MAT2006: Elementary Real Analysis Assignment #1

Deadline: Sep. 30

1. Given an $n \in \mathbb{N}$ being not a square number, (i.e., $n \neq 1, 4, 9, 25, \ldots$). Show that \sqrt{n} is irrational.

Hint. The Fundamental Theorem of Arithmetic says that any natural number has a unique factorization

$$n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k},$$

where p_1, p_2, \ldots, p_k are prime numbers and n_1, n_2, \ldots, n_k are natural numbers.

- **2.** Given any rational number r and irrational number i, why r+i and ri are irrational? (For the latter, we also assume $r \neq 0$.)
- **3.** The direct (Cartesian) product of two sets X and Y is the set

$$X \times Y = \{(x, y) \mid x \in X \text{ and } y \in Y\}.$$

A relation between X and Y is a subset R of $X \times Y$, and x and y are said to be R-related if $(x, y) \in R$.

- (i) Show that a function $f: X \to Y$ can be regarded as a relation. (**Note.** the corresponding R is called the graph of f).
 - (ii) Show that the order \leq of real numbers is a relation, and illustrate R in the \mathbb{R}^2 plane.
- (iii) Show that the "is a subset of" (or, "is contained in") \subset among all subsets of a set M is a relation.
- **4.** (i) Show that the relation in part (iii) of the last problem ' \subset ' is not a total order but a partial order. (Assume M has at least two elements.)
- (ii) Given two points (x_1, y_1) and (x_2, y_2) on the \mathbb{R}^2 plane, define a relation \leq by the following

$$(x_1, y_1) \leq (x_2, y_2)$$
 if and only if $x_1 < x_2$ or $(x_1 = x_2, y_1 \leq y_2)$.

Show that \leq is a total order.

(iii) Given two points (x_1, y_1) and (x_2, y_2) on the \mathbb{R}^2 plane, define a relation \prec by the following

$$(x_1, y_1) \prec (x_2, y_2)$$
 if and only if $x_1 \leq x_2$ and $y_1 \leq y_2$.

Show that \prec is a partial order.

- **5.** Let A and B be nonempty bounded above subsets of \mathbb{R} , and let A + B be the set of all sums a + b where $a \in A$ and $b \in B$. Show that $\sup(A + B) = \sup A + \sup B$.
- **6.** Find the sup, inf, max and min for the following sets

(a)
$$A = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\};$$
 (b) $B = \left\{ 1 - \frac{1}{n} \mid n \in \mathbb{N} \right\}.$

7. If $A \subset B$ and B is countable, then A is either finite or countable.

Hint. Assume A is infinite, find a 1–1 and onto function f from \mathbb{N} to A. Assume g is a 1–1 and onto from \mathbb{N} to B. Let $n_1 = \min\{n \in \mathbb{N} \mid g(n) \in A\}$ and set $f(1) = g(n_1)$. Continue this construction of f.

8. (i) If A_1, A_2, \ldots, A_m are each countable sets, then the union $A_1 \cup A_2 \cup \cdots \cup A_m$ is countable. [The union of finite many of countable sets is countable.]

Hint. Use the induction argument. For the case $A_1 \cup A_2$, let $B = A_2 \setminus A_1$, then A_1 and B are disjoint and $A_1 \cup B = A_1 \cup A_2$.

(ii) If A_n is countable for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n$ is countable. [The union of countable many of countable sets is countable.]

Hint. The induction argument does not apply here, (why?)

- (iii) Show that the set of lattice points $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$ is countable.
- **9.** In the lecture notes, a sketch proof of the Schröder–Bernstein Theorem is given. Complete the proof with details.
- 10. Show the following two sets have the same cardinality using the Schröder–Bernstein Theorem.

(a)
$$[0,1] \sim (0,1)$$
 (b) $[0,1] \sim [0,1] \times [0,1]$.

Hint. For (b), to find a 1–1 function from $[0,1] \times [0,1]$ to [0,1], consider the decimal representation of real numbers.

11. Let S be the set consisting of all sequences of 0's and 1's. Observe that S is not a particular sequence, but rather a large set whose elements are sequences; namely,

$$S = \{(a_1, a_2, a_3, \dots) \mid a_n = 0 \text{ or } 1\}$$

As an example, the sequence $(1,0,1,0,1,0,1,0,\ldots)$ is an element of S, as is the sequence $(1,1,1,1,1,\ldots)$. Show that S is uncountable.

Hint. Consider Cantor's digitalization method.

- **12.** Answer each of the following by establishing a 1–1 correspondence with a set of known cardinality.
 - (i) Is the set of all functions from $\{0,1\}$ to $\mathbb N$ countable or uncountable?
 - (ii) Is the set of all functions from \mathbb{N} to $\{0, 1\}$ countable or uncountable?