Probelm Set 5

niceguy

March 8, 2023

1. An infinitely large dielectric slab of thickness d=2a is uniformly polarized through-out its volume such that the polarization vector, \vec{P} , is perpendicular to the faces (boundary surfaces) of the slab. The surrounding medium is air. The electric field intensity vector (due to bound charges of the slab) at a point inside the slab is

Solution: Nonzero and is directed oppositely to \vec{P} .

2. Consider a polarized dielectric body with no free charge, in free space. The outward flux of the electric field intensity vector, \vec{E} , through a closed surface S that completely encloses the body is

Solution: By Gauss' Law, 0.

3. Consider a boundary surface between two dielectric media, with relative permittivities $\varepsilon_{r1} = 4$ and $\varepsilon_{r2}=2$ respectively. Assuming that there is no surface charge on the boundary, which of the cases represent possible electric field intensity vectors on the two sides of the boundary?

Solution: Case (a) only.

4. The figure shows lines of an electrostatic field near a dielectric-dielectric boundary that is free of charge $(\rho x = 0)$. Which of the following is a possible combination of the two media?

Solution: Medium 1 is water $(\varepsilon_{r1} = 81)$ and Medium 2 is air $(\varepsilon_{r1} = 1)$.

5. Consider a rectangular dielectric parallelepiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$. The polarization vector in the dielectric is given by:

 $\vec{P} = P_0 \left(\frac{x}{a} \hat{a}_x + \frac{y}{b} \hat{a}_y + \frac{z}{c} \hat{a}_z \right)$

where P_0 is a constant.

(a) Find the densities of volume and surface bound (polarization) charge in the parallelepiped.

1

(b) Show that the total bound charge in the parallelepiped is zero.

Solution:

$$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E} = \frac{\varepsilon_r}{\chi_e} \vec{P}$$

Hence

$$\rho_v = -\vec{\nabla} \cdot \vec{P}$$
$$= -P_0 \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$$

And

$$\begin{split} \rho_{p,s} &= \hat{a}_n \cdot \vec{P} \\ &= \begin{cases} P_0 & x = a \text{ or } y = b \text{ or } z = c \text{ given } x, y, z \neq 0 \\ 0 & \text{else} \end{cases} \end{split}$$

Total charge is then

$$-P_0\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)abc + P_0(ab + ac + bc) = P_0(-bc - ac - ab + ab + ac + bc) = 0$$

- 6. A very (infinitely) long homogeneous dielectric cylinder, of radius a and relative dielectric permittivity εr , is uniformly charged with free charge density ρ throughout its volume. The cylinder is surrounded by air.
 - (a) Calculate the voltage between the axis and the surface of the cylinder.
 - (b) Find the bound charge distribution in the cylinder.

Solution: Note the cylindrical symmetry. Using Gauss' Law,

$$\vec{\nabla} \cdot \vec{D} = \rho$$

$$\frac{1}{r} \frac{\partial r D_r}{\partial r} = \rho$$

$$r D_r = \frac{\rho r^2}{2} + C$$

$$D_r = \frac{\rho r}{2} + \frac{C}{r}$$

For D_r to exist at r=0, we need C=0, so substituting,

$$E_r = \frac{\rho r}{2\varepsilon_0 \varepsilon_r}$$

$$V = -\int \vec{E} \cdot d\vec{l}$$
$$= -\int_0^a E_r dr$$
$$= -\frac{\rho a^2}{4\varepsilon_0 \varepsilon}$$

The bound charges are then

$$\begin{split} \rho_{p,v} &= -\vec{\nabla} \cdot \vec{P} \\ &= -\chi_e \varepsilon_0 \vec{\nabla} \cdot \vec{E} \\ &= -(\varepsilon_r - 1) \varepsilon_0 \times \frac{1}{r} \frac{\rho r}{\varepsilon_0 \varepsilon_r} \\ &= -\frac{\rho(\varepsilon_r - 1)}{\varepsilon_r} \end{split}$$

and

$$\rho_{p,s} = \vec{a}_n \cdot \vec{P}$$
$$= \frac{\rho r(\varepsilon_r - 1)}{2\varepsilon_r}$$

- 7. The polarization in a dielectric cube of side L centred at the origin is given by $\vec{P} = P_0(\hat{a}_x x + \hat{b}_y y + \hat{c}_z z)$.
 - (a) Determine the surface and volume bound-charge densities.
 - (b) Show that the total bound charge is zero.

Solution: The bound charges are

$$\rho_{p,v} = -\vec{\nabla} \cdot \vec{P}$$
$$= -3P_0$$

and

$$\begin{split} \rho_{p,s} &= \hat{a}_n \cdot \vec{P} \\ &= \begin{cases} LP_0 & x = L \text{ or } y = L \text{ or } z = L \text{ given } x, y, z \neq 0 \\ 0 & \text{else} \end{cases} \end{split}$$

Total bound charge is then

$$-3P_0L^3 + LP_O \times 3L^2 = 0$$

8. Determine the boundary conditions for the tangential and the normal components of \vec{P} at an interface between two perfect dielectric media with dielectric constants ε_{r1} and ε_{r2} .

Solution:

$$\vec{E} = \frac{1}{(\varepsilon_r - 1)\varepsilon_0} \vec{P}$$

$$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E} = \frac{\varepsilon_r}{\varepsilon_r - 1} \vec{P}$$

Hence for the normal component,

$$\frac{\varepsilon_{r1}}{\varepsilon_{r1}-1}\vec{P_{n1}} = \frac{\varepsilon_{r2}}{\varepsilon_{r2}-1}\vec{P_{n2}}$$

For the tangential component,

$$\frac{1}{(\varepsilon_{r1}-1)\varepsilon_0}\vec{P_{t1}} = \frac{1}{(\varepsilon_{r2}-1)\varepsilon_0}\vec{P_{t2}}$$

9. What are the boundary conditions that must be satisfied by the electric potential at an interface between two perfect dielectrics with dielectric constants ε_{r1} and ε_{r2} ?

Solution: The normal component of \vec{D} must be constant, hence

$$\varepsilon_{r1}(\vec{\nabla}V_1) \cdot \hat{a}_n = \varepsilon_{r2}(\vec{\nabla}V_2) \cdot \hat{a}_n$$

Voltage at the boundary has to agree, so

$$V_1 = V_2$$

at the boundary.

10. Determine the electric field intensity at the center of a small spherical cavity cut out of a large block of dielectric in which a polarization $\vec{P} = P_0 \hat{a}_z$ exists.

Solution:

$$\rho_{p,s} = \hat{a}_n \cdot \vec{P} = -\hat{a}_R \cdot P_0 \hat{a}_z = -P_0 \cos \theta$$

Letting the radius be a, the field is given by

$$\begin{split} \vec{E} &= \int_0^{2\pi} \int_0^\pi \frac{dQ}{4\pi\varepsilon_0 a^2} (-\hat{a}_R) \\ &= \int_0^{2\pi} \int_0^\pi \frac{-P_0 \cos\theta a^2 \sin\theta d\theta d\phi}{4\pi\varepsilon_0 a^2} (-a) (\sin\theta \cos\phi \hat{a}_x + \sin\theta \sin\phi \hat{a}_y + \cos\theta \hat{a}_z) \\ &= \int_0^{2\pi} \int_0^\pi \frac{P_0 a \sin\theta \cos\theta d\theta d\phi}{4\pi\varepsilon_0} (\sin\theta \cos\phi \hat{a}_x + \sin\theta \sin\phi \hat{a}_y + \cos\theta \hat{a}_z) \\ &= \int_0^{2\pi} \int_0^\pi \frac{P_0 a \sin\theta \cos^2\theta d\theta d\phi}{4\pi\varepsilon_0} \hat{a}_z \\ &= \int_0^{2\pi} \frac{P_0 a d\phi}{6\pi\varepsilon_0} \hat{a}_z \\ &= \frac{P_0 a}{3\varepsilon_0} \hat{a}_z \end{split}$$

Where the \hat{a}_x and \hat{a}_y components vanish as the integrals of $\sin \phi$ and $\cos \phi$ from 0 to 2π are 0.

11. Assume that the z=0 plane separates two lossless dielectric regions with $\varepsilon_{r1}=2$ and $\varepsilon_{r2}=3$. Let the electric field $\vec{E}_1=2y\hat{a}_x-3x\vec{a}_y+(5+z)\hat{a}_z$ in region 1. Find the electric field \vec{E}_2 and the electric flux density \vec{D}_2 in region 2.

Solution: Since the tangential components of \vec{E} are conserved,

$$\vec{E}_2^{=} = 2y\hat{a}_x - 3x\hat{a}_y$$

Scaling, the tangential component of \vec{D}_2 is

$$\vec{D}_2^{=} = 6\varepsilon_0 y \hat{a}_x - 9\varepsilon_0 x \hat{a}_y$$

The normal components of \vec{D} are conserved, so

$$\vec{D}_2^{\perp} = \vec{D}_1^{\perp} = 10\varepsilon_0 \hat{a}_z$$

Scaling gives

$$\vec{E}_2^{\perp} = \frac{10}{3}\hat{a}_z$$

Then the field and flux density are given by

$$\vec{E}_2 = 2y\hat{a}_x - 3x\hat{a}_y + \frac{10}{3}\hat{a}_z$$

and

$$\vec{D}_2 = 6\varepsilon_0 y \hat{a}_x - 9\varepsilon_0 x \hat{a}_y + 10\varepsilon_0 \hat{a}_z$$

12. Dielectric lenses can be used to collimate electromagnetic fields. In the diagram below, the left surface of the lens is that of a circular cylinder, and the right surface is a plane. If \vec{E}_1 at point $P(r_o, 45^{\circ}, z)$ is region 1 is $5\hat{a}_r - 3\hat{a}_{\phi}$, what must be the dielectric constant of the lens in order that \vec{E}_3 in region 3 is parallel to the x-axis?

Solution: If \vec{E}_3 in region 3 is parallel to the x-axis, then \vec{E}_2 in region 2 must also be parallel to the x-axis. Note that at point P,

$$\hat{a}_x = \frac{1}{\sqrt{2}}\hat{a}_r - \frac{1}{\sqrt{2}}\hat{a}_\phi$$

We can also see that \hat{a}_r points in the normal direction, and \hat{a}_{ϕ} points in the tangential direction. For \vec{E}_2 to be parallel to the x-axis, it must be a multiple of \hat{a}_x , i.e. its components for \hat{a}_r and \hat{a}_{ϕ} must be equal in magnitude and opposite in sign. Letting the dielectric constant be ε_r , we get

$$\frac{5}{\varepsilon_r} = 3 \Rightarrow \varepsilon_r = \frac{5}{3}$$

- 13. Refer to Example 3-16 in Cheng (page 119). Assuming the same r_i and r_o and requiring the maximum electric field intensities in the insulting materials not exceed 25% of their dielectric strengths, determine the voltage rating of the coaxial cable
 - (a) if $r_p = 1.75r_i$
 - (b) if $r_p = 1.35r_i$
 - (c) Plot the variations of E_r and V versus r for both parts

Solution: Note that $\frac{\rho_l}{2\pi\varepsilon_0}$ is a function of r_i , so it takes the same value as the example. Integrating, the voltage is

$$\begin{split} V &= -\int_{r_o}^{r_p} E_p dr - \int_{r_p}^{r_i} E_r dr \\ &= \frac{\rho_l}{2\pi\varepsilon_0} \left(\frac{1}{\varepsilon_{rp}} \ln \frac{r_O}{r_p} + \frac{1}{\varepsilon_{rr}} \ln \frac{r_p}{r_i} \right) \\ &= 8 \times 10^4 \left(\frac{1}{2.6} \ln \frac{0.832}{r_p} + \frac{1}{3.2} \ln \frac{r_p}{0.4} \right) \end{split}$$

For $r_p = 1.75r_i = 0.7, V = 19.3$ kV. For $r_p = 1.35r_i = 0.54, V = 20.8$ kV.

14. An infinitely large dielectric slab of thickness d=2a is polarized so that the polarization vector is $\vec{P}=P_0\frac{x^2}{a^2}\hat{a}_x$, where P_0 is a constant. The medium outside the slab is air. Find the voltage between the boundary surfaces of the slab.

Solution:

$$\vec{E} = \frac{P_0}{(\varepsilon_r - 1)\varepsilon_0 a^2} x^2 \hat{a}_x$$

Then the voltage is

$$\begin{split} V &= -\int \vec{E} \cdot d\vec{l} \\ &= -\int_{-a}^{a} \frac{P_0}{(\varepsilon_r - 1)\varepsilon_0 a^2} x^2 \\ &= \frac{2P_0 a}{3(\varepsilon_r - 1)\varepsilon_0} \end{split}$$