```
last time: a group consists of
a set G
a function - • - : G × G to G
```


obeying 1) (a • b) • c = a • (b • c)

a • (b • c)

2) some e in G s.t. a • e = a = e • a

3) for all a in G, some b in G s.t. $a \cdot b = e = b \cdot a$

by lem, know mZ sub H want to show: if n in H, then n in mZ enough to consider n > 0long division gives n = mq + r with $0 \le r < m$ [what next?]

Thm if H is a subgroup of (Z, +)then H = mZ for some m

observe r = n + (-mq) in H so contradiction unless r = 0

[we had shown:]

so m divides n so n7 sub m7 □

 $\begin{tabular}{ll} \underline{Lem} & if H is a subgroup of (Z, +) \\ & and H contains some elt n \\ & then H supset nZ := \{nk \mid k \ in \ Z\} \end{tabular}$

observe: if $m \neq 0$, then mZ "looks like" Z if m = 0, then $mZ = \{0\}$, which doesn't

<u>Df</u>	suppose (G, •) and (K, ∘) are groups
	a homomorphism from (G, •) and (K, ∘)
	is a map φ : G to K
s.t.	$\varphi(a \bullet b) = \varphi(a) \circ \varphi(b)$

into the group law of K

Ex
$$\varphi$$
: Z to mZ given by $\varphi(k) = mk$
is a homomorphism for any m:
indeed, $\varphi(k + \ell) = m(k + \ell) = mk + m\ell = \varphi(k) + \varphi(\ell)$

when is it an isomorphism? only for $m \neq 0$

 $\underline{\mathsf{Ex}}$ recall: $\mathsf{Sym}(\mathsf{X}) = \{\mathsf{self}\text{-bijections of }\mathsf{X}\}$

if Y sub X, then get ϕ : Sym(Y) to Sym(X) namely,

$$\varphi(f)(x) = f(x)$$
 if x in Y
x if x notin Y

Ex for any G and K, the trivial hom from G to K sends every elt of G to the id of K

Exercise find a <u>non</u>trivial hom... from Sym({1, 2, ..., n}) to Sym({1, 2}) from Sym({1, 2, 3, 4}) to Sym({1, 2, 3}) (Munkres §51) let X be a top space

today's goal: a group to study "holes" in X

Df a loop in X is a path γ : [0, 1] to X s.t. γ (0) = γ (1)

in this case, we say $\gamma(0)$ is the <u>basepoint</u> of γ

idea: fix x in X compose loops based at x using pasting lem

 β , γ : [0, 1] to X yield β * γ : [0, 1] to X def by

$$(\beta * \gamma)(s) = \beta(2s)$$
 if $s \le 1/2$
 $\gamma(2s - 1)$ if $s \ge 1/2$

[left-to-right composition!] [draw picture]

problem: all of the group axioms fail no associativity no id elt no inverses

idea: id elt <u>should</u> be the const. loop γ s.t. γ (s) = x [so, consider paths only up to some equiv. rel.?]

Df let ψ , ψ ': S to X be cts a homotopy from ψ to ψ ' is a cts map h : S × [0, 1] to X s.t. h(s, 0) = ψ (s) h(s, 1) = ψ '(s) for all s in S

[draw picture for paths]

for paths, want a more restrictive notion:

Df let y, y': [a, b] to X be paths s.t. y and y' have the same endpts a path homotopy from y to y' is a cts map h : [a, b] \times [0, 1] s.t. h(s, 0) = y(s)h(s, 1) = y'(s)for all s in [a, b] h(a, t) = y(a) = y'(a)h(b, t) = v(b) = v'(b)for all t in [0, 1]

[draw new picture?]

<u>Lem</u> fix paths γ , γ' , γ'' with the same endpts

- γ has a path homotopy to itself [?]
- if there's a path homotopy from γ to γ' then there's a path homotopy from γ' to γ [?]
- 3) if there are path homotopies from γ to γ' , from γ' to γ'' , then there's one from γ to γ'' [?]
- Df for all x, y in X let ~_p be the equivalence relation on paths from x to y in which γ ~_p γ' iff there's a path homotopy from γ to γ'

here, we say γ and γ' are path homotopic
--

 $\underline{\text{Lem}}$ fix x, y, z in X

fix paths β , β' from x to y, γ , γ' from y to z, s.t. $\beta \sim p \beta'$ and $\gamma \sim p \gamma'$

then β * γ ~_p β' * γ'

Pf pasting lem [draw picture]

therefore * descends to an operation on path-homotopy classes which we will denote by $[\gamma]$, etc.

Df whenever β * γ is well-defined we set [β] * [γ] := [β * γ]

let $\pi_1(X, x) = \{ [\gamma] \mid \text{loops } \gamma \text{ in } X \text{ based at } x \}$ let e_x be the constant loop at x

Thm for any α, β, γ in $\pi_1(X, x)$:

- 1) $[\alpha * \beta] * [\gamma] = [\alpha] * [\beta * \gamma]$
- 2) $[e_x * \gamma] = [\gamma] = [\gamma * e_x]$
- if β "reverses" γ then [β * γ] = [e_x] = [γ * β]

Df-Cor π_1(X, x) forms a group under *
with id elt [e_x]
called the fundamental group of X at x