Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών

Παραδείγματα σχεδίασης CMOS

(πώς φτιάχνουμε βασικές λογικές πύλες)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Δύο τύποι τρανζίστορ MOSFET

Πώς συμπεριφέρεται το παρακάτω κύκλωμα;

Ας δοκιμάσουμε τις πιθανές τιμές του Α

Ας δοκιμάσουμε τις πιθανές τιμές του Α

Ας δοκιμάσουμε τις πιθανές τιμές του Α

Ο αντιστροφέας (πύλη ΝΟΤ)

σύμβολο πύλης ΝΟΤ

Και το παρακάτω κύκλωμα;

A	В	Y
0	0	?
0	1	?
1	0	?
1	1	?

Παρατηρήσεις

- Οι συναρτήσεις που φτιάχνουμε είναι πάντα «αναστρέφουσες»
 - not AND (NAND), not OR (NOR) κ $\lambda \pi$
 - Προσθήκη αντιστροφέα (NOT) για τις «κανονικές»
- Τα τρανζίστορ PMOS πάνε «πάνω» (στο 1) και τα NMOS «κάτω» (στο 0)
 - Έχει να κάνει με τα ηλεκτρικά χαρακτηριστικά των δύο τύπων τρανζίστορ
- Η διάταξη έχει συμμετρία
 - Όταν τα NMOS είναι στη σειρά, τα PMOS είναι παράλληλα (και αντίστροφα)
- Μπορούμε να υλοποιήσουμε και πιο σύνθετες συναρτήσεις (και με πιο πολλές εισόδους)

Άσκηση

- Πώς μπορούμε να υλοποιήσουμε τη λογική συνάρτηση
 Y = (A + BC)'
 - Y = not (A or (B and C))
 - Ποιος ο πίνακας αλήθειας;
- Πόσα τρανζίστορ αν υλοποιηθεί με τα κυκλώματα που ξέρουμε;
 - Με διακριτές πύλες AND, OR και NOT
 - Μπορούμε και καλύτερα;

$$Y = (A+BC)'$$

