Details in GW-BSE

Jinyuan Wu

June 26, 2023

ロト 4回 ト 4 重 ト 4 重 ト 9 9 0 0

Jinyuan Wu June 26, 2023

Table of contents

- The theory
- 2 GW without G
- 3 Dealing with frequency dependence
- Partial sum
- Building the kernel
- Calculating absorption

2 / 11

Jinyuan Wu June 26, 2023

Infinitesimal

We all know the word "GW" means that $\Sigma = i \ GW$ (of course we have Hartree term but it's already in DFT)

$$\Sigma = \begin{array}{c} \\ \\ \end{array} + \begin{array}{c} \\ \\ \end{array}$$
 (1)

where W is the RPA-screened potential.

Jinyuan Wu

Why some say $\Sigma(1,2) = i G(1,2)W(1^+,2)$?

- G(1,2) is actually $G(1,2^+)$ (so when 1=2, $G=n_{\rm occ}$: the loop in the Hartree term above)
- $\Sigma(1,2) = i G(1,2^+)W(1,2) = i G(1^-,2)W(1,2) = i G(1,2)(1^+,2)$.

The theory

• 1^+ or $2^+ \Leftrightarrow e^{\pm i\omega 0^+} \Leftrightarrow$ how to take contour

< □ ▷ 〈圕 ▷ 〈恴 ▷ 〈恴 ▷ 〈恴 ▷ ○ 됨 ○ ♡Q ♡

June 26, 2023

Other tricky details in diagrammatics

Time-reversal symmetry

- $W(-\boldsymbol{p}, -\omega) = W(\boldsymbol{p}, \omega)$ is always true (or otherwise we can symmetrize the Lagrangian)
- The real symmetry:

$$W(\omega, -\mathbf{k}) = W(\omega, \mathbf{k}) \Leftrightarrow W(-\omega, \mathbf{k}) = W(\omega, \mathbf{k})$$

$$\Leftrightarrow W(\mathbf{r}, \mathbf{r}', \omega) = W(\mathbf{r}', \mathbf{r}, \omega) \Leftrightarrow W(\mathbf{r}, \mathbf{r}', \omega) = W(\mathbf{r}, \mathbf{r}', -\omega).$$
 (2)

Imaginary unit

$$i G = i G_0 + i G_0 \times \underbrace{\bigcup_{-i \Sigma}} \times i G \Rightarrow G = \frac{1}{\omega - E^0 - \Sigma}.$$
 (3)

"Antiparticles" You can treat holes as antiparticles (negative energy, $i \operatorname{sgn}(\xi_{nk})$ in time-ordered Green function) but then corresponding electron modes have to be ignored.

Feynman rules I

Recall that we are working in a crystal – we need to talk about \boldsymbol{G} vectors One set of rules that work:

• Propagator:

$$\xrightarrow{n,k} = \frac{i}{\omega - \xi_{nk} + i \, 0^+ \operatorname{sgn}(\omega)} =: i \, G_{nk}^0(\omega). \tag{4}$$

• Interaction:

$$q, \mathbf{G} = -i \frac{1}{V} \nu(\mathbf{q} + \mathbf{G}). \tag{5}$$

But the prefactor of the interaction Hamiltonian is still 1/2V, and

$$v(\mathbf{q}) = \int d^3 \mathbf{r} e^{-i \mathbf{q} \cdot \mathbf{r}} v(\mathbf{r}).$$
 (6)

Jinyuan Wu The theory June 26, 2023 5 / 11

Feynman rules II

For vertex,

$$n', \mathbf{k} \downarrow \mathbf{q}, \mathbf{G}$$

$$n, \mathbf{k} + \mathbf{q} \mid e^{i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} \mid n' \mathbf{k} \rangle =: M_{nn'}(\mathbf{k}, \mathbf{q}, \mathbf{G}). \quad (7)$$

Note that the momentum arrow attached to the interaction line only controls the sign before \mathbf{q} and \mathbf{G} ; we don't sum over possible directions of the arrow. Thus

$$n, \mathbf{k} + \mathbf{q}$$

$$q, \mathbf{G}$$

$$n', \mathbf{k}$$

$$= \langle n' \mathbf{k} | e^{-i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}} | n, \mathbf{k} + \mathbf{q} \rangle =: M_{nn'}(\mathbf{k}, \mathbf{q}, \mathbf{G})^*.$$
(8)

Here is where the phase factor of each $\phi_{n\mathbf{k}}$ enters the calculation:

Jinyuan Wu The theory June 26, 2023 6 / 11

Feynman rules III

- Momentum conservation is enforced by $\delta_{\mathbf{k}_1+\mathbf{k}_2+\mathbf{k}_3+\mathbf{k}_4,0}$: no $(2\pi)^3$ factor is needed.
- For internal lines, sum over k, n, G; no additional normalization factors are needed.
- For external lines: $\mathbf{r} \leftarrow \mathbf{r}'$ is $\phi_{n\mathbf{k}}^*(\mathbf{r})$, and $\phi_{n\mathbf{k}}^*(\mathbf{r})$, as in:

$$G(\mathbf{r}, \mathbf{r}', \omega) = \sum_{n, \mathbf{k}} \frac{\phi_{n\mathbf{k}}(\mathbf{r})\phi_{n\mathbf{k}}(\mathbf{r})^*}{\omega - \xi_{n\mathbf{k}} + i \operatorname{sgn}(\xi_{n\mathbf{k}})},$$
 (9)

where r is the outgoing index and r' is the incoming index. (When going from G(r, r') to $G_{k,nn'}$, outgoing external line becomes $\phi_{nk}^*(r)^*$ and incoming external line becomes $\phi_{n'k}(r')$)

The normalization condition is

$$\int d^3 \mathbf{r} \, \psi_{n\mathbf{k}}^*(\mathbf{r}) \psi_{n'\mathbf{k}'}(\mathbf{r}) = \delta_{nn'} \delta_{\mathbf{k}\mathbf{k}'}, \quad \psi_{n\mathbf{k}} \simeq \frac{1}{\sqrt{V}} e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}}. \quad (10)$$

Jinyuan Wu The theory June 26, 2023 7 / 11

GW without G

To avoid directly dealing with poles, we choose to

Jinyuan Wu GW without G June 26, 2023 8 / 11

Overview

Three levels of frequency dependence:

- Static COHSEX
- @ Generalized plasmon-pole model (GPP)
- Full frequency

Interpolation

Two sources of errors

- **k**-grid sampling
- Finite number of bands (this can be systematically reduced: for each k, $\{u_{nk}\}_n$ is a complete basis of the space of possible u_{nk} .)

Jinyuan Wu Building the kernel June 26, 2023 10 / 11

The expression of ϵ_2

Jinyuan Wu Calculating absorption June 26, 2023