Amanda Friedenberg ECON 501B

ECON 501B: Problem Set 7

Due: Thursday, November 1, 2018

Instructions: Answers should be complete proofs of a claim.

Question 1: Consider a matching market where there are n Minions (M_1, \ldots, M_n) and n Grus (G_1, \ldots, G_n) . (You may assume n is either even or odd, if that makes your life easier.) They look to match with one another in Minion and Gru pairs; all matches are acceptable. If Minion M_i is matched to Gru G_j they each get a utility of $u(M_i, G_j) = (i + j)^{\alpha}$, where $\alpha \in (0, 1)$.

- 1. If utility is non-transferable, what is the resulting stable match μ^{NTU} ?
- 2. If utility is transferable, what is the resulting stable match μ^{TU} ?
- 3. What is the welfare associated with μ^{NTU} ? What is the welfare associated with μ^{TU} ?
- 4. Consider the ratio of the welfare associated with the match μ^{NTU} to the welfare associated with the match μ^{TU} , i.e.,

$$\frac{W(\mu^{NTU})}{W(\mu^{TU})}.$$

What happens to this ratio as $n \to \infty$. Interpret this finding.

Question 2: Consider the partial equlibrium economy described in class. Let Problem (*) represent the following constrained optimization problem:

$$\max_{(x,q)} [\overline{\omega}_m + S(x,q)] \qquad \text{subject to} \qquad \sum_{i=1}^I x_i = \sum_{j=1}^J q_j.$$

Show the following.

- 1. If (x^*, q^*) solves Problem (*), then there exists a Pareto optimal allocation (x^*, m^*, q^*, z^*) .
- 2. If (x^*, m^*, q^*, z^*) is Pareto optimal, then (x^*, q^*) solves Problem (*).

Question 3: MWG Question 10.C.2