Композиция методов. Бустинг.

Романова Елизавета, Горбачук Анна, Сидоренко Денис

Санкт-Петербург 2019г.

Случайный лес.

- композиция большого количества глубоких деревьев;
- базовые алгоритмы (базовые решающие деревья) независимы.

Проблемы:

- обучение глубоких деревьев трудоемкая процедура (построение деревьев ненаправленное, нужно много деревьев для сложных задач);
- если ограничить глубину, деревья улавливают не все группы.

Пример: синий класс состоит из двух групп: одна в центре, одна с краю. Из-за того, что деревья очень небольшой глубины (в данном случае -2), они могут уловить только одну из этих групп - ту, которая в центре, а на второй они полностью ошибаются.

Бустинг. Постановка задачи.

Бустинг:

- последовательное обучение базовых алгоритмов;
- каждый следующий исправляет ошибки предыдущих;
- за счет этого достаточно простых базовых алгоритмов.

Постановка задачи:

Пусть X — множество объектов, Y — множество ответов $y: X \to Y$ — неизвестная зависимость.

Дано: обучающая выборка — $X^n = (x_i, y_i)_{i=1}^n$, $y_i = y(x_i), i = 1, \ldots, n$ — известные ответы.

Требуется построить алгоритм a(x) = C(b(x)), аппроксимирующий целевую зависимость y на всём множестве X.

Изменение постановки задачи.

Замечание: вместо одного базового алгоритма b рассматривается несколько алгоритмов $b_1(x),\ldots,b_T(x)$.

 $\mathcal{B}(\Theta)=\{b(\cdot;\theta)|\theta\in\Theta\}$ — параметризованное множество базовых алгоритмов.

Выбор базового алгоритма: выбор $\theta \in \Theta$ и $b(x) = b(x; \theta) \in \mathcal{B}(\Theta)$.

В качестве базовых алгоритмов обычно выступают:

- решающие деревья (неглубокие 2-8) используются чаще всего;
- пороговые правила (data stumps).

Задача: Подбор оптимальных (в смысле рассматриваемой функции потерь) базовых алгоритмов $\{b_t(x)\}_{t=1}^T.$

Простой пример для задачи регресии.

Хотим минимизировать среднеквадратичную ошибку

$$MSE(a, X) = \frac{1}{n} \sum_{i=1}^{n} (a(x_i) - y_i)^2.$$

• обучим простой алгоритм (неглубокое дерево):

$$b_1(x) = \arg\min_{b \in \mathcal{B}} \frac{1}{n} \sum_{i=1}^n (b(x_i) - y_i)^2;$$

• хотим добавить еще один алгоритм b_2 . Возникает вопрос: какие ответы b_2 должен давать на объектах обучающей выборки, чтобы ошибка нашей композиции была как можно меньше?

$$b_{1}(x_{i}) + b_{2}(x_{i}) = y_{i} \Rightarrow$$

$$b_{2}(x) = \arg\min_{b \in \mathcal{B}} \frac{1}{n} \sum_{i=1}^{n} (b(x_{i}) - (y_{i} - b_{1}(x_{i})))^{2}$$
...
$$b_{T}(x) = \arg\min_{b \in \mathcal{B}} \frac{1}{n} \sum_{i=1}^{n} (b(x_{i}) - (y_{i} - \sum_{t=1}^{T} b_{t}(x_{i})))^{2}$$

Понятие композиции алгоритмов.

Введем вспомогательное множество R, называемое пространством оценок. Будем рассматривать алгоритмы, имеющие вид суперпозиции a(x)=C(b(x)), где функция $b:X\to R$ называется алгоритмическим оператором, функция $C:R\to Y$ — решающим правилом.

Композицией T алгоритмов $a_t(x)=C(b_t(x))$, $t=1,\ldots,T$ называется суперпозиция алгоритмических операторов $b_t:X\to R$, корректирующей операции $F:R^T\to R$ и решающего правила $C:R\to Y$:

$$a(x) = C(F(b_1(x), \dots, b_T(x)), \quad x \in X.$$
(1)

Суперпозиции вида $F(b_1,\ldots,b_T)$ являются отображениями из X в R, то есть алгоритмическими операторами.

Пространство оценок. Примеры.

Пространство оценок R вводится для того, чтобы расширить множество допустимых корректирующих операций.

Пример 1. В задачах классификации на два класса, $Y = \{-1, +1\}$, в качестве пространства оценок обычно используется множество действительных чисел $R = \mathbb{R}$.

В этом случае алгоритмические операторы называют также вещественнозначными классификаторами: C(b(x)) = signb(x).

Пример 2. В задачах классификации на M классов, $Y = \{1, ..., M\}$, в качестве пространства оценок обычно используется $R = \mathbb{R}^M$. Алгоритмический оператор b(x) выдаёт вектор оценок принадлежности объекта x каждому из классов, $b(x) = b^1(x), \dots, b^M(x).$

Решающее правило C относит объект к тому классу, для которого оценка максимальна: $C(b(x)) \equiv C(b^1(x), \dots, b^M(x) = \arg\max_{x \in V} b^y(x).$

Пример 3. В задачах регрессии множество Y уже достаточно богато, обычно $Y=\mathbb{R}$, поэтому использовать решающее правило нет особого смысла. В этом случае обычно полагают $R = \mathbb{R}, C(b) \equiv b.$

Примеры корректирующих операций.

• Пример 1. Простое голосование (Simple Voting):

$$F(b_1(x), \dots, b_T(x)) = \frac{1}{T} \sum_{t=1}^{T} b_t(x), \quad x \in X.$$

• Пример 2. Взвешенное голосование (Weighted Voting):

$$F(b_1(x),\ldots,b_T(x)) = \sum_{t=1}^{T} \alpha_t b_t(x), \quad x \in X, \quad \alpha_t \in R.$$

• Пример 3. Смесь алгоритмов (Mixture of Experts):

$$F(b_1(x),...,b_T(x)) = \sum_{t=1}^{T} g_t(x)b_t(x), \quad x \in X, \quad g_t : X \to \mathbb{R}.$$

Взвешенное голосование.

Корректирующая операция F может иметь параметры, настраиваемые по обучающей выборке, наряду с параметрами базовых алгоритмов. Например, в линейной комбинации настраиваются веса α_t базовых алгоритмов:

$$b(x) = F(b_1(x), \dots, b_T(x)) = \sum_{t=1}^{T} \alpha_t b_t(x), \quad x \in X, \quad \alpha_t \in R.$$
 (2)

Если веса α_t неотрицательны и нормированы, $\sum_{t=1}^T \alpha_t = 1$, то композицию (2) называют **выпуклой комбинацией** базовых алгоритмов.

В задачах классификации корректирующая операция (2) называется взвешенным голосованием (weighted voting).

Бустинг в задачах классификации.

Рассмотрим задачу классификации на два класса, $Y=\{1,+1\}$. Допустим, что решающее правило фиксировано, C(b)=sign(b), базовые алгоритмы возвращают ответы -1,0,+1.

Ответ $b_t(x)=0$ означает, что базовый алгоритм b_t отказывается от классификации объекта x, и ответ $b_t(x)$ не учитывается в композиции.

Искомая алгоритмическая композиция имеет вид:

$$a(x) = C(F(b_1(x), \dots, b_T(x))) = sign\left(\sum_{t=1}^{T} \alpha_t b_t(x)\right), \quad x \in X.$$
 (3)

Функционал качества.

Определим функционал качества композиции как число ошибок, допускаемых ею на обучающей выборке:

$$Q_T = \sum_{i=1}^n \left[y_i \sum_{t=1}^T \alpha_t b_t(x_i) < 0 \right].$$
 (4)

Для упрощения задачи минимизации функционала Q_T введём две эвристики (не полностью математически обоснованные, но при этом практически полезные алгоритмы).

Эвристика 1. При добавлении в композицию слагаемого $\alpha_t b_t(x)$ оптимизируется только базовый алгоритм b_t и коэффициент при нём α_t , а все предыдущие слагаемые $\alpha_1 b_1(x), \dots, \alpha_{t-1} b_{t-1}(x)$ полагаются фиксированными.

Эвристика 2. Пороговая функция потерь в функционале Q_t аппроксимируется (заменяется) непрерывно дифференцируемой оценкой сверху.

Вторая эвристика широко используется в теории классификации.

AdaBoost.

При использовании экспоненциальной аппроксимации $[y_ib(x_i)<0] \leq e^{y_ib(x_i)}$ эти две эвристики приводят к алгоритму AdaBoost.

Оценим функционал Q_T сверху:

$$Q_T \le \widetilde{Q}_T = \sum_{i=1}^n \exp\left(-y_i \sum_{t=1}^T \alpha_t b_t(x_i)\right) =$$
$$= -\sum_{i=1}^n \exp\left(-y_i \sum_{t=1}^T \alpha_t b_t(x_i)\right) e^{y_i \alpha_T b_T(x_i)}.$$

Заметим, что введённые здесь веса объектов ω_i не зависят от $\alpha_T b_T$ и могут быть вычислены перед построением базового алгоритма b_T .

AdaBoost.

Введём вектор нормированных весов $\widetilde{W}^n=\widetilde{\omega}_1,\ldots,\widetilde{\omega}_n$, где $\widetilde{\omega}_i=\omega_i/\sum_{j=1}^n\omega_j$.

Определим два функционала качества алгоритма классификации b на обучающей выборке $X^n=(x_i,y_i)_{i=1}^n$ с нормированным вектором весов объектов $U^n=(u_1,\dots,u_n)$: суммарный вес ошибочных (negative) классификаций $N(b;U^n)$ и суммарный вес правильных (positive) классификаций $P(b;U^n)$:

$$N(b; U^n) = \sum_{i=1}^n u_i[b(x_i) = -y_i],$$

$$P(b; U^n) = \sum_{i=1}^n u_i [b(x_i) = y_i].$$

Заметим, что 1-N-P есть суммарный вес отказов от классификации. Если отказов нет, то N+P=1.

Основная теорема бустинга (для AdaBoost).

Пусть \mathcal{B} — достаточно богатое семейство базовых алгоритмов.

Teopeма (Freund, Schapire, 1996)

Пусть для любого нормированного вектора весов U^n существует алгоритм $b\in\mathcal{B}$, классифицирующий выборку хотя бы немного лучше, чем наугад: $P(b;U^n)>N(b;U^n)$.

Тогда минимум функционала Q_T достигается при

$$b_T = \arg\max_{b \in \mathcal{B}} \sqrt{P(b; \widetilde{W}^n)} - \sqrt{N(b; \widetilde{W}^n)},$$

$$a_t = \frac{1}{2} \ln \frac{P(b_t; \widetilde{W}^n)}{N(b_t; \widetilde{W}^n)}.$$

Алгоритм AdaBoost.

Вход: $X^n = (x_i, y_i)_{i=1}^n$ - обучающая выборка, T - максимальное число базовых алгоритмов.

Выход: базовые алгоритмы и их веса $\alpha_t b_t$, $t = 1, \dots, T$.

• инициализация весов объектов:

$$\omega_i := 1/n, \ i = 1, \dots, n;$$

- $oldsymbol{0}$ для всех $t=1,\ldots,T$, пока не выполнен критерий остановки:
- обучить базовый алгоритм:

$$b_t := \arg\min_{b \in \mathcal{B}} N(b; W^n);$$

$$a_t := \frac{1}{2} \ln \frac{1 - N(b_t; W^n)}{N(b_t; W^n)};$$

• пересчет весов объектов:

$$\omega_i := \omega_i e^{\alpha_t y_i b_t(x_i)}$$
, $i = 1, \dots, n$;

• нормировка весов объектов:

$$\omega_0 := \sum_{j=1}^n \omega_j; \ \omega_i := \omega_i/\omega_0, \ i=1,\ldots,n.$$

Достоинства AdaBoost.

- Хорошая обобщающая способность. В реальных задачах (не всегда, но часто) удаётся строить композиции, превосходящие по качеству базовые алгоритмы. Обобщающая способность может улучшаться (в некоторых задачах) по мере увеличения числа базовых алгоритмов.
- Простота реализации.
- Накладные расходы бустинга невелики. Время построения композиции практически полностью определяется временем обучения базовых алгоритмов.
- Возможность идентифицировать выбросы. Это "наиболее трудные" объекты x_i , для которых в процессе наращивания композиции веса ω_i принимают наибольшие значения.

Недостатки AdaBoost.

- AdaBoost склонен к переобучению при наличии значительного уровня шума в данных.
- AdaBoost требует достаточно длинных обучающих выборок.
- Бустинг может приводить к построению громоздких композиций, состоящих из сотен алгоритмов. Такие композиции исключают возможность содержательной интерпретации, требуют больших объёмов памяти и существенных затрат времени.
- Жадная стратегия последовательного добавления приводит к построению неоптимального набора базовых алгоритмов.

Обобщение бустинга (AnyBoost).

Возьмём $Y=\{-1;+1\},\ b_t:X\to\mathbb{R},\ C(b)=sign(b);$ $\mathscr{L}(M)$ — функция потерь, гладкая функция отступа M;

 $M_T(x_i) = y_i \sum_{t=1}^T \alpha_t b_t(x_i)$ — отступ композиции на объекте x_i ;

Оценка сверху для числа ошибок композиции:

$$Q_T \le \widetilde{Q}_T = \sum_{i=1}^n \mathcal{L}(M_{T-1}(x_i) + y_i \alpha_T b_T(x_i)) \to \min_{\alpha, b \in \mathcal{B}}.$$

Рассмотрим функцию потерь ${\mathscr L}$ как функцию параметра α_T ,

$$\lambda(\alpha_T) = \mathcal{L}(M_{T-1}(x_i) + y_i \alpha_T b_T(x_i))$$

и линеаризуем её в окрестности значения $\alpha_T=0$, разложив в ряд Тейлора и отбросив старшие члены: $\lambda(\alpha_T)\approx \lambda(0)+\alpha_T\lambda'(0)$. Это приведет к линеаризация функционала \widetilde{Q}_T по α_T :

$$\widetilde{Q}_T \approx \sum_{i=1}^n \mathcal{L}(M_{T-1}(x_i)) - \alpha \sum_{i=1}^n \underbrace{-\mathcal{L}'(M_{T-1}(x_i))}_{\omega_i} y_i b(x_i) \to \min_{b \in \mathcal{B}},$$

где w_i — веса объектов.

Принцип явной максимизации отступов.

Минимизация линеаризованного \widetilde{Q}_T при фиксированном lpha:

$$\widetilde{Q}_T \approx \sum_{i=1}^n \mathcal{L}(M_{T-1}(x_i)) - \alpha \sum_{i=1}^n \omega_i y_i b(x_i) \to \min_{b \in \mathcal{B}}$$

приводит к принципу явной максимизации отступов (direct optimization of margin, DOOM):

$$\sum_{i=1}^{n} \omega_i y_i b(x_i) \to \max_{b \in \mathcal{B}}.$$

Затем lpha определяется путём одномерной минимизации $\widetilde{Q}_T.$

Итерации этих двух шагов приводят к алгоритму AnyBoost.

Замечание. AnyBoost переходит в AdaBoost в частном случае, при $b_t:X \to \{-1,0,+1\}$ и $\mathcal{L}(M)=e^{-M}$.

Алгоритм AnyBoost.

Вход: $X^n = (x_i, y_i)_{i=1}^n$ - обучающая выборка, T - максимальное число базовых алгоритмов.

Выход: базовые алгоритмы и их веса $\alpha_t b_t$, $t = 1, \dots, T$.

- **1** инициализация отступов: $M_i := 0, i = 1, \dots, n;$
- **2** для всех t = 1, ..., T, пока не выполнен критерий остановки:
- **3** вычислить веса объектов:

$$\omega_i = -\mathcal{L}'(M_i), i = 1, \dots, n;$$

- lack o обучить базовый алгоритм согласно принципу DOOM: $b_t := rg \max_{b \in \mathcal{B}} \sum_{i=1}^n \omega_i y_i b(x_i);$
- решить задачу одномерной минимизации: $a_t := \arg\max_{\alpha} \sum_{i=1}^n \mathcal{L}(M_i + \alpha b_t(x_i)y_i);$
- пересчет отступов:

$$M_i := M_i + \alpha b_t(x_i) y_i; i = 1, \dots, n.$$

