HONGLIN WANG

honglin.wang@uconn.edu • (860) 771-8889 • harry-wang12.github.io • linkedin.com/in/honglin-harry-wang/

OVERVIEW

- 5+ years of experience in Data Mining, Machine Learning, Deep Learning, and Computer Vision
- Proficient in analyzing large-scale datasets using various Machine Leaning and Statistical models

EDUCATION

UNIVERSITY OF CONNECTICUT, School of Engineering

Storrs, CT

Ph. D. in Computer Science and Engineering

March 2024

Research interests: Developing and applying machine learning and deep learning in larger-scale

bio-datasets and delivering potential biology pattern.

Awards: Predoctoral prize for research excellence; Doctoral Dissertation Fellowship.

UNIVERSITY OF CONNECTICUT, School of Engineering

Storrs, CT

M. Sc. in Computer Science and Engineering

Jan 2019

Master Thesis: A Method to Score Pathways Using Heuristic Rules.

UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA

Chengdu, China

School of Information and Software Engineering

B. Eng. in Software Engineering (Mainframe Computers)

Awards: First class of People Fellowships in 2014 and 2015.

May 2017

WORK AND RESEARCH EXPERIENCE

UConn Computer Science and Engineering Department

Storrs, CT

Research Assistant

Jan 2019 – *Present*

- Apply Graph Neural Network and Variational Autoencoders to infer the cell communication with large spatial genomic data. (Transformer, GNN)
- Develop and deploy pipelines for analysis of large-scale biology dataset using multiple machine learning and statistical methods. (Dimensional reduction, Clustering, Stratification, Classification and Prediction)
- Design Machine Learning models to classify cell types with large scale multi-omics data.
- Develop and apply methods to identify cells from cell images. (Computer vision)

Biogen Co-op, Advanced Analytics, Digital Health

Cambridge, MA

co op, miraneca maignes, Dignai mean

Jun 2023 – Aug 2023

- Implement pipeline to compare machine learning and statical models for generating risk score for patient using baseline clinical trials factors. (Feature selection, prediction and model performance)
- Develop and implement algorithm to optimally stratify the patients based on risk scores. (Stratification)
- Build and deploy a user-friendly website to visualize the stratification result.
- Discuss and find the clinical usefulness and superiority of this work with the clinicians.

UConn Information Technology Services

Storrs, CT

Web developer / Software Engineer

May 2019 – Jun 2023

• Collaborate with developers from variety departments to build interactive website to visualize dataset from scientific databases. (PHP, Python, JavaScript, MySQL, JSON)

TECHNICAL CAPABILITIES

- Machine Learning & Deep learning: Graph Neural Networks, Convolutional Neural Networks, SVM, Linear Regression, K-NN; K-means, Leiden, DBSCAN; PCA, t-SNE, UMAP; AUC, ROC, F1-score
- Data Visualization: PowerBI, Matplotlib, Plotly, Python Dash, Cytoscape, Tableau
- Programming Languages: Python, SQL, PHP, JavaScript, Java, R, C/C++, MATLAB
- Statistical skills: Probability, Distribution, Hypothesis testing
- DBMS: MySQL, MongoDB
- Miscellaneous Tools: Jupiter Lab, GitHub, Apache, Scikit-learn, Pandas, NumPy, PyTorch, OpenCV, Scikit-image.

RECENT PROJECT

A semi-supervised graph neural network to identify cell type and infer cell communication Research project

Storrs, CT Jan 2023 – Present

- Segment cell from tissue images using self-develop code with image thresholding, noise removing and watershed method.
- Map cell into node from a graph and design an algorithm to link the nodes.
- Build Graph Convolution Networks with trainable edge weight.
- Train the model with only 5% human-labeled sample and tune the model with validation dataset.
- Reach the 95.53% of accuracy in 4 classes of cell type classifying comparing to 89.47% accuracy in MLP model when applying with mouse brain dataset.
- Design code using heuristic rule to infer cell communication with trained edge weight from the trained model.
- Collaborate with experts from neurology department to validate the inference results.

RECENT PUBLICATIONS

Conferences

- [23' BIBM] [Submitted] Honglin Wang, Chenyu Zhang, Merissa Olmer, Hannah Swahn, Martin K. Lotz, Peter Maye, David Rowe, and Dong-Guk Shin, GeneNet3D: a 3D-CNN based framework to infer gene pathway crosstalk using both bulk and single cell human cartilage datasets, 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2023.
- [22' ACM-BCB]. Wang, Honglin, Pujan Joshi, Chenyu Zhang, Peter F. Maye, David W. Rowe, and Dong-Guk Shin, rCom: a route-based framework inferring cell type communication and regulatory network using single cell data, 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, 2022.
- [22' BIBM]. C. Zhang, P. Joshi, Wang, Honglin, S. -H. Hong, R. Yan and D. -G. Shin, Pola Viz Reveals Microglia Polarization at Single Cell Level in Alzheimer's Disease, 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2022.
- [21' BIBM]. Wang, Honglin, Pujan Joshi, Seung-Hyun Hong, Dong-Ju Shin, and Dong-Guk Shin, ctBuilder: A framework for building pathway crosstalks by combining single cell data with bulk cell data, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2021.
- [21' BIBM]. Joshi, Pujan, Wang, Honglin, Salvatore Jaramillo, Seung-Hyun Hong, Charles Giardina, and Dong-Guk Shin, <u>Identification of Crosstalk between Biological Pathway Routes in Cancer Cohorts</u>, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2021.
- [20' BIBM]. Wang, Honglin, Pujan Joshi, Seung-Hyun Hong, Peter F. Maye, David W. Rowe, and Dong-Guk Shin, <u>cTAP: A Machine Learning Framework for Predicting Target Genes of a Transcription Factor using a Cohort of Gene Expression Data Sets, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2020.</u>
- [20' BIBM]. Joshi, Pujan, Brent Basso, Wang, Honglin, Seung-Hyun Hong, Charles Giardina, and Dong-Guk Shin, Identification of Key Biological Pathway Routes in Cancer Cohorts, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2020.

Journals

• [22' BMC Genomics]. Wang, Honglin, Pujan Joshi, Seung-Hyun Hong, Peter F. Maye, David W. Rowe, and Dong-Guk Shin. Predicting the targets of IRF8 and NFATc1 during osteoclast differentiation using the machine learning method framework cTAP, BMC genomics 23, no. 1 (2022): 1-18.

[22' Methods]. Joshi, Pujan, Brent Basso, Wang, Honglin, Seung-Hyun Hong, Charles Giardina, and Dong-Guk Shin. rPAC: Route based pathway analysis for cohorts of gene expression data sets. Methods 198 (2022): 76-87.