Homework 11

Zac Yauney

September 21, 2022

1 The text shows that A^{\dagger} has the SVD $A^{\dagger} = V \Sigma_A^{-1} U^*$. Compare this to $A_1^{-1} = V \Sigma_{A_1}^{-1} U^*$. The unitary matrices all have 2-norm of 1, and the 2-norm is equivalent to the largest singular value, so we have

$$||A^{\dagger}||_2 = \frac{1}{\sigma_{\min}(A)}$$

$$||A_1^{-1}||_2 = \frac{1}{\sigma_{\min}(A_1)}$$

Then we only need show that $\sigma_{\min}(A) \geq \sigma_{\min}(A_1)$. This follows from the fact that the singular values for A are the square roots of

$$A^*A = \begin{bmatrix} A_1 & A_2 \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = A_1^*A_1 + A_2^*A_2 \ge A_1^*A_1$$

which is greater than the singular values for A_1 , the square roots of the eigenvalues of

 $A_{1}^{*}A_{1}$

This shows that A has larger singular values, and thus A^\dagger has a smaller 2-norm than $A_1^{-1}.$