Построение конечного поля с 2^n элементами

Александра Игоревна Кононова

ТЕИМ

8 июля 2024 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik

Конечное поле или поле Галуа

Поле, состоящее из конечного числа элементов. \mathbb{F}_q или $\mathrm{GF}(q)$, где q — число элементов (мощность).

 $q=p^n$, где p — простое число (характеристика поля), $n\in\mathbb{N}$. С точностью до изоморфизма:

для
$$q=p$$
 $\operatorname{GF}(q)=\mathbb{Z}_p$ для $q=p^n$ $\operatorname{GF}(q)$ — расширение поля \mathbb{Z}_p

Многочлен степени $n \in \mathbb{N} \cup \{0\}$ над полем \mathcal{F}

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
$$a_n, a_{n-1}, \dots, a_1, a_0 \in \mathbb{F}$$

p(x) = q(x), если равны их коэффициенты при одинаковых степенях x.

$$x^k \cdot x^m = x^{k+m} (k, m \in \mathbb{N} \cup \{0\}), \quad x^0 \equiv 1.$$

Множество всех многочленов $\mathcal{F}[x]$ — коммутативное кольцо (ассоциативно-коммутативное кольцо с единицей — при другом наборе аксиом кольца).

$$\forall p(x), q(x) \in \mathcal{F}[x] \ \exists s(x), r(x) \in \mathcal{F}[x] :$$

 $p(x) = s(x) \cdot q(x) + r(x)$

причём $\deg r(x) < \deg q(x)$ или r(x) = 0.

Многочлен s(x) называется частным (неполным частным), а многочлен r(x) — остатком от деления p(x) на s(x).

Частное и остаток определяются однозначно.

Справедлива теорема Безу (и её следствия): остаток от деления f(x) на (x-a) равен f(a).

Если для любого разложения

$$p(x) = s(x) \cdot q(x), \quad p(x), s(x), q(x) \in \mathcal{F}[x]$$

либо
$$\deg s(x) = 0$$
, либо $\deg q(x) = 0$,

многочлен p(x) называется **неприводимым** (простым) в кольце $\mathcal{F}[x]$ (или над полем \mathcal{F}).

	$x^2 + 1$	$x^2 + x + 1$
Hад \mathbb{Z}_2	(x+1)(x+1)	неприводим
$oxed{Had\ \mathbb{Z}_3}$	неприводим	(x+2)(x+2)
Над ℝ	неприводим	неприводим
$Had\;\mathbb{C}$	(x+i)(x-i)	$(x + \frac{1+i\sqrt{3}}{2})(x + \frac{1-i\sqrt{3}}{2})$

Класс вычетов по модулю многочлена g(x) содержит все многочлены $\mathcal{F}[x]$, которые имеют один и тот же остаток при делении на g(x).

Если g(x) неприводим в $\mathcal{F}[x]$, множество классов вычетов (фактор-кольцо $\mathcal{F}[x]/g(x)$) — поле.

Поле $\mathcal{F}[x]/g(x)$ — расширение \mathcal{F} , полученное добавлением корня g(x) (примитивное расширение) — фиктивного $c \notin \mathcal{F}$, что g(c)=0.

Многочлен $g(x) = x^2 + 1$ неприводим над \mathbb{R} .

Поле \mathbb{C} — примитивное расширение \mathbb{R} , полученное добавлением фиктивного корня x^2+1 — «мнимой единицы» $i \notin \mathbb{R}$.

 $x. x + 1. x + 2. x^2 + 4$ и $x^2 + x + 1$ также неприводимы над \mathbb{R} . Как будут выглядеть примитивные расширения?

Не все многочлены без корней неприводимы: над $\mathbb{R} x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$

Над \mathbb{C} неприводимы только линейные многочлены x-a;

над \mathbb{R} — линейные и некоторые квадратичные многочлены \implies расширения \mathbb{R} изоморфны \mathbb{C} .

Многочлен $g(x) = x^2 + x + 1$ неприводим над \mathbb{Z}_2 .

Пусть $i \notin \mathbb{Z}_2$ — фиктивный корень $x^2 + x + 1$.

$$i^2 + i + 1 = 0$$

Элементы примитивного расширения 0,1,i,i+1.

$$i^2 = -(i+1) = i+1$$

Полиномиальное	Числовое	Степени						
представление	представление	0	1	2				
1	1	1	1	1				
i	2	1	i (2)	i + 1(3)				
i+1	3	1	i + 1(3)	i (2)				

Из обобщённой малой теоремы Ферма $a^3 = 1$ для всех ненулевых a.

$$i$$
 и $i+1$ — примитивные элементы, наименьший i : $egin{array}{cccc} 1=1&=i^0 \\ 2=i&=i^1 \\ 3=i+1=i^2 \end{array}$

Сложение — сложение многочленов с учётом 1+1=0 (побитовое по модулю 2) $+ \mid 0 \quad 1 \quad 2 \quad i+1$

0		0		1	i	i+1
1					i+1	
i		i	i	+ 1	0	1
i +	1	i +	1	i	1	0
+	0	1	2	3		
0	0	1	2	3	-	
1	1	0	3	2		
2	2	3	0	1		
3	3	1 0 3 2	1	0		

Умножение — умножение степеней примитивного элемента с учётом $i^3=1$

1	0	1	i	7
i^2	0	i	i^{i}	2 -
i^2	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	i^2	1	7
	0	1	2	3
0	0	0	0	0
1	0	1	2	3
0 1 2 3	0	2	3	1
3	0	3	1	2

Сложение и умножение в GF(4)

Наименьший примитивный элемент расширения: i(2) (для большинства).

Для используемого в AES $x^8 + x^4 + x^3 + x + 1$ примитивный элемент i + 1 (3).

			Степени							
			0	1	2	3	4	5	6	7
0.	1	1	1	1	1	1	1	1	1	1
олиномиально представление	X	2	1	2	4	3	6	7	5	1
иал Вле	x+1	3	1	3	5	4	7	2	6	1
OMI 7Ta	\mathbf{x}^2	4	1	4	6	5	2	3	7	1
ин еде	x ² +1	5	1	5	7	6	3	4	2	1
	$x^{2+}x$	6	1	6	2	7	4	5	3	1
I)	$x^{2}+x+1$	7	1	7	3	2	5	6	4	1

Таблица степеней GF(16)

		Степени														
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	3	6	12	11	5	10	7	14	15	13	9	1
3	1	3	5	15	2	6	10	13	4	12	7	9	8	11	14	1
4	1	4	3	12	5	7	15	9	2	8	6	11	10	14	13	1
5	1	5	2	10	4	7	8	14	3	15	6	13	12	9	11	1
6	1	6	7	1	6	7	1	6	7	1	6	7	1	6	7	1
7	1	7	6	1	7	6	1	7	6	1	7	6	1	7	6	1
8	1	8	12	10	15	1	8	12	10	15	1	8	12	10	15	1
9	1	9	13	15	14	7	10	5	11	12	6	3	8	4	2	1
10	1	10	8	15	12	1	10	8	15	12	1	10	8	15	12	1
11	1	11	9	12	13	6	15	3	14	8	7	4	10	2	5	1
12	1	12	15	8	10	1	12	15	8	10	1	12	15	8	10	1
13	1	13	14	10	11	6	8	2	9	15	7	5	12	3	4	1
14	1	14	11	8	9	7	12	4	13	10	6	2	15	5	3	1
15	1	15	10	12	8	1	15	10	12	8	1	15	10	12	8	1

$$x, x + 1, x + 2$$

Корни x, x+1, x+2 уже есть в \mathbb{R} — расширение невозможно.

$$g(x) = x^2 + 4$$

$$\mathbb{R}[x]/g(x)$$
: пары $a+b\cdot j$, где $a,b\in\mathbb{R},$ j — фиктивный корень уравнения $x^2+4=0$ ($j^2=-4$).

Изоморфно \mathbb{C} : соответствие при $j \leftrightarrow 2i$ или при $j \leftrightarrow -2i$:

- соответствие взаимно однозначное;
- образ суммы равен сумме образов;
- образ произведения равен произведению образов.

Кроме того, $a+0i \leftrightarrow a+0i$, в частности $0 \leftrightarrow 0$ и $1 \leftrightarrow 1$.

←□ → ←□ → ← □ → □ → ○ ○ ○

$$g(x) = x^2 + x + 1$$

$$\mathbb{R}[x]/g(x)$$
: пары $a+b\cdot j$, где $a,b\in\mathbb{R},$ j — фиктивный корень уравнения $x^2+x+1=0$ ($j^2=-j-1$).

Изоморфно \mathbb{C} : $j \leftrightarrow -\frac{1}{2} - \frac{\sqrt{3}}{2}i$ или $j \leftrightarrow -\frac{1}{2} + \frac{\sqrt{3}}{2}i$.

Пусть
$$j \leftrightarrow -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
, то есть $-\frac{\sqrt{3}}{3} - \frac{2\sqrt{3}}{3}j \leftrightarrow i$: $a + b \cdot j \qquad \leftrightarrow \qquad (a - \frac{1}{2}b) - \frac{\sqrt{3}}{2}b \cdot i$ $\left(\alpha - \frac{\sqrt{3}}{3}\beta\right) - \frac{2\sqrt{3}}{3}\beta \cdot j \qquad \leftrightarrow \qquad \alpha + \beta \cdot i$

- соответствие взаимно однозначное;
- образ суммы равен сумме образов;
- образ произведения равен произведению образов.

Кроме того, $a+0j \leftrightarrow a+0i$, в частности $0 \leftrightarrow 0$ и $1 \leftrightarrow 1$.

Многочлены над полем Расширение поля Kонечные поля $GF(2^n)$ Примитивные расширения ℝ

$$g(x) = x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$$

 $\mathbb{R}|x|/g(x)$ — не является полем, это кольцо с делителями нуля

$$\mathbb{R}[x]/g(x)$$
: четвёрки $a+b\cdot j+c\cdot j^2+d\cdot j^3$, где $a,b,c,d\in\mathbb{R},$ j — фиктивный корень $x^4+1=0$ ($j^4=-1$); \mathbb{C} — пары $\alpha+\beta\cdot i$.

Соответствие $j \leftrightarrow \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ не взаимно однозначно:

$$\begin{cases} -1 + \sqrt{2}j = -1 + (1+i) = i, \\ j^2 = i, \end{cases} \text{ Ho } -1 + \sqrt{2}j \neq j^2 \text{ B } \mathbb{R}[x]/g(x).$$

не вз. одн.
$$j\leftrightarrow -\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i;\ j\leftrightarrow \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i;\ j\leftrightarrow -\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i.$$

Изоморфизма не может существовать: уравнение $x^2 = -1$

в \mathbb{C} имеет два различных корня: $x_{1,2} = \pm i$;

в
$$\mathbb{R}[x]/g(x)$$
 — четыре: $\begin{cases} x_{1,2} = \pm j^2, \\ x_{3,4} = \pm \frac{\sqrt{2}}{2}(j+j^3). \end{cases}$

$$g(x) = x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$$

Более того: уравнение $x^4 = -1$

в
$$\mathbb C$$
 имеет четыре различных корня: $\begin{cases} x_{1,2} = \pm \frac{\sqrt{2}}{2}(1+i), \\ x_{3,4} = \pm \frac{\sqrt{2}}{2}(1-i); \end{cases}$

в
$$\mathbb{R}[x]/g(x)$$
 — как минимум восемь:
$$\begin{cases} x_{1,2}=\pm j, \\ x_{3,4}=\pm j^3, \\ x_{5,6}=\pm \frac{\sqrt{2}}{2}(1+j^2), \\ x_{7,8}=\pm \frac{\sqrt{2}}{2}(1-j^2). \end{cases}$$

$$g(x) = x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$$

Нетривиальные ($\neq 0$) делители нуля: $(1+\sqrt{2}j+j^2)(a+bj+(-a-\sqrt{2}b)j^2+(\sqrt{2}a+b)j^3) = 0 \ \forall a,b \in \mathbb{R}$ $(1-\sqrt{2}j+j^2)(a+bj+(-a+\sqrt{2}b)j^2+(-\sqrt{2}a+b)j^3) = 0 \ \forall a,b \in \mathbb{R}$

У делителей нуля нет обратного $(\alpha^{-1}\alpha\beta = ?) \implies$ не поле.

В поле рациональных чисел $\mathbb{Q} \ q(x) = x^4 + 1$ неприводим.

 $\mathbb{Q}[x]/g(x)$ — поле, но не изоморфное \mathbb{C} :

 $\mathbb{Q}[x]/q(x)$ счётно, как и \mathbb{Q} ; а \mathbb{C} континуально.

в частности, $(1+\sqrt{2}j+j^2)(1-\sqrt{2}j+j^2)=0$.

4□ > 4回 > 4 亘 > 4 亘 > □ ■ 990

$$g(x) = x^2 - 2x + 2$$

$$\mathbb{R}[x]/g(x)$$
: пары $a+b\cdot j$, где $a,b\in\mathbb{R},$ j — фиктивный корень уравнения $x^2-2x+2=0$ ($j^2=2j-2$).

Изоморфно \mathbb{C} : $i \leftrightarrow 1-i$ или $i \leftrightarrow 1+i$.

Пусть
$$j \leftrightarrow 1+i$$
, то есть $-1+j \leftrightarrow i$: $a+b\cdot j \qquad \leftrightarrow \ (a+b)+b\cdot i$ $(\alpha-\beta)+\beta\cdot j \qquad \leftrightarrow \ \alpha+\beta\cdot i$

- соответствие взаимно однозначное;
- образ суммы равен сумме образов;
- образ произведения равен произведению образов.

Кроме того, $a+0i \leftrightarrow a+0i$, в частности $0 \leftrightarrow 0$ и $1 \leftrightarrow 1$.

ТЕИМ

www.miet.ru

Александра Игоревна Кононова illinc@mail.ru gitlab.com/illinc/raspisanie

