

word2vec

Kuan-Ting Lai 2022/4/25

Natural Language Processing (NLP)

- Preprocessing
 - Convert words into vectors first

Why Word Embeddings?

AUDIO

IMAGES

TEXT

0 0 0 0.2 0 0.7 0 0 0

Audio Spectrogram

DENSE

Image pixels

DENSE

Word, context, or document vectors

SPARSE

Word2vec (Word Embeddings)

Embed one-hot encoded word vectors into dense vectors

• Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. "Distributed representations of words and phrases and their compositionality." In *Advances in neural information processing systems*, pp. 3111-3119. 2013.

Bag-of-words vs. Sequence Model

The quick brown fox jumped over the lazy dog

Bag-of-words

Count-based methods:

- how often some word co-occurs with its neighbor words
- Latent Semantic Analysis

Predictive methods:

- Predict a word from its neighbors
- Continuous Bag-of-Words model (CBOW) and Skip-Gram model

Continuous Bag-of-Words vs. Skip-Gram

CBOW

Skip-gram

N-Gram Model

- Use a sequence of N words to predict next word
- Example N=3
 - (The, quick, brown) -> fox

Skip-Gram Model

Window size of 2

Word2Vec Tutorial

Word2Vec Tutorial - The Skip-Gram Model

Word2Vec Tutorial - Negative Sampling

Hidden Layer Weight Matrix

Word Vector Lookup Table!

Hidden Layer as Look-up Table

• One-hot vector selects the matrix row corresponding to the "1"

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ \hline 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$

The Output Layer (Softmax)

- Output probability of nearby words (e.g., "jumps" next to "fox")
- Sum of all outputs is equal to 1

Softmax Function

•
$$P(w_t|h) = softmax(score(w_t,h)) = \frac{e^{\{score(w_t,h)\}}}{\sum_{word\ w'\ in\ vocab.} e^{\{score(w',h)\}}}$$

- $score(w_t, h)$ computes compatibility of word w_t with the context h (dot-product is used)
- Train the model by maximizing its log-likelihood:

$$-\log P(w_t|h) = score(w_t,h) - \log \left(\sum_{word\ w'\ in\ vocab} e^{\{score(w',h)\}}\right)$$

Sampling Important Words

Remove non-informative word "the"

Probability of Keeping the Word

- $z(w_i)$ is the occurrence rate of word w_i
- $P(w_i)$ is the keeping probability

$$P(w_i) = (\sqrt{rac{z(w_i)}{0.001}} + 1) \cdot rac{0.001}{z(w_i)}$$

Graph for (sqrt(x/0.001)+1)*0.001/x

Negative Sampling

- Problem: too many parameters to learn at training
- Solution
 - -Select only few other words as negative samples (output prob. = "0")
 - Original paper selected 5 20 words for small datasets. 2 – 5 words work for large datasets

Negative Sampling

$$P(w_t|h) = softmax(score(w_t,h)) = \frac{e^{\{score(w_t,h)\}}}{\sum_{word\ w'\ in\ vocab.} e^{\{score(w',h)\}}}$$

$$logP(w_t|h) = score(w_t,h) - log\left(\sum_{word\ w'\ in\ vocab.} e^{\{score(w',h)\}}\right)$$

•
$$logP(w_t|h) = score(w_t, h) - log(\sum_{word\ w'\ in\ vocab} e^{\{score(w',h)\}})$$

Negative sampling reduces the number of words in the second terms

Evaluate Word2Vec

Male-Female

Verb tense

Country-Capital

Vector Addition & Subtraction

- vec("Russia") + vec("river") ≈ vec("Volga River")
- vec("Germany") + vec("capital") ≈ vec("Berlin")
- vec("King") vec("man") + vec("woman") ≈ vec("Queen")

Embedding in Keras

 Input dimension: Dimension of the one-hot encoding, e.g. number of word indices

Output dimension: Dimension of embedding vector

```
from keras.layers import Embedding
```

```
embedding layer = Embedding(1000, 64)
```


Using Embedding to Classify IMDB Data

```
from keras.datasets import imdb
from keras import preprocessing
from keras.models import Sequential
from keras.layers import Flatten, Dense, Embedding
max features = 10000 # Number of words
maxlen = 20
            # Select only 20 words in a text for demo
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
# Turn the lists of integers into a 2D integer tensor of shape (samples, maxlen)
x_train = preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = preprocessing.sequence.pad_sequences(x_test, maxlen=maxlen)
model = Sequential()
# Specify the max input length to the Embedding layer so we can later flatten the embedded
# inputs. After the Embedding layer, the activations have shape (samples, maxlen, 8).
model.add(Embedding(10000, 8, input_length=maxlen))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
history = model.fit(x train, y train, epochs=10, batch size=32, validation split=0.2)
```

Training Embedding Model on IMDB

GloVe: Global Vectors for Word Representation

- Developed by Stanford in 2014
- Based on Matrix Factorization of Word Co-occurrence
- https://nlp.stanford.edu/projects/glove/
- Assumption
 - Ratios of word-word co-occurrence probabilities encode some form of meaning

Probability and Ratio	k = solid	k = gas	k = water	k = fashion	
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}	
P(k steam)	(2.2×10^{-5})		2.2×10^{-3}	1.8×10^{-5}	
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96	

Using Pretrained Word Embedding Vectors (2-1)

```
# Preprocessing the embeddings
glove_dir = './glove/'
embeddings index = {}
f = open(os.path.join(glove_dir, 'glove.6B.100d.txt'))
for line in f:
    values = line.split()
    word = values[0]
    coefs = np.asarray(values[1:], dtype='float32')
    embeddings index[word] = coefs
f.close()
print('Found %s word vectors.' % len(embeddings_index))# 400000 word vectors.
# Create a word embedding tensor
embedding dim = 100
embedding_matrix = np.zeros((max_words, embedding_dim))
for word, i in word index.items():
    embedding_vector = embeddings_index.get(word)
    if i < max_words:</pre>
        if embedding_vector is not None:
            # Words not found in embedding index will be all-zeros.
            embedding matrix[i] = embedding vector
```


Using Pretrained Word Embedding Vectors (2-2)

```
from keras.models import Sequential
from keras.layers import Embedding, Flatten, Dense
model = Sequential()
model.add(Embedding(max words, embedding dim, input length=maxlen))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
# Load the GloVe embeddings in the model
model.layers[0].set_weights([embedding_matrix])
model.layers[0].trainable = False
model.compile(optimizer='rmsprop', loss='binary crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train,
                      epochs=10, batch_size=32, validation_data=(x_val, y_val))
model.save weights('pre trained glove model.h5')
```


Classifying IMDB Reviews

With pretrained Glove vectors

Without pretrained embedding model

Embedding Project (projector.tensorflow.org/)

Neighbors of "Learning"

Image Hashtag Recommendation

- Hashtag => a word or phrase preceded by the symbol # that categorizes the accompanying text
- Created by Twitter, now supported by all social networks
- Instagram hashtag statistics (2017):

Difficulties of Predicting Image Hashtag

- Abstraction: #love, #cute,...
- Abbreviation: #ootd, #ootn,...
- Emotion: #happy,...
- Obscurity: #motivation, #lol,...
- New-creation: #EvaChenPose,...
- No-relevance: #tbt, #nofilter, #vscocam
- Location: #NYC, #London

Zero-Shot Learning

- Identify object that you've never seen before
- More formal definition:
 - Classify test classes Z with zero labeled data (Zero-shot!)

Objective: $f: \mathcal{X} \to \mathcal{Z}$

Zero-Shot Formulation

- Describe objects by words
 - Use attributes (semantic features)

DeViSE – Deep Visual Semantic Embedding

Google, NIPS, 2013

Model	200 labels	1000 labels
DeViSE	31.8%	9.0%
Mensink et al. 2012 [12]	35.7%	1.9%
Rohrbach et al. 2011 [17]	34.8%	-

User Conditional Hashtag Prediction for Images

- E. Denton, J. Weston, M. Paluri, L. Bourdev, and R. Fergus, "User Conditional Hashtag Prediction for Images," ACM SIGKDD, 2015 (Facebook)
- Hashtag Embedding: $f(x,y) = \Phi_I(x)^T \Phi_H(y)$
- Proposed 3 models:

User Profile and Locations

Age	Females	Males
	#mcm	#like
	#bestfriend	#lmp
	#love	#throwback
	#lovehim	#squad
	#mce	#wce
13 - 17	#latepost	#throwback-
	#bestfriends	#thursday
	#boyfriend	#family
	#loveher	#workflow
	#loveyou	#selfie
		#wcm
3	#100happydays	#photoshop-
	#mcm	#express
	#love	#WCW
	#sisters	#goodtimes
	#cousins	#prouddad
12 17	#lovehim	#throwback-
45-41	#latergram	#thursday
	#loveher	#selfie
	#bff	#salute
	#youcampperfect	#blessed
		#zijasummit14
		#familyfirst

	#WCW	#100happydays	
Female	#mcm	#blessed	
	#bestfriend	#goodtimes	
	#tb	#family	
	#ss	#love	
	#bestfriends	#photogrid	
	#throwback	#latergram	
	#latepost	#cousins	
	#like	#sunday funday	
	#selfiesunday	#friends	
	#WCW	#goodtimes	
	#like	#blessed	
	#throwback	#love	
	#squad	#family	
	#tb	#photoshop-	
Male	#lmp	#express	
Maie	#mcm	#photogrid	
	#ss	#sundayfunday	
	#wce	#friends	
	#selfiesunday	#zijasummit14	

#prouddad

Sydney	Toronto		
#melbourne	#toronto		
#sydney	#tbt		
#australia	#canada		
#spring	#vancouver		
#beach	#fall		
#grandfinal	#throwback		
#sunshine	#blessed		
#sun	#ilovethiscity		
#nz	#vancity		
#newzealand	#vscocam		
#bali	#tb		
#happy	#cntower		
#nofilter	#goodmorning		
#wellington	#hoco		
#springbreak	#montreal		
#bondi	#wcw		
#afl	#tdot		
#thailand	#lateupload		
#stkilda	#downtown		
#city	#beautiful		

Meta data	Possible values
Age	13 - 114
Gender	Male, Female, Unknown
Home City	GPS coordinates
Country	United States, Canada, Great Britain,
	Australia, New Zealand

Facebook's Experiments

- 20 million images
- 4.6 million hashtags, average 2.7 tags per image
- Result

Method	d	K	P@1	R@10	A@10
Freq. baseline	-	-	3.04%	5.63%	9.45%
Bilinear	64	-	7.37%	11.71%	18.69%
Bilinear	128	-	7.37%	11.69%	18.44%
Bilinear	256	-	6.75%	10.84%	17.25%
Bilinear	512	-	6.50%	10.83%	17.17%
User-biased	64	-	9.02%	13.63%	21.88%
User-biased	128	-	9.00%	13.67%	21.83%
User-biased	256	-	8.48%	13.03%	20.96%
User-biased	512	-	7.98%	12.51%	20.05%
3-way mult.	64	50	8.95%	13.66%	21.82%
3-way mult.	64	100	9.03%	13.81%	22.04%
3-way mult.	64	200	8.96%	13.81%	22.05%
3-way mult.	64	300	9.00%	13.74%	21.96%
3-way mult.	64	400	8.96%	13.65%	21.82%

Real World Applications

mccormickml.com/2018/06/15/applying-word2vec-to-recommenders-and-advertising/

VIEWING HISTORY

From \$97 per night - Free cancellation

Trocadero - Eiffel Tower - AIR CONDITIONING

Cosy flat near the Champs Elysées From \$95 per night - Free cancellation

Amazing design flat heart of Paris close to \$71 per night

STAY IN THE HEART OF PARIS! \$91 per night

Charming guest room / Jolie chambre

Context

Input

Context

User Activity Log

References

- 1. Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." *Advances in neural information processing systems*. 2013.
- 2. Goldberg, Yoav, and Omer Levy. "word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method." *arXiv* preprint arXiv:1402.3722 (2014).
- 3. https://www.tensorflow.org/tutorials/representation/word2vec
- 4. http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
- 5. https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/

