Tutorial 13: Probability and Statistics (MAL403/IC105)

Indian Institute of Technology Bhilai

- 1. Consider a normal population $N(\mu, \sigma^2)$. Which of the following is a simple hypothesis and which are composite hypotheses:
 - (a) $H_0: \mu > 2, \sigma^2 = 25$
 - (b) $H_0: \mu = 2$
 - (c) $H_0: \mu = 4, \sigma^2 = 9$
 - (d) $H_0: \mu = 2, \sigma^2 \neq 9$
 - (3) $H_0: \sigma^2 = 25$
- 2. A sample of size 1 is taken from a population distribution Poisson $P(\lambda)$. To test $H_0: \lambda = 1$ against $H_1: \lambda = 2$ consider the test

$$\phi(x) = \begin{cases} 1 & \text{if } x > 3 \\ 0 & \text{if } x \le 3 \end{cases}$$

Find the probabilities of type I and type II errors and the power power of the test.

- 3. The probability that a given coin will show up heads when tossed is p. In order to test $H_0: p=0.5$ against $H_1: p=0.75$, the coin was tossed 4 times independently. Let a test be: Reject H_0 , if the number of heads is at least 3, and accept H_1 otherwise. Find the Probabilities of Type I and Type II errors.
- 4. Suppose X_1, X_2, \ldots, X_{10} be a random sample form $N(\mu, 1)$ population. For testing $H_0: \mu = 4$ vs. $H_1: \mu = 7$ at level α , find the most powerful test.
- 5. A random sample of size 20 from a normal population gives a sample mean of 42 and sample standard deviation of 6. At 5% level of significance test the hypothesis that the population mean is more than 44. State clearly the null and alternative hypotheses.
- 6. An electrical firm manufactures batteries which have lifetimes normally distributed with mean μ and standard deviation 40 hours. What is the rejection region for $H_0: \mu = 800$ vs $\mu > 800$ at 5% level based on a sample of size n = 30.
- 7. The life (in years) of a certain battery is normally distributed. A random sample of 16 batteries produced a sample variance $S^2 = 3$. Test the hypothesis $H_0: \sigma^2 = 2$ vs $H_1: \sigma^2 > 2$ at 5% level of significance.
- 8. Suppose X is random sample with p.d.f. $f(x|\theta) = \theta x^{\theta-1}$ for 0 < x < 1 find the most powerful test with significance level $\alpha = 0.05$ for testing the null hypothesis $H_0: \theta = 3$ against $H_1: \theta = 4$.