Summary of: Dose-dependent skeletal deficits due to varied reductions in mechanical loading in rats

Key findings and quantitative results:

- **Trabecular Bone Loss**: **Trabecular Volumetric Bone Density (vBMD)**: Declined dose-dependently from 18% to 5% in PWB groups. **Trabecular Volume Fraction (Tb.BV/TV)**: Decreased by 48% to 39% in PWB groups. **Trabecular Thickness (Tb.Th)**: Decreased by 20% to 39% in PWB groups. **Trabecular Number (Tb.N)**: Decreased by 40% to 65% in PWB groups. **Trabecular Separation (mm)**: Decreased by 23% to 34% in PWB groups.
- **Cortical Bone Loss**: **Cortical Bone Density (Ct.TMD)**: Increased by 1% to 9% in PWB groups. **Cortical Thickness (Ct.Th)**: Increased by 1% to 5% in PWB groups. **Total Cross-Sectional Area (Tt.Ar)**: Increased by 1% to 5% in PWB groups. **Cortical Bone Area Fraction (Ct.Ar/Tt.Ar)**: Increased by 1% to 5% in PWB groups.
- **Femoral Stiffness**: **Diaphyseal Stiffness**: Decreased by 17.4% to 13.2% in PWB groups at 2 weeks. **Estimated Elastic Modulus (MPa)**: Not altered by PWB.
- **Histomorphometry**: **Osteoblast Surface**: Decreased by 65% to 78% in PWB groups. **Osteoclast Surface**: Unaffected by PWB. **Mineralizing Surface**: Decreased by 75% to 67% in PWB groups. **Marrow Apposition Rate (MAR)**: Tended to be lower in PWB groups.
- **MicroCT Imaging**: **Trabecular Microarchitecture**: Deteriorated in PWB groups. **Cortical Microarchitecture**: Not altered by PWB.
- **Statistical Analysis**: **PWB Dose-Response**: Significant dose-dependent reductions in trabecular vBMD, Tb.BV/TV, Tb.N, and Tb.Th. **Time Course**: Deterioration continued for 4 weeks, with no plateau observed. **Sex Differences**: No significant sex differences in trabecular bone loss.
- **Additional Findings**: **Periosteal Bone Formation**: Inhibited by PWB, indicating periosteal bone loss. **Osteocyte Apoptosis**: Induced by PWB, leading to osteocyte apoptosis. **Osteocyte Sclerostin Expression**: Increased by PWB, leading to osteocyte apoptosis.
- **Mechanical Testing**: **Femoral Stiffness**: No significant changes in estimated modulus. **Femoral Stiffness**: No significant changes in stiffness.
- **Longitudinal Assessment**: **In Vivo pQCT**: Measured trabecular vBMD longitudinally, demonstrating dose-dependent reductions. **Ex Vivo µCT**: Measured trabecular and cortical bone properties, demonstrating dose-dependent reductions.
- **Limitations**: **Age and Sex**: Limited to young adult rats, with no significant sex differences. **PWB Duration**: Limited to 4 weeks, with no evidence of a plateau. **PWB Level**: Limited to 20%, 40%, 70%, and 100% of body weight, with no evidence of a plateau.

- **Mechanostat Gene Response**: Noted in the response to PWB, suggesting rapid adaptation to altered mechanical loading.
- **Additional Studies**: **Bisphosphonate Alendronate**: Attenuated bone loss, but potential side effects need to be considered. **Resistance Exercise**: Mitigated bone loss, but serum markers for bone resorption continued to be elevated. **Space Flight**: Osteoporosis risk in space, with limited data for skeletal responses to space missions. **Age and Sex**: Limited to young adult rats, with no significant sex differences. **PWB Duration**: Limited to 4 weeks, with no evidence of a plateau. **PWB Level**: Limited to 20%, 40%, 70%, and 100% of body weight, with no evidence