Cálculo diferencial e integral I Ejercicios de práctica sobre sucesiones

Indicaciones: A continuación presentamos una serie de ejercicios cuya finalidad es que practiquen/refuercen los temas vistos recientemente. Esta lista de ejercicios se publica a petición de ustedes y solo es para practicar.

1. Encuentre los siguientes límites. Argumente sus respuestas.

$$a) \lim_{n \to \infty} \frac{n+15}{1-n^3}$$

c)
$$\lim_{n \to \infty} \frac{n^4 + n^2 - n}{n - 2n^2 - 3n^4}$$

b)
$$\lim_{n \to \infty} \frac{n^3 + n^2 - n}{n^3 - n^2 + n}$$

$$d) \lim_{n \to \infty} \left(\sqrt{n - \sqrt{n}} - \sqrt{n} \right)$$

2. Sea $\{a_n\}$ una sucesión convergente. Para toda $k \in \mathbb{N}$ se cumple que

$$\lim_{n \to \infty} a_{n+k} = \lim_{n \to \infty} a_n.$$

- 3. Sean $\{a_n\}$ una sucesión y $l \in \mathbb{R}$. Demuestre que $\{a_n\}$ converge a l si y sólo si cualquier subsucesión de $\{a_n\}$ converge a l.
- 4. Encuentre

$$\lim_{n\to\infty} \left(\frac{1}{(n+11)^2} + \frac{1}{(n+12)^2} + \dots + \frac{1}{(2n+10)^2} + \frac{1}{(2n+11)^2} + \dots + \frac{1}{(2n+20)^2} \right).$$

Sugerencia: Acote cada sumando y utilice el teorema del sándwich.

- 5. Sea $\{a_n\}$ una sucesión tal que $a_1 = 1$ y $a_{n+1} = \sqrt{1 + \sqrt{a_n}}$ para todo número natural n. Pruebe que la sucesión $\{a_n\}$ converge.
- 6. Sea $\{a_n\}$ una sucesión de números con $a_1 = 1$ y $a_n = 1 + a_1 + 2a_2 + \cdots + (n-1)a_{n-1}$ para todo número natural n. Encuentre $\lim_{n \to \infty} \frac{a_n}{n!}$. Sugerencia: Primero encuentre el valor de a_n .

1

7. Demuestre que

a)
$$\lim_{n\to\infty} a^n = \infty$$
, si $a > 1$. Sugerencia: $a = 1 + h$ para algún $h > 0$.

b)
$$\lim_{n \to \infty} a^n = 0$$
, si $0 < a < 1$.

c)
$$\lim_{n\to\infty} \sqrt[n]{a} = 1$$
, si $a > 1$. Sugerencia: $\sqrt[n]{a} = 1 + h$, acote el valor de h .

$$d) \lim_{n \to \infty} \sqrt[n]{a} = 1, \text{ si } 0 < a < 1.$$

$$e) \lim_{n \to \infty} \sqrt[n]{n} = 1.$$