MS4131 Lecture 20: Diagonalization

Kevin Moroney

30 November 2023

1 Diagonalization

Definition A square matrix A is said to be **diagonalizable** if there exists an invertible matrix P such that $P^{-1}AP$ is diagonal.

Theorem 1.1 If A is an $n \times n$ matrix, then the following are equivalent:

- 1. A is diagonalizable
- 2. A has n linearly independent eigenvectors

Remark If A does not have n linearly independent eigenvectors, it is not diagonalizable.

Application

$$A^{n} = (PDP^{-1})^{n} :: P^{-1}AP = D \implies A = PDP^{-1} :: A^{n} = PD^{n}P^{-1}$$

Orthogonal diagonalization

Definition A square matrix A with the property $A^{-1} = A^T$ is said to be an **orthogonal matrix**.

Definition A square matrix A is **orthogonally diagonalizable** if there is an orthogonal matrix P such that $P^{-1}AP = P^{T}AP$ is diagonal. The matrix P is said to orthogonally diagonalize A.

Remark If A is orthogonally diagonalizable then $P^{-1}AP$ is diagonal where P is orthogonal;

that is $P^TP = I$ or if p_i for i = 1, 2, ..., n are the columns of P then

$$p_i^T p_j = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

that is, the columns of P (the eigenvectors of A) are **orthonormal** and so A has n orthonormal eigenvectors.

Similarly if A has n orthonormal eigenvectors p_1, p_2, \ldots, p_n then the matrix P, whose columns are these eigenvectors, diagonalizes A orthogonally.

Thus A is orthogonally diagonalizable if and only if A has n orthonormal eigenvectors.

Theorem 1.2 If A is an $n \times n$ matrix, then A is orthogonally diagonalizable if and only if A is symmetric.

Theorem 1.3 If A is symmetric, then eigenvectors corresponding to different eigenvalues are orthogonal.