



| Document Identification  |                   |  |
|--------------------------|-------------------|--|
| Document Category        | Training Material |  |
| Document Revision Number |                   |  |
| Document Issue Date      |                   |  |
| Document Status          | Draft             |  |
| Document Title           |                   |  |
| Document Identification  | MBWTRG-TRM-XXX    |  |

#### 2. Related Documents

| Related Documents | Document Identification |
|-------------------|-------------------------|
|                   |                         |
|                   |                         |
|                   |                         |
|                   |                         |
|                   |                         |
|                   |                         |
|                   |                         |



Amendments made to this document since the previous version are listed below. All amendments to this document have been made in accordance with CAE OAAM's document management procedure.

| Slide | Changes |
|-------|---------|
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |
|       |         |

# ATMOSPHERIC PRESSURE



#### **Atmospheric Pressure – What is it?**

- ➤ The gases present in our atmosphere are made up of tiny particles suspended in the air known as molecules collectively we call them air molecules
- ➤ The combined weight of all the air molecules exerts a force in all directions this is atmospheric pressure



$$P = \frac{F}{A}$$



#### Atmospheric Pressure - How do we measure it?

- > There are two common ways to measure atmospheric pressure:
  - 1. Using a Mercury (Hg) Barometer
  - 2. Using an Aneroid Barometer







**Atmospheric Pressure – How do we measure it?** 

➤ A Mercury Barometer is the more accurate of the two

- An evacuated tube (tube with no air molecules inside it) is placed with the open end immersed in a pool of mercury
- ➤ Air pressure acting on the mercury in the pool causes it to rise up the tube
- ➤ How far the mercury rises up the tube will depend on how strong the air pressure is
- ➤ The mercury will rise until the weight of the column of air pressing down on the mercury in the pool equals the weight of the mercury inside the tube





#### Atmospheric Pressure – How do we measure it?

- An Aneroid Barometer consists of a flexible metal chamber which is partially evacuated
- ➤ This chamber is fixed at one end and can expand or contract depending on the pressure of the air around it

The other end is linked to a dial which is calibrated in pressure units (or in the case)

of our altimeters – in feet!)

#### **Units of Pressure**

- Inches of Mercury ("Hg)e.g. an aircraft manifold pressure gauge
- Hectopascals (hPa) e.g. an altimeter (note that 1hPa=100N/m²)
- Millibars (Mb) millibars and hectopascals are interchangeable





#### **Vertical Pressure Distribution**

- Atmospheric Pressure reduces with altitude
- This makes sense because pressure is related to the weight of air molecules
- Due to gravity, there are more air molecules closer to earth's surface and hence a greater pressure





#### **Vertical Pressure Distribution**

- At low level (below 5000ft), pressure reduces at an approximate rate of:
- 1 hPa per 30 feet
- 1 "Hg per 1000 feet
- We use this figure,1hPa/30ft, as thestandard pressure lapse rate
- However, above 5000ft, or indeed in *non-standard* conditions, the pressure will change at a different rate
- ➤ This will become important at ATPL Level Meteorology.





#### **Horizontal Pressure Distribution**

- > Atmospheric Pressure not only changes with altitude, but also from place to place
- ➤ As you might have heard weather systems exist that are referred to as "High Pressure Systems" more on this later
- For now, remember the basic movement of air pressure:

#### "Air will move FROM a HIGH pressure TO a LOW pressure."



# **ATMOSPHERIC DENSITY**



#### **Atmospheric Density – What is it?**

- Air Density refers to the mass of air
- In other words, how close the molecules are together



- ➤ Both boxes have the same amount of space in them the same volume
- However, the box on the left has a lot more molecules inside it
- > It will therefore have a greater mass and will be more dense



Atmospheric Density - What will affect air density?

Air Density depends on 3 factors:

#### **Pressure:**

- Density and Pressure are directly related
- A decrease in pressure results in a decrease in density





# Atmospheric Density – What will affect air density? Air Density depends on 3 factors:

#### **Temperature:**

- Density and Temperature are inversely related
- An increase in temperature results in a decrease in density (assuming constant pressure and increased volume)













# Atmospheric Density – What will affect air density?

Air Density depends on 3 factors:

#### **Humidity:**

- Density and Humidity are inversely related
- An increase in humidity results in a decrease in density
- This is because a molecule of water vapour has less mass than an average air molecule
- So, increasing the concentration of water vapour lowers the



overall mass of a given volume of air – therefore decreasing the density



#### **Atmospheric Density – Why is density important?**

- > Density is important as it directly affects aircraft performance
- A decrease in air density has the following effects on an aircraft:
- 1. Less air is flowing over the surface area of the wings, meaning that less lift will be generated
- 2. The propeller blades are rotating through less air, meaning that less thrust will be generated
- 3. There will be less air taken into the engine, meaning that less power will be generated

# PRESSURE VARIATION



#### **Pressure Variation**

- ➤ Atmospheric Pressure varies from place to place it does not remain constant
- > It varies over time due to:

1. The movement of pressure systems across the country and their

changing intensity



2. The Semi-Diurnal Pressure Variation



#### Pressure Variation – Semi-Diurnal Pressure Variation

- > Semi-diurnal variation is basically a rhythmic variation in pressure over 12 hours
- It is caused by the atmosphere itself expanding and contracting as it warms and cools
- ➤ The greatest variation (up to 5hPa) occurs in the tropics here at Moorabbin, we may only see a 1hPa change!



Remember: "10 is higher than 4"

Over 24 hours, Atmospheric Pressure will be:

- Greatest at 1000 hours and 2200 hours
- > Smallest at 0400 hours and 1600 hours



# HAZARDOUS EFFECT OF ATMOSPHERIC PRESSURE VARIATION



- Atmospheric Pressure varies due to:
  - 1. The movement of weather systems across the country
  - 2. The diurnal variation of pressure
- This is hazardous to pilots as we set a constant QNH pressure setting on our altimeter – but in reality, pressure is constantly changing!
- > The effect is this:
  - 1. When flying from high to low pressure, the altimeter will over-read
  - 2. When flying from low to high pressure, the altimeter will under-read
- This gives us reduced terrain clearance (if the altimeter over-reads, you will think you are higher than you actually are)



## **Hazardous Effect of Atmospheric Pressure Variation**

Remember: "High to Low, look out below!"



## **Hazardous Effect of Atmospheric Pressure Variation**

Atmospheric pressure variation may also give us reduced traffic separation. Consider the following example



995 hPa pressure level

1020 hPa pressure level





# **Hazardous Effect of Atmospheric Pressure Variation**



HIGH

1020 hPa pressure level



















- ➤ We can see that at high altitude (for transport jets etc.) it is important that all aircraft are operating using a standard altimeter setting
- ➤ Above 10,000 feet, aircraft operate with a common altimeter setting of 1013 hPa. This will indicate an aircraft's **FLIGHT LEVEL**
- > 10,000 feet (the transition altitude) marks the base of the Transition Layer
- ➤ The Transition Layer is a layer of airspace that separates aircraft using the two different datum (QNH or 1013 hPa)
- ➤ The Transition Layer must always be at least 1000 feet thick and no flying is permitted in this layer



#### **Transition Altitude & Layer**



# **Transition Altitude & Layer**

FL125 FL120

FL115

FL110

With decreasing QNH, the lower flight levels become unavailable to maintain separation with traffic below transition layer



**QNH > 1013** 



# WHAT ABOUT AIRCRAFT BELOW 10,000 FEET? HOW DO THEY ACHIEVE SEPARATION?



# VFR Cruising Levels CAR 173 & AIP ENR 1.7

OR

VFRG page 3.55-3.56

- > The answer is relatively simple:
  - VFR and IFR flights are designated different altitudes at which they may cruise
  - Aircraft flying in opposite directions are also designated different altitudes at which they may cruise
  - A standard pressure setting in a given area may also be used (Area QNH)
  - Area QNH is valid for 3 hours and will be within +/- 5 hPa of any actual QNH in that area



## **VFR Cruising Levels**

**CAR 173 & AIP ENR 1.7** 

OR

VFRG page 3.55-3.56



If your TRK° M is from 0-179, you must cruise at an ODD number + 500' e.g. 3500'

4500°

If your TRK° M is from

180-359, you must

number + 500' e.g.

cruise at an EVEN

# VFR Cruising Levels CAR 173 & AIP ENR 1.7

OR

VFRG page 3.55-3.56

- ➤ IFR levels operate the same way but without the "+500" on the even or odd numbers
- Cruising Levels should be followed:
- When above 5000 ft
- When practicable below 5000 ft (aircraft may fly at any altitude they wish)



# Q CODES USED IN AVIATION



#### **Q** Codes Used in Aviation

#### **Flight Level:**

- Set QNE the standard pressure (MSL ISA Pressure)
- The altimeter will indicate **Pressure Height or Flight Level**
- We use this when operating above the transition layer
- The **transition layer** is from 10,000 feet (the transition altitude) up to FL110-125 (depending on the QNH)





#### **Q** Codes Used in Aviation

#### **Altitude:**

- Set QNH the atmospheric pressure at MSL
- The altimeter will indicate approximate altitude (vertical distance AMSL) of the aircraft
- Note that it is not the true altitude
- Our altimeters are calculated for the vertical pressure distribution present in ISA – but the conditions are very rarely ISA!
- So, there will always be some error present





#### **Q** Codes Used in Aviation

#### Altitude:

- QNH corrected for non-ISA conditions is known as QFF
- QFF is **not used in aviation**
- A setting of QNH will more correctly read:
- 1. The elevation of the aerodrome on landing
- 2. The elevation of the aerodrome when at a known point on the airfield e.g. the ARP





#### **Q** Codes Used in Aviation

#### Height:

- Set QFE station level pressure
- QFE is rarely used in Australia it shows the height above or below the reference pressure point – which may be aerodrome level
- For example, to set the aerodrome QFE, you would set the subscale on the altimeter to 0 feet





#### **Q** Codes Used in Aviation

#### **Height:**

- To obtain QNH from QFE, you would apply the correction of 1hPa/30'
- Note that this assumes the air is dry and conforms to ISA
- In reality, however, the rate of change of pressure depends on the humidity and temperature of the air
- > At high altitude, pressure reduces more slowly and the lapse rate might look like 1hPa/100'





#### **Q** Codes Used in Aviation

#### **Meteorological MSL Pressure:**

- Meteorologists use a more complicated method of calculating MSL Pressure
- This setting would be known as **QFF**
- Temperature and water vapour content are considered for the correction to MSL
- This is **not used in aviation**

