DESIGN PRESENTATION

TEAM NAME : SYGNITORS

TEAM VIN NO : 2427

COLLEGE NAME : SNS COLLEGE OF TECHNOLOGY

KARTCATEGORY: 150 cc

KART 3D MODEL

TEAM LOGO

TEAM STRUCTURE

Faculty Advisor : Mr. Anand M

Captain: Sabarishwar S Vice-Captain: Muthukumaran M

Pilot : Dawn Hiruthayasawmy S Co-Pilot : Guru Prasath S R

Design Head: Akash K

Aesthetic Head : Ronald Colman M

Innovation Head: Sharma E

Steering Head: Muthukumaran M

Braking Head: Dawn Hiruthayasawmy S

Engine & Transmission Head: Rithikmass D

Fabrication Head: Sudharsan S

VEHICLE SPECIFICATION

VEHICLE DIMENSIONS

OVERALL LENGTH: 73 inch (1850 mm)

WHEEL BASE : 37 inch (920 mm)

FRONT WHEEL TRACK : 42 inch (1080 mm)

REAR WHEEL TRACK : 43 inch (1120 mm)

GROUND CLEARANCE : 1.5 inch (38 mm)

OVERALL HEIGHT : 37 inch (950 mm)

KERB WEIGHT : 110 Kg

TYRE SIZE

FRONT TYRE : 10x4.5-5

REAR TYRE : 11x7.10-5

BRAKE

DISC THICKNESS : 13 mm

TYPE OF BRAKE SYSTEM : Hydraulic

DISC DIAMETER : 210 mm

BRAKE FLUID : DOT 3

ENGINE SPECIFICATIONS

TYPE OF ENGINE : IC

DISPLACEMENT : 149 cc

MAXIMUM POWER : 17 HP (8500 rpm)

MAXIMUM TORQUE : 15 Nm (7500 rpm)

STARTER TYPE : Electric

MATERIAL

MATERIAL : ASTM A106 Grade B

LENGTH OF MATERIAL USED : 19.01 meters

OUTER DIAMETER : 2.54 cm (1 inch)

THICKNESS : 0.3 cm (3 mm)

CARBON % : 0.3 %

MECHANICAL PROPERTIES

Property	Value
Tensile Strength (Ultimate Strength)	415 MPa (60,000 psi) minimum
Yield Strength	240 MPa (35,000 psi) minimum
Elongation (%)	22% minimum
Hardness (Brinell)	130–179 HB

CHASSIS DESIGN AND ANALYSIS

2D DRAWING

3D MODEL OF CHASSIS

FRONT IMPACT TEST

Load Applied: 8000 N

Maximum Stress: 232.9 MPa

Induced

Total Deformation: 24.31 mm

Factor of Safety (FOS): 2.03

REAR IMPACT TEST

Load Applied: 8000 N

Maximum Stress: 340.74 MPa

Induced

Total Deformation: 7.912 mm

Factor of Safety (FOS): 1.85

CHASSIS DESIGN AND ANALYSIS

LEFT SIDE IMPACT TEST

Load Applied: 8000 N

Maximum Stress: 818.06 MPa

Induced

Total Deformation: 13.19 mm

Factor of Safety (FOS): 2.01

RIGHT SIDE IMPACT TEST

Load Applied: 8000 N

Maximum Stress: 787.81 MPa

Induced

Total Deformation: 37.43 mm

Factor of Safety (FOS): 1.9

VALIDATION OF CHASSIS

LIMITATIONS ON RULEBOOKS

length : 80 inch

width : 60 inch

frame material shape : Tubular frame

material type : seamless

minimum material OD : 1 inch

minimum wall thickness : 1.5 mm

minimum carbon % : 0.18%

PARAMETERS ON KART

length : 73 inch

width : 52 inch

frame material shape : Tubular frame

material type : seamless

material OD : 1 inch

wall thickness : 2 mm

carbon % : 0.3%

STEERING SYSTEM

STEERING CALCULATIONS

STEERING TYPE : Linkage

INNER STEERING ANGLE : 27.59 Degree

OUTER STEERING ANGLE : 17.95 Degree

TURNING CIRCLE RADIUS : 2.3 m

ACKERMAN PERCENTAGE : 101.03%

TIE ROD

MATERIAL : Mild Steel

PITMAN ARM TO LEFT WHEEL : 30 cm

PITMAN ARM TO RIGHT WHEEL : 30 cm

STEERING WHEEL

TYPE : Ackerman

STEERING WHEEL : 12 inch

DIAMETER

STEERING RATIO : 1.668:1

LINKAGE TYPE : Mechanical

PITMAN ARM

MATERIAL : Mild Steel

TOTAL LENGTH : 11 cm

TOTAL WIDTH : 6.5 cm

THICKNESS : 0.5 cm

STEERING SYSTEM

MAX STRESS: 0.03MPA

MAX DISPLACEMENT: 37.5 MM

REACTION FORCE: 1.44N

STRAIN: 2.313E_07

FOS: 15

MAX STRESS: 0.15MPA

MAX DISPLACEMENT: 1.877 MM

REACTION FORCE: 7.22 N

STRAIN: 1.156E_06

FOS: 15

MAX STRESS: 10.5 MPA

MAX DISPLACEMENT: 193.83 MM

REACTION FORCE: 119.30N

STRAIN: 8.787E_06

FOS: 15

STERING SYSTEM ASSSEMBLY 3D MODEL & VALIDATION

LIMITATIONS ON RULEBOOKS

POSITIVE STEERING STOPS

MAX TURNING RADIUS: 2.5m

MIN WHEEL BASE: 36 inch

MAX WHEEL BASE: 60 inch

MAX TRACK WIDTH: 50 inch

MECHANICAL CONNECTIONS

PARAMETERS ON KART

POSITIVE STEERING STOPS ON ACKERMAN

TURNING RADIUS: 2.3m

WHEEL BASE: 37 inch

TRACK WIDTH: 42 inch (Rear track)

MECHANICAL CONNECTIONS

BRAKE SYSTEM

GENERAL

TYPE OF BRAKE SYSTEM : HYDRAULIC

BRAKE FLUID : DOT 3

TUBE TYPE : METAL HOSE

CALIPER & ACTUATOR

CALIPER USED : ALTO 800

CALIPER MATERIAL : IRON

ACTUATOR USED : LANCER CLUTCH

MASTER CYLINDER BORE: 13 mm

SIZE

BRAKE DISC

DISC DIAMETER : 210 mm

DISC THICKNESS : 13 mm

MATERIAL : STAINLESS

STEEL

BRAKE CALCULATIONS

 Boundary Condition
 Value/Range

 Heat Flux
 30,000 W/m²

 Convection Coefficient
 40 W/m²-K

 Ambient Temp
 25°C

 Initial Temp
 25°C

 Material
 Cast Iron or Steel (with k, ρ, c)

•THERMAL CONDUCTIVITY (K): ~50 W/M·K

•**DENSITY (P):** ~7200 KG/M³

•SPECIFIC HEAT (C): ~460 J/KG·K

•**HEAT FLUX** : 0.003 J / S CM²

•THERMAL GRADIENT: 0.019 C / CM

BRAKE CALCULATIONS

BRAKE PEDAL RATIO

STOPPING DISTANCE AT MAX SPEED

DECELERATION

• STOPING TIME

• BRAKING FORCE

• BRAKE TORQUE

FORCE ON CYLINDER

• DISC Dia REQUIRED

• MASTER CYLINDER PRESSURE

• PRESSURE INSIDE BRAKE LINE

• FRICTION BTW BRAKE CALIPER PAD AND DISC : 1.9

• FRICTION BTW BRAKE TYRE AND ROAD : 0.6 µ

: 4:1

: 47.35 m

: -5.88 m/s

: 4.01 seconds

: 2540.16 N

: 228.61 N.m

: 1373.4 N

: 20 cm

: 190 x 10^-4 m^2

: 109.34 Pa

9.34 Pa

BRAKE VALIDATION

LIMITATIONS ON RULEBOOKS

- THE KART SHOULD HALT WITHN 25m FROM A SPEED OF 45 km/h
- ABLE TO LOCK TO LOCK WHEEL COMPETELY AT MAX SPEED
- HYDRAULIC BRAKES MUST BE USED
- CONNECTED ONLY TO REAR WHEEL
- ONLY FOOT OPERATIONS

PARAMETERS ON KART

- STOPPINS DISTANCE AT 45 km/h IS 17.43 m
- THE WHEEL LOCKS COMPLETELY
- HYDRAULIC BRAKES IS USED
- CONNECTED ON REAR SHAFT
- FOOT OPERATIONS ONLY

POWER TRAIN

ENGINE

ENGINE DISPLACEMENT : IC : 149 CC

MAX POWER : 17 HP (8500 RPM)

MAX TORQUE : 15 NM (7500 RPM)

NO OF CYLINDER : 1

NO OF GEAR : 6

STROKE TYPE : 4

COOLANT TYPE : LIQUID

DIAMETER: 3 cm

REAR SHAFT

MATERIAL: mild steel

GEARS

ENGINE SPROCKET TEETH No : 15

FINAL GEAR TEETH No : 30

DRIVE RATIO : 2:1

ELECTRICALS

- Battery (12V Li-ion/Lead Acid) Powers the ignition system, cooling fan, and brake lights.
- Self-Start System Uses a push-button ignition to start the engine efficiently.
- Kill Switch Ensures driver safety by cutting off engine power in emergencies.
- Brake Light Improves visibility and safety by indicating braking actions.
- Cooling Fan Maintains optimal engine temperature, preventing overheating.
- Choke Switch Aids in cold starts by adjusting the air-fuel mixture

POWER TRAIN & ELECTRICAL VALIDATION

LIMITATIONS ON RULEBOOKS

- ENGINE BASED TRANSMISSION
- MAXIMUM SPEED 90 Km / hr
- MUST BE PROTECTED WITH GAURD
- ALL WIRING MUST BE ABOVE FLOOR MEMBRANE
- FUSE MUST BE USED

PARAMETERS OF KART

- ENGINE BASED TRANSMISSION
- MAXIMUM SPEED 85 Km/hr
- PROTECTED WITH GAURD
- NO WIRING IS DONE UNDER FLOOR MEMBRANE
- 10 A FUSE IS USED

SAFETY & ERGONOMICS

- Kill Switch Emergency engine shut-off to prevent accidents (2 nos in kart).
- Brake Kill Switch Cuts engine power if brakes are applied forcefully (1 in kart).
- Brake Light Improves visibility and enhances track safety (On Rear).
- Fire Wall Protects the driver from engine heat and fuel leaks. (2 layer of 2mm Al sheet & 3 layer of Duct tape).
- **Bumpers** Absorbs impact and enhances crash protection.

DESIGN FAILURE MODE AND Autosports

EFFECTS ANALYSIS.

CAUSE:

The fuel tank in the kart is placed slightly higher on the kart.

EFFECT:

The fuel inside the tank is push the tank forward and backside when the kart is going on high speed. So that it may results in the weakening of joints.

RECTIFIED:

By placing the fuel tank by slightly lower to the kart can reduce tank mount movement.

PROCESS FAILURE MODE AND

EFFECTS ANALYSIS.

CAUSE:

- The C-clamp might not be positioned at the correct angle.
- Improper alignment could occured

EFFECT:

• If the C-clamp is incorrectly angled, it may not apply the necessary force evenly, leading to unstable or inefficient performance.

RECTIFIED:

• Proper Alignment: Once the correct angle is identified, ensure that the C-clamp is installed according to these specifications. This could involve using measuring tools like protractors, digital angle finders, or custom jigs to ensure accuracy.

PROCESS FAILURE MODE AND Autosports

EFFECTS ANALYSIS.

CAUSE:

• The supporting link for the brake system was not set at the correct angle, which prevented proper actuation of the brake piston.

EFFECT:

• This led to improper braking functionality, which could affect safety and performance, such as poor braking force and control.

RECTIFIED:

• Correct the angle of the supporting link so that the brake piston functions properly, ensuring efficient braking and safety.

•

