WSL-Forschungsprojekt

Produktivitätsmodelle für die Holzernte, erstellt mit Hilfe komponentenbasierter Softwaretechnologie

Grundlagen für die Programmierung

Produktionssystem "Radharvester"

- Typ mittel
- Typ gross

Abteilung Management Waldnutzung Eidg. Forschungsanstalt WSL, 2002

Version	Bearbeiter	Datum	Status	Kommentar
1.0	D. Riechsteiner	2000		
	M. Breitenstein	Dez. 2002		Formatierung und Korrekturen gem. VE
2.0	F. Frutig	Jan. 2003		Schlusskontrolle
3.0	S. Holm	Dez. 2014		Korrekturen

Inhaltsübersicht

1. Grundlagen

- 1.1 Entstehung und Verwendung
- 1.2 Verzeichnis der Quellen
- 1.3 Beurteilung und besondere Schwierigkeiten
- 1.4 Zeitangaben Gliederung und Bezugsgrössen

2. Produktionssystem - Verbal-bildliche Darstellung

- 2.1 Produktionsfaktoren
- 2.2 Produktionsprozess
 - 2.2.1 Arbeitsaufgaben
 - 2.2.2 Arbeitsabläufe
- 2.3 Input- und Output-Zustand
 - 2.3.1 Input-Zustand
 - 2.3.2 Output-Zustand
 - 2.3.3 Veränderungen
- 2.4 Erforderliche Arbeitsbedingungen
 - 2.4.1 Technik und Personal
 - 2.4.2 Gelände und Erschliessung
 - 2.4.3 Waldbestände und weitere waldbauliche Massnahmen
 - 2.4.4 Weitere
- 2.5 Berechneter Output

3. Produktionssystem - mathematische Darstellung

- 3.1 Systemübersicht "Radharvester"
- 3.2 Systemzusammensetzung
- 3.3 Arbeitsproduktivität in m³ i.R. pro PMH₁₅-Zeiten
- 3.4 Zeitbedarf der Produktionsfaktoren pro m³ i.R.
- 3.5 Verzeichnis der Abkürzungen
- 3.6 Berechnungsbeispiel

4. Anhang

- A 1 Technologieparameter
- A 2 Datenbasis für Modellherleitung und Überprüfung
- A 3 Zeitsystem im Komponentenmodell "Radharvester"
- A 4 Zeit-Multiplikationsfaktoren
- A 5 Typen-Kategorisierung
- A 6 Überprüfung der Modelle
 - A 6.1 Vergleich mit Daten von P. Wiss
 - A 6.2 Vergleich mit Daten H. Körner

1. Grundlagen

1.1 Entstehung und Verwendung

Verschiedene Autoren in Europa haben sich mit Produktivitätsmodellen für Radharvester beschäftigt. Vor allem in Skandinavien, wo die Harvestertechnologie weit verbreitet ist, wurden verschiedene, auf Einzelmaschinen beruhende Untersuchungen gemacht. Für die Schweiz und Deutschland, wo die Wuchsverhältnisse besser sind und ein Qualitätswaldbau betrieben wird, liegen aber erst wenige Kalkulationsgrundlagen vor. Diese basieren meist auf Untersuchungen aus den frühen 90er Jahren. In den letzten Jahren wurde die Harvestertechnologie aber erheblich modifiziert. So zeigt ein Vergleich der verschiedenen vorhandenen Kalkulationsgrundlagen anhand für das schweizerische Mittelland typischer Bestände Gesamtstreuungen der Produktivität von bis zu 10 m³ pro PMH auf (Riechsteiner, 2000).

1998 leitete Heinimann mittels Leistungsnachweisen aus Deutschland ein Produktivitätsmodell her, welches erlaubt den technischen Fortschritt und somit neu am Markt erscheinende Harvestertypen zu berücksichtigen. Dieses Modell basiert auf Methoden aus dem Gebiet der Technologieprognosen (technology forecasting). Dazu wird die Harvestertechnologie mit Technologieparametern quantitativ abgebildet (Heinimann, 1998).

1.2 Verzeichnis der Quellen

HEINIMANN, H. R.; 1998: Produktivität und Einsatzbedingungen verschiedener Harvestertypen – eine statistische Auswertung aufgrund von Leistungsnachweisen. Interner Bericht. ETHZ Forstliches Ingenieurwesen, Zürich. 25 S.

RIECHSTEINER, D.; 2000: Grundlagen und Herleitung des Produktionssystems "Vollernter": Typ mittel, Typ gross. Interner Bericht. Eidg. Forschungsanstalt für Wald, Schnee und Landschaft (WSL), Birmensdorf.

1.3 Beurteilung und besondere Schwierigkeiten

Es handelt sich um ein sehr einfaches Modell für Harvester vom Typ "gross" (Gewicht ≥ 14'000 kg) und "mittel" (Gewicht zwischen 10'000 und 14'000 kg), welches nur von den Eingangsgrössen "Volumenmittelstamm" (Stückmasse), "maschinenspezifische Technologieparameter" (Motorleistung, Kranreichweite, Hubmoment, Schwenkmoment, maximaler Fälldurchmesser, Einzugskraft) und der "Baumart" abhängt. Harvester vom Typ "klein" (Gewicht < 10'000 kg) lassen sich mit dem Modell nicht abbilden. Diese Typen sind heute nicht mehr im Angebot und spielen folglich für die Praxis eine immer unbedeutendere Rolle.

Es ist aber zu beachten, dass für einzelne Maschinen systematische Fehler von bis zu drei Kubikmeter pro PMH auftreten können (Heinimann, 1998). Dies beruht auf der zum Teil inhomogenen Datenbasis (nicht standardisierte Aufnahmeverfahren), auf nicht berücksichtigten Maschinenfunktionen (Hydrauliksystem, Fortbewegungsfähigkeit, etc.) und auf dem Einfluss des Fahrers (Lernkurveneffekt) (Heinimann, 1998). Acht verschiedene Maschinentypen weisen aber eine erhöhte Vertrauensbasis auf (siehe Anhang 2).

1.4 Zeitangaben - Gliederung und Bezugsgrössen

Das Modell von Heinimann (1998) liefert Zeitangaben auf der Basis PMH₁₅ (siehe Anhang 4).

2. Produktionssystem - Verbal-bildliche Darstellung

Anmerkung

In diesem Grundlagenbericht wird der Masseinheit m3 für die Holzvolumina (z. B. Holzmenge, Volumenmittelstamm) häufig der Zusatz i.R. (in Rinde) oder o.R. (ohne Rinde) angefügt.

Bei der Umsetzung der Grundlagen in EDV-Modelle wurde nicht unterschieden zwischen Holz in Rinde und ohne Rinde. Es gilt folgender Grundsatz: Die Einheit der Eingangsgrössen entspricht der Einheit im Ergebnis. Wichtig ist, dass die Einheit aller Eingangsgrössen (z. B. Holzmenge, Volumenmittelstamm) gleich gewählt wird ("was hinein geht, kommt wieder heraus").

2.1 Produktionsfaktoren

Das Produktionssystem "Radharvester" umfasst folgende Produktionsfaktoren:

- 1 "single grip"-Radharvester (Kranvollernter; radgestütztes Basisfahrzeug mit einem an der Spitze des Kranauslegers angebrachten Harvester-Aggregat)
- 1 Fahrer (Maschinist)

2.2 Produktionsprozess

2.2.1 Arbeitsaufgaben

Die Arbeitsaufgabe besteht darin, stehende Bäume zu fällen, diese zu Rundholzabschnitten aufzuarbeiten (Entasten, Vermessen, Einschneiden, Zopfen) und anschliessend auf Rohpolter abzulegen.

2.2.2 Arbeitsabläufe

Das Modell bildet folgende Aktivitäten eines Verarbeitungsprozesses (Abbildung 1) ab: Fahren auf der Rückegasse, Fällen, Entasten, Einschneiden, Zopfen, Ablegen des Zopfes auf der Rückegasse (Bodenschutz), Ablegen der Rundholzabschnitte auf die Rohpolter. Vor dem Einschneiden wird der Informationsprozess "Vermessen" durchgeführt. Das Modell bildet keine Vorlieferprozesse ab.

Abbildung 1: Prozess Bereitstellung von Rundholzabschnitten - Schnittstellen und abgebildete Aktivitäten sowie Ablauf eines Verarbeitungszyklus.

2.3 Input- und Output-Zustand

2.3.1 Input-Zustand

Bäume in Kranreichweite des Radharvesters.

Der BHD der zu fällenden Bäume darf den spezifischen maximalen Fälldurchmesser des Harvester-Aggregates nicht überschreiten. Das Stückvolumen (Volumenmittelstamm; m^3 i.R.) muss ≥ 0.07 und ≤ 0.45 m^3 i.R. sein.

2.3.2 Output-Zustand

Rundholzabschnitte auf Rohpolter entlang der Rückegasse.

2.3.3 Veränderungen

Vollbäume werden gefällt und zu Rundholzabschnitten (in Rinde) verarbeitet und wechseln ihre Position auf Rohpolter entlang der Rückegassen, bzw. der Erschliessungslinien.

2.4 Erforderliche Arbeitsbedingungen

2.4.1 Technik und Personal

- "single grip"-Radharvester vom Typ "mittel" (Gewicht ≥ 10'000 kg und ≤ 14'000 kg).
- "single grip"-Radharvester vom Typ "gross" (Gewicht ≥ 14'000 kg).
- Der Maschinist muss auf der eingesetzten Maschine und bezüglich der übrigen Bedingungen des Auftrages geübt sein.
- Harvester vom Typ "klein" lassen sich mit dem technologieorientierten Produktivitätsmodell von Heinimann (1998) nicht abbilden. Der Technologiefaktor HK₁, welcher von sechs Technologieparametern (maschinenspezifische Eingangsgrössen) abhängt, ist kleiner Null und lässt sich folglich nicht mit 0.4 potenzieren. Bei neueren Typen ist meist die geringe Kranreichweite (< 8 m) die ausschlaggebende Grösse.

2.4.2 Gelände und Erschliessung

- Befahrbares Gelände für Maschinen mit Radfahrgestellen mit einem Gesamtgewicht bis ca. 20 Tonnen.
- Rückegassennetze, auch Erschliessungen mit Maschinenwegen (Breite mindestens 2.5 m) sowie Einsatz von der Waldstrasse aus.
- Rückegassenabstand maximal doppelte Kranreichweite.
- Hangneigung maximal 30 %.
- Einsatz grundsätzlich auch ohne Feinerschliessung möglich, sofern es die Boden- und die Platzverhältnisse bzw. die Baumbestände erlauben.

2.4.3 Waldbestände und weitere waldbauliche Massnahmen

- Nadelholzbestände mit den Baumarten Fichte, Föhre oder Lärche.
- grundsätzlich auch Laubholz- und Mischbestände aus Nadel- und Laubholz möglich (nicht überprüft).
- Stangen- und eher schwache Baumhölzer.
- Durchforstungen.
- grundsätzlich auch Endnutzungen, Windwurfflächen und Holz ab Haufen möglich (nicht überprüft).

2.4.4 Weitere

Weiter ist zu beachten, dass in Harvester-Holzschlägen das Liegendmass des Volumenmittelstammes (Erntemass, Efm i.R. bzw. hier m³) stark vom Stehendmass (Tariffestmeter, Tfm i.R.) des Volumenmittelstamms abweichen kann.

2.5 Berechneter Output

- Zeitbedarf in produktiven Systemstunden (PSH₁₅) des Produktionssystems pro m³ i.R.
- m³ i.R. pro Zeiteinheit (technische Arbeitsproduktivität).
- Arbeitszeit in PMH₁₅ des Produktionsfaktors "Radharvester" pro m³ i.R.
- Weitere Angaben siehe Formeln Kapitel 3.

3. Produktionssystem - mathematische Darstellung

Anmerkung

In diesem Grundlagenbericht wird der Masseinheit m3 für die Holzvolumina (z. B. Holzmenge, Volumenmittelstamm) häufig der Zusatz i.R. (in Rinde) oder o.R. (ohne Rinde) angefügt.

Bei der Umsetzung der Grundlagen in EDV-Modelle wurde nicht unterschieden zwischen Holz in Rinde und ohne Rinde. Es gilt folgender Grundsatz: Die Einheit der Eingangsgrössen entspricht der Einheit im Ergebnis. Wichtig ist, dass die Einheit aller Eingangsgrössen (z. B. Holzmenge, Volumenmittelstamm) gleich gewählt wird ("was hinein geht, kommt wieder heraus").

3.1 Systemübersicht "Radharvester"

Abbildung 2: Übersicht des Datenflusses.

3.2 Systemzusammensetzung

	Der "single grip"-Radharvester vom Typ mittel oder gross wird von einem Maschinisten bedient.	1 Arbeitskraft
Maschinen:	"single grip"-Radharvester	1 Maschine

Tabelle 1: Systemzusammensetzung.

3.3 Arbeitsproduktivität in m³ i.R. pro PMH₁₅-Zeiten

Abbildung 3: Übersicht Herleitung der Arbeitsproduktivität.

I	nput	Formel	Out	tput
PVR	$[m^3i.R.]$	13 =	PROD ₁₅ _	$\lceil m^3 i.R. \rceil$
BA	[-]	$\begin{bmatrix} -3.87 + 11.43 * PV^{0.25} - 3.5 * HK_{1}^{0.4} \\ +10.06 * PV^{0.25} * HK_{1}^{0.4} + 0.52 * HK_{2} + 1.01 * BA \end{bmatrix} * 1/(1.0 - R)$	Harvester	$\begin{bmatrix} \overline{Std.} \end{bmatrix}$
HK_1	[-]			
HK_2	[-]	Formel von Heinimann liefert $\left[\frac{m^3 o.R.}{Std.}\right]$ somit Multiplikation mit		
R	[-]	$1/(1.0-R)$ um das Ergebnis als $\left[\frac{m^3 i.R.}{Std.}\right]$ zu erhalten.		
		PV = PVR * (1.0-R) R = 0.1 (Fiche; E.Badoux)		
		$falls\ Fichte => BA = 0$ $falls\ F\"{o}hre/L\"{a}rche => BA = 1$		

Abbildung 4: Formel zur Berechnung der Arbeitsproduktivität.

Berechnung der Technologiefaktoren

Abbildung 5: Übersicht zur Berechnung der Technologiefaktoren.

I	nput	Formel	0	utput
ML KR HM	[kW] [m] [kNm]	Mögliche Werte für ML, KR, HM, SM, FD und EK können dem Anhang 1 "Technologieparameter" entnommen werden. $a = (ML - 111.75) / 29.07$ $b = (KR - 9.43) / 0.98$ $c = (HM - 126.06) / 40.31$		шрш
SM FD EK	[kNm] [cm] [kN]	d = (SM - 30.69) / 6.63 $e = (FD - 51.06) / 8.74$ $f = (EK - 20.69) / 2.91$	HK_1	[-]
		$HK_{I} = 0.44 * a + 0.34 * b + 0.45 * c + 0.39 * d + 0.41 * e + 0.39 * f + 4.1$ $falls\ HKI < 0 => "keine\ Aussage\ möglich"\ (siehe\ Anhang\ 5)$	IIK;	[-]
		$HK_2 = 0.27 * a - 0.65 * b + 0.02 * c - 0.49 * d + 0.34 * e + 0.38 * f$	HK_2	[-]

Abbildung 6: Formel zur Berechnung der Technologiefaktoren.

3.4 Zeitbedarf der Produktionsfaktoren pro m³ i.R.

Inpi	ut	Formel	Output	
PROD ₁₅	$\left[\frac{m^3 i.R.}{Std.}\right]$	$PMH_{15} = 1/PROD_{15}$		
Anzahl_Pers	[-]	$PSH_{15} = PMH_{15}$	PSH ₀ _	☐ Std. ☐
F_{Weg} $F_{St\"or}$	[-]	$PSH_0 = \frac{PSH_{15}}{F_{0-15}}$	Rundholz	$\left[\frac{Std.}{m^3 i.R.}\right]$
F_{Pausen}	[-]	F_{0-15}	WPPH_ Rundholz	$\left[\frac{Std.}{m^3 i.R.}\right]$
$F_{Verteilzeit}$	[-] [-]	WPPH = $Anzahl_Pers *PSH_0 *F_{0-15} *F_{indir} *F_{Weg} *F_{Pausen} *F_{St\bar{v}r}$		
F_{0-15}	[-]		PSH ₁₅	$\left[\frac{Std.}{m^3 i.R.}\right]$
F_{indir}	[-]	$PSH_{15} = \frac{PMH_{15}}{Masch_Laufzeitanteil}$		
Masch_Lauf zeitanteil	[-]	$Masch_Laufzeitanteil = 1$	PMH ₀ _ Rundholz	$\left\lceil \frac{Std.}{m^3 i.R.} \right\rceil$
		$PMH_0 = PMH_{15} * F_{0-15}$ Faktoren:	Rundholz	$\lfloor m^3 i.R. \rfloor$
		$Anzahl_Pers = 1$		
		$F_{indir} = rac{F_{Verteilzeit}}{F_{0-15}}$		
		F_{0-15} : siehe Anhang 4 und 5 falls $0 < HK_1 < 4.1$ (Typ mittel) $F_{0-15} = 1.1$		
		falls $HK_1 \ge 4.1$ (Typ gross) $F_{0-15} = 1.3$		

Abbildung 7: Formel zur Berechnung des Zeitbedarfs der Produktionsfaktoren.

3.5 Verzeichnis der Abkürzungen

Abk.	Definition	Default -Werte	Definitions -bereich	Einheit
а	zentrierte und skalierte Motorleistung		-	[-]
Anzahl_ Personen	Anzahl Personen, die bei der Bereitstellung von Rundholzabschnitten zum Einsatz gelangen.	1	1	[-]
Anzahl_ Maschinen	Anzahl Maschinen, die bei der Bereitstellung von Rundholzabschnitten zum Einsatz gelangen.	1	1	[-]
b	zentrierte und skalierte Kranreichweite		-	[-]
BA	Baumart: Fichte (0) oder Föhre/Lärche (1)		0/1	[-]
С	zentriertes und skaliertes Hubmoment		-	[-]
d	zentriertes und skaliertes Schwenkmoment		-	[-]
e	zentrierter und skalierter maximaler Fälldurchmesser		-	[-]
EK	Technologieparameter Einzugskraft	s. A1	> 0	[kN]
f	zentrierte und skalierte Einzugskraft		-	[-]
F	Multiplikationsfaktoren für (s. auch A3):			
F_{0-15}	unvermeidbare Verlustzeiten > 15 Min.	1.1/1.3	≥ 1	[-]
F_{indir}	indirekte Arbeitszeiten	1.1	≥ 1	[-]
F_{Pausen}	Pausen > 15 Min.		≥ 1	
$F_{St\"{o}r}$	Störzeiten > 15 Min.		≥ 1	
$F_{\it Weg}$	Wegzeiten > 15 Min.		≥ 1	
$F_{Verteilzeit}$	Verteilzeiten		≥ 1	
FD	Technologieparameter maximaler Fälldurchmesser	s. A1	> 0	[cm]
HK_1	Technologiefaktor 1. Hauptkomponente:		> 0	[-]
HK_2	Technologiefaktor 2. Hauptkomponente		> 0	[-]
HM	Technologieparameter Hubmoment	s. A1	> 0	[kNm]
KR	Technologieparameter Kranreichweite	s. A1	> 0	[m]
Masch_ Laufzeit anteil	Anteil der produktiven Arbeitszeit, während welcher der Harvester läuft (siehe Anhang 4)	1		[-]
ML	Technologieparameter Motorleistung	s. A1	> 0	[kW]
PMH_{0}	Produktive Maschinenarbeitszeit ohne		≥ 0	Std.
Harvester	unvermeidbare Verlustzeiten < 15 Min. des Radharvesters pro m³ (Efm) i.R. bei der Bereitstellung von Rundholzabschnitten (siehe Anhang 3)			$\left[\overline{m^3 i.R.}\right]$
PMH ₁₅ _ Harvester	Produktive Maschinenarbeitszeit (MAS) inkl. unvermeidbare Verlustzeiten < 15 Min. des Radharvesters pro m³ (Efm) i.R. bei der Bereitstellung von Rundholzabschnitten		≥ 0	$\left[\frac{Std.}{m^3 i.R.}\right]$

Abk.	Definition	Default -Werte	Def. Bereich	Einheit
PROD ₁₅ _ Harvester	Arbeitsproduktivität inkl. unvermeidbare Verlustzeiten < 15 Min. des Radharvesters in m³ (Efm) i.R. pro PMH ₁₅ bei der Bereitstellung von Rundholzabschnitten		≥ 0	$\left[\frac{m^3 i.R.}{Std.}\right]$
PSH ₀ _ Rundholz	Produktive Systemzeit ohne Unterbrüche pro m³ (Efm) i.R. für die Bereitstellung von Rundholzabschnitten (siehe Anhang 3)		≥ 0	$\left[\frac{Std.}{m^3 i.R.}\right]$
PSH ₁₅ _ Rundholz	Produktive Systemzeit inkl. unvermeidbare Verlustzeiten < 15 Min. pro m³ (Efm) i.R. für die Bereitstellung von Rundholzabschnitten (siehe Anhang 3)		≥ 0	$\left[\frac{Std.}{m^3 i.R.}\right]$
PVR	Volumenmittelstamm (Stückmasse) m³ in Rinde		0.07 – 0.45	$[m^3 i.R.]$
PV	Volumenmittelstamm (Stückmasse) m³ ohne Rinde		0.06 – 0.41	$[m^3 o.R.]$
R	Anteil Rinde am Volumenmittelstamm Rindenprozent [m³i.R *(1.0-R)=m³o.R.]		0.1 (Fichte E. Badoux)	[-]
SM	Technologieparameter Schwenkmoment	s. A1	> 0	[kNm]
WPPH_ Rundholz	Arbeitsplatzzeit für das Personal pro m³ (Efm) i.R. für die Bereitstellung von Rundholzabschnitten (siehe Anhang 4)		≥ 0	$\left[\frac{Std.}{m^3 i.R.}\right]$

Tabelle 2: Verzeichnis der Abkürzungen.

3.6 Berechnungsbeispiel

Eingabe						
Maschinendaten						
Motorleistung	ML	114	kW			
Kranreichweite	KR	10.3	m			
Hubmoment	НМ	147	kNm			
Schwenkmoment	SM	31	kNm			
Max. Fälldurchmesser	FD	50	cm			
Einzugkraft	EK	21	kN			
Nutzungsdaten						
Volumenmittelstamm	PVR	0.3	Efm i.R.			
Baumart	BA	0	0: Fi; 1: Fö/Lä			
Nutzungsmenge	N	100	Efm i.R.			
Default-Werte						
Rindenanteil	R	0.1				
F ₀₋₁₅	mittel	1.1	-			
F ₀₋₁₅	gross	1.3	-			
F _{indir}		1.1	-			

Zwischenresultate		
а	0.08	-
b	0.89	-
С	0.52	-
d	0.05	-
е	-0.12	-
f	0.11	-
HK ₁	4.68	-
HK ₂	-0.57	-
PV	0.27	Efm o.R.
Ergebnisse		
Produktivität	12.3	Efm i.R./PMH ₁₅
Effizienz	0.08	PMH ₁₅ /Efm i.R.
Zeit pro Objekt	8.00	PMH ₁₅
Harvestertyp	gross	-

Abbildung 8: Berechnungsbeispiel Timberjack 1270 (Harvesterkopf FMG 746).

4. Anhang

A 1 Technologieparameter

	parameter						
Marke & Typ	Aggregat	Leistung	Kranreichweite	Hubmoment	Schwenkmoment	Fälldurchmesser	Einzugskraft
Abkürzungen	gemäss 3.5	ML	KR	НМ	SM	FD	EK
		[kW]	[m]	[kNm]	[kNm]	[cm]	[kN]
Timberjack 1270	FMG 746	114	10.3	147	31.0	50	21
Timberjack 1270B	TJ 755	156	10.0	168	39.3	60	24
Herma 2010	SP 550	150	10.7	170	30.0	46	21
Skogsjan 687 XL	Skogsjan 601 XL	158	10.0	180	28.9	55	22
Silvatec 866 TH	Silvatec 445 MD 50	160	10.0	168	28.9	56	11
Valmet 911	PAN 728	130	9.2	145	32	45	21
Valmet 901/4	Valmet 948	83	9.4	98	22.6	52	20
Valmet 901/6	Valmet 942	83	9.5	81	30.2	44	15
Silvatec 854 TH	Silvatec 235	119	9.4	72	20.6	51	18
Timberjack 870	Timberjack 743	112	10.1	102	26.0	45	16
Timberjack 870B	TJ 743C	113	10.0	125	38.4	45	17
FMG 990 Lokomo	FMG 746	114	10.2	155	30.0	45	21
Ponsse Ergo HS 16	Ponsse H60	157	10.0	190	27.0	60	24
Hemek 880	Woodking 550	147	10.2	100	38	55	19
ÖSA SuperEVA	FMG 746	99.5	9.5	125	29.0	45	21

Tabelle 3: Technologiemasse von Harvestern (gemäss FPA-Prüfbericht und Herstellerangaben).

Der Timberjack 1270 repräsentiert den Stand der heute im Einsatz stehenden Harvester recht gut (Heinimann, 1998).

A 2 Datenbasis für Modellherleitung und Überprüfung

Тур	Anzahl in	Harvesterkopf	Datenbasis / Überprüfung
	CH		
Timberjack 870	2	Tim 743	mit Modell Körner 870 ¹ (20 Holzschläge) überprüft
Timberjack 870B	1	Tim 746C	mit Modell Wiss 870B ² (47 Holzschläge) überprüft
Timberjack 1270	3	Tim 746B	606 Holzschläge
		Tim 762B	mit Modell Wiss 1270 (117 Holzschläge) überprüft
Nokka 6WD/H	2	Keto 100	144 Holzschläge
Rottne Rap. 860		Rottne EGS 85	509 Holzschläge
Valmet 901/6 I		Valmet 942	353 Holzschläge
Silvatec 854 TH		Silvatec 235	262 Holzschläge
Silvatec 866 TH		Silvatec 455	46 Holzschläge

Tabelle 4: Datenbasis für Harvestertypen mit erhöhter Vertrauensbasis (Riechsteiner, 2000).

Radharvester / 23.12.02

_

¹ RIECHSTEINER, D., 2000: Auswertung der Arbeitsrapporte von Forstunternehmer H. Körner (Königsbronn-Zang): Vollernter Typ Timberjack 870. Interner Bericht. Eidg. Forschungsanstalt für Wald, Schnee und Landschaft (WSL), Birmensdorf.

 ² RIECHSTEINER, D.; 1999: Auswertung der Arbeitsrapporte von Forstunternehmer P. Wiss: Vollernter Typ Timberjack 870B, Typ Timberjack 1270. Interner Bericht. Eidg. Forschungsanstalt für Wald, Schnee und Landschaft (WSL), Birmensdorf.

Zeitsystem im Komponentenmodell "Radharvester"

(nach Björheden & Thompson 1995 und Heinimann 1997, verändert Björnheden & Thompson 1995: An International Nomenclature For Forest Work Study, Swedish University of Agricultural Sciences Department of Operational Efficiency, Sweden; Heinimann, H.R. 1997: Skript Forstl. Verfahrenstechnik, ETH Zürich)

Abbildung 9: Verwendetes Zeitsystem.

Die in Abbildung 9 aufgeführten Zeiten können grundsätzlich für das Produktionssystem als ganzes sowie für die beteiligten Produktionsfaktoren (Maschinen, Personal) ermittelt werden. Je nachdem spricht man zum Beispiel von der System-, von der Maschinen- oder von der Personalarbeitszeit. In Anlehnung an die Originalgrundlagen wurden die Abkürzungen von den englischen Begriffen abgeleitet (s. Tabelle 5).

	Arbeitsplatzzeit				
		Nicht Arbeitszeit Arbeitszeit (Work time)		Work time)	
Betrachtetes Objekt		(non work time)	, ,		
	workplace	n on w ork	work	indirect	p roductive
System (system hour)	WPSH	NWSH	WSH	ISH	PSH
Maschine (machine hour)	WPMH	NWMH	WMH	IMH	PMH
Personal (personal hour)	WPPH	NWPH	WPH	IPH	PPH

Tabelle 5: Übersicht über die verwendeten Zeitbegriffe.

Berechnung der System- und Faktorzeiten

System:
$$F_{0-15} = \frac{PSH_{15}}{PSH_{0}}$$

$$PSH_{15} = PSH_{0} * F_{0-15}$$

$$WSH = PSH_{15} + ISH = PSH_{15} * F indir$$

$$WPSH = WSH + NWSH = WSH * FWeg * F Pausen * F Stör$$

$$Personal:$$

$$PPH_{0} = Anz_Pers * PSH_{0}$$

$$PPH_{15} = PPH_{0} * F_{0-15}$$

$$WPPH = PPH_{15} + IPH = PPH_{15} * F indir$$

$$WPPH = WPH * FWeg * F Pausen * F Stör$$

$$Maschinen:$$

$$PMH_{0} = Anz_Masch * PSH_{0} * Masch_Laufzeitanteil$$

$$PMH_{15} = PMH_{0} * F_{0-15}$$

$$WMH = PMH_{15} + IMH = PMH_{15} * F indir$$

$$WPMH = WH * FStör * F indir$$

$$WPMH = WH * FSTör$$

Abbildung 10: Berechnung der System- und Faktorzeiten.

A 4 Zeit-Multiplikationsfaktoren

Die Kalkulationsgrundlage von Heinimann liefert als Zeitangaben produktive Maschinenstunden inklusive unvermeidbare Verlustzeiten kleiner 15 Minuten (PMH $_{15}$ -Zeiten) (Heinimann, 1998). Um die Systemzeit (PSH) und die Arbeitszeit berechnen zu können, muss das Verhältnis zwischen Maschinen- und Systemstunde, der Faktor F $_{0-15}$ zur Berechnung der unvermeidbaren Verlustzeit kleiner 15 Minuten und der Faktor F $_{indir}$ zur Berechung der indirekten Arbeitszeit bestimmt werden.

Gemäss P. Wiss kann beim Arbeiten mit Radharvestern die Maschinenstunde der Systemstunde gleich gesetzt werden³

Die Auswertung der Arbeitsrapporte von P. Wiss zeigt weiter, dass der Umrechnungsfaktor F_{indir} bei beiden Maschinentypen ca. gleich gross³ ist, bezüglich des Zeit-Umrechnungsfaktors F_{0-15} zwischen den Maschinentypen Timberjack 870B und 1270 jedoch ein erheblicher Unterschied besteht.

	Timberjack 870B	Timberjack 1270			
F ₀₋₁₅	1.02	1.21			
F _{indir}	1.08	1.06			

Tabelle 6: Zeit-Umrechnungsfaktoren gemäss P. Wiss³.

Diesen Sachverhalt bestätigen auch die Angaben von H. Körner und T Brunberg: Für den Timberjack 870 sind die Ausfallzeiten kleiner 15 Minuten (F₀₋₁₅) erfahrungsgemäss unbedeutend⁴. Brunberg setzte den Faktor F₀₋₁₅ trotzdem pauschal gleich 1.3⁵

Wir wählen aufgrund dieser Erkenntnisse für die Harvestertypen "mittel" und "gross" (siehe Anhang 5) zwei unterschiedliche Umrechnungsfaktoren F_{0-15} . F_{indir} wird für beide gleich gross gesetzt. Um das Risiko einer Produktivitätsüberschätzung zu vermindern, werden beide grösser als die mittels Arbeitsrapporten hergeleiteten Umrechungsfaktoren gewählt. Die konkreten Werte sind in Tabelle 7 zusammengestellt.

	mittel	gross
F ₀₋₁₅	1.1	1.3
F _{indir}	1.1	1.1

Tabelle 7: Zeit-Multiplikationsfaktoren.

Radharvester / 23.12.02

³ RIECHSTEINER, D.; 1999: Auswertung der Arbeitsrapporte von Forstunternehmer P. Wiss: Vollernter Typ Timberjack 870B, Typ Timberjack 1270. Interner Bericht. Eidg. Forschungsanstalt für Wald, Schnee und Landschaft (WSL), Birmensdorf.

⁴ RIECHSTEINER, D., 2000: Auswertung der Arbeitsrapporte von Forstunternehmer H. Körner (Königsbronn-Zang): Vollernter Typ Timberjack 870. Interner Bericht. Eidg. Forschungsanstalt für Wald, Schnee und Landschaft (WSL), Birmensdorf.

⁵ BRUNBERG, T.; 1997: Underlag för produktionsnorm för engreppsskördare i gallring. redogörelse Nr. 8, the forestry research institute of Sweden (Skogforsk), Oskarshamn.

A 5 Typen-Kategorisierung

Anhand des Technologieparameters "Gewicht" lassen sich die heute am Markt erhältlichen Harvester in drei Typen kategorisieren: "klein", "mittel" und "gross" (Riechsteiner, 2000).

Fabrikat	Harvester-Aggregat	Motorleistung [kW]	Kranreichweite [m]	Hubmoment [kNm]	Schwenkmoment [kNm]	max. Fälldurchmesser [cm]	Einzugskraft [kN]	Technologiefaktor HK1	Technologiefaktor HK2	Gewicht [t]
Typ gross										>= 14 t
FMG Lokomo 990	FMG 746	114	10.2	155	30.00	45	21	4.44	-0.62	14.0
Hemek 880	Woodking 550	147	10.2	100	38.00	55	19	5.00	-0.80	16.6
Herma 2010	SP 550	150	10.7	170	30.00	46	21	5.31	-0.64	19.2
Ponsse Ergo HS 16	Ponsse H60	157	10.0	190	27.00	60	24	6.34	1.13	15.4
Silvatec 866 TH	Silvatec 445 MD 50	160	10.0	168	28.90	56	11	4.32	-0.85	17.6
Skogsjan 687 XL	Skogsjan 601 XL	158	10.0	180	28.90	55	22	5.86	0.53	17.5
Timberjack 1270	TJ 746C	114	10.3	147	31.00	50	21	4.68	-0.57	15.3
Timberjack 1270B	TJ 755	156	10.0	168	39.30	60	24	6.81	0.20	16.2
Valmet 911	PAN 728	130	9.2	145	32.00	45	21	4.34	0.04	14.5
Minimal		114	9.2	100	27.00	45	11	4.32	-0.85	14.0
Mittelwert								5.23	-0.18	
Maximal		160	10.7	190	39.30	60	24	6.81	1.13	19.2
Typ mittel										10 - 14 t
Ösa SuperEVA	FMG 746	99.5	9.5	125	29.00	45	21	3.58	-0.23	13.7
Silvatec 854 TH	Silvatec 235	119	9.4	72	20.60	51	18	2.62	0.49	13.0
Timberjack 870	TJ 743	112	10.1	102	26.00	45	16	2.85	-0.98	12.9
Timberjack 870B	TJ 743C	113	10.0	125	38.40	45	17	3.98	-1.65	12.2
Valmet 901/4	Valmet 984	83	9.4	98	22.60	52	20	2.82	0.28	11.6
Valmet 901/6	Valmet 942	83	9.5	81	30.20	44	15	2.06	-1.32	13.0
Minimal		83	9.4	72	20.60	44	15	2.06	-1.65	11.6
Mittelwert			- " -	_	- 30			2.99	-0.57	
Maximal		119	10.1	125	38.40	52	21	3.98	0.49	13.7
Typ klein										< 10 t
Biber	GM 828 ESB	57	7.4	55	8.10	37	11	-1.51	0.66	6.8
FX 50 H	Maskiner 350	69.5	9.0	26	8.60	32	14	-0.96	-0.20	5.3
Timberjack 570	FMG 731	59	8.0	26	6.40	32	12	-1.81	0.31	5.4
Minimal		57	7.4	26	6.40	32	11	-1.81	-0.20	5.3
Mitelwert								-1.43	0.26	
Maximal		69.5	9.0	55	8.60	37	14	-0.96	0.66	6.8

Tabelle 8: Harvester-Kategorisierung nach Gewicht.

Um die Anzahl Eingangsgrössen im Modell klein zu halten, soll der Technologiefaktor HK₁, ebenfalls ein eindeutiges Kriterium (vgl.) zur Kategoriezuteilung verwendet werden.

	klein	mittel	gross
Technologiefaktor HK₁	< 0	0 ≤ X < 4.1	≥ 4.1

Tabelle 9: Harvestertyp nach Technologiefaktor HK1.

A 6 Überprüfung der Modelle

Das interessanteste Modell stellt dasjenige von Heinimann (1998) dar, da es den unterschiedlichen Maschinentypen gerecht wird (technologieorientiertes Produktivitätsmodell). Es beruht auf Leistungsnachweisen aus Deutschland. Nachfolgend soll dieses Modell mittels Daten der Harvestertypen Timberjack 870, 870B und 1270, welche in der Schweiz und Deutschland erhoben wurden, überprüft werden.

A 6.1 Vergleich mit Daten von P. Wiss

Pius Wiss, Forstunternehmer in Dietwil, stellte freundlicherweise die Arbeistrapporte seiner Vollernter-Holzschläge zwecks Auswertung zur Verfügung. Die Resultate der Datenanalyse und die Kalkulationsgrundlage sind einem separaten internen Bericht⁶ zu entnehmen. Hier soll die neue Kalkulationsgrundlage mit den bestehenden Kalkulationsgrundlagen verglichen werden.

Abbildung 11: Vergleich Wiss 870B mit Heinimann TIM 870B; PMH15; Fichte.

Abbildung 12: Vergleich Wiss 1270 mit Heinimann TIM 1270; PMH15; Fichte.

Es zeigt sich, dass für den Timberjack 870B und 1270 das Heinimann-Modell ausserordentlich gut mit den Daten von P. Wiss übereinstimmt. Weiter ist zu beachten, dass P. Wiss den Timberjack 870B 1998 neu angeschafft und der Maschinist sich folglich für einen grossen Teil der ausgewerteten Arbeitsrapporte in der Anlernphase befand.

⁶ Riechsteiner, D., 1999: Auswertung der Arbeitsrapporte von Forstunternehmer P. Wiss: Vollernter Typ Timberjack 870B und Typ Timberjack 1270. Interner Bericht. WSL.

A 6.2 Vergleich mit Daten H. Körner

Da, wie unter A6.1 erwähnt, die Anlernphase des Maschinisten eine Schwachstelle bei der Überprüfung des Heinimann-Modelles 870B darstellt, soll als Referenz ebenfalls das Heinimann-Modell 870 überprüft werden. Dazu stellte H. Körner (Körner GmbH, Forstunternehmen in Königsbronn-Zang) freundlicherweise die Arbeitsrapporte der mittels Timberjack 870 ausgeführten Holzschläge zur Auswertung zur Verfügung. Die Resultate der Datenanalyse und die Kalkulationsgrundlage sind in einem separaten internen Bericht⁷ zu finden.

Abbildung 13: Vergleich Körner 870 mit Heinimann TIM 870; PMH_{15:} Fichte.

Abbildung 14: Quervergleich Modell Körner 870, Modell Wiss 870B und Modell Heinimann TIM 870 und 870B.

Wie die Abbildung 13 zeigt, weicht das Modell Körner 870 leicht vom Modell Heinimann TIM 870 ab. Die Abweichung nimmt von ca. 0.4 Efm i.R./PMH 15 auf ca. 1.3 Efm i.R./PMH 15 zu. Diese lässt sich mit dem gutachtlich gewählten Umrechungsfaktor F_{0-15} = 1.1 und der geringen Datenbasis, auf welcher das Modell Körner 870 basiert, erklären (Riechsteiner, 2000).

Radharvester / 23.12.02

⁷ Riechsteiner, D., 2000: Auswertung der Arbeitsrapporte von Forstunternehmer H. Körner (Königsbronn-Zang): Vollernter Typ Timberjack 870. Interner Bericht. WSL.