Comparing different state-of-the-art solutions for image prediction using time-series analysis

Sören Dittrich

University of Hildesheim

Summerterm 2020

Table of contents

- Introduction
- Machine Learning Theory
 - Image Prediction
 - Autoencoder
 - CNN
 - RNN
 - LSTM
 - ConvLSTM
 - Backpropagation
 - BPTT
- Image Prediction Architectures
 - LSTM Autoencoder
 - ConvLSTM Autoencoder
 - Spatio-temporal Video Autoencoder
 - PredNet
 - PredRNN

Contents

- Introduction
- 2 Machine Learning Theory
 - Image Prediction
 - Autoencoder
 - CNN
 - RNN
 - LSTM
 - ConvLSTM
 - Backpropagation
 - BPTT
- Image Prediction Architectures
 - LSTM Autoencoder
 - ConvLSTM Autoencoder
 - Spatio-temporal Video Autoencoder
 - PredNet
 - PredRNN

Contents

- Introduction
- Machine Learning Theory
 - Image Prediction
 - Autoencoder
 - CNN
 - RNN
 - LSTM
 - ConvLSTM
 - Backpropagation
 - BPTT
- Image Prediction Architectures
 - LSTM Autoencoder
 - ConvLSTM Autoencoder
 - Spatio-temporal Video Autoencoder
 - PredNet
 - PredRNN

• Field inside machine learning / computer vision

- Field inside machine learning / computer vision
- Predict future image/s, given sequence of images

- Field inside machine learning / computer vision
- Predict future image/s, given sequence of images
- X the image sequence of length n

- Field inside machine learning / computer vision
- Predict future image/s, given sequence of images
- X the image sequence of length n
- with $X = (x_0, \dots, x_{n-1})$

- Field inside machine learning / computer vision
- Predict future image/s, given sequence of images
- X the image sequence of length n
- with $X = (x_0, ..., x_{n-1})$
- Two possible use-cases

- Field inside machine learning / computer vision
- Predict future image/s, given sequence of images
- X the image sequence of length n
- with $X = (x_0, ..., x_{n-1})$
- Two possible use-cases
 - One-frame prediction

- Field inside machine learning / computer vision
- Predict future image/s, given sequence of images
- X the image sequence of length n
- with $X = (x_0, ..., x_{n-1})$
- Two possible use-cases
 - One-frame prediction
 - Predicting x_n

- Field inside machine learning / computer vision
- Predict future image/s, given sequence of images
- X the image sequence of length n
- with $X = (x_0, ..., x_{n-1})$
- Two possible use-cases
 - One-frame prediction
 - Predicting x_n
 - Multi-frame prediction

- Field inside machine learning / computer vision
- Predict future image/s, given sequence of images
- \bullet X the image sequence of length n
- with $X = (x_0, ..., x_{n-1})$
- Two possible use-cases
 - One-frame prediction
 - Predicting x_n
 - Multi-frame prediction
 - Predict t > 1 frames into the future (x_n, \dots, x_{n+t-1})

- Field inside machine learning / computer vision
- Predict future image/s, given sequence of images
- X the image sequence of length n
- with $X = (x_0, ..., x_{n-1})$
- Two possible use-cases
 - One-frame prediction
 - Predicting x_n
 - Multi-frame prediction
 - Predict t > 1 frames into the future (x_n, \ldots, x_{n+t-1})
 - Often it is one-frame prediction in a feedback loop

- Field inside machine learning / computer vision
- Predict future image/s, given sequence of images
- X the image sequence of length n
- with $X = (x_0, ..., x_{n-1})$
- Two possible use-cases
 - One-frame prediction
 - Predicting x_n
 - Multi-frame prediction
 - Predict t > 1 frames into the future (x_n, \dots, x_{n+t-1})
 - Often it is one-frame prediction in a feedback loop
 - ullet Propagate the error o Greater error in later images

Two networks chained together

¹h is the so named **code**. Output layer is named **bottleneck layer** ≥ → ∞ ∞ ∞

- Two networks chained together
 - Encoder

Sören Dittrich Bachelorthesis Collogium Summerterm 2020

6/26

- Two networks chained together
 - Encoder
 - Input is x

6/26

 $^{^{1}}h$ is the so named **code**. Output layer is named **bottleneck layer** $\Rightarrow \qquad \Rightarrow \qquad > 0$

- Two networks chained together
 - Encoder
 - Input is x
 - Output is h¹

¹h is the so named **code**. Output layer is named **bottleneck layer**. →

- Two networks chained together
 - Encoder
 - Input is x
 - Output is h¹
 - E(x) = h

- Two networks chained together
 - Encoder
 - Input is x
 - Output is h¹
 - E(x) = h
 - Decoder

- Two networks chained together
 - Encoder
 - Input is x
 - Output is h¹
 - E(x) = h
 - Decoder
 - Input is h

- Two networks chained together
 - Encoder
 - Input is x
 - Output is h¹
 - E(x) = h
 - Decoder
 - Input is h
 - Output is *x1*

- Two networks chained together
 - Encoder
 - Input is x
 - Output is h¹
 - E(x) = h
 - Decoder
 - Input is h
 - Output is x/
 - D(h) = x'

- Two networks chained together
 - Encoder
 - Input is x
 - Output is h¹
 - E(x) = h
 - Decoder
 - Input is h
 - Output is x1
 - D(h) = x'
- Used for reconstruction $x \approx x'$

6/26

- Two networks chained together
 - Encoder
 - Input is x
 - Output is h¹
 - E(x) = h
 - Decoder
 - Input is h
 - Output is x/
 - D(h) = x'
- Used for reconstruction $x \approx x'$
- Important is to prevent the network to simply copy x to x/ (Interpolation)

¹h is the so named **code**. Output layer is named **bottleneck layer** ≥ >

6/26

- Two networks chained together
 - Encoder
 - Input is x
 - Output is h¹
 - E(x) = h
 - Decoder
 - Input is h
 - Output is x1
 - D(h) = x'
- Used for reconstruction $x \approx x'$
- Important is to prevent the network to simply copy x to x/ (Interpolation)
- Simplest architecture is the undercomplete autoencoder

- Two networks chained together
 - Encoder
 - Input is x
 - Output is h¹
 - E(x) = h
 - Decoder
 - Input is h
 - Output is x1
 - D(h) = x'
- Used for reconstruction $x \approx x'$
- Important is to prevent the network to simply copy x to x/ (Interpolation)
- Simplest architecture is the undercomplete autoencoder
 - Code smaller then input

Sören Dittrich Bachelorthesis Collogium Summerterm 2020

6/26

 $^{^{1}}h$ is the so named **code**. Output layer is named **bottleneck layer**.

- Two networks chained together
 - Encoder
 - Input is x
 - Output is h¹
 - E(x) = h
 - Decoder
 - Input is h
 - Output is x1
 - D(h) = x'
- Used for reconstruction $x \approx x'$
- Important is to prevent the network to simply copy x to x/ (Interpolation)
- Simplest architecture is the undercomplete autoencoder
 - Code smaller then input
 - Network needs to distinguish between useful and obsolete

¹h is the so named **code**. Output layer is named **bottleneck layer**.

6/26

Figure: Autoencoder schema [?]

Convolutional Neural Network

- Convolutional Neural Network
- Consists of three stages

- Convolutional Neural Network
- Consists of three stages
 - Convolutional layer

- Convolutional Neural Network
- Consists of three stages
 - Convolutional layer
 - 2 Non-linearity (ReLU, sigmoid, ...)

- Convolutional Neural Network
- Consists of three stages
 - Convolutional layer
 - Non-linearity (ReLU, sigmoid, ...)
 - Pooling layer

CNN (First stage)

• Convolutional operation is discrete

CNN (First stage)

- Convolutional operation is discrete
- $(I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$

CNN (First stage)

Convolutional operation is discrete

•
$$(I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

Figure: Two dimensional convolutional operation [?]

RNN

LSTM

ConvLSTM

Backpropagation

BPTT

Contents

- Introduction
- 2 Machine Learning Theory
 - Image Prediction
 - Autoencoder
 - CNIN
 - RNN
 - LSTM
 - ConvLSTM
 - Backpropagation
 - BPTT
- Image Prediction Architectures
 - LSTM Autoencoder
 - ConvLSTM Autoencoder
 - Spatio-temporal Video Autoencoder
 - PredNet
 - PredRNN

 "Unsupervised Learning of Video Representations using LSTMs"by Srivastava et. al. [?]

- "Unsupervised Learning of Video Representations using LSTMs"by Srivastava et. al. [?]
- Using the standard LSTM from Hochreiter & Schmidhuber [?]

- "Unsupervised Learning of Video Representations using LSTMs"by Srivastava et. al. [?]
- Using the standard LSTM from Hochreiter & Schmidhuber [?]
- Autoencoder architecture

- "Unsupervised Learning of Video Representations using LSTMs"by Srivastava et. al. [?]
- Using the standard LSTM from Hochreiter & Schmidhuber [?]
- Autoencoder architecture
- Useful for future image prediction & image reconstruction

- "Unsupervised Learning of Video Representations using LSTMs"by Srivastava et. al. [?]
- Using the standard LSTM from Hochreiter & Schmidhuber [?]
- Autoencoder architecture
- Useful for future image prediction & image reconstruction
- Typical baseline for newer, more advanced algorithms

Figure: Future image prediction model [?]

Figure: Results of MovingMNIST experiment [?]

 "Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting"by Shi et. al. [?]

- "Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting"by Shi et. al. [?]
- Similar to LSTM Autoencoder, but uses ConvLSTM instead

- "Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting"by Shi et. al. [?]
- Similar to LSTM Autoencoder, but uses ConvLSTM instead
- Outperforms the LSTM Autoencoder

Figure: Future image prediction model [?]

Figure: Results of MovingMNIST experiment [?]

 "Spatio-Temporal Video Autoencoder With Differentiable Memory "by Patraucean et. al. [?]

 "Spatio-Temporal Video Autoencoder With Differentiable Memory "by Patraucean et. al. [?]

0

Figure: Spatio-temporal Video Autoencoder Architecture [?]

Figure: Results of MovingMNIST experiment [?]

PredNet

PredRNN