目次

第I部	数	3
第Ⅱ部	微分	5
第Ⅲ部	積分	7
第IV部	線形代数	9
第1章 1.1 1.2	行列式 3次行列式	11 11 11
第V部	計算機	13
第2章 ?1	LATEX Tev4ht	15 15

第I部

数

第II部

微分

第Ⅲ部

積分

第IV部

線形代数

第1章

行列式

- 1.1 3次行列式
- 1.2 n次行列式の定義
- **1.2.1 Df.** n次正方行列 (a_{ij}) $(i,j=1,\ldots,n)$ の行列式 $\det(a_{ij})$ は次のように定義する.

$$\det(a_{ij}) := \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{j=1}^n a_{\sigma(j)j}$$

また、行列式 $\det(a_{ij})$ を

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} := \det(a_{ij})$$

で表し、行列 \mathbf{A} が (a_{ij}) のとき、行列式 $\det(a_{ij})$ を

$$\det(\mathbf{A}) := \det(a_{ij})$$

で表す. また, 行列 $m{A}$ が列ベクトル $m{a}_1, m{a}_2, \dots, m{a}_n$ で表されるとき, この行列式を

$$\det(\boldsymbol{a}_1,\boldsymbol{a}_2,\ldots,\boldsymbol{a}_n) := \det(a_{ij})$$

で表す.

12 第1章 行列式

- (1) 加法と乗法
- (a) 加法
- (b) 総和
- (c) 乗法
- (d) 総乗
- (2) 有限集合の総和
- (3) 置換

第V部

計算機

第2章

LATEX

2.1 Tex4ht