

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE CIENCIAS

Tarea 1 Análisis de algoritmos

Rivera Morales David 320176876

Gallegos Cortes José Antonio 320316566

1 Ejercicio 1

Dado un entero positivo n, determinar el valor de $\lfloor \log(n) \rfloor$.

Solución

Algoritmo

```
Algorithm 1 Calcular \lfloor \log(n) \rfloor

Require: Un entero positivo n

Ensure: El valor de \lfloor \log(n) \rfloor

1: count \leftarrow 0

2: if n \leq 1 then

3: return 0

4: end if

5: while n > 1 do

6: n \leftarrow n/2

7: count \leftarrow count + 1

8: end while

9: return count
```

Análisis de complejidad

- 1. $count \leftarrow 0$ tiene 1 Asignación, tiempo constante
- 2. if $n \leq 1$ tiene 1 salto, 1 lectura (lee a n), 1 comparación (compara n con 1)
- 3. return 0 tiene 1 salto
- 4. endif tiene 1 salto
- 5. while n > 1 do tiene 1 salto, 1 lectura (lee a n) y 1 comparación (compara n con 1)
- 6. $n \leftarrow n/2$ tiene 1 lectura (lee n), 1 operación aritmetica (la división) y finalmente 1 escritura (escribe a n)
- 7. $count \leftarrow count + 1$ tiene 1 lectura (count), 1 suma y 1 escritura.
- 8. end while tiene 1 salto
- 9. return count tiene un salto y una lectura.

En tiempo si hacemos un analisis "básico" en una sola operación vemos que el 1 **se hace siempre** (es constante), el if puede o no hacerse por lo que a todo el if (es decir a 2,3 y 4) le pondremos 3 y a su return $\frac{1}{2}$, el while en una sola iteración tiene 3 + 3 + 3 + 1 = 10 operaciones, y finalmente el return tiene 2 operaciones, pero como este return depende de que no se haya hecho el primer return tambien le pondremos $\frac{1}{2}$, por lo que ese return tiene

realmente 1 y media operaciones.

Si contamos todo en una sola iteración tenemos que la linea 1 se va a hacer siempre (1 operación), al igual que el if (ya que se va a comprobar si se cumple o no, tenemos 3 operaciones) y uno de los dos return se va a cumplir tambien (1 operación) de ambos return y 1 lectura del "count" final, por lo que al final tenemos 6 operaciones que se hacen si o si, ahora veamos que pasa con el while.

Complejidad Temporal: El algoritmo realiza divisiones sucesivas entre 2 hasta llegar a 1:

- En cada iteración del ciclo **while**, la variable n se divide entre 2
- El número de iteraciones es aproximadamente $\log_2(n)$
- Cada iteración tiene un costo constante O(1)

Por lo tanto, la complejidad temporal total es:

$$O(\log n) + 6$$

Pero como el logaritmo es más grande podemos quitarle la suma, por lo que queda simplemente como $O(\log n)$

Complejidad Espacial: El algoritmo utiliza un número constante de variables adicionales (count y n). Por ello, la complejidad espacial es:

En resumen, la complejidad temporal del algoritmo es $O(\log n)$ y la complejidad espacial es O(1).

2 Ejercicio 2

Dado un arreglo A de n
 enteros y un entero objetivo K, ¿existen un par de índices $i \neq j$, tales que A[i] + A[j] = K?

Solución

Algoritmo

Algorithm 2 Encontrar par de números que suman K

Require: Un arreglo A de n enteros y un entero objetivo K

Ensure: Verdadero si existe un par de índices $i \neq j$ tales que A[i] + A[j] = K

- 1: $hashMap \leftarrow \{\}$
- 2: for $i \leftarrow 0$ to n-1 do
- 3: **if** hashMap.containsKey(K A[i]) **then**
- 4: **return** true
- 5: end if
- 6: hashMap.put(A[i], i)
- 7: end for
- 8: return false

Análisis de complejidad

Código	Operaciones	Total
$hashMap \leftarrow \{\}$	1 asignación.	1
$for(i \leftarrow 0 \text{ to } n-1)$	1 salto (for), 1 escritura (i), 1 lectura	4
	(n), 1 resta	
if	1 salto, 3 lecturas (A, i, K), 1 resta y	5
hashMap.containsKey(K-	una operación hash	
A[i]		
Return True	1 salto	1
end if	1 salto	1
$\boxed{ hashMap.put(A[i],i)}$	2 lecturas (A, i) y la operación del hash	3
end for	1 salto	1
return false	1 salto	1

Las operaciones hash según la https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.htmldocume de Java son constantes. Las que se hacen si o si son la asignación del Hash, el for y el return false, es decir 1+4+1 = 6, mientras que en una sola iteración hace 17 operaciones, ahora para el for ocurre lo siguiente:

Complejidad Temporal: El algoritmo realiza las siguientes operaciones:

- \bullet Recorre el arreglo una sola vez, visitando sus n elementos
- Para cada elemento realiza operaciones de hash (búsqueda e inserción) que son O(1) en promedio

Por lo tanto, la complejidad temporal total es:

$$O(17n + 6)$$

Pero nuevamente, se pueden quitar las constantes por lo que nos queda solamente O(n)

Complejidad Espacial: El algoritmo utiliza un hashMap que puede almacenar hasta n elementos. Por ello, la complejidad espacial es:

O(n)

3 Ejercicio 3

Dado un entero positivo n, determinar la cantidad de números primos menores o iguales a

Solución

Algoritmo

```
Algorithm 3 Contar números primos usando la Criba de Eratóstenes
```

```
Require: Un entero positivo n
Ensure: La cantidad de números primos menores o iguales a n
 1: esPrimo \leftarrow [true] * (n+1) {Arreglo booleano inicializado en verdadero}
 2: esPrimo[0] \leftarrow false
 3: esPrimo[1] \leftarrow false
 4: contador \leftarrow 0
 5: for i \leftarrow 2 to \sqrt{n} do
      if esPrimo[i] then
         for i \leftarrow i^2 to n step i do
 7:
 8:
            esPrimo[j] \leftarrow false
         end for
 9:
      end if
10:
11: end for
12: for i \leftarrow 2 to n do
      if esPrimo[i] then
13:
         contador \leftarrow contador + 1
14:
       end if
15:
16: end for
17: return contador
```

Análisis de complejidad

Tenemos la siguiente tabla

Código	Operaciones	Total
$esPrimo \leftarrow [true] * (n+1)$	$1 \text{ asignaci\'on} + 1 \text{ multiplicacion} + 1 \text{ lectura (n)} + 1 \text{ suma}$	4
$esPrimo[0] \leftarrow false$	1 escritura	1
$esPrimo[1] \leftarrow false$	1 escritura	1
$contador \leftarrow 0$	1 escritura	1
for $(i \leftarrow 2 \text{ to } \sqrt{n})$	1 salto, 1 escritura (i), 1 lectura (n), 1 raíz cuadrada	4
if $esPrimo[i]$	1 salto, 1 lectura (esPrimo[i])	2
for $(j \leftarrow i^2 \text{ to } n, \text{ step } i)$	1 escritura, 1 multiplicación (i * i), 2 lectura	4
$esPrimo[j] \leftarrow false$	1 escritura	1
end if	1 salto	1
end for	1 salto	1
for $(i \leftarrow 2 \text{ to } n)$	1 salto, 1 escritura (i) , 1 lectura (n)	3
if $esPrimo[i]$	1 salto, 2 lectura (esPrimo[i], i)	3
$contador \leftarrow contador + 1$	1 lectura (contador), 1 suma, 1 escritura	3
end if	1 salto	1
end for	1 salto	1
return contador	1 salto, 1 lectura	2

Table 1: Análisis de complejidad del algoritmo de la Criba de Eratóstenes

Complejidad Temporal: El algoritmo si o si hace las primeras 6 lineas, y las últimas, de la 11 a la 17, por lo que el algoritmo tiene 13+14=27, en el ciclo for ocurre lo siguiente: El algoritmo realiza las siguientes operaciones:

• Inicialización del arreglo: O(n)

• Marcado de múltiplos: $O(n \log \log n)$

• Conteo final de primos: O(n)

Por lo tanto, la complejidad temporal total es:

$$O(n \log \log n + 26)$$

Pero como se pueden quitar las constantes solo nos queda $O(n \log \log n)$

Complejidad Espacial: El algoritmo utiliza un arreglo booleano de tamaño n + 1. Por ello, la complejidad espacial es:

4 Ejercicio 5

Dado un arreglo A de n enteros, ¿existe un elemento de A tal que aparece en A al menos n/2 veces?

Solución

Algoritmo

```
Algorithm 4 Encontrar elemento mayoritario (apariciones \geq n/2)
```

```
Require: Un arreglo A de n enteros.
Ensure: Un elemento que aparece al menos n/2 veces, o null si no existe.
 1: candidate \leftarrow null
 2: count \leftarrow 0
 3: for cada x en A do
      if count = 0 then
         candidate \leftarrow x
 5:
         count \leftarrow 1
 6:
 7:
      else
 8:
         if candidate = x then
            count \leftarrow count + 1
 9:
         else
10:
            count \leftarrow count - 1
11:
         end if
12:
      end if
13:
14: end for
15: occurrence \leftarrow 0
16: for cada x en A do
      if x = candidate then
17:
         occurrence \leftarrow occurrence + 1
18:
      end if
19:
20: end for
21: if occurrence \ge \frac{n}{2} then
      return candidate
22:
23: else
      return null {No existe elemento mayoritario}
24:
25: end if
```

Análisis de complejidad

Para este algoritmo tenemos las siguientes operaciones:

Código	Operaciones	Total
$candidate \leftarrow \text{null}$	1 asignación	1
$count \leftarrow 0$	1 asignación	1
for $(cada \ x \ en \ A)$	1 salto, 2 lecturas (A)	2
if $count = 0$	1 salto, 1 lectura (count) y 1 comparación	3
$candidate \leftarrow x$	1 escritura (candidate)	1
$count \leftarrow 1$	1 escritura (count)	1
else if $candidate = x$	1 salto, 2 lecturas (candidate, x), 1 comparación	4
$count \leftarrow count + 1$	1 lectura (count), 1 suma, 1 escritura	3
else	1 salto	1
$count \leftarrow count - 1$	1 lectura (count), 1 resta, 1 escritura	3
end if	1 salto	1
end for	1 salto	1
$occurrence \leftarrow 0$	1 asignación	1
for $(cada x en A)$	1 salto, 2 lecturas (A)	3
if $x = candidate$	1 salto, 2 lecturas (x, candidate), 1 comparación	4
$occurrence \leftarrow occurrence + 1$	1 lectura (occurrence), 1 suma, 1 escritura	3
end if	1 salto	1
end for	1 salto	1
if $occurrence \ge \frac{n}{2}$	1 salto, 2 lecturas (occurrence, n), 1 división	4
return candidate	1 salto, 1 lectura	2
else return null	1 salto	1
end if	1 salto	1

Table 2: Análisis de complejidad del algoritmo de Boyer-Moore para encontrar el elemento mayoritario

Donde las operaciones que se hacen siempre son del 1 al 4, de la 14 a la 16, la 21, uno de los dos return y la 25, por lo que al contarlas todas tenemos 1+1+2+3+3+4+3+4+1+1=23. Mientras que para los ciclos for ocurre lo siguiente:

Complejidad Temporal: El algoritmo realiza dos recorridos sobre el arreglo A:

- El primer recorrido (líneas 3 a 13) para identificar un candidato mayoritario, con una complejidad de O(n).
- El segundo recorrido (líneas 14 a 18) para verificar que el candidato realmente aparece al menos n/2 veces, también con una complejidad de O(n).

Por lo tanto, la complejidad temporal total es:

$$O(n) + O(n) + 23 = O(n)$$

Complejidad Espacial: El algoritmo utiliza únicamente un número constante de variables adicionales (candidate, count y occurrence). Por ello, la complejidad espacial es:

O(1)