TD 20 - Probabilités

- 1. Les fonctions suivantes définissent-elles une probabilité sur l'espace probabilisable $(\Omega, \mathcal{P}(\Omega))$?
 - $\mathbf{a.} \quad \Omega = \mathbb{N}, \forall k \in \mathbb{N} : \mathbb{P}(\{k\}) = \frac{1}{2^k}$

NON, car $\sum_{k\geq 0} \frac{1}{2^k}$ est une série géométrique convergente, mais $\sum_{k=0}^{+\infty} \frac{1}{2^k} = 2 \neq 1$.

 $\mathbf{b.} \quad \Omega = \mathbb{N}, \forall k \in \mathbb{N} : \mathbb{P}(\{k\}) = \frac{1}{2^{k+1}}$

OUI, car $\sum_{k\geq 0} \frac{1}{2^{k+1}}$ est une série géométrique positive convergente, et $\sum_{k=0}^{+\infty} \frac{1}{2^{k+1}} = 1$.

c. $\Omega = \mathbb{N}^*, \forall k \in \mathbb{N}^* : \mathbb{P}(\{k\}) = \sin\left(\frac{1}{k}\right)\sqrt{1+k}$

NON, car $\sin\left(\frac{1}{k}\right)\sqrt{1+kt} \underset{+\infty}{\sim} \frac{1}{\sqrt{k}}$ et $\sum_{k>1} \frac{1}{\sqrt{k}}$ est une série positive divergente.

d. $\Omega = \mathbb{N}^*, \forall k \in \mathbb{N}^* : \mathbb{P}(\{k\}) = \frac{1}{k(k+1)}$

OUI, car $\sum_{k>1} \frac{1}{k(k+1)}$ est une série positive convergente (par comparaison à une série de Riemann),

et
$$\sum_{k=1}^{+\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 \text{ (par t\'elescopage)}.$$

2. Donner une condition sur le paramètre a pour que les fonctions suivantes définissent une probabilité sur l'espace probabilisable $(\Omega, \mathcal{P}(\Omega))$.

Dans tous les exercices, il faut a > 0, et $\sum_{k=n_0}^{+\infty} \mathbb{P}(\{k\}) = 1$, où n_0 est le plus petit entier de Ω .

a. $\Omega = \mathbb{N}, \forall k \in \mathbb{N} : \mathbb{P}(\{k\}) = \frac{1}{a^{k+2}}$

Pour que la série géométrique $\sum \mathbb{P}(\{k\})$ soit positive et convergente, il faut a>1.

$$\sum_{k=0}^{+\infty} \frac{1}{a^{k+2}} = \frac{1}{a^2} \times \frac{1}{1 - \frac{1}{a}} = \frac{1}{a^2 - a}.$$

On veut donc $\frac{1}{a^2 - a} = 1$, avec a > 1. On trouve : $a = \frac{1 + \sqrt{5}}{2}$.

b. $\Omega = \mathbb{N}, \forall k \in \mathbb{N} : \mathbb{P}(\{k\}) = \frac{2^k a}{k!}$

 $\sum_{k=0}^{+\infty} \frac{2^k a}{k!} = a e^2. \text{ On en déduit } a = e^{-2}.$

c. $\Omega = \mathbb{N}^*, \forall k \in \mathbb{N}^* : \mathbb{P}(\{k\}) = \frac{a}{k2^k}$

 $\sum_{k=1}^{+\infty} \frac{a}{k2^k} = -a \ln \left(1 - \frac{1}{2} \right) = a \ln 2. \text{ On en déduit } a = \frac{1}{\ln 2}.$

d.
$$\Omega = \mathbb{N}, \forall k \in \mathbb{N} : \mathbb{P}(\{k\}) = \frac{ak}{2^k}$$

$$\sum_{k=0}^{+\infty} \frac{ak}{2^k} = \frac{a}{2} \sum_{k=0}^{+\infty} \frac{k}{2^{k-1}} = \frac{a}{2} \frac{1}{(1-\frac{1}{2})^2} = 2a. \text{ On en déduit } a = \frac{1}{2}.$$

$$\mathbf{e.} \quad \Omega = [\![2; +\infty[\![}, \forall k \geq 2 : \mathbb{P}(\{k\}) = \frac{a}{k^2 - 1}] \\ \sum_{k=2}^{+\infty} \frac{a}{k^2 - 1} = \frac{a}{2} \sum_{k=2}^{+\infty} \left(\frac{1}{k-1} - \frac{1}{k+1} \right) = \frac{a}{2} \sum_{k=2}^{+\infty} \left(\left(\frac{1}{k} + \frac{1}{k-1} \right) - \left(\frac{1}{k+1} + \frac{1}{k} \right) \right) = \frac{3a}{4} \text{ (par t\'elescopage)}.$$
 On en déduit $a = \frac{4}{3}$.

- **3.** On considère les réels $p_{i,j} = \lambda \times \frac{a^{i+j}}{i!j!}, (i,j) \in \mathbb{N}^2, a > 0.$
 - a. Déterminer la valeur de λ pour laquelle les réels $p_{i,j}$ définissent la loi d'un vecteur aléatoire (X,Y) (c'est-à-dire $X(\Omega)=Y(\Omega)=\mathbb{N}$ et $\forall (i,j)\in\mathbb{N}^2, \mathbb{P}(X=i,Y=j)=p_{i,j}).$

On a:
$$\sum_{i=0}^{+\infty} \sum_{j=0}^{+\infty} \lambda \frac{a^{i+j}}{i!j!} = \sum_{i=0}^{+\infty} \lambda \frac{a^i}{i!} \left(\sum_{j=0}^{+\infty} \frac{a^j}{j!} \right) = \sum_{i=0}^{+\infty} \lambda \frac{a^i}{i!} e^a = \lambda e^{2a}.$$

On en déduit que $p_{i,j}$ définissent la loi d'un vecteur aléatoire (X,Y) si, et seulement si $\lambda = e^{-2a}$.

b. On suppose cette condition remplie. Déterminer les lois marginales de X et Y.

Soit
$$i \in \mathbb{N}$$
. $\mathbb{P}(X = i) = \sum_{j=0}^{+\infty} p_{i,j} = e^{-a} \frac{a^i}{i!}$; de même pour $j \in \mathbb{N}$, $\mathbb{P}(Y = j) = e^{-a} \frac{a^j}{j!}$.

4. Dans chaque cas suivant, expliciter la loi de la variable aléatoire X, en préciser les paramètres, et donner son espérance et sa variance.

a.
$$X(\Omega) = \mathbb{N}, \forall n \in \mathbb{N} : \mathbb{P}(X = n + 1) = \frac{a}{n+1} \mathbb{P}(X = n)$$
 où $a > 0$.

Une récurrence immédiate donne, pour tout $n \in \mathbb{N} : \mathbb{P}(X = n) = \frac{a^n}{n!} \mathbb{P}(X = 0)$.

On a
$$\sum_{n=0}^{+\infty} \mathbb{P}(X=n) = 1$$
, donc $\mathbb{P}(X=0) \sum_{n=0}^{+\infty} \frac{a^n}{n!} = 1$ d'où : $\mathbb{P}(X=0) = e^{-a}$.

Finalement, pour $n \in \mathbb{N}$: $\mathbb{P}(X = n) = e^{-a} \frac{a^n}{n!}$, donc X suit une loi de Poisson de paramètre a, et $\mathbb{E}(X) = V(X) = a$.

b. $X(\Omega) = \mathbb{N}^*, \forall n \in \mathbb{N}^*, 3 \, \mathbb{P}(X = n + 2) = 4 \, \mathbb{P}(X = n + 1) - \mathbb{P}(X = n).$

La suite $(\mathbb{P}(X=n))_n$ est une suite récurrente linéaire d'ordre 2 dont les racines de l'équation caractéristique sont 1 et $\frac{1}{3}$.

Il existe donc deux réels A et B tels que pour tout $n \in \mathbb{N}^* : \mathbb{P}(X = n) = A + B \frac{1}{3^n}$.

La condition $\sum_{n=1}^{+\infty} \mathbb{P}(X=n) = 1$ donne immédiatement A=0, puis $B \times \frac{1}{3} \times \frac{1}{1-\frac{1}{3}} = 1$ d'où B=2.

Finalement, pour tout $n \in \mathbb{N}^*$: $\mathbb{P}(X = n) = \frac{2}{3^n} = \frac{2}{3} \times \left(\frac{1}{3}\right)^{n-1}$, donc X suit une loi géométrique de paramètre $\frac{2}{3}$, et $\mathbb{E}(X) = \frac{3}{2}$, et $\mathbb{V}(X) = \frac{3}{4}$.