Géneros de canciones en Spotify

Clasificación de canciones en su correspondiente género, según las playlists generadas en la plataforma

Team Sarasa: Rodriguez, Javier - Oliaro Vera, Lucas - Ulrich, Marcelo Intro. al Aprendizaje Automático - 1er Cuatrimestre 2023 - UNSAM

¿Trueno es rock como Foo Fighters?

Hace un tiempo, desde que Trueno, WOS y otros artistas de esta generación empezaron a hacerse notar en Argentina y resto de Latinoamérica, varios comenzaron a cuestionar el género con el que ellos (principalmente Trueno) se identificaban.

Nuestro trabajo será resolver este debate y definir de una vez el género al que pertenecen, con la ayuda de Spotify.

¿Cuál es el problema?

"Te guste o no te guste somos el nuevo rock and roll"

Trueno ft. WOS - Sangría

Etapas del trabajo

1 - ETL

Extracción de datos a la API de Spotify para la generación del dataset a trabajar

3 - EDA

Análisis exploratorio de los datos (canciones) y revisión de features importantes

2 - Preprocesado

Pulido del dataset a partir de decisiones tomadas para facilitar su uso en las próximas etapas

4 - Train model

Entrenamiento del modelo para clasificar las canciones, a partir de consideraciones previas

Etapas del trabajo

ETL Buscamos playlists Search a partir de géneros De las playlists, Playlist extraemos canciones Y de cada canciones, Audio Features obtenemos sus audio features Manipulación de datos con Pandas

ETL

Extración de datos

No hay un dataset disponible para analizar lo que precisamos (no nuevos o actualizados). Por lo que tomamos la decisión de extraer los datos de la API de Spotify y generar el dataset

Con ayuda de librerías útiles como Spotipy y Pandas, obtenemos las canciones a partir de playlists que está catalogadas por género (entre otros filtros que podemos aplicar).

Logramos generar el dataset!

Preprocesado

Preparación de datos

Encontramos que habían canciones con varios géneros (tanto repetidos como distintos), por ejemplo:

- Wargod: black-metal, death-metal, grindcore
- Pégate: reggae, reggaeton
- Mr. Brightside: alt-rock, alternative, emo, emo, happy, indie-pop y más...

Decidimos:

- Eliminar las canciones que tengan más de un género (pueden meter ruido al modelo a entrenar)
- Eliminamos unidades con datos faltantes o sin sentido
- Seleccionar géneros populares (y algunos de interés)

Features

Features Numéricas:

- danceability
- energy
- loudness
- speechiness
- acousticness
- instrumentalness
- liveness
- valence
- tempo
- duration_ms

Features Categoricas:

- key
- mode
- time_signature

Target:

• genre

Análisis exploratorio

Estos son todos los generos que tiene Spotify:

acoustic, afrobeat, alt-rock, alternative, ambient, anime, black-metal, bluegrass, blues, bossanova, brazil, breakbeat, british, cantopop, chicago-house, children, chill, classical, club, comedy, country, dance, dancehall, death-metal, deep-house, detroit-techno, disco, disney, drum-and-bass, dub, dubstep, edm, electro, electronic, emo, folk, forro, french, funk, garage, german, gospel, goth, grindcore, groove, grunge, guitar, happy, hard-rock, hardcore, hardstyle, heavy-metal, hip-hop, holidays, honky-tonk, house, idm, indian, indie, indie-pop, industrial, iranian, j-dance, j-idol, j-pop, j-rock, jazz, k-pop, kids, latin, latino, malay, mandopop, metal, metal-misc, metalcore, minimal-techno, movies, mpb, new-age, new-release, opera, pagode, party, philippines-opm, piano, pop, pop-film, postdubstep, power-pop, progressive-house, psych-rock, punk, punk-rock, r-n-b, rainy-day, reggae, reggaeton, road-trip, rock, rock-n-roll, rockabilly, romance, sad, salsa, samba, sertanejo, showtunes, singer-songwriter, ska, sleep, songwriter, soul, soundtracks, spanish, study, summer, swedish, synth-pop, tango, techno, trance, trip-hop, turkish, work-out, world-musi

Análisis exploratorio

Estos son todos los generos que tiene Spotify:

acoustic, afrobeat, alt-rock, alternative, ambient, anime, black-metal, bluegrass, blues, bossanova, brazil, breakbeat, british, cantopop, chicago-house, children, chill, classical, club, comedy, try, dance, dancehall, death-metal, deep-house, detroit-techno, p, edm, electro, electronic, emo, folk, forro, disco, disney, drum-and french, funk, garage, german, gospel, hard-rock, hardcore, hardstyle, heavy-metal, hip-hop, holidays n Mouse, idm, indian, indie, indie-pop, industrial, irani ρ ρος j-idol, j-pop, j-rock, jazz, k-pop, κιάs, latin, latino, maltechno, movies, mpb, malay, mandopop, metal, met 🕒 se, new-age, new-release, opera, pagode, party, philippines and pano, pop, pop-film, postdubstep, power-pop, progressive-house, psych-rock, punk, punk-rock, r-n-b, rainy-day, reggae, reggaeton, road-trip, rock, rock-n-roll, rockabilly, romance, sad, salsa, samba, sertanejo, showtunes, singer-songwriter, ska, sleep, songwriter, soul, soundtracks, spanish, study, summer, swedish, synth-pop, tango, techno, trance, trip-hop, turkish, work-out, world-musi

Análisis exploratorio

- ambient
- rockabilly
- rock
- house
- gospel
- reggae
- r-n-b
- alternative
- jazz
- funk
- opera
- tango
- grunge

- indie
- hip-hop
- metal
- techno
- chill
- country
- blues
- bossanova
- k-pop
- salsa
- soul
- disco
- punk

- edm
- folk
- ska
- sertanejo
- alt-rock
- classical
- acoustic
- reggaeton
- heavy-metal
- latino
- forro
- pop

Limpieza

- Eliminamos las canciones con time_signature igual a 0
- Convertimos las features 'key', 'time_signature' y 'mode' en features categoricas.

Normalización

- duration_ms
- loudness
- tempo

PCA: Reducción dimensional

Esperábamos ver mayor dispersión entre los géneros.

No fue el caso y no parece posible.

Sin embargo acá no terminamos, queda probar tSNE.

La esperanza se mantiene

tSNE

Lo que esperamos que pase con tSNE

tSNE

Lo que pasó

Fuimos muy ambiciosos. Con muchos géneros, pasan muchas cosas raras

Bajamos a tierra

Elegimos cinco géneros de música

- rock
- pop
- jazz
- hip-hop
- classical

PCAytNSE

A nuestros ojos se aprecia una diferencia entre los generos

Componentes del PCA

Analizamos los pesos de las componentes del PCA

Para tener más de un 95% de varianza original necesitamos 8 componentes

Componentes del PCA

Analizamos los pesos de las features por PCA

Explained Variance Ratio PCA

PC 10

Elección de dataset para los modelos

- Dataset Original (13 features)
- PCA(8): 8 Features no categoricas (por varianza al 95%)
- PCA(8) con categóricas
- tSNE(2): 2 componentes (sin categoricas)
- PCA(8) + tSNE(2)

Elección de métricas y modelos

Optamos por utilizar los siguientes modelos de clasificación para predecir los géneros de las canciones seleccionadas, utilizando el set de datos construido:

- Logistic Regression
- Random Forest

Las métricas que utilizaremos para la evaluación de los modelos y la elección del mejor es:

- accuracy_score
- cross_val_score
- Precision Score
- Recall Score
- F1 Score

Logistic Reg.	Normal	PCA 7 sin cats.	PCA 7 + tSNE 2	tSNE 2	PCA 7 + cats.	
Precision Score	0.605381	0.643615	0.441758	0.462509	0.626700	
Recall Score	0.595083	0.632684	0.449680	0.465686	0.621269	
F1 Score	0.600188	0.638103	0.445684	0.464092	0.623973	
Random Forest	Normal	PCA 7 sin cats.	PCA 7 + tSNE 2	tSNE 2	PCA 7 + cats.	Resultados
Precision Score	0.710331	0.666127	0.631486	0.627363	0.669692	
Recall Score	0.686458	0.654470	0.634854	0.629916	0.653904	
F1 Score	0.698190	0.660247	0.633166	0.628637	0.661704	

Resultados

Random Forest con dataset normal

max_features = 5

Random Forest Normal

Precision score: 0.734291

Recall score: 0.722069

F1 score: 0.7281288

Predicción de nuestra playlist

genre
rock
classical
rock
rock
jazz
classical
rock
rock
hip-hop
jazz
jazz
hip-hop

rock	In Your Eyes
rock	Thunderstruck - Live at River Plate Stadium, B
jazz	Obertura De Guillermo Tell (Final)
hip-hop	TIERRA ZANTA
rock	I Wanna Be Your Lover
jazz	HOOD
rock	We Built This City
jazz	Seres Extraños
classical	Feeling Good
jazz	TV

rock 0.409091 jazz 0.318182 classical 0.136364 hip-hop 0.136364

Entonces, Trueno es Rock o no?

genre	name
rock	DUBAI
rock	Mamichula - con Nicki Nicole
rock	FEEL ME??
classical	Hood - Remix
hip-hop	Rain
rock	Salimo de Noche
hip-hop	DANCE CRIP
hip-hop	Rain II
rock	LOS APARATOS
hip-hop	Trueno: Bzrp Freestyle Sessions, Vol. 6
classical	SOLO POR VOS
hip-hop	Sangría - con WOS
jazz	Dangerous
classical	Trueno: Bzrp Music Sessions, Vol. 16
rock	BIEN O MAL
hip-hop	Ñeri
rock	UN PASO
jazz	Sin Drama
rock	PANAMA
hip-hop	Atrevido
hip-hop	LO TENGO
rock	Cicuta (Remix)
hip-hop	TIERRA ZANTA
hip-hop	G.P.S con Aleman
rock	Ya No Sos Igual
rock	QUIEN SI NO

C90 (Remix)	rock
Fresko	rock
Jugador del Año	hip-hop
Trueno: Dolly Freestyle Sessions #01	classical
ARGENTINA - Live At NPR's Tiny Desk	jazz
5:05 pm	rock
Sudaka	rock
Broke	hip-hop
FREESTYLE - Live At NPR's Tiny Desk	classical
Boom	hip-hop
Pentakill	hip-hop
MEU BARRIO	hip-hop
4AM	hip-hop
BUENOS AIRES EN LLAMAS / FEEL ME?? - EN VIVO	jazz
Ningún Lugar	hip-hop
En la Ola	hip-hop

hip-hop 0.428571 rock 0.357143 classical 0.119048 jazz 0.095238

Y Foo-Fighters?

name	genre
The Glass	rock
Everlong	rock
Learn to Fly	rock
The Pretender	rock
Best of You	rock
My Hero	rock
Under You	rock
All My Life	rock
Walk	rock
Monkey Wrench	rock
Nothing At All	rock
Times Like These	rock
Big Me	rock
These Days	rock
Hearing Voices	rock
Wheels	rock
Breakout	rock
No Way Back	rock
But Here We Are	rock
The Sky Is A Neighborhood	rock
This Is a Call	rock
Long Road To Ruin	rock
Rescued	rock
DOA	rock
Rope	rock
I'll Stick Around	classical

Show Me How	rock
Doll	jazz
Arlandria	rock
Saint Cecilia	rock
Waiting On A War	rock
Run	rock
Let It Die	rock
Generator	rock
Hey, Johnny Park!	rock
Bridge Burning	rock
Stranger Things Have Happened	jazz
Shame Shame	rock
Something from Nothing	rock
Dear Rosemary	rock
Home	classical
Stacked Actors	rock
Walking After You	classical
Alone + Easy Target	rock
Making A Fire	rock
Aurora	jazz
Virginia Moon	jazz
Come Alive	jazz
No Son Of Mine	rock
Next Year	jazz
Hell	rock

rock 0.823529 jazz 0.117647 classical 0.058824

- Nuestro modelo tiende a etiquetar de *jazz* y *classical* a las canciones que son mas tranquilas.
- A pesar de tener pocos géneros, estos son bastante abarcativos y, por lo tanto, tiende a dar predicciones ""razonables"".
- Es un modelo con potencial de expansion a futuro.

En el futuro

Probar con más generos al modelo

- Mayores generos implica mayor dificultad en el entrenamiento. Pueden existeir modelos que aprendan mejor, quiza una red neuronal
- Aumentar cantidad de samples
 - Obtener la mayor cantidad de información por genero existente

Gracias por su tiempo ¿Preguntas?

(Momento de aplausos 🎾)

