Section 5.2 – Nonlinear Conjugate Gradient Methods

AMS 230 Numerical Optimization

Qi Gong
Dept. of Applied Math & Stats.
Baskin School of Engineering
University of California
Santa Cruz, CA

Nonlinear Conjugate Gradient

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^{\mathsf{T}} A x - b^{\mathsf{T}} x$$

Algorithm 5.2 (CG).

Given x_0 ;

Set
$$r_0 \leftarrow Ax_0 - b$$
, $p_0 \leftarrow -r_0$, $k \leftarrow 0$; while $r_k \neq 0$

$$\alpha_k \leftarrow \frac{r_k^T r_k}{p_k^T A p_k};$$

$$x_{k+1} \leftarrow x_k + \alpha_k p_k$$
;

$$r_{k+1} \leftarrow r_k + \alpha_k A p_k$$
;

$$\beta_{k+1} \leftarrow \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k};$$

$$p_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} p_k;$$

$$k \leftarrow k + 1;$$

end (while)

- Replace r by the gradient
- Replace exact line search by inexact line search

Algorithm 5.4 (FR).

Given x_0 ;

Evaluate $f_0 = f(x_0), \nabla f_0 = \nabla f(x_0);$

Set $p_0 \leftarrow -\nabla f_0, k \leftarrow 0$;

while $\nabla f_k \neq 0$

Compute α_k and set $x_{k+1} = x_k + \alpha_k p_k$;

(based on Wolfe conditions)

Evaluate ∇f_{k+1} ;

$$\beta_{k+1}^{\text{FR}} \leftarrow \frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_k^T \nabla f_k};$$

$$p_{k+1} \leftarrow -\nabla f_{k+1} + \beta_{k+1}^{FR} p_k;$$

$$k \leftarrow k + 1;$$

end (while)

Linear CG

Nonlinear CG Fletcher-Reeves Method

Convergence of F-R

Question: is p_k always a descent direction?

Lemma 5.6.

Suppose that Algorithm 5.4 is implemented with a step length α_k that satisfies the strong Wolfe conditions (5.43) with $0 < c_2 < \frac{1}{2}$. Then the method generates descent directions p_k that satisfy the following inequalities:

$$-\frac{1}{1-c_2} \le \frac{\nabla f_k^T p_k}{\|\nabla f_k\|^2} \le \frac{2c_2 - 1}{1-c_2}, \quad \text{for all } k = 0, 1, \dots$$
 (5.53)

Global Convergence of FR

Theorem 5.7 (Al-Baali [3]).

Suppose that Assumptions 5.1 hold, and that Algorithm 5.4 is implemented with a line search that satisfies the strong Wolfe conditions (5.43), with $0 < c_1 < c_2 < \frac{1}{2}$. Then

$$\liminf_{k \to \infty} \|\nabla f_k\| = 0.$$
(5.63)

Performance of F-R

$$\min_{x \in R^n} f(x) = \ln(1 + x^T Q x), \text{ where } Q = Q^T \text{ is p.d.}$$

- F-R is globally convergent, but the performance is not satisfactory.
- $cos(\theta_k) \approx 0 \Longrightarrow cos(\theta_{k+1}) \approx 0 \Longrightarrow$ very small reduction in the cost function.

Nonlinear CG - Restart

F-R with restart:

When F-R encounters a bad step, use steepest descent direction as the search direction.

else
$$\beta_{k+1}^{\scriptscriptstyle \mathrm{FR}} \leftarrow \frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_k^T \nabla f_k};$$
 end
$$p_{k+1} \leftarrow -\nabla f_{k+1} + \beta_{k+1}^{\scriptscriptstyle \mathrm{FR}} p_k;$$

Performance of F-R with Restart

 $\min_{x \in R^n} f(x) = \ln(1 + x^T Q x), \text{ where } Q = Q^T \text{ is p.d.}$

F-R

F-R w restart

Nonlinear CG Methods

$$\beta_{k+1}^{\text{PR}} = \frac{\nabla f_{k+1}^{T} (\nabla f_{k+1} - \nabla f_{k})}{\|\nabla f_{k}\|^{2}}$$

Theorem 5.8.

Consider the Polak–Ribière method method (5.44) with an ideal line search. There exists a twice continuously differentiable objective function $f: \mathbb{R}^3 \to \mathbb{R}$ and a starting point $x_0 \in \mathbb{R}^3$ such that the sequence of gradients $\{\|\nabla f_k\|\}$ is bounded away from zero.

$$\beta_{k+1}^+ = \max\{\beta_{k+1}^{PR}, 0\},\$$

$$\beta_{k+1}^{\text{\tiny HS}} = \frac{\nabla f_{k+1}^T (\nabla f_{k+1} - \nabla f_k)}{(\nabla f_{k+1} - \nabla f_k)^T p_k}$$