CSE 604 Artificial Intelligence

Chapter 7: Logical Agents

Adapted from slides available in Russell & Norvig's textbook webpage

Dr. Ahmedul Kabir

Wumpus world

4	\$5555 Stendt		Breeze	PIT
3	V::	SS SSS Stench S	PIT	Breeze
2	SS SSSS Stendi		Br 80 28 -	
1	START	Breeze	PIT	Breeze
	1	2	3	4

Wumpus World PEAS description

Performance measure

- gold +1000, death -1000
- -1 per step, -10 for using the arrow

Environment

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus World Environment

- Partially Observable: only local perception
- <u>Single-agent</u> Wumpus is essentially a natural feature
- <u>Deterministic</u> outcomes exactly specified
- <u>Sequential</u>: rewards may come after many actions
- Static: Wumpus and Pits do not move
- <u>Discrete:</u> One state at a time

3

2

Knowledge bases

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 - Tell it what it needs to know
- Then it can Ask itself what to do answers should follow from the KB
- Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented
- Or at the implementation level
 - i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

- The agent must be able to:
 - Represent states, actions, etc.
 - Incorporate new percepts
 - Update internal representations of the world
 - Deduce hidden properties of the world
 - Deduce appropriate actions

Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics define the "meaning" of sentences;
 - i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
 - $x+2 \ge y$ is a sentence; $x2+y \ge \{\}$ is not a sentence
 - $-x+2 \ge y$ is true iff the number x+2 is no less than the number y
 - $-x+2 \ge y$ is true in a world where x = 7, y = 1
 - $-x+2 \ge y$ is false in a world where x = 0, y = 6

Entailment

- Entailment means that one thing follows from another: $KB \models \alpha$
- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
 - E.g., x = 0 entails xy = 0
 - Entailment is a relationship between sentences (i.e., syntax)
 that is based on semantics

Models

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α
- Then KB $\models \alpha \text{ iff } M(KB) \subseteq M(\alpha)$
 - E.g. KB = Giants won and Reds won α = Giants won

Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for *KB* assuming only pits

3 Boolean choices \Rightarrow 8 possible models

• *KB* = wumpus-world rules + observations

- KB = wumpus-world rules + observations
- $\alpha_1 = "[1,2]$ is safe", $KB \models \alpha_1$, proved by model checking

- KB = wumpus-world rules + observations
- $\alpha_2 = "[2,2]$ is safe", $KB \not\models \alpha_2$

Inference

- $KB \mid_{\alpha} = \text{sentence } \alpha \text{ can be derived from } KB \text{ by procedure } i$
- Soundness: *i* is sound if whenever $KB \models_{i} \alpha$, it is also true that $KB \models \alpha$
- Completeness: *i* is complete if whenever $KB \models \alpha$, it is also true that $KB \models_i \alpha$
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- That is, the procedure will answer any question whose answer follows from what is known by the *KB*.

Propositional logic: Syntax

- Propositional logic is the simplest logic illustrates basic ideas
- The proposition symbols P₁, P₂ etc are sentences
 - If S is a sentence, \neg S is a sentence (negation)
 - If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
 - If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)
 - If S_1 and S_2 are sentences, $S_1 \rightarrow S_2$ is a sentence (implication)
 - If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g.
$$P_{1,2}$$
 $P_{2,2}$ $P_{3,1}$ false true false

With these symbols, 8 possible models, can be enumerated automatically.

Rules for evaluating truth with respect to a model *m*:

```
abla S_1 \land S_2  is true iff S_1 is true and S_2 is true S_1 \lor S_2 is true iff S_1 is true or S_2 is true S_1 \Rightarrow S_2 is true iff S_1 is false or S_2 is true iff S_1 is false or S_2 is true i.e., is false iff S_1 is true and S_2 is false S_1 \Leftrightarrow S_2 is true iff S_1 \Rightarrow S_2 is true and S_2 \Rightarrow S_1 is true
```

Simple recursive process evaluates an arbitrary sentence, e.g.,

$$\neg P_{\bullet,\bullet} \land (P_{\bullet,\bullet} \lor P_{\bullet,\bullet}) = true \land (true \lor false) = true \land true = true$$

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j].

$$\begin{array}{c}
 & P_{1,1} \\
 & B_{1,1}
\end{array}$$

$$B_{2,1}$$

• "Pits cause breezes in adjacent squares"

$$\begin{array}{l} B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}) \\ B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}) \end{array}$$

Truth tables for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
false	true							
false	false	false	false	false	false	true	false	true
:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	\underline{true}	\underline{true}
false	true	false	false	false	true	false	\underline{true}	\underline{true}
false	true	false	false	false	true	true	true	true
false	true	false	false	true	false	false	false	true
:	:	:	:	:	:	:	:	:
true	false	false						

Inference by enumeration

• Depth-first enumeration of all models is sound and complete

```
function TT-Entails?(KB, \alpha) returns true or false
symbols \leftarrow \text{a list of the proposition symbols in } KB \text{ and } \alpha
\text{return TT-Check-All}(KB, \alpha, symbols, [])
function TT-Check-All}(KB, \alpha, symbols, model) \text{ returns } true \text{ or } false
\text{if Empty?}(symbols) \text{ then}
\text{if PL-True?}(KB, model) \text{ then return PL-True?}(\alpha, model)
\text{else return } true
\text{else do}
P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)
\text{return TT-Check-All}(KB, \alpha, rest, \text{Extend}(P, true, model) \text{ and}
\text{TT-Check-All}(KB, \alpha, rest, \text{Extend}(P, false, model)
```

• For *n* symbols, time complexity is $O(2^n)$, space complexity is O(n)

Logical equivalence

• Two sentences are logically equivalent iff true in same models: $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) commutativity of \wedge
          (\alpha \vee \beta) \equiv (\beta \vee \alpha) commutativity of \vee
((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) associativity of \wedge
((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) associativity of \vee
            \neg(\neg\alpha) \equiv \alpha double-negation elimination
       (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) contraposition
       (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) implication elimination
      (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) biconditional elimination
       \neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta) de Morgan
       \neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta) de Morgan
(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) distributivity of \wedge over \vee
(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) distributivity of \vee over \wedge
```

Validity and satisfiability

A sentence is valid if it is true in all models, e.g., True, A $\vee \neg$ A, A \Rightarrow A, (A \wedge (A \Rightarrow B)) \Rightarrow B

Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is satisfiable if it is true in some model e.g., $A \lor B$, C

A sentence is unsatisfiable if it is true in no models e.g., $A \land \neg A$

Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable

Proof methods

- Proof methods divide into (roughly) two kinds:
 - Application of inference rules
 - Legitimate (sound) generation of new sentences from old
 - Proof = a sequence of inference rule applications

 Can use inference rules as operators in a standard search algorithm
 - Typically require transformation of sentences into a normal form
 - Model checking
 - truth table enumeration (always exponential in *n*)
 - improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL)
 - heuristic search in model space (sound but incomplete) e.g., min-conflicts-like hill-climbing algorithms

Resolution

Conjunctive Normal Form (CNF)

conjunction of disjunctions of literals E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$

Resolution inference rule (for CNF):

$$l_{1} \vee ... \vee l_{k}$$

$$f_1 \vee \ldots \vee f_k, \qquad m_1 \vee \ldots \vee m_n$$

$$\underbrace{\ell_{i}} \vee \ldots \vee \underbrace{\ell_{i-1}} \vee \underbrace{\ell_{i+1}} \vee \ldots \vee \underbrace{\ell_{k}} \vee m_{1} \vee \ldots \vee m_{1} \vee m_{1-1} \vee m_{1+1} \vee \ldots \vee m_{n}$$

where l_1 and m_2 are complementary literals, E.g.,

$$P_{1,3} \vee P_{2,2}, \neg P_{2,2}$$

Resolution is sound and complete for propositional logic

Resolution

Soundness of resolution inference rule:

Conversion to CNF

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- 3. Move \neg inwards using de Morgan's rules and double-negation: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
- 4. Apply distributivity law (\land over \lor) and flatten: $(\lnot B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\lnot P_{1,2} \lor B_{1,1}) \land (\lnot P_{2,1} \lor B_{1,1})$

Resolution algorithm

• Proof by contradiction, i.e., show $KB \land \neg \alpha$ unsatisfiable

```
function PL-RESOLUTION(KB, \alpha) returns true or false
clauses \leftarrow \text{the set of clauses in the CNF representation of } KB \land \neg \alpha
new \leftarrow \{\}
loop \ do
for \ each \ C_i, \ C_j \ in \ clauses \ do
resolvents \leftarrow \text{PL-RESOLVE}(C_i, C_j)
if \ resolvents \ contains \ the \ empty \ clause \ then \ return \ true
new \leftarrow new \cup \ resolvents
if \ new \ \subseteq \ clauses \ then \ return \ false
clauses \leftarrow clauses \cup new
```

Resolution example

•
$$KB = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1} \qquad \alpha = \neg P_{1,2}$$

In-class Example

If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

Prove that the unicorn is both magical and horned.

(Adapted from Barwise and Etchemendy, 1993.)

Forward and backward chaining

- Horn Form (restricted)
 KB = conjunction of Horn clauses
 - Horn clause = Clause with at most one positive literal
 - proposition symbol; or
 - (conjunction of symbols) \Rightarrow symbol
 - E.g., $C \land (B \Rightarrow A) \land (C \land D \Rightarrow B)$
- Modus Ponens (for Horn Form): complete for Horn KBs

$$\alpha_1, \ldots, \alpha_n, \qquad \alpha_1 \wedge \ldots \wedge \alpha_n \Rightarrow \beta$$

β

- Can be used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time

Forward chaining

- Idea: fire any rule whose premises are satisfied in the KB,
 - add its conclusion to the KB, until query is found

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

Forward chaining algorithm

```
function PL-FC-Entails?(KB, q) returns true or false
  local variables: count, a table, indexed by clause, initially the number of premises
                      inferred, a table, indexed by symbol, each entry initially false
                     agenda, a list of symbols, initially the symbols known to be true
   while agenda is not empty do
       p \leftarrow \text{Pop}(agenda)
       unless inferred[p] do
            inferred[p] \leftarrow true
            for each Horn clause c in whose premise p appears do
                 decrement count[c]
                 if count[c] = 0 then do
                      if HEAD[c] = q then return true
                     Push(Head[c], agenda)
   return false
```

Forward chaining is sound and complete for Horn KB

Proof of completeness

FC derives every atomic sentence that is entailed by *KB*

- 1. FC reaches a fixed point where no new atomic sentences are derived
- 2. Consider the final state as a model *m*, assigning true/false to symbols
- 3. Every clause in the original *KB* is true in m $a_1 \wedge ... \wedge a_k \Rightarrow b$
- 4. Hence *m* is a model of *KB*
- 5. If KB = q, q is true in every model of KB, including m

Backward chaining

Idea: work backwards from the query *q*:

```
to prove q by BC,
check if q is known already, or
prove by BC all premises of some rule concluding q
```

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

- 1. has already been proved true, or
- 2. has already failed

Forward vs. backward chaining

- FC is data-driven, automatic, unconscious processing,
 - e.g., object recognition, routine decisions

- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be much less than linear in size of KB

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences wrt models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Resolution is complete for propositional logic. Forward, backward chaining are linear-time, complete for Horn clauses
- Propositional logic lacks expressive power