Last Time

Chapter 1 Robotics History

- Robots and Robotics
- Ancient History (3000 B.C.-1450 A.D.)
- Early History (1451 A.D.-1960)
- Modern History (1961-)
- New Vistas

Today

- 1 Rigid Body Transformations
- **2** Rotational motion in \mathbb{R}^3

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

- 1 Rigid Body Transformations
- **2** Rotational motion in \mathbb{R}^3

Today

- 1 Rigid Body Transformations
 - Length Preserving: ||g(p) g(q)|| = ||p q||
 - Orientation Preserving: $g_*(v \times w) = g_*(v) \times g_*(w)$
- 2 Rotational motion in \mathbb{R}^3

§ Notations:

Chapter 2 Rigid Body Motion

Rigid Body Transformations

motion in \mathbb{R}^3

Rigid Motion in ℝ³

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

For $p \in \mathbb{R}^n$, n = 2, 3(2 for planar, 3 for spatial)

Point:
$$p = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix}, ||p|| = \sqrt{p_1^2 + \dots + p_n^2}$$

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

§ Notations:

For $p \in \mathbb{R}^n$, n = 2, 3(2 for planar, 3 for spatial)

Point:
$$p = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix}, ||p|| = \sqrt{p_1^2 + \dots + p_n^2}$$

Vector:
$$v = p - q = \begin{bmatrix} p_1 - q_1 \\ p_2 - q_2 \\ \vdots \\ p_n - q_n \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}, \|v\| = \sqrt{v_1^2 + \dots + v_n^2}$$

§ Notations:

Chapter 2 Rigid Body Motion

Rigid Body Transformations

For $p \in \mathbb{R}^n$, n = 2, 3(2 for planar, 3 for spatial)

Point:
$$p = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix}, ||p|| = \sqrt{p_1^2 + \dots + p_n^2}$$

Vector:
$$v = p - q = \begin{bmatrix} p_1 - q_1 \\ p_2 - q_2 \\ \vdots \\ p_n - q_n \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}, ||v|| = \sqrt{v_1^2 + \dots + v_n^2}$$

Matrix: $A \in \mathbb{R}^{n \times m}, A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$

Matrix:
$$A \in \mathbb{R}^{n \times m}$$
, $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ \vdots & & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix}$

 $p(0) = \begin{bmatrix} x(0) \\ y(0) \\ z(0) \end{bmatrix}$: initial position

□ Description of point-mass motion:

Chapter 2 Rigid Body Motion

Rigid Body Transformations

motion in R³

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Figure 2.1

□ Description of point-mass motion:

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in ℝ

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Figure 2.1

□ Description of point-mass motion:

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in ${\mathbb R}$

Rigid Motion in \mathbb{R}^3

Velocity of Rigid Body

Wrenches and Reciprocal Screws

Reference

$$p(0) = \begin{bmatrix} x(0) \\ y(0) \\ z(0) \end{bmatrix}$$
: initial position

$$p(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}, t \in (-\varepsilon, \varepsilon)$$

Figure 2.1

Definition: Trajectory

A **trajectory** is a curve
$$p:(-\varepsilon,\varepsilon)\mapsto \mathbb{R}^3, p(t)=\begin{bmatrix} x(t)\\y(t)\\z(t)\end{bmatrix}$$

□ Rigid Body Motion:

x p(0)

Figure 2.2

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in $\mathbb R$

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

□ Rigid Body Motion:

x q(t)

Figure 2.2

$$||p(t) - q(t)|| = ||p(0) - q(0)|| = \text{constant}$$

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

□ Rigid Body Motion:

Figure 2.2

$$||p(t) - q(t)|| = ||p(0) - q(0)|| = \text{constant}$$

Definition: Rigid body transformation

$$g: \mathbb{R}^3 \mapsto \mathbb{R}^3$$

s.t.

- Length preserving: ||g(p) g(q)|| = ||p q||
- Orientation preserving: $g_*(v \times \omega) = g_*(v) \times g_*(\omega)$

- Chapter 2 Rigid Body Motion
- Rigid Body Transformations
- Rotational motion in ℝ
- Rigid Motion in \mathbb{R}^3
- Velocity of a Rigid Body
- Wrenches and Reciprocal Screws
- Reference

Today

- Rigid Body Transformations
 - Length Preserving: ||g(p) g(q)|| = ||p q||
 - Orientation Preserving: $g_*(v \times w) = g_*(v) \times g_*(w)$
- **2** Rotational motion in \mathbb{R}^3

Today

- 1 Rigid Body Transformations
- **2** Rotational motion in \mathbb{R}^3
 - Rotation Matrix
 - Represents configuration
 - Represents (rotational) transformation
 - Rotation Matrices with matrix multiplication form a Group
 - Rotational Transformation is a Rigid Body Transformation

□ Rotational Motion:

1 Choose a reference frame A (spatial frame)

Rotational motion in \mathbb{R}^3

Figure 2.3

□ Rotational Motion:

I Choose a reference frame A (spatial frame)

2 Attach a frame *B* to the body (body frame)

Figure 2.3

$$\begin{aligned} x_{ab} &\in \mathbb{R}^3 \\ R_{ab} &= \left[x_{ab} \ y_{ab} \ z_{ab} \right] \in \mathbb{R}^{3 \times 3} \end{aligned}$$

coordinates of x_b in frame A Rotation (or orientation) matrix of B w.r.t. A

Chapter 2 Rigid Bod Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

□ Property of a Rotation Matrix:

Let $R = [r_1 \ r_2 \ r_3]$ be a rotation matrix

Chapter 2 Rigid Body Motion

Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

□ Property of a Rotation Matrix:

Let $R = [r_1 \ r_2 \ r_3]$ be a rotation matrix

$$\Rightarrow r_i^T \cdot r_j = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

or
$$R^T \cdot R = \begin{bmatrix} r_1^T \\ r_2^T \\ r_3^T \end{bmatrix} \begin{bmatrix} r_1 & r_2 & r_3 \end{bmatrix} = I$$
 or $R \cdot R^T = I$

Chapter 2 Rigid Body Motion

tions

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

□ Property of a Rotation Matrix:

Let $R = [r_1 \ r_2 \ r_3]$ be a rotation matrix

$$\Rightarrow r_i^T \cdot r_j = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

or $R^T \cdot R = \begin{bmatrix} r_1^T \\ r_2^T \\ r^T \end{bmatrix} \begin{bmatrix} r_1 & r_2 & r_3 \end{bmatrix} = I$ or $R \cdot R^T = I$

$$\det(R^T R) = \det R^T \cdot \det R = (\det R)^2 = 1, \det R = \pm 1$$

As $\det R = r_1^T (r_2 \times r_3) = 1 \Rightarrow \det R = 1$

Chapter 2 Rigid Body Motion

Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Definition:

 $SO(3) = \left\{ R \in \mathbb{R}^{3 \times 3} \middle| R^T R = I, \det R = 1 \right\}$

and

 $SO(n) = \left\{ R \in \mathbb{R}^{n \times n} \middle| R^T R = I, \det R = 1 \right\}$

Chapter 2 Rigid Body Motion

Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

"What is a Group?" — Question posed to 7 year old Terry Tao.

M.A.C.: What is a group?

T.T.: A set which is mapped onto itself by a binary operation. The binary operation is associative, and the set has an identity e such that $e \times x$ equals x for all x in the set. Also, for each x in the set there is an inverse x' in the set such that x' * x equals e.

Definition:

$$SO(3) = \left\{ R \in \mathbb{R}^{3 \times 3} \middle| R^T R = I, \det R = 1 \right\}$$

and

$$SO(n) = \left\{ R \in \mathbb{R}^{n \times n} \middle| R^T R = I, \det R = 1 \right\}$$

 (G, \cdot) is a group if:

Wrenches and Reciprocal Screws

Definition:

$$SO(3) = \left\{ R \in \mathbb{R}^{3 \times 3} \middle| R^T R = I, \det R = 1 \right\}$$

and

$$SO(n) = \left\{ R \in \mathbb{R}^{n \times n} \middle| R^T R = I, \det R = 1 \right\}$$

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

♦ Review: Group

 (G,\cdot) is a group if:

$$\exists ! \ e \in G, \ \text{s.t.} \ g \cdot e = e \cdot g = g, \ \forall g \in G$$

Definition:

$$SO(3) = \left\{ R \in \mathbb{R}^{3 \times 3} \middle| R^T R = I, \det R = 1 \right\}$$

and

$$SO(n) = \left\{ R \in \mathbb{R}^{n \times n} \middle| R^T R = I, \det R = 1 \right\}$$

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

♦ Review: Group

 (G,\cdot) is a group if:

$$\exists ! \ e \in G, \ \text{s.t.} \ g \cdot e = e \cdot g = g, \ \forall g \in G$$

$$\forall g \in G, \exists ! g^{-1} \in G, \text{ s.t. } g \cdot g^{-1} = g^{-1} \cdot g = e$$

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

Definition:

$$SO(3) = \left\{ R \in \mathbb{R}^{3 \times 3} \middle| R^T R = I, \det R = 1 \right\}$$

and

$$SO(n) = \left\{ R \in \mathbb{R}^{n \times n} \middle| R^T R = I, \det R = 1 \right\}$$

♦ Review: Group

 (G,\cdot) is a group if:

$$g_1, g_2 \in G \Rightarrow g_1 \cdot g_2 \in G$$

$$\exists ! \ e \in G, \ \text{s.t.} \ g \cdot e = e \cdot g = g, \ \forall g \in G$$

$$\forall g \in G, \exists ! g^{-1} \in G, \text{ s.t. } g \cdot g^{-1} = g^{-1} \cdot g = e$$

$$\mathbf{4} \ g_1 \cdot (g_2 \cdot g_3) = (g_1 \cdot g_2) \cdot g_3$$

apter

2 Rigid Bod Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

♦ Review: Examples of group

 \mathbb{I} $(\mathbb{R}^3,+)$

apter

2 Rigid Bod Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

♦ Review: Examples of group

- \mathbb{I} $(\mathbb{R}^3,+)$
- $(\{0,1\}, + \mod 2)$

♦ Review: Examples of group

- $\mathbb{I} (\mathbb{R}^3,+)$
 - $(\{0,1\}, + \mod 2)$
 - (\mathbb{R}, \times) Not a group (Why?)

tions

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Chapter 2 Rigid Body

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion

Velocity of a Rigid Body

Wrenches and Reciprocal

Reference

♦ Review: Examples of group

- $(\mathbb{R}^3,+)$
- $(\{0,1\}, + \mod 2)$
- (\mathbb{R}, \times) Not a group (Why?)
- **4** $(\mathbb{R}_* : \mathbb{R} \{0\}, \times)$

♦ Review: Examples of group

- \mathbb{I} $(\mathbb{R}^3,+)$
 - $(\{0,1\}, + \mod 2)$
 - (\mathbb{R}, \times) Not a group (Why?)

 - $S^1 \triangleq \{z \in \mathbb{C} | |z| = 1\}$

Property 1: SO(3) is a group under matrix multiplication.

2 Rigid Body Motion

Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

♦ Review: Examples of group

Rotational motion in \mathbb{R}^3

$$(\{0,1\}, + \mod 2)$$

$$(\{0,1\}, + \mod 2)$$

 \mathbb{I} $(\mathbb{R}^3,+)$

$$(\mathbb{R}, \times)$$
 Not a group (Why?)

$$S^1 \triangleq \{z \in \mathbb{C} | |z| = 1\}$$

Property 1: SO(3) is a group under matrix multiplication.

Proof:

- If $R_1, R_2 \in SO(3)$, then $R_1 \cdot R_2 \in SO(3)$, because
 - $(R_1R_2)^T(R_1R_2) = R_2^T(R_1^TR_1)R_2 = R_2^TR_2 = I$
 - $\det(R_1 \cdot R_2) = \det(R_1) \cdot \det(R_2) = 1$

♦ Review: Examples of group

Rotational motion in \mathbb{R}^3

$$(\{0,1\}, + \mod 2)$$

 \mathbb{I} $(\mathbb{R}^3,+)$

$$(\{0,1\}, + \mod 2)$$

3
$$(\mathbb{R}, \times)$$
 Not a group (Why?)

$$S^1 \triangleq \{z \in \mathbb{C} | |z| = 1\}$$

Property 1: SO(3) is a group under matrix multiplication.

Proof:

If $R_1, R_2 \in SO(3)$, then $R_1 \cdot R_2 \in SO(3)$, because

•
$$(R_1R_2)^T(R_1R_2) = R_2^T(R_1^TR_1)R_2 = R_2^TR_2 = I$$

$$\bullet \det(R_1 \cdot R_2) = \det(R_1) \cdot \det(R_2) = 1$$

$$e = I_{3\times 3}$$

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reference

♦ Review: Examples of group

- $(\mathbb{R}^3, +)$
- $(\{0,1\}, + \mod 2)$
- (\mathbb{R}, \times) Not a group (Why?)
- **4** $(\mathbb{R}_* : \mathbb{R} \{0\}, \times)$
- $S^1 \triangleq \{z \in \mathbb{C} | |z| = 1\}$

Property 1: SO(3) is a group under matrix multiplication.

Proof:

- If R_1 , $R_2 \in SO(3)$, then $R_1 \cdot R_2 \in SO(3)$, because
 - $(R_1R_2)^T(R_1R_2) = R_2^T(R_1^TR_1)R_2 = R_2^TR_2 = I$
 - $\det(R_1 \cdot R_2) = \det(R_1) \cdot \det(R_2) = 1$
- $e = I_{3\times 3}$
- $R^T \cdot R = I \Rightarrow R^{-1} = R^T$

□ Configuration and rigid transformation:

■ $R_{ab} = [x_{ab} \ y_{ab} \ z_{ab}] \in SO(3)$ Configuration Space

Rotational motion in \mathbb{R}^3

Figure 2.3

□ Configuration and rigid transformation:

- $R_{ab} = [x_{ab} \ y_{ab} \ z_{ab}] \in SO(3)$ Configuration Space
- Let $q_b = \begin{bmatrix} x_b \\ y_b \\ z_b \end{bmatrix} \in \mathbb{R}^3$: coordinates of q in B.

$$q_a = x_{ab} \cdot x_b + y_{ab} \cdot y_b + z_{ab} \cdot z_b$$
$$= \begin{bmatrix} x_{ab} & y_{ab} & z_{ab} \end{bmatrix} \begin{bmatrix} x_b \\ y_b \\ z_b \end{bmatrix} = R_{ab} \cdot q_b$$

Figure 2.3

Chapter 2 Rigid Body Motion

Rigid Body Transformations

Rotational motion in \mathbb{R}^3

in \mathbb{R}^3

Rigid Body

Reciprocal Screws

□ Configuration and rigid transformation:

■ $R_{ab} = [x_{ab} \ y_{ab} \ z_{ab}] \in SO(3)$ Configuration Space

Rotational motion in \mathbb{R}^3

■ Let $q_b = \begin{bmatrix} x_b \\ y_b \\ z_b \end{bmatrix} \in \mathbb{R}^3$: coordinates of q in B.

$$q_a = x_{ab} \cdot x_b + y_{ab} \cdot y_b + z_{ab} \cdot z_b$$
$$= \begin{bmatrix} x_{ab} & y_{ab} & z_{ab} \end{bmatrix} \begin{bmatrix} x_b \\ y_b \\ z_b \end{bmatrix} = R_{ab} \cdot q_b$$

Figure 2.3

■ A configuration $R_{ab} \in SO(3)$ is also a transformation:

$$R_{ab}: \mathbb{R}^3 \to \mathbb{R}^3, R_{ab}(q_b) = R_{ab} \cdot q_b = q_a$$

A config. \Leftrightarrow A transformation in SO(3)

Property 2: R_{ab} preserves distance between points and orientation.

$$\blacksquare \|R_{ab} \cdot (p_b - p_a)\| = \|p_b - p_a\|$$

Chapter 2 Rigid Body Motion

Rigid Body Transformations

 $\begin{array}{c} \text{Rotational} \\ \text{motion in } \mathbb{R}^3 \end{array}$

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Property 2: R_{ah} preserves distance between points and orientation.

$$\|R_{ab}\cdot(p_b-p_a)\| = \|p_b-p_a\|$$

Proof:

For
$$a \in \mathbb{R}^3$$
, let $\hat{a} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$

Note that $\hat{a} \cdot b = a \times b$

In follows from
$$||R_{ab}(p_b - p_a)||^2 = (R_{ab}(p_b - p_a))^T R_{ab}(p_b - p_a)$$

 $= (p_b - p_a)^T R_{ab}^T R_{ab}(p_b - p_a)$
 $= ||p_b - p_a||^2$

2 follows from $R\hat{v}R^T = (Rv)^{\wedge}$ (prove it yourself)

4□ → 4周 → 4 = → 4 = → 9 0 ○

Rotational motion in \mathbb{R}^3

\Box Parametrization of SO(3) (the exponential coordinate):

 \diamond **Review:** $S^1 = \{z \in \mathbb{C} | |z| = 1\}$

Rotational motion in \mathbb{R}^3

Euler's Formula

"One of the most remarkable, almost astounding, formulas in all of mathematics."

R. Feynman

Figure 2.4

4□ > 4□ > 4□ > 4□ > 4□ > 90

\Box Parametrization of SO(3) (the exponential coordinate):

 \diamond **Review:** $S^1 = \{z \in \mathbb{C} | |z| = 1\}$

Euler's Formula

"One of the most remarkable, almost astounding, formulas in all of mathematics."

R. Feynman

♦ Review:

$$\begin{cases} \dot{x}(t) = ax(t) \\ x(0) = x_0 \end{cases} \Rightarrow x(t) = e^{at}x_0$$

Chapter 2 Rigid Body Motion

Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Reciprocal Screws

$$R \in SO(3), R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$r_i \cdot r_j = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases} \leftarrow 6 \text{ constraints}$$

$$\Rightarrow 3 \text{ independent parameters!}$$

Rigid Body Motion

Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

$$R \in SO(3), R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$r_i \cdot r_j = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases} \leftarrow 6 \text{ constraints}$$

$$\Rightarrow 3 \text{ independent parameters!}$$

Consider motion of a point q on a rotating link

$$\begin{cases} \dot{q}(t) = \omega \times q(t) = \hat{\omega}q(t) \\ q(0): \text{ Initial coordinates} \end{cases}$$

Figure 2.5

Screws

Rotational motion in \mathbb{R}^3

$$R \in SO(3), R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$r_i \cdot r_j = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases} \leftarrow 6 \text{ constraints}$$

⇒ 3 independent parameters!

Consider motion of a point q on a rotating link

$$\begin{cases} \dot{q}(t) = \omega \times q(t) = \hat{\omega}q(t) \\ q(0): \text{ Initial coordinates} \end{cases}$$

$$(q(0))$$
. Illitial coordinates

Velocity of a digid Body
$$\Rightarrow q(t) = e^{\hat{\omega}t}q_0 \text{ where } e^{\hat{\omega}t} = I + \hat{\omega}t + \frac{(\hat{\omega}t)^2}{2!} + \frac{(\hat{\omega}t)^3}{3!} + \cdots$$

Rotational motion in \mathbb{R}^3

Figure 2.5

$$R \in SO(3), R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$\vdots r_{12} = \begin{cases} 0, & i \neq j \\ 0, & i \neq j \end{cases} \leftarrow 6 \text{ constrain}$$

$$r_i \cdot r_j = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases} \leftarrow 6 \text{ constraints}$$

$$\Rightarrow 3 \text{ independent parameters!}$$

Consider motion of a point q on a rotating link

$$\begin{cases} \dot{q}(t) = \omega \times q(t) = \hat{\omega}q(t) \\ q(0): \text{ Initial coordinates} \end{cases}$$

Figure 2.5

$$\Rightarrow q(t) = e^{\hat{\omega}t}q_0 \text{ where } e^{\hat{\omega}t} = I + \hat{\omega}t + \frac{(\hat{\omega}t)^2}{2!} + \frac{(\hat{\omega}t)^3}{3!} + \cdots$$

By the definition of rigid transformation, $R(\omega, \theta) = e^{\hat{\omega}\theta}$. Let $so(3) = {\hat{\omega} | \omega \in \mathbb{R}^3}$ or $so(n) = {S \in \mathbb{R}^{n \times n} | S^T = -S}$ where \wedge :

 $\mathbb{R}^3 \mapsto so(3) : \omega \mapsto \hat{\omega}$, we have:

Property 3: $\exp : so(3) \mapsto SO(3), \hat{\omega}\theta \mapsto e^{\hat{\omega}\theta}$

Rotational motion in \mathbb{R}^3

Rodrigues' formula ($\|\omega\| = 1$): $e^{\hat{\omega}\theta} = I + \hat{\omega}\sin\theta + \hat{\omega}^2(1 - \cos\theta)$

Chapter 2 Rigid Body Motion

Transformations

Rotational motion in \mathbb{R}^3

Rigid Motion in \mathbb{R}^3

Velocity of a Rigid Body

Wrenches and Reciprocal Screws

Reterence

Today

- Rigid Body Transformations
 - Length Preserving: ||g(p) g(q)|| = ||p q||
 - Orientation Preserving: $g_*(v \times w) = g_*(v) \times g_*(w)$
- 2 Rotational motion in \mathbb{R}^3
 - Rotation Matrix
 - Represents configuration
 - Represents (rotational) transformation
 - Rotation Matrices with matrix multiplication form a Group
 - Rotational Transformation is a Rigid Body Transformation