Load - II

big data technology

week 3:

map-reduce and programming assignment

week 4:

distributed file-systems, databases, and trends

map-reduce input and output

map-reduce reads data and writes fresh data —
from where - potential bottleneck ?
distributed data, in a distributed file system or database
parallel reading and writing
we have discussed processing-node failures; what about data?

distributed file systems (GFS, HDFS)

Master (GFS) Name Node (HDFS) .../pub/<file> 'Cloud Application' replicas Client -2 XXX offset EOF Chunk Servers (GFS) Data Nodes (HDFS) .../pub/<file>

overview of relational databases

Row Oriented Database

Column Oriented Database

OLAP ("online analytical processing")

e.g.: select SUM(S.amount), S.pid, P.catname from S where S.did=T.did S.pid = P.pid and T.qrtr = 3 group by catname

databases: why?

- transaction processing (ACID properties)
- SQL queries and indexing
- > transaction processing *not* need for analytics
 - though there may be advantages in not having to move data out of a transaction store if avoidable
- queries yes, but if large volumes of data are being touched (e.g. joins, large-scale counting, building classifiers, etc.); indexes become *less* relevant
 - o resilience to hardware failures, which MR provides, is vital.
- \triangleright but OLAP can be viewed as computing a part of the joint distribution $P(f_1...f_n)$ using intuition to select

parallel databases

database evolution

noSQL databases

- no ACID transactions
- sharded indexing
- restricted joins
- support columnar storage (if needed)

in-memory databases

- real-time transactions
- variety of indexes
- complex joins

big-table (HBase)

e.g. data in big-table

e.g. indexing *sharded* data (big-table)

mongo DB

eventual consistency

Dremel – new 'kid' on the block?

powers Google's "BigQuery"

two important innovations:

- columnar storage for nested, possibly non-unique fields – leaf servers
- tree of query servers pass intermediate results from root to leaves and back
- orders of magnitude better
 than MR on petabytes of data
 speed and storage

database evolution - summary

relational row-store: "one size fits all"; gigabytes column-store data warehouse; terabytes distributed noSQL row/column stores + map-reduce – for bulk analysis; 10s of terabytes in-memory "one size fits all" databases; gigabytes dremel – "one size fits all" for petabytes

SQL evolution: SQL-like MR coding

SQL: SELECT SUM(Sale), City from Sales, Cities WHERE Sales.AddrID=Cities.AddrID GROUP BY City

SQL evolution: in-DB statistics, in parallel

```
sql> select * from toclassify;
id | attributes
----+---------
1 | {0,2,1}
2 | {1,2,3}
(2 rows)
```

map-reduce evolution: iteration

many applications require repeated MR: e.g. page-rank, continuous machine-learning ...

- iterate MR
 but make it more efficient: avoid data copy (HaLoop, Twister)
- generalized data-flow graph of map->reduce tasks tasks are 'blocking' for fault-tolerance (Dryad/LINQ, Hyracks ...)
- direct implementation of recursion in MR how to recover from non-blocking tasks failing? graph model: (Pregel, Giraph) stream model: (S4)

Enterprise Data Management and Big Data

Databases

designed for transaction processing

reporting and analytics came later: 'afterthought'

(big data – exactly the reverse!)

MySQL

BigTable

F1

MegStore

Spanner

Big Data Technologies

designed for analytics (counting, not queries)

for retrieval – inverted-index (unstructured) search
data captured in the 'raw' (logs), no transactions

price-performance advantage even for 'standard' ETL and OLAP (in the bulk)

What about 'Business Intelligence' using SQL?

Customers $(x_1...x_m)$

 $O(d^{2m})$ 'cubes'

for m=40, d=10 this becomes $10^{80} > \#$ atoms in the universe sampling *P*(X) manually => *infinite time / infinite # people!*

so – BI folks need to learn analytics

Big Data is about 'wide' data

Analytics is about counting, not queries

```
Learning classifiers
    computing likelihoods P (feature | class)
Clustering
    computing hash-functions and distances
Data Mining
    finding 'bumps': statistically 'different' regions
Learning latent features
    sampling from distributions
      (BN, CRF, MLN, LDA, Prob DB, ...)
    matrix multiplications (NNMF, SVD)
```

Bottom line: you need to touch all your data => complex indexing for fast query processing is pretty useless

[Analytical] Database evolution & trends

noSQL databases

- no ACID transactions**
- sharded indexing
- restricted joins
- support columnar storage

in-memory data / databases

- real-time transactions
- variety of indexes, complex joins

challenge: access patterns still matter

relational row-store: "one size fits all"; gigabytes
column-store data warehouse; terabytes
distributed noSQL row/column stores
+ map-reduce – for bulk analysis; 10s of terabytes
in-memory "one size fits all" databases; gigabytes
Dremel (Impala*) – "one size fits all" for petabytes
for those who still want fast aggregation queries!

*Cloudera 2012

summary

- distributed files 2nd basic element of big-data
- what databases are good for
 - and why traditional DBs were a happy compromise
- evolution of databases
- evolution of SQL
- evolution of map-reduce
- 'big picture' for database evolution

Next week:

- > Lecture by Srikanta Bedathur on Graph Databases
- > following week (unit 5): Learn: 'facts' from data