

2500 2000 1500 1000 500 0 0 3 Dependent_count 2500 2000 1500 1000 500 0 20 50 30 40 Months_on_book 2000 1500 1000 500 0 Total_Relationship_Count 4000 3500 3000 2500 2000 1500 1000 500 0 0 3 5 Months_Inactive_12_mon 3500 3000 2500 2000 1500 1000 500 0 0 Contacts_Count_12_mon 2500 2000 1500 1000 500 0 500 1000 1500 2500 Total_Revolving_Bal 1200 1000 800 600 400 200 0 2500 5000 7500 10000 12500 15000 Total_Trans_Amt 800 700 600 500 400 300 200 100 0 20 40 80 120 140 Total_Trans_Ct In [39]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10127 entries, 0 to 10126 Data columns (total 21 columns): # Column Non-Null Count Dtype 0 CLIENTNUM 10127 non-null int64 10127 non-null object 1 Attrition Flag 10127 non-null category Customer Age 10127 non-null object Gender Dependent count 10127 non-null int64 Education Level 10127 non-null object Marital Status 10127 non-null object 7 Income_Category 10127 non-null object Card Category 10127 non-null object 8 10127 non-null int64 9 Months_on_book 10 Total_Relationship_Count 10127 non-null int64 11 Months_Inactive_12_mon 10127 non-null int64 12 Contacts_Count_12_mon 10127 non-null int64
13 Credit_Limit 10127 non-null float64
14 Total_Revolving_Bal 10127 non-null int64
15 Avg_Open_To_Buy 10127 non-null float64
16 Total_Amt_Chng_Q4_Q1 10127 non-null float64
17 Total_Trace_Trace 10127 non-null int64 17 Total_Trans_Amt 10127 non-null int64 18 Total_Trans_Ct 10127 non-null float64 19 Total_Ct_Chng_Q4_Q1 20 Avg_Utilization_Ratio 10127 non-null float64 dtypes: category(1), float64(5), int64(9), object(6) memory usage: 1.6+ MB In [40]: df['Attrition_Flag'].value_counts() Existing Customer Out[40]: Attrited Customer Name: Attrition_Flag, dtype: int64 In [41]: #labels = {'Existing Customer':'0','Attrited Customer':'1'} #df['Attrition Flag'] = df['Attrition Flag'].map(labels) #df.head() In [42]: df['Marital Status'].value_counts().plot(kind = 'bar') <AxesSubplot:> Out [42]: 4000 3000 2000 1000 Married In [43]: #dropping duplicate records df.drop_duplicates().head() CLIENTNUM Attrition_Flag Customer_Age Gender Dependent_count Education_Level Marital_Status Income_Category Card_Ca Out [43]: Existing 768805383 3 High School 60K-80K 35_45 Married Customer Existing 818770008 45_55 Graduate Single Less than \$40K Customer Existing 713982108 3 80K - 120K45_55 Graduate Married Customer Existing 769911858 35_45 High School Unknown Less than \$40K Customer Existing Uneducated 709106358 35_45 Μ 3 Married $60K\mathrm{-80K}$ Customer 5 rows × 21 columns In [44]: df['Marital_Status'].replace(to_replace = 'Unknown', value = 'Single', inplace = True) In [45]: df['Marital Status'].value counts() Single 4692 Out[45]: Married 4687 Divorced 748 Name: Marital Status, dtype: int64 In [46]: cat types = ['bool','object','category'] data = df.copy() data[data.select dtypes(cat types).columns] = data.select dtypes(cat types).apply(lambda x: x.astype('category' In [47]: data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10127 entries, 0 to 10126 Data columns (total 21 columns): Non-Null Count Dtype # Column CLIENTNUM 10127 non-null int64 0 Attrition_Flag 10127 non-null category Customer_Age 10127 non-null category Gender 10127 non-null category Dependent count 10127 non-null int64 Education Level 10127 non-null category Marital Status 10127 non-null category Income Category 10127 non-null category Card Category 10127 non-null category 10127 non-null int64 Months on book 10 Total_Relationship_Count 10127 non-null int64 11 Months Inactive 12 mon 10127 non-null int64 12 Contacts_Count_12_mon 10127 non-null int64 13 Credit Limit 10127 non-null float64 10127 non-null float64 10127 non-null int64 10127 non-null float64 10127 non-null float64 14 Total_Revolving_Bal 15 Avg Open To Buy 16 Total_Amt_Chng_Q4_Q1 17 Total_Trans_Amt 10127 non-null int64 18 Total Trans Ct 10127 non-null int64 19 Total_Ct_Chng_Q4_Q1 10127 non-null float64 20 Avg_Utilization_Ratio 10127 non-null float64 dtypes: category(7), float64(5), int64(9) memory usage: 1.2 MB In [48]: labels = {'Existing Customer':'0', 'Attrited Customer':'1'} data['Attrition_Flag'] = data['Attrition_Flag'].map(labels) data.head() CLIENTNUM Attrition_Flag Customer_Age Gender Dependent_count Education_Level Marital_Status Income_Category Card_Car Out[48]: 768805383 35_45 High School Married 60K - 80K0 3 818770008 45_55 5 Graduate Single Less than \$40K 713982108 Married 45_55 3 Graduate 80K - 120KLess than \$40K 3 769911858 0 35_45 High School Single 709106358 0 35_45 3 Uneducated Married $60K-80\mathrm{K}$ M 5 rows × 21 columns In [49]: data['Attrition_Flag'].value_counts() 8500 Out[49]: 1627 Name: Attrition Flag, dtype: int64 In [50]: #Output and input variables Y = data['Attrition_Flag'] X = data.drop('Attrition Flag',axis = 1) In [51]: X.shape, Y.shape ((10127, 20), (10127,))Out[51]: In [52]: for col in X.select dtypes('category').columns.to list(): print(col + ': '+ str(X[col].cat.categories.to list())) Customer_Age: ['0_35', '35_45', '45_55', '55_70'] Gender: ['F', 'M'] Education_Level: ['College', 'Doctorate', 'Graduate', 'High School', 'Post-Graduate', 'Uneducated', 'Unknown'] Marital_Status: ['Divorced', 'Married', 'Single'] Income_Category: ['\$120K +', '\$40K - \$60K', '\$60K - \$80K', '\$80K - \$120K', 'Less than \$40K', 'Unknown'] Card_Category: ['Blue', 'Gold', 'Platinum', 'Silver'] In [53]: col_list = X.select_dtypes('category').columns.to_list() col list ['Customer_Age', Out [53]: 'Gender', 'Education Level', 'Marital Status', 'Income_Category', 'Card Category'] **Preparing Data** One-hot encoding In [54]: def encode fun(dataframe, attributes): dummies = pd.get dummies(dataframe[attributes]) result = pd.concat([dataframe,dummies],axis =1) result = result.drop([attributes], axis=1) return (result) In [55]: col_list = X.select_dtypes('category').columns.to_list() for col in col list: $X = encode_fun(X, col)$ In [56]: X.head() Out [56]: CLIENTNUM Dependent_count Months_on_book Total_Relationship_Count Months_Inactive_12_mon Contacts_Count_12_mon Crec 768805383 3 5 3 818770008 44 2 713982108 3 36 4 1 769911858 34 3 3 21 5 709106358 1 5 rows × 40 columns In [57]: X.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 10127 entries, 0 to 10126 Data columns (total 40 columns): Non-Null Count Dtype Column 0 CLIENTNUM 10127 non-null int64 1 Dependent_count 10127 non-null int64 2 Months_on_book 10127 non-null int64 3 Total Relationship Count 10127 non-null int64 4 Months_Inactive_12_mon 10127 non-null int64

 4
 Months_Inactive_12_mon
 10127 non-null int64

 5
 Contacts_Count_12_mon
 10127 non-null int64

 6
 Credit_Limit
 10127 non-null float64

 7
 Total_Revolving_Bal
 10127 non-null int64

 8
 Avg_Open_To_Buy
 10127 non-null float64

 9
 Total_Amt_Chng_Q4_Q1
 10127 non-null int64

 10
 Total_Trans_Amt
 10127 non-null int64

 11
 Total_Trans_Ct
 10127 non-null float64

 12
 Total_Ct_Chng_Q4_Q1
 10127 non-null float64

 13
 Avg_Utilization_Ratio
 10127 non-null uint8

 15
 35
 45

 15 35 45 10127 non-null uint8 16 45 55 10127 non-null uint8

 17
 55_70
 10127 non-null uint8

 18
 F
 10127 non-null uint8

 19
 M
 10127 non-null uint8

 20
 College
 10127 non-null uint8

 21
 Doctorate
 10127 non-null uint8

 22
 Graduate
 10127 non-null uint8

 23
 High School
 10127 non-null uint8

 24
 Post-Graduate
 10127 non-null uint8

 25
 Uneducated
 10127 non-null uint8

 26
 Unknown
 10127 non-null uint8

 27
 Divorced
 10127 non-null uint8

 28
 Married
 10127 non-null uint8

 29
 Single
 10127 non-null uint8

 30
 \$120K +
 10127 non-null uint8

 31
 \$40K - \$60K
 10127 non-null uint8

 32
 \$60K - \$80K
 10127 non-null uint8

 33
 \$80K - \$120K
 10127 non-null uint8

 34
 Less than \$40K
 10127 non-null uint8

 35
 Unknown
 10127 non-null uint8

 36
 Blue
 10127 non-null uint8

 37
 Gold
 10127 non-null uint8

 17 55 70 10127 non-null uint8 dtypes: float64(5), int64(9), uint8(26) memory usage: 1.3 MB Performing Stratified K-Fold split In [58]: def kfold split(X,Y): skfold = StratifiedKFold(n splits=10, shuffle=True, random state=0) for train index, test index in skfold.split(X,Y): skf X train, skf X test = X.iloc[train index], X.iloc[test index] skf Y train, skf Y test = Y.iloc[train index], Y.iloc[test index] skf_X_train, skf_X_test, skf_Y_train, skf_Y_test = skf_X_train.values, skf_X_test.values, skf_Y_train.v return skf_X_train, skf_X_test, skf Y train, skf Y test In [59]: X_train, X_test, Y_train, Y_test = kfold_split(X,Y) **Cross-validation function** In [60]: from sklearn.model_selection import KFold def cross val score func(model, X, y): cv = KFold(n_splits=10, random_state=1, shuffle=True) scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1) return('Accuracy: %.3f (%.3f)' % (mean(scores), std(scores))) Implementing models **Decision tree** In [61]: model1 = DecisionTreeClassifier(random state=0) In [62]: model1.fit(X_train,Y_train) model1.score(X_test,Y_test) 0.9259624876604146 Out[62]: In [63]: model1.predict(X test) array(['0', '0', '1', ..., '0', '0'], dtype=object) Out[63]: In [64]: pred1=model1.predict(X test) pred1[:10], model1.score(X_test, Y_test) Out[64]: 0.9259624876604146) In [65]: train accuracy = [] test accuracy = [] for d in range (1,10): model test = DecisionTreeClassifier(max_depth=d, random_state=0) model test.fit(X train, Y train) train accuracy.append(model test.score(X train, Y train)) test accuracy.append(model test.score(X test,Y test)) In [66]: test_res = pd.DataFrame({'max_depth':range(1,10),'train_accuracy':train_accuracy,'test_accuracy':test_accuracy' test res max_depth train_accuracy test_accuracy Out[66]: 0.839368 0.839092 1 0.891705 0.900296 2 3 0.918697 0.923001 0.927035 0.929911 4 5 0.944152 0.930898 5 6 0.955234 0.934847 6 7 0.965109 0.942744 7 8 0.974984 0.941757 9 8 0.980689 0.940770 In [67]: plt.figure(figsize=(15,10)) plt.plot(test_res['max_depth'], test_res['train_accuracy'], marker = 'o') plt.plot(test res['max depth'], test res['test accuracy'], marker = 'o', color = 'red') plt.xlabel('max depth') plt.ylabel('score/accuracy') plt.legend(['Train accuracy','Test accuracy']) <matplotlib.legend.Legend at 0x7f7fcfb27880> Out[67]: Train_accuracy 0.98 Test_accuracy 0.96 0.94 0.92 score/accuracy 0.90 0.88 0.86 0.84 2 max_depth Hyper-parameter tuning In [68]: train_accuracy = [] test_accuracy = [] for rs in range (0, 100): model test = DecisionTreeClassifier(max_depth=5, random_state=rs) model_test.fit(X_train,Y_train) train_accuracy.append(model_test.score(X_train,Y_train)) test_accuracy.append(model_test.score(X_test,Y_test)) In [69]: test res2 = pd.DataFrame({'random state':range(0,100),'train accuracy':train accuracy,'test accuracy':test accuracy test res2.head() Out[69]: random_state train_accuracy test_accuracy 0 0.944152 0 0.930898 1 0.944152 0.930898 2 2 0.944152 0.930898 3 0.944152 0.929911 4 0.944152 0.930898 In [70]: plt.figure(figsize=(15,10)) plt.plot(test_res2['random_state'],test_res2['train_accuracy'],marker = 'o',color = 'green') plt.plot(test res2['random state'], test res2['test accuracy'], marker = 'o', color = 'magenta') plt.xlabel('random_state') plt.ylabel('score/accuracy') plt.legend(['Train_accuracy','Test_accuracy']) <matplotlib.legend.Legend at 0x7f7fd12cea90> Out[70]: 0.944 0.942 score/accuracy 866.0 Train_accuracy Test_accuracy 0.934 0.932 W.W.W./ 0.930 random_state In [71]: train_accuracy = [] test_accuracy = [] for leaf_nodes in range(2,30): model_test = DecisionTreeClassifier(max_depth=5, random_state=0, max_leaf_nodes=leaf_nodes) model test.fit(X train, Y train) train_accuracy.append(model_test.score(X_train,Y_train)) test accuracy.append(model test.score(X test,Y test)) In [72]: test res3 = pd.DataFrame({'max leaf nodes':range(2,30),'train accuracy':train accuracy,'test accuracy':test accuracy test res3.head() Out[72]: max_leaf_nodes train_accuracy test_accuracy 0 0.839368 0.839092 2 0.891705 0.900296 2 0.903665 0.909181 4 0.903665 0.909181 3 6 0.905859 0.910168 In [73]: plt.figure(figsize=(15,10)) plt.plot(test_res3['max_leaf_nodes'], test_res3['train_accuracy'], marker = 'o', color = 'brown') plt.plot(test_res3['max_leaf_nodes'], test_res3['test_accuracy'], marker = 'o', color = 'orange') plt.xlabel('max leaf nodes') plt.ylabel('score/accuracy') plt.legend(['Train accuracy','Test accuracy']) <matplotlib.legend.Legend at 0x7f7fd0f44e20> Out[73]: Train_accuracy Test_accuracy 0.94 0.92 0.90 score/accuracy 0.86 0.84 max_leaf_nodes In [74]: DT = DecisionTreeClassifier(max_depth=5,random_state=0,max_leaf_nodes=25) DT.fit(X train, Y train) DT_score = DT.score(X_test,Y_test) In [75]: DT score 0.930898321816387 Out[75]: In [76]: def cross_val_func(X, Y, tree_depths, cv=5, scoring='accuracy'): cv_scores_list = [] cv scores std = [] cv_scores_mean = [] accuracy_scores = [] for depth in tree depths: tree model = DecisionTreeClassifier(max depth=depth) cv_scores = cross_val_score(tree_model, X, Y, cv=cv, scoring=scoring) cv_scores_list.append(cv_scores) cv_scores_mean.append(cv_scores.mean()) cv_scores_std.append(cv_scores.std()) accuracy_scores.append(tree_model.fit(X, Y).score(X, Y)) cv scores mean = np.array(cv scores mean) cv_scores_std = np.array(cv_scores_std) accuracy scores = np.array(accuracy scores) return cv_scores_mean, cv_scores_std, accuracy_scores In [77]: def plot_cross_val_tree(depths, cv_scores_mean, cv_scores_std, accuracy_scores, title): fig, ax = plt.subplots(1,1, figsize=(15,10))ax.plot(depths, cv_scores_mean, '-o', label='mean cross-validation accuracy', alpha=0.9) ax.fill_between(depths, cv_scores_mean-2*cv_scores_std, cv_scores_mean+2*cv_scores_std, alpha=0.2) ax.plot(depths, accuracy_scores, '-*', label='train accuracy', alpha=0.9) ax.set_title(title, fontsize=16) ax.set xlabel('Tree depth', fontsize=14) ax.set ylabel('Accuracy', fontsize=14) ax.set_ylim() ax.set_xticks(depths) ax.legend() In [78]: td = range(1, 25)sm_cv_scores_mean, sm_cv_scores_std, sm_accuracy_scores = cross_val_func(X_train, Y_train, td) In [79]: plot_cross_val_tree(td, sm_cv_scores_mean, sm_cv_scores_std, sm_accuracy_scores, 'Accuracy per decision tree depth on training data') Accuracy per decision tree depth on training data 1.2 mean cross-validation accuracy train accuracy 1.0 0.8 Accuracy 0.6 0.4 13 15 Tree depth In [80]: dtree = DecisionTreeClassifier(max_depth=5, random_state=0, max_leaf_nodes=25) In [81]: dtree.fit(X_train,Y_train) DecisionTreeClassifier(max_depth=5, max_leaf_nodes=25, random_state=0) Out[81]: In [82]: y_test_pred = dtree.predict(X_test) In [83]: y_train_pred = dtree.predict(X_train) In [84]: from sklearn.metrics import confusion_matrix, classification_report cm_train = confusion_matrix(Y_train, y_train_pred,labels=dtree.classes_) cm_test = confusion_matrix(Y_test, y_test_pred,labels=dtree.classes_) In [85]: cm train array([[7395, 255], Out[85]: [258, 1206]]) In [86]: cm test array([[817, 33], Out[86]: [37, 126]]) In [87]: dtree f1score ={'0': 0.96,'1':0.77} dtree_prec = {'0':0.96,'1':0.79} In [88]: dtree_cval = cross_val_score(dtree, X_test, Y_test, scoring='accuracy') dtree_cross_val = dtree_cval.mean() dtree cross val 0.8845095839633224 Out[88]: In [89]: from sklearn.metrics import plot_confusion_matrix, ConfusionMatrixDisplay In [90]: disp = ConfusionMatrixDisplay(confusion_matrix=cm_test,display_labels=dtree.classes_) In [91]: disp.plot() plt.grid(False) 0 - 600 - 500 True label - 400 - 300 - 200 0 Predicted label In [92]: dt params = {'max depth':range(0,30),'max leaf nodes':range(0,30),'min samples split': [2, 3, 4]} In [93]: dtc_search = DecisionTreeClassifier(random_state=0) In [94]: from sklearn.model selection import GridSearchCV dt grid = GridSearchCV(dtc search, dt params, verbose=1, cv=3) In [95]: dt_grid.fit(X_train,Y_train) Fitting 3 folds for each of 2700 candidates, totalling 8100 fits GridSearchCV(cv=3, estimator=DecisionTreeClassifier(random state=0), param_grid={'max_depth': range(0, 30), 'max_leaf_nodes': range(0, 30), 'min_samples_split': [2, 3, 4]}, verbose=1) In [96]: dt_grid.best_params_ {'max_depth': 5, 'max_leaf_nodes': 16, 'min_samples_split': 2} Out[96]: In [97]: dt_grid.best_estimator_ DecisionTreeClassifier(max_depth=5, max_leaf_nodes=16, random_state=0) Out[97]: In [98]: dt grid.best_score_ 0.7026552556506473Out[98]:

	Classification report:
100	<pre>from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import fl_score model2 = KNeighborsClassifier() model2.fit(X_train,Y_train) x_pred = model2.predict(X_test) x_pred array(['0', '0', '0',, '0', '0'], dtype=object)</pre>
103	<pre>kNN_score = model2.score(X_test,Y_test) def elbow(k): test_error = [] for i in k: test_model = KNeighborsClassifier(n_neighbors=i) test_model.fit(X_train,Y_train) pred_i = test_model.predict(X_test) test_error.append(np.mean(pred_i != Y_test)) return test_error k = range(1,30)</pre>
106	<pre>test_model = elbow(k) plt.plot(k, test_model) plt.xlabel('n_neighbours') plt.ylabel('error') plt.title('Elbow curve') Text(0.5, 1.0, 'Elbow curve')</pre> Elbow curve
	0.24 0.22 0.20 0.18 0.16 0 5 10 15 20 25 30 n_neighbours
108 108 109 110	<pre>kNN_score 0.8163869693978283 KNN_score =kNN_score knn_y_train_pred = model2.predict(X_train) knn_y_test_pred = model2.predict(X_test) knn cm train = confusion matrix(Y train, knn y train pred, labels=model2.classes)</pre>
112	<pre>knn_cm_test = confusion_matrix(Y_test, knn_y_test_pred,labels=model2.classes_) disp = ConfusionMatrixDisplay(confusion_matrix=knn_cm_test,display_labels=model2.classes_) disp.plot() plt.grid(False) -800 -700 -600</pre>
114	-500 -400 -300 -200 -100 Predicted label print("Classification report: ") rep = classification_report(Y_test, knn_y_test_pred)
115	<pre>Classification report:</pre>
115 116 117	<pre>km_cross_val 0.8005950348729455 knn_flscore = {'0':0.90,'1':0.10} knn_prec = {'0':0.84,'1':0.23} knn_estimate = KNeighborsClassifier() parameters_KNN = {'n_neighbors': [1,100, 1],'p': [1,2],'weights': ['uniform', 'distance'],'metric': ['min]</pre>
120	<pre>grid_search_KNN = GridSearchCV(estimator=knn_estimate, param_grid=parameters_KNN, scoring = 'accuracy', n_jobs = -1, cv = 5) grid_search_KNN.fit(X_train,Y_train) GridSearchCV(cv=5, estimator=KNeighborsClassifier(), n_jobs=-1,</pre>
121 121 122 122	<pre>'n_neighbors': [1, 100, 1], 'p': [1, 2],</pre>
123	grid_search_KNN.best_score_ 0.8393680456997519 Final score of kNN is 81.49% Random-Forest classifier from sklearn.ensemble import RandomForestClassifier RFC = RandomForestClassifier()
126 126 127 127	<pre>RFC.fit(X_train,Y_train) RandomForestClassifier() RFC.score(X_test,Y_test) 0.9585389930898321 RFC_score = RFC.score(X_test,Y_test)</pre>
129 129 130	RFC.score(X_train,Y_train) 1.0 RFC.feature_importances_ array([0.02798511, 0.01468376, 0.02600532, 0.06236768, 0.02679781, 0.02683043, 0.03668295, 0.10325041, 0.0348332 , 0.06135704, 0.17403662, 0.15169084, 0.10251076, 0.06366331, 0.00654652, 0.00407256, 0.00513198, 0.00308278, 0.00792597, 0.00540371, 0.00231961, 0.00224902, 0.0038614 , 0.0035403 , 0.00229217, 0.00325971, 0.00319967, 0.00217038, 0.00587901, 0.00508476,
131	<pre>0.0017417 , 0.00309023, 0.0026431 , 0.00294235, 0.00378429, 0.00246572, 0.00168663, 0.00100223, 0.00032083, 0.00160809]) feat_importances = pd.Series(RFC.feature_importances_, index=X.columns) import time import numpy as np start_time = time.time() importances = RFC.feature_importances_ std = np.std([tree.feature_importances_ for tree in RFC.estimators_], axis=0) elapsed_time = time.time() - start_time print(f"Elapsed time to compute the importances: {elapsed time:.3f} seconds")</pre>
133	Elapsed time to compute the importances: 0.013 seconds fig, ax = plt.subplots(figsize=(6,6)) feat_importances.nlargest(10).sort_values().plot(kind='barh') plt.title("Top 10 Important Features") plt.show() Top 10 Important Features Total_Trans_Amt Total_Trans_Ct
	Total_Revolving_Bal Total_Ct_Chng_Q4_Q1 Avg_Utilization_Ratio Total_Relationship_Count Total_Amt_Chng_Q4_Q1 Credit_Limit Avg_Open_To_Buy CLIENTNUM
134 135	Final score of Random-Forest Classifier on test data is 95.11% rf_y_test_pred = RFC.predict(X_test) rf_y_train_pred = RFC.predict(X_train) rf_cm_train = confusion_matrix(Y_train, rf_y_train_pred, labels=RFC.classes_) rf_cm_test = confusion_matrix(Y_test, rf_y_test_pred, labels=RFC.classes_)
137	<pre>print('Training confusion matrix:') print(rf_cm_train) Training confusion matrix: [[7650 0]</pre>
139	disp = ConfusionMatrixDisplay(confusion_matrix=rf_cm_test, display_labels=RFC.classes_) disp.plot() plt.grid(False) -800 -700 -600 -500 -400
141	-300 -200 -100 Predicted label rfc_rep = classification_report(Y_test,rf_y_test_pred) print("RFC performance report:") print(rfc rep)
143	RFC performance report: precision recall f1-score support 0 0.96 0.99 0.98 850 1 0.92 0.81 0.86 163 accuracy 0.96 1013 macro avg 0.94 0.90 0.92 1013 weighted avg 0.96 0.96 0.96 1013 rfc_flscore = {'0':0.97,'1':0.85} rfc_prec = {'0':0.96,'1':0.91}
144 144	<pre>rfc_cval = cross_val_score(RFC,X_test,Y_test,scoring='accuracy') rfc_cross_val = rfc_cval.mean() rfc_cross_val 0.9012437204311563 rfc = RandomForestClassifier(n_jobs=-1,max_features= 'sqrt' ,n_estimators=50, oob_score = True) param_grid = { 'n_estimators': [200, 700], 'max_features': ['auto', 'sqrt', 'log2'] }</pre>
146 147 147	<pre>rfc_grid = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5) rfc_grid.fit(X_train,Y_train) GridSearchCV(cv=5,</pre>
148 149 149 150	<pre>{'max_features': 'auto', 'n_estimators': 700} rfc_grid.best_estimator_ RandomForestClassifier(n_estimators=700, n_jobs=-1, oob_score=True) rfc_grid.best_score_ 0.9220896785976</pre>
151 152	<pre>from sklearn import svm model3 = svm.SVC(C = 1.0, kernel='rbf', gamma ='scale', random_state=None) model3.fit(X_train,Y_train) svc_y_train_pred = model3.predict(X_train) svc_y_test_pred = model3.predict(X_test)</pre>
154 155 156	<pre>SVM_score = model3.score(X_test,Y_test) svc_cm_train = confusion_matrix(Y_train, svc_y_train_pred,labels=model3.classes_) svc_cm_test = confusion_matrix(Y_test, svc_y_test_pred,labels=model3.classes_) disp = ConfusionMatrixDisplay(confusion_matrix=svc_cm_test,display_labels=model3.classes_) disp.plot() plt.grid(False)</pre>
	- 800 - 700 - 600 - 500 - 400 - 300 - 200 - 100 - 0
158	<pre>svc_rep = classification_report(Y_test,svc_y_test_pred) print("Classification report for SVC: ") print(svc_rep) Classification report for SVC:</pre>
159 160	<pre>svm_flscore = {'0':0.91,'1':0.00} svm_prec = {'0':0.84,'1':0.00} svm_cval = cross_val_score(model3, X_test, Y_test, scoring='accuracy') svm_cross_val = svm_cval.mean() svm_cross_val 0.8390967175535288 Performing GridsearchCV</pre>
161 162 163	<pre>from sklearn.model_selection import GridSearchCV param_grid = {'C': [0.1, 1, 10, 100, 1000], 'gamma': [1, 0.1, 0.01, 0.001, 0.0001], 'kernel': ['rbf']} grid = GridSearchCV(svm.SVC(), param_grid, refit = True, verbose = 3) grid.fit(X_train, Y_train) Fitting 5 folds for each of 25 candidates, totalling 125 fits [CV 1/5] ENDC=0.1, gamma=1, kernel=rbf;, score=0.839 total time= 4.3s [CV 2/5] ENDC=0.1, gamma=1, kernel=rbf;, score=0.839 total time= 4.2s</pre>
	[CV 3/5] ENDC=0.1, gamma=1, kernel=rbf;, score=0.839 total time= 4.4s [CV 4/5] ENDC=0.1, gamma=1, kernel=rbf;, score=0.839 total time= 4.2s [CV 5/5] ENDC=0.1, gamma=1, kernel=rbf;, score=0.840 total time= 4.3s [CV 1/5] ENDC=0.1, gamma=0.1, kernel=rbf;, score=0.839 total time= 4.8s [CV 2/5] ENDC=0.1, gamma=0.1, kernel=rbf;, score=0.839 total time= 5.2s [CV 3/5] ENDC=0.1, gamma=0.1, kernel=rbf;, score=0.839 total time= 4.9s [CV 4/5] ENDC=0.1, gamma=0.1, kernel=rbf;, score=0.839 total time= 5.3s [CV 5/5] ENDC=0.1, gamma=0.1, kernel=rbf;, score=0.840 total time= 4.6s [CV 1/5] ENDC=0.1, gamma=0.01, kernel=rbf;, score=0.839 total time= 4.5s [CV 2/5] ENDC=0.1, gamma=0.01, kernel=rbf;, score=0.839 total time= 4.5s [CV 4/5] ENDC=0.1, gamma=0.01, kernel=rbf;, score=0.839 total time= 4.4s [CV 4/5] ENDC=0.1, gamma=0.01, kernel=rbf;, score=0.839 total time= 4.9s [CV 4/5] ENDC=0.1, gamma=0.01, kernel=rbf;, score=0.839 total time= 4.7s [CV 1/5] ENDC=0.1, gamma=0.01, kernel=rbf;, score=0.839 total time= 4.7s [CV 1/5] ENDC=0.1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.5s [CV 2/5] ENDC=0.1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.5s [CV 2/5] ENDC=0.1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.5s [CV 2/5] ENDC=0.1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.5s [CV 2/5] ENDC=0.1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.5s [CV 3/5] ENDC=0.1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.3s
	[CV 4/5] ENDC=0.1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.8s [CV 5/5] ENDC=0.1, gamma=0.001, kernel=rbf;, score=0.840 total time= 4.3s [CV 1/5] ENDC=0.1, gamma=0.0001, kernel=rbf;, score=0.839 total time= 4.2s [CV 2/5] ENDC=0.1, gamma=0.0001, kernel=rbf;, score=0.839 total time= 4.2s [CV 3/5] ENDC=0.1, gamma=0.0001, kernel=rbf;, score=0.839 total time= 4.3s [CV 4/5] ENDC=0.1, gamma=0.0001, kernel=rbf;, score=0.839 total time= 4.2s [CV 5/5] ENDC=0.1, gamma=0.0001, kernel=rbf;, score=0.840 total time= 4.4s [CV 1/5] ENDC=1, gamma=1, kernel=rbf;, score=0.839 total time= 5.2s [CV 2/5] ENDC=1, gamma=1, kernel=rbf;, score=0.839 total time= 4.7s [CV 3/5] ENDC=1, gamma=1, kernel=rbf;, score=0.839 total time= 4.5s [CV 4/5] ENDC=1, gamma=1, kernel=rbf;, score=0.839 total time= 4.4s [CV 1/5] ENDC=1, gamma=1, kernel=rbf;, score=0.839 total time= 4.4s [CV 1/5] ENDC=1, gamma=0.1, kernel=rbf;, score=0.839 total time= 4.4s [CV 1/5] ENDC=1, gamma=0.1, kernel=rbf;, score=0.839 total time= 4.5s [CV 2/5] ENDC=1, gamma=0.1, kernel=rbf;, score=0.839 total time= 4.5s [CV 3/5] ENDC=1, gamma=0.1, kernel=rbf;, score=0.839 total time= 4.5s [CV 3/5] ENDC=1, gamma=0.1, kernel=rbf;, score=0.839 total time= 4.5s [CV 3/5] ENDC=1, gamma=0.1, kernel=rbf;, score=0.839 total time= 4.7s
	[CV 4/5] ENDC=1, gamma=0.1, kernel=rbf;, score=0.839 total time= 4.4s [CV 5/5] ENDC=1, gamma=0.1, kernel=rbf;, score=0.840 total time= 4.6s [CV 1/5] ENDC=1, gamma=0.01, kernel=rbf;, score=0.839 total time= 4.5s [CV 2/5] ENDC=1, gamma=0.01, kernel=rbf;, score=0.839 total time= 4.6s [CV 3/5] ENDC=1, gamma=0.01, kernel=rbf;, score=0.839 total time= 4.5s [CV 4/5] ENDC=1, gamma=0.01, kernel=rbf;, score=0.839 total time= 4.5s [CV 5/5] ENDC=1, gamma=0.01, kernel=rbf;, score=0.840 total time= 4.4s [CV 1/5] ENDC=1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.4s [CV 2/5] ENDC=1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.7s [CV 3/5] ENDC=1, gamma=0.001, kernel=rbf;, score=0.839 total time= 5.2s [CV 4/5] ENDC=1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.6s [CV 1/5] ENDC=1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.6s [CV 1/5] ENDC=1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.6s [CV 3/5] ENDC=1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.5s [CV 3/5] ENDC=1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.6s [CV 3/5] ENDC=1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.6s [CV 3/5] ENDC=1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.6s [CV 3/5] ENDC=1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.6s [CV 3/5] ENDC=1, gamma=0.001, kernel=rbf;, score=0.839 total time= 4.6s
	[CV 4/5] ENDC=1, gamma=0.0001, kernel=rbf;, score=0.839 total time= 4.6s [CV 5/5] ENDC=1, gamma=0.0001, kernel=rbf;, score=0.840 total time= 4.4s [CV 1/5] ENDC=10, gamma=1, kernel=rbf;, score=0.839 total time= 9.4s [CV 2/5] ENDC=10, gamma=1, kernel=rbf;, score=0.839 total time= 8.7s [CV 3/5] ENDC=10, gamma=1, kernel=rbf;, score=0.839 total time= 8.7s [CV 4/5] ENDC=10, gamma=1, kernel=rbf;, score=0.839 total time= 8.3s [CV 5/5] ENDC=10, gamma=1, kernel=rbf;, score=0.840 total time= 9.2s [CV 1/5] ENDC=10, gamma=0.1, kernel=rbf;, score=0.839 total time= 11.1s [CV 2/5] ENDC=10, gamma=0.1, kernel=rbf;, score=0.839 total time= 10.2s [CV 3/5] ENDC=10, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.5s [CV 4/5] ENDC=10, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.3s [CV 5/5] ENDC=10, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.4s [CV 1/5] ENDC=10, gamma=0.01, kernel=rbf;, score=0.839 total time= 9.1s [CV 2/5] ENDC=10, gamma=0.01, kernel=rbf;, score=0.839 total time= 9.1s [CV 2/5] ENDC=10, gamma=0.01, kernel=rbf;, score=0.839 total time= 9.8s [CV 3/5] ENDC=10, gamma=0.01, kernel=rbf;, score=0.839 total time= 9.8s [CV 3/5] ENDC=10, gamma=0.01, kernel=rbf;, score=0.839 total time= 9.8s [CV 3/5] ENDC=10, gamma=0.01, kernel=rbf;, score=0.839 total time= 9.8s [CV 3/5] ENDC=10, gamma=0.01, kernel=rbf;, score=0.839 total time= 9.8s [CV 3/5] ENDC=10, gamma=0.01, kernel=rbf;, score=0.839 total time= 9.8s [CV 4/5] ENDC=10, gamma=0.01, kernel=rbf;, score=0.839 total time= 9.8s
	[CV 4/5] ENDC=10, gamma=0.01, kernel=rbf;, score=0.839 total time= 8.3s [CV 1/5] ENDC=10, gamma=0.001, kernel=rbf; score=0.839 total time= 8.2s [CV 2/5] ENDC=10, gamma=0.001, kernel=rbf; score=0.839 total time= 8.6s [CV 3/5] ENDC=10, gamma=0.001, kernel=rbf; score=0.839 total time= 9.5s [CV 4/5] ENDC=10, gamma=0.001, kernel=rbf; score=0.839 total time= 9.5s [CV 5/5] ENDC=10, gamma=0.001, kernel=rbf; score=0.840 total time= 10.0s [CV 1/5] ENDC=10, gamma=0.0001, kernel=rbf; score=0.839 total time= 9.2s [CV 2/5] ENDC=10, gamma=0.0001, kernel=rbf; score=0.839 total time= 8.4s [CV 3/5] ENDC=10, gamma=0.0001, kernel=rbf; score=0.839 total time= 8.3s [CV 4/5] ENDC=10, gamma=0.0001, kernel=rbf; score=0.839 total time= 8.6s [CV 3/5] ENDC=10, gamma=0.0001, kernel=rbf; score=0.839 total time= 9.5s [CV 1/5] ENDC=10, gamma=0.0001, kernel=rbf; score=0.839 total time= 9.5s [CV 1/5] ENDC=10, gamma=1, kernel=rbf; score=0.839 total time= 7.9s [CV 2/5] ENDC=100, gamma=1, kernel=rbf; score=0.839 total time= 7.9s [CV 3/5] ENDC=100, gamma=1, kernel=rbf; score=0.839 total time= 7.8s [CV 3/5] ENDC=100, gamma=1, kernel=rbf; score=0.839 total time= 7.8s [CV 4/5] ENDC=100, gamma=1, kernel=rbf; score=0.839 total time= 8.6s
	[CV 5/5] ENDC=100, gamma=1, kernel=rbf;, score=0.840 total time= 9.2s [CV 1/5] ENDC=100, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.1s [CV 2/5] ENDC=100, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.3s [CV 3/5] ENDC=100, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.0s [CV 4/5] ENDC=100, gamma=0.1, kernel=rbf;, score=0.839 total time= 9.7s [CV 5/5] ENDC=100, gamma=0.1, kernel=rbf;, score=0.840 total time= 10.7s [CV 1/5] ENDC=100, gamma=0.01, kernel=rbf;, score=0.839 total time= 8.1s [CV 2/5] ENDC=100, gamma=0.01, kernel=rbf;, score=0.839 total time= 8.6s [CV 3/5] ENDC=100, gamma=0.01, kernel=rbf;, score=0.839 total time= 8.7s [CV 5/5] ENDC=100, gamma=0.01, kernel=rbf;, score=0.840 total time= 8.6s [CV 1/5] ENDC=100, gamma=0.01, kernel=rbf;, score=0.839 total time= 8.6s [CV 1/5] ENDC=100, gamma=0.001, kernel=rbf;, score=0.839 total time= 8.1s [CV 2/5] ENDC=100, gamma=0.001, kernel=rbf;, score=0.839 total time= 8.1s [CV 3/5] ENDC=100, gamma=0.001, kernel=rbf;, score=0.839 total time= 9.5s [CV 3/5] ENDC=100, gamma=0.001, kernel=rbf;, score=0.839 total time= 9.5s [CV 4/5] ENDC=100, gamma=0.001, kernel=rbf;, score=0.839 total time= 9.5s [CV 4/5] ENDC=100, gamma=0.001, kernel=rbf;, score=0.839 total time= 9.5s
	[CV 5/5] ENDC=100, gamma=0.001, kernel=rbf;, score=0.840 total time= 8.7s [CV 1/5] ENDC=100, gamma=0.0001, kernel=rbf;, score=0.839 total time= 8.2s [CV 2/5] ENDC=100, gamma=0.0001, kernel=rbf;, score=0.839 total time= 8.7s [CV 3/5] ENDC=100, gamma=0.0001, kernel=rbf;, score=0.839 total time= 8.2s [CV 4/5] ENDC=100, gamma=0.0001, kernel=rbf;, score=0.839 total time= 9.8s [CV 5/5] ENDC=100, gamma=0.0001, kernel=rbf;, score=0.840 total time= 9.1s [CV 1/5] ENDC=1000, gamma=1, kernel=rbf;, score=0.839 total time= 8.5s [CV 2/5] ENDC=1000, gamma=1, kernel=rbf;, score=0.839 total time= 8.2s [CV 4/5] ENDC=1000, gamma=1, kernel=rbf;, score=0.839 total time= 8.7s [CV 5/5] ENDC=1000, gamma=1, kernel=rbf;, score=0.839 total time= 10.2s [CV 1/5] ENDC=1000, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.8s [CV 2/5] ENDC=1000, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.5s [CV 3/5] ENDC=1000, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.5s [CV 3/5] ENDC=1000, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.3s [CV 4/5] ENDC=1000, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.3s [CV 4/5] ENDC=1000, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.3s [CV 4/5] ENDC=1000, gamma=0.1, kernel=rbf;, score=0.839 total time= 8.3s
	[CV 1/5] ENDC=1000, gamma=0.01, kernel=rbf;, score=0.839 total time= 8.4s [CV 2/5] ENDC=1000, gamma=0.01, kernel=rbf;, score=0.839 total time= 8.2s [CV 3/5] ENDC=1000, gamma=0.01, kernel=rbf;, score=0.839 total time= 8.1s [CV 4/5] ENDC=1000, gamma=0.01, kernel=rbf;, score=0.839 total time= 8.4s [CV 5/5] ENDC=1000, gamma=0.01, kernel=rbf;, score=0.840 total time= 8.7s [CV 1/5] ENDC=1000, gamma=0.001, kernel=rbf;, score=0.839 total time= 8.3s [CV 2/5] ENDC=1000, gamma=0.001, kernel=rbf;, score=0.839 total time= 8.3s [CV 3/5] ENDC=1000, gamma=0.001, kernel=rbf;, score=0.839 total time= 8.2s [CV 4/5] ENDC=1000, gamma=0.001, kernel=rbf;, score=0.839 total time= 8.3s [CV 1/5] ENDC=1000, gamma=0.001, kernel=rbf;, score=0.840 total time= 8.6s [CV 1/5] ENDC=1000, gamma=0.001, kernel=rbf;, score=0.839 total time= 8.2s [CV 3/5] ENDC=1000, gamma=0.001, kernel=rbf;, score=0.839 total time= 9.1s [CV 3/5] ENDC=1000, gamma=0.0001, kernel=rbf;, score=0.839 total time= 8.8s [CV 4/5] ENDC=1000, gamma=0.0001, kernel=rbf;, score=0.839 total time= 8.8s [CV 3/5] ENDC=1000, gamma=0.0001, kernel=rbf;, score=0.839 total time= 8.7s [CV 3/5] ENDC=1000, gamma=0.0001, kernel=rbf;, score=0.839 total time= 8.7s [CV 3/5] ENDC=1000, gamma=0.0001, kernel=rbf;, score=0.839 total time= 8.7s [CV 3/5] ENDC=1000, gamma=0.0001, kernel=rbf;, score=0.839 total time= 8.7s [CV 3/5] ENDC=1000, gamma=0.0001, kernel=rbf;, score=0.839 total time= 8.7s [CV 3/5] ENDC=1000, gamma=0.0001, kernel=rbf;, score=0.839 total time= 8.7s [CV 5/5] ENDC=1000, gamma=0.0001, kernel=rbf;, score=0.839 total time= 8.7s
164 165	<pre>GridSearchCV(estimator=SVC(),</pre>
167 168	<pre>Comparing all model scores model_scores = {"Support_Vector_Machine":SVM_score,</pre>
	plt.bar(keys,values,width=0.4) plt.xticks(rotation=90) plt.show() 1.0 0.8 0.6 0.4 0.2
170	print('Model Scores') for m,s in model_scores.items():
171	<pre>print('{} {} '.format(m, s)) Model</pre>
172	<pre>keys = model_scores.keys() values = model_scores.values() plt.figure(figsize=(10,4)) plt.bar(keys,values,width=0.4,color = 'brown') plt.xticks(rotation=0) plt.show()</pre>
174	0.0 Support_Vector_Machine Random_Forest_Classifier k_Nearest_Neighbours Decision_Tree print(svm_flscore, knn_flscore, dtree_flscore, rfc_flscore) {'0': 0.91, '1': 0.0} {'0': 0.9, '1': 0.1} {'0': 0.96, '1': 0.77} {'0': 0.97, '1': 0.85}
175	<pre>X = ['SVM_Fl_score','KNN_Fl_score','DecisionTree_Fl_score','RFC_Fl_score'] label_0 = [svm_flscore['0'],knn_flscore['0'],dtree_flscore['0'],rfc_flscore['0']] label_1 = [svm_flscore['1'],knn_flscore['1'],dtree_flscore['1'],rfc_flscore['1']] n = 4 X_axis = np.arange(n) width = 0.25 from pylab import rcParams rcParams['figure.figsize'] = 10, 8 figure1 = plt.bar(X_axis, label_0, color = 'b',</pre>
	<pre>plt.grid(linestyle='') plt.xticks(X_axis + width/2,X) plt.legend() plt.xticks(X_axis, X) plt.xlabel("Models") plt.ylabel("F1_measures") plt.title("F1 scores of models") plt.legend()</pre> <pre>plt.legend()</pre> <pre>F1 scores of models</pre>
	1.0 label_0 label_1
176	
176	<pre>X = ['SVM','KNN','DecisionTree','RFC'] label_0 = [svm_prec['0'],knn_prec['0'],dtree_prec['0'],rfc_prec['0']] label_1 = [svm_prec['1'],knn_prec['1'],dtree_prec['1'],rfc_prec['1']] n = 4 X_axis = np.arange(n) width = 0.25 from pylab import rcParams rcParams['figure.figsize'] = 10, 8 figure1 = plt.bar(X_axis, label_0, color = 'r',</pre>
	<pre>plt.grid(linestyle='') plt.xticks(X_axis + width/2,X) plt.legend() plt.xticks(X_axis, X) plt.xlabel("Models") plt.ylabel("Precision") plt.title("Precision of models") plt.legend() plt.show()</pre> Precision of models 1.0 Abel_0
	0.6 Loising the second of the
	Precision Precision