5. Distributed Consensus despite Faulty Links.

Each process has a loaded input Value re (can be either o or 1) After executing a protocal (consensus) or a distributed algorithm they must agree on a decision value, satisfying the following 3 Conditions:

- 1) Termination
 2) Agreement: All processes agree on the Samo deasion value.
- 3 Validity: If all processes start with input value of them o is the only possible decision valu.

If all provenes start with input value 1. Then I is the only persible decision value

No failures? No problem: many ways to Solve this:

Leader com collect all input values

All processes broadcast their input values

Apply a function on the n input values (mat, AND, OR, majuity--)

Link failures?
processes one non-faulty
Faulty link drops messages
а. b
0
a processes connected by a link that
may be faulty.
Theorem 5.1 a is a 2-node, 1-link graph
There closs not exist an aguithm that solves
There does not exist an about the that solves the Goodinated attack (Grasensus) problem.
Proof: By Contradictor; Assume Algorithm A exists.
exists.
Run algorithm A. Both terminate after Y remals.
Y remals.
Consider
Consider run & when both start with 1
and all messages are delineral, at Both termin
ofter or rounds.
Both decide on 1.
d Same of and all all
d, = Same as & except all messages
after & rounds are lost.
In d, both decide on 1.

a round r 0/2 = Same as 01, except the the mensage sent by a to bir rund r is lost. di ~ do; @a devided on 1 in di; a decides on 1 in de (runs d, & dz one identical to process as => b decides on I in d2 (agreement) dz: meroage to a in rund r is lost but is some as of otherwise. ×2 × ×2 (runs ×2 & dz ane identical from 6's point of view b decides on 1 in d3 (like i d2) . . . 1.

	&': Both Start with I and all
	ox': Both Start with I and all mensages are lest
	Both decide on 1 in d'
	x": a Start with 4,
	all mensages are lost
	all onersages are lost
	2' 22 1" 10 10 10 11 11 11 11 11 11 11 11 11 11
	a' n a'' $b - 1 i n a''$
	(agreement Concliten)
	X": Both Start with o & all message
	1 one luit
	d'Nd": b decides or 1 in d"
	α 1 in α
	(agreened)
	violation of validity Condition. 2
	What do we do? Randomized Version
	Kandomi 200 Version
	111
	Allow probability of error. Run for rounds.
-	Mun for y nounds.
	Alexitan Process 1 (a "leade") Chooses
	Algorithm: Process 1 (a "leader") Chooses a key randomly in the range 1. r (uniformly)
	(Uniformle)
	(William)

process to I sends key in every mersage. key is piggybarhed on all musages Initial values of all prouses known to 'me' V: Value vertor (input value)
L: Level vertor (Level of Grandedge about other processes) Served (L. V, key) in each round

Then a message containing (L', V', key)

is received, update the weel variable

fromos L. V, key After & rounds. the process decicles on 1 if

keys its Level >, key and all

input values are 1 else decide on O. Lovel? How do I find so my Law at a reund? 9-26-19: Quiz #2.
After Flood Max till today