

## Bio-methanation Potential ANALYSIS

Presented by:
YASH KUMAR MEENA
Roll No- 220004053



## Introduction

- Anaerobic digestion (biomethanation) is a renewable energy process decomposing organic matter without oxygen.
- Study aims to assess potential of substrates: Micro Cell, Animal Feed, Wheat Straw, Sunflower Seed, and Inoculum.
- 30-days study using pressure gauge manometric method to measure cumulative methane production.











## Project Goals

 Results will indicate substrate efficiency for biogas plants.

- Pre-treatment of substrates
   like Wheat Straw may improve outcomes.
- Findings may improve feedstock selection, lower costs, and boost energy yield.





- Glass or serum bottles with tight caps.
- Nutrient medium to support microbial activity
- Inoculum
- Gas Collection Apparatus











**Experimental Procedure** 

 Preparation of Reactors: calculation of Total solids and volatile solids.

Incubation and Monitoring

• liquid Displacement method



Advantages of liquid Displacement Method

• Direct Measurement

Real-Time Monitoring

#### Limitations

- Gas Saturation
- Corrections in Temperature and Pressure







## Methodology

Analysis Based on Total Solids (TS) and Volatile Solids (VS)

| Substrate   | TS(%) | VS (%) |
|-------------|-------|--------|
| Micro Cell  | 97.00 | 93.17  |
| Animal Feed | 89.70 | 81.11  |
| Wheat Straw | 91.17 | 86.49  |
| Sunf. Seed  | 92.41 | 89.56  |
| Inoculum    | 2.81  | 1.89   |



#### ANALYSIS

#### **Sunflower Seed**

- Highest methane yield due to high volatile solids (VS = 89.56%).
- High VS indicates most of the substrate's solid content is degradable, enhancing microbial activity and biogas production.

#### **Wheat Straw**

- Strong methane production with high organic matter content (VS = 86.49%).
- Slightly lower VS than Sunflower Seed, resulting in a slightly reduced methane yield but remains a viable substrate.





### ANALYSIS

#### **Animal Feed**

- Lower methane yield due to lower VS content (VS = 81.11%).
- Contains more non-degradable material, limiting potential for methane production.

#### Micro Cell

- High VS content (VS = 93.17%), but lower methane yield than expected.
- Likely due to less bioavailable organic matter, slowing microbial degradation and methane production.

#### Inoculum

- Minimal methane production (TS = 2.81%, VS = 1.89%).
- Served as a control, primarily initiating the digestion process without significantly contributing to methane output.





## ANALYSIS



## Conclusion



| substrate      | Cumulative Methane<br>Yield (L CH <sub>4</sub> /kg VS) | Key Observations                                                                                                       |
|----------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Sunflower Seed | ~370                                                   | Highest yield; strong biogas potential due to high degradable organic content.                                         |
| Wheat Straw    | ~325                                                   | Second-highest yield; high organic<br>matter content makes it a viable<br>substrate.                                   |
| Animal Feed    | ~275                                                   | Moderate yield; lower methane production due to non-degradable material content.                                       |
| Micro Cell     | ~210                                                   | Lower yield; high VS but limited bioavailability of organic matter affects methane production.                         |
| Inoculum       | Close to zero                                          | Negligible yield; minimal VS content,<br>used mainly to initiate anaerobic<br>digestion without contributing to yield. |













# thank you



