Lógica Computacional 1 Exercícios

UnB/IE/CIC

Turma 01 - 2024/2

1. Considere a seguinte interpretação sobre o universo $\{1, 2, 3\}$ de um modelo M:

$$b^M = 3, c^M = 1, e^M = 2, P^M = \{1, 3\}, S^M = \{1\}, A^M = \{(1, 3), (2, 1), (2, 3)\}, C^M = \{b\}$$

e determine se as seguintes fórmulas são satisfeitas em M:

- (a) P(c)
- (b) P(e)
- (c) S(e)
- (d) A(c,e)
- (e) A(e,c)
- (f) A(e,e)
- (g) $(P(c) \wedge A(c,e)) \vee (\neg P(c) \wedge A(e,c))$
- (h) $\forall x S(x)$
- (i) $\exists x S(x)$
- (j) $\forall x (P(x) \rightarrow S(x))$
- (k) $\exists x (\neg P(x) \lor S(x))$
- (1) $\exists x (\neg P(x) \land S(x))$
- (m) $\forall x P(x) \lor \forall x S(x)$
- (n) $\forall x P(x) \lor \forall z S(z)$
- (o) $\forall x (P(x) \lor S(x))$
- 2. Seja $M = \langle \{0,1\}, \{a^M=0\}, \{P^M=\{0,1\}, R^M=\{(0,0), (0,1)\}\} \rangle$ uma interpretação. Verifique quais das seguintes fórmulas são satisfeitas em M:
 - (a) $\forall x P(x)$
 - (b) P(a)
 - (c) $\neg R(a, a)$
 - (d) $\exists x R(x, x)$
 - (e) $\forall x R(x, x)$
 - (f) $\forall x (R(x,x) \to P(x))$
 - (g) $\forall x (\neg R(x, x) \to P(x))$
 - (h) $\forall x (P(x) \rightarrow R(x, x))$
 - (i) $\forall x (P(x) \rightarrow \neg R(x, x))$
- 3. Encontre duas interpretações M e M' tais que M satisfaça e M' falsifique a seguinte fórmula:

$$\exists y (P(y) \land \neg Q(y)) \land \forall z (P(z) \lor Q(z))$$

- 4. Seja $\varphi \stackrel{\text{\tiny def}}{=} \forall x \forall y Q(g(x,y),g(y,y),z)$, onde Q e g têm aridades 3 e 2, respectivamente. Encontre dois modelos \mathcal{M} e \mathcal{M}' com funções de avaliação v e v', respectivamente, tais que $\mathcal{M} \models_v \varphi$, mas $\mathcal{M}' \not\models_{v'} \varphi$.
- 5. Seja $\varphi \stackrel{\text{def}}{=} \forall x \exists y \exists z (P(x,y) \land P(z,y) \land (P(x,z) \rightarrow P(z,x)))$ uma sentença. Quais dos seguintes modelos satisfaz φ ?
 - (a) $\mathcal{M} = (\mathbb{N}, \{\}, \{P^{\mathcal{M}} \stackrel{\text{def}}{=} \{(m, n) \mid m < n\}\}).$
 - (b) $\mathcal{M}' = (\mathbb{N}, \{\}, \{P^{\mathcal{M}'} \stackrel{\text{def}}{=} \{(m, 2 \times m) \mid m \in \mathbb{N}\}\}).$
 - (c) $\mathcal{M}'' = (\mathbb{N}, \{\}, \{P^{\mathcal{M}''} \stackrel{\text{def}}{=} \{(m, n) \mid m < n + 1\}\}).$
- 6. Seja P um símbolo predicativo com dois argumentos. Encontre um modelo que satisfaça a sentença $\forall x \neg P(x, x)$. Encontre também um modelo que não a satisfaça.
- 7. Seja φ a sentença $\forall x \forall y \exists z (R(x,y) \to R(y,z))$, onde R é um símbolo predicativo de dois lugares.
 - (a) Seja $\mathcal{A} \stackrel{\text{def}}{=} \{a, b, c, d\}$ e $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(b, c), (b, b), (b, a)\}$. $\mathcal{M} \models \varphi$?
 - (b) Seja $\mathcal{A}' \stackrel{\text{def}}{=} \{a, b, c\}$ e $R^{\mathcal{M}'} \stackrel{\text{def}}{=} \{(b, c), (a, b), (c, b)\}$. $\mathcal{M}' \models \varphi$?