Problem 7.22. Let $DOUBLE\text{-}SAT = \{\langle \phi \rangle \mid \phi \text{ has at least two satisfying assignments}\}$. Show that DOUBLE-SAT is NP-complete.

Proof. The proof is in two parts. First, we show that $DOUBLE\text{-}SAT \in NP$. Second, we show that every $A \in P$ is polynomial time reducable to DOUBLE-SAT.

Part a. Show that DOUBLE- $SAT \in NP$.

A certificate is simply two satisfying assignments.

Part b. Show that every $A \in P$ is polynomial time reducable to DOUBLE-SAT.

To show that every $A \in P$ is polynomial time reducable to DOUBLE-SAT, we give a polynomial time reduction F from SAT to DOUBLE-SAT.

F = "On input $\langle \phi \rangle$, where ϕ is a satisfiable Boolean formula:

- 1. Let α be a new Boolean variable, which is not in ϕ .
- 2. Let $\phi_2 = \phi \wedge (\alpha \vee \overline{\alpha})$.
- 3. Output $\langle \phi_2 \rangle$."

If ϕ is satisfiable, then ϕ_2 has at least two satisfiable assignments. First, where $\alpha = T$, and the second where $\alpha = F$. If $\phi_2 = \phi \wedge (\alpha \vee \overline{\alpha})$ has at least two satisfiable assignments, then ϕ is satisfiable.