Properties of Materials

Theme: Polymers and Composites

Lecture 3: Composites

Dr Chenchen Zhu
chenchen.zhu@bristol.ac.uk
Frank LT PHYS BLDG

Lecture Contents

- Lecture 1
 - Introduction
 - Basic structure of polymers
- Lecture 2
 - Deformation
 - Chain alignment and viscoelasticity
- Lecture 3
 - Composites
 - Modulus and strength

Lecture 3 Composites

- 1. Composites
- 2. Carbon fibre
- 3. Unidirectional carbon fibre/matrix (resin) composites
 - Properties
 - Modulus
 - Strength
 - Anisotropy
 - Toughness

Composites

Carbon fibre

- Hard to make bulk strong carbon
- Easy to make high quality fibre

- Fibre strong in tension
- Weave fibre into fibric for mass use

Unidirectional carbon fibre/matrix (resin) composites

Fibre provides strength and stiffness

 Resin provides protection (wear, chemical) and holds shape

Volume fraction of composites $V_c = 1$ Volume fraction of fibres $V_f = V_f / V_c$ Volume fraction of matrix $V_m = 1 - V_f$

volume of composites

c = composite
f = fibre
m = matrix

Properties

Expect to see volume fraction dependent properties

Modulus- parallel with fibres

- Same strain in both components
 - $-\varepsilon_c = \varepsilon_f = \varepsilon_m$
 - Otherwise continuity breaks
- Fibre higher modulus
 - Same strain, high E = high fibre stress

How to get E_c ?

$$\varepsilon_c = \varepsilon_f = \varepsilon_m$$

Modulus- parallel with fibres

c = compositef = fibrem = matrix

$$F_c = F_f + F_m \tag{1}$$

$$\varepsilon_c = \varepsilon_f = \varepsilon_m \tag{2}$$

$$(1) \xrightarrow{F = \sigma A} \sigma_c A_c = \sigma_f A_f + \sigma_m A_m \quad (3)$$

$$\mathcal{V}_c = lA_c$$
 $\mathcal{V}_f = lA_f$
 $\mathcal{V}_m = lA_m$

$$(3) \xrightarrow{\sigma = E\varepsilon + (2)} E_c A_c = E_f A_f + E_m A_m$$
 (4)

$$(4) \xrightarrow{(5)} E_c \mathcal{V}_c = \mathcal{V}_f E_f + \mathcal{V}_m E_m \qquad (6)$$

$$\begin{array}{c}
\mathcal{V}_{c} = lA_{c} \\
\mathcal{V}_{f} = lA_{f} \\
\mathcal{V}_{m} = lA_{m}
\end{array}$$

$$\begin{array}{c}
(5) \\
(4) \\
\hline
(5) \\
V_{f} = \mathcal{V}_{f} \\
V_{c} \\
\hline
(6) \\
\hline
V_{m} = \mathcal{V}_{m} / \mathcal{V}_{c}
\end{array}$$

$$\begin{array}{c}
(5) \\
E_{c} \mathcal{V}_{c} = \mathcal{V}_{f} E_{f} + \mathcal{V}_{m} E_{m} \\
E_{c} = V_{f} E_{f} + V_{m} E_{m}
\end{array}$$

volume fraction of fibres

Modulus-perpendicular to fibres

- Same stress (σ) in both components
 - $-\sigma_c = \sigma_f = \sigma_m$
 - No need for continuity
- Constant length (l) and thickness (t)
- Strain function of E
 - Matrix: low E, high strain
 - Fibre: high E, low strain
- Fibres provide no restraint on matrix strain
 - limited reinforcement

How to get E_c ?

$$\varepsilon_c = \varepsilon_f + \varepsilon_m$$

Modulus-perpendicular to fibres

Overall displacement of composites

$$U_c = U_f + U_m \tag{1}$$

$$\sigma_c = \sigma_f = \sigma_m \tag{2}$$

$$(1) \xrightarrow{U = L\varepsilon} L_c\varepsilon_c = L_f\varepsilon_f + L_m\varepsilon_m \qquad (3)$$

volume of composites

$$\mathcal{V}_{c} = tlL_{c}$$
 $\mathcal{V}_{f} = tlL_{f}$
 $\mathcal{V}_{m} = tlL_{m}$
 $\mathcal{V}_{m} = tlL_{m}$

$$(3) \xrightarrow{\varepsilon = \sigma/E + (2)} L_c/E_c = L_f/E_f + L_m/E_m \quad (4)$$

$$\begin{array}{c|c}
\nu_c - \iota\iota L_c \\
\nu_f = tlL_f
\end{array}$$

$$\begin{array}{c}
(5) \\
-(5) \\
\end{array}$$

$$\begin{array}{c}
(5) \\
\end{array}$$

$$\begin{array}{c}
(5) \\
\end{array}$$

$$\begin{array}{c}
(5) \\
\end{array}$$

$$\begin{array}{c}
(6) \\
\end{array}$$

(6)
$$\frac{V_f = V_f / V_c}{V_m = V_m / V_c} \qquad 1/E_c = V_f / E_f + V_m / E_m$$

 $V_m = 1 - V_f$

Modulus of unidirectional composites

$$E_c = V_f E_f + (1 - V_f) E_m$$
Ecomposite

Conditions:

• Same strain ($\varepsilon_c = \varepsilon_f = \varepsilon_m$)

Perpendicular

$$\frac{1}{E_c} = \frac{V_f}{E_f} + \frac{\left(1 - V_f\right)}{E_m}$$

Conditions:

• Same stress ($\sigma_c = \sigma_f = \sigma_m$)

Strength

- Much more complex than modulus
- Multiple failure mechanisms
- Hard to predict compared to metals
 - Major limit on uptake

Strength - parallel with fibres

Assume linear elastic fibres and matrix

c = composite
f = fibre
m = matrix

$$\sigma_c = V_f \sigma_f + (1 - V_f) \sigma_m$$

Conditions:

- Loads are parallel with fibres
- Same strain ($\varepsilon_c = \varepsilon_f = \varepsilon_m$)

Strength – parallel with fibres

- High fibre fraction
 - Controlled by stiff fibres
 - Fibres fail, matrix fails
 - Reduced matrix contribution

$$\varepsilon'_m = \varepsilon_f \longrightarrow \sigma_m' = E_m \varepsilon_f$$

$$\sigma_c = V_f \sigma_f + (1 - V_f) \sigma_m$$

$$\sigma_c = V_f \sigma_f + (1 - V_f) \sigma_m' -$$

Conditions:

- Loads are parallel with fibres
- High fibre fraction
- Same strain $(\varepsilon_c = \varepsilon_f = \varepsilon'_m \le \varepsilon_m)$

Strength - parallel with fibres

- Low fibre fraction
 - Controlled by matrix
 - Fibres already fractured by the time the matrix reaches failure strain

$$\varepsilon_c \approx \varepsilon_m$$

Fibres don't contribute

$$\sigma_c = V_f \sigma_f + (1 - V_f) \sigma_m$$

$$\sigma_c = (1 - V_f)\sigma_m -$$

Conditions:

- Loads are parallel with fibres
- Low fibre fraction ($V_f << 1-V_f$)
- Same strain $(\varepsilon_c \approx \varepsilon_m >> \varepsilon_f)$

Strength of composites

- Less benefit than expected
- Need minimum V_f to improve compared to matrix
- Actually compromise strength prior to V_{min}
 - Very low for strong fibres/weak matrix
 - Worst strength at V_{crit}

Example

Assume in a fibre/matrix composites, $E_f = 350$ GPa, $\varepsilon_f = 0.006$, E_m =12 GPa and ε_m =0.03. Please use the 'rule of mixtures' to calculate the ratio of matrix stress to composite stress (σ_m / σ_c) for V_f =12 % and V_f =40 %.

$$\sigma_c = V_f \sigma_f + (1 - V_f) \sigma_m$$

$$\sigma_{c} = V_{f} E_{f} \varepsilon_{f} + (1 - V_{f}) E_{m} \varepsilon_{m} \qquad (1)$$

$$\sigma_{m} = E_{m} \varepsilon_{m} \qquad (2)$$

After being used in composites, actually $\varepsilon_c = \varepsilon_m = \varepsilon_f$

$$\frac{(2)/(1)}{\varepsilon_c = \varepsilon_m = \varepsilon_f} \quad \sigma_m / \sigma_c = \frac{E_m}{V_f E_f + (1 - V_f) E_m} = 0.23 \text{ (12 \%) or } 0.08 \text{ (40 \%)}$$

Anisotropy of continuous fibre composites

Anisotropy of short fibre composites

Aligned short fibres
High *E*High anisotropy

Random short fibres
Low *E*Low anisotropy

Anisotropy

Opportunity to customise modulus to be high in specified directions

Potential for failure due to unexpected loading!

Toughness

• Composites give E_c and σ_c like ceramic but without the brittleness (not quite)

Toughness of composites

- Fibre pull out
 - Drag fibres from matrix
- Crack bridging
 - Fibres hold crack together and prevent it growing
- Deflection
 - Fibres get in way of crack

Summary

- Composites (and other hybrids) get strengths of both phases and mitigate weaknesses of both
- Potential game changer in design
 - Not properly exploited?

- Introduce new set of complications
 - Either component can fail
 - Multiple failure modes
 - New failure modes
 - Anisotropy in modulus and strength