Math 3101 HW # I

Mario L. Gutierrez Abed

Section 2

In exercises 7-11, determine whether the binary operation * defined is commutative and whether * is associative:

(#7) * defined on \mathbb{Z} by letting a*b=a-b.

Solution:

▶ We check for commutativity:

Let $a, b \in \mathbb{Z}$. Then

$$a*b = a - b \neq b - a \quad \forall \ a, \ b \in \mathbb{Z}$$

= $b*a$ (commutativity fails)

▶ We check for associativity:

Let $a, b, c \in \mathbb{Z}$. Then

$$a*(b*c) = a*(b-c) = a - (b-c)$$

$$= a - b + c$$

$$= (a-b) - (-c)$$

$$= (a*b)*(-c) \neq (a*b)*c \quad \forall c \in \mathbb{Z} \quad (associativity fails).$$

(#8) * defined on \mathbb{Q} by letting a * b = a b + 1.

Solution:

• We check for commutativity:

Let $a, b \in \mathbb{Q}$. Then

$$a*b = ab + 1 = ba + 1 \quad \forall \ a, \ b \in \mathbb{Q}$$

= $b*a$ (commutativity holds)

▶ We check for associativity:

Let $a, b, c \in \mathbb{Q}$. Then

$$a*(b*c) = a*(bc+1) = a(bc+1) + 1$$

= $abc+a+1$

Now

$$(a*b)*c = (a b + 1)*c = (a b + 1) c + 1$$

= $a b c + c + 1$

But we have that

$$a b c + a + 1 = a b c + c + 1$$

only when a = c, which is not always the case. (associativity fails).

(#9) * defined on \mathbb{Q} by letting a * b = ab/2.

Solution:

▶ We check for commutativity:

Let $a, b \in \mathbb{Q}$. Then

$$a*b = ab/2 = ba/2 \quad \forall a, b \in \mathbb{Q}$$

= $b*a$ (commutativity holds)

▶ We check for associativity:

Let $a, b, c \in \mathbb{Q}$. Then

$$a*(b*c) = a*(bc/2) = (abc/2)/2$$

= $abc/4$

Now

$$(a*b)*c = (a b / 2)*c = (a b / 2) c / 2$$

= $a b c / 4$

Thus we have that

$$a*(b*c) = (a*b)*c \ \forall \ a, \ b, \ c \in \mathbb{Q}$$
 (associativity holds).

(#10) * defined on \mathbb{Z}^+ by letting $a * b = 2^{ab}$.

Solution:

• We check for commutativity:

Let $a, b \in \mathbb{Z}^+$. Then

$$a*b = 2^{ab} = 2^{ba} \ \forall \ a, \ b \in \mathbb{Z}^+$$

$$= b*a \qquad \text{(commutativity holds)}$$

• We check for associativity:

Let $a, b, c \in \mathbb{Z}^+$. Then

$$a*(b*c) = a*(2^{bc}) = 2^{a2^{bc}}$$

= $(2^a)^{2^{bc}}$

Now

$$(a*b)*c = (2^{ab})*c = 2^{2^{ab}c}$$

= $(2^c)^{2^{ab}}$

Thus we have that

$$a*(b*c) \neq (a*b)*c \ \forall \ a,\ b,\ c \in \mathbb{Z}^+$$
 (associativity fails).

(#11) * defined on \mathbb{Z}^+ by letting $a * b = a^b$.

Solution:

• We check for commutativity:

Let $a, b \in \mathbb{Z}^+$. Then $a * b = a^b \neq b^a \ \forall \ a, \ b \in \mathbb{Z}^+$ = b * a (commutativity fails)

▶ We check for associativity:

Let $a, b, c \in \mathbb{Z}^+$. Then

$$a * (b * c) = a * (b^c) = a^{b^c}$$

Now

$$(a*b)*c = (a^b)*c = (a^b)^c$$

$$= a^b c$$

Thus we have that

$$a*(b*c) \neq (a*b)*c \; \forall \; a, \; b, \; c \in \mathbb{Z}^+$$
 (associativity fails).

Section 4

In exercises 1,2,4, determine whether the binary operation * gives a group structure on the given set. If no group results, give the first axiom in the order \mathcal{G}_1 , \mathcal{G}_2 , \mathcal{G}_3 from definition 4.1 that does not hold:

(#1) Let * be defined on \mathbb{Z} by letting a * b = a b.

Solution:

For any $a, b \in \mathbb{Z}$, we have that $a * b = a b \in \mathbb{Z}$, hence \mathbb{Z} is clearly closed under *. Now we test for the group axioms:

▶
$$\mathcal{G}_1$$
: Let $a, b, c \in \mathbb{Z}$. Then,

$$a * (b * c) = a * (b c) = a b c = (a b) c = (a * b) * c.$$

▶
$$G_2$$
: Let $a \in \mathbb{Z}$. Now by letting $e = 1$, we have $1 * a = a * 1 = a$.

▶ \mathcal{G}_3 : Only -1, $1 \in \mathbb{Z}$ have inverses in \mathbb{Z} . Hence \mathcal{G}_3 fails and therefore $\langle \mathbb{Z}, * \rangle$ is not a group.

(#2) Let * be defined on $2\mathbb{Z} = \{2 n : n \in \mathbb{Z}\}$ by letting a * b = a + b.

Solution:

Let a = 2 s, b = 2 t with s, $t \in \mathbb{Z}$. Then for any $a, b \in 2$ \mathbb{Z} , we have

$$a * b = a + b = 2 s + 2 t = 2 (s + t) \in 2 \mathbb{Z}$$
 (since $s + t \in \mathbb{Z}$).

Hence $2\mathbb{Z}$ is closed under *.

Now we test for the group axioms:

• \mathcal{G}_1 : Let a, b be defined as above and put c = 2r. Then for any $a, b, c \in 2\mathbb{Z}$, we have

$$a*(b*c) = a*(b+c) = a+(b+c)$$

$$= 2s + (2t+2r) = (2s+2t) + 2r$$

$$= (a+b) + c = (a*b) + c = (a*b) * c.$$

• \mathcal{G}_2 : Let $a \in 2 \mathbb{Z}$. Now by letting e = 0, we have

$$e * a = e + a = a + e = a * e = a.$$

• \mathcal{G}_3 : For each $a \in 2 \mathbb{Z}$, we let a' = -a. Then we have have

$$a * a' = a + (-a) = 0 = e$$

Since all axioms hold, we conclude that $\langle 2 \mathbb{Z}, * \rangle$ is a group.

(#4) Let * be defined on \mathbb{Q} by letting a * b = a b.

Solution:

For any $a, b \in \mathbb{Q}$, we have that $a * b = a b \in \mathbb{Q}$, hence \mathbb{Q} is clearly closed under *. Now we test for the group axioms:

• \mathcal{G}_1 : Let $a, b, c \in \mathbb{Q}$. Then,

$$a * (b * c) = a * (b c) = a b c = (a b) c = (a * b) * c.$$

• \mathcal{G}_2 : Let $a \in \mathbb{Q}$. Now by letting e = 1, we have

$$e * a = a * e = a.$$

• \mathcal{G}_3 : Since $0 \in \mathbb{Q}$ has no inverse, we see that \mathcal{G}_3 fails and therefore $\langle \mathbb{Q}, * \rangle$ is not a group.

(#31) If * is a binary operation on a set S, an element $x \in S$ is said to be an idempotent for * if x * x = x. Prove that a group has exactly one idempotent element.

Proof:

Let G be a group. We assume to the contrary that there exists two such elements $x, x' \in G$, such that

 $x' * x' = x' \quad \text{and} \quad x * x = x.$

But then, since both x and x' are assumed to be in G, we must have two distinct identity elements in G, ie. x = e = x', which is impossible since the identity element of a group must be unique. Therefore we have that x = x', contrary to our assumption that they were distinct elements. $(\Rightarrow \Leftarrow)$

(#32) Show that every group G with identity e and such that $x * x = e \ \forall \ x \in G$ is abelian. [Hint: Consider (a * b) * (a * b).]

Proof:

Let G be a group and assume $x * x = e \ \forall \ x \in G$.

Then, for all $a, b \in G$ we have

$$e = (a * b) * (a * b)$$
 and $(a * a) * (b * b) = e * e = e$.

Thus,

$$a * b * a * b = a * a * b * b.$$

Using left and right cancellation, we have $b*a = a*b \ \forall \ a, \ b \in G$. Hence G is abelian.