COMP 2711 Discrete Mathematical Tools for Computer Science 2022 Fall Semester - Tutorial 1

Question 1: Let p, q, and r be the propositions

- p: You get an A in the final exam.
- q: You do every exercise in this book.
- r: You get an A in the class.

Write these propositions using p, q, and r and the Boolean connectives

- (a) You get an A in this class, but you do not do every exercise in the book
- (b) You get an A in the final, you do every exercise in this book, and you get an A in this class
- (c) Getting an A in the final and doing every exercise in this book is sufficient for getting an A in this class.
- (d) You get an A in this class if and only if you either do every exercise in this book or you get an A in the final.

Using p, q, r above express each of the following as an English sentence

- (e) $p \leftrightarrow r$
- (f) $\neg r \land q \rightarrow \neg p$

Solution: (a) $r \land \neg q$

- (b) $p \wedge q \wedge r$
- (c) $(p \land q) \rightarrow r$
- (d) $r \leftrightarrow (q \lor p)$
- (e) You get an A in the course if and only if you get an A in the final.
- (f) If you don't get an A in the course but you have done all the exercises, then you must not get an A in the final.

Question 2: (Distributive "Laws")

- (a) Is $w \wedge (w \oplus v)$ equivalent to $(w \wedge w) \oplus (w \wedge v)$?
- (b) Is $w \lor (u \oplus v)$ equivalent to $(w \lor u) \oplus (w \lor v)$? (Noted. $a \oplus b$ evaluates F if and only if a and b are the same.)

Solution : (a) \land distributes over \oplus . Compare the truth tables of $w \land (w \oplus v)$ and $(w \land w) \oplus (w \land v)$.

w	v	$w \wedge w$	$w \wedge v$	$(w \land w) \oplus (w \land v)$	$(w \oplus v)$	$w \wedge (w \oplus v)$	
Т	Τ	Т	Т	F	F	F	
Т	F	Т	F	Т	Т	Т	
F	Т	F	F	F	Т	F	
F	F	F	F	F	F	F	

(b) \vee doesn't distribute over \oplus . Try w=T, u=T, and v=T, where T stands for a statement that is always true, to get the value of $w\vee(u\oplus v)$ and $(w\vee u)\oplus(w\vee v)$.

$$T \vee (T \oplus T) = T \neq F = (T \vee T) \oplus (T \vee T).$$

Question 3: Let p and q be statements, prove each of the following compound statement is always true. (such statement is called "Tautology")

- (a) $(q \land \neg q) \to p$
- (b) $(p \wedge q) \rightarrow p$

Solution : (a) Compute the truth tables of $(q \land \neg q) \to p$.

q	p	$q \land \neg q$	$(q \land \neg q) \to p$
Τ	Т	F	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	T

(b) Compute the truth table of $(p \wedge q) \to p$.

q	p	$q \wedge p$	$(q \wedge p) \to p$
Т	Т	Т	T
Т	F	F	Т
F	Т	F	Т
F	F	F	T

Question 4: For each of the following pairs of logic statements, either prove that the two statements are logically equivalent, or give a counterexample. In your proof, you may use either a truth table or logic laws. A counterexample should consist of a truth setting of the variables and the truth values of the statements under the setting.

- (a) $(p \land q) \to r$ and $\neg p \lor \neg q \lor r$
- (b) $(p \wedge q) \to r$ and $\neg r \to (p \to \neg q)$
- (c) $(p \to r) \land (q \to r)$ and $(p \land q) \to r$
- (d) $(p \land \neg q) \rightarrow (r \land \neg r)$ and $p \rightarrow q$

Solution: (a) Equivalent.

$$(p \wedge q) \to r \equiv \neg (p \wedge q) \vee r \quad (s \to t \equiv \neg s \vee t)$$

 $\equiv \neg p \vee \neg q \vee r \quad \text{(by DeMorgan's law)}$

(b) Equivalent.

$$\neg r \to (p \to \neg q) \equiv r \lor (\neg p \lor \neg q) \quad (s \to t \equiv \neg s \lor t)$$
$$\equiv (p \land q) \to r \quad \text{(by part (a))}$$

- (c) Not equivalent. Counter example: p = T, q = F, r = F. The first statement is false, while the second statement is true.
- (d) Equivalent.

$$(p \land \neg q) \to (r \land \neg r) \equiv \neg (p \land \neg q) \lor (r \land \neg r)$$
$$\equiv \neg p \lor q \lor F$$
$$\equiv \neg p \lor q$$
$$\equiv p \to q$$

Question 5: (a) Given the statement $(a \lor b) \land (\neg b \lor c)$. Express its equivalent statement using only $NOT(\neg)$ and $Implication(\rightarrow)$.

(b) Given $\neg a \lor (b \to \neg c)$. Express its equivalent statements using only:

- (i) NOT (\neg) and Implication (\rightarrow).
- (ii) $NOT(\neg)$ and $OR(\lor)$.
- (iii) NOT (\neg) and AND (\wedge).

Solution: (a)

$$(a \lor b) \land (\neg b \lor c)$$

$$\equiv (\neg a \to b) \land (b \to c)$$

$$\equiv \neg((\neg a \to b) \to \neg(b \to c))$$

(b) (i)
$$a \to (b \to \neg c)$$

(ii)
$$\neg a \lor \neg b \lor \neg c$$

(iii)
$$\neg (a \land b \land c)$$