Exam 2 Study Guide - Graphs, Greedy and Backtracking

Note: You will be provided with pseudocode from class for these many of these algorithms (karatsuba, dijkstras, heap-shiftdown, n-queens) on the last page of the exam!

Graph Fundamentals

Graph Representation

Adjacency List

• Structure: Array of lists, one per vertex

• Space Complexity: O(V + E)

• **Edge lookup**: O(degree(v))

• **Best for**: Sparse graphs (E << V²)

Adjacency Matrix

• Structure: V×V matrix, entry (i,j) = 1 if edge exists

• Space Complexity: O(V²)

• Edge lookup: O(1)

• **Best for**: Dense graphs, frequent edge lookups

Graph Types

• Undirected: Edges have no direction (symmetric adjacency matrix)

• **Directed**: Edges have direction (arrows)

• Weighted: Edges have associated costs/weights

• **Unweighted**: All edges treated equally (or weight = 1)

Graph Properties

• Path: Sequence of vertices connected by edges

• Cycle: Path that starts and ends at same vertex

• **Connected**: Path exists between any two vertices (undirected)

• Strongly Connected: Path exists in both directions between any two vertices (directed)

• **Tree**: Connected graph with no cycles (E = V - 1)

Breadth-First Search (BFS)

Algorithm Overview

Purpose: Explore graph level-by-level from a starting vertex

Key Characteristics:

Uses a queue (FIFO)

- Visits vertices in order of increasing distance from start
- Finds shortest path in unweighted graphs
- Non-recursive (iterative)

BFS Algorithm Steps

- 1. Initialize all vertices as unvisited
- 2. Mark start vertex as visited, add to queue
- 3. While queue not empty:
 - Dequeue vertex v
 - Process v (record visit order)
 - For each unvisited neighbor w of v:
 - Mark w as visited
 - Add w to queue
 - Set predecessor[w] = v

Running Time

- Time Complexity: O(V + E)
 - Each vertex visited once: O(V)
 - Each edge examined once: O(E)
- Space Complexity: O(V) for queue and visited array

BFS for Shortest Paths

- In unweighted graphs, BFS finds shortest path
- Distance from start to vertex v = level at which v is discovered
- Reconstruct path using predecessor array

Depth-First Search (DFS)

Algorithm Overview

Purpose: Explore graph by going as deep as possible before backtracking

Key Characteristics:

- Uses a **stack** (LIFO) often implemented via recursion
- Explores one branch completely before trying another
- Useful for cycle detection, topological sorting, strongly connected components
- Can be recursive or iterative

DFS Algorithm Steps (Recursive)

```
DFS(vertex v):
    mark v as visited
    process v (record visit order)
    for each neighbor w of v:
```

if w is not visited: DFS(w)

DFS Algorithm Steps (Iterative)

- 1. Initialize all vertices as unvisited
- 2. Push start vertex onto stack
- 3. While stack not empty:
 - o Pop vertex v
 - If v not visited:
 - Mark v as visited
 - Process v (record visit order)
 - Push all unvisited neighbors of v onto stack

Running Time

- Time Complexity: O(V + E)
 - Each vertex visited once: O(V)
 - Each edge examined once (or twice for undirected): O(E)
- Space Complexity: O(V) for recursion stack/explicit stack

BFS vs DFS Comparison

Feature	BFS	DFS	
Data Structure	Queue	Stack (or recursion)	
Exploration	Level-by-level	Deep then backtrack	
Shortest Path	Yes (unweighted) No		
Memory Usage	Higher (stores level)	Lower (path only)	
Use Cases	Shortest path, level-order	Cycle detection, topological sort	

Dijkstra's Algorithm

Algorithm Overview

Purpose: Find shortest paths from start vertex to all other vertices in **weighted graph with non-negative** weights

Key Characteristics:

- Greedy algorithm always picks closest unvisited vertex
- Uses **priority queue (min-heap)** to select next vertex
- Maintains **key values** (current shortest distance) for each vertex
- Maintains **predecessor** array to reconstruct paths
- Does not work with negative edge weights

1. Initialize:

- Set key[start] = 0, all other keys = ∞
- Set all predecessors to null
- Add all vertices to min-heap (priority queue)

2. Main Loop (while heap not empty):

- o Extract vertex u with minimum key value
- For each neighbor v of u:
 - Calculate new_distance = key[u] + weight(u, v)
 - If new_distance < key[v]:
 - Update key[v] = new_distance
 - Update predecessor[v] = u
 - Decrease key of v in heap

3. Result:

- key[v] = shortest distance from start to v
- Reconstruct path by following predecessors backwards

Running Time

- Time Complexity: O((V + E) log V) with binary heap
 - Extract-min: O(log V) × V times = O(V log V)
 - Decrease-key: O(log V) × at most E times = O(E log V)
 - Total: O((V + E) log V)

Key Insights

- Greedy Property: Once a vertex is removed from heap, its shortest path is finalized
- Optimal Substructure: All sub-paths of a shortest path are also shortest paths

Dijkstra's Algorithm Design Technique

Greedy Algorithm:

- Makes locally optimal choice at each step
- Selects vertex with minimum key value
- Never reconsiders once a vertex is processed
- Greedy choice: "Visit closest unvisited vertex next"

Greedy Algorithms

Greedy Algorithm Characteristics

Core Principle: Make the locally optimal choice at each step, hoping to find a global optimum

Key Properties:

• Greedy Choice Property: A global optimum can be reached by making locally optimal choices

- Optimal Substructure: An optimal solution contains optimal solutions to subproblems
- Never backtracks: Once a choice is made, it's never reconsidered
- **Efficiency**: Often runs in polynomial time

Proving Correctness:

- 1. Greedy Choice Property: Show that making the greedy choice leaves a subproblem of the same form
- 2. **Optimal Substructure**: Prove that combining the greedy choice with an optimal solution to the subproblem yields an optimal solution to the original problem

Interval Scheduling Problem

Problem: Given n intervals with start and finish times, select the maximum number of non-overlapping intervals.

Input: Set of intervals $\{(s_1, f_1), (s_2, f_2), ..., (s_n, f_n)\}$ where $s_i = \text{start time}, f_i = \text{finish time}$

Goal: Find maximum-size subset of mutually compatible (non-overlapping) intervals

Greedy Strategy: Always select the interval with the **earliest finish time** among remaining compatible intervals

Algorithm:

- 1. Sort intervals by finish time $(f_1 \le f_2 \le ... \le f_n)$
- 2. Initialize result set S = {interval 1}
- 3. For each interval i from 2 to n:
 - If interval i is compatible with all intervals in S ($s_i \ge$ finish time of last interval in S):
 - Add interval i to S
- 4. Return S

Running Time: $O(n \log n)$ for sorting + O(n) for selection = $O(n \log n)$

Why This Works:

- Selecting earliest finish time leaves maximum room for future intervals
- Greedy choice is always part of some optimal solution
- Can prove by exchange argument: any optimal solution can be transformed to include the greedy choice

Minimum Cost to Connect Sticks

Problem: Given n sticks of various lengths, connect them all into one stick. Cost to connect two sticks = sum of their lengths. Find minimum total cost.

Input: Array of stick lengths [s₁, s₂, ..., s_n]

Goal: Minimize total cost of connecting all sticks

Greedy Strategy: Always connect the two **shortest sticks** available

Algorithm:

- 1. Create a min-heap from all stick lengths
- 2. Initialize total_cost = 0
- 3. While heap has more than one stick:
 - Extract two smallest sticks: stick1 and stick2
 - o cost = stick1 + stick2
 - Add cost to total_cost
 - Insert combined stick (length = cost) back into heap
- 4. Return total_cost

Running Time:

- Build heap: O(n)
- n-1 iterations, each with 2 extract-min + 1 insert: O(n log n)
- Total: O(n log n)

Example:

```
Sticks: [2, 4, 3]

Step 1: Connect 2 and 3 \rightarrow cost = 5, sticks = [5, 4], total = 5

Step 2: Connect 5 and 4 \rightarrow cost = 9, sticks = [9], total = 14

Total cost: 14
```

Why This Works:

- Sticks connected earlier are counted multiple times in total cost
- Minimizing early connections (by using shortest sticks) minimizes total cost
- Similar to Huffman coding tree construction
- Can prove optimal by induction on number of sticks

Algorithm Design Techniques Summary

Technique	Strategy	Key Characteristics	Examples
Divide-and- Conquer	Break into subproblems, solve recursively, combine	Independent subproblems; T(n) = aT(n/b) + f(n)	Merge Sort, Binary Search, Karatsuba
Greedy	Make locally optimal choice at each step	Never backtracks; must prove correctness; efficient	Dijkstra's, Interval Scheduling, Connect Sticks
Backtracking	Build incrementally, backtrack when invalid	Explores search tree; abandons bad paths early	N-Queens, Sudoku, Graph Coloring

Heap Data Structure

Heap Properties

Min-Heap Property:

- Parent is smaller than or equal to children
- Smallest element at root (index 0 or 1)

Max-Heap Property:

- Parent is greater than or equal to children
- Largest element at root

Heap Violations

Checking Min-Heap Property:

- For each node with index i (up to heapSize-1):
 - Check if key[i] ≤ key[left_child(i)] (if left child exists)
 - Check if key[i] ≤ key[right_child(i)] (if right child exists)
- Violation: Parent is larger than one or more children

Important: Only check nodes within heapSize

• Elements beyond heapSize are not part of the heap

Heap Operations

Insert: O(log n)

- · Add element at end
- Bubble up to restore heap property

Extract-Min/Max: O(log n)

- Remove root
- Move last element to root
- Bubble down to restore heap property

Decrease-Key: O(log n)

- · Reduce key value of element
- Bubble up to restore heap property

Build-Heap: O(n)

- Convert unordered array to heap
- Heapify from bottom up

Quick Reference Formulas

Graph Algorithms

- BFS/DFS Time: O(V + E)
- **Dijkstra Time**: O((V + E) log V) with binary heap
- BFS Space: O(V) for queue

• **DFS Space**: O(V) for stack/recursion

Karatsuba

- Standard Multiplication: Θ(n²)
- **Karatsuba**: $\Theta(n^{\log_2(3)}) \approx \Theta(n^{1.585})$
- **Recurrence**: $T(n) = 3T(n/2) + \Theta(n)$

N-Queens

- Running Time: O(n!)
- **Recurrence**: $T(n) = n \cdot T(n-1) + O(n)$

Heap Indexing (0-based)

- Parent: L(i-1)/2 J
 Left Child: 2i + 1
- **Right Child**: 2i + 2

Heap Indexing (1-based)

- Parent: Li/2 JLeft Child: 2i
- **Right Child**: 2i + 1

Course content developed by Declan Gray-Mullen for WNEU with Claude