Review problems

Physics 211 Syracuse University, Physics 211 Spring 2019 Walter Freeman

February 27, 2019

Announcements

Upcoming schedule:

- Tuesday, February 26 (today): office hours 3-5 PM in the Physics Clinic
- Wednesday, February 27: HW4 due in recitation. Begin work on HW5 in recitation.
- Thursday, February 28: One new small topic; mostly review/practice
- Friday, March 1: Group Exam 2. Office hours 11-1 PM in the Physics Clinic
- Sunday, March 3: Review in Stolkin Auditorium, 1-4 PM
- Monday, March 4: office hours 1-3 PM
- Tuesday, March 5: Review in class; office hours 3-5 PM
- Wednesday, March 6: Come to recitation prepared with questions; review there. Homework 5 due.
- Thursday, March 7: Exam 2 in class.
- Friday, March 8: No recitation (we'll be grading): enjoy your spring break!

Ask a Physicist: imaginary time?

(It's not as crazy as you think!)

Agenda for today:

I was going to introduce one new idea today – a broad concept that we'll build on later.

I thought I needed to do this now, but it turns out we have enough time later in the semester.

So, instead, we could spend the entire day doing practice problems.

I have a few in mind, but you can ask me to walk you through:

- Anything from Homework 4 that you just turned in
- Hints to problems on Homework 5
- Anything from previous recitations

How does a centrifuge work?

How fast must the plastic tube spin so that the eraser doesn't fall?

Remember:

- Circular motion problems are no different than anything else!
- Think clearly about directions of forces on your force diagram!

How does a centrifuge work?

How fast must the plastic tube spin so that the eraser doesn't fall?

Remember:

- Circular motion problems are no different than anything else!
- Think clearly about directions of forces on your force diagram!

What force pushes the eraser outward?

Weighing the Sun

What is the mass of the Sun?

What is the mass of the Sun?

The intermediate result we got – that $\omega = \frac{2\pi}{\tau}$, where τ is how long it takes to go around – is useful to know.

Hauling a sled up a hill

Suppose a sled-dog of mass m wants to drag a sled up a hill at an angle θ . The coefficient of static friction between the dog's paws and the ground is μ_s , and the coefficient of kinetic friction between the sled's runners and the ground is μ_k . (There are no other angles – the sled is about as tall as the dog.)

- What's the largest mass sled that the dog can pull?
- How much force must the rope be able to support without breaking to do this?

The multiple pulley

Suppose I make a pulley system with multiple "winds" of the rope, and hang masses off of it as shown. Analyze this like you would Problem 3 from HW4:

- If I hang two equal masses from the two ropes, how will they accelerate?
- If I want to balance the system, what mass should I use to balance a 30 kg mass on the right?

The multiple pulley

Suppose I make a pulley system with multiple "winds" of the rope, and hang masses off of it as shown. Analyze this like you would Problem 3 from HW4:

- If I hang two equal masses from the two ropes, how will they accelerate?
- If I want to balance the system, what mass should I use to balance a 30 kg mass on the right?

This machine – much like many others – exhibits a concept called **mechanical** advantage.

- You apply a force F in one place, and move it a distance x
- ... elsewhere you get a force of $N \times F$, but it only moves over a distance $x \div N$.

Mechanical advantage

- You apply a force F in one place, and move it a distance x
- ... elsewhere you get a force of $N \times F$, but it only moves over a distance $x \div N$.

Examples:

- A crowbar
- A wedge
- These pulley systems
- The gears on a bicycle
- A hydraulic lift

On one hand, you're getting something for free: exert a force of 100 N, lift a weight of 500 N!

Mechanical advantage

- You apply a force F in one place, and move it a distance x
- ... elsewhere you get a force of $N \times F$, but it only moves over a distance $x \div N$.

Examples:

- A crowbar
- A wedge
- These pulley systems
- The gears on a bicycle
- A hydraulic lift

On one hand, you're getting something for free: exert a force of 100 N, lift a weight of 500 N!

On the other hand, you're not: the product force \times distance is always the same.

This is a hint that this quantity is special. It is: it's called *work* or *energy transfer*, and it's what we'll study after break.

The Earth/Moon Lagrange points

Suppose you want to place a satellite somewhere along the line connecting the Earth and the Moon so that it stays in line – that is, so that it orbits the Earth with the same ω as the Moon.

Where are they? (We'll make the assumption that the Earth doesn't move because of the Moon's gravity – not quite right, but close enough.)