### **Credit Card Fraud Detection**

Anomaly Detection with Autoencoder (Keras)

6<sup>th</sup> July 2021 Mingxi Li





- 1. Problem Description & Data Exploration
- 2. Project Structure
- 3. Training Data Preparation
- 4. Model Building
- 5. Anomaly Detection

### **Contents**

# Problem Description & Data Exploration

### **Target:**

Using unsupervised anomaly detection technique to recognize fraudulent credit card transactions so that customers are not charged for item that they did not purchase.

#### **Dataset:**

The dataset contains 2 days transection records made by credit cards in September 2013 by EU cardholders.

| Time | V1       | V2       | V3       | *** | V26      | V27      | V28      | Amount | Class |
|------|----------|----------|----------|-----|----------|----------|----------|--------|-------|
| 0    | -1.35981 | -0.07278 | 2.536347 |     | -0.18911 | 0.133558 | -0.02105 | 149.62 | 0     |
| 0    | 1.191857 | 0.266151 | 0.16648  | *** | 0.125895 | -0.00898 | 0.014724 | 2.69   | 0     |
| 1    | -1.35835 | -1.34016 | 1.773209 |     | -0.1391  | -0.05535 | -0.05975 | 378.66 | 0     |
| 1    | -0.96627 | -0.18523 | 1.792993 | *** | -0.22193 | 0.062723 | 0.061458 | 123.5  | 0     |
| 2    | -1.15823 | 0.877737 | 1.548718 | *** | 0.502292 | 0.219422 | 0.215153 | 69.99  | 0     |
| 2    | -0.42597 | 0.960523 | 1.141109 |     | 0.105915 | 0.253844 | 0.08108  | 3.67   | 0     |
| 4    | 1.229658 | 0.141004 | 0.045371 | *** | -0.25724 | 0.034507 | 0.005168 | 4.99   | 0     |
| 7    | -0.64427 | 1.417964 | 1.07438  |     | -0.05163 | -1.20692 | -1.08534 | 40.8   | 0     |
| 7    | -0.89429 | 0.286157 | -0.11319 |     | -0.38416 | 0.011747 | 0.142404 | 93.2   | 0     |
| 9    | -0.33826 | 1.119593 | 1.044367 |     | 0.094199 | 0.246219 | 0.083076 | 3.68   | 0     |
| 10   | 1.449044 | -1.17634 | 0.91386  |     | -0.12948 | 0.04285  | 0.016253 | 7.8    | 0     |
| 10   | 0.384978 | 0.616109 | -0.8743  |     | -0.49221 | 0.042472 | -0.05434 | 9.99   | 0     |
| 10   | 1.249999 | -1.22164 | 0.38393  |     | -0.35499 | 0.026416 | 0.042422 | 121.5  | 0     |

- Besides 'Time', 'Amount' and 'Class', the dataset only contains numerical input variables which are the result of a PCA transformation (V1 ~ V28).
- 'Time' is the seconds elapsed between each transaction and the first transaction in the dataset, so the time range is [0, 172792].
- 'Class' is the response variable and it takes value 1 in case of fraud and 0 otherwise.

### Data Exploration (1)





- StratifiedShuffleSplit() for train & test dataset split;
- SMOTE combine with RandomUnderSampler() to increase class 1 ratio in training dataset (*if* necessary).



Transaction amount range is way larger than other PCA features, apply MaxMinNorm to normalize it in case the activation function get twisted.

### Data Exploration (2)





Normal records

Fraud records

# Project Structure



## A logical and standardized project structure for doing and sharing project.

- Data folder contains all the data inputs and outputs:
  - Raw stores all the input dataset, which will be loaded by dataloader.py later.
  - Processed stores all the data & models generated in the middle, incase we want to test code from a random point.
  - Output contains the model results: data, plot, etc.
- Docs contains yaml files for feature selection, the team can easily add or remove model features.
- References is the folder for model knowledge.
- Reports can store analysis results.
- SRC is source code for use in this project: see next page
- Main.py : Run the model!

```
Credit_card_fraud_detect C:\Users\Li.Mingxi\PycharmProj
   data
     external
    output
    processed
     raw
   docs
   references
  reports

✓ src

  configs
   > adata
     features
   > models
  > lautils
     __init__.py 4/7/2021 8:59 AM, 0 B 6/30/2021 5:47 PM
  logs.log 7/5/2021 12:24 AM, 6.12 kB
   1 logs_run.log 7/5/2021 12:24 AM, 460 B
   main.py 7/4/2021 4:51 PM, 1.44 kB Today 12:26 AM
```

# A logical and standardized project structure for doing and sharing project.

```
∨ src

  configs
        __init__.py 4/7/2021 8:59 AM, 0 B
        Lonfig.py 7/4/2021 1:34 PM, 1.29 kB Today 12:20
        config_function_selection.yaml 7/5/2021 12:

∨ Image data

        💤 data_loader.py 7/5/2021 12:08 AM, 1.19 kB Toda
     features

∨ models

        #__init__.py 4/7/2021 8:59 AM, 0 B
        Large predict_model.py 7/5/2021 12:08 AM, 2.35 kB 4
        train_model.py 7/5/2021 12:08 AM, 5.44 kB 45 r
  ∨ mutils
        __init__.py 4/7/2021 8:59 AM, 0 B
        Linput_output.py 7/5/2021 12:12 AM, 2.36 kB Tol
        Logger.py 4/7/2021 8:59 AM, 2.58 kB 7/3/2021 8
        paths.py 7/4/2021 1:10 PM, 1.34 kB Yesterday 11
        split_train_test.py 7/4/2021 11:31 AM, 2.62 k
     init__.py 4/7/2021 8:59 AM, 0 B 6/30/2021 5:47
```

#### **SRC** is source code for use in this project:

- Configs: all the adjustable model configures are stored in yaml file and can be changed anytime by anyone. Modeling steps can also be selected and unselected.
- Data: contains scripts to turn raw data into features for modelling.
- Features: feature engineering is done here.
- Models: model training and testing.
- Utils: stores all the functional code for modeling.
  Here are data input loading & output saving
  format/ path. Logger will generate informations
  when you running code, to inform you which
  step the model at.

# Training Data Prep



#### 1. Data normalization

Only normalize 'Amount' column, then the data set now contains V1, V2, ..., V28, Amount\_norm (29 columns).

#### 2. Splitting Train & Test (20%)

StratifiedShuffleSplit() returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class.

| Count | y_train | y_test |
|-------|---------|--------|
| 0     | 227451  | 56864  |
| 1     | 394     | 98     |

#### 3. SMOTE + RandomUnderSampler

- SMOTE generates the synthetic samples for the minority class, which helps to overcome the overfitting problem posed by random oversampling.
- SMOTE normally combined with under sampling function to balance the class distribution.

| Count | y_train | y_smote |
|-------|---------|---------|
| 0     | 227451  | 64985   |
| 1     | 394     | 45490   |

# Model Building



#### Autoencoder Model - Build

| Model: "model_1"                                                    |              |         |
|---------------------------------------------------------------------|--------------|---------|
| Layer (type)                                                        | Output Shape | Param # |
| input_2 (InputLayer)                                                | [(None, 29)] | 0       |
| dropout_2 (Dropout)                                                 | (None, 29)   | 0       |
| dense_6 (Dense)                                                     | (None, 30)   | 900     |
| dense_7 (Dense)                                                     | (None, 20)   | 620     |
| dense_8 (Dense)                                                     | (None, 5)    | 105     |
| dense_9 (Dense)                                                     | (None, 20)   | 120     |
| dense_10 (Dense)                                                    | (None, 30)   | 630     |
| dropout_3 (Dropout)                                                 | (None, 30)   | 0       |
| dense_11 (Dense)                                                    | (None, 29)   | 899     |
| Total params: 3,274 Trainable params: 3,274 Non-trainable params: 0 |              |         |
|                                                                     |              |         |



- Hidden layers activation function: ReLu
- Output layer's activation function: sigmoid(x) = 1 / (1 + exp(-x))
- Dropout layer: 0.1 (avoid overfitting)

#### Autoencoder Model - Train

```
autoencoder.compile(optimizer='adam', loss='mse')
```

- Reconstruction error (loss): MSE
- Optimizer: Adam



This loss plot is without SMOTE oversampling.

#### Autoencoder Model - Threshold





 $mean(mse)_0 = 0.76$  $std(mse)_0 = 3.14$ 



mean(mse)<sub>1</sub>= 27.36 std(mse)<sub>1</sub> = 38.48

Trained model predicting on train data, then calculate mean MSE by each observation (row), grouping observations by 0/1 class then calculate mean MSE for each class, the mean MSE of class 0 with standard deviation <u>can be</u> the threshold for predicted dataset.

# Anomaly Detection



### Autoencoder Model – Threshold = 3.9



| Test Predict | Normal | Fraud |
|--------------|--------|-------|
| Normal       | 55740  | 1124  |
| Fraud        | 25     | 73    |

### Discussion

# Appendix

- ReLU (Rectified Linear Unit) function: f(x) = max(0, x)
- Sigmoid function:  $s(x) = 1/(1+e^{\Lambda}(-x))$
- Adam optimization: a stochastic gradient descent method that is based on adaptive estimation of first-order and secondorder moments.

