Введение

В современном мире электроника играет огромную роль в повседневной жизни человека. В связи с постоянным развитием технологий, растет потребность в разработке и проектировании новых электронных устройств. Одним из важных этапов этого процесса является разводка печатных плат и последующее проектирование корпуса для готового устройства. Данная работа состоит из двух частей:

- 1) Разводка и трассировка печатной платы в программе Sprint Layout
- 2) Проектирование 3D модели корпуса в программе КОМПАС-3D.

Также необходимо подобрать элементную базу для заданной схемы. Все этапы работы снабжены комментариями и пояснениями.

Задание:

- 1. В программе Sprint Layout 6.0 выполнить разводку печатной палаты по вариантам (принципиальной схеме).
- 2. Подобрать элементную базу для конкретного варианта (принципиальной схемы). В описании курсовой работы добавить изображения элементов и их размеры (высоты) для расчета размера печатной платы.
- 3. По полученным размерам печатной платы в программе Компас-3D спроектировать корпус для платы. Так же учесть наличие разъемов питания, кнопок включения и размещения иных элементов на корпусе (например, светодиодов).
- 4. Приложить чертеж корпуса в 3х проекциях и аксонометрии.

Рис. 1 – Принципиальная схема устройства

1. Описание по проектированию печатной платы

Рис. 2 – Печатная плата устройства

Плата разведена согласно заданному варианту (см. Рис. 1). Плата имеет симметричные размеры 45х45 мм.

На плате пронумерованы первый и последний вывод микросхемы TDA1519, чтобы избежать ошибки при последующей сборке устройства. Расстояние между выводами и диаметр отверстий соответствуют документации.

В качестве выключателя S1 использован движковый трехпозиционный переключатель. Все три его вывода припаяны на плату, но используются лишь 2 из них, это сделано с целью повышения прочности и долговечности соединения, также фиксация всех трех выводов предотвращает люфт выключателя. Таким образом выключатель находится в замкнутом состоянии только тогда, когда переключатель установлен в крайнем левом положении.

Микросхема TDA1519 допускает установку радиатора высотой до 20 мм.

По углам предусмотрены отверстия под крепежные винты М2.

Для питания, подключения входного устройства и подключения динамика используются провода. Все разъёмы и коннекторы находятся вне корпуса. Это сделано с целью уменьшения габаритов устройства и упрощения ремонта. Т.к разъём поменять сложнее и дольше, чем перепаять провод целиком. Такой подход хоть и делает устройство менее функциональным, но зато повышает надежность и ремонтопригодность.

2. Подбор элементной базы устройства.

Выбор компонентной базы осуществлен согласно схеме (см. Рис. 1).

В качестве основной микросхемы выбрана TDA1519 производства Philips.

Рис. 3 – Габаритные размеры TDA1519 (Philips)

Как упоминалось ранее, в качестве выключателя S1 был взят движковый переключатель KLS7-SS-12F19-G5.

Рис. 4 - Габаритные размеры движкового переключателя KLS7-SS-12F19-G5

Рис. 5 – Конденсатор С3

Тип	K50-35
Рабочее напряжение,В	25
Номинальная емкость, мкФ	2200
Допуск номинальной емкости,%	20
Рабочая температура,С	-40105
Ток утечки макс.,мкА	0.01
Выводы/корпус	радиал.пров.
Диаметр корпуса D,мм	13
Длина корпуса L,мм	25

Рис. 6 – Конденсатор С2

Тип	K73-17
Рабочее напряжение, В	100
Номинальная емкость, мкФ	0.1
Допуск номинальной емкости, %	10
Рабочая температура, С	-4085
Ток утечки макс., мкА	0.01
Расстояние между выводами F, мм	10
Толщина корпуса D, мм	5
Высота корпуса Н, мм	9
Длина корпуса L, мм	12

Рис. 7 – Конденсатор С1

Тип	RCER71H224K1K1H03B
Рабочее напряжение, В	50
Номинальная емкость, мкФ	0.22
Допуск номинальной емкости, %	10
Рабочая температура, С	-55125
Расстояние между выводами F, мм	5
Длина корпуса D, мм	4
Ширина, мм	2.5
Длина корпуса L, мм	12

3. Корпус для печатной платы

Корпус был спроектирован в программе КОМПАС - 3D с учетом размеров выбранных элементов и, ранее спроектированной, печатной платы.

Рис. 8 – Чертеж корпуса с нанесенными размерами

В корпусе предусмотрены отверстия для вывода проводов, подключенных к плате, и отверстие для установки переключателя (см. Рис. 4). Плата устанвливается внутрь корпуса на пластиковые стойки и фиксируется винтами М2 с четырёх сторон. Подключение всех проводов производится в момент установки платы в корпус, перед пайкой провода следует пропустить через отверстия в корпусе.

На днище корпуса предусмотрены вентиляционные отвестия, через которые холодный воздух попадает в корпус. Этому способствуют ножки, которые приподнимают корпус над плоскостью, на которой он стоит.

Заключение

Подводя итог можно сказать, что на данный момент, проектирование электронных устройств стало доступно, как никогда раньше. Все средства для проектирования готового устройства доступны любому обладателю компьютера с выходом в интернет. Это позволяет проектировать устройства без специальных инструментов и оборудованния.

В данной работе были рассмотрены вопросы разводки печатной платы и проектирования ее корпуса. Для разводки платы использовалась программа Sprint Layout, а для проектирования корпуса — система трехмерного моделирования КОМПАС 3D. Были изучены основы и методы разработки печатных плат, освоено специализированное программное обеспечение, получены навыки проектирования корпусов для электронных устройств. В результате был разработан проект печатной платы и ее корпуса, который может быть использован в качестве основы для создания реального электронного устройства.

Список использованной литературы

- 1. КОМПАС-3D v17 Руководство пользователя [Электронный ресурс] // АСКОН. Режим доступа:
- https://kompas.ru/source/info_materials/2018/KOMPAS-3D-v17_Guide.pdf. (Дата обращения: 15.12.2023)
- 2. Бессонов, Л.А. Теоретические основы электротехники: Электрические цепи. Учебник для студентов электротехнических, энергетических и приборостроительных специальностей вузов [Текст] / Л.А. Бессонов. М.:Высш.школа, 1978. 528 с., ил.
- 3. Хоровиц П., Хилл У. Искусство схемотехники: В 3-х томах: Т. 1. Пер. с англ. 4-е. изд. перераб. и доп. М.: Мир, 1993. 413c., ил.
- 4. Sprint Layout [Электронный ресурс] // Сайт паяльник. Режим доступа: https://cxem.net/software/sprint_layout.php. . (Дата обращения: 15.12.2023)