INGULAR SOLUTIONS

$$S = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x, y, t) dt$$

We write the Heniltonian

Definition: Lot (x° u°, t°) be or optimal solution of the doore probblem, and 20°, 2° the corresponding multipliers.

The solution is singular if I a subjected [ti,t"], t">ti's ti's which the Haviltoin

It (x°(t), w, 2°, 2°(t), t) is independent from ot least one component of w in [t', t"]

p In this interval He Houiltonian does not eleperal on the control (Bood Hing)

Idea: Fe subset : nutich the Herilterian does not depend on the control

2# = 07 => Singularity depends as food 1

The idea is to find a cost index I that evoid

To do that we split the Horiltoin in 2 parts one depending on the state and one on the control.

Meren: Assure the Heritain of the Form: H(x,u, 20,2,t) = H, (x,20,2,t)+H2(x,20,2,t)N(x,u,20,2,t) Let (x*, v*, tg*) be a extremm and 20*, 2* the multipliers such that N(x*, w, 20*, 2,t) is dependent or ony component as in ony subsitered [ti, tg] A nec. 2 suff. andition for (x*, v*, tg*) to be e singulore extremm is that I a subintered [t',t"] c [ti,tq], t">t' such that $[A_{2}(x,\lambda_{0},\lambda,t)=0]$, $\forall t \in [t',t'']$ # exomple * = Ax+Bu اں اے ، x (ti) = xi m'n. mm time 5 = 1. dt ~ problem property = 0, we 22 nove a jugulo H= 201 + 2TAx+ 2TBU HITA does not HZ N despend on U this never occurs with a special hypothesis

~ The linear minimum time aptimal control

OC of a linear sys with:

- · fixed initial liftinal state · constrained control · cost index equal to the leight of the time interval

with x(t) ∈ R^, v(t) ∈ RP, lv; (t) (≤1, j=1,2,...,p A(t) EC^2, B(t) EC2-1 YEER To at least C' class

The oin is to determine the find instart tig & R and He cound voe co (R) recovernous duos evoywhere and the state x° & c'(R), ninzing:

$$J(f_g) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dt = t_g - t_i$$

Meren: Nec conditions for (x*, u*, ty*) to be or oppoint solution one that I a constant loss o end a n-dimensional function 2 * E C' Cti, tg] not simultaeously rull and such Hat:

$$\dot{\lambda}^* = -A^T \lambda^* = -\frac{\partial H}{\partial x}^T$$

2* Bu = 2* Bu* YweRP: |wj| = 1, j=1,2...p

Possible discontinuities in 2 con appear only in the points in which ut has a discontinuity.

Voreover we have the fixed tind state $x(t_g)=0$ but we don't have to therefore we have the transversality and tion

Proof

The Hamiltonian essociated to the problem ::

H = 20 + 2TAx + 2TB0

Applying the nimm principle

2 = - 2 H T

H(... w ...) ≥ H (... v ...) ¥IWISI

end applying the trasversality conditions, the theorem is proved

End

~ Strong controllobality It's a new hypothesis. When we had x(t) = Ax(t) + Bu(t), a system in the steady store case, with A and B constant matrices, for the controllability we had rone { (BAB... An-1B) } Now we have A(t) and B(t) so :T's not possible ory more. Strong controllability corresponds to the controllability in any instantii, in any time interval and by any component et the control vertor Let us : not cote with b; (+), the j-th column of B(4) $\mathfrak{G}(+) = \left(\begin{array}{c} b_{1}(t) \\ | \end{array}\right) \left(\begin{array}{c} b_{2}(t) \\ | \end{array}\right) \dots \right)$ j-th column $\rightarrow b_2(t) = b_j(t)$ G.(t): (b)(t) b)(2)(t)) If the det \$0 \$\forall t \geq t\$ is guaranteed is guaranteed $b^{(k)}(t) = b^{(k-1)}(t) - A(t)b^{(k-1)}(t)$ $b^{(k)}(t) = b^{(k-1)}(t) - A(t)b^{(k-1)}(t)$

- In the NON steady state case is a suff condition for strong controllosity

- In the steady state case is neck suff condition and may be written as usual:

det { (b; Ab; An'b;) } + 0 \forall = 1,..., P

~ Characterization of the applicate solution

aptind problen [hearen: Consider the minimum time x (4) = A(f) x (t) + B(t) v (t)

 $\times (\downarrow;) = \times; \times (\uparrow;) = 0 \quad |v;(\uparrow)| \leq 1$

 $J = \int_{0}^{t} dt = ty - ti$

If the strong controllability andition is solistical (det 863 #0)

If I He solwin:

- 1) It's non singular
- 2) Uj is a bang-bang solution: every component of the optimal solution is piecewis constant assuming only the extreme values = I
- 3) The number of switches limited (t) < 00) (discovinnity instants) is

A Proof

1) By controd-J:00

It the solution were singular, from the Pontryagin principle

H = 201 + 2TAx + 2TBU H, H2 N

-P 2 TBW = 2 TBU \ \text{W: |w: |s1} \\
The singularity exists when 2 TB = H2 = 0, so when

in [ti,t"] c [ti,tgo] 2° (t) b; (t)=0 I derive many times lith by(t) and using 2 = -AT2: He fundion is 0

so the deviolite to

(it is constant)

t' t" 1 (+) b; (+) = 0 (d i b; + lb; = 0 D-Alb; + 2b; Dof Remember He motrix G. (+)
of strong controllobility $\frac{d(\lambda^{\tau(t)}b_{j}(t))}{dt^{i}} = \lambda^{\circ\tau(t)}b_{j}^{(i+i)}(t) = 0$ l=1...η-) -> 2° T(t) G; (t) = 0 $\forall t \in [t', t"]$ On the other hand 2°(t) most be \$0 \text{\$t \in Ct', t"} otherwise, from the <u>nec condition</u> $\lambda = -A^T \lambda$ it should be nell in the whole sterred and in porticular 2°(ty) =0 and if 2/ty)=0 we have the Loimpossible becouse trespessify condition $H|_{tg}^* = 0$ because to is not fixed and this leads to 20 = 0 in feat: H=201 + 2TAx+2TBJ -> H=201 -> No count be 0! o in this hypothesis Therefore, from the coodition 2°'(t) (f, (t)=0, YteCt', t") it results that det 2 (f; (t) 3=0, in fat from Croner, if det { 6; }=0 we should have that 2(+)=> which is not possible from strong controllability
- The salution is non singular

3) To demonstrate that the number of discortinuity installs is finite, we can proceed by contradiction!

Assume det { b; (+) } = 0 & t & [t', t''] which contradicts the hypothesis of strong controllability in fact let us assume that at least for one component of the control u; (+) it is not true

Then en accumulation point to E[ti, ty o] of switching in starts to exists

to eccumulation point (intervel)

By continuity, given $U_j(t) = -sign \{\lambda^{\circ T}(t) b_j(t)\}$ $\lambda^{T}(t_k^{(j)}) b_j(t_k^{(j)}) = 0$ $\lambda^{\circ T}(z) b_j(z) = 0$

Trick: for the continuity of 2° (t) b; (t) =0 between the (s) and tren;

I on instant fe(s) in which $\frac{d}{dt}(2^{\circ} T(t)b_{j}(t))=0$

the derivative = 0 when to example we have morina and ninna

Therefore, by continuity does not: $\frac{d}{dt}\left(2^{\circ T}(t)b_{j}(t)\right)=0$ and onelogousty, $\frac{d^{i}}{dt^{i}}\left(2^{\circ T}(t)b_{j}(t)\right)\Big|_{\mathcal{L}}=0, i=0,1,...(n-i)$

=> det { G; C+) }=0 \tellefter [t',t"]

contradition with SC hypothesis

C

A costrol function that assumes only the limit values is collect bong-bone costrol and the instants of discostinuity ore collect commutation instants

~ Uniqueness

If the hypothesis of strong controllability is solistied, if or aptimal solution exists, it is unique

~ Measurable function

let $S(t_i,t_g)$ be the space of piecewise constant function defined as follows:

$$S(t) = \begin{cases} c_j & \forall t \in I_j, j=1,2,...,m \\ o & \forall t \notin \bigcup_{j=1}^{m} I_j \end{cases}$$

Let z(t) be a function s.t. I e sequence $\{s^{(k)}\}_C S(t_i, t_g)$ such that $\forall t \in [t_i, t_g]$, with the exception of isolated points, are hes:

lin $S^{(k)}(t) = z(t)$ k-ro

7 (t) is a reosurdide function, the limit of a piecewice constant function

The space M(ti, ty) of neosonable function is linear.

Renot

These results hold do to the case is which the control is in the space of necessardle function defined on the space of red number R

NExistère of the optimal Salution

Theoren: If the condition of strong controllability is satisfied and if or admissible solution exists:

- I a optimal solution
- The solution is unique and non singular
- The control is bong-bong

Proof

The existence Heaven is proved on the besis of the following results:

Theorem: Let ossume Hot the control functions belong to the space of measurable functions. If I are admissible salution, then the applical salution exists Trivid case: Finite number of admissible solutions

We have for example (t, 0, 0, x, 0), $(t_2, 0_2, x_2, x_2)$, $(t_3, 0_3, x_3)$ Supposing t_2 is the lower bound of the sequence t_1^0, t_2^0, t_3^0 , then $(t_1^0, 0_2^0, x_2^0)$ is the solution of the normal fine problem

Nor trivial case: & eduissible solutions

tyo is the minimum extreme of the insterts ty corresposing

to the eduissible solutions or tyo = inf {ty}

Con we find a minimum?

We build a sequence of eduissible solutions

{(x(k), (k), ty(k))}, ty(k) }, ty(k) ≥ ty

Lo larger because tyo is the sequence

k-ove

New consider the transition notice of the system

 $\frac{1}{2}(t,z), \text{ from the linear sys:}$ $\frac{1}{2}(t,z), \text{ from$

l'm [x(k)(ty(k)) - x(k)(ty°)] = l'm [\$\phi(ty(k), t_i) - \phi(ty^*, t_i) \text{x} + t_i \text{to } \text{to }

So we know Hot cach $x^{(k)}(t_3^{(k)})=0$ becouse :T is en admissible solution Heretore:

l'm [x(t)(tg(t)) -x(t)(tg°)] = 0

(ty) = 0

Only the course now is missing.

Given the colorissible solution $\{x^{(k)}, v^{(k)}, tg^{(k)}\}$, we consider $\bar{v}^{(k)}$ as the truncation of $v^{(k)}$ in $tg^{(k)}$

This function: > limited and Lz, this means that if we do the integral) 1812 × 00 - it is bounded, since (10; (2)(+) | 51.

The sequence of fundions { \(\bar{u} \) \(Fundion such that |u,(t)|=1, \telti,tg°] Meretore this sequence admits a subsequence, indicated still with { J (E)}, weatly converging to e function u° EM.

In synthesis:

from { v(x)} in tg° } { v(x)} conted

be find a subsequence

find a subsequence { -(x) } weatly U

- Wedt convergence of Yneosundste Rindia h

He limit of the integral of he times the sequence, is equal to the integral of he times up

(river xo, the evolution of the state corresponding to vo: lin x(e)(tg°) = \$\phi(tg°, ti)x: + lin \in \tag{ts} \$\phi(tg°, t) B(t) \overline{\tag{t}} dt = \$\phi(tg^*, ti) x: + \int \text{is }\phi(tg^*, t) B(t) v^*(t) dt = \times^*(tg^*)

Meretere, given lim x (x)(tg°)=0, we deduce x°(tg°)=0

So we have tound the aptimal solution (x°, 3°, tg°) with a control oble to transfer the state to the evigin.

End

Renort

the existence of the aptimal solution is quaranteed only for the caughters (ti, xi) for which the admissible solution crists.

~ Minimu time problem for steedy state system

In this case there's a result on the number of commutation points no I can say the maximum number of switching points

Given
$$x(t_i)=x_i$$
 $x(t_i)=0$ $|u| \leq 1$
 $\int_{-\infty}^{+\infty} dt = t_i - t_i$

Meson: consider the control function belonging to the space of neosurable function.

If the system is controllable

=D Je reighber I I the evigor such that

\(\times \colon \in \in \mathbb{L} \) there exists on applical solution

Proof

If I con show in this case that I or admissible solvier, I have solved it due to the previous results. Let us fix any typo. The feat that the system is carrollable

con be described by soying that we can find a control able to transfer the initial state x; & 2 to the origin at the insorty:

$$\dot{x} = A_{\kappa} + B_{\upsilon}$$
 $x(t) = e^{A(t-t_i)}x_i + \int_{c}^{c} e^{A(t-\tau)}B_{\upsilon}(\tau) d\tau$

I was that
$$x(t_g)=0$$
, so $t=t_g$ must be 0
 $x(t_g)=e^{A(t_g-t_i)}x_i+\int_{t_i}^{t_g}A(t_g-e)Bu(t_g)dt=0$

Since A, B and ty ore fixed, we miss only v.

substituing in the lest integral:

In order to show the controlleds lity, it is equivalent to say that the Growin notice is also singular.

From the previous considerations:

substituine in u(z):

This is an admissible antial, and it exists if the initial state

is sufficiently near the origin.

The control u(z) to be admissible, must be $|u| \le 1$ as known, and to respect this condition, since everything is give with exception of xi, therefore chosing it very small, of course u(z) could be ≤ 1

End

How con we evoid the constraint of being near the origin?

If the eigenvalues of A have negative real part

(Re {23 < 0), I or aptimal solution whatever the

initial state's.

Proof

· let 12 be e reighbour of the digin including the visind store x; for which or polisisible solution exists.

- · Let Ω' be a closed subset in Ω
- possible to reach 12' in al finite time with null significant (free evalution), from only initial state

this probably isn't the optimal solution but I don't core because I need only on admissible one

End

- How many commutation instants?

If we have the controllability condition, if Re {23 ±0, the number of commutation in starts for any component of the control is \(\le 1-1 \) whatever the initial state is.

Lo dimension of A

Proof

(i.e. the appind word with the steady of the [ti, ty] where the cost 2° in the steady of the case is:

H=20.1+2^TAx+2^TBu -02=-2H|T=-A^TZ| 2° (t)= $e^{-A^{\dagger}(t-t_i)}\lambda_i$

Now:

x(t)= Ax(t) + Bu(t)

A + Rnnn -> n eigenvolves

denoting by de the eigenvolves and by me their

multiplicity, the expression of the r-th component of 2°

with religion is:

2° (t) = 5 = 1 (t) e - ds (t-ti) polynorial function of degree 2 ms

Now substituine l'ill in the expression et the bong-bong control we obtain:

$$v_{j}^{\circ}(t) = -sien \left\{ \sum_{s=1}^{k} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{k} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right) e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right\} e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right\} e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right\} e^{-\alpha s}(t-t) \right\}$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right\} e^{-\alpha s}(t-t) \right\} e^{-\alpha s}(t-t)$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right\} e^{-\alpha s}(t-t) \right\} e^{-\alpha s}(t-t)$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right\} e^{-\alpha s}(t-t) \right\} e^{-\alpha s}(t-t)$$

$$= -sien \left\{ \sum_{s=1}^{n} \left(\sum_{s=1}^{n} b_{jr} P_{rs}(t) \right\} e^{-\alpha s}(t-t) \right\} e^{-\alpha s}(t-t)$$

$$= -sien \left\{ \sum_{s=1}^{n} \left($$

The optimal control is given by the sum of polynomial functions in which each of them has degree < Ms, so the organist of the sign function has at most mi + mz + ... + Mr-1 = n-1 real solutions

Therefore the control vi has at most n-1 roots

#End

Franct: In the minimum fine problem it is not possible to rolate directly the costrol and the state esphicitly $v^{\circ}(t) = -sign \{2^{T}(t)B\}$ and not $v^{\circ}(t) : f(x^{\circ}(t))$