Stat 261 - Assign # 4 - Apring 2018 Calculations were done in R - ree attached R script = 0
Let (f_1, f_2, f_3) be the frequencies of the 3 categories (mm, FF, mFor Fm (i) Then the Basic model is $(f_1, f_2, f_3) \sim Multinomial (n = 28, P_1, P_2, F_3)$. There are $K = 3-1$ functionally indep unknown parameters. We derived the MIE'S in class! $\hat{P}_1 = \frac{f_1}{n}$
(ii) the hypothesis is: Ho: PI= 14, P2= 14, P3= 8 There are g=0 unknown parameters under Ho.
(ii) LRS $D = 2 \int l(\hat{p}_1, \hat{p}_2, \hat{p}_3) - l(\frac{3}{14}, \frac{3}{14}, \frac{5}{14}) \xi$. Where $l(p_1, p_2, p_3) = \frac{3}{2} f_1 \ln p_1$
We showed in class that $D = 2 \stackrel{?}{=} f_i \ln \left(\frac{f_i}{e_i} \right)$, where e_i is the expected frequency under H_s .
Here dobs = $a \left\{ 9 \ln \frac{9}{28 \times \frac{7}{14}} + 4 \ln \frac{4}{28 \times \frac{7}{14}} + 15 \ln \frac{15}{28 \times 8/14} \right\}$
p -value $\simeq P(Y^2(x-q-2)) \ge 2.12) = [.35]$
There is no evidence against the null hypothesis.) (puches =.35)
The data are consistent with the hypothesis that $P_1 = \frac{3}{14}$, $P_2 = \frac{3}{14}$ and $P_3 = \frac{8}{14}$, $(P = 135)$

(2)	(A)	(3)
-----	-----	-----

(2)

(i) Let $Y_i = \pm$ germinate from colour i = 1, 2, 3, 4.

(red, white, bene, yellow).

The Basic model is $Y_i \sim \text{Beniomical}(n_i = 100, p_i)$. $P_i = P(\text{germination for colour }i)$ There are k = 4 functionally indep unknown parameters; k = 4.

We derived the MLE's in closs: $\hat{P}_i = \hat{Y}_i'$.

(ii) The hypothesis is i Ho! Pr= Pr= Pr= Pr= 180.

There are q=0 unknown parameters under Ho.

(iii) LRS, $D = 2 \left\{ l(\hat{p_1}, \hat{p_2}, \hat{p_3}, \hat{p_4}) - l(.80, .80, .80, .80) \right\}$. $l(\hat{p_1}, \hat{p_2}, \hat{p_3}, \hat{p_4}) = \frac{2}{12} \left[y_i \ln p_i + (n_i - y_i) \ln (1 - p_i) \right]$.

[dobs = 13.81] Pralue = P{Y^2(4) > 13.81} = [.008]

There is very strong evidence against the null hypothesis.)

P The data are not consistent with the hypothesis that the gumination rate is 80% for all colorus. (P=.008)

(b) (i) The Basic model is the same as part (a).

(ii) The hypothesis is that: Ho: P=P2=P2=P4=P.

There is q=1 parameter to estimate.

lu(p) = l(p,p,p,p) = 2 [yi lop + (ni-yi) lon (i-p)].

= (= yi) lap + [=(n;-yi)] la(1-p)

 $\frac{d L_{\mu}}{d \rho} = \frac{\frac{7}{4} y_{i}}{\rho} = \frac{\frac{7}{4} y_{i}}{\rho} = \frac{\frac{7}{4} y_{i}}{\frac{7}{400}} = \frac{\frac{7}{400}}{\frac{7}{400}}$

(lii) LRS: $D = \partial_{x}^{2} l(\hat{p}_{1}, \hat{p}_{2}, \hat{p}_{3}, \hat{p}_{4}) - l(.7425, .7425, .7425, .7425)$. $dobs = \begin{bmatrix} 6.06 \end{bmatrix} \quad pvalu = P_{x}^{2} Y_{x}^{2} = 6.06$ = $\begin{bmatrix} .11 \end{bmatrix}$

There is no evidence against the null hypothesis.

P [The data are Considert with the hypothesis of a common]

(P = 11)

(P = 11)

(3) i). Let fij = prequency of Category (i,j).

The Basic model is (firstir, fz1, fz2) ~ Muldinomial (n=604,

P1, P12, P21, P22).

There are K = 4-1=3 functionally indep. unknown parametres. We derived the MLE'S in Class: $\hat{P}_{ij} = \frac{f_{ij}}{n}$

(ii) Ho! Pij = di Bj where: di = P{ itm snothing status}

Pj = P{ jtm disease status}.

Apportnesis of independence: q=2 parameters to estimate

We derived the MIE's in class: di = ri Bj = Gj

N.

where $Y_i = f_{ij} + f_{ij}$ the now totals. $g_i = f_{ij} + f_{ij}$ the column totals

and $\tilde{P}_{ij} = \tilde{X}_i \tilde{P}_j = \frac{r_i c_j}{n^2}$ $\tilde{e}_{ij} = n \tilde{P}_{ij} = r_i c_j$

(iii) LRS: $D = 2 \left\{ l(\hat{p}_{11}, \hat{p}_{12}, \hat{p}_{21}, \hat{p}_{22}) - l(\hat{p}_{113}, \hat{p}_{12}, \hat{p}_{213}, \hat{p}_{22}) \right\}$ $D = 2 \frac{3}{2} \frac{3}{2} \left\{ f_{ij} \ln \frac{f_{ij}}{e_{ij}} \right\}$ $dobs = \left[6.34 \right] \quad \text{Pvalue} = P(Y_{(1)}^2 > 6.34) = \left[.012 \right]$

There is evidence against the hypothesis of independence.

The data provides evidence against the hypothesis that.

Disease classification is independent of smoking status.

P = 1012. The estimated probabilities of camer are:

72/469 = .15 for smokers. and.

10/135 = 107 for nonsmokers.

Aside: The estimated frequencies under Ho are in the table

- State and the second state of the second s	- V - 2007 - 2007		
	Cancer.	Ofner.	To tal
Imoher	72 (63.67)	397 (405,33)	V = 469
Non-smoke	10 (18,33)	125 (116,67)	Y = 135
	Tigg.		
10101	C1 = 82	C2 = 522	604.

Note: The computations for the LRS here are very sensitive to rounding. For accurate results, keep all digits and compute using R.

Assignment 4 - R code

Mary Lesperance
March 12, 2018

Solutions for Lecture Assignment #4, March 2018

1. Multinomial simple hypothesis

```
freq <- c(9, 4, 15)
sum(freq)
## [1] 28
ell <- function(p,freq){
  \# Multinomial log-likelihood
  # freq = frequencies; p = probabilities
  sum(freq*log(p))
LRS <- function(p0, phat, freq){
  #Likelihood ratio statisitic
  # freq=frequencies; p0 = H0 probabilities
  # phat = MLE
  2*(ell(phat,freq) - ell(p0,freq))
}
dobs <- LRS(c(3,3,8)/14,freq/sum(freq),freq)</pre>
                                                #LRS observed
dobs
## [1] 2.118495
1-pchisq(dobs,2)
                   #pvalue
## [1] 0.3467165
```

2. Four binomials

(a) H0:
$$p_i = .80$$
, $i=1,2,3,4$

```
y<-c(76, 66, 81, 74)
n<-rep(100,4)

ell<-function(y,n,p){
    # Binomial log-likelihood
    # y = number of successes; n=size; p=probabilities
    sum(y*log(p) + (n-y)*log(1-p))
}</pre>
```

```
LRS<-function(phat,p0,y,n){
  #Likelihood ratio statistic, phat=MLE, p0=HO values
  # y = number of successes; n=size
  2*(ell(y,n,phat)-ell(y,n,p0))
phat<-y/n #MLE under BASIC model
p0 \leftarrow rep(.8, 4)
                   # HO under (a)
D<-LRS(phat,p0,y,n)
                       #observed LRS
## [1] 13.81242
1-pchisq(D,4)
                 #p-value
## [1] 0.00791843
(b) H0: p_1 = p_2 = p_3 = p_4 = p
p0<-sum(y)/sum(n) #MLE under (b) HO
p0
## [1] 0.7425
D<-LRS(phat,p0,y,n)
                       #observed LRS
## [1] 6.061518
1-pchisq(D,4-1)
                   #p-value
## [1] 0.1086553
```

3. Test of Independence

```
freq <- matrix(c(72, 397, 10, 125), nrow=2, byrow=TRUE)
freq
##
        [,1] [,2]
## [1,]
          72 397
          10 125
## [2,]
sum(freq)
## [1] 604
ell <- function(p,freq){</pre>
  # Multinomial log-likelihood
  # freq = frequencies; p = probabilities
  sum(freq*log(p))
LRS <- function(p, phat, freq){
```

```
#Likelihood ratio statistic, phat=MLE, p=HO values
  # freq=frequencies
  2*(ell(phat,freq) - ell(p,freq))
rsum <- rowSums(freq)
csum <- colSums(freq)</pre>
rsum
## [1] 469 135
csum
## [1] 82 522
eij <- outer(rsum, csum)/sum(freq) # expected freq - see help for outer
eij
                                     \# eij = r_i * c_j/n
##
             [,1]
                      [,2]
## [1,] 63.67219 405.3278
## [2,] 18.32781 116.6722
# estimated probs under HO are eij/sum(freq)
dobs <- LRS(c(eij)/sum(freq),c(freq)/sum(freq),c(freq))</pre>
                                                            #LRS observed
dobs
## [1] 6.33659
1-pchisq(dobs,1) #pvalue, df=(\#rows - 1)(\#cols - 1)
## [1] 0.0118272
```

Optional Pearson's chi-square test

```
GOF <- sum((freq-eij)^2/eij)
GOF

## [1] 5.638738
1-pchisq(GOF,1)
## [1] 0.01756784</pre>
```