RAPPEL: f est une fonction définie sur un intervalle I, a et a+h appartiennent à $I(h \neq 0)$.

f est dite **dérivable en** a lorsque $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$ tend vers un réel ℓ .

On note alors $\ell = f'(a)$. f'(a) s'appelle **nombre dérivé de** f **en** a.

Introduction

- **1)** Considérons la fonction f définie sur \mathbb{R} par $f(x) = x^2 5$. Etudier la dérivabilité de la fonction f en a = 3.
- **2)** Considérons la fonction g définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$. Etudier la dérivabilité de la fonction g en a = 0. En déduire l'ensemble de dérivabilité de la fonction g.

Exercices d'entraînement

Exercice 1 Soit la fonction f définie sur \mathbb{R} par $f(x) = (4 - x)^2$. Calculer le nombre dérivé de f en a = 1. En déduire la dérivabilité de f en 1.

Exercice 2 Soit la fonction t définie sur \mathbb{R} par $t(x) = 3x^2 - 5x + 1$. Calculer le nombre dérivé de t en a = -2. En déduire la dérivabilité de f en -2.

Exercice 3 Soit la fonction g définie sur \mathbb{R}^* par $g(x) = \frac{3}{x}$. Montrer que la fonction g est dérivable en 1 et déterminer g'(1).

Exercice 4 Soit la fonction k définie sur $\mathbb{R}\setminus\{3\}$ par $k(x)=\frac{-7}{3-x}$. Montrer que la fonction k est dérivable en 2 et déterminer g'(2).

Fonctions dérivées et tangentes

Exercice 5

Sur le graphique ci-contre, on a tracé les courbes représentatives des fonctions f et g définies sur $\mathbb R$ par : $f(x) = e^{x-1} + 2x$; $g(x) = -x^2 + 5x - 1$, ainsi que leurs tangentes respectives $\mathsf T$ et $\mathsf T$ ' au point d'abscisse $\mathsf T$.

Que peut-on conjecturer? Démontrer cette conjecture.

On conjecteure que la tangente au point d'abscisse 1 de la fonction f est confondue avec celle de g.

Pour confirmer cette conjecture, nous allons déterminer les tangentes au point d'abscisse 1 des fonctions f et g.

Equation réduite de la tangente à la courbe C_f au point d'abscisse 1 :

Pour cela nous devons déterminer l'expression de la dérivée de la fonction f.

f est la somme de $u(x)=e^{x-1}$ dérivable là où la fonction $x\to x-1$ est dérivable, c'est-à-dire sur \mathbb{R} . Et v(x)=2x est une fonction linéaire dérivable sur \mathbb{R} .

Donc la fonction f est dérivable sur \mathbb{R} et $f'(x) = 1e^{x-1} + 2 = e^{x-1} + 2$

L'équation réduite T est donc y = f'(1)(x-1) + f(1)

Or,
$$f'(1) = e^0 + 2 = 3$$
 et $f(1) = e^0 + 2 = 3$

Donc, T:
$$y = 3(x - 1) + 3$$
 c'est-à-dire T: $y = 3x - 3 + 3 = 3x$

Equation réduite de la tangente à la courbe C_q au point d'abscisse 1 :

Pour cela nous devons déterminer l'expression de la dérivée de la fonction g.

g est une fonction polynôme, donc dérivable sur \mathbb{R} , donc g'(x) = -2x + 5

Or,
$$g'(1) = -2 \times 1 + 5 = 3$$
 et $g(1) = -1 + 5 - 1 = 3$

L'équation réduite T'est donc
$$y=g'(1)(x-1)+g(1)$$

Donc, T': $y=3(x-1)+3$ c'est-à-dire T': $y=3x-3+3=3x$

Conclusion : On a bien T = T', donc C_f et C_g ont destangentes confondues au point (1;3).

Exercice 6

On considère la fonction f définie sur \mathbb{R} par $f(x) = 2x^2 - 3x + 1$.

On note C_f la courbe représentative de la fonction f dans le repère (O; I; J).

- 1) Etablir que f'(1)=1.
- 2) Déterminer l'équation réduite de la tangente (T) à la courbe C_f au point d'abscisse 1.
- 1) f est une fonction polynôme, dérivable sur \mathbb{R} , donc f'(x) = 4x 3 $f'(1) = 4 \times 1 3 = 4 3 = 1$.
- **2)** L'équation réduite T au point d'abscisse 1 est y=f'(1)(x-1)+f(1) Or, f(1)=2-3+1=0 Donc, T': y=1(x-1)+0 autrement dit $\boxed{T:y=x-1}$

Exercice 7

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x) = x^3 - 5x^2 + 7x - 2$.

On note C_f la courbe représentative de la fonction f dans le plan muni d'un repère orthonormé.

- 1) Déterminer l'expression de la fonction f' dérivée de la fonction f.
- 2) Déterminer l'équation réduite de la tangente (T) à la courbe C_f au point d'abscisse 2.
 - 1) f est une fonction polynôme, dérivable sur \mathbb{R} , donc $f'(x) = 3x^2 10x + 7$
- 2) L'équation réduite T au point d'abscisse 2 est y = f'(2)(x-2) + f(2)

Or,
$$f'(2) = 3 \times 2^2 - 10 \times 2 + 7$$
.

$$f'(2) = 3 \times 2^2 - 10 \times 2 + 7.$$

$$f'(2) = -1$$
.

Et
$$f(2) = 2^3 - 5 \times 2^2 + 7 \times 2 - 2$$

$$f(2) = 8 - 20 + 14 - 2 = 0$$

Donc, T:
$$y = -1(x-1) + 0$$
 autrement dit T: $y = -x + 1$

Exercice 8

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x) = -x^3 - 3x^2 - 2x + 4$.

On note C_f la courbe représentative de la fonction f dans le plan muni d'un repère orthonormé.

- 1) Déterminer l'expression de la fonction f' dérivée de la fonction f.
- 2) Déterminer l'équation réduite de la tangente (T) à la courbe C_f au point d'abscisse -1.
 - 1) f est une fonction polynôme, dérivable sur \mathbb{R} , donc $f'(x) = -3x^2 6x 2$
- 2) L'équation réduite T au point d'abscisse -1 est y = f'(-1)(x+1) + f(-1)

Or,
$$f'(-1) = -3 \times (-1)^2 - 6 \times (-1) - 2$$
.

$$f'(-1) = -3 + 6 - 2.$$

$$f'(-1) = 1$$
.

Et
$$f(-1) = 1 - 3 + 2 + 4$$

 $f(-1) = 4$

Donc, T:
$$y = 1(x - 1) + 4$$
 autrement dit T: $y = x + 3$

Exercice 9

Déterminer l'expression des dérivées suivantes :

(a)
$$f(x) = -3x^2$$

(b)
$$h(x) = 4\sqrt{x}$$

(c)
$$k(x) = x - \frac{1}{x}$$

(d)
$$g(x) = \frac{1}{12}x^6$$

(e) $j(x) = \frac{1}{2x}$

(e)
$$j(x) = \frac{1}{2x}$$

(f)
$$m(x) = 2x^3 + \frac{2}{x}$$

CORRECTION

(a)
$$f'(x) = -6x$$

(b)
$$h'(x) = \frac{2}{\sqrt{x}}$$

(c)
$$k'(x) = 1 + \frac{1}{x^2} = \frac{x^2 + 1}{x^2}$$

(d)
$$g(x) = \frac{6}{12}x^5 = \frac{1}{2}x^5$$

(e) $j(x) = \frac{-1}{2x^2}$

(e)
$$j(x) = \frac{-1}{2x^2}$$

(f)
$$m(x) = 6x^2 - \frac{2}{x^2} = \frac{6x^4 - 2}{x^2}$$

Exercice 10

Déterminer l'expression des dérivées suivantes :

(a)
$$f(x) = x^3(2x - 5)$$

(b)
$$h(x) = (3-x)\frac{1}{x}$$

(c)
$$g(x) = (2x^2 - 5x + 1)(1 - x^2)$$

(d)
$$j(x) = (x^2 - 3)\sqrt{x}$$

(e)
$$k(x) = (4-3x)e^{2x-1}$$

FORMULE UTILISEE: (uv)'=u'v+v'u

(a)
$$f(x) = x^3(2x - 5)$$

On pose
$$u(x) = x^3$$
 $v(x) = 2x - 5$
 $u'(x) = 3x^2$ $v'(x) = 2$

Ainsi,
$$f'(x) = 3x^2(2x - 5) + 2x^3 = 6x^3 - 15x^2 + 2x^3 = 8x^3 - 15x^2$$

(b)
$$h(x) = (3-x)\frac{1}{x}$$

$$h'(x) = -\frac{1}{x} - \frac{1}{x^2} (3 - x)$$

$$h'(x) = -\frac{1}{x} - \frac{3}{x^2} + \frac{x}{x^2}$$

$$h'(x) = \frac{-3}{x^2}$$

(c)
$$g(x) = (2x^2 - 5x + 1)(1 - x^2)$$

$$g'(x) = (4x - 5)(1 - x^2) - 2x(2x^2 - 5x + 1)$$

$$g'(x) = -8x^3 + 15x^2 + 2x - 5$$

(d)
$$j(x) = (x^2 - 3)\sqrt{x}$$

$$j'(x) = 2x\sqrt{x} + \frac{1}{2\sqrt{x}}(x^2 - 3)$$
$$j'(x) = 2x\sqrt{x} + \frac{x^2 - 3}{2\sqrt{x}}$$
$$j'(x) = \frac{4x^2 + x^2 - 3}{2\sqrt{x}}$$
$$j'(x) = \frac{5x^2 - 3}{2\sqrt{x}}$$

(e)
$$k(x) = (4-3x)e^{2x-1}$$

$$k'(x) = -3e^{2x-1} + 2e^{2x-1}(4 - 3x)$$

$$k'(x) = -3e^{2x-1} + 8e^{2x-1} - 6xe^{2x-1}$$

$$k'(x) = (5 - 6x)e^{2x-1}$$

Exercice 11

On considère la fonction f définie sur \mathbb{R}^+ par $f(x)=(2x+2)\sqrt{x}$.

1) Etablir que
$$f'(4) = \frac{13}{2}$$

Déterminons la fonction dérivée
$$f'$$
:
$$f'(x) = 2\sqrt{x} + \frac{1}{2\sqrt{x}}(2x+2)$$

$$f'(x) = \frac{2\sqrt{x} \times 2\sqrt{x} + 2x + 2}{2\sqrt{x}}$$

$$f'(x) = \frac{4x + 2x + 2}{2\sqrt{x}}$$

$$f'(x) = \frac{6x + 2}{2\sqrt{x}}$$

$$f'(x) = \frac{3x + 1}{\sqrt{x}}$$
Ainsi, $f'(4) = \frac{3 \times 4 + 1}{\sqrt{x}} = \frac{13}{x}$

Ainsi,
$$f'(4) = \frac{3 \times 4 + 1}{\sqrt{4}} = \frac{13}{2}$$

2) On note C_f la courbe représentative de la fonction f dans un repère. En déduire l'équation réduite de la tangente à la courbe C_f au point d'abscisse 4. L'équation réduite T au point d'abscisse 4 est y = f'(4)(x-4) + f(4)Or, $f'(4) = \frac{13}{2}$.

Et
$$f(4) = 10\sqrt{4} = 20$$

Donc, T:
$$y = \frac{13}{2}(x - 4) + 20$$
 autrement dit $T: y = \frac{13}{2}x - 6$

Fonctions dérivées et variation de fonctions

Exercice 12

Déterminer l'expression des dérivées suivantes :

(a)
$$f(x) = \frac{3}{2-x}$$

 $f'(x) = \frac{0(2-x)+3}{(2-x)^2}$
 $f'(x) = \frac{3}{(2-x)^2}$
(b) $h(x) = \frac{x+1}{(2-x)^2}$

(b)
$$h(x) = \frac{x+1}{2x-5}$$

 $h'(x) = \frac{1(2x-5)-2(x+1)}{(2x-5)^2}$
 $h'(x) = \frac{-7}{(2x-5)^2}$

(c)
$$g(x) = \frac{x+1}{\sqrt{x}}$$

$$g'(x) = \frac{1\sqrt{x} - \frac{1}{2\sqrt{x}}(x+1)}{(\sqrt{x})^2}$$

$$g'(x) = \frac{\sqrt{x} - \frac{x+1}{2\sqrt{x}}}{(\sqrt{x})^2}$$
$$g'(x) = \frac{\frac{2x - x - 1}{2\sqrt{x}}}{(\sqrt{x})^2}$$

$$g'(x) = \frac{\frac{x-1}{2\sqrt{x}}}{x}$$

$$g'(x) = \frac{x - 1}{2x\sqrt{x}}$$

(d)
$$j(x) = \frac{2x^4 - 5x^3}{x^2 + 1}$$

$$j'(x) = \frac{(8x^3 - 15x^2)(x^2 + 1) - 2x(2x^4 - 5x^3)}{(x^2 + 1)^2}$$

$$j'(x) = \frac{4x^5 - 5x^4 + 8x^3 - 15x^2}{(x^2 + 1)^2}$$

Exercice 13

Déterminer l'expression des dérivées suivantes :

(a)
$$f(x) = \sqrt{x^2 + x}$$

$$f'(x) = \frac{2x+1}{2\sqrt{x^2+x}}$$

(b)
$$h(x) = (2x^2 - x + 1)^6$$

$$h'(x) = 6(4x - 1)(2x^2 - x + 1) = (24x - 6)(2x^2 - x + 1)$$

(c)
$$g(x) = e^{2x^2+1}$$

$$g'(x) = 4xe^{2x^2+1}$$

(d)
$$j(x) = 2x + 1 - e^{4x^2 - 1}$$

$$i'(x) = 2 - 8xe^{4x^2 - 1}$$

Exercice 14

Vrai ou Faux.

Le tableau de variation d'une fonction f est donné ci-dessous.

- 1) $f'(x) \ge 0$ pour tout x de [-5; 2].
- **2)** f'(2) = 3
- **3)** On donne f'(5) = 2.

La tangente à la courbe de f en 5 a pour équation y = 2x - 11.

4) On donne f(3) = 4 et f'(3) = 5.

Le coefficient directeur de la tangente à la courbe de f en 3 est égal à 5.

CORRECTION

1) Vrai 2) Faux 3) Vrai 4) Vrai

Exercice 15

Dresser le tableau de variation des fonctions suivantes sur [-20; 20].

(a)
$$f(x) = -2x^2 + 3x - 11$$

Déterminons la fonction dérivée de f : f'(x) = -4x + 3

$$f'(x) > 0 \Leftrightarrow -4x + 3 > 0 \Leftrightarrow x < \frac{3}{4}$$

Donc f'(x) > 0 pour tout $x \in \left[-20; \frac{3}{4}\right]$

On en déduit donc que la fonction f est strictement croissante sur $\left[-20; \frac{3}{4}\right]$ et f est strictement

décroissante sur $\left[\frac{3}{4};20\right]$.

X	-20	$\frac{3}{4}$	20
f'(x)		+ 0	_
f	/	y	

(b)
$$q(x) = (3 - 4x)e^{-0.5x}$$

Déterminons la fonction dérivée de g :
$$g'(x) = -4e^{-0.5x} - 0.5e^{-0.5x}(3-4x)$$

 $g'(x) = -4e^{-0.5x} - 1.5e^{-0.5x} + 2xe^{-0.5x}$
 $g'(x) = (-5.5 + 2x)e^{-0.5x}$

On en déduit le tableau de signe de g' et de variation de g ci-dessous :

(c)
$$h(x) = \frac{2x-1}{x+4}$$

Pour tout
$$x$$
 de $[-20; -4[] - 4; 20]$, $f'(x) = \frac{2(x+4) - (2x-1)}{(x+4)^2}$
 $f'(x) = \frac{9}{(x+4)^2}$

Etude du signe de f'(x):

Pour tout x de [-20; -4[] - 4; 20], 9>0 et $(x + 4)^2 > 0$

Donc f'(x) > 0. On en déduit que la fonction f est strictement croissante sur [-20; -4] –4; 20].

X	-20 -	-4 20
f'(x)	+	+
f	y	7

Exercice 16

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x) = x^3 - 5x^2 + 7x - 2$. On note C_f la courbe représentative de la fonction f dans le plan muni d'un repère orthonormé. **Déterminer les variations de la fonction** f **sur** \mathbb{R} .

Déterminons la fonction dérivée de f sur $\mathbb R$:

$$f'(x) = 3x^2 - 10x + 7$$

Etude du signe du polynôme $3x^2 - 10x + 7$:

 $\Delta = 100 - 84 = 16$, le discriminant étant positif, ce polynôme admet 2 racines distinctes :

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_{1} = \frac{10 - 4}{6} = 1$$

$$x_{2} = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_{2} = \frac{10 + 4}{6} = \frac{7}{3}$$

Le coefficient du terme du second degré étant strictement positif, on en déduit le tableau de variation suivant :

Exercice 17

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x) = -x^3 - 3x^2 - 2x + 4$. On note C_f la courbe représentative de la fonction f dans le plan muni d'un repère orthonormé. **Déterminer les variations de la fonction** f **sur** \mathbb{R} .

Déterminons la fonction dérivée de f sur $\mathbb R$:

$$f'(x) = -3x^2 - 6x - 2$$

Etude du signe du polynôme $-3x^2 - 6x - 2$:

 $\Delta=36-24=12$, le discriminant étant positif, ce polynôme admet 2 racines distinctes :

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_{1} = \frac{6 - \sqrt{12}}{-6}$$

$$x_{2} = \frac{6 + \sqrt{12}}{2a}$$

$$x_{2} = \frac{6 + \sqrt{12}}{-6}$$

$$x_{3} = \frac{6 - 2\sqrt{3}}{-6}$$

$$x_{4} = \frac{-3 + \sqrt{3}}{3}$$

$$x_{5} = \frac{-3 - \sqrt{3}}{3}$$

Le coefficient du terme du second degré étant strictement négatif, on en déduit le tableau de variation suivant :

Exercice 18

Dans le repère orthogonal donné ci-dessus, C_f est la représentation graphique d'une fonction f définie et dérivable sur [0; 30].

On donne A(0; -11), B(5; 0), C(11; y_c).

La tangente à la courbe C_f au point d'abscisse A passe par le point B.

La tangente à la courbe C_f au point d'abscisse C est parallèle à l'axe de abscisses.

PARTIE A

1) Lire graphiquement les valeurs de f(0), f'(0) et f'(11). Le point A a pour coordonnée A(0; -11) donc f(0)=-11.

En utilisant les coordonnées des points A et B, on calcule le coefficient directeur de la droite (AB) tangente à C_f :

$$f'(0) = \frac{0 - (-11)}{5 - 0} = \frac{11}{5}$$

La tangente à C_f au point est horizontale donc f'(11) = 0.

2) L'affirmation "La fonction f' est positive sur [3; 30]" est-elle vraie? f est croissante sur [3; 11] et décroissante sur [11; 30], donc f'(x)>0 sur [3; 11] et f'(x)<0 sur [11; 30].

L'affirmation est donc fausse.

PARTIE B

La fonction f est définie sur [0; 30] par $f(x) = (x^2 - 11)e^{-0.2x}$.

1) Déterminer f'(x).

En utilisant la formule permettant de dériver un produit de fonctions, et en posant $u(x) = x^2 - 11$ et $v(x) = e^{-0.2x}$, on a :

$$f'(x) = 2xe^{-0.2x} - 0.2e^{-0.2x}(x^2 - 11)$$

$$f'(x) = (2x - 0.2x^2 + 2.2)e^{-0.2x}$$

$$f'(x) = (2x - 0, 2x^2 + 2, 2)e^{-0.2x}$$

2) Etudier le signe de f' sur [0; 30] puis dresser le tableau de variations de f sur [0; 30]. Pour tout $x \in [0; 30]$, $e^{-0.2x} > 0$ donc f'(x) a le même signe que le trinôme du second degré 2x - 0, $2x^2 + 2$, 2.

 $\Delta = 5,76$, le discriminant étant positif, ce polynôme admet 2 racines distinctes :

$$x_{1} = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_{1} = \frac{-2 - 2, 4}{-0, 4}$$

$$x_{1} = 11$$

$$x_{2} = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_{2} = \frac{-2 + 2, 4}{-0, 4}$$

$$x_{2} = -1$$

 x_2 ne fait pas partie de l'intervalle d'étude.

Le coefficient du terme du second degré étant strictement négatif, on en déduit le tableau de variation suivant :

$$f(0) = -11 < 0$$

$$f(11) = 110e^{-2.2} > 0$$

$$f(30) = 889e^{-6} > 0$$

PARTIE C

Dans cette partie les résultats seront arrondis à 10^{-2} si nécessaire.

La fonction de demande d'un produit est modélisée sur l'intervalle [5; 30] par la fonction f étudiée dans la **partie B**.

Le nombre f(x) représente la quantité demandée, exprimée en centaine de milliers d'objets, lorsque le prix unitaire est égal à x euros.

1) Calculer le nombre d'objets demandés, au millier près, lorsque le prix unitaire est fixé à 15 euros.

$$f(15) = (15^2 - 11)e^{-0.2 \times 15} \approx 10,65.$$

Soit 10,65 centaines de milliers, où 1 065 000. 1 065 000 objets seront demandés si le prix unitaire esr fixé à 15 euro.

2) L'élasticité E(x) de la demande par rapport au prix est le pourcentage de variation de la demande pour une augmentation de 1 % du prix.

On admet qu'une bonne approximation de E(x) est donnée par :

$$E(x) = \frac{f'(x)}{f(x)} \times x \text{ lorsque } x \in [5; 30]$$

Calculer E(15) et interpréter le résultat.

Pour un prix de 15 euros (soit x = 15),

$$E(15) = \frac{f'(15)}{f(15)} \times 15 = -\frac{192}{214} \approx -0,90.$$

Cela signifie que si le prix de 15 euros augmente de 1 %, la demande diminuera alors d'environ 0,9 %.

Exercice 19

Un supermarché souhaite acheter des fruits à un fournisseur.

Ce fournisseur propose des prix au kilogramme, dégressifs en fonction du poids de fruits commandé.

Pour une commande de x kilogrammes de fruit, le prix P(x) en euros du kilogramme de fruits est donné par la formule : $P(x) = \frac{x + 300}{x + 100}$ pour $x \in [100; +\infty[$. Par exemple, si le supermarché achète 300 kg de fruits, il devra payé $300 \times P(300) = 450$ euros

au fournisseur pour cette commande.

- PARTIE A: Etude du prix P proposé par le fournisseur.

 1) Montrer que $P'(x) = \frac{-200}{(x+100)^2}$ sur $[100; +\infty[$.

 2) Donner le sens de variation de la fonction P sur $[100; +\infty[$.

PARTIE B : Etude de la somme S à dépenser par le supermarché.

On appelle S(x) la somme en euros à dépenser par le supermarché pour une commande de x kilogrammes de fruits (Ces fruits vendus par le fournisseur au prix de P(x) euros par kilogramme). Cette somme est égale à : S(x) = xP(x) pour $x \in [100; +\infty[$.

- 1) Montrer que pour tout x appartenant à $[100; +\infty[: S'(x) = \frac{x^2 + 200x + 30000}{(x+100)^2}]$ 2) Montrer que pour tout x appartenant à $[100; +\infty[: S(x) = x + 200 20000 \times \frac{1}{x+1}]$

Exercice 20

L'entreprise CoTon produit du tissu en coton. Celui-ci est fabriqué en 1 mètre de large et pour une longueur x exprimée en kilomètre, x étant compris entre 0 et 10.

Le coût total de production en euros de l'entreprise CoTon est donné en fonction de la longueur x par la formule : $C(x) = 15x^3 - 120x^2 + 500x + 750$.

Le graphique ci-contre donne la représentation graphique de la fonction C.

Les deux parties A et B de cet exercice sont indépendantes.

PARTIE A : Etude du bénéfice

Si le marché offre un prix p en euros pour un kilomètre de ce tissu, alors la recette de l'entreprise CoTon pour la vente d'une quantité x est égal à R(x) = px.

- 1) Tracer sur le graphique la droite D_1 d'équation : y=400x. Expliquer pourquoi, au vu de ce tracé, l'entreprise CoTon ne peut pas réaliser un bénéfice si le prix p du marché est égal à 400 euros.
 - 2) Dans cette question, on suppose que le prix du marché est égal à 680 euros.
- (a) Tracer sur le graphique la droite D_2 d'équation : y = 680x.
- **(b)** Déterminer graphiquement, avec la précision permise par le graphique pour quelles quantités produites et vendues, l'entreprise Co Ton réalise un bénéfice si le prix du marché p est de 680 euros.
- (c) On considère la fonction B définie sur l'intervalle [0; 10] par : B(x) = 680x C(x). Démontrer que pour tout x appartenant à l'intervalle [0; 10], on a : $B'(x) = -45x^2 + 240x + 180$
- (d) Etudier les variations de la fonction B sur [0; 10]. En déduire pour quelle quantité produite et vendue le bénéfice réalisé par l'entreprise CoTon est maximum. Donner la valeur de ce bénéfice.

PARTIE B : Etude du coût moyen

On rapelle que le coût moyen de production C_M mesure le coût par unité produite. On considère la fonction C_M définie sur l'intervalle]0;10] par : $C_M=\frac{C(x)}{x}$.

- 1) Démontrer que pour tout x appartenant à l'intervalle]0;10], $C'_{M}=\frac{30(x-5)(x^2+x+5)}{x^2}.$
- 2) (a) Démontrer que pour tout x appartenant à l'intervalle]0;10], C_M' est du signe de (x-5). En déduire les variations de la fonction C_M sur l'intervalle [0;10].
- **(b)** Pour quelle quantité de tissu produite le coût moyen de production est-il minimum? Que valent dans ce cas le coût moyen de production et le coût total?