Brazilian E-commerce Target CASE STUDY

Brazilian ecommerce public dataset of orders made at Olist Store. The dataset has information of 100k orders from 2016 to 2018 made at multiple marketplaces in Brazil. Its features allows viewing an order from multiple dimensions: from order status, price, payment and freight performance to customer location, product attributes and finally reviews written by customers. We also released a geolocation dataset that relates Brazilian zip codes to lat/Ing coordinates

Data Schema

https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce

Prepared by Rishab

DATASET LINK:

Exploratory Data Analysis

Customer Data

Sellers Data

SELECT * FROM <u>`target.sellers`</u> limit 10;

Row	seller_id	seller_zip_code_	seller_city	seller_state
1	4be2e7f96b4fd749d52dff41f8	69900	rio branco	AC
2	327b89b872c14d1c0be7235ef	69005	manaus	AM
3	4221a7df464f1fe2955934e30f	48602	bahia	BA
4	651530bf5c607240ccdd89a30	44600	ipira	BA
5	2b402d5dc42554061f8ea98d1	44900	irece	BA
6	d03698c2efd04a549382afa66	45658	ilheus	BA
7	c72de06d72748d1a0dfb2125b	46430	guanambi	BA
8	fc59392d66ef99377e50356ee	40243	salvador	BA
9	b00af24704019bd2e1b335e70	40130	salvador	BA
10	eb4a59a06b3948e851a7d7a83	41820	salvador	BA

Order_items data

Geolocations data

Payments data

SELECT * FROM `target.payments` limit 10; Press Alt+F1 for Accessibility ery results ▲ SAVE RESULTS ▼ INFORMATION RESULTS EXECUTION DETAILS EXECUTION GRAPH PREVIEW payment_installments payment_sequential payment_type payment_value 1a57108394169c0b47d8f876a... 2 credit_card 0 129.94 744bade1fcf9ff3f31d860ace07. credit_card 0 58.69 8bcbe01d44d147f901cd31926... 4 voucher 1 0.0 fa65dad1b0e818e3ccc5cb0e3... 14 voucher 1 0.0 6ccb433e00daae1283ccc9561... 1 4 voucher 0.0 4637ca194b6387e2d538dc89... 1 not defined 1 0.0 00b1cb0320190ca0daa2c88b3... 1 not_defined 0.0 45ed6e85398a87c253db47c2d... 3 voucher 1 0.0 fa65dad1b0e818e3ccc5cb0e3... 0.0 13 voucher

Orders data

Reviews data

Products data

Time period for which the data is given?

To determine the time period let's take help of one of the tables I have chosen the orders table as the order date will give us a better idea as to what period are we looking for.

From the output above we can see that this dataset time period is from 2016 till 2018

Let us also see the cities and states to which customers belong who had placed order below query gives the output of all the customers and to which state and city they belong.

Growing trend on e-commerce in Brazil?

```
select o.order_year,o.month_of_year,count(order_id) as count_of_orders
from(
select *, extract(month FROM order_purchase_timestamp AT TIME ZONE "UTC") as month_of_year,
extract(year FROM order_purchase_timestamp AT TIME ZONE "UTC") as order_year
from __`target-case-study-383109.Target_dataset.orders`) o
group by 1,2
order by 1,2
```


quarter 1 & quarter 2 has increasing trend in sales and order volume.

What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
9 SELECT o.time_category, count(order_id) as Count_of_orders
10 FROM(
11
12 CASE
       WHEN EXTRACT(HOUR FROM order_purchase_timestamp AT TIME ZONE "UTC") BETWEEN 0 AND 5 THEN "Dawn"
WHEN EXTRACT(HOUR FROM order_purchase_timestamp AT TIME ZONE "UTC") BETWEEN 6 AND 11 THEN "Morning"
13
14
       WHEN EXTRACT(HOUR FROM order_purchase_timestamp AT TIME ZONE "UTC") BETWEEN 12 AND 17 THEN "Afternoon"
15
16
        ELSE "Night"
     END AS time_category
17
18
    from `target-case-study-383109.Target_dataset.orders`) o
19 group by o.time_category;
                                                                                                    Query results
                                                                               JOB INFORMATION
                        RESULTS
                                     JSON
                                               EXECUTION DETAILS
                                                                      EXECUTION GRAPH PREVIEW
         time_category
                                   Count of orders
        Morning
                                        22240
     2 Dawn
     4 Night
                                        34100
```

People in Brazil likely do more shopping in after noon (12 to 18 PM) and unlikely in dawn (0 to 6 AM)

Afternoon – 38361 Dawn -4740

Month on Month orders by states

```
select o.order_year,o.month_of_year,o.geolocation_state, count(order_id) as count_of_orders
from(
select *, extract(month FROM order_purchase_timestamp AT TIME ZONE "UTC") as month_of_year,
extract(year FROM order_purchase_timestamp AT TIME ZONE "UTC") as order_year
from __itarget-case-study-383109.Target_dataset.orders__i k
join __itarget-case-study-383109.Target_dataset.customers__i c
on k.customer_id = c.customer_id
join __itarget-case-study-383109.Target_dataset.geolocation__ g
on c.customer_zip_code_prefix = g.geolocation_zip_code_prefix) o
group by 1,2,3
order by 1,2,3
```


- Highest orders -SP, Lowest orders -RR
- Maximum orders in month of August and minimum order of sales in the month of September

Distribution of customers across the states in Brazil

```
select customer_state, count(customer_unique_id) as customer_count
from `target-case-study-383109.Target_dataset.customers`
group by customer_state
order by customer_count desc
```


Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

Get % increase in cost of orders from 2017 to 2018

```
select
year_of_purchase,total_sales,
round((total_sales-LAG(total_sales) over(order by year_of_purchase))/(LAG(total_sales) over(order by year_of_purchase))* 100,2)
as Percent_change
from(
select extract(year FROM o.order_purchase_timestamp) as year_of_purchase, sum(p.payment_value) as total_sales
from `target-case-study-383109.Target_dataset.payments` p left join `target-case-study-383109.Target_dataset.orders` o
on o.order_id = p.order_id
where extract(year FROM o.order_purchase_timestamp) in (2017,2018)
group by 1)
order by year_of_purchase
```

Row	year_of_purchas	total_sales	Percent_change
1	2017	7249746.72	null
2	2018	8699763.04	20.0

Month _wise analysis:

```
select \ k.month\_of\_purchase\_2017 \ as \ month\_of\_purchase \ , \ ((total\_sales\_2018-total\_sales\_2017)/total\_sales\_2017) * \ 100 \ as \ 100 \ 
 percentage_difference_month
 from (
 select extract(month FROM o.order_purchase_timestamp) as month_of_purchase_2017, sum(p.payment_value) as total_sales_2017
 on o.order_id = p.order_id
 where extract(year FROM o.order_purchase_timestamp) = 2017
 group by 1) k
 JOIN
  select extract(month FROM o.order_purchase_timestamp) as month_of_purchase_2018, sum(p.payment_value) as total_sales_2018
 \begin{tabular}{lll} from $$ $'target-case-study-383109.Target\_dataset.payments' p & left join $$ $'target-case-study-383109.Target\_dataset.orders' of target-case-study-383109.Target\_dataset.orders' of target\_dataset.orders' 
 on o.order_id = p.order_id
 where extract(year FROM o.order_purchase_timestamp) = 2018
 group by 1) m
 on k.month_of_purchase_2017 = m.month_of_purchase_2018
 where k.month_of_purchase_2017 between 1 and 8
order by k.month_of_purchase_2017
```

Row	month_of_purch	percentage_diffe
1	1	705.126695
2	2	239.991814
3	3	157.778606
4	4	177.840770
5	5	94.6273437
6	6	100.259691
7	7	80.0424546

Mean & Sum of price and freight value by customer state

```
select
c.customer_state,
round(sum(o.price),2) total_cost_to_state,
round(sum(o.freight_value),2) total_freight_value_to_state,
round(avg(o.price),2) average_cost_to_state,
round(avg(o.freight_value),2) average_freight_value_to_state
from `target-case-study-383109.Target_dataset.orders` od inner join `target-case-study-383109.Target_dataset.order_items` o
on
od.order_id = o.order_id
inner join `target-case-study-383109.Target_dataset.customers` c
on od.customer_id = c.customer_id
group by c.customer_state
order by average_cost_to_state desc , average_freight_value_to_state desc
```

JOB INFORMATION RESULTS		JSON EXECUTION DETAILS		AILS EXE	EXECUTION GRAPH PREVIEW	
Row	customer_state	//	total_cost_to_sta	total_freight_val	average_cost_to	average_freight_
1	PB		115268.08	25719.73	191.48	42.72
2	AL		80314.81	15914.59	180.89	35.84
3	AC		15982.95	3686.75	173.73	40.07
4	RO		46140.64	11417.38	165.97	41.07
5	PA		178947.81	38699.3	165.69	35.83

The customer state PB has the average cost while state SP has the lowest average freight cost.

Case Study Analysis on sales, freight and delivery time

Days between purchasing, delivering and estimated delivery

```
SELECT
order_id,
DATE_DIFF(order_delivered_customer_date, order_purchase_timestamp,DAY) as no_days_delivery,
DATE_DIFF(order_estimated_delivery_date,order_purchase_timestamp,DAY) as no_days_estimated,
DATE_DIFF(order_estimated_delivery_date,order_delivered_carrier_date,DAY) as no_days_delivered_estimated
FROM <a href="mailto:target.orders">target.orders</a>
where order_delivered_customer_date is not null
order by no_days_delivery, no_days_estimated;
```

Row	order_id	no_days_delivery	no_days_estimated	no_days_delivered_estimated
1	d5fbeedc85190ba88580d6f82	0	8	8
2	79e324907160caea526fd8b94	0	9	9
3	e65f1eeee1f52024ad1dcd034	0	10	10
4	1d893dd7ca5f77ebf5f59f0d20	0	10	10
5	b70a8d75313560b4acf607739	0	10	10
6	d3ca7b82c922817b06e5ca211	0	12	12
7	f3c6775ba3d2d9fe2826f93b71	0	12	12
8	21a8ffca665bc7a1087d31751	0	12	12
9	f349cdb62f69c3fae5c4d7d3f3	0	13	13
10	38c1e3d4ed6a13cd0cf612d4c	0	17	16
11	434cecee7d1a65fc65358a632	0	20	20
12	bb5a519e352b45b714192a02f	0	26	26
13	8339b608be0d84fca9d8da68b	0	28	27

Row	order_id	no_days_delivery	no_days_estimated	no_days_delivered_estimated
96451	3c98e4bedff26f850c4f9989b1	146	26	18
96452	cce224811ba8fea016c049693	148	21	19
96453	6e6527028de694ccade37f5a1	165	22	19
96454	031e7d4e559a1bf08e71a419a	166	42	41
96455	a452fba32eab28a4a62af18ee	167	29	28
96456	525e11b26fdb7f41471d28989	167	33	32
96457	4fbc8d6f2f4db3e789d5a876fa	168	33	27
96458	df6d8b7768a047c2981bae0a2	168	35	34
96459	2fa29503f2ebd9f53deba18716	172	39	36
96460	ed8e9faf1b75f43ee027103957	173	19	14
96461	3566eabb132f8d64741ae7b92	174	36	35
96462	d24e8541128cea179a11a6517	175	13	9
96463	2ba1366baecad3c3536f27546	181	28	26

State, take mean of Freight_value, Time_to_delivery, Diff_estimated_delivery

Row	customer_state	avg_freight_state	no_days_delivery	diff_estimated_delivery
1	SP	15.15	8.26	15.68
2	PR	20.53	11.48	21.06
3	MG	20.63	11.52	21.0
4	RJ	20.96	14.69	22.72
5	DF	21.04	12.5	20.88
6	SC	21.47	14.52	22.1
7	RS	21.74	14.71	24.98
8	ES	22.06	15.19	21.8
9	GO	22.77	14.95	23.53

Top 5 states with highest/lowest average freight value

Top 5 states with highest/lowest average time to delivery

 Top 5 states where delivery is really fast/ not so fast compared to estimated date

Case Study

Payment type analysis

Month over Month count of orders for different payment types

```
SELECT
payment_type,month,count(order_id) order_count
From(|
SELECT
P.payment_type,
EXTRACT(MONTH FROM 0.order_purchase_timestamp) month,
P.order_id
FROM <u>`target.payments`</u> P INNER JOIN <u>`target.orders`</u> 0
ON
P.order_id=0.order_id)
GROUP BY payment_type, month
ORDER BY payment_type, month
```

Row	payment_type	month //	order_count
1	UPI	1	1715
2	UPI	2	1723
3	UPI	3	1942
4	UPI	4	1783
5	UPI	5	2035
6	UPI	6	1807
7	UPI	7	2074
8	UPI	8	2077
9	UPI	9	903
10	UPI	10	1056

39	voucher	1	477
40	voucher	2	424
41	voucher	3	591
42	voucher	4	572
43	voucher	5	613
44	voucher	6	563
45	voucher	7	645
46	voucher	8	589
47	voucher	9	302
48	voucher	10	318
49	voucher	11	387
50	voucher	12	294

Orders count based on the no. of payment installments

```
SELECT
payment_installments,
count(order_id) order_volume
FROM `target.payments`
GROUP BY payment_installments
```

Row	payment_installments	order_volume
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644
11	10	5328
12	11	23
13	12	133

Row/	payment_installments	/	order_volume
12		11	23
13		12	133
14		13	16
15		14	15
16		15	74
17		16	5
18		17	8
19		18	27
20		20	17
21		21	3
22		22	1
23		23	1
24		24	18

Detailed Observations:

- ➤ The order volume is in increasing trend in Quarter Q1 (Jan to Mar) and Quarter Q4 (Oct to Dec)
- ➤ The number of orders ordered in August are 13,118 which is 13.18% of entire orders.
- Order volume increased by 17% and sales value increased by 20 % from the year 2017 to 2018
- > Brazilians do more shopping in after noon and unlikely in dawn.
- > State SP has highest orders 41,746 which is 41.98% of total orders in Brazil
- State RR has lowest orders among all countries in Brazil
- State PB has average cost per order while state SP has lowest average cost per order.
- State MA has highest average freight cost per order and SP has lowest average freight cost per order.
- > Average Estimated delivery given 20 days more than actual delivery time.
- Freight cost is highest for state RR (43) and lowest for state SP (16)
- Fast delivery in state SP (8 days) and slowest delivery in RR (28 days)
- > Brazilians purchased more orders with 1 installments approximately 52k
- **→** More orders purchased through credit card almost 80% of total orders

Recommendation:

- 1. Improve Delivery Speed: The company should focus on reducing the delivery time for all orders, especially those taking more than 5 days. They can consider using faster delivery methods like express shipping, improving their logistics and supply chain, and using technology to optimize their delivery routes.
- 2. Conduct Detailed Research: The company should conduct detailed research to find out the reasons behind the low sales in states like RR, AP, and AC. This can help them understand the local market and tailor their products and marketing strategies to better meet the needs of customers in those regions.
- 3. Open New Stores: Based on the high volume of orders placed in states like SP, the company should consider opening new stores in these areas. This can help

- them improve their delivery times, reduce shipping costs, and increase customer satisfaction.
- 4. Offer Benefits to Credit Card Customers: To encourage more customers to use credit cards for payments, the company should offer benefits such as low interest rates, no-cost EMI options, and cashback rewards.
- 5. Improve Estimated Delivery Time: The company should ensure that the estimated delivery time mentioned on their website and other channels is as accurate as possible, so that customers have realistic expectations about when they will receive their orders.
- 6. Plan for High-Demand Periods: The company should prepare for high-demand periods like August by hiring more staff, extending store operating times, and ensuring that their logistics and