

ASSIGNMENT AND DETECTION OF TRANSMEMBRANE PARTS OF A PROTEIN

PROJECT REPORT - 2022 - MASTER BIO-INFORMATICS

MAYA ZYGADLO

Transmembrane protein

Missing information on the lipid bilayer

- Made w/ detergent
- Position of the membrane

Environment

- Aqueous environment
- w/ detergent

Size

- TMP are larger
- Determine by NMR

Crystallisation

detects transmembrane part predicts membrane position

Algorithm main steps

Calculate accessibility score

Using DSSP

Recovering solvent-accessible AC

Scanning the protein

Via a sphere

Predicting the position of the membrane

With a score

Find the carbon alpha solvant-accessible

Extract the ASA from the result of dssp()

access_solvant(dssp, index)

Run the DSSP software on the PDB file

dssp(file)

Find the carbon alpha solvant accessible and stores it in a Pandas DataFrame

find_ca_access(dssp, file)

extract_ca_accessible.py

import : Pandas math matplotlib

Find the carbon alpha solvant-accessible

Create a hemisphere centred in (0, 0, 0) with 10 uniform points

fibonacci_sphere(samples=10)

Test if an atom is the membrane is_in_membrane(sphere_pt, ca_coords, point_min, memb_width)

Find the position of the membrane

position(sphere_points, ca_data)

Plot the protein and the membrane

plot(ca_data, memb)

Test if a carbon is from a hydrophobic residu or not

is_hydrophobe(carbon)

Calculate a plane

calculate_plane(sphere_pt, atom, memb_width)

calculate_membrane.py

Globular protein 1SI4

Visualisation

Membrane width variation

Parallelisation

to position the mebrane

increasing the number of points

For a better prediction

Thank you!

Any questions?