

CM4 Volatile organic coumpounds

Chemical conversions undertaken by the liver

10.1088/1752-7155/8/1/014001

Relative numbers of detected compounds

10.1088/1752-7155/8/1/014001

Headspace theory

Static vs dynamic headspace

Solid phase microextraction (SPME)

Solid phase microextraction (SPME)

Detection of VOCs

- Thin polymeric coating on a support where analytes are adsorbed onto according to their partition coefficient
- Extraction is maximum when the equilibrium is reached

Solid phase microextraction (SPME)

(SPME) Detection of VOCs

Polymer coating and thickness	Recommended application	Mechanism	MW	Polarity
100 µm PDMS	Volatiles	Absorbent	60-275	Non-polar
30 µm PDMS	Non-polar semi-volatiles	Absorbent	80-500	Non-polar
7 μm PDMS	Non-polar high molecular weight compounds	Absorbent	125-600	Non-polar
60 µm PEG	Alcohols and polar compounds	Absorbent	40-275	Polar
85 μm PA	Polar semi-volatiles	Absorbent	80-300	Polar
75 µm/85 µm CAR/PDMS	Gases and low molecular weight compounds	Adsorbent	30-225	Bipolar
65 µm PDMS/DVB	Volatiles, amines and nitro-aromatic compounds	Adsorbent	50-300	Bipolar
60 µm PDMS/DVB	Amines, nitroaromatic and polar compounds (HPLC use only)	Adsorbent	50-300	Bipolar
50/30 μm DVB/CAR/PDMS on a StableFlex fiber	Flavour compounds: volatiles and semi-volatiles, C3-C20	Adsorbent	40-275	Bipolar
50/30 µm DVB/CAR/PDMS on a 2 cm StableFlex fiber	Trace compound analysis	Adsorbent	40-275	Bipolar

CAR: Carboxen; PDMS: Polydimethylsiloxane; DVB: Divinylbenzene; HPLC: High Performance Liquid Chromatography; PA: Polyacrylate; PEG: Carbowax-Polyethylene Glycol [19].

- Large variety of supports exist
 - √ Fiber
 - ✓ Stir-bars
 - ✓ Needles
 - ✓ Syringes to small blades for the 96 well-plate
- Excellent versatility of SPME in terms of sample volume

Analysis of volatile human urinary metabolome by solid-phase microextraction in combination with gas chromatography—mass spectrometry for biomarker discovery: Application in a pilot study to discriminate patients with renal cell carcinoma

Márcia Monteiro ^{a,*}, Márcia Carvalho ^{a,b}, Rui Henrique ^{c,d,e}, Carmen Jerónimo ^{c,e}, Nathalie Moreira ^{a,f}, Maria de Lourdes Bastos ^a, Paula Guedes de Pinho ^{a,*}

Received 29 November 2013; received in revised form 26 February 2014; accepted 10 April 2014 Available online 9 May 2014

^a REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal

^b CEBIMED, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal

^c Cancer Biology & Epigenetics Group, Research Center of the Portuguese Oncology Institute – Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal

d Department of Pathology, Portuguese Oncology Institute - Porto, Rua Dr. António Bernardino de Almeida, Porto, Portugal

^e Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal

^f CBQF – Center for Biotechnology and Fine Chemistry – Associated Laboratory, Faculty of Biotechnology, Catholic University of Portugal, Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal

RESEARCH PAPER

Use of solid-phase microextraction coupled to gas chromatography—mass spectrometry for determination of urinary volatile organic compounds in autistic children compared with healthy controls

Rosaria Cozzolino • Laura De Magistris • Paola Saggese • Matteo Stocchero • Antonella Martignetti • Michele Di Stasio • Antonio Malorni • Rosa Marotta • Floriana Boscaino • Livia Malorni

Thermal desorption tube

Thermal desorption unit

10.1155/2015/981458

www.bjcancer.com

Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry

CL Silva^I, M Passos² and JS Câmara*,I

¹CQM/UMa — Centro de Química da Madeira, Centro de Ciências Exactas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal; ²Hospital Dr Nélio Mendonça, Avda. Luís de Camões, Funchal 9000, Portugal

DHS ou SHS???

PRIMARY RESEARCH

Open Access

Release and uptake of volatile organic compounds by human hepatocellular carcinoma cells (HepG2) in vitro

Paweł Mochalski^{1*}, Andreas Sponring^{1,2}, Julian King¹, Karl Unterkofler^{1,3}, Jakob Troppmair⁴ and Anton Amann^{1,2*}

NTD

Breath analysis

- http://dx.doi.org/10.1183/16000617.0002-2019
- 10.1007/s11306-017-1241-8
- 10.1109/mpuls.2020.2993684
- 10.3390/metabo5010003

