Molecular and Cellular Biochemistry:

An International Journal for Chemical Biology in Health and Disease

CONTENTS VOLUME 256/257, Nos. 1 & 2, January (II)/February 2004

BIOENERGETICS	OF THE CELL:	ORGANIZED	METABOLIC	SYSTEMS
---------------	--------------	------------------	------------------	----------------

Drs. Valdur A. Saks, Renée Ventura-Clapier, Michel Rigoulet, Frank N. Gellerich and Xavier Leverve

V.A. Saks, R. Ventura-Clapier, M. Rigoulet, F.N. Gellerich and X. Leverve: Preface	1
Part I - Cellular Metabolic Systems: Organization, compartmentation and metabolic channeling	
J. Ovádi and V. Saks: On the origin of intracellular compartmentation and organized metabolic systems	5-12
P.P. Dzeja, A. Terzic and B. Wieringa: Phosphotransfer dynamics in skeletal muscle from creating kinase gene-deleted mice	13-27
R. Ventura-Clapier, A. Kaasik and V. Veksler: Structural and functional adaptations of striated muscles to CK deficiency	29-41
F. Joubert, P. Mateo, B. Gillet, JC. Beloeil, JL. Mazet and J.A. Hoerter: CK flux or direct ATP transfer: Versatility of energy transfer	
pathways evidenced by NMR in the perfused heart	43-58
E. Janssen, J. Kuiper, D. Hodgson, L.V. Zingman, A.E. Alekseev, A. Terzic and B. Wieringa: Two structurally distinct and spatially	43-30
compartmentalized adenylate kinases are expressed from the AKI gene in mouse brain	59-72
M. Rigoulet, H. Aguilaniu, N. Avéret, O. Bunoust, N. Camougrand, X. Grandier-Vazeille, C. Larsson, I.L. Pahlman, S. Manon and L.	39-12
	72 91
Gustafsson: Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae	73-81
J. Ovádi, F. Orosz and S. Hollán: Functional aspects of cellular microcompartmentation in the development of neurodegeneration:	0.2 0.2
Mutation induced aberrant protein-protein associations	83-93
P.W. Hochachka and Y. Burelle: Control of maximum metabolic rate in humans: Dependence on performance phenotypes	95-103
Part II - Mitochondrial Outer Membrane-Intermembrane Compartment: Role in the cellular regulation	
M. Colombini: VDAC: The channel at the interface between mitochondria and the cytosol	107-115
M. Vyssokikh and D. Brdiczka: VDAC and peripheral channelling complexes in health and disease	117-126
S.V. Lemeshko and V.V. Lemeshko: Energy flux modulation on the outer membrane of mitochondria by metabolically-derived poten-	117-120
tial	127-139
B. Antonsson: Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways	141-155
P. Dos Santos, M.N. Laclau, S. Boudina and K.D. Garlid: Alterations of the bioenergetics systems of the cell in acute and chronic	157 166
myocardial ischemia	157-166
Part III - Regulation of Cellular Energy Metabolism: Quantitative aspects of structure-function relationship in health and pathology	
M.A. Aon, B. O'Rourke and S. Cortassa: The fractal architecture of cytoplasmic organization: Scaling, kinetics and emergence in	
metabolic networks	169-184
V.A. Saks, A.V. Kuznetsov, M. Vendelin, K. Guerrero, L. Kay and E.K. Seppet: Functional coupling as a basic mechanism of feedback	.02 .01
regulation of cardiac energy metabolism	185-199
E.V. Limatta, A. Gödecke, J. Schrader and I.E. Hassinen: Regulation of cellular respiration in myoglobin-deficient mouse heart	201-208
J. Jacobson and M.R. Duchen: Interplay between mitochondria and cellular calcium signalling	209-218
	209-210
E.K. Seppet, M. Eimre, T. Andrienko, T. Kaambre, P. Sikk, A.V. Kuznetsov and V. Saks: Studies of mitochondrial respiration in muscle	210 227
cells in situ: Use and misuse of experimental evidence in mathematical modelling	219-227
M. Vendelin, M. Eimre, E. Seppet, N. Peet, T. Andrienko, M. Lemba, J. Engelbrecht, E.K. Seppet and V.A. Saks: Intracellular diffusion	220 211
of adenosine phosphates is locally restricted in cardiac muscle	229-241
V.A. Selivanov, A.E. Alekseev, D.M. Hodgson, P.P. Dzeja and A. Terzic: Nucleotide-gated KATP channels integrated with creatine and	
adenylate kinases: Amplification, tuning and sensing of energetic signals in the compartmentalized cellular environment	243-256
M.K. Aliev and A.N. Tikhonov: Random walk analysis of restricted metabolite diffusion in skeletal myofibril systems	257-266
B. N'Guessan, J. Zoll, F. Ribera, E. Ponsot, E. Lampert, R. Ventura-Clapier, V. Veksler and B. Mettauer: Evaluation of quantitative and	
qualitative aspects of mitochondrial function in human skeletal and cardiac muscles	267 - 280
D. Pucar, P.P. Dzeja, P. Bast, R.J. Gumina, C. Drahl, L. Lim, N. Juranic, S. Macura and A. Terzic: Mapping hypoxia-induced bioenergetic	
rearrangements and metabolic signaling by ¹⁸ O-assisted ³¹ P NMR and ¹ H NMR spectroscopy	281-289
L. Kadaja, K.E. Kisand, N. Peet, U. Braun, K. Metsküla, K. Teesalu, R. Vibo, K.V. Kisand, R. Uibo, H. Jockusch and E.K. Seppet: IgG	
from patients with liver diseases inhibit mitochondrial respiration in permeabilized oxidative muscle cells: Impaired function of	
intracellular energetic units?	291-303
F. Streijger, C.R. Jost, F. Oerlemans, B.A. Ellenbroek, A.R. Cools, B. Wieringa and C.E.E.M. Van der Zee: Mice lacking the UbCKmit	271 303
isoform of creatine kinase reveal slower spatial learning acquisition, diminished exploration and habituation, and reduced acoustic	
	205 219
startle reflex responses	305-318
J.G. Sampedro and S. Uribe: Trehalose-enzyme interactions result in structure stabilization and activity inhibition. The role of viscosity	319-327
Part IV - Dynamics and Heterogeneity of Cellular Energy Metabolism	
D.A. Rube and A.M. van der Bliek: Mitochondrial morphology is dynamic and varied	331-339
V.P. Skulachev, L.E. Bakeeva, B.V. Chernyak, L.V. Domnina, A.A. Minin, O.Y. Pletjushkina, V.B. Saprunova, I.V. Skulachev, V.G.	
Tsyplenkova, J.M. Vasiliev, L.S. Yaguzhinsky and D.B. Zorov: Thread-grain transition of mitochondrial reticulum as a step of	
mitoptosis and apoptosis	341-358
mitoproofs and apoproofs	

A.V. Kuznetsov, Y. Usson, X. Leverve and R. Margreiter: Subcellular heterogeneity of mitochondrial function and dysfunction:	
	359-365
C. Ojeda, P. Joseph, V.A. Saks, V. Piriou and Y. Tourneur: Subcellular heterogeneity in mitochondrial red-ox responses to K _{ATP} channel	
agonists in freshly isolated rabbit cardiomyocytes	367-377
G. Landgraf, F.N. Gellerich and M.H.P. Wussling: Inhibitors of SERCA and mitochondrial Ca-uniporter decrease velocity of calcium	
waves in rat cardiomyocytes	379-386
H. Podhajsky and M.H.P. Wussling: The velocity of calcium waves is expected to depend non-monotoneously on the density of the	
calcium release units	387-390
F.N. Gellerich, S. Trumbeckaite, T. Müller, M. Deschauer, Y. Chen, Z. Gizatullina and S. Zierz: Energetic depression caused by	00. 000
mitochondrial dysfunction	391-405
O. Speer, L.J. Neukomm, R.M. Murphy, E. Zanolla, U. Schlattner, H. Henry, R.J. Snow and T. Wallimann: Creatine transporters: A	
reappraisal	407-424
Index to Volume 256/257	425-428
Instructions to Authors	429

