Modelos Lineales

Ejercicios propuestos

1. Este ejercicio tiene por objetivo comprender el modelo de regresión simple. Genera n = 100 observaciones de la variable independiente X según $\mathcal{U}(0, 10)$: x_1, \ldots, x_n . Genera los residuos y las variables dependientes según las tres situaciones que te presentan:

Situación A	Situación B	Situación C
$\epsilon \sim N(0,4)$	$\epsilon \sim N(0,4)$	$\epsilon \sim N(0, 4X/9)$
E(Y X) = 2 + 3X	$E(Y X) = 2 + 3X - X^2$	E(Y X) = 2 + 3X
VAR(Y X) = 4	VAR(Y X) = 4	$VAR(Y X) = 4X^2/9$

- (a) ¿Cuál de estas tres situaciones está dentro del modelo de regresión lineal estudiado en clase?
- (b) Realiza gráficos de dispersión de Y sobre X para cada situación. ¿Puedes identificar en cada gráfico qué aspectos del modelo no se cumplen?
- 2. Genera n observaciones según:
 - $X \sim \mathcal{U}(0, 10)$
 - $\epsilon \sim N(0,4)$
 - $\bullet \ Y = 2 + 3X + \epsilon$

Toma el conjunto de datos que has generado $(x_1, y_1), \ldots, (x_n, y_n)$, ajusta el modelo de regresión simple y guarda las estimaciones que has obtenido. Repite el proceso 1000 veces y rellena la siguiente tabla:

Modelo teórico:
$$E(Y|X) = 2 + 3X, \quad VAR(Y|X) = 4$$

$$\frac{n}{20} \quad (b_{0(0.025)}, b_{0(0.975)}) \quad (b_{1(0.025)}, b_{1(0.975)}) \quad (s_{(0.025)}^2, s_{(0.975)}^2)$$

$$\frac{20}{50}$$

$$100$$

$$1000$$

¿Te parece que las estimaciones que obtienes por mínimos cuadrados son razonables? Nota: Entendemos por $b_{0(\alpha)}$ el percetil $\alpha \times 100$ de la distribución de las estimaciones b_0 que has obtenido ($\alpha \in (0,1)$). De la misma manera para estimaciones $b_{1(\alpha)}$ y $s_{(\alpha)}^2$.

- 3. Consideraremos el ejemplo propuesto por Anscombe(1973). Los datos los encontrarás en el fichero anscombe.txt. Se consideran los datos como 4 pares de variables cuantitativas y se quiere estudiar la relación lineal entre cada par de variables. Es decir, se quiere estudiar la asociación entre los pares x123 e y1, x123 e y2, x123 e y3 y finalmente x4 e y4.
 - (a) Importa los datos y calcula la correlación lineal entre cada par de variables. ¿Qué par de variables dirías que están correlacionadas? ¿En qué sentido?
 - (b) Calcula la recta de regresión para cada par de variables (Considera y* como la variable dependiente y x* como la independiente). ¿Cuáles son las estimaciones de los coeficientes de regresión?
 - (c) Calcula el porcentaje de variabilidad explicada (R^2) por cada modelo.
 - (d) Representa gráfricamente los residuos del modelo frente a las predicciones del modelo. ¿ Qué observas?
 - (e) Representa gráficamente cada par de variables. ¿Qué conclusiones obtienes?
- 4. Queremos estudiar la relación entre el peso (Y) y la altura (X). Para ello hemos recogido una muestra de 10 chicas de 18 años. Los datos son los siguientes:

Altura (cm)	169.6	166.8	157.1	181.1	158.4	165.6	166.7	156.5	168.1	165.3
Peso (Kg)	71.2	58.2	56.0	64.5	53.0	52.4	56.8	49.2	55.6	77.8

- (a) Representa gráficamente estos datos y decide si la regresión lineal puede ser un modelo adecuado para estudiar la posible asociación entre el peso y la altura.
- (b) Dibuja conjuntamente el gráfico de dispersión de los datos así como la recta de regresión estimada. (abline())
- (c) Estima los coeficientes de regresión. Calcula \bar{x} y \bar{y} y comprueba que (\bar{x}, \bar{y}) es un punto de la recta de regresión.
- (d) Dibuja conjuntamente, los datos, la recta de regresión y en centro de gravedad (\bar{x}, \bar{y}) .
- (e) Comprueba la igualdad de la descomposición de la variabilidad que has visto en clase

$$\sum_{i} (y_i - \bar{y})^2 = \sum_{i} (\hat{y}_i - \bar{y})^2 + \sum_{i} (y_i - \hat{y}_i)^2.$$

(f) En base a esta descomposición calcula R^2 y el valor del estadístico F. Comprueba que coinciden con los calculados directamente por R.

- 5. En la librería MASS está el conjunto de datos Animals. Cárgalo en memoria y contesta a las siguientes preguntas:
 - (a) Haz los diagramas de dispersión del peso del cerebro (Y) frente al peso del cuerpo (X) y del logaritmo del peso del cerebro (log(X)) frente al logaritmo del peso del cuerpo (log(Y)). ¿Qué situación crees que se ajustará mejor con el modelo de regresión lineal? ¿Por qué?
 - (b) Calcula el modelo $M1:log(Y) \sim log(X)$. Estudia los residuos. Qué observas? Estudia las distancias de Cook. ¿Destacan algunos individuos? ¿Tienen alguna coincidencia? ¿Crees que el modelo M1 es adecuado?
 - (c) Crea el factor que indica si un animal es dinosaurio o no (Z). Ajusta el modelo $M1:log(Y) \sim log(X) + Z$ Estudia los residuos de este modelo. Calcula las distancias de Cook. ¿Destacan algunos individuos? ¿Crees que el modelo M2 es adecuado?
 - (d) Para animales con log(X) = 10, que valor medio de log(Y) se espera si no son dinosaurios? Y si fueran dinosaurios?
- 6. El conjunto de datos *edss.dat* recoge información de 32 pacientes con esclerosis múltiple. Las variables recogidas son:
 - Sexo (M: hombre, F: mujer)
 - Edad
 - Fecha de nacimiento
 - Edad de la aparición de la enfermedad
 - Puntuación EDSS medida 5 años después de la aparición de la enfermedad Nota: EDSS, Expanded Disability Score System, es un método muy utilizado para medir la progresión de la enfermedad a partir de criterios clínicos de fácil acceso para los neurólogos.

http://www.mult-sclerosis.org/expandeddisabilitystatusscale.html

El objetivo es estudiar las relaciones entre el sexo, la edad de aparición de la enfermedad y el EDSS. Por ejemplo,

- (a) ¿qué tipo de análisis deberíamos hacer para estudiar la relación entre EDSS y la edad de aparición de la enfermedad?
- (b) ¿qué tipo de análisis deberíamos hacer para estudiar la relación entre EDSS y el sexo?
- (c) ¿qué tipo de análisis deberíamos hacer para estudiar la relación entre EDSS, la edad de aparición de la enfermedad y el sexo? Según este modelo, ¿cuál es la media estimada de EDSS para una mujer que empezó con la enfermedad a los

años? ¿Y para un hombre para el que la enfermedad también surgió a los 29años?