NASA CR- 176, 144

NASA-CR-176794 LC-85-52386 198600 16484

A Reproduced Copy

OF

NASA CR-176,794

Reproduced for NASA $by \ the \\ \textbf{NASA Scientific and Technical Information Facility}$

LIBRARY COPY

OCT 1 5 1986

LANGLEY HUSE K FUENTER
LIBRARY, NASA
HAMPTON, VIRGINIA

FFNo 672 Aug 65

DFW (Dallas-Ft. Worth) Microburst on August 2, 1985

Chicago Univ., IL

Prepared for

Washington, DC

1906

N86-25956#

9 Ĩ. MATIONAL TECHNICAL INFORMATION SERVICE 12 WILLERY PLATE

DFW MICROBURST

On August 2, 1985

T. Theodore Fujita

Professor of Meteorology

The University of Chicago

COLOR ILLUSTRATIONS TELEDUCED IN BLACK AND WHITE

DFW Microburst

Copyright © 1986 by T. Theodore Fuilta

ITTS is contactived to reproduce and set this
report. Formission for further reproduction

Rout is a stational from this copyright cover.

Printed in the United States of America

Published by Satellite and Mesometeorology Research Project (SMRP) Department of the Geophysical Sciences The University of Chicago

SMRP Research Paper Number 217

Library of Congress Catalog Card Number 85-52386

National Technical Information Service PB 86-131638

TABLE OF CONTENTS

INTRODUCTI	ON	MYR saudomi k Majo siani Napejiri	1
CHAPTER 1	WEATHER SITUATIONS		5
	1.1 Weather at DFW Airport	5	
	1.2 Radar pictures of the microburst cloud	9	
	1.3 Satellite pictures and infrared temperature	11	
CHAPTER 2	ANALYSIS OF DELTA 191 DFDR READOUT		17
والمنافقة والمراوية	2.1 Plots of the DFDR readout	17	yd ygagai derdle nargaladra.
	2.2 Aircraft, earth, and 17L coordinates	19	
	2.3 Acceleration, velocity, and distance traveled	20	
	2.4 Computation of three-dimensional winds	22	
CHAPTER 3	ENERGY, CURVATURE, AND COMMAND		27
CIIM ISNO		2.7	inamerican del
	3.1 Kinetic, potential, and total energy 3.2 Roll of aircraft and aileron position	29	
	3.3 Vertical curvature and curvature of pitch	31	
	3.4 Horizontal curvature and command of heading	33	
		•	
CHAPTER 4	SPECIFIC EVENTS EXPERIENCED		35
	4.1 Penetration of a descending vortex	35	
	4.2 Penetration of two stretching vortices	. 38	
	4.3 First and second contacts	41	
	4.4 Third and fourth contacts	43	
CHAPTER 5	DATA FROM OTHER AIRCRAFT		45
- The state of the	5.1 Delta 963 (B-737)	47	Andrew Company of Angree States of the States
	5.2 Delta 1061 (B-737)	48	
	5.3 American 351 (B-727)	50	
	5.4 N715JF (Lear Jet)	50	
	5.5 American 539 (MD-80)	51	
	5.6 Delta 557 (B-727)	52	
	5.7 Descent and expansion of microburst	52	

CHAPTER 6		ORATORY MODEL A ROBURST DETECTION				55
	6.1	University of Chicago laboroposed microburst-dete	oratory model	and the second s	55 59	arta capat en es rimiga tron
SUMMARY AN	ID CO	NCLUSIONS	opalator valoritotti majandapotti pilotoji pilotoji pilotoji jaja jija pilotojajak kilotos (k	***************************************		62
APPENDICES						64
	A.1	Computation equations	- September - American September - September - As s	· ·	65	A. C.
	Λ.2	DFDR readout data I			67	
	A.3	DFDR readout data !!			73	
	A.4	Aircraft positions			79	
		Accelerations			88	
	A.6	Three-component winds			97	
	A.7	Total windspeeds			106	
	. A.8	Disturbed pressure			115	
	A.9	Curvatures			124	
	A.10	Energy			133	
	-A.11	Sideslip angles			142	
REFERENCES						151
		ritalien en de partie de serve de serve de serve de partie de partie de la constitue de la con	ARCHONISTANCE TO THE STREET STREET OF STREET	laderana erimini, buredoprasaner rans erreranaños	-	
SUBJECT INDE	X	ordenskammen, kan til sæger årende, talen er trek kronsk prokletter kritisk og skalen og skalen og skalen og s	mannensammen verskiller av Julier sæmlæken samtel companyel a	ningenmentenium y all dags legiones (v. sylvinssissississississ	······································	153
			ABOUT TI-	IE AŬTHO	R	155

PREFACE

This book describes the features of the microburst on August 2, 1985, related to the Delta 191 accident during the approach to Runway 17L of the Dallas-Ft. Worth Airport. Both radar and satellite data, along with ground-based measurements, were used in determining the characteristics of the parent cloud which spawned the most complicated microburst winds ever analyzed by the author.

The detailed reconstruction of the airflow and the aircraft's maneuver were made possible by a series of computer analyses of the Digital Flight Data Recorder (DFDR) readout. Analysis of the DFDR readout and aircraft performance were assisted by Captain Douglas Twinam, Messrs. Charles Bautz, Jr. and Roy Maxwell of Delta Air Lines, Inc.

The purpose of this book is to present both measured and computed values in color diagrams that can be evaluated readily by meteorologists, pilots, structural engineers, and other interested persons in preventing microburstrelated accidents in future years. The staff members of the Satellite and Mesometeorology Research Project (SMRP) of the Department of the Geophysical Sciences, the University of Chicago, played a major role in completing this book. The author wishes to extend his thanks to the staff members, Jaime Tecson and Brian Smith for computing aircraft and meteorological parameters, Jim Partacz and Duane Stiegler for photographic work, and Eric Peterson for satellite radiation analysis.

Appreciation is due to Mr. Charles Stern of the University of Chicago Printing Department for his dedicated effort toward the completion of this book, and to Mr. Robert Arsenault of Unique Printers and Lithographers for color printing under strict requirements and tight schedule. The author wishes to express his sincere appreciation to Mrs. Toshiko Arai, wife of the Consul General of Japan for her volunteer art work and to Mrs. Akiko Sugano for drafting and layout. Finally, special appreciation is due to my wife, Susie Fujita, for her hidden efforts in assisting with plotting charts and typing the manuscript while sharing sleepless nights with the author.

The meteorological research on radar, satellite, and conventional data was sponsored by the National Aeronautics and Space Administration (NASA) under Grant NGR 14-001-008 and the National Environmental Satellite, Data, and Information Service (NESDIS) under Grant NA85/ ADR064. The computation and reconstruction of microburst winds and the laboratory model experiment of microbursts were sponsored by the National Science Foundation (NSF) under Grant ATM8109828.

January 31, 1986

Tetsuya Theodore Fujita
The University of Chicago

Introduction

August 2, 1985 was a very hot summer day at the Dallas-Ft. Worth (DFW) Airport with midafternoon surface temperature of 101°F (38.3°C). The upper-air temperature below 700 mb was dry-adiabatic. Although large thunderstorms were located along the warm front far to the northeast, there were scattered, relatively small thunderstorms to the north of the airport.

At 1804 CDT, Delta 191 (L-1011) passed over the outer marker and descended toward Runway 17L. At 1803 CDT, Delta 191 had already entered the localized rainshower. While traversing through severe and unusual microburst winds, the aircraft lost its altitude and contacted the ground in a plowed field to the north of Texas Highway 114 at the location of the red dot in Fig. I.1. (For airport coordinate, see Fig. I.2).

Fig. I.1 An aerial photo of DFW Airport, looking north. Photo by the author on September 4, 1985.

Fig. I.2 ATC radar coordinates (blue) and Runway 17L coordinates (red) superimposed upon a vertical photo.

Fig. I.3 17L coordinates made visible by x-y lines in blue. Line interval is 1,000 ft. A red line extending from left to right across the photo denotes the path of the aircraft which made the first contact in the plowed field. Photo by the author on September 4, 1985.

The x-axis of Runway 17L coordinates is the centerline of the runway, with positive direction toward the south. The y-axis is perpendicular to the x-axis, with its positive direction toward the west. The origin of the coordinates is located at the approach end on the runway (See Fig. 1.2).

The locations of the four ground contacts are shown in Fig. I.3, along with the 17L coordinates at 1,000 ft interval of both x and y lines. Five-foot contour lines in Fig. I.4 reveal that the ground at the first contact slopes slightly upward toward the south.

After making the second contact in a short grass field, the aircraft's landing gear contacted the pavement of the highway. The time between the first and third (highway) contacts was approximately 3.6 seconds. Between the third and fourth contacts, the aircraft was airborne only for about 1 second. Then the fourth contact occurred on the south side of the service road. Thereafter, the aircraft skidded toward the water tanks seen in Fig. I.3.

Fig. 1.4 Position of the aircraft accelerometer at 1/8 second interval (small, black dots). The first and the second contacts are those of the main landing gear. The third contact left the tire tracks of both main and nose gear. Contour interval is 5 ft.

Chapter One

Weather Situations

1.1 Weather at DFW Airport

The National Weather Service (NWS) anemometer and the Low Level Wind Shear Alert System (LLWAS) centerfield anemometers are co-located 1,100' to the east of 17L centerline (See Fig. I.2). As shown in Fig. 1.1, the distance between them is no more than 150 feet.

The NWS Airport Office is located at the Delta hangar, 4,500' (3/4 n.m.) south of the anemometer. At 1553 CDT, NWS observed scattered towering cumuli with their bases at 6,000' AGL and scattered cirrus at 21,000' AGL. The 1751 CDT observation in Table 1.1 indicates little change in the cloud-base heights of both cumuli and cirrus clouds. However, shortly thereafter, a thunderstorm developed to the northeast of the approach end of 17L and moved slowly across the field toward the south, inducing gusty winds which were measured at the centerfield location beginning at 1811 CDT and peaking at 1824:30 CDT (See Fig. 1.2).

Fig. 1.1 NWS (left) and LLWAS centerfield (right) towers photographed by the author on September 4, 1985 prior to his ride on the cherry picker parked between the two anemometer towers.

Fig. 1.2 The trace of the gusty winds measured by the National Weather Service anemometer seen in Fig. 1.1.

Table 1.1 Weather observations from the National Weather Service Airport Office located at the Delta hangar.

CDT	CLOU	D S	VIS	Υ/	Td	ddff	REMARKS
1751	60SCT	E210BKN	11 1	01 /	65	1208	CB N-NE TCU NE-S-W-N
1805	E60SCT	210BKN	10			0708	T H-ME AND OVHD MOVG SLOWLY S CONL LTGCC RWU N-NE TOU NE-SE W
1814	4SCT EGOBKN	2108KN	11			3637	T N-NE AND OVHD MOVG SLOWLY S OCHL LTGCC RWG N-NE
1826	-X E60BKN		1/2			3050	T N-NE AND OVHD MOVG SLOWLY S OCHL LIGCC
1837	60BKN		2 1/2			1217	1 OVHD MOVE SLOWLY S OCHL LIGGE OVHD
1853	E 60BKN	2108KN	7	88	68	0210	T N-NE AND OVHO STNRY OCHL LTGCC N-NE

Fig. 1.3 A three-cup anemometer of the NWS seen from the cherry picker.

Fig. 1.4 The propeller-type LLWAS centerfield anemometer.

Fig. 1.5 Winds and weather at DFW Airport on August 2, 1985 between 1650 and 1920 CDT. Winds reported by DFW CT-E and CT-W are shown in blue, while those by NWS are in red.

Presented in Figs. 1.3 and 1.4 are the NWS and the centerfield anemometers, respectively. Reported winds by NWS and CT-E and CT-W are shown in Fig. 1.5. Note that the centerfield winds reported by ATC to pilots are unusually lower, on the average, than NWS winds, while gusts from LLWAS are higher than those from the NWS wind trace.

Fig. 1.6 A view from the cherry picker bucket placed above the LLWAS NE anemometer. Two water tanks and the entire area of the third and fourth contacts are visible. Photo by the author on September 4, 1985.

The LLWAS NE located 400' east of the 17L centerline and 3,000' north of the 17L threshold is the anemometer closest to the accident site. Since the exposure of this anemometer is excellent, it should have detected the microburst wind as early as 1806 CDT (See Fig. 1.6 for exposure and Fig. 5.9 for microburst boundary).

Fig. 1.7 Barograph and raingauge traces from the National Weather Service DFW Airport Office at the Delta hangar.

The NWS station pressure (elevation 574.83°) at 1806 CDT was computed to be 991.47 mb. This value was used in correcting the DFDR pressure obtained from the ALTF pressure altitude fine data and the Standard Atmosphere equation. Pressure variations and cumulative rainfalls recorded at the NWS are presented in Fig. 1.7. A total of 0.42" rainfall was received during the thunderstorm which induced both the DL 191 and the 70-kt peak gust microbursts.

1.2 Radar Pictures of the Microburst Cloud

Thunderstorm activity in and around the DFW Airport was depicted by the NWS Stephenville, Texas (SEP) radar. A sequence of Kavouras system photos did not include the color imagery at the accident time. Two photos in Fig. 1.8 show storm echoes at 1743 (23 minutes before the accident) and 1819 CDT (13 minutes after the accident).

A 16-mm radar film (B & W) from SEP, 75 n.m. southwest of DFW includes a sequence of images taken every 4 to 5 minutes. Figure 1.9 presents a sequence of 16 pictures taken between 1737 and 1843 CDT. The parent echo of the DL 191 microburst, identified as Echo "2" appeared at 1752 CDT just to the east of the 17L glideslope (See Fig. 1.9). It was a video integrator and processor (VIP) level 2 echo, 3 n.m. in diameter. In 4 minutes, at 1756 CDT, it grew to 6 n.m. in diameter. At 1800 CDT, Echo "2" was observed by the SEP radar specialist to have received a VIP level 4 (See NTSB Exhibit 5, black and white photograph, and NTSB Transcript, P55). The core at 1804 CDT was located on the 17L glideslope. Thereafter, the core increased in diameter until 1813 CDT, while moving slowly toward the south.

The core of Echo "2" was located directly above the NWS anemometer when it measured the 70-kt peak gust at 1825 CDT. Echo "2" began decreasing in diameter and in intensity. This evidence shows that the parent echo of the DL 191 microburst appeared on the SEP radar scope 14 minutes in advance of the accident. Six minutes before the accident, Echo "2" intensity increased to a VIP level 4. The peak gust of the microburst measured by the NWS anemometer, located 16,000' (2.7 n.m.) south of the microburst center, was 46 kts.

Apparently, the 70-kt peak gust at 1825 CDT was induced by the second microburst, spawned by the same parent Echo "2" as it passed directly over the runway area. Figure 1.5 shows two wind shifts, the one caused by the first microburst (DL 191 microburst) at 1811 CDT and the other by the second microburst (with a 70-kt peak gust) at 1825 CDT.

Fig. 1.8 Two photos showing the thunderstorm echoes 23 minutes prior to (left) and 13 minutes after (right) the accident. Video taped by American Airlines at DFW out of the Kavouras system at the SEP radar.

Fig. 1.9 A sequence of radar photos from the SEF radar, 75 n.m. southwest of DFW Airport. Of the five numbered echoes, Echo "2" induced two microbursts which are the DL 191 microburst and the 70-kt peak-gust microburst.

Echo "1" which formed earlier than Echo "2" was located to the north-northeast of the outer marker. During its mature stage, Echo "1" apparently obstructed the view of Echo "2", according to the testimony of the flight crews of a number of aircraft approaching runway 17L from the north.

1.3 Satellite Pictures and Infrared Temperature

During the past several years, it has been known that relatively small thunderstorms could produce severe wind shear which endangers aircraft operations at low altitudes. Because the DFW thunderstorm belongs to this category, it is necessary to understand the nature of this type of storm on or near the glideslope of the approaching runway.

At 1735 CDT, 30 minutes before the accident, there were large thunderstorms along a warm front extending from the Texas-Oklahoma border toward the southeast. Towering cumuli were observed all around the DFW Airport and a cumulonimbus cloud began developing to the northeast of the Airport (See Fig. 1.13 and Table 1.1).

By 1805 CDT, a line of relatively small thunderstorms formed along a very weak gust front of the cold air outflow from a large thunderstorm complex along the warm front. Note that the 101°F temperature decreases to 93°F near the warm-front thunderstorms (See Fig. 1.14).

The 1835 CDT photo in Fig. 1.15 reveals the growth of small thunderstorms along the NW-SE line through DFW. The shadow length of the DFW thunderstorm was 110,000', indicating that the height of the cloud top was 26,000' at this time.

Fig. 1.13 GCES photo at 1735 CDT when a thunderstorm began developing at 97°W and 33°N, to the northeast of DFW Airport.

Fig. 1.14 GOES photo at 1805 CDT, the time of the accident. A line of relatively small thunderstorms formed along the leading edge of a cool outflow from the east.

Fig. 1.15 GOES photo at 1835 CDT, showing the growth of thunderstorms oriented in the NN-SE direction through DFW.

Fig. 1.16 An enlargement of the GOES photo at 1805 CDT when the Blue Ridge VOR was beneath the anvil cloud of a large storm.

Fig. 1.17 A further enlargement of the GOES photo at 1805 CDT superimposed upon the echoes from the SEP radar (blue) and infrared, cloud-top temperatures (red) in °C. The coldest cloud-top temperature of the DFW thunderstorm was -14°C.

Fig. 1.18 Isotherms of infrared temperatures superimposed upon the GOES photo at 1805 CDT. Isotherms of 0°C or colder temperature are drawn in blue and those warmer than 0°C are in red.

Fig. 1.19 An enlargement of the 1805 CDT photo superimposed upon isotherms at 2°C interval and SEP radar echoes. The location of the DL 191 microburst is shown by the black circle on the glideslope of Runway 17L.

Figures 1.16 and 1.18 present enlarged views of the GOES photo at 1805 CDT in Fig. 1.14. The cloud-top temperature of the large thunderstorm north of the Blue Ridge VOR was -69°C, while that of a relatively small thunderstorm northeast of DFW was -14°C. These GOES photos were enlarged further in Figs. 1.17 and 1.19, which are superimposed upon SEP radar echoes and infrared temperatures and their isotherms.

A schematic view of these large (N of Blue Ridge) and relatively small (NE of DFW) thunderstorms in Fig. 1.20 shows their differences in both size and height. The former was 50,000' tall, while the latter was only 23,000' tall according to two independent estimates based on the shadow length in Table 1.2 and on the infrared temperatures in Fig. 1.17.

Table 1.2 Computation of cloud-top heights based on the shadow length (S.L.) measured on satellite pictures.

Local Time	1735 CDT	1805 CDT	1835 CDT
S.L. of cumulus cloud base	12,000'	18,000'	26,000'
AGL height of cumulus cloud base	6,000'	6,000'	6,000'
Ratio of above	2.0	3.0	4.3
S.L of the DFW thunderstorm	stam Aura State	68,000'	110,000'
AGL height of the cloud top	JSS 495 499	23,000'	25,000'

Fig.1.20 A view of the DFW thunderstorm which is dwarfed by a giant thunderstorm north of Blue Ridge VOR. The Stephenville sounding was made by the NWS 75 n.m. southwest of DFW Airport.

Fig. 1.21 A stretching vortex of a microburst made visible by a swirling dust cloud at Provo, Utah. Note that the dust cloud in the right photo, taken 12 seconds later, was descending rapidly toward the ground. Photos were taken from I-55 at 1915 MDT on July 6, 1985 looking northeast by Mr. Duane Stiegler, EMRP, The University of Chicago.

Microburst-inducing small thunderstorms are not as rare as people suspected years ago. They are reported just about everywhere. Four weeks before the DL 191 accident, a swirling dust cloud was photographed 2 miles east of Provo, Utah Airport (Fig. 1.21). On May 11, 1985 a microburst-inducing, small thunderstorm was photographed at Idaho Falls, Idaho (Fig. 1.22).

Fig. 1.22 An entire view of a small thunderstorm which induced a 59-mph peak wind at KIFI TV, Idaho Falls, Ydaho. Photo looking EME at 1832 MDT by Mr. Dave Miller, KIFI TV, Idaho Falls, Idaho.

On the territories and the control of the control o

Chapter Two

Analysis of Delta 191 DFDR Readout

The purpose of analyzing the Digital Flight Data Recorder (DFDR) readout is to reconstruct the Delta 191 positions and attitudes in conjunction with the environmental winds penetrated by the aircraft. A major problem in achieving this task is to match the resolutions of the various readout parameters, some of which were measured four times a second, while others were measured once every two seconds.

2.1 Plots of the DFDR Readout

DFDR readout values from Delta 191 were measured at 64 data gates each second. Since it is not practicable to perform integrations at 1/64 second time steps, eight data gates were grouped together in the order of their recording sequence into one of the eight time groups in each second. Table 2.1 presents the data gates including each time group.

Table 2.1 Time-group assignments of the DL 191 DFTR readout values. The longitudinal acceleration, for example, measured at 0/8, 2/8, 4/8, and 6/3 second past each second.

04; SM1	34	9	100015	117	PERADE FERS
0	12145674		COME.		LONGITUDINAL ACCELERATION (3) TRACELLY MEANING 1040) PPESSON ACTIVISE EINE (PE) PITCH CONTINUE CERTAIN (AS)
1	1011234554	1. 4	SPO LE BOS L SPO LA STE O LAT G CAPE	- i - i - i	CONTEST POSITION LEST WILL CONNECT PROCE OF AFFECT LEST (AND) PROFILE LEST WILL LAND CHARLES ACCELERATION (A) ACCELERATION LAND REAL CONTESS WHILL CAPTAIN INDEED
2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$	#1X1 (PM 5 1A5 #1(16 ft# 11 8(f f ##F	6 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Apple of Eq. (1) and one of the company of the comp
3	18 12 12 12 12 12 12 12 12 12 12 12 12 12	a.	ADA A MID VER C (AT S		ANGE OF ATTE E RIGHT HEND DECKE P PROSTON (Send GREEDER ACC (FRANTA 19) (ATERN ACCE) METTING (1) ALIGNOR PROSTON (2)

Troop (As	201	*******	160	PANEUETEES
l _a	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ens CON II VPO PE VICE RE VICE RE VICE RE	0.75 4	EMOTHE BATTLE ME MATTER, WE TO TO TO TO THE CONTROL OF T
5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	120 kg (8.8 G 1.60	4	Existe Content to the Northern Long Jacob Attack (En., Acc) Content Alexander Long Content Alexander Long Northern Long Long Content Will (Ent Sent) Attack Content Long Attack Content Long A
6	42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TOTA SE POSTO DE LA PERSONA DE	0.5	EPOSTTOCHMA MECLEHATON FOR A METER ATTOTAGE ANNOTHING ANNOTHING AND THE ATTOTAGE AND
7	1 9 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	#060 25.7 %		ANGE OF ATTEM POST USES: POST A STATE POST USES: POST A STATE POST USES: RATE AND A STATE POST USES USES RATE AND A STATE POST USES USES USES USES USES USES USES US

Burger Commence of the Commenc

Figure 2.1 presents an example of the DFDR parameters plotted with the time group shown in Table 2.1. Of a large number of parameters, only ALTF, SAT, PITCH, AOA, ROLL, and IAS were chosen to be presented in this figure. The drop in the static air temperature indicates a cold-air penetration; indicated airspeed drops suggest tailwind encounters; etc.

Fig. 2.1 Flots of selected DFDR parameters shifted with proper time lags.

2.2 Aircraft, Earth, and 17L Coordinates

The three axes of the aircraft coordinates in Fig. 2.2 change their orientations when an aircraft pitches, rolls, and changes its heading. Consequently, the vertical acceleration in the DFDR realout does not always point toward the local vertical.

Fig. 2.2 Aircraft coordinates consisting of L (longitudinal), M (lateral), and N (normal) axes. These axes are superimposed upon a model of the Delta Air Lines L-1011 aircraft. This model was built by Mr. Brian Smith of the University of Chicago.

Fig. 2.3 Computation of the pressure altitude, H by correcting the difference in the locations of the pressure sensor and the accelerometer.

Fig. 2.4 Earth coordinates and 17L coordinates.

The "earth coordinates" consists of the Z-axis pointing toward the local zenith at the accelerometer, the X-axis points toward the aircraft heading, and the Y-axis is perpendicular to the X-axis. Both X- and Y-axes are included in the horizontal plane through the accelerometer.

The "17L coordinates" consists of the z-axis pointing toward the local zenith at the Runway 17L threshold (See Fig. 2.4), the x-axis pointing toward the south along the runway center line with its true heading of 180.26°, and the y-axis, perpendicular to the x-axis. Both x- and y-axes are included in the horizontal plane. The origin of the 17L coordinates may be chosen at any height on the z-axis.

2.3 Acceleration, Velocity, and Distance Traveled

In order to compute the velocity and the distance traveled by the aircraft, the three accelerations on the aircraft coordinates (L,M,N) were transformed into those on the earth coordinates (X,Y,Z). The equations of transformation derived by solving the spherical triangles in Fig. 2.5 are

$$\mathring{X} = \mathring{L} \cos\theta + \mathring{N} \sin\theta \sin\phi - \mathring{N} \sin\theta \cos\phi \qquad (2.1)$$

$$\mathring{Y} = \mathring{N} \cos \phi + \mathring{N} \sin \phi \tag{2.2}$$

$$\ddot{Z} = \ddot{L} \sin \theta - \ddot{M} \cos \theta \sin \phi + \ddot{N} \cos \theta \cos \phi - 1$$
 (2.3)

where double dots denote acceleration along the coordinate axis. The unit in these equations is "g", the gravitational acceleration.

Fig. 2.5 The aircraft coordinates (L,M,N) in red and the earth coordinates (X,Y,Z) in blue.

For computing aircraft positions relative to Runway 17L, the three accelerations on the earth coordinates were transformed into the 17L coordinates by

$$\hat{\mathbf{X}} = \hat{\mathbf{X}} \cos \psi - \hat{\mathbf{Y}} \sin \psi \tag{2.4}$$

$$\hat{\mathbf{y}} = \hat{\mathbf{x}} \sin \psi + \hat{\mathbf{y}} \cos \psi \tag{2.5}$$

$$\overset{\circ\circ}{Z} = \overset{\circ\circ}{Z} \tag{2.6}$$

where Ψ is the aircraft heading measured clockwise from the 17L heading. (180.26° true). The magnetic deviation at DFW on August 2 1985 was 7.02°.

Three-component velocities and positions of the aircraft were computed from

$$\dot{x} = \dot{x}_{o} + \int_{0}^{1} \dot{x}^{o} dt \quad \text{and} \quad x = x_{o} + \int_{0}^{1} \dot{x} dt \quad (2.7)$$

$$\dot{y} = \dot{y}_{o} + \int_{0}^{1} \dot{y}^{o} dt \quad \text{and} \quad y = y_{o} + \int_{0}^{1} \dot{y} dt \quad (2.8)$$

$$\dot{z} = \dot{z}_{o} + \int_{0}^{1} \dot{z}^{o} dt \quad \text{and} \quad z = z_{o} + \int_{0}^{1} \dot{z} dt \quad (2.9)$$

$$\mathring{y} = \mathring{y}_{0} + \int_{0}^{t} \mathring{y}^{0} dt$$
 and $y = y_{0} + \int_{0}^{t} \mathring{y} dt$ (2.8)

$$z = z_0 + \int_0^t z_0^* dt$$
 and $z = z_0 + \int_0^t z_0^* dt$ (2.9)

where a single dot denotes the velocity along a specific axis. $\hat{x}_e, \hat{y}_e, \hat{z}_e$ are initial velocities and xosyo, zo are initial positions determined by ATC radar positions along with input biases.

2.4 Computation of Three-dimensional Winds

Three-dimensional winds were computed by solving the following equations

$$\mathbf{u} = \hat{\mathbf{x}} - \text{TAS cos} \gamma \cos (\psi * \delta) \tag{2.10}$$

$$v = \hat{y} - TAS \cos \gamma \sin (\psi + \delta) \qquad (2.11)$$

$$W = 2 - TAS \sin \gamma \tag{2.12}$$

where u,v,w are component winds in the x,y,z directions, \hat{x},\hat{y},\hat{z} are ground-relative velocity components, TAS is true airspeed, and \hat{r} and \hat{z} are the angles computed as functions of pitch angle(θ), roll angle(ϕ), and angle of attack(α), and sideslip angle(β) (See Fig. 2.6).

A number of spherical triangles in succession were solved in computing γ and 8 required in determining u,v,w from Eqs. (2.10), (2.11), and (2.12).

Fig. 2.6 Spherical triangles for computing Y and δ . When sideslip of an aircraft does not exist, as in the case of a straight flight in calmair, Y is obtained by simply subtracting a from ϑ . While flying through a wind shear, an aircraft receives lateral acceleration which sideslips the aircraft.

Fig. 2.7 y-component winds computed from β using Term 1, Terms 1 and 2, and Terms 1, 2, and 3. It should be noted that Term 1 is the most important term in computing v-component winds. Effects of Terms 2 and 3 are insignificant.

The sideslip angle β mainly influences 8. Eqs. (2.10), (2.11), and (2.12) indicate that 8 influences most significantly the component wind v when γ and ψ are relatively small. Although β includes a number of terms, it can be expressed by the following three terms.

$$\beta = \left(\frac{\stackrel{\circ}{M} W}{C_{y} A \frac{1}{2} f_{0}^{c} CAS^{2}}\right) + \left(-\frac{C_{RD} RD}{C_{y}}\right) + \left(-\frac{C_{YR} YR b}{C_{Y} 2 TAS}\right)$$
(2.13)
$$(Term 1) \qquad (Term 2) \qquad (Term 3)$$

where parameters are: M, lateral acceleration; W, weight of aircraft; A, area of wings; ρ_c , the density of the standard atmosphere at sea level; CAS, corrected airspeed; RD and $C_{RD}=-0.0039~\rm deg^{-1}$ rudder angle and its coefficient; YR and $C_{YR}=0.0066~\rm deg^{-1}$, yaw rate and its coefficient; b, wing span, and TAS, true airspeed. Sideslip coefficient C, varies between $-0.0220~\rm and$ $-0.0265~\rm as$ the angle of attack increases from 0° to 20°. However, a constant value, $C_{Y}=-0.0220~\rm used$ by NASA was adopted in this computation.

Fig. 2.8 Winds in vertical and horizontal planes plotted as functions of time. The top curve denotes the w-component (vertical) winds and the bottom curve, the y-component winds. Red numbers next to each arrow are total windspeeds in each plane.

The time-domain plots of the computed winds in both vertical and horizontal planes show convincingly that DL 191 encountered severe wind shear systems. According to the author's interpretation, Microburst 3 was the youngest, being located near the center of the overall downflow. Microbursts 2 and 1 are progressively older with Microburst 0, being the oldest, probably several minutes older than Microburst 3.

Each of Microbursts 1, 2, and 3 was accomposited by a roll vortex on the south side, while the parent cloud was moving toward the south rather slowly. Apparently, the aircraft flew through the east side of Microburst 3 across Vortex 3. The aircraft was pushed from right to left. In Vortices 2 and 1, it encountered in succession rapidly changing up- and downflows.

Shortly before the first ground contact, the aircraft entered Microburst 0, the oldest one with very strong outflow winds. It encountered a 51-kt tailwind and the main landing gear contacted the plowed field at 552.8 MSL.

and the commencer of the c

Fig. 2.9 A vertical cross section and a horizontal view of the DL 191 microburst at 1806 CDT on August 2, 1985. This microburst, approximately 16,000' (3.5 km or 1.9 n.m.) in diameter, is characterized by three major Vortices 1, 2, and 3, which are surrounded by an older vortex encircling the overcll microburst.

The spatial distribution of the computed winds strongly suggests the existence of semi-ring vortices encircling the downflow region. Vortex 3, being too close to the downflow center, is suspected to have descended along with the downflow shaft. This type of the vortex is called the "descending vortex" in this book. In contrast, Vortices 1 and 2 are called the "stretching vortices" because they form near the ground inside the boundary layer and spin up as they stretch into larger ring vortices.

BL 191 flew 200' to 300' to the east of the center of Microburst 3 (See Figs. 2.8 and 2.9). Approximately one minute later, AA 539 penetrated the microburst at 3,000' MSL during a go-around after the accident. The

Fig. 2.10 A bird's-eye view of the DL 191 microburst at its mature stage. This painting was completed by a number of artists and non-artists based on the author's pencil sketch of the parent cloud and induced microburst winds.

ATC radar track revealed that the aircraft made a slight left turn and progressed through an area almost entirely outside of Microburst 3. During its fly over, AA 539 experienced an upflow above Vortex 2, but its go-around flight was uneventful.

The age of this microburst has not been estimated accurately. However, it will take only 2.5 minutes for a 20 m/s (66 fps or 39 kts) downflow at the center of Microburst 3 to descend from 10,000° AGL to near the ground. To detect microbursts during their descending stages, ground-based anemometers are not adequate, necessitating the development of a terminal Doppler radar capable of detecting automatically this type of wind shear before it reaches the glideslope.

Chapter Three

Energy, Curvature, and Command

Three-dimensional motions of an aircraft can be characterized by its energy. An attempt was made in this chapter to evaluate the variation of the total energy as functions of the engine power, environmental winds, etc.

Other important parameters related to flight path are radius of curvature in both horizontal and vertical planes. Two additional curvatures, curvature of pitch and curvature of heading were defined and computed.

3.1 Kinetic, Potential, and Total Energy

Both kinetic energy and potential energy per unit mass of aircraft were computed from

Kinetic energy =
$$\frac{1}{E} (\mathring{x}^2 + \mathring{y}^2 + \mathring{z}^2)$$
 (3.1)

Potential energy =
$$g(z - z_{lat})$$
 (3.2)

where \hat{x} , \hat{y} , and \hat{z} are three-component velocities of the aircraft and z and z_{101} are the geometric altitudes (MSL) of the aircraft accelerometer. In this computation, $z_{101}=567.1^{\circ}$ MSL was used.

As expected, the total energy (kinetic energy + potential energy) increases when the engine power (Engine Pressure Ratio in Fig. 3.1) was applied. The rate of increase was overshadowed by other parameters such as upflow and tailwind.

Like a soaring bird gains its potential energy while circling in an updraft, the rate of energy change peaks at A, F, H, and J, where the vertical winds in Fig. 3.2 are positive and maxima. Although the responses are slow, peaks in the tailwind at D, E, and G resulted in small peaks in the rate of the total energy change.

Fig. 3.1 Total energy per unit mass of the DL 191 aircraft.

Fig. 3.2 Rate of change in the total energy in relation to longitudinal and vertical winds.

Three minima 1, 2, and 3 of indicated airspeed are associated with the respective tailwind peaks at 1805 CDT 29 sec, 37 sec, and 43 sec. Further investigations of these seven curves presented in Figs. 3.1 and 3.2 will be useful in understanding the nature of the changes in the total energy of an aircraft in a microburst wind shear.

3.2 Roll of Aircraft and Aileron Position

During the microburst traverse, the roll angle of the aircraft varied between -15° and +20°. The +20° roll (right wing "down") occurred when the ALTF (Pressure Altitude Fine) reached a small peak at 1805:36 sec. This increase in ALTF does not imply an increase in the geometric altitude. Instead, the disturbed pressure in Fig. 3.3 shows a significant drop. Evidently, the aircraft flew through an extremely localized low-pressure area.

Under normal circumstances, the static temperature increases during a descent toward the runway. This time, however, the static temperature began falling at 1805:11 sec when the aircraft entered the microburst.

An examination of Fig. 3.4 suggests that the rolling motions of the aircraft were caused by (1) the differential lift forces on the left and right wings induced by an aircraft-sized airflow and (2) the command by the roll control wheel. Numbers 1 through 12 in the figure indicate the turning of the wheel, which caused the changes in the aileron position. There was approximately 1/4 second time lag between the positions of the control wheel and the ailerons.

The response of the aircraft's rell angle occurred approximately 1 second after the onset of each change in the aileron position. To assist in an easy follow up of the cause and effect relationships of control wheel-aileron-roll angle, command and response angles are shaded with light blue.

A significant change in roll angle at 1805:36 sec from near 0° to +20° was caused by the environmental winds, because the signs of the aileren position and that of the roll angle are opposite from each other. Apparently, the control wheel was rotated in an attempt to reduce the excessive roll of the aircraft caused by the wind. This subject will be discussed in detail in Chapter Four.

Fig. 3.3 Pressure altitude and pressure disturbances caused by the microburst. Disturbed pressure was computed along the flight path.

Fig. 3.4 Roll control achieved by the DL 191 pilots during the microburst penetration.

3.3 Vertical Curvature and Curvature of Pitch

A curved flight path in a vertical plane is characterized by the vertical curvature,

$$C_{VER} = \frac{d\eta}{dS}$$
 and $R_{VER} = 1 / C_{VER}$ (3.1)

where C_{VER} denotes the curvature in vertical plane, R_{VER} its radius of curvature, η the vertical path angle shown in Fig. 3.5, and S the length along the path.

Replacing η in Eq. (3.1) by θ , we define the "curvature of pitch" by

$$C_{PCH} = \frac{d\theta}{dS} \tag{3.2}$$

The vertical curvature of path is closely related to the variation of vertical winds (See 1, 2, 3,, 9 in Figs. 3.6 and 3.7). On the other hand, the curvature of pitch is controlled by the pitch control column which alters the stabilizer position and ultimately, the pitch angle.

Fig. 3.5 Definition of vertical curvature and curvature of pitch. Both pilots and passangers will sense vertical curvature while in their seats.

rig. 3.6 Vertical curvature of path caused predominantly by the environmental vertical winds.

Fig. 3.7 Pitch control achieved by DL 191 pilots during the microburst penetration.

3.4 Horizontal Curvature and Command of Heading

A curved flight path in a horizontal plane is characterized by the horizontal curvature expressed by

$$C_{HOR} = \frac{ct}{dS} \text{ and } R_{HOR} = 1 / C_{MOR}$$
 (3.3)

where CHOR and CHOR are, respectively, the horizontal curvature of path and the radius of curvature (turning radius).

Replacing ζ by ψ , we define the curvature of the heading as

$$C_{NDG} = \frac{d\psi}{dS}.$$
 (3.4)

In spite of an attempt to relate the horizontal curvature with crosswind, curvature of heading, rudder pedal position, and rudder position, no conclusive relationship is seen in Figs. 3.9 and 3.10.

Fig. 3.8 Definition of horizontal curvature of path and curvature of heading. It is expected that pilots sense the horizontal curvature of path and attempt to command heading changes whenever necessary. Crosswinds will induce sideslip and horizontal curvature.

Fig. 3.9 Crosswind and horizontal curvature of path. Detailed study of this diagram by pilots is recommended.

Fig. 3.10 Rudder pedal and rudder positions from DFDR readout. This diagram, along with Fig. 3.9 should be studied by performance analysts.

Chapter Four

Specific Events Experienced

4.1 Penetration of a Descending Vortex

When Delta 191 approached the central region of the microburst, the downflow speed kept increasing (See Fig. 2.8) until the maximum value of 13.9 m/s (26 kts or 44 fps) was reached at 1805:34.7 CDT. 1.5 sec later, the aircraft traversed through a ring vortex which was descending on the south side of the microburst shaft.

Fig. 4.1 Winds in the vertical and horizontal planes in relation to the path of Delta 191. The aircraft penetrated Vortex 3 (a descending vortex) in an oblique angle.

Fig. 4.2 A descending vortex similar to that penetrated by Delta 191. Enlargement of movie frames taken at 64 frames per second at the University of Chicego Laboratory.

Fig. 4.3 A time sequence of the events which took place during an oblique traverse of a descending vortex by the Delta 191 aircraft.

During the traverse, approximately 100' below the vortex center, the disturbed pressure fell 4.09 mb (+1.78 to -2.31 mb) first, then rose 4.75 mb (-2.31 to +2.44) in about 3 sec. Estimated diameter of the vortex is 500' (150 m) approximately 3 times the wing span of the aircraft.

Figure 4.2 shows vertical views of a descending vortex. It is seen that the vortex is very close to the downflow center and is not symmetric, characterized by a large vortex on the right side, while little or no vortices existed on the left side of the descending microburst shaft.

Fig. 4.4 A schematic painting of an aircraft flying near the center of a descending vortex. An oblique traverse of a vortex could result in large differential downflow speeds between the tips of the left and right wings. This illustration was painted by Mrs. Toshiko Arai.

During the traverse of the vortex in an oblique angle, the right wing was in a downflow stronger than that of the left wing, resulting in a positive roll moment which lasted about 4 sec (1805:33 to 37). The roll angle increased by 26° (-6° to + 20°) which was corrected by a command of the aileron. Thus the positive roll rate caused by the vortex winds was counteracted by the control wheel (See Fig. 4.3).

A schematic painting in Fig. 4.4 shows an aircraft flying through a descending vortex. The size of the vortex is approximately three times the wing span of the penetrating aircraft. Depending upon the angle of traverse, an aircraft will receive a large roll moment as well as a lateral acceleration.

4.2 Penetration of Two Stretching Vortices

After completing the traverse through the descending vortex, two more vortices were waiting ahead of the Delta 191 aircraft. Figures 4.5 and 4.6 present the flight paths projected on both horizontal and vertical planes. Apparently, these are the stretching vortices, encircling the overall center of the microburst flow.

Fig. 4.5 Windfields of Vortex 2 when Delta 191 penetrated between 39 and 46 sec past 1805 CDT. This figure continues to the right-hand page.

The aircraft penetrated Vortex 2 at a right angle (See Fig. 4.5), experiencing a 34-kt downflow/tailwind first, followed by a 40-kt upflow/tailwind. Unlike the Vortex 3 penetration, the aircraft altitude was way below the vortex center, thus showing a very small disturbed pressure.

Unlike the oblique-angle traverse of Vortex 3, both wing tips were not affected by differential downflow speeds. The roll angle of the aircraft remained practically unchanged and the roll control wheel position did not change much during the penetration of Vortex 2 (See Fig. 3.4).

Fig. 4.6 Windfields of Vortex 1 when Delta 191 penetrated between 47 and 52 sec past 1805 CDT. The first contact occurred at 1805:52.

The second stretching vortex, Vortex 1 was penetrated at a right angle (See Fig. 4.6). During the approach phase, the aircraft encountered a downflow/tailwind of 50 kts. On the other side of the vortex center, the upflow/tailwind was as strong as 47 kts. The disturbed pressure at the flight level fell only 1.43 (*1.04 to -0.39 mb) and rose 1.20 mb (-0.39 to +0.81 mb), because the aircraft altitude was approximately 700' below the center of the vortex (See Fig. 3.3). Had the penetration altitude been much closer to that of the vortex center, the drop and rise would have been significantly larger.

At 1805:50, the aircraft flew out of roll Vortex 1 and entered the region of a very strong tailwind, reaching as high as 50 kts.

4.3 First and Second Contacts

The tailwind decreased somewhat after penetrating Vortex 1 (See Fig. 4.6). Thereafter, the tailwind increased again reaching its peak speed of 52 kts at 1805:51.7 sec. A few tenths of a second later at 1805:52, the aircraft made the first contact on a dirt field with the landing gear (See Fig. 4.8).

Figure 4.7 reveals that the elevation of the first contact is 552.8' MSL at the location where the ground surface slopes up toward the south. At 1805:52.6, the landing gear left the ground in a 44-kt tailwind. From 1805:53.5 to 54.6 sec, the main landing gear made contact with tall grass in the field (Sec Fig. 4.9).

Fig. 4.7 The tire tracks of the first and second contacts superimposed upon an serial photograph and contour lines at one foot interval. Both x and y scales in the plan view are at 100 ft interval, however, the vertical scale of the top diagram is exaggerated 10 times.

Fig. 4.3 The tire tracks of the first contact, photographed looking southeast from a low-flying helicopter (left). The right-hand photograph is a ground view of the tracks of the left-side main gear. Pictures in Figs. 4.8 through 4.12 were taken by the Delta Airlines on August 3, 1985 during the post-accident investigation.

Fig. 4.9 A semi-vertical view of the first and the second contact areas (left) and an enlarged, oblique view of the second contact tire tracks. Highway 114 is seen near the top (right).

4.4 Third and Fourth Contacts

The aircraft reached Highway 114 approximately 3.6 sec after the first contact. Two tire tracks of the main landing gear and one track of the nose gear were left on the pavement (See Fig. 4.11). While on the pavement, the aircraft's yaw angle was 4° toward the left. A car on the highway was hit by the left engine and five (5) light poles along the highway and the service road were downed. However, one light pole along the service road was not damaged because the right wing passed over the pole. The left engine cut a large gouge on the south side of the service road. From that point on, the aircraft moved into a grass field and skidded toward the two water tanks.

Fig. 4.10 Tire tracks of the third contact and the ground marks of the fourth contact. Fainted squares along the highway are light poles damaged by the sircraft. Undamaged poles are shown by small open squares. The vertical scale of the top diagram is exaggerated 10 times.

Fig. 4.11 An aerial view of the third and the fourth contact area photographed looking toward the direction of the aircraft motion (left). An enlargement of the left photograph, showing the tire tracks of both main and nose gear (right).

Fig. 4.12 A ground view of the gouge caused by the left engine as it contacted the ground (left). An aerial view of the gouge area in the left photograph. A narrow, deep gouge is the track of the left main landing year, and a small gouge just to the right of the engine gouge was made by the nose year.

1. 1. 1.

Chapter Five

1 11 1

Data from Other Aircraft.

The accident aircraft was in the microburst area for only one to two minutes. In order to determine the variation of the microburst wind shear for a much longer period of time, it is necessary to analyze the data from other aircraft that either landed or attempted to land before and after DL 191.

ATC radar positions of the seven aircraft listed in Table 5.1 were obtained from the FAA. The radar data include the depiction time to the nearest second for 10 or 11 sec intervals, radar ordinate (\overline{Y}) and abscissa (\overline{X}) of aircraft to the nearest 1/16 nautical mile, and pressure altitudes to the nearest 100 feet. An x-t diagram in Fig. 5.1 was constructed from these radar data.

By using the 17L coordinates (x,y) and the ATC radar coordinates $(\overline{X},\overline{Y})$, the true separation of two aircraft 1 and 2 can be expressed by

$$D_T = (x_8 - x_1)^8 + (y_8 - y_1)^8$$
 on 17L coordinates (5.1)

$$D_T = (\overline{Y}_8 - \overline{Y}_1)^2 + (\overline{X}_8 - \overline{X}_1)^2$$
 on ATC radar coordinates (5.2)

where D_{τ} is the true separation distance. Since an x-t diagram does not include both x and y distances, aircraft separations in Fig. 5.1 (blue numbers) are x-component separations, D_x which is computed from

$$D_{x} = (x_{g} - x_{1})^{g} \text{ on 17L coordinates}$$
 (5.3)

$$D_{\pi} = (Y_2 - Y_1)^2$$
 on ATC radar coordinates (5.4)

which are smaller than the true separation, when two aircraft deviate from the centerline significantly. With the help of the x-t diagram, a number of events experienced by these approaching aircraft will be discussed.

Table 5.1 Outer-marker crossing time (LOM Time) and 17L threshold-crossing time (17L Time) of the seven aircraft discussed in this chapter.

Aircraft	Type	LOM Time	17L Time	Remarks
Delta 963	B-737	1759:41	1801:48	Landed
Delta 1061	B-737	1800:38	1802:46	Landed
American 351	B-727	1801:46	1803:45	Landed
N715JF	Lear Jet	1803:20	1805:18	Landed
Delta 191	L-1011	1804:19		Accident
American 539	MD-80	1806:17	1807:53	Go-around
Delta 557	B-727	1807:53	1809:41	Go-around

Fig. 5.1 Positions of the seven aircraft in Table 5.2 presented as functions of time which increases from left (1759 CDT) to right (1810 CDT). The vertical scale shown on the left is the distance (x) to the approach end of Eunway 17L and the one on the right denotes the ATC radar ordinate (\ddot{Y}) which increases toward the north. Coordinates of DFW Airport are \ddot{X} = 471 + 6/16 n.m. and \ddot{Y} = 215 ÷ 4/16 n.m. (For location, refer to Fig. I.2).

Fig. 5.2 Two-dimensional positions of the five aircraft on the x-y coordinates of each aircraft. Respective coordinates were shifted according to the time of LOM passage. Blue lines denote contour lines of the aircraft altitudes in ATC radar reports.

5.1 Delta 963 (B-737)

The Market was a secretary to the contract of the contract of

On the day of the accident, August 2, 1985 Captain J.A. Coughlin of Delta FLT 963 reported his experience during the final approach. His aircraft was cleared for a visual approach to 17L.

About one to two miles outside of the LOM, he observed a bowl-shaped cloud hanging from under the overcast. Shortly, thereafter, the aircraft flew under the bowl-shaped cloud just prior to the LOM, encountering abrupt heavy rain and lost sight of the approaching runway for a few seconds. ATC radar locations of his aircraft indicate that DL 963 passed the LOM at 1759:41 CDT. At that time his aircraft was located on the north edge of Echo "2" in Fig. 1.9.

The flight path between the LOM and the 17L threshold was beneath Echo "2" during which he saw cloud-to-ground lightning strikes on both sides of his aircraft. Between LOM to touchdown, he had a difficult time in keeping the airspeed from increasing.

While he was holding the aircraft, after landing, short of 17R, the first officer saw a waterspout-like, dark column, separating two silvery areas of rain. Captain Coughlin stated "I now believe that I saw the intense rain that could have been associated with a downburst".

5.2 Delta 1061 (B-737)

After a go-around, this aircraft flew close to the shower located just to the east of the LOM. The ATC radar time of the LOM passage was 1800:38. The aircraft encountered some rain just inside the outer marker, but it was of short duration and "out of the blue". From the LOM to the 17L touchdown at 1802:46, both approach and touchdown were normal with no turbulence or wind shear.

Fig. 5.3 FDR records showing the final approach and touchdown of Delta 1061 which was the third aircraft in front of Delta 191. Apparently, this aircraft was not affected by wind shear.

Radar pictures in Fig. 1.9 show that Echo "1" was located to the east of the LOM during the final approach of DL 1061. Echo "2" was centered just to the east of the 17L glideslope. The fact that DL 1061 did not encounter heavy rain while flying through this echo implies that a core of heavy rain has not yet descended to the glideslope height during final approach (between 1800:38 and 1802:46).

What did SEP radar see over the glideslope? The SEP radar is located 75 n.m. southwest of DFW airport. Its elevation (1350') is approximately 750' higher than the runway elevation (560'). The radar horizon at the 17L approach area is as high as 5,840' AGL. In other words, the SEP radar does not detect rain below approximately 6000' AGL.

The top of the 2° beam with 0.4° elevation angle reaches 17,070° AGL, indicating that what the SEP radar detected was the precipitation inside the pink section of the thunderstorm in Fig. 5.4. Theoretically, a radar will detect some rain outside the half-power beam width.

The bowl-shaped precipitation base penetrated by DL 963 at 1759:30 was, probably, the first indication of the rain descending to the glideslope. About one minute later at 1800:50, DL 1061 encountered some rain, suggesting that the base of the precipitation remained practically at the same height.

Fig. 5.4 The section of the DFW thunderstorm detected by the SEP radar at 0.4° elevation angle. AGL heights were computed with a straight-line propagation in the hot summer afternoon and 6378 km radius of the earth.

5.3 American 351 (B-727)

Analysis of the FDR records along with the statement of Captain Bob Hanel and First Officer Pat Davis reveals that AA 351 experienced a 22-kt loss of IAS from 174 to 152 kts in 20 sec between 1801:10 and 1801:30 in heavy rain. When it occurred, the aircraft was located 1 n.m. north of the LOM, near the northern edge of Echo "2" (See 1800 CDT radar photo in Fig. 1.9). Thereafter, heavy rain continued until 600' AGL at 1803:00 CDT.

It is evident that the core of heavy rain descended to the glideslope height within only one minute between the flights of DL 1061 and AA 351. In spite of the heavy rain experienced, the FDR records of AA 351 in Fig. 5.5 shows practically no sign of wind shear on the glideslope between LOM and 17L. That is to say, the heavy rain (1802-03 CDT) was not accompanied by a wind shear.

Fig. 5.5 FDR records of AA 351. Note a 22-kt loss of IAS shortly before reaching the LOM, but there was practically no wind shear after the LOM passage.

5.4 N715JF (Lear Jet)

The ATC radar fix of the Lear Jet positions reveals that its pressure altitude dropped 500' (1600' to 1100') in 10 seconds (between 1804:27 and 1804:37). Pilot Rufus Lewis of the Lear Jet reported that the aircraft lost a 25-kt airspeed instantly from 150 to 125 kts while the glideslope

6

height decreased from 1 dot "high" to 1 1/2 dot "low". He was not able to attribute these losses in speed and height to his power setting. He applied power to regain the 150-kt airspeed and retained a "hot/high" approach at 150 kts.

Rain became extremely heavy at 1 n.m inside the LOM (1804:38) at 1800° and the aircraft broke out of rain 1 1/2 n.m. from runway. The position of the aircraft when the losses occurred was only 0.2 n.m. northeast of the microburst center, penetrated by DL 191 only 1 min 5 sec later. The author suspects that the Lear Jet unknowingly flew through the head section of a descending microburst shaft which will be discussed in Chapter Six. The 500-ft drop was not serious for the Lear Jet, because its initial altitude was 1600°MSL or 1000° AGL. Should a similar event occur at much lower altitude, an aircraft could experience difficulties in flying out of the combined shear of downwind and tailwind.

5.5 American 539 (MD-80)

AA 539 was approximately 6 n.m. behind DL 191 (See Figs. 5.1 and 5.2). Captain Frank Becker, pilot in command, maintained a visual contact on DL 191 until it went into a rainshower. Before entering the shower, First Officer R.C. Dobson heard "Delta go-around". AA 539 was also instructed

Fig. 5.6 DFDR readout from AA 539 which penetrated DL 191 microburst at 3,000' MSL. Because the readout does not include angle of attack, no wind was computed.

to go-around. It penetrated the fringe of the cell on the missed approach, experiencing a strong buffet and heavy rain. The aircraft turned right to exit the cell. As it came out, the first officer saw many pieces of debris passing by the cockpit window (For DFDR readout, refer to Fig. 5.6).

5.6 Delta 557 (B-727)

Captain Robert Groves of DL 557 continued inbound after LOM and executed a published missed approach when instructed by tower. The aircraft flew through a cloud which was greenish, very dense with moderate turbulence and exited the cloud over the approach end of 17L at 2,900' MSL at 1809:41 CDT (For FDR readout, refer to Fig. 5.7 and the aircraft location, to Fig. 5.2).

Fig. 5.7 FDR readout from DL 557 showing a strong wind shear experienced during the microburst overflight. Its IAS increased 39 kts (145 to 184 kts) in 11 sec followed by a 28-kt drop to 156 kts in 14 sec.

5.7 Descent and Expansion of Microburst

Analyses of the flight recorder data from the seven aircraft revealed that the DL 191 microburst descended very rapidly to the glideslope. As presented in Fig. 5.8, the microburst expanded into a dangerous wind-shear system within approximately one minute after its ground contact.

Fig. 5.8 Schematic cross section of the DL 191 microburst at three different times. Shown are penetrations by the Lear Jet at pre-contact stage, by DL 191 two minutes after the gound contact of the microburst and by AA 539 four minutes after the ground contact.

Landa established to the state of the state

Fig. 5.9 Estimated boundary of the DL 191 microburst in vertical and horizontal planes. Five LLWAS anemometers shown with red stars indicate that the microburst front passed over these anemometers at 1806(NE), 1808(NW), and 1810(Centerfield).

DL 191 microburst was a wet microburst accompanied by heavy rain and thunder. Temperature inside the storm was approximately 8°C (14°F) colder than its environment near the ground (DL 191 measurement) and 12°C (21°F) colder at 3,000° MSL (AA 539 measurement). One minute isochrones of the microburst boundary in Fig. 5.9, superimposed upon an aerial photograph, cast a reasonable doubt upon the capability of detecting microbursts, such as DL 191 storm, using solely a ground-based anemometer network for effective warnings.

Chapter Six

Laboratory Model and Microburst Detection

Although we have a collection of pictures showing microbursts in action, it is difficult, if not impossible, to photograph their life cycles from birth to dissipation. Because of repeatability, a laboratory model will help in understanding the evolution of microburst winds.

6.1 University of Chicago Laboratory Model

As shown in Fig. 6.1, the University of Chicago model consists of numerous dry-ice plumes rising from heles on a circular plate and a plastic cylinder aloft. A shaft of descending air is created by an impulsive current of air which enters into the plastic cylinder. A compressor to generate the impulsive current is seen in the background near the right wall. The plastic cylinder is able to travel either left to right or right to left above the dry-ice plumes at a predetermined height.

Fig. 6.1 A microburst-generating machine at the University of Chicago designed by Fujita. This machine was constructed initially to generate laboratory-model tornadoes. After Fujita's identification of the downburst, the machine was modified for generating pulsed downflows which induce microburst-like wind shears which are made visible by numerous plumes of dry-ice smoke.

Fig. 6.2 Vertical cross section of a microburst in various stages generated by the University of Chicago machine. A and B, descending stage; C, near contact stage; D, contact and spreading stage; and E, stretching vortex stage.

In photographing the simulated microburst shaft in Fig. 6.2, the descending air was made visible by the dry-ice smoke inside the plastic cylinder. When the head section of the microburst shaft descends, a ring vortex encircling the head section appears. Upon contacting the surface, outflow winds expand rapidly along with a vortex ring encircling the outflow.

Oblique views of a simulated microburst in various stages were photographed by descending a pulsed downflow toward the surface of rising plumes. Although the time sequence of the events takes place very fast, all plumes remain undisturbed until a moment before the ground contact of the head. Upon contact, the radial flow shoots out in a starburst pattern followed by the formation of the stretching ring vortex (See Fig. 6.3).

Fig. 6.3 Oblique views of a microburst in various stages. A and B, descending stage; C, near contact stage; D, contact stage, and E, stretching vortex stage.

Quite often, several vortex rings form one after another near the bottom of the microburst shaft and descend with it. They are the "descending vortices" (red). Almost immediately after the ground contact, vortex D forms near the surface and expands. This is the "stretching vortex" (blue) (See Fig. 6.4). It should be noted that Delta 191 penetrated through a descending vortex and two stretching vortices prior to its first ground contact.

Fig. 6.4 Enlarged frames of a 16-mm movie taken at 64 frames per second. A is the oldest vortex (descending vortex) and D is the youngest vortex (stretching vortex).

6.2 Proposed Microburst-detection Project

Since the author identified the downburst (microburst and macroburst) as being the localized wind-shear system that endangers aircraft during the takeoff and landing operations, various U.S. Government agencies provided funds for the following fact-finding field projects. In support of the Doppler radar measurements, both ground-based weather stations and aircraft were used.

The first project for detecting downbursts was the NIMROD (Northern Illinois Meteorological Research on Downburst) Project in 1978 operated by the University of Chicago in the western suburbs of Chicago, Illinois. One Doppler radar was placed inside O'Hare International Airport (See THE DOWNBURST).

Fig. 6.5 The FAA-Lincoln Laboratory Operational Weather Studies (FLOWS) network at Memphis, Tennessee. The network consists of two Doppler radars and 30 ground-based weather stations.

The second and much larger project called JAWS (Joint Airport Weather Studies) was operated by NCAR (National Center for Atmospheric Research) and the University of Chicago in 1982 in the northern suburbs of Denver, Colorado. One Doppler radar was placed inside Stapleton International Airport.

For testing automated detection of microburst by Doppler radars, FAA and Lincoln Laboratory operated the FLOWS Network in 1984 at Memphis, Tennessee. A network map in Fig. 6.5 shows that two Doppler radars are capable of scanning the Memphis Airport area from the distance of 10 to 20 km.

A unique meteorological field experiment consisting of three separate experiments is being planned for a full-scale operation in June and July, 1986 in the Huntsville, Alabama area. The proposed COHMEX (COoperative Huntsville Meteorological Experiment) will be sponsored by NASA (National Aeronautics and Space Administration), NSF (National Science Foundation), FAA (Federal Aviation Administration), and NOAA (National Oceanic and Atmospheric Administration). The three-component experiments under COHMEX are MIST, FLOWS, and SPACE.

Fig. 6.6 A proposed, three-in-one network near Hunstville, Alabama. The MIST (MICroburst and Severe Thunderstorm) network, along with the FLOWS network is nested inside a large SPACE (Satellite Precipitation And Cloud Experiment) network.

61

Fig. 6.7 A strong vortex (stretching vortex) with a horizontal axis located along the leading edge of an active microburst. An attempt will be made to detect by Doppler radars this type of vortices in their descending and stretching stages.

The MIST Project (NSF and NOAA) will focus on the data collection of microbursts from their midair stage to outburst stage, while the FLOWS Project (FAA-Lincoln Lab) will test the automated methods of microbursts and other wind-shear systems for immediate applications to air safety. The SPACE Project (NASA) will focus in a much broader scale in which all types of clouds form, develop, rain out and/or wind out and dissipate.

In addition to the ground-based radars and weather instruments, high altitude U-2, middle altitude P-3, penetrating T-28, and other aircraft will be utilized. Meanwhile, the goostationary weather satellite will take frequent pictures of clouds over a broader area.

This unique experiment will provide us with a wealth of data for revealing the structure of microbursts, including both descending and stretching vortices. Furthermore, the parent clouds of microbursts will be identified and monitored by the SPACE Network so as to single our a wind-shear spawning cloud as early as possible.

Summary and Conclusions

The purpose of the meteorological study presented in this book is to describe the factual evidence, both eyewitnessed and computer generated, related to the Delta 191 accident at Dallas/Ft. Worth, Texas Airport on August 2, 1985. With the help of the National Transportation Safety Board, the Federal Aviation Administration, the National Weather Service, Delta Airlines, and other agencies, the author attempted to collect all possible factual data available as of January 20, 1986.

In his previous book, "The Downburst", the author classified the parent cloud of downbursts into Types A(Anvil cloud), S(Super cell), B(Bow echo), I(Isolated shower), and C(Cumulus cloud). This analysis has led to the conclusion that the parent cloud of the DFW microburst was a Type I cloud with thunder. The parent cloud of the PAA 759 storm at New Orleans in 1982 was a Type I cloud, but no thunder was reported. Unlike huge, Types S and B thunderstorms, Type I and C clouds are often innocuous, giving an impression to pilots that they are simple shower clouds without wind shear underneath. Such an impression could be entirely misleading to pilots, although most of them are harmless and penetrable.

Satellite pictures of the DFW thunderstorm indicate that its cloud top reached as high as 23,000 ft AGL at 1805 CDT, the time of the Delta accident. In this regard, the author concurs with a pilot approaching DFW airport that the cloud top was high teens to low twenties. Some weather forecasters, as well as the general public, tend to think that severe local winds are induced by large and tall thunderstorms. In contrast to such an expectation, the relatively small, low-topped DFW thunderstorm spawned two strong microbursts: The DL 191 microburst with the 52-kt (60 mph) peak wind at 1805:51.8, 0.2 sec before the first ground contact and the 70-kt (80 mph) peak-gust nicroburst at 1824:30 CDT.

The DL 191 microburst was accompanied by the most complicated winds analyzed by the author since 1976 when he identified "downburst" after studying the Eastern 66 accident at JFK on June 24, 1975. Computer analysis of the DFDR readout from DL 191 revealed that this microburst was characterized by a 49-kt tailwind and an estimated 40-kt headwind near the ground (23 kts at flight level), a total of an 39-kt wind shear. In addition to these head- and tailwinds, there were at least one descending vortex and two stretching vortices embedded inside the microburst.

As presented on the cover picture of this book, the microburst descending from a Type I cloud is complicated and vicious. According to this study, the DL 191 accident occurred approximately two minutes after the microburst contacted the ground at 1804 CDT. For timely warnings to pilots, it is necessary to detect the winds during their descending stage by using the proposed terminal Doppler radar. Until then, we have to keep in mind the following facts which have been discussed both in THE DOWNBURST and in DFW MICROBURST. They are:

- (1) An innocuous, isolated shower (Type I) could be an inducer of severe wind shear.
- (2) Some microburst-spawning clouds are not associated with thunder. In particular, Type C clouds, such as mushroom, sinkhole, and giant anteater clouds are innocuous, but they could induce a 50 to 70-kt total wind shear, lasting for very short time.
- (3) A microburst cloud could descend to the glideslope very quickly. An aircraft may land without a reportable wind shear; however, another aircraft, following only one to two minutes behind could experience serious difficulties because a descending microburst could alter the glideslope winds from nonsevere to severe within a couple of minutes.
- (4) Aircraft will be able to fly out of some microbursts, but not out of every one. An example of a nonpenetrable microburst was the Andrews AFB microburst of August 1, 1983. Its total wind shear was 130 + 84 = 214 kts.
- (5) Even when computer-generated analyses demonstrate that an aircraft may be aerodynamically capable of penetrating a microburst-induced wind shear safely, it may be unrealistic to expect even a well-trained crew to accomplish the penetration because of the complex nature of the winds. At the present time, a pilot has no equipment available to him to ascertain the exact nature of the winds until he flies into a microburst.

Until the proposed terminal Doppler radars become operational and pilots begin receiving timely and accurate wind-shear warnings, it will be necessary for pilots to understand the complex nature of microbursts and for pilots to receive all available weather data from ground-based neteorologists and air-traffic controllers as rapidly as possible when conditions at or near an airport suggest weather conditions conducive to severe wind shear. The first indication of a nicroburst experienced by an approaching aircraft is "an unusual headwind increase in front of a shower". Such an increase is likely to be followed by a tailwind increase on the other side of the approaching shower. Naturally, an aircraft must penetrate the tailwind section of the nicroburst before flying out of it. The dead center of a microburst, where the tailwind begins in a strong dornflow, could turn into the point of no return for an aircraft caught in it.

APPENDICES

APPENDIX	1	COMPUTATION EQUATIONS	65
APPENDIX	2	DFDR READOUT DATA I	67
APPENDIX	3	DFDR READOUT DATA II	73
APPENDIX	4	AIRCRAFT POSITIONS	79
APPENDIX	5	ACCELERATIONS	88
APPENDIX	6	THREE-COMPONENT WINDS	97
APPENDIX	7	TOTAL WINDSPEEDS	106
APPENDIX	8	C'STURBED PRESSURE	115
APPENDIX	9	CURVATURES	124
APPENDIX	10	ENERGY	133
APPENDIX	11	SIDESLIP ANGLES	142

APPENDIX COMPUTATION EQUATIONS

(A) Smoothing for generating data at 1/8 sec interval

Weighting functions used are:

For 1/4 sec raw data: 3(2/8) 7(1/8) and 10(0)

For 1/2 sec raw data: 1(5/8) 3(4/8) 5(3/8) 7(2/8) 9(1/8) and 10(0)

For 1 sec raw data: 1(9/8) 2(8/8) 8(2/8) 9(1/8) and 10(0)

For 2 sec raw data: Hand smoothed and digitized

() denotes time in sec before and after the raw-data time.

(B) Indicated airspeed (IAS) to corrected airspeed (CAS)

 $CAS = IAS + 28/(IAS-100) + 20/(IAS -110)^{2}$

CAS and IAS in kts

(C) Corrected airspeed (CAS) to true airspeed (TAS)

TAS = 1.8752 $(T_{V}/P_{TA})^{\frac{1}{2}}$ CAS

Ty in oK, PTA in mb

(D) Air temperature (T or SAT) to virtual temperature (T_v)

 T_v °K = T°C + 273.16 + 2.6

(E) Altitude fine (ALTF) to accelerometer height (H)

See Fig. 2.3, page 19

(F) Accelerometer height (H) to atmospheric pressure (P_{TA})

$$P_{TA} = -2.65 + 1013.25 \left(\frac{288.16 - 0.0065 (H/3.28)}{286.15} \right)^{8.2541}$$

H in ft, P_{th} in mb

(G) Accelerometer height (H) to true altitude (TA)

TA ft = $550' + (T_v/0.0009296) [-1 + (992.3/P_{TA})^{0.00028}]$

 P_{TA} in mb

(II) Inertial altitude (z) to atmospheric pressure (P_x)

 $P_z = 992.3 \left(\frac{314.09 - 0.00064 (z - 550')}{314.19} \right)^{16.255}$

z in ft, Px in mb

(I) DFDR acceleration (A, A, A,) to corrected acceleration (L ii N)

 $\tilde{L} = A_z - 0.02000$, $\tilde{M} = A_y + 0.00792$, $\tilde{N} = A_z + 0.01571$

- آن بار

(J) Component winds (u v w) to tailwind, crosswind and dd ff

Tailwind = $u \cos \psi + v \sin \psi$ Crosswind = $-u \sin \psi + v \cos \psi$ $dd = 180.26^{\circ} + \tan^{-1} (v/u)$ ff = $(u^{e} + v^{2})^{\frac{1}{e}}$

(K) Component winds (u v w) to total, vertical, horizontal winds and dfa

Total wind (TW) $= (u^2 + v^2 + w^2)^{\frac{1}{2}}$ Vertical wind (VW) $= (u^2 + w^2)^{\frac{1}{2}}$ Horizontal wind (HW) $= (u^2 + v^2)^{\frac{1}{2}}$ Downflow angle (dfu) $= \cos^{-1} (HW/TW)$

(L) Ground velocity (GVL) to Energy (KE and PE)

GVL = $(x^2 + y^2 + z^2)$ Kinetic energy (KE) = 1/2 GVL² Potential energy (PE) = $g(z - z_{ist})$

(M) DFDR angle of attack to body angle of attack

 $\alpha_{\text{BODY}} = 3.72 + (0.535\alpha_{\text{DFDR}})$

(N) Other corrections (For identification of parameters, see Table 2.1)

Angle of attack AOA = AOA L - 0.244° = AOA R + 0.244° Aileron AIL = -AIL 1.0 + 0.216° = -AIL LI - 1.452° = +AIL RO + 0.200° = +AIL RI + 1.037°

Rudder pedal position RPP, add 0.1316° Rudder position RUD, add 0.336°

Roll control wheel CWP = CWP L - 2.82° = CWP R + 0.61° Pitch control column CPP = CPP L + 4.49° = CPP R + 0.53°

Trim TRIM = TRIM L - 0.032° = TRIM R - 0.028° Spoiler SPO = SPO L4 - 1.320° = SPC L5 + 0.783° = SPO R2 + 0.000° = SPO R6 + 0.379°

APPENDIX 2 DFDR READOUT DATA I

This tabulation is based on the NTSB DATA DUMP PROGRAM dated August 2, 1985 and September 13, 1985. Time in this table denotes the cockpit voice recorder time in CDT which is three seconds faster than the DFDR readout time.

T.HDG (True heading) = DFDR HDG + 7.02°
RPP (Rudder pedal position) in inches
RUD (Rudder position) in degrees
ALTF (Altitude fine) in feet
IAS (Indicated airspeed) in knots
AOA (Angle of attack) = AOA L - 0.244°
= AOA R + 0.244°
EPR (Engine pressure ratio)
T (Static air temperature) in Centigrade

1804:51 to 1804:56 CDT

CDT	THDG	RPP	RUD	ALTF	IAS	Angle of	Attock	EPR	T
h m ·s	deg	inches	qə3	11	kte	DEDR	Body		°c
804 51	173,51			1651.8		8.051	8.03		
		0.0023	-0.447		152.48	7.717	7.35	4 0057	
		0.0023	0.000			7.812 7.746	7.90 7.86	1.0857	
804 52	173.51			1638.8		7.812	7.50	•	
		0.0023	0.000		152.48		7.79		
•	•	0.0023	0.000			7.460 7.128	7.71 7.53	1.0391	37.12
804 53	173.51			1625.2		8.051	8.03		
504 33	110.01	0.0023	-0.447	1023.4	151.80	7.977	7.99		
		0.0023	-0.447			8.172 7.804	6.09 7.90	1.0398	
		0.0023	0.477		•	1.004	7.50		
804 54	173.94	0.0000	0.447	1608.9	454.00	8.539	3.29		
		0.0023	-0.447	•	151.80	7.977 8.539	7.99. 8.29		
		0.0046	-0.447			8.751	8.40		37.47
804 55	173.94			1592.4		9.555	8.83		
		0.0046	-0.895		152.09	8.300 8.913	8.16 8.49	1.0830	
		0.0023	-0.895			8.419	8.22	1.0030	
804 56	174.36			1576.9	•	9.296	8.69		
		0.0046	-1.862		152.29	£.270	8.14		
		0.0046	-1,3/32			9.167 8.270	8.G2 8.14	1.0991	37.29

1804:57 to 1805:08 CDT

CDT	THOG	RPP	RUD	ALTF	IAS	Angle of	Attock	EPR	1
h m s	deg	inches	deg	ft	kts	DFDR	Body		*c
									
1804 57	174.79			1561.1		9.425	8,76		
		0.0046	-1.789	1301.1	152.29	8.359	8.19		
						9.167	8.52	1.0894	
		0.0046	-1.789			8.419	8.22		
1804 53	175.65			1545.0		9.555	8.93	-	
		0.0046	-2.236		152.29	8.419	8.22		
		0.0023	-2.236			9.425 8.211	8.76 8.11		37.83
1804 59	176.94			4520 7		0.040	9 50		
1004 38	170.54	0.0046	-1.789	1528.7	152.48	9.040 8.241	8.56 8.13		
						8.788	8.42	1.0829	
		0.0046	-1.789		•	8.182	8.10		
1805 00	177.81			1514.9		8.539	8.29	•	
		0.0023	-1.789		152.29	8.211	8.11	4 0004	
		0.0046	-1.342			8.415 8.182	8.22 8.10	1.0991	37.29
		0.0010							01.23
1805 01	178.69	0.0045	-0.447	1499.1	454 60	8.415	8.22		
		0.0046	-0.447		151.90	8.449 9.040	8.24 8.56	1.0894	
		0.0046	0.000		•	8.690	8.37		
1805 02	179.13			1482.5		9.040	8.56		
		0.0046	0.000		132.48	8.934	8.50		
		0.0023	0.000			8.913	8.49		25 65
		0,0023	0.500			9.120	8.50		37.65
1805 03	10.01			1466.7		9.167	8.62		
		0.0023	0.000		153.05	9.848	8.99		
		0.0023	0.000			9.167 9.120	8.62 8.60	1.0830	
1805 04	180.45			1450.8		0 663	8.35		
1005 04	180.45	0.0023	0.000	1450.8	153.64	8.66 3 9.089	8.58		
						9.167	8.62	1.0931	
		0.0023	-0.447			9.182	8.63		37.83
1805 05	181,33			1436.1		8.663	8.35		
		0.0046	-0.895		154.20	8.479	8.26		
		0.0023	-0.447	-		8.172 9.913	8.09 9.02	1.0889	
4005.00	404 70			4407.0					
1805 06	181.78	0.0046	0.000	1427.3	154,39	9.425 9.307	8.76 8.70		
		0.0045	0.000		104.00	8.788	8.42		
		0.0023	0.000	•		€.873	8.47		37.65
1805 07	182.22			1411.0		8.051	8.03		
		0.0023	0.000		157.4G	8.182	8.10		•
		0.0023	0.000			8.293 8.211	8.16 8.11	1.0825	
1005 00	400 66			1000 6					
1805 08	132.66	0.0023	0.000	1399.0	157.38	7.812 7.717	7.90 7.85		
		0.00.0	0.000	•	.57,33	7.576	7.77	1.1001	
		0.0023	ი.და			7.547	7.76		37.29

1805:09 to 1805:20 CDT

CDT	THDG	RPP	RUD	ALTE	IAS	Angle o	Attock	EPR	<u> </u>
hm s	deg	inches	deg	fi	kts	DFDR	Body		*c
EO5 O9	183,11			1385.4		7.460	7,71		
		0.0023	0.000		158.93	7.689	7.83		•
		0.0040	4 004			7.460	7.71	1.1089	
		0.0046	1.231			8.123	8.07		
805 10	183.56			1374.9		7.344	7.65		
		0.0046	1,231		160.18	7.861 6.778	7.93 7.35		
		0.0046	-0.447	•		7.632	7.80		37.65
005 44	404.00			4252 =					
805 11	184.00	0.0046	0.784	1362.7	162.42	G.890 7.239	7.41 7.59		
		0.0040	0.704		.02.72	6.890	7.41	1.0811	
		0.0023	1.231			5.689	G.76		
805 12	184.00	•		1352.0		4.154	5.94		
		0.0023	1.231		163.68	3.639	5.67		
		0.0046	1,231			2.579 2.510	5.10 5.06	1.0798	36.94
		0.0540	1.231			2.510	3.00		50.54
805 13	184.45			1347.4		3.361	5.52		
		0.0023	-0.447		162.42	5.154 3.706	8.48 5.70	1.0064	
		0.0023	1.231			6.667	7.20		
805 14	184.45			1324.4		7.694	7.84		
003 14		0.0023	1.679	1044.4	161.03	10.173	9.16		
		0.0000				9.555	8.83		20 05
		0.0023	2.126			9.338	8.72		36.05
805 15	184.00			1305.9		7.460	7.71		
		0.0023	3.020		162.42	7.128	7.53	4 0500	
		0.0023	2.573			6.890 8.211	7.41 8.11	1.0569	
805 16	183.56	0.0023	2.573	1296.6	165.23	4.810 0.565	6.29 4.02		
		0.0025	2.373		105.25	-3.088	2.07	1 < 571	
		0.0046	1.679			-1.999	2.45		34.98
805 17	183.56			1293.5		-2.087	2.60		
		0.0046	2.126		170.05	1.636	4.60		
		0.0046	3.020			2.136 6.067	4.86 6.97	1.0420	•
		0.00.0	0.020						
805 18	182.66	0.0022	2 572	1267.1	172 00	3.973	5.85		
		0.0023	2.573		173.20	6.273 6.668	7.03 7.29		
		0.0023	1.679			8.330	8.18		33.75
805 19	182.22			1250.0		5.401	6,61		
		0.0023	1.679		171.65	5.940	6.90		
		0.0046	4 626			5.502	6.66	1.0239	
		0.0046	1.679			5.370	6.59		
803 20	181.78			1240.7		4.338	6,04		
		0.0046	-0.447		162.11	4.895 6.890	G.34 7.41	1.0320	
		0.0046	0.000			7,977	7.99	1.0520	33.75

1805:21 to 1805:32 CDT

CDT	THOG	RPP	RUD	ALTF	IAS	Angla c	Allock.	EPR	- <u>T</u>
h m s	dag	inches	geb	ft	kts	DFCR	Body		*c
,			· .						
1805 21	181.78			1217.4		9.425	8.76		
1003 21	101.76	0.0046	-0.447	121717	159.27	9.182	8.63	_	
		0.0040	0.44.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3,172	8.09	1.0178	
		0.0023	0.000			7.775	7.88		
4005 50	404 00			1215.8		9.555	8.83	*	
1805 22	181.33	0.0023	1.679	12.13.0	154.20	13.106	10.73		
	•	0.0023	1.075		101120	9,425	8.76		
		0.0023	2,126			6.667	7.25	•	33.57
400E 00	100 45			1209.6		10.352	9.26		
1805 23	160.45	0.0000	2.573	1209.0	156.04	12.849	10.59		
		0.0000	2.0.0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11.889	10.08	1.0300	
		0.0000	0.000			13.892	11.15		•
1805 24	180.01			1184.9		9.949	9.04	•	
		0.0000	-0.447		146.43	7.746	7.86		
				,		9.286	3.69	1.0583	
		0.0000	0.000			7.211	7.58		32.33
1805 25	179.56			1189.5		5.004	6.40		
		0.0000	1.679	,,,,,,	143:32	4.020	5.87		
						5.102	6.43	1.0903	
		0.0023	1.679			7.100	7.52		
1805 26	179.13			1172.5		7.576	7.77		
		0.0023	0.000		137.88	9.496	8.80		
-						5.811	6.83		
		0.0000	-0.447			7.378	7.67		32.69
1805 27	179.13			1161.8		9.817	8.97		
		0.0023	0.000		136.27	9.182	8.63		
						8.172	8.09	1.3066	
		0.0023	0.000			13,553	10.97		
1805 28	178.69			1141.9		11.745	10.00	•	
1005 20		0.0046	-0.447		128.36	14.158	11.29		
•						13,215	10.79	1.3623	
		0.0000	3.020			17.157	12.90	•	32.69
1805 29	178.25			1117.G		16.669	12.64		
		0.0023	2.126		130.01	13.403	10.89		
						14.285	11.36	1.4299	
		0.0000	0.000			16.712	12.66		
1805 30.	177.81			1098.0		15.225	11.87		
		0.0023	-0.447		133.60	17,198	12.92		
		0.0046	0 000			14.752 -13.553	11.G1 10.97		31,63
		0.0046	0.000			13.553			J,.03
1805 31	177.38			1081.6		13.517	10.35		
		0.0023	0.000		140.42	15,123	11.81	4 4507	
		0.0046	0.000			17.366 15.162	10.87 11.83	1.4597	
	470				• •		10 10		
1805 32	176.51	0.0045	0 ~~ 1	1060.8	146.75	15.702 15.201	12.12 11.05		
	•	0.0046	0.000		140.73	12.471	10.33	1.4097	
		0.0023	1.679			13.217	10.79		30.92
									_

1805:33 to 1805:44 CDT

CDT	T HDG	RPP	RUD	ALTF	IAS	Angle of	Attock	EPR	Ţ
h m s	deg	inches	deg	ft	Mis	CFDR	Be4y		*c
1005 22	474 70			1050 1		0.040	2.24		
1805 33	174.79	0.0000	2.573	1053.4	144.56	9.949 7.294	9.04 7.€2		
		4.444			144.00	6.233	7.05	1.3691	
		0.0023	3.466			8.300	8.16	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1805 34	173.09			1055.1		7,931	7.95	•	
.003 04		0.0023	1.231	1033.1	139.82	2.140	4.86		
						4.519	6.19		
		0.0023	-0.447			2.803	5.22		31.63
1805 35	172.25			1083.1		9.817	8.97		
		0.0023	-3.129	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	139.58	11.358	9.81		
						18.803	13.73	1.3372	
		0.0023	-7.559			18.991	13.86	-	
1805 36	171.83			1143.4		27.659	18.52		
		0.0000	-7.998		120.81	25.947	17.€0		
						28.369	18.50	1.3760	
		-0.0023	-7.698			38.633	21.71		31.98
1805 37	171.00			1065.3		32.761	21.25		
		-0.0113	-5.352		122.39	30.543	20.03		
		-0.0426	4 554			23.368	16.22	1.4121	
		-0.0136	1.231			22.965	16.01		
1805 38	173.09			994.9		24.009	16.56		
		-0.0136	2.573		133.47	20.907	14.91		
		-0.0113	2.126			22.683 19.167	15.96 13.97		31.98
		0.05	225			15.101	10.57		313
1805 39	174.79			996.3		14.440	11.45		
		-0.0091	-0.447		133.47	8.330	8.18	4 4660	
		-0.0113	3.020			7.694 -0.114	7.84 3.66	1.4500	
		-0.0113	3.020			-0.114	3.00		
1805 40	174.79			£.032		0.900	4.20		
		-0.0113	5.248		136.90	4.619 0.699	6.19 4.09	1.4568	
		-0.0091	4,359			-0.796	3.29	1.4566	20.75
		-							
1805 41	173.94	-0.0091	3.912	S63.1	125.65	-0.911 0.931	3.23 4.22		
		-0.0091	3.512	,	125.65	1.675	4.52	1.3195	
		-0.0091	3.020			1.782	4.67		
1803 42	173.51			937.6		7.115	7.53		
1003 42	173.31	-0.0091	2.126	231.0	125.09	12.197	10.25		
			•			16.609	12.G4		
		-0.0031	2.126			20.653	14.77	ē.	30.75
1805 43	173.09			381.5		18.473	13.60		
•		-0.0091	4.358		129.50	18.260	13.49		
		-0.0094	7 572			15.863	12.21	1.5301	
		-0.0091	2.573			11.318	9.78		
1805 44	172.67			850.6	403 50	12.178	10.24		
		-0.0091	-0.447		137.27	8,473 4,431	8.26 6.09	1.5256	
		-0.0068	-2.683			1,187	4.36	1,02,00	31,27

1805:45 to 1805:56 CDT

CDT	THOG	RPP	ลบถ	ALTE	IAS	_Angle o	f Attest	EPR	
hm s	රාල	inches	Ć rg	ft	<u> áts</u>	DFDR	Body		° C
805 45	173.09			611.1		-0.911	3.23		
003 43		-0.0063	-0.895	•	135.52	-2.186	2.55		
		0.000	0.000			-5.966	0.53	1.5249	
		-0.0068	2.573			-4.655	1.23		
805 46	172.25			739.9		-0.245	3.59		
803 46	174.25	-0.0091	3.466	733.5	143.44	4.756	6.26		
		-0.0031	3.400		140.40	5.707	6.77		
		-0.0068	1.679			10.173	9.16		30.57
805 47	171.42			668.4		15.702	12.12		
003 47	171.72	-0.0023	0.000	000.4	150.61	19.291	14.04		
		0.0023	0.0.~		130.47	21.411	15.17	1.5391	
		-0.0023	0.000			25.754	17.50		
805 48	170.59			642.5		26.485	17.89	•	
003 40	170.55	-0.0023	2.126	044.0	155.55	26.973	18.15		
		0.0022				22.883	15.96	1.5029	
		-0.0045	-0.893			23.087	16.07		31.27
805 49	170.18			564.9		20.535	14.73		
		-0.0045	-6.679		161.63	18.137	13.42		
		0.00.0				14.910	11.70	1.5195	
		-0.0023	-4.909			€.244	8.67		
803 50	171.00			546.7		8.051	3.00		
		0.0000	-1.789		174.90	2.825	5.23		
						2.345	4.56		
		-0.0045	0.000			3.303	5.49		31,45
805 51	170.59			519.1		4.524	6.14		
		-0.0091	0.000	+	165.56	4.282	6.01		
						7.115	7.53	1.9344	
		-0.C091	0.000			8.152	8.09		
803 52	163.77			492.8		9.167	8.62		
					169.23	-0.244	3.59		
						-1.244	3.05		
		-0.1386	-2.236			-1.387	2.98		30.57
805 53	169.77			521.9		-1.345	2.73		
		-0.2501	-6.237		171.55	-1.937	2.68		
						0.900	4.20	1.5156	
		-0.2023	-6.679			-3.722	1.73		
805 54	170.59			518.0		-0.354	3.53		
		-0.3570	-2.683		168.65	-0.059	3.69		
		-0.0045	-0.000			0.287	3.87		
	•	-0.2615	-0.825			0.458	3.97		29.87
805 55	170.59			511.1		-1.255	3.05		
		-0.4230	-1.789		182.59	0.297	. 3.88		
						-0.311	3.23	1.3020	
805 5G	170.13			467.7		-0.575	3.41		
					140.66				
						-7,350	-0.21		32.16

APPENDIX 3 DFDR READOUT DATA II

This tabulation is based on the NTSB DATA DUMP PROGRAM dated August 2, 1985 and September 13, 1985. Time in this table denotes the cockpit voice recorder time in CDT which is three seconds faster than the DFDR readout time.

1804:51 to 1804:56 CDT

CDT	8_	CFP	STAB	TRIM	SPOL4	SPC R2	4	CWP	AIL	SPO L5	SPO RG
h m s	deg	deg	dŧq	deg	deg	ÇəŞ	deg	doō	deg	deg	deg
1804 51		6.038			3.794			9.18	2.565	0.000	
							1.343		1.232		
		G.491	-4.980			2.460		1.87	1.207		1.171
	4.022			5.864					0.589		
1804 52		6.407			1.754		•	14.41	2.565	0.000	
							1.790		3.126		
		5.894	-5.004			1.231		7.80	2.325		
	4.022			5.805					3.162		
1804 53		6.108			1.816			21.15	3.569	0.000	
							2.684		6.553	0.007	
•		6.342	-5.100			2.460		23.53	6.552		1.109
	4.022			5.852					7.279		
1004 54		6.257			1.754	•		29.95	6.126	0.000	
			•				4.467	20.00	6.113	0.000	
		5.994	-5.033			2.795		19.82	6.110		
	4.467			5.848				,	5.282		
1804 55		6.009			1.754			19,73	4.013	0.000	
		*****					7.125		4.236	0.000	
		3.934	-5.064			1,231		15.05	3.689		1.171
	4.467			5.817					5.282		••••
1804 56		6.307			1.816			22.25	4.238	0.000	
		4			,		9.005	~2.25	5.011	5.550	
		6.441	-5.112			1.231	3.003	13.59	4,445		
	4.467			5.852					3.050		

1804:57 to 1805:08 CDT

CDT	8	CPP	STAB	TRIM	SP01.4	SPO R2	3	CAL	AIL	SPO L5	SPOR6
h m s	dag	deg	deg	Çağ	dog	GŧĢ	¢+ ç	deg	deg	deg	deg
							,				
1804 57		6.407			1.754			9.53			
		6.491	-5.124			1.231	6.443	2.56	1.455		1.171
	4.022	0.40		5.730		1,20.		4.00	0.366		
1804 58		6.307			1.754			-1.8G	0.216	0.000	
		T 504					6.684		-0.109		
	4.022		-5.100	5.844		1.231		-3.54	-0.136 1.037		
1804 59		6.108			1.816			28.16	4.906	0.000	
.004 23							3.576		6.113		
		6.193	-5.040	v a=a		3.608		21.01	5.778		1.103
	4.022			5.856					6.171		
1805 CO		6.407			1.754		0.435	27.76	5.350		
		6.243	-5. 136			3.688	3.576	5.35	5.673 3.665		
	4.022	0.245	-5.136	5.872		0,000			0.477		
1805 Q1		6.009			1.754			-8.50			
							5.356		-2.123		
	4.022	6.044	-5.004	5.868		1,231		-11.61	-1.031 -1.758		1,171
1805 02		G. 108			1.816			-10.53	-1,757	0.000	
							4.467		-0.445		
	4.022	6.044	-4.980	5.864		1.231		-3.68	-0.533 0.366		
	4.042								0,000		
1805 03	•	6.203			1.754			13.05	1.782		
		6.243	-5.028			1.231	3.130	6.07	2.904		1.171
	4.022			5.860					0.701		
1803 04		6.058			1.754			-2.24		0.000	
			4 000			4 004	3.130		-0.109		
	4.022		-4.958	5.844		1.231		-3.69	-0.136 1.037		
1805 05		6.009			1.754			15.46	2.565	0.000	
.000 00							3.576		3.233		
	4.022	5.496	-4.860	5.805		2.572		6.53	2,437 0,313		1.171
	4.022			3.803					0.313		
1805 06		5.760			3.855		4.C22	7.07	1.223		
		5.944	-4.872			3.911	4.022	0.69	-0.136		
	3.576			5.817					0.701		_
1805 07		5.959			4.227			5.84			
			-4.860			3.799	4.467	0.39	0.785 -0.136		1.171
	3.130		260	5,821		J. 733		0.00	1.037		
1805 03		5.859	•		3.794			-2.74	-0.232	0.000	
-							4.022		-1.676	_	
	2.684	5.596	-4.384	5.803		3.376		-18.71	-1,813 -5,863		
	4.004								J. 5 . 5 . 5		

1905:09 to 1805:20 CDT

CDT	θ	CPP	STAB	TRIM	SPOL4	SPO R2	4	CWP.	AIL	SPO L5	SPORE
h m's	deg	deg	deg	deg	deg	deg	deg	deg	deg	deg	deg
	•										
1805 09		5.511			9.773			-33.87	-7.459		
		5.397	-4.716			4.245	3.130	-54.19	-6.142 -5.378		1.171
	2.684		*****	5.786				•	-4.097		
1805 10		5.461			8.082			-10.84	-1.462		
						5.888	0.000	-11.92	-1.788 -1.254		
	2.23/		-4.692	5.782		3.560		-11.92	-1.758		
1805 11		5.411			7.034			-7.50	-1.238	റോ	
							-2.125		-1.452		
	1.790	5.173	-4.560	5.743		6.684		-9.42	919 -1.200		1.171
		E 204						-6.53	-1.015		
1805 12		5.361			7.770		- 3.019		-0.109		
			-4.728			7.235		-1.69	-0.248		
	1.343			5.860					0.142		
1805 13		6.805			3.237			-12.54	-1,127		
		E E46	-4.920			1.231	-3.465	-13.18	-2.795 -1.925		1.171
	2.237	5,546	-4.520	5.790		1.231		-13.16	-2.093		1.171
1805 14	•	5.013			3.299			-19.63	-2.803	0.000	
							2.572		~4.359		
	3.130		-4.608	5.817		4.801		-28.15	-4.378 -6.198		
		5 000									
1805 15		6.003			8.144		-1.23:	-31.84	-0.026 -7.030		
			-4.872			1.795		- 11.96	-6.373		1.294
	3.130			5.860					-6.193		
1805 16		6.158			4.289			-17.36	-2.914	0.000	
		6 292	-4.800			1.343	-3.019	-18.51	-0.354 -3.376		
	3.430			5.895		11040			-3.096		
1805 17		6.755			1.878			-15.82		0.000	
		C 700	-5.052			1.454	-3.911	-14.65	-2.683 -2.037		1.294
	4.467			5.825		1.454		-14.63	-2.539		1.234
1805 18		4.764			2.063			-18.55	-2.021	0.000	
							-4.356		-4.582		
	7.125	4.700	-4.200	5.809		2.572		-23.05	-4.6/3 -3.198		
1805 19		6.208			9.208			26 61	-5.915	0.447	
							460.4-		-2.683		1 1
	7.565	7.137	-5.124	5.892		1.678		-7.84	-1.366 -0.306		1.355
1005 30					2.001			14 40		0 000	
1805 20		7.103					-7.805	14.49	1.782 3.460	0.000	
	0.647	5.646	-4.824			1.343	•	9.38	2.437		
	9.317			5.817					3.050		

1805:21 to 1805:32 CDT

CDT	8	CPP	STAB	TRIM	SPO L4	SPO R2	ф	CMP	AIL	SPO L5	SPORS
h m s	C+3	deg	deg	deg	deg	deg	deg	Ceg	deg	deg	deg
1805 21		5.959			1.939				2.118	0.000	
						4 242	-7.45	-2.54	0.002		1.233
	10.620	6.143	-4.932	5.848		1.343		-2.54	-0.082		1.233
1805 22		6.506			1.939		-3.465	-10.69	-6.030		
			-5.436			1.231		-33.19	-5.821		
	11.051			5.852					-7.734		
1905 23		6.805			2.433				-8.992	0.447	
		6 600	-5.472			1.231	-0.336	-39.37	-8.577 -8.134		1 204
	11.482	0.050	-3.4/2	5.860		1.231		-33.37	-8,171		1.24
1805 24		C 407			0 100			-42.42	-9,536	0.417	
1803 24							-0.336		-9.457	0.447	
		6.541	-5.352			1.119		-42.84	-9.117		
	11.482			5.895					-9.258		
1805 25		7.551			4,041			-32.76		1.678	
		7 084	-5.928			1.119	-0.783	-29.15	-7.362 -6.705		1.171
	11.482			5.872		1,113		-23.13	-3.430		
1605 26		7 000			4 754			-14.68	-2.133	0.000	
1803 26		1.350			1.754		-4.356		-2.906	0.000	
			-6.156			1.007		-14.61	-2.260		
	12.766			5.860					-1.982		
1805 27		7.053			1.692			-11.69			
		7 425	~5.916			1.007	-7.455	-10.12	-1.676 -1.356		1 100
	14.457			5.868		1.007		-10.12	-1.647		1.103
1805 28		7,203			1.631			-21.85	-4,140	0.000	
1000 20		1.203					-8.334		-1.788		
			-5.240			1.007		0.24	-0.360	•	
	15.293			5.876					3.386		
1803 29		7 .749			1.631			18.20		0.000	
		7.931	-6.492			1.007	-13.508	15.13	3.904 3.553		1.103
	15,709		0.002	5.868				10110	5,615		
1805 30		7.843			1.569			23.62	A. 238	0.000	
							-15.189		6.553	5.000	
	15.709	7.435	-6,372	5.876		1.119		27.48	7.105 7.942		
1805 31		7.302			1.569		-13.931	35.GO		0.000	
		7.236	-6.036			1.119		21.71	6.662 6.221		1,294
	15,293			5.380		•			5.504		
1805 32		6.954			1.631			-0.45	0.440	0.000	
					•		-9.208	:	0.002		
	14.876	5.944	-5.436	5,819		1.119		-2.54	0.200		
,									J.555		

1805:33 to 1805:44 CDT

CDT	ε	CPP	STAB	TRIM	SPO L4	SP0 R2	4	CYP	AIL	\$20 L5	SPORE
hm s	deg	deg	deg	deg	deg	deç	deg	ÇŧÇ	643	deg	dag
1805 33	13.614	7.286	-5.560			€.573	-5.638	20.54	3.792 4.015 2.548 0.216		1.109
1805 34	13.614		-6.324			0.895	-3.019	11.62 10.47	1.670 2.347 2.437 4,279	0.000	
1805 35		7.600 7.981			1,631	1.007	-0.783	18.35	2.013		1.048
1805 36		6.392	-6.072		13,187	0.895	12.359		-15.803 -19.719 -18.670 -18.033		
1805 37	12.766				50.632	0.733	20.947	-89.GG -85.O1	-20.242 -19.618 -18.570 -17.733		1.018
1805 38	8.891	3.669 4.451	-4.524			0.895	S 443		-13.715 -4.582 0.200 6.504		
1805 39	3.576		-4.068		1.563	2.460	-4.356	30.91 34.06	5,461 7,538 9,081 9,590		1,233
1805 40	1.790		-4.764			6.131	-7.455	36.89 25.51	7.231 6.882 7.325 7.942	0.000	
1805 41	1.343	0.540 0.423	-2.340	5.689	1.692	5. 134	-G.573	19.50 21.54	3.682		
1605 42	-0.336					13.297	-4.350	38.8a 27.91	8,001 7,429 9,662 7,831	0.000	
1805 43		1.532			G. 150		-1.678	37.91 31.05	7,451 7,756 8,643 9,918		2.159
1805 44	-5.334	5.063 8.625			7.084		O 85%	33.62 20.45	6.679 6.003 5.778 2.721	0.000	

1805:45 to 1805:56 CDT

CDT	θ	CPP	STAB	TRIM	SPOL4	SPO R2	<u></u>	CWP	AIL	SPOLS	SPORE
h m s	deg	deg	deg	deg	deg	deg	deg	deg	deç	Gog	deg
						•		•			
1805 45	•	10.129			1.446			4,22	1.223	0.000	
		9.050	-7.620			1.343	2.684	0.39	0.226 -0.136		1.171
	-7.455			5.844		1.343			1.037		
1805 46		9.535			1.692			6.53	-0.003	0.000	
						4 024	0.448	0.66	1 120		
	-1.231	6.528	-1,200	5.801		1.231		0.00	0.477		
1205 47		6 705			1.878			2.03	0.216	0.447	
1005 41							0.895		0.450		
	4.022		-6.036	5.782		1.454	0.895	-2.74	-0.024 -0.194		1.233
	4.022								•		•
1805 48		6.407			2.001		2,237	10.28	0.887	0.447	
		5.596	5.Q1€			1.343		-0.18	-C.248		
	5.356	÷		5.750					0.254		
1805 49		5.059			2.001			5.84	-0.344		
,		6 401	-5.004			1.454	1.790	-1.32	1.455 -0.136		1.479
	1.790		5.004	5.735		1,434		*****	-0.753		
1805 50		6.506			2.063			-16.02	-1.574	0.447	
							G.242		-4.917		
	-0.336		-4.992	5.817		1.556		-34.70	-9.599 -6.062		
		•									
1805 51		9.425			2.001		627.2	-34.40	-7.579 -3.130		
			-4.320			1.678		-6.43	-1.366		1.479
	3.130			5.727					2.156		
1205 52		3.918			1.878				4.572	0.447	
							-2.125		6.663		
	1.730			1.299			•	-	3.050		
1805 53		4.515			1.378			10.08			
		6 CAO	-4.296			1.790	0.895	-10.12	0.673 -0.583		1 470
	0.448		-4.230	5.735		1.750	,	-10.12	0.313		7.475
1805 54	•	2.873			6.332			17.29	3.123	0.000	
						9.752	0.000	40 50	3.460		
	1.343		-2.076	5.739		5.752		10.50	2.884 4.725		
1805 55		3.619	•		9.083			-7.20	-0.120	0.547	
							-0.336		-2.233		
	4.912	2.853	-3.120	•		8,114		-5.18	-0.819		-1,541
4005								-80.00		0 44-	
1805 5G		0.194						-80.92		0.447	

APPENDIX 4 AIRCRAFT POSITIONS

Positions of Delta 191 on the 17L coordinates, x y z tabulated at 1/8 sec interval. For the 17L coordinates, see Fig. 2.4 (P 20) and for x-z and x-y plots, see Fig. 2.9 (P 25)

1804:56 to 1805:01 CDT

CDI	<u> </u>		x		у			2	1	ž.,,
h m	3	ft	m	n m	fl	m	11	m	ft	m
1804	86	-21779.6	-6638.5	-3.582	264.4	80.6	1725.5	525.9	1158.4	353.1
1004	30	-21744.0	-6627.6	-3.576	263.0	80.2	1723.2	525.2	1156.1	352.4
		-21703.3	-6616.8	-3.570	2G1.5	79.7	1721.0	524.6	1153.9	351.7
		-21672.6	-6605.9	-3.564	260.2	79.3	1718.8	523.9	1151.7	351.0
		-21G37.0	-6595.0	-3.559	258.9	78.9	1716.6	523.2	1149.5	350.4
		-21601.3	-6584.2	-3.553	257.6	78.5	1714.4	522.5	1147.3	349.7
		-21565.7	-6573.3	-3.547	256,4	78 2	1712.1	521.9	1147.3	349.7
		-21530.0	-6562.4	-3.541	255.3	77.8	1709.9	521.2	1142.8	348.3
1804	E 7	-21494.4	-6551.6	-3.535	254.3	77.5	1707.7	520.5	1140.G	347.7
1004	٥.	-21458.7								
			-6540. <i>7</i>	-3.529	253.3	77.2	1705.5	519.8	1138.4	347.0
		-21423.1	-6529.8	-3.523	252.3	76.9	1703.3	519.2	1136.2	046.3
		-21387.5	-6519.0	-3.518	251.4	76.6	1701.1	518.5	1134.0	345.7
		-21351.8	-6568.1	-3.512	250.6	76.4	1698.9	517.8	1131.8	345.0
		-21316.2	-6497.3	-3.506	249.8	76.1	1696.8	517.2	1129.7	344 3
		-21280.G	-6486.4	-3.500	249.1	75.9	1694.6	516.5	1127.5	343.7
		-21244.9	-6475.5	-3.494	248.5	75.7	1692.4	515.8	1125.3	343.0
1804	58	-21209.3	-6464.7	-3.488	247.8	75.5	1690,2	515.2	1123.1	342.3
		-21173.7	-6453.8	-3.482	247.3	75.4	1688.0	514.5	1120.9	341.7
		-21138.1	-6443.0	-3.477	246.8	75.2	1685.9	513.9	1118.8	341.0
		-21102.5	-6432.1	-3.471	24G.3	75.1	1683.7	510 2	1116.G	340.3
		-21966.9	-6421,3	-3.465	245.9	75.O	1681.5	512.5	1114.4	339.7
		-21031.3	-6410.4	-3.459	245.5	74.8	1679.4	511.9	1112.3	339.0
		-20995.7	-6399.6	-3.453	245.2	74.7	1677.2	511.2	1110.1	338.4
		-20360.1	-6388.7	-3.447	244.9	74.G	1675. :	510.6	1103.0	337.7
1804	59	-20924.5	-6377.9	-3,441	244.6	74.5	1672.9	509.9	1105.8	337.1
		-20888.9	-6367.O	-3.436	244.3	74.5	1670.3	503.3	1103.7	336 4
		-20853.3	-6356.2	-3.430	244.1	74.4	1668.7	508.6	1101.6	335.8
		-20317.7	-6345.3	-3.424	243.9	74.3	1666.6	508.0	1099.5	335.1
		-20782.2	-6334.5	-3.418	243.7	74.3	1664.5	507.3	1037.4	334.5
		-2074G.6	-6323.6	-3.412	243.5	74.2	1662.3	506.7	1095.2	333.6
		-20711.1	-G312.8	-3.406	243.3	74.2	1660.2	506.0	1093.1	333.2
		-20675.5	-6302.0	-3.400	243.2	74.1	1658.1	505.4	1091.0	332.5
1805	00	-20040.0	-6291.1	-3.395	243.1	74.1	1655.9	504.7	1008.8	331.9
		-20604.5	-G280.3	-3.389	243.0	74.1	1653.9	504.1	1086.7	331,2
		-20568.9	-6269.5	-3.303	243.0	74.1	1651.6	503.4	1084.5	330.6
		-20533.4	-6258.7	-3.377	243.0	74.1	1649.5	502.8	1082.4	329.9
		-20497.9	-G247.8	-3.371	243.0	74.1	1647.3	502.1	1080.2	329.2
		-204G2.4	-6237.0	-3.365	243.0	74.1	1645.1	501.4	1078.0	328.6
		-20426.9	-6226.2	-3.360	243.1	74.1	1642.9	500.8	1075.8	327.9
		-20391.5	-6215.4	-3.354	243.2	74.1	1640.7	500.1	1073.6	327.2
1805	01	-2035G.O	-6204.6	-3.348	243.4	74.2	1633.5	499.4	1071.4	326.6
		-20320.5	-6193.8	-3.342	243.6	74.2	1636.3	498.7	1069.2	325.9
		-20285.1	-6183.0	-3.336	243.8	74.3	1634.1	493.1	1067.0	325,2
		-20249.6	-6172.2	-3.330	244.1	74.4	1631.8	497.4	1064.7	324.5
		-20214.2	-6161.4	-3.325	244.4	74.5	1629,6	426.7	1062.5	323.9
		-20178.7	-6150.6	-3.319	244.7	74.6	1627.4	496.0	1060.3	329,2
		-20143.3	-6129.8	-3.313	245.1	74 7	1625.1	495.3	1058.0	322.5
		-20107.9	-6129.0	-3.307	245.6	74.9	1622.9	494.7	1055.8	321.8

1805:02 to 1805:08 CDT

CDT		×					7	z -	2101
h m s	11	m	fi M	f t	m	11	m	ft	Rı
1805 02	-20072.5	-6:18.2	-3.301	246.1	75.0	1620.7	494.0	1053.6	321.1
	-20037.0	-6107.4	-3.295	246.6	75.2	1618.4	493.3	1051.3	320.5
	-20001.6	-6095.6	-3,290	247.1	75.3	1616.2	492.6	1049.1	319.8
	- 19966 . 2	-6085.8	-3.294	247.7	75.5	1614.0	492.0	1046.9	319.1
	-19930,9.	-6075.0	-3.278	248.3	75.7	1611.8	491.3	1044.7	318.4
	-19895.5	-6064.2	-3.272	249.C	75.9	1609.7	490.6	1042.6	317.8
	-1986Q.1	-6053.4	-3.266	249.6	76.1	1607.5	490.0	1040.4	317.1
	-19824.7	-6042.6	-3,261	250.4	76.3	1605.3	489.3	1038.2	316.5
1805 03	-19789.3	-6031.9	-3.255	251.1	76.5	1603.2	488.G	1036.1	315.8
_	-19754.0	-6021.1	-3.249	251.8	76.B	1601.0	488.O	1033.9	315.1
	-19718.6	-6010.3	-3.243	252.6	77.0	1598.9	487.3	1031.8	314.5
	-19683.2	-5999.5	-3,237	253.4	77.2	1596.7	485.7	1029.6	313.8
	-19647.9	-5983.8	-3.231	254.3	77.5	1594.6	486.1	1027.5	313.2
	-19612.G	-5978.0	-3,226	255.1	77.8	1592.5	485.4	1025.4	312.6
	-19577.2	-5967.2	-3.220	256.0	78.0	1590.5	484.8	1023.4	311.9
	-19541.9	-5956.4	-3.214	257.0	78.3	1580.4	484.2	1021.3	311.3
1805 Q4	-19506.6	-5945.7	-3.208	257.9	78.6	1586.4	483.5	1019.3	310.7
	-19471.3	-5934.9	-3.202	258.9	78.9	1584.4	482.9	1017.3	310.1
	-19435.9	-5924.1	-3.197	259.9	79.2	1582.4	482.3	1015.3	309.5
	-19400.6	-5913.4	-3,191	261.C	79.5	1580.4	481.7	1013.3	308.9
	-19365.3	-5902.6	-3.185	252.0	79.9	1578.4	481.1	1011.3	305.3
	-19330.0	-5891.9	-3.179	263.1	80.2	1576.5	480.5	1009.4	307.7
	-19294.8	-5881.1	-3.173	264.3	80.6	1574.5	479.9	1007.4	307.1
	-19259.5	-5870.4	-3.168	265.4	80.9	1572.6	479.3	1005.5	306.5
1805 05	-19224.2	-5959.6	-3.162	266.6	81.3	1570.7	478.8	1003.6	305.9
	-19188.9	-5848.9	-3.156	267.9	81.G	1568.8	478.2	1001.7	305.3
	-19153.7	-5838.1	-3.150	269,1	82.0	1567.0	477.6	999.9	304.8
	-19118.4	-5827.4	-3.144	270.4	82.4	1565.1	477.1	998.0	304.2
	-19083.2	-5816.G	-3.139	271.7	82.B	1563.3	476.5	996.2	303.6
	-19048.0	-5805.9	-3.133	273.0	83.2	1561.5	475.9	994.4	303.1
	-19012.7	-5795.2	-3.127	274.4	83.6	1559.7	475.4	992.6	302.5
	-18977.5	-5734.4	-3.121	275.8	84.1	1557.9	474.8	990.8	302.0
1805 06	-18942.3	-5773.7	-3.115	277.2	84.5	1556.1	474.3	989.0	301.4
	-18907.1	-5763.0	-3.110	278.G	84.9	1554.3	473.8	987.2	300.9
	-18871.9	-5752.2	-3.104	280.1	83.4	1552.5	473.2	985.4	300.4
	-18836.7	-5741.5	-3.098	281.6	85.8	1550.8	472.7	983.7	299. ย
	-18801.5	-5730.8	-3.C92	283.2	85.3	1549.1	472.2	982.0	299.3
	-18766.4	-5720.1	-3.086	284.8	86.8	1547.3	471.G	980.2	298.8
	-18731.2	-5709.3	-3.031	286.4	87.3	1545.6	471.1	978.5	298.3
	-18696.0	-5698.6	-3.075	288.1	87.8	1544.0	473.6	976.9	297.8
1805 07	-18660.9	-5687.9	-3.069	289.8	89.3	1542.3	470.1	975.2	297.2
	-18625.7	-5677.2	-3.CG3	281.5	88.8	1540.6	469.6	973.5	296 7
	-18590.6	-5666.5	-3.058	293.2	89.4	1539.0	469.1	971.9	296.2
	-18555.4	-5655.0	-3.052	295.0	89.9	1537.3	468.6	970.2	295.7
	-18520.3	-5645.1	-3.046	296.8	90.5	1535.G	465.1	968.5	295.2
	-18485.2	-5634.3	-3.040	298.7	91.0	1534.0	467.G	966.9	294.7
	-18450.0	-5623.6	-3.034	300.6	91.6	1532.3	467.1	965.2	294.2
	-18414.0	-5612.9	-3.023	302.5	92.2	1530.G	466.5	963.5	293.7
1805 08	-18379.8	-5602.2	-3.023	304.4	92.8	1529.0	466.0	961.9	293.2
	-18344.7	-5591.5	-3.017	306.4	23.4	1527.3	465.5	960.2	292.7
	-18309.6	-5580.8	-3.011	308.4	94.0	1525.6	465.0	958.5	292.2
	-18274.5	-5570.1	-3.006	310.5	94.6	1524.0	464.5	956.9	291.7
	-18239.4	-5559.4	-3.000	312.6	95.3	1522.3	464.0	955.2	291.1
	-18204.3	-5548.3	-2.294	314.7	95.9	1520.G	463.5	953.5	290.6
	-18169.3	-5538.1	-2.938	316.9	96.6	1518.9	403.0	951.8	290.1
	-18134.2	-5527.4	-2.982	319.1	97.2	1517.2	462.4	950.1	289.6

1805:09 to 1805:15 CDT

CDT							<u> </u>	z – :	
h m s	11 -	<u>x</u>	n m	f1	m		<u> </u>	11	m ·
11111 3									
1805 09	-16099.1	-5516.7	-2.977	321.3	97.9	1515.5	451.9	948.4	289.1
	-18064.0	-5506.0	-2.971	323.5	98.G	1513.8	461.4	946.7	288.6
	-18029.0	-5495.3	-2.965	325.8	99 3	1512.1	460.9	945.0	288.0
	-17993.9	-5484.6	-2.959	328.1	100.0	1510.4	460.4	943.3	287.5
	-17958.6	-5473.9	-2.954	330.5	100.7	1503.7	459.8	941.6	287 O
	-17923.7	-5463.2	-2.948	332.8	101.4	1507.0	459.3	939.9	286.5
	-17888.6	-5452.5	-2.942	335.2	102.2	1505.3	458.8	938.2	286.0
	-17853.5	-5441.8	-2.936	337.6	102.9	1503.€	458.3	936.5	285.4
1805 10	-17818.4	-5431.1	-2.931	340.0	103.G	1501.9	457.8	934.8	284.9
	-17783.3	-5420.4	-2.925	342.4	104.4	1500.3	457.3	933.2	284.4
	-17748.2	-5409.7	-2.919	344.8	105.1	1498.6	456.8	931.5	283.9
	-17713.1	-5399.0	-2.913	347.2	105.8	1496.9	456.3	929.8	283.4
	-17678.0	-5388.3	-2.907	349.7	106.6	1495.3	455.8	928.2	282.9
	-17642.B	-5377.6	-2.902	352.1	107.3	1493.7	455.3	92G.G	282.4
	-17607.7	-5366.9	-2.896	354.5	108.1	1492.0	454.8	924.9	281.9
	-17572.5	-5356.2	-2.890	356.9	103.B	1490.4	454.3	. 923.3	281.4
1805 11	-17537.4	-5345.5	-2.884	359.4	109.5	14(18.3	453.8	921.7	280.9
	-17502.3 -17467.1	-5334.8	-2.879	361.8	110.3	1487.1	453.3	920.0	280.4
	-17432.0	-5324.0	-2.873	364.1	. 111.0	1485.5	452.8	918.4	279.9
	-17396.8	-5013.3	-2.867	366.5	111.7	1483.9	452.3	916.8	279.4
	-17361.7	-5302.6	-2.861	368.9	112.4	1482.2	451.8	915.1	278.9
	-17326.6	-5291.9 -5281.2	-2.855 -2.850	371.2	113.2	1480.G	451.3	913.5	278.4
	-17291.4	-5270.5	-2.830	373.0	113.9	1479.0	450.8	911.9	277.9
		-3270.5	-2.044	375.9	114 6	1477.3	450.3	910.2	277.4
1805 12	-17256.3	-5259.8	-2.838	378.2	115.3	1475.7	449.8	908.6	276.9
	-17221.2	-5249.1	-2.832	360.5	116.0	1474.0	449.3	90G.9	276.4
	-17185.1	-5238.4	-2.827	392.7	116.7	1472.3	448.8	905.2	275.9
•	-17151 0	-5227.7	-2.821	385.0	117.3	1470.G	448.2	903.5	275.4
	-17115.9	-5217.0	-2.815	387.2	118.0	1468.8	447.7	901.7	274.8
	-17030.8 -17045.7	-5206.3 -5195.6	-2.809	289.4	118.7	1466.9	447.1	899.8	274.3
	-17010.7	-5184.9	-2.803 -2.798	391.5 393.7	119.3	1465.0	446.5	897.9	273.7
·		-,,,,,,,	-2.750	395.1	120.0	1463.0	445.9	895.9	273.1
1805 13	-16975.6	-5174.2	-2.792	395.8	120.G	1460.9	445.3	693.8	272.4
	-16940.6	-5163.6	-2.78G	397.9	121.3	1458.6	444.6	891.5	271.7
	-16905.6	-5152.9	-2.780	400.0	121.9	1456.3	443.9	889.2	271.0
	-16870.6	-5142.2	-2.775	402.1	122.G	1454.0	443.2	886.9	270.3
-	-1G835.7	-5131.6	-2.769	404.2	123.2	1451.5	442.4	884.4	269.G
	-16800.7	-5120.9	-2.760	406.3	123.8	1449.1	441.7	882.O	268.8
	-16765.8	-5110.3	-2.757	408 3	124.4	1446.6	440.3	879.5	268.1
	-1673019	-5099.6	-2.752	410.3	125.1	1444.1	440.2	877.0	267.3
1805 14	-16696.0	-5089.0	-2.746	412.3	125.7	1441.6	439.4	874.5	266 5
	-16661.1	-5070.4	-2.740	414.3	126.3	1439.1	438.6	872.0	265.8
•	-16626.2	-5067.7	-2.734	416.3	126.9	1436.6	437.9	869.5	265.0
	-16591.4	-5057.1	-2.729	418.3	127.5	1434.2	437.2	867.1	264.3
	-16556.5	-504G.5	-2.723	420.2	128.1	1431.9	436.5	864.8	263 6
	-16521.G	-5035.9	-2.717	422.2	128.7	1429.7	435.8	862.6	262.9
	-16486.8	-5025.2	-2.712	424.1	- 129.3	1427.5	435.1	860.4	262.2
	-16451.9	-5014.G	-2.70G	426.1	129.9	1425.4	434.5	858.3	261.6
1805 15	-16417.1	-5004.0	-2.700	428.0	130.5	1423.4	433.8	856.3	261.0
	-16382.2	-4993.4	-2.694	430.0	131.1	1421.4	433.2	854.3	260.4
	-16347.4	-4932.7	-2.639	431.9	131.6	1419.5	432.7	852.4	259.8
	-16312.5	-4972.1	-2.680 .	433.8	132.2	1417.7	432.1	850.6	259.3
	-16277.7 -16242.9	~4961.5	-2.677	435.7	132.8	1415.8	431.6	848.7	258.7
	-16208.1	-4950.9 -4940.3	-2.671 -2.660	437.7 439.6	133.4 134.0	1414.1	431.0	847.0	250.2
	-16173.3	-4929.7	-2.660	441.5	134.6	1412.3	430.5 430.0	845.2	257.6
			2.000	J	,,,,,	1-10.0	430.0	843,5	257.1

1805:16 to 1805:22 CDT

CDT		Z.				1		2 - 2	
hm s	ft	m	e m	11	m	11	m	11	1/1
1805 1G	-16138.G	-4919.1	-0.684	443.4	135 1	1408.9	429.4	841,8	256.6
1805 16	-16103.8	-4919.1	-2.654 -2.649	445.4	135.1	1407.2	428.9	840.1	256.1
	-16069.1	-4897.9	-2.643	447.1	136.7	1405.5	428.4	338.4	255.6
	-16034.4	-4887.3	-2.637	449.0	136.3	1403.9	427.9	836.6	255.1
	-15999.7	-4876.8	-2.631	450.8	137.4	1402.2		835.1	254 5
	-15965.1	-4866.2	-2.626	452.6	138.0	1400.5	426.9	833.4	254.0
	-15930.4	-4855.7	-2.620	454.5	138.5	1398.7	426.3	831.6	253.5
	-15895.8	-4845.1	-2.614	456.3	139.1	139G.8	425.8	629.7	252.9
1805 17	-15861.3	-4834.6	-2.609	458.1	139.6	1394.8	425.1	827.7	252.3
	-15926.8	-4824.1	-2.603	459.9	140.2	1392.6	424.5	825.5	251.6
	- 15792.4	-4813.6	-2.597	461.7	140.7	1390.2	423.7	823.1	250.9
	-15758.0	-4803.1	-2.592	463.4	141.3	1387.7	423.0	820 6	250.1
	-15723.7	-4792.6	-2.586	465.2	141.8	1385.1	422.2	818.0	249.3
	-15689.4	-4782.2	-2.580	466.9	142.3	1382.4	421.4	815.3	248.5
	-15655.2	-4771.8	-2.575	468.7	142.9	1379.7	422 5	812.6	247 7
	-15621.1	-4761.4	-2.569	470.4	143.4	1377.0	419.7	809.9	246.8
1805 18	-15587.0	-4751.0	-2.564	472.0	143.9	1374.3	418.3	807.2	246.0
	- 15552.9	-4740.6	-2.558	473.7	144.4	1371.7	418.1	804.6	245 3
	-15518.9	-4730.2	-2.552	475.3	144.9	1369.2	417.3	202.1	244.5
-	-15485.0	-4719.9	-2.547	476.8	145.3	1366.8	416.6	799.7	243.6
	-15451.1	-4709.6	-2.541	478.3	145.8	1364.6	415.9	797.5	243.1
	-15417.3	-4699.2	-2.53G	479.8	14G.2	1362.4	415.3	795.3	242.4
	-15383.5 -15349.8	-4688.9 -4678.7	-2.530 -2.525	481.2 482.6	146.7 147.1	1360.4 1358.4	414.7	793.3 791.3	241.8
							·		_
1805 19	-1531G.1	-4668.4	-2.519	484.0	147.5	1356.6	413.5	789.5	240.5
	-15282.6	-4658.2	-2.513	485.3	147.5	1354.9	413.0	737.8	240.1
	-15249.0	-4648.0	-2.508	486.5	118.3	1353.2	412.5	786.1	239.6
	-15215.6 -15182.2	-4637.8	-2.502	487.7 488.3	148.G 149.O	1351.6	412.0 411.5	784.5 732.9	239.1
		-4627.6	-2.497	489.0	149.0	1348.4	411.0	781.3	238.6 238.1
	-15148.8 -15115.6	-4617.4 -4607.3	-2.491 -2.486	490.9	149.6	1346.8	410.5	779,7	237.7
	- 15082.4	-4597.2	-2.481	491.8	149.9	1345.3	410.0	776.2	237.2
1805 20	-15049.3	-4587.1	-2.475	492.7	150.2	1343.7	409.6	776.6	236.7
1003 20	-15016.2	- 4577.0	-2.470	493.4	150.4	1342.1	403.1	775.0	236.2
	-14983.3	-4567.0	-2.464	494.2	150.6	1340.6	408.6	773.5	235 B
	-14950.4	-4556.9	-2.459	494.8	150.8	1339.0	408,1	771.9	235 3
	-14917.6	-4546.9	-2.453	495.3	151.0	1337.5	407.7	770 4	234.8
	-14884.8	-4536.9	-2.448	495.8	151.1	1335.9	407.2	768.8	234.3
	-14852.1	-4527.0	-2.443	496.3	151.3	1334.4	405.7	767.3	233.3
	-14819.5	-4517.0	-2.437	496.6	151.4	1332.9	406.3	765.8	233.4
1605 21	-14786.9	-4507.1	-2.432	496.9	151 5	1331.4	405.8	764.3	233.0
	-14754.5	-4497.2	-2.427	497.1	151.5	1330.0	405.4	762.9	232.5
	-14722.1	-4487.4	-2.421	497.2	151.6	1328,6	405.0	761.5	232.1
	-14689.8	-4477.5	-2.416	497.3	151.6	1327.3	404.6	760.2	231.7
	-14657.6	-44G7.7	-2.411	497.3	151.6	1326.0	404.2	758.9	231.3
	-14625.5	-4457.5	-2.405	497.3	151.6	1324.8	403.3	757.7	231.0
	-14593.4 -14561.5	-4449.1 -4438.4	-2.400 -2.395	497.2 497.1	151 6 151.5	1323.7 1322.7	403.5 403.2	756.6 755.6	230.6
1007 00									
1803 22	-14523.6	-4428.7	-2.390	497.0	151.5	1321.7	402.9	754.6	230.0
	-14497.8	~4419.0	-2.384	496.8	151.4	1320.7	402.5	753.6	229.7
	-14466.0	-4409.3	-2.379	496.G	151.4	1319.7	402.2	752.6	229.4
	-14434.4 -14402.8	-4399.7 -4390.0	-2.374 -2.369	496.3 496.1	151.3	1318.7	402.0	751.6	229.5
	-14371.4	-4380.4	-2.364	495.8	151.2 151.1	1317.8 1317.8	401.7	750.7	228.8
	-14340.0	-4370.9	-2.358	495.5	151.0	1316.0	401.4 401.1	749.7	228.5
								749.9	228.3

1805:23 to 1805:29 CDT

C D-T			¥)		1		2 -	Z , , ,
h m	1	11	m	n m	[1	m	ft	តា	ft	m
1805	23	-14277.4	-4351.8	-2.348	494.8	150.B	1314.3	400.6	747.2	227.8
		-14246.2	-4342.3	-2.343	494.5	150.7	1313.5	400.4	746.4	227.5
		-14215.2	-4332.8	-2.335	494.1	150 6	1312.7	400.1	745.G	227.3
		-14184.2	-4323.4	-2.333	433.7	150.3	1311.9	333.9	744.8	227.0
		-14153.3	-4314.0	-2.328	483.4	150.4	1311.1.	299.6	744.0	226.8
		-14122.4	-4304.6	-2.323	490.0	150.3	1310.4	353.4	743.3	226.6
		-14091.7	-4295.2	-2.318	492.6	150.1	1303.7	399.2	742.6	223.4
		-14061.0	-4285.8	-2.313	492.2	150.Q	1309.1	309.0	742.0	226.2
1805	24	14030 . 4	-4276.5	-2.308	491.8	149.9	1303.6	398.9	741.5	226.0
		-13399.6	-4267.2	-2.303	491.4	149.8	1308.1	398.7	741.0	225.9
		-13969.4	-4257.9	-2.298	491.0	149.7	1307.7	398.6	740.G	225.7
		-13939.0	-4248.6	-2.293	490.7	149.6	1307.3	338.5	740.2	225.G
		-13908.6	-4239,4	-2.288	490.4	149.5	1306.9	398.3	739.8	225.5
		-13878.3	-4230.2	-2.283	490.0	149.4	1306.4	398.2	739.3	225.3
		-13848.1	-4221.0	-2.276	469.7	149.3	1305.9	398.1	738.8	225.2
		-13818.0	-4211.8	-2.273	489.4	149.2	1305.4	397.3	738.3	225.0
1805	25	-13787.9	-4202.6	-2.268	409.1	149.1	1304.7	297.7	737,G	234.8
1003	23	-13757.9	-4193.5	-2.263	488.8	149.0	1304.0	337.5	726.9	224.G
		-13728.0	-4184.3	-2.258	488.4	148.9	1303.2	397.2	736.1	224.4
		-13698.1	-4175.2	-2.253	408.1	146.8	1302.3	296.9	735.2	224.1
		-13668.2	-4166.1	-2.248	487.7	140.7	1301.3	296.6	734.2	223.8
		-13638.5	-4157.1	-2.243	487.3	148.5	1300.1	356.3	733.0	223.4
		-13608.7	-4148.0	-2.238	436.9	146.4	1298.9	395.9	731.8	223.0
		-13579.1	-4136.9	-2.233	486.5	140.3	1297.5	295.5	730.4	222.6
1805	26	-13549.4	-4129.9	-2.228	486.0	148.1	1296:0	395.0	728.9	222.2
		-13519.8	-4120.9	-2.224	435.5	148.0	1294.4	394.5	727.3	221.7
*		-13490.3	-4111,9	-2.219	485.0	147 8	1292.8	394.0	725.7	221.2
		-13460.7	-4102.9	-2.214	484.4	147.7	1291.0	393.5	723.9	220.7
		-13431.2	-4093.9	-2.209	483.9	147.5	1289.2	392.9	722.1	220.1
		-13401.7	-4084.9	-2.204	483.2	147.3	1287.3	392.4	720.2	219.5
		-13372.2	-4075.9	-2.139	402.5	147.1	1285.4	391.8	718.3	218.9
		-13342.8	-4066 3	-2.194	481.6	146.9	1283.5	391.2	716.4	218.4
1805	27	-13313.3	-4059.0	-2.190	481.0	146.6	1281.5	390.6	714.4	217.3
		-13283.9	-4049.0	-2.165	480.2	146 4	1273.5	390.0	712.4	217.1
		-13254.5	-4040.0	-2.180	479.3	146.1	1277.5	389.4	710.4	21G.5
		-13225.0	-4031.0	-2.175	478.3	145.8	1275.5	388.8	709.4	215.9
		-10195.6	-4022.1	-2.170	477.3	145.5	1273.4	388.2	706.3	215.3
		-13156.2	-4013.1	-2.165	476.2	145.2	1271.4	387.5	704.3	214.7
		-13136.8	-4004.2	-2.161	475.1	144.8	1269.3	386.9	702.2	214.0
		-13107.4	-2995.2	-2.156	473.9	144.5	1267.1	386.2	700.0	213.4
1805	26	-13078.0	-3986.2	-2.151	472.7	144.1	1265.0	285.6	697.9	212.7
		-13048.5	-3977.3	-2.146	471.4	143.7	1262.8	364.3	695.7	212.0
		-13019.2	-3968.3	-2.141	470.0	143.3	1250.5	364.2	833.4	211.4
		-12989.8	-3959.3	-2.136	458.6	142.8	1258.3	333.5	591.2	210.7
		-12960.4	-3350.4	-2.132	457.1	142.4	1256.0	382.8	683.9	210.0
		-12931.0	-3941.4	-2.127	465.5	141.9	1250.7	382.1	685.5	209.3
		-12901.6	-3932.5	-2.122	463.9	141.4	1251.4	381.4	684.3	208.5
		-12872.2	-2923.5	-2.117	462.2	140.9	1249.1	380.7	582.0	207.9
1605	20	-12842.8	-3914.5	-2.112	460.4	140.3	(946 6 ·	380.0	670.7	207.2
.003	23	-12813.3	-3905.6	-2.107	458.4	140.3 139.7	1246.8	350.0	679.7	207.2
		-12783.9	-3905.6 -3896.6	-2.107	456.3	139.1	1244.6 1242.3	379.4 378.7	677.5 675.2	206.5 205.8
		-12754.5	-3887.6	-2.098	454.1	138.4	1242.3	378.5	673.1	205.8
		-12725.0	-3878.6	-2.093	451.8	137.7	1238.0	377.4	670.9	204.5
		-12695.5	-3869.6	-2.088	449.3	136.9	1235.9	376.7	638.8	203.8
		-12666.0	-3860.7	-2.083	446.7	136.2	1233.6	376.1	656.7	203.2

1805:30 to 1805:36 CDT

CDT		x		у			I ·	2 - 1	100
h m s	- 11	n n	n m	- (1	m	t:	m	11	/A
	 -								
1805 30		-3842.6	-2.073	241,1	134.5	1229.6	374.8	562.5	201.9
	-12577.4	-3833.G	-2.059	438.2	133.6	1227.5	374.2	650.4	201.3
	-12547.8	-3824.6	-2.064	435.0	132.6	1225.5	373.5	658.4	200.7
	-12518.1	-3815.6	-2.059	451.3	131.6	1223.5	372.3	656.4	200.1
	-12488.5	-3806.5	-2.054	428.4	130.6	1221.6	372.3	654.5	199.5
	-12458.8	-3797.5	-2.049	424.9	129.5	1219.7	371.8	652.6	198.9
	-12429.0	-3788.4	-2.044	421.2	128.4	1217.8	371.2	650.7	198.3
	-12399.3	-3779.3	-2.039	417.5	127.2	1216.0	370.G	648,9	197 8
1803 31	-12369.5	-3770.3	-2.034	413.G	126.1	1214.2	370.1	G47.1	197.2
	-12339.7	-3761.2	-2.029	409.5	124.8	1212.5	369.6	645.4	196.7
	-12310.0	-3752.1	-2.025	405.4	123.6	1210.8	369.0	643.7	196.2
	-12280.2	-3743.0	-2.020	401.1	122.3	1209.1	368.5	642.0	195.7
	-12250.4	-3734.0	-2.015	396.7	120.9	1207.5	368.1	640.4	195.2
	-12220.6	-3724.9	-2.010	392.2	119.5	1206.0	367.6	638.9	194.7
	-12190.8	-3715.8	-2.003	387.6	110.1	1204.5	367.1	637.4	194.3
	-12161.0	-3706.7	-2.000	382.9	116,7	1203.1	366.7	636.0	193.9
1605 32	-12131.2	~3697.G	-1.995	378.1	115.2	1201.8	36G.3	634.7	193.5
	-12101.4	-3688.5	-1.990	373.2	113.7	1200.5	365.9	633.4	193.1
	-12071.5	-3679.5	-1.985	398.2	112.2	1199.3	365.6	632.2	192.7
	-12041.8	-3670.4	-1.980	363.1	110.7	1198.2	365.2	631.1	192.4
	-12011.9	-3661.3	-1.976	358.0	109.1	1197.2	364.9	630. 1	192.0
	-11982.1	-3652.2	-1.971	352.6	107.5	1195.2	364.6	629.1	191.3
•	-11952.4	-3643.1	-1.966	347.5	105.9	1195.3	364.3	G28.2	191.5
	-11922.6	-3634.1	-1.961	342.2	104.3	1194.6	364.1	627.5	191.3
****		0000	4 050	****	400 7		202.0		
1805 33		-3625.0	-1.956	335.9	102.7	1193.8	263.3	626.7	191.0
	-11863.1	-3615.9	-1.951	331.5	101.0	1193.1	363.7	626.0	190.8
	-11833.4	-3606.3	-1.946	326.0	99.4	1192.4	363.5	625.3	190.6
	-11803.7	-3597.8	-1.941	320.5	97.7	1191.7	363.2	624.6	190.4
	-11774.0	-3588.8	-1.936	315.0	96.0	1191.0	363.0 362.8	623.8	190.2
	-11744.3 -11714.6	-3573.7 -3570.6	-1.932 -1.927	309.5	94.3 92.6	1189.2	362.5	623.1 622.1	189.9 . 189.6
	-11684.9	-3561.6	-1.927	303.9 298.3	90.9	1188.2	262.2	621.1	189.3
	-11004.5	-3501.0	-1.322	250.3	50.5	1100.2	202.2	021.1	195.5
1805 34	-11655.1	-3552.5	-1.917	292.7	89.2	1187.0	361.0	619.9	189.0
.005 04	-11625.4	-3543.5	-1.912	286.9	87.5	1185.7	361.4	618.6	188.6
	-11595.7	-3534.4	-1.907	281.2	85.7	1184.4	261.0	G17.3	138.1
	-11566.0	-3525.4	-1.902	275.4	93.9	1162.9	360.G	615.8	167.7
	-11536.3	-3516.3	-1.897	269.5	82.2	1181.4	360. t	614.3	187.3
	-11506.6	-3507.3	-1.892	263.7	EO.4	1179.9	359.6	G12.8	186.8
	-11476.9	-3498.2	-1.888	257.8	78.G	1178.2	359.1	611.1	185.3
	-11447.2	-3489.2	-1.883	251.8	76.8	1176.4	358.6	609.3	185.7
	•								
1305 35		-3480.1	-1.078	245.0	74.9	1174.6	356.0	GO7.5	185.2
	-11387.9	-3471.1	-1.673	239.8	73.1	1172.6	357.4	605.5	164.6
	-11358.2	-3462.0	-1.868	233.7	71.2	1170.6	356.8	600.5	184.0
	-11328.5	-3453.0	-1.863	227.6	68.4	1163.6	356.2	601.5	183.3
	-11298.9	-3443.9	-1.858	221.4	67.5	1166.6	335.6	599.5	182.7
	-11269.2	-3434.9	-1.853	215.2	65.6	1164.6	355.0	597.5	182.1
	-11239.5	-3425.0	-1.849	209.0	63.7	1162.7	354.4	595.€	181.5
	-11209.8	-3416.8	-1.844	202.8	61.8	1161.0	353.9	593.9	181.0
1805 36	-11180.0	-3407.7	-1.839	196.G	59.9	1159.4	353.4	592.a	180.5
	-11150.2	-3398.6	-1.834	190.5	50.1	1158.0	352.9	590.9	190.1
	-11120.3	-3389.5	-1.828	184.5	56.2	1156.7	352.6	589.6	179.7
	-11030.3	-3280.4	-1.824	178.6	54.4	1155.G	352.2	538.5	179.4
	-11050.2	-3371.2	-1.819	172.8	52.7	1154.7	352.0	5871.5	179.1
	-11020.0	-3362.0	-1.614	167.2	51.0	1153.9	351.7	586.8	178.3
	-10999.7	-3352.8	-1.809	161.8	49.3	1153,1	351.5	୭୫୫ ଦ	178.G
	-10969.3	-3343.5	-1.804	156.5	47.7	1152.4	351.3	585.3	178.4

1805:37 to 1805:43 CDT

								 	
CDT		<u> </u>		<u>y</u>			<u> </u>	2	ž 1
hm s	ft	m	u u	ft	m .	- 11	<u> </u>	<u>[1</u>	· m
1805 37	-10938.9	-3334.2	-1.799	151.5	46.2	1151.8	351.1	584.7	178.2
1603 31	-10909.3	-3324.9	-1.794	146.6	44.7	1151.2	350.9	584.1	178.0
	-10877.7	-3315.6	-1.789	141.8	43.2	1150.6	350.7	583.5	177.9
	-10847.0	-3306.2	-1.784	137.3	41.8	1150.2	350.6	583.1	177.7
	-10816.1	-3296.8	-1.779	132.9	40.5	1149.8	350.5	582.7	177.G
	-10785.2	-3287.4	-1.774	126.6	39.2	1149.5	350.4	582.4	177.5
	-10754.2	-3277.9	-1.769	124.7	38.0	1149.2	350.3	582.1	177.4
	-10723.1	-3268.4	-1.764	120.8	36.8	1149.0	350.2	581.9	177.4
1805 38	-10691.9	-3258.9	-1.758	117.0	35.6	1148.8	350.2	581.7	177.3
	-10660.6	-3249.4	-1.753	113.2	34.5	1148.6	350.1	. 581.5	177.2
	-10629.2	-3239.8	-1.749	109.5	33.4	1148.4	350.0	581.3	177.2
	-10597.8	-323C.2	-1.743	105.9	32.3	1148.2	350.0	501.1	177,1
	-10566.3	-3220.6	-1.738	102.4	31.2	1148.0	349.9	580.9	177.1
	-10534.G	-3211.0	-1.733	98.8	30.1	1147.8	349.9	580.7	177.0
	- 10502.9	-3201.3	-1.727	95.3	29.1	1147.7	349.8	580.6	177.0
	-10471.1	-3191.6	~1.722	91.8	28.0	1147.5	349.6	580.4	176.9
1805 39	-10439.1	-3181.9	-1.717	88.3	26.9	1147.4	349.7	580.3	176.9
-	-10407.1	-3172.1	-1.712	84.8	25.8	1147.3	349.7	580.2	176.8
	-10374.9	-3162.3	-1.706	81.3	24.8	1147.1	349.6	580.0	176.8
	-10342.7	-3152.5	-1.701	77.B	23.7	1146.6	349.5	579.5	176.6
	-10310.3	-3142.6	-1.696	74.3	22.6	1146.0	349.3	578.9	176 4
	-10277.9	-3132.7	-1.690	70.8	21.6	1145.1	349.0	578.0	176.2
	-10245.4	-3122.3	-1.685	67.4	20 5	1143.8	348.6	576.7	175.8
	-10212.8	-3112.9	-1.680	63.9	19.5	1142.3	348.2	575.2	175.3
1805 40	-10180.1	-3102.9	-1.674	60.4	18.4	1140.4	317.6	573.3	174.7
	-10147.4	-3093.0	-1.669	57.0	17.4	1138.1	346.9	571.0	174.1
	-10114.G	-3083.0	-1.664	53.5	16.3	1135.G	346.1	568.5	173.3
	-10081.7	-3072.9	-1.658	50.0	15.2	1132.8	345.3	565.7	172.4
	-10048.7	-3062.9	-1.633	46.5	14.2	1129.7	344.3	562.6 550.0	171.5
	-10015.6	-3052.8	-1.647	42.9	13.1	1126.4	343.3	559.3	170.5
	-9982.4 -9949.1	-3042.7 -3032.5	-1.642 -1.636	39.3 35.7	12.0 10.9	1123.0 1119.3	342.3	555.9 552.2	169.4 168.3
1905 41	-9915.7	-3022.3	-1.631	32.1	9.8	1115.5	340.0	548.4	167.1
	-9882.2	-3012.1	-1.625	28.4	8.7	1111.5	333.8	544.4	165.9
	-9348.5	-3001.9	-1.620	24.7	7.5	1107.2	337.5	540.1	164.6
	-9814.7	-2991.6	-1.614	20.9	G.4	1102.8	336.1	535.7	163.3
	-9780.8	-2981.2	-1.603	17.5	5.2	1098.2	334.7	531.1	161.9
	-9746.8	-2970.9	-1.603	13.3	4.1	1093.4	333.3	526.3	160.4
	-9712.7	-2960.5	-1.597	8.4	2.9	1088.4	331.8	521.3	158.9
	-9678.4	-2950.0	-1.592	5.5	1.7	1083.2	330.2	516.1	157.3
1803 42	-9644.0	-2939.5	-1.586	1.6	0.5	1077.8	328.5	510.7	155.7
	-9809,5	~2929.O	-1.530	-2.3	-0.7	1072.2	32G.8	505.1	154.0
	-9574.9	-2918.5	-1.575	-6.3	-1.9	1066.4	325.0	499.3	152.2
	-9540.1	-2307.9	-1.569	-10.3	-3.1	1060.4	323.2	493.3	150.4
	-9505.2	-2837.2	-1.563	-14.3	-4.4	1054.2	321.3	487.1	148.5
	-9470.2	-2866.5	-1.553	-18.3	-5.6	1048.0	319.4	480.9	146.6
	-9435.0 -9399.6	-2575.8 -2865.0	-1.552 -1.546	-22.4 -26.5	-8.8 -8.1	1041.7	317.5° 315.6	474.G 468.3	144.7
1805 43	-9364.0	_26E4 2	-1 540	-30 6	-0.3	1020 4	242 7	400.0	440.0
1003 43	-9328.2	-2854.2 -2843.3	-1.540 -1.534	-30.6 -34.8	-9.3 -10.6	1029.1	313.7	462.0 455.7	140.8
	-9292.2	-2832.3	-1.528	-34.0	-11.9	1016.5	309.8	433.7	138.9 137.0
	-9256.0	-2821.3	-1.522	-43.2	-13.2	1010.1	309.8	443.0	135.0
	-9219.6	-2810.2	-1.516	-47.5	-14.5	1003.7	305.9	436.6	133.1
	-9183.1	-2799.0	-1.510	-51.8	-15.8	997.3	304.0	430.2	131.1
	-9146.3	-2787.0	-1.504	-55.2	-17.1	990.8	302.0	423.7	129.1

1805:44 to 1805:50 CDT

CDT						y		2	z -	Z
h m	•	ft	m	n m	f1 <u>.</u>	m	ft		f1	m
		· · · · · · · · · · · · · · · · · · ·		*						
1805	44	-9072.2	-2765.2	-1.492	-65.O	-19.8	977.6	298.0	410.5	125.1
		-9034.9	-2753.9	-1.486	-69.5	-21.2	970.3	295.9	403.8	123.1
		-8997.4	-2742.4	-1.480	-74.0	-22.6	564.0	293.3	396.9	121.0
		-8959.7	-2730.9	-1.474	-78.5	-23.9	956.9	291.7	389.3	118.8
		-8921.8	-2719.4	-1.467	- 83.1	~25.3	949.7	289.5	-032.6	116.6
		-8833.8	-2707.8	-1.461	-87.6	-26.7	942.2	287.2	375.1	114.3
		-8845.6	-2696.2	-1.455	-92.1	~26.1	934.5	284.9	367.4	112.0
		-8807.3	-2684.5	-1.449	-96.6	-29.5	825.T	282.4	359.6	409,6
1805	45	-8768.9	-2672.8	-1.442	-101.2	-30.8	918.5	280.0	351.4	107.1
		-8730.1	-2661.0	-1.42G	- 105 . G	-32.2	810.1	277.Æ	343.0	104.6
		-8691.2	-2649.1	-1.429	-110.1	-33.6	901.5	274.8	334.4	101.9
		-8652.2	-2637.2	-1.423	-114.6	-34.9	892.6	272.1	925.5	99.2
		-8613.1	-2625.3	-1.417	-119.0	-36.3	883.4	269.3	316.3	96.4
		-8573.8	-2613.3	-1.410	-123.4	-37.6	874.0	266.4	306.9	93.5
		-8534.3	-2601.3	-1.404	-127.8	-39.0	864.3	263.5	297.2	90.6
		-8494.7	-2589.2	-1,397	-132.3	-40.3	854.4	260.4	287.3	87.6
1805	46	-8455.0	-2577.1	-1.391	-136.6	-41.7	844.2	257.3	277.1	84.5
		-8415.1	-2565.0	-1.384	-141.0	-43.0	833.8	254.2	266.7	81.3
		-8375.1	-2552.8	-1.377	-145.4	-44.3	823.3	250.9	256.2	.78.1
		-8334.9	-2540.5	-1.371	-143.9	-45.7	812.6	247.7	245.5	74.8
		-8294.6	-2528.2	-1.364	-154.J	-47.0	802.0	244.4	234.9	71.6
		-8254.0	-2515.9	-1.358	- 158 . 7	-43.4	791.3	241.2	224.2	68.3
		-8213.3 -8172.4	-2503.5 -2491.0	-1.351	-163.2	-49.7	780.8	238.0	213.7	65.1
		-6172.4	-2491.0	-1.344	-167.7	-51,1	770.3	234.8	203.2	61.9
1805	47	-8131.4	-2478.5	-1.337	-172.2	-52.5	760.0	231.7	192.9	58.8
		-8090.1	-2465.9	-1.331	-175.8	-53.9	748.9	228.G	182.8	55.7
•		-3048.7	-2453.3	-1.324	-181.3	-55.3	739.9	225.5	172.0	52.7
		-8007.1	-2440.6	-1.317	-185.9	-56.7	730.2	222.6	163.1	49.7
		-7965.3	-2427.8	-1.310	~190.5	-53.1	720.8	219.7	153.7	4G.8
		-7923.3	-2415.0	-1.303	-195.0	-59 4	711.6	216.9	144.5	44.1
		-7881.1	-2402.2	-1.296	-199.6	-60.8	702.8	214.2	135.7	41.4
		-7838.7	-2389.3	-1.289	-204.2	-62.3	694.3	211.6	127.2	38,8
1805	48	-7796.1	-2376.3	-1.282	-208.9	-G3.7	686.2	20912	119.1	36.3
		-7753.4	-2363.3	-1.275	-213.5	-G5.1	678.G	205.8	111.5	34.0
		-7710.4	-2350.2	-1.268	-218.2	-66.5	671.4	204.7	104.3	31.8
		-7667.3	-2337.0	-1.261	-223.0	-68.0	664.8	202.6	97.7	22.8
		-7623.9	-2323.8	-1.254	-227.8	-69.4	. 658.5	200.7	91.4	27.9
		-7580.3	-2310,5	-1.247	~232.6	-70.9	652.8	199.0	85.7	2G 1
		-7536.5	-2297.2	-1.240	-237.5	-72.4	647.3	197.3	80.2	24.5
		-7492.6	-2283.8	-1.232	-242.4	-73 9	642.3	195.8	75.2	22.9
1805	49	-7448.5	-2270.3	-1.225	-247.4	-75.4	637.5	194.3	70.4	21.5
		-7404.2	-2256.8	-1.218	-252.3	-76.9	633.0	192.9	65.9	20.1
		-7359.7	-2243.3	-1.210	-257.2	-78 4	623.8	191.7	61.7	18.8
		-7315.1	-2229.7	-1.203	-262.2	-79.9	625.0	190.5	57.9	17.G
		-7270.3	-2216.0	-1.196	-267.1	-81 4	621.3	189.4	54.2	16.5
		-7225.4	-2202.3	-1.188	-272.0	-82.9	617.9	188.4	50.8	15.5
		-7180.3	-2188.6	-1.181	-276.9	-64.4	514.8	187.4	47.7	14.5
		-7125.0	-2174.8	-1.173	-281.7	-85.9	611.8	186.5	44.7	13.6
1805	50	-7089.6	-2160.5	-1.166	-286.6	-87.3	609.0	185.Ğ	41.9	12.3
		-7044.0	-2147.0	-1.159	-291.4	-88.8	606.2	184.8	39.1	11.9
		-6998.3	-2133.1	-1.151	-295.1	-90.3	603.6	184.0	36.5	11.1
		-6952.5	-2119.1	-1.143	-300.8	-91.7	601.0	183.2	33.9	10.3
		-6906.5	-2105.1	-1.136	-305.5	-93.1	598.4	182.4	31.3	9.5
		-6860.5	-2091.1	-1.128	-310.1	-34.5	595.7	181.6	20.6	5.7
		-6814.3	-2077.0	~1.121	-314.7	~95.9	593.0	100.7	25.5	7.9
		-6768.0	-2062.9	-1.113	-319.2					

1805:51 to 1805:57 CDT

CDT			1		-	у	2		2 - 2	
h m	.	ft	101	n m	11	ra .	ft.	m	ft ·	m
1805	51	-6721.5	-2048.8	-1.105	-323.7	-98.7	587.4	179.0	20.3	6.2
		-6675.0	-2034.6	-1.038	-328.2	-100.0	584.5	178.2	17.4	5.3
		-6628.3	-2020.3	1.090	-332.7	-101.4	581.6	177.3	14.5	4.4
		-6381.6	-2006.1	-1.032	-337.1	-102 5	578.5	176.4	11.7.	3.6
		-6534.7	-1991.8	-1.075	-341.6	-104.1	576.0	175.6	8.3	2.7
		-6487.7	-1977.5	-1.067	-344.1	-105.5	573.4	174.G	6.3	1.9
		-G440.6	-1963.1	-1.059	-050.7	-105.2	571.0	. 174 . 1	3.9	1.2
		-6393.4	-1948.7	-1.052	-355.3	-108.3	568.9	173.4	1.8	0.6
1505	52	-6346.1	- 1934.3	-1.044	-360.0	-109 8	567.1	172.9	. 00	0.0
	1	-6298.8	-1919.9	-1.036	-365.0	-111.3	566.7	172.7	-0.4	-0.1
		-6251.7	-1905.5	-1.028	-371.0	-113.0	566.9	172.8	-0.2	-0.1
	5	-6204.9	-1891.3	-1.021	-376.0	-114.7	567.4	172.9	0.3	0.1
		-G158.3	-1877.1	-1.013	-382.0	-11G.3	568.2	173.2	1.1	.0.3
	ı i	-6111.8	-1862.9	-1.005	-387.0	-117 9	568.7	173.3	1.6	0.5
	- 1	-6055.5	-1848.6	-0.935	-392.0	-119.5	569.1	173.5	2.0	0.6
	ŧ	-6019.2	-1834.7	-0.990	-397.0	-121.1	569.4	173.6	2.3	0.7
1805	57	-5972.8	-1820.5	-0.382	-403.0	- 122.8	569.6	173.6	2.5	O.B
1805	33	-5926.4	-1806.4						2.5	
				-0.975	-403.0	- 124.5	569.6	173.6		3.0
		-5379.8	-1792.2	-0.967	-414.0	- 126.3	569.6	173.6	2.5	8.0
		-5833.2	-1778.0	-0.959	-420.0	- 125.0	569.5	173.6	2.4	0.7
	t	-5786.4	-1763.7	-0.953	-426.0	-129.7	569.4	173.6	2.3	0.7
	2nd	-5739.6	-1749.5	-0.944	-431.0	-131 4		173.5	2.0	o.e
	ন ন	-5692.6	-1735.2	-0.936	-436.0	- 133 . 1	568.8	173.4	1.7	0.5
	- 1	-5645.8	-1720.9	-0.929	-443,0	-134.8	568.4	173.3	1.3	C.4
1805	54	-5598.7	-1706.5	-0.921	-448.0	- 136 . 6	568.0	173.1	0.9	0.3
	1	-5551.6	-1692.2	-0.513	-454.0	-135.4	567.5	173.0	0.4	0:
	ţ	-5504.4	-1677.0	-0.905	-460.O	-140 2	566.9	172.8	-0.2	-0.1
	· 1	-5457.1-	~1563.4	-0.653	-466.0	-141.9	566.3	172.6	-0.8	-0 2
	•	-5409.8	-1648.9	-0.830	471.0	-143 G	565.6	172.4	-1.5	-0.5
	•	-5362.4	-1634.5	-0.332	-477.0	-145 4	565.0	172.2	-2.1	-0.6
		-5315.0	-1620.Q	-0.874	-493.0	-147.2	564.C	171.9	-3.1	-0 9
		-5267.5	-1605.6	-0.866	-489.0	-149.0	553.7	171.8	-3.4	-1.0
1805	54	-5120.0	-1501.1	-0.859	-405.0	- 150.8	563.0	171.G	-4.1	-1.2
1005	33	-5172.5	-1576.G	-0.851	-501.0	- 152 7	562.3	171.4	-4.a	-1.5
		-5125.0	-1562.1	-0.84	-507.0	-154.5	551.6	171.2	-5.5	-1.7
		-5077.4	-1547.6	-0.835	-513.0	-156.3	560.9	171.0	-6.2	-1.9
		-5029.9	-1533.1	-0.827	-519.0	-158.2	550.4	170.8	-6 7	-2.0
		-4982.3	-1518.6	-0.813	-525.0	-160.0	5GO.1	170.8	-7.0	-2.1
	5	-4934.8	-1504.1	-0.812	-531.0	-161.8	560.8	170.9	-6.3	-1.9
	5	-4887.5	-1489.7	-0.804	-537.G	-163.6	562.3	171.4	-4.8	-1.5
1805		-4840.3	-1475.3	-0.796	-543.0	-165.5	564.0	171.9	-3.1	-0.9
1003	23	-4793.3	-1461.0	-0.728	-549.0	-167 4	565.6	172.4	-1.5	+0.5
	ā	-4746.5	-1446.8	-0.78t	-536.0	-169 3	566.9	172.3	-0.2	-0.1
	1									
	í	-4700.0 -4757 T	-1432.G	-0.773	-562.0 -567.0	-171.1	568.0	173.1	0.9	0.3
	•	-4653.7 -4607.6	-1418.5	-0.765	-567.0	-172.9	568.9	173.4	1.8	0.5
		-4G07.G	-1404.4	-0.755	-573.0	-174.7	569.4	173.6	2.3	0.7
		-4561.8 -4516.2	-1390.4 -1376.6	-0.753 -0.743	-579.0 -586.0	-176.5 -178.4	569.7 5€9.6	173.6 173.6	2,6 2,5	0.8 C.8
1805	57	-4470.8	-1362.7	-0.775	-591.0	-160 2	569.1	173.5	2.0	O.G
		-4425.8	-1349.0	-0.723	-537.0	-182.0	568.5	173.3	1.4	Q.4
		-4380.9	-1333.3	-0.721	-603.0	-183.8	567.6	173.0	0.5	0.2
		-4336.3	-1321.7	-0.713	-609.0	- 185.6	566.4	172.6		0.2
		-4292.0	-1308.2	-0.7C5	-615.0	-187.4	565.1	172.2	-2.0	-0.6
		-4247.A	~1294.8	-0.699	-621.0	-189 1	563.6	171.3	-3.5	-1.1
	4	-4204.0	-1281.4	-0.691	-626.0	-190.9	562.2	171.4	-4.9	-1.5
		-4160.3	-1268.1	-O.684	-632.0	-192.6	560.6	170.9	-6.5	-2.0

APPENDIX 5 ACCELERATIONS

 A_x A_y A_z are DFDR longitudinal, lateral, and vertical accelerations. L M N are smoothed and corrected accelerations, and X Y Z are three-component accelerations on the earth coordinates.

1804:56 to 1805:01 CDT

CDT	Δ.	Δ.	Az	į	ii .	N	, x	Ÿ	ž_
1 m 1	3	Q	9	g	9	q	ç	3	9
1804 56	0.0789			O OFBO	-0.0267	1.0075	-0.0181	0.1134	0.0030
1604 30	0.0765	-0.0335	0.9918		-0.0275	1.0075	-0.0173	0.1148	0.0023
	0.0794	-0.0333	0.5516		-0.0297	1.0075	-0.0183	0.1143	0.0030
	0.0734	-0.0417	0.9918		-0.0315	1.0075	-0.0192	0.1133	0.0030
	0.0763	0.0411	0.3310		-0.0328	1.0075	-0.0195	0.1144	0.0030
	0.0.00	-0.0397	0.9918		-0.0314	1 0092	-0.0194	0.1173	0.004
	0.0773	0.000	•		-0.0298	1.0121	-0.0187	0.1198	0.005
		-0.0356	1.0010		-0.0256	1.0150	-0.0183	0.1208	0.009
1804 57	0.0778			0.0575	-0.6308	1.0167	-0.0183	0.1195	0.011
		-0.0417	1.0010		-0.0327	1.0150	-0.0183	0.1168	0.010
	0.0773				-0.0339	1.0121	-0.0181	0.1144	0.0076
		-0.0417	0.9918	0.0568	-0.0330	1.0110	-0.0170	0.1142	0.005
	0.0763			0.0574	-0.0318	1.0121	-0.0168	0.1140	9.007
		-0.0376	1.0010	0.0586	-0.0305	1.0115	-0.0152	0.1132	0.007
	0.0809				-0.0297	1 0075	-0.0137	0.1099	6.003
		-0.0376	0.9827	0.0604	-0.0297	1.0035	-0.0129	0.1050	0.000
1804 59	0.0799			0.0600	-0.0297	1.0030	-0.0133	0.0934	0.000
		-0.0376	0.9913		-0.0293	1.0075	-0.0140	0.0946	0.005
	0.0794				-0.0287	1.0121	-0.0138	0.0530	0.010
		-0.0356	1.0010		-0.0269	1.0152	-0.0130	0.0311	0.013
	0.0814				-0.0247	1.0167	-0.0123	0.0743	0.016
		-0.0295	1.0010		-0.0224	1.0167	-0.0121	0.0681	C G
	0.0799				-0.0206	1.0167	-0.0126	0.0531	0.016
		-0.0274	1.0010	0.0596	-0.0199	1.0150	-0.0130	0.0572	0.615
804 59	0.0794			0.0586	-0.0195	1.0121	-0.0138	0.0513	0.012
		-0.0274	0.9918	0.0571	-0.0188	1.0075	-0.0150	0.0472	600.0
	0.0748			0.0556	-0.0175	1.0030	-0.0162	0.0448	0.003
		-0.0234	0.9827		-0.0155	0.9984	-0.0170	O.C438	
	0.0743		_		-0.0135	0.9338	-0.0170.	0.0437	
		-0.0193	0.9735		-0.0110	0.9809	-0.0174		-0.008
	0.0725				-0.0083	0.9892	-0.0176		-0.010
		-0.0132	0.9735	0.0520	-0.0066	0.8575	-0.0178	0.0475	-0.012
805 00	0.0712			0.0514	-0.0063	0.9846	-0.0177	0.0494	-0.015
		-0.0152	0.9544		-0.0069	0.9835	-0.0177	0.0506	
	0.0707			0.0507	-0.0073	0.9846	-0.0180	0.0535	-C.015
		-0.0152	0.9735		-0.0066	0.9858	-0.0134	0.0579	
-	0.0702				-0.C053	0.9846	-0.0130	0.0634	
		-0.0112	0.9644		-0.0044	0.9818	-0.0173		-0.019
	0.0723				-0.0043	0.9801	-0.0161		-0.021
		-0.0132	0.9644	0.0531	-0.0053	0.5318	-0.0153	0.0769	-0.019
1805 01	0.0738				-0.0063	0.9846	-0.0153	0.0801	
		-0.0152	0.9735		-0.0077	0.9875	~Q.Q155	0.0513	
	0.0723				-0.0093	0.3882	-0.0157	0.0318	
		-0.0193	0.9735		-0.0103	0.9376	-0.0158	0.0823	
	0.0735	0.0470	0.0046		-0.0104	0.9983	-0.0161	0.0975	-0.003
	0.0728	-0.0173	0.9918		-0.0102	1.0058	-0.0168	0.0028	0.003
	0.0728	-0.0193	1.0010		-0.0104	1.0121	-0.0167	0.0807	0.010
		-0.0133	1.0010	0.0050	-0.0110	1.0150	-0.0157	0.0775	0.013

150	5	:02	ta	1805	:08	CDT

CDT	Α.	Α,	Α,	i.	ü	N _	ÿ	Ÿ	ž
h m s	9	Ç	g	9	3	ç	9	9	ç
					<u>:</u>				
1., 25 02	0.0773			0.0566	-0 0114	1.0167	-0.0141	0.0737	0.0156
135 02		0.0193	1.0010		-0.0114	1.0167	-0.01.3	0.070	0.0159
	0.0789				-0.0111	1.0167	-0.011	0.0663	0.0163
		0.0193	1 1/10		-0.0106	1.0167	-0.0105	0.0530	0.0166
	0.0319			0.0608	-0.0097	1.0167	-0.0102	0.0599	0.0168
		0.0152	1.0010		~0.0 063	1.0167	-0.0100	0.0579	0.0168
	0.0789				-0.0C43	1.0157	-0.0116	0.0571	0.0163
	-	0.0091	1.0010	0.0586	-0.0039	1.0167	-0.0124	0.0547	0.0169
1805 05	0.0784			0.0593	-0.0053	1.0167	-0.0123	0.0518	U.0170
		0.0173	1.0010		-0.0056	1.0201	-0.0123	0.0505	0.0204
	C.0768				-0.0033	1.0258	-0.0139	0.0522	0.0260
		0.0051	1.0193	0.0583	0.0013	1.0333	-0.0138	0.0563	0.0333
	0.0799			0.0602	0.0049	1.0395	-0.0123	0.0597	0.0395
		0.0010	1.0284	0.0622	0.0046	1.0407	~0.0104	0.0591	0.0408
	0.0845			0.0632	0.0029	1.0395	-0.0094	0.0577	0.0393
	-	0.0 11	1.0193	0.0634	0.0011	1.0350	-0.0089	0.0562	0.0354
1805 C4	0.0824			0.0625	0.0008	1.0304	-0.0094	0.0565	0.0307
,005 64		0.0051	1.0101	0.0616	0.0003	1.0293	-0.0102	0.0598	0.0307
	0.0809			0.0605	0.0058	1.0304	-0.0114	0.0530	0.0302
		0.0010	1.0193	0.0591	0.0053	1.0316	-0.0129	0.0625	0.0313
	0.0773			0.0578	0.0039	1.0304	-0.C141	0.0518	0.0301
		0.0091	1.0101		-0.0005	1.0310	-0.0151	0.0530	0.0308
	0.0753				-0.0043	1.0349	-0.0156	0.0553	0.0349
		0.0152	1.0284	0.0566	-0.0058	1.0407	-0.0150	0.0550	0.0407
1805 05	0.0768			0.0573	-0.0063	1.0141	-0.0156	0.0558	0.0441
		0.0132	1.0284		-0.0037	1.0424	-0.01 4	0.0571	0.0424
	0.0799				-0.0053	1.0395	-9.0136	0.0582	0.0395
		0.0132	1.0193	0.0581	-0.0094	1.0303	-0.0131	0.0576	0.0333
	0.0763				-0.6083	1.0258	-0.013C	0.0562	0.0258
		0.0193	1.0010		-0.0035	1.0184	-0.0140,		0.0184
	9.0743	0.0150	0.0048		-0.0093	1.0121	-0.0137	0.0560	0.0120
	-	0.0152	0.9918	0.0545	-0.0073	1.0127	-0.0135	0 0590	0.0124
1805 CG	0.0748			0.0557	-0.0053	1.0165	-0.0117	0.0625	0.0162
1003 00		0.0112	1.0101		-0.0033	1.0258	-0.5097	0.0665	0.0752
	0.0799				-0.0012	1.0349	-0.0085	0.0703	0.6341
	-	0.0071	1.023		-0.0007	1.0372	-0.0032	0.0717	0.0353
	0.0753				-0.0012	1.0349	-0.0087	0.0714	0.0339
		0.0112	61		-0.0048	1.0292	-0.0089	0.0579	0.0284
	0.0738	0 0224	1.0101		-0.0094 -0.0124	1.0258	-0.0093 -0.0101	0.0636	0.0252 0.0236
	-	0.0234	1.0101	0.0313	··U.U124	1.0241	-0.0101	0.0603	0.0236
1805 07	0.0392			0.0497	-0.0135	1.0213	-0.0109	0.0599	0.0208
		0.0193	1.0010	0.0482	-0.0103	1.0150	-0.0111	0.0632	0.0142
	0.0672				-0.0063	1.0076	-0.0109	0.0072	0.0034
•		0.0091	0.9827		-0.0024	1.0001	-0.0107		-0.0014
	0.0646	0.000:	0.0775	0.0447	0.0003	0.933	-0.0107		-0.0073
		0.0051	0.9735		-0.0002	0.9927	-0.0109		-0.0090
	0.0626	0.0173	0.9827		-0.0033 -0.0052	0.9938 0.9967	-0.0110 -0.0111		-0.0076
		0.01.3	0.0027	0.0413	.,,0552	J. J.J.	0.0.	J. J., J.	0.0040
1805 C8	0.0611				-0.0043	0.9984	-0.0102		-0.0023
		0.0071	0.9827		-0.0011	0.9967	-0.0094		-0.0047
	0.0646	0 0074	6 0705	0.0434	0.0008	0.9935	-0.0072		-0.0076
	0.0616	0.0071	0.9735	0.0431 0.0428	0.0012	0.9900	-0.007G -0.0065		-0.0105 -0.0122
		0.0051	0.9735	0.0428	0.0018	0.9892 0.9909	-0.0059		-0.0122
	0.0651		3.2700	0.0459	0.0028	0.9938	-0 0020		-0.0073
		0.0051	0.9827	0.0489	0.0032	0.9967	0.0003		-0.0041

1805:09 to 1805:15 CDT

CDT	A,	Α,	A,	i.	м	ห่	ÿ	Ÿ	ž
h m s	g	g	g	đ	g	g	g	g	g
1805 09	0.0723			0.0513	0.0039	0.9984	0.0029		-0.0022
		-0.0030	0.9827	0.0525	0.0037	0 9984	0.0046		-0.0019
	0.0723	0 0074	0 0047	0.0533	0.0029	0.9984	0.0063	0.0536	-0.0016
	0.0773	-0.0071	0.9327	0.0548	0.0027	1.0018	0.0085 0.0115	0.0482 0.0426	0.0021
	0.0773	-0.0010	1.0010	0.0572 0.0596	0.0033	1.0076	0.0115	0.0426	0.0083
	0.0819	-0.0010	1.0010	0.0607	0.0059	1.0167	0.0163	0.0318	0.0179
	0.0015	-0.0010	1.0010	0.0609	0.0077	1.0150	0.0175	0.0254	0.0164
1805 10	0.0799			0.0591	0.0090	1.0121	0.0167	0.0203	0.0135
	0.0.00	0.0031	0.9918	0.05€8		. 1.0110	0.0153	0.0159	0.0124
	0.0738	0.000.	0.00.0	0.0540	0.0120	1.0121	0.0133	0.0119	0.0135
	••••	0.0051	1.0010	0.0512	0.0122	1.0133	0.0114	0.0043	0.0146
	0.0687			0.0482	0.0120	1.0121		-0.0023	0.0133
		0.0031	0.9918	0.0449	0.0110	1.0092		-0.0084	0.0102
	0.0611			0.0408	0.0100	1.0075	0.0039	-0.0135	0.0083
		0.0010	0.9918	0.0365	0.0097	1.0058		-0.0184	0.0063
1805 11	0.0519			0.0329	0.0100	1.0030	-0.0021	-0.0222	0.0033
		0.0031	0.9827	0.0301	0.0118	0.9984		-0.0239	
	0.0483		•	0.0278	0.0140	0.9938		-0.0234	
		0.0092	0.9735	0.0252	0.0156	0.9909		-0.0233	
	0.0422			0.0237	0.0161	0.9892		-0.0246	-0.0107
		0.0071	0.9735	0.0233	0.0143	0.9892			
	0.0443	0.0010	0.9735	0.0225 0.0205	0.0119	0.9892 0.9858		-0.0340 -0.0384	-0.0111 -0.0147
1805 12	0.0366			0.0164	0.0079	0.9800	-0.0100	-0.0413	-0.0202
1805 12	0.0366	-0.0010	0.9552	0.0123	0.0073	0.9606		-0.0413	
	0.0230	-0.0010	0.5552	0.0070	0.0068	0.9343		-0.0423	
	0.0250	-0.0010	0.8820	0.0013	0.0065	0.8977		-0.0420	
	0.0143	0.0010	0.0020	-0.0053	0.0059	0.8611		-0.0419	
		-0.0030	0.8087	-0.0116	0.0079	0.8330		-0.0393	
	0.0026			-0.0156	0.0120	0.8106		-0.0347	
•		0.0112	0.7812	-0.9184	ი.0157	0.8072	-0.0381	-0.0315	-0.1939
1805 13	0.0005			-0.0203	C.0170	0.8106	0.0415	-0.0308	-0.1906
		0.0071	0.8087	-0.0226	0.0181	0.8295		-0.0311	
	-0 0056			-0.0268	0.0212	0.8518		-0.0290	
		0.0194	0.8636	-0.0159	0.0238	0.8862	-0.0437	-0.0280	-0.1148
	0.0138			-0.0073	0.0242	0.9251	-0.0383	-0.0284	-0.0758
		0.0132	0.9552	0.0006	0.0223	0.9606		-0.0305	
	0.0275			0.0068	0.0211	0.9892		-0.0303	
		0.0132	0.9918	0.0124	0.0226	1.0075	-0.0289	-0 0266	0.0071
1805 14	0.0372			0.0192	0.0252	1.0258	-0.0252	-0.0217	0.0238
		0.0214	1.0284	0.0273	0.0259	1.0578	-0.0207	-0.0193	0.0531
	0.0575			0.0374	0.0243	1.0990	-0.0152	-0.0199	0.0936
		0.0112	1.1383	0.0474	0.0229	1.1351		-0.0197	0.1361
	0.0773			0.0552	0.0242	1.1586		-0.0154	0.1600
		0.0214	1.1475	0.0616	0.0251	1.1580		-0.0103	0.1593
	0.0860	0.0092	1.1292	0.0631 0.0627	0.0232	1.1540 1.1449		-0.0078 -0.0088	0.1559 0.1467
1005 45	0.0704	·							
1805 15	0.0794	0.0031	1 1100	0.0579	0.0140	1.1357		-0.0106	0.1372
	0.0646	0.0031	1.1108	0.0520	0.0137	1.1214		-0.0088	0.1226
	0.0046	0.0112	1.0651	0.0446 0.0372	0.0150 0.0191	1.1036 1.0808		-0.0077 -0.0045	0.1044
	0.0499	0.0112	1.0331	0.0372	0.0232	1.0508		-0.0043	0.0582
	0.0400	0.0194	1.0193	0.0263	0.0232	1.0436	-0.0324	-0.0063	0.0437
						1.0350			
	0.0438			0.0257	0.0242	1.0330	-0.0321	-0.0119	0.0350

•					
1805	:16	to	1805	. 77	CDG

CDT	Α,	Α,	Δ,	i :	М	Ñ	_ ;	Ÿ	ž
hm 5	g	0	g	g	g	g	g	g	g
1805 16	0.0476	0.0132	1.0468	0.0262 0.0256	0.0211	1.0487		-0.0268 -0.0305	0.0484 0.0466
	0.0433	0.0132	1.0468	0.0230	0.0272	1.0350		-0.0303	0.0344
	0.0.0	0.0255	0.9918	0.0096	0.0311	0.9852		-0.0274	-0.0157
	0.0158			-0.0071	0.0334	0.9205		-0.0232	
	-0.0274	0.0255	0.8179	-0.0258 -0.0421	0.0368	0.8387		-0.0166 -0.0076	-0.1635
	-0.0214	0.0438	0.6714	-0.0548	0.0420	0.7128			
1805 17	-0.0422			-0.0607	0.0466	0.6825	-0.1014	-0.0006	-0.3207
		0.0336	0.6622	-0.0655	0.0404	0.6985		-0.0084	
	-0.0488	0.0470		-0.0644	0.0334	0.7283		-0.0175	
	-9.0320	0.0173	0.7529	-0.0604 -0.0506	0.0279	0.7872 0.8518		-0.0271 -0.0353	
	9.0320	0.0153	0.9094	-0.0398	0.0243	0.9285		-0.0405	
	-0.007G			-0.0274	0.0252	1.0075	-0.1074	-0.0455	0.0014
		0.0194	1.0742	-0.0149	0.0246	1.0848	-0.1074	-0.0521	0.0786
1805 18	C.0178			-0.0029	0.0222	1.1586		-0.0607	0.1521
	0.0392	0.0092	1.2116	0.0085	0.0202	1.2084		-0.0673 -0.0720	0.2017 0.2385
	0.0552	0.0153	1.2482	0.0207	0.0186	1.2485		-0.0761	0.2410
	0.0422			0.0238	0.0140	1.2410		-0.0930	0.2327
		-0.0030	1.2024	0.0280	0.0133	1.2250		-0.0850	0.2165
	0.0539	0.0234	1.1932	0.0308	0.0181	1.2135		-0.0831 -0.0825	0.1955
1805 19	0.0478			0.0273	0.0211	1.1906	-0.1238	-0.0585	0.1813
1005 15	0.0410	0.0031	1,1566	0.0235	0.0121	1.1603		-0.1002	0.1496
•	0.0392			0.0140	0.0039	1.1219		-0.1103	0.1090
	e: 0024	-0.0112	1.0559		-0.0014 -0.0053	1.0785		-0.1109 -0.1222	0.0634 0.0223
	0.0031	-0.0152	0.9913	-0.0098 -0.0159		1.0395		-0.124	0.0080
	0.0051	0.0.0	0.00.0	-0.0125		1.0258		-0.1265	0.0073
		-0.0030	1.0284	-0.0075	-0.001G	1.0333	-0.1457	-0.1329	0.0149
1805 20	0.0199			-0 0025		1.0349		-0.1424	0.0150
	0.0540	-0.0254	1.0101		-0.0099	1.0258		-0.1490	0 0050
	0.0219	-0.0071	0.9918		-0.0003	1.0166		-0.1490 -0.1437	
	0.0285	0.00.	0.03.0	0.0086	0.0069	1.0258		-0.1388	0: 2060
		0.0051	1.0284	0.0121	0.0119	1.0441		-0.1371	0.0244
	0.0356	0.0112	1.0651	0.0155 0.0189	0.0160	1.0624		-0.1349 -0.1355	0.0430
4005 04	0.0400			0 0000	0.0470	4 4626	0.45.03	0 1050	0.0014
1805 21	0.0422	0.0071	1.1108	0.0232 0.0280	0.0170	1.1036		-0.1356 -0.1308	0.0841
	0.0533	0.007		0.0336	0.0303	1.1540		-0.1192	0.1367
		0.0377	1.1658	0.0390	0.0376	1.1660	-0.1664	-0.1058	0.1505
	0.0641	0.0255	1.1383	0.0411 0.0413	0.0395 0.0342	1.1677 1.1454		-0 0950	
	0.0585	0.0233	1.1303	0.0403	0.0293	1.1174		-0.0887 -0.0318	0.1310
		0.0173	1.0651	0.0405	0.0275	1.0842		-0.0718	0.0707
1805 22	0.0626			0.0395	0.0273	1.0533	-0.1594	-0.0606	0.0405
	0.010-	0.0214	1.0101	0.0362	0.0236	1.0361		-0.0541	0.0230
	0.0499	-0.0051	1.0101	0.0340 0.0345	0.0161	1.0258		-0.0515	0.0123
	0.0590	-0.0051	1.0101	0.0345	0.0085	1.0430		-0.0506 -0.0467	0.0291 0.0586
		-0.0010	1.1017	0.0504	0.0061	1.0935	-0.1619	-0.0380	0.0870
	0.0819	. 0. 0040	4 0035	0.0528	0.0063	1.1128		-0.0296	0.1017
		-0.0010	1.0925	0.0489	0.0046	1.0790	-0.1606	-0.0227	0.0679

1805.23	tΛ	1805:29	CDT

CDT -	Α.	Α,	A,	:	М	Ñ	_;_	Ÿ	ž_
hm s	9	9	g	g	6	g	g	g	9
						÷		•	
1805 23	0.0560			0.0397	0.0008	1.0258		-0.0183	0.0139
	0.0499	-0.0132	0.9277		-0.0072	0.9366		-0.0202	
	0.0459	-0.0356	1.0468	0.0371	-0.0165 -0.0193	1.0029 1.0556		-0.0263 -0.0267	-0.0092 0.0442
•	0.0824	0.0.00	1.0400	0.0586	-0.0165	1.1037		-0.0223	0.0938
		-C.0132	1.1292		-0.0046	1.1312		-0.0035	0.1227
	0.0946			0.0743	0.0073	1.1494	-0.1524		0.1417
		0.0132	1.1383	0.0799	0.0188	1.1454	-0.1461	0.0168	0.1389
1805 24	0.1053			0.0843	0.0283	1.1357	-0.1399	0.0259	0.1303
		0.0275	1.1017	0.0881	0.0308	1.1037	-0.1299		0.0997
	0.1109	•		0.0814	0.0303	1.0624	-0.1284		0.0579
		0.0173	0.9518	0.0682	0.0271	1.0006	-0.1292		-0.0053
	0.0656	0.0173	0.6453	0.0513	0.0252	0.9343 0.8868	-0.1328 -0.1363		-0.0736
	0.0509	0.0173	0.6433	0.0382 0.0364	0.0110	0.8564	-0.1303		-0.1228 -0.1530
	0.000	-0.0112	0.8352	0.0382	0.0005	0.8587		-0.0070	
1805 25	0.0856			0.0408	-0.0073	0.0050	-0 1296	-0.0163	-0 1433
1805 25	0.0556	-0.0133	0 8636		-0.0073 -0.0141	0.8G56 0.8484		-0.0244	
	0.0545	0.13.30	3 2323		-0.0226	0.8106		-0.0347	
		-0.0417	0.7263		-0.0265	0.7712	-0.1105	-0.0406	-0.2362
	0.0682				~0.025 <u>7</u>	0.7511		-0.0430	
	0 0747	-0.0254	0.7446		-0.0213	0.7655		-0.0426	
	0.0717	-0.0295	0.7904		-0.0196 -0.0197	0.7832 0.7958		-0.0468 -0.0537	-0.2218 -0.2074
						•			
1805 26	0.1124				-0.0186	0.6015		-0.C613	
	0.1470	-0.0234	0.7812		-0.0140	0.8105 0.8290		-0.0063 -0.0716	
	0.1470	-0.0091	0.8453		-0.0024	0.8610		-0.0732	
	G. 1709		••••	0.1520		0.8930			-0.0991
		-0.0010	0.9094	0.1656	0.0073	0.9148			-0.0754
	0.2004			0.1779	0.0120	0.9297		-0.0939	
		0.0092	0.9186	0.1885	0.0125	0.9360	-0.0240	-0.1000	-0.0507
1805 27	0.2167			0.1970	0.0099	0.9434	-0.0206	-0.1074	-0.0424
•		·0.0051	0.9369	0.2056	0.0055	0.9492		-0.1160	
	0.2345			0.2127	0.00.6	0.9526		-0.1212	
	0.0400	-0.0051	0.9369	0.2186	0.0032	0.9440		-0.1217	
	0.2427	-0.0030	0.0211	0.2228 0.2270	0.0079	0.9297 0.9137		-0.1200 -0.1157	
	0.2513	0.0000		0.2284	0.0110	0.9023	-0.0005	-0.1105	-0.0758
		0.0092	0.8820	0.2277	0 0140	0.9028	-0.0032	-0.1036	-0.0752
1805 28	0.2442		•	0.2327	0.0150	0.5068	-0.0004	-0.1104	-0.0702
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0051	0.9003	0.2432	0.0153	0.9194		-0.1144	
•	G.2823			0.2550	0.0170	0.9343		-0.1195	
•		0.0132	0.9369	0.2618	0.0162	0.9457		-0.1278	
	0.2813	-0.0054	0 0000	0.2637	0.0119	0.9526		-0.1420	
	0.2930	-0.0051	0.9369	0.2671	0.0001	0.9595 0.9709		-0.1648 -0.1919	
		-0.0376	0.9735		-0.0198	1.0012		-0.2156	0.0168
1805 29	0.3047			0.0004	-0 040r	4 020E	0.0140	0 0000	0.000
1003 23		-0.0173	1.0742		-0.0196 -0.0113	1.0395		-0.2360 -0.2464	0.0528
	0.3362	0.00			-0.0043	1.0670		-0.2520	0.0834
		-0.0071	1.0284	0.3304	-0.0015	1.0458	0.0482	-0.2535	0.0660
	0.3647		0 05.5		-0.0002	1.0258		-0.2532	0.0477
		-0.0091	0.9918	0.3361	0.0015	1.0109		-0.2534	0.0329
	0.3474	0.0031	0.9735	0.3315 0.3297	0.0049	0.5983 1.0029		-0.2513 -0.2536	0.0197
							0.000	U, 2000	0.0200

1805	: 30	to	1805	. 36	CDT

						 -			
CDT	A_	Α,	Δ,	<u></u> i	<u>iii</u>	<u> </u>	ÿ	Ÿ	<u>;</u>
h m s	9	3	<u> </u>	g g	g	y	g	9	g
1805 30	0.3520			0.3375	0.0030	1.0166	0.0606	-0.2584	0.0378
		0.0010	1.0284	0.3491	0.0096	1.0424		-Q.2G58	0.0648
	0.3861			0.3581	0.0120	1.0670	0.0676	-0.2696	0.0907
		0.0092	1.0742	0.3618	0.0163	1.0593		-0.2655	0.0950
	0.3774		4 0404	0.3589	0.0201	1.0578		-0.2572	O.C849
		0.0153	1.0101	0.3572	0.0186	1.0481		-0.2542	0.0755
	0.3769	0.0030	1.0651	0.3492 0.3361	0.0140	1.0533		-0.2566 -0.2598	0.0778
		0.0030	1.0031	0.3361	0.0033	1.0030	0.0492	-0.2550	0.0637
1805 31	0.3352			0.3200	0.0080	1.0624	0.0047	-0.2557	0.0792
		0.0031	1.0284	0.3071	0.0129	1.0596	0.0232	-0.2447	0 0756
	0.3189			0.3057	0.0191	1.0670		-0.2330	0.0852
		0.0194	1.0742	0.3088	0.0223	1.0916		-0.2275	0,1115
	0.3388		1 10.10	0.3142	0.0222	1.1174		-0.2228	0.1393
	0.3342	0.0092	1.1232	0.3165	0.0205	1.1226		-0.2143 -0.1999	0.1466
		0.0173	1.0051	0.3146 0.3130	0.0212	1.1128		-0.1849	0.1391 0.1251
		0.0173	1.0031	0.5150	0.0210	1.0.703	0.0137	0.1043	0. 1231
1805 32	0.3317			0.3127	0.0201	1.0899		-0.1751	0.1202
		0.0071	1.0834	0.3132	0.0192	1.1025		-0.1678	0.1338
	0.3347			0.3113	0.0212	1,1174		-0.1573	0.1493
		0.0194	1.1200	0.3071	0.0257	1.1357		-0.1444	0.1679
	0.3195	0.0234	1.1566	0.2931 0.2748	0.0293 0.0275	1.1540		-0.1332	0.1835
	0.2701	0.0234	1.1500	0.2584	0.0273	1.1357		-0.1250 -0.1193	0.1775 0.1583
		0.0071	1.0834	0.2475	0.0230	1.0905		-0.1063	0.1130
1805 33	0.2650	0.0336	0.9644	0.2426 0.2361	0.0283	1.0396		-0.0881	0.0641
	0.2472	0.0336	0.9544	0.2272	0.0350	0.9887 0.9434		-0.0694 -0.0560	0.0147
		0.0255	0.8911	0.2183	0.0277	0.8596		-0.0546	
	0.2294	0.0200	0.00	0.2079	0.0140	0.3244		-0.0570	-0.1516
		0.0132	0.7263		-0.0033	0.7660		-0.0712	-0.2125
	0.2035			0.1909	-0.0368	0.7237			-0.2564
	-	0.0763	0.6897	0.1903	-0.0505	0.7380	0.0147	-0.1018	-0.2431
1805 34	0.2172			0 1940	-0.0521	0.7740	0.0105	-0.1016	-0.2069
1003 34		0.0437	0.8270		-0.0321	0.8170		-0.0892	
	0.2137	0.045.	0.02.0		-0.0348	0.8427		-0.0797	
		0.0417	0.8270		-0.0349	0.8376		-0.0758	
	0.2264			0.2007	-0.0359	0.8290	0.0049	-0.0729	-0.1494
		0.0458	Q. 7 996		-0.0406	0.8101	0.0056	-0.0731	-0.1684
	0.2086				-0.0471	0.7878		-0.0751	
	-	0.0641	0.7446	0.1886	-0.0551	0.7844	0.0008	-0.0797	-0.1953
1805 35	0.2086			. 0.1921	-0.0623	0.7969	-0.0002	-0.0830	-0.1821
		0.0763	0.8179		-0.0749	0.8439		-0.0911	
	0.2274				-0.0918	0.8977		-0.0994	
		0.1231	0.9460	0.2567	-0.1003	0.3772	0.0126	-0.0969	0.0106
	0.3261				-0.0989	1.0670	0.0277	-0.0771	0.1093
		0.0905	1.1566		-0.0780	1.1534		-0.0326	0.2024
	0.3825	0 0225	1 2555		-0.0541	1.2272	0.0521	0.0282	0.2812
	•	0.0335	1.2665	0.4073	-0.0378	1.2616	0.0802	0.0866	0.3210
1805 36	0.4721				-0.0297	1.2822	0.1067	0.1459	0.3436
		0.0417	1.2665		-0.0227	1.2856	0.1302	0.2031	0.3451
	0.4934				-0.0084	1.2914	0.1343	0.2711	0.3388
		0.0032	1.2848	0.4612	0.0026	1.2610	0.1428	0.3278	0.2942
	0.4690	0.0173	1.0925	0.4434	0.0039 -0.0037	1.2043	0.1433 0.1424	0.3551 0.3576	0.2249 0.1453
	0.4146	0.0173	1.0323		-0.0037	1.0761	0.1424	0.3576	0.0834
Ē		0.0132	1.0284		-0.0061	1.0784	0.1341	0.3667	0.0746

1	20	15 . 37	10	1805 - 43	CUT

CDT	Α.	Α,	AL.	i	ü	Ŋ	,	ÿ	ż
h m s	8	9	q	<u> </u>	g	<u> </u>	9	3	g
1805 37	0.3718			0 7677	-0.0053	1 1036	O. 1066	0.3817	0.0935
1005 57	0.3716	-0.0132	1.1475		-0.0003	1.1460	0.1054	0.3955	0.1332
	0.4115	0.0.01			-0.0186	1.1769	0.1184	0.3953	0.1686
•	• • • • • • • • • • • • • • • • • • • •	-C.0397	1,1749		-0.0261	1.1700	0.1374	0.3805	0 1693
	0.4319				-O G298	1.1494	0.1449	0.3545	0 1563
		-0.0356	1.0925	0.3959	-0.0319	1.0962	0.1524	0.3158	0.1120
	0.3998				-0.0368	1.0349	0.1514	0.2629	0.0599
		-0.0333	0.9460	0.3592	-0.0353	0.9857	0.1488	0.2194	0.0157
1805 38	Q.3586			0.3439	-0.0267	0.9525	0.1482	0.1839	-0 0149
		-0.0152	0.9277	0.3320	-0.0127	0.9537	0.1439	0.1613	-0.0135
	0.3454				-0.0023	0.9617	0.1508		-0.0025
		-0.0051	0.9644	0.3394	0.0066	0.9869	0.1603	0.1063	0.0258
	0.3734			0.3487	0.0181	1.0167	0.1733	0.0830	0.0577
	0.0764	0.0255	1.0376	0.3549	0.0292	1.0310	0.1866	0.0598	0.0730
	0.3764	0.0336	0.0019	0.3556	0.0375	1.0304	0.1988	0.0330	0.0717
		0.0336	0.9918	0.3556	0.0461	0.5749	0.2190	0.0206	0.0152
1805 39	0.3749			0.3393	0.0577	0.8977	0.2249	0.0154	-0.0654
		0.0661	0.7721	0.3125	0.0714	0.7724	0.2234		-0.1944
	0.2900			0.2687	0.0832	O.G368	9.2023		-0.3347
	0 4070	0.0845	0.4700	0.7240	0.0847	0.5114	0.1762		-0.4648
	0.1979	0.0004	0 2050	0.1929	0.0812	0.4033	0.1593		-0.5762
	0.1857	0.0621	0.3052	0.1718 0.1662	0.0704 0.0598	0.3518 0.3209	0.1461 0.1457		-0.6312 -0.6645
	0.1037	0.0417	0.3052	0.1608	0.0508	0.3260	0.1427		-0.6620
1005 10	0 4750				0.040#		0 4400		0.555.
1805 40	0.1760	0 0275	0.3326	0,1651 0,1753	0.0425	0.3346 0.3706		-0.000G	
	0.2147	0.0275	0.3323	0.1793	0.0426 0.0476	0.4215		-0.0058 -0.0075	
	0.2147	0.0519	0.4791	0.2076	0.0526	0.4982		-0.0124	
	0.2406			0.2203	0.0527	0.5772		-0.0221	
		0.0377	0.6439	0.2328	0.0410	0.6201		-0.0386	
	0.2650			0.2427	0.0263	0.6367	0.2247	-0.0541	-0.3584
		-0.0010	0.5981	0.2511	0.0184	0.6224	0.2337	-0.0586	-0.3733
1805 41	0.2772			0.2563	0.0181	0.6138	0.2391	-0.0560	-0 38:6
		0.0214	Q.5981	0.2608	0.0255	0.6172		-0.0472	
	0.2844			0.2632	0.0303	0.6230		-0.0408	
		0.0234	0.6164	0.2649	0.0271	0.6167		-0.0407	
	0.2854			0.2631	0.0211	0.6001	0.2475	-0.0419	-0.3944
•		0.0031	0.5524	0.2598	0.0190	0.5818			-0.4130
	0.2742	0.0255	0.5615	0.2571 0.2563	0.0222	0.5727 0.5789		-0.0324 -0.0225	
1805 42	0.2783			0.2575	0.0344	0.5864	0.2489	-0.0152	-0.4691
		0.0275	0.5798	0.2583	0.0343	0.6092		-0.0141	
	0.2783	0 ,1004	0 6744	0.2690	0.0334	0.6413		-0.0145	
	0.3352	0.0234	0.6714	0.2868	0.0351	0.7128		-0.0147	
	0.3352	0.0397	0.9003	0.3374	0.0395	0.8015 0.8954		-0.0120	
	0.3795	0.0331	0.5003	0.3553	0.0375	0.9755		-0.0117 -0.0136	
•	0.0.00	0.0194	1.0193	0.3704	0.0277	0.9989		-0.0185	
1805 43	0.4013			0.3734	0.0121	0.0023	0.3050	-0.0000	-0.0405
1003 43	0.4013	0.0010	0.9460	0.3734 0.3711	0.0056	0.9983 0.9754		-0.0223 -0.0274	
	0.3810	5.55.5	3.5400		-0.0064	0.9517			-0.0529
		-0.0295	0.9460		-0.0170	0.9583			-0.0590
	0.3652	_		0.3459	-0.0247	0.9525			-0.0672
		-0.0356	0.9277	0 2701	-0.0246	0.9297		-0.9351	
		-0.0355	0.5277						
	0.3530	-0.0355	0.8362	0.3299	-0.0226 -0.0168	0.8977	0.3889	-0.0276 -0.0168	-0.1263

1805	.44	to	1805	50	CDI

							1805:44 to	2 1802:	50 CD1
CDT	Δ,	Α,	Δ,	i*	ii	N .		 ;	<u> </u>
h m s	9	9	9	9	9	g	9	3	9
1805 44	0.3240		•	0.3038	-0.0104	0.7924	0.2712	-0.0060	-0.2368
1005 44	0.5240	-0.C112	0.7172		-0.0044	0.7415	0.3594		-0.2899
	0.2940	0,0772	0,	0.2770	0 0008	0.6963	0.3499		-0.3374
	0.20.0	OE00.0-	0.6439	0.2669	0.0041	0.6648	0.3432		-0.3714
	0.2798			0.2588	0.0059	0.6367	0.3379	0.0236	-0.4019
		0.0010	0.5981	0.2502	0.0208	0.6121	0.3313		-0.4297
	0.2605			0.2441	0.0425	0.5864	0.3251		-0.4563
•		0.0682	0.5432	0.2405	0.0585	0.5606	0.3203	0.0800	-0.4837
1805 45	0.2605			0.2386	0 0829	0.5360	0.3159	0.0847	-0.5088
1005 45	0.2603	0.0417	0.4974	0.2354	0.0519	0.5386	0.3133		-0.5157
	0.2503	0.5417	0.4574	0.2322	0.0425	0.5314	0.3090		-0.5117
	0.2300	0.0275	0.5340	0.2303	0.0426	0.5394	0.3072		-0.5028
	0.2503		••••	0.2268	0.0476	0.5406	0.3015		-0.4996
		0.0519	0.5157	0.2209	0.0526	0.5263	0.2909		-0.5111
	0.2315			0.2144	0.0527	0.5086	0.2783		-0.5248
	•	0.0377	0.4700	0.2097	0.0410	0.5286	0.2711	0.0512	-0.5010
1005 10									
1805 46	0.2279	-0.0010	0.6534	0.2149	0.0263	0.5773	0.2749		-0.4492
	0.2615	-0.0010	0.6531	0.2247 0.2466	0.0184	0.6963 0.8336	0.2875 0.3092		-0.3274 -0.1877
	0.2013	0.0112	0.9827	0.2720	0.0142	0.9703	0.3308		-0.0476
	0.3225	0.02	U.5027	0.2979	0.0120	1.0899	0.3497	0.0200	
		-0.0030	1.1658	0,3208	0.0018	1.1695	0.3614	0.0100	
	0.3591				-0.0103	1.2410	0.3656		
		-0.0335	1.2848	0.3572	-0.0104	1.2954	0.3662	0.0009	0.2929
		•							
.1805 47	0.3952	0.0470	4 0704		-0.0002	1.3463	0.3679		
	0.4436	0.0173	1.3764	0.3994 0.4202	0.0157	1.3921 1.4378	0.3714 0.3753	0.0327	_
	0.9430	0.0173	1,4679	0.4202	0.0232	1.4871	0.3763	0.0483	
	0.4741	0.0110	1,43.5	0.4528	0.0140	1.5366	0.3726	0.0484	
		-0.0051	1.5778		-0.0018	1.6055	0.3663	0.0402	
	0.4975				-0.0206	1.6804	0.3684	0.0287	
		-0.0519	1.7517	0.5124	-0.0432	1.7709	0.3734	0.0140	0.8058
1805 48	0.5672	0.0046			-0.4653	1.8635		-0.0009	
	0.6694	-0.0946	1.9440		-0.0795	1.9134		-0.0093	
	0.0034	-0.0987	1.3891		-0.0897	1.9322		-0.0158 -0.0151	
	- 0.6068	0.0307			-0.0826	1.7857		-0.0146	
		-0.0824	1.6510		-0.0776	1.6925		-0.0140	
	0.5214				-0.0745	1.6163		-0.0158	
		-0.0824	1.5503	0.4709	-0.0501	1.5866	0.3293	0.0053	
4005 40			•		A (:05:			0 0 1 2 -	
1805 49	0.4604	0.0475	4 6505		-0.0094	1.5706	0.3251	0.0427	
•	0.4639	0.0478	1.5595	0.4422 C /S41	0.0241	1.5615	0.3281	0.0732	
	0.4633	0.0092	1.4954	0.4195	0.0289	1.5059	0.3337 0.3335	0.0031	
	0.4151	Q.0052	1554	0.3935	0.0293	1.4653	0.3221	0.0863	
	00.	0.0336	1.4038	0.3664	0.0293	1.4161	0.3094	0.0948	0.4268
	0.3576	• • • • • • • • • • • • • • • • • • • •		0.3399	0.0212	1.3646	0.2970	0.0988	
		-0.0071	1.2940	0.3150	0.0126	1.3011	0.2855	0.1011	0.3041
1005 50	0.0400			0 2012	0.0400	4 0040	A A	0 444-	0 00.0
1805 50	0.3123	0.0153	1 (202	0.2916	0.0120	1.2318	0.2727	0.1112	
	0.2630	0.0153	1.1383	0.2677 0.2454	0.0217	1.1557	C.2577 O.2409	0.1294	
	J. 2.30	0.0295	0.9918	0.2247	0.0275	1.0024	0.2247		-0.0072
	0.2264			0.2160	0.0187	0.9205	0.2182		-0.0887
	•	-0.0091	0.8173	0.2137	0.0045	0.8721	0.2175		-0.1351
	0.2411				-0.0053	0.8519	0.2209	0, 1008	-0.1546
		-0.0173	0.8545	0.2222	-0.0140	0.8839	0.2214	0.0954	-0.1209
				····		 _			

1805	-51	t o	1805 -	57	CDT

(D)	Α.	Α,	Δ,	i	<u>w</u>	ii	**	Ÿ	ż
h m s	ç	9	Q	9	9	g	9	g	9
		<u>-</u>	<u></u>						
1805 51	0.2432			0.2264	-0.0257	0.9251	0.2193	0.0832	-0.0766
1803 31	0.2452	-0.0498	0.9644		-C.0431	0.9921	0,2181		-0.0058
	0.2625	0			-0.0612	1.0670	0.2213	0 0410	0.0733
		-0.0885	1.1383		-0.0726	1.1780	0.2241	0.020:	Q.1875
	0.2981				-0.0785	1 3050	.0.2275	-0.0028	0.3173
	0 2222	-0.0844	1.4404		-0.0876	1.4115	0.2295		0.4265 0.5049
	0.3373	-0.1393	1.5045		-0.1039 -0.1623	1.4882 1.G284		-0.0784 -0.1680	0.6449
		0.1035	1.5043	0.0101	0.1025	1.0204	0.44.0	0. 1900	0.0442
1805 52 g	0.3551			0.2810	-0.2413	1.8407	0.1623	-0.5211	1.3784
· ·		-0.3591	2.1454		-0.2839	2.0324		-(.4520	1.2525
-1	0.0845				-0.2817	2.1384		-0.1869	3818.C
15	0.1500	-0.2200	2.1000		-0.2139	2.0117	-0.4000 -0.3000	0.1097 0.2539	0.3312
	0.1500	-0.0905	1,5000		-0.1473 -0.1008	1.8157 1.4745	-0.2000	0.0914	-0.0244 -0.1971
1	0.2198	0.0203	1.5050		-0.0663	1.1059		-0.2539	-0.2397
l l		-0.0580	7.6805		-0.0680	0.8224		-0.3860	
1805 53	0.2325				-0.0816	0.6230		-0.2032	
	0.2142	-0.1210	0.5340		-0.0864 -0.0734	0.5909 0.5864	0.1935 0.1834	-0.0305	-0.1697 -0.1443
	0.2142	-0.0417	0.6073			. 0.6316	0.1834		-0.1493
	0.1801	5,5,1,	0.00.0	0.1675	0.0008	0.6825	0.1613		-0.1584
lo v		0.0275	0.7263	0.1629	0.0133	0.7489	0.1570	-0.1320	-0.1453
2 nd	0.1857			0.1660	0.0110	0.8198		-0.2641	
(0)		-0.0213	0.8820	0.1692	-0.0107	0.8857	0.1615	-0.1524	-0.1199
1805 54	0.1928			0 1706	-0.0307	0.9434	0.1604	-0.0406	-0 1250
1005 54	0.1320	-0.0559	0.9735		-0.0361	0.9772	0.1577		-0.1249
•	0.1882		• • • • • •		-0.0388	1.0030	0.1478		-0.1077
\$		-0.0376	1.0010		-0.0255	1.0201	0.1346		-0.0904
1	0.1567				-0.0093	1.0396		-0.1320	
· §	0.1190	0.0031	1.0468	0.1178 0.1003	0.0011	1.0367 1.0167		-0.2539	0.0284 0.0530
	0.1180	-0.0091	0.9552	0.0835	0.0045	0.9761		-0.1625 -0.0406	0.0072
		0.000.	0.5001	0.0000	0.00.0	0.0.0	0.3012	0.0.00	0.00.2
1805 55	0.0880			0.0677	0.0079	0.9389	0.0483	. 0.0000	-0.0488
		0.0032	0.8911	0.0517	0.0144	0.9188	0.0340		-0.0041
	0.0555	0.0400	0.0044	0.0384	0.0191	0.9068	0.0232	0.0000	0.1564
	0.0387	0.0132	0.8911	0.0271	0.0192	0.9085	0.0044	0.0000	0.4450 0.8371
	0.000.	0.0071	0.9003	0.1268	0.0070	0.9228	-0.1000	0.0000	1.1235
77.5	0.2549		•		-0.0094	0.9389		-0.0405	1.0361
3rd		-0.0417	0.9460	0.1075	-0.0311	1.3222	-0.4000	-0.1625	0.5800
,									
1805 56		-0.0763	2 0445	-0.0284		1.9460	-0.4000		0.0498
i		-0.0763	2.9145	-0.1699 -0.2637		2.3896 2.4729	-0.4000 -0.4000		-0.2976 -0.4480
í				-0.3200		1.9997	-0.5000	0.3660	-0.5140
ı				-0.3200	0.0080	1.5157		-0.0914	
•			•	-0.3200	0.0044	1.1982	-0.5000	-0.3047	-0.6176
				-0.3260		1.0025		-0.0405	
		-0.0193	0.9735	-0.3200	-0.0041	0.9054	-0.5000	0.2235	-0.5943
1805 57				-0.3200	-0.0017	0.7524	-0.5000	0 1210	-0.5333
				-0.3200	0.0044	0.6045		-0.0914	
				-0.3200	0.0080	0.5157	-0.5000	-0.0813	
				-0.3200	0.0080	0.5157	-0.5000		-0.3403
				-0.3200	0.0080	0.5157	-0.5000		-0.2316
ci				-0.3200 -0.3200	0.0080	0.5157 0.5157	-0.5000 -0.5000		-0.1443
4 th				-0.3200	0.0080	0.5157	-0.5000	0.0406	0.0493

APPENDIX 6 THREE-COMPONENT WINDS

Three-component winds in this table are relative to Runway 17L. They are in the direction of runway (u), cross runway (v), and vertical (w). dd ff are wind direction and speed.

1804:56 to 1805:01 CPT

CDT	и-сотро	nent	wind	v-com	unent	wind	#-comp	orient	wind	dd ff	Tallw	Tailwind		Crosswind	
hm s	m/s	ps.	k15	m/s	fps	kts	m/s	fps	kis	Geg kts	m/\$	rts.	m/s	kts	
1804 56	3.1	10	6	4.4	1 14	. 9	0.7	2	1	55 10	2.	5 5	4.7	7 9	
1004 30	3.1	10	š	4			0.7		i	55 10	2.		4.6		
	3.1	10	6	4			0.0		1	55 10	2.		4.6		
	3.0	10	6	4.:	3 14	8	0.8	. 3	. 2	55 10	2.1	3 5	4.6	9	
	3.0	10	G	4.3	3 14	8	0.8	3	2	55 10	2.		4.8		
	3.0	10	G	4.3		8	0.8		2	56 10	2.4		4.6		
	3.0	10	6	4.3			0.9			5G 10	2.		4.6		
	3.0	10	6	4 . :	3 14	8	1.0	3	2	56 10	2.	5 5	4.6	5 9	
1804 57	3.0	10	6	4.4	1 14	. 8	1.0	3	2	56 10	2.		4.6		
	2.9	10	6	4.3	3 14	8	1.0) 3	2	56 10	2.		4.6		
	2.9	10	G	4 . :	3 14	8	1.1	4	2	56 10	2.		4.6		
	2.9	10	6	4.3			1.1		2	56 10	2.		4.0		
	2.9	9	6	4			1.2		2	56 10	3.		4.5		
	2.9	9	6	4.3			1.2		2	56 10	2.		4.5		
	2.9	9	6	4.3		_	1.2		2	56 10	2.		4.5		
	2.8	9	5	4.3	2 14	8	1,3	4	2	56 10	2.	5 5	4.4	9	
1804 58	2.8	. 9	5	4.	1 13	8	. 1.0	4	2	56 10	2.		4.3		
	2.8	9	5.	4.0			1.3		2	55 9	2.		4.2		
	2.7	9	5	3.9			1.3		3	55 9	2.		4.1		
	2.7	9	5	3 : 9			1.4		3	54 9	2.		3.9		
	2.7	3	5	÷.(1.3		3	54 9	2.		. 3.8		
	2.6	9	5	3.9			1.3		2	53 9	2.		3.7		
	2.6	9	5	3.			1.3		2	52 8	2.		3.5		
	2.6	9	5	3.3	3 11	6	1.3	4	2	52 8	2.	4 5	3.4	, 7	
1804 59	2.6	8	5	3.2			1.2		2	51, 8	2.		3.3		
	2.6	ន	5	3.			1.1		2	51 8	2.4		3.2		
	2.5	8	5	3.0			1.1		2	50 8	2.		3.1		
	2.5	8	5	3.0			1.1		2	50 8	2.		3.1		
	2.5	8	5	2.0			1.1		2	50 B	2.		3.1		
	2.5	8	5	2.9			1.0		2	50 7	2.		3.0		
	2.5	8	5	2.9			1.0		2	50 7	2.		3.0		
	2.5	8	5	2.5	3 9	6	1.0	3	2	50 7	2.	4 5	3.0) G	
1805 00	2.5	8	5	2.9			1.0		2	49 7	2.		3.0		
	2.5	8	5	2.9		_	0.9		2	49 7	2.		3.0		
	2.5	8	5	2.9			0.9		2	49 7	2.4		3.0		
	2.5	8	5	2.9			0.9		2	49 7	2.		3.0		
	2.5	8	5	2.9			0.9		2	49 7	2.		3.0		
	2.5	8	5	2.9			0.8		2	50 8	2.		3.0		
	2.5 2.5	8 8	5 5	3.0			0.8 0.8		2	50 8 50 8	2 2		3.0 3.0		
	2.5	ė,	3	3.0	, ,,	, .	0.6		4	. 30 6	2.	• 5	3.0	, 0	
1805 01	2.5	8	5	2.9			0.8		2	50 7	2.		3.0		
	2.5	8	5	2.9			0.8		2	50 7	2.		3.0		
	2.5	8	5	2.9			0.9		2	50 7	2.		2.9		
	2.4	8	5	2.8			0.9		2	50 7	2.		2.9		
	2.4	8	5	2.8			1.0		2	50 7	2.		::.8		
	2.3	8	4	2.8			1.0		2	50 7	2.		2.8		
	2.3	7	4	2.5			1.1		2	51 7 52 7	2.		2.8		
	2.2	- 7	4	2.7	, 5	: 3	. 1.2	4	2	52 7	2.	2 4	2.8	າ ນ	

1805:02 to 1805:08 CDT

CDT	u-component wind			v-com	chent	bniw	n-comp	onent	wind	1d 11	Toilwind		Crosswind	
h m s	m/s,	tps	k1s.	m./s	fps	kts	m/s	fps	kts	, deg kts	m/s	kts	m/s	kts
1805 02	2.1	7	4	2.7	' 9	5	1.2	4	2	52 7	2.1	4	2.8	5
.005 02	2.1	7		2.7			1.2	4	2	53 7	2.0	4	2.7	
	2.0	7	4	2.7		_	1.3	4	2	53 7	2.0		2.7	
	2.0	6	4	2.7	9	5	1.3	4	. 3	54 7	1.9		2.7	
	1.9	G	4	2.7			1.4	4	3	55 6	1.9		2.7	5
	1.9	6	4	2.7			1.4	5	3	55 6	1.9		2.7	
	1.8 1.8	6	4 3	2.7			1.5	5 5	3 3	56 6 56 6	1.8		2.7	5 5
	1.6	0	3	٠. ٢	9	3	1.5	3	3	56 G	1.8	3	2.7	3
1805 03	1.8	6	3.	2.6			1.6	5	3	56 6	1.7		2.6	
	1.7	6 5	3	2.4			1.7	6	3 3	55 6 54 5	1.7	3	2.4	
	1.6	5	3	2.3			1.8	6	4	53 5	1.7	3 3	2.3	4 4
	1.6	5	3	2.0			1.8	6	4	52 5	1.6	3	2.0	
	1.5	5	3	1.9			1.6	6	4	52 5	1.5		1.9	4
	1.5	5	3	1.8	6	3	1.8	6	4	51 4	1.5		1.8	3
	1.4	5	3	1.7	6	3	1.8	6	3	50 4	1.4	3	1.7	3
1805 04	1.4	5	3	1.6			1.8	6	3	50 . 4	1.4	3	1.6	3
	1.3	4	3	1.6			1.8	6	3	50 4	1.3	3	1.5	3
	1.3	4	2	1.5			1.8	6	4	50 4	1.3	3	1.5	3
	1.2	4	2	1.5			1.9· 2.0	6 6	4	51 4 52 4	1.3	2	1.5	3
	1.1	4	2	1.5			2.0	7.	4	53 4	1.2	2 2	1.5 1.5	. 3
	1.1	- 4	2	1.5			2.1	7	4	55 4	1.1	2	1.5	3
	1.0	3	2	1.5			2.1	7	4	57 4	1.0	2	1.5	. 3
805 05	1.0	3	-2	1.5	5	3	2.1	7	4	58 4	1.0	2	1.5	. 3
-	0.9	3	2	1.5		3	2.0	7	4	59 3	0.9	2	1.4	. 3
	0.9	3	2 -	1.4			2.0	7	4	58 3	9.0	2	1.3	3
	0.8	3	2	1.3		2	2.1	7	4	58 3	0.8	2	1.3	2
	0.8	3	2	1.3		2	2.2	7	4	59 3	0.8	2	1.2	2
	0.7 0.7	2	1	1.3		2	2.4	S S	5 5	60 3	0.8	2	1.2	2
	0.7	2	1	1.2		2	2.6	9	5 5	60 3 61 3	0.7 0.7	1	1.2	2 2
		,						,		•	0.7	•	1.2	-
1805 06	0.6	2	1	1.2		2	3.0 3.1	10	6 . 6	62 3 65 3	0.7	1	1.2	2
	0.4	1	1	1.2		2	3.1	10	6	65 3 70 3	0.6 0.5	1	1,2	2
	0.3	i	i	1.2		2	3.2	11	6	76 2	0.4		1.2	2
	0.1	ò	ò	1.2		2	3.3	11	6	83 2	0.2	ò	1.2	2
	-0.0	0	0	1.1	4	2	3.3	11	6	92 2	-0.0	õ	1.1	
	-0.3	0	0	1.2		?	3.3	11	6	102 2	-0.2	0	1.2	2
	-0.5	- 1	0	1.2	4	2	3.3	11	6	111 3	-C.4	C	1.3	2
1805 07	-0.7	-1	0	1.3		2	3.3	11	6	117 3	-0.6	0.	1.3	3
	-0.8 -0.9	-2 -2	- 1 - 1	1.2		2	3.3	11	G	124 3	-0.8	0	1.2	2
	-1.0	-2	-1	1.2 1.2		2 2	3.3 3.4	11	6 7	129 3 - 131 3	-0.9	- 1	1.2	2
	-1.1	-3	-1	1.2		2	3.4	11	7	132 3	-1.0 -1.€	- 1 - 1	1.2	2
	-1.1	-3	- i	1.2		2	3.4	11	7	132 3	-1.1	- 1	1.3	2
	-1.1	-3	-1	1.2		2	3.5	11	7	134 3	-1.1	- i	1.2	2
	-1.1	-3	-1	1.2		2	3.5	11	7	134 3	-1.1	- i	1.2	2
1805 08	-1.1	-3	- 1	1.2	4	2	3.5	11	7.	135 3	-1.1	1	1.2	2
	-1.2	-3	- 1	1.1		2	. 3.5	11	7	136 3	-1.1	- 1	1,2	2
	-1.2	-3	-1	1.3	3	2	3.4	11	7	138 3	-1.1	- 1	1.1	2
	-1.2	-3	- 1	1.0		2	3.4	11	7	142 3	-1.2	-1	1.0	2
	-1.3 -1.4	-3 -3	-2 -2	0.9 0.a		2	3.4	11	7 7	147 J 150 3	1.2	-1	0.9	2
	-1.5	-4	-2	0.3	2	1	3.4	- 11	7	150 3 154 3	-1.3 -1.4	-2 -2	0.9 0.8	2

1805:09 to 1805:15 CDT

CDT	u-com	porient	wind	v-comp	onent	wind	w-comp	onent	will.tg	dd ff	Tailwind	Crosse	vind
h m s	m/s	lps	kis	m/s	1ps	kts	m/s	fps	kts	deg kts	m/s kis	m/\$	kts
1805 09	-1.7 -1.7 -1.8 -1.9 -1.9 -2.0 -2.1	-4 -5 -5 -6 -6	-2 -2 -3 -3 -3 -3 -3	0.7 0.6 0.6 0.5 0.4 0.3 0.1	2 2 2 2 1 1 0	1 1 1 1 0 0	3.5 3.5 3.6 3.7 3.8 4.0 4.1	11 12 12 12 13 13	7 7 7 7 7 8 8	158 3 161 4 163 4 166 4 167 4 173 4 177 4 182 4	-1.6 -2 -1.7 -2 -1.8 -2 -1.9 -3 -1.9 -3 -2.0 -3 -2.1 -3	0.7 0.7 0.6 0.6 0.5 0.4 0.2	1 1 1 1 1 0
1805 10	-2.2 +2.3 -2.4 -2.5 -2.6 -2.8 -2.9	-6 -7 -7 -7 -8 -8 -9	-3 -3 -4 -4 -4 -4 -5	-0.2 -0.3 -0.3 -0.4 -0.4 -0.3 -0.4	0000000	0000000	4.3 4.4 4.4 4.5 4.6 4.6	14 14 15 15 15 15	8 8 9 9 9 9 9	185 4 187 4 188 5 188 5 187 5 187 6 188 6	-2.2 -3 -2.3 -3 -2.4 -4 -2.5 -4 -2.7 -4 -2.8 -4 -2.3 -5 -3.0 -5	-0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2	0000000
1805 11	-3.1 -3.2 -3.4 -3.5 -3.6 -3.7 -3.8 -3.9	-11 -11 -11	-55 -66 -66 -66	-0.5 -0.6 -0.8 -0.9 -1.0 -1.1 -1.1	-1 -1 -2 -2 -2 -3 -3	0 0 -1 -1 -1 -1	4.7 4.8 4.8 4.7 4.5 4.2 3.9	15 16 16 15 15 14	9 9 9 9 9 9 8 8	189 6 192 6 193 7 195 7 196 7 197 7 197 8	-3.2 -5 -3.3 -5 -3.4 -6 -3.5 -6 -3.6 -6 -3.7 -6 -3.8 -6 -3.9 -7	-0.3 -0.4 -0.6 -0.7 -0.8 -0.8 -0.9	0 0 0 0 -1 -1 -1
1805 12	-3.9 -4.0 -4.1 -4.1 -4.1 -4.1	-12 -12 -12 -13 -13	-7 -7 -7 -7 -7 -7	-1.2 -1.3 -1.4 -1.6 -1.7 -1.9	-3 -3 -4 -5 -5 -6	-1 -1 -1 -2 -2 -2 -3 -3	3.5 3.1 2.7 2.3 1.9 1.6 1.3	12 10 9 7 6 5 4	7 5 4 4 3 3	197 6 197 8 197 8 199 3 201 9 203 9 205 9 208 9	-4.0 -7 -4.1 -7 -4.2 -7 -4.2 -7 -4.2 -7 -4.2 -7 -4.2 -7 -4.2 -7 -4.2 -7	-0.9 -0.9 -1.0 -1.1 -1.3 -1.4 -1.6	-1 -1 -1 -1 -1 -2 -2 -3
1805 13	-0.9 -3.8 -2.7 -3.6 -3.5 -3.4 -3.3 -3.2	-12 -11 -11 -10 -10	-7 -6 -6 -6 -6 -6 -5	-2.3 -2.5 -2.6 -2.7 -2.8 -2.9 -3.0	-7 -7 -8 -8 -9 -9	-3 -4 -4 -4 -5 -5	1.0 0.3 0.8 0.8 0.8 1.0 1.2	3 3 3 3 3 4 5	2 2 1 2 2 3	211 9 213 9 215 9 217 9 219 9 221 9 222 9 224 9	4.1 -7 -4.0 -7 -2.9 -7 -3.8 -6 -3.7 -6 -3.6 -6 -3.5 -6 -3.4 -6	-2.0 -2.2 -2.3 -2.4 -2.5 -2.6 -2.7 -2.8	-3 -4 -4 -4 -4
1805 14	-3.1 -3.1 -3.1 -3.1 -3.2 -3.3 -3.4		-5 -5 -5 -5 -5 -5 -6	-3.0 -3.1 -3.1 -3.1 -3.0 -2.9 -2.8	-9 -9 -9 -9 -9 -8	-5 -5 -5 -5 -5 -5 -5	1.9 2.4 2.8 3.1 3.2 3.3 3.2	6 8 9 10 11 11 10	4 5 5 6 6 6 6	224 8 225 0 226 8 226 9 225 8 223 8 221 9 219 9	-3.3 -5 -3.3 -5 -3.3 -5 -3.3 -5 -3.3 -5 -3.4 -6 -3.5 -6 -3.6 -6	-2.8 -2.9 -2.9 -2.9 -2.8 -2.7 -2.6	-4 -5 -5 -5 -4 -4
1805 15	-3.6 -3.7 -3.9 -4.1 -4.2 -4.4 -4.6 -4.9	-11 -12 -12 -13 -14 -14	-6 -5 -7 -7 -7 -8 -8	-2.8 -2.7 -2.7 -2.7 -2.7 -2.7 -2.8 -2.8	-8 -8 -8 -8 -8	-4 -4 -4 -4 -4 -4	2.8 2.6 2.5 2.5 2.5 2.5 1.9	9 9 8 8 8 8 8	5 5 5 5 5 5 4 4	218 9 216 9 215 9 214 10 213 10 212 10 211 10 210 11	-3.8 -6. -3.9 -7 -4.1 -7 -4.2 -7 -4.4 -8 -4.6 -3 -4.8 -8 -5.0 -9	-2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5	-4 -4 -4 -4 -4 -4

1805:16 to 1805:22 CDT

CDT	u-component wind	v-component wind	w-component wind	ed ff	Tailwind	Crosswin
n m s	m/s fps kts	m/s fps kts	m/s fps kts	deg kts	m/s kts	m/s k
	.				2	
1805 16	-5.2 -16 -9	-2.8 -8 -5	1.2 4 2	209 11	-5.3 -9	-2.5
	-5.5 -17 -10	-2.9 -9 -5	0.2 1 0	208 12	-5.€ -10	-2.6
	-5.8 - 18 <i>-</i> 10	-3.1 -9 -5	-0.9 -2 -1	208 13	~6.0 -11	-2.8
	-6.2 -19 -11 -6.5 -20 -12	-3.3 -10 -5	-2.2 -6 -3 -3.3 -10 -5	209 14	-6.3 -11 -6.7 -13	-3.0
	-6.5 -20 -12	-3.6 -11 -6		210 14	~6.7 -12	-3.2
	-6.3 -21 -12 -7.2 -23 -13	-3.9 -12 -7 -4.0 -12 -7	-4.3 -13 -7 -5.1 -16 -9	210 15	-7.0 -13	-3.5
	-7.6 -24 -14	-4.0 -12 -7 -3.9 -12 -7	-5.1 -16 -9 -5.6 -17 -10	209 16 208, 17	-7.4 -13 -7.8 -14	-3.5 -3.5
805 17	-8.0 -25 -15	-3.8 -11 -6	-5.3 -18 -10	205 17	-8.2 -15	-3.3
.,	-3.5 -27 -15	-3.5 -11 -6	-5.8 -18 -10	203 18	-8.6 -16	-3.1
	-8 9 -28 -16	-3.3 10 -5	-5.6 -17 -10	200 18	-9.1 -17	-2.8
	-8.4 -30 -17	-2.9	-5.4 -17 -9	198 19	-9.5 -18	-2.4
	-9.9 -31 -18	-2.6 -7 -4	-5.1 -16 -9	195 20	-10.0 -18	-2.1
	-10.3 -33 -19	-2.3 -7 -3	-4.8 -15 -8	193 20	-10.4 -19	-1.8
	-10.7 -34 -20	-2.1 -6 -3	-4.7 -15 -6	191 21	-10.8 -20	-1.6
	-11.0 -35 -20	-1.9 -5 -3	-4.7 -14 -8	190 22	-11.1 -21	-1.4
305 18	-11.3 -36 -21	-1.7 -5 -2	-4.6 -1 - -8	189 22	-11.4 -21	-1.2
	-11.6 -37 -22	-1.5 -4 -2	-4.6 -14 -8	188 23	-11.7 -22	-1.0
	-11.9 -38 -22	-1.3 -3 -1	-4.6 -14 -8	186 23	-11.9 -22	-O.8
	-12.1 -39 -22	-1.1 -3 -1	-4 .5 -14 -8	185 24	-12.1 -23	-0.G
	-12.2 -39 -23	-1.0 -2 -1	-4.4 -13 -8	185 24	-12.3 -23	-0.5
	-12.3 -40 -23	-0.9 -2 -1	-4.3 -13 -7	184 24	-12.4 -23	-0.4
	-12.4 -40 -23	-0.7 -1 0	-4.2 -13 -7	184 24	-12.4 -23	-0.3
	-12.4 -40 -23	-0.5 -1 0	-4.3 -13 -7	183 24	12.4 -23	-0.1
305 19	-12.3 -39 -23	-0.3 0 0	-4.3 -13 -7	182 24	-12.3 -20	C.1
	-12.1 -39 -23	-0.1 0 0	-4.5 -14 -8	181 24	-12.1 -23	0.3
	-11.9 -38 -22	0.1 0 0	-4.7 -14 -8	18C 23	-11.8 -22	0.5
	-11.5 -37 -21	0.4 1 1	-4.9 -15 -9	178 22	-11.5 -21	0.7
	-11.0 -35 -20	0.6 2 1	-5.1 -16 -9	177 21	-11.0 -20	0.9
	-10.5 -34 -19	0.7 2 1	-5.4 -17 -9	176 21	-10.5 -13	1.0
	-10.0 -32 -18	0.8 3 2	-5.7 -18 -10	176 20	-10.0 -18	1.1
	-9.6 -30 -18	0.9 3 2	-6.0 -19 -11	175 19	-9.5 -18	1.1
805 20	-9.2 -29 -17	0.8 3 2	-6.3 -20 -11	175 18	-9.2 -17	1.0
	-8.9 -28 -16	0.7 2 1	-6.5 -20 -12	176 17	-8.9 -16	0.9
	-8.7 -27 -16	0.5 2 1	-6.6 -21 -12	177 17	-8.6 -16	0.7
	-8.5 -27 -16	0.3 1 1	-6.6 -21 -12	178 17	-8.5 -16	0.5
	-8.5 -27 -15	0000	-6.5 -20 - 12	180 16	-3.5 -15	0.2
	-8.4 -27 -15	-0.3 0 0	-6.3 -20 -11	182 16	-3.5 -15	-0.1
	-8.4 -27 -15 -8.4 -27 -15	-0.7 -1 0 -1.1 -3 -1	-6.0 -19 -11	185 16	-8.5 -15	-0.5
	-8.4 -27 -15	-1.1 -3 -1	-5.7 -18 -10	188 16	-8.4 -15	-0.9
105 21	-8.3 -26 -15	-1.6 -4 -2	-5.5 -17 -10	191 17	-8.4 -15	-1.4
	-8.2 -26 -15	-2.0 -6 -3	-5.4 -17 -10	194 16	-8.3 -15	-1.8
	-8.1 -25 -15	-2.4 -7 -4	-5.4 -17 -10	197 16	-6.1 -15	-2.2
	-7.8 -25 -14	-2.7 -8 -4	-5.5 -17 -10	199 16	-7.9 -14	-2.5
	-7.6 -24 -14	-2.9 -9 -5	-5.7 -18 -10	201 16	-7.7 -14	-2.7
	-7.4 -23 -13 -7.2 -23 -42	-3.1 -9 -5	-5.8 -18 -10	203 16	-7.5 -13	-3.0
	-7.2 -23 -13 -7.1 -22 -13	-3.2 -9 -5 -3.1 -9 +5	-5.8 -16 -10 -5.6 -17 -10	204 15 204 15	-7.3 -13 -7.2 -13	-3.0 -2.9
805 22						
103 ZZ	-7.1 -22 -13 -7.2 -23 -13	-2.8 -8 -5 -2.6 -6 -4	-5.4 -17 -9 -5.2 -16 -9	202 15	-7.1 -12 -7.2 -12	-2.7
	-7.4 -23 -13 -7.4 -23 -13	-2.4 -7 -4	-5.2 -16 -9 -5.0 -16 -9	200 15	-7.2 -13	-2.5
	-7.7 -24 -14	-2.3 -7 -3	-5.0 -16 -9 -5.1 -16 -9	199 15 197 16	-7 4 -13 -7 7 -14	-2.3
	-8.0 -25 -15	-2.1 -6 -3	-5.2 -16 -9	195 16	-7.7 -14 -8.0 -15	-2.2 -2.0
	-8.4 -26 -15	-1.9 -5 -3	-5.4 -17 -9	193 17	-8.4 -15	-1.8
	-8.7 -28 -16	-1.7 -5 -2	-5.5 -17 -10	191 17	-8.7 -16	-1.7
	-9.0 -28 16	-1.7 -4 -2	-5.5 -17 -10	191 18	-9.0 -16	-1.G

101 A.6 Three-component winds

1005	. 27	+ 0	1805	. 20	CDT
1803	1.4.3	TΩ	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. / 4	1.171

CDT	u-component wind	v-component wind	w-component wind	dd ff Tailwins	Crosswind
h m. s	m/s fps kts	m/s fps kts	m/s fps kts	deg kts m/s k	ts m/s kts
1805 23	-9.1 -29 -17 -9.1 -29 -17 -9.0 -28 -16 -0.7 -27 -16 -8.3 -26 -15 -7.8 -25 -14 -7.3 -23 -13 -6.9 -22 -12	-1.7 -4 -2 -1.6 -4 -2 -1.4 -4 -2 -1.3 -3 -2 -1.4 -1 -2 -1.6 -4 -2 -1.6 -5 -2 -1.9 -5 -3	-5.4 -17 -3 -5.1 -16 -9 -4.5 -14 -8 -3.9 -12 -7 -3.4 -10 -6 -3.1 9 -5 -3.1 -9 -5 -3.3 -10 -5	191 18	17 -1.6 -2 16 -1.4 -2 16 -1.3 -2 15 -1.4 -2 14 -1.7 -2 13 -1.8 -3
1805 24	-6.5 -20 -12 -6.2 -19 -11 -6.0 -19 -11 -5.9 -18 -10 -5.8 -18 -10 -5.7 -18 -10 -5.6 -17 -10 -5.5 -17 -10	-2.0 -5 -3 -2.1 -6 -3 -2.1 -6 -3 -1.9 -5 -3 -1.5 -4 -2 -1.2 -3 -1 -0.9 -2 -1 -0.7 -1 0	-3.6 -11 -6 -3.9 -12 -7 -4.3 -13 -7 -4.7 -15 -8 -5.3 -16 -9 -5.8 -18 -10 -6.3 -20 -11 -6.8 -212	197 13 -6.5 - 199 13 -6.2 - 200 12 -6.0 - 195 12 -5.9 - 195 12 -5.8 - 192 11 -5.6 - 188 11 -5.5 -	11
1805 25	-5.4 -17 -10 -5.3 -16 -9 -5.1 -16 -9 -4.9 -15 -9 -4.7 -15 -8 -4.3 -13 -7 -4.0 -12 -7	-0.6 -1 0 -0.6 -1 0 -0.5 -1 0 -0.6 -1 0 -0.6 -1 0 -0.5 -1 0 -0.5 -1 0 -0.1 0	-7.5 -22 -13 -8.1 -26 -15 -8.6 -27 -16 -9.0 -29 -16 -9.2 -29 -17 -9.3 -30 -17 -9.3 -30 -17	186 10 -5.3 186 10 -5.1 187 10 -4.9 187 9 -4.7 187 9 -4.5 184 8 -4.3	-9 -0.7 0 -9 -0.6 0 -9 -0.6 J -9 -0.7 0 -8 -0.7 0 -8 -0.6 0 -7 -0.3 7 -7 -0.0 0
1805 26	-3.3 -12 -6 -3.6 -11 -6 -3.4 -10 -6 -5.2 -10 -5 -3.1 -9 -5 -3.0 -9 -5 -2.9 -9 -5 -2.8 -8 -4	0 4 1 1 0.5 2 1 0.6 2 1 0.5 2 1 0.5 2 1 0.4 1 1 0.3 1 1	-9.3 -30 -17 -9.5 -30 -17 -9.8 -31 -18 -10.1 -22 -19 -10.5 -33 -19 -10.7 -34 -20 -11.0 -35 -20 -11.2 -36 -21	172 7 -3.6 171 7 -3.4 170 6 -3.2 171 6 -3.1 172 6 -3.0 175 6 -2.9	-6 0.3 ! -6 0.5 ! -5 0.5 ! -5 0.4 ! -5 0.3 ! -5 0.2 0
1805 27	-2.7 -8 -4 -2.5 -7 -4 -2.2 -6 -3 -1.9 -5 -3 -1.6 -4 -2 -1.2 -3 -1 -0.7 -1 0 -0.3 0 0	0.2	-11.3 -36 -21 -11.5 -37 -31 -11.5 -37 -21 -11.5 -37 -21 -11.4 -36 -21 -11.2 -36 -21 -11.0 -35 -20	177 5 -2.5 176 4 -2.2 176 4 -1.9 178 3 -1.6	-4 0.1 0 -4 0.1 0 -3 0.1 0 -2 0.0 0 -1 -0.1 0 0 -0.3 0 0 -0.5 0
1805 28	0.1 0 0 0.4 1 1 0.7 2 1 0.9 3 2 1.0 3 2 1.1 4 2 1.1 4 2	-0.7 -1 0 -0.8 -1 0 -0.6 -1 0 -0.3 0 0 -0.0 0 0 0.3 1 1 0.6 2 1 0.7 2 1	-10.8 -34 -20 -10.5 -3: -19 -10.4 -33 -19 -10.3 -33 -19 -10.2 -33 -19 -10.1 -32 -19 -9 9 -32 -18 -9.9 -32 -18	275 1 0.1 297 2 0.4 316 2 0.7 339 2 0.9 358 2 1.0 15 2 1.1 26 2 1.1 35 3 1.1	0 -0.7 0 1 -0.7 0 1 -0.6 0 2 -0.3 0 2 -0.0 0 2 0.3 1 2 0.6 1 2 0.8 2
1805 29	1.0 3 2 0.9 3 2 0.8 3 2 0.7 2 1 0.6 2 1 0.4 1 1 0.3 1 1 0.1 0 0	0.8 3 2 0.7 2 1 0.4 1 1 0.1 0 0 -0.2 0 0 -0.7 -1 0 -1.0 -2 -1	-10.0 -32 -18 -10.1 -32 -19 -10.1 -32 -19 -10.2 -32 -19 -10.2 -33 -19 -10.2 -33 -19 -10.1 -32 -19 -9.9 -31 -13	39 3 1.0 37 2 0.9 28 2 0.8 12 1 0.7 341 1 0.6 311 1 0.5 202 2 0.3 278 2 0.2	2

1005:30 to 1805:36 CDT

CDT	u-com	ponent	wind	v-comp	onent	wind	w-comp	onent	wind	dd ff	Tailw	ind	Crossw	rend _
n n s	m/s	fps	kts	m/s	fps	kts	m/s	ſps	kts	deg kts	m/s	kts	m/s	kts
805 30	-0.1	0	0	-1.2	-3	- 1	-9.6	. 24	- 40	266 2	-0.0	0	-1.2	- 1
803 30	-0.3	ő	ŏ	-1.6	-4	- 1 - 2	-9.4			258 3	-0.3	0	-1.G	-2
	-0.6	-1	ŏ	-1.9	-5	-3	-9.3			253 4	-0.5	ŏ	-1.9	-3
	~0.9	-2	-1	-2.2	-6	-3	-9.4			248 5	-0.5 -0.8	-1	-2.3	-3
	-1.2	-3	-1	-2.5	-7	-4	-9.5			245 5	-1.1	-1	-2.5	-4
	-1.5	-4	-2	-2.8	-8	-4	-9.6			243 5	-1.4	-2	-2.5 -2.8	-4
	-1.9	-5	-3	-3.0		-5	-9.7			238 7	-1.8	-2	-3.1	-5
	-2.3	-6	-3	-3.4		-6	-9.8			236 8	-2.1	-3	-3.5	-6
	2.0	·	J	0.4		•	3.0	٠,	, 0	230 0	٤.,		0.0	•
805 31	-2.7	-8	-4	-3.6	-11	-6	-9.8	-31	-18	234 9	-2.5	-4	-3.8	-0
	-3.1	-9	-5	-3.9	-12	-7	-9.8	-31	-18	232 10	-2.9		-4.1	-7
	-3.5	-10	-6	-4.2	-13	-7	-9.6	-31	-18	231 11	-3.2	~5	-4.4	8
	-3.9	-12	-7	-4.5	-14	-8	-9.4	-30	-17	230 12	-3.6	-6	-4.7	8
	-4.3	-13	-7	-4.9	-15	-8	-9.0	-29	-17	229 13	-4.0	-7	-5.1	-9
	-4.8	- 15	-8	-5.1	-16	-9	-8.7	-27	-16	227 14	-4.4	-8	-5.4	-9
	-5.2	-16	-9	-5.2	-16	-9	-8.3		-15	22G 14	-4.8	-8	-5.5	- 10
	-5.G		-10	-5.3		-9	-8.0			224 15	-5.2		-9.6	
805 32	-5.9	_ 40		- A	47					200 46		40		4.0
000 32	-6.3			-5.4 -5.6			-7.7 -7.5			223 16 222 16	-5.9	-10	-5.6 -6.0	
	-6.5			-5.7			-7.3			222 17	-6.1		-6.2	
	-6.7			-5.8			-7.2			221 17	-6.3		-6.3	
	-6.9			-5.9			-7.2			221 18	-6.4		-6.5	
	-6.9			-6.1			-7.3			221 18				
	-6.8			-6.4			-7.5			223 18	-6.3 -6.2		-6.7 -6.9	
	-G.6			-6.6			-7.8			225 18	-G.0		-7.2	
							.,,		• • •	220 .0	0.0	• • •		
805 33	-6.4			-6.6			-8.2			226 18		-10	-7.2	
	-6.0			-6.5			-8.6			228 17	-5.3		-7.1	
	-5.6			-6.2			-9.0			228 16	-4.9		-6.7	
	-5.1		-9	-6.0			-9.5			230 15	-4.4		-6.5	
	-4.7		-8	-5.9			-9.9			232 15	-4.0		-G.4	
	-4.3		-7	-5.8			-10.2			234 14	-3.6		-6.3	
	-3.9		-7	-5.6			-10.5			236 13	-3.2		-6.0	
	-3.5	-11	-6	-5.4	- 17	-9	-10.9	-35	-20	237 13	-2.8	-5	-5.8	- 10
805 34	-3.2	-10	-5	-5.4	- 17	-9	-11.4	-36	-21	239 12	-2.5	-4	-5.7	-10
	-3.1	-9	-5	-5.7			-11.9			242 13	-2.3		-6.0	
	-2.9	-9	-5	-5.9			-12.4			244 13	-2.1		-6.2	
	-2.8	-8	-4	-6.0			-13.0			245 13	-1.9		-6.3	
	-2.7	-8	-4	-G. 2			-13.6		-25	247 13	-1.8		-6.5	
	-2.7	-8	-4	-6.7			-13.9			248 14	-1.7		-7.0	
	-2.7	-8	-4	-7.4			-13.7			250 15	-1.7		-7.7	
	-2.7	-8	-4	-8.4			-13.3			252 17	-1.5		-8.7	
005 05		_	_											
805 35	-2.6	-8	-4	-9.5			-12.6			255 19	-1.3		-9.8	
	-2.3	-7	-4	-10.7			-11.7			253 21	-0.8		-10.9	
	-1.8	-5	-2	-11.5			-10.5			261 23	-0.1	0	-11.6	
	-0.9	-2	- 1	-11.8			-9.1			266 23	0.8		-11.8	
•	0.2	1	0	-11.8			-7.€		-14	271 23	1.9		-11.G	
	1.5	. 5	3	-11.3			-6.1		~11	278 22	3.1		-11.0	
	2.9	10	6	-10.3			-4.5	-14	-8	286 21	4.4		-9.8	
	4.3	14	8	-8.8	-28	-16	-2.9	-9	-5	296 19	5.6	11	-8.0	- 15
805 36	5.6	18	11	-6.8	-91	-12	-1.G	-4	-2	310 17	6.6	13	-5.9	- 10
	6.7	22	13	-4.9		-9	-0.5	-1	ō	324 16	7.4		-3.8	-10
	7.G	25	15	-3.2		-5	0.6	2	1	338 16	8.0		-2.0	
	8.3	27	16	-1.6		-2	1.8	Ĝ	3	349 16	8.4			
	8.9	29	17	-0.0	0	0	2.6	9	3 5	349 16			-0.3	9
	9.3	31	18	1.3							8.8		1.4	3
	9.6	32	19	2.3	8	3 5	3.6	12	7	8 18	9.0		2.7	5
	9.8	22	19			ນ 6	4.4	14	8	14 19	9.1		3.8	7
	٥.٥	2	: 3	3.0	10	9	5.1	17	10	17 20	9.2	18	4.6	

1805:37 to 1805:43 CDT

CDT	u-component wind	v-component wind	w-component wind	dd ff	Tailwind	Crosswind
h m s	m/s fps kts	m/s fps kts	m/a fps kts	deg kts	m/s kts	m/s kts
1805 37	9.9 32 19 9.8 32 19 9.5 31 18 9.0 30 17 8.4 28 16 7.7 25 15 7.0 23 14 6.3 21 12	3.4 11 7 3.7 12 7 3.8 12 7 3.5 12 7 3.3 11 6 3.0 10 6 2.6 8 5 2.0 7 4	5.7 19 11 6.0 20 12 5.9 19 12 5.7 19 11 5.4 18 10 5.2 17 10 5.0 16 10 4.9 16 10	20 20 21 20 22 20 22 19 22 17 21 16 20 14 18 13	9.2 18 9.1 18 8.8 17 8.3 16 7.8 15 7.2 14 6.6 13 6.0 12	5.0 10 5.2 10 5.2 10 4.9 9 4.5 9 4.0 8 3.5 7 2.8 6
1805 38	5.7 19 11 5.3 17 10 5.0 16 10 4.9 16 9 4.9 16 9 5.0 16 10 5.1 17 10 5.3 17 10	1.4 4 3 0.5 2 1 -0.4 0 0 -1.4 -4 -2 -2.5 -7 -4 -3.6 -11 -6 -4.7 -14 -8 -5.6 -17 -10	5.0 16 10 5.4 18 10 5.9 19 11 6.3 21 12 6.7 22 13 6.9 23 13 6.9 23 13 6.8 22 13	14 11 6 10 356 10 344 10 333 11 324 12 318 13 314 15	5.5 11 5.2 10 5.0 10 5.0 10 5.1 10 5.3 10 5.6 11 5.8 11	2.1 4 1.2 2 0.2 0 -0.9 -1 -2.0 -3 -3.1 -5 -4.1 -7 -5.1 -9
1805 39	5.5 18 11 5.6 18 11 5.7 19 11 5.7 19 11 5.7 19 11 5.6 18 11 5.6 18 11	-6.4 -20 -11 -6.9 -22 -12 -7.1 -22 -13 -7.2 -23 -13 -7.2 -23 -13 -6.9 -22 -12 -6.4 -20 -11 -6.0 -19 -11	6.4 21 12 5.8 19 11 5.0 16 10 3.9 13 8 2.6 9 5 1.3 4 3 0.3 1 1 -0.6 -1 0	311 16 309 17 309 18 309 18 309 18 310 17 311 17 313 16	6.1 12 6.3 12 6.3 12 6.4 12 6.3 12 6.2 12 6.2 12 6.1 12	-5.6 -10 -6.3 -11 -6.6 -12 -6.7 -12 -6.6 -12 -6.3 -11 -5.9 -10
1805 40	5.7 19 11 5.9 19 11 6.2 20 12 6.8 22 13 7.5 25 15 8.4 28 16 9.4 31 18 10.4 34 20	-5.7 -18 -10 -5.5 -17 -10 -7.3 -16 -9 -5.6 -15 -9 -4.7 -15 -8 -4.5 -14 -8 -4.3 -13 -7 -4.2 -13 -7	-1.3 -3 -2 -2.0 -6 -3 -2.6 -6 -4 -3.2 -9 -5 -3.7 -11 -6 -4.4 -12 -7 -5.1 -16 -9 -5.9 -18 -11	315 16 317 16 320 16 324 16 328 17 332 18 335 20 338 22	6.2 12 6.4 12 6.7 13 7.2 14 7.9 15 8.8 17 9.8 19 10.8 21	-5.1 -9 -4.9 -9 -4.7 -8 -4.3 -7 -3.9 -7 -3.6 -6 -3.3 -5 -3.0 -5
1805 41	11.5 38 22 12.4 41 24 13.3 44 26 14.0 46 27 14.5 48 28 15.0 49 29 15.5 51 30 15.9 52 31	-4.0 -12 -7 -3.8 -12 -6 -3.8 -11 -6 -3.9 -12 -7 -4.0 -12 -7 -4.1 -13 -7 -4.1 -13 -7	-6.6 -21 -12 -7.1 -22 -13 -7.4 -23 -13 -7.7 -24 -14 -7.7 -24 -14 -7.7 -24 -13 -6.9 -22 -12	341 24 343 25 344 27 345 28 345 29 345 30 345 31 346 32	11.8 23 12.8 25 13.6 26 14.3 28 14.9 29 15.4 30 15.8 31 16.3 32	-2.7 -4 -2.4 -4 -2.3 -3 -2.3 -4 -2.3 -4 -2.4 -4 -2.3 -3 -2.3 -3
1805 42	16.3 54 32 16.8 55 33 17.2 57 33 17.7 58 34 18.2 60 35 18.7 61 36 19.2 63 37 19.6 64 38	-4.3 -13 -7 -4.5 -14 -8 -4.6 -14 -8 -4.6 -14 -8 -4.6 -14 -8 -4.4 -13 -7 -4.1 -12 -7 -3.7 -11 -6	-6.2 -19 -11 -5.2 -16 -9 -4.0 -12 -7 -2.7 -8 -4 -1.3 -3 -2 -0.1 0 0 1.0 3 2 1.9 6 4	346 33 345 34 345 35 345 36 346 37 347 37 348 38 350 39	16.7 32 17.2 33 17.7 34 18.2 35 18.7 36 19.1 37 19.5 38 19.9 39	-2.3 -3 -2.4 -4 +2.5 -4 -2.5 -4 -2.3 -3 -2.1 -3 -1.7 -2 -1.3 -1
1805 43	19.9 65 39 20.2 66 39 20.3 67 39 20.3 67 39 20.2 66 39 20.1 66 39 20.0 66 39 20.0 66 39	-3.4 -10 -6 -3.2 -9 -5 -3.0 -9 -5 -2.8 -8 -4 -2.7 -8 -4 -2.6 -8 -4 -2.5 -7 -4	2.6 9 5 3.2 10 6 3.4 11 7 3.4 11 7 3.3 11 6 3.3 11 6 3.2 10 6 3.0 10 6	351 39 351 40 352 40 352 40 353 40 353 39 353 39 353 39	20.2 39 20.4 40 20.5 40 20.5 40 20.4 40 20.3 39 20.2 39 20.1 39	-0.9 -1 -0.6 0 -0.4 0 -0.2 0 -0.1 0 -0.1 0 -0.0 0 0.1 0

1805:44 to 1805:50 CDT

CDT	u-com	ponent	wind	v-comp	onent	wind	w-com	onent	wind	dd 11	Tailwind	Cross	rind
hm s	m/s	fps	kis	m/s	fps	kts	m/s	fps	kts	deg kts	m/s kts	m/s	kts
1805 44	20.0 20.1 20.3 20.6	66 66 67 68	39 39 40 40	-2.4 -2.2 -2.3 -2.7	-7 -6 -7 -8	-4 -3 -4	2.8 2.4 1.9 1.3	9 8 6 4	5 5 4 2	354 39 354 39 354 40 353 40	20.2 39 20.3 39 20.5 40 20.8 40	0.4	1 1 0
	20.8 21.1 21.3 21.6	68 69 70 71	40 41 41 42	-3.4 -4.1 -4.6 -5.0	-13 -14	-6 -7 -8 -9	0.4 -0.6 -1.8 -3.0	-1 -5 -3	0 -3 -5	351 41 349 42 348 42 347 43	21.1 41 21.4 42 21.8 42 22.1 43	-1.4 -1.9	0 -2 -3 -3
1805 45	21.8 22.0 22.1 22.1 22.1 22.0 21.9 21.8	72 72 73 73 73 72 72 72	42 43 43 43 43 43 42	-5.4 -5.6 -5.7 -5.5 -5.1 -4.7 -4.3 -3.8	-17 -18	-9 -10 -10 -10 -9 -8 -7 -6	-4.3 -5.7 -7.1 -8.6 -5.9 -11.0 -12.0	-18 -22 -27 -31 -35 -38	-13 -16 -18 -20	346 44 346 44 346 44 346 44 347 44 348 44 349 43 350 43	22.3 43 22.5 44 22.6 44 22.6 44 22.5 44 22.3 43 22.1 43	-2.8 -2.8 -2.5 -2.2 -1.7	-4 -4 -4 -3 -2 -2
1805 46	21.8 21.7 21.7 21.7 21.8 21.8 21.9	71 71 71 71 71 72 72	42 42 42 42 42 42 42 43	-3.2 -2.6 -1.8 -1.1 -0.6 -0.2 0.0	-10 -7 -5 -3 -1 0	-5 -4 -3 -1 0 0	-13.2 -13.5 -13.5 -13.4 -13.1 -12.7 -12.1	-43 -43 -43 -42 -41 -39	-25 -25 -25 -25	352 43 353 42 355 42 357 42 359 42 360 42 360 42 1 43	22.0 43 21.9 42 21.8 42 21.7 42 21.6 42 21.6 42 21.7 42	0.5 1.3 2.1 2.7 3.1	0 1 3 4 5 6 7
1805 47	22.0 22.2 22.3 22.5 22.7 22.9 23.0 23.2	72 73 74 74 75 76 76	43 43 44 44 44 45 45	0.3 0.4 0.6 0.6 0.5 0.3 0.0	1 1 2 2 2 1 0 0	1 1 1 1 0 0	-10.5 -9.4 -8.3 -7.1 -5.8 -4.6 -3.3 -2.1	-30 -26 -22	-17	1 43 1 43 2 43 2 44 1 44 1 44 360 45 359 45	21.7 42 21.8 42 22.0 43 22.1 43 22.3 43 22.5 44 22.7 44 22.9 45	3.8 4.1 4.3 4.2 4.0 3.8	7 7 8 8 8 8 7
1805 48	23.3 ;3.4 23.5 23.5 23.6 23.7	76 77 77 77 77 78 78 78	45 45 46 46 46 46 46	-0.8 -1.4 -1.9 -2.1 -2.0 -1.4 -0.7	-2 -4 -5 -6 -6 -3 -1 0	-1 -2 -3 -3 -3 -2 0	-0.9 0.2 1.1 1.8 2.5 3.1 3.6 4.1	-2 1 3 6 8 10 12	-1 0 2 3 5 6 7 8	358 45 357 45 356 46 355 46 357 46 358 46 360 46	23.1 45 23.3 45 23.4 45 23.5 46 23.5 46 23.5 46 23.5 46 23.4 45	2.6 2.2 2.0 2.1 2.8 3.4	6 5 4 4 5 7 3
1805 49	23.8 23.6 23.3 22.8 22.0 21.3 20.6 19.9	78 78 77 75 72 70 68 65	46 45 44 43 41 40 39	0.3 0.9 1.5 1.9 2.1 2.2 2.4 2.3	1 3 5 6 7 8 8	1 2 3 4 4 5 4	4.6 5.2 5.7 5.9 6.0 5.9 5.6	15 17 19 19 20 20 19	9 10 11 11 12 12 11	1 46 2 46 4 45 5 44 6 43 6 42 7 40 7 39	23.3 45 23.1 45 22.7 44 22.1 43 21.4 42 20.6 40 19.9 39 19.3 37	5.0 5.5 5.8 5.8 5.8	9 10 11 11 11 11
1805 50	19.5 19.4 19.6 20.2 20.9 21.8 22.8 23.7	64 64 64 69 72 75 78	38 38 39 41 42 44	2.2 2.2 2.2 2.3 2.4 2.7 3.0	7 7 7 7 7 8 9	4 4 4 4 5 5 6	5.0 4.4 3.8 3.3 2.7 2.2 1.8 1.4	17 14 13 11 9 7 6	10 9 7 6 5 4 3	7 38 7 38 7 38 7 39 6 41 7 43 7 45 8 46	18.9 07 18.8 36 19.0 37 19.5 39 20.3 39 21.1 41 22.0 43 22.9 44	5.3 5.4 5.5	10 10 10 11 11 12 13

1805:51 to 1805:57 CDT

CDT	u-f.m	ponent	wind	v-comp	onent	wind	w-corns	content	wind	dd ff	Tailwind	Crosswind
hm s	m/3	fps	kts	rn/s	fps	kts	m/s	fps	kts	deg kts	m/s kts	m/s kts
1805 51	24.6 25.2 25.8 26.1 26.3 26.4 26.3 26.1	81 85 86 86 87 86	48 49 50 51 51 51 51	3.3 3.6 3.8 4.1 4.3 4.5 4.5	11 12 12 13 14 15 15	6 7 7 8 8 9 9	1.2 1.0 0.9 0.9 1.0 0.5 0.4	4 3 3 3 3 2 1 2	2 2 2 2 1 1 1	£ 48 8 50 9 51 9 51 10 52 10 52 10 52	23.7 46 24.3 47 24.7 48 25.0 49 25.2 49 25.2 49 25.1 49 24.9 48	7.4 14 7.8 15 8.1 16 8.5 17 8.8 17 9.0 18 9.1 18 9.0 18
1805 52	25.8 25.4 25.0 24.5 24.0 23.6 23.3 23.0	85 82 80 79 77 76	50 49 49 48 47 46 45	4.2 4.1 4.1 4.0 3.8 3.7 3.6 3.6	14 14 13 13 13 12 12	8 8 8 7 7 7	0.6 0.5 0.3 0.8 0.9	2 2 2 1 3 3 3 2	1 1 1 2 2 2	10 51 9 50 10 49 10 48 9 47 9 46 9 46 9 45	21.6 48 24.3 47 23.8 46 23.3 45 22.9 44 22.5 44 22.2 43 22.0 43	8.9 17 8.7 17 8.6 17 8.4 16 8.2 16 8.0 16 7.9 15 7.7 15
1805 53 Pu 2	22.7 22.3 21.7 20.8 19.8 18.7 17.7	75 73 71 68 65 61 58	44 43 42 40 33 36 34 33	3.4 3.3 3.2 3.1 3.1 3.0 3.0	11 10 10 10 10 10	7 6 6 6 6 6 6	0.4 0.1 -0.1 -0.3 -0.5 -0.7 -0.8 -1.0	1 0 0 0 -1 -1 -2 -2	1 0 0 0 0 0 0 -1	9 45 9 44 9 43 9 41 9 39 9 37 10 35 11 33	21.7 42 21.3 41 20.8 40 19.9 39 19.0 37 17.9 35 16.9 33 16.1 31	7.5 15 7.3 14 7.0 14 6.3 13 6.5 12 6.0 12 5.9 11
1805 54	16.2 15.9 15.9 16.1 16.5 17.0 17.5	53 52 53 54 56 57 59	31 31 31 32 33 34 35	3.1 3.1 3.2 3.2 3.1 3.1 3.0	10 10 10 10 10 10	6 6 6 6 6	-1.1 -1.3 -1.4 -1.5 -1.5 -1.6 -1.6	-3 -4 -4 -4 -4 -4	-1 -1 -2 -2 -2 -2 -2 -2	11 32 11 31 11 31 11 32 11 33 11 34 10 35	15.4 30 15.1 29 15.1 29 15.3 30 15.7 31 16.2 31 16.7 32 17.2 33	5.8 11 5.8 11 5.8 11 5.9 11 6.0 12 6.1 12 6.1 12 6.2 12
1805 55 PJC	13.3 18.7 19.0 19.3 19.4 19.5 19.5	60 61 62 63 64 64 64	36 36 37 37 38 38 38 38	3.0 3.1 3.2 3.3 3.4 3.5	10 10 10 11 11 11	6 6 6 7 7	-1.6 -1.4 -1.1 -0.6 0.2 1.0 1.7 2.3	-4 -4 -3 -1 1 3 6	-2 -2 -1 0 0 2 3	9 36 9 37 10 37 10 38 10 38 10 38 10 38	17.5 34 17.8 35 18.1 35 18.4 36 18.5 36 18.5 36 18.5 36	6.2 12 6.3 12 6.5 13 6.6 13 6.8 13 7.0 14 7.1 14
1805 56	19.4 19.2 18.9 18.5 18.1 17.8 17.3	64 62 61 59 58 57	38 37 37 36 35 35 34 33	3.7 4.0 4.3 4.5 4.8 5.4 5.9 6.3	12 13 14 15 16 18 19 21	7 8 8 9 9 10 12	2.8 2.9 2.7 2.2 1.6 0.9 0.2	9 10 9 7 5 3 1	5 5 4 3 2 0	11 36 12 38 13 38 14 37 15 36 17 36 19 36 21 35	18.4 36 18.0 35 17.7 34 17.2 33 16.8 33 16.3 32 15.7 30 15.2 30	7.3 14 7.6 15 7.9 15 8.1 16 8.4 17 9.4 18 9.8 19
1805 57	16.6 16.3 16.0 15.8 15.7 15.8 16.0	55 53 52 52 52 52 52 53	32 32 31 31 31 31 31	6.7 7.3 8.2 9.2 10.1 11.0 12.2 13.3	22 24 27 30 33 36 40 44	13 14 16 18 20 21 24 26	-1.2 -1.8 -2.3 -2.8 -3.1 -3.3 -3.5 -3.4	-3 -5 -7 -8 -9 -10 -10	-1 -2 -4 -4 -5 -5 -6	22 35 25 35 28 35 30 39 33 36 35 37 38 39 40 41	14.8 29 14.2 28 13.6 26 13.1 26 12.7 25 12.4 24 12.0 23 11.6 23	10.2 20 10.9 21 11.7 23 12.7 25 13.7 27 14.8 29 16.1 31 17.4 34

1804:56 to 1805:01 CDT

CDT	dd	dfa	Total	Wind	Vertica	Wind	Horizont	ol Wind	<u>.</u>	<u> </u>	ţ- i	ALTF	RATE
h m s	æg	deg	m/s	kts	m/s	kis	m/s	kts	dag/scc	deg/soc	deg/sac	fps	fpm
1804 56	55 55 55 55 56 56	7 8 8 9 9 10	5.4 5.3 5.3 5.3 5.3 5.3 5.4	11 10 10 10 10 10	3.2 3.2 3.1 3.1 3.1 3.1	666666666	5.4 5.3 5.3 5.3 5.3 5.3	10 10 10 10 10 10	0.0 0.0 0.0 -0.1 -0.2 -0.2 -0.2	1.0 0.9 0.8 0.7 0.6 0.4 0.2	0.3 0.3 0.3 0.1 0.1 0.2 0.2	-16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0	-959 -959 -959 -959 -959 -959 -959
1804 57	56 56 56 56 56 56 56	11 11 12 12 13 13 13	5.4 5.3 5.3 5.3 5.3 5.3 5.3	10 10 10 10 10 10	3.1 3.1 3.1 3.1 3.1 3.1	666666	5.3 5.2 5.2 5.2 5.2 5.1 5.1	10 10 10 10 10 10	0.0 -0.1 -0.2 -0.2 -0.2 -0.1 0.0	-0.2 -0.3 -0.4 -0.6 -0.8 -1.3 -1.8 -2.2	0.2 0.0 -0.1 -0.1 -0.1 -0.1 -0.3	-16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -16.0	-050 -959 -959 -959 -959 -959 -959
1804 58	56 55 54 54 52 52	14 15 16 16 16 16 17	5.1 5.0 4.9 4.8 4.7 4.6 4.5	10 10 10 9 9 9 9 8	3.1 3.1 2.0 3.0 2.9 2.9	666666	5.0 4.9 4.8 4.6 4.5 4.4 4.3	10 9 9 9 9 8 8	0.0 -0.1 -0.2 -0.2 -0.2 -0.1 0.0	-2.6 -3.1 -3.8 -4.1 -4.0 -3.4 -3.0	-0.6 -0.7 -0.8 -0.8 -0.7 -0.8 -0.8	-16.0 -16.0 -16.0 -10.0 -15.9 -15.6 -15.3	-959 -959 -959 -959 -952 -935 -914 -837
1804 59	51 50 50 50 50 50 50	17 16 16 16 15 15	4.3 4.2 4.1 4.0 4.0 4.0 3.9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.8 2.8 2.8 2.7 2.7 2.7	6555555	4.1 4.0 3.9 3.9 3.9 3.8	8 8 8 7 7	0.0 0.0 0.0 0.0 -0.1 -0.2	-2.4 -1.3 -1.4 -1.0 -0.8 -0.6 -0.2 0.3	-0.9 -0.9 -0.9 -0.8 -0.7 -0.7 -0.7	-14.7 -14.5 -14.1 -13.9 -14.1 -14.5 -14.7	-884 -866 -846 -836 -846 -666 -884 -697
1805 00	49 49 49 49 49 50 50	14 14 13 13 13 12 12	3.9 3.9 3.9 3.9 4.0 4.0	8 8 8 8 8	2.7 2.7 2.7 2.7 2.7 2.6 2.6	5 5 5 5 5 5 5 5	3.8 3.8 3.8 3.9 3.9 3.9	7 7 7 7 7 8 8	-0.2 -0.1 0.0 0.0 0.0 0.0 0.0	0.8 1.2 1.6 1.8 2.0 2.1 2.2 2.0	-0.5 -0.3 -0.2 -0.3 -0.4 -0.4 -0.3	-15.4 -16.0 -16.6 -17.0 -17.1 -17.1 -16.6	-921 -959 -997 -1021 -1028 -1028 -1021 -997
1805 01	50 50 50 50 50 50 51 52	12 12 13 14 15 16 17	3.9 3.9 3.9 3.8 3.8 3.7 3.7	8 8 7 7	2.6 2.6 2.6 2.5 2.5 2.5	555555	3.9 3.8 3.7 2.7 3.6 3.6	7 7 7 7 7 7	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.6 1.0 0.6 0.2 -0.2 -0.7 -1.2	-0.3 -0.3 -0.3 -0.2 -0.1 0.1 0.1	-16.0 -15.4 -15.0 -14.9 -15.0 -15.3 -15.6	-959 -921 -897 -890 -890 -897 -914 -935

1805:02 to 1805:08 CDT

CDT	dd	dia	Total Wini	1 Vartical Win	1 Horizontal Wind	ė į į į	ALTF RATE
h m s	deg	deg	m/s kts	m/s kts	m/s kts	deg/sec deg/sec deg/sec	fps fpm
1805 02	52 53 53 54 55 55 56	19 20 21 22 22 23 24 26	3.6 3.6 3.6 3.6 3.6	7 2.5 5 7 2.4 5 7 2.4 5 7 2.4 5 7 2.3 5 7 2.3 5 7 2.3 5	3.4 7 3.4 7 3.3 7 3.3 6 3.3 6 3.3 6 3.3 6	0.0 -1.6 0.1 0.0 -1.7 -0.0 0.0 -1.8 -0.2 0.0 -1.9 -0.2 0.0 -2.0 -0.2 0.0 -1.8 -0.1 0.0 -1.4 -0.0 0.0 -1.0 -0.1	-15.9 -952 -16.0 -959 -16.0 -959 -16.0 -959 -16.0 -959 -16.0 -959 -16.0 -959
1805 03	56 55 54 53 52 52 51 50	28 30 32 34 36 37 38 39	3.4 3.3 3.2 3.2 3.0 2.9	7 2.4 5 7 2.4 5 6 2.4 5 6 2.4 5 6 2.4 5 6 2.4 5 7 2.3 5 7 2.3 5	3.0 6 3.8 5 3.7 5 3.2.6 5 3.2.4 5 3.2.3 4	0.0 -0.6 -0.3 0.0 -0.5 -0.4 0.0 -0.4 -0.5 0.0 -0.3 -0.4 0.0 -0.2 -0.2 0.0 0.0 -0.2 0.0 0.2 -0.2 0.0 0.3 -0.3	-16.0 -959 -16.0 -959 -16.0 -959 -16.0 -959 -16.0 -959 -16.0 -959 -16.0 -959
1805 04	50 50 51 52 53 55	40 41 42 44 46 47 48 48	2.7 2.7 2.7 2.7 2.7 2.7 2.8	5 2.2 4 5 2.2 4 5 2.3 4 5 2.3 4 5 2.3 4 5 2.3 4 5 2.3 4	2.0 4 2.0 4 2.0 4 1.9 4 1.9 4	0.0 0.4 -0.4 0.0 0.3 -0.4 0.0 0.7 -0.4 0.0 0.2 -0.4 0.0 0.3 -0.4 0.0 0.3 -0.4 0.0 0.4 -0.4 0.0 0.4 -0.4	-15.9 -952 -15.6 -935 -15.3 -914 -15.0 -897 -14.7 -384 -14.5 -366 -13.9 -832 -13.1 -788
1805 05	58 59 58 59 60 60	49 50 52 54 57 59 61 64	2.6	5 2.2 4 5 2.2 4 5 2.3 4 5 2.4 5 6 2.5 5 6 2.7 5	1.7 3 1.6 3 1.5 3 1.5 3 1.5 3	0.0 0.4 -0.4 -0.1 0.4 -0.3 -0.2 0.4 -0.2 -0.2 0.4 -0.1 -0.2 0.4 -0.0 -0.2 0.4 -0.0 -0.2 0.4 -0.0 -0.3 0.5 -0.1	-12.4 -743 -11.6 -G95 -10.7 -644 -9.8 -509 -9.2 -551 -9.2 -551 -9.8 -569 -10.9 -650
1805 06	62 65 70 76 83 92 102 111	66 67 68 69 70 71 70 68	3.2 0 3.4 7 3.5 7 3.5 7 3.5 7 3.5 7	7 3.1 6 7 3.2 6 7 3.3 6 7 3.3 6 7 3.3 6	1.3 3 1.3 3 1.3 2 1.2 2 1.1 2 1.2 2	-0.4 0.6 -0.2 -0.4 0.6 -0.2 -0.4 0.4 -0.1 -0.4 0.2 0.1 -0.4 0.2 0.3 -0.4 0.2 0.3 -0.4 0.2 0.3 -0.4 0.2 0.2 -0.4 0.2 0.1	-12.0 -719 -13.1 -788 -14.3 -856 -15.2 -911 -15.7 -935 -15.6 -935 -15.1 -308 -14.6 -873
1805 07	117 124 129 131 132 132 134 134	67 66 65 64 64 65 65	3.6 7 3.6 7 3.6 7 3.7 7 3.8 7 3.8 7 3.8 7	3.4 7 3.5 7 3.5 7 3.5 7 3.6 7 3.6 7	1.5 3 1.5 3 1.6 3 1.6 3 1.7 3 1.6 3	-0.4 0.2 -0.0 -0.4 0.2 0.0 -0.4 0.2 0.0 -0.4 0.0 0.1 -0.4 -0.2 0.1 -0.4 -0.3 0.1 -0.4 -0.4 0.0 -0.4 -0.4 0.0	-14.0 -839 -13.4 -805 -12.9 -770 -12.4 -743 -12.1 -726 -12.0 -719 -12.1 -726 -12.4 -743
1605 08	135 136 138 142 147 150 154 156	65 65 65 65 65 64 63	3.8 7 3.8 7 3.7 7 3.7 7 3.7 7 3.8 7 3.0 7	7 9.6 7 9.6 7 9.6 7 9.6 7 9.6 7 3.5 7	1.6 3 1.6 3 1.5 3 1.6 3	-0.4 -0.4 0.0 -0.3 -0.4 0.0 -0.2 -0.4 0.0 -0.2 -0.4 -0.0 -0.2 -0.4 -0.2 -0.2 -0.6 -0.2 -0.2 -1.0 -0.1	-12.7 -764 -13.0 -761 -13.3 -794 -13.5 -812 -13.0 -825 -13.7 -818 -13.1 -788 -12.5 -750

1805:09 to 1805:15 CDT

СОТ	dd	dfa	Total Wi	nd Vertica	l Wind	Horizontal Wind	ġ	.	ξ-ψ	ALTF	RATE
hm s	deg	deg	m/s k	ts m/s	kis	m/s kts	dog/sec	dsq/sac	deg/sec	fps	fpm
1605 C9	158 161 163 166 169 173 177	63 62 62 63 63 63	3.8 4.0 4.1 4.2 4.3 6.4 4.6 4.7	8 3.8 8 3.9 8 4.0 8 4.2 8 4.3 9 4.6 9 4.6		1.8 3 1.8 4 1.9 4 1.9 4 2.0 4 2.0 4 2.1 4	-0.2 -0.3 -0.4 -0.4 -0.4 -0.4 -0.4	-1.4 -1.6 -2.2 -2.8 -3.2 -3.2 -3.2 -3.2	0.0 -0.0 -0.1 -0.1 -0.1 -0.2 -0.2	-12.0 -11.5 -10.9 -10.3 -10.2 -10.5 -10.7	-719 -688 -650 -620 -613 -626 -644
805 10	185 107 188 189 168 187 187	63 62 61 60 59 58 58	4.9 1 5.0 1 5.1 1 5.2 1 5.3 1 5.4 1	9 4.8 10 4.9 10 5.0 10 5.1 10 5.2 10 5.3 11 5.4	9 10 10 10 10 10	2.2 4 2.3 4 2.4 5 2.5 5 2.7 5 2.8 5 2.9 6 3.1 6	-0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4	-2.8 -2.8 -3.0 -3.0 -2.6 -2.1 -2.0 -2.0	-0.3 -0.3 -0.3 -0.4 -0.4 -0.5 -0.7	-11.3 -11.6 -11.9 -12.0 -12.0 -12.0 -11.9 -11.6	-674 -695 -712 -715 -715 -712 -695
805 11	189 192 193 195 196 197 197	56 55 55 53 52 50 47 44	5.8 1 5.9 1 6.0 1 6.0 1 5.9 1	5.7 1 5.8 2 5.9 2 5.9 2 5.9 1 5.8 1 5.7 1 5.5	11 11 11 11 11 11	3.2 6 3.3 6 3.4 7 3.6 7 3.7 7 3.8 7 3.9 8 4.0 8	-0.4 -0.4 -0.4 -0.4 -0.4 -0.4	-1.8 -1.3 -0.8 -0.8 -1.0 -1.2 -1.2	-0.5 -0.4 -0.4 -0.4 -0.4 -0.4 -0.5	-11.3 -11.0 -10.9 -10.9 -10.6 -10.2 -9.5 -8.7	-674 -657 -650 -650 -637 -609 -572
805 12 [°]	197 197 199 201 203 205 208	41 37 32 28 23 19 16	5.2 1 5.0 1 4.9 1 4.8 4.7 4.7	5.3 0 5.1 0 4.9 0 4.7 9 4.5 9 4.4 9 4.3	10 10 9 9 9 9	4.1 8 4.2 8 4.3 8 4.3 8 4.4 9 4.5 9 4.5 9	-0.4 -0.4 -0.4 -0.4 -0.2 0.2	-0.6 -0.6 -0.6 -0.6 -0.5 -0.5	-0.5 -0.4 -0.5 -0.6 -0.7 -0.6 -0.4	-8.0 -7.3 -6.5 -5.8 -5.9 -7.1 -9.3	-479 -434 -388 -349 -354 -424 -558
803 13	211 213 215 217 219 221 222 224	13 11 10 10 11 12 15	4.7 4.6 4.6 4.6 4.6 4.6	9 4.1 9 3.8 9 3.7 9 3.6 9 3.5 9 3.5 9 3.5	0 3 7 7 7 7 7	4.6 9 4.5 9 4.5 9 4.5 9 4.5 9 4.4 9	0.8 0.8 0.8 1.0 1.1 1.2	-0.2 0.0 0.2 0.5 0.3 1.1 1.4	-0.4 -0.4 -0.3 -0.2 -0.1 0.0	-14.0 -16.2 -18.7 -20.9 -22.1 -22.2 -21.7	-839 -973 -1126 -1254 -1326 -1328 -1268
805 14	224 225 226 226 225 223 221 219	23 28 32 35 37 37 36 34	5.0 1 5.2 1 5.3 1 5.4 1 5.5 1	9 3.7 0 3.9 0 6.1 0 4.3 1 4.5 1 2.6 1 4.6 0 4.6	7 8 8 9 9 9	4.4 8 4.4 8 4.4 8 4.4 8 4.4 8 4.4 8	1.0 1.2 1.3 1.2 0.6 0.4	1.4 1.3 1.2 1.4 1.6 1.7	0.3 0.3 0.3 0.3 0.3 0.3	-20.6 -19.9 -19.0 -18.3 -17.9 -17.3 -16.2 -14.7	-1237 -1192 -1137 -1100 -1072 -1034 -969 -880
803 13	218 216 213 214 213 212 211 210	32 29 28 27 26 25 23	5.3 1 5.4 1 5.5 1 5.6 1 5.0 1	0 4.5 0 4.6 0 4.6 1 4.7 1 4.9 1 5.1 1 5.2 2 5.2	9 9 9 10 10 10	4.5 9 4.6 8 4.8 9 4.9 10 5.0 10 5.2 10 5.4 10 5.5 11	0.2 0.2 0.0 -0.2 -0.4 -0.4 -0.4	0.8 0.4 -1.1 -1.8 -2.3 -2.5	0.3 0.4 0.4 0.4 0.3 0.2	-13.4 -12.3 -11.2 -10.2 -9.4 -8.7 -3.2 -7.2	-801 -736 -671 -613 -561 -524 -489

1805:16 to 1805:22 CDT

								
CDT	dd	dta	Total Wind	Vartical Wind	Horizontal Wind	<u> </u>	<u> </u>	ALTE RATE
<u>h m s</u>	deg	deg	m/s kts	m/s ktt	m/s kts	deg/sec	dag/sec dag/sec	fps fpm
1805 16	209 208 208 209 210 210 209 208	12 2 -7 -16 -23 -28 -31	6.0 12 6.2 12 6.7 13 7.3 14 8.1 16 9.0 17 9.7 19 10.2 20	5.3 10 5.5 11 5.9 11 6.5 13 7.3 14 8.1 16 8.8 17 9.4 18	5.9 11 6.2 12 6.6 13 7.0 14 7.4 14 7.8 15 8.2 16 8.5 17	0.0 0.2 0.2 0.2 0.3 0.4 0.5	-2.6 0.0 -2.4 -0.1 -1.8 -0.2 -1.2 -0.2 -1.0 -0.2 -1.0 -0.0 -1.0 0.1 -0.7 0.4	-6.0 -359 -4.8 -287 -3.8 -229 -3.3 -194 -3.3 -198 -4.2 -249 -6.2 -373 -9.4 -565
1805 17	205 203 200 199 195 193 191 190	-32 -31 -30 -28 -26 -24 -23 -22	10.6 21 10.8 21 11.0 21 11.2 22 11.4 22 11.6 23 11.8 23 12.1 24	9.9 19 10.2 20 10.5 20 10.6 21 11.1 22 11.4 22 11.7 23 12.0 23	8.9 17 9.2 18 9.5 18 9.8 19 10.2 20 10.5 20 10.9 21 11.2 22	0.6 0.9 1.2 1.5 1.8 2.2 2.6 2.9	-0.4 0.6 -0.2 0.6 0.0 0.5 0.0 0.4 -0.0 0.5 -0.2 0.7 -0.3 0.6	-13.2 -791 -17.0 -1021 -20.7 -1240 -24.1 -1442 -27.0 -1617 -28.9 -1734 -29.1 -1748 -27.9 -1676
1805 18	189 188 186 185 185 184 164	-21 -20 -20 -19 -19 -18 -18	12.4 24 12.6 24 12.8 25 12.9 25 13.0 25 13.1 25 13.1 26	12.7 24 12.5 24 12.7 25 12.8 25 13.0 25 13.1 25 13.1 25 13.1 25	11.5 22 11.7 23 11.9 23 12.1 24 12.3 24 12.4 24 12.4 24 12.4 24	3.0 2.9 2.8 2.6 2.4 1.9 1.2 0.7	-0.4 0.4 -0.6 0.2 -0.8 0.1 -1.0 0.1 -1.0 0.0 -1.2 -0.1 -1.6 -0.2 -2.0 -0.1	-25.9 -1556 -23.7 -1422 -21.5 -1288 -19.1 -1148 -16.6 -993 -14.3 -860 -12.7 -764 -11.6 -695
1805 19	182 181 180 178 177 176 176	-18 -19 -20 -22 -24 -26 -28 -31	13.1 25 12.9 25 12.7 25 12.5 24 12.2 24 11.9 23 11.5 22 11.2 22	13.1 25 12.9 25 12.7 25 12.5 24 12.2 24 11.8 23 11.5 22 11.3 22	12.3 24 12.1 24 11.9 23 11.5 22 11.1 21 10.6 21 10.1 20 9.6 19	0.4 0.3 0.2 0.2 0.4 0.7 1.0	-2.2 -0.0 -2.2 -0.0 -2.4 -0.1 -2.5 -0.4 -2.4 -0.6 -2.2 -0.7 -2.2 -0.7 -2.2 -0.7	-10.9 -650 -10.2 -613 -9.7 -582 -9.4 -565 -9.7 -578 -10.7 -640 -12.6 -753 -14.7 -084
1805 20	175 176 177 178 180 182 185 138	-33 -35 -36 -37 -37 -36 -34 -33	11.1 22 11.0 21 10.9 2° 10.8 21 10.7 21 10.5 20 10.4 20 10.2 20	11.1 22 11.0 21 10.9 21 10.8 21 10.7 21 10.5 20 10.3 20 10.2 20	9.2 17 5.9 17 6.7 17 3.5 17 8.5 16 8.5 16 9.5 16	1 4 1.5 1.6 1.7 1.8 1.8 1.6	-2.0 -0.8 -1.6 -0.9 -1.2 -0.8 -0.8 -0.8 -0.4 -0.8 0.0 -0.9 0.4 -1.0 0.9 -1.0	-16.7 -1004 -18.7 -1120 -20.7 -1240 -22.5 -1346 -23.0 -1377 -21.7 -1298 -18.9 -1130 -15.4 -925
1805 21	191 194 197 199 201 203 204 204	-32 -32 -32 -33 -34 -35 -35	10.1 20 10.1 20 10.0 19 10.0 19 9.9 19 9.9 18 9.8 19 9.6 18	10.0 19 9.9 18 9.7 19 9.6 19 9.5 18 9.4 18 9.2 16 9.1 18	8.5 17 8.5 16 8.4 16 8.3 19 C.2 16 8.0 16 7.9 15 7.7 15	1.6 1.7 1.6 1.4 1.2 1.2	1.4 -1.0 2.0 -0.9 2.8 -0.7 3.3 -0.5 3.6 -0.2 3.6 -0.2 3.7 0.2	-12.1 -726 -9.0 -537 -5.9 -352 -3.4 -201 -1.9 -112 -1.5 -92 -2.1 -126 -2.9 -170
1805 22	202 200 199 197 193 193 191 191	-34 -33 -32 -31 -31 -31 -30	9.4 10 9.2 18 9.3 18 9.5 18 9.8 10 10.1 20 10.4 20 10.6 21	8.9 17 8.9 17 9.0 17 9.2 18 9.6 19 9.9 19 10.3 20 10.5 20	7.6 15 7.7 15 7.5 15 8.0 16 8.3 17 8.9 17 9.1 18	0.8 0.6 0.4 0.3 0.2 0.2 0.2	3.8 0.3 4.0 0.4 4.2 0.4 4.1 0.4 3.5 0.5 3.4 0.6 3.2 0.6	-3.5 -208 -4.0 -239 -4.5 -270 -5.1 -303 -6.2 -373 -7.7 -458 -9.7 -578 -12.5 -746

1805:23 to 1805:29 CDT

CDT	dd	dfs	Tetal	Wind	Vertical	Yrind	Horizoni	of Wind		į.	<u> </u>	ALTF	RATE
h m s	dag	deg	m/s	l:ts	m/s	kts	m/s	kts	deg/sec	deg/sac	deg/sec	fps	fpm
1805 23	191 190 189 189 190 192	-29 -28 -26 -23 -21 -20	10.7 10.5 10.1 9.6 9.1 8.6	21 20 20 19 18 17	10.6 10.4 10.0 9.5 9.0	21 20 19 18 17	9.2 9.2 9.1 8.8 8.4	18 18 18 17 16	0.2 0.2 0.2 0.2 0.2	2.8 2.0 1.4 1.0 0.8 0.6	0.6 0.6 0.5 0.4	-15.7 -19.2 -22.2 -24.3 -24.7 -23.0	-942 -1151 -1333 -1456 -1484 -1381
1805 24	194 196 197 199 200 199 195 192 189 188	-21 -24 -27 -30 -33 -36 -40 -44 -47 -50	8.2 7.9 7.7 7.6 7.7 7.8 8.0 8.2 8.5 8.8	16 15 15 15 15 16 16 17	8.0 7.6 7.4 7.3 7.4 7.5 7.8 8.1 8.4 £.8	15 15 14 14 15 15 16 16	7.6 7.1 6.8 6.4 6.2 6.8 5.8 5.7	15 14 13 13 12 12 12 11 11	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.4 0.1 -0.2 -0.3 -0.4 -0.4 -0.5 -0.6 -0.7	0.4 0.8 0.8 0.4 0.3 0.4 0.4	-19.4 14.7 -9.7 -5.0 -0.6 2.7 4.0 3.2 0.9 -2.1	-1161 -330 -582 -297 -37 161 240 192 51 -126
1805 25	187 186 186 187 187 187 184 179	-53 -56 -53 -60 -62 -63 -64	9.2 9.7 10.0 10.3 10.4 10.4 10.3	18 19 20 20 20 20 20	9.2 9.7 10.0 10.3 10.4 10.3	18 19 19 20 20 20 20	5.4 5.3 5.1 5.0 4.8 4.5 4.3	11 10 10 10 9 9 8	0.0 0.0 0.0 0.1 0.2 0.3 0.0	-0.8 -1.0 -1.4 -1.8 -2.2 -2.7 -3.4 -4.3	0.3 0.2 0.1 0.1 0.1 0.1 6.0	-5.3 -9.3 -11.7 -14.5 -16.1 -16.6 -16.2 -15.3	-314 -506 -702 -806 -966 -997 -969
1805 26	175 172 171 170 171 172 175 176	-67 -63 -70 -71 -72 -73 -74	19.1 10.3 10.6 10.9 11.1 11.3	20 20 20 21 21 22 22 22	10.0 10.1 10.3 10.6 10.9 11.1 11.3	20 20 20 21 21 22 22 22	3.8 3.6 3.4 3.3 3.1 3.0 2.8	7 7 7 6 6 6 6	1.2 1.3 1.4 1.4 1.4	-5.0 -5.3 -5.4 -5.0 -4.4 -3.6 -2.0	-0.3 -0.4 -0.6 -0.6 -0.7 -0.7	-14.4 -13.4 -12.5 -11.7 -11.3 -11.8 -13.0 -14.5	-863 -805 -746 -698 -676 -705 -777 -806
1805 27	177 177 176 176 178 186 203 238	-76 -77 -78 -79 -81 -83 -85	11.6 11.7 11.7 11.6 11.5 11.4 11.3	23 23 23 22 22 22 22	11.6 11.7 11.7 11.6 11.5 11.4 11.3	23 23 23 22 22 22 21	2.7 2.5 2.2 1.5 1.6 1.2 0.8	5 4 4 3 2 2	1.6 1.7 1.8 1.8 1.8 1.4 1.0	-1.8 -1.4 -1.0 -0.7 -0.4 -0.3 -0.4	-0.6 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	-15.9 -17.1 -18.3 -19.2 -19.9 -20.4 -20.9	-952 -1028 -1096 -1131 -1192 -1223 -1250 -1285
1805 28	275 297 316 339 353 15 23	-85 -04 -84 -84 -03 -83 -82 -81	10.8 10.6 10.4 10.4 10.3 10.1 10.0	21 21 20 20 20 20 19	10.8 10.5 10.4 10.4 10.3 10.1 10.0	21 20 20 20 20 20 19	0.7 0.8 0.9 0.9 1.0 1.1	1 2 2 2 2 2 3	0.3 0.8 1.0 1.0 1.0 0.3 0.6	-1.2 -1.8 -2.6 -3.6 -4.6 -5.6	-0.5 -0.5 -0.6 -0.7 -0.8 -1.1	-22.0 -22.6 -23.1 -23.6 -23.6 -23.6 -23.6 -23.1	-1319 -1353 +1308 -1415 -1423 -1415 -1308 -1353
1805 29	39 37 20 12 341 311 292 278	-81 -62 -64 -85 -85 -65 -64 -63	10.1 10.1 10.2 10.2 10.2 10.2 10.2	20 20 20 20 20 20 20 20	10.0 10.1 10.1 10.2 10.2 10.2 10.1 \$.9	19 20 20 20 20 20 20	1.3 1.2 0.9 0.7 0.6 0.7 0.6	3 2 2 1 1 2 2	0.4 0.4 0.4 0.4 0.3 0.2	-6.0 -5.5 -4.6 -3.4 -2.6 -2.3 -2.0	-1.6 -1.7 -1.7 -1.5 -1.6 -1.5 -1.5	-22.0 -21.4 -20.9 -20.4 -20.0 -19.6 -19.1	-1319 -1285 -1250 -1223 -1199 -1175 -1148 -1113

1805:30 to 1805:36 CDT

CDT	dd	dfa	Total Wind	Vertical Wind	Harizontal Wind	ė	.j <u> </u>	ALTF	RATE
h m s	deg	deg	m/s kts	m/s kts	m/s kts	deg/sec	dag/sec deg/sec	fps	fpm
1805 30	266 258	-82 -79	9.7 19 9.5 18	9.6 19 9.4 18	1.2 2 1.6 3	0.0	-0.8 -1.4	-18.0 -17.4	-1079
	253	-77	9.5 19	9.3 18	2.0 4	-0.1 -0.2	-0.2 -1.4 0.2 -1.4	-16.9	-1045 -1010
	248 245	-75 -73	9.7 19	9.4 18 9.6 19	2.4 5 2.8 5	-0.2 -0.2	0.5 -1.5	-16.4	-983
	241	-71	10.1 20	9.7 19	2.8 5 3.2 6	-0.2	0.8 -1.5 1.2 -1.4	-16.1 -16.0	-966 -959
	238	-63	10.4 20	9.9 19	3.6 7	-0.2	1.6, -1.3	-15.9	-952
	236	-67	10.6 21	10.1 20	4.1 8	-0.3	2.0 -1.2	-15.6	-935
1805 31	234	-64	10.8 21	10.2 20	4.5 9	-0.4	2.4 -1.1	-15.3	-914
	232	-62 -59	11.0 21 11.0 21	10.2 20	5.0 10 5.5 11	-0.3 -0.2	2.9 -1.0 3.4 -1.0	-15.0 -14.9	-897 -890
	230	-56	11.1 22	10.1 20	6.0 12	-0.2	4.0 -0.9	-14.9	-830
	229	-53	11.1 22	10.0 19	6.5 13	-0.2	4.6 -0.9	-14.6	-877
	227 226	-50 -48	11.1 22	9.9 19 9.8 19	7.0 14 7.3 14	-0.3 -0.4	4.8 -0.7 4.8 -0.5	-14.2 -13.5	-849 -812
	224	-45	11.1 22	9.8 19	7.7 15	-0.5	4.6 -0.2	-12.7	-764
1305 32	223	-43	11.1 22	9.7 19	8.0 16	-0.G	4.4 0.1	-11.9	-712
	222	-41	11.2 22	9.7 19	8.4 16	-0.7	4.5 0.3	-10.9	-650
	222 221	-39 -38	11.3 22	9.8 19 9.9 19	8.7 17 8.9 17	-0.3 -0.7	4.6 O.G 4.4 O.7	-9.7 -8.8	-582 -527
	221	-37	11.6 22	9.9 19	9.1 18	-0.6	4.0 0.8	-8.3	- 500
	222	-37	11.7 23	10.0 19	9.2 18	-0.6	3.5 0.8	-8.4	-503
	223 225	-38 -39	12.0 23 12.2 24	10.1 20	9.3 18 9.4 18	-0.8 -1.0	3.2 0.9 3.1 1.0	-8.7 -9.0	-524 -541
1805 33	226	-41	12.3 24	10.4 20	9.2 18	-1.2	3.0 1.1	-8.9	-534
	228	-43	12,3 24	10.5 20	C.9 17	-1.2	3.0 1.2	-8.3	-500
	228 230	-46 -49	12.3 24 12.3 24	10.6 21 10.8 21	8.3 16 7.9 15	-1.2 -1.1	3.0 1.3 3.0 1.5	-7.3 -5.8	-438 -345
	232	-52	12.5 24	10.9 21	7.6 15	-1.0	2.8 1.5	-3.9	-232
	234	-54	12.5 24	11.0 21	7.2 14	-0.b	2.6 1.3	-1.8	- 109
	236 237	-56 -50	12.5 24 12.7 25	11.2 22 11.4 22	6.B 13 6.4 13	-0.6 -0.5	2.4 0.9 2.5 0.6	0.6 3.4	38 203
1805 34	239	-60	13.0 25	11.8 23	6.3 12	-0.4	2.6 0.5	6.8	4C8
	242	-G1	13.5 26	12.3 24	6.5 13	-0.3	2.5 0.5	10.9	655
	244 245	-61 -62	14.0 27 14.6 28	12.7 25 13.3 26	6.6 13 6.6 13	-0.2 0.0	2.2 0.6 2.0 0.5	15.8 21.6	943 1296
	247	-G2	15.2 29	13.8 27	6.8 13	0.0	2.0 0.5 2.0 0.2	28.9	1731
	248	-G2	15.6 30	14.1 27	7.2 14	0.4	2.1 0.0	37.5	2253
	250 252	-59 -55	15.8 31 16.0 31	14.0 27 13.6 26	7.9 15 8.8 17	0.6 Q.7	2.0 -0.2 2.2 -0.2	46.9 55.7	2311 3343
1805 35	255	-51	16.0 31	12.9 25	9.9 19	0.8	2.6 -0.2	62.9	3775
.005 35	258	-46	16.0 31	11.9 23	10.9 21	1.0	4.0 -0.3	58.3	4101
	261	-41	15.6 30	10.6 21	11.6 23	1.2	5.2 -0.3	70.5	4231
	266 271	-36 -32	14.9 29 14.0 27	9.1 18 7.6 15	11.8 23 11.8 23	1.3	6.6 -0.3 8.2 -0.1	68.1 60.4	4087 3624
	278	-27	13.0 25	6.3 12	11.4 22	0.9	10.7 0.2	48.5	2911
	286 296	-22 -16	11.6 23	5.4 10 5.2 10	10.7 21 9.8 19	0.6 0.4	13.6 O.6 16.1 1.3	32.9 13.9	1971 337
1605 36	310 324	-3 -8	9.0 17 8.3 16	5.8 11 6.7 13	8.8 17 8.3 16	0.2	17.6 1.9 18.5 2.6	-7.7 -29.6	-4G2 - 1775
	338	4	8.3 16	7.6 15	B.3 16	-0.2	19.4 3.3	-49.1	-2944
	349	12	8.6 17	8.5 16	8.5 16	-0.3	17.9 3.5	-65.7	-3936
	360 8	17 21	9.3 15	\$.3 18 10.0 19	8,9 17 9,4 18	-0,4 -0.6	14.6 3,4 10 1 3.2	-70.9 -92.0	-4796 -5519
	14	24	10.8 21	10.6 21	9.9 19	-0.8	6.4 3.1	-1CO.6	-6033
	17	26	11.5 22	11.1 22	10.3 20	-1.2	4.1 2.9	-105.5	-6328

1805:37 to 1805:43 CDT

CDT	dd	dfo	Total	Wind	Vertica	Wind	Horizont	bni Wila	ė	<u>.</u>	<u>ţ-</u> •	ALTF	RATE
h m·s	deg	deg	in/s	kts	m/s	kts	m./s	kts	dog/sec	deg/sva	deg/sec	fps	fpm
1805 37	20	29	11.9	23	11.4	22	10.5	20	-1.6	2.0	2.6	-105.0	-6359
	21	30 30	12.1 11.8	23 23	11.5	22 22	10.5	20 20	-1.8 -2 0	0.1	2.1 1.5	-103.1 -96.0	-6154 -5759
	22	30	11.2	22	10.6	21	3.7	19	-1.8	-4.4	0.9	-84.9	-5020
	22	31	10.5	20	10.0	19	9.0	17	-1.6	-7.4	0.2	-70.G	-4237
	21	32	9.8	19	9.3	18	8.3	16	-2.0	-10.8	-0.4	-54.6	-2277
•	20	34	9.0	17	8.6	17	7.5	14	-2.8	-14.0	-0.9	-38.7	-2324
	18	37	8.3	16	8.0	16	6.6	13	-3.6	-16.0	-1.,1	-24.8	- 1487
1805 38	14 6	40 45	7.7 7.5	15 15	7.6 7.5	15	5.9	11	-4.0	-17.G	-1.2	-13.7 -6.2	-318
	356	49	7.7	15	7.7	15 15	5.3 5.0	10 10	-3.8 -3.8	-18.3 -13.8	-1.2 -1.2	-2.1	-369 -122
	344	51	8.1	16	8.0	16	5.1	10	-4.0	-18.0	-1.1	0.0.	
	333	51	8.6	17	8.3	16	5.5	11	-4.2	-16.4	-10	0.5	31
,	324	48	9.2	18	8.5	16	6.1	12	-4.6	-14.3	-0.8	0.6	38
	318	45	9.8	19	8.6	17	6.9	13	-5.2	-12.8	-0.7	0.3	17
	314	41	10.3	20	8.6	17	7.7	15	-5.6	-11.1	-0.G	-0.3	- 16
1805 39	311	37	10.6	21	6.4	16	8.4	16	-5.6	-8.8	-0.5	-1.0	-57
	309 309	33 29	10.6 10.4	21 20	8.1 7.6	16 15	8.9 9.1	17 18	-5.3 -5.0	-7.0 -6.2	-0.3 -0.2	-1.9 -3.4	-116
	303	23	10.0	19	6.9	13	9.1	18	-4.8	-6.0	-0.0	-5.0	-301
	309	16	9.5	18	6.3	12	9.1	18	-4.6	-5.2	0.1	-7.0	-421
	310	8	9.0	17	5.8	11	8.9	17	-4.2	3.8	0.2	-9.5	-572
	311	2	8.5	17	5.6	11	€.5	17	-3.8	-2.6	0.4	-12.5	-746
-	313	-3	8.2	16	5.3	11	8.2	16	-3.3	-1.7	0.6	-15.5	-928
1805 40	315	-8	8.1	16	5.8	11	8.0	15	-2.3	-1.0	0.8	-18.2	-1089
	317	-13 -17	8.3	16 17	6.2 5.7	12	8.0	1G 1G	-2.4	-0:5	0.9	-20.5	-1226
	324	-20	9.0	17	7,5	14	8.2 8.4	16	-2.0 -1.5	0.0	0.9 0.a	-22.6 -24.3	-1353 -1456
	328	-22	9.6	19	8.4	16	8.9	17	-1.0	G.4	0.6	-25.2	-1511
	332	-24	10.5	20	9:5	18	9.5	13	-0.6	0.6	0.5	-25.4	-1525
	335	-25	11.5	22	10.7	21	10.3	20	-0.2	1.0	0.4	-25.3	-1514
•	338	-27	12.7	25	12.0	23	11.2	22	-0.:	1.3	0.3	-25.1	- 1508
1805 41	341	-28	13.8	27	13.2	26	12.1	24	0.0	1,4	0.2	-25.3	-1514
	343	-28	14.8	29	14.3	28	13.0	25	-0.1	1.5	0.2	-25.4	-1525
	344	-27 -27	15.7	30	15.2	30	13.8	27	-0.2	1.8	0.1	-25.5	-1528
	345 345	-26	16.4 17.0	32 33	15.9 16.5	31 32	14.5 15.1	28 29	-0.∢ -0.6	2.1	0.1 0.1	-25.4 -25.9	-1525 -1552
	345	-25	17.4	34	16.9	33	15.6	30	-1.0	2.2	0.1	-27.5	-1648
	345	-24	17.G	34	17.1	33	16.0	31	-1.4	2.4	0.2	-30.4	-1823
	346	-22	17.8	35	17.3	34	16.4	32	-1.6	2.5	0.3	-34.0	-2039
805 42	346	-19	18.0	35	17.5	34	16.9	33	-1.6	2.4	0.5	-37.9	-2276
	345	- 16	18.1	35	17.6	34	17.4	34	-1.5	2.2	0.5	-42.5	-2546
	345	-12	18.3	36	17.7	34	17.8	35	-1.6	2.2	0.3	-47.5	-2852
	345 346	-7 -3	18.5	36	17.9	35	18.3	38	-1.7	2.4	0.1	-52.5	-3150
	347	ŏ	18.9 19.2	37 37	18.3 18.7	36 36	10.8	37 37	-1.6 -1.9	2.6 2.7	0.1 0.2	-56.5 -59.3	-3390 -3558
	348	3	19.6	38	19.2	37	19.6	38	-2.6	2.8	0.3	-60.3	-3620
•	350	5	20.0	29	19.7	38	19.9	39	-3.3	2.7	0.3	-59 3	-3554
1805: 43	351	7	20.4	# O	20.1	39	20.2	39	-3.6	2.G	0.2	-55.7	-3342
	351	3	20.7	40	20.4	40	20.4	40	-3.4	2.G	. 0.2	-50.3	-3020
	352	9	20.8	40	20.6	40	20.5	40	-3.4	2.6	0.2	-43.9	-2636
	352	10	20.8	40	20.€	40	20.5	40	-3.4	2.7	0.1	-36.3	-2207
	353 353	9	20.6 20.5	40	20.5	40 40	20.4	40 39	-3.2 -3.4	2.8 2.7	0.1 0.2	-29.7 -24.1	-11/8
	353	9	20.4	40	20.3	39	20.3	39	-4.0	2.0	0.2	-21.2	-1271
	353	9	20.4	40	20.2	35	20.1	39	-4.5	2.6	0.1	-21.0	-1251

1805:44 to 1805:50 CDT

1805 44 354	RATE
1805 44 354 6 20.3 40 20.2 39 20.2 39 -4.8 2.6 -0.1 -22.7 354 7 20.4 40 20.3 39 20.3 39 -4.8 2.6 -0.1 -22.7 354 5 20.6 40 20.4 40 20.5 40 -4.8 2.4 -0.4 -30.0 353 4 20.8 40 20.6 40 20.8 40 -4.8 2.2 -0.2 -34.9 351 1 21.1 41 20.8 40 20.6 40 20.8 40 -4.8 2.2 -0.2 -34.9 351 1 21.5 42 21.1 41 21.5 42 -3.5 11.9 0.1 -44.4 348 -4 21.9 43 21.4 42 21.3 42 -2.6 1.8 0.1 -48.5 347 -7 22.4 43 21.8 42 22.2 43 -1.7 1.4 0.4 -52.2 1805 45 346 -10 22.9 44 22.2 43 22.2 43 -1.7 1.4 0.4 -52.2 1805 45 346 -10 22.9 44 22.2 43 22.5 44 -0.8 1.0 0.7 -55.5 346 -16 23.9 46 23.2 45 22.8 44 0.8 -0.2 1.0 0.8 -60.0 347 -22 24.7 48 24.2 47 22.7 44 2.4 -2.0 0.8 -60.6 348 -27 25.4 49 25.0 49 22.3 43 4.2 -2.0 0.8 -60.6 348 -27 25.4 49 25.0 49 22.3 43 4.2 -3.2 1.0 -57.0 349 -27 25.4 49 25.0 49 22.3 43 4.2 -3.2 1.3 -75.8 350 -29 25.6 50 25.3 49 22.2 43 5.3 -2.8 1.5 -79.1 1805 46 352 -30 25.4 49 25.0 49 22.3 43 4.2 -3.2 1.3 -75.8 350 -29 25.6 50 25.3 49 22.2 43 5.3 -2.8 1.5 -79.1 1805 47 1 -22 24.1 47 23.7 48 22.0 42 6.9 -1.2 1.1 -86.5 357 -31 25.6 50 25.6 50 25.8 49 21.8 42 6.9 -1.2 1.1 -86.5 357 -31 25.6 50 25.6 50 25.8 49 21.8 42 6.0 -0.2 1.0 -77.0 360 -28 25.0 49 25.4 49 21.8 42 6.0 -0.2 1.0 -77.0 360 -28 25.0 49 25.4 49 21.8 42 6.0 -0.2 1.0 -77.4 0.0 360 -29 25.0 49 25.0 49 21.8 42 6.0 -0.2 1.1 -86.5 359 -30 25.4 49 25.0 49 21.8 42 6.0 -0.2 1.1 -86.5 359 -30 25.4 49 25.4 49 21.8 42 6.0 -0.2 1.1 -86.5 359 -30 25.4 49 25.4 49 21.8 42 6.0 -0.2 1.1 -86.5 359 -30 25.4 49 25.4 49 21.8 42 6.0 -0.2 1.1 -86.5 359 -30 25.4 49 25.4 49 21.8 42 6.0 -0.2 1.1 -86.5 359 -30 25.4 49 25.4 49 21.8 42 6.0 -0.2 1.1 -86.6 360 -28 25.0 49 25.3 49 21.9 42 6.0 -0.2 1.1 -86.6 360 -28 25.0 49 25.3 49 21.9 42 6.0 -0.2 1.1 -86.6 350 -28 25.0 49 25.3 49 21.9 42 6.0 -0.2 1.1 -86.6 350 -28 25.0 49 25.3 49 21.9 42 6.0 -0.2 1.1 -86.5 359 -4 23.3 45 23.	
354 7 20.4 40 20.3 39 20.3 39 -4.7 7 2.6 -0.2 -25.7 35 34 20.6 40 20.4 40 20.5 40 -4.8 2.4 -0.4 -30.0 353 4 20.8 40 20.6 40 20.8 40 -4.8 2.2 -0.2 -34.9 351 1 21.1 41 20.8 40 21.1 41 -4.4 2.0 -0.1 -39.8 40 21.4 41 -4.4 2.0 -0.1 -39.8 40 21.4 42 21.8 42 -2.6 1.8 0.1 -48.5 347 -7 22.4 43 21.8 42 22.2 43 -1.7 1.4 0.4 -52.2 1805 45 346 -10 22.9 44 22.2 43 21.8 42 -2.6 1.8 0.1 -48.5 347 -7 22.4 43 21.8 42 22.2 43 -1.7 1.4 0.4 -52.2 1805 45 346 -13 23.4 45 22.7 44 22.7 44 0.0 0.4 0.9 -55.5 346 -13 23.4 45 22.7 44 22.7 44 0.0 0.4 0.9 -55.5 346 -20 24.3 47 23.7 46 22.8 44 1.6 -1.0 0.8 -60.6 63.4 -20 24.3 47 23.7 46 22.8 44 1.6 -1.0 0.8 -60.6 348 -25 25.1 49 24.6 40 22.5 44 3.3 -2.8 1.0 -77.2 349 -27 25.4 49 25.0 49 22.3 43 4.2 -3.2 1.0 -77.2 349 -27 25.4 49 25.0 49 22.3 43 4.2 -3.2 1.0 -77.2 349 -27 25.4 49 25.0 49 22.3 43 4.2 -3.2 1.1 1.8 -65.6 50 25.3 49 22.3 43 4.2 -3.2 1.1 1.8 -65.6 50 25.3 49 22.3 43 4.2 -3.2 2 1.3 -75.8 350 -29 25.6 50 25.3 49 22.3 43 4.2 -3.2 2 1.3 -75.8 355 -31 25.6 50 25.5 50 21.8 42 6.9 -1.2 1.1 -86.5 357 -31 25.6 50 25.5 50 21.8 42 6.9 -1.2 1.1 -86.5 357 -31 25.6 50 25.5 50 21.8 42 6.9 -1.2 1.1 -86.5 359 -30 25.4 49 25.3 49 21.8 42 6.0 -0.2 1.0 -74.0 360 -29 25.3 49 25.3 49 21.8 42 6.0 -0.2 1.0 -74.0 360 -29 25.3 49 25.3 49 21.8 42 6.0 -0.2 1.0 -74.0 360 -29 25.3 49 25.3 49 21.8 42 6.0 -0.2 1.0 -74.0 360 -28 25.0 49 25.3 49 21.8 42 6.0 -0.2 1.0 -74.0 360 -29 25.3 49 24.7 48 21.9 43 6.6 0.6 0.7 -55.4 1805 47 1 -26 24.7 49 25.3 49 21.8 42 6.0 -0.2 1.0 -74.0 360 -29 25.3 49 24.7 48 21.9 43 6.6 0.0 0.1 0.9 -67.0 360 -28 25.0 49 25.3 49 21.8 42 6.0 0.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 25.0 49 25.0 49 25.0 49 25.0 49 25.0 49 25.0 49 25.0 49 25.0 49 25.0 49 25.0 49 25.0 49 25.0 40 25.0 44 4.1 1.6 0.7 -26.1 360 -28 25.0 49 25.0	fpm
354	-1364
353	-1542
351 1 21.1 41 20.8 40 21.1 41 -4.4 20.0 -0.1 -39.8 349 -1 21.5 42 21.1 41 21.5 42 -3.5 1.9 0.1 -44.4 348 -4 21.9 43 21.4 42 21.8 42 -2.6 1.8 0.1 -48.5 347 -7 22.4 43 21.8 42 22.2 43 -1.7 1.4 0.4 -52.2 1805 45 346 -10 22.9 44 22.2 43 22.2 43 -1.7 1.4 0.4 -52.2 1805 45 346 -10 23.9 46 23.2 45 22.8 44 0.0 0.2 0.9 -55.5 346 -10 23.9 46 23.2 45 22.8 44 0.0 0.2 0.9 -55.5 346 -10 23.9 47 23.7 46 22.8 44 0.0 0.2 0.9 -55.5 346 -10 23.9 47 23.7 46 22.8 44 1.6 -1.0 0.8 -60.2 347 -22 24.7 44 22.5 44 1.6 -1.0 0.8 -60.2 347 -22 24.7 48 24.2 47 22.7 44 2.4 -2.0 0.8 -66.6 348 -25 25.1 49 24.6 40 22.5 44 3.3 -2.8 1.0 -72.2 349 -27 25.4 49 25.0 49 22.3 43 3.2 -2.8 1.0 -72.2 349 -27 25.4 49 25.0 49 22.3 43 3.2 -2.8 1.0 -72.2 349 -27 25.4 49 25.0 49 22.3 43 3.2 -2.8 1.5 -79.1 1805 46 352 -30 25.7 50 25.6 50 21.9 42 6.9 -1.2 1.1 -86.5 355 -31 25.6 50 25.3 49 22.2 43 5.3 -2.8 1.5 -79.1 357 -31 25.6 50 25.6 50 21.8 42 7.0 -0.6 1.1 -86.5 357 -31 25.6 50 25.5 49 21.8 42 6.0 -0.2 1.0 -74.0 360 -29 25.3 49 25.3 49 21.8 42 6.0 -0.2 1.0 -74.0 360 -29 25.3 49 25.3 49 21.8 42 6.0 -0.2 1.0 -74.0 360 -29 25.3 49 25.3 49 21.8 42 6.0 -0.2 1.0 -74.6 360 -29 25.3 49 25.3 49 21.8 42 6.0 -0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.9 42 6.0 -0.2 1.0 -74.6 1.1 -85.6 360 -28 25.0 49 25.0 49 21.9 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.9 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.9 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.9 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.9 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.9 42 6.0 0.0 0.0 0.7 -55.4 1805 47 1 -24 24.4 47 24.4 17 22.2 43 5.5 1.0 1.0 -74.0 360 -29 25.3 49 25.3 49 21.8 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.9 42 6.0 0.0 0.0 0.7 -55.4 1805 47 1 -22 24.1 47 24.1 47 22.2 43 5.5 1.0 1.0 0.7 -40.9 360 -29 25.3 49 25.3 49 21.8 42 6.0 0.0 0.0 0.7 -55.4 1805 48 360 -20 3.8 46 2	-1799
1805 46 352 -30 25.7 50 25.5 42 22.0 43 62.4 -2.0 1.4 -83.4	-2090
1805 46 346 -4 21.9 43 21.4 42 21.8 42 -2.6 1.8 0.1 -48.5 347 -7 22.4 43 21.8 42 22.2 43 -1.7 1.4 0.4 -52.2 1805 45 346 -10 22.9 44 22.2 43 22.5 44 -0.8 1.0 0.7 -54.7 346 -13 23.4 45 22.7 44 22.7 44 0.0 0.4 0.9 -55.5 346 -16 23.9 46 23.2 45 22.8 44 0.8 -0.2 1.0 -57.0 347 -22 24.7 48 24.2 47 22.8 44 1.6 -1.0 0.8 -60.6 347 -22 24.7 48 24.2 47 22.7 44 2.4 -2.0 0.8 -66.6 348 -25 25.1 49 24.6 40 22.5 44 3.3 -2.8 1.0 -72.2 349 -27 25.4 49 25.0 49 22.3 43 4.2 -3.2 1.0 -72.2 349 -27 25.4 49 25.0 49 22.3 43 4.2 -3.2 1.0 -72.5 350 -29 25.6 50 25.3 49 22.2 43 5.3 -2.8 1.5 -79.1 3805 46 352 -30 25.7 50 25.6 50 21.8 42 7.0 -0.6 1.1 -86.5 357 -31 25.6 50 25.6 50 25.6 50 21.8 42 7.0 -0.6 1.1 -86.5 357 -31 25.6 50 25.6 50 25.3 49 21.8 42 6.0 -0.2 1.0 -72.0 360 -29 25.0 49 25.0 49 21.8 42 6.0 -0.2 1.0 -75.8 350 -28 25.0 49 25.0 49 21.8 42 6.0 -0.2 1.0 -75.6 357 -31 25.6 50 25.6 50 21.8 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.8 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.8 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.8 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.8 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.8 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.8 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.8 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.8 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.9 42 6.4 0.0 0.7 -55.4 36 360 -7 23.3 45 23.3 45 23.0 46 22.7 44 4.1 1.1 -34.6 2 2 -16 23.6 46 23.4 46 23.4 46 22.7 44 4.1 1.1 -34.6 2 2 -19 23.8 46 23.3 46 22.7 44 4.1 1.1 -30.6 2 2 -19 23.8 46 23.3 46 22.7 44 4.1 1.1 -30.6 2 2 -19 23.8 46 23.3 45 23.3 45 23.0 45 3.8 1.4 0.6 -26.1 355 -4 23.3 45 23.0 0.7 0.5 0.2 0.0 -70.7 0.1 -67.1 355 42 24.1 47 23.7 46 23.6 46 0.0 0.0 0.2 0.	-2389
1805 45 346 -10 22.9 44 22.2 43 22.5 44 -0.8 1.0 0.7 -54.7 24.6 -13 23.4 45 22.7 44 22.7 44 0.0 0.4 0.9 -55.5 24 24 22.7 44 0.0 0.4 0.9 -55.5 24 24 22.7 44 0.0 0.4 0.9 -55.5 24 24 22.7 44 0.0 0.4 0.9 -55.5 24 24 22.7 44 0.0 0.4 0.9 -55.5 24 24 24.7 22.7 44 0.0 0.6 0.4 0.9 -55.5 24 24 24.7 22.7 44 0.0 0.6 0.4 0.9 -55.5 24 24 24.7 22.7 44 0.0 0.6 0.4 0.9 -55.5 24 24.7 47 22.7 44 1.6 -1.0 0.8 -60.5 24 24.7 24.7 22.7 44 2.4 -2.0 0.8 -66.6 24 24.7 22.7 44 2.4 -2.0 0.8 -66.6 24 24.8 25.8 25.1 49 24.6 48 22.5 44 3.3 -2.8 1.0 -72.2 24.7 49 25.0 49 22.3 43 4.2 -3.2 1.3 -75.8 350 -29 25.6 50 25.3 49 22.2 43 5.3 -2.8 1.5 -79.1 25.4 25.5 25.1 25.6 50 25.5 43 22.0 43 6.4 -2.0 1.4 -83.4 25.3 25.3 25.3 25.8 1.5 -79.1 25.6 50 25.6 50 25.8 49 22.2 43 5.3 -2.8 1.5 -79.1 25.6 50 25.6 50 25.8 49 22.2 43 5.3 -2.8 1.5 -79.1 25.6 50 25.6 50 25.8 49 22.0 43 6.4 -2.0 1.4 -83.4 26.5 -0.4 1.1 -86.5 355 -31 25.6 50 25.6 50 25.8 49 21.8 42 6.5 -0.4 1.1 -86.5 355 -31 25.6 50 25.5 50 21.8 42 6.5 -0.4 1.1 -86.5 355 -31 25.6 50 25.0 50 21.8 42 6.5 -0.4 1.1 -85.6 25.0 25.0 49 21.8 42 6.5 -0.4 1.1 -85.6 25.0 25.0 49 21.9 42 6.0 0.1 0.9 -67.8 360 -28 25.0 49 25.0 49 21.8 42 6.5 -0.4 1.1 -80.6 26.0 26.0 -22 24.1 47 43 24.7 48 21.9 43 6.6 0.6 0.6 0.7 -55.4 26.0 22 24.1 47 24.1 47 22.2 43 5.5 1.0 1.0 -74.0 22 24.1 47 24.1 47 22.2 43 5.5 1.0 1.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -	-2663 -2910
346 -13 23.4 45 22.7 44 22.7 44 0.0 0.4 0.9 -55.5 346 -16 23.9 46 23.2 45 22.8 44 0.8 -0.2 1.0 -57.0 347 -22 24.7 48 24.2 47 22.7 44 2.4 -2.0 0.8 -66.6 347 -22 24.7 48 24.2 47 22.7 44 2.4 -2.0 0.8 -66.6 348 -25 25.1 49 24.6 40 22.5 44 3.3 -2.8 1.0 -72.2 349 -27 25.4 49 24.6 40 22.5 44 3.3 -2.8 1.0 -72.2 349 -27 25.4 49 25.0 49 22.3 43 4.2 -3.2 1.3 -75.8 350 -29 25.6 50 25.3 49 22.2 43 5.3 -2.8 1.5 -79.1 1805 46 352 -30 25.7 50 25.6 50 21.8 42 7.0 -0.6 1.1 -86.5 357 -31 25.6 50 25.6 50 21.8 42 7.0 -0.6 1.1 -86.5 357 -31 25.6 50 25.5 50 21.8 42 7.0 -0.6 1.1 -86.5 357 -31 25.6 50 25.5 50 21.8 42 6.9 -1.2 1.1 -86.5 357 -31 25.6 50 25.5 50 21.8 42 6.9 -1.2 1.1 -86.5 359 -30 25.4 49 25.3 49 21.8 42 6.0 -0.1 0.9 -67.8 360 -28 25.0 49 25.0 49 21.9 42 6.0 0.1 0.9 -67.8 360 -28 25.0 49 25.0 49 21.9 42 6.0 0.1 0.9 -67.8 1 -26 24.7 43 24.7 48 21.9 43 6.6 0.6 0.7 -55.4 1 -22 24.1 47 24.1 47 22.2 43 5.5 1.0 1.0 -40.9 2 2 -19 23.8 46 23.3 46 22.7 44 4.1 1.6 0.7 -55.4 1 -10 23.3 45 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1.9 24.8 1 -10 23.3 45 23.3 45 23.3 45 23.0 45 23.0 45 23.0 45 23.0 45 23.3 45 23.3 45 23.3 45 23.0 45 23.0 45 23.0 45 23.0 45 23.3 45 23.3 45 23.0 45 23.0 45 23.0 45 23.0 45 23.0 45 23.3 45 23.3 45 23.3 45 23.0 45 23.0 45 23.0 45 23.0 45 23.3 45 23.3 45 23.3 45 23.0 45 23.0 45 23.0 45 23.0 45 23.3 45 23.3 45 23.3 45 23.0 45 23.6 46 23.4 46 23.5 46 23.6 46 23.5 46 23.5 46 23.5 46 23.5 46 23.5 46 23.5 46 23.6 46 0.6 0.1 0.2 -74.7 355 42 355 42 33.0 45 23.3 45 23.0 45 23.6 46 23.5 46 23.5 46 23.6 46 23.6 46 23.5 46 23.5 46 23.6 46	-3133
1805 46	-3280
1805 46	-3332
347 -22 24.7 48 24.2 47 22.7 44 2.4 -2.0 0.8 -66.6 348 -25 25.1 49 24.6 40 22.5 44 3.3 -2.8 1.0 -72.2 34 349 -27 25.4 49 25.0 49 22.3 43 4.2 -3.2 1.3 -75.8 350 -29 25.6 50 25.3 49 22.2 43 5.3 -2.8 1.5 -79.1 1805 46 352 -30 25.7 50 25.5 43 22.0 43 6.4 -2.0 1.4 -83.4 353 -31 25.7 50 25.6 50 21.9 42 6.9 -1.2 1.1 -86.5 355 -31 25.6 50 25.6 50 21.8 42 7.0 -0.6 1.1 -35.6 355 -31 25.6 50 25.5 50 21.8 42 7.0 -0.6 1.1 -35.6 359 -30 25.4 49 25.4 49 21.8 42 6.5 -0.4 1.1 -80.8 359 -30 25.4 49 25.3 49 21.8 42 6.0 -0.2 1.0 -74.0 360 -29 25.3 49 25.3 49 21.8 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.9 42 6.0 0.1 0.9 -67.0 -67.0 1 -26 24.7 48 24.7 48 21.9 43 6.6 0.6 0.6 0.7 -55.4 1 -22 24.1 47 24.1 47 22.2 43 5.5 1.0 1.0 -70.9 -67.0 1 -22 24.1 47 24.1 47 22.2 43 5.5 1.0 1.0 -70.9 -67.0 2 -70.9 1 -22 24.1 47 24.1 47 22.2 43 5.5 1.0 1.0 -70.9 -67.0 2 -70.9 1 -	-3421
348 -25	-3654
349 -27	-3933
1805 46 352 -30 25.7 50 25.5 43 22.0 43 6.4 -2.0 1.4 -83.4 35.3 -31 25.7 50 25.6 50 21.9 42 6.9 -1.2 1.1 -86.5 355 -31 25.6 50 25.6 50 21.8 42 7.0 -0.6 1.1 -85.6 357 -31 25.6 50 25.5 50 21.8 42 7.0 -0.6 1.1 -85.6 357 -31 25.6 50 25.5 50 21.8 42 6.0 -0.2 1.0 -74.0 360 -29 25.3 49 25.4 49 21.8 42 6.0 -0.2 1.0 -74.0 360 -29 25.3 49 25.3 49 21.8 42 6.0 -0.2 1.0 -74.0 360 -28 25.0 49 25.4 49 21.8 42 6.0 0.1 0.9 -67.0 1 -26 24.7 43 24.7 48 21.9 43 6.6 0.6 0.7 -55.4 1 -22 24.1 47 24.1 47 22.2 43 5.5 1.0 1.0 -40.9 2 -19 23.8 46 23.3 46 22.4 43 5.0 1.4 1.1 -34.6 2 -16 23.6 46 23.4 46 22.7 44 4.7 1.7 1.1 -29.4 1 -13 23.4 46 23.4 46 22.7 44 4.7 1.7 1.1 -29.4 1 -10 23.3 45 23.3 45 22.9 44 4.1 1.6 0.7 -24.3 360 -7 23.3 45 23.3 45 23.2 45 33.4 1.2 0.7 -31.4 1805 48 358 -1 23.3 45 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1.2 2.7 3.5 6 23.7 46 23.6 46 23.6 46 23.6 46 0.0 0.1 0.2 -74.7 355 6 23.7 46 23.6 46 23.6 46 23.6 46 0.0 0.1 0.2 -74.7 355 6 23.7 46 23.6 46 23.6 46 23.6 46 0.0 0.1 0.2 -74.7 355 6 23.7 46 23.6 46 23.6 46 23.6 46 0.0 0.1 0.2 -74.7 355 6 23.7 46 23.6 46 23.6 46 23.6 46 0.0 0.1 0.2 -74.7 355 9 24.0 47 24.0 47 23.7 46 -0.8 -0.4 -0.1 -80.1 357 7 23.9 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 358 9 24.0 47 24.0 47 23.7 46 -0.8 -0.4 -0.1 -80.1 358 9 24.0 47 24.1 47 23.7 46 -3.6 -0.4 -0.1 -80.1 -67.1	-4329 -4549
353 -31 25.6 50 25.6 50 21.8 42 7.0 -0.6 1.1 -35.6 50 25.6 50 21.8 42 7.0 -0.6 1.1 -35.6 50 25.6 50 21.8 42 7.0 -0.6 1.1 -35.6 357 -31 25.6 50 25.5 50 21.8 42 6.5 -0.4 1.1 -80.8 359 -30 25.4 49 25.4 49 21.8 42 6.0 -2.2 1.0 -74.0 360 -29 25.3 49 25.3 49 21.8 42 6.0 0.1 0.9 -67.8 360 -28 25.0 49 25.0 49 21.9 42 6.4 0.4 0.7 -61.9 1 -26 24.7 48 24.7 48 21.9 43 6.6 0.6 0.6 0.7 -55.4 360 360 360 360 360 360 360 360 360 360	-4744
353 -31 25.6 50 25.6 50 21.8 42 7.0 -0.6 1.1 -35.6 50 25.6 50 21.8 42 7.0 -0.6 1.1 -35.6 50 25.6 50 21.8 42 7.0 -0.6 1.1 -35.6 357 -31 25.6 50 25.5 50 21.8 42 6.5 -0.4 1.1 -80.8 359 -30 25.4 49 25.4 49 21.8 42 6.0 -2.2 1.0 -74.0 360 -29 25.3 49 25.3 49 21.8 42 6.0 0.1 0.9 -67.8 360 -28 25.0 49 25.0 49 21.9 42 6.4 0.4 0.7 -61.9 1 -26 24.7 48 24.7 48 21.9 43 6.6 0.6 0.6 0.7 -55.4 1 -26 24.7 48 24.7 48 21.9 43 6.6 0.6 0.6 0.7 -55.4 1 -22 24.1 47 24.1 47 22.2 43 5.5 1.0 1.0 -40.9 2 -19 23.8 46 23.8 46 22.4 43 5.0 1.4 1.1 -34.6 2 -16 23.6 46 23.5 46 22.5 44 4.7 1.7 1.1 -29.4 1 -13 23.4 46 23.4 46 22.7 44 4.4 1.8 0.9 -25.9 1 -10 23.3 45 23.3 45 23.0 45 3.8 1.4 0.6 -26.1 35.7 -4 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 350 -1 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 350 -1 23.3 45 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 350 -1 23.3 46 23.4 46 23.5 46 1.4 0.4 0.4 0.4 -64.6 355 4 23.6 46 23.5 46 23.6 46 0.0 -0.2 -74.7 35.5 6 23.7 46 23.6 46 23.5 46 23.6 46 0.0 -0.2 -74.7 35.5 6 23.7 46 23.6 46 23.6 46 0.0 -0.2 -74.7 35.5 6 23.7 46 23.6 46 23.5 46 23.6 46 0.0 -0.2 -74.7 35.5 6 23.7 46 23.6 46 23.5 46 0.0 -0.2 -74.7 35.5 6 23.7 46 23.6 46 23.6 46 0.0 -0.2 -74.7 35.5 6 23.7 46 23.6 46 23.6 46 0.0 -0.2 -75.6 360 10 24.1 47 24.1 47 23.7 46 -3.6 -0.4 -0.1 -80.1 35.7 7 23.9 46 23.8 46 23.7 46 -3.6 -0.4 -0.1 -80.1 35.7 7 23.9 46 23.8 46 23.7 46 -3.6 -0.4 -0.1 -80.1 35.7 7 23.9 46 23.8 46 23.7 46 -3.6 -0.4 -0.1 -80.1 35.7 7 23.9 46 23.8 46 23.7 46 -3.6 -0.4 -0.1 -80.1 35.7 7 23.9 46 23.8 46 23.7 46 -3.6 -0.4 -0.1 -67.1	-5001
355	-5186
357 -31 25.6 50 25.5 50 21.8 42 6.5 -0.4 1.1 -80.8 359 -30 25.4 49 25.4 49 21.8 42 6.0 -2.2 1.0 -74.0 360 -29 25.3 49 25.3 49 21.8 42 6.0 0.1 0.9 -67.0 360 -28 25.0 49 25.0 49 21.9 42 6.0 0.1 0.9 -67.0 1 -26 24.7 48 24.7 48 21.9 43 6.6 0.6 0.6 0.7 -55.4 1 -26 24.7 48 24.7 48 21.9 43 6.6 0.6 0.6 0.7 -55.4 1 -22 24.1 47 24.1 47 22.2 43 5.5 1.0 1.0 -40.9 2 -19 23.8 46 23.8 46 23.8 46 22.4 43 5.0 1.4 1.1 -34.6 2 -16 23.6 46 23.4 46 22.7 44 4.4 1.8 0.9 -25.9 1 -10 23.3 45 23.3 45 23.3 45 23.0 45 33.8 1.4 0.6 -26.1 35.7 -4 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 350 -1 23.3 45 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 350 -1 23.4 46 23.5 46 23.5 46 23.5 46 1.4 0.4 0.4 0.6 -26.1 35.7 7 23.9 46 23.5 46 23.5 46 1.4 0.4 0.4 -64.6 35.5 4 23.6 46 23.5 46 23.5 46 1.4 0.4 0.4 -64.6 35.5 4 23.6 46 23.5 46 23.6 46 0.0 -0.2 -0.0 -80.1 35.7 7 23.9 46 23.8 46 23.5 46 1.4 0.4 0.4 -64.6 35.5 4 23.6 46 23.5 46 23.6 46 0.0 -0.2 -0.0 -80.1 35.7 7 23.9 46 23.8 46 23.5 46 1.4 0.4 0.4 -64.6 35.5 4 23.6 46 23.5 46 23.6 46 0.0 -0.2 -0.0 -80.1 35.7 7 23.9 46 23.8 46 23.5 46 1.4 0.4 0.4 -64.6 35.5 4 23.6 46 23.5 46 23.6 46 0.0 -0.2 -0.0 -80.1 35.7 7 23.9 46 23.8 46 23.5 46 0.0 -0.2 -0.0 -80.1 35.7 7 23.9 46 23.8 46 23.7 46 -0.8 -0.4 -0.1 -80.1 35.8 9 24.0 47 24.0 47 23.7 46 -3.6 -0.8 -0.4 -0.1 -67.1	-5135
359 -30	-4847
1	-4439
1 -26	-4065
1805 47	-3716
1 -22 24.1 47 24.1 47 22.2 43 5.5 1.0 1.0 -40.9 2 -19 23.8 46 23.3 46 22.4 43 5.0 1.4 1.1 -34.6 2 -16 23.6 46 23.5 46 22.5 44 4.7 1.7 1.1 -29.4 1 -13 23.4 46 23.4 46 22.7 44 4.4 1.8 0.9 -25.9 1 -10 23.3 45 23.3 45 22.9 44 4.1 1.6 0.7 -24.3 360 -7 23.3 45 23.3 45 23.0 45 3.8 1.4 0.6 -26.1 350 -4 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 358 -1 23.3 45 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 356 3 23.5 46 23.4 45 23.4 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 356 3 23.5 46 23.4 45 23.4 45 23.4 45 23.6 46 23.5 46 23.6 46 0.6 0.1 0.2 -74.7 355 6 23.7 46 23.6 46 23.6 46 0.6 0.1 0.2 -74.7 355 6 23.7 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.6 46 23.7 46 -0.8 -0.4 -0.1 -80.1 358 9 24.0 47 24.0 47 23.7 46 -0.8 -0.4 -0.1 -80.1 358 9 24.0 47 24.1 47 23.7 46 -3.6 -0.4 -0.1 -67.1 1805 49 1 11 24.2 47 24.1 47 23.7 46 -3.6 -0.4 -0.2 -42.8	-3321
2 -19 23.8 46 23.8 46 22.4 43 5.0 1.4 1.1 -34.6 2 -16 23.6 46 23.5 46 22.5 44 4.7 1.7 1.1 -29.4 1 -13 23.4 46 23.4 46 22.7 44 4.4 1.8 0.9 -25.9 1 -10 23.3 45 23.3 45 22.9 44 4.1 1.6 0.7 -24.3 360 -7 23.3 45 23.3 45 23.0 45 3.8 1.4 0.6 -26.1 354 23.3 45 23.3 45 23.2 45 3.8 1.4 0.6 -26.1 354 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 358 -1 23.3 45 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 35.6 3 23.5 46 23.4 45 23.4 45 2.3 0.7 0.5 -52.2 35.6 3 23.5 46 23.4 45 23.4 45 2.3 0.7 0.5 -52.2 35.5 6 23.7 46 23.5 46 23.6 46 0.6 0.1 0.2 -74.7 35.5 6 23.7 46 23.6 46 23.6 46 0.6 0.1 0.2 -74.7 35.5 6 23.7 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 35.7 7 23.9 46 23.8 46 23.7 46 -0.8 -0.4 -0.1 -80.1 35.8 9 24.0 47 24.0 47 23.7 46 -0.8 -0.4 -0.1 -80.1 35.8 9 24.0 47 24.0 47 23.7 46 -3.6 -0.8 -0.7 -0.1 -67.1 1805 49 1 11 24.2 47 24.1 47 23.7 46 -3.6 -0.8 -0.1 -55.2 -42.8	-2832
2 -16 23.6 46 23.5 46 22.5 44 4.7 1.7 1.1 -29.4 1 -13 23.4 46 23.4 46 22.7 44 4.4 1.8 0.9 -25.9 1 -10 23.3 45 23.3 45 22.9 44 4.1 1.6 0.7 -24.3 360 -7 23.3 45 23.3 45 23.0 45 3.8 1.4 0.6 -26.1 35? -4 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 350 -1 23.3 45 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 350 -1 23.3 45 23.4 45 23.4 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 357 0 23.4 45 23.4 45 23.4 45 23.0 0.7 0.5 -52.2 356 3 23.5 46 23.4 46 23.5 46 1.4 0.4 0.4 -64.6 355 4 23.6 46 23.5 46 23.6 46 0.6 0.1 0.2 -74.7 355 6 23.7 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.8 46 23.6 46 0.0 -0.2 -0.0 -80.1 358 9 24.0 47 24.0 47 23.7 46 -0.8 -0.4 -0.1 -80.1 358 9 24.0 47 24.0 47 23.7 46 -3.6 -0.4 -0.1 -67.1 1805 49 1 11 24.2 47 24.1 47 23.7 46 -3.6 -0.8 -0.1 -55.2 2 12 24.2 47 24.2 47 23.7 46 -3.6 -0.4 -0.2 -42.8	-2454
1 -13 23.4 46 23.4 46 22.7 44 4.4 1.8 0.9 -25.9 1 -10 23.3 45 23.3 45 22.9 44 4.1 1.6 0.7 -24.3 360 -7 23.3 45 23.3 45 23.0 45 3.8 1.4 0.6 -26.1 350 -4 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 358 -1 23.3 45 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 350 -1 23.3 45 23.4 45 23.4 45 23.0 0.7 0.5 -52.2 356 3 23.5 46 23.4 46 23.5 46 1.4 0.4 0.4 -64.6 355 4 23.6 46 23.5 46 23.6 46 0.6 0.1 0.2 -74.7 355 6 23.7 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.8 46 23.7 46 -0.8 -0.4 -0.1 -80.1 358 9 24.0 47 24.0 47 23.7 46 -0.8 -0.4 -0.1 -80.1 358 9 24.0 47 24.0 47 23.7 46 -3.0 -0.7 -0.1 -67.1 1805 49 1 11 24.2 47 24.1 47 23.7 46 -3.6 -0.8 -0.1 -55.2 2 12 24.2 47 24.2 47 23.7 46 -3.6 -0.4 -0.2 -42.8	-2077
1 -10 23.3 45 23.3 45 22.9 44 4.1 1.6 0.7 -24.3 360 -7 23.3 45 23.3 45 23.0 45 3.8 1.4 0.6 -26.1 35.7 -4 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 355 -1 23.3 45 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 356 3 23.5 46 23.4 45 23.4 45 2.3 0.7 0.5 -52.2 356 3 23.5 46 23.4 45 23.4 45 2.3 0.7 0.5 -52.2 35.5 4 23.6 46 23.5 46 1.4 0.4 0.4 -64.6 35.5 4 23.6 46 23.5 46 1.4 0.4 0.4 -64.6 35.5 6 23.7 46 23.6 46 23.6 46 0.0 0.0 -0.2 -74.7 35.5 6 23.7 46 23.6 46 23.6 46 0.0 -0.2 -70.0 -80.1 35.7 7 23.9 46 23.8 46 23.7 46 -0.8 -0.4 -0.1 -80.1 35.8 9 24.0 47 24.0 47 23.7 46 -0.8 -0.4 -0.1 -80.1 35.8 9 24.0 47 24.0 47 23.7 46 -3.0 -0.7 -0.1 -67.1 1805 49 1 11 24.2 47 24.1 47 23.7 46 -3.6 -0.8 -0.1 -55.2 2 12 24.2 47 24.2 47 23.7 46 -3.6 -0.8 -0.1 -55.2 -42.8	-1765 -1556
360 -7 23.3 45 23.3 45 23.0 45 3.8 1.4 0.6 -26.1 35? -4 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 358 -1 23.3 45 23.3 45 23.3 45 23.3 45 23.3 45 1.0 0.7 -40.2 357 0 23.4 45 23.4 45 23.4 45 23.0 0.7 0.5 -52.2 356 3 23.5 46 23.4 46 23.5 46 1.4 0.4 0.4 -64.6 355 4 23.6 46 23.5 46 23.6 46 0.6 0.1 0.2 -74.7 355 6 23.7 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.8 46 23.7 46 -0.8 -0.4 -0.1 -80.1 358 9 24.0 47 24.0 47 23.7 45 -2.0 -0.6 -0.2 -75.6 360 10 24.1 47 24.1 47 23.7 46 -3.0 -0.7 -0.1 -67.1 1805 49 1 11 24.2 47 24.2 47 23.7 46 -3.6 -0.8 -0.4 -0.1 -55.2 2 12 24.2 47 24.2 47 23.7 46 -3.6 -0.4 -0.2 -42.8	-1450
1805 48 350 -1 23.3 45 23.3 45 23.2 45 3.4 1.2 0.7 -31.4 1805 48 350 -1 23.3 45 23.3 45 23.3 45 3.0 1.0 0.7 -40.2 357 0 23.4 45 23.4 45 23.4 45 2.3 0.7 0.5 -52.2 356 3 23.5 46 23.4 46 23.5 46 1.4 0.4 0.4 -64.6 355 4 23.6 46 23.5 46 23.6 46 0.6 0.1 0.2 -74.7 355 6 23.7 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.8 46 23.7 46 -0.8 -0.4 -0.1 -80.1 358 9 24.0 47 24.0 47 23.7 46 -2.0 -0.6 -0.2 -75.6 360 10 24.1 47 24.1 47 23.7 46 -3.0 -0.7 -0.1 -67.1	-1566
357	-1835
356 3 23.5 46 23.4 46 23.5 46 0.4 0.4 0.4 -64.6 355 4 23.6 46 23.6 46 0.6 0.1 0.2 -74.7 355 6 23.7 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.8 46 23.7 46 -0.8 -0.4 -0.1 -80.1 358 9 24.0 47 24.0 47 23.7 46 -2.0 -0.6 -0.2 -75.6 360 10 24.1 47 24.1 47 23.7 46 -3.0 -0.7 -0.1 -67.1 1805 49 1 11 24.2 47 24.2 47 23.8 46 -3.6 -0.8 -0.4 -0.2 -42.8	-2413
355	-3133
355 6 23.7 46 23.6 46 23.6 46 0.0 -0.2 -0.0 -80.1 357 7 23.9 46 23.8 46 23.7 46 -0.8 -0.4 -0.1 -80.1 358 9 24.0 47 24.0 47 23.7 45 -2.0 -0.6 -0.2 -75.6 360 10 24.1 47 24.1 47 23.7 46 -3.0 -0.7 -0.1 -67.1 1805 49 1 11 24.2 47 24.2 47 23.8 46 -3.6 -0.8 -0.1 -55.2 2 12 24.2 47 24.2 47 23.7 46 -3.6 -0.4 -0.2 -42.8	-3877
357 7 23.9 46 23.8 46 23.7 46 -0.8 -0.4 -0.1 -80.1 358 9 24.0 47 24.0 47 23.7 46 -2.0 -0.6 -0.2 -75.6 360 10 24.1 47 24.1 47 23.7 46 -3.0 -0.7 -0.1 -67.1 1805 49 1 11 24.2 47 24.2 47 23.8 46 -3.6 -0.8 -0.1 -55.2 2 12 24.2 47 24.2 47 23.7 46 -3.6 -0.4 -0.2 -42.8	-4480
358 9 24.0 47 24.0 47 23.7 45 -2.0 -0.6 -0.2 -75.6 360 10 24.1 47 24.1 47 23.7 46 -3.0 -0.7 -0.1 -67.1 1805 49 1 11 24.2 47 24.2 47 23.8 46 -3.6 -0.8 -0.1 -55.2 2 12 24.2 47 24.2 47 23.7 46 -3.6 -0.4 -0.2 -42.8	-4806 -4802
1805 49 1 11 24.2 47 24.1 47 23.7 46 -3.0 -0.7 -0.1 -67.1 24.2 47 24.2 47 23.8 46 -3.6 -0.8 -0.1 -55.2 24.2 47 24.2 47 23.7 46 -3.6 -0.4 -0.2 -42.8	-4535
2 12 24.2 47 24.2 47 23.7 46 -3.6 -0.4 -0.2 -42.8	-4024
2 12 24.2 47 24.2 47 23.7 46 -3.6 -0.4 -0.2 -42.8	-3311
£ 44 04 0 47 104 0 47 00 4 45 0 0 0 4 6 6 64 6	-2567
	-1905
5 15 23.6 46 23.5 46 22.9 44 -3.7 1.7 -0.4 -23.8	-1425
6 15 22.9 45 22.8 44 22.1 43 -3.8 3.0 -0.5 -19.0	-1137
G 16 22.2 43 22.1 43 21.4 42 -3.9 4.1 -0.5 -16.6 7 16 21.5 42 21.4 42 20.7 40 -4.0 5.0 -0.6 -16.5	-993
7 16 21.5 42 21.4 42 20.7 40 -4.0 5.0 -0.6 -16.5 7 16 20.8 40 20.7 40 20.1 39 -3.7 5.4 -0.4 -18.2	-993 -1089
1805 50 7 14 20.2 39 20.1 39 19.6 38 -3.2 5.8 -0.1 -20.6	-1233
7 13 20.0 39 19.9 39 19.5 33 -2.6 5.4 0.4 -23.3	-1398
7 11 20.1 39 20.0 39 19.7 38 -2.0 4.6 0.3 -26.1	-1566
7 9 20.5 40 20.4 40 20.3 39 -1.5 3.4 1.0 -28.3	-1700
6 7 21.2 41 21.1 41 21.0 41 -1.0 2.4 1.2 -29.7	-1778
7 6 22.1 43 21.9 43 22.0 43 -0.0 1.3 1.1 -29.7	-1779
7 4 23.0 45 22.9 44 23.0 45 1.2 0.0 1.0 -28.4 8 3 24.0 47 23.0 46 23.9 46 2.4 -1.6 0.9 -26.6	-1703
8 3 24.0 47 23.0 46 23.9 46 2.4 -1.6 0.9 -26.6	- 1593

1805:51 to 1805:57 CDT

CDT	rtd.	dia	Total	Wind	Vertical	Vrind	Horizont	cl Wind	ê	<u>.</u>	ξ – ψ	ALTF	RATE
h m s	deg	deg	m/s	kts	m/s	kts	m/s	kts	d99/10C	deg/sec	019/500	fps	fpm
1805 51	8 9 9 10 10 10	3 2 2 2 2 1 1	24.8 25.5 26.1 26.4 26.7 26.7 26.7 26.7	48 50 51 51 52 52 52 51	24.6 25.3 25.8 26.1 26.3 26.4 26.3	48 49 50 51 51 51 51	24.8 25.5 26.0 26.4 26.7 26.7 26.7	48 50 51 51 52 52 52 51	3.2 3.4 3.6 3.8 4.0 3.8 3.2	-3.2 -5.1 -7.2 -8.6 -9.4 -9.4 -9.4	0.9 1.0 0.9 0.8 0.7 0.6 0.5	-24.5 -22.6 -20.7 -19.9 -16.7 -14.6 -12.5 -10.6	-1470 -1353 -1244 -1130 -1004 -873 -750 -633
1805 52	10 9 9 9 9 9	1 1 1 2 2 2	26.2 25.8 25.3 24.8 24.3 23.9 23.6 23.3	51 50 49 48 47 46 46	25.3 25.5 25.0 24.5 24.0 23.6 23.3 23.0	50 49 49 48 47 46 45 45	26.2 25.8 25.3 24.8 24.3 23.9 23.6 23.3	51 50 49 48 47 46 46 45	0.8 -0.5 -1.8 -2.8 -3.4 -3.4 -3.6	-6.0 -3.1 -0.6 1.1 2.8 3.6 3.8 3.2	-2.6 -2.4 -1.0 0.7 1.7 0.9 -2.0	-8.9 -7.3 -5.7 -4.4 -3.3 -2.2 -1.3	-530 -434 -342 -263 -194 -129 -74 -23
1805 53 Pu 2	9 9 9 9 9 10	1 0 0 0 0 -1 -2 -2	23.0 22.6 21.9 21.1 20.1 19.0 18.0	45 44 43 41 39 37 35 33	22.8 22.3 21.7 20.8 19.8 18.7 17.7	44 42 40 39 36 34 33	23.0 22.6 21.9 21.1 20.1 19.0 18.0	45 44 42 41 39 37 35 33	-2.6 -2.0 -1.4 -1.0 -0.6 -0.2 0.2	2.4 1.6 0.8 0.1 -0.4 -0.6 -0.8	-1.0 -0.1 -1.0 -0.3 0.3 -2.1 -3.0	0.4 1.1 1.9 2.5 2.6 2.6 2.4 2.2	24 69 113 147 158 154 144
1805 54	11 11 11 11 11 11 10	-3 -4 -4 -4 -4 -4	16.5 16.3 16.3 16.5 16.9 17.4 17.9	32 32 32 32 33 34 35 36	16.2 15.9 15.9 16.2 16.6 17.1 17.6	32 31 31 31 32 33 34 35	16.5 16.2 16.2 16.4 16.8 17.3 17.8	32 31 31 32 33 34 35	1.0 1.0 1.0 0.9 0.8 0.6 0.2	-0.8 -0.8 -0.7 -0.6 -0.4 -0.2	0.5 0.4 1.5 1.5 -0.6 -1.2 -0.2 0.8	1.8 1.0 -0.2 -1.8 -3.5 -5.0 -6.4 -7.7	106 62 -13 -109 -208 -301 -383 -462
1805 55 PL	9 9 10 10 10 10	-4 -3 -2 -1 1 3 5 7	18.7 19.0 19.3 19.5 19.7 19.8 19.8 20.0	36 37 37 38 38 39 39	18.4 18.7 19.0 19.3 19.4 19.5 19.5	36 36 37 37 38 38 38	18.6 18.9 19.2 19.5 19.7 19.8 19.8	36 37 37 38 38 38 38	-0.6 -0.9 -1.2 -1.4 0.8 5.5 4.0	0.0 0.0 0.2 1.2 1.0 0.0	0.4 0.8 0.8 0.8 0.7 0.6	-8.9 -9.7 -9.8 -9.5 -9.1 -8.6 -7.8 -6.6	-534 -578 -585 -572 -549 -517 -465 -393
1805 56	11 12 13 14 15 17 19 21	8 8 7 5 3	20.0 19.8 19.5 19.1 18.8 18.6 18.3	39 38 38 37 37 36 36 35	19.6 19.4 19.1 18.6 18.2 17.8 17.3	38 38 37 36 35 35 34 33	19.8 19.6 19.3 19.0 18.8 18.6 18.3	38 38 38 37 36 36 36 35	0.0 -4.0 -4.0 0.0 -4.0 -4.0 0.0	2.0 4.0 6.0 0.0 -8.0 -5.0 -8.0	-1.2 0.6 4.1 4.1 0.3 -1.1 1.7 3.8	-5.1 -3.6 -2.0 -0.4 1.0 2.2 3.0 3.6	-308 -215 -119 -23 -62 130 152 216
1805 57	22 25 28 30 33 35 38 40	- 3 - 5 - 6 - 8 - 9 - 9 - 1	18.0 17.9 18.1 18.5 18.9 19.6 20.4 21.3	35 35 35 36 37 38 40 41	16.7 16.4 16.1 16.1 16.0 16.2 15.3 16.6	32 32 31 31 31 31 32 32	17.9 17.9 13.0 18.3 18.7 19.3 20.1 21.0	35 35 35 36 36 37 29 41	0.0 0.0 0.0 0.0 0.0 0.0 0.0	-16.0 -16.0 -16.0 -16.0 -16.0 -16.0 -12.0 -4.0	3.6 1.8 2.6 4.8 6.3 5.7 5.2	4.1 4.8 5.6 6.5 7.4 8.5 9.9	247 283 335 337 442 511 593 665

APPENDIX 8 DISTURBED PRESSURE

Shown in this table are altitude fine (ALTF), true altitude (TA), pressure at true altitude (P_{TA}), inertial height (z), pressure at inertial altitude (P_z), kinetic energy of environmental wind in mb, static air temperature (T), and virtual temperature (T_V).

1804:56 to 1805:01 CDT

CDT	ALTF	TA	P.,	2	Р,		TA -z	P P.	÷PTW2		
h m s	11	11	mb	ft	mb		ft	mb	wp	°c	•к
1804 56	1577.0	1725 8	954.33	1725.5	954.36		0.3	-0.03	9.16	37.3	313.1
	1575.0	1723.5	954.40	1723.2	954.43		0.3	-0.03	0.15	37.3	317.1
	1572.0	1721.3	954.47	1721.0	954.50		0.3	-0.03	0.15	37.3	5 (3.1
	1571.0	1719.4	954.54	1718.8	954.57		0.6	-0.03	0.15	37.3	313.1
	1569.0	1717.2	954.61	1716.6	954.64		0.6	-0.02	0.15	37.3	313.1
	1567.0	1715.0	954.68	1714.4	954.71		0.6	-0.03	0.15	37.3	313.1
	1565.0	1712.7	954.75	1712.1	954.78		0.6	-0.03	0.15	37.3	313.
	1563.0	1710.5	954 82	1709.9	954.85		0.6	-0.03	0.15	37.3	313. :
1804 57	1561.0	1708.6	954.88	1707.7	954.93		0.9	-0.05	0.15	37.3	313.1
	1559.0	170G.4	954.95	1705 5	954.99		0.9	-0.04	ს. 15	37.3	313.1
	1557.0	1704.1	955 02	1703.3	955.06		0.8	-0.04	0.15	37.4	313.1
	1555.0	1701.9	955.09	1701.1	955.13		0.8	-0.04	0.15	37.4	313.1
	1553.0	1699.7	955.16	1698.9	955.20		0.8,	-0.04	0.15	37.4	313.1
	1551.0	1697.8	955.23	1696.8	955.26		1.0	-0.03	0.15	37.4	313.1
	1549.0	1695.5	955.30	1694.6	955.34		0.9	-0.01	0.	37.4	313.1
•	1547.0	1693.3	955.37	1692.4	955.41		0.9	0.04	0.14	37 4	313.1
1804 58	1545.0	1691,1	955.44	1690.2	955.48		0.9	-0.04	0.14	37.4	313.1
	1543.0	1688.9	955.51	1688.0	955.54		0.9	-0.03	0.13	37.4	313.1
	1541.0	1686.7	955.58	1685.9	955.61		0.8	-0.03	0.13	37.4	313 2
	1539.0	1684.7	955.65	1683.7	955.69		1.0	-0.04	0.12	37.4	313.2
	1537.0	1682.5	955.72	1681.5	955.75		1.0	-0.03	0.12	37.4	313.2
	1535.Q	1680.3	955.79	1679.4	955.82		0.9	-0.03	0.11	37.4	313.2
	1533.C	1678.1	955.85	1677.2	955.89		0.9	-0.04	0.11	.37.4	313.2
•	1531.0	1675.8	955.92	1675.1	955.95		0.7	-0.03	0.10	37.4	313.2
1804 59	1529.2	1673.9	955.99	1672.9	956.03	•	1.0	-0.04	0.10	37.4	313.2
	1527.5	1672.0	95ē O5	1670.8	956.09		1.2	-0.04	0.09	37.4	313.2
	1525.8	1670.4	956.11	1668.7	156.16		1.7	-0.05	0.09	37.4	313.2
	1524.0	1668.2	956.17	1666.6	36.23		1.6	-0.06	0.09	37.5	13.2
	1522.2	1666.3	956.23	1664.5	956,29		1.8	-0.06	0.09	37.5	313.2
	1520.5	1664.4	956.29	1662.3	956.36		2.1	-0.07	0.08	37.5	313.2
	1518.8	1662.5	956.35	1660.2	956.43		2.3	-0.08	0.08	37.5	313.2
	1517.0	1660.6	956.41	1658.1	955.50		2.5	-0.09	0.08	37.5	313.2
1805 00	1515.0	1658.7	956.48	1655.9	956.56		2.8	-0:03	3.08	27.5	313.2
	1513.0	1656.4	956.55	1653.8	956.63		2.6	-0.08	9.08	37.5	313.3
	1511.0	1654.2	956.62	1651.6	956.70		2.6	-0.03		37.5	313.3
	1509.0	1652.0		1649.5	956.76		2.5	-0.07	0.00	37.5	313.3
	1506.8	1649.4	956.77	1647.3	S56.84		2.1	-0.07	0.03	37.5	313.3
•	1504.5	1647.2	956.85	1645.1	956.91		2.1	-0.06	0.08	37.5	313.3
	1502.2	1644.3	956.93	1642.9	956.98		1.4	0.05	0.08	37.5	313.3
	1500.0	1642.1	957.01	1540.7	957.04		1.4	-0.03	0.08	37.5	313.3
1805 01	1498.0	1633.9	957.08	1638.5	957.12		1.4	-0.04	0.08	37.5	313.3
	1496.0	1637.6	957.15	1636.3	957 19		1.3	-0.04	0.08	37.5	313.3
	1494.2	1635.7	957.21	1634.1	957.26		1.6	-0.05	0.03	37.5	313.3
	1492.5	1633.8	957.27	1631.8	957.33		2.0	-0.06	0.08	37.5	313.3
	1490.8	1631.9	957.33	1.29 6	957,40		2.3	-0.06	0.03		. 313.3
	1489.0	1630.0	957.39	1627.4	957.47		2.6	-0.08	0.03	J7.6	313.3
	1487.0	1627.8	957.46	1625.1	957.54		2.7	-0.08	0.07	37.6	313.3
	1485.0	1625.6	957.53	1622.9	957.61		2.7	-0.03	0.07	37.6	313.3

1805:02 to 1805:08 CDT

CDT	ALTF	TA	Pra		P _z	TA -2	P P.	FTW	<u> </u>	T⊌
h m s	ft	ft	mb	fi	ოხ	f:	mb	mb	<u>*c</u>	<u>°к</u>
1805 02	1483.0	1623.4	957.60	1620.7	957.69	2.7	-0.09	0.07	37.6	313.4
	1481.0	1621.5	957.67	1618.4	957.76	3.1	-0.09	0.07	37.6	313.4
	1479.0	1619.2	957.74	1616.2	957.32	3.0	-0.08	0.07	37.6	313.4
	1477.0	1617.0	957.81	1614.0	957.69	3.0	-0.08	0.07	37.6	313.4
	1475.0	1614.3	957.68	1611.8	957.97	3.0	-0.09	0.07	37.6	313.4
	1473.0	1612.5	957.95	1603.7	958.04	2.8	-0.09	0.07	37.6	313.4
					958.10	2.8	-0.08	0.07	37.6	313.4
	1471.0	1610.3	953.02	1607.5						
	1469.0	1608.1	958.09	1605.3	958.17	2.8	-0,08	0.07	37.6	313.4
1805 03	1467.0	1605.8	958.17	1603.2	958.24	2.6	-0.07	0.07	37.6	313.4
	1465.0	1603.6	958.23	1601.0	958.30	2.6	-0.07	0.06	37.6	313.4
	1463.Q	1601.7	958.30	1598.9	958.38	2.8	-0.03	0.06	37.G	313.4
	1461.0	1599.4	958.37	1596.7	958.45	2.7	-0.03	0.06	37.6	313.4
	1459.0	1597.2	958.45	1594.G	958.51	2.6	-0.0G	0.05	37.6	313.4
	1457.0	1595.0	958.52	1592.5	958.58	2.5	-0.06	0.05	37.6	313.4
	1455.3	1592.7	958.58	1590.5	958.64	2.2	-0.0G	0.05	37.7	313.4
	1453.0	1590.5	958.65	1588.4	958.70	2.1	-0.05	0.04	37.7	313.4
1805 04	1451.0	1588.6	958.72	1586.4	958.78	2.2	-0.0G	0.04	37.7	313.4
	1449.0	1586.0	958.80	1584.4	958.84	1.6	-0.04	0.04	37.7	313.4
	1447.0	1584.1	958.87	1582.4	958.90	1.7	-0.03	0.04	37.7	313.4
	1445.0	1581.9	958.93	1580.4	958.96	1.5	-0.03	0.04	37.7	313.4
	1443.2	1579.7		1578.4	959.03		-0.03	0.04	37.7	313.4
			959.00			1.3				
	1441.5	1578.1	959.06	1576.5	959.09	1.6	-0.03	0.04	37.7	313.4
	1439.8	1576.1	959.12	1574.5	959.15	1.6	-0.03	0.04	37.7	313.4
	1438.0	1574.2	959.18	1572.6	959.22	1.6	-0.04	0.04	37.7	313.4
1805 05	1436.2	1572.0	959.25	1570.7	959.28	1.3	-0.03	0.04	37.7	313.5
	1434.5	1570.4	959.30	1568.8	959.34	1.6	-0.03	0.04	37.7	313.5
	1433.2	1568.8	959.35	1567.0	959,40	1.8	-0.05	0.04	37.7	313.5
•	1432.0	1567.5	959.39	1565.1	959.46	2.4	-0 07	0.04	37.7	313.5
	1431.0	1566.5	959.42	1563.3	959.51	3.2	-0.09	0.04	37.7	313.5
	1430.0	1565.5	959.46	1561.5	959.57	4.0	-0.11	0.04	37.7	313.5
	1429.0									
		1564.3 1563.3	959.49	1559.7	959.63	4.6	-0.14	0.05	37.7 37.7	313.5
	1428.0	1565.3	959.52	1557.9	959.68	5.4	-0.16	0.05	37.7	313.5
1805 OG	1426.6	1562.0	959.57	1556.1	959.74	5.9	-0.17	0.06	37.7	313.5
	1425.0	1560.1	959.63	1554.3	959.80	5.8	-0.17	0.06	37.7	313.5
	1423.0	1558.2	959.69	1552.5	959.85	5.7	-0.16	0.06	37.7	313.5
•										
	1421.0	1555.9	959.76	1550.8	959.91	5.1	-0.15	0.06	37 7	313.5
	1419.0	1553.7	959.83	1549.1	959.97	4.6	-0.14	0.06	37 7	313.5
	1417.0	1551.7	959.90	1547.3	960.02	4.4	+0. G	0.06	37	313.5
	1415.0	1549.5	959.96	1545.6	960.08	3.9	-0.12	0.06	37.7	313.5
	1413.0	1547.2	960.03	1544.0	960.13	3.2	-0.10	0.07	37.7	313.5
1805 07	1411.2	1545.3	960.09	1542.3	960.17	3.0	-0.03	0.07	37.7	313,5
	1409.5	1543.7	960.15	1540.6	930.24	3.1	-0.09	0.07	37.7	313.5
	1408.0									
		1542.1	960.20	1539.0	960.28	3.1	-0.08	0.07	37.7	313.5
	1406.5	1540.5	960.25	1537.3	900.33	3.2	-0.08	0.07	37.7	313.5
	1405.0	1538.9	960.30	1535.6	960.39	3.3	-0.08	0.08	37.7	313.5
	1403.5	1537.3	96O.35	1534.0	950.44	3.3	-0.09	0.08	37.7	313.5
	1402.0	1535.6	960.40	1532.3	960.49	3.3	-0.09	0.08	37.7	313.5
	1400.5	1534.0	960.45	1530.G	960,55	3.4	-0.10	0.03	37.7	313.4
1805 08	1399.0	1532.4	960.50	1529.0	960.60	3.4	-0.10	C.08	37.7	313.4
	1397.5	1530.8	960.55	1527.3	960.66	3.5				
							-0.11	30.0	37.7	313.4
	1395.8	1529.1	960.61	1525.6	960.71	3.5	-0.10	0.08	37.7	313.4
	1394.0	1526.9	960.67	1524.0	960.76	2.9	-0.€9	0.07	37.7	313.4
	1392.2	1525.3	960.74	1522.3	960.82	3.0	-0.C3	0.07	37.7	313.4
	1390.5	1523.3	560.80	1520.G	960.87	2.7	-0.07	0.07	37.7	313.4
	1388.8	1521.4	960.85	1518.9	960.03	2.5	-0.63	0.03	37.7	313.4
	1387.0	1519.4	960.92	1517.2	960.98	2.2	-0.CG	0.08	37.6	313.4
	1307.0									

1805:09 to 1805:15 CDT

							1005.	05 60 1	.005.15	uD.
CDT	ALTF	T A	P _{TA}	2	Ρ,	TA -7	P, -P,	₹PTW*	Ť	T√
h m s	ft t	ft	mb	fi	mb	ft	wp.	mb	°C	*ĸ
1805 09	1385.4 1384.0 1382.8 1381.5 1380.2 1379.0 1377.8 1376.5	1517.5 1516.2 1514.9 1513.2 1511.9 1510.6 1503.6	960.97 961.02 961.06 961.10 961.15 961.19 961.22	1515.5 1513.8 1512.1 1510.4 1508.7 1507.0 1505.3 1503.6	961.04 961.09 961.15 961.20 961.25 961.31 961.35	2.0 2.8 2.8 2.8 3.2 3.6 4.3	-0.07 -0.07 -0.09 -0.10 -0.10 -0.12 -0.13	0.08 0.08 0.09 0.09 0.10 0.11 0.11	37.6 37.6 37.6 37.6 37.6 37.6 37.6	313.4 313.4 313.4 313.4 313.4 313.4 313.4
1805 10	1375.0 1373.5 1372.0 1370.5 1369.0 1367.5 1366.0 1364.5	1506.4 1503.0 1503.4 1501.7 1500.1 1498.4 1496.8 1495.1	961.32 961.37 961.42 961.47 961.52 961.57 961.62	1501.9 1500.3 1498.6 1496.9 1495.3 1493.7 1492.0 1490.4	961.46 961.53 961.57 961.62 961.68 961.73 961.78	4.5 4.7 4.8 4.8 4.8 4.7	-0.14 -0.16 -0.15 -0.15 -0.16 -0.16	0.12 0.13 0.13 0.14 0.15 0.15 0.16	37.6 37.6 37.6 37.6 37.5 37.5 37.5	313.4 313.3 313.3 313.3 313.3 313.3 313.3
1805 11	1363.0 1361.5 1360.2 1359.0 1357.8 1356.5 1355.0	1493.4 1491.7 1490.4 1489.0 1487.6 1486.3 1484.6 1482.9	961.72 961.77 961.81 961.85 961.89 961.94 961.99 962.04	1488.8 1487.1 1485.5 1483.9 1482.2 1480.6 1479.0 1477.3	961.89 961.94 961.99 962.04 962.10 962.15 962.19	4.6 4.9 5.1 5.4 5.7 5.6 5.6	-0.17 -0.17 -0.18 -0.19 -0.21 -0.21 -0.20	0.17 0.18 0.19 0.19 0.19 0.19 0.18 0.17	37.5 37.4 37.4 37.4 37.3 37.3	313.2 313.2 313.2 313.1 313.1 313.1 313.1 313.0
1805 12	1352.4 1351.5 1351.0 1350.5 1349.8 1349.0 1348.2 1347.5	1481.8 1480.8 1430.0 1479.6 1478.8 1477.7 1476.6 1475.8	962.07 962.10 962.12 962.14 962.16 962.18 962.21	1475.7 1474.0 1472.3 1470.6 1468.8 1466.9 1465.0 1463.0	962.30 962.35 962.41 962.46 962.52 962.58 962.65 962.71	6.1 5.8 7.7 9.0 10.0 10.8 11.6	-0.23 -0.25 -0.29 -0.32 -0.36 -0.40 -0.44	0.16 0.15 0.14 0.13 0.12 0.12 0.12	37.2 37.2 37.2 37.1 37.1 37.0 37.0	313.0 313.0 212.9 312.9 312.8 312.8 312.7 312.7
1805 13	1246.1 1344.0 1341.2 1338.5 1335.8 1333.0 1330.0 1327.0	1473.7 1471.3 1468.0 1464.6 1461.3 1457.9 1454.2	962.30 962.37 962.47 962.57 962.67 962.78 962.89 963.01	1460.9 1458.6 1456.3 1454.0 1451.5 1449.1 1446.6	962.78 962.85 967.93 965.00 963.07 965.16 963.23 963.32	12.8 12.7 11.7 10.6 9.8 8.8 7.6 6.5	-0.48 -0.46 -0.43 -0.40 -0.38 -0.34	0.12 0.12 0.11 0.11 0.11 0.11 0.11	36.9 36.8 36.8 36.7 36.6 36.6 36.6	312.6 312.6 312.6 312.5 312.4 312.4 312.3
1805 14	1324.4 1322.0 1315.8 1317.5 1315.2 1313.0 1310.8 1308.5	1447.2 1444.1 1441.4 1438.3 1435.6 1432.9 1430.2 1427.5	963.10 963.19 963.28 963.37 963.45 963.54 963.62 963.70	1441.6 1439.1 1436.6 1434.2 1431.9 1429.7 1427.5	963.39 963.47 963.55 963.63 963.71 963.78 963.84 963.91	5.6 5.0 4.8 4.1 3.7 3.2 2.7	-0.29 -0.28 -0.27 -0.26 -0.26 -0.24 -0.22	0.12 0.13 0.14 0.15 0.16 0.16 0.16	36.5 36.4 36.3 36.3 06.2 36.2 36.1	312.2 312.2 312.1 312.0 312.0 311.9 311.9 311.8
1805 15	1306.6 1305.0 1304.0 1303.0 1301.8 1300.5 1299.2 1298.0	1425.0 1423.3 1421.8 1420.3 1419.2 1417.4 1415.9	963.77 963.83 963.87 963.90 963.94 963.98 964.03	1423.4 1421.4 1419.5 1417.7 1415.8 1414.1 1412.3	963.97 964.04 964.10 564.16 964.22 964.27 964.33	1.6 1.9 2.3 2.6 3.4 3.3 3.6 3.9	-0.20 -0.21 -0.23 -0.26 -0.28 -0.29 -0.30 -0.30	0.15 0.15 0.16 0.16 0.17 0.18 0.19	36.0 35.9 35.9 35.8 35.7 35.7 35.6 35.5	311.8 311.7 311.6 311.6 311.5 311.4 311.4

1805:16 to 1805:22 CDT

CDT	ALTF	TA	Р,		Ρ,	TA -z	P, -P,	∳PTW [®]	т	T↓
h m s	ft	fi	mb	11	mb	11	mt	mb	•c	•K
		·								
1805 16	1297,2	1413.6	964.09	1408.9	964.44	4.7	-0.35	0.20	35.4	311.2
	1296.5	1412.4	964.12	1407.2	964.49	5.2	-0.37	0.21	35.4	311,1
	1296.2	1411.9	964.13	1405.5	964.55	6.4	-0.42	0.24	35.3	311.0
	1296.0	1411.3	964.14	1403.9	964.60	7.4	-0.45	0.29	35.2	311.0
	1295.8	1410.8	964 15	1402.2	964.66	8.6	-0.51	0.36	35,1	310.9
	1295.5	1410.3	964.16	1400.5	964.71	9.8	-0.55	0.43	35.0	310.8
	1295.0	1409.4	964.18	1398.7	964.77	10.7	-0.59	0.51	34.9	310.7
	1294.5	1408.5	964.20	1396.8	964.83	11.7	-0.63	0.56	34.9	310.6
1805 17	1293.4	1406.9	964.24	1394.8	964.89	. 12.1	-0.65	0.60	34.8	310.5
	1292.0	1405.0	964.30	1392.6	964.96	12.4	-0.66	0.64	34.G	310.4
	1289.3	1401.5	964.40	1390.2	965.04	11.3	-0.64	0.66	34.5	310.3
	1286.0	1397.4	964.52	1387.7	965.12	9.7	-0.60	0.68	34.4	310.2
	1282.2	1392.7	964.67	1385.1	965.20	7.6	-0.53	0.70	34.3	310,1
	1278.5	1388.0	964.81	1382.4	965.28	5.6	-0.47	0.73	34.2	310.0
	1274.8	1383.3	964.95	1379.7	965.37	3.6	-0.42	0.76	34.1	309.9
	1271.0	1378.3	965.10	1377.0	965.46	1.3	-0.36	0.80	34.1	309.8
1805 18	1267.2	1373.4	965.26	1374.3	965.55	-0.9	-0.29	0.83	34.0	309.8
	1263.5	1368.8	965.41	1371.7	965.62	-2.9	-0.21	0.86	33.9	309.7
	1260.8	1365.2	965.52	1369.2	965.71	-4.0	-0.19 -0.17	0.89 0.91	33.3	309.7
	1258.5 1256.8	1362.2 1359.6	965.61 965.69	1366.8 1364.6	965.78 965.86	-4.6 -5.0	-0.17	0.92	33,9 33,8	309.G 309. 6
	1255.0	1357.3	965.77	1362.4	365.93	-5.1	-0.16	0.93	33.6	309.6
	1253.0	1055.0	965.84	1360.4	965.99	-5.4	-0.15	0.94	33.8	309.5
	1251.5	1352.7	965.91	1358.4	966.05	-5.7	-0.14	0.94	33.8	309.5
1805 19	1250.2	1351.4	965.95	1356.6	966.11	-5.2	-0.16	0.93	33.8	309.5
	1249.0	1349.8	966.00	1354.9	966.17	-5,1	-0.17	0.91	33.7	309.5
	1248.0	1348.8	966.04	1353.2	966.22	-4.4	-0.18	0.88	33.7	309.5
	1247.0	1347.5	966.07	1351.6	966.27	-4.1	-0.20	0.85	33,7	303.5
	1245.8	1346.3	966.11	1350.0	966.33	-3.7	-0.22	0.81	33.7	309.5
•	1244.5	1344.6	S66.17	1348.4	966.38	-3.8	-0.21	0.77	33.7	309.5
	1243,2	1343.0	966.22	1346.8	966.43	-3.2	-0.21	0.73	33.7	309.5
	1242.0	1341.4	966.27	1345.3	966.48	-3.9	-0.21	0.70	33.7	309.4
1805 20	1240.3	1339.2	966.34	1343.7	966.53	-4.5	-0.19	0.68	33.7	309.4
	12:3.0	1336.7	966.42	1342.1	966.58	-5.4	-0.16	0.66	33.7	309.4
	1235.0	1333.2	906.54	1340.6	966.63	-7.4	-0.09	0.65	33.7	309.4
	1237.0	1329.7	966.65	1339.0	966.67	-9.3	-0.02	0.63	33,7	309.4
	1223.0	1325.8	966.77	1337.5	966.72	-11.7	0.05	0.62	33.7	309.4
	1226.0	1322.3	966.89	1335.9	966.77	-13.6	0.12	0.60	33.7	309.4
	1223.0	1318.5	967.01	1334.4	966.82	-15.9	0.19	0.59	33.G	309.4
	1220.0	1315.0	967.12	1332.9	966.67	-17.9	0.25	0.57	33.6	309.4
1805 21	1218.1	1312.7	967.19	1331.4	966.92	-18.7	0.27	0.56	33.6	309.4
	1217.0	1311.1	967.25	1330.0	966.97	-18.9	0.28	0.55	33.G	309.4
	1217.0	1310.8	967.25	1328.6	967.02	-17.8	0.23	0.54	33.G	309.4
	1217.0	1310.5	967.26	1327.3	967.05	-16.8	0.21	0.54	33.6	303.4
	1215.8	1310.1	967, 28	1326.0	967.09	-15.9	0 19	0.54	33.6	309.4
•	1216.5	1309.4	967.30	1324.8	967.13	-15.4	0.17	0.53	33.6	309.3
	1216.2 1216.0	1303.7 1303.4	967.32 967.33	1323.7 1322.7	967.16 967.20	-15.0 -14.3	0.16	0.52	33.6 33.5	309.3
1805 22	1215.8	1302.0	967.34	1321.7	967.24					
.003 22	1215.5	1303.0	967.34	1321.7	967.24	-13.7 -13.1	0.10	0.48 0.45	33.5 33.5	309.3 309.2
	1214.8	1306.6	967.38	1319.7	967.30	-13.1	0.09	0.45	33.5	309.2
	1214.0	1305.6	967.42	1318.7	967.32	-13.1	0.08	0.47	33.5	309.2
	1213.2	1304.5	967.45	1317.8	967.36	-13.3	0.09	0.52	33.4	309.2
	1212.5	1303.8	367.47	1316.8	967.33	-13.0	0.09	0.56	23.4	300.1
•	1211.8	1302.7	967.49	1316.0	967.42	-13.3	0.07	0.59	33.3	309.1
	1211.0	1301.7	967.52	1315.1	967.15	-13.4	0.07	0.62	33.3	309.0
-										

1805:23 to 1805:29 CDT

CDT	ALTF	TA	P _{TA}		Ρ,	TA -z	P F.	FPTW	T	Tv
h m s	ft	ft	mb	f1	mb	ft	tup.	mb	*c	*K
1805 23	1209.4	1300.0	967.58	1314.3	967.47	-14.3	0.11	O.€2	33.2	309.0
	1207.5	1297.6	967.65	1313.5	967.50	-15.9	0.15	O.GO	33.2	308.3
	1204.4	1294.0	967.76	1312.7	967.52	-18.7	0.24	0.56	33.1	308.9
	1201.0	1290.1	967.89	1311.9	967.54	-21.8	0.35	0.50	33.1	303.8
	1197.2	1285.9	968.02	1311.1	967.57	-25.2	0.45	0.45	33.0	308.8
	1193.5	1281.6	968.15	1310.4	967.59	-28.3	0.56	0.40	33.0	309.7
	1190.4	1278.3	968.26	1309.7	967.62	-31.4	0.64	0.36	32.9	308.7
	1187.5	1274.7	968.37	1309.1	367.64	-34.4	0.73	0.34	32.9	308.6
1805 24	1186.1	1273.4	968.41	1308.5	367.65	-35.2	0.76	0.32	32.8	308.G
-	1185.5	1272.7	968.44	1308.1	967.67	-35.4	0.77	0.32	32.8	308.G
	1186.0	1272.9	968.12	1307.7	967.68	-34.8	0.74	0.32	32.8	308.5
	1186.5	1273.5	968.40	1307.3	967.69	-33.8	0.71	0.33	32.7	303.5
	1187.2	1274.3	968.37	1306.9	967.70	-32.6	0.67	0.35	32.7	308.4
	1188.0	1274.9	968.35	1306.4	967.73	-31.5	0.62	0.37	32.7	308.4
	1188.8	1275.8	968.32	1305.9	967.74	-30.1	0.56	0.39	32.6	308.4
	1189.5	1276.4	968.30	1305.4	967.75	-29.0	0.55	0.43	32.6	308.4
1805 25	1189.1	1276.0	968.31	1304.7	967.78	-28.7	0.53	0.47	32.6	308.4
	1188.0	1274.7	968.35	1304.0	967.80	-29.3	0.55	0.51	32.6	308.4
	1186.0	1272.5	968.42	1303.2	967.83	-30.7	0.59	0.55	32.G	308.4
	1184.0	1270.6	968.49	1302.3	967.35	-31.7	0.64	0.58	32.6	308.4
	1182.0	1258.1	968.56	1301.3	967.39	-33.2	0.67	0.59	32.6	308.4
	1180.0	1266.2	968.63	1300.1	967.92	~33.9	0.71	0.59	32.6	308.4
	1177.8	1263.7	968.71	1298.9	967.96	-35.2	0.75	0.58	32.6	308.4
	1175.5	1260.9	968.80	1297.5	D68.01	-36.6	0.79	0.56	32.6	303.4
1805 26	1173.4	1258.3	968.88	1296.0	968.08	-37.7	0.32	0.55	32.G	308.4
	1171.5	1256.1	968.96	1294.4	968.11	-38.3	0.85	9.56	32.G	308.4
	1170.2	1254.6	969.01	1292.8	968.16	-38.2	0.85	0.59	32.6	303.4
	1169.0	1253.0	969.06	1291.0	968.22	-38.0	0.84	0.62	32.€	308.4
	11G7.8	1251.4	969.11	1289.2	968.28	-37.8	0.83	0.65	32.6	303.4
	1166.5	1249.9	969.17	1287.3	968.34	-37.4	0.83	33.0	32.6	308.4
	1165.0	1248.0	969.23	1285.4	968.40	-37.4	0.83	0.70	32.6	308.4
	1163.5	1246.1	969.29	1283.5	968.46	-37.4	0.83	0.73	32.6	308.4
1805 27	1161.6	1243.6	969.37	1281.5	963.52	-37.9	0.35	0.74	32.7	308.4
	1159.5	1241.0	969.45	1279.5	968.58	-38.5	0.87	0.75	32.6	308.4
	1157.0	1238.2	969.55	1277.5	968.65	-39.3	0.90	0.75	32.6	308.4
	1154.5	1235.0	969.65	1275.5	968.72	-40.5	€ 93	0.74	32.6	308.4
	1152.0	1231.8	969.75	1273.4	968.78	-41.6	0.97	0.72	32.G	308.4
	1149.5	1228.9	969.85	1271.4	968.85	-42.5	1.00	0.71	32.6	303.4
	1147.0	1225.8	969.94	1269.3	969.92	-43.5	1.02	0.69	32.6	308.4
	1144.5	1223.2	970.04	1267.1	968.99	-43.9	1.05	0.67	32.6	308.4
1805 28	1141.8	1220.0	970.14	1265.0	969.05	-45.0	1.09	0.64	32.6	308.4
	1139.0	1216.8	970.24	1262.8	969.12	-46.0	1.12	0.61	32.6	308.4
	1136.0	1213.3	970.35	1260.5	965.20	-47.2	1.15	0.60	32.6	303.3
	1133.0	1209.8	970.46	1258.3	969.27	-48.5	1.13	0.59	32.6	308.3
	1130.0	1206.3	970.58	1256.0	969.35	-49.7	1.23	0.58	32.5	308.3
	1127.0	1203.1	970.69	1253.7	969.42	-50.6	1.27	0.56	32.5	308.3
•	1124.0	1199.5	970.50	1251.4	969.49	-51.9	1.31	0.55	32.5	303.3
	1121.0	1196.0	970.91	1249.1	969.57	-53.1	. 134	0.55	32.5	308.2
1805 29	1118.2	1192.8	971.01	1246.8	969.64	-54.0	1.37	0.56	32.4	303.2
	1115.5	1189.8	971.11	1244.6	969.71	-54.8	1.40	0.56	32.4	309.1
	1113.0	1136.9	971.20	1242.3	969.79	55.4	1 41	0.57	32.3	308.1
	1110.5	1183.9	971.29	1240.2	969.65	-56.3	1.44	0.57	32.3	308.0
	1108.0	1151.3	971.38	1238.0	969.92	-56.7	1 46	0.58	32.2	308.0
	1105.5	1178.4	971.47	1235.9	970.00	-57.5 -58.4	1.47	0.58	32.2	307.9
	1103.0 1100.5	1175.4 1172.4	971.57 971.65	1233.8 1231.7	970.06	-58.4 -59.3	1.51	0.57	32.1	307.9
		1614.4	311.03	1231./	970.13	-59.3	1.52	0.54	32.1	307.8

.1805:30 to 1805:36 CDT

CDT	ALTF	T A	P.,	2	Ρ,	TA - 2	P _t - P _t	PTW.	Ť	Ţ,
h m s	ft	<u></u>	לרי	fi	mb	ft	mb	mb	*c.	•K
11 (11)										
	4000 0									
1805 30	1098.2	1169.8	971.74	1229.6	970.19	-59.8	1.55	0.52	32.0	307.8
	:096.0	1167.5	971.81	1227.5	970.23	-60.0	1.56	0.50	31.9	307.7
	1094.0	1165.1	971.88	1225.5	970.33	-60.4	1.55	0.50	31.9	307.6
	1092.0	1162.8	971.95	1223.5	970.39	-60.7	1.56	0.52	31.8	307.G
	1090.0	1160.5	972.02	1221.6	970.45	-G1.1	1.57	0.54	31.8	307.5
	1088.0	1158.4	972.09	1219.7	970.51	-61.3	1.58	0.57	31.7	307.5
	1086.0	1156.1	972.16	1217.8	970.57	-61.7	1.59	0.59	31.6	307.4
	1084.0	1153.8	972.23	1216.0	970.63	-G2.2	1.60	0.62	31.6	307.3
1805 31	1082.0	1151.8	972.30	1214.2	970.68	-62.4	1.62	0.64	31.5	307.3
1503 31	1080.0	1149.5	972.37	1212.5	370.74	-63.0	1.62	0.66	31.4	307.3
	1078.2	1147.4	972.44	1210.8	970.79	-63.4	1.65	0.67	31.4	307.1
	1076.5	1147.4	972.44	1209.1		-63.7				307.1
	1074.8	1143.4	972.55	1209.1	970.85	-64.1	64	0.68	31.3 31.3	307.1
	1073.0	1141.4	972.55		970.90		1.65	0.68		307.0
				1206.0	970.95	-64.6	1.66	0.68	31.2	
	1071.0	1139.4	972.68	1204.5	971.00	-65.1	1.68	0.68	31.2	306.9
	1069.0	1137.1	972.75	1203.1	971.04	-66.0	1.71	0.68	31.1	306.9
1805 32	1067.4	1135.5	972.81	1201.8	971.09	-56:3	1.72	0.69	31.1	306.8
	1066.0	1134.1	972.85	1200.5	971.13	-66.4	1.72	0.70	31.0	30G.B
	1065.0	1133.1	972.88	1199.3	971.16	-6G.2	1.72	0.71	31.0	306.8
	1064.0	1132.1	972.91	1198.2	971.20	-66.1	1.71	0.72	31.0	306.7
	1063.0	1130.8	972.95	1197.2	971.24	-66.4	1.71	0.74	30.9	306.7
	1062.0	1129.9	972.98	1196.2	971.27	-60.3	1.71	0.76	30.9	306.7
	1061.0	1128.9	973.01	1195.3	971.30	-66.4	1.71	0.79	30.9	305.7
	1060 0	1128.0	973.04	1194.G	971.32	-66.6	1.72	0.82	30.9	306.7
1805 33	1058.8	1127.1	973.07	1193.8	971.35	-66.7	1.72	0.84	31.0	206.7
1902 23	1057.5	1125.9	973.11	1193.3	971.35	-67.2	1.74	0.84	31.0	305.3
	1056.2	1124.7	973.15	1192.4	971.38	-67.7	1.77	0.83	31.0	306.3
	1055.0	1123.8	973.19	1191.7	971.41	-67.9	1.75	0.84	31.1	30G.8
	1054.4	1123.3	973.21	1191.0	971.43	-67.7	1.78	0.86	31.1	306.9
	1054.0	1123.4	973.21	1190.2	971.46	-66.3	1.75	0.86	31.2	306.9
	1054.2	1123.8	973.20	1189.2	971.49	-65.4	1.71	0.86	31.2	307.0
	1054.5	1124.6	973.18	1183.2	971.53	-63.6	1.65	0.88	31.3	307.0
			•					:		
1805 34	1055.0	1125.0	973.17	1187.0	971.37	-62.0	1,60	0.93	31.3	307.1
	1055.5	1125.7	973.14	1185.7	971.60	-60.0	1.54	1.01	31.4	307.1
	1056.8	1127.3	973.10	1184.4	971.65	-57.1	1,45	1.09	31.4	307.2
	1058.5	1129.3	973.03	1182.9	971.69	-53.6	1.34	1.17	31.5	307.2
	1061.8	1132.9	972.92	1161.4	971.74	-48.5	1.18	1.27	31.5	307.3
	1085.5	1137.1	972.79	1179.9	971,79	-42.8	1.00	1.34	31.6	307.3
	1070.8	1142.5	972.61	1178.2	971,85	-35.7	0.76	1.38	31.6	307.4
	1076.5	1148.9	972.40	1176.4	271.90	-27.5	0.50	1.40	31.7	307.4
1805 35	1084.5	1157.5	972.12	1174.6	971.96	-17.1	0.16	1.42	31.7	307.5
.000 00	1093.5	1167.1	571.81	1172.6	972.02	-5.5	-0.21	1.41	31.7	307.5
• .	1103 8	1178.2	971.45	1170.5	372.10	7.G	-0.65	1.34	31.8	307.5
	1114.0	1189.0	971.43	1168.8	972.16	20.4	-1.03	1.22	31.8	307.6
	1123.4	1199.1	970.77	1166.6	972.16	32.5	-1.45	1.08	31.8	307.6
	1132.5	1208.6	970.46	1164.6	972.22	44.0	-1.82	0.92	31.8	307.6
	1136.2	1214.7	970.46 970.26	1162.7	972.23	52.0				307.6
	1142.0	1214.7	970.13	1161.0	972.40	57.9	-2.03 -2.27	0.74 0.57	31.9 31.9	307.7
	2 . 0	12.10.4	3.0.13		J12.90	31.3	4.41	U.J.	31.3	307.7
1805 36	1141.7	1218.3	970.14	1159.4	972.45	58.9	-2.31	0.44	31.9	307.7
	1140.5	1217,1	970.19	1158.0	972.50	59.1	-2.31	0.33	32.0	307.7
	1134.8	1211.1	970.39	1156.7	972.54	54.4	-2,15	0.28	32.0	337.8
	1127.0	1202.6	970.66	1155.6	972.56	47.0	-1.92	0.41	32.0	307.8
	1115.4	1190.4	971.07	1154.7	372.60	35.7	-1.53	0.48	32.0	307.8
	1103.5	1177.4	971.49	1153.9	972.64	23.5	-1.15	0.56	32.0	307.8
	1090.8	1163.9	371.93	1153.1	972.65	10.8	-0.72	0.64	32.0	307.8
	1073.0	1150.3	372.53	1152.4	972.67	-2.1	-0.29	0.73	32.0	307.8

1805:37 to 1805:43 CDT

		 						1		
CUT	ALTF	TA	Pta		<u>P</u>	TA -z	Pr-Pr	IPTW*	<u>T</u>	Ty
h m s		ft	mb .	· ft	mb	ft	mb	mb	°c	•ĸ
1805 37	1064.3 1050.0 1035.8 1022.0 1011.4 1002.5	1135.4 1120.6 1105.4 1090.9 1079.8 1070.3	972.86 973.36 973.85 974.33 974.69 975.01	1151.8 1151.2 1150.6 1150.2 1149.8 1149.3	972.70 972.72 972.74 972.75 972.76 972.77	-16.4 -30.6 -45.2 -59.3 -70.0 -79.2	0.16 0.64 1.11 1.58 1.33	0.78 0.80 0.77 0.69 0.61 0.53	32.0 32.0 32.0 32.0 32.0	307.8 307.8 307.8 307.8 307.8
1805 38	998.3 995.5 995.2 995.0 995.0	1066.2 1063.6 1064.2 10c1.5 1065.1	975.14 975.22 975.21 975.19 975.17	1149.2 1149.0 1148.8 1148.6 1148.4 1148.2	972.78 972.78 972.80 972.80 972.81 972.81	-83.0 -85.4 -84.6 -84.1 -83.4 -82.3	2.35 2.44 2.41 2.39 2.36 2.33	0.45 0.33 0.33 0.31 0.33 0.36	32.0 32.0 31.9 31.9 31.8	307.7 307.7 307.7 307.7 307.6 307.6
1805 39	995.0 995.0 995.2 995.5	1066.5 1067.5 1068.2 1069.6	975.12 975.09 975.05 975.01	1148.0 1147.8 1147.7 1147.5	972.82 972.83 972.83 972.83	-81.5 -80.5 -79.5 -77.9	2.30 2.27 2.22 2.18	0.41 0.47 0.53 0.59	31.8 31.7 31.7 31.6	307.5 307.4 307.4 307.4
	995.5 995.0 994.5 993.8 993.0 991.8 990.5	1071.3 1071.8 1071.7 1071.8 1071.7 1071.0 1070.3	974.94 974.93 974.92 974.91 974.91 974.93 974.95	1147.3 1147.1 1146.6 1146.0 1145.1 1143.8 1142.3	972.85 972.85 972.87 972.88 972.02 972.96 973.01	-76.0 -75.3 -74.9 -74.2 -73.4 -72.8 -72.0	2.09 2.08 2.05 2.03 1.99 1.97	0.62 0.60 0.55 0.50 0.45 0.40	31.4 31.3 31.2 31.2 31.1 31.0	307.2 307.1 307.1 307.0 306.9 305.9 306.8
1805 40	988.3 935.5 932.2 979.0 976.0 973.0 969.8 966.5	1068.3 1055.7 1062.5 1059.3 1056.4 1053.2 1049.7 1046.2	975.02 975.10 975.20 975.30 975.40 975.51 975.62 975.73	1140.4 1138.1 1135.6 1132.8 1129.7 1126.4 1123.0 1119.3	973.07 973.14 973.22 973.31 973.41 973.51 973.63 973.75	-72.1 -72.4 -73.1 -73.5 -73.3 -73.2 -73.3	1.95 1.96 1.98 1.99 1.99 2.00 1.99	0.3' 0.38 0.41 0.45 0.51 0.61 0.74 0.90	31.0 30.9 30.9 30.8 30.8 30.8	306.7 206.7 306.6 306.6 306.6 306.6 306.5 306.5
1805 41	960.0 957.0 954.0 950.8 947.5 944.2 941.0	1042.7 1039.2 1036.0 1032.6 1029.4 1026.0 1022.5 1019.4	975.85 975.97 976.07 976.18 976.29 976.40 976.51 976.62	1115.5 1111.5 1107.2 1102.8 1098.2 1093.4 1088.4 1083.2	973.87 974.00 974.14 974.28 974.42 974.56 9/4.74 974.92	-72.8 -72.3 -71.2 -70.2 -68.8 -57.4 -65.9 -63.8	1.98 1.97 1.93 1.90 1.87 1.82 1.77	1.06 1.22 1.35 1.45 1.60 1.67 1.72	30.7 30.7 30.7 30.7 30.7 30.7 30.7	306.5 306.5 306.4 306.4 306.4 306.4 306.4 306.4
1805 42	936.9 932.0 925.8 919.5 912.4 905.0 897.0	1015.3 1010.6 1004.0 997.8 990.2 982.7 974.6 966.5	976.75 976.91 977.13 977.34 977.58 977.84 978.11 978.38	1077.8 1072.2 1066.4 1060.4 1054.2 1048.0 1041.7	975.09 975.27 975.46 975.66 975.85 976.05 976.26 976.46	-62.5 -61.6 -62.4 -62.6 -64.0 -65.3 -67.1	1.66 1.64 1.67 1.08 1.73 1.79 1.85	1.79 1.82 1.86 1.91 1.98 2.06 2.14 2.23	30.7 30.7 30.7 30.7 30.8 30.8 30.9	306.4 306.5 306.5 306.5 306.6 306.6 306.6
1805 43	881.0 873.0 866.7 861.5 858.4 855.5 653.6 852.0	958.6 950.8 944.6 939.9 937.1 934.6 933.4 932.5	978.64 978.90 979.11 979.27 979.36 979.45 979.49	1029.1 1022.8 1016.5 1010.1 1003.7 997.3 990.6 984.3	976.67 976.37 977.09 977.27 977.48 977.70 977.90 978.11	-70.5 -72.0 -71.9 -70.2 -66.6 -62.7 -57.4 -51.8	1.97 2.03 2.03 2.00 1.88 1.75 1.59	2.31 2.38 2.40 2.40 2.37 2.34 2.32 2.31	30.9 30.9 31.0 31.0 31.0 31.1	305.6 306.7 306.7 306.7 306.8 306.8 306.8

1805:44 to 1805:50 CDT

CDT	ALTF	T A	P _{tt}	2	Ρ,	TA -z	PP.	¥PTW*	Ţ	Tv
h m s	ft	fi	riò	ft	ra b	ft	mb	mb	*c	°K
1805 44	850.1	931.2	979.56	977.6	978.34	-46.4	1.22	2.30	31.1	306.9
	847.5	929.4	979.62	970.9	978.55	-41.5	1.07	2.31	31.1	306.9
	843.G	925.S	979.73	964.0	978.77	-38.1	0.36	2.35	31.1	306.9
	839.5	922.5	979.85	956.9	979.01	-34.4	0.84	2.41	31.1	305.9
	834.6	918.1	980.00	949.7	979.24	-31.G	0.76	2.48	31.1	306.9
	829.5	913.3	980.15	942.2	979.48	-28.9	0.67	2.57	31.1	306.9
	823.6	907.7	980.34	934.5	979.72	-26.8	0.62	2.67	31.1	306.9
	817.5	901.3	980.55	926.7	679.98	-25.4	0.57	2.79	31.1	306.9
1803 45	810.4	894.1	290.79	918.5	980.26	-24.4	0.53	2.91	31.1	306.9
	803.0	886.2	981.06	910.1	960.53	-23.9	0.53	3.05	31.1	306.8
	795.2	877.7	981.34	901.5	980.80	-23.8	0.54	3.18	31.1	306.8
	787.5	869.1	931.62	892.6	981.10	-23.5	0.52	3.30	31.0	306.8
	780.9	861.6	981.87	883.4	981.40	-21.8	0.47	3.41	31.0	306.8
	775.0	854.G	982.10	874.0	981.70	-19.4	0.40	3.51	31.0	305.7
	766.3	844.5	982.43	864.3	982.03	-19.8	0.41	3.60	30.9	306.7
	755.0	831.6	982.86	854.4	982.34	-22.8		3.65	30.9	306.7
	755.5	001.0	302.00	054.4	302.34		0.52	0.05	50.5	50
1805 46	741.9	81G.5	983.37	844.2	982.86	-27.7	0.71	3.68	30.9	306.7
	730.0	802.3	983.84	833.8	983.00	-31.5	0.84	3.69	30.9	306.6
	720.0	790.3	984.24	823.3	983.35	-33.0	0.89	3.68	30.9	306.G
	710.0	778.0	964.64	812.6	983.70	-34.6	0.94	3.65	30.8	306.G
	700.0	768.4	985.04	802.0	984.04	-35.€	1.00	3.62	30.8	306.6
	690.0	754.4	985.43	791.3	984.30	-36.9	1.04	3.57	30.P	306.6
	681.5	744.t	985.78	700.B	984.74	-36.7	1.04	3.50	30.8	305.6
	G74.0	734.9	986.09	770.3	985.08	-35.4	1.01	3.42	30.8	305.6
1805 47	668.4	727.7	986.33	760.0	985.41	-32.3	0.92	3.34	30.8	306.6
	663.0	720.8	986.56	749.9	985.75	-29.1	0.81	3.26	30.8	306.6
	658.6	715.1	986.75	739.9	986.07	-24.8	C.68	3.19	30.9	306.6
	654.5	709.8	986.93	730.2	986.39	-20.4	0.54	3.13	20.9	306.G
	G51.4	705.7	987.07	720.8	986.70	-15.1	0.37	3.08	30.9	306.7
	G48.5	701.7	987.20	711.6	987.00	-9.9	0.20	3.05	30.3	306.7
	646.4	698.9	987.30	702.8	987.28	-3.9	0.02	3.04	31.0	306.8
	644.5	69€.0	987.39	694.3	987.56	1.7	-0.17	3.04	31.0	306.8
1805 48	641.5	692.3	987.52	686.2	\$87.82	6.1	-0.30	3.05	31.1	306.8
	G37.5	687.3	987.68	678.6	988.07	8.7	-0.39	3.07	31.1	306.9
	629.9	679.1	987.96	671.4	988.31	7.7	-Q.35	3.10	31.2	306.8
	621.0	669.4	988.29	654.8	938.53	4.6	-0.24	3.13	31.2	307.0
	G08.5	655.8	988.74	658.5	988.73	-2.7	0.01	3.16	31.3	307.0
	595.0	641.4	989.23	652.8	\$83.92	-11.4	0.31	3.20	31.5	307.1
	582.8	629.5	989.66	647.3	989.09	-18.8	0.57	3.20	31.4	307.1
	572.5	618.1	830.02	642.3	989.27	-24.2	0.75	3.26	31.4	307.2
1805 49	566.3	612.1	990.21	637.5	999.42	-25.;	0.79	3.29	31.4	307.2
_	561.0	607.0	990.38	633.0	989.57	-26.0	0.81	3.29	31.5	307.2
	557.6	603.9	930.48	628.8	385.71	-24.9	0.77	3.25	31.5	307.3
	554.5	601.4	990.57	625.0	389.65	-23.6	0.74	5.13	31.5	307.3
	552.4	599.8	990.62	621.3	989.96	-21.5	0.66	2.35	31.5	307.3
	550.5	598.6	990.67	617.9	900.06	-19.3	0.61	2.78	31.6	307.3
	549.2	597.9	990.69	614.8	990.17	-16.3	0.52	2.60	31.6	307.3
	548.0	597.3	999.71	611.8	990.27	-14.5	0.52	2.43	31.G	307.3
1805 30	546.1	595. 7	990.76	609.0	990.36	-13.3	0.40	2 20		
. 500 50	543.5	593.8	990.83	606.2	990.45	-13.3	0.40	2.30	31.€	307.3
	539.6	589.7	990.90	603.6			0.39	2.24	31.5	307.3
	535.5	585.6			990.53	-13.9 -15.4	0.43	2.27	31.5	307.3
	531.4	581.5	991.09 991.23	601.0 509.4	990.G2	-15.4	0.47	2.37	31.5	207.3
	527.5	577.4		598.4 605.7	990.71	-16.9	0.52	2.53	31.5	307.3
	524.0		991.37	595.7	990.80	-18.3 -40.4	0.57	2.74	31.5	307.2
	520.5	573.6 569.5	991.50 SS1.64	593.0	990.88 990.97	-19.4 -20.7	0.62 0.67	2.93	31.5	307.2
	J4U.3	202.7	ay 24 1 . 13 42	590.2	20 Miles 14 /	+761 1	E) 64.2	3.23	31.4	307.2

1805:51	t a	1805:57	CDT
1000.01	LU	1002.21	$\sim \nu_{I}$

							·				
CDT	_	ALTE	T_A	P.,		P	TA - z	Pa-Pa	*PTW	<u> </u>	Tv
h m s		11	ft	,wp	fi	mb	. ft	mb	mb	*c	*K
		1.1									
1805 5	1	517.2	565.4	991.77	527.4	991.07	-22.0	0.70	2.47	31.4	307.1
		514.0	561.3	991.91	584.5	991.16	-23.2	0.75	3.66	31.4	307.1
		511.4	557.9	992.03	581.6	991.26	-23.7 -24.1	0.77 0.79	3.82	31.3 31.3	307.1
		509.0	554.7 551.9	992.14 992.23	578.8 576.0	991.3 5 991.44	-24.1	0.79	3.93 4.01	31.3	307.0 307.0
		507.0 505.0	549.1	992.33	573.4	991.52	-24.3	0.73	4.03	31.1	307.9
		503.2	546.5	992.42	571.0	991.60	-24.5	0.82	4.02	31.1	306.9
		501.5	544.1	992.50	568.9	991.67	-24.8	0.63	3.96	31.1	306.3
4005 5		F00 4		000 51	FC7 4	004.74	24.2	0.00	2.62	24.0	200 8
1805 5	'~ 1	500.4 499.5	542.8 541.7	992.54 992.58	567.1 566.7	991.74 991.75	-24.3 -25.0	0.80 0.83	3.87 3.75	31.0 30.9	306.8 306.7
	÷.	499.0	541.5	992.59	566.9	991.74	-25.4	0.85	3.61	30.9	306.6
	-	498.5	541.3	992.59	567.4	991.72	-26.1	0.87	3.47	30.8	306.6
	- 1	498.0	541.3	992.59	568.2	991.70	-26.9	0.89	3.33	30.8	305.5
	- [497.5	541.5	992.59	568.7	391.68	-27.2	0.91	3.22	30.7	306.4
	•	497.2	541.9	992.57	569.1	991.66	-27.2	0.91	3.14	30.6	306.4
	ŧ	497.0	542.3	992.56	569.4	991.66	-27.1	0.90	3.07	30.6	306.3
1805 5	3	497.2	542.9	992.54	569.6	991.65	-26.7	0.89	2.99	30.5	306.3
		497.5	543.7	992.51	569.6	991.65	-25.9	0.86	2.87	30.4	306.2
		497.8	544.4	992.49	569.6	991,65	-25.2	0.84	2.71	30.4	306.1
		499.0	544.8	392.48	569.5	991.65	-24.7	0.83	2.51	30.3	305.1
		498.2	545.2	992.46	569.4	991.66	-24.2	0.80	2.27	30.3	306.0
	ъ	498.5	545.6	992.45	569.1	991.66	-23:5	0.79	2.04	30.2	306.0
	9	499.0	546.1	992.43	S68.8	991.67	-22.7	0.76	1.83	30.2	305.9
	2	493.5	.546.€	992.41	568.4	991.68	-21.8	0.73	1.66	30.1	305.9
1805 5	4	499.8	546.8	992.41	568.0	991 70	-21.2	0.71	1.55	30.1	305.9
	Į.	500.0	54G.8	992.41	567.5	S91.72	-20.7	0.69	1.49	30.0	305.8
		500.0	546.5	992.42	566.9	991.74	-20.4	0.58	1.49	30.0	303.8
	•	500.0	54G.4	992.42	566.3	991.76	-19.9	0.66	1.54	30.0	305.7
	Ĭ	499.8	54G.O	992.44	565.6	991.79	-19.6	0.65	1.61	29.5	305.7
	. #	499.5	545.6	992.45	565.0	991.80	-19.4	0.65	1.70	29.9	305.7
		498.6	544.5	992.48	564.0	991.84	-19.5	0.54	1.80	29.9	305.7
		497.5	543.3	992.52	563.7	991.85	-20.4	0.67	1.90	29.9	305.7
1905 5	5	496.2	542.0	992.57	563.0	991.86	-21.0	0.71	1,97	30.0	305.7
		495.0	540.8	992.61	562.3	991.89	-21.5	0.72	2.03	30.0	305.8
		493.8	539.8	992.64	561.6	991.91	-21.8	0.73	2.10	30.2	305.9
		492.5	538.6	992.68	560.9	991.94	-22.3	0.74 0.77	2.15	30.3 30.5	306.1
		491.2	537.5 536.5	992.72	560.4 560.1	991.95	-22.9 -23.6		2.20	30.5	306.2 306.4
	~9	490.0 489.0	535.7	992.76 992.78	560.8	991.96 991.94	-25,1	0.80 0.84	2.22	30.8	306.6
	2	488.0	534.7	992.76	562,3	391.89	-27.6	0.92	2.24	30.9	306.6
	W	450.0	234.7	332.01	302,3	331.03	27.0	0.52	4.44	. 50.5	505.7
1805 50	6	487.2	534.1	992.84	564.0	991.84	-29.9	1.00	2.25	31.1	306.9
_	Ę	48G.5	533.4	992.86	565.6	991,79	-32.2	1.07	2.21	31,3	307.0
	Ĭ	486.2	533.0	992.87	566.9	991.74	-33.9	1.13	2.15	31.4	307.2
	į.	48G.O	532.6	992.88	568.0	991.70	-35.2	1.18	2.06	31.6	307.4
		486.2	533.0	992.87	568.9	991.67	-35.9	. 1.20	1.39	31.8	307.6
		486.5	533.3	992.86	569.4	991.66	-36.1	1.20	1.94	31.9	307.7
		487.0	533.9	992.84	569.7	991.65	-35.6	1.19	1.89	32,1	307.9
		487.5	534.4	992.82	569.6	991.65	-35.2	1.17	1.84	32.3	309.0
1805 5	7	488.0	534.9	992.80	569.1	991.66	-34.2	1.14	1.81	32.4	308.2
		488.5	535.4	992.79	568.5	991.68	-33.1	1.11	1.31	32.6	303.3
		489.0	536.0	992.77	567.6	991.71	-31.6	- 1.06	1.84	32.7	308.5
		469.5	536.5	991.75	566.4	991.76	-29.9	0.89	1.91	32.9	303.6
		490.4	537.4	992.72	565.1	991.80	-27.7	0.92	2.01	33.1	308.6
	_eŧ	491.5 492.8	538.6 540.1	991.68 991.63	563.5 562.2	991.65 991.90	-25.0 -22.1	0.83 0.73	2.14	33.2 33.4	309.0 309.1
	4 +	492.8	541.4	992.39	560.6	991.90	-19.2	0.73	2,53	33.5	309.1
			J - 1 . -				13.4	U. U.	<u></u>		

APPENDIX 9 CURVATURES

Shown in this table are: ζ , horizontal path angle measured from x; ψ , aircraft heading measured from x; η , vertical path angle measured from X, and θ , pitch angle of aircraft. For curvatures, see Fig. 3.5 (P 31) and Fig. 3.8 (F 33).

1804:56 to 1805:01 CDT

CDT	ξ	Ψ_		<u> </u>	<u> </u>	е	Cyse	_ae/as
h m s	deg	deg	radion/m	radion/m	dag	Ceg	iodian/m	radian/m
1804 56	-2.42	-5.94	0.000146	0.000012	-3.57	4.40		-0.000000
	-2.33	-5.89	0.000146	0.000089	-3.56	4 40		-0.000003
	-2.23	-5.84	0.000147	0.000097	-3.56	4.40		-0.000016
	-2.14	-5.79	0.000148	0.000105	-3.56	4.40		-0.000024
	-2.05	-5.72	0.000150	0.000110	-3.56	4.38		-0.000027
	-1.95	-5.64	0.000151	0.000113	-3.56	4.35		-0.000025
	-1.86	-5.56	0.000152	0.000118	-3.55	4.32		-0.000021
	-1.76	-5.49	0.000152	0.000126	-3.55	4.30	0.000003	-0.000021
1604 57	-1.66	-5.42	0.000151	0.000135	-3.54	4.30	0.000009	-0.000024
	-1.57	-5.34	0.000150	0.000144	-3.53	4.30	0.0000009	-0.000030
	-1.47	-5.24	0.000149	0.000150	-3.52	4.28	0.000009	-0.000031
	-1.38	-5.14	0.000148	0.000153	-3.52	4.25	0.000008	-0.000027
	-1.29	-5.04	0.000145	0.000160	-3.51	4.22	0.000006	-0.000021
	-1.19	-4.94	0.000142	0.000174	-3.51	4.20	0.000005	-0.000014
	-1.10	-4.84	0.000133	0.000194	~3.50	4.20	0.000004	-0.000011
	-1.01	-4.74	0.000132	0.000217	-3.50	4.20		-0.000015
1804 59	-0.93	-4.60	0.000126	0.000234	-3.50	4.20	0.000007	-0.000021
	-0.85	-4.44	0.000119	0.000242	-3.50	4.20	0.000010	-0.000027
	-0.78	-4.26	0.000112	0.000245	-3.49	4.18		-0.000030
	-0.71	-4.09	0.000104	0.000243	-3.48	4.15		~0.000026
	-0.65	-3.94	0.000097	0.000243	-3.47	4,12		-0.000020
	-0.59	-3.79	0.000089	0.000242	-3.46	4.10		-0.000013
	-0.53	-3.64	0.000082	0.000242	-3.45	4.10		-0.000008
	-0.19	-3.49	0.000076	0.000242	-3.43	4.10		-0.000006
1604 59	-0 :4	-2.24	0.000070	0.000030	-2.42	4.10	0.000010	-0.000004
1004 23	-0.44	-3.34		0.000239	-3.42			
	-0.10	-3.19	0.000066	0.000233	-3.42	4.10		-0.000003
	-0.36	-3.04	0.000063	0.000225	-3.41	4.10		-0.000004
	-0.33	-2.89	0.000062	0.000217	-3.41	4.10		-0.000010
	-0.29	-2.76	0.000061	0.000209	-3.42	4.10		-0.000017
	-0.25	-2.64	0.000061	0.000200	-3.42	4.10		-0.000025
	-0.22	-2.52	0.000062	0.000187	-3.43	4.03		-0.000028
	-0.18	-2.39	0.000064	0.000172	-3.44	4.05	-0.000017	-0.000023
1805 00	-0.14	-2.28	0.000066	0.000153	-3.45	4.02		-0.000019
	-0.10	-2.19	0.000070	0.000153	-3.47	4.00		-0.000013
	-0.06	-2.12	0.000074	0.000153	-3.48	4.00	-0.000021	-0.000008
	-0.01	-2.04	0.000079	0.000156	-3.49	4.00	-0.000023	-0.000006
	0.C4	-1.94	0.000034	0.000158	-3.51	4.00	-0.000024	-0.000004
	0.03	-1.84	0.000090	0.000159	-3.52	4.00		-0.000003
	0.15	-1.74	0.000095	0.000160	-3.54	4.00	-0.000025	-0.000002
	0.21	-1.64	0.000098	0.000160	-3.56	4.00	-0.000023	-0.000001
1805 01	0.28	-1.54	0.000102	0.000158	-3.57	4.00	-0.000021	-0.000001
	0.34	-1.44	0.000104	0.000153	-3.59	4.00		-0.000001
	0.41	-1.34	0.000105	0.000142	-3.60	4.00		-0.000000
	0.48	-1.24	0.000106	0.000142	-3.61	4.00		-0.000000
	0.54	-1.16	0.000108	0.000115	-3.61	4.00		-0.000000
	0.54	-1.09	0.000103					
	0.61			0.000104	·3.61	4.00		-0.000000
•		-1.04	0.000102	0.000098	-3.61	4.00		-0.000000
	0.74	-0.99	0.000000	0.000099	~3.60	4.00	0.000012	-0.000000

125 A.9 Curvatures

1805	.02	to	1805	ΩΩ	CDT
100.0	: 112	LO	10117	אנו	

CDT	ζψ		514/35				00/55
			∂ ¥/ ∂\$		<u>- a </u>	Cven	<u>00/05</u>
h m s	deg deg	rodian/m ro	edian/m	qsđ	deg	rudian/m	radian/m
					•		
1805 02	0.80 -0.94		.000104	-3.59	4.00		-0.00000
	0.86 -0.89		.000110	-3.58	4.00		-0.000000
	0.92 -0.82		.000112	-3.56	4.00		-0.000000
	0.97 -0.74		.000108	-3.55	4.00		-0.000000
	1.02 -0.66		.000104	-3.54	4.00		-0.000000
	1.07 -0.59 1.12 -0.54		.000103	-3.52 -3.51	4.00		-0.000000
	1.16 -0.49		.000109 .000120	-3.50	4.00		-0.000000
	1110 0.43		.000120	5.50	4.00	0.000025	0.00000
1805 03	1.21 -0.42	0.000072 ()	.000129	-3.49	4.00	0.000027	-0.000000
	1.25 -0.34		.000133	-3.47	4.00		-0.000000
	1.29 -0.24		.000132	-3.45	4.00	0.000037	-0.000000
	1.33 -0.14		.000123	-3.43	4.00		-0.000000
	1.38 -0.06 1.43 0.01		.000128	-3.40	4.00	0.000045	-0.000000
	1.43 0.01 1.48 0.08		.000133 .000140	-3,37 -3,34	4.CO 4.00		-0.000000
	1.53 0.16		.000148	-3.31	4.00		-0.000000
	1.00 0.10	0.000077	.000140	0.0.	7.00	0.900042	0.00000
1805 04	1.57 0.26		.000153	-2.28	4.00		-0.000000
	1.62 0.36		.000156	-3.26	4.00		-0.000000
	1.67 0.46		.000138	-3.23	4.00		-0.000000
	1.72 0.56		.000159	-3.21	4.00	0.000041	-0.000000
	1.77 O.66 1.82 O.76		.000160	-3.18 -3.16	4.00 4.00		-0.000000
	1.87 0.86		.000161 .000159	-3.10	4.00		~0.000000 ~0.000002
	1.91 0.96		.000153	-3.10	4.00		-0.000003
				- •			
1805 05	1.96 1.06		.000143	-3.07	4.00		-0.000017
	2.00 1.16 2.05 1.24		.000129	-3.03	4.00		-0.000025
	2.05 1.24 2.10 1.31		.000115 .000104	-3.00 -2.97	3.93 3.95		-0.000030 -0.000033
	2.15 1.36		.00003	-2.95	3.33		-0.000033
	2.19 1.41		.000100	-2.93	3.90		-0.000046
	2.24 1.46		.000105	-2.92	3.85		-0.000055
	2.28 1.51	0.000082 0	.000111	-2.91	3.85		-0.000064
1805 06	2.33 1.58		.000110	-2,90	3.80		-0.000070
	2.39 1.66 2.44 1.74		.000100	-2.88 -2.86	3.75 3.7		-0.000073 -0.000076
	2.44 1.74 2.50 1.81		.000085 .000070	-2.83	3.75		-0.000078
	2.56 1.84		.000062	-2.80	3.60		-0.000079
	2.62 1.86		.000062	-2.78	3.55		-0.000030
	2.67 1.88		.000066	-2.76	3.50		-0.000080
	2.72 1.91	0.000035 0	. 000071	-2.74	3.45	0.900027	-0.000081
1805 07	2.77 1.96	0.000037 0	.000075	-2.72	3.40	0.000000	-0.000031
1003 07	2.82 2.01		.000077	-2.70	3.35		-0.000081
	2.82 2.01		.000077	-2.70	3.30		-0.000081
	2.93 2.11		.000079	-2.69	3.25		-0.000081
•	2.09 2.16		.000080	-2.70	3.20		-0.000031
	3.05 2.21		.000030	-2.71	3.15	-0.000005	-0.00081
	3.11 2.26	0.000000 0	. 000081	-2.71	3.10		-0.000079
	3.16 2.31	0.000030 0	.000081	-2.72	3.05	-0.000003	-0.000073
1805 08	3.21 2.36	0.000030 0	. 000083	-2.72	J.50	-0.000007	~n 000065
.005 00	3.27 2.41		.000033	-2.73	2.05		-0.000057
	3.32 2.46		.000093	-2.73	2.52	-0.000011	
	3.38 2.51		.000106	-2.74	2.90		-0.000048
	3.44 2.55	0.000089 0	.000100	-2.75	2.88	-0.000011	-0.000046
	3.49 2.66		.000106	-2.76	2.65	-0.000010	
	3.55 2.74		.000101	-2.76	2.82		-0.000045
	3.60 2.81	0.000083 0	.000094	-2.77	2.80	-0.000006	-0.000051

1805:09 to 1805:15 CDT

- C (v.T								
CUT	ţ	<u> </u>	C me m	<u> </u>			Cves	38/33
h m 's	dsq	Çsā	rsdian/m	rigidata/m	deg	deg	radian/m	rodian/m
1805 09	3.65	2.86	0.000079	0.000030	-2.77	2.76	-0.000004	-0.000058
	3.70	2.91	0.000073	0.000087	-2.77		-0.000001	
	3.74	2.96	0.000068	0.000035	-2.7!	2.70	0.000003	-U.000072
	3.79	3.01	0.000061	0.000084	-2.77	2.85	0.000008	-0.000075
	3.62	3.09	0.000054	0.000083	-2.77		0.000013	
	3.86	3.11	0.000047	0.000083	-2.79		0.000016	
	3.88	3.16	0.000040	0.000082	-2.75		0.000017	
	3.91	3.21	0.000033	0.000082	-2.73	2.45	0.000018	-0.000080
1805 10	3.93	3.26	0.000026	0.000032	-2.72		0.000018	
	3.94	3.31	0.000019	0.000092	-2.71		0.000018	-0.000021
	3.95	3.36	0.000012	0.000084	-2.70		0.000018	-0.000031
	3.96	3.41	0.000004	0.000090	~2.69		0.000017	-0.000081
	3.96	3.46	-0.000003	0.000096	-2.67		0.000015	
	3.95	3.51	-0.000010	0.000098	-2.66		0.000013	
	3.95	3.58	-0.000016	0.000093	-2.65		0.000009	
	3.93	3.66	-0.000021	0.000082	-2.65	2.05	0.00003	-0.000081
1805 11	3.92	3.72	-0.000024	0.000070	-2.64		0.000001	
	3.90	3.76	-0.000026	0.000060	-2.64			-0.000 91
	3.88	3.78	-0.000023	0.000054	-2.65			-0.000051
	3.86	3.81	-0.000032	0.000050	-2.65			-0.000031
	3.84 3.82	3.84	-0.000036 -0.000040	0.000047	-2.66			-0.000081
	3.79	3.86 3.88	-0.000045	0.000043	-2.67 -2.68			-0.000081
	3.76	3.91	-0.000048	0.000043	-2.69			-0.000061
1805 12	3.73	3.94	-0.000050	0.000044	-2.7	1,60	-0.00055	-0.000001
	3.69	3.96	-0.000051	0.000050	-2.73			-0.000031
	3.GG	3.98	-0.000052	0.000056	-2.78		-0.000117	
	3.63	4.01	-0.000051	0.000057	-2.85		-0.000152	
	3.59	4.06	-0.000048	0.000055	-2.95		-0.000184	
	3.56	4.11	-0.000046	0.000050	-3.07	1.35	-0.000203	0.000019
	3.53	4.14	-0.000043	0.000046	-3.22		-0.000222	
	3.50	4.16	-0.000041	0.000045	-3.38	1.40	-0.000224	0.000094
1805 13	3,47	4.18	-0.000039	0.000041	-3.54		-0.000215	0.000120
	3.45	4.21	-0.000038	0.000034	-3.69	1.GO	-0.000195	0.000141
	3.42	4.24	-0.000037	0.000023	-3.82		-0.000165	
	3.40	4.26	-0.000037	0.000008	-3 .93		-0.000131	0.000183
	3.30	4.26	-0.000037	-0.000008	-4.01		-0.000095	0.000199
	3.35	4.26	-0.000036	-0.000026	-4.00		-0.000061	0.000207
	3.32	4.24		-0.600042	-4.09		-0.000027	0.000212
	3.30	4.21	-0.000031	-0.000055	-4.03	2.35	0.00009	C.000216
1805 14	3.28	4.1G		-0.000065	-4.08		0.000049	0.000223
	3.25	4.11		-0.CO0070	-4.04		0.000031	0.000231
	2.25	4.0€		-0.C0C074	-3.98		0.000123	0.000227
	3.23	4.01		-0.000077	-3.89		0.000156	0.000205
_	3.22	3.96		-0.000078	-3.70		0.000173	0.000172
•	3.21	3.91		-0.000080	-3.63		0.000161	
	3.20 3.19	3.86 3.81	-0.000015 -0.000013	-0.000080	-3.50 -3.38		0.000181	0.000102
		3.01	-0.0XXX13	0.000001	-3.30		0.000174	0.000016
1805 15	3.18	3.75	-0.000012		-3.26		0.000162	0.000048
	3.1a 3.11	3.71 3.66	-0.700010		-3.16		0.000144	0.000018
	3.17	3.61	-0.000008 -0.000008	-0.000082	-3.06 -2.33		0.000123	
	3.15	3.56	-0.000000		-2.93		0.000102 0.000086	
	3.16	3.51		~0.000030	-2.89		0.000076	
	3.15	3.45		-0.000063	-2.86			-0.000043
	3.13	3.41	-0.000026		-2.83			-0.000014
			0.000020	2.000000	- 2,63	.,, 1.,	0.000033	0.000014

127 A.9 Curvatures

1	805·	16	to	1805	:22	CDT

The color							1003		
1805 16 3 .12 2 .38 -0.00030 -0.000055 -2.80 3 .14 0.00051 0.000005	CDT	ζ	Ψ	Cnea	<u></u> ∂₩/8\$		_θ	Cyes	a <i>01</i> as
3.02 3.06 -0.000031 -0.000032 -2.76 3.15 0.000022 0.000015 -2.73 3.18 -0.000027 0.000038 -2.73 3.18 -0.000027 0.000038 -2.73 3.18 -0.000027 0.000038 -2.75 3.25 -2.0000169 -2.72 3.20 -0.000049 0.000038 -2.000038 -2.000038 -2.000039 -2.76 3.25 -0.000245 0.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.00038 -2.000038 -2.00038 -2.000038 -2.000038 -2.00038 -2.000038 -2.	h m s	deg	deg	m\ncsbor	radian/m	deg	deg	rodian/m	radion/m
3.02 3.06 -0.000031 -0.000032 -2.76 3.15 0.000022 0.000015 -2.73 3.18 -0.000027 0.000038 -2.73 3.18 -0.000027 0.000038 -2.73 3.18 -0.000027 0.000038 -2.75 3.25 -2.0000169 -2.72 3.20 -0.000049 0.000038 -2.000038 -2.000038 -2.000039 -2.76 3.25 -0.000245 0.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.000038 -2.00038 -2.000038 -2.00038 -2.000038 -2.000038 -2.00038 -2.000038 -2.									
1.07 3.36	1605 16								
3.04 3.36 -0.000019 -0.00019 -2.72 3.20 -0.000099 0.000038 3.00 3.36 -0.000019 -0.000029 -2.76 3.25 -0.000169 0.000050 3.00 3.36 -0.000019 -0.000068 -3.76 3.25 -0.000245 0.000070 7.97 3.31 -0.000007 -0.000068 -3.04 3.30 -0.000305 0.000093 7.98 3.34 -0.000007 -0.000068 -3.26 3.35 -0.000348 0.000165 3.98 3.16 -0.000016 -0.000160 -3.52 3.42 -0.000348 0.000165 2.98 3.16 -0.000016 -0.000168 -3.79 3.50 -0.000348 0.000161 2.93 3.04 -0.000046 -0.000168 -3.79 3.50 -0.000348 0.000161 2.93 2.94 -0.000041 -0.000168 -4.03 3.60 -0.000247 2.93 2.94 -0.000041 -0.000168 -4.03 3.60 -0.000247 2.93 2.94 -0.000041 -0.000152 -4.14 4.02 -0.000162 0.000349 2.90 2.86 -0.000050 -0.000164 -4.51 4.25 -0.000075 0.000461 2.82 2.61 -0.000068 -0.000169 -4.52 4.56 0.000162 0.000349 2.82 2.61 -0.000068 -0.000169 -4.52 4.56 0.000075 0.000564 2.82 2.61 -0.000068 -0.000149 -4.52 4.50 0.000076 0.000562 2.66 2.34 -0.000091 -0.000149 -4.29 5.65 0.000718 0.000556 2.66 2.34 -0.000091 -0.000149 -4.12 6.00 0.000268 0.000748 2.66 2.34 -0.000091 -0.000152 -4.13 5.28 0.000167 0.000556 2.60 2.26 -0.000091 -0.00117 -3.73 6.66 0.000274 0.000556 2.53 2.18 -0.00104 -0.00117 -3.73 6.65 0.000274 0.000568 2.53 2.18 -0.00104 -0.00117 -3.73 6.65 0.000274 0.000568 2.53 2.18 -0.00104 -0.00117 -3.73 6.65 0.000274 0.000568 2.53 2.18 -0.00104 -0.00117 -3.73 6.65 0.000274 0.000568 2.54 1.71 -0.000108 -0.00113 -3.54 6.55 0.000274 0.000568 2.55 1.94 -0.000108 -0.00113 -3.57 7.03 0.000269 0.000169 2.08 1.78 -0.000108 -0.000170 -0.00070 -0.00070 -0.00070 2.08 1.78 -0.000109 -0.000170 -0.00070 -0.00070 -0.00070 2.08									
3,02 3,36 -0.00019 -0.00009 -2.76 3.22 -0.00016 0.000050 2,99 3,34 -0.000007 -0.00068 -3.04 3.30 -0.00033 0.000012 1805 17 2,99 3.24 -0.000010 -0.000100 -3.52 3.42 -0.000343 0.000146 2,98 3,16 -0.000016 -0.000108 -3.79 3.50 -0.000333 0.000124 1805 17 2,99 3.24 -0.000010 -0.000108 -3.79 3.50 -0.000333 0.000124 2,98 3,16 -0.000014 -0.00018 -3.79 3.50 -0.000338 0.000115 2,97 3,08 -0.000024 -0.000135 -4.15 3.80 -0.000228 0.000135 2,93 2,94 -0.000032 -0.000135 -4.25 3.80 -0.000228 0.000135 2,93 2,94 -0.000050 -0.000166 -4.41 4.25 -0.000167 0.000331 2,90 2,66 -0.000050 -0.000166 -4.41 4.25 -0.000016 0.00041 2,86 2,74 -0.000059 -0.000166 -4.41 4.25 -0.000016 0.00041 2,82 2,61 -0.000059 -0.000169 -4.55 4.56 0.00016 0.00041 2,82 2,61 -0.000038 -0.000149 -4.25 5.65 0.00018 0.00051 2,10 2,14 -0.000060 -0.000149 -4.12 5.65 0.00016 0.00051 2,10 2,14 -0.000060 -0.000149 -4.12 5.65 0.000216 0.00051 2,10 2,14 -0.000099 -0.000125 -3.32 6.35 0.000268 0.00014 2,66 2,14 -0.000099 -0.000125 -3.32 6.35 0.000268 0.00014 2,66 2,14 -0.000099 -0.00014 -4.12 5.65 0.000207 0.00051 2,16 2,11 -0.000108 -0.000113 -3.54 6.95 0.000271 0.000528 2,00 2,26 -0.00014 -0.000113 -3.54 6.95 0.000272 0.000120 2,18 2,11 -0.000108 -0.000113 -3.05 7.20 0.000210 0.000120 2,18 -0.000113 -0.000113 -3.05 7.20 0.000210 0.000120 1805 19 2,25 1,94 -0.000132 -0.000113 -3.05 7.20 0.000210 0.000120 1,80 1,16 -0.000169 -0.000169 -2.11 7.48 0.000020 0.000120 1,16 -0.000169 -0.000169 -2.11 7.48 0.0000100 0.000110 1,16 -0.000169 -0.0000110 -2.11 7.18 0.000010 0.000110 1,16 -0.000169 -0.0000110 -2.11									
3,00									
1805 18 2.77 2.50 -0.00006 -0.00149 -0.0006 -0.000149 -0.000149 -0.000149 -0.00016 -0.00017 -0.00016 -0.									
1805 17 2.99 3.24 -0.000010 -0.000100 -3.52 3.42 -0.000343 0.000114									
1805 17 2,99 3,24 -0,000010 -0,000100 -3,52 3,42 -0,000354 0,000166 2,98 3,16 -0,000016 -0,000108 -3,79 3,50 -0,000338 0,000175 2,95 3,01 -0,000032 -0,000135 -4,25 3,80 -0,000327 0,000333 2,90 2,86 -0,000059 -0,000162 -4,41 4,02 -0,000162 0,000162 2,86 2,74 -0,000059 -0,00164 -4,55 4,25 -0,000075 0,000161 2,86 2,74 -0,000059 -0,00164 -4,55 4,56 -0,000013 0,00051 0,00051 2,82 2,61 -0,000088 -0,000159 -4,52 4,50 0,00006 0,00051 0,0005									
2,98 3,16 -0,000016 -0,000108 -3,79 3,50 -0,000328 0,000171 2,95 3,01 -0,000032 -0,000115 -4,25 3,80 -0,000127 0,000313 2,90 2,86 -0,000059 -0,00164 -4,51 4,25 -0,000155 0,000161 2,86 2,74 -0,00059 -0,00164 -4,55 4,56 -0,000015 0,000161 2,86 2,74 -0,000059 -0,00166 -4,55 4,56 -0,00015 0,000161 2,82 2,61 -0,00068 -0,000159 -4,52 4,90 0,000066 0,000542									
2,97 3,08	1805 17								
2.95									
2.93									
2,90									
2.86 2.74 -0.00059 -0.000169 -4.52 4.56 0.00013 0.000514									
1805 18									
1805 18									
2.72		2.82	2.61	-0.000068	-0.000159	-4.52	4.90	0.000036	0.000542
2.66	1805 18								
2.60 2.26 -0.000099 -0.000125 -3.32 6.35 0.000268 0.000478 2.53 2.18 -0.000104 -0.000117 -3.73 6.66 0.000274 0.000109 2.46 2.11 -0.000108 -0.000113 -3.54 6.95 0.000272 0.000326 2.39 2.06 -0.000114 -0.000115 -3.37 7.13 0.000262 0.000252 2.32 2.01 -0.000122 -0.000120 -3.21 7.25 0.000240 0.000145 2.37 7.13 0.000262 0.000252 2.32 2.01 -0.000122 -0.000113 -3.05 7.20 0.000210 0.000145 2.17 1.86 -0.00113 -0.000107 -2.92 7.35 0.000169 0.000119 2.08 1.78 -0.000153 -0.000091 -2.01 7.38 0.000126 0.000119 1.98 1.71 -0.000161 -0.000074 -2.74 7.40 0.000088 0.000126 1.77 1.66 -0.000178 -0.000057 -2.70 7.50 0.000088 0.000153 1.66 1.64 -0.000188 -0.000053 -2.71 7.44 0.000068 0.000153 1.65 1.65 1.64 -0.000188 -0.000053 -2.70 7.50 0.000020 0.000252 1.55 1.61 -0.000197 -0.000055 -2.70 7.62 0.00000 0.000255 1.55 1.61 -0.000197 -0.000055 -2.70 7.50 0.000004 0.000315 1.77 1.54 -0.000197 -0.000050 -2.70 7.75 0.000004 0.000315 1.07 1.54 -0.000208 -0.000048 -2.69 8.10 0.000044 0.000315 1.07 1.54 -0.000208 -0.000048 -2.69 8.10 0.000004 0.000315 1.07 1.54 -0.000208 -0.000048 -2.69 8.10 0.000004 0.000315 0.000 1.46 -0.000208 -0.000048 -2.69 8.10 0.000004 0.000315 0.05 1.46 -0.000208 -0.000048 -2.70 8.50 0.000010 0.000258 0.00018 0.05 1.46 0.000208 -0.000018 -2.70 8.50 0.000012 0.000351 0.55 1.46 -0.000208 -0.000017 -2.68 9.16 0.000012 0.000351 0.05 1.46 -0.000208 -0.000018 -2.70 8.95 0.000012 0.000351 0.05 1.46 -0.000208 -0.000017 -2.68 9.16 0.000012 0.000351 0.05 1.46 -0.000208 -0.000017 -2.68 9.16 0.000012 0.000351 0.000 1.36 -0.000207 -0.000017 -2.68 9.16 0.000017 0.000351 0.000351 0.000 1.36 -0.000018 -0.000017 -2.68 9.16 0.000017 0.000351 0.00031 0.0									
2.53									
2,46		2.60	2.26	-0.000099	-0.000125				0.000478
1805 19 2.06 -0.000114 -0.000115 -3.07 7.13 0.000252 0.000252 0.000190 1805 19 2.25 1.94 -0.000132 -0.000113 -3.05 7.20 0.000210 0.000115 2.08 1.78 -0.000153 -0.000191 -2.92 7.25 0.000169 0.000113 2.08 1.78 -0.000161 -0.000074 -2.92 7.25 0.000169 0.000113 1.98 1.71 -0.000161 -0.000074 -2.74 7.40 0.000068 0.000113 1.88 1.68 -0.000169 -0.000063 -2.71 7.44 0.000660 0.000153 1.77 1.66 -0.000188 -0.000677 -2.70 7.50 0.000043 0.000183 1.77 1.66 -0.000188 -0.000053 -2.70 7.50 0.000040 0.000153 1.55 1.61 -0.000188 -0.000053 -2.70 7.75 0.000020 0.000258 1.55 1.61 -0.000197 -0.000050 -2.70 7.75 0.000020 0.000258 1.30 1.56 -0.000208 -0.00048 -2.69 8.10 0.000004 0.000315 1.17 1.54 -0.000208 -0.00046 -2.69 8.10 0.000044 0.000315 1.17 1.54 -0.000209 -0.000046 -2.69 8.10 0.000044 0.000315 1.17 1.54 -0.000208 -0.000046 -2.70 8.50 0.000012 0.000347 0.00235 0.67 1.46 -0.000208 -0.000048 -2.70 8.50 0.000012 0.000347 0.00351 0.67 1.46 -0.000208 -0.000018 -2.70 8.95 0.000012 0.000351 0.57 1.46 -0.000208 -0.000018 -2.70 8.95 0.000072 0.000351 0.55 1.46 -0.000207 -0.000018 -2.50 9.75 0.00012 0.000351 0.000 1.41 -0.000165 -0.000075 -2.27 1.15 0.000072 0.000351 0.000 1.41 -0.000165 -0.000075 -2.27 1.15 0.000072 0.000351 0.000 1.41 -0.000165 -0.000075 -2.27 0.15 0.000123 0.000347 -0.000351 0.000 1.41 -0.000165 -0.000075 -2.27 0.15 0.000165 0.000315 -0.000 1.36 -0.000165 -0.000075 -2.27 1.15 0.000165 0.000315 -0.000165 -0.000165 -0.000165 -0.000165 -0.000165 -0.000165 -0.000165 -0.000165 -0.000165 -0.000165 -0.000165 -0.000165 -0.000165 -0.000165 -0.000165 -0.000165 -0.0000165 -0.000165 -0.000067 -0.000165 -0.000067 -0.0001		2.53	2.18	~0.000104	-0.000117				0.000409
1805 19 2.25 1.94 -0.000132 -0.000113 -3.05 7.20 0.000210 0.000145 2.17 1.86 -0.000153 -0.000107 -2.92 7.25 0.000169 0.000113 1.98 1.71 -0.000161 -0.000091 -2.01 7.38 0.000126 0.000113 1.98 1.71 -0.000161 -0.000063 -2.74 7.40 0.000688 0.000126 1.77 1.66 -0.000178 -0.000053 -2.71 7.44 0.000060 0.000138 1.65 1.64 -0.000168 -0.000053 -2.70 7.50 0.000143 0.000189 1.55 1.61 -0.000188 -0.000053 -2.70 7.50 0.000043 0.000189 1.55 1.61 -0.000197 -0.000050 -2.70 7.50 0.000020 0.000225 1.55 1.61 -0.000198 -0.000048 -2.69 7.92 0.000010 0.000225 1.55 1.61 -0.000208 -0.000048 -2.69 8.10 0.000004 0.000315 1.17 1.54 -0.000209 -0.000042 -2.70 8.30 0.000004 0.000315 1.17 1.54 -0.000209 -0.000042 -2.70 8.30 0.000004 0.000316 0.00004 0.00316 0.00004 0.00316 0.00004 0.00316 0.00004 0.00316 0.00004 0.00316 0.00004 0.00316 0.00004 0.00316 0.00004 0.00316 0.00004 0.00316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.000316 0.00004 0.0000		2.46	2.11	-0.000108	-0.000113	-3.54	6.95	0.000272	0.000326
1805 19		2.39	2.06	-0.000114	-0.000115	-3.37	7.13	0.000252	0.000252
2.17		2.32	2.01	-0.000122	-0.000120	-3.21	7.25	0.000242	0.000190
2.17	1805 19	2.25	1.94	-0.000132	-0.000113	-3.05	7.30	0.000210	0.000145
1,98		27.17	1.86	-0.000143	-0.000107	-2.92	7.35	0.000169	0.000119
1,98		2.08	1.78	-0.000153	-0.000091	-2.01	7.38	0.000126	0.000113
1,88									
1.77		1.88	1.68			-2.71	7.44	0.000060	0.000153
1.65		1.77	1.66			-2.70	7.50	0.000043	0.000189
1.55 1.61 -0.000197 -0.000050 -2.70 7.75 0.000020 0.000258 1805 20 1.33 1.58 -0.000204 -0.000048 -2.69 7.92 0.000010 0.000288 1.30 1.56 -0.000208 -0.000046 -2.69 8.10 0.000004 0.000315 1.17 1.54 -0.000209 -0.000042 -2.70 8.30 0.000004 0.000336 1.04 1.51 -0.000208 -0.000036 -2.70 8.50 0.000012 0.000347 0.92 1.48 -0.000208 -0.000027 -2.71 8.72 0.000027 0.000351 0.60 1.46 -0.000208 -0.000018 -2.70 8.95 0.000047 0.000351 0.67 1.46 -0.000208 -0.000014 -2.68 9.16 0.000072 0.000351 0.55 1.46 -0.000205 -0.000017 -2.64 9.35 0.000102 0.000351 0.55 1.46 -0.000205 -0.000017 -2.64 9.35 0.000102 0.000351 0.00 1.44 -0.000198 -0.000020 -2.58 9.54 0.000133 0.000347 0.00 1.44 -0.00017 -0.000056 -2.40 9.96 0.000162 0.000335 0.20 1.44 -0.00017 -0.000056 -2.40 9.96 0.000165 0.000318 0.09 1.41 -0.000165 -0.000075 -2.27 10.15 0.000165 0.000318 -0.00 1.36 -0.000153 -0.000095 -2.15 10.30 0.000175 0.000284 -0.07 1.24 -0.000188 -0.00015 -2.02 10.45 0.000151 0.000284 -0.17 1.24 -0.000128 -0.00015 -2.02 10.45 0.000151 0.000284 -0.17 1.24 -0.000128 -0.00015 -2.02 10.45 0.000151 0.000284 -0.17 1.24 -0.000128 -0.000150 -1.85 10.75 0.000933 0.000237 -0.24 1.16 -0.00017 -0.000150 -1.85 10.75 0.000093 0.000202 1805 22 -0.30 1.06 -0.000093 -0.000167 -1.75 11.05 0.000093 0.000134 -0.46 0.76 -0.000033 -0.000175 -1.75 11.05 0.000091 0.000087 -0.55 0.56 -0.000083 -0.000175 -1.75 11.05 0.000091 0.000087 -0.55 0.56 -0.000063 -0.000179 -1.66 11.10 0.000099 0.000064 -0.58 0.46 -0.000055 -0.000181 -1.57 11.12 0.000073 0.000054			1.64			-2.70	7.62	0.000000	0.000225
1.30 1.56 -0.000208 -0.00046 -2.69 8.10 0.00004 0.000315 1.17 1.54 -0.000209 -0.00042 -2.70 8.30 0.00004 0.000336 1.04 1.51 -0.000208 -0.000036 -2.70 8.50 0.000012 0.000347 0.92 1.48 -0.000208 -0.000027 -2.71 8.72 0.000027 0.000351 0.60 1.46 -0.000208 -0.000018 -2.70 8.95 0.000047 0.000351 0.67 1.46 -0.000207 -0.000014 -2.68 9.16 0.000072 0.000351 0.55 1.46 -0.000207 -0.000017 -2.64 9.35 0.000102 0.000352 0.55 1.46 -0.000205 -0.000017 -2.64 9.35 0.000102 0.000352 0.55 1.46 -0.000188 -0.000040 -2.50 9.75 0.000162 0.000352 0.20 1.44 -0.000188 -0.000040 -2.50 9.75 0.000162 0.000352 0.20 1.44 -0.000165 -0.000075 -2.27 10.15 0.000180 0.000318 0.00 1.40 -0.00165 -0.000075 -2.27 10.15 0.000185 0.000318 -0.000 1.36 -0.000165 -0.000075 -2.27 10.15 0.000185 0.000301 -0.00 1.36 -0.000183 -0.000095 -2.15 10.30 0.000175 0.000284 -0.07 1.24 -0.000148 -0.000115 -2.02 10.45 0.000151 0.000284 -0.17 1.24 -0.000148 -0.000134 -1.92 10.60 0.000151 0.000284 -0.17 1.24 -0.000128 -0.000134 -1.92 10.60 0.000123 0.000237 -0.24 1.16 -0.000117 -0.000160 -1.85 10.75 0.000093 0.000237 -0.24 1.16 -0.00017 -0.000160 -1.85 10.75 0.000093 0.000202 1805 22 -0.30 1.06 -0.000093 -0.000167 -1.76 10.95 0.000075 0.000167 -0.36 0.96 -0.000093 -0.000167 -1.76 10.95 0.000065 0.000134 -0.41 0.86 -0.000093 -0.000167 -1.75 11.00 0.000073 0.000087 -0.51 0.66 0.76 -0.000083 -0.000175 -1.77 11.00 0.000073 0.000087 -0.51 0.66 0.76 -0.000083 -0.000175 -1.75 11.05 0.000091 0.000087 -0.55 0.56 -0.000083 -0.000176 -1.56 11.10 0.000099 0.000087 -0.55 0.56 -0.000065 -0.000181 -1.57 11.12 0.000073 0.000058		1.55	1.61	-0.000197	-0.000050	-2.70	7.75	0.000020	0.000258
1.30 1.56 -0.000208 -0.00046 -2.69 8.10 0.00004 0.000315 1.17 1.54 -0.000209 -0.00042 -2.70 8.30 0.00004 0.000336 1.04 1.51 -0.000208 -0.000036 -2.70 8.50 0.000012 0.000347 0.92 1.48 -0.000208 -0.000027 -2.71 8.72 0.000027 0.000351 0.60 1.46 -0.000208 -0.000018 -2.70 8.95 0.000047 0.000351 0.67 1.46 -0.000207 -0.000014 -2.68 9.16 0.000072 0.000351 0.55 1.46 -0.000207 -0.000017 -2.64 9.35 0.000102 0.000352 0.55 1.46 -0.000205 -0.000017 -2.64 9.35 0.000102 0.000352 0.55 1.46 -0.000188 -0.000040 -2.50 9.75 0.000162 0.000352 0.20 1.44 -0.000188 -0.000040 -2.50 9.75 0.000162 0.000352 0.20 1.44 -0.000165 -0.000075 -2.27 10.15 0.000180 0.000318 0.00 1.40 -0.00165 -0.000075 -2.27 10.15 0.000185 0.000318 -0.000 1.36 -0.000165 -0.000075 -2.27 10.15 0.000185 0.000301 -0.00 1.36 -0.000183 -0.000095 -2.15 10.30 0.000175 0.000284 -0.07 1.24 -0.000148 -0.000115 -2.02 10.45 0.000151 0.000284 -0.17 1.24 -0.000148 -0.000134 -1.92 10.60 0.000151 0.000284 -0.17 1.24 -0.000128 -0.000134 -1.92 10.60 0.000123 0.000237 -0.24 1.16 -0.000117 -0.000160 -1.85 10.75 0.000093 0.000237 -0.24 1.16 -0.00017 -0.000160 -1.85 10.75 0.000093 0.000202 1805 22 -0.30 1.06 -0.000093 -0.000167 -1.76 10.95 0.000075 0.000167 -0.36 0.96 -0.000093 -0.000167 -1.76 10.95 0.000065 0.000134 -0.41 0.86 -0.000093 -0.000167 -1.75 11.00 0.000073 0.000087 -0.51 0.66 0.76 -0.000083 -0.000175 -1.77 11.00 0.000073 0.000087 -0.51 0.66 0.76 -0.000083 -0.000175 -1.75 11.05 0.000091 0.000087 -0.55 0.56 -0.000083 -0.000176 -1.56 11.10 0.000099 0.000087 -0.55 0.56 -0.000065 -0.000181 -1.57 11.12 0.000073 0.000058	1805 20	1.43	1.58	-0.000204	-0.000048	-2.69	7.92	0.000010	0.000288
1.17 1.54 -0.000209 -0.000042 -2.70 8.30 0.000044 0.000336 1.04 1.51 -0.000205 -0.000036 -2.70 8.50 0.000012 0.000347 0.92 1.48 -0.000208 -0.000027 -2.71 8.72 0.000027 0.000351 0.80 1.46 -0.000208 -0.000018 -2.70 8.95 0.000047 0.000351 0.67 1.46 -0.000208 -0.000014 -2.68 9.16 0.000072 0.000351 0.55 1.46 -0.000205 -0.000017 -2.64 9.35 0.000102 0.000352 0.55 1.46 -0.000205 -0.000017 -2.64 9.35 0.000102 0.000352 0.31 1.46 -0.000198 -0.000020 -2.50 9.75 0.000193 0.000347 0.31 1.46 -0.000198 -0.000040 -2.50 9.75 0.000162 0.000335 0.20 1.44 -0.000165 -0.000056 -2.40 9.96 0.000180 0.000316 0.00 1.36 -0.000165 -0.000055 -2.27 10.15 0.000162 0.000331 -0.00 1.36 -0.000165 -0.000095 -2.15 10.30 0.000175 0.000284 -0.09 1.31 -0.000141 -0.000155 -2.02 10.45 0.000151 0.000284 -0.07 1.24 -0.000147 -0.000155 -2.02 10.45 0.000151 0.000284 -0.17 1.24 -0.000147 -0.000150 -1.85 10.75 0.000151 0.000237 -0.24 1.16 -0.000147 -0.000150 -1.85 10.75 0.000093 0.000237 -0.24 1.16 -0.000147 -0.000150 -1.85 10.75 0.000093 0.000202 1805 22 -0.30 1.06 -0.000093 -0.000167 -1.76 10.95 0.000065 0.000134 -0.46 0.76 -0.00093 -0.000167 -1.76 10.95 0.000065 0.000134 -0.46 0.76 -0.00093 -0.000175 -1.75 11.05 0.000091 0.000087 -0.51 0.66 -0.000093 -0.000176 -1.75 11.05 0.000091 0.000087 -0.55 0.56 -0.000083 -0.000179 -1.66 11.10 0.000099 0.000066 -0.55 0.56 -0.000065 -0.000189 -1.57 11.12 0.000078 0.000055									
1.04									
0.92 1.48 -0.000208 -0.0000217 -2.71 8.72 0.000027 0.000351									0.000347
C.80									
0.67		0.80	1.46	-0.000208	-0.000018		8.95	0.000047	0.000351
1805 21								0.000072	
0.31 1.46 -0.000188 -0.000040 -2.50 9.75 0.000162 0.000335 0.20 1.44 -0.000177 -0.000056 -2.40 9.96 0.000180 0.000118 0.09 1.41 -0.000165 -0.000075 -2.27 10.15 0.000185 0.000311 -0.00 1.36 -0.000185 -0.000095 -2.15 10.30 0.000175 0.000284 -0.09 1.31 -0.000141 -0.000115 -2.02 10.45 0.000151 0.000264 -0.17 1.24 -0.000184 -0.00115 -2.02 10.45 0.000151 0.000264 -0.17 1.24 -0.000187 -0.000134 -1.92 10.60 0.000123 0.000237 -0.24 1.16 -0.000117 -0.000150 -1.85 10.75 0.000093 0.000202 1805 22 -0.30 1.06 -0.000107 -0.000160 -1.80 10.86 0.000072 0.000167 -0.36 0.96 -0.00093 -0.000167 -1.76 10.95 0.000065 0.000184 -0.41 0.86 -0.00093 -0.000167 -1.76 10.95 0.000065 0.000134 -0.41 0.86 -0.00093 -0.000167 -1.75 11.00 0.000073 0.000107 -0.46 0.76 -0.00093 -0.000175 -1.75 11.05 0.000091 0.000087 -0.51 0.66 -0.000083 -0.000176 -1.72 11.03 0.000091 0.000087 -0.55 0.56 -0.000063 -0.000179 -1.66 11.10 0.000093 0.000058									
0.31 1.46 -0.000188 -0.000040 -2.50 9.75 0.000162 0.000335 0.20 1.44 -0.000177 -0.000056 -2.40 9.96 0.000180 0.000118 0.09 1.41 -0.000165 -0.000075 -2.27 10.15 0.000185 0.000311 -0.00 1.36 -0.000185 -0.000095 -2.15 10.30 0.000175 0.000284 -0.09 1.31 -0.000141 -0.000115 -2.02 10.45 0.000151 0.000264 -0.17 1.24 -0.000184 -0.00115 -2.02 10.45 0.000151 0.000264 -0.17 1.24 -0.000187 -0.000134 -1.92 10.60 0.000123 0.000237 -0.24 1.16 -0.000117 -0.000150 -1.85 10.75 0.000093 0.000202 1805 22 -0.30 1.06 -0.000107 -0.000160 -1.80 10.86 0.000072 0.000167 -0.36 0.96 -0.00093 -0.000167 -1.76 10.95 0.000065 0.000184 -0.41 0.86 -0.00093 -0.000167 -1.76 10.95 0.000065 0.000134 -0.41 0.86 -0.00093 -0.000167 -1.75 11.00 0.000073 0.000107 -0.46 0.76 -0.00093 -0.000175 -1.75 11.05 0.000091 0.000087 -0.51 0.66 -0.000083 -0.000176 -1.72 11.03 0.000091 0.000087 -0.55 0.56 -0.000063 -0.000179 -1.66 11.10 0.000093 0.000058	1005 34	0.40	1 45	-0.000109	-0.000000	_3 50	0.54	0.000133	0 000347
0.20	1003 21								
0.09									
-0.00 1.35 -0.000153 -0.000095 -2.15 10.30 0.00175 0.000284 -0.09 1.31 -0.000141 -0.000115 -2.02 10.45 0.000151 0.000264 -0.17 1.24 -0.000128 -0.000134 -1.92 10.60 0.000151 0.000264 -0.24 1.16 -0.000117 -0.000150 -1.85 10.75 0.000093 0.000202 -0.24 1.16 -0.000107 -0.000160 -1.85 10.75 0.000093 0.000202 -0.36 0.96 -0.000099 -0.000167 -1.76 10.95 0.000065 0.000167 -0.41 0.86 -0.000091 -0.000172 -1.76 10.95 0.000065 0.000107 -0.46 0.76 -0.000093 -0.000175 -1.75 11.00 0.000073 0.000107 -0.51 0.66 -0.000073 -0.000176 -1.75 11.05 0.000091 0.000087 -0.55 0.56 -0.000063 -0.000176 -1.66 11.10 0.000099 0.000064 -0.58 0.46 -0.000055 -0.000181 -1.57 11.12 0.000078 0.000058									-
-0.09 1.31 -0.000141 -0.000115 -2.02 10.45 0.000151 0.000264 -0.17 1.24 -0.000128 -0.000134 -1.92 10.60 0.000123 0.000237 -0.24 1.16 -0.000117 -0.000150 -1.85 10.75 0.000093 0.000202 1805 22 -0.30 1.06 -0.000107 -0.000160 -1.80 10.86 0.000072 0.000167 -0.36 0.96 -0.000993 -0.000167 -1.76 10.95 0.000065 0.000134 -0.41 0.86 -0.000991 -0.000172 -1.77 11.00 0.000073 0.000107 -0.46 0.76 -0.00093 -0.000175 -1.75 11.05 0.000091 0.000087 -0.51 0.66 -0.000073 -0.000176 -1.72 11.03 0.000104 0.000973 -0.55 0.56 -0.000065 -0.00179 -1.66 11.10 0.000099 0.000066 -0.58 0.46 -0.000055 -0.000181 -1.57 11.12 0.000078 0.000058									
-0.17									
-0.24 1.16 -0.000117 -0.000150 -1.85 10.75 0.000093 0.000202 1805 22 -0.30 1.05 -0.000107 -0.000160 -1.80 10.86 0.000072 0.000167 -0.36 0.96 -0.00099 -0.000167 -1.76 10.95 0.000065 0.000134 -0.41 0.86 -0.00091 -0.000172 -1.77 11.00 0.000073 0.000107 -0.46 0.76 -0.000083 -0.000175 -1.75 11.05 0.00091 0.000087 -0.51 0.66 -0.000073 -0.000176 -1.72 11.03 0.00014 0.000973 -0.55 0.56 -0.000063 -0.000179 -1.66 11.10 0.000099 0.000064 -0.58 0.46 -0.000055 -0.000181 -1.57 11.12 0.000078 0.000058									
1805 22									
-0.36								,	
-0.41 0.86 -0.00091 -0.000172 -1.77 11.00 0.000073 0.000107 -0.46 0.76 -0.000083 -0.000175 -1.75 11.05 0.00091 0.000087 -0.51 0.66 -0.000073 -0.000178 -1.72 11.03 0.000104 0.00073 -0.55 0.56 -0.000063 -0.000179 -1.66 11.10 0.000073 0.000064 -0.58 0.46 -0.000055 -0.000181 -1.57 11.12 0.000078 0.000058	1805 22								
-0.46									
-0.51 0.66 -0.000073 -0.000178 -1.72 11.03 0.000104 0.000073 -0.55 0.56 -0.000063 -0.000179 -1.66 11.10 0.000099 0.000064 -0.58 0.46 -0.000055 -0.000181 -1.57 11.12 0.000078 0.000058									
-0.55 0.56 -0.000063 -0.000179 -1.66 t1.10 0.000099 0.000064 -0.58 0.46 -0.000055 -0.000181 -1.57 11.12 0.000078 0.000058									
-0.58 0.46 -0.000055 -0.000181 -1.57 11.12 0.000078 0.000058									
-0.58									
-0.61 0.36 -0.000050 -0.000182 -1.50 11.15 0.000050 0.000054						-1.57			
		-0.61	0.36	-0.000050	-0.000182	-1,50	11.15	0.000050	0.000054

1805:23 to 1805:29 CDT

CDT	<u> </u>	<u> </u>		∂¥.'3S	7	_θ	C.es	38/as
n m s	ded	deg	rodian/m	rodian/m	dag	deg	rodian/m	radian/m
1805 23	-0.63	0.26	-0.000048	-0.000180	-1.47	11.18	0.000036	0.00003
	-0.65	0.16	-0.000047	-0.000174	-1.47	11.20	0.000047	0.00009
	-0.67	0.06	-0.000043	~0.000162	-1.49	11.22	0.000077	0.00004
	-0.70	-0.04	-0.000035	-0.000147	-1.47	11.25	0.000119	0.0000
	-0.72	-0.12		-0.000134	-1.41	11.28	0.000155	0.0000
	-0.74	-0.19		-0.000129	-1.32	11.30	0.000181	0.0000
	-0.74	-0.24		-0.000127	-1.20	11.30	C.CO0191	0.0000
	-0.73	-0.29		-0.000124	-1.07	11.30	0.000181	0.0000
805 24	-0.71	-0 36	0.000028	-0.000115	-0.94	11.30	0.000148	0.0000
	-0.69	-0.44		-0.000099	-0.84	11.30	0.000092	0.0000
	-0.66	-0.50		-0.000087	-0.76	11.30	0.000021	0.0000
	-0.64	-0.54		-0.000082	-0.74	11.30	-0.000056	0.0000
	-0.62	-0.56		-0.000C83	-0.78	11.30	-0.000123	0.0000
	-0.60	-0.59		-0.000038	-0.88	11.30	-0.000123	0.0000
	-0.60	-0.64				11.30		
				-0.000091	-1.01		-0.000211	0.0000
	-0.60	-0.69	-0.000020	-0.000092	-1.16	11.30	000246	0.0000
805 25	-0.61	-0.74		-0.000093	-1.30	11.30	xx0287	0.0000
	-0.63	-0.79		-0.000094	-1.45	11.30	-6.300334	0.0000
	-0.G5	-0.84		-0.000095	-1.62	11.30	-0.000373	o .0000
	-0.69	-0.89		-0.000095	-1.84	11.30	-0.000399	0.0000
	-0.73	-0.94		-0.000093	-2.C8	11.32	-0.000408	0.0001
	-0.77	-0.99	-0 000085	-0.000086	-2.32	11.35	-0.000404	0.0001
	-0.81	-1.04	-0.000035	-0.000074	~2.55	11.44	-0 .000395	0.0001
	-0.86	-1.09	-0.000106	-0.000057	-2.7€	11.55	-0.000379	0.0002
805 26	-0.92	-1.12	-0.000116	-0.000041	-2.56	11.70	-0.000355	0.0002
	-0.98	-1.14		-0.000027	-3.15	11.85	-0.000321	0.0002
	-1.05	-1.14		-0.000018	-3.32	12.02	-0.000281	0.0002
	-1.12	-1.14		-0.000012	-3.47	12.20	-0.000238	0.0003
	-1.20	-1.14		-0.000011	-3.59	12.38	-0.000138	0.0003
	-1.29	-1.14		-0.000016	-3.67	12.55		
	-1.38	-1.14		-0.000025			-0.000166	0.0003
	-1.47	-1.14		-0.000042	-3.74 -3.79	12.72 12.90	-0.000138 -0.000116	0.0003
006 07	- 4 - 6 - 7	4 46	2 000001	0.00000				
805 27	-1.57	-1.16		-0.000058	-3.84	13.10	-0.000101	9.0003
	-1.38	-1.19		-0.000071	-3.89	13.30	-0.000094	0.0004
	-1.80	-1.24		-0.000000	-3.91	13.52	-0 000036	0.0004
	-1.92	-1.29		-0.000085	-3.95	13.75	-0.000105	0.0003
	-2.03	-1.34		-0.000053	-3.99	13.98	-0.000115	0.0003
	-2.15	-1.39	-0.000214	-0.000092	-4.05	14.20	-0.000123	0.0002
	~2.26	-1.44	-0.000213	-0.000094	-4.12	14.34	-0.00G124	0.0002
	-2.37	-1.49	-0.000215	-0.000095	-4.19	14.45	-0.000118	0.0002
305 28	-2.47	-1.54	-0.000220	-0.000096	-4.26	14.52	-0.000103	0.0002
	-2.58	-1.59	-0.000229	-0.000096	-4.32	14.60	-0.000087	0.0002
	-2.70	-1.64		-0.000097	-4.37	14.72	-0.000071	0.0002
-	-2.82	-1.69		-0.000097	-4.40	14.85	-0.000057	0.0002
	-2.95	-1.74		-0.000034	-4.42	14.98	-0.000033	0.0001
	-3.10	-1.79		-0.000087	-4.44	15.10	-0.000011	0.0001
	-3.27	-1.84		-0.000077	-4.45	15.18	0.000022	0.0001
	-3.47	-1.89		-0.000067	-4.45	15.25	0.000059	0.0001
305 29	-3.69	-1.92		-0.000064	-4.41			
	-3.63	-1.94		-0.000067	-4.41 -4.25	15.30	0.000087	0.0001
	-4.17	-1.96				15.35	0.000101	0.0001
	-4.41			-0.000074	-4.27	15.40	0.000101	0.0001
		-1.99		-0.000082	-4.19	15.45	0.000000	0.0000
	-4.66	-2.04		-0.000090	-4.13	15.50	0.000079	0.0000
	-4.90	-2.09		-0.000100	-4.09	15.55	0.000074	0.0000
	-5,14 -5,39	-2.14 -2.19		-0.000112	-4.0G	15.58	0.000078	0.0000
				-0.000123	-4.03	15.60	0.000095	0.0000

129 A.9 Curvatures

1805:30 to 1805:36 CDT

CDT	ζ	Ψ	C =0.0	34/∂\$	7	_θ_	Cves	a0/as
h m s	deg	deg	radian/m	radian/m	đeg	deg	radion/m	radien/m
1805 30	-5.63	-2.26	-0.000471	-0.000127	-4.00	15.60	0.000117	-0.00001
.005 00	-5.88	-2.34	-0.000471		-3.95	15.60		-0.000016
	-6.17	-2.42	-0.000477		-3.86	15.58		
	-G.35	-2.49			-3.77	15.55		-0.000027
			-0.000463					-0.000034
	-6.63	-2.54	-0.000460		-3.68	15.52		-0.000041
	-6.87	-2.59	-0.000458		-3.60	15.50		-0.000052
	-7.11	~2.66	-0.000455		-3.52	15.48		-0.000051
	-7.36	-2.74	-0.000448	-0.000167	-3.44	15.45	0.000152	-0.000064
1805 31	-7.60	-2.84	-0.000439	-0.000175	-3.35	15.40	0.000159	-0.000062
	-7.84	-2.94		-G.000180	-3.28	15.35		-0.000057
	-8.06	-3.04		-0.000186	-3.20	15.32		-0.000055
	-8.28	-3.14			-3.10	15.30		-0.000062
	-8.49			-0.000195				
		-3.24		-0.000212	-2.98	15.28		-0.000073
	-8.7C	-3.34		-0.000237	-2.84	15.25		-0.000089
	-8.89	-3.46		-0.000268	-2.71	15.20		-0.000107
	-9.C8	-3.59	-0.000328	-0.000305	-2.53	15.15	0.000240	-C.000128
1805 32	-9.24	-3.76	-0.000310	-0.000340	-2.46	15.03	0.000253	-0.000144
	-3.40	-3.94		-0.000369	-2.34	15.00		-0.000151
	-9.56	-4.16		-0.000388	-2.20	14.90		-0.000155
	-9.70	-4.39		-0.000400	-2.05	14.80		-0.000159
	-9.83	-4.62		-0.000403	-1.83	14.72		-0.000172
	-9.95	-4.84		-0.000405				-0.000112
					-1.71	14.65		
	-10.07	-5.06		-0.000418	-1.55	14.56.		-0.000221
•	-10.18	-5.29	-0.000181	-0.000421	-1.42	14.45	0.000131	-0.000244
1802 33	-10.28	-5.52	~0.000158	-0.000425	-1.34	14.30	0.000079	.0.000257
	-10.35	-5.74	-0.000133	-0.000434	-1.30	14.15	-0.000004	-0.000259
	-10.41	-5.96	-0.000128	-0.000439	-1.31	14.00	-0.000095	-0.000250
	-10.47	-6.19	-0.000128	-0.000434	-1.37	13,85	-0.000191	-0.000230
	-10.52	-6.44	-0.000135	-0.000417	-1.48	13.72		-0.000205
	+10.58	-6.69	-0.000146	-0.000387	-1.65	13,60		-0.000176
	-10.65	-6.30		-0.000358	-1.87	13.52		-0.000149
	-10.75	-7.09		-0.000334	-2,11	13.45		-0.000124
1805 34	-10.84	-7.24	-0.200152	-0.000244		42.40	-0.000316	-0.000000
1809 34			-0.000152		-2.32	13.40		-0.000096
	-10.93	-7.39		-0.000286	-2.50	13.35		-0.000064
	-11.01	-7.54		-0.000155	-2.64	13.32		-0.000027
	-11.08	-7.69	-0.000136		-2.77	13.30	-0.000302	0.000015
	-11.16	-7.80		-0.000181	-2.91	13.32	-0.000315	0.000055
	-11.22	-7.89	-0.000137	-0.000153	-3.06	13,35	-0.000326	0.000093
	-11.29	-7.94	-0.000141	-0.000133	-3.23	13.42	-0.000322	0.000129
	-11.37	-7.99	-0.000148	-0.000121	-3.41	13.50	-0.000294	0.000166
1805 35	-11.44	-6.04	-0.000154	-0.000112	-3,59	13.60	-0.000236	0.000201
	-11.53	-8.09	-0.000153		-3.74	13.70	-0.000145	
	-11.62	-8.14		-0.000102	-3.84	13.84	-0.000030	0.000242
	-11.71	-3.19						
				-0.000100	-3.87	14.00	0.000104	0.000232
	-11.79	-8.24	-0.000044		-3.81	14:1G	0.000235	. 0 . 000207
	-11.64	-8.29		-0.000116	-3.66	14.30	0.000352	0.000169
	-11.84	-8.34		-0.000140	-3.43	14.38	0.000445	0.000128
	-11.78	-8.39	0.000213	-0.000172	-3.15	14.45	0.000508	G 700086
1805 36	-11.67	-8.48	0.000312	-0.000198	-2.83	14.48	0.000539	0.000044
	-11.EO	-a.59		-0.000209	-2.50	14.50	0.000533	
	-11.27	-8.74		-0.000203	-2.17	14.48		-0.000031
•	-10.99	-8.89		-0.000181				
	-10.88	-9.00			-1.87	14.45		-0.000068
				-0.000149	-1.62	14.40		0.000113
	-10.02	-9.09		-0.000107	-1.45	14.35		-0.000170
	-9,93	-9.14		-0.000048	-1.34	14.26		-0.000232
	-9.65	-9.19	0.000650	0.000031	-1.26	14.15	0.000246	-0.000296

1805:37 to 1805:43 CDT

CDT	ζ	Ψ	Cuon	<u> </u>	_ 7		Cven	<i>98/8</i> \$
h m s	deg	deq	radian/m	redian/m	deg	deg	rodian/m	radian."m
						····		
1805 37	-9.30	-9.18	0.000662	0.000125	-1.18	13.96	0.000255	-0.000343
	-8.94	-9.14	0.000663	0.000230	-1.07	13.75		-0.000367
	-8.57	-8.98	0.000649	0.000329	-0.93	13.50	0.000261	-0.000389
	-8.21	-8.79	0.000616	0.000417	-0.77	13.25	0.000236	-0.000428
•	-7.87	-8.50	0.000569	0.00485	-0.62	13.04		-0.000498
	-7.57	-8.19	0.000514	O.∪00527	-0.49	12,55		-0.000595
	-7.30	-7.84	0.000456	0.000546	-0.41	12.55		-0.000685
	-7.08	-7.49	0.000401	0.000545	-0.38	12.15	0.000059	-0.000754
1805 38	-6.90	-7.1G	0.000350	0.000526	-0.38	11.64	0.000042	-0.000800
	-6.74	-G.84	0.000303	0.000493	-0.39	11.15	0.000045	-0.000335
	-5.61	-6.56	0.000257	0.000449	-0.40	10.68	0.000058	-0.00C379
	-6.50	-6.29	0.000215	0.000396	-0.38	10.20		-0.600941
	-6.41	-6.08	0.000177	0.000341	-0.34	9.68		-0.001009
	-6.34	-5.39	0.000144	0.000287	.0.29	9.15		-0.001077
	-6.30	-5.76	0.000120	0.000238	-0.22	8.53		-0.CO1125
	-6.27	-5.64	0.000105	0.000195	-0.18	7.85	-0.000113	-0.001143
1805 39	-6.25	-5.56	0.000097	0.000160	-0.20	7.14		-0.001136
	-G.23	-5,49	0.000094	0.000129	-0.32	6.45	-0.000405	
	-6.21	-5.44	0.000089	0.000098	-0.55	5.82		-0.001073
	-6.17	-5.39	0.000083	0.000065	-0.90	5.20		-0.001024
	-G.14	-5.36	0.600074	0.000027	-1.36	4.62		-0.000959
	-6.10	-5.34		-0.000019	-1.89	4.05		-0.000879
	-6.08	-5.36		-0.000065	-2.45	3.56		-0.000753
	-6.07	-5.39	0.000040	-0.000109	-3.03	3.10	-11,000903	•0.000703
1805 40	-6.06	-5.48		-0.000140	-3.60	2.74		-0.000610
	-6.06	-5.59		-0.000157	-4.14	2.40		-0.000515
	-6.07	-5.72		-0.000155	-4.65	2.14		-0.000418
	-6.07	-5.84		-0.000167	-5.09	1.90		-0.000322
	-6.03	-5.94	-0.000011		-5.46 -5.78	1.76		-0.000236
	-6.11 -6.15	-6.04 -6.14	-0.000022 -0.000028		-6.08	1.65 1.62		-0.000165 -0.000114
	-6.20	-6.24	-0.000029		-6,37	1.60		-0.000084
	0.20		0.005626	0.000.00	0,0.		0.00000	0.00000
1805 41	-6.25	-6.32	-0.000027	-0.000120	-6.66	1.60	-0.000529	-0.000072
	-6.30	-6.39	-0.000u24		-6.96	1.GO		-0.000077
	-6.33	-6.44	-0.000022		-7.24	1.58		-0.000098
	-6.37	-6.49	-0.000019		-7.53	1.55		-0.000135
	-6.40	-6.54	-0.000014		-7.82	1.48		-0.000179
	-6.44	-6.59	-0.000007 -0.000000		-8,13 -8,44	1.40 1.24		-0.000223
	-6.47 -6.49	-6.G4 -6.G9		-0.000102	-8.75	1.05		-0.000279
4005 45								
1805 42	-6.51	-6.76		-0.000096	-9.05 -0.34	0.84		-0.000295
	-6.52	-6.84 -6.90		-0.000084	-9.34 -9.61	0.65		-0.000304
	-6.54 -6.55	-6.90 -6.94		-0.000074 -0.000070	-9.61 -9.93	0.46 0.25		-0.000320 -0.000354
	-6.56	-6.96		-0.000070	-9.93	0.04		-0.000403
	-6.57	-6.99		-0.000074	-10.05	-0,15		-0.000478
	-6.59	-7.04		0.00076	-10.05	-0.43		-0.000544
	-6.60	-7.09		-0.000077	-10.01	-0.80		-0.000591
1805 43	-6.62	-7 44	0.000000	-0.000079	-9.97	-1.26	0.00000	-0.000047
.003 43	-6.64	-7.14 -7.19		-0.000078 -0.000078	-9.93	-1.70		-0.000617 -0.000623
	-6.67	-7.24		-0.000078	-9,91	-2.12		-0.000632
	-6.70	-7.29		-0.000073	-9.90	-2.55		-0.000652
	-6.74	-7.34		-0.000073	-9.90	-2.96		-0.000588
	-6.77	-7.29	0.000024	-0.000061	-9.91	-3.35	-0.000066	-0.000739
		-7.29 -7.44	0.000030	-0.000061 -0.000041 -0.000014	-9.91 -9.94	-3.35 -3.81 -4.35		-0.000739 -0.000768

1805:44 to 1805:50 CDT

CDT	ξ	3	Crcs	9¥/əs			Cven	<u> </u>
h m s	deg	Čeg	redian/m	m\noiton	deg	deg	mdian/m	m\neiber
1805 44	-5.83	-7.50	0.000046	0.000009	-10.11	-4.96	-0.000202	-0.000848
	-6.84	-7.49	0.000053	0.000025	-10.25	-5.55		-0.000850
	-6.63	-7.44	0.000061	0.000032	-10.44	-6.14		-0.000825
	-6.82	-7.39	0.000071	0.000033	-10.65	-6.75	-0.000320	-0.0007G4
	-6.81	-7.36	0.000083	0.000030	-10.88	-7.33		-0.000669
	-6.79	-7.34	0.000096	0.000020	-11.14	-7.85		-0.000548
	-6.75	-7.32	0.000106	0.000001	-11.45	-8.21		-0.000416
	-6.70	-7.29	0.000110	-0.000024	-11.70	-8.50	-0.00418	-0.000277
1805 45	-6.64	-7.30	0.000111	-0.000046	-12.00	-8.63	-0.000427	-0.00137
	~6.59	-7.34	0.000110	-0.000061	-12.32	-8.70	-0.00/430	0.000004
	-6.54	-7.42		-0.000074	-12.63	-8.63	-0.00/ 130	0.000146
	-6.50	-7.49		-0.000091	-12.93	-8.50	-0.000430	0.000292
	-6.45	-7.54	0.000103	-0.000116	-13.23	-8.23	-0.000428	0.000444
	-6.40	-7.59	0.000037	-0.000144	-13,53	-7.90	-0.000418	0.000605
	-6.36	-7.70		-0.000164	-13.84	-7.41	-0.000389	0.000759
	-6.32	-7.84	0.000078	-0.000174	-14.14	-6.85	-0.000334	0.000893
1805 46	-6.30	-8.00	0.000071	-0.000177	-14.41	-6.09	-0.000257	0.000984
1555 15	-6.28	··8.14		-0.000177	-14.62	-5.25	-0.000161	0.001026
	-6.27	-3.26		-0.000174	-14.74	-4.35	-0.000062	0.001040
	-6.27	-8.39		-0.000169	-14.77	-3.50	0.000033	0.001044
	-6.26	-8.52		-0.000161	-14.70	-2.74	0.000118	0.001052
	-G.26	-8.G4	0.000050	-0.000154	-14.56	-2.00	0.000192	0,001059
	-6.27	-8.74		-0.000150	-14.37	-1.23	0.000258	0.001046
	-G.28	-8.84	0.000057	-0.000152	-14.14	-0.40	0.000316	0.001011
1805 47	-6.29	-8.94	9.000064	-0.000154	~13.87	0.41	0.000369	0.000959
	-6.28	-9.04		-0.000154	-13,56	1.15	0.000418	0.000000
•	-6.27	-9.16	0.000073	-0.000149	-13.23	1.78	0.000467	0.000344
	-€.25	-9.29	0.000073	-0.000138	-12.CG	2.40	0.000518	0.000790
	-6.23	-9:40	0.000069	-0.000129	-12.46	2.96	0.000574	0.000735
	-G.21	-9.49		-0.000126	-12.02	3.50	0.000636	0.000677
	-6.20	-9.56		-0.000124	-11.53	3.98	0.000699	0.000610
	-6.20	-9.64	0.000048	-0.000122	-10.99	4.45	0.000757	0.000527
1805 48	-G.22	-9.74	0.000042	-0.000113	-10.39	4.84	0.000795	0.000430
	-6.24	-9.64	0.000037	-0.00009G	-9.74	5.20	0.000305	0.000324
	-6.26	-9.92	0.000033	-0.000077	-9.06	5.41	0.000752	0.000211
	-6.29	-9.99		-0.000057	-8.40	5.55	0.000748	0.000086
		-10.02		-0.000038	-7.79	5.56		-0.000046
		-10.04		-0.000020	-7.25	5.55		-0.000182
	-6.37			-0.000001	-6.78	5.35		-0.000301
	-6.33	-10.04	0.000057	0.000021	-6.34	5.05	0.000577	-0.000393
1805 49		-10.02	0.000069	0.000044	-5.92	4.60	0.000545	-0.000457
	-6.36	-9.09	0.000079	0.000066	-5.52	4.15		-0.000499
•	~6.32	-9.92	0.000035	0.000087	-5.14	3.70		-0.000534
•	-6.29	-9.64	0.000090	0.000105	-4.77	3.25		-0.000562
	-6.25	-9.74	0.000094	0:000117	-4.43	2.78		-0.000576
	-6.20	-9.64	0.000098	0.000120	-4.13	2.30		-0.000572
	-G.15 -G.10	-9.52 -9.39	0.000103	0.000108	-3.87 -3.64	1.80		-0.000546
	3.10	-3.35	0.000108	0.000002	-3.04	1.30	0.000242	0.000498
1805 50	-6.04	-9.30	0.000114	0.000048	-3.46	0.28		-0.000438
	-5.98	-9.24 -0.00	0.000117	0.000011	-3.33	0.50	0.000124	-0.000370
	-5.90 -5.82	-9.26		-0.000021	-3.25 -2.22	0.24		-0.000288
	-5.74	-9.29 -9.36		-0.000044	-3.22 -3.25	0.00	-0.000020	-0.000187
	-5.68	-9.44		-0.000061	-3.25	-0.25	-0.000020	0.000071
	-5.62	-9.52		-0.000079	-3.39	-0.15	-0.000033	0,000198
	-5.57	-9.59		-0.000039	-3.47	0.05	-0.000022	0.000305

1805:51 to 1805:57 CDT

CDT	ζ	Ψ	Crea	_ ∂Ý/∂S_	7	8	Cven	38/35
h m s	dog	deg	rodign/m	radion/m	deg	deg	radion/m	rodian/m
			100.000	103.007				
1805 51	-5.53	-6.66		-0.000038	-3.52	0.44	0.000011	0.600088
	-5.49	-9.74		-0.000106	-3.53 -2.54	0.85	0.0000259	0.000450
	-5.47 -5.46	-9.34 -9.94	0.000042 0.000023	-0.000113	-3.51 -3.42	1.30 1.75	0.000119	0.000493
		-10.04	-0.000003		-3.26	2.24	0.000184	0.600490
		-10.14	-0.000065		-3.02	2.75	0.000335	0.000426
		-10.26		-0.000113	-2.73	3.19	0.000520	0.000323
		-10.39		-0.000095	-2.38	3.55	0.000601	0.000188
1805 52 3		-10.48	-0.000177		-1.27	3.69	0.000618	0.000041
¥		-10.54	-0.000117		-0.31	3.75		-0.000106
- T		-10.56	-0.000055	-0.000047	0.37	3.57		-0.000233
[3		-10.53	-0.000040	-0.000032	0.69	3.30		-0.000328
ā		-10.62	-0.000066	-0.000013	0.73	2.88	0.000074	
1		-10.64	-0.000101	0.000007	0.59 0.43	2.45	-0.000003	
		-10.62 -10.59	-0.000116 -0.00094	0.000027	0.43	2.02 1.60	-0.000056 -0.000031	
•	4.76	10.53	0.000034	0.000040	0.23		0.00031	5.00371
1805 53	-7.01	-10.54	-0.000044	0.000073	0.14	1.26	-0.000034	-0.000322
	-6.91	-10.49	-0.000004	0.000099	0.02	0.95	-0.000100	
	-6.90	-10.40	0.000001	0.000122	-0.08	0.76	-0.000103	-0.000207
		-10.29	-0.000015	0.000137	-Q. 14	0.60	-0.000104	
		-10.14	-0.000041	0.000139	-0.24	0.52	-0.000102	
2	-6.61	-9.99	-0.000061	0.000110	-0.35	0.45	-0.000099	-0.000029
√.	-6.94	-9.86	-0.000053	0.000070	-0.42	0.46	-0.000036	0.000025
· ·	-7.10	-9.74	-0.000018	0.000030	-0.49	0.50	-0.000093	0.000067
1805 54	-7.60	-9.68	0.000011	-0.000010	-0.56	0.62	-0.000088	0.000094
	-7.08	-9.84		-0.000027	-0.65	0.75	-0.000078	0.000107
	-7.07	-9.84		-0.000035	-0.72	0.88	-0.000059	0.000108
ľ	-6.80	-9.94	-0.000040	-0.600044	-0.76	1.00	-0.000036	0.000097
i	-G.79	-9.94	-0.000061	-5.000058	-0.83	1.10	-0.000019	0.000073
N .		-10.04	-0.000059		-0.86	1.20	-0.000011	0.000038
•		-10.04	-0.000041		-0.78	1.24	-0.000007	-0.000003
	-7.20	-10.14	-0.000025	-0.000078	-0.72	1.25	0.600006	-0.000047
1805 55	-7 20	-10.24	-0.000016	-n 0000a1	-0.77	1.18	0.000056	-0.000089
,,,,,		-10.24	-0.000011		-0.84	1.10		-0.000077
		-10.34	-0.000008		-0.80	0.96	0.000298	0.000051
		-10.44	-0.000014		-0.68	03.0	0.000432	0.000176
		-10.54		-0.000112	-0.34	0.62	0.000502	0.000244
R	-7.19	-10.64	-0.000067	-0.000115	0.34	1.00	0.000471	0.000272
- TO	-7.21	-10.74	-0.000077		1.18	2.00	0.000348	0.000098
3rd	-7.23	-10.84	-0.000043	-0.000145	1.77	2.00	0.000180	-0.000037
	_							
1805 56		-10.94		-0.000168	1.91	2.00		-0.000135
Ĭ		-11.04		-0.000193	1.74	2.00	-0.000117	
Š		-11.24		-0.000221	1.48	1.00	-0.000221	
Į		-11.44	-0.000032	-0.000242	1.19	1.00	-0.000302	
~		-11.64		-0.000262	0.86	1.00	-0.000361	
		-11.84 -12.14		-0.000778	0.50	0.00	-0.000396	
		-12.14	-0.000023 -0.000027	-0.000349	0.09 -0.32	0.00	-0.000410	
	7.52	14.54	0.050027	3.000401	-0.32	0.00	-0.000406	-0.000033
1805 57	-7.29	-12.64	-0.000035	-0.000477	-0.68	0.00	-0.000357	-0.000061
		-13.14		-0.000539	-0.98	0.00	-0.000353	
	-7.G4	-13.44		-0.000532	-1.30	0.00	-0.000307	
		-14.04		-0.000732	-1.57	0.00	-0.000250	
		-14.54	0.000031	-0.000799	-1.76	0.00	-0.000185	-0.000012
هم		-15.24	0.000017	-0.000866	-1.37	0.00	-0.000114	B00000.0=
£		-16.04		-0.000050	-1.96	0.00	-0.000039	
<u> </u>	-1.41	-16.84	-0.000048	-0.001014	-1,99	0.00	0.000035	-0.000004

Total energy was computed as TE = PE + KE, where PE and KE are potential and kinetic energy, respectively, defined in (L), Appendix 1. The first contact height, Z_{1st} = 567.1 it is the height of the accelerometer at 1805:52.

1804:58 to 1805:03 CDT

CD	r	Corrected	Airspead	True Ai	rspeed	GVL	KE	Z - Z	PΕ	TE	6TE /d1	EPR
hm	5	kts	m/s	kts	m/s	fn / 8	m²/s²	EU.	F02/82	m*/s*	m²/s²	
										•		
1804	58	152.9	78.7	164.1	84.5	67.0	3787	342.3	3354	7141	-58.1	1.020
		152.9	78.7	164.1	84.5	87.0	3786	341.7	3348	7134	-59.0	1.090
		152.9	78.7	164.2	84.5	87.0	3785	341.0	3341	7126	-59,5	1.090
		152.9	78.7	164.2	84.5	87.0	3785	340.3	3335	7120	-59.5	1.030
		153.0	78.7	164.2	34.5	87.0	3784	339.7	3328	7112	-59.3	1.090
		153.0	78.8	164.2	84.5	87.0	3783	339.0	3322	7105	-59.5	1.090
		153.0	78.8	164.3	84.6	87.0	3782	333.4	3315	7097	-59.9	1.090
		153.0	78.8	164.3	84.6	87.0	3780	337,7	3309	7089	-60.4	1.090
1804	59	153.0	78.8	164.2	84.6	85.9	3779	337.1	3303	7082	-61.1	1.090
		153.0	78.8	164.2	84.5	86.9	3773	335.4	3296	7074	-61.3	1.090
		153.0	78.7	164.2	84.5	86.9	3776	335.8	3250	7006	-G2.7	1.090
		152.9	78.7	164.1	84.5	86.9	3775	335.1	3284	7059	-63.2	1.090
		152.9	73.7	164.1	64.5	86.9	3773	234.5	3277	7050	-63.4	1.C90
		152.9	78.7	164.1	64.5	86.9	3772	333.8	3271	7043	-63.5	1.090
		152.9	78.7	164.1	84.5	86.8	3770	333.2	3264	7034	-63.8	1.090
		152.9	78.7	164.1	84.5	86.8	3768	332.5	3258	7026	-63.9	1.090
1805	00	152.9	78.7	164.0	84.4	86.8	3767	331.9	3252	7019	-63.9	1.090
		152.8	78.7	164.0	84.4	85.8	3765	331.2	3245	7010	-64.1	1.090
		152.8	78.6	163.9	84.4	86.8	3764	330.6	3239	7003	-54.4	1.090
		152.7	73.G	163.9	84.4	86.7	2762	329.3	3232	6994	-64.7	1.090
		152.6	78.6	163.8	84.3	86.7	3760	329.2	322G	6985	-64.4	1.020
		152.G	78.5	163.7	84.3	86.7	3759	328.6	3219	6978	-63.8	1.090
		152.6	78.5	163.7	84.3	86.7	3758	327.9	3213	6971	-63.0	1.090
		152.5	78.5	163.6	34.2	86.7	3756	327.2	3206	6962	-62.7	1.090
1805	01	152,5	78,5	163.6	84.2	86.7	3755	326.6	3200	6955	-62.8	1.090
1005	01	152.5	78.5	163.6	84.2	86.6	3754	325.9	3193	6947	-63.3	1.090
		152.6	78.5	163.7	84.3	86.€	3753	325.2	3186	6939	-63.8	1.690
		152.6	78.6	163.7	84.3	86.6	3751	324.5	3180	€931	-64.3	1.090
		152.7	78.6	163.8	84.3	86.6	3750	323.3	3173	6923	-64.9	1.030
		152.8	78.6	163.9	84.4	86.6	3749	323.2	3166	6914	-65.6	1.090
		152.9	78.7	164.0	84.4	86.6	3747	322.5	3160	6907	-65.8	1.090
		152.9	70.7	164.1	84.5	86.5	3745	321.8	3153	6893	-65.1	1.090
1805	റാ	153.0	18.3	164.1	84.5	86.5	3744	321.1	3146	6890	-64.0	1.090
.003	02	153.0	78.8	164.2	84.5	86.5	3743	320.5	3140	6883	-62.8	1.090
		153.1	78.8	164.3	84.6	86.5	3741	319.8	3133	6874	-61.7	1.090
		153.2	78.9	164.4	84.5	36.5	3740	319.1	3127	6867	-60.8	1.090
		153.3	78.9	164.4	84.7	86.5	3739	318.4	3127	6859	-60.4	1.090
		153.4	79.0	164.5	84.7	86.5	3738	317.8	3114	6852	-60.6	1.090
		153.4	79.0	164.6	84.7	86.5	3737	317.1	3107	6844	-61.1	1.090
		153.5	79.0	164.6	54.7	86.4	3736	316.5	3101	6837	-61.6	1.090
1805	03	153.5	79.0	164.7	84.5	86.4	3735	315.8	3094	6829	-62.0	1,090
.005	03	153.5	79.1	164.7	84.8	86.4	3733	315.1	3088	6821	-62.5	1.090
		153.6	79.1	164.8	84.8	86.4	3733	314.5	3038	6813	-62.8	
		153.7	79.1	164.8	84.8	86.4	3732	313.8	3075	6805	-62.8	1.090
		153.8	79.1	164.9	84.9	86.4	3730	313.8	2069	6805 6798	-62.4	1.000
		153.8	79.2	165.0	84.9	86.3	3728	312.6	3063	6790	-59.4	1.090
		153.9	79.2	165.1	85.0	86.3	3726	311.9	3036	6782	-53.0	1.090
		154.0	79.3	165.1	85.0	86.3	2725	311.3	3030	G775	-57.1	1.090
									34,50	0,13		1.050

1805:04 to 1805:10 CDT

CDT	Corrected	Airspeed	True Airspeed		GVL KE		Z - Z	PE	TE	dTE/dt	EFR
hm s	kts	m/s	kts	m/s	m/1	m"/s"	,m	rn*/s*	m ⁷ /s ^t	mº/8³	·
1805 04	154.0 154.1 154.1 154.2 154.3 154.4 154.4	79.3 79.3 79.4 79.4 79.5 79.5	165.1 165.2 165.3 165.4 165.4 165.5 165.6	85.0 85.1 85.1 85.1 85.2 05.2 85.2 85.3	85.3 866.3 866.2 866.2 866.2	3724 3723 3722 3721 3719 3718 3716 3714	310.7 310.1 309.5 308.9 308.3 307.7 307.1 306.5	3044 3033 3032 3026 3020 3014 3009 3003	6768 6761 6754 6747 6739 6732 6725 6717	-56.8 -57.0 -57.7 -58.5 -59.2 -59.6 -60.1	1.090 1.090 1.090 1.090 1.090 1.090 1.090
805 05	154.6 154.7 154.7 154.8 154.8 154.9 155.0	79.6 79.6 79.7 79.7 79.7 79.8 79.8	165.7 165.8 165.9 165.9 165.0 166.0	85.3 85.4 85.4 85.4 85.5 85.5	86.2 86.1 86.1 86.1 86.1 86.1	3712 3711 3709 3708 3706 3705 3703 3702	305.9 205.3 304.8 304.2 303.6 303.1 302.5 302.0	2997 2992 2986 2981 2975 2970 2964 2959	6709 6703 6695 6689 6681 6675 6667	-59.4 -58.1 -56.8 -55.8 -55.3 -54.9 -54.5 -53.7	1.090 1.090 1.090 1.090 1.090 1.090
1805 OG	155.0 155.1 155.2 155.5 155.8 156.2 156.6 157.0	79.8 79.8 79.9 80.0 80.2 80.4 80.6 60.8	166.1 166.2 166.4 166.6 167.0 167.3 167.8 168.2	85.5 85.6 85.6 85.8 86.0 66.1 86.4 86.6	86.0 86.0 86.0 86.0 86.0 86.0	3700 3699 3698 3697 3696 3695 3694 3693	301.4 300.9 300.4 299.8 299.3 298.3 298.3	2954 2948 2943 2938 2933 2927 2922 2917	6654 6647 6641 6635 6629 6622 6610	-52.4 -51.0 -50.0 -49.4 -49.1 -48.8 -48.7	1.090 1.090 1.090 1.090 1.090 1.090 1.090
1805 07	157.4 157.8 157.9 150.1 158.1 158.1 158.1	81.0 81.2 81.3 81.4 81.4 81.4 81.4	168.7 169.0 169.2 169.3 169.4 169.4 169.3	86.8 87.0 87.1 87.2 87.2 87.2 87.2	85.9 85.9 85.9 85.9 85.9 85.9	3692 3691 3690 3689 3688 3686 3686	297.2 296.7 296.2 295.7 295.2 294.7 294.2 293.7	2912 2907 2902 2897 2693 2888 2888 2878	6604 6598 6592 6586 6581 6575 6569 6563	-49.0 -48.8 -48.2 -47.7 -47.5 -47.6 -47.9	1.090 1.090 1.090 1.090 1.090 1.090 1.090
1805 O8	158.0 157.9 158.0 158.1 158.2 158.4 158.6 159.8	81.3 81.3 81.4 81.4 81.5 81.6 81.7	169.3 169.2 169.2 169.5 169.6 169.6 169.9	87.1 87.1 87.1 87.1 87.2 87.3 87.4	65.8 65.8 65.8 85.8 85.8 85.8	3681 3682 3682 3681 3681 3681 3680 3680	293.2 292.7 292.2 291.7 291.1 290.6 290.1 289.6	2873 2868 2863 2858 2853 2848 2842 2842	G557 6551 6545 6540 6534 6529 6522 6517	-47.3 -46.1 -45.2 -44.8 -11.6 -43.8 -41.9	1.090 1.090 1.090 1.090 1.090 1.090 1.090
1805 C9	159.0 159.2 159.4 159.5 159.7 159.8 160.0	81.3 82.0 82.0 82.1 82.2 82.3 82.4 62.5	170.3 170.5 170.6 170.8 171.0 171.1 171.3	87.6 87.8 87.9 87.9 88.0 88.1 88.2 86.3	85.8 85.8 85.8 85.8 85.8 85.8	3681 3681 3682 3683 3684 3685 3687 3688	289.1 288.6 288.0 287.5 287.0 286.5 286.0 285.4	2832 2827 2822 28:7 28:12 28:07 28:02 27:97	6513 6508 6504 6500 6496 6492 6489 6485	-37.6 -36.1 -34.7 -32.9 -30.8 -28.7 -27.0 -26.2	1.090 1.090 1.090 1.090 1.090 1.090 1.090
1805 10	160.4 160.6 160.8 161.1 161.4 161.7 162.0 162.2	82.6 82.7 82.8 82.9 83.1 83.2 83.4 83.5	171.7 171.0 172.2 172.6 172.8 173.4 173.4	88.4 88.5 68.6 68.8 69.0 69.1 65.2 69.4	85.9 85.9 85.9 86.0 86.0 86.0	3690 3692 3693 3694 3695 3696 3897	284.9 284.4 283.9 283.4 282.9 282.4 281.9 231.4	2792 2787 2782 2777 2772 2767 2762 2757	6482 6479 6475 6471 6467 6469 6459	-26.4 -27.4 -28.8 -30.4 -32.0 -33.9 -36.2 -38.7	1.089 1.038 1.038 1.088 1.088 1.087 1.087

1805:11 to 1805:17 CDT

								1005.	11 (0	1005117	00.
CDT	Corrected	d Airspeed	True Ai	rspeed	GVL	KE	Z - Z	PE	ŢΕ	dTE/dt	EPR
h m s	kts	m/s	kts	m/s	m/s	m²/s²	กา	m²/s²	m²/s²	m /៉ាន្	
1805 11	162.4 162.7 162.9 163.1 163.3 163.5 163.6 163.7	83.6 83.7 83.8 84.0 64.1 84.2 84.2	173.8 174.1 174.3 174.5 174.7 174.9 175.0	59.5 89.6 69.7 80.8 90.0 90.0 90.1	85.0 86.0 86.0 86.0 86.0 86.0 85.9	3697 3696 3696 3695 3695 3693 3693	280.9 280.4 279.9 279.4 278.9 278.4 277.9 277.4	2753 2748 2743 2738 2733 2728 2723 2718	6450 6444 6439 6433 6428 6422 6416	-40.7 -42.0 -43.1 -44.2 -44.7 -44.7 -44.8 -45.9	1.087 1.057 1.086 1.086 1.086 1.085 1.085
1605 12	163.8 163.9 163.9 163.9 163.9 163.9 163.8 163.6	84.3 84.4 84.4 84.4 84.4 84.3	175.2 175.2 175.3 175.3 175.3 175.2 175.1 174.9	90.2 90.2 90.3 90.2 90.2 90.2 90.1	85.9 85.9 85.9 85.9 85.9 85.8 85.8	3692 3691 3689 3688 3686 2684 3681 3679	276.9 276.4 275.9 275.4 274.8 274.3 273.7 273.1	2713 2708 2703 2698 2693 2687 2682 2676	6405 6399 6392 6366 6379 6371 6363 6355	-47.8 -50.0 -52.5 -55.5 -59.2 -63.3 -67.3 -71.7	1.084 1.084 1.034 1.083 1.083 1.082 1.032
1805 13	163.4 163.2 162.9 162.7 162.4 162.1 161.9	84.1 84.0 83.9 83.7 83.6 83.5 83.4	174.7 174.4 174.1 173.8 173.5 173.2 172.9 172.8	89.9 89.6 89.5 89.3 89.1 89.0	85.7 85.7 85.6 85.6 85.5 85.5	3676 3673 3669 3665 3662 3658 3655 3655	272.4 271.7 271.0 270.3 269.6 268.8 268.1 267.3	2669 2663 2656 2649 2641 2634 2627 2619	6345 6336 6325 6314 6303 6292 6282	-76.8 -81.9 -85.4 -86.5 -85.9 -85.0 -84.5	1.080 1.080 1.079 1.078 1.078 1.077 1.076
1605 14	161.8 161.7 161.6 161.7 161.8 161.9 162.1	83.3 83.2 83.2 83.2 83.3 83.4 83.4	172.7 172.6 172.5 172.5 172.6 172.3 172.9	88.9 88.8 88.8 88.9 88.9 89.0	85.4 85.4 85.4 85.3 85.3 85.3 85.3	3649 3646 3644 3642 3640 3638 3637 3636	266.5 265.8 265.0 264.3 263.6 262.9 262.2 261.6	2612 2604 2597 2590 2583 2576 2569 2563	6261 6250 6241 6232 6223 6214 6206 6199	-81.8 -79.3 -76.2 -72.6 -68.7 -64.6 -61.3	1.074 1.073 1.073 1.072 1.072 1.071 1.070
1805 15	162.5 162.7 162.9 163.1 163.4 163.6 164.0	83.6 83.8 83.9 84.0 84.1 84.2 84.4	173.3 173.5 173.7 173.9 174.2 174.4 174.8 175.1	89.2 89.3 89.4 85.5 89.7 89.8 90.0	85.3 85.2 85.2 85.2 85.1 85.1 85.1	3634 3633 3630 3627 3624 3621 3617 3613	261.0 260.4 259.3 259.3 258.7 258.2 257.6 257.1	2557 2551 2546 2540 2535 2529 2524 2519	6191 6184 6176 6167 6159 6150 6141 6132	-60.8 -63.1 -65.9 -68.3 -69.7 -70.3 -69.8 -69.0	1.067 1.065 1.066 1.055 1.064 1.062 1.061
1805 16	164.8 165.2 165.7 166.2 166.8 167.4 167.8	84.8 85.0 85.3 85.6 85.9 86.2 86.4 86.5	175.5 17G.0 17G.5 177.0 177.6 178.2 178.6 178.9	90.4 90.6 90.9 91.1 91.4 91.7 91.9 92.1	85.0 84.9 84.9 84.8 84.6 64.6	361C 3607 3603 3598 3593 3587 3580 2572	256.6 256.1 255.6 255.1 254.5 254.0 253.5 252.9	2514 2509 2504 2499 2494 2489 2484 2478	6124 6116 6107 6097 6097 6076 5064 6050	-63.5 -63.5 -72.5 -77.8 -85.7 -95.2 -104.4 -112.3	1.059 1.058 1.057 1.056 1.055 1.054 1.053
1805 17	168.6 169.4 170.2 170.9 171.4 171.9 172.4 172.8	86.8 87.2 87.6 68.0 88.2 83.5 88.7	179.4 180.2 181.0 161.7 182.2 182.7 183.2 183.6	92.4 92.8 93.6 93.8 94.1 94.3 94.5	84.4 84.2 84.2 84.1 84.0 83.9 83.7 83.6	3564 3555 3546 3536 3526 3516 3505 3494	252.3 251.6 250.9 250.1 249.3 246.5 247.7 246.9	2472 2465 2458 2451 2443 2435 2427 2419	6036 6020 6004 5987 5969 5951 5932 5913	-119.1 -126.2 -133.2 -139.2 -144.0 -148.5 -153.0 -157.6	1.050 1.049 1.049 1.048 1.047 1.045 1.044

1805:18 to 1805:24 CDT

CDT	Corrected Airspead		True Airspead		GVL	KE	Z - Z	PE	TE	dTE/dt	EPR
h m s	kts	m/s	kts	m/s	m/s	m²/s²	fn	m'/s'	m ^t /s ^t	m³/s³	
									٠		
805 18	173.1	19.1	183.9	84.7	83.4	3482	246.0	2411	5893	-161.4	1.042
	173.4	J9.3	184.2	94.8	83.3	3469	245.3	2403	5872	-163.7	1.041
	172.6	89.4	184.4	94.9	83.1	3456	244.5	2396	5852	-164.8	1.040
	173.8	89.5	184.5	95.0	83.0	3442	243.8	2383	5830	-164.3	1.039
	173.8	89.5	184.5	95.0	82.8	3429	243.1	2382	5811	-162.0	1.039
	173.3	89.5	184.5	95.0	82.G	3415	242.4	2375	5790	-153.4	1.03
	173.6	89.4	184.3	94.9	82.5	3402	241.8	2369	5771	-154.7	1.036
	173.4	89.3	184.1	€4.7	82.3	3388	241.2	2363	5751	-152.1	1.03
805 19	173.0	89.1	183.6	94.5	62.2	3375	240.6	2356	5733	-150.0	1.03
	172.6	88.8	183.2	24.3	82.0	3362	240.1	2353	5715	-148.3	1.03
	171.8	88.4	182.3	93.9	81.8	3348	239.6	2348	5696	-143.3	1.03
	170.8	87.9	181.2	93.3	81.7	3334	239.1	2343	5677	-150.5	1.03
	169.4	87.2	179.7	92.5	81.5	3320	233.6	2338	5658	-153.4	1.03
	167.9	86.4	178.2	91.7	81.3	3305	238.1	2333	5633	-155.3	1.029
	166.5	85.7	176.7	91.0	81.1	3291	237.7	2329	5620	-154.8	1.029
	165.1	85.0	175.3	90.2	80.9	3276	237.2	2324	5600	-153.1	1.02
805 20	164.1	84.5	174.1	89.G	80.8	3262	236.7	2319	5581	-151.0	1.027
	163.2	84.0	173.2	89.1	80.6	3248	236.2	2315	55G3	-149.2	1.02
	162.7	83.8	172.6	88.9	80.4	3234	235.8	2310	5544	-148.G	1.026
	152.3	83.5	172.1	88.6	E0.2	3220	235.3	2305	5525	-149.1	1.02
	162.0	83.4	171.8	88.5	80.1	3206	234.8	2301	5507	-150.7	1.02
	161.7	83.2	171.5	88.3	79.9	3191	234.3	2296	5487	-153.0	1.02
	161.4	83.1	171.2	68.1	79.7	3177	233.9	2292	5469	-155.5	1.024
	161.1	82.9	170.8	87.9	79.5	3162	233.4	2287	5449	-157.5	1.023
1805 21	160.7	82.7	170.4	87.7	79.3	3146	233.0	2283	5429	-159.3	1.02
	160.3	82.5	170.0	87.5	79.1	3131	232.5	2278	5409	-161.0	1.02
	159.6	82.2									
			169.3	87.1	78.9	3114	232.1	2274	5388	-152.0	1.023
	153.8	81.8	168.4	86.7	78.7	3098	231.7	2270	5366	-161.5	1.02
	157.9	81.3	167.4	86.2	78.5	3032	231.3	2266	5348	- 159.7	1.02
	156.9	80.8	166.3	85.6	78.3	3065	231.0	2263	5328	-156.8	1.02
	156.0	80.3	165.4	85.2	78.1	3049	230.6	2260	5309	-153.0	1.02
	155.3	80.0	164.7	84.8	77.9	3034	230.3	2257	5291	-148.9	1.02
805 22	155.0	79.8	164.3	84.6	77.7	3018	230.0	2254	5272	-146.0	1.02
	154.8	79.7	164.1	84.5	77.5	3003	229.7	2251	5254	-145.3	1.02
	154.9	79.7	164.2	84.G	77.3	2988	229.4	2249	5236	-146.1	1.02
	155.2	79.9	164.5	84.7	77.1	2972	229.1	2245	5217	-147.3	1.02
	155.6	80.1	165.0	84.9	76.9	2957	228.5	2242	5199	-146.3	1.023
	156.1	80.4	155.5	85.2	76.7	2941	228.5	2239	5180	-145.2	1.023
	156.5	80.6	165.9	€5.4	76.5	2926	228.3	2236	5162	-143.4	1.02
	156.8	80.7	166.1	85.5	76.3	2911	228.0	2234	5145	-141.0	1.02
805 23	156.8	80.7	166.1	85.5	76.1	2896	227.8	2231	5127	-138.9	1.02
	156.7	80.7	166.0	85.5	75.9	2891	227.5	2229	5110	-137.9	1.02
	156.1	60.3	165.3	65.1	75.7	2866	227.3	2227	5093	-137.5	1.02
	155. !	79.8	164.3	94.6	75.5	2851	227.0	2224	5075	-137.5	1.02
	153.6	79.1	162.7	83.7	75.3	2836	226.8	2222	5058	-135.1	1.03
	152.1	78.3	161.0	82.9	75.1	2822	226.6	2220	5042	-132.8	1.03
	150.6	77.5	159.5	82.1	74.S	2907	226.4	2218	5025	-128.5	1.03
	149.3	76.9	158.1	81.4	74.7	2793	226.2	-2216	5009	-122.6	1.03
805 24	148.4	7G.4	157.1	80.9	74.6	2780	226.0	2214	4994	-115.2	1.04
	147.7	76.0	156.3								
				8C.5	74.4	2768	225.9	2213	4951	-102.1	1.04
	147.2	75.8	155.8	€0.2	74.2	2756	225.7	2212	4968	-104.2	1.04
	146.0	75.6	155.3	80.0	74.1	2744	225.6	2210	4954	-103.8	1.04
	146.4	75.4	155.0	79.8	73.9	2732	225.5	2209	4941	-105.5	1.05
	146.1	75.2	154.6	79,6	73.8	2720	225.3	2208	1928	-107.0	1.05
	145.7	75.0	154.2	79.4	73.6	2703	225.2	2200	4914	-106.7	1.06
	145.3	74.8	153.8	79.2	73.4	2697	225.0	2205	4902	-106.5	1.06

i 4.

137 A.10 Energy

								1805:	25 to	1805:31	CDT
CDT	Corrected	Airspeed	True Air	spead	GVL	KE	Z - Z1.,	PE	TE	dTE/d1	EPR
h m s	kıs	m/s	kts	m/z	m/s	m²/s*	m	m²/s*	m ¹ /s ²	m*/s*	·············
1805 35	412.0	74.6	452.4	70 0	73.3	2685	224.8	2203	4888	-106.6	1.074
1505 25	144.9	74.6 74.4	153.4 152.3	78.9 78.7	73.1	2674	224.6 224.6	2201	4875	-105.5	1.030
	143.9	74.1	152.3	78.4	73.0	2563	224.4	2198	4861	-101.9	1.087
	143.4	73.8	151.7	78.1	72.9	2654	224.1	2196	4850	-96.8	1.094
	142.6	73.5	151.1	77.8	72.7	2645	223.6	2193	4838	-93.6	1.102
	142.1	73.2	150.4	77.4	72.6	2637	223.4	2169	4825	-93.5	1.110
	141.4	72.8	149.6	77.0	72.5	2629	223.0	2185	4814	-93.0	1.120
	140.6	72.4	148.8	76.6	72.4	2621	222.6	2181	4802	-83.6	1.129
1803 26	133.9	72.0	148.0	76.2	72.3	2615	222.2	2177	4792	-81.2	1.140
	139.2	71.7	147.3	75.8	72.3	2610	221.7	2172	4782	-74.1	1.151
	138.8	71.4	146.8	75.6	72.2	260G	221.2	2167	4773	-70.3	1.163
•	138.4	71.3	146.4	75.4	72.1	2603	220.7	2162	4765	-69.3	1.175
	138.2	71.2	146.2	75.3	72.1	2600	220.1	2156	475G	-68.8	1.187
	138.0	71.1	146.0	75.2	72.1	2597	219.5	2151	4748	-67.0	1,193
	137.9 137.7	71.0 70.9	145.8 145.6	75.1 75.0	72.0 72.0	2594 2592	218.9 218.4	2145 2139	4739 4731	-64.1 -61.3	1.210
1805 27	137.5	70.8	145.4	74.9	72.0	2590	217.8	2134	4724	-59.0	1.233
1000 21	137.3	70.7	145.2	74.8	72.0	2589	217.1	2128	4717	-57.2	1.245
	136.8	70.4	144.7	74.5	71.9	2588	216.5	2122	4710	-55.3	1,257
	136.2	70.1	144.1	74.2	71.9	2587	215.9	2116	4703	-52.9	1,268
	135.4	69.7	143.1	73.7	71.9	2587	215.3	2109	4596	-50.0	1.280
	134.5	69,2	142.2	73.2	71.9	2587	214.7,	2103	4 G 90	-47.5	1.231
	133.6	68.8	141.3	72.7	71.9	2588	214.0	2097	4685	-47.0	1.302
	132.7	68.3	140.2	72.2	71.9	2588	213.4	2091	4679	-47.8	1.314
1805 28	131.9	67.9	139.4	71.8	72.0	2588	212.7	2084	4672	-47.3	1.326
	131.1	67.5	138.6	71.4 71.1	72.0	2589	212.0	2078	4667 4662	-45.C	1.337
	130.6 130.2	67.2 67.0	138.1 137.6	70.9	72.0 72.0	2591 2592	211.4	2071 2064	4656	-42.8 -42.3	1,349
	130.1	67.0	137.5	70.B	72.0	2593	210.0	2057	4650	-42.8	1.373
	130.1	67.0	137.5	70.3	72.0	2595	209.3	2051	4646	-42.5	1.384
	130.3	G7.1	137.G	70.9	72.1	2597	203.6	2044	4541	-42.0	1.395
	130.4	G7.1	137.8	70.9	72.1	259€	207.9	3037	4635	-42.9	1.405
1805 29	130.6	67.2	138.0	71.0	72.1	2595	207.2	2030	4629	-43.1	1.414
	130.8	67.4	138.2	71.1	72.1	2601	206.5	2023	4624	-38.7	1.422
	131.1	67.5	138.5	71.3	72.2	2600	205.6	2017	4G20	-28.3	1.429
	131.5	67.7	138.8	71.5	72.2	2907	205.2	2010	4617	-15.3	1.406
	131.8	67.9	139.2	71.7	72.3	2612	204.5	2004	4616	-5.5	1.442
	132.2 132.6	68.1 68.3	139.6 140.0	71.8 72.1	72.4 72.5	2618 2625	203.8 203.2	199 7 1991	4615 4616	-1.0 -0.1	1.447
	133.0	68.5	140.4	72.3	72.5	2531	202.6	1985	4616	0.1	1.455
1805 30	133.5	68.7	140.9	72.5	72.6	2637	201.9	1979	4616	2.3	1.458
	123.9	69.0	141.3	72.8	72.7	2544	201.3	1972	4616	5.4	1.461
	134.6	69.3	142.0	73.1	72.8	2651	200.7	1966	4517	8.4	1.453
	135.4	G9.7	142.8	73.5	72.9	2659	200.1	1960	4618	11.4	1.464
	136.2	70.1	143.7	74.0	73.0	2665	199.5	1955	4620	14.2	1.465
	137.1	70.6	144.5	74.4	73.1	2673	198.9	1949	4622	15.1	1.465
	137.3 138.6	70.9 71.4	145.3 146.1	74.8 73.2	73.2 73.3	2680 2687	198.3 197.8	1943 1933	4623 4625	11.3 3.5	1.464
4005 5:	400 =		449 6					4005			
1805 31	139.5	71.8	147.C	75.7	73.4	2692	197.2	1933	4G25	-5.0	1.459
	140.3	72.2 72.7	147.S 148.8	76.1 76.6	73.4 73.5	2695	196.7 196.2	1927	4623 4621	-11.4	1.456
	141.2	73.1	140.8	77.0	73.5	2699 2702	195.7	1917	4519	-14.9 -16.7	1.452
	142.7	73.5	150.3	77.4	73.6		195.2	1913	4618	-17.0	1.443
	143.4	73.8	151.1	77.6	73.6	2703	194.7	1203	451G	-15.5	1.438
	144.2	74.2	151.9	78.2	73.G	2710	194.3	1004	4514	~12.9	1.434
	145.0	74.6	152.7	78.5	73.7	2713	193.9	1899	4612	-9.0	1.429

1805:32 to 1805:38 CDT

CDT	Cor	rected	Airspeed	True Air	spred	GVL	KE	Z - Z	PΕ	TE	dTE/d1	EPR
		ts	m/s	kts	m/s	m/s	m'/s'	m	m ⁷ /s*	m1/31	m ³ /s ³	
hm s	^		1117.5	K19	111/\$	111/3	107.5	****		11173		
1805 3		5.8	75.1	153.6	73.1	73.7	2716	193.5	1895	4611	-7.6	1.424
		6.G	75.5	154.4	79.5	73.7	2719	193.1	1892	4511	-7.7	1.419
		7.2	75.8	155.0	79.8	73.8	2721	192.7	1888	4609	-10.1	1.414
	14	7.7	76.0	155.5	8Q.Q	73.8	2723	192.4	1885	4603	-15.7	1.410
		7.8	76.1	155.G	BO. 1	73.8	2724	192.0	1882	4606	-24.7	1.406
		7.9	76.1	155.7	80.1	73.8	2723	191.8	1879	4602	-33.4	1.401
		7.7	7G.Q	155.5	80.0	73.8	2721	191.5	1876	4597	-37.3	1.396
	14	7.5	75.9	155.3	79.9	73.7	2718	191.3	1874	4592	-34.8	1.392
1805 3	3 14	6.9	73.6	154.6	79.6	73.7	2717	191.0	1872	4589	-28.2	1.388
	14	6.2	75.3	153.9	79.2	73.7	2716	190.8	1870	458G	-22.3	1.383
	14	5.3	74.8	152.9	78.7	73.7	2715	190.6	1868	4583	-17.9	1.380
		4.4	74.3	152.0	78.2	73.7	2715	190.4	1865	4580	-13.2	1.376
	14:	3.6	73.9	151.2	77.8	73.7	2716	190.2	1863	4579	-8.5	1.373
		2.8	73.5	150.4	77.4	73.7	2718	189.9	1861	4579	-4.5	1.369
		2.2	73.2	149.8	77.1	73.8	2720	189.6	1856	4578	-2.7	1.367
	14	1.6	72.9	149.1	76.8	73.8	2723	189.3	1855	4578	-5.4	1.364
1805 3	1 14	1.1	72.7	143.7	76.5	73.8	2726	189.0	1851	4577	-11.9	1.362
		0.7	72.4	148.3	76.3	73.9	2727	138.6	1848	4575	-19.8	1.361
		0.5	72.3	148.1	7G.2	73.9	2729	188.1	1843	4572	-24.8	1.359
	140	0.4	72.3	147.5	76.1	73.9	2730	187.7	1839	45€9	-25.4	1.358
	14	0.4	72.3	147.9	76.1	73.9		187.3	1835	4566	-24.8	1.357
	140	0.3	72.2	147.9	7G.1	73.9	2733	186.8	1930	4563	-25.4	1.355
		0.3	72.2	147.9	76.2	74.0	2734	186.3	1825	4559	-27.3	1.355
	14	0.3	72.2	148.0	76.2	74.0	2736	185.7	1820	4556	-30.5	1.354
1805 3	5 140	0.0	72.1	147.7	76.0	74.0	2738	185.2	1814	4552	-35.1	1.354
		9.6	71.3	147.2	75.8	74.0	2739	184.6	1803	4547	-39.4	1.254
	. 13		71.2	145.9	75.1	74.0		184.0	1802	4541	-39.3	1.355
		6.8	70.4	144.4	74.3	74.0	2741	133.3	1796	4537	-35.5	1.355
		4.1	69.1	141.G	72.9	74.1	2743	182.7	1790	4533	-30.7	1.356
		1.0	G7.4	138.3	71.2	74.1	2745	182.1	1764	4529	-25.6	1.357
		7.7	65.8	134.9	69.4	74.1	2748	181.5	1779	4527	-15.9	1.358
	12	4.8	64.3	131.8	67.9	74.2	2752	181.0	1774	4526	1.8	1.360
1805 3	5 12	3.2	63.4	130.1	67.0	74.3	2758	150.5	1769	4527	23.2	1.362
		2.1	62 8	128.9	66.4	74.4	2767	180.1	1765	4532	41.1	1.364
		1.9	62.7	128.7	66.2	74.5		179.7	1761	4538	53.3	1.368
		1.8	62.7	128.6	66.2	74.7	2787	179.4	1753	4545	63.4	1.371
		2.0	62.3	123.3	68.3	74.8		179.1	1755	4553	71.G	1.375
	12	2.1	62.8	128.8	66.3	75.0	2810	178.9	1752	4562	76.0	1.379
	12:	2.1	62.9	128.9	66.3	75.1	2822	178.6	1750	4572	73.7	1.383
	12:	2.3	62.9	129.0	66.4	75.3	2833	178.4	1748	4581	66.7	1.387
1805 3	7 12:	2.7	€3.2	129.4	66.6	75.4	2843	178.2	1746	4589	62.7	1.392
		3.2	63.4	129.9	66.9	75.5	2852	173.0	1744	4596	66.0	1.396
		3.9	53.8	130.6	67.2	75.7		177.9	1743	4605	77.0	1.400
	12	4.7	64.2	131.4	67.6	75.8		177.7	1741	4616	90.9	1.403
	12	5.9	€4.8	132.7	68.3	76.0		177.6	1740	4628	101.4	1.406
		7.4	65.6	134.3	€9.1	76.2		177.5	1739	4641	107.4	1.410
		9.4	66.6	136.3	70.1	76.4		177.4	1739	4655	109.0	1.414
	13	1.2	67.5	138.2	71.1	76.6	2931	177.4	1738	4669	108.0	1.417
1805 3	3 13:	2.G	68.2	139.6	71.9	76.7	2845	177.3	1737	4682	106.4	1.421
	13:	3.7	68.8	140.8	72.5	76.9	2958	177.2	1737	4695	105.8	1.424
		4.2	69.1	141.3	72.8	77.1	2972	177.2	1736	4708	109.2	1.428
•		4.5	69.3	141.7	72.9	77.3	2997	177.1	1725	4722	116.7	1.431
		4.5	69.3	141.7	72.9	77.5	3003	177.1	1735	4738	126.6	1.435
		4.5	69.3	141.6	72.9	77.7	302¢	177.0	1734	4754	137.5	1.438
		4.5	69.2	141.6	72.9	78.0	3038	177.0	1734	4772	150.0	1.442
	134	4.4	69.2	141.5	72.9	78.2	3058	176.9	1733	4791	162.3	1.445
												

k15

Corrected Airspaed

m/s

True Airspeed

m/s

118

Salar Salar

115

CDT

h m

	1005	.55 (0	1005.40	CD.
Z - Z	PΕ	TE	dTE/d1	EPR
m	m³/s*	ពា"/ទ"	កេ*/ទំ	
176.9	1733	4812	168.G	1.449
176.9	1733	4812	164.7	1.451
176.8	1733	4854	150.2	1.455
176.6	1731	4871	131.5	1.458
176.4	1723	4837	116.3	1.462
176.4	1726	4900	106.6	1.465
175.8	1723	4913	101.7	1.468
175.3	1715	4926	89.5	1.471
173.3	1113	4320	173.3	1,471
174.7	1712	4938	100.4	.474
174.1	1705	4950	104.9	1.477
173.3	1633	4965	110.7	1.480
172.4	1689	4978	114.7	1.482
171.5	1680	4993	117.2	1.485
170.5	1670	5007	120.€	1.488
169.4	1660	5023	125.4	1.491
168.3	1649	5039	130.4	1.494
•				
167.1	1638	5056	133.7	1.498
165.9	1626	5073	134.5	1.500
164.6	1613	5089	134.7	1.503
163.3	1500	5 10G	134.5	1.505
161.9	1536	5123	133.8	1.508
160.4	1572	5140	132.4	1.510
158.9	1557	5156	120.5	1.513
157.3	1541	5172	128.9	1.515
	4505	5188	127.4	1.517
155.7 154.0	1525 1503	5204	126.8	1.519
152.2	1491	5220	129.3	1.521
150.4	1473	5236	135.2	1.522
148.5	1455	5254	143.6	1.524
146.6	1436	5272	152.8	1.525
144.7	1417	5292	163.4	1.527
142.7	1399	5314	176.8	1.528
142.7	1333	2314	170.6	1, 51.0
140.8	1380	5337	189.3	1.530
138.9	1351	5361	197,3	1.531
137.0	1342	5386	200.5	1,532
135.0	1323	5411	201.6	1.532
133.1	1304	5436	203.4	1.533
131 1	1208	EACO	205 1	1 577

1805:39 to 1805:45 CDT

76.5 3079 176 1805 39 134.4 69.2 141.5 72.8 134.4 69.2 141.5 72.8 78.3 3101 176 69.3 141.7 72.9 176 134.6 79.0 3122 134.9 €9.5 142.0 73.1 79.3 3140 17G 135.5 69.7 142.5 73.4 79.5 3153 176 136.1 70.1 143.2 73.7 79.7 3174 170 70.4 143.8 74.0 79.9 3191 175 136.7 137.1 70.€ 144.3 74.3 1.03 3208 175 137.4 137.6 137.5 144.5 3226 174 1805 40 70.7 74.4 80.3 70.8 70.8 80.6 74.5 3245 174 74.4 173 144.6 80.B 3267 137.3 70.7 144.3 74.3 81.1 3289 172 136.3 70.2 143.3 73.8 81.4 3313 171 69.5 142.0 73.1 81.7 3337 170 135.1 68.6 140.1 72.1 82.0 3363 169 133.3 67.6 138.0 82.3 3330 168 167 1805 41 129.6 66.7 136.2 70.1 82.7 3418 65.9 65.5 128.1 127.3 134.6 133.7 68.8 83.0 83.4 3447 165 3476 164 3506 126.7 95.2 133.1 68.5 83.7 163 126.5 65.1 3537 161 132.9 68.4 84.1 126.4 65.1 132.8 68.4 84.5 3568 160 126.3 65.0 132.7 68.3 84.8 3599 158 126.3 65.0 132.6 68.3 85.2 3631 157 155 1805 42 126.2 65.0 132.6 C8.3 85 6 3603 126.3 65.0 55.1 86.0 3596 154 132.6 68.3 86.4 3729 152 132.8 68.3 126 4 €3.2 133.0 68.5 86.8 3763 150 126.6 87.2 127.0 65.4 133.4 68.7 3799 148 G5.6 133.8 68.9 67.6 3836 146 127.4 127.9 65.9 134,3 69.2 88.0 3875 144 134.9 69.4 88.5 3915 142 128.5 66.1 1805 43 129.1 69.8 89.0 3957 140 66.5 135.5 129.8 66.8 136.2 70.1 89.4 4000 138 67.2 137.0 70.5 71.0 4044 137 130.6 89.9 67.G 4088 135 90.4 131.4 132.5 68.2 139.1 71.6 90.9 4132 133 5462 68.9 140.5 72.3 91.4 4177 131.1 1285 206.1 1.533 133.8 135.2 69.6 141.9 73.1 91.9 4222 129.1 1265 5437 208.8 1.533 70.2 143.2 4268 127.1 1246 5514 210.5 1.533 136.4 73.7 92.4 210.1 1805 44 137.2 70.6 143.9 74.1 92.9 4314 125.1 1226 5540 70.9 71.0 74.4 74.5 208.1 137.7 144.6 123.1 1206 5566 1.533 93.4 4360 144.7 121.0 1.533 93.5 4407 1185 5592 206.2 137.9 71.0 144.8 74.5 94.4 4454 118.8 1154 5618 204.8 1.533 138.0 137.9 71.0 144.7 74.5 94.9 4501 116.6 1143 5644 203.2 1.533 70.9 144.5 74.4 95.4 4548 114.3 1120 5663 201.1 1.532 137.7 70.8 144.4 74.3 95.9 4596 112.0 1097 5693 199.2 1.532 137.G 70.8 144.2 4645 109.G 1074 5710 196.1 1.532 137.4 96.4 1805 45 137.4 70.7 74.2 96.9 4694 107.1 1049 5743 196.5 1.532 144.1 137.3 70.7 70.8 144.0 74.1 74.2 97.4 97.9 4743 4793 104.6 101.9 102Å 999 5767 5792 193.0 187.8 1.532 137.8 71.0 144.5 74.4 93.4 4843 99.2 97 5815 181.8 1.532 138.5 71.3 145.2 74.7 98.9 4892 96.4 945 5837 174.3 1.532 139.3 71.7 145.9 75.1 99.4 4942 93.5 91: 5859 165.0 1,532 140.2 72,2 146.9 75.6 99.9 4930 90.6 880 5878 153.5 1.532 72.7 1.531 147.9 76.1 100.4 5639 87.6 859 5397 140.7

ΚE

10 / 5

GV:_

m/s

1805:46 to 1805:52 CDT

20.	Ţ	Corrected	1 Airspead	True Air	raneo1	٥٧٤ [°]	×Ε	Z - Z,	PE	TE	dTE/dI	EPR
	·	kts	m/s	kts	m/s	m/s	m*/s*	m .	m²/s*	mº/sª	m²/s²	
h m	<u>.</u>	*15	111/3	***	111/3	111/8			111/3	11172		
			.									
1805	46	142.2	73.2	148.3	76.6	100.3	5086	84.5	828	5914	126.3	1.531
		143.2	73.7	149.9	77.2	101.3	5132	81.3	797	5929	109.4	1.531
		144.1	74.2	150.8	77.6	101.7	5176	78.1	765	5941	92.8	1.531
		144.9	74.6	151.7	78.1	102.2	5218	74.8	733	5951	78.6	1.531
		145.8	75.1	152.6	78.*	102.6	5259	71.6	701	5960	67.5	1.531
		146.8	75.G	153.5	79.0	102.9	5293	68.3	670	5969	58.3	1.531
		147.8	76.1 76.6	154.5 155.5	79.8 80.0	103.3 103.7	5337 5374	65.1 61.9	638 607	5975 5981	48.9 40.5	1.531 1.530
		140.7	70.0	155.5	80.0	103.7	33/4	01.3	601	3361.	40.5	1.550
1805	47	149.G	77.0	15G.4	30.5	104.0	5409	58.8	576	5985	36.0	1.530
		150.4	77.4	157.3	81.0	104.3	5444	55.7	546	5990	35.1.	1.530
		151.2	77.3	158.0	81.4	104.7	5478	52.7	516	5994	35.6	1.530
		151.9	78.2	158.8	81.7	105.0	5511	49.7	487	5998	34.3	1.530
		152.6	78.5	159.5	82.1	105.3	5543	46.8	459	6002	29.5	1.530
		153.2	78.9	160.2	82.5	105.6	5574	44.1	432	6006	23.7	1.530
		153.9	79.2	160.9	82.8	105.9	5603	41.4	405	6008	21.6	1.530
		154.5	79.6	161.5	83.2	106.1	5631	38.8	380	6011	27.9	1.529
1805	48	155.1	79.9	162.2	83.5	106.4	5660	36.3	356	6016	49.8	1,529
.003		155.6	80.2	162.8	83.8	106.7	5691	34.0	333	6024	84.3	1.529
		156.4	80.5	163.5	84.1	107.0	5725	31.8	312	6037	119.9	1.529
		157.0	00.8	164.1	84.5	107.3	5762	29.8	292	6054	147.2	1.529
		157.7	81.2	164.7	84.8	107.7	5800	27.9	273	6073	159.6	1.529
		158.3	81.5	165.4	85.2	103.1	5838	26.1	256	6094	162.2	1.529
		159.1	81.9	166.2	85.6	108.4	5874	24.5	240	6114	161.4	1.529
		159.9	82.3	167.0	se.o	108.7	5909	22.9	224	6133	152.2	1.528
1805	40	160.G	82.7	167.8	86.4	109,0	5944	21.5	210	G 154	172.6	1.528
1003	43	161.4	83.1	168.G	86.8	103.0	5980	20.1	197-	6177	190.9	1.528
		162.4	83.6	169.6	87.3	109.7	5018	18.8	184	6202	210.0	1.528
		163.4	84.1	170.7	87.9	110.1	6057	17.6	173	6230	223.3	1.528
		165.7	85.3	173.1	89.1	110.4	6036	16.5	162	6258	228.2	1.528
		168.8	86.9	176.3	90.8	110.8	G135	15.5	152	6297	228.6	1.528
		171.9	08.5	179.6	92.4	111,1	6173	14.5	142	6315	227.8	1.528
	•	174.3	89.7	182.1	93.7	111.4	6210	13.6	133	6343	226.0	1.527
1805	50	175.1	90.1	182.8	94.1	111.3	6247	12.8	125	6372	222.4	1.527
		175.4	90.3	183.1	94.0	112.1	6282	11.9	117	6339	. 215.8	1.527
		174.9 174.2	90.0 89.7	152.6	94.0	112,4	6316	11.1	109	6425	206.2	1:527
		173.1	39.1	131.9 180.8	93.7	112.7	G343	10.3	101	6450	197.2	1.527
		171.9	88.5	179.4	93.1 92.4	113.0 113.3	G381 6413	9.5 8.7	93 85	6474	193.3 193.9	1.527 1.527
		170.2	37.6	177.7	91.5	113.5	5446	7.9	77	6498 6523	195.2	1.527
		168.4	116.7	175.8	90.5	113.5	6479	7.9	69	6548	193.1	1.527
	•	,			J. J. J		54.5	•.0	0.5	0340	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1805	51	167.1	03.0	174.4	89.8	114.1	6511	6.2	61.	6572	187.3	1.526
		166.2	03.G	173.4	89.3	114.4	6513	5.3	52	6595	181.2	1.526
		16G.3	23.6	173.5	69.3	114.7	6573	4.4	43	6616	176.9	1.526
		166.6	81.8	173.8	89.5	114.9	6604	3.6	35	6639	173.5	1.526
		167.1	86.0	174.3	89.7	115.2	6634	2.7	27	6661	171.2	1.526
		167.G	86.3	174.8	90.0	115.4	6863	1.9	19	6682	170.4	1.526
		163.1	86.9	175.3	90.2	115.7	6691	1.2	12	6703	167.9	1.526
		160.G	86.8	175.8	90.5	115.9	6718	0.6	5	6723	150.3	1.525
1805	50 0	169.0	87.0	176.2	20.7	116.1	6740	0.0	o	6740	-74 2	1.525
		169.4	87.2	176.5	90.7	115.9	6716	-0.1	0	6716	-34.3 -387.7	1.525
	1	169.7	87.4	17G.6	91.0	115.3	5644	-0.1	.0	6644	-556.9	1.525
		170.0	87.5	177.2	31.2	114.7	6575	0.1	1	6576	-495.5	1.525
	5	170.3	87.6	177.4	ວ່າ.ວ	114.2	6515	0.3	ä	6519	-339.6	1.525
	-1	170.5	67.5	177.G	91.4	113.8	G471	0.5	5	6476	-236.8	1.525
	1	170.7	87.9	177.0	31.5	113.6	6454	0.6	. 6	6460	28.5	1.525
	ŧ	170.9	80.0	178.0	31.7	113.3	6476	0.7	7	6443	215.2	1.524
												

141 A.10 Energy

	1	805	.53	to	1805:59	CDT
--	---	-----	-----	----	---------	-----

CDT	Corrected	Airspeed	True Ai	rspeed	GVL	KE	Z - Z	PC	TE	dTE/d1	EPR
hm s	kts	m/s	kts	m/s	m/s	rn*/s*	m	m²/s²	. តា ² /s ²	m²/s³	
1805 53	171.2	88.2	178.4	91.8	114.1	6507	0.8	7	G514	212.8	1.524
	171.6	88.3	178.7	92.0	114.3	6529	0.8	7	6536	183.2	1.523
	172.3	89.0	180.0	92.7	114.5	6553	0.3	7	6560	196.0	1.523
	174.7	89.9	181.9	93.6	114.7	6578	0.7	7	6585	161.2	1.521
_	177.9	91.6	185.2	95.3	114.8	6593	0.7	7	6600	137.6	1.520
ס	181.4	93.4	188.9	97.2	115.0	G614	0.6	6	6620	200.2	1.518
č	184.5	95.0	192.1	98.9	115.3	6645	0.5	5	GG50	228.1	1.515
2	187.1	96.3	194.6	100.3	115.5	6673	0.4	4	657 7	178.4	1.512
1805 54	188.2	96.9	195.9	100.9	115.7	6692	0.3	3	6695	163.5	1.507
Ē	168.9	97.3	196.6	101.2	115.9	6716	0.1	1	6717	164.G	1.502
î	183.8	97.2	195.5	101.2	116.1	6737	-0.1	0	6737	114.4	1.496
1	188.5	97.0	196.2	101.0	116.2	6748	-Ö.2	-1	6747	99.8	1.490
. 1	187.8	25.7	195.5	100.6	116.3	6766	-0.5	. 3	6763	140.8	1.482
	187.1	96.3	194.7	100.3	116.5	6787	-0.6	-5	6782	136.3	1.474
	186.2	95.9	193.8	39.8	116.7	6804	-0.9	-8	6796	90.5	1.462
	185.3	95.4	192.8	99.3	116.7	6814	-1.0	-š	6805	58.1	1.447
1605 55	184.4	94.9	191,9	98.8	116.8	6322	-1.2	-11	6811	39.5	1.427
.505 55	183.6	94.5	191.1	98.4	116.9	6828	-1.5	-13	6815	24.6	1.405
	183.1	94.3	190.6	98.1	116.9	6832	-1.7	-15	6817	10.5	
	184.6	95.0								-1.3	1.376
	183.6		192.2	98.9	116.9	6835	-1.9	- 18	6817		1.345
		94.5	191.2	98.4	116.9	6836	-2.0	-19	6817	-33.9	1.310
9	182.6	94.0	190.3	98.0	116.9	6829	-2.1	-20	6309	-123.4	1.275
2	181.7	93.5	189.3	97.5	116.6	6803	-1.9	-19	6785	-257.5	1.243
3.	180.7	93.0	188.4	97.0	116.3	6758	-1.5	-13	6745	-345.4	1.212
1805 55	180.7	93.0	188.4	97.0	115.8	6708	-0.9	-8	6700	-300.8	1.187
	180.8	93.1	188.5	97.0	115.4	6658	-0.5	-3	6655	-416.3	1,163
. 1	179.9	92.6	187.6	56.6	114.8	6555	-0.1	0	6595	-537.8	1.145
	179.9	92.6	187.7	96.6	114.2	651G	0.3	3	6519	-586.5	1,120
	180.0	92.7	187.9	96.7	113.5	6442	0.5	5	6447	-502.5	1,115
	179.1	92.2	187.0	96.3	113.0	6386	0.7	7	6393	-452.3	1.102
	179.3	92.3	187.2	9G.4	112.5	G327	0.8	8	6335	-532.8	1.000
	178.4	91.3	186.3	95.3	111.8	6253	0.8	7	6260	-595.0	1.079
1805 57	178.5	91.9	186.5	96.0	111.2	6180	0.€	6	6186	-554.1	1.069
.005 5.	178.8	92.1	186.9	26.2	110.6	6117	0.4	4	6121	-501.4	1.059
	178.0	91.7	186.1	95.8	110.1	6059	0.2	1	€060	-511.7	1,053
	177.5	91.4	185.5	95.5	109.5	5996	-0.2	- i	5995	-553.8	1.044
	177.8	91.5	186.0	95.7	103.3	5928	-0.6	-5	5923	-585.3	1.039
	177.3	91.3	135.5	95.5	103.3	5858	-1.1		5849	-563.8	
E	175.0	90.1	183.1	94.3	107.7	5795	-1.5	9 -14	5781	-523.8	1.034
드	174.7	89.9	182.8	94.1	107.1	5736	-2.0	-18	5718	-584.G	1.031
4											
1805 53	173.2	89.2	181.3	93.4	106.4	5659	-2.5	-23	5636	-70G.G	1.021
Į.	171.0	88.0	179.1	92.2	105.5	5568	-2.9	-27	5541	-718.3	1.017
1	170.1	87.5	178.2	91.7	104.8	5487	-3.3	-31	545G	-658.8	1.014
1	167.8	86.4	175.9	90.5	104.0	5411	-3.6	+35	537G	-634.3	1.011
į	165.8	85.4	173.8	89.5	103.2	5323	-3.9	-38	5285	-738.2	1.009
1	164.9	84.9	172.9	89.0	102.3	5231	-4.2	-40	5191	~712.0	1.007
i	164.0	84.4	172.0	88.5	101.5	5148	-4.3	-41	5107	-639.8	1.005
Š	163.3	84.1	171.4	83.2	100.7	5074	-4.5	-43	5031	-630.8	1.003
1805 59	161.2	83.0	169.1	87.1	99.3	4980	-4.5	-43	4937	-811.2	1.002
1	159.3	82.0	167.2	86.1	98.7	4872	-4.5	-43	4829	-837.8	1.001
•	159.6	82.2	167.6	86.3	97.7	4770	~4.5	-43	4727	-790.2	1.000
ı	160.0	82.4	168.0	86.5	96.7	4673	-4.4	-42	4631	-771.0	1.000
Ì	159.3	32.0	167.3	86.1	95.7	4576	-4.3	-41	4535	-762.6	1.000
•	159.7	52.2	167.8	86.4	94.7	4481	-4.3	-41	4440	-591.1	0.000
. 1	159.1	81.9	167.3	86.1	93.8	4402	-4.2	-41	4361	-575.0	0.000
. 3	161.5	83.1	168.8	87.4	93.1	4337	-4.2	-40	4297	-512.3	0.000
					~~.						

APPENDIX 11

SIDESLIP ANGLES

Sideslip angles computed with three terms, lateral acceleration (Term 1), rudder deflection term (Term 2), and yaw rate (Term 3). Gross weight W = 324,822 lbs, wing area A = 3456 sq. ft., RD is rudder deflection angle in deg., YR is yaw rate, and β sideslip angle.

1804:55 to 1805:00 CDT

CDI	T	c, W	C, RD	C-YR b	Β,	β_{\bullet}	β_s (deg)		an Jonent	Windspeeds	(m/s)
ħm	•	+F.CAS A	C++ ~ C	Cre 2 TAS	Term I	Term 2	Term 3	β•0	Term i	Terms 1+2	Terms 1+2+3
1804	55	0.0257	0.0023	0.0007	1,17	0.11	0.03	4.53	4.21	4.06	4.01
		0.0262	0.0026	0.0006	1.19	0.12	0.03	4.60	4.33	4.15	4,12
		0 0256	0.0023	0.0005	1.17	0.13	0.02	4.69	4.46	4.26	4.23
		0.0236	0.0032	0.0005	1.07	C. 15	0.02	4.80	4.66	4.45	4.42
		0.0219	0.0035	0.0005	1,00	0, 16	0.03	4.88	4.88	4.65	4.G1
		0.0235	0.0035	0.0006	1.07	0.16	0.03	4.93	4,90	4.67	4.63
		0.0268	0.0035	0.0006	1.22	0.16	0.03	5.02	4.77	4.54	4.50
		0.0301	0.0033	0.0006	1.37	0.17	0.03	5.09	4.66	4.41	4.37
								- 4.	4 60		
1804	56	0.0316	0.0041	0.0006	1.44	0.19	0.03	5.14	4.68	4.41	4.37
		0.0326	0.0044	0.0003	1.48	0.20	9.03	5.19	4.72	4.43	4.39
		0.0352	0.0047	0.0006	1.60	0.21	C.03	5.29	4.62	4.31	4.27
		0.0378	0.0050	0.0005	1.72	0.23	0.02	5.33	4,51	4.18	4.15
		0.0388	0.0052	0.0003	1.77	0.24	0.01	5.39	4.51	4 . 17	4.15
		0.0372	0.0052	0.0002	1.69	0.24	0.0:	5.39	4.69	4.34	4.32
		0.0353	0.0052	0.0003	1.60	0.24	0.01	5.42	4.83	4.48	4.46
		0.0350	0.0055	0.0004	1.59	0.25	0.02	5.48	4.88	4.52	4.49
		0.03.0	0.0033	0.0054	1,55	0.23	(1.02	3.46	4.00	4.52	4.43
1304	57	0.0365	0.0053	0.0003	1.66	0.26	0.01	5 49	4.85	4.17	4.45
		0.0397	0.0061	0.0001	1.76	0.29	0.00	5.49	4.75	4.35	4.34
		0.0400	0.0064	-0.0001	1.82	0.29	-0.00	5.50	4.63	4.21	4.21
		0.0391	0.0067	-0.0001	1.78	0.31	-0.00	5.51	4.65	4.21	4.21
									4.73	4.27	4.28
		0.0376	0.0070	-0.0001	1.71	0.32	-0.00	5.48			
		0.0361	0.0070	-0.0001	1.64	0.32	-0.01	5.44	4.82	4.36	4.37
		0.0352	0.0070	-0.0002	1.60	0.32	-0.01	5.45	4.81	4.35	4.36
		0.0352	0.0072	-0.0003	1.60	0.33	-0.02	5.44	4,74	4.2€	4.29
1804	58	0.0352	0.0076	-0.0010	1.60	0.34	-0.05	5.33	4.62	4.12	4,18
		0.0347	0.0078	-0.0014	1.58	0.36	-0.06	5.20	4.46	3.96	4 C5
		0 0339	0.0081	-0.0015	1.54	0.37	-0.07	5 06	4.25	3.72	3.82
		0.0318	0.0085	-0.0014	1.45	0.39	7.5	4.93	4,13	3.57	3.66
		0.0292	0.0087	-0.0013	1.33	0.40	-0.0	4.78	4.03	3.50	3.59
			0.0087				-0.06	4.64	4.03	3.45	3.54
		0.0265		-0.0014	1.20	0.40					
		0.0243	0.0087	-0.0015	1.11	0.40	-0.07	4.52	3.94	3.36	3.45
		0.0235	0.0085	-0.0015	1.07	0.33	-0.07	4.39	3.75	3.19	3.29
1804	59	0.0230	0.0081	-0.0016	1.05	0.37	-0.07	4.23	3,57	3.02	3.13
		0.0222	0.0078	-0.0016	1.01	0.36	-0.07	4.07	3.41	2.89	3.00
		0.0207	0.0076	-0.0017	0.94	0.34	-0.03	3.91	3.30	2.79	2.91
		0.0183	0.0072	-0.0015	0.83	0.33	-0.07	3.75	3,25		
										2.76	2.87
		0.0159	0.0070	-0.0013	0.72	0.32	-0.C6	3.61	3,25	2.78	2.87
		0 0130	0.0070	-0.0012	0.59	0.32	-0.06	3.49	3.31	2.84	2.33
		0.0098	0.0070	-0.0013	0.45	0.32	-0.CG	·3.37	3,39	2.92	3.01
		0.0080	0.0070	-0.0012	0.36	0.32	-C.05	3.24	3.36	2.50	2.98
1805	က	0.0074	0.0070	-0.0009	0.34	0.32	-0.04	3.13	3,32	2.86	2.92
		0.0032	0.0070	-0.6006	0.37	0.32	-0.03	3.05	3,23	2.77	2.80
		0.0086	0.0070	-0.0005	0.39	0.32	-0.02	3.01	3,15	2.73	2.76
		0.0078	0.0067	-0.0005	0.36	0.31	-0.03	2.97	3.23	2.79	2.53
		0.0063	0.0064	-0.0007	0.29	0.29	-0.03	2.89			
		0.0052							3.28	2 90	2.94
			0.0061	-0.0007	0.24	0.26	-0.03	2.82	3 16	2.98	3.02
		0.0051	0.0058	-0.0006	0.23	0.26	-0.03	2.76	3.10	2.99	3.03
		0.0063	0.0050	-0.0006	C.29	0.23	-0.03	2.72	3.12	2.37	3.01

143 A.11 Sideslip angles

1205	• 01	tο	1805	07	CDT
1603		LU	1000		CDI

							1005.	01 00	1303.07	CD1 .
CDT	n, ¥/		YRb	β,	β_{ϵ}	β, (dag)	V-C	mponent	Windspeeds	(m/s)
h m s	+ CAS A	C _{R6} RD	Cya YR b	Term i	Tarm 2	Term 3	β=0	Term I	Terms I+2	Ter: 1+2+3
										
1805 01	0.0075	0.0041	-0.0005	0.34	0.19	-0.02	2.66	3.13	2.95	2.99
	0.0001	0.0035	-0.0005	0.42	0.16	-0.02	2.60	3.10	2.88	2.91
	0.0110	0.0029	-0.0005	0.50	0.13	-0.02	2.56	2.95	2.77	2.80
	0.0122	0.0020	-0.0003	0.56	0.09	-0.02	2.51	2.85	2.72	2.74
	0 0123	0.0012	-0.0001	0.56	0.05	-0.01	2.47	2.84	2.77	2 78
	0.0121	0.0009	0 0001	0.55	0.04	0.00	2.46	2.87	2.81	2.80
	0.0123	0.0006	0.0002	0.56	0.03	0.01	2.49	2.84	2.81	2.79
	0.0130	0.0002	0.0002	0.59	0.01	0.01	2.53	2.78	2.77	2.75
1805 02	0.0135	-0.0000	0.0002	0.61	-0.00	0.01	2.54	2.74	2.74	2.73
	0.0134	-0.0000	-0.0000	0.61	-0.00	-0.00	2.55	2.72	2.72	2.72
	0.0134	-0.0000	-0.0003	0.61	-0 00	-0.01	2.54	2.65	2.65	2.G7
	0.0125	-0.0000	-0.0004	0.57	-0.00	-0.02	2.51	. 2.62	2.62	2.35
	0.0109	~0.0000	-0.0004	0 50	-0.00	-0.02	2.47	2.63	2.63	2.65
	0.0081	-0.0000	-0.0002	0.37	-0 00	-0.01	2.43	2.73	2.73	2.75
	O 0050	-0.0000	-0.0001	0.23	-0.co	-0.00	2.43	2.76	2.76	2.76
	0 0016	-0.0000	-0.0002	0.21	-3.00	-0.01	2.43	2.72	2.72	2.71
1805 03	0 0062	-0.0000	-0.0005	0.28	-0.00	-0.02	2.39	2.72	2.71	2.73
	0.0065	-0.0000	-0.0007	0.30	-0.00	-0.03	2.32	2.63	2.63	2.66
	0.0038	-0.0000	-0.0008	0.17	-0.00	-0.04	2.23	2.49	2.49	2.43
	-C 0015	-0.0000	-0.0007	-0.07	-0.00	-0.03	2.15	2.05	2.05	2.01
	-0.0053	-0.0000	-0.0004	-0.26	-0.CO	-0.02	2:11	1.72	1.72	1.69
	-0.0054	-0.cooo	-0.0003	-0.25		-0.01	2.08	1.72	1.72	1.70
	-0.0034	-0.0000	-0.0004	-O.16	-0.00	-0.02	2.06	1.83	1.83	C8.1
•	-0.0013	-0.0000	-0.0006	-0.06	-0.00	-0.03	2.02	1.93	1.93	1.89
1805 04	-0.0010	-0.0000	-0.0003	-0.04	-0.00	-0.04	1.94	1 88	1.88	1.82
	-0.0039	-0.0000	-0.0008	-0.17	-0.00	-0.03	1.86	1.61	1.61	1.56
	-0 0068	-0.0000	-0.0007	-0 31	-0.00	-0.03	1 79	1.33	1.33	1.28
	-0.0069	0.0002	-0.0007	-0.31	0.01	-0.03	1.72	1.25	1.27	1.22
	-0.0046	0.0006	-0.0007	-0.21	0.03	-0.03	1.64	1.33	1.37	1.32
	0.000G	0.0009	-0.0008	0.03	0.04	-0.03	1.56	1.59	1.65	1.60
-	0 0050	0.0012	8000.Q-	0.23	0.05	-0.04	1.48	1.80	1.62	1.81
	0.0067	0.0017	-0.0008	0.30	0.08	-0.04	1.40	1.72	1.62	1.66
1805 05	0.0073	0.0023	-0.0008	0.33	0.11	-0.74	1.32	1.51	1.46	1.52
	0.0066	0.0026	-0.0036	0.30	0.12	-0.03	1.25	1.58	1.41	1.46
	0.0051	0.0029	-0.0004	0.28	0.13	-0.02	1.21	1.56	1.38	1.40
	0.0074	0.0030	-0.0002	0.34	0.14	-0.01	1.18	1.45	1.26	1.27
	0.0096	0.0029	-0.0001	0.43	0.13	-0.00	1.17	1.31	1.12	1.12
	0.0109	0.0026	-0.0001	0.50	0.12	-0.00	1.14	1.24	1.06	1.07
	0.0107	0.0023	1000.0	0.49	0.11	-0.00	1.11	1.28	1.12	1.13
•	0.0084	0.0017	-0.0002	C.38	90.0	-0 01	1.C8	1.46	1.34	1.35
1805 06	0.0051	0.0012	-0.0003	0.28	0.05	-0.02	1 02	1.43	1.48	1.46
	0.0038	0.0009	1-0.0004	0.17	0.04	-0.02	0.97	1.23	1.29	1.26
	0.0014	0.0006	-0.0003	0.06	0.03	-0.01	0.93	1.03	1.06	1 05
	0.0003	0.0002	0.0001	0.04	0.01	0.01	0.91	0.97	0.98	0.99
	0.0013	-0.0000	O.0005	0.06	-0.00	0 02	0.34	1.03	1.03-	1.07
	0.0054	-0.0000	\$000 c	0.25	-0.00	0.02	0.99	1.35	1.35	1.38
	0.0106	-0.0000	0.0004	0.48	-0.00	0.02	1 02	1.35	1.35	1.32
	0.0139	-0.0000	10.00.0	0.63	O.OO	0.01	1.04	1, 14	1.14	1.13
1905 07	0.0151	-0.0000	~0.00 <i>3</i> 0	0.68	-0.00	-0.00	1 03	1.05	1.05	1.05
	0.0114	-0.0000	0.0000	0.52	-0.CO	0.00	1.02	1.28	1.29	1.28
	0.0076	~0.0000	0.0001	0.32	-0.CO	0.00	1.02	1.48	1.48	1.49
	0.0026	-0.0000	0,0001	0.12	-0.00	0.01	1.02	1.20	1.20	. 1.21
	-0.0009	-0.0000	0.0001	-0.04	-0.00	0.0:	1.01	0.95	0.95	0.96
	0.0002	-0.0000	0.0001	0.01	-0.00	0.01	1.01	1.02	1.02	1.03
•	0.0036 0.0057	-0.0000	0.0001	0.17 0.26	-0.00 -0.00	0.01 0.00	1.02	1.2G 1,41	1.26	1.27
	0 (4)37	5.000	0.06.71	0.25	0.00	U.CA	1.03	1.45	1,41	1 . 4 1

1805:08 to 1805:14 CDT

CDT	0,14	C _a ,RD	Cve YR b	β,	B,	eta_{s} (deg)			Windspeeds	
hm s	+ CAS A		C _{YR} 2 TAS	Term I	Term 2	Term 3	β•0	Term I	Terms 1+2	Terms I+2+3
1805 08	0.0047	-0.0000	0.0001	0.22	-0.00	0.00	1.02	1.35	1,35	1.35
.005 00	0.0012	-0.0000	0.0001	0.05	-0.00	0.00	1.03	1.11	1.11	1.11
	-0.0009	-0.0000	0.0001	-0.04	-0.00	0.00	1.04	0.93	0.98	0.98
•	-0.0014	-0.0000	-0.0001	-0.06	-0.00	-0.00	1.05	0.95	0.95	0.95
	-0.0020	-0.0000	-0.0003	-0.09	-0.00	-0.01	1.02	0.33	0.88	0.86
	-0.0027	-0.0000	-3.0034	-0.12	-0.00	-0.02	0.97	0.79	0.79	0.76
	-0.0031	-0.0000	-0.0003	-0.12	-0.00	-0.02	0.93	0.72	0.72	0.70
	-0.0035	-0.0000	-0.0001	-0.16	-0.00	-0.00	0.91	0.66	0.66	0.65
									•••	****
1805 09	-0.0043 -0.0041	-0.0000	0.0000	-0.20	-0.00	0.00	0.91	0.61	0.61	0.61
		-0.0000	-0.0000	-0.18	-0.00	-0.00	0.90	0.62	0.62	0.62
	-0.0032	-0.0000	-0.0001	-0.14	-0.00	-0.00	0.90	0.68	0.66	0.67
	-0.0030	-0.0007	-0.0002	-0.13	-0.03	-0.01	0.89	0.69	0.64	0.63
	-0.0043	-0.0016	-0.0003	-0.19	-0.07	-0.01	0.89	0.59	0.48	0.47
	-0.0063	-0.0024	~0.0003	-0.29	-0.11	-0.01	0.68	0.44	0.27	0.25
	-0.0075	-0.0032	-0.0003	-0.34	-0.15	-0.02	0.87	0.35	0.12	0.10
	-0.0083	-0.0041	-0.0004	-0.38	-0.19	-0.02	0.85	0.27	-0.02	-0.05
1805 10	-0.0097	-0.0048	-0.0005	-0.44	-0.22	-0.02	0.82	0.15	-0.19	-0.22
	-0.0114	-0.0048	-0.0005	-0.52	-0.22	-0.02	0.76	-0.03	-0.37	-0.40
	-0.0129	-0.0048	-0.0006	-0.58	-0.22	-0.03	0.75	-0.15	-0.49	-0.53
	-0.0130	-0.0039	-0.0007	-0.59	-0.18	-0.03	0.64	-0.14	-0.41	-0.45
	-0.0128	-0.0026	-0.0007	-0.58	-0.12	-0.03	0.52	-0.14	-0.33	-0.38
	-0.0117	-0.0015	-0.0009	-0.53	-0.07	-0.04	0.40	~0.10	-0.21	-Q.28
	-0.0106	-0.0004	-0.0012	-0.48	-0.02	-0.05	0.24	-0.11	-0.14	-0.22
	-0.0102	0.0001	-0.0012	-0.46	0.01	-0.05	0.07	-0.18	-0.17	-0.25
1805 11	-0.0105	0.0001	-0.0009	-0.43	0.01	-0.04	-0.09	-0.28	-0.27	~O.33
	-0.0124	-0.0007	-0.0007	-0.56	-0.03	-0.03	-0.21	-0.47	-0.51	-Q.56
	-0.0146	-0.0015	-0.0006	~0.56	-0.07	-0.03	-0.29	~0.67	-0.78	-0.82
	-0.01G3	-0.0026	-0.0007	-0.74	-0.12	-0.03	-0.33	-0.86	-1.04	-1.03
	- 0.0167	-0.003s	-0.0006	-0.7G	-0.17	ی -	-0.49	-0.95	-1.21	-1.25
	-0.0148	-0.0039	-0.0006	-0.67	-0.18	-0.03	-0.58	-0.87	-1.15	-1.19
	-0.0123	-0.0042	-0.0007	-0.56	-0.19	-0.03	-0.66	-0.75	-1.05	-1.11
	-0.0100	-0.0046	-0.0008	-0.46	-0.21	-0.04	-0.75	-0.69	-1.02	-1.08
1805 12	-0.0082	-0.0048	-0.0008	-0.37	-0.22	-0.04	-0.84	-0.68	-1.02	~1.07
	-0.0075	-0.0048	-0.0008	-0.34	-0.22	-0.03	-0.92	-0.73	-1.07	-1,13
	-0.0071	-0.0043	-0.0008	-0.32	-0.22	-0.04	-1.00	-0.80	-1.14	-1.20
	-0.0067	-0.0048	-0.0010	-0.31	-0.22	-0.05	-1.10	-0.58	-1.22	-1.29
	-0.0061	-0.0048	-0.0012	-0.28	-0.22	-0.05	-1.23	-C.98	-1.31	-1.39
	-0.CO82	-0.0048	-0.0010	-0.37	-0.22	-0.05	-1.35	-: 25	-1.59	-1,66
	-0.0124	-0.0048	-0.000g	-0.56	-0.22	-0.03	-1.44	-1.65	-1.99	-2.04
	-0.0162	-0.0039	-0.0006	-0.74	-0.18	-0.03	-1.50	-1.98	-2.25	-2.30
1805 13	-0.0176	-0.0026	-0.0007	-0.80	-0.12	-0.03	-1.57	-2.12	-2.31	-2.36
	-0.0138	-0.0015	-0.0008	-0.86	-0.07	-0.04	-1.66	-2.24	-2.35	-2.41
	-0.0221	-0.0004	-0.0007	-1.01	-0.02	-0.03	-1.74	-2.52	-2.55	-2.60
	-0.0249	-0.0001	-0.0005	-1,13	-0.01	-0.02	-1.79	-2.77	-2.78	-2.81
	-0.0254	-0.0004	-0.0003	-1.16	-0.02	-0.02	-1.79	-2.84	~2.78	-2.90
	-0.0235	-0.C015	-0.0002	-1.07	-0.07	-0.01	-1.79	-2.75	-2.85	-2.87
	-0.0223	~0.0026	0.0000	-1.01	-0.12	0.00	-1.78	-2.66	-2.84	-2.84
	-0.0239	-0.0041	0.0003	-1.09	-0.19	0.01	-1.78	-2.75	-3.03	-3.62
1005 44	-0.0007	-0.005.	0.0004		0.54	0.00	. ~~			
1805 14	-0.0267	-0.0054	0.0004	-1.21	-0.24	0.02	-1.73	-2.89	-3,26	-3.23
	-0.0274	-0.0057	0.0005	-1.25	-0.26	0.02	-1.67	-2.39	-3.28	-3.25
	-0.0257	-0.0060	0.0005	-1.17	-0.27	0.02	-1.62	-2.71	• 3.13	-3.09
	-0.0243	-0.0005	0.0005	-1.10	-0.30	0.02	-1.55	-2.57	-3.03	-3.00
	-0.0256	-0.0071	0.0005	-1.16	-0.32	0.02	-1.48	-1.65	-2.15	-3.11
	-0.0265	-0.0074	0.0006	-1.21	-0.34	0.03	-1.39	-2.71	-3.24	-3,19
	-0.0245	-0.0077	୦ . ପଠଠର	-1.11	-0.35	0.03	-1.31	~ 57	-3.11	-3.07
	-0.0192	-0.0085	0.0006	-0.37	-0.39	0.03	-1.23	-2.19	-2.80	-2.75

1805:15 to 1805:21 CDT

	•				. *			. 13 . 0	1003.21	CDI
CDT	a, W	C 80	YRB	β,	β_t	β, (deg)	V-c	emponent	Windspends	(m/s)
hm s	tr. Cas A	C _{RB} RD	Cr. 2 TAS	Term I	Term 2	Term 3	β=0	Torm I	Terms 1+2	Terms 1+2+3
305 15	-0.0147	-C.0095	0.0006	-0.67	-0.43	0.03	-1.15	-1,86	-2.53	-2.49
•	-0.0143	-0.0100	0.0006	~0.€5	-0.46	C.03	-1.08	-1.81	-2.52	-2.48
	-0.0157	-0.0106	3.0006	-0.71	-0.48	0.03	-1.02	-1.85	-2.60	-2.56
	-0.0199	-0.0110	0.0006	-0.90	-0.50	0.03	-0.95	-2.08	-2.86	-2.81
	-0.0241	-0.0112	0.0006	-1.09	-0.51	0.03	-0.90	-2.27	-3.07	-3.02
	-0.0254	-0.0109	0.0006	-1.1G	-0.50	0.03	-0.85	-2.26	-3.03	-2.99
	-0.0249	-0.0106	0.0006	-1.13	-0.48	0.03	-0.32	-2.10	-2.85	-2.81
	-0.0229	-0.0103	0.0003	-1.04	-0.47	0.02	-0.79	-1.86	-2.59	-2.56
05 16	-0.0215	-0.0100	0.0000	-0.98	-0.46	0.00	-0.77	-1.72	-2.44	-2.44
	-0.0238	-0.0100	-0.0002	-1.08	-0.46	-0.01	-0.72	-1.92	-2,64	-2.65
	-0.0274	-0.0100	-0.0003	-1.25	-0.46	-0.02	-0.68	-2.30	-3.02	-3.04
	-0.0312	-0.0095	-0.0003	-1.42	-0.43	-0.01	-0.63	-2.71	-3.39	-3.42
	-0.0332	-0.0089	-0.0003	-1.51	-0.40	-0.01	-0.63	-3.00	-3.64	~3.66
	-0.0364	-0.0083	-0.0000	-1.65	-C.38	-0.00	-0.69	-3.32	-3.92	-3.92
	-0.0419	-0.0077	0.0002	-1.90	-0.35	0.01	-0.70	-3.74	-4,29	-4.28
	-0.0455	-0.0073	0.0006	-2.07	-0.33	0.03	-0.65	-3.95	-4.48	-4.43
5 17	-0.0454	-0.0071	0.0010	-2.06	-0.32	0.04	-0.54	-3.85	-4.37	-4.29
	-0.0390	-0.0074	0.0010	-1.77	-0.34	0.04	-0.40	-3.25	-3.79	-3.72
	-0.0319	-0.0077	0.0008	-1.45	-0.35	0.04	-0.24	~2.60	-3.16	-3.10
	-0.0265	-0.0085	0.0006	-1.20	-0.39	9.03	-0.21	-2.06	-2.70	-2.65
	-0.0228	-0.0095	0.0006	-1.04	-0.43	0.03	-0.16	-1,69	-2.39	-2.34
	-0.0228	-0.0100	0.0009	-1.04	-0.46	0.01	-0.10	-1.57	-2.31	-2.24
	-0.0235	-0.0106	0.0012	-1.07	-0.48	0.05	0.02	-1.41	-2,20	-2.12
	-0.0228	-0.0110	0.0010	-1.04	-0.50	0.05	0.20	-1.17	-2.00	-1,92
18	-0.0205	-0.0112	0.0007	-0.93	-0.51	0.03	0.38	-0.89		-1.68
	-0.0186	-0.0109	0.0003	-0.85	-0.50	0.01	0.54	-0.69	-1.51	-1.48
	-0.C185	-0.0106	0.0002	-0.84	-0.40	0.01	0.65	-0.62	-1.42	-1.41
	-0.0171	-0.0098	0.0002	-0.78	-0.44	0.01	0.74	-0.42	-1.15	-1.14
	-0.0128	-0.0089	0.0001	-0.58	-0.40	0.00	0.82	-0.00	-0.67	-0.66
	-0.0122	-0.0083	-0.0001	-0.55	~0.38	-0.01	0.90	0.11	-0.51	-0.52
	-0.0166	-0.0077	-0.0003	-0.76	-0.35	-0.01	0.92	-0.16	-0.74	-0.76
	-0.0207	-0.0070	-0.0001	-0.94	-0.32	-0.01	0.93	-0.45	-0.57	-0.98
	0.0105	0.0055		0.00	0.00	. 0. 00		. 0. 22	-0.04	
5 19	-0.0195	-0.0065	-0.0000	-0.89	-0.30	-0.00	1.13	-0.32	-0.61	-0.81
	-0.0113	-0.0065	-0.0001	-0.51	-0.30	-0.00	1,13	0.30	-0.18	-0.19
	-0.0037	-0.0065	-0.0002	-0.17	-0.30	0.01	1,16	0.90	0.41	0.39
	0.0013	-0.0065	-0.0007	0.06	-0.30	-0.03	1.21	1,28	0.82	0.77
	0.0051	-0.0065	-0 CO11	0.23	-0.30	-0.05	. 1.18	1.06	1.07	1.00
	0.0042	-0.0065	-0.0012	C. 19	-0.30	-0.05	1,11	1,11	0.94	0.86
	0.0012	-0.0065	-0.0012	0.05	-0.30	-0.05	1.03	1,11	O.G4	0.56
	0.0016	-0.0054	-0.0012	0.07	-0.24	-0.05	0.94	1.05	0.68	0.59
5 20	0.0065	-0.0038	-0.0014	0.29	-0.17	-0.06	0.84	1.06	1.03	0.93
	0.0103	-0.0024	-0.0015	0.47	-0.11	-0.07	0.72	0.81	0.97	1.07
	0.0087	-0.0010	-0.0015	0.39	-0.05	-0.07	0.58	0.90	0.97	1.00
	0.0003	0.0003	-0.0014	0.01	0.01	-0.06	0.53	0.55	0.57	0.47
					0.01					
	-0.0073	0.0012	-0.0014	-0.33		-0.06	0.50	-0.01	0.07	-0.02
	-0.0126	0.0009	-0.0016	-0.57	0.04	-0.07	0.47	-0.41	-0.35	-0.46
	-0.0170	0.000G	-0.0017	-0.77	0.03	-0.08	0.37	-0.31	-0.77	-0.89
	-0.0184	0.0005	-0.0017	-0.84	0.02	-0.08	0.25	-1.02	-0.99	-1.11
5 21	-0.0182	0.0006	-0.0017	-0.83	0.03	-0.08	0.12	-1.13	-1.09	-1.21
	-0.0232	0.0003	-0.0015	-1.05	0.04	-0.07	-0.03	-1.63	-1.57	-1.67
	-0.0329	0.0012	-0.0012	-1.50	0.05	-0.05	-0.22	-2.47	-2.40	-2.48
	-0.0413	0.0012	-0.0008	-1.88	0.06	-0.04	-0.43	-3.25	-3.16	-3.22
	-0.0439	0.0012	-0.0006	-2.00	0.05	-0.03	-0.61	-3.59	-3.51	-3.55
	-0.0385	0.0009	-0.0003	-1.75	0.04	-0.02	-0.77	-3.37	-3.31	-3.33
		0.000	0.2000							
		0.0006	-0.0000	-1 52	ח חי	+0 00	-O 80	-7 17	-3 40	-3 10
	-0.0333 -0.0316	0.0006	0.0003	-1.52 -1.44	0.03	-0.00 0.01	-0.83 -0.85	-3.13 -3.07	-3.10 -3.11	-3.10 -3.03

1805:22 to 1805:28 CDT

CDT	a, W	C _{na} RD	CTR YR B	β,	β_{r}	β_{i} (dec).			Windspeeds	
) m s	+RCAS A		2 TAS	- Term I	Term 2	Tarm 3	β ∗ 0	Term I	Terms 1+2	Torms I+2+
805 22	-0.0315	-0.0022	ი.იიი	-1.43	-0.10	0.03	-0.95	-3.06	-3.20	-3.16
	-0.0273	-0.CO33	0.0007	-1.24	-0.15	0.03	-0.91	-2.73	-2.95	-2.90
•	-0.0186	-0.0044	0.0007	-0.85	-0.20	0.03	-0.38	-2.12	-2.41	-2.36
	-0.0098	-0.0059	0.0008	-0.45	-0.27	0.03	-0.92	-1.57	-1.96	-1.81
	-0.0056	-0.0071	0.0008	-0.26	-0.32	0.04	-0.97	-1.34	-1.82	-1.77
	-0.0070	-0.0074	0.0009	-0.32	-0.34	0.04	-1.04	-1.51	-2.01	-1.95
	-0 0078	-0.CO77	0.0010	-0.36	-0.35	0.05	-1.07	-1.60	-2.12	-2.05
	-0.0052	-0.0033	0.0011	-0.24	-0.38	0.05	-1.05	-1.40	-1.96	-1.89
305 23	-0.0009	-0.0089	0.0012	-0.04	-0.40	0.05	-1.00	-1.06	-1.66	-1.58
	0.0081	-0.0092	0.0011	0.37	-0.42	0.05	-0.92	-1.39	-1.00	-0.93
	0.0187	-0.0095	0.0011	0.85	-0.43	0.05	-0.82	-2.06		-1.50
			0.0010				-0.75			
	0.0222	-0.0084		1.01	-0,38	0.04		-2.22	-1.66	-1.73
	0.0193	-0.0067	0.0008	0.88	-0.30	0.04	-0.69	-1.97	-1.52	-1.58
	0.0055	-0.0050	0.0008	0.25	-0.23	0.03	-0.63	-0.99	-0.68	-0.71
	-0.0097	-0.0033	0.0008	-0.44	-0.15	0.04	-0.53	-1.21	-1.43	-1,38
	-0.0234	-0.0012	0.0011	-1.06	-0.05	0.05	-0.51	-2.02	-2.09	-2.02
805 24	-0.0356	0.0006	0.0015	-1.62	0.03	0.07	-0.38	-2.67	-2.63	-2.54
	-0.0391	0.0009	0.0015	-1.78	0.04	0.07	-0.23	-2.73	-2.68	-2.59
	-0.0387	0.0012	0.0012	-1.76	0.05	0.05	-0.10	-2.58	~2.50	-2.43
	-0.0348	0.0012	8000.0	-1.58	0.06	0.04	-0.00	-2.23	-2.15	-2.10
	-0.0326	0.0012	0.0007	-1.48	0.05	0.03	0.06	-2.02	-1.95	-1.91
	-0.0258									-1.41
		0.0009	0.0008	-1.17	0.04	0.04	0.14	-1.52	-1.46	
	-0.0144 -0.0007	0.0006	0.0009 0.0007	-0.65 -0.03	0.03	0.04	0.20	0.23	-0.66 0.19	-0.61 0.23
BOS 25	0.0036	-0.0022	0.0006	0.44	-0.10	0.03	0.33	-0.14	-0.00	-0.04
	0.0187	-0.0033	0.0004	0.85	-0.15	0.02	0.39	-0.62	-0.41	-0.44
	0.0302	-0.0044	0.0003	1.37	-0.20	0.01	0.43	-1.23	-0.96	-0.98
	0.0357	-0.0056	0.0002	1.62	-0.26	0.01	0.48	-1.47	-1.1	-1.13
	0.0349	-0.0055	0.0002	1.59	-0.30	0.01	0.53	-1.30	-0.59	-0.90
	0.0291	-0.0065	0.0001	1.32	-0.30	0.01	0.60	-0.83	-0.43	-0.44
	0.0271	-0.0065	0.0001	1.23	-0.30	0.00	0.69	-0.56	-0.16	-O.1G
	0.0275	-0.0056	-0.0002	1.25	-0.26	-0.01	0.73	-0.42	-0.08	-0.07
805 26	0.0263	-0.0044	-0.0005	1.19	-0.20	-0.03	0.87	-0.15	0.11	0.14
	0.0200	-0.0033	-0.0009	0.91	-0.15	-0.04	0.95	0.40	0.60	0.65
	0.0119	-0.0022	-0.0012	0.54	-0.10	-0.05	1.01	1.04	1.17	1.24
•	0.0034	-0.0007	-0.0013	0.16	-0.03	-0.06	1.03	1.24	1.20	1.12
	-0.0042	0.0006	-0.0014	-0.19	0.03	-o.oe	0.99	0.74	0.77	0.69
	-0.0106	0.0009	-0.0015	-0.48	0.04	-0.07	0.91	0.28	0.33	0.25
	··O.0175	0.0012	-0.0015	-0.80	0.05	-0.07	0.84	-0.20	-G. 13	-0.22
	-0.0183	0.0012	-0.0015	-0.83	0.06	-0.07	0.85	-0.23	-0.15	-0.24
805 27	-0.0145	0.0012	-0.0013	-0.66	0.05	-0.0s	0 89	0.03	0.10	0.02
	-0.0081	0.0009	-0.0012	-0.37	0.04	-0.06	0.89	0.41	0.46	0.39
	-0.0042	0.000G	-0.0011	-0.19	0.03	-0.05	0.84	0.59	0.63	0.56
	-0.0048	0.0002	-0.0012	-0.22	0.01	-0.05	0.72	0.44	0.46	0.39
	-0.0059	-0.0000	-0.0011	-0.27	-0.00	-0.05	0.60	0.25	0.25	0.19
	-0.0104	-0.0000	-0.0011	-0.47	-0.00	-0.05	0.57	-0.03	-0.03	-0.09
	-0.0171	-0.0000	-0.0010	-0.78	-0.00	-0.05	0.61	-0.36	-0.35	-0.42
	-0.0220	0.0002	-0.0010	-1.00	0.01	-0.05	0.65	-0.60	-0.59	-0.65
805 28	-0.0239	0.0006	-0.0010	-1.09	0.03	-0.05	0.63	-0.72	-0.63	-0.74
	-0.0247	0.0009	-0.0011	-1.12	0.04	-0.05	0.56	-0.82	-0.77	-0.83
	-2.0276	0.0012	-0.0012	-1.26	0.05	-0.05	0.56	-0.97	-0.91	-0.83
	-0.0265						0.59			
		-0.0004	-0.0013	-1.20	-0.02	-0.06 -0.07		-0.87	-0.90	-0.97
	-0.0195	-0.0028	-0.0016	-0.89	-0.13	-0.07	0.63	-0.44	-0.60	-0.69
	-0.0002	-0.0050	-0.0020	-0.01	-0.23	-0.00	0.71	0.69	0.42	0.31
	0.0220	-0.0073	-0.0024	1.00	-0.33	-0.11	0.84	1.19	1.58	1.51
	0.0322	-0.0093	-0.0030	1.46	-0.42	-0.14	0.97	0.54	1.16	1.33

1805:29 to 1805:35 CDT

C D	<u> </u>	o, W		YRb	_β,_	B	B, (ceg)		composite	Windspeeds	(m/s)
		TR CAS A	೮ೄ ಗರಿ	C++ 2 TAS	Term I	Term 2	Term 3	β·0	Torm I		Terms i+2+3
h m	8	77, CAS A		£ 183	1011111	167111 2	161111 3	μ.υ	101111	1671115 1-2	100000
1805	29	0.0318	-0.0106	-0.0036	1.44	-0.46	-0.16	1.02	0.69	1.27	1.47
		0.0182	-0.0100	-0.0038	0.83	-0.46	-C. 17	0.86	1.61	1.31	1.09
		0.0069	-O.CO95	-0.0038	0.31	-0.43	-0.17	0.57	0.95	0.43	0.22
		0.0024	-0.0076	-0.0036	0.11	-0.35	-0.16	0.29	0.42	0.01	-0.19
		0.0003	-0.0055	-0.0034	0.01	-0.25	-0.15	0.09	0.11	-0.20	-0.38
		-0.0024	-0.0041	-0.0034	-0.11	-0.19	-0.15	0.06	-0.07	-0.30	-0.48
		-0.0077	-0.0028	-0.0033	-0.35	-0.13	-0.15	0.04	-0.38	-0.54	-0.72
		-0.0124	-0.0009	-0.0032	-0.56	-0.04	-0.14	-0.05	-0.74	-0.79	-0.96
1805	30	-0.0140	0.0006	-0.0030	-0.64	0.03	-0.14	-0.22	-0.99	-0.96	-1.12
		-0.0148	0.0009	-0.0030	-0.67	0.04	-0.13	-0.40	-1.23	-1.18	-1.34
		-0.0184	0.0012	-0.0031	-0.84	0.05	-0.14	-0.56	-1.58	-1.52	-1.69
		-0.0247	0.0012	-0.0032	-1.12	0.06	-0.15	-0.75	-2.13	-2.06	-2.24
		-0.0300	0.0012	-0.0033	-1.3€	0.05	-0.15	-1.04	-2.74	-2.67	-2.86
		-0.0274	0.0009	-0.0030	-1.25	0.04	-0.14	-1.45	-3.01	-2.96	-3.13
		-0.0204	0.0006	-0.0028	-0.93	0.03	-0.13	-1.84	-3.01	-2.97	-3.13
		-0.0137	0.0002	-0.0025	~0.62	0.01	-0.12	-2.14	-2.93	-2.92	-3.07
1805	31	-0.0114	-0.0000	-0.0023	-0.52	-0.00	-0.11	-2.39	-3.05	-3.05	-3.18
		-0.0182	-0.0000	-0.0022	-0.83	-0.00	-0.10	-2.54	-3.60	-3.60	-3.72
		-0.026G	-0.0000	-0.0020	-1.21	-0.00	-0.03	-2.68	-4.25	-4.25	-4.36
		-0.0307	-0.0000	-0.0019	-1.39	-0.00	-0.09	-2.89	-4.70	-4.70	-4.81
		-0.0302	-0.0000	-0.0018	-1.37	-0.00	-0.08	-3.16	-4.97	-4.97	-5.07
		-0.0276	-0.0000	-0.0015	-1.26	-0.00	-0.07	-3.44	-5.09	-5.09	-5.18
		-0.0282	-0.0000	-0.0010	-1.28	-0.00	-0.05	-3.62	-5.33	-5.33	-5.39
		-0.0287	-0.0000	-0.0004	-1.31	-0.00	-0.02	-3.71	-5.46	-5.46	-5,49
1805	32	-0.0262	-0.0000	0.0002	-1.19	-0.00	0.01	-3.73	-5.34	-5.34	-5.33
	•	-0.0247 -0.0271	-0.0000	0.0007	-1.12	-0.∞	0.03	-3.79	-5.32	-5.32	-5.27
			-0.0000	0.0012	-1.23	-0.00	0.06	-3.83	-5.51	-5.51	-5.44
		-0.0327	-0.0009	0.0015	-1.48	-0.04	0.07	-3.91	-5.95	-G.O1	-5.92
		-0.0371 -0.0348	-0.0022	0.0015	-1.69	-0.10	0.07	-3.99	-6.32	-G.46	G.36
		-0.0295	-0.0033	0.0015	-1.58	-0.15	0.07	-4.03	-6.22	-6.42	-6.33
		-0.0293	-0.0044 -0.0061	0.0017	-1.34 -1.33	-0.20 -0.28	0.08 0.09	-4.02 -3.99	-5.86 -5.82	-6.14 -G.21	-6.03 -6.03
		0.0250	0.000.	0.0010	1.55	0.20	0.03	5.55	3.02	0.21	0.03
1805	33	-0.0363	-0.0077	0.0022	-1.65	-0.35	0.10	-3.93	-6.25	-6.73	-6.6 3
		-0.0454	E800.0-	0.0024	-2.06	-0.33	0.11	-4.03	-6.85	-7.3G	-7.2
		-0.0492	-0.0089	0.0027	-2.24	-0.40	0.12	-4.06	-7.10	-7.65	-7.48
		-0. 0368	-0.0100	0.0030	-1.67	-0.46	0.14	-4.02	-6.28	-6.90	-G.72
		-0.0188	-0.0112	0.0031	-0.86	-0.51	0.14	-3.93	-5.03	-5.76	-5.57
		0.0134	-0.0118	0.0026	0.61	-0.54	0.12	-3.77	-3.28	-3.67	-3.51
		0.0503	-0.0124	0.0019	2.29	~0.56	0.09	-3.6G	-5.55	-4.80	-4.92
		0.0697	-0.0118	0.0013	3.17	-0.54	0.06	-3.59	-6.79	-G.0a	-6.15
4005		0.0704	0.6155	0.000					*		m
1805	34	0.0724	-0.0106	0.0009	3.29	-0.48	0.04	-3.53	-7.0G	-6.42	-6.48
		0.0580	-0.0092	0.0011	2.64	-0.42	0.05	-3.66	-6.25	-5.70	-5.76
		0.0488	-0.0077	0.0012	2.22	-0.35	0.05	-3.72	-5.69	-5.23	-5.30
		0.0490	-0.0051	0.0010	2.23	-0.23	0.04	-3.73	-5.71	-5.40	-5.46
		0.0504	-0.0026	0.0005	2.29	-0.12	0.02	-3.72	-5.85	-5.69	-5.72
		0.0570	-0.0015	0.0000	2.59	-0.07	0.00	-3.70	- 6.34	-6.25	-6.25
		0.0662	-0.0004	-0.0004	3.01	-0.02	-0.02	-3.77	-7.03	-7.01	-6.89
		0.0774	0.0023	-0.0004	3.52	0.10	-0.02	-3.81	-7.85	-7.99	-7.97
1805	35	0.0879	0.0052	-0.0005	4.00	0.24	-0.02	`-3.85	-8.68	-9.00	-8.97
_		0.1064	0.0070	-0.0006	4.84	0.32	-0.03	-3.93	-10.03		-10.41
		0.1328	0.0087	-0.0007	6.04	0.40	-0.03	-4.17	-11.94		-12.42
		0.1483	0.0132	-0.0006	6.74	0.60	-0.03	-4.4C	-13.08		-13.82
		0.1521	0.0180	-0.0003	6.91	0.82	-0.01	-4.37	-13,11		~14.13
		0.1258	0.0208	0.0004	5.72	0.35	0.02	-4.29	-11.34		- 12.54
		0.0917	0.0237	0.0014	4.17	1.03	0.07	-4.02	-9.02		-10.39
		0.0671	0.0273	0.0029	3.05	1.24	0.13	-3.60	-7.11	-8.56	-8.71
							• • • · · ·	•			

1805:36 to 1805:42 CDT

CDT	a, W		YRb	β,	β,	<i>B</i> , (daç)	V-C	empocent	Windspeeds	(m/s)
	TACAS A	C _{ne} RD	Cre 2 TAS	Tenn I	Term 2	Terra 3	B=0	Term 1		Terms 1+2+3
hm s	Tr. CAS A		2 150	(\$110-1	107711 2,		ρ.υ	10:111	1611115 1 - 2	161:15 172 73
1805 36	0.0541	0.0300	0.0045	2.46	1,37	0.21	-3.09	-5.42	-6.93	-7.23
	0.0421	0.0303	0.0062	1.92	1.38	C.28	-2.54	-3.G2	-5.17	-5,49
	0.0156	0.0306	0.0077	0.71	1.39	0.35	-1.67	-0.93	-2.47	-2.86
	-0.0049	0.0309	0.0083	-0.22	1.41	0.38	-0.53	-0.78	-0.11	-0.52
	-0.0073	0.0312	0.0082	-0.33	1.42	0.37	0.41	0.05	1.28	0.69
	0.0068	0.0312	0.0077	0.31	1.42	0.35	0.99	1.32	1.99	1.G2
	0.0137	0.0312	0.0073	0.62	1.42	0.33	1.20	1.86	2 81	2.43
	0.0113	0.0297	0.0068	0.51	1.05	0.31	1.47	2.01	3.43	3.67
1805 37	O CO97	0.0278	0.0062	0.44	1.26	0.28	1.67	2.14	3.47	3.76
1005 31	0.0187	0.0260	0.0049	0.85	1.18	0.22	2.13	3.04	4.28	4.51
	0.0335	0.0243	0.0035		1.11					
				1.52		0.16	2.44	4.06	4.48	4.30
	0.0465	0.0187	0.0020	2.11	0.85	0.09	2.93	4.84	3.92	3.82
	0.0520	0.0123	0.0004	2.36	0.56	0.02	3.34	4.00	3.38	3.36
	0.0543	0.0080	-0.0008	2.47	0.37	-0.04	3.57	3.27	2.86	2.90
	0.0608	0.0038	-0.0013	2.77	0.17	-0.09	3.33	2,18	1.98	2.08
	0.0567	-0.0019	-0.0024	2.58	-0.09	-0.11	2.65	1.77	1.85	2.01
1805 39	0.0420	-0.0065	-0.0027	1.91	-0.30	-0.12	1.78	1.80	2.16	2.30
	0.0196	-0.0074	-0.0027	0.89	+0.34	-0.12	1.06	2.10	1.74	1.59
	0.0035	-0.0083	-0.0026	0.16	-0.38	-0.12	0.45	0.65	0.18	0.03
	-0.0101	-0.0090	-0.0024	-0.46	-0.41	-0.11	-0.13	-0.71	-1.23	-1.37
	-0.0277	-0.0095	-0.0021	-1.26	-0.43	-0.10	-0.65	-2.24	-2.78	-2.30
	-0.0447	-0.0092	-0.0018	-2.03	-0.42	-0.08	-1.04	-3.61	-4.14	-4.25
	-0.0574	-0.0089	-0.0015	-2.61	-0.40	-0.07	-1.25	-4.57	-5.C8	-5.17
	-0.0706	-0.0071	-0.0013	-3.21	-0.32	-0.0G	-1.36	-5.03	-5.44	-5.52
										-
1805 39	-0.0884	-0 0049	-0.0010	-4.02	-0.22	-0.04	-1.43		-6.15	-6.20
	-0.1004	-0.0033	-0.0006	-4.97	-0.15	-0.03	-1.48	-6.98	-7.17	-7.21
	-0.1271	-0.0016	-0.0003	-5.78	-0.07	-0.02	-1.46	-8.00	-8.09	-8.11
	-0.1288	-0.0016	-0.0001	-5.86	-0.07	-0.00	-1.4G	-8.03	-8.18	-8.18
	-0.1225	-0.0028	0.0002	-3.57	-0.13	0.01	-1.48	-7.67	-7.83	-7.82
	-0.1053	-0.0050	0.0005	-4.78	-0.23	0.02	-1.47	-6.68	-6.97	-6.94
	-0.0887	-0.0073	0.0008	-4.03	-0.33	0.03	-1.32	-5.61	-6.23	-6.19
	-0.0748	-0.0111	0.0012	-3.40	-0.50	0.05	-1.20	-5.11	-5.75	-5.69
1805 4C	-0.0623	-0.0147	0.0017	-2.83	-0.67	0.08	-1.10	-4.35	-5.21	-5.11
	-0.0623	-0.0161	0.0020	-2.83	-0.73	0.09	-1.18	-4.12	-5.06	-4.95
	-0.0637	-0.0176	0.0020	-3.17	-0.80	0.09	-1.25	-4.30	-5.33	-5.22
	-0.0773	-0.0187	0.0017	-3.51	-0.85	0.08	-1.27	-4.61	-5.70	-5.60
	-0.0785	-0.0193	0.0014	-3.57	-0.88	0.05	-1.23	-4.67	-5.79	-5.71
	-0.0622	-0.0187	0.0012	-2.83	-0.85	0.05	-1.14	-3.83	-4.91	-4.84
	-0.0410	-0.0182	0.0010	-1.86	~0.83	0.04	-1.10	-2.77	-3.80	-3.75
	-0.0296	-0.0172	0.0007	-1.34	-0.78	0.03	-1.15	-2.25	-3.21	-3.17
1808 44	-0.0000	-0.0464	0.000			0.00	. 4	•		
1805 41	-0.0299	-0.0164	0.0005	-1.36	-0.75	0.02	-1.24	-2.39	-3.30	-3.27
	0.0431	-0.0161	0.0003	-1.96	-0.73	0.02	-1.37	-3.18	-4.06	-4.04
-	-0.0518	-0.0158	0.0002	-2.36	-0.72	0.01	-1.48	-3.70	-4.56	-4.55
	-0.0468	-0.0150	0.0003	-2.13	-0.68	0.01	-1.60	-3.46	-4.27	-4.25
	-0.0365	-0.0141	. 0.0003	-1.66	-0.64	0.01	-1.69	-2.92	-3.68	-3.67
	-0.0329	-0.0135	0.0003	-1.50	-0.61	0.01	-1.76	-2.77	-3.50	-3.48
	-0.0385	-0.0129	0.0004	-1.75	-0.59	0.02	-1.81	-3.12	-3.81	-3.79
	-0.0514	-0.0113	0.0007	-2.34	-0.54	0.03	-1.92	-3.60	-4.44.	-4.40
1805 42	-0.0598	-0.0106	0.0011	-2.72	-0.48	0.05	-2.02	-4.18	-4.70	-4.70
	-0.0596	-0.0100	0.0010	-2.71	-0.4G	0.05	-2.15	-4.C6	-4.60	-4.55
	-0.0579	-0.0095	0.0007	-2.G3	-0.43	0.03	-2.27	-3.50	-4.41	-4.37
	-0.0506	-0.0088	0.0003	-2.76	-0.40	0.01	-2.42	-4.08	~4.53	-4.51
	-0.0678	-0.0033	0.0002	-3.08	-0.38	0.01	-2.52	-4.46	-4.91	-4.90
	-0.0694	-0.0033	0.0005	-3.15	-0.38	0.02	-2.58	-4.59	-5.04	-5.01
	-0.0534	-0.00s3	0.0007	-2.83	-0.38	0.03	-2.57	-4.27	-4.73	-4.69
	-0.0465	-0.0095	0:0055	-2.11	-0.43	0.03	-2.51	-3.41	-3.94	-3.90
					U			5.41	٠.٠٠	0.00

1805:43 to 1805:49 CDT

CDI		a, W		YRb	β,	β_{i}	B, (deg)		cmponent	Windspæds	im/e)
		TR CAS A	C _{na} RD	Cve Z TAS	Term I	Term 2	Term 3	B • 0	Term I		Terms I+2+3
h in	8	Tr. CAS A		£ 183	1641111	19:111 €	(80) 5	p.0	16411111	16tm# 1+2	16JTIS 172+3
1805	43	-0.0301	-0.0112	0.0005	-1.37	-0.51	0.02	-2.43	-2.59	-3.20	-3.18
		-0.0109	-0.0126	0.0004	-0.49	-0.57	0.02	-2.31	-1.72	-2.31	-2.29
		0.0104	-0.0141	0.0004	0.47	-0.64	0 02	-2.21	-2.78	-2.00	-2.02
		0.0272	-0.0148	0.0003	1.24	-0.67	0.01	-2.11	-3.63	-2.81	-2.82
		0.0389	-0.0147	0.0003	1.77	-0.67	0.01	-1.98	-4.17	-3.34	-3.36
		0.0380	-0.0135	0.0003	1.73	-0.61	0.02	-1.82	-3.98	-3.21	-3.23
		0.0342	-0.0124	0.0004	1.55	-0.56	0.02	-1.64	-3.61	-2.90	-2.92
		0.0250	-0.0093	0.0002	1.13	-0.42	0.01	-1.54	-2.96	-2.41	-2.43
		0.0200	0.000	0.0002		0.42	0.0				2.40
4005								4 00			
1805	44	0.0153	-0.0061	-0.0001	0.69	-0.28	-0.01	-1.60	-2.28	-1.92	-1.91
		0.0064	-0.0041	-0.0005	0.29	-0.19	-0.02	-1.72	-1.66	-1.GO	-1.63
		-0.0012	-0.0022	-0.0007	-0.05	-0.10	-0.03	-1.88	-1.95	-2.08	-2.12
		-0.0060	0.0013	-0.0005	-0.27	0.00	-0.02	-1.99	-2.34	-2.26	-2.29
		-0.0101	0.0046	-0.0001	-0.46	0.21	-0.01	-2.05	-2.64	-2.37	-2.38
		-0.0304	0.0061	0.0001	-1.38	0.28	0.01	-2.09	-3.86	-3.51	-3.50
		-0.0622	0.0076	0.0003	-2.83	0.34	0.01	-2.07	-5.71	-5.27	-5.25
		-0.0857	0.0082	0.0008	-3.90	0.37	0.03	-2.05	-7.07	-6.59	-6.5 5
1805	45	-0.0923	0.0081	0.0014	-4.20	0.37	0.06	-1.96	-7.36	-G.88	-6.80
		-0.0762	0.0070	0.0019	-3.47	0.32	0.09	-1.84	-6.25	-5.88	-5.77
		-0.0622	0.0058	0.0020	-2.83	0.26	0.09	-1.G5	-5.29	-4.95	-4.83
		-0.0621	0.0026	0.0018	-2.82	0.12	0.08	-1.45	-5.Q8	-4.93	-4.83
		-0.0667	-0.0010	0.0016	-3.12	-0.05	0.07	-1.23	~5.27	-5.33	-5.24
		-0.0751	-0.0033	0.0021	-3.41	-0.15	0.10	-1.03	-5.47	-5.67	-5.54
		-0.0742	-0.0055	0.0028	-3.37	-0.25	0.13	-0.75	-5.17	-5.50	-5.34
		-0.0570	-0.0086	0.0030	-2.59	-0.39	0.14	-0.48	-3.90	-4.42	-4.24
1805	46	-0.0360	-0.0112	0.0023	-1.64	-0.51	0.13	-0.21	-2.38	-3.06	-2.89
		-0.0222	-0.0118	0.0023	-1.01	-0.54	0.10	0.01	-1.33	-2.04	-1.90
		-0.0174	-0.0124	0.0021	-0.79	-0.56	0.10	0.20	-0.86	-1.G1	-1.48
		-0.0187	-0.0120	0.0022	-0.85	-0.55	0.10	0.40	-0.74	-1.48	-1.35
		-0.0156	-0.0112	0.0020	-0.71	-0.51	0.09	0.51	-0.36	-1.05	-0.92
		-0.0023	-0.0100	0.0017	-0.11	-0.46	80.0	0.77	0.62	-0.00	0.10
		0.0130	-0.0089	0.0014	0.59	-0.40	0.06	0.90	0.28	0.84	0.75
		0.0130	-0.0066	0.0014	0.59	-0.30	0.06	1.01	0.43	0.84	0.75
		• • • • • • • • • • • • • • • • • • • •							•		****
1805	47	0.0002	-0.0044	0.0015	0.01	-0.20	0.07	1,10	1.11	0.84	0.94
		-0.0192	-0.0033	0.0018	-0.87	-0.15	0.08	1.25	0.03	-0.18	-0.08
		-0.0305	-0.0022	0.0022	-1.39	-0.10	0.10	1.39	-0.5G	-0.70	-0.56
		-0.0252	-0.0003	0.0021	-1.15	-0.04	0.10	1.56	-0.05	-0.11	0.03
		-0.0167	-0.0000	0.0013	-0.76	-0.00	0.08	1.70	0 63	0.63	0.75
		0.0021	-0.0000	0.0014	0.10	-0.00	0.06	1.82	1.95	1.95	2.04
		0 0240	-0.0000	0.0012	1.09	-0.00	0.05	1.88	1.34	1.34	1.26
		0.0500	-0.0012	0.0013	2.27	-0.05	0.06	1.95	-0.16	-0.08	-0.16
		0.0000	0.00.2	0.0010		0.00	0.00		J. 10	4.00	J
1805	48	0.0751	-0.0018	0.0013	3.41	-0.13	0.06	2.04	-1.61	-1.43	-1.52
		0.0907	-0.0041	0.0010	4.12	-0.19	0.05	2.16	-2.48	-2.21	-2.27
		0.1004	-0.0055	0.0007	4.5G	-0.25	0.03	2.23	-3.04	-2.68	-2.72
		0.0977	-0.0054	0.0003	4.44	-0.25	0.03	2.33	-2.82	-2.45	-2.48
		0.0920	-0.0044	-0.0000	4.18	-0.20	-0.00	2.39	-2.47	-2.18	-2.18
		0.0856	-0.0024	-0.0002	3.89	-0.11	-0.01	2.44	-2.10	-1,94	-1.92
		0. /814	-0.0004	-0.0003	3.70	-0.02	-0.0:	2.44	-1.90	-1.87	-1.85
		0 0542	0.0050	-0.00C3	2.46	0.23	-0.01	2.42	-0.14	-0.48	-Q.46
1805	49	0.0101	0.0110	-0.0002	0.46	0.50	-0.01	2.40	2.77	2.03	2.04
		-0.0256	0.0148	-0.0003	-1.16	0.67	-0.01	2.44	9.70	1.70	1,68
		-0.0382	0.0185	-0.0005	-1.74	0.94	-0.02	2.44	-0.17	1.10	1.05
		-0.0300	0.0218	-0.0007	-1.36	0.99	-0.03	2.44	0.38	1.58	1.83
		~0.0295	0.0237	-0.0003	-1.34	1.08	-0.04	2.47	0.41	2.06	2.01
		-0.0285	0.0226	-0.0000	-1.29	1.03	-0.04	2.58	0.56	2.16	2.10
		-0.0199	0.0214	+0.0010	-0.90	0.97	-0.05	2.66	1.22	2.77	2.70
		~0.0115	0.0184	-0.0007	-C.52	0.84	-0.03	2.63	1.79	3.13	3.08
	<u> </u>		·		 -						

1805:50 to 1805:53 CDT

CD.	T	a, W	C PD	YRb	₽,	β_{\bullet}	$E_{s}(dsg)$	٧-	component	abosqueniW	(m/s)
h m	5	+ CAS A	C _{Re} RD	2 TAS	Term I	Tenn 2	Yerm 3	β=0	Torm I	Terms I+2	Terms 1+2+
805	50	-0.0109	0.0151	-0.0002	-0.49	0.69	-0.01	2,49	1.69	2.80	2.79
		-0.0195	0.0131	0.0007	-0.89	0.59	0.03	2.38	0.94	1.90	1.95
		-0.0274	0.0110	0.0014	-1.25	0.50	0.06	2.49	0.48	1.29	1.39
		-0.0251	0.0077	0.0017	-1.14	0.35	0.08	2.65	0.82	1.39	1 51
		-0.0167	0.0046	0.0020	-0.76	0.21	0.09	2.04	1.63	1.96	2.11
		-0.0042	0.0035	0.0019	-0.19	0.16	0.09	2.91	2.60	2.85	2.99
		0.0050	0.0023	0.0018	0.23	0.11	0.08	2.96	3.32	3.48	3.61
	*	0.0136	0.0010	0.0016	0.62	0.05	0.07	2.99	3.94	3.99	3.92
805	51	0.0255	-0.0000	0.0016	1.16	-0.00	0.07	3.15	3.32	3.32	3.20
		0.0432	-0.0000	0.0017	1.96	-0.00	0.08	3.40	2.14	2.14	2.02
		0.0612	-0.0000	0.0016	2.78	-0.00	0.07	3.80	0.93	0.93	0.62
		0.0724	-0.0000	0.0014	3.29	-0.00	0.06	4.15	0.17	0.17	0.07
		0.0778	-0.0000	0.0012	3.54	-0.00	0.05	4.44	-0.22	-0.22	-0.30
		0.0863	-0.0000	0.0011	3.92	-0.00	0.05	4.6G	-0.89	-0.89	-0.97
		0.1018	-0.0000	0.0008	4.63	-0.∞	0.04	4.84	-2.12	-2.12	-2.18
		0.1581	-0.0002	-0.0017	7.18	-0.01	-0.08	4.93	-6.31	- G.30	-6.17
805	52 ۽	0.2339	-0.0004	-0.0045	10.63	-0.02	-0.21	4.47	-12.26		-11.91
	!	0.2739	-0.0007	-0.0041	12.45	-0.03	-0.19	3,84	-15.81	-15.76	-15.46
	32	0.2708	-0.0009	-0.0017	12.31	-0.04	-O.O8	3,46	-16.00	-15.93	-15.81
		0.2048	0.0003	0.0012	9.31	0.01	0.05	3.52	-11.20	~11.22	-11.31
	•	O.140G	0.0020	0.0030	6.39	0.03	0.14	3.90	-6.20	-6.35	-6.56
		0.0960	0.0037	0.0016	4.36	0.17	0.07	4.42	-2.46	-2.73	-2.84
	1	0.0630	0.0054	-0.0033	2.86	0.24	-0.15	4.38	-0.13	-0.52	-0.28
	Ē	0.0644	0.0095	-0.0052	2.93	0.43	-0.24	3.43	-1.19	-1.88	-1.50
805	53	0.0770	0.0139	-0.0017	3.50	0.63	30.¢÷	2.87	-2.68	-3.68	-3.56
		0.0812	0.0165	-0.0002	3.69	0.75	-0.01	2.99	-2.57	-4.07	-4.05
		0.0680	0.0191	-0.0017	3.69	0.87	-0.C3	2.97	-1.97	-3.36	-3.24
		0.0324	0.0223	-0.0004	1.47	1.02	-0.02	2.60	0.43	-1.22	-1.19
	- *	-0.0007	0.0249	0.0004	-0.03	1.13	0.02	3.37	2.31	1.57	1.54
	2	-0.0112	0.0252	-0.0033	-0.51	1.14	-0.15	3.62	2.77	2.56	2.81
	N	-0.0090	0.0255	-0.0047	-0.41	1.16	-0.21	3.00	2.31	1.72	2.03
	I	0.0034	0.0236	-0.0016	0.38	1.G7	-0.07	2.65	2.02	0.17	0.29

For sideslip angles of Delta 191, refer to the preliminary draft (dated October 10, 1985) entitled

ESTIMATION OF THE WINDS ALONG THE FLIGHTPATH FOR THE DELTA L1011
ACCIDENT AT THE DALLAS-FORT WORTH AIRPORT ON AUGUST 2, 1985

by R. E. Bach, Jr. and R. C. Wingrove NASA Ames Research Center Moffett Field, California 94035

References

- 1976: Fujita, T.T. Spearhead echo and downburst near the approach end of a John F. Kennedy Airport runway, New York City. SMRP Res. Paper 137, University of Chicago, 51 pages.
- 1977: Fujita, T.T. and F. Caracena <u>An analysis of three weather-related</u>
 aircraft accidents. Bull. Amer. Heteor. Soc., 58, 1164-1181.
- 1977: Fujita, T.T. and H.R. Byers Spearhead echo and downbursts in the crash of an airliner. Hon. Wea. Rev., 105, 129-146.
- 1978: Fujita, T.T. Manual of downburst identification for Project NIMROD.

 SMRP Res. Paper 156, University of Chicago, 104 pages (out of print).
- 1979: Fujita, T.T. Cbjectives, operation, and results of Project NIMROD.

 Preprints 11th Conf. on Severe Local Storms, Kansas City, Amer.

 Neteor. Soc., 259-256.
- 1981: Fujita, T.T. and R.H. Wakimoto <u>five scales of airflow associated</u>
 with a series of downbursts on 10 July 1980. Hon. Wea. Rev., 109,
 1438-1456.
- 1981: Fujita, T.T. <u>Hicroburst as an aviation wind shear hazard</u>. Preprints AIAA 19th Aerospace Sciences Heeting, St. Louis, AIAA-81-0386, 9 pages.
- 1981: Fujita, T.T. TornaJoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 1512-1534.
- 1983: Forbes, G.S. and R.H. Wakimoto <u>A concentrated outbreak of tornadoes</u>, downbursts and microbursts, and implications regarding vortex classification. Mon. Wea. Rev., 111, 220-235.
- 1983: Fujita, T.T. and R.H. Wakimoto <u>Microbursts in JAMS depicted by Doppler radars</u>, <u>PAM</u>, and aerial photographs. <u>Preprints 21st Conf. on Radar Meteorology</u>, <u>Edmonton</u>, <u>Canada</u>, <u>Amer. Meteor. Soc.</u>, 638-645.
- 1983: Fujita, T.T. <u>Microburst wind shear at New Orleans International Airport, Kenner, Louisiana on July 9, 1982.</u> SMRP Res. Paper 199, University of Chicaro, 39 pages.
- 1983: National Academy of Sciences <u>Low-altitude wind shear and its hazard</u> to aviation. Hational Academy Press, 112 pages.

for affective

- 1984: Bedard, A.J., Jr. et al. Statistics from the operation of the low-level wind shear alert system during the JAWS project.

 DOT/FAA/PM-84-32. Federal Aviation Administration, 76 pages.
- 1984: Fujita, T.T. Andrews AFB microburst. SMRP Res. Paper 205, University of Chicago, 38 pages.
- 1984: Kessinger, C.J. et al. The evolution of misoscale circulations in a downburst-producing storm and comparison to numerical results.

 Preprints 22nd Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 58-63.
- 1984: McCarthy, J. and R.J. Serafin <u>The microburst hazard to aircraft.</u>
 Weatherwise, 37, 120-127.
- 1984: Roberts, R.D. and J.W. Wilson Precipitation and kinematic structure of microburst producing storms. Preprints 22nd Conf. on Radar Mereorology, Zurich, Switzerland, Amer. Meteor. Soc., 71-76.
- 1984: Wilson, J.W. et al. <u>Microburst wind structure and evaluation of Doppler radar for wind shear detection</u>. J. Climate Appl. Meteor., 23, 898-915.
- 1985: FAA Transcript of the tape recording of the DFW Airport traffic control communications.
- 1985: FAA Houston Center NTAP radar data of DL 963, DL 1061, AA 351, N715JF,
 DL 191, AA 539, and DL 557.
- 1985: Fujita, T.T. <u>The Downburst</u>. SMRP Rcs. Paper 210, University of Chicago, 122 pages. Library of Congress Cat. No. 85-50115, NTIS PBS5-148880.
- 1985: National Transportation Safety Board Operations group field report: DCA 85-A-A-031.
- 1985: National Transportation Safety Board <u>Public hearing</u> in connection with August 2, 1985 accident of Delta Airlines Lockheed L-1011-726DA, Dallas-Fort Worth International Airport, Texas, I-IV, 1371 pages.
- 1985: Wakimoto, R.M. Forecasting dry microburst activity over the high plains. Mon. Wea. Rev., 113, 1131-1143.
- 1985: Nolfson, M.H., J.J. DiStefano, and T.T. Fujita Low-altitude wind shear characteristics in the Hemphis, TN area based on mesonet and LUIAS data. Preprints 14th Conf. on Severe Local Storms, Indianapolis, Amer. Keteor. Soc., 322-327.

 $\mathbf{1}^{f_{1}}$

Subject Index

	Α		F	
Accelero		19,88-96		4,27,41,42
	meter height	65	FLOWS Project	59
Aileron	-	17,30,60,73-78	Fourth contact	3,4,43,44
	coordinates	19	rouren contact	
	fine (ALTF)	8,17-19,30,65	G	
		67-72,115-123	· · · · · · · · · · · · · · · ·	
ALTF rate	e .	105-114	Ground velocity	66,133-141
American		46,47,50	**	
American	-	46,47,51	H	
	·	17,22,60,67-72	Heading	17,33
_	r coordinates		Horizontal curvature of p	•
Atmosphe	ric pressure	•		34,124-132
-	(PTA)	65,115-123	Horizontal wind(HW)	66,106-114
	(P_x)	65,115-123		
			Ï	
	В		Indicated airspeed(IAS)	
Bodu and	le of attack	18,66		18,28,67-72
body any	TO OI ACLAUX	10,00	Inertial altitude(z) 79-	
	C			
COHMEX P	roject	60	J [*]	
		n (CWP) 17,73-78	JANS Project	60
		s) 65,133-141		
Crosswin		34,66,97-105	K	
		33,34,124-132		
	e of pitch	31,32	Kinetic energy 27,	66,133-141
			1	
	D		_	
Descondi	ng vortex	25,35,36,38	Lateral acceleration	17,34
DFDR rea	-	17	Lear Jet	46,47,50
=	derstorm	15	LLWAS Centerfield	2,5,7,54
Delta 55		46,47,52	Northeast	2,8,54
Delta 96		46,47	Northwest .	2,54
Delta 10		46,48	Southeast	54
	d pressure	30,125-123	Southwest	54
	angle(dfa)	66,106-114	West	54
			LOM	2,46,47
1.2	E		Longitudinal ac eleration	
Pankl	andinatas	10.20	Longitudinal wirds	28
	ordinates	19,20	14	
tuging p	ressure ratio) 17,28,67-72 133-141	TI.	
		T22-14T	•	

Hicroburst "0" 24	Swoothing 65
"1" 24	SPACE Project 60
"2" 24	Spoiler(SPO) 17,66,73-78
"3" 24	Stabilizer position 17,73-78
descent of 52-56,58	Static air temperature 18,30,67-72
expansion of 52-54,57,58	Static pressure sensor 19
shaft 55	Stretching vortices 16,25,38,57,61
MIST Project 60	Stephenville sounding 15
	radar 10,49
н	
utuban n-sisah	T
NIMROD Project 59	m_1111
National Weather Service at DFW	Tailwind 66,97-105
anemometer 2,5-7,54	Third contact 3,4,43,44
barograph trace 8	Three-component ground velocity 21
observations 6,7	Three-component winds 22
raingauge trace 8	Total energy 28,133-141
C	Total energy rate 28
P	Total wind 66,106-114
Parent cloud of microburst	Trim 17,73-78
at Idaho Falls 16	True airspeed (TAS) 65
cloud height 15,49	True altutude(TA) 65,115-123
infrared temperature 13,14	True heading 34,67-72,124-132
radar pictures 9,10,14	**************************************
satellite pictures 12,13	V
Types A,S,B,I,C 62	Vertical acceleration 17,32
Pitch angle(0) 18,21,22,31,32,	Vertical curvature of path 31,32
73-78,124-132	Vertical path angle(n) 31,124-132
Pitch control column position(CPP)	Vertical winds(w) 24,28,32
17,32,66,73-78	at wing tips 37
Pitch rate 106-114	Vertical winds (VN) 66,106-114
Potential energy 27,66,133-141	Vortex "1" 24,25,40
Totalization and an arrival ar	"2" 24,25,39
R	"3" 24,25,35
	The state of the s
Roll angle (ϕ) 17-19,21,22,29,30,	χ
37,73-78	
Roll control wheel position(CHP)	x-component wind(u) 22,97-105
17,30,66,73-78	x -component ground speed(\hat{x}) 21
Roll moment 37	The state of the s
Roll rate 37,106-114	. Y
Rudder pedal position(RPP)	y-component wind(v) 23,24,97-105
17,34,66,67-72	y-component ground speed(g) 21
Rudder position(RUD) 17, 4,67-72	Yaw rate $(\ddot{\xi} - \ddot{\psi})$ 106-114

3	2
Second contact: 3,4,41,42	
17L coordinates 2,3,20,45	z-component wind(w) 22,97-105
Sideslip angles 22,23,142-150	z-component ground speed(2) 21
17L coordinates 2,3,20,45	z-component wind(w) 22,97-1

ABOUT THE AUTHOR

Born at Kitakyushu City, Japan on October 23, 1920

1953 D.Sc., Tokyo University; 1953-55 Research Associate, University of Chicago; 1955-56 Returned to Japan for an immigrant visa; 1956-62 Director of Mesometeorology Project, University of Chicago; 1962 Associate Professor of Meteorology, Director of Satellite and Mesometeorology Research Project (SMRP), University of Chicago; 1965-present Professor of Meteorology, University of Chicago; 1968 Became a U.S. citizen.

AWARDS—1959 Okada Award (Meteorological Society of Japan), 1960 Kamura Award (Kyushu Institute of Technology), 1967 Meisinger Award (American Meteorological Society), 1977 Admiral Luis de Flores Flight Safety Award (Flight Safety Foundation), 1977 Distinguished Service Award (Flight Safety Foundation), 1978 First Annual Award (National Weather Association), 1979 Distinguished Public Service Medal (National Aeronautics and Space Administration), 1982 Losey Atmospheric Sciences Award (American Institute of Aeronautics and Astronautics), 1985 25th Anniversary of Weather Satellites Award (U.S. Department of Commerce).

Bridge of the Control of the Control

 End of Document