5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture #22: Rotation of Polyatomic Molecules I

A diatomic molecule is very limited in how it can rotate and vibrate.

- * \vec{R} is \perp to internuclear axis
- * only one kind of vibration

A polyatomic molecule can have $\widehat{\widehat{R}}$ oriented along any body fixed direction — symmetric and asymmetric tops[†]

A polyatomic molecule can stretch any bond or bend any bond pair — <u>Normal modes of vibration</u> A lot of very complicated classical mechanics.

TODAY: Derive $\widehat{\mathbf{H}}^{\text{ROT}} = \frac{\overline{R}_x^2}{2I_x} + \frac{\overline{R}_y^2}{2I_y} + \frac{\overline{R}_z^2}{2I_z}$ and evaluate matrix elements in $|\text{KJM}\rangle$ basis set, where I_x , I_y , and I_z are called principal components (i.e. eigenvalues) of the 3×3 moment of inertia

and I_z are called principal components (i.e. eigenvalues) of the 3 × 3 moment of inertial tensor, **I**, and are analogous to μR_{AB}^2 in an AB diatomic.

- 1. Center of mass.
- 2. rigid body rotation

 \hat{T}^{ROT} in terms of $\vec{\omega}$ (angular velocity), m_i , (x_i, y_i, z_i) (positions of atom i in center of mass body frame) $1/2 \omega^{\dagger} I \omega$

$$\mathbf{T}^{\dagger}\mathbf{IT} \rightarrow \text{principal axes} egin{pmatrix} I_{a} & 0 & 0 \\ 0 & I_{b} & 0 \\ 0 & 0 & I_{c} \end{pmatrix}$$

- 3. $\hat{\mathbf{H}}^{ROT}$ and matrix elements in $|KJM\rangle$ basis.
- 4. Symmetric tops prolate and oblate energy level formulas.

Consider a <u>rigid</u> N-body system. Each atom has mass m_i and body-fixed coordinate \vec{q} (defined relative to an arbitrary <u>body-fixed</u> origin).

Our first task is to locate the center of mass, because we expect to separate the 3N degrees of freedom into 3 center of mass translations, 3 rotations about the center of mass, and 3N - 6 vibrations.

Center of Mass: 3 Cartesian component equations.

$$0 = \sum_{\substack{i=1\\\text{atoms}}}^{3N} m_i (\vec{q}_i - \vec{q}_{CM})$$

[†] In fact, the definition of body fixed axis system is not even obvious for vibrating molecule.

Example:

(projected onto xy plane)

Take advantage of symmetry whenever possible! pick C_3 (3-fold rotation axis) axis as z axis locate origin at N atom (a convenient way to start) locate H_1 at $\phi = 0$ (i.e. in xz plane)

bond length
$$\vec{q}_{H_1} = (r, \theta, \phi) = (R, \theta, 0) \Rightarrow (x_1, y_1, z_1) = (R \sin \theta, 0, R \cos \theta)$$

$$\vec{q}_{H_2} = (R, \theta, \frac{2\pi}{3}) \Rightarrow (x_2, y_2, z_2) = (-\frac{1}{2}R \sin \theta, \frac{\sqrt{3}}{2}R \sin \theta, R \cos \theta)$$

$$\vec{q}_{H_3} = (R, \theta, \frac{4\pi}{3}) \Rightarrow (x_3, y_3, z_3) = (-\frac{1}{2}R \sin \theta, -\frac{\sqrt{3}}{2}R \sin \theta, R \cos \theta)$$

$$\vec{q}_{N} = (0, 0, 0)$$

Now solve for center of mass.

$$x_{CM} = y_{CM} = 0$$
 are trivial

z equation

$$0 = \sum_{i} m_{i} (z_{i} - z_{CM}) = 3m_{H} (R \cos \theta - z_{CM}) + m_{N} (0 - z_{CM})$$
$$z_{CM} = \underbrace{\frac{3m_{H}}{3m_{H} + m_{N}}}_{=M} R \cos \theta$$

So we have coordinates of all atoms relative to new origin now at center of mass, expressed in terms of 2 unknown bond coordinates, R and θ .

$$\begin{aligned} q_{\mathrm{H_{1}}} &= \left(R \sin \theta, 0, R \cos \theta \frac{m_{\mathrm{N}}}{M} \right) \\ q_{\mathrm{H_{2}}} &= \left(-\frac{1}{2} R \sin \theta, 0, R \cos \theta \frac{m_{\mathrm{N}}}{M} \right) \\ q_{\mathrm{H_{3}}} &= \left(-\frac{1}{2} R \sin \theta, -\frac{\sqrt{3}}{2} R \sin \theta, R \cos \theta \frac{m_{\mathrm{N}}}{M} \right) \\ q_{\mathrm{H_{3}}} &= \left(-\frac{1}{2} R \sin \theta, -\frac{\sqrt{3}}{2} R \sin \theta, R \cos \theta \frac{m_{\mathrm{N}}}{M} \right) \\ q_{\mathrm{N}} &= \left(0, 0, -\frac{3 m_{\mathrm{N}}}{M} R \cos \theta \right) \end{aligned}$$

Next we need to write out \mathbf{H}^{ROT} and put it into a convenient form.

$$\widehat{\underline{\boldsymbol{H}}}^{ROT} = \widehat{\boldsymbol{T}}^{ROT} + \boldsymbol{V}^{ROT}$$
free rotor, thus $\boldsymbol{V}^{ROT} = 0$

$$\widehat{\mathbf{T}}^{\text{ROT}} = \frac{1}{2} \sum_{i} m_{i} v_{i}^{2}$$

Want to re-express all v_i 's in terms of \vec{q}_i and $\vec{\omega}$ where $\vec{\omega}$ specifies the direction and magnitude of the angular velocity of the rigid body rotations. (All atoms experience the same $\vec{\omega}$.)

 $\vec{v}_i = -\vec{q}_i \times \vec{\omega}$ (right hand rule requires minus sign)

 $|v_i| = |q_i| |\omega| \sin \theta_i$ q_i, ω known. Must solve for $\sin \theta_i$.

$$\sin \theta_i = \frac{q_{i\perp}}{q_i} = \frac{\left[q_i^2 - \left(\frac{q_i \cdot \omega}{|\omega|}\right)^2\right]^{1/2}}{q_i}$$
 so
$$v_i^2 = q_i^2 \omega^2 \sin^2 \theta_i = \left[q_i^2 \omega^2 - (q_i \cdot \omega)^2\right]$$

$$(\sin^2 \theta_i = 1 - \cos^2 \theta_i)$$

$$\widehat{\mathbf{H}}^{\text{ROT}} = \frac{1}{2} \sum_i m_i \left[q_i^2 \omega^2 - (q_i \cdot \omega)^2\right]$$

Go to Cartesian coordinates (always safe for setting up quantum mechanical Hamiltonian operator).

$$\begin{split} \widehat{\boldsymbol{H}}^{ROT} &= \frac{1}{2} \sum_{i} m_{i} \bigg[\big(\boldsymbol{x}_{i}^{2} + \boldsymbol{y}_{i}^{2} + \boldsymbol{z}_{i}^{2} \big) \big(\boldsymbol{\omega}_{x}^{2} + \boldsymbol{\omega}_{y}^{2} + \boldsymbol{\omega}_{z}^{2} \big) - \big(\boldsymbol{x}_{i} \boldsymbol{\omega}_{x} + \boldsymbol{y}_{i} \boldsymbol{\omega}_{y} + \boldsymbol{z}_{i} \boldsymbol{\omega}_{z} \big)^{2} \bigg] \\ &= \frac{1}{2} \sum_{i} m_{i} \bigg[\big(\boldsymbol{x}_{i}^{2} + \boldsymbol{y}_{i}^{2} \big) \boldsymbol{\omega}_{z}^{2} + \big(\boldsymbol{x}_{i}^{2} + \boldsymbol{z}_{i}^{2} \big) \boldsymbol{\omega}_{y}^{2} + \big(\boldsymbol{y}_{i}^{2} + \boldsymbol{z}_{i}^{2} \big) \boldsymbol{\omega}_{x}^{2} - 2 \boldsymbol{x}_{i} \boldsymbol{y}_{i} \boldsymbol{\omega}_{x} \boldsymbol{\omega}_{y} - 2 \boldsymbol{x}_{i} \boldsymbol{z}_{i} \boldsymbol{\omega}_{x} \boldsymbol{\omega}_{z} - 2 \boldsymbol{y}_{i} \boldsymbol{z}_{i} \boldsymbol{\omega}_{y} \boldsymbol{\omega}_{z} \bigg] \end{split}$$

Reformulate as matrix diagonalization problem!

Define

$$I_{xx} \equiv \sum_{i} m_{i} (y_{i}^{2} + z_{i}^{2})$$
 etc. perpendicular distance squared from x axis
$$I_{xy} = -\sum_{i} m_{i} (x_{i}y_{i}) = I_{yx}$$
 etc.

$$\widehat{\boldsymbol{H}}^{\text{ROT}} = \frac{1}{2} \boldsymbol{\omega}^{\dagger} \boldsymbol{I} \boldsymbol{\omega}$$

This is a compact form for messy equation above!

$$\boldsymbol{\omega} = \begin{pmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{pmatrix} \quad \boldsymbol{I} = \begin{vmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{vmatrix} \qquad \boldsymbol{\omega}^{\dagger} = \underbrace{(\omega_{x} \ \omega_{y} \ \omega_{z})}_{66}$$
66 moment of inertia tensor, 99

I is a real, symmetric matrix.

It can be diagonalized (by a coordinate transformation, a rotation about center of mass) to give

$$\mathbf{T}^{\dagger}\mathbf{IT} = \begin{vmatrix} \mathbf{I}_{a} & 0 & 0 \\ 0 & \mathbf{I}_{b} & 0 \\ 0 & 0 & \mathbf{I}_{c} \end{vmatrix}$$

 $I_a \le I_b \le I_c$ by definition and are called the "principal moments of inertia".

$$\mathbf{T}^{\dagger}\mathbf{T} = \mathbb{1} \qquad \qquad \widehat{\mathbf{H}}^{\mathrm{ROT}} = \frac{1}{2}\boldsymbol{\omega}^{\dagger}\mathbf{I}\boldsymbol{\omega} = \frac{1}{2}(\boldsymbol{\omega}^{\dagger}\mathbf{T})(\mathbf{T}^{\dagger}\mathbf{I}\mathbf{T})(\mathbf{T}^{\dagger}\boldsymbol{\omega})$$

$$\mathbf{T}^{\dagger} \begin{pmatrix} \mathbf{\omega}_{x} \\ \mathbf{\omega}_{y} \\ \mathbf{\omega}_{z} \end{pmatrix} = \begin{pmatrix} \mathbf{\omega}_{a} \\ \mathbf{\omega}_{b} \\ \mathbf{\omega}_{c} \end{pmatrix}$$
$$\mathbf{T}^{\dagger} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

We find a special body fixed coordinate system with origin at the center of mass which causes **I** to be diagonal.

Usually possible to find principal axes by inspection.

- 1. One axis is axis of highest order rotational symmetry, called z by convention.
- 2. Another axis is \perp to C_n and \perp to a σ_v plane. E.g. if $\sigma(xz)$ exists, then

 $\sum_i m_i x_i y_i = \sum_i m_i y_i z_i = 0 \text{ because there is always an identical nucleus at } (x, +y, z) \text{ and at } (x, -y, z). \text{ (What happens when there is no } \sigma_v \text{ plane? e.g. } S_1 \text{ acetylene.)}$

3. 3rd is \perp to first 2 axes.

So when I is diagonal

$$\widehat{\mathbf{H}}^{\text{ROT}} = \frac{1}{2} \left(I_{\text{a}} \omega_{\text{a}}^2 + I_{\text{b}} \omega_{\text{b}}^2 + I_{\text{c}} \omega_{\text{c}}^2 \right)$$

the nuclear rotational angular momentum is defined as

should actually use notation of **R** or **N**

$$\widehat{\mathbf{H}}^{\text{ROT}} = \frac{1}{2} \mathbf{J}^{\dagger} \mathbf{I}^{-1} \widehat{\mathbf{J}} = \frac{\mathbf{J}_{a}^{2}}{2\mathbf{I}_{a}} + \frac{\mathbf{J}_{b}^{2}}{2\mathbf{I}_{b}} + \frac{\mathbf{J}_{c}^{2}}{2\mathbf{I}_{c}}$$

$$\underset{\text{like } \frac{p^{2}}{2m} \rightarrow \frac{\mathbf{J}^{2}}{2\mathbf{I}}}{\mathbf{J}^{2}}$$

(The reciprocal or inverse of a <u>diagonal</u> matrix is trivial.)

We can now define three rotational constants

$$A = \frac{h}{c} \frac{1}{8\pi^{2} I_{a}}$$

$$Cm^{-1}(E/hc)$$

$$C = \frac{h}{c} \frac{1}{8\pi^{2} I_{b}}$$

$$C = \frac{h}{c} \frac{1}{8\pi^{2} I_{c}}$$

Note that we will sample "rotational constants" with \mathbf{I}^{-1} averaged over specific vibrational state, not at the equilibrium geometry. Want equilibrium geometry, get strange average. Note that we are eventually going to want to compute derivatives of $\mathbf{I}^{-1} \equiv \boldsymbol{\mu}$ with respect to each of the 3N-6 normal coordinate displacements.

One obtains A, B, C by picking bond lengths and angles, specifying atomic masses, and diagonalizing **I**. For each change in masses (isotopic substitution) or iterative change in geometry, **I** must be rediagonalized.

Example: Principal Moments for NH₃ (refer to table on page 2)

definition)

C₃ axis must be one principal axis

so
$$I_z = R^2 \sin^2 \theta \left[m_{H_1} + \left(\frac{x^2}{4} + \frac{y^2}{3} \right) m_{H_2} + \left(\frac{1}{4} + \frac{3}{4} \right) m_{H_3} \right]$$

$$= 3m_H R^2 \sin^2 \theta$$
(the \perp distance² of each atom from axis specified)

existence of reflection plane

$$\sigma_{v}(xz) \xrightarrow{implies} I_{y} = R^{2} \cos^{2} \theta \left(\frac{3m_{N}m_{H}}{M} \right) + \overbrace{R^{2} \sin^{2} \theta}^{x^{2}} \left(\frac{3m_{H}}{2} \right)$$

principal component \perp to the xz plane. You show that $I_x = I_y$ (for any symmetric top).

[General rule, every molecule with $n \ge 3$ C_n rotation axis has two equal moments of inertia!]

Special case of $D_{2d} \rightarrow S_4$ axis: cycloctatetrene and allene

allene

 $\widehat{\mathbf{H}}^{\text{ROT}}$ for symmetric top.

By convention, $I_x = I_y$, I_z is unique (for all sym. tops).

$$\widehat{\boldsymbol{H}}^{\text{ROT}} = \frac{\widehat{\boldsymbol{J}}_x^2}{2\boldsymbol{I}_x} + \frac{\widehat{\boldsymbol{J}}_y^2}{2\boldsymbol{I}_y} + \frac{\widehat{\boldsymbol{J}}_z^2}{2\boldsymbol{I}_z}$$
 manipulate this into a form convenient for $|JKM\rangle$ basis set.

$$I_x = I_y$$
 $\hat{J}^2 - \hat{J}_z^2 = \hat{J}_x^2 + \hat{J}_y^2$ key step!

$$\widehat{\mathbf{H}}^{\text{ROT}} = \frac{1}{2I_{x}} \left[\hat{\mathbf{J}}_{x}^{2} + \hat{\mathbf{J}}_{y}^{2} \right] + \frac{\hat{\mathbf{J}}_{z}^{2}}{2I_{z}} = \frac{1}{2I_{x}} \left(\hat{\mathbf{J}}^{2} - \hat{\mathbf{J}}_{z}^{2} \right) + \frac{\hat{\mathbf{J}}_{z}^{2}}{2I_{z}}$$

$$\hat{\mathbf{H}}^{\text{ROT}} = \frac{1}{2I_{x}}\hat{\mathbf{J}}^{2} + \left[\frac{1}{2I_{z}} - \frac{1}{2I_{z}}\right]\hat{\mathbf{J}}^{2}_{z}$$
 remember this!

Use $|JKM\rangle$ symmetric top basis functions which are just like $|J\Omega M\rangle$ functions for a diatomic molecule.

So

$$E^{\text{ROT}} = \frac{\hbar^2}{2I_x} J(J+1) + \begin{bmatrix} \frac{\hbar^2}{2I_z} - \frac{\hbar^2}{2I_x} \end{bmatrix} K^2$$

$$\text{like a diatomic molecule}$$

$$\text{projection of } \hat{J} \text{ onto unique (i.e. symmetry) axis of body (like } \Omega)}$$

2 types of symmetric top:

1. $I_z \equiv I_a$ is unique, $I_b = I_c > I_a$, prolate top, like a cigar. Coefficient of K^2 is > 0 because A > B by definition.

$$\frac{E_{prolate}^{ROT}}{hc} = BJ(J+1) + (A-B)K^{2}$$

2. $I_z \equiv I_c$ is unique. $I_a = I_b < I_c$, oblate top, like a frisbee. Coefficient of K^2 is < 0.

$$\frac{E_{\text{oblate}}^{\text{ROT}}}{hc} = BJ(J+1) - (B-C)K^2$$

 $J=0,\,1,\,2,\,\ldots$ $K=0,\underline{\pm 1,\,\ldots\,\pm J}$ denote as (J,K) or J_K nondegenerate!

possible levels