Functional and logic programming - written exam -

Important:

- 1. Subjects are graded as follows: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- **A.** Given the following PROLOG predicate definition **f(integer, integer)**, with the flow model (i, o):

```
f(100, 0):-!.

f(I,Y):-J is I+1, \underline{f(J,V)}, V>2, !, K is I-2, Y is K+V-1.

f(I,Y):-J is I+1, \underline{f(J,V)}, Y is V+1.
```

Rewrite the definition in order to avoid the recursive call $\underline{\mathbf{f(J,V)}}$ in both clauses. Do NOT redefine the predicate. Justify your answer.

C. Write a PROLOG program that generates the list of all combinations of k elements with numbers from 1 to N, with the property that difference between two consecutive numbers from a combination has an even value. Write the mathematical models and flow models for the predicates used. For example, for the N=4, $k=2 \Rightarrow [[1,3],[2,4]]$ (not necessarily in this order).

D. An n-ary tree is represented in Lisp as (node subtree1 subtree2 ...). Write a Lisp function to determine the path from the root to a given node. **A MAP function shall be used.**

Example for the tree (a (b (g)) (c (d (e)) (f)))

- (a) nod = e = > (a c d e)
- (**b)** nod=v => ()