- **DFS** (outputs connected components, topological sort on a DAG. You also have access to the pre and post arrays.)
 - Types of graphs: Unweighted/Undirected graphs, directed graphs, in particular -Directional Acyclic Graph (DAG)
 - DFS ccnum is only useful if the Graph is undirected. For directed graph, always use SCC.
 - o Inputs: G(V, E) in adjacency list representation
 - Access to: pre[], post[], prev[], and visited[T/F] arrays shared between explore & DFS. (visited is all True at end of run so not helpful for tracking) #506
 - pre[] & post[] are the pre and post order numbers and are created by Explore (not returning these to DFS/but we have access to pre & post)
 - prev[] is array which provides the 'parent' vertex for backtracking purposes
 - Outputs:
 - Undirect G = Vertices labelled by connected component number (ccnum)
 - Directed G = list of subgraphs (1 for each subcomponent)
 - o Runtime: O(|V|+|E|) or O(n+m)
 - Data structure: Stack
- **Explore** subroutine (used by DFS)
 - Types of graphs: Unweighted/undirected or directed,
 - Directional Acyclic Graph (DAG)
 - Inputs: G(V,E) and start vertex v in V
 - Access to:
 - previsited (prev[]) = arrays of vertices before a given vertices (but not used by Explore, needed for DFS)
 - ccnum[]
 - Outputs:
 - visited(u) set to true for all vertices u reachable from v. Array of all the nodes in the graph, with the ones reachable from s set to True.
 - o Runtime: O(|V|+|E|) or O(n+m)
 - Data structure:

BFS

- Types of graphs: Unweighted/undirected or directed
- o Inputs: G=(V,E) and start v in V
- Access to: prev(u) giving vertex preceding u in shortest path from v
- o Outputs: dist(u) set to shortest path between v and reachable vertex u, or infinity of not reachable
- \circ Runtume: O(|V|+|E|) or O(n+m)
- o Data structure: Queue

- **Dijkstra's algorithm** finds the shortest distance from a source vertex to all other vertices and a path can be recovered backtracking over the pre labels.
 - o Types of graphs: Weighted/undirected or directed graphs (no negative weights)
 - o Inputs: G=(V,E), start v in V
 - o Access to: prev(u) giving vertex preceding u in shortest path from v
 - Outputs: dist(u) set to shortest distance between v and reachable vertex u, or infinity of not reachable
 - o Runtime: $O((|V|+|E|) \log |V|)$ or $O((n+m) \log n)$
 - o Data structure: Priority queue/ minimum priority queue
- **Bellman-Ford** (compute the shortest path from s to t (weights allowed to be negative)
 - o Types of graphs: Weighted/directed or undirected (can have negative weights)
 - o Inputs: G=(V,E), start vertex (s)
 - Access to: detect negative cycles by comparing T[n,.] to T[n-1,.]
 - o Outputs: shortest path from v to all other vertices
 - o Runtime: $O((|V|^*|E|))$ or O(nm)
 - Data structure:
- **Floyd-Warshall** to compute the shortest path from all nodes to all other nodes (neg weights ok)
 - o Types of graphs: Weighted/directed or undirected (can have negative weights)
 - \circ Inputs: G=(V,E)
 - Access to: detect negative cycles by checking diagonals T[n,i,i]
 - Outputs: shortest path from all vertices to all other vertices
 - o Runtime: $O((|V|^3))$ or $O((n^3))$
 - Data structure:
- SCCs (outputs strongly connected components, and the metagraph of connected components.) (Create reverse graph = G^R, run DFS on G^R, find sink vertices of G by ordering by decreasing post #, run DFS again on this list, which returns ccnum) finding the maximal set of SCC
 - Types of graphs: general directed graphs (<u>info</u>)
 - \circ Inputs: G(V,E)
 - Access to: strongly connected components via ccnum(u) of first DFS run, and all other DFS outputs/structures
 - Outputs: metagraph that has to be a DAG (contains connected components from 2nd DFS run)
 - o Runtime: O(|V|+|E|) or O(n+m)
 - Data structure:
- Kruskal's algorithm to find a Minimum Spanning Tree (MST) (negative weights ok)
 - o Types of graphs: connected, undirected, weighted graphs
 - o Inputs: A connected undirected *G*=(*V*,*E*) with edge weights *we*

- Access to:
- o Outputs: A minimum spanning tree defined by the edges X
- o Runtime: $O(|E| \log |V|)$ or $O(m \log n)$
- o Data structure: disjoint-set
- **Prim's** algorithm to find a Minimum Spanning Tree (MST) <u>helpful site</u> (negative weights ok)
 - Types of graphs: connected, undirected, weighted graphs
 - Inputs: A connected undirected G=(V,E) with edge weights we
 - Access to:
 - Outputs: A minimum spanning tree defined by the array prev[]
 - o Runtime: $O((|E| \log |V|))$ or $O(m \log n)$ runtime explanation
 - Data structure: Binary heap
- Ford-Fulkerson greedy algorithm to find max flow on networks.
 - o Types of graphs: directed graphs with capacity of edges
 - o Inputs: G=(V,E) with flow capacity c, a source node s, and a sink node t
 - Access to: Can trivially create the final residual network with G, and the outputted flow. Something along the lines of: explanation
 - 1. We run FF on the flow network to get the max flow.
 - 2. We use this to construct the residual graph.
 - Outputs: max flow
 - o Runtime: O(C * |E|) or O(C*m), where C is size of max flow
 - Data structure: inked list that stores edge capacity & queue to store augmenting paths
- Edmonds-Karp to find max flow on networks. (Identical to Ford–Fulkerson, except search order for finding augmenting path must be the shortest path (BFS for G with all edge weights = 1.) that has available capacity.)
 - Types of graphs: directed graphs with capacity of edges
 - Inputs: G=(V,E) with flow capacity c, a source node s, and a sink node t
 - Access to: Can trivially create the final residual network with G and the outputted flow. Something along the lines of:
 - 1. We run EK on the flow network to get the max flow.
 - 2. We use this to construct the residual graph.
 - Outputs: max flow
 - o Runtime: $O(|V||E|^{2})$ or $O(n m^{2})$
 - Data structure:
- Key Difference: Ford-Fulkerson uses the DFS and Edmonds-Karp uses BFS
- **2-SAT** which takes a Conjunctive Normal Form (CNF) with all clauses of size ≤ 2 and returns a satisfying assignment if it exists. (uses SCC)
 - o Types of graphs:

o Inputs: CFN f

o Access to: truth assignment of variables

o Outputs: Boolean (T = satisfiable, F = unsatifiable)

 \circ Runtime: O(|V|+|E|) or O(n+m)

o Data structure: