Computability, Complexity, and Languages

By Martin D. Davis et al

First Edition

CONTENTS

C	\mathbf{onter}	nts	0	
1	\mathbf{Pre}	reliminaries 1		
	1	Sets and <i>n</i> -tuples		
	2	Functions		
	3	Alphabets and Strings		
	4	Predicates	2	
	5	Quantifiers	2	
	6	Proof by Contradiction		
	7	Mathematical Induction	3	
2	\mathbf{Pro}	grams and Computable Functions	5	
	1	A Programming Language		
	2	Some Examples of Programs	1	

CHAPTER 1

PRELIMINARIES

1 Sets and *n*-tuples

We shall often be dealing with *sets* of objects of some definite kind. Thinking of a collection iof entities as a *set* simply amounts to a decision to regard the whole collection as a single object. We shall use the word *class* as synonymous with *set*. In particular we write N for the set of *natural numbers* $0, 1, 2, 3 \cdots$

It is useful to speak of the *empty set*, written \varnothing , which has no members. The equation R=S, where R and S are sets, means that R and S are identical as sets, that is, that they have exactly the same members. We write $R\subseteq S$ and speak of R as a subset of S to mean that every element of S is also an element of S. We write $R\subset S$ to indicate that $R\subseteq S$ but $R\neq S$. In this case R is called a proper subset of S. If R and S are set, we write $R\cup S$ for the union of R and S, which is the collection of all objects which are members of either R or S or both. $R\cap S$, the intersection of R and S, is the set of all objects that belong to both R and S. Often we will be working in contexts where all sets being considered are subsets of some fixed set S (sometimes called a domain or a universe). In such a case we write S for S and call S the complement of S. We write

$$\{a_1, a_2, \cdots, a_n\}$$

for the set consisting of the n objects a_1, a_2, \dots, a_n . Sets that can be written in this form as well as the empty set are called *finite*. Sets that are not finite are called *infinite*. Since two sets are equal if and only if they have the same members. That is, the order in which we may choose to write the members of a set is irrelevant. Where order is important, we speak instead of an n-tuple or a list. A 2-tuple is called an ordered pair, and a 3-tuple is called an ordered triple. Unlike the case for sets of one object, we do not distinguish between the object a and the 1-tuple a. The crucial property of a-tuples is

$$(a_1, a_2, \cdots, a_n) = (b_1, b_2, \cdots, b_n)$$

if and only if

$$a_1 = b_1, \quad a_2 = b_2, \quad \dots, \quad and \quad a_n = b_n.$$

If S_1, S_2, \dots, S_n are given sets, then we write $S_1 \times S_2 \times \dots \times S_n$ for the set of all *n*-tuples such that $a_1 \in S_1, a_2 \in S_2, \dots, a_n \in S_n$. $S_1 \times S_2 \times \dots \times S_n$ is sometimes called the *Cartesian product* of S_1, S_2, \dots, S_n .

2 Functions

For f a function, one writes f(a) = b to mean that $(a,b) \in f$; the definition of function ensures that for each a there can be at most one such b. The set of all a such that $(a,b) \in f$ for some b is called the domain of f. The set of all f(a) for a in the domain of f is called the range of f.

Functions f are often specified by algorithms that provide procedures for obtaining f(a) from a. However, it is quite possible to possess an algorithm that specifies a function without being able to tell which elements belong to its domain. This makes the notion of a so-called partial function play a central role in computability theory. A partial function on a set S is simply a function whose domain is a subset

Preliminaries

of S. If f is a partial function on S and $a \in S$, then we write $f(a) \downarrow$ and say that f(a) is defined to indicate that a is in the domain of f; if a is not in the domain of f, we write $f(a) \uparrow$ and say that f(a) is undefined. If a partial function on S has the domain S, then it is called total. Finally, we should mention that the empty set \varnothing is itself a function. Considered as a partial function on some set S, it is nowhere defined.

A partial function f on a set S^n is called an n-ary partial function on S, or a function of n variables on S. We use unary and binary for 1-ary and 2-ary, respectively.

A function f is *one-one* if, for all x, y in the doamin of f, f(x) = f(y) implies x = y. If the range of f is the set S, then we say that f is an *onto* function with respect to S, or simply that f is *onto* S.

We will sometimes refer to the idea of *closure*. If S is a set and f is a partial function on S, then S is *closed under* f if the range of f is a subset of S.

3 Alphabets and Strings

An alphabet is simply some finite nonempty set A of objects called symbols. An n-tuple of symbols of A is called a word or a string on A. The set of all words on the alphabet A is written A^* . Any subset of A^* is called a language on A or a language with alphabet A. We do not distinguish between a symbol $a \in A$ and the word of length 1 consisting of that symbol.

4 Predicates

By a predicate or a Boolean-valued function on a set S we mean a total function P on S such that for each $a \in S$, either

$$P(a) = \text{TRUE}$$
 or $P(a) = \text{FALSE}$,

where TRUE and FALSE are a pair of distinct objects called *truth values*. We often say P(a) is true for P(a) =TRUE, and P(a) is false for P(a) =FALSE. Given a predicate P on a set S, there is a corresponding subset R of S, namely, the set of all elements $a \in S$ for which P(a) = 1. The predicate P is called the *characteristic function* of the set R.

5 Quantifiers

In this section we will be concerned exclusively with predicates on N^m (or what is the same thing, m-ary predicates on N) for different values of m. Thus, let $P(t, x_1, \dots, x_n)$ be an (n+1)-ary predicate. Consider the predicate $Q(y, x_1, \dots, x_n)$ defined by

$$Q(y, x_1, \dots, x_n) \Leftrightarrow P(0, x_1, \dots, x_n) \lor P(1, x_1, \dots, x_n)$$
$$\lor \dots \lor P(y, x_1, \dots, x_n).$$

Thus the predicate $Q(y, x_1, \dots, x_n)$ is true just in case there is value of $t \leq y$ such that $P(t, x_1, \dots, x_n)$ is true. We write this predicate Q as

$$(\exists t)_{\leq y} P(t, x_1, \dots, x_n).$$

The expression " $(\exists t)_{\leq y}$ " is called a bounded existential quantifier. Similarly, we write $(\forall t)_{\leq y} P(t, x_1, \dots, x_n)$ for the predicate

$$P(0, x_1, \ldots, x_n) \& P(1, x_1, \ldots, x_n) \& \cdots \& P(y, x_1, \ldots, x_n).$$

The predicate is true just in case $P(t, x_1, \dots, x_n)$ is true for all $t \leq y$. The expression " $(\forall t)_{\leq y}$ " is called a bounded universal quantifier.

6 Proof by Contradiction

Recall that a number is called a *prime* if it has *exactly two distinct divisors*, itself and 1. Consider the following assertion:

$$n^2 - n + 41$$
 is prime for all $n \in N$.

Preliminaries 3

This assertion is in fact false.

In a proof by contradiction, one begins by supposing that the assertion we wish to prove is false. In a proof by contradiction we look for a pair of statements developed in the course of the proof which contradict one another.

Theorem 6.1

Let $x \in \{a, b\}^*$ such that xa = ax. Then $x = a^{[n]}$ for some $n \in N$.

7 Mathematical Induction

Mathematical induction furnishes an important technique for proving statements of the form $(\forall n)P(n)$, where P is a predicate on N. One proceeds by proving a pair of auxiliary statements, namely, P(0) and

$$(\forall n)(if \ P(n) \ then \ P(n+1)). \tag{1.1}$$

Why is this helpful? Because sometimes it is much easier to prove (1.1) than to prove $(\forall n)P(n)$ in some other way. In proving this second auxiliary proposition one typically considers some fixed but arbitrary value k of n and shows that if we assume P(k) we can prove P(k+1). P(k) is then called the induction hypothesis.

There are some paradoxical things about proofs by mathematical induction. One is assuming P(k) for some particular k in order to show that P(k+1) follows.

It is also paradoxical that in using induction (we shall often omit the word mathematical), it is sometimes easier to prove statements by first making them "stronger." We wish to prove $(\forall n)P(n)$. Instead we decide to prove the stronger assertion $(\forall n)(P(n)\&Q(n))$ (which of course implies the original statement). The technique of deliberately strengthening what is to be proved for the purpose of making proofs by induction easier is called $induction\ loading$.

Theorem 7.1

For all $n \in N$ we have $\sum_{i=0}^{n} (2i+1) = (n+1)^2$.

Another form of mathematical induction that is often very useful is called *course-of-values induction* or sometimes *complete induction*.

Theorem 7.2

There is no string $x \in \{a, b\}^*$ such that ax = xb.

4 Preliminaries

CHAPTER 2

PROGRAMS AND COMPUTABLE FUNCTIONS

1 A Programming Language

In particular, the letters

$$X_1 X_2 X_3 \cdots$$

will be called the *input variables* of φ , the letter Y will be called the *output variable* of φ , and the letters

$$Z_1 Z_2 Z_3 \cdots$$

will be called the *local variables* of φ .

In φ we will be able to write "instructions" of various sorts; a "program" of φ will then consist of a *list* (i.e., a finite sequence) of instructions.

Table 2.1

Insturction	Interpretation		
$V \leftarrow V + 1$	Increase by 1 the value of the variable V .		
$V \leftarrow V - 1$	If the value of V is 0, leave it unchanged; otherwise decrease by 1 the value of V . O L If the value of V is nonzero, perform the instruction with label L next; otherwise proceed to the next instruction in the list		
IF $V \neq 0$ GOTO L			

We give in Table 2.1 a complete list of our instructions. In this list V stands for any variable and L stands for any label.

These instructions will be called the *increment*, *decrement*, and *conditional branch* instructions, respectively.

We will use the special convention that the output variable Y and the local variables Z_i initially have the value 0.

2 Some Examples of Programs

Our first example is the program

$$[A] \qquad \begin{array}{ll} X \leftarrow X - 1 \\ Y \leftarrow Y + 1 \\ \text{IF } X \neq 0 \text{ GOTO } A \end{array}$$

If the initial value x of X is not 0, the effect of this program is to copy x into Y and to decrement the value of X down to 0. We will say that this program computes the function

$$f(x) = \begin{cases} 1 & \text{if } x = 0 \\ x & \text{otherwise.} \end{cases}$$

Although the preceding program is a perfectly well-defined program of our language φ , we may think of it as having arisen in an attempt to write a program that copies the value of X into Y, and therefore

containing a "bug" because it does not handle 0 correctly. The following slightly more complicated example remedies this situation.

$$[A] \quad \text{IF } X \neq 0 \text{ GOTO } B$$

$$Z \leftarrow Z + 1$$

$$\text{IF } Z \neq 0 \text{ GOTO } E$$

$$[B] \quad X \leftarrow X - 1$$

$$Y \leftarrow Y + 1$$

$$Z \leftarrow Z + 1$$

$$\text{IF } Z \neq 0 \text{ GOTO } A$$

At first glance Z's role in the computation may not be obvious. It is used simply to allow us to code an $unconditional\ branch$. That is, the program segment

$$Z \leftarrow Z + 1$$
IF $Z \neq 0$ GOTO L (2.1)

has the effect (ignoring the effect on the value of Z) of an instruction

GOTO
$$L$$

such as is available in most programming languages. Now GOTO L is not an instruction in our language φ , but since we will frequently have use for such an instruction, we can use it as an abbreviation for the program segment (2.1). Such an abbreviating pseudoinstruction will be called a *macro* and the program or program segment which it abbreviates will be called it *macro expansion*.

For our final example, we take the program

$$Y \leftarrow X_1$$

$$Z \leftarrow X_2$$

$$[C] \quad \text{IF } Z \neq 0 \text{ GOTO } A$$

$$\text{GOTO } E$$

$$[A] \quad \text{IF } Y \neq 0 \text{ GOTO } B$$

$$\text{GOTO } A$$

$$[B] \quad Y \leftarrow Y - 1$$

$$Z \leftarrow Z - 1$$

$$\text{GOTO } C$$

What happens if we begin with a value of X_1 less than the value of X_2 ? At this point the computation enters the "loop":

[A] IF
$$Y \neq 0$$
 GOTO B
GOTO A

Since y = 0, there is no way out of this loop and the computation will continue "forever." Thus, if we begin with $X_1 = m$, $X_2 = n$, where m < n, the computation will never terminate. In this case (and in similar cases) we will say that the program computes the partial function

$$g(x_1, x_2) = \begin{cases} x_1 - x_2 & \text{if } x_1 \ge x_2 \\ \uparrow & \text{if } x_1 < x_2. \end{cases}$$