ROURKELA

NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA

Department of Electrical Engineering

POWER SYSTEM SIMULATION

Format of Network Data (.net) File

Description: Variable Type: Variable Name

• First Record: General Information

- 1. Number of busbars : integer : no_bus
- 2. Number of transmission lines (feeder): integer: no_fd
- 3. Number of transformers : integer : no_tr
- 4. Number of pv buses : integer : no_pv
- 5. Number of shunt loads: integer: no_shunt
- 6. Base MVA: float: base_MVA

• Second Record: Bus Data (dimension of each vector is no_bus \times 1)

- 1. Bus code : integer : bus_code
- 2. Active power generation in MW: float: Pg
- 3. Reactive power generation in MVAR : float : Qq
- 4. Active power demand in MW: float: Pd
- 5. Reactive power demand in MVAR : float : Qd
- 6. Bus type (1: Slack bus, 2: PV bus, 3: PQ bus): integer: bus_type

• Third Record: Transmission Line Data (dimension of each vector is no_fd \times 1)

- 1. Transmission line code : integer : fd_code
- 2. From bus code : integer : fd_frombus
- 3. To bus code : integer : fd_tobus
- 4. Resistance in p.u. : float : fd_r
- 5. Reactance in p.u. : float : fd_x
- 6. Full line charging admittance in p.u. : float : fd_ys
- 7. Reactance connected to From-bus in p.u. : float : fd_reac_frombus
- 8. Reactance connected to To-bus in p.u. : float : fd_reac_tobus
- 9. Line status (1: connected, 0: open) : integer : fd_status

• Fourth Record: Transformer Data (dimension of each vector is no_tr \times 1)

- 1. Transformer code : *integer* : *tr_code*
- 2. From bus code: integer: tr_frombus

- 3. To bus code : integer : tr_tobus4. Resistance in p.u. : float : tr_r
- 5. Reactance in p.u. : float : tr_x
- 6. Off-nominal tap ratio : float : tr_alpha
- 7. Transformer status (1: connected, 0: open) : integer : tr_status

• Fifth Record: PV Bus Data (dimension of each vector is no_pv \times 1)

- 1. PV bus number : integer : pv_no
- 2. PV bus code : integer : pv_buscode
- 3. Minimum active power limit (in MW) : float : pv_pmin
- 4. Maximum active power limit (in MW) : float : pv_pmax
- 5. Minimum reactive power limit (in MVAR) : float : pv_qmin
- 6. Maximum reactive power limit (in MVAR) : float : pv_qmax
- 7. PV bus specified voltage : float : pv_Vsp

· Sixth Record: Slack Bus Data

- 1. Slack bus code: integer: slack_buscode
- 2. Minimum active power limit (in MW) : float : slack_pmin
- 3. Maximum active power limit (in MW) : float : slack_pmax
- 4. Minimum reactive power limit (in MVAR) : float : slack_qmin
- 5. Maximum reactive power limit (in MVAR) : float : slack_qmax
- 6. Slack bus specified voltage : float : slack_Vsp

• Seventh Record: Shunt Load Data (dimension of each vector is no_shunt \times 1)

- 1. Shunt load number : integer : shunt_no
- 2. Shunt load bus code: integer: shunt_buscode
- 3. Shunt load conductance (in p.u.) : float : shunt_q
- 4. Shunt load susceptance (in p.u.) : float : shunt_b
- 5. Shunt load status (1: connected, 0: open) : integer : shunt_status

REMARKS

- Read first record and store in appropriate variables.
- From the second record onward, declare memory for each variable as per dimension.
- Read using for loops.