Problem 1

(a)

The delay at each station to process the poll message T_p is computed as

$$T_{p} = \frac{poll \, message \, length}{C} = \frac{48}{512 \times 10^{3}} = 93.75 \, \mu sec$$

Assume the propagation delay per km T_L = 5 µsec

Now, time required for the poll message to travel from first node to the last node in the system (τ) is calculated as

$$\tau = 2 \times 10 \times N \times T_L = 2 \times 10 \times 10 \times 5 \mu \text{sec} = 1 \text{ msec}$$

$$\tau' = \frac{\tau}{2} \times (N+1) = 5.5 \text{ msec}$$

L is the total time required to traverse all the nodes

$$L = N \times T_p + N \times T_s + \tau' = 10 \times 93.75 \mu \text{sec} + 10 \times 0.1 m \text{sec} + 5.5 m \text{sec} = 7.4375$$

msec

Frame transmission time *M* is computed as

$$M = \frac{FrameLength}{C} = 1.953 \text{ msec}$$

 ρ is the traffic arrival intensity

$$\rho = N \times \lambda \times M = 10 \times 20 \times 1.953$$
 msec = 0.3906

The cycle duration T_c is calculated as shown below

$$T_c = \frac{L}{1-\rho}$$
 = 12.2046 msec

(b)

$$L = N \times T_s + \tau = 1.9 \text{ msec}$$

$$T_c = \frac{L}{1 - \rho} = 3.118 \text{ msec}$$

Problem 2

Assume the propagation delay per km T_L = 5 µsec

In this system, the total time required to traverse all the nodes L is computed as

$$L = \tau + N \times T_s$$

Note that in this scenario, we have a ring topology ' τ ' is the time required to travel the entire length of the ring.

Assuming the synchronization time $T_S = 0$

L = τ = T_L = 5 µsec (Since ring length is 1 km)

$$M = \frac{FrameLength}{C} = \frac{10^3}{4 \times 10^6} = 250 \text{ µsec}$$

$$\rho = N \times \lambda \times M = 0.10$$

$$T_c = \frac{L}{1 - \rho} = 5.55 \,\mu\text{sec}$$

Problem 3

(a)

The maximum throughput achievable in an ALOHA system = 0.18394

The capacity of the link = 10⁵ frames/sec

The maximum throughput achievable = $10^5 \times 0.18394$ = 18394 frames/sec

The aggregate arrival rate = $100 \times \lambda = 18394$

Where λ is the average input to the system from individual user.

Therefore λ = 183.94 frames/sec

(b)

The maximum un-normalized throughput for the network = $100 \times 183.94 = 18394$ frames/sec

(c)

Average number of retransmissions = $\frac{0.5 - 0.18394}{100 \times 10 \mu \text{ sec}}$ = 316.1 frames/sec/station

Average number of retransmissions in the network = $316.06 \times 100 = 31606$ frames/sec

Problem 4

(a)

Probability (successful transmission of frame) = Probability (no packets when the frame arrives at the server)

Probability ("0" packets) = $p = e^{-\lambda \times \tau} = e^{-2} = 0.1353$

Where λ is the arrival rate of frames

and τ is the frame transmission time

(b)

A geometric random variable can be used to indicate the successful transmission of frames in an ALOHA system.

If a packet has been transmitted successfully after "k" failures

Probability (successful transmission after "k" retransmissions) = $(1 - p)^k * p$

Where $p = e^{-\lambda \times \tau} = e^{-2} = 0.1353$

(c)

If the number of attempts required to transmit the frame successfully are "k"; then Probability (successful transmission after "k" retransmissions) = $(1 - p)^{k-1} * p$

Therefore the expected number of attempts = $\frac{1}{p}$ = 7.389

Problem 5

(a)

Probability of the system being idle for slotted aloha is given by $\frac{S}{G} = e^{-G}$

The percentage of the system being idle = 10 % = e^{-G} = 0.1 Therefore $G = \ln(10) = 2.303$

(b)

For G = 2.303

Throughput $S = G \times e^{-G}$

Therefore S = 0.2303

(c)

Yes. The channel is optimally loaded when G = 1. As G in the given scenario is 2.303, the system has been overloaded.

Problem 6

Please note that the problem should have stated "A small slotted ALOHA system has only *k* users, each of whom......"

Probability of success in each time slot is when one user transmits and the other k-1 users are silent.

Probability (one user transmitting) = $\frac{1}{k}$

Probability (k-1 users are not transmitting) = $\left(1 - \frac{1}{k}\right)^{k-1}$

Therefore, the probability for successful transmission of any one user among the k users is given as

Probability (one successful transmission among k users) =
$$k \times \left(\frac{1}{k}\right) \times \left(1 - \frac{1}{k}\right)^{k-1}$$

Now, Throughput is determined as shown below Throughput (S) = Probability (successful transmission for k users)

Therefore, Throughput = S =
$$k \times \left(\frac{1}{k}\right) \times \left(1 - \frac{1}{k}\right)^{k-1}$$

"S" for different values of k is given in the table below

k (# of users)	S (Throughput)
2	0.5
3	0.44
4	0.422
5	0.410
10	0.387
∞	e ⁻¹