

IDENTIFICATION OF SPAM MESSAGES

AGNES LEI

AMELIA BUDIHARTO

FATHIMA ABDUL RAHMAN

HOSSAM FAHMY

HSLU DEEP LEARNING BOOTCAMP

OVERVIEW

- EXPLANATORY DATA ANALYSIS
- DEEP NEURAL NETWORKS MODELS
- MODEL EVALUATION + 'BEST' MODEL
- POSSIBLE IMPROVEMENT

DATASET EDA

Imbalanced Data

Repeated Messages

label	ham	spam	
count	4825	747	
unique	4516	653	
top	Sorry, I'll call later	Il call later Please call our customer service representativ	
freq	30	4	

DEEP NEURAL NETWORK MODEL

0	Model	Pre-processing	Model Architecture from tensorflow.keras.layers	Hyperparameters
	Dense	Tokenization, Sequencing, Padding, Resampling, Decoding	Sequential + GlobalAveragePooling1D + Dense + Dropout + Dense	vocab_size = 500 embeding_dim = 16 drop_value = 0.2 n_dense = 24
	LSTM		Sequential + Embedding + LSTM + Dense	Learning rate = 0.001 Epochs = 100 (with early stopping – stopped at 8) Batch size = 16 Verbose=2 activation= sigmoid
	Bidirectional LSTM		Functional +Embedding +bidirectional LSTM + Dense	Epochs = 30 (with early stopping at 5) Recurrent dropout = 0.2 Verbose = 2 Activation = ReLU and sigmoid
	Bidirectional GRU		Sequential + Embedding + Bidirectional GRU + GRU + Dense	Optimizer = Adam Learning rate = 0.01 Dropout = 0.5
	GRU + Glove Embedding		Sequential + Glove Embedding + GRU + Dense	Recurrent dropout = 0.3 Activation = relu and sigmoid Epoch = 100 Batch size = 64

MODEL EVALUATION

Model	Accuracy	Loss	
Dense	97.32%	8.46%	
LSTM	97.65%	7.95%	
Bidirectional LSTM	96.65%	13.62%	
Bidirectional GRU	Imbalance Data 97.87%	Imbalance Data 15.9%	
	Balance Data 92.2%	Balance Data 31.4%	
GRU + Glove Embedding	Imbalance Data 97.38%	Imbalance Data 8.07%	
	Balance Data 92.61%	Balance Data 30.8%	

POSSIBLE IMPROVEMENT

- AUTOMATED HYPERPARAMETER TUNING (AUTOKERAS, AUTOML)
- EXTEND EDA AND PREPROCESSING (E.G., STANDARDIZE LANGUAGE)
- EXPLORE MORE SAMPLING APPROACHES (WEIGHT BALANCING, UPSAMPLING, SMOTE, OVERALL SAMPLE)
- EXPERIMENTING WITH DIFFERENT EMBEDDINGS (BERT, GLOVE, GPT2)

APPENDIX

Dense Model

	precision	recall	f1-score	support
0	0.49	1.00	0.66	147
1	0.00	0.00	0.00	152
accuracy			0.49	299
macro avg	0.25	0.50	0.33	299
weighted avg	0.24	0.49	0.32	299

LSTM Model

