Interpolacja wielomianowa

Izolda Gorgol wyciąg z prezentacji

Wielomianowe zadanie interpolacyjne – wersja nieformalna

Dane są:

- punkty: x_0, x_1, \ldots, x_n węzły interpolacji;
- wartości: $f(x_0), f(x_1), \ldots, f(x_n)$ wartości pewnej funkcji w tych węzłach;

Wyznaczyć wielomian w z pewnej klasy, dla którego $w(x_i) = f(x_i)$ dla każdego i.

O obliczaniu wartości wielomianu

Wielomian w postaci naturalnej

$$w(x) = \sum_{i=0}^{n} a_i x^i$$

wymaga n dodawań i około n^2 mnożeń do obliczenia wartości w ustalonym punkcie x_0 .

Wielomian w postaci

$$w(x) = (\cdots (a_n x + a_{n-1})x + a_{n-2})x + \cdots + a_1)x + a_0$$

wymaga tylko n dodawań i n mnożeń.

Schemat Hornera

Algorytm: Input: $n, (a_i, 0 \le i \le n), x_0$ Output: v

- 1. $v := a_n$;
- 2. **for** k = n 1 **downto** 0 **do** $v := a_k + x_0 * v$;
- 3. output v;

Schemat Hornera – własności

- jest numerycznie poprawny;
- minimalizuje liczbę operacji arytmetycznych przy obliczaniu wartości wielomianu;
- może być wykorzystany do dzielenia wielomianu w(x) przez dwumian $(x-x_0)$;
- pozwala na obliczenie wartości pochodnych $w^{(j)}(x)$ (dokładniej $\frac{w^{(j)}(x)}{i!}$)

Zadanie interpolacyjne Lagrange'a – wersja formalna

DEFINICJA Niech $D \subset \mathbb{R}$ i niech F będzie pewnym zbiorem funkcji $f: D \to \mathbb{R}$. Niech x_0, x_1, \dots, x_n będzie ustalonym zbiorem parami różnych punktów z D (węzłów interpolacji).

Mówimy, że wielomian w interpoluje funkcję $f \in F$ w węzłach x_i wtt, gdy $w(x_i) = f(x_i)$, $0 \le i \le n$.

Zadanie znalezienia wielomianu interpolującego zadane wartości nazywamy zadaniem interpolacyjnym Lagrange'a.

Istnienie i jednoznaczność wielomianu interpolacyjnego

Niech Π_n będzie przestrzenią liniową wielomianów stopnia co najwyżej n o współczynnikach rzeczywistych.

$$\Pi_n = \{ w(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 : a_j \in \mathbb{R}, 0 \le j \le n \}.$$

TWIERDZENIE Dla dowolnej funkcji $f: D \to \mathbb{R}$ istnieje dokładnie jeden wielomian $w_f \in \Pi_n$ interpolujący f w węzłach $x_j, 0 \le j \le n$, gdzie węzły interpolacji są dowolnie wybrane i parami różne.

Wybór bazy w przestrzeni Π_n

W przestrzeni Π_n można wybrać wiele baz (nieformalnie mówiąc – postaci wielomianów).

Niech $(\varphi_j)_{j=0}^n$ będzie bazą w przestrzeni Π_n .

Szukamy współczynników c_i takich, że wielomian

$$w_f = \sum_{j=0}^n c_j \varphi_j$$

interpoluje f w punktach $x_j, 0 \le j \le n$.

Wybór bazy ma znaczący wpływ na jakość algorytmu wyznaczania wielomianu interpolującego (czyli jego współczynników w danej bazie).

Baza naturalna (potęgowa)

 $\varphi_j(x) = x^j$, dla każdego j,

czyli szukamy wielomianu w_f w postaci naturalnej.

Prowadzi to do układu

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & & & & \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix}.$$

z macierzą Vandermonde'a.

Baza naturalna (potegowa)

Rozwiązanie tego układu wymaga około n^3 operacji arytmetycznych.

Ponadto, gdy węzły interpolacji są równoodległe, ta macierz jest bardzo źle uwarunkowana.

Wybór tej bazy jest zły ze względów numerycznych.

Łatwo za to obliczyć wartość wielomianu w dowolnym punkcie (schematem Hornera).

Baza Lagrange'a (kanoniczna)

 $\varphi_j = l_j$, dla każdego j, gdzie

$$l_j(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_n)}{(x_j - x_0)(x_j - x_1) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_n)}.$$

Każdy z l_j jest stopnia dokładnie \boldsymbol{n} oraz

$$l_j(x_i) = \begin{cases} 0 & i \neq j, \\ 1 & i = j. \end{cases}$$

Wielomiany te stanowią bazę w Π_n , którą nazywamy bazą Lagrange'a.

Macierz układu jest macierzą jednostkową.

Zatem $c_j = f(x_j)$, dla każdego j.

Wzór interpolacyjny Lagrange'a

$$w_f(x) = \sum_{j=0}^n f(x_j)l_j(x).$$

$$l_j(x) = \prod_{\substack{i=0\\i\neq j}}^n \frac{x - x_i}{x_j - x_i}$$

UWAGA Wielomiany bazowe l_j nie zależą od wartości funkcji.

UWAGA Istnieją algorytmy obliczania wartości wielomianu w tej postaci w dowolnym punkcie.

Baza Newtona

 $\varphi_j = p_j$, dla każdego j, gdzie

$$p_0(x) = 1,$$

$$p_i(x) = (x - x_0)(x - x_1) \cdots (x - x_{i-1}), \quad 1 \le j \le n.$$

 b_i – współczynniki rozwinięcia w_f w bazie (p_i)

Wzór interpolacyjny Newtona

$$w_f(x) = \sum_{j=0}^{n} b_j \prod_{i=0}^{j-1} (x - x_i).$$

Baza Newtona

 $w_{f,j} \in \Pi_j$ – wielomian interpolacyjny dla funkcji f oparty na węzłach $x_0, x_1, \dots, x_j, 0 \leqslant j \leqslant n$.

Wówczas

$$w_{f,0} = b_0$$

$$w_{f,j} = w_{f,j-1} + b_j p_j, \qquad 1 \le j \le n.$$

Macierz układu jest macierzą trójkątną dolną.

Wartość $w_f(x)$ możemy obliczyć, stosując prostą modyfikację algorytmu Hornera.

Schemat Hornera dla bazy Newtona

Algorytm: Input: $n, (b_i, 0 \le i \le n), y_0$ Output: v

- 1. $v := b_n$;
- 2. **for** k = n 1 **downto** 0 **do** $v := b_k + (y_0 x_k) * v$;
- 3. output v;

Ilorazy różnicowe

DEFINICJA Ilorazem różnicowym funkcji f opartym na różnych węzłach $x_l, x_{l+1}, \ldots, x_{l+k}$ nazywamy wyrażenie

DEFINICJA Ilorazem różnicowym funkcj
$$f[x_l, x_{l+1}, \dots, x_{l+k}] = \sum_{\substack{s=l \ l = l \ t \neq s}}^{l+k} \frac{f(x_s)}{l+k}.$$

UWAGA Iloraz różnicowy nie zależy od kolejności argumentów.

TWIERDZENIE Dla dowolnego układu parami różnych punktów $x_l, x_{l+1}, \dots, x_{l+k}$, zachodzi zależność rekurencyjna $f[x_l, x_{l+1}, \dots, x_{l+k}] = \frac{f[x_{l+1}, \dots, x_{l+k}] - f[x_l, x_{l+1}, \dots, x_{l+k-1}]}{x_{l+k} - x_l}$.

3

Współczynniki we wzorze Newtona a ilorazy różnicowe

TWIERDZENIE Współczynniki b_i wielomianu interpolacyjnego Newtona dla danej funkcji f dane są przez ilorazy różnicowe f w węzłach x_0, x_1, \ldots, x_j , tzn. $b_j = f[x_0, x_1, \ldots, x_j]$, $0 \leqslant j \leqslant n$.

Możemy łatwo skonstruować tablicę do obliczania poszczególnych ilorazów różnicowych.

Przy realizacji w fl_{ν} algorytmu ilorazów różnicowych istotną rolę odgrywa porządek węzłów.

Przy monotonicznym uporządkowaniu węzłów algorytm obliczania $f[x_0, x_1, \dots, x_k]$ jest numerycznie poprawny ze względu na dane interpolacyjne.

Baza Newtona jest czesto wykorzystywana ze względu na łatwe obliczanie zarówno współczynników wielomianu, jak i wartości wielomianu w dowolnym punkcie.

Błąd interpolacji wielomianowej (funkcji w punkcie)

TWIERDZENIE Jeśli $f \in C^{(n+1)}[a,b]$, a wielomian w_f interpoluje funkcję f w punktach x_0,x_1,\ldots,x_n , to dla

każdego
$$x \in [a, b]$$
 istnieje $\xi_x \in (a, b)$ takie, że
$$f(x) - w_f(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^n (x - x_i).$$

Błąd interpolacji wielomianowej (w klasie funkcji)

 $g:[a,b]\to\mathbb{R}$ – ciągła

Norma jednostajna (Czebyszewa):

$$||g||_{[a,b]} = \max_{x \in [a,b]} |g(x)|.$$

$$r \ge 0, 0 < M < \infty$$

$$\begin{array}{l} r \geqslant 0, \ 0 < M < \infty \\ F_M^r([a,b]) \ = \ \{ \ f \in C^{(r+1)}([a,b]) : \ \|f^{(r+1)}\|_{[a,b]} \leqslant M \ \}. \end{array}$$

TWIERDZENIE O najgorszym możliwym błędzie interpolacji w klasie

Załóżmy, że każdą funkcję $f \in F_M^r([a,b])$ aproksymujemy jej wielomianem interpolacyjnym $w_f \in \Pi_r$ opartym na r+1 węzłach $x_0,\dots,x_r\in[a,b].$ Wtedy maksymalny błąd takiej aproksymacji wynosi

$$e(F_M^r([a,b]); x_0, x_1, \dots, x_r) = \max_{f \in F_M^r([a,b])} \|f - w_f\|_{[a,b]}$$

$$= \frac{M}{(r+1)!} \cdot \max_{a \leqslant x \leqslant b} |(x - x_0) \cdots (x - x_r)|.$$