ECO206 Microeconomic Theory

Second Degree Price Discrimination

Tianyu Du

July 18, 2018

1 Setup

Consider two groups of customers with different marginal willingness to pay. Their demands are captured by demand function

$$D_i = f_i(p) \ i \in \{L, H\} \tag{1}$$

Assuming H group has higher MWTP at any quantity of x, that's

$$f_H^{-1}(x) > f_L^{-1}(x) \ \forall x \in \mathbb{R}_+$$
 (2)

Let function $C_L(x)$ and $C_H(x)$ denote the cost to provide goods/services to each group of customer.

Define welfare function for customers

$$u_i(x_i) = \int_0^{x_i} f_i^{-1}(x) \ dx \ i \in \{L, H\}$$
 (3)

By equation (2), we have

$$u_H(x) > u_L(x) \ \forall x \in \mathbb{R}_+$$
 (4)

2 Mathematical Form

The profit optimization problem of producer can be formalized as

$$\max_{x_L, p_L, x_H, p_H} \left\{ \pi(\cdot) = P_L - C_L(x_L) + P_H - C_H(x_H) \right\}$$
 (5)

subject to individual rationality and intensive compatibility constraints

$$\begin{cases} u_{L}(x_{L}) - p_{L} \ge 0 \\ u_{H}(x_{H}) - p_{H} \ge 0 \\ u_{L}(x_{L}) - p_{L} \ge u_{L}(x_{H}) - p_{H} \\ u_{H}(x_{H}) - p_{H} \ge u_{H}(x_{L}) - p_{L} \end{cases}$$
(6)

3 Reduce the Constraint Region

The constraint can be reduced to

$$\begin{cases} u_L(x_L) - p_L = 0 \\ u_L(x_H) - p_H \le 0 \\ u_H(x_H) - p_H = u_H(x_L) - p_L \end{cases}$$
 (7)

4 Solving the Problem

We want to write $\pi(\cdot)$ as a function of x_L and solve the optimal x_L .

4.1 Step 1: Directly solve x_H^*

We wish to sell efficient amount to the high types, that's where MC(supply) equals demand. Find x_H^* by solving

$$\left. \frac{\partial C_H(x_H)}{\partial x_H} \right|_{x_H = x_H^*} = f_H^{-1}(x_H^*) \tag{8}$$

4.2 Step 2: Rewrite P_L

Using equation (7.1), we can map x_L to p_L by

$$p_L(x_L) = u_L(x_L) = \int_0^{x_L} f_L^{-1}(x) \ dx \tag{9}$$

4.3 Step 3: Rewrite p_H

Using equation (7.3) to map x_L to p_H as

$$p_H(x_L) = \overline{u_H(x_H^*)} - \int_0^{x_L} f_H^{-1}(x) \ dx + p_L(x_L) \tag{10}$$

4.4 Step 4: Solving Problem

By equation (7.2)

$$p_H \ge u_L(x_H^*) \iff x_L \le x_H^* \tag{11}$$

Proof.

$$7.2 \implies u_L(x_H) \le p_H$$

$$(\text{with } 7.3) \implies u_L(x_H) \le u_H(x_H) - u_H(x_L) + p_L$$

$$\implies u_L(x_H) \le u_H(x_H) - u_H(x_L) + u_L(x_L)$$

$$\implies u_L(x_H) - u_L(x_L) \le u_H(x_H) - u_H(x_L)$$

$$\implies \int_{x_L}^{x_H} f_L^{-1}(x) \ dx \le \int_{x_L}^{x_H} f_H^{-1}(x) \ dx$$
as $0 < f_L^{-1}(x) < f_H^{-1}(x) \ \forall x \in \mathbb{R}_+$

$$\iff x_L \le x_H$$

Rewrite the objective function as

$$\pi(x_L) = P_L(x_L) + P_H(x_L) - C_L(x_L) - \overline{C_H(x_H^*)}$$
 (12)

and maximize $\pi(x_L)$ by solving $\frac{\partial \pi(x_L)}{\partial x_L} = 0$ and $x_L \in [0, x_H^*)$.