Exercices:

1. Consider the project given by the following table of prerequisites:

Activity
Needed time (days)
Prerequisites

1	A	B	C	D	E	F	G	H	I
(3	6	8	7	5	11	3	3	2
-	_		A, B	C, E	B	E	D	F,G	B

- a) Compute the minimum number of days needed to complete the project.
- b) Obtain the critical path and its weight explaining its meaning.
- c) Compute the maximum delay allowed for task E without affecting the duration of the entire project.

First: Represent each activity using a vertex

В

E

F

Н

Activity

Needed time (days)

Prerequisites

A	B	C	D	E	F	G	H	I
3	6	8	7	5	11	3	3	2
_	_	A, B	C, E	B	E	D	F,G	B

Second: Draw the arcs from the prerequisits.

Activity

Needed time (days)

Prerequisites

A	B	C	D	E	F	G	H	I
3	6	8	7	5	11	3	3	2
_	_	A, B	C, E	B	E	D	F,G	B

Third: Add fictitious vertices

A	B	C	D	E	F	G	H	I
3	6	8	7	5	11	3	3	2
	_	A, B	C, E	B	E	D	F,G	B

Forth: Add weights

Activity

Needed time (days)

Prerequisites

A	B	C	D	E	F	G	H	I
3	6	8	7	5	11	3	3	2
_	_	A, B	C, E	B	E	D	F,G	B

5: Apply the numbering algorithm

Vertex: Number:

						F				
1	2	3	4	6	5	7	8	9	10	11

Bellman


```
u_1=0, u_2=w_{12}=0 u_3=w_{13}=0 u_4=\max\{u_2+w_{24}, u_3+w_{34}\}=\max\{0+3, 0+6\}=6 u_5=\max\{u_3+w_{35}\}=\max\{0+6\}=6 u_6=\max\{u_4+w_{46}, u_5+w_{56}\}=\max\{6+8, 6+5\}=14 u_7=\max\{u_5+w_{57}\}=\max\{6+5\}=11 u_8=\max\{u_6+w_{68}\}=\max\{14+7\}=21 u_9=\max\{u_7+w_{79}, u_8+w_{89}\}=\max\{11+11, 21+3\}=24
```

 $u_{11}=\max\{u_9+w_{9,11}, u_{10}+w_{10,11}\} = \max\{24+3, 6+2\}=27$

 $u_{10}=max\{u_3+w_{3,10}\}=max\{0+6\}=6$

Critical path

Critical path (new numbering)	1	3	4	6	8	9	11
Original critical path	S	В	С	D	G	Н	t

Compute the maximum delay allowed for task a7 without affecting the duration of the entire project.

Consider the different paths that link the activity E (5 in the new numbering) with the critical path.

Suppose activity E is delayed x days. The two previous paths must satisfy:

$$u_5 + 5 + x \le u_6$$
 $u_5 + 5 + 11 + x \le u_9$ $11 + x \le 14$ $11 + x \le 14$