Mathematics for Political Science

Lecture 1: Introduction & Foundations

Exercises

- 1. For the coffeeshop data from lecture, classify each quantitative variable as:
 - 1. dichotomous, discrete, or continuous
 - 2. categorical, ordinal, interval, or ratio
- 2. Using the data in the table below:
 - 1. Find output for the functions f(x) and g(x).
 - 2. Show the functions equivalent to f(g(x)) and g(f(x)).
 - 3. Find the output for these functions.

x	$f(x) = (3-x)^2$	$g(x) = 2x^3 - 4$	f(g(x))	g(f(x))
2				
4				
5				
1				
0				
1				

3. Express each of the following complex functions as two simpler functions, one nested inside the other:

1.
$$4(8x-2)^3$$

2.
$$\frac{1}{3x-2}$$

- 4. Explain why there is no "largest number" on the interval (0,1).
- 5. Plot (roughly) the following functions in coordinate space (use separate graphs):

1.
$$f(x) = 2x^2$$
 for $x \in [0, 10]$

2.
$$f(x) = e^x \text{ for } x \in [0, 4]$$

3.
$$f(x) = \frac{1}{x}$$
 for $x \in (0, \infty)$

4.
$$f(x) = x^3 - x^2 + 1$$
 for $x \in [0, 1]$

5.
$$f(x) = \begin{cases} -(x^2) & \text{for } x \in [-2, 0) \\ \frac{1}{2} & \text{for } x = 0 \\ x^3 + 1 & \text{for } x \in (0, 2] \end{cases}$$

6. (Gill 1.14 [adapted]) The following data are U.S. Census Bureau estimates of population over a 5 year period.

Date	Total U.S. Population			
July 1, 2004	293,655,404			
July 1, 2003	290,788,976			
July 1, 2002	287,941,220			
July 1, 2001	285,102,075			
July 1, 2000	282,192,162			

Characterize the growth in terms of an approximate parametric expression. Graphing may help (optional).

- 7. (Gill 1.21 [adapted]) Suppose we had a linear regression line relating the size of state-level unemployment percent on the x-axis and homicides per 100,000 of the state population on the y-axis, with slope m=2.41 and intercept b=27. Graph this relationship for unemployment levels between 0% and 20%. What would be the expected effect of increasing unemployment by 5%? Does this effect depend on the prior level of unemployment?
- 8. Explain in words the difference between a concave and convex function. Draw one of each to illustrate.
- 9. Characterize the functions below as monotonic or non-monotonic.

10. Given the data below, find:

1.
$$\sum_{1}^{10} \frac{m_i}{2}$$

2.
$$\prod_{1}^{6} (m_i - 5)$$

										$ m_{10} $
_	3	1	8	3	2	7	4	5	4	2

2

11. (Gill 1.1 [adapted]) Simplify the following expressions as much as possible (if any simplification is possible):

a.
$$(-x^4y^2)^2$$

b.
$$9(3^0)$$

a.
$$(-x^4y^2)^2$$
 b. $9(3^0)$ c. $(2\alpha^2)(4\alpha^4)$

d.
$$\frac{x^4}{x^3}$$

d.
$$\frac{x^4}{x^3}$$
 e. $y^3 + y^4 + y^5$ f. $\frac{\frac{2a}{7b}}{\frac{11b}{5a}}$

f.
$$\frac{\frac{2a}{7b}}{\frac{11b}{5a}}$$

g.
$$ln(\frac{e^4}{3})$$
 h. $log_8 1$ i. $\Gamma(7)$

12. (Gill 1.2 [adapted]) Simplify the following expressions by expanding the polynomials and grouping like terms:

1.
$$(a+b)^2 + (a-b)^2 + 2(a+b)(a-b) - 3a^2$$

2.
$$3p(q+p)^2 - pq + 4x(q+2p)^2$$

13. Suppose the vote totals a candidate will receive are given by the equation:

$$V = b + 8s^{\frac{1}{2}}$$

Where V is the number of votes, b is the candidate's number of baseline loyal supports, and s is the amount of money they spend on the campaign.

- 1. If candidate A has loyalists $b_A = 20,000$ and spends $s_A = \$1,000,000$, and candidate B has loyalists $b_B = 25,000$ and spends $s_B = $250,000$, which one will win the election?
- 2. Approximately how would the losing candidate have had to spend to pull even? How much additional spending is that?
- 14. (Gill 1.12) Suppose we are trying to put together a Congressional committee that has representation from four national regions. Potential members are drawn from a pool with 7 from the northeast, 6 from the south, 4 from the Midwest, and 6 from the far west. How many ways can you choose a committee that has 3 members from each region for a total of 12?