MedvedskyPV 25112024-193116

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой $R=19~\mathrm{Om}.$

Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=2.5$ ГГц и $f_{\rm B}=7.8$ ГГц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен -0.17 + j0;
- 3 использован наикратчайший отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\rm H}, f_{\rm B}]$?

Варианты ОТВЕТА:

- 1) 1.2 дБ
- 2) 0.3 дБ
- 3) 0.6 дБ
- 4) 1.6 дБ

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon=3,55$):

- 1 толщиной 0.406 мм и с волновым сопротивлением 19 Ом;
- 2 толщиной 0.305 мм и с волновым сопротивлением 12 Ом;
- 3 толщиной 0.508 мм и с волновым сопротивлением 34 Ом;
- 4 толщиной 0.203 мм и с волновым сопротивлением 13 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 2 ситуаций соответствует эта частотная характеристика? Варианты ОТВЕТА: 1) а 2) b 3) с 4) d

Рисунок 2 — Различные реализаци и Γ -образной цепи согласования

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\scriptscriptstyle \rm H}=0.71f_{\scriptscriptstyle \rm B}$:

$$s_{11} = -0.3 + 0.208i.$$

(Значение s_{11} приведено для 50-омной среды).

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 81 O_M
- 2) 31 O_M
- 3) 37 Ом
- 4) 86 Om

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте 8.8 ГГц с помощью калибровочной меры с названием "холостой ход". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения:

0.82 - 0.57i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 25.4 cm
- 2) 7.5 cm
- 3) 7.8 cm
- 4) 19.4 cm

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2			MAG		1/00/2012/09/2012/09			
2.9	0.647	111.8	2.021	29.6	0.122	43.7	0.219	-80.3

Выбрать Γ -образный четырёхполюсник (см. рисунок 3), который *не может* обеспечить согласование со стороны плеча 1 на частоте 2.9 $\Gamma\Gamma$ ц при наложении следующих ограничений:

- 1 W_T меньше 72 Ом;
- 2 θ_Π меньше $\frac{\pi}{2}$.

Рисунок 3 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D