

Multiagent decision making and Games in Normal Form - Exercises

Outline

- Exercises IESDA
- Exercises NE

Predict the outcome with the iterated elimination of strictly dominated actions:

Λ	$\sigma \circ r$	\ +	7
\vdash	ger	ΙL	_

		Left	Right	Stay
Agent 1	Up	1, 0	1, 2	0, 1
	Down	0, 3	0, 1	1, 2
	Stay	2, 4	2, 1	2, 3

ADVERTISING Scenario:

- **Two companies** share a market, in which they currently make \$5,000,000 each.
- Both need to determine whether they should advertise.
- For each company, advertising costs \$2,000,000 and captures \$3,000,000 from the competitor provided the competitor doesn't advertise.

What should the companies do?

- How many agents?
- What are the action sets?
- What are the payoffs?
- Predict the outcome with the iterated elimination of strictly dominated actions

Outline

- Exercises IESDA
- Exercises NE

Predict the outcome using the Nash Equilibrium definition:

A +	
Agent	
, ,80,110	_

		Left	Right	Stay
Agent 1	Up	1, 0	3, 2	0, 1
	Down	0, 3	0, 1	1, 2
	Stay	-1, 4	2, 1	2, 3

- When a single company controls all of the production of a single good, we call it a monopoly
- When exactly two competing firms control the production of an identical good, we call this
 economic environment a duopoly
 - A special case of an oligopoly
 - Each firm's production can affect the other's ability to profit

- Suppose Firm 1 and Firm 2 must spend \$1 to produce a unit of a good
- Consumer demand determines the price of the good
 - If the quantity available increases, then the price decreases
 - Let *P* be the consumer's market price of the good
 - Let Q be the total quantity of units produced by the two firms
 - Where $Q = Q_1 + Q_2$

■ If the firms collectively produce 6 or less units, then price demand function is the following: $P = 12 - 2Q = 12 - 2(Q_1 + Q_2)$

- If the firms collectively produce 6 or more, then P=0
- Hint: each firm has only six plausible production choices: 0, 1, 2, 3, 4, 5 and the profit of firm i is equal to $(P-1)Q_i$

- How many agents?
- What are the action sets?
- What are the payoffs?
- Predict the outcome with the **definition of Nash Equilibrium**

Thank You

rui.prada@tecnico.ulisboa.pt