© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°06

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Mines PC Maths2 2019 – Etude d'une série de fonctions

Le sujet est consacré à l'étude de quelques propriétés de dérivabilité de la fonction $R: \mathbb{R} \to \mathbb{C}$ définie, pour tout $x \in \mathbb{R}$, par :

$$R(x) = \sum_{n=1}^{\infty} \frac{\sin(n^2 x)}{n^2}$$

Notations

- On note |x| la partie entière d'un réel x.
- Soit $(u_n)_{n\in\mathbb{Z}}$ une famille de nombres complexes indexée par l'ensemble \mathbb{Z} des entiers relatifs. Dans le cas où les séries $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 1} u_{-n}$ sont toutes deux convergentes, on pose :

$$\sum_{n\in\mathbb{Z}}u_n=\sum_{n=0}^\infty u_n+\sum_{n=1}^\infty u_{-n}$$

I Préliminaires

On établit dans cette partie quelques résultats utiles dans la suite du problème.

- $\boxed{1}$ Montrer que la fonction R est bien définie et qu'elle est continue sur \mathbb{R} .
- 2 Montrer que l'intégrale $\int_0^{+\infty} \frac{\sin(x^2)}{x^2} dx$ est convergente.

Dans la suite du problème, on **admet** que $\int_0^{+\infty} \frac{\sin(x^2)}{x^2} dx = \sqrt{\frac{\pi}{2}}$.

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction continue par morceaux et intégrable. On pose, pour tout $x \in \mathbb{R}$:

$$\widehat{f}(x) = \int_{-\infty}^{+\infty} f(t)e^{-ixt} dt$$

1

3 Montrer que la fonction \hat{f} est bien définie, et continue sur \mathbb{R} .

© Laurent Garcin MP Dumont d'Urville

II Etude de la dérivabilité de R en 0

Dans cette partie, on considère une fonction $f: \mathbb{R} \to \mathbb{C}$, continue et telle qu'il existe un réel C > 0 tel que, pour tout $t \in \mathbb{R}$,

$$|f(t)| \le \frac{\mathsf{C}}{1 + t^2}$$

Pour tout h > 0, on pose :

$$S(h) = h \sum_{n=0}^{\infty} f(nh)$$

4 Justifier l'existence de S(h) pour tout h > 0.

On fixe h > 0, et on considère la fonction

$$\phi_h: \left\{ \begin{array}{ccc} \mathbb{R}^+ & \longrightarrow & \mathbb{C} \\ t & \longmapsto & f\left(\left\lfloor \frac{t}{h} \right\rfloor h\right) \end{array} \right.$$

 $\boxed{\mathbf{5}} \text{ Montrer que S}(h) = \int_0^{+\infty} \phi_h(t) dt.$

6 Montrer que, pour tous $h \in]0,1]$ et $t \in [1,+\infty[$, on a :

$$|\phi_h(t)| \le \frac{C}{1 + (t-1)^2}$$

7 En déduire que

$$S(h) \xrightarrow[h\to 0]{} \int_0^{+\infty} f(t) dt$$

8 En déduire un équivalent de R(x) quand x tend vers 0 par valeurs strictement positives. La fonction R est-elle dérivable en 0?

III Formule sommatoire de Poisson

On note désormais $\mathcal{C}_{2\pi}$ l'espace vectoriel des fonctions continues et 2π -périodiques de \mathbb{R} vers \mathbb{C} . Si u est un élément de $\mathcal{C}_{2\pi}$, on pose, pour tout $p \in \mathbb{Z}$

$$c_p(u) = \frac{1}{2\pi} \int_0^{2\pi} u(t)e^{-ipt} dt$$

On **admet** le résultat suivant, que l'on pourra utiliser sans démonstration dans toute cette partie : si u et v sont deux éléments de $\mathcal{C}_{2\pi}$ qui vérifient $c_p(u) = c_p(v)$ pour tout $p \in \mathbb{Z}$, alors u = v.

On considère une fonction $f: \mathbb{R} \to \mathbb{C}$, continue et telle qu'il existe des réels strictement positifs C_1 et C_2 tels que, pour tout $t \in \mathbb{R}$ et $x \in \mathbb{R}$,

$$|f(t)| \le \frac{C_1}{1+t^2}$$
 et $|\hat{f}(x)| \le \frac{C_2}{1+x^2}$

où la fonction \widehat{f} a été définie à la question 3. On pose également, pour tout $x \in \mathbb{R}$,

$$F(x) = \sum_{n \in \mathbb{Z}} f(x + 2n\pi)$$
 et $G(x) = \sum_{n \in \mathbb{Z}} \widehat{f}(n)e^{inx}$

9 Montrer que la fonction F est bien définie, 2π -périodique et continue sur \mathbb{R} .

10 Montrer que la fonction G est bien définie, 2π -périodique et continue sur \mathbb{R} .

11 Montrer que $G = 2\pi F$.

En particulier, on a $G(0) = 2\pi F(0)$, soit :

$$\sum_{n\in\mathbb{Z}}\widehat{f}(n)=2\pi\sum_{n\in\mathbb{Z}}f(2n\pi)$$

12 Montrer que, pour tout réel strictement positif a, on a

$$\sum_{n\in\mathbb{Z}} f(na) = \frac{1}{a} \sum_{n\in\mathbb{Z}} \widehat{f}\left(\frac{2n\pi}{a}\right)$$

Cette égalité constitue la formule sommatoire de Poisson.

IV Etude de la dérivabilité de R en π

On considère la fonction $f: \mathbb{R} \to \mathbb{C}$ définie par

$$f(t) = \begin{cases} \frac{e^{it^2} - 1}{t^2} & \text{si } t \neq 0\\ i & \text{si } t = 0 \end{cases}$$

- 13 Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} . On pourra utiliser un développement en série entière.
- 14 Etablir que $f'(t) \xrightarrow[t \to \pm \infty]{} 0$, et que $f''(t) = -4e^{it^2} + \mathcal{O}(t^{-2})$ quand $t \to \pm \infty$.
- 15 Montrer que l'intégrale $I = \int_{-\infty}^{+\infty} e^{ix^2} dx$ est convergente.
- 16 Montrer que $\widehat{f}(x) = O(x^{-2})$ quand $x \to \pm \infty$.

On pose à présent, pour $x \in \mathbb{R}$,

$$F(x) = \sum_{n=1}^{\infty} \frac{e^{in^2x}}{n^2}$$

- En utilisant la formule sommatoire de Poisson, montrer qu'il existe des nombres complexes a et b tels que $F(x) = F(0) + a\sqrt{x} + bx + O(x^{3/2})$ quand $x \to 0$ par valeurs strictement positives. Préciser la valeur de b, et exprimer a en fonction de I (l'intégrale I a été définie à la question 15).
- **18** Exprimer, pour $x \in \mathbb{R}$, $F(x + \pi)$ en fonction de F(4x) et de F(x).
- 19 Déduire de ce qui précède que la fonction R est dérivable en π , et préciser la valeur de $R'(\pi)$.