뉴스 기사 제목을 활용한 주가 변동여부 예측

이재용(응용통계학과), 이건이(응용통계학과), 서준영(AI학과), 김윤진(소프트웨어학부)

요약

기사 제목이라는 텍스트(Text) 데이터를 통해서 주가를 예측하는 것이 본 연구의 목적이다. 기사 제목에는 기자들이 드러내고자 하는 핵심 내용이 들어갈 가능성이 크기 때문에 제목만으로도 해당 주식에 관한 정보를 얻을 수 있다. 특정 주식에 관한 기사 제목을 전처리 및 수치화 한 후 여러 텍스트 분류 모형으로 기계 학습하여 주가 변동여부를 예측하고 모형별 성능을 비교하였다.

연구방법 1: 연구대상 및 데이터 수집

- 1. 수집 기간: 2021년 1월 1일 ~ 2021년 7월 31일
- 2. 기사 수집 대상 기업 한전기술, 셀트리온, 카카오게임즈, iMBC, 하이브, 삼성전자, 현대자동차, HMM, 대한항공, NAVER, 두산중공업,
- 3. 주식별 기사 제목의 수 한전기술: 84개, 셀트리온: 1,256개, 카카오게임즈: 232개, iMBC: 2개, 하이브: 316개, 삼성전자: 2,796개, 현대자동차: 2,692개, HMM: 999개, 대한항공: 1,610개, NAVER: 2,723개, 두산중공업: 325개, SK하이닉스: 1,272개
- 4. 주가 변동여부 주가 변동여부를 예측하기 위해 이진형 변수를 생성 기사가 쓰인 다음 날의 종가 > 그 전 장의 종가 == 1 기사가 쓰인 다음 날의 종가 ≤그 전 장의 종가 == 0
- 5. 주가 변동여부의 비율 0: 8,053, 1: 6,254

SK하이닉스

연구방법 2: 데이터 전처리

KoNLPy의 형태소 분석을 위한 여러 Class 중 Komoran Class 사용
-기사 제목을 형태소 분석 후 나온 토큰 중 일반명사, 고유명사,
동사, 형용사, 외국어, 관형사, 수사를 추출
-기사 제목에서 해당 주식의 이름은 미포함

주가변동여부	언론사	주식 기사 제목	주식	
0	한국경제	기술 우리기술 한전 전력연구원 과 풍력발전 제어시스템 개발 MOU	한전기술	0
0	파이낸셜뉴스	기술 우리기술 한전 전력연구원과 풍력발전 제어시스템 개발 양해각서 체결	한전기술	1
0	아시아경제	기술 우리기술 한전 전력연구원과 풍력발전 제어시스템 개발 MOU	한전기술	2
0	이데일리	기술 코스피 종목 가 파란불 한전기술 신풍제약은 강세	한전기술	3
1	중앙일보	기술 한전 세계 최초로 해상풍력 일괄설치기술 개발 해상풍력 보급에 속도 낼 것	한전기술	4
		•••		
1	연합뉴스	닉스 SK하이닉스 만원 돌파 신고가 또 경신	SK하이닉스	14302
1	뉴스1	닉스 삼성 SK하이닉스의 힘 정부 올 반도체 수출 억弗↑	SK하이닉스	14303
1	이데일리	닉스 삼성전자 만원 SK하이닉스 만원 반도체 투톱 목표가 줄상향	SK하이닉스	14304
1	디지털타임스	닉스 단독 SK하이닉스 기본급 보너스 연봉 잭팟도 터트릴까	SK하이닉스	14305
1	데일리안	닉스 신년사 박정호 SK하이닉스 부회장 경쟁자와도 협업해야	SK하이닉스	14306

본 연구에서 사용한 데이터

연구방법 3: 데이터 수치화 및 기계학습

- 1. 토큰화 한 기사 제목을 TF-IDF(Term frequency-inverse document frequency) 기반의 피처 벡터화
- 2. 로지스틱 회귀, 서포트 벡터 머신, Multinomial 나이브 베이즈를 이용한 기계학습

연구결과

모형별 분류성능 평가지표

-C와 a는 본 연구에서 쓰인 하이퍼 파라미터(Hyper Parameter) -LR: Logistic Regression, SVM: Support vector machine, MNB: Multinomial Naive Bayes

모형		LR (C=1)	SVM (C=1)	MNB (a=0)
정확도		0.72	0.75	0.73
정밀도	상승: 1	0.71	0.75	0.70
토	하락: 0	0.72	0.75	0.74
개 글	상승: 1	0.59	0.64	0.65
개 현 율	하락: 0	0.81	0.84	0.79
E1_666	상승: 1	0.65	0.69	0.67
F1-score	하락: 0	0.76	0.79	0.76

2021 CUAI 중앙대학교 인공지능 학회 하계 컨퍼런스 Proceeding of 2021 Chung-Ang University Artificial Intelligence's Summer Conference

혼동행렬 (Confusion Matrix)

□ ➡	Actual	Predicted Labels		
모형	Labels	상승: 1	하락: 0	
I D	상승: 1	1,968	448	
LR	하락: 0	768	1,109	
C \ / N A	상승: 1	2,020	396	
SVM	하락: 0	681	1,196	
NANID	상승: 1	1,901	515	
MNB	하락: 0	663	1,214	

결론

1. 정확도

- 서포트 벡터 머신 75%, 나이브 베이즈 73%, 로지스틱 회귀
 72%
- 주가 변동여부 예측과 관련하여 뉴스 기사 제목이 데이터로 충분히 활용될 수 있음

2. 상승 기준 재현율

- 세 모형 모두 주가 변동여부가 상승일 시 재현율은 70% 이하 실제로 주가가 상승하였던 것 중 70% 이하만 예측
- 주가가 상승한 것을 많이 예측할수록 수익이 최대화가 되므로 재현율을 기준으로 분류의 성능을 더 높일 필요가 있음

3. 하락 기준 재현율

- 주가 변동여부가 하락일 시 재현율이 모두 80% 근처, 실제로 주가가 상승하지 않았던 것 중 80%를 분류
- 주가 변동여부를 하락을 기준으로 두면 본 연구의 모형이 투자의 손실을 최소화할 때 쓰일 수 있음

4. F1-score:

- 세 모형 모두 70% 이하
- 분류의 성능을 더 높여야 함