Central Limit Theorem

Yanrong Yang

Research School of Finance, Actuarial Studies and Statistics
The Australian National University

April 20, 2017

Content

- Central Limit Theorem (CLT)
- 2 Convergence in Distribution
- Examples to illustrate application of CLT
- summary

Central Limit Theorem

Theorem (CLT)

Suppose that $Y_1,Y_2,\ldots,Y_n\sim i.i.d.(\mu,\sigma^2)$, where $-\infty<\mu<+\infty$ and $0<\sigma^2<\infty$. Then the statistic $U_n=\frac{\bar{Y}-\mu}{\sigma/\sqrt{n}}$ will have $U_n\stackrel{d}{\longrightarrow} N(0,1)$, as $n\to\infty$.

- CLT usually needs two conditions: (1) relations between elements in the sequence; (2) differences in distributions.
- OLT does not require specific distributions on the population.
- It belongs to large sample theory.

Convergence in Distribution

A random sequence X_n converges in distribution to X is defined as follows.

Definition (Convergence in Distribution)

 $X_n \stackrel{d}{\longrightarrow} X$ means that $F_{X_n}(x) \longrightarrow F_X(x)$, $\forall x \in \mathbb{R}$, as $n \to \infty$.

- There are many kinds of converges in different senses, including convergence almost surely, convergence in probability, convergence in distribution, convergence in L^p norm and etc.
- **2 Slutsky's Theorem** If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} a$ with a being a constant, then (1) $Y_n X_n \xrightarrow{d} aX$; (2) $X_n + Y_n \xrightarrow{d} X + a$.

Example 1

As n is large, $\frac{\bar{Y}-\mu}{\sigma/\sqrt{n}} \dot{\sim} N(0,1)$.

Example 1: 200 numbers are randomly chosen from between 0 and 1. Find the probability that the average of those numbers is greater than 0.53. **Analysis**:

- Let Y_i be the *i*th number, i = 1, 2, ..., 200. $Y_1, Y_2, ..., Y_n \sim U(0, 1)$.
- $P(\bar{Y} > 0.53) = P\left(\frac{\bar{Y} \mu}{\sigma/\sqrt{n}} > \frac{0.53 1/2}{\sqrt{1/12}/\sqrt{200}}\right) \approx P(Z > 1.47) = 0.708.$

Example 2

Another way to consider application of CLT, as n is large, $\bar{Y} \dot{\sim} N(\mu, \sigma^2/n)$. **Example 2**: still consider Example 1.

Analysis:

- \bullet $\bar{Y} \sim N(1/2, (1/12)/200);$
- ② $P\left(\bar{Y} > 0.53\right) \approx P(U > 0.53) = P\left(Z > \frac{0.53 1/2}{(1/12)/200}\right) = 0.0708.$

Example 3

Another alternative way to consider application of CLT, as n is large, $\dot{Y}:=\sum_{i=1}^n Y_i \dot{\sim} N(n\mu,n\sigma^2).$

Example 3: A die is about to be rolled 50 times and each time you will win as many dollars as the number which comes up. Find the probability that you will win a total of at least \$200.

Analysis:

- Let Y_i be the number of dollars you will win on the ith roll. $\mu=\mathbb{E}Y_i=3.5$ and $\sigma^2=VarY_i=2.9167.$
- $P\left(\dot{Y} \ge 200\right) \approx P\left(U > 200\right) = P\left(Z > \frac{200 50 \times 3.5}{\sqrt{50 \times 2.9167}}\right) = 0.0192.$

Example 4: Normal Approximation to Binomial

Suppose that $Y \sim Bin(n,p)$. Then $Y = \sum_{i=1}^n Y_i$, where $Y \sim Bern(p)$. By CLT, we have $Y \sim N(np, np(1-p))$.

Example 4: A die is rolled n=120 times. Find the probability that at least 27 sixes come up.

Analysis:

- Let Y be the number of 6's. Then $Y \sim Bin(120, 1/6)$.
- 2 $Y \sim N(120 \times \frac{1}{6}, 120 \times \frac{1}{6} \times (1 \frac{1}{6})).$
- **3** $P(Y \ge 27) \approx P(U \ge 27) = P\left(Z > \frac{27 20}{\sqrt{16.667}}\right) = 0.0436.$

Summary

- 1 The meaning of central limit theorem;
- ② Application: Normal Approximation for some distributions.