Stranger Things

An Analysis of the Lorenz system CS 304 – Nonlinear Science

Amarnath Karthi Chahak Mehta

April 2018

The Lorenz system represents a simplified version of atmospheric convection. It is governed by a set of 3 ordinary differential equations ^[2]:

$$\dot{x} = \sigma(y - x)
\dot{y} = x(r - z) - y
\dot{z} = xy - bz$$

 $\sigma({\sf Prandtl\ number}),\ \rho$ is the Rayleigh number and b is some geometrical descriptor of the system

Fixed points calculated by $\dot{x} = \dot{y} = \dot{z} = 0$:

$$\begin{array}{ll} O & (0,0,0) \\ C^+ & (\sqrt{b(r-1)},\sqrt{b(r-1)},r-1) \\ C^- & (-\sqrt{b(r-1)},-\sqrt{b(r-1)},r-1) \end{array}$$

The Jacobian for this system is: $\begin{bmatrix} -\sigma & \sigma & 0 \\ r-z & -1 & -x \\ y & x & -b \end{bmatrix}$

and on linearization about the origin it becomes: $\begin{bmatrix} -\sigma & \sigma \\ r & -1 \end{bmatrix}$

Lorenz System

Analysis

• For origin O:

$$r < 1 \implies Stable fixed point$$

 $r > 1 \implies Saddle point$

- Subcritical Hopf's bifurcation (Marsden and McCracken, 1976) for value of $r > r_H$ where $r_H = \sigma \frac{(\sigma + b + 3)}{(\sigma b 1)}$ at C^+ and C^- .
- Hence, no stable fixed point or a limit cycle for $r > r_H$ which implies that there is no attractor exists at $r > r_H$.

Lorenz system

Analysis

Figure: Phase portrait for $r=0.5, \sigma=10, b=\frac{8}{3}$. *O* is a global stable fixed point.

Figure: Phase portrait for $r = 20, \sigma = 10, b = \frac{8}{3}$.

Figure: Phase portrait for $r=25, \sigma=10, b=\frac{8}{3}$. Chaos begins.

Lorenz System

Strange Attractors

Figure: Variation of x(t) for l_1 and l_2 , $\rho = 28$, $\sigma = 10$, $b = \frac{8}{3}$.

Figure: Variation of trajectories for l_1 and l_2 , $\rho = 28$, $\sigma = 10$, $b = \frac{8}{3}$.

Lorenz System

Lyapunov Exponent

Figure:
$$\ln \delta(t)$$
 has a slope of $\lambda = 0.9$ for parameters same as those in 5

$$\delta(t) \sim \delta_0 e^{\lambda t}$$
 $t_{horizon} \sim O(rac{1}{\lambda} ln rac{a}{\delta_0})$

Lorenz map

$$z_{n+1} = f(z_n)$$

Figure: ZY view of a typical Lorenz Attractor

Figure: Lorenz Map

- Edward Lorenz, Deterministic Nonperiodic Flow, http: //eaps4.mit.edu/research/Lorenz/Deterministic_63.pdf
- Steven Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Sarat Book House.
- William Boyce, Elementary differential equations

