ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC

MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

COMME EXIGENCE PARTIELLE À L'OBTENTION DE LA MAÎTRISE EN GÉNIE DE LA PRODUCTION AUTOMATISEE M.Ing.

PAR Alexandre JUMELINE

UTILISATION DE SIGNAUX ÉLECTROMYOGRAPHIQUES POUR LE CONTRÔLE D'UN BRAS ROBOTIQUE POUR USAGERS DE FAUTEUILS ROULANTS MOTORISÉS.

MONTRÉAL, LE "DATE DU DÉPÔT AU BUREAU DES CYCLES SUPÉRIEURS"

PRÉSENTATION DU JURY

CE MÉMOIRE A ÉTÉ ÉVALUÉ

PAR UN JURY COMPOSÉ DE:

M. Rachid Aissaoui, directeur de mémoire Département de Génie de la Production Automatisée

M. Prénom Nom, président du jury département et institution

M. Prénom Nom, examinateur externe département et institution

Mme. Prénom Nom, membre du jury département et institution

IL A FAIT L'OBJET D'UNE SOUTENANCE DEVANT JURY ET PUBLIC LE "DATE DE SOUTENANCE"

À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

AVANT-PROPOS

Ce projet a été réalisé en partenariat avec la société Canadienne Kinova dans le but d'ajouter une interface de contrôle à leur bras robotique Jaco contrôlable par le biais d'un Joystick.

Le but principal était de prendre la suite du projet de maîtrise de Véronique Maheu qui consistait en l'étude de la performance de différents classificateurs dans le cadre de la classification de mouvements à partir de huit canaux électromyographiques.

Le projet devait aussi se servir des paramètres cepstraux du signal électromyographiques. Pendant la réalisation, il s'est avéré que des caractéristiques du signal beaucoup plus simples permettent de discriminer suffisamment les mouvements effectués par l'utilisateur. De ce fait l'utilisation des paramètres cepstraux du signal a été abandonnée au profit d'une détection d'activité musculaire simple.

REMERCIEMENTS

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque justo justo, porta sagittis feugiat eget, ornare rhoncus ligula. Nunc non odio sed lacus rutrum rhoncus. Mauris non congue arcu. Cras quis quam tortor. In ultrices tincidunt magna sed suscipit. Curabitur vel tellus sapien, ut tincidunt arcu. Maecenas dapibus ullamcorper urna, ut mollis mi tincidunt a. Nam eu orci nec lacus consectetur commodo. Donec purus tellus, consectetur at feugiat quis, scelerisque congue nibh. Aliquam urna dolor, congue nec euismod eget, convallis vitae libero. Sed vel magna suscipit leo suscipit porta quis et nunc. Nullam ante tellus, tincidunt a fringilla vel, rutrum non tellus. In volutpat consectetur purus, in euismod lorem feugiat vel. Aliquam sodales nisl eget sapien ullamcorper posuere consectetur orci bibendum. Vestibulum pulvinar viverra auctor. Vivamus ac sem et enim sodales dictum.

UTILISATION DE SIGNAUX ÉLECTROMYOGRAPHIQUES POUR LE CONTRÔLE D'UN BRAS ROBOTIQUE POUR USAGERS DE FAUTEUILS ROULANTS MOTORISÉS.

Alexandre JUMELINE

RÉSUMÉ

Les blessés médullaires de haut niveau lésionnel n'ont plus l'usage de leurs bras, mais conservent des capacités de mouvements résiduelles variant selon la hauteur de leur lésion. Ces capacités résiduelles concernent des mouvements restreints des doigts et des épaules principalement. Suivant le degré d'atteinte et la hauteur de la lésion de la moelle épinière, certaines personnes ne conservent pas suffisamment de liberté de mouvement dans leurs doigts pour utiliser ne serait-ce qu'un simple joystick. Pour ces personnes, les activités de la vie quotidienne (AVQ) deviennent des tâches très compliquées.

La société canadienne Kinova a conçu un bras robotique, JACO, adaptable à un fauteuil roulant motorisé afin d'aider les personnes à mobilité réduite à effectuer leurs actions de la vie quotidienne plus facilement. En effet, celui-ci permet la saisie d'objets ou d'ouvrir des portes de manière intuitive en n'utilisant qu'un Joystick. Cependant les personnes n'ayant plus suffisamment d'activité musculaire dans les doigts ne peuvent donc pas profiter de ce progrès. Le but de ce projet est d'adapter l'utilisation du bras JACO aux personnes blessées médullaires en utilisant les signaux électromyographiques (EMG) de 4 muscles résiduels au niveau du cou et de l'épaule.

L'acquisition des signaux EMG est faite avec des électrodes Delsys filtrées et pré-amplifiées en temps-réel à 2 kHz. Les électrodes sont placées sur quatre muscles présent chez les blessés médullaires de haut niveau : les deux trapèzes ainsi que les deux sternocléïdomastoïdiens. Ces muscles ont été choisis car ils permettent par leur seule activation de reconnaitre un mouvement donné : une élévation de l'épaule dans le cas des trapèzes et une rotation de la tête dans le cas des sternocléïdomastoïdiens.

L'énergie de Teager-Keiser est utilisée afin de déterminer si une activité musculaire est présente ou non, et chaque mouvement détecté peut être relié à une action du bras robot. Une calibration peut être effectuée pour chaque muscle afin de définir des seuils de détection personnalisés. Enfin un système de filtrage prédicitif temps réel a été intégré afin d'augmenter la sensibilité du système a des mouvements plus lents ou pour les personnes ayant moins de tonus musculaire.

Ce projet constitue une avancée supplémentaire dans l'aide technique à la manipulation apportée aux blessés médullaire dans l'accomplissement de leurs tâches de la vie quotidienne.

Mot-clés: Kinova, jaco, contrôleur EMG, temps-réel, blessé médullaire

TITRE ORIGINAL

Alexandre JUMELINE

ABSTRACT

High level spinal cord injury victims don't have the capacity to use their arms, but still have control of several muscles depending on the level of injury. Those residual capacities are mostly finger and shoulder movements. Depending of the level of the injury, some people don't have enough residual muscular activity to move their fingers in order to control a simple joystick. For those people, daily life activities can be very hard to achieve.

The Canadian corporation Kinova has developed a 7 degrees of freedom robotic arm, JACO, meant to be mounted on a motorised wheelchair in order to help spinal cord injury victims in their everyday's life. JACO can be used to grab objects or open doors only using a simple joystick. However, some poeople don't have enough musclar capacities to use this joystick, and therefor, can't use the arm. The goal of this project is to adapt the use of JACO to spinal cord injury victims using electromyographic (EMG) signals sampled on 4 muscles of the neck and shoulders.

EMG signal acquisition is performed using preamplified and filtered Delsys electrodes in real time at a sampling frequency of 2KHz. These electrodes are placed on 4 muscles still used by high level spinal cord injury victims: trapezius and sternocleidomastoid muscles. Those muscles were chosen beacause of their action in simple movements: shoulder elevation for trapeziuses and head rotation for sternocleidomastoids.

Teager-Keiser energy (TKE) is used in order to determine if a muscular onset is performed, and each move of the person can be linked to an action of the arm. A calibration can be done for each muscle in order to set a personalised detection threshold for onset detection. Finally, a real time predictive filter has been added in order to increase the sensitivity of the whole system and to be able to detect smaller and slower movements.

This project represent a step towards technical assistance brought to spinal cord injury victims and the improvement of their living conditions.

Keywords: Kinova, jaco, EMG control, real time, spinal cord injury

TABLE DES MATIÈRES

				Page
INTR	ODUCTION	ON		1
CHA	PITRE 1	MISE EN	CONTEXTE	3
1.1	Les Ble	ssés Médul	laires	. 3
1.2	Les aide	es technique	es aux actions de la vie quotidienne (AVQ)	3
1.3			nyographique (EMG)	
CHA	PITRE 2	REVUE I	DE LITTÉRATURE	5
2.1	Classific	cation EMC	J	5
	2.1.1	Algorithm	nes de détection d'activité	5
	2.1.2	Caractéris	stiques du signal EMG utilisées	7
	2.1.3	Classifica	teurs utilisés dans la détection de mouvements	7
2.2	Système	es Embarqu	iés temps réels et EMG	7
	2.2.1	Le traitem	nent temps réel	
	2.2.2	Méthodes	d'acquisition du signal	8
	2.2.3	Fenêtrage	du signal	8
	2.2.4	Matériel i	nformatique utilisé dans la littérature	9
CHA	PITRE 3	PROBLÉ	MATIQUE ET OBJECTIFS DU PROJET	11
CHA	PITRE 4	MÉTHOI	DOLOGIE	13
4.1				
4.2	Archite		rielle	
	4.2.1	Électrode	s	15
	4.2.2	Microcon	trôleur	15
	4.2.3	-	n des Tensions	
	4.2.4	Liaison à	l'Ordinateur	15
	4.2.5	Liaison à	Jaco	15
	4.2.6		natériel Global	
4.3			ristiques du Signal à utiliser et des Outils algorithmiques et	
	Mathém	natiques à U	Jtiliser	15
	4.3.1	Découpag	ge des fenêtres d'échantillons	15
	4.3.2	Détection	d'activité musculaire	15
		4.3.2.1	Énergie de Teager-Keiser	15
		4.3.2.2	Vote à la majorité	15
4.4	Calibras	ge		15
4.5	Filtrage			15
	4.5.1	Description	on du Filtre	15
	4.5.2	_	du Filtre	
4.6	Archited	cture Logic	ielle	15

4.	.6.1	Firmware		15
		4.6.1.1	Fonctionnement et Configuration Globale du PIC32	15
		4.6.1.2	Alogorithme global	15
4.	.6.2	Application	on de monitorage des signaux	15
		4.6.2.1	Choix des Librairies et des langages	15
		4.6.2.2	Fonctionnement Global et Schéma UML du Projet	15
		4.6.2.3	Lien avec Jaco et Mono	15
4.7 V	alidatio	n du Systè	me	15
4.	.7.1	Protocole	de validation	15
		,		
CHAPIT	RE 5	RESULTA	ATS	17
CHAPIT	RE 6	DISCUSS	SION	19
CONCLU	JSION.			21
ANNEXI	ΕI	TITRE DI	E L'ANNEXE	23
LISTE D	E RÉFÍ	ÉRENCES		25
DIDI IOC	D A DII	TE		20
BIBLIOU	JKAPH	IE		- 28

LISTE DES TABLEAUX

Page

LISTE DES FIGURES

Page

LISTE DES ABRÉVIATIONS, SIGLES ET ACRONYMES

EMG Électromyographique

BM Blessé médullaire

AVQ Activité de la vie quotidienne

TKE Énergie de Teager-Keiser

ETS École de Technologie Supérieure

LISTE DES SYMBOLES ET UNITÉS DE MESURE

EMG Électromyographique

 α FAM choice hyperparameter

 B_t New batch learning data block available that combines all available data up

to a time t (i.e., $D_1 \cup ... \cup D_t$)

 β FAM learning hyperparameter

c Class input associated to a for supervised learning

 C_k Label of class k

 $|C_k|_{LTM}$ Maximal number of samples per class in the long term memory

 D_t New incremental learning data block available at a time t

 D_t^t Training data set at a time t

 $D_t^{\rm v}$ Validation data set at a time t

 $D_t^{\rm f}$ Fitness estimation data set at a time t

 $\delta_{e_1e_2}$ Particle diversity between two ensemble members e_1 and e_2

 Δ Distance from a local best particle within which no personal best value can

be memorized by other particles among the swarm

 $\Delta\theta_{e_1e_2}$ Diversity between two classifiers e_1 and e_2 determined with a FAM specific

indicator

 e_1, e_2 Two ensemble members

EoFAM An ensemble of fuzzy ARTMAP networks

 ϵ FAM match-tracking hyperparameter

$f(\mathbf{h})$	Objective function for a fuzzy ARTMAP hyperparameter vector \mathbf{h} in a static optimization environment
$f(\mathbf{h},t)$	Objective function for a fuzzy ARTMAP hyperparameter vector ${\bf h}$ and at a time t in a dynamic optimization environment
$f_e({f h},t)$	Objective function defined by the generalization error rate.
$f_o(\mathbf{h}_n,t)$	Objective function o (during MOO)
$f_s(\mathbf{h},t)$	Objective function defined by the size of the F_2 layer (i.e., number of F_2 layer nodes)
F^{ab}	FAM map field
F_1	FAM input layer
F_2	FAM competitive hidden layer
FAM _{estimation}	FAM network used to estimate fitness with the data set D_t^{f}
$F\!AM_n$	FAM network associated to the best position of particle \boldsymbol{n}
$FAM_{n,o}$	FAM network associated to the best position of particle n for the objective o (during MOO)
$FAM_{ m optimal}$	FAM network with the highest accuracy obtained after optimization on a learning block \mathcal{D}_t
$FAM_n^{ m start}$	FAM network that defines the initial state of the particle n prior learning data block D_t . During mono-objective optimization it corresponds to the best position of particle n , while it is associated with the current position of particle n during MOO.
FAM_{temp}	Temporary fuzzy ARTMAP network used during fitness estimation

INTRODUCTION

Avec l'avancée des technologies de l'information, le domaine du génie des technologies de la santé est aujourd'hui en mesure de venir en aide aux personnes présentant un handicap naturel, ou résultant d'une pathologie ou d'un accident, en procurant à celles-ci des dispositifs permettant l'amélioration de leurs conditions et leur qualité de vie. Ces dispositifs sont appelés les aides techniques.

Ce projet s'intéresse principalement aux aides techniques de type robotique développées pour aider les personnes paralysées et en fauteuils roulants motorisés à effectuer leurs activités de la vie quotidienne (AVQ). L'une d'entre elles, le bras robotique Jaco a été développé par la société canadienne Kinova, et est contrôlé par un joystick de manière à ce que son utilisateur puisse facilement effectuer des actions simples, comme l'ouverture d'une porte ou la préhension d'un objet.

Les blessés médullaires (BM) de haut niveau lésionnel n'ont plus l'usage de leurs bras, mais conservent des capacités de mouvements résiduelles variant selon la hauteur de leur lésion. Ces capacités résiduelles concernent des mouvements restreints des doigts et des épaules principalement. Suivant le degré d'atteinte et la hauteur de la lésion de la moelle épinière, certaines personnes ne conservent pas suffisamment de liberté de mouvement dans leurs doigts pour utiliser ne serait-ce qu'un simple joystick. Pour ces personnes, les AVQ deviennent des tâches très compliquées.

Le but du projet est donc de faire en sorte de diversifier les interfaces de contrôle du bras Jaco, pour permettre à des personnes incapables de le contrôler exclusivement au joystick de pouvoir avoir accès à cette avancée technologique majeure. Pour ce faire, l'utilisation du signal électromyographique (EMG) a été choisie.

Ce projet de maîtrise étant en grande partie de la recherche appliquée, une grande partie présentera la conception du système.

Une première partie de ce mémoire sera consacrée au fait de situer le projet dans l'univers scientifique actuel. Une mise en contexte sera premièrement effectuée dans le chapitre 1, suivie d'une revue de littérature et enfin de la problématique centrale du projet.

La partie principale du mémoire sera alors présentée dans le chapitre 4 : la méthodologie. Ce chapitre expliquera les choix matériels, logiciels et mathématiques effectués tout au long du projet. Toutes les étapes de conceptions seront détaillées ainsi que les intéractions entre les différentes parties du système.

Enfin, la dernière partie comprendra l'étape de validation du système conçu afin de déterminer l'efficacité du système et de valider la faisabilité d'un tel projet. Cette validation sera effectuée pars l'application d'un protocole de recherche et à travers une étude effectuée sur 10 sujets sains afin de récolter des données qualitatives permettant une courte étude statistique des performences du système.

En résumé cette étude présente la conception d'un système de contrôle d'une aide technique robotisée grâce aux signaux EMG d'une personne BM et à la validation d'une preuve de concept dans le but d'une potentielle commercialisation future par la societé Kinova.

CHAPITRE 1

MISE EN CONTEXTE

Les personnes BM sont aujourd'hui en mesure de pouvoir continuer à garder une autonomie partielle dans leur vie quotidienne grâce à la combinaison de plusieurs progrès technologiques. Les fauteuils roulants motorisés sont, par exemple, une part de ce progrès qui contribue à permettre au BM de garder une certaine mobilité, et sont le point d'encrage d'autres aides techniques dont fait partie le bras robotique Jaco.

Ce chapitre a pour but de présenter les conditions de vie des personnes BM d'aujourd'hui ainsi que les aides techniques fournies par l'industrie qui permettent d'améliorer leurs conditions quotidiennes de vie. Cette mise en contexte est nécessaire afin de discerner dans quelle mesure ce projet de maîtrise participe au processus d'aide aux AVQ des personnes BM.

- 1.1 Les Blessés Médullaires
- 1.2 Les aides techniques aux actions de la vie quotidienne (AVQ)
- 1.3 Le Signal Électromyographique (EMG)

CHAPITRE 2

REVUE DE LITTÉRATURE

2.1 Classification EMG

L'analyse des signaux EMG et la détermination du mouvement effectué à partir de ceux-ci se divise en plusieurs grandes sous parties incluant chacune un algorithme bien précis. Chacune de ces parties peut être réalisée avec plusieurs algorithmes différents impliquant chacun des précisions, et une facilité d'implémentation différente. Des compromis doivent donc être faits entre la précision engendrée par un algorithme et sa complexité d'implémentation et d'exécution qui est souvent inversement proportionnelle.

La première étape de traitement des signaux EMG consiste à déterminer quand il y a une activité musculaire et quand il n'y en a pas. Celle-ci est appelé détection d'activité, ou détection d'onset, et c'est la première partie qui sera analysée. L'étape suivante est l'extraction des caractéristiques du signal qui pourront permettre ensuite au classificateur de déterminer quel mouvement a été effectué. Cette étude se concentrera autour des coefficients cepstraux du signal qui seront utilisé dans le classificateur. Enfin, une analyse de différents classificateurs sera effectuée, se basant sur les mêmes critères que les autres algorithmes, à savoir la précision, la facilité d'implémentation et le temps d'exécution.

Un point important est à souligner, et ce point constituera un premier point de cette étude : tous ces algorithmes mis bouts à bouts doivent, une fois le choix d'architecture effectué permettre de réaliser le traitement de quatre canaux EMG de manière temps réel.

2.1.1 Algorithmes de détection d'activité

La détection d'onset est le principe qui consiste à détecter le début d'une activité musculaire sur le signal EMG de manière automatique. Pour ce faire, plusieurs algorithmes semblent bien fonctionner en combinant à la fois, une bonne précision et un nombre d'opérations flottantes à réaliser restreint. Cette détection d'onset permet d'économiser les ressources processeurs afin

de n'extraire les caractéristiques du signal que lorsque c'est utile et surtout de délimiter les zones d'activité musculaire pour la détection de mouvement. Il existe ainsi plusieurs caractéristiques du signal qui peuvent être extraites afin de détecter un onset. Une première largement utilisée (Chang *et al.*, 1996; Englehart et Hudgins, 2003; Tenore *et al.*, 2007; Maheu, 2011)est la méthode du Zero Crossing Rate (ZCR). Elle calcule le nombre de fois où la courbe du signal repasse par zero.

Un élément important est que Chang *et al.* (1996) ont développé cette méthode sur un DSP et semble fournir des résultats satisfaisants. Cette étude présente également la mise en place d'une dead zone sur l'algorithme de zero crossing, qui permet de réduire, voir de supprimer l'influence du bruit sur le ZCR. Le ZCR est une méthode simple à implémenter et très peu couteuse en ressources processeur pour la raison qu'elle ne nécéssite qu'un nombre d'addition égal N-1, N étant le nombre d'échantillons dans la fenêtre analysée.

Peleg *et al.* (2002) optent pour une méthode consistant à appliquer un seuil directement sur l'enveloppe du signal. Le signal est d'abord passé dans un filtre passe-haut à 30Hz, puis la valeur absolue du signal est faite, enfin, le signal est passé dans un filtre passe-bas à 2.5Hz. Cette méthode est une analogie de la méthode Mean Absolute Value (MAV), le filtre passe bas ayant pour but d'effectuer une moyenne des valeurs absolues du signal. Suite à cela, le seuil appliqué sur l'enveloppe est fixé comme étant 10 pourcents plus haut que la valeur de l'enveloppe de l'EMG au repos.

Tenore *et al.* (2007) utilisent également la méthode MAV sans toutefois préciser la manière dont ils ont choisi leur seuil de détection.

Une autre méthode simple à implémenter et peu couteuse en temps de calcul est la méthode de la Teager-Kaiser Energy (TKE) qui correspond à un taux de variation du signal. Elle a été utilisée par Maheu (2011) comme une caractéristique du signal utilisée dans la classification, mais peut aussi être utilisée dans la détection d'onset comme l'ont montré Li *et al.* (2007). Elle ne constitue qu'une soustraction et deux multiplications par échantillon dans la fenêtre d'analyse.

2.1.2 Caractéristiques du signal EMG utilisées

Une fois l'ctivité musculaire du signal EMG détectée, on cherche à déterminer quel mouvement a été effectué. Ce travail est effectué par un classificateur. Ce classificateur doit donc prendre des éléments de comparaison en compte pour déterminer l'action faite. Ces éléments doivent être significatifs du signal capté, et sont appelés des features, ou des caractéristiques. Les caractéristiques extraites des signaux EMG sont nombreuses, aussi nous nous concentrerons sur celles ayant les meilleurs résultats dans la littérature. Ainsi la caractéristique ayant le plus de succès semble être l'auto-régression (Chang *et al.*, 1996; Peleg *et al.*, 2002; Maheu, 2011).

L'auto-régression consiste à trouver les n+1 coefficients d'un polynôme d'ordre n qui, appliqué sur un signal aléatoire, permettra de retrouver une approche du signal réel. Plusieurs algorithmes permettent de retrouver ces coefficients autorégressifs (AR).

Peleg *et al.* (2002) utilisent une auto-régression d'ordre 11. Cet ordre « a été déterminé de manière heuristique » (Peleg *et al.*, 2002).

Chang *et al.* (1996) ont choisi l'utilisation des coefficients AR mais également les coefficients cepstraux obtenus à partir des AR. Ils préconisent également de fixer l'ordre de l'AR à 4 en se basant sur la littérature et en justifiant par un compromis entre une bonne représentation du signal et un temps de calcul court. L'obtention des coefficients cepstraux à partir des coefficients AR se fait grâce à une relation mathématique récursive simple dépendant de l'ordre de l'auto-régression réalisée.

2.1.3 Classificateurs utilisés dans la détection de mouvements

2.2 Systèmes Embarqués temps réels et EMG

2.2.1 Le traitement temps réel

Le temps réel au sens strict du terme en informatique, signifie que l'on doit savoir à tout instant combien de temps prendront les différentes actions réalisées par un programme. Ce temps peut s'exprimer de plusieurs manières, les deux principales étant le temps en secondes et le nombre d'instructions élémentaires d'une unité de calcul (microprocesseur, microcontrôleur).

Dans notre cas, et comme fixé dans la littérature du contrôle par EMG, la contrainte principale est le temps de réaction et de calcul maximal à laquelle le système doit satisfaire. La littérature traitant de l'implémentation temps réelle de tels systèmes parle ainsi d'un délai de calcul maximal de 300 millisecondes afin que l'utilisateur humain ne ressente pas la latence du système (Chu *et al.*, 2007; Englehart et Hudgins, 2003).

2.2.2 Méthodes d'acquisition du signal

La plupart des études utilisées pour cette revue utilisent des électrodes de surface pour faire leur reconnaissance de mouvements. Cependant, les manières de filtrer et d'échantillonner sont différentes à travers les études. Cette partie a pour but de les regrouper et de les comparer.

La plupart des études observent une fréquence d'échantillonnage de 1KHz permettant d'obtenir une bande utile théorique (respectant le théorême de Shannon) pour les signaux EMG allant jusqu'à 500Hz (Chang *et al.*, 1996; Chu *et al.*, 2007; Englehart et Hudgins, 2003; Tenore *et al.*, 2007). La plupart des signaux EMG bruts sont amplifiés avec des gains de l'ordre de 2000, sont passé dans des filtres passe bande entre 10 et 450 ou 500 Hz.

Peleg *et al.* (2002) ont toutefois opté pour une fréquence d'échantillonnage à 500Hz, avec un filtre anti repliement à 250Hz, alors que Crawford *et al.* (2005) ont opté pour une fréquence d'échantillonnage à 2048 Hz. Lorsqu'elles sont mentionnées, la précision des ADC utilisés varie suivant les études, allant de 16 bits (Englehart et Hudgins, 2003) à 12 bits (Tenore *et al.*, 2007; Fukuda *et al.*, 2003).

2.2.3 Fenêtrage du signal

Une fois l'activité musculaire détectée, le signal est analysé par fenêtres déterminées par rapport à un temps où à un nombre d'échantillons. Un pas d'incrément est également défini, afin de choisir si les fenêtres se recouvrent ou non.

La littérature étudiée fait état de beaucoup de fenêtres et de pas d'incréments différents. La plupart sont fixés de manière heuristique. Cependant, Englehart et Hudgins (2003) évoquent le fait que cette fenêtre ne doit pas être trop grande de manière à ce que le temps de cette fenêtre et de son temps de traitement n'excède pas les 300ms de latence maximum au-delà desquels la latence est ressentie par l'utilisateur. Ainsi, leur fenêtre est fixée à 250ms avec un pas d'incrément à 125ms de manière à garder une marge suffisante pour le temps de calcul.

2.2.4 Matériel informatique utilisé dans la littérature

Les applications temps réelles se trouvent dans la littérature Toutefois, la plupart de ces application n'ont pas une définition toujours précise de la notion de temps réel. La plupart des articles présentent un système exécuté sur des machines puissantes, sur des systèmes d'exploitation souvent non temps réels Cela leur a permis d'y implanter des algorithmes puissants et coûteux en ressources comme le LDA, ou une transformation du signal en ondelettes.

Englehart et Hudgins (2003) ont également effectué une implémentation temps réelle d'algorighmes de reconnaissance de mouvement à partir de signaux EMG. Cette réalisation a été réalisée sous matlab et son extension de programmation temps réel sur un PC distant. Ainsi, la puissance de calcul était très grande, et ils ont également pu utiliser de gros algorithmes sans se soucier du nombre d'opérations à réaliser.

Cependant les application embarquées (au sens où elles sont embarquées sur des cartes électroniques autonomes, et non sur un ordinateur, même portable) sont rares.

Chang *et al.* (1996) ont réalisé un montage électronique basé sur un DSP TMS320C31 de chez Texas Instruments. C'est un processeur 32bits comprenant un cœur à virgule flottante tournant à une fréquence de 20MHz, avec quatre niveaux de pipe-line permettant d'exécuter une instruction à chaque cycle d'horloge. Cette architecture leur a permis d'obtenir un temps total de traitement du signal entre 140 et 160 ms ce qui satisfait à la condition évoquée au début de l'étude concernant le respect d'un temps de réponse maximum de 300 ms. Toutefois, cette étude ayant été réalisée en 1996, il existe aujourd'hui quantité de DSP plus rapide et plus efficaces.

Tenore *et al.* (2007) ont utilisé également un DSP de chez Texas Instruments : un TMS320VC5509A couplé à un ADC dédié de chez National Instruments. Ce DSP est un processor comprenant un cœur à virgule fixe exécutant des actions relativement simples, comme le calcul du ZCR du signal, le calcul de la longueur d'onde du signal et le MAV. Les indications sur le développement et le nombre d'opérations effectuées ne sont pas évoquées, toutefois, les opérations étant très simples, aucun problème de ressources calculatoire n'a du être rencontré dans cette réalisation.

CHAPITRE 3

PROBLÉMATIQUE ET OBJECTIFS DU PROJET

CHAPITRE 4

MÉTHODOLOGIE

4.1 Choix des Muslces
4.2 Architecture Matérielle
4.2.1 Électrodes
4.2.2 Microcontrôleur
4.2.3 Adaptation des Tensions
4.2.4 Liaison à l'Ordinateur
4.2.5 Liaison à Jaco
4.2.6 Schéma matériel Global
4.3 Choix des Caractéristiques du Signal à utiliser et des Outils algorithmiques et Ma- thématiques à Utiliser
4.3.1 Découpage des fenêtres d'échantillons
4.3.2 Détection d'activité musculaire
4.3.2.1 Énergie de Teager-Keiser
4.3.2.2 Vote à la majorité
4.4 Calibrage
4.5 Filtrage
4.5.1 Description du Filtre
4.5.2 Calibrage du Filtre
4.6 Architecture Logicielle

4.6.1 Firmware

CHAPITRE 5

RÉSULTATS

CHAPITRE 6

DISCUSSION

CONCLUSION

Texte de conclusion

ANNEXE I

TITRE DE L'ANNEXE

S'il y lieu

1 Première Section de l'Annexe

<Texte à inserer>

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque justo justo, porta sagittis feugiat eget, ornare rhoncus ligula. Nunc non odio sed lacus rutrum rhoncus. Mauris non congue arcu. Cras quis quam tortor. In ultrices tincidunt magna sed suscipit. Curabitur vel tellus sapien, ut tincidunt arcu. Maecenas dapibus ullamcorper urna, ut mollis mi tincidunt a. Nam eu orci nec lacus consectetur commodo. Donec purus tellus, consectetur at feugiat quis, scelerisque congue nibh. Aliquam urna dolor, congue nec euismod eget, convallis vitae libero. Sed vel magna suscipit leo suscipit porta quis et nunc. Nullam ante tellus, tincidunt a fringilla vel, rutrum non tellus. In volutpat consectetur purus, in euismod lorem feugiat vel. Aliquam sodales nisl eget sapien ullamcorper posuere consectetur orci bibendum. Vestibulum pulvinar viverra auctor. Vivamus ac sem et enim sodales dictum. Test citation ?

Tests de figure en annexe.

Figure-A I-1 Logo de l'ÉTS dans l'annexe. Ici on va mettre un peu plus de texte pour voir comment va être la présentation de la légende dans ce cas.

Tableau-A I-1 Un autre tableau. Ici on va rédiger un peu plus de texte pour vérifier si la légende sera bien placé.

| titre |
|-------|-------|-------|-------|-------|-------|-------|-------|
| blá |

Test citation I-1.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque justo justo, porta sagittis feugiat eget, ornare rhoncus ligula. Nunc non odio sed lacus rutrum rhoncus. Mauris non congue arcu. Cras quis quam tortor. In ultrices tincidunt magna sed suscipit. Curabitur vel tellus sapien, ut tincidunt arcu. Maecenas dapibus ullamcorper urna, ut mollis mi tincidunt a. Nam eu orci nec lacus consectetur commodo. Donec purus tellus, consectetur at feugiat quis, scelerisque congue nibh. Aliquam urna dolor, congue nec euismod eget, convallis vitae libero. Sed vel magna suscipit leo suscipit porta quis et nunc. Nullam ante tellus, tincidunt a fringilla vel, rutrum non tellus. In volutpat consectetur purus, in euismod lorem feugiat vel. Aliquam sodales nisl eget sapien ullamcorper posuere consectetur orci bibendum. Vestibulum pulvinar viverra auctor. Vivamus ac sem et enim sodales dictum.

$$x = 42 \tag{A I-2}$$

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque justo justo, porta sagittis feugiat eget, ornare rhoncus ligula. Nunc non odio sed lacus rutrum rhoncus. Mauris non congue arcu. Cras quis quam tortor. In ultrices tincidunt magna sed suscipit. Curabitur vel tellus sapien, ut tincidunt arcu. Maecenas dapibus ullamcorper urna, ut mollis mi tincidunt a. Nam eu orci nec lacus consectetur commodo. Donec purus tellus, consectetur at feugiat quis, scelerisque congue nibh. Aliquam urna dolor, congue nec euismod eget, convallis vitae libero. Sed vel magna suscipit leo suscipit porta quis et nunc.

1.1 Test

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque justo justo, porta sagittis feugiat eget, ornare rhoncus ligula. Nunc non odio sed lacus rutrum rhoncus. Mauris non congue arcu. Cras quis quam tortor. In ultrices tincidunt magna sed suscipit. Curabitur vel tellus sapien, ut tincidunt arcu. Maecenas dapibus ullamcorper urna, ut mollis mi tincidunt a. Nam eu orci nec lacus consectetur commodo. Donec purus tellus, consectetur at feugiat quis, scelerisque congue nibh. Aliquam urna dolor, congue nec euismod eget, convallis vitae libero. Sed vel magna suscipit leo suscipit porta quis et nunc. Nullam ante tellus, tincidunt a fringilla vel, rutrum non tellus. In volutpat consectetur purus, in euismod lorem feugiat vel. Aliquam sodales nisl eget sapien ullamcorper posuere consectetur orci bibendum. Vestibulum pulvinar viverra auctor. Vivamus ac sem et enim sodales dictum.

mAuth1 (2001) mAuth2 (2002)

LISTE DE RÉFÉRENCES

mAuth
1. 2001. « mTit
1 ». mJourl, vol. 1, n° 1, p. 42-43.

m
Auth
2. 2002. « mTit2 ». mJour2, vol. 2, n° 2, p. 42-43.

BIBLIOGRAPHIE

- Chang, Gwo-Ching, Wen-Juh Kang, Jer-Junn Luh, Cheng-Kung Cheng, Jin-Shin Lai, Jia-Jin J Chen, et Te-Son Kuo. 1996. «Real-time implementation of electromyogram pattern recognition as a control command of man-machine interface ». *Medical engineering & physics*, vol. 18, n° 7, p. 529–537.
- Chu, Jun-Uk, Inhyuk Moon, Yun-Jung Lee, Shin-Ki Kim, et Mu-Seong Mun. 2007. « A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control ». *Mechatronics, IEEE/ASME Transactions on*, vol. 12, n° 3, p. 282–290.
- Crawford, Beau, Kai Miller, Pradeep Shenoy, et Rajesh Rao. 2005. «Real-time classification of electromyographic signals for robotic control ». In *Proceedings of the National Conference on Artificial Intelligence*. p. 523. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.
- Englehart, Kevin et Bernard Hudgins. 2003. « A robust, real-time control scheme for multifunction myoelectric control ». *Biomedical Engineering, IEEE Transactions on*, vol. 50, n° 7, p. 848–854.
- Fukuda, Osamu, Toshio Tsuji, Makoto Kaneko, et Akira Otsuka. 2003. « A human-assisting manipulator teleoperated by EMG signals and arm motions ». *Robotics and Automation, IEEE Transactions on*, vol. 19, n° 2, p. 210–222.
- Li, Xiaoyan, Ping Zhou, et Alexander S Aruin. 2007. « Teager–Kaiser energy operation of surface EMG improves muscle activity onset detection ». *Annals of biomedical enginee-ring*, vol. 35, n° 9, p. 1532–1538.
- Maheu, V. 2011. « Développement des critères d'apprentissage pour le contrôle d'un bras robot manipulateur à 7DDL par le traitement des signaux EMG chez les blessés médullaires. ». Maîtrise en génie des technologies de la santé, Montréal, École de Technologie Supérieure, 133 p.
- Peleg, Dori, Eyal Braiman, Elad Yom-Tov, et Gideon F Inbar. 2002. « Classification of finger activation for use in a robotic prosthesis arm ». *Neural Systems and Rehabilitation Engineering, IEEE Transactions on*, vol. 10, n° 4, p. 290–293.
- Tenore, Francesco, Ander Ramos, Amir Fahmy, Soumyadipta Acharya, Ralph Etienne-Cummings, et Nitish V Thakor. 2007. «Towards the control of individual fingers of a prosthetic hand using surface EMG signals ». In *Engineering in Medicine and Biology Society*, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. p. 6145–6148. IEEE.