Lasso estimatoren og dens generaliseringer

20. juni 2018

Louise N. Christensen Trine Graff

Aalborg universitet

Lasso estimatoren

The Least Absolute Shrinkage Selection Operator (lasso) løser optimeringsproblemet

$$\widehat{\beta}^{\text{lasso}} = \underset{\beta \in \mathbb{R}^p}{\min} \left\{ \sum_{i=1}^n \left(y_i - \sum_{j=1}^p x_{ij} \beta_j \right)^2 \right\}, \text{ u.h.t. at } \sum_{j=1}^p |\beta_j| \leqslant t,$$

som kan omskrives til et lagrange problem

$$\widehat{\boldsymbol{\beta}}^{\text{lasso}} = \mathop{\text{arg min}}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_1 \right\}.$$

Ridge regression estimatoren findes ud fra

$$\begin{split} \widehat{\boldsymbol{\beta}}^{\text{ridge}} &= \underset{\boldsymbol{\beta} \in \mathbb{R}^{\rho}}{\text{erg min}} \left\{ \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_2^2 \right\} \\ &= \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}_{\rho} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}. \end{split}$$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

) Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Data

Benchmark modellen

Benchmark modellen

Crydsvalidering

Lasso modellen og den: generaliseringer

Lasso estimatoren

Figur: Estimations illustration for lasso (venstre) og ridge regression (højre). De blå arealer er betingelsesområderne $|\beta_1|+|\beta_2|\leqslant t$ og $\beta_1^2+\beta_2^2\leqslant t^2$, mens de røde ellipser er konturkurver for SSR. Konturkurverne har centrum i OLS estimatoren, $\widehat{\beta}^{\text{OLS}}$.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

2 Lasso og dens generaliseringer

Statistisk infernes

Statistisk infernes

Kovarians testen

Data

Dometros automa a de Hom

Benchmark modellen

ydsvalidering -

Lasso modellen og den generaliseringer

Generaliseringer af lasso estimatoren

Naiv elastisk net

Selvom lasso har vist succes i mange tilfælde, har den også nogle begrænsninger:

- ▶ Hvis p > n, da udvælger lasso højst n variable
- ► Hvis der eksisterer en gruppe af variable med høj parvis korrelation, da vil lasso blot udvælge én variabel fra denne gruppe og denne variabel udvælges tilfældigt

Naiv elastisk net løser optimeringsproblemet

$$\widehat{\boldsymbol{\beta}}^{\text{naivEN}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\text{arg min}} \left\{ \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \lambda \left[\frac{1}{2} (1 - \alpha) \| \boldsymbol{\beta} \|_2^2 + \alpha \| \boldsymbol{\beta} \|_1 \right] \right\}.$$

- ▶ Hvis $\alpha = 0$, da reduceres det til den kvadrerede ℓ_2 -norm svarende til strafleddet for ridge regression
- ▶ Hvis $\alpha = 1$ reduceres strafleddet til ℓ_1 -normen svarende til strafleddet for lasso.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Covarians testen

Saka

Benchmark modellen

oordinate descent

BIC Lasso modellen og de

generaliseringer

Generaliseringer af lasso estimatoren

Lad \mathbf{z}_j og θ_j være $p_j \times 1$ vektorer som repræsenterer prædiktorerne og deres koefficienter i gruppe i for $i = 1, \dots, J$. Group lasso løser følgende optimeringsproblem

$$\widehat{\Theta}_{j}^{\text{group lasso}} = \underset{\Theta_{j} \in \mathbb{R}^{p_{j}}}{\min} \left\{ \frac{1}{2} \sum_{i=1}^{n} \left(y_{i} - \sum_{j=1}^{J} z_{ij}^{T} \Theta_{j} \right)^{2} + \lambda \sqrt{p_{j}} \sum_{j=1}^{J} \|\Theta_{j}\|_{2} \right\}.$$

- ► Alle indgange i $\widehat{\theta}_j^{\text{group lasso}}$ vil være lig nul eller ikke-nul afhængig af λ .
- Når $p_j = 1$, da har vi, at $\|\theta_j\|_2 = |\theta_j|$, således at alle grupper består af én prædiktor, dermed reduceres optimeringsproblemet til standard lasso.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

4 Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Date

Benchmark modellen

enchmark modellen

Krydsvalide BIC

Lasso modellen og den generaliseringer

Generaliseringer af lasso estimatoren

Antag β er rod-n konsistent til β^* . Vælg $\gamma > 0$, da er adaptive lasso estimaterne givet ved

$$\widehat{\boldsymbol{\beta}}^{\mathrm{AL}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|_2^2 + \lambda \sum_{j=1}^p \frac{|\beta_j|}{|\mathbf{\hat{\beta}}_j|^{\gamma}} \right\}.$$

- ► Antag $\frac{\lambda_n}{\sqrt{n}} \to 0$ og $\lambda_n n^{\frac{\gamma-1}{2}} \to \infty$, da opfylder adaptive lasso orakelegenskaberne:
 - ► Konsistent variabeludvælgelsen: $\lim_{n\to\infty} \mathbb{P}(\mathscr{A}_n^{\mathsf{AL}} = \mathscr{A}) = 1$.
 - ► Asymptotisk normalitet: $\sqrt{n}\left(\widehat{\boldsymbol{\beta}}_{\mathscr{A}}^{\mathsf{AL}} \boldsymbol{\beta}_{\mathscr{A}}^*\right) \stackrel{d}{\to} \mathsf{N}(\mathbf{0}, \sigma^2 \boldsymbol{C}_{11}^{-1}).$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske varjable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Kovarians testen

Doto

Benchmark modellen

nordinate descent

rydsvalid IC

Lasso modellen og den generaliseringer

Kovarians testen

- ► Anvendes på LARS algoritmen med lasso modifikation
- ightharpoonup Giver p-værdier til prædiktorerne når de indgår i den aktive mængde, som noteres A
- ▶ Vi ønsker, at teste om prædiktoren j, som tilføjes i A_k i trin k, er signifikant

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistick informac

Kovarians testen

o testen

Data

Benchmark modellen

Coordinate descent

dsvalidering

Lasso modellen og den generaliseringer

Kovarians testen

- ▶ Lad A_{k-1} være den aktive mængde i trin k-1 inden den j'te prædiktorer tilføjes
- lacksquare Lad $\tilde{m{\beta}}_{\mathcal{A}_{k-1}}^{\mathsf{lasso}}(\lambda_{k+1})$ være løsningen i λ_{k+1} ved at kun anvende prædiktorerne i \mathcal{A}_{k-1} , dvs

$$\mathbf{\tilde{\beta}}_{\mathcal{A}_{k-1}}^{\text{lasso}}\left(\lambda_{k+1}\right) = \underset{\boldsymbol{\beta}_{\mathcal{A}_{k-1}} \in \mathbb{R}^{|\mathcal{A}_{k-1}|}}{\text{arg min}} \left\{ \left\| \boldsymbol{y} - \boldsymbol{X}_{\mathcal{A}_{k-1}} \boldsymbol{\beta}_{\mathcal{A}_{k-1}} \right\|_{2}^{2} + \lambda_{k+1} \left\| \boldsymbol{\beta}_{\mathcal{A}_{k-1}} \right\|_{1} \right\}$$

- ► Lad $\widehat{\beta}$ (λ_{k+1}) betegne løsningen i λ_{k+1} ud fra prædiktorerne i $\mathcal{A}_{k-1} \cup \{j\}$
- ► Teststørrelsen:

$$T_k^{\mathsf{cov}} = \frac{1}{\sigma^2} \left(\left\langle \mathbf{y}, \mathbf{X} \widehat{\boldsymbol{\beta}}^{\mathsf{lasso}} \left(\lambda_{k+1} \right) \right\rangle - \left\langle \mathbf{y}, \mathbf{X}_{\mathcal{A}_{k-1}} \widetilde{\boldsymbol{\beta}}_{\mathcal{A}_{k-1}}^{\mathsf{lasso}} \left(\lambda_{k+1} \right) \right\rangle \right)$$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Data

Benchmark modellen

oordinate descent

asso modellen og de

generaliseringer

Kovarians testen

▶ Under \mathcal{H}_0 : $\mathcal{A}_{k-1} \supseteq \text{supp }(\beta^*)$, har teststørrelsen en asymptotisk standard eksponentiel fordeling

$$T_k^{\text{cov}} \stackrel{d}{\to} Exp(1)$$

- ► Tilfælde hvor vi har ukendt σ^2 og n > p:
 - ▶ Teststørrelsen

$$\begin{split} F_k &= \frac{T_k}{\widehat{\sigma}^2/\sigma^2} \\ &= \frac{1}{\widehat{\sigma}^2} \left(\left\langle \mathbf{y}, \mathbf{X} \widehat{\boldsymbol{\beta}}^{\text{lasso}} \left(\lambda_{k+1} \right) \right\rangle - \left\langle \mathbf{y}, \mathbf{X}_{\mathcal{A}_{k-1}} \widetilde{\boldsymbol{\beta}}^{\text{lasso}}_{\mathcal{A}_{k-1}} \left(\lambda_{k+1} \right) \right\rangle \right) \overset{d}{\to} F_{2,n-p}, \end{split}$$

hvor
$$\widehat{\sigma}^2 = \left\| \mathbf{y} - \mathbf{X} \widehat{\boldsymbol{\beta}}^{\text{OLS}} \right\|_2^2 / (n - p)$$
.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Benchmark modellen

Coordinate descent

BIC Lasso modellen og de

generaliseringer

Polyede lemmaet

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5,2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

TG testen

Data

Benchmark modellen

oordinate descent

C

Lasso modellen og dens generaliseringer

Out-of-sample

► Variableudvælgelse af LARS og lasso kan karakteriseres som et polyede

► Giver *p*-værdier og konfidensintervaller efter et polyede variableudvælgelse

16

► Vi betragter en statisk model på formen

$$\mathbf{y} = \mathbf{\mu} + \mathbf{\epsilon}, \ \mathbf{\epsilon} \sim N\left(\mathbf{0}, \sigma^2 \mathbf{I}_n\right)$$

hvor $\mathbf{y} \sim N(\mu, \Sigma)$, μ er en ukendt $n \times 1$ vektor, og Σ er en kendt $n \times n$ matrix.

▶ Betragt polyedet

$$\mathcal{P} = \{ \mathbf{y} : \Gamma \mathbf{y} \geqslant \mathbf{u} \},$$

hvor Γ er en $m \times n$ matrix, \boldsymbol{u} er en fast $m \times 1$ vektor.

- ▶ Vi ønsker, at lave inferens om $η^T μ$ givet y ∈ P, hvor η er en givet n × 1 vektor
 - $\blacktriangleright \ \mathcal{H}_0: \boldsymbol{\eta}^{\scriptscriptstyle T}\boldsymbol{\mu} = 0, \text{givet } \boldsymbol{y} \in \mathcal{P}$
- ► Vi udleder en teststørrelse med egenskaben

$$T\left(\textbf{\textit{y}},\mathcal{P},\boldsymbol{\eta} \right) \overset{\mathbb{P}_{0}}{\sim} \textit{Unif}\left(0,1 \right).$$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

tatistisk infernes

Kovarians testen

ata

Benchmark modellen

Coordinate descent

BIC

Lasso modellen og den generaliseringer

Polyede lemma

For ethvert Σ og η , hvor $\eta^T \Sigma \eta \neq 0$, gælder der at

$$\Gamma \boldsymbol{y} \geqslant \boldsymbol{u} \Leftrightarrow \mathcal{V}^{-}\left(\boldsymbol{y}\right) \leqslant \boldsymbol{\eta}^{T} \boldsymbol{y} \leqslant \mathcal{V}^{+}\left(\boldsymbol{y}\right), \quad \mathcal{V}^{0}\left(\boldsymbol{y}\right) \leqslant \boldsymbol{0},$$

hvor

$$\mathcal{V}^{-}(\mathbf{y}) = \max_{j:\rho_{j}>0} \frac{u_{j} - (\Gamma \mathbf{y})_{j} + \rho_{j} \mathbf{\eta}^{T} \mathbf{y}}{\rho_{j}}$$

$$\mathcal{V}^{+}(\mathbf{y}) = \min_{j:\rho_{j}<0} \frac{u_{j} - (\Gamma \mathbf{y})_{j} + \rho_{j} \mathbf{\eta}^{T} \mathbf{y}}{\rho_{j}}$$

$$\mathcal{V}^{0}(\mathbf{y}) = \max_{j:\rho_{j}=0} u_{j} - (\Gamma \mathbf{y})_{j},$$

hvor $\rho=rac{\Gamma\Sigma\eta}{\eta^{T}\Sigma\eta}$. Yderligere er η^{T} og $\left(\mathcal{V}^{-}\left(\mathbf{\emph{y}}\right)$, $\mathcal{V}^{+}\left(\mathbf{\emph{y}}\right)\mathcal{V}^{0}\left(\mathbf{\emph{y}}\right)\right)$ uafhængige.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

TG testen

Benchmark modellen

Benchmark modellen

Krydsvaliderin

Lasso modellen og der generaliseringer

- ► Illustrationen er for p = 2, og $\Sigma = I_p$
- $> y = P_n y + P_{n^{\perp}} y$
- ► P_{η} **y** = $\eta \eta^{T}$ er projektionen af **y** på η

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Kovarians testen

12 TG testen

Data

Benchmark modellen

Coordinate descent

Lasso modellen og dens generaliseringer

Lad Φ (x) betegne fordelingsfunktionen af en standard normalfordeling, da er fordelingsfunktionen af en trunkeret normalfordelt stokastisk variabel med middelværdi μ og varians σ^2 indenfor intervallet [a, b] givet ved

$$F_{\mu,\sigma^{2}}^{[a,b]}(x) = \frac{\Phi\left(\frac{x-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)}{\Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)}.$$

Hvis $\eta^T \Sigma \eta \neq 0$, da er $F_{\eta^T u, \eta^T \Sigma \eta}^{[\mathcal{V}^-, \mathcal{V}^+]} (\eta^T y)$ givet $\Gamma y \geqslant \mathbf{u}$ en standard uniform fordeling, dvs

$$\mathbb{P}\left(F_{\boldsymbol{\eta}^{\mathsf{T}}\boldsymbol{\mu},\boldsymbol{\eta}^{\mathsf{T}}\boldsymbol{\Sigma}\boldsymbol{\eta}}^{[\mathcal{V}^{-},\mathcal{V}^{+}]}\left(\boldsymbol{\eta}^{\mathsf{T}}\boldsymbol{y}\right)\leqslant\alpha\,\big|\,\Gamma\boldsymbol{y}\geqslant\boldsymbol{\mathsf{u}}\right)=\alpha,$$

for ethvert $0 \leqslant \alpha \leqslant 1$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

3 TG testen

Data

Benchmark modellen

Coordinate descent

Lasso modellen og den: generaliseringer

Af polyede lemmaet kan fordeling af enhver lineær funktion $\eta^T y$ givet $\Gamma y \geqslant u$ skrives som en følgende betinget fordeling

$$\mathbf{\eta}^{\mathsf{T}}\mathbf{y}\,\big|\,\mathcal{V}^{-}\left(\mathbf{y}
ight)\leqslant\mathbf{\eta}^{\mathsf{T}}\mathbf{y}\leqslant\mathcal{V}^{+}\left(\mathbf{y}
ight)$$
 ,

da $\eta^T y$ er normalfordeling er overstående trunkeret normalfordelt.

For enhver lineær funktion $\eta^T y$ kan vi udregne p-værdier for nulhyptesen at $\mathcal{H}_0: \eta^T y = 0$ og tilhørende betingede konfidensintervaller

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

TG testen

Benchmark modellen

Coordinate descent

Krydsvalidering

Lasso modellen og der generaliseringer

Data

Datasæt fra FRED

- ▶ 128 variable
- ► 1. januar 1959 1. november 2017 (707 observationer)
- ► Opdelt i 8 grupper:
 - 1. Output og indkomst
 - 2. Arbeidsmarked
 - 3. Bolig
 - 4. Forbrug, ordrer og varebeholdninger

- 5. Penge og kredit
- 6. Renter og valutakurser
- 7. Priser
- 8 Aktiemarked

► Transformerede datasæt

- ▶ 123 variable
- ▶ 1. ianuar 1960 1. iuli 2017 svarende til 691 variable
 - ► Træningsmængde: 1. januar 1960 1. december 2005 (552 observationer)
 - ► Testmængde: 1. januar 2006 1. juli 2017 (139 observationer)
- centre responsvariablen og standardiser prædiktorerne

Inferens i lasso modellen med anyendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Data

Benchmark modellen

generaliseringer

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes Kovarians testen

Data

Data

Benchmark modellen Coordinate descent

Krydsvalidering BIC

Lasso modellen og den: generaliseringer

Figur: Den øverste figur viser arbejdsløshedsraten og den nederste figur illustrerer 1. differensen af

Benchmark modellen

Den autoregressive model

► ordenen bestemmes ud fra BIC

$\widehat{\Phi}_1$	-0.0162
$\widehat{\Phi}_2$	0.1992***
$\widehat{\Phi}_3$	0.1873***
$\widehat{\varphi}_4$	0.1686***
BIC	-3.5651
R_{adj}^2	12.31%
LogLik	211.8617

Tabel: Estimations resultater for en AR (4), BIC, justeret R^2 og log-likehood. Det opløftede symbol betegner signifikans ved henholdsvis ***0.1%, **1%, *5% og †10%.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

ata

Benchmark modellen

Benchmark modellen

ryasvallaer IC

Lasso modellen og den: generaliseringer

Benchmark modellen

Den autoregressive model

Skewness	0.2666
Kurtosis	1.4773
JB-test	$2.535 \cdot 10^{-13}$
LB ₁₀ -test	0
MAE	0.1312
MSE	0.0272

Tabel: Skewness, excess kurtosis og p-værdier for Jarque-Bera og Ljung-Box testen for de standardiserede residualer af en AR (4). Vi lader LB₁₀ betegne Ljung-Box testen med lag = 10. p-værdier $< 2.2 \cdot 10^{-16}$ sættes til 0.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

atistisk infernes

ovarians testen

Data

Benchmark modellen

Coordinate descent

Krydsvalidering BIC

Lasso modellen og den: generaliseringer

Faktor modellen

► Lad $k = 1, ..., k_{\text{max}}$, hvor $k_{\text{max}} = 20$

▶ ordenen bestemmes ud fra BIC

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Data

Benchmark modellen

Benchmark modellen

Coordinate descent

Lasso modellen og dens generaliseringer

Benchmark modellen

Faktor modellen

Faktor model (IC ₁)							
k	Værdi 6	IC ₁ -0.3519	R _{adj} 15.79%	LogLik 224.3621			
Faktor model (IC ₂)							
k	Værdi 11	IC ₂ -0.5314	R _{adj} 16.85%	LogLik 230.3414			
		Faktor mo	del (IC ₃)				
k	Værdi 20	IC ₃ -0.6931	R _{adj} 17.87%	LogLik 238.3753			

Tabel: Antal faktorer, værdien af informationskriteriet, justeret R^2 samt log-likehood for faktormodellerne valgt ud fra IC_1 , IC_2 og IC_3 , som betegnes faktor model (IC_1), faktor model (IC_2) og faktor model (IC_3).

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

statistisk infernes

ovarians testen

) oto

Benchmark modellen

enchmark modellen

rydsvalidering

Lasso modellen og dens generaliseringer

Benchmark modellen

Faktor modellen

	Faktor model (IC ₁)	Faktor model (IC ₂)
Skewness	0.0444	-0.0418
Kurtosis	0.5768	0.4612
JB-test	0.0172	0.0712
LB ₁₀ -test	0.729	0.4637
MAE	0.1190	0.1111
MSE	0.0221	0.0187

Tabel: Skewness, excess kurtosis, p-værdier for Jarque-Bera og Ljung-Box testen for de standardiserede residualer fra faktor modellerne valgt ud fra IC_1 og IC_2 . Vi lader LB_{10} betegne Ljung-Box testen med lag = 10.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5,2018

Lasso og dens generaliseringer

Statistisk infernes

lovarians testen

Data

Benchmark modellen

Coordinate descent

BIC

Lasso modellen og dens generaliseringer

Coordinate descent

- ► Coordinate descent
 - ► Koordinat *k* er valgt i iteration *t*, så er opdatering givet ved

$$\beta_k^{t+1} = \operatorname*{arg\,minf}_{\beta_k} \left(\beta_1^t, \ldots, \beta_{k-1}^t, \beta_k, \beta_{k+1}^t, \ldots, \beta_p^t \right)$$

- ► Krydsvalidering
 - $ightharpoonup CV_k = \frac{1}{k} \sum_{i=1}^k MSE_i$
- ► BIC
 - ► $BIC = \log \widehat{\sigma_p^2} + \frac{p \log T}{T}$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

tatistisk inferne:

Kovarians testen

Date

Benchmark modellen

Coordinate descent

rydsvalidering

Lasso modellen og dens generaliseringer

prædiktion af makroøkonomiske variable MAOK9 5.2018

Inferens i lasso modellen med anvendelse inden for

Lasso og dens generaliseringer

Statistisk infernes

Benchmark modellen

Krydsvalidering

Lasso modellen og dens generaliseringer

- ightharpoonup Elastik net (CV), $\alpha = 1$
- ▶ Adaptive lasso med OLS vægte (CV), $\gamma = 0.5$
- ▶ Adaptive lasso med lasso vægte (CV), $\gamma = 0.5$

Lasso (CV)							Ridge regression (CV)				
	$log(\lambda)$	MSE	р	R_{adj}^2	LogLik		$log(\lambda)$	MSE	р	R _{adi}	LogLik
λ_{min}	-6.6361	0.0019	28	94.52%	983.956	λ_{min}	-4.3800	0.0045	126	93.96%	1014.633
λ_{1sd}	-5.7057	0.0020	14	94.46%	973.765	λ_{1sd}	-4.1939	0.0047	126	93.96 %	1014.633
		Group l	asso ((CV)			Adaj	o. lasso m.	OLS va	ægte (CV)	
	log (\lambda)	MSE	р	R _{adj}	LogLik		log (\lambda)	MSE	р	R _{adi}	LogLik
λ_{min}	-8.2644	0.0022	126	93.96%	1014.633	λ_{min}	-5.1333	0.0018	5	94.44%	968.274
λ_{1sd}	-7.6365	0.0023	119	94.03%	1013.333	λ_{1sd}	-3.4586	0.0019	2	94.28%	959.0402
	Adap	. lasso m.	lassov	vægte (CV)							
	$log(\lambda)$	MSE	р	R_{adj}^2	LogLik						
λ_{min}	-6.3897	0.0017	6	94.48%	970.5874						
λ_{1sd}	-3.5057	0.0018	2	94.28%	959.0402						

Tabel: Logaritmen af λ_{min} og λ_{1sd} , gennemsnitlig krydsvalideringsfejl, som er målt i MSE, antallet af parametre, justeret R² og log-likelihood for lasso og dens generaliseringer. De valgte tuning parametre er markeret med tykt.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

varians testen

Data

Benchmark modellen

Coordinate descent

IC

Lasso modellen og dens generaliseringer

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Benchmark modellen

Coordinate descent

Krydsvalidering

BIC Lasso modellen og de

Lasso modellen og den: generaliseringer

Prædiktor	Koefficient	Z-score	<i>p</i> -værdi	Konfidensinterval	$\left[\mathcal{V}^{-},\mathcal{V}^{+} ight]$
DPCERA3M086SBEA	-0.002	-1.362	0.671	[-0.009, 0.027]	[0.002, 0.004]
IPDMAT	-0.003	-1.113	0.265	[-0.012, 0.006]	[0.000, 0.004]
HWIURATIO	0.002	0.717	0.199	[-0.003, 0.014]	[-0.002, 0.004]
CLF16OV	0.243	36.671	0	[0.232, 0.259]	[0.203, 0.252]
CE16OV	-0.266	-37.393	0	[-0.280, -0.254]	[0.230, 0.278]
UEMPLT5	0.001	0.240	0.402	[-0.005, 0.008]	[-0.011, 0.009]
UEMP5TO14	0.000	-0.118	0.430	[-0.006, 0.004]	[-0.010, 0.005]
UEMP15OV	0.004	1.593	0.056	[0.000, 0.009]	[-0.006, 0.013]
PAYEMS	0.001	0.280	0.219	[-0.007, 0.030]	[-0.002, 0.002]
USCONS	-0.002	-0.883	0.566	[-0.009, 0.016]	[0.001, 0.004]
TB6MS	-0.001	-0.480	0.682	[-0.009, 0.026]	[0.000, 0.004]
GS5	-0.003	-1.130	0.219	[-0.025, 0.007]	[0.001, 0.004]
EXUSUKx	0.003	1.307	0.870	[-0.071, 0.003]	[0.002, 0.006]
lag 1	-0.009	-4.065	0.003	[-0.013, -0.004]	[0.005, 0.015]

Tabel: Koefficienter, Z-scores, p-værdier, konfidensintervaller og trunkeret intervaller for lasso_{TG} (CV). Den estimeres standard afvigelse er 0.043, og resultaterne er for $\lambda_{TG} = \lambda_{1sd} \cdot 548 \approx 1.823$ med $\alpha = 0.1$.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

ovarians testen

. .

Benchmark modellen

Sencimark modellen

Coordinate des Krydsvalidering

BIC

Lasso modellen og den generaliseringer

BIC

modellen med anvendelse inden for prædiktion af makroøkonomiske variable

Inferens i lasso

MAOK9 5.2018

generaliseringer

Statistisk infernes

Kovarians testen

Data

Benchmark modellen

Benchmark modellen

Krydsv BIC

Lasso modellen og dens generaliseringer

- ▶ Elastik net (BIC), $\alpha = 1$
- ▶ Adaptive lasso med OLS vægte (BIC), $\gamma = 2$
- Adaptive lasso med lasso vægte (BIC), $\gamma = 0.5$

		Lasso			Ridge regre	ession	(BIC)			
λ_{BIC}	log (λ) -6.2639	BIC -6.1608	р 17	R _{adj} 94.46%	LogLik 974.9938 λ _{ΒΙ}	$\log (\lambda)$ -4.4730	BIC -3.3230	<i>p</i> 126	R _{adj} 93.96%	LogLik 1014.633
		Group las	so (B	IC)		Ada	p. lasso m. (OLS va	egte (BIC)	
λ_{BIC}	log (λ) -7.2876	BIC -5.0721	<i>p</i> 99	R _{adj} 94.17%	LogLik 1007.311 λ _{ΒΙ}	$\log (\lambda)$ -4.3308	BIC 6.3143	р 2	R _{adj} 94.28%	Loglik 959.0402
	Adap.	lasso m. la	SSO V	ægte (BIC)						
λ_{BIC}	log (λ) -4.9440	BIC -6.3191	р 3	R _{adj} 94.4%	LogLik 965.2423					

Tabel: Logaritmen af λ_{BIC} , antallet af parametre, BIC, justerede R² og log-likelihood for lasso og dens generaliseringer.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Dat

Benchmark modellen

coordinate descent

BIC

Lasso modellen og dens generaliseringer

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistick infornas

Kovarians testen

Benchmark modellen

Senchmark modellen

Krydsvalidering BIC

Lasso modellen og de generaliseringer

Prædiktor	Koefficient	Z-score	p-værdi	Konfidensinterval	$\left[\mathcal{V}^{-},\mathcal{V}^{+} ight]$
DPCERA3M086SBEA	-0.002	-0.960	0.093	[-0.071, 0.003]	[0.001, 0.002]
IPDMAT	-0.002	-0.680	0.159	[-0.032, 0.005]	[-0.001, 0.002]
CLF16OV	0.241	36.686	0	[0.235, 0.350]	[0.200, 0.242]
CE160V	-0.264	-37.339	0	[-0.455, -0.260]	[0.142, 0.264]
UEMPLT5	0.000	0.027	0.777	[-0.029, 0.005]	[-0.001, 0.013]
UEMP5TO14	-0.001	-0.266	0.599	[-0.007, 0.014]	[-0.001, 0.004]
UEMP15OV	0.004	1.299	0.249	[-0.005, 0.008]	[0.001, 0.010]
CLAIMSx	0.001	0.387	0.689	[-0.030, 0.011]	[0.000, 0.002]
USCONS	-0.001	-0.591	0.100	[-0.088, 0.004]	[0.000, 0.001]
USTRADE	0.000	-0.118	0.988	$[0.007, \infty)$	[0.000, 0.006]
AMDMNOx	-0.002	-0.813	0.641	[-0.008, 0.020]	[0.001, 0.004]
TB6MS	-0.001	-0.415	0.677	[-0.008, 0.023]	[0.000, 0.005]
GS5	-0.003	-1.207	0.144	[-0.032, 0.005]	[0.001, 0.004]
EXUSUKx	0.003	1.449	0.303	[-0.007, 0.012]	[0.002, 0.004]
	0.002	0.855	0.865	[-0.054, 0.003]	[0.001, 0.009]
lag 1	-0.010	-4.362	0.499	[-0.011, 0.033]	[0.009, 0.021]
lag 4	0.002	1.106	0.311	[-0.014, 0.028]	[0.001, 0.003]

Tabel: Koefficienter, Z-scores, p-værdier, konfidensintervaller og trunkeret intervaller for lasso_{TG} (BIC). Den estimeres standard afvigelse er 0.043, og resultaterne er for $\lambda_{TG}=\lambda_{BIC}\cdot 548\approx 1.0432$ med $\alpha=0.1$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Data

Benchmark modellen

enchmark modellen

Coordinate descent

BIC

Lasso modellen og dens generaliseringer

LARS

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

generaliseringer

Statistisk infernes

Kovarians testen

Data

Benchmark modellen

Coordinate descent

BIC

Lasso modellen og dens generaliseringer

Out-of-sampl

Fraktion af ℓ_1 -norm ...

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Benchmark modellen

enchmark modellen

ordinate descent

Lasso modellen og dens

generaliseringer

Figur: 10-fold krydsvalideringsfejl som funktion af fraktionen af ℓ_1 -normen LARS og lasso LARS. De

	LARS (CV)						Las	so LA	RS (CV)		
	Værdi	MSE	р	R_{adi}^2	LogLik		Værdi	MSE	р	R_{adi}^2	Loglike
f_{\min}	0.2753	0.0019	27	94.43%	974.8317	f_{\min}	0.2626	0.0019	21	94.52%	980.0982
f_{1sd}	0.2542	0.0019	19	94.19%	967.2669	f _{1sd}	0.2424	0.0019	13	94.43%	971.6687

Tabel: Værdien af f_{\min} og f_{1sd} , gennemsnitlig krydsvalideringsfejl, som er målt i MSE, antallet af parametre, justeret R^2 og log-likelihood for LARS og lasso LARS. De valgte tuning parametre er markeret med tykt.

▶ 22 trin udføres for lasso LARS (CV), hvor variablerne ...

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Kovarians testen

Data

Benchmark modellen

encimark modellen

rydsvalidering

Lasso modellen og dens generaliseringer

Proposition of UNIVERSITY

Estimerede koefficienter

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske varjable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Data

Benchmark modellen

senchmark modellen

Coordinate descent

Krydsvalidering

Lasso modellen og dens

generaliseringer

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Data

BIC

Benchmark modellen

Benchmark modellen

Coordinate descent

Krydsvalidering

Lasso modellen og dens generaliseringer

Out-of-sample

46

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

generaliseringer

Statistisk infernes

Kovarians testen

Data

Benchmark modellen

Coordinate descent

BIC

36 Lasso modellen og dens generaliseringer

	LARS (BIC)						Lasso L	ARS (I	BIC)	
f_{BIC}	Værdi 0.2623			auj	LogLik 975.2909			,	auj	

Tabel: Værdien af $f_{\rm BIC}$, antallet af parametre, BIC, justeret ${\rm R^2}$ og log-likelihood for LARS og lasso LARS.

▶ 32 trin udføres for lasso LARS (BIC) ..

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Data

Benchmark modellen

Coordinate descent

37 Lasso modellen og dens generaliseringer

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infornes

Kovariane testen

1G teste

Data

Benchmark modellen

oordinate descent

BIC
38 Lasso modellen og dens

lasso modellen og den generaliseringer

Out-of-sample

Figur: Estimerede koefficienter for LARS (BIC) og lasso LARS (BIC). Farverne indikerer hvilken

LARS

Kovarians testen

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Data

Benchmark modellen

Coordinate descent

Krydsvaliderin

³⁹ Lasso modellen og dens generaliseringer

LARS

TG testen

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Data

Benchmark modellen

Seardinate descent

Krydsvaliderin

⁴⁰ Lasso modellen og dens generaliseringer

Oversigt over in-sample resultater

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

generaliseringer

Statistisk infernes

Kovarians testen

D.

Benchmark modellen

Coordinate descent

BIC

41 Lasso modellen og dens generaliseringer

Oversigt over in-sample resultater

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske varjable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

.

Benchmark modellen

oordinate descent

ordinate descent

42 Lasso modellen og dens

generaliseringer

Out-of-sample

Figur: Betinget 95% konfidensinterval for lasso_{TG} (CV) og lasso_{TG} (BIC) (rød) og 95% konfidensinterval for OLS ortinstrument for descriptions (L18)

Out-of-sample

	MAE	R^{MAE}	MSE	R^{MSE}
Benchmark model	0.1111	1	0.0187	1
AR(4)	0.1312	1.1811	0.0272	1.454
Faktor model (IC ₁)	0.119	1.0717	0.0221	1.1798
Lasso (CV)	0.032	0.2877	0.0016	0.0876
Lasso (BIC)	0.0308	0.277	0.0015	0.0795
Ridge regression (CV)	0.0582	0.5239	0.0052	0.28
Ridge regression (BIC)	0.0573	0.5155	0.0051	0.2706
Group lasso (CV)	0.0352	0.3168	0.0019	0.1042
Group lasso (BIC)	0.0382	0.3437	0.0022	0.1202
Adap. lasso m. OLS vægte (CV)	0.0304	0.2733	0.0014	0.0729
Adap. lasso m. OLS vægte (BIC)	0.0310	0.2787	0.0014	0.0743
Adap. lasso m. lasso vægte (CV)	0.0298	0.2684	0.0013	0.0716
Adap. lasso m. lasso vægte (BIC)	0.0304	0.274	0.0014	0.0729
Lasso _{TG} (CV)	0.0303	0.2724	0.0014	0.0744
Lasso _{TG} (BIC)	0.031	0.279	0.0014	0.0767
LARS (CV)	0.0307	0.2761	0.0015	0.0802
LARS (BIC)	0.0305	0.2747	0.0015	0.0793
Lasso LARS (CV)	0.0352	0.317	0.002	0.1089
Lasso LARS (BIC)	0.0322	0.2901	0.0017	0.0903
$LARS_{TG}$ (CV)	0.0300	0.2701	0.0014	0.0745
$LARS_{TG}$ (BIC)	0.0301	0.2708	0.0014	0.0750

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

generaliseringer

Statistisk infernes

Benchmark modellen

Lasso modellen og dens generaliseringer

43 Out-of-sample

Tabel: Den gennemsnitlige absolutte og kvadrerede fejl samt gennemsnitlig tabs ratio mellem hver model og benchmark modellen.

Out-of-sample

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

generaliseringer

Figur: Rullende gennemsnitlig absolut tabs ratio.

Out-of-sample Diebold-Mariano testen

	Absolutte fejl	Kvadrerede fej
AR(4)	0.0021	0.0032
Faktor model (IC ₁)	0.1692	0.1183
Lasso (CV)	0	$2.933 \cdot 10^{-12}$
Lasso (BIC)	0	$2.728 \cdot 10^{-12}$
Ridge regression (CV)	$6.418 \cdot 10^{-13}$	$3.551 \cdot 10^{-9}$
Ridge regression (BIC)	$2.85 \cdot 10^{-13}$	$2.507 \cdot 10^{-9}$
Group lasso (CV)	0	$5.999 \cdot 10^{-12}$
Group lasso (BIC)	0	$8.845 \cdot 10^{-12}$
Adap. lasso m. OLS vægte (CV)	0	$2.797 \cdot 10^{-12}$
Adap. lasso m. OLS vægte (BIC)	0	$2.905 \cdot 10^{-12}$
Adap. lasso m. lasso vægte (CV)	0	$2.676 \cdot 10^{-12}$
Adap. lasso m. lasso vægte (BIC)	0	$2.814 \cdot 10^{-12}$
Lasso _{TG} (CV)	0	0
Lasso _{TG} (BIC)	0	0
LARS (CV)	0	$2.64 \cdot 10^{-12}$
LARS (BIC)	0	$2.615 \cdot 10^{-12}$
Lasso LARS (CV)	0	$4.694 \cdot 10^{-12}$
Lasso LARS (BIC)	0	$3.328 \cdot 10^{-12}$
LARS _{TG} (CV)	0	0
$LARS_{TG}$ (BIC)	0	0

Tabel: p-værdier for Diebold-Mariano testen for hver model imod benchmark modellen. p-værdier $< 2.2 \cdot 10^{-16}$ sættes til 0.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske varjable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Data

Benchmark modellen

enchinark modellen

rydsvalidering

Lasso modellen og dens generaliseringer

Out-of-sample

T_R		T _{max}	
$\alpha = 0.1$	$\alpha = 0.2$	$\alpha = 0.1$	$\alpha = 0.2$
Benchmark model	Benchmark model	Benchmark model	Benchmark model
AR(4)	AR(4)	AR(4)	AR(4)
Lasso (CV)	Lasso (CV)	Faktor (IC ₁)	Lasso (CV)
Lasso (BIC)	Lasso (BIC)	Lasso (CV)	Lasso (BIC)
Group lasso (CV)	Group lasso (CV)	Lasso (BIC)	Ridge regression (CV)
Group lasso (BIC)	Group lasso (BIC)	Ridge regression (CV)	Ridge regression (BIC)
Adap. lasso m. OLS vægte (CV)	Adap. lasso m. OLS vægte (CV)	Ridge regression (BIC)	Group lasso (CV)
Adap. lasso m. OLS vægte (BIC)	Adap. lasso m. OLS vægte (BIC)	Group lasso (CV)	Group lasso (BIC)
Adap. lasso m. lasso vægte (CV)	Adap. lasso m. lasso vægte (CV)	Group lasso (BIC)	Adap. lasso m. OLS vægte (CV)
Adap. lasso m. lasso vægte (BIC)	Adap. lasso m. lasso vægte (BIC)	Adap. lasso m. OLS vægte (CV)	Adap. lasso m. OLS vægte (BIC)
Lasso _{TG} (BIC)	$Lasso_{TG}$ (BIC)	Adap. lasso m. OLS vægte (BIC)	Adap. lasso m. lasso vægte (CV)
LARS (CV)	LARS (CV)	Adap. lasso m. lasso vægte (CV)	Adap. lasso m. lasso vægte (BIC
LARS (BIC)	LARS (BIC)	Adap. lasso m. lasso vægte (BIC)	$Lasso_{TG}$ (CV)
Lasso LARS (CV)	Lasso LARS (CV)	$Lasso_{TG}$ (CV)	$Lasso_{TG}$ (BIC)
Lasso LARS (BIC)	Lasso LARS (BIC)	$Lasso_{TG}$ (BIC)	LARS (CV)
		LARS (CV)	LARS (BIC)
		LARS (BIC)	Lasso LARS (CV)
		Lasso LARS (CV)	Lasso LARS (BIC)
		Lasso LARS (BIC)	LARS _{TG} (CV)
		$LARS_{TG}$ (CV)	LARS _{TG} (BIC)
		$LARS_{TG}$ (BIC)	

Tabel: 80% og 90% model confidence set for arbejdsløshedsraten for absolutte og kvadrerede fejl.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

generaliseringer

Statistisk infernes

Benchmark modellen

Lasso modellen og dens generaliseringer

46 Out-of-sample

Aalborg universitet