PSTAT 115 - Section Two

Winter 2023

Sufficient Statistics

• Step Up: We have a sequence of independent and random variables from some distri-
bution $\overline{p_{\theta}}(y)$. We collect a random sample of size n .
Note. We represent $y = ($) to represent a single sample of(
• Goal: to draw inference (from the) on the parameter θ (comes from distribution $p(y)$).
Definition (Likelihood). The $L(\theta) = p(y_1, \dots, y_n \theta)$ represents the of the data y for a given General Equ:
Definition (Sufficient Statistic).
i) A statistic T is a function of the sample
Special Case: a statistic T is called a sufficient statistic if of $(Y_1, \ldots, Y_n) T$ <u>doesn't</u> depend on!
Theorem (on writes,
$p_{\theta}(\boldsymbol{y}) = g_{\theta}(T(\boldsymbol{y})) \times \underline{\hspace{1cm}}.$
Question 1. Let X_1, X_2, \ldots, X_n be i.i.d $N(\mu, \sigma^2)$ random variables. Find the sufficient (minimal statistic) T .
Notes
Notes
·