Dr Takfarinas SABER takfarinas.saber@dcu.ie

CA169 Networks & Internet

- IP addressing is an end to end addressing
- IP address must be unique world wide
- It addresses the intended recipient at all times

- IP addressing is an end to end addressing
- IP address must be unique world wide
- It addresses the intended recipient at all times

- IP addressing is an end to end addressing
- IP address must be unique world wide
- It addresses the intended recipient at all times

- IP addressing is an end to end addressing
- IP address must be unique world wide
- It addresses the intended recipient at all times

- IP addressing is an end to end addressing
- IP address must be unique world wide
- It addresses the intended recipient at all times

The IP address is a 32-bit Address

• 32 bits can address how many individual devices?

0000000.0000000.00000000.00000000

11111111.11111111.11111111.11111111

• 2³² -> 4,294,967,296

- We usually use the "decimal dot notation" for human readable purposes
 - We can look at IP addresses as 4 separate 1 Byte numbers

- IP addresses are **logical** addresses:
 - We can (re-) assign IP addresses to devices as we please

If we set up a network, we can assign the IP addresses so they are logically linked!

- So.....
- If we can pick our own IP addresses,
- How do we choose IPs that do not conflict with other devices in the world?
- There is an autority that gives out IP address ranges for ISPs/organisations/universitys to use:
 - Internet Assigned Number Authotity (IANA)

The Network part and Host part of the IP address are important

 In this example all devices on the network share a part of their IP address

The Network part and Host part of the IP address are important.

- 192.168.40 Addresses the Network they are on (First 3 bytes)
- The last byte is the host address on that network

Special IP addresses

- 127.0.0.1 : Me (a.k.a., localhost)
 - Regardless of my given IP address, 127.0.0.1 will send a message to myself
 - It is used to test the network stack
- Each network has two reserved IP addresses
 - Network Name: all Host bits set to "0"
 - E.g., 192.168.40.0
 - Broadcast Address: all Host bits set to "1"
 - This will broadcast to all computers on the network with the given prefix
 - E.g., 192.168.40.**255**
- In a dynamic way
 - 0.0.0.0 : My network name
 - 255.255.255 : Broadcast to my network

Network and Host

Each IP address has a Network Prefix and a Host Number

Many networks, each network has many hosts

network prefix

host number

Lots of networks, each network has a few hosts

Network prefix

Host

We Use them all!!!

Small number of networks, each network has lots of hosts

Network

Host Number

But what scheme do we use!

Determining the Network!

Determining the Network!

Determining the Network!

- There are two strategies for defining the network prefix size
 - 1. Class-based IP Addresses

- Old Way
- 2. Classless Inter domain Routing (CIDR) New Way

IP Class System

The OLD WAY of looking at IP addresses!

IP Class System

- Problem 1: The class system is inflexible
 - E.g., a company requires 2,000 addresses
 - Class A and B addresses are too big
 - Class C address is insufficient (requires 8 Class C addresses)
- Problem 2: Routing table can become too large with subnetting
- Problem Fix:
 - CIDR

The Network mask is also 32 bits long

- It is split into sections that denote the "network" and "host" bits
- 1's denote the network, with 0's denoting the host

Network \rightarrow 16 bits

Host

The Network mask is also 32 bits long

- It is split into sections that denote the "network" and "host" bits.
- 1's denote the network, with 0's denoting the host

$$=/16$$
 — Slash Notation

The Network mask is also 32 bits long

- It is split into sections that denote the "network" and "host" bits.
- 1's denote the network, with 0's denoting the host

24

The Network mask is also 32 bits long

- It is split into sections that denote the "network" and "host" bits.
- 1's denote the network, with 0's denoting the host

24

28

Using the Mask

With Masks!

Add IP Address:

11000000.10101000.00110111.00000101

And Mask:

1111111.11111111.0000000.0000000

Routing table:

I'm connected to network:

11000000.10101000.00000000.00000000

Netmask:

11111111.11111111.0000000.0000000

Network Address =

192.168.0.0 / 16

Finding the Correct Route with Masks

- Now that each Host/Router knows the network it is attached to, it can route packets effectively
 - It uses the mask on each line of the routing
 - Applies the mask to the incoming packet (Logical & operation)
 - Compares the network name with the result (equals operation)
 - If they are equal -> route to the destination
 - If they are not equal, continue through the routing table

Packet comes in for: 10101111 0011100 00000010 00100010

Packet comes in for: 10101111 0011100 00000010 00100010

Check with 1st mask: 11111111 11111111 11111111 00000000

Packet comes in for: 10101111 0011100 00000010 00100010

Check with 1st mask: 11111111 11111111 11111111 00000000

Packet comes in for: 10101111 0011100 00000010 00100010

Check with 1st mask: 11111111 11111111 11111111 00000000

Packet comes in for: 10101111 0011100 00000010 00100010

Check with 1st mask: 11111111 1111111 1111111 00000000

Packet comes in for: 10101111 0011100 00000010 00100010

Check with 2nd mask: 11111111 1111111 11111111 00000000

Check with 2nd mask: 11111111 11111111 11111111 00000000

Packet comes in for: 10101111 0011100 00000010 00100010

Check with 2nd mask: 11111111 1111111 1111111 00000000

Packet comes in for: 10101111 0011100 00000010 00100010

Check with 2nd mask: 11111111 1111111 11111111 00000000

Exercise

- Discern both the host and network from the address 175.35.17.124/24
- Determine the:
 - Network Name
 - Broadcast Address
 - Number of existing IP addresses on the network
 - Number of valid Host IP Addresses on the network
- IP address: 175.35.17.124/24
 - Network Name \rightarrow 175.35.17.0
 - Broadcast Address \rightarrow 175.35.17.255
 - Existing Addresses → 256
 - Valid Host Addresses → 254

Host part is set to all 0's!

Host part set to all 1's

2 different arrangements (unique addresses)

00000000 and 11111111 already used for Network and Broadcast

 $2^8 - 2 = 254$ Valid Host addresses!

CIDR - Classless InterDomain Routing

Key Concept:

- The length of the network id (prefix) in the IP addresses is kept arbitrary
- Routers advertise the IP address and the length of the prefix

• Example: CIDR notation of a network address: 192.0.2.0/18

- "18" means that the first 18 bits are the network part of the address (and 14 bits are available for specific host addresses)
- Assume that a site requires a network address with 1000 addresses
- With CIDR, the network is assigned a continuous block of 1024 addresses
 - Hosts: 10 last bits $(2^{10} = 1024)$
 - Prefix: 22-bit long

CIDR: Prefix Size vs. Network Size

CIDR Block Prefix	# of Existing Addresses	# Valid Host Addresses
/27	$2^{32-27} = 32$ hosts	30 hosts
/26	$2^{32-26} = 64$ hosts	62 hosts
/25	2^{32-25} = 128 hosts	126 hosts
/24	2 ³²⁻²⁴ = 256 hosts	254 hosts
/23	$2^{32-23} = 512$ hosts	510 hosts
/22	2 ³²⁻²²² = 1,024 hosts	1,022 hosts
/21	$2^{32-21} = 2,048$ hosts	2,046 hosts
/20	$2^{32-20} = 4,096 \text{ hosts}$	4,094 hosts
/19	2 ³²⁻¹⁹ = 8,192 hosts	8,190 hosts
/18	2 ³²⁻¹⁸ = 16,384 hosts	16,382 hosts
/17	2 ³²⁻¹⁷ = 32,768 hosts	32,766 hosts
/16	2 ³²⁻¹⁶ = 65,536 hosts	65,534 hosts
/15	2 ³²⁻¹⁵ = 131,072 hosts	131,070 hosts
/14	2 ³²⁻¹⁴ = 262,144 hosts	262,142 hosts
/13	2 ³²⁻¹³ = 524,288 hosts	524,286 hosts

CIDR and Masking

IP address: 175.35.124.17 / 19 \rightarrow 10101111.00100001.01111100.00010001 NetMask \rightarrow 111111111.11111111.11100000.00000000 10101111.00100001.01100000.0000000 Network: = 175.35.96.0 **Broadcast:** 10101111.00100001.01111111.11111111 **= 175.35.127.255** Existing Addresses = $2^{32-19} = 2^{13} = 8192$ Available Addresses = $2^{32-19} - 2 = 2^{13} - 2 = 8190$

- You are a network designer!
- You have the IP address range 192.168.0.0/23
 11000000 10101000 0000000 00000000
- You have to assign network addresses to 2 departments
 - Department A has 31 computers
 - Department B has 200 computers

- You are a network designer!
- You have the IP address range 192.168.0.0/23
 11000000 10101000 0000000 00000000
- You have to assign network addresses to 2 departments
 - Department A has 31 computers
 - Department B has 200 computers

Subnet 1 - 32 addresses

- 3 subnets Take the largest first
 - 201 addresses requires 8 bits for host addresses
 - 7 bits = 128 addresses, 126 valid host addresses
 - 8 bits = 256 addresses, 254 valid host addresses

Subnet 1 - 32 addresses

- 3 subnets Take the largest first
 - 201 addresses requires 8 bits for host addresses
 - 7 bits = 128 addresses, 126 valid host addresses
 - 8 bits = 256 addresses, 254 valid host addresses
 - $192.168.0.0 \rightarrow 192.168.0.255$
 - 192.168.0.0/24

Subnet 1 - 32 addresses

Subnet Design

- 3 subnets
 - 32 addresses requires 6 bits for host addresses
 - 5 bits = 32 addresses, 30 valid host addresses
 - 6 bits = 64 addresses, 62 valid host addresses

Subnet 1 - 32 addresses

Subnet Design

- 3 subnets
 - 32 addresses requires 6 bits for host addresses
 - 5 bits = 32 addresses, 30 valid host addresses
 - 6 bits = 64 addresses, 62 valid host addresses
 - $192.168.0.0 \rightarrow 192.168.0.255$ ---- already used

Subnet 1 - 32 addresses

Subnet Design

- 3 subnets
 - 32 addresses requires 6 bits for host addresses
 - 5 bits = 32 addresses, 30 valid host addresses
 - 6 bits = 64 addresses, 62 valid host addresses
 - 192.168.1.0

Subnet 1 - 32 addresses

Subnet Design

- 3 subnets
 - 32 addresses requires 6 bits for host addresses
 - 5 bits = 32 addresses, 30 valid host addresses
 - 6 bits = 64 addresses, 62 valid host addresses
 - $192.168.1.0 \rightarrow 192.168.1.63$
 - 192.168.1.0/26

11000000 10101000 00000001 0000000

Subnet 2 - 2 addresses

Subnet 1 - 32 addresses

Subnet 1: 192.168.1.0/26

- 3 subnets
 - 2 addresses requires 2 bits for host addresses
 - 1 bit = 2 addresses, 0 valid host addresses
 - 2 bits = 4 addresses, 2 valid host addresses

Subnet 1 - 32 addresses

Subnet 1: 192.168.1.0/26

- 3 subnets
 - 2 addresses requires 2 bits for host addresses
 - 1 bit = 2 addresses, 0 valid host addresses
 - 2 bits = 4 addresses, 2 valid host addresses
 - $192.168.0.0 \rightarrow 192.168.1.63$ ----- already used

Subnet 1 - 32 addresses

Subnet 1: 192.168.1.0/26

- 3 subnets
 - 2 addresses requires 2 bits for host addresses
 - 1 bit = 2 addresses, 0 valid host addresses
 - 2 bits = 4 addresses, 2 valid host addresses
 - 192.168.1.64

Subnet 1 - 32 addresses

Assigned IP Range: 192.168.0.0/23

Subnet 3: 192.168.0.0/24

Subnet 1: 192.168.1.0/26

• 3 subnets

- 2 addresses requires 2 bits for host addresses
 - 1 bit = 2 addresses, 0 valid host addresses
 - 2 bits = 4 addresses, 2 valid host addresses
- $192.168.1.64 \rightarrow 192.168.1.67$
- 192.168.1.64/30

11000000 10101000 00000001 01000000

Subnet 2 - 2 addresses

Subnet 1 - 32 addresses

- Subnet 1: 192.168.1.0/26
- Subnet 2: 192.168.1.64/30
- Subnet 3: 192.168.0.0/24

Subnet 1 - 32 addresses

Can We Add More Computers?

Assigned IP Range: 192.168.0.0/23

/23 means 512 Existing addresses

We have in total: 230 + 31+ 200 = 561 computers

So, based only on the number of available IP addresses, it is clear that we cannot add 230 new computers

Problem with IPv4

- We are already running out of IP addresses
- Problem Fixes
 - NAT (Network Address Translation)
 - Allocates IP address freely to all internal devices
 - The outside networks only knows one IPv4 address (assigned by ISP) for a whole internal network
 - Need a device for translating messages between internal and external IPs
 - IPv6:
 - the IPv6 address space is 128-bits (2128) in size

