SINGMISE AND

BA820 – Mohannad Elhamod

ASSOCIATION RUIC MINING

Mohannad Elhamod – BA820 1/19/2024

What for?

A classic application of market basket analysis addresses this question:

Which items are likely to be "purchased" together?

https://www.businessinsider.com/how-netflix-recommendations-work-2016-9

Transactions

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} \rightarrow {Beer},

{Milk, Bread} \rightarrow {Eggs,Coke},

{Beer, Bread} \rightarrow {Milk},
```

Questions:

- Is this causal?
- Is this symmetric?

Terminology

- Items: The set of objects or items available to be purchased, or viewed, or streamed.
- Transaction: A trip to the store, Netflix viewing history, your most recent Spotify songs streamed. A transaction contains one or more items.
- Rule: Can be considered an if this then that.
 - o If purchase bread and eggs, then also purchase milk.
 - (Bread, Eggs) => (Milk)
- LHS, or antecedent: Left-hand side of the rule
 - The known set of objects. {Bread, Eggs}
- RHS, or consequent: The items that are associated, or co-occur with the LHS
 - Above, this would be {Milk}.
- Itemset: A collection of one or more items.

Metrics Rule Mining

Count (σ)

Frequency of occurrence of an itemset

E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

Fraction of transactions that contain an itemset

E.g.
$$s(\{Milk, Bread, Diaper\}) = 2/5$$

$$Support(X) = rac{Frequency(X)}{N}$$

$$Support(X o Y) = rac{Frequency(X\&Y)}{N}$$

Frequent Itemset

An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Confidence (c)

Measures how often items in Y appear in transactions that contain X

$$Confidence(X
ightarrow Y) = rac{Support(X
ightarrow Y)}{Support(X)}$$

Lift

Measures how independent the LHS and RHS are.

$$Lift(X
ightarrow Y) = rac{Support(X
ightarrow Y)}{Support(X)Support(Y)}$$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Example:

$$\{Milk, Diaper\} \Rightarrow \{Beer\}$$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

But, what are these terms really?!

Rule	Support	Confidence	Lift
$A \Rightarrow D$	2/5	2/3	10/9
$C \Rightarrow A$	2/5	2/4	5/6
$A \Rightarrow C$	2/5	2/3	5/6
$B \& C \Rightarrow D$	1/5	1/3	5/9

Source: UofT

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Computational Complexity

 Given d unique items, total number of possible association rules as a function of number of items:

Mohannad Elhamod – BA820 1/19/2024

Reducing Number of Candidates

Pruning and aggregation

Pruning

Big Box
Red Bag
Purple Candle
Cloth Bag
Metal Sign
Neon Sign
Brown Box
Large Candle
Medium Bag
Wooden Sign

Aggregation

₽ datacaмp

MARKET BASKET ANALYSIS IN PYTHON

Itemset Pruning

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
 - Then, if an itemset is infrequent, then all its supersets are infrequent
 - Support of an itemset never exceeds the support of its subsets

Mohannad Elhamod – BA820

Itemset Pruning

The Apriori principle

- Apriori principle.
 - Subsets of frequent sets are frequent.
 - Retain sets known to be frequent.
 - Prune sets not known to be frequent.

- Candles = Infrequent
 - -> {Candles, Signs} = Infrequent
- {Candles, Signs} = Infrequent
 - -> {Candles, Signs Boxes} = Infrequent
- {Candles, Signs, Boxes} = Infrequent
 - -> {Candles, Signs, Boxes, Bags} = Infrequent

₽ datacawp

MARKET BASKET ANALYSIS IN PYTHON

Itemset Pruning

• Given d items, there are 2^d possible candidate itemsets.

Itemset Pruning

• Given d items, there are 2^d possible candidate itemsets.

How is transactional data usually represented?

The transactional datasets can vary in how they are stored.

trans_id	item	trans_id	iteı
1	b	1	b,c
1	С	2	c,a
2	С	3	С
2	a	Basket	
3	С	format	
Single			

Luckily, python/pandas make it really easy to modify the origin source data to fit the libraries expected format

format

How is transactional data usually represented?

