Synesthesia Wear

Feel the Sound

Agenda

- 01 Our Team
- O2 Project Details
- 03 Project Goals
- 04 Engineering Process
- 05 Demo
- Future Plan

Meet the Team!

Jordan Bierbrier

Azriel Gingoyon

Udeep Shah

Abraham Taha

Taranjit Lotey

Problem

- Communication is crucial in daily life
- People who are Deaf or hard of hearing may struggle to recognize sounds in their environment
- Lead to missing important alerts / sounds
 - o Name called
 - Fire alarm
 - o Doorbell

Abstract Solution

Create device that monitors environment for specific sound and alerts user (increase auditory awareness)

Preliminary Technologies

- Software → Sound Recognition
- Physical Device → Notification
- Application → Interface

Intended Users

Deaf 357 000 Canadians

Hard of Hearing 3.2 million Canadians

Age Related Hearing Loss

33% of individuals (65 - 75)

General Public (listening to music)

The Engineering Process

Initial Stages

Apple Watch

- Researched current solutions
- Spoke with relevant experts
 - Katherine Hesson-Bolton
 - o Dr. Martin von Mohrenschildt
- Initial design decisions
 - Classify specific sounds
 - Mobile application for user interface
 - Bracelet

Proof-of-Concept

- Python script to extract MFCCs and detect sound
- Interactive Android App
- Feedback
 - Real-Time Sound Processing
 - Hardware
 - Connectivity (via Bluetooth)

Physical Device (Component selection)

3D Printed PLA Enclosure

Arduino Nano BLE

Vibration Motor

3.7V Lipo Battery

Lipo Charger/DC Voltage Converter

Changes for Rev0

Sound processing to be done on the hardware

Training to be done externally

Speech-to-text eliminated

Testing / Feedback

- Testing at different distances (Tested at 5m away)
- Testing variability speech (4 Different accents)
- Bluetooth connections (Disconnected at 15m)
- Surveying people (5 people)
- Spoke to Katherine (Post rev0)

The Current Solution

Wearable Device

The Application

- Developed using Android Studio
- Written in Java

Uses the in-platform Bluetooth Low Energy API

Home Page

Pairing

Keyword Selection

Audio Processing

- Improved machine learning model (added early stopping in training)
- Added training samples (included new class)
- Real-time confidence level change
- Training samples at farther distances

Demo

Goals - Revisited

Future Plan

More tests with the target audience

Sound detection in loud environments

Live Training

Make the device more compact

Thank You!

Questions?