Integrales triples parte 2

Cambio de variable para integrales triples

Sean S y E dos regiones en los espcios UVW y XYZ , respectivamente y sea

$$F: S \to E;$$

$$(u, v, w) \to F(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w))$$

$$= (x, y, z)$$

una transformación de S sobre E tal que $F \in C^1(S)$. Si F es biyectiva y $J_F \neq 0$ en S, entonces para cualquier función integrable $f:D \to \mathbb{R}$ se cumple que

$$\iiint f(x,y,z)dV$$

$$E = F(S)$$

$$= \iiint f(x(u,v,w), y(u,v,w), z(u,v,w)) \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| dudvdw$$

$$S = F^{-1}(E)$$

Donde

$$J_F = \frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix}$$

Integrales triples en coordenadas cilíndricas y esféricas

Cambio de variables más usados

1.- Coordenadas cilindricas

Figura 1

Las coordenadas cilindricas son una extensión del sistema de coordenadas polares al sitema tridimensional , y se usa para describir regiones que son simétricas de tipo cilindricas respecto a algunos de los ejes coordenados.

La posición de un punto P=(x,y,z) en el espacio esta determinado por las coordenadas (r,θ,z) donde (r,θ) son las coordenadas polares del punto (x,y) en el plano XY.

Consideremos el sistema de coordenadas (r,θ,z) como se muetra en la figura 1

Estas coordenadas están ligadas a las coordenadas de (x, y, z) mediante las ecuaciones dadas por:

$$\begin{cases} x = r cos \theta \\ y = r sen \theta \\ z = z \end{cases}$$

$$tg(\theta) = \frac{y}{x} \quad \text{y además } x^2 + y^2 = r^2$$

De esta última ecuación es la razón de llamar este cambio de coordenadas como coordenadas cilindricas.

De este sistema de ecuaciones el jacobiano está dado por:

$$\frac{\partial(x, y, z)}{\partial(r, \theta, z)} = \begin{vmatrix} x_r & x_\theta & x_z \\ y_r & y_\theta & y_z \\ z_r & z_\theta & z_z \end{vmatrix}$$
$$= \begin{vmatrix} \cos \theta & -r \sec \theta & 0 \\ \sec \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$r\cos^2\theta + r\sin^2\theta = r(\cos^2\theta + \sin^2\theta) = r$$

Por tanto

$$\left| \frac{\partial(x, y, z)}{\partial(r, \theta, z)} \right| = r$$

Entonces de acuerdo a la fórmula de cambio de variables se expresa en la forma

Jacobiano

$$\iiint\limits_{E} f(x,y,z)dV = \iiint\limits_{S} f(r\cos\theta,r\sin\theta,z)rdzdrd\theta$$

Esta fórmula de acuerdo a la figura 3 se puede interpretar:

Figura 3

Cambio de variable: coordenadas cilíndricas

$$\iiint\limits_{\mathcal{E}} f(x,y,z)dV = \int_{\alpha}^{\beta} \int_{g_1(\theta)}^{g_2(\theta)} \int_{h_1(r,\theta)}^{h_2(r,\theta)} f(r\cos\theta,r\sin\theta,z) r dz dr d\theta$$

Donde

$$S = \{(r,\theta,z) \colon \alpha \leq \theta \leq \beta \text{ , } g_1(\theta) \leq r \leq g_2(\theta) \land h_1(r,\theta) \leq z \leq h_2(r,\theta)\}$$

Calcular la integral

$$\iiint\limits_{E} x^2 y z dV$$

donde S es la región del primer octante limitado por el cilindro de ecuación $x^2 + y^2 = 1$, el plano z = 1 y los planos coordenados.

Solución

La región E es claramente un cilindro en el 1^{er} octante de altura 1, cuya proyección en el plano XY es un cuarto de la circunferencia de radio 1. Así,

$$S = \left\{ \left\{ (r, \theta, z) \colon 0 \le \theta \le \frac{\pi}{2}, 0 \le r \le 1 \land 0 \le z \le 1 \right\} \right\}$$

$$z = 1$$

$$z = 1$$

$$1$$

$$r = 1$$

Figura 4
$$\iint x^2 yz dV = \int_0^{\frac{\pi}{2}} \int_0^1 \int_0^1 (r^2 \cos^2 \theta) (r \sin \theta) z \, r dz dr d\theta$$

$$= \int_0^{\frac{\pi}{2}} \int_0^1 \int_0^1 r^4 \cos^2\theta \sin\theta \, z \, dz \, dr \, d\theta$$

$$= \int_0^{\frac{\pi}{2}} \int_0^1 \left[r^4 \cos^2\theta \sin\theta \, \frac{z^2}{2} \right]_0^1 \, dr \, d\theta$$

$$= \int_0^{\frac{\pi}{2}} \int_0^1 \frac{r^4 \cos^2\theta \sin\theta}{2} \, dr \, d\theta$$

$$= \int_0^{\frac{\pi}{2}} \left[\frac{r^5 \cos^2\theta \sin\theta}{10} \right]_0^1 \, d\theta$$

$$= \int_0^{\frac{\pi}{2}} \frac{\cos^2\theta \sin\theta}{10} \, d\theta$$

$$= -\left[\frac{\cos^3\theta}{30} \right]_0^{\frac{\pi}{2}}$$

$$= -\left(\frac{0-1}{30} \right) = \frac{1}{30}$$

Calcular la integral

$$\iiint\limits_{E}zdV$$

donde E es el sólido limitado por las superficies $z=\sqrt{8-x^2-y^2}$ y $2z=x^2+y^2$.

$$z = \sqrt{8 - x^2 - y^2}$$
$$2z = x^2 + y^2$$

Luego

$$z^{2} = 8 - 2z$$

$$z^{2} + 2z - 8 = 0$$

$$(z - 2)(z + 4) = 0$$

$$z = 2 \text{ o } z = -4 \Rightarrow z = 2$$

Luego

Figura 6

En coordenadas cartesiana (usando simetría de R)

$$\iiint z dV = 4 \int_0^2 \int_0^{\sqrt{4-x^2}} \int_{\frac{x^2+y^2}{2}}^{\sqrt{8-x^2-y^2}} z dz dy dx$$

Y en coordenadas polares

$$\iiint_{E} z dV = 4 \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \int_{\frac{r^{2}}{2}}^{\sqrt{8-r^{2}}} rz dz dr d\theta$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \left[r \frac{z^{2}}{2} \right]_{\frac{r^{2}}{2}}^{\sqrt{8-r^{2}}} dr d\theta$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \frac{r}{2} \left(8 - r^{2} - \frac{r^{4}}{4} \right) dr d\theta$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \left(4r - \frac{r^{3}}{2} - \frac{r^{5}}{8} \right) dr d\theta$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \left(2r^{2} - \frac{r^{4}}{8} - \frac{r^{6}}{48} \right)_{0}^{2} d\theta$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \left(8 - 2 - \frac{64}{48} \right) d\theta$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \left(6 - \frac{4}{3} \right) d\theta$$

$$= 4 \int_{0}^{\frac{\pi}{2}} \frac{14}{3} d\theta$$

$$= \frac{4}{3} \left[14\theta \right]_{0}^{\frac{\pi}{2}} = \frac{4}{3} \cdot \frac{14\pi}{2} = \frac{28\pi}{3}$$

También es correcto

En coordenadas cartesiana

$$\iiint_{F} z dV = \int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\frac{x^2+y^2}{2}}^{\sqrt{8-x^2-y^2}} z dz dy dx$$

Y en coordenadas polares

$$\iiint\limits_{E} zdV = \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{\frac{r^{2}}{2}}^{\sqrt{8-r^{2}}} rzdzdrd\theta = \frac{28\pi}{3}$$

Coordenadas Esféricas

Las coordenadas esféricas (ρ, θ, ϕ) son las indicadas en la figura 7

Donde

$$0 \leq \phi \leq \pi$$
 , $0 \leq \theta \leq 2\pi$ y $0 \leq \rho \leq a$

La imagen siguiente muestra que un punto P en el espacio está determinado por la intersección de un cono ϕ = constante, un plano θ = constante y una esfera ρ = constante, de ahí surge el nombre de coordenadas esféricas.

Figura 8

Las coordenadas esféricas están ligadas con las coordenadas cartesianas mediante las siguientes ecuaciones

$$\begin{cases} x = \rho \sin \phi \cos \theta \\ y = \rho \sin \phi \sin \theta \\ z = \rho \cos \phi \end{cases}$$

$$\rho^{2} = r^{2} + z^{2} = x^{2} + y^{2} + z^{2}$$

$$tg(\theta) = \frac{y}{x}$$

$$\cos \phi = \frac{z}{\rho} = \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}$$

Las coordenadas esféricas en integrales triples

Figura 9

El volumen del bloque rectangular (o cuña esférica) es el producto de todos sus lados

$$dV = \rho \ sen \ \phi \ \Delta\theta \ \rho \ \Delta\phi \ \Delta\rho$$

$$dV = \rho^2 sen \ \phi \ d\rho \ d\phi \ d\theta$$
 Differencial de la integral triple

En coordenadas esféricas, la esfera de radio a tiene ecuación $\rho=a$ y el jacobiano es:

$$\frac{\partial(x,y,z)}{\partial(\rho,\theta,\phi)} = \begin{vmatrix} x_{\rho} & x_{\theta} & x_{\phi} \\ y_{\rho} & y_{\theta} & y_{\phi} \\ z_{\rho} & z_{\theta} & z_{\phi} \end{vmatrix}$$

Donde

$$\begin{cases} x = \rho \operatorname{sen} \phi \cos \theta \\ y = \rho \operatorname{sen} \phi \operatorname{sen} \theta \\ z = \rho \cos \phi \end{cases}$$

Entonces

$$\frac{\partial(x,y,z)}{\partial(\rho,\theta,\phi)} = \begin{vmatrix} sen \phi \cos \theta & -\rho sen \phi sen \theta & \rho \cos \phi \cos \theta \\ sen \phi sen \theta & \rho sen \phi \cos \theta & \rho \cos \phi sen \theta \\ \cos \phi & 0 & -\rho sen \phi \end{vmatrix}$$

$$= \cos \phi \begin{vmatrix} -\rho sen \phi sen \theta & \rho \cos \phi \cos \theta \\ \rho sen \phi \cos \theta & \rho \cos \phi sen \theta \end{vmatrix}$$

$$-\rho sen \phi \begin{vmatrix} sen \phi \cos \theta & -\rho sen \phi sen \theta \\ sen \phi sen \theta & \rho sen \phi \cos \theta \end{vmatrix}$$

$$= \cos \phi \left[-\rho^2 sen \phi \cos \phi sen^2 \theta - \rho^2 sen \phi \cos \phi cos^2 \theta \right]$$

$$-\rho sen \phi \left[\rho sen^2 \phi cos^2 \theta + \rho sen^2 \phi sen^2 \theta \right]$$

$$= -\rho^2 sen \phi \cos^2 \phi \left[sen^2 \theta + cos^2 \theta \right]$$

$$-\rho^2 sen^3 \phi \left[cos^2 \theta + sen^2 \theta \right]$$

$$= -\rho^2 sen \phi \cos^2 \phi - \rho^2 sen^3 \phi$$

$$= -\rho^2 sen \phi (\cos^2 \phi + sen^2 \phi) = -\rho^2 sen \phi$$

Por tanto

$$\iiint\limits_E f(x,y,z)dV$$

$$=\iiint\limits_S f(\rho \, sen \, \phi \cos \theta \, , \rho \, sen \, \phi \, sen \, \theta , \rho \cos \phi) \rho^2 sen \, \phi d\rho d\theta d\phi$$

$$dV = \rho^2 sen \, \phi \, d\rho \, d\phi \, d\theta$$

Calcular el volumen de la esfera $x^2 + y^2 + z^2 = a^2$ empleando coordenadas esféricas.

Figura 10

$$\theta \in [0,2\pi]; \ \phi \in [0,\pi] \ \forall \ \rho \in [0,a]$$

$$\theta \quad \phi \quad \rho$$

$$V = \int_0^{2\pi} \int_0^{\pi} \int_0^a (1) \ \rho^2 \sin \phi \ d\rho d\phi d\theta$$

$$= \int_0^{2\pi} \int_0^{\pi} \left[\sin \phi \frac{\rho^3}{3} \right]_0^a d\phi d\theta$$

$$= \int_0^{2\pi} \int_0^{\pi} \left(\frac{a^3}{3} \sin \phi \right) d\phi d\theta$$

$$= \int_0^{2\pi} \frac{a^3}{3} [-\cos\phi]_0^{\pi} d\theta = \int_0^{2\pi} \frac{a^3}{3} [-(\cos\pi - \cos 0)] d\theta$$

$$= \frac{a^3}{3} \int_0^{2\pi} -((-1) - (1)) d\theta$$

$$= \frac{a^3}{3} \int_0^{2\pi} (1+1) d\theta$$

$$= \frac{2a^3}{3} \int_0^{2\pi} d\theta$$

$$= \frac{2a^3}{3} [\theta]_0^{2\pi} = \frac{4\pi a^3}{3} u^3$$

Hallar el volumen de la porción del cono $z^2 = x^2 + y^2$, limitado superiormente por la esfera $x^2 + y^2 + z^2 = a^2$ (ver figura 11).

Solución

Resolvamos la intersección de ambas superficies

$$\begin{cases} x^2 + y^2 + z^2 = a^2 \\ z^2 = x^2 + y^2 \end{cases}$$

Del sistema

$$2z^2 = a^2$$

Entonces

$$z^2 = \frac{a^2}{2} \Rightarrow z = \pm \frac{\sqrt{2}}{2}a$$

La curva de contorno es la circunferencia

$$x^2 + y^2 = \left(\frac{a}{\sqrt{2}}\right)^2$$

y por tanto también es la curva de nivel en el plano XY.

Observe que en x = 0

$$z^2 = y^2 \Rightarrow z = \pm y$$
 (en el plano YZ)

Figura 12

$$tg(\phi) = \frac{z}{y} = 1 \Rightarrow \phi = \frac{\pi}{4}$$

$$\begin{split} V &= \int_0^{2\pi} \int_0^{\pi/4} \int_0^a \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \\ &= \int_0^{2\pi} \int_0^{\pi/4} \left[\sin \phi \frac{\rho^3}{3} \right]_0^a \, d\phi \, d\theta = \int_0^{2\pi} \int_0^{\pi/4} \left(\frac{a^3}{3} \sin \phi \right) d\phi \, d\theta \\ &= \int_0^{2\pi} \frac{a^3}{3} \left[-\cos \phi \right]_0^{\pi/4} d\theta = \frac{a^3}{3} \int_0^{2\pi} \left(-\frac{\sqrt{2}}{2} + 1 \right) d\theta \\ &= \frac{a^3}{3} \int_0^{2\pi} \left(1 - \frac{\sqrt{2}}{2} \right) d\theta = \frac{a^3}{3} \left(1 - \frac{\sqrt{2}}{2} \right) [\theta]_0^{2\pi} = \frac{2\pi a^3}{3} \left(1 - \frac{\sqrt{2}}{2} \right) u^3 \end{split}$$

Calcular la integral triple

$$\iiint_{E} \cos(x^2 + y^2 + z^2)^{3/2} \, dV$$

Figura 13

donde E es la esfera unidad $x^2 + y^2 + z^2 \le 1$.

$$0 \le \rho \le 1$$

$$0 \le \phi \le \pi$$

$$0 \le \theta \le 2\pi$$

$$\rho = 1$$

$$\iint_{E} \cos((x^{2} + y^{2} + z^{2})^{3/2}) dV$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} \cos(\rho^{2})^{3/2} \rho^{2} sen \phi d\rho d\phi d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} \cos(\rho^{3}) \rho^{2} sen \phi d\rho d\phi d\theta$$

$$= \frac{1}{3} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} (\cos(\rho^{3}) 3\rho^{2}) sen \phi d\rho d\phi d\theta$$

$$= \frac{1}{3} \int_{0}^{2\pi} \int_{0}^{\pi} [sen \rho^{3}]_{0}^{1} sen \phi d\phi d\theta$$

$$= \frac{sen 1}{3} \int_{0}^{2\pi} \int_{0}^{\pi} sen \phi d\phi d\theta$$

$$= \frac{sen 1}{3} \int_{0}^{2\pi} [-\cos \phi]_{0}^{\pi} d\theta$$

$$= \frac{sen 1}{3} \int_{0}^{2\pi} (1+1) d\theta$$

$$= \frac{2sen 1}{3} \int_{0}^{2\pi} d\theta$$

$$= \frac{2sen 1}{3} [\theta]_{0}^{2\pi}$$

$$= \frac{4\pi (sen 1)}{3}$$

Calcular el volumen del sólido que está acotado por $x^2+y^2+z^2=4 \ ; y=x \ ; y=\sqrt{3}x \ y \ z=0$ en el primer octante.

$$y = \sqrt{3}x \Rightarrow \frac{y}{x} = \sqrt{3} = tg(\theta) \Rightarrow \theta = \frac{\pi}{3}$$

$$y = x \Rightarrow \frac{y}{x} = 1 = tg(\theta) \Rightarrow \theta = \frac{\pi}{4}$$

$$V = \int_{\pi/4}^{\pi/3} \int_{0}^{\pi/2} \int_{0}^{2} \rho^{2} \operatorname{sen} \phi d\rho d\phi d\theta$$

$$= \int_{\pi/4}^{\pi/3} \int_{0}^{\pi/2} \left[\frac{\rho^{3}}{3} \operatorname{sen} \phi \right]_{0}^{2} d\phi d\theta$$

$$= \int_{\pi/4}^{\pi/3} \int_{0}^{\pi/2} \frac{8}{3} \operatorname{sen} \phi d\phi d\theta$$

$$= \int_{\pi/4}^{\pi/3} \left[-\frac{8}{3} \cos \phi \right]_{0}^{\pi/2} d\theta$$

$$= \int_{\pi/4}^{\pi/3} \left[-\frac{8}{3} \cos \phi \right]_{0}^{\pi/2} d\theta$$

$$= \int_{\pi/4}^{\pi/3} \frac{8}{3} d\theta$$

$$= \left[\frac{8}{3} \theta \right]_{\pi/4}^{\pi/3}$$

$$= \frac{8\pi}{9} - \frac{8\pi}{12}$$

$$= \frac{8\pi}{9} - \frac{2\pi}{3}$$

$$= \frac{8\pi - 6\pi}{9}$$

$$= \frac{2\pi}{9} u^{3}$$