Assignment 11

1. The initial energy stored in the following circuit is zero. The switch is closed at t=0. Assume $V(s)=\mathcal{L}\{v(t)\}$ and $I(s)=\mathcal{L}\{i(t)\}$.

 $\text{If } v_s(t) = 10 V,$

- a. Write the differential equations in terms of v(t) and i(t).
- b. Find V(s) and I(s).
- c. Find v(t) and i(t).
- d. Find zeros and poles of V(s) and I(s).
- e. Use the initial value theorem to find $v(0^+)$ and $i(0^+)$ from V(s) and I(s).
- f. Use the final value theorem to find $v(\infty)$ and $i(\infty)$ from V(s) and I(s).
- g. Do your answers in (e) and (f) make sense in the terms of the above circuit behavior? Please explain.
- 2. The initial energy stored in the following circuit is zero. The switch is closed at t=0. Assume $V(s)=\mathcal{L}\{v(t)\}$ and $I(s)=\mathcal{L}\{i(t)\}$.

- a. Write the differential equations in terms of v(t) and i(t).
- b. Find V(s) and I(s).
- c. Find v(t) and i(t).
- d. Find zeros and poles of V(s) and I(s).
- e. Use the initial value theorem to find $v(0^+)$ and $i(0^+)$ from V(s) and I(s).
- f. Use the final value theorem to find $v(\infty)$ and $i(\infty)$ from V(s) and I(s).
- g. Do your answers in (e) and (f) make sense in the terms of the above circuit behavior? Please explain.