A Markov Decision Process-based approach for trajectory planning with clothoid tentacles

<u>Authored by</u>: Hafida Mouhagir, Reine Talj, Véronique Cherfaoui, Franck Guillemard, François Aioun

I. Background

History (pt. 1)

- Bernoulli (1694) the 'elastica'
- Euler (1744)
 - Tackled inverse problem of 'straightening out' a curved lamina
 - Original (still viable) series expansion for integral defining the curve
- Euler (1781) the 'Euler spiral'
 - Determined limits to integral expression

Figure 4: Euler's drawing of his spiral, from Tabula V of the Additamentum.

Figure 5: Reconstruction of Euler's Fig. 17, with complete spiral superimposed.

History (pt. 2)

- Fresnel (1818) the 'Fresnel Integral'
 - Diffraction of a monochromatic light source through a slit
 - Independent derivation to describe the resulting intensity
- Cornu (1874) the 'Cornu Spiral'
 - Found that intensity is inversely proportional to arclength
- Cesaro (1886) the 'Clothoid'

Figure 8: Diffraction through a slit.

$$I = (S(s_1) - S(s_0))^2 + (C(s_1) - C(s_0))^2$$

Figure 9: Cornu's plot of the Fresnel integrals.

History (pt. 3)

- Talbot (1890) the 'Railway Transition Spiral'
 - Independent derivation of a curve with the following properties:
 - Curvature increases proportionately to the distance along that curve from the point of a spiral
 - Minimizes variation of curvature across total length
 - Keeps passengers comfy!

Fig. 4. A pair of clothoids from circle to circle forming a C-curve.

Fig. 3. A pair of clothoids from circle to circle forming an S-curve.

Figure 10: Talbot's Railway Transition Spiral.

Fig. 2. A single clothoid from one circle to another circle.

Approximation of the clothoid curve

- costly to compute Fresnel integrals
- Taylor series used historically
- Hermitian splines used more recently

Fig. 2. Piecewise polynomial approximations of a clothoid: (a) Hermite, (b) Taylor.

II. A Markov Decision Process-based approach for trajectory planning with clothoid tentacles (Mouhagir et al., 2016)

The goal

Prior work

- RRT
 - good for path planning involving obstacles + non-holonomic constraints
 - under presence of heavy traffic, RRTs check every possible collision for every expanded node
- Lattice planners
 - guaranteed optimality, smoothness, resolution complete
 - curvature discontinuity
- Lateral curve shifting w/ cost function
 - not very robust (prone to discontinuities)

Methods (pt. 1) - Overview

Methods (pt. 2) - Occupancy Grid

- 800x800 Bayesian occupancy grid
- binary representation (free/occupied)

Figure 3: Occupancy grid example of a road

Methods (pt. 3) - Generation of clothoid tentacles

- Fixed number of tentacles generated (n_t)
- approximated at n_s timesteps

$$L_{tentacle}(m) = \begin{cases} t_0 V_x - L_0 & V_x > 1(m/s) \\ 2(m) & V_x \le 1(m/s) \end{cases}$$

$$\rho_0 = \frac{\tan \delta_0}{L} \qquad \rho = \frac{2}{k^2} s$$
(2)

(a)
$$V_x = 6 \, m/s$$
 , $\delta_0 = 0.3 \, rad$ (b) $V_x = 10 \, m/s$, $\delta_0 = 0.3 \, rad$

Figure 5: Examples of set of clothoid tentacles

Methods (pt. 4) - Choosing the best tentacle

- Typical methods are computationally costly
 - o e.g., geometric ripple minimization
- MDP formulation + series approximation of clothoids

$$V = \sum_{t=0}^{h} \gamma^t r_t$$

estimate distance to first obstacle

estimate smoothness of steering angle variation

reflects similarity to reference trajectory

$$V_{combined} = a_0 V_{clearance} + a_1 V_{curvature} + a_2 V_{trajectory}$$

Methods (pt. 6) - MDP formulation; S, A, T

State space :

- circles at each step in trajectories
- width of vehicle + security margin
- each tentacle composed of n_s states
- deterministic state space reduction

Action space :

of tentacles (n_t)

Transition probabilities :

- no possible transition between tentacles
- p(s' | s, a) = 1 for a unique s' in S
- o p(s'' | s, a) = 0 for all s'' = /= s'

Figure 7: States of MDP model with clothoid tentacles

Methods (pt. 7a) - MDP formulation; R

Methods (pt. 7b) - MDP formulation; R

$$l_c = \frac{V_x^2}{2a_m} + l_s \qquad \text{(crash distance)}$$

$$d_i = a_i + c_{\alpha}\alpha_i$$
 (combined distance metric)

$$d = \sum_{i=1}^{n} \lambda_i d_i$$

$$R(s_{|trajectory}) = R_{trajectory} - d$$

Results

c_{α}	γ_t	γ_o	γ_f	κ_1	κ_2	κ_3	λ_1	λ_2	λ_3
0.7	0.99	0.95	0.99	$\frac{1}{10}$	$\frac{1}{2}$	1	10	2	$\frac{1}{3}$

Table I: The values of various parameters

Figure 10: Overtaking manoeuver and following the reference trajectory and different performance measures

Figure 11: Influence of parameters γ_o and n_s with $V=6\,m/s$

Strengths

- memoryless
- tractable curve evaluation
- tunable behavior of approach

Weaknesses

- question of approximation method
- results are for low velocities
 - \circ (5 m/s ~ 11 mph)

Future work

- incorporation of stochastic transitions (between clothoids)
- evidential occupancy grid (better track external dynamics)
- implementation of algorithm on hardware

Citations

- 1. H. Mouhagir, R. Talj, V. Cherfaoui, F. Guillemard, and F. Aioun, "A Markov Decision Process-based approach for trajectory planning with clothoid tentacles," *IEEE Intell. Veh. Symp. Proc.*, vol. 2016-Augus, pp. 1254–1259, 2016, doi: 10.1109/IVS.2016.7535551.
- 2. R. Levien, "The Euler spiral: a mathematical history," Opera, pp. 1–14, 2008, [Online]. Available: http://raph.levien.com/phd/euler_hist.pdf.
- 3. A. Kommer and T. Weidner, "Some aspects of clothoids," *Proc. 7th Int. Conf. Appl. Informatics*, vol. 1, pp. 115–120, 2007.
- 4. G. C. Urcera, "The Clothoid Computation: A Simple and Efficient Numerical Algorithm," no. August 2016, 2017, doi: 10.1061/(ASCE)SU.1943-5428.0000177.
- 5. D. S. Meek and D. J. Walton, "A note on finding clothoids," J. Comput. Appl. Math., vol. 170, no. 2–2, pp. 433–453, 2004, doi: 10.1016/j.cam.2003.12.047.
- 6. D. Bagnell, "Occupancy Maps 1 Occupancy Mapping: An Introduction," Stat. Tech. Robot., vol. 06, pp. 16–831, [Online]. Available: https://www.cs.cmu.edu/~16831-f14/notes/F14/16831 lecture06 agiri dmcconac kumarsha nbhakta.pdf.
- 7. L. Bartholdi and A. Henriques, "Orange Peels and Fresnel Integrals," Math. Intell., vol. 34, no. 3, pp. 1–3, 2012, doi: 10.1007/s00283-012-9304-1.