Einführung in die Stochastik

24. April 2017

Inhaltsverzeichnis

1.11	Beispiel																	1
1.12	Beispiel																	2

1.11 Beispiel

a) Einfache Irrfahrt Dimension d, N Schritte. $\Omega = \{(x_0, x_1, ..., x_N) : X_j \in$ $\mathbb{Z}^{d} \forall j, x_0 = 0, |x_{j+1} - x_j| = 1 \forall j \}.$ Also ist $|\Omega_N| = (2d)^N$, Setze $p(\omega = \frac{1}{(2d)^N}) \forall \omega \in \Omega.$

Fragestellungen:

1. $A_N := \{(x_1,...,x_N)\} \in \Omega_N : \exists j > 0$ mit $x_j = 0\}$. ("Rückkehr zum Start-

Es ist klar, dass $\mathbb{P}(A_N) \geq \frac{1}{2d} > 0$, falls $N \geq 2$. Es ist leicht zu zeigen, dass $N \mapsto \mathbb{P}(A_N)$ wächst monoton.

Knifflig: Was ist
$$\lim_{N\to\infty}$$
? < 1? = 1?

Antwort: = 1 für $d \le 2$, < 1 für $d \ge 3$.

2.
$$B_n, \alpha := \{\omega = (x_0, x_1, ..., x_N) \in \Omega_N : |x_N| \ge N^{\alpha} \}$$
 für $0 < \alpha \le 1$

Frage:
$$\lim_{N\to\inf} \mathbb{P}(B_{n,\alpha})$$
?

Antwort: 0, falls
$$\alpha > \frac{1}{2}$$

1, falls $\alpha < \frac{1}{2}$
Für $\alpha = \frac{1}{2}$ gilt

1, falls
$$\alpha < \frac{1}{2}$$

Für
$$\alpha = \frac{1}{2}$$
 gilt

$$\lim_{N \to \infty} \mathbb{P}(B_{n,\alpha}) = \frac{V_k(d)}{(2\pi)^{\frac{d}{2}}} \int_1^{\infty} r^{d-1} \exp(\frac{1}{2}r^2) dr$$

(dabei ist $V_k(d)$ das Volumen der d-Dimensionalen Einheitskugel).

- b) Selbstvermeidende Irrfahrt Dimension d, N Schritte.
 - 1. $\Omega_N^0 = \{(x_0, x_1, ..., x_N) \in \Omega_N : x_i \neq x_j \text{ falls } i \neq j\}$ Dann gilt für die Anzahl der Pfade:

$$|\Omega_N^0| = \begin{cases} 2, & \text{falls } d = 1\\ ??, & \text{falls } d > 1 \end{cases}$$

und es ist
$$p(\omega) = \frac{1}{|\Omega_N^0| \forall \omega \in \Omega_N^0}$$
.

2. Wie in a)2.

Frage Was ist $\lim_{N\to\infty} \mathbb{P}(B_{N,\alpha}^0)$.

Bekannt $\exists \alpha_c > 0 \text{ mit}$

$$\lim_{N \to \infty} \mathbb{P}(\mathbb{B}_{\kappa,\alpha}^{\nu}) = \begin{cases} 0, & \text{falls } \alpha > \alpha_c \\ 1, & \text{falls } \alpha < \alpha_c \end{cases}$$

Bekannte Werte: d=1 $\alpha_c=1$

d=2 $\alpha_c=\frac{3}{4}$, falls SLE-Conjecture stimmt

 $d = 3 \ \alpha_c \approx 0,5876 \ (Numerik)$

 $d \ge 4 \ \alpha_c = \frac{1}{2}$

1.12 Beispiel

Auswählen einer Zufälligen rellen Zahl in [0,1], alle Zahlen sollen di gleich Wahrscheinlichkeit haben:

- [0, 1] ist nicht endlich, also ist Gleiche Wahrscheinlichkeit für alle Zahlen unmöglich.
- [0, 1) ist nicht abzählbar, also scheitert der bisherige Ansatz mit der Zähldichte.

Ein möglicher Ausweg Definiere $\mathbb{P}([a,b]) = \mathbb{P}((a,b)) = \mathbb{P}([a,b)) = \mathbb{P}((a,b])$. Die Erweiterung, sodass $\forall A \in \mathscr{P}([0,1]) \ \mathbb{P}(A)$ definiert ist, ist nicht möglich.

Lösung: Definiere \mathbb{P} nicht auf allen Mengen $\mathscr{P}([0,1])$.

Definition 1.13. Sei Ω eine nichtleere Menge.

Ein Mengensystem $\mathscr{F} \subset \mathscr{P}(\Omega)$ heißt σ -Algebra, falls

- 1. $\Omega \in \mathscr{F}$
- 2. Falls $A \in \mathcal{F}$, dann auch $A^C \in \mathcal{F}$.
- 3. Falls $A_1, A_2, ... \in \mathscr{F}$, dann auch $\bigcap A_i \in \mathscr{F}$.
- (Ω, \mathscr{F}) heißt dann **messbarer Raum** oder **Ereignisraum**.

Bemerkung1.14. ${\mathscr F}$ ist "die Menge aller Teilmengen von $\Omega,$ für die die zugehörige Ja-Nein-Frage beantwortbar ist".

Daher meint

- 1. "Ist $\omega \in \Omega$ " muss beantwortbar sein.
- 2. Falls "Ist $\omega \in A$?" beantwortbar, so ist auch "Ist $\omega \notin A$?" beantwortbar.
- 3. Falls "Ist $\omega \in A_i$?" beantwortbar für alle i, dann ist auch "Ist ω in irgendeinem A_i ?" beantwortbar.

Beispiel 1.15. Sei $\Omega = [0, 1)$, dann ist

1. $\mathscr{F}_0 := \{\emptyset, \Omega\}$

- 2. $\mathscr{F}_1 := \{\emptyset, [0, \frac{1}{3}), [\frac{1}{3}, 1), \Omega\}.$ Die Frage "Ist $\omega \geq \frac{1}{2}$ " ist hier <u>nicht</u> beantwortbar!
- 3. $A_{j,n} := \left[\frac{j}{n}, \frac{j+1}{n}\right), n \text{ ist fest, } j \ge n.$ $\mathscr{F}_2 = \left\{\bigcup_{k=1}^n B_{k,n} : B_{k,n} \in \{\emptyset, A_{k,n}\}\right\}$
- 4. $\mathscr{F}_3 = \mathscr{P}(\Omega)$ ist ebenfalls eine σ -Algebra.

Satz 1.16. Sei $\mathscr{G} \subset \mathscr{P}(\Omega)$ ein Mengensystem. Sei $\Sigma := \{\mathscr{A} \subset \mathscr{P}(\Omega) : \mathscr{A} \text{ ist } \sigma\text{-Algebra und } \mathscr{G} \subset \mathscr{A}.$

Dann ist auch $\bigcap_{\mathscr{A}\in\Sigma}\mathscr{A}$ eine σ -Algebra.

Definition 1.16. $\sigma(\mathscr{G}) := \bigcap_{\mathscr{A} \in \Sigma} \mathscr{A}$ heißt die von \mathscr{G} erzeugt σ -Algebra.

Definition 1.17. Sei $\Omega = \mathbb{R}$, $\mathscr{G} := \{[a,b] : a,b \in \mathbb{R}, a < b\}$. $\mathscr{B} := \sigma(\mathscr{G})$ heiß **Borel**- σ -**Algebra**.

Bemerkung 1.18. 1. \mathcal{B} enthält alle offenen Mengen, alle abbgeschlossen Mengen und alle halboffenen Intervalle.

- 2. $\mathscr{B} \subsetneq \mathscr{P}(\Omega)$.
- 3. \mathcal{B} kann nicht abzählbar konstruiert werden.
- 4. $\mathscr{B} = \sigma(\{(-\infty, c]\} : c \in \mathbb{R}).$
- 5. Falls $\Omega_o 0 \subset \mathbb{R}$, $\Omega_0 \neq \emptyset$, dann ist

$$\mathscr{B}_{\Omega_0} := \{ A \cap \Omega_0 : A \in \mathscr{B}(\mathbb{R}) \}$$

eine σ -Algebra, die **Einschränkung** von \mathscr{B} auf Ω_0 .

Definition 1.19. Seien $E_1, E_2, ..., E_N$ Mengen, $N \leq \infty$. \mathscr{E}_i seien σ -Algebren auf E_i und es sei

$$\Omega = \sum_{i=1}^{N} E_i = \{(e_1, ..., e_N) : e_i \in E_i \forall i \le N\}$$

Eine Menge der Form

$$A_{j,B_i} = \{(e_1, ..., e_N) : e_j \in B_j, \text{ andere } e_k \text{ beliebig}\}$$

mit $B_j \in \mathscr{E}_j, j \leq N$ heißt **Zylindermenge**.

Definition 1.19. Die σ-Algebra in Ω die von allen Zylindermengen Erzeugt wird heißt **Produkt-**σ-**Algebra**. Man nennt \mathscr{Z} das System der Zylindermenge und $\mathscr{E}_1 \otimes \mathscr{E}_2 \otimes ... \otimes \mathscr{E}_N := \sigma(\mathscr{Z})$.