Чисельні методи оптимізації функцій

Лекція 11

В основі проектувати нових, ефективніших та дешевших технічних систем, а також для покращення якості функціонування існуючих систем лежить процес оптимізації.

Ефективність методів оптимізації, які дозволяють вибирати найкращий варіант без перевірки всіх можливих варіантів, тісно пов'язана із широким використанням досягнень у галузі математики шляхом реалізації ітераційних обчислювальних схем.

Задача одновимірної оптимізації

Цільова функція (функція мети) — це вираз (функція), значення якого необхідно мінімізувати або максимізувати.

Задана функція F(x). Треба знайти мінімум (максимум) цієї функції на інтервалі [a,b] з заданою точністю ε .

Цільова функція F(x) є **унімодальною**, якщо вона має єдиний екстремум на [a,b].

Деякі алгоритми оптимізації пристосовані до пошуку максимуму, а інші – для пошуку мінімуму.

Унімодальні функції

Функція з локальними та глобальними оптимумами

Зведення задачі мінімізації до задачі пошуку максимуму

(зміна знаку цільової функції на протилежний)

Надалі вважаємо, що розв'язується задача на мінімум.

Методи оптимізації

- методи прямого пошуку, що базуються на обчисленні тільки значень цільової функції;
- градієнтні методи, в яких використовуються точні значення перших похідних f(x);
- методи другого порядку, в яких поряд з першими похідними використовуються також другі похідні функції f(x).

Знайти значення **проектного параметра** x цільової функції f(x) на **інтервалі невизначеності** [a,b].

В процесі пошуку оптимуму цільової функції цей інтервал постійно зменшується (звужується).

Тому методи одновимірної оптимізації називають методами звуження інтервалу невизначеності.

- Метод рівномірного пошуку,
- метод дихотомії (поділу відрізку навпіл) ,
- метод золотого перерізу,
- метод Фібоначчі.

Вид цільової функції

Однопараметрична

Багатопараметрична

Етапи комп'ютерної одновимірної оптимізації

- **Локалізація** встановлення меж відрізка, на якому реалізується процедура пошуку оптимуму.
- Уточнення зменшення відрізка до заданої похибки обчислення за допомогою ітераційних алгоритмів.

Умова закінчення ітераційного процесу:

$$|b-a| \leq \varepsilon$$
.

Процедура пошуку мінімуму

- розбиття відрізка на **відрізки унімодальності** в кожному з яких функція унімодальна;
- уточнення точки мінімуму на кожному відрізку, тобто **знаходження локального мінімуму** із заданою точністю;
- вибір точки мінімуму серед точок локального мінімуму шляхом виділення тієї, в якій значення функції мети найменше.

Відділення відрізків унімодальності

1. Виберемо п, визначимо крок

$$h_0 = (b-a)/n.$$

$$x_0 = a$$
, $x_1 = x_0 + h_0$, $x_2 = x_0 + 2h_0$, ..., $x_n = x_0 + n \cdot h = b$.

Обчислимо

$$y_0 = f(x_0), \quad y_1 = f(x_1), ..., y_N = f(x_n).$$

2. Розглянемо відрізки $[x_{i-1}, x_{i+1}]$, i = 1, 2, ..., n-1.

Вибираємо такі: $y_i \leq y_{i-1}, \ y_i \leq y_{i+1}$.

До них приєднаємо:

відрізок $[a, x_1]$, якщо $y_0 < y_1$,

відрізок $[x_{n-1},b]$, якщо $y_{n-1} > y_n$.

Число виділених відрізків - K_0 .

3. Процедуру виділення відрізків повторюємо для

$$h_1 = h_0 / 2$$
, $h_2 = h_0 / 4,..., h_m = h_0 / 2^m$.

Якщо з деякого кроку h_i числа K_i , K_{i+1} . K_{i+k-1} співпадають підряд k-разів, то процес відділення закінчуємо, і як відрізки унімодальності, вибираємо відрізки, виділені для кроку h_{i+k-1} . На практиці число n вибирається таким, щоб крок h_0 був у декілька разів більше заданої точності ε , а число k в проміжку від 2 до 5.

r,

Приклад 1. Відділити точки локального мінімуму для функції

$$f(x) = 5\cos x - 3\sin x$$
 на відрізку [2;9,2] при $n = 12$ і $k = 2$.

Крок

$$h_0 = (9,2-2)/12 = 7,2/12 = 0,6$$
.

$$x_0 = a = 2$$

$$x_1 = a + h_0 = 2 + 0.6 = 2.6$$

$$x_2 = a + 2h_0 = 2 + 1,2 = 3,2$$

......

$$x_{12} = a + 12h_0 = 2 + 7,2 = 9,2$$

i	0	1	2	3	4	5	6
x_{i}	2	2,6	3,2	3,8	4,4	5,0	5,6
$f(x_i)$	- 4,807	- 5,883	- 4,816	- 2,119	1,32 1	4,29 5	5,77 3
i	7	8	9	10	11	12	
x_{i}	6,2	6,8	7,4	8	8,6	9,2	
f(x)	5,22 9	2,86 3	0,502	- 3,697	- 5,597	- 5,542	

Розглядаємо відрізки [2;3,2], [2,6;3,8], [3,2;4,4] [2;3,2]

$$-5,883 = f(2,6) < f(2) = -4,807$$

 $-5,883 = f(2,6) < f(3,2) = -4,816$

- 1) [2;3,2] з центром в точці x = 2,6 і
- 2) [8; 9,2] з центром в точці x = 8,6.

10

Виділення відрізків унімодальності

$$K_0 = 2$$
.

Крок
$$h_1 = 0.6/2 = 0.3$$
, $K_1 = 2$

- 1) [2,3;2,9] з центром в точці x=2,6 і
- 2) [8,6;9,2] з центром в точці x = 8,9.

Оскільки $K_0 = K_1 = 2$, то завершуємо процес.

i	x_{i}	$f(x_i)$	i	x_i	$f(x_i)$
0	2	-4,807	12	5,6	5,773
1	2,3	-5,568	13	5,9	5,757
2	2,6	-5,883	14	6,2	5,229
3	2,9	-5,572	15	6,5	4,24
4	3,2	-4,816	16	6,8	2,863
5	3,5	-3,627	17	7,1	1,248
6	3,8	-2,119	18	7,4	-0,502
7	4,1	-0,421	19	7,7	-2,199
8	4,4	1,321	20	8,0	-3,697
9	4,7	2,937	21	8,3	-4,863
10	5	4,295	22	8,6	-5,597
11	5,3	5,266	23	8,9	-5,83
			24	9,2	-5,542

Метод рівномірного пошуку

Виконується табуляція функції F(x) з деяким кроком зміни x і визначається її найменше (найбільше) значення.

Метод рівномірного пошуку— це найбільш непродуктивний метод розв'язання задачі оптимізації.

.

Метод дихотомії

- 1. Ввести значення **A, B,** ε .
- 2. Обчислити $x_m = (A+B)/2$.
- 3. Обчислити значення функції $f_m = f(x_m)$.
- 4. Обчислити значення **L=B-A**.
- 5. Якщо **L<** ε процес завершити, за точку мінімуму вважати **х**_m .
 - 6. Обчислити значення

$$x_1 = a + L/4$$
, $f_1 = F(x_1)$, $x_2 = b - L/4$, $f_2 = F(x_2)$.

7. Якщо $f_1 < f_m$, тоді $B = x_m$, $x_m = x_1$, $f_m = f_1$; перейти до п.4;

якщо
$$f_2 < f_m$$
, тоді $A = x_m$, $x_m = x_2$, $f_m = f_2$; перейти до п.4.

8. Виконати $A = x_1$, $B = x_2$; перейти до п.4.

Метод дихотомії

Лекція 11. Оптимізація функцій

M

Метод золотого перетину

Цей метод є **найбільш ефективним.**

$$\frac{b-a}{b-x} = \frac{b-x}{x-a},$$

$$x_1 = a + (1-\alpha)(b-a) \qquad x_2 = a + \alpha(b-a),$$

∂e
$$\alpha = \frac{\sqrt{5} - 1}{2} \approx 0,618034$$
.

Ілюстрація методу золотого перетину

м

Точка x_1 виконує золотий перетин відрізка $[a,x_2]$, а точка x_2 - золотий перетин відрізка $[x_1,b]$.

Параметри, що задаються: а, b, ε . У алгоритмі застосовується також параметр α , він дорівнює: $\alpha = (\sqrt{5}-1)/2$.

Лекція 11. Оптимізація функцій

M

Схема алгоритму:

- 1. Задати параметри: a, b, ε . Обчислити I = b-a .
- 2. Якщо I< ε , то завершити процес. За точку мінімуму вважати значення x = (a+b)/2 .
 - 3. Обчислити $x_1 = a + (1-\alpha) I$, $x_2 = a + \alpha I$.
 - 4. Обчислити нове значення І за правилом: $I = \alpha I$.
- 5. Якщо $f(x_1) < f(x_2)$, то продовжуємо пошук мінімуму на проміжку $[a, x_2]$, тобто $b = x_2$, $x_2 = x_1$, $x_1 = a + (1 \alpha)I$,

якщо ні, то на проміжку $[x_1,b]$, тобто $a=x_1$, $x_1=x$, $x_2=a+\alpha$ I.

На цих проміжках вже є одна точка, що робить золотий перетин, потрібно визначити іншу.

6. Перейти до п.2.

Продовжуємо описаний алгоритм доти, поки інтервал невизначеності I< є.

Приклад 1. Знайти мінімум функції $f(x) = -e^{-x} \ln(x)$ на інтервалі [0,2].

Істинний мінімум знаходиться в точці 1,76322211, де значення функції дорівнює -0, 0972601313.

Метод Фібоначчі

Задано $[x_1, x_3]$, $f(x_2)$

Припустимо $x_2 - x_1 = L$ і $x_3 - x_2 = R$, L > R . Якщо x_4 знаходиться на інтервалі (x_1, x_2) , то:

- 1. Якщо $f(x_4) < f(x_2)$, то новим інтервалом невизначеності буде (x_1, x_2) довжиною $x_2 x_1 = L$.
- 2. Якщо $f(x_4) > f(x_2)$, те новим інтервалом невизначеності буде (x_4, x_3) довжиною $x_3 x_4$.

Геометрична інтерпретація ітераційного процесу Фібоначчі

$$L_{n-1} = 2L_n - \varepsilon,$$

$$L_{n-2} = L_{n-1} + L_n = 3L_n - \varepsilon,$$

$$L_{n-3} = L_{n-2} + L_{n-1} = 5L_n - 2\varepsilon,$$

$$L_{n-4} = L_{n-3} + L_{n-2} = 8L_n - 3\varepsilon i \, m. \, \partial.$$

Послідовність чисел Фібоначчі:

$$F_0 = 1, F_1 = 1, F_k = F_{k-1} + F_{k-2}$$

для k = 2,3,..., moдi

$$L_{n-j} = F_{j+1}L_n - F_{j-1}\mathcal{E}, \quad j = 1,2,...,n-1.$$

Якщо початковий інтервал (a,b) має довжину $L_1 = (b-a)$, то

$$L_1 = F_n L_n - \varepsilon \cdot F_{n-2}$$

$$L_{n} = \frac{L_{1}}{F_{n}} + \varepsilon \frac{F_{n-1}}{F_{n}}$$

Тобто

М

Метод Фібоначчі, названий так через появу при пошуку чисел Фібоначчі, є ітераційною процедурою.

В процесі пошуку інтервалу (x_1, x_2) з точкою x_2 , що вже лежить в цьому інтервалі, наступна точка x_4 завжди вибирається такою, що

$$x_3 - x_4 = x_2 - x_1 a fo x_4 - x_1 = x_3 - x_2$$

тобто

$$\chi_4 = \chi_1 - \chi_2 + \chi_3$$

M

ПОРІВНЯННЯ МЕТОДІВ ОДНОВИМІРНОГО ПОШУКУ

Ефективність алгоритму - число обчислень функції, необхідне для досягнення необхідного звуження інтервалу невизначеності.

Найкращий - метод Фібоначчі, (зол. перетину). найгірший – метод загального пошуку.

Універсальність алгоритму - можливість його застосування для розв'язку різноманітних задач.

Метод Фібоначчі поступається іншим.

Висновок: не існує універсального алгоритму, який дозволяв би розв'язувати будь-які задачі.

Багатовимірна оптимізація

Зміст задачі багатовимірної оптимізації - пошук мінімуму (максимуму) функції від п аргументів:

$$F(x_1, x_2, ..., x_n) \longrightarrow \min. \tag{1}$$

Якщо на змінні $x_1, x_2, ..., x_n$ не накладається ніяких обмежень, то така задача називається **класичною** задачею оптимізації (без обмежень).

Будемо вважати, що цільова функція є гладкою і унімодальною. У шуканій точці мінімуму усі часткові похідні дорівнюють нулю:

$$\frac{\partial F}{\partial x_i}(x_1, x_2, \dots, x_n) = 0 \quad , \quad i = \overline{1, m}.$$
 (2)

Таким чином, задача зводиться до задачі розв'язування системи нелінійних рівнянь.

Метод Ньютона:

$$\vec{x}_{k+1} = \vec{x}_k + \vec{\Delta}_k$$
, $R(\vec{x}_k) \cdot \vec{\Delta}_k = -\nabla F(\vec{x}_k)$,

де k - номер ітерації, $\vec{\Delta}_k$ - поправка, яка знаходиться з СЛР.

$$R(\vec{x}_k) = \begin{pmatrix} \frac{\partial^2 F(\vec{x}_k)}{\partial x_1 \partial x_1} & \frac{\partial^2 F(\vec{x}_k)}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 F(\vec{x}_k)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 F(\vec{x}_k)}{\partial x_2 \partial x_1} & \frac{\partial^2 F(\vec{x}_k)}{\partial x_2 \partial x_2} & \dots & \frac{\partial^2 F(\vec{x}_k)}{\partial x_2 \partial x_n} \\ \dots & & & & \\ \frac{\partial^2 F(\vec{x}_k)}{\partial x_n \partial x_1} & \frac{\partial^2 F(\vec{x}_k)}{\partial x_n \partial x_2} & & \frac{\partial^2 F(\vec{x}_k)}{\partial x_n \partial x_n} \end{pmatrix},$$

Критерій закінчення обчислень:

$$|\vec{\Delta}_k| < \varepsilon$$
.

Дякую за увагу!