FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN – U.N.E.R.

Licenciatura en Sistemas - Álgebra y Geometría Analítica

<u>Trabajo práctico: Geometría Analítica: Distancia entre dos puntos – Ecuación de la Recta</u>

DISTANCIA

- 1) Determine si los siguientes puntos son vértices de un triángulo isósceles: A(0, 0); B(3,4) y C(7;7).
- 2) Determine si los siguientes puntos son vértices de un triángulo rectángulo:
 - a) A(8; 1), B(-3; -1), C(10;5)
 - b) A(-2;-1), B(8; 2), C(1; -11)
 - c) A(2,8), B(0; -3), C(6;5)
- 3) Determine todos los puntos pertenecientes al eje de ordenadas tales que estén a 5 unidades del punto (4; 4)
- 4) Determine todos los puntos cuya abscisa sea 6, tales que la distancia de cada punto a (-1, 2) sea $\sqrt{85}$
- 5) Use la fórmula de distancia para determinar si los tres puntos pertenecen a la misma recta: A(-1; -5), B(2; 4), C(4,10)

RECTA

- 1. Encontrar la ecuación de la recta que:
 - a) tiene pendiente 3 y ordenada al origen -5.
 - b) tiene pendiente 5 y pasa por (-5, 2)
 - c) pasa por los puntos (-1,2) y $\left(-\frac{3}{2},5\right)$
 - d) pasa por (1,-5) y (-3,-5)
 - e) perpendicular a y = 5x 8 que pase por (-1, 8)
 - f) paralela a y = -3.x + 5 que pase por (1, -3)
 - g) pasa por el punto (1, 3) y es perpendicular a la recta determinada por los puntos (-1, 1) y (6, 5)
 - h) tiene ordenada al origen 1 y pasa por (1; 4)
 - i) pasa por el punto (1, 5) y es perpendicular a la recta que pasa por los puntos (-2, 3) y (0,-1)
 - j) pasa por el punto (-2, -1) y es paralela a la recta que pasa por los puntos (-1, 4) y (3, 1)

En todos los casos expresar en forma implícita, explícita y segmentaria.

- 2. Encontrar la ecuación del haz de rectas que pasa por el punto indicado y hallar las ecuaciones de tres rectas pertenecientes al mismo. Graficar.
 - a) (2; -3)
 - b) (-1; 2)
- 3. Encontrar la ecuación del haz de rectas con pendiente dada y hallar las ecuaciones de tres rectas pertenecientes al mismo. Graficar:
 - a) De pendiente -3.
 - b) De pendiente 1.
- 4. Dadas las siguientes rectas determinar cuáles son paralelas, cuáles perpendiculares y, cuáles no son paralelas ni perpendiculares. En este último caso, hallar el ángulo que forman las dos rectas
 - a) y = 2x + 1
 - b) x + 2y = 2
 - c) 4x 2y = 1
 - d) -4y+1=2x
 - e) 8x 4y = -1
 - f) $y = \frac{1}{2}x + 1$
 - g) $y = -\frac{1}{2}x + \frac{1}{2}$
 - h) -x+1=2y

- 5. Se tienen los cuatro puntos P(5, 11), Q(-7,16), R(-12,4) y S(0, -1). Demostrar que los cuatro ángulos del cuadrilátero PQRS son rectos. También demostrar que las diagonales son perpendiculares entre sí.
- 6. Comprobar que los puntos A(1, 2), B(2, -1) y C(4, 3) son los vértices de un triángulo rectángulo.