Cálculo 1: Questões para Peer Learning

Prerequisitas

- 1. Considere as seguintes afirmações:
 - 1. Para todo $x \in \mathbb{R}_+, x \geqslant \sqrt{x}$.
 - 2. As inequações $\frac{3x-1}{x+2}\geqslant 5$ e $3x-1\geqslant 5x+10$ possuem o mesmo conjunto solução.
 - 3. As inequações $\frac{x^2-1}{x^2+1} < 3$ e $x^2-1 < 3x^2+3$ possuem o mesmo conjunto solução.

Quais delas valem?

- (a) Só 1
- (b) Só 2
- (c) Só 3 ×
- (d) Só 1 e 2
- (e) Só 1 e 3
- (f) Só 2 e 3
- 2. Calcule o conjunto solução da inequação

$$\frac{|x-2|}{|x-1|} < 2.$$

3. Denote por |x| a "função piso", que manda x pro maior inteiro menor ou igual a x: assim

$$|5,82| = 5, |3| = 3, |-2,8| = -3.$$

Quais das seguintes funções têm domínios iguais?

- 1. $\sqrt{\frac{x}{x-1}}$
- 2. $\sqrt{x^2 x}$
- 3. $\frac{3x}{|x|}$
- (a) Nenhumas
- (b) Só 1 e 2
- (c) Só 1 e 3
- (d) Só 2 e 3
- (e) Todas
- 4. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função qualquer. Mostre que existe uma função par p e uma função ímpar i tal que f(x) = p(x) + i(x) para todo $x \in \mathbb{R}$

[[DICA: a função
$$x \mapsto f(x) - f(-x)$$
 é impar!]]

- 5. Usando identidades trigonomêtricas da aula, e os triângulos espertos, calcule o valor exato de $\tan(\pi/12)$. Qual é?
 - (a) $\frac{\sqrt{3}-1}{2\sqrt{2}}$

- (b) $\frac{\sqrt{3}+1}{2\sqrt{2}}$
- (c) $2 + \sqrt{3}$
- (d) $2 \sqrt{3}$

[[DICA: um primeiro passo é calcular $sen(\pi/12)$ usando uma fórmula para $sen(\alpha - \beta)$.]]

- 6. Esboçe os gráficos das seguintes funções:
 - (a) $f(x) = x \cdot \text{sen}(x)$
 - (b) $g(x) = x + \operatorname{sen}(x)$
- 7. Mostre que, para todo x no domínio de tan(x), temos

$$\sec^2(x) = 1 + \tan^2(x).$$

Funções exponenciais e logaritmos

1. Qual das seguintes opções é o domínio da função

$$f(x) = \log_{\pi}(\sqrt[5]{2^x} - 4)$$
?

- (a) \mathbb{R}
- (b) $(0,\infty)$
- (c) $[0,\infty)$
- (d) $(5,\infty)$
- (e) $[5,\infty)$
- (f) $(10, \infty)$ *
- (g) $[10, \infty)$
- 2. Usando as propriedades da função exponencial, mostre que a função log tem as seguintes propriedades:
 - (a) $\log_a(xy) = \log_a(x) + \log_a(y) \quad \forall x, y > 0,$
 - (b) $\log_a(x/y) = \log_a(x) \log_a(y) \quad \forall x, y > 0,$
 - (c) $\log_a(x^t) = t \cdot \log_a(x) \quad \forall x > 0, \forall t \in \mathbb{R}.$

Limites

- 1. Quais das seguintes afirmações estão certas?
 - 1.

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{3x + 2} \quad \text{\'e finito}.$$

2. O limite

$$\lim_{x \to \infty} \frac{cx^3 + 12x}{2x^3 + 8}$$

pode ser 0, finito ou infinito, dependendo de $c \in \mathbb{R}$.

- 3. Se $\lim_{x\to\infty}\frac{f(x)}{g(x)}=2$, e $\lim_{x\to\infty}f(x)=0$, então necessariamente $\lim_{x\to\infty}g(x)=0$.
- (a) Só 1
- (b) Só 2
- (c) Só 3
- (d) Só 1 e 2
- (e) Só 1 e 3
- (f) Só 2 e 3

- (g) Todas
- 2. 1. Seja a um ponto do domínio de f. Se

$$\lim_{x \to a^{-}} f(x) = b \quad e \quad \lim_{x \to a^{+}} f(x) = b$$

então f(a) = b.

2. Se $\lim_{x\to 1^-} |f(x)| = 2$, então $\lim_{x\to 1^-} f(x)$ necessariamente existe e

$$\lim_{x \to 1^{-}} f(x) = 2 \text{ ou } \lim_{x \to 1^{-}} f(x) = -2$$

- 3. Suponha que para todo $n \in \mathbb{N}$, $f(1/10^n) = 3$. Então $\lim_{n \to 0^+} f(x)$ existe e $\lim_{n \to 0^+} f(x) = 3$
- (a) Só 1
- (b) Só 2
- (c) Só 3
- (d) Só 1 e 2
- (e) Só 1 e 3
- (f) Só 2 e 3
- (g) Nenhuma ou todas *
- 3. Seja $c\in\mathbb{N}$ fixo. Quais são os possíveis valores de

$$\lim_{x \to \infty} \frac{2x^3 + 9x + 5}{\sqrt{x^c + 9x + 5}}?$$

Para quais c estes valores são obtidos?

4. Considere a função

$$f(x) = \begin{cases} x^2 & x \text{ racional,} \\ -x^2 & x \text{ irracional.} \end{cases}$$

O limite $\lim_{x\to a} f(x)$:

- (a) Existe para todo $a \in \mathbb{R}$
- (b) Existe para infinitos $a \in \mathbb{R}$ mas nem todos
- (c) Existe para somente um $a \in \mathbb{R}$ *
- (d) Não existe para nenhum $a \in \mathbb{R}$

[[DICA: faça desenho!]]

- 5. Sejam $f,g:\mathbb{R}\to\mathbb{R}$ duas funções contínuas.
 - (a) Mostre que, se f(x) = 0 para todo $x \in \mathbb{Q}$, então f(x) = 0 para todo $x \in \mathbb{R}$.
 - (b) Mostre que, se f(x) = g(x) para todo $x \in \mathbb{Q}$, então f = g.
- 6. Considere o círculo com raio 1. Divida ele em n partes iguais por colocar uma reta do centro pro círculo. O caso com n=5 é esse:

Aproxime a área de cada parte por um triângulo assim:

Seja A(n) a área da união dos n triângulos acima.

- (a) Calcule A(n).
- (b) Use o limite $\lim_{x\to 0} \frac{\mathrm{sen}(x)}{x} = 1$ para calcular $\lim_{n\to\infty} A(n)$.
- 7. Para quais das seguintes funções f, o valor f'(0) está definida?
 - 1. f(x) = x
 - 2. f(x) = |x|
 - 3. f(x) = x|x|
 - (a) Só 1
 - (b) Só 2
 - (c) Só 3
 - (d) Só 1 e 2
 - (e) Só 1 e 3
 - (f) Só 2 e 3
 - (g) Nenhuma ou todas
- 8. Use o Teorema do Valor Intermediário para justificar a seguinte afirmação:

"Neste momento, existem dois pontos do equador, diametricamente opostos, tendo exatamente a mesma temperatura."

[[DICA: contrua uma função usando a diferença!]]

Derivada

- 1. Quais das seguintes afirmações valem?
 - 1. $\lim_{x \to 1} \frac{x^{10} 1}{x 1} = 1$
 - 2. $\lim_{x \to 1} \frac{x^{10} 1}{x 1} = 10$
 - 3. $\frac{d}{dx}e^7 = 7e^6$
 - (a) Só 1
 - (b) Só 2 *
 - (c) Só 3
 - (d) Só 1 e 2
 - (e) Só 1 e 3
 - (f) Só 2 e 3
 - (g) Nenhuma ou todas
- 2. Provamos já um dos limites trigonométricas fundamentais: $\lim_{x\to 0} \frac{\operatorname{sen}(x)}{x} = 1$. Prove outro:

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0.$$

<u>Dica</u>: multiplique por $\frac{\cos(x)+1}{\cos(x)+1}$, e coloque a expressão como um produto de fatores cujos limites a gente sabe.

- 3. Prove usando limites que cos(x)' = -sen(x).
- 4. Quais das seguintes afirmações valem?
 - 1. $\frac{d}{dx}\operatorname{sen}(2x) = \cos(2x).$
 - 2. Sabendo que f(1)=1, f'(1)=3, podemos concluir que $\frac{d}{dx}f(x)/x^2$ no ponto x=1 é 1.
 - 3. A equação $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$ quer dizer que a reta tangente de $\sin(x)$ no ponto 0 é y=x.
 - (a) Só 1
 - (b) Só 2
 - (c) Só 3
 - (d) Só 1 e 2
 - (e) Só 1 e 3
 - (f) Só 2 e 3 *
 - (g) Nenhuma ou todas
- 5. Aplique a regra do constante e a regra do produto pra função $c \cdot f(x)$. Confirme que a resposta é a mesma.