Lab Class 3					
	Number	Question	Correct (a fraction)	Max Mark	Comments
1_1	1_1	(a) 'f=x.sum()'	5	5	
1_2	1_2	(b) `m = x.mean()`	5	5	
1_3	1_3	(c) `m = (x*w).sum()`	3	5	The indices of x and w should be the same
2_1	2_1	Derive the the gradient of the objective function with respect to the slope, \$m\$	5	5	
2_2	2_2	Rearrange it to show that the update equation written above does find the stationary points of the objective function.	10	10	
2_3	2_3	By computing the second derivative show that its a minimum.	5	5	
3_2	3_2	(a) Initialise with `m=-0.4` and `c=80`.	5	5	
3_3	3_3	(b) Every 10 iterations compute the value of the objective function for the training data and print it to the screen (you'll find hints on this in [the lab from last week](./week2.ipynb).	5	5	
3_4	3_4	(c) Cause the code to stop running when the error change over less than 10 iterations is smaller than \$1 imes10\(\frac{4}\)\$. This is known as a stopping criterion.	5	5	
3_5	3_5	Code runs correctly	5	5	
3_6	3_6	Why do we need so many iterations to get to the solution?	4.5	5	Because m and c is strongly correlated
4_1	4_1	values of \$u_i\$	1.5	2.5	The number of people and films can be different
4_2	4_2	values of \$v_j\$	1.5	2.5	
4_3	4_3	values of \$f_{ij}\$	5	5	
4_4	4_4	values of \$y_{ij}\$	5	5	
4_5	4_5	Values of \$s_(ij)\$	5	5	
5_1 5	5_1	First part of gradient. Need to put the new gradients into a vector	5	5	
5_2	5_2	Second part of gradient	10	10	
5_3	5_3	So we have full gradient as	5	5	
		Mark from 100	95.5	100	
		Mark from 5	4.775	5	