

- 1.实验报告如有雷同,雷同各方当次实验成绩均以0分计。
- 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
- 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0计。
- 4.实验报告文件以 PDF 格式提交。

院系	数技	据科学与计算机学院	班 级	16 级计	科教务2班	组长	钟哲灏
学号	163	337331	163373	327	16337341		
学生	钟	哲灏	郑映雪	Î	朱志儒		
				实验	分工		
钟哲湯	颢	进行实验、数据分析	折		朱志儒	辅助实验、数技	居分析、完成实
						验报告	
郑映雪	Ē	辅助实验、数据分析	析、完善	蜂报告			

【实验题目】快速生成树协议配置

【实验目的】理解快速生成树协议的配置及原理。使网络在有冗余链路的情况下避免环路的产生,避免广播风暴等。

【实验内容】完成实验教程实例 6-8 的实验,回答实验提出的问题及实验思考。

【实验要求】一些重要信息需给出截图,注意实验步骤的前后对比!

【实验记录】

拓扑图:

实验步骤:

步骤 1:

(1) 查看两台交换机生成树的配置信息 show spanning-tree, 并记录。

交换机 A 的生成树:

19-S5750-1#show spanning-tree No spanning tree instance exists.

交换机 B 的生成树:

19-S5750-2#show spanning-tree No spanning tree instance exists.

(2) 除保持实验网卡连通外,切断其他网络链接,在没有主动通信的情况下,观察 1-2 分钟,会有广播风暴产生吗?

观察发现有广播风暴,由于该广播风暴,电脑处于假死状态,所以并未截图。

- (3) 观察下面两种情况,哪种情况下包增长的更快?
 - ① 用 PC1 ping PC2 (带参数-t)
 - ② 在 PC2 或 PC1 上 ping 一个非 PC1 与 PC2 的 IP (用参数-t)

判断交换机是否产生广播风暴以及有无导致计算机死锁。此时终止 ping 命令,广播风暴仍然存在吗?

经过比较发现,在第一种情况下包增长的更快。

在这两种情况下,交换机均产生广播风暴,均导致计算机死锁,终止 ping 指令,广播风暴仍然存在。

- (4) 在进行(3)的两种操作时,在交换机上不时查看 MAC 地址表 show mac-address-table,结果如何?这是什么现象?
 - ① PC1 ping PC2

交换机 A 的 MAC 地址表:

分析: MAC 地址表中只有 gi 0/1 和 gi 0/2 端口的 MAC 地址,且 MAC 地址表发生过变化。

19-S5750-1# Vlan	show mac-address-tabl MAC Address	e Type	Interface
1 1	0088.9900.1374 0088.9900.1457	DYNAMIC DYNAMIC	GigabitEthernet 0/2 GigabitEthernet 0/2
19-S5750-1#	show mac-address-tabl	е	
Vlan	MAC Address	Туре	Interface
1 1 1 2 5 7 5 0 - 1 #	0088.9900.1374 0088.9900.1457 show mac-address-tabl	DYNAMIC DYNAMIC	GigabitEthernet 0/1 GigabitEthernet 0/2
			T - 1 6
Vlan	MAC Address	Туре	Interface
1 1	0088.9900.1374 0088.9900.1457	DYNAMIC DYNAMIC	GigabitEthernet 0/1 GigabitEthernet 0/2

交换机 B 的 MAC 地址表:

分析: MAC 地址表中只有 gi 0/1 和 gi 0/2 端口的 MAC 地址,且 MAC 地址表发生过变化。

	show mac-address-tabl MAC Address		Interface	
Vlan	MAC Address	Туре	Interrace	
1 1	0088.9900.1374 0088.9900.1457		GigabitEthernet GigabitEthernet	
19-S5750-2#	show mac-address-tabl	е		
Vlan	MAC Address	Туре	Interface	
1	0088.9900.1374	DYNAMIC	GigabitEthernet	0/2
1	0088.9900.1457	DYNAMIC	GigabitEthernet	0/1
19-S5750-2#	show mac-address-tabl	е	_	
Vlan	MAC Address	Туре	Interface	
	0.000 0.000 1.074	DWMANTG	G' l'IPI	0 / 0
1	0088.9900.1374	DYNAMIC	GigabitEthernet	
1	0088.9900.1457	DYNAMIC	GigabitEthernet	0/1

② 在 PC2 上 ping 一个非 PC1 与 PC2 的 IP

交换机 A 的 MAC 地址表:

分析: MAC 地址表中只有 gi 0/1 和 gi 0/2 端口的 MAC 地址, 且 MAC 地址表发生过变化。

	show mac-address-tabl MAC Address	е Туре	Interface
1 1 1 19-85750-1#	0088.9900.1374 0088.9900.1457 show mac-address-tabl	DYNAMIC	GigabitEthernet 0/2 GigabitEthernet 0/1
	MAC Address	Туре	Interface
1	0088.9900.1374 0088.9900.1457	DYNAMIC	GigabitEthernet 0/2 GigabitEthernet 0/1
	show mac-address-tabl MAC Address	е Туре	Interface
1 1	0088.9900.1374 0088.9900.1457	DYNAMIC DYNAMIC	GigabitEthernet 0/1 GigabitEthernet 0/1
	show mac-address-tabl MAC Address	е Туре	Interface
1 1 1 0 0 5 7 5 0 1 1 1	0088.9900.1374	DYNAMIC DYNAMIC	GigabitEthernet 0/1 GigabitEthernet 0/1
	show mac-address-tabl MAC Address	e Type	Interface
1 1 1 19-85750-1#	0088.9900.1374 0088.9900.1457 show mac-address-tabl	DYNAMIC	GigabitEthernet 0/2 GigabitEthernet 0/2
	MAC Address	Туре	Interface
1	0088.9900.1374 0088.9900.1457	DYNAMIC DYNAMIC	GigabitEthernet 0/1 GigabitEthernet 0/2

交换机 B 的 MAC 地址表:

分析: MAC 地址表中只有 gi 0/1 和 gi 0/2 端口的 MAC 地址,且 MAC 地址表发生过变化。

19-S5750-2#sh	now mac-address-table	Э	
Vlan N	MAC Address	Туре	Interface
1	0088.9900.1374 0088.9900.1457 now mac-address-table		GigabitEthernet 0/2 GigabitEthernet 0/1
Vlan M	MAC Address	Туре	Interface
1	0088.9900.1374 0088.9900.1457 now mac-address-table	DYNAMIC DYNAMIC	GigabitEthernet 0/2 GigabitEthernet 0/2
	MAC Address	Туре	Interface
1	0088.9900.1374 0088.9900.1457 now mac-address-table	DYNAMIC DYNAMIC	GigabitEthernet 0/2 GigabitEthernet 0/2
Vlan	MAC Address	Туре	Interface
	0088.9900.1374	DYNAMIC DYNAMIC	GigabitEthernet 0/2 GigabitEthernet 0/2

步骤 2: 交换机 A 的基本配置

步骤 3: 交换机 B 的基本配置

步骤 4: 配置快速生成树协议

测试:

(1) 查看两台交换机生成树的配置信息 show spanning-tree, 并记录。

交换机 A 的生成树:

```
19-S5750-1 (config) #show spanning-tree
StpVersion : RSTP
SysStpStatus:
               ENABLED
MaxAqe: 20
HelloTime : 2
ForwardDelay:
BridgeMaxAge : 20
BridgeHelloTime :
BridgeForwardDelay: 15
MaxHops: 20
TxHoldCount: 3
PathCostMethod: Long
BPDUGuard: Disabled
BPDUFilter : Disabled
LoopGuardDef : Disabled
BridgeAddr : 1414.4b5a.0204
Priority: 32768
TimeSinceTopologyChange: 0d:0h:1m:57s
TopologyChanges: 4
DesignatedRoot: 32768.1414.4b5a.0204
RootCost :
RootPort :
```

交换机 B 的生成树:

19-S5750-2 (config) #show spanning-tree

StpVersion: RSTP

SysStpStatus : ENABLED

MaxAge : 20

HelloTime : 2

ForwardDelay: 15 BridgeMaxAge: 20

BridgeHelloTime: 2

BridgeForwardDelay: 15

MaxHops: 20

TxHoldCount: 3

PathCostMethod : Long

BPDUGuard : Disabled

BPDUFilter : Disabled

LoopGuardDef : Disabled

BridgeAddr : 1414.4b5a.027e

Priority: 32768

TimeSinceTopologyChange: 0d:0h:2m:15s

TopologyChanges: 2

DesignatedRoot: 32768.1414.4b5a.0204

RootCost : 20000

RootPort : GigabitEthernet 0/1

(2) 除保持实验网卡连通外,切断其他网络链接,在没有主动通信的情况下,观察 1-2 分钟,会有广播风暴产生吗?

观察发现在没有主动通信的情况下,没有广播风暴产生。

- (3) 观察下面两种情况,哪种情况下包增长的更快?
 - a) 用 PC1 ping PC2 (带参数-t)
 - b) 在 PC2 或 PC1 上 ping 一个非 PC1 与 PC2 的 IP (用参数-t)

判断交换机是否产生广播风暴以及有无导致计算机死锁。此时终止 ping 命令,广播风暴仍然存在吗?

a) 用 PC2 ping PC1 时,记录如下:

No.	Time	Source	Destination	Protocol
	163 103.583714	192.168.1.20	192.168.1.10	ICMP
	164 103.585981	192.168.1.10	192.168.1.20	ICMP
-	168 104.585293	192.168.1.20	192.168.1.10	ICMP
←	169 104.585750	192.168.1.10	192.168.1.20	ICMP
	175 105.587188	192.168.1.20	192.168.1.10	ICMP
	176 105.588042	192.168.1.10	192.168.1.20	ICMP
	179 106.589995	192.168.1.20	192.168.1.10	ICMP
	180 106.590381	192.168.1.10	192.168.1.20	ICMP
	183 107.591055	192.168.1.20	192.168.1.10	ICMP
	184 107.591545	192.168.1.10	192.168.1.20	ICMP
	187 108.594110	192.168.1.20	192.168.1.10	ICMP
	188 108.595636	192.168.1.10	192.168.1.20	ICMP
	191 109.595795	192.168.1.20	192.168.1.10	ICMP
	192 109.597722	192.168.1.10	192.168.1.20	ICMP
	193 110.598701	192.168.1.20	192.168.1.10	ICMP
	194 110.598938	192.168.1.10	192.168.1.20	ICMP
	196 111.599677	192.168.1.20	192.168.1.10	ICMP
	197 111.599966	192.168.1.10	192.168.1.20	ICMP

b) 在 PC2 上 ping 一个非 PC1 与 PC2 的 IP 时,记录如下:

N∘.		Time	Source	Destination	Protocol
	53	72.178418	00:88:99:00:13:74	Broadcast	ARP
	127	89.686640	00:88:99:00:14:57	Broadcast	ARP
	129	89.686972	00:88:99:00:13:74	00:88:99:00:14:57	ARP
	185	108.252771	00:88:99:00:13:74	00:88:99:00:14:57	ARP
	186	108.252800	00:88:99:00:14:57	00:88:99:00:13:74	ARP
	353	146.221918	00:88:99:00:14:57	00:88:99:00:13:74	ARP
	354	146.222124	00:88:99:00:13:74	00:88:99:00:14:57	ARP
	494	177.239948	00:88:99:00:14:57	00:88:99:00:13:74	ARP
	495	177.242057	00:88:99:00:13:74	00:88:99:00:14:57	ARP
	510	186.191208	00:88:99:00:14:57	Broadcast	ARP
	511	186.749421	00:88:99:00:14:57	Broadcast	ARP
	513	187.750362	00:88:99:00:14:57	Broadcast	ARP
	515	188.751136	00:88:99:00:14:57	Broadcast	ARP
	517	189.751334	00:88:99:00:14:57	Broadcast	ARP
	519	190.752238	00:88:99:00:14:57	Broadcast	ARP
	521	191.753467	00:88:99:00:14:57	Broadcast	ARP
	522	192.752232	00:88:99:00:14:57	Broadcast	ARP
	524	193.752055	00:88:99:00:14:57	Broadcast	ARP

在记录中我们可以看到,捕获 18 个 ICMP 包耗时 8.016252,捕获 18 个 ARP 包耗时 16.56132,由此可以得出第一种情况下包增长的更快。

在这两种情况下,交换机没有产生广播风暴,也没有导致计算机死锁,终止 ping 命

令,广播风暴不存在。

- (4) 在进行(3)的两种操作时,在交换机上不时查看 MAC 地址表 show mac-address-table,结果如何?这是什么现象?
 - a) 用 PC1 ping PC2 (带参数-t)

交换机 A 的 MAC 地址表:

分析: MAC 地址表中有 gi 0/1 和 gi0/3 端口的 MAC 地址, MAC 地址表没有发生变化。gi 0/1 端口有两个 MAC 地址, 分别属于 VLAN1 和 VLAN10, gi 0/3 端口只有一个 MAC 地址,属于 VLAN10。

	config)#show mac-addr MAC Address		Interface	
	1414.4b5a.027e 0088.9900.1374 0088.9900.1457 config)#show mac-addr	DYNAMIC	GigabitEthernet GigabitEthernet GigabitEthernet	0/3
Vlan	MAC Address	Туре	Interface	
	1414.4b5a.027e 0088.9900.1374 0088.9900.1457 config)#show mac-addr	DYNAMIC	GigabitEthernet GigabitEthernet GigabitEthernet	0/3
Vlan	MAC Address	Туре	Interface	
1 10 10	1414.4b5a.027e 0088.9900.1374 0088.9900.1457	DYNAMIC DYNAMIC DYNAMIC	GigabitEthernet GigabitEthernet GigabitEthernet	0/3

交换机 B 的 MAC 地址表:

分析: MAC 地址表中有 gi 0/1 和 gi0/3 端口的 MAC 地址, MAC 地址表没有发生变化。gi 0/1 端口有两个 MAC 地址, 分别属于 VLAN1 和 VLAN10, gi 0/3 端口只有一个 MAC 地址,属于 VLAN10。

19-S5750-2(config)#show mac-address-table				
Vlan	MAC Address	Туре	Interface	
1	1414.4b5a.0204	DYNAMIC	GigabitEthernet	0/1
10	0088.9900.1374	DYNAMIC	GigabitEthernet	0/1
10	0088.9900.1457	DYNAMIC	GigabitEthernet	0/3
19-S5750-	2 (config) #show mac-add	lress-table		
Vlan	MAC Address	Туре	Interface	
1	1414.4b5a.0204	DYNAMIC	${ t GigabitEthernet}$	0/1
10	0088.9900.1374	DYNAMIC	GigabitEthernet	0/1
10	0088.9900.1457	DYNAMIC	GigabitEthernet	0/3
19-S5750-	2 (config) #show mac-add	lress-table		
Vlan	MAC Address	Туре	Interface	
1	1414.4b5a.0204	DYNAMIC	GigabitEthernet	
10	0088.9900.1374	DYNAMIC	GigabitEthernet	
10	0088.9900.1457	DYNAMIC	GigabitEthernet	0/3

b) 在 PC2 或 PC1 上 ping 一个非 PC1 与 PC2 的 IP (用参数-t)

交换机 A 的 MAC 地址表:

分析: MAC 地址表中有 gi 0/1 和 gi0/3 端口的 MAC 地址, MAC 地址表没有发生变化。gi 0/1 端口有两个 MAC 地址, 分别属于 VLAN1 和 VLAN10, gi 0/3 端口只有一个 MAC 地址, 属于 VLAN10。

19-S5750-1(config)#show mac-address-table				
Vlan	MAC Address	Туре	Interface	
1	1414.4b5a.027e	DYNAMIC	GigabitEthernet	0/1
10	0088.9900.1374	DYNAMIC	GigabitEthernet	0/3
10	0088.9900.1457	DYNAMIC	GigabitEthernet	0/1
19-S5750-1	(config) #show mac-add	ress-table		
Vlan	MAC Address	Туре	Interface	
1	1414.4b5a.027e	DYNAMIC	GigabitEthernet	0/1
10	0088.9900.1374	DYNAMIC	GigabitEthernet	0/3
10	0088.9900.1457	DYNAMIC	GigabitEthernet	0/1
19-S5750-1	(config) #show mac-add	ress-table		
Vlan	MAC Address	Туре	Interface	
1	1414.4b5a.027e	DYNAMIC	CigabitEtharnet	0 / 1
1.0	0088.9900.1374		GigabitEthernet	
		DYNAMIC	GigabitEthernet	
10	0088.9900.1457	DYNAMIC	GigabitEthernet	0 / 1

交换机 B 的 MAC 地址表:

分析: MAC 地址表中有 gi 0/1 和 gi0/3 端口的 MAC 地址, MAC 地址表没有发生变化。gi 0/1 端口有两个 MAC 地址, 分别属于 VLAN1 和 VLAN10, gi 0/3 端口只有一个 MAC 地址,属于 VLAN10。

	2(config)#show mac-ado MAC Address		Interface	
10	1414.4b5a.0204 0088.9900.1374 0088.9900.1457 2(config)#show mac-add	DYNAMIC	GigabitEthernet 0, GigabitEthernet 0, GigabitEthernet 0,	/1
Vlan	MAC Address	Туре	Interface	
1 10 10 10	1414.4b5a.0204 0088.9900.1374 0088.9900.1457 2(config)#show mac-add		GigabitEthernet 0, GigabitEthernet 0, GigabitEthernet 0,	/1
Vlan	MAC Address	Туре	Interface	
1 10 10	1414.4b5a.0204 0088.9900.1374 0088.9900.1457	DYNAMIC DYNAMIC DYNAMIC	GigabitEthernet 0, GigabitEthernet 0, GigabitEthernet 0,	/1

比较配置前后的实验效果,生成树协议起到的作用:解决冗余网络中的广播风暴问题。

步骤 5: 验证测试

在一台非根交换机上执行上述命令后过 5s, 使用 show spanning-tree interface gigabitethernet 0/1 命令和 show spanning-tree interface gigabitethernet 0/2 命令查看,判断哪个端口的 StpPortState 处于丢弃状态? 哪个端口的 StpPortState 处于转发状态?

由记录可知, gigabitethernet 0/1 端口处于转发状态, gigabitethernet 0/2 端口处于丢弃状态。

记录如下:

19-S5750-2(config) #show spanning-tree int gig 0/1

PortAdminPortFast : Disabled
PortOperPortFast : Disabled
PortAdminAutoEdge : Enabled
PortOperAutoEdge : Disabled
PortAdminLinkType : auto

PortOperLinkType : point-to-point

PortBPDUGuard : Disabled PortBPDUFilter : Disabled PortGuardmode : None

PortState : forwarding
PortPriority : 128

PortDesignatedRoot: 32768.1414.4b5a.0204

PortDesignatedCost: 0

PortDesignatedBridge: 32768.1414.4b5a.0204

PortDesignatedPortPriority: 128

PortDesignatedPort : GigabitEthernet 0/1

PortForwardTransitions : 2 PortAdminPathCost : 20000 PortOperPathCost : 20000

Inconsistent states : normal

PortRole : rootPort

19-S5750-2(config) #show spanning-tree int gig 0/2

PortAdminPortFast : Disabled PortOperPortFast : Disabled PortAdminAutoEdge : Enabled PortOperAutoEdge : Disabled PortAdminLinkType : auto

PortOperLinkType : point-to-point

PortBPDUGuard : Disabled PortBPDUFilter : Disabled PortGuardmode : None PortState : discarding

PortPriority: 128

PortDesignatedRoot: 32768.1414.4b5a.0204

PortDesignatedCost : 0

PortDesignatedBridge :32768.1414.4b5a.0204

PortDesignatedPortPriority: 128

PortDesignatedPort : GigabitEthernet 0/2

PortForwardTransitions: 1
PortAdminPathCost: 20000
PortOperPathCost: 20000
Inconsistent states: normal

Inconsistent states : normal PortRole : alternatePort

SwitchA# show spanning-tree

```
19-S5750-1 (config) #show spanning-tree
StpVersion : RSTP
SysStpStatus : ENABLED
MaxAge : 20
HelloTime : 2
ForwardDelay: 15
BridgeMaxAge :
BridgeHelloTime : 2
BridgeForwardDelay: 15
MaxHops: 20
TxHoldCount :
PathCostMethod: Long
BPDUGuard : Disabled
BPDUFilter : Disabled
LoopGuardDef : Disabled
BridgeAddr :
             1414.4b5a.0204
Priority: 32768
TimeSinceTopologyChange: 0d:0h:5m:43s
TopologyChanges: 4
DesignatedRoot: 32768.1414.4b5a.0204
RootCost
         :
           0
RootPort
           0
```

SwitchB# show spanning-tree

19-S5750-2 (config) #show spanning-tree

StpVersion : RSTP

SysStpStatus : ENABLED

MaxAge: 20

HelloTime : 2

ForwardDelay: 15 BridgeMaxAge: 20

BridgeHelloTime : 2

BridgeForwardDelay: 15

MaxHops: 20

TxHoldCount: 3

PathCostMethod : Long BPDUGuard : Disabled BPDUFilter : Disabled

LoopGuardDef : Disabled

BridgeAddr: 1414.4b5a.027e

Priority: 32768

TimeSinceTopologyChange: 0d:0h:5m:40s

TopologyChanges: 2

DesignatedRoot: 32768.1414.4b5a.0204

RootCost: 20000

RootPort: GigabitEthernet 0/1

根据以上信息,根交换机是交换机 A,根端口是 gigabitethernet 0/1。

步骤 6: 设置交换机的优先级

步骤 7:验证交换机 A 的优先级

SwitchA# show spanning-tree

```
19-S5750-1 (config) #show spanning-tree
StpVersion: RSTP
SysStpStatus
               ENABLED
MaxAge : 20
HelloTime :
ForwardDelay:
BridgeMaxAge :
BridgeHelloTime : 2
BridgeForwardDelay:
MaxHops: 20
TxHoldCount
PathCostMethod: Long
BPDUGuard : Disabled
BPDUFilter : Disabled
LoopGuardDef
            : Disabled
             1414.4b5a.0204
BridgeAddr :
Priority: 4096
TimeSinceTopologyChange: 0d:0h:0m:4s
TopologyChanges: 5
DesignatedRoot: 4096.1414.4b5a.0204
RootCost:
RootPort
           0
         :
```

SwitchB# show spanning-tree

show spanning-tree
StpVersion : RSTP

SysStpStatus : ENABLED

MaxAge : 20

HelloTime : 2

ForwardDelay: 15 BridgeMaxAge: 20

BridgeHelloTime : 2

BridgeForwardDelay: 15

MaxHops: 20

TxHoldCount: 3

PathCostMethod : Long

BPDUGuard : Disabled BPDUFilter : Disabled

LoopGuardDef : Disabled

BridgeAddr: 1414.4b5a.027e

Priority: 32768

TimeSinceTopologyChange: 0d:0h:0m:29s

TopologyChanges: 3

DesignatedRoot: 4096.1414.4b5a.0204

RootCost: 20000

RootPort : GigabitEthernet 0/1

比较与步骤 1 中(1)的查询结果的区别:

步骤 1 中(1)的查询结果显示没有生成树,而在步骤 7 中的查询结果显示存在一个生成树,根交换机为交换机A,非根交换机为交换机B,根端口为 gigabitethernet 0/1。

步骤 8: 验证交换机 B 的端口 0/1 和 0/2 的状态

SwitchB# show spanning-tree interface gigabitethernet 0/1

19-S5750-2(config) #show spanning-tree int gig 0/1

PortAdminPortFast : Disabled PortOperPortFast : Disabled PortAdminAutoEdge : Enabled PortOperAutoEdge : Disabled PortAdminLinkType : auto

PortOperLinkType : point-to-point

PortBPDUGuard : Disabled PortBPDUFilter : Disabled : None PortGuardmode PortState: forwarding

PortPriority: 128

PortDesignatedRoot: 4096.1414.4b5a.0204

PortDesignatedCost: 0

PortDesignatedBridge: 4096.1414.4b5a.0204

PortDesignatedPortPriority: 128

PortDesignatedPort : GigabitEthernet 0/1

PortForwardTransitions : 3 PortAdminPathCost: 20000 PortOperPathCost: 20000

Inconsistent states : normal

PortRole: rootPort

(1) 交换机 B 的端口 0/1 处于转发状态

(2) 端口角色是根端口

SwitchB# show spanning-tree interface gigabitethernet 0/2

19-S5750-2 (config) #show spanning-tree int gig 0/2

PortAdminPortFast : Disabled PortOperPortFast : Disabled PortAdminAutoEdge : Enabled PortOperAutoEdge : Disabled PortAdminLinkType : auto PortOperLinkType : point-to-point PortBPDUGuard : Disabled PortBPDUFilter : Disabled PortGuardmode : None PortState: discarding PortPriority: 128 PortDesignatedRoot: 4096.1414.4b5a.0204 PortDesignatedCost : 0

PortDesignatedBridge: 4096.1414.4b5a.0204

PortDesignatedPortPriority: 128

PortDesignatedPort : GigabitEthernet 0/2

PortForwardTransitions : 2 PortAdminPathCost: 20000 PortOperPathCost: 20000

Inconsistent states : normal

PortRole: alternatePort

- (1) 交换机 B 的端口 0/2 处于丢弃状态
- (2) 端口角色是替换端口

步骤 9: 实验分析

(1) 记录经过步骤 7 后每台交换机的 BridgeAddr、Priority、DesignatedRoot、RootCost 以及 RootPort,并填入表。

交换机生成树信息

	交换机 A	交換机 B
Priority	4096	32768
BridgeAddr	1414.4b5a.0204	1414.4b5a.0204
DesignatedRoot	4096.1414.4b5a.0204	4096.1414.4b5a.0204
RootCost	0	20000
RootPort	0	gi 0/1
Designated	gi 0/1, gi 0/2	gi 0/1, gi 0/2

(2) 如果交换机 A 与交换机 B 的端口 0/1 之间的链路 down 掉,验证交换机 B 的端口 0/2 的状态,并观察状态转换时间。

端口 0/1 链路 down 后查看交换机 B 的端口 0/2:

SwitchB# show spanning-tree interface gigabitethernet 0/2

19-S5750-2(config) #show spanning-tree int gig 0/2

PortAdminPortFast : Disabled PortOperPortFast : Disabled PortAdminAutoEdge : Enabled PortOperAutoEdge : Disabled

PortAdminLinkType : auto

PortOperLinkType : point-to-point

PortBPDUGuard : Disabled PortBPDUFilter : Disabled

PortGuardmode : None PortState : forwarding

PortPriority: 128

PortDesignatedRoot: 4096.1414.4b5a.0204

PortDesignatedCost : 0

PortDesignatedBridge :4096.1414.4b5a.0204

PortDesignatedPortPriority: 128

PortDesignatedPort : GigabitEthernet 0/2

PortForwardTransitions: 3
PortAdminPathCost: 20000
PortOperPathCost: 20000

Inconsistent states : normal

PortRole : rootPort

说明交换机 B 的端口 0/2 从阻塞状态转换到转发状态,说明生成树协议此时启用了原先处于阻塞状态的冗余链路。状态转换时间大约 2s。

上述结论是正确的。

(3) 记录此时每台交换机的 BridgeAddr、Priority、DesignatedRoot、RootCost 以及 RootPort, 并与(1)比较,分析发生的变化。

交换机生成树信息

	交换机 A	交换机 B	
Priority	4096	32768	
BridgeAddr	1414.4b5a.0204	1414.4b5a.0204	
DesignatedRoot	4096.1414.4b5a.0204	4096.1414.4b5a.0204	
RootCost	0	20000	
RootPort	0	gi 0/2	

分析: 交换机 B 的 RootPort 发生变化,由 gi 0/1 变成 gi 0/2。

(4) 当交换机 A 与交换机 B 之间的一条链路 down 掉时,验证 PC1 与 PC2 仍能互相 ping 通,并观察 ping 的丢包情况。

以下为从 PC2 ping PC1 的结果:

C: \>ping 192.168.1.10 -t

```
C:\Users\Administrator>ping 192.168.1.10 -t
                             字节=32 时间=3ms TTL=128
字节=32 时间=1ms TTL=128
字节=32 时间=2ms TTL=128
字节=32 时间-2
正在 Ping 192.168.1.10 具有 32 字节的数据:
  自 192.168.1.10 的回复:
     192.168.1.10 的回
                          复:
     192.168.1.10
                     的回复:
     192.168.1.10
                     的回复:
     192.168.1.10
                     的回复:
                                    =32
                          复:
                                           [B]=2ms TTL=128
                     的回
     192.168.1.10
                                    =32
                     的回
     192.168.1.10
                          复:
                                    =32
                                           |B|<1ms TTL=128
                     的回复:
     192.168.1.10
                                         时间<1ms TTL=128
                                    =32
                    的回复:
    192.168.1.10
                                 7节=32
                                         时间<1ms TTL=128
    192.168.1.10
                     的回复:
                                  ₩=32
                                         时间<1ms TTL=128
                              子节=32
    192.168.1.10
                    的回复:
                                        时间<1ms TTL=128
                                 节=32 时间<1ms TTL=128
    192.168.1.10 的回复:
                    的回复:字
                                  节=32 时间<1ms TTL=128
     192.168.1.10
  求超时。
    192.168.1.10 的回复: 字节=32 时间=2ms TTL=128
    192.168.1.10 的回复: 字节=32 时间=1ms TTL=128
192.168.1.10 的回复: 字节=32 时间=1ms TTL=128
192.168.1.10 的回复: 字节=32 时间<1ms TTL=128
192.168.1.10 的回复: 字节=32 时间=2ms TTL=128
    192.168.1.10 的回复:
192.168.1.10 的回复:
                              字节=32 时间<1ms TTL=128
    192.168.1.10 的回复: 字节=32 时间<1ms TTL=128
192.168.1.10 的回复: 字节=32 时间=2ms TTL=128
192.168.1.10 的回复: 字节=32 时间<1ms TTL=128
192.168.1.10 的 Ping 统计信息:
    数据包: 已发送 = 24,
行程的估计时间<以毫秒
                                     = 22, 丢失 = 2 (8% 丢失)
                              为单位>:
                                 平均 = 0ms
          = Øms,
                        = 3ms,
```

拔掉交换机 A 与交换机 B 的端口 0/1 之间的连线,观察丢包情况。

由记录可知,出现了两次丢包,当有链路断开时就会发生丢包,先前断开的链路又 连接时,又会发生丢包。

(5) 记录此时每台交换机的 BridgeAddr、Priority、DesignatedRoot、RootCost 以及 RootPort, 填入表并与(1)比较,分析发生的变化。

交换机 A

交换机 B

Priority	4096	32768	
BridgeAddr	1414.4b5a.0204	1414.4b5a.0204	
DesignatedRoot	4096.1414.4b5a.0204	4096.1414.4b5a.0204	
RootCost	0	20000	
RootPort	0	gi 0/2	
Alternate	无	无	

分析: 交换机 B 的 RootPort 发生变化,由 gi 0/1 变成 gi 0/2。

(6) 启动监控软件 Wireshark, 捕获 BPDU, 并进行协议分析。

分析:协议 ID: Spanning Tree Protocol(0),版本号: Rapid Spanning Tree(2),BPDU 类型: Rapid/Multiple Spanning Tree(2),BPDU 标记: 0x7c,根网桥号:4096/0/14:14:4b:5a:02:04,根路径成本:20000,发送网桥 ID:14:14:4b:5a:02:7e,端口 ID: 0x8003,呼叫时间:2,转发延迟:15。

中山大學 计算机网络实验报告

	SON TAT SERV CRITY		<u> </u>	<u>ロ </u>	<u>- 1 </u>			
No.	Time	Source	Desti	nation	Protocol	Lengt		
	4 2.340733	RuijieNe_5a:02	:7e Span	ning-tree-(for-	STP	6		
<	5 Д.339527	RuiiieNe 5a:02	:7e Snan	ning-tree-(for-	STP	>		
	nama 1. 60 hytas	on wine (400 hit	-) 60 bytos	cantunad (190	hits) on	intor		
	rame 4: 60 bytes of EEE 802.3 Ethernet	·	s), be bytes	captureu (480	DICS) OII	Tillel		
	Logical-Link ControlSpanning Tree Protocol							
, ,	Protocol Identif		ee Protocol	(0x0000)				
	Protocol Version			•				
•	BPDU Type: Rapid/Multiple Spanning Tree (0x02) BPDU flags: 0x7c, Agreement, Forwarding, Learning, Port Role: Designated							
	_	pology Change Ac						
	.1 = Ag		Ü					
	1 = Fo							
	1 = Learning: Yes							
	11 = Po	ort Role: Designa	ited (3)					
	0. = Pr	oposal: No						
	0 = To	pology Change: N	lo					
~	<pre>v Root Identifier: 4096 / 0 / 14:14:4b:5a:02:04</pre>							
	Root Bridge Pr	riority: 4096						
		stem ID Extension						
	Root Bridge System ID: RuijieNe_5a:02:04 (14:14:4b:5a:02:04)							
	Root Path Cost: 20000							
~	✔ Bridge Identifier: 32768 / 0 / 14:14:4b:5a:02:7e							
	Bridge Priority: 32768							
	Bridge System ID Extension: 0							
	Bridge System ID: RuijieNe_5a:02:7e (14:14:4b:5a:02:7e)							
	Port identifier: 0x8003							
	Message Age: 1							
	Max Age: 20							
	Hello Time: 2 Forward Delay: 15							
	Version 1 Length							
	ACI STOIL T FEIIBEIL	. •						

实验思考:

(1) 请问该实验中有无环路?请说明判断的理由。如果存在,说明交换机是如何避免 环路的?

该实验有环路,由拓扑图可以看出,连接两个交换机的两条线形成一条环路。交换 机使用 STP 协议将 gi 0/2 端口阻塞从而避免环路。

(2) 冗余链路会不会出现 MAC 地址表不稳定和多帧复制的问题?请举例说明。

冗余链路会出现 MAC 地址表不稳定和多帧复制的问题, 在步骤 1 的(4)中可以看

到出现了 MAC 地址表不稳定的问题。

- (3) 将实验改用 STP 协议, 重点观察状态转换时间。
- (4) 在本实验中,开始时首先在两台交换机之间只连接一根跳线,发现可以正常 ping 通。此时在两台交换机之间多接一根跳线,发现还是可以继续正常 ping 通。请问此时有广播风暴吗?

此时还是存在广播风暴的,因为存在环路且没有配置 STP 协议。

学号	学生	自评分
16337331	钟哲灏	99
16337327	郑映雪	99
16337341	朱志儒	99