Numerical Computing

Muller's Method and The Quotient Difference Algorithm

QASID AHMED ALEEM

COURSE TEACHER: DR. SHAHID QURESHI

BSC(HONOURS)

H-2 (MORNING)

INSTITUTE OF SPACE AND PLANETARY ASTROPHYSICS

UNIVERSITY OF KARACHI

Tasks:

Task1: Muller's Method

Code:

```
1 from math import sin,exp
 2
 3 def func(f):
             return (3*f) + sin(f) - exp(f)
 5 x0=float(input("Enter the first approximation of x:"))
 6 x1=float(input("Enter the second approximation of x: "))
 7 x2=float(input("Enter the third approximation of x: "))
 9 approx1=[x0, x1, x2]
10 approx1.sort()
11 x4=0
12 def a1(g,f0,f1,f2,h1):
13
             return ((g*f2)+(f0)-(f1*(1+g)))/((g*(h1**2))*(1+g))
14
15 def b1(f1,f2,h1,a1):
             return (f2-f1-(a1*(h1**2)))/h1
18 def x_newm(a,b,c,x1):
             return x1-((2*c)/(b -(((b**2)-(4*a*c))**0.5)))
20 def x_newp(a,b,c,x1):
21
             return x1-((2*c)/(b+(((b**2)-(4*a*c))**0.5)))
23 print("{:^13s} {:^13s} {:^13s} {:^13s} {:^13s} {:^13s} {:^13s} {:^13s} {
24 {:^13s} {:^13s} {:^13s} {:^13s}".format("x2","x0","x1","f2","f0","f1",\
25 "h1", "h2", "gamma", "a", "b", "x_new"))
26 for i in range(0,100):
27
             h1=approx1[2]-approx1[1]
28
             h2=approx1[1]-approx1[0]
29
30
             g=h2/h1
31
             a=a1(g,func(approx1[0]),func(approx1[1]),func(approx1[2]),h1)
32
             b=b1(func(approx1[1]),func(approx1[2]),h1,a)
34
             c=func(approx1[1])
35
36
             if b>0:
37
                        x3=x_newp(a,b,c,approx1[1])
38
             else:
39
                        x3=x_newm(a,b,c,approx1[1])
40
41
             if x4==x3:
                        break
42
43
             #print(x3)
44
             approx1.append(x3)
45
             approx1.sort()
46
             del approx1[3]
47
             #print (approx1)
48
             x4=x3
             print("{:13.10f} {: 13.10f} {: 13.10f} {: 13.10f} {: 13.10f} \
49
50 {: 13.10f} {: 13.10f} {: 13.10f} {: 14.10f} {: 13.10f} \
51 {: 13.10f}".format(approx1[0],approx1[1],approx1[2],func(approx1[0]),\
52 func(approx1[1]), func(approx1[2]), h1, h2, g, a, b, x3))
```

```
53  #print(x4)
54
55 print("the approximate root after {:1d} iterations is {:36.34f} ".\
56 format(i,x3))
```

Output:

Spreadsheet work:

x2	х0	x1	f2	f0	f1	h1	h2	g	a	b	x new
0.000000	0.500000	1.000000	-1.000000	0.330704	1.123189	0.500000	0.500000	1.000000	-1.076439	2.123189	0.35491389049
0.000000	0.354914	0.500000	-1.000000	-0.013807	0.330704	0.145086	0.354914	2.446229	-0.808314	2.491802	0.36046467793
0.000000	0.360465	0.500000	-1.000000	0.000108	0.330704	0.139535	0.360465	2.583322	-0.810452	2.482356	0.36042136737
0.000000	0.360421	0.500000	-1.000000	-0.00001	0.330704	0.139579	0.360421	2.582210	-0.810435	2.482430	0.36042170558
0.000000	0.360422	0.500000	-1.000000	0.000000	0.330704	0.139578	0.360422	2.582219	-0.810435	2.482429	0.36042170294
0.000000	0.360422	0.500000	-1.000000	0.000000	0.330704	0.139578	0.360422	2.582219	-0.810435	2.482429	0.36042170296
0.000000	0.360422	0.500000	-1.000000	0.000000	0.330704	0.139578	0.360422	2.582219	-0.810435	2.482429	0.36042170296
0.000000	0.360422	0.500000	-1.000000	0.000000	0.330704	0.139578	0.360422	2.582219	-0.810435	2.482429	0.36042170296
0.000000	0.360422	0.500000	-1.000000	0.000000	0.330704	0.139578	0.360422	2.582219	-0.810435	2.482429	0.36042170296
0.000000	0.360422	0.500000	-1.000000	0.000000	0.330704	0.139578	0.360422	2.582219	-0.810435	2.482429	0.36042170296
0.000000	0.360422	0.500000	-1.000000	0.000000	0.330704	0.139578	0.360422	2.582219	-0.810435	2.482429	0.36042170296
0.000000	0.360422	0.500000	-1.000000	0.000000	0.330704	0.139578	0.360422	2.582219	-0.810435	2.482429	0.36042170296

Task 2: QD ALGORITHM

Code:

```
print("{:^14s}".format("q"+str(s)),end=" ")
18 print(" ")
19 for i in range(0,quest):
            if i==0:
21
                        qsi=(-coefficents[1]/coefficents[0])
22
                        qs.append(qsi)
23
            else:
24
                        qsi=0
                        qs.append(qsi)
26 for s in range(0,quest):
           print("{:15s}{: 14.12f}".format(" ",qs[s]),end=" ")
28 print(" ")
29
30
31 for i in range(0,quest+1):
            if i==0 or i==quest:
32
33
                       esi=0
34
                       es.append(esi)
3.5
             else:
                        esi=coefficents[i+1]/coefficents[i]
36
                        es.append(esi)
38 for s in range(0,quest+1):
           print("{: 14.12f}{:15s}".format(es[s]," "),end=" ")
40 print(" ")
41
42 for i in range(0,d):
43
             for s in range(0, quest):
44
                        qsi=es[s+1]-es[s]+qs[s]
45
                        if i ==0:
46
                                  qsn.append(qsi)
47
                        else:
48
                                  qsn[s]=qsi
49
                                   #as=asn
50
            for s in range(0,quest+1):
                        if s==0 or s==quest:
52
                                   esi=0
                                   if i==0:
53
                                             esn.append(esi)
55
                                   else:
56
                                             esn[s]=esi
57
5.8
                        else:
59
                                   esi=(qsn[s]/qsn[s-1])*(es[s])
                                   if i==0:
60
61
                                             esn.append(esi)
62
                                   else:
63
                                             esn[s]=esi
64
             es=esn
66
             qs=qsn
67
             for s in range(0,quest):
                      print("{:15s}{: 14.12f}".format(" ",qsn[s]),end=" ")
69
             print(" ")
70
71
             for s in range(0,quest+1):
72
                        print("{: 14.12f}{:15s}".format(esn[s]," "),end=" ")
```

```
73 print(" ")
74 print("The {:2d} approximate roots of the function are".format(quest))
75 for s in range(0,quest):
76 print("{: 18.16}".format(qsn[s]))
```

Output:

e erele erer							
what is the highest power of x: 4							
Enter the coefficent of x^0: 1							
Enter the coefficent of x^1: -32							
Enter the coefficent of x^2: 160							
Enter the coefficent of x'3: -256							
Enter the coefficent of x^4: 128							
How many iterations are required: 15							
e0 q0 e1	q1 e2	g2 e3	q3 e4				
2.0000000000	0.000000000000	0.000000000000	0.000000000000				
0.0000000000000000000000000000000000000							
1.375000000000	0.425000000000	0.168750000000	0.0312500000000				
0.00000000000 -0.1931818181							
1.1818181818	0.538770053476	0.242374727669	0.037037037037				
0.000000000000 -0.0880681818							
1.093750000000	0.591113523573	0.277215128112	0.037921348315				
0.000000000000 -0.0475961538							
1.046153846154	0.621955821956	0.293848015156	0.038042316734				
0.000000000000 -0.0282967032							
1.017857142857	0.642337031900	0.301747847627	0.038057977616				
0.000000000000 -0.0178571428	57 -0.0037184269	63 -0.00000197523	0.00000000000				
1.00000000000	0.656475748194	0.305464298960	0.038059952846				
0.000000000000 -0.0117227812	18 -0.0017302186	20 -0.00000024610	0.00000000000				
0.988277218782	0.666468310791	0.307194271472	0.038060198954				
0.000000000000 -0.0079055370	78 -0.0007975071	58 -0.00000003049	2 0.000000000000				
0.980371681705	0.673576340711	0.307991748139	0.038060229446				
0.000000000000 -0.0054315958			0.00000000000				
0.974940085877	0.678643277614	0.308356403295	0.038060233214				
0.000000000000 -0.0037808641							
0.971159221751	0.682258450989	0.308522093581	0.038060233679				
0.000000000000 -0.0026561313							
0.968503090353	0.684839655858	0.308597020052	0.038060233736				
0.00000000000 -0.0018781816							
0.966624909343	0.686684074070	0.308630782844	0.038060233743				
0.000000000000 -0.0013342476							
0.965290661719	0.688003146973	0.308645957564	0.038060233744				
0.000000000000 -0.0009509742							
0.964339687469	0.688947313673	0.308652765114	0.038060233744				
0.000000000000 -0.0006793987	26 -0.0000030498	26 -0.00000000000	0.00000000000				
0.963660288742	0.689623662574	0.308655814940	0.038060233744				
0.000000000000 -0.0004861977	23 -0.0000013656	-0.0000000000	0.00000000000				
The 4 approximate roots of the function are							
0.9636602887421978							
0.6896236625735249							
0.3086558149399226							
0.03806023374435475							
Press any key to continue							
,,							

Spreadsheet work:

e0	q0	e1	q1	e2	q2	e3	q3	e4
	2		0		0		0	
0		-0.625		-0.2		-0.03125		0
	1.375		0.425		0.16875		0.03125	
0		-0.19318		-0.07941		-0.00579		0
	1.1818182		0.53877		0.242375		0.037037	
0		-0.08807		-0.03572		-0.00088		0
	1.093750						0.037921	
0		-0.0476		-0.01675		-0.00012		0
	1.046154		0.621956		0.293848		0.038042	
0		-0.0283		-0.00792		-1.6E-05		0
	1.017857						0.038058	
0		-0.01786		-0.00372		-2E-06		0
	1.000000		0.656476		0.305464		0.03806	
0		-0.01172						0
	0.988277		0.666468		0.307194		0.03806	
0		-0.00791		-0.0008		-3E-08		0
	0.980372				0.307992		0.03806	
0		-0.00543		-0.00036		-3.8E-09		0
	0.974940		0.678643		0.308356		0.03806	
0		-0.00378		-0.00017		-4.7E-10		0
	0.971159						0.03806	
0		-0.00266		-7.5E-05		-5.7E-11		0
	0.968503		0.68484		0.308597		0.03806	
0		-0.00188				-7.1E-12		0
	0.966625		0.686684		0.308631		0.03806	
0		-0.00133		-1.5E-05		-8.7E-13		O,