EE241 SPRING 2015: TUTORIAL #11

Friday, April 10, 2015

PROBLEM 1 (Complementary basis): Find a set S of vectors in \mathbb{R}^4 such that W=S is a 3-dimensional subspace of \mathbb{R}^4 that does not include the vector $\vec{v}_0=[1,1,1,1]$. Then, find a basis for the vector space of all vectors orthogonal to \vec{v}_0

PROBLEM 2 (Change of basis): Write the vector $\vec{v} = [1, -2, 1]$ in the basis $S = \{[1, 1, 0], [1, 0, 1], [0, 1, 1]\}$

PROBLEM 3 (Checking linear independence with functions): Is the set $\{2, 4\sin^2(x), \cos^2(x)\}$ linearly dependent or independent?

PROBLEM 4 (Matrix bases): Find a basis for 2×2 symmetric matrices where each element in the set has determinant 1 or -1. Then, write the following matrix as a linear combination of the elements of this basis

$$\left[\begin{array}{cc} 1 & 2 \\ 2 & 0 \end{array}\right]$$