一. 习题1(第10页)

1-1. 下列各数都是经过四舍五入得到的近似值,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.

 $x_1=5.420$, $x_2=0.5420$, $x_3=0.00542$, $x_4=6000$, $x_5=0.6\times10^5$.

解 绝对误差限分别为: ε_1 =0. 5×10^{-3} , ε_2 =0. 5×10^{-4} , ε_3 =0. 5×10^{-5} , ε_4 =0. 5, ε_5 =0. 5×10^4 .

相对误差限分别为: $\epsilon_{\rm r1}$ =0. $5\times10^{-3}/5$. 420=0. 00923%, $\epsilon_{\rm r2}$ =0. 00923%, $\epsilon_{\rm r3}$ =0. 0923%, $\epsilon_{\rm 4}$ =0. 0083%, $\epsilon_{\rm 5}$ =8. 3%.

有效数位分别为: 4位,4位,3位,4位,1位.

1-2. 下列近似值的绝对误差限都是0.005, 试问它们有

几位有效数字. a=-1.00031, b=0.042, c=-0.00032

解 有效数位分别为: 3位,1位,0位.

1-3. 为了使10^{1/2}的相对误差小于0. 01%, 试问应取几位有效数字?

解 因为 $10^{1/2}$ =3.162...=0.3162...×10,若具有n位有效数字,则其绝对误差限为 $0.5 \times 10^{1-n}$,于是有

 $\varepsilon_r = 0.5 \times 10^{1-n}/3.162... < 0.5 \times 10^{1-n}/3 < 0.01\%$

因此只需n=5. 即取10^{1/2}=3. 1623

1-4. 求方程 x^2 -56x+1=0的两个根, 使它们至少具有四位有效数字 ($\sqrt{783} \approx 27.982$).

\mathbf{k} $\mathbf{x}_1 = 28 + 27.982 = 55.982, \mathbf{x}_2 = 1/\mathbf{x}_1 = 0.017863$

二.习题2 (第50页)

2-2(1). 用列主元Gauss消元法解方程组

$$\begin{pmatrix} -3 & 2 & 6 \\ 10 & -7 & 0 \\ 5 & -1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 7 \\ 6 \end{pmatrix}$$

解

$$\begin{pmatrix}
-3 & 2 & 6 & 4 \\
10 & -7 & 0 & 7 \\
5 & -1 & 5 & 6
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
10 & -7 & 0 & 7 \\
-3 & 2 & 6 & 4 \\
5 & -1 & 5 & 6
\end{pmatrix}
\xrightarrow{\beta_{\pi}}
\begin{pmatrix}
10 & -7 & 0 & 7 \\
0 & -0.1 & 6 & 6.1 \\
0 & 2.5 & 5 & 2.5
\end{pmatrix}$$

回代得解: $x_3=1$, $x_2=-1$, $x_1=0$

2-3(1). 对矩阵A进行LU分解,并求解方程组Ax=b,其中

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{pmatrix} \qquad , \mathbf{b} = \begin{pmatrix} 4 \\ 6 \\ 5 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 1 \\ \frac{1}{2} & \frac{5}{2} & \frac{3}{2} \\ \frac{1}{2} & \frac{3}{5} & \frac{3}{5} \end{pmatrix} , \quad \text{Fig. A} = \begin{pmatrix} 1 \\ \frac{1}{2} & 1 \\ \frac{1}{2} & \frac{3}{5} & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 \\ \frac{5}{2} & \frac{3}{2} \\ \frac{1}{2} & \frac{3}{5} & 1 \end{pmatrix}$$

解
$$\begin{pmatrix} 1 & y_1 \\ \frac{1}{2} & 1 \\ \frac{1}{2} & \frac{3}{5} & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ 5 \end{pmatrix}, 得 \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ \frac{3}{5} \end{pmatrix}$$

2-4. 对矩阵A进行LDM分解和Crout分解,其中

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 2 \\ 4 & 5 & 6 \\ 6 & 15 & 15 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 2 \\ 4 & 5 & 6 \\ 6 & 15 & 15 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & \frac{1}{2} & 1 \\ 4 & 3 & \frac{2}{3} \\ 6 & 12 & 1 \end{pmatrix}$$

故得
$$Crout$$
分解: $\mathbf{A} = \begin{pmatrix} 2 \\ 4 \\ 6 \\ 12 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} & 1 \\ & 1 & \frac{2}{3} \\ & & 1 \end{pmatrix}$

LDM分解为:
$$\mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \\ 4 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} & 1 \\ 1 & \frac{2}{3} \\ 1 & 1 \end{pmatrix}$$

2-5. 对矩阵A进行LDLT分解和GGT分解,并求解方程组

Ax=b, 其中

$$\mathbf{A} = \begin{pmatrix} 16 & 4 & 8 \\ 4 & 5 & -4 \\ 8 & -4 & 22 \end{pmatrix} \qquad , \quad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 16 & 4 & 8 \\ 4 & 5 & -4 \\ 8 & -4 & 22 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{4} & 11 & 2 \\ \mathbf{1} & \mathbf{2} \\ \mathbf{2} & -3 \end{pmatrix} \begin{pmatrix} \mathbf{3} \\ \mathbf{3} \end{pmatrix}$$

故得
$$GG^T$$
分解: $\mathbf{A} = \begin{pmatrix} 4 & & & \\ 1 & 2 & & 2 & -3 \\ 2 & -3 & 3 \end{pmatrix}$

LDL^T分解为:
$$\mathbf{A} = \begin{pmatrix} 1 & & \\ \frac{1}{4} & 1 & \\ \frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix} \begin{pmatrix} 16 & & \\ & 4 & \\ & & 9 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{4} & \frac{1}{2} \\ & 1 & -\frac{3}{2} \\ & & 1 \end{pmatrix}$$

2-6(1). 给定方程组

$$\begin{cases} 10^{-2} x + y = 1 \\ x + y = 2 \end{cases}$$

a.用Cramer法则求其精确解.b.用Gauss消元法和列 主元Gauss消元法求解,并比较结果.(用两位浮点计算).

解 a. x=-1/-0. 99=1. 010101, y=-0. 98/-0. 99=0. 989899 b. 用Gauss消元法

$$\begin{cases} 10^{-2} x + y = 1 \\ x + y = 2 \end{cases} \Rightarrow \begin{cases} 10^{-2} x + y = 1 \\ -100 y = -100 \end{cases}$$

回代得解: y=1, x=0.

再用列主元Gauss消元法

$$\begin{cases} 10^{-2} x + y = 1 \\ x + y = 2 \end{cases} \Rightarrow \begin{cases} x + y = 2 \\ y = 1 \end{cases}$$

回代得解: y=1, x=1.

2-8. 用追赶法求解方程组:

$$\begin{pmatrix} 4 & -1 & & & \\ -1 & 4 & -1 & & & \\ & -1 & 4 & -1 & & \\ & & -1 & 4 & -1 \\ & & & -1 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 100 \\ 0 \\ 0 \\ 0 \\ 200 \end{pmatrix}$$

$$\begin{pmatrix}
4 & -1 & & & \\
-1 & 4 & -1 & & \\
& -1 & 4 & -1 & \\
& & -1 & 4 & -1 \\
& & & -1 & 4
\end{pmatrix}$$

$$-1 \quad 4 \quad -1 \quad -1 \quad \frac{56}{15} \quad -\frac{15}{56} \quad -\frac{15}{56} \quad -\frac{56}{209} \quad -\frac{56}{209} \quad -\frac{56}{209} \quad -\frac{56}{209} \quad -\frac{56}{209} \quad -\frac{50}{209} \quad -\frac{50}$$

2-10. 证明下列不等式:

$$(1) ||x-y|| \le ||x-z|| + ||z-y||; \qquad (2) ||x|| - ||y|| | \le ||x-y||;$$

证明
$$(1)||x-y||=||(x-z)+(z-y)||\leq||x-z||+||z-y||$$

(2) 因为 ||x||=||(x-y)+y||≤||x-y||+||y||

所以 ||x||-||y||≤||x-y||,同理可证 ||y||-||x||≤||x-y|| 于是有 ||x||-||y|||≤||x-y||. 2-11. 设 $\|\bullet\|$ 为一向量范数, P为非奇异矩阵, 定义 $\|\mathbf{x}\|_p$ = $\|\mathbf{P}\mathbf{x}\|$, 证明 $\|\mathbf{x}\|_p$ 也是一种向量范数.

证明 $(1) \|\mathbf{x}\|_{p} = \|\mathbf{P}\mathbf{x}\| \ge 0$,而且 $\|\mathbf{P}\mathbf{x}\| = 0 \Leftrightarrow \mathbf{P}\mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{x} = \mathbf{0}$

- (2) $\|\alpha \mathbf{x}\|_{p} = \|\mathbf{P}(\alpha \mathbf{x})\| = \|\alpha \mathbf{P} \mathbf{x}\| = \|\alpha\| \|\mathbf{P} \mathbf{x}\| = \|\alpha\| \|\mathbf{x}\|_{p}$
- (3) $\|\mathbf{x}+\mathbf{y}\|_p = \|\mathbf{P}(\mathbf{x}+\mathbf{y})\| = \|\mathbf{P}\mathbf{x}+\mathbf{P}\mathbf{y}\| \le \|\mathbf{P}\mathbf{x}\| + \|\mathbf{P}\mathbf{y}\| = \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$ 所以 $\|\mathbf{x}\|_p$ 是一种向量范数.
- 2-12. 设A为对称正定矩阵, 定义 $\|\mathbf{x}\|_{A} = \sqrt{\mathbf{x}^T \mathbf{A} \mathbf{x}}$,证明 $\|\bullet\|_{A}$ 是一种向量范数.

证明 由Cholesky分解有 \mathbf{A} = $\mathbf{G}\mathbf{G}^{\mathsf{T}}$,所以 $\|\mathbf{x}\|_{\mathsf{A}} = \sqrt{(\mathbf{G}^T\mathbf{x})^T(\mathbf{G}^T\mathbf{x})}$ = $\|\mathbf{G}^{\mathsf{T}}\mathbf{x}\|_2$,由上题结果知 $\|\mathbf{x}\|_{\mathsf{A}}$ 是一向量范数.

2-16. 对任意矩阵范数||•||, 求证:

(1)
$$\|\mathbf{E}\| \ge 1$$
 (2) $\|\mathbf{A}^{-1}\| \ge \frac{1}{\|\mathbf{A}\|}$ (3) $\|\mathbf{A}^{-1} - \mathbf{B}^{-1}\| \le \|\mathbf{A}^{-1}\| \|\mathbf{B}^{-1}\| \|\mathbf{A} - \mathbf{B}\|$

证明 (1) 因为||A||=||AE||≤||A||||E||, 所以||E||≥1.

(2)
$$1 \le ||\mathbf{E}|| = ||\mathbf{A}\mathbf{A}^{-1}|| \le ||\mathbf{A}|| ||\mathbf{A}^{-1}|| , \text{ if } ||\mathbf{A}^{-1}|| \ge \frac{1}{||\mathbf{A}||}.$$

- $(3) ||A^{-1} B^{-1}|| = ||A^{-1} (B A) B^{-1}|| \le ||A^{-1}|| ||B^{-1}|| ||A B||$
- 2-17. 证明: (1) 如果A为正交矩阵,则Cond₂(A)=1;
- (2) 如果A为对称正定矩阵,则 $Cond_2(A) = \lambda_1/\lambda_n$, λ_1 和 λ_n 分别为A的最大和最小特征值.

证明 (1) A正交, 则A^TA=AA^T=E, Cond₂(A)=||**A**||₂||**A**⁻¹||₂=1.

(2) A对称正定, $A^{T}A=A^{2}$, $||\mathbf{A}||_{2}=\lambda_{1}$, $||\mathbf{A}^{-1}||_{2}=1/\lambda_{n}$.

三.习题3 (第75页)

3-2. 讨论求解方程组Ax=b的 J迭代法和G-S迭代法的收 敛性.其中

$$(1)\mathbf{A} = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$

$$(2)\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix}$$

(1) T迭代法的迭代矩阵为

$$\mathbf{B} = \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U}) = \begin{pmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ -1 & 0 & -1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}, \quad \Leftrightarrow |\lambda \mathbf{E} - \mathbf{B}| = \begin{vmatrix} \lambda & -\frac{1}{2} & \frac{1}{2} \\ 1 & \lambda & 1 \\ -\frac{1}{2} & -\frac{1}{2} & \lambda \end{vmatrix} = 0$$
 得 $\lambda (\lambda^2 + 5/4) = 0$, 因 $\lambda_1 = 0$, $\lambda_2 = \frac{\sqrt{5}}{2}i$, $\lambda_3 = -\frac{\sqrt{5}}{2}i$, 古 $\lambda \rho (B) = \frac{\sqrt{5}}{2}i$

得
$$\lambda(\lambda^2+5/4)=0$$
,即 $\lambda_1=0$, $\lambda_2=\frac{\sqrt{5}}{2}i$, $\lambda_3=-\frac{\sqrt{5}}{2}i$,故 $\rho(B)=\frac{\sqrt{5}}{2}i$

所以」迭代法不收敛.

G-S迭代法的迭代矩阵为:

$$\mathbf{G} = (\mathbf{D} - \mathbf{L})^{-1} \mathbf{U} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & -2 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} \end{pmatrix}$$

所以, ρ (G)=1/2, 故G-S迭代法收敛.

(2) 类似可得 ρ (**B**) =0, ρ (**G**) =2, 故J迭代法收敛, G-S迭代法不收敛.

3-3. 用J迭代法和G-S迭代法求解方程组

$$\begin{cases} 20x_1 + 2x_2 + 3x_3 = 24 \\ x_1 + 8x_2 + x_3 = 12 \\ 2x_1 - 3x_2 + 15x_3 = 30 \end{cases}$$

取初始近似 $\mathbf{x}^{(0)}=(0,0,0)^{\mathsf{T}}$,问各需迭代多少次才能使误差 $\|\mathbf{x}^{(k)}-\mathbf{x}^*\|_{\infty} \leq 10^{-6}$.

解 J迭代法和G-S迭代法的迭代矩阵分别为

$$\mathbf{B} = \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U}) = \begin{pmatrix} 0 & -\frac{1}{10} & -\frac{3}{20} \\ \frac{-1}{8} & 0 & \frac{-1}{8} \\ \frac{-2}{15} & \frac{1}{5} & 0 \end{pmatrix}, \quad \mathbf{G} = (\mathbf{D} - \mathbf{L})^{-1}\mathbf{U} = \begin{pmatrix} 0 & -\frac{1}{10} & -\frac{3}{20} \\ 0 & \frac{1}{80} & -\frac{17}{160} \\ 0 & \frac{19}{1200} & -\frac{1}{800} \end{pmatrix}$$

 $\|\mathbf{B}\|_{\infty} = 1/3 = 0.33333$, $\|\mathbf{G}\|_{\infty} = 1/4 = 0.25$

J迭代法有 $\mathbf{x}^{(1)} = (1.2, 1.5, 2)^{T}$, $\|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|_{\infty} = 2$ G-S迭代法有 $\mathbf{x}^{(1)} = (1.2, 1.35, 2.11)^{T}$, $\|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|_{\infty} = 2.11$

J迭代法:
$$k > \ln(\frac{0.66666 \times 10^{-6}}{2}) / \ln 0.33333 = 13.576$$
,取k=14.

G-S迭代法:
$$k > \ln(\frac{0.75 \times 10^{-6}}{2.11}) / \ln 0.25 = 10.712$$
,取k=11.

3-4. 用J迭代法和G-S迭代法求解方程组Ax=b, 其中

$$\mathbf{A} = \begin{pmatrix} 1 & -\alpha \\ -\alpha & 1 \end{pmatrix}$$

问α取何值时这两种迭代法是收敛的?

解 J迭代法和G-S迭代法的迭代矩阵分别为

$$\mathbf{B} = \begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix} \qquad \mathbf{G} = \begin{pmatrix} 0 & \alpha \\ 0 & \alpha^2 \end{pmatrix}$$

易得: $\rho(B)=|\alpha|$, $\rho(G)=\alpha^2$. 故当 $|\alpha|$ <1时两种方法都收敛.

3-7. 给定方程组

$$(1) \begin{cases} x_1 + 2x_2 = 3 \\ 3x_1 + 2x_2 = 4 \end{cases}$$

$$(2) \begin{cases} 3x_1 + 2x_2 = 4 \\ x_1 + 2x_2 = 3 \end{cases}$$

$$(3) \begin{cases} 3x_1 + 2x_2 = 4 \\ x_1 + 2x_2 = 3 \end{cases}$$

取 $\mathbf{x}^{(0)}=(1.01,1.01)^{\mathsf{T}}$,分别用J迭代法和G-S迭代法求解,问

是否收敛?若收敛哪一种方法收敛得快?

解 (1) J迭代法和G-S迭代法的迭代格式分别为

$$\begin{cases} x_1^{(k+1)} = 3 - 2x_2^{(k)} & \begin{cases} x_1^{(k+1)} = 3 - 2x_2^{(k)} \\ x_2^{(k+1)} = 2 - 1.5x_1^{(k)} & \begin{cases} x_2^{(k+1)} = 3 - 2x_2^{(k)} \\ x_2^{(k+1)} = 2 - 1.5x_1^{(k+1)} \end{cases}$$

计算结果如下:

k	J法x ₁ (k)	J法x ₂ (k)	G-S法x ₁ ^(k)	G-S法x ₂ ^(k)
0	1.01	1.01	1.01	1.01
1	0.98	0.485	0.98	0.53
2	2.03	0.53	1.94	-0.91
3	1.94	-1.045	4.82	-5.23
4	5.09	-0.91	13.46	-18.19
5	4.82	-5.635	39.38	-57.07
6	14.27	-5.23	117.14	-173.71

可见, J迭代法和G-S迭代法均不收敛.

实际上,
$$\rho(B) = 3^{1/2} > 1$$
, $\rho(G) = 3 > 1$.

(2) J迭代法和G-S迭代法的迭代格式分别为

$$\begin{cases} x_1^{(k+1)} = \frac{4}{3} - \frac{2}{3} x_2^{(k)} \\ x_2^{(k+1)} = 1.5 - 0.5 x_1^{(k)} \end{cases} \qquad \begin{cases} x_1^{(k+1)} = \frac{4}{3} - \frac{2}{3} x_2^{(k)} \\ x_2^{(k+1)} = 1.5 - 0.5 x_1^{(k+1)} \end{cases}$$

计算结果如下:

实际上, $\rho(B) = 1/3^{1/2} > \rho(G) = 1/3$.

k	J法x ₁ (k)	J法x ₂ (k)	G-S法x ₁ ^(k)	G-S法x ₂ (k)
0	1.01	1.01	1.01	1.01
1	0.66	0.995	0.66	1.17
2	0.67	1.17	0.553333	1.223333
3	0.553333	1.165	0.517778	1.241111
4	0.556667	1.223333	0.505926	1.247037
5	0.517778	1.221667	0.501975	1.249012
6	0.518889	1.241111	0.500658	1.249671

可见,J迭代法和G-S迭代法均收敛,且G-S迭代法收敛的快.

3-8. 判定求解下列方程组的SOR方法的收敛性.

$$\begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

解 直接可验证系数矩阵A是负定矩阵,所以-A是对称正定矩阵,故当 $0<\omega<2$ 时,SOR方法收敛.

3-9. 给定方程组

$$\begin{cases} 2x + y + 4z = 6 \\ x + 4y + z = 3 \\ 3x + y + z = 2 \end{cases}$$

试建立一个收敛的迭代格式,并说明收敛的理由.

解 可建立如下形式的迭代格式

$$\begin{cases} x^{(k+1)} = \frac{2}{3} - \frac{1}{3} y^{(k)} - \frac{1}{3} z^{(k)} \\ y^{(k+1)} = \frac{3}{4} - \frac{1}{4} x^{(k)} - \frac{1}{4} z^{(k)} \\ z^{(k+1)} = \frac{3}{2} - \frac{1}{2} x^{(k)} - \frac{1}{4} y^{(k)} \end{cases}$$

因为迭代矩阵为

$$\mathbf{M} = \begin{pmatrix} 0 & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{4} & 0 & -\frac{1}{4} \\ -\frac{1}{2} & -\frac{1}{4} & 0 \end{pmatrix} \qquad \|\mathbf{M}\|_{\infty} = \frac{3}{4} < 1$$

所以此迭代法收敛.

四.习题4 (第102页)

4-1. 证明方程1-x-sinx=0在[0, 1]内有一个根,使用二分法求误差不大于0.5×10⁻⁴的根需要计算多少步?

解 记 $f(x)=1-x-\sin x$,则f(x)在[0,1]连续,f(0)=1>0, $f(1)=-\sin 1<0$,故方程在[0,1]内有根,又 $f'(x)=-1-\cos x<0$, $x\in[0,1]$,所以方程在[0,1]内仅有一个 根. 由于 $|x_k-\alpha|\leq \frac{b-a}{2^{k+1}}=\frac{1}{2^{k+1}}\leq \frac{1}{2}\times 10^{-4}$,所以 $k\geq 4/\log 2=13.29$ 可见,需要计算14步.

4-3. 比较使用下述方法求方程ex+10x-2=0的正根,准确到三位小数所需要的计算量:

- (1) 在区间[0,1]内用二分法;
- (2) 用迭代法 $x_{k+1} = (2 e^{x_k})/10$,取 $x_0 = 0$.

解 (1) 由
$$|x_k - \alpha| \le \frac{b-a}{2^{k+1}} = \frac{1}{2^{k+1}} \le \frac{1}{2} \times 10^{-3}$$
 ,可得

k≥3/1og2=9.97,所以需要计算10步.

(2) 迭代法的迭代函数为 $\varphi(x)=(2-e^x)/10$, $|\varphi'(x)|=e^x/10 \le e/10 \le 1$, 取L=e/10, 且 x_1 =0.1, 由

$$|x_k - \alpha| \le \frac{L^k}{1 - L} |x_1 - x_0| \le \frac{1}{2} \times 10^{-3}$$

可得

$$k \ge \ln\left(\frac{1-L}{200}\right) \div \ln L = 4.31$$

所以,只需迭代5步.

若取L=e^{0.1}/10, 可得k≥2.46, 所以只需迭代3次.

4-4. 设 $\varphi(x)$ =cosx, 证明:任取 x_0 , 迭代式 x_{k+1} = $\varphi(x_k)$, k=

0, 1, 2, ..., 均收敛于方程 $x=\varphi(x)$ 的根 α .

证明 因为对任意 x_0 ,都有 x_1 = $\cos x_0 \in [-1,1]$,所以只需证明迭代式在区间[-1,1]收敛.

因为 $\varphi(x)$ =cosx连续可导, $|\varphi'(x)|$ =|sinx| \leq sin1<1, 所以 $\varphi(x)$ 是区间[-1, 1]上的压缩映射, 因此结论成立.

4-5. 验证区间[0, 2]是方程 $x^3+2x-5=0$ 的有根区间,并建立一个收敛的迭代格式,使对任何初值 $x_0 \in [0, 2]$ 都收敛,并说明理由.

解 记 $f(x)=x^3+2x-5\in C[0,2]$,且f(0)=-5<0,f(2)=7>0, 所以方程在区间[0,2]内有根,建立迭代格式

$$x_{k+1} = \sqrt[3]{5 - 2x_k}$$
 , $k = 0,1,2,\cdots$

这里迭代函数 $\varphi(x) = \sqrt[3]{5-2x}$,由于

$$0 < 1 \le \varphi(x) \le \sqrt[3]{5} < 2$$
, $\forall x \in [0, 2]$

$$|\varphi'(x)| = \frac{2}{3}(5-2x)^{-\frac{2}{3}} \le 2/3 < 1, \forall x \in [0, 2]$$

所以φ(x)是区间[0,2]上的压缩映射, 故迭代式收敛.

4-7. 给定函数f(x), 设对一切x, f'(x) 存在且0 < m ≤ f'(x) ≤M, 证明对任意 $\lambda ∈ (0, 2/M)$, 迭代式

$$x_{k+1} = x_k - \lambda f(x_k)$$
 , $k = 0,1,2,\dots$

均收敛于f(x)=0的根 α .

证明 这里 $\varphi(x)=x-\lambda f(x)$,由于对任意 $\lambda \in (0, 2/M)$ -1=1-2< $\varphi'(x)=1-\lambda f'(x)$ <1

所以 $|\varphi'(\alpha)|$ <1, 故迭代法收敛.

4-8. 已知 $x=\varphi(x)$ 在[a, b]内仅有一个根,而当 $x\in[a,b]$ 时, $|\varphi'(x)|\ge k>1$, 试问如何将 $x=\varphi(x)$ 化为适于迭代的形式? 将x=tanx化为适于迭代的形式,并求在x=4. 5附近的根.

解 将 $x=\varphi(x)$ 化为 $x=\varphi^{-1}(x)$,建立迭代格式 $x_{k+1}=\varphi^{-1}(x_k)$ 由于 $|[\varphi^{-1}(x)]'|=1/|\varphi'(x)|\leq 1/k<1$,故迭代法收敛. 将x=tanx化为x=arctanx,建立格式 $x_{k+1}=arctanx_k$,取 $x_0=4$. 5,实际计算时用格式 $x_{k+1}=\pi+arctanx_k$,k=0,1,2,...计算结果如下

k	$\mathbf{x}_{\mathbf{k}}$	$ \mathbf{x}_{k+1} - \mathbf{x}_k $	k	X_k	$ \mathbf{x}_{k+1} - \mathbf{x}_k $
0	4.5		3	4.493410	0.000014
1	4.493720	0.00628	4	4.493409	0.000001
2	4.493424	0.000296	5	4.493409	0.000000

已得到精确到小数点后6位的近似值 α ≈ x_5 =4.493409.

4-10. 已知1. 3是 √3的一个近似值, 用Newton迭代法求 约3 的更好近似值, 要求准确到小数点后五位.

解 对方程 $f(x)=x^4-3=0$ 建立Newton迭代格式,则有

$$x_{k+1} = x_k - \frac{x_k^4 - 3}{4x_k^3} = \frac{3}{4}(x_k + x_k^{-3})$$
 $k = 0, 1, 2, \dots$

取x₀=1.3, 计算结果如下

k	0	1	2	3
$\mathbf{x}_{\mathbf{k}}$	1.3	1.3163746	1.3160741	1.3160740
$ \mathbf{x}_{k+1} - \mathbf{x}_k $		0.0163746	0.0003005	0.0000001

所以取x3=1.3160740,已精确到小数点后6位.

4-12. 用Newton迭代法于方程xⁿ-a=0,和1-a/xⁿ=0,(a>

0),分别导出求 \sqrt{a} 的迭代公式,并求

$$C = \lim_{k \to \infty} (\sqrt[n]{a} - x_{k+1}) / (\sqrt[n]{a} - x_k)^2$$

解 迭代格式分别为

(1)
$$x_{k+1} = \frac{n-1}{n} x_k + \frac{a}{n x_k^{n-1}} k = 0,1,2,\dots$$

(2)
$$x_{k+1} = \frac{x_k}{n} (n+1-\frac{x_k^n}{a}) \qquad k = 0,1,2,\dots$$

由于

$$\lim_{k\to\infty}\frac{\alpha-x_{k+1}}{(\alpha-x_k)^2}=-\frac{f''(\alpha)}{2f'(\alpha)}$$

所以对(1)有
$$C = \frac{1-n}{2\sqrt[n]{\alpha}}$$
 ,对(2)有 $C = \frac{1+n}{2\sqrt[n]{\alpha}}$.

4-13. 证明迭代公式: $x_{k+1}=x_k(x_k^2+3a)/(3x_k^2+a)$, k=0, 1, 2, ...是求 \sqrt{a} 的三阶方法.

证明 设
$$\lim_{k\to\infty} x_k = \alpha$$
,则有: $\alpha = \alpha (\alpha^2 + 3a)/(3\alpha^2 + a)$

故 $\alpha^2=a$, 即 $\lim_{k\to\infty}x_k=\sqrt{a}$

又由于

$$x_{k+1} - \sqrt{a} = \frac{x_k (x_k^2 + 3a) - \sqrt{a} (3x_k^2 + a)}{3x_k^2 + a}$$

$$= \frac{x_k^3 + 3ax_k - 3\sqrt{a}x_k^2 + \sqrt{a}^3}{3x_k^2 + a}$$

$$= \frac{(x_k - \sqrt{a})^3}{3x_k^2 + a}$$

所以有

$$\lim_{k \to \infty} \frac{x_{k+1} - \sqrt{a}}{(x_k - \sqrt{a})^3} = \lim_{k \to \infty} \frac{1}{3x_k^2 + a} = \frac{1}{4a}$$

因此是三阶方法.

五.习题5 (第131页)

5-1.用Gerschgorin圆盘定理估计下列矩阵的特征值.

$$\begin{pmatrix}
1 & 0.1 & -0.1 \\
0 & 2 & 0.4 \\
-0.2 & 0.1 & 3
\end{pmatrix} \qquad (2) \qquad \begin{pmatrix}
4 & 1 & 1 \\
0 & 2 & 1 \\
-2 & 0 & 9
\end{pmatrix}$$

解 (1)三个圆盘为 $|\lambda-1|$ ≤0.2, $|\lambda-2|$ ≤0.4, $|\lambda-2|$

3 ≤0.3. 是相互独立的, 因此, 三个特征值分别为;

 $0.8 \le \lambda_1 \le 1.2$, $1.6 \le \lambda_2 \le 2.4$, $2.7 \le \lambda_3 \le 3.3$

(2) 三个圆盘为 $|\lambda-4|\leq 2$, $|\lambda-2|\leq 1$, $|\lambda-9|\leq 2$. 前两个圆盘连通, 后一个独立, 因此, λ_1 , λ_2 , 落在前两个圆盘的连通区域内, $7\leq \lambda_3\leq 11$.

5-5. 求矩阵A按模最大和最小特征值. 其中

$$\mathbf{A} = \begin{pmatrix} 9 & 10 & 8 \\ 10 & 5 & -1 \\ 8 & -1 & 3 \end{pmatrix}$$

解 用幂法求A的按模最大特征值,计算公式为:

$$\begin{cases} \boldsymbol{v}^{(k)} = & \boldsymbol{A}\boldsymbol{u}^{(k-1)} \\ \boldsymbol{\mu}_k = & \boldsymbol{max} \left(\boldsymbol{v}^{(k)} \right) \\ \boldsymbol{u}^{(k)} = & \boldsymbol{v}^{(k)} / \boldsymbol{\mu}_k \text{ , } k = 1, 2, \dots. \end{cases}$$

取初值 $\mathbf{u}^{(0)}=(1,1,1)^{\mathrm{T}}$,计算结果如下:

k	0	1	2	3	4	5	6	7
$u_1^{(k)}$	1	1	1	1	1	1	1	1
$u_2^{(k)}$	1	0.5185	0.7127	0.6487	0.6748	0.6659	0.6693	0.6681
u ₃ ^(k)	1	0.3704	0.5011	0.4366	0.4563	0.4482	0.4510	0.4499
μ_k		27	17.1482	20.1358	18.9798	19.3984	19.2446	19.301

取 $\lambda_1 \approx \mu_7 = 19.301$

解 用反幂法求A的按模最小特征值,计算公式为:

$$\begin{cases} & \mathbf{A} \mathbf{v}^{(k)} = \mathbf{u}^{(k-1)} \\ & \boldsymbol{\mu}_k = \max(\mathbf{v}^{(k)}) \\ & \mathbf{u}^{(k)} = \mathbf{v}^{(k)} / \boldsymbol{\mu}_k \text{, } k = 1, 2, \dots. \end{cases}$$

取初值 $\mathbf{u}^{(0)}=(1,1,1)^{\mathsf{T}}$, 计算结果如下:

k	0		1		2		3		4	5	6	7
$u_1^{(k)}$	1		1	-0	-0.1318		-0.6500		0.1902	-0.3689	-0.0590	-0.2550
$u_2^{(k)}$	1	-0.	1892	0.	0.1493		1		0.3323	1	-0.5811	1
u ₃ ^(k)	1	0.2	2162		1		-0.3969		1	-0.6917	1	-0.9204
Щ		0	1131	0	1204		1353	_	0.2192	-0 1659	-0.2225	-0 1724
K	8		9		10		11		12	13	14	15
$u_1^{(k)}$	-0.02	.92	0.19	75	0.061	17	0.1564	4	0.0916	0.1355	0.1058	0.1259
$u_2^{(k)}$	-0.71	68	-0.99	40	-0.77	13	-0.908	9	-0.8119	-0.8765	-0.8319	-0.8618
u ₃ (k)	1		1		1		1		1	1	1	1
μ_{k}	-0.23		0.17		0.234	15	5 0.193		0.2197	0.2016	0.2137	0.2054
取入n	取 $\lambda_{\rm n} \approx 1/\mu_{15} = 4.8686$											

5-7. 利用带位移的反幂法计算矩阵的特征值.

$$\mathbf{A} = \begin{pmatrix} -4 & 14 & 0 \\ -5 & 13 & 0 \\ -1 & 0 & 2 \end{pmatrix} \qquad P = 7$$

解 作位移矩阵B=A-7E,建立计算公式:

$$\begin{cases} B \boldsymbol{v}^{(k)} = \boldsymbol{u}^{(k-1)} \\ \boldsymbol{\mu}_k = \max \left(\boldsymbol{v}^{(k)} \right) \\ \boldsymbol{u}^{(k)} = \boldsymbol{v}^{(k)} / \boldsymbol{\mu}_k \text{ , } k = 1, 2, \dots. \end{cases}$$

取初值 $\mathbf{u}^{(0)}=(1,1,1)^{\mathsf{T}}$, 计算结果如下:

k	0	1	2	3	4	5	6	7
$u_1^{(k)}$	1	1	1	1	1	1	1	1
$u_2^{(k)}$	1	0.75	0.7222	0.7162	0.7148	0.7144	0.7143	0.7143
$u_3^{(k)}$	1	-0.4	-0.8044	-0.9403	-0.9828	-0.9951	-0.9987	0.9998
$\mu_{\mathbf{k}}$		-2	-1.125	-1.0278	-1.0067	-1.0018	-1.0004	-1.0000

5-9(2)利用Jacobi方法求矩阵A的所有特征值,其中

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 4 \end{pmatrix}$$

解记

$$\mathbf{A}^{(0)} = \begin{pmatrix} 4 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 4 \end{pmatrix}$$

取p=1, q=2, 则有

$$\tau = \frac{a_{11}^{(0)} - a_{22}^{(0)}}{2a_{12}^{(0)}} = 0, \qquad t = 1$$

 $\cos\theta = (1+t^2)^{-1/2} = 0.7071$, $\sin\theta = t\cos\theta 0.7071$

$$\mathbf{R}_{1} = \mathbf{R}_{pq}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.7071 & -0.7071 & 0 \\ 0.7071 & 0.7071 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A}^{(1)} = R_1^T A^{(0)} R_1 = \begin{pmatrix} 6 & 0 & 2.12132 \\ 0 & 2 & 0.70711 \\ 2.12132 & 0.70711 & 4 \end{pmatrix}$$

类似地有

$$\mathbf{A}^{(2)} = \begin{pmatrix} 7.34521 & 0.37868 & 0 \\ 0.37868 & 2 & 0.59716 \\ 0 & 0.59716 & 2.65479 \end{pmatrix} \quad \mathbf{A}^{(3)} = \begin{pmatrix} 7.34521 & 0.32583 & 0.19295 \\ 0.32583 & 1.64638 & 0 \\ 0.19295 & 0 & 3.00841 \end{pmatrix}$$

$$\mathbf{A}^{(4)} = \begin{pmatrix} 7.36378 & 0 & 0.19264 \\ 0 & 1.62781 & -0.01098 \\ 0.19264 & -0.01098 & 3.00841 \end{pmatrix} \mathbf{A}^{(5)} = \begin{pmatrix} 7.37228 & -0.00048 & 0 \\ -0.00048 & 1.62781 & -0.01097 \\ 0 & -0.01097 & 2.99991 \end{pmatrix}$$

所以取 $\lambda_1 \approx 7.37228$, $\lambda_2 \approx 2.99991$, $\lambda_3 \approx 1.62781$

5-10. 设矩阵**H=E-2xx**^T, 向量**x**满足**x**^T**x**=1, 证明:

- (1)H为对称矩阵,即 $H^T=H$; (2)H为正交矩阵,即 $H^TH=E$;
- (3) H为对合矩阵, 即H²=E.

证明 (1) 因为HT=(E-2xxT) T=E-2xxT=H, 故H对称.

(2)因为 $H^TH=(E-2xx^T)^T(E-2xx^T)=E-4xx^T+4xx^Txx^T=E$,故H正定.

(3)由(1)和(2)即得,H是对合矩阵.

六.习题6 (第180页)

6-1. 当x=1, -1, 2时, f(x) 分别为0, -3, 4, 求f(x) 的二次插值多项式 $p_2(x)$.

解法一. 基函数法:

$$p_{2}(x) = l_{0}(x) y_{0} + l_{1}(x) y_{1} + l_{2}(x) y_{2} = -3l_{1}(x) + 4l_{2}(x)$$

$$l_{1}(x) = \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} = \frac{1}{6}(x - 1)(x - 2)$$

$$l_{2}(x) = \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{2})(x_{2} - x_{2})} = \frac{1}{3}(x + 1)(x - 1)$$

$$p_{2}(x) = -3l_{1}(x) + 4l_{2}(x)$$

$$= -\frac{1}{2}(x-1)(x-2) + \frac{4}{3}(x-1)(x+1)$$

$$= \frac{1}{6}(x-1)[-3(x-2) + 8(x+1)]$$

$$= \frac{1}{6}(x-1)(5x+14)$$

解法二. 待定系数法,设 $p_2(x)=(x-1)(ax+b)$,则有 2(a-b)=-3, 2a+b=4,解得,a=5/6, b=7/3, 所以 $p_2(x)=1/6(x-1)(5x+14)$

6-2. 设 $l_2(x)$ 是以 $x_k=x_0+kh$, k=0, 1, 2, 3为插值节点的3次插值基函数, 求 $\max_{x_0 \le x \le x_2} |l_2(x)|$.

$$l_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)}$$

$$\max_{x_0 \le x \le x_3} |l_2(x)| = \max_{0 \le t \le 3} \frac{1}{2} |t(t-1)(t-3)|$$

$$(t = \frac{4 + \sqrt{7}}{3})$$
 $= \frac{7\sqrt{7} + 10}{27}$

6-3. 设 $l_0(x)$, $l_1(x)$, ..., $l_n(x)$ 是以 x_0 , x_1 , ..., x_n 为节点的

n次Lagrange插值基函数, 求证:

(1)
$$\sum_{j=0}^{n} x_{j}^{k} l_{j}(x) = x^{k}, \quad k = 0, 1, \dots, n.$$

(2)
$$\sum_{j=0}^{n} (x_j - x)^k l_j(x) = 0, \quad k = 0, 1, \dots, n.$$

证明 (1) 记
$$f(x) = x^k$$
, 则 $y_i = f(x_i) = x_i^k$, $j = 0, 1, ..., n$. 于是

$$x^{k} = f(x) = \sum_{j=0}^{n} y_{j} l_{j}(x) + \frac{f^{(n+1)}(\xi_{x})}{(n+1)!} \omega_{n+1}(x) = \sum_{j=0}^{n} x_{j}^{k} l_{j}(x)$$

$$(2) \ i \Box f(t) = (t-x)^{k}, \ \ | | | y_{j} = f(x_{j}) = (x_{j}-x)^{k}, \ j=0, 1, ..., n.$$

于是

$$(t-x)^{k} = f(t) = \sum_{j=0}^{n} y_{j} l_{j}(t) + \frac{f^{(n+1)}(\xi_{t})}{(n+1)!} \omega_{n+1}(t) = \sum_{j=0}^{n} (x_{j} - x)^{k} l_{j}(t)$$

取t=x, 则有 $\sum_{j=0}^{n} (x_j - x)^k l_j(x) = 0$

6-4. 设 $f(x) \in C^2[a, b]$, 且f(a) = f(b) = 0, 证明

$$|f(x)| \le \frac{1}{2}(b-a)^2 M_2$$
, $a \le x \le b$

其中, $M_2 = \max_{a \le x \le b} |f''(x)|$.

证明 以a, b为节点作f(x)的线性插值有 $L_1(x)=0$, 故 $|f(x)| = |f(x)-L_1(x)| = \left|\frac{f''(\xi_x)}{2}(x-a)(x-b)\right| \le \frac{1}{8}(b-a)^2 M_2$

6-5. 利用 $y=\sqrt{x}$ 在x=100, 121, 144点的函数值,用插值方法求 $\sqrt{115}$ 的近似值, 并由误差公式给出误差界, 同时与实际误差作比较.

解 由二次Lagrange插值得:

$$\begin{split} \sqrt{115} \approx L_2(115) &= \frac{(115 - 121)(115 - 144)}{(100 - 121)(100 - 144)} \times 10 + \frac{(115 - 100)(115 - 144)}{(121 - 100)(121 - 144)} \times 11 \\ &\quad + \frac{(115 - 100)(115 - 121)}{(144 - 100)(144 - 121)} \times 12 = 10.722756 \\ y''' &= \frac{3}{8} x^{-\frac{5}{2}} \leq \frac{3}{8} \times 10^{-5} \qquad , 100 \leq x \leq 144 \\ &\left| \sqrt{115} - L_2(115) \right| \leq \frac{1}{3!} \times \frac{3}{8} \times 10^{-5} \left| (115 - 100)(115 - 121)(115 - 144) \right| \\ &= 1.63125 \times 10^{-3} \end{split}$$

实际误差: $\sqrt{115} - L_2(115) = 1.049294 \times 10^{-3}$

 $6-8. f(x)=x^5+4x^4+3x+1$,求差商 $f[2^0, 2^1, ..., 2^5]$ 和 $f[2^0, 2^1, ..., 2^5]$ 和

6-9. 设 $f(x) = x^5 + x^3 + 1$, 取 $x_0 = -1$, $x_1 = -0$. 8, $x_2 = 0$, $x_3 = 0$. 5,

解
$$f[2^0, 2^1, ..., 2^5] = \frac{f^{(5)}(\xi)}{5!} = 1$$

 $f[2^0, 2^1, ..., 2^6] = 0$

 x_4 =1,作出f(x)关于 x_0 , x_1 , x_2 , x_3 , x_4 的差商表,给出f(x)关于 x_0 , x_1 , x_2 , x_3 的Newton插值多项式,并给出插值误差.

解 差商表为

 $2^1, \ldots, 2^6$.

X _k	$f(\mathbf{x_k})$	一阶差商	二阶差商	三阶差商	四阶差商
$x_0 = -1$	-1				
$x_1 = -0.8$	0.16032	5.8016			
$x_2 = 0$	1	1.0496	-4.752		
$x_3 = 0.5$	1.15625	0.3125	-0.567	2.79	
$x_4 = 1$	3	3.6875	3.375	2.19	-0.3

Newton插值多项式为:

$$N_3(x) = -1+5.8016(x+1)-4.752(x+1)(x+0.8)$$

+2.79(x+1)(x+0.8)x

$$|R_3(x)| = |f[-1, -0.8, 0, 0.5, x] (x+1) (x+0.8) x (x-0.5)|$$

 $\leq 5 |(x+1) (x+0.8) x (x-0.5)|$

6-10. 设 $f(x)=x^4+2x^3+5$,在区间[-3,2]上,对节点 $x_0=-3$, $x_1=-1$, $x_2=1$, $x_3=2$,求出f(x)的分段三次Hermite插值多项式在每个小区间[x_i , x_{i+1}]上的表达式及误差公式.

解 在[-3,-1]上,由
$$y_0$$
=32, y_1 =4, y_0 '=-54, y_1 '=2,h=2,得 $H_3(x)=32\phi_0(x)+4\phi_1(x)-54\psi_0(x)+2\psi_1(x)$ 令 $\phi_0(x)=(x+1)^2(ax+b)$,可得 $a=1/4$, $b=1$,所以 $\phi_0(x)=(x+1)^2(x+4)/4$

```
同理可得:
        \varphi_1(x) = -(x+3)^2x/4
        \psi_0(x) = (x+3)(x+1)^2/4
        \psi_1(x) = (x+3)^2(x+1)/4
所以有
        H_3(x) = 8(x+1)^2(x+4) - (x+3)^2x
                -13.5(x+3)(x+1)^2+0.5(x+3)^2(x+1)
               =-6x^3-22x^2-24x-4
误差为
        R(x) = (x+3)^2(x+1)^2
类似地,在区间[-1,1]上有
        H_{3}(x) = 2x^{3} + 2x^{2} + 4
        R(x) = (x+1)^2 (x-1)^2
```

在区间[1,2]上有
$$H_3(x)=8x^3-13x^2+12x+1$$
 $R(x)=(x-1)^2(x-2)^2$ 定到一起就具

写到一起就是

$$H_3(x) = \begin{cases} -6x^3 - 22x^2 - 24x - 4 & , & -3 \le x \le -1 \\ 2x^3 + 2x^2 + 4 & , & -1 \le x \le 1 \\ 8x^3 - 13x^2 + 12x + 1 & , & 1 \le x \le 2 \end{cases}$$

$$R(x) = \begin{cases} (x+3)^{2}(x+1)^{2} & , & -3 \le x \le -1 \\ (x+1)^{2}(x-1)^{2} & , & -1 \le x \le 1 \\ (x-1)^{2}(x-2)^{2} & , & 1 \le x \le 2 \end{cases}$$

6-12. 确定a, b, c使函数

$$S(x) = \begin{cases} x^3 & 0 \le x \le 1 \\ \frac{1}{2}(x-1)^3 + a(x-1)^2 + b(x-1) + c & 1 \le x \le 3 \end{cases}$$

是一个三次样条函数。

解 因为S(x)是分段三次多项式,故只需 $S(x) \in C^2[0,3]$ 由 1=S(1-0)=S(1+0)=c,得 c=1

田 I=S(I=0)=S(I+0)=c , 得 c=I

由 3=S'(1-0)=S'(1+0)=b,得 b=3

由 6=S"(1-0)=S"(1+0)=2a,得 a=3

所以, 当a=b=3, c=1时, S(x) 是三次样条函数.

6-13. 确定a, b, c, d, 使函数

$$S(x) = \begin{cases} x^2 + x^3 & 0 \le x \le 1 \\ a + bx + cx^2 + dx^3 & 1 \le x \le 3 \end{cases}$$

是一个三次样条函数,且S"(2)=12.

解 由已知可得: a+b+c+d=2, b+2c+3d=5, 2c+6d=8, 6d=12, 解之得: a=-1, b=3, c=-2, d=2.

6-19. 给出函数表

X _i	-1	-0.5	0	0.25	0.75	1
y _i	0.22	0.8	2	2.5	3.8	4.2

试分别作出线性,二次曲线拟合,并给出最佳均方误差.

解 线性拟合,即形如y=a+bx的拟合曲线.构造向量

$$\mathbf{\phi}_0 = (1, 1, 1, 1, 1, 1)^T$$
, $\mathbf{\phi}_1 = (-1, -0.5, 0, 0.25, 0.75, 1)^T$,

$$\{ 6a+0.5b=13.52 \\ 0.5a+2.875b=7.055 \}$$
 解得: $\{ a=2.078971 \\ b=2.092353 \}$

所以,线性拟合曲线为:y=2.078971+2.092353x

最佳均方误差为: $\|\delta^*\|_2 = \sqrt{\sum (a + bx_i - y_i)^2} = 0.38659$

二次拟合,即形如y=a+bx+cx²的拟合曲线.构造向量

 $\mathbf{\phi}_0 = (1, 1, 1, 1, 1, 1)^T$, $\mathbf{\phi}_1 = (-1, -0.5, 0, 0.25, 0.75, 1)^T$,

 $\boldsymbol{\varphi}_2 = (1, 0.25, 0, 0.0625, 0.5625, 1)^{\mathrm{T}}, \quad \boldsymbol{f} = (0.22, 0.8, 2, 2.5, 0.5625, 1)^{\mathrm{T}}$

3.8, 4.2) T. 则得正则方程组:

6a+0.5b+2.875c=13.520. 5a+2. 875b+0. 3125c=7. 055 2. 875a+0. 3125b+2. 3828125c=6. 91375

解得:a=1.94448, b=2.0851, c=0.28191.

二次拟合曲线为:y=1.94448+2.0851x+0.28191x².

最佳均方误差为: $\|\delta^*\|_2 = \sqrt{\sum (a + bx_i + c_i^2 - y_i)^2} = 0.06943.$

6-20. 用最小二乘法求一个形如y=a+bx²的经验公式,

使与下列数据拟合,并计算均方误差.

X _i	19	25	31	33	44
y _i	19	32.2	49	73.3	97.8

解 这里基函数为 $\varphi_0(x)=1$, $\varphi_1(x)=x^2$, 构造向量

$$\mathbf{\phi}_0 = (1, 1, 1, 1, 1)^T$$
, $\mathbf{\phi}_1 = (361, 625, 961, 1089, 1936)^T$,

f=(19, 32. 2, 49, 73. 3, 97. 8)^T. 则得正则方程组:

解得:a=3.33339, b=0.051213.

所求拟合曲线为:y=3.33339+0.051213x2.

最佳均方误差为: $\|\delta^*\|_2 = \sqrt{\sum (a + bx_i^2 - y_i)^2} = 15.93299$ 6-22. 用最小二乘法求下列方程组的近似解:

$$\begin{cases} 2x + 4y = 11 \\ 3x - 5y = 3 \\ x + 2y = 6 \\ 4x + 2y = 14 \end{cases}$$

解记

$$G(x, y) = (2x+4y-11)^2+(3x-5y-3)^2+(x+2y-6)^2+(4x+2y-14)^2$$

就是求 $G(x, y)$ 的最小值, 令

$$\frac{\partial G}{\partial x} = 60x + 6y - 186 = 0, \qquad \frac{\partial G}{\partial y} = 6x + 98y - 138 = 0$$

解得: x=2.977413, y=1.225873

七.习题7 (第213页)

7-1. 建立右矩形和左矩形求积公式, 并导出误差式.

解法. 右矩形公式为: $\int_a^b f(x)dx \approx f(b)(b-a)$

左矩形公式为: $\int_a^b f(x)dx \approx f(a)(b-a)$

由于
$$f(x)-f(a)=f'(\xi_x)(x-a)$$
, $f(x)-f(b)=f'(\eta_x)(x-b)$

所以有

$$R(f) = \int_{a}^{b} f(x)dx - f(b)(b - a)$$

$$= \int_{a}^{b} f'(\eta_{x})(x - b)dx = -\frac{(b - a)^{2}}{2} f'(\eta) \qquad \eta \in (a, b)$$

$$R(f) = \int_a^b f(x)dx - f(a)(b-a)$$

$$= \int_{a}^{b} f'(\xi_{x})(x-a)dx = \frac{(b-a)^{2}}{2} f'(\xi) \qquad \xi \in (a,b)$$

7-2. 说明中矩形公式的几何意义, 并证明

$$\int_{a}^{b} f(x)dx = (b-a)f(\frac{a+b}{2}) + \frac{(b-a)^{3}}{24}f''(\eta) \qquad \eta \in (a,b)$$

证明 由Taylor展开式有

$$f(x) = f(\frac{a+b}{2}) + f'(\frac{a+b}{2})(x - \frac{a+b}{2}) + \frac{f''(\xi_x)}{2}(x - \frac{a+b}{2})^2$$

所以有

$$\int_{a}^{b} f(x)dx = f(\frac{a+b}{2})(b-a) + \frac{f''(\eta)}{24}(b-a)^{3}$$

7-3. 若f''(x)>0, 证明用梯形公式计算定积分所得结果比准确值大, 说明几何意义.

证明 因为f''(x)>0,所以y=f(x)是凹函数,故结论成立。

7-5. 确定下列积分公式中的待定参数,使其代数精度 尽可能高,并说明代数精度是多少?

(1)
$$\int_{-h}^{h} f(x)dx \approx A_{-1}f(-h) + A_{0}f(0) + A_{1}f(h)$$

解 令公式对 $f(x)=1, x, x^2$ 都精确成立,则有

$$\begin{cases} A_{-1} + A_0 + A_1 = 2h \\ -hA_{-1} + hA_1 = 0 \\ h^2A_{-1} + h^2A_1 = 2h^3/3 \end{cases}$$
解得: $A_{-1} = A_1 = h/3$, $A_0 = 4h/3$.

求积公式为:
$$\int_{-h}^{h} f(x)dx \approx \frac{h}{3} [f(-h) + 4f(0) + f(h)]$$

 $f(x)=x^3$ 时, 左=右=0, 公式也精确成立

f(x)=x⁴时, 左=2h⁵/5, 右=2h⁵/3, 公式不精确成立

所以公式的代数精确为3.

(2)
$$\int_{-1}^{1} f(x)dx \approx \frac{1}{3} [f(-1) + 2f(x_1) + 3f(x_2)]$$

解 令公式对 $f(x)=1, x, x^2$ 都精确成立,则有

$$\begin{cases} 2=2\\ 2x_1+3x_2-1=0\\ 2x_1^2+3x_2^2+1=2 \end{cases}$$
解得:
$$\begin{cases} x_1=0.689899\\ x_2=-0.126599 \end{cases}$$
或
$$\begin{cases} x_1=-0.289899\\ x_2=0.526599 \end{cases}$$

求积公式为:

$$\int_{-1}^{1} f(x)dx \approx \frac{1}{3} [f(-1) + 2f(0.689899) + 3f(-0.126599)]$$

或 $\int_{-1}^{1} f(x)dx \approx \frac{1}{3} [f(-1) + 2f(-0.289899) + 3f(0.526599)]$ $f(x) = x^3$ 时, 公式都不精确成立, 故代数精度为2.

(3)
$$\int_0^h f(x)dx \approx \frac{h}{2}[f(0) + f(h)] + \alpha h^2[f'(0) - f'(h)]$$

解 当 $f(x) = 1$ 时, 左=h, 右=h, 对所有 α 都成立。

f(x)=x时有左=右= $h^2/2$,对所有 α 都成立。 $f(x)=x^2$ 时, 左=h³/3, 右=h³/2-2 α h³, 故取 α =1/12, 则有 $\int_0^h f(x)dx \approx \frac{h}{2}[f(0) + f(h)] + \frac{h^2}{12}[f'(0) - f'(h)]$ $f(x)=x^3$ 时, 左= $h^4/4$, 右= $h^4/2-h^4/4=h^4/4$, 也精确成立.

 $f(x)=x^4$ 时, 左=h⁵/5, 右=h⁵/2-h⁵/3=h⁵/6, 不精确成立.

故公式的代数精度为3.

(5)
$$\int_{-1}^{1} x^2 f(x) dx \approx A_0 f(x_0)$$

解 令公式对f(x)=1, x精确成立,则有

$$\left\{
 \begin{array}{l}
 A_0 = 2/3 \\
 A_0 x_0 = 0
 \end{array}
 \right.$$
解得 $A_0 = 2/3$, $x_0 = 0$. 所以公式为

$$\int_{-1}^{1} x^2 f(x) dx \approx \frac{2}{3} f(0)$$
 , 其代数精度为1.

7-7. 设 $I = \int_1^2 \ln x dx$, 若取 ϵ =10⁻³, 分别求出n使复化梯形公式 T_n , 复化Simpson公式 S_n 的截断误差满足: $|I-T_n| < \epsilon$, 及 $|I-S_n| < \epsilon$,并计算 S_n .

解 因为 | (1nx)" | =1/x²≤1, | (1nx) (4) | =6/x⁴≤6

要 $|I-T_n|<10^{-3}$,只要 $\frac{1}{12n^2}<10^{-3}$,即n>9.13,故取n=10.

要 $|I-S_n|<10^{-3}$,只要 $\frac{6}{2880n^4}<10^{-3}$,即n>1.201,故取n=2.

 $I \approx S_2 = 1/12 [1n1+21n1.5+1n2+41n1.25+41n1.75] = 0.386260$

7-10. 对积分 $\int_0^1 \ln \frac{1}{x} f(x) dx$,导出两点Gauss型求积公式.

解 区间[0,1]上权函数为ln(1/x)的正交多项式为:

 $P_0(x)=1$, $p_1(x)=x-1/4$, $p_2(x)=x^2-(5/7)x+17/252$

令 $p_2(x)=0$, 解出Gauss点为:

$$x_1 = \frac{15 - \sqrt{106}}{42}$$
 , $x_2 = \frac{15 + \sqrt{106}}{42}$

再令公式对f(x)=1, x精确成立, 可得

$$A_1 + A_2 = 1$$
, $A_1 x_1 + A_2 x_2 = 1/4$, 由此解出

$$A_1 = \frac{1}{2} + \frac{9}{4\sqrt{106}}$$
 , $A_2 = \frac{1}{2} - \frac{9}{4\sqrt{106}}$

所以两点Gauss型求积公式为:

$$\int_0^1 \ln \frac{1}{x} f(x) dx \approx \left(\frac{1}{2} + \frac{9}{4\sqrt{109}}\right) f\left(\frac{15 - \sqrt{106}}{42}\right) + \left(\frac{1}{2} - \frac{9}{4\sqrt{109}}\right) f\left(\frac{15 + \sqrt{106}}{42}\right)$$

7-11. 用两点Gauss型求积公式计算下列积分的近似值

(1)
$$\int_{-1}^{1} \sqrt{1 - \frac{1}{2} \cos^2 x} dx$$

解 两点Gauss-Legendre求积公式为:

$$\int_{-1}^{1} f(x)dx \approx f(-0.577350) + f(0.577350)$$

所以有

$$\int_{-1}^{1} \sqrt{1 - \frac{1}{2} \cos^2 x} dx \approx 1.611151$$

$$(2) \quad \int_0^{+\infty} \frac{\sin x}{x} dx$$

解 两点Gauss-Laguerre求积公式为:

$$\int_0^{+\infty} f(x)dx \approx A_1 e^{x_1} f(x_1) + A_2 e^{x_2} f(x_2) , \sharp \oplus$$

$$A_1$$
=0. 8535533905, A_2 =0. 1464466094,

$$x_1$$
=0. 5858864376, x_2 =3. 4142135623,

所以有

$$\int_0^{+\infty} \frac{\sin x}{x} dx \approx 1.096221$$

(3)
$$\int_0^{+\infty} e^{-x} x^2 dx$$

解 两点Gauss-Laguerre求积公式为:

$$\int_0^{+\infty} e^{-x} f(x) dx \approx A_1 f(x_1) + A_2 f(x_2) \qquad A_1, A_2, x_1, x_2$$
同(2)
所以有

$$\int_0^{+\infty} e^{-x} x^2 dx \approx 2.000102$$

(4)
$$\int_{-\infty}^{+\infty} e^{-x^2} \sqrt{1 + x^2} dx$$

解 两点Gauss-Hermit求积公式为:

$$\int_{-\infty}^{+\infty} e^{-x^2} f(x) dx \approx A_1 f(x_1) + A_2 f(x_2) , \sharp \oplus$$

$$A_1 = A_2 = 0. \ 0. \ 8862269254, \quad -x_1 = x_2 = 0. \ 7071067811$$

所以有

$$\int_{-\infty}^{+\infty} e^{-x^2} \sqrt{1 + x^2} \, dx \approx 2.170804$$

7-12. 证明下列数值微分公式:

(1)
$$f'(x_0) = \frac{1}{2h} [-3f(x_0) + 4f(x_1) - f(x_2)] + \frac{h^2}{3} f'''(\xi)$$

(2)
$$f''(x_1) = \frac{1}{h^2} [f(x_0) - 2f(x_1) + f(x_2)] - \frac{h^2}{12} f^{(4)}(\eta)$$

其中, $x_i = x_0 + jh$, j = 0, 1, 2。

(3)
$$f'(0) = \frac{1}{6h}[-4f(-h) + 3f(0) + f(2h)] - \frac{h^2}{3}f'''(\eta)$$

证明 (1)以 x_0 , x_1 , x_2 为节点的二次Lagrange插值为:

$$f(x) = [(x-x_1)(x-x_2)f(x_0)-2(x-x_0)(x-x_2)f(x_1)+(x-x_0)(x-x_1)f(x_2)]/2h^2$$

+ $f'''(\xi_x)(x-x_0)(x-x_1)(x-x_2)/6$

$$f'(x) = [(2x-x_1-x_2)f(x_0)-2(2x-x_0-x_2)f(x_1)+(2x-x_0-x_1)f(x_2)]/2h^2 + R_2'(x)$$

$$f'(x_0) = [-3f(x_0)+4f(x_1)-f(x_2)]/2h + R_2'f(x_0')(\xi)/3$$

$$(2)f''(x) = [f(x_0)-2f(x_1)+f(x_2)]/h^2 + R_2''(x)$$

容易证明 $f''(x_1)\approx[f(x_0)-2f(x_1)+f(x_2)]/h^2$ 对f(x)取次数不超过3次的多项式精确成立.

构造三次多项式
$$p_3(x)$$
使 $p_3(x_0)=f(x_0)$, $p_3(x_1)=f(x_1)$,
$$p_3(x_2)=f(x_2)$$
, $p_3'(x_1)=f'(x_1)$, 则有
$$f(x)-p_3(x)=f^{(4)}(\xi_x)(x-x_0)(x-x_1)^2(x-x_2)/4!$$

于是有

 $R_2''(\mathbf{x}_1) = f''(\mathbf{x}_1) - p_3''(\mathbf{x}_1) = f^{(4)}(\eta) (-2h^2) / 4! = -f^{(4)}(\eta) h^2 / 12$ 所以

$$f''(x_1)=[f(x_0)-2f(x_1)+f(x_2)]/h^2-(h^2/12)f^{(4)}(\eta)$$

(3)以 x_0 =-h, x_1 =0, x_2 =2h为节点的二次Lagrange插值为:

$$f(x) = \frac{[2x(x-2h)f(-h)-3(x+h)(x-2h)f(0)+x(x+h)f(2h)]}{6h^2}$$

+ $f'''(\xi_x)x(x+h)(x-2h)/6$

$$f'(x) = \frac{[4(x-h)f(-h)-3(2x-h)f(0)+(2x+h)f(2h)]}{6h^2+R_2'(x)}$$

$$f'(0) = \frac{[4f(-h)+3f(0)+f(2h)]}{6h^2+R_2'(0)}$$

八.习题8 (第250页)

8-5. 用梯形方法和四阶标准R-K方法求解初值问题

$$\begin{cases} y' + y = 0 & , & 0 < x \le 1 \\ y(0) = 1 & \end{cases}$$

取步长h=0.1,并与精确解y=e-x相比较.

解 这里f(x,y)=-y,故梯形公式为:

$$y_{n+1} = y_n - 0.05 (y_n + y_{n+1})$$
,也就是
$$\begin{cases} y_{n+1} = (0.95/1.05) y_n \\ y_0 = 1 \end{cases}$$

四阶标准R-K公式为:

$$y_{n+1} = y_n + (0.1/6) (K_1 + 2K_2 + 2K_3 + K_4)$$

$$K_1 = -y_n$$
, $K_2 = -(y_n + 0.05K_1)$, $K_3 = -(y_n + 0.05K_2)$, $K_4 = -(y_n + 0.1K_3)$

就是: $\begin{cases} y_{n+1} = 0.9048375 y_n \\ y_0 = 1 \end{cases}$

计 第	早结果为:
X	梯形/

$\mathbf{X}_{\mathbf{n}}$	梯形公式y _n	R-K方法y _n	精确解y(x _n)
0	1	1	1
0.1	0.90476	0.90484	0.90484
0.2	0.81859	0.81873	0.81873
0.3	0.74063	0.74082	0.74082
0.4	0.67010	0.67032	0.67032
0.5	0.60628	0.60653	0.60653
0.6	0.54854	0.54881	0.54881
0.7	0.49630	0.49659	0.49659
0.8	0.44903	0.44933	0.44933
0.9	0.40626	0.40657	0.40657
1	0.36757	0.36788	0.36788

8-7. 证明下述R-K方法对任何参数t都是二阶方法.

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(K_2 + K_3) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + th, y_n + thK_1) \\ K_3 = f(x_n + (1-t)h, y_n + (1-t)hK_1) \end{cases}$$
证明 因为

$$K_{2} = f_{n} + th \frac{\partial f_{n}}{\partial x} + th f_{n} \frac{\partial f_{n}}{\partial y} + \frac{t^{2}h^{2}}{2} \frac{\partial^{2} f_{n}}{\partial x^{2}} + t^{2}h^{2} f_{n} \frac{\partial^{2} f}{\partial x \partial y} + \frac{t^{2}h^{2} f_{n}^{2}}{2} \frac{\partial^{2} f_{n}}{\partial y^{2}} + O(h^{3})$$

$$K_{3} = f_{n} + (1-t)h\frac{\partial f_{n}}{\partial x} + (1-t)hf_{n}\frac{\partial f_{n}}{\partial y}$$

$$+ \frac{(1-t)^{2}h^{2}}{2}\frac{\partial^{2}f_{n}}{\partial x^{2}} + (1-t)^{2}h^{2}f_{n}\frac{\partial^{2}f}{\partial x\partial y} + \frac{(1-t)^{2}h^{2}f_{n}^{2}}{2}\frac{\partial^{2}f_{n}}{\partial y^{2}} + O(h^{3})$$

所以有

$$y_{n+1} = y_n + hf_n + \frac{h^2}{2} \left(\frac{\partial f_n}{\partial x} + f_n \frac{\partial f_n}{\partial y} \right) + \frac{(1 - 2t + 2t^2)h^3}{4} \left(\frac{\partial^2 f_n}{\partial x^2} + 2f_n \frac{\partial^2 f}{\partial x \partial y} + f_n^2 \frac{\partial^2 f_n}{\partial y^2} \right) + O(h^4)$$

又因为

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{6}y'''(x_n) + O(h^4)$$

$$= y_n + hf_n + \frac{h^2}{2}(\frac{\partial f_n}{\partial x} + f_n \frac{\partial f_n}{\partial y})$$

$$+ \frac{h^3}{6}[\frac{\partial^2 f_n}{\partial x^2} + 2f_n \frac{\partial^2 f_n}{\partial x \partial y} + f_n^2 \frac{\partial^2 f_n}{\partial y^2} + (\frac{\partial f_n}{\partial x} + f_n \frac{\partial f_n}{\partial y}) \frac{\partial f_n}{\partial y}] + O(h^4)$$

于是对任何t有: $y(x_{n+1})-y_{n+1}=0(h^3)$

即,差分公式对任何参数t都是二阶方法.

8-8. 验证下述R-K方法是三阶方法.

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_1 + 4K_2 + K_3) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hK_1) \\ K_3 = f(x_n + h, y_n - hK_1 + 2hK_2) \end{cases}$$

证明 因为

$$K_{2} = f_{n} + \frac{h}{2} \frac{\partial f_{n}}{\partial x} + \frac{h}{2} f_{n} \frac{\partial f_{n}}{\partial y}$$

$$+ \frac{h^{2}}{8} \frac{\partial^{2} f_{n}}{\partial x^{2}} + \frac{h^{2} f_{n}}{4} \frac{\partial^{2} f}{\partial x \partial y} + \frac{h^{2} f_{n}^{2}}{8} \frac{\partial^{2} f_{n}}{\partial y^{2}} + O(h^{3})$$

$$K_{3} = f_{n} + h \frac{\partial f_{n}}{\partial x} + h(2K_{2} - f_{n}) \frac{\partial f_{n}}{\partial y}$$

$$+ \frac{h^{2}}{2} \frac{\partial^{2} f_{n}}{\partial x^{2}} + h^{2}(2K_{2} - f_{n}) \frac{\partial^{2} f}{\partial x \partial y} + \frac{h^{2}(2K_{2} - f_{n})^{2}}{2} \frac{\partial^{2} f_{n}}{\partial y^{2}} + O(h^{3})$$

所以有
$$y_{n+1} = y_n + hf_n + \frac{h^2}{2} \left(\frac{\partial f_n}{\partial x} + f_n \frac{\partial f_n}{\partial y} \right)$$

$$+ \frac{h^3}{6} \left(\frac{\partial^2 f_n}{\partial x^2} + 2f_n \frac{\partial^2 f}{\partial x \partial y} + f_n^2 \frac{\partial^2 f_n}{\partial y^2} + \left(\frac{\partial f_n}{\partial x} + f_n \frac{\partial f_n}{\partial y} \right) \frac{\partial f_n}{\partial y} \right) + O(h^4)$$

又因为

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{6}y'''(x_n) + O(h^4)$$

$$= y_n + hf_n + \frac{h^2}{2}(\frac{\partial f_n}{\partial x} + f_n \frac{\partial f_n}{\partial y})$$

$$+ \frac{h^3}{6}[\frac{\partial^2 f_n}{\partial x^2} + 2f_n \frac{\partial^2 f_n}{\partial x \partial y} + f_n^2 \frac{\partial^2 f_n}{\partial y^2} + (\frac{\partial f_n}{\partial x} + f_n \frac{\partial f_n}{\partial y}) \frac{\partial f_n}{\partial y}] + O(h^4)$$

于是有: $y(x_{n+1})-y_{n+1}=0(h^4)$

即,差分公式是三阶方法.

8-11. 对试验方程y'=- λ y, λ >0, 证明如下方法的绝对稳定性条件

(1) 改进Euler方法:
$$\left|1 - \lambda h + \frac{1}{2} \lambda^2 h^2\right| < 1$$

(2) 四阶标准R-K方法:

$$\left| 1 - \lambda h + \frac{1}{2!} \lambda^2 h^2 - \frac{1}{3!} \lambda^3 h^3 + \frac{1}{4!} \lambda^4 h^4 \right| < 1$$

证明 (1)改进Euler公式为:

$$y_{n+1} = y_n + \frac{h}{2} \left(-\lambda y_n - \lambda (y_n - h \lambda y_n) \right)$$
$$= \left(1 - \lambda h + \frac{1}{2} \lambda^2 h^2 \right) y_n$$

故改进Euler方法的绝对稳定条件为

$$\left|1-\lambda h+\frac{1}{2}\lambda^2 h^2\right|<1.$$

(1) 四阶标准R-K公式为:

$$y_{n+1} = y_n + \frac{h}{6}(-\lambda y_n - 2\lambda(y_n - \frac{h}{2}\lambda y_n) - 2\lambda(y_n - \frac{h}{2}\lambda(y_n - \frac{h}{2}\lambda y_n))$$

$$-\lambda(y_n - h\lambda(y_n - \frac{h}{2}\lambda(y_n - \frac{h}{2}\lambda y_n))$$

$$= (1 - \lambda h + \frac{1}{2!}\lambda^2 h^2 - \frac{1}{3!}\lambda^3 h^3 + \frac{1}{4!}\lambda^4 h^4)y_n$$

故四阶标准R-K方法的绝对稳定条件为

$$\left| 1 - \lambda h + \frac{1}{2!} \lambda^2 h^2 - \frac{1}{3!} \lambda^3 h^3 + \frac{1}{4!} \lambda^4 h^4 \right| < 1$$

8-12. 确定两步方法

$$y_{n+1} = \frac{1}{2}(y_n + y_{n-1}) + \frac{h}{4}(4f_{n+1} - f_n + 3f_{n-1})$$

的局部截断误差主项和阶.

$$\mathbf{P} \qquad y_{n-1} = y(x_{n-1}) = y(x_n) - hy'(x_n) + \frac{h^2}{2}y''(x_n) - \frac{h^3}{3!}y'''(x_n) + O(k^4)$$

$$f_{n+1} = y'(x_{n+1}) = y'(x_n) + hy''(x_n) + \frac{h^2}{2}y'''(x_n) + O(h^3)$$

$$f_n = y'(x_n)$$

$$f_{n-1} = y'(x_{n-1}) = y'(x_n) - hy''(x_n) + \frac{h^2}{2}y'''(x_n) + O(h^3)$$

所以有

$$y_{n+1} = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{19h^3}{24}y'''(x_n) + O(h^4)$$

又因为

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{3!}y'''(x_n) + O(h^4)$$

所以

$$y(x_{n+1}) - y_{n+1} = -\frac{5h^3}{8}y'''(x_n) + O(h^4)$$

因此,公式的局部截断误差主项为 $-\frac{5h^3}{8}y'''(x_n)$

公式为二阶方法.

8-13. 试求系数 α , β_0 , β_1 , 使两步方法

$$y_{n+1} = \alpha(y_n + y_{n-1}) + h(\beta_0 f_n + \beta_1 f_{n-1})$$

的局部截断误差阶尽可能的高,并写出局部截断误差主项.

解
$$y_{n-1} = y(x_{n-1}) = y(x_n) - hy'(x_n) + \frac{h^2}{2}y''(x_n) - \frac{h^3}{3!}y'''(x_n) + O(k^4)$$

$$f_n = y'(x_n)$$

$$f_{n-1} = y'(x_{n-1}) = y'(x_n) - hy''(x_n) + \frac{h^2}{2}y'''(x_n) + O(h^3)$$

所以有

$$y_{n+1} = 2\alpha y(x_n) + (\beta_0 + \beta_1 - \alpha)hy'(x_n)$$

$$+ (\alpha - 2\beta_1)\frac{h^2}{2}y''(x_n) + (3\beta_1 - \alpha)\frac{h^3}{3!}y'''(x_n) + O(h^4)$$

当 α =1/2, β_1 =-1/4, β_0 =7/4时阶最高, 为二阶方法. 截断误差的主项为 $\frac{3}{8}h^3y'''(x_n)$.

8-15. 对微分方程y'=f(x, y)沿区间 $[x_{n-1}, x_{n+1}]$ 积分得

$$y(x_{n+1}) = f(x_{n-1}) + \int_{x_{n-1}}^{x_{n+1}} f(x, y(x)) dx$$

试用Simpson求积公式近似右边积分,导出Milne-Simpson差分公式,并说明方法的阶.

解 Simpson求积公式为

$$\int_{x_{n-1}}^{x_{n+1}} f(x, y(x)) dx = \frac{h}{3} [f(x_{n-1}) + 4f(x_n) + f(x_{n+1})] - \frac{h^5}{90} y^{(5)}(\eta)$$

所以差分公式

$$y_{n+1} = y_{n-1} + \frac{h}{3}(f_{n-1} + 4f_n + f_{n+1})$$

易见,此公式是四阶方法.

课堂练习

简述学习数值分析课程的体会。

注1:可从与其他课程的区别论述;也可从对某一章 节或某一问题的体会论述;或从对授课方面的看法 论述;只要与课程相关的论述均可。

注2:作为平时成绩的一个依据。

注3:不许抄袭,如有雷同,视为作弊;下课前交.

课堂练习

设函数 $f(x)=x^2-\sin x-1$

- (1) 试证方程f(x)=0有唯一正根;
- (2) 构造一种收敛的迭代格式 $x_k = φ(x_k)$, k = 0, 1, 2, ...计算精度为 $ε = 10^{-2}$ 的近似根;
 - (3) 此迭代法的收敛阶是多少?说明之.
- 解(1)因为0 $\langle x \leq 1$ 时, $f(x) \langle 0, x \geq 2$ 时, $f(x) \rangle 0$,所以f(x)仅在(1,2)内有零点,而当1 $\langle x \langle 2$ 时, $f'(x) \rangle 0$,故f(x)单调. 因此方程f(x) = 0有唯一正根,且在区间(1,2)内.
- (2) 构造迭代格式: $x_{k+1} = \sqrt{1 + \sin x_k}$ k = 0,1,2,... 由于 $|\varphi'(x)| = |\cos x/2\sqrt{1 + \sin x}| < 1$, 故此迭代法收敛.

取初值 x_0 =1.5,计算得 x_1 =1.41333, x_2 =1.40983,由于 $|x_2-x_1|$ =0.0035<10⁻² ,故可取根的近似值 $\alpha \approx x_2$ =1.40983. (3) 因为0< $\alpha < \pi/2$,所以 $\varphi'(\alpha) = \cos \alpha/2\sqrt{1+\sin \alpha} \neq 0$

(3) 因为 $0 < \alpha < \pi/2$,所以 $\varphi'(\alpha) = \cos \alpha/2 \sqrt{1 + \sin \alpha} \neq 0$ 故,此迭代法线性收敛(收敛阶为1).