PCT

世界知的所有權機關 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07C 43/192, 43/225, 69/75, 69/753, 69/757, 69/76, C09K 19/20, 19/30, 19/42, G02F 1/13

A1

(11) 国際公開番号

WO97/36847

(43) 国際公開日

1997年10月9日(09.10.97)

(21) 国際出願番号

PCT/JP97/01048

(22) 国際出願日

¢

1997年3月27日(27.03.97)

(30) 優先権データ

特願平8/79946 特願平8/239751 1996年4月2日(02.04.96)

1996年8月22日(22.08.96)

(71) 出願人 (米国を除くすべての指定国について) チッソ株式会社(CHISSO CORPORATION)[JP/JP]

〒530 大阪府大阪市北区中之島三丁目6番32号 Osaka (JP)

(72) 発明者;および

(75) 発明者/出願人 (米国についてのみ)

安藤従道(ANDO, Tsugumichi)[JP/JP]

〒290 千葉県市原市五井6358番地 Chiba, (JP)

松井秋一(MATSUI, Shuichi)[JP/JP]

〒290 千葉県市原市辰巳台東2丁目17番地 Chiba (JP)

宮沢和利(MIYAZAWA, Kazutoshi)[JP/JP]

〒290-01 千葉県市原市ちはら台3丁目27番地7 Chiba (JP)

竹内弘行(TAKEUCHI, Hiroyuki)[JP/JP]

〒290 千葉県市原市西広353番地1 Chiba, (JP)

小泉靖幸(KOIZUMI, Yasuyuki)[JP/JP]

〒236 神奈川県横浜市金沢区乙舳町10番3号 Kanagawa (JP)

関口靖子(SEKIGUCHI, Yasuko)[JP/JP]

〒290 千葉県市原市松ケ島641-1 Chiba, (JP)

中川悦男(NAKAGAWA, Etsuo)[JP/JP]

〒290 千葉県市原市五井8890番地 Chiba, (JP)

竹下房幸(TAKESHITA, Fusayuki)[JP/JP]

JP 〒299-11 千葉県君津市中富939番地5 Chiba, (JP)

(74) 代理人

JР

弁理士 川北武長(KAWAKITA, Takenaga)

〒103 東京都中央区日本橋茅場町二丁目3番6号

宗和ピルディング Tokyo, (JP)

(81) 指定国 AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, YU, ARIPO特許 (GH, KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT. BE. CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

LIQUID CRYSTAL COMPOUNDS, LIQUID CRYSTAL COMPOSITIONS CONTAINING THE COMPOUNDS, (54) Title: AND LIQUID CRYSTAL DISPLAY DEVICES MADE BY USING THE COMPOSITIONS

液晶性化合物、この液晶性化合物を含有する液晶組成物、及び液晶組成物を用いた液晶表示素子

$$R^{1}-\stackrel{\frown}{A^{1}}-X^{1}+\stackrel{\frown}{A^{2}}-X^{2}+\stackrel{\frown}{M}\stackrel{\frown}{A^{3}}-X^{3}+\stackrel{\frown}{A^{3}}-Y^{1}$$
(1)

Liquid crystal compounds which are lowly viscous and highly dielectrically anisotropic have high specific resistance and high voltage retention, and are stable even when exposed to heat and ultraviolet rays; liquid crystal compositions containing the compounds; and liquid crystal display devices made by using the compositions. The above liquid crystal compounds are represented by general formula (1) wherein R¹ and Y¹ are each C₁-C₂₀ alkyl; X¹, X² and X³ are each independently a single bond, 1,2-ethylene, vinylene, -COO-, -CF, O- or -OCF2-: A1, A2, A3 and A4 are each independently trans-1,4-cyclohexylene or optionally fluorinated or chlorinated 1,4-phénylene, at least one of A2, A3 and A4 being 2,3-difluoro-1,4-phenylene; and m and n are each 0 or 1, with the proviso that the elements constituting the compounds may be each replaced by isotopes thereof.

(57) 要約

低枯性で、かつ大きな負の誘電率異方性を持ち、高い比抵抗値および高い電圧 保持率を有し、熱や紫外線照射に対しても安定である液晶性化合物、これを含有 する液晶組成物及び該液晶組成物を用いて作成した液晶表示素子を提供すること にある。

一般式(1)

$$R^{1} - \underbrace{A^{1}}_{n} - X^{1} + \underbrace{A^{2}}_{m} - X^{2} + \underbrace{A^{3}}_{n} - X^{3} + \underbrace{A^{4}}_{n} - Y^{1}$$
 (1)

(式中、 R^1 及び Y^1 は炭素数 $1\sim 20$ のアルキル基を示し、 X^1 、 X^2 、及び X^3 は互いに独立して単結合、1, 2-xチレン基、ビニレン基、-COO-、-C F_2O- または $-OCF_2-$ を示し、環 A^1 、環 A^2 、環 A^3 、及び環 A^4 は互いに独立してトランス-1, 4-シクロヘキシレン、又は環上の水素がフッ素原子又は塩素原子で置換されてもよい 1, 4-フェニレンを示すが、環 A^2 、環 A^3 、及び環 A^4 の内少なくとも 1 個は 2, 3-ジフルオロ-1, 4-フェニレンを示し、m及びnは 0 または 1 を示し、また、この化合物を構成する各元素はその同位体で置換されていてもよい。)で示される液晶性化合物、これを含有する液晶組成物及び該液晶組成物を用いて作成した液晶表示素子。

多亏情報

. PCTに基づいて公開される国際出願のパンフレット第一頁に記載されたPCT加盟国を同定するために使用されるコード

明細書

液晶性化合物、この液晶性化合物を含有する液晶組成物、 及び液晶組成物を用いた液晶表示素子

技術分野

5

15

20

25

本発明は主として、ツイストネマチック(TN)表示方式、スーパーツイストネマチック(STN)表示方式及び薄膜トランジスター(TFT)表示方式用の液晶組成物に好適な諸物性を発現せしめる新規な液晶性化合物、およびこれを用いた好適な諸物性を有する液晶組成物、ならびにこの液晶組成物を用いた液晶表示素子に関する。

10 背景技術

液晶表示素子は液晶物質が有する光学異方性および誘電率異方性を利用するも ので、時計をはじめとして電卓、ワープロ、テレビ等に広く利用され、その需要 も年々増加傾向にある。液晶相は固体相と液体相の中間に位置し、ネマチック相、 スメクチック相およびコレステリック相に大別される。中でもネマチック相を利 用した表示素子が現在最も広く使用されている。一方表示方式はこれまで多数の 方式が考案されてきたが、現在はツイストネマチック(TN)型、スーパーツイ ストネマチック (STN) 型および薄膜トランジスタ (TFT) 型の3種類が主 流となっている。これら種々の液晶表示素子に必要とされる液晶性化合物の性質 はその使用用途に応じて種々異なるが、いずれの液晶物質も水分、空気、熱、光 等外的環境因子に対して安定であること、また、室温を中心としてできるだけ広 い温度範囲で液晶相を示し、低粘性でありかつ駆動電圧が低いことが要求される。 しかし、これらの条件を同時に満たす単一の液晶物質は見いだされていない。通 常液晶表示素子に用いられる液晶物質は個々の表示素子に要求される最適な誘電 率異方性値(Δε)、屈折率異方性値(Δn)、粘度および弾性定数比K33/ K11(K33:ベンド弾性定数、K11:スプレイ弾性定数)の値等の諸物性 値に調整するために数種類から数十種類の液晶性化合物および必要によりさらに _数種類の非液晶性化合物を混合することにより液晶組成物を調製し表示素子に使 用しているのが現状である。このため他の液晶化合物との相溶性、特に最近では 種々の環境下での使用への要求から低温相溶性に関しても良好であることが要求

される。

5

10

15

20

25

ところで近年、コントラスト、表示容量、応答時間等の表示性能の面からアクティブマトリックス方式、中でも薄膜トランジスタ(TFT)方式がテレビジョンやビューファインダー等の表示モードとして盛んに採用されている。また、大きな表示容量を持ちながら、表示素子の構造上の要因からアクティブマトリックス方式の表示素子よりも比較的簡単で安価に製造できるSTN方式もパーソナルコンピューター等のディスプレーとして多く採用されている。

これらの分野における近年の開発傾向は小型軽量で携帯できることを特徴としたテレビやノート型パーソナルコンピューターに代表されるように液晶表示素子の小型化、携帯化が中心に進められており、液晶材料の面からはICの耐電圧との絡みから駆動電圧の低い、すなわちしきい値電圧の低い液晶性化合物ならびに液晶組成物の開発が中心に行われている。

しきい値電圧(Vth)は以下の式(H.J.Deuling et al., Mol. Cryst. Liq. Cryst., 27(1975) 81) にて表されることが知られている。

V t h = π (K/ $\varepsilon_0 \triangle \varepsilon$) 1/2

上式においてKは弾性定数、 ε 。は真空の誘電率である。この式から判るようにしきい値電圧を低下させるには誘電率異方性($\Delta \varepsilon$)を大きくするか、あるいは弾性定数を小さくするかの 2 通りの方法が考えられる。しかし実際には弾性定数のコントロールは非常に困難であるところから、通常は誘電率異方性($\Delta \varepsilon$)の大きな液晶材料を用いて要求に対処しているのが現状である。以上の事実を背景として誘電率異方性($\Delta \varepsilon$)の大きな液晶性化合物の開発が盛んに行われてきた。

現在TFT方式の表示素子に使用されている液晶組成物のほとんどはフッ素系の液晶材料から構成されている。これはTFT方式においては素子の構成上高い電圧保持率 (V.H.R) を必要とし、またその温度依存性が小さな材料でなければならず、フッ素系以外の材料ではこれら要求を満たせないからである。従来のフッ素系低電圧用材料として以下の化合物が開示されている。

WO 97/36847

5

10

15

20

25

(上記構造式においてRはアルキル基を示す)

化合物(a)および(b)はいずれも化合物分子末端に数個のフッ素原子を有し、大きな誘電率異方性を示すことが報告されているが、その透明点(NI点)は低く、またその粘度は比較的大きいことが知られている。通常当該業者の間ではフッ素原子の置換数と透明点の関係および粘度との関係において単純ではないがそれぞれ反比例的および比例的な関係があることが経験的に知られている。この為これら一連の化合物のみで液晶組成物を調製した場合、要求される透明点ならびに粘度(応答速度)を達成することは困難である。これらを補う目的にて通常以下に示す化合物を代表とする減粘剤が組成物に添加され使用される。

(上記構造式においてRおよびR' はアルキル基を示す)

化合物(c)は比較的低粘性ではあるが、その透明点は上述に示したような低電圧用液晶性化合物からなる液晶組成物の低い透明点を補うには低く、添加量を比較的多く必要とするため組成物の特徴が失われてしまい、上述の問題を解決する材料としては不適当である。また化合物(d)は透明点は十分高いが、4環構造であるため粘性が著しく大きく、組成物に添加した場合粘性の増加が避けられない。また化合物(d)自身がスメクチック相を有するため、調製した組成物を低温にて放置した場合、組成物中にスメクチック相が発現する場合があり、やはり上述の問題を解決するには不適当である。さらに化合物(c)および(d)は

いずれもその誘電率異方性値は非常に小さく、上述のような大きな誘電率異方性 値を有する低電圧用の液晶組成物に添加した場合、その誘電率異方性を著しく低 下させ、その結果しきい値電圧が上昇するため、問題解決の為の好ましい化合物 ではない。

ところで近年、TFT表示方式の液晶パネルの唯一の欠点である視野角の狭さを克服する研究が盛んになされ、多くの研究成果が学会、特許公報等で発表されている。その改善策の一例として以下に示す方法が開示されている。例えば特開平4-229828号および特開平4-258923号には一対の偏光板とTN型液晶セルとの間に位相差フィルムを配置し、視野角を改善する方法が開示されており、また、特開平4-366809号には、カイラルネマチック液晶層を位相差フィルムとして用いた二層液晶方式による方法が開示されている。しかし、上記の方法はいずれも視野角の改善は不十分であると共に、製造コストが高く、かつ液晶パネルが非常に重くなる、という問題が存在した。

最近、視野角の問題を改善する新しい方法として、TFT表示方式を利用した In-Plane Switching (IPS) 駆動が注目を集めるようになってきた (R. Kiefer et al., JAPAN DISPLAY '92, 547(1992)、G. Baur, Freiburger Arbeitstagung Flussigkristalle, Abstract No. 22(1993))。IPS駆動の液晶パネルの構成上の特長は従来型の液晶パネルでは上下の基板上にそれぞれ電極が設けられるのに対し、IPS駆動の液晶パネルでは片側の基板上にのみくし歯形電極を設ける点、および液晶分子の長軸方向が常に基板と平行にある点が掲げられる。IPS駆動の利点としては、視野角が広くなる点以外に、

- ①片側の基板上にのみ電極が存在するため、従来品よりセルを薄くできる
- ②また、セルが薄くできることにより製造コストの低減がはかれ、かつ
- 25 ③電極間の距離が一定に保たれる

などが挙げられる。

5

10

IPS駆動において高速応答、および低電圧駆動を実現するためには、使用する液晶性化合物は低粘性で、かつ大きな負の誘電率異方性を持つことが必要である。また、視角の狭さを改善するための試みのもう一つの例として、液晶分子の

垂直配向を利用する方式が挙げられる(特開平2-176625号公報)。本方 式の特徴の一つは、誘電率異方性が負の液晶組成物を使用することである。とこ ろで従来知られている負に大きな誘電率異方性を有する化合物としては以下に示 す化合物が特許公報で開示されている。

5

15

25

(上記構造式においてRはアルキル基を示す)

化合物(e)(特公昭61-26899号)は2、3-ジシアノ-1、4-フ 10 ェニレン基をその部分構造に有し、負に大きな誘電率異方性を示すことが報告さ れている。しかし、シアノ基を有する為、上述のように電圧保持率の温度依存性 が大きく、さらに粘度が著しく大きなことから、TFT表示方式を利用したIP S駆動用の液晶材料としては使用できない。このように1PS駆動において高速 応答、および低電圧駆動を実現するための特性をバランスよく併せ持つ化合物は 今までに知られていなかった。

発明の開示

本発明の目的は、TFT表示方式にも十分使用できる高い比抵抗値および高い 電圧保持率を有し、熱や紫外線照射に対しても安定であり、かつ減粘剤としての 効果、すなわち

- 20 1)組成物の透明点を向上させる効果
 - 2)組成物の粘度を低減させる効果
 - 3)組成物の誘電率異方性を低下(しきい値電圧を上昇)させない効果 を総合的にバランスよく有し、さらに IPS駆動あるいは特開平2-17662 5号公報に記載されているような垂直配向方式の表示素子に十分対応できる低粘 性で大きな負の誘電率異方性を持つ液晶性化合物、これを含有する液晶組成物及 び該液晶組成物を用いて作成した液晶表示素子を提供することにある。
 - 従来2つのフェニレン基を-CF₂O-結合基で架橋した部分構造を有し、分 子両末端基がアルキル基である化合物については既に2環系の化合物 (f) につ いてのみ特開平2-289529号公報にて構造式が開示されている。しかし上

記公報中には構造式の記載はあるものの化合物の物理データならびに液晶性化合物としての有用性を評価する具体的な物性値等は全く開示されておらず、その特徴は全く知られていなかった。

そこで発明者らは2つの環構造を $-CF_2O$ -結合基で架橋した部分構造を有し、分子両末端基がアルキル基、アルケニル基、アルコキシ基、アルコキシアルキル基、アルキニル基等から選択される特定の2環、3環または4環系化合物を考案し、その物性を鋭意検討したところ、高い透明点を有するばかりか、当初発明者らが予想したよりも極めて低粘性であり、かつ中程度の誘電率異方性値(\triangle $\epsilon=\sim4$. 0)を示すこと、さらに2,3-ジフルオロ-1,4-フェニレン基なる部分構造と、-COO-、 $-CF_2O$ -または $-OCF_2$ -なる結合基を同時に有する化合物が大きな負の誘電率異方性値を示すばかりか、他の液晶化合物との相溶性に優れ、また高い比抵抗、及び高い電圧保持率を有し、かつ物理的・化学的にも安定であることを見いだし、本発明を完成させるに至った。

すなわち本発明は、〔1〕~〔29〕の構成を有する。

[1]一般式(1)

10

15

25

$$R^{1} - \underbrace{A^{1}} - X^{1} + \underbrace{A^{2}} - X^{2} + \underbrace{A^{3}} - X^{3} + \underbrace{A^{4}} - Y^{1} \qquad (1)$$

(式中、R¹及びY¹は炭素数1~20のアルキル基を示し、このアルキル基中の 相隣接しない1個以上のメチレン基は酸素原子、硫黄原子、またはビニレン基で 置換されてもよく、また、このアルキル基中の1個以上の水素原子はフッ素原子 または塩素原子で置換されてもよく、

 X^1 、 X^2 、及び X^3 は互いに独立して単結合、1, 2-xチレン基、ビニレン基、一COO-、一 CF_2O- または一 OCF_2- を示すが、 X^1 、 X^2 、及び X^3 の内少なくとも 1 個は一COO-、一 CF_2O- または一 OCF_2- であり、

環A¹、環A²、環A³、及び環A⁴は互いに独立して、環上のCH₂基が酸素原

子で置換されていてもよいトランス-1, 4-シクロヘキシレン基、または1個以上の水素原子がフッ素原子または塩素原子で置換されてもよい1, 4-フェニレン基を示し、m及びnは0または1を示す。

5

10

m=n=0 で、 X^{1} が-COO-の場合は、環 A^{1} は基中の1個以上の水素原子がフッ素原子で置換された1, 4-フェニレン基を示し、

m=1、n=0で、 X^1 が単結合または 1, 2-xチレン基であり、かつ X^2 が -COO-の場合は、 $環 A^2$ は基中の 1 個以上の水素原子がフッ素原子で置換された 1, 4-7ェニレン基を示し、

m=n=1で、 X^2 が-COO-であり、かつ X^1 が単結合または1, 2-xチレン基の場合は、環 A^2 は基中の1個以上の水素原子がフッ素原子で置換された1, 4-フェニレン基を示し、

m=n=1、 X^3 が-COO-であり、かつ X^1 及び X^2 が互いに独立して単結 15 合または 1, 2-エチレン基の場合、環 A^3 は基中の 1 個以上の水素原子がフッ 素原子で置換された 1, 4-フェニレン基を示し、

m=n=0で、 X^1 が $-CF_2O-$ あるいは $-OCF_2-$ である場合、 $環A^1$ あるいは \RA^4 は基中の1 個以上の水素原子が塩素原子またはフッ素原子で置換された1, 4-フェニレン基を示す。

- 20 また、この化合物を構成する各元素はその同位体で置換されていてもよい。) で示される液晶性化合物。
 - 〔2〕一般式(1)において、m=n=0であり、 X^1 が $-CF_2O-$ であり、かつ環 A^1 あるいは環 A^4 が I 個以上の水素原子がフッ素原子または塩素原子で置換されている I 、 4-フェニレン基である〔1〕に記載の液晶性化合物。
- 25 (3) 一般式(1) において、m=1、n=0であり、X²が-COO-である(1) に記載の液晶性化合物。
 - A = 1 (1) において、A = 1 であり、 A^2 が A = 1 である (1) に記載の液晶性化合物。
 - [5] 一般式 [1] において、m=n=1 であり、 X^3 が-COO-である [

1) に記載の液晶性化合物。

5

10

- [6] 一般式(1) において、環 A^1 がトランス-1, 4-シクロヘキシレンであり、環 A^2 が1, 4-フェニレン基である〔3〕に記載の液晶性化合物。
- (7) 一般式(1) において、環A¹及び環A²が共にトランス-1, 4-シクロ ヘキシレン基である〔3〕に記載の液晶性化合物。
- 〔8〕一般式(1)において、 X^1 が1, 2-エチレン基であり、 X^2 が-COO -であり、 $環 A^2$ が3-フルオロ-1, 4-フェニレンである〔6〕に記載の液晶性化合物。
- 〔9〕一般式(1)において、X¹がビニレン基、X²が-COO-である(6)に記載の液晶性化合物。
 - (10)一般式(1)において、X¹がビニレン基、X²が-COO-である(7)に記載の液晶性化合物。
 - $\{11\}$ 一般式 $\{1\}$ において、m=1、n=0 であり、 X^1 あるいは X^2 が一 C F_2 O あるいは-O C F_2 で表される $\{1\}$ に記載の液晶性化合物。
- 15 〔12〕一般式(1)においてR'およびY'が共にアルキル基である〔1〕に記載の液晶性化合物。
 - [13] 一般式(1) においてR'およびY'の少なくとも一方がアルケニル基である[11] に記載の液晶性化合物。
- (14) 一般式 (1) において、 X^1 が単結合であり、 X^2 が- CF $_2$ O-あるい (14) 一般式 (1) において、(1) に (1) に (
 - [15] 一般式(1) においてm=n=1であり、 X^1 、 X^2 あるいは X^3 が-C F_2O -あるいは $-OCF_2$ -で表される[1]に記載の液晶性化合物。
- 25 (16) 一般式(1) においてR¹およびY¹がアルキル基であり、環A¹および環A⁴が共に1、4-シクロヘキシレン基、環A²および環A³が共に1個以上の水素原子がフッ素原子または塩素原子で置換されてもよい1、4-フェニレン基、X²が-CF₂O-あるいは-OCF₂-であり、X¹およびX³が共に単結合である(15) に記載の液晶性化合物。

〔17〕一般式(1)においてR'およびY'がアルキル基であり、環A'および環A'が共に1、4-シクロヘキシレン基、環A'および環A'が共に1個以上の水素原子がフッ素原子または塩素原子で置換されてもよい1、4-フェニレン基、X'が-CF $_2$ O-あるいは-OCF $_2$ -であり、X'およびX'のいずれか-方が単結合であり、他方が1、2-エチレン基である〔15〕に記載の液晶性化合物。〔18〕一般式(1)においてR'およびY'の少なくとも-方がアルケニル基である〔15〕に記載の液晶性化合物。

〔19〕一般式(1)で表される化合物を少なくとも1種類含有することを特徴とする、少なくとも2成分からなる液晶組成物。

10 〔20〕第一成分として〔1〕~〔18〕のいずれかに記載の液晶性化合物を少なくとも1種類含有し、第二成分として一般式〔2〕、〔3〕、及び〔4〕からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。

$$R^2 \longrightarrow Z^1 \longrightarrow L^1$$

$$L^2 \longrightarrow L^2$$
(2)

5

20

$$R^2 - Z^1 - (B) - Z^2 - Z^2 - Y^2$$
 (3)

 $R^2 - C - Z^1 - C - Z^2 - C - Y^2$ (4)

(式中、 R^2 は炭素数 $1\sim 10$ のアルキル基を示し、このアルキル基中の相隣接 L^2 しない 1 個以上のメチレン基は酸素原子または-CH=CH-C 置換されていて もよく、またこのアルキル基中の任意の水素原子はフッ素原子で置換されてもよ く、 L^2 はフッ素原子、塩素原子、 L^2 の L^2 の L^2 の L^2 の L^2 によって L^2 の L^2

L'及びL'は互いに独立して水素原子またはフッ素原子を示し、

 Z^1 及び Z^2 は互いに独立して1、2-エチレン基、ビニレン基、1、4-プチレン基、-COO-、-CF₂O-、-OCF₂-、または単結合を示し、

環Bはトランス-1, 4-シクロヘキシレン、1, 3-ジオキサン-2, 5-ジイル、または水素原子がフッ素原子で置換されてもよい1, 4-フェニレンを示し、

環Cはトランス-1, 4-シクロヘキシレン、または水素原子がフッ素原子で 置換されてもよい1, 4-フェニレンを示し、

また、これらの化合物を構成する各原子はその同位体で置換されていてもよい。)

10 (21)第一成分として(1)~(18)のいずれかに記載の液晶性化合物を少なくとも1種類含有し、第二成分として一般式(5)及び(6)からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。

15
$$R^{3} - \left(D\right) + \left(E\right) - Z^{3} - \left(C\right) + \left(E\right) - \left$$

5

$$R^4 \xrightarrow{N} C F \qquad (6)$$

20 (式中、R³及びR⁴は互いに独立して炭素数1~10のアルキル基を示し、この アルキル基中の相隣接しない1個以上のメチレン基は酸素原子またはビニレン基 で置換されていてもよく、またこのアルキル基中の任意の水素原子はフッ素原子 で置換されてもよく、

Y³は、CN基または-C≡C-CNを示し、

環Eはトランス-1, 4-シクロヘキシレン、水素原子がフッ素原子で置換されてもよい1, 4-フェニレン、またはピリミジン-2, 5-ジイルを示し、

環下はトランス-1, 4-シクロヘキシレンまたは1, 4-フェニレンを示し、

Z³は1, 2-エチレン基、-COO-、または単結合を示し、

L³、L⁴、及びL⁵は互いに独立して水素原子またはフッ素原子を示し、

a、b、及びcは互いに独立して0または1を示し、

また、これらの化合物を構成する各原子はその同位体で置換されていてもよい。

5)

〔22〕第一成分として〔1〕~〔18〕のいずれかに記載の液晶性化合物を少なくとも1種類含有し、第二成分として一般式(7)、(8)、及び(9)からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。

10 $R^5 - (G) - Z^4 - (-1) - Z^5 - R^6$ (7)

$$R^{5} - (G) - Z^{4} - (I) - Z^{5} - (J) - R^{6}$$
 (8)

15

20

$$R^5 - \left(G - Z^4 - \left(I - \right) - R^6 \right)$$
 (9)

(式中、R⁵及びR⁶は互いに独立して炭素数1~10のアルキル基を示し、この アルキル基中の相隣接しない1個以上のメチレン基は酸素原子または-CH=C H-で置換されてもよく、またこのアルキル基中の任意の水素原子はフッ素原子 で置換されてもよく、

環G、環I、及び環Jは互いに独立して、トランスーI, 4-シクロヘキシレン、ピリミジンー2, 5-ジイル、またはI 個以上の水素原子がフッ素原子で置換されてもよいI, 4-フェニレンを示し、

25 Z¹及びZ⁵は互いに独立して、-C≡C-、-COO-、-CH₂CH₂-、-CH=CH-、または単結合を示し、

_ また、これらの化合物を構成する各原子はその同位体で置換されていてもよい。 ()

〔23〕第一成分として〔1〕~〔18〕のいずれかに記載の液晶性化合物を少

なくとも1種類含有し、第二成分として一般式(10)、(11)、及び(12)からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。

$$R^7 \longrightarrow Z^6 \longrightarrow R^8$$
 (10)

$$R^7 - \left(-\frac{1}{2} - \frac{1}{2} - \frac{1}$$

10

15

.:5

5

$$R^7$$
 Z^6 Z^7 R^8 (12)

(式中、R⁷及びR⁸は互いに独立して炭素数1~10のアルキル基を示し、この アルキル基中の相隣接しない1個以上のメチレン基は酸素原子または-CH=C H-で置換されてもよく、またこのアルキル基中の任意の水素原子はフッ素原子 で置換されてもよく、

環Kはトランスー1, 4 ーシクロヘキシレン、または1, 4 ーフェニレンを示し、 Z^6 及び Z^7 は互いに独立して、 $-CH_2CH_2-$ 、 $-CH_2O-$ 、または単結合を示し、

20 また、これらの化合物を構成する各原子はその同位体で置換されていてもよい。)

〔24〕第一成分として〔1〕~〔18〕のいずれかに記載の液晶性化合物を少なくとも1種類含有し、第二成分として一般式(7)、(8)及び(9)からなる化合物群から選択される化合物を少なくとも1種類含有し、第三成分として一般式(10)、(11)、及び(12)からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。

_ [25] 第一成分として[1] ~ [18] のいずれかに記載の液晶性化合物を少なくとも.1種類含有し、第二成分として一般式(2)、(3)、及び(4)からなる化合物群から選択される化合物を少なくとも1種類含有し、第三成分として

一般式(7)、(8)、及び(9)からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。

[26]第一成分として(1)~[18]のいずれかに記載の液晶性化合物を少なくとも1種類含有し、第二成分として一般式(5)及び(6)からなる化合物群から選択される化合物を少なくとも1種類含有し、第三成分として一般式(7)、(8)、及び(9)からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。

5

10

15

20

〔27〕第一成分として〔1〕~〔18〕のいずれかに記載の液晶性化合物を少なくとも1種類含有し、第二成分として一般式〔2〕、〔3〕、及び〔4〕からなる化合物群から選択される化合物を少なくとも1種類含有し、第三成分として一般式〔5〕及び〔6〕からなる化合物群から選択される化合物を1種類含有し、第四成分として前記一般式〔7〕、〔8〕、及び〔9〕からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。

〔28〕 〔19〕 ~ 〔27〕 のいずれかに記載の液晶組成物に加えて、さらに1種以上の光学活性化合物を含有することを特徴とする液晶組成物。

(29) (19)~(28) のいずれかに記載の液晶組成物を用いて構成した液晶表示素子。

本発明の(1)式の化合物はいずれも高い透明点を有し、さらに低粘性である。また、環構造として2、3-ジフルオロ-1、 $4-フェニレン基を選択していない化合物は中程度の誘電率異方性値(<math>\Delta \varepsilon = \sim 4$. 0)を示し、一方、環構造として2、3-ジフルオロ-1、4-フェニレン基を選択した化合物は大きな負の誘電率異方性値を示す。これら化合物はいずれも他の液晶化合物との相溶性に優れ、また高い比抵抗、及び高い電圧保持率を有し、かつ物理的・化学的にも安定である。

25 さらに詳しくはその分子末端置換基にアルキル基を選択したものは非常に高い電圧保持率を示し、TFT方式の表示素子用の減粘剤として非常に有効であり、また、分子末端基にアルケニル基等を選択したものは比較的大きな弾性定数比を示し、STN方式の表示素子用の減粘剤として非常に有効である。

また、環構造として2,3-ジフルオロ-1,4-フェニレン基を選択してい

ない化合物は従来の技術の項にも示した化合物(c)あるいは(d)と比較し、中程度の誘電率異方性値を有するため、誘電率異方性の大きな低電圧用の液晶組成物に添加した場合、誘電率異方性の低下(しきい値電圧の上昇)を抑制しながら、透明点を上昇させ、さらに粘度を維持あるいは低下させることが可能である。一方、環構造として2、3-ジフルオロー1、4-フェニレン基を選択したものは上述のように低粘性であり、かつ大きな負の誘電率異方性値を示すことから、IPS駆動や特開平2-176625号公報に記載されているような垂直配向方式の表示素子において本発明の化合物を使用することにより、低電圧駆動で、かつ高速応答の可能な液晶組成物および液晶表示素子の提供が可能である。

5

10

15

言うまでもなく本発明の化合物はいずれも好適な物性を示すが、(1)式の R^1 、 Y^1 、 ${\mathbb F}_A^1$ 、 A^2 、 A^3 、 A^4 、 X^1 、 X^2 、 X^3 、mおよびn を適切に選択した化合物を使用することで目的に応じた液晶組成物を調製できる。

すなわち特に液晶温度範囲がより高温側になければならない液晶組成物に使用する場合はm=n=1である4環系の化合物を、そうでない場合は2環系または3 環系の化合物を用いれば良い。

アクティブマトリックス用の液晶組成物等の特に高い電圧保持率を必要とする場合には側鎖R'およびY'にアルキル基またはアルコキシ基を選択し、STN用等の大きな弾性定数比を必要とする場合には側鎖R'およびY'にアルケニル基、アルキニル基等の不飽和結合基を有する置換基を選択すれば良い。

20 また、誘電率異方性値が正に比較的大きな化合物を得る為には、2つの1、4 ーフェニレン基を-CF₂O-で架橋した部分構造を有する化合物を選択し、さ らにジフルオロメチレン側のフェニル環のオルト位に1つまたは2つのフッ素原 子を置換すれば良く、更に大きな誘電率異方性値の要求に対しては、上述のフッ 素原子置換体の酸素原子側のフェニル環上のメタ位にさらに1つまたは2つのフッ ッ素原子を置換すれば良く、双極子が同一方向に向くように導入することで目的 が達成できる。

また、誘電率異方性値が負に大きな化合物を得る為には、結合基 X^1 、 X^2 、 X^3 、のいずれかに $-CF_2O$ -あるいは-COO-を選択し、それら結合基の酸素原子側の環構造として2、3-ジフルオロ-1、4-フェニレン基を選択すれば

良い。また、上記の2、3-ジフルオロ-1、4-フェニレン基の代わりに2、3-ジフルオロ-4-アルコキシフェニル基を選択したものはさらに大きな負の 誘電率異方性を示す。

屈折率異方性値も(1)式の R^1 、 Y^1 、環 A^1 、 A^2 、 A^3 、 A^4 、 X^1 、 X^2 、 X^3 、 M^3 、 M^4 、 X^1 、 X^2 、 X^3 、 M^3 、 M^4 、 M^4

本発明において「アルキル基」という用語は1~15個の炭素原子を有する直鎖および枝別れしたアルキル基を意味し、特に低粘性という観点から1~5個の炭素原子を有する基が好ましい。具体的にはメチル基、エチル基、プロピル基、プチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、イソプロピル基、イソプチル基、イソアミル基、イソヘキシル基、2-メチルブチル基、2-メチルペンチル基、3-メチルペンチル基等が好ましいが、ラセミ体、S体、R体を網羅する。

本発明において「アルケニル基」という用語は $2\sim15$ 個の炭素原子を有する直鎖のアルケニル基を意味し、1E-アルケニル、2Z-アルケニル、3E-アルケニル、4-アルケニル基が好ましく、さらに具体的には1-エテニル、1E-プロペニル、1E-ブテニル、1E-ベキセニル、2-プロペニル、2Z-ブテニル、2Z-ベンテニル、2Z-ベンテニル、2Z-ベンテニル、2Z-ベンテニル、3E-ベンテニル、3E-ベンテニル、3E-ベキセニル基を掲げることができる。

環A¹、A²、A³およびA⁴としてはベンゼン環、シクロヘキサン環、ピリミジン環、ピリジン環、ピラジン環、ピリダジン環、ジオキサン環、ジチアン環あるいはそれのハロゲン置換された環が掲げられるが、特に好ましくはシクロヘキサン環、ベンゼン環あるいはそれのハロゲン置換された環である。

本発明の一般式(1)で表される化合物の好ましい態様は、次の(1-1)~ (1-217)の一般式により表される化合物である。

(ただし下記のおいてR'、Y'は前記と同一の意味を表す。)

20

25

$$R^1 - \bigcirc F_F$$
 $O - \bigcirc Y^1$
(1-1)

$$R^1 - \bigvee_{O - \bigvee_{O - \bigvee_{I - 2}} Y^1} F_I$$

$$R^{1} \longrightarrow FF$$

$$O \longrightarrow Y^{1}$$

$$(1-3)$$

$$R^{1} \xrightarrow{F} FF$$

$$O \xrightarrow{V} Y^{1}$$
(1-4)

$$R^1 \longrightarrow FF F$$
 $O \longrightarrow Y^1$
(1-5)

$$R^{1} - \bigvee_{F}^{F} F_{F}$$

$$O - \bigvee_{F} Y^{1}$$

$$(1-6)$$

$$R^{1} - \bigvee_{O}^{F} F F F$$

$$O - \bigvee_{O}^{F} Y^{1}$$

$$(1-8)$$

$$R^{1} - \bigvee_{F}^{F} F_{F} F$$

$$O - \bigvee_{F}^{Y^{1}} Y^{1}$$

$$(1-9)$$

$$R^{1} - \bigvee_{F}^{F} F - \bigvee_{O}^{F} Y^{1}$$
 (1-10)

$$R^{1} - \bigvee_{F}^{F} F_{F} F_{Y^{1}}$$
 (1-11)

$$R^1 \xrightarrow{F} F_F$$
 $O \xrightarrow{Y^1}$
 $(1-\overline{13})$

$$R^1 \longrightarrow FF$$
 $O \longrightarrow Y^1$
 $O \longrightarrow Y^1$

$$R^{1} \xrightarrow{F} F F F$$

$$O \xrightarrow{Y} Y^{1}$$

$$(1-15)$$

$$R^1$$
 FFF
 F
 O
 Y^1
 $(1-15)$

$$R^{1} \xrightarrow{F} F F F$$

$$O \xrightarrow{Y^{1}} (1-17)$$

$$R^{1} \xrightarrow{F} F F F F F$$

$$O \xrightarrow{Y^{1}} Y^{1} \qquad (1-18)$$

$$R^1 - \bigvee_{O \leftarrow Y^1}^{F} O F F$$
 $O \leftarrow Y^1$
 $(1-19)$

$$R^1$$
- O - Y^1 (1-21)

$$R^1$$
 O Y^1 (1-22)

$$R^1 - \bigcirc - \bigcirc \stackrel{\mathsf{FF}}{\longrightarrow} - \mathsf{Y}^1$$
 (1-23)

$$R^{1} \longrightarrow Q \qquad (1-24)$$

$$R^{1} \stackrel{O}{\longleftarrow} \stackrel{F}{\longleftarrow} \stackrel{F}{\longleftarrow} Y^{1} \qquad (1-25)$$

$$R^{1} \longrightarrow Q \qquad (1-28)$$

$$R^{1} \xrightarrow{\stackrel{N}{\longrightarrow}} V \xrightarrow{\stackrel{F}{\longrightarrow}} V^{1}$$
 (1-29)

$$R^{1} - \begin{pmatrix} N \\ N \end{pmatrix} - \begin{pmatrix} O \\ F \end{pmatrix} - \begin{pmatrix} Y^{1} \\ \end{pmatrix}$$
 (1-30)

$$R^{1} - \bigcirc \qquad FF$$

$$C - \bigcirc -Y^{1}$$

$$(1-31)$$

$$R^1 - \bigcirc - \bigcirc F_F F F$$
 $O - \bigcirc Y^1$
 $(1-34)$

$$R^1$$
 \longrightarrow F F F O \longrightarrow Y^1 $(1-35)$

$$R^{1} \longrightarrow C \longrightarrow C$$

$$F \qquad F \qquad F \qquad (1-36)$$

$$R^1$$
 \longrightarrow F O \longrightarrow Y^1 (1-37)

$$R^{1} \longrightarrow F \longrightarrow F \longrightarrow Y'$$
 (1-38)

$$R^1$$
 O Y^1 (1-39)

$$R^1$$
 \longrightarrow F_F O \longrightarrow Y^1 $(1-41)$

$$R^1$$
 O F Y^1 $(1-42)$

$$R^1$$
 O Y^1 $(1-44)$

$$R^1$$
 O Y^1 $(1-46)$

$$R^1$$
 O Y^1 $(1-47)$

$$R^1 - \begin{pmatrix} N & FF \\ N & O - \begin{pmatrix} -1 & -1 & -1 \\ N & O - \begin{pmatrix} -1 & -1 & -1 & -1 \\ N & O - \begin{pmatrix} -1 & -1 & -1 & -1 \\ N & O - \begin{pmatrix} -1 & -1 & -1 & -1 \\ N & O - \begin{pmatrix} -1 & -1 & -1 & -1 \\ N & O - \begin{pmatrix} -1 & -1 & -1 & -1 \\ N & O - \begin{pmatrix} -1 & -1 & -1 & -1 \\ N & O - \end{pmatrix} \end{pmatrix}$$
 (1-48)

$$R^{1} - \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$$

$$R^1$$
 O Y^1 $(1-50)$

$$R^1$$
 \longrightarrow F O \longrightarrow Y^1 (1-51)

$$R^1$$
 \longrightarrow F O \longrightarrow \longrightarrow Y^1 (1-52)

$$R^{1} \longrightarrow FF$$

$$O \longrightarrow Y^{1}$$

$$(1-53)$$

$$R^1$$
 O F F Y^1 (1-54)

$$R^1$$
 \longrightarrow F^F O \longrightarrow Y^1 (1-55)

$$R^1$$
 \longrightarrow O \longrightarrow Y^1 $(1-62)$

$$R^1$$
 \longrightarrow O \longrightarrow O

$$R^{1} - \bigvee_{FF} O - \bigvee_{F} O - \bigvee_{F}$$

$$R^{1} - \bigcirc \qquad FF \\ 0 - \bigcirc \qquad Y^{1}$$
 (1-65)

$$R^1$$
 \longrightarrow F^F O \longrightarrow \longrightarrow Y^1 (1-67)

$$P^{1} - \bigvee_{F} \stackrel{F}{O} - \bigvee_{F} \stackrel{F}{O} - \bigvee_{F} \stackrel{(1-68)}{}$$

$$P^{1} - \bigvee_{F} \stackrel{F}{\longrightarrow} O - \bigvee_{F} - \bigvee_{F} - \bigvee_{G} - \bigvee_$$

$$R^{1} \longrightarrow F F O \longrightarrow Y^{1}$$
 (1-70)

$$R^{1} \longrightarrow FFF \longrightarrow Y^{1}$$
 (1-72)

$$R^{1} - \bigvee_{F} F F F F F - Y^{1}$$
 (1-75)

$$R^1$$
 \longrightarrow F F F \longrightarrow Y^1 (1-77)

$$R^1$$
 \longrightarrow FFF O \longrightarrow Y^1 (1-78)

$$R^{1} \longrightarrow F F F F F Y^{1}$$
 (1-79)

$$R^1 \longrightarrow F_F$$
 $O \longrightarrow Y^1$ (1-81)

$$R^1$$
 F O Y^1 (1-82)

$$P^1$$
 P^1 P^1

$$R^1$$
 F F O Y^1 (1-87)

$$R^1 - \bigvee_{F} F F F \bigvee_{F} (1-88)$$

$$R^1$$
 \longrightarrow F O \longrightarrow $-Y^1$ (1-93)

$$R^1$$
 \longrightarrow F O \longrightarrow Y^1 $(1-95)$

$$R^1$$
 \longrightarrow F F F Y^1 $(1-96)$

WO 97/36847

$$R^1$$
 \longrightarrow F_F O \longrightarrow Y^1 (1-97)

$$R^{1} \longrightarrow F^{F}$$

$$O \longrightarrow Y^{1}$$

$$(1-98)$$

$$R^1$$
 \longrightarrow F^F O \longrightarrow Y^1 $(1-100)$

$$R^{1} - FF - F - Y^{1}$$
 (1-103)

$$R^1 - FFFF - F$$
 $O - Y^1$
 $(1-105)$

$$R^{1} \longrightarrow F_{O} \longrightarrow Y^{1}$$
 (1-108)

$$R^{1} - \bigvee_{F} F_{O} - \bigvee_{F} Y^{1}$$
 (1-111)

$$R^{1} \longrightarrow F F F F Y^{1}$$
 (1-112)

$$R^{1} - \bigvee_{F} F_{F} F_{F} - \bigvee_{\Gamma} Y^{1} \qquad (1-113)$$

$$R! - \bigvee_{F} F_{O} - \bigvee_{F} F_{O} - \bigvee_{F} Y^{1}$$
 (1-115)

$$P' - \bigvee_{F} F F F F$$
 (1-116)

$$R^1$$
 F_F O Y^1 $(1-117)$

$$R^1$$
 \longrightarrow F_F O \longrightarrow Y^1 $(1-118)$

$$R^1$$
 F_F O Y^1 $(1-119)$

$$R^1$$
 \longrightarrow F O \longrightarrow Y^1 (1-120)

$$R^1$$
 F F O Y^1 $(1-121)$

$$R'$$
 F F F Y' $(1-122)$

$$R^1$$
 F F F O Y^1 $(1-123)$

$$R^1$$
 O Y^1 $(1-124)$

$$R^1$$
 F F O Y^1 $(1-125)$

$$R^1$$
 F F F F F Y^1 $(1-126)$

$$R^1$$
 O Y^1 $(1-128)$

$$R^1$$
 Y^1 Y^1 Y^1 Y^1 Y^2

$$R^1$$
 F^F O Y^1 $(1-130)$

$$R^{1} \xrightarrow{F} F \xrightarrow{F} Y^{1} \qquad (1-133)$$

$$R^1$$
 F O Y^1 $(1-134)$

$$R^1$$
 F F F O Y^1 $(1-136)$

$$R'$$
- O - V' (1-138)

$$R^1$$
 F_F O Y^1 $(1-141)$

$$R^1$$
 \longrightarrow F F O \longrightarrow Y^1 $(1-142)$

$$R^1$$
 O Y^1 $(1-143)$

$$R^{1}$$
 O
 F
 F
 O
 Y
 $(1-145)$

$$R^1$$
 O P_F P_1 $(1-146)$

$$R^1$$
 F O Y^1 $(1-150)$

$$R^1$$
 O Y^1 $(1-151)$

$$R^1$$
 F O Y^1 $(1-154)$

$$R^1$$
 F O Y^1 $(1-155)$

$$R^1$$
 F F O Y^1 $(1-156)$

$$R' - F F O - Y'$$
 (1-157)

$$R^1$$
 \longrightarrow F O \longrightarrow Y^1 $(1-158)$

$$R^1$$
 F F O Y^1 $(1-159)$

$$R^{1} \longrightarrow F_{C} \longrightarrow Y^{1}$$
 (1-160)

$$R^1$$
 O Y^1 $(1-162)$

$$R^{1} - \bigvee_{F} F F F - \bigvee_{C} Y^{1} \qquad (1-169)$$

$$R^{1} - \bigvee_{F} F F F F - \bigvee_{F} O - \bigvee_{F} - \bigvee_{F} - \bigvee_{F} O - \bigvee_{F} - \bigvee_{F$$

$$R^{1} - \left(\begin{array}{c} F_{F} \\ O - \left(\begin{array}{c} -171 \end{array} \right) \end{array} \right)$$

$$R^1$$
 \longrightarrow F O \longrightarrow Y^1 $(1-172)$

$$R^1 - \bigcirc \qquad FF$$

$$F \circ \bigcirc \qquad \bigcirc \qquad (1-175)$$

$$R' - \bigvee_{F} F_{O} - \bigvee_{E} Y^{1} \qquad (1-176)$$

$$R^{1} \longrightarrow F F F F Y^{1}$$
 (1-177)

$$R^{1} - \bigvee_{F} F_{O} - \bigvee_{F} F_{O} - \bigvee_{F} Y^{1} \qquad (1-178)$$

$$R^{1} \longrightarrow \begin{matrix} F_{F} \\ O \end{matrix} \longrightarrow \begin{matrix} Y^{1} \\ \end{matrix} \qquad (1-179)$$

$$R^{1} - \bigvee_{F} F F F F$$
 (1-180)

$$R^{1} - \bigvee_{F} F F F F F Y^{1} \qquad (1-181)$$

(1-182)

(1-183)

$$R^1$$
 \longrightarrow F F F Y^1

(1-184)

(1-185)

(1-186)

(1-187)

(1-188)

(1-189)

(1-190)

(1-191)

$$R^1$$
 $FFFF$ F $(1-192)$

$$R^1$$
 $O F F$ Y^1 $(1-193)$

$$R^{1}$$
 O
 Y^{1}
 $(1-194)$

$$R^1$$
 F F F Y^1 (1-195)

$$R^1$$
 O F F O Y^1 $(1-196)$

$$R^1$$
 O F F O Y^1 $(1-197)$

$$R^1$$
 F F F Y^1 $(1-200)$

$$R^1$$
 $FFFF$ F Y^1 (1-201)

$$R^1$$
 $O \neq F$ Y^1 $(1-202)$

$$R^1$$
 $O = F$ $O = Y^1$ $O = Y^1$

$$R^1$$
 OFF F OFF Y^1 $(1-204)$

$$R^1$$
 O Y^1 $(1-206)$

$$R^1$$
 F F F F Y^1 (1-207)

$$P^1$$
 P^1 P^1

$$R^1$$
 F F F F Y^1 $(1-209)$

$$R^1$$
 F F F F Y^1 (1-210)

$$R^1$$
 F F F Y^1 $(1-212)$

$$R^1$$
 O Y^1 $(1-215)$

$$R^1$$
 O F F O Y^1 $(1-216)$

$$R^{1} \longrightarrow F F F F F F F$$

$$O \longrightarrow Y^{1} \qquad (1-217)$$

上記一般式(1-1)~(1-1)、(1-21)~(1-64)、(1-81)~(1-181)で表される化合物はいずれも低粘性であり、かつ中程度の誘電率異方性を示す。中でも一般式(1-1)~(1-11)、(1-21)~(1-42)で表される2環および3環系の化合物は特に粘度が低く、かつ低温相溶性に優れているため、本化合物を組成物の成分として添加した場合、透明点を低下させずに粘度だけを著しく低下させることができる。また、一般式(1-43)~(1-64)、(1-81)~(1-181)で表される4環系の化合物は広いネマチック相温度領域を有すると共に低粘性であり、本化合物を組成物の成分として添加した場合、粘度を上昇させずに透明点のみを上昇させることができる。

5

10

15

20

25

また、一般式(1-97)~(1-136)、(1-160)~(1-18 1)で表される化合物は上述の4環系化合物の特長の他、屈折率異方性が大きな特長を有し、中でも一般式(1-160)~(1-181)で表されるトラン誘導体は低粘性であり非常に大きな屈折率異方性を有し、STN用液晶材料として優れた特性を示す。

また、一般式(1-12)~(1-20)、(1-65)~(1-70)、(1-182)~(1-217)で表される化合物はいずれも非常に粘度が低く、かつ誘電率異方性が負に大きな特長を示すことから、本化合物を組成物の成分として添加した場合、組成物の粘度を上昇させずに誘電率異方性をのみを負に増大させることが可能で、IPS 駆動あるいは特開平2-176625 号公報に記載されているような垂直配向方式の表示素子において低電圧駆動と高速応答を両立できる液晶組成物を提供できる。

また、一般式(1-1)~(1-217)においてR¹およびY¹の1つ以上が アルケニル基である誘導体はいずれも非常に大きな弾性定数比K33/K11を示し、同 じ骨格を有する飽和型の化合物と比較し、低粘性でありかつ高い透明点を示す。上 述のように本発明化合物は優れた特徴を有し、本発明化合物の使用により改善さ れた特性を有する液晶組成物、液晶表示素子の提供が可能である。

以下、本発明の液晶組成物に関して説明する。本発明に係る液晶組成物は、一般式(1)で表される化合物の少なくとも1種類を0.1~99.9重量%の割

合で含有することが、慢良な特性を発現せしめるために好ましい。

5

さらに詳しくは、本発明により提供される液晶組成物は、一般式(1)で表される化合物を少なくとも1種類含有する第一成分に加え、液晶組成物の目的に応じて一般式(2)~(4)で表される化合物群から任意に選択される化合物を混合することにより完成する。

一般式 (2) ~ (4) で表される化合物として、好ましくは以下の化合物を挙 げることができる。(式中、 R^2 及び Y^2 は前記と同じの意味を示す。)

$$R^2 \longrightarrow Y^2$$
 (2-1)

$$R^2$$
 Y^2 (2-2)

$$\mathbb{R}^2 \longrightarrow \mathbb{Y}^2 \tag{2-4}$$

$$R^2$$
 Y^2 (2-5)

$$R^2$$
 Y^2 (2-6)

$$R^2 \longrightarrow O \longrightarrow Y^2$$
 (2-7)

$$R^2 \longrightarrow O \longrightarrow Y^2$$
 (2-8)

$$R^2 - O - F$$

$$O - F$$

$$F$$

$$(2-9)$$

$$R^2$$
 (3-2)

$$R^2 \longrightarrow \bigvee_{E} Y^2 \qquad (3-3)$$

$$R^2$$
 (3-4)

$$R^2$$
 Y^2 (3-5)

$$R^2$$
 (3-6)

$$R^2$$
 Y^2 (3-7)

$$R^2 \longrightarrow Y^2 \qquad (3-8)$$

$$R^2$$
 Y^2 (3-9)

$$R^2 \longrightarrow O \longrightarrow Y^2$$
 (3-10)

$$R^2 \xrightarrow{O} \xrightarrow{O} \xrightarrow{F} Y^2$$
 (3-11)

$$R^2 \longrightarrow O \longrightarrow F$$

$$O \longrightarrow Y^2$$
(3-12)

$$R^2 - Y^2$$
 (3-13)

$$R^2$$
 Y^2 (3-14)

$$R^2 \longrightarrow F$$

$$Y^2 \qquad (3-15)$$

$$\mathbb{R}^2 \longrightarrow \mathbb{Y}^2 \tag{3-16}$$

$$R^2 \longrightarrow F$$

$$Y^2 \qquad (3-17)$$

$$R^2 \longrightarrow F$$

$$Y^2 \qquad (3-18)$$

$$R^2 - Y^2$$
 (3-19)

$$R^2$$
 Y^2 (3-20)

$$R^2 - \left(\begin{array}{c} \\ \\ \\ \end{array} \right) = \left(\begin{array}{c} \\ \\ \end{array} \right)$$
 (3-21)

$$R^2 - Y^2$$
 (3-22)

$$R^2 \longrightarrow F$$

$$Y^2$$
(3-24)

$$R^2 - Y^2$$
 (3-25)

$$R^2 \longrightarrow F$$

$$Y^2 \qquad (3-26)$$

$$R^2 - Y^2$$
 (3-28)

$$R^2 - Y^2$$
 (3-29)

$$R^2$$
 (3-30)

$$R^2 - Y^2$$
 (3-31)

$$R^2$$
 (3-32)

$$R^2 \longrightarrow O \longrightarrow Y^2$$
 (3-34)

$$R^2 \longrightarrow O \longrightarrow F$$

$$O \longrightarrow Y^2$$
(3-36)

$$R^2 \xrightarrow{F} F$$

$$O \xrightarrow{Y^2} Y^2$$
(3-37)

$$R^2 \longrightarrow F F F Y^2$$
 (3-38)

$$R^2 \longrightarrow F F F F Y^2$$
 (3-39)

$$R^2 \longrightarrow Q \longrightarrow Y^2$$
 (3-40)

$$R^2 \longrightarrow 0 \qquad F \qquad (3-41)$$

$$R^2 \longrightarrow 0 \qquad F \qquad F \qquad (3-42)$$

$$R^2 \longrightarrow Y^2$$
 (3-43)

$$R^2$$
 Y^2 (3-44)

$$R^2$$
 Y^2 (3-46)

$$R^2$$
 Y^2 (3-47)

$$R^2$$
 Y^2 (3-48)

$$R^2$$
 Y^2 $(3-49)$
 R^2 Y^2 $(3-50)$
 R^2 Y^2 $(3-51)$
 R^2 Y^2 $(3-52)$
 R^2 Y^2 $(3-53)$
 R^2 Y^2 $(3-54)$
 R^2 Y^2 $(3-55)$
 R^2 Y^2 $(3-55)$
 R^2 Y^2 $(3-56)$
 R^2 Y^2 $(3-57)$

(3-59)

$$R^2 \longrightarrow F_{O \longrightarrow Y^2}$$
 (3-61)

$$R^2 \longrightarrow F F F F F Y^2$$
 (3-63)

$$R^2 \longrightarrow F F F F F F Y^2$$
 (3-64)

$$R^2 \longrightarrow F F F F Y^2$$
 (3-65)

$$R^2 \longrightarrow F F F F F Y^2$$
 (3-66)

$$R^2 \longrightarrow Q$$
 (3-67)

$$R^2 \longrightarrow Q \longrightarrow P$$

$$(3.68)$$

$$R^2$$
 Y^2 (4-2)

$$R^2 \longrightarrow Y^2 \tag{4-4}$$

$$R^2 \longrightarrow Y^2$$
 (4-5)

$$R^2$$
 Y^2 (4-7)

$$R^2 \longrightarrow Y^2 \qquad (4-8)$$

$$R^2$$
 Y^2 (4-9)

$$R^2 \longrightarrow Y^2 \qquad (4-12)$$

PCT/JP97/01048

$$R^2$$
 (4-13)

$$R^2 \longrightarrow F$$

$$(4-14)$$

$$R^2 \longrightarrow F$$

$$(4-15)$$

$$R^2 \longrightarrow FF$$

$$O \longrightarrow Y^2$$

$$(4-16)$$

$$R^2 \longrightarrow FF \qquad F$$

$$O \longrightarrow Y^2 \qquad (4-18)$$

$$R^2 \longrightarrow FF$$

$$O \longrightarrow Y^2$$

$$(4-19)$$

$$R^2 \longrightarrow FFF \qquad F$$

$$O \longrightarrow Y^2 \qquad (4-21)$$

$$R^2 \longrightarrow F F F F F F G (4-22)$$

$$R^{2} \longrightarrow F F F F F F Y^{2}$$
 (4-24)

一般式(2)~(4)で表される化合物は正の誘電率異万性値を有し、熱的安定性や化学的安定性が非常に優れており、高い電圧保持率、および大きな比抵抗値で代表される高信頼性が要求されるTFT表示方式用の液晶組成物を調製する場合には特に有用な化合物である。

TFT表示方式用の液晶組成物を調製する場合、一般式(1)で表される化合物を少なくとも1種類含有する第一成分に加え、一般式(2)~(4)で表される化合物を、液晶組成物の全重量に対して0.1~99.9重量%の範囲で任意に使用できるが、10~97重量%が好ましい。より好ましくは40~95重量%である。

5

15

10 STN表示方式またはTN表示方式用の液晶組成物を調製する場合にも、一般式(1)で表される化合物を少なくとも1種類含有する第一成分に加え、一般式(2)~(4)で表される化合物を使用することができるが、50重量%以下の使用量が好ましい。

このようにして得られる一般式(1)で表される化合物と一般式(2)~(4)で表される化合物とからなる液晶組成物の粘度を調整する目的で、この組成物に後記の一般式(5)~(12)で表される化合物群から選ばれた化合物をさらに添加してもよい。

一般式 (5) ~ (6) で表される化合物として、好ましくは以下の化合物を挙げることができる。(式中、 R^3 、 R^4 および Y^3 は前記と同一の意味を示す。)

$$R^3$$
 Y^3

$$R^3$$
 Y^3

$$R^3$$
 Y^3

$$R^3$$
 Y^3

$$R^3 - C$$

$$R^3 - N - N - Y^3$$

$$R^3$$
 O O O O O

$$R^3$$
 O Y Y^3

$$\mathsf{R}^3 - \bigcirc \bigcirc \bigcirc \bigcirc \bigvee_{\mathsf{C} = \mathsf{Y}^3}^{\mathsf{F}}$$

$$R^3 - C$$

$$R^3 \xrightarrow{O} \xrightarrow{O} \xrightarrow{F} Y^3 \qquad (5-13)$$

$$R^3 - Y^3 \qquad (5-15)$$

$$R^3$$
 (5-16)

$$R^3 \longrightarrow Y^3 \qquad (5-18)$$

$$R^3 \longrightarrow Y^3 \qquad (5-19)$$

$$R^3 \longrightarrow \qquad \qquad F$$

$$Y^3 \qquad (5-20)$$

$$R^3 - \sqrt{} - \sqrt{} - \sqrt{}$$
 (5-21)

$$R^3$$
 (5-23)

$$R^3$$
 Y^3 (5-24)

$$R^3$$
 Y^3 (5-25)

$$R^3$$
 (5-26)

$$R^3$$
 (5-27)

$$R^3$$
 (5-28)

$$R^3$$
 (5-29)

$$R^3$$
 Y^3 (5-30)

$$R^3$$
 Y^3 (5-31)

$$R^3 \longrightarrow Q \longrightarrow Y^3$$
 (5-32)

$$P^3 \longrightarrow O \longrightarrow F$$

$$O \longrightarrow Y^3$$

$$(5-33)$$

$$R^3 - O - F - Y^3$$
 (5-34)

$$R^3 \longrightarrow Q \longrightarrow Y^3$$
 (5-35)

25

一般式(5)~(6)で表される化合物は、大きな正の誘電率異方性値を有し、 20 特に液晶組成物のしきい値電圧を小さくする目的で使用される。また、屈折率異 方性値の調整、透明点を高くする等のネマチックレンジを広げる目的にも使用さ れる。さらに、STN表示方式またはTN表示方式用の液晶組成物の電圧-透過 率曲線の急峻性を改良する目的にも使用される。

一般式(5)~(6)で表される化合物の使用量を増加させると、液晶組成物のしきい値電圧が小さくなり、粘度が上昇する。したがって、液晶組成物の粘度が要求特性を満足する限り、多量に使用した方が低電圧駆動できるので有利である。一般式(5)~(6)で表される化合物の使用量は、STN表示方式またはTN表示方式用の液晶組成物を調製する場合には、0.1~99.9重量%の範囲で任意に使用できるが、10~97重量%、より好ましくは40~95重量%

である。

本発明で用いられる一般式(7)~(9)で表される化合物として好ましくは、 以下の化合物を挙げることができる。(式中、R⁵及びR⁶は前記と同じ意味を示 す)

$$R^{5}$$
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{7}
 R^{6}
 R^{6}
 R^{6}
 R^{7}
 R^{6}
 R^{6}
 R^{6}
 R^{7}
 R^{6}
 R^{6}
 R^{7}
 R^{7

$$R^5 \longrightarrow R^6$$
 (7-11)

$$R^5$$
 R^6 (8-2)

$$R^5$$
 R^6 (8-3)

$$R^5$$
 R^6 (8-4)

$$R^5$$
 R^6 (8-5)

$$R^5 - R^6$$
 (8-6)

$$R^5 - R^6$$
 (8-7)

$$R^5 \longrightarrow R^6$$
 (8-8)

$$R^5 \longrightarrow R^6$$
 (8-9)

$$R^5$$
 O R^6 (8-10)

$$R^5$$
 O R^6 (8-11)

$$R^5 - O - O - R^6$$
 (8-12)

$$R^5$$
 R^6 (8-13)

$$R^5 \longrightarrow F$$

$$R^6 \qquad (8-14)$$

$$R^5$$
 (8-15)

$$R^5$$
 (8-16)

$$R^5 \longrightarrow R^6 \qquad (8-17)$$

$$R^5$$
 R^6 (8-18)

$$R^5 \longrightarrow R^6 \qquad (9-2)$$

$$R^5$$
 R^6 (9-3)

$$R^5 - R^6$$
 (9-4)

$$R^5$$
 R^6 (9-5)

$$R^5$$
 O R^6 $(9-6)$

5

10

15

一般式(7)~(9)で表される化合物は、誘電率異方性値の絶対値が小さく、中性に近い化合物である。一般式(7)で表される化合物は、主として液晶組成物の粘度調整、または屈折率異方性値の調整の目的で使用される。また、一般式(8)及び(9)で表される化合物は、液晶組成物の透明点を高くする等のネマチックレンジを広げる目的、または屈折率異方性値の調整の目的で使用される。

一般式(7)~(9)で表される化合物の使用量を増加させると液晶組成物のしまい値電圧が大きくなり、粘度が小さくなる。従って、液晶組成物のしきい値電圧が満足している限り、多量に使用することが望ましい。一般式(7)~(9)で表される化合物の使用量は、TFT表示方式用の液晶組成物を調整する場合には40重量%、より好ましくは35重量%以下が好適である。また、STN表示方式またはTN表示方式用の液晶組成物を調整する場合には70重量%以下、より好ましくは60重量%以下である。

本発明で用いられる一般式(10)~(12)で表される化合物として好ましくは、以下の化合物を挙げることができる。(式中、R⁷及びR⁸は前記と同一の意味を示す)

$$R^7 \longrightarrow R^8$$
 (10-1)

$$R^7$$
— R^8 (11-1)

$$R^7$$
 \longrightarrow R^8 (11-2)

$$R^7$$
— O — R^8 (11-3)

5

15

20

$$R^{7}$$
 R^{7}
 R^{8}
 R^{8}
 R^{8}
 R^{8}
 R^{8}
 R^{7}
 R^{8}
 R^{8}
 R^{8}
 R^{7}
 R^{8}
 R^{8}
 R^{8}
 R^{7}
 R^{8}
 R^{8}
 R^{8}
 R^{8}
 R^{8}
 R^{8}
 R^{8}
 R^{8}
 R^{8}

一般式(10)~(12)で表される化合物は、誘電率異方性値が負であり、 誘電率異方性値が正の化合物と混合することにより、誘電率異方性値の関数であ る液晶組成物の弾性定数をコントロールすることができ、このことによって、液 晶組成物の電圧-透過率曲線の急峻性を制御できる。したがって、種々の駆動方 式に利用できる。

一般式(10)~(12)で表される化合物の使用量は、TFT表示方式、STN表示方式またはTN表示方式用の液晶組成物を調製する場合には、0.1~99.9重量%の範囲で任意に使用できるが、10~97重量%、より好ましくは10~60重量%である。

OCB (Optically Compensated Birefringence)モード用液晶組成物等の特別な場合を除き、通常液晶組成物のらせん構造を誘起して必要なねじれ角を調整し、逆ねじれ(reverse twist)を防ぐ目的で液晶組成物に光学活性化合物を添加することがあるが、本発明の液晶組成物においても同様に光学活性化合物を添加することができる。このような目的に公知のいずれの光学活性化合物も使用できるが、好ましい光学活性化合物を以下に挙げる。

$$C_2H_5$$
 — CH — CH_2O — CH — CH_2O — CH — — CH — — CH —

ĊНз

[記号: CN]

本発明の散晶組成物は、連常、これらの光字枯性化合物を添加して、ねじれのピッチを調整する。ねじれのピッチは、TFT表示方式及びTN表示方式用の液晶組成物であれば、 $10\sim200\mu$ mの範囲に調整するのが好ましい。STN表示方式用の液晶組成物であれば、 $6\sim20\mu$ mの範囲に調整するのが好ましい。また、双安定(Bistable TN)モード用の場合は、 $1.5\sim4\mu$ mの範囲に調整するのが好ましい。また、ピッチの温度依存性を調整する目的で、2種類以上の光学活性化合物を添加してもよい。

本発明の液晶組成物は、それ自体慣用な方法で調製される。一般には、種々の 成分を高い温度で互いに溶解させる方法がとられる。

10 本発明の液晶組成物は、メロシアニン系、スチリル系、アゾ系、アゾメチン系、アゾキシ系、キノフタロン系、アントラキノン系及びテトラジン系等の二色性色素を添加して、ゲストホスト(GH)モード用の液晶組成物としても使用できる。また、ネマチック液晶をマイクロカブセル化して作製したNCAPや液晶中に三次元網目状高分子を作製したポリマーネットワーク液晶表示素子(PNLCD)に代表されるポリマー分散型液晶表示素子(PDLCD)用の液晶組成物としても使用できる。その他、復屈折制御(ECB)モードや動的散乱(DS)モード用の液晶組成物としても使用できる。

本発明の液晶性化合物を含有するネマチック液晶組成物として以下に示すよう な組成例を示すことができる。ただし、組成例中の化合物は、表1に示す取り決 めに従い略号で示した。

また、トランス-1, 4-シクロヘキシレンの水素原子が Q^1 、 Q^2 、 Q^3 の位置で重水素原子によって置換された場合には、記号H [1D、2D、3D] と表記し、 Q^5 、 Q^6 、 Q^7 の位置で重水素原子によって置換された場合には、記号H [5D、6D、7D] と表記して、[] 内の番号で重水素置換位置を示した。

$$\begin{array}{c|c} Q_2 & Q_5 \\ \hline Q_1 & Q_6 \\ \hline Q_3 & Q_7 \\ \hline Q_4 & Q_7 \\ \end{array}$$

20

表1 記号を用いた化合物の表記方法

 $R - (A_1) - Z_1 - (A_n) - X$

1) 左末端基 R-	記号		3) 結合基 -Z1-, -Z	。一 記号
C _n H _{2n+1} —	n		—С ₂ Н ₄ —	2
C _n H _{2n+1} O	лО	-		4
$C_nH_{2n+1}OC_mH_{2m}$	nOm-	_	—coo—	E
CH ₂ =CH	v—		—C≡C—	7
CH2-CHCaH2a	Vn-	-	—СН=СН—	T V
C _n H _{2n+1} CH*CHC _m H _{2m}	nVm-		—CF ₂ O—	CF20
C _u H ₂₀₊₁ CH-CHC _m H _{2m} CH-CHC _k F	ł _{zx} nVm	vk—	—OCF ₂ —	OCF2
				OCF2
2) 環構造 (Aı) , (A n)	記号	4)右末端基 一 X	記号
- (o)-	В		- F	— F
F (S)			-CI	—CL
	B(F)		-CN	—C
_ ` \	B(2F,3F)		-CF ₃ -OCF ₃	—CF3
F	2(21)		•	— OCF3
- ⊘-	B(F,F)		-OCF ₂ H C _n H _{2n+1}	OCF2H n
F			$-OC_nH_{2n+1}$	On
	H		COOCH3	—EMe
	Pω		-C _n H _{2n} CH=CH ₂	— n v
N	Ру		-C _m H _{2m} CH=CHC _n H _{2n+1}	— mVn
- <}-	D		$-C_mH_{2m}CH=CHC_nH_{2n}F$	— mynf
	CL.		-CH=CF ₂	— VFF
	Ch		-C _n H _{2n} CH=CF ₂ -C≡C-CN	- nVFF - TC
			-Cac-Civ	10
				•
5)表記例				
例 1 3-H2B(F,F)B(F)-F 例 3 1V2-BEB(F,F)-C				
$C_3H_7 - C_2H_4 - C_2F - F$			H=CHCH ₂ CH ₂ (O)-COO·	(Σ)−CN F
912 3-HB(F)TB-2				
C ₃ H ₇	≻С ₂ Н5			

組成例1

	3 - H 2 B (F) E B (2 F, 3 F) - O 2	15.	0 %
	1 V 2 - B E B (F, F) - C	5.	0 %
	3 - HB - C	25.	0 %
5	2 - B T B - 1	1.1.	0 %
	3 - HH - 4	10.	0 %
	3 - H H B - 1	10.	0 %
	3 - H 2 B T B - 2	4.	0 %
	3 - H 2 B T B - 3	4.	0 %
10	3 - H 2 B T B - 4	4.	0 %
	3 - HB (F) $TB - 2$	6.	0 %
	3 - HB (F) TB - 3	6.	0 %
	CM 3 3	0.	8部
	組成例 2		
15	5 - HVHEB (2F, 3F) - 02	7.	0 %
	V 2 - H B - C	12.	0 %
	1 V 2 - H B - C	12.	0 %
	3 - HB - C	15.	0 %
	3-H [1D, 2D, 3D]-C	9.	0 %
20	3-HB(F)-C	5.	0 %
	2 - B T B - 1	2.	0 %
	3 - HH - 4	6.	0 %
	3 - HH - VFF	6.	0 %
	$2 - H [1 \cdot D, 2D, 3D] HB - C$	3.	0 %
25	3 - H H B - C	3.	0 %
	3 - HB (F) TB - 2	6.	0 %
	3 - H 2 B T B - 2	5.	0 %
	3 - H 2 B T B - 3	5 .	0 %
	3 - H 2 B T B - 4	4.	0 %

組成例3

	3-H2B(F)EB(2F, 3F)-O2	10.	0 %
	2 O 1 - B E B (F) - C	5.	0 %
	3O1 - BEB(F) - C	15.	0 %
5	4 O 1 - B E B (F) - C	13.	0 %
	5 O 1 - B E B (F) - C	11.	0 %
	2-HHB (F) $-C$	15.	0 %
	3-HHB (F) $-C$	15.	0 %
	3 - HB (F) TB - 2	4.	0 %
10	3 - HB (F) TB - 3	4.	0 %
	3-HB (F) TB-4	4.	0 %
	3 - HHB - O.1	4.	0 %
	組成例 4		
	3-H2B (F) EB (2F, 3F) -O2	6.	0 %
15	5-HVHEB (2F, 3F)-O2	6.	0 %
	5 - P y B - F	4.	0 %
	3 - P y B (F) - F	4.	0 %
	2 - B B - C	5.	0 %
	4 - B B - C	4.	0 %
20	5 - B B - C	5.	0 %
	2 - P y B - 2	2.	0 %
	3 - P y B - 2	2.	0 %
	4 - P y B - 2	2.	0 %
	6 - P y B - O 5	3.	0 %
25	6 - P y B - O 6	3.	0 %
	6 - P y B - O 7	3.	0 %
	3 - P y B B - F	6.	0 %
	4 - P y B B - F	· 6.	0 %
	5 - P y B B - F	6.	0 %

WO 97/36847

PCT/JP97/01048

	3-HHB-1	5.0%
	2 - H 2 B T B - 2	4.0%
	2 - H 2 B T B - 3	4.0%
	2 - H 2 B T B - 4	5.0%
5	3 - H 2 B T B - 2	5.0%
	3 - H 2 B T B - 3	5. 0 %
	3 - H 2 B T B - 4	1 5. 6%
	組成例5	-c-6-6> (1)
	5 - HVHEB (2F, 3F) - 02	7.0%
10	5-HBCF2OB(2F, 3F)-02	13.0%
	3 = HB = C	18.0%
4,0-6	C/O 71-HB-C	3.0%
,	HOI-HB-C	10.0%
	3 - HB (F) - C	10.0%
15	2-PyB-2	2.0%
	3 - P y B - 2	2.0%
	4-PyB-2	2.0%
	101-HH-3) IV	4.0%
	2 - B T B - O 1	5.0%
20	3 - H H B - F	4.0%
	$3-HHB-O1 \rightarrow IV$	4.0%
	3 - H 2 B T B - 2	3.0%
	3 - H 2 B T B - 3	3.0%
	2 - P y B H - 3	4.0%
25	3 - P y B H - 3	3.0%
-	3 - P y B B - 2	3.0%
	組成例 6	
	3-H2B (F) EB (2F, 3F) -O2	4.0%
	5 - HVHEB (2F, 3F) - O2	4.0%

	5-HBCF2OB(2F, 3F)-O2		4.	0 %
	5 - B E B (F) - C		5.	0 %
	V – H B – C	1	1.	0 %
	5 - P y B - C		6.	0 %
5 .	4 - B B - 3	l	1.	0 %
	3 - HH - 2V		6.	0 %
	$\sqrt{5-HH-V}$	1	1.	0 %
	V - H H B - 1		7.	0 %
	$V_2 - H_1 H_2 B - 1$	1	1.	0 %
10	3 - H H B - 1		5.	0 %
	1 V 2 - H B B - 2	1	0.	0 %
	3 - H H E B H - 3		5.	0 %
	組成例 7			
	3 - H 2 B (F) E B (2 F, 3 F) - O 2		7.	0 %
15	2 O 1 - B E B (F) - C		5.	
	3 O 1 - B E B (F) - C			0 %
	501-BEB (F) -C			0 %
	1V2-BEB(F, F)-C			0 %
	3 - H.B - O 2		0.	
20	3 - HH - 4		3.	
	3-HHB-F			0 %
	3 - H H B - 1		3.	0 %
	3 - H H B - O 1		2.	0 %
	3 – H B E B – F		4.	0 %
25	3 - H H E B - F		7.	
	5 - H H E B - F		7.	
-	3 - H 2 B T B - 2		4.	0 %
	3 - H 2 B T B - 3		4.	0 %
	3 - H 2 B T B - 4		4.	0 %

WO 97/36847

PCT/JP97/01048

	5-HVHEB (2F, 3F) -O2	7.0%
	5-HBCF2OB(2F, 3F)-O2	8.0%
	1 V 2 - B E B (F, F) - C	8.0%
	3 - H B - C	10.0%
5	V 2 V – H B – C	14.0%
	V 2 V - H H - 3	16.0%
	3 - H B - O 2	4.0%
	3 - H H B - 1	10.0%
	3 - H H B - 3	3.0%
10	3 - HB (F) $TB - 2$	4.0%
	3 - HB (F) $TB - 3$	4.0%
	3 - H 2 B T B - 2	4.0%
	3 - H 2 B T B - 3	4.0%
	3 - H 2 B T B - 4	4.0%
15	組成例11	
	5-HVHEB (2F, 3F) -O2	5.0%
	5-HBCF2OB (2F, 3F)-O2	6.0%
	5 - BTB (F) TB - 3	10.0%
	V 2 - H B - T C	10.0%
20	3-HB-TC	10.0%
	3-HB-C	10.0%
	5 - H B - C	7.0%
	5 - B B - C	3.0%
	2 - B T B - 1	10.0%
25	2 - BTB - O1	5.0%
	3 - HH - 4	5.0%
	3-HHB-1	10.0%
	3 - H 2 B T B - 2	3.0%
	3 - H 2 B T B - 3	3.0%

	3-HB (F) TB-2	3.	0 %
	組成例12		
	5-HVHEB (2F, 3F) - O2	3.	0 %
	5-HBCF2OB (2F, 3F)-O2	4.	0 %
5	1 V 2 - B E B (F, F) - C	6.	0 %
	3 - H B - C	18.	0 %
	2 - B T B - 1	10.	0 %
	5 - H H - V F F	30.	0 %
	1 - BHH-VFF	8.	0 %
10	1 - B H H - 2 V F F	4.	0 %
	3 - H 2 B T B - 2	5.	0 %
	3 - H 2 B T B - 3	4.	0 %
	3 - H 2 B T B - 4	4.	0 %
	3 - H H B - 1	4.	0 %
15	組成例13		
	3-H2B(F) EB(2F, 3F)-O2	5.	0 %
	5-HVHEB (2F, 3F) -O2		
	$\sqrt{5 - \text{HBCF2OB}(2F, 3F) - O2}$	10.	0 %
	2 - H B - C	5.	0 %
20	3 – H B – C	12.	0 %
	3 - H B - O 2	12.	0 %
	$_{1}$ 2 - B T B - 1	3.	0 %
	$\sqrt{3}$ – H H B – 1	3.	0 %
	$\sqrt{3}$ – H H B – F	4.	0 %
25	3 - H H B - O 1	2.	0 %
	3 - H H E B - F	4.	0 %
	5-HHEB-F	4.	0 %
	2-HHB (F) -F	7.	0 %
	3-HHB (F) -F	7.	0 %

	3 - H 2 B B (F) - F		6.	0 %
	3 - H H B - O 1		5.	0 %
	3 - H H B - 3		4.	0 %
	組成例 1 6			
5	3-H2B(F)EB(2F, 3F)-O2		3.	0 %
	5 - HVHEB (2F, 3F) - O2		3.	0 %
	5-HBCF2OB(2F, 3F)-O2		4.	0 %
	7-HB (F, F) $-F$		3.	0 %
	3 - HB - O2		7.	0 %
10	2-HHB (F) $-F$	1	0.	0 %
	3-HHB (F) -F	1	0.	0 %
	2-HBB(F)-F		9.	0 %
	3 - HBB (F) - F		9.	0 %
	5-HBB (F) -F	1	6.	0 %
15	2 - H B B - F		4.	0 %
	3 - HBB - F		4.	0 %
	5 - H B B - F		3.	0 %
	3-HBB(F, F)-F		5.	0 %
	5-HBB (F, F) $-F$	1	0.	0 %
20	組成例17			
	5-HBCF2OB(2F, 3F)-O2	1	5 .	0 %
	7 - HB (F, F) - F		3.	0 %
	3-H2HB (F, F) $-F$	1	2.	0 %
	4-H2HB (F, F)-F	1	0.	0 %
25	5-H2HB (F, F)-F	1	0.	0 %
	3-HHB (F, F) $-F$		5.	0 %
	4-HHB (F, F)-F		5.	0 %
	3 - H H 2 B (F, F) - F	1	5.	0 %
	3-HBB(F, F)-F	1	2.	0 %

	5 - HBB (F, F) - F	7.	0 %
	3-HBCF2OB(F, F)-F	6.	0 %
	組成例18		
	3-H2B(F)EB(2F, 3F)-O2	10.	0 %
5	7-HB (F, F)-F	5.	0 %
	3-H2HB (F, F)-F	12.	0 %
	3-HHB (F, F) $-F$	10.	0 %
	4-HHB (F, F) $-F$	5.	0 %
	3 - HBB (F, F) - F	10.	0 %
10	3-HHEB(F, F)-F	10.	0 %
	4-HHEB (F, F)-F	3.	0 %
	5-HHEB(F, F)-F	3.	0 %
	2-HBEB(F, F)-F	3.	0 %
	3-HBEB(F, F)-F	5.	0 %
15	5 - HBEB (F, F) - F	3.	0 %
	3 - HDB (F, F) - F	15.	0 %
	3-HHBB (F, F) -F	6.	0 %
	√ 組成例19		
	5-HBCF2OB(2F, 3F)-O2	10.	0 %
20	3-BCF2OB(2F, 3F)-O2	10.	0 %
	3-HHB (F, F) $-F$	9.	0 %
	3 - H 2 H B (F, F) - F	8.	0 %
	4-H2HB (F, F) $-F$	8.	0 %
	5-H2HB (F, F)-F	8.	0 %
25	3-HBB(F, F)-F	11.	0 %
	5-HBB (F, F)-F	10.	0 %
	3 - H 2 B B (F, F) - F	10.	0 %
	5 - HHBB (F, F) - F	3.	0 %
	5 - H H E B B - F	2.	0 %

WO 97/36847

	3-HH2BB(F, F)-F	3.	0 %
	1 O 1 - H B B H - 4	4.	0 %
	1-0-1 - HBBH - 5	4.	0 %
	組成例 2-0		
5	\$-HBCF2OB(2F, 3F)-O2	4.	0 %
	5 - B-2 B C F 2 O B (2 F, 3 F) - O 2	4.	0 %
	(3-BCF2OB(2F, 3F)-O2	4.	0 %
	5 - H B - F	12.	0 %
	6 - HB - F	9.	0 %
10	7 - H B - F	7.	0 %
	2-HHB-OCF3	7.	0 %
	3 - H H B - O C F 3	7.	0 %
	4 - H H B - O C F 3	7.	0 %
	5 - H H B - O C F 3	5.	0 %
15	3 - H H 2 B - O C F 3	4.	0 %
	5 - H H 2 B - O C F 3	4.	0 %
	3 - HHB (F, F) - OCF3	5.	0 %
	3 - HBB (F) - F	8.	0 %
	3-HH2B(F)-F	3.	0 %
20	3-HB (F) BH-3	3.	0 %
	5 - H B B H - 3	3.	0 %
	3-HHB (F, F) $-OCF2H$	4.	0 %
	組成例 2 1		
	3-H2B(F) EB(2F, 3F)-O2	15.	0 %
25	3 - H E B - O 4	23.	0 %
	4 - H E B - O 2	18.	0 %
	5 - H E B - O 1	18.	0 %
	3 - H E B - O 2	14.	0 %
	5 - H E B - O 2	12.	0 %

組成例22

	12.7477 = -	
	5-HBCF2OB(2F, 3F)-O2	15.0%
	5-HVHEB (2F, 3F) -02	5.0%
	3 - H B - O 2	10.0%
5	3 - HB - O4	10.0%
	3 - H E B - O 4	16.0%
	4 - H E B - O 2	13.0%
	5 - H E B - O 1	13.0%
	3 - H E B - O 2	10.0%
10	5 - H E B - O 2	8.0%
	組成例23	
	5-HBCF2OB(2F, 3F)-O2	15.0%
	3 - H B - O 2	15.0%
	3 - HB - O4	10.0%
15	3 - H E B - O 4	10.0%
	4 - H E B - O 2	7.0%
	5 – H E B – O 1	7.0%
	3 — H E B — O 2	6.0%
	5 - H E B - O 2	5.0%
20	3-HB (2F, 3F) -O2	7.0%
	5-HHB (2F, 3F) -O2	5.0%
	5 - HBB (2F, 3F) - 2	5.0%
	5 - H B B (2 F, 3 F) - O 2	4.0%
	5 - B B (2 F, 3 F) B - 3	4.0%
25	組成例 2 4	
	3-BCF2OB(2F, 3F)-O2	20.0%
	3-H2B(F)EB(2F, 3F)-O2	15.0%
	5 - H B C F 2 O B (2 F, 3 F) - O 2	15.0%
	3 - HB (2F, 3F) - O2	20.0%

	5 - H H B (2 F, 3 F) - O 2	10.0%
	5 - HHB (2F, 3F) - 101	5.0%
	5 - HBB (2F, 3F) - 2	10.0%
	5-HBB (2F, 3F) -101	5.0%
5	組成例25	
	3 - BCF 2OB (2F, 3F) - O2	10.0%
	3-H2B (F) EB (2F, 3F) - O2	5.0%
	5 - HVHEB (2F, 3F) - O2	5.0%
	5-BBCF2OB (2F, 3F) -O2	5.0%
10	3 - DB - C	10.0%
	4 - D B - C	10.0%
	2 - B E B - C	12.0%
	3 - B E B - C	4.0%
	3-PyB(F)-F	6.0%
15	3 - H E B - O 2	3.0%
	5 - H E B - O 2	4.0%
	5 - H E B - 5	5.0%
	4 - H E B - 5	5.0%
	1 O - B E B - 2	4.0%
20	3 - H H B - 1	3.0%
	3 - H H E B B - C	3.0%
	3 - H B E B B - C	3.0%
	5 - H B E B B - C	3.0%
	組成例 2 6	
25	3-H2HCF2OB (2F, 3F) -O2	10.0%
	3 - HVBCF2OB(2F, 3F) - O2	5.0%
•	5-H2BCF2OB(2F, 3F)-O2	5.0%
	3 - HHBCF2OB(2F, 3F) - O2	3.0%
	2 O 1 - B E B (F) - C	5.0%

	3 O 1 - B E B (F) - C	1 2. 0 %
	5 O 1 - B E B (F) - C	4.0%
	1 V 2 - B E B (F, F) - C	10.0%
	3 - HH - EMe	5.0%
5	3 - H B - O 2	18.0%
	7 - H E B - F	2.0%
	3 - H H E B - F	2.0%
	5 - H H E B - F	2.0%
	3 - H B E B - F	4.0%
10	2 O 1 - H B E B (F) - C	2.0%
	3-HB (F) EB (F) $-C$	2.0%
	3-HBEB(F, F)-C	2.0%
	3 - H H B - F	2.0%
	3 - H H B - 3	1.0%
15	3 - H E B E B - F	2.0%
	3 - H E B E B - 1	2.0%
	組成例 2 7	
	3-B (F) EB (2F, 3F) -02	5.0%
	3 - BCF2OB(2F, 3F) - O2	5.0%
20	5-HBCF2OB(2F, 3F)-O2	5.0%
	5 - H 2 B C F 2 O B (2 F, 3 F) - O 2	10.0%
	5 - B 2 B C F 2 O B (2 F, 3 F) - O 2	5.0%
	5 - H B - C L	4.0%
	7 - H B - C L	4.0%
25	1 O 1 - H H - 5	3.0%
	2 - H B B (F) - F	8.0%
	3-HBB (F)-F	8.0%
	4 - H H B - C L	4.0%
	5 - H H B - C L	8.0%

	3-H2HB (F)-CL	4.0%
	3-HBB(F, F)-F	10.0%
	5-H2BB (F, F)-F	9.0%
	3 - HB (F) VB - 2	4.0%
5	3 - HB (F) VB - 3	4.0%
	組成例28	
	3-B (F) EB (2F, 3F) -02	5.0%
	5-HVBEB (2F, 3F) -03	5.0%
	5-H2B (F) EB (2F, 3F) -O2	5.0%
10	5-H4HB (F, F)-F	7.0%
	5 - H 4 H B - O C F 3	15.0%
	3 - H 4 H B (F, F) - C F 3	3.0%
	3 - H B - C L	6.0%
	5 — H B — C L	4.0%
15	2-H2BB (F)-F	5.0%
	3-H2BB(F)-F	10.0%
	5 - HVHB (F, F) - F	5.0%
	3-HHB-OCF3	5.0%
	3 - H 2 H B - O C F 3	5.0%
20	V-HHB (F) -F	5.0%
	3-HHB (F) $-F$	5.0%
	5 - H H E B - O C F 3	2.0%
	3-HBEB(F, F)-F	5.0%
	5-HH-V2F	3.0%
25	組成例 2 9	
	5-B (F) CF2OB (2F, 3F) -O1	5.0%
	3-H2HB (F) EB (2F, 3F) -O2	
	3 - HH 2BCF 2OB (2F, 3F) - O2	3.0%
	5-HBCF2OB(2F, 3F)-O2	5.0%

	2-HHB (F) -F	2.	0 %
	$3-HHB$ $(F_{i})-F$	2.	0 %
	5-HHB (F) -F	2.	0 %
	2-HBB(F)-F	6.	0 %
5	3-HBB(F)-F	6.	0 %
	5-HBB (F) -F	10.	0 %
	2-H2BB (F) -F	9.	0 %
	3 - H 2 B B (F) - F	9.	0 %
	3-HBB (F, F) $-F$	15.	0 %
10	5-HBB (F, F)-F	19.	0 %
	1-Q1-HBBH-4	4.	0 %
	組成例-3-6		
	5-B (F) CF2OB (2F, 3F) -O1	5.	0 %
	5-HBCF2OB (2F, 3F)-O2	5 .	0 %
15	5 - H B - C L	12.	0 %
	3 - HH - 4	2.	0 %
	3 - H B - O 2	20.	0 %
	3-H2HB (F, F)-F	5.	0 %
	3-HHB (F, F) $-F$	8.	0 %
20	3-HBB(F, F)-F	6.	0 %
	2-HHB(F)-F	5.	0 %
	3-HHB(F)-F	5.	0 %
	5-HHB (F) -F	5.	0 %
	2 - H 2 H B (F) - F	2.	0 %
25	3-H2HB (F)-F	1.	0 %
	5-H2HB (F) -F	2.	0 %
	3-HHBB (F, F) -F	4.	0 %
	3 - H B C F 2 O B - O C F 3	4.	0 %
	5-HBCF2OB (F, F) - CF3	4.	0 %

WA	07/	3/2	47

	3 - H H B - 1	3.0%
	3 - H H B - O 1	2.0%
	組成例31	
	5 - HBCF2OB-3	8.0%
5	5 - H B C F 2 O B H - 3	7.0%
	7-HB (F) -F	14.0%
	2-HHB(F)-F	11.0%
	3-HHB (F) $-F$	11.0%
	5-HHB (F) -F	11.0%
10	2-H2HB(F)-F	5. 3%
	3 - H 2 H B (F) - F	2.6%
	5-H2HB (F)-F	5.3%
	2-HBB(F)-F	6.2%
	3 - HBB (F) - F	6.2%
15	5 - HBB (F) - F	12.4%
	組成例32	
	5 - H B C F 2 O B H - 3	7.0%
•	3 - H 2 B C F 2 O B H - 3	7.0%
	3 - H 2 B C F 2 O B H - 5	6.0%
20	7-HB (F, F) -F	4.0%
	3-HHB (F, F)-F	6.0%
	3-H2HB (F, F) $-F$	5.0%
	3-HBB(F, F)-F	12.0%
	5-HBB (F, F) -F	12.0%
25	3 - H 2 B B (F, F) - F	5.0%
	4 - H 2 B B (F, F) - F	5.0%
-	5-H2BB (F, F)-F	5.0%
	3-HBEB(F, F)-F	2.0%
	4-HBEB(F, F)-F	2.0%

	5-HBEB(F, F)-F	2.0%
	3-HHEB(F, F)-F	12.0%
	4-HHEB(F, F)-F	4.0%
	5-HHEB (F, F) $-F$	4.0%
5	組成例 3 3	
	3 - H B C F 2 O B - 3	5.0%
	3 - B C F 2 O B H - 5	5.0%
	3-H2HB (F, F)-F	9.0%
	5-H2HB (F, F)-F	8.0%
10	3-HHB (F, F) $-F$	9.0%
	4-HHB (F, F)-F	5.0%
	3 - HH 2B (F, F) - F	11.0%
	5-HH2B (F, F)-F	7.0%
	3-HBB(F, F)-F	14.0%
15	5-HBB (F, F)-F	14.0%
	3-HHEB(F, F)-F	9.0%
	3-HHBB(F, F)-F	2.0%
	3-HH2BB(F, F)-F	2.0%
	組成例34	
20	3 - HBCF2OBH - 3	6.0%
	3 - HBCF2OBH - 5	4.0%
	3 - H 2 B C F 2 O B H - 2	5.0%
	7-HB (F, F) $-F$	4.0%
	7-HB (F) -F	6.0%
25	2-HHB(F)-F	11.5%
	3 - H H B (F) - F	11.5%
	5-HHB (F) -F	11.5%
	2-H2HB (F)-F	3.0%
	3-H2HB (F)-F	1. 5%

WO	97/3	6847

5-H2HB (F)-F	3.0%
3 - H 2 H B (F, F) - F	5.0%
4-H2HB (F, F)-F	4.0%
5-H2HB (F, F)-F	4.0%
3-HHB (F, F) $-F$	7.0%
3 - HH 2B (F, F) - F	7.0%
5-HH2B (F, F)-F	6.0%
組成例 3 5	
3 - HB (F) CF $2 OB - 3$	8.0%
3-HB (F, F) CF $20B-5$	5.0%
2-HBCF2OBH-2	7.0%
7-HB (F, F) -F	4.0%
2-HHB (F) -F ·	11.1%
3-HHB (F) -F	11.2%
5 - HHB (F) - F	11.2%
2-H2HB (F) -F	3.0%
3-H2HB(F)-F	1. 5%
5-H2HB (F)-F	3.0%
3 - H 2 H B (F, F) - F	5.0%
4-H2HB(F, F)-F	30%
5-H2HB (F, F)-F	3.0%
3-HHB (F, F) $-F$	8.0%
4-HHB (F, F) $-F$	4.0%
3-HH2B(F, F)-F	6.0%
5-HH2B (F, F)-F	6.0%
組成例 3 6	
3 - H B C F 2 O B - 5	7. 0%
3 - HB (F) CF $2 OBH - 3$	5.0%
3-HB (F) CF2OBTB-3	3.0%
	3-H2HB(F, F)-F 4-H2HB(F, F)-F 5-H2HB(F, F)-F 3-HHB(F, F)-F 3-HH2B(F, F)-F 5-HH2B(F, F)-F 4M成例35 3-HB(F)CF2OB-3 3-HB(F, F)CF2OB-5 2-HBCF2OBH-2 7-HB(F, F)-F 2-HHB(F)-F 3-HHB(F)-F 3-HHB(F)-F 3-H2HB(F)-F 3-H2HB(F)-F 3-H2HB(F)-F 3-H2HB(F, F)-F 4-H2HB(F, F)-F 3-H2HB(F, F)-F 4-H2HB(F, F)-F 3-HHB(F, F)-F 4-HHB(F, F)-F 3-HHB(F, F)-F 4-HHB(F, F)-F 3-HH2B(F, F)-F 4-HHB(F, F)-F 3-HH2B(F, F)-F 4-HHB(F, F)-F 3-HH2B(F, F)-F

WO 97/36847	PCT/JP97/01048

7.).	0 %
).	0.04
	U 20
3.	5 %
3.	5 %
3.	0 %
j .	0 %
3.	0 %
j .	0 %
	0 %
3.	0 %
3.	0 %
3.	0 %
.	0 %
3.	0 %
3.	0 %
	0 %
	0 %
.	0 %
' .	0 %
	0 %
	0 %
	0 %
.	0 %
	0 %
5.	0 %
١.	0 %
3.	0 %

組成例38

WO	97/369	47

	5 - H B C F 2 O B H - 3	6.0%
	3 - H B C F 2 O B H - 3	6.0%
	5 - H B C F 2 O B T B - 3	3.0%
	2-HHB (F) -F	8.0%
5	3-HHB (F) -F	8.0%
J	5 - H H B (F) - F	8.0%
	3-HHB (F, F) -F	6.0%
	5-HHB (F, F) -F	
	3-H2HB (F, F) -F	5.0%
10	4-H2HB (F, F) -F	7.0%
10	5 - H2HB (F, F) - F	7.0%
	3 H 2 H B (F, F) - F	7.0%
	5-HH2B (F, F) -F	12.0%
	2-HBB-F	8.0%
15		3.0%
13	3 - H B B - F	3.0%
	3 - H H B - 1	3.0%
	組成例39	
	5 - H B C F 2 O B - 3	5.0%
	2-HB (F) CF2OB-3	5.0%
20	3-HB (F) CF2OB-3	5.0%
	7-HB (F) $-F$	4.0%
	$2-HH_{.}B_{.}(F)-F_{.}$	13.0%
	3-HHB (F) $-F$	13.0%
	5-HHB (F) -F	13.0%
25	2 - H 2 H B (F) - F	6.0%
	3 - H 2 H B (F) - F	3.0%
_	5-H2HB (F)-F	6.0%
	2-HBB(F)-F	3.0%
	3 - HBB (F) - F	3 0 %

WO	07/36947	

	5-HBB (F) -F	6.	0 %
	3 - H B B - F	2.	0 %
	3 - H H B - F	3.	0 %
	3 - H B - O 2	5.	0 %
5	3 - H H B - 1	3.	0 %
	1 O 1 - H B B H - 3	2.	0 %
	組成例 4 0		
	5 - H B C F 2 O B - 3	8.	0 %
	3 - BCF2OBH-V	8.	0 %
10	2 - B C F 2 O B H - 2 V	8.	0 %
	3-HB (F) CF2OBH-3	6.	0 %
	7-HB(F,F)-F	5.	0 %
	5-H2B(F)-F	5.	0 %
	2-HHB (F) $-F$	4.	0 %
15	3-HHB (F) -F	4.	0 %
	5-HHB (F) -F	4.	0 %
	2-HBB(F)-F	8.	0 %
	3-HBB (F) -F	8.	0 %
	5-HBB(F)-F	16.	0 %
20	2 - H B B - F	4.	0 %
	3 - HB (F) TB - 2	4.	0 %
	3 - HB (F) TB - 3	4.	0 %
	3 - HB (F) TB - 4	4.	0 %
	組成例 4-1		
25	3 - HB (F, F) $CF20B-1$	4.	0 %
	3 - HB (F, F) CF20BH-3	4.	0 %
_	2 - BTB (F, F) $CF2OBH-2$	2.	0 %
	2-HHB(F)-F	10.	0 %
	3-HHB(F)-F	10.	0 %

wo	97/	368∠	17

	5-HHB (F) -F	10.0%
	2-HBB (F)-F	5. 0%
	3-HBB(F)-F	5.0%
	5-HBB (F) -F	10.0%
5	3-HHB (F, F) $-F$	7.0%
	5-HHB (F, F) $-F$	4.0%
	3 - HH 2B (F, F) - F	8.0%
	5-HH2B(F, F)-F	8.0%
	5-H2HB (F, F)-F	5.0%
10	5 - H H E B B - F	2.0%
	3 - H B - O 2	4.0%
	3 - H H B - O 1	2.0%
	組成例 4 2	
	5 - H B C F 2 O B - 3	5.0%
15	3 - B C F 2 O B H - V	4.0%
	5 - H B C F 2 O B H - 3	5.0%
	3 - H 2 B C F 2 O B H - 3	5.0%
	2-HHB (F) $-F$	4.0%
	3-HHB(F)-F	4.0%
20	5-HHB (F) -F	4.0%
	2-HBB (F) -F	4.0%
	3-HBB(F)-F	4.0%
	5 - H B B (F) - F	8.0%
	4-H2BB(F)-F	6.0%
25	5-H2BB(F)-F	6.0%
	3 - H 2 B B (F, F) - F	4.0%
	4-H2BB(F, F)-F	5.0%
	5-H2BB (F, F)-F	4.0%
	3-HBB(F, F)-F	12.0%

組成例 4 3

	471,540.1 . 0	
5	5 - H B C F 2 O B - 3	6.0%
	3 - B C F 2 O B H - V	4.0%
	5 - H B C F 2 O B H - 3	5.0%
	301-BEB (F) - C	12.0%
	V 2 - H B - C	10.0%
10	3 - H B - O 2	4.0%
	2 - B T B - O 1	5.0%
	3 - B T B - O 1	5.0%
	4 - B T B - O 1	5.0%
	4 - B T B - O 2	5.0%
15	5 - B T B - O 1	5.0%
	3 - H H B - O 1	3.0%
	3 - H 2 B T B - 2	2.0%
	3 - H 2 B T B - 3	3.0%
	3 - H 2 B T B - 4	3.0%
20	3 - HB (F) $TB - 2$	3.0%
	3 - HB (F) TB - 3	3.0%
	3 - HB (F) TB - 4	5.0%
	2 - P y B H - 3	4.0%
	3 - P y B H - 3	4.0%
25	3 - P y B B - 2	4. 0 %
	組成例 4 4	
	5 - H B C F 2 O B H - 3	6.0%

5 - H B C F 2 O B H - 3	6.	0 %
3 - H 2 B C F 2 O B H - 3	6.	0 %
3 - H 2 R C F 2 O R H - 5	5	0 %

	V 2 - H B - C	9.0%
	1 V 2 - H B - C	9.0%
	3 - H B - C	14.0%
	1 O 1 - H B - C	8.0%
5	2 O 1 - H B - C	4.0%
	2 - H H B - C	5.0%
	3 - HHB - C	5.0%
	3 - HH - 4	8.0%
	1 O 1 - H H - 5	5.0%
10	2 - B T B - O 1	8.0%
	3 - H H B - 1	4.0%
	3 - H H B - 3	4.0%
	組成例 4 5	
	3 - B C F 2 O B H - V	3.0%
15	5 - B C F 2 O B H - 2 V	4.0%
,	3 - B C F 2 O B H - 2 V 1	4.0%
	3 - H 2 B C F 2 O B H - 5	4.0%
	1 V 2 - B E B (F, F) - C	12.0%
	3 O 1 - B E B (F) - C	12.0%
20	2 – H B – C	12.0%
	3-HB-C	19.0%
	2 - H H B - C	4.0%
	3 - H H B - C	5.0%
	4 – H H B – C	4.0%
25	5 - H H B - C	4.0%
	3 - H B - O 2	5.0%
_	3 - H 2 B T B - 3	4.0%
	3 - H 2 B T B - 4	4.0%

組成例 4 6

	5 - H B C F 2 O B - 3	1	0.	0 %
	3 - HB (F) CF $2 OB - 3$	1	0.	0 %
	2-HB (F) CF2OBH-V		4.	0 %
	3-HB (F) CF2OBH-V1		3.	0 %
5	3 - B T B C F 2 O B H - 3		3.	0 %
	V 2 - H B - C	1	2.	0 %
	1 V 2 – H B – C	1	1.	0 %
	1V2-BEB(F, F)-C	1	1.	0 %
	2 - B T B - 1		5.	0 %
10	4 - B T B - O 2		5.	0 %
	5 - B T B - O 1		5.	0 %
	3 - H H - E M e		4.	0 %
	2 - H 2 B T B - 3		4.	0 %
	2 - H 2 B T B - 2		4.	0 %
15	3 - HB (F) $TB - 2$		3.	0 %
	3 - HB (F) TB - 3		3.	0 %
	3-HB (F) TB-4		3.	0 %
	組成例 4 7			
	2 - H B C F 2 O B H - 2		6.	0 %
20	3 - HB CF 2 OBH - 3		6.	0 %
	3-HB (F, F) $CF2OBH-V$		3.	0 %
	3 - HB (F, F) CF2OBH-2V1		3.	0 %
	2 O 1 - B E B (F) - C		4.	0 %
	3 O 1 - B E B (F) - C	1	2.	0 %
25	5 O 1 - B E B (F) - C		4.	0 %
	1 V 2 - B E B (F, F) - C	1	5 .	0 %
-	3 - HHEB - F		5 .	0 %
	5 - H H E B - F		5.	0 %
	3 - H B E B - F		6.	0 %

	WO 97/36847	PCT/JP97/01048
	3 - H H B - F	3.0%
	3 - H B - O 2	10.0%
	3 - HH - 4	5.0%
	3 - H 2 B T B - 2	4.0%
5	3 - H 2 B T B - 3	4.0%
	3 - HB (F) VB - 2	5.0%
	組成例 4 8	
	3 - H B C F 2 O B - 3	7.0%
	2-HB (F) CF2OBH-2V	3.0%
10	3 - HB (F) CF $2 OBH - 2 V1$	3.0%
	3-HB (F, F) CF2OBTB-3	3.0%
	2-HB (F) -C	15.0%
	2 - H E B - F	2. 4%
	3 - H E B - F	2. 3%
15	4 - H E B - F	2.3%
	3 - H H E B - F	4.0%
	5 - H H E B - F	4.0%
	2-HHB (F) -C	12.0%
•	3-HHB (F) -C	12.0%
20	2-HHB (F) -F	10.0%
	3-HHB (F) -F	10.0%
	5-HHB (F) -F	10.0%
,	組成例49	
25	3 - B C F 2 O B H - 3	7. 0%
23	2 - B C F 2 O B H - V	7.0%
	3-HB (F, F) CF20BH-V1	
	2-HB (F, F) CF2OBH-2V 3-HB (F) -C	
		3. 0%
	3 – H B – C	21.0%

WA 07/36847		

	WO 31130041			101	/31 / // / / /
		3 - H H B - C		5.	0 %
		5 - P y B - F	1	0.	0 %
		3 - H B - O 2		4.	0 %
		2 - B T B - 1		6.	0 %
5		3 - HH - 4		6.	0 %
•		3 - HH - 5		6.	0 %
		3 - H H B - 1		5 .	0 %
		3 - H H B - 3		7.	0 %
	•	3 - H H B - O 1		3.	0 %
10		3 - H E B E B - 2		2.	0 %
		3 - H E B E B - F		2.	0 %
	組成例50				
		3 - H B C F 2 O B H - 3		8.	0 %
		3 - H B C F 2 O B H - 5		8.	0 %
15		3-HB (F) CF2OBTB-3		4.	0 %
	•	2 – B B – C		8.	0 %
		4 - B B - C		6.	0 %
		2 - H B - C	1	0.	0 %
		3 - H B - C	1	3.	0 %
20		3 - H H B - F		5 .	0 %
		2 - H H B - C		4.	0 %
		3 - H H B - C		6.	0 %
		5 - P y B - F		6.	0 %
		3 - P y B B - F		6.	0 %
25	•	2 - H H B - 1		6.	0 %
		3-HHB-3		5.	0 %
	•	3 - H H B - O 1		5.	0 %
	組成例51				
		5 - H B C F 2 O B - 3		8.	0 %

WO	97/3	6847

	3 - B C F 2 O B H - V	8.0%
	3 - HB (F) CF $2 OBH - 3$	6.0%
	5 - B B - C	8.0%
	3-HHB-F	4.0%
5	3 - HB - O2	12.0%
	3 - HB - O4	10.0%
	3 - P y B - 4	2. 5%
	4 - P y B - 4	2.5%
	6 - P y B - 4	2.5%
10	3 - P y B - 5	2. 5%
	4 - P y B - 5	2.5%
	6 - P y B - 5	2. 5%
	6 - P y B - O 5	3.0%
	6 - P y B - O 6	3.0%
15	6 - P y B - O 7	3.0%
	6 - P y B - O 8	3.0%
	2 - H H B - 1	4.0%
	3 - H H B - 1	8.0%
	3 - H H B - O 1	5.0%
20	組成例 5 2	
	5 - H B C F 2 O B - 3	8.0%
	5 - HBCF2OBH-3	6.0%
	3 - H 2 B C F 2 O B H - 3	6.0%
	3 - DB - C	10.0%
25	4-DB-C	12.0%
	5 – D B – C	8.0%
	2 - B E B - C	10.0%
	5 - P y B (F) - F	10.0%
	2 - P y B - 2	1.4%

WO 97/36847

3 - P y B - 2	1.	3 %
4 - P y B - 2	1.	3 %
3 - H E B - O 4	2.	2 %
4 - H E B - O 2	1.	6 %
3 - H E B - O 2	1.	3 %
1 O - B E B - 2	1.	1 %
5 - H E B - 1	1.	6 %
4 - H E B - 4	2.	2 %
3 - HHB - 3	6.	0 %
3 - H H B - O 1	4.	0 %
2 - P y B H - 3	6.	0 %
組成例53		
2 - H B C F 2 O B - 2	6.	0 %
3 - H B C F 2 O B - 3	4.	0 %
5 - HBCF2OBH-3	6.	0 %
3 - D B - C	10.	0 %
4 - DB - C	10.	0 %
2 - B E B - C	12.	0 %
3 - B E B - C	4.	0 %
3 - H H E B B - C	3.	0 %
3 - H B E B B - C	3.	0 %
5 - H B E B B - C	3.	0 %
3-PyB(F)-F	6.	0 %
3 - H E B - O 4	8.	3 %
25 4 - H E B - O 2	6.	2 %
5 - H E B - O 1	6.	2 %
3 – H E B – O 2	5.	2 %
5 - H E B - O 2	4.	1 %
3 - H H B - 1	3.	0 %

組成例54

	3 - H 2 B C F 2 O B H - 3	5.0%
	3 - H 2 B C F 2 O B H - 5	5.0%
	5 - H B - F	4.0%
5	7-HB-F	7.0%
	3-HHB-OCF3	10.0%
	5 - H H B - O C F 3	8.0%
	3 - H 2 H B - O C F 3	6.0%
	5 - H 2 H B - O C F 3	5.0%
10	2-HHB (F) $-F$	5.0%
	3-HHB(F)-F	5.0%
	5-HHB (F) -F	5.0%
	3-H2HB (F, F) $-F$	6.0%
	4-H2HB (F, F) $-F$	5.0%
15	5-H2HB (F, F) $-F$	5.0%
	3-HHB (F, F) $-F$	8.0%
	3-HH2B(F, F)-F	6.0%
	組成例 5 5	
•	5 - H B C F 2 O B - 3	8.0%
20	5 - H B C F 2 O B H - 3	6.0%
	3 - H 2 B C F 2 O B H - 3	6.0%
	7 - H B - F	5.0%
	3 - H B - O 2	4.0%
	3 - HHB - OCF3	10.0%
25	5 - H H B - O C F 3	5.0%
	3 - H 2 H B - O C F 3	5.0%
	5 - H 2 H B - O C F 3	5.0%
	2-HHB (F) -F	7.0%
	3-HHB (F) $-F$	7.0%

WO 97/36847

PCT/JP97/01048

7.0%

4.0%

	5-HHB (F) -F	7	, .	0 %	
	2-H2HB (F) -F	4		0 %	
	3 - H 2 H B (F) - F	2	2.	0 %	
	5-H2HB (F) -F	4		0 %	
5	2-HBB (F)-F	3	3.	0 %	
	3-HBB(F)-F	3		0 %	
	5-HBB (F)-F	6	· .	0 %	
	3 - H H B - 1	3		0 %	
	組成例 5 6				
10	3 - B C F 2 O B H - V	6	· .	0 %	
	5 - H B C F 2 O B H - 3	4		0 %	
	V 2 - H B - C	9	١.	0 %	
•	1 V 2 - H B - C	9	١.	0 %	
	3 - H B - C	1 4		0 %	
15	1 O 1 - H B - C	8	3.	0 %	
	2 O 1 - H B - C	4		0 %	
	2 – H H B – C	5	٠.	0 %	
	3 - H H B - C	5	·	0 %	
	V 2 - H H - 3	1 0	١.	0 %	
20	1 O 1 - H H - 5	4	١.	0 %	
	2 – B T B – O 1	8	3.	0 %	
	V – H H B – 1	Ę) .	0 %	
	V-HBB-2	Ę	j .	0 %	
	1 V 2 - H B B - 2	4	١.	0 %	
25	組成例 5 7				
	3 - B C F 2 O B H - V	(3 .	0 %	
	3 - H 2 B C F 2 O B H - 3	•	7.	0 %	

9 2

3 - H 2 B C F 2 O B H - 5

201 - BEB (F) - C

WO 97/36847	PCT/JP97/01048
WU 3//3084/	FC1/JF9//01048

	3 O 1 - B E B (F) - C	10.0%
	5 O 1 - B E B (F) - C	4.0%
	V – H B – C	10.0%
	1 V - H B - C	10.0%
5	3 - H B - C	8.0%
	2 - H H B - C	4.0%
	3 - H H B - C	4.0%
	4 - H H B - C	4.0%
	5 - H H B - C	4.0%
10	3 - H B - O 2	5.0%
	V – H H B – 1	5.0%
	V-HBB-2	4.0%
	3 - H 2 B T B - 2	4.0%
	組成例 5-8	
15	3 - B C F 2 O B H - 3	6.0%
	5 - HB (F, F) $CF2OB - 3$	4.0%
	3 - HB (F) CF $2 OBH - 3$	5.0%
	5 - H B - F	6.0%
	6 - H B - F	4.0%
20	7 - H B - F	7.0%
	5 - HB - 3	3.0%
	3 - H B - O 1	3.0%
	2 - H H B - O C F 3	5.0%
	3-HHB-OCF3	5.0%
25	4 - H H B - O C F 3	5.0%
	5 - H H B - O C F 3	7.0%
	3 - H H 2 B - O C F 3	2.0%
	5 - H H 2 B - O C F 3	3.0%
	3 - HH 2B - F	3.0%

	WO 97/36847	PCT/JP97/01048
	5 - H H 2 B - F	3.0%
	3-HBB (F)-F	6.0%
	5-HBB (F)-F	5 0 %
	3-HH2B(F)-F	7.0%
5	5-HH2B(F)-F	9.0%
	5 - HB (F) BH - 3	2.0%
	組成例 5 9	
	3HB (F, F) CF2OBH-3	4.0%
	2 - BTB (F, F) $CF2OBH-2$	4.0%
10	2 - H B C F 2 O B T B - 2	8.0%
	5 - H B - F	7.0%
	3 - H H - O 1	4.0%
	3 - HH - O3	4.0%
	5 — H H — O 1	3.0%
15	3 - H H B - O C H F 2	5.0%
	5 - H H B - O C H F 2	5.0%
	3-HHB (F, F) $-OCHF2$	8.0%
	5-HHB (F, F) -OCHF 2	8.0%
	2 - H H B - O C H F 3	5.0%
20	3 - H H B - O C H F 3	5.0%
	4 - H H B - O C H F 3	5.0%
	5-HHB-OCHF3	5.0%
	3-HH2B(F)-F	7.0%
	5-HH2B(F)-F	8.0%
25	3-HHEB(F)-F	5.0%
	組成例 6 0	
	2 - B C F 2 O B H - 2 V	8.0%
	3-HB (F) CF2OBH-V	6.0%

2-HB (F) CF2OBH-2V 6.0%

WO	07/369	47

	V – H B – C	10.0%
	1 V – H B – C	5.0%
	3 - B B - C	5.0%
	5 - B B - C	5.0%
5	2-HB (F) -C	4.0%
	4 - B B - 3	3.0%
	3 – H 2 B – O 2	3.0%
	5 - H 2 B - O 2	6.0%
	3 - B E B - C	5.0%
10	5 - H E B - O 1	6.0%
	5 - H E B - O 3	6.0%
	5 - B B B - C	3.0%
	4 - B P y B - C	4.0%
	4 - BPyB - 5	4.0%
15	5 - H B 2 B - 4	3.0%
	5 - H B B 2 B - 3	2.0%
	1 V - H H - 1 O 1	3.0%
	1 V 2 – H B B – 3	3.0%
	組成例 6 1	
20	3 - B C F 2 O B H - 2 V 1	6.0%
	3 - HB (F, F) $CF2OBH - 3$	3.0%
	2-BTB (F) CF2OBH-2	6.0%
	4-HEB (F)-F	8.0%
	5-HEB (F) - F	8.0%
25	2-BEB (F) - C	5.0%
	3-BEB(F)-C	5.0%
	4-BEB (F) -C	6. 0%
	5-BEB (F) -C	6.0%
	1 O 3 - H B (F) - C	6.0%

	3 - HHEB (F) - F	5.0%
	5-HHEB(F)-F	5.0%
	2-HBEB(F)-C	5.0%
	3-HBEB(F)-C	5.0%
5	4 - HBEB (F) - C	5.0%
	5-HBEB(F)-C	5.0%
	3 - HBTB - 2	5.0%
	V 2 - HH - 3	3.0%
	V 2 - H H B - 1	3.0%

10 一般式(1)で表される本発明の液晶性化合物は、通常の有機合成化学的手法により容易に製造できる。例えば、オーガニック・シンセシス、オーガニック・リアクションズ、実験化学講座等に記載の手法を適当に選択、組み合わせることで容易に合成できる。

例えば、一般式(1)において、m=1、n=0、かつ X^2 が-COO-である化合物(1-A)は以下の方法にて好適に製造できる。すなわちジクロロメタンやクロロホルム等の溶媒中、ジシクロヘキシルカルボジイミド(DCC)等の脱水剤と4-ジメチルアミノピリジン(DMAP)の存在下、カルボン酸誘導体(1~3)とアルコールあるいはフェノール誘導体(1~4)とを反応させる(B. Neises等、オーガニック・シンセシス、63.183(1985))ことにより製造することができる。

$$R^{1} - A^{1} - X^{1} - A^{2} - COOH + HO - A^{4} - Y$$

$$(13) \qquad \qquad (14)$$

$$DCC, DMAP$$

$$R^{1} - A^{1} - X^{1} - A^{2} - COO - A^{4} - Y^{1}$$

$$(1-A)$$

15

20

(式中、R¹、X¹、Y¹、環A¹、A²およびA⁴記と同一の意味を表す)

さらに、一般式(1)において、m=1、n=0、 $mox^2m-CF_2O-console and section (1-B)$ については以下の方法にて好適に製造できる。すなわちハロゲン化物(15)をマグネシウムや金属リチウムを用いて、グリニヤール試薬やリチオ化体とし、これに二硫化炭素を作用させジチオカルボン酸誘導体(16)を製造する。次いで(16)に塩化チオニルを作用させ、チオンカルボン酸クロリドとした後、アルコールあるいはフェノール誘導体と反応させることでチオンークーエステル誘導体(17)を製造し、次いで(17)にジエチルアミノサルファートリフルオリド(以下DASTと省略する)を作用させるか、あるいは特開平5-255165号記載の方法に準じ、N-プロモスクシンイミド(以下NBSと省略する)または1、3-ジプロモ-5、5-ジメチルヒダントイン(以下DBHと省略する)等酸化剤の存在下、二水素三フッ化テトラブチルアンモニウムあるいはHF-ピリジンを作用させることで、目的の(1-B)を製造することができる。

15

10

5

20

25

(式中、R¹、X¹、Y¹、環A¹、A²およびA¹記と同一の意味を表す)

・また、上記のチオン- O-エステル誘導体(17)についてはジチオカルボン酸誘導体(16)をアルカリ金属塩に誘導後、ヨウ素の存在下アルコラートあるいはフェノラートを作用させることでも製造できる他、上述の製造方法にて得ら

れるエステル誘導体(1-A)に 2, 4-ビス(4-メトキシフェニル)-1, 3-ジチア-2, 4-ジフォスフェタン-2, 4-ジスルフィド(以下ローソン 試薬と省略する)を作用させても製造できる。

5 (16)
$$\frac{1) \text{ NaH}}{2) (14)} \rightarrow (17)$$

10

15

20

また、一般式(1)においてX¹、X²あるいはX³がエテニレン基であるもの、 例えば一般式(1)において、m=1、n=0、X'が-CH=CH-であり、 かつX²が-CF₂O-である化合物(1-C)およびX²が-COO-である化 合物(1-D)については以下の方法にて好適に製造できる。すなわち、オーガ ニック・リアクションズ、Vo1. 14、第3章に記載の方法に準じ、プロモメ タン誘導体(18)とトリフェニルホスフィンから調製できるウィッティヒ試薬 (19) にテトラヒドロフラン (以下THFと略す) 中ナトリウムアルコキシド あるいはアルキルリチウム等の塩基を作用させ調製したイリドにアルデヒド誘導 体(21)を作用させて得られるE、Z-オレフィン混合物(22)を特公平4 -30382号記載の方法に準じ、ベンゼンスルフィン酸あるいはp-トルエン スルフィン酸を作用させ異性化を行うか、あるいは特公平6-62462号記載 の方法に準じて、E、Zーオレフィン混合物にmークロロ安息香酸を作用させオ キシラン誘導体(23)とした後、ジブロモトリフェニルホスホランを作用させ ジプロモ体(24)に誘導する。次いで(24)は再結晶操作にてエリスロ体の みを精製後、金属亜鉛にて還元することでEーオレフィン誘導体(2.5)が製造 でき、このようにして得られる化合物(25)を前記(1-B)製造の場合と同 様に処理することで目的とする化合物(1-C)が製造できる。

$$R^{1} - A^{1} - CH_{2}Br \qquad Ph_{3}P \qquad R^{1} - A^{1} - CH_{2}Ph_{3}P^{+}Br \qquad (19)$$

$$OHC - A^{2} - Br \qquad (21) \qquad R^{1} - A^{1} - CH = CH - A^{2} - Br \qquad (22)$$

$$mCPBA \qquad R^{1} - A^{1} - A^{2} - Br \qquad (23)$$

$$Ph_{3}PBr_{2} \qquad R^{1} - A^{1} - Br \qquad (24)$$

$$The property of the proper$$

(式中、R¹、X¹、Y¹、環A¹、A²およびA¹記と同一の意味を表す)

20 一方、上述の操作で得られる化合物(25)をブチルリチウム等でリチオ化後、 二酸化炭素を作用させることでカルボン酸誘導体(26)が製造でき、(26) を前記(1-C)製造の場合と同様に処理することで目的とする化合物(1-D)が製造できる。

(25)
$$\begin{array}{c}
1) \text{ BuLi} \\
2) \text{ CO}_2 \\
\hline
 R^1 - A^1 - A^2 - \text{COOH} \\
\hline
 R^1 - A^1 - A^2 - \text{COO} - A^4 - Y^1
\end{array}$$
(1-D)

5

(式中、R'、X'、Y'、環A'、A'およびA'記と同一の意味を表す)

また、一般式(1)において X^1 、 X^2 あるいは X^3 がエチニレン基であるもの、例えば一般式(1)において、m=1、n=0、 X^1 が $-C \equiv C$ - であり、かつ X^2 が $-CF_2O$ - である化合物(1-E)および X^2 が-COO - である化合物(1-F)については以下の方法にて好適に製造できる。すなわち J Org Chem 28, 2163、3313(1963)記載の方法に従い、アセチレン誘導体(27)を触媒の存在下、化合物(28)に作用し、化合物(29)を製造する。このようにして得られる化合物(29)を前記(1-B)製造の場合と同様に処理することで目的とする化合物(1-E)が製造できる。

 $R^{1} - A^{2} - CF_{2}O - A^{4} - Y^{1}$ (1-E)

(式中、R¹、X¹、Y¹、環A¹、A²およびA¹記と同一の意味を表す)

一方、上述の操作で得られる化合物(29)をブチルリチウム等でリチオ化後、二酸化炭素を作用させることでカルボン酸誘導体(30)が製造でき、(30)を前記(1-C)製造の場合と同様に処理することで目的とする化合物(1-F)が製造できる。

1) BuLi
2)
$$CO_2$$

(29) $R^1 - A^1 \longrightarrow A^2 - COO + A^4 - Y^1$
(1-F)

(式中、R¹、X¹、Y¹、環A¹、A²およびA¹記と同一の意味を表す)

1 0 0

25

20

アセチレン誘導体(27)は対応するビニル誘導体に臭素を付加することで容易に製造できるジブロミド(31)を<u>J. Org. Chem.</u> 38, 1367 (1963)の方法に従い塩基で処理することで容易に製造することができる。

$$R^{1} - A^{1} - CHBrCH_{2}Br \xrightarrow{t-BuOK} R^{1} - A^{1} = -H$$
(31)

(式中、R¹および環A¹は前記と同一の意味を表す)

また、上述していないその他の化合物についても有機合成の成書あるいは特許 公報等に記載の種々の方法を適当に選択、組み合わせることにより好適に製造で きる。

発明を実施するための最良の形態

実施例 1

10

15

2, 3-ジフルオロー4-エトキシフェニル=2-フルオロー4-(2-(ト 20 ランス-4-プロピルシクロヘキシル) エチル) ベンゾアート (一般式 (1) に おいてm=1、n=0、環A'がトランス-1, 4-シクロヘキシレン基、環A' が1, 4-フェニレン基、環A'が2, 3-ジフルオロー1, 4-フェニレン基、 X'が-CH₂CH₂-、X'が-COO-、R'がn-C₃H₇、Y'がOC₂H₅である もの) (化合物No. 15) の製造

25 (第一段)

2, 3-ジフルオロフェノール100g(0.77mol)、臭化エチル100g(0.92mol)、炭酸カリウム127g(0.92mol)、ヨウ化カリウム1.0g(6.0mmol)、およびジメチルホルムアミド(DMF)1.3Lを混合し、7時間加熱還流させた。反応終了後、反応液に水1.0Lを加え、

次いでトルエン2.0Lで抽出した。得られた有機層を水で1回洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去し、残渣を減圧蒸留して2,3-ジフルオロエトキシベンゼン87.5g(収率71.4%)を得た。

(第二段)

第一段で得られた2、3-ジフルオロエトキシベンゼン19、0g(0.12 mol)をテトラヒドロフラン(THF)250mlに溶解した溶液に-78℃で1.56Mのn-プチルリチウムのヘキサン溶液100mlを30分で滴下し、そのまま30分攪拌した。この溶液に、同温度でホウ酸トリメチル25g(0.24mol)のTHF50mlの溶液を10分で滴下し、同温度で3時間攪拌した後、徐々に室温まで昇温した。この溶液に、ギ酸55.2g(1.2mol)を加え、さらに30重量%の過酸化水素水108.8gを30分で滴下し、その後50℃まで昇温しそのまま30分攪拌した。反応液を室温まで放冷した後、15重量%のチオ硫酸ナトリウム水溶液に注ぎ、トルエン400mlで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下で溶媒を留去し、残渣をヘプタンから再結晶させて、2、3-ジフルオロ-4-エトキシフェノール9.1g(43.4%)を得た。

(第三段)

20

25

第二段で得られた 2、3 ージフルオロー 4 ーエトキシフェノール 1. 7g(10mmol)、2 ーフルオロー 4 ー (2 ー (トランスー4 ープロピルシクロヘキシル)エチル)安息香酸 2.9g(10mmol)、DMAP 1.3g(11mmol)、及びジクロロメタン 100mlを混合した。この混合物にDCC 2.27g(11mmol)のジクロロメタン 15mlの溶液を氷冷下、10分で滴下しその後室温まで昇温し、そのまま一晩攪拌した。析出した結晶を濾過により除去し、滤液から溶媒を減圧下で留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル)で精製し、さらにヘプタンから再結晶させて、標題化合物 2.48g(収率 55.3%)を得た。

この化合物は液晶相を示し、その転移温度は、C-N点:65.4、N-I点:141.3であった。尚、各種スペクトルデータは上記化合物の構造を支持した。

 $^{1}H-NMR$ (CDC1₃)

 δ (ppm): 8. 09-7. 92 (t, 1H, J=15. 7Hz), 7. 11 -6. 75 (m, 4H), 4. 25-4. 02 (q, 2H, J=21. 2Hz), 2. 78-2. 61 (t, 2H, J=15. 7Hz), 1. 81-0. 88 (m, 22H)

質量スペクトル: 4 4 8 (M+)

実施例 2

5

(2,3-ジフルオロー4-エトキシフェニル)オキシ(4-(トランス-4-n-ペンチルシクロヘキシル)フェニル)ジフルオロメタン(一般式(1)に10 おいてm=1、n=0、環A'がトランス-1、4-シクロヘキシレン基、環A'が1、4-フェニレン基、環A'が2、3-ジフルオロ-1,4-フェニレン基、X'が単結合、X'が-CF2O-、R'がn-CsH1、Y'がOC2H5であるもの)(化合物No.152)の製造

(第一段)

15 マグネシウム 0.95g(39mmol)をTHF200mlに懸濁させた液に、4-(トランス-4-n-ペンチルシクロヘキシル)フェニルブロミド9.28g(30mmol)をTHF80mlに溶解した溶液を、攪拌しながら、室温で、1時間かけて滴下した後、2時間加熱還流し、グリニヤール試薬を調製した。この溶液に二硫化炭素 5.7g(75mmol)を室温で30分かけで滴下し、そのまま一晩攪拌した。この反応液に、1Mの塩酸150mlを加えて反応を停止させ、トルエン350mlで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下で溶媒を留去し、残渣をヘブタンから再結晶させて、4-(トランス-4-n-ペンチルシクロヘキシル)フェニルジチオカルボン酸 4.74g(収率51.5%)を得た。

25 (第二段)

60%水素化ナトリウム1.52g(38.0mmol)をTHF15mlに 懸濁させた液に、第一段で得られた4-(トランス-4-n-ペンチルシクロペ キシル)フェニルジチオカルボン酸5.29g(17.3mmol)のTHF2 0mlの溶液を氷冷下で15分かけて滴下し、そのまま30分攪拌した。この反

応液に2、3-ジフルオロー4-エトキシフェノール2.50g(14.4mm o1)のTHF20mlの溶液を15分かけて滴下し、そのまま30分攪拌した。この反応液に、ヨウ素9.64g(38.0mmol)のTHF20mlの溶液を15分かけて滴下し、そのまま1時間攪拌した後、室温まで昇温し同温度で一晩攪拌した。この反応液を、10%のチオ硫酸ナトリウム水溶液に注ぎ、ジエチルエーテル100mlで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下で溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘプタン)で精製し、さらにヘプタンから再結晶させて、2、3-ジフルオロー4-エトキシフェニル=4-(トランス-4-n-ペンチルシクロヘキシル)チオベンゾアート2.0g(収率31.2%)を得た。

(第三段)

5

10

N-プロモスクシンイミド1.59g(8.93mmol)を塩化メチレン20mlに懸濁させた液に、-78℃でフッ化水素-ピリジン1.78gを15分かけて滴下し、そのまま10分攪拌した。この反応液に2,3-ジフルオロ-4-エトキシフェニル=4-(トランス-4-n-ペンチルシクロヘキシル)チオベンゾアート2.0g(4.48mmol)の塩化メチレン30mlの溶液を30分かけて滴下し、そのまま2時間攪拌した。反応液を飽和炭酸ナトリウム水溶液に注いで反応を終了させた。塩化メチレン相を分離し、10%亜硫酸水素ナトリウム水溶液、水で順次洗浄し、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘプタン)で精製して、標題化合物0.72g(収率35.5%)を得た。

この化合物は液晶相を示し、その転移温度は、C-N点:61.4、N-I点:131.4 であった。尚、各種スペクトルデータは上記化合物の構造を支持した。

 $^{1}H-NMR (CDC1_{3})$

 δ (ppm): 7. 71-6. 57 (m, 6H), 4. 26-4. 00 (q, 2 H, J=21. 0Hz), 2. 53-2. 83 (m, 24H)

 $\delta (ppm) : -66.5 (s, -C_{\frac{p}{2}}0-)$

質量スペクトル: 452 (M⁺)

実施例3

5

10

15

20

25

ジフルオロー(4ーペンチルフェニルオキシ)(4ー(トランスー4ープロピルシクロヘキシル)フェニル)メタン(一般式(1)においてm=1、n=0、環 A^1 がトランスー1、4ーシクロヘキシレン基、環 A^2 が1, 4ーフェニレン基、環 A^4 が1, 4ーフェニレン基、 X^1 が単結合、 X^2 が一C F_2 O - 、 R^1 がn- C_3 H_1 、 Y^1 が C_5 H_{11} であるもの)(化合物N O 、O 3 3 1)の製造

(第1段)

撹拌機、温度計および窒素導入管を備えた500m1三つ口フラスコ中、窒素雰囲気下削り状マグネシウム2.7g(112.1mmol)をTHF50mlに撹拌しながら懸濁させ、4-(トランス-4-プロピルシクロヘキシル)プロモベンゼン30g(106.8mmol)のTHF溶液70mlを内温が50℃を越えないように40分を要して滴下した。反応溶液は温浴にて50℃に加熱しながら、2時間撹拌して熟成させた。次いで氷浴にて内温を5℃まで冷却後、二硫化炭素24.4g(320.4mmol)を内温が10℃を越えないように25分を要して滴下した。反応溶液は10℃以下を保ちながら30分間撹拌後、室温まで昇温し、1時間撹拌した。反応溶液を再度5℃以下まで冷却後、6規定塩酸25mlを添加し反応を終了させ、ジエチルエーテル400mlで抽出した。有機層を氷水300mlにて洗浄し、無水硫酸マグネシウムで乾燥した。ジエチルエーテルを留去し、残渣を濃縮して濃赤紫色の固体23.7gを得た。これが4-(トランス-4-プロピルシクロヘキシル)フェニルジチオカルボン酸である。

(第2段)

上述の操作で得た4-(トランス-4-プロピルシクロヘキシル)フェニルジチオカルボン酸23.7gを500mlナス型フラスコ中ジエチルエーテル200mlに溶解し、室温下塩化チオニル50.8gを添加後温浴上で加熱還流を8時間行った。ジエチルエーテルおよび未反応の塩化チオニルをアスピレーター減圧下、留去、濃縮し濃赤紫色の油状物質25gを得た。これがチオンカルボン酸クロリド誘導体である。次に撹拌機、温度計および窒素導入管を備えた500m

1 0 5

1の三つ口フラスコ中、窒素雰囲気下4ーペンチルフェノール21.0g(128.2mmol) およびピリジン10.1g(128.1mmol)をトルエン30mlに溶解し、室温で撹拌しながら上記操作で得たチオンカルボン酸クロリド誘導体25.0gのトルエン溶液70mlを20分を要して滴下した。滴下後反応溶液を温浴上内温を60℃まで加熱し、3時間撹拌して熟成させた。室温まで冷却後、反応溶液に水100ml、6規定塩酸30mlを添加し、トルエン層を分離後、さらに水層をトルエン200mlで抽出した。併合したトルエン層を水200ml、2規定水酸化ナトリウム水溶液80mlおよび水300mlで順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下トルエンを留去して濃赤紫色ペースト状の残渣28.3gを得た。この残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:ペプタン)で精製後、さらにペプタンから再結晶して淡黄色針状結晶の4ーペンチルフェニル=4ー(トランスー4ーnープロピルシクロペキシル)チオベンゾアート12.7gを得た。

(第3段)

5

10

15 300mlのナス型フラスコ中窒素気流下、上記操作で得た4-ペンチルフェ ニル=4-(トランス-4-n-プロピルシクロヘキシル)チオベンゾアート5. 0g(12.3mmol)をジクロロメタン60mlに溶解し、室温下DAST 7. 9g(49.0mmol)を添加し、25時間撹拌した。反応溶液を氷水2 00mlに添加して反応を終了させ、ジクロロメタン層を分離し、さらに水層を ジクロロメタン100mlで抽出した。併合したジクロロメタン層を水200m 20 1、2規定水酸化ナトリウム水溶液50mlおよび水200mlで順次洗浄した 後、無水硫酸マグネシウムで乾燥した。ジクロロメタンを留去、濃縮して淡黄色 結晶状の粗生物3.8gを得た。この粗生成物シリカゲルカラムクロマトグラフ ィー(溶出溶媒:ヘプタン)で精製した後、さらにヘプタンから再結晶して無色 針状結状のジフルオロー(4-ペンチルフェニルオキシ)(4-(トランス-4 25 ープロピルシクロヘキシル)フェニル)メタン1.7gを得た。なお、各種スペ クトルデータは上記化合物の構造を支持した。

質量スペクトル: 4 1 4 (M⁺)

実施例4

ジフルオロー(4-(トランス-4-エテニルシクロへキシル) フェニルオキシ)(4-プロピルフェニル) メタン(一般式(1)においてm=1、n=0、 環 A^1 および環 A^2 が共に1, $4-フェニレン基、、環<math>A^4$ トランス-1, 4-シクロヘキシレン基、 X^1 が一 CF_2O- 、 X^2 が単結合、 R^1 が $n-C_3H_7$ 、 Y^1 がビニル基であるもの)(化合物No.441)の製造

製造工程は、1) 4-(4-ヒドロキシフェニル)シクロヘキサノンの合成、2)シクロヘキサノン中間体(32)の合成、および3)ジフルオロ-(4-(トランス-4-エテニルシクロヘキシル)フェニルオキシ)(4-プロピルフェニル)メタンの製造の3段階に大きく分割できる。各製造段階に分割して以下に詳述する。

 「4-(ヒドロキシフェニル)シクロヘキサノンの合成」 (第1段)

10

撹拌機、温度計および窒素導入管を備えた1 L 三つ口フラスコ中、窒素雰囲気 下削り状マグネシウム5. 8g(239.0mmol)をTHF100mlに撹 拌しながら懸濁させ、4-プロモフェノキシベンジルエーテル60g(228. 15 1 mm o 1) のTHF溶液 2 0 0 m l を内温が 5 0 ℃を越えないように 8 0分を 要して滴下した。反応溶液を温浴にて50℃に加熱しながら、2時間撹拌して熟 成させた。次いで室温下、1、4-シクロヘキサンジオンモノエチレンケタール 42. 7g (274. 3mmolmmol) を内温が60℃を越えないように4 0分を要して滴下した。反応溶液を温浴上50℃を保ちながら2時間撹拌した後、 20 氷水にて冷却し、飽和塩化アンモニウム水溶液100m1を添加して反応を終了 させた。反応溶液をトルエン400m1で抽出した。抽出トルエンを水900m 1にて洗浄した後、無水硫酸マグネシウムで乾燥した。トルエンを減圧下、留去 して茶褐色固体の生成物73.6gを得た。この生成物をディーンスタークの脱 水管を付した11のナス型フラスコ中、トルエン340m1に溶解し、酸触媒と 25 して非水性酸性イオン交換樹脂(アンバーリスト)5.9gを添加し、撹拌しな がら3時間加熱還流した。濾過により触媒を除去した後、減圧下トルエンを留去、 し、残査をシリカゲルカラムクロマトグラフィー(溶出溶媒:トルエン)にて精 製後、さらにトルエンから再結晶して無色針状結状のシクロヘキセン誘導体 (3

3) 41. 8gを得た。

(第2段)

第1段で得たシクロヘキセン誘導体(33)を1Lナス型フラスコ中、トルエン/エタノールの1/1混合溶媒200m1に溶解し、5%パラジウムー炭素触媒2.5gを添加し、室温下水素圧1~2kg/cm²で6時間水素添加反応を行った。濾過により触媒を除去した後、反応溶液を濃縮して、反応生成物30.2gを得た。この反応生成物を、撹拌機および温度計を備えた300m1三つロフラスコ中、トルエン100m1に溶解し、99%-ぎ酸29.9gを添加し、撹拌しながら2時間加熱還流した。反応液に水300m1を添加後トルエン層を分離、さらに水層をトルエン200m1で抽出した。併合したトルエン層を水800m1で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下にトルエンを留去して、4-(4-ヒドロキシフェニル)シクロヘキサノン18.0gを得た。2)「シクロヘキサノン中間体(32)の合成」

(第3段)

10

15

20

25

撹拌機、温度計および窒素導入管を備えた300m1三つロフラスコ中、窒素
雰囲気下4-(4-ヒドロキシフェニル)シクロヘキサノン18.0g(94.8mmo1)をトルエン30m1に溶解し、ピリジン9.7g(123.0mm
o1)を添加し、次いで、実施例1の第1および2工程に示した方法と同様の操
作で合成した4-プロピルフェニルチオンカルボン酸クロリド24.4g(123.0mmo1)のトルエン溶液50m1を15分を要して満下した。滴下終了後、反応液を湯浴上60℃まで加熱し、3時間撹拌して熟成させた。反応液を室温まで冷却した後、水100m1、及び6規定塩酸50m1を添加し、トルエン層を分離後、さらに水層をトルエン200m1で抽出した。併合したトルエン層を水200m1、2規定水酸化ナトリウム水溶液50m1および水300m1で
順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下にトルエンを留去して、濃赤紫色ペースト状の生成物33.2gを得た。この生成物をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘプタン/トルエン=1/1の混合溶媒)

にて精製し、さらにヘプタンから再結晶して淡黄色の針状結晶物 18.4gを得た。これがチオンカルボン酸 - O-エステル誘導体(34)である。

$$C_3H_7 - \begin{array}{c} \\ \\ \\ \\ \\ \end{array}$$

5 (第4段)

15

25

窒素導入管を備えた300mlナス型フラスコ中、窒素雰囲気下、上記操作で得たチオンカルボン酸ーの一工ステル誘導体(34)18.4g(52.0mmo1)をジクロロメタン250mlに溶解し、室温下でDAST33.5g(208.0mmo1)を添加し、25時間撹拌した。反応溶液を氷水200mlに添加し反応を終了させた後、ジクロロメタン層を分離、さらに水層をジクロロメタン100mlで抽出した。併合したジクロロメタン層を水200ml、2規定水酸化ナトリウム水溶液50mlおよび水200mlで順次洗浄した後、無水硫酸マグネシウムで乾燥した。ジクロロメタンを留去して淡黄色結晶状の租生成物13.6gを得た。この租生成物をシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘプタン/トルエン=1/1混合溶媒)にて精製後、さらにヘプタンから再結晶して無色針状結晶物8.0gを得た。これがシクロヘキサノン中間体(32)である。

20 「ジフルオロー(4-(トランス-4-エテニルシクロヘキシル)フェニルオキシ)(4-プロピルフェニル)メタンの合成」

(第5段)

撹拌機、温度計および窒素導入管を備えた300m1三つロフラスコ中、窒素雰囲気下メトキシメチルトリフェニルホスホニウムクロリド9.8g(28.6 mmol)をTHF80mlに溶解し、ドライアイスーアセトン浴で−50℃以下まで冷却後、カリウムーtーブトキシド3.4g(30.0mmol)を添加し、−50℃以下を保ちつつ2時間撹拌してイリドを調製した。次いで同温度にて上述の第4段で得たシクロヘキサノン中間体(32)8.0g(22.0mmol)のTHF溶液20mlを10分を要して滴下し、同温度で1時間撹拌した。

次いで、室温まで昇温し、さらに8時間室温で撹拌した。反応溶液に水200m 1 を添加して反応を終了させた後、THF層を分離し、さらに水層をトルエン1 0 0 m 1 で抽出した。併合したトルエン層を水500 m 1 で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去して、租生成物 1 8 . 5 g を得た。この租生成物をシリカゲルカラムクロマトグラフィー(溶出溶媒:トルエン)にて精製し、黄褐色の生成物 7 . 6 g を得た。得られた生成物を 2 0 0 m 1 のナス型スラスコ中トルエン 5 0 m 1 に溶解し、 9 9 % - ぎ酸 5 . 3 g (1 1 4 . 0 m m o 1)を添加し、2 時間加熱還流した。反応溶液に水 5 0 m 1 を添加し、トルエン 5 0 m 1 で抽出した。トルエン層を水 1 0 0 m 1 、 2 規定水酸化ナトリウム水溶液 3 0 m 1 および水 1 0 0 m 1 で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、得られた残渣 7 . 3 g をシリカゲルたカラムクロマトグラフィー(溶出溶媒:トルエン)にて精製し、無色結晶状のシクロヘキサンカルバルデヒド誘導体 (35)を5.6 g を得た。

$$C_3H_7$$
 CHO (35)

(第6段)

10

15

20

25

撹拌機、温度計および窒素導入管を備えた200m1三つロフラスコ中、窒素雰囲気下メチルトリフェニルホスホニウムヨージド7.0g(17.4mmo1)をTHF30m1に懸濁させ、ドライアイスーアセトン浴で-50℃以下まで冷却した後、カリウム-t-プトキシド2.1g(18.3mmo1)を添加し、-50℃以下を保ちつつ2時間撹拌してイリドを調製した。次いで同温度にて、第5段で得たシクロヘキサンカルバルデヒド誘導体(35)5.0g(13.4mmo1)のTHF溶液15m1を5分を要して滴下し、同温度で1時間撹拌後室温まで昇温し、さらに8時間撹拌した。反応溶液に水50m1を添加して反応を終了させ、THF層を分離し、さらに水層をトルエン50m1で抽出した。併合したTHF層とトルエン層を水80m1で洗浄っした後、無水硫酸マグネシウムで乾燥した。減圧下え溶媒を留去し、得られた生成物4.8gをシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘプタン)にて精製し、さらにヘプタンから再結晶して無色針状化合物2.4gを得た。これが目的とするジフルオロー

(4-(トランス-4-エテニルシクロヘキシル)フェニルオキシ)(4-ブロピルフェニル)メタンである。尚、各種スペクトルデータは上記化合物の構造を支持した。

質量スペクトル: 370 (M⁺)

5 実施例 5

10

ジフルオロー(4-(トランス-4-(3-ブテニル)シクロヘキシル)フェニルオキシ)(4-プロピルフェニル)メタン(一般式(1)においてm=1、n=0、環 A^1 および環 A^2 が共に1、4-フェニレン基、 X^4 がトランス-1, 4-シクロヘキシレン基、 X^4 が- C F_2 O- 、 X^2 が単結合、 X^4 がn- C $_3$ H $_7$ 、 Y^4 が 3-ブテニル基であるもの)(化合物No 、4 4 2)の製造

(第1段)

撹拌機、温度計および窒素導入管を備えた100m1三つ口フラスコ中、窒素 雰囲気下2-(1,3-ジオキサン-2-イル)エチルトリフェニルホスホニウ ムプロミド 1 2. 8 g (2 9. 1 m m o 1) を T H F 4 0 m 1 に 懸濁させ、 ドラ 15 イアイスーアセトン浴で−50℃以下まで冷却した後、カリウム−tープトキシ ド3. 4g(30.5mmol)を添加し、-50℃以下を保ちつつ2時間撹拌 してイリドを調製した。次いで同温度にて実施例4に記載したシクロヘキサノン 中間体(32)8、0g(22、4mmol)のTHF溶液30mlを20分を 要して滴下し、同温度で1時間撹拌した後、室温まで昇温し、さらに8時間撹拌 20 した。反応溶液に水50m1を添加し反応を終了させた後、THF層を分離し、 さらに水層をトルエン100m1で抽出した。併合したTHF層及びトルエン層 yを水200mlで洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶 媒を留去し、得られた残渣15.5gをシリカゲルカラムクロマトグラフィー (溶出溶媒:トルエン/酢酸エチルの混合溶媒)にて精製し、黄褐色結晶物 8. 25 2gを得た。次に、この黄褐色結晶物を200m1ナス型フラスコ中トルエン/ エタノールの1/1混合溶液60m1に溶解し、5%ーパラジウムー炭素触媒0. 4 gを添加し、室温下水素圧1~2 Kg/cm2の条件下で水素の吸収が止まる まで接触水素還元を行った。濾過により反応溶液から触媒を除去した後、減圧下 で溶媒を留去して生成物7、4gを得た。この生成物を100mlナス型フラス

コ中トルエン30m1に溶解し、99%-ぎ酸3.9g(83.5mmo1)を添加し、2時間加熱還流した。反応溶液に水50m1を添加した後、トルエン層を分離し、さらに水層をトルエン60m1で抽出した。併合したトルエン層を水100m1、2規定水酸化ナトリウム水溶液30m1および水100m1で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下でトルエンを留去し、得られた残渣7.0gをシリカゲルカラムクロマトグラフィー(溶出溶媒:トルエン)にて精製し、黄褐色結晶状のアルデヒド誘導体(36)5.9gを得た。

$$C_3H_7$$
 CHO (36)

(第2段)

5

10

15

20

25

撹拌機、温度計および窒素導入管を備えた100m1三つロフラスコ中、窒素 雰囲気下メチルトリフェニルホスホニウムヨージド7.8g(19.3mmo 1)をTHF30m1に懸濁させ、ドライアイス-アセトン浴で-50℃以下ま で冷却した後、カリウムーtープトキシド2.2g(20.3mmo1)を添加 し、-50℃以下を保ちつつ2時間撹拌しイリドを調製した。次いで同温度にて 第1段で得たアルデヒド誘導体 (36) 5. 9g (14. 9mmol) のTHF 溶液20m1を5分を要して滴下し、同温度で1時間撹拌した後、室温まで昇温 し、さらに8時間撹拌した。反応溶液に水50m1を添加して反応を終了させ、 THF層を分離し、さらに水層をトルエン100m1で抽出した。併合したTH F層およびトルエン層を水200mlで洗浄した後、無水硫酸マグネシウムで乾 燥した。減圧下溶媒を留去して得られた生成物 5. 6 g を、シリカゲルカラムク ロマトグラフィー (溶出溶媒:ヘプタン)にて精製後、さらにヘプタンから再結 晶して無色針状結晶物 2. 4 g を得た。これが目的とするジフルオロー(4-(トランス-4-(3-ブテニル)シクロヘキシル)フェニルオキシ)(4-プ ロピルフェニル) メタンである。尚、各種スペクトルデータは上記化合物の構造 を指示した。

質量スペクトル:398 (M⁺)

実施例6

ジフルオロー(4-(トランス-4-プロピルシクロヘキシル)フェニルオキシ)(<math>4-(トランス-4-ペンチルシクロヘキシル)フェニル)メタン(一般式(1)において<math>m=n=1、環 A^1 および環 A^4 が共にトランス-1、 $4-シクロヘキシレン基、環<math>A^2$ および環 A^3 が共に1、 $4-フェニレン基、<math>X^1$ および X^3 が共に単結合、 X^2 が $-CF_2O-、<math>R^1$ が $n-C_5H_{11}$ 、 Y^1 が $n-C_3H_7$ であるもの)(化合物No.572)の製造

(第1段)

5

10

15

20

25

複拌機、温度計および窒素導入管を備えた500m1三つロフラスコ中、窒素雰囲気下に、削り状マグネシウム4.2g(172.7mmo1)をTHF50mlに撹拌しながら懸濁させ、4-(トランス-4-ペンチルシクロヘキシル)プロモベンゼン50g(161.7mmo1)のTHF溶液120mlを温浴上、内温を50℃に保ちながら40分を要して満下した。反応溶液は温浴にて50℃に加熱しながら、2時間撹拌して熟成させた。次いで氷浴にて内温を5度まで冷却後、二硫化炭素61.6g(809.0mmo1)を内温が10度を越えないように35分を要して満下した。反応溶液を10℃以下を保ちながら30分間撹拌後、室温まで昇温し、2時間撹拌した。反応溶液を再度5℃以下まで冷却後、6規定塩酸100mlを添加し反応を終了させ、ジエチルエーテル800mlで抽出した。ジエチルエーテル層を氷水800mlにて洗浄後、無水硫酸マグネシウムで乾燥した。ジエチルエーテルを留去して濃赤紫色の固体50.8gを得た。これが4-(トランス-4-ペンチルシクロヘキシル)フェニルジチオカルボン酸である。

(第2段)

500mlナス型フラスコ中、上述の操作で得た4-(トランス-4-ペンチルシクロヘキシル)フェニルジチオカルボン酸50.8gをジエチルエーテル300mlに溶解し、室温下塩化チオニル115.6g(971.6mmol)を添加し、温浴上で8時間加熱還流した。アスピレーター減圧下、ジエチルエーテルおよび未反応の塩化チオニルを留去し、濃赤紫色のペースト状物質66.8gを得た。これがチオンカルボン酸クロリド誘導体である。

次に撹拌機、温度計および窒素導入管を備えた500m1三つ口フラスコ中、

1 1 3

窒素雰囲気下4-(トランス-4-プロピルシクロへキシル)フェノール17.2g(78.8mmol)およびピリジン5.7g(72.2mmol)をトルエン80mlに溶解し、室温で撹拌しながら上記操作で得たチオンカルボン酸クロリド誘導体20.3gのトルエン溶液60mlを20分を要して滴下した。滴下後反応溶液を温浴上60℃まで加熱し、3時間撹拌した熟成させた。室温まで冷却後、反応溶液に水200ml、6規定塩酸80mlを添加し、トルエン層を分離後、さらに水層をトルエン300mlで抽出した。併合したトルエン層を水400ml、2規定水酸化ナトリウム水溶液80mlおよび水400mlで順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下トルエンを留去して得られた濃赤紫色ペースト状物31.9gを、シリカゲルカラムクロマトグラフィー(溶出溶媒:ヘプタン/トルエン混合溶媒)にて精製後、さらにヘプタンから再結晶して淡黄色の針状結晶物5.8gを得た。これがチオンカルボン酸-O-エステル誘導体(37)である。

転移点Cr136.2 N 263.6 Iso

15 $^{1}H-NMR$ (δ ppm) 0. 8-2. 1 (36H, m), 2. 3-2. 7 (2H, m), 7. 0 (2H, d, J=8. 6Hz), 7. 2-7. 3 (4H, bd) and 8. 3 (2H, d, J=8. 3Hz)

$$C_5H_{11}$$
 C_5H_{7} C_3H_{7} (37)

20 (第3段)

25

5

10

100m1ナス型フラスコ中窒素気流下、上記操作で得たチオンカルボン酸ー O-エステル誘導体(37)5.8g(11.9mmol)をジクロロメタン60m1に溶解し、室温下DAST9.6g(59.5mmol)を添加し、25時間撹拌した。反応溶液を氷水200m1に添加して反応を終了させた後、ジクロロメタン層を分離、さらに水層をジクロロメタン100m1で抽出した。併合したジクロロメタン層を水200m1、2規定水酸化ナトリウム水溶液50m1および水200m1で順次洗浄した後、無水硫酸マグネシウムで乾燥した。ジクロロメタンを留去して得られた淡黄色結晶状の混合物7.6gをシリカゲルカラムクロマトグラフィー(溶出溶媒:ヘプタン)にて精製後、さらにヘプタンから

1 1 4

再結晶して無色針状結晶物 1. 9 g を得た。これが目的とするジフルオロー (4 - (トランス-4-プロピルシクロヘキシル) フェニルオキシ) (4 - (トランス-4-ペンチルシクロヘキシル) フェニル) メタンである。なお、各種スペクトルデータは上記化合物の構造を支持した。

5 転移点 S, 106, 3 N ~170, 0 Iso(分解)

¹H-NMR (δρρm) 0, 8-2, 1 (36H, m), 2, 3-2, 8

(2H, m), 7, 2 (4H, S), 7, 2-7, 3 (2H, bd) and

7, 6 (2H, d, J=8, 3Hz)

質量スペクトル: 496 (M+)

10 実施例7

15

20

25

ジフルオロー(4-(トランスー4-エテニルシクロヘキシル)フェニルオキシ)(4-(トランスー4-プロピルシクロヘキシル)フェニル)メタン(一般式(1)においてm=n=1、環 A^1 および環 A^4 が共にトランスー1, 4-シクロヘキシレン基、環 A^2 および環 A^3 が共に1, 4-フェニレン基、 X^1 および X^3 が共に単結合、 X^2 が-C F_2 O-、 R^1 がn-C $_3$ H $_7$ 、 Y^1 がビニル基であるもの)(化合物No.573)の製造

(第1段)

撹拌機、温度計および窒素導入管を備えた500m1三つロフラスコ中、窒素雰囲気下、実施例4(第1、2段)で製造した4-(4-ヒドロキシフェニル)シクロヘキサノン14.1g(74.3mmol)およびピリジン7.4g(93.7mmol)をトルエン50m1に溶解し、室温で撹拌しながら実施例3(第1、2段)で製造したチオンカルボン酸クロリド誘導体25.0g(89.2mmol)のトルエン溶液60mlを20分を要して滴下した。滴下後反応溶液を温浴上60℃まで加熱し、3時間撹拌して熟成させた。室温まで冷却後、反応溶液に水200ml、および6規定塩酸80mlを添加し、トルエン層を分離後、さらに水層をトルエン300mlで抽出した。併合したトルエン層を水400ml、2規定水酸化ナトリウム水溶液80mlおよび水400mlで順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下トルエンを留去して得られた濃赤紫色ペースト状物38.2gをシリカゲルカラムクロマトグラフィー(溶出

溶媒: ヘプタン/トルエン混合溶媒)にて精製後、さらにヘブタンから冉結晶して淡黄色の針状結晶物 14.3 gを得た。これがチオンカルボン酸 - O-エステル誘導体(38)である。

$$C_3H_7$$
 C_3H_7 C

(第2段)

5

10

15

25

100mlナス型フラスコ中窒素気流下、上記操作で得たチオンカルボン酸ー の一エステル誘導体(38)14.3g(32.9mmol)をジクロロメタン 100mlに溶解し、室温下DAST26.5g(164.7mmol)を添加 し、25時間撹拌した。反応溶液を氷水300mlに添加した反応を終了させた 後、ジクロロメタン層を分離、さらに水層をジクロロメタン200mlで抽出し た。併合したジクロロメタン層を水500ml、2規定水酸化ナトリウム水溶液 80mlおよび水500mlで順次洗浄した後、無水硫酸マグネシウムで乾燥し た。ジクロロメタンを留去して得られた淡黄色結晶状の混合物14.1gを、シリカゲルカラムクロマトグラフィー(溶出溶媒:トルエン)にて精製後、さらに ヘプタンから再結晶して無色針状結晶物7.1gを得た。これがシクロヘキサノ ン誘導体(39)である。

20 (第3段)

撹拌機、温度計および窒素導入管を備えた300m1三つロフラスコ中、窒素
雰囲気下メトキシメチルトリフェニルホスホニウムクロリド6.9g(20.1
mmo1)をTHF50m1に懸濁させ、ドライアイスーアセトン浴で-50℃
以下まで冷却した後、カリウム-t-ブトキシド2.4g(21.1mmo1)
を添加し、-50℃以下を保ちつつ2時間撹拌してイリドを調製した。次いで同温度にて、第2段で得たシクロヘキサノン誘導体(39)7.1g(16.1mmo1)のTHF溶液20m1を10分を要して滴下し、同温度で1時間撹拌した後、室温まで昇温し、さらに8時間撹拌した。反応溶液に水100m1を添加し反応を終了させた後、THF層を分離し、さらに水層をトルエン100m1で

抽出した。併合したTHF層およびトルエン層を水200mlで洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた生成物14.1 gを、シリカゲルカラムクロマトグラフィー(溶出溶媒:トルエン)にて精製し、黄褐色の反応物6.8gを得た。

次に、200mlのナス型スラスコ中、この反応物をトルエン40mlに溶解し、99%-ぎ酸4.1g(88.2mmol)を添加し、2時間加熱還流した。反応溶液に水50mlを添加した後、トルエン50mlで抽出し、抽出層は水100ml、2規定水酸化ナトリウム水溶液30mlおよび水100mlで順次洗浄後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去して得られた生成物9.8gを、シリカゲルカラムクロマトグラフィー(溶出溶媒:トルエン)にて精製し、無色結晶物4.7gを得た。これがシクロヘキサンカルバルデヒド誘導体(40)である。

$$C_3H_7$$
 — CHO (40)

15 (第4段)

5

10

20

25

撹拌機、温度計および窒素導入管を備えた200m1三つ口フラスコ中、窒素雰囲気下メチルトリフェニルホスホニウムヨージド5.2g(12.9mmo1)をTHF30m1に懸濁させ、ドライアイスーアセトン浴で-50℃以下まで冷却後、カリウム-tーブトキシド1.5g(13.5mmo1)を添加し、-50℃以下を保ちつつ2時間撹拌してイリドを調製した。次いで同温度にて上述の操作で得たシクロヘキサンカルバルデヒド誘導体(40)4.7g(10.4mmo1)のTHF溶液15m1を5分を要して滴下し、同温度で1時間撹拌した後、室温まで昇温し、さらに8時間撹拌した。反応溶液に水50m1を添加して反応を終了させた後、THF層を分離し、さらに水層をトルエン50m1で抽出した。併合したTHF層およびトルエン層を水80m1で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下溶媒を留去したえられた生成物6.4gをシリカゲルカラムクロマトグラフィー溶出溶媒:ヘプタン)にて精製し、さらにヘプタンから再結晶して無色針状化合物1.5gを得た。これが目的とする。ジフルオロ-(4-(トランス-4-エテニルシクロヘキシル)フェニルオキシ)

(4-(トランス-4-プロピルシクロヘキシル)フェニル)メタンである。なお、各種スペクトルデータは上記化合物の構造を支持した。

質量スペクトル: 452 (M*)

実施例8

5

10

15

20

25

(2, 3-ジフルオロー4-エトキシフェニル)オキシ(トランスー4ー(トランスー4ーnープロピルシクロヘキシル)シクロヘキシル)ジフルオロメタン(一般式(1)においてm=1、n=0、環A¹および環A²が共にトランスー1,4-シクロヘキシレン基、環A⁴が2、3-ジフルオロー1,4-フェニレン基、X¹が単結合、X²が-CF₂O-、R¹がn-C₃H₁、Y¹がOC₂H₅であるもの)(化合物No、144)の製造

(第1段)

実施例1の第二段記載の方法で得られる2、3ージフルオロー4ーエトキシフェノール10、0g(57、5mmo1)、トランスー4ー(トランスー4ープロピルシクロヘキシル)シクロヘキサンカルボン酸17、4g(68、9mmo1)、DMAP0、2g(1、8mmo1)及びジクロロメタン300m1を混合した。この混合物にDCC12、3g(60、0mmo1)のジクロロメタン80m1の溶液を氷冷下、10分で滴下し、その後室温まで昇温し、そのまま一晩攪拌した。析出した結晶を濾過により除去し、濾液から溶媒を減圧下で留去して、得られた残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:トルエン)で精製し、さらにヘプタンから再結晶させて、2、3ージフルオロー4ーエトキシフェニル=トランスー4ー(トランスー4ープロピルシクロヘキシル)ベンプアート20、8gを得た。

(第2段)

300mlガラス製封管中、上記操作で得た2、3-ジフルオロ-4-エトキシフェニル=トランス-4-(トランス-4-プロピルシクロヘキシル)ベンゾアート20.8g(50.9mmol)をトルエン150mlに溶解し、ローソン試薬24.7g(61.1mmol)を添加し、オイルバス上140℃にて8時間加熱した。反応溶液に水200mlを添加した後トルエン層を分離っした。トルエン層を、水(150ml)で3回洗浄した後、無水硫酸マグネシウムで乾

燥した。減圧下溶媒を留去して得られた茶褐色の残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒: ヘプタン/トルエン混合溶媒)にて精製後、ヘプタンから再結晶して黄色針状結晶状の2, 3-ジフルオロー4-エトキシフェニル=トランス-4-(トランス-4-n-プロピルシクロヘキシル)シクロヘキサンチオカルボキシレート6.7gを得た。

(第3段)

5

10

N-ブロモスクシンイミド8.5g(47.4mmol)を塩化メチレン50mlに懸濁させた液に、-78℃でフッ化水素-ピリジン6.9gを20分かけて滴下し、そのまま10分間攪拌した。この反応液に2、3-ジフルオロ-4-エトキシフェニル=トランス-4-(トランス-4-n-プロピルシクロヘキシル)シクロヘキサンチオカルボキシレート6.7g(15.8mmol)の塩化メチレン溶液40mlを40分を要して滴下し、そのまま2時間攪拌した。反応液を飽和炭酸ナトリウム水溶液に注いで反応を終了させた後、塩化メチレン層を分離した。塩化メチレン層を10%亜硫酸水素ナトリウム水溶液、水で順次洗浄した後、無水硫酸マグネシウムで乾燥した。

15 減圧下で溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー (溶出溶媒:ヘプタン)で精製した後、さらにヘプタンから再結晶して標題化合物 4.4 gを得た。尚、各種スペクトルデータは上記化合物の構造を支持した。
19 F-NMR (CDC12)

 δ (ppm): -79.4 (s, -CF₂O-)

20 質量スペクトル: 452 (M⁺)

上記実施例に記載の方法を参考とし、既知の有機合成の手法を選択、組み合わせることで以下に示す化合物を製造することができる。

1 1 9

m=	=1 , n=0						
No.	R ¹	A ¹	X ¹	A ²	X²	A ⁴	Y ¹
1	C ₃ H ₇	\bigcirc	_//_	\bigcirc	CO2	F F	OC₂H₅
2	C ₃ H ₇		7	\bigcirc	CO ₂	F	OC ₂ H ₅
3	C ₃ H ₇	\bigcirc	7		CO2	FF	OC ₂ H ₅
4	C₃H ₇		7		CO ₂	FF	OCH ₃
5 ,	C₃H ₇				CO ₂	FF	OC ₂ H ₅
6	C₃H ₇		~		CO ₂	F F	OC ₃ H ₇
7	C ₅ H ₁₁		<u> </u>	\bigcirc	CO ₂	F F	OC ₂ H ₅
8	C ₅ H ₁₁		<i>_</i>	\bigcirc	CO ₂	F	OC ₂ H ₅
9	C ₅ H ₁₁	\bigcirc	7		CO ₂	FF	OCH₃
10	C ₅ H ₁₁	\bigcirc	<i>_</i>		CO ₂		OC ₂ H ₅
11	C ₅ H ₁₁	\bigcirc			CO ₂		OC ₃ H ₇
12	C ₅ H ₁₁		7		CO ₂	FF	OCH ₃
13	C ₅ H ₁₁				CO ₂	F F	OC ₂ H ₅
14	C ₅ H ₁₁				CO ₂	FF	OC ₃ H ₇

m=1 , n=0

No.	R ¹	A ¹	X ¹	A ²	X ²	A ⁴	Y ¹
15	C₃H ₇	\bigcirc	~		CO ⁵	FF	OC ₂ H ₅
16	C₃H ₇		. ~_		CO ₂	F F	OC ₂ H ₅
17	C₃H ₇	\bigcirc	7		CO ₂	FF	OC ₂ H ₅
18	C₃H ₇		71_		CO ₂	FF	OCH ₃
19	C₃H ₇				CO ₂	FF	OC ₂ H ₅
20	C ₃ H ₇		7		CO ₂	F_F	OC ₃ H ₇
21	C₅H ₁₁	\bigcirc	~		CO ₂	F F	OC₂H ₅
22	C ₅ H ₁₁		_		CO ₂	F_F	OC ₂ H ₅
23	C ₅ H ₁₁	\bigcirc	7		CO ₂		OC ₂ H ₅
24	C ₅ H ₁₁		7		CO ₂	F F	OCH₃
25	C ₅ H ₁₁		7		CO ₂	F F	OC ₂ H ₅
26	C ₅ H ₁₁		7	F	CO ₂	F F	OC₃H ₇

No.	R ¹	A ¹	X ¹	A ²	X ²	A ³	X ³	A ⁴	Y ¹
27	C ₃ H ₇	\bigcirc	_		CO2		_	FF	OC₂H₅
28	C₃H ₇	\bigcirc	-		CO ₂	FF	_		OC₂H₅
29	C ₃ H ₇		-		CO2				OC ₂ H ₅
30	C ₃ H ₇		_		CO ₂		_		OC ₂ H ₅
31	C₃H ₇		_		CO ₂				OCH ₃
32	C ₃ H ₇	\bigcirc			CO ₂		_	FF	OC ₂ H ₅
33	C ₃ H ₇	\bigcirc			CO ₂	FF			OC ₂ H ₅
34	C ₃ H ₇				CO ₂		_	F_F	OC ₂ H ₅
35	C ₃ H ₇				CO ₂		_		OC ₂ H ₅
36	C ₅ H ₁₁				CO ₂		_		OC ₂ H ₅
37	C ₃ H ₇	\bigcirc			CO ₂			FF	OC ₂ H ₅
38	C₃H ₇	\bigcirc			CO ₂	FF	_		OC ₂ H ₅
39	C ₃ H ₇				CO ₂		_	FF	OC ₂ H ₅
40	C₃H ₇		_//_		CO ₂		-		OC ₂ H ₅
41	C ₅ H ₁₁			F	CO ₂	FF	-		OC_2H_5 OC_2H_5 OC_3H_7

m=n=1

Na.	R ¹	A ¹	X ¹	A ²	X ²	A ³	X ³	A ⁴	Y ¹
42	C₃H ₇	\bigcirc	_	\bigcirc	_		CO ₂	F_F	OC ₂ H ₅
43	C₃H ₇			\bigcirc			CO ₂		OCH₃
44	C ₅ H ₁₁		_	\bigcirc			CO ₂	F F	OC ₂ H ₅
45	C ₅ H ₁₁			\bigcirc	_		CO ₂	FF	OC ₃ H ₇
46	C ₃ H ₇	\bigcirc		\bigcirc		F F	CO ₂	FF	OC ₂ H ₅
47	C ₃ H ₇			\bigcirc	_		CO ₂	FF	OCH₃
48	C ₅ H ₁₁				-		CO ₂	FF	OC ₂ H ₅
49	C ₅ H ₁₁			\bigcirc		F F	CO2	F	OC₃H ₇
50	C ₃ H ₇	\bigcirc		\bigcirc		F	CO ₂	FF	OC ₂ H ₅
51	C₃H ₇		_//-	\bigcirc	_		CO2	F F	OCH3
52	C ₅ H ₁₁	\bigcirc		\bigcirc	_	F	CO ₂	F F	OC ₂ H ₅
53	C ₅ H ₁₁			\bigcirc	_		CO ₂	FF	OC₃H ₇

m=n	=1								
No.	R ¹	A ¹	X ¹	A ²	X ²	A ³	X ³	A⁴	Y ¹
54	C ₃ H ₇	\bigcirc					CO ₂	F F	OC ₂ H ₅
55	C ₃ H ₇		_		_		CO ₂	F_F	OCH₃
56	C ₅ H ₁₁		_		-		CO ₂	FF	OC ₂ H ₅
57	C ₅ H ₁₁		_		_		CO ₂		OC ₃ H ₇
58	C ₃ H ₇	\bigcirc					CO ₂	FF	OC ₂ H ₅
59	C₃H ₇				_		CO ₂	FF	OCH₃
60	C ₅ H ₁₁				_		CO ₂		OC ₂ H ₅
61	C ₅ H ₁₁				_		CO ₂	FF	OC ₃ H ₇
62	C₃H ₇	\bigcirc			_		CO ₂	F	OC ₂ H ₅
63	C ₃ H ₇		_//_				CO ₂	F F	OCH₃
64	C ₅ H ₁₁	\bigcirc			_		CO ₂	FF	OC ₂ H ₅
65	C ₅ H ₁₁		_//-		-		CO ₂	F_F	OC ₃ H ₇

m:	=n=1								
No.	R ¹	A ¹	X ¹	A ²	X ²	A ³	X ³	A ⁴	Y ¹
6 6	C₃H ₇	\bigcirc	_	\bigcirc			CO ₂	F F	OC₂H₅
67	C ₃ H ₇			\bigcirc			CO ₂		OCH ₃
68	C ₅ H ₁₁		_	\bigcirc			CO ₂	F F	OC₂H₅
6 9	C ₅ H ₁₁		_	\bigcirc			CO ₂	F F	OC₃H ₇
70	C₃H ₇	\bigcirc		\bigcirc			CO ₂	F	OC ₂ H ₅
71	C₃H ₇			\bigcirc			CO ₂	F	OCH ₃
72	C ₅ H ₁₁			\bigcirc			CO ₂	FF	OC ₂ H ₅
73	C ₅ H ₁₁			\bigcirc			CO ₂	FF	OC ₃ H ₇
74	C ₃ H ₇	\bigcirc	_//_	\bigcirc			CO ₂	F	OC₂H₅
75	C ₃ H ₇			\bigcirc			CO ₂	F	OCH ₃
76	C ₅ H ₁₁	\bigcirc	_//	\bigcirc			CO ₂	FF	OC ₂ H ₅
77	C ₅ H ₁₁			\bigcirc	<i></i>		CO ₂	F_F	OC₃H ₇

m=i	n=1								
No.	R ¹	A ¹	X¹	A ² .	X ²	A ³	X ³	A ⁴	Y¹
78	C ₃ H ₇	\bigcirc	_				CO2	F_F	OC ₂ H ₅
79	C ₃ H ₇		_		`_		CO ₂		OCH ₃
80	C ₅ H ₁₁		_				CO ₂	FF	OC ₂ H ₅
81′	C ₅ H ₁₁						CO2	F F	OC ₃ H ₇
82	C ₃ H ₇						CO ₂	F	OC ₂ H ₅
83	C ₃ H ₇						CO ₂	F	OCH ₃
84	C ₅ H ₁₁						CO ₂	FF	OC ₂ H ₅
85	C ₅ H ₁₁						CO ₂	FF	OC ₃ H ₇
86	C₃H ₇	○ ·	_//_				CO ₂	FF	OC ₂ H ₅
87	C ₃ H ₇		_//_				CO ₂	F F	OCH3
88	C ₅ H ₁₁	\bigcirc	_//				CO ₂	F F	OC ₂ H ₅
89	C ₅ H ₁₁		_//_				CO ₂	F	OC₃H ₇

				 					
No.	R ¹	A ¹	X ¹	A ²	X ²	A ³	X ³	A ⁴	Y ¹
90	C₃H ₇	\bigcirc	_		_//~		CO ₂	F F	OC₂H₅
91	C ₃ H ₇		_	\bigcirc	_//_		CO ₂		OC ₂ H ₅
92	C ₃ H ₇	\bigcirc		\bigcirc	_//_		CO2	F	OC₂H₅
93	C ₃ H ₇			\bigcirc			CO ₂	FF	OC ₂ H ₅
94	C₃H ₇		_//_						OC ₂ H ₅
95	C ₃ H ₇		_//_	\bigcirc	_/_		CO2	F F	OC ₂ H ₅
96	C ₅ H ₁₁			\bigcirc	_//_		CO ₂	F F	OCH3
97	C₃H ₇	\bigcirc							
98	C ₃ H ₇		_		_//_		CO ₂	F_F	OC₂H₅
99	C ₃ H ₇	\bigcirc			_//		CO ₂	F F	OC₂H₅
100	C ₃ H ₇				_//_		CO ₂		OC ₂ H ₅
101	C ₃ H ₇	\bigcirc			_//_		CO ₂	FF	OC ₂ H ₅
102	C₃H ₇		_//_				CO ₂	FF	OC ₂ H ₅
103	C ₅ H ₁₁					() F	CO ₂	FF	OC ₃ H ₇

m=n=	=1								
No.	R ¹	A ¹	X ¹	A ²	X²	A ³	X ₃	A⁴	Y ¹
104	C₃H ₇	\bigcirc	_	\bigcirc	_//-		CO ₂	F	OC₂H ₅
105	C ₃ H ₇		_	\bigcirc	_//_				
106	C₃H ₇	\bigcirc		\bigcirc	_//_		CO2	F F	OC ₂ H ₅
107	C₃H ₇			\bigcirc			CO ₂	F_F	OC ₂ H ₅
108	C ₃ H ₇	\bigcirc	_//	\bigcirc	_//-		CO ₂	F F	OC ₂ H ₅
109	C₃H ₇			\bigcirc	_//-		CO ₂	F F	OC ₂ H ₅
110	C ₅ H ₁₁			\bigcirc	_//		CO ₂	F	OCH ₃
111	C₃H ₇	\bigcirc	_		_//_		CO ₂	FF	OC ₂ H ₅
112	C₃H ₇		_		_//-		CO ₂	FF	OC ₂ H ₅
113	C ₃ H ₇	\bigcirc			_//_		CO2	F	OC ₂ H ₅
114	C ₃ H ₇				_//_		CO ⁵	F F	OC ₂ H ₅
115	C ₃ H ₇		_//				CO ⁵	F F	OC ₂ H ₅
116	C ₃ H ₇		_//-		_//-		CO2	FF	OC ₂ H ₅
									OC₃H ₇

	<u> </u>								· · · · · · · · · · · · · · · · · · ·
No.	R ¹	A ¹	X ¹	A ²	X²	A ³	X ³	A ⁴	Y ¹
118	C ₃ H ₇	\bigcirc		\bigcirc	_//_	\bigcirc	CO ₂	FF	OC₂H₅
119	C ₃ H ₇			\bigcirc		\bigcirc	CO ₂	F	OC₂H ₅
120	C ₃ H ₇	\bigcirc		\bigcirc	_//-	\bigcirc	CO ₂	FF	OC₂H₅
121	C₃H ₇			\bigcirc	_//_	\bigcirc	CO ₂	FF	OC ₂ H ₅
122	C₃H ₇	\bigcirc		\bigcirc		\bigcirc	CO2	F	OC ₂ H ₅
123	C ₃ H ₇		_//	\bigcirc	_//-	\bigcirc	CO ₂	FF	OC ₂ H ₅
124	C ₅ H ₁₁			\bigcirc	_//-	\bigcirc	CO ₂	F F	OCH ₃
125	C ₃ H ₇	\bigcirc	_		_//-	\bigcirc	CO ₂	F F	OC ₂ H ₅
126	C₃H ₇		-		_//	\bigcirc	CO ₂	FF	OC ₂ H ₅
127	C ₃ H ₇	\bigcirc			_//_	\bigcirc	CO ₂	FF	OC ₂ H ₅
128	C ₃ H ₇					\bigcirc	CO ₂	F_F	OC ₂ H ₅
129	C₃H ₇	\bigcirc	_//_		_//-	\bigcirc	CO ⁵	F_F	OC₂H₅
130	C ₃ H ₇				_//-	\bigcirc	CO ₂	F_F	OC ₂ H ₅
131	C ₅ H ₁₁					\bigcirc	CO ₂	FF	OC₃H ₇

m=1 ,	n=0						
No.	R ¹	A ¹	X¹	A ²	X ²	A ⁴	Y¹
132	C ₃ H ₇	\bigcirc			CF ₂ O		OC ₂ H ₅
133	C₃H ₇		~	\bigcirc	CF ₂ O	FF	OC ₂ H ₅
134	C₃H ₇	\bigcirc	7	\bigcirc	CF ₂ O	FF	OC ₂ H ₅
135	C₃H ₇		7	\bigcirc	CF ₂ O	F	OCH₃
136	C ₃ H ₇		7	\bigcirc	CF ₂ O	FF	OC ₂ H ₅
137	C₃H ₇			\bigcirc	CF ₂ O	F	OC₃H ₇
138	C ₅ H ₁₁		~	\bigcirc	CF ₂ O	F F	OC₂H₅
139	C ₅ H ₁₁		$\overline{}$	\bigcirc	CF ₂ O	FF	OC ₂ H ₅
140	C ₅ H ₁₁	\bigcirc	<i>_</i>	\bigcirc	CF ₂ O	F F	OC ₂ H ₅
141	C ₅ H ₁₁		_	\bigcirc	CF ₂ O	FF	OCH ₃
142	C ₅ H ₁₁			\bigcirc	CF ₂ O	F	OC ₂ H ₅
143	C₅H₁₁		7	\bigcirc	CF ₂ O	F_F	OC₃H ₇

m=1 ,	n=0						
No.	R ¹	A ¹	X ¹	A ²	X ²	A⁴	Y ¹
144	C₃H ₇	\bigcirc		\bigcirc	CF ₂ O	F	OC ₂ H ₅
145	C ₃ H ₇			\bigcirc	CF ₂ O	F	OC₂H₅
146	C₃H ₇	\bigcirc			CF ₂ O	FF	OC ₂ H ₅
147	C₃H ₇				CF ₂ O	F F	OCH₃
148	C₃H ₇				CF ₂ O	F F	OC ₂ H ₅
149	C ₃ H ₇				CF₂O	F F	OC ₃ H ₇
150	C ₅ H ₁₁	\bigcirc		\bigcirc	CF ₂ O	F_F	OC₂H₅
151	C ₅ H ₁₁			\bigcirc	CF ₂ O	F F	OC ₂ H ₅
152	C ₅ H ₁₁	\bigcirc			CF ₂ O	F F	OC ₂ H ₅
153	C ₅ H ₁₁				CF ₂ O	FF	OCH₃
154	C ₅ H ₁₁				CF ₂ O	FF	OC ₂ H ₅
155	C ₅ H ₁₁				CF ₂ O	FF	OC ₃ H ₇

m=1 ,	n=0						
No.	R ¹	A ¹	Χ¹	A ²	X ²	A ⁴	Y ¹
156	C ₃ H ₇	\bigcirc	~		CF ₂ O	F	OC₂H₅
157	C ₃ H ₇		~		CF ₂ O	F	OC ₂ H ₅
158	C ₃ H ₇	\bigcirc	7		CF ₂ O	F F	OC ₂ H ₅
159	C ₃ H ₇		71_		CF ₂ O	FF	OCH ₃
160	C ₃ H ₇				CF₂O	F F	OC ₂ H ₅
161	C ₃ H ₇		7		CF ₂ O	FF	OC ₃ H ₇
162	C ₅ H ₁₁	\bigcirc	~		CF ₂ O	F	OC ₂ H ₅
163	C ₅ H ₁₁				CF ₂ O	FF	OC ₂ H ₅
164	C ₅ H ₁₁	\bigcirc	~		CF ₂ O	F	OC₂H₅
165	C ₅ H ₁₁		7		CF ₂ O	FF	OC ₂ H ₅
166	C ₅ H ₁₁		7		CF ₂ O	F F	OC ₂ H ₅
167	C ₅ H ₁₁		7		CF ₂ O	FF	OC ₂ H ₅

m=r	1 - 1								
Na.	R ¹	A ¹	X ¹	A ²	X²	A ³	X³	A ⁴	Y ¹
168	C₃H ₇	\bigcirc	_	\bigcirc	CF ₂ O		_	F_F	OC₂H₅
169	C₃H ₇	\bigcirc		\bigcirc	CF ₂ O	FF	_		OC ₂ H ₅
170	C ₃ H ₇			\bigcirc	CF ₂ O				OC₂H₅
171	C ₃ H ₇		-	\bigcirc	CF ₂ O	F	_		OC₂H₅
172	C ₅ H ₁₁		_	\bigcirc	CF ₂ O	FF			OCH₃
173	C₃H ₇	\bigcirc		\bigcirc	CF ₂ O			F F	OC ₂ H ₅
174	C ₃ H ₇	\bigcirc		\bigcirc	CF ₂ O	F	, —		OC ₂ H ₅
175	C₃H ₇			\bigcirc	CF ₂ O		_	FF	OC₂H₅
176	C ₃ H ₇				CF ₂ O				OC₂H ₅
177	C ₅ H ₁₁			\bigcirc	CF ₂ O	FF			OCH₃
178	C₃H ₇	\bigcirc	_//	\bigcirc	CF ₂ O			_	
179	C₃H ₇	\bigcirc		\bigcirc	CF ₂ O	FF	_		OC ₂ H ₅
180	C ₃ H ₇		_//_	\bigcirc	CF ₂ O			F F	OC ₂ H ₅
181	C ₃ H ₇		_//_	\bigcirc	CF ₂ O	F			OC ₂ H ₅
182	C ₅ H ₁₁			\bigcirc	CF ₂ O	F_F			OC₃H ₇

	m=n=	1								
	Na.	R ¹	A ¹	X ¹	A ²	X²	A ³	X ₃	A ⁴	Y ¹
-	183	C ₃ H ₇	\bigcirc		\bigcirc	CF ₂ O			F F	OC₂H₅
	184	C ₃ H ₇	\bigcirc	-	\bigcirc	CF ₂ O				OC ₂ H ₅
	185	C ₃ H ₇		_	\bigcirc	CF ₂ O			F	OC ₂ H ₅
	186	C₃H ₇				CF ₂ O	FF			OC ₂ H ₅
	187	C₃H ₇		_	\bigcirc	CF ₂ O	FF			OCH₃
	188	C₃H ₇	\bigcirc		\bigcirc	CF ₂ O			F F	OC ₂ H ₅
	189	C ₃ H ₇	\bigcirc		\bigcirc	CF ₂ O	F F			OC ₂ H ₅
	190	C ₃ H ₇			\bigcirc	CF ₂ O			F F	OC ₂ H ₅
	191	C ₃ H ₇			\bigcirc	CF ₂ O	F F			OC ₂ H ₅
	192	C ₅ H ₁₁			\bigcirc	CF ₂ O	F_F			OCH ₃
	193	C ₃ H ₇	\bigcirc		\bigcirc	CF ₂ O		·/-	F	OC ₂ H ₅
	194	C ₃ H ₇	\bigcirc		\bigcirc	CF ₂ O	F F			OC ₂ H ₅
	195	C₃H ₇		_//-	\bigcirc	CF ₂ O			F F	OC₂H₅
	196	C ₃ H ₇		_//_	\bigcirc	CF ₂ O	FF			OC ₂ H ₅
-										OC₃H ₇

m=n=1

	·						4		
Na.	R ¹	A ¹	X ¹	A ²	X ²	A ³	X3	A ⁴	Y¹
198	C₃H ₇	\bigcirc	_		CF ₂ O		_	F	OC₂H ₅
199	C ₃ H ₇	\bigcirc	_		CF ₂ O	FF	_		OC ₂ H ₅
200	C ₃ H ₇		_		CF ₂ O		_	F	OC ₂ H ₅
201	C ₃ H ₇		_		CF ₂ O	F F	_		OC ₂ H ₅
202	C₃H ₇				CF ₂ O	FF	_		OCH3
203	C₃H ₇	\bigcirc			CF ₂ O				OC₂H₅
204	C ₃ H ₇	\bigcirc			CF ₂ O				OC ₂ H ₅
205	C₃H ₇				CF ₂ O		_	FF	OC ₂ H ₅
206	C ₃ H ₇				CF ₂ O	FF	_		OC ₂ H ₅
207	C ₅ H ₁₁				CF ₂ O	FF			OC ₃ H ₇
208	C ₃ H ₇	\bigcirc			CF ₂ O		-	F F	OC ₂ H ₅
209	C ₃ H ₇	\bigcirc	_//		CF ₂ O	F F	_		OC ₂ H ₅
210	C ₃ H ₇				CF ₂ O		_	F_F	OC ₂ H ₅
211	C ₃ H ₇		_//-		CF ₂ O	FF	_		OC ₂ H ₅
212	C ₅ H ₁₁				CF ₂ O	F_F	_		OC ₃ H ₇

_		_	-
m	_	_	
111		-	. 1

111=11=	- 1								
No.	R ¹	A ¹	X ¹	A ²	X ²	A ³	X ³	A ⁴	Y ¹
213	C₃H ₇	\bigcirc		\bigcirc		\bigcirc	CF ₂ O	FF	OC₂H₅
214	C ₃ H ₇		-	\bigcirc		\bigcirc	CF ₂ O	FF	OC ₂ H ₅
215	C ₃ H ₇	\bigcirc		\bigcirc	. —	\bigcirc	CF ₂ O	F	OC₂H ₅
216	C₃H ₇			\bigcirc	-	\bigcirc	CF ₂ O		OC₂H₅
217	C₃H ₇	\bigcirc	_//	\bigcirc	_		CF ₂ O	F	OC₂H ₅
218	C ₃ H ₇		_//	\bigcirc	_	\bigcirc	CF ₂ O	FF	OC₂H₅
219	C ₃ H ₇	\bigcirc	_			\bigcirc	CF ₂ O	F	OC ₂ H ₅
220	C ₃ H ₇		_			\bigcirc	CF ₂ O	F F	OC ₂ H ₅
221	C ₃ H ₇	\bigcirc				\bigcirc	CF ₂ O	F F	OC₂H ₅
222	C ₃ H ₇					\bigcirc	CF ₂ O	F F	OC ₂ H ₅
223	C₃H ₇	\bigcirc				\bigcirc	CF ₂ O	FF	OC ₂ H ₅
224	C ₅ H ₁₁					\bigcirc	CF ₂ O	F F	OCH ₃
			_//						
			_//						

m	-	n	-	1
,,,	-	,	_	ı

m=n=	!								
No.	R¹	A¹	X ¹	A ²	X ²	A ³	X ³	, A ⁴	Y ¹
227	C ₃ H ₇	\bigcirc	_	\bigcirc	_		CF ₂ O	F F	OC ₂ H ₅
228	C ₃ H ₇			\bigcirc	_		CF ₂ O	FF	OC ₂ H ₅
229	C ₃ H ₇	\bigcirc		\bigcirc	_		CF ₂ O	F F	OC ₂ H ₅
230	C₃H ₇			\bigcirc	_		CF ₂ O	F	OC ₂ H ₅
231	C ₃ H ₇	\bigcirc		\bigcirc	_		CF ₂ O	FF	OC ₂ H ₅
232	C ₃ H ₇		_//_		-		CF ₂ O	F	OC₂H₅
233	C ₃ H ₇	\bigcirc	_		_		CF ₂ O	FF	OC ₂ H ₅
234	C ₃ H ₇		-		_		CF ₂ O	F	OC ₂ H ₅
235	C ₃ H ₇	\bigcirc			_		CF ₂ O	FF	OC ₂ H ₅
236	C₃H ₇						CF ₂ O	FF	OC ₂ H ₅
237	C ₃ H ₇	\bigcirc			_		CF ₂ O	FF	OC ₂ H ₅
238	C ₅ H ₁₁						CF ₂ O	FF	OCH ₃
239	C ₅ H ₁₁		_//_		_		CF ₂ O	F_F	OC ₂ H ₅
240	C ₅ H ₁₁				_		CF ₂ O	F F	OC₃H ₇

m	1=	n	=	1

	·								
No.	R ¹	A ¹	X ¹	A ²	X²	A ³	X³	A ⁴	Y ¹
241	C₃H ₇	\bigcirc	_	\bigcirc		\bigcirc	CF ₂ O	F F	OC₂H₅
242	C ₃ H ₇			\bigcirc		\bigcirc	CF ₂ O	FF	OC ₂ H ₅
243	C ₃ H ₇	\bigcirc		\bigcirc		\bigcirc	CF ₂ O	F F	OC ₂ H ₅
244	C₃H ₇			\bigcirc		\bigcirc	CF ₂ O	FF	OC ₂ H ₅
245	C₃H ₇	\bigcirc		\bigcirc		\bigcirc	CF ₂ O	F F	OC ₂ H ₅
246	C₃H ₇			\bigcirc		\bigcirc	CF ₂ O	FF	OC ₂ H ₅
247	C ₃ H ₇	\bigcirc	- .			\bigcirc	CF ₂ O	F_F	OC ₂ H ₅
248	C₃H ₇		_			\bigcirc	CF ₂ O	F_F	OC ₂ H ₅
249	C ₃ H ₇	\bigcirc				\bigcirc	CF ₂ O	FF	OC ₂ H ₅
250	C ₃ H ₇					\bigcirc	CF ₂ O	FF	OC ₂ H ₅
251	C ₃ H ₇	\bigcirc				\bigcirc	CF ₂ O	F F	OC ₂ H ₅
252	C ₅ H ₁₁		_//			\bigcirc	.CF ₂ O	F F	OCH₃
253	C ₅ H ₁₁					\bigcirc	CF ₂ O	FF	OC ₂ H ₅
	C ₅ H ₁₁								•

Na.	R ¹	A ¹	X ¹	A ²	X²	A ³	X ₃	A ⁴	Y ¹
255	C₃H ₇	\bigcirc	_	\bigcirc			CF ₂ O	FF	OC ₂ H ₅
256	C₃H ₇		_	\bigcirc			CF ₂ O	F	OC₂H₅
257	C₃H ₇			\bigcirc			CF ₂ O	F	OC ₂ H ₅
258	C₃H ₇			\bigcirc			CF ₂ O	F F	OC ₂ H ₅
259	C ₃ H ₇	\bigcirc		\bigcirc			CF ₂ O	F_F	OC ₂ H ₅
260	C₃H ₇			\bigcirc			CF ₂ O	F F	OC ₂ H ₅
261	C₃H ₇	\bigcirc	_				CF ₂ O	F_F	OC ₂ H ₅
262	C ₃ H ₇		_				CF ₂ O	F F	OC ₂ H ₅
263	C₃H ₇	\bigcirc					CF ₂ O	F F	OC ₂ H ₅
264	C₃H ₇						CF ₂ O	FF	OC ₂ H ₅
265	C ₃ H ₇	\bigcirc	_//-				CF ₂ O	F F	OC ₂ H ₅
266	C ₅ H ₁₁						CF ₂ O	F F	OCH ₃
267	C ₅ H ₁₁						CF ₂ O	FF	OC₂H₅
268	C ₅ H ₁₁						CF ₂ O	FF	OC₃H ₇

m=n= 1									
No.	R ¹	A ¹	X ¹	A ²	X²	A ³	X ₃	A ⁴	Y ¹
269	C₃H ₇	\bigcirc		\bigcirc	_//-	\bigcirc	CF ₂ O	FF	OC ₂ H ₅
270	C₃H ₇		_	\bigcirc		\bigcirc	CF ₂ O	FF	OC ₂ H ₅
271	C ₃ H ₇	\bigcirc		\bigcirc		\bigcirc	CF ₂ O	F	OC ₂ H ₅
272	C₃H ₇			\bigcirc	_//_	\bigcirc	CF ₂ O	F	OC ₂ H ₅
273	C ₃ H ₇	\bigcirc		\bigcirc		\bigcirc	CF ₂ O	F	OC₂H₅
274	C₃H ₇			\bigcirc		\bigcirc	CF ₂ O	FF	OC ₂ H ₅
275	C ₃ H ₇	\bigcirc	_		_//-	\bigcirc	CF ₂ O	FF	OC ₂ H ₅
276	C ₃ H ₇		_		_//_	\bigcirc	CF ₂ O	FF	OC ₂ H ₅
277	C ₃ H ₇	\bigcirc			_//-	\bigcirc	CF ₂ O	FF	OC ₂ H ₅
278	C ₃ H ₇				_//-	\bigcirc	CF ₂ O	FF	OC ₂ H ₅
279	C ₃ H ₇	\bigcirc	_//-		_//-	\bigcirc	CF ₂ O	FF	OC ₂ H ₅
280	C ₅ H ₁₁		_//-		_//_	\bigcirc	CF ₂ O	FF	OCH ₃
281	C ₅ H ₁₁				_//_	\bigcirc	CF ₂ O	F F	OC ₂ H ₅
	C₅H ₁₁								

		_		4
m	-	n	-	1
	_		_	

				•					
No.	R ¹	A ¹	X ¹	A ²	X ²	A ³	X³	A ⁴	Y ¹
283	C ₃ H ₇	\bigcirc	_	\bigcirc			CF ₂ O	F_F	OC ₂ H ₅
284	C₃H ₇		_	\bigcirc	_//		CF ₂ O	FF	OC ₂ H ₅
285	C₃H ₇	\bigcirc		\bigcirc			CF ₂ O	FF	OC ₂ H ₅
286	C₃H ₇			\bigcirc	_//-		CF ₂ O	F	OC ₂ H ₅
287	C ₃ H ₇	\bigcirc	_//	\bigcirc			CF ₂ O	FF	OC ₂ H ₅
288	C ₃ H ₇		_//~				CF ₂ O	FF	OC ₂ H ₅
289	C₃H ₇	\bigcirc	-				CF ₂ O	FF	OC ₂ H ₅
290	C₃H ₇		_		_//		CF ₂ O	FF	OC ₂ H ₅
291	C ₃ H ₇	\bigcirc			_//-		CF ₂ O	FF	OC ₂ H ₅
292	C ₃ H ₇						CF ₂ O	FF	OC ₂ H ₅
293	C₃H ₇	\bigcirc			_//-		CF ₂ O	FF	OC₂H ₅
294	C₅H ₁₁						CF ₂ O	FF	OCH ₃
295	C ₅ H ₁₁				_/_		CF ₂ O	FF	OC ₂ H ₅
296	C ₅ H ₁₁						CF ₂ O	F_F	OC₃H ₇

m=n=0					
Na.	R ¹	A ¹	X ¹	A ⁴	Y ¹
297	C ₃ H ₇	F	C00	F	OCH₃
298	C₃H ₇	F	C00	F	OC₂H ₅
299	C₃H ₇	F	C00	F F	OC₃H ₇
300	C ₅ H ₁₁	F	C00	FF	OCH ₃
301	C ₅ H ₁₁	F	C00	F F	OC ₂ H ₅
302	C ₅ H ₁₁	F	coo	FF	OC₃H ₇

WO 97/36847 PCT/JP97/01048

m=n=	=0				
No.	R ¹	A ¹	X ¹	A ⁴	Y ¹
303	C ₃ H ₇		CF ₂ O	FF	OC₂H₅
304	C ₃ H ₇	F	CF ₂ O	F	OCH ₃
305	C₃H ₇	F	CF ₂ O	F F	OC ₂ H ₅
306	C₃H ₇		CF ₂ O	FF	OC₃H ₇
307	C ₅ H ₁₁		CF ₂ O	FF	OC ₂ H ₅
308	C ₅ H ₁₁		CF ₂ O	F	OCH3
309	C ₅ H ₁₁		CF ₂ O	F	OC ₂ H ₅
310	C ₅ H ₁₁	C) _F	CF ₂ O	FF	OC₃H ₇

No.	¹ R-\(\bar{A}^1\)-X ¹ \((-\langle)	$A^2 - X^2 - M$	$-\langle A^3 \rangle - X^3 -$	-) _n -\(\begin{align*} A^4 \) - Y^1
311	C ₃ H ₇	<u>-</u> .	-	-C ₅ H ₁₁
312	C ₃ H ₇ -CF ₂ O	-	-	-C-OC ₂ H ₅
313		-	•	
314	C ₃ H ₇		-	⟨¯¯⟩-C ₅ H ₁₁
315	C ₃ H ₇ -CF ₂ O	-	-	{□ F C ₅ H ₁₁
316	/	-	-	-C₅H ₁₁
317	C ₃ H ₇ -CF ₂ O	-	-	-{-}F C₅H₁₁
318	/	-	-	F C ₅ H ₁₁
319	C ₃ H ₇	-	-	·FC ₅ H ₁₁
320	C ₃ H ₇ - CF ₂ O-		-	{

No.	¹ R-\(\begin{array}{c} A^1\) - X ¹	$\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\frac{1}{2}\right)_m\left(-\sqrt{A^2}-X^2-X^2-\frac{1}{2}\right)_m\left(-\sqrt{A^2}-X^2-X^2-\frac{1}{2}\right)_m\left(-\sqrt{A^2}-X^2-X^2-X^2-X^2-X^2-X^2-X^2-X^2-X^2-X^2$	-{A ³ }-x ³ -	-)n (A ⁴)-Y ¹
321	C_3H_7 — CF_2O	<u> </u>	-	-{-{C₅H₁₁ F
322	C ₃ H ₇ — CF ₂ O	-	-	-{
323	$C_3H_7 \longrightarrow F$ CF_2O	- - ,	• •	$ F$ C_5H_{11}
324	C ₃ H ₇ —	-CF2O-	-	- (C ₅ H ₁₁
325	C ₅ H ₁₁ ———	-CF2O-	-	—(
326	<i>_</i>	-CF ₂ O-	-	(¯)-C ₃ H ₇
327	$\hspace{1cm} \checkmark \hspace{1cm} \frown$	-CF ₂ O-	-	—————————————————————————————————————
328	C ₃ H ₇ —	-CF ₂ O	-	(F C₅H₁1
329	C ₅ H ₁₁ —	-CF20-	-	——— F F С₃Н ₇
330	~ \	-CF ₂ O-	-	-C ₂ H ₅

No.	¹R-{A¹}-X¹	$\left(-\sqrt{A^2}\right)-x^2-\int_{m}\left(-\sqrt{A^2}\right)$	⟨A³⟩- x³ -	-)n(A ⁴)-Y ¹
331	C ₃ H ₇ —	-CF20-	•	—(¯)-C ₅ H ₁₁
332	C ₅ H ₁₁ -	-CF20-		-√
333	$ \hspace{-1.5cm} /\hspace{-1.5cm} \hspace{-1.5cm} $	-CF2O-	-	-C ₃ H ₇
334	~	-{	•	——————————————————————————————————————
335	C ₃ H ₇ —	-CF ₂ O	-	-{}F C₅H ₁₁
336	C ₅ H ₁₁ —	-CF ₂ O-	-	$ \leftarrow$ \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow
337	\sim	-CF ₂ O	-	$ C_2H_5$
338	$C_3H_7- \stackrel{O}{\longleftarrow}$	-CF ₂ O-	-	-C ₅ H ₁₁
339	C_5H_{11} $ C_0$	-CF2O-	-	—————————————————————————————————————
340	C₅H ₁₁ - С O -	()-CF ₂ O	-	C_3H_7

No.	¹ R-\(\begin{array}{c} A^1 \) - X ¹	$\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\frac{1}{2}\right)_m\left(-A^2$	$-\langle A^3 \rangle - X^3 -$	-)n -\(\begin{align*} A^4 \rightarrow Y^1 \\ \end{align*}
341	C ₃ H ₇ —	-{_F CF ₂ O	-	-C ₅ H ₁₁
342	C ₅ H ₁₁ —	-CF ₂ O-	-	—(¯)−C ₃ H ₇
343		-CF ₂ O-	-	—(¯)−C ₃ H ₇
344	₩	-{=}F-CF ₂ O	-	(
345	C ₃ H ₇ ————	-CF ₂ O	-	—(¯)-C ₅ H ₁₁
346	C ₅ H ₁₁ —	-CF ₂ O-	-	—————————————————————————————————————
347	~~~	-CF ₂ O		—————————————————————————————————————
348	$C_3H_7 \stackrel{O}{\longleftarrow}$ $-$	-CF ₂ O-	-	-{
349	C_5H_{11} $ C_0$	-CF ₂ O-	-	-C ₃ H ₇
350	C_5H_{11} \longrightarrow O	-CF ₂ O	•	—(

No.	¹R-(A¹)-X¹	$\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-X^2-\right)_m\left(-\sqrt{A^2}-X^2-X^2-X^2-X^2-X^2-X^2-X^2-X^2-X^2-X^2$	$\langle A^3 \rangle - x^3 -$	$ \int_{n}$ $ A^{4}$ $-$ Y ¹
351	C ₃ H ₇	-CF ₂ O-	-	F C ₅ H ₁₁
352	C ₅ H ₁₁ —	-CF ₂ O-	-	-C ₃ H ₇
353	$/\!$	-CF ₂ O-	•	$ C_3H_7$
354		-{F CF2O	-	-C ₂ H ₅
355	C ₃ H ₇ -		-	-C ₅ H ₁₁
356	C ₅ H ₁₁ -	F CF ₂ O—	-	$- \underbrace{\sum_{F}^{F} C_{3}H_{7}}$
357	~ 			$- C_2H_5$
358	$C_3H_7- \stackrel{O}{\longleftarrow}$	-CF ₂ O-	•	-C ₅ H ₁₁
359	C_5H_{11} \longrightarrow C_0	-CF ₂ O-	-	-C ₃ H ₇
360	C_5H_{11} $ C_0$	-CF ₂ O-		-C ₃ H ₇

No.	¹ R-\(\begin{align*} A^1\) - \(\cdot \)	$-\sqrt{A^2}-X^2-$	_((A ³)×	3 - $)_{n}$ - $\langle A^{4}\rangle$ - 1
361	C ₃ H ₇		-	-{_}C₅H ₁₁
362	C ₅ H ₁₁ -CF ₂ O		•	—————————————————————————————————————
363		-	-	$ C_3H_7$
364	CF ₂ O-	-	-	—————————————————————————————————————
365	C ₃ H ₇	-	-	-€
366	C ₅ H ₁₁ - CF ₂ O	-	-	——— ^F С ₃ H ₇
367			-	-C ₃ H ₇
368			-	$ C_2H_5$
369	C ₃ H ₇ CF ₂ O		-	OC ₂ H ₅
370	C ₅ H ₁₁ — CF ₂ O—		-	OC ₂ H ₅

No.	¹ R-\(\begin{align*} A^1\) - x ¹ - \((-\)	$-\langle A^2 \rangle - X^2 - \rangle_m$	$\left(-\sqrt{A^3}\right)-X^3$	-)n-\(\begin{align*} A^4 \rightarrow Y^1 \\ \end{align*}
371	C ₃ H ₇ -CF ₂ O-	-	-	-C₅H ₁₁
372	C ₅ H ₁₁ - CF ₂ O-	-	-	-C ₃ H ₇
373		-	-	— C₃H ₇
374	CF ₂ O		-	-C ₂ H ₅
375	C ₃ H ₇ CF ₂ O	√ >		-{\$\bullet_{C5}H_{11}}
376	C ₅ H ₁₁ - CF ₂ O-		•	-√
377	/-CF₂O	·—————	-	-√C ₃ H ₇
378		-	-	C_2H_5
379	C ₃ H ₇	→		FF OC₂H₅
380	C ₅ H ₁₁ - CF ₂ O	-	-	F F OC ₂ H ₅

No.	¹ R-\(\begin{align*} A^1 \) -X ¹ -	$\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^3}-X^3-\right)$	$-$) $ A^4$ $-$ Y ¹
381	C ₃ H ₇	(CF ₂ O	-{
382	C ₅ H ₁₁ —		-√C ₃ H ₇
383			-C ₃ H ₇
384		CF₂O	-C ₂ H ₅
385	C ₃ H ₇ -	-CF ₂ O	C ₅ H ₁₁
386	C ₅ H ₁₁ —	-CF ₂ O	-{C₃H ₇ F
387	$\nearrow \bigcirc \searrow$		-√= F -C ₃ H ₇
388			$ C_2H_5$
389	C ₃ H ₇ -		FFOC ₂ H ₅
390	C ₅ H ₁₁ -		F F OC ₂ H ₅

No.	¹R-{A¹}-X¹	$\left(-\sqrt{A^2}\right)-X^2-\int_{m}\left(-\sqrt{A^3}\right)$	$-X^3$ $ n$ A^4 $-Y^1$
391	C ₃ H ₇ —	-CF ₂ O	()-C₅H₁₁
392	C ₅ H ₁₁ -	-CF ₂ O	()-C₃H ₇
393	$\nearrow \bigcirc \frown$		—⟨¯
394		CF₂O	———C ₂ H ₅
395	C ₃ H ₇		-{F_C₅H₁₁
396	C ₅ H ₁₁	-CF ₂ O	C_3H_7
397	$\nearrow \bigcirc \diagdown$		{F -C₃H₁
398			$-C_2H_5$
399	C ₃ H ₇ —		
400	C ₅ H ₁₁ -		

				•
No.	¹ R-\(\begin{align*} A^1 \) - X ¹	$\left(-\sqrt{A^2}-x^2-\right)_m\left(-\sqrt{A^2}-x^2-\right)_m\left(-\sqrt{A^2}-x^2-x^2-x^2-x^2-x^2-x^2-x^2-x^2-x^2-x^2$	—(A ³)—x ³ —	
401	C ₃ H ₇	-CF ₂ O-	•	-{
402	C ₅ H ₁₁ -	-CF2O-	-	-C ₃ H ₇
403		-CF2O-	-	-C ₃ H ₇
404		-CF ₂ O-	-	- (_)-C₂H₅
405	C ₃ H ₇ -	-CF ₂ O-	- ,	-C₅H ₁₁
406	C ₅ H ₁₁ —	-CF ₂ 0-	-	$- \left\langle \begin{array}{c} F \\ C_3H_7 \end{array} \right\rangle$
407		-CF2O-	-	-C ₃ H ₇
408		-CF ₂ O-	-	$ \leftarrow$ \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow
409	C ₃ H ₇ -	-CF ₂ O	-	F F
410	C ₅ H ₁₁ -	-CF ₂ O	-	

No.	¹ R-\(\begin{array}{c} A^1 \) - X^1 -	$\left(-\sqrt{A^2}-X^2-\right)_{m}\left(-\sqrt{A^2}-X^2-\frac{1}{2}\right)_{m}$	—(A ³)—x ³ —	$-$) _n $ \langle A^4 \rangle$ -Y ¹
411	C ₃ H ₇ —	-CF ₂ O	-	—(
412	C ₅ H ₁₁ -	-CF ₂ O-	-	—————————————————————————————————————
413		-CF ₂ O-	-	—————————————————————————————————————
414		-CF ₂ O	•	-C ₂ H ₅
415	C ₃ H ₇ -	-CF2O-	-	-√F C ₅ H ₁₁
416	C ₅ H ₁₁ -	-CF ₂ O	-	{□} C ₃ H ₇
417		()	-	-C ₃ H ₇
418		(•	$ C_2H_5$
419	$\bigcirc \frown \bigcirc$	-CF ₂ O-		$ C_2H_5$
420	~~~		-	$ \leftarrow$ \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

No.	18-\(\begin{align*} A^1 \)-\(x^1 - \)	$\left(-\sqrt{A^2}-x^2-\right)_m\left(-\sqrt{A^2}-x^2-\right)_m\left(-\sqrt{A^2}-x^2-x^2-x^2-x^2-x^2-x^2-x^2-x^2-x^2-x^2$	-(A ³)-x ³ -	-)n-(A ⁴)Y ¹
421	C ₃ H ₇ -	-CF ₂ O-	-	-{
422	C ₅ H ₁₁ -	-CF2O-	. -	-√C ₃ H ₇
423		-CF ₂ O	-	{□}-C₃H ₇
424		-CF ₂ O-		-C₂H ₅
425	C ₃ H ₇	-CF ₂ O-	-	{5H ₁₁
426	C ₅ H ₁₁ —	-CF ₂ O	-	-{
427	$\nearrow \bigcirc \searrow$	-{-}F CF ₂ O	-	$-C_3H_7$
428		-{-}F CF ₂ O		$ C_2H_5$
429	\bigcirc	- ← CF ₂ O	•	C ₂ H ₅
430	~。<	-{	-	$ C_3H_7$

No.	¹ R-\(\begin{array}{c} A^1 \rightarrow - X^1	$\left(-\sqrt{A^2}-x^2-\right)_m\left(-\sqrt{A^2}-x^2-\right)_m\left(-\sqrt{A^2}-x^2-x^2-x^2-x^2-x^2-x^2-x^2-x^2-x^2-x^2$	A^3 X^3	-) _n (A ⁴)-Y ¹
431	C ₃ H ₇ -	-CF ₂ O-	-	()-C₅H₁₁
432	C ₅ H ₁₁ —	-CF ₂ O	-	-√C3H7
433		-{	-	-C ₃ H ₇
434		-CF ₂ O	-	
435	C ₃ H ₇ —	-CF ₂ O	-	-C ₅ H ₁₁
436	C ₅ H ₁₁ —	-{	-	$ C_3H_7$
437				-C ₃ H ₇
438		-CF ₂ O	-	$ C_2H_5$
439	_o-{>_	-CF ₂ O	-	-C ₂ H ₅
440	~~~	-	-	$ C_3H_7$

No.	¹ R-\(\begin{align*}A^1\) - X ¹ \(\begin{align*}A^1\)	$-\sqrt{A^2}-x^2-$	$\left(-\sqrt{A^3} - x \right)$	$(3-)_n - (A^4) - Y^1$
441	C ₃ H ₇	-	-	- - - - - - - - - - - - -
442	C ₃ H ₇ -√CF ₂ O	- (_)-	-	—
443	CF ₂ O	-	-	-{
444	CF ₂ O	─	.	-C ₂ H ₅
445	C ₃ H ₇	-	-	-√F C₅H₁₁
446	C ₅ H ₁₁ - CF ₂ O-	─	-	-√
447		· ———	-	-C ₃ H ₇
448	CF ₂ O	-{>	-	€
449	C ₃ H ₇	-	•	FFOC ₂ H ₅
450	C ₅ H ₁₁ — CF ₂ O—	─		F F OC ₂ H ₅

No.	¹R-\(\begin{align*} A^1 \rightarrow X^1 \limits \\ \end{align*}	$\left(- \left(A^2 \right) - X^2 - \right)_{\Gamma}$	n((A ³)x	3 — $\Big\rangle_{n}$ — $\Big\langle A^{4}\Big\rangle$ — Y^{1}
45 1	C ₃ H ₇ —CF ₂ O—		-	—————————————————————————————————————
452	C ₅ H ₁₁ - CF ₂ O	——————————————————————————————————————		-C ₃ H ₇
453		-{\frac{F}{2}}	-	-C ₃ H ₇
454	CF ₂ O—	←	-	{
455	C ₃ H ₇		-	-€
456	C ₅ H ₁₁ — CF ₂ O—	- 	-	-{C₃H ₇
457		F	-	$-C_3H_7$
458		F	-	$ C_2H_5$
459	C ₃ H ₇	F	-	F F OC ₂ H ₅
460	C ₅ H ₁₁ -CF ₂ O	F F	-	F F OC ₂ H ₅

No.	¹ R-\(\begin{array}{c} A^1\) - X ¹ - \(\end{array}	(A^2-X^2-)	$(-(A^3)-X$	3 $ \bigwedge_{n}$ $ \bigwedge_{n}$ A^{4} Y^{1}
461	C_3H_7 CF_2O		-	-C ₅ H ₁₁
462	C ₅ H ₁₁ — ← CF ₂ O—		. -	—————————————————————————————————————
463	CF ₂ O	− ₹		—⟨¯¯⟩- C ₃ H ₇
464.	CF ₂ O	− ⟨¯⟩−	• .	————C ₂ H ₅
465		− €	-	-€
466	C ₅ H ₁₁ - CF ₂ O	√ >	-	$ C_3H_7$
467	F-CF ₂ O	-{	•	F C₃H ₇
468	F CF ₂ O—	-{=}F	- '	$ C_2H_5$
469	C ₃ H ₇ ———————————————————————————————————	F		- $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
470	C ₅ H ₁₁ — CF ₂ O—		•	F F OC_2H_5

No.	¹ R-\(\begin{array}{c} A^1 \) - \(\cdot \)	$-\langle A^2 \rangle - x^2 - \rangle_m \left(-\langle A^2 \rangle - x^2 - \langle A^2 \rangle - x^2 - \langle A^2 \rangle \right)_m \left(-\langle A^2 \rangle - x^2 - \langle $	A ³ >-x ³	$-$) _n $ \langle A^4 \rangle$ - Y^1
471	C ₃ H ₇ CF ₂ O	-(-	-C₅H ₁₁
472	C ₅ H ₁₁ — CF ₂ O—		-	—————————————————————————————————————
473	/		-	————C₃H ₇
474			-	—————————————————————————————————————
475	C ₃ H ₇		-	-{F C₅H₁₁
476	C ₅ H ₁₁ — CF ₂ O—	-	-	-{
477	/	-	-	-{FC ₃ H ₇
478	CF ₂ O—	-	-	$ C_2H_5$
479	C ₃ H ₇ CF ₂ O	-	-	F F OC ₂ H ₅
480	C ₅ H ₁₁ - CF ₂ O-		-	F F OC ₂ H ₅

				
No.	¹ R-\(\bar{A}^1\)-X ¹ ($-\langle A^2 \rangle - X^2 - \rangle_m \left(-\langle A^2 \rangle - \langle A^2 \rangle -$	A^3 $- x^3$	$-$) _D $ A^4$ $-$ Y ¹
481	C ₃ H ₇		•	-{
482	C ₅ H ₁₁ — CF ₂ O—		-	————— С ₃ H ₇
483	/		-	—————————————————————————————————————
484		~~~~	-	-C ₂ H ₅
485	C ₃ H ₇	-\$\frac{F}{-\fra	-	-√F C₅H₁₁
486	C ₅ H ₁₁ — CF ₂ O—	-\(\sigma\)_=	-	—{
487	/		-	-€C3H ₇
488			-	$ C_2H_5$
489	C ₃ H ₇ -CF ₂ O-	F	÷	F F OC ₂ H ₅
490	C ₅ H ₁₁ - CF ₂ O	FF	•	FF OC ₂ H ₅

No.	¹ R-\(\begin{array}{c} A^1\) - X ¹	$\left(-\sqrt{A^2}-X^2-\right)_{m}\left(-\sqrt{A^2}-X^2-\frac{1}{2}\right)_{m}$	-{A ³ }- x ³ -	$-$) _n $-\langle A^4 \rangle - Y^1$
491	C ₃ H ₇ -CF ₂ O	-\(\begin{array}{c} \begin{array}{c} \\ -\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	-	
492	C ₅ H ₁₁ — CF ₂ O—		-	—————————————————————————————————————
493	CF ₂ O—	~==-	-	{□}-C ₃ H ₇
494	CF ₂ O-	~~~ <u>-</u>	-	$ C_2H_5$
495	C ₃ H ₇ —CF ₂ O—	{	-	-{\$\sum_{C_5}\text{H}_{11}}
496	C ₅ H ₁₁ — CF ₂ O—	F F	-	——— С ₃ Н ₇
497			-	{□ F -C ₃ H ₇
498	CF ₂ O-	-\(\bigs_F^F\)	-	{□}F C ₂ H ₅
499	C ₃ H ₇	F	-	FF FOC ₂ H ₅
500	C ₅ H ₁₁ - CF ₂ O-	F F =-	-	F F OC ₂ H ₅

				
No.	¹ R-\(\begin{align*} A^1\)-X ¹	$\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^2}-X^2-\frac{1}{2}\right)_m\left(-\sqrt{A^2}-X^2-X^2-\frac{1}{2}\right)_m\left(-\sqrt{A^2}-X^2-X^2-X^2-X^2-X^2-X^2-X^2-X^2-X^2-X$	-{A ³ }-x ³ -	$-$) _n $ \langle A^4 \rangle - Y^1$
501	C ₃ H ₇ —	-CF ₂ O-	•	-{
502	C ₅ H ₁₁	-CF ₂ O	-	$ C_3H_7$
503	~~~~	-{	-	—————————————————————————————————————
504		-{	-	(
505	C ₃ H ₇ —	-{F -CF ₂ O		-C₅H ₁₁
506	C ₅ H ₁₁	-CF ₂ O-	-	$ C_3H_7$
507	-	-CF ₂ O		-√-F -C ₃ H ₇
508		-CF ₂ O	-	$- _{F}^{F} C_{2}H_{5}$
509	C ₃ H ₇ -	CF ₂ O-	-	OC ₂ H ₅
510	C ₅ H ₁₁ —	CF ₂ O-	-	OC ₂ H ₅

No.	¹ R-\(\begin{array}{c} A^1 \) - x ¹ - \(\end{array}	$-\langle A^2 \rangle - x^2 - \rangle_r$	$n\left(-\sqrt{A^3}-X^3-\right)$	-)n -\(\begin{align*} A^4 \) - Y^1
511	C ₃ H ₇ ———————————————————————————————————	-	─	-C₅H ₁₁
512	C ₅ H ₁₁ - CF ₂ O-		-	− C ₃ H ₇
513			-	()-C₃H ₇
514	CF ₂ O-	$\overline{}$	-	—————————————————————————————————————
515	C ₃ H ₇	─	-	-C ₅ H ₁₁
516	C ₅ H ₁₁ — CF ₂ O—	-	-	-C ₃ H ₇
517	/	-	-	-√_S+ ₇
518	CF ₂ O	-	-	$ C_2H_5$
519	C ₃ H ₇ -CF ₂ O-		-	F F OC ₂ H ₅
520	C ₅ H ₁₁ — CF ₂ O—		-	\rightarrow

No.	¹R-\(\begin{align*}A^1\)-	$-\sqrt{A^2}-x^2-$	$m\left(-\sqrt{A^3}-X^3\right)$	$-$) _n $ A^4$) $-Y^1$	
521	C ₃ H ₇ -CF ₂ O-	-	-	-{_}-C₅H ₁₁	
522	C ₅ H ₁₁ - CF ₂ O-	-	-{\bullet}_F	{	
523	/		~ <u>_</u>	-C ₃ H ₇	
524	CF ₂ O—	-	─	− (¯)−C ₂ H ₅	
525	C ₃ H ₇ -CF ₂ O	-	- <u>_</u>	- C₅H ₁₁	
526	C ₅ H ₁₁ — CF ₂ O—	←	─	-{	
527		-		-C ₃ H ₇	
528		-	F	$ C_2H_5$	
529	C ₃ H ₇ —CF ₂ O	-	F	FF OC ₂ H ₅	
530	C ₅ H ₁₁ — CF ₂ O—	-	F F	F F OC ₂ H ₅	

No.	¹ R-\(\begin{align*} A^1\) - X ¹ \(\begin{align*} -\left* \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	$-\langle A^2 \rangle - X^2 - \rangle_{\Gamma}$	$\int_{0}^{\infty} \left(-\sqrt{A^3} - X^3 - \frac{A^3}{A^3} \right)$	-)n (A ⁴)-Y ¹
531	C ₃ H ₇ -CF ₂ O	-		-C ₅ H ₁₁
532	C ₅ H ₁₁ - CF ₂ O-	√ >	─	{
533	/	-	- 	—————————————————————————————————————
534		→	<u> </u>	-C ₂ H ₅
535	C ₃ H ₇ -CF ₂ O	_		-€
536	C ₅ H ₁₁ — CF ₂ O—	-	− €_	——— С ₃ Н ₇
537		-	-	-√F -C ₃ H ₇
538	CF ₂ O-	~ <u></u>	-\F	$ C_2H_5$
539	C ₃ H ₇	-(-)-	- -	- $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
540	C ₅ H ₁₁ - CF ₂ O-	-	F F	FFOC ₂ H ₅

No.	$^{1}R-\overline{\langle A^{1}\rangle}-X^{1}-(\overline{\langle A^{2}\rangle}-X^{2}-)_{m}(\overline{\langle A^{3}\rangle}-X^{3}-)_{n}-\overline{\langle A^{4}\rangle}-Y^{1}$
541	C_3H_7 — — — — — — — — — — — — — — — — — — —
542	C_5H_{11} — — — — — — — — — — — — — — — — — — —
543	\sim
544	CF_2O $-C_2H_5$
545	C_3H_7 — C_5H_{11}
546	C_5H_{11} \longrightarrow CF_2O \longrightarrow CF_2O \longrightarrow C_3H_7
547	$/\!$
548	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
549	C_3H_7 —CF ₂ O— ———————————————————————————————————
550	C_5H_{11} \longrightarrow CF_2O \longrightarrow CF_2O \longrightarrow OC_2H_5

No.	$^{1}R-\overline{A^{1}}-X^{1}-\overline{A^{2}}-X^{2}-\underline{M}-\overline{A^{3}}-X^{3}-\underline{M}-\overline{A^{4}}-Y^{1}$
551	C_3H_7 ————————————————————————————————————
552	C_5H_{11} — CF_2O — C_3H_7
553	- $ -$
554	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
555	C_3H_7 \longrightarrow CF_2O \longrightarrow C_5H_{11}
556	C_5H_{11} \longrightarrow CF_2O \longrightarrow CF_2O \longrightarrow CF_3H_7
557	$-CF_2O$ $-CF_2O$ $-CF_2O$
558	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
559	C_3H_7 — CF_2O — F OC_2H_5
560	C_5H_{11} \longrightarrow CF_2O \longrightarrow F F OC_2H_5

No.	$^{1}R - (A^{1}) - x^{1} - (-(A^{2}) - x^{2} -)_{m} (-(A^{3}) - x^{3} -)_{n} - (A^{4}) - y^{1}$	
561	C_3H_7 — C_5H_{11}	
562	C_5H_{11} C_5C_2O C_3H_7	
563	$-C_3H_7$	
564	CF ₂ O	
565	C_3H_7 \longrightarrow CF_2O \longrightarrow CF_2O	
566	C_5H_{11} \longrightarrow CF_2O \longrightarrow F C_3H_7	
567	CF_2O CF_2O CF_3H_7	
568	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
569	C_3H_7 —CF ₂ O— F OC ₂ H ₅	
570	C_5H_{11} CF_2O F F F OC_2H_5	

No.
$${}^{1}R - \overline{A^{1}} - X^{1} - \left(-\overline{A^{2}} - X^{2} - \right)_{m} \left(-\overline{A^{3}} - X^{3} - \right)_{n} - \overline{A^{4}} - Y^{1}$$

571
$$C_3H_7$$
 C_5H_{11}

575
$$C_5H_{11}$$
 C_7 C_2H_5 C_7 57.9-58.4 N 198.9-199.4 Iso

576
$$C_5H_{11}$$
 CF_2O C_3H_7 C_3H

No.	$^{1}R-\overline{A^{1}}-X^{1}-\left(-\overline{A^{2}}-X^{2}-\right)_{m}\left(-\overline{A^{3}}-X^{3}-\right)_{n}-\overline{A^{4}}-Y^{1}$	
581	C_3H_7 \longrightarrow C_5H_{11}	
582	C_5H_{11} \longrightarrow CF_2O \longrightarrow C_3H_7	
583	C ₃ H ₇	
584	CF_2O $-C_2H_5$	
585	C_5H_{11} \longrightarrow C_2H_5	
586	C_5H_{11} \longrightarrow C_3H_7	
587	\sim	
588		
589	C_5H_{11} \longrightarrow CF_2O \longrightarrow C_2H_5	
590	C_3H_7 C_2H_5	

No.	¹R-\(\begin{array}{c} 1 \\ A^1 \end{array} - X^1	$\left(-\sqrt{A^2}\right)-X^2-\int_{m}\left(-\sqrt{A^3}\right)-X^3-\int_{n}-\sqrt{A^4}-Y^1$
591	C ₃ H ₇ —	-CF ₂ O $-$ CF ₂ O $-$ CG ₃ H ₇ S _B 120.8 N 198.6 Iso
592	C ₃ H ₇ —	$-CF_2O$ $-C_5H_{11}$ Cr 117.7 S _B 120.5 N 193.9 Iso
593	C ₃ H ₇ —	-CF20
594	~~~	$-CF_2O$ $-C_2H_5$
595	C ₅ H ₁₁	$-C_2H_5$
596	C ₅ H ₁₁ —	$- \underbrace{\hspace{-1cm} \begin{array}{c} F \\ CF_2O - \end{array}}_{F} - \underbrace{\hspace{-1cm} \begin{array}{c} C_3H_7 \end{array}}_{C_3H_7}$
597	$\nearrow \bigcirc \searrow$	-CF ₂ O $-$ CF ₃ H ₇
598		-
599	C ₅ H ₁₁ —	-CF ₂ O $-$ CF ₂ O $-$ CC ₂ H ₅
600	C ₃ H ₇ —	-CF ₂ O- $-$ C ₂ H ₅

No.	¹ R-\(\begin{array}{c} A^1 \) - x ¹	$\left(-\sqrt{A^2}-X^2-\right)_{m}\left(-\sqrt{A^3}-X^3-\right)_{n}$
601	C ₃ H ₇ —	-CF ₂ O
602	C ₅ H ₁₁ —	-CF ₂ O $ -$ C ₃ H ₇
603	$ \nearrow \bigcirc \diagdown $	-CF ₂ OC ₃ H ₇
604		$-CF_2OC_2H_5$
605	C ₃ H ₇ -	$-CF_2O$ $-CF_2O$ $-C_5H_{11}$
606	C ₅ H ₁₁	-CF ₂ O CF ₃ H ₇
607	$\nearrow \bigcirc \searrow$	-CF ₂ O
608		$- \bigcirc CF_2O \bigcirc F \\ F - \bigcirc F \\ C_2H_5$
609	С ₃ н ₇ —	$-CF_2O -F$ $-CC_2H_5$
610	C ₅ H ₁₁ -	$-CF_2O -F$ $-F$ $-F$ $-F$ $-F$ $-F$ $-F$ $-$

WO 97/36847

No.	¹ R-(A ¹)-x ¹	$\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^3}-X^3-\right)_n$	
611	C ₃ H ₇ —	-CF ₂ O	
612	C ₅ H ₁₁ -	-CF ₂ O	
613		-CF ₂ O $-$ C ₃ H ₇	
614		-CF ₂ O	
615	C ₃ H ₇	$- \bigcirc CF_2 O \bigcirc - \bigcirc F C_5 H_{11}$	
616	C ₅ H ₁₁ —	-CF ₂ OC ₃ H ₇	
617	$\nearrow \bigcirc \frown$	-CF ₂ O	
618		$- \underbrace{\bigcirc}_{CF_2O} - \underbrace{\bigcirc}_{F} \underbrace{-}_{C_2H_5}$	
619	C ₃ H ₇ —	$-CF_2O$ $-CF_2O$ $-CF_2O$ $-CF_2O$	
620	C ₅ H ₁₁ —	$-CF_2O$ $-CF_2O$ $-CF_2O$ $-CF_2O$ $-CF_2O$ $-CF_2O$ $-CF_2O$	

	~ ~~~	
No.	¹ R-\(\begin{align*} A^1\) - X ¹	$\left(-\sqrt{A^2}-X^2-\right)_m\left(-\sqrt{A^3}-X^3-\right)_n$
621	C ₃ H ₇ —	-CF ₂ O $ -$ C ₅ H ₁₁
622	C ₅ H ₁₁ -	
623		-CF₂OC₃H ₇
624		$-CF_2OC_2H_5$
625	C ₃ H ₇ -	-CF ₂ O
626	C ₅ H ₁₁ —	-CF ₂ O $ -$ CF ₂ O $ -$ CF ₂ O $ -$ CF ₂ O $-$ C ₃ H ₇
627		-CF ₂ O $ -$ F $-$ C ₃ H ₇
628		$- \bigcirc - CF_2O \bigcirc F $
629	C ₃ H ₇ -	-CF ₂ O $ -$ F $-$ OC ₂ H ₅
630	C ₅ H ₁₁ —	$-CF_2O F$ F F F OC_2H_5

No.	¹ R-\(\begin{align*} A^1\)-\(\chi^1 - \)	(-\(\bar{A}^2\)- \(\bar{X}^2\)-	$- \Big)_{m} \left(- \left\langle A^{3} \right\rangle - X^{3} - \right)_{n}$	—(A ⁴)—Y ¹
631	C ₃ H ₇	-	-CF ₂ O-	(¯)-C₅H₁₁
632	C ₅ H ₁₁ -		-CF ₂ O-	- (_)-C₃H ₇
633	/-		CF ₂ O	()-C₃H ₇
634			-CF ₂ O-	()-C ₂ H ₅
635	C ₃ H ₇ -	─	-CF ₂ O	- C₅H ₁₁
6 36	C ₅ H ₁₁ -		-CF ₂ O-	-C ₃ H ₇
637	<i>_</i>	-	-CF ₂ O	$-C_3H_7$
638	~~~	-	-CF ₂ O	$ C_2H_5$
639	C ₃ H ₇ —	-{°}-	CF ₂ O	F F OC ₂ H ₅
640	C ₅ H ₁₁ ⟨O⟩		CF20-	F F OC ₂ H ₅

No.	¹R-\(\begin{array}{c} A^1 \rightarrow X^1	$\left(-\sqrt{A^2}-x^2-\right)_{m}\left(-\sqrt{A^3}-x^3-\right)_{n}$	-\(\begin{align*} -\A^4 \- \text{Y}^1 \end{align*}
641	C ₃ H ₇ -	-CF ₂ O-	-{C₅H₁₁
642	C ₅ H ₁₁ -		—⟨¯
643		-CF ₂ O-	—(¯)~C₃H ₇
644			—(C ₂ H ₅
645	C ₃ H ₇ —		-C ₅ H ₁₁
646	C ₅ H ₁₁ —	-CF ₂ O-	-{
647	/ ←	-CF ₂ O-	-C ₃ H ₇
648			$- \stackrel{F}{\underset{F}{\swarrow}} C_2 H_5$
649	C ₃ H ₇	-CF ₂ O-	F F OC ₂ H ₅
650	C ₅ H ₁₁ —	-CF ₂ O	F F OC ₂ H ₅

WO 97/36847

No.	¹R{A¹}X¹	$\left(-\sqrt{A^2}\right)-X^2-$	$- \Big)_{m} \left(- \left(A^{3} \right) - X^{3} - \right)_{n}$	{A ⁴ }-Y ¹
651	C ₃ H ₇	-(-)-	-CF ₂ O-	-{
652	C ₅ H ₁₁ —	-(_)-	-{F -CF ₂ O	(¯)-C₃H ₇
653		- (_)-	-CF ₂ O-	—(¯)-C₃H ₇
654		-(_)-	-CF ₂ O-	$ C_2H_5$
655	C ₃ H ₇ -		-CF ₂ O-	-C₅H ₁₁
656	C ₅ H ₁₁ -	-	-CF ₂ O	-√
657	<i>_</i>	-	-CF ₂ O	-C ₃ H ₇
658		→ □	-{	$ C_2H_5$
659	C ₃ H ₇ —	-(_)-	-CF ₂ O	F F OC ₂ H ₅
660	C ₅ H ₁₁ -	− (□)−	F F CF ₂ O—	FFOC ₂ H ₅

No.	$^{1}R-{A^{1}}-x^{1}-{(-A^{2})}-x^{2}-{)_{m}}{(-A^{3})}-x^{3}-{)_{n}}$	—(A ⁴)—Y ¹
661	C ₃ H ₇	-C ₅ H ₁₁
662	C ₅ H ₁₁ - CF ₂ O-	—————————————————————————————————————
663		-C ₃ H ₇
664		—————————————————————————————————————
665	C ₃ H ₇	-√_F c ₅ H ₁₁
667	C_5H_{11} \longrightarrow CF_2O	-{C₃H ₇
668	/	-C ₃ H ₇
669		$ C_2H_5$
670	C_3H_7 \longrightarrow CF_2O	OC ₂ H ₅
671	C_5H_{11} \longrightarrow C_7CF_2O	F F OC ₂ H ₅

WO 97/36847

PCT/JP97/01048

No.	$^{1}R - (A^{1}) - X^{1} - (-(A^{2}) - X^{2} -)_{m} (-(A^{3}) - X^{3} -)_{n}$	——————————————————————————————————————
672	C ₃ H ₇	-C₅H ₁₁
673	C ₅ H ₁₁ — — — — — — — — — — — — — — — — — —	—————————————————————————————————————
674		-√C ₃ H ₇
675		—(¯)—C₂H₅
676	C ₃ H ₇	F C₅H₁₁
677	C_5H_{11} CF_2O	$ C_3H_7$
678		F C₃H ₇
679		$- _{F}^{F} C_{2}H_{5}$
680	C_3H_7 \longrightarrow CF_2O	OC ₂ H ₅
681	C_5H_{11} — CF_2O —	F F OC ₂ H ₅

No.	$^{1}R - (A^{1}) - X^{1} - (-(A^{2}) - X^{2} -)_{m} (-(A^{3}) - X^{3} -)_{n}$	—(A ⁴)—Y ¹
682	C ₃ H ₇	-{
683	C ₅ H ₁₁ - CF ₂ O-	-{¯}-C₃H ₇
684		-{
685		$ C_2H_5$
686	C_3H_7 — CF_2O —	-C ₅ H ₁₁
687	C ₅ H ₁₁ - CF ₂ O-	$ C_3H_7$
688		-C ₃ H ₇
689		$- C_2H_5$
690	C_3H_7 C_5 CF_2O	F F OC ₂ H ₅

691 C_5H_{11} \longrightarrow C_5H_{20} \longrightarrow CF_2O \longrightarrow CF_2O

(使用例)

以下に示す使用例において、誘電率異方性値 $\triangle \varepsilon$ はセル厚 9 μ mのTNセル (ねじれネマチックセル) を用い、25 $\mathbb C$ で測定した。

実施例9(使用例1)

- 5 4-ブトキシフェニル=4-(トランス-4-プロピルシクロヘキシル)カルボキシベンゾアート27.6%(重量、以下同じ)
 - 4-x++>7x-2-4-(+>7x-4-7+2) 20.7%

4-メトキシフェニル=4-(トランス-4-ペンチルシクロヘキシル)カルボ

10 キシベンゾアート

- 20.7%

4-エトキシフェニル=4-(トランス-4-ペンチルシクロヘキシル) カルボ キシベンプアート 13.8%

15 からなる組成の液晶組成物(以下母液晶Aと称す)のネマチック液晶の透明点(Cp)は74.6℃であり、△εは0.0であった。

この母液晶A 8 5 重量部と、実施例1 で得られた 2, 3 - ジフルオロ- 4 - エトキシフェニル= 2 - フルオロ- 4 - (2 - (トランス- 4 - プロピルシクロヘキシル) エチル) ベンゾアート (化合物No. 15) 15 重量部とを混合し、その物性値を測定した。その結果から外挿して求めた該化合物の物性値は、Cp が 129.4 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 4 $^{\circ}$ $^{\circ}$

実施例10(使用例2)

20

25

母液晶A 9 0 重量部と、2、3 - ジフルオロー4 - エトキシフェニル=4 - (2 - (トランス-4 - ペンチルシクロヘキシル) ビニル) シクロヘキシルカル ボキシラート (化合物No.7) 1 0 重量部とを混合し、その物性値を測定した。 その結果から外挿して求められた該化合物の物性値は、

Cp:187.1°C、 $\Delta \varepsilon:-5.67$ °C so to a

実施例11(使用例3)

母液晶A85重量部と、実施例2で得られた(2、3-ジフルオロー4-エト

キシフェニル)オキシ(4-(トランス-4-n-ペンチルシクロヘキシル)フェニル)ジフルオロメタン(化合物No.152)15重量部とを混合し、その物性値を測定した。その結果から外挿して求められた該化合物の物性値は、

Cp:114.1、 $\Delta \varepsilon$: -4.20 σ

5 実施例12(使用例4)

4-(トランス-4-プロピルシクロヘキシル) ベンゾニトリル 24% (重量、以下同じ)

4-(トランス-4-ペンチルシクロヘキシル) ベンゾニトリル 36%

4-(トランス-4-ヘプチルシクロヘキシル) ベンゾニトリル 25%

10 4-(4-プロピルフェニル) ベンゾニトリル 15%

なる組成の液晶組成物(以下母液晶Bと称す)のネマチック液晶の透明点(C p)は72.4 Cである。この液晶組成物をセル厚 9μ mのTNセル(ねじれネマチックセル)に封入したものの動作しきい値電圧(V t h)は1.78 V、誘電率異方性値($\Delta\epsilon$)は+11.0、屈折率異方性値(Δn)は0.137、また20 Cにおける粘度($\pi 20$)は27.0 m Pa・s であった。

この母液晶 B 8 5 重量部と、実施例 6 で得られたジフルオロー(4-(h)) スー4-(h) フェニルオキシ)(4-(h) フェニ 4-(h) ンチルシクロヘキシル)フェニル)メタン(化合物 N o . 5 7 2) 1 5 重量部とを混合し、その物性値を測定した。その結果 C p : 9 0 . 3 $\mathbb C$ 、V t h : 1 . 8 1 V、 $\Delta \varepsilon$: 9 . 9、 Δn : 0 . 1 3 6、 π 20 : 2 8 . 4 m P a · s であった。また、この組成物を $-20\mathbb C$ のフリーザー中に 2 5 日間放置したが結晶析出およびスメクチック相の発現はともに認められなかった。

実施例13(使用例5)

15

20

25

母液晶B 8 5 重量部とジフルオロー(4-(1) (トランスー4-7ロピルシクロヘキシル)フェニルオキシ)(4-(2-(1) (トランスー4-7ロピルシクロヘキシル)エチル)フェニル)メタン(化合物No.5 9 1) 1 5 重量部とを混合し、その物性値を測定した。その結果Cp:87.2 \mathbb{C} 、Vth:1.85 V、 Δ $\varepsilon:9.9$ 、 $\Delta n:0.137、<math>\pi 20:28.2$ mPa · s であった。また、この組成物を-20 \mathbb{C} のフリーザー中に 25 日間放置したが結晶折出およびスメク

5

チック相の発現はともに認められなかった。

実施例14(使用例6)

母液晶 B 8 5 重量部とジフルオロー(4-(1) トランスー4-(1) インチルシクロへキシル)フェニルオキシ)(4-(2-(1) トランスー4-(1) ロピルシクロへキシル)エチル)フェニル)メタン(化合物 N o. 5 9 2) 1 5 重量部とを混合し、その物性値を測定した。その結果 C p: 8 9. 8 $^{\circ}$ 、 V t h: 1. 8 7 V、 \triangle ε : 9. 7、 \triangle n: 0. 1 3 6、 π 20: 2 9. 0 m P a・s であった。また、この組成物を π 20 π 20 π 20 π 3 日間放置したが結晶析出およびスメクチック相の発現はともに認められなかった。

10 実施例15(使用例7)

組成例 1 に示した液晶組成物の物性値を測定した。その結果、Cp:90.2、 $\Delta \varepsilon:6.8$ であった。

実施例16(使用例8)

組成例2に示した液晶組成物の物性値を測定した。その結果、Cp:87.1、

15 $\Delta \varepsilon$: 8. 5 σ δ δ δ δ

実施例17(使用例9)

組成例 3 に示した液晶組成物の物性値を測定した。その結果、Cp:94.0、 $\Delta \epsilon:29.8$ であった。

実施例18(使用例10)

20 組成例4に示した液晶組成物の物性値を測定した。その結果、Cp:91.7、
Δε:6.1であった。

組成例 5 に示した液晶組成物の物性値を測定した。その結果、Cp:79.4、 $\Delta \epsilon:7.2$ であった。

実施例20 (使用例12)

25 組成例 6 に示した液晶組成物の物性値を測定した。その結果、Cp:91.4、 Δε:4.5であった。

*実施例21(使用例13)

組成例 7 に示した液晶組成物の物性値を測定した。その結果、Cp:87.1、 $\Delta \epsilon:27.9$ であった。

実施例22(使用例14)

組成例8に示した液晶組成物の物性値を測定した。その結果、Cp:62.1、

 $\Delta \varepsilon$: 9. 6 σ δ δ δ δ

実施例23 (使用例15)

5 組成例 9 に示した液晶組成物の物性値を測定した。その結果、Cp:64.1、

 $\Delta \varepsilon$: 6. 0 σ δ δ δ

実施例24(使用例16)

組成例10に示した液晶組成物の物性値を測定した。その結果、Cp:100.

 $7, \Delta \varepsilon: 7.5$ cb.

10 実施例25 (使用例17)

組成例11に示した液晶組成物の物性値を測定した。その結果、Cp:96.

 $6 \times \Delta \varepsilon : 6$. 4 σ

実施例26 (使用例18)

組成例12に示した液晶組成物の物性値を測定した。その結果、Cp:79.

15 $8 \cdot \Delta \varepsilon : 6$. 2 ε

実施例27(使用例19)

組成例13に示した液晶組成物の物性値を測定した。その結果、Cp:94.

実施例28 (使用例20)

20 組成例 1.4 に示した液晶組成物の物性値を測定した。その結果、Cp:99.

8, $\Delta \varepsilon$: 4. 6 σ δ δ δ δ

実施例29(使用例21)

租成例15に示した液晶組成物の物性値を測定した。その結果、Cp:88.

25 実施例30(使用例22)

組成例16に示した液晶組成物の物性値を測定した。その結果、Cp:86.

 $\stackrel{\cdot}{5}$ 、 $\Delta \varepsilon$: $\stackrel{\cdot}{5}$. $\stackrel{\cdot}{4}$ $\stackrel{\cdot}{v}$ $\stackrel{\cdot}{b}$ $\stackrel{\cdot}{o}$ $\stackrel{\cdot}{c}$.

実施例31(使用例23)

組成例17に示した液晶組成物の物性値を測定した。その結果、Cp:73.

実施例32(使用例24)

組成例18に示した液晶組成物の物性値を測定した。その結果、Cp:76.

 $8 \times \Delta \varepsilon : 12$. 6 σ

5 実施例33(使用例25)

組成例19に示した液晶組成物の物性値を測定した。その結果、Cp:97.

 $0, \Delta \varepsilon: 8.$ 1 σ

実施例34(使用例26)

組成例20に示した液晶組成物の物性値を測定した。その結果、Cp:83.

10 $1, \Delta \varepsilon : 4$. 1 $\delta \varepsilon : 4$. 1 $\delta \varepsilon : 4$.

実施例35(使用例27)

組成例21に示した液晶組成物の物性値を測定した。その結果、Cp:82.

 $4 \times \Delta \varepsilon : -1$. 8 σ δ δ δ δ δ δ

実施例36(使用例28)

15 組成例22に示した液晶組成物の物性値を測定した。その結果、Cp:77.

 $3 \setminus \Delta \varepsilon : -2$. 1 σ

実施例37(使用例29)

組成例23に示した液晶組成物の物性値を測定した。その結果、Cp:78.

20 上に示した実施例の他に、以下に示す実施例(使用例)を示すことができる。 尚、実施例中の化合物は前記表 1 の取り決めに従い略号で示し、T n 1 は透明点、 ηは粘度、Δ n は屈折率異方性値、Δ ε は誘電率異方性値、V n はしきい値電圧、 Pはピッチを示す。

実施例38(使用例30)

25 5-HBCF2OBH-3 3.0% 2-HB(F)OCF2BH-5 3.0% 1V2-BEB(F, F)-C 5.0% 3-HB-C 25.0% 1-BTB-3 5.0%

	2 - B T B - 1	10.0%
	3 - HH - 4	11.0%
	3 - H H B - 1	5.0%
	3 - H H B - 3	9.0%
5	3 - H 2 B T B - 2	4.0%
	3 - H 2 B T B - 3	4.0%
	3 - H 2 B T B - 4	4.0%
	3 - HB (F) TB - 2	6.0%
	3 - HB (F) TB - 3	6.0%
10	$T_{N1} = 92.4$ (°C)	
	$\eta = 1.6$. 0 (m P a · s)	
	$\Delta n = 0. 162$	
	$\Delta \varepsilon = 7.0$	
	$V_{1h} = 2.12 (V)$	

15 上記組成物 1 0 0 重量部に対し光学活性化合物 C M 3 3 を 0. 8 重量部添加した組成物のピッチを以下に示す。

 $P = 1 1 \mu m$

実施例39 (使用例31)

		3 - H 2 B C F 2 O B H - 5		5 .	0 %
2	20	3-HB (F, F) OCF2BH-5		5.	0 %
		2 O'1 - B E B (F) - C		5.	0 %
		3 O 1 - B E B (F) - C	1	5.	0 %
		401-BEB (F) -C	1	3.	0 %
		501-BEB (F) -C	1	3.	0 %
2	5	2-HHB(F)-C	1	5.	0 %
		3 - HHB (F) - C		5.	0 %
	- .	3 - HB (F) TB - 2		4.	0 %
		3 - HB (F) TB - 3		4.	0 %
		3 - HB (F) TB - 4		4.	0 %

	3 - H H B - 1	8.0%
	3 - H H B - O 1	4.0%
	$T_{N1} = 92.9 (^{\circ}C)$	
	$\eta = 8 \text{ G. } 0 \text{ (mPa·s)}$	
5	$\Delta n = 0. 146$	
	$\Delta \varepsilon = 29.7$	
	$V_{1b} = 0.90 (V)$	
	実施例40(使用例32)	
	3 - H 2 B C F 2 O B H - 5	4.0%
10	3-HB (F, F) OCF2BH-5	4.0%
	2 - B E B - C	12.0%
	3 - B E B - C	4.0%
	4 - B E B - C	6.0%
	3 - H B - C	28.0%
15	3 - H E B - O 4	12.0%
	4 - H E B - O 2	8.0%
	5 - H E B - O 1	4.0%
	3 - H E B - O 2	6.0%
	5 - H E B - O 2	5.0%
20	3 - H H B - 1	3.0%
	3 - H H B - O 1	4.0%
	$T_{N1} = 6.7.8 (^{\circ}C)$	
	$\eta = 2 8. 2 (m P a \cdot s)$	
	$\Delta n = 0. 115$	
25 .	$\Delta \varepsilon = 1 0. 0$	
	$V_{ih} = 1.35 (V)$	
	実施例41(使用例33)	
	5 - H B C F 2 O B H - 3	3.0%

3. 0%

3 - H 2 B C F 2 O B H - 3

	7-HB (F) -F	5.0%
	5 - H 2 B (F) - F	5.0%
	3 - H B - O 2	10.0%
	3 - HH - 4	5.0%
5	2-HHB (F) -F	1 0 . 0 %
	3-HHB(F)-F	10.0%
	5-HHB (F) -F	10.0%
	3 - H 2 H B (F) - F	5.0%
	2-HBB(F)-F	3.0%
10	3-HBB(F)-F	3.0%
	5-HBB (F) -F	6.0%
	2-H2BB (F)-F	5.0%
	3 - H 2 B B (F) - F	6.0%
	3 - H H B - 1	2.0%
15	3 - H H B - O 1	5.0%
	3 - H H B - 3	4.0%
	$T_{NI} = 90.6$ (°C)	
	$\eta = 1 \ 9$. 4 (m P a · s)	
	$\Delta n = 0. 0 9 3$	
20	$\Delta \varepsilon = 3$. 2	
	$V_{1h} = 2.67(V)$	
	実施例42(使用例34)	
	3-H2BCF2OBH-3	4.0%
	2-HB (F) OCF $2BH-5$	3.0%
25	5 - HVHEB (2F, 3F) - O2	3.0%
	7-HB (F, F) $-F$	3.0%
	3 - H B - O 2	7.0%
	2-HHB (F) -F	10.0%
	3 - HHB (F) - F	10.0%

	5-HHB (F) -F	10.	0 %
	2-HBB (F) -F	9.	0 %
	3-HBB (F) -F	9.	0 %
	5-HBB (F) -F	6.	0 %
5	2 - H B B - F	4.	0 %
	3 - H B B - F	4.	0 %
	5 - H B B - F	3.	0 %
	3-HBB (F, F)-F	5.	0 %
	5-HBB (F, F) - F	10.	0 %
10	$T_{N1} = 9 \ 3. \ 0 \ (^{\circ}C)$		
	$\eta = 24.1 \text{ (m P a \cdot s)}$		
	$\Delta n = 0. 113$		
	$\Delta \varepsilon = 5$. 8		
	$V_{1b} = 1.99(V)$		
15	実施例43(使用例35)		
	5 - H B C F 2 O B H - 3	3.	0 %
	3 - H 2 B C F 2 O B H - 5		0 %
	3-HB (F, F) OCF 2BH-5		0 %
	7-HB (F, F) -F		0 %
20	3-H2HB (F, F)-F	12.	
	4-H2HB (F, F)-F		0 %
	5-H2HB (F, F)-F		0 %
	3-HHB (F, F) -F	10.	
	4-HHB (F, F)-F	5.	
25	3-HH2B(F, F)-F	10.	
	5-HH2B(F, F)-F	6.	
	3-HBB (F, F)-F	12.	
	5-HBB (F, F)-F	12.	0 %
	$T_{NI} = 81.4$ (°C)		

```
5 - HEB - O1
                                            17.0%
           3 - H E B - O 2
                                            15.0%
           5 - HEB - 02
                                            12.0%
          T_{N1} = 80.1 (°C)
            \eta = 23. 2 (m P a · s)
5
          \Delta n = 0. 092
          \Delta \varepsilon = -1. 8
    実施例46(使用例38)
           3-H2B(F) EB(2F, 3F)-O2 15.0%
           3 - HEB - O4
                                            24.0%
10
           4 - HEB - O2
                                            17.0%
           5 - HEB - O1
                                            17.0%
           3 - HEB - O2
                                            15.0%
           5 - HEB - 02
                                            12.0%
          T_{N1} = 82.4 (°C)
15
            \eta = 29.1 \text{ (m P a \cdot s)}
          \Delta n = 0.093
    実施例47(使用例39)
           3-H2B(F)EB(2F, 3F)-O2
                                            5.0%
                                             5.0%
           5 - HVHEB (2F, 3F) - O2
20
           3 - HH - 2
                                             5.0%
           3 - HH - 4
                                             6.0%
           3 - HH - O1
                                             4.0%
                                             5.0%
           3 - HH - O3
           5 - HH - O1
                                             4.0%
25
           3 - HB (2F, 3F) - O2
                                            12.0%
           5 - HB (2F, 3F) - O2
                                            11.0%
           3 - HHB (2F, 3F) - O2
                                             4.0%
           5 - HHB (2F, 3F) - O2
                                            15.0%
```

$$3 - HHB (2F, 3F) - 2$$

24.0%

 $T_{N1} = 84.6 (^{\circ}C)$

 $\Delta n = 0.083$

 $\Delta \varepsilon = -3$. 9

実施例48(使用例40) 5

10

15

20

$$5 - HVHEB (2F, 3F) - O2$$

5.0%

3 - HH - 5

5.0%

3 - HH - 4

5.0%

3 - HH - OI

6.0%

3 - HH - O3

6.0%

3 - HB - O1

5.0%

3 - HB - O2

5.0%

3 - HB (2F, 3F) - O2

10.0%

5 - HB (2F, 3F) - O2

10.0%

3 - HHB (2F, 3F) - O2

12.0%

8.0%

5 - HHB (2F, 3F) - O2

3 - HHB (2F, 3F) - 2

4.0%

2 - HHB (2F, 3F) - 1

4.0%

3 - HHEH - 3

5.0%

3-HHEH-5

5.0%

4 - HHEH - 3

5.0%

 $T_{NI} = 85.5$ (°C)

 $\Delta n = 0. \quad 0.79$

 $\Delta \varepsilon = -3$. 4

実施例49(使用例41) 25

$$(\sqrt{3-H2B} (F) EB (2F, 3F) - O2 5.0\%$$

 $^{\prime}_{1}$ 5-HBCF2OB (2F, 3F) -O2

5.0%

$$3 - BB (2F, 3F) - O2$$

12.0%

3 - BB (2F, 3F) - O4

10.0%

	5-BB(2F, 3F)-O4	10.	0 %
	2 - B B (2 F. 3 F) B - 3	25.	0 %
	3 - BB (2F, 3F) B - 5	13.	0 %
	5-BB (2F, 3F) B-5	14.	0 %
5	5-BB (2F, 3F) B-7	6.	0 %
	$T_{N1} = 72.5$ (°C)		
	$\Delta n = 0. 188$		
	$\Delta \varepsilon = -3$. 6		
	実施例50(使用例42)		
10	5 - H B C F 2 O B H - 3	3.	0 %
	3-H2B(F) EB(2F, 3F)-O2	4.	0 %
	5-HVHEB (2F, 3F) - O2	4.	0 %
	5 - H B C F 2 O B (2 F, 3 F) - O 2	4.	0 %
	3-BB(2F, 3F)-O2	10.	0 %
15	5 - B B - 5	9.	0 %
	5 - B B - O 6	9.	0 %
	5 - B B - O 8	8.	0 %
	1-B E B-5	6.	0 %
	3 - B E B - 5	6.	0 %
20	5 - B E B - 5	3.	0 %
	3 - H E B - O 2	20.	0 %
	5 - BBB (2F, 3F) - 7	9.	0 %
	3 - H 2 B B (2 F) - 5	5.	0 %
	$T_{NI} = 7.9.1 (^{\circ}C)$		
25	$\Delta n = 0. 1 4 5$		
	$\Delta \varepsilon = -3.$ 1		
	´実施例51(使用例43)		
	3 - H 2 B C F 2 O B H - 5	3.	0 %
	3-H2B(F) EB(2F, 3F)-O2	9.	0 %

```
5 - HVHEB (2F, 3F) - O2
                                            9.0%
           5 - HBCF2OB(2F, 3F) - O2
                                          9.0%
           3 - HB - O1
                                          15.0%
           3 - HB - O2
                                            6.0%
           3 - HEB (2F, 3F) - O2
                                            9.0%
 5
           4 - HEB (2F, 3F) - 02
                                            9.0%
           5 - HEB (2F, 3F) - O2
                                           4. 0%
           2 - B B 2 B - O 2
                                            6.0%
           1 - B 2 B B (2 F) - 5
                                           7.0%
           5 - B (3F) BB - O2
10
                                           7. 0%
           3 - BB (2F, 3F) B - 3
                                          7.0%
          T_{Ni} = 8.4.5 (°C)
          \Delta n = 0. 145
            \eta = 3 2. 0 (m P a · s)
    実施例52(使用例44)
15
          5 - HVHEB (2F, 3F) - O2
                                           3. 0%
          5 - HBCF2OB(2F, 3F) - O2
                                           3. 0%
          3 - HB - O1
                                           9.0%
          3 - HB - O2
                                           9.0%
          3 - HB - O4
20
                                           9.0%
          2 - B T B - O 1
                                           5. 0%
          1 - BTB - 02
                                           5.0%
          3 - BTB (2F, 3F) - O2
                                         13.0%
          5 - BTB (2F, 3F) - O2
                                         13.0%
          3-B (2F, 3F) TB (2F, 3F) -O4 4, 0%
25
          5-B (2F, 3F) TB (2F, 3F) -O4
                                             4.0%
          3 - HBTB - O1
                                           5.0%
          3 - HBTB - O3
                                           5.0%
          3 - HHB (2F, 3F) - 02
                                           6.0%
```

101 - HH - 5

5.0%

	3 - HH - EMe	12.0%
	4 - H E B - O 1	9.0%
	4 - H E B - O 2	7.0%
	5 - H E B - O 1	8.0%
5	3 - H H B - 1	3.0%
	4 - HEB (2CN, 3CN) - O4	3.0%
	6 - HEB (2CN, 3CN) - O4	3.0%
	3-HEB (2CN, 3CN) -05	4.0%
	4-HEB (2CN, 3CN) -05	3.0%
10	5-HEB (2CN, 3CN) - 05	2.0%
	2-HBEB (2CN, 3CN) -O2	2.0%
	4-HBEB (2CN, 3CN) -O4	4.0%
	$T_{N1} = 6.3.9$ (°C)	
	$\Delta n = 0. 0 7 3$	
15	$\eta = 4 3$. 3 (m P a · s)	
	$\Delta \varepsilon = -5$. 7	
	実施例55(使用例47)	
	3-H2B (F) EB (2F, 3F) $-O2$	5.0%
	1 V 2 - B E B (F, F) - C	5.0%
20	3 - H B - C	20.0%
	V 2 - H B - C	6.0%
	1 - B T B - 3	5.0%
	2 - B T B - 1	10.0%
	1 O 1 - HH - 3	3.0%
25	3 - HH - 4	11.0%
	3 - H H B - 1	11.0%
	3 - H H B - 3	3.0%
	3 - H 2 B T B - 2	4.0%
	3 - H 2 B T B - 3	4.0%

4.0%

6.0%

3. 0%

6.0%

$$3 - H 2 B T B - 4$$
 $3 - H B (F) T B - 2$
 $3 - H H B - C$
 $T_{N1} = 8 8 . 1 (^{\circ}C)$
 $\eta = 1 7 . 9 (m P a \cdot s)$
 $\Delta n = 0 . 1 5 6$
 $\Delta \varepsilon = 7 . 1$
 $V_{1b} = 2 . 0 9 (V)$

上記組成物 1 0 0 重量部に対し光学活性化合物 CM-3 3 を 0.8 重量部添加 10 した組成物のピッチを以下に示す。

$$P = 1.1.0 \mu m$$

実施例56(使用例48)

5 - P y B B - F

	美施例 5 b (使用例 4 8)	
	3-H2B(F)EB(2F, 3F)-02	5.0%
	5 - HVHEB (2F, 3F) - O2	5.0%
15	5 - P y B - F	4.0%
	3-PyB(F)-F	4.0%
	2 - B B - C	5 0 %
	4 - B B - C	4.0%
	5 - B B - C	5.0%
20	2 - P y B - 2	2.0%
	3 - P y B - 2	2.0%
	4 - P y B - 2	2.0%
	6 - P y B - O 5	3. 0 %
	6 - P y B - O 6	3.0%
25	6 - P y B - O 7	3.0%
	6 - P y B - O 8	3.0%
-	3 - P y B B - F	6.0%
	4 - P y B B - F	6.0%

	3 - H H B - 1	6.0%
	3 - HHB - 3	3.0%
,	2 - H 2 B T B - 2	4.0%
	2 - H 2 B T B - 3	4.0%
5	3 - H 2 B T B - 2	5.0%
	3 - H 2 B T B - 3	5.0%
	3 - H 2 B T B - 4	·5. 0%
	$T_{Ni} = 94.3 (^{\circ}C)$	
	$\eta = 3 \ 9$. 7 (m P a · s)	
	n = 0. 197	
	$\varepsilon = 6$. 6	·
	= 2. 23 (V)	
	(使用例49)	
	H2B (F) EB (2F, 3F) - 02	3.0%
	-HVHEB (2F, 3F) -O2	3.0%
	5-HBCF2OB (2F, 3F) -O2	3.0%
	2 O 1 - B E B (F) - C	5.0%
	3 O 1 - B E B (F) - C	12.0%
	5 O 1 - B E B (F) - C	4.0%
20	1 V 2 - B E B (F, F) - C	10.0%
	3 - H E B - O 4	4.0%
•	3 - H H - E M e	6.0%
	3 - H B - O 2	18.0%
	7 - H E B - F	2.0%
25	3 - H H E B - F	2.0%
•	5-HHEB-F	2.0%
	3 - H B E B - F	4.0%
	201-HBEB (F) -C	2.0%
	3-HB (F) EB (F) -C	2.0%

	3-HBEB(F, F)-C		2.	0 %
	3 - HHB - F		4.	0 %
	3 - HHB - O1		4.	0 %
	3 - HEBEB - F		2.	0 %
5	3 - H E B E B - 1		2.	0 %
	3 - H H B (F) - C		4.	0 %
	$T_{N1} = 7.8.3$ (°C)			
	$\eta = 40.6 \text{ (m P a \cdot s)}$			
	$\Delta n = 0. 116$			
10	$\Delta \varepsilon = 24.3$			
	$V_{th} = 0.95 (V)$			
	実施例 5-8 (使用例 5 0)			
	3-H2B(F)EB(2F, 3F)-O2		3.	0 %
	5 - HBCF2OB(2F, 3F) - O2		3.	0 %
15	7-HB (F) -F		5.	0 %
	5-H2B(F)-F		5.	0 %
	3 - H B - O 2	l	0.	0 %
	3 - HH - 4		5.	0 %
	2-HHB (F) $-F$	1	0.	0 %
20	3-HHB(F)-F	1	0.	0 %
	5-HHB (F) -F	1	0.	0 %
	3 - H 2 H B (F) - F		5.	0 %
	2-HBB (F)-F		3.	0 %
	3-HBB(F)-F		3.	0 %
25	5 - H B B (F) - F		6.	0 %
	2 - H 2 B B (F) - F		5.	0 %
	3 - H 2 B B (F) - F		6.	0 %
	3 - H H B - 1		2.	0 %
	3 - H H B - O 1		5.	0 %

$$3 - H H B - 3$$

4.0%

 $T_{Ni} = 8.5.2$ (°C)

 $\eta = 25$. 9 (m P a · s)

 $\Delta n = 0.093$

 $\Delta \varepsilon = 3.4$

 $V_{th} = 2.62 (V)$

上記組成物100重量部に対し光学活性化合物CNを0.3部添加した組成物のピッチを以下に示す。

 $P = 7.5 \mu m$

10 実施例59(使用例51)

5

15

20

25

$$5 - HVHEB (2F, 3F) - O2$$

5.0%

3 - HB - CL

10.0%

5-HB-CL

4. 0 %

7 - HB - CL

4.0%

1 O 1 - H H - 5

5.0%

2-HBB(F)-F

8.0%

3-HBB(F)-F

8.0%

5-HBB(F)-F

14.0%

8.0%

4 - HHB - CL

5-HHB-CL

3.0%

3-H2HB(F)-CL

4.0%

3-HBB(F, F)-F

10.0%

5-H2BB(F, F)-F

9.0%

3 - HB (F) VB - 2

4.0%

3 - H 2 B T B - 2

4.0%

 $T_{N1} = 91.2$ (°C)

INI = JI, L (C)

 $\eta = 20$. 8 (m P a · s)

 $\Delta n = 0.128$

 $\Delta \varepsilon = 4$. 8

PCT/JP97/01048 WO 97/36847

 $V_{1b} = 2.35 (V)$

実施例60(使用例52)

5

10

15

25

3 - H 2 B C F 2 O B H - 32.0%

3 - H 2 B (F) E B (2 F, 3 F) - O 24.0%

5-HBCF2OB(2F, 3F)-O2 4.0%

12.0% 5 - HB - F

.6 - HB - F9.0%

7. 0 % 7 - HB - F

2.0% 2-HHB-OCF3

3 - HHB - OCF37.0%

4 - HHB - OCF37.0%

3 - HH2B - OCF34.0%

5-HH2B-OCF3 4.0%

3 - HHB (F, F) - OCF 35.0%

10.0% 3-HBB(F)-F

> 5-HBB(F)-F10.0%

3-HH2B(F)-F3.0%

3 - HB (F) BH - 33.0%

5 - HBBH - 33.0%

4.0% 3-HHB (F, F) -OCF2H20

 $T_{NI} = 8.7.2$ (°C)

 $\eta = 1.8.6 \text{ (mPa \cdot s)}$

 $\Delta n = 0$. 0.96

 $\Delta \varepsilon = 4$. 6

 $V_{1b} = 2.37(V)$

実施例61(使用例53)

3-H2B(F)EB(2F, 3F)-O2 5.0%

5.0% 5 - HVHEB (2F, 3F) - O2

5.0%

WO 97/36847

	9 IIIID (D) D		
	2-HHB (F) -F	2.	0 %
	3-HHB (F) -F	2.	0 %
	5-HHB (F) -F	2.	0 %
	2-HBB (F) -F		0 %
5	3-HBB (F) -F		0 %
	5-HBB (F) -F		0 %
	3 - H 2 B B (F) - F		0 %
	3-HBB(F, F)-F		0 %
	5-HBB(F, F)-F		0 %.
10	1 O I - H B B H - 4		0 %
	1 O 1 - H B B H - 5		0 %
	$T_{NI} = 9.4.7$ (°C)		
	$\eta = 31.6 (mPa \cdot s)$		
	$\Delta n = 0. 131$		
15	$\Delta \varepsilon = 7.0$		
	$V_{1h} = 1.95 (V)$		

比較例1、2

本発明の化合物と比する較化合物として、従来の技術の項に示した特公昭 6 2 - 3 9 1 3 6 号記載の化合物 (c-1) (R=C₃H₇、R'=CH₂) および特公昭 6 2 - 4 6 5 2 7 号記載の化合物 (d-1) (R=C₃H₁₁、R'=C₃H₇、X=Y=H) を特許記載の製造方法にて合成した。

- 母液晶 B 8 5 重量部と化合物 (c-1) 1 5 重量部、及び母液晶 B 8 5 重量部と化合物 (d-1) 1 5 重量部とを混合して調製したそれぞれの液晶組成物の物性値を測定した。また、調製した液晶組成物を-20℃のフリーザー中に放置し、

放置開始から液晶組成物中に結晶の析出(またはスメクチック相の出現)するまでの日数を測定して、相溶性を判断した。これらの結果を、実施例12(使用例4)の結果と併せて表2に示した(括弧内の数値は母液晶からの外挿で求めた各化合物の物性値である)。

		Cp(,C)	\rangle \varepsilon \varepsil	η 20(mPa·s)	Vth(V)	相容性 * 1 (日数)
	母液晶 B	72.4	11.0	. > 20	700	0
F-100				?	7:70	
\$ \$	5	85.6	9.6	26.8	1.96	>25
	(c-1)	(159.7)	(2.3)	(28.5)		
比較例2	CsH11 CsH11	100 8	8	21.0	Ç	, ,
-	(d-1)	(261.7)	(1.0)	(59.0)	7.07	15
実施例12	C,H11 (C,H1	-00	, 0			
		C	٧.٧	4.07	1.81	>25
	(1C合物No.572)	(191.7)	(3.7)	(33.5)	,	

*1 -20℃のフリーザー中に放置開始後、結晶(スメクチック相等固体)が折出するまでの日数

表2

5

10

15

20

比較例1では母液晶Bに比べ粘性が低下しているものの、しきい値電圧(Vth)が0.18V上昇している。比較例2においては、比較化合物(d-1)が(c-1)より透明点を上昇させる効果において顕著なことを表しているが、母液晶Bよりも粘性が高く、かつしきい値電圧に至っては0.24Vも上昇している。このように化合物(c-1)及び(d-1)は、それぞれの長所は認められるものの、しきい値電圧が著しく高くなるという欠点によって、低電圧駆動用の液晶組成物に使用できないことが判る。これに対して本発明の化合物(化合物No.572、実施例12)は透明点を上昇させる効果においては化合物(c-1)と(d-1)の中間の能力を有し、4環構造にもかかわらず3環構造の(c-1)並の低い粘性を示し、さらに驚くべきことにしきい値電圧は母液晶Bとほとんど等しい値を示している。すなわち、この化合物は母液晶Bに15重量%添加することにより、しきい値電圧にほとんど影響を与えること無く、透明点を20℃近く上昇させることができるのである。

また、4環構造の化合物(d-1)が非常にスメクチック性が強く、-20℃のフリーザー中で15日でスメクチック相の発現が確認されたのに対し、本発明の化合物は25日以上に渡り結晶等の析出は認められず、非常に優れた低温相溶性を有することが確認された。

比較例3

母液晶A 8 5 重量部と化合物 (c-1) 1 5 重量部とを混合して液晶組成物を 調製し、物性値を測定した。実施例 9 (使用例 1) ~実施例 1 1 (使用例 3) の 結果と併せて表 3 に示す。

		(Cp()dC)	▷ ε
	母液晶A	74.6	0.0
比較例 3	C ₃ H, C+(c-1)	160.7	1. 4.
東施例 9	C ₃ H,	129.4	-4.17
実施例 1 0	CsH11	187.1	-5.67
実施例 1 1	CsH11 ———————————————————————————————————	114.1	-4.20

波3

5

IPS駆動において重要視される特性である負の誘電率異方性値においては、 外挿法で求めた化合物(c-1)の誘電率異方性値が1.4であるのに対し、実施例9、10、及び11の化合物ではそれぞれ-4.17、-5.67、-4. 20と著しく大きな負の値を示した。また、外挿法で求めた化合物(c-1)の 透明点が160.7℃であるのに対し、実施例9、10、及び11の化合物では それぞれ129.4℃、187.1℃、114.4℃と近似した値である。

以上のように本発明の液晶性化合物は、誘電率異方性値を大きく減少させる効果において非常に有効であり、IPS駆動にに十分対応できる特性を有している。 産業上の利用可能性

- 10 以上の実施例および比較例から明らかなように本発明の液晶性化合物は
 - 1)組成物の透明点を向上させる効果
 - 2)組成物の粘度を低減させる効果
- 3)組成物の誘電率異方性を低下(しきい値電圧を上昇)させない効果 の総合的なバランスに優れ、さらにIPS駆動に十分対応できる低粘性で大きな 負の誘電率異方性を持つ液晶性化合物であり、既知の液晶性化合物には見られな い非常に有用な特徴を有する。

請求の範囲

1. 一般式(1)

 $R^{1} - \underbrace{\langle A^{1} \rangle}_{n} - X^{1} + \underbrace{\langle A^{2} \rangle}_{m} - X^{2} + \underbrace{\langle A^{3} \rangle}_{n} - X^{3} + \underbrace{\langle A^{4} \rangle}_{n} - Y^{1}$ (1)

5

15

20

(式中、R¹及びY¹は炭素数1~20のアルキル基を示し、このアルキル基中の相隣接しない1個以上のメチレン基は酸素原子、硫黄原子、またはビニレン基で置換されてもよく、また、このアルキル基中の1個以上の水素原子はフッ素原子または塩素原子で置換されてもよく、

 X^1 、 X^2 、及び X^3 は互いに独立して単結合、1, 2-xチレン基、ビニレン基、-COO-、 $-CF_2O-$ または $-OCF_2-$ を示すが、 X^1 、 X^2 、及び X^3 の内少なくとも 1 個は-COO-、 $-CF_2O-$ または $-OCF_2-$ であり、

環 A^1 、環 A^2 、環 A^3 、及び環 A^4 は互いに独立して、環上の CH_2 基が酸素原子で置換されていてもよいトランス-1, 4-シクロヘキシレン基、または1個以上の水素原子がフッ素原子または塩素原子で置換されてもよい1, $4-フ_{x-1}$ レン基を示し、m及Unは0または1を示す。

ただし、 X^1 、 X^2 あるいは X^3 が-COO-である場合、 $\mathcal{R}A^2$ 、 $\mathcal{R}A^3$ 、及び $\mathcal{R}A^4$ の内少なくとも1個は 2、3-ジフルオロー1、4-フェニレン基を示し、 <math>m=n=0 で、 X^4 が-COO-の場合は、 $\mathcal{R}A^4$ は基中の1個以上の水素原子がフッ素原子で置換された 1、4-フェニレン基を示し、

m=1、n=0で、X¹が単結合または 1, 2-x チレン基であり、かつ X²が -COO- の場合は、 π A²は基中の 1 個以上の水素原子がフッ素原子で置換された 1, 4- フェニレン基を示し、

m=n=1で、 X^2 が-COO-であり、かつ X^1 が単結合または 1 , 2-ェチ レン基の場合は、環 A^2 は基中の 1 個以上の水素原子がフッ素原子で置換された 1 , 4-フェニレン基を示し、

m=n=1、 X^3 が-COO-であり、かつ X^1 及び X^2 が互いに独立して単結合または1, 2-エチレン基の場合、環 A^3 は基中の1個以上の水素原子がフッ素原子で置換された1, 4-フェニレン基を示し、

PCT/JP97/01048

5

10

m=n=0で、X'が- CF_2O -あるいは- OCF_2 -である場合、環A'あるいは環A'は基中の1個以上の水素原子が塩素原子またはフッ素原子で置換された1、4-フェニレン基を示す。

また、この化合物を構成する各元素はその同位体で置換されていてもよい。) で示される液晶性化合物。

- 2. 一般式(1)において、m=n=0であり、 X^1 が $-CF_2O-$ であり、かつ 環 A^1 あるいは環 A^4 が 1 個以上の水素原子がフッ素原子または塩素原子で置換されている 1, 4-フェニレン基である請求の範囲第 1 項に記載の液晶性化合物。
- 3. 一般式(1)において、m=1、n=0であり、X²が-COO-である請求の範囲第1項に記載の液晶性化合物。
- 4. 一般式(1) において、m=n=1であり、X²が-COO-である請求の 範囲第1項に記載の液晶性化合物。
- 一般式(1)において、m=n=1であり、X³が-COO-である請求の 範囲第1項に記載の液晶性化合物。
- 6. 一般式(1)において、環A'がトランス-1, 4-シクロヘキシレンであり、環A'が1, 4-フェニレン基である請求の範囲第3項に記載の液晶性化合物。
 - 7. 一般式(1)において、環A¹及び環A²が共にトランス-1, 4-シクロへ キシレン基である請求の範囲第3項に記載の液晶性化合物。
- 8. 一般式(1)において、X¹が1,2-エチレン基であり、X²が-COO-であり、環A²が3-フルオロ-1,4-フェニレンである請求の範囲第6項に記載の液晶性化合物。
 - 9. 一般式(1)において、X¹がビニレン基、X²が-COO-である請求の範囲第6項に記載の液晶性化合物。
- 10. 一般式(I)において、X¹がビニレン基、X²が-COO-である請求の範囲第7項に記載の液晶性化合物。
 - 1 1. 一般式 (1) において、m=1、n=0であり、X'あるいは X^2 が $-CF_2$ 0 -あるいは $-OCF_2$ -で表される請求の範囲第1項に記載の液晶性化合物。
 - 12. 一般式(1)においてR'およびY'が共にアルキル基である請求の範囲第

11項に記載の液晶性化合物。

5

- 13. 一般式(1)においてR'およびY'の少なくとも一方がアルケニル基である請求の範囲第11項に記載の液晶性化合物。
- 14. 一般式(1)において、X'が単結合であり、 X^2 が一 CF_2O あるいは $-OCF_2$ であり、環 A^1 、環 A^2 が共に1、4 シクロヘキシレン基、環 A^4 が 1個以上の水素原子がフッ素原子または塩素原子で置換されてもよい1、4 フェニレン基である請求の範囲第11項に記載の液晶性化合物。
 - 15. 一般式(1)においてm=n=1であり、 X^1 、 X^2 あるいは X^3 が $-CF_2$ O-あるいは $-OCF_2$ -で表される請求の範囲第1項に記載の液晶性化合物。
- 16. 一般式(1)においてR¹およびY¹がアルキル基であり、環A¹および環A⁴が共に1、4-シクロヘキシレン基、環A²および環A³が共に1個以上の水素原子がフッ素原子または塩素原子で置換されてもよい1、4-フェニレン基、X²が-CF₂O-あるいは-OCF₂-であり、X¹およびX³が共に単結合である請求の範囲第15項に記載の液晶性化合物。
- 17. 一般式 (1) において R^1 および Y^1 がアルキル基であり、環 A^1 および環 A^4 が共に1、4-シクロヘキシレン基、環 A^2 および環 A^3 が共に1個以上の水素原子がフッ素原子または塩素原子で置換されてもよい1、4-フェニレン基、 X^2 が-CF $_2$ O $_-$ あるいは-OCF $_2$ $_-$ であり、 X^1 および X^3 のいずれか-方が単結合であり、他方が1、2-エチレン基である請求の範囲第15項に記載の液 晶性化合物。
 - 18.一般式(1)においてR¹およびY¹の少なくとも一方がアルケニル基である請求の範囲第15項に記載の液晶性化合物。
 - 19. 一般式(1)で表される化合物を少なくとも1種類含有することを特徴とする、少なくとも2成分からなる液晶組成物。
- 20. 第一成分として請求の範囲第1~18項のいずれかに記載の液晶性化合物を少なくとも1種類含有し、第二成分として一般式(2)、(3)、及び(4)からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。

10

15

20

$$R^2 \longrightarrow Z^1 \longrightarrow Z^1 \longrightarrow Y^2$$
 (2)

$$B^{2} \longrightarrow Z^{1} - \left(B\right) - Z^{2} \longrightarrow \begin{bmatrix}L^{1} \\ Z^{2}\end{bmatrix}$$
 (3)

$$R^{2} \longrightarrow Z^{1} - \left(C\right) - Z^{2} \longrightarrow L^{1}$$

$$L^{2} \qquad (4)$$

(式中、 R^2 は炭素数 $1 \sim 10$ のアルキル基を示し、このアルキル基中の相隣接しない 1 個以上のメチレン基は酸素原子または-CH=CH-C 置換されていてもよく、またこのアルキル基中の任意の水素原子はフッ素原子で置換されてもよく、 Y^2 はフッ素原子、塩素原子、 $-OCF_3$ 、 $-OCF_2H$ 、 $-CF_3$ 、 $-CF_2$ H、 $-CF_4$ の $-CF_4$ CF₂CF₂H、または $-OCF_4$ CF₄CF₃を示し、

L'及びL'は互いに独立して水素原子またはフッ素原子を示し、

 Z^1 及び Z^2 は互いに独立して1, 2-エチレン基、ビニレン基、1, 4-プチレン基、-COO-、-CF $_2$ O-、-OCF $_2$ -、または単結合を示し、

環Bはトランス-1, 4-シクロヘキシレン、1, 3-ジオキサン-2, 5-ジイル、または水素原子がフッ素原子で置換されてもよい1, 4-フェニレンを示し、

環Cはトランス-1, 4-シクロヘキシレン、または水素原子がフッ素原子で 置換されてもよい1, 4-フェニレンを示し、

また、これらの化合物を構成する各原子はその同位体で置換されていてもよい。 25)

2 1. 第一成分として請求の範囲第1~18項のいずれかに記載の液晶性化合物 - を少なくとも1種類含有し、第二成分として一般式(5)及び(6)からなる化 合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶 組成物。

$$R^{3} + \left(D\right) + \left(E\right) + \left(Z^{3}\right) + \left(Z^$$

$$\mathbb{R}^4 - \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}^5$$

(式中、R³及びR'は互いに独立して炭素数1~10のアルキル基を示し、このアルキル基中の相隣接しない1個以上のメチレン基は酸素原子またはビニレン基で置換されていてもよく、またこのアルキル基中の任意の水素原子はフッ素原子で置換されてもよく、

Y¹は、CN基または-C≡C-CNを示し、

10

15

25

環Dはトランスー1, 4 ーシクロヘキシレン、1, 4 ーフェニレン、ピリミジンー 2, 5 ージイル、または 1, 3 ージオキサンー 2, 5 ージイルを示し、

環Eはトランスー1, 4 ー シクロヘキシレン、水素原子がフッ素原子で置換されてもよい1, 4 ーフェニレン、またはピリミジンー2, 5 ー ジイルを示し、

環Fはトランス-1、4-シクロヘキシレンまたは1、4-フェニレンを示し、Z³は1、2-エチレン基、-COO-、または単結合を示し、

L³、L⁴、及びL⁵は互いに独立して水素原子またはフッ素原子を示し、

a、b、及びcは互いに独立して0または1を示し、

20 また、これらの化合物を構成する各原子はその同位体で置換されていてもよい。)

22. 第一成分として請求の範囲第1~18項のいずれかに記載の液晶性化合物を少なくとも1種類含有し、第二成分として一般式(7)、(8)、及び(9)からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。

$$R^{5} - \left(G\right) - Z^{4} - \left(I\right) - Z^{5} - R^{6}$$

$$(7)$$

$$R^{5} - \left(G\right) - Z^{4} - \left(I\right) - Z^{5} - \left(J\right) - R^{6}$$
 (8)

5

$$R^{5} - \left(G - Z^{4} - \left(I - A^{5} \right) \right) + R^{6}$$
 (9)

(式中、R⁵及びR⁶は互いに独立して炭素数1~10のアルキル基を示し、この アルキル基中の相隣接しない1個以上のメチレン基は酸素原子または-CH=C H-で置換されてもよく、またこのアルキル基中の任意の水素原子はフッ素原子 で置換されてもよく、

環C、環I、及び環Jは互いに独立して、トランスー1, 4-シクロヘキシレン、ピリミジン-2, 5-ジイル、または1個以上の水素原子がフッ素原子で置換されてもよい1, 4-フェニレンを示し、

10 Z¹及びZ⁵は互いに独立して、-C≡C-、-COO-、-CH₂CH₂-、-C H=CH-、または単結合を示し、

また、これらの化合物を構成する各原子はその同位体で置換されていてもよい。)

23. 第一成分として請求の範囲第1~18項のいずれかに記載の液晶性化合物 を少なくとも1種類含有し、第二成分として一般式(10)、(11)、及び (12)からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。

$$R^7 - Z^6 - R^8$$
 (10)

$$R^7 \longrightarrow Z^6 \longrightarrow K \longrightarrow Z^7 \longrightarrow R^8$$
 (11)

$$R^7 - Z^6 - Z^7 - R^8$$
 (12)

(式中、R⁷及びR⁸は互いに独立して炭素数1~10のアルキル基を示し、このアルキル基中の相隣接しない1個以上のメチレン基は酸素原子または-CH=CH-で置換されてもよく、またこのアルキル基中の任意の水素原子はフッ素原子で置換されてもよく、

写Kはトランスー1、4ーシクロヘキシレン、または1、4ーフェニレンを示し、 Z^{6} 及び Z^{7} は互いに独立して、 $-CH_{2}CH_{2}-$ 、 $-CH_{2}O-$ 、または単結合を示し、

また、これらの化合物を構成する各原子はその同位体で置換されていてもよい。)

- 10 24. 第一成分として請求の範囲第1~18項のいずれかに記載の液晶性化合物を少なくとも1種類含有し、第二成分として一般式(7)、(8)及び(9)からなる化合物群から選択される化合物を少なくとも1種類含有し、第三成分として一般式(10)、(11)、及び(12)からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。
- 25. 第一成分として請求の範囲第1~18項のいずれかに記載の液晶性化合物を少なくとも1種類含有し、第二成分として一般式(2)、(3)、及び(4)からなる化合物群から選択される化合物を少なくとも1種類含有し、第三成分として一般式(7)、(8)、及び(9)からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。
- 20 26. 第一成分として請求の範囲第1~18項のいずれかに記載の液晶性化合物を少なくとも1種類含有し、第二成分として一般式(5)及び(6)からなる化合物群から選択される化合物を少なくとも1種類含有し、第三成分として一般式(7)、(8)、及び(9)からなる化合物群から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。
- 27. 第一成分として請求の範囲第1~18項のいずれかに記載の液晶性化合物を少なくとも1種類含有し、第二成分として一般式(2)、(3)、及び(4) からなる化合物群から選択される化合物を少なくとも1種類含有し、第三成分として一般式(5)及び(6)からなる化合物群から選択される化合物を1種類含有し、第四成分として前記一般式(7)、(8)、及び(9)からなる化合物群

PCT/JP97/01048

WO 97/36847

から選択される化合物を少なくとも1種類含有することを特徴とする液晶組成物。

- 28. 請求の範囲第19~27項のいずれかに記載の液晶組成物に加えて、さら
- に1種以上の光学活性化合物を含有することを特徴とする液晶組成物。
- 29. 請求の範囲第19~28項のいずれかに記載の液晶組成物を用いて構成した液晶表示素子。

5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/01048

		· ·			
A. CLA	ASSIFICATION OF SUBJECT MATTER . C1 ⁶ C07C43/192, 43/225, C09K19/20, 19/30, 19	69/75, 69/753, 69/757 9/42, G02F1/13	, 69/76,		
According	to International Patent Classification (IPC) or to bo	th national classification and IPC			
B. FIE	LDS SEARCHED				
Minimum documentation searched (classification system followed by classification symbols) Int. Cl ⁶ C07C43/192, 43/225, 69/75, 69/753, 69/757, 69/76, C09K19/20, 19/30, 19/42, G02F1/13					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
CAS ONLINE					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where		Relevant to claim No.		
Х	JP, 1-275549, A (Merck Pat	ent GmbH.),	1, 19, 29		
A	November 6, 1989 (06. 11. & DE, 3906022, A1 & US, 48	89)	2-18, 20-28		
	A DE, 3906022, Al & US, 48	9/216, A			
x	JP, 2-503431, A (Merck Pat October 18, 1990 (18. 10.	ent GmbH.),	1, 19, 29		
	& DE, 3807870, A1 & US, 5230827, A & WO, 89/08688, A1 & EP, 358741, A1				
х	Ferroelectrics, Vol. 114,	p. 201-205 (1991),	1, 19, 29		
	M. Chambers, et al., "Low	birefringence esters			
	exhibiting a wide smectic	C phase"			
х	JP, 2-503443, A (Merck Pat October 18, 1990 (18. 10.	ent GmbH.),	1, 19, 29		
	& DE, 3807863, A1 & WO, 89				
	& EP, 357727, A1 & US, 523	6620, A	ľ		
x	JP, 2-503441, A (Merck Pate	ent GmbH.).	1, 19, 29		
	October 18, 1990 (18. 10.	90)	1, 15, 25		
	& DE, 3807872, A1 & WO, 89	/08633, Al			
X Further	r documents are listed in the continuation of Box C.	See patent family annex.			
"A" documen					
to be at particular relevance E" carlier document but published on or after the international filing date: "X" document of particular relevance; the claimed invention cannot be					
document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other					
special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination					
document published prior to the international filing date but later than the priority date claimed document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family					
Date of the ac	ate of the actual completion of the international search Date of mailing of the international search report				
June	June 17, 1997 (17. 06. 97) Date of mailing of the international search July 1, 1997 (01. 07. 97)				
lame and ma	iling address of the ISA/	Authorized officer			
Japa	nese Patent Office				
acsimile No.		Telephone No.			

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/01048

		PC1/0	P97/01048
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
	& EP, 364538, Al		
х	JP, 2-4725, A (Merck Patent GmbH.), January 9, 1990 (09. 01. 90) & DE, 3906019, Al & US, 5279764, A		1, 19, 29
x	Liquid Crystals, Vol. 5, No. 1, p. 171 (1989), S.M. Kelly, "Smectic liquid cr VIII. Some new laterally substituted sm compounds"	ystals.	1, 19, 29
х	DE, 19531165, Al (Merck Patent GmbH.),		1, 11, 19,
A	March 7, 1996 (07. 03. 96) & US, 5589102, A		29 2-10, 12-18 20-28
:			
	·	•	
	·		· .
	·		
_			
	·		
	·		L

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

国際出願番号 PCT/JP97/01048

発明の属する分野の分類(国際特許分類(IPC)) Int. Cl CO7C43/192, 43/225, 69/75, 69/753, 69/757, 69/76, C09K19/20, 19/30, 19/42, G02F1/13 В. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) C07C43/192, 43/225, 69/75, 69/753, 69/757, 69/76. C09K19/20, 19/30, 19/42, G02F1/13 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAS ONLINE 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 JP, 1-275549, A (メルク・パテント・ゲゼルシャフト・ミット・ベシュ X 1, 19, 29 レンクテル・ハフツング), 6.11月.1989(06.11.89) A 2-18, 20-28 &DE, 3906022, A1&US, 4897216, A X JP, 2-503431, A (メルク・パテント・ゲゼルシャフト・ミット・ベシュ | 1, 19, 29 レンクテル・ハフツング), 18. 10月. 1990 (18. 10. 90) &DE, 3807870, A1&US, 5230827, A &WO, 89/08688, A1&EP, 358741, A1 I C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。 * 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの て出願と矛盾するものではなく、発明の原理又は理 「E」先行文献ではあるが、国際出願日以後に公表されたも 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献 (理由を付す) 上の文献との、当業者にとって自明である組合せに 「〇」ロ頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 17.06.97 01.07.97 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4H 7419 日本国特許庁 (ISA/JP) 西川 和子 郵便 号100 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3444

C (続き).	関連すると認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号 1,19,29
X	Ferroelectrics, Vol. 114, p. 201-205 (1991) , M. Chambers, et al, Low birefringence	1, 19, 29
	esters exhibiting a wide smectic C	
	phase	
X	JP, 2-503443, A (メルク・パテント・ゲゼルシャフト・ミット・ベシュ	1, 19, 29
	レンクテル・ハフツング), 18. 10月. 1990 (18. 10. 90)	
	&DE, 3807863, A1&WO, 89/08689, A1 &EP, 357727, A1&US, 5236620, A	
	WEP, 351/21, R1&03, 3230023, 11	
	,	
х	JP, 2-503441, A (メルク・パテント・ゲゼルシャフト・ミット・ベシュ	1, 19, 29
	レンクテル・ハフツング), 18. 10月. 1990 (18. 10. 90)	
	&DE, 3807872, A1&WO, 89/08633, A1	
	&EP, 364538, A1	
x ·	JP、2-4725, A (メルク・パテント・ゲゼルシャフト・ミット・ベシュレン	1, 19, 29
	クテル・ハフツング), 9.1月.1990(09.01.90)	
	&DE, 3906019, A1&US, 5279764, A	
	Liquid Crystals, Vol. 5, No. 1, p. 171-175	1, 19, 29
X	(1989), S. M. Kelly, Smectic liquid	1, 10, 10
	crystals. VIII. Some new laterally	
	substituted smectic C compounds	
1		
		1, 11, 19, 29
X	DE, 19531165, Al (Merck Patent Gesellschaft mit beschrankter Haftung)	2-10, 12-18, 20-28
A	Gesellschaft mit beschränkter nartung, 7. 3月. 1996 (07. 03. 96) &US, 5589102, A	2 10, 12 10, 20 20
· ·	, 7. 3A. 1990 (07: 03: 30) accept 0000202, se	
1		
ì		
1		
Į.		
		İ
1		