Ferienkurs Seite 1

Technische Universität München Hannah Schamoni

Ferienkurs Analysis 1 Stetigkeit, Konvergenz, Topologie

Übungsblatt

21.03.2012

1. Gleichmäßige Konvergenz

Entscheiden Sie, ob die folgenden auf $(0,\infty)$ definierten Funktionenfolgen nicht, punktweise oder sogar gleichmäßig gegen eine Grenzfunktion konvergieren. Geben Sie, falls existent, den Grenzwert an.

(a)
$$a_n = x + \frac{1}{n}$$

(b)
$$a_n = \frac{x}{n}$$

(c)
$$a_n = e^x \cdot \sqrt[n]{e}$$

2. Stetigkeit

- (a) Sei $s \in \mathbb{R}$. Zeigen Sie, dass die Funktion $f : \mathbb{R}_+ \to \mathbb{R}, x \mapsto x^s$ stetig ist.
- (b) Sei $f: \mathbb{R} \to \mathbb{R}, f(x) = x \sin(\frac{1}{x})$ für $x \neq 0$ und f(x) = 0 für x = 0. Zeigen Sie, dass f stetig ist.

3. Gleichmäßige Stetigkeit I

- (a) Sei $f:[0,\infty[$ $\to \mathbb{R}$ stetig derart, dass $\lim_{x\to\infty} f(x)=:c\in\mathbb{R}$ existiert. Zeigen Sie, dass f gleichmäßig stetig ist.
- (b) Sei: $\mathbb{R} \to \mathbb{R}$ stetig mit f(x) = f(x+1). Zeigen Sie, dass f nach oben und unten beschränkt ist und Maximum und Minimum annimmt. Zeigen Sie außerdem, dass f gleichmäßig stetig ist.

4. Gleichmäßige Stetigkeit II

Untersuchen Sie, welche der folgenden Funktionen gleichmäßig stetig sind:

(a)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$$

(b)
$$f: [10^{-4}, \infty[\to \mathbb{R}, f(x) = \frac{1}{x}]$$

(a)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2$$

(c) $f: [\sqrt{2}, 6] \to \mathbb{R}, \ f(x) = \frac{x^{2011} - 18}{46 + |x|^7}$.

5. Gleichmäßige Stetigkeit, Lipschitz-Stetigkeit

Sei $f:[0,1], f(x):=\sqrt{x}$. Zeigen Sie, dass die Funktion f gleichmäßig stetig, aber nicht Lipschitz-stetig ist.

Ferienkurs Seite 2

6. Stetige Fortsetzungen

(a) Ist
$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$$
, $f(x) = \sin\left(\frac{1}{x}\right)$ stetig fortsetzbar?
(b) Ist $f: \mathbb{R}_+ \setminus \{1\} \to \mathbb{R}$, $f(x) = \frac{\sqrt{x}-1}{x-1}$ stetig fortsetzbar?

7. Zwischenwertsatz

Zeigen Sie: Ein Polynom $p:\mathbb{R}\to\mathbb{R}$ ungeraden Grades besitzt mindestens eine reelle Nullstelle.

8. Grenzwerte

Berechnen Sie die folgenden Grenzwerte: (a)
$$\lim_{x\to 1}\frac{x^3+x^2-x-1}{x-1}$$

(b)
$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2}$$
(d)
$$\lim_{x \to -\infty} \frac{8x^3 + 2x^2 + 1}{2x^3 + 7x}$$

(c)
$$\lim_{x \to \infty} (\sqrt{4x^2 + 2x - 1} - 2x)$$

(d)
$$\lim_{x \to -\infty} \frac{8x^3 + 2x^2 + 1}{2x^3 + 7x}$$

9. Topologie

Zeigen Sie:

- (a) \mathbb{K} ist offen und abgeschlossen in \mathbb{K} , wobei $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.
- (b) \emptyset ist offen und abgeschlossen.
- (c) $D \subset \mathbb{C}$ ist offen in $\mathbb{C} \Rightarrow D \cap \mathbb{R}$ ist offen in \mathbb{R} .
- (d) $D \subset \mathbb{R}$ ist abgeschlossen in $\mathbb{R} \Rightarrow D$ ist abgeschlossen in \mathbb{C} .