Formal Languages and Compilers

Matteo Secco

 $March\ 2,\ 2021$

Contents

1	Formal Language Theory		•
	1.1	Operations on strings	
		Operations on Languages	

1 Formal Language Theory

Alphabet Σ : any finite set of symbols $\Sigma = \{a_1, a_2, ..., a_k\}$

String: a sequence of alphabeth elements

Language: a set (possibly infinite) of strings

$$\Sigma = \{a, b, c\}$$
 $L_1 = \{ab, ac\}$ $L_2 = \{ab, aab, aaab, aaab, ...\}$

Sentences/Phrases: strings belonging to a language

Language cardinality: number of sentences of the language

$$|L_1| = |\{ab, ab\}| = 2$$
 $|L_2| = |\{ab, aab, aaab, aaab, ...\}| = \infty$

Number of occurrences of a symbol in a string: $|bbc|_b = 2$, $|bbc|_a = 0$

Length of a string: number of its elements

$$|bbc| = 3 \quad |abbc| = 4$$

String equality: two strings $x = a_1 a_2 ... a_h$ and $y = a_1 a_2 ... a_k$ are equal \iff

- have same length: $|x| = |y| \iff h = k$
- elements from left to right coincide: $a_i = b_i \quad \forall i \in \{1..h\}$

1.1 Operations on strings

Concatenation $x = a_1 a_2 ... a_h \land y = b_1 b_2 ... b_k \implies x \cdot y = a_1 a_2 ... a_h b_1 b_2 ... b_k$

- associative: (xy)z = x(yz)
- length: |xy| = |x| + |y|

Empty string ϵ is the neutral element for concatenation: $x\epsilon = \epsilon x = x \ \forall x$.

- length: $|\epsilon| = 0$
- NB: $\epsilon \neq \emptyset$

Substrings: if x = uyv then

- y is a substring of x
- y is a proper substring of $x \iff u \neq \epsilon \lor v \neq \epsilon$
- u is a prefix of x
- v is a <u>suffix</u> of y

Reflection: if $x = a_1 a_2 ... a_h$ then $x^R = a_h a_{h-1} ... a_1$

- $\bullet \ (x^R)^R = x$
- $(xy)^R = y^R x^R$
- $\bullet \ \epsilon^R = \epsilon$

Repetition: $x^m = \underbrace{xxx...x}_{m \text{ times}}$. Inductive definition:

- $x^0 = \epsilon$
- $x^m = x^{m-1}x$ if m > 0

1.2 Operations on Languages

Reflection: $L^R = \{x | \exists y (y \in L \land x = y^R)\}$

Prefixes(L): $\{y|y \neq \epsilon \land \exists x \exists z (x \in L \land z \neq \epsilon \land x = yz)\}$

• Prefix-free language: $L \cap Prefixes(L) = \emptyset$

Concatenation: $L'L'' = \{xy | x \in L' \land y \in L''\}$

Power: inductive definition:

- $L^0 = \{\epsilon\}$
- $L^m = L^{m-1}L$ for m > 0
- Consequences:

$$- \emptyset^0 = \{\epsilon\}$$

$$-L\cdot\emptyset=\emptyset\cdot L=\emptyset$$

$$-L \cdot \{\epsilon\} = \{\epsilon\} \cdot L = L$$

Universal language: over alphabet Σ : $L_{\text{universal}} = \Sigma^0 \cup \Sigma^1 \cup ...$

Complement: of L over Σ : $\neg L = L_{\text{universal}} \backslash L$