HASKELL PROGRAMMING PROBLEM SET 1

LENNART JANSSON AND BRANDON AZAD

Read Chapter 2 of *Learn You a Haskell*, then use the techniques described to solve the following problems. No more advanced techniques are needed.

SIMPLE FUNCTIONS

Problem 1. Triangle numbers

Write a function nthTri that takes an Int n and returns the nth triangle number.

```
> nthTri 0
0
> nthTri 2
3
> nthTri 4
10
```

Problem 2. Palindromes

Write a function is Palindrome that takes a string and returns True if it's a palindrome and False if it's not.

```
> isPalindrome "racecar"
True
> isPalindrome "palindrome"
False
```

Problem 3. Parity

Write a function sameParity that takes a list of Ints and returns True if the first and last elements of the list have the same parity (even or odd) and False if they don't.

```
> sameParity [1, 4, 2]
False
> sameParity [3, 2, 6, 7]
True
```

Problem 4. Maximum of 3

Write a function max3 that takes three numbers (or other things that can be ordered) and returns the maximum of all three. Optional challenge: write this function in two different ways.

```
> max3 3 (-1) 7
7
> max3 8 8 8
8
```

LIST COMPREHENSIONS AND RANGES

Problem 5. Summing integers

Write a function specialSum that takes an Int n and returns the sum of all positive integers less than n not divisible by 3 or 7.

```
> specialSum 8
12
```

Problem 6. Squares and ranges

Write a function is Square Between that takes three Ints, a, b, and c, and returns True if some integer between b and c inclusive, when squared, is a.

```
> isSquareBetween 9 2 3
True
> isSquareBetween 16 2 3
False
```

To do the next problem, you might need the function concat, which takes a list of lists and concatenates all of them to make a single list.

```
> concat ["ab", "cd", "ef"]
"abcdef"
```

Problem 7. String manipulation

Write a function tripleLetters that takes a string and returns the string with every letter repeated three times, with every triple of letters separated by a -.

```
> tripleLetters "Hello"
"HHH-eee-111-111-ooo"
```

CHALLENGE PROBLEMS

These can be done with only the functions described in Chapter 2!

Problem 8. Combinations

Write a function twoCombo that takes a list of Ints and returns a list of all unordered combinations without replacement of 2 elements in the list. You can assume the list already consists of distinct elements.

```
> twoCombo [1, 2, 3, 5]
[(1, 2), (1, 3), (1, 5), (2, 3), (2, 5), (3, 5)]
```

Problem 9. More combinations

Was that too easy? Write a function twoCombo' that does the same thing as twoCombo, but works for any type, not just types that can be compared with == or <. Again assume the list already consists of distinct elements. (If you've read about types, this means the function must be able to have the type signature twoCombo':: [a] -> [(a, a)].)

Types and Typeclasses

Read Chapter 3 of *Learn You a Haskell*, then it's time for a round of... Name That Type! You can use :t in ghci to give the answers, or practice guessing the types yourself as an exercise.

Problem 10. Name That Type!

Give the types of all the following expressions.

Problem 11. More type annotations

Annotate all the functions you wrote above with explicit type signatures.