#### Нейронные сети

Екатерина Черняк

Факультет компьютерных наук НИУ ВШЭ

October 9, 2018

- 1 Сверточные нейронные сети
  - CNN для классификации предложений
  - Символьные CNN для классификации предложений

#### Сверточные нейронные сети

#### Сверточные нейронные сети [англ. convolutional neural network]:

- Заимствованы из области компьютерного зрения
- Пик популярности пришелся на 2014 (до +10% аккуратности в задачах классификации), со временем были вытеснены рекуррентными нейронными сетями

#### Помогают справиться с двумя проблемами:

- Часто входы бывают переменной длины (тексты, абзацы, предложения)
- Если использовать подход, основанный на представлении предложениями окнами, то:
  - число параметров увеличивается,
  - нужно подбирать размер окна.

#### Слой свертки

#### Фильтр [англ. filter]:

 $w_{1:n}$  – входная последовательность слов,  $E_{w_i}$  – эмбеддинг слова  $w_i$   $x_i = \oplus(w_{i:i+k-1})$  – окно длины k

Фильтр:  $p_i = g(x_i u)$  $p_i \in \mathbb{R}, x_i \in \mathbb{R}^{k \cdot d_{emb}}, u \in \mathbb{R}^{k \cdot d_{emb}}$ 

Преобразуем каждое входное окно, но пока размерность входа не уменьшается!



# Слой субдискретизации (пулинга)

Субдискретизация / пулинг [англ. pooling]:

р<sub>i</sub> – выходные значения фильтра



 $\max$ -пулинг:  $c = \max_i p_i$ 

- Выбираем самый важный признак из полученных на предыдущем шаге
- Можем использовать и min, и усреднение

#### Классификатор на основе сверточной сети

- $y \in [0,1]$  истинные значения
- $\hat{y} = c$  предсказанные значения



- Для обучения сверточной сети можно использовать обычный алгоритм распространения ошибки
- Одномерные фильтры это сильное ограничение. Что делать, если c=0.5?

## Многомерные фильтры

# Применяем фильтр I раз: $p_i = g(x_i \cdot U + b)$

$$p_i \in \mathbb{R}^I, x_i \in \mathbb{R}^{k \cdot d_{emb}}$$
  
 $U \in \mathbb{R}^{k \cdot d_{emb} \times I}, b \in \mathbb{R}^I$ 



#### Шаг окна

 Можно использовать непересекающиеся окна, чтобы уменьшить объем вычисления



### Как выбирать вектора слов?

- Случайная инициализация (если нет обученных моделей word2vec, GloVe)
- word2vec, GloVe без обновления
- word2vec, GloVe с обновлением на каждой эпохе (увеличивается количество параметров!)
- Несколько каналов: копируем два входа и
  - на один подаем word2vec и не обновляем эти входы во время обучения, на второй подаем word2vec и обновляем эти входы во время обучения
  - ▶ на один вход подаем word2vec, на второй GloVe

#### Как использовать pad?

[[мое первое короткое предложение], [второе очень длинное предложение, которое никогда не заканчивается], [третье предложение]]

- Неэффективный способ: одно предложение одна эпоха
- Окружить все предложения баластными символами рад и сделать их одной длины
  - ▶ Надо убедиться, что тах-пулинг не выберет значения, соответствующие pad
  - ► Надо убрать выбросы, то есть, супер-длинные предложения, возникшие, например, из-за ошибок сегментатора

- 1 Сверточные нейронные сети
  - CNN для классификации предложений
  - Символьные CNN для классификации предложений

# CNN для классификации предложений [Kim14]



# CNN для классификации предложений [ZW15]



# Dynamic Convolutional Neural Network [KGB14]



#### Narrow VS wide convolution:

- $m \in \mathbb{R}^m$  weights,  $s \in \mathbb{R}^s$  input sequence
- convolution:  $c_j = m^T s_{j-m+1:j}$
- narrow convolution:  $s \ge m$ ,  $c \in \mathbb{R}^{s-m+1}$ ,  $j \in [m, s]$
- wide convolution:  $c \in \mathbb{R}^{s+m-1}$  $j \in [1, s+m-1]$
- $s_i = 0, i < 1, i > s$

# Dynamic Convolutional Neural Network [KGB14]



#### Dynamic k-max pooling:

- k-max pooling over a linear sequence of values returns the subsequence of k maximum values in the sequenceSecondly
- the pooling parameter k can be dynamically chosen by making k a function of other aspects of the network or the input.

$$k_I = \max(k_{top}, \frac{L-I}{I}s)$$

 ${\it I}$  – the number of the current convolutional layer to which the pooling is applied

L - the total number of convolutional layers in the network

 $\emph{k}_{top}$  - the fixed pooling parameter for the topmost convolutional layer

# Dynamic Convolutional Neural Network [KGB14]

#### Folding:

After a convolutional layer and before (dynamic) k-max pooling, one just sums every two rows in a feature map component-wise.



- 📵 Сверточные нейронные сети
  - CNN для классификации предложений
  - Символьные CNN для классификации предложений

# Символьные CNN для классификации предложений [ZZL15]

Представление текста: one-hot вектора для 70 алфавитных и неалфавитных символов



#### Источники І

- Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom, *A convolutional neural network for modelling sentences*, arXiv preprint arXiv:1404.2188 (2014).
- Yoon Kim, Convolutional neural networks for sentence classification, arXiv preprint arXiv:1408.5882 (2014).
- Ye Zhang and Byron Wallace, A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification, arXiv preprint arXiv:1510.03820 (2015).
- Xiang Zhang, Junbo Zhao, and Yann LeCun, *Character-level convolutional networks for text classification*, Advances in neural information processing systems, 2015, pp. 649–657.