Name:	Signature:
P525/1	
CHEMISTRY	
Paper 1	
NOVEMBER 2023	
$2\frac{3}{4}$ hours.	

Uganda Advanced Certificate of Education END OF TERM THREE EXAMINATIONS

S.5 CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS:

Answer all questions in this section A and six questions in section B.

All answers must be written in the spaces provided.

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers, with equations where applicable.

Where necessary, use the following;

Molar gas constant, R=8.31 JK⁻¹mol⁻¹.

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273K.

Standard pressure = 101325Nm⁻²

	For Teachers' Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (46 MARKS)

Answer all questions in this section.

1. (a) Complete t in each case	he following nuclear	reactions and name	the particles emitted
(i)	${}^{238}_{92}U + {}^{1}_{0}n \longrightarrow$	$\rightarrow \frac{239}{93}Pu + \dots$	
Name of partic	le;		
(ii) ²	$\frac{241}{95}Am + \frac{4}{2}He$	$\Rightarrow \frac{243}{97}Bk + \dots 97$	
Name of partic	le;		
(iii) ²	$^{27}_{14}Si \longrightarrow ^{27}_{13}Al + \dots$		
Name of particle	2;		
half life of T .	f a radioisotope, T , r	·	10 days. Calculate the (2 ½ marks)
	,		• • • • • • • • • • • • • • • • • • • •
2. An organic co	ompound, R has the	structure;	
•	$CH_3CH = CHC$	$\equiv CH$	(01
(a) Name t	•	$\equiv CH$ ps present in R .	(01 mark)

(b)	Write equation for the reaction between F	Rand:
(i)	alkaline potassium manganate(vii) soluti	on. (01 mark)
(ii)	ammoniacal copper(i) chloride solution.	(01 mark)
(c)	State what would be observed in (b) (i) and	d (ii) (02 marks)
	(ii)	
	/rite an equation for the reaction between ho	t concentrated sodium
(i) Al_2O_3	(1 ½ marks)
(i	i) Silicon dioxide	(1 ½ marks)
(i	ii) phosphorus	(1 ½ marks)
(i	v) aluminium powder	(1 ½ marks)

4. (a) State three characteristics of an equilibrium reaction ($1\frac{1}{2}$ marks)
(b) Hydrogen reacts with iodine according to the equation
$H_{2(g)} + I_{2(g)} \leftrightharpoons 2H_{(g)}$
0.2 moles of iodine and 0.3 moles of hydrogen are reacted in a $1 dm^3$ vessel,
the equilibrium was attained and it was found to contain 25.2% hydrogen
iodide. Determine the equilibrium concentration Kc (03 $\frac{1}{2}$ marks)

5. (a) Complete the following organic reactions by stating the major organic product in each case.

(i)
$$\longrightarrow$$
 + HBr \longrightarrow ($\frac{1}{2}$ mark)

b) 14cm^3 of a gaseous hydrocarbon **R** with formula C_xH_y was exploded with 121cm^3 of excess oxygen. The residual gas occupied 86cm^3 . On treatment with concentrated potassium hydroxide solution, its volume reduced to 30cm^3 .

(i) Write equation for the reaction that took place.	$(1\frac{1}{2} \text{ marks})$

(ii)Determine the molecular formula of R	$(2\frac{1}{2} \text{ marks})$

(iii)	Write the structural formulae and IUPAC names o	f all possible
	omers of R .	(02 marks)
6. (a) Defi	ine diagonal relationship (01	
(i) Stat	te two properties in which beryllium resembles a	luminium
(ii)State	two reasons why beryllium resembles aluminium	(01 mark)
b) State	any other pair of elements on a periodic table	that exhibit
•	elationship.	(01 mark)

7. (a) Define the term bond energy	(01 mark)
(b) (i) The standard enthalpy change of formation of silicon(IV) chlor $kJmol^{-1}$.	ride is -160
The standard enthalpy changes of atomisation of silicon and chlorine +122kJmol ⁻¹ respectively. Use these values to construct a Born-Habe formation of silicon(IV) chloride from its elements and indicate the changes involved.	r cycle for the
(ii) Calculate the average band arrange of the Ci Ci band	(O1 m ands)
(ii) Calculate the average bond energy of the Si - Cl bond	(OI mark)
b) Some bond energies are given below	

Bond	Average bond energy(kJmol-1)
Cl — Cl	242
C-H	435
Cl — H	431
C-Cl	339

Determine the en	thalpy c	hange for t	he reaction below	
(CH4 (g)	+ Cl ₂ (g) -	CH₃Cl (g) + HCl (g)
8. Complete the	followin	g reactions	and suggest the possib	le IUPA
mechanism for ea	ch react	ion.		
$(a) CH_3 CH = C$	ΣH ₂	H^+/H_2O	$(2\frac{1}{2} \text{ m})$	narks)
		heat		
				•••••

	(b) $CH_3C \equiv CH$	<i>HBr</i> →	(0)3marks)
	Conc. HNO	$O_3/Conc.$ H_2SO_4	(2 <u>1</u> marks)	
		heat		
•••••				
9. (a)	Explain what is mo	eant by the term firs :	t election affinity.	(O1mark)
 (b) State two factor	s that can affect elec	ctron affinity.	(01 mark)

(c) The first electron affinities of some elements of period - 3 are given in the table below

Element	Al	Si	Р	S
First electron	- 44	- 134	- 71.7	- 200
affinity (KJmol ⁻¹)				

•	State the trend in variation of electron affinities	, ,
(ii)	Explain your answer in c (i) above	(02mks)

(d) The thermochemical data for some processes are given below

Process	$\Delta H^{\theta}(Kjmol^{-1})$
$Rb(s) \longrightarrow Rb(g)$	+78
$Rb_{(g)} \longrightarrow Rb^{+}(g) + e$	+402
$F_2(g) \longrightarrow 2F(g)$	+160
$Rb^+(g) + F^-(g) \longrightarrow RbF(s)$	-762
$F_{2(g)} + 2Rb(s) \longrightarrow 2RbF(s)$	-1104

Calculate the electron affir	iity of th	ne fluori	ne atom	•		(3 marks	s)
	• • • • • • • • • • • • • • • • • • • •			•••••	••••••		
	• • • • • • • • • • • • • • • • • • • •		•	•••••	••••••	••••••	
	• • • • • • • • • • • • • • • • • • • •	•••••••		••••••	••••••	••••••	
	• • • • • • • • • • • • • • • • • • • •			••••••	••••••	••••••	••••••
	• • • • • • • • • • • • • • • • • • • •			•••••		••••	••••••
						••••••	
Angwar			(54 M	ARKS) m this s	ection		
10. (a) State and explain	•	•				ate of	
reaction		,		.,, .			
(i) Tampanata					/1 1	l.a\	
(i) Temperate					$(1\frac{1}{2})$	marks)	
			• • • • • • • • • • • • • • • • • • • •				
(ii) Catalyst					(1 ½	marks)	
(ii) Saraiysi					(= 2	mai noj	
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				
(b)The table below sho	ows the	kinetic	data ob	otained f	or the d	ecomposi	ition
of nitrogen (V) oxic						•	
Time(s)	0	250	750	1500	2000	2500	
$[N_2O_5]$ (moldm ⁻³)	2.33	1.95	1.42	0.95	0.70	0.50	

Plot a graph of log_{10} [N_2O_5] against time.

ківи*во* 12

(c)Use the graph in (b) to	
(ii) determine the half life of nitrogen (V) oxide	$(1\frac{1}{2} \text{ marks})$
(ii) deduce order of the reaction and give a reason for yo	our answer. (1 ½ marks)
(a) Calculate the roots and in (N) for the reception and in	
(a) Calculate the rate constant (K) for the reaction and in	ndicate its units. $ (1 \frac{1}{2} \text{ marks}) $
Write equations to show how the following cor	•
(a) from ethyne.	(2 ½ marks)

• •	Benzene from ethene	` -	marks)
(c)	CH₃COCH₃ from propan-1-ol	(3 ½	marks)
(c)		(3 ½	marks)
(c)	CH3COCH3 from propan-1-ol	(3 ½	marks)
(c)	CH3COCH3 from propan-1-ol	(3 ½	marks)

- 12. The elements; sodium, magnesium, silicon and Sulphur belong to Period 3 of the Periodic Table.
 - (a) For each element, write the formula and name the structure of the hydride it forms. (02 marks)

Element	Formula of hydride	Structure
Sodium		
Magnesium		

•	•	ssible, write equation for react	ion. (03 marks)
•••			
	•••••		
•••			
•••			
•••			
•••			
(0	•	rite equation for the reaction t d the hydride of;	that takes place between water
	(i)	Sodium	(01 mark)
	(ii)		(01 mark)
•••••		•	
(0		•	n that takes place between hot
	co (i)	ncentrated sulphuric acid and; Magnesium	(01 mark)
•••••	(ii		(01 mark)
•••		,	
	(ii		

13.	(a)	What is me (i) Hydrat	(01 mark)	
		(ii) Lattice	e energy	(01 mark)
		(iii) Entha	lpy of solution	(01 mark)
(b) s	State	two factors	which can affect the magni	tude of lattice energy
c) T belo		ttice hydrati	on energies of salts RX and	TX are given in the table
		Salt	Lattice energy(kjmol ⁻¹)	Hydration energy (kjmol ⁻¹)
		RX	880	860
		TX	790	800
(c) (Calcul	ate the enth (i) RX	alpy of solution of each salt	(02 marks)
•••••	• • • • • • • • • • • • • • • • • • • •			

(ii) TX	(02 marks)
(ii) Which one of the two salts is more so temperature?	luble in water at a given (0½ mark)
(iii) Give a reason for your answer in c(ii)	
 14. 1.363g of compound Y containing complete combustion gave 1.10g of carl When 0.35g of Y was vapourised, it 750mmHg. Calculate (i) the empirical formula of Y 	oon dioxide and 0.45g of water

	(ii)the molecular formula of Y
••	b) Y forms a compound Z when treated with a mixture of potassium hydroxide solution and ethanol under reflux. Z reacts with ammoniacal silver nitrate solution to form a white precipitate Q. identify;
	(i) Y
	(ii) Z
••	(iii) Q
	 c) Write (i) an equation for the reaction between Z and ammoniacal silver nitrate solution

(ii)the mechanism for the reaction leading to formation of ${f Z}$		
15. (a) Potassium manganate(vii) is not a good primary standard in a laboratory.		
(i) Define a primary standard (01 mark)		
(ii) State two characteristics of a good primary standard (1 mk		
(iii) State one advantage of potassium manganate(vii) in volumetric analysis		
(iii) State one disadvantage of using potassium manganate(vii) in volumetric analysis		

b) Potassium manganate(vii) is not acidified using nitric acid neith hydrochloric acid. Explain	
c) Determine the oxidation state of manganese in Manganate(vii)	ion
(ii)Write an equation for the reaction between acidified potassium manganate(vii) solution and hydrogen peroxide solution.	
16. (a). What is meant by order of reaction?	(01 mark)
	,

(c). The table below shows some kinetic data for the reaction

 $3A + B \rightarrow Products$

Experiment	[A] (moldm ⁻³)	[B] (moldm ⁻³)	Rate(moldm ⁻³ s ⁻¹)
1	0.2	0.2	1.2x 10 ⁻⁸
2	0.2	0.6	1.2x 10 ⁻⁸
3	0.4	0.6	4.8× 10 ⁻⁸

(i). Determine the order of reaction with respect to A	A and B
(i) A	(02 marks)
(ii) B	(02 marks)
(ii).Write the rate equation for the reaction.	(01 mark)
(c).Calculate the: (i). Overall order of reaction .	(01 mark)

(ii) Rate constant for the reaction and state it's units.(02 marks)

17. Name one reagent that can be used to distinguish between the following pairs of compounds. In each case state what would be observed if each member of the pair is treated with the named reagent.

(a) But-2-yne and But-1-yne Reagent.	(01 mark)
Observations.	(02 marks)
(b) Propane and propene Reagent.	(01 mark)
Observations.	(02 marks)
(c) Ba ²⁺ and Ca ²⁺ Reagent .	(01 mark)
Observations.	(02 marks)

END.

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
.0 H	l															1.0 H 1	4.0 He 2
5.9 Li 3	9.0 Be 4								*			10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26	7.00	58.7 Ni 28	63.5 Cu 29	65.7 Zn 30	69.7 Ga 31	72.6 Ge 32	74.9 As 33	79.0 Se 34	Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44	103 Rh 45		108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	At	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89					1 300				9						
			139 La 57	140 Ce 58	141 Pr 59	144 Nd 60	7.52	150 Sm 62	152 Eu 63	157 Gd 64	159 Tb 65	162 Dy 66	735-757		169 Tm 69		175 Lu 71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95		247 Bk 97	251 Cf 98	254 Es 99		256 Md 101	254 No 102	260 Lv 103

END.