

### C4.5 ALGORITHM (2) WHICH ATTRIBUTE TO CHOOSE AS A NODE

SYRACUSE UNIVERSITY

School of Information Studies

## DETERMINE THE BEST ATTRIBUTE FOR SPLITTING

### Information gain (IG):

A statistical measure that measures how well a given attribute separates the training examples according to their target classification (Mitchell, 1990)

## DETERMINE THE BEST ATTRIBUTE FOR SPLITTING

#### Entropy

To measure the impurity of a data set

Given a collection S, which contains positive (+) and negative (-) examples, p<sub>i</sub> is the probability that an example belongs to Class i

 $Entropy(S) = -p_{+}log_{2}p_{+} - p_{-}log_{2}p_{-}$ 

What is the entropy for each of the following collections?







## DETERMINE THE BEST ATTRIBUTE FOR SPLITTING

#### Entropy

A measure that characterizes the impurity of a collection of examples

Given a collection S, which contains positive (+) and negative (-) examples, p<sub>i</sub> is the probability that an example belongs to Class i

Entropy(S) =  $-p_1\log_2 p_1 - p_2\log_2 p_2$ 

A collection of half-positive examples and half-negative examples Entropy(S) = 1

A collection of all positive examples or all negative examples Entropy(S) = 0



## INFORMATION GAIN: HOW MUCH IMPROVEMENT TOWARD PURITY?

categorical continuous

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |



$$Gain(S, A) = Entropy(S)$$

$$v \ Values(A) \ |S| \cdot Entropy(S_v)$$
The expected

The expected reduction in entropy caused by knowing the value of attribute A

# INFORMATION GAIN: HOW MUCH IMPROVEMENT TOWARD PURITY?

categorical continuous

| Tid | Refund | Marital<br>Status | Taxable<br>Income | Cheat |
|-----|--------|-------------------|-------------------|-------|
| 1   | Yes    | Single            | 125K              | No    |
| 2   | No     | Married           | 100K              | No    |
| 3   | No     | Single            | 70K               | No    |
| 4   | Yes    | Married           | 120K              | No    |
| 5   | No     | Divorced          | 95K               | Yes   |
| 6   | No     | Married           | 60K               | No    |
| 7   | Yes    | Divorced          | 220K              | No    |
| 8   | No     | Single            | 85K               | Yes   |
| 9   | No     | Married           | 75K               | No    |
| 10  | No     | Single            | 90K               | Yes   |



Entropy(S) = 
$$-0.7*\log 2(0.7)-0.3*\log 2(0.3) = 0.88$$

Entropy(S1) = 
$$0$$
  
Entropy(S2) =  $1$ 

$$IG = 0.88 - (0.4*0 + 0.6*1) = 0.28$$

Repeat this calculation to find the attribute that provides the highest IG.

School of Information Studies

### WHICH ATTRIBUTE SHOULD BE THE FIRST NODE?

Calculate the information gain (IG) for each attribute; choose the one with the highest IG.

### WHAT'S THE NEXT STEP?

Repeat the IG calculation for every subset generated from the last step ...

... until all nodes are "pure" with all positive examples or all negative examples; these are all leaf nodes