Hochschule RheinMain

Fachbereich Design Informatik Medien Studiengang Angewandte Informatik Prof. Dr. Bernhard Geib

Fehlertolerante Systeme

Sommersemester 2021 (LV 7201)

7. Übungsblatt

Aufgabe 7.1

a) Zur einfachen Approximation oder für schnelle Überschlagsrechnungen von formelmäßig komplizierten Verteilungsfunktionen benutzt man gerne die Rechteck-, die Dreieck- oder die Exponentialverteilung (s. nachfolgende Abbildung).

Berechnen Sie unter Berücksichtigung der Normierungsbedingung für die drei Verteilungen jeweils die Konstante a (in Abhängigkeit von t₁ und t₂ bzw. nur von t₁).

b) Eine Schaltung gemäß der nachstehenden Abbildung enthält 5 Bauteile B₁ bis B₅, von denen genau eines defekt ist.

Um das defekte Bauteil herauszufinden, werden die Bauteile der Reihe nach untersucht, bis feststeht, welches Bauteil defekt ist.

- b1) Ermitteln und skizzieren Sie für diesen Prozess die entsprechende Verteilungsfunktion F(y) sowie die Verteilungsdichte f(y), wenn $y = y_i$ die Anzahl der zu prüfenden Bauteile bezeichnet.
- b2) Wie viele Bauteile sind im Durchschnitt zu prüfen?

Üb FTS 7N 1

Aufgabe 7.2

Die Lebensdauer L einer elektronischen Schaltung sei gemäß

exponentialverteilt. Berechnen Sie hierfür:

- a) die mittlere Lebensdauer TM der Schaltung,
- b) die Ausfallwahrscheinlichkeit F_L(t) der Schaltung,
- c) die Überlebenswahrscheinlichkeit R(t) sowie
- d) die Ausfallrate A(t).

Aufgabe 7.3

Man betrachte ein nicht-reparierbares System S mit einer zwischen L_{min} und L_{max} gleichverteilte Lebensdauer L.

- a) Skizzieren Sie für dieses System sowohl die Verteilungsfunktion F_L(t) als auch die zugehörige Verteilungsdichte f_L(t).
- b) Welche formelmäßigen Beschreibungen ergeben sich für FL(t) und fL(t)?
- c) Berechnen Sie den Erwartungswert von L.

Üb_FTS_7N 2