Санкт-Петербургский национальный исследовательский университет ИТМО Факультет систем управления и робототехники

Курсовой проект

«Управление перевернутым маятником на тележке» по дисциплине «Теория автоматического управления»

Подготовил: Дюжев Владислав Дмитриевич

Группа: R33353

Преподаватель: Пашенко А. В.

Содержание

Содержание

1	Пос	строение математической модели объекта	2	
	1.1	Вывод уравнений	2	
	1.2	Точки равновесия	3	
	1.3	Линеаризация	4	
2	Анализ математической модели		5	
	2.1	Анализ матриц	5	
	2.2	Передаточные функции	5	
	2.3	Линейное моделирование	5	
	2.4	Нелинейное моделирование	8	
3	Модальное управление			
	3.1	Синтез регулятора по состоянию	13	
	3.2	Исследование регулятора по состоянию	13	
	3.3	Синтез наблюдателя	13	
	3.4	Исследование наблюдателя	21	
	3.5	Синтез регулятора по выходу	25	
4	Регуляторы с заданной степенью устойчивости			
	4.1	Синтез регулятора по состоянию	27	
	4.2	Исследование регулятора по состоянию	30	
	4.3	Синтез регулятора по состоянию с ограничением на управление	30	
	4.4	Синтез наблюдателя	45	
	4.5	Синтез регулятора по выходу	45	
5	LQR & фильтр Калмана			
	5.1	Синтез линейно-квадратичного регулятора	45	
	5.2	Исследование линейно-квадратичного регулятора	53	
	5.3	Синтез фильтра Калмана	53	
	5.4	LQG для линейной модели	58	
	5.5	LQG для нелинейной модели	58	
6	Сле	Слежение и компенсация		
	6.1	Компенсация	61	
	6.2	Слежение	61	
7	Итс		68	

Рис. 1: Перевернутый маятник на тележке.

1 Построение математической модели объекта

1.1 Вывод уравнений

Рассмотрим систему перевернутого маятника на тележке (рис. 1). Введем следущие обозначения физических величин:

- a линейная координата тележки;
- \dot{a} линейная скорость тележки;
- φ угол отклонения маятника от вертикали;
- $\dot{\varphi}$ угловая скорость маятника;
- f вращающий внешний момент, действующий на маятник;
- \bullet u сила действующая на тележку;
- M, m массы тележки и маятника соответственно;
- l длина маятника.

В качестве вектора состояния $x = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T$ выберем набор $a, \dot{a}, \varphi, \dot{\varphi}$. В роли управляющего воздействия примем u, в роли внешнего возмущения — f. Измеряемыми сигналами $y = \begin{bmatrix} y_1 & y_2 \end{bmatrix}^T$ будем считать a и φ .

$$\begin{cases} x_1 = a \\ x_2 = \dot{a} \\ x_3 = \varphi \\ x_4 = \dot{\varphi} \\ y_1 = a \\ y_2 = \varphi \end{cases}$$

$$(1)$$

Для вывода математической модели данной физической системы воспользуемся уравнениями Лагранжа:

$$\begin{cases} \frac{d}{dt} \frac{\partial T}{\partial \dot{a}} - \frac{\partial T}{\partial a} = u \\ \frac{d}{dt} \frac{\partial T}{\partial \dot{\varphi}} - \frac{\partial T}{\partial \varphi} = f + mgl \sin(\varphi) \end{cases} , \tag{2}$$

где T – кинетическая энергия системы

$$T(t) = M\frac{\dot{a}^2}{2} + m\frac{(\frac{d}{dt}(l\cos(\varphi)))^2 + (-\frac{d}{dt}(l\sin(\varphi)) + \dot{a})^2}{2} = (M+m)\frac{\dot{a}^2}{2} + \frac{ml^2\dot{\varphi}^2}{2} - ml\cos(\varphi)\dot{a}\dot{\varphi}$$
(3)

Подставив выражение для T в уравнения 2, получим уравнения математической модели системы:

$$\begin{cases} (M+m)\ddot{a} + ml(\sin(\varphi)\dot{\varphi}^2 - \cos(\varphi)\ddot{\varphi}) = u \\ ml^2\ddot{\varphi} - ml\ddot{a}\cos\varphi = f + mgl\sin(\varphi) \end{cases}$$
(4)

Тогда, выразив \ddot{a} и $\ddot{\varphi}$:

$$\begin{cases} \ddot{a} = -\frac{ml}{M+m}\sin(\varphi)\dot{\varphi}^2 + \frac{ml}{M+m}\cos(\varphi)\ddot{\varphi} + \frac{1}{M+m}u\\ \ddot{\varphi} = \frac{1}{l}\ddot{a}\cos(\varphi) + \frac{g}{l}\sin(\varphi) + \frac{1}{ml^2}f \end{cases}$$
(5)

Решив данную систему уравнений ${f 5}$ относительно \ddot{a} и \ddot{arphi}

$$\begin{cases} \ddot{a} = \frac{1}{M + m\sin(\varphi)^2} (-ml\sin(\varphi)\dot{\varphi}^2 + mg\cos(\varphi)\sin(\varphi) + \frac{\cos(\varphi)}{l}f + u) \\ \ddot{\varphi} = \frac{1}{M + m\sin(\varphi)^2} (-m\sin(\varphi)\cos(\varphi)\dot{\varphi}^2 + \frac{(M + m)g}{l}\sin(\varphi) + \frac{M + m}{ml^2}f + \frac{\cos(\varphi)}{l}u) \end{cases}$$
(6)

Представим математическую модель в терминах вектора состояния:

$$\begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = \frac{1}{M+m\sin(x_{3})^{2}} (-ml\sin(x_{3})x_{4}^{2} + mg\cos(x_{3})\sin(x_{3}) + \frac{\cos(x_{3})}{l}f + u) \\ \dot{x}_{3} = x_{4} \\ \dot{x}_{4} = \frac{1}{M+m\sin(x_{3})^{2}} (-m\sin(x_{3})\cos(x_{3})x_{4}^{2} + \frac{(M+m)g}{l}\sin(x_{3}) + \frac{M+m}{ml^{2}}f + \frac{\cos(x_{3})}{l}u) \\ y_{1} = x_{1} \\ y_{2} = x_{3} \end{cases}$$

$$(7)$$

1.2 Точки равновесия

В точках равновесия все компоненты производной вектора состояния по времени равны 0. Следовательно, полагая $u, f \equiv 0$ необходимо:

$$\begin{cases} x_2 = 0\\ \frac{1}{M + m\sin(x_3)^2} (-ml\sin(x_3)x_4^2 + mg\cos(x_3)\sin(x_3)) = 0\\ x_4 = 0\\ \frac{1}{M + m\sin(x_3)^2} (-m\sin(x_3)\cos(x_3)x_4^2 + \frac{(M+m)g}{l}\sin(x_3)) = 0 \end{cases}$$
(8)

Учитывая $x_4 = 0$ и $M + m\sin(x_3)^2 > 0$:

$$\begin{cases} x_1 \in \mathbb{R} \\ x_2 = 0 \\ x_3 = \pi n, n \in \mathbb{Z} \\ x_4 = 0 \end{cases}$$

$$(9)$$

Заметим, однако, что с физической точки зрения условие $x_3 = \pi n$ эквивалентно $x_3 = 0$ (верхнее положение маятника) или $x_3 = \pi$ (нижнее положение маятника). В дальнейшем нас будет интересовать стабилизация системы около верхенего положения равновесия.

1.3 Линеаризация

Для линеаризации системы около векхней точки равновесия $(x = \begin{bmatrix} a_0 & 0 & 0 & 0 \end{bmatrix}^T)$ представим некоторые функции от компонент вектора состояния в виде ряда Тейлора в данной точке:

$$\sin(x_3) = x_3 + \sum_{n=1}^{\infty} (-1)^n \frac{x_3^{2n+1}}{(2n+1)!}$$

$$\cos(x_3) = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{x_3^{2n}}{(2n)!}$$

Приняв величины вектора состояния достаточно малыми $(x_3^2 \ll x_3, x_4^2 \ll x_4)$, можем записать линеаризованные уравненя динамики системы:

$$\begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = \frac{mg}{M}x_{3} + \frac{1}{Ml}f + \frac{1}{M}u \\ \dot{x}_{3} = x_{4} \\ \dot{x}_{4} = \frac{(m+m)g}{Ml}x_{3} + \frac{M+m}{Mml^{2}}f + \frac{1}{Ml}u \end{cases}$$
(10)

Можем представить линеаризованную систему в матричном виде:

$$\begin{cases} \dot{x} = Ax + Bu + Df \\ y = Cx \end{cases} , \tag{11}$$

где матрицы A, B, C, D имеют следующий вид:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{mg}{M} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{(M+m)g}{Ml} & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ \frac{1}{M} \\ 0 \\ \frac{1}{Ml} \end{bmatrix}, D = \begin{bmatrix} 0 \\ \frac{1}{Ml} \\ 0 \\ \frac{M+m}{Mml^2} \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Выберем значения параметров системы:

$$M = 10, m = 1, l = 1, q = 9.8$$

Тогда, матрицы системы примут следующий вид:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0.98 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 10.78 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0.1 \\ 0 \\ 0.1 \end{bmatrix}, D = \begin{bmatrix} 0 \\ 0.1 \\ 0 \\ 1.1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

2 Анализ математической модели

2.1 Анализ матриц

Найдем собственные числа и собственные вектора матрицы A:

$$\sigma(A) = \{0, 0, 3.28, -3.28\}; \nu(A) = \{\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} -1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0.026\\0.087\\0.29\\0.953\end{bmatrix}, \begin{bmatrix} -0.026\\0.087\\-0.29\\0.953\end{bmatrix}\}$$

Заметим, что первые два собственных вектора линейно зависимы и соответствуют нулевым собственным числам. Можем сделать вывод, что первая компонента вектора состояния не влияет на динамику системы (от координаты тележки не зависят другие параметры и их производные).

Имея кратные нулевые корни, а также положительное собственное число, система является неустойчивой. Проведем анализ на управляемость, стабилизируемость, наблюдаемость и обнаруживаемость приведя систему в Жорданов базис:

$$A = PJP^{-1} = \begin{bmatrix} 1 & 0 & -0.03 & 0.03 \\ 0 & 1 & 0.09 & 0.09 \\ 0 & 0 & -0.31 & 0.31 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3.28 & 0 \\ 0 & 0 & 0 & 3.28 \end{bmatrix} \begin{bmatrix} 1 & 0 & -0.03 & 0.03 \\ 0 & 1 & 0.09 & 0.09 \\ 0 & 0 & -0.31 & 0.31 \\ 0 & 0 & 1 & 1 \end{bmatrix}^{-1}$$

$$P^{-1}B = \begin{bmatrix} 0\\0.09\\0.05\\0.05\\0.05 \end{bmatrix}, CP = \begin{bmatrix} 1 & 0 & -0.03 & 0.03\\0 & 0 & -0.31 & 0.31 \end{bmatrix}$$

Можем сделать вывод, что система является полностью управляемой и наблюдаемой (соответственно стабилизируемой и обнаруживаемой).

2.2 Передаточные функции

Найдем передаточные матрицы системы от входа к выходу и от внешнего возмущения к выходу:

$$\underset{u \to y}{W}(s) = \begin{bmatrix} \frac{0.1s^2 - 0.98}{s^4 - 10.78s^2} \\ \frac{0.1}{s^2 - 10.78} \end{bmatrix}, \underset{f \to y}{W}(s) = \begin{bmatrix} \frac{0.1}{s^2 - 10.78} \\ \frac{1.1}{s^2 - 10.78} \end{bmatrix}$$

Динамический порядок функции $\frac{0.1s^2-0.98}{s^4-10.78s^2}$ равен 4, для остальных – 2. Относительный динамический порядок всех функций равен 2. Нули присутствуют только у функции $\frac{0.1s^2-0.98}{s^4-10.78s^2}$ и равны ± 3.13 . Полюса передаточных функций соответствуют собственным числам матрицы динамики системы.

Все функции описывают расходящийся переходный процесс при нулевом входном (внешнем) воздействии, т.к. имеют кратные нулевые или положительный полюса.

2.3 Линейное моделирование

Выполним моделирование линеаризованной системы, заданной уравнениями 11. Ниже приведены графики, демонстрирующие динамику вектора состояния при различных начальных условиях.

Рис. 2: Моделирование линеаризованной системы $(x(0) = \begin{bmatrix} 0 & 0 & 0.05 & 0 \end{bmatrix}^T)$.

Рис. 3: Моделирование линеаризованной системы $(x(0) = \begin{bmatrix} 0 & 0.1 & 0 & 0 \end{bmatrix}^T)$.

Рис. 4: Моделирование линеаризованной системы $(x(0) = \begin{bmatrix} 0 & 0 & 0 & 0.2 \end{bmatrix}^T)$.

Pис. 5: Моделирование линеаризованной системы $(x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T)$.

Рис. 6: Моделирование исходной системы $(x(0) = \begin{bmatrix} 0 & 0 & 0.05 & 0 \end{bmatrix}^T)$.

2.4 Нелинейное моделирование

Выполним моделирование исходной системы, заданной уравнениями 7. Ниже приведены графики, демонстрирующие динамику вектора состояния при различных начальных условиях.

Рис. 7: Моделирование исходной системы $(x(0) = \begin{bmatrix} 0 & 0.1 & 0 & 0 \end{bmatrix}^T)$.

Рис. 8: Моделирование исходной системы $(x(0) = \begin{bmatrix} 0 & 0 & 0 & 0.2 \end{bmatrix}^T)$.

Рис. 9: Моделирование исходной системы $(x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T)$.

Заметим, что при малом времени моделирования динамика систем очень схожая. Построим сравнительные графики при большем времени переходного процесса.

Puc. 10: Сравнительное моделирование систем $(x(0) = \begin{bmatrix} 0 & 0 & 0.05 & 0 \end{bmatrix}^T)$.

Pис. 11: Сравнительное моделирование систем $(x(0) = \begin{bmatrix} 0 & 0.1 & 0 & 0 \end{bmatrix}^T)$.

Pис. 12: Сравнительное моделирование систем $(x(0) = \begin{bmatrix} 0 & 0 & 0 & 0.2 \end{bmatrix}^T)$.

Рис. 13: Сравнительное моделирование систем $(x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T)$.

При увеличении времени моделирования расхождения становятся явно заметными.

3 Модальное управление

3.1 Синтез регулятора по состоянию

В этом задании выводится модальный регулятор для системы:

$$\begin{cases} \dot{x} = Ax + Bu \\ u = Kx \end{cases} \tag{12}$$

Выберем матрицу $\Gamma \in \mathbb{R}^{n \times n}$ с желаемым спектром. Найдем K такое, что $A + BK = P\Gamma P^{-1}$. Для этого выберем $Y \in \mathbb{R}^{m \times n}$, такую что пара (Y, Γ) – наблюдаема. Синтезируем регулятор:

$$\begin{cases}
AP - P\Gamma = BY \\
K = -YP^{-1}
\end{cases}$$
(13)

Получен регулятор:

$$K = \begin{bmatrix} 7.65 & 19.64 & -292.95 & -89.64 \end{bmatrix}$$

$$\sigma(A + BK) = \begin{bmatrix} -2.50 & -2.00 & -1.50 & -1.00 \end{bmatrix}$$

При малых значения вектора состояния система замкнутая регулятором ведет себя стабильно. При отклонениях работоспособность нарушается. Данные замечания видны на графиках, приведенных ниже.

3.2 Исследование регулятора по состоянию

В зависимости от спектра меняется возможность регулятора стабилизировать систему.

3.3 Синтез наблюдателя

Рассмотрим систему наблюдателя:

$$\begin{cases} \dot{x} = Ax \\ y = Cx \\ \dot{\hat{x}} = A\hat{x} + L(\hat{y} - y) \\ \hat{y} = C\hat{x} \end{cases}$$
(14)

Для синтеза наблюдателя подбирается матрица $\Gamma \in \mathbb{R}^{n \times n}$ с желаемым спектром и матрица $Y \in \mathbb{R}^{n \times k}$, такая что пара (Γ, Y) управляема.

$$L = \begin{bmatrix} 7.65 & 19.64 & -292.95 & -89.64 \end{bmatrix}$$

Рис. 14: Задание 3.1. Динамика системы $(x(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix})$.

Рис. 15: Задание 3.1. Динамика системы $(x(0) = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix})$.

Рис. 16: Задание 3.1. Динамика системы $(x(0) = \begin{bmatrix} 0 & 0 & 1.5 & 0 \end{bmatrix})$.

Рис. 17: Задание 3.2. Динамика системы ($\sigma(G) = \begin{bmatrix} -0.10 & -0.20 & -0.15 & -0.25 \end{bmatrix}$).

Рис. 18: Задание 3.2. Динамика системы ($\sigma(G) = \begin{bmatrix} -1.00 & -2.00 & -1.50 & -2.50 \end{bmatrix}$).

Рис. 19: Задание 3.2. Динамика системы ($\sigma(G) = \begin{bmatrix} -1.00 + 1.00j & -1.00 + -1.00j & -2.00 + 2.00j & -2.00 + -2.00j & -2$

Рис. 20: Задание 3.3. Динамика ошибки.

Рис. 21: Задание 3.3. Динамика ошибки.

$$\sigma(A + LC) = \begin{bmatrix} -2.50 & -2.00 & -1.50 & -1.00 \end{bmatrix}$$

На графиках видно, что не при любых начальных условиях наблюдатель сходится.

3.4 Исследование наблюдателя

Не при любом устойчивом спектре наблюдатель устойчив.

$$L = \begin{bmatrix} 7.65 & 19.64 & -292.95 & -89.64 \end{bmatrix}$$

$$\Gamma = diag(-1, -2, -1.5, -2.5)$$

$$L = \begin{bmatrix} 7.65 & 19.64 & -292.95 & -89.64 \end{bmatrix}$$

$$\Gamma = diag(-0.1, -0.2, -0.15, -0.25)$$

Рис. 22: Задание 3.3. Динамика ошибки.

Рис. 23: Задание 3.4. Динамика ошибки.

Рис. 24: Задание 3.4. Динамика ошибки.

Рис. 25: Задание 3.4. Динамика ошибки.

$$L = \begin{bmatrix} 7.65 & 19.64 & -292.95 & -89.64 \end{bmatrix}$$
$$\Gamma = diag(-1 \pm j, -2 \pm j)$$

3.5 Синтез регулятора по выходу

На основе двух предыдущих пунктов получен регулятор по выходу.

$$L = \begin{bmatrix} 1.05 & 1.05 \\ -1.74 & -1.74 \\ -8.05 & -8.05 \\ -26.79 & -26.79 \end{bmatrix}$$

$$K = \begin{bmatrix} 7.65 & 19.64 & -292.95 & -89.64 \end{bmatrix}$$

$$\Gamma = \begin{bmatrix} -1.00 & -1.00 & 0.00 & 0.00 \\ 1.00 & -1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & -2.00 & -2.00 \\ 0.00 & 0.00 & 2.00 & -2.00 \end{bmatrix}$$

Рис. 26: Задание 3.5. Динамика компонент системы.

Рис. 27: Задание 3.5. Динамика компонент системы ($\sigma(G) = \begin{bmatrix} -0.10 & -0.20 & -0.15 & -0.25 \end{bmatrix}$).

Проведя исследование, можно сделать вывод о том, что диапазон начальных условий системы расширяется при выборе спектра с меньшей действительной частью.

4 Регуляторы с заданной степенью устойчивости

4.1 Синтез регулятора по состоянию

По сути, целью данного регулятора является изменение управляемых собственных чисел так, чтобы $\forall \lambda \in \sigma(A): Re\lambda \leq \alpha$, где α – степень устойчивости. Для этого используется LMI критерий экспоненциальной устойчивости:

$$\exists Q\succ 0, \alpha>0: A^TQ+QA+2\alpha Q \preccurlyeq 0 \to \begin{cases} \forall x(0) \text{ A ассимптотически устойчива}\\ \exists c: ||x(t)|| \leq ce^{-\alpha t}||x(0)|| \end{cases}$$

Для синтеза регулятора с заданной степенью устойчивости α необходимо найти матрицы P и Y, удовлетворяющие неравенствам:

$$P \succ 0, PA^T + AP + 2\alpha P + Y^T B^T + BY \prec 0 \tag{15}$$

Рис. 28: Задание 3.5. Динамика компонент $(\sigma(G))$ системы $\begin{bmatrix} -1.00 + 1.00j & -1.00 + -1.00j & -2.00 + 2.00j & -2.00 + -2.00j \end{bmatrix}$

Рис. 29: Задание 3.5. Динамика компонент системы $(\sigma(G) = \begin{bmatrix} -1 & -2 & -1.5 & -2.5 \end{bmatrix})$.

Затем, получим матрицу K:

$$K = YP^{-1} \tag{16}$$

На практике, довольно часто P – необратима. Приходится использовать псевдообратную.

$$\alpha = 1$$

$$K = \begin{bmatrix} 95.12 & 114.09 & -732.81 & -172.27 \end{bmatrix}$$

$$spec(A+BK) = \begin{bmatrix} -1.68+6.30j & -1.68+-6.30j & -1.23+0.83j & -1.23+-0.83j \end{bmatrix}$$

Иногда устойчивость линейной системы нарушается

4.2 Исследование регулятора по состоянию

Ниже приведена таблица сравнений при $x(0) = [0,0,0.1,0]^T$. Приведено поведение системы при различных начальных условиях.

Заметим что с увеличение степени устойчивости увеличивается и величнина максимального управляющего воздействия.

4.3 Синтез регулятора по состоянию с ограничением на управление

В этом задании выводится ограничение на управление $||u(t)|| \le \mu$. Тогда система уравнений принимает вид:

$$\begin{cases} \begin{bmatrix} P & x_0 \\ x_0^T & 1 \end{bmatrix} \succ 0 \\ \\ \begin{bmatrix} P & Y^T \\ Y & \mu^2 I \end{bmatrix} \succ 0 \\ P \succ 0 \\ PA^T + AP + 2\alpha P + Y^T B^T + BY \leq 0 \\ K = YP^{-1} \end{cases}$$

Проведем моделирование системы при начальных условиях $x(0) = \begin{bmatrix} 0 & 0 & 0.5 & 0 \end{bmatrix}$ и различных степенях устойчивости.

Рис. 30: Задание 4.1. Динамика системы.

Рис. 31: Задание 4.1. Динамика системы.

Рис. 32: Задание 4.1. Динамика системы.

Рис. 33: Задание 4.1. Динамика системы.

Рис. 34: Задание 4.1. Динамика системы.

Рис. 35: Задание 4.1. Динамика системы.

Рис. 36: Задание 4.2. Динамика системы.

Рис. 37: Задание 4.2. Динамика воздействия.

Рис. 38: Задание 4.3. Динамика системы

Рис. 39: Задание 4.3. Динамика воздействия

Рис. 40: Задание 4.3. Динамика системы

Рис. 41: Задание 4.3. Динамика воздействия

Рис. 42: Задание 4.3. Динамика системы

Рис. 43: Задание 4.3. Динамика воздействия

4.4 Синтез наблюдателя

В этом задании выводится наблюдатель заданной степени устойчивости для системы:

$$\begin{cases} \dot{x} = Ax \\ y = Cx \\ \dot{\hat{x}} = A\hat{x} + L(\hat{y} - y) \\ \hat{y} = C\hat{x} \end{cases}$$

Для этого достаточно решить систему:

$$\begin{cases} L = Q^{-1}Y \\ Q \succ 0 \\ A^TQ + QA + 2\alpha Q + C^TY^T + YC \preccurlyeq 0 \end{cases}$$

$$\alpha = 1$$

$$L = \begin{bmatrix} -4.48 & -0.63 \\ -8.92 & -2.11 \\ 0.63 & -4.48 \\ 1.11 & -19.92 \end{bmatrix}$$

$$spec(A + LC) = \begin{bmatrix} -2.31 + 2.32j & -2.31 + -2.32j & -2.17 + 1.69j & -2.17 + -1.69j \end{bmatrix}$$

4.5 Синтез регулятора по выходу

В этом задании выводится наблюдатель регулятор для системы. Так бы это выглядело для линейной системы.

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx \\ \dot{\hat{x}} = A\hat{x} + Bu + L(\hat{y} - y) \\ \dot{y} = C\hat{x} \\ u = K\hat{x} \end{cases} \rightarrow \begin{cases} \begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A + BK & -BK \\ 0 & A + LC \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix} \\ \hat{x} = x - e \\ y = Cx \\ \hat{y} = C\hat{x} \end{cases}$$

Удалось стабилизировать нелинейную систему ($\alpha=1$) 47. Проведя исследование, удалось установить, что увеличение степени устойчисвости положительно влияет на скорость переходного процесса.

5 LQR & фильтр Калмана

5.1 Синтез линейно-квадратичного регулятора

LQR позволяет оптимизировать критерий качества:

$$J = \int_0^\infty (x^T Q x + u^T R u) dt$$

Рис. 44: Задание 4.4. Динамика ошибки наблюдателя

Рис. 45: Задание 4.4. Динамика ошибки наблюдателя

Рис. 46: Задание 4.4. Динамика ошибки наблюдателя

Рис. 47: Задание 4.5. Динамика системы (подобрана степень устойчивости $\alpha=1$)

Рис. 48: Задание 4.5. Динамика системы ($\alpha=0.5$).

Рис. 49: Задание 4.5. Динамика системы ($\alpha = 0.8$).

Рис. 50: Задание 4.5. Динамика системы ($\alpha=1$).

Выбор сотношения матриц Q и R позволяет управлять временем сходимости и величиной подаваего управления: чем больше $\frac{Q}{R}$, тем больше управление и быстрее сходимость.

К получается решением следующих уравнений:

$$\begin{cases} A^T P + PA + Q - PBR^{-1}B^T P = 0\\ K = -R^{-1}B^T P \end{cases}$$
 (17)

Теоретический минимум критерия качества:

$$J_{min} = x_0^T P x_0$$

В следующих заданиях применим регулятор для стабилизации системы.

Проведем синтез регулятора для Q = diag(10), R = diag(0.1) и выполним моделирование: 51.

5.2 Исследование линейно-квадратичного регулятора

Проведем исследование при разных матрицах (графики ниже):

$$Q = 0.1; R = 10.0; K_0 = \begin{bmatrix} -0.10 & -1.55 & 224.67 & 68.57 \end{bmatrix}$$

$$\sigma(A + BK_0) = \begin{bmatrix} -0.07 + 0.07j & -0.07 + -0.07j & -3.29 + 0.00j & -3.28 + 0.00j \end{bmatrix}$$

$$Q = 1.0; R = 1.0; K_1 = \begin{bmatrix} -1.00 & -5.41 & 246.16 & 75.45 \end{bmatrix}$$

$$\sigma(A + BK_1) = \begin{bmatrix} -0.22 + 0.21j & -0.22 + -0.21j & -3.33 + 0.00j & -3.24 + 0.00j \end{bmatrix}$$

$$Q = 10.0; R = 0.1; K_2 = \begin{bmatrix} -10.00 & -24.11 & 343.62 & 107.01 \end{bmatrix}$$

$$\sigma(A + BK_2) = \begin{bmatrix} -3.83 + 0.00j & -2.84 + 0.00j & -0.81 + 0.50j & -0.81 + -0.50j \end{bmatrix}$$

5.3 Синтез фильтра Калмана

$$\dot{x} = Ax + f, y = Cx + \xi \tag{18}$$

Внешние возмущения f и ξ будем считать белым шумам с заданной дисперсией. Матрицы Q и R обозначают, насколько сильно мы оцениваем влияние f и ξ .

L получается решением следующих уравнений:

$$\begin{cases} AP + PA^T + Q - PC^TR^{-1}CP = 0 \\ L = -PC^TR^{-1} \end{cases}$$

$$Q = 0.01; R = 0.01; L = \begin{bmatrix} 1.76 & 0.37 \\ 1.11 & 1.84 \\ 0.37 & 6.63 \\ 1.23 & 21.54 \end{bmatrix}$$

Рис. 51: Задание 5.1. Динамика компонент системы.

Рис. 52: Задание 5.2. Динамика компонент системы.

Рис. 53: Задание 5.2. Управление.

Рис. 54: Задание 5.3. Ошибка.

5.4 LQG для линейной модели

В этом задании выводится наблюдатель регулятор для системы:

$$\begin{cases} \dot{x} = Ax + BK\hat{x} + f \\ y = Cx + DK\hat{x} + \xi \\ \dot{\hat{x}} = A\hat{x} + BK\hat{x} + L(\hat{y} - y) \\ \dot{y} = C\hat{x} + DK\hat{x} \\ \dot{x} = x - e \end{cases} \rightarrow \begin{cases} \begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = A_{new} \begin{bmatrix} x \\ e \end{bmatrix} + B_{new} \begin{bmatrix} f \\ \xi \end{bmatrix} \\ A_{new} = \begin{bmatrix} A + BK & -BK \\ 0 & A + LC \end{bmatrix} \\ B_{new} = \begin{bmatrix} I & 0 \\ I & L \end{bmatrix} \in R^{2n \times (n+m)} \end{cases}$$

$$Q = 0.01; R = 0.01; L = \begin{bmatrix} -1.76 & -0.37 \\ -1.11 & -1.88 \\ -0.37 & -6.69 \\ -1.26 & -21.97 \end{bmatrix}$$

$$spec(A+LC) = \begin{bmatrix} -0.87 + 0.50j & -0.87 + -0.50j & -2.88 + 0.00j & -3.84 + 0.00j \end{bmatrix}$$

$$Q = 1; R = 1; K = \begin{bmatrix} 1.00 & 2.40 & -34.91 & -10.76 \end{bmatrix}$$

$$spec(A+BK) = \begin{bmatrix} -3.86 + 0.00j & -2.87 + 0.00j & -0.81 + 0.50j & -0.81 + -0.50j \end{bmatrix}$$

Моделирование системы: 55.

5.5 LQG для нелинейной модели

$$Q = 0.01; R = 0.01; L = \begin{bmatrix} 1.76 & 0.37 \\ 1.11 & 1.88 \\ 0.37 & 6.69 \\ 1.26 & 21.97 \end{bmatrix}$$

$$Q = 0.01; R = 0.01; L = \begin{bmatrix} -1.76 & -0.37 \\ -1.11 & -1.88 \\ -0.37 & -6.69 \\ -1.26 & -21.97 \end{bmatrix}$$

$$spec(A + LC) = \begin{bmatrix} -0.87 + 0.50j & -0.87 + -0.50j & -2.88 + 0.00j & -3.84 + 0.00j \end{bmatrix}$$

$$Q = 1; R = 1; K = \begin{bmatrix} 1.00 & 2.40 & -34.91 & -10.76 \end{bmatrix}$$

$$spec(A + BK) = \begin{bmatrix} -3.86 + 0.00j & -2.87 + 0.00j & -0.81 + 0.50j & -0.81 + -0.50j \end{bmatrix}$$

Моделирование системы: 56.

Рис. 55: Задание 5.4. Динамика системы и ошибки линейной системы.

Рис. 56: Задание 5.5. Динамика системы и ошибки нелинейной системы.

6 Слежение и компенсация

6.1 Компенсация

Рассмотрим систему вида:

$$\begin{cases} \dot{x} = A_1 x + B_1 u + B_2 w \\ z = C_2 x \end{cases} , \tag{19}$$

где w:

$$\dot{w} = A_2 w \tag{20}$$

Для данной системы можем синтезировать регулятор вида $u = K_1 x + K_2 w$, гарантирующий:

$$\lim_{t \to \infty} z(t) = 0$$

 K_1 можем выбрать как матрицу регулятора, синтезированного любым способом (в данном случае модальное управление). Матрицу K_2 найдем следующим образом:

$$\begin{cases}
PA_2 - A_1P = B_1Y + B_2 \\
C_2P + D_2 = 0 \\
K_2 = Y - K_1P
\end{cases}$$
(21)

$$A_2=egin{bmatrix}0&2&0&0\-2&0&0&0\0&0&0&3\0&0&-3&0\end{bmatrix}, B_2=egin{bmatrix}0&0&0&0&0\0&0.033&0.066&0.1\0&0&0&0\0&0.36&0.73&1.1\end{bmatrix}, D_2$$
 - нулевая, $B_2w=Df$

Проведем моделирование с нелинейной системой:

6.2 Слежение

Рассмотрим систему:

$$\begin{cases} \dot{x} = A_1 x + B_1 u \\ z = C_2 x + D_2 w \end{cases}$$

$$C_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}, D_2 = \begin{bmatrix} 0.1 & 0.1 & 0.1 & 0.1 \end{bmatrix}$$
(22)

Найдем матрицы регулятора аналогичным способом. Проведем моделирование:

Удалось добиться сходимости угла отклонения к заданному закону.

Рис. 57: Задание 6.1. Динамика контролируемого выхода $x(0) = \begin{bmatrix} 0.1 & 0 & 0.1 & 0 \end{bmatrix}$.

Рис. 58: Задание 6.1. Динамика контролируемого выхода $x(0) = \begin{bmatrix} 0.1 & 0 & 0.5 & 0 \end{bmatrix}$.

Рис. 59: Задание 6.1. Динамика контролируемого выхода. $x(0) = \begin{bmatrix} 0.1 & 0 & 1 & 0 \end{bmatrix}$

Рис. 60: Задание 6.2. Динамика контролируемого выхода $x(0) = \begin{bmatrix} 0 & 0 & 0.5 & 0.3 \end{bmatrix}$.

Рис. 61: Задание 6.2. Динамика контролируемого выхода $x(0) = \begin{bmatrix} 0.1 & 0 & 0.1 & 0 \end{bmatrix}$.

Рис. 62: Задание 6.2. Динамика контролируемого выхода $x(0) = \begin{bmatrix} 0.1 & 0 & 1 & 0 \end{bmatrix}$.

7 Итог

В ходе выполнения проекта были опробованный различные методы управления системами. Каждый имеет свои преимущества и сферы применения. Наиболее универсальным является подход синтеза LQG, т.к. позволяет учесть как внешние возмущения, так и шум датчиков, считая характер помех случайным (что наиболее близко к реальным задачам робототехники).

С помощью линеаризации системы удалось синтезировать и применить ряд методов управления для стабилизации нелинейной системы в окрестности точки равновесия. Размер данной окрестности зависит от метода управления и в первую очередь от итоговой степени устойчивости системы.