Submission Form

Fill up the following slots with appropriate content. You must submit the content of this document from this page only.

1. Your Name: Md Raihanul Islam Bhuiyan

Your ID: 20101239
Your Section: 16
Experiment No: 2

5. Experiment Title: Verify Ohm's Law

6. You must write your ID in each of the graphs you insert here.

7. Data Table 1:

$$R_1 = 359 \,\Omega$$

Sl:	Voltage, V (volt)	Electric Current, I (mA)
1.	1	2.8
2.	2	5.6
3.	3	8.4
4	4	11.1
5	5	13.9
6.	6	16.7
7.	7	19.5
8.	8	22.3

8. Data Table 2:

$$R_2 = 220\Omega$$

Sl:	Voltage, V (volt)	Electric Current, I (mA)
1.	1	4.5
2.	2	9.1
3.	3	13.6
4	4	18.2
5	5	22.7
6.	6	27.3
7.	7	31.8
8.	8	36.4

9. Data Table 3:

$V = 5.7 \ volts$

Sl:	Resistance, R (Ω)	Electric Current, I (mA)
1.	100.0	57.0
2.	200.0	28.5
3.	300.0	19.0
4	400.0	14.3
5	500.0	11.4
6.	600.0	9.5
7.	700.0	8.1
8.	800.0	7.1

10. Draw I vs V graph for Data Table 1 and 2, that is you plot V along the x-axis and I along the y-axis. You should label the axes accordingly. For two tables you will get two straight lines. You can either draw both the lines in the same graph or use two graphs; one for each table. You must label the lines such that we can identify the lines corresponding to the tables. Insert the **graph/graphs** here:

Graph for Data Table 1:

Graph for Data Table 2:

11. For Data Table 1,

Slope =
$$2.782142857 \text{ mA/V}$$

Calculated Resistance,

$$= 359.4351733 \Omega$$

Percentage of error

$$= [| R^{-1} - R_1 | / R_1] * 100$$

$$= 0.1212\%$$

For Data Table 2,

Slope =
$$4.552380952 \text{ mA/V}$$

Calculated Resistance,

$$=219.665272 \Omega$$

Percentage of error

$$= [| R^{-1} - R_1 | / R_1 |] * 100$$

12.Draw I vs R graph for Data Table 3, that is you plot R along x-axis and I along y-axis. You should label the axes accordingly. Insert **graph-3** here:

You are <i>strongly</i> encouraged to use your own words to describe your thoughts. However, any kind of plagiarism (such as copying from other students' labreports) will not be tolerated and will be subject to disciplinary action according to BracU policy.
Please briefly answer the following questions:

13.Explain the graph you see in step 12. [Hint: What kind of function does the curve represent? How does it relate to Ohm's law?]

Ans:

From this graph, we can see that R and I will never be 0. Because the graph never touches the x and y axis.

From Ohm's Law,

I=V/R

So I and V has a inverse relation. This is why the graph is hyperbolic.

14. What assumption do you have to make about the temperature for Ohm's law to hold true? [Write the assumption in one line.]

Ans: Ohm's Law states that, resistance is a constant value. But when temperature changes, Resistance also changes. So, we have to assume that temperature is constant so that Ohm's law holds true.

- 15. Sketch **I-V** graphs for the following cases and identify which graph corresponds to which type of material?
 - a. Resistance increases linearly with temperature
 - b. Resistance decreases inversely with temperature

(Hint: You may ask yourself the question - Is this the graph for a Conductor/Semiconductor/Superconductor/Insulator?)

You can either plot both the cases in the same graph or use two graphs; one for each case. Insert the graph/graphs here with the comment on the graph representing which material type. The comment should be precise and concise.

- a) When temperature decreases, resistance increases and I vs V graph is linear. This is a graph for metals.
- b) When the temperature increases, resistance decreases and I vs V graph is not linear. This is a graph for insulators.