

AUTOMOTIVE MOSFET

PD - 95849

IRLZ44Z IRLZ44ZS IRLZ44ZL

Features

- Logic Level
- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

HEXFET® Power MOSFET

TO-220AB IRLZ44Z D²Pak IRLZ44ZS TO-262 IRLZ44ZL

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	51	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	36	Α
I _{DM}	Pulsed Drain Current ①	204	
P _D @T _C = 25°C	Power Dissipation	80	W
	Linear Derating Factor	0.53	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy②	78	mJ
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ©	110	
I _{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy (5)		mJ
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw ⑦	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		1.87	°C/W
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface ⑦ ⑨	0.50	—	
$R_{\theta JA}$	Junction-to-Ambient ⑦ ⑨		<mark>62</mark>	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ® 9		40	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.05		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		11	13.5	mΩ	V _{GS} = 10V, I _D = 31A ③
				20	mΩ	$V_{GS} = 5.0V, I_D = 30A$ ③
				22.5	mΩ	V _{GS} = 4.5V, I _D = 15A ③
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	27			V	$V_{DS} = 25V, I_D = 31A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 55V, V_{GS} = 0V$
				250	1	$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I_{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-200		V _{GS} = -16V
Q_g	Total Gate Charge		24	36		I _D = 31A
Q_{gs}	Gate-to-Source Charge		7.5		nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		12		1	V _{GS} = 5.0V ③
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 50V$
t _r	Rise Time		160		1	$I_{D} = 31A$
t _{d(off)}	Turn-Off Delay Time		25		ns	$R_G = 7.5 \Omega$
t _f	Fall Time		42			V _{GS} = 5.0V ③
L _D	Internal Drain Inductance		4.5			Between lead,
					nΗ	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package G
						and center of die contact
C _{iss}	Input Capacitance		1620			$V_{GS} = 0V$
C_{oss}	Output Capacitance		230		1	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		130		pF	f = 1.0MHz
C _{oss}	Output Capacitance		860			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		180			$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		280			$V_{GS} = 0V$, $V_{DS} = 0V$ to 44V $\textcircled{4}$

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			51		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			204		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 31A, V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		21	32	ns	$T_J = 25$ °C, $I_F = 31$ A, $V_{DD} = 28$ V
Q _{rr}	Reverse Recovery Charge		16	24	nC	di/dt = 100A/µs ③
t _{on}	Forward Turn-On Time	Intrinsion	turn-or	time is	negligib	le (turn-on is dominated by LS+LD)

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance Vs. Drain Current

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

4

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Normalized On-Resistance Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Threshold Voltage Vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current Vs. Pulsewidth

Fig 16. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{imax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \; (ave)} = 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \triangle T / \; Z_{thJC} \\ I_{av} = 2\triangle T / \; [1.3 \cdot BV \cdot Z_{th}] \end{split}$$
 $E_{AS (AR)} = P_{D (ave)} \cdot t_{av}$

Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
 - 2 CONTROLLING DIMENSION : INCH

- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
- 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"

WW 19, 1997

INTERNATIONAL
RECTIFIER
LOGO
IGR 719C

ASSEMBLY
LOT CODE

PART NUMBER

IRF1010

17 89

DATE CODE

YEAR 7 = 1997

WEEK 19

LINE C

For GB Production

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

International **I©R** Rectifier

D²Pak Package Outline

Dimensions are shown in millimeters (inches)

D²Pak Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH

LOT CODE 8024

ASSEMBLED ON WW 02, 2000

IN THE ASSEMBLY LINE "L"

EXAMPLE: THIS IS AN IRF530S WITH

LOT CODE 8024

ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L"

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

TO-262 Part Marking Information

International TOR Rectifier

D²Pak Tape & Reel Information

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 0.166mH ⑥ $R_G = 25\Omega$, $I_{AS} = 31A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- 3 Pulse width ≤ 1.0 ms; duty cycle $\leq 2\%$.
- $\ \ \,$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
 - This value determined from sample failure population. 100% tested to this value in production.
- This is only applied to TO-220AB pakcage.
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

TO-220AB package is not recommended for Surface Mount Application.

Data and specifications subject to change without notice.

This product has been designed and qualified for the Automotive [Q101]market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 3/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/