Квантовая механика

Зиганшин Илья Физический факультет МГУ 11.11.2022

Квантовая механика как операциональная теория

Квантовая механика является операциональной теорией.

Цель: эффективное описание и систематизация экспериментальных данных

Средства: для описания и систематизации экспериментальных данных мы используем только известные из эксперимента понятия, либо такие понятия, для которых мы можем указать соответствующую процедуру измерения.

Квантовая механика как операциональная теория

Любой эксперимент в такой теории выглядит как приготовление системы(P), эволюция системы(T), измерение системы с помощью прибора(M) с результатом (K)

операциональная теория может давать вероятностное предсказание: $\omega(k|P,T,M)$

Нужно ответить на вопросы: Чем описывается наша система? Как мы ее приготовляем? Как происходит эволюция? Как происходит измерение системы?

Как видим есть некоторая аналогия с машинным обучением и байесовским выводом

Описание квантовой системы

Квантовая система описывается при помощи вектора состояния $|\psi\rangle=(c_1c_2c_3...)^T$ в конечномерном или бесконечномерном гильбертовом пространстве H над полем комплексных чисел \mathbb{C} , $c_i\in\mathbb{C}$

В квантовой механике используется бракет нотация где $|\psi\rangle$ - вектор гильбертова пространства,

$$\langle \psi | = | \psi
angle^\dagger = (| \psi
angle^T)^* = (c_1^* c_2^* c_3^* ...)$$
 - эрмитово сопряженный вектор

Системы, описываемые с помощью векторов состояния называют чистыми. Вектор состояния обладает максимальной доступной для наблюдателя информацией.

Описание квантовой системы

Чтобы иметь возможность простейшим способом ввести в квантовую теорию понятие вероятности, удобно сразу положить норму $||\psi||=1$. То есть, для любого вектора $|\psi\rangle$, который описывает замкнутую микросистему, выполняется условие нормировки:

$$\langle\psi|\psi\rangle=1$$

Описание измерения: Макроприборы и наблюдаемые

Любая микросистема обладает хотя бы одной экспериментально измеряемой физической величиной, которая для краткости называется наблюдаемой.

Наблюдаемой A ставится в соответствие эрмитов оператор \hat{A} , собственные значения a_i которого численно совпадают со всеми возможными результатами измерения наблюдаемой A.

Например, масса не является наблюдаемой, а удлинение пружины, на которой взвешивают тело для определения его массы является наблюдаемой

Описание измерения: Макроприборы и наблюдаемые

Пусть свойства микросистемы характеризуются некоторой наблюдаемой величиной A.

Стандартный эксперимент заключается в том, что при многократном измерении наблюдаемой на множестве идентичных квантовых систем, каждой из которых сопоставлен вектор состояния $|\psi\rangle$, с вероятностью w_1 будет найдено значение a_1 , с вероятностью w_2 — значение a_2 и так далее.

Принцип суперпозиции

Теперь сведем все вместе

Предположим, что микросистема ДО измерения описывалась вектором состояния $|\psi\rangle$.

Пусть в результате измерения микросистема переходит в одно из нескольких состояний, которые каким-либо образом можно различить при помощи макроприборов.

Для простоты пусть этих состояний будет конечное число. Тогда каждому такому состоянию соответствует вектор $|\varphi_i\rangle$. Тогда вектор состояния $|\psi\rangle$ можно записать в виде линейной комбинации (суперпозиции) по набору состояний:

$$|\psi\rangle = \sum_{i} c_{i} |\varphi_{i}\rangle$$
:
 $c_{i} = \langle \varphi_{i} | \psi \rangle$

Модели измерений, проекционный постулат

В качестве еще одного постулата необходимо ввести некоторую модель измерения исторические самые первые и самые простые - проективные измерения(разрушающие).

Такой процесс описывается с помощью проективного оператора $P_{\varphi_i} = |\varphi_i\rangle\,\langle\varphi_i|$ и называется редукцией(коллапсом) ВФ

условная вероятность w_i найти микросистему ПОСЛЕ измерения в состоянии если ДО измерения она находилась в состоянии задается формулой:

$$w_i = w(\varphi_i|\psi) = |c_i|^2$$

Коэффициенты c_i носят название амплитуд вероятности нахождения системы в состоянии

Все ли мы сумели описать?

Откуда взять вид ВФ которые мы приготовили("априорное распределение")? любая ли ВФ имеет смысл? Все ли можно описать в терминах ВФ?

Всегда ли эволюция описывается уравнение Шредингера?

Все ли модели измерения проективные? какие особенности измерений существуют?

Эксперименты с фотонами

Рассмотрим как работает конструктор для анализа однофотонной интерференции Харди:

источник создает фотон с ВФ $|a\rangle$ зеркало добавляет фазу ВФ $|a\rangle \Rightarrow i\,|a\rangle$ делитель пучка 50/50 $|a\rangle \Rightarrow \frac{i}{\sqrt{2}}\,|u\rangle + \frac{1}{\sqrt{2}}\,|v\rangle$ $|a\rangle\,|C_0\rangle\,|D_0\rangle \Rightarrow (\frac{i}{\sqrt{2}}\,|u\rangle + \frac{1}{\sqrt{2}}\,|v\rangle)\,|C_0\rangle\,|D_0\rangle \Rightarrow$ $\Rightarrow \frac{i}{\sqrt{2}}\,|u\rangle\,|C\rangle\,|D_0\rangle + \frac{1}{\sqrt{2}}\,|v\rangle\,|C_0\rangle\,|D\rangle$

Эксперименты с фотонами

$$\begin{split} &|a\rangle\,|C_0\rangle\,|D_0\rangle \Rightarrow \left(\frac{i}{\sqrt{2}}\,|u\rangle+\frac{1}{\sqrt{2}}\,|v\rangle\right)\,|C_0\rangle\,|D_0\rangle \Rightarrow \\ &\Rightarrow \left(\frac{i}{\sqrt{2}}\left(\frac{i}{\sqrt{2}}\,|c\rangle+\frac{1}{\sqrt{2}}\,|d\rangle\right)+\frac{1}{\sqrt{2}}\left(\frac{i}{\sqrt{2}}\,|c\rangle+\frac{1}{\sqrt{2}}\,|d\rangle\right)\right)\,|C_0\rangle\,|D_0\rangle \Rightarrow \\ &\Rightarrow i\,|c\rangle\,|C_0\rangle\,|D_0\rangle \Rightarrow i\,|c\rangle\,|C\rangle\,|D_0\rangle \end{split}$$

Квантовая бомба

Условие задачи:

на складе имеется большое число бомб с исправным и неисправным взрывателями.

Исправный взрыватель со 100% — ой вероятностью поглощает попавший в него фотон и приводит бомбу в действие. Неисправный взрыватель никак не взаимодействует с фотоном и не взрывает бомбу.

Требуется придумать процедуру, каким образом идентифицировать хотя бы какое-то количество исправных бомб, при этомне уничтожив их.

Квантовая бомба

Для исправной бомбы можем написать $\begin{vmatrix} a \rangle \left| B_0^+ \right\rangle \left| C_0 \right\rangle \left| D_0 \right\rangle \rightarrow \left(\frac{i}{\sqrt{2}} \left| u \right\rangle + \frac{1}{\sqrt{2}} \left| v \right\rangle \right) \left| B_0^+ \right\rangle \left| C_0 \right\rangle \left| D_0 \right\rangle \rightarrow \\ \rightarrow \left(\frac{i}{\sqrt{2}} \left| B^+ \right\rangle + \frac{1}{\sqrt{2}} \left| v \right\rangle \left| B_0^+ \right\rangle \right) \left| C_0 \right\rangle \left| D_0 \right\rangle \rightarrow \\ \rightarrow \left(\frac{i}{\sqrt{2}} \left| B^+ \right\rangle + \frac{1}{\sqrt{2}} \left(\frac{i}{\sqrt{2}} \left| c \right\rangle + \frac{1}{\sqrt{2}} \left| d \right\rangle \right) \left| B_0^+ \right\rangle \right) \left| C_0 \right\rangle \left| D_0 \right\rangle \rightarrow \\ \rightarrow \frac{i}{\sqrt{2}} \left| B^+ \right\rangle \left| C_0 \right\rangle \left| D_0 \right\rangle + \frac{i}{2} \left| B_0^+ \right\rangle \left| C \right\rangle \left| D_0 \right\rangle + \frac{1}{2} \left| B_0^+ \right\rangle \left| C_0 \right\rangle \left| D \right\rangle.$

Квантовая бомба

- 1) $|B^+\rangle |C_0\rangle |D_0\rangle$ бомба исправна и она взорвалась. Эта ситуация не удовлетворяет условию задачи.
- 2) Сработал только детектор "C". Этому соответствуют случаи $|B_0^-\rangle|C\rangle|D_0\rangle$ и $|B_0^+\rangle|C\rangle|D_0\rangle$. Хотя бомба не взорвалась, но она может быть как исправной, так и неисправной. Такая ситуация тоже не подходит.
- 3) Наконец, сработал только детектор "D", то есть $\begin{vmatrix} B_0^+ \\ 0 \end{vmatrix} \begin{vmatrix} C_0 \\ 0 \end{vmatrix} \begin{vmatrix} D \\ 0 \end{vmatrix}$, и ИСПРАВНАЯ бомба не взорвалась. Это как раз то, что нужно по условию задачи!

Таким образом $|1/2|^2=1/4$ всех исправных бомб удается идентифицировать как исправные, еще $|i/2|^2=1/4$ исправных бомб не удается однозначно идентифицировать как исправные. И по-

Запутанные состояния

Запутанные состояния - это такие состояния, которые нельзя факторизовать на произведения ВФ подсистем общей системы, например:

$$|\psi\rangle=\frac{1}{\sqrt{2}}(|+\rangle_1\,|-\rangle_2-|-\rangle_1\,|+\rangle_2)$$

такие системы получаются, если подсистемы связаны законом сохранения, например для данной ВФ это мог быть момент импульса двух частиц. Запутанные состояния не имеют классического аналога.

Эксперименты

Пустой слайд для объяснений

теорема Эберхарда

Пусть квантовая система состоит из двух подсистем "A" и "B". Теорема Эберхарда утверждает, что никакие изменения состояния макроприбора, который связан только с измерениями в подсистеме "B", не влияют на результат измерения любых наблюдаемых, которые связаны только с подсистемой "A", если между макроприборами отсутствует классический канал обмена информацией.

теорема Эберхарда и закон абсолютной случайности запрещают сверхветовую передачу информации

Смешанные состояния и матрица плотности

Все ли состояния являются чистыми? Нет! Формализм волновых функций выдает нам всегда только одно распределение, а нам бы хотелось описывать и смеси распределений

Объект, который описывает смешанные состония, называется матрица плотности и по определению равен:

$$\hat{\rho} = \sum_{l} W_{l} \hat{P}_{\psi_{l}} = \sum_{l} W_{l} \left| \psi_{l} \right\rangle \left\langle \psi_{l} \right|$$

 $|\psi_l
angle\,\langle\psi_l|$ - проектор на чистое состояние 1

В отличии от ВФ матрица плотности СМЕШАННОГО состояния уже не несет максимальную информацию о системе

Когда же нам нужна матрица плотности?

Пример

Рассмотрим пример: $|\psi\rangle = \alpha |a\rangle + \beta |b\rangle$

матрица плотности такого чистого состояния имеет вид:

$$\begin{pmatrix} |\alpha|^2 & \alpha\beta^* \\ \alpha^*\beta & |\beta|^2 \end{pmatrix}$$

Как видно диагональные элементы несут смысл вероятности измерения

Если мы будем уменьшать недиагональные элементы(которые отвечают за интерференцию), то система перейдет в смешанное состояние, такой процесс называют декогеренцией. После полной декогеренции система не проявляет квантовых свойств и подчиняется классической статистике. Декогеренция связана с взаимодействием с окружением. Декогеренция экпериментально наблюдаемый процесс.

Кот Шреденгера и процесс измерения

 $|ALL\rangle = |cat + \gamma + A + detector\rangle$ Но ведь реальности мы наблюдаем только кота, нам нужно избавиться от лишних степеней свободы! Математически это производится путем взятия следа по их базису получаем смесь: $\rho_{cat} = C_1^2 |alive\rangle \langle alive| +$ $C_2^2 |dead\rangle \langle dead|$ Таким образом мы никогда не наблюдаем суперпозицию кота, а только макроскопически различимую смесь

Интерпритации, Пси-онтизм

Пусть система описывается вектором состояния $|\psi\rangle$. Вопрос: а что такое вектор состояния $|\psi\rangle$?

если вектор состояния $|\psi\rangle$ отражает реальное состояние квантовой системы, то говорят о Пси-онтической интерпритации.

Примеры:

копенгагенская интерпретация квантовой механики

декогеренция связанная с окружением

объективная редукция

Волна-пилот

Интерпритации, Пси-эпистимизм

Вектор состояния $|\psi\rangle = \sum_i c_i \, |a_i\rangle$ отражает меру нашего незнания состояния кванто- вой системы. Т.е. на самом деле макроприбор приготовил систему в конкретном состоянии $|a_i\rangle$, но мы не знаем в каком

Такой подход рассматривается в статистической интерпретации

Интерпритации, Эпистимизм

Вектор состояния $|\psi\rangle$ является просто удобным инструментом («записная книжка наблюдателя»). В рамках этой интерпретации мы игнорируем вопрос о том, какую реальность описывает вектор состояния. Все, что для нас имеет значение — это предсказание $|c_i^2|$

Примеры: Прогматизм, квантовое байесианство.

Простой вывод BCHSH-неравенства (неравенства Белла)

Основная идея.

Как записать что совокупность наблюдаемых одновременно существует и удовлетворяет нашему бытовому пониманию их свойств? сказать что совместная вероятность их наблюдения неотрицательна!

Далее необходимо найти соотношение, которое:

- 1) может быть получено из предположения о существовании неотрицательных совместных вероятностей и, возможно, некоторых дополнительных условий, накладываемых на процедуру измерения (обычно требуется локальность);
- 2) может быть вычислено в рамках квантовой теории;
- 3) поддается экспериментальной проверке с помощью макроприборов.

Простой вывод ВСНЅН-неравенства (неравенства Белла)

Рассмотрим подсистемы A и B, которые являются составными частями некоторой физической системы. Для подсистемы A определим две наблюдаемые F_A и F_A' , относящиеся только подсистеме A. Для подсистемы B также введем две наблюдаемые G_B и G_B' , которые относятся только подсистеме B

Дополнительно потребуем, чтобы все наблюдаемые были дихотомными, то есть, чтобы спектры $f_i^{(A)}$, $f_j^{\prime(A)}$, $g_k^{(B)}$, $g_m^{\prime(B)}$ каждой из наблюдаемых соответственно принимали всего два значения +1 и -1

Из элементов каждого набора составим суммы вида:

$$S_{ijkm} = (f_j^{\prime(A)} + f_j^{\prime(A)})g_k^{(B)} + (f_j^{\prime(A)} - f_j^{\prime(A)})g_m^{\prime(B)}$$

Простой вывод BCHSH-неравенства (неравенства Белла)

Рассмотрим свойства такой комбинации. Возьмем, к примеру, следующую комбинацию: (+1,-1,-1,-1), подставляя в сумму получим

$$S = (-1+1)(-1) + (-1-1)(-1) = 2$$

Аналогично для всех вариантов можно получить

$$S_{iikm} = + - 2$$

Выполним N >> 1 измерений всех возможных комбинаций наблюдаемых. Пусть каждое значение S_{ijkm} встречается N_{ijkm} . Тогда для среднего значения S (суммы Белла) по данной выборке можно записать:

$$|\langle S \rangle| = \left| \frac{1}{N} \sum_{i,j,k,m} S_{ijkm} N_{ijkm} \right| \leqslant 2$$

Простой вывод BCHSH-неравенства (неравенства Белла)

Далее введем коррелятор. Обычно коррелятор определяют так:

$$\langle F_A G_B \rangle = \sum_{i,k} f_i^{(A)} g_k^{(b)} \omega_{ik}$$

где $f_i^{(A)}$ и $g_k^{(b)}$ принимаю все возможные значения в рамках их спектров, а ω_{ik} вероятность пар $f_i^{(A)}g_k^{(b)}$

В рамках классической теории эта вероятность равна числу двоек с к общему числу двоек

$$\omega_{ik} = \frac{N_{ik}}{N}$$

преобразуем

$$\omega_{ik} = \sum_{j,m} N_{ijkm}$$

Тогда

$$\langle F_A G_B \rangle = \frac{1}{N} \sum_{i,k} f_i^{(A)} g_k^{(b)} \sum_{j,m} N_{ijkm} = \frac{1}{N} \sum_{i,j,k,m} f_i^{(A)} g_k^{(b)} N_{ijkm}$$

Простой вывод ВСНЅН-неравенства (неравенства Белла)

Наконец подставим в сумму Белла

$$\begin{aligned} |\langle S \rangle| &= \left| \frac{1}{N} \sum_{i,j,k,m} S_{ijkm} N_{ijkm} \right| = \\ \left| \frac{1}{N} \sum_{i,j,k,m} (f_j^{\prime(A)} g_k^{(B)} + f_j^{\prime(A)} g_k^{(B)} + f_j^{\prime(A)} g_m^{\prime(B)} - f_j^{\prime(A)} g_m^{\prime(B)}) N_{ijkm} \right| = \\ \left| \langle F_A' G_B \rangle + \langle F_A G_B \rangle + \langle F_A' G_B' \rangle - \langle F_A G_B' \rangle \right| | \leqslant 2 \end{aligned}$$

В рамках квантовой механики значение суммы Белла не превосходит $2\sqrt{2}$, данное число носит название граница Цирельсона

Простой вывод BCHSH-неравенства (неравенства Белла)

Большинство исследователей считает, что BCHSH-неравенства модно получить в предположениях "Локального реализма":

- 1) Классический реализм: совокупность физических характеристик микросистемы существует совместно и независимо от наблюдателя, даже если наблюдатель не может измерить эти характеристики никаким классическим измерительным прибором
- 2) Локальность: если два измерения выполнены в точках 4-мерного пространства- времени и разделены между собой пространственноподобным интервалом, то показания одного классического измерительного прибора, находящегося в первой точке, никак не влияют на показания другого классического измерительного прибора, находящегося во второй точке.
- 3) Свобода воли: экспериментатор совершенно свободно может

Ответы на вопросы

Измерения в системе нескольких частиц

Как измеряется количество квантовой информации? И является ли такое измерение имерением наблюдаемой величины? Если да, то какой оператор отвечает такому измерению?

Интегралы по траекториям

Нарушения ЗСЭ