

EPREUVE DE MATHEMATIQUES Durée : 1h30

Questions Obligatoires

1.

(A)
$$\lim_{x \to 0} \frac{x^3 - 2x - 1}{x - 3} = 0$$

(B)
$$\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x} = 0$$

(C)
$$\lim_{x \to +\infty} \frac{\cos x}{x} = 0$$

(D)
$$\lim_{x \to +\infty} \frac{\sin x}{x} = 1$$

(E)
$$\lim_{x \to +\infty} x e^{-x} = +\infty$$

2. Soit f une fonction numérique de la forme $f(x) = \frac{a x^2 + b x + c}{x + 2}$ où $(a,b,c) \in \mathbb{R}^3$, définie sur $\mathbb{R} \setminus \{-2\}$ dont le tableau de variations est :

х	-∞ -3 -	2 -1 +∞		
f'(x)	+ 0 -	- 0 +		
f(x)	-2 -∞ -∞	+∞ +∞		

alors:

(A)
$$f(-2) = -3$$

(B)
$$a > 0$$

(C)
$$f(0) > 0$$

(D)
$$c > 0$$

(E)
$$b^2 - 4ac > 0$$

- 3. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{2e^x}{e^x + 1}$, alors :
 - (A) Pour tout $x \in \mathbb{R}$, $f(x) = \frac{2}{1 + e^{-x}}$
 - (B) $\lim_{x \to +\infty} f(x) = +\infty$
 - (C) $\lim_{x \to -\infty} f(x) = 0$
 - (D) Pour tout $x \in \mathbb{R}$, f'(x) < 0
 - (E) f'(0) = 1
- 4. Soit pour tout x de \mathbb{R} , $f(x) = \ln(x^2 + 1) x$ alors:
 - (A) Pour tout x de IR, $f'(x) = \frac{1}{x^2 + 1} 1$
 - (B) f est décroissante sur IR
 - (C) $\lim_{x \to +\infty} f(x) = -\infty$
 - (D) $\lim_{x \to -\infty} f(x) = +\infty$
 - (E) Il existe un unique a de IR tel que f(a) = 0
- 5. Pour tous réels non nuls a, b, c et d on a :
 - (A) Si a < b alors $a^2 < b^2$
 - (B) Si $a^2 < b^2$ alors a < b
 - (C) Si a < b et c < d alors ac < bd
 - (D) Si a < 0 < b alors $\frac{1}{b} < \frac{1}{a}$
 - (E) Si ac < bd alors $\frac{c}{b} < \frac{d}{a}$
- 6.
- (A) "Il existe $x \in \mathbb{R}$, il existe $y \in \mathbb{R}$ x < y" est une proposition vraie
- (B) "Pour tout $x \in \mathbb{R}$, pour tout $y \in \mathbb{R}$ x < y" est une proposition vraie
- (C) "Pour tout $x \in \mathbb{R}$, il existe $y \in \mathbb{R}$ x < y" est une proposition vraie
- (D) "Il existe $x \in \mathbb{R}$, pour tout $y \in \mathbb{R}$ x < y" est une proposition vraie
- (E) "Pour tout $x \in \mathbb{R}$, il existe $y \in \mathbb{R}$ x < y" est équivalent à "Il existe $x \in \mathbb{R}$, pour tout $y \in \mathbb{R}$ x < y"

Questions à choisir

- 7. Soit f une fonction continue sur \mathbb{R} vérifiant f(0) = 0 et f(1) = 4. On pose g la fonction définie par $g(x) = f\left(x + \frac{1}{2}\right) f(x) 2$. Alors:
 - (A) g est continue sur \mathbb{R}
 - (B) g(0) < 0
 - (C) $g(0)g(\frac{1}{2}) \leqslant 0$
 - (D) Il existe $c \in \mathbb{R}$ tel que $f\left(c + \frac{1}{2}\right) f\left(c\right) = 2$
 - (E) Pour tout $x \in \mathbb{R}$, f(x) = 4x
- 8. Soit f la fonction définie sur \mathbb{R} par : $f(x) = 4\cos^2(x) 3$.

Alors:

- (A) Il suffit d'étudier f sur $[0, \pi]$
- (B) Pour tout $x \in \mathbb{R}$, $f(x-\pi) = f(x)$
- (C) f est dérivable sur IR et pour tout x de IR, $f'(x) = -4\sin(2x)$
- (D) f est décroissante sur $\left[0, \frac{\pi}{2}\right]$
- (E) f est décroissante sur $\left[-\frac{\pi}{2}, 0\right]$
- 9. Pour toute suite réelle (u_n) on a :
 - (A) Si $\lim_{n\to+\infty} u_n = 1$ alors $u_n = 1$ à partir d'un certain rang
 - (B) Si $\lim_{n \to +\infty} u_n = \frac{1}{2}$ alors $u_n \ge 0$ à partir d'un certain rang
 - (C) Si pour tout $n \in \mathbb{N}$ $u_n > 0$ et (u_n) converge alors $\lim_{n \to +\infty} u_n > 0$
 - (D) Si (u_n) est une suite arithmétique de raison $-\frac{1}{3}$ alors $\lim_{n \to +\infty} u_n = 0$
 - (E) Si (u_n) est une suite géométrique de raison $-\frac{1}{3}$ alors $\lim_{n \to +\infty} u_n = 0$

10.

(A)
$$\int_{-18}^{18} (x^2 + 1)^{24} dx = 0$$

(B)
$$\int_{-5}^{5} (x^3 + x)^{15} dx = 0$$

(C)
$$\int_0^1 \frac{x}{x^2 + 1} dx = \ln 2$$

(D)
$$\int_{1}^{2} \frac{dx}{x^{3}} = 1 - \frac{1}{4}$$

(E)
$$\int_{0}^{1} \frac{1}{\sqrt{x+1}} dx = \ln \sqrt{2}$$

- 11. Un facteur doit distribuer 3 lettres adressées à 3 destinataires distincts. Etant totalement ivre, il dépose une lettre au hasard dans chaque boîte. Alors la probabilité
 - (A) que chaque lettre arrive à son destinataire est $\frac{1}{3}$
 - (B) qu'exactement une lettre arrive au bon destinataire est $\frac{1}{3}$
 - (C) qu'au moins une lettre arrive au bon destinataire est $\frac{1}{2}$
 - (D) qu'aucune lettre n'arrive au bon destinataire est $\frac{1}{3}$
 - (E) qu'exactement 2 lettres arrivent à leur destinataire est 0
- 12. Dans une classe, 75 % des étudiants ont préparé l'examen. Un étudiant n'ayant pas préparé l'examen le réussit avec une probabilité 0.2, tandis qu'un étudiant l'ayant préparé réussit avec une probabilité 0.9. Alors la probabilité
 - (A) qu'un étudiant ne prépare pas l'examen et réussisse est 0.8
 - (B) qu'un étudiant réussisse l'examen est 0.725
 - (C) qu'un étudiant n'a pas préparé l'examen sachant qu'il a réussi est 0.25
 - (D) qu'un étudiant échoue à l'examen est 0.275
 - (E) qu'un étudiant prépare l'examen et échoue est 0.075

13. Soit (u_n) la suite définie par $u_0 = 0$ et pour tout $n \in \mathbb{N}$ $u_{n+1} = 0, 5u_n + 1$.

On considère les deux algorithmes suivants:

 $u \leftarrow 0.5u + 1$

Algo1 Algo2

Variables n et k entiers naturels, u réel i et r entiers naturels, u réel

Initialisation $u \leftarrow 0$ $u \leftarrow 0, i \leftarrow 0$

Entrée saisir k saisir r

Traitement Pour *n* variant de 1 à *k* Tant que $u < 2-10^{-r}$

 $u \leftarrow 0, 5u + 1$

 $i \leftarrow i + 1$

Fin Pour Fin Tant que Sortie Afficher u Afficher i

(A) L'algo1 calcule le terme u_k de la suite (u_n)

(B) Pour k = 3 l'algo1 affiche 1,75

(C) L'algo2 affiche le terme u_n tel que $u_n \ge 2-10^{-r}$

(D) L'algo2 s'arrête parce que (u_n) est majorée par 2

(E) Après avoir déroulé l'algo2, si on prend k = i dans l'algo1 alors la valeur affichée de l'algo1 vérifie $u \ge 2-10^{-r}$

14. On veut construire un algorithme permettant de trouver une valeur approchée à 10^{-2} près de la solution de l'équation $x^5 - 4x^3 + 2 = 0$ appartenant à [0,1].

L'algorithme se présente ainsi :

Variables a, b réels Initialisation $a \leftarrow 0, b \leftarrow 1$

Traitement Tant que condition1

Si
$$\left(\frac{a+b}{2}\right)^5 - 4\left(\frac{a+b}{2}\right)^3 + 2 > 0$$
 alors

affectation1

Sinon

affectation2

Fin Si

Fin Tant que

Sortie Afficher a et b

(A) La condition 1 est $b-a < 10^{-2}$

- (B) L'affectation1 est $b \leftarrow \frac{a+b}{2}$
- (C) L'affectation1 et l'affectation2 sont les mêmes
- (D) L'algorithme affiche le résultat au bout de 6 itérations
- (E) Les valeurs affichées peuvent avoir, a priori, leur premier chiffre après la virgule différent.

2 mai 2015 Page 5 sur 5

CORRIGÉ DU SUJET OFFICIEL

DE L'ÉPREUVE DE MATHÉMATIQUES

Numéro de la question	Réponses					
1	F	F	V	F	F	
2	F	V	V	V	F	
3	V	F	V	F	F	
4	F	V	V	V	V	
5	F	F	F	F	F	
6	V	F	V	F	F	
7	V	F	V	V	F	
8	V	V	V	V	F	
9	F	V	F	F	V	
10	F	V	F	F	F	
11	F	F	F	V	V	
12	F	V	F	V	V	
13	V	V	F	F	V	
14	F	F	F	F	V	

2 mai 2015 Page 6 sur 6