

Sistemas de Informação Matéria: Matemática Discreta

Professor: Guilherme Veloso Neves Oliveira

Aluna: Camila Cortopassi Buso

Questão 31:

Questão 32:

Questão 33

Utilizando-se os grafos abaixo:

O primeiro conjunto de grafos é isomorfo, pois: a -> w; d -> z; c -> y e b -> x. Simplificando ainda mais, têm-se que as duas figuras possuem 4 vértices e cada vértice possui 3 ligações. Na segunda figura, temos dois grafos a´ -> w´, d´-> z´, c´-> y´ e b´-> x´. De novo temos 4 vértices em uma figura, 4 vértices em outra figura, mas dessa vez a aresta sai do vértice e volta para ele mesmo.

Questão 34:

Figura 1 Figura 2

A Figura 1 apresenta um grafo cujo complemento é apresentado pela Figura 2. Observe que as duas figuras são isomórficas, pois:

A1 -> A2

B1 -> B2

C1 -> C2

D1 -> D2

Cada vértice também possui 2 arestas como representado

O grafo pode ser considerado autocomplementar pois o número de vértices se encaixa na condição de N=4k (em que k é o número de vértices).

Quando o grafo possui 4 ou mais vértices, a condição acima pode ser verificada.

Questão 35:

Questão 36:

Um grafo de 11 lados pode ser representado por um undecágono. O undecágono acima é um grafo planar. No entanto, o seu complemento, sendo o que falta em um grafo, não será planar, pois haverá cruzamento de arestas. A representação no plano do complemento desse undecágono não pode ser planar.

Questão 45:

Questão 46:

Questão 47:

Questão 48:

Questão 56:

A árvore binária apresenta-se com todas as folhas na mesma profundidade e todos os nós internos ligam outras duas folhas (possuem grau 2). Dessa maneira, como a formação dela se dá pela união sempre de dois nós, os nós internos aparecem como potências de 2:

Questão 57

a) Resposta: 7 vértices

b) Resposta: 15 vértices

- c) O número de vértices de uma árvore pode ser encontrado pela fórmula Vértice: $2^{\text{altura+1}} 1$.
- d) Para provar a fórmula acima, questão 56, em que a altura da árvore é 2 Vértices: 2^{2+1} $1=2^3$ -1=8-1=7 Questão 57 b) 2^{3+1} - $1=2^4$ -1=15

Questão 58:

Uma árvore binária com x vértices internos tem x+1 folhas

