Pflichtenheft GeneticQuiz

1. Zielbestimmung

Anwender können mit der Software ihre genetischen Wissen testen, d.h. man kann von eine zufällige generierte DNA-Sequenz die Sequenz von cDNA, mRNA oder Protein in beider Richtungen schreiben und wiesen ob diese richtig oder falsch ist.

1.1. Musskriterien

- Der Benutzer kann wählen, von einer zufälligen DNA-Sequenz, welche genetischen Prozess er üben möchte (Replication [cDNA], Transkription [mRNA] oder Translation [Protein]).
- Der Benutzer kann die Anzahl Nukleotiden von cDNA oder mRNA feststellen.
- Der Benutzer kann die Anzahl Aminosäuren feststellen.
- Der Benutzer kann wählen in welcher Richtung die Sequenzgelesen wird. (vorwärts, oder rückwärts)
- Der Benutzer kann wählen mit welchem genetischen Code er arbeiten möchte.
- Der Benutzer kann eine String-Kette (cDNA, mRNA oder Protein) eintippen.
- Genetische Code
 - Die Anwendung speichert verschiedenen genetischen Code(Standard und Vertebrate Mitochondrial) mit der Übersetzung der Codonen von mRNA (3 Buchstaben) in Aminosäuren (1 Buchstabe).

DNA - cDNA

- o Die Anwendung generiert, je nach Anzahl Nukleotiden, eine DNA-Sequenz.
- o Falls die selektierte Richtung rückwärts ist, wird die erzeugte DNA-Sequenz invertiert.
- Die Anwendung übersetzt die erzeugte DNA-Sequenz in eine cDNA-Sequenz.
 - Übersetzung: A durch T, Cdurch G, Gdurch C, Tdurch A.
- Die cDNA-Sequenz wird gespeichert und mit der vom Anwender eingetippten String-Kette verglichen.
- Falls die eingetippte String-Kette unterschied mit der cDNA-Sequenz ist, zeigt die Anwendung eine "Fehler"-Meldung und die richtige Sequenz.
- Falls die eingetippte String-Kette gleich mit der cDNA-Sequenz ist, zeigt die Anwendung eine "OK"-Meldung und die Sequenz.

DNA - mRNA

- Die Anwendung generiert, je nach Anzahl Nukleotiden, eine DNA-Sequenz.
- o Falls die selektierte Richtung rückwärts ist, wird die erzeugte DNA-Sequenz invertiert.
- o Die Anwendung übersetzt die erzeugte DNA-Sequenz in eine mRNA-Sequenz.
 - Übersetzung: A durch U, C durch G, G durch C, T durch A.
- Die mRNA-Sequenz wird gespeichert und mit der vom Anwender eingetippten String-Kette verglichen.
- Falls die eingetippte String-Kette unterschied mit der mRNA-Sequenz ist, zeigt die Anwendung eine "Fehler"-Meldung und die richtige Sequenz.
- Falls die eingetippte String-Kette gleich mit der mRNA-Sequenz ist, zeigt die Anwendung eine "OK"-Meldung und die Sequenz.

• DNA - Protein

o Die Anwendung generiert, je nach Anzahl Aminosäuren, eine DNA-Sequenz.

- o Falls die selektierte Richtung rückwärts ist, wird die erzeugte DNA-Sequenz invertiert.
- o Die Anwendung übersetzt die erzeugte DNA-Sequenz in eine mRNA-Sequenz.
 - Übersetzung: A durch U, C durch G, G durch C, T durch A.
- Die mRNA-Sequenz wird gespeichert und wird, je nach genetischem Code, in Protein übersetzt.
- Die Protein-Sequenz wird gespeichert und mit der vom Anwender eingetippte String-Kette vergleichen.
- Falls die eingetippte String-Kette unterschied mit der mRNA-Sequenz ist, zeigt die Anwendung eine "Fehler"-Meldung und die richtige mRNA- und Protein-Sequenz.
- Falls die eingetippte String-Kette gleich mit der mRNA-Sequenz ist, zeigt die Anwendung eine "OK"-Meldung und die mRNA- und Protein-Sequenz.

1.2. Wunschkriterien

- Zeigen der richtigen cDNA, mRNA und Protein, wenn der Benutzer eine falsche Sequenz eingetippt hat.
- Zeigen der mRNA und Protein, wenn der Benutzer die Option von DNA zu Protein gewählt hat.

2. Produktionseinsatz

Open Source

2.1. Anwendungsbereiche

• Desktop Rechner

2.2. Zielgruppen

- Studierende der Schule oder Studium
 - o Privatanwender
 - Unternehmen

3. Produktumgebung

• Das Produkt läuft auf einem Arbeitsplatzrechner

3.1. Software

• OS: Windows 7 oder hoher, Linux, MacOS mit Java SE Runtime Environment 7 oder hoher.

3.2. Hardware

• PC mit mind. 512 MB RAM, 50 MB freier Festplattenspeicher, VGA Grafik.

4. Produktfunktionen

4.1. Eingaben

• /F10/

Eingabe des genetischen Prozess (Replikation, Transkription, Translation),

/F20/

Eingabe der Anzahl Nukleotide/Aminosäure

/F30/

Richtung für die Lektüre der Sequenz.

• /F40/

- Eingabe dem genetischen Code, wenn die Translation in /F10/ gewählt ist.
- /F50/
 Eingabe der Query-Sequenz

4.2. Erzeugung der DNA-Sequenz

• /F210/

Je nach Funktionen /F10/, /F20/ und /F30/ wird eine DNA-Sequenz generiert.

4.3. Erzeugung der X-Sequenz

• /F220/

Je nach Funktionen /F10/, /F30/ und /F40/wird die DNA-Sequenz von / F210/ in eine X-Sequenz umgewandelt.

4.4. Test der Query-Sequenz

• /F310/

Vergleicht die Query-Sequenz von /F50/ mit der X-Sequenz von /F220/ und liefert das Ergebnis.

5. Produktdaten

5.1. DNA-Sequenz-Daten

• /D10/

Von eine zu erzeugende DNA-Sequenz sind die folgende Daten zu speichern. /LD10/

- o genetischen Prozess (Replikation, Transkription, Translation),
- o Eingabe der Anzahl Nukleotide/Aminosäure
- O Richtung für die Lektüre der Sequenz.
- /D20/

Von eine zu erzeugende X-Sequenz sind die folgende Daten zu speichern. /LD20/

- o genetischen Prozess (Replikation, Transkription, Translation),
- o Richtung für die Lektüre der Sequenz.
- Genetischer Code (nur für die Translation)

6. Produktleistungen

• /L10/

Reaktionszeiten dürfen nicht länge als 2 Sekunden benötigen.

7. Benutzerstelle

• /B10/

Ist eine menüorientierte Bedingung vorzusehen.

• /B20/

Die Bedienungsoberfläche ist auf Maus- und Tastaturbedienung auszulegen

8. Qualitätsbestimmung

Produktqualität	Sehr gut	Gut	Normal	Nicht relevant
Funktionalität				
Angemessenheit		Х		
Richtigkeit	Х			
Interoperabilität				Х
Ordnungsmäßigkeit			X	
Sicherheit			Х	
Zuverlässigkeit				
Reife				Х
Fehlertoleranz				X
Widerherstellbar			X	
Benutzbarkeit				
Verständlichkeit		Х		
Erlernbarkeit			X	
Bedienbarkeit		Х		
Effizienz				
Zeitverfahren	Х			
Verbrauchsverhalten		Х		
Änderbarkeit				
Analysierbarkeit			Х	
Modifizierbarkeit			X	
Stabilität		Х		
Prüfbarkeit			X	
Übertragbarkeit				
Anpassbarkeit			Х	
Installierbarkeit				X
Konformität			X	
Austauschbarkeit				Χ

9. Benutzerstelle

Folgende Funktionen sind zu überprüfen

- /T10/
 - Die erzeugende DNA-Sequenz muss nur die Zeichen: A,C,G,T.
- /T20/
 - Die Anzahl Zeichen der DNA-Sequenz muss konsistent mit der Eingabe von /F20/ sein.
- /T30/
 - Die generierte X-Sequenzen müssen konsistent mit den genetischen Prozessen /F220/ sein
- /T40/
 - Wenn die Query-Sequenz gleich wie die X-Sequenzen ist, muss /F310/ true liefern, sonst false.

10. Entwicklungsumgebung

offen