

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана»

Кафедра «Космические аппараты и ракеты-носители» Дисциплина «Динамика летательных аппаратов»

Домашнее задание №2

Вариант №9 (схема I, вариант 5)

Студент: Кострик М.А.

Группа: СМ1-81

Преподаватель: Гончаров Д.А.

Дата зачёта:

Подпись преподавателя:

Оглавление

Задаг	ние	. 3
Teop	етическая часть	. 5
Реше	ние	. 9
1.	Используя «универсальную диаграмму устойчивости» оценить	,
устойчи	вость движения упругой ракеты по траектории	. 9
2.	Уточнение границ смежной неустойчивости	10
3.	Положение гироплатформы	13

Задание

Часть №2

При выполнении части №2 использовать результаты части №1.

- . 1. Используя «универсальную диаграмму устойчивости» оценить устойчивость движения упругой ракеты по траектории
 - 2. Если полученный ответ отрицательный (движение неустойчиво), то:
 - уточнить границы смежной области неустойчивости
 - предъявить требования к АС.
- 3. Если полученный ответ положительный (движение устойчиво), то необходимо уточнить границы неустойчивости смежных областей.

При расчетах полагать, что $\varepsilon = 0.001$.

Градиент управляющей силы вычислить по формуле: $R_{yp} = k_{\rm p} \cdot M_0 \cdot g_0$, где M_0 – стартовая масса, g_0 – ускорение свободного падения, $k_{\rm p}$ – коэффициент, заданный в таблице.

Амплитуду АС для частоты большей, чем частота среза вычислять по формуле: $A_{\rm AC}=0.5\cdot exp(0.01\cdot(\omega_0-\omega))$

$$oldsymbol{arphi}_{
m AC} = -rac{\pi(\omega_0 - \omega)}{\omega_0 - \omega_\pi}$$
 для $\omega_0 < \omega < \omega_\pi$;

$$m{\phi}_{
m AC} = -\pi - rac{\pi(\omega_\pi - \omega)}{\omega_\pi - \omega_{2\pi}}$$
 для $\omega_\pi < \, \omega < \omega_{2\pi};$

Таблица 1: Исходные данные

$N_{\underline{0}}$		Координаты сечения [м]						Пара-			M_1	M_2	\mathbf{J}_0	$X_{\Gamma\Pi}$			
В							метры АС			[]	[T]	[TM]	[M]				
a	\mathbf{x}_1	\mathbf{x}_2	X 3	X4	X5	X ₆	X 7	X 8	X 9	\mathbf{w}_0	W_p	W_2	k_p	[T]			
p.																	
5																	
	2.0	4.0	5.0	9.0	13.0	14.0	17.0	20.0	23.0	20	50	110	0.5	2.0	1.5	2.0	4.5

Схема №1

Рисунок 1 – Схема №1 (исходные данные)

Теоретическая часть

Изобразим объект регулирования в виде отдельных блок колебаний ракеты, как твердого тела и по n-му тону Рисунок 1

Рисунок 1 – структурная блок-схема замкнутой системы

В автомат стабилизации (AC) на малых частотах поступает сигнал в основном только от угловых движений жесткого корпуса ракеты, на частоте ω1 преобладающим является сигнал от колебаний перового тона, аналогично для второй и последующих собственных частот. Поэтому мы можем рассматривать блоки колебаниями по n-му тону отдельно, от остальных тонов и от угловых движений жесткого корпуса ракеты Рисунок 1.

Это выполняется при условии, что собственные частоты колебаний корпуса ракеты не близки. И $\omega 1$ не близка с $\omega 0$ – частотой, на которой амплитуда A_0 колебаний колебания ракеты, как твердого тела, является большой. То есть должно выполняться:

$$A_n(\omega_n)A_{AC}(\omega_n) < 1$$

Рисунок 2 – структурная схема АС для упругих колебаний корпуса ракеты.

Запишем передаточную функцию блока упругих колебаний n — го тона и автомата угловой стабилизации:

$$W_n(i\omega) = \frac{f_n'(x_r)q_n(i\omega)}{\delta(i\omega)} = A_n e^{i\varphi_n(\omega)}$$
 (iiii)

$$W_{AC}(i\omega) = A_{AC}e^{i\varphi_{AC}(\omega)} \tag{....}$$

Комплексное передаточное число на выходе из АС для разомкнутой схемы:

$$W(i\omega) = \sum_{n=1}^{n_0} W_n(i\omega) * W_{AC}(i\omega) = \sum_{n=1}^{n_0} A_n e^{i\varphi_n(\omega)} * A_{AC} e^{i\varphi_{AC}(\omega)} = A(\omega) e^{i\varphi(\omega)} (\vdots \vdots \vdots)$$

где n_0 — число тонов упругих колебаний, которые воспринимает AC.

Уравнение для обобщенных координат, выражающих упругие поперечные колебания корпуса ракеты:

$$\dot{q_n} + c_{q_n q_n} \dot{q_n} + c_{q_n q_n} q_n + c_{q_n \delta} \delta = 0 \tag{...}$$

где $c_{q_nq_n}$, $c_{q_nq_n}$, $c_{q_n\delta}$ —некоторые коэффициент, зависящие от геометрических, массовых, инерционных характеристик.

Согласно уравнению (), получим функцию передаточную функцию $W_n(i\omega)$:

$$W_n(i\omega) = \frac{f_n'(x_r)q_n(i\omega)}{\delta(i\omega)} = \frac{-c_{q_n\delta}f_n'(x_r)}{c_{q_nq_n} + i\omega c_{q_nq_n} - \omega^2} = \frac{R_{Zp}^{\delta}f_n(x_p)f_n'(x_r)}{m_n(c_{q_nq_n} + i\omega c_{q_nq_n} - \omega^2)} = \frac{R_{Zp}^{\delta}f_n(x_p)f_n'(x_p)}{m_n(c_{q_nq_n} + i\omega c_{q_nq_n} - \omega^2)} = \frac{R_{Zp}^{\delta}f_n(x_p)}{m_n(c_{q_nq_n} + i\omega c_{q_nq_n} - \omega^2)}$$

Построим годограф вектора $W_n(i\omega)$ для $0 \le \omega \le \infty$:

Рисунок 3 – Годограф вектора $W_n(i\omega)$

Исходя из годографа предельные значения регулируемого объекта:

если
$$f_n(x_p)f_n'(x_r) > 0$$
, $\varphi_n(\omega) = -\pi$ если $f_n(x_p)f_n'(x_r) < 0$, $\varphi_n(\omega) = \pi$

Будем полагать, что характеристическое уравнение автомата стабилизации не имеет корней с положительной вещественной частью, т. е. автомат стабилизации устойчив.

Частотная характеристика разомкнутой системы по Рисунок 2:

$$\varphi(\omega) = \varphi_n(\omega) + \varphi_{AC}(\omega), \qquad 0 \le \omega \le \infty$$

К фазовой характеристики АС добавляем предельные значения фазы регулируемого объекта:

Рисунок 4 — Фазовая характеристика разомкнутой системы Таким образом, кривые 2, 3 — изображают предельные фазовые характеристики системы. Определим устойчивость по *критерию Найквиста*:

Замкнутая система будет устойчива, если при $A_n(\omega_n)A_{AC}(\omega_n) > 1$ АФХ разомкнутой цепи или совершенно не будет пересекать вещественную ось U или *число отрицательных* пересечений будет *равно число положи- тельных* пересечений. То есть:

-если $f_n(x_{\rm p})f_n'(x_{\rm r})>0$ и частота собсвтенных колебаний: $\omega_0<\omega_n<\omega_\pi$ или $\omega_{2\pi}<\omega_n<\omega_{3\pi}$ - следовательно замкнутая система не устойчива.

-если $f_n(x_{\mathrm{p}})f_n'(x_{\mathrm{r}}) < 0$ и частота собсвтенных колебаний: $\omega_\pi < \omega_n <$

 $\omega_{2\pi}$ или $\omega_{3\pi} < \omega_n < \omega_{4\pi}$ - следовательно замкнутая система устойчива.

Эта закономерность отражается в универсальной диаграмме:

Рисунок 5 – Универсальная диаграмма

Решение

1. Используя «универсальную диаграмму устойчивости» оценить устойчивость движения упругой ракеты по траектории

Рис. 1: Универсальная диаграмма устойчивости

Для того, чтобы параметры объекта регулирования были расположены в области устойчивости, необходимо, чтобы выполнились следующие условия:

Для первого тона колебаний $f_n(x_p) \cdot f_n'(x_r) > 0$ при $\omega_0 < \omega_1 < \omega_\pi$ Для второго тона колебаний $f_n(x_p) \cdot f_n'(x_r) < 0$ при $\omega_\pi < \omega_2 < \omega_{2\pi}$ Проверим выполнение условий:

Для первого тона: $\omega_1 = 8.091 \frac{\text{рад}}{\text{c}} < \omega_0 = 10 \text{ рад/с}$ из этого следует, что невозможно определить устойчивость ракеты по «Универсальной диаграмме», потому что в этом случае необходимо рассматривать совместно передаточные звенья ракеты, как твердого тела, так и колебания по n- ым тонам упругого корпуса ракеты.[Колесников стр.212.]

Для второго тона $\omega_0 < \omega_2 < \omega_\pi$, следовательно для устойчивости системы по критерию Найквиста необходимо: $f_n(x_p)f_n'(x_r) > 0$. Мы имеем: $f_2(x_p) \cdot f_2'(x_r) = 0,092 > 0$ - условие устойчивости для второго тона колебаний выполняется.

2. Уточнение границ смежной неустойчивости

Найдем собственные частоты первых двух тонов колебаний ракеты по мере ее опустошения. Расчеты будем проводить с шагом 5%.

Таблица 2 – Результаты расчетов для различных степеней заполнения

% заполнения баков	w1	f10(Xp)·f10(Xgp)	w2	f20(Xp)·f20(Xgp)
0	49,324	-0,509724552	119,16	0,07826416
5	26,667	-0,157793702	63,082	0,223439496
10	20,011	-0,08468906	50,231	0,218352081
15	16,769	-0,056871283	43,197	0,197096949
20	14,836	-0,044862322	38,568	0,175450608
25	13,554	-0,039436145	35,223	0,156035767
30	12,645	-0,037032403	32,659	0,13912935
35	11,968	-0,036074158	30,615	0,124553566
40	11,446	-0,035850581	28,935	0,111949101
45	11,03	-0,035966325	27,523	0,101017365
50	10,69	-0,03623634	26,316	0,091511679
55	10,42	-0,0385142	25,464	0,072517259
60	10,177	-0,041123614	24,653	0,060228823
65	9,955	-0,043798364	23,913	0,051664239
70	9,753	-0,046446268	23,245	0,045325248
75	9,568	-0,0490043	22,642	0,040415078
80	9,398	-0,051448181	22,095	0,036478988
85	9,24	-0,053755905	21,596	0,033246152
90	9,094	-0,055943327	21,139	0,030552057
95	8,958	-0,05800685	20,718	0,028278128
100	8,831	-0,059953698	20,327	0,02633086

Рис. 2: Диаграмма устойчивости по мере опустошения ракеты

Заметим, что для первого тона собственных колебаний ракеты условие $\omega_0 > \omega_1$ для случая ракеты, заполненной топливом от 15 %, до 100% от объема заполнения баков. И для значений заполнения: 0-15% выполняется: $\omega_0 < \omega_1 < \omega_\pi$, что говорит об неустойчивости ракеты на этом участке полета по перовому тону.

Для второго тона собственных колебаний выполняется одно из определяющих устойчивость ракеты неравенств $\omega_0 < \omega_2 < \omega_\pi$ для случая ракеты, заполненной топливом от 10% и до 100% от объема заполнения баков, что означает устойчивость ракеты в этот промежуток полета по второму тону. А вот при 0-10% ракета является неустойчивой колебательной системой на втором тоне собственных колебаний.

То есть ракета устойчива по второму тону в окрестности 10% и более, найдем границы:

$$\mathit{При}\,s_1=10.164\%$$
: $\omega_2=50$; $\omega_1=19.905$, при $s>s_1-\omega_1<110$ $\mathit{При}\,s_2=10.017\%$: $\omega_2=50.207$; $\omega_1=20$, при $s>s_2-\omega_1<20$

Этим значениям в соответствуют значения зеркал жидкости:

При $s_1 = 10.164\%$:

$$x_4 = 12.199$$

$$x_7 = 19.399$$

При $s_2 = 10.017\%$

$$x_4 = 12.187$$

$$x_7 = 19.39$$

При этом $\omega_0 < \omega_1$ для значения s > 10,017 % .

Также не выполняется, что для второго тона колебаний $f_n(x_p)$ · $f_n'(x_r) > 0$ при оставшемся топливе меньше 10%. Поэтому **необходимо сменить положение гироскопической платформы.**

Хотя при остатке топлива S = 0.817% и меньше ракета снова становится устойчивой по второму тону колебаний.

3. Положение гироплатформы

Найдем куда следует переместить гироплатформу: введем вспомогательную функцию $\varphi_n(x) = f_n(x_p) \cdot f_n'(x)$. Далее построим ее график второго тона колебания для ракеты при S=0,817%, и для заполненных на 10.164% баков. А также для случая, когда $\varphi_n(x)$ достигает максимального значения (5% заполнения баков). Значение $\varphi_n(x)$ в этом диапазоне S должны быть отрицательны.

Рисунок 3 – график $\varphi_n(x)$ при разном заполнении

Вариант заполнения	X _{ГП} из условий устойчивости
ω_2 , 0,817% заполнения баков	0 - 10.193
ω_2 , 5% заполнения баков	8.832 – 18.157
ω_2 , 10.164% заполнения баков	8.1 – 16.473
три условия	8.832 - 10.193

То есть разместить гироплатформу можно в точках со значениями координат в диапазоне 8,1-10,2 м. Приведем график при разных $x_{\Gamma\Pi}$:

Рисунок 4 — области устойчивости при разном $X_{\Gamma\Pi}$

Таким образом, выгодно разметить гироплатформу возле координаты $x_{\Gamma\Pi}=8,1.$ В этом случае, мы проходим через наибольшее количество областей устойчивости. Однако при таком размещении, уменьшается запас устойчивости и это невозможно конструктивное место для размещение $\Gamma\Pi$.

Исследуем, что будет при размещении гп в межбаковом отсеке $x_{\Gamma\Pi}=$ 13,5:

Рисунок 5 — Размещение гироплатформы в межбаковом отсеке При размещении гироплатформы в межбаковом отсеке ракета будет устойчивой по первому тону колебаний в конце полета (при 10-0% остатка топлива) дл остальной области устойчивости по первому тону необходимо доп исследование

И устойчива по второму тону при 10-0.8% остатка топлива в баках, но выйдет за пределы устойчивости в процессе остального полета. Чтобы избежать этого, необходимо изменять управляющие органы и размещать гп ближе к переду ракеты (x < 8.1 м).