Joey Rudek (he/they)

EDUCATION

University of California, San Diego

M.S. Computer Science; Advisor: Dean Tullsen; GPA: 3.74

San Diego, CA

Spring 2025

University of Virginia

B.A. Computer Science, Mathematics; Advisor: Ashish Venkat; GPA: 3.86

Charlottesville, VA

Email: rudek.joseph@gmail.com

May 2021

Experience

Intel Corporation

Santa Clara, CA

Security and Privacy Research Intern

June 2023 - September 2023

• Developed a gem5 implementation of **Cryptographic Capability Computing** (LeMay et al.) as part of the DARPA HARDEN program.

Rivos Inc.

Mountain View, CA

Software Intern

June 2022 - September 2022

• Developed RISC-V designs for low-overhead hardware-level memory isolation and control flow integrity, then implemented both in the gem5 architectural simulator.

TEACHING EXPERIENCE

University of California, San Diego

San Diego, CA

Teaching Assistant

Winter 2023, Fall 2024

- Sole TA for graduate **Teaching Methods in Computer Science** (Fall 2024). Responsibilities included all grading in the course, almost all logistics, meeting with students to workshop every in-class presentation, and acting as liaison between the class and the professor through staff meetings.
- Structured and led weekly discussion sections for undergraduate **Introduction to Computer Architecture** (Winter 2023). Also graded student assignments, held office hours, and participated in weekly staff meetings.

University of Virginia

Charlottesville, VA

Undergraduate Teaching Assistant

September 2018 - May 2021

- Recipient of the 2021 Louis T. Rader Undergraduate Teaching Award.
- Instructional staff for Computer Architecture (one semester), Theory of Computation (three semesters), and Introduction to Programming (four semesters).

SELECTED PUBLICATIONS

- Going Beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process Isolation with HFI (ASPLOS 2023)
 - o S. Narayan, T. Garfinkel, M. Taram, **J. Rudek**, D. Moghimi, E. Johnson, C. Fallin, A. Vahldiek-Oberwagner, M. LeMay, R. Sahita, D. Tullsen, D. Stefan
 - Hardware extension for low-overhead memory safety and Spectre-proofing guarantees in WebAssembly.
- Regex+: Synthesizing Regular Expressions from Positive Examples. (SYNT 2022)
 - o E. Pertseva, M. Barbone, J. Rudek, N. Polikarpova
 - o Quick and sound regular expression synthesis from very few positive examples.

Selected Projects

- Single-Instruction Loop Fuzzer: An extension of the fadec x86 en/decoder to generate workloads consisting of one instruction repeated many times in a loop, for ISA and hardware exploration.
- Branch Predictor Framework: A Python framework for writing and benchmarking different branch predictor models. Includes predictor primitives and some state-of-the-art predictor implementations.
- BrainFunc: An optimizing BF interpreter written in Haskell.
- **KelpChip**: A CHIP-8 emulator written in C++ using SFML.

SKILLS

- Languages: C, C++, Python, SQL, Haskell, x86, MIPS32, RISC-V
- Languages (spoken): English, Japanese, Spanish
- Technologies: gem5, git, UNIX, Microsoft Office, Google Workspace, LATEX, Gradescope