

Decision Analysis 1—Probabilistic Dominance

Dr. Dale M. Nesbitt

Management Science and Engineering Stanford University

Huang Rm. 325, Stanford

221 State Street, Suite 1856

Los Altos, CA 94022

(650) 218-3069 mobile

dnesbitt@stanford.edu

What Are the Ex Ante Odds of This? (30 Teams; Dodger Fans Need NEVER Know!)

Midterm Redux

- There was a statement (10): If Giovanni is extremely risk averse, he will always choose the alternative with the least down side
 - If "extremely risk averse" were interpreted as "large but finite," the statement is not always true. (You can find a set of probabilities that refutes it.)
 - If "extremely risk averse" were interpreted as "passing to the infinitely high limit," the statement is true. This was the interpretation we intended, but...
- Clarity was lacking.
- We have credited both answers as correct.
- Everyone's score increased. Clarity is important

"Do We Really Need All This Risk Rigmarole?"

- How do I get Intel to share with me all their u-curve stuff?
- How would I get the Department of Education to share with me all their u-curve stuff? What is their u-curve anyway?
- This is fascinating and very insightful information.
- Probability courses don't emphasize it because they don't generally contain u-curves.

Back to the Party Problem

Delta Person with Risk Aversion Coefficient γ (Kim)

Analysis

Inversion (Certain Equivalent) Formula

$$u = -e^{-\gamma x}$$

$$-\mathbf{u} = \mathbf{e}^{-\gamma \tilde{\mathbf{x}}} \Longrightarrow \ln(-\mathbf{u}) = -\gamma \tilde{\mathbf{x}} \Longrightarrow \tilde{\mathbf{x}} = -\frac{1}{\gamma} \ln(-\mathbf{u})$$

Can You Calculate the Expected Utility and Certain Equivalent for All Three Alternatives?

- Of course you can.
- This wont be the last time you see this!
- That has been a key point of the course—why you do it and how you do it.

Expected Utilities and Certain Equivalents

Analysis

Let's Plot the Certain Equivalents on a Common Graph (Risk Averse and Neutral)

Key Question:

- What the heck do we need the outdoor alternative for?
 - Cant we just throw it away?
 - No risk neutral or risk averse delta person would ever choose it?
 - Would any risk averse person EVER choose it?
 - Not so fast.....
- Is there anything about a probability distribution over a measure that can guarantee us that the curves never cross?
- Do we always need all the utility/risk/u curve analysis?

Decision Analysis

Sensitivity of <u> to Probability of Sun p

Decision Analysis

Sensitivity of Certain Equivalents

Slide No. 13

2018, Dale M. Nesbitt, All Rights Reserved

November 27, 2018

Let's Plot the Expected Utilities on a Common Graph

Analysis

Let's Plot Expected Utility Differences from Indoor

Calculate the Mean and Variance of Money (PISP)

Prob	Prize	p*prize	(prize-mean)^2	p*sq
0.4	100	40	3600	1440
0.6	0	0	1600	960
		40	Variance	2400
		Mean (Sum)	Std. Deviation	48.98979

Analysis

Mean, Variance, and Approximate Formula

Approximate Formula for the Three Certain Equivalents

$$40 - \frac{2400}{2\rho} = 40 - \gamma 1200$$

$$48 - \frac{865.6}{2\rho} = 48 - \gamma 432.8$$

$$46 - \frac{20.8}{2\rho} = 46 - \gamma 10.4$$

Approximate Formula Works Best for Non Extreme Risk Aversion

Analysis

Are There Some Situations Where Risk Attitude Can Be Skipped?

• Deal 1: Receive \$5

• Deal 2: Receive \$10

• Deal 1 deterministically dominates Deal 2.

• You would choose Deal 1 no matter what your u-curve as long as it is upward sloping.

• Deal 1: Receive \$5

• Deal 2: Receive \$10

• Deal 1 deterministically dominates Deal 2.

• You would choose Deal 1 no matter what your u-curve as long as it is upward sloping.

• You don't need this course to make decisions like this!

The second secon

• Deal 1:

• Deal 2: \$15 for sure.

• Deal 2 deterministically dominates Deal 1.

• Deal 1:

• Deal 2:

$$\frac{1}{2}$$
 $\frac{1}{2}$
 $\frac{1}{2}$
\$20

• Deal 2 deterministically dominates Deal 1.

Cumulatives for Deal A and B (Cumulative Means "Less Than")

Analysis

Complementary Cumulatives for Deals A and B (Means "Greater Than")

Slide No. 26

2018, Dale M. Nesbitt, All Rights Reserved

November 27, 2018

Cumulatives for Deal A and B

Deal B Deterministically Dominates Deal A

What If the Same Distinction Is Relevant to Deal A and Deal B?

• Can Deal B deterministically dominate Deal A because of relevance? Yes.

Analysis

A and B Are Conditional on X

The state of the s

Analysis

A and B Are Conditional on X

Decision

Analysis

The Reversed Elemental Possibilities Tree

The Reversed Elemental Possibilities Tree with Elemental Probabilities

Roll Back One and Two Levels

Analysis

Let Us Look At Some Cases

- Suppose that a=1 and b=0 This means that if X1 occurs, you will get A1 and B1.
- This is full probabilistic dependency (full relevance)

$$\left\{ \mathbf{B}_1 \mid \mathbf{A}_1 \right\} = \frac{\mathbf{c}}{\mathbf{c}} = 1$$

$$\left\{ A_{1}\right\} =c$$

• X determines BOTH A and B. If you know A, you know B. That is what full relevance means.

$$c = 1$$

- X_1 is a surrogate for A_1 and B_1 .
- A₁ and B₁ are deterministically relevant, i.e., deterministically related.
- Let's look at an example

Let Us Try a=0.99, b=0.01

$${B_1 \mid A_1} = \frac{0.98c + 0.0001}{0.98c + 0.01}$$

$$\left\{ \mathbf{B}_{1} \mid \mathbf{A}_{2} \right\} = \frac{1}{100} \frac{1}{1 - \frac{98}{99} c}$$

$${A_1} = 0.98c + 0.01$$
$$= \frac{99}{100} \left(\frac{1}{99} + \frac{98}{99}c \right)$$

$${A_1} = \frac{98}{100}c + \frac{1}{100}$$

 $c = 1 \Rightarrow {A_1} = \frac{99}{100}$ $c = 0 \Rightarrow {A_1} = \frac{1}{100}$

$${A2} = -0.98c + 0.99$$
$$= \frac{99}{100} \left(1 - \frac{98}{99}c \right)$$

$${A2} = c[(1-a)-(1-b)]+(1-b)$$

$$c = 1 \Longrightarrow {A2} = \frac{1}{100} \quad c = 0 \Longrightarrow {A2} = \frac{99}{100}$$

Conditional Probabilities As a Function of Probability c of X_1 (a=0.99, b=0.1)

Let Us Try a=0.99, b=0.01, c=0.2

• Assume that c = 0.2

• $\{B_1 \mid A_1\} = 0.951942$

 $\{B_1 \mid A_2\} = 0.012469$

• Look how much relevance there is.

• The setting of A really determines the distribution of B.

Relevance Can Create Deterministic Dominance

- Deal A pays \$10 if the outcome of a coin toss is heads and \$0 if the outcome is tails.
- Deal B pays \$15 if the outcome of that SAME coin is heads and \$5 if the outcome is tails.
- The second deterministically dominates the first.
- Deterministic dominance doesn't happen very much in the real world.

Probabilistic Dominance

Here Are Two Deals

- Deal A: Roll a die; I pay you the number on the die minus 3. (-2, -1, 0, 1, 2, 3)
- Deal B: Roll a die: I add 1 to the second number but pay you the same for every other number (-2, 0, 0, 1, 2, 3)
- The prizes are identical, but one is better.

Same Prizes Except for One

Deal A **Deal B** \$0 \$0 \$2 \$3 \$3

A Company of the Comp

The Two Certain Equivalents—Delta Person

$$\tilde{\mathbf{x}}_{1} = -\frac{1}{\gamma} \ln \left(\frac{1}{6} e^{\gamma 2} + \frac{1}{6} e^{\gamma 1} + \frac{1}{6} e^{\gamma 0} + \frac{1}{6} e^{-\gamma 1} + \frac{1}{6} e^{-\gamma 2} + \frac{1}{6} e^{-\gamma 3} \right)$$

$$\tilde{x}_2 = -\frac{1}{\gamma} \ln \left(\frac{1}{6} e^{\gamma 2} + \frac{1}{3} e^{\gamma 0} + \frac{1}{6} e^{-\gamma 1} + \frac{1}{6} e^{-\gamma 2} + \frac{1}{6} e^{-\gamma 3} \right)$$

Certain Equivalent of B Is HIGHER for EVERY Possible Risk Attitude!

Does This Mean You Can Omit the u-Curve Per Se?

We shall prove that the answer is YES, and we shall prove under what conditions the answer is YES.

Cumulative and Complementary Cumulative

Cumulative probability distribution

$$F_{A}(x) \triangleq \int_{-\infty}^{x} f_{A}(\xi) d\xi = \{\xi \leq x\}$$

Complementary cumulative

$$1 - F_A(x) \triangleq \int_x^{\infty} f_A(\xi) d\xi = \{\xi \ge x\}$$

First Order Probabilistic Dominance

over gamble A if for any outcome x, B gives at least as high a probability of receiving at least x as does A. This is a notion about the complementary cumulative

$$1 - F_{B}(x) \ge 1 - F_{A}(x)$$

• In terms of the cumulative distribution functions of the two gambles, B dominating A means that

$$F_{B}(x) \leq F_{A}(x)$$

B Has First Order Probabilistic Dominance Over A

Dale M. Nesbitt

B Has First Order Probabilistic Dominance Over A—Complementary Cumulative

Prove That Under First Order Probabilistic Dominance

$$\lim_{z \to \infty} \int_{0}^{z} u(x) f_{A}(x) dx \le \lim_{z \to \infty} \int_{0}^{z} u(x) f_{B}(x) dx$$

• For monotonically increasing u(x). Start off integrating each side by parts

$$U = u(x) \quad dV = f_A(x) dx$$
$$dU = u'(x) dx \quad V = F_A(x)$$

$$U = u(x) \quad dV = f_A(x) dx$$

$$dU = u'(x) dx \quad V = F_A(x)$$

$$\Rightarrow \lim_{Z \to \infty} \int_{-\infty}^{z} u(x) f_A(x) dx = \lim_{Z \to \infty} u(x) F_A(x) \int_{-\infty}^{z} -\lim_{Z \to \infty} \int_{-\infty}^{z} u'(x) F_A(x) dx$$

$$\Rightarrow \lim_{Z \to \infty} \int_{-\infty}^{z} u(x) f_B(x) dx = \lim_{Z \to \infty} u(x) F_B(x) \int_{-\infty}^{z} -\lim_{Z \to \infty} \int_{-\infty}^{z} u'(x) F_B(x) dx$$

$$\Rightarrow \lim_{Z \to \infty} \int_{-\infty}^{z} u(x) f_B(x) dx = \lim_{Z \to \infty} u(x) F_B(x) - \infty - \lim_{Z \to \infty} \int_{-\infty}^{z} u'(x) F_B(x) dx$$

Check Out the Limits

$$\begin{aligned} &\lim_{z \to \infty} u(x) F_A(x) \Big|_{-\infty}^z = \lim_{z \to \infty} u(z) F_A(z) - u(-\infty) F_A(-\infty) \\ &= \lim_{z \to \infty} u(z) F_A(z) \end{aligned}$$

Thus

$$\lim_{z \to \infty} \left[\int_{0}^{z} u(x) \left[f_{B}(x) - f_{A}(x) \right] dx \right]$$

$$= \lim_{z \to \infty} u(z) \left[F_{B}(z) - F_{A}(z) \right]$$

$$- \lim_{z \to \infty} \left[\int_{0}^{z} u'(x) F_{B}(x) dx - \lim_{z \to \infty} \int_{0}^{z} u'(x) F_{A}(x) dx \right]$$

Decision Analysis

Simplify

$$\begin{split} &\lim_{z \to \infty} \int_{0}^{z} u(x) \big[f_{B}(x) - f_{A}(x) \big] dx \\ &= \lim_{z \to \infty} \big\{ u(z) \big[F_{B}(z) - F_{A}(z) \big] \big\} - u(0) \big[F_{B}(0) - F_{A}(0) \big] \\ &- \lim_{z \to \infty} \int_{0}^{z} u'(x) \big[F_{B}(x) - F_{A}(x) \big] dx \\ &= - \lim_{z \to \infty} \int_{0}^{z} u'(x) \big[F_{B}(x) - F_{A}(x) \big] dx \end{split}$$

$$\int_{-\infty}^{\infty} u(x) \left[f_{B}(x) - f_{A}(x) \right] dx = -\int_{-\infty}^{\infty} u'(x) \left[F_{B}(x) - F_{A}(x) \right] dx$$

Continue to Simplify

$$\begin{split} &\int\limits_{-\infty}^{\infty}u\left(x\right)\Big[f_{B}\left(x\right)-f_{A}\left(x\right)\Big]dx = -\int\limits_{-\infty}^{\infty}u'\left(x\right)\Big[-1+1+F_{B}\left(x\right)-F_{A}\left(x\right)\Big]dx \\ &= -\int\limits_{-\infty}^{\infty}u'\left(x\right)\Big\{-\Big[1-F_{B}\left(x\right)\Big]+\Big[1-F_{A}\left(x\right)\Big]\Big\}dx \\ &= \int\limits_{-\infty}^{\infty}u'\left(x\right)\Big\{\Big[1-F_{B}\left(x\right)\Big]-\Big[1-F_{A}\left(x\right)\Big]\Big\}dx > 0 \end{split}$$

- So B dominates, requiring only that u(.) be monotonically increasing, i.e., u'(.)>0.
- Risk averse, risk neutral, and risk preferring people all prefer the Probabilistically dominant deal B to A.
- You don't need their utility function.

B Has First Order Probabilistic Dominance Over A—Complementary Cumulative

Analysis

Slide No. 55

Complementary Cumulative Distributions for the Two Deals

Consider These Two Deals

• Plot their cumulatives and complementary cumulatives

Cumulatives Overlap (Domains Overlap)

Complementary Cumulatives

For Any Monotonic u-curve

• The certain equivalent of BLUE will always be higher than the certain equivalent of RED

First Order Probabilistic Dominance

- The only requirement is that the u-curve be increasing.
- All increasing u curves select the probabilistically dominant deal.
- You don't have to even explore or consider the u-curve.
- The answer is "like magic."
- You always examine your deals for probabilistic dominance.

First Order Probabilistic Dominance

SIMPLE CONTINUOUS CASE

Second Order Probabilistic Dominance

$$\begin{split} & \int\limits_{-\infty}^{z} F_{A}\left(\xi\right) d\xi \geq \int\limits_{-\infty}^{z} F_{B}\left(\xi\right) d\xi \\ & \Rightarrow \int\limits_{z}^{z} \left\{ \left[1 - F_{B}\left(\xi\right)\right] - \left[1 - F_{A}\left(\xi\right)\right] \right\} d\xi \geq 0 \end{split}$$

• The integral under the complementary cumulative of A must everywhere exceed the integral under the complementary cumulative of b

Begin Where we Ended Up with First Order Dominance

$$\int_{-\infty}^{\infty} u(x) \left[f_{B}(x) - f_{A}(x) \right] dx = -\int_{-\infty}^{\infty} u'(x) \left[F_{B}(x) - F_{A}(x) \right] dx$$

$$\begin{split} &\lim_{x \to \infty} \int\limits_{-\infty}^{x} u(z) f_{_{B}}(z) dz - \lim_{x \to \infty} \int\limits_{-\infty}^{x} u(z) f_{_{A}}(z) dz = \lim_{x \to \infty} \int\limits_{-\infty}^{x} u'(z) \Big[F_{_{A}}(z) - F_{_{B}}(z) \Big] dz \\ &U = u'(z) \quad dV = \Big[F_{_{A}}(z) - F_{_{B}}(z) \Big] dz \\ &dU = u''(z) \quad V = \int\limits_{-\infty}^{z} \Big[F_{_{A}}(\xi) - F_{_{B}}(\xi) \Big] d\xi \end{split}$$

So Integration By Parts Once Again Yields

Analysis

$$\begin{split} &\lim_{x\to\infty}\int\limits_{-\infty}^{x}u(z)f_{_{B}}(z)dz - \lim_{x\to\infty}\int\limits_{-\infty}^{x}u(z)f_{_{A}}(z)dz\\ &= \lim_{x\to\infty}\left\{u'(z)\int\limits_{-\infty}^{z}\left[F_{_{A}}(\xi) - F_{_{B}}(\xi)\right]d\xi - \int\limits_{-\infty}^{x}\left[F_{_{A}}(\xi) - F_{_{B}}(\xi)\right]d\xi - \int\limits_{x\to\infty}\int\limits_{-\infty}^{\infty}u''(z)dz\int\limits_{-\infty}^{z}\left[F_{_{A}}(\xi) - F_{_{B}}(\xi)\right]d\xi \\ &= \lim_{x\to\infty}u'(x)\int\limits_{-\infty}^{x}\left[F_{_{A}}(\xi) - F_{_{B}}(\xi)\right]d\xi - \lim_{x\to\infty}\int\limits_{-\infty}^{\infty}u''(z)dz\int\limits_{-\infty}^{z}\left[F_{_{A}}(\xi) - F_{_{B}}(\xi)\right]d\xi\\ &= -\lim_{x\to\infty}\int\limits_{-\infty}^{x}u''(z)dz\int\limits_{-\infty}^{z}\left[F_{_{A}}(\xi) - F_{_{B}}(\xi)\right]d\xi \\ &= \int\limits_{-\infty}^{\infty}u''(z)dz\int\limits_{-\infty}^{z}\left[-F_{_{A}}(\xi) + F_{_{B}}(\xi)\right]d\xi = \int\limits_{-\infty}^{\infty}-u''(z)dz\int\limits_{-\infty}^{z}\left[1 - F_{_{B}}(\xi)\right] - \left[1 - F_{_{A}}(\xi)\right]d\xi \end{split}$$

• If u"(z)<0 everywhere (risk averse) then the final term is positive if the integral is positive

Second Order Probabilistic Dominance Is

$$\int_{-\infty}^{z} \left\{ \left[1 - F_{B}(\xi) \right] - \left[1 - F_{A}(\xi) \right] \right\} d\xi$$

B Has Second Order Probabilistic Dominance Over A

People Have Thought of This As...

- "Same mean/different variance"
- This is more general than that, but that is a good mnemonic for what second order probabilistic dominance means.
- Same mean/higher variance is not synonymous
- Second order pProbabilistic dominance isn't trivial (nor is first order)

B Dominates A in the Second Order

Analysis

Two Simple Deals

Mean=2.5 Variance=2.25

Mean=3.75 Variance=1.687 5

Complementary Cumulatives of the Two Simple Deals

Delta Risk Aversion Sensitivity for the 2 and 3 Branch Deals

Dale M. Nesbitt

Another Simple Deal

Analysis

Complementary Cumulatives of the Two Deals (2 and 4 Prong)

Decision Analysis

2 Prong Probabilistically Dominates 4 Prong in the Second Degreee

Mean Augmentation

Analysis

Mean Augmentation Can Lead to Probabilistic Dominance

The state of the s

Analysis

Mean Augmentation

No Mean Augmentation

Analysis

Analysis

Same Mean/Different Variances

Analysis

Variance Reduction Can Lead to Second Order Dominance

Consider Two Deals

The Two Complementary Cumulatives

Second Order Probabilistic Dominance Is Established

If You Plot the Two CEs for a Risk Averse Delta Person, What Would You See?

- 0,15 and 5,10
- Good audiopedia summary
- https://www.youtube.com/watch?v=2zqmT
 O5Ekvs
- Dollar is added to one or more outcomes, stochastic dom.
- Lower premium and better coverage

Second Order Probabilistic Dominance

Two Deals

Analysis

Mean (\$)	\$5.0000
Variance (\$\$)	\$8.6667
Std. Dev. (\$)	\$2.9439

Mean (\$)	\$5.7500
Variance (\$\$)	\$3.6875
Std. Dev. (\$)	\$1.9203

The Two Cumulatives

Slide No. 89

November 27, 2018

The Two Complementary Cumulatives

Analysis

—Deal A —Deal B

Analysis

The Two Complementary Cumulatives

The second secon

Analysis

It Looks Like This—Second Order Probabilistic Dominance

Expected Utility/Certain Equivalent for a Delta Person

Analysis

Deal A
$$-\gamma e^{-\gamma}$$

$$\frac{1}{3} \frac{1}{3} - \gamma e^{-\gamma 6}$$

$$\frac{1}{3} \frac{1}{3} - \gamma e^{-\gamma 8}$$

$$\langle u \rangle = -\frac{1}{3} \gamma \left(e^{-\gamma} + e^{-6\gamma} + e^{-8\gamma} \right)$$

$$\tilde{x} = -\frac{1}{\gamma} \ln \left(-\frac{1}{\gamma} \langle u \rangle \right) = -\frac{1}{\gamma} \ln \left[\frac{1}{3} \left(e^{-\gamma} + e^{-6\gamma} + e^{-8\gamma} \right) \right]$$

$$\langle u \rangle = -\gamma \left(\frac{1}{4} e^{-4\gamma} + \frac{1}{2} e^{-5\gamma} + \frac{1}{4} e^{-9\gamma} \right) \frac{1}{4} / \frac{1}{4} = \frac{1}{4} e^{-9\gamma}$$

$$\tilde{x} = -\frac{1}{\gamma} \ln \left(-\frac{1}{\gamma} \langle u \rangle \right) = -\frac{1}{\gamma} \ln \left(\frac{1}{4} e^{-4\gamma} + \frac{1}{2} e^{-5\gamma} + \frac{1}{4} e^{-9\gamma} \right)$$

Analysis

Certain Equivalents—Delta Person

You Don't CARE About Their u Curve As Long As They Are Risk Averse!

- You get the exact same answer as long as they are risk averse.
- You can omit the u-curve calculation and just stick with probabilities

If Two Lotteries Have the Same Mean

- But one has a higher variance, does the one with the lower variance always probabilistically dominate?
- People sometimes think that same mean but lower variance means probabilistic dominance.
- NO!

Another Example

Does Deal A
 probabilistically
 dominate Deal
 B in the second
 order?

			\$0.1
Mean	\$3.0000		
Variance	\$5.6067		\$3
Std. Dev.	\$2.3678	Ţ	
			\$5.9

Dale M. Nesbitt

Nope!

Slide No. 98

2018, Dale M. Nesbitt, All Rights Reserved

November 27, 2018

Same Mean/Lower Variance Is Not a Sufficient Condition for Second Order Probabilistic Dominance

The Example

Variance Std. Dev.

$$x = -\frac{1}{\gamma} \ln \left[\frac{1}{3} \left(e^{-\gamma 0.1} + e^{-\gamma 3} + e^{-\gamma 5.9} \right) \right]$$

Mean	\$3.0000
Variance	\$5.6067
Std. Dev.	\$2.3678

Analysis

The Best Deal Switches—No Second Order **Probabilistic Dominance**

Slide No. 101

November 27, 2018

Analysis

Same Mean/Different Variance

MEAN-PRESERVING CASE

Clearly When u''(x)<0 (Risk Averse)

- A risk averse decision maker will always prefer the second order probabilistically dominant lottery. You don't have to do a bunch of utility calculations.
- These are important theorems in practice
- You should always look at your lotteries and discern if there is first or second order Probabilistic dominance.
- Ron didn't have to drag us through the "Outdoor" alternative! We didn't have to consider specific risk aversion questions and tons of complexity!
- There are higher orders, but they are the stuff of academic papers! (You can integrate by parts forever!)
- Clairvoyance and detectors disrupt this!!!!

Are There Probabilistically Dominant Alternatives in the Party Problem?

Solving the Party Problem Using u Values as a Measure

Slide No. 105

2018, Dale M. Nesbitt, All Rights Reserved

November 27, 2018

The Three Cumulatives

Cumulatives for Party Problem

Complementary Cumulatives for Party Problem

Slide No. 108

November 27, 2018

Let Us Compare Porch and Outdoor (Redact Indoor from the Graph)

Compare Indoors and Outdoors

Compare Indoors and Porch

A Company of the Comp

Analysis

We See the Probabilistic Dominance by Indoor and Porch Over Outdoor

Slide No. 112

You Always Do the Probabilistic Dominance Calculations

- It provides insight
- It checks your work
- It relieves you from a lot of utility function work