ENERGY CONSUMPTION OF BOSTON CITY

BY: SHREYA JAIN MUSHTAQ RIZVI SHRUTI MANDKE

Problem Statement

- Forecast energy consumption based on historical and consumption data
- Compare the energy consumption of different school, library, hospital
- Validate the Boston model, compare the results of simulation to actual energy consumption data
- Predict future power consumption
- Predict the demand forecast of each region

End Solution

- We'll do this using the related dataset so the models become more and more accurate
- With this model, the city will have a map to help target and reach proper goals
- Lower costs, reduce greenhouse gas emissions, and make Boston's energy system more resilient.

Things we plan to do:

- Exploratory Analysis R/Tableau
- Data Cleansing R/Wrangler
- Partitioning of data Azure
- Modeling and predicting Azure/R
- Evaluate the model Azure/R
- Deploy on the web Azure
- Setup Dashboards path
- UI Design
 Bootstrap/JavaScript

Flow Diagram

Dataset

Α	В	С	D	E	Æ	G	Н	la la	J	K	L
	Account	Date	month	day	year	Time	KWh	powerfact	KVARh	hour	minute
11	2.85E+10	1/1/2014	1	1	2014	X0.05	5.454	0.963654	1.512	0	5
1.1	2.85E+10	1/1/2014	1	1	2014	X0.10	5.166	0.956996	1.566	0	10
1.2	2.85E+10	1/1/2014	1	1	2014	X0.15	5.094	0.956797	1.548	0	15
1.3	2.85E+10	1/1/2014	1	1	2014	X0.20	5.364	0.960791	1.548	0	20
1.4	2.85E+10	1/1/2014	1	1	2014	X0.25	5.148	0.957642	1.548	0	25
1.5	2.85E+10	1/1/2014	1	1	2014	X0.30	5.076	0.957452	1.53	0	30
1.6	2.85E+10	1/1/2014	1	1	2014	X0.35	5.112	0.957081	1.548	0	35
1.7	2.85E+10	1/1/2014	1	1	2014	X0.40	5.274	0.959522	1.548	0	40
1.8	2.85E+10	1/1/2014	1	1	2014	X0.45	5.346	0.974058	1.242	0	45
1.9	2.85E+10	1/1/2014	1	1	2014	X0.50	5.724	0.96141	1.638	0	50
1.1	2.85E+10	1/1/2014	1	1	2014	X0.55	5.814	0.982071	1.116	0	55
1.11	2.85E+10	1/1/2014			2014	X1.00	5.796	0.976543	1.278	1	0
1.12	2.85E+10	1/1/2014	1	1	2014	X1.05	5.634	0.981534	1.098	1	5
1.13	2.85E+10	1/1/2014	1	1	2014	X1.10	5.13	0.957363	1.548	1	10
	2.85E+10			1	2014	X1.15	5.328	0.96029	1.548	1	15
1.15	2.85E+10	1/1/2014	1	1	2014	X1.20	5.058	0.956219	1.548	1	20
1.16	2.85E+10	1/1/2014	1	1	2014	X1.25	4.95	0.954418	1.548	1	25
1.17	2.85E+10	1/1/2014	1	1	2014	X1.30	5.112	0.956142	1.566	1	30
1.18	2.85E+10	1/1/2014	1	1	2014	X1.35	5.148	0.957642	1.548	1	35
	2.85E+10	- 12 - 14		1	2014	X1.40	4.968	0.954726	1.548	1	40
1.2	2.85E+10	1/1/2014	1	1	2014	X1.45	5.094	0.953939	1.602	1	45
1.21	2.85E+10	1/1/2014	1	1	2014	X1.50	5.67	0.980581	1.134	1	50

R Code for the Analysis of Data

```
###Dudley BPD
setwd("C:/Users/Mushtag/Downloads/ADS/COB Interval data 2014/CY2014 COB Interval data 1")
BPDdudley<-read.csv("COB-BPD.DUDLEY SQ.2014.csv",header=T)
summary(is.na(BPDdudley))
BPDdudleyTime<-BPDdudley[,c(5:292)]
BPDdudleyTranspose<-t(BPDdudleyTime)</pre>
head(BPDdudleyTranspose)
a<-0
for(i in seg(from=1,to=ncol(BPDdudleyTranspose),by=3)){
  b<-i
  c < -i + 2
  a<-rbind(a,BPDdudleyTranspose[,b:c])
a=a[-1.]
write.csv(a,file="mushtag31.csv")
xyz<-read.csv("mushtaq31.csv",header=FALSE)
head(xyz)
xyz=xyz[-1,]
colnames(xyz)<-c("Time","KWh","powerfactor","KVARh")</pre>
head(xyz)
library(stringr)
out<-str_split_fixed(xyz$Time,".",2)</pre>
nrow(xyz)
nrow(out)
head(xyz)
xyz<-cbind(xyz,out)
xyz < -xyz[,-5]
head(xyz)
colnames(xyz)<-c("Time","KWh","powerfactor","KVARh","time")</pre>
```

```
#Now back to main file
BPDdudleyAccount<-BPDdudley[,c(1:2)]</pre>
head(BPDdudleyAccount)
#ExpandRows
newDat < -BPDdudleyAccount[c(10),]
a<-0
for(i in seq(from=1, to=nrow(BPDdudleyAccount), by=3))
  b<−i
  a \leftarrow rbind(a, expandRows(BPDdudleyAccount[c(b),],288, count.is.col = FALSE))
head(a)
a=a[-1,]
#Splitting date
datetxt < -a[,c(2)]
datetxt<-as.character(datetxt)</pre>
datetxt<-as.Date(datetxt,"%m/%d/%Y")</pre>
class(datetxt)
df <- data.frame(month = as.numeric(format(datetxt, format = "%m")),</pre>
                  day = as.numeric(format(datetxt, format = "%d")),
                  year = as.numeric(format(datetxt, format = "%Y")))
head(df)
#Column binding
nrow(a)
nrow(xyz)
finalBPDdudley<-cbind(a,df)
finalBPDdudley<-cbind(finalBPDdudley,xyz)</pre>
head(final)
write.csv(finalBPDdudley,file="finalBPDdudley.csv")
```

Exploratory Data Analysis – Power Consumption for Police Department

Exploratory Data Analysis – Power Consumption for Libraries

Boosted Decision Tree Regression for Boston Police Department at several places

Deployed Model

Predictive Experiment of Boosted Decision Tree Regression

Evaluation Results of Boosted Decision Tree

Link for Tableau Public

- https://public.tableau.com/views/BPD-Boston-Day/Day?:embed=y&:display count=yes&:showTab s=y
- https://public.tableau.com/views/BPL-Bostondashboard/Dashboard1?:embed=y&:display_count= yes&:showTabs=y