Exercice 1.★★

On appelle $nombre\ parfait$ tout entier n dont la somme des diviseurs vaut 2n ou de manière équivalente tout entier n dont la somme des diviseurs stricts (i.e. n non compris) vaut n.

- **1.** Pour $n \in \mathbb{N}^*$, on notera S(n) la somme des diviseurs de S. Montrer que la fonction S est multiplicative i.e. si $m \wedge n = 1$ alors S(mn) = S(m)S(n).
- **2.** Soit $p \in \mathbb{N}$ tel que $2^p 1$ soit premier.
 - **a.** Montrer que p est premier.
 - **b.** Montrer que $n = 2^{p-1}(2^p 1)$ est parfait (i.e. S(n) = 2n).
- 3. Montrer que tout nombre parfait pair est de la forme $2^{p-1}(2^p-1)$ où p est premier.

EXERCICE 2.

- **1.** Soit $m \in \mathbb{N}^*$ tel que $2^m + 1$ soit premier. Montrer que $m = 2^n$ où $n \in \mathbb{N}$.
- 2. Notons $F_n = 2^{2^n} + 1$. Montrer que si $n \neq m$, F_n et F_m sont premiers entre eux.

EXERCICE 3.

Soit p un nombre premier.

- **1.** Montrer que pour tout $k \in [1, p-1], \binom{p}{k}$ est divisible par p.
- **2.** En déduire que pour tout entier $n \in \mathbb{N}$, $n^p n$ est divisible par p (i.e. $n^p \equiv n[p]$).

Exercice 4.

Soient a et r deux entiers supérieurs ou égaux à 2. On suppose que $a^r - 1$ est premier.

- **1.** Montrer que a vaut 2 puis que r est premier.
- 2. La réciproque est-elle vraie ?

EXERCICE 5.

Pour $n \in \mathbb{N}^*$, on appelle $n^{\text{ème}}$ nombre de Mersenne l'entier $M_n = 2^n - 1$.

- 1. a. Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{N}^*$ un diviseur positif de n. Montrer que $2^\alpha 1$ divise M_n .
 - **b.** En déduire que si M_n est un nombre premier, alors n est un nombre premier.
- 2. Soient p, q des nombres premiers avec p impair. On suppose que q divise M_p .
 - **a.** Montrer que q est impair. En déduire que $2^{q-1} \equiv 1[q]$ en utilisant le petit théorème de Fermat.
 - **b.** Soit $A=\{n\in\mathbb{N}^*\mid 2^n\equiv 1[q]\}$. Montrer que A admet un minimum que l'on notera m.
 - **c.** En effectuant la division euclidienne de p par m, montrer que m divise p puis que m = p.
 - **d.** En effectuant la division euclidienne de q-1 par p, montrer que $q \equiv 1[p]$.
 - **e.** Montrer que $q \equiv 1[2p]$.
- 3. Soient p un nombre premier impair et $n \in \mathbb{N}^*$ divisant M_p . En utilisant la décomposition en facteurs premiers de n et la question précédente, montrer que $n \equiv 1[2p]$.

Exercice 6.

Montrer que la somme de deux nombres premiers consécutifs ne peut pas être égal au produit de deux nombres premiers.

Exercice 7.

Soient a et b des entiers naturels non nuls premiers entre eux tels que ab soit une puissance $n^{\grave{e}me}$ d'entier ($n \in \mathbb{N}$). Montrer que a et b sont des puissances $n^{\grave{e}mes}$ d'entiers.

EXERCICE 8.

Montrer que pour tout entier $n \geqslant 2$ et tout entier a impair

$$a^{2^{n-1}} \equiv 1 [2^n]$$

EXERCICE 9.

Résoudre le système d'inconnue $x \in \mathbb{Z} : \begin{cases} x \equiv 2[10] \\ x \equiv 5[13] \end{cases}$

EXERCICE 10.

- 1. Le système $\begin{cases} x \equiv 3[10] \\ x \equiv 4[8] \end{cases}$ d'inconnue $x \in \mathbb{Z}$ admet-il des solutions ?
- 2. Soit $(a,b) \in \mathbb{Z}^2$. A quelle condition le système $\begin{cases} x \equiv a[10] \\ x \equiv b[8] \end{cases}$ admet-il des solutions?
- 3. Déterminer les solutions du système $\begin{cases} x \equiv 4[10] \\ x \equiv 2[8] \end{cases}$

Exercice 11.

- 1. Soit n un entier impair. Montrer que $n^2 \equiv 1 \mod 8$.
- **2.** Soit p > 3 un nombre premier. Montrer que $p^2 1$ est multiple de 24.

EXERCICE 12.

Soit (u_n) la suite définie par $u_0 = 9$ et par la relation de récurrence $u_{n+1} = 3u_n^4 + 4u_n^3$ pour $n \in \mathbb{N}$. Montrer que l'écriture décimale de \mathfrak{u}_{11} comporte plus de 2010 chiffres 9.

EXERCICE 13.

Soit $n \in \mathbb{N}^*$ et $x_1, \ldots, x_n \in \mathbb{Z}$. Montrer qu'il existe $k \in [1, n]$ et i_1, \ldots, i_k dans [1, n] deux à deux distincts tels que n divise $\sum_{i=1}^{k} x_{i_i}$.

Exercice 14.

Soit b un entier naturel supérieur ou égal à 2. Soit $n \in \mathbb{N}$. Montrer que l'application

$$\phi: \left\{ \begin{array}{ccc} \llbracket 0,b-1 \rrbracket^n & \longrightarrow & \llbracket 0,b^n-1 \rrbracket \\ (a_0,\ldots,a_{n-1}) & \longmapsto & \sum_{k=0}^{n-1} a_k b^k \end{array} \right.$$

est bien définie et bijective.

EXERCICE 15.

Parmi les entiers qui s'écrivent en base 10 sous la forme (aabb)₁₀, déterminer ceux qui sont des carrés d'entiers.

Exercice 16.

Déterminer le reste de la division euclidienne de

- 1. $2^{2^{10}}$ par 7.
- 2. 3^{2189} par 25.

Exercice 17.

Soient α , m, $n \in \mathbb{N}^*$ avec $\alpha \ge 2$ et $d = (\alpha^n - 1) \land (\alpha^m - 1)$.

- 1. Soit n = qm + r la division euclidienne de n par m. Démontrer que $a^n \equiv$ $a^{r}[a^{m}-1].$
- **2.** En déduire que $d = (a^r 1) \wedge (a^m 1)$, puis $d = a^{n \wedge m} 1$.
- **3.** A quelle condition $a^m 1$ divise-t-il $a^n 1$?

Exercice 18.

Soit $a \in \mathbb{Z}$. Montrer que le reste de la division euclidienne de a^2 par 8 est 0, 1 ou 4.

EXERCICE 19.

Soient $a, b \in \mathbb{N}^*$. On note q le quotient de la division euclidienne de a-1 par b. Pour $n \in \mathbb{N}$, déterminer le quotient de la division euclidienne de $ab^n - 1$ par b^{n+1} .

EXERCICE 20.

Déterminer tous les entiers $n \in \mathbb{N}$ tels que n+1 divise n^2+1 .

Exercice 21.

Quel est le reste de la division euclidienne de 2^{2009} par 7.

Exercice 22.

Soient a et b deux entiers naturels premiers entre eux avec $b \ge 2$. Montrer qu'il existe un unique couple $(u_0, v_0) \in \mathbb{N}^2$ vérifiant :

$$u_0 a - v_0 b = 1$$
 $u_0 < b$

$$u_0 < t$$

$$v_0 < a$$

Exercice 23.

Résoudre les systèmes

- $1. \begin{cases} x \land y = 3 \\ x \lor y = 135 \end{cases}$
- 2. $\begin{cases} x + y = 100 \\ x \land y = 10 \end{cases}$

Exercice 24.★

On considère la suite (F_n) définie par ses premiers termes $F_0=0$ et $F_1=1$ et par la relation de récurrence $F_{n+2}=F_n+F_{n+1}$ pour $n\in\mathbb{N}$.

- **1.** Montrer que pour tout entier $n \in \mathbb{N}^*$, $F_{n-1}F_{n+1} F_n^2 = (-1)^n$. Déduisez-en que F_n et F_{n-1} sont premiers entre eux.
- **2.** Montrer que pour tout couple $(n,p) \in \mathbb{N} \times \mathbb{N}^*$, $F_{n+p} = F_p F_{n+1} + F_{p-1} F_n$. En déduire que $F_n \wedge F_p = F_{n+p} \wedge F_p$.
- **3.** Démontrer que pour tout $(m, n) \in \mathbb{N}^2$, $F_m \wedge F_n = F_{m \wedge n}$.

EXERCICE 25.

Soient $a, b, c \in \mathbb{Z}$ avec $a \wedge b = 1$. Montrer que $a \wedge bc = a \wedge c$.

EXERCICE 26.

Soient $a,b\in\mathbb{Z}.$ On note $d=a\wedge b$ et $\mathfrak{m}=a\vee b.$ Que vaut $(a+b)\wedge \mathfrak{m}$?

Exercice 27.

Soient m et n deux entiers naturels non nuls. Montrer que

$$a \wedge b = a + b - ab + 2\sum_{k=1}^{b-1} \left\lfloor \frac{ka}{b} \right\rfloor$$

Exercice 28.

Soient x, y deux entiers. Montrer que $x^2 + y^2$ est divisible par 7 si et seulement si x et y le sont.

EXERCICE 29.

Montrer que pour tout $n \in \mathbb{N}$ on a

- 1. $17 | 7^{8n+1} + 10(-1)^n$
- 2. $11 | 9^{5n+2} 4$
- 3. $6 | 10^{3n+2} 4^{n+1}$

Exercice 30.

On considère la suite $a_n = \sum_{k=1}^n k!$ pour tout $n \ge 1$. Est-ce que, à partir d'un certain rang, tous les a_n sont divisibles par 9 et non-divisibles par 27 ?

Exercice 31.

Montrer que pour tout $n \in \mathbb{N}$, n^2 divise $(n+1)^n - 1$.

EXERCICE 32.

Montrer que la plus grande puissance de 2 divisant $5^{2^n} - 1$ est 2^{n+2} .

Exercice 33.

Démontrer les critères de divisibilité suivants.

- **1.** Un entier est divisible par 3 *si et seulement si* la somme de ses chiffres est divisible par 3.
- **2.** Un entier est divisible par 9 *si et seulement si* la somme de ses chiffres est divisible par 9.
- **3.** Un entier est divisible par 11 *si et seulement si* la somme alternée de ses chiffres de rang pair moins la somme de ses chiffres de rang impair est divisible par 11.

Exercice 34.

- **1.** Montrer que pour tout $n \in \mathbb{N}$, 5 divise $2^{3n+5} + 3^{n+1}$.
- **2.** Montrer que pour tout entier $n \in \mathbb{N}$, 30 divise $n^5 n$.

EXERCICE 35.

Montrer que si p est un entier premier différent de 2 et 5, alors il divise un des entiers de l'ensemble $\{1, 11, 111, 1111, \ldots\}$.

EXERCICE 36.

- **1.** Montrer qu'un entier naturel est divisible par 5 *si et seulement si* son chiffre des unités est 0 ou 5.
- **2.** Montrer qu'un entier naturel est divisible par 4 *si et seulement si* l'entier formé par ses deux derniers chiffres est divisible par 4.

Exercice 37.

Résoudre dans \mathbb{Z}^2 les équations suivantes :

- 1. 221x + 247y = 52.
- 2. 323x 391y = 612.
- 3. 198x + 216y = 36.

EXERCICE 38.

Résoudre dans $(\mathbb{N}^*)^3$ l'équation $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$.

EXERCICE 39.

Résoudre dans \mathbb{Z}^2 l'équation $5x^2 + 2xy - 3 = 0$.

Exercice 40.

Résoudre dans \mathbb{N}^2 l'équation

$$n(n+1)(n+2) = m^2$$

Exercice 41.

On se propose de résoudre l'équation (E) : $\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$ d'inconnue $(a,b,c) \in (\mathbb{N}^*)^3$.

- **1.** Soit $(a,b,c) \in (\mathbb{N}^*)^3$ vérifiant (E). On suppose a,b,c premiers entre eux dans leur ensemble.
 - **a.** On pose $\alpha = a c$ et $\beta = b c$. Monter que α , β , c sont premiers entre eux dans leur ensemble puis que α et β sont premiers entre eux.
 - **b.** En déduire que α et β sont des carrés d'entiers puis qu'il existe $(u, v) \in (\mathbb{N}^*)^2$ tel que $\alpha = (u + v)u$, b = (u + v)v et c = uv.
- 2. Résoudre (E).

Exercice 42.

Résoudre l'équation $2^n + 1 = m^3$ d'inconnue $(n, m) \in \mathbb{N}^2$.

Exercice 43.

Soient r un entier naturel supérieur ou égal à 2 et α_1,\ldots,α_r des entiers relatifs. Pour tout $i\in [\![1,r]\!]$, on pose $b_i=\prod_{1\leqslant j\leqslant r}\alpha_j$.

Montrer que les a_i sont premiers entre eux deux à deux si et seulement si les b_i sont premiers entre eux dans leur ensemble.

Exercice 44.

Soit $\alpha \in \mathbb{R}$. Pour $n \in \mathbb{N}$, on considère l'application $f_n : \left\{ \begin{array}{ccc} \mathbb{Z} & \longrightarrow & \mathbb{C}^* \\ p & \longmapsto & e^{2i\pi np\alpha} \end{array} \right.$

- **1.** Montrer que f_n est un morphisme du groupe $(\mathbb{Z}, +)$ dans le groupe (\mathbb{C}^*, \times) .
- **2.** Montrer que Im $f_n \subset \mathbb{U}$.
- 3. En considérant le noyau de f_n , montrer que f_n est injective si et seulement si $\alpha \notin \mathbb{Q}$.
- 4. A partir de maintenant, on suppose que $\alpha \in \mathbb{Q}$. On écrit α sous forme de fraction irréductible, c'est-à-dire sous la forme $\alpha = \frac{r}{s}$ avec $r \in \mathbb{Z}$ et $s \in \mathbb{N}^*$ tels que $r \wedge s = 1$.
 - **a.** Montrer que Im $f_1 \subset \mathbb{U}_s$.
 - **b.** En écrivant une relation de Bézout entre r et s, montrer que $e^{\frac{2i\pi}{s}} \in \operatorname{Im} f_1$. En déduire que $\mathbb{U}_s \subset \operatorname{Im} f_1$.
 - **c.** Montrer que Ker $f_1 = s\mathbb{Z}$.
- **5.** On pose $\mathfrak{m} = \frac{s}{\mathfrak{n} \wedge s}$.
 - a. Justifier que m est entier.
 - **b.** Montrer que $nr \wedge s = n \wedge s$.
 - **c.** Montrer que Im $f_n \subset \mathbb{U}_m$.
 - **d.** En écrivant une relation de Bézout entre nr et s, montrer que $e^{\frac{2 \operatorname{i} \pi}{m}} \in \operatorname{Im} f_n$. En déduire que $\mathbb{U}_m \subset \operatorname{Im} f_n$.
 - **e.** Montrer que Ker $f_n = m\mathbb{Z}$.