STAT 7200

Introduction to Advanced Probability
Lecture 4

Taylor R. Brown

- Probability Triples
 - Extension Theorem
 - Constructing Probability Triples
 - Semialgebra
 - Algebra
 - Extension Theorem
 - Outer Measure P*
 - Outer Measure P* is Countably Subadditive
 - M: The Measurable Sets
 - M and P*

"A First Look at Rigorous Probability Theory" (Jeffrey Rosenthal) Sections 2.1, 2.2, 2.3

Here we outline the major steps in constructing (complicated) probability triples on a sample space such as $\Omega = [0, 1]$ or \mathbf{R} .

- Here we outline the major steps in constructing (complicated) probability triples on a sample space such as $\Omega = [0, 1]$ or \mathbf{R} .
- 1) Define a "probability measure" \mathbf{P} on \mathcal{J} , which is a collection of subsets of Ω that forms a *semialgebra*. For instance, \mathcal{J} can be chosen as the collection of all intervals.

- Here we outline the major steps in constructing (complicated) probability triples on a sample space such as $\Omega = [0, 1]$ or \mathbf{R} .
- 1) Define a "probability measure" ${\bf P}$ on ${\cal J}$, which is a collection of subsets of Ω that forms a *semialgebra*. For instance, ${\cal J}$ can be chosen as the collection of all intervals.
- 2) Construct a new function \mathbf{P}^* as an extension of P over *all* subsets of Ω . \mathbf{P}^* is usually not a proper probability measure for all the subsets of Ω .

- Here we outline the major steps in constructing (complicated) probability triples on a sample space such as $\Omega = [0, 1]$ or \mathbf{R} .
- 1) Define a "probability measure" ${\bf P}$ on ${\cal J}$, which is a collection of subsets of Ω that forms a *semialgebra*. For instance, ${\cal J}$ can be chosen as the collection of all intervals.
- 2) Construct a new function \mathbf{P}^* as an extension of P over *all* subsets of Ω . \mathbf{P}^* is usually not a proper probability measure for all the subsets of Ω .
- 3) Based on \mathbf{P}^* , we construct a new collection of subsets, denoted as \mathcal{M} . \mathcal{M} stands for "measurable."

3 / 10

- Here we outline the major steps in constructing (complicated) probability triples on a sample space such as $\Omega = [0, 1]$ or \mathbf{R} .
- 1) Define a "probability measure" ${\bf P}$ on ${\cal J}$, which is a collection of subsets of Ω that forms a *semialgebra*. For instance, ${\cal J}$ can be chosen as the collection of all intervals.
- 2) Construct a new function \mathbf{P}^* as an extension of P over *all* subsets of Ω . \mathbf{P}^* is usually not a proper probability measure for all the subsets of Ω .
- 3) Based on \mathbf{P}^* , we construct a new collection of subsets, denoted as \mathcal{M} . \mathcal{M} stands for "measurable."
- 4) \mathcal{M} is a σ -algebra and \mathbf{P}^* is a proper probability measure on \mathcal{M} .

3/10

- Here we outline the major steps in constructing (complicated) probability triples on a sample space such as $\Omega = [0, 1]$ or \mathbf{R} .
- 1) Define a "probability measure" ${\bf P}$ on ${\cal J}$, which is a collection of subsets of Ω that forms a *semialgebra*. For instance, ${\cal J}$ can be chosen as the collection of all intervals.
- 2) Construct a new function \mathbf{P}^* as an extension of P over *all* subsets of Ω . \mathbf{P}^* is usually not a proper probability measure for all the subsets of Ω .
- 3) Based on \mathbf{P}^* , we construct a new collection of subsets, denoted as \mathcal{M} . \mathcal{M} stands for "measurable."
- 4) \mathcal{M} is a σ -algebra and \mathbf{P}^* is a proper probability measure on \mathcal{M} .
- 5) $\mathcal{J} \subseteq \mathcal{M}$ and the extension from **P** to **P*** is "unique."

- Here we outline the major steps in constructing (complicated) probability triples on a sample space such as $\Omega = [0, 1]$ or \mathbf{R} .
- 1) Define a "probability measure" ${\bf P}$ on ${\cal J}$, which is a collection of subsets of Ω that forms a *semialgebra*. For instance, ${\cal J}$ can be chosen as the collection of all intervals.
- 2) Construct a new function \mathbf{P}^* as an extension of P over *all* subsets of Ω . \mathbf{P}^* is usually not a proper probability measure for all the subsets of Ω .
- 3) Based on \mathbf{P}^* , we construct a new collection of subsets, denoted as \mathcal{M} . \mathcal{M} stands for "measurable."
- 4) \mathcal{M} is a σ -algebra and \mathbf{P}^* is a proper probability measure on \mathcal{M} .
- 5) $\mathcal{J} \subseteq \mathcal{M}$ and the extension from **P** to **P*** is "unique." The above steps lead to a probability triple $\{\Omega, \mathcal{M}, \mathbf{P}^*\}$.

4 D > 4 B > 4 E > 4 E > E = 90 C

Semialgebra

Semialgebra

Let \mathcal{J} be a collection of subsets of Ω . \mathcal{J} is a semialgebra if a) \emptyset , $\Omega \in \mathcal{J}$.

- b) If $A_1, A_2, \dots, A_k \in \mathcal{J}$, then $\bigcap_{i=1}^k A_i \in \mathcal{J}$. (Closed under finite intersections)
- c) If $A \in \mathcal{J}$, then there is a pairwise disjoint sequence of sets $B_1, B_2, \cdots, B_m \in \mathcal{J}$ so that $A^c = \bigcup_{i=1}^m B_i$.

Semialgebra

Semialgebra

Let $\mathcal J$ be a collection of subsets of Ω . $\mathcal J$ is a semialgebra if a) $\emptyset, \Omega \in \mathcal J$.

- b) If $A_1, A_2, \dots, A_k \in \mathcal{J}$, then $\bigcap_{i=1}^k A_i \in \mathcal{J}$. (Closed under finite intersections)
- c) If $A \in \mathcal{J}$, then there is a pairwise disjoint sequence of sets $B_1, B_2, \dots, B_m \in \mathcal{J}$ so that $A^c = \bigcup_{i=1}^m B_i$.

Proposition 1 (Exercise 2.2.3)

 $\mathcal{J} = \{ \text{ All "intervals" contained in } [0,1] \text{ (or } \mathbf{R}) \} \text{ is a semialgebra.}$

Semialgebra

Semialgebra

Let $\mathcal J$ be a collection of subsets of Ω . $\mathcal J$ is a semialgebra if a) $\emptyset, \Omega \in \mathcal J$.

- b) If $A_1, A_2, \dots, A_k \in \mathcal{J}$, then $\bigcap_{i=1}^k A_i \in \mathcal{J}$. (Closed under finite intersections)
- c) If $A \in \mathcal{J}$, then there is a pairwise disjoint sequence of sets $B_1, B_2, \dots, B_m \in \mathcal{J}$ so that $A^c = \bigcup_{i=1}^m B_i$.

Proposition 1 (Exercise 2.2.3)

 $\mathcal{J} = \{ \text{ All "intervals" contained in [0,1] (or R)} \}$ is a semialgebra.

 Remark The notion of an "interval" includes singletons and open/closed/half-open/empty intervals.

Algebra

Let \mathcal{B}_0 be a collection of subsets of Ω . \mathcal{B}_0 is an **algebra** if

- $a)\;\emptyset\in\mathcal{B}_0.$
- b) If $A \in \mathcal{B}_0$, then $A^c \in \mathcal{B}_0$. (Closed under complement)
- c) If $A_1, \ldots, A_m \in \mathcal{B}_0$, then $\bigcup_{i=1}^m A_i \in \mathcal{B}_0$.

Algebra

Let \mathcal{B}_0 be a collection of subsets of Ω . \mathcal{B}_0 is an **algebra** if

- a) $\emptyset \in \mathcal{B}_0$.
- b) If $A \in \mathcal{B}_0$, then $A^c \in \mathcal{B}_0$. (Closed under complement)
- c) If $A_1, \ldots, A_m \in \mathcal{B}_0$, then $\bigcup_{i=1}^m A_i \in \mathcal{B}_0$.
- **Remark** it's nearly the same as the definition for a σ -algebra, except the union in c) is *finite*.

Algebra

Let \mathcal{B}_0 be a collection of subsets of Ω . \mathcal{B}_0 is an **algebra** if a) $\emptyset \in \mathcal{B}_0$.

- b) If $A \in \mathcal{B}_0$, then $A^c \in \mathcal{B}_0$. (Closed under complement)
- c) If $A_1, \ldots, A_m \in \mathcal{B}_0$, then $\bigcup_{i=1}^m A_i \in \mathcal{B}_0$.
- **Remark** it's nearly the same as the definition for a σ -algebra, except the union in c) is *finite*.
- Remark b), c) and De Morgan's law together imply further that algebras are closed under finite intersections, as well.

Algebra

Let \mathcal{B}_0 be a collection of subsets of Ω . \mathcal{B}_0 is an **algebra** if

- a) $\emptyset \in \mathcal{B}_0$.
- b) If $A \in \mathcal{B}_0$, then $A^c \in \mathcal{B}_0$. (Closed under complement)
- c) If $A_1, \ldots, A_m \in \mathcal{B}_0$, then $\bigcup_{i=1}^m A_i \in \mathcal{B}_0$.
- **Remark** it's nearly the same as the definition for a σ -algebra, except the union in c) is *finite*.
- Remark b), c) and De Morgan's law together imply further that algebras are closed under finite intersections, as well.

Proposition 2 (Exercise 2.2.5)

 $\mathcal{B}_0 = \{ \text{ All finite unions of "intervals" in [0,1] (or$ **R** $)} \}$ is an algebra.

Extension Theorem

Theorem 3

The Extension Theorem Let $\mathcal J$ be a semialgebra of subsets of Ω and $\mathbf P:\mathcal J\to [0,1]$ such that:

- *a*) $P(\emptyset) = 0, P(\Omega) = 1.$
- b) $\mathbf{P}(\bigcup_{i=1}^k A_i) \ge \sum_{i=1}^k \mathbf{P}(A_i)$ whenever $A_1, \dots, A_k \in \mathcal{J}$, $\bigcup_{i=1}^k A_i \in \mathcal{J}$, and A_1, \dots, A_k are pairwise disjoint (finite superadditivity).
- c) $\mathbf{P}(A) \leq \sum_{n} \mathbf{P}(A_n)$ whenever $A, A_1, \dots, A_n, \dots \in \mathcal{J}$, and $A \subset \bigcup_{n} A_n$ (countable monotonicity).

Then there is a σ -algebra $\mathcal{M}\supseteq\mathcal{J}$ and a countably-additive probability measure \mathbf{P}^* on \mathcal{M} so that $\mathbf{P}^*(A)=\mathbf{P}(A)$ for all $A\in\mathcal{J}$.

Outer Measure P*

• Remarks: P^* is a function defined over *all* subsets of Ω (but its definition makes use of only sets from \mathcal{J}) but it isn't necessarily a probability measure if you're looking at all of these subsets.

Outer Measure P*

- Remarks: P^* is a function defined over *all* subsets of Ω (but its definition makes use of only sets from \mathcal{J}) but it isn't necessarily a probability measure if you're looking at all of these subsets.
- For any $A \subseteq \Omega$

$$\mathbf{P}^*(A) := \inf_{A_1, A_2 \cdots, \in \mathcal{J}, A \subset \bigcup_i A_i} \sum_i \mathbf{P}(A_i)$$

Outer Measure P*

- Remarks: \mathbf{P}^* is a function defined over *all* subsets of Ω (but its definition makes use of only sets from \mathcal{J}) but it isn't necessarily a probability measure if you're looking at all of these subsets.
- For any $A \subseteq \Omega$

$$\mathbf{P}^*(A) := \inf_{A_1, A_2 \cdots, \in \mathcal{J}, A \subset \bigcup_i A_i} \sum_i \mathbf{P}(A_i)$$

Lemma 4

Outer measure satisfies the following properties:

- a) $P^*(\emptyset) = 0$.
- b) $\mathbf{P}^*(A) \leq \mathbf{P}^*(B)$ if $A \subseteq B$. (Monotonicity)
- c) $P^*(A) = P(A)$ if $A \in \mathcal{J}$. (P^* is an extension of P)

Lemma 5 (2.3.6.)

Outer measure **P*** is countably subadditive:

$$\mathbf{P}^*(\bigcup_{n=1}^{\infty} B_n) \leq \sum_{n=1}^{\infty} \mathbf{P}^*(B_n)$$
 for any $B_1, B_2, \dots \in \Omega$

Lemma 5 (2.3.6.)

Outer measure **P*** is countably subadditive:

$$\mathbf{P}^*(\bigcup_{n=1}^{\infty} B_n) \leq \sum_{n=1}^{\infty} \mathbf{P}^*(B_n)$$
 for any $B_1, B_2, \dots \in \Omega$

Proof: The key is $P^*(A)$ is defined as the infimum of the countable unions of sets in \mathcal{J} that "cover" A.

8 / 10

Lemma 5 (2.3.6.)

Outer measure **P*** is countably subadditive:

$$\mathbf{P}^*(\bigcup_{n=1}^{\infty}B_n)\leq \sum_{n=1}^{\infty}\mathbf{P}^*(B_n)$$
 for any $B_1,B_2,\dots\in\Omega$

Proof: The key is $P^*(A)$ is defined as the infimum of the countable unions of sets in \mathcal{J} that "cover" A.

1) Given $\varepsilon > 0$, for each B_n , there must be a sequence $\{C_{nk}\}_{k=1}^{\infty}$, s.t. $C_{nk} \in \mathcal{J}$, $B_n \subseteq \bigcup_k C_{nk}$ and $\sum_k \mathbf{P}(C_{nk}) < \mathbf{P}^*(B_n) + \varepsilon/2^n$ (small typo in book)

Lemma 5 (2.3.6.)

Outer measure **P*** is countably subadditive:

$$\mathbf{P}^*(\bigcup_{n=1}^{\infty} B_n) \leq \sum_{n=1}^{\infty} \mathbf{P}^*(B_n)$$
 for any $B_1, B_2, \dots \in \Omega$

Proof: The key is $P^*(A)$ is defined as the infimum of the countable unions of sets in \mathcal{J} that "cover" A.

- 1) Given $\varepsilon > 0$, for each B_n , there must be a sequence $\{C_{nk}\}_{k=1}^{\infty}$, s.t. $C_{nk} \in \mathcal{J}$, $B_n \subseteq \bigcup_k C_{nk}$ and $\sum_k \mathbf{P}(C_{nk}) < \mathbf{P}^*(B_n) + \varepsilon/2^n$ (small typo in book)
- 2) Since $\bigcup_{n=1}^{\infty} B_n \subseteq \bigcup_{n,k} C_{n,k}$, $\mathbf{P}^*(\bigcup_{n=1}^{\infty} B_n) \le \sum_{n,k} \mathbf{P}(C_{n,k}) < \sum_n \mathbf{P}^*(B_n) + \varepsilon$.
- 3) As ε is an arbitrary positive constant, we must have $\mathbf{P}^*(\bigcup_{n=1}^{\infty} B_n) \leq \sum_{n=1}^{\infty} \mathbf{P}^*(B_n)$.

\mathcal{M} : The Measurable Sets

• Outer measure cannot always be a probability measure over *all* subsets of Ω (recall Proposition 1.2.6). Define a refined collection of subsets using **P***:

$$\mathcal{M} = \{ A \subseteq \Omega : \mathbf{P}^*(A \cap E) + \mathbf{P}^*(A^c \cap E) = \mathbf{P}^*(E) \text{ for all } E \subseteq \Omega \}$$

\mathcal{M} : The Measurable Sets

• Outer measure cannot always be a probability measure over *all* subsets of Ω (recall Proposition 1.2.6). Define a refined collection of subsets using \mathbf{P}^* :

$$\mathcal{M} = \{A \subseteq \Omega : \mathbf{P}^*(A \cap E) + \mathbf{P}^*(A^c \cap E) = \mathbf{P}^*(E) \text{ for all } E \subseteq \Omega\}$$

Lemma 6

We have the following results regarding \mathcal{M} :

- a) $\emptyset \in \mathcal{M}, \Omega \in \mathcal{M}$
- b) If $A \in \mathcal{M}$, then $A^c \in \mathcal{M}$ (Closed under complement)

\mathcal{M} : The Measurable Sets

• Outer measure cannot always be a probability measure over *all* subsets of Ω (recall Proposition 1.2.6). Define a refined collection of subsets using \mathbf{P}^* :

$$\mathcal{M} = \{ A \subseteq \Omega : \mathbf{P}^*(A \cap E) + \mathbf{P}^*(A^c \cap E) = \mathbf{P}^*(E) \text{ for all } E \subseteq \Omega \}$$

Lemma 6

We have the following results regarding \mathcal{M} :

- a) $\emptyset \in \mathcal{M}, \Omega \in \mathcal{M}$
- b) If $A \in \mathcal{M}$, then $A^c \in \mathcal{M}$ (Closed under complement)
 - **Remark:** We often need to verify that a given set $A \in \mathcal{M}$. By the countable subadditivity of our outer measure, we always have $\mathbf{P}^*(E) \leq \mathbf{P}^*(A \cap E) + \mathbf{P}^*(A^c \cap E)$ for all $E \subset \Omega$. If it's easier, we only need need to verify $\mathbf{P}^*(E) \geq \mathbf{P}^*(A \cap E) + \mathbf{P}^*(A^c \cap E)$ for all $E \subseteq \Omega$. This would can be achieved by using the finite superadditivity of \mathbf{P} .

• We still need to show that \mathcal{M} is a σ -algebra and \mathbf{P}^* is a proper probability measure over \mathcal{M} . A review of our results so far:

- We still need to show that \mathcal{M} is a σ -algebra and \mathbf{P}^* is a proper probability measure over \mathcal{M} . A review of our results so far:
- $\mathcal{M} = \{A : A \subseteq \Omega, \mathbf{P}^*(A \cap E) + \mathbf{P}^*(A^c \cap E) = \mathbf{P}^*(E) \text{ for all } E \subseteq \Omega\}.$ We already have $\emptyset \in \mathcal{M}, \Omega \in \mathcal{M}$ and \mathcal{M} is closed under complement. So we still need to prove that \mathcal{M} is closed under countable unions.

- We still need to show that \mathcal{M} is a σ -algebra and \mathbf{P}^* is a proper probability measure over \mathcal{M} . A review of our results so far:
- $\mathcal{M} = \{A : A \subseteq \Omega, \mathbf{P}^*(A \cap E) + \mathbf{P}^*(A^c \cap E) = \mathbf{P}^*(E) \text{ for all } E \subseteq \Omega\}.$ We already have $\emptyset \in \mathcal{M}, \Omega \in \mathcal{M}$ and \mathcal{M} is closed under complement. So we still need to prove that \mathcal{M} is closed under countable unions.
- Regarding \mathbf{P}^* , for any $A \in \mathcal{M}$, first, $\mathbf{P}^*(A) \geq 0$; second, in the definition of \mathcal{M} , by choosing $E = \Omega$, we have $\mathbf{P}^*(A) = 1 \mathbf{P}^*(A^c)$. So we still need to show that, on \mathcal{M} , \mathbf{P}^* is countably additive.

- We still need to show that \mathcal{M} is a σ -algebra and \mathbf{P}^* is a proper probability measure over \mathcal{M} . A review of our results so far:
- $\mathcal{M} = \{A : A \subseteq \Omega, \mathbf{P}^*(A \cap E) + \mathbf{P}^*(A^c \cap E) = \mathbf{P}^*(E) \text{ for all } E \subseteq \Omega\}.$ We already have $\emptyset \in \mathcal{M}, \Omega \in \mathcal{M}$ and \mathcal{M} is closed under complement. So we still need to prove that \mathcal{M} is closed under countable unions.
- Regarding \mathbf{P}^* , for any $A \in \mathcal{M}$, first, $\mathbf{P}^*(A) \geq 0$; second, in the definition of \mathcal{M} , by choosing $E = \Omega$, we have $\mathbf{P}^*(A) = 1 \mathbf{P}^*(A^c)$. So we still need to show that, on \mathcal{M} , \mathbf{P}^* is countably additive.
- Countable additivity of \mathbf{P}^* is shown in the next lecture, as well as the fact that \mathcal{M} is a sigma-field.