

Curso: PPGMNE

Disciplina: Programação Inteira e Otimização em Redes

Código: MNUM 7077

Entrega: INDIVIDUAL

Data da entrega: 10/11/2020, até as 23:59.

A cada dia de atraso na entrega desconto de 10% no valor final.

Lista 4 - Problema de Transporte.

Para cada um dos problemas a seguir, faça:

- a) Faça o modelo;
- b) Resolva utilizando um software;
- c) Resolva utilizando o método u-v (MODI), com os 3 métodos de solução inicial; (regra do canto noroeste, regra do custo mínimo e regra de vogel)
- d) Resolva pelo Método MODI-Tree (Loch, 2014)

Ex 1

Resolva o problema de transportes apresentado abaixo , no qual estão apresentados os custos unitários de transportes (em R\$/ton.), as demandas (em ton./mês) e as ofertas (em ton./mês)

	Mercado 1	Mercado 2	Mercado 3	Mercado 4	Oferta
Fábrica 1	10,00	7,00	5,00	6,00	220,00
Fábrica 2	12,00	7,00	6,00	4,00	180,00
Fábrica 3	13,00	6,00	3,00	5,00	230,00
Demanda	150,00	165,00	210,00	90,00	

Ex 2

Em períodos de contingência o escritório de tráfego da RODOVIA vê-se perante o problema de movimentar os carros de passageiros estacionados em 3 garagens da empresa e 3 localidades da rede de exploração. No quadro seguinte representam-se: o número de carros disponíveis nas garagens "Gi" (i = 1, 2, 3), o número de carros necessários em cada uma das localidades "Lj" (j = 1, 2, 3) e os tempos " t_{ij} ", em minutos, necessários para cada carro na "Gi" atingir a localidade "Lj"

	L1	L2	L3	Carros
				Disponíveis
G1	14	12	11	7
G2	14	12	13	9
G3	15	18	16	5
Carros Necessários	8	4	8	

Ex 3

O Expresso Rápido Faxina é uma empresa de transporte com quatro grandes terminais localizados em Curitiba, Cascavel, Londrina e Campo Mourão. Os pneus utilizados pela frota dessa empresa são padronizados. A empresa fez uma tomada de preços em três grandes revendedores de pneus e obteve as seguintes cotações:

LOCAL	Revendedor	Revendedor	Revendedor	Pneus	
	A	В	С	Necessários	
Curitiba	70	64	68	4000	
Londrina	74	62	65	8000	
Cascavel	62	68	64	3000	
Campo	62	72	66	5000	
Mourão					
Pneus	12000	6000	4000		
Disponíveis					

Se o objetivo da empresa Expresso Rápido Faxina é minimizar o custo total de aquisição dos pneus, quanto ela deverá comprar de cada revendedor?

Ex 4

Uma companhia aérea regional pode comprar seu combustível para jato a partir de qualquer um dentre três fornecedores. As necessidades da companhia aérea para o mês entrante em cada um dos três aeroportos em que ela opera são: 100.000 galões no aeroporto 1; 180.000 galões no aeroporto 2 e 300.000 no aeroporto 3. Cada fornecedor pode abastecer cada um dos aeroportos de acordo com os preços (em \$ por galão) dados no seguinte quadro:

	Aeroporto 1	Aeroporto 2	Aeroporto 3
Fornecedor 1	92	89	90
Fornecedor 2	91	91	95
Fornecedor 3	87	90	92

Cada fornecedor, contudo, está limitado pelo número total de galões que ele pode abastecer por mês. Estas capacidades são 320.000 galões para o fornecedor 1, 270.000 galões para o fornecedor 2 e 150.000 galões para o fornecedor 3. Determine a política de aquisição que suprirá as necessidades da companhia em cada aeroporto a um custo total mínimo.

Ex 5

Os mercados "Deise-Luzia" atendem 11 armazéns de três centros regionais, segundo os volumes mostrados no quadro a seguir. O custo médio de movimentar bens de um centro para um armazém é de \$ 0.50 por ton. por km. Ache o programa de transporte ótimo e seu custo.

Distância (km)

Centro	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	Capac. centros (kilotons.)
C1	10	22	29	45	11	31	42	61	36	21	45	500
C2	25	35	17	38	9	17	65	45	42	5	41	750
C3	18	19	22	29	24	54	39	78	51	14	38	400
Demanda Armazém (kilotons.)	112	85	138	146	77	89	101	215	53	49	153	

Prof. Cassius Tadeu Scarpin cassiusts@gmail.com cassiusts@ufpr.br