EECS 545: Machine Learning

Lecture 8. Kernel methods

Honglak Lee and Michał Dereziński 02/02/2022

Logistics/Announcements

- HW 1 grade will be released on 02/05
- HW 2 due on 02/08
- Project Proposal due
 - No point deduction till 02/04
 - 1 point per day from 02/05 onwards
- CPU/GPU credits on Great Lakes Check Piazza
- Convex Optimization review on Friday

Outline

- Kernel methods: Motivation
- Kernel functions
- Kernel trick
- Kernel trick for linear regression
- Constructing kernels
- Kernel regression

Linear regression

- Example: 1D regression
 - one input x, one output h(x)
- Linear model $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ can only produce straight lines through origin
- Not very flexible/powerful
- How do we deal with this?

Feature mappings

• Replace $x \rightarrow (1, x)$

• Replace $x \rightarrow (1, x, x^2, x^3)$

Linear regression with (nonlinear) features

Linear regression model

$$h(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \phi(\mathbf{x}) = \sum_{j=0}^{M} w_j \phi_j(\mathbf{x})$$

Least-squares with L2 regression

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=0}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}_{n}) - y_{n})^{2} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

Closed form solution:

$$\mathbf{w} = (\Phi^T \Phi + \lambda \mathbf{I})^{-1} \mathbf{y}$$

This is nice, but...

- What features to use?
- Computational complexity
 - Φ: N*M matrix
 - N: number of examples
 - M: number of features
 - Need to invert $\Phi^T \Phi$ (M*M) matrix
 - Computational complexity scales with M³

Linear Classifiers

- No linear separating plane
- Linear classifiers not very flexible/powerful
- Can we do better?

Linear classifiers with nonlinear features

- Add distance to origin $(x_1^2 + x_2^2)^{1/2}$ as a third feature
- Data now lives on a parabolic surface in 3D.
- Linear separation in 3D feature space.
- In original feature space, decision boundary is an ellipse

Linear Classifiers with nonlinear features

• Another way: Replace $(x_1, x_2) \rightarrow (x_1^2, x_2^2)$

 Different expansions make the problem solvable with linear methods.

Linear Classifiers with nonlinear features

- Data has been mapped to a new, higher dimensional space
- Alternative way to think about this: data still lives in original space, but the definition of <u>distance</u> or <u>inner</u> <u>product</u> has been changed

Classifiers with nonlinear features

- We have been mapping each data point x through a fixed non-linear mapping to get a feature vector φ(x)
 - The feature vector extracts important properties from x.
 - E.g., polynomial combinations of the original features,
 up to some order
 - It may make many regression/classification problems easier.
- Unfortunately, the feature vector may be high-dimensional, even infinite-dimensional.
 - Problems: computational complexity

Kernels to the rescue (kernel trick)

- Embed data in a high dimensional space, and use simple models (linear relations) in this space.
- Use algorithms that do not need the coordinates of the embedded points, but only pairwise <u>inner products</u>
- Compute these inner products efficiently using a <u>kernel</u>

Kernel Functions

- A kernel function $k(\mathbf{x},\mathbf{x}')$ is intended to represent the similarity between \mathbf{x} and \mathbf{x}' .
- A popular way to express similarity is as the inner product of feature vectors:

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$$

- We define a kernel function $k(\mathbf{x},\mathbf{x'})$ as one that can be expressed as an inner product, but we may not need to compute it that way.
- This definition immediately leads to symmetricity of kernels:

$$k(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}', \mathbf{x})$$

Example: 2D input data

• Inner product between two vectors $(\mathbf{x_1}, \mathbf{x_2})$ and $(\mathbf{z_1}, \mathbf{z_2})$ $k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T \mathbf{z} = x_1 z_1 + x_2 z_2$

Let's replace this by its square

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2 = x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$

This is the same as inner product between

$$(x_1^2, \sqrt{2}x_1x_2, x_2^2)$$
 and $(z_1^2, \sqrt{2}z_1z_2, z_2^2)$

Or between

$$(x_1^2, x_1x_2, x_1x_2, x_2^2)$$
 and $(z_1^2, z_1z_2, z_1z_2, z_2^2)$

Note: solution is not unique.

Example: 2D input data

Consider higher-order polynomial of degree p:

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^p = \left(\sum_{j=1}^M x_i z_i\right)^p$$

$$= \sum_{\substack{(j_1, j_2 \dots j_M): \sum_k j_k = p}} \binom{p}{j_1, j_2 \dots j_M} (x_1 z_1)^{j_1} (x_2 z_2)^{j_2} \dots (x_M z_M)^{j_M}$$

• Feature mapping:

$$\phi(\mathbf{x}) = \left[\cdots, \sqrt{\binom{p}{j_1, j_2 \cdots j_M}} \ x_1^{j_1} x_2^{j_2} \dots x_M^{j_M}, \cdots \right]^T$$

All monomials of degree p

Example: 2D input data

Inhomogeneous polynomial up to degree p:

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z} + c)^p = \left(\sum_{j=1}^M x_j z_j + c\right)^p, c > 0$$

- Feature mapping:
 - All monomials of degree <= p</p>

Example: handwritten digits images

Take the pixel values and compute

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z} + 1)^p$$

- Here \mathbf{x} is 28*28 = 784 dimensional

- You need to compute the inner product in the space of all monomials up to degree p.
- For dim(x)=784 and p=4 a 16-billion dimensional space!

Kernel trick

- Kernels allow you to achieve a high-dimensional feature space which is desirable for better separability for classes, i.e., classification performance.
- Crucially, we don't have to compute the high-dimensional feature explicitly, the inner product of the features are computed directly via the kernel function.
- Many algorithms can be expressed completely in terms of kernels k(x,x'), rather than other operations on x.
- In this case, you can replace one kernel with another, and get a new algorithm that works over a different domain.

$$k(\mathbf{x}, \mathbf{z}) = (\underbrace{\mathbf{x}^T \mathbf{z}}_{784 \text{ dim}} + 1)^4 = \underbrace{\phi(\mathbf{x})^T \phi(\mathbf{z})}_{16 \text{ billion dim}}$$

Kernel Trick

- The kernel trick represents the problem formulation and its solutions entirely in terms of kernels (this is called "dual representation").
- The elements of the Gram matrix $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$

$$K_{nm} = \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$$

- These represent the pairwise similarities among all the observed feature vectors.
 - We may be able to compute the kernels more efficiently than the feature vectors.

Kernel substitution

- To use the kernel trick, we must formulate (training and test) algorithms purely in terms of inner products between data points
- We cannot access the coordinates of points in the high-dimensional feature space
- This seems a huge limitation, but it turns out that quite a lot can be done

Example: distance

Distance between samples can be expressed in inner products:

$$\|\phi(\mathbf{x}) - \phi(\mathbf{z})\|^2 = \langle \phi(\mathbf{x}) - \phi(\mathbf{z}), \phi(\mathbf{x}) - \phi(\mathbf{z}) \rangle$$
$$= \langle \phi(\mathbf{x}), \phi(\mathbf{x}) \rangle + \langle \phi(\mathbf{z}), \phi(\mathbf{z}) \rangle - 2\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$$
$$= k(\mathbf{x}, \mathbf{x}) + k(\mathbf{z}, \mathbf{z}) - 2k(\mathbf{x}, \mathbf{z})$$

• So nothing stops you from doing *k*-nearest neighbor searches in high dimensional spaces

Example: mean

- Can you determine the mean of data in the mapped feature space through kernel operations only?
 - A: No, you cannot compute any point explicitly

Example: distance to the mean

• Mean of data points given by: $\phi_S = \frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}_i)$

Distance to mean:

$$\|\phi(\mathbf{x}) - \phi_S\|^2 = \langle \phi(\mathbf{x}), \phi(\mathbf{x}) \rangle + \langle \phi_S, \phi_S \rangle - 2\langle \phi(\mathbf{x}), \phi_S \rangle$$
$$= \kappa(\mathbf{x}, \mathbf{x}) + \frac{1}{N^2} \sum_{i=1}^{N} \kappa(\mathbf{x}_i, \mathbf{x}_j) - \frac{2}{N} \sum_{i=1}^{N} \kappa(\mathbf{x}, \mathbf{x}_i)$$

Recall regression problems with error function

$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^{T} \phi(x_n) - y_n \right\}^{2} + \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}$$

• J(w) is minimized at

$$\mathbf{w}_{ML} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^T \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^T \mathbf{y}$$

- Recall the N x M design matrix that is central to this solution.
- We can approach the solution a different way

Recap: The Design Matrix

- The design matrix is an NxM matrix, applying
 - the M basis functions (M: number of columns)
 - to N data points (N: number of rows)

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

$$\Phi \mathbf{w} \approx \mathbf{y}$$

The Gram Matrix

For regression, a key term is the MxM matrix

$$\mathbf{\Phi}^T\mathbf{\Phi}$$

"covariance"

Here, we will use the NxN Gram matrix

$$\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$$

 $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$ "pairwise similarity"

- Note that $K_{nm} = \phi(\mathbf{x}_n)^T \phi(\mathbf{x}_m) = k(\mathbf{x}_n, \mathbf{x}_m)$
 - The pairwise similarities of all the data points in the training set.
- Note that kernel methods use only K, not Φ .

Another way to minimize J(w) is

$$\mathbf{w} = -\frac{1}{\lambda} \sum_{n=1}^{N} \left\{ \mathbf{w}^{T} \phi\left(\mathbf{x}_{n}\right) - y_{n} \right\} \phi\left(\mathbf{x}_{n}\right) = \sum_{n=1}^{N} a_{n} \phi\left(\mathbf{x}_{n}\right) = \mathbf{\Phi}^{T} \mathbf{a}$$

$$- \text{ where } \quad a_{n} = -\frac{1}{\lambda} \left\{ \mathbf{w}^{T} \phi\left(\mathbf{x}_{n}\right) - y_{n} \right\}$$

- Let a be the **dual** parameter, instead of w.
- Transform J(w) to J(a) by substituting

$$\mathbf{w} = \mathbf{\Phi}^T \mathbf{a}$$

• Objective function
$$J(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi} \left(\mathbf{x}_{n} \right) - y_{n} \right\}^{2} + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

• Substitute $\mathbf{w} = \mathbf{\Phi}^T \mathbf{a}$

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^{\mathrm{T}}\mathbf{\Phi}\mathbf{\Phi}^{\mathrm{T}}\mathbf{a} - \mathbf{a}^{\mathrm{T}}\mathbf{\Phi}\mathbf{\Phi}^{\mathrm{T}}\mathbf{y} + \frac{1}{2}\mathbf{y}^{\mathrm{T}}\mathbf{y} + \frac{\lambda}{2}\mathbf{a}^{\mathrm{T}}\mathbf{\Phi}\mathbf{\Phi}^{\mathrm{T}}\mathbf{a}$$
$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^{\mathrm{T}}\mathbf{K}\mathbf{K}\mathbf{a} - \mathbf{a}^{\mathrm{T}}\mathbf{K}\mathbf{y} + \frac{1}{2}\mathbf{y}^{\mathrm{T}}\mathbf{y} + \frac{\lambda}{2}\mathbf{a}^{\mathrm{T}}\mathbf{K}\mathbf{a}$$

• Solution/prediction: $\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{y}$

$$h(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) = \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{w} = \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{a} = (\boldsymbol{\Phi} \boldsymbol{\phi}(\mathbf{x}))^{\mathrm{T}} \mathbf{a}$$
$$= \mathbf{k}(\mathbf{x})^{\mathrm{T}} \mathbf{a} = \sum_{j=1}^{N} a_{n} \mathbf{k}(\mathbf{x}_{n}, \mathbf{x})$$
$$= \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \lambda \mathbf{I}_{N})^{-1} \mathbf{y}$$

- Transform $J(\mathbf{w})$ to $J(\mathbf{a})$ by using $\mathbf{w} = \mathbf{\Phi}^T \mathbf{a}$ and the *Gram* matrix $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$
- Find **a** to minimize J(a): $\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{y}$
- For predictions (for query point/test example x):

$$h(\mathbf{x}) = \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{w} = \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{a} = k(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \lambda \mathbf{I}_{N})^{-1} \mathbf{y}$$

where

$$k(\mathbf{x}) = [k(\mathbf{x}_1, \mathbf{x}), \dots, k(\mathbf{x}_N, \mathbf{x})]^T$$

This method is called Kernel Ridge Regression.

Primal versus Dual

- Primal: $\mathbf{w} = \left(\mathbf{\Phi}'\mathbf{\Phi} + \lambda\mathbf{I}_M\right)^{-1}\mathbf{\Phi}'\mathbf{y}$
- Dual: $\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{y}$
- Primal: invert M by M matrix (M = dim feature space), w vector of length M
 - cheaper because usually N > M, but you need to explicitly construct features.
- Dual: invert N by N matrix (N = number of data points)
 - can use the kernel trick (embed into very high dimensional feature space)
 - Use kernels k(x,x') to represent similarity.
 - Kernels can be defined over vectors, images, sequences, graphs, text, etc.

Constructing Valid Kernels

- One can do kernel engineering to create kernels for particular purposes, expressing different kinds of similarity.
- How do we verify that a kernel is valid?
- Three methods (for verification):
 - Direct construction with feature vectors
 - Mercer Theorem
 - Composition of kernels with pre-defined rules

Constructing Valid Kernels: Method 1

• Method 1: One way is to define the feature space mapping $\phi(\mathbf{x})$ and show that the kernel function represents the inner product of feature vectors:

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}') = \sum_{i=1}^{T} \phi_i(\mathbf{x}) \phi_i(\mathbf{x}')$$

Constructing Valid Kernels

Suppose we define a kernel function directly, such as

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2$$

In 2D, we can explicitly identify the feature map

$$\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

such that

$$k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^T \phi(\mathbf{z})$$

- Explicit feature mappings can be very complex.
 - Kernels help us avoid that complexity.

Constructing Valid Kernels: Method 2

- A simpler way to test without having to construct $\phi(x)$
- Use the <u>necessary and sufficient condition (Mercer Theorem)</u> that for a function k(x,x') to be a inner product (valid) kernel:
 - the Gram matrix **K**, whose elements are given by $k(\mathbf{x}_n, \mathbf{x}_m)$, should be <u>positive semidefinite</u> for all possible choices of the data set $\{\mathbf{x}_n\}$
 - I.e., K is positive semidefinite:

$$\mathbf{a}^T \mathbf{K} \mathbf{a} = \sum_{i=1}^N \sum_{j=1}^N a_i K_{i,j} a_j \ge 0 \ \forall \mathbf{a} \in \mathbb{R}^N$$

Constructing Valid Kernels: Method 3

- There are a number of axioms that help us construct new, more complex kernels, from simpler known kernels.
- For example,

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$
$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$
$$k(\mathbf{x}, \mathbf{x}') = \exp(-||\mathbf{x} - \mathbf{x}'||^2/2\sigma^2)$$

Prove that these are valid kernels (homework)

Constructing Kernels

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$
(6.13)

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$
(6.14)

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.15)

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.16)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$
(6.17)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$
(6.18)

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$
(6.19)

$$k(\mathbf{x}, \mathbf{x}') = k_3(\phi(\mathbf{x}), \phi(\mathbf{x}'))$$
(6.20)

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.21)

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.22)

where c > 0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M , \mathbf{A} is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

Most popular kernels

• Simple Polynomial Kernel (terms of degree 2) $k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2$

Generalized Polynomial kernel - degree M

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z} + c)^M, c > 0$$

Gaussian Kernels

$$k(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}\right)$$

Gaussian kernel

- Not related to Gaussian pdf
- Translation invariant (depends only on distance between points)
- Corresponds to an infinitely dimensional space! (PRML ex6.11)

Kernel regression

Kernel regression

Recall k-nearest neighbor regression:

$$h(\mathbf{x}) = \frac{1}{k} \sum_{(\mathbf{x}', y') \in kNN(\mathbf{x})} y'$$

Kernel regression:

$$h(\mathbf{x}) = \frac{\sum_{i} \mathbf{k}(\mathbf{x}, \mathbf{x}_{i}) y_{i}}{\sum_{j} \mathbf{k}(\mathbf{x}, \mathbf{x}_{j})} = \frac{1}{Z} \sum_{i} \mathbf{k}(\mathbf{x}, \mathbf{x}_{i}) y_{i}$$
where $Z = \sum_{i} \mathbf{k}(\mathbf{x}, \mathbf{x}_{j})$

 Weighted average of training responses where weight is proportional to the similarity with the corresponding feature.

Kernel regression

- Can use different kinds of kernels as they capture similarity between features differently.
 - Popular: Gaussian kernel with width т:

$$\mathbf{k}(\mathbf{x}, \mathbf{x}') = \exp(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\tau^2})$$

Examples

Kernels for classification

- We can just as easily use kernels for classification as well.
- Assume $y_i \in \{-1, +1\}$, return output as weighted majority:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{N} \mathbf{k}(\mathbf{x}, \mathbf{x}_i) y_i\right)$$

Compare it to k-nearest neighbor classification:

$$h(\mathbf{x}) = \operatorname{sign}\left(\frac{1}{k} \sum_{(\mathbf{x}', y') \in kNN(\mathbf{x})}^{N} y_i\right)$$

Thank you!

Quiz: https://tinyurl.com/545kernels1

Next class: Support Vector Machines