

(3) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有權機關
國際事務局

(43) 国際公開日
2004年5月6日 (06.05.2004)

PCT

(10) 国際公開番号
WO 2004/037441 A1

二、問題特許分類？

B05C 11/08

(21) 國際出題番号:

2003年10月21日(21.10.2003)

（2）国際出願の言語：

日本語

(26) 國際公開の言語:

日本語

(30) 優先権データ:
特願2002-306708

2002年10月22日(22.10.2002) JP

(71) 出願人(米国を除く全ての指定国について): 日本碍子株式会社(NGK INSULATORS, LTD.)[JP/JP]; 〒467-8530 爱知県名古屋市瑞穂区須田町2番5号 Aichi (JP).

一四〇 鮎明書 お七が

(72) 明治者: よみ
(75) 明治者/出願人 (米国についてのみ): 野呂 貴志
(NORO,Takashi) [JP/JP]; +81-467-8530 愛知県名古屋市瑞穂区須田町2番5号 日本碍子株式会社
Aichi (JP); 金子 隆久 (KANEKO,Takahisa) [JP/JP]; +81-467-8530 愛知県名古屋市瑞穂区須田町2番5号
日本碍子株式会社内 Aichi (JP).

(74) 代理人: 渡邊一平 (WATANABE,Kazuhira); T-111-0053 東京都台東区浅草橋3丁目20番18号第8種タワービル3階 Tokyo (JP).

**指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB,
BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,
DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NZ, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,**

〔綱要〕

RENDERING OUTER PERIPHERY OF PILLAR STRUCTURE BODY

(54) Title: DEVICE AND METHOD FOR SEPARATING

(54) 発明の名称: 柱状構造体の外周面コーティング装置及び柱状構造体の外周面

(57) Abstract: A device and method for coating the outer periphery of a pillar structure body with a coating material. The material is thinly and smoothly applied on the outer periphery of the pillar structure body, and the surface of the applied material is smoothed, so that thin coating, peeling off, and cracks in the coated portion during drying after the coating can be prevented from occurring. The device applies the coating material on an outer periphery (1a) of a pillar structure body (1) while the material is being smoothed by smoothing means (10) that has a smoothing board (10a) and an elastic body (10b). The elastic body (10b) is provided in the device so as to be in contact with the outer periphery (1a) of the pillar structure body (1), and the surface of the coating material supplied and applied on the outer periphery (1a) is smoothed between the outer periphery (1a) and the elastic body (10b). The outer periphery (1a) of the pillar structure body (1) is coated with the coating material using an outer periphery-coating device (50) for a pillar structure body, where the device has the structure described above.

〔綱要〕

SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

(84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ,
SD, SL, SZ, TZ, UG, ZM, ZW), ヨーラシア特許 (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許
(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB,
GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR),

添付公開書類:
— 國際調査報告書

2文字コード及び他の略語については、定期発行される
各PCTガゼットの巻頭に掲載されている「コードと略語
のガイダンスノート」を参照。

(57) 要約: 柱状構造体 1 の外周面 1 a を、均し手段 10 で均しながらコーティングする装置において、均し手段 10 が、均し板 10 a と弾性体 10 b とを有してなるとともに、弾性体 10 b が柱状構造体 1 の外周面 1 a に接触するよう配置され、外周面 1 a に供給、塗布されたコーティング材の塗布面が、外周面 1 a と弾性体 10 b との間に均されるようにする。このような柱状構造体の外周面コーティング装置 50 を使用して柱状構造体 1 の外周面間で均されるようにする。こののような柱状構造体の外周面コーティング装置 50 を使用して柱状構造体 1 の外周面 1 a をコーティングする。コーティング材が柱状構造体の外周面に薄く、均一に塗布され、塗布面が均されることにより、かすれ、剥がれ及びコーティング後の乾燥時のコーティング部のクラックの発生、を防止することが可能な柱状構造体の外周面コーティング装置及び柱状構造体の外周面コーティング方法を提供する。

明細書

柱状構造体の外周面コーティング装置及び柱状構造体の外周面コーティング方法

技術分野

本発明は、柱状構造体の外周面コーティング装置及び柱状構造体の外周面コーティング方法に関する。更に詳しくは、柱状構造体の外周面コーティング時のかすれ、剥がれ及び乾燥時のクラックの発生を防止し、欠陥のない外周面コーティングを形成することが可能な柱状構造体の外周面コーティング装置及び柱状構造体の外周面コーティング方法に関する。

背景技術

従来、円柱状や楕円柱状等の外周面が曲面の柱状構造体の外周面に、コーティングを施す場合、作業者の手作業で行われることが多く、非効率的であった。そこで、本発明者等は、セラミックハニカム構造体（柱状構造体）の外周面にコーティングを施す外周面コーティング装置を提案した（特開平4-64768号公報参照）。この装置によれば、予め外周部を加工により除去されたセラミックハニカム構造体の外周面にスラリーをコーティングして外壁部を形成することによって、たとい周縁部（外周面）に変形セルが存在するようなハニカム焼成体であって、これから、充分な強度を持った製品を得ることができた。しかし、このっても、これから、充分な強度を持った製品を得ることができた。しかし、この外周面コーティング装置では、外周面の両端部付近のコート洩れや、コーティング後の製品の取り出し難さ及びコーティング材による装置の汚れが発生し、品質及び作業性の両面で不具合が生じることがあった。

更に、本発明者等は、柱状体（柱状構造体）の外周面コーティング装置を提案した（特開平8-323727号公報参照）。この装置は、柱状体を保持する第1のパレットと、その第1のパレットの中心軸を軸として回転する機構と、柱状体の外周と所定のクリアランスを保って設けられた均し板とを備えることを特徴とするものである。この装置によれば、第1のパレットの上に載せて回転する柱状体にコーティング材が均し板により塗布され、手塗り方法に比べて、短時間に

寸法精度の高い柱状体のコーティング品が得られた。しかし、この外周面コーティング装置では、柱状体が傾いている等のために柱状体の外周面と均し板とのクリアランスが一定でなくなった場合に問題が生じていた。

発明の開示

上記従来の装置では、柱状体が傾くことにより部分的にクリアランスが小さくなり過ぎたり、柱状体の外周と均し板とが接触する場合には、均し板がステンレスやセラミックという硬い材質であるため、コーティングがかすれたり剥がれたりするという問題があった。また、接触しないように、柱状体の外周と均し板とのクリアランスを大きくし過ぎたときには、コーティングが厚くなり過ぎるため、乾燥時にコーティング部にクラックが入るという問題があった。本発明は、上述の問題に鑑みなされたものであり、コーティング材が柱状構造体の外周面に薄く、均一に塗布され、塗布面が均されることにより、外周面コーティング時のかく、すれ、剥がれ及びコーティング後の乾燥時のコーティング部のクラックの発生、それ、欠陥のない外周面コーティングを形成することが可能な柱状構造体の外周面コーティング装置及び柱状構造体の外周面コーティング方法を提供することを目的とする。

上記目的を達成するため、本発明によって以下の柱状構造体の外周面コーティング装置及び柱状構造体の外周面コーティング方法が提供される。

[1] 柱状構造体を略鉛直方向に保持し、保持した前記柱状構造体と一緒に略鉛直方向の軸を共通の回転軸として自転する保持手段と、自転する前記柱状構造体の外周面にコーティング材を供給、塗布する供給・塗布手段と、その一方の長手側端部が前記外周面に対して所定の位置に配置され、前記外周面に供給されたコーティング材の塗布面を均す板状の均し手段と、を備えた柱状構造体の外周面コーティング装置であって、前記均し手段が、均し板と前記均し板の前記柱状構造体側の長手側端部に配設されたシート状の弾性体とを有してなるとともに、前記弾性体が前記柱状構造体の外周面に接触するように配置され、前記弾性体を介して前記コーティング材が前記外周面に供給、塗布され、前記外周面と前記弾性体との間で塗布面が均される柱状構造体の外周面コーティング装置

[2] 前記均し手段が、その長手方向と略前記柱状構造体の中心軸方向とが一致するように配置されるとともに、前記均し手段を構成する前記弾性体が、前記柱状構造体の両端面間に渡って、前記柱状構造体の外周面に接触するように配置された〔1〕に記載の柱状構造体の外周面コーティング装置。

[3] 前記保持手段が、前記柱状構造体を一方の前記端面を下向きにして載せて保持するとともに、保持した前記柱状構造体と一体となって前記略鉛直方向の軸を前記共通の回転軸として自転する台座、を有してなる〔1〕又は〔2〕に記載の柱状構造体の外周面コーティング装置。

[4] 前記保持手段が、前記台座に載せて保持した前記柱状構造体の他方の前記端面側に配置されるとともに前記略鉛直方向の軸を前記共通の回転軸として自転するカム、を更に有してなる〔3〕に記載の柱状構造体の外周面コーティング装置。

[5] 前記台座と前記カムとのそれぞれの外周形状が略同一である〔4〕に記載の柱状構造体の外周面コーティング装置。

[6] 前記柱状構造体と、前記台座及び／又は前記カムと、を所定の位置関係に保持する芯出し手段を更に備えた〔3〕～〔5〕のいずれかに記載の柱状構造体の外周面コーティング装置。

[7] 前記均し手段を前記柱状構造体の外周面に対して所定の位置に配置せりよう、前記均し手段を前記台座及び／又は前記カムの外周にならう駆動させる、ならう手段を更に備えた〔3〕～〔6〕のいずれかに記載の柱状構造体の外周面コーティング装置。

[8] 前記ならう手段が、前記供給・塗布手段及び前記均し手段と一体となつて、前記カムの外周に接触しながら前記カムの外周にならう前後に移動する、互いに所定の間隔で配置された第1及び第2のならうローラを有するとともに、前記第1及び第2のならうローラが、それぞれの中心間を通る直線と前記均し手段の先端部分とが形成する角度が所定の角度となるように配置された〔4〕～〔7〕のいずれかに記載の柱状構造体の外周面コーティング装置。

[9] 前記ならう手段が、前記供給・塗布手段及び前記均し手段と一体となつ

て、前記台座の外周に接触しながら前記台座の外周にならって前後に移動する、第3及び第4のならいローラを更に有するとともに、前記第3のならいローラと前記第1のならいローラとの回転軸が共通であり、前記第4のならいローラと前記第2のならいローラとの回転軸が共通である〔8〕に記載の柱状構造体の外周面コーティング装置。

〔10〕 前記シート状の弾性体の幅が1～10mmの範囲である〔1〕～〔9〕のいずれかに記載の柱状構造体の外周面コーティング装置。

〔11〕 前記シート状の弾性体の厚さが1～5mmの範囲である〔1〕～〔10〕のいずれかに記載の柱状構造体の外周面コーティング装置。

〔12〕 前記シート状の弾性体の硬度が30～80の範囲である〔1〕～〔11〕のいずれかに記載の柱状構造体の外周面コーティング装置。

〔13〕 前記弾性体がゴム又はスポンジから構成されてなる〔1〕～〔12〕のいずれかに記載の柱状構造体の外周面コーティング装置。

〔14〕 前記台座及び／又は前記カムの外周がステンレス鋼又はセラミックから構成されてなる〔3〕～〔13〕のいずれかに記載の柱状構造体の外周面コーティング装置。

〔15〕 前記均し板が、ステンレス鋼又はセラミックから構成されてなる〔1〕～〔14〕のいずれかに記載の柱状構造体の外周面コーティング装置。

〔16〕 前記柱状構造体の中心軸方向に垂直な平面で切断した断面の形状が、円形又は橢円形である〔1〕～〔15〕のいずれかに記載の柱状構造体の外周面コーティング装置。

〔17〕 前記柱状構造体が、流体の流路となる複数のセルからなるハニカム構造である〔1〕～〔16〕のいずれかに記載の柱状構造体の外周面コーティング装置。

〔18〕 前記供給・塗布手段と前記均し手段とが一体となって、前記柱状構造体の外周に沿って回転することが可能な〔1〕～〔17〕のいずれかに記載の柱状構造体の外周面コーティング装置。

〔19〕 前記〔1〕～〔18〕のいずれかに記載された柱状構造体の外周面コーティング装置を使用して、前記柱状構造体を前記保持手段で保持し、前記略鉛

直方向の軸を共通の回転軸として自転させながら、前記供給・塗布手段から前記柱状構造体の前記外周面に前記コーティング材を供給・塗布し、供給・塗布された前記コーティング材の塗布面を、前記外周面と前記シート状の前記弾性体との間で均す柱状構造体の外周面コーティング方法。

図面の簡単な説明

図1は、本発明の柱状構造体の外周面コーティング装置の一の実施の形態を模式的に示す正面図である。

図2は、本発明の柱状構造体の外周面コーティング装置の一の実施の形態を使用する、均し手段と供給・塗布手段とを拡大して模式的に示す斜視図である。

図3は、本発明の柱状構造体の外周面コーティング装置の一の実施の形態であって、供給・塗布手段等を柱状構造体側に移動させた状態を模式的に示す正面図である。

図4は、本発明の柱状構造体の外周面コーティング装置の一の実施の形態を使用する、均し手段、供給・塗布手段及びならい手段の相互の位置関係を示す断面図である。

図5は、本発明の柱状構造体の外周面コーティング装置の一の実施の形態を使用する、均し手段、供給・塗布手段及びならい手段の相互の位置関係を示す断面図である。

図6は、本発明の柱状構造体の外周面コーティング装置の一の実施の形態を模式的に示す斜視図である。

発明を実施するための最良の形態

本発明の柱状構造体の外周面コーティング装置は、均し手段が均し板とシート状の弾性体を有し、その弾性体が柱状構造体の外周面に接するように配置され、供給・塗布手段から柱状構造体の外周面に供給・塗布されたコーティング材の塗布面が、外周面と弾性体との間で均されるため、かすれや剥がれが防止され、更に、薄く、均一にコーティングされるためコーティング後の乾燥時にコーティング部のクラックの発生が防止される。そしてこれにより欠陥のない外周面コーティング部のクラックの発生が防止される。

ィングを形成することができる。柱状構造体が傾斜して配置された場合にも、弹性体は、柱状構造体の外周面の軸方向全体に渡って柱状構造体の外周面に接触することができるので、かすれや剥がれが防止され、更にコーティング後の乾燥時にコーティング部のクラックの発生が防止される。また、本発明の柱状構造体の外周面コーティング方法は、本発明の柱状構造体の外周面コーティング装置を使用して、コーティング材を柱状構造体の外周に塗布し、塗布面を均すため、かすれや剥がれが防止され、更に、薄く、均一にコーティングされるためコーティング後の乾燥時にコーティング部のクラックの発生が防止される。そしてこれにより欠陥のない外周面コーティングを形成することができる。

以下、本発明の実施の形態を図面を参照しながら具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることで理解されるべきである。

図1は、本発明の柱状構造体の外周面コーティング装置の一の実施の形態を模式的に示す正面図である。

図1に示すように、本実施の形態における柱状構造体の外周面コーティング装置50は、台座3及びカム2から構成される保持手段4が、フレーム7の中央部付近に、鉛直方向の軸を回転軸として自転可能に装着され、均し手段10及び供給・塗布手段12が一体となって、前後動作用ベース15、アーム回転部16及びアーム17、18を介してフレーム上部7aに装着されている。

保持手段4を構成する台座3は、円盤状でその中心軸が鉛直方向を向くようにしてフレーム下部7bに上下動可能に装着されている。そして台座3にはシャフト6aを介して台座用モーター6が装着されており、台座3の中心軸を回転中心ト6aにして自転するようになっている。また、保持手段4を構成するカム2は、厚さにして自転するようになっている。また、保持手段4を構成するカム2は、厚さが厚い円盤状（高さの低い円柱状）でその中心軸が台座3の中心軸と略一致するようにフレーム上部7aに上下動可能に装着されている。そしてカム2にはシャフト5aを介してカム用モーター5が装着されており、カム2の中心軸を中心にして自転するようになっている。台座3の自転及びカム2の自転は同期するようになっている。このように構成された保持手段4で柱状構造体1を保持するときになっている。

は、柱状構造体 1 を、中心軸が台座 3 の中心軸と略一致するようにして（一方の端面 1 b を下向きにして）、台座 3 の上に載せ、カム 2 を柱状構造体 1 の他方（上側）の端面 1 c 側に配置し、柱状構造体 1 を台座 3 とカム 2 とで狭持（保持）する。このように保持された柱状構造体 1 は、台座 3 とカム 2 とが同期して自転する。このように保持された柱状構造体 1 は、台座 3 とカム 2 とが同期して自転する。ここで、カム 2 及び台座 3 は、その外周形状が、柱状構造体 1 の外周形状と略同一となるように形成されている。

柱状構造体 1 を台座 3 に載せるときには、柱状構造体 1 は、図 1 及び図 6 に示す移載パレット 3 0 に載せられ、柱状構造体 1 を載せた移載パレット 3 0 が台座 3 の上部空間まで移動する。このとき移載パレット 3 0 は、サポートシャフト 3 1 及びスイングアーム 3 2 を介してスイングモーター 3 3 により回転移動する。そして、図 6 に示すように、台座 3 の中央部に設けられた上昇可能な突き上げ板 4 2 が上昇し、柱状構造体 1 をその上に載せ、移載パレット 3 0 が元の位置に移動した後に突き上げ板 4 2 が下降し、台座 3 に納まる（台座 3 の上面と突き上げ板 4 2 の上面とが同一面上に配置される）。これにより、柱状構造体 1 が台座 3 上に配置される。そして、図 1 及び図 6 に示す芯出し板 2 1, 2 1 により、柱状構造体 1 は、その中心軸がカム 2 及び台座 3 の中心軸と略一致するように配置される。図 1 に示すように、2つの芯出し板 2 1, 2 1 は、略同一直線上に配設された2つのレール 2 0, 2 0 上にそれぞれ配置される。この2つの芯出し板 2 1, 2 1 が、レール 2 0, 2 0 上をカム 2 及び台座 3 の中心軸の方向に移動し、2つの芯出し板 2 1, 2 1 のそれぞれからカム 2 及び台座 3 の中心軸までの距離が等距離で、2つの芯出し板 2 1, 2 1 間の距離が柱状構造体 1 の外径と略同一となる位置で止まることにより柱状構造体 1 の中心軸をカム 2 及び台座 3 の中心軸と略一致させるようにしている。芯出し板 2 1 の外周面 1 a と接する部分は、外周面 1 a の形状に沿う形状が好ましく、例えば、円柱状の柱状構造体の場合には、図 6 に示すような円弧に沿う形状が好ましい。

台座 3 上に配置された柱状構造体 1 は、台座 3 が一対のガイドレール（図示せず）に沿って上昇することにより、その上端面がカム 2 に接触し、カム 2 と台座 3 との間で狭持される（カム 2 が柱状構造体 1 の上端面側に配置される）。これ

により、柱状構造体1は保持手段4によって保持された状態となる。ここで、台座3及びカム2の対向するそれぞれの面（柱状構造体1の端面1b及び1cと接触する面）には、柱状構造体1の破損等を防止するために、ゴム、スポンジ等のクッション性のシートが装着されることが好ましい。

供給・塗布手段12は、スリット状に開口した開口部が形成されたノズル12bが、その長手方向が供給管12aの長手方向に沿うように、供給管12aに形成されてなり、供給管12aには、ノズル12bの開口部（空間部分）と連通するようにスリット状の孔が形成されている。そして、供給管12aの一方の端部（上側の端部）に配管13を繋いでコーティング材を供給するようになっている。

供給・塗布手段12は、ノズル12bの開口部が柱状構造体1側を向き、供給管12aの中心軸（ノズル12bの長手方向）が柱状構造体1の中心軸方向を向くように配置されている。そして、配管13は供給管12aの上側に繋がれ、配管13を通じて供給されたコーティング材が供給管12aを経由してノズル12bの開口部から柱状構造体1の外周面1aに供給・塗布されるようになっている。

図1に示すように、均し手段10は、その長手方向と柱状構造体1の中心軸方向とが一致するように配置されている。均し手段10は、均し板10aと弾性体10bとを含んでなり、均し板10aは図1に示すように長方形形状の板であり、弾性体10bはシート状の弾性体を帶状に加工したもので、均し板10aの長手側端部の柱状構造体1側に沿って配設されている。

図2に示すように、供給・塗布手段12と均し手段10とは、供給・塗布手段12のノズル12bの向く方向が均し手段10の弾性体10bが配設されている方向を向くようにして、一体となるように形成されている。そして、一体となつた供給・塗布手段12と均し手段10とは、これらノズル12b及び弾性体10bが柱状構造体1側を向いて、外周面1aに沿うように配置されている。

図1に示すように、アーム回転部16の下部には、ならい手段として略円柱状のならいローラ14が配設されており、アーム17、18及びアーム回転部16を介して、供給・塗布手段12及び均し手段10と一体となって略水平移動する

ように形成されている。水平移動は、アーム回転部 1 6 が前後動作用ベース 1 5 に取り付けられ、前後動作用ベース 1 5 が略水平にスライド移動することによって行われる。ならいローラ 1 4 は、カム 2 に接したときに、鉛直方向の軸を中心として、カム 2 の自転する力により、カム 2 に接しながら自在に自転するようにして形成されている。

図 3 は、均し手段 1 0 の弾性体 1 0 b が柱状構造体 1 の外周面 1 a に接し、ならいローラ 1 4 がカム 2 の外周面に接触した状態を示す。この状態は、図 1 に示す状態から、外周面 1 a のコーティングを行うために、一体となって移動する供給・塗布手段 1 2 、均し手段 1 0 、ならいローラ 1 4 及び前後動作用ベース 1 5 を、前後動作用ベース 1 5 のスライド移動により柱状構造体 1 側に移動させたものである。この移動は、水平移動であるため、供給・塗布手段 1 2 の供管 1 2 a (及びノズル 1 2 b) の長手方向、均し手段 1 0 (弾性体 1 0 b) の長手方向及びならいローラ 1 4 の回転軸は、いずれも柱状構造体 1 の中心軸と略平行の状態を維持している。

図 3 に示すように、均し手段 1 0 を構成する弾性体 1 0 b は、柱状構造体 1 の両端面 1 b 、1 c 間に渡って、柱状構造体 1 の外周面 1 a に接触するように配置されており、図 4 に示すように、供給・塗布手段 1 2 のノズル 1 2 b がその開口部を柱状構造体 1 側を向けながら、柱状構造体 1 の外周面 1 a と所定の間隔を開けて配置されている。そして、配管 1 3 (図 3 参照) を経由して供給されたコーティング材をノズル 1 2 b から、自転する柱状構造体 1 の外周面 1 a に供給・塗布し、その直後に、供給・塗布手段 1 2 と一体となった均し手段 1 0 の弾性体 1 0 b と外周面 1 aとの間で、コーティング材の塗布面を均す (弾性体 1 0 b により塗布面を均す) ことにより、柱状構造体 1 の外周面 1 a がコーティングされる。

このように、均し手段 1 0 の弾性体 1 0 b が、柱状構造体 1 の外周面 1 a に接するように配置され、供給・塗布手段 1 2 のノズル 1 2 b から柱状構造体 1 の外周面 1 a に供給・塗布されたコーティング材の塗布面が、外周面 1 a と弾性体 1 0 b との間で均されるため、かすれや剥がれが防止される。更に、弾性体 1 0 b が柱状構造体 1 の外周面 1 a に接しながらコーティング材の塗布面を均し、柱状

構造体1の外周面1のコーティングを薄く、均一にすることができますため、コーティング後の乾燥時にコーティング部のクラックの発生が防止される。柱状構造体1が傾斜して配置された場合にも、弾性体10bは、柱状構造体1の外周面1aに接触することができるため、かすれや剥がれが防止され、更に、薄く、均一にコーティングすることができるため、コーティング後の乾燥時にコーティング部のクラックの発生が防止される。

本実施の形態において、供給・塗布手段12及び均し手段10を柱状構造体1の外周形状にならって移動させるための、ならい手段として使用されるならいローラ14は、図4に示すように、第1のならいローラ14aと第2のならいローラ14bとから構成され、2つは略同一水平面上に位置している。2つのならいローラ14（第1のならいローラ14a及び第2のならいローラ14b）は、ばね（図示せず）の力によりカム2の外周面に僅かに押しつけられながら柱状構造体1が自転するときに、その外周形状に沿って一定方向に平行移動するようになっている。この2つのならいローラ14（第1のならいローラ14a及び第2のならいローラ14b）が、カム2の外周面にならって移動するときに、ならいローラ14と供給・塗布手段12及び均し手段10とが一体となって移動するため、供給・塗布手段12及び均し手段10と柱状構造体1の外周面1aとの間の距離を一定に保つことができる（弾性体10bにおいては、弾性体10bと外周面1aとの接触状態を一定に保つことができる）。このとき、柱状構造体1の外径はカム2及び台座3の外径より、柱状構造体1に施すコーティングの厚さ分だけ小さいことが好ましい。この径の差により柱状構造体の外周面のコーティング部の厚さが調節できる。また、第1のならいローラ14aと第2のならいローラ14bのそれぞれの中心軸間の間隔は、柱状構造体1の中心軸に垂直な平面で切断した断面形状が円形の場合にはその円の半径、その断面形状が円形以外の「周囲が滑らかな曲線（直線を含んでもよい）の形状（橢円等）」の場合には曲率半径が最も小さい部分のその曲率半径、の10～170%が好ましい。10%より小さいと、ならいローラ14の動きが安定しないため、供給・塗布手段12及び均し手段10の外周面1aに対する向き（角度）が変化して、安定したコーティン

ゲが妨げられることがある。170%より大きいと、ならい手段14と、供給・塗布手段12及び均し手段10との位置関係が離れた状態になるため、ならい手段14が外周面1aと接する部分と、均し手段10が外周面1aと接する部分の段、凹凸が異なることがある。

供給・塗布手段12及び均し手段10を、ならいローラ14により、より安定的に動作させるために、第1のならいローラ14a及び第2のならいローラ14bと一体となって移動する、第3のならいローラ14c及び第4のならいローラ14dを台座3の外周面にならうように配置してもよい。その場合、第3のならいローラ14cと第1のならいローラ14aとの回転軸が共通であり、第4のならいローラ14dと第2のならいローラ14bとの回転軸が共通であることが動作の安定上好ましい。

図5に示す、ならいローラ14a及び14bのそれぞれの中心を通る直線と均し手段10の先端部分（弹性体10b）とが形成する角度Aが20～60度であることが好ましい。20度より小さないと余分なコーティング材を除去する力が小さくなり所定の寸法より大きく仕上がるがあり、60度より大きいと柱状構造体の外周面を強く押さえることになり必要以上にコーティング材を搔き取ることがある。ここで、上記角度Aとは、ならいローラ14a及び14bのそれぞれの中心を通る直線上において柱状構造体1の回転方向R側を向く「方向x」と、均し手段10の先端部分（弹性体10b）の延長線上において、柱状構造体1側に延びる「方向y」との間に形成される角度Aをいう。

本実施の形態で使用する、弹性体10bの材質は、柱状構造体1と接触したとき、その外周面1aを傷つけずに、外周面1aに沿って撓るように変形し、コーティング材の塗膜を均すことができれば特に限定されるものではないが、例えば、イソブレンゴム、ブタジエンゴム、ステレン・ブタジエンゴム、クロロブレンゴム、ウレタンゴム、シリコーンゴム等の合成ゴム；天然ゴム；ポリイソブレン、ポリエチレン等のエラストマー；発泡ポリウレタン、発泡ポリスチレン、発泡ポリエチレン、発泡ポリプロピレン、海綿（スポンジ）等の発泡体が好ましい。また、フッ素樹脂、ポリイミド樹脂、ポリアミド、ポリフェニレンオキサイド等の樹脂も使用することができる。

また、弹性体10bはシート状であり、その幅は1～10mmが好ましい。1mmより小さいと柱状構造体の外周面との間のクリアランス（距離）の変動に対応できないことがあり（隙間が開く場合がある）、10mmより大きいとコーティング材を搔き取り過ぎることによりコーティング時のかすれが大きくなることがある。弹性体10bの厚さは1～5mmが好ましい。1mmより小さいと弹性体が変形し過ぎてコーティング材の塗布面を充分に均すことができないことがあり、5mmより大きいと弹性体が変形し難くなるためコーティング材の塗布面を強く押さえ、必要以上にコーティング材を搔き取ることがある。また、弹性体10bの硬度は30～80が好ましい。30より小さいと弹性体が変形し過ぎてコーティング材の塗布面を充分に均すことができないことがあり、80より大きいと弹性体が変形し難くなるためコーティング材の塗布面を強く押さえ、必要以上にコーティング材を搔き取ることがある。

ここで、弹性体10bの幅とは、図2に示す、均し板10aの弹性体10bが配設されている側の長手側端部から、弹性体10bの柱状構造体1側の長手側端部までの距離w（弹性体の幅）をいい、弹性体の厚さとは、図2に示す、弹性体部までの距離d（弹性体の厚さ）をいう。そして、弹性体の硬度とはを形成するシートの厚さd（弹性体の厚さ）をいう。そして、弹性体の硬度とはJIS K 6253「加硫ゴム及び熱可塑性ゴムの硬さ試験方法」に基づいて測定された国際ゴム硬さ（IRHD）をいう。

本実施の形態で使用する、カム2、台座3及び均し板10の材質は、特に限定されるものではないが、それぞれの外表面がステンレス鋼又は耐摩耗性セラミックであることが好ましい。耐摩耗性セラミックとしては、Si₃N₄、PZT、SiC又はAl₂O₃が好ましい。

本実施の形態の柱状構造体の外周面コーティング装置50（図1参照）は、外周面をコーティングする柱状構造体1の、中心軸方向に垂直な平面で切断した断面の形状が、円形又は楕円形である場合に好ましく適用でき、更に断面形状が円形や楕円形でなくても、外周面が滑らかな曲面で形成される柱状構造体にも好ましく適用できる。

また、本実施の形態の柱状構造体の外周面コーティング装置50（図1参照）は、柱状構造体1が、流体の流路となる複数のセルからなるハニカム構造体であ

る場合に好ましく適用できる。ハニカム構造体の材質としては、セラミック製のものを好適例として挙げができる。また、保持手段4で保持したときに中心軸が鉛直方向から僅かにずれる（傾く）場合にも好ましく適用できる。

本実施の形態の柱状構造体の外周面コーティング装置の使用の際に使用されるコーティング材は、柱状構造体の外周面のコーティングに適していれば特に限定されるものではなく、例えば、無機纖維、無機バインダー、無機粒子及び有機バインダー等を含有するペースト状のコーティング材が使用できる。無機纖維としては、シリカアルミナ、ムライト、アルミナ、シリカ等のセラミックファイバーが挙げられる。無機バインダーとしては、シリカゾル、アルミナゾル等が挙げられる。無機粒子としては、粉末炭化珪素、粉末窒化珪素、粉末窒化硼素、ウィスカ等が挙げられる。有機バインダーとしては、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシセルロース等が挙げられる。また、コーティング材には無機纖維、無機バインダー、無機粒子及び有機バインダー等の他に、水、アセトン、アルコール等の溶剤等が含有される。これらの溶剤により、ペースト状のコーティング材の粘度が調節され、柱状構造体の外周面にコーティングするのに適した状態になる。コーティング材の粘度は15～50Pa·sが好ましい。15Pa·sより小さいと、粘度が低いため、コーティングの厚さが薄くなり過ぎることがあり、50Pa·sより大きいと、粘度が高いため、外周面に薄く、均一にコーティングし難くなることがある。

本発明の柱状構造体の外周面コーティング装置の他の実施の形態は、保持手段4が、台座3を有しカム2を有しないものである。柱状構造体1をその中心軸を台座3の中心軸と略一致させて台座3の上に載せて、均し手段10の弾性体10bが、柱状構造体1の外周面1aに接するように配置され、供給・塗布手段12がノズル12bから柱状構造体1の外周面1aに供給・塗布されたコーティング材の塗布面が、外周面1aと弾性体10bとの間で均されるものである。この場合には、ならい手段として使用するならいローラ14は、保持手段4がカム2を有しないため、台座3の外周にならう第3のならいローラ14cと第4のならいローラ14dの2つとなる。

本実施の形態は、保持手段4が台座3を有しカム2を有しない点と、ならい手

段 1 4 が、台座 3 の外周にならう第 3 のならいローラ 1 4 c と第 4 のならいローラ 1 4 d の 2 つとなること以外は、図 1 に示した上述の実施の形態の場合と同様である。

本発明の柱状構造体の外周面コーティング装置の更に他の実施の形態は、供給・塗布手段 1 2 と均し手段 1 0 とが一体となって、柱状構造体 1 の外周面 1 a に沿って回転するものである。この場合、柱状構造体 1 の中心軸を回転中心として、供給・塗布手段 1 2 、均し手段 1 0 及びならい手段 1 4 が一体となって柱状構造体 1 の外周面 1 a に沿って回転しながら、供給・塗布手段 1 2 からコーティング材を供給・塗布し、均し手段 1 0 によって塗布面を均すものである。

本実施の形態は、柱状構造体 1 の中心軸を回転中心として、供給・塗布手段 1 2 、均し手段 1 0 及びならい手段 1 4 が一体となって柱状構造体 1 の外周面 1 a に沿って回転すること以外は、図 1 に示した上述の実施の形態の場合と同様である。

次に、本発明の柱状構造体の外周面コーティング方法について図面を参照しながら具体的に説明する。本発明の柱状構造体の外周面コーティング方法は、上述した本発明の柱状構造体の外周面コーティング装置 5 0 (図 1 参照) を使用して、柱状構造体 1 を保持手段 4 で保持し、略鉛直方向の軸を共通の回転軸として自転させながら、供給・塗布手段 1 2 から柱状構造体 1 の外周面 1 a にコーティング材を供給・塗布し、供給・塗布されたコーティング材の塗布面を、外周面 1 a とシート状の弾性体 1 0 b との間で均す (塗布面を弾性体 1 0 b で均す) ことを特徴とするものである。

本実施の形態では、まず、柱状構造体 1 を、図 1 及び図 6 に示す移載パレット 3 0 に載せ、移載パレット 3 0 を台座 3 の上部空間まで移動させる。その後、台座 3 の中央部に設けられた上昇可能な突き上げ板 4 2 (図 6 参照) を上昇させて柱状構造体 1 をその上に載せ、移載パレット 3 0 を元の位置に移動させた後に、突き上げ板 4 2 を下降させ、台座 3 に納める (台座 3 の上面と突き上げ板 4 2 の上面とが同一面上に配置される) ことにより、柱状構造体 1 を台座 3 上に配置させる。そして、図 1 及び図 6 に示す芯出し板 2 1 , 2 1 を使用して、柱状構造体 1 は、その中心軸がカム 2 及び台座 3 の中心軸と略一致するように配置する。

台座 3 上に配置した柱状構造体 1 の上端面を、台座 3 を上昇させることにより、カム 2 に接触させ、カム 2 と台座 3 との間に挟持させる（カム 2 が柱状構造体 1 の上端面側に配置される）。これにより、柱状構造体 1 は保持手段 4 によって保持された状態となる。

次にスラリー状のコーティング材を、図 6 に示すタンク 4 1 に供給する。そして、供給・塗布手段 1 2、均し手段 1 0 及びならい手段 1 4 を、図 3 に示すように、均し手段 1 0 の弾性体 1 0 b が柱状構造体 1 の外周面 1 a に接触し、ならい手段 1 4 がカム 2 の外周面に接触するように移動させる（図 1 の状態から図 3 の状態にする）。このとき、弾性体 1 0 b の上端部分はカム 2 の外周面に接触させ、弾性体 1 0 b の下端部分は台座 3 の外周面に接触させることにより、柱状構造体 1 の外周面 1 a の上端面 1 c 付近及び下端面 1 b 付近のコーティング液れ（コーティングされていない部分が発生すること）を防止する。次に、カム用モーター 5 及び台座用モーター 6 を起動し、カム 2、台座 3 及び柱状構造体 1 を所定の回転数で自転させる。この状態で、コーティング材供給用ポンプ（図示せず）により、コーティング材を配管 1 3 を通して供給管 1 2 a に送り、ノズル 1 2 b の開口部から柱状構造体 1 の外周面 1 a に供給・塗布する。そして、柱状構造体 1 の外周面 1 a に塗布されたコーティング材の塗布面を均し手段 1 0 の弾性体 1 0 b により均すことにより、柱状構造体 1 の外周面 1 a のコーティングが完了する。

柱状構造体 1 の外周面 1 a のコーティングが完了した後に、カム 2 及び台座 3 の自転を停止し、台座 3 を下降させる。その後、突き上げ板 4 2（図 6 参照）での柱状構造体 1 を突き上げ、柱状構造体 1 の端面 1 b を持ち上げ、端面 1 b の下部に移載パレット 3 0 を移動させる。そして、突き上げ板 4 2 を下降させ、柱状構造体 1 を移載パレット 3 0 に載せ、乾燥機台（図示せず）に移す。ここで、供給手段 1 2 により供給された後、余剰となったコーティング材は、均し手段 1 0 の下に設けてあるスラリー受け容器 4 0 に回収し、ポンプ（図示せず）によりタンク 4 1（図 6 参照）に回収するようとする。

このように、本発明の柱状構造体の外周面コーティング装置を使用して、柱状構造体 1 の外周面 1 a をコーティングしたので、供給・塗布手段 1 2 のノズル 1

2 b から柱状構造体 1 の外周面 1 a に供給・塗布されたコーティング材の塗布面が、外周面 1 a と弾性体 10 bとの間で均されるため、かすれや剥がれが防止される。更に、弾性体 10 bが柱状構造体 1 の外周面 1 a に接しながらコーティング材の塗布面を均し、柱状構造体 1 の外周面 1 のコーティングを薄く、均一にすり材の塗布面を均し、柱状構造体 1 の外周面 1 のコーティングを薄く、均一にすることができるため、コーティング後の乾燥時にコーティング部のクラックの発生ができるため、コーティング後の乾燥時にコーティング部のクラックの発生が防止される。柱状構造体 1 が傾斜して配置された場合にも、弾性体 10 bは柱状構造体 1 の外周面 1 a の軸方向全体に渡って柱状構造体 1 の外周面 1 a に接触させているので、かすれや剥がれが防止され、更に、薄く、均一にコーティングすることができるため、コーティング後の乾燥時にコーティング部のクラックの発生が防止される。

(実施例)

以下、本発明を実施例により更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。

図 1 に示す柱状構造体の外周面のコーティング装置を使用して、以下に示すようにして、柱状構造体の外周面をコーティングした。

(柱状構造体及びコーティング材)

使用した柱状構造体は、流体の流路となる複数のセルからなる円柱状のハニカム構造体である。材質をコージェライトとし、外周面を研削加工し、加工後の外径が 143 mm、中心軸方向の高さが 150 mm のものを使用し、リブ厚を 0.175 mm、セル密度を 400 セル／(インチ)²とした。カム 2 及び台座 3 の中心軸に垂直な断面の径(円の直径)は、ハニカム構造体の中心軸に垂直な断面の径(円の直径)と略同じである。

使用したスラリー状のコーティング材は、組成はコーティングセメント(SiO₂: 60.0, Al₂O₃: 39.2, Na₂O: 0.4, MgO: 0.3、他の無機質: 0.1、不凍液入)が 75 質量%、コージェライト粉末(平均粒径 2 μm)が 25 質量%、粘度は 20 Pa·s のものを使用した。

(柱状構造体の外周面のコーティング方法)

柱状構造体(ハニカム構造体) 1 を、図 1 に示す移載パレット 30 に載せ、移載パレット 30 を台座 3 の上部空間まで移動させた。その後、台座 3 の中央部に

設けられた上昇可能な突き上げ板42（図6参照）を上昇させて柱状構造体（ハニカム構造体）1をその上に載せ、移載パレット30が元の位置に移動した後に、突き上げ板42を下降させて柱状構造体（ハニカム構造体）1を台座3上に配置した。そして、図1に示す芯出し板21、21により、柱状構造体（ハニカム構造体）1を、その中心軸がカム2及び台座3の中心軸と略一致するように配置した。

台座3上に配置された柱状構造体（ハニカム構造体）1は、台座3を上昇させることにより、その上端面をカム2に接触させ、カム2と台座3との間で狭持した。これにより、柱状構造体（ハニカム構造体）1は保持手段4によって保持された状態となる。

次にスラリー状のコーティング材を、図6に示すタンク41に供給した。そして、供給・塗布手段12、均し手段10及びならい手段14を、図3に示すように、均し手段10の弾性体10bが柱状構造体（ハニカム構造体）1の外周面1aに接触し、ならい手段14がカム2の外周面に接触するように移動させた（図1の状態から図3の状態にした）。このとき、均し板10aの柱状構造体（ハニカム構造体）1側の端部と柱状構造体（ハニカム構造体）1の外周面との距離がカム構造体）1側の端部と柱状構造体（ハニカム構造体）1の外周面との距離が0.5mmとなるようにした。弾性体10bとしてはシート状のゴム（イソブレンゴム）を使用した。また、図5に示す角度A（ならいローラ14a及び14bのそれぞれの中心を通る直線（x方向）と、均し手段10の先端部分（弾性体10b）の延長線（y方向）との間に形成される角度）を45度とした。この状態で、コーティング材供給用ポンプ（図示せず）により、コーティング材を配管13を通して供給管12aに送り、ノズル12bの開口部から柱状構造体（ハニカム構造体）1の外周面1aに供給・塗布した。柱状構造体（ハニカム構造体）1の外周面1aに塗布されたコーティング材を均し手段10の弾性体10b（ゴム）により均すことにより、柱状構造体（ハニカム構造体）1の外周面1aのコーティングが完了した。このとき、カム2及び台座3の回転（自転）数は、供給・塗布時には10 rpmで3周とし、その後は塗布面を均すために10 rpmで1周回転（自転）させた。

（コーティング時外観状態の評価）

上述の、柱状構造体の外周面のコーティング方法において、均し手段の弾性体の幅、厚さ及び硬度を変化させて（実施例1～14）、柱状構造体（ハニカム構造体）1の外周面のコーティング時の外観状態を評価した。外観状態とは、かすれ状態と剥がれ状態を総合的に評価したもので、かすれ及び剥がれの合計面積が外周面の10%以下の範囲（面積）であれば○、外周面の10%より大きく20%以下の範囲（面積）であれば△、外周面の20%より大きい範囲（面積）であれば×とした。ここで、かすれとは、コーティングが薄くなり柱状構造体（ハニカム構造体）1の外周面が露出している状態をいい、剥がれとはコーティングが剥がれ落ちている状態をいう。また、弾性体の幅とは、図2に示す、均し板10aの弾性体10bが配設されている側の長手側端部から、弾性体10bの柱状構造体1側の長手側端部まで、の距離w（幅）をいい、弾性体の厚さとは、図2に示す、弾性体を形成するシートの厚さdをいう。そして、弾性体の硬度は、JIS K 6253「加硫ゴム及び熱可塑性ゴムの硬さ試験方法」に基づいた測定方法により測定した値である。結果を表1に示す。

比較のために、均し手段に弾性体を配設せずに上述の柱状構造体の外周面のコーティング方法によりハニカム構造体の外周面のコーティングを行い、外周面の評価を行った（比較例1）。均し手段の材質はステンレスとし、均し手段と柱状構造体の外周面との間の距離を0.9mmとした。結果を表1に示す。

（コーティング乾燥後のクラック発生状態の評価）

実施例1～14及び比較例1で得られた、柱状構造体（ハニカム構造体）1の外周面のコーティングの乾燥後のクラックの発生状態を評価した。評価方法は、コーティングにクラックやひびがはいっていないものを○、クラックやひびがはいっているものを×とした。結果を表1に示す。

（コーティング厚さの測定）

実施例1～14及び比較例1で得られた、柱状構造体（ハニカム構造体）1の外周面のコーティングの厚さを測定した。ここでのコーティング厚さとは、コーティング後の柱状構造体の直径とコーティング前の柱状構造体の直径をそれぞれ測定して、コーティング後の柱状構造体の直径からコーティング前の柱状構造体の直径を引いた値の1/2と定義している。それぞれの柱状構造体の直径につい

ては、柱状構造体の軸方向における、両端部付近及び中央部付近をそれぞれ測定し、得られた値を平均した値をその柱状構造体の直径とした。結果を表1に示す。

(表1)

	弾性体の幅 (mm)	弾性体の厚さ (mm)	弾性体の硬度	コーティング時 外観状態	コーティング乾燥後の クラック発生状態	コーティング 厚さ (mm)
実施例1	1	3	50	○	○	0.3
実施例2	2	3	50	○	○	0.3
実施例3	3	3	50	○	○	0.3
実施例4	5	3	50	○	○	0.3
実施例5	10	3	50	○	○	0.3
実施例6	15	3	50	△	○	0.1
実施例7	20	3	50	△	○	0.1
実施例8	3	1	50	○	○	0.3
実施例9	3	5	50	○	○	0.3
実施例10	3	8	50	△	○	0.2
実施例11	3	10	50	△	○	0.1
実施例12	3	3	30	○	○	0.3
実施例13	3	3	80	○	○	0.3
実施例14	3	3	100	△	○	0.1
比較例1	—	—	—	×	×	0.7

表1に示すように、弾性体（ゴム）が配設された均し手段を使用すると、ステンレスの均し手段を使用した場合と比較して、コーティング厚さが薄くなり、且つ、かすれ状態、剥がれ状態が改善され、クラックの発生状態も改善されることがわかる。また、コーティング厚さが薄いにもかかわらず、かすれ等の発生が改善されていることより、より均一にコーティングされていることがわかる。そし

て更に、弹性体の幅は1～10mmであることが好ましく、弹性体の厚さは1～5mmであることが好ましく、弹性体の硬度は30～80であることが好ましい。このような条件の弹性体を使用することにより、更に、薄く、均一なコーティングを柱状構造体（ハニカム構造体）の外周面に施すことができ、かすれ、剥がれ及びクラックの発生を防止することができる。

産業上の利用可能性

上述したように、本発明の柱状構造体の外周面のコーティング装置によれば、均し手段が均し板とシート状の弹性体を有し、その弹性体が柱状構造体の外周面に接するように配置され、供給・塗布手段から柱状構造体の外周面に供給・塗布されたコーティング材の塗布面が、外周面と弹性体との間で均されるため、コーティングを薄く、均一に施すことができ、かすれ、剥がれ及びコーティング後の乾燥時のコーティング部のクラックの発生、が防止され、欠陥のない外周面コーティングを形成することができる。また、本発明の柱状構造体の外周面コーティング方法は、本発明の柱状構造体の外周面コーティング装置を使用して、コーティング材を柱状構造体の外周に塗布し、塗布面を均すため、コーティングを薄く、均一に施すことができ、かすれ、剥がれ及びコーティング後の乾燥時のコーティング部のクラックの発生、が防止され、欠陥のない外周面コーティングを形成することができる。

請求の範囲

1. 柱状構造体を略鉛直方向に保持し、保持した前記柱状構造体と一体となつて略鉛直方向の軸を共通の回転軸として自転する保持手段と、自転する前記柱状構造体の外周面にコーティング材を供給、塗布する供給・塗布手段と、その一方の長手側端部が前記外周面に対して所定の位置に配置され、前記外周面に供給、塗布されたコーティング材の塗布面を均す板状の均し手段と、を備えた柱状構造体の外周面コーティング装置であって、

前記均し手段が、均し板と前記均し板の前記柱状構造体側の長手側端部に配設されたシート状の弾性体とを有してなるとともに、前記弾性体が前記柱状構造体の外周面に接触するように配置され、前記弾性体を介して前記コーティング材が前記外周面に供給、塗布され、前記外周面と前記弾性体との間で塗布面が均される柱状構造体の外周面コーティング装置。

2. 前記均し手段が、その長手方向と略前記柱状構造体の中心軸方向とが一致するように配置されるとともに、前記均し手段を構成する前記弾性体が、前記柱状構造体の両端面間に渡って、前記柱状構造体の外周面に接触するように配置された請求項1に記載の柱状構造体の外周面コーティング装置。

3. 前記保持手段が、前記柱状構造体を一方の前記端面を下向きにして載せて保持するとともに、保持した前記柱状構造体と一体となって前記略鉛直方向の軸を前記共通の回転軸として自転する台座、を有してなる請求項1又は2に記載の柱状構造体の外周面コーティング装置。

4. 前記保持手段が、前記台座に載せて保持した前記柱状構造体の他方の前記端面側に配置されるとともに前記略鉛直方向の軸を前記共通の回転軸として自転するカム、を更に有してなる請求項3に記載の柱状構造体の外周面コーティング装置。

5. 前記台座と前記カムとのそれぞれの外周形状が略同一である請求項4に記載の柱状構造体の外周面コーティング装置。

6. 前記柱状構造体と、前記台座及び／又は前記カムと、を所定の位置関係に保持する芯出し手段を更に備えた請求項3～5のいずれかに記載の柱状構造体の外周面コーティング装置。

7. 前記均し手段を前記柱状構造体の外周面に対して所定の位置に配置させるように、前記均し手段を前記台座及び／又は前記カムの外周にならい駆動させる、ならい手段を更に備えた請求項3～6のいずれかに記載の柱状構造体の外周面コーティング装置。

8. 前記ならい手段が、前記供給・塗布手段及び前記均し手段と一体となって、前記カムの外周に接触しながら前記カムの外周にならって前後に移動する、互いに所定の間隔で配置された第1及び第2のならいローラを有するとともに、前記第1及び第2のならいローラが、それぞれの中心間を通る直線と前記均し手段の先端部分とが形成する角度が所定の角度となるように配置された請求項4～7のいずれかに記載の柱状構造体の外周面コーティング装置。

9. 前記ならい手段が、前記供給・塗布手段及び前記均し手段と一体となって、前記台座の外周に接触しながら前記台座の外周にならって前後に移動する、第3及び第4のならいローラを更に有するとともに、前記第3のならいローラと前記第1のならいローラとの回転軸が共通であり、前記第4のならいローラと前記第2のならいローラとの回転軸が共通である請求項8に記載の柱状構造体の外周面コーティング装置。

10. 前記シート状の弾性体の幅が1～10mmの範囲である請求項1～9のいずれかに記載の柱状構造体の外周面コーティング装置。

11. 前記シート状の弾性体の厚さが1～5mmの範囲である請求項1～10のいずれかに記載の柱状構造体の外周面コーティング装置。

12. 前記シート状の弾性体の硬度が30～80の範囲である請求項1～11のいずれかに記載の柱状構造体の外周面コーティング装置。

13. 前記弾性体がゴム又はスポンジから構成されてなる請求項1～12のいずれかに記載の柱状構造体の外周面コーティング装置。

14. 前記台座及び／又は前記カムの外周がステンレス鋼又はセラミックから構成されてなる請求項3～13のいずれかに記載の柱状構造体の外周面コーティング装置。

15. 前記均し板が、ステンレス鋼又はセラミックから構成されてなる請求項1～14のいずれかに記載の柱状構造体の外周面コーティング装置。

16. 前記柱状構造体の中心軸方向に垂直な平面で切断した断面の形状が、円形又は橢円形である請求項1～15のいずれかに記載の柱状構造体の外周面コーティング装置。

17. 前記柱状構造体が、流体の流路となる複数のセルからなるハニカム構造体である請求項1～16のいずれかに記載の柱状構造体の外周面コーティング装置。

18. 前記供給・塗布手段と前記均し手段とが一体となって、前記柱状構造体の外周に沿って回転することが可能な請求項1～17のいずれかに記載の柱状構造体の外周面コーティング装置。

19. 前記請求項1～18のいずれかに記載された柱状構造体の外周面コーティング装置を使用して、前記柱状構造体を前記保持手段で保持し、前記略鉛直方向の軸を共通の回転軸として自転させながら、前記供給・塗布手段から前記柱状構造体の前記外周面に前記コーティング材を供給・塗布し、供給・塗布された前記コーティング材の塗布面を、前記外周面と前記シート状の前記弾性体との間で均す柱状構造体の外周面コーティング方法。

1 / 6

図1

2 / 6

図2

3 / 6

図3

4 / 6

図4

5 / 6

図5

6 / 6

図6

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/13431

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ B05C11/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ B05C7/00-21/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2004
Kokai Jitsuyo Shinan Koho	1971-2004	Toroku Jitsuyo Shinan Koho	1994-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 8-323727 A (NGK Insulators, Ltd.), 10 December, 1996 (10.12.96), & US 5749970 A	1-19
Y	Microfilm of the specification and drawings annexed to the request of Japanese Utility Model Application No. 156965/1982(Laid-open No. 61879/1984) (NKK Corp.), 23 April, 1984 (23.04.84),	1-19
A	JP 2000-56609 A (NTN Corp.), 25 February, 2000 (25.02.00), (Family: none)	1-19

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"	"X"	earlier document but published on or after the international filing date
"E"	"Y"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"L"	"&"	document referring to an oral disclosure, use, exhibition or other means
"O"		document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search 26 January, 2004 (26.01.04)	Date of mailing of the international search report 10 February, 2004 (10.02.04)
--	--

Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
--	--------------------

Faximile No.	Telephone No.
--------------	---------------

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' B05C 11/08

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' B05C 7/00-21/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996
日本国公開実用新案公報	1971-2004
日本国実用新案登録公報	1996-2004
日本国登録実用新案公報	1994-2004

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	J P 8-323727 A (日本碍子株式会社) 1996. 12. 10 & US 5749970 A	1-19
Y	日本国実用新案登録出願 57-156965号 (日本国実用新案登録出願公開 59-61879号) の願書に添付された明細書及び図面のマイクロフィルム (日本鋼管株式会社) 1984. 04. 23	1-19
A	J P 2000-56609 A (エヌティエヌ株式会社) 2000. 02. 25 (ファミリーなし)	1-19

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「I」優先権主張による記載を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
 「O」口頭による開示、使用、展示等に旨及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献
 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
 「&」同一パテントファミリー文献

国際調査を完了した日

26. 01. 2004

国際調査報告の発送日

10.2.2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

村山 槟恒

3F 9330

電話番号 03-3581-1101 内線 3351