

ADVANCED PROCESS MODELLING FORUM 22–23 APRIL 2015

gPROMS ProcessBuilder

Advanced Applications

Bart de Groot – Principal Applications Engineer

gPROMS ProcessBuilder - Advanced Applications

Detailed reactor design

- Full reactor modelling
 - standalone or within flowsheet
- Any level of complexity
- Start-up, shutdown, transition analysis
- Reduce cost of ownership of reactor, catalyst design
- → Potential \$M benefit

Optimal equipment configuration

- Rigorously optimise configurational aspects
 - distillation stages, feed and draw locations
 - batch equipment sizes
- Reduce CAPEX & OPEX
- **→** Potential \$M benefit

Whole-plant optimisation

- Consider entire plant simultaneously
- Detailed reactor and separation modelling
- Multiple decision variables
- Economic objective function
- → Potential \$M benefit

Advanced Application: Whole-plant optimisation

Include major trade-offs

minimise reactor cost vs minimise separation cost

2. Get results you can trust

- use high-fidelity models
- validate with lab and/or plant data
- accurately represent constraints

3. Find <u>truly</u> optimal design

- include all relevant decisions
- explore multi-dimensional problem efficiently
- come up with solutions you hadn't considered
- don't waste time with trial-and-error simulations

Benefits

realise \$millions of additional revenue/cost savings

Example Styrene monomer production

Styrene monomer (SM) production

- SM is precursor to polystyrene, ABS, SBR, and many others
- Usually produced by dehydrogenating ethylbenzene (EB):

$$C_6H_5-CH_2-CH_3 \leftrightarrow C_6H_5-CH=CH_2+H_2$$

Side reactions yield toluene and benzene

$$C_6H_5-CH_2-CH_3+H_2 \rightarrow C_6H_5-CH_3+CH_4$$

$$C_6H_5-CH_2-CH_3 \rightarrow C_6H_6 + C_2H_4$$

- Vapour-phase endothermic reaction
 - catalyst: Fe₂O₃ with K₂O or K₂CO₃
 - heat supplied by steam
- Challenges
 - difficult separation of SM (bp 145°C)
 and unreacted EB (bp 136°C)

Styrene monomer production process

Styrene monomer production process

Modelled in gPROMS ProcessBuilder

Detailed reactor models:

Advanced Model Library for Fixed-Bed Catalytic Reactors

Demonstration #1 Building the SM process model

Click on the image to watch the demo

Whole-plant optimisation Objective function

Total annualised profit (MMUSD)

= Annual revenue — annualised capital cost — operating cost

Demonstration #3

Defining an economic performance measure

Click on the image below to watch the demo

Whole-plant optimisation

Optimisation decision variables

- High-pressure steam generation
- Feed stage and total number of stages of 1st column
- Boil-up ratio of 1st column
- Fresh EB flowrate
- Superheated high-pressure steam flowrate
- Reactor radius

Whole-plant optimisation

Constraints

- Conversion of ethyl benzene
- Selectivity of styrene
- Maximum temperature of reactor
- Minimum temperature difference of two stream heat exchangers
- 0.1mol% ethylene benzene at top liquid stream of 1st column
- 1000 mol ppm ethylene benzene at styrene product
- 1 mol% styrene at top liquid stream of 2nd column

Demonstration #3

Performing an economic optimisation

Styrene monomer plant

Whole-plant optimisation

Key results

	Initial	Optimal
Objective function - Maximise		
Total annualized profit (\$m)	13.34	25.13
Annual revenue (+)	50.49	58.33
Annualised capital cost (-)	8.33	7.07
Operation cost (-)	28.82	26.11
Control variables		
High pressure steam generation (kJ/sec)		6895
Feed stage of 1 st column	40	34
Total number of stage of 1st column	100	90
Boil up ratio of 1st column	1.00	0.59
Fresh Ethyl Benzene flowrate (kg/sec)	4.70	5.89
Flowrate of superheated HP (kg/sec)	9.20	13.40
Styrene reactor radius (m)	1.372	1.339

Conclusions

gPROMS ProcessBuilder

A step change in process flowsheeting

Detailed unit operation models...

...integrated within whole-plant models...

higher confidence in predictions

- Higher-quality, lower-cost designs
- More profitable, safer operations
- → Lower risk

all important interactions & trade-offs taken into account

comprehensive & efficient exploration of decision space

