MARSS model checking

###2020 MARSS model outputs: July 7 - July 28 2020 (airtemp as a covariate, but not z scored. No seasonal correction)

```
mod1.fit.2020 <- readRDS("2020_mod1.fit.rds")
mod1.params.2020 <- readRDS("2020_mod1.params.rds")
mod2.fit.2020 <- readRDS("2020_mod2.fit.rds")
mod2.params.2020 <- readRDS("2020_mod2.params.rds")
mod3.fit.2020 <- readRDS("2020_mod3.fit.rds")
mod3.params.2020 <- readRDS("2020_mod3.params.rds")
mod4.fit.2020 <- readRDS("2020_mod4.fit.rds")
mod4.params.2020 <- readRDS("2020_mod4.params.rds")

#Model 1, hypothesis 1 (all separate)
mod1.params.2020</pre>
```

```
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 350 iterations.
## Log-likelihood: -333.3257
## AIC: 844.6514
                  AICc: 880.6514
##
##
                                 low.CI
               ML.Est Std.Err
                                           up.CI
## R.diag
             0.132351 0.00973 0.113287 0.15142
## Q.(1,1)
             0.169511 0.06546 0.041211 0.29781
## Q.(2,1)
             0.269266 0.09725 0.078654 0.45988
## Q.(3,1)
             0.551157 0.21646 0.126904
                                        0.97541
## Q.(4,1)
             0.320063 0.13377 0.057874
                                        0.58225
## Q.(5,1)
             0.206263 0.08157 0.046388 0.36614
## Q.(6,1)
             0.189997 0.07636 0.040334 0.33966
## Q.(7,1)
             0.181741 0.06591 0.052554
                                        0.31093
## Q.(8,1)
             0.039687 0.03210 -0.023227
                                        0.10260
## Q.(9,1)
             0.129886 0.05633 0.019474 0.24030
## Q.(10,1)
             0.158694 0.09329 -0.024150
                                        0.34154
## Q.(11,1)
             0.199095 0.07911 0.044036
                                        0.35415
             0.458918 0.16361 0.138243 0.77959
## Q.(2,2)
## Q.(3,2)
             1.023548 0.36209 0.313857
                                        1.73324
## Q.(4,2)
             0.568621 0.21974 0.137936 0.99931
## Q.(5,2)
             0.340651 0.13281 0.080351 0.60095
## Q.(6,2)
             0.294280 0.12139 0.056354 0.53221
## Q.(7,2)
             0.287451 0.10312 0.085341 0.48956
## Q.(8,2)
             0.060401 0.05159 -0.040714
                                        0.16152
## Q.(9,2)
             0.229238 0.09072 0.051434 0.40704
## Q.(10,2) 0.238323 0.14519 -0.046246 0.52289
```

```
## Q.(11,2)
              0.326268 0.12495 0.081368 0.57117
             2.791892 0.92486 0.979201 4.60458
## Q.(3,3)
              1.429326 0.53298 0.384709
## Q.(4,3)
                                         2.47394
## Q.(5,3)
             0.734407 0.30632 0.134021
                                         1.33479
## Q.(6,3)
             0.620703 0.27956
                               0.072772
                                          1.16863
             0.609604 0.23297 0.152988
## Q.(7,3)
                                         1.06622
             0.229998 0.13244 -0.029583
## Q.(8,3)
                                         0.48958
## Q.(9,3)
             0.661732 0.23183 0.207356
                                         1.11611
## Q.(10,3)
             0.734578 0.35787
                               0.033168
                                         1.43599
## Q.(11,3)
             0.668870 0.28340 0.113410
                                         1.22433
## Q.(4,4)
              1.004484 0.39173 0.236716
                                         1.77225
## Q.(5,4)
              0.502737 0.20510 0.100740
                                         0.90473
## Q.(6,4)
             0.416306 0.18364 0.056385
                                         0.77623
## Q.(7,4)
             0.379788 0.14891 0.087924
                                         0.67165
## Q.(8,4)
             0.109839 0.08146 -0.049814
                                         0.26949
## Q.(9,4)
             0.406402 0.14972 0.112960
                                          0.69984
             0.325371 0.22041 -0.106627
## Q.(10,4)
                                         0.75737
## Q.(11,4)
             0.442714 0.18375 0.082562
                                         0.80287
             0.291020\ 0.13224\ 0.031827
## Q.(5,5)
                                         0.55021
## Q.(6,5)
             0.256269 0.10805 0.044495
                                         0.46804
## Q.(7,5)
             0.229627 0.08874 0.055702 0.40355
## Q.(8,5)
             0.053372 0.04613 -0.037035
                                         0.14378
             0.190825 0.08223 0.029663
## Q.(9,5)
                                         0.35199
             0.198902 0.13404 -0.063804
## Q.(10,5)
                                         0.46161
             0.247582 0.10705 0.037764
## Q.(11,5)
                                         0.45740
## Q.(6,6)
             0.247937 0.11479 0.022954
                                         0.47292
              0.210706 0.08308 0.047876
## Q.(7,6)
                                         0.37354
             0.070173 0.04447 -0.016988 0.15733
## Q.(8,6)
             0.168353 0.07629 0.018836
## Q.(9,6)
                                         0.31787
## Q.(10,6)
             0.257721 0.13323 -0.003402
                                         0.51884
## Q.(11,6)
             0.194530 0.09693 0.004544
                                          0.38452
## Q.(7,7)
             0.201739 0.07634 0.052110
                                         0.35137
## Q.(8,7)
              0.049511 0.03553 -0.020128
                                         0.11915
             0.159521 0.06330 0.035454
## Q.(9,7)
                                         0.28359
## Q.(10,7)
             0.175293 0.10050 -0.021679
                                         0.37227
             0.227486 0.08704 0.056884 0.39809
## Q.(11,7)
## Q.(8,8)
             0.060126 0.02908 0.003129
                                         0.11712
## Q.(9,8)
             0.074594 0.03801 0.000103
                                         0.14909
             0.182634 0.07120 0.043090
                                         0.32218
## Q.(10,8)
             0.010282 0.04342 -0.074828
## Q.(11,8)
                                         0.09539
             0.196877 0.07175 0.056258
## Q.(9,9)
                                         0.33750
             0.202934 0.09863 0.009613
                                         0.39625
## Q.(10,9)
## Q.(11,9)
             0.179402 0.07832 0.025904
                                         0.33290
## Q.(10,10) 0.613988 0.21605 0.190540
                                         1.03744
## Q.(11,10)
             0.017973 0.11857 -0.214422
                                         0.25037
## Q.(11,11) 0.344855 0.12651 0.096901
                                         0.59281
## x0.X1
            -0.242124 0.68975 -1.594005
                                         1.10976
              1.192021 1.16661 -1.094495
## x0.X2
                                         3.47854
## x0.X3
             6.321549 2.79007 0.853112 11.78999
## x0.X4
             1.943099 1.93640 -1.852179
                                         5.73838
            -0.301160 1.23304 -2.717864
## x0.X5
                                         2.11555
## x0.X6
            -0.166793 1.17772 -2.475074 2.14149
## x0.X7
            -0.146467 0.68792 -1.494759 1.20183
## x0.X8
            -0.799341 0.45245 -1.686133 0.08745
```

```
## x0.X9
             -0.153413 0.48484 -1.103677 0.79685
## x0.X10
             2.739076 1.34954 0.094034 5.38412
             -0.822383 0.67862 -2.152451 0.50768
## x0.X11
## C.X1
             0.000722 0.00136 -0.001943 0.00339
## C.X2
             -0.000399 0.00222 -0.004753 0.00395
## C.X3
             -0.004292 0.00544 -0.014954 0.00637
## C.X4
             -0.001681 0.00330 -0.008152 0.00479
## C.X5
              0.000566 0.00185 -0.003056 0.00419
## C.X6
              0.000356 0.00173 -0.003029
                                          0.00374
              0.000511 0.00148 -0.002396 0.00342
## C.X7
## C.X8
              0.001427 0.00085 -0.000239
                                          0.00309
## C.X9
              0.000755 0.00144 -0.002061 0.00357
             -0.001746 0.00261 -0.006865 0.00337
## C.X10
              0.000697 0.00191 -0.003045 0.00444
## C.X11
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
  for (j in 1:5) {
    plot.ts(residuals<-MARSSresiduals(mod1.fit.2020, type = "tt1")$model.residuals[j, ],</pre>
            ylab = "Residual")
    abline(h = 0, lty = "dashed")
    acf(residuals,na.action = na.pass)
  }
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
```


#Model 2, hypothesis 2 (creeks vs ponds)
mod2.params.2020

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Algorithm ran 15 (=minit) iterations and convergence was reached.
## Log-likelihood: -445.091
                   AICc: 906.4559
## AIC: 906.1821
##
##
              ML.Est Std.Err
                               low.CI
                                        up.CI
## R.diag
            0.256155 0.01629
                              0.22424 0.28807
                              0.06053 0.30190
## Q.(1,1)
           0.181217 0.06157
## Q.(2,1)
           0.294661 0.10878
                              0.08145 0.50787
           0.718379 0.24935 0.22967 1.20709
## Q.(2,2)
## x0.X1
           -0.308081 0.48608 -1.26078 0.64462
           -0.615078 0.96876 -2.51381 1.28365
## x0.X2
## C.X1
            0.000513 0.00137 -0.00217 0.00320
## C.X2
           -0.000112 0.00273 -0.00545 0.00523
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
```


#Model 3, hypothesis 3 (trib vs. trib) mod3.params.2020

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 279 iterations.
## Log-likelihood: -419.1611
## AIC: 876.3223
                  AICc: 877.798
##
##
             ML.Est Std.Err
                               low.CI
                                         up.CI
           0.217524 0.01412 0.18984 0.24520
## R.diag
## Q.(1,1)
           0.319266 0.11019
                             0.10330
                                      0.53523
           0.825437 0.28866
## Q.(2,1)
                             0.25967
                                      1.39121
## Q.(3,1) 0.222331 0.07825
                             0.06896
                                      0.37570
## Q.(4,1) 0.243680 0.09351 0.06041
                                      0.42695
```

```
## Q.(2,2) 2.664947 0.89986 0.90125 4.42865
## Q.(3,2) 0.657191 0.22573 0.21476 1.09962
## Q.(4,2) 0.510457 0.23805 0.04388 0.97703
## Q.(3,3) 0.196872 0.06786 0.06388 0.32987
## Q.(4,3) 0.131236 0.06394 0.00591 0.25656
## Q.(4,4) 0.226662 0.09534 0.03980 0.41352
## x0.X1 -0.537949 0.71215 -1.93374 0.85784
           5.123978 2.61182 0.00490 10.24306
## x0.X2
## x0.X3
          -0.212596 0.50179 -1.19608 0.77089
## x0.X4 -0.942995 0.61044 -2.13944 0.25345
## C.X1
           0.000643 0.00182 -0.00293 0.00421
## C.X2
          -0.003497 0.00532 -0.01391 0.00692
           0.000691 0.00143 -0.00212 0.00350
## C.X3
## C.X4
           0.000722 0.00156 -0.00234 0.00378
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
  for (j in 1:5) {
   plot.ts(residuals<-MARSSresiduals(mod3.fit.2020, type = "tt1")$model.residuals[j, ],</pre>
            ylab = "Residual")
    abline(h = 0, lty = "dashed")
    acf(residuals, na.action = na.pass)
 }
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
```


#Model 4, hypothesis 4 (all same) mod4.params.2020

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Algorithm ran 15 (=minit) iterations and convergence was reached.
## Log-likelihood: -466.3489
## AIC: 940.6978
                   AICc: 940.7733
##
##
             ML.Est Std.Err
                              low.CI
                                       up.CI
## R.diag 0.296242 0.01849
                             0.26001 0.33248
           0.233722 0.07791 0.08102 0.38643
## Q.Q
## x0.x0 -0.346204 0.54456 -1.41351 0.72111
## C.C
           0.000415 0.00155 -0.00263 0.00346
## Initial states (x0) defined at t=0
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
  for (j in 1:5) {
    plot.ts(residuals<-MARSSresiduals(mod4.fit.2020, type = "tt1")$model.residuals[j, ],</pre>
            ylab = "Residual")
    abline(h = 0, lty = "dashed")
```

```
acf(residuals, na.action = na.pass)
}
```


#...these models are actually okay, but short

###Comparing 2020 AICc values

```
## Model AICc
## 1 Model1 880.7
## 2 Model2 906.5
## 3 Model3 877.8
## 4 Model4 940.8
```

###Original MARSS model outputs (using airtemp as a covariate, airtemp not transformed, no Fourier Series correction for seasonality)

```
mod1.fit <- readRDS("mod1.fit.rds")</pre>
mod1.params <- readRDS("mod1.params.rds")</pre>
mod2.fit <- readRDS("mod2.fit.rds")</pre>
mod2.params <- readRDS("mod2.params.rds")</pre>
mod3.fit <- readRDS("mod3.fit.rds")</pre>
mod3.params <- readRDS("mod3.params.rds")</pre>
mod4.fit <- readRDS("mod4.fit.rds")</pre>
mod4.params <- readRDS("mod4.params.rds")</pre>
#Model 1, hypothesis 1 (all separate)
mod1.params
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 3251 iterations.
## Log-likelihood: 311.9935
## AIC: -445.987
                   AICc: -444.0914
##
##
                ML.Est Std.Err
                                    low.CI
                                              up.CI
## R.diag
              4.66e-02 0.000765 4.51e-02 0.048146
              1.08e-02 0.001547 7.79e-03 0.013853
## Q.(1,1)
## Q.(2,1)
              9.58e-03 0.001222 7.18e-03 0.011974
## Q.(3,1)
              1.01e-02 0.001347
                                 7.46e-03 0.012739
## Q.(4,1)
              9.63e-03 0.001243 7.19e-03 0.012062
## Q.(5,1)
              9.21e-03 0.001261 6.74e-03 0.011681
## Q.(6,1)
              1.11e-02 0.001649 7.82e-03 0.014285
## Q.(7,1)
              6.48e-03 0.001058 4.41e-03 0.008558
## Q.(8,1)
              1.68e-03 0.000590 5.27e-04 0.002839
## Q.(9,1)
              4.73e-03 0.000690 3.38e-03 0.006086
## Q.(10,1)
              3.34e-03 0.000646 2.07e-03 0.004607
## Q.(11,1)
              1.05e-02 0.001379
                                 7.75e-03 0.013159
## Q.(2,2)
              1.04e-02 0.001281 7.88e-03 0.012899
## Q.(3,2)
              1.02e-02 0.001268 7.70e-03 0.012676
## Q.(4,2)
              1.02e-02 0.001240 7.81e-03 0.012674
## Q.(5,2)
              9.73e-03 0.001239
                                 7.30e-03 0.012155
## Q.(6,2)
              1.28e-02 0.001720 9.45e-03 0.016192
## Q.(7,2)
              6.86e-03 0.001020
                                 4.86e-03 0.008859
## Q.(8,2)
              1.64e-03 0.000548 5.62e-04 0.002711
## Q.(9,2)
              5.15e-03 0.000678
                                 3.82e-03 0.006484
## Q.(10,2)
              3.57e-03 0.000618 2.36e-03 0.004778
## Q.(11,2)
              1.08e-02 0.001313 8.19e-03 0.013339
## Q.(3,3)
              1.46e-02 0.001731 1.12e-02 0.018015
## Q.(4,3)
              1.04e-02 0.001335 7.82e-03 0.013057
## Q.(5,3)
              9.66e-03 0.001318 7.07e-03 0.012241
## Q.(6,3)
              1.02e-02 0.001652 7.00e-03 0.013474
## Q.(7,3)
              7.21e-03 0.001153 4.95e-03 0.009474
## Q.(8,3)
              2.68e-03 0.000683 1.35e-03 0.004022
## Q.(9,3)
              5.84e-03 0.000791 4.29e-03 0.007395
## Q.(10,3)
              4.80e-03 0.000766 3.30e-03 0.006303
## Q.(11,3)
              1.50e-02 0.001688 1.17e-02 0.018303
## Q.(4,4)
              1.02e-02 0.001342 7.54e-03 0.012802
```

```
## Q.(5,4)
              9.69e-03 0.001254 7.23e-03 0.012142
## Q.(6,4)
              1.23e-02 0.001680
                                 9.05e-03 0.015640
\# Q.(7,4)
              6.73e-03 0.001017
                                  4.73e-03 0.008720
## Q.(8,4)
              1.78e-03 0.000551
                                  7.05e-04 0.002863
## Q.(9,4)
              5.13e-03 0.000681
                                  3.80e-03 0.006468
                                 2.40e-03 0.004828
## Q.(10,4)
              3.61e-03 0.000620
## Q.(11,4)
              1.10e-02 0.001377
                                 8.28e-03 0.013677
## Q.(5,5)
              9.63e-03 0.001415
                                 6.85e-03 0.012399
## Q.(6,5)
              1.16e-02 0.001665
                                  8.36e-03 0.014887
## Q.(7,5)
              6.19e-03 0.000996
                                  4.24e-03 0.008145
## Q.(8,5)
              1.61e-03 0.000547
                                  5.41e-04 0.002686
## Q.(9,5)
              4.65e-03 0.000648
                                  3.38e-03 0.005923
## Q.(10,5)
              3.44e-03 0.000627
                                  2.21e-03 0.004671
                                  7.55e-03 0.013027
## Q.(11,5)
              1.03e-02 0.001396
## Q.(6,6)
              1.79e-02 0.002708
                                  1.26e-02 0.023167
## Q.(7,6)
              7.88e-03 0.001378
                                 5.18e-03 0.010581
              1.23e-03 0.000759 -2.58e-04 0.002719
## Q.(8,6)
## Q.(9,6)
              5.99e-03 0.000938
                                 4.15e-03 0.007829
              3.37e-03 0.000818
                                 1.76e-03 0.004972
## Q.(10,6)
## Q.(11,6)
              1.11e-02 0.001744
                                  7.73e-03 0.014565
## Q.(7,7)
              6.65e-03 0.001153
                                  4.39e-03 0.008907
## Q.(8,7)
              1.65e-03 0.000485
                                  7.03e-04 0.002604
                                 2.61e-03 0.004944
              3.78e-03 0.000595
## Q.(9,7)
              2.94e-03 0.000557
                                  1.85e-03 0.004035
## Q.(10,7)
## Q.(11,7)
              7.95e-03 0.001232
                                  5.54e-03 0.010368
## Q.(8,8)
              1.91e-03 0.000383
                                  1.16e-03 0.002664
              1.83e-03 0.000367
                                  1.12e-03 0.002553
## Q.(9,8)
## Q.(10,8)
              1.82e-03 0.000360
                                  1.12e-03 0.002529
              2.80e-03 0.000708
                                  1.42e-03 0.004189
## Q.(11,8)
## Q.(9,9)
              3.36e-03 0.000483
                                  2.41e-03 0.004304
## Q.(10,9)
              2.70e-03 0.000416
                                  1.88e-03 0.003512
## Q.(11,9)
              6.07e-03 0.000812
                                  4.47e-03 0.007658
## Q.(10,10)
              2.74e-03 0.000457
                                  1.85e-03 0.003640
              4.92e-03 0.000785
## Q.(11,10)
                                  3.39e-03 0.006461
## Q.(11,11)
              1.57e-02 0.001843
                                  1.21e-02 0.019280
## x0.X1
              8.12e-01 0.321857
                                  1.81e-01 1.442374
## x0.X2
              1.01e+00 0.311113
                                  3.97e-01 1.617014
## x0.X3
              1.03e+00 0.354114
                                 3.32e-01 1.720270
## x0.X4
              1.03e+00 0.308485
                                  4.28e-01 1.637267
              1.36e+00 0.312260
## x0.X5
                                 7.45e-01 1.969097
## x0.X6
              1.25e+00 0.438070
                                  3.89e-01 2.106327
## x0.X7
              8.37e-01 0.258043
                                 3.31e-01 1.342717
## x0.X8
              7.08e-01 0.143317
                                  4.27e-01 0.988510
## x0.X9
              1.02e+00 0.170085
                                  6.88e-01 1.355067
## x0.X10
              9.43e-01 0.162580
                                 6.25e-01 1.261890
## x0.X11
              1.08e+00 0.362198 3.68e-01 1.787971
## C.X1
              1.99e-04 0.000386 -5.58e-04 0.000955
## C.X2
              1.35e-04 0.000377 -6.03e-04 0.000873
## C.X3
              2.92e-04 0.000446 -5.82e-04 0.001165
## C.X4
              1.45e-04 0.000373 -5.86e-04 0.000876
## C.X5
             -1.64e-04 0.000365 -8.78e-04 0.000551
## C.X6
              6.89e-05 0.000503 -9.16e-04 0.001054
## C.X7
              2.24e-04 0.000305 -3.73e-04 0.000821
              5.23e-04 0.000166 1.98e-04 0.000847
## C.X8
```

MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.


```
#Model 2, hypothesis 2 (creeks vs ponds)
mod2.params
```

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 91 iterations.
## Log-likelihood: -4891.9
## AIC: 9799.801
                 AICc: 9799.817
##
            ML.Est Std.Err low.CI
                                         up.CI
## R.diag 0.176657 0.002753 0.171261 0.182053
## Q.(1,1) 0.004101 0.000690 0.002748 0.005453
## Q.(2,1) 0.005458 0.000909 0.003676 0.007240
## Q.(2,2) 0.008550 0.001468 0.005672 0.011428
## x0.X1 0.933060 0.198706 0.543604 1.322515
## x0.X2 1.055530 0.293369 0.480537 1.630523
## C.X1 0.000300 0.000239 -0.000168 0.000768
## C.X2
           0.000325 0.000346 -0.000353 0.001003
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
  for (j in 1:5) {
    plot.ts(residuals<-MARSSresiduals(mod2.fit, type = "tt1")$model.residuals[j, ],</pre>
            ylab = "Residual")
    abline(h = 0, lty = "dashed")
    acf(residuals,na.action = na.pass)
```


#Model 3, hypothesis 3 (trib vs. trib)
mod3.params

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 2518 iterations.
## Log-likelihood: -1836.822
## AIC: 3711.645
                   AICc: 3711.734
##
             ML.Est Std.Err
                                low.CI
                                          up.CI
## R.diag 0.082798 0.001311
                              8.02e-02 0.085368
## Q.(1,1) 0.010326 0.001421
                              7.54e-03 0.013112
## Q.(2,1) 0.009662 0.001319
                              7.08e-03 0.012248
## Q.(3,1) 0.003657 0.000625
                              2.43e-03 0.004882
## Q.(4,1) 0.009611 0.001286
                              7.09e-03 0.012132
## Q.(2,2) 0.012367 0.001709
                              9.02e-03 0.015717
## Q.(3,2) 0.004285 0.000690
                              2.93e-03 0.005637
## Q.(4,2) 0.011955 0.001590
                              8.84e-03 0.015070
## Q.(3,3) 0.002523 0.000420
                              1.70e-03 0.003347
## Q.(4,3) 0.004213 0.000667
                              2.91e-03 0.005520
## Q.(4,4) 0.011584 0.001559
                              8.53e-03 0.014640
## x0.X1
           0.992099 0.320593
                              3.64e-01 1.620449
## x0.X2
           1.076092 0.339679 4.10e-01 1.741850
```

```
0.918146 0.153676 6.17e-01 1.219345
## x0.X3
## x0.X4
          1.083917 0.326099 4.45e-01 1.723059
## C.X1
          0.000116 0.000377 -6.23e-04 0.000854
## C.X2
          0.000300 0.000412 -5.08e-04 0.001108
          0.000373 0.000187 5.91e-06 0.000741
## C.X3
## C.X4
          0.000293 0.000398 -4.88e-04 0.001074
## Initial states (x0) defined at t=0
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
 for (j in 1:5) {
   plot.ts(residuals<-MARSSresiduals(mod3.fit, type = "tt1")$model.residuals[j, ],</pre>
           ylab = "Residual")
   abline(h = 0, lty = "dashed")
   acf(residuals, na.action = na.pass)
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
```


#Model 4, hypothesis 4 (all same) mod4.params

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 36 iterations.
## Log-likelihood: -5032.398
## AIC: 10072.8
                  AICc: 10072.8
##
##
            ML.Est Std.Err
                               low.CI
                                        up.CI
## R.diag 0.184194 0.002858
                             0.178593 0.18980
          0.004608 0.000759
                             0.003121 0.00610
## Q.Q
## x0.x0 0.936723 0.210525
                             0.524102 1.34934
## C.C
          0.000314 0.000253 -0.000182 0.00081
## Initial states (x0) defined at t=0
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
  for (j in 1:5) {
    plot.ts(residuals<-MARSSresiduals(mod4.fit, type = "tt1")$model.residuals[j, ],</pre>
            ylab = "Residual")
    abline(h = 0, lty = "dashed")
```

```
acf(residuals, na.action = na.pass)
}
```


#...these models are not good

###Comparing Original AICc values

```
## Model AICc
## 1 Model1 -444.1
## 2 Model2 9799.8
## 3 Model3 3711.7
## 4 Model4 10072.8
```

correct for seasonality using Fourier Series, and z-scoring air temperature as an additional covariate ### Question: Did I do the period correctly?

```
#Correct for seasonality using Fourier Series
TT = ncol(transformed_dat) # number of time periods/samples
period = 365 # number of "seasons" (e.g., 12 months per year)
per.1st = 1 # first "season" (e.g., Jan = 1, July = 7)
c = diag(period) # create factors for seasons
for(i in 2:(ceiling(TT/period))) {c = cbind(c,diag(period))}
dim(c)
```

[1] 365 730

```
#Create Fourier Series
cos.t = cos(2 * pi * seq(TT) / period)
sin.t = sin(2 * pi * seq(TT) / period)
c.Four = rbind(cos.t,sin.t)
cor(c.Four[1,],c.Four[2,]) # not correlated!
```

[1] 0.007872561

```
matplot(t(c.Four), type="1")
```



```
#Now fit model with seasonality AND an additional covariate (airtemp from above)
airtemp_z <- zscore(airtemp$TAVG)
newcovarsFour_airtemp <-rbind(c.Four, "airtemp"=airtemp_z)
matplot(t(newcovarsFour_airtemp), type="l", col=c("black", "red", "blue"))</pre>
```


###Checking model results and residuals when log transformed

```
mod5.fit <- readRDS("mod5.fit.rds")
mod5.params <- readRDS("mod6.params.rds")
mod6.fit <- readRDS("mod6.fit.rds")
mod6.params <- readRDS("mod6.params.rds")
mod7.fit <- readRDS("mod7.fit.rds")
mod7.params <- readRDS("mod7.params.rds")
mod8.fit <- readRDS("mod8.fit.rds")
mod8.params <- readRDS("mod8.params.rds")

#Model 5, hypothesis 1 (all separate)
mod5.params</pre>
```

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 2833 iterations.
## Log-likelihood: 386.5636
## AIC: -551.1273
                    AICc: -548.1774
##
##
                      ML.Est Std.Err
                                         low.CI
                                                     up.CI
                    0.046473 0.000759
                                       4.50e-02
                                                 0.047961
## R.diag
## Q.(1,1)
                    0.010158 0.001506
                                       7.21e-03
                                                 0.013110
                    0.009165 0.001216 6.78e-03
## Q.(2,1)
                                                 0.011549
```

```
## Q.(3,1)
                    0.009139 0.001270
                                        6.65e-03
                                                  0.011629
                    0.008580 0.001184
## Q.(4,1)
                                        6.26e-03
                                                   0.010900
## Q.(5,1)
                    0.008557 0.001234
                                        6.14e-03
                                                   0.010974
                    0.011278 0.001651
## Q.(6,1)
                                        8.04e-03
                                                   0.014514
## Q.(7,1)
                    0.005811 0.001014
                                        3.82e-03
                                                   0.007798
                    0.000830 0.000477 -1.05e-04
## Q.(8,1)
                                                   0.001766
## Q.(9,1)
                    0.004203 0.000609
                                        3.01e-03
                                                   0.005397
## Q.(10,1)
                    0.002646 0.000550
                                        1.57e-03
                                                   0.003725
## Q.(11,1)
                    0.010720 0.001434
                                        7.91e-03
                                                   0.013530
## Q.(2,2)
                    0.010017 0.001353
                                        7.37e-03
                                                   0.012669
## Q.(3,2)
                    0.009388 0.001231
                                        6.97e-03
                                                   0.011801
## Q.(4,2)
                    0.009248 0.001201
                                        6.89e-03
                                                   0.011602
## Q.(5,2)
                    0.009075 0.001228
                                        6.67e-03
                                                   0.011482
## Q.(6,2)
                                        9.43e-03
                    0.012821 0.001729
                                                   0.016210
## Q.(7,2)
                    0.006211 0.000999
                                        4.25e-03
                                                   0.008170
## Q.(8,2)
                    0.000715 0.000454 -1.75e-04
                                                   0.001606
## Q.(9,2)
                    0.004508 0.000607
                                        3.32e-03
                                                   0.005697
## Q.(10,2)
                    0.002712 0.000533
                                        1.67e-03
                                                   0.003757
## Q.(11,2)
                    0.011067 0.001394
                                        8.34e-03
                                                   0.013799
## Q.(3,3)
                    0.013393 0.001641
                                        1.02e-02
                                                   0.016610
## Q.(4,3)
                    0.009152 0.001256
                                        6.69e-03
                                                   0.011614
## Q.(5,3)
                    0.008776 0.001280
                                        6.27e-03
                                                   0.011285
## Q.(6,3)
                    0.010262 0.001630
                                        7.07e-03
                                                   0.013456
                    0.006238 0.001091
## Q.(7,3)
                                        4.10e-03
                                                   0.008375
## Q.(8,3)
                    0.001496 0.000552
                                        4.14e-04
                                                   0.002578
## Q.(9,3)
                    0.004957 0.000687
                                        3.61e-03
                                                   0.006304
                    0.003860 0.000651
## Q.(10,3)
                                        2.58e-03
                                                   0.005135
## Q.(11,3)
                    0.015018 0.001701
                                        1.17e-02
                                                   0.018353
## Q.(4,4)
                    0.008663 0.001352
                                        6.01e-03
                                                   0.011312
## Q.(5,4)
                    0.008441 0.001184
                                        6.12e-03
                                                   0.010761
## Q.(6,4)
                    0.011778 0.001645
                                        8.55e-03
                                                   0.015002
## Q.(7,4)
                    0.005720 0.000954
                                        3.85e-03
                                                   0.007589
## Q.(8,4)
                    0.000853 0.000435
                                        2.70e-07
                                                   0.001706
## Q.(9,4)
                    0.004265 0.000599
                                        3.09e-03
                                                   0.005439
## Q.(10,4)
                    0.002588 0.000515
                                        1.58e-03
                                                   0.003598
## Q.(11,4)
                    0.010750 0.001427
                                        7.95e-03
                                                   0.013546
## Q.(5,5)
                    0.008782 0.001465
                                        5.91e-03
                                                   0.011652
## Q.(6,5)
                    0.011434 0.001663
                                        8.17e-03
                                                   0.014694
## Q.(7,5)
                    0.005485 0.000970
                                        3.58e-03
                                                   0.007386
                    0.000821 0.000443 -4.68e-05
## Q.(8,5)
                                                   0.001689
## Q.(9,5)
                    0.004152 0.000608
                                        2.96e-03
                                                   0.005344
                    0.002672 0.000543
## Q.(10,5)
                                        1.61e-03
                                                   0.003736
## Q.(11,5)
                    0.010456 0.001475
                                        7.56e-03
                                                   0.013348
                    0.017758 0.002693
                                        1.25e-02
## Q.(6,6)
                                                   0.023036
## Q.(7,6)
                    0.007440 0.001336
                                        4.82e-03
                                                   0.010058
                    0.000452 0.000606 -7.34e-04
## Q.(8,6)
                                                   0.001639
## Q.(9,6)
                    0.005568 0.000825
                                        3.95e-03
                                                   0.007185
## Q.(10,6)
                    0.002661 0.000688
                                        1.31e-03
                                                   0.004009
## Q.(11,6)
                    0.012286 0.001848
                                        8.66e-03
                                                   0.015908
## Q.(7,7)
                    0.005763 0.001094
                                        3.62e-03
                                                   0.007908
## Q.(8,7)
                    0.000596 0.000373 -1.35e-04
                                                   0.001328
## Q.(9,7)
                    0.002840 0.000494
                                        1.87e-03
                                                   0.003807
## Q.(10,7)
                    0.001981 0.000454
                                        1.09e-03
                                                   0.002870
## Q.(11,7)
                    0.007796 0.001271 5.31e-03
                                                  0.010287
```

```
## Q.(8,8)
                    0.000707 0.000217
                                        2.82e-04
                                                  0.001133
## Q.(9,8)
                    0.000548 0.000227
                                        1.03e-04
                                                  0.000992
                    0.000664 0.000214
## Q.(10,8)
                                        2.45e-04
                                                   0.001083
                                        5.85e-04
## Q.(11,8)
                    0.001822 0.000631
                                                  0.003059
## Q.(9,9)
                    0.002243 0.000386
                                        1.49e-03
                                                   0.003000
## Q.(10,9)
                    0.001554 0.000288
                                        9.90e-04
                                                   0.002119
## Q.(11,9)
                    0.005728 0.000773
                                        4.21e-03
                                                   0.007243
## Q.(10,10)
                    0.001559 0.000342
                                        8.89e-04
                                                   0.002229
## Q.(11,10)
                    0.004413 0.000730
                                        2.98e-03
                                                   0.005845
## Q.(11,11)
                    0.017198 0.002019
                                        1.32e-02
                                                  0.021156
## x0.X1
                    1.004073 0.318263
                                        3.80e-01
                                                  1.627856
## x0.X2
                    1.127373 0.312950
                                        5.14e-01
                                                   1.740745
## x0.X3
                    1.171648 0.345779
                                        4.94e-01
                                                   1.849363
                    1.239960 0.289868
## x0.X4
                                        6.72e-01
                                                   1.808091
## x0.X5
                    1.380072 0.301517
                                        7.89e-01
                                                   1.971035
## x0.X6
                    1.342542 0.438404
                                        4.83e-01
                                                  2.201798
## x0.X7
                    0.833946 0.249183
                                        3.46e-01
                                                  1.322335
## x0.X8
                    0.589145 0.098786
                                        3.96e-01
                                                   0.782761
## x0.X9
                    0.870386 0.143302
                                        5.90e-01
                                                  1.151253
## x0.X10
                    0.840911 0.128746
                                        5.89e-01
                                                  1.093248
## x0.X11
                    1.175008 0.386189
                                        4.18e-01
                                                   1.931925
## C.(X1,cos.t)
                   -0.024999 0.016304 -5.70e-02
                                                  0.006956
## C.(X2,cos.t)
                   -0.004857 0.015634 -3.55e-02
                                                  0.025785
## C.(X3,cos.t)
                   -0.017093 0.017866 -5.21e-02
                                                  0.017923
## C.(X4,cos.t)
                   -0.007122 0.014761 -3.61e-02
                                                  0.021809
## C.(X5,cos.t)
                   -0.005733 0.015306 -3.57e-02
                                                  0.024266
## C.(X6,cos.t)
                    0.016513 0.021392 -2.54e-02
                                                   0.058440
## C.(X7,cos.t)
                    0.000410 0.013149 -2.54e-02
                                                  0.026181
## C.(X8,cos.t)
                    0.014757 0.005707 3.57e-03
                                                   0.025944
## C.(X9,cos.t)
                    0.014909 0.007670 -1.25e-04
                                                  0.029942
## C.(X10,cos.t)
                    0.017251 0.007092 3.35e-03
                                                   0.031152
## C.(X11,cos.t)
                   -0.008135 0.020074 -4.75e-02
                                                  0.031208
## C.(X1,sin.t)
                   -0.033801 0.009749 -5.29e-02 -0.014694
## C.(X2,sin.t)
                   -0.027244 0.009508 -4.59e-02 -0.008608
## C.(X3,sin.t)
                   -0.032358 0.010931 -5.38e-02 -0.010933
## C.(X4,sin.t)
                   -0.028507 0.008907 -4.60e-02 -0.011050
## C.(X5,sin.t)
                   -0.026807 0.009112 -4.47e-02 -0.008948
## C.(X6,sin.t)
                   -0.016866 0.012844 -4.20e-02 0.008307
## C.(X7,sin.t)
                   -0.021720 0.007615 -3.66e-02 -0.006794
## C.(X8,sin.t)
                   -0.012635 0.003042 -1.86e-02 -0.006673
## C.(X9,sin.t)
                   -0.016143 0.004585 -2.51e-02 -0.007155
## C.(X10,sin.t)
                   -0.015757 0.004046 -2.37e-02 -0.007826
## C.(X11,sin.t)
                   -0.028513 0.012338 -5.27e-02 -0.004331
## C.(X1,airtemp)
                    0.027508 0.012689 2.64e-03
                                                  0.052378
## C.(X2,airtemp)
                    0.010778 0.012049 -1.28e-02
                                                  0.034393
## C.(X3,airtemp)
                    0.024818 0.013737 -2.11e-03
                                                   0.051741
## C.(X4,airtemp)
                    0.012634 0.011413 -9.74e-03
                                                   0.035004
## C.(X5,airtemp)
                    0.007170 0.011941 -1.62e-02
                                                   0.030575
## C.(X6,airtemp)
                   -0.010031 0.016617 -4.26e-02
                                                   0.022538
## C.(X7,airtemp)
                    0.010245 0.010376 -1.01e-02
                                                   0.030582
## C.(X8,airtemp)
                    0.006441 0.004683 -2.74e-03
                                                  0.015620
## C.(X9,airtemp)
                    0.003239 0.005980 -8.48e-03
                                                  0.014960
## C.(X10,airtemp)
                    0.000764 0.005654 -1.03e-02
                                                  0.011845
## C.(X11,airtemp)
                    0.016581 0.015404 -1.36e-02
                                                  0.046773
```

```
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
```

MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.

#Model 6, hypothesis 2 (creeks vs ponds) mod6.params

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 196 iterations.
## Log-likelihood: -4871.922
## AIC: 9767.843
                 AICc: 9767.88
##
                    ML.Est Std.Err low.CI
                                                up.CI
## R.diag
                  1.77e-01 0.002751 0.17150 0.18228
## Q.(1,1)
                  2.97e-03 0.000550 0.00189 0.00405
## Q.(2,1)
                  4.67e-03 0.000798 0.00310 0.00623
## Q.(2,2)
                 7.84e-03 0.001417 0.00506 0.01061
## x0.X1
                 9.19e-01 0.175447 0.57535 1.26309
## x0.X2
                 1.14e+00 0.288131 0.57517 1.70463
## C.(X1,cos.t) -3.69e-05 0.009149 -0.01797 0.01789
## C.(X2,cos.t) -2.06e-02 0.014972 -0.04996 0.00873
## C.(X1,sin.t) -2.25e-02 0.005374 -0.03301 -0.01194
## C.(X2,sin.t) -3.41e-02 0.008765 -0.05130 -0.01695
## C.(X1,airtemp) 1.18e-02 0.007176 -0.00223 0.02590
## C.(X2,airtemp) 2.87e-02 0.011763 0.00567 0.05178
## Initial states (x0) defined at t=0
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
 for (j in 1:5) {
   plot.ts(residuals<-MARSSresiduals(mod6.fit, type = "tt1")$model.residuals[j, ],</pre>
           ylab = "Residual")
   abline(h = 0, lty = "dashed")
   acf(residuals, na.action = na.pass)
```


#Model 7, hypothesis 3 (trib vs. trib) mod7.params

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 3245 iterations.
## Log-likelihood: -1790.67
## AIC: 3635.341
                   AICc: 3635.519
##
##
                    ML.Est Std.Err
                                        low.CI
                                                  up.CI
## R.diag
                   0.08268 0.001304
                                     0.080121
                                                0.08523
                                     0.007160
## Q.(1,1)
                   0.00989 0.001390
                                                0.01261
## Q.(2,1)
                   0.00883 0.001253
                                      0.006374
                                                0.01128
                   0.00281 0.000467
                                      0.001896
## Q.(3,1)
                                                0.00372
## Q.(4,1)
                   0.00986 0.001349
                                      0.007212
                                                0.01250
                   0.01087 0.001611
## Q.(2,2)
                                     0.007714
                                                0.01403
                   0.00306 0.000502
                                                0.00405
## Q.(3,2)
                                     0.002082
## Q.(4,2)
                   0.01160 0.001577
                                      0.008509
                                                0.01469
## Q.(3,3)
                   0.00117 0.000232
                                     0.000712
                                                0.00162
## Q.(4,3)
                   0.00345 0.000549
                                     0.002378
                                                0.00453
## Q.(4,4)
                   0.01251 0.001777
                                      0.009031
                                                0.01600
## x0.X1
                   1.05597 0.320861
                                      0.427090
                                                1.68484
## x0.X2
                   1.18240 0.327436
                                     0.540634 1.82416
```

```
## x0.X3
                  0.78272 0.109468 0.568165 0.99727
## x0.X4
                 1.17979 0.345826 0.501981 1.85759
## C.(X1,cos.t) -0.00858 0.015715 -0.039381 0.02222
## C.(X2,cos.t) -0.01866 0.016721 -0.051431 0.01412
## C.(X3,cos.t)
                 0.01416 0.005922 0.002556 0.02577
## C.(X4,cos.t) -0.01592 0.017692 -0.050597 0.01876
## C.(X1,sin.t)
                 -0.02797 0.009499 -0.046582 -0.00935
## C.(X2,sin.t)
                 -0.03301 0.010034 -0.052673 -0.01334
## C.(X3,sin.t)
                 -0.01549 0.003431 -0.022210 -0.00876
## C.(X4,sin.t) -0.03196 0.010695 -0.052923 -0.01100
## C.(X1,airtemp) 0.01313 0.012137 -0.010659 0.03692
## C.(X2,airtemp) 0.02633 0.012964 0.000922 0.05174
## C.(X3,airtemp) 0.00376 0.004686 -0.005427 0.01294
## C.(X4,airtemp) 0.02383 0.013676 -0.002969 0.05064
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
 for (j in 1:5) {
   plot.ts(residuals<-MARSSresiduals(mod7.fit, type = "tt1")$model.residuals[j, ],</pre>
           ylab = "Residual")
   abline(h = 0, lty = "dashed")
   acf(residuals,na.action = na.pass)
 }
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
## MARSSresiduals.tt1 reported warnings. See msg element of returned residuals object.
```


#Model 8, hypothesis 4 (all same) mod8.params

```
##
## MARSS fit is
## Estimation method: kem
## Convergence test: conv.test.slope.tol = 0.5, abstol = 0.001
## Estimation converged in 39 iterations.
## Log-likelihood: -5020.639
## AIC: 10053.28
                   AICc: 10053.29
##
##
                    ML.Est Std.Err
                                        low.CI
                                                  up.CI
## R.diag
                   0.18437 0.002857
                                      0.178767
                                                0.18997
                                      0.002345
                                                0.00482
## Q.Q
                   0.00358 0.000631
## x0.x0
                   0.94813 0.193187
                                      0.569495
                                                1.32677
## C.(X1,cos.t)
                  -0.00513 0.010009 -0.024749
                                                0.01449
## C.(X1,sin.t)
                  -0.02543 0.005889 -0.036968 -0.01389
## C.(X1,airtemp) 0.01621 0.007838 0.000849 0.03157
## Initial states (x0) defined at t=0
##
## CIs calculated at alpha = 0.05 via method=hessian
par(mfrow=c(5,2), mai=c(0.1,0.5,0.2,0.1), omi=c(0.5,0,0,0))
  for (j in 1:5) {
    plot.ts(residuals<-MARSSresiduals(mod8.fit, type = "tt1")$model.residuals[j, ],</pre>
```

```
ylab = "Residual")
abline(h = 0, lty = "dashed")
acf(residuals, na.action = na.pass)
}
```


#...these models are not good

 $\#\#\#\mathrm{Comparing}$ corrected AICc values

```
## Model AICc
## 1 Model5 -548.2
## 2 Model6 9767.9
## 3 Model7 3635.5
## 4 Model8 10053.3
```