Q.No	Answer	Remark
1.a	Henry's law: It states that partial pressure of a solute gas is proportional to mol	2 marks
	fraction of that component in liquid phase.	
	$P_A = H x_A$	
	P _A partial pressure of A	
	x_A – mol fraction of A in liquid phase	
4.1	H – Henrys law constant	
1.b	PV= nRT is ideal gas law.	1 mark
	The constant R in ideal gas law is called universal gas constant.	1
	It is used to find out the conditions like pressure, temperature, volume and mole	1 mark
1 0	of an ideal gas.	2 mark
1.c	Vanderwaals equation is used to find out the conditions like pressure,	ZIIIdIK
1.d	temperature, volume and mole of non ideal or real gas. Charles law: It states that for a given mass of an ideal gas, the ratio of volume to	1 mark
1.u	absolute temperature is constant at a given pressure.	TIHAIK
	V/T = constant	1 mark
	OR	IIIIaik
	for a given mass of an ideal gas, the volume is directly proportional to absolute	
	temperature at a given pressure.	
1.e	Material balance is	
	Material input= material output + accumulation	1 mark
	Steps for material balance:	
	Mark incoming and outgoing streams	Any 2 steps
	2. Take overall balance	½ mark
	3. Take component balance	each
	4. Solve the equations to get unknowns	
1.f	Recycle: To increase the conversion of reactant, unreacted reactants are	2 marks
	separated from the products and send back to the reactor for further reaction.	
	This is called recycling.	
1.g	% conversion= moles of reactant reacted * 100	1 mark
	Moles of reactant fed	
	% yield = moles of reactant reacted to form desired product *100	1 mark
	Total moles of reactant reacted	
1.h	HCV(higher calorific value) of fuel is equal to the lower calorific value of a fuel to	1 mark
	which latent heat of water vapour is added.	
	LCV(lower calorific value) of fuel is the calorific value which is determined by	1 mark
	considering that the water is present in vapour form.	
1.i	Specific heat: It defined as the amount of heat required to increase the	1 mark
	temperature of one gram of substance by one degree	
	Latent heat: It is defined as the heat required to change the phase of a substance	1 mark
	at constant temperature.	
1.j	Unit of heat in MKS system is Kilocalorie and kilojoules(KJ)	2 marks
1.k	Energy balance: The total amount of energy entering any system must be	1 mark
	exactly equal to the energy leaving plus any accumulation within system.	
	Energy balance is important because it gives an idea about the amount of heat	1 mark
1.1	involved in the system or operation.	1
1.l	Sensible heat: It defined as the amount of heat required to change the	1 mark

	temperature o	of a substance	::::::::::::::::::::::::::::::::::::::				
				ch proceeds	without loss or	gain of heat.	1 mark
2.a	Ideal gas law: PV=nRT For an ideal gas mol%=Vol%					1 mark 1 mark	
	component	Mole %	Mole fraction(xi)	Mol. Wt(Mi)	Mi*xi		THAIR
	CH ₄	70	0.7	16	11.2		
	C ₂ H ₆	2.2	0.022	30	0.66		
	N_2	8	0.08	28	2.24		
	Density= PMa	325*14.1/8.3					4 marks 2 marks
2.b(i)	Volume % = N	1ol%					1 mark
	component	Mole %	Mole fraction(xi)	Mol. Wt(Mi)	Mi*xi		
	H ₂	15.6	0.156	2	0.312		
	O ₂	84.4	0.844	32	27.008		
2.b(ii)	Mavg = 27.32 P= 0.968 atm T= 298 K						3 marks
							2 marks 2 marks
2.c(i)	PV=nRT V= 3.1 lit = 3.1 P= 300 KP R= 8.314 KPa I T= 293 K n=PV/RT = 3.82*10 ⁻⁴ k	m³/kgmol					1 mark 1 mark
2.c(ii)	PV=nRT n=PV/RT = 12*0.315/ = 0.155 gmo Weight of oxy	0.08206* 29 I	[*] 32				1 mark 1 mark

2.c(iii)	PV=nRT	
	n= PV/RT	
	= 100* 10 ⁻³ / 0.08206*423	
	= 2.84*10 ⁻⁵ kg mol	1 mark
	= 2.84*10 ⁻² gmol	
	Mol. Wt = Wt/ Moles	
	= 88.24	1 mark
2.c(iv)	PV=nRT	
	n=PV/RT	
	= 1* 0.098/ 0.08206*300	1 mark
	= 3.98*10 ⁻³ gmol	
	Molar mass= wt/ moles	
	$= 0.081/3.98 \times 10^{-3}$	
	= 20.35	1 mark

Q.3 a) 04 marks – each table (1 mark for each point)

	Mixing	Blending
1.	Mixing is generally employed for mixing of two solids.	Blending is used for mixing of two liquids.
2.	Composition throughout may not be same	Composition at any point will be same.
3.	Mixing of Concentrate	Blending of Perfume
4.	Sigma Mixer, etc. equipment's is used.	Blender, etc. equipment's is used.

	Absorption	Extraction
1.	Gas-Liquid Contacting	Liquid – Liquid Contacting
2.	Solubility of gas in solvent is driving force.	Solubility of one component in solvent is driving force.
3.	Mass Transfer Operation	Mass Transfer Operation
4.	Absorption Column, etc. equipment's is used.	Mixer Settler, etc. equipment's is used.

- b) 1. By passing operation is recycling of unreacted feed material to process again.
 - 2. It converts unconverted material.
 - 3. Accurate control in component on concentration is expected.
 - 4. Properties & Composition of products may be varied by varying fraction of feed that is bypassed.

Bypass Stream

4 marks ---- diagram ,,, 4 marks --- explaination

- c). Material Balance without Chemical Reaction:
 - Assume the basis for solving the problem.
 - Decide the changing or unchanging component.
 - Write overall Balance for the process.
 - Write material balance for tie component.
 - Solve the two equations to get value of output & Accumulated or deleted Component.

Overall Balance:

4 marks ---- steps to solve ,,, 4 marks --- for examples

```
Q. IV. a. Basis: 100 Kmoles of gas mixture ------ 1 mark
           Vol % = Mol %
Kmoles of CO_2 = 5.0
Kmoles of CO = 20.5
Kmoles of H_2 = 16.0
Kmoles of CH_4 = 0.5
Kmoles of N_2 = 58.0
                   100.0
Reaction taking place
                                                                      ----- 2 marks
                CO + 1/2 O_2 \longrightarrow CO_2 ------1
                H_2 + \frac{1}{2}O_2 \longrightarrow H_2O \longrightarrow 2
                CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O - 3
    1. Kmoles of O<sub>2</sub> required in 1<sup>st</sup> reaction
                                                                     ----- 2 marks
               = 0.5*20.5
                  = 10.25
    2. Kmoles of O<sub>2</sub> required for 2<sup>nd</sup> reaction
                 = 0.5 *16
                 = 8
    3. Kmoles of O<sub>2</sub> required for 3<sup>rd</sup> reaction
                  = 2* 0.5
                  = 1
        Total Kmoles of O<sub>2</sub> required
        = 10.25 + 8 + 1
        = 19.25 Kmoles
        Total O_2 supplied = 19.25 * 1.1
                           = 21.175 Kmoles
        N<sub>2</sub> associated with O<sub>2</sub>
                                                             ----- 2 marks
        = 79/21 * 21. 175
        = 79.65 Kmoles
        CO<sub>2</sub> produced in reaction 1 &3
        = 20.5 + 0.5
        = 21 Kmoles
        H2O produced in reaction 2 & 3
         = 16 + 1.0
         = 17 kmol
        Unreacted O2 = 21.175 - 19.25
                                               %
                       = 1.925
        Product gas CO_2 = 21 + 5 = 26 14.24
                                                      ----- 01 mark
                                   = 179.3111
        H_2O
```

MSBTE - MODEL ANSWER PAPER—

PAPER CODE-STI-12078

MSBTE – MODEL ANSWER PAPER— PAPER CODE-STI-12078

Unreacted
$$O_2$$
 = 1.925 1.054
1. $N_2 = 58 + 79.65$ = 137.65 75.393
182.575 99.99

b. Basis: 100 kmol of product

----- 1 mark

Gas kmol
CH₃OH 8.6
CH₂O 3.1
HCOOH 0.6
H₂O 3.7
O₂ 16.0
N₂ 68

100.0

Chemical reaction

$$\begin{array}{cccc} \text{CH}_3 \text{ OH} + \frac{1}{2} \text{ O}_2 & \longrightarrow & \text{CH}_2 \text{O} + \text{H}_2 \text{O} & ----- 2 \text{ marks} \\ \text{CH}_2 \text{O} + \frac{1}{2} \text{ O}_2 & \longrightarrow & \text{HCOOH} \end{array}$$

1. Kmol of CH_2O formed = 3.1

Kmol of methanol reacted = 1* 3.1

----1 mark

= 3.1 Kmol of CH3OH

Total Kmoles of CH3OH fed

2. % conversion of methanol = 3.1 /11.7 * 100 ----- 1 mark

= 26.49

1 kmol of HCOOH = 1 Kmol reacted

0.6 of CH2O = $0.6 \text{ kmol of CH}_3\text{OH reacted}$

% M

= 5.12

3. Mole ratio of Air to Methanol ----- 2 mark

 1^{st} reaction = 3.1/2 = 1.55

 2^{nd} reaction = 0.6/2 0.3/1.85 kmol O2

79 kmol of $N_2 = 100$ Kmol of Air

 $68 \text{ Kmol of N}_2 = 68/79 * 100$

= 86.075 Kmol

86.075/11.7 = 7.356 kmol of Air/ Kmol of Methane

18.07 - 1.85 = 16.22

- C. 02 marks for each point
- 1. Stoichiometric equation of a chemical reaction is the statement indicating relative moles of reactants and products that take part in the reaction. eg

$$CO + 2H_2 \longrightarrow CH_3OH$$

2. Stoichiometric ratio: it is the ratio of stoichiometric coefficient of two molecular species or Components in the balanced reaction

$$CO_2/H_2 = \frac{1}{2}$$

- 3. Excess component: is one which is in excess of theoretical or stoichiometric requirement. Excess component is always found in product side equation.
- 4. Selectivity:

$$\begin{array}{cccc} \mathsf{A} & \longrightarrow & \mathsf{C} \\ \mathsf{A} & \longrightarrow & \mathsf{D} \end{array}$$

Where C is desired component and D is undesired component

Moles of C formed

Q.No	Answer	Remark
5. (a)	Basis: 1 mol Carbon disulphide(CS ₂) Reaction C(s) +2S(s)>CS ₂ (I)	01 mark 02 marks
	$\Delta H_f^0(CS_2)$ = Std. Heat of formation of CS_2 = $[\Delta H_C^0 Reactant - \Delta H_C^0 Product]$	01 mark
	=[(1*393.3)+(2*-293.72)]-[1*-1108.76] =[-194.14]-[-1108.76]	03 marks
	= 914.62 KJ/mol	01 mark
(b)	Basis: 1 mol methane and 3 mol oxygen feed Reaction $CH_4+2O_2> CO_2 + 2H_2O$ From reaction $1\text{mol of } CH_4=2\text{ mol } O_2$ $0.5\text{ mol of } CH_4=1\text{ mol } O_2$	01 mark 01 mark 01 mark
	For 1 mole CH_4 = 2mole O_2 required but feed O_2 is 3 mole, hence Limiting component is Methane(CH_4) Excess component is Oxygen (O_2) Theoretical O_2 required = 2 mol, Actually Supplied O_2 =3 mol	02 marks
	3 - 2 % Excess of Oxygen = * 100 = 50% 2	01 mark
	0.5 % conversion of methane=*100=50% 1	01 mark
	1 % conversion of oxygen =*100=33.33% 3	01 mark

c)	Basis: 50Kmol/hr methar Reaction: CH ₄ +2O ₂ > CO ₂ + 2H ₂ O	ne and 2500 Kmol/hr a	ir feed		01mark
	O ₂ in supplied air=0.21*2	2500=525 kmol/hr			01 mark
	N ₂ in supplied air=2500-5	525= 1975 kmol/hr			
	Theoretical requirement	of $O_2 = (2/1)*50=100$	kmol/hr		
	% excess air = % 6	excess O ₂			
	=	25-100 *100 100			01 mark
	Combustion is complete, O ₂ reacted=100 Material Balance of O ₂				
	O_2 in supplied air = O_2	0₂ reacted- O₂un reacte	d		
	O_2 un reacted = 525-	100=425 kmol/hr			01mark
	1 kmol CH ₄ = 1 kmol CO ₂				
	CO ₂ produced =(1/1)	*50=50kmol/hr			01 mark
	1 kmol CH ₄ = 2 kmol H ₂ O				
	H_2O produced =(2/1)	*50=100 kmol/hr			01 mark
	Material Balance of N_2 N_2 in supplied air = N_2 in Combustion gas=1975 kmol/hr				01mark
	Composition of Combustion Gases:				
	Component	Quantity , Kmol	Mole %		
	CO ₂	50	1.96		
	H ₂ O	100	3.92		
	02	425	16.66		01mark
	N_2	1975	77.45		
	Total	2550	100		

06.		
(a)	Basis : 01 mol Ethyl acetate(C ₄ H ₈ O ₂)	01 mark
	1) $C(s)+O_2(g) \rightarrow CO_2(g)$ $\Delta H1 = -393.51 \text{ KJ/mol}$	
	2) $H_2(g)+0.5 \ 0_2(g) \rightarrow H_2O(I) \Delta H2= -285.83 \ KJ/mol$	03 marks
	3) $C_4H_8O_2(I)+502(g) \rightarrow 4CO_2(g) + 4 H_2O(I) \Delta H^\circ c = -2230.91 \text{ KJ/mol}$	
	4) $4C(s)+4H_2(g)+0_2(g)-\cdots \rightarrow C_4H_8O_2(I)$ $\Delta H_f = ?$	
	ΔH_f = Heat of formation of Ethyl acetate(C4H8O2)	
	Reaction 4 = 4*Reaction 1+ 4* Reaction 2- Reaction 3	01 mark
	= [(4*ΔH1) +(4*ΔH2)] - ΔHc =[(4*-393.51)+(4*-285.83)]-(-2230.91) =[-1547.04+(-1143.32)]-(-2230.91) =-2717.36+ 2230.91	02 mark
	= -486.45 KJ/mol	01mark
(b)	Basis: 4000 Kg/hr of Chlorinated diphenly Let Q be the heat to be added to the fluid in heater T2	01 mark
	Q = m∫ C.dT T1	01 mark
	T2	01 mark
	Q = m \int (0.7511+1.465*10 ⁻³ T) dT T1 1.465*10 ⁻³	
	$Q = m[07511(T2-T1) + \cdots (T2^2-T1^2)]$	02 marks
	Where m=4000Kg/hr T1= 313 K T2=533 K	
	$1.465*10^{-3}$ $Q = 4000[07511(533-313) + (533^2-313^2)]$ 2	02 mark
	= 4000(180.26+152.24) = 133*10 ⁴ KJ/hr = 369.44 KJ/S or KW	01 mark

(c)	 i) Crystallization: It is the formation of solid particle within a homogeneneous liquid phase. Crystallization gives almost pure product. Crystallization of the dissolved solids from a solution is based on difference in solubility of solute at different temperature ii) Filtration: This operation is carried in industry for the separation of solids from a suspension in liquid by porous medium. Wet solid is the product of this operation. Various equipments used are centrifuge, Drum –Filter Plate-Frame filer etc. 	02 marks 02 marks
	iii)Percentage excess air: It is the amount by which the air feed to combustion chamber exceeds the theoretical air	
	(Moles air Supply- Moles air theoretical Required) Percentage excess air=********************************	02 marks
	The quantity of air supply theoretical air can be used either in weight or molar units in formula	
	iV)Orsat Analysis and Wet analysis: Orsat analysis is used to analyze flue gas .It gives the analysis of Carbon Monoxide(CO),Carbon di oxide(CO ₂),Oxygen (O2) and Nitrogen(N ₂) by Volume Wet analysis is used to analyze flue gas. It gives the analysis of Carbon Monoxide(CO),Carbon di oxide(CO ₂),Oxygen (O2) and Nitrogen(N ₂)and Water by Volume	02 marks (01 mark each)