

Fakultät Umweltwissenschaften, Fachrichtung Geowissenschaften, Professur Photogrammetrie

Objekterkennung und Geodatenfusion

Geometrische Modellierung von Balkenstrukturen am Beispiel des Bautzner Dachstuhls

Babett Hübsch, Loren Mucha, Torsten Frenzel

Dresden, 1/21/17

Gliederung

- 1.Einleitung
- 2.Aufnahmeobjekt
- 3.Workflow
 - Datenaufbereitung
 - Segmentierung
 - Geometrische Modellierung
- 4.Ergebnisse
- 5.Fazit

Motivation

- Teilaufgabe der Bildverarbeitung:
 - Automatische Erkennung von geometrischen Strukturen in und an Gebäuden
- Ziel: Automatische Extraktion geometrischer Modelle aus der Punktwolke
- Weitere Nutzung:
 - In der Baustatik
 - In Simulationsmodellen

Beschreibung

- Dachstuhl des Bautzner Doms
 - Laserscanner: Riegl LMS-Z420i
 - 12 Standorte
 - ca. 34 Millionen Punkte
 - Genauigkeit der Registrierung 5-7 mm

Workflow - Segmentierung

Workflow der Segmentierung

Workflow - Segmentierung

Workflow - Segmentierung

Ergebnis Zusammenführung

Probleme

- 56 Balken wurden automatisch extrahiert
- Originale Punktwolke hat jedoch nur 51 Balken

Probleme 2 und 3

 Leitern, welche als Balken geclustert wurden

Problem 1

- Wände, welche den Balken vorgelagert sind
- konnten durch den PassThrough Filter und der Setzung von Schwellenwerten bei der Euklidischen Clusterung nicht entfernt werden, da ihre Punktmenge ähnlich der Balkenkomplexe war

Probleme 4 und 5

• Es wurden keine Balkenkomplexe erkannt, weil diese innerhalb der MinCut -Segmentierung außerhalb der Schwellenwerte lagen und somit nicht segmentiert wurden

Ansatz

- Zerlegung eines Balkenkomplexes in kleinere Cluster und Gruppierung in Balkenstümpfe
- Schrittweise Einpassung von quaderförmigen Modellen in Cluster:
 - Phase 1: Approximation mittels RANSAC
 - Phase 2: Einpassung in Balkenstümpfe
 - Phase 3: Optimierung mittels PCA
 - Phase 4: Approximation mittels Heuristik
 - Phase 5: Zusammenführen von Balkenstümpfen
 - Phase 6: Verschneidung von Balken

Vorbereitungsphase (1)

- Filterung von Ausreißern
- Slicing entlang der z-Achse in 32 Schichten mittels Pass-Through-Filter
- Euklidisches Clustering in jeder Schicht
- Berechnung der Bounding-Boxen pro Cluster

Vorbereitungsphase (2)

- Gruppierung von Cluster: Balkenstümpfe
 - Überlappende Boxen in benachbarten Schichten
 - Ähnliches Volumen
 - Transitivität

- Extraktion von Begrenzungsseiten mittels RANSAC und Zusatzbedingungen
 - Auswahl von 3 Punkten
 - Zusatzbedingungen zur Vermeidung zur Einschränkung der Lage der Ebene
 - Mindestabstand der Punkte zueinander
 - Anzahl der linken oder rechten Outlier unterhalb von Schwellwert
 - Minimale Distanz der Inlier zum Mittelwert unterhalb von Schwellwert
- Detektion von zwei rechtwinkligen Ebenen

- Rekonstruktion der 4 senkrechten Kanten des Modells
 - Kante 1: Verschneidung der Ebenen (schwarzer Pfeil)
 - Kante 2 & 3: Verschiebung entlang der Flächennormalen an einer Ebene bis zum Rand der Bounding-Box (*rote Pfeile*)
 - Kante 4: Zweifache Verschiebung (blauer Pfeil)
 - Eckpunkte durch Verschneidung mit horizontalen Begrenzungflächen der Bounding-Box

- Kopieren der Modelle innerhalb der Balkenstümpfe in unmodellierte Cluster
- Verschiebung entlang der vertikalen Kanten (grüner Pfeil)

- Optimierung der Begrenzungskanten mittels PCA
 - Zerlegung des Clusters in 4 disjunkte Punktmengen
 - PCA pro Punktmenge
 - Dritte Hauptkomponente als Flächennormale
 - Centroid als Fußpunkt
- Verschneidung der neuen Flächen

- Approximation der Geometrie innerhalb unmodellierter Balkenstümpfe entlang der Hauptrichtung
- Richtungsvektor aus Differenz gleicher Eckpunkte benachbarter Bounding-Boxen (grüner Pfeil)
- Vertikale Kanten (blaue Pfeile) durch Verschiebung der Ecken der Bounding-Box (rote Pfeile)

Phase 5

 Verbindung Balkenstümpfe eines Balkens

- Verschneidung von Balken
- Cluster mit Referenz-Modell und zu generierendes Ziel-Modell
- Bestimmung der Schnittebene
- 4 unterschiedliche Lagebeziehungen:
 - Fall 1: Ungeschnitten
 - Fall 2: teilweise angeschnitten
 - Fall 3: vollständig angeschnitten
 - Fall 4: vollständig abgeschnitten

- Schnittpunkte vertikaler Seiten bestimmten Lagebeziehung
- Zusätzlich Schnittpunkte horizontaler Seiten zur Bestimmung aller Eckpunkte des Referenzmodells

Phase 6

 Korrekte Bestimmung der Schnittgeraden im Referenz-Modell ist kritisch

Endresult

• 11 von 55 Balkenkomplexen korrekt extrahiert

Resultat

- Probleme:
 - Auswahl falscher Schnittkanten bei der Verschneidung
 - Störende Element (Querbalken, Leitern, Seile)
 - Falsche Flächeneinpassung in Quader-Modelle
 - Ungünstige Clusterung
 - Zu kurze Balkenabschnitte

Anzahl der generierten Modelle pro Phase

- Fünf Balkenkomplexe
 - 2 manuell extrahierte Testbalkenkomplexe
 - 3 automatisch extrahierte Balkenkomplexe
- Phase 1 und 2 nur wenig Modelle
- Phase 4 generiert die meisten Modelle
- Phase 6: mehrere Modelle pro Cluster

	Phase 1	Phase 2/3	Phase 4	Phase 5	Phase 6	Cluster
Test-Balken001	2	5	39	51	92	68
Test-Balken002	4	6	37	47	97	74
Balken 10	0	0	16	22	52	37
Balken 22	4	10	15	15	42	37
Balken 44	3	10	17	22	52	37

Genauigkeit der Modelle

 Berechung der mittleren Abstände der Punkte von den Seitenkanten als Fehlerwert

	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5
Test-Balken001	1,26 mm	1,87 mm	0,926 mm	1,39 mm	1,64 mm
Test-Balken002	1,63 mm	1,69 mm	0,691 mm	2,44 mm	2,87 mm
Balken 10	1,58 mm	1,64 mm	0,732 mm	2,39 mm	2,63 mm
Balken 27	1,58 mm	1,82 mm	0,651 mm	1,12 mm	1,32 mm
Balken 44	1,73 mm	1,69 mm	0,690 mm	1,11 mm	1,46 mm

Fazit

- Standardalgorithmen aufgrund der Datenmenge und -qualität nur bedingt geeignet
- Extraktion von Seitenflächen durch robuste Schätzer nur eingeschränkt erfolgreich
- Heuristische Ansätze notwendig
- Ad-hoc-Wissen hilfreich
- Tuning der Schwellwerte und Parameter
 - datenabhängig
 - zeitaufwendig
- Durchgängige Automatisierung prinzipiell möglich
- Generischer Algorithmis für ähnliche Datensätze