AIR PORCE MATERIALS LABORATORY AIR FORCE SYSTEMS COMMAND

Contract F33615-68-C-1225

REFRACTIVE INDEX OF OPTICAL MATERIALS IN THE INFRARED REGION

ND704555

A. J. Moses

Reproduced by the CLEARINGHOUSE for federal Sc., time & Technical Information Sp., gheld Va. 22151 DS-166 JANUARY 1970

PROPERTIES
INFORMATION
CENTER
DDC

HUGHES

HUG! - AIRCHAFT COMPANY CULVER GITY CALIFORNIA APR 22 1970
USUSSIVE
C

This document has been approved for public release and sale; its distribution is unlimited.

240

REFRACTIVE INDEX OF OPTICAL MATERIALS IN THE INFRARED REGION

A. J. MOSES

- **E** LECTRONIC
- P ROPERTIES
- I NFORMATION
- C ENTER

HUGHES

HUGHES AIRCRAFT COMPANY CULVER CITY CALIFORNIA

ABSTRACT

Refractive index data and some extinction coefficients are provided for the infrared region for the following materials: silicon, germanium, zinc sulfide, cadmium telluride, zinc selenide, silica, calcium fluoride, magnesium fluoride, aluminum oxide, magnesium oxide, aluminum, gold and silver. The dependence of these optical constants on wavelength, temperature, crystal form, film preparation technique, radiation and other factors is included.

This report has been reviewed and is approved for publication.

Stulden J. Welles

Dr. Sheldon J. Welles, Head Electronic Properties Information Center

E.F. Smith

Project Manager

TABLE OF CONTENTS

		Page
FOI	REWORD	
INT	RODUCTION	
ABS	STRACT	
1.	TECHNICAL INTRODUCTION	1 - 1
	General Information	1-1
	Optical Spectrum	1-1
	Materials Properties	1 - 1
2.	DEFINITIONS OF REFRACTIVE INDEX AND FACTORS AFFECTING THE REFRACTIVE INDEX	2-1
	Definitions	2-1
	Dependence on Wavelength	2-2
	Dependence on Temperature	2-2
	Dependence on Pressure	2-4
	Dependence on Nuclear Radiation	2-5
	Dependence on Materials Preparation Techniques	2-6
3.	METHODS FOR DETERMINING THE REFRACTIVE INDEX	3-1
	Deviation	3-1
	Reflection	3-3
	Interference	3-3
	Transmission	3-5
4.	PROBLEMS ASSOCIATED WITH FILMS	4-1
5.	REFRACTIVE INDEX DATA FOR SEMICONDUCTORS	5-1
	Silicon	5-5
	Introduction	5-5
	Dependence on Wavelength	5 - 8
	Dependence on Temperature	5-17

TABLE OF CONTENTS (Continued)

	Page
Dependence on Pressure	5-22
Dependence on Surface Condition	5-23
Germanium	5-25
Introduction	5-25
Dependence on Wavelength	5-31
Dependence on Temperature	5-44
Dependence on Pressure	5-50
Dependence on Film Thickness	5-52
Dependence on Film Composition	5-53
Dependence on Film Deposition Rate	5-54
Dependence on Film Deposition Atmosphere	5-55
Dependence on Film Deposition Substrate Temperature	5-59
Dependence on Electric Field	5-61
Zinc Sulfide	5-63
Introduction	5-63
Dependence on Wavelength	5-65
Cadmium Telluride	5-75
Introduction	5-75
Dependence on Wavelength	5-78
Dependence on Temperature	5-90
Zinc Selenide	5-97
Introduction	5-97
Dependence on Wavelength	5-99
Dependence on Temperature	5-106

TABLE OF CONTENTS (Continued)

		Page
6.	REFRACTIVE INDEX DATA FOR SILICA-QUARTZ- SILICON DIOXIDE	6 - 1
	General	6-1
	Silica, Crystalline	6 - 3
	Introduction	6-3
	Dependence on Wavelength	6-5
	Silica, Fused	6-15
	Introduction	6-15
	Dependence on Wavelength	6-17
	Dependence on Temperature	6-28
	Dependence on Radiation	6-30
7.	REFRACTIVE INDEX DATA FOR FLUORIDES AND SELECTED CERAMICS	7 - 1
	Calcium Fluoride	7-3
	Introduction	7-3
	Dependence on Wavelength	7-5
	Dependence on Temperature	7-13
	Magnesium Fluoride	7-15
	Introduction	7-15
	Dependence on Wavelength	7-16
	Aluminum Oxide-Corandum-Sapphire-Ruby	7-19
	Introduction	7-19
	Dependence on Wavelength	7-23
	Dependence on Temperature	7-31

TABLE OF CONTENTS (Continued)

		Page
	Magnesium Oxide	7-33
	Introduction	7-33
	Dependence on Wavelength	7-36
	Dependence on Temperature	7-43
8.	REFRACTIVE INDEX DATA FOR METALS	8-1
	Introduction	8-1
	Data Summary	8-2
	Aluminum	8-5
	Dependence on Wavelength	8-5
	Dependence on Temperature	8-9
	Gold	8 - 11
	Dependence on Wavelength	8-11
	Dependence on Temperature	8-18
	Dependence on Film Thickness	8-19
	Silver	8-21
	Dependence on Wavelength	8-21
	Dependence on Film Thickness	8-28
	Dependence on Temperature	8-29
9.	BIBLIOGRAPHY	9-1
	EPIC-Indexed References	·9-1
	Other References	9-13

FOREWORD

This report was prepared by Hughes Aircraft Company, Culver City, California, under Contract Number F33615-68-C-1225. The work was administered under the direction of the Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, with Mr. B. Emrich, Project Engineer.

The Electronic Properties Information Center (EPIC) is a designated Information Analysis Center of the Department of Defense authorized to provide information to the entire DOD community. The purpose of the Center is to provide a highly competent source of information and data on the electronic, optical and magnetic properties of materials of value to the Department of Defense. Its major function is to evaluate, compile and publish the experimental data from the world's unclassified literature concerned with the properties of materials. All materials relevant to the field of electronics are within the scope of EPIC: insulators, semiconductors, metals, super-conductors, ferrites, ferroelectrics, ferromagnetics, electroluminescents, thermionic emitters and optical materials. The Center's scope includes information on over 100 basic properties of materials; information generally regarded as being in the area of devices and/or circuitry is excluded.

The Center provides a technical answering service in which the technical staff responds to inquiries ranging in complexity from simple requests for data point values to requests for comprehensive reviews of the literature. This service is available to U.S. Government agencies, their contractors, subcontractors, suppliers, and those in a position to support the defense effort. Inquiries may be directed to:

Electronic Properties Information Center Hughes Aircraft Company Bldg. 6: E-175 Centinela and Teale Streets Culver City, California 90230 Telephone: (213) 391-0711 Ext. 6596

The EPIC Bulletin, published quarterly, announces new publications and current activities of the Center. Users may request receipt of the Bulletin on a regular basis.

INTRODUCTION

These data sheets have been prepared to meet a need for infrared refractive index information on optical materials with emphasis on high temperature utilization. Sources of information for these data sheets include periodicals, reports, proceedings of meetings and vendor literature. In addition to the 40,000 entries in the EPIC files, non-indexed material was also drawn upon to provide the desired degree of completeness. Inadequate materials characterization and differences in experimental techniques have made it unwise to judge the quality of the data and have resulted in a presentation of most of the data from the literature. In addition to the dependence of the refractive index and extinction coefficient on wavelength, the dependence on crystal form, film preparation techniques, temperature and radiation are considered. The designer will also find optical transmission plots and physical property information to be helpful.

The data sheets are organized in eight chapters comprising a technical introduction, definitions, experimental measurement techniques, problems associated with films, refractive index data for semiconductors, fluorides and ceramics, and metals. For convenience, a conversion table from wave number to wavelength is provided in the Appendix. The bibliography is divided into two parts where the first part lists references in the EPIC system, e.g., McCarthy (26010), and the second part lists non-EPIC references, e.g., Kodak[1967].

Users of the data sheets are encouraged to bring to the author's attention omissions of appropriate data so that supplements will be reasonably complete.

CHAPTER 1 TECHNICAL INTRODUCTION

GENERAL INFORMATION

This report provides a concentration of data for optical constants of thirteen materials with emphasis on the refractive index in the infrared region of the optical spectrum. Considerable extinction coefficient data are also included as an aide to the design engineer. The refractive indices and extinction coefficients are presented as a function of (1) wavelength, (2) temperature, (3) pressure, (4) materials preparation technique and (5) radiation environment.

OPTICAL SPECTRUM

The optical spectrum is illustrated in Figure 1-1. This report emphasizes the infrared region between 0.8 and 1000 microns, though some data for the ultraviolet and visible regions are included.

MATERIALS PROPERTIES

Properties of optical materials are summarized in Table 1-1. This table includes some physical and mechanical properties in addition to optical data and crystal structures because it is realized that the selection of an optical material cannot be based on optical data alone. Transmittance data for the infrared region are included as additional reference material (Figures 1-2 to 1-10). By their nature, cubic crystals have isotropic properties and are therefore preferred for many optical applications. Non-cubic crystals divide incident light into two separate components which travel at different velocities and are consequently refracted to different degrees. This phenomenon is called "double refraction," or, "birefringence." However, crystals that are tetragonal, hexagonal and rhombohedral have one axis along which there is only single refraction. These systems have one optic axis and are called "uniaxial," whereas rhombic, monoclinic and triclinic crystals are biaxial. Crystal classes for optical materials are included in Table 1-1 and are illustrated in Figure 1-11.

Figure 1-1. Optical Spectrum.

Table 1-1. Properties of Materials for Infrared Optics*

		1	Energy Gap	Refractive Index at	Useful Upper Transmission lunit (µ) (2 mm, thickness,	Youngs! Modulus		Melting or	Coefficient of Thermal
Material	Type of Grystal	Density (g/cm3)	(ev) at 298°K	~3 u and 298 °K	10% external transmittance)	(10° p. s. i.) at 298°K	Hardness Knoop No.	Softening Point (*K)	(10-e/*K)
Germanium	Cubic (diamond)	5,33	0.8	4.037	23	14.9	700-880	1209	5.5
Silica (crystal)	Hexagonal	2.63		1, 499	4.5	12.6	7+1	1743	7. 97. 13. 37
Silica (fused)		2.20		1.419	4.5	10.6	161	: 943	0. دې
Sapphire	Hexagonal	3.98	2	1.702	6.5	0.02	1370	2303	6.7
Silicon	Cubic (diamond)	2, 33	1,206	3.43	91	0.61	1100-1400	1693	4.7
Aluminum	Face-centered cubic	2.70		3.90		7.06 × 10 ⁵	25 Brinell	933	23.5
Gold	Face-centered cubic	19, 32		7.80		7.8 × 10 ⁵	28 Brinell	1336	14,1
Silver	Face-centered cubic	10.5		7.00		8.27 × 10 ⁵	91 Rockweil F	1234	19.1
Magnesium Fluoride	Tetragonal	3, 18		1,364	6	16.0	576	1498	11.0
Zinc Sulfide	o form hexagonal cubic	4.69	5,4	2,250	14.5	14	3.8	1103	6.9
Calcium Finoride	cubic	3.18		1.418	11.5	14. 5	158	1653	20.0
Zinc Selenide	cubic	5.27	4.08	2.440	77	10. 5	150	1793	7.7
Magnesium Oxide	cubic	3.58	7.77	1.692	9.5	7.4+	769	3073	12.0
Cadmum Telluride	cubic	5.80	1.58	2,695	31	5. غ	45	1318	5.9
Values may depend on selected crystal	n selected crystal axis.								

Figure 1-2. Silicon, 1 cm.

Ref. McCarthy (38757)

Figure 1-3. Germanium, 1.6 mm.

Ref. McCarthy (38757)

Figure 1-4. Transmission in Far Infrared by Crystalline Silica

Ref. Cartwright [1934]

Figure 1-5. Fused Silica, 1 cm.

Ref. McCarthy (38757)

Figure 1-6. Transmission in Far Infrared by Fused Silica

Ref. Cartwright [1934]

Figure 1-7. Calcium Fluoride, 5 mm.

Ref. McCarthy (38757)

Frgure 1-8. Aluminum Oxide - Sapphire, 2 mm.

Ref. McCarthy (26010)

Figure 1-9. Transmission for 2mm Thick Polycrystalline Irtran Samples

Ref. Kodak [1967]

Figure 1-10. Far Infrared Transmission of high resistivity CdTe at 300 K and 8 K

Ref. Johnson, et al [40781]

Figure 1-11. Crystal Systems.

CHAPTER 2

DEFINITIONS OF REFRACTIVE INDEX AND FACTORS AFFECTING THE REFRACTIVE INDEX

DEFINITIONS

The refractive index (n) of a material is defined as the ratio of the phase velocity (c) of electromagnetic radiation in vacuum to the phase velocity (v) of the same radiation in the material, or:

$$n = c/v$$

However, since the index of refraction of air is only about 1.0003, it is frequently measured with respect to air `nstead of vacuum and no correction made for air.

In non-absorbing media, the refractive in 'ax is real, while in absorbing media a complex index of refraction (N). sometimes used. The complex index of refraction is frequently defined a.

$$N = n + ik$$

where $k = \text{extinction coefficient or absorption index and } i = \sqrt{-1}$. Both n and k are frequency-dependent.

The real and imaginary parts of the square of the complex refractive index satisfy the <u>Kramers-Kronig relations</u>, as follows:

$$N^2 = (n + ik)^2 = (n^2 - k^2) + 2 nki$$

$$n^{2}(\omega) - k^{2}(\omega) = \frac{2}{\pi} \int_{0}^{\infty} \frac{\omega^{i} 2n(\omega^{i})k(\omega^{i})d\omega^{i}}{\omega^{i}^{2} - \omega^{2}} + constant$$

$$2n(\omega)k(\omega) = \frac{-2\omega}{\pi} \int_{0}^{\infty} \frac{n^{2}(\omega^{i}) - k^{2}(\omega^{i}) d\omega^{i}}{\omega^{i^{2}} - \omega^{2}}$$

This is, if the absorption index as a function of frequency is known, both $n(\omega)$ and $k(\omega)$ can be evaluated separately.

Optically anisotropic materials divide incident light into two components (double refraction) which are refracted along two mutually perpendicular planes. The ordinary wave travels at a velocity that is independent of the direction of propagation. The extraordinary wave travels at a velocity that is dependent on the relation between its direction and the optic axis. Single refraction occurs for light that travels parallel to the optic axis. The refractive index for the ordinary wave bears the symbol n_o, while n_e denotes the extraordinary wave. Both n_o and n_e are dependent on frequency. Most types of crystals are anisotropic, giving rise to both n_o and n_e. Cubic crystals have refractive indices that are identical in all directions (isotropic) for which reason they are often used in optical instruments.

In this compilation, emphasis is placed on the refractive index for the ordinary wave and for simplicity the corresponding refractive index is denoted by the symbol "n".

DEPENDENCE ON WAVELENGTH

The refractive index of optical materials is dependent on the wavelength of the incident light, as shown for the ordinary refractive index of such materials in Figure 2-1. The refractive indices in Figure 2-1 range from about 1.3 to greater than 33, with glasses in the region between 1.3 and 2.0, semiconductors between 3.4 and 4.1, and metals as high as 33.

The slope of curves from Figure 2-2, $dn/d\lambda$, represents the dispersion and the wavelength-dependence of dispersion is evident from Figure 2-2.

DEPENDENCE ON TEMPERATURE

The temperature coefficient of the refractive index is at least in part affected by the thermal expansion of the optical material, as shown by an approximate 10 percent contribution to the temperature coefficient of the refractive index for germanium [Ref. Cardona (2569).]

Figure 2-1. The refractive indices of selected optical materials.

Ref. Ballard (12539)

Figure 2-2. Dispersion for selected materials.

Ref. Wolfe [1965]

Heating a material causes a change in its dimensions. This change in dimensions is expressed by the linear coefficient of thermal expansion. In most cases, this coeff tient is positive, increasing with rising temperature. The coefficient is usually small for optical materials, as may be seen from Table 1-1 and is wavelength-dependent (Figure 2-3). The occurrence of phase changes in the material can cause a major change in the coefficient of thermal expansion. For anisotropic crystals, the thermal expansion is also influenced by the direction of the heat flow. The correlation between refractive index, thermal change in refractive index, and linear thermal coefficient of thermal expansion for selected optical materials is demonstrated in Figure 2-4.

DEPENDENCE ON PRESSURE

Application of external pressure on a material affects the material's refractive index in excess of changes attributable to compressibility and is explained by the existence of two effects due to pressure: (1) change in electron density and (2) change in electronic polarizability; the first effect produces an increase in refractive index with pressure, while the second effect reduces it. No wavelength-

Figure 2-3. Temperature Coefficient of Refractive Index for Some Optical Materials

Ref. Smakula [1952]

Figure 2-4. Correlation of refractive Index, Thermal Change in Refractive Index, and Linear Thermal Coefficient of Expansion for IR Optical Materials

Ref. Hilton Jones [1967]

dependence of the pressure coefficient of the refractive index is expected, at least in the near infrared region [(Ref. Cardona (2569)].

DEPENDENCE ON NUCLEAR RADIATION

Nuclear radiation of space and laboratory origin can affect the refractive index of an optical material. Most of the studies involving radiation effects on the refractive index have been made on glasses. In this report, emphasis is placed on radiation effects to fused quartz since this material finds wide use on spacecraft as a window material.

DEPENDENCE ON MATERIALS PREPARATION TECHNIQUE

The refractive index of a material is a function of the surface condition and chemical composition. In the case of evaporated films, the refractive index is also influenced by: evaporation atmosphere, substrate temperature, substrate material and orientation, condensation rate, film thickness and source temperature.

CHAPTER 3

METHODS FOR DETERMINING THE REFRACTIVE INDEX

Widely used methods for determining the refractive index of a material are based on the following principles:

- 1. Deviation
- 2. Reflection
- 3. Interference
- 4. Transmission

Fundamentals of these methods will be discussed in this chapter. Data tables in this report indicate which method was used to determine refractive indices.

DEVIATION

Deviation methods, measuring the deviation of a beam of light from a known path, can be considered to be the classical approach.

Deviation methods use a prism and therefore cannot be used for films. A typical deviation method is the prism deviation method, where the light is refracted through the prism at a given deviation which need not be the minimum deviation. Figure 3-1 illustrates the geometry of the prism, which permits calcuation of the refractive index as shown below. [Ref. Wolfe, et al (26316)].

$$\theta^{\dagger}_{1} + \theta^{\dagger}_{2} = \alpha$$

Snell's law provides the next pair of equations:

$$n_1 \sin \theta_1 = n_2 \sin \theta_1$$

$$n_1 \sin \theta_2 = n_2 \sin \theta_2$$

er waster with

Figure 3-1. Prism Geometry for Minimum and Normal Deviation

Now a series of substitutions puts these equations in a form that simplifies solution of n_2/n_1 :

$$n_{1} \sin \theta_{1} = n_{2} \sin (\alpha - \theta'_{2})$$

$$= n_{2} \left(\sin \alpha \cos \theta'_{2} - \cos \alpha \sin \theta'_{2} \right)$$

$$= n_{2} \left[\sin \alpha \left(1 - \sin^{2} \theta'_{2} \right)^{1/2} - \cos \alpha \sin \theta'_{2} \right]$$

$$\sin \theta'_{2} = \frac{n_{1}}{n_{2}} \sin \theta_{2}$$

$$\sin \theta_{1} = \sin \alpha \left[\left(n_{2} / n_{1} \right)^{2} - \sin^{2} \theta_{2} \right]^{1/2} - \cos \alpha \sin \theta_{2}$$

$$\left(n_{2} / n_{1} \right)^{2} = \sin^{2} \theta_{2} + \frac{\sin^{2} \theta_{1} + 2 \sin \theta_{1} \cos \alpha \sin \theta_{2} + \cos^{2} \alpha \sin \theta_{2}}{\sin^{2} \alpha}$$

$$(n_2/n_1)^2 = \frac{\sin^2 \theta_2 + \sin^2 \theta_1 + \sin \theta_1 \cos \alpha \sin \theta_2}{\sin^2 \alpha}$$

$$n_2 = \frac{n_1}{\sin \alpha} (\sin^2 \theta_1 + \sin^2 \theta_2 + 2 \sin \theta_1 \sin \theta_2 \cos \alpha)^{1/2}$$

REFLECTION

Reflection methods for determining optical constants are based on measurement of the reflection coefficient and the phase relationship between the two components of the reflected radiation, where one component is perpendicular to and the other component is parallel to the plane of incidence, as shown in Figure 3-2. In some reflection methods, both reflectivity and transmission must be measured but the data then permit the calculation of refractive index and extinction coefficient [Ref. Spitzer and Fan (791)].

A detailed description of a reflection method has been provided by Avery [Ref. Avery [1952]]. Avery's method briefly entails:

- Determination of the ratio of the reflection coefficients (ρ^2) for incident light polarized in and perpendicular to the plane of incidence.
- 2. Let the complex refractive index be N = n(1 ik), then at the angle of incidence:

$$\rho^{2} = \frac{a^{2} + b^{2} - 2a \sin \theta \tan \theta + \sin^{2}\theta \tan^{2}\theta}{a^{2} + b^{2} + 2a \sin \theta \tan \theta + \sin^{2}\theta \tan^{2}\theta}$$

where

$$N^2 - \sin^2\theta = (a - ib)^2$$

3. From curves relating ρ^2 to n and k for a number of angles of incidence, and measurements at two or more angles of incidence, n and k can be determined.

INTERFERENCE

In principle, interferometric methods are based on dividing the light output of a source into two or more beams which are then superimposed. By illumination of parallel plates of a transparent material with these superimposed beams, reflection from the upper and lower

Figure 3-2. Geometry for the Reflection Method

Ref. Wolfe, et al, (26316)

surfaces will occur and an interference pattern will be created. [Ref. Wolfe, at al (26316)].

The Variable Angle Monochromatic Fringe observation (VAMFO) method represents an interferometric method for determining the thickness and refractive index of transparent films on reflective substrates using the apparatus depicted in Figure 3-3 [Ref. Pliskin & Fan (36787)]. The technique employs a rotating stage which is attached to an xy stage. Maxima and minima (fringes) are observed as the stage and samples are rotated, providing the number of fringes between angular limits. A microscope provides magnification. The refractive index is given by the equation.

$$n = \frac{\Delta m \lambda}{2t (\cos \theta_2 - \cos \theta_1)}$$

Figure 3-3. Diagram of VAMFO Apparatus

Ref. Pilskin and Fan (36787)

where

 Δm = number of fringes observed between refraction angles θ_1 and θ_2 ,

t = film thickness

λ = wavelength of filtered light

TRANSMISSION

The transmission method for determining the refractive index of films is based on the following equations:

 $2nt = m \lambda$ for maximum transmission

and

2nt = $(m + \frac{1}{2})\lambda$ for minimum transmission,

where

t = film thickness

? = wavelength of incident light

m = the order number

The order number can be determined by using the first equation in the region of minimum dispersion, where the order number is low and the product 2nt is essentially constant. The film thickness is measured by other tests. [Ref. Wales, et al., (31497)].

CHAPTER 4 PROBLEMS ASSOCIATED WITH FILMS

The optical characteristics of films are sensitive to the film microstructure, which in turn is affected by various deposition parameters. The formed film is subject to aging effects including oxidation, recrystallization, hydrolysis, thermal decomposition, chemical reactions with the environment, and other causes. As a result of these factors, optical data for films often show a wide spread in values between observers.

Optical films are most commonly deposited by thermal evaporation in a vacuum onto a substrate that may be heated. Factors influencing the optical characteristics of evaporated films include the following:

- 1. Condensation rate
- 2. Source temperature
- 3. Substrate material
- 4. Substrate temperature
- 5. Ambient pressure
- 6. Nature of ambient environment
- 7. Film thickness.

Specific results showing the effects of these factors on the refractive index are presented on appropriate materials data sheets in this report. Some additional remarks relating to these factors serve to demonstrate the strong influence of some of the factors.

The presence of hydroxyl groups, usually formed by the reaction of water vapor with the material, causes an absorption band near 2.7 microns and a low refractive index at that wavelength. This phenomenon is most marked in sputtered, anodized, and electrodeposited films.

An example of aging is the growth of natural oxide on aluminum, which has been reported to reach a maximum thickness of 45 Angstroms in one month. Oxides usually have a different refractive index from that of the matrix, as is illustrated in Table 4-1, where germanium, silicon, aluminum and their oxides are compared.

Table 4-1. Comparison of Refractive Indices of Elements and Oxides

Material	Wavelength, (microns)	Refractive Index (n)
Germanium	not stated	4.0
Germanium Oxide (GeO ₂)		
(hexagonal)	not stated	1.735
(tetragonal)	not stated	2.05 - 2.10
Silicon	0.55	0.055
Silicon monoxide (SiO)	· 0.55	1.9 - 2.0
Silicon sesquioxide (Si ₂ O ₃)	0.55	1.52 - 1.55
Silicon dioxide	0.55	1.46 - 1.47
Aluminum	2. 0	2. 3
Aluminum oxide (Al ₂ O ₃)	2. 0	1.74

The effect of surface oxide in metal deposition is particularly apparent where extremely thin films are laid down. Such ultra-thin films may act as getters for oxygen and other gases. On the other hand, the reducing property of a hydrogen atmosphere during evaporation can lead to a refractive index, representative of the pure element (e.g., germanium) because the hydrogen ties down the oxygen chemically. High substrate temperatures can cause a large reduction in refractive index by formation of a relatively thick oxide layer, as was demonstrated for germium by Davey, et al. [Ref. Davey at al., (13363)]. Even this short discussion of problems associated with films should convince the reader that published optical data for films should be used with caution.

CHAPTER 5 REFRACTIVE INDEX DATA FOR SEMICONDUCTORS

Electrons in crystals are located within energy bands, shown in Figure 5-1, and the bands are separated by regions for which no electron energy states are permitted; these regions are called "band gaps" or "energy gaps." In conductors, one or more of the bands are partially filled. In semiconductors, all bands are completely filled, except for one or two partially filled bands. Insulators possess allowed energy bands that are either empty or filled with no electrons available for movement in an electric field.

The distinction among conductors, semiconductors and insulators is of course not as sharply drawn as the preceding discussion might imply. Electrical resistivity measurements, summarized in Figure 5-2, show the wide range in resistivity between good conductors and good insulators. Figure 5-2 also shows the wide range within a class (e.g., insulators) and the effect of impurities on the electrical resistivity of semiconductors (germanium).

Figure 5-1. Schematic Electron Occupancy of Allowed Energy Bands for an Insulator, Metal, and Two Semiconductors. The Vertical Extent of the Boxes Indicates the Allowed Energy Regions;

The Shaded Areas Indicate the Region Filled With Electrons

Figure 5-2. Electrical Resistivity of Materials

SILICON

INTRODUCTION

Silicon is a semiconductor that has found application in infrared optics, transistors, diodes, rectifiers, solar cells, alloys and as deoxidizer in steels. Silicon is the second most abundant element, usually occurring as oxide or silicate. Recovery from the oxide is accomplished by reduction with carbon. Purification is accomplished by distillation of silicon tetrachloride with subsequent reduction of the tetrachloride with zinc. Zone melting with solidification and growth of single crystals from the molten state provide further purification. Highly purified silicon has a resistivity of approximately 2.5 x 10^5 ohm-cm.

The physical properties of intrinsic silicon were summarized in Table 1-1. Impurities in silicon have an effect on a number of properties including electrical resistivity and optical transmission. It is therefore important to realize that differences in optical data of several authors may arise from different doping level; frequently, doping levels are not stated in publications. Doping levels are often expressed in terms of room temperature resistivity and Figure 5-3 provides the correlation between electrical resistivity and impurity concentration at 300°K. The optical transmission of silicon is summarized in Figure 1-2.

DATA

All data presentations for silicon are listed in Table 5-1 and a summary of wavelength and temperature coverage is plotted in Figure 5-4. Most data for bulk silicon are believed to have been obtained from single crystal naterial, but experimenters have frequently failed to state the crystalline status of their specimens. Figures 5-5 to 5-14 and Tables 5-2 to 5-4 present refractive index data for bulk silicon for wavelengths from the visible region to 200 microns; Figure 5-15 shows the extinction coefficient for bulk silicon from 1.0 to 15 microns. The effect of the type of detector on the measured refractive index is evident from Figure 5-9. Figures 5-10 to 5-15 show data for doped specimens. Figures 5-14 and 5-15 present the optical properties of a nighly doped

p-type surface on an n-type substrate, where the doped layer is considered to be semi-infinite; the effect of surface condition on the refractive index is also apparent from these Figures (see also Figures 5-23 and 5-29). Finally, Figure 5-16 shows the influence of wavelength on the refractive index of a silicon film. The effect of temperature on the refractive index is the subject of Figures 5-17 to 5-26 for temperatures between 77 and 960°K.

Intrinsic silicon shows good agreement in refractive index data and no large difference in refractive index is observable between bulk and films. No significant difference is detected between intrinsic bulk, single crystal and polycrystalline refractive indices. Doped materials do not exhibit a significant correlation between type and degree of doping, and refractive index.

Figure 5-3. Resistivity at 300°K versus Impurity Concentration in Silicon [Irvin, (5250)]

Figure 5-4. Wavelength and Temperature Range of Silicon Data

Table 5-1. List of Silicon Data

					Wavel Ran (mic			
Figure	Table	n or k	Form	Crystal	From	То	Remarks	Parameter
5-5	5-2	n	Bulk	۵	1.4	11		Wavelength
5-6	•	n	Bulk	Single	0.1	5		Wavelength
	5-3	n	Bulk	Single	26	200		Wavelength
5-7		n	Bulk	Single	1.1	4.8		Wavelength
5-8		u.	Bulk	\$	0.1	5	100, 297*K	Wavelength
5-9		n	Bulk	٥	0.03	12		Wavelength
	5-4	n	Bulk	2	1.0	2.6	85, 300°K	Wavelength
5-10		n	Bulk	٠	25	180	n-type	Wavelength
5-11		n	Bulk	و	25	180	p-type	Wavelength
5-12		n	Bulk	Poly	4	12		Wavelength
5-13		n	Bulk	•	3.5	8,5	vac. treated	Wavelength
5-14		n	Bulk	*	1	15	p-type	Wavelength
5-15		Þ	Bulk	*	1	15	p-type	Wavelength
5-16		n	Film	Poly	0.55	2.2		Wavelength
5-17		dn/dT	Bulk	Single	1.3	1.6	p-type, 109-750°K	Temperature
5-18		Δn	Bulk	9	1.0	4.5		l'emperature
5-19		∆n/n	Bulk, Film	Single,	3.0	3.0	77-400°K	Temperature
5-20	į	n	Bulk	*	1.1	4.8	100-297	Temperature
5-41		n	Bulk	*	1.3	5.2	p-type. 109-750°K	Temperature
5-22		n	Bulk	\$	0.9	2.0	p-type, 280-960°K	Temperature
5-23		n	Bulk	\$	25	180	n-type, 85-300°K	Temperature
5-24		n	Bulk	3	0.1	5.0	100 - 297 ° K	Temperature
5-25		n	Bulk	٤	0.9	2.0	n -type, 280-960°K	Temperature
5-26		dn/dT	Bulk	2	0.45	2.0	n-type, 280-960*K	Temperature
5-27		n	Bulk	\$	0.1	5.0		Pressure
5-28		n	Bulk	8	1	15	p-type	Surface
5-29		k	Bulk	٥	1	15	p-type	Surface

PRECEDING PAGE BLANK

PARAMETER: Wavelength

FORM Bu	ılk		mm
THICKNESS	NA (1	Prism)	
RAY ORDI	NARY 💆 ,	EXTRAORDI	NARY 🗆
WAVELENGT	TH 1.4-	11	
TEMPERATU	RE 299		<u>°</u> к
METHOD	Devi	ation	
REFERENCE	Salzbe	rg & V i lla	(3900)
REMARKS			
			
	Figure	5-5	

MATERIAL:

Silicon

Refractive Irdex, n 3, 4975 1.3570 3. 4462 1, 3673 3. 4929 1, 3951 3.4795 1.5295 3, 4696 1.6606 3.4664 1.7092 3, 4608 1. 6131 1, 9701 3, 4537 3, 4476 2, 1526 3, 4430 2, 3254 2, 4373 3, 4408 3. 435H 2, 7144 3, 4520 3, 00 3 4297 3, 3033 3, 4286 3, 4198 3.4284 3, 50 3. 4255 4, 00 3, 4242 4, 258 3, 4236 4. 50 3. 4223 5.00 3, 4213 5, 50 3.4202 6,00 3.4195 6. 50 3, 4189 7.00 7, 50 3, 4186 3.4184 8,00 3, 4182 8, 50 10,60 3, 4179 3, 4178 10, 50 3, 4176 11.04

Table 5-2

Wavelength (Microns)	Refractive Index,
26 - 29	3.41 ± 0.03
111-200	3.41 ± 0.03

Material: Silicon
FORM Bulk, Single Crystal
THICKNESS not stated mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 0.1 - 5
TEMPERATURE 300 °K
METHOD Reflection
REFERENCE Philipp & Taft (5951)
REMARKS Values above 1.0 micron wer
taken from Salzberg & Villa (3900).
Figure 5-6

THICKNESS	0.5 - 2.0	mm	
RAY ORDINARY	EXTRAORD	NARY D	
WAVELENGTH_	26-200	<u> </u>	
TEMPERATURE	297	<u>°к</u>	
METHOD	Interference		
REFERENCE	Aronson, et al.	(16091)	
REMARKS Crystal cut perpendicular			
to the [111] axis.			

Table 5-3

Published with persission Converse & 1959 Personnes Press

MATERIAL:	Silicon
-----------	---------

NA	mm
Y 🔯 , EXTRAORDII	NARY [
1, 1-4, 8	μ
100-297	°K
Deviation	
Cardona, et al.	(620)
	100-297

REFRACTIVE INDEX, n	6	1 dn = - (3 ± 2) x 10 ⁻⁷ (KG/CM ²) -1 3.5 3.4 100°K ROOM TEMPERATURE
	0	1 10 10 10
	Ü	
		WAVELENGTH, MICRONS
	0	.1 1 10 10
		PHOTON ENERGY, eV

MATERIAL: Silicon
FORM Bulk mm THICKNESS not stated
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 0.1-5
TEMPERATURE 100, 297 •K
METHOD not stated
REFERENCE Evans (26567)
REMARKS
Figure 5-8

FORM Bulk		_
THICKNESS	NA (Prism) mm	_
RAY ORDINAR	Y D. EXTRAORDINARY C]
WAVELENGTH_	0.03-12	4
TEMPERATURE	~298 0	<
METHOD	Deviation	
REFERENCE	Hilton, et al., (25628)	
REMARKS		_
		_
		_
]	Figure 5-9	

MATERIAL:

Silicon

Wavelength, (Microns)	Refractive Index,
1.05	3.565
1.10	3,553
1.20	3,531
1.40	3.499
1.60	3.480
1.80	3.466
2.00	3,458
2. 20	3. 451
2.40	3.447
2. 50	3.443

THICKNESS	NA (Prism)	mm
RAY ORDINAR	Y D . EXTRAORDINARY	
WAVELENGTH_	1.0-2.6	
TEMPERATURE	~298	°K
an: THOD	Deviation	
REFERENCE	Briggs (13314)	
RFMARKS		
	Table 5-4	

MATERIAL: Silicon
FORM Bulk
THICKNESS 0.010 mm
RAY ORDINARY D , EXTRAORDINARY
WAVELENGTH 25-180
TEMPERATURE 85, 300 °K
METHOD Reflection
REFERENCE Balkanski & Besson (22653
REMARKS Phosphorus-doped n-type
silicon at concentration of 2.9 x 10^{17}
cm ⁻³ at 300°K.

Figure 5-10

Silicon

THICKNESS	0.010		mm
RAY ORDINARY	∕ ⊠ ,	EXTRAORDINARY	<u> </u>
WAVELENGTH_	25-180		<u> </u>
TEMPERATURE_	300		<u>°K</u>
METHOD	Reflec	tion	
REFERENCE B	alkansk	i & Besson (22	653)
REMARKS Ars	enic-do	ped p-type sili	con
with concent	ration o	of 1.7 x 10 ¹⁸ cr	n ⁻³
at 300°K.			

Figure 5-11

	0.2								_		_		
	3.0	-	ă						<u>cu</u>	RVE 1	+	(SEC	2
	0.8	-							•	2 3		30 60	& 210
	0.6	-		*					0	5	İ	120	& 210
c	0.4	-			×								
REFRACTIVE INDEX, n	0.2	_			8	x 8							
EFRACTIV	2.0	-				•	×						
*	1.8	-					•	×					
	1.6	-						•	× o				
	1.4	-								8 8	2	_	
	1.2	F									•	×	x 8 8
	1.0	L	3	1	5					<u></u>			
				WA	ÆIEN	LC TH			ΩN	•			

A	WATERIAL: Silicon	- O Tamas
FORM Bulk	, polycrystalline	
THICKNESS	not stated m	ım
RAY ORDINAR	Y 2 , EXTRAORDINARY	<u></u>
WAVELENGTH_	4-12	<u>#</u>
TEMPERATURE	~298	°K
METHOD	Reflection	
REFERENCE	Simon (4799)	
REMARKS Re	sistivity = 0.7 ohm-cm	1

THICKNESS	not sta	ited	mm
RAY OFIDINARY	' ☑ ,	EXTRAORDINARY	_0
WAVELENGTH	3.5-8.	5	<u> </u>
TEMPERATURE	~298		°K
METHOD	Reflec	tion	
REFERENCE S	pitzer,	et al., (13860)
REMARKS Ph	osphoru	ıs-doped n-typ	e
silicon with	concent	ration at 298° E	ζ
of 7, 5 x 10^{11}	cm ⁻³ .	Material vac	uum-
heat treated	at 1310	°K.	
	Figure	5-13	

FORM p-type surface on n-type subst	rate
THICKNESS 1 x 10 ⁻² (p-type)	mm
RAY ORDINARY TO EXTRAORDINARY	
WAVELENGTH 1-15	<u> </u>
TEMPERATURE ~298	<u>•</u> K
METHOD Reflection	
REFERENCE Hall (13466)	
REMARKS p-type surface produced b	y

MATERIAL:

Silicon

Figure 5-14

doping with boron.

Figure 5-15

Published with permission Copyright@1068 Elsevier Publishing Company

FORM Film, amorphous	
THICKNESS (0. 4-3, 25) x 10-4	mm
RAY ORDINARY . EXTRAORDINAR	Y 🛚
WAVELENGTH 0. 55-2, 2	μ
TEMPERATURE 298	°K
ДОКТЭМ	
REFERENCE Grigorovici & Vancu (354	155)
REMARKS Film produced by	
evaporation of pure silicon single	
crystal (resistivity = 10 ohm-cm)	at
<1 x 10 ⁻⁵ torr using electron bombardment and lower end of sil as crucible.	icon

MATERIAL:

Silicon

Note: crystal data refer to single crystals.

Published with permission Copyright © 1959 Porgamon Press

	MATERIAL: STITCOIL	
FORM Sing	le Crystal	
THICKNESS	NA (Prism)	mm̃
RAY ORDINAL	RY 🖾 , EXTRAORDINA	RY 🗆
WAVELENGTH	1,26-1.56	
TEMPERATURE	109-750	°K
METHOD	Deviation	
REFERENCE	Lukes (3382)	
REMARKS	p-type silicon,	
resistivity	= 380 ohm-cm.	

Figure 5-17

THICKNESS	NA (P.	rism)	4 TW 2	mm
RAY ORDINAR	Y 🛭 ,	EXTR	AORDINARY	<u></u>
WAVELENGTH	1.0	-4.5		<u> </u>
TEMPERATURE	87,	297		°ĸ
METHOD	Deviat	ion		
REFERENCE	Cardo	na (256	59)	
REMARKS				

Figure 5-18

Equation:

$$(1/n)(dn/dT) = (3.9 \pm 0.4) \times 10^{-5} (°K)^{-1}$$

REFRACTIVE INDEX, n	3,440 3,460					297°K			•
	3.400	0	1	2.0	_4_	3.0		40	 5.0
				٧	VAVELE	NGTH, I	WCRO	45	

MATERIAL:_	Silicon

FORM Single Crysta, Film & Prism	!
THICKNESS Film 0.003-01010 mm	n
RAY ORDINARY . EXTRAORDINARY	<u> </u>
WAVELENGTH 3.0	<u> r</u>
TEMPERATURE 77-400	°K
METHOD Interference for films,	
deviation for prism. REFERENCE Cardona, et al. (620)	
REMARKS	

THICKNESS	NA (Prism)	mm
RAY ORDINAR	Y D , EXTRAORDINARY	
WAVELENGTH	1.1-4.8	_#
TEMPERATURE	100-297	٥ĸ
METHOD	Deviation	
REFERENCE	Cardona, et al. (620)	
REMARKS		
		

Figure 5-20

Published with permission Copyright@1960 Czecheolovek Academy of Sciences

THICKNESS NA (Prism)	mm
RAY ORDINARY 13 , EXTRAORDI	NARY 🗆
WAVELENGTH 1.3-5.2	<u> </u>
TEMPERATURE 109-750	°K
METHOD Deviation	
REFERENCE Lukes (4541)	
REMARKS p-type silicon,	
Resistivity = 380 ohm-cm.	

Figure 5-21

THICKNESS 1.77 (Bulk)	mm
RAY ORDINARY . EXTRAORDINARY	0
WAVELENGTH 0. 9-2. 0	μ
TEMPERATURE 280-960	°K
METHOD Emissivity	
REFERENCE Sato (29333)	
REMARKS n-type silicon, p-doped,	
resistivity = 15 ohm-cm.	

Figure 5-22

	8	
REFRACTIVE INDEX, n	4	1 dn = - (3 ± 2) x 10 ⁻⁷ (KG/CM ²) ⁻¹ 3.5 3.4 100°K ROOM TEMPERATURE
	0	.1 1 10 WAVELENGTY MICRONS
	o	.1 1 10
		PHOTON ENERGY, eV

FORM Bulk		·
THICKNESS	0.010	mm
RAY ORDINAL	RY 🖸 , EXTRAORDINARY	ū
WAVELENGTH	25-180	<u> </u>
TEMPERATURE	85, 300	°K
METHOD	Reflection	
REFERENCE	Balkanski and Besson (2	<u>26</u> 53
REMARKS Ph	osphorus-doped n-type	sili-
con at conc	entration of 2.9 \times 10 ¹⁷	
cm ⁻³ at 300		

Figure 5-23

MATERIAL:

Silicon

THICKNESS	not sta	ted	mm
RAY ORDINAR	Y 🗗 ,	EXTRAURDINARY	
WAVELENGTH_	0.1	-5	μ
TEMPERATURE	100	, 297	°K
METHOD	not sta	ted	
REFETENCE	Evans	(26567)	
REMARKS			

	8	- /•
	7	- /
Z +		•/
OEFFICII	5	- <u>dn</u> ∝n ³
ATURE C	5	<u>a</u> /
TEMPERATURE COEFFICIENT OF REFRACTIVE INDEX, of (10 ⁻⁴ •K ⁻¹)	•	
OF REF		
	A	
		/
		3 4 5
		REFRACTIVE INDEX, n

MATERIAL: Silicon

THICKNESS 1.	77	danis i mark y	mn	<u>n</u>
RAY ORDINARY	Ø ,	EXTRA	ORDINARY	
WAVELENGTH	0.9	- 2.0		
TEMPERATURE	280	- 960		•
METHOD Emi	ssivit	y*		
REFERENCE Sa	to (29	333)		
REMARKS n.	-type :	silicon	, phospho	ru
doped, resist	ivity :	= 15 Ω	-cm.	

Figure 5-25

*Calculated from:

Emissivity =
$$\frac{4 \text{ n}}{(\text{n} + 1)^2}$$

Figure 5-26

PARAMETER: Pressure

THICKNESS_	not stated n	nm _
RAY ORDINA	ARY D. EXTRAORDINARY	
WAVELENGTH	0.1-5.0	<u> </u>
TEMPERATUR	E 297	°K
METHOD	not stated	
REFERENCE	Evans (26567)	·
REMARKS		

Figure 5-27

MATERIAL: Silicon

PARAMETER: Surface Condition

THICKNESS 1	x 10 ⁻²	(p-type)film:	mm
RAY ORDINAR	Y 😡	EXTRAORDINAR'	Y 🖸
WAVELENGTH	1 - 1	5	μ
TEMPERATURE	~29	8	°K
METHOD Rei	lectio	n	
REFERENCE Ha	.11		
REMARKS p-t	ype su	irface produced	by
doping with	boron.		

MATERIAL:

Silicon

Figure 5-29

GERMANIUM

INTRODUCTION

Germanium is a semiconductor that has found application in infrared optics, transistors, diodes, rectifiers, thermoelectric devices and in brazing alloys. Recovery of germanium from ores involves a series of steps including pyro and hydrometallargy to produce a germanium concentrate, chlorination to obtain a purer germanium tetrachloride, hydrolysis to produce still purer germanium dioxide and reduction of the oxide to the mosal with zinc. This "first reduction metal" is zone refined to produce semiconductor grade germanium, and an increase in resistivity is accomplished from a minimum of 5 ohm-cm. for first reduction metal to a minimum of 40 ohm-cm. for the zone-refined metal. The resistivity of intrinsic germanium is 47 ohm-cm.

The physical properties of intrisic germanium are summarized in Table 1-1, and its optical transmission spectrum is plotted in Figure 1-3. Impurities in germanium have an effect on several properties including electrical resistivity and optical transmission. Indeed, even films prepared by evaporation of highly purified intrinsic germanium have shown to be p-type germanium with a resistivity of 3 to 10 ohm-cm, [Ref: Courvoisier, [1963]]. It is therefore apparent that a comparison of optical properties of evaporated films, measured by various workers, may be unrealistic because of different doping levels.

Doping levels are often expressed in terms of room temperature resistivity and Figure 5-30 permits the conversion between electrical resistivity and impurity concentration, at 300°K.

DATA

All data presentations for germanium are listed in Table 5-5 and a summary of wavelength and temperature coverage is plotted in Figure 5-31.

Figure 5-32 presents a comparison in refractive indices of bulk and film germanium and also provides an introductory presentation of

PRECEDING PAGE BLANK

Figure 5-30. Resistivity versus Impurity Concentration for Ge, 300°K

Ref: Sze and Irvin (34530)

the effect of the nature of the evaporation atmosphere during film deposition. Data in Figure 5-32 as well as subsequent Figures show a consistently higher refractive index for films as compared to bulk germanium. Some observers [Ref: Wales, et al. (31497)] believe that this difference is caused by the presence of at least one additional loosely bonded electron than normal at the surface of the crystallites. Germanium films, deposited onto substrates that are below 673°K, are amorphous and will assume the refractive index of bulk material after annealing; annealing of such films caused crystallite formation. Similarly, deposition onto heated substrates (>673°K) resulted in the formation of films having bulk refractive index. Figures 5-33 to 5-48 and Tables 5-6 to 5-10 present additional spectral data for the refractive index of bulk and film germanium. As was the case with silicon, no generalization is possible for the effect of doping on the refractive

Table 5-5. List of Germanium Data

					Wavel Rar (mic			
Figure	Table	nork	Form	Crystal	From	То	Remarks	Parameter
5-32		n	Bulk, Film	7	1.0	6.0	Data comparison	Wavelength
5-33		n	Bulk	Single	0.6	1.7	300°K	Wavelength
5-34		n	Bulk	Single	0.6	1.7	120°K	Wavelength
5-35		n	Bulk	Single	2	16		Wavelength
5-36	·	n	Bulk	۵	1.5	13		Wavelength
5-37		n	Bulk	Single	0.6	5,5	87-297 ° K	Wavelength
5-38		n	Bulk	73	0,8	5.5	Several doping levels	Wavelength
5-39		n	Bulk	Single	0.1	1.8		Wavelength
	5-6	n	Bulk	Single	25	143	7.5, 297°K	Wavelength
5-40		n	Bulk	Single	0.8	15		Wavelength
	5-7	n	Bulk	Single	2.0	2.4		Wavelength
5-41		n	Bulk		70	500		Wavelength
	5-8	n	Bulk	Single, polycryst	2	16		Wavelength
	5-9	n	Bulk		1.⊭	2, 6		Wavelength
5-42		n	Bulk	'n	4	14.	•	Wavelength
5-43		n	Bulk	4	5	35	n-doped, p-doped	Wavelength
5-44		k	Bulk	n	12	35	n-doped	Wavelength
	5-10	n	Film	*	8.7	12.4	77, 300°K	Wavelength
5-45		n	Film		1.G	5.0		Wavelength
5-46		n	Film	*	0.6	10		Wavelength
5-47		n	Film	Polycryst	0.7	3, 1	p-doped	Wavelength
5-48		n	Film	~.	0.85	2.5		Wavelength
5-49		n	Bulk	Single	1.8	5.5	n-doped	Temperature
5-50		n	Bulk	ñ	3.6	2.5	n-doped	Temperature
5-51		dn/dT	Bulk		2.0	2,5	n doped	 Temperature
5-52		n ²	Bulk	Single	1.5	2.2	80-400°K	Temperature
	5-11	n	Bulk	,	23	143	7.5, 297°K	Temperature

Table 5-5 (continued)

					Waveler Rang (micro	e		
Figure	Table	nork	Form	Crystal	From	To	Remarks	Parameter .
5-53		n	Bulk	Single	0.6	1.7	300°K	Temperature
5-54		n	Bulk	Single	0.6	1.7	120°K	Temperature
5-55		n	Bulk	r.	1.8	5.3	87-297*K	Temperature
5-56		∆n/n	Bulk, Film	۵	3.0	3.0	90-400°K	Ten.perature
	5-12	dn/dT	*	ع	2.25	2. 25		Temperature
	5-13	n	Bulk	Single	2.0	2.4		Temperature
	5-14	n	Film		8.7	12.4	77-300°K	Temperature
4-57		Δn/n	Film	*	2.0	4.0	77-395*K	Temperature
! 	5-15	(l/n)dn/dp	Film	*	3.0	3.0		Pressure
Ì	5-16	(l/n)dn/dp	Film	¢	3	3	From RF dielec- tric data	Pressure
	5-17	(1/n)dn/dp	Film		2.0	4.0		Pressure
	5-18	n	Film	*	2,64	2.64	0.07-6.5µ Thickness	Film Thickness
5-58		n	Film	3	2,2	2.2	Ge/Za5 Film	Film Composition
5-59		n	Film		1.0	5.0		Film Deposition Rate
5-60		n	Film		1.0	5.0	Air atmosphere	Atmosphere Film Deposition
5-61		n	Film	٥	0,5	5.0	Vacuum atmosphere	Atmosphere Film Deposition
5-62		n	Film	۰	1.0	5.0	Oxygen atmosphere	Atmosphere Film Deposition
5-63		n	Film	۰	1.0	5.0	Nitrogen atmosphere	Atmosphere Film Deposition
5-64		n	Film	۰	1.0	5.0	Nitrogen atmosphere	Atmosphere Film Deposition
5-65		n	Film	*	1.0	5.0	Hydrogen atmosphere	Atmosphere Film Deposition
5-66			Film	٥	1.0	5.0	273*K	Deposition Sub- strate Temperature
5-67		n	Film	*	1.0	5.0	373-473° K,	Deposition Sub- strate Temperature
5-68		n	Film	*	1.0	5.0	673°K	Deposition Sub- strate Temperature
5-69		n	Film		1.0	5.0	773-873°K	Deposition Sub- strate Temperature
5-70		n	Film	Amorphous and polycryst.	1.25	6.5	293-573°K	Deposition Sub- strate Temperature
5-71		Δn	Bulk	*	1.6	2 2		Electric Field
*Not st	ated.							

not stated.

Figure 5-31. Wavelength and Temperature Range of Germanium Data

index. The effect of temperature on the refractive index is covered in Figures 5-49 to 5-57 and Tables 5-11 to 5-14. Tables 5-15 to 5-17 provide information on the effect of pressure on the refractive index. The effect of film thickness on the refractive index at 2.64 microns is indicated in Table 5-18 and a decreasing refractive index with increasing film thickness is observed. It is possible to make films with a continuously variable refractive index, as shown in Figure 5-58. These films are made by the simultaneous evaporation of germanium and zinc sulfide from two sources and may find application as absorption cut-off filters with variable cut-off frequency.

The refractive index of germanium is not greatly affected by the deposition rate, as shown in Figure 5-59. The effect of the nature of the deposition atmosphere is the subject of Figures 5-60 to 5-65 where the atmosphere consisted of air, vacuum, oxygen, nitrogen and hydrogen, respectively, with the gases at a pressure of approximately 1 x 10-4 Torr. Except for a slight lowering in refractive index after

deposition in oxygen, no significant effect was observed. The low index from deposition in an oxygen environment may be caused by the formation of germanium dioxide, having a refractive index of approximately two in the near-infrared.

The substrate temperature during deposition has an effect on the crystallinity of the film. According to Davey [1961], germanium films which are deposited at a substrate temperature below 448°K, are amorphous. Data by Wales, et al. (31497) indicate a lower refractive index for films, deposited on hot substrates, (Figure 5-66 to 5-69). This is in contrast to the results of Gisin and Ivanov (41222), Figure 5-70, who obtained a higher refractive index for substrates at 523 - 573°K than at 403 - 423°K, their refractive indices for 403-423°K and 293 - 303°K were nearly identical, indicative of an amorphous state at both lower temperature ranges.

The dependence of the refractive index on the electric field is illustrated in Figure 5-71 in a study of the Franz-Keldysh Effect.

REFRACTIVE INDEX, n

WAVELENGTH, MICRONS

FORM Bulk and Film
THICKNESS Various, not stated mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 1 - 6
TEMPERATURE ~298 °K
METHOD Various
REFERENCE Wales, et al. (31497)
REMARKS

MATERIAL. Germanium

Figure 5-32

MATERIAL:	Germanium

FORM Bulk, Single Crystal
THICKNESS Not stated mm
RAY ORDINARY DE , EXTRAORDINARY D
WAVELENGTH 0.6 - 1.7
TEMPERATURE 120, 300 °K
METHOD Reflection
REFERENCE Potter (27255)
REMARKS
Figure 5-33 (300°K)

Figure 5-34 (120°K)

FORM Bulk, Single Crystal
THICKNESS NA (Prism) mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 2 - 16
TEMPERATURE 300 °K
METHOD Deviation
REFERENCE Salzberg and Villa (3900)
REMARKS
<u> </u>
Figure 3-35

MATÉRIAL: Germanium

THICKNESS NA (Prism)	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 1.5 - 13	<u>_</u> <u>#</u>
TEMPERATURE 291	°K
METHOD Deviation	
REFERENCE Kornfeld (14254)	erin Pilone
REMARKS Resistivity = 50 ohm-cm	

MATED	161.	Germ	anium
MAILEN	1 <i>P</i> .1.:	Germ	CALLE CALLE

FORM Bulk. Single Crysta:	
THICKNESS NA (Prism) m	m
RAY ORDINARY . EXTRAORDINARY	_0
WAVELENGTH 0.6 - 5.5	μ
TEMPERATURE 87 - 297	٥K
METHOD Deviation	
REFERENCE Cardona, et al. (623)	
REMARKS	

Figure 5-37

THICKNESS NA (Prism)	mri
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 0.8 - 5.5	<u> </u>
TEMPERATURE 300	°K
METHOD Deviation	
REFERENCE Lukes (3915)	****
REMARKS Pure and n-type germani	um,
resistivity shown on graph.	

Figure 5-38

Published with permission Congression 0 1955 Pergumen Proces

FORM Bulk, Single Crystal
THICKNESS Not stated mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 0.1 - 1.8
TEMPERATURE 300 °K
METHOD Reflection
REFERENCE Philipp and Taft (7113)
REMARKS Data above 1.77 Microns
taken from Salzberg and Villa (3900).
Figure 5-39

MATERIAL: Germanium

Wavelength, (Microns)	Temperature OK	Refractive Index, n
23-40	7.5	3.98 ±0.02
45-67	7.5	3.90 ±0.02
83-143	297	3.98 ±0.02

THICKNESS 0.5 - 2.0	mm
RAY ORDINARY . EXTRACRDINARY	_0
WAVELENGTH 23 - 143	<u>_</u> <u>#</u>
TEMPERATURE 7.5, 297	<u>°к</u>
METHOD Interference	
REFERENCE Aronson, et al. (16091)	
REMARKS Crystal cut perpendicular	
to the [111] axis.	

Table 5-6

Wavelength, (Microns)	Refractive Index, n
2. J0	4,1254
2 10	4.1145
2.30	4.0980
2 40	4.0918

FORM Bulk, Single Crystal
THICKNESS ~7 mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 0.8 - 15.2
TEMPERATURE ~297 °K
METHOD Transmission, Reflection
REFERENCE Oswald and Schade (2139)
REMARKS Resistivity = 56 ohm-cm.
Figure 5-40

MATERIAL: Germanium

THICKNESS 3.06	mm
RAY ORDINARY & , EXTRAORDINARY	
WAVELENGTH 2.0 - 2.4	_#
TEMPERATURE 297.5	°K
METHOD Interference	
REFERENCE Rank, et al. (39713)	
REMARKS Measurements in vacuo.	

Table 5-7

FORM Bulk	
THICKNESS 1.89, 6.23	mm
RAY ORDINARY D , EXTRAORDINAR	IY 🛛
WAVELENGTH 70 - 500	μ
TEMPERATURE ~300	<u>°к</u>
METHOD Interference	
REFERENCE Randall and Rawcliffe (33251)
REMARKS Resistivity:	
1.94 m n. sample, 20 ohm-cm.	
6.23 mm. sample, 10 ohm-cm.	<u> </u>
Figure 5-41	

		index	
	Single-crystal		
Wavelength (Microns)	n ₁ °	•	Polycrystal n
Z. 0581	4.1016	4.1016	4.1018
2.1526	4.0917	4.0919	4.0919
2.3126	4.078	4.0786	4.0785
2.4374	4.0706	4.0708	4.0709
2.577	4.0610	4.0609	4.0608
2.7144	4.0554	4.0552	4.0554
2.998			4.0452
3.3033	4.0370 4.0369 4		4.0372
3.4188	4.0336	4.0334	4.0339
4.258	4.0217	4.0216	4.0217
1.866	4.0170	4.0170	4.0167
6.2.6	4.0092	4.0094	4.0095
8,66	4.0036	v. 2043	4.0043
9.72	4.0026	4.0034	4.0033
11.04			4.0025
12.20	4.0018	4.0023	4.0020
13.02	4.0016	4.0021	4.0018
14,21	4.0015		
15.08	4,0014		ļ
16.00	4.0012]

apreviously published data from Salzberg and Villa (3900)

FORM Bulk
THICKNESS NA (Prism) inm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 2 - 16 µ
TEMPERATURE 300 °K
METHOD Deviation
REFERENCE Salzberg and Villa (39254)
REMARKS Single and polycrystalline
material
Table 5-8

MATERIAL: Germanium

Wavelength (Microns)	Refractive Index, n
1.80	4.143
1.85	4.135
1.90	4.129
2.00	4.116
2.10	4.104
2.20	4.092
2.30	4.085
2.40	4.078
2.50	4.072
2.60	4.068

THICKNESS NA (Prism)	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 1.8 - 2.6	<u> </u>
TEMPERATURE ~298	°K
METHOD Deviation	
REFERENCE Briggs (13314)	
REMARKS	
description of the second of t	_
Table 5-9	

FORM Bulk		
THICKNESS ~0.8 mr		
RAY ORDINARY & . EXTRAORDINARY	0	
WAVELENGTH 4 - 14	<u>_</u> <u>#</u>	
TEMPERATURE Not stated	°K	
METHOD Reflection		
REFERENCE Simon (4799)		
REMARKS n-type material with		
resistivity 1 ohm-cm at 297°K		
Figure 5-4?		

	1.0	4
	0.5	
Zī, r	0.2	
EXTINCTION COEFFICIENT, &	0.1	
EXTIP	0.05	
	0,02	
	0.01	D 20 50 WAVELENGTH, MICRONS

FORM Bulk	-
THICKNESS ~10 ⁻² mm	_
RAY ORDINARY . EXTRAORDINARY	<u>1</u>
WAVELENGTH 5 - 35	<u>u</u>
TEMPERATURE 297	K
METHOD Transmission, Reflection	-
REFERENCE Spitzer and Fan (791)	-
REMARKS n-type, arsenic-doped mate	=
rial, concentration = 3.9×10^{18} cm ³	<u>.</u>
p-type, gallium-doped, concentration	<u>r.</u> :
$1.1 \times 10^{19} \text{ cm}^{-3}$	

Figure 5-44

Wavelength,	Refractive Index,	
(Microns)	77°K	300°K
8.66	3.77	3.92
9.4	3.81	3.90
16.2	3.81	3.93
11.22	3.81	3.92
12.35	3.82	3.93

MATERIAL: Germanium
FORM Film
THICKNESS 0.227 mm
RAY ORDINARY . EXTRAORDINARY .
WAVELENGTH 8.66 - 12.35
TEMPERATURE 77, 300 %K
METHOD Interference
REFERENCE Collins (40273)
REMARKS

Table 5-10

Air plots:

O, layer with d = 1.092 μ ; Δ , d = 1.010 μ .

Nitrogen plots:

O, layer with $d = 1.340 \mu$;

 Δ , d = 1.364 μ · \Box d = 1.449 μ . x determined from Brewster angle; remaining plots from geometric thickness of film.

MATERIAL: Germanium

FORM Film
THICKNESS (see remarks), ~10 ⁻³ mm
RAY ORDINARY & , EXTRAORDINARY
WAVELENGTH 1 - 5
TEMPERATURE ~297 °K
METHOD Interference, Reflection
REFERENCE Huldt and Staflin (3735)
REMARKS Glass substrate;

THICKNESS 4 x 10 - 5 - 1 x 10 - 3	mm
RAY ORDINARY . EXTRAORDINARY	0
WAVELENGTH 0.6 - 10	<u>_</u>
TEMPERATURE 297	۰ĸ
METHOD Interference	
REFERENCE Brattain and Briggs (183	391)
REMARKS	

Figure 5-46

MATERIAL: Germanium

FORM Film
THICKNESS Not stated mm
RAY ORDINARY D. EXTRAORDINARY
WAVELENGTH 0.7 - 3.1
TEMPERATURE 297 °K
METHOD Transmission, Reflection
REFERENCE Tauc, et al. (22818)
REMARKS Amorphous polycrystalline
layer is highly doped (10 ¹⁸ - 10 ¹⁹ cm ⁻³)
and was prepared by evaporation onto
a cool (300°K) quartz substrate.
Crystallites are ~10 ³ Å in size.
Figure 5-47

THICKNESS 1 x 10 ⁻⁵	กก
RAY ORDINARY & , EXTRAORDINARY	
WAVELENGTH 0.85 - 2.5	<u> </u>
TEMPERATURE ~297	°K
METHOD Transmission, Reflection	
REFERENCE Lukes (3924)	
REMARKS Film evaporated unto glas	s s_
substrate.	

Figure 5-48

MATERIAL: Germanium

FORM Bulk, Single Crystal	
THICKNESS NA (Prism)	mm !
RAY ORDINARY & , EXTRAORDINAR	Y D
WAVELENGTH 1.8 - 5.5	μ
TEMPERATURE 100 - 530	<u>°к</u>
METHOD Deviation	·
REFERENCE Lukes (3915)	
REMARKS n-type material with	
resistivity = 1.2 ohm-cm. at 300	° K

Figure 5-49

Figure 5-50

THICKNESS NA (Prism)	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 2.0 - 2.5	<u> </u>
TEMPERATURE 116 - 440	°K
METHOD Deviation	
REFERENCE Lukes (3914)	
REMARKS n-type germanium	
	-
Figure 5-51	

MATERIAL:	Germanium
MAIERIAL:	CCTIMATITATI

FORM Bulk, Single Crystal
THICKNESS NA (Prism) mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 1.5 - 2.2
TEMPERATURE 80 - 460 °K
METHOD Deviation
REFERENCE Kornfeld (14254)
REMARKS Resistivity = 50 ohm-cm.

Figure 5-52

Wavelength, (Microns)	Temperature ^O K	Refractive Index, n
23-40	7.5	3.98 ±0.02
45-67	7.5	3.90 ±0.02
83-143	297	3.98 ±0.02

THICKNESS 0.5 - 2.0 mm
RAY ORDINARY 54 . EXTRAORDINARY
WAVELENGTH 23 - 143
TEMPERATURE 7.5, 297 °K
METHOD Interference
REFERENCE Aronson, et al. (16091)
REMARKS Crystal cut perpendicular to
the [111] axis.

Table 5-11

	4.0		·		 1
, a	5.5				
MERACTIVE INDEX, n	5.0			/	
	4.5	-			
			<i></i>		
	4.0	.5	1.0	1.5	2.0
			PHOTON E	NERGY, eV	
		L	1		
	2.	48	1.24	0.83	0.42
	WAVELENGTH, MICRONS				

FORM Bulk,	Single	Crystal	
THICKNESS N	ot state	ed	am
RAY ORDINAR	Y 🗷 ,	EXTRAO	IDINARY []
WAVELENGTH_	0.6 -	1.7	<u>_</u>
TEMPEDATIBE	120	300	0,,

MATERIAL: Germanium

Figure 5-53

REFERENCE Potter (27255)

REMARKS

METHOD Reflection

MATERIAL: Cermanium	
---------------------	--

FORM Bulk	
THICKNESS NA (Prism)	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 1.8 - 5.3	
TEMPERATURE 87 - 297	°K
METHOD Deviation	
REFERENCE Cardona (2569)	
REMARKS	

Figure 5-55

THICKNESS NA (Prism); Film	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 3.0	<u>_</u> <u> </u>
TEMPERATURE 90 - 400	۰ĸ
METHOD Deviation, Interference	
REFERENCE Cardona, et al. (620)	
REMARKS	

Figure 5-56

Published vith parmission Copyright © 1959 — Pergemon Pross PARAMETER: Temperature

 $dn/dT = 5.25 \times 10^{-4} (K^{\circ})^{-1}$

Wavelength, (Microns)	Thermal Coefficient dn/dT, (°K;-1
1,934	5.919 × 10 ⁻⁴
2.174	5. 285
2.246	5, 251
2.401	5.037

FORM Not	stated	
THICKNESS N	ot stated	mm
RAY ORDINA	RY 🔼 , EX	TRAORDINARY [
WAVELENGTH_	2.25	
TEMPERATURE	Not stat	ted °K
METHOD	Not state	d
REFERENCE	Rochow (8	766)
REMARKS		

Table 5-12

MATERIAL: Germanium

THICKNESS 3.0574 (single crystal)	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 2.0 - 2.4	<u> </u>
TEMPERATURE 297.5	°ĸ
METHOD <u>Interference</u>	
REFERENCE Rank, et al. (39713)	
REMARKS Measurements in vacuo.	
Thermal expansion contributed onl	У
4% to dn/dT.	

Table 5-13

PARAMETER: Temperature

Wavelength, (Microns)	Refractive Index, n	
	77°K	300°K
8.66	3.77	3.92
9.4	3.81	3.90
10,2	3.81	3.93
11.22	3.81	3.92
12.35	3.82	3.93

MATERIAL:	Germanium
MULICUIAL	Cermannan

FORM Film
THICKNESS 0.227 mm
RAY ORDINARY A . EXTRAORDINARY
WAVELENGTH 8.66 - 12.35
TEMPERATURE 77, 300 °K
METHOD Interference
REFERENCE Collins (40273)
REMARKS

Table 5-14

THICKNESS 1.2 x 10-2	nım
RAY ORDINARY . EXTRAORDINARY	0
WAVELENGTH 2.0 - 4.0	<u> </u>
TEMPERATURE 77 - 395	°K
METHOD Interference	
REFERENCE Cardona (2569)	
REMARKS	

Figure 5-57

PARAMETER: Pressure

MATERIAL: Germanium

 $(1/n)(dn/dP)_T = (-0.7 \pm 0.2) \times 10^{-6} \text{ cm}^2\text{kg}^{-1}$

THICKNESS (3-10) x 10⁻³

RAY ORDINARY . EXTRAORDINARY . WAVELENGTH 3.0

TEMPERATURE 297 °K

METHOD Interference

REFERENCE Cardona, et al. (620)

REMARKS Pressure range

0 - 1.42 x 10⁵ psi

Table 5-15

 $(1/n)(dn/dP)_T = (-0.6 \pm 0.15) \times 10^{-6} \text{ cm}^2 \text{kg}^{-1}$

THICKNESS Not stated	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH ~ 3	μ
TEMPERATURE 297	°K
METHOD RF dielectric	
REFERENCE Cardona, et al. (620)	
REMARKS Pressure range	
0 - 1.42 x 10 ⁵ psi	
-	
Table 5-16	

PARAMETER: Pressure

MATERIAL: Germanium

$(1/n)(dn/dP)_{T}$	=	(-0.	. 6 ±	0.3) x	10-6	cm^2kg^{-1}

FORM Film n	nm
THICKNESS 3.8 x 10-3	
RAY ORDINARY D. EXTRAORDINARY	0
WAVELENGTH 2.0 - 4.0	Ħ
TEMPERATURE 297	³K
METHOD Interference	
REFERENCE Cardona (2569)	_
REMARKS Pressure range	
0 - 1 x 10 ⁵ psi	

Table 5-17

PARAMETER: Film Thickness

Film Thickness, (Microns)	Refractive Index, n
0.07	3.43
0.09	4.12
0.1	4.07
0.18	4.24
0.26	4.23
0.375	3.75
1.52	4.0
2.57	3.98
6.5	3.62

FORM Film	
THICKNESS As shown	mm
RAY ORDINARY . EXTRAORDINARY	<u> </u>
WAVELENGTH 2.64	
TEMPERATURE 300	°K
METHOD Interference	
REFERENCE Wales, et al. (31497)	
REMARKS Unheated substrate with	··
electron beam heating.	

MATERIAL: Germanium

PARAMETER: Film Composition

	Gern	nanium/
MATERIAL:	Zinc	Sulfide

FORM Film, mixed (Ge + ZnS)
THICKNESS $(1.9 - 7.3) \times 10^{-4}$ mm
RAY ORDINARY D. EXTRAORDINARY
WAVELENGTH 2.2
TEMPERATURE ~298 °K
METHOD Reflection
REFERENCE Jacobsson (40180)
REMARKS Film produced by simul-
taneous evaporation from two sources.

NOTE: The absorption edge is displaced with a change in concentration, facilitating use of the film as variable cut-off filters.

PARAMETER: Film Deposition Rate

MATERIAL: Germanium

. i

FORM Film	
THICKNESS (0.5 - 5) x 10-3 mi	n_
RAY ORDINARY . EXTRAORDINARY	0
WAVELENGTH 1.0 - 5.0	<u> </u>
TEMPERATURE ~300	°K
METHOD Transmission	
REFERENCE Wales, et al. (31497)	

substrate. Samples labelled "A" are at a higher deposition rate than "B". Source temperature is a function of number shown. "A" samples are at a higher deposition rate than "B" samples.

PARAMETER: Film Deposition Atmosphere

REFRACTIVE INDEX, n	4.7 - 4.5 - 4.3 - 4.1 -	•		125	@150 @125	152	
	0	1	2	3	4	5	6
			WAVELE	NGTH, M	ICRONS		

MATERIAL .	Germanium
	Cermanium.

FORM Film
THICKNESS 10 ⁻³ mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 1.0 - 5.0
TEMPERATURE ~ 297
METHOD Interference, Reflection
REFERENCE Huldt and Staflin (3735)
REMARKS Glass substrate.
Layer thickness: O1.092 μ , Δ 1.010 μ .

Figure 5-60

THICKNESS (0.5 - 5) x 10-3	mm
RAY ORDINARY . EXTRACRDINARY	
WAVELENGTH 1 - 5.0	<u>_#</u>
TEMPERATURE ~300	³K
METHOD Transmission	
REFERENCE Wales, et al. (31497)	
REMARKS Unheated substrate, elec	tron
beam heating, pressure = 1 x 10 ⁻⁶	Torr.

PARAMETER: Film Deposition Atmosphere

MATERIAL: Germanium

FORM Film
THICKNESS (0.5 - 5) x 10-3 mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 1.0 - 5.0 <u>µ</u>
TEMPERATURE ~300 °K
METHOD Transmission
REFERENCE Wales, et al. (31497)
REMARKS Unheated substrate, electron
beam heating, 1 x 10 ⁻⁴ Torr oxygen
pressure

Figure 5-62

ε								
×	4.6	┝						
REFRACTIVE INDEX, n	4.4	-	8 8 a . 8	<u></u>			N ₂	
		8		1	1 _	1	1	
		2	3	4	5	6	7	
		•	•	WAVE N	UMBER, 10	cm-1		
			,		j	,	,	ı
	•	.0	3.3	2.5	2.0	1.7	1.4	•
					GTH, MICE			

MATERIAL:	Germanium
1717 1 1 10 1117 100 1	~~~~~~~~~

FORM Film
THICKNESS (0.5 - 5) x 10 ⁻³ mm
RAY ORDINARY Q , EXTRAORDINARY D
WAVELENGTH 1.0 - 5.0
TEMPERATURE ~300 PK
METHOD Transmission
REFERENCE Wales, et al. (31497)
REMARKS Unheated substrate, electron
beam heating, 1 x 10 ⁻⁴ Torr nitrogen
pressure.
Figure 5-63

THICKNESS 10-3	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 1.0 - 5.0	k
TEMPERATURE 297	°K
METHOD Interference, Reflection	
REFERENCE Huldt and Staflin (3735)	
REMARKS Glass substrate. Layer	
thickness: O 1.340 µ;	
Δ1.364 μ; 🗆 1.449 μ.	
Figure 5-64	

PARAMETER: Film Deposition Atmosphere

FORM Film	
THICKNESS $(0.5 - 5) \times 10^{-3}$	ım_
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 1.0 - 5.0	<u>_</u> <u>#</u>
TEMPERATURE ~ 300	°K
METHOD Transmission	
REFERENCE Wales, et al. (31497)	
REMARKS Unheated substrate, elect	
beam heating, 1 x 10 ⁻⁴ Torr hydro	ogen
pressure.	

MATERIAL: Germanium

Separation L

Restricted to the state of the

Post and

(273°K)

Figure 5-67 (373 - 473°K)

Figure 5-68 (673°K)

MATERIAL:	Germanium

FORM Film
THICKNESS (0,5-5) x 10-3 mm
RAY ORDINARY 2 , EXTRAORDINARY
WAVELENGTH 1 - 5
TEMPERATURE 300 °K
METHOD Transmission
REFERENCE Wales, et al. (31497)
REMARKS Substrate heated from carbon
boat. Pressure = 1×10^{-6} Torr.

Figures 5-66 to 5-69

Figure 5-69 (7/3 - 873°K)

Film Deposition PARAMETER: Substrate Temperature

MATERIAL: Germanium
Film, amorphous and FORM polycrystalline
THICKNESS ~1 x 10 ⁻³ mm
RAY ORDINARY Q , EXTRAORDINARY []
WAVELENGTH 1.25 - 6.5
TEMPERATURE ~298 °K
METHOD Interference
REFERENCE Gisin and Ivanov (41222)
REMARKS Evaporation of single crystal
germanium of resistivity = 40 ohm-cm
from graphite boat onto barium fluoride
substrate at (2-5) x 10 ⁻⁵ Torr pressure.
Figure 5-70

PARAMETER: Electric Field

MATERIAL: Germanium
FORM Single Crystal pn Junction
THICKNESS Not stated mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 1.6 - 2.2
TEMPERATURE 300 °K
METHOD Reflection
REFERENCE Seraphin and Bottka (38093
REMARKS Wavelength is based on
energy gap data from McFarlane,
et al. (184).

Figure 5-71

ZINC SULFIDE

INT'RODUCTION

Zinc sulfide occurs in two crystal forms: cubic (zincblende or sphalerite) and hexagonal (wurtzite). This semiconducting material is used in infrared optics and in luminescent devices. Single crystals for optical applications have been grown by the static vapor growth method in which powdered zinc sulfide is kept in the high temperature region. The powdered zinc sulfide is usually prepared by precipitation from aqueous solution. Highly purified zinc sulfide has a resistivity of approximately 5 x 10⁷ ohm-cm for the hexagonal form, measured in darkness.

The physical properties of intrinsic zinc sulfide were summarized in Table 1-1. A more complete compilation of properties is offered in Report No. S-11. Figure 1-9 shows the infrared transmission by zinc sulfide.

DATA

The data for zinc sulfide are listed in Table 5-19 and the wavelength coverage in Table 5-20. The data cover hexagonal, cubic, amorphous, and a mixture of cubic and hexagonal zinc sulfide. No data at temperatures other than room temperature were located.

Refractive index data for hexagonal zinc sulfide, single crystal material, are presented in Figures 5-72 to 5-73 and Tables 5-21 to 5-22; sinc hexagonal zinc sulfide is birefringent, plots for ordinary and extraordinary rays are included. Cubic crystal data are shown in Figures 5-74 to 5-77 and Tables 5-23 to 5-25. Figure 5-78 and Table 5-26 present data for Irtran-2, a polycrystalline material composed of 95 percent cubic and 5 percent hexagonal material Film data are provided in Figures 5-79 to 5-82 and in Table 5-27. The dependence

PRECEDING PAGE BLANK

5-63

of the refractive index on zinc sulfide content has been demonstrated for a germanium/zinc sulfide film in Figure 5-58.

No significant difference is observed between the bulk data for the ordinary ray on hexagonal zinc sulfide and for cubic zinc sulfide. Films tend to have a lower refractive index than bulk material.

Table 5-19. List of Zinc Sulfide Data

					Wavelength (Microns)			}
Figure	Table	n or k	Form	Crystal	From	То	Remarks	Parameter
5-72		n	Bulk	Single	0.6	1.4	Hexagonal	Wavelength
	5-21	n	Bulk	Single	0.6	1. 4	Hexagonal	Wavelength
5-73		n	Bulk	Single	0.3	1.6	Hexagonal	Wavelength
	5-22	n	Bulk	Single	4.0	15,0	Hexagonal	Wavelength
5-74		n	Bulk	Single	0.8	1.4	Cubic	Wavelength
	5-23	n	Bulk	Single	0.7	1.4	Cubic	Wavelength
5-75		n .	Bulk	Single	0 3	4.0	Cubic	Wavelength
	5-24	n	Bulk	Single	0.7	4.0	Cubic	Wavelength
	S-25	n	Bulk	•	0.8	2,4	Cubic	Wavelength
5-76		n, k	Bulk	3	20	70	Cubic	Wavelength
5-77		n	Bulk	*	0,7	1,5	Cubic	Wavelength
5- 18		n	Bulk	Polycryst**	1.0	14.0		Wavelength
	5-26	n	Bulk	Polycryst**	1.0	13.0		Wavelength
5-79		n	Film	Amorphous	0.75	2.0		Wavelength
5-80		n	Film	Amorphous	2.0	14.0		Wavelength
4 - 81		n	Film	*	0.4	1.2		Wavulength
5-82		n	Film	٠	0.8	3,2		Wavelength
	5-27	n	Film	•	0.74	1.0	ļ	Wavelength

Not stated

Table 5-20. Range of Refractive Index Data for Zinc Sulfide (300°K)

	Range in Wavelength, Microns						
Material	From	To	From	То			
Bulk, cubic	0.3	4.0	20	70			
Bulk, hexagonal	0.3	1,6	4	15			
Bulk, polycryst.	1.0	13		ļ			
Film, amorphous	0,8	14		L_			

⁹⁵ percent cubic, 5 percent hexagonal (IRTRAN-2, product of Eastman-Kodak Co.)

FORM Bulk, Single Crystal, Hexagonal

THICKNESS NA (prism) mm

RAY ORDINARY E. EXTRAORDINARY E.

WAVELENGTH 0.6-1.4

TEMPERATURE ~298 °K

METHOD Deviation

REFERENCE Bieniewsky & Czyzak(8761)

MATERIAL: Zinc Sulfide

Figure 5-72

REMARKS

_		
	Refractive Index, n	
Wavelength, (Microns)	Extraordinary Ray	Ordinary Ray
0.600	2.368	2.363
6.625	2.358	2.354
0.6500	2,350	2.346
0.6750	2.343	2.339
0.7000	2,337	2.332
0.8000	2.328	2.324
0.9000	2.315	2.310
1.0000	2,303	2.301
1.2000	2.294	2.290
1.4000	2,288	2.285

Table 5-21

Į.	MATERIAL: Z	inc Sulfide	
Bulk, S	Single Crystonal	tal,	
THICKNESS 5	× 10 ⁻³	W-	mın
RAY ORDINAR	Y 🔯 , EXT	RAORDINARY	<u> </u>
WAVELENGTH_	0.3 - 1.6;	4 - 15	<u> </u>
TEMPERATURE	293		°K
METHOD	Interference	e	
REFERENCE	Piper, et a	al. (735)	
REMARKS			

Figure 5-73

Wavelength, (Microns)	Refractive Index,	
4 - 15	2.26 ± 0.06	

Table 5-22

!	MATERIAL: Zinc Sultide	
Bulk,	Single Crystal,	mm
THICKNESS	NA (prism)	······
RAY ORDINA	RY 2 . EXTRAORDINARY	0
WAVELENGTH_	0.7 - 1.4	<u> </u>
TEMPERATURE	~298	<u>°к</u>
METHOD	Deviation	
REFERENCE	Czyzak, et al. (6331)	
REMARKS		
		

Figure 5-74

W141	Refractive Index, n	
Wavelength, (Microns)	Calculated	Observed
0.700	2, 332	2, 334
0.900	2, 303	2.306
1.050	2, 293	2, 293
1.200	2, 285	2.282
1.400	2,280	2.284

Table 5-23

MATERIAL: Zinc Sulfide	_
Bulk, Single Crystal,	ח
THICKNESS NA (Prism)	~
RAY ORDINARY . EXTRAORDINARY .	j
NAVELENGTH 0.3 - 4.0	Æ
TEMPERATURE ~298 0	<u>K</u>
METHOD <u>Deviation</u>	_
REFERENCE Czyzak, et al. (14914)	_
REMARKS	_
	_
	_
	-

117	Refractive Index, n	
Wavelength, (Microns)	Calculated	Measured
0.700	2.329	2.332
1.000	2.292	2.293
1.500	2.270	2, 275
2.000	2.260	2.263
2.500	2.256	2.256
3.000	2,253	2.253
3.500	2.251	2,251
4.000	2.250	2.251

THICKNESS	NA (Prism)	mm
RAY ORDINARY	Z . EXTRAORDINAR	Y []
WAVELENGTH_	0.7 - 4.0	<u> </u>
TEMPERATURE _	~298	°K
METHOD	Deviation	
REFERENCE	Czyzak, et al. (14	914)
REMARKS		
	Table 5-24	

Wavelength, (Microns)	Refractive Index,
0.8	2.3146
0.9	2.3026
1.0	2.2932
1.2	2.2822
1.4	2, 2762
1.6	2.2716
1.8	2.2680
2.0	2,2653
2,2	2.2637
2.4	2.2604

FORM Bulk, Cubic mm

THICKNESS NA (Prism)

RAY ORDINARY D. EXTRAORDINARY D. WAVELENGTH 0.8 - 2.4 4

TEMPERATURE ~298 %

METHOD Deviation

REFERENCE Bond (19989)

REMARKS Natural crystal from Spain

MATERIAL: Zinc Sulfide

FORM Bulk, C	ubic	
THICKNESS No	t Stated	mm
RAY ORDINARY	M , EXTRAORDINARY	<u> </u>
WAVELENGTH	20 - 70	£
TEMPERATURE	300	٥k
METHOD	Reflection	
REFERENCE	Manabe (28526)	
REMARKS	Natural crystal	

Figure 5-76

MATERIAL: Zinc Sulfide

2.5 2.4 2.3 2.2 0.7 0.9 1.1 1.3 1.5 WAVELENGTH, MICRONS

THICKNESS	NA (Prism)	nm
RAY ORDINAR	EXTRAORDINARY	<u></u>
WAVELENGTH_	0.7 - 1.5	<u> </u>
TEMPERATURE	~298	<u>° </u>
METHOD	Deviation	
REFERENCE	DeVore (40276)	
REMARKS Sph	alerite, natural crystal	

Figure 5-77

Wavelength, (Microns)	Refractive Index n	Wavelength, (Microns)	Refractive Index, n
1.0000	2. 2907	6, 0000	2,2381
1.2500	2, 2777	6.2500	2.2363
1,5000	2.2706	6,5000	2.2344
1.7500	2, 2662	6.7500	2.2324
2.0000	2, 2631	7.0000	2.2304
2,2500	2.2608	7.2500	2.2282
2,5000	2.2589	7. 5000	2. 2260
2.7500	2, 2573	7,7500	2.2237
3.0000	2.2558	8,0000	2.2213
3,2500	2, 2544	8, 2500	2.2188
3.5000	2.2531	8, 5000	2.2162
3.7500	2. 2518	8,7500	2.2135
4.0000	2.2504	9, 0000	2.2107
4.2500	2.2491	9.2500	2.2078
4.5000	2,2477	9.5000	2.2048
4.7500	2,2462	9.7500	2.2018
5,0000	2, 2447	10.0000	2.1986
5, 2500	2, 2432	11.0000	2,1846
5,5000	2.2416	12,0000	2,1688
5.7500	2.2399	13,0000	2,1508

MATERIAL: Zinc Sulfide

Figure 5-78

REMARKS IRTRAN-2 material

Table 5-26

The second

MATERIAL: Zinc Sulfide

THICKNESS (1-4) x 10⁻³ mm

RAY ORDINARY D, EXTRAORDINARY D

WAVELENGTH 0.75 - 14

TEMPERATURE -298 °K

METHOD Transmission, Reflection

REFERENCE Hall & Ferguson (2609)

REMARKS Vapor-deposited film
0.75 - 2 micron data on glass substrate, 2 - 14 microns on rock salt substrate

Figure 5-80

Air plots: O, layer with $d=2.500\mu$, Δ , $d=2.221\mu$; \Box , $d=2.258\mu$. Nitrogen plots: O, layer with $d=2.501\mu$, Δ , $d=2.233\mu$. + determined by calculation. x determined from Brewster angle; remaining plots from geometrical thickness of film.

MATERIAL: Zinc Sulfide

FORM.	Film	
THICK	Ness Not stated r	nm
RAY_	ORDINARY M , EXTRAORDINARY	0
WAVEL	ENGTH 0.4 - 1.2	_ <u> </u>
TEMPE	RATURE ~ 298	°K
METHO	D Interference	
REFER	ENCE Burgiel, et al. (34617)	
REMAR	KS Sputtered and evaporated	
films	used with identical results.	
Sputt	ered film was predominantly	
cubic	•	

Figure 5-81

THICKNESS 2.5 x 10 ⁻³	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 0.8 - 3.2	_#
TEMPERATURE ~298	°K
METHOD Interference	
REFERENCE Huldt & Staflin (3735)	
REMARKS Evaporation onto glass	
substrate in atmosphere of air or	
nitrogen.	

Figure 5-82

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k
0.740	2,30	0.000
0.900	2,23	0.000
0.980	2,27	0.000

FORM Film
THICKNESS 3 x 10 ⁻⁴ mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 0.74 - 1.0 µ
TEMPERATURE ~298 °K
METHOD Transmission, Reflection
REFERENCE Kuwabara & Isiguro (40442)

REMARKS Film evaporated onto glass

substrate at ~ 10⁻⁴ Torr.

MATERIAL: Zinc Sulfide

Table 5-27

CADMIUM TELLURIDE

INTRODUCTION

Cadmium telluride is a semiconductor that has found application in infrared optics and semiconductor devices including sclar cells. This material may show both n- and p type conduction; addition of excess cadmium gives n-type conduction and conversely, addition of excess tellurium gives p-type conduction.

Cadmium telluride is usually prepared from electrolytic cadmium and vacuum-distilled tellurium by direct combination at an elevated temperature under a nitrogen atmosphere. Zone refining is used for further purification. The electrical and optical properties are strongly affected by deviation from the stochiometric ratio of the components (cadmium and tellurium). Details concerning the equilibrium phase diagram for cadmium telluride may be located in EPIC Data Sheet DS-157. The electrical resistivity of highly pure single crystal cadmium telluride at room temperature is approximately 10^7 ohm-cm. The optical transmission by cadmium telluride is shown in Figures 1-9 and 1-10.

The physical properties of cadmium telluride were summarized in Table 1-1.

EPIC Report S-11 provides additional property data on cadmium telluride. As with other semiconductors, different doping levels in authors' reports make it often difficult to compare their results.

DATA

All data presentations for cadmium telluride are listed in Table 5-28 and a summary of wavelength and temperature coverage is plotted in Figure 5-83. Figures 5-84 to Figure 5-88 and Tables 5-29 to 5-31 represent refractive index spectra for bulk single crystal material. Below five microns, the pure or lightly n-doped materials show no wide differences in refractive index. At longer wavelengths the data exhibit a far wider spread between the author's data and it

would be difficult to recommend a "best" set of values. Heavily n-doped materials are represented by data in Figures 5-89, 5-90 and 5-91. The data in Tables 5-32 to 5-34 and Figure 5-90 and 5-91, could not be identified regarding their crystalline status (e.g., single crystal) but, except for heavily doped materials, they show no marked departure from the spread for single crystals.

Figures 5-92 to 5-95 and Tables 5-35 to 5-37 cover polycrystalline materials and the data are similar to those obtained from single crystal material of a similar doping level.

The temperature dependence of the refractive index is the subject of Tables 5-38 to 5-39 and Figures 5-96 to 5-101. The relative sparsity of such data does not permit any generalization.

Figure 5-83. Wavelength and Temperature Range for Cadmium Telluride Data

Table 5-28. List of Cadmium Telluride Data

						elength, crons)		
Figure	Table	n or k	Form	Crystal	From	To	Romarks	Parameter
5-84		n	Bulk	Single	0.085	2, 6		Wavelength
	5-29	n	Bulk	Single	2.0	10.0		Wavelength
5-85		n	Bulk	Single	12.5	300	8, 300°K	Wavelength
5-86	1	n	Bulk	Single	133	1000	4. 2*K	Wavelength
5-87		n, k	Bulk	Single	37	85	100, 300°K	Wavelength
5-88	'	n	Bulk	Single	5.0	10.0		Wavelength
	5-30	n	Bulk	Singic	0.87	1.00	n-type 493°, 373°K	Wavelength
5-89		n	Bulk	Single	6.5	14.5	n-type, heavily doped	Wavelength
	5-31	n	Bulk	Single	0.90	1,1	n-type	Wavelengt
	5-32	n	Bulk	*	2,5	2.5	n-type	Wavelengti
	5-33	n	Bulk	*	8.0	14.0	n-type	Wavelengt
	5-34	n	Bulk	*	10.0	10.0	n-type	Wavelengt
5-90		n, k	Bulk	*	20	200	n-type, heavily doped 100°K	Wavelengt
5-91	1	n, k	Bulk	*	20	200	n-type, heavily doped 300°K	Wavelengt
5-94		n	Bulk	Polycryst.	1.0	16.0		Wavelengti
	5-35	n	Bulk	Polycryst.	1.0	16.0		Wavelengt
5-93		n, k	Bulk	Polycryst.	50	75	90 ° K	Wavelengt
5-94		n, k	Bu1k	Polycryst	55	78	300°K	Wavelengt
5-95	1	n	Bulk	Polycryst.	220	1000	•	Wavelengt
	5-36	n	Bulk	Polycryst.	1.0	10.0		Wavelengt
	5-37	n	Bulk	Polycryst.	23	28	n-type	Wavelengtl
	5-38	n	Bulk	Single	0.87	1.00	n-type, 293, 373°K	Temperatur
5-96		n	Bulk	Single	37	85	100, 300°K	Temperatur
5-97		n	Bulk	*	20	200	n~type, 100°K	Temperatus
5-98	1	n	Bulk	*	20	200	n-type, 300°K	Temperatur
5-99	1	n	Bulk	*	12.5	300	8°, 300°K	Temper: .ur
5-100		n	Bulk	Polycryst.	50	75	90°K	Temperatui
5-101		n	Bulk	Polycryst.	55	78	300°K	Temperatur
	5-39	$1/n(\frac{dn}{dT})$	Bulk	Single	10.6	10.6	293 - 318°K	Temperatus

Wavelength, (Microns)	Refractive Index, n
2.0	2.710
3.0	2.694
4.0	2.687
5.0	2.680
6.0	2.675
8.0	2.669
10.0	2.658

Cadmium MATERIAL: Telluride

FORM Bulk,	Single Crystal	
THICKNESS	NA (Prism)	mm
RAY ORDINA	ARY . EXTRACRDINARY	
WAVELENGTH	0.085 - 2.6	<u> </u>
TEMPERATUR	E ~298	<u>°к</u>
METHOD	Deviation	
REFERENCE	Marple (15085)	
REMARKS	Material grown from	
melt conta	ining < 10 ppm total	
impurities	•	

Figure 5-84

THICKNESS NA (Prism)	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 2 - 10	<u> </u>
TEMPERATURE ~298	°K
METHOD Deviation	
REFERENCE Vitrikhovskiy (31017)	
REMARKS	

Table 5-29

AFFRACTIVE INDEX, 1	3.3				Co ^{so} o	g on'	00e ⁶			
	3.0									
	0.0	10	20	30	40	50	60	70	50	
		WAVE NUMBER, CM-1								
	1							<u>_</u>		
		1000	כ	333		200		143		
				WAVELE	NGTH,	MICRON	is			

Cadmium MATERIAL: Telluride

RAY ORDINAR	Y 🖸	, EXTR	AORDINARY	_!
WAVELENGTH_	12.	5 - 300		
TEMPERATURE	8,	300	ينينا المناسب والمسادون	۰
METHOD	Inte	rferenc	е	
REFERENCE Joi	hnson	, et al.	(40781)	
REMARKS Resi	stivit	y = 8.53	(10 ⁵ ohm -	cr

Figure 5-85

THICKNESS	1.22		**************************************	mm
RAY ORDINA	RY 🖸 ,	EXTRAC	RDINARY	
WAVELENGTH	133 - 1	00		_#
TEMPERATURI	4.2	, 		°K
METHOD	Interfe	rence		
REFERENCE	Halsted	, et al.	(26678)	
REMARKS				

Figure 5-86.

Cadmium MATERIAL: <u>Telluride</u>	
FORM Bulk, Single Crystal	
THICKNESS Not stated	mn
RAY ORDINARY . EXTRAORDIN	ARY [
WAVELENGTH 37 - 85	1
TEMPERATURE 100, 300	٥,
METHOD Reflection	
REFERENCE Manabe, et al. (2852	.6)
REMARKS	

c							
WE INDEX,	2.9						
EFRACTI	2.7		,			1	
•	5	6	7	8	9	10	_
			WAVEL	NGTH, M	ICRONS		

THICKNESS Not stated	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 5 - 10	<u> </u>
TEMPERATURE 300	۰ĸ
METHOD Reflection	
REFERENCE De Nobel (306)	
REMARKS	

Temperature, *K	Wavelength, (Microns)	Refractive Index, n
293	0.865	3.50 max.
293	0.900	3.20
293	1.000	2.80
373	0.872	3.40 max.
373	0.900	3.15
373	1.000	3.20

	Cadmium
MATERIAL:	Telluride

FORM Bulk, Single Crystal
THICKNESS 0, 1 mm
RAY ORDINARY 图 , EXTRAORDINARY
WAVELENGTH 0.87 - 1.00
TEMPERATURE ~298 °K
METHOD Reflection, Transmission
REFERENCE Konak (11590)
REMARKS n-type material, resistivity
≅10 ⁵ ohm-cm

Table 5-30

THICKNESS 0.63, 1.10	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 6.5 - 14.5	_#
TEMPERATURE ~298	°K
METHOD Reflection	
REFERENCE Planker & Kauer (40526)	
REMARKS n-type material, Gallium	<u>. </u>
concentration -5x10 ¹⁷ cm ⁻³	

		9	
	4, F	7	- Côte : In
DEX,	FICE		300°K
<u>Z</u>	Ö	5	
REFRACTIVE INDEX, a	Š	3	
2	EXTEN	1	
		•	
			20 30 40 50 60 70 80 90 100 150 200
			WAVELENGTH, MICRONS

	Cadmium
MATERIAL:	Tellvride

FORM Bulk
THICKNESS Not stated mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 20 - 200
TEMPERATURE 100, 300 °K
METHOD Reflection
REFERENCE Manabe, et al. (36435)
REMARKS n-type material, indium-
doped. carrier concentration =
5.25x10 ¹⁷ cm ⁻³ at 300°K, resistivity
= 1.92×10^{-2} ohm-cm at 300°K,
Figure 5-90

Figure 5-91

Wavelength, (Microns)	Refractive Index,
0.903	3.47 ± 0.05
1, 100	3.13 ± 0.04

Cadmium
MATERIAL: Telluride

FORM	Bulk, single crystal	
THICKNESS	1.0 m	im_
RAY ORDINAL	RY . EXTRAORDINARY	<u></u>
WAVELENGTH	0.90, 1.10	<u> </u>
TEMPERATURE	~298	°K
METHOD	Not stated	
REFERENCE	Garlick, et al. (7771)	
REMARKS	n-type, indium-doped,	
concentration	on not stated.	

Table 5-31

Wavelength, Microns	Refractive Index,
2,5	2.70

THICKNESS	4.0	mm
RAY ORDINAR	Y . EXTRAORDINARY	0
WAVELENGTH_	2,5	<u>_µ</u>
TEMPERATURE	~298	°K
METHOD	Reflectance	
REFERENCE	Marple (10559)	
REMARKS	Pure n-type material	
with carrier	concentration	
$=6\times10^{14}$ cm	-3	

Table 5-32

Wavelength,	Refractive
(Microns)	Index, n
8-14	2.67

	Cadmium
MATERIAL:	Telluride

FORM I	Bulk
THICKNESS 1	Not stated mm
RAY ORDINAR	Y 🖬 , EXTRAORDINARY 🗆
WAVELENGTH_8	3 - 14
TEMPERATURE _	298 ° K
METHOD I	nterference
REFERENCE	Fisher & Fan (5400)
REMARKS n-t	ype material with elec-
tron concent	ration ~ lxl0 ¹⁵ cm ⁻³

Table 5-33

Wavelength,	Refractive
(Microns)	Index, n
10	2.61

THICKNESS Not stated	mm
RAY ORDINARY . EXTRA	ORDINARY
WAVELENGTH 10	μ
TEMPERATURE ~298	<u>°к</u>
METHODInterferenc	e
REFERENCE Davis & Shilli	day (3648)
REMARKS Pure n-type r	naterial
with carrier concentration	on
~lx10 ¹⁵ cm ⁻³	

Table 5-34

28		16	TRANº6			
2.6						
2.4	 _ <u>-</u> -		10	12	14	_

N	ATĒRIĀL:	Cadmium Telluride	
FORM Bulk,	polycry	stalline	
THICKNESS N	ot stated		mm
RAY ORDINAR	Y DT.	EXTRAORDINARY	
WAVELENGTH_	1.0 - 1	6	_#
TEMPERATURE	298		<u>°к</u>
METHOD	Not sta	ted	
REFERENCE	Kodak	(1967)	
REMARKS			

Wavelength, (Microns)	Refractive Index, n	Wavelength, (Microns)	Refractive Index, n
1.0000	2.838	6, 2500	2.681
1.2590	2,773	6. 5000	2.680
1.5000	2.742	6, 7500	2.680
1.7500	2.725	7,0000	2.679
2.0000	2. /14	7, 2500	2.678
2. 2500	2,707	7,5000	2. 678
2.5000	2.702	7.7500	2.677
2.7500	2.698	8.0000	2.677
3.0000	2.695	8.2500	2.676
3.2500	2.693	8,5000	2.675
3.5000	2.691	8.7500	2.675
3.7500	2.689	9,0000	2.674
4.0000	2.688	9. 2500	2.674
4. 2590	2.687	9.5000	2.673
4.5000	2.686	9.7500	2.672
4.7500	2.685	10.0000	2.672
5.0000	2.684	11,0000	2.669
5. 2500	2,683	12,0000	2.666
5.5000	2.683	13.0000	2.663
5.7500	2.682	14,0000	2.660
6.0000	2.681	15.0000	2.657
		16.0000	2.655

Table 5-35

	Cadmium
MATERIAL:	Telluride

FORM Bulk, Po	olycrystalline	mm
THICKNESS	Not stated	
RAY ORDINARY	, EXTRAORDINARY	0
WAVELENGTH	50 - 78	μ
TEMPERATURE	90, 300	°K
METHOD	Reflection	
REFERENCE	Mitsuishi (481)	
REMARKS		

Figure 5-93

Figure 5-94

Wavelength, (Microns)	Refractive Index, n
23.35	2, 58
27.95	2,53

Cadmium MATERIAL: <u>Telluride</u>
FORM Bulk, polycrystalline
THICKNESS 1 - 3 mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 23.3 - 28 μ
TEMPERATURE ~298 °K
METHOD <u>Interference</u>
REFERENCE Lorimor & Spitzer (20784)
REMARKS Pure, n-type with carrier
concentration ~ 1x10 ¹⁵ cm ⁻³
at 298°K

Cadmium
MATERIAL: Telluride

FORM Bulk, Polycrystalline
THICKNESS Not stated mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 220 - 1000 #
TEMPERATURE ~298 °K
METHOD Interference
REFERENCE Randall & Raycliffe(33290)
REMARKS IRTRAN-6 material
Figure 5-95

Wavelength, (Microns)	Refractive index,
1.0	2.839
1.0	
1.5	2.742
2.0	2.713
2.5	2.702
3.0	2. 695
3.5	2.691
4.0	2.688
5.0	2,684
6.0	2.681
7.0	2.679
8.0	2.677
9.0	2.674
10.0	2. 672

THICKNESS	NA (Prism)	mm
RAY ORDINARY	33 , EXTRAORDINARY	
WAVELENGTH	1.0 - 10	μ
TEMPERATURE	298	°K
METHOD	Deviation	
REFERENCE	Ladd (27063)	~~~
REMARKS	ITRAN-6 material	

Table 5-36

Temperature,	Wavelength, (Microns)	Refractive Index, n
293	0.865	3.50 max.
293	0.900	3.20
293	1.000	2.80
373	0.872	3.40 may.
373	0.900	3.15
373	1.000	3, 20

	Cadmium	
MATERIAL:	Telluride	

FORM Bulk, Single Crystal
THICKNESS 0.1 mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 0.87 - 1.00 #
TEMPERATURE ~298 °K
METHOD Reflection, Transmission
REFERENCE Konak (11590)
REMARKS n-type material,
resistivity ≈ 10 ⁵ ohm-cm

Table 5-38

THICKNESS Not stated	mm
RAY ORDINARY D , EXTRAORDINARY	
WAVELENGTH 37 - 85	<u>_</u> <u>#</u>
YEMPERATURE 100, 300	°K
METHOD Reflection	
REFERENCE Manabe, et al (28526)	
REMARKS	

Figure 5-96

	y	
*		- CdTe. in
٠Ž	7	- 1
χ, χ χ		- 300°к //
2 3	5	- 300-k
E Z		· /i\ / /
REFRACTIVE INDEX, n EXTINCTION COEFFICIENT,	3	
3 X		
ä	ı	
		20 30 40 50 60 70 80 90 100 150 200
		WAVELENGTH, MICRONS

	Cadmuim
MATERIAL:	Telluride

FORM Bulk
THICKNESS Not stated mm
RAY ORDINARY & , EXTRAORDINARY
WAVELENGTH 20 - 200 #
TEMPERATURE 100, 300 %K
METHOD Reflection
REFERENCE Manabe, et al. (36435)
REMARKS n-type material, indium-
doped, carrier concentration =
5.25x10 ¹⁷ cm ⁻³ at 300°K, resistivity
= 1.92×10^{-2} ohm-cm at 300°K.

Figure 5-98

•	MATERIAL: T	elluride
FORM	Bulk	
THICKNESS	0.172	mm
RAY ORDINAR	Y 🖸 , EXT	RAORDINARY
WAVELENGTH_	12.5 - 300	<u> </u>
TEMPERATURE	8, 300	°K
METHOD	Interferen	ce

Cadmium

Figure 5-99

REFERENCE Johnson, et al. (40781)

REMARKS Resistivity = 8.5×10^5 ohm-cm

	Cadmium
MATERIAL:	Telluride

THICKNESS	Not	stated		mm
RAY ORDINARY	(2) ,	EXTR	AORDINARY	
WAVELENGTH	50 -	78		<u> </u>
TEMPERATURE _	90,	300		۰ĸ
METHOD	Refl	ection		
REFERENCE	Mits	uishi (481)	
REMARKS				

PARAMETER: Temperature (Cont'd from preceding page)

Cadmium MATERIAL: Telluride

Figure 5-101

PARAMETER:	Temperature
------------	-------------

FORM_	Bulk,	Single Crystal	
THICK	iess	Not stated	mm

Cadmium

MATERIAL: Telluride

$(1/n)(dn/dT) = (4.02 \pm 0.05)x10^{-5}$	(°K) ⁻¹	
• • • • •		

FORM Bulk, Single Crystal	-
THICKNESS Not stated	mm
RAY ORDINARY . EXTRAO	RDINARY D
WAVELENGTH 10.6	
TEMPERATURE 293 - 318	°ĸ
METHOD Interference	
REFERENCE Weil & Johnson	(41152)
REMARKS	

Table 5-39

ZINC SELENIDE

INTRODUCTION

Zinc selenide is a semiconductor that has found application in infrared optics and in cathodoluminescence. Zinc selenide is a relatively new material and no generally recommended preparation method appears to have evolved thus far. Preparation methods include the direct preparation from the elements (Zn + Se) under argon and the reduction of a solution of zinc selenite hydrazine with subsequent decomposition of the precipitated hydrazine complex by addition of acetic acid. Typical crystal growth methods use zinc selenide powder as starting material for the growth of single crystals.

Zinc selenide transmits infrared light to a wavelength of eighteen microns as shown in Figure 1-9. Evaporated films of zinc selenide have a resistivity of 10⁸ to 10⁹ ohm-cm at 300^oK. The physical properties of zinc selenide were summarized in Table 1-1 and are given in greater detail in EPIC Report S-11.

DATA

All data presentations for zinc selenide are listed in Table 5-40 and a summary of wavelength and temperature coverage is plotted in Figure 5-102. Refractive index data as a function of wavelength are shown in Figures 5-103 to 5-111 and Tables 5-41 to 5-42. The data agree quite well with one another from one to twenty microns, but at longer wavelengths the data are rather scattered. The only single crystal result agrees fairly well with polycrystalline data over the range from 1.0 to 1.8 microns. The zinc selenide compilations also include a number of plots of extinction coefficient measurements. The temperature dependence of the refractive index and the extinction coefficient is the subject of Figures 5-112 to 5-118.

PRECEDING PAGE BLANK

Table 5-40. List of Zinc Selenide Data

					Wavel (Mic			
Figure	Lable	nork	Form	Crystal	From	To	Remarks	Parameter
5-103		n, k	Bulk	Single	20	85		Wavelength
5-104		n	Bulk	Polycryst	0.8	2.5		Wavelength
5-105		n	Bulk	Polycryst	2, 0	13	198°K	Wavelengtn ;
5-106		а	Bull.	Polycryst	2.0	14	295°K	Wavelengtr
5-107	5-41	n	Bulk	Polycryst	1.0	29		Wavelength
5-108		n, k	Bulk	Polycryst	10	120	90°K	Wavelength
5-109		n, k	Bulk	Polycryst	10	125	300° K	Wavelength
5-110		n, k	Bulk	Polycryst	28	67	77, 290° K	Wavelength
5-111		n, k	Bulk	Polycryst	28	67	77,290°K	Wavelength
	5-42	n	Film	t	0.8	1.9		Wavelength !
5-112		n, k	Bulk	Single	20	85		Temperature ,
5-113		n	Bulk	Polycryst	2.0	13	198 ° K	Temperature
5-114		n	Bulk	Polycryst	2.0	14	295°K	[emperature
5-115		n, k	Bulk	Polycryst	10	129	90 ° K	Temperature
5-116		n, k	Bulk	Polycryst	10	125	300°K	lemperature
5-117		n, k	Bulk	Polycryst	28	67	77, 290° K	Temperature
5-118		n, k	Bulk	Polycryst	28	67	77.290°K	Temperature

⇒Not stated

Figure 5-102. Wavelength and Temperature Range for Zinc Selenide Data

MATERIAL: Zinc Selenide

RAY ORDINARY	B ,	EXTRAOR	DINARY
WAVELENGTH	20 -		щ
TEMPERATURE	100,	300	<u>"K</u>
METHOD	Refle	ction	·
REFERENCE	Mana	be, et al	. (28526)
REMARKS		·	

FORM Bulk,	Polycrystalline			
THICKNESS N	A (Prism)	mm		
RAY ORDINARY	Z , EXTRAORDI	NARY []		
WAVELENGTH	0.8 - 2.5	<u> </u>		
TEMPERATURE _	~ 298	<u>°к</u>		
METHOD	Deviation	······································		
REFERENCE	Marple (15085)			
REMARKS	Crystal was pre	pared		
by bonding two to four single				
crystals together.				

THICKNESS	NA (Wedge)	mm
RAY ORDINAR	Y 💆 , EXTRAORE	DINARY [
WAVELENGTH_	2 - 14	μ
TEMPERATURE	198, 295	°K
METHOD	Deviation	
REFERENCE	Hilton and Jone	s [1967]
REMARKS		
		

Figure 5-106

FORM	Bulk	, Polycrystalline	
THICH	KNESS	Not stated	mm
RAY.	ORDINARY	A EXTRAORDINARY	
WAVE	LENGTH	1.0 - 20	<u> </u>
TEMP	ERATURE	298	°K
METH	OD	Not stated	
REFE	RENCE	Kodak [1967]	
REMA	ARKS	IRTRAN-4 material	·
	······································		

Fi	gure	5 -	1	07	

Wavelength, (Microns)	Refractive Index, n	Wavelength, (Microns)	Refractive Index, n
1.0000	2. 485	7.0000	2, 423
1. 2500	2. 466	7. 2500	2, 422
1, 5000	2.456	7.5000	2, 421
1.7500	2, 450	7.7500	2.419
2,0000	2.447	8. 0000	2.418
2. 2500	2. 444	8. 2500	2, 417
2, 5000	2, 442	8.5000	2, 416
2. 7500	2, 441	8.7500	2, 415
3.0000	2, 440	9. 0000	2.413
3, 2500	2, 438	9, 2500	2,411
3, 5000	د. 437	9. 5000	2.410
3,7500	2, 436	9.7500	2.409
4.0000	2, 435	10.0000	2. 407
4. 2500	2, 434	11.0000	2.401
4, 5000	3.433	12,0000	2. 394
4.7500	2, 433	13.0000	2. 386
5. 0000	2.432	14.0000	2. 378
5. 2506	2, 431	15.0000	2. 370
š. 59aŭ	2. €30	16.0000	2.361
5. 7590	2, 429	17.0000	2. 352
6.0000	2;28	18. 2000	2. 343
6, 25CO	2. 426	19.0000	2, 333
5. 5000	2, 425	20.0000	2. 323
6.7500	2, 424		

Table 5-41

		25			- <u>-</u> -	··		90*	K
c	NI, K	20	-						
REFRACTIVE INDEX, n	EXTINCTION COEFFICIENT,	15	-						
MCTIVE	TION C	10	 - 						
REFI	EXTINC	5			/	~		<u>-n</u> .	
					\mathcal{L} i			k j	
٠.		0		25	50	75	100	125	150
					WAVE	LENGTH,	MICRONS		

FORM Bulk	, Polycrystalline
THICKNESS No	ot stated mm
RAY ORDINARY	M , EXTRAORDINARY []
WAVELENGTH	10 - 125 <u>µ</u>
TEMPERATURE	90, 300 °K
METHOD	Reflection
REFERENCE	Hadni, et al. (29510)
REMARKS	

Figure 5-109

WAVELENGTH, MICRONS

5-104

Published with permission Copyright © 1968 Akedomic Verlog

Calculated by Lorentz Oscillator Theory
Figure 5-111

Wavelength, (Microns)	Refractive Index, n
0.8	2. 50
0.9	2. 47
1.0	2. 46
1.1	2. 45
1, 2	2. 44
1.3	2. 43
1.5	2.42
1.7	2. 41
> 1. 9	2. 40

FORM	Film	_
THICKNESS	~0.8 x 10 ⁻³ mm	n
RAY ORDINAR	Y D , EXTRAORDINARY [ב
WAVILENGTH_	0.8 - 1.9	ñ
TEMPERATURE	~298 •	K
METHOD	Interference	_
REFERENCE	Fischer, et al. (15559) ;
REMARKS	Evaporated film on	_
borosilicat	te glass substrate.	
		-

Table 5-42

and the same and t

FORM Bulk,	Single Crystal
THICKNESS	Not stated mm
RAY ORDINARY	1 . EXTRAORDINARY
WAVELENGTH	20 - 85 <u>µ</u>
TEMPERATURE	100, 300 °K
METHOD	Reflection
REFERENCE	Manabe, et al. (28526)
REMARKS	

FORM Bulk	, Polycrystalline
THICKNESS	NA (Wedge) mm
RAY ORDINARY	Ø , EXTRAORDINARY □
WAVELENGTH	2 - 14 <u>µ</u>
TEMPERATURE	198, 295 °K
METHOD	Deviation
REFERENCE	Hilton and Jones [1967]
REMARKS	
	······································

Figure 5-114

FORM Bulk, Polycrystalline				
THICKNESS	Not stated mm			
RAY ORDINARY	西, EXTRAORDINARY ロ			
WAVELENGTH	10 - 125 <u>µ</u>			
TEMPERATURE	90, 300 °K			
METHOD	Reflection			
REFERENCE	Hadni, et al. (29510)			
REMARKS				
····				

Figure 5-116

Figure 5-117

Published with permission Copyright @1968 Akadsmie Vertag

Calculated by Lorentz Oscillator Method Figure 5-118

CHAPTER 6

REFRACTIVE INDEX DATA FOR SILICA-QUARTZ-SILICON DIOXIDE

GENERAL

This Chapter describes a class of materials called "quartz", "silica", or "silicon dioxide".

There exists in quartz and silica a great deal of confusion in nomenclature. Laufer [1965] distinguishes five materials which in turn are described by many terms. Table 6-1 presents Laufer's terms for the five materials.

Modern optical glasses are made under adequate quality control and many recent publications do not distinguish materials in the manner shown in Table 6-1. Therefore this Report distinguishes only two types of quartz or silica:

- 1. Crystalline Silica
- 2. Fused Silica

Table 6-1. Terms Used for Five Silica Materials

High Silica Glass	Natural Quartz	Cultured Quartz	Transparent Vitreous Silica	Translucent Fused Silica
High Silica Glass Silica Glass Vitreous Silica High Silica Glass	Natural Quartz Quartz Crystalline Quartz Quartz Crystal Natural Quartz Rock Crystal	Cultured Quartz Cultured Quartz Synthetic Quartz Synthetic Quartz Crystal	Quartz Ouartz Glass (Quarzglas, in German) Fused Quartz Vitreous Quartz Fused Quartz Glass Optical Quartz Glass Optical Fused Quartz Clear Fused Quartz Transparent Fused Quartz Fused Silica Synthetic Fused Silica Clear Fused Silica Clear Fused Silica Silica Glass	Translucent Fused Silica Translucent Fused Quartz (Quarzgut, in German) Translucent Fused Silica Fused Silica Translucent Vitreous Silica Vitreous Silica
			Transparent Vitreous Silica Clear Vitreous Silica Vitreous Silica	

SILICA, CRYSTALLINE

INTRODUCTION

Crystalline silica, also called α-quartz, is the only crystalline form of silica that is stable below 846°K at atmospheric pressure. It is a uniaxial birefringent crystal (hexagonal) that has a resistivity of approximately 10¹⁵ ohm-cm at 300°K. Crystalline silica exhibits strong optical absorption due to lattice absorption bands between 5 and 37 microns in wavelength, becoming transparent again from 50 to 1000 microns, as shown in Figure 1-4. The transmittance in the far infrared has led to the use of this material as window material in this region and for eliminating high-order radiation in far infrared grating spectrometers. Other applications of crystalline silica include piezoelectric crystals and electromechanical transducers.

Most high grade natural crystalline silica is obtained from Brasil. Material of similar quality has been synthesized by hydrothermal growing. The physical properties of crystalline silica are summarized in Table 1-1.

DATA

The data for crysta'line silica are listed in Table 6-2 and detailed in Figures 6-1 to 6-15 and Tables 6-3 to 6-6. Table 6-3 represents a composite of early data for the near infrared region. The wavelengths covered in the data are from 1 to 600 microns and all data were gathered at room temperature. In additional to the refractive index for the ordinary ray, a great deal of refractive index data for the extraordinary ray is included. In general, the data show good agreement in refractive indices.

PRECEDING PAGE BLANK

Table 6-2. List of Crystalline Silica Data

						Wavel (Micr		
Figure	Table	n _o	n _e	Form	Crystal	From	То	Parameter
6-1		х		Bulk		7	14	Wavelength
6-2		x		Bulk		5	14	Wavelength
6-3		x		Bulk		6	33	Wavelength
6-4			x	Bulk		6	33	Wavelength
6-5		х	x	Bulk		6	35	Wavelength
	6-3	х	x	Bulk		1	4	Wavelength
6-6		х		Bulk		80	300	Wavelength
6-7			x	Bulk		80	300	Wavelength
6-8		x		Bulk		27	63	Wavelength
6-9			x	Bulk		27	63	Wavelength
6-10		x		Bulk		50	500	Wavelength
6-11			x	Bulk		50	500	Wavelength
6-12		х		Bulk		40	500	Wavelength
	6-4	x		Bulk		70	300	Wavelength
	6-5	x	x	Bulk		100	300	Wavelength
6-13		x		Bulk		130	600	Wavelength
6-14			x	Bulk		180	600	Wavelength
6-15		x		Bulk		180	500	Wavelength
	6-6	х		Bulk		337	337	Wavelength

The second secon

THICKNESS 0.025 - 0.05 mm

RAY ORDINARY . EXTRAORDINARY . EXTR

Published wiff: permission Copyright®1551 Commission des Publications françaises de Physique

Figure 6-2

Silica, MATERIAL: Crystalline

FORM Bulk		-
THICKNESS 0.030) m	m
RAY ORDINARY	, EXTRAORDINARY	<u> </u>
WAVELENGTH	6-33	Ľ
TEMPERATURE	298	K
METHOD Reflec	ction	
REFERENCE Haefel	le (40240)	_
REMARKS		_
		_

Figure 6-3

Published with permission Copyright@Be2 Springer-Verleg

Figure 6-4

THE REFRACTIVE INDEX OF QUARTZ FOR THE ORDINARY RAY (5) AND THE EXTRAORDINARY RAY (5) AS OBTAINED FROM THE DISPERSION ANALYSIS OF THE REFLECTIVITY.

	Refract	ive Index	
Wavelength, (Microns)	n _o	n _o	Ref
1.0417	1.53442	1.54317	a
1.0973	1.53366	1.54238	a
1. 1592	1.53283	1.54152	a
1. 2288	1.53192	1.54057	di
1. 3070	1.53090	1.53951	a
1. 3685	1.53011	1.53860	a
1.3958	1.52977	1,53632	a,
1.4792	1.52865	1.53716	a
1.5414	1.52781	1.53630	a
1.6146	1.52679	1,53524	a
1.6815	1.52583	1.53422	a
1.7437	1.5248	1.53319	a
1.9457	1.52184	1.53004	a
2.0531	1.52005	1.52823	a
2.60	1.50966	-	ь
3.00	1.49953	_	ь
3. 50	1.48451	-	ъ
4.00	1.46617	-	ь
4. 20	1.4569	-	с

	Silica,
MATERIAL:	Crystalline

FORM	Bulk	
THICKNESS	0.0262	<u>.mm</u>
RAY ORDIN	ARY 🔼 ,	EXTRAORDINARY M
WAVELENGT	н 6-35	μ
TEMPERATU	RE 297	°K
METHOD	Reflectivit	У
REFERENCE	Spitzer &	Kleinman (1865ó)
REMARKS	α-quartz	
		_ /- /- /-

Figure 6-5

THICKNESS No	t stated	mm
RAY ORDINARY	☑ , EXTRAORDINARY	<u> </u>
WAVELENGTH	1.0-4.2	<u> </u>
TEMPERATURE	291	۰ĸ
METHOD	Not stated	
REFERENCE	Smakula [1952]	
REMARKS Refer	ences for this Table:	
		

(a) Carvallo, A., Compt. rend. Vol. 126, (1898), p. 728.
(b) Kohlrausch, F., "Praktische Physik," Vol. II, 18th Ed., B. G. Teubner, Leipzig, (1943),

p. 528. (c) Rubens, H., Wied. Ann., Vol. 54, (1895), p. 488.

Table 6-3

	Silica.
MATERIAL:	Crystalline

RAY_	ORDINARY	D , EXTRAORDINARY	
WAVE	LENGTH	80 - 300	Д
TEMPE	RATURE	298	۰ĸ
METH	OD Tran	smission	
REFER	RENCE Ro	berts & Coon (18253)	
REMA	RKS Br	azilian Quartz	

Figure 6-6

Figure 6-7

Silica.

MATERIAL: Crystalline

WAVELENGTH 27-63 TEMPERATURE 301 METHOD Interference REFERENCE Russell & Bell (28888)	RY 2 . EXTRAORDINARY	N
METHOD Interference REFERENCE Russell & Bell (28888)		<u> </u>
REFERENCE Russell & Bell (28888)	301	°K
	Interference	
BP144 BIG	Russell & Bell (28888)	
REMARKS		
HEMARKS		301 Interference

Figure 6-8

Figure 6-9

6-9

- market and p

	Silica,
MATERIAL:	Crystalline

	Refrac	tive Index,
Wavelength, Microns	Ordinary Ray	Extraordinary Ray
100-300	$2.10 \pm 0.03^{(a)}$	-
165-240	2.11 ± 0.03 ^(b)	2.16 ± 0.02 ^(b)

FORM Bulk
THICKNESS 0. 255 mm
RAY ORDINARY ME EXTRAORDINARY ME
WAVELENGTH 100 - 300 #
TEMPERATURE 300 °K
METHOD Interference
REFERENCE Berman & Zhukov (36032)
REMARKS
(a) crystal cut ⊥ to optical axis
(b) crystal cut to optical axis,
(X cut)

Table 6-5

Determination of the extrapolated, zero-frequency ordinary- and extraordinary-ray refractive indices of quartz. The extrapolated values, $n_0(0) = 2.1062$ and $n_0(0) = 2.1538$, have an experimental uncertainty of ± 0.001 , which is much larger than is apparent from the consistency of the data

Figure 6-13

Figure 6-14

- man - a - J - Carpette

Published with permission Copyright ©1963 Mes Millen (Journale) Ltd.

Wavelength, Microns	Refractive Index, n
337	2.132 ± 0.026

	Silica
MATERIAL:	Crystalline

FORM Bull	0.48	
THICKNESS	0.40	mn
RAY ORDINA	ARY E , EXTRAC	ORDINARY
WAVELENGTH	180 - 500	μ
TEMPERATUR	~ 298	<u>°к</u>
METHOD	Interferenc	:e
REFERENCE _	Chamberla	in (40179)
REMARKS	run 1; Orun 2;	• run 3
*	\\	

Figure 6-15

THICKNESS	3-7	سياني والمتاريخ	mm
RAY ORDINANY	/ 2	EXTRAORDINARY	
WAVELENGTH_	337		<u> </u>
TEMPERATURE	~298	·	• <u>K</u>
METHOD	Inter	ference	مست
REFERENCE C	hambe	rlain & Gebbie(40177
REMARKS Us	e of Cl	l maser as	
radiation	source	•	
			·····

Table 6-6

	2.220	 -					
	2,200	•	£TC				
•	2.180	-					
REFRACTIVE INDEX, "	2,160	 -					
REFI	2,140			/	/		
	2 120		/				
	2.100		50	100	150	200	250
				WAVE NU	MBER, CM ⁻¹		
		L					
			182	100	62.5	30	
				WAVELENG	TH, MICRON	S	

FORM Bulk		
THICKNESS 1	. 0497, 4. 7873	mn
RAY ORDINAL	RY D , EXTRAORDINARY	8
WAVELENGTH	50 — 500	
TEMPERATURE	301	°k
METHOD	Interference	
REFERENCE	Russell & Bell (28888)	
REMARKS		

Figure 6-10

Figure 6-11

6-13

Published with permission Copyright (2001) Springer-Verleg

Wavelength, (Microns)	Refractive Index, n
70-300	2.2 ± 0.02

	Silica
MATERIAL:	Crystalline

FORM	Bulk	ζ	
THICK	VESS _ ~ 0.	6 r	nm
PAY_	ORDINARY	M , EXTRAORDINARY	<u></u>
WAVEL	ENGTH	40 - 500	<u>.</u> <u> </u>
TEMPE	RATURE	~298	°K
метно	D	Interference	
REFER	ENCE	Geick (39706)	
REMAR	KS		
•			

Figure 6-12

THICKNESS	1,2	mm
RAY ORDINAR	Y 🔯 , EXTRAORDINA	RY 🗆
WAVELENGTH_	70 — 300	<u></u>
TEMPERATURE	298	<u>%</u>
METHOD	Interference	
REFERENCE	Poinsot, et al., (40	710)
REMARKS		

Table 6-4

SILICA, FUSED

INTRODUCTION

Fused silica is considered to be a glass and in common with other glasses, its transmission spectrum shows a deep absorption near 2.8 microns and poor transmission at longer wavelengths (Figure 1-5). The absorption in this region is caused by O-H stretching bands. Fused silica is used in innumerable technical applications because of its optical, thermal, mechanical and electrical properties.

Classically, fused silica is prepared by fusion of crystalline silica. Material of very high pruity can be made by hydrolysis of silicon tetrachloride at high temperature where the product, (fused silica) is deposited on a substrate.

The physical properties of fused silica are summarized in Table 1-1 and its transmission in the far infrared is plotted in Figure 1-6.

DATA

The data for fused silica are listed in Table 6-7 and their temperature range is plotted in Figure 6-16. Refractive index spectra for bulk fused silica are offered in Figures 6-17 to 6-23 and Tables 6-8 to 6-15; similar data for film fused silica are provided in Figures 6-24 and 6-25. Comparison of the data shows good agreement to approximately eight microns with a wider spread in data at longer wavelengths. The meager film data show good agreement with bulk data. The temperature dependence of the refractive index of bulk fused silica is the subject of Table 6-16 and Figure 6-26, while film data are shown in Figure 6-27. Figure 6-27 indicates an increase in refractive index with temperature at wavelengths below nine microns, and the opposite effect at longer wavelengths. The effects of ultraviolet radiation or simulated Apollo mission space environment are the subjects of Figure 6-28 and Table 6-17, respectively.

Table 6-7. List of Fused Silica Data

Figure	Table	n, k	Form	Crystal	Wavelength From	(microns) To	Remarks	Parameter
6-17		n	Bulk		0, 4	3, 5		Wavelength
6-18		l n	Bulk	: 	0, 2	3,5	<u> </u>	Wavelength
	6-8	n	Bulk		0.7	3, 7		Wavelength
	6-9	n	Bulk		0, 4	1.08		Wavelength
	6-10	n	Bulk		0, 7	3, 7		Wavelength
	6-11	n	Bulk		1, 0	1, 5		Wavelength
	6-12	n	Bulk		1, 0	3. 4		Wavelength
	6-13	n	Bulk		1.0	2, 6		Wavelength
6-19		n	Bulk		7, 7	12		Wavelength
6-20		"	Not Stated		6	100		Wavelength
6-21		'n	Not Stated	ļ	30	2000	Į	Wavelength
· - ·	6-14	n	Bulk		50	400	1	Wavelength
6-22	****	'n	Bulk		85	200		Wavelength
6-23		"	Bulk		111	600		Wavelength
V -V	6-15	n, k	Bulk		2000	2000		Wavelength
6-24	****	n	Film		0, 2	1,6		Wavelength
6.25		"	Film		7	11	291-1543°K	Wavelength
	6-16	n n	Bulk		1.0	3.4	299-1101°K	,
6-26	1	dn/dT	5		0, 2	4.0	293-303	Temperatur Temperatur
6-27	[n an/ar	Film		7	11	291-1543	Temperatur
6-28	}	n	Film		0, 2	1.5	UV Light	Padiation
0-40	6-17	n	Bulk		0, 2	3.4	Space	
	0-17	l "	Duik		0.23	3,4	Radiation	Radiation
	L	L	I	l	1	L	L	ł .

Figure 6-16. Wavelength and Temperature Range of Fused Silica Data

FORM Bulk
THICKNESS NA (Prism) mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 0, 4 - 3.5
TEMPERATURE 297 °K
METHOD Deviation
REFERENCE Rodney and Spindler (39714)
REMARKS Heraeus B quartz
Most probable values of refractive
indices of pure fused-quartz at 297°K
for various wavelengths, computed from equation (1)
Figure 6-17

Equation (1)
$$n^2 = 2.979864 + \frac{0.008777808}{\lambda^2 - 0.010609} - \frac{84.06224}{96.00000 - \lambda^2}$$

where λ = wavelength in microns.

						\setminus
	1.420	-				$\setminus $
	1,446	-) .	
REFRACTI	1,460	-	\			
REFRACTIVE INDEX, n	1 480					
	1.500					
	1.520	-				
	1.540					

MATERIAL: Silica, Fused

FORM Bulk		
THICKNESS	NA (Prism) m	m
RAY ORDINARY	. EXTRAORDINARY	<u> </u>
WAVELENGTH	0,2-3,5	Ľ
TEMPERATURE	293 •	K
METHOD	Deviation	
REFERENCE	Malitson (21758)	_
REMARKS The	dispersion equation (2)	
	terpolation to five	
decimal place wavelength ra	s over the measured nge.	_

Figure 6-18

Equation (2)
$$n^2 - 1 = \frac{0.6961663\lambda^2}{\lambda^2 - (0.0684043)^2} + \frac{0.4079426\lambda^2}{\lambda^2 - (0.1162414)^2} + \frac{0.8974794\lambda^2}{\lambda^2 - (9.896161)^2},$$

where λ = wavelength in microns.

MATERIAL:	Silica,	Fused

FORM Bulk	
THICKNESS NA (Prism)	mm
RAY ORDINARY ME EXTRAORDINARY	
WAVELENGTH 0.7 - 3.7	μ
TEMPERATURE 293	٥K
METHOD Deviation	
REFERENCE Malitson (21758)	
REMARKS Computed refractive ind	ex
for three products	
<u> </u>	

Table 6-8. Computed Refractive Index and Residuals

Wavelength microns	Spectral source	Computed index	C-D-G-E ^a residual X 10 ⁶	Corning No. 7940 residual X 10 ⁶	Dynasil residual X 10 ⁶	General Electric No. 151 residual X 10 ⁶
0. 706519	He	1.455145	+ 5	+ 10	+ 12	+ 7
0,852111	Cs	1.452465	↓ 5	+ 8	+ 3	+ 5
0.894350	Cs.	1,451835	+ 5	+ 11	+ 5	+ 10
1.01398	Hg	1, 450242	+ 8	+ 6	+ 3	+ 6
1.08297	He	1.449405	- 5	+ 8	+ 1	+ 9
1.12866	Hg	1.448869	+ 1	+ 7	+ 8	+ 9
1.3622	Hg	1.446212	- 12	- 6	- 14	- 12
1. 39506	Hg	1,445836	+ 4	- 1	+ 4	- 3
1, 4695	Cs.	1.444975	- 5	+ 3	+ 9	+ 10
1.52952	Hg	1,444268	+ 2	+ 8	+ 6	0
1.6606	тсв ^b	1.442670	- 20	- 14	- 19	- 11
1.681	Poly ^c	1, 442414	+ 6	- 2	- 10	+ 8
1,6932	Hg	1.442260	0	+ 7	- 6	+ 1
د 1,7091	Hg	1.442057	+ 3	0	+ 3	- 1
1.81307	Hg	1,440699	+ 21	- 7	- 7	+ 6
1.97009	Hg	1.438519	+ 1	+ 6	+ 12	+ 12
2.0581	He	1.437224	4	- 3	- 9	- 11
2, 1526	тсв	1,435769	- 29	- 22	- 25	- 24
2, 32542	Hg	1,432928	- 18	- 10	- 3	- 6
2.4374	тсв	1,430954	- 24	- 23	- 21	- 14
3, 2439	Poly	1.413118	+ 32	+ 21	+ 29	+ 25
3, 2668	Poly	1.412505	+ 25	+ 20	+ 30	+ 25
3, 3026	Poly	1,411535	+ 25	+ 32	+ 30	+ 28
3, 422	Poly	1,408180	+ 20	+ 40	+ 42	+ 37
3, 5070	Poly	1,405676	- 16	- 26	- 20	- 10
3, 5564	TCB	1, 404174	- 24	- 27	- 29	- 18
3.7067	тсв	1, 399389	- 19	- 22	- 14	- 9
Average of	absolute v	! alues of resid	l luals 10,5	11.9	12, 2	11.7

a Residuals for arithmetical-mean table of values compiled from experimental data of Corning (C),
Dynasil (D), and General Electric (G, E,).
b TCB = 1, 2, 4 - Trichlorobenzene,
c Poly = Polystyrene,
6-19

PARAMETER: Wavelength (Cont'd from preceding page) MATERIAL: Silica, Fused

Table 6-9
Intracompany Comparison of Refractive Index Variation

					!	Product	:					
Wavelength,	Corning No. 7940 residual X 106				Dynasil residual X 106			General Electric No. 151 residual X 10 ⁶				
(Microns)	1	2	3	4	1	2	3	4	1	2	3	4
0. 4047	11	26	24	20	4	2?	21	21	11	12	-12	14
0. 4861	16	27	16	21	5	29	19	21	7	15	- 7	12
0, 5461	14	24	22	17	5	33	25	16	11	12	-13	12
0, 5893	12	27	23	27	0	18	20	22	12	13	- 8	12
0, 6563	12	23	19	19	1	27	22	23	13	10	- 7	14
0. 7065	17	28	20	18	2	31	23	23	13	15	-11	17
0.8944	11	26	22	19	3	31 .	19	25	11	12	- 8	13
1.014	16	21	20	20	6	30	26	22	14	13	-11	14
1.083	15	24	25	25	7	35	25	25	13	16	- 9	12
Av. Δn	13, 5	24.9	20.0	21.6	3, 5	27. 4	20.4	20.5	11.3	12.9	- 9.6	13,

NOTE: Numbered columns under each brand indicate individual specimens. The residuals are differences in the sixth decimal place of index between measured values and those computed by dispersion Equation (2). Each n is an average for the 18 wavelengths which were used. (See Figure 6-18 for Equation (2).

			Refractive	Index	
Wavelength,	Spectral		n Fit to 18		
(Microns)	Source	Computed	Corning	Dynasil	G, E
0, 706519	He	1, 455154	+ 1	+ 3	- 7
0, 852!11	C#	1, 452475	- 2	- 7	. :
0, 894350	Ca Ca	1, 451845	+ 2	- 4	+ 1
1,01398	Hg	1, 450250	- 2	- 5	- 7
1.08297	He	1, 449412	j + 1	- 6	+ 2
1,12866	Hg	1,448875	+ 1	+ 2	+ :
1.3622	Hg	1,446213	- 7	- 15	- 13
1.39506	Hg	1,445837	- 2	+ 3	. 4
1, 4695	C:	1,444974	+ 4	+ 10	+ 11
1.52952	Hg	1, 444266	+ 10	+ 8	+ 2
1.6606	TCB [®]	1, 442666	- 10	- 15	. 1
1,681	Polyb	1,442409	+ 3	- 5	+ 13
1.6932	Нg	1, 442255	+ 12	- 1	+ 6
1.70913	Hg	1.442052	+ 5	+ 8	+ 4
1, 81307	Hg	1,440692	- 0	- 0	+ 13
1.97009	îlg	1,438512	+ 14	+ 20	+ 20
2, 0581	He	1, 437216	+ 5	- 1	- 3
2, 1526	TCB	1, 435762	- 15	- 18	- 17
2, 32542	Hg	1,432922	- 4	+ 3	- ა
2, 4374	TCB	1.430951	- 20	- 18	- 11
3, 2439	Poly	1,413138	+ 1	+ 9	+ 5
3, 2668	Poly	1,412525	- 0	+ 10	+ 5
3. 3026	Poly	1, 411554	+ 13	+ 11 .	+ 9
3, 422	Poly	1,408194	+ 26	+ 28	+ 23
3. 5070	Poly	1,405683	- 13	- 27	- 17
3, 5564	TCB	1,404175	- 28	- 30	- 19
3, 7067	TCB	1, 399360	+ 7	+ 15	+ 20

a TCB = 1, 2, 4 - Trichlorobenzene, b Poly = Polystyrene,

Wavelength, (Microns)	Refractive Index, n
1.01398	1.45044
1.12866	1.44906
1.36728	1.44650
1.39506	1.44607
1,52952	1.44450
	l

FORM Bulk	**************************************
THICKNESS NA (Prism)	mm
RAY ORDINARY 13 , EXTRAORDINARY	
WAVELENGTH 0.7 - 3.7	<u> </u>
TEMPERATURE 293	٥ĸ
METHOD Deviation	
REFERENCE Brixner (29206)	
REMARKS Computations based on	
data from Malitson (21758), giving	
average deviation of 4.3 \times 10 ⁻⁶ .	
Table 6-10	

THICKNESS	NA (P	rism)	mm
RAY ORDINAR	₹Y 🖾 ,	EXTRAORDINARY	<u> </u>
WAVELENGTH	1,0	- 1.5	<u>_</u> #
TEMPERATURE	298	}	٥K
METHOD I	Deviatio	n	
REFERENCE	Zerni	ke (39697)	
REMARKS M	leasure	ment on GE-101	,
silica, peri	formed	in air.	
		······································	

Tat-le 6-11

mm

FORM Bulk

TEMPERATURE

METHOD

THICKNESS NA (Prism)

WAVELENGTH 1.0 - 3.4

RAY ORDINARY . EXTRAORDINARY

299 - 1101

Deviation

RLFERENCE Neu, et al. (40260)

REMARKS Corning Code 7940 silica

Refractive Index

Wavelength	Ref	ractive Inde	ĸ, n
(Microns)	299°K	744° K	1101°K
1,01398	1.45039	1, 45562	1, 45960
1.12866	1.44903	1.45426	1.45820
1.254*	1.44772	1.45283	1.45700
1, 36728	1.44635	1.45140	1.45549
1.470*	1.44524	1, 45731	1.45440
1.52452	1.44444	1, 44961	1.45352
1.660*	1.44307	1, 44799	1.45174
1.701	1.44230	1,44733	1.45140
1.981*	1,43863	1.44361	1.44734
2, 262*	1.43430	1.43933	1,44306
2.553*	1.42949	1.43450	1.43854
3.00*	1, 41995	1.42495	1.42877
3, 245*	1.41353	1.41893	1,42243
3, 37"	1.40990	1,41501	1.41915

2.553*	1.42949	1.43450	1, 43854	
3.00≉	1.41995	1, 42495	1,42877	
3.245*	1.41353	1.41893	1,42243	
3, 37%	1.40990	1,41501	1.41915	Table 6-12
*Wavelength ference filte	determinatio			
				THICKNESS not stated mm
Wavelengt (Microns)			leference	RAY ORDINARY . EXTRAORDINARY
1 020		150		WAVELENGTH 1.0 - 2.6 μ
1,028		150	a	TEMPERATURE 291 °K
1.196	1.4	148	b	Name of the state
1.370	1.4	146	ъ	METHOD not stated
1.560	1.4	144	ъ.	REFERENCE Smakula [1952]

1.722 1.442 С 1.870 1.440 b 2.010 1.438 b 2.145 1.436 ď 2,270 1.434 b 2,390 1.432 b 2.50 1.430 b

1.428

2,595

٥K REMARKS References for this Table: (a) Carvallo, A., Compt. rend., Vol. 126, (1898), p. 728. (b) Muller, C. and Wetthauer, A., Z. Phys., Vol. 35, (1933), p. 559. (c) Sifford, J.W., Proc. Roy. Soc., Vol. 70, (1902), p. 329. Table 6-13

b

EX, n	3	<u></u>	Λ		
NE IND	2	-	/~		$\overline{}$
REFRACTIVE INDEX, n	1	ļ	\	N.	
_		1500	1000	500	0
			WAVE NUMBER,	cm ⁻¹	
				1	
		6.7	10	20	33 50 100
			WAVELENGTH, A	AICRONS	

Published with permission Copyright © 1965 Akedemie Verleg

FORM B	Bulk	
THICKNESS_	6, 0 m	m
RAY ORDIN	IARY Q , EXTRAORDINARY	0
WAVELENGT	H 7.7 - 12	<u>#</u>
TEMPERATUR	RE ~298	°K
METHOD	Reflectance	
REFERENCE	Cleck (27331)	
REMARKS	Corning Code 7940 silica	<u>1</u>

Figure 6-19

THICKNESS Not stated	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 6 - 100	μ
TEMPERATURE 298	°ĸ
METHOD Reflectance	
REFERENCE Miler (21593, 34239)	
REMARKS	

Figure 6-20

£ ,3	2.0		
REFRACTIVE INDEX, n	1.9	-	
	1.8	1000 1000 1000 WAVELENGTH, MICRONS	10
		WAYEELER MEMORIA	

Wavelength, (Microns)	Refractive Index,
50	2.07
90	1.94
220	1.89
250	1.92
270	1.89
330	1.92
400	1. 92

MATERIAL: Silica, Fused	MATERIAL:	Silica,	Fused
-------------------------	-----------	---------	-------

THICKNESS	Not stated	mm
RAY ORDINA	RY 🛂 , EXTRAORDINARY	<u></u>
WAVELENGTH	30 - 2000	<u> </u>
TEMPERATURE	~298	°ĸ
METHOD	Reflection	
REFERENCE	Block, et al. (36747)	
REMARKS		
		

Figure 6-21

THICK		50-90 μ 220-400μ			mm	
RAY_		ARY 5 ,		RDINARY		
WAVE	LENGT	H 50 -	400		_ <u>#</u>	
TEMP	ERATUR	RE	-298		°K	
METH	OD	Reflection	n, Interf	erence		
REFE	RENCE	Bogens	and Zhu	akov (35	268)	
REMARKS						

Table 6-14

c	2.00					
REFIACTIVE INDEX, n	•	··				-
7	ــــا 1.90					لـــــــــــــــــــــــــــــــــــــ
2	40		60	80	100	120
			WAVE	NUMBER, CM"	1	
		_		 		
		200			100	83
			WA	VELENGTH, M	ICRONS	

Published with permission Copyright 1961 Springer-Verlag

Figure 6-22

WAVELENGTH 111 - 600 TEMPERATURE ~298 METHOD Interference	<u> </u>
METHOD Interference	°K
REFERENCE Randall and Rawcliff	e (3325
REMARKS Infrasil low H20 quar	tz

Figure 6-23

Wavelength,	Refractive	Extinction
Microns	Index, n	Coefficient, k x 103
2000	1.95 ± 0.008	0, 56 ± 0, 06

FORM Bulk
THICKNESS 18-, 40 mm
RAY ORDINARY & EXTRAORDINARY
WAVELENGTH 2,000 µ
TEMPERATURE ~298 °K
METHOD Transmission
REFERENCE Dianov and Irisova (41423)
REMARKS Sample consisted of two
wedges.

MATERIAL: Silica, Fused

Table 6-15

Published with permission Copyright@1956 Springer-Verley

MATERIAL: Silica, Fused

FORM Film
THICKNESS not stated mm
RAY ORDINARY 2 , EXTRAORDINARY 0
WAVELENGTH 0.2 - 1.5
TEMPERATURE ~298 °K
METHOD Reflection
REFERENCE Cox, et al. (17066)
REMARKS Film produced by electron
bombardment of fused silica,
evaporated on fused silica substrate.

Figure 6-24

THICKNESS 5 x 10 ⁻⁴					
RAY ORDINAR	Y 🗔 , EXTRAORDINARY				
WAVELENGTH_	7 - 11	_μ			
TEMPERATURE	291 - 1543	°K			
METHOD	Reflection				
REFERENCE	Neuroth (40354)				
REMARKS					

Figure 6-25

PARAMETER: Temperature

Wavelength,	Refractiv	e Index	(dn/dT)/	Refractive Index.	(dn/dT)/
(Microne)	299•4	744° K	*K × 106	1101.4	·K × 106
0, 23021	1, 52034	1,52908	+19,6	1, 535£4	+19.3
0, 23783	1.51496	1, 52332	+18 8	1, 52985	+15.6
0, 2407	1.51361	1,52201	+16.9	1, 52832	+18.3
0, 2465	1.50970	1. 51774	+18.1	1, 52391	+17, 7
0, 24827	1,50865	1,51665	+18.0	1, 52289	+17, 8
0, 26520	1.50023	1 50763	+16.6	1,51351	416.5
0, 27528	1.49615	1.50327	+16.0	1.50899	+16.0
0, 28035	1.49425	1,50143	+16.2	1,50691	+15,8
0, 28936	1,49121	1, 49818	+15,7	1.50358	+15 4
0, 29673	1.48892	1, 49584	+15.6	1,50112	+15.2
0, 40215	1, 46738	1, 49407	+15.1	1, 49942	+15.0
0, 31 30	1,48462	1, 49126	+14.9	1. 49641	+14.7
0. 333415	1.48000	1, 48633	+14, 2	1, 49135	+14, 1
U. 365°2	1, 47469	1.48089	+14.0	1, 48563	+13.6
0, 40466	1.46978	1.47575	+13,4	1, 48033	+13,2
0, 43584	1, 46685	1.47248	+12, 7	1,47716	412.9
0, 54607	1.46028	1.46575	+12, 3	1, 47004	+12,2
0, 5780	1. 45899	1,46429	+11.9	1.46870	+12, 1
1,01398	1.45039	1,45562	+11.8	1, 45960	+11.5
1, 12866	1,44903	1, 45426	+11.8	1,45820	+11,4
1, 254	1.44772	1, 45283	+11.5	1,45700	+11.6
1, 36728	1, 44635	1. 45140	411,4	1, 45549	÷11,4
1, 470	1, 44524	1,45,73	+11 4	1, 45440	+11.4
1, 52932	1,44444	1, 44 461	+11.6	1, 45352	+11, 3
1,660	1.44307	1.44799	+11.1	1, 45174	+10.8
1, 701	1.44230	1,44733	+11.3	1, 45140	+11.3
1. 981	1,43863	1, 44361	+11.2	1, 44734	+10.9
2, 262	1,43430	1, 43933	+11.3	1, 44306	+10.9
2,553	1.42949	1.41450	+11.3	1, 43854	+11.2
3, 00	1,41995	1, 42495	+11,2	1, 42877	+11,0
3, 245	1,41353	1,41893	+12,2	1. 42243	+11.1
3, 37 ⁿ	1,40990	1,41501	+11.5	1,41915	+11,5

^{*}Wav-length determination by narrow-bandwidth interference filters,

FORM Bulk	
THICKNESS NA (Prism)	nm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 1.0 - 3.4	<u> </u>
TEMPERATURE 299 - 1101	° _K
METHOD Deviation	
REFERENCE Neu, et al. (40360)	
REMARKS Corning Code 7940 silic	ea_
Table 6-16	

THICKNESS NA (Prism)				
RAY ORDINARY . EXTRAORDINARY	/ <u>[</u>			
WAVELENGTH	<u> </u>			
TEMPERATURE 293 - 303	۰ĸ			
METHOD Deviation				
REFERENCE Malitson (21758)				
REMARKS				
	~			

Figure 6-26

PARAMETER: Temperature

3.0 2.5 2.5 1.5 1.5 1.5 1.6 1.73° 1543° 0 7 8 9 10 11 WAVELENGTH, MICRONS

> Published with permission Copyright 1956 Springer-Verley

FORM Film		
THICKNESS	5 x 10 ⁻⁴	nm
RAY ORDINAR	Y . EXTRAORDINARY	
WAVELENGTH_	7 - 11	
TEMPERATURE	291 - 1543	۰ĸ
METHOD	Reflection	
REFERENCE	Neuroth (40354)	
REMARKS		

MATERIAL: Silica, Fused

Figure 6-27

PARAMETER: Radiation (UV)

MATERIAL: Silica, Fused

FORM Film, Amorphous
THICKNESS (1-5) x 10 ⁻³ mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 0, 2 - 1, 5
TEMPERATURE ~298 °K
METHOD Reflection
REFERENCE Cox, et al. (17066)
REMARKS Film produced by evaporation
of SiO in the presence of oxygen.
Data include refractive index before
and after ultraviolet irradiation.
Figure 6-28

PARAMETER: Radiation (Space)

MATERIAL: Silica, Fused

	Refract	ive Index, n	
Wavelength, * (Microns)	Non-irradiated	Irradiated 30 day dose	Δn × 10 ⁵
0, 23021	1,52034	1, 52037	+ 3
0, 23783	1.51496	1,51502	+ 6
0, 2407	1,51361	1.51363	+ 2
0. 2447	1,51081	1,51075	- 6
υ. 2465	1.50970	1.50974	+ 4
0, 24827	1,50865	1.50869	+ 4
0, 26520	1,50023	1,50028	+ 5
0. 2700	1.49839	1.49831	- 8
e, 27528	1.49615	1.49616	+ 1
0. 28035	1,49425	1.49429	+ 4
0, 28936	1. 49121	1.49123	+ 2
0, 2930	1.49021	1.49023	+ 2
0. 29673	1. 48892	1.48895	+ 3
0.30215	1.48738	1.48741	+ 3
0.3130	1.48462	1,48460	- 2
0. 33415	1.48000	1.47997	- 3
0, 36502	1.47469	1.47473	+ 4
0.40466	1.46978	1.46981	+ 3
0, 43584	1.46685	1, 46689	+ 4
0.54607	1,46028	1.46025	- 3
0. 5780	1. 45899	1,45900	+ 1
1.01398	1. 45039	1. 45040	+ 1
1.12866	1.44903	1.44901	- 2
1.254*	1. 44772	1.44760	- 12
1. 36720	1, 44635	1,44633	- 2
1.470*	1.44524	1.44513	- 11
1.52452	1, 44444	1, 44445	+ 1
1. 560*	1.44307	1. 44296	- 11
1.701	1.44230	1.44228	- 2
1.981*	1.43863	1, 43859	- 4*
2. 262*	1,43430	1. 43426	- 4*
2, 553*	1.42949	1, 42939	- 10
3.00*	1.41995	1.41962	- 33
3. 245*	1.41353	1,41351	- 2*
3, 37*	1.40990	1.40997	+ 7*

 $\delta n = 23 \times 10^{-5}$ (experimental error)

*Wavelength determination by narrow band interference filters.

FORM Bulk
THICKNESS NA (Prism) mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 0, 2 - 3, 4 µ
TEMPERATURE 299 °K
METHOD Deviation
REFERENCE Neu, et al. (40360)
REMARKS Corning Code 7040 silica.
Radiation simulating 30 day exposure
for Apollo mission.
Proton flux: 3×10^{10} cm ⁻² sec ⁻¹ (≤ 2 MeV). Electron flux: 2.5×10^{12} cm ⁻² sec ⁻¹ (1 MeV). Ultraviolet: 0.5461 watt-cm ⁻² ($0.22 - 0.4 \mu$) Atmospheric pressure: $P_{min} = 10^{-10}$ Torr)

Table 6-17

CHAPTER 7

REFRACTIVE INDEX DATA FOR FLUORIDES AND SELECTED CERAMICS

This Chapter provides refractive indices and extinction coefficients for the following fluorides and ceramics which are grouped together on the basis of their high temperature capabilities: Calcium fluoride, magnesium fluoride, aluminum oxide including ruby and sapphire, and magnesium oxide.

CALCIUM FLUORIDE

INTRODUCTION

Calcium fluoride offers high and uniform transmission over the range from the ultraviolet region to approximately ten microns (Figures 1-7 and 1-9) and this constant transmission makes this material very desirable for wide spectrum optical applications. Rather pure single crystal calcium fluoride is found in nature and is called "Fluorite" or "Fluorspar." Calcium fluoride of similar purity, but of larger dimensions, has been produced by controlled freezing of purified molten calcium fluoride after an initial scavenging with lead fluoride. Fluorspar is widely used in iron foundry operations, the manufacture of primary aluminum and magnesium, as source of fluorine chemicals, for the production of glass and enamels, and innumerable other uses.

The physical properties of calcium fluoride are summarized in Table 1-1.

DATA

A list of refractive index data for calcium fluoride is provided in Table 7-1 and the temperature range of the data is plotted in Figure 7-1. The wavelength dependence of the refractive index and some extinction coefficients for bulk single crystal material are presented in Figures 7-2 to 7-9 and Tables 7-2 to 7-6 and for polycrystalline material in Figure 7-10 and Tables 7-7 and 7-8. The data reveal good agreement in refractive index is discernible between single and polycrystalline material. Only in the "Reststrahlen" region of the spectrum (near 38 microns) is there a major disagreement in refractive index between authors. The temperature dependence of the refractive index is covered by Figures 2-3 and 7-11 as well as Tables 7-9 and 7-10.

PRECEDING PAGE BLANK

Table 7-1. List of Calcium Fluoride Data

					Wavelength (Microns)		•	
Figure	Table	n,k	Form	Crystal	From	То	Remarks	Parameter
	7-2	n	Bulk	Single	0,75	1.1		Wavelength
	7-3	n	Bull:	Single	0,8	9.0		Wavelength
	7-4	n	Bulk	Single	0.9	9.4		Wavelength
	7-5	n	Bulk	Single	0.8	9.8		Wavelength
7-2		n	Bulk	Single	,	10		Wavelength
	7-6	n	Bulk	Single	0,85	9.7		Wavelength
7-3		k	Bulk	Single	6	9		Wavelength
7-4		n, k	Bulk	Single	15	48		Wavelength
7-5		n, k	Bulk	Single	34	43		Wavelength
7-6		n	Bulk	Single	10	80		Wavelength
7-7		k	Bulk	Single	10	80		Wavelength
7-8		n	Bulk	Single	8	15		Wavelength
7-9		n	Bulk	Single	55	400	80, 300°K	Wavelength
	7-7	n	Bulk	Polycryst.	0.59	5.3		Wavelength
	7-8	n	Bulk	Polycryst.	1	11		Wavelength
7-10		n	Bulk	Polycryst.	1	11		Wavelength
	7-9	dn/dT	Bulk	Single	0.9	6,5	330-354°K	Temperature
	7-10	dn/dT	Bulk	Single	0, 85	9.7	292°K	Temperature
7-11		n	Bulk	Single	55	460	80, 300°K	Temperature

Figure 7-1. Wavelength and Temperature Range of Calcium Fluoride Data

Wavelength, (Microns)	Refractive Index, , n	Wavelength, (Microns)	Refractive Index, n
0.750	1.43114	0.940	1.42935
0.760	1.43102	0.950	1.42927
0.770	1.43090	0.960	1.42920
0.780	1.43079	0.970	1.42913
0.790	1,43068	0.930	1.42906
0.800	1.43057	0.990	1.42899
0.810	1,43047	1.000	1.42892
0.820	1.43037	1.010	1.42885
0.830	1.43027	1.020	1.42879
0.840	1.43018	1.030	1.42872
0.850	1.43008	1.040	1.42866
0.860	1.42999	1.050	1.42859
0.870	1.42990	1.060	1.42853
0.880	1.42982	1.070	1,42847
0.890	1.42974	1,080	1.42841
0.900	1.42966	1.090	1.42835
0.910	1,42958	1,100	1,42829
0.920	1.42950	1,110	1,42823
0.930	1.42942	1,120	1.42817

Wavelength, (Microns)	Refractive Index, n	Wavelength, (Microns)	Refractive Index, n
0.80	1.430563	3,0	1,41793
0,90	1,429651	3,5	1.41412
1.00	1.428923	4.0	1.40971
1.2	1.427760	4.5	1.40469
1.4	1.426772	5.0	1.39901
1,6	1.425833	6.0	1,38562
1.8	1.424885	7.0	1.36932
2,0	1.423895	8.0	1.34988
2.3	1.422294	9.0	1, 32685
2.6	1.420525		

FORM_	Bulk (procession)	robably single	•
THICKN	ESS	Not stated	mn
RAY _C	RDINARY	□ , EXTRAO	RDINARY E
WAVEL	NGTH	0.75 - 1.1	
TEMPER	ATURE	293	°ĸ
METHO		Not stated	
REFERE	NCE Ha	irting [1948]	
REMAR	<s< td=""><td></td><td></td></s<>		

	Т	able 7-2	

THICKNESS	Not stated	mm
RAY ORDINARY	图, EXTRAORDINARY	0
WAVELENGTH	0.8 - 9.0	_ <u>ji</u>
TEMPERATURE	293	°ĸ
METHOD	Not stated	
REFERENCE	Smakula [1952]	
REMARKS Data	taken from	
Kohlrausch [1943]	

Table 7-3

Wavelergth (Microna)	Refractive Index, n	Wavelength (Mtcrons)	Refeactive Index. n
0, 48480	1 42980	2, 800	1, 11721
1.0140	1.42H#4	2. MAO	1, 41870
1,08304	1,44443	2.9466	1.41425
1, 1000	1.42831	3,0500	1,41750
1,1786	1.42789	3, 0980	1.41714
1.250	1.42752	3, 2413	1,41610
1,3756	1.42689	5,4000	1,41487
1,4713	1.42642	3, 4357	1.41376
1,5719	1.44596	3, 4306	1.41117
1,650	1.4255#	4,000	1,40963
1,7680	1,42502	4, 1252	1.40847
1.8400	1.42468	4, 2500	1.40722
I. MEHH	1,42454	4,4000	1,40564
1, 900	1.44439	4,6000	1,40157
1,9153	1, 12431	4.7146	1,40233
1,9644	1.42407	4, 8000	1,40130
2,0582	1,42360	5,000	1. 19908
2,0626	1.42357	5, 3036	1, 39522
2. 166H	1,42306	5, 8932	1.39712
7,750	1,4465#	1, 4925	1, 17424
4. 1571	1,4219K	7,071H	1, 36805
2,450	1,42143	7.6612	1. 35675
7.5537	F. 420HD	H, 4505	1, 14440
2,6519	1.4201#	H, H57H	1, 530/5
2,700	1,41788	7, 4271	1, 11605
2,750	1,41956	1	ļ

Wavelength, (Microns)	Hefractive Index n	Wavelength, (Microns)	Refeative Index n
0,80	1,41052	1,70	1,40454
0,42	1,45032	4, Kfi	1,40130
0,84	1.44014	5,00	1, 39895
0, 46	1.42995	5,20	1, 19650
0,88	1,42977	5, 40	1, 19194
0,90	1.42761	5,60	1, 37127
0.72	1.42945	5,80	1. 38847
0,94	1.44930	6,00	1, 38557
0,96	1, 42915	6,20	1.38658
0,98	1,42901	6,40	1, 37945
1.00	1.42888	6,60	1, 37/420
1,20	1,14771	/ ₄ , HO	1.374#4
1.40	1.42672	7,00	1.36932
1,60	1.42579	7,20	1, 36569
1,40	1.424#4	7,40	1, 36193
2,00	1,42385	7,60	1, 35904
2,20	1.44250	7, 40	1, 35401
2,40	1,42168	M. 00	1, 34983
2.60	1,42049	H. 20	1, 34552
2,40	1,41921	H, 40	1.34:06
3,00	1,41785	H, 60	1.33645
3, 20	1,41639	4.40	1, 33169
3,40	1,41480	9,00	1,32677
3,60	1,41320	9.20	1.32168
3, 80	1.41147	9,40	1, 31643
4,00	1,40963	9.60	1.31'01
4,20	1.40770	9,80	1.30542
4, 40	1.40567	1	

FORM	Bulk	
THICKNESS	Not stated	mm
RAY ORDINARY	2 , EXTRAORDINARY	0
WAVELENGTH	0.9 - 9.4	_ <u>#</u>
TEMPERATURE	293	°К
METHOD	Not stated	
REFERENCE	Ballard (12539)	
REMARKS		
		
т	able 7-4	

THICKNESS	NA (Prism)	mm
RAY ORDINARY	2 , EXTRAORDINARY	<u></u>
WAVELENGTH	0.8 - 9.8	
TEMPERATURE	297	٥ĸ
METHOD	Deviation	
REFERENCE	Malitson (39194)	,
REMARKS	Computed refractiv	<u>e</u>
index, based	on observed data.	

Table 7-5

		Resid	nputra) x 10 ³
Wavelength,	Computed Index,	Synthetic 0-c	Natural o-c
(MICIONA)			
0.85212	1.43002	-1	+4
0,8944	1.42966	0	+2
1,01398	1.42879	-2	0
1. 3622	1.42691	+1	+8
1.39506	1,42675	+1	+6
1.52952	1.42612	+4	+4
1.7012	1,42531	+2	+4
1.81307	1.42478	0	+9
1.97009	1.42401	+3	• 3
2.1526	1.42306	-1	+1
2 32542	1.42212	+3	14
2.4374	1.42147	0	+2
3, 3026	1.41561	0	+3
3.422	1.41467	+2	+2
3.5070	1,41398	-1	+2
3.7067	1.41229	+2	+2
4.258	1.40713	+4	+4
5.01882	1,39873	•1	+5
4. 3034	1.39520	+3	+3
0140	1, 38535	1.5	+5
6. 218	1.38200	-6	0
6. 63306	1.37565	0	+1
6, 8559	1.37186	-8	+2
7.268	1.36443	+2	+7
7.4644	1,36070	15	+6
8, 662	1.33500	-4	1.3
9.724	1.30756	+1	+5

FORM Bulk,	Single Crystal	
THICKNESS	NA (Prism)	mm
RAY ORDINAR	Y M . EXTRAORDINARY	
WAVELENGTH_	1 - 10	<u> </u>
TEMPERATURE	297	°K
METHOD	Deviation	
REFERENCE	Malitson (39104)	
REMARKS	Synthetic crystal	
•		

Figure 7-2

THICKNESS	NA (Prism)	mm
RAY ORDINARY	. EXTRAORDINARY	
WAVELENGTH	1 - 10	<u> </u>
TEMPERATURE	297	°K
METHOD	Deviation	
REFERENCE	Malitson (39194)	
REMARKS Com	parison of natural at	nd
synthetic sin	gle crystals	

Table 7-6

FORM Bulk, Single Crystal
THICKNESS 111.7(6-9μ), 8 (15-48μ) mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 6-48
TEMPERATURE ~298 °K
METHOD 6-94-Transmission;
15-48µ Reflection. REFERENCE Heilmann (40178)
REMARKS Improved results over
earlier work, reported by Heilmann
[1961]

Figure 7-3

EN MAYELENGTH, MICRONS

Published with permission Copyright@1963 Springer-Verlag

Figure 7-4

Figure 7-5

Note: ---- Results of Kaiser, et al (40176).

FORM Bulk, S	ingle Crystal	,
THICKNESS	0.1 - 5	mm
RAY ORDINARY	2 , EXTRAORDINARY	
WAVELENGTH	10 - 80	<u> </u>
TEMPERATURE	~ 298	°K
METHOD	Reflection	
REFERENCE	Kaiser, et al. (4017	(6)
REMARKS		
	and the second seco	

Figure 7-6

Figure 7-7

FORM Bulk,	Single	Crystal	
THICKNESS	0.02	5 - 0.050	mm
RAY ORDINAR	Y 🛛 ,	EXTRAORDI	NARY [
WAVELENGTH_	8 - 1	5	<u> </u>
TEMPERATURE	~298		°K
METHOD	Inte r	ference	
REFERENCE F	Ramadie	r - Delbes	(39712)
REMARKS			*************

Figure 7-8

THICKNESS	0.3 - 10	mm
RAY ORDINARY	. EXTRAORDINARY	
WAVELENGTH	55 ~ 400	μ
TEMPERATURE _	80, 300	°K
METHOD	Interference	
REFERENCE	Bosomworth (029681)	
REMARKS Prin	cipal impurity	
on dielectric	f iron. Lines are bas constant of an infinite	ed

Figure 7-9

harmonic fluorite lattice.

Wavelength, (Microns)	Refractive Index, n
0.588	1.4339
1.014	1.4289
1.529	1.4262
1.970	1.4241
2.325	1.4222
2.674	1.4200
3.303	1.4157
4. 258	1.4072
4.59	1.4034
5. 303	1.3952

FORM Bulk, Polyc	rystalline
THICKNESS Not	stated mm
RAY ORDINARY 2 ,	EXTRAORDINARY
WAVELENGTH 0.59	- 5. 3 <u>µ</u>
TEMPERATURE ~298	<u>°</u> к
METHOD Not s	tated
REFERENCE Type	IRG 12 material
REMARKS	
Table 7	'-7

Wavelength, (Microns)	Refractive Index, n	Wavelength, (Microns)	Refractive Index, n
1.000	1.4289	5.7300	1, 3892
1.2500	1.4275	6,0000	1.3856
1,5000	1.4263	6.2500	1.3818
1.7500	1.4251	6,5000	1.3778
2.0000	1.4239	6,7500	1.3737
2,2500	1.4226	7,0000	1.3693
2.5000	1.4211	7.2500	1.3648
2.7500	1.4196	7.5000	1.3600
3,0000	1.4179	7,7500	1.3550
3,2500	1.4161	8,0000	1.3498
3,5000	1.4141	8,2500	1.3445
3,7500	1.4120	8,5000	1.3388
4.0000	1.4097	8,7500	1.3330
4.2500	1.4072	9.0000	1.3269
4.50000	1.4047	9.2500	1.3206
4.7500	1.4019	9,5000	1.3141
5,0000	1.3990	9.7500	1.3073
5.2500	1.3959	10.0000	1.3002
5,5000	1.3926	11,0000	1.2694

THICKNESS	Not stated		
RAY ORDINARY	. EXTRAORDINARY		
WAVELENGTH	1 - 11	μ	
TEMPERATURE	298	°K	
METHOD	Not stated		
REFERENCE	Kodak [1967]		
REMARKS	ITRAN-3 material		
	Table 7-8		

IRTRAN 3 WAVELENGTH, MICRONS

Figure 7-10

PARAMETER: Temperature

Wavelength (Microns)			avelength Coefficient,	
0.900	10.31	333.1		
1.200	ر0.40	333.1		
1.25	10, 29	333,2		
1.30	10, 18	333,5		
2.0	9. 32	333.5		
3.16	8.81	332.6		
4.2	8, 31	332.8		
5, 3	8. 21	332, 2		
6.5	7.87	330.0		

FORM Bulk,	Single	Crystal	
THICKNESS	Not s	stated	mm
RAY ORDINAR	RY 🖸 ,	EXTRAORDINARY	0
WAVELENGTH_	0.9 -	6.5	<u> </u>
TEMPERATURE	330 -	335	°K
METHOD	Not s	stated	
REFERENCE	Smakula	[1952]	
REMARKS D	ata take	n from	
Liebreich	[1911]		

Table 7-9

Wavelength, (Microns)	Computed Index, n	Temperature Coefficient, -(dn/dT) x 10 ⁶
0,85212	1.43002	10, 6
0.8944	1.42966	10.6
1,01398	1.42879	10.5
1.39506	1.42675	9.9
1.52952	1.42612	9.6
1.7012	1.42531	9.4
1.81307	1.42478	9. 1
1.97009	1.42401	8,9
2.1526	1.42306	8,7
2.32542	1,42212	8,5
2.4374	1.42147	8.5
3.3026	1.41561	8, 2
3.422	1.41467	8, 1
3.5070	1.41398	8.0
3,7067	1.41229	7.8
4.258	1.40713	7.5
5.01882	1.39873	7, 3
5.3034	1.39520	7.2
6.0140	1.38539	7.0
6,238	1.38200	7.0
6, 63306	1, 37565	6.9
6, 8559	1.37186	6.7
7.268	36443 6.5	
7.4644	1, 36070	6.4
8.662	1,33500	6.0
9.724	1.30756	5.6

THICKNESS	NA (Prism)		
RAY ORDINARY	☑ , EXTRAORDINARY		
WAVELENGTH	0.85 - 9.7	μ	
TEMPERATURE	292	°K	
NETHOD	Deviation_		
REFERENCE	Malitson (39194)		
REMARKS Synth	etic single crystal.		

Table 7-10

PARAMETER: Temperature

FORM Bulk	Single Crystal			
THICKNESS	0.3 - 10 r	nm		
RAY ORDINARY	3 , EXTRAORDINARY	0		
WAVELENGTH	55 - 400	<u> </u>		
TEMPERATURE	80, 300	°K		
METHOD	Interference			
REFERENCE	Bosomworth (29681)			
REMARKS	Principal impurity			
10-100 ppm o	firon. Lines are			
based on diele	ectric constant of an			
infinite harmonic fluorite lattice.				
F	igure 7-11			

MAGNESIUM FLUORIDE

INTRODUCTION

Magnesium fluoride is prepared by the reaction of magnesium oxide with hydrofluoric acid and as a byproduct from the reduction of metal fluorides with magnesium in the manufacture of some metals. Magnesium fluoride is used as flux in the metallurgy of magnesium metal, as flux for porcelain and pottery, as phosphor in cathode ray screens, as coating agent for titanium pigments, and in optics as window material and antireflection coating on lenses.

The optical transmission of polycrystalline magnesium fluoride is shown in Figure 1-9, and its physical properties are listed in Table 1-1.

DATA

Refractive index data for magnesium fluoride are listed in Table 7-11 and consist only of one set of data for polycrystalline material (Figure 7-12 and Table 7-12) and one data point for magnesium fluoride film (Table 7-13). This apparent lack of data in the literature does not permit a comparison of results.

Table 7-11. List of Magnesium Fluoride Data

					Wavelength (Microns)		
Figure	Table	n, k	Form	Crystal	From	То	Parameter
	7-12	n	Bulk	Polycryst	1.0	6.75	Wavelength
7-12		n	Bulk	Polycryst	1	9	Wavelength
	7-13	n	Film	*	2. 0	2. 0	Wavelength

*Not Stated

Wavelength, (Microns)	Refractive Index, n	Wavelength, (Microns)	Refractive Index. n
1.0000	1.3778	4.0000	1.3526
1. 2500	1.3763	4. 2500	1.3492
1.5000	1.3749	4.5000	1.3455
1.7500	1.3735	4.7500	1.3416
2.0000	1.3720	5.0000	1.3374
2. 2500	1. 3702	5, 2500	1.3329
2. 5000	1.3183	5, 5000	1,3282
2.7500	1.3663	5.7500	1. 3232
3.0000	1.3640	6.0000	1.3179
3. 2500	1.3614	6. 2500	1.3122
3.5000	1, 3587	6. 5000	1.3063
3.7500	1, 3558	6.7500	1.3000

Magnesium
MATERIAL: Fluoride

FORM Bulk,	, Polycrystalline		
THICKNESS	Not stated mm		
RAY ORDINARY	西, EXTRAORDINARY □		
WAVELENGTH	1 - 9		
TEMPERATURE	298 °K		
METHOD	Not stated		
REFERENCE	Kodak [1967]		
REMARKS	IRTRAN-1 material		

Table 7-12

Figure 7-12

Wavelength, Microns	Refractive Index, n	
2	1.36	

Magnesium
MATERIAL: Fluoride

FORM		Film	1		
THICKNESS		~5 x	~5 x 1.0 ⁻⁴		
RAY	ORDINARY	M ,	EXTRAORDINARY		
WAVE	LENGTH	~2	. 45	<u> </u>	
TEMP	ERATURE_	~ 298	3	°K	
METH	OD	Tran	smission		
REFE	RENCE	Jenn	ess (40476)		
REMA	RKS	Evaporated coating			
on fused silica substrate,					
Extraordinary ray neglected.					

Table 7-13

ALUMINUM OXIDE - CORUNDUM - SAPPHIRE - RUBY

INTRODUCTION

Corundum is a naturally-occurring α -alumina, (Al₂0₃), which crystallizes in the hexagonal form. Pure corundum is fully transparent and water-white, and is called "white sapphire." Corundum for optical applications is generally synthesized and called "sapphire." Corundum crystals containing from approximately 0.04 to 5 percent chromic oxide in their lattices are called "ruby." The ruby's applications in optics are mostly in laser technology. The synthesis of sapphire is commonly performed by means of the Verneuil or flame fusion process which is based on the fusion of the aluminum oxide with heat from a hydrogen-oxygen source and growth at a controlled temperature of approximately 2300°K. The light transmission through sapphire is shown in Figure 1-8 and shows a useful region between 0.2 and 5 microns. The infrared optical properties of corundum, sapphire and ruby are essentially identical, [Ref. Haefele (9762)].

Physical properties of sapphire are summarized in Table 1-1. Uses for aluminum oxide include gems, jewel bearings, luminescent materials, abrasives and optics.

DATA

A list of data presentations for aluminum oxide is offered in Table 7-14 and the wavelength- and temperature coverage is plotted in Figure 7-13. The spectral dependence of the refractive index of bulk corundum, sapphire and ruby is shown in Figures 7-14 to 7-22 and Tables 7-15 to 7-17 for ordinary and extraordinary rays with inclusion of some extinction coefficients. The data show good agreement among authors and materials. Data for amorphous films are presented in Figures 7-23 and 7-24 with fair agreement of the sparse data with bulk data. Table 1-18 gives refractive index data as a function of wavelength and anodizing potential, and it is apparent

that low anodizing potentials give high readings — more nearly resembling the metal than the oxide. The temperature dependence of the refractive index is covered by Figures 7-25 and 7-26 as well as Tables 7-19 and 7-20.

Table 7-14. List of Aluminum Oxide Data

					Wavelength (Microns)			
Figure	Table	n, k	Form	Crystal	From	То	Remarks	Parameter
7-14		n, k	Bulk	Corundum	9	33	293 ° K	Wavelength
7-15		n, k	Bulk	Corundum	9	33	1773 ° K	Wavelength
7-16		n	Bulk	Sapphire	0.3	5.6		Wavelength
	7-15	n	Bulk	Sapphire	2.0	3.6		Wavelength
7-17		n	Bulk	Sapphire	58	500	O-ray	Wavelength
7-18		n	Bulk	Sapphire	58	500	E-ray	Wavelength
7-19		n	Bulk	Sapphire	180	500	O & E-rays	Wavelength
	7-16	n	Bulk	Sapphire	58	500	O & E-rays	Wavelength
7-20		n	Bulk	Sapphire	112	300		Wavelength
	7-17	n	Bulk	Sapphire	167	500	O & E-rays	Wavelength
7-21		n, k	Bulk	Ruby	É	33	O-ray	Wavelength
7-22		n, k	Bulk	Ruby	6	33	E-ray	Wavelength
	7-1.	n	Film	Amorphous	1.5	۱5		Wavelength
7-23	ı	n	Film	Amorphous	0.2	1.6	318°K, 573°K	Wavelength
7-24		n	Film	Amorphous	15	57		Wavelength
7-25		n, k	Bulk	Corundum	9	33	293 ° K	Temperature
7-26		n, k	Bulk	Corundum	9	33	1773 ° K	Temperature
	7-19	n	Bulk	Sapphire	0.56	4.0	296 – 1973°K	Temperature
	7-20	dn/dT	Bulk	Sapphire	4	4	292 – 297°K	Temperature

Figure 7-13. Wavelength and Temperature Range of Aluminum Oxide Data

Published with permission Capyright 1966 Messon et Cie.

Figure 7-14

Figure 7-15

PRECEDING PAGE BLANK

Wavelength, (Microns)	Refractive Index, n
2.0	1.65
3.5	1.60

Aluminum

MATERIAL: Oxide-Sapphire

FORM Bulk	, Single Crystal	
THICKNESS N	NA (Prism)	mm
RAY ORDINA	RY . EXTRAORDINAR	Y D
WAVELENGTH_	0.3 - 5.6	<u></u> <u>#</u>
TEMPERATURE	297	<u>°K</u>
METHOD	Deviation	
REFERENCE	Malitson (17008)	
REMARKS		

Figure 7-16

THICKNESS 1.6, 3.2	mm			
RAY ORDINARY D , EXTRAORDINARY	口			
WAVELENGTH 2.0, 3.6	<u>#</u>			
TEMPERATURE ~298	°K			
METHOD Transmission				
REFERENCE Jenness (40476)				
REMARKS Values estimated from LiF				
coating data				

Table 7-15

	3.300						
				OI	DINARY RAY		ĺ
			ETC				
	3.260					_	
						/ [°] °	
						/	1
	3.220	•				/	
e°					/	1	
ØEX,					/]
REFRACTIVE INDEX, 10	3.180	•			/		1
Σ							- 1
REF	3.140						- 1
							1
	j						
	3.100						- 1
	ļ		/				j
	3.060						
	0		50	100	150	200	250
				WAVE NU	MBER, CM-1		
	L	520	200	100	67		
		3.0	200		H, MICRONS		
				MAYELENGI	n, MICKUNS		

FORM	Bulk, Sing	le Crystal	
THICKNESS_	1.0		mm
RAY ORDIN	ARY 🔼 ,	EXTRAORDINARY	0
WAVELENGT	H <u>58</u> -	500	μ
TEMPERATUR	RE301		°K
METHOD		ference	
REFERENCE	Russell 8	& Bell (28755)	
REMARKS			

Figure 7-17

Figure 7-18

PARAMETER: Wavelength (Cont'd from preceding page)

Aluminum
MATERIAL: Oxide-Sapphire

3.065

2.0

3.075

3.085

3.425

EIIC

182 200 250 333 500

WAVELENGTH, MICRONS

Figure 7-19

Wave Number	Wavelength,	Refractive Indicesa		
cm-1	(Microns)	n _o	n e	ne-no
20.2		3.0688	3, 4111	0,3423
25.2		3.0698	3, 4129	0.3436
30.2	330	3.0704	3.4134	0.3430
35.3		3.0720	3.4163	0.3443
40.3		3.0740	3,4187	0.3447
45.4		3.0752	3.4232	0.3480
50.4	200	3.0770	3.4260	0.3490
55.4		3. 0795	3.4294	0.3499
60.5		3.0822	3, 4334	0.3512
65.5		3.0843	3.4391	0.3548
70.6	142	3 0870	3.4444	0.3574
75.5		3.0906	3,4510	0.3604
80.6		3.0941	3.4569	0.3628
85.7]	3.0932	3.4625	0.3643
90.7		3. 1019	3.4689	0.3670
95.8		3. 2060	3.4766	0.3706
100.8	100	3.1103	3.4836	0.3733
105.8]	3. 1147	3.4908	0.3761
110.9		3. 11)8	3.4993	0.3795
115.9		3. 1249	3.5081	0.3832
120.9	83	3. 1304	3.5185	0.3881
126.0		3. 1357	3,5279	0.3922
131.0		3, 1422	3,5375	0.3953
136.1		3. 1485	3.5508	0.4023
141.1	71	3. 1549	3.5612	0.4063
146.1	i i	3. 1623	3.5746	0.4123
151. 2		3. 1696	3, 5856	0.4160
156.2	64	3. 1765	3.6042	0.4277
161.3	1	3. 1854		
166.3		3. 1921		
171.3		3. 2018		
176.4	57	3.2113		

The total estimated probable error of the measured values of the refractive indices is ±0,002 except at frequencies less than 25 cm⁻¹ and greater than 150 cm⁻¹ where the error may be somewhat greater.

Table 7-16

	Aluminum
MATERIAL:	Oxide-Sapphire

FORM Bulk, Single Crystal
THICKNESS 1, 0 mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 112 - 300 µ
TEMPERATURE ~298 °K
METHOD <u>Transmission</u>
REFERENCE Roberts & Coon (18253)
REMARKS

Figure	7-20
--------	------

Wavelength,	Refractive Index,			
(Microns)	n _o	ⁿ e		
167-500	3.14 ± 4%	3.61 ± 4%		

THIC	KNESS	1.0	mm
RAY	ORDINARY	☑ , EXTRAORDINARY	
WAVE	ELENGTH	167 - 500	_μ
TEMP	ERATURE	300	°K
METH	10D	Interference	
REFE	RENCE	Loewenstein (17012)	
REMA	ARKS		
			

Table 7-17

Aluminum

MATERIAL: Oxide-Ruby

FORM Bulk, Single Crystal

0.036 -6 (absorption,)

THICKNESS 5 (reflection). mm

RAY ORDINARY . EXTRAORDINARY .

WAVELENGTH 6 - 33 ...

TEMPERATURE ~298 °K

METHOD Absorption, Reflection

REFERENCE Haefele (9762)

REMARKS Synthetic material: containing 0.04% Cr; data held valid from

0 to 0.5% Cr.

Figure 7-21

Figure 7-22

Published with permission Copyright 9 1963 Verlag der Zalbabridt für Maturbreatine

	Anodizing F	otential, Vol	ts
Wavelength (microns)	50 volts Refractive Index, n	100 volts n	200 volts n
1.5	1, 63	1.65	1.60
2	1.68±0.05	1.64±0.02	1.57±0.02
3	1.64	1.62	1.52
ų	1.67	1.53	
5	1.63	1.51	1.49
6	1.66	1.45	1.43
7	1.67	1.43±01	1.37±0.03
8	1.63	1.42	1.29
2	1.70	1.40	1.26
10	1.75±0.28	1.51	1.31
11	1.77	1.55	1.48
12	1.89	1.73	1.65
13	2.04±0.6	1.86±0.4	1.76±0.12
14	2.19	1.94	1.81
15	2.55±0.3	2.04±0.3	1.91±0.2

FORM Film	
THICKNESS (0-7 - 2.8)×10-4	mm
RAY ORDINARY . EXTRAORDINARY	<u></u>
WAVELENGTH 1.5 - 15	<u> </u>
TEMPERATURE ~298	°ĸ
METHOD Reflection	
REFERENCE Harris (17011)	
REMARKS Thin anodized film,	
removed from aluminum substrate	
and mounted on glass.	
Table 7-18.	

Published with permission Cepyi.;ght© 1964 Commission das Publications francoises de Physique

THICKNESS (2-5)×10 ⁻³	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 0.2 - 1.6	<u> </u>
TEMPERATURE 298	°K
METHOD Reflection	
REFERENCE Cox, et al. (17066)	
REMARKS Aluminum oxide produced	by
electron bombardment; substrate t	em-
perature as indicated.	

Figure ?-23

FORM	Film
THICKNESS	(0.7 -2.8)x10 ⁻⁴ mm
RAY ORDINARY	Z . EXTRAORDINARY
WAVELENGTH	15 - 67
TEMPERATURE	~298 °I
METHOD Reflec	ction. Transmission
	Sarris & Piper (5212)
REMARKS	Sputtered film

REFRACTIVE INDEX, n EXTINCTION COEFFICIENT, k

10

33

Published with permission Copyright@ 1966 Messon et Cie.

Figure 7-26

PARAMETER:	Temp	erature

Aluminum

MATERIAL: Oxide-Sapphire

mm

FORM Bulk, Single Crystal

	THICKNESS 1	mn
n" increases 0.05 (+0.01, -0.03)	RAY ORDINARY D , EXTRAORDINARY	<u> </u>
etween 296 and 1973°K in the region rom 0.56 to 4.0 microns.	WAVELENGTH 0.56 - 4.0	
	TEMPERATURE	۰
	METHOD Reflection	
	REFERENCE Gryvnak & Burch (21068	3)

Table 7-19

obtained for polycrystalline material.

REMARKS Similar results were

 $dn/dT = 1.0 \times 10^{-5} \text{ °K}^{-1}$

THICKNESS	NA (Prism)	mm
RAY ORDINARY	፟,	EXTRAORDINARY	
WAVELENGTH	~4		<u> </u>
TEMPERATURE	292.	297	°K
METHOD	Devi	ation	
REFERENCE Ma	litson	(17008)	
REMARKS	·		
•			

Table 7-20

MAGNESIUM OXIDE

明の一世には、大田村の大田村、大田下、

INTRODUCTION

Magnesium oxide has a relatively uniform optical transmission over the range from one to six microns (Figure 1-9) and excellent high temperature characteristics. Some significant physical properties of magnesium oxide are listed in Table 1-1. Magnesium oxide is found in rature as Periclase. Magnesium oxide (magnesia) for industrial applications is often produced by precipitation of magnesium hydroxide from sea water with subsequent thermal decomposition to the oxide. Single crystals for optical use may be prepared by the submerged arcmelting process in which the unmelted material serves as its own crucible. In addition to uses of magnesium oxide in optics, the material is widely used in the manufacture of refractories, fertilizers, in the rubber industry and innumerable other applications.

DATA

A list of data presentations on magnesium oxide is provided in Table 7-21 and temperature ranges are plotted in Figure 7-27. The wide range of temperatures from 8 to 2225°K is indicative of the environment that this material may have to endure. Refractive index and extinction coefficient data for single crystal magnesium oxide are presented as a function of wavelength in Figures 7-28 to 7-38 and Tables 7-22 and 7-23, while polycrystalline magnesium oxide is covered in Figure 7-39 and Table 7-24. The data show good agreement among various authors as well as between single and poly-crystalline matirial. The temperature dependence of the refractive index and extinction coefficient is the topic of Figures 7-40 to 7-46.

Figure 7-27. Wavelength and Temperature Range of Magnesium Oxide Data

Table 7-2

Figure Table n, k Form Crystal From Top Remarks Parameter 7-28 n Bulk Single 0.36 5.35 % Ave 7-28 n Bulk Single 0.36 5.35 % Ave 7-29 n Bulk Single 7.0 33.0 % Ave 7-29 n Bulk Single 7.0 33.0 % Ave 7-31 n Bulk Single 7.0 33.0 8 Ave 7-32 n Bulk Single 9.0 33.0 8 Ave 7-34 n bulk Single 9.0 33.0 8 Ave 7-34 n bulk Single 9.0 33.0 8 Ave 7-35 n Bulk Single 9.0 90.30°K Wave 7-36 n Bulk Single 9.0 90.30°K Wave 7-39 n Bulk Sing						Wave (Mic	Wavelength (Microns)		
7-22 n Bulk Single 0.36 5.35 7-23 n Bulk Single 0.36 5.35 7-23 n Bulk Single 7.0 33.0 n Bulk Single 7.0 25.0 n, k Bulk Single 7.0 25.0 n, k Bulk Single 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 2225*K n, k Bulk Single 9.0 33.0 8-1950*K n Bulk Single 9.0 90.30 90.300*K n Bulk Single 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 2225*K n, k Bulk Single 9.0 33.0 2235*K n, k Bulk Single 9.0 33.0 2235*K n, k Bulk Single 9.0 <td< th=""><th>Figure</th><th>Table</th><th>n, k</th><th>Form</th><th>Crystal</th><th>From</th><th>To</th><th>Remarks</th><th>Parameter</th></td<>	Figure	Table	n, k	Form	Crystal	From	To	Remarks	Parameter
7-22 n Bulk Single 0.36 5.35 7-23 n Bulk Single 0.7 5.4 n Bulk Single 7.0 33.0 k Bulk Single 7.0 25.0 n, k Bulk Single 7.0 25.0 n, k Bulk Single 9.0 33.0 2235.K n, k Bulk Single 9.0 33.0 2225.K n Bulk Single 9.0 33.0 2235.K n Bulk Single 9.0 33.0 8-1950.K n Bulk Single 90.0 90.300.K n, k Bulk Single 9.0 33.0 n, k Bulk Single 9.0	7-28		п	Bulk	Single	0.36	5.35		Wavelength
7-23 n Bulk Single 0.7 5.4 n Bulk Single 7.0 33.0 k Bulk Single 7.0 25.0 n, k Bulk Single 7.0 25.0 n, k Bulk Single 9.0 33.0 1080°K n, k Bulk Single 9.0 33.0 2225°K n Bulk Single 9.0 33.0 2225°K n Bulk Single 9.0 90,300°K n Bulk Single 90.0 90,300°K 7-24 n Bulk Single 9.0 33.0 293°K n, k Bulk Single 9.0 33.0 2225°K n, k Bulk Single 9.0 90.0 90,300°K n, k Bulk Single 9.0 90.0 90,300°K n Bulk Single 9.0 90.0 90,300°K		7-22	r.	Bulk	Single	0.36	5.35		Wavelength
n Bulk Single 7.0 25.0 k Bulk Single 7.0 25.0 n, k Bulk Single 7.0 25.0 n, k Bulk Single 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 2225*K n Bulk Single 12.0 100.0 8-1950*K k Bulk Single 90.0 80.0 90, 300*K n Bulk Single 90.0 80.0 90, 300*K r Bulk Single 90.0 80.0 90, 300*K r Bulk Single 90.0 33.0 293*K n, k Bulk Single 9.0 33.0 2225*K n, k Bulk Single 9.0 33.0 2225*K n, k Bulk Single 9.0 33.0 81950*K n Bulk Single 9.0 90.0		7-23	Ľ	Bulk	Single	0.7	5.4		Wavelength
n 5ulk Single 7.0 25.0 n, k Bulk Single 7.0 25.0 n, k Bulk Single 9.0 33.0 1080°K n, k Bulk Single 9.0 33.0 1080°K n, k Bulk Single 9.0 8-1950°K k Bulk Single 90.0 8-1950°K n Bulk Single 90.0 8-1950°K n Bulk Single 90.0 800.0 90, 300°K n, k Bulk Single 9.0 33.0 293°K n, k Bulk Single 9.0 33.0 2225°K n, k Bulk Single 9.0 33.0 2225°K n, k Bulk Single 9.0 33.0 8-1950°K n, k Bulk Single 9.0 90.300°K n Bulk Single 90.0 90,300°K n Bu	7-29		E	Bulk	Single	7.0	33.0		Wavelength
k Bulk Single 7.0 25.0 n, k Bulk Single 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 1080*K n, k Bulk Single 9.0 33.0 2225*K k Bulk Single 12.0 100.0 8-1950*K k Bulk Single 90.0 800.0 90, 300*K n Bulk Single 90.0 800.0 90, 300*K n, k Bulk Single 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 2225*K n, k Bulk Single 9.0 33.0 2225*K n, k Bulk Single 9.0 8-1950*K n, k Bulk Single 9.0 8-1950*K n Bulk Single 9.0 90, 300*K n Bulk Single 90.0 90, 300*K <	7-30		G	Sulk	Single	7.0	25.0		Wavelength
n, k Bulk Single 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 1080*K n, k Bulk Single 9.0 33.0 2225*K n Bulk Single 12.0 100.0 8-1950*K n Bulk Single 90.0 800.0 90, 300*K 7-24 n Bulk Single 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 2225*K n, k Bulk Single 9.0 33.0 8-1950*K n, k Bulk Single 9.0 8-1950*K n Bulk Single 9.0 80.0 90, 300*K n Bulk Single 90.0 800.0 90, 300*K n Bulk Single 90.0 90, 300.0 90, 300*K	7-31		×	Bulk	Single	7.0	25.0		Wavelength
n, k Bulk Single 9.0 33.0 1080°K n, k Bulk Single 9.0 33.0 2225°K n Bulk Single 12.0 100.0 8-1950°K k Bulk Single 90.0 800.0 90, 300°K r bulk Single 90.0 800.0 90, 300°K 7-24 n Bulk Single 9.0 33.0 293°K n, k Bulk Single 9.0 33.0 2225°K n, k Bulk Single 9.0 33.0 2225°K n, k Bulk Single 9.0 33.0 2225°K n Bulk Single 9.0 90.0 90, 300°K n Bulk Single 90.0 90, 300°K 90, 300°K	7-32		r, x	Bulk	Single	9.0	33.0	293•K	Wavelength
n, k Bulk Single 9.0 33.0 2225*K n Bulk Single 12.0 100.0 8-1950*K k Bulk Single 12.0 100.0 8-1950*K n Bulk Single 90.0 800.0 90, 300*K 7-24 n Bulk Polycryst 1.0 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 293*K n 8-1950*K n n, k Bulk Single 9.0 33.0 2225*K n n 8-1950*K n n, k Bulk Single 9.0 33.0 8-1950*K n	7-33		r, x	Bulk	Single	9.0	33.0	1080*K	Wavelength
n Bulk Single 12.0 100.0 8-1950*K n Bulk Single 12.0 100.0 8-1950*K k Bulk Single 90.0 800.0 90, 300*K n Bulk Polycryst 1.0 9.0 90, 300*K 7-24 n Bulk Polycryst 1.0 20.0 90, 300*K n, k Bulk Single 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 2225*K n Bulk Single 9.0 100.0 8-1950*K k Bulk Single 12.0 100.0 8-1950*K n Bulk Single 90.0 90, 300*K k Bulk Single 90.0 90, 300*K	7-34		n, X	Bulk	Single	9.0	33.0	2225°K	Wavelength
h Bulk Single 12.0 100.0 8-1950*K Single 90.0 800.0 90, 300*K bulk Single 90.0 800.0 90, 300*K a. 2-24 n Bulk Polycryst 1.0 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 2225*K n, k Bulk Single 9.0 33.0 2225*K n, k Bulk Single 9.0 33.0 2225*K n, k Bulk Single 12.0 100.0 8-1950*K n Bulk Single 12.0 100.0 8-1950*K n Bulk Single 12.0 100.0 8-1950*K n Bulk Single 90.0 800.0 90, 300*K n Bulk Single 90.0 800.0 90, 300*K	7-35		а	Bulk	Single	12.0	100.0	8-1950*K	Wavelength
n Bulk Single 90.0 800.0 90, 300°K n Bulk Polycryst 1.0 9.0 90, 300°K 7-24 n Bulk Polycryst 1.0 9.0 n, k Bulk Single 9.0 33.0 293°K n, k Bulk Single 9.0 33.0 2225°K n Bulk Single 9.0 100.0 8-1950°K k Bulk Single 12.0 100.0 8-1950°K n Bulk Single 90.0 800.0 90, 300°K h Bulk Single 90.0 90, 300°K	7-36		×	Bulk	Single	12.0	100.0	8-1950*K	Wavelength
k Bulk Single 90.0 800.0 90, 300°K 7-24 n Bulk Polycryst 1.0 9.0 n, k Bulk Single 9.0 33.0 293°K n, k Bulk Single 9.0 33.0 1080°K n, k Bulk Single 9.0 33.0 3225°K n Bulk Single 12.0 100.0 8-1950°K k Bulk Single 90.0 800.0 90, 300°K k Bulk Single 90.0 90, 300°K	7-37		¤	Bulk	Single	90.0	800.0	90, 300°K	Wavelength
n Bulk Polycryst 1.0 9.0 7-24 n Bulk Polycryst 1.0 20.0 n, k Bulk Single 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 2225*K n Bulk Single 12.0 100.0 8-1950*K k Bulk Single 12.0 100.0 8-1950*K n Bulk Single 90.0 800.0 90, 300*K k Bulk Single 90.0 90, 300*K	7-38		×	Bulk	Single	90.0	800.0	90, 300°K	Wavelength
7-24 n Bulk Polycryst 1.0 20.0 n, k Bulk Single 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 32255*K n Bulk Single 12.0 100.0 8-1950*K k Bulk Single 12.0 100.0 8-1950*K n Bulk Single 90.0 800.0 90, 300*K k Bulk Single 90.0 800.0 90, 300*K	7-39		g.	Bulk	Polycryst	1.0	9.0		Wavelength
n, k Bulk Single 9.0 33.0 293*K n, k Bulk Single 9.0 33.0 2225*K n Bulk Single 12.0 100.0 8-1950*K k Bulk Single 12.0 100.0 8-1950*K n Bulk Single 90.0 800.0 90, 300*K k Bulk Single 90.0 800.0 90, 300*K		7-24	E	Bulk	Polycryst	1.0	20.0		Wavelength
n, k Bulk Single 9.0 33.0 1080°K n, k Bulk Single 12.0 100.0 8-1950°K k Bulk Single 12.0 100.0 8-1950°K n Bulk Single 90.0 800.0 90, 300°K k Bulk Single 90.0 800.0 90, 300°K	7-40		n, k	Bulk	Single	9.0	33.0	293*K	Temperature
n, k Bulk Single 9.0 33.0 2225°K n Bulk Single 12.0 100.0 8-1950°K n Bulk Single 90.0 800.0 90, 300°K k Bulk Single 90.0 800.0 90, 300°K	17-41		ц, ж	Bulk	Single	9.0	33.0	1080°K	Yemperature
n Bulk Single 12.0 100.0 8-1950*K k Bulk Single 90.0 800.0 90, 300*K k Bulk Single 90.0 800.0 90, 300*K	7-42		r, x	Bulk	Single	9.0	33.0	2225*K	Temperature
k Bulk Single 12.0 100.0 8-1950*K n Bulk Single 90.0 800.0 90, 300*K k Bulk Single 90.0 800.0 90, 300*K	7-43		E	Bulk	Single	12.0	100.0	8-1950*K	Temperature
n Bulk Single 90.0 800.0 90, 300*K k Bulk Single 90.0 800.0 90, 300*K	7 44		×	Bulk	Single	12.0	100.0	8-1950*K	Temperature
k Bulk Single 90.0 800.0 90, 300*K	7-45		E	Bulk	Single	90.0	800.0	90, 300 K	Temperature
	7-46		×	Bulk	Single	90.0	800.0	90, 300°K	Temperature

Wavelength, (Microns)	Index of Refraction,
1.01398	1, 72259
1.12866	1.72059
1, 36728	1,71715
1, 52952	1.71496
1.6932	1.71281
1.7092	1, 71258
1,81307	1,71108
1.97009	1, 70885
2. 24929	1, 70470
2, 37542	1.70350
3, 3033	1.68526
3, 5078	1,68055
4, 258	1.66C39
5, 138	1.63138
5, 35	1, 62404

MATERIAL: Magnesium Oxide

FORM Bulk, Single Crystal	
THICKNESS NA (Prism)	mm
RAY ORDINARY . EXTRAORDINARY	
WAVELENGTH 0. 36 - 5. 35	<u> </u>
TEMPERATURE 296. 5	<u>°к</u>
METHOD Deviation	
REFERENCE Stephens and Malitson (34823
REMARKS	

Figure 7-28

Table 7-22

Wavelength, (Microns)	Refractive Index, n
0.6907	1,73191
1.0140	1.7226
1.9701	1.70885
3, 3033	1,68526
4.2580	1,66039
5.3500	1.62404

Published with permission Copyright©19 63 Johann Ambresium Barth

FORM Bulk, Single Crystal
THICKNESS not stated mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 0. 7 - 5, 4
TEMPERATURE ~298 °K
METHOD not stated
REFERENCE Norton (16227)
REMARKS Magnorite, Norton Co.
Typical analysis: 99.7 percent MgO,
0.03 percent SiO2, 0.04 percent CaO,
0.05 percent Fe ₂ 0 ₃ , 0.10 percent
$R_2^{0_3}$ (other than $Fe_2^{0_3}$).

Table 7-23

WAVELENGTH_	7 - 33	,,	μ
remperature	298		٥K
METHOD R	eflectio	n	
REFERENCE I	laefele	(34826)	
REMARKS			

Figure 7-29

Figure 7-30

Figure 7-31

THICKNESS	not state	d	រោញ
RAY ORDINAR	Y RJ ,	EXTRAORDINARY	<u>D</u>
WAVELENGTH_	9 - 33		<u> </u>
TEMPERATURE	293 -	2225	٥ĸ
METHOD	Reflect	ion	مسين
REFERENCE	Piriou	(29797)	
REMARKS			

Figure 7-32

AND SECURITY OF SECURITY SECUR

Figure 7-33

Figure 7-34

Published with parmission Copyright 1966 Mossen et Cie

	30					
	28	8°K -	\			
	26 -					
	24					
	22					ļ
عد	20 -	••••	1			
ENT,	18	8 5°K	7			
EFIC	16					
EXTINCTION COEFT KIENT, &	14	295°K	1			
Ć13	12	545°K				
EXT	10					
	8-	950°K~	111			
	6	1950°K	$M\!M$			
	4	7				}
	2 -		"			
	L					
	100	200	300	400	500	600
			WAVENUM			
	L_				L	
	100	50	33	25	20	17
		w	J.VELENG TH	, MICRONS		

FORM Bulk, Single Crystal
THICKNESS not stated mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 12 - 100
TEMPERATURE 8 - 1950 OK
METHOD Reflection
REFERENCE Jasperse, et al. (34832)
REMARKS
O

Figure 7-35

Figure 7-36

7-40

FORM Bulk, Single Crystal
THICKNESS 0. 436, 0. 693 mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 90 - 800
TEMPERATURE 90, 300 %
METHOD Transmission
REFERENCE Rowntree (34819)
REMARKS

Figure 7-37

Figure 7-38

FORM Bulk,	Polycrystalline	
THICKNESS N	ot Stated	mm
YKANIDRO YAR	. EXTRAORDINARY	
WAVELENGTH	1 - 20	<u>_</u> <u> </u>
TEMPERATURE	298	°K
METHOD	Not Stated	فنجييف
REFERENCE	Kodak [1967]	
REMARKS IR	TRAN-5 material	
		
Fi	gure 7-39	

Wavelength, (Microns)	Refractive Index, n	Wavelength, (Microns)	Refractive Index, n		
1.0000	i. 7227	4. 2500	1.6612		
1.2500	1.7188	4. 5000	1.6536		
1. 2000	1.7156	4.7500	1.6455		
1.7500	1.7123	5. 0000	1.6368		
2. 0000	1.7089	5. 2500	1.6275		
2. 2500	1.7052	5. 5000	1.6177		
2. 5000	1.7012	5. 7500	1.6072		
2.7500	1.6968	6. 0000	1.5962		
3.0000	1.6920	6. 2500	1.5845		
3. 2500	1.6869	6. 5000	1.5721		
3.5000	1.6811	6.7500	1.5590		
3.7500	1.6750	7. 0000	1.5452		
4. 0000	1.6684	7. 2500	1.5307		
		7. 7500	1.5154		
		7.7500	1.4993		
		8. 00C0	1.4824		

Table 7-24

FORM Bulk, Single Crystal THICKNESS Not Stated mm
RAY ORDINARY . EXTRAORDINARY
WAVELENGTH 9 - 33
TEMPERATURE 293 - 2225 °K
METHOD Reflection
REFFRENCE Piriou (29797)
REMARKS

Figure 7-40

T - 2225°K

T - 2225°K

WAVE NUMBER, CM-1

WAVELENGTH, MICRONS

Figure 7-41

Figure 7-42

Published with permission Copyright 1966 Messon et Cie.

	28
	26 - 8.5°K
	24
	22
	20
	18
Ĕ,	16
<u>Z</u> ¥	14 -
REFRACTIVE INDEX, n	12 -
2	10
	950°K
۱.2 ۳	CHANGE IN SCALE
28-	1950°K
64	8.5°K
E	
	0 200 400 600 800
	WAVERUMBER, CM ⁻¹
	100 33 20 14
	WAVELENGTH, MICRONS
	30
	28 - 8°K
	26
	24
	2.
	20 85°K
ij	16
1930	16 295°K
v Q	14 -
EXTINCTION COEFFE :	12 - 545°K
ä	10 - 950°K
	8 - 1410°K
	6 1950°K
	·
	2
	100 200 300 400 500 600
	WAVENUMBER, CM ⁻¹
	<u> </u>

WAVELENGTH, MICRONS

7-44

FORM	Bulk, Sing	le Crysta	1
THICKNESS	Not_	Stated	mm
RAY ORD	INARY 🖾 ,	EXTRAO	RDINARY D
WAVELENG	STH 12	- 100	<u> </u>
TEMPERAT	URE 8	- 1950	<u>°K</u>
METHOD	Re	flect.on	
REFERENC	E Jasper	se, et al	(34832)
REMARKS			
		······································	
	Figu	re 7-43	

Figure 7-44

PARAMETER: Temperature

MATERIAL: Magnesium Oxide

RAY ORDINAR	.436, 0.693 Y ☑ , EXTRAORDINARY	mm
WAVELENGTH	90 - 800	
TEMPERATURE	90, 300	°K
METHOD	Transmission	
REFERENCE	Rowntree (34819)	~~
REMARKS		

Figure 7-45

Figure 7-46

CHAPTER 8 REFRACTIVE INDEX DATA FOR METALS

INTRODUCTION

This Chapter treats the optical properties of metal films comprising the metals aluminum, gold and silver. The optical behavior of metal films is dependent on film structure, and the latter is influenced by the conditions under which the film was formed. Most of the optical metal films were formed by evaporation in a vacuum of the order of 10⁻⁵ torr and, at this pressure, the residual gas atoms are sufficiently abundant to affect the film properties. Owing to the chemical inertness of gold, films of this metal should not be influenced by the presence of gases during evaporation to the same extent as aluminum and silver. In some cases a more volatile eutectic alloy may be formed between the crucible (or boat) and the metal to be evaporated, resulting in the deposition of an alloy rather than the pure metal. The crystallinity of the film is dependent on the deposition rate and substrate conditions, including type of material, orientation and temperature. Annealing conditions frequently are not detailed sufficiently to ascertain whether the film is amorphous or crystalline. The optical constants of metal films show a dependence on film thickness and often the latter either is not reported or not uniform. t should be apparent from the foregoing discussion that agreement on optical constants of metal films among various observers may be too much to hope for and, indeed, such is the case.

The data permit some generalizations which apply to all three metals. Extinction coefficients tend to show less spread among observers; this is attributed by Schulz & Tangherlini (27635) to the condition that k is dependent on the density of free electrons in the metal, and this density is probably independent of structure defects. The same authors explain the greater variation in the refractive index (n) on its dependence on the conductivity of the metal, which is highly sensitive to the presence of defects and strains.

DATA SUMMARY

Table 8-1 lists all data presentations for aluminum, gold and silver. Figures 8-1 and Tables 8-2 to 8-8 provide aluminum data and the lowering in refractive index by an amorphous-crystalline transformation is observed (Tables 8-2 versus 8-7); data for the polycrystalline film resemble bulk data and this is not unexpected as the density of polycrystalline film approaches that of bulk material, while amorphous aluminum has a much lower density [Motulevich, et al. (25734)].

Gold data are covered in Figures 8-2 to 8-6 and Tables 8-9 to 8-20. Particularly interesting is Figure 8-3 which shows a reduction in refractive index as a result of annealing. Table 8-11 shows the great reduction which may occur in refractive index as the film thickness approaches bulk levels. Similarly, an increase in extinction coefficient is noted as the film thickness is increased (Table 8-12). Data for silver are presented in Figures 8-7 to 8-14 and Tables 8-21 to 8-31. Refractive index and extinction coefficient values have been calculated for a wide temperature range and are included as Figures 8-13 and 8-14.

Table 8-1. List of Metal Data

E SPERSON A

						Wave (Mic	length,		
Metal	Figure	Table	n, k	Form	Crystal	From	To	Remarks	Parameter
Aluminum		8-2	n, k	Film	Amorphous	0.96	1.82		Wavelength
Aluminum		8~3	n, k		Amorphous	2	12		Wavelength
Aluminum	8-1		n		*	0.4	0.95	Annealed film	Wavelength
Aluminum		8-4	n, k		*	0.4	0.95	Annealed film	Wavelength
Aluminum		8-5	n, k		*	0.8	9.0	·	Wavelength
Aluminum		8-6	n		*	0.4	2.0		Wavelength
Aluminum		8-7	n, k		Polycryst	1.0	1.0		Wavelength
Aluminum		8-8	n, k		*	0.8	9.0		Temperature
Gold		8-9	n		Polycryst	1	12	Annealed film	Wavelength
Gold		8-10	n, k		*	0.4	0.95	Annealed film	Wavelength
Gold	8-2		n		*	0,4	0.95	Annealed film	Wavelength
Gold		8-11	n		*	0.8	1.1		Wavelength
Gold		8-12	k		*	0.8	2.0		Wavelength
Gold	8-3		n		‡	0.4	2.5	Annealed and unannealed film	Wavelength
Gold		8-13	n, k		*	0.8	1.0		Wavelength
Gold		8-14	n, k		*	0.8	1.0		Wavelength
Gold		8-15	n, k		*	1.25	1.0		Wavelength
Gold	8-4		n		*	1.3	12.1		Wavelength
Gold		8-16	n		*	1.3	12.1		Wavelength
Gold	8-5		n		*	1	12	82°K, 295°K	Wavelength
Gold	•	8-17	n `		*	1	11	82°K, 295°K	Wavelength
Gold		8-18	n		‡	0.8	1.1		Film Thickne
Gold		8419	k		*	0.8	2.0		Film Thickne
Gold	8-6		n		*	1	12	82°K, 295°K	Temperature
Gold		8-20	n		*	1	11	82°K, 295°K	Temperature
Silver	8-7		n		*	0.5	1.5		Wavelength
Silver		8-21	n, k		*	0.8	1.0		Wavelength
Silver	8-8		n		*	0.4	1.0		Wavelength
Silver	8-9		k		*	0.4	1,0		Wavelength
Silver	8-10		n		*	0.4	0.95	Annealed film	Wavelength
Silver		8-22	n, k		*	0.4	0.95	Annealed film (n)	Wavelength
Silver		8-23	n, k		*	0.8	1.0		Wavelength
Silver		8-24	n, k		*	1.25	10		Wavelength
Silver		8-25	n		*	0.8	1.0		Wavelength
Silver		8-26	k		*	0,8	1.5		Wavelength
Silver	8-11		n		*	1	12	82°K, 295°K	Wavelength
Silver		8-27	n		*	1	12	82°K, 295°K	Wavelength
Silver	8-12	n, k	n	i	*	C, 3	100	300-1200°K	Wavelength
Silver		8-28	n, k		*	1. C	6.0	n-type	Wavelength
Silver		8-29	n		*	0.8	1.0		Film Thickne
Silver		8-30	k		*	0.8	1.5		Film Thickne
Silver	8-13		n		*	1	12	82°K, 295°K	Temperature
Silver		8-31	n'		*	1	12	82°K, 295°K	Temperature
Silver	8-14	1	n, k		*	0.3	100	300-1200°K	Temperature

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k
0.96	2.0	10.2
1.15	1.8	12.0
1.46	3. 1	16.4
1.82	4. 9	19.9

MATERIAL: Aluminum

FORM Film-Amorphous		
THICKNESS Not stated mm		
RAY ORDINARY 2 , EXTRAORDINARY []		
WAVELENGTH 0.96-1.82 μ		
TEMPERATURE ~298 °K		
METHOD Reflection		
REFERENCE Motilevich, et al. (25734)		
REMARKS Film deposited on glass,		
resulting in sample of mean density		
of 2.2 g *cm ⁻³		

Table 8-2

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k	
2. 0	2. 30	16.5	
2. 5	3. 22	20.3	
3. 0	4.41	24. 2	
4.0	5. 97	30.3	
5 . 0	8. 19	36.8	
6.0	11.00	42.4	
7.0	14.63	49.0	
8.0	17.00	55.0	
9.0	21. 1	61.3	
10.0	25.4	67.3	
11.0	28.3	71.1	
12.0	33.6	76.4.	

THICKNESS	1.5x10	-4	mm
RAY ORDINAR	Y 🖸 ,	EXTRAORDINAR'	<u> </u>
WAVELENGTH	2 - 12		<u> </u>
TEMPERATURE	298		<u>°K</u>
METHOD	Reflect	ion	
REFERENCE	Beattie	[1955]	
REMARKS	Specim	ens evaporate	: c1
onto glass	substrat	e at ~ 10 ⁻⁵ to	rr
pressure.			

Table 8-3

PARCENIE PARE DIAM

MATERIAL: Aluminum

FORM Film		
THICKNESS 1.5x10-4 (n); 5x10-5 (k) mm		
RAY ORDINARY WE EXTRAORDINARY		
WAVELENGTH 0.4 - 0.95 <u>µ</u>		
TEMPERATURE ~298 °K		
METHOD Reflection (n); Interference (k).		
Schulz Tangherlin (27635) REFERENCE for n; Schulz (27634) for k.		
REMARKS Evaporation from tungsten		
wire at 10-5 Torronto glass substrate		
for n and mica substrate for k.		

Figure 8-1

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k
0.40	0.40	3.92
0.45	0.49	4.32
0.50-	0.62	4.80
0.55	0.76	5.32
0.60	0.97	6.00
0.65	1. 24	6.60
0.70	1.55	7.00
0.75	1.80	7.12
0.80	1.99	7.05
0.85	2.08	7.15
0.90	1.96	7.70
0.95	1.75	8.50

Table 8-4

	Refractive Index, n		Extinction Coefficient, k	
Wavelength, (Microns)	78 ⁰ K	295 ⁰ K	78°K	295 ⁰ K
0.8	0.83	1.12	6.0	6.0
0.9	0.75	1.05	7.0	7.0
1. 2	0.63	0.95	9.6	9.6
1.5	0.78	1.14	12, 1	12.1
2. 0	1.30	1.75	16.1	16.1
2. 5	1.7	2.4	19.8	19.8
3.0	2. 2	3. 2	23.5	23.5
4.0	3, 2	4.8	30.1	30.0
5, 0	4.4	6.7	37.8	37.6
6.0	6.5	9.5	44.9	44.4
1.0		12.6	52.0	49.0
8.0		15.6		55.0
9.0		21.1		61.3

FORM	Film	
THICKNESS	1.5×10^{-5}	mr
RAY ORDINA	ARY D , EXTRAORDINARY	0
WAVELENGTH	0.8 - 9.0	_ <u>_</u>
TEMPERATUR	E 78, 295	°K
METHOD	Reflection	
REFERENCE	Golovashkin, et al. (1429	8)
REMARKS	Film formed by vacuum	
evaporatio	n from tungsten helix ont	to
glass.		

Table 8-5

MATERIAL: Aluminum

Wavelength, (Microns)	Refractive Index, n
0.43	0.32
0.70	1. 26
0.75	1,50
0.80	1.78
0.85	1.91
0.875	1.82
0.90	1.70
0.95	1.40
1.00	1.17
1.10	0.85
1. 20	0.78
1.50	1.00
1.70	1.31
2, 00	1.74

THICKNESS. N	ot Sta	ted	mm
RAY ORDINARY	፟ ,	EXTRAORDINAL	RY D
WAVELENGTH	0.40	- 2.00	<u> </u>
TEMPERATURE	29	8	°ĸ
METHOD	Refle	ection	
REFERENCE		arevskii and vaya (19998)	
REMARKS Ev	aporat	tion at 2×10^{-1}	torr
onto glass su	bstrat	e	
•	Cable	8-6	

Wavelength, (Microns)	Refractive Index, 1.	Extinction Coefficient, k
1.00	0.98	7.65
1,50	1.14	11.6
2.00	1.67	15. 2
2. 50	2.50	18.8
3.00	3.48	22. 6
4.00	5. 58	29.4
5.00	7.84	35.7
6.00	10.4	41.3
8.00	16. 2	52. 2
10.0	25, 5	60.9
	i	l

MATERIAL:	Aluminum

FORM Film - Polycrystalline
THICKNESS Not Stated mm
RAY ORDINARY . EXTRAORDINARY .
WAVELENGTH 1 - 10
TEMPERATURE ~298 °K
METHOD Reflection
REFERENCE Motulevich, et al. (25734)
REMARKS Film deposited on glass,
resulting in sample density of
2.7 g cm ⁻³ .

PARAMETER: Temperature

MATERIAL:	Aluminum
-----------	----------

		active x, n	Extinction Coefficient, k	
Wavelength, Microns	78 ⁰ K	295 ⁰ K	78 ⁰ K	295 ⁰ K
0.8	0.83	1.12	6.0	6.0
0.9	0.75	1.05	7.0	7.0
1.2	0.63	0,95	9.6	9.6
1.5	0.78	0.14	12.1	12, 1
2.0	1.30	1.75	16.1	16.1
2. 5	1.7	2.4	19.8	19.8
3.0	2, 2	3.2	5 . د2	23.5
4.0	3. 2	4.8	30.1	30.0
5.0	4.4	6.7	37.8	37.6
6.0	6.5	9.5	44.9	44.4
7.0		12.6	52.0	49.0
8.0		15.6		55.0
9.0		21.1		61.3

FORME	ilm			
THICKNESS 1	.5 x 10	- 5		mm
RAY ORDINAR	Y 🔯 ,	EXTRA	ORDINARY	<u></u>
WAVELENGTH_	0.8	- 9.0		
TEMPERATURE	78,	295		<mark>°</mark> К
METHOD	Ref	lection	···-	
REFERENCE G	olovashi	kin, et	al. (1429	8)
REMARKS F	lm for	ned by	vacuum	
evaporation	from tu	ıngsten	helix ont	0
glass.			·····	
	Table	8-8		

Wavelength, Microns	Refractive Index, n	Extinction Coefficient, k
1.0	0. 224	6.71
1.5	0. 357	10,4
2.0	0. 546	13. 9
2. 5	0.82	17.3
3.0	1.17	21.0
4.0	2.04	27. 9
5.0	3.27	35. 2
6.0	4. 70	41.7
8.0	7. 82	54. 6
10.0	11.5	67.5
12.0	15.4	80. 5

MATERIAL:	Gold	
		_

FORM Film - Polycrystalline					
THICKNESS (0.5 - 1) x 10-3 mm					
RAY ORDINARY 5 , EXTRAORDINARY D					
WAVELENGTH 1 - 12					
TEMPERATURE ~298 °K					
METHOD Reflection					
REFERENCE Motulevich & Shubin (19922)					
REMARKS Evaporation at 3 x 10 ⁻⁶ torr					
pressure from tungsten onto glass					
substrate, followed by anneal of at					
least three hours at 10-6 torr and					
673°K.					

Table 8-9

PRECEDING PAGE BLANK

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k
0.40	1.43	
0.45	1.40	1.88
0.50	0.84	1.84
0. 55	0.34	2. 37
0.60	0. 23	2. 97
0.65	0.19	3. 50
0.70	0. 17	3. 97
0.75	0.16	4. 42
0.80	0.16	4. 84
0.85	0.17	5.30
0.90	0.18	5. 72
0. 95	0.19	6.10

	2.0 1.0	_	\					
c	0.8	_	- \					
REFRACTIVE INDEX, n	0.6	-	- /					
= =	0.4	_	1	\				
EACT.	0.3	_						
2	0.2	-			_		-	
	6.1					1	1	
	0.1 0.	.4	0,5	0.6 WAVELENG	0.7 TH, MICR	0.8 ONS	0.9	1.0

FORM	Film		
THICKNESS	(1.5-	2) × 10 ⁻⁴	mn
RAY <u>ORDINARY</u>	100 ,	EXTRAORDINA	RY 🗆
WAVELENGTH	0.4 -	0.95	μ
TEMPERATURE	~298		°K
METHOD Reflec	tion (n)	;Interference	e(k).
Sch REFERENCE for	ulz & 1 n, Sch	l'angherline (ulz (27634) fo	27635) or k.
REMARKS Evapo	ration	from tungst	en
wire at 10 ⁻⁵ t			
for n and mi	ca sub	strate for k.	Glass
substrate san	ple an	nealed at <4	03°K
	Table	8-10	

MATERIAL: Gold

Figure 8-2

MATERIAL:	Gold

Film Thickness,			e Index, th Micro		
Ä	0, 8	0.9	1.0	1.1	Observer
10	4. 35	4. 5	4. 85	5. 05	Goos [1937]
20	5. 25	5. 1	5.0	5.0	Goos [1937]
30	5. 05	5. 15	5.0	5. 0	Goos [1937]
40	4.15	4.7	4.9	5. 15	Goos [1937]
50	4.3	4. 55	4.9	5. 15	Goos [1937]
75	4.3	4.6	4. 75	5.15	Goos [1937]
100	3. 5	3. 95	4.35 •	4.85	Goos {1937]
1 50	1.4	1.8	2.15	2.55*	Goos [1937]
200	0.45	0.5	0. 55	0.6	Goos [1937]
400	0.18	0.19	0.195		Kretzmann (40353)
	0.2	0. 25	0. 25	0.3	Pogany [1916]

^{*}Thickness range 100-400 Å

FORM	Film
THICKNESS 1	x 10 ⁻⁶ to bulk mm
RAY ORDINARY	型, EXTRAORDINARY 口
WAVELENGTH	0.8 - 1.1 <u>µ</u>
TEMPERATURE	~298 ° K
METHOD	Miscellaneous
REFERENCE	Mayer [1950]
REMARKS	Compilation of older
data	

Table 8-11

Film Thickness,				oefficies			
Å	0.8	0.9	1.0	1.1	1.5	2.0	Observer
10	0.7	0. 5	0. 25	0. 05			Gcos [1937]
20	1.65	1.1	0.7	0, 35			Goos [1937]
30	2.75	1.75	1.25	0.8			Goo# [1937]
40	2.9	2. 3	1.95	1.3			Goos [1937]
50	3. 3	2.8	2.6	2.0			Goos [1937]
75	4.1	3.75	3.6	5. 3			Goos [1937]
100	4. 55	4. 5	4.4	4.4			Goos [1937]
	5. 56*						Haringhuizen, et al. [1937]
150	5.0	5. 45	5.8	6 4	'		Goos [1937]
200	5. 2	5. 9	6.7	7. 5			Goos [1937]
500-1000	5.19		6.9		11.3	15.4	Hagen & Rubens [1902]
5	5. 2	6.0	6. 95	7.65			Goos [1937]
	4.2	4. 93	5. 57				Statescu [1910]

*Thickness range 100-400 Å

Table 8-12

a 1 SAMPLE NO.1 BEFORE ANNEALING
2 2 SAMPLE NO.1 AFTER ANNEALING
3 SAMPLE NO.2 BEFORE ANNEALING
4 SAMPLE NO.2 AFTER ANNEALING
5 MOTULEVICH AND SHUBIN, REF 19922
6 PADALKA AND SHKLYAREVSKII, REF 9953
7 OTTER, [1961]

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k
0.800	0.178	4.20
0.850	0.182	4,53
0. 900	0.190	4, 93
0. 950	0.199	5, 27
1.000	0.194	5, 57

FORM	Film	
THICKNESS	Not stated	mm
RAY ORDINARY	Z, EXTRAORDINARY	0
WAVELENGTH	0.4 - 2.5	
TEMPERATURE	~298	°K
METHOD	Reflection	
REFERENCE (272	lyarevskii & Yarovaya 261)	
REMARKS Depos	sition rates: Sample	
No. 1- one Å	sec ⁻¹ , sample No. 2	-
100 Å sec^{-1} .	Samples annealed at	
-	after deposition, wh	ere

MATERIAL: Gold

Figure 8-3

stated.

THICKNESS	0.33	mm
RAY ORDINARY	D, EXTRAORDINARY	
WAVELENGTH	0.80 - 1.0	<u> </u>
TEMPERATURE	~298	°K
METHOD	Reflection	
REFERENCE	Kretzmann (40353)	
REMARKS Evap	poration from tungsta	n
or molybdenu	m crucibles at	
$<1 \times 10^{-4} \text{ tor}$	r.	

Table 8-13

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k
0.860	0.149	4. 654
0.850	0.157	4. 993
0. 900	0.166	5. 335
0. 950	0.174	5. 691
i.000	0.179	6.044

MATERIAL:	Gold .	
•		

FORM	Film	
THICKNESS	0.3 - 0.4	mm
RAY ORDINARY	EXTRAORDINARY	
WAVELENGTH	0.8 - 1.0	<u> </u>
TEMPERATURE	~298	°K
METHOD	Reflection	
REFERENCE	Weiss (6107)	
REMARKS Evap	oration onto silica	
substrate at a	2 x 10 ⁻⁵ torr pressur	<u>e</u>

Table 8-14

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k
1, 25	0, 38	8,0
1,5	0,53	9, 5
2	0, 85	12,6
3	1,64	18,6
4	2, ό	24, 6
5	3, 8	30.7
6	5, 1	36.4
7	6,8	41.6
8	8, 5	46.4
9	10,5	50.8
10	12, 4	55, 0

THICKNESS	Not	stated	mm
RAY ORDINARY	Ø ,	EXTRAORDINARY	
WAVELENGTH	1.25	- 10	<u> </u>
TEMPERATURE	293		٥ĸ
METHOD	Refle	ection	
REFERENCE Dol	d & M	ecke (27079)	
REMARKS Eva	porati	on from	
tantalum cruc	ible.		
	Table	8-15	·········

Wavelength (Microns)	Refractive Index, n
1.3	0.69
1.75	1.1
1.95	1.3
2. 26	1.62
2.8	2. 2
3.43	3.49
3. 95	4.71
4. 55	5. 95
5.5	9. 05
6.65	12. 9
7. 9	17.6
8.65	20.2
9. 9	25. 2
11.1	29. 0
12. 1	32. 4

	•
FORM Film	n
THICKNESS (1.5 -	2) × 10 ⁻³ mm
RAY ORDINARY 🖾	EXTRAORDINARY D
WAVELENGTH 1	<u>بر</u> 12 <u>ب</u>
TEMPERATURE~	298 ° K
METHOD	Reflection
DECEDENCE	arevskii & Ika (36056)
REMARKS Vacuum e	evaporation from
molybdenum cruci	ble onto glass sub-
strate. According	to the authors,
samples may have	been insufficiently
clean, resulting in	high refractive

MATERIAL:

Gold

Figure 8-4

indices.

Table 8-16

Wavelength, (Microns)	Refractive T = 295°K	Index, n T = 82°K
λ (μ)	n	n
1	0.31	C. 28
2	0.54 0.93	0.45 0.74
4	1.49	1.15
5	2. 19	1.67
6	3.01	2. 29
7	3.97	2.99
8	5.05	3.84
9	6. 21	4.74
10 11	7.41 8.71	5. 70 6. 76
1.1	0, /1	0. 10

A	MATERIAL: G	old
FORM	Film	
THICKNESS	Not stated	mm
RAY ORDINAR	Y 🔯 , EXTR	AORDINARY [
WAVELENGTH_	1 - 12	μ
TEMPERATURE	82, 295	°ĸ
METHOD	Reflection	
REFERENCE	Padalka & Shklyarevsk	ii (9953)
REMARKS Eva	poration from	n tantalum
crucible onto	glass subst	rate at
~10 ⁻⁵ torr p	ressure.	

Figure 8-5

Table 8-17

PARAMETER: Temperature

		-
	10	-
REFRACTIVE INDEX, n	8	
REFRACTIV	6	
	2	92°K
		0 2 4 6 8 10
		WAVELENGTH, MICRONS

	MATERIAL	: Gold	
FORM	F'ilm		
THICKNESS	Not sta	ated	mm
RAY ORDINA	RY 🔼 ,	EXTRAORD	INARY 🗆
WAVELENGTH	<u> 1 -</u>	12	<u> </u>
TEMPERATURE	82,	295	°K
METHOD		ection	
REFERENCE		ilka & yarevskii	(9953)
REMARKS Ev	aporatio	on from ta	ntalum
crucible ont	o glass	substrate	at
10 ⁻⁵ torr p	ressure.	•	
	Figure	8-6	

PARAMETER: Film Thickness

Film Thickness			ve Index		
Ä	0.8	0.9	1.0	1.1	Observer
10	4. 35	4.5	4. 95	5.05	Goos [1937]
20	5. 25	5. 1	5.0	5.0	Goos [1937]
30	5. 05	5. 15	5.0	5.0	Goos [1937]
40	4. 15	4.7	4.9	5.15	Gcos [1937]
50	4.3	4. 55	4.9	5. 15	Goos [1937]
75	4.3	4.6	4. 75	5. 15	Goon [1937]
100	3.5	3. 95	4. 35	4.85	Goos [1937]
150	1.4	1.8	2. 15	2. 55#	Goon [1937]
200	0.45	0.5	0. 55	0.6	Goos [1937]
400	0.18	0.19	0. !95		Kretzmann (40353)
st.	0. 2	0. 25	ი. 25	0. 3	Pogany [1916]
"Thickness range	⇒Thickness range 100-400 A				

MATERIAL:	Gold

FORM	Film	-
THICKNESS	1 x 10 ⁻⁶ to bulk mo	n.
RAY ORDINARY	Y D. EXTRACIONARY	ב
WAVELENGTH	0.8 - 1.1	<u>"</u>
TEMPERATURE _	~298	K
METHOD	Miscellaneous	<u> </u>
REFERENCE	Mayer [1950]	_
REMARKS Con	npilation of older data	
		-
	Thermoon Theorem the property of the control of the	**

Table 8-18

File Thickness,		Extinction Coefficient, &					
À	0.8	7, 1	16	1		2.0	Observer
te	5.7	0.5	0 25	J. 35			6 + (1 +27)
20	1 .5	111	0.7	n 35			Goos (1 +17)
30	2.75	1 75	1.25	0 A			Goos 1 37]
40	29	2. 3	1 45	1.3			Goos [1937]
50	3 3	2.8	2 6.	20		[Goos [1937]
	4.1	1 75	3 C	4.1			Cores [1 +37]
100	4. 55	4. 5	4.4	4.4			Coos [1937]
•	× 51 *		[-		Haringhuizen, et al. [1437]
15.3	50	5.45	5. 8	6.4			Goos [1437]
200	5.2	5 4	6.7	7, 5	-		Goos [1:37]
MC . 00	5 1%	Ì	1.		11.3	15.4	Hagen & Rubens [1962]
9/	5 2	5.0	1, 145	7 65			Goos [1937]
	4.2	4, 44	5 57		[Statescu (1910)
+Thickness range 100-400 Å							

Table 8-19

Able This this way to may 10 mot made made received M. 200 may 10

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k
0.800	0.196	5.54
0.350	0.200	5.87
0.900	0.227	6.26
0.950	0.245	6.61
1.000	0.263	6.93

MATERIAL:	Silver

FORM	Film	1			
THICKN	IESS	Not	state	d	mm
RAY_C	DRDINARY	M	EXT	RAORDINAR'	<u> </u>
WAVEL	ENGTH	0.5	- 1.5		<u> </u>
TEMPER	RATURE	~29	8		°K
METHO	D	Ref	lection	n	
REFERE	Yan	rovay lyar	ra & evskii	(36165)	
REMAR	KS Sampl	les ic	lentic	al to Ref.	9953
	;	Figur	e 8-7		

THICKNESS 0.17 mm					
RAY ORDINARY	🗷 , EXTRAORDINARY				
WAVELENGTH	0.8 - 1.0	<u> </u>			
TEMPERATURE	~298	٥ĸ			
METHOD	Reflection				
REFERENCE	Kretzmann (40353)				
REMARKS	Evaporation from				
tungsten or m	olybdenum crucible a	.t			
<1 x 10 ⁻⁴ torr pressure.					

Table 8-21

MATERIAL: Silver

Figure 8-8

Figure 8-9

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k
0.40	0.075	1. 93
0.45	0.055	2.42
0.50	0.050	2.87
0.55	0.055	3.32
0.60	0.060	3.75
0.65	0.070	4. 20
0.70	0.075	4.62
0.75	0.080	5.05
0.80	0.090	5.45
0.85	0.100	5.85
0.90	0.105	6. 22
0.95	0.110	6. 56

MATERIAL: Silver
FORMFilm
THICKNESS 1.5×10 ⁻⁴ for n,5×10 ⁻⁵ for k mm
RAY ORDINARY D , EXTRAORDINARY D
WAVELENGTH 0.4 - 0.95 #
TEMPERATURE ~298 °K
METHOD Reflection (n); Interference (k) Schulz & Tangherlini (27635
REFERENCE for n, Schulz (27634) for k.
REMARKS Evaporation from molybde-
num crucible at ~10 ⁻⁵ torr onto glass
substrate for n, mica substrate for k.
Figure 8-10

Table 8-22

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k	
0.800	0.110	5.409	
0.850	0.121	5.757	
0.900	0.128	6.089	
0.950	0.136	6.476	
1.000	0.129	6.829	

MATERIAL: Silver

FORM	Film				
THICKNESS	0.12 - 0.20 mm				
RAY ORDINARY	☑ , EXTRAORDINARY □				
WAVELENGTH	0.8 - 1.00 <u>µ</u>				
TEMPERATURE	~298 ° <u>K</u>				
METHOD	Reflection				
REFERENCE	Weiss (6107)				
REMARKS Evaporation from tungsten					
or molybdenum crucible onto silica					
substrate at 2 x 10 ⁻⁵ torr.					

Table 8-23

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k
1.25	0.37	7.7
1.5	0.45	9.0
2	0.65	12.2
3	1.30	18.2
4	2.3	24.3
5	3.5	30.4
6	5.0	36.0
7	6.9	41.0
8	8.9	46.0
9	11.0	50.0
10	13.3	54.0

THICKNESS Not stated	mm				
RAY ORDINARY . EXTRAORDINARY					
WAVELENGTH 1.25 - 10	_μ				
TEMPERATURE 293	°K				
METHOD Reflection					
REFERENCE Dold & Mecke (27079)					
REMARKS Evaporation from					
molybdenum crucible.					
Table 8-24					

Film Theological	Refractive @ Micr Wavele			
Film Thickness,	0.8	0.9	1.0	Observer
7.5	2.5	2.2		Murmann 1936
10	2.95	3.05		Krautkraemer 1938
15	2.3	2.6		Murmann 1936
20	0.6	1.0		Murmann 1936
ω	0.20	0.23	0.26	Kretzmann 1940

	MATERIAL: Silver	_
FORM	Film	_
THICKNESS_	0.75×10^{-6} to bulk mr	n
RAY ORDINA	ARY 🐧 , EXTRAORDINARY [ב
WAVELENGTH	0.8 - 1.0	ĸ
TEMPERATUR	E_~298 º¡	<u>K</u>
METHOD	Misc.	
REFERENCE	Mayer [1950]	_
REMARKS	Compilation of older data	_
		-

Table 8-25

	Extinction Coefficient, k @ Microns Wavelength					
Film Thickness,	0.8	0.9	1.0	1.5	Observer	
7.5	5.15	5.2			Murmann 1936	
10	4.9	5.0			Murmann 1936	
15	5.1	5.35			Murmann 1936	
20	5.5	5.8			Murmann 1936	
500	6.21		B.00	12.4	Hagen & Rubens 1902	
	5.54	6.25	ذ6.9		Kretzmann [1940]	

Table 8-26

Warralangth	Refractive Index, n			
Wavelength, (Microns)	T = 295°K	T = 82°K		
1	0.25	0.22		
2	0.68	0.57		
3	1.38	1.14		
4	2.34	1.92		
5	3.52	2.88		
6	4.87	4.02		
7	6.31	5.31		
8	7.86	6.70		
9	9.36	8.10		
10	10.8	9.60		
11	12.0	10.9		
12	12.8			

FORM	Film	
THICKNESS	Not stated	nn
RAY ORDINARY	. EXTRAORDINARY	
WAVELENGTH		
TEMPERATURE	82, 295	°ĸ
METHOD	Reflection	
	dalka & dyarevskii (9953)	
	aporation from	
tantalum crucil	ole onto glass	
substrate at 10	-5 torr	

Figure 8-11

MATERIAL:

Silver

Table 8-27

MATERIAL:	Silver	
,		

FORM	Not stated	
THICKNESS	Not stated	mm
RAY ORDINARY	酒 , EXTRAORDINARY	
WAVELENGTH	0.3 - 100	<u>_</u> <u>#</u>
TEMPERATURE	300 - 1200	°K
METHOD	NA	
REFERENCS	Grenis (30490)	
REMARKS Calcu	ılated results, based	
on optical, co	enductivity and	
dielectric me	asurements.	

F	i	ø	11	r	2	8	_	1	2
-	٠	×	u		C	v	-	•	u

Wavelength, (Microns)	Refractive Index, n	Extinction Coefficient, k
1.03	0.27	7.00
1.28	0.36	8.58
1.71	0.53	11.7
2.50	0.91	17.2
3.48	1.65	23.75
4.38	2.0	29.65
5.38	2.9	36.9
6.00	4.3	40.65

THICKNESS No	ot stated-Mirror mm
RAY ORDINARY	Z , EXTRAORDINARY
WAVELENGTH	1 - 6 <u>µ</u>
TEMPERATURE _	~298 ° K
METHOD	Reflection
REFERENCE	Motulevich (40051)
REMARKS n-t	e, carrier concentration
$= 5.2 \times 10^2$	cm ⁻³

Table 8-28

Film Thickness

PARAMETER:

	Refractive Index, n @ Microns Wavelength					
Film Thickness,	0.8	0.9	1.0	Observer		
7.5	2.5	2.2		Murmann 1936		
10	2.95	3.05		Krautkraemer [1938]		
15	2.3	2.6		Murmann [1936]		
20	0.6	1.0		Murmann 1936		
60	0.20	0.23	0.26	Kretzmann 1940		
L] ()		

FORM Fil	m
THICKNESS 0.7	75 x 10 ⁻⁶ to bulk mm
RAY ORDINARY	M , EXTRAORDINARY
WAVELENGTH	0.8 - 1.0 <u>µ</u>
TEMPERATURE	~298 ° K
METHOD	Misc.
REFERENCE	Mayer [1950]
REMARKS	Compilation of older

MATERIAL: Silver

Table 8-29

data

		ction C				
Film Thickness,	0.8	0.9	1.0	1.5	Observer	
7.5	5.15	5.2			Murmann 1936	
10	4.9	5.0			Murmann 1936	
15	5.1	5, 35		i	Murmann 1936	
20	5.5	5.8		! !	Murmann 1936	
500	6.21		8.00	12.4	Hagen & Rubens 1902	
	5.54	6,25	6.93		Kretzmann [1940]	

Table 8-30

PARAMETER: Temperature

217	Refractive Index, n					
Wavelength, Micron	T = 295°K	T = 82°K				
1	0.25	0.22				
2	0.68	0.57				
3	1.38	1.14				
4	2.34	1.92				
5	3.52	2.88				
6	4.87	4.02				
7	6.31	5.31				
8	7.86	6.70				
9	9.36	8.10				
10	10.8	9.60				
11	12.0	10.0				
12	12.8	•••				

MATERIAL: Silver
FORM Film
THICKNESS Not stated mm
RAY ORDINARY E , EXTRAORDINARY E
WAVELENGTH 1 - 12
TEMPERATURE 82, 295
METHOD Reflection
(9953) REFERENCE <u>Padalka & Shklyarevskii</u>
REMARKS Evaporation from tantalum
crucible onto glass substrate at
10 ⁻⁵ torr
Figure 8-13

Table 8-31

PARAMETER: Temperature

MATERIAL: Silver	
FORM Not Stated	mm
THICKNESS Not Stated	mm
RAY ORDINARY 2 , EXTRAORDINARY	
WAVELENGTH 0.3 - 100	<u> </u>
TEMPERATURE 300 - 1200	°K
METHOD NA	
REFERENCE Grenis (30490)	
REMARKS Calculated results, base	d
on optical, conductivity and dielect	ric
measurements.	

Figure 8-14

CHAPTER 9 BIBLIOGRAPHY

EPIC-INDEXED REFERENCES

ARONSON, J.R., et al., (16091) Low-Temperature Far-Infrared Spectra of Germanium and Silicon. PHYS. REV., v. 135, no. 3A, Aug. 3, 1964. p. A785-A788.

BALKANSKI, M. and J.M. BESSON, (22653). ECOLE NORMALE SUPERIEURE. FRANCE. Optical Properties of Degenerate Silicon. TN no. 2. Contract no. AF 61-052-789. 1965. DDC AD-619 581.

BALLARD, S.S, (12539). MICHIGAN UNIV. WILLOW RUN LAB. Optical Materials for Infrared Instrumentation. State-of-the-Art Rept., Rept. no. 2389-11-S, Jan. 1959. Contract no. Nonr 1224-12. ASTIA AD-217 367.

BIENIEWSKI, T.M. and S.J. CZYZAK, (8761). Refractive Indexes of Signal Hexagonal Zinc Sulfide and Cadmium Sulfide Crystals. OPTICAL SOC. OF AMERICA, J., v. 53, no. 4, Apr. 1963. p. 496-497.

BERMAN, L.V. and A.G. ZHUKOV, (36032). Optical Constants of Crystalline Quartz in the Far Infrared Region. OPT. AND SPECTRO., v. 21, no. 6, Dec. 1965. p. 401-404.

BRIXNER, B., (29206). Refractive-Index Interpolation for Fused Silica. OPTICAL SOC. OF AMERICA, J., v. 57, no. 5, May 1967. p. 674-676.

BURGIEL, J.C. et al., (34617). Refractive Indices of Zinc Oxide, Zinc Sulfide, and Several Thin-Film Insulators. ELECTROCHEM. SOC., J., v. 115, no. 7, July 1968. p. 729-732.

CARDONA, M. et al., (620). Dielectric Constant of Germanium and Silicon as a Function of Volume. PHYS. AND CHEM. OF SOLIDS, v. 8, Jan. 1959. p. 204-206.

CARDONA, M., (2569). HARVARD UNIV., GORDON McKAY LAB. OF APPL. SCI. Dielectric Constant of Germanium and Silicon as a Function of Volume. TR no. HP-5. Contract Nonr-186610. July 1, 1959. AD 226 982.

CHAMBERLAIN, J.E. and H.A. GEBBIE, (40177). Determination of the Refractive Index of a Solid Using a Far Infra-Red Maser. NATURE, v. 206, no. 4984, May 8, 1965. p. 602-603.

CHAMBERLAIN, J.E., et al., (40179). Refractometry in the Far Infra-Red Using a Two-Beam Interferometer. NATURE, v. 198, no. 4883, June 1, 1963. p. 874-875.

CLEEK, G.W., (27331). The Optical Constants of Some Oxide Glasses in the Strong Absorption Region. APPLIED OPTICS, v. 5, no. 5, May 1966. p. 771-776.

COLLINS, R.J., (40273). PURDUE UNIVERSITY. Infrared Properties of Germanium. Doctoral Thesis. Aug. 1953. p. 76-79.

BLOCK, W., et al, (36747). Material Measurement Schemes for the Far Infrared. APPLIED OPTICS, v. 7, no. 11, Nov. 1968. p. 2319-2320.

BOGENS, R.K. and A.G. ZHUKOV, (35268). The Optical Constants of Fused Quartz in the Far Infrared. J. OF APPLIED SPECTROSCOPY, v. 4, no. 1, Jan. 1966. p. 54-55.

BOND, W.L., (19989). Measurement of the Refractive Indices of Several Crystals. J. OF APPLIED PHYS., v. 36, no. 5, May 1965. p. 1674-1677.

BOSOMWORTH, D.R., (29681). Far-Infrared Optical Properties of Calcium Fluoride, Strontium Fluoride Barium Fluoride, and Cadmium Fluoride. PHYS. REV., v. 157, no. 3, May 15, 1967. p. 709-715.

BRATTAIN, W.H. and H.B. BRIGGS, (18391). The Optical Constants of Germanium in the Infra-Red and Visible. PHYS. REV., v. 75, no. 11, June 1, 1949. p. 1705-1710.

BRIGGS, H.B., (13314). Optical Effects in Bulk Silicon and Germanium. PHYS. REV., v. 77, no. 2, Jan. 15, 1950. p. 287.

COX, J.T., et. al., (17066). Improved Dielectric Films for Multilayer Coatings and Mirror Protection. J. DE PHYS., v. 25, no. 1-2, Jan.-Feb. 1964. p. 250-254.

CZYZAK, S.J., et. al., (6331). Refractive Indexes of Single Synthetic Zinc Sulfide and Cadmium Sulfide Crystals. OPTICAL SOC. OF AMERICA, J., v. 47, no. 3, Mar. 1957. p. 240-243.

CZYZAK, S.J., et al., (14914). DETROIT UNIV. The Study of Properties of Single Cadmium Sulfide and Zinc Sulfide Crystals for use as Detectors in Crystal Counters. TR no. 3. Contract no. Nonr 1511-01-NR-015-218. Oct. 1957. ASTIA AD-143 919.

DAVEY, J.E., et al., (13363). The Effect of Vacuum-Evaporation Parameters on the Structural, Electrical and Optical Properties of Thin Germanium Films. SOLID STATE ELECTRONICS, v. 6, no. 3, May-June 1964. p. 205-216.

DAVIS, P.W. and T.S. SHILLIDAY, (3648). Some Optical Properties of Cadmium Telluride. PHYS. REV., v. 118, no. 4, May 15, 1960. p. 1020-1022.

DE NOBEL, D., (306). Phase Equilibria and Semiconducting Properties of Cadmium Telluride. PHILIPS RES. REP., v. 14, no. 4, Aug. 1959. p. 361-399.

DEVORE, J.R., (40276). Refractive Indices of Rutile and Sphalerite. OPTICAL SOC. OF AMERICA, J., v. 41, no. 6, June 1951. p. 416-419.

DIANOV, E.M. and N.A. IRISOVA, (41423). Determination of the Absorption Coefficient of Solids in the Short-Wave Region of the Millimeter Band. J. OF APPLIED PHYS., v. 5, no. 2, Aug. 1966. p. 187-189.

DOLD, B.B. and R. MECKE, (27079). Optische Eigenschaften von Edelmetallen, Uebergangsmetallen und deren Legierungen im Infrarot. 1 Teil. Optical Properties of Precious Metals, Transition Metals and their Alloys in the Infrared. Part I. OPTIK, v. 22, no. 6, 1965. p. 435-446.

EVANS, R.A., (26567). RESEARCH TRIANGLE INST., DURHAM, N.C. Physical/Electrical Properties of Silicon. ASD-TDR-63-316. Contract AF 33(657)10340. July 1964. p. 177. AD 605 558.

FISCHER, A.G., et al., (15559). RCA LABS. DAVID SARNOFF RES. LABS. Investigation of Carrier Injection Electrol minescence. Semiannual SR no. 2, for Jan. 15-July 15, 1962. AFCRL-62-588. Contract no. AF 19-604-8018. Aug. 15, 1962. ASTIA AD-290 231.

FISHER, P. and H.Y. FAN, (5400). Infrared Properties and Effective Ionic Charge of Cadmium Telluride. AMERICAN PHYS. SOC., BULL., v. 4, 1959. p. 409.

GARLICK, G.F.J., et al., (7771). The Nature of Binding in Cadmium Telluride. PHYS. SOC., PROC., v. 72, pt. 5, Nov. 1958. p. 925-926.

GEICK, R., (39706). Refractive Index of Crystalline and Fused Quartz at 100 Microns (In Ger.). Z. FUER PHYS., v. 161, Jan. 1961. p. 116-122.

GISIN, M.A. and V.A. IVANOV, (41222). Optical Properties of Thin Germanium Films in the Infrared Region of the Spectrum. OPT. AND SPECTRO., v. 26, no. 2, Feb. 1969. p. 124-125.

GOLOVASHKIN, A.I., et al., (14298). Determination of Microscopic Parameters of Aluminum from Its Optical Constants and Electric Conductivity. SOVIET PHYS. - JETP, v. 11, no. 1, July 1960. p. 38-41.

GRENIS, A.F., (30490). ARMY MATERIALS RES. AGENCY, WATERTOWN, MASS. The Interrelation of the Thermophysical Properties of Silver. TR. AMRA TR 67-02. Jan. 1967. 14 p. AD 649 515.

GRIGOROVICI, R, and A. VANCU, (35455). Optical Constants of Amorphous Silicon Films Near the Main Absorption Edge. THIN SOLID FILMS, v. 2, no. 1-2, July 1968. p. 105-110.

GRY VN AK, D.A. and D.E. BURCH, (21068). Optical and Infrared Properties of Aluminum Oxide at Elevated Temperatures. OPTICAL SOC. OF AMERICA, J., v. 55, no. 6, June 1965. p. 625-629.

HADNI, A., et al., (34136). Absorption and Reflection Spectra in the Far Infrared of Zinc Selenide, Zinc Telluride and Cadmium Selenide at Low Temperatures (In Fr.). PHYS. STATUS SOLIDI, v. 26, no. 1, Mar. 1, 1968. p. 241-252.

HADNI, A., et al., (29510). Constantes Optiques de Sept Cristaux Ioniques A Basse Temperature Dans le Infrarouge Lointain, Processus de Difference, Role des Impurities. Optical Constants of Seven Ionic Crystals at Low Temperatures in the Infrared Region, Energy Levels, Role of Impurities. J. DE PHYSIQUE, v. 28, no. 2, Feb. 1967. p. C1-118 - C1-128.

HAEFELE, H.G., (9762). Das infrarotspektrum des rubins. Infrared Spectrum of Ruby. ZEITSCHRIFT FUER NAT"RFORSCHUNG, vol. 18a, no. 3, March 1963. p. 331-335.

HAEFELE, H.G., (34826). Optical Constants of Magnesium Oxide in the Infrared (In Ger.). ANNALEN DER PHYSIK, v. 10, no. 5-6, 1963. p. 321-326.

HAEFELE, H.G., et al., (40240). The Optical Constants of Quartz in the Infrared and their Temperature Dependence I. (In Ger.). Z. FUER PHYS., v. 168, no. 5, July 1962. p. 530-541.

HALL, J.F., Jr. and W.F.C. FERGUSON. (2609). Optical Properties of Cadmium Sulfide and Zinc Sulfide from 0.6 Micron to 14 Microns. OPTICAL SOC. OF AMERICA, J., v. 45, no. 9 Sept. 1955. p. 714-718.

HALL, J.F., Jr., (13466). Optical Properties of a Highly Boron-Doped Silicon Surface. OPTICAL SOC. OF AMERICA, J., v. 50, no. 7, July 1960. p. 717-720.

HALSTED, R.E., et al., (26678). GEN. ELECTRIC CO., SCHENECTADY, N.Y. RES. LAB. Research on Cadmium Telluride. Contract No. AF 33 616-8264. Oct. 1965. 39 p. AD 626 941.

HARRIS, L., (17011). Preparation and Infrared Properties of Aluminum Oxide Films. OPTICAL SOC. OF AMERICA, J., v. 45. no. 1, Jan. 1955. p. 27-29.

HARRIS, L. and J. PIPER, (5212). Transmittance and Reflectance of Aluminum-Oxide Films in the Far Infrared. OPTICAL SOC. OF AMERICA, J., v. 52, no. 2, Feb. 1962. p. 223-224.

HEILMANN, C., (40178). The Extinction Coefficient and Refractive Index of Calcium Fluoride in the Infrared Region (In Ger.). Z. FUER PHYS., v. 176, no. 3, 1963. p. 253-260.

HILTON, A.R., et al., (25628). TEXAS INSTRUMENTS INC. New High Temperature Infrared Transmitting Glasses. Semiannual Tech. Summary Rept. no. 2, May 1-Oct. 31, 1963. TI Rept. no. 08-63-167. Contract no. 3810 00. Oct. 31, 1963. N64-12336.

HULDT, L. and T. STAFLIN, (3735). Optical Constants of Evaporated Films of Zinc Sulphide and Germanium in the Infra-red. OPTICA ACTA, v. 6, no. 1, Jan. 1959. p. 27-36.

IRVIN, J.C., (5250). Resistivity of Bulk Silicon and of Diffused Layers in Silicon. BELL SYSTEM TECH. J., v. 41, no. 2, Mar. 1962. p. 387-410.

JACOBSSON, R., (40180). Optical Properties in the Near Infrared of Thin Germanium-Zinc Sulfide Films Produced by Simultaneous Evaporation from Two Sources. ARKIV FOER FYSIK, v. 24, no. 2, 1962. p. 17-30.

JASPERSE, J.R., et al., (34832). Temperature Dependences of Infrared Dispersion in Ionic Crystals Lithium Fluoride and Magnesium Oxide. PHYS. REV., v. 146, no. 2, June 10, 1966. p. 526-542.

JENNES, J.R., Jr., (40476). Reflection-Reducing Coatings of Magnesium Fluoride and Lithium Fluoride in the Near Infrared. OPTICAL SOC. OF AMERICA, J., v. 46, no. 3, Mar. 1956. p. 157-159.

JOHNSON, C.J., et al., (40781). Far Infrared Measurement of the Dielectric Properties of Gallium Arsenide and Cadmium Telluride at 300°K and 8°K. APPLIED OPTICS, v. 8, no. 8, Aug. 1969. p. 1667-1671.

KAISER, W., et al. (40176). Infrared Properties of Calcium Fluoride, Strontium Fluoride, and Barium Fluoride. PHYS. REV., v. 127, no. 6, Sept. 15, 1962. p. 1950-1954.

KONAK, C., (11590). Einige optische Eigenschaften von Kadmium-Tellurid. Some Optical Properties of Cadmium Telluride. PHYSICA STATUS SOLIDI, vol. 3, no. 7, 1963. p. 1274-1278.

KORNFELD, M.I., (14254). Dispersion of Light in Germanium. SOVIET PHYS. - SOLID STATE, v. 2, no. 1, July 1960. p. 42-43.

KRETZMANN, R., (40353). Optical Constants of Thick Metal Films in the Visible and Near Infrared. ANNALEN DER PHYSIK, v. 37, Ser. 5, 1940. p. 303-325.

KUWABARA, G. and K. ISIGURO, (40442). Optical Constants of Zinc Sulfide Films. PHYS. SOC. OF JAPAN, J., v. 7, no. 1, Jan.-Feb. 1952. p. 72-74.

LADD, L.R.S., (27063). Cadmium Telluride Infrared Transmitting Material. INFRARED PHYS., v. 6, 1966. p. 145-151.

LOEWENSTEIN, E.V., (17012). Optical Properties of Sapphire in the Far Infrared. OPTICAL SOC. OF AMERICA, J., v. 51, no. 1, Jan. 1961. p. 108-112.

LORIMOR, O.G. and W.G. SPITZER, (20784). Infrared Refractive Index and Absorption of Indium Arsenide and Cadmium Telluride. J. OF APPLIED PHYS., v. 36, no. 6, June 1965. p. 1841-1844.

LUKES, F., (3024). Optical Constants of Thin Germanium Films. CZECH. J. OF PHYS., v. 10, no. 1, 1960. p. 59-65.

LUKES, F., (3914). The Temperature Dependence of the Refractive Index of Germanium. CZECH. J. OF PHYS., v. 8, no. 2, 1958. p. 253-254.

LUKES, F., (3915). The Temperature Dependence of the Refractive Index of Germanium. CZECH. J. OF PHYS., v. 10, no. 10, 1960. p. 742-748.

LUKES, F., (3382). The Temperature-Dependence of the Refractive Index of Silicon. PHYs. AND CHEM. OF SOLIDS, v. 11, no. 3-4, Oct. 1959. p. 342-344.

LUKES, F., (4541). The Temperature Dependence of the Silicon Refractive Index (In. Ger.). CZECH. J. OF PHYS., v. 10, no. 4, 1950. p. 317-326.

McCARTHY, D.E., (26010). The Reflection and Transmission of Infrared Materials. III. Spectra from 2 Microns to 50 Microns. APPLIED OFTICS, v. 4, no. 3, 1965. p. 317-320.

and the control of the state of

MALITSON, I.H., (21758). Interspecimen Comparison of the Refractive Index of Fused Silica. OPTICAL SOC. OF AMERICA, J., v. 55, no. 10, Oct. 1965. p. 1205-1209.

MALITSON, I.H., (39194). A Redetermination of Some Optical Properties of Calcium Fluoride. APPLIED OPTICS, v. 2, no. 11, Nov. 1963. p. 1103-1107.

MALITSON, I.H., (17008). Refraction and Dispersion of Synthetic Sapphire. OPTICAL SOC. OF AMERICA, J., v. 52, no. 12, Dec. 1962. p. 1377-1379.

MANABE, A., et al., (36435). OSAKA UNIV. Far Infrared Optical Properties of Cadmium Telluride. TECHNOL. REPTS., v. 17, Oct. 1967. p. 263-275.

MANABE, A., et al., (28526). Infrared Lattice Reflection Spectra of II-VI Compounds. JAPAN. J. OF APPL. PHYS., v. 6, no. 5, May 1967. p. 593-600.

MARPLE, D.T.F., (10559). Effective Electron Mass in Cadmium Telluride. PHYSICAL REVIEW, vol. 129, no. 6, March 15, 1963. p. 2466-2470.

MARPLE, D.T.F., (15085). Refractive Index of Zinc Selenide, Zinc Telluride and Cadmium Telluride. J. OF APPLIED PHYS., v. 35, no. 3, Pt. 1, Mar. 1964. p. 539-542.

MILER, M., (34239). Infrared Absorption of Glassy Silicon Dioxide. CZECH. J. OF PHYS., v. 18B, no. 3, 1968. p. 354-362.

MILLER, M., (21593). Infrared Dispersion Due to Network Vibrations in Fused Silica. PHYS. STATUS SOLIDI, v. 10, no. 2, Aug. 1965. p. K119-K121.

MITSUISHI, A., (481). The Optical Properties of Cadmium Telluride in the Far Infrared Region. PHYS. SOC. OF JAPAN, J., v. 16, no. 3, Mar. 1961. p. 533-537.

MOMULEVICH, G.P. and A.A. SHUBIN, (40051). Determination of the Optical Constants of Metals in the Infrared Range. OPTIKA I SPEKTROSKOPIYA, v. 2, no. 5, May 1957. p. 634-636.

MOTULEVICH, G.P., et al., (25734). The Effect of Periodic Structure on the Optical Properties of Aluminum. SOVIET PHYS. - JETP, v. 22, no. 5, May 1966. p. 984-985.

MOTULEVICH, G.P. and A.A. SHUBIN, (19922). Influence of Fermi Surface Shape in Gold on the Optical Constants and Hall Effect. SOVIET PHYS. - JETP., v. 20, no. 3, Mar. 1965. p. 560-564.

NEU, J.T., et al., (40360). GENERAL DYNAMICS CORP. SAN DIEGO, CALIF. Evaluation of the Effects of Space Environment Exposure on Index of Refraction and Extinction Coefficients of Apollo Window Materials, NASA CR-1019. Apr. 1968. p. 105.

NEUROTH, N., (49354). Determination of the Refractive Index and Absorption Coefficient from Reflection Measurements. Z. FUER PHYS., v. 144, no. 1-3, 1956. p. 85-90.

NORTON CO. REFRACTORIES DIV., (16227). Properties and Literature References on Magnorite Fused Magnesium Oxide. Rept. no. P-1.5-1. Mar. 1, 1962.

OSWALD, R. and R. SCHADE, (2139). Ueber die Bestimmung der optischen Konstanten von Halbleitern des Typus Trivalent A-Pentavalent B im Infraroten. On the Determination of the Optical Constants of Semiconductors of Type Trivalent A-Pentavalent B in the Infrared. ZEITSCHRIFT FUER NATURFORSCHUNG, v. 9a, no. 7/8, July-Aug. 1954. p. 611-617.

PADALKA, V.G. and I.N. SHKLYAREVSKII, (9953). Determination of the Microcharacteristics of Silver and Gold From Infrared Optical Constants and the Conductivity at 82 and 295 Degrees K. OPTICS AND SPECTROSCOPY, vol. 11, no. 4, October 1961. p. 285-288.

PHILIPP, H.R. and E.A. TAFT, (7113). Optical Constants of Germanium in the Region 1 to 10 ev. PHYS. REV., v. 113, no. 4, Feb. 15, 1959. p. 1002-1005.

PHILIPP, H.R. and E.A. TAFT, (5951). Optical Constants of Silicon in the Region 1 to 10 eV. PHYS. REV., v. 120, no. 1, Oct. 1960. p. 37-38.

PIPER, W.W., et al., (735). Optical Properties of Hexagonal Zinc Sulfide Single Crystals. PHYS. REV., v. 110, no. 2, Apr. 15, 1958. p. 323-326.

PIRIOU, B., (29797). Etude Des Bandes de Rayons Restants de la Magnesie et du Corindon. Influence de la Temperature. Study of Residual Spectra in Magnesium Oxide and Aluminum Oxide. Temperature Influence. REV. HAUTES TEMP. REFRACTAIRES, v. 3, no. 1, Jan.-Mar. 1966. p. 109-114.

PLANKER, K.J. and E. KAUER, (40526). Determination of Effective Mass of Free Charge Carriers in Semi-Conductors from Infrared Absorption (In Ger.). Z. FJER ANGEWAND. PHYS., v. 12, no. 9, Sept. 1960. p. 425-432.

PLISKIN, W.A. and E.E. CONRAD, (36787). Nondestructive Determination of Thickness and Refractive Index of Transparent Films. IBM J. OF RES. AND DEVELOPMENT, v. 8, no. 1, Jan. 1964. p. 43-51.

POINSOT, P. et al., (40710). Lattice Spectrometer for the Infrared, Study of Barium Titanate, Quartz and Liquid Water (In Fr.). ACAD. DES SCI., C.R., v. 253, Ser. B, no. 19, Nov. 6, 1961. p. 2049-2051.

POTTER, R.F., (27255). Optical Constants of Germanium in Spectral Region from 0.5 eV to 3.0 eV. PHYS. REV., v. 150, no. 2, Oct. 14, 1966. p. 562-567.

RAMADIER-DELBES, J., (39712). Ordinary Index of Refraction of Quartz from 5 to 14 Microns (In Fr.). J. DE PHYSICUE ET LE RADIUM, v. 12, no. 10, Dec. 1951. p. 954.

RANDALL, C.M. and R.D. RAWCLIFFE, (33290). Far Infrared Optical Properties of Pressed Cadmium Telluride. APPLIED OPTICS, v. 7, no. 1, Jan. 1968. p. 213.

RANDALL, C.M. and R.D. RAWCLIFFE, (33251). Refractive Indices of Germanium, Silicon, and Fused Quartz in the Far Infrared. APPLIED OPTICS, v. 6, no. 11, Nov. 1967. p. 1889-1895.

RANK, D.H., et al., (39713). The Index of Refraction of Germanium Measured by an Interference Method. OPTICAL SOC. OF AMERICA, J., v. 44, no. 1, Jan. 1954. p. 13-16.

ROBERTS, S. and D.D. COON, (18253). Far-Infrared Properties of Quartz and Sapphire. OPTICAL SOC. OF AMERICA, J., v. 52, no. 9, Sept. 1962. p. 1023-1029.

ROCHOW, E.G., (8766). The Unique Element Germanium. INDUSTRIAL AND ENG. CHEM., v. 55, no. 3, Mar. 1963. p. 32-35.

RODNEY, W.S. and R.J. SPINDLER, (39714). Index of Refraction of Fused-Quartz Glass for Ultraviolet, Visible, and Infrared Wavelengths. NAT. BUREAU OF STANDARDS, J. OF RES., v. 53, no. 3, Sept. 1964. p. 185-189.

ROWNTREE, R.F., (34819). OHIO STATE UNIV., COLUMBUS, RES. FOUNDATION. Measurements of the Optical Constants of Magnesium Oxide and Calcium Tungstate (Spectral Region Between 10 CM⁻¹ and 100 CM⁻¹ at 300°K and 90°K). Sci. Rept. No. 4, Contract No. AF 19 604-4119. Feb. 1963. AD 403 425. 154 p.

SIMON, I., (39827). Spectroscopy in Infrared by Reflection and Its Use for Highly Absorbing Substances. OPTICAL SOC. OF AMERICA, J., v. 41, no. 5, May 1951. p. 336-345.

SPITZER, W.G. and H.Y. FAN, (791). Determination of Optical Constants and Carrier Effective Mass of Semiconductors. PHYS. REV., v. 106, no. 5, June 1, 1957. p. 882-890.

SPITZER, W.G., et al., (13860). Effect of Heat Treatment on the Optical Properties of Heavily Doped Silicon and Germanium. J. OF APPLIED PHYS., v. 35, no. 1, Jan. 1964. p. 206-211.

SPITZER, W.G. and D.A. KLEINMAN, (18696). Infrared Lattice Bands of Quartz. PHYS. REV., v. 121, no. 5, Mar. 1, 1961. p. 1324-1335.

STEPHENS, R.E. and I.H. MALITSON, (34823). Index of Refraction of Magnesium Oxide. NBS J. OF RES., v. 49, no. 4, Oct. 1952. p. 249-252.

SZE. S.M. and J.C. IRVIN, (34530). Resistivity, Mobility and Impurity Levels in Gallium Arsenide, Germanium, and Silicon at 300°K. SOLID STATE ELECTRONICS, v. 11, no. 6, June 1968. p. 599-602.

TAUC, J., et al., (22818). Optical Properties of Non-Crystalline Semiconductors. In INT. CONF. ON PHYS. OF NON-CRYSTALLINE SOLIDS, PROC., Delft, July 1964. Ed. by PRINS, J.A. N.Y., Intersci. Pub., 1965. p. 606-615.

VITRIKHOVSKIY, N.I., et al., (31017). Dispersion of the Refractive Indices of Cadmium Sulfur Selenide and Cadmium Telluride Single Crystals in the Visible and Infrared Spectrum Ranges. UKRAINSKII FIZ. ZH., v. 12, no. 5, May, 1967. p. 796-799.

WALES, J. et al., (31497). Optical Properties of Germanium Films in the 1-5 Micron Range. THIN SOLID FILMS, v. 1, no. 2, Sept. 1967. p. 137-150.

WEIL, R. and C.J. JOHNSON, (41152). Temperature Coefficient of the Refractive Index and Optical Absorption of Cadmium Telluride at 10.6-Microns Wavelength. J. OF APPLIED PHYS., v. 40, no. 11, Oct. 1969. p. 4681-4682.

WEISS, K., (6107). Ueber optische Konstanten und elektrischen Widerstand dicker Metallschichten. The Optical Constants and the Electrical Resistivity of Thick Metal Layers. ZEITSCHRIFT FUER NATURFORSCHUNG, v. 3A, 1948. p. 143-147.

_ !

RUSSELL, E.E. and E.E. BELL, (28888). Measurement of the Optical Constants of Crystal Quartz in the Far Infrared with the Asymmetric Fourier-Transform Method. OPTICAL SOC. OF AMERICA, J., v. 57, no. 3, Mar. 1967. p. 341-348.

RUSSELL, E.E. and E.E. BELL, (28755). Optical Constants of Sapphire in the Far Infrared. OPTICAL SOC. OF AMERICA J., v. 57, no. 4, Apr. 1967. p. 543-544.

SALZBERG, C.D. and J.J. VILLA, (39254). Index of Refraction of Germanium. OPTICAL SOC. OF AMERICA, J., v. 48, no. 8, Aug. 1958. p. 579.

SALZBERG, C.D. and J.J. VILLA, (3900). Infrared Refractive Indexes of Silicon Germanium and Modified Selenium Glass. OPTICAL SOC. OF AMERICA, J., v. 47, no. 3, Mar. 1957. p. 244-246.

SATO, T., (29333). Spectral Emissivity of Silicon. JAPAN J. OF APPL. PHYS., v. 6, no. 3, Mar. 1967. p. 339-347.

SCHULZ, L.G., (27634). The Optical Constants of Silver, Gold, Copper, and Aluminum. I. The Absorption Coefficient k. OPTICAL SOC. OF AMERICA, J., v. 44, no. 5, May 1954. p. 357-361.

SCHULZ, L.G. and F.R. TANGHERLINI, (27635). Optical Constants of Silver, Gold, Copper, and Aluminum. II. The Index of Refraction. OPTICAL SOC. OF AMERICA, J., v. 44, no. 5, May 1965. p. 362-368.

SERAPHIN, B.O. and N. BOTTKA, (38093). Franz-Keldysh Effect of the Refractive Index in Semiconductors. PHYS. REV., v. 139, no. 2A, July 19, 1965. p. A560-A564.

SHKLIAREVSKII, I.N. and V.G. PADALKA, (36056). Measurements of the Optical Constants of Copper, Gold and Nickel in the Infrared Region of the Spectrum. OPT. AND SPECTRO., v. 6, no. 1, Jan. 1959. p. 45-48.

SHKLYAREVSKII, I.N. and R.G. YAROVAYA, (19998). Quantum Absorption in Aluminum and Indium. OPTICS AND SPECTROSCOPY, v. 16, no. 1, Jan. 1964. p. 45-48.

SHKLYAREVSKII, I.N. and R.G. YAROVAYA, (27261). Quantum Absorption of Light in Gold. OPT. AND SPECTRO., v. 21, no. 2, Aug. 1966. p. 115-118

SIMON, I., (4799). Optical Constants of Germanium, 3ilicon, and Pyrite in the Infrared. OPTICAL SOC. OF AMERICA, J., v. 41, no. 10, Oct. 1951. p. 730.

WILLMITT, J.C., (34804). The Infra-Red Spectrum of Magnesium Oxide. PHYS. SOC., PROC., v. 63A, pt. 4, Apr. 1950. p. 389-402.

WOLFE, W.L., et al., (26316). UNIV. OF MICHIGAN. INST. OF SCI. AND TECHNOL. INFRARED LAB. Optical Constants of Germanium. Contract Cwb 10533. March 1964. DDC AD 435 012. 37 p.

YAROVAYA, R.G. and I.N. SHKLYAREVSKII, (36165). Investigation of Quantum Absorption in Silver. OPT. AND SPECTRO., v. 18, no. 5, May 1965. p. 465-467.

ZERNICKE, F., Jr., (39697). Refractive Indices of Ammonium Dihydrogen Phosphate and Potassium Dihydrogen Phosphate between 2000 Angstroms and 1.5 Microns. OPTICAL SOC. OF AMERICA, J., v. 54, no. 10, Oct. 1964. p. 1215-1220.

OTHER REFERENCES

AVERY [1952]. AVERY, D. G., "Optical Constants by Reflection," PROC. PHYS. SOC. (London), Vol. B65, (1952), pp. 425-428.

BEATTIE [1955]. Beattie, J. R., "Optical Constants of Metals in the Infra-Red-Experimental Methods," PHIL. MAG., Vol. 46, No. 373, Feb. 1955, pp. 235-245.

CARTWRIGHT [1934]. CARTWRIGHT, C. H., "Transmission Measurements in the Region from 50 to 240 Microns," Z. PHYSIK, Vol. 90, (1934), pp. 480-488.

COURVOISIER [1963]. COURVOISIER, J. C., et al, "Evaporation-Condensation Method for Making Germanium Layers for Transistor Purposes," SOLID-STATE ELECTRONICS, Vol. 6, May-June 1963, pp. 265-270.

DAVEY [1961]. DAVEY, J. E., "Textural Properties of Germanium Films," J. APPL. PHYS., Vol. 32, No. 5, (1961), pp. 877-880.

GOOS [1937]. GOOS, F., Z. PHYS., Vol. 106, (1937), pp. 37, et seq., quoted from Mayer [1950].

HAGEN& RUBENS [1902]. HAGEN, E. and H. RUBENS, ANN. D. PHYS., Ser. 4, Vol. 8, (1902), pp. 60 et seq., quoted from Mayer [1950].

HARINGHHUIZEN ET AL. [1937]. HARINGHHUIZEN, P. J., D. A. WAS and A. M. KRUITHOF, PHYSICA, Vol. 4, (1937), pp. 209 et seq., quoted from Mayer [1950].

HARTING [1948]. HARTING, A., Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin. Mathematisch-naturwissenschaftliche Klasse, No. IV, (1948), reported by: Landolt-Boernstein, "Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik," Vol. II, Part 8, Springer Verlag, Berlin, (1962).

HEILMANN [1961]. Heilmann, G., "The Optical Constants of Calcium Fluoride in the Infrared, "Z. Naturforsch. Vol. 16a, (1961), pp. 714-716.

HILTON & JONES [1967]. HILTON, A. R. and C. E. JONES, "The Thermal Change in the Nondispersive Infrared Index of Optical Materials," APPLIED OPTICS, V. 6, No. 9, September 1967, p. 1513-1517.

IDCZAK [1967]. IDCZAK, E., "Optical Properties of Ag-Cr and Cr-Ag Double Layers in 0.4 - 1 Micron Wave Length Range, in: Hahan, E., Ed. Proceedings of the Second Colloquium on Thin Films 1967, Vandenhoeck & Ruprecht in Goettingen, Goettingen, Germany, 1968, pp. 241-248.

KODAK [1967]. EASTMAN KODAK CO., "Irtran Infrared Optical Material Condensed Data Sheet," No. U-71, Feb. 1967.

KOHLRAUSCH 1943. KOHLRAUSCH, F., "Praktische Physik," Vol. II, B. G. Teubner, Leipzig, (1943).

KRAUTKRAEMER [1938]. Krautkraemer, J., ANN. d. PHYS., Ser. 5, Vol. 32, (1938), pp. 66 et seq., quoted from Mayer [1950].

KRETZMANN [1940]. Kretzmann, R., Ann. d. Phys., Ser. 5, Vol. 37, (1940), pp. 301-306, quoted from Mayer [1950].

LAUFER [1965]. LAUFER, J. S., "High Silica, Quartz, and Vitreous Silica," J. OPT, SOC. AM., Vol. 55, No. 4, April 1965, pp. 458-460.

MAYER [1950]. MAYER, H., "Physik Duenner Schichten," Part I, WISSENSCHAFTLICHE VERLAGSGESELLSCHAFT, Stuttgart, 1950.

MURMANN [1936]. MURMANN, H., Z. PHYS., Vol. 101, (1936), pp. 208 et seq., quoted from Mayer 1950.

POGANY [1916]. POGANY, B., ANN. D. PHYS., Ser. 4, Vol. 49, (1916), pp. 57 et seq., quoted from Mayer 1950.

SMAKULA [1952]. SMAKULA, A., "Physical Properties of Optical Crystals With Special Reference to Infrared," Report No. AD 206 298 (1952).

STATESCU [1910]. STATESCU, C., ANN. D. PHYS., Ser. 4, Vol. 33, (1910), pp. 27 et seq., quoted from Mayer [1950].

WOLFE [1965]. WOLFE, W. L., Ed., "Handbook of Military Infrared Technology," U. S. Government Printing Office, Washington, D.C., 1965.

Unclassified

Security Classification								
DOCUMENT CONTROL DATA - R & D								
(Security classification of title, body of abstrict and indexing . 1. ORIGINATING ACTIVITY (Corporate author)	ennotation must be e							
Hughes Aircraft Company		20. REPORT SECURITY CLASSIFICATION Unclassified						
Culver City, California 90230		2b. GROUP						
3 REPORT TITLE		L						
Refractive Index of Optical Materials in	the Infrared	Region						
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)								
Data Sheet								
5. AUTHOR(S) (First name, middle initial, last name)								
A.J. Moses								
6. REPORT DATE	74. TOTAL NO. OF	PAGES	7b. NO. OF REFS					
January 1970	246		154					
88. CONTRACT OR GRANT NO	94. ORIGINATOR'S	REPORT NUME	ER(S)					
F33615-68-C-1225								
b. PROJECT NO	DS-166	5						
7381 and 8975	1							
^{c.} Task No. 738103 and 897503	9b. OTHER REPORT NO(S) (Any other numbers that may be a this report)		her numbers that may be essigned					
185k No. 750105 and 657505								
d.	<u> </u>							
10 DISTRIBUTION STATEMENT			1					
This document has been approved for public	c release and	i sale; it	s distribution is					
unlimited.								
11 SUPPLEMENTARY NOTES	12. SPONSORING &	MILTARY ACTIO	/1TV					
	Air Force Materials Laboratory							
	Air Force Systems Command							
	Wright-Patterson, AFB, Ohio 45433							
13. ABSTRACT	<u> </u>							
Refractive index data and some extin	ction coeffic	cients are	provided					
for the infrared region for the foll								
zinc sulfide, cadmium telluride, zin								
magnesium fluoride, aluminum oxide, magnesium oxide, aluminum, gold and								
silver. The dependence of these optical constants on wavelength,								
temperature, crystal form, film preparation technique, radiation and								
other factors is included.								
,— <u> </u>								

DD FORM 1473

Unclassified

Security Classification

Unclassified

Security Classification						
14 KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	HOLE	WT
Infrared Measurements						
Refractive index						
Extinction Coefficient	ł					
Transmittance	}					
Silicor						
Germanium						
Zinc Sulfide						
Cadmium Telluride						
Zinc Selenide						
Silica (Quartz)						
Calcium Fluoride			}			
Magnesium Fluoride						
Aluminum Oxide (Sapphire)	}					
Magnesium Oxide Aluminum						
Gold			{			
Silver	1					
011/01	1				}	
j]			}		
	1			Ì		
	}		ļ			
	İ					
1	1					
İ	İ			Ì		
	}	}	j			
	}					•
]	İ				
İ						
ł						
	ĺ					
]					
}						

Unclassified