Using a functional trait approach to study insect community ecology

Kayla I Perry

USDA NIFA Postdoctoral Fellow

Department of Entomology, Ohio State University

perry.1864@osu.edu

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

Community ecology

A group of organisms representing multiple species living in a specified place and time (Vellend 2010)

- Focal set of species
- Spatial and/or temporal scales of interest

Traditional research approach – focused on taxonomy

- Abundance
- Richness
- Evenness
- Diversity

Community ecology

A group of organisms representing multiple species living in a specified place and time (Vellend 2010)

- Focal set of species
- Spatial and/or temporal scales of interest

Traditional research approach – focused on taxonomy

- Abundance
- Richness
- Evenness
- Diversity

Limitations to taxonomic approaches

Context dependencies

Trait-based ecology

Uses traits to generalize patterns beyond taxa and locations (de Bello et al. 2021)

- Allows comparison between studies, ecosystems, and biomes (Moretti et al. 2017)

Improve mechanistic understanding of ecological processes (Mason and Bello 2013)

<u>Assumption</u>: Traits are more predictable than species

Functional Ecology

What is a trait and what makes a trait functional?

Any morphological, physiological, phenological, or behavioral character measurable at the individual level, from the cell to the organism

What is a trait and what makes a trait functional?

Any morphological, physiological, phenological, or behavioral character measurable at the individual level, from the cell to the organism

Impact fitness of an individual directly or indirectly via effects on growth, reproduction, and survival

- Should be heritable

<u>Performance traits</u>: direct measure of fitness via growth, reproduction, or survival

Performance Trait

Biomass

Reproductive Output

Longevity

Individual

Fitness

<u>Performance traits</u>: direct measure of fitness via growth, reproduction, or survival

Response traits: determines the response of an individual to environmental changes or to an interaction with another, affecting the performance

<u>Performance traits</u>: direct measure of fitness via growth, reproduction, or survival

Response traits: determines the response of an individual to environmental changes or to an interaction with another, affecting the performance

Effect traits: trait that affects other trophic levels or an ecological process

<u>Performance traits</u>: direct measure of fitness via growth, reproduction, or survival

Response traits: determines the response of an individual to environmental changes or to an interaction with another, affecting the performance

Effect traits: trait that affects other trophic levels or an ecological process

<u>Functional trait proxy</u>: correlated with functional traits, but often easier to measure

<u>Performance traits</u>: direct measure of fitness via growth, reproduction, or survival

Response traits: determines the response of an individual to environmental changes or to an interaction with another, affecting the performance

Effect traits: trait that affects other trophic levels or an ecological process

<u>Functional trait proxy</u>: correlated with functional traits, but often easier to measure

Development of functional trait framework for arthropods

Insect Conservation and Diversity

Insect Conservation and Diversity (2016) doi: 10.1111/jcad.12211

TECHNIQUES & METHODOLOGY

GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae)

CATHERINE L. PARR, 1,2 ROBERT R. DUNN,3 NATHAN J. SANDERS,4 MICHAEL D. WEISER,5 MANOLI PHOTAKIS,6 TOM R. BISHOP,1,7 MATTHEW C. FITZPATRICK,8 XAVIER ARNAN,9 FABRICIO BACCARO, 10 CARLOS R. F. BRANDÃO, 11 LACY CHICK, 12 DAVID A. DONOSO, 13 TOM M. FAYLE, 14,15 CRISANTO GÓMEZ, 16 BLAIR GROSSMAN,6 THINANDAVHA C. MUNYAI, 17 RENATA PACHECO, 18 JAVIER RETANA, 19 ANDREW ROBINSON,6 KATAYO SAGATA, 6,20 ROGÉRIO R. SILVA, 21 MELANIE TISTA, 22 HERALDO VASCONCELOS, 18 MICHELLE YATES 3 and HELOISE GIBB 10 Department of Earth, Ocean and Ecological

Ecological Entomology

Ecological Entomology (2015), 40, 1-13

DOI: 10.1111/een.12158

INVITEDREVIEW

Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles

NICHOLAS M. FOUNTAIN-JONES, 1 SUSAN C. BAKER 1,2 and GREGORY J. JORDAN 1 School of Biological Science, University of Tasmania, Hobart, Australia and 2 Forestry Tasmania, Hobart, Australia

Functional Ecology

BRITISH
ECOLOGICAL
SOCIETY

Functional Ecology 2017, **31**, 558–567

doi: 10.1111/1365-2435.12776

Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits

Marco Moretti*,¹, André T. C. Dias², Francesco de Bello^{3,4}, Florian Altermatt^{5,6}, Steven L. Chown⁷, Francisco M. Azcárate⁸, James R. Bell⁹, Bertrand Fournier¹⁰, Mickaël Hedde¹¹, Joaquín Hortal^{12,13}, Sébastien Ibanez¹⁴, Erik Öckinger¹⁵, José Paulo Sousa¹⁶, Jacintha Ellers^{†,17} and Matty P. Berg^{†,17,18}

Objective: Investigate short-term effects of tornado and salvage logging disturbance on ground-dwelling beetles

ONE OF THE FOUR CARNEGIE MUSEUMS

Conservation

Powdermill Nature Reserve

Objective: Investigate short-term effects of tornado and salvage logging disturbance on ground-dwelling beetles

ONE OF THE FOUR CARNEGIE MUSEUMS

Conservation

Powdermill Nature Reserve

Objective: Investigate short-term effects of tornado and salvage logging

disturbance on ground-dwelling beetles

Tornado
4 June 2012

Salvage Logging 2013

ONE OF THE FOUR CARNEGIE MUSEUMS OF PITTSBURGH

Quantifying ground-dwelling beetles

Pitfall traps along transects

June-September 2015

Sampled continuously

Identified to species (56 species)

- Carabidae (37)
- Scarabaeoidea (14)
- Silphidae (5)

Morphological approach to evaluate beetle traits

Measured 8 traits (Fountain-Jones et al. 2015)

Body size (fecundity)

Head width (microhabitat use)

Mandible length (resource use)

Eye width (predator avoidance)

Antennae length (foraging)

Elytra length (microhabitat use)

Leg length (dispersal)

Flight ability (dispersal)

Trait Dataset

Relative Species Abundance Dataset

A	Α	В	С	D	E	F	G	Н	1
1		BodySize	rHeadWidth	rMandible	rEyeWidth	rAntennae	rElytra	rHindLeg	Dispersal
2	Agfe	7.3	0.137	0.096	0.068	0.534	0.575	0.562	1
3	Agfi	9	0.122	0.089	0.067	0.5	0.578	0.533	1
4	Agre	8	0.113	0.088	0.063	0.425	0.513	0.5	0
5	Amin	10.6	0.189	0.123	0.047	0.425	0.566	0.481	1
6	Anha	12.5	0.192	0.112	0.048	0.344	0.544	0.48	1
7	Anme	12	0.208	0.125	0.05	0.4	0.6	0.508	1
8	Anni	11.5	0.217	0.122	0.043	0.357	0.583	0.487	1
9	Cago	21.5	0.167	0.13	0.051	0.623	0.656	0.698	0
10	Chem	14.5	0.159	0.145	0.055	0.49	0.566	0.579	1
11	Chla	16.5	0.139	0.085	0.061	0.485	0.576	0.576	1
12	Cyco	16.3	0.153	0.123	0.049	0.393	0.479	0.485	0
13	Cyfu	15.8	0.171	0.12	0.044	0.386	0.532	0.487	0
14	Cysi	16.2	0.105	0.08	0.031	0.259	0.309	0.327	0
15	Dipo	13.4	0.19	0.142	0.051	0.607	0.608	0.612	0
16	Dite	19.6	0.202	0.151	0.049	0.459	0.565	0.617	0
17	Hasp	17.5	0.131	0.08	0.023	0.234	0.337	0.303	0
18	Noni	8.5	0.212	0.141	0.047	0.4	0.588	0.447	1
19	Noae	5.9	0.288	0.119	0.119	0.339	0.593	0.492	1
20	Olpa	8	0.138	0.075	0.063	0.45	0.575	0.55	1
21	Plan	14.8	0.115	0.095	0.054	0.568	0.541	0.669	C
22	Plte	11.5	0.104	0.096	0.052	0.557	0.626	0.574	1
22	Dear		0.214	0 114	0.042	0.4	0.571	0.414	

Lucia			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							1
A	Α	В	С	D	E	F	G	Н	1	
1		Agfe	Agfi	Agre	Amin	Anha	Anme	Anni	Cago	C
2	C41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
3	BS42	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	
4	B43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
5	C44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.32	
6	C45	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.06	
7	BS46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
8	B47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
9	C48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11	
10	BS49	0.01	0.26	0.00	0.01	0.02	0.01	0.00	0.00	
11	C50	0.00	0.00	0.00	0.07	0.00	0.00	0.00	0.00	
12	B51	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	
13	C52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.26	
14	BS53	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	
15	C54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
16	B55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
17	C56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.15	
18	B57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
19	C58	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.07	
20	BS59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	
21	C60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
22	BS61	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.05	

Check data for correlated traits

Check data for correlated traits

Traits removed:

- 1. Head width
- 2. Eye width
- 3. Elytra length

Correlation coefficient ≥ 0.5

Calculate functional diversity measures in R

- 1) Community-weighted means for individual traits
- 2) Functional diversity indices

Calculate functional diversity measures in R

- 1) Community-weighted means for individual traits
- 2) Functional diversity indices
- *FD package in R dbFD function (Laliberte and Legendre 2010; Laliberte et al. 2014)

Community-weighted mean (CWM) for functional traits

Mean trait value for a community (at a site) weighted by the relative abundance of species (Swenson 2014)

Use as response variables in another statistical analysis

	Α	В	С	D	E	
1		BodySize	rMandible	rAntennae	rHingLeg	
2	C41	16.02911392	0.157594937	0.327151899	0.557189873	
3	BS42	14.7897541	0.143360656	0.359385246	0.557061475	
4	B43	14.39655172	0.134689655	0.392862069	0.509448276	
5	C44	16.96305732	0.143261146	0.471273885	0.59643949	
6	C45	14.74266409	0.125359073	0.443474903	0.540548263	
7	BS46	15.28623656	0.127688172	0.445260215	0.560698925	
8	B47	14.84642857	0.107803571	0.457285714	0.528125	
9	C48	16.28017058	0.163264392	0.311558635	0.634356077	
10	BS49	13.67383101	0.098800656	0.394675144	0.513343724	
11	C50	14.60327869	0.123009836	0.420085246	0.570796721	
12	B51	14.36295585	0.12746833	0.434792706	0.552644914	
13	C52	17.84709596	0.134618687	0.49535101	0.608474747	
14	BS53	14.66150442	0.141586283	0.49807854	0.574161504	
15	C54	17.70754561	0.176810116	0.189954395	0.665458541	
16	B55	13.38653846	0.136603846	0.345903846	0.519092308	
17	C56	16.46761488	0.161527352	0.384643326	0.640422319	
18	R57	16 82305564	N 13N358131	N 371381187	ი 567979711	

Community-weighted mean (CWM) for functional traits

Mean trait value for a community (at a site) weighted by the relative abundance of species (Swenson 2014)

Use as response variables in another statistical analysis

Orthopteran traits related to fecundity decreased with increasing elevation

Tiede et al. 2018. *Ecology*, 99(9)

Functional diversity indices

Four indices:

- Richness (Fric)
- Evenness (Feve)
- Divergence (Fdiv)
- Dispersion (Fdis)

Functional Richness (Fric)

Convex hull volume or range of functional traits represented in a community (Villéger et al. 2008)

Low functional richness = species have more similar trait means

Functional Richness (Fric)

Convex hull volume or range of functional traits represented in a community (Villéger et al. 2008)

Functional richness of millipedes decreased with urban soil disturbance and urbanization

Tóth and Hornung 2019. Insects, 11, 25

Functional Evenness (Feve)

Uses a minimum spanning tree approach to connect all species in trait space and measures the regularity of species points and their abundances along the branches (Villéger et al. 2008)

Increased regularity = Higher evenness

Functional Evenness (Feve)

Uses a minimum spanning tree approach to connect all species in trait space and measures the regularity of species points and their abundances along the branches (Villéger et al. 2008)

Functional evenness of birds increased with landscape diversity and native forest cover

Functional Divergence (Fdiv)

Measures average distance of all species from the centroid of trait space, then sums the divergences from that mean (Villéger et al. 2008)

Higher value = greater deviation towards maximum and minimum trait values

Functional Divergence (Fdiv)

Measures average distance of all species from the centroid of trait space, then sums the divergences from that mean (Villéger et al. 2008)

Lower trait divergence in soildwelling than in surface-dwelling species

Functional Dispersion (Fdis)

Measures average distance of each species to the centroid in trait space (Laliberte and Legendre 2010)

Functional Dispersion (Fdis)

Measures average distance of each species to the centroid in trait space (Laliberte and Legendre 2010)

Lower trait dispersion of ants in swamp forests than in slope or plateau forests

Fichaux et al. 2019. Oecologia, 189

Use functional diversity indices as response variables in other analyses

				5	_		0.45 0.55 0.65	
	Α	В	C	D	E			•
1		fric	feve	fdiv	fdis		8° .	0000
2	C41	3.490665	0.69549	0.80457	6.342087	fric	0000	۰ ۵۰ ۰
3	BS42	263.8848	0.658042	0.887715	6.635554		0000	o o o o
4	B43	NA	NA	NA	2.421579	-0		°°
5	C44	93.59532	0.508194	0.64749	4.459163			
6	C45	287.8725	0.486829	0.72774	5.275598		feve	00000
7	BS46	272.6698	0.569606	0.821247	5.843611	0 0 0 0		ŏ °° oŏ °
8	B47	4.156816	0.418076	0.606906	2.776267	00	0 0	
9	C48	413.1023	0.505612	0.844491	7.34733	و و و	0000	
10	BS49	295.6353	0.540234	0.839531	6.12348			fdiv
11	C50	368.0445	0.728331	0.821105	6.50555			
12	B51	726.9394	0.555767	0.759394	5.826202	- 000 0	0000	0000
13	C52	148.6756	0.47298	0.808584	3.516524	9 9 9	8 % 0 0 0 0	° 8 %
14	BS53	556.092	0.479286	0.760378	5.978893	% 0 00	0000	• • • •
15	C54	131.0303	0.440389	0.954997	4.042442			
16	B55	201.6558	0.560655	0.928949	6.765773	0 200 400 600		0.6 0.7 0.8 0.9 1.0

Objective: Investigate short-term effects of tornado and salvage logging disturbance on ground-dwelling beetles

ONE OF THE FOUR CARNEGIE MUSEUMS OF PITTSBURGH

Undisturbed Forest

Windthrow

Salvaged

Powdermill

Nature

Reserve

Conservation

Smaller ground-dwelling beetle species found in disturbed forest

Ground-dwelling beetle functional richness higher in disturbed forest

Trait-based ecology – key points

1) Any character measurable at the individual level that directly or indirectly impacts fitness (growth, reproduction, survival)

2) Traits and functional diversity have greater comparative applicability among habitats and ecosystems than taxonomic metrics (de Bello et al. 2021)

3) Mechanistic basis for studying and predicting changes in community structure (Moretti et al. 2017)

Relevant resources

All resources available here: github.com/kiperry/ESA_NCB_2021

Kayla I. Perry

USDA NIFA Postdoctoral Fellow

Perry.1864@osu.edu

Functional Ecology

Functional Ecology 2017, 31, 558-567

doi: 10.1111/1365-2435.12776

Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits

Marco Moretti*,1, André T. C. Dias², Francesco de Bello³,4, Florian Altermatt⁵,6, Steven L. Chown², Francisco M. Azcárate⁸, James R. Bell⁹, Bertrand Fournier¹0, Mickaël Hedde¹¹, Joaquín Hortal¹²,¹3, Sébastien Ibanez¹⁴, Erik Öckinger¹⁵, José Paulo Sousa¹6, Jacintha Ellers¹,¹7 and Matty P. Berg¹,17,18

