GPBR Exercise 3

Name: Soi Zhi Wen

Matriculation Number: 22-132-245

1.
$$A_{g_1} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A_{g_2} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

The eigendecomposition of g_1 :

```
 \begin{array}{l} [\ 2.48119430e + 00 \ -2.00000000e + 00 \ -1.17008649e + 00 \ 8.84119150e - 17 \ 6.88892183e - 01] \\ [\ -5.29899099e - 01 \ -5.00000000e - 01 \ -4.32486630e - 01 \ 5.00000000e - 01 \ -1.79338395e - 01] \\ [\ -4.27132287e - 01 \ -4.37318244e - 17 \ 7.39238740e - 01 \ 1.93496901e - 16 \ -5.20657368e - 01] \\ [\ -5.29899099e - 01 \ 5.00000000e - 01 \ -4.32486630e - 01 \ -5.00000000e - 01 \ -1.79338395e - 01] \\ [\ -3.57751240e - 01 \ -5.00000000e - 01 \ 1.99294651e - 01 \ -5.00000000e - 01 \ 5.76450945e - 01] \\ [\ -3.57751240e - 01 \ 5.00000000e - 01 \ 1.99294651e - 01 \ 5.00000000e - 01 \ 5.76450945e - 01] \\ \end{array}
```

The eigendecomposition of g_2 :

```
 \begin{array}{l} [-1.68133064\ 0.35792637\ 3.32340428\ -1. \ -1. \ ] \\ [[5.59032552e\ -01\ -7.70242078e\ -01\ 3.06936062e\ -01\ -9.59450110e\ -17\ 6.17375934e\ -17] \\ [-4.69959281e\ -01\ -1.37844975e\ -01\ 5.10036310e\ -01\ 6.11078733e\ -01\ -3.93209922e\ -01] \\ [-4.69959281e\ -01\ -1.37844975e\ -01\ 5.10036310e\ -01\ -6.11078733e\ -01\ 3.93209922e\ -01] \\ [3.50541834e\ -01\ 4.29374351e\ -01\ 4.39042241e\ -01\ -3.55784741e\ -01\ 5.87695463e\ -01] \\ [3.50541834e\ -01\ 4.29374351e\ -01\ 4.39042241e\ -01\ 3.55784741e\ -01\ 5.87695463e\ -01] \end{array}
```

The resulting $\overline{U}_{g_1}\overline{U}_{g_1}^T$ matrix:

```
 \begin{array}{l} [[-0.09727862\ 0.23285414\ -0.96490171\ 0.06279861\ -0.04040893] \\ [-0.51449592\ 0.31619855\ 0.10155012\ 0.05024537\ 0.78430042] \\ [-0.24621288\ 0.46197919\ 0.19870651\ 0.71601645\ -0.46073404] \\ [\, 0.51449592\ -0.31619855\ -0.10155012\ 0.66132411\ 0.3910905\ ] \\ [\, 0.63285385\ 0.72965138\ 0.09410395\ -0.20857277\ 0.13421001\ ] \end{array}
```

Assignment found by LSAP solver:

```
[0 \ 1 \ 2 \ 3 \ 4] = [1 \ 2 \ 3 \ 4 \ 5]
[1 \ 4 \ 2 \ 3 \ 0] = [b \ e \ c \ d \ a]
```

This indicates that

```
node 1 in g_1 is matched with node b in g_2, node 2 in g_1 is matched with node e in g_2, node 3 in g_1 is matched with node c in g_2, node 4 in g_1 is matched with node d in g_2,
```

2.

Spectral Graph Matching	Continuous Graph Matching
Compute the Laplacian matrix for each graph.	1. Compute the distance metric between each pair of nodes in each graph.
2. Compute the first k eigenvectors of each Laplacian matrix.	2. Solve the continuous optimization problem to find the best correspondence between the graphs.
3. Construct a matrix Y for each graph, where the columns are the k eigenvectors.	3. Use the optimal correspondence to transform one graph into the other.
4. Compute the orthogonal Procrustes transformation between the two Y matrices.	
5. Apply the transformation to one of the Y matrices.	
6. Compute the matrix product of the transformed Y matrix and the other original Y matrix.	

Spectral Graph Matching	Continuous Graph Matching				
Similarities					
Both approaches aim to find a permutation matrix that maps nodes in one graph to nodes in another graph, such that the two graphs are as similar as possible.					
Both approaches use optimization techniques to find the best permutation matrix that minimizes a given objective function.					
Both approaches are based on the idea of embedding graphs into a lower-dimensional space, where matching can be performed more efficiently.					
Differences					
Uses eigenvectors of the graph Laplacian to embed the graphs into a lower-dimensional space.	Uses a mapping function to embed th graphs into a continuous space.				
Requires that the two graphs being matched have the same number of nodes.	Can handle graphs of different sizes.				

More sensitive to noise in the eigenvectors.

Handle noisy data more effectively since it allows for a smooth mapping between the two graphs.

3.

	Ø	$T_2[1]$	$T_{2}[2]$	$T_2[3]$	$T_{2}[4]$
Ø	0	1	2	3	4
$T_1[1]$	1	0	1	2	3
$T_1[2]$	2	1	0	1	2
$T_1[3]$	3	2	1	1	2
$T_{1}[4]$	4	3	2	2	2
$T_1[5]$	5	4	3	2	3
$T_1[6]$	6	5	4	3	2

4.

