Process flow title:	Minimal MOS Capacitor Process	Revision:	Rev 0.3
Contact email:	jephin@dtu.dk	Contact name:	Jeppe Hinrichs
Contact phone:	Not applicable		
LabMan-ager group:	Not applicable	Batch name:	TBD
Date of creation:	2025-08-15	Date of revision:	2025-08-19

Process Overview

Minimal MOS capacitor fabrication flow.

Key Specifications

• Gate oxide: 35 nm thermal SiO₂

• Gate electrode: 400 nm n+ polysilicon

• Backside contact: 400 nm aluminum

Critical Safety

• HF handling: Apron+gloves, face shield, no lone working, no glass beakers!

• Furnace: Thermal gloves for $>800\,^{\circ}\mathrm{C}$ operations

• Metal anneal: confirm Al spiking risk mitigated by Ti barrier, avoid ≥ 450 °C for Al

Starting Material 1

Substrate	Specification	Thickness	Qty
Silicon	p-type <100>, 6", 1-10 Ω ·cm	$500\mu\mathrm{m}\pm20\mu\mathrm{m}$	5

Critical Layers 2

Layer	Material	Thickness
Gate oxide	Thermal SiO_2	$35\mathrm{nm}$
Gate electrode	n+ Poly-Si	$400\mathrm{nm}$
Back barrier/adhesion	Ti	$100\mathrm{nm}$
Back contact	Al	$400\mathrm{nm}$

3 Core Process Flow

Table 1: MOS Capacitor Process Flow

Table 1: MOS Capacitor Frocess Flow				
Step	Process	Equipment	Parameters	Comment
1	$\mathbf{Dry}\text{-}\mathbf{Ox}$			
1.1	Pre-oxidation inspection	4-point probe + Thickness tool	Measure resistivity and thickness on one wafer	Verify starting material specifications.
1.2	(Optional) Pre- oxidation clean	RCA bench	Standard RCA clean	Can be skipped for fresh, out-of-the-box wafers.
1.3	Gate SiO ₂ growth	Furnace: Oxidation (8") E1	Recipe DRY1000: $40 \min$ oxidation + $20 \min$ anneal at $1000 ^{\circ}\mathrm{C}$	Target thickness: $35 \mathrm{nm}$. Growth rate ca. $0.875 \mathrm{nm}\mathrm{min}^{-1}$.
1.4	Inspection	Ellipsometer		Verify oxide thickness.
2			Poly-Si	
2.1	(Optional) Predeposition clean	RCA bench	Standard RCA clean	Required if wafers were stored after Step 1.
2.2	Poly-Si deposition	Furnace: LPCVD Poly-Si (6") E2	Recipe DOPEPOLY: 2h deposition	Target thickness: 400 nm.
2.3	Inspection	Filmtek / Ellipsometer		Verify poly-Si thickness.
3			Anneal	
3.1	(Optional) Pre-anneal clean	RCA bench	Standard RCA clean	Required if wafers were stored after Step 2.
3.2	Poly-Si anneal	Furnace: Oxidation (8") E1	Recipe ANN1000: 20 min at $1000^{\circ}\mathrm{C}$	Activates dopants and improves film quality.
4		DRI	E backside	
4.1	DRIE tool preparation	DRIE – Pegasus 3	Recipe: TDESC for 5 min	Chamber conditioning step.
4.2	Backside Si etch	DRIE – Pegasus 3	Recipe: ??; Cycles: ??	Thins the wafer from the backside.
4.3	DRIE tool clean	DRIE – Pegasus 3	Recipe: 20 min stabilization $+$ 10 min clean	Post-process chamber cleaning.
5		Oxide	etch backside	
5.1	Backside oxide etch	Wet bench 04: BHF 2	$40 \mathrm{s}$ (etch rate $75 \mathrm{nm/min}$ to $80 \mathrm{nm/min}$)	Removes the 35 nm oxide from the backside.
6		Etcl	n gate poly	
6.1	Gate lithography: Coat	Spin Coater: Gamma UV	Sequence 1611: $1.5\mu m$ HMDS resist. Spin: $30s$ @ 4600 rpm. Softbake: $90s$ @ $90^\circ C$.	
			·	

Continued on next page

6.2	Gate lithography: Expose	Aligner: MLA2	Mask: gate_poly. Laser: 375 nm. Dose: 325 mJ/cm ² . Defocus: 2. Mode: Quality.	TEST exposure.
6.3	Gate lithography: Develop	Developer: TMAH UV-lithography	Sequence 3001: PEB 60 s @ 100 °C, SP 60 s.	
6.4	Litho inspection	Optical microscope	Check pattern and alignment marks	
6.5	DRIE tool preparation	DRIE – Pegasus 3	Recipe: TDESC for 5 min	Chamber conditioning step.
6.6	Gate poly-Si etch	DRIE – Pegasus 3	Recipe: ??; Cycles: ??	Etches the 400 nm poly- Si layer.
6.7	DRIE tool clean	DRIE – Pegasus 3	Recipe: 20 min stabilization $+$ 10 min clean	Post-process chamber cleaning.
6.8	Etch inspection	DekTak	Check step height	Verify poly-Si is etched through.
6.9	Resist strip	Wet bench 06	Strip time: ??	
6.10	Final gate inspection	DekTak	Measure heights and widths	Verify critical dimensions (CD).
7		Backs	ide electrode	
7.1	Backside litho: Coat	Spin Coater: Gamma UV	Sequence 2411: 1.5 μm nLOF 2020 resist. Spin: 6000 rpm. Softbake: 120 s @ 110 °C.	
7.2	Backside litho: Expose	Aligner: MLA2	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	TEST exposure.
7.3	Backside litho: Develop	Developer: TMAH UV-lithography	Sequence 3001: PEB 60 s @ 110 °C, SP 60 s	
7.4	Litho inspection	Optical microscope	Check pattern and alignment marks	
7.5	Gate metal deposition	Temescal/E-beam	Ti: 100 nm	
7.6	Gate metal deposition	Temescal/E-beam	Al: 400 nm	
7.7	Lift-off	Wet bench 07		
7.8	Post-lift-off inspection	Optical microscope		Check pattern and alignment marks.
7.9	Contact anneal	RTP2 Jipelec	Recipe: ??; Temp: ??; Time: ??	Stabilizes the metal-silicon contact.

4 Critical Checks

Step	QC Verification
2.1	Oxide thickness: $35 \mathrm{nm} \pm 1 \mathrm{nm}$
3.1/3.2	Poly n+ sheet resistance: $\leq 30 \ \Omega/\Box$
4.1	Gate CD: $\pm 0.5 \mu m$
5.0	Backside oxide fully removed (contact-angle change, test drop, or monitor wafer)
5.1	Backside Ti sheet resistance $\approx 0.3~\Omega/\Box(100\mathrm{nm}~\mathrm{Ti})$
5.2	Backside Al sheet resistance $\approx 0.07~\Omega/\Box(400\mathrm{nm}~\mathrm{Al})$
5.3	Contact anneal; contact resistance to Si governed by Ti/Si interface quality (target $< 1~\Omega \cdot \text{contact}$)

5 Process Flow Diagram

6 Required Figures

Table 2:

ID	Step	Description
1	1.3	Gate oxide (35 nm SiO2) p-type Si substrate Gate oxide growth
2	2.2	Polysilicon (blanket) Gate oxide (35 nm \$10:) p-type \$1 substrate Poly-\$Si deposition (blanket)
3	3.2	n* polysilicon (blanket) Gate oxide (35 nm SiOz) p-type Si substrate Poly-Si anneal (doped)

Continued on next page

Figure 1: Process flow diagram for MOS capacitor fabrication.

Table 2: (Continued)

Continued on next page

Table 2: (Continued)

5	6.6	n* polysilicon gate Gate oxide (35 nm SiO ₂) p-type Si substrate Gate poly etch
6	7.5	n° polysilicon gate Gate oxide (35 nm SiO ₂) p-type Si substrate Backside Ti (100 nm) Backside Ti deposition
7	7.6	n* polysilicon gate Gate oxide (35 nm SiO ₂) p-type Si substrate Backside Ti (100 nm) Backside Al deposition
8	7.9	n° polysilicon gate Gate oxide (35 nm SiO ₂) p-type Si substrate Backside Ti (300 nm) Backside Ai (600 nm, annealed) Contact anneal