Proprietăți ale Operațiilor și Relațiilor între Mulțimi

SEMINAR DE LOGICĂ MATEMATICĂ ȘI COMPUTAȚIONALĂ

Claudia MURESAN

Universitatea din București, Facultatea de Matematică și Informatică c.muresan@yahoo.com, cmuresan@fmi.unibuc.ro, claudia.muresan@unibuc.ro

2021–2022, Semestrul I

Amintesc că are sens să scriem:

- \bullet "fie x", cu semnificația: "fie x element arbitrar" sau "fie x din universul discuției";
- $\forall x$, cu semnificația: "pentru orice element x (de oriunde)" sau "pentru orice element x din universul discuției";
- $\exists x$, cu semnificația: "există un element x" sau "există un element x în universul discuției",

unde "universul discuţiei" este colecţia tuturor obiectelor cu care lucrăm în cadrul unei probleme, colecţie despre care nu specificăm dacă este o mulţime, o clasă sau de altă natură.

Amintesc că simbolul —,— semnifică: să se demonstreze afirmația precedentă sau să se demonstreze afirmația de mai sus

Amintesc abrevierile: "ddacă", semnificând dacă și numai dacă, și "i.e.", de la id est, semnificând adică.

A se vedea, în CURSUL I, definițiile operațiilor \cup , \cap , \setminus , Δ , ale relațiilor \subseteq , \subsetneq , \supseteq , \supseteq , definiția mulțimii vide, \emptyset , și a mulțimii $\mathcal{P}(M)$ a submulțimilor unei mulțimi M.

În rezolvarea următorului exercițiu, a se urmări corespondența dintre următoarele proprietăți ale operațiilor și relațiilor între mulțimi și proprietăți ale conectorilor logici între enunțuri, corespondență indicată în CURSUL I în dreptul fiecăreia dintre proprietățile de demonstrat în acest exercițiu.

Exercițiul 1. Fie A, B, C, D mulțimi. Să demonstrăm următoarele:

• egalitatea de mulțimi este echivalentă cu dubla incluziune: A=B ddacă $[A\subseteq B$ $\S i$ $B\subseteq A]_{-m}$

Prin definiție, două mulțimi coincid ddacă au aceleași elemente, i.e.:

$$\begin{split} A &= B \text{ ddacă } (\forall x) \, (x \in A \Leftrightarrow x \in B) \\ \text{ddacă } (\forall x) \, [(x \in A \Rightarrow x \in B) \text{ și } (x \in B \Rightarrow x \in A)] \\ \text{ddacă } [(\forall x) \, (x \in A \Rightarrow x \in B) \text{ și } (\forall x) \, (x \in B \Rightarrow x \in A)] \\ \text{ddacă } [A \subseteq B \text{ și } B \subseteq A]. \end{split}$$

Fie x, arbitrar, fixat, pentru următoarele proprietăți de demonstrat.

Pentru a demonstra o egalitate de mulțimi, putem demonstra dubla incluziune sau putem arăta, în mod direct, că x este element al membrului stâng al egalității ddacă x este element al membrului drept.

• idempotența reuniunii și a intersecției: $A \cup A = A$ și $A \cap A = A$

```
x \in A \cup Addacă [x \in A \text{ sau } x \in A]ddacă x \in A. Aşadar A \cup A = A.
```

 $x\in A\cap A$ ddacă $[x\in A$ și $x\in A]$ ddacă $x\in A.$ Aşadar $A\cap A=A.$

Diferența și diferența simetrică nu sunt idempotente. În schimb, avem:

• $A \setminus A = \emptyset$ şi $A \Delta A = \emptyset$ ———

 $x \in A \setminus A$ ddacă $[x \in A$ şi $x \notin A]$ ddacă $x \in \emptyset$, pentru că: enunțul $[x \in A$ şi $x \notin A]$, altfel scris $[x \in A$ şi non $(x \in A)]$, este fals, la fel ca enunțul $x \in \emptyset$. Aşadar $A \setminus A = \emptyset$.

Prin urmare avem şi: $A\Delta A = (A \setminus A) \cup (A \setminus A) = \emptyset \cup \emptyset = \emptyset$ conform idempotenței reuniunii.

```
x \in A \cup B ddacă [x \in A \text{ sau } x \in B] ddacă [x \in B \text{ sau } x \in A] ddacă x \in B \cup A. Aşadar A \cup B = B \cup A. Prin urmare avem şi: A \Delta B = (A \setminus B) \cup (B \setminus A) = (B \setminus A) \cup (A \setminus B) = B \Delta A. x \in A \cap B ddacă [x \in A \text{ și } x \in B] ddacă [x \in B \text{ și } x \in A] ddacă x \in B \cap A. Aşadar x \in B \cap A.
```

• asociativitatea reuniunii, a intersecției și a diferenței simetrice: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$ și $A\Delta(B\Delta C) = (A\Delta B)\Delta C$ ———

 $x \in A \cup (B \cup C)$ ddacă $[x \in A \text{ sau } (x \in B \text{ sau } x \in C)]$ ddacă $[x \in A \text{ sau } x \in B \text{ sau } x \in C]$ ddacă $[x \in A \text{ sau } x \in C]$

 $x \in A \cap (B \cap C)$ ddacă $[x \in A$ şi $(x \in B$ şi $x \in C)]$ ddacă $[x \in A$ şi $x \in B$ şi $x \in C]$ ddacă $[(x \in A$ şi $x \in B)$ şi $x \in C)]$ ddacă $x \in (A \cap B) \cap C$. Aşadar $A \cap (B \cap C) = (A \cap B) \cap C$.

Asociativitatea diferenței simetrice se poate demonstra folosind funcții caracteristice sau ca mai jos.

Conform comutativității reuniunii și a intersecției, următoarele legi de distributivitate, scrise ca distributivității la stânga, sunt echivalente cu distributivitățile la dreapta: $(B \cap C) \cup A = (B \cup A) \cap (C \cup A)$, respectiv $(B \cup C) \cap A = (B \cap A) \cup (C \cap A)$.

• distributivitatea reuniunii față de intersecție: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ ———

În proprietățile scrise ca mai jos, pe mai multe rânduri, conectorii logici dintre rânduri se aplică ultimii, adică, pentru a transcrie o astfel de proprietate pe un singur rând, se încadrează între paranteze enunțurile de pe fiecare rând.

$$x \in A \cup (B \cap C) \text{ ddacă} \begin{cases} x \in A \\ \text{sau} \\ x \in B \text{ și } x \in C. \end{cases} \qquad x \in (A \cup B) \cap (A \cup C) \text{ ddacă} \begin{cases} x \in A \text{ sau } x \in B \\ \text{și} \\ x \in A \text{ sau } x \in C. \end{cases}$$

Să procedăm prin dublă incluziune, folosind caracterizările de mai sus-

 $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.—

Dacă $x \in A \cup (B \cap C)$, atunci avem două cazuri:

cazul 1: $x \in A$, prin urmare $[x \in A \text{ sau } x \in B]$, precum şi $[x \in A \text{ sau } x \in C]$, aşadar $x \in (A \cup B) \cap (A \cup C)$; cazul 2: $x \in B$ şi $x \in C$; în acest caz, avem $x \in B$, prin urmare $[x \in A \text{ sau } x \in B]$, precum şi $x \in C$, prin urmare $[x \in A \text{ sau } x \in C]$, aşadar $x \in (A \cup B) \cap (A \cup C)$.

$$(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$$
.—

Dacă $x \in (A \cup B) \cap (A \cup C)$, atunci putem analiza două cazuri (complementare, date de o proprietate şi negația aceleiași proprietăți), dintre care elementul arbitrar (fixat) x satisface unul și numai unul:

cazul 1: $x \in A$, ceea ce implică $[x \in A \text{ sau } [x \in B \text{ şi } x \in C]]$, adică $x \in A \cup (B \cap C)$;

cazul 2: $x \notin A$; în acest caz aplicăm ipoteza că $x \in (A \cup B) \cap (A \cup C)$; așadar $[x \in A \text{ sau } x \in B]$ și $x \notin A$, deci $x \in B$; simultan, $[x \in A \text{ sau } x \in C]$ și $x \notin A$, deci $x \in C$; așadar $x \in B$ și $x \in C$, prin urmare $[x \in A \text{ sau } [x \in B \text{ si } x \in C]]$, adică $x \in A \cup (B \cap C)$.

• distributivitatea intersecției față de reuniune: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ ———

$$x \in A \cap (B \cup C) \text{ ddacă} \begin{cases} x \in A \\ \text{şi} & x \in (A \cap B) \cup (A \cap C) \text{ ddacă} \\ x \in B \text{ sau } x \in C. \end{cases} \begin{cases} x \in A \text{ şi } x \in B \\ \text{sau} \\ x \in A \text{ şi } x \in C. \end{cases}$$

Procedăm tot prin dublă incluziune, folosind caracterizările anterioare.

 $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.—

Dacă $x \in A \cap (B \cup C)$, atunci $x \in A$ și:

fie $x \in B$, aşadar $x \in A$ şi $x \in B$, prin urmare $[x \in A$ şi $x \in B]$ sau $[x \in A$ şi $x \in C]$, adică $x \in (A \cap B) \cup (A \cap C)$; fie $x \in C$, aşadar $x \in A$ şi $x \in C$, prin urmare $[x \in A$ şi $x \in B]$ sau $[x \in A$ şi $x \in C]$, adică $x \in (A \cap B) \cup (A \cap C)$. $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.———

Dacă $x \in (A \cap B) \cup (A \cap C)$, atunci:

fie $x \in A$ şi $x \in B$, aşadar, cum $x \in B$ implică $[x \in B \text{ sau } x \in C]$, rezultă că $x \in A$ şi $[x \in B \text{ sau } x \in C]$, adică $x \in A \cap (B \cup C)$;

fie $x \in A$ şi $x \in C$, aşadar, cum $x \in C$ implică $[x \in B \text{ sau } x \in C]$, rezultă că $x \in A$ şi $[x \in B \text{ sau } x \in C]$, adică $x \in A \cap (B \cup C)$.

• $A \subseteq A \cup B$ si $A \cap B \subseteq A_{-m}$

Dacă $x \in A$, atunci $[x \in A \text{ sau } x \in B]$, adică $x \in A \cup B$. Aşadar $A \subseteq A \cup B$.

Dacă $x \in A \cap B$, adică $[x \in A \text{ și } x \in B]$, atunci $x \in A$. Așadar $A \cap B \subseteq A$.

Cum reuniunea și intersecția sunt comutative, din aceste incluziuni rezultă și $B \subseteq A \cup B$ și $A \cap B \subseteq B$.

• $A \cup B = B \ ddac\ A \subseteq B \ ddac\ A \cap B = A$

Avem $A \subseteq A \cup B$, prin urmare, dacă $A \cup B = B$, atunci $A \subseteq B$.

Similar, $A \cap B \subseteq B$, prin urmare, dacă $A \cap B = A$, atunci $A \subseteq B$.

Acum să presupunem că $A \subseteq B$, adică $x \in A$ implică $x \in B$. Atunci: $x \in A \cup B$ ddacă $[x \in A \text{ sau } x \in B]$ ddacă $x \in B$, după cum se observă imediat prin dublă implicație, așadar $A \cup B = B$. Analog: $x \in A \cap B$ ddacă $[x \in A \text{ și } x \in B]$ ddacă $x \in A$, așadar $A \cap B = A$.

• $\emptyset \subseteq A$ ———

Enunțul $x \in \emptyset$ este fals, așadar $[x \in \emptyset \Rightarrow x \in A]$ este adevărat, deci $\emptyset \subseteq A$.

• $A \subseteq A$ $si \operatorname{non}(A \subseteq A)$ ———

A=A, aşadar $A\subseteq A$, precum şi non $(A\neq A)$, prin urmare [non $(A\subseteq A)$ sau non $(A\neq A)$], i.e. non $(A\subseteq A)$ şi $A\neq A$, adică non $(A\subseteq A)$.

• $\mathcal{P}(\emptyset) = \{\emptyset\}, i.e.: A \subseteq \emptyset \ ddac \ A = \emptyset_{-}$

Procedăm prin dublă implicație.

 $\emptyset \subseteq \emptyset$, aşadar: $A = \emptyset$ implică $A \subseteq \emptyset$.

Acum presupunem că $A \subseteq \emptyset$ și presupunem prin absurd că $A \neq \emptyset$, ceea ce înseamnă că există un element $a \in A$; dar atunci rezultă $a \in \emptyset$, ceea ce contrazice definiția lui \emptyset . Prin urmare, $A \subseteq \emptyset$ implică $A = \emptyset$.

• $A \cup \emptyset = A \ si \ A \cap \emptyset = \emptyset_{-m}$

 $\emptyset \subseteq A$, prin urmare $A \cup \emptyset = A$ și $A \cap \emptyset = \emptyset$.

• $A \setminus \emptyset = A, \emptyset \setminus A = \emptyset \text{ si } A\Delta\emptyset = A_{-tt}$

Enunțul $x \in \emptyset$ este fals, așadar $x \notin \emptyset$ este adevărat, prin urmare: $x \in A \setminus \emptyset$ ddacă $[x \in A \text{ şi } x \notin \emptyset]$ ddacă $x \in A$, în timp ce: $x \in \emptyset \setminus A$ ddacă $[x \in \emptyset \text{ şi } x \notin A]$ ddacă $x \in \emptyset$, pentru că enunțul $x \in \emptyset$, așadar și conjuncția $[x \in \emptyset \text{ şi } x \notin A]$ sunt false. Așadar $A \setminus \emptyset = A$ și $\emptyset \setminus A = \emptyset$, prin urmare $A\Delta\emptyset = A \cup \emptyset = A$.

• $A \cup B = \emptyset$ $ddac \check{a} A = B = \emptyset$ _____

 $\emptyset \cup \emptyset = \emptyset$, aşadar $A = B = \emptyset$ implică $A \cup B = \emptyset$.

Cum $A \subseteq A \cup B$ şi $B \subseteq A \cup B$, $A \cup B = \emptyset$ implică $A \subseteq \emptyset$ şi $B \subseteq \emptyset$, aşadar $A = B = \emptyset$.

- $A \setminus B = \emptyset \ ddac \ a \subseteq B_{-m}$
- $A\Delta B = \emptyset \ ddac \ A = B_{-m}$

 $A \setminus B = \emptyset$ ddacă $(\nexists y)$ $(y \in A \setminus B)$ ddacă $(\forall y)$ $(y \notin A \setminus B)$ ddacă $(\forall y)$ $(\text{non}(y \in A \text{ si } y \notin B))$ ddacă $(\forall y)$ $(y \notin A \text{ sau } y \in B))$ ddacă $(\forall y)$ $(y \in A \Rightarrow y \in B)$ ddacă $A \subseteq B$. Am folosit faptul că, pentru orice enunțuri $p, q, [p \Rightarrow q]$ este echivalent cu [(non p) sau q].

În consecință: $A\Delta B=\emptyset$ ddacă $(A\setminus B)\cup (B\setminus A)=\emptyset$ ddacă $[A\setminus B=\emptyset$ şi $B\setminus A=\emptyset]$ ddacă $[A\subseteq B$ şi $B\subseteq A]$ ddacă A=B.

• $A \subseteq B \ ddac\ \ [A \subseteq B \ si\ B \not\subseteq A] \ ddac\ \ [A \subseteq B \ si\ B \setminus A \neq \emptyset]_{-m}$

Conform definiției incluziunii stricte, $A \subsetneq B$ ddacă $[A \subseteq B$ şi $A \neq B]$ ddacă $[A \subseteq B$ şi $\operatorname{non}(A = B)]$ ddacă $[A \subseteq B$ şi $\operatorname{non}(A \subseteq B)]$ ddacă $[A \subseteq B]$ şi $[A \subseteq B]$

- tranzitivitatea incluziunii nestricte: $(A \subseteq B \ si \ B \subseteq C) \Rightarrow A \subseteq C_{-m-1}$
- $(A \subseteq B \ si \ B \subseteq C) \Rightarrow A \subseteq C_{-m}$
- $(A \subseteq B \ si \ B \subsetneq C) \Rightarrow A \subsetneq C_{---}$
- tranzitivitatea incluziunii stricte: $(A \subseteq B \ si \ B \subseteq C) \Rightarrow A \subseteq C_{-m}$

Dacă $A \subseteq B$ şi $B \subseteq C$, atunci $x \in A$ implică $x \in B$, ceea ce implică $x \in C$, prin urmare $A \subseteq C$. Aşadar incluziunea nestrictă este tranzitivă.

Dacă $A \subseteq B$ şi $B \subseteq C$, atunci $A \subseteq B$ şi $B \subseteq C$, prin urmare $A \subseteq C$, dar şi $B \setminus A \neq \emptyset$, adică există un element $a \in B \setminus A$, așadar $a \in B$ şi $a \notin A$, ceea ce, întrucât $B \subseteq C$, implică $a \in C$ şi $a \notin A$, adică $a \in C \setminus A$, deci $C \setminus A \neq \emptyset$. Prin urmare $A \subseteq C$ şi $C \setminus A \neq \emptyset$, adică $A \subseteq C$.

Dacă $A \subseteq B$ şi $B \subsetneq C$, atunci $A \subseteq B$ şi $B \subseteq C$, prin urmare $A \subseteq C$, dar şi $C \setminus B \neq \emptyset$, adică există un element $b \in C \setminus B$, aşadar $b \in C$ şi $b \notin B$, ceea ce, întrucât $A \subseteq B$ (adică $x \in A$ implică $x \in B$, aşadar $x \notin B$ implică $x \notin A$), implică $b \in C$ şi $b \notin A$, adică $b \in C \setminus A$, deci $C \setminus A \neq \emptyset$. Prin urmare $A \subseteq C$ şi $C \setminus A \neq \emptyset$, adică $A \subseteq C$.

Dacă $A \subsetneq B$ și $B \subsetneq C$, atunci $A \subseteq B$ și $B \subsetneq C$, prin urmare $A \subsetneq C$.

• $A \subseteq B \Rightarrow A \cup C \subseteq B \cup C_{-m}$

- $A \subseteq B \Rightarrow A \cap C \subseteq B \cap C_{-m}$
- $A \subseteq B \Rightarrow A \setminus C \subseteq B \setminus C_{-m}$
- $A \subseteq B \Rightarrow C \setminus B \subseteq C \setminus A_{-m}$

Presupunem că $A \subseteq B$, așadar $x \in A$ implică $x \in B$, prin urmare $x \notin B$ implică $x \notin A$.

Dacă $x \in A \cup C$, adică $x \in A$ sau $x \in C$, atunci $x \in B$ sau $x \in C$, adică $x \in B \cup C$. Aşadar $A \cup C \subseteq B \cup C$.

Dacă $x \in A \cap C$, adică $x \in A$ și $x \in C$, atunci $x \in B$ și $x \in C$, adică $x \in B \cap C$. Așadar $A \cap C \subseteq B \cap C$.

Dacă $x \in A \setminus C$, adică $x \in A$ şi $x \notin C$, atunci $x \in B$ şi $x \notin C$, adică $x \in B \setminus C$. Aşadar $A \setminus C \subseteq B \setminus C$.

Dacă $x \in C \setminus B$, adică $x \in C$ și $x \notin B$, atunci $x \in C$ și $x \notin A$, adică $x \in C \setminus A$. Așadar $C \setminus B \subseteq C \setminus A$.

•
$$dac\breve{a}$$

$$\begin{cases} A \subseteq B \\ si \end{cases}, atunci: \begin{cases} A \cup C \subseteq B \cup D \\ A \cap C \subseteq B \cap D \end{cases} -\#$$
$$A \setminus D \subseteq B \setminus C$$

Presupunem că $A \subseteq B$ și $C \subseteq D$.

Cum $A \subseteq B$, rezultă că $A \cup C \subseteq B \cup C$. Cum $C \subseteq D$, rezultă că $B \cup C \subseteq B \cup D$. Conform tranzitivității incluziunii nestricte, rezultă $A \cup C \subseteq B \cup D$.

Analog, rezultă $A \cap C \subseteq B \cap C \subseteq B \cap D$, prin urmare $A \cap C \subseteq B \cap D$.

Cum $A \subseteq B$, rezultă că $A \setminus D \subseteq B \setminus D$. Cum $C \subseteq D$, rezultă că $B \setminus D \subseteq B \setminus C$. Prin urmare $A \setminus D \subseteq B \setminus C$.

- $(A \subseteq C \ si \ B \subseteq C) \ ddac \ A \cup B \subseteq C_{---}$
- $(A \subseteq B \ \text{si} \ A \subseteq C) \ ddac \ A \subseteq B \cap C_{-\prime\prime}$

Cum $A\subseteq A\cup B$ și $B\subseteq A\cup B$, conform tranzitivității incluziunii nestricte, $A\cup B\subseteq C$ implică $A\subseteq C$ și $B\subseteq C$. Reciproc, $A\subseteq C$ și $B\subseteq C$ implică $A\cup B\subseteq C\cup C=C$.

Cum $B \cap C \subseteq B$ şi $B \cap C \subseteq C$, conform tranzitivității incluziunii nestricte, $A \subseteq B \cap C$ implică $A \subseteq B$ şi $A \subseteq C$. Reciproc, $A \subseteq B$ şi $A \subseteq C$ implică $A = A \cap A \subseteq B \cap C$.

- $A \setminus B \subseteq A$ ———
- $\bullet \ A\cap (A\setminus B)=A\setminus B \ \text{\it si} \ A\cap (B\setminus A)=\emptyset _{\prime\prime}_$

Dacă $x \in A \setminus B$, adică $x \in A$ şi $x \notin B$, atunci $x \in A$. Aşadar $A \setminus B \subseteq A$, prin urmare $A \cap (A \setminus B) = A \setminus B$. $x \in A \cap (B \setminus A)$ ddacă $[x \in A, x \in B$ şi $x \notin A]$, ceea ce este echivalent cu $x \in \emptyset$, pentru că ambele enunțuri sunt false.

• $A \setminus B = A \setminus (A \cap B)_{-tt}$

 $x \in A \setminus (A \cap B)$ ddacă $[x \in A$ şi non $(x \in A$ şi $x \in B)]$ ddacă $[x \in A$ şi $(x \notin A \text{ sau } x \notin B)]$ ddacă $[x \in A \text{ şi } x \notin B]$ ddacă $x \in A \setminus B$. Aşadar $A \setminus B = A \setminus (A \cap B)$.

• $A \cap B = \emptyset \ ddac \ A \setminus B = A \ ddac \ B \setminus A = B_{-m}$

Dacă $A \cap B = \emptyset$, atunci $A \setminus B = A \setminus (A \cap B) = A \setminus \emptyset = A$.

Acum să presupunem că $A \setminus B = A$, așadar $A \subseteq A \setminus B$, și să presupunem prin absurd că $A \cap B \neq \emptyset$, adică există un element $a \in A \cap B$, adică $a \in A$ și $a \in B$, prin urmare $a \in A$, așadar $a \in A \setminus B$ întrucat $A \subseteq A \setminus B$, deci $a \in A$ și $a \notin B$, așadar $a \notin B$, ceea ce contrazice faptul că $a \in B$. Prin urmare $A \cap B = \emptyset$.

Așadar: $A \setminus B = A$ ddacă $A \cap B = \emptyset$, ceea ce este echivalent cu $B \cap A = \emptyset$ datorită comutativității conjuncției, enunț echivalent $B \setminus A = B$ conform echivalenței anterioare.

Amintesc notațiile:

- pentru orice mulțime finită M, |M| = numărul elementelor lui M;
- $2\mathbb{N} + 1 = \{2n + 1 \mid n \in \mathbb{N}\} = \text{ multimea numerelor naturale impare};$
- pentru orice $n \in \mathbb{N}^*$, $\overline{1,n} = \{1,2,\ldots,n\} = \{k \in \mathbb{N} \mid 1 \le k \le n\}$.

Să notăm, pentru orice $n \in \mathbb{N}^*$:

- pentru orice enunţuri p_1, \ldots, p_n , cu $p_1 \times p_2 \times p_2 \times p_3 \times p_3$
- pentru orice mulţimi A_1, \ldots, A_n , cu $|\overline{A_1 \Delta A_2 \Delta \ldots \Delta A_n} := (\ldots ((\overline{A_1 \Delta A_2}) \Delta A_3) \overline{\Delta \ldots \Delta A_{n-1}}) \overline{\Delta A_n}|$.

Remarca 2. ① Pentru orice $n \in \mathbb{N}^*$ și orice enunțuri p_1, \ldots, p_n , enunțul $q_n := p_1$ xor p_2 xor \ldots xor p_n este adevărat ddacă $|\{i \in \overline{1,n} \mid p_i \text{ este adevărat}\}| \in 2\mathbb{N} + 1;$

- ② Pentru orice $n \in \mathbb{N}^*$ și orice mulțimi $A_1, \ldots, A_n, B_n := A_1 \Delta A_2 \Delta \ldots \Delta A_n = \{x \mid |\{i \in \overline{1,n} \mid x \in A_i\}| \in A_i\}$
- (I) Demonstrăm această proprietate prin inducție matematică după $n \in \mathbb{N}^*$. Conform notației fără paranteze de mai sus:
 - $q_1 = p_1$ şi, pentru orice $n \in \mathbb{N}^*$, $q_{n+1} = q_n$ xor p_{n+1} .

 $\underline{n=1}$: $q_1=p_1$, iar $\overline{1,1}=\{1\}$, aşadar q_1 este adevărat ddacă p_1 este adevărat ddacă $|\{i\in\{1\}\mid p_i \text{ este adevărat}\}|$ $= 1 \operatorname{ddaca} |\{i \in \overline{1,1} \mid p_i \text{ este adevarat}\}| \in 2\mathbb{N} + 1.$

 $\underline{n\mapsto n+1} \colon \text{ Pentru fiecare } n\in\mathbb{N}^*, \text{ să notăm cu } M_n:=\{i\in\overline{1,n}\mid p_i \text{ este adevărat}\}. \text{ Observăm că, pentru orice } n\in\mathbb{N}^*, \ M_{n+1}=\begin{cases} M_n, & \text{dacă } n+1\notin M_{n+1},\\ M_n\cup\{n+1\}, & \text{altfel.} \end{cases}$ așadar $|M_{n+1}|=\begin{cases} |M_n|, & \text{dacă } n+1\notin M_{n+1},\\ |M_n|+1, & \text{altfel,} \end{cases}$ întrucât $n+1\notin M_n.$

Fie $n \in \mathbb{N}^*$, astfel încât q_n este adevărat ddacă $|M_n| \in 2\mathbb{N} + 1$. Conform definiției conectorului logic sau

Fie
$$n \in \mathbb{N}^*$$
, astfel încât q_n este adevărat ddacă $|M_n| \in 2\mathbb{N} + 1$. Conform definiției conectorului logic sau $exclusiv$ și celor de mai sus, $q_{n+1} = q_n$ xor p_{n+1} este adevărat ddacă
$$\begin{cases} q_n \text{ e adevărat și } p_{n+1} \text{ e fals} \\ \text{sau} \\ |M_n| \in 2\mathbb{N} + 1 \text{ și } n + 1 \notin M_{n+1} \\ \text{sau} \\ |M_n| \in 2\mathbb{N} \text{ și } n + 1 \in M_{n+1} \end{cases}$$

$$\begin{cases} |M_n| \in 2\mathbb{N} + 1 \text{ și } |M_{n+1}| = |M_n| \\ \text{sau} \\ |M_n| \in 2\mathbb{N} \text{ și } n + 1 \in M_{n+1} \end{cases}$$

$$\begin{cases} |M_n| \in 2\mathbb{N} + 1 \text{ și } |M_{n+1}| = |M_n| \\ \text{sau} \\ |M_n| \in 2\mathbb{N} \text{ și } |M_{n+1}| = |M_n| + 1 \end{cases}$$
 că acestea sunt singurele cazuri posibile în care avem $|M_{n+1}| \in 2\mathbb{N} + 1$, întrucât $|M_{n+1}| \in \{|M_n|, |M_n| + 1\}$.

Conform principiului inducției matematice, rezultă că, pentru orice $n \in \mathbb{N}^*$, q_n este adevărat ddacă $|M_n| \in 2\mathbb{N} + 1.$

- (2) Conform notațiilor fără paranteze de mai sus:
 - $B_1 = A_1$ și, pentru orice $n \in \mathbb{N}^*$, $B_{n+1} = B_n$ xor A_{n+1} , așadar, conform definiției diferenței simetrice:
 - pentru orice element x, dacă, pentru fiecare $n \in \mathbb{N}^*$, p_n este proprietatea $x \in A_n$, atunci, pentru fiecare $n \in \mathbb{N}^*$, $x \in B_n$ ddacă x satisface proprietatea q_n .

Aşadar, conform (I), pentru orice $n \in \mathbb{N}^*$, $x \in B_n$ ddacă $|\{i \in \overline{1,n} \mid x \in A_i\}| \in 2\mathbb{N} + 1$.

Acum putem demonstra asociativitatea diferenței simetrice: conform proprietății (2) din remarca anterioară și comutativității diferenței simetrice, precum și asociativității și comutativității intersecției, pentru orice mulțimi A, B, C și orice element x, avem: $x \in (A\Delta B)\Delta C$ ddacă $x \in A \cap B \cap C$ sau $x \in A \setminus (B \cup C)$ sau $x \in B \setminus (A \cup C)$ sau $x \in C \setminus (A \cup B)$ ddacă $x \in B \cap C \cap A$ sau $x \in B \setminus (A \cup C)$ sau $x \in C \setminus (A \cup B)$ sau $x \in A \setminus (B \cup C)$ ddacă $x \in (B\Delta C)\Delta A$ ddacă $x \in A\Delta (B\Delta C)$, prin urmare $(A\Delta B)\Delta C = A\Delta (B\Delta C)$.

Exercițiul 3. Fie T o mulțime, iar $A, B \in \mathcal{P}(T)$. Pentru orice $X \in \mathcal{P}(T)$, notăm cu $\overline{X} = T \setminus X$. Să demonstrăm următoarele:

- $\overline{A} \in \mathcal{P}(T)$, adică $\overline{A} \subseteq T_{-m}$
- $\overline{\emptyset} = T$ si $\overline{T} = \emptyset_{-}$

 $\overline{A} = T \setminus A \subseteq T$, $\overline{\emptyset} = T \setminus \emptyset = T$ și $\overline{T} = T \setminus T = \emptyset$. Am folosit proprietăți din Exercițiul 1; vom folosi și în cele ce urmează proprietăți demonstrate în acest exercițiu de mai sus.

Amintesc că, pentru orice proprietate p asupra elementelor lui T, avem:

$$(\forall x \in T) (p(x)) \Leftrightarrow (\forall x) (x \in T \Rightarrow p(x)).$$

Cum $A \subseteq T$ şi $B \subseteq T$, avem: $A = A \cap T$ şi $B = B \cap T$. Prin urmare:

 $A = B \text{ ddacă } A \cap T = B \cap T \text{ ddacă } (\forall x) (x \in A \cap T \Leftrightarrow x \in B \cap T) \text{ ddacă } (\forall x) [x \in T \Rightarrow (x \in A \Leftrightarrow x \in B)]$ ddacă (\forall x \in T) (x \in A \in x \in B);

 $A\subseteq B$ ddacă $A\cap T\subseteq B\cap T$ ddacă $(\forall x)$ $(x\in A\cap T\Rightarrow x\in B\cap T)$ ddacă $(\forall x)$ $[x\in T\Rightarrow (x\in A\Rightarrow x\in B)]$ ddacă $(\forall x\in T)$ $(x\in A\Rightarrow x\in B)$.

Aşadar, pentru a demonstra următoarele proprietăți, putem fixa un $x \in T$, arbitrar. Pentru un $x \in T$ avem: $x \in \overline{A} = T \setminus A$ ddacă $[x \in T \text{ şi } x \notin A]$ ddacă $x \notin A$.

Fie, aşadar, $x \in T$, arbitrar, fixat.

• $A \setminus B = A \cap \overline{B}_{-}$

 $x\in A\setminus B$ ddacă $[x\in A$ și $x\notin B]$ ddacă $[x\in A$ și $x\in \overline{B}]$ ddacă $x\in A\cap \overline{B}$. Așadar $A\setminus B=A\cap \overline{B}$.

 \bullet $\overline{\overline{A}} = A_{-}$

 $x \in \overline{\overline{A}}$ ddacă $x \notin \overline{A}$ ddacă not $(x \in \overline{A})$ ddacă not $(x \notin A)$ ddacă $x \in A$. Prin urmare $\overline{\overline{A}} = A$.

• legile lui De Morgan: $\begin{cases} \overline{A \cup B} = \overline{A} \cap \overline{B}_{-\prime\prime} - \\ \overline{A \cap B} = \overline{A} \cup \overline{B}_{-\prime\prime} - \end{cases}$

 $x\in \overline{A\cup B}$ ddacă $x\notin A\cup B$ ddacă not $(x\in A \text{ sau } x\in B)$ ddacă $[x\notin A \text{ și } x\notin B]$ ddacă $[x\in \overline{A} \text{ și } x\in \overline{B}]$ ddacă $x\in \overline{A}\cap \overline{B}$. Aşadar $\overline{A\cup B}=\overline{A}\cap \overline{B}$.

 $x\in \overline{A\cap B}$ ddacă $x\notin A\cap B$ ddacă not $(x\in A$ și $x\in B)$ ddacă $[x\notin A$ sau $x\notin B]$ ddacă $[x\in \overline{A}$ sau $x\in \overline{B}]$ ddacă $x\in \overline{A}\cup \overline{B}$. Așadar $\overline{A\cap B}=\overline{A}\cup \overline{B}$.

- $A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}_{-}$
- $A = B \Leftrightarrow \overline{A} = \overline{B}_{-}$
- $A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}_{-tt}$

Dacă $A \subseteq B$, atunci: $x \in \overline{B}$, adică $x \notin B$, implică $x \notin A$, adică $x \in \overline{A}$. Aşadar $A \subseteq B$ implică $\overline{B} \subseteq \overline{A}$, prin urmare $\overline{B} \subseteq \overline{A}$ implică $\overline{\overline{A}} \subseteq \overline{\overline{B}}$, adică $A \subseteq B$. Aşadar: $A \subseteq B$ ddacă $\overline{B} \subseteq \overline{A}$.

În consecință: A = B ddacă $[A \subseteq B$ și $B \subseteq A]$ ddacă $[\overline{B} \subseteq \overline{A}$ și $\overline{A} \subseteq \overline{B}]$ ddacă $\overline{A} = \overline{B}$. Prin urmare: $A \subseteq B$ ddacă $[A \subseteq B$ și $A \neq B]$ ddacă $[\overline{B} \subseteq \overline{A}$ și $\overline{B} \neq \overline{A}]$ ddacă $\overline{B} \subseteq \overline{A}$.

- $A \cap \overline{A} = \emptyset$ şi $A \cup \overline{A} = T$ —

 mai mult:
- $A \cap B = \emptyset$ ddacă $A \subseteq \overline{B}$ ddacă $B \subseteq \overline{A}_{-m-1}$
- $A \cup B = T$ ddacă $A \supseteq \overline{B}$ ddacă $B \supseteq \overline{A}$ _____

$$\bullet \ \begin{cases} A \cup B = T \\ \$ \mathrm{i} & \mathrm{ddac} \ A = \overline{B} \ \mathrm{ddac} \ B = \overline{A} _{\prime\prime} _\\ A \cap B = \emptyset \end{cases}$$

 $x \in A \cap \overline{A}$ ddacă $[x \in A$ şi $x \in \overline{A}]$ ddacă $[x \in A$ şi $x \notin A]$ ddacă $x \in \emptyset$, întrucât aceste două ultime afirmații sunt ambele false. Aşadar $A \cap \overline{A} = \emptyset$.

Prin urmare, conform celei de–a doua legi a lui De Morgan și autodualității complementarei: $A \cup \overline{A} = \overline{\overline{A}} \cup \overline{A} = \overline{A} \cup \overline{A} \cup \overline{A} \cup \overline{A} \cup \overline{A} = \overline{A} \cup \overline{A}$

Cele două egalități precedente rezultă și din următoarele echivalențe.

 $A \cap B = \emptyset$ ddacă $A \cap \overline{B} = \emptyset$ ddacă $A \setminus \overline{B} = \emptyset$ ddacă $A \subseteq \overline{B}$, prin urmare: $A \cap B = \emptyset$ ddacă $B \cap A = \emptyset$ ddac

În consecință: $A \cup B = T$ ddacă $\overline{A \cup B} = \overline{T}$ ddacă $\overline{A} \cap \overline{B} = \emptyset$ ddacă $\overline{A} \subseteq \overline{\overline{B}}$ ddacă $\overline{A} \subseteq B$, prin urmare: $A \cup B = T$ ddacă $B \cup A = T$ ddacă $\overline{B} \subseteq A$.

Aşadar: $\begin{cases} A \cup B = T \\ \text{şi} & \text{ddacă } [A \subseteq \overline{B} \text{ şi } \overline{B} \subseteq A] \text{ ddacă } A = \overline{B} \text{ ddacă } \overline{A} = \overline{\overline{B}} \text{ ddacă } B = \overline{A}. \text{ Pentru ultima } A \cap B = \emptyset \end{cases}$

echivalență puteam folosi și comutativitatea reuniunii și a intersecției, ca mai sus.

• $A\Delta B = (A \cup B) \setminus (A \cap B)$ ———

Cu scrierea de mai sus pentru diferență ca fiind intersecția cu complementara, a doua lege a lui De Morgan, distributivitatea intersecției față de reuniune și din nou această scriere a diferenței de mulțimi:

$$(A \cup B) \setminus (A \cap B) = (A \cup B) \cap \overline{(A \cap B)} = (A \cup B) \cap (\overline{A} \cup \overline{B}) = (A \cap \overline{A}) \cup (\overline{A} \cap \overline{B}) \cup (\overline{B} \cap \overline{A}) \cup (\overline{A} \cap \overline{$$

Exercițiul 4. Fie a, b, c, d proprietăți ale substanțelor (putem restrânge cadrul la substanțele din eprubetele dintr-un laborator, de exemplu), astfel încât:

- ① dacă o substanță are proprietățile a și b, atunci acea substanță are exact una dintre proprietățile c și d;
- 2) dacă o substanță are proprietățile b și c, atunci acea substanță are: { fie ambele proprietăți a și d, fie niciuna dintre proprietățile a și d;
- 3 dacă o substanță nu are niciuna dintre proprietățile a și b, atunci acea substanță nu are niciuna dintre proprietățile c și d.

Să se demonstreze, prin calcul cu mulțimi, că:

- (I) dacă o substanță nu are niciuna dintre proprietățile a și b, atunci acea substanță nu are proprietatea c;
- (II) nu există substanță care să aibă proprietățile a, b și c.

Rezolvare: Să notăm cu: T := mulțimea tuturor substanțelor;

A :=multimea substantelor care au proprietatea a;

B := mulţimea substanțelor care au proprietatea b;

C := multimea substantelor care au proprietatea c;

D := multimea substantelor care au proprietatea d.

De asemenea, pentru orice $X \subseteq T$, să notăm cu $\overline{X} := T \setminus X$.

Atunci, de exemplu, multimea substantelor care nu au proprietatea a este \overline{A} .

Să transcriem condițiile 1, 2 și 3 în proprietăți ale mulțimilor A, B, C, D:

Condiția ① spune că $(a ext{ si } b) \Rightarrow (c ext{ xor } d)$, pentru că substanțele care au exact una dintre proprietățile $c ext{ si } d$ au proprietatea $c ext{ si }$ nu au proprietatea d,

sunt cele care: $\begin{cases} \text{sau} & \text{adică substanţele cu proprietatea } (c \text{ xor } d). \text{ Aşadar:} \\ \text{au proprietatea } d \text{ şi nu au proprietatea } c, \end{cases}$

 $(1) \Longleftrightarrow A \cap B \subseteq (C \setminus D) \cup (D \setminus C) = C\Delta D.$

Condiţia ② spune că $(b \ \text{si} \ c) \Rightarrow [(a \ \text{si} \ d) \ \text{sau} \ (\text{non} \ a \ \text{si} \ \text{non} \ d)]$. A se observa că proprietatea din dreapta acestei implicații este echivalentă cu $\text{non}(a \ \text{xor} \ d)$; de asemenea, putem observa că această proprietate este echivalentă cu $[(a \ \text{si} \ d) \ \text{xor} \ (\text{non} \ a \ \text{si} \ \text{non} \ d)]$, întrucât proprietățile $(a \ \text{si} \ d) \ \text{si} \ (\text{non} \ a \ \text{si} \ \text{non} \ d)$ nu pot fi simultan adevărate. Așadar:

- $\textcircled{2} \Longleftrightarrow B \cap C \subseteq (A \cap D) \cup (\overline{A} \cap \overline{D}) \quad (= \overline{A\Delta D}).$
 - Condiția (3) spune că (non a și non b) \Rightarrow (non c și non d). Așadar:
- $(3) \Longleftrightarrow \overline{A} \cap \overline{B} \subseteq \overline{C} \cap \overline{D}.$

Acum să transcriem ce avem de demonstrat în proprietăți ale mulțimilor A, B, C, D:

- $(\mathrm{I}) \Longleftrightarrow \overline{A} \cap \overline{B} \subseteq \overline{C}_{---}$
- $(II) \iff A \cap B \cap C = \emptyset_{-m}$

Să demonstrăm aceste proprietăți.

- (I) Conform lui $\mathfrak{J}, \overline{A} \cap \overline{B} \subseteq \overline{C} \cap \overline{D} \subseteq \overline{C}$, aşadar $\overline{A} \cap \overline{B} \subseteq \overline{C}$.
- (II) Intersectând cuCîn ambii membri ai incluziunii corespunzătoare lui 1, obținem:

 $A \cap B \cap C \subseteq [(C \setminus D) \cup (D \setminus C)] \cap C = [(C \setminus D) \cap C] \cup [(D \setminus C) \cap C] = (C \setminus D) \cup \emptyset = C \setminus D$, întrucât $C \setminus D \subseteq C$. Intersectând cu A în ambii membri ai incluziunii corespunzătoare lui lui (2), obținem:

Intersectand of A in amon memori at incluzionii corespondatoare ini ini (2), obținem: $A \cap B \cap C \subseteq A \cap [(A \cap D) \cup (\overline{A} \cap \overline{D})] = (A \cap A \cap D) \cup (A \cap \overline{A} \cap \overline{D}) = (A \cap D) \cup (\emptyset \cap \overline{D}) = (A \cap D) \cup (\emptyset = A \cap D)$.

Aşadar: $A \cap B \cap C \subseteq C \setminus D$ şi $A \cap B \cap C \subseteq A \cap D$, prin urmare:

 $A \cap B \cap C \subseteq (C \setminus D) \cap A \cap D = (C \setminus D) \cap D \cap A = \emptyset \cap A = \emptyset$, aşadar $A \cap B \cap C = \emptyset$.