- 1. 데이터베이스 설계에서 물리적 설계에 해당하지 않는 것은?
 - ① 접근 경로(access path) 설계
 - ② 저장 레코드(stored record)의 양식(format) 설계
 - ③ 스키마의 평가와 정제(evaluation & refinement)
 - ④ 레코드 집중(clustering)의 분석 및 설계
- 2. ER 다이어그램에서 주민등록번호와 같은 기본키가 존재하지 않는 피부양자와 부양자의 관계를 표현하는 관계 기호에 해당하는 것은?

2

4

3. <보기>의 관계 데이터베이스 설계의 함수적 종속성과 정규형에 대한 설명 중 괄호에 들어갈 용어는?

- ① 다치 종속성(multivalued dependency)
- ② 이행 종속성(transitive dependency)
- ③ 부분 종속성(partial dependency)
- ④ 조인 종속성(join dependency)
- 4. 2단계 로킹(two-phase locking)에 대한 설명으로 가장 옳지 않은 것은?
 - ① 모든 트랜잭션이 이를 준수하면 직렬 가능(conflict serializable)하다.
 - ② 모든 트랜잭션이 이를 준수하면 교착 상태(deadlock) 에 빠지지 않는다.
 - ③ 확장(growing) 단계에서는 lock만 수행할 수 있고 unlock은 수행할 수 없다.
 - ④ 축소(shrinking) 단계에서는 unlock만 수행할 수 있고 lock은 수행할 수 없다.
- 5. 릴레이션 R(A, B, C, D)에 대한 함수적 종속성이 〈보기〉와 같이 주어졌을 때 슈퍼키(super key)가 아닌 것은?

		/ >	
	$ABC \to D$	$D \rightarrow A$	
① ABC		② BCD	
3 D		④ ABCD	

- 6. 일반적인 DBMS에서 문자열을 저장하기에 가장 적합한 속성의 데이터 타입은?
 - ① SMALLINT
 - ② VARCHAR(n)
 - ③ REAL
 - ④ TIME
- 7. <보기 1>의 내용에 따라 <보기 2>의 로크 호환성 테이블을 옳게 채운 것은?

----<보기 1>--

공유 로크(shared lock)와 배타 로크(exclusive lock)만 가지는 표준 로킹 기법에서, 공유 로크와 배타 로크의 관계는 로크 호환성 테이블로 나타낼 수 있다. 〈보기 2〉는 어떤 트랜잭션 T가 항목 X에 대해 열 제목에 명시된 로크를 보유하고 있고, 다른 트랜잭션 T'이 같은 항목 X에 대해 행 제목에 명시된 로크를 요청할 때, T'이 로크를 획득할 수 있는지 여부를 나타낸다.

		———〈出	7] 2>		
	'				
			Т 1	코유	
			공유 로크	배타 로크	
	T'	공유 로크	9	Ĺ)	
	획득 요청	배타 로크		2	
		<u>(L)</u>		2	
1	Yes	Yes	Yes	Yes	
2	Yes	Yes	Yes	No	
3	Yes	Yes	No	No	
4	Yes	No	No	No	

8. <보기>의 분산 데이터베이스의 단편화 투명성(fragmentation transparency)에 대한 설명에서, (개와 (내) 각각에 들어갈 용어로 가장 옳은 것은?

一<보기>一

- (개는 한 릴레이션을 서브 릴레이션으로 분산하며, 서브 릴레이션은 원래 릴레이션의 튜플(행)들의 부분집합이다.
- (나)는 한 릴레이션을 애트리뷰트들의 부분집합으로 이루어진 두 개 이상의 릴레이션들로 나눈다.

화

튜플 단편화

	<u>(71)</u>	<u>(4)</u>
1	수평 단편화	수직 단편화
2	수직 단편화	수평 단편화
3	튜플 단편화	애트리뷰트 단편

④ 애트리뷰트 단편화

9. <보기>의 트리 구조에 대한 설명으로 가장 옳은 것은?

- ① B⁺-트리로서, 삭제 과정에서 재분배가 필요 없는 장점이 있다.
- ② B-트리로서, 삭제 과정에서 재분배가 필요 없는 장점이 있다.
- ③ B⁺-트리로서, 루트 노드를 제외한 모든 노드는 절반 이상의 사용률(utilization)을 보장한다.
- ④ B-트리로서, 루트 노드를 제외한 모든 노드는 절반 이상의 사용률(utilization)을 보장한다.
- 10. <보기>의 개체-관계(Entity-Relationship) 모델링에서 EMPLOYEE와 SKILL 간의 관계는? (단, EMPLOYEE는 중업원에 대한 정보가, SKILL은 기술에 대한 정보가 저장되어 있다.)

-<보기>-

한 개의 EMPLOYEE 튜플은 많은 SKILL 튜플들과 연관될 수 있으며, 한 개의 SKILL 튜플은 많은 EMPLOYEE 튜플들과 연관될 수 있다.

- ① 1 대 1 관계
- ② 1 대 다 관계
- ③ 다 대 1 관계
- ④ 다 대 다 관계
- 11. 무결성 규정(integrity rule)에 대한 설명으로 가장 옳지 않은 것은?
 - ① 널(NULL) 무결성 제약조건이란 릴레이션의 특정 속성값이 널(NULL)이 될 수 없다는 규정이다.
 - ② 엔티티(entity) 무결성 제약조건이란 어떠한 기본키 (primary key) 값도 널(NULL)이 될 수 없다는 규정이다.
 - ③ 참조 무결성 제약조건이란 외래키 값은 널(NULL) 이거나 참조 릴레이션의 기본키(primary key) 값과 달라야 한다는 규정이다.
 - ④ 키 무결성 제약조건이란 하나의 테이블에는 적어도 하나의 키가 존재해야 한다는 규정이다.
- 12. 질의 최적화 방법으로 가장 옳지 않은 것은?
 - ① σ (select)는 최대한 빨리 수행한다.
 - ② ∏(project)는 최대한 빨리 수행한다.
 - ③ 수행 비용이 같다면 결과 테이블의 크기가 작은 연산을 먼저 수행한다.
 - ④ ×(cartesian product)는 최대한 빨리 수행한다.

13. <보기>에서 사원 테이블의 소속부서 속성은 부서 테이블의 부서번호 속성을 참조하는 외래키이다. 사원 테이블을 정의하는 CREATE TABLE을 작성할 때 외래키에 ON DELETE NO ACTION을 지정하였으면, 부서 테이블에서 홍보부 튜플을 삭제하려고 할 때 발생하는 일로 가장 옳은 것은?

			 〈보기>		
부서 테이블		사원 테이는	클	외래키	
부시	<u> </u>	부서이름	사원번호	사원이름	소속부서
	1	연구부	1001	김철수	3
	2	홍보부	1002	박수영	1
	3	인사부	1003	이영희	2
		,			

- ① 부서 테이블의 홍보부 튜플이 삭제되지 않는다.
- ② 사원 테이블에서 이영희 사원에 대한 튜플도 함께 삭제된다.
- ③ 사원 테이블에서 이영희 사원 튜플의 소속부서 속성 값이 널(NULL)로 변경된다.
- ④ 사원 테이블에서 이영희 사원 튜플의 소속부서 속성 값이 미리 지정한 기본값으로 변경된다.
- 14. 시스템이 교착 상태(deadlock)에 빠졌으면 교착 상태를 야기한 트랜잭션들 중의 일부를 철회해야 한다. 철회시킬 트랜잭션을 선택하는 것을 희생자 선택 (victim selection)이라 하며, 희생자 선택을 위한 올바 른 방안을 <보기>에서 모두 고른 것은?

-<보기>-

- ㄱ. 먼저 시작한 트랜잭션을 선택
- ㄴ. 나중에 시작한 트랜잭션을 선택
- 다. 많은 갱신을 수행한 트랜잭션을 선택
- ㄹ. 적은 갱신을 수행한 트랜잭션을 선택
- ① 7, ⊏

② ㄱ, ㄹ

③ し. ロ

④ ㄴ, ㄹ

15. <보기>와 같은 함수적 종속성 집합 F를 가지는 릴레이션 R(A, B, C, D, E)을 여러 릴레이션으로 분해하고자 할 때 이에 대한 설명으로 가장 옳지 않은 것은?

「F =
$$\{A \rightarrow B, C \rightarrow D, D \rightarrow AE\}$$

- ① R에서 모든 속성은 C에 함수적으로 종속될 수 있다.
- ② R₁(A, B), R₂(C, D, E), R₃(D, A)로 분해할 경우, R₁, R₂, R₃는 제3정규형을 만족한다.
- ③ R₁(D, A, B), R₂(C, D, E)로 분해할 경우, R₁, R₂는 제2정규형을 만족한다.
- ④ R₁(C, D), R₂(D, A, E), R₃(A, B)로 분해할 경우, R₁, R₂, R₃는 BCNF를 만족한다.

16. <보기>의 두 트랜잭션 T₁, T₂를 적절한 제어 없이 동시에 수행할 때 발생할 수 있는 상황에 대한 설명으로 가장 옳지 않은 것은?

 $T_1 \qquad T_2$ $read_item(X); \qquad read_item(X);$ $X = X - 5; \qquad X = X * 2;$ $read_item(Y); \qquad write_item(X);$ $write_item(X); \qquad read_item(Y);$ $Y = Y + 5; \qquad read_item(X);$ $write_item(Y);$

- ① 두 트랜잭션이 끝난 후 Y의 값에 오류가 발생할 가능성은 없다.
- ② 초기 주어진 X의 값이 10이라면 T₁의 read_item(X)에서 읽어 들인 X의 값은 10일 수도 있고 20일 수도 있다.
- ③ 초기 주어진 X의 값이 10이라면 두 트랜잭션이 끝난 후 X의 값은 10 또는 15가 될 것이다.
- ④ 초기 주어진 Y의 값이 10이라면 T₂의 read_item(Y)에서 읽어 들인 Y의 값은 10일 수도 있고 15일 수도 있다.
- 17. NoSQL 개발 동기가 된 기존의 관계형 데이터베이스 관리시스템(RDBMS)의 한계에 대한 설명으로 가장 옳지 않은 것은?
 - ① 애초에 테이블을 분할(partition)하여 저장하도록 설계되지 않아 분산처리에 어려움이 있을 수 있다.
 - ② 원본 데이터 구조가 테이블 형태가 아닐 경우 변환에 어려움이 있을 수 있다.
 - ③ SQL 언어는 테이블 형태가 아닌 데이터에 적용하기에 어려움이 있을 수 있다.
 - ④ 일반적으로 RDBMS는 일관성(consistency) 유지 기능이 부족하다.
- 18. (맥주→기저귀)의 관계에서 장바구니 분석(연관 규칙)의 지지도와 신뢰도를 구하는 데 필요한 정보가 아닌 것은?
 - ① 맥주가 포함된 거래 횟수
 - ② 맥주와 기저귀가 함께 거래된 횟수
 - ③ 기저귀가 포함된 거래 횟수
 - ④ 전체 거래 횟수

19. <보기>의 릴레이션 R과 S에 대하여 주어진 관계 대수식을 수행하려고 한다. 관계 대수식의 수행 결과로 가장 옳지 않은 것은?

			>	
R	sid	name	address	year
	1	문재훈	광양	7
	2	김형진	대구	6
	3	유제현	서울	9
	4	박진우	서울	8
	5	김현호	서울	2
	6	정승완	서울	5
	7	박성욱	부산	1
S	sid	score	dept	
	1	80	100	
	2	80	200	
	3	90	300	
	4	70	400	

① $\sigma_{\text{address}='서울'}(R) - \sigma_{\text{year} \geq 6}(R)$

6

sid	name	address	year
5	김현호	서울	2
6	정승완	서울	5

500

100

② $\pi_{\text{name,score}}(\sigma_{\text{score} \geq 80 \text{ and year} > 5}(R \bowtie S))$

name	score
문재훈	80
김형진	80
유제현	90
정승완	100

 \Im $\pi_{\text{name,address,year,score}}(\sigma_{\text{year} \geq 5}(R \bowtie S))$

name	address	year	score
문재훈	광양	7	80
김형진	대구	6	80
유제현	서울	9	90
박진우	서울	8	70
정승완	서울	5	100

4 $\pi_{\text{score,dept}}(\sigma_{\text{score} \geq 90}(S))$

score	dept
90	300
100	500

20. <보기 1>은 학생들에 대한 정보를 담고 있는 WORK_INFO 테이블이다. <보기 2>의 SQL 질의를 수행할 때 예상되는 출력 결과는?

-----<보기 1>--

Name	D_name	Salary
심종화	engineering_building	250
이준석	information_building	240
김성희	engineering_building	260
한상유	engineering_building	210
김태의	science_building	310
유상민	computer_building	290
김소희	information_building	220
김은빈	science_building	180
조성국	computer_building	300

- <보기 2>-

CREATE VIEW DEPT_INFO

(Dept_name, No_of_emps, Total_sal)
AS SELECT D_name, COUNT(*), SUM(Salary)
FROM WORK_INFO
GROUP BY D_name

① DEPT_INFO

COUNT(*)	SUM(Salary)
3	720
2	460
2	490
2	590

② DEPT_INFO

D_name	No_of_emps	Total_sal
engineering_building	3	720
information_building	2	460
science_building	2	490
computer_building	2	590

③ DEPT_INFO

Dept_name	COUNT(*)
engineering_building	3
information_building	2
science_building	2
computer_building	2

① DEPT_INFO

Dept_name	No_of_emps	Total_sal
engineering_building	3	720
information_building	2	460
science_building	2	490
computer_building	2	590