Отчет по лабораторной работе №204 Эффект Холла

Выполнили студенты 420 группы Понур К.А., Сарафанов Ф.Г., Сидоров Д.А.

Содержание

Введение				
1	Анализ теории			
	1.1	Описа	ание эффекта Холла	
		1.1.1	Разделение зарядов	
		1.1.2	Равновесное состояние	
		1.1.3	Коэффициент Холла	
		1.1.4	Холловская подвижность	
		1.1.5	Угол Холла	
		1.1.6	Холловская разность потенциалов	
	1.2	Побоч	иные факторы	
		1.2.1	Нехолловская составляющая измеряемой разности потенциалов	

Введение

В данной работе исследуется эффект Холла.

Эффект Холла представляет собой в появление поперечной э.д.с. при прохождении электрического тока через проводник, помещенный в магнитное поле, перпендикулярное к направлению тока.

Измерение холловской разности потенциалов обычно позволяет определить концентрацию и знак основных носителей заряда в веществе.

Целью данной работы является изучение возникновения эффекта Холла в слабом магнитном поле, определение коэффициента Холла, холловской подвижности, определение концентрации основных носителей в образце.

1. Анализ теории

1.1. Описание эффекта Холла без учёта механизма рассеяния носителей заряда

1.1.1 Разделение зарядов

Рассмотрим образец, через который протекает ток ј.

Рис. 1: Механизм разделения зарядов при проявлении эффекта Холла

Электрическое поле создает в полупроводнике электрический ток плотностью

$$\mathbf{j} = \sigma \mathbf{E},\tag{1}$$

где $\sigma=\frac{1}{\rho}$ — удельная электрическая проводимость, ρ — удельное сопротивление проводника.

Со стороны магнитного поля В на движущиеся заряды действует магнитная составляющая силы Лоренца

$$\mathbf{F}_L = q[\mathbf{v} \times \mathbf{B}] \tag{2}$$

Здесь у - дрейфовая скорость носителей заряда.

Под действием этой силы происходит разделение зарядов на противоположных боковых (параллельных току и магнитному полю) гранях образца.

При разделении зарядов грани заряжаются, и возникает поперечное поле ${\bf E}_{\perp}$ – поле Холла. На заряд начинает действовать сила Кулона

$$\mathbf{F}_K = q\mathbf{E}_\perp \tag{3}$$

1.1.2 Равновесное состояние

Поле Холла препятствует движению зарядов, вызванным действием магнитного поля, и на некотором этапе разделения зарядов наступает равновесие сил \mathbf{F}_K и \mathbf{F}_L :

$$q\mathbf{E}_{\perp} + \mathbf{F}_{L} = 0 \tag{4}$$

Отсюда

$$\mathbf{E}_{\perp} = -[\mathbf{v} \times \mathbf{B}] \tag{5}$$

Обозначим плотность тока:

$$j = \frac{I}{S} \tag{6}$$

Распишем ток:

$$I = \frac{dQ}{dt} = \frac{qnvS\,dt}{dt} = qnvS,\tag{7}$$

где n - концентрация заряда по объему.

Отсюда

$$v = \frac{I}{qnS} = \frac{j}{qn} = \frac{\sigma E}{qn} \tag{8}$$

То есть

$$v \sim E \quad \Rightarrow \quad \mathbf{v} = \mu \mathbf{E}, \quad \mu = \frac{\sigma}{qn}$$
 (9)

Из (5), (9) следует

$$\mathbf{E}_{\perp} = -\mu [\mathbf{E} \times \mathbf{B}] \tag{10}$$

Или с учетом $\mathbf{j} = \sigma \mathbf{E}$

$$\mathbf{E}_{\perp} = -R[\mathbf{j} \times \mathbf{B}] \tag{11}$$

Где R – коэффициент Холла.

1.1.3 Коэффициент Холла

В нашем выводе

$$R\sigma = \mu \quad \Rightarrow \quad R = \frac{1}{qn}$$
 (12)

При более строгом выводе, учитывающем механизм рассеяния свободных носителей заряда, можно получить

$$R = \frac{\gamma}{qn} \tag{13}$$

 Γ де γ – холл-фактор, безразмерный коэффициент, зависящий от величины магнитного поля и механизма рассеяния свободных носителей заряда при их взаимодействии с ионами примесей и кристаллической решеткой.

Для используемого в данной лабораторной работе чистого слабо легированного германия при комнатной температуре в слабом магнитном поле $\gamma \approx 1.18$.

1.1.4 Холловская подвижность

Произведение $R\sigma$ имеет размерность подвижности и называется холловской подвижностью:

$$\mu_H = R\sigma \tag{14}$$

1.1.5 Угол Холла

Действие магнитного поля ${\bf B}$ приводит к тому, что суммарное электрическое поле

$$\mathbf{E}_{\Sigma} = \mathbf{E} + \mathbf{E}_{\perp} \tag{15}$$

оказывается повернутым на некоторый угол ϑ (угол Холла) относительно вектора плотности тока. Из полученных ранее выражений можно показать, что

$$an \vartheta = -\mu_H B \tag{16}$$

При слабом магнитном поле

$$-\mu_H B \ll 1 \tag{17}$$

угол Холла приближенно можно вычислить по формуле

$$\vartheta = -\mu_H B \tag{18}$$

1.1.6 Холловская разность потенциалов

Эквипотенциальные поверхности в средней части ограниченного вытянутого образца поворачиваются при включении магнитного поля B на угол ϑ относительно их первоначального положения.

Из-за этого в точках, изначально лежащих на эквипотенциали, появляется разность потенциалов U_H , называемая холловской разностью потенциалов.

Для образца прямоугольной формы в приближении однородного поля Холла эта разность потенциалов будет равна

$$U_H = bE_{\perp} \tag{19}$$

Для прямоугольного образца

$$j = \frac{I}{S} = \frac{I}{bc} \tag{20}$$

Из (9), (10) следует

$$E_{\perp} = \frac{j}{qn}B\tag{21}$$

Откуда

$$\frac{U_H}{b} = \frac{I}{qn \cdot bc} B \tag{22}$$

И окончательно

$$U_H = \frac{R}{c}IB \tag{23}$$

1.2. Побочные факторы

1.2.1 Нехолловская составляющая измеряемой разности потенциалов

При изготовлении образца не удается разместить оба холловских контакта таким образом, чтобы они в отсутствие магнитного поля лежали на одной эквипотенциальной поверхности.

В реальном образце между плоскостями расположения контактов всегда есть небольшое смещение Δx .

При ${\bf B}=0$ и $I\neq 0$ между этими плоскостями устанавливается разность потенциалов, равная

$$U_{34} = R_{34}I$$
, где $R_{34} = \rho \frac{\Delta x}{bc}$ (24)

Другие побочные факторы дают вклад в разность потенциалов между контактами 3 и 4 существенно меньший холловской разности потенциалов.

Таким образом, в рамках нашей модели справедливо выражение

$$U_H = U_{34}|_{B \neq 0} - U_{34}|_{B=0} = \frac{RIB}{c}$$
 (25)

Отсюда видно, что коэффициент Холла может быть определен по тангенсу угла наклона линейных участков экспериментально снятых зависимостей $U_{34}(B)|_{I={
m const}}$ и $U_H(I)|_{B={
m const}}$.