TRABALHO 2 - FÍSICA COMPUTACIONAL - UFSCar - 2022

- 1. Escreva um programa que utiliza o método de Newton-Raphson para calcular a raiz quadrada de 5 e a raiz cúbica de 7.
- 2. Considere a solução da equação de Schrödinger independente do tempo para um nêutron e um próton (núcleo do deutério). O problema pode ser tratado considerando uma partícula de massa reduzida m^* movendo-se em um potencial quadrado dado por,

$$V(r) = \begin{cases} -V_0 & \text{se } 0 < r < a \\ 0 & \text{se } r \ge a \end{cases}$$

Pode-se mostrar que a energia do estado fundamental $(E_0 < 0)$ é determinada pela equação transcendental

$$k \cot(ka) = -\beta,$$

onde $\beta = \sqrt{m^*|E|}/\hbar$ e $k = \sqrt{m^*(V_0 - |E|)}/\hbar$. Considere $V_0 = 60 \text{MeV}$, a = 1.45 fm, $m^* = 938 \text{MeVc}^{-2}$ e $\hbar c = 197.326 \text{MeVfm}$. Preste bastante atenção nas unidades! Assuma que $E = \varepsilon \text{Mev}$. (a) Encontre a energia E_0 do estado fundamental, que é a menor energia, utilizando os métodos da bisseção e da secante, informando quantas iterações foram necessárias para se chegar a uma precisão de 10^{-5} .