Censai

Alexandre Adam, Laurence Perreault-Levasseur, et al., in prep.

> Département de Physique Université de Montréal

> > July 27, 2021

Recurrent Inference Machine (RIM)

The RIM is designed to solve problems of the form

$$\mathbf{y} = f(\mathbf{x}) + \boldsymbol{\eta}$$

The noise model is usually chosen to be Gaussian $\eta \sim \mathcal{N}(0, \Sigma)$, such that

$$\log \mathcal{L}(\mathbf{y} \mid \mathbf{x}) \propto -\frac{1}{2} (\mathbf{y} - f(\mathbf{x}))^T \Sigma^{-1} (\mathbf{y} - f(\mathbf{x}))$$

RIM solves this problem recursively, similarly to a downhill optimizer

$$\hat{\mathbf{x}}_{t+1} = \hat{\mathbf{x}}_t + \underbrace{g_{\varphi}(\mathbf{x}_t, \nabla \mathcal{L}_{\mathbf{y}|\hat{\mathbf{x}}_t})}_{-\gamma_t \Delta \hat{\mathbf{x}}_t}$$

Estimating Background Source Brightness

Morningstar, Perreault-Levasseur et al.

Estimating both source and κ

Adam, Perreault-Levasseur et al., in prep.

Simulated Mass Distributions

Illustris TNG100-1: Dark Matter, Baryons, Gas and Black Holes

Data Augmentation VAE

Original Architecture

New Architecture

Early Results

