Материалы для подготовки к коллоквиуму по дискретной математике Теоремы

ПМИ 2016 Орлов Никита, Рубачев Иван, Ткачев Андрей, Евсе
в Борис13~ декабря~2016~ г.

4. Задача Муавра (решение уравнения $x_1 + \ldots + x_m = k$)

Утверждение. Число решений уравнения $x_1 + x_2 + \ldots + x_k = n$ в неотрицательных целых числах равно $\binom{n+k-1}{k-1}$

Доказательство. Воспользуемся методом «шаров и перегородок». Пусть есть n шаров и k-1 перегородок, тогда какая-то их расстановка однозначно задаёт решение уравнения: x_1 – количество шаров перед первой перегородкой, x_2 – между 1 и 2, и так далее, количество шаров после последней перегородки - x_k . Тогда число решений равно $\binom{n+k-1}{k-1}$.

Докажем справедливость данной формулы. Рассмотрим n одинаковых объектов, добавим к ним ещё k-1 таких же объектов. Тогда, заменив какие-то k-1 объектов на перегородки, мы получим разбиение множества из n элементов на k непересекающихся подмножеств. \square

8. Критерий двураскрашиваемости графа.

Утверждение. Неориентированный граф является 2-раскрашиваемым тогда и только тогда, когда в нём нет циклов нечётной длины.

Доказательство. ⇒ Пусть в графе есть цикл нечётной длины. Покрасим какую-то вершину цикла в первый цвет и будем двигаться по нему в одном направлении, крася каждую следующую вершину в противоположный цвет. Тогда, вернувшись в исходную вершину, получим противоречие.

 \Leftarrow Пусть циклов нечётной длины нет. Выберем произвольную вершину A и покрасим её в первый цвет. Для любой другой вершины B рассмотрим количество рёбер в пути $A \to B$.

Если есть два пути $A \to B$ таких, что в одном чётное число рёбер, а в другом – нечётное, то есть цикл с нечётным числом рёбер, который получается, если пройти $A \to B$ по первому пути и вернуться $B \to A$ по второму.

Следовательно, между любыми двумя вершинами все пути либо чётной, либо нечётной длины. Раскрасить граф можно следующим образом:

- выделим остовное дерево, раскрасим корень в первый цвет
- раскрасим его потомков во второй цвет
- для каждого из потомков раскрасим всех его потомков опять в первый цвет, и.т.д

Полученная раскраска будет корректной, так как в остовном дереве любой путь между вершинами одного цвета имеет чётную длину (по построению), а по доказанному выше путей нечётной длины между такими вершинами нет.

12. Эквивалентность определений дерева и графа с простым путём между любыми двумя вершинами.

Утверждение. Деревья это в точности графы, в которых для любых двух вершин есть ровно один простой путь с концами в этих вершинах.

 $Доказательство. \Rightarrow$

По определению дерева оно является связным графом без циклов. Рассмотрим какие-то две вершины a и b. Докажем, что существует ровно один простой путь между ними.

Поскольку дерево по определению связно, путь есть. Докажем его единственность.

Если есть несколько путей, то маршрут из a в b по первому пути и обратно по другому пути будет являться циклом — значит, путь только один.

 \Leftarrow

Рассмотрим две вершины a и b данного графа, по условию между ними существует простой путь. Если таких путей несколько, то маршрут из a в b по первому пути и обратно по другому пути будет являться циклом. Следовательно, путей не более одного. Если же такого пути нет, то вершина b не достижима из a, то есть граф не связен. Следовательно, такой граф является деревом.

16. Критерий Дирака гамильтоновости графа.

Утверждение. Критерий Дирака: граф G на n вершинах содержит гамильтонов цикл, если каждая вершина графа имеет степень не меньшую, чем $\frac{n}{2}$.

Доказательство. Рассмотрим самую длинную простую цепь в графе, обозначим её $x_1 \to x_2 \to \dots \to x_m$. Докажем, что существует вершина x_i такая, что $x_i \to x_m$ и $x_{i+1} \to x_1$.

Выберем из множества вершин этой цепи два подмножества номеров вершин $(1 \le i \le m-1)$:

- множество вершин из цепи, соединённых с последней вершиной x_m , то есть $A = \{i | (x_i, x_m) \in E\}$
- множество вершин из цепи, соединённых со первой вершиной x_1 , то есть $B = \{i | (x_1, x_{i+1} \in E)\}$

Все соседние с вершиной x_m , находятся среди $x_1 \dots x_{m-1}$, так как в противном случае существует некая вершина x_k вне цепи и данная цепь не является самой длинной. Так как по условию степень вершнины $x_1 \ge \frac{n}{2}$, то и $|A| \ge \frac{n}{2}$, аналогично $|B| \ge \frac{n}{2}$.

Тогда $|A|+|B| \ge n$, но по построению элементы данных множеств – это числа $1 \le i \le m-1$, это означает, что множества пересекаются и у них есть некоторый общий элемент j. Таким образом, в графе имеются ребра x_1x_{j+1} и x_mx_j Тогда рассмотрим цепь $x_1 \to x_2 \to \ldots \to x_j \to x_m \to x_{m-1} \to \ldots \to x_{j+1} \to x_1$, то есть простой цикл на m вершинах.

Если существует некая вершина вне этой цепи, то данная цепь не является самой длинной. Следовательно, в ней присутствуют все вершины из графа, то есть m=n, а найденый цикл является гамильтоновым.

20. Теорема Эйлера

Теорема. Пусть N – произвольное простое число, $\varphi(N)$ – функция Эйлера (то есть число остатков от 0 до N-1), а число a – один из этих остатков, взаимно простой c N. Тогда:

$$a^{\varphi(N)} \equiv 1 \bmod N$$

Доказательство. Поскольку a взаимно просто с N и x_i взаимно просто с N, то и $x_i \cdot a$ также взаимно просто с N, то есть существует x_j такой, что $x_i a \equiv x_j \mod N$.

Отметим, что все остатки $x_i \cdot a$ различны по модулю N. Пусть это не так, тогда $x_{i_1}a \equiv x_{i_2}a \mod N \Rightarrow a(x_{i_1}-x_{i_2})=0$, то есть $x_{i_1}\equiv x_{i_2} \mod N$ – это противоречит тому, что все остатки $x_1\ldots x_{\varphi(N)}$ различны.

Перемножим все сравнения $x_i \cdot a \equiv x_i \mod N$, получим

$$x_1 \cdots x_{\varphi(N)} a^{\varphi(N)} \equiv x_1 \cdots x_{\varphi(N)} \mod N x_1 \cdots x_{\varphi(N)} (a^{\varphi(N)} - 1) \equiv 0 \mod N$$

Поскольку каждый из остатков $x_1 \dots x_{\varphi(N)}$ взаимно прост с N, можно записать:

$$a^{\varphi(N)} - 1 \equiv 0 \mod N$$

24. Мультипликативность функции Эйлера. Формула для функции Эйлера

Утверждение. Для взаимно простых m u n верно, что $\varphi(mn) = \varphi(m)\varphi(n)$ Доказательство.

28. Теорема о представлении частичного порядка в виде пересечения линейных

Теорема 1. Любой частиный порядок, определенный на множестве из n элементов, можно предстваить, как пересечение не более, чем n^2 линейных порядков.

Доказательство. Пусть у нас есть частичный порядок P. Рассмотрим несравнимую пару x и y. Образуем новый частичный порядок P', полученный из P добавлением сравимости xPy и некоторых других для того, чтобы транзитивность сохранилась. Образуем еще один частичный порядок P'', полученный из P добавлением сравнимости yPx и некоторых других сравнимостей для сохранения тразитивности. Тогда каждый из этих двух частичных порядков можем достроить до линейного порядка (по теореме Шпильрайна). Назовем их $Lin_{p'}$ и $Lin_{p''}$ соответсвенно.

Теперь оценим количество несравнимых пар. Всего пар в отношении может быть $n \cdot n = n^2$ штук, однако нас не интересует порядок элементов внутри пар, тогда без учета порядка их не более $2 \cdot \frac{n^2}{2!} = \frac{n^2}{2}$. Получаем, что несравнимых пар также не более $\frac{n^2}{2}$. Тогда рассмотрим для каждой из них $Lin_{p'}$ и $Lin_{p''}$, таких линейных порядков в сумме не более $\frac{n^2}{2} = n^2$. Теперь изучим, что будет, если их пересечь. В действительности, мы получим как раз P, так как если xPy, то она принадлежит и $Lin_{p'}$, и $Lin_{p''}$, иначе она будет принадлежать только одному из них, и тогда при пересечении её уже не будет.

P.S. Внимательный читатель скажет, что мы рассмотрели только случай, когда нам нужно получить строгий частичный порядок, однако на самом деле получение нестрогого обходится нам «дёшево» и не влияет на нашу оценку, так как её можно осуществить параллельно с другими пересечениями.