actually come from rather different scientific communities:
 - Statistics
 - Optimization
 - ▶ Other mathematic fields : graph theory, combinatorics
 - Statistical physics
 - Robotics
 - Cognitive sciences / neuroscience / psychology
- ► For instance, *data science* is mostly a mix between statistics, optimization, graph theory

- It seems to be rather varied
- We will focus on Machine Learning, a term slightly more specific than "AI"
- ▶ In Machine Learning, some parameters are learned in an automatic way in order to solve a problem or to optimize a solution

- It seems to be rather varied
- We will focus on Machine Learning, a term slightly more specific than "AI"
- In Machine Learning, some parameters are learned in an automatic way in order to solve a problem or to optimize a solution
- Al is not a recent research topic, it started with computer science. Machine Learning has been trendy for some years now because of some good performance on some specific problems

In the three first examples, according to you which one is NOT a Machine Learning system ?

► Alpha Go: Machine Learning (Reinforcement Learning)

- ► Alpha Go: Machine Learning (Reinforcement Learning)
- ► MNIST : Machine Learning (Supervised Learning)

- ► Alpha Go: Machine Learning (Reinforcement Learning)
- MNIST : Machine Learning (Supervised Learning)
- ▶ Boston Dynamics : no Machine Learning (just plain robotics)

Overview

Main Machine Learning paradigms

Supervised learning

Unsupervised learning

Reinforcement learning

Some famous methods and use cases

Linearly separable problem

Kmeans clustering

Neural networks

Other methods

Research and problems in Al

Curse of dimensionality

Non linearity and non convexity

Overfitting

Deep learning

Conclusion: a problem that is hard to constrain

- For a certain input x, you want to predict an output y
- ▶ To do so, you learn from a number of **labeled examples** (x_i, y_i)
- ▶ In the case where what you want to predict is a class, it is a classification problem
- In the case where what you want to predict is a general function y = f(x), it is a **regression problem**

- For a certain input x, you want to predict an output y
- ▶ To do so, you learn from a number of **labeled examples** (x_i, y_i)
- In the case where what you want to predict is a class, it is a classification problem
- ▶ In the case where what you want to predict is a general function y = f(x), it is a **regression problem**
- Example : MNIST (classification)
- Question : how do you choose and constrain your function f ?

- From a large number of samples x_i , you want to retrieve information on their **structure**
- For instance you want to learn a distribution, or a clustering of your data.
- Examples: social networks, backboard

- From a large number of samples x_i , you want to retrieve information on their **structure**
- ► For instance you want to learn a **distribution**, or a **clustering** of your data.
- Examples : blackboard
- Question : how do you constrain your distribution ?

- ▶ A more general paradigm that describes an agent in a world.
- ► The standard formalization was the one proposed by Richard Sutton [Sutton and Barto, 2016]
- ▶ At each time, the world is in a state s. An agent performs an action a according to a **policy** π . When performing an action, the agent receives an **reward** r.

Reinforcement learning

- ► A more general paradigm that describes an agent in a world.
- ► The standard formalization was the one proposed by Richard Sutton [Sutton and Barto, 2016]

Reinforcement learning

- A more general paradigm that describes an agent in a world.
- The standard formalization was the one proposed by Richard Sutton [Sutton and Barto, 2016]
- Example : a Chessplayer, AlphaGo, a game AI, automatic vacuum cleaner

- At each time, the world is in a state s. An agent perfoms an action a according to a **policy** π . When performing an action, the agent receives an **reward** r.
- ► The agent wants to learn an **optimal policy**, meaning the policy that maximises its reward.

This paradigm has many variants

- ▶ State s, action a, policy π , reward r.
- Is the policy deterministic ? Is it stochastic ?
- Does the agent have a model of its environment ?
- How many steps ahead whould the agent look?

This paradigm has many variants

- ▶ State s, action a, policy π , reward r.
- Is the policy deterministic ? Is it stochastic ?
- Does the agent have a model of its environment?
- How many steps ahead should the agent look?
- All these conditions change the way the problem should be addressed and solved. The Bellman equations rule the updates of the optimal policy.

Example problem

- ► Typical Machine Learning situation : should I explore my environment more or exploit what I have learnt so far ?
- ▶ Concept of ϵ -greedy policy

Final remark

► These paradigms can be mixed

Reinforcement learning

Final remark

- ▶ These paradigms wan be mixed
- Mosty, this means that
 - unsupervised learning can be used in a supervised learning problem (semi supervised learning)
 - unsupervised learning and supervised learning can be used in a reinforcement learning problem

Some famous methods

Let's look at some classical methods in ML

Linearly separable problem

Linear separator

Very favorable supervised learning case

Figure: Linearly separable problem (image: wikipedia)

Linear separator

▶ Unfortunately, most problems are *not linearly separable*

Kmeans clustering

K means clustering

► A famous unsupervised clustering method

Figure: K means clustering

Some famous methods and use cases

Kmeans clustering

Kmeans

Figure: Other example of kmeans clustering, this time in 9 dimensions [Le Hir et al., 2018]

Kmeans clustering

Esperance Maximisation algorithm

- Classical Machine Learning algorithm (EM)
- Blackboard
- ▶ What could be the drawbacks of this algorithm ?

Kmeans clustering

Esperance Maximisation algorithm

- Classical Machine Learning algorithm (EM)
- ▶ What could be the drawbacks of this algorithm?
- One of the fastest clustering algorithms
- ▶ What would you do if the algorithm falls in a local optimum ?

Neural network

- ► A **neuron** is a simple elementary function
- ► A neural network a more complex function built with several neurons

Neural network

- ► A **neuron** is a simple elementary function
- A neural network a more complex function built with several neurons
- ► A **Deep Neural Network** is a big neural networks ont more than two stacked layers of neurons

Figure: A deep neural network: source https://datawarrior.wordpress.com/2017/10/31/interpretability-of-neural-networks/

└ Neural networks

AlexNet

AlexNet [Krizhevsky et al., 2012] is an example of Deep Neural Network: famous for a good performance at the ImageNet recognition challenge. Is is a Convolutional Neural Network

Figure: AlexNet

Spectral Clustering

► How can you cluster data if you do not have a **distance** between them ?

Spectral Clustering

- ► How can you cluster data if you do not have a **distance** between them ?
- A Similarity is a more general notion that allows you to compare data
- ▶ It can be used in unsupervised learning contexts [Le Hir et al., 2018]

Research and problems in Al

What makes AI a hard problem ?

Curse of dimensionality

- First aspect : algorithmic complexity
- ► The objects considered are in high dimensional spaces, and in high number
- Even "simple" situations grow very complex (Atari games)

Figure: One Atari game

Curse of dimensionality

Curse of dimensionality

Even "simple" situations grow very complex (Atari games)

Figure: One Atari game

- Especially true for reinforcement learning
- ▶ If it is algorithmically hard to solve an Atari game, how hard would a real world problem be ?

Non convexity, non linearity

- ► We try to optimize crazy functions : in extremely high dimensional spaces, with crazy shapes. (blackboard)
- So the power of the mathematical tools si limited and experimentation is needed.
- ► So there lacks **grounding** to the results

Overfitting and regularisation

- ► How do you know that your function is not overkill for the problem ?
- Blackboad

Overfitting and regularisation

- ► How do you know that your function is not overkill for the problem ?
- Hence the problem of regularisation to (try to) prevent overfitting

Deep learning

- ▶ Deep learning is powerful for some situations but is subject to the above shortcomings
- Some researchers try to have a better understanding of their behavior. Some famous ones are Yoshua Bengio (Montral), Geoffrey Hinton (Toronto), Stphane Mallat (Paris)

The End

References

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks.

Advances In Neural Information Processing Systems, pages 1–9.

LeCun, Y. and Cortes, C. (2010).

MNIST handwritten digit database.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,