Programmable Interfacing Devices

General-Purpose Programmable Peripheral Devices

- PPI Programmable Peripheral Interface
- It is an I/O port chip used for interfacing I/O devices with microprocessor.
- Very commonly used programmable devices from Intel family are:
 - The 8255A peripheral interface.
 - The 8254 Interval Timer.
 - The 8294A Interrupt Controller.
 - The 8237 DMA controller.

8255 Programmable Peripheral Interface

- **Features of 8255 Programmable Peripheral Interface**
 - 8255 is designed to work with various microprocessors like 8085, 8086 etc.
 - 8255 is designed to increase capacity of Input Output Interface.
 - 8255 has three 8bits bidirectional IO ports.
 - 8255 has three IO modes of transfer data:
 - Simple IO mode
 - Handshake IO mode
 - Bidirectional handshake IO mode
 - ■8255 has BSR mode to alter individual bits of port C.

8255A Programmable Peripheral Interface

- The 8255A is a general purpose programmable I/O device designed to transfer the data from I/O to interrupt I/O under certain conditions as required. It can be used with almost any microprocessor.
- It consists of three 8-bit bidirectional I/O ports (24 I/O lines) which can be configured as per the requirement.

Data Bus Buffer

- ☐ It has bidirectional data bus D0 D7.
- □ D0 D7 is interfaced with system data bus of Microprocessor.

Read Write Control Logic of 8255

Read Write Control Logic

- \square 8255 read and write data as per control signals \overline{RD} and \overline{WR} connected with microprocessor.
- RESET will reset 8255.
- A1 and A0 used to select port and control word.
- \square \overline{CS} is used to select chip of 8255.

CS	A1	A0	Selected	Sample Address			
0	0	0	Port A	80H [1000 00 <mark>00</mark>]			
0	0	1	Port B	81H [1000 00 <mark>01</mark>]			
0	1	0	Port C	82H [1000 00 <mark>10</mark>]			
0	1	1	Control Register	83H [1000 00 <mark>11</mark>]			
1	X	X	8255 is not selected				

Group A & Group B Control of 8255

Group A and Group B Control

- ☐ Group A control is used to control PORT A [PA7 PA0] and UPPER PORT C [PC7 PC4].
- ☐ Group B control is used to control PORT B [PB7 PB0] and LOWER PORT C [PC3 PC0].
- ☐ It takes control signals from control word and forwards it on respective ports.

Ports of 8255

❖ PORT A, PORT B and PORT C

☐ These are 8 bits IO ports and works as follows:

Port	MODE 0	MODE 1	MODE 2	BSR MODE
PORT A	YES	YES	YES	NO
PORT B	YES	YES	NO	NO
PORT C	YES	NO [HS]	NO [NS]	YES

Ports of 8255A

- 8255A has three ports, i.e., PORT A, PORT B, and PORT C.
 - Port A contains one 8-bit output latch/buffer and one 8-bit input buffer.
 - □ **Port B** is similar to PORT A.
 - □ Port C can be split into two parts, i.e. PORT C lower (PC0-PC3) and PORT C upper (PC7-PC4) by the control word.
- These three ports are further divided into two groups, i.e. Group A includes PORT A and upper PORT C. Group B includes PORT B and lower PORT C. These two groups can be programmed in three different modes, i.e. the first mode is named as mode 0, the second mode is named as Mode 1 and the third mode is named as Mode 2.

Block diagram of 8255

Different Mode of Operation of 8255

8255A has three different operating modes -

- Mode 0 In this mode, Port A and B is used as two 8-bit ports and Port C as two 4-bit ports. Each port can be programmed in either input mode or output mode where outputs are latched and inputs are not latched. Ports do not have interrupt capability.
- Mode 1 In this mode, Port A and B is used as 8-bit I/O ports. They can be configured as either input or output ports. Each port uses three lines from port C as handshake signals. Inputs and outputs are latched.
- Mode 2 In this mode, Port A can be configured as the bidirectional port and Port B either in Mode 0 or Mode 1. Port A uses five signals from Port C as handshake signals for data transfer. The remaining three signals from Port C can be used either as simple I/O or as handshake for port B.

Control Word and Modes of 8255

Control Word

8255 has 8 bits of control word. It defines working of IO ports A, B and C.

Control Word and Modes of 8255

- **❖** BSR [Bit Set Reset] Mode of 8255
 - BSR Mode only works with PORT C.

Control Word and Modes of 8255

Modes of 8255

☐ There are three 8 bits IO ports and works as follows:

Port	MODE 0	MODE 1	MODE 2	BSR MODE
PORT A	YES	YES	YES	NO
PORT B	YES	YES	NO	NO
PORT C	YES	NO [HS]	NO [HS]	YES

- ☐ Here, Mode 0 is simple IO mode.
 - Output are latched and Input are not latched.
 - Port Do not have Interrupt handling capacity.
- ☐ Here, Mode 1 is IO mode with handshake.
 - Here each port uses three lines from port C as Handshake signals.
 - Here, Input and Output are latched.
 - Interrupt handling is supported.
- ☐ Here, Mode 2 is Bidirectional IO mode with handshake.
 - Here port A uses five lines from port C as Handshake signals.
 - Interrupt handling is supported.

Activate Windows
Go to Settings to activate Windows,

Works in handshaking mode

Pin Diagram of 8255

Programming of 8255

Problem

❖ Identify the port Address, Identify the Mode 0 control word to configure port A & Upper port C as output port and port B & Lower port C as Input port. Write a program to read DIP from Input and display it with LED on Output. Control word for the problem

Interfacing, and Addressing Details

MVI=Move immediately ANI=Immediate addressing RLC=Rotate Left through Carry (Convert lower to upper nibble)

Interfacing A/D converter using 8255

- To interface the ADC with 8085, we need 8255 Programmable Peripheral Interface chip with it.
- The Port A of 8255 chip is used as the input port. The PC₇ pin of Port C_{upper} is connected to the End of Conversion (EOC) Pin of the analog to digital converter. This port is also used as input port. The C_{lower} port is used as output port. The PC_{2-0} lines are connected to three address pins of this chip to select input channels. The PC₃ pin is connected to the Start of Conversion (SOC) pin and ALE pin of ADC 0808/0809.

Interfacing A/D converter using 8255 (Cont.)

8253 Programmable Interval Timer

- The Intel 8253 is Programmable Interval Timers (PTIs) designed for microprocessors to perform timing and counting functions using three 16-bit registers.
- Each counter has 2 input pins, i.e. Clock & Gate, and 1 pin for "OUT" output.
- To operate a counter, a 16-bit count is loaded in its register.
- On command, it begins to decrement the count until it reaches 0, then it generates a pulse that can be used to interrupt the CPU.

Fig.10.1 Pin Configuration of Intel 8253

Fig.10.2 Functional Block Diagram of 8253

8259 Programmable Interrupt Controller

 The 8259A is a programmable interrupt controller specially designed to work with Intel microprocessor 8080, 8085A, 8086, 8088.

Fig.11.2 Pin Configuration of Intel 8259A

Modes of 8259A PIC

- Fully Nested mode
- Special Fully Nested mode
- Nonspecific Rotating
- Specific Rotating
- Special Mask
- Polling
- Fixed priority mode

Fully nested mode:

- This is a general purpose mode where all IR's are arranged in highest to lowest.
- IR0 highest and IR7 lowest.

Special Fully Nested Mode:

- Used in more complicated systems.
- Similar to, normal nested mode.
- When an interrupt request from a certain slave is in service, this slave can further send requests to the master.
- The master interrupts the CPU only.

Automatic Rotation Mode:

 In this mode a device after being serviced receives the lowest priority.

Specific Rotation Mode:

 In this user can select any IR for lowest priority thus fixing all priorities.

Special Mask Mode

 When a mask bit is set in OCW, it inhibits further interrupts at that level and enables interrupt from other levels, which are not mastered.

Poll command

- The INT output is neglected, though it functions normally by not connecting INT output or by masking INT input of the microprocessor.
- This mode is entered by setting p=1 in OCW3.
- A poll command may give more than 64 priority levels.

Fig:- Interface 8259 PIC with 8086 Microprocessor

8257 DMA Controller

- DMA stands for Direct Memory Access. It is designed by Intel to transfer data at the fastest rate. It allows the device to transfer the data directly to/from memory without any interference of the CPU.
- Using a DMA controller, the device requests the CPU to hold its data, address and control bus, so the device is free to transfer data directly to/from the memory. The DMA data transfer is initiated only after receiving HLDA signal from the CPU.

Features of 8257

- It has four channels which can be used over four I/O devices.
- Each channel has 16-bit address and 14-bit counter.
- Each channel can transfer data up to 64kb.
- Each channel can be programmed independently.
- Each channel can perform read transfer, write transfer and verify transfer operations.
- It generates MARK signal to the peripheral device that 128 bytes have been transferred.
- It requires a single phase clock.
- Its frequency ranges from 250Hz to 3MHz.
- It operates in 2 modes, i.e., Master mode and Slave mode.

Fig. 14.62 Functional block diagram of 8257