Revised Scaffolded Questions for Algebra 2 Assessment (Questions 5–8)

This document provides revised scaffolded questions to help students prepare for questions 5 through 8 of the enVision Algebra 2 Progress Monitoring Assessment Form C. Each question includes four scaffolded steps to build understanding from basic concepts to the level required by the assessment, with clear guidance for concept-naive students.

Question 5: Finding Zeros of Polynomial Functions

The original question asks to select all x-values where the polynomial $f(x) = x^4 - 2x^3 - 29x^2 + 30x$, modeling a pelican's height, equals zero. The following questions build understanding of finding polynomial zeros.

- 5.1 Understanding Zeros: A zero of a function is an x-value where f(x) = 0, where the graph crosses the x-axis. Find the zeros of:
 - a) f(x) = x 2: Set x 2 = 0, zero at x =_____
 - b) $f(x) = x^2 4 = (x 2)(x + 2)$: Zeros at $x = ___, x = ____$
 - c) What does a zero represent for a height function?
- 5.2 Factoring Polynomials: Factor each polynomial and find zeros:
 - a) $f(x) = x^2 + 3x = x(x+3)$: Zeros at $x = ___, x = ___$
 - b) $f(x) = x^3 9x = x(x^2 9) = x(x 3)(x + 3)$: Zeros at x =______, x =______, x =______,
 - c) If a factor appears twice (e.g., $(x-1)^2$), the zero has multiplicity 2, meaning the graph touches the x-axis. Why might multiplicity matter?
- 5.3 Contextual Zeros: A ball's height is modeled by $h(t) = -16t^2 + 48t$. Find when it hits the ground (h(t) = 0):
 - a) Factor: $-16t^2 + 48t = -16t(t-3) = 0$. Zeros at $t = ____, t = ____$
 - b) Interpret: t = 0 is when the ball is _____; t = 3 is when it _____.
 - c) Why ignore negative times?
- 5.4 **Testing Zeros**: For a polynomial $f(x) = x^4 x^3 8x^2 + 8x$, test if the following are zeros by substituting:
 - a) x = -2: Compute $f(-2) = ____$. Is it a zero? _____
 - b) x = 1: Compute f(1) =_____. Is it a zero? _____
 - c) For the original $f(x) = x^4 2x^3 29x^2 + 30x$, which of these are zeros: -6, -5, 0, 1, 4, 6? Test two values (e.g., x = 0, x = 1).

Question 6: Solving Quadratic Equations with Complex Numbers

The original question asks to solve $-x^2 + 5x = 7$ over complex numbers. The following questions build understanding of the quadratic formula and complex solutions.

- 6.1 Complex Numbers: The imaginary unit i satisfies $i^2 = -1$. Simplify:
 - a) $\sqrt{-16} = \sqrt{16} \cdot \sqrt{-1} =$
 - b) $\sqrt{-36} =$ _____
 - c) Why is $\sqrt{-1} = i$?
- 6.2 Quadratic Formula: For $ax^2 + bx + c = 0$, solutions are $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$. Solve $x^2 2x 3 = 0$:
 - a) Identify: $a = ___, b = ___, c = ____$
 - b) Discriminant: $b^2 4ac =$ _____. Is it positive, negative, or zero? _____
- 6.3 Complex Solutions: Solve $x^2 + 2x + 5 = 0$:

 - b) Discriminant: $b^2 4ac =$ _____. Since it's negative, expect complex roots.
 - c) Apply formula: $x = \frac{-2 \pm \sqrt{-16}}{2} = \frac{-2 \pm 4i}{2} =$ _____
 - d) Why does a negative discriminant mean complex roots?
- 6.4 Applying to the Original Problem: Solve $-x^2 + 5x = 7$:
 - a) Rewrite in standard form: ____ = 0
 - b) Identify: $a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}, c = \underline{\hspace{1cm}}$
 - c) Discriminant: $b^2 4ac =$
 - d) Solutions: $x = \frac{\pm\sqrt{2}}{2} = \frac{5\pm i\sqrt{53}}{2}$. Compare to choices: $\frac{5\pm i\sqrt{3}}{2}$, $\frac{5\pm i\sqrt{53}}{2}$, $\frac{5\pm i\sqrt{53}}{2}$,

Question 7: Exponential Equations with Natural Logarithms

The original question asks to solve $5e^{\frac{x}{2}} = 10$. The following questions build understanding of solving exponential equations.

7.1 **Logarithm Properties**: Since $\ln(e^x) = x$ (because \ln is the inverse of e^x), simplify:

- a) $\ln(e^3) =$ _____
- b) $e^{\ln(4)} =$ _____
- c) Why does $\ln(e^x) = x$?

7.2 Simple Exponential Equations: Solve:

- a) $e^x = 6$: Take ln of both sides: $\ln(e^x) = \ln(6)$, so $x = \underline{\hspace{1cm}}$
- b) $e^x = 2$: x =

7.3 Coefficients in Exponents: Solve $3e^x = 15$:

- a) Isolate: $e^x = \frac{15}{3} =$ _____
- b) Take ln: $\ln(e^x) = \ln(\underline{\hspace{1cm}})$
- c) Solve: $x = \underline{\hspace{1cm}}$

7.4 Applying to the Original Problem: Solve $5e^{\frac{x}{2}} = 10$:

- a) Isolate: $e^{\frac{x}{2}} = \frac{10}{5} =$ _____
- b) Take ln: $\ln(e^{\frac{x}{2}}) = \ln(\underline{\hspace{1cm}})$
- c) Simplify: $\frac{x}{2} = \ln(\underline{\hspace{1cm}})$
- d) Solve: $x = \underline{\hspace{1cm}}$. Write as $x = \ln(\underline{\hspace{1cm}})$ to match the original format.

Question 8: Multiplying Complex Numbers

The original question asks to simplify (i-5)(3+2i). The following questions build understanding of complex number multiplication.

8.1 Complex Number Basics: Since $i^2 = -1$, simplify:

- a) $i^2 =$ _____
- b) $(2i)^2 = 4i^2 =$ _____
- c) Combine: 3 + 2i 5i =_____

8.2 **Simple Multiplication**: Multiply (1+i)(2+i):

- a) Use FOIL: (1)(2) + (1)(i) + (i)(2) + (i)(i) =_____
- b) Simplify: $2 + i + 2i + i^2 = 2 + 3i 1 =$ _____

8.3 Practice with Larger Numbers: Multiply (2-i)(3+2i):

- a) FOIL: (2)(3) + (2)(2i) + (-i)(3) + (-i)(2i) =
- b) Simplify: $6 + 4i 3i 2i^2 =$ _____

8.4 Applying to the Original Problem: Simplify (i-5)(3+2i):

- a) FOIL: (i)(3) + (i)(2i) + (-5)(3) + (-5)(2i) =_____
- b) Simplify: $3i + 2i^2 15 10i =$ _____
- c) Combine: _____. Compare to choices: -7i 13, 13i 17, -7i 17, -13i 17.