Instructor: Brian Rashap Final Due: 12/08/23

Question 1 [15]

The sinusoidal voltage source in the ciruit below is developing a voltage equal to 50sin(400t)V.

- (a) Find the Thevenin voltage with respect to terminals a,b. Express in both complex (a+jb) and Phasor form.
- (b) Find the Thevenin impedance with respect to terminals a,b (in complex form).
- (c) Draw the Thevenin equivalent circuit using a voltage source, resistor, capacitor and/or inductor.

ENGR2910 - Final

Question 2 [15]

Find the value of R that makes the below circuit Critically Damped.

Question 3 [15]

Use the Node-Voltage method to find the matrix representation of V_1 and V_2 if $i_g = 5\cos{(2500t)}A$ and $v_g = 20\cos{(2500t + 90^\circ)}V$. You do NOT need to solve for V_1 and V_2 , nor reduce the matrix to reduced row echelon form.

${\bf Question}~{\bf 4}~[15]$

Find Z_{eq} (Z_{ab}) for the circuit below.

Question 5 [20]

- (a) What is the voltage at the inverting input (v_n) in terms of v_1 and v_2 .
- (b) Using Kirchhoff's Current Law, what is the equation for currents at the inverting input node?
- (c) Using KCL Equation from (b), derive the equation for v_0 as a function of v_1 and v_2 . What is the gain of this op amp circuit?
- (d) If $v_1 = 1V$ and $v_2 = 3 * \cos(\frac{\pi}{2}t)$, draw a graph of v_o vs time. Show at least two periods of the output.

${\bf Question} \,\, {\bf 6} \,\, [20]$

Assume there is no energy stored in the circuit below when the swithc is closed at t = 0.

- (a) Using the Source Transformation, redraw the circuit as a parallel RLC circuit.
- (b) Find $i_0(t)$ for $t \geq 0$.

Extra Credit

Who was Max Salazar (either a factual or humorous answer will be accepted)?

