Example Pretty XTable

Keaton Stagaman July 7, 2016

Load libraries and source files

```
library(qdap)
library(ggfortify)
library(ggplot2)
theme_set(theme_bw())
source("../xtable_summary.R")
```

Data plot with regression line

```
ggplot(mtcars, aes(x=disp, y=mpg)) +
    geom_point(aes(color=as.factor(cyl)), size=3) +
    scale_color_brewer(name="Cylinders", palette="Accent") +
    stat_smooth(method="lm") +
    labs(x="Displacement", y="Miles per Gallon")
```


Figure 1: Car distance by speed with regression line

Linear model calculation

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	49.0372	5.0046	9.80	1.51e-10
Displacement	-0.1455	0.0400	-3.64	0.0011
Cylinders	-3.4052	0.8402	-4.05	0.000365
Displacement:Cylinders	0.0159	0.0049	3.20	0.00337

D.f.	Residual Std. Error	R^2	Adjusted R^2	p-value
28	2.66	0.82	0.81	0.00

Table 1: Linear model for Miles per Gallon by Displacement and Number of Cylinders

Factor analysis

```
factanal1 <- factanal(mtcars, factors=1, scores="regression")</pre>
paste("1 factor p-val:", factanal1$PVAL)
## [1] "1 factor p-val: 1.49621956585337e-17"
factanal2 <- factanal(mtcars, factors=2, scores="regression")</pre>
paste("2 factor p-val:", factanal2$PVAL)
## [1] "2 factor p-val: 0.000404750976192007"
factanal3 <- factanal(mtcars, factors=3, scores="regression")</pre>
paste("3 factor p-val:", factanal3$PVAL)
## [1] "3 factor p-val: 0.205192300877265"
xtable.summary(model.obj=factanal3,
               file.id="mtcars",
               cutoff=0.4,
               alt.factor.names=c("Miles/Gal",
                                   "No. Cylinders",
                                   "Displacement",
                                   "Horsepower",
                                   "Rear Axle Ratio",
                                   "Weight",
                                   "1/4 mile time",
                                   "V/S",
                                   "Transmission",
                                   "No. Fwd Gears",
                                   "No. Carburetors"))
```

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Uniquenesses	0.13	0.06	0.09	0.13	0.29	0.06	0.05	0.22	0.21	0.12	0.16

	Factor1	Factor2	Factor3
Miles/Gal	0.64	-0.48	-0.47
No. Cylinders	-0.62	0.7	0.26
Displacement	-0.72	0.54	0.32
Horsepower	-0.29	0.72	0.51
Rear Axle Ratio	0.8	-0.24	-0.068
Weight	-0.78	0.25	0.52
1/4 mile time	-0.18	-0.95	-0.15
V/S	0.3	-0.8	-0.2
Transmission	0.88	0.088	-0.093
No. Fwd Gears	0.91	0.021	0.22
No. Carburetors	0.11	0.56	0.72

	Factor1	Factor2	Factor3
SS Loadings	4.38	3.52	1.58
Proportion Var.	0.40	0.32	0.14
Cumulative Var.	0.40	0.72	0.86

Table 2: Factor analysis results

Model Selection

```
m0 <- lm(mpg ~ cyl, data=mtcars)</pre>
m1 \leftarrow lm(mpg \sim cyl + disp, data=mtcars)
m2 \leftarrow lm(mpg \sim cyl + disp + hp, data=mtcars)
m3 <- lm(mpg ~ cyl + disp + hp + drat, data=mtcars)
m4 \leftarrow lm(mpg \sim cyl + disp + hp + drat + wt, data=mtcars)
mtcars.anova <- anova(m0, m1, m2, m3, m4)</pre>
xtable.summary(model.obj=mtcars.anova,
                file.id="mtcars",
                alt.models.text=mgsub(c("mpg", "cyl", "disp", "hp", "drat", "wt"),
                                        c("Miles/Gal",
                                          "No. Cylinders",
                                          "Displacement",
                                           "Horsepower",
                                          "Rear Axle Ratio",
                                          "Weight"),
                                        attributes(mtcars.anova)$heading[2],
                                        trim=FALSE))
```

Analysis of Variance Table

Model 1: Miles/Gal ~No. Cylinders

Model 2: Miles/Gal ~No. Cylinders + Displacement

Model 3: Miles/Gal ~No. Cylinders + Displacement + Horsepower

Model 4: Miles/Gal ~No. Cylinders + Displacement + Horsepower + Rear Axle Ratio

Model 5: Miles/Gal ~No. Cylinders + Displacement + Horsepower + Rear Axle Ratio + Weight

	Res. D.f.	RSS	D.f.	Sum. of Sq.	F	$\Pr(>F)$
1	30	308.33				
2	29	270.74	1	37.59	5.84	0.023
3	28	261.37	1	9.37	1.46	0.239
4	27	244.90	1	16.47	2.56	0.122
5	26	167.43	1	77.48	12.03	0.00184

Table 3: Model Selection for Factors Contributing to Miles per Gallon