- **Ex 1** Quelle est la classe sur \mathbb{R}_+ de $f: x \mapsto 1 2x + x \sin \sqrt{x}$?
- **Ex 2** Montrer que la fonction $f: x \mapsto x^3 \ln x$ se prolonge en une fonction de classe C^2 sur \mathbb{R}_+ .
- **Ex 3** Convexité. On dit $f \in C^2(I)$ est convexe lorque $f'' \ge 0$.
 - a) Soit f > 0 de classe C^2 sur I. Montrer que si $\ln f$ est convexe sur I, alors f est convexe sur I. Réciproque?
 - b) Soient f>0 et g>0 de classe C^2 sur I. Montrer que $\ln f$ est convexe sur I si et seulement si pour tout $t\in I$ le polynôme $P_t\left(x\right)=f\left(t\right)x^2+2f'\left(t\right)x+f''\left(t\right)$ est positif sur $\mathbb R$ En déduire que si $\ln f$ et $\ln g$ sont convexes sur I, alors $\ln \left(f+g\right)$ aussi.
 - c) Soit $f \in C^{2}(I)$ une fonction convexe sur I. Montrer que C_{f} est au dessus de toutes ses tangentes.
- **Ex 4** Soit $n \in \mathbb{N}$
 - a) Soit $a \in \mathbb{R}$. Calculer la dérivée n-ième de $f: x \mapsto \frac{1}{x-a}$
 - b) En déduire la dérivée n-ième de $g: x \mapsto \frac{1}{x^2 1}$
- **Ex 5** Soit $n \in \mathbb{N}$. Calculer la dérivée n-ième de $f: x \mapsto x^3 e^{-2x}$
- **Ex 6** Soit $n \in \mathbb{N}^*$. Pour $x \in \mathbb{R}$, on pose $P_n(x) = e^x \frac{d^n}{dx^n} (e^{-x} x^n)$.

A l'aide de la formule de Leibniz, montrer que P_n est un polynôme dont on donnera l'expression.

Ex 7 Soit f une fonction de classe C^{∞} sur $]0, +\infty[$. Montrer par récurrence que

$$\forall n \in \mathbb{N}^*, \ \forall x > 0, \ \frac{d^n}{dx^n} \left(x^{n-1} f\left(\frac{1}{x}\right) \right) = \frac{(-1)^n}{x^{n+1}} f^{(n)} \left(\frac{1}{x}\right)$$

Ex 8 Pour
$$x \in]-1,1[$$
, on pose $f(x) = \frac{1}{\sqrt{1-x^2}}$.

Montrer par récurrence que pour tout $n \in \mathbb{N}$, il existe un polynôme P_n tel que

$$\forall x \in]-1,1[, f^{(n)}(x) = \frac{P_n(x)}{(1-x^2)^{n+1/2}}$$

Donner une relation entre P_{n+1} , P_n et P'_n et calculer P_0 , P_1 et P_2 .

Ex 9 Pour
$$x \in]-1,1[$$
 , on pose $f\left(x\right) =\frac{\arcsin x}{\sqrt{1-x^{2}}}$

- a) Montrer que f vérifie : $\forall x \in]-1,1[$, $(1-x^2)$ f'(x) xf(x) = 1
- b) Montrer que f vérifie : $\forall x \in]-1,1[, (1-x^2) f^{(n)}(x) (2n-1) x f^{(n-1)}(x) (n-1)^2 f^{(n-2)}(x) = 0$
- c) En déduire $f^{(n)}(0)$ (Discuter sur la parité de n. On conjecturera et on raisonnera par récurrence.)

PCSI 1 Thiers 2019/2020