The Retro-25 DIY Calculators

E. Hazen

October 4, 2020

Personal and Professional History...

I've been fascinated by electronics since I was very young!

At age 13 (in 1973) I lived briefly in Leeds, England and worked at the Uni as an unpaid physics "graduate assistant". I encountered an HP-9100 and taught myself to program it. I was immediately hooked!

In High School I made the acquaintance of an HP-2100 series computer running HP timeshare BASIC. We played various games (some legit, like TREK73) and others (posting the administrator password on the chalkboard) not so legit.

In 1975 my father bought an HP-25. I devoted myself to delivering the *Ann Arbor News* faithfully to about 60 subscribers, and eventually I could afford my own HP-25 at \$195.00 (about £663 today)

Unfortunately both HP-25 are now dead; mine fell in the fish tank with the piranhas while I was away and my roomies were scared to retrieve it! My father's died when the batteries lost contact

...more history

I studied computer science for a while at Michigan and became expert with the model 29 keypunch (I hated that thing!) I did learn a few other things (ALGOL and S/370 assembly)

What really changed my life was working at Radio Shack. They introduced the TRS-80 and I immediately bought one (well, honestly, I put it on "lay-a-way" at my house!) I taught myself Z80 assembly language and wrote a simple multi-tasking kernel and FORTH system.

I parlayed my Z80 skills into a job at ETC (theatre lighting). I designed their Idea TM and Vision TM lighting consoles, and wrote much of the low-level software in Z80 assembly (using my trusty TRS-80, now decked out with dual 8 inch floppies) as a dev system.

Since then I've worked at Boston University building electronics mostly for the LHC at CERN. I've also become somewhat of an HP collector, acquiring a 10C, 11C, 15C, 16C and 67. The 10C and 15C were filched, the 11C and 16C I use almost daily.

Why? Why? Why?

Why a DIY HP-25?

- ► The HP-25 is my favorite calculator
- The display and keyboard are too small for middle-aged eyes
- I hate mouse- and touchscreen-based emulators (no tactile feel)
- ▶ I have a bunch of time on my hands (NOT!)

Why use a Z80?

- ▶ I know them inside-out
- They were released about when the HP-25 came out
- I like designing and assembling good old thru-hole DIP boards

Why the HECK VFD displays?

Because they are cool! (and nixies are a lot of trouble)

Specification

Well, this is a hobby project so no spec needed, but I had goals:

- ▶ Big, clicky buttons; display I can read without glasses
- Simple hardware I could solder easily
- Cross-development from my Linux machine

Parts! Parts! Parts!

I always start with the parts.

CPU: The Z80 is a no-brainer (initially Z80A, 4MHz)

Memory: first considered UV EPROM (nah!)

AT28C256-15 EEPROM and 62256LP-70 RAM (both 32k, DIP-28)

Display:

V1: 10mm red 10mm red common anode 7-segment

V2: IV-6 green vacuum fluorescent display tubes

Driver: ICM7218A MUX driver. I used these for theatre lighting consoles back in the day and they work well.

Switches: Cherry MX1A mechanical. These are my favorites!

Otherwise, I have drawers full of 74LS and 74S series TTL at work because we can't bear to throw anything....

Boards!

How many boards? Started with a "toy" layout in ExpressPCB to see how everything fit. Looked like about 120x170mm. So, I fired up KiCAD and made a schematic and did a layout.

Schematics (KB, Display)

Keyboard is standard matrix

Display handled by two ICM7218A. Almost no additional parts

PCB (KB, Display)

Placement and routing pretty simple. Two header connectors, one for KB and one for LEDs

Top Cu area to GND Bottom Cu area to VCC

Design rules based on what JLCPCB could do easily:

6 mil line/space (0.15 mm) 20 mil via with 10 mil hole (0.5mm / 0.25mm)

Switches and LEDs take up most of front

Diodes and LED drivers on back

Schematics (CPU)

PCB (CPU)

Placement and routing pretty simple. Two header connectors, one for KB and one for LEDs All components on the top.

Top and bottom Cu areas to GND

CPU, RAM, EEPROM in top row

Bringing it Up! (hardware)

The boards and parts are here!

- Easy soldering (all thru-hole) But then what? Software?
- Brief diversion to make a junk-box EEPROM programmer
- First program: delay, then HLT i.e. 2B 7C B5 20 FB 76 (glad I put a HALT LED on the board!)
- Then a struggle with bit-bang serial (next time use a UART!)
- Then write a debug monitor... "umon2".

Two months later...

Bringing it Up! (software)

NONPAREIL High-Fidelity Calculator Simulator

http://nonpareil.brouhaha.com

http://simpleavr.github.io/NP25/

https://github.com/z88dk/z88dk

https://www.autometer.de/unix4fun/z80pack/

Download and study...

- Nonpareil by Eric Smith
 Very complete, but quite complex as it supports many models
- NP25 "Nonpareil Physical" by Chris Chung Woodstock-only emulator for MSP430 Much more promising

In the end I took some of both, and got an HP-25 only simulation running in plain C under linux, using a tty for input and output.

Then, I built it using sdcc in Z88DK and tested it under the z80pack simulator.

Bringing it Up! (hardware+software)

Lots of loose ends...

First, write a serial boot loader

Then write a C program to send hex files

Then, work on the monitor...

```
d <addr> <count>
                         dump memory
e <addr> <dd> <dd>...
                         edit up to 16 bytes in memory
o <port> <val>
                         output <val> to <port>
z <val>
                         set port zero value bits 0-6
                         input from <port> and display
i <port>
g <addr>
                         goto addr
                         set breakpoint (currently 3-byte call)
h <addr>
a <val1> <val2>
                         hex Arithmetic
                         continue from breakpoint
                         continue, set new breakpoint
c <addr>
m <start> <end> <size>
                         memory region compare
p <start> <end> <size>
                         memory region copy
                         binary load from serial
                         repeat last command
                         scan HP keyboard
f <addr>
                         dump HP registers from <addr> (A)
7 <addr>
                         update 7-segment display from <addr>
V <addr>
                         update VFD display from <addr>
```


I eventually needed all of those commands...

Finally, start to load and debug the calculator