《线性代数》模拟试卷 4

—、	填空题	(每空2分,	共30分))	:

- 1. 若 n 阶方阵 A, B 均可逆 , AXB = C , 则 X =
- 2. 设矩阵 $A_{m \times n}$ 的秩为 r < n ,则齐次线性方程组 AX = 0 一定有非零解,且自由未知量的个数为 _____。
- 3. 设S 是n 元齐次线性方程组 AX = 0的解空间,其中R(A) = r,则S 的维数为 。
- 4. 若向量组 $\alpha_1, \alpha_2, \cdots \alpha_n$ 可由另一向量组 $\beta_1, \beta_2, \cdots \beta_n$ 线性表示,

则
$$r(\alpha_1, \alpha_2, \cdots \alpha_r)$$
 ______ $r(\beta_1, \beta_2, \cdots \beta_r)$

- 5.设4 阶方阵 A 的秩为 2 ,则其伴随阵 A^* 的秩为 。
- 6. 设 λ 是方阵A 的一个特征值,则矩阵 $A^3 + 3A^2 + 3A$ 的一个特征值是

7 设
$$\alpha = \begin{pmatrix} 0 \\ y \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$
, $\beta = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}$, 它们单位正交,则 $x =$ ______。

- 8 . 已知三维向量空间的两组基是 $\alpha_1,\alpha_2,\alpha_3$ 与 β_1,β_2,β_3 ,且 $\beta_1=\alpha_1+\alpha_3,\,\beta_2=\alpha_2+2\alpha_3$, $\beta_3=2\alpha_1+\alpha_2+\alpha_3$ 则由基 $\alpha_1,\alpha_2,\alpha_3$ 到基 β_1,β_2,β_3 的过渡矩阵是_____。
- 9 设三阶方阵 A 的特征值为 1 ,-1 ,2 , $B=A^3-5A^2$,则 |A|=______ ,B 的特征值为______ , A^* 的特征值为______ ,

二.设 $\alpha_1,\alpha_2,\cdots,\alpha_t$ 是AX=0的基础解系, β 不是AX=0的解,即A $\beta \neq 0$,证明

$$\beta$$
 , $\beta + \alpha_1, \beta + \alpha_2, \dots, \beta + \alpha_t$ 线性无关。

四.当
$$\lambda$$
 取何值时,线性方程组
$$\begin{cases} (\lambda+3)x_1+x_2-2x_3=-1\\ -x_1+(\lambda+1)x_2+x_3=-1\\ -x_1-x_2+x_3=2 \end{cases}$$

有唯一解、无解或有无穷多解?并在有无穷多解时求出通解。

五.已知
$$\alpha = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$
 , E 为 3 阶单位矩阵 , $A = E + aa^T$,求一个正交矩阵 P ,

使得 $P^{-1}AP$ 为对角阵,并写出该对角阵.

六、设 $\alpha_1,\alpha_2,\alpha_3,\beta$ 均为n维非零列向量, $\alpha_1,\alpha_2,\alpha_3$ 线性无关且 β 与 $\alpha_1,\alpha_2,\alpha_3$ 分别正交。 试证明 $\alpha_1,\alpha_2,\alpha_3,\beta$ 线性无关。

七、求一个正交变换化二次型 $f(x_1,x_2,x_3) = X^T A X = {x_1}^2 + 4{x_2}^2 + 4{x_3}^2 - 4{x_1}{x_2} + +4{x_1}{x_3} - 8{x_2}{x_3}$ 为标准型

$$\begin{vmatrix} x & 3 & 1 \\ y & 0 & 1 \\ z & 2 & 1 \end{vmatrix} = 1 \qquad \begin{vmatrix} x-1 & y-1 & z-1 \\ \frac{3}{2} & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \dots .$$

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Q = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \quad A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad \mathbb{P}^{10} A Q^{10} = 0$$

三、

(满分8分)

$$A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$
 , $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 7 & 6 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & -1 \end{pmatrix}$, $\vec{X} X$, 使得 $\begin{pmatrix} O & B \\ A & O \end{pmatrix} X = \begin{pmatrix} C \\ O \end{pmatrix}$ 。 (满分 12 分)

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad Q = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \quad A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad P^{10}AQ^{10} = 0$$

三、

(满分8分)

四、设
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$
 , $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 7 & 6 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & -1 \end{pmatrix}$, $求 X$, 使得 $\begin{pmatrix} O & B \\ A & O \end{pmatrix} X = \begin{pmatrix} C \\ O \end{pmatrix}$ 。

(满分12分)

五、 在 R³中有两组基:

$$\boldsymbol{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \boldsymbol{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \boldsymbol{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \boldsymbol{a}_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \boldsymbol{a}_2 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \boldsymbol{a}_3 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

写出 e_1, e_2, e_3 到 a_1, a_2, a_3 的变换公式以及 a_1, a_2, a_3 到 e_1, e_2, e_3 的变换公式。

(满分8分)

六、

(满分14分)

七、

(满分16分)

八、 设 A 为已知的 $m \times n$ 矩阵, 集合 $V = \{X A X = O, X \ni n\}$ 所方阵 $\}$,

- 1. 验证V 对通常矩阵的加法和数乘构成实数域 R 下的线性空间;
- 2. 当 A = (0,1) 时, 求该线性空间的一组基。

(满分10分)

- 九、 证明题(本大题共 2个小题,每小题 6分, 满分 12分):
- 1. 设 a_1,a_2,a_3,a_4 为一向量组,其中 a_1,a_2,a_3 线性相关, a_2,a_3,a_4 线性无关,证明 a_1 能由 a_2,a_3,a_4 线性表示。
- 2. 若A 为B 阶方阵, $A^3 = O$,证明:A B 为可逆矩阵。