CS1231(S) Tutorial 4: Functions

National University of Singapore

2019/20 Semester 1

- 1. Which of the following formulas define a function $f: \mathbb{Q} \to \mathbb{Q}$?
 - (a) $f(n) = \pm n$.
 - (b) $f(n) = 2^n$. no, i.e. $sqrt(2) = 2^n(1/2)$ is not a rational number
 - (c) $f(n) = \frac{1}{n^2 + 1}$. Yes
 - (d) $f(n) = |\sin n|$. Yes
- 2. Each of the diagram below represents a way of assigning the LHS points to the RHS points: a point x on the left is assigned a point y on the right if and only if there is an arrow from x to y.

Which of the above represent a function from the LHS set to the RHS set? Amongst those that represent a function, which ones represent injections, which ones represent surjections, and which ones represent bijections?

3. Let U be a set and $A \subseteq U$ such that $\emptyset \neq A \neq U$. Define the function $\chi \colon U \to \mathbb{Z}$ by setting, for all $x \in U$,

$$\chi(x) = \begin{cases} 0, & \text{if } x \not\in A; \\ 1, & \text{if } x \in A. \end{cases} \qquad \text{domain: U codomain: Z image: \{0, 1\}}$$

Find the domain, the codomain, and the image of χ .

4. Which of the functions defined in the following are injective? Which are surjective? Prove that your answers are correct. If a function defined below is both injective and surjective, then find a formula for the inverse of the function. Here denote by Bool the set {true, false}.

$$\begin{split} f \colon \mathbb{Q} \to \mathbb{Q}; & g \colon \operatorname{Bool}^2 \to \operatorname{Bool}; & h \colon \operatorname{Bool}^2 \to \operatorname{Bool}^2; \\ x \mapsto 12x + 31, & (p,q) \mapsto p \wedge \sim q, & (p,q) \mapsto (p \wedge q, p \vee q), \end{split}$$

$$k \colon \mathbb{Z} \to \mathbb{Z};$$

$$x \mapsto \begin{cases} x, & \text{if } x \text{ is even}; \\ 2x - 1, & \text{if } x \text{ is odd}. \end{cases}$$

- 5. Find the values of the following:
 - (a) |12.31|; 12
 - (b) [12.31]; 13
 - (c) |-12.31|; -13
 - (d) [-12.31]. -12
- 6. Let $A = \{1, 2, 3\}$. The *order* of a bijection $f: A \to A$ is defined to be the least $n \in \mathbb{Z}^+$ such that

$$\underbrace{f \circ f \circ \ldots \circ f}_{n\text{-many } f\text{'s}} = \mathrm{id}_A.$$

Define functions $g, h: A \to A$ by setting, for all $x \in A$,

$$g(x) = \begin{cases} 1, & \text{if } x = 2; \\ 2, & \text{if } x = 1; \\ x, & \text{otherwise,} \end{cases} \qquad h(x) = \begin{cases} 2, & \text{if } x = 3; \\ 3, & \text{if } x = 2; \\ x, & \text{otherwise.} \end{cases}$$

Find the orders of g, h, $g \circ h$, and $h \circ g$.

- 7. Let A, B, C be sets. Show that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ for all bijections $f: A \to B$ and all bijections $g: B \to C$.
- 8. Fix sets A, B. Define the graph of a function $f: A \to B$ to be

$$\{(x,y) \in A \times B : x \in A \text{ and } y = f(x)\}.$$

- (a) Assuming $A \neq \emptyset$, find a subset $S \subseteq A \times B$ that cannot be the graph of any function $f \colon A \to B$.
- (b) Find a necessary and sufficient condition for a subset $S \subseteq A \times B$ to be the graph of some function $A \to B$. Show that your condition is indeed necessary and sufficient.
- 9. Let $f: A \to B$ be a function. Let $X \subseteq A$ and $Y \subseteq B$.
 - (a) Compare the sets X and $f^{-1}(f(X))$.
 - (i) Is one always a subset of the other? Justify your answer.
 - (ii) Propose, with justification, a necessary and sufficient condition on X for the two sets to be equal.
 - (b) Compare the sets Y and $f(f^{-1}(Y))$.
 - (i) Is one always a subset of the other? Justify your answer.
 - (ii) Propose, with justification, a necessary and sufficient condition on Y for the two sets to be equal.