

# 7. Supervised Learning: Logistic Regression

# Logistic Regression



### Example

- Prediction of sepsis mortality based on features such as APACHE II score at baseline
- It is a supervised learning problem because one has access to inputoutput examples
- It is a classification problem because the output variable is discrete-valued
- Input variables also known as features
- Output variable also known as labels

### Training set

| Input Variable<br>(APACHE II Score) | Output Variable<br>(Survived / Died) |                              |
|-------------------------------------|--------------------------------------|------------------------------|
| 3                                   | Survived                             | Training sample $(x_i, y_i)$ |
| 6                                   | Survived                             |                              |
| 15                                  | Survived                             |                              |
| 29                                  | Died                                 |                              |
| 38                                  | Died                                 |                              |
|                                     |                                      |                              |

### **Testing set**







# Logistic Regression



### **Process**



- One is given access to a training data –
  consisting of various feature-label pairs and
  testing data consisting of features points
  with unknown label.
- One is also given a hypothesis (or model)
   class containing a series of hypotheses (or
   models) that potentially explain the
   relationship between the features and labels.
- The learning algorithm selects a hypothesis (or model) from the hypothesis (or model) class that fits the training data.
- Such selected hypothesis can then be used on the testing data to determine the label associated with the new features.

**Predictions** 

Can we solve this classification problem using simple linear regression?

### Example 1



Classification Rule (Classification with Simple Linear Regression)

- If output of linear regressor is less than 0.5 declare SURVIVED
- If output of linear regressor is more than 0.5 declare DIED

Can we solve this classification problem using simple linear regression?

### Example 1



Classification Rule (Classification with Simple Linear Regression)

- If output of linear regressor is less than 0.5 declare SURVIVED
- If output of linear regressor is more than 0.5 declare DIED

Classification performance is relatively good!

Can we solve this classification problem using simple linear regression?





Classification Rule (Classification with Simple Linear Regression)

- If output of linear regressor is less than 0.5 declare SURVIVED
- If output of linear regressor is more than 0.5 declare DIED

Can we solve this classification problem using simple linear regression?

### Example 2



Classification Rule (Classification with Simple Linear Regression)

- If output of linear regressor is less than 0.5 declare SURVIVED
- If output of linear regressor is more than 0.5 declare DIED

Classification performance is very poor!

Can we solve this classification problem using simple linear regression?

### Example 2



### Classification Rule (Classification with Simple Linear Regression)

- If output of linear regressor is less than 0.5 declare SURVIVED
- If output of linear regressor is more than 0.5 declare DIED

### Classification

The output should be 0 or 1

### **Linear Regression**

The output can be less than 0 and can be greater than 1.

### **Logistic Regression**

The output is between 0 and 1

# Logistic Regression: Model



### Model

The hypothesis is such that:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g(\boldsymbol{\theta}^t \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^t \boldsymbol{x}}}$$

where  $\boldsymbol{\theta} = (\theta_0, \theta_1, ..., \theta_m)^t$  is the param. vector and  $\boldsymbol{x} = (1, x_1, ..., x_m)^t$  is the feature vector

### Logistic or Sigmoid Function



$$g(u) = \frac{1}{1 + e^{-u}}$$

### Interpretation

$$\Pr(\hat{y} = 1 | x; \theta) = h_{\theta}(x) \implies \Pr(\hat{y} = 0 | x; \theta) = 1 - h_{\theta}(x)$$

 $Pr(\hat{y} = 1 | x; \theta) = 0.7 \implies A$  patient has a 70% chance of a tumor being malignant

# Logistic Regression: Decision Regions



### Classifier

$$\hat{y} = 1 \iff \Pr(\hat{y} = 1 | x; \theta) \ge 0.5$$

$$\hat{y} = 0 \qquad \longleftarrow \qquad \Pr(\hat{y} = 1 | \mathbf{x}; \boldsymbol{\theta}) < 0.5$$

### **Linear Classifiers**



The hypothesis is  $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$  with  $\theta = (-3,1,1)^t$ .

$$\hat{y} = 1 \qquad \Longleftrightarrow \qquad \boldsymbol{\theta}^t \mathbf{x} \ge 0$$

$$\hat{y} = 0 \qquad \Longleftrightarrow \qquad \boldsymbol{\theta}^t \boldsymbol{x} < 0$$

### **Nonlinear Classifiers**



The hypothesis is 
$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$
 with  $\theta = (-1,0,0,1,1)^t$ .

# Logistic Regression: Cost Function



How does the learning algorithm select the linear hypothesis / model? We need a cost function...

### **Cost Function**

$$J(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} y_i \cdot \log_2 \left( \Pr(\hat{y} = 1 | x_i; \boldsymbol{\theta}) \right) + (1 - y_i) \cdot \log_2 \left( 1 - \Pr(\hat{y} = 1 | x_i; \boldsymbol{\theta}) \right)$$

### Why this cost function?



$$y^{(i)} = 1 \land \Pr(\hat{y} = 1 | x^{(i)}; \boldsymbol{\theta}) \approx 1 \Longrightarrow \text{cost is small}$$

$$y^{(i)} = 1 \land \Pr(\hat{y} = 1 | x^{(i)}; \boldsymbol{\theta}) \approx 0 \Longrightarrow \text{cost is large}$$

# Logistic Regression: Cost Function



How does the learning algorithm select the linear hypothesis / model? We need a cost function...

### **Cost Function**

$$J(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i=1}^{n} y_i \cdot \log_2 \left( \Pr(\hat{y} = 1 | x_i; \boldsymbol{\theta}) \right) + (1 - y_i) \cdot \log_2 \left( 1 - \Pr(\hat{y} = 1 | x_i; \boldsymbol{\theta}) \right)$$

### Why this cost function?



$$y^{(i)} = 0 \land \Pr(\hat{y} = 1 | x^{(i)}; \boldsymbol{\theta}) \approx 1 \Longrightarrow \text{cost is large}$$
  $y^{(i)} = 0 \land \Pr(\hat{y} = 1 | x^{(i)}; \boldsymbol{\theta}) \approx 0 \Longrightarrow \text{cost is small}$ 

# Logistic Regression: Learning Algorithm



### Learning Algorithm

We should select the logistic regression model parameters that minimize the cost function as follows:

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})$$

### **New Predictions**

The new predictions are then given by:

$$Pr(\hat{y} = 1 | \boldsymbol{x}; \boldsymbol{\theta}^*) = g(\boldsymbol{\theta}^{*t} \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{*t} \boldsymbol{x}}}$$

There is no closed-form solution for the optimal parameters



**Gradient descent algorithm** 

# Multiclass Classification



### **Binary Classification Problem**

# $x_2$ $x_2$ $x_2$ $x_3$ $x_4$ $x_4$

### **Multiclass Classification Problem**



# Multiclass Classification: One-vs-All



### Procedure

- (1) Convert a *M*-class classification problem onto *M* binary classification problems.
- (2) Learn a binary classifier e.g. a logistic regressor for each binary classification problem delivering a confidence score.

- (3) Apply the *M* binary classifiers on new data to obtain *M* confidence scores.
- (4) Report the class with the highest confidence score.







# Multiclass Classification: One-vs-One



### Procedure

- (1) Convert a *M*-class problem onto (*M*-1)*M*/2 binary classification problems.
- (2) Learn a binary classifier e.g. a logistic regressor for each binary classification problem delivering a confidence score.

- (3) Apply the *M* binary classifiers on new data to obtain *M* confidence scores.
- (4) Report the class that has been "voted" the highest by the different classifiers.







## Precision vs Recall







• We want to predict y=1 only in very confident sets

Predict 1 if 
$$h(x) \ge 0.5$$
 0.7  
Predict 1 if  $h(x) < 0.5$  0.7

High-precision and low recall classifier

We want to predict y=1 avoiding false negative

Predict 1 if 
$$h(x) \ge 0.5$$
 0.3  
Predict 1 if  $h(x) < 0.5$  0.3

Low-precision and high recall classifier

# Confusion Matrix



### **Actual Values**

Positive (1) Negative (0) **Predicted Values** Positive (1) TΡ FΡ FΝ Negative (0) ΤN