



#### Plano de Ensino



- Apresentação. Revisão de Funções.
- Expressões Regulares.
- Gramática Regular.
- Autômatos Finitos Determinísticos.
- Conversão entre GR e AFD.
- Minimização de Autômatos.
- Autômatos Finitos Não-Determinísticos.
- Conversão de Autômatos AFD para AFND.
- Autômatos com Pilha.
- Máquinas de Turing.



## Livro-Texto



- Bibliografia Básica:
  - » MENEZES, Paulo Fernando Blauth. Linguagens Formais e Autômatos. 5ª ed. Porto Alegre: Bookman, 2008.
- Bibliografia Complementar:
  - » LEWIS, Ricki. Elementos da Teoria da Computação.
     2ª ed. Porto Alegre: Bookman, 2004.
  - » HOPCROFT, John E; ULLMAN, Jeffrey D; MOTWANI, Rajeev, SOUZA. Introdução a Teoria dos Autômatos, Linguagens e Computação. 1ª ed. São Paulo: CAMPUS, 2003.

| J. | Grai | nática | - AI | Tabe | ю |
|----|------|--------|------|------|---|



 Alfabeto (∑) → é um conjunto não vazio e finito de símbolos. Sendo assim, um conjunto também é considerado um alfabeto. Letras e dígitos são exemplos de símbolos usados frequentemente.

$$\Sigma$$
={a, e, i, o, u}  
 $\Sigma$ ={a, b, c, d, e, ..., z}  
 $\Sigma$ ={0, 1}

#### 3. Gramática - Palavra



- Palavra, cadeia de caracteres ou sentença → é uma seqüência finita de símbolos (do alfabeto) justapostos. Uma palavra sem símbolo ( $\varepsilon \rightarrow vazia$ ).
- Seja  $\Sigma = \{a, e, i, o, u\}$ 
  - » Palavra vazia ( $\epsilon$ )  $\rightarrow$  palavra sem símbolos  $\rightarrow$  $\sum = \{\epsilon\}$
  - » Conjunto de todas as palavras possíveis →  $\sum^*$  = {\$\epsilon\$, a, ae, aei, aaeea, aeiou, aaeiouu, ...}
  - » Conjunto de todas as palavras possíveis excetuando-se a palavra vazia →

 $\Sigma^+ = \{a, ae, aei, aaeea, aeiou, aaeiouu, ...\}$  ou  $\Sigma^+ = \Sigma^* - \{\epsilon\}$ 

## 3. Gramática - Palavra



- Tamanho de uma palavra → o tamanho ou comprimento de uma palavra w, representado por |w| é o número de símbolos que compõem a palavra.
- Seja ∑ = {a, e, i, o, u}
  - » Se w=aei então |w| = 3
  - » Se w=aeiouuae então |w| = 8
  - » Se w= $\varepsilon$  então |w| = 0 (sentença vazia)

#### 3. Gramática - Palavra



- Prefixo, Sufixo e Subpalavra → é qualquer seqüência de símbolos inicial (prefixo) ou final (sufixo) da palavra.
   Qualquer prefixo ou sufixo de uma palavra é uma subpalavra.
- Seja uma palavra w = abcb em ∑={a, b, c}
  - » Prefixos:  $\epsilon$ , a, ab, abc, abcb.
  - » Sufixos: ε, b, cb, bcb, abcb.

# 3. Gramática – Linguagem



- Uma linguagem formal é um conjunto de palavras sobre um alfabeto.
- Sendo ∑={a, b, c}:
  - » O conjunto vazio e o conjunto formado pela palavra vazia são linguagens sobre  $\Sigma$  ({ }  $\neq$  {\$\varepsilon})
  - » O conjunto de palíndromos (mesma leitura de ambos os lados) sobre  $\Sigma$  é um exemplo de linguagem infinita ( $\Sigma$  = { $\varepsilon$ , a, b, aa, bb, aaa, bbb, aba, bab, aaaa, ...}).

# 3. Gramática - Linguagem



- Concatenação → é uma justaposição dos símbolos que representam as palavras componentes.
  - » Associatividade: v(wt) = (vw)t
  - » Elemento neutro:  $\varepsilon w = w = w \varepsilon$
- Seja o alfabeto ∑={a, b, c} e as palavras v = baaaa e w = bb.
  - » vw = baaaabb
  - »  $v\varepsilon = v = baaaa$

## 3. Gramática - Linguagem



- Concatenação sucessiva → é uma justaposição com os símbolos da própria palavra de forma sucessiva; é representada na forma de expoente, ou seja, w<sup>n</sup>, onde w é a palavra e n o número de concatenações consecutivas.
  - $> w^0 = \epsilon$
  - $w^n = ww^{n-1}$ , para n>0
- Seja w uma palavra. Então:
  - » w1 = w
  - » w³ = www
  - » w<sup>5</sup> = wwwww
  - » wn = www...w (n vezes)

#### 3. Gramática - Gramática



- É uma quádrupla ordenada G = (V, T, P, S)
- » V → conjunto finito de símbolos variáveis ou não-terminais
  - » T → conjunto finito de símbolos terminais
  - » P → conjunto finito de pares, chamado regras de produção tal que a primeira componente é palavra de (V∪T)\* e a segunda componente é palavra de (V∪T)\*
  - » S → elemento de V chamado de variável inicial

## 3. Gramática - Gramática



- Regra de produção → uma regra de produção (α, β), representada por α→β, definem condições de geração das palavras da linguagem.
  - » Uma seqüência de produção α→β₁, α→β₂, ..., α→βn pode ser abreviada na forma α→β₁ | β₂ | ... | βn
  - » A aplicação de uma regra de produção é denominada derivação de uma palavra. A aplicação sucessiva de regras de produção permite derivar as palavras da linguagem representada pela gramática.

### 3. Gramática - Gramática



- Derivação → seja G = (V, T, P, S) uma gramática, uma derivação é um par da relação com domínio em (V∪T)+ e contra-domínio em (V∪T)\*.
- Um par  $(\alpha, \beta)$  é representado por  $\alpha \Rightarrow \beta$ . A relação  $\Rightarrow$  é indutivamente definida como segue:
  - » Para toda produção da forma S $\Rightarrow \beta$ , o primeiro componente é o símbolo inicial de G, tem-se: S  $\Rightarrow \beta$ .
  - » Para todo par  $\alpha \Rightarrow \beta$ , onde  $\beta = \beta_u \beta_v \beta_w$ , se  $\beta_v \rightarrow \beta_t$  é regra de P então:  $\beta = \beta_u \beta_t \beta_w$
- Portanto, uma derivação é a substituição de uma subpalavra de acordo com uma regra de produção.

#### 3. Gramática - Gramática



Linguagem Gerada → seja G = (V, T, P, S) uma gramática, a linguagem gerada pela gramática G, denotada por L(G) é composta por todas as palavras de símbolos terminais deriváveis a partir do símbolo S, ou seja:

 $L(G) = \{w \in T^* \mid S \Rightarrow^+ w\}$ 

- Convenções:
  - » A, B, C, D, ..., T → para símbolos variáveis
  - » a, b, c, d, ...,  $t \rightarrow$  para símbolos terminais

## 3. Gramática - Gramática



■ Exemplo 1: a gramática G = {V, T, P, S} onde:

V = {S, D}

 $T = \{0,\,1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\}$ 

 $\mathsf{P} = \{ \mathsf{S} \!\to\! \mathsf{D}, \, \mathsf{S} \!\to\! \mathsf{DS}, \, \mathsf{D} \!\to\! 0 |1|2|3|4|5|6|7|8|9 \}$ 

Derivação do número 243:

 $S{\Rightarrow}DS{\Rightarrow}2S{\Rightarrow}2DS{\Rightarrow}24S{\Rightarrow}24D{\Rightarrow}243$ 

 $S \Rightarrow 6243$ 

#### 3. Gramática - Gramática



- Exemplo 2: a gramática G = ({S, X, Y, A, B, F}, {a, b}, P, S) onde:
  - $\mathsf{P} = \{\mathsf{S} {\rightarrow} \mathsf{X}\mathsf{Y}, \; \mathsf{X} {\rightarrow} \mathsf{X}\mathsf{a}\mathsf{A} | \mathsf{X}\mathsf{b}\mathsf{B} | \mathsf{F},$ 
    - Aa→aA, Ab→bA, AY→Ya, Ba→aB, Bb→bB, BY→Yb,
    - $Fa \rightarrow aF, Fb \rightarrow bF, FY \rightarrow \varepsilon$
- Derivação da palavra baba:
  - $S{\Rightarrow}XY{\Rightarrow}XaAY{\Rightarrow}XaYa{\Rightarrow}XbBaYa{\Rightarrow}XbaBYa{\Rightarrow}XbaYba{\Rightarrow}FbaYba{\Rightarrow}$
  - bFaYba⇒ baFYba⇒baba
  - $S \Rightarrow^{10} baba$

### 3. Gramática – Tipos de Gramática



 Segundo a hierarquia de Chomsky, as gramáticas podem ser de quatro tipos. Para G = ( V, T, P, S ) e  $V = V \cup T$ , temos:



# 3. Gramática – Tipos de Gramática



- Tipo 0 Gramáticas Irrestritas (GI) → do lado esquerdo da produção pode haver uma seqüência de quaisquer símbolos, desde que, entre eles, haja um nãoterminal.
- Do lado direito da produção pode haver qualquer seqüência de símbolos, inclusive a sentença vazia.
  - » P = {  $\alpha \rightarrow \beta \mid \alpha \in V^+$  ,  $\beta \in V^*$  }

| <ul> <li>Tipo 1 - Gramáticas Sensíveis ao Contexto (GSC) → o comprimento da sentença do lado esquerdo deve ser menor ou igual ao comprimento da sentença do lado direito da produção. Do lado direito não é aceito a sentença vazia.</li> <li>» α→β ∈ P e  α  ≤  β </li> <li>• Ex: α₁Aα₂ → α₁Bα₂</li> </ul>                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                       |  |
| 3. Gramática – Tipos de Gramática                                                                                                                                                                                                                                                                                                     |  |
| <ul> <li>Tipo 2 - Gramáticas Livres de Contexto (GLC) → do lado esquerdo da produção deve, sempre, ocorrer um e apenas um símbolo variável. A sentença vazia também não é aceita do lado direito da produção.</li> <li>P = {α→β   α ∈ N e β ≠ ε}</li> <li>Ex: X → abcX (não importa o contexto de X)</li> </ul>                       |  |
|                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                       |  |
| 3. Gramática – Tipos de Gramática                                                                                                                                                                                                                                                                                                     |  |
| <ul> <li>Tipo 3 - Gramáticas Regulares (GR) → do lado esquerdo da produção deve, sempre, ocorrer um e apenas um símbolo variável e do lado direito podem ocorrer ou somente um terminal, ou um terminal seguido de um variável.</li> <li>» A → aB ou A → a ou seja,</li> <li>» P = { A → aX   A ∈ V, a ∈ T, X ∈ {V ∪ {ε}}}</li> </ul> |  |
|                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                       |  |

Anhanguera

3. Gramática - Tipos de Gramática

# 3. Gramática – Tipos de Gramática



- Conforme o tipo da gramática que dá origem a uma linguagem, estas se classificam em:
  - » LSC → Linguagem Sensível ao Contexto
  - » LLC  $\rightarrow$  Linguagem Livre de Contexto
  - » LR → Linguagem Regular

