Data anaysis and Unsupervised Learning Clustering: model-based approaches

MAP 573, 2020 - Julien Chiquet

École Polytechnique, Autumn semester, 2020

https://jchiquet.github.io/MAP573

Packages required for reproducing the slides

```
library(tidyverse) # opinionated collection of packages for data manipulation
library(GGally) # extension to ggplot vizualization system
library(kernlab) # Kernel-based methods, among which spectral-clustering
library(aricode) # fast computation of clustering measures
library(mclust) # gaussian mixture models
library(sbm) # Stochastic Block Models
library(igraph) # graph manipulation
theme_set(theme_bw()) # plots themes
```

Companion data set

Morphological Measurements on Leptograpsus Crabs

Description

The crabs data frame has 200 rows and 8 columns, describing 5 morphological measurements on 50 crabs each of two colour forms and both sexes, of the species *Leptograpsus variegatus* collected at Fremantle, W. Australia.

sex	species
F:100	B:100
M:100	O:100

Remove size effect I

```
attributes <- select(crabs, -sex, -species) %>% as.matrix()
u1 <- eigen(cov(attributes)) $vectors[, 1, drop = FALSE]
attributes_rank1 <- attributes %*% u1 %*% t(u1)
crabs_corrected <- crabs
crabs_corrected[, 3:7] <- attributes - attributes_rank1</pre>
```

→ Axis 1 explains a latent effect, here the size in the case at hand, common to all attributes.

```
ggpairs(crabs_corrected, columns = 3:7, aes(colour = paste(crabs$species, crabs$sec
```

Remove size effect II

Clustering: general goals

Objective: construct a map

$$f: \mathcal{D} = \{1, \dots, n\} \mapsto \{1, \dots, K\}$$

where K is a fixed number of clusters.

Careful! classification ≠ clustering

- Classification presupposes the existence of classes
- Clustering labels only elements of the dataset
 - → no ground truth (no given labels)
 - → discovers a structure "natural" to the data
 - → not necessarily related to a known classification

Motivations

- describe large masses of data in a simplified way,
- structure a set of knowledge,
- reveal structures, hidden causes,
- use of the groups in further processing,
- . . .

Clustering: challenges

Clustering quality

No obvious measure to define the quality of the clusters. Ideas:

- Inner homogeneity: samples in the same group should be similar
- Outer inhomogeneity: samples in different groups should be different

Number of clusters

Choice of the number of clusters K often complex

- No ground truth in unsupervised learning!
- Several solutions might be equally good

Two general approaches

- distance-based: require a distance/dissimilarity between $\{\mathbf x_i\}$
- model-based: require assumptions on the distribution $\mathbb P$

Part II

Model-based method

Outline

Model-based method

Mixture models

Statistical model: latent variable Expectation-Maximization algorithm

2 The Stochastic Block Model (SBM)

References

Pattern recognition and machine learning, Christopher Bishop Chapter 9: Mixture Models and EM

http://users.isr.ist.utl.pt/~wurmd/Livros/school/

Models with Hidden Structure with Applications in Biology and Genomics,

Stéphane Robin Master MathSV Course

https:

//www6.inra.fr/mia-paris/content/download/4587/42934/version/1/file/ModelsHiddenStruct-Biology.pdf

Classification non-supervisées,

É. Lebarbier, T. Mary-Huard

Chapitre 3 - méthode probabiliste: le modèle de mélange

Outline

Model-based method

Mixture models

Statistical model: latent variable

Expectation-Maximization algorithm

Example: mixture of Gaussians

2 The Stochastic Block Model (SBM)

Latent variable models

Definition

A latent variable model is a statistical model that relates, for $i=1,\ldots,n$ individuals,

- ullet a set of manifest (observed) variables ${f X}=(X_i,i=1,\ldots,n)$ to
- a set of latent (unobserved) variables $\mathbf{Z} = (Z_i, i = 1, \dots, n)$.

Common assumption: conditional independence

$$\mathbb{P}((X_1,\ldots,X_n)|(Z_1,\ldots,Z_n)) = \prod_{i=1}^n \mathbb{P}(X_i|Z_i).$$

Famous examples

- $(Z_i, i \ge 1)$ is Markov chain: Markov models
- ullet Z_i categorical and independent: mixture models

Latent variable models

Definition

A latent variable model is a statistical model that relates, for $i=1,\ldots,n$ individuals,

- a set of manifest (observed) variables $\mathbf{X} = (X_i, i = 1, \dots, n)$ to
- a set of latent (unobserved) variables $\mathbf{Z} = (Z_i, i = 1, \dots, n)$.

Common assumption: conditional independence

$$\mathbb{P}((X_1,\ldots,X_n)|(Z_1,\ldots,Z_n)) = \prod_{i=1}^n \mathbb{P}(X_i|Z_i).$$

Famous examples

- $(Z_i, i \ge 1)$ is Markov chain: Markov models
- Z_i categorical and independent: mixture models

Mixture models: the latent variables

When (Z_1, \ldots, Z_n) are independent categorical variables, they give a natural (latent) classification of the observations (X_1, \ldots, X_n) – or labels.

Notations

Let (Z_1, \ldots, Z_n) be *iid* categorical variables with distribution

$$\mathbb{P}(i \in q) = \mathbb{P}(Z_i = q) = \alpha_q, \quad \text{s.t.} \sum_{q=1}^{Q} \alpha_q = 1.$$

Alternative (equivalent) notation

Let $Z_i = (Z_{i1}, \dots, Z_{iq})$ be an indicator vector of label for i:

$$\mathbb{P}(i \in q) = \mathbb{P}(Z_{iq} = 1) = \alpha_q, \quad \text{s.t.} \sum_{q=1}^{Q} \alpha_q = 1$$

By definition, $Z_i \sim \mathcal{M}(1, \boldsymbol{\alpha})$, with $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_Q)$

Mixture models: the latent variables

When (Z_1, \ldots, Z_n) are independent categorical variables, they give a natural (latent) classification of the observations (X_1, \ldots, X_n) – or labels.

Notations

Let (Z_1,\ldots,Z_n) be *iid* categorical variables with distribution

$$\mathbb{P}(i \in q) = \mathbb{P}(Z_i = q) = \alpha_q, \quad \text{s.t.} \sum_{q=1}^{Q} \alpha_q = 1.$$

Alternative (equivalent) notation

Let $Z_i = (Z_{i1}, \dots, Z_{iq})$ be an indicator vector of label for i:

$$\mathbb{P}(i \in q) = \mathbb{P}(Z_{iq} = 1) = \alpha_q, \quad \text{s.t.} \sum_{q=1}^{Q} \alpha_q = 1$$

By definition, $Z_i \sim \mathcal{M}(1, \boldsymbol{\alpha})$, with $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_Q)$

Mixture models: the latent variables

When (Z_1, \ldots, Z_n) are independent categorical variables, they give a natural (latent) classification of the observations (X_1, \ldots, X_n) – or labels.

Notations

Let (Z_1, \ldots, Z_n) be *iid* categorical variables with distribution

$$\mathbb{P}(i \in q) = \mathbb{P}(Z_i = q) = \alpha_q, \quad \text{s.t.} \sum_{q=1}^Q \alpha_q = 1.$$

Alternative (equivalent) notation

Let $Z_i = (Z_{i1}, \dots, Z_{iq})$ be an indicator vector of label for i:

$$\mathbb{P}(i \in q) = \mathbb{P}(Z_{iq} = 1) = \alpha_q, \quad \text{s.t.} \sum_{q=1}^{Q} \alpha_q = 1.$$

By definition, $Z_i \sim \mathcal{M}(1, \boldsymbol{\alpha})$, with $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_Q)$.

Mixture models: the manifest variables

A mixture model represents the presence of subpopulations within an overall population as follows:

$$\mathbb{P}(X_i) = \sum_{z_i \in \mathcal{Z}_i} \mathbb{P}(X_i, Z_i) = \sum_{Z_i \in \mathcal{Z}_i} \mathbb{P}(X_i | Z_i) \mathbb{P}(Z_i).$$

Conditional distribution of the manifest variables

We assume a parametric distribution of X in each subpopulation

$$X_i | \{Z_i = q\} \sim \mathbb{P}_{\theta_q} \qquad \left(\Leftrightarrow X_i | \{Z_{iq}\} = 1 \sim \mathbb{P}_{\theta_q} \right)$$

The specificity of each class is handled by $\{\boldsymbol{\theta}_q\}_{q=1}^Q$.

Mixture models: likelihoods

The complete-data likelihood

It is the join distribution of (X_i, Z_i) :

$$\mathbb{P}(X_i, Z_i) = \alpha_{Z_i} \mathbb{P}_{\boldsymbol{\theta}_{Z_i}}(X_i)$$

The incomplete-data likelihood

It is the marginal distribution of X_i once Z_i integrated:

$$\mathbb{P}(X_i) = \sum_{q=1}^{Q} \mathbb{P}(X_i, Z_i = q) = \sum_{q=1}^{Q} \alpha_q \mathbb{P}_{\theta_q}(X_i)$$

→ A mixture model is a sum of distributions weighted by the proportion
of each subpopulation.

Mixture models: likelihoods

The complete-data likelihood

It is the join distribution of (X_i, Z_i) :

$$\mathbb{P}(X_i, Z_i) = \alpha_{Z_i} \mathbb{P}_{\boldsymbol{\theta}_{Z_i}}(X_i)$$

The incomplete-data likelihood

It is the marginal distribution of X_i once Z_i integrated:

$$\mathbb{P}(X_i) = \sum_{q=1}^{Q} \mathbb{P}(X_i, Z_i = q) = \sum_{q=1}^{Q} \alpha_q \mathbb{P}_{\theta_q}(X_i)$$

 \sim A mixture model is a sum of distributions weighhed by the proportion of each subpopulation.

Outline

Model-based method

1 Mixture models

Statistical model: latent variable

Expectation-Maximization algorithm

Example: mixture of Gaussians

2 The Stochastic Block Model (SBM)

Intractability of the Likelihood

Maximum Likelihood Estimator

The MLE aims to maximize the (marginal) likehood of the observations:

$$L(\boldsymbol{\theta}; \mathbf{X}) = \mathbb{P}_{\boldsymbol{\theta}}((X_1, \dots, X_n)) = \int_{\mathbf{Z} \in \mathcal{Z}} \mathbb{P}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{Z}) d\mathbf{Z}$$

Integrations are summation over $\{1,\ldots,Q\}$: we have Q^n terms !

Intractable summation

With mixture models, for $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_Q)$ we have

$$\log L(\theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left\{ \sum_{q=1}^{Q} \alpha_q \mathbb{P}_{\theta_q}(X_i) \right\}$$

→ Direct maximization of the likelihood is impossible in practice

Intractability of the Likelihood

Maximum Likelihood Estimator

The MLE aims to maximize the (marginal) likehood of the observations:

$$L(\boldsymbol{\theta}; \mathbf{X}) = \mathbb{P}_{\boldsymbol{\theta}}((X_1, \dots, X_n)) = \int_{\mathbf{Z} \in \mathcal{Z}} \mathbb{P}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{Z}) d\mathbf{Z}$$

Integrations are summation over $\{1,\ldots,Q\}$: we have Q^n terms !

Intractable summation

With mixture models, for $oldsymbol{ heta} = (oldsymbol{ heta}_1, \dots, oldsymbol{ heta}_Q)$ we have

$$\log L(\boldsymbol{\theta}; \mathbf{X}) = \sum_{i=1}^n \log \left\{ \sum_{q=1}^Q \alpha_q \mathbb{P}_{\boldsymbol{\theta}_q}(X_i) \right\}.$$

→ Direct maximization of the likelihood is impossible in practice

Bayes decision rule / Maximum a posteriori

Principle

Affect an individual i to the subpopulation which is the most likely according to the data:

$$\tau_{iq} = \mathbb{P}(Z_{iq} = 1 | X_i = x_i)$$

This is the posterior probability for $i \in q$.

Application of the Bayes Theorem

It is straightforward to show that

$$\tau_{iq} = \frac{\alpha_q \mathbb{P}_{\theta_q}(x_i)}{\sum_{q=1}^{Q} \alpha_q \mathbb{P}_{\theta_q}(x_i)}$$

Principle of the EM algorithm

If heta were known

... estimating the posterior probability $\mathbb{P}(Z_i|\mathbf{X})$ of \mathbf{Z} should be easy By means of the Bayes decision rule

If **Z** were known...

... estimating the best set of parameter θ should be easy This is close to usual maximum likelihood estimation

EM principle

Maximize the marginal likelihood iteratively:

- Initialize 6
- $oldsymbol{arrho}$ Compute the probability of ${f Z}$ given ${oldsymbol{ heta}}$
- $oldsymbol{G}$ Get a better $oldsymbol{ heta}$ with the new $oldsymbol{Z}$
- 4 Iterate until convergence

Principle of the EM algorithm

If θ were known

... estimating the posterior probability $\mathbb{P}(Z_i|\mathbf{X})$ of \mathbf{Z} should be easy By means of the Bayes decision rule

If **Z** were known...

... estimating the best set of parameter θ should be easy This is close to usual maximum likelihood estimation

EM principle

Maximize the marginal likelihood iteratively:

- $oldsymbol{0}$ Initialize $oldsymbol{ heta}$
- **2** Compute the probability of ${f Z}$ given ${m heta}$
- 3 Get a better θ with the new Z
- 4 Iterate until convergence

EM: the complete data log-likelihood

- Marginal likelihood is hard to work with
- Use the "complete-data" likelihood, where \mathbf{Z}_i is known

$$\log L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{Z}) = \log \prod_{i=1}^{n} \mathbb{P}(\mathbf{X}_{i}, \mathbf{Z}_{i})$$

$$= \log \prod_{i=1}^{n} \underbrace{\prod_{q=1}^{Q} \mathbb{P}(\mathbf{X}_{i}, (\mathbf{Z}_{i1}, \dots, \mathbf{Z}_{iQ})^{Z_{iq}}}_{\text{a single "active" term (the one with } Z_{iq} = 1)$$

$$= \log \prod_{i=1}^{n} \prod_{q=1}^{Q} \alpha_{q} \mathbb{P}_{\theta_{q}}(\mathbf{X}_{i})^{Z_{iq}}$$

$$= \sum_{i=1}^{n} \sum_{q=1}^{Q} Z_{iq} \log \left[\alpha_{q} \mathbb{P}_{\theta_{q}}(\mathbf{X}_{i})\right]$$

EM: the criterion

- Alright, Use the "complete-data" likelihood, but Z_i is unknown!
- Replace the \mathbf{Z}_i by its best prediction: $\mathbb{E}_{\mathbf{Z}|\mathbf{X}:\boldsymbol{\theta}'}(\cdot)$
- Use an estimation of $\mathbb{P}_{\boldsymbol{\theta}^{(t)}}(\mathbf{Z}|\mathbf{X}))$ to estimate $\mathbb{E}_{\mathbf{Z}|\mathbf{X}:\boldsymbol{\theta}'}(\,\cdot\,)$

$$\mathbb{E}_{\mathbf{Z}|\mathbf{X};\boldsymbol{\theta}'}(\log L(\boldsymbol{\theta};\mathbf{X},\mathbf{Z})) = \mathbb{E}_{\mathbf{Z}|\mathbf{X};\boldsymbol{\theta}'}(\sum_{i=1}^{n} \sum_{q=1}^{Q} Z_{iq} \log \left[\alpha_{q} \mathbb{P}_{\theta_{q}}(\mathbf{X}_{i})\right])$$

$$= \sum_{i=1}^{n} \sum_{q=1}^{Q} \mathbb{E}_{\mathbf{Z}|\mathbf{X};\boldsymbol{\theta}'}(Z_{iq}) \log \left[\alpha_{q} \mathbb{P}_{\theta_{q}}(\mathbf{X}_{i})\right]$$

$$= \sum_{i=1}^{n} \sum_{q=1}^{Q} \tau_{iq} \log \left[\alpha_{q} \mathbb{P}_{\theta_{q}}(\mathbf{X}_{i})\right]$$

$$\triangleq Q(\boldsymbol{\theta}|\boldsymbol{\theta}')$$

Formal algorithm

Initialization: start from a good guess either of ${\bf Z}$ or ${\boldsymbol \theta}$, then iterate 1-2

1. Expectation step

Calculate the expected value of the loglikelihood under the current heta

$$Q\left(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}\right) = \mathbb{E}_{\mathbf{Z}|\mathbf{X};\boldsymbol{\theta}^{(t)}}\big[\log L(\boldsymbol{\theta};\mathbf{X},\mathbf{Z})\big] \qquad (\textit{needs } \mathbb{P}_{\boldsymbol{\theta}^{(t)}}(\mathbf{Z}|\mathbf{X}))$$

2. Maximization step

Find the parameters that maximize this quantity

$$\boldsymbol{\theta}^{(t+1)} = \arg\max_{\boldsymbol{\theta}} Q\left(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}\right)$$

Stop when
$$\| {m heta}^{(t+1)} - {m heta}^{(t)} \| < arepsilon$$
 or $\| Q^{(t+1)} - Q^{(t)} \| < arepsilon$

(Basic) Convergence analysis I

Theorem

At each step of the EM algorithm, the loglikelihood increases. EM thus reaches a local optimum.

Proof

By definition of conditional probability $\mathbb{P}(\mathbf{Z}|\mathbf{X})$, one has

$$\log L(\mathbf{X}; \boldsymbol{\theta}) = \log L(\mathbf{X}, \mathbf{Z}; \boldsymbol{\theta}) - \log L(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta})$$

We then apply the expectation $\mathbb{E}_{\mathbf{Z}|\mathbf{X}:\boldsymbol{\theta}'}(\,\cdot\,)$ both side

$$\log L(\mathbf{X}) = \mathbb{E}_{\mathbf{Z}|\mathbf{X};\boldsymbol{\theta}'}\big(\log L(\mathbf{X},\mathbf{Z};\boldsymbol{\theta})\big) - \mathbb{E}_{\mathbf{Z}|\mathbf{X};\boldsymbol{\theta}'}\big(\log L(\mathbf{Z}|\mathbf{X};\boldsymbol{\theta})\big)$$

Indeed, the marginal likelihood does not depend on Z.

continue...

(Basic) Convergence analysis II

We recognize two important quantities: the criterion Q and what we call the entropy of \mathcal{H} of $\mathbb{P}(\mathbf{Z}|\mathbf{X})$:

$$\log L(\mathbf{X}) = Q(\boldsymbol{\theta}|\boldsymbol{\theta}') + \mathcal{H}(\boldsymbol{\theta}, \boldsymbol{\theta}')$$

To prove that $\log L$ is increased by EM, we consider two successive iteration with parameter θ' and θ'' and study there difference:

$$\log L(\mathbf{X}; \boldsymbol{\theta}'') - \log L(\mathbf{X}; \boldsymbol{\theta}') = Q(\boldsymbol{\theta}''|\boldsymbol{\theta}') - Q(\boldsymbol{\theta}'|\boldsymbol{\theta}') + \mathcal{H}(\boldsymbol{\theta}'', \boldsymbol{\theta}') - \mathcal{H}(\boldsymbol{\theta}', \boldsymbol{\theta}')$$

- ① First $Q(\theta''|\theta') Q(\theta'|\theta') \ge 0$ by definition of the maximization step.
- 2 Second we need to prove that $\mathcal{H}(\theta'', \theta') \mathcal{H}(\theta', \theta') \geq 0$

(Basic) Convergence analysis III

$$\mathcal{H}(\boldsymbol{\theta}'', \boldsymbol{\theta}') - \mathcal{H}(\boldsymbol{\theta}', \boldsymbol{\theta}') = \mathbb{E}_{\boldsymbol{\theta}'} \left(\log L(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta}'') - \log L(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta}') \right)$$
$$= \mathbb{E}_{\boldsymbol{\theta}'} \left(\log \frac{L(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta}'')}{L(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta}')} \right)$$

We then use the Jensen inequality: if ϕ is convex, then $\phi(\mathbb{E}(X)) \leq \mathbb{E}(\phi(X))$. Since \log is concave, $-\log(\mathbb{E}(X)) \leq -\mathbb{E}(\log(X))$ and $\mathbb{E}(\log(X)) \leq \log(\mathbb{E}(X))$, thus

$$\mathcal{H}(\boldsymbol{\theta}'', \boldsymbol{\theta}') - \mathcal{H}(\boldsymbol{\theta}', \boldsymbol{\theta}') = \mathbb{E}_{\boldsymbol{\theta}'} \left(\log \frac{L(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta}'')}{L(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta}')} \right)$$

$$\leq \log \mathbb{E}_{\boldsymbol{\theta}'} \left(\frac{L(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta}'')}{L(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta}')} \right)$$

$$= \log \int_{\mathcal{Z}} \left(\frac{L(\mathbf{z}|\mathbf{X}; \boldsymbol{\theta}'')}{\mathbb{P}(\mathbf{z}|\mathbf{X}; \boldsymbol{\theta}')} \mathbb{P}(\mathbf{z}|\mathbf{X}; \boldsymbol{\theta}') d\mathbf{z} \right) = \log(1) = 0$$

Choosing the number of component

Reminder: Bayesian Information Criterion

The BIC is a model selection criterion which penalizes the adjustement to the data by the number of parameter in model $\mathcal M$ as follows:

$$\mathrm{BIC}(\mathcal{M}) = \log L(\hat{\boldsymbol{\theta}}; \mathbf{X}) - \frac{1}{2} \log(n) \mathrm{df}(\mathcal{M}).$$

Integrated Classification Criterion

It is an adaptation working with the complete-data likelihood

$$ICL(\mathcal{M}) = \log L(\hat{\boldsymbol{\theta}}; \mathbf{X}, \hat{\mathbf{Z}}) + \frac{1}{2} \log(n) \operatorname{df}(\mathcal{M})$$
$$= BIC - \mathcal{H}(\mathbb{P}(\hat{\mathbf{Z}}|\mathbf{X}),$$

where the entropy ${\cal H}$ measures the separability of the subpopulations.

 \leadsto We choose $\mathcal{M}(Q)$ that maximizes either BIC or ICL

Choosing the number of component

Reminder: Bayesian Information Criterion

The BIC is a model selection criterion which penalizes the adjustement to the data by the number of parameter in model $\mathcal M$ as follows:

$$\mathrm{BIC}(\mathcal{M}) = \log L(\hat{\boldsymbol{\theta}}; \mathbf{X}) - \frac{1}{2} \log(n) \mathrm{df}(\mathcal{M}).$$

Integrated Classification Criterion

It is an adaptation working with the complete-data likelihood:

$$ICL(\mathcal{M}) = \log L(\hat{\boldsymbol{\theta}}; \mathbf{X}, \hat{\mathbf{Z}}) + \frac{1}{2} \log(n) df(\mathcal{M})$$
$$= BIC - \mathcal{H}(\mathbb{P}(\hat{\mathbf{Z}}|\mathbf{X}),$$

where the entropy ${\cal H}$ measures the separability of the subpopulations.

 \leadsto We choose $\mathcal{M}(Q)$ that maximizes either BIC or ICL

Choosing the number of component

Reminder: Bayesian Information Criterion

The BIC is a model selection criterion which penalizes the adjustement to the data by the number of parameter in model ${\cal M}$ as follows:

$$\mathrm{BIC}(\mathcal{M}) = \log L(\hat{\boldsymbol{\theta}}; \mathbf{X}) - \frac{1}{2} \log(n) \mathrm{df}(\mathcal{M}).$$

Integrated Classification Criterion

It is an adaptation working with the complete-data likelihood:

$$ICL(\mathcal{M}) = \log L(\hat{\boldsymbol{\theta}}; \mathbf{X}, \hat{\mathbf{Z}}) + \frac{1}{2} \log(n) df(\mathcal{M})$$
$$= BIC - \mathcal{H}(\mathbb{P}(\hat{\mathbf{Z}}|\mathbf{X}),$$

where the entropy ${\cal H}$ measures the separability of the subpopulations.

 \leadsto We choose $\mathcal{M}(Q)$ that maximizes either BIC or ICL

Outline

Model-based method

1 Mixture models

Statistical model: latent variable Expectation-Maximization algorithm

Example: mixture of Gaussians

The Stochastic Block Model (SBM)

Popular model: Gaussian Multivariate mixture models

The distribution of X_i conditional on the label of i is assumed to be a multivariate Gaussian distribution with unknown parameters:

$$X_i|i \in q \sim \mathcal{N}(\boldsymbol{\mu}_q, \boldsymbol{\Sigma}_q)$$

Complete Likelihood (X, Z)

The model complete loglikelihood is

$$\log L(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \mathbf{X}, \mathbf{Z}) = \sum_{i=1}^{n} \sum_{q=1}^{Q} Z_{iq} \left(\log \alpha_q - \frac{1}{2} \log \det(\boldsymbol{\Sigma}_q) - \frac{1}{2} \|\mathbf{x}_i - \boldsymbol{\mu}_q\|_{\boldsymbol{\Sigma}_q^{-1}}^2 \right) + c$$

→ Implementation of the univariate case during the today's lab.

Mixture of Gaussians

Calculs in the univariate case: complete likelihood

The distribution of X_i conditional on the label of i is assumed to be a univariate Gaussian distribution with unknown parameters:

$$X_i|Z_{iq}=1\sim\mathcal{N}(\mu_q,\sigma_q^2)$$

complete Likelihood (X, Z)

The model complete loglikelihood is

$$\log L(\boldsymbol{\mu}, \boldsymbol{\sigma}^2; \mathbf{X}, \mathbf{Z}) = \sum_{i=1}^{n} \sum_{q=1}^{Q} Z_{iq} \left(\log \alpha_q - \log \sigma_q - \log(\sqrt{2\pi}) - \frac{1}{2\sigma_q^2} (x_i - \mu_q)^2 \right)$$

Gaussian mixture model in R I

The package Mclust is a great reference See https://cran.r-project.org/web/packages/mclust/ vignettes/mclust.html

```
classes <- paste(crabs_corrected$sex, crabs_corrected$species, sep="-")
GMM <- crabs_corrected %>%
    select(-sex, -species) %>%
    Mclust(modelNames = c("EII", "EEI", "VII", "VEI", "EVI", "VVI"))
plot(GMM, 'BIC')
```

Gaussian mixture model in R II


```
plot(GMM, 'classification')
```

Gaussian mixture model in R III

Gaussian mixture model in R IV

```
kmeans_cl <- crabs_corrected %>% select(-sex, -species) %>% as.matrix() %>%
  kmeans(centers = 4, nstart = 100) %>% pluck("cluster")
ward_cl <- crabs_corrected %>% select(-sex, -species) %>% dist() %>%
  hclust(method = "ward.D2") %>% cutree(4)
aricode:: ARI (GMM$classification, classes)
## [1] 0.764725
aricode::ARI(GMM$classification, kmeans cl)
## [1] 0.8230122
aricode:: ARI (GMM$classification, ward_cl)
## [1] 0.7670297
```

The posterior probabilities

```
matplot(GMM$z)
```

Gaussian mixture model in R V

The model parameters:

Gaussian mixture model in R VI

```
str(GMM$parameters, max.level = 1)

## List of 3

## $ pro : num [1:5] 0.114 0.175 0.222 0.261 0.228

## $ mean : num [1:5, 1:5] -0.256 1.681 -0.414 0.626 -1.493 ...

## ..- attr(*, "dimnames")=List of 2

## $ variance:List of 6
```

Outline

Model-based method

- 1 Mixture models
- 2 The Stochastic Block Model (SBM)

The Erdös-Rényi model and their limitations Mixture of Erdös-Rényi and the SBM Inference in SBM with variational EM

References

Mixture model for random graphs, Statistics and Computing Daudin, Robin, Picard

 $\verb|pbil.univ-lyon1.fr/members/fpicard/franckpicard_fichiers/pdf/DPR08.pdf|$

Analyse statistique de graphes, Catherine Matias Chapitre 4, Section 4

Motivations

Last section: find an underlying organization in a observed network

Spectral or hierachical clustering for network data

Not model-based, thus no statistical inference possible

Now: clustering of network based on a probabilistic model of the graph

Become familiar with

- the stochastic block model, a random graph model tailored for clustering vertices,
- the variational EM algorithm used to infer SBM from network data.

hierarchical/kmeans clustering \leftrightarrow Gaussian mixture models \updownarrow

hierarchical/spectral clustering for network ↔ Stochastic block model

Outline

Model-based method

- 1 Mixture models
- The Stochastic Block Model (SBM)
 The Erdös-Rényi model and their limitations
 Mixture of Erdös-Rényi and the SBM
 Inference in SBM with variational EM

A mathematical model: Erdös-Rényi graph

Definition

Let $\mathcal{V}=1,\dots,n$ be a set of fixed vertices. The (simple) Erdös-Rényi model $\mathcal{G}(n,\pi)$ assumes random edges between pairs of nodes with probability π . In orther word, the (random) adjacency matrix \mathbf{X} is such that

$$X_{ij} \sim \mathcal{B}(\pi)$$

Proposition (degree distribution)

The (random) degree D_i of vertex i follows a binomial distribution:

$$D_i \sim b(n-1,\pi)$$
.

Erdös-Rényi - example

```
G1 <- igraph::sample_gnp(10, 0.1)
G2 <- igraph::sample_gnp(10, 0.9)
G3 <- igraph::sample_gnp(100, .02)
par(mfrow=c(1,3))
plot(G1, vertex.label=NA); plot(G2, vertex.label=NA)
plot(G3, vertex.label=NA, layout=layout.circle)
```


Erdös-Rény - limitations: very homegeneous

```
average.path.length(G3); diameter(G3)
## [1] 4.859664
## [1] 13
```

Histogram of degree(G3)

Limitations

Erdös-Rényi

The ER model does not fit well real world network

- As can been seen from its degree distribution
- ER is generally too homogeneous

The Stochastic Block Model

The SBM¹ generalizes ER in a mixture framework. It provides

- a statistical framework to adjust and interpret the parameters
- a flexible yet simple specification that fits many existing network data

¹Other models exist (e.g. exponential model for random graphs) but less popular.

Outline

Model-based method

- 1 Mixture models
- 2 The Stochastic Block Model (SBM)

The Erdös-Rényi model and their limitations

Mixture of Erdös-Rényi and the SBM

Inference in SBM with variational EM

Stochastic Block Model: definition

Mixture model point of view: mixture of Erdös-Rényi

Latent structure

Let $\mathcal{V}=\{1,..,n\}$ be a fixed set of vertices. We give each $i\in\mathcal{V}$ a latent label among a set $\mathcal{Q}=\{1,\ldots,Q\}$ such that

- $\alpha_q = \mathbb{P}(i \in q), \quad \sum_q \alpha_q = 1;$
- $Z_{iq} = \mathbf{1}_{\{i \in q\}}$ are independent hidden variables.

The conditional distribution of the edges

Connexion probabilities depend on the node class belonging:

$$X_{ij} | \{i \in q, j \in \ell\} \sim \mathcal{B}(\pi_{q\ell}) \qquad \left(\Leftrightarrow X_{ij} | \{Z_{iq}Z_{j\ell} = 1\} \sim \mathcal{B}(\pi_{q\ell}). \right)$$

The $Q \times Q$ matrix π gives for all couple of labels $\pi_{q\ell} = \mathbb{P}(X_{ij} = 1 | i \in q, j \in \ell).$

Stochastic Block Model: the big picture

Stochastic Block Model

Let n nodes divided into

- $Q = \{ \bullet, \bullet, \bullet \}$ classes
- $\alpha_{\bullet} = \mathbb{P}(i \in \bullet), \bullet \in \mathcal{Q}, i = 1, \dots, n$
- $\pi_{\bullet \bullet} = \mathbb{P}(i \leftrightarrow j | i \in \bullet, j \in \bullet)$

$$\begin{split} Z_i &= \mathbf{1}_{\{i \in \bullet\}} \ \sim^{\mathsf{iid}} \mathcal{M}(1, \alpha), \quad \forall \bullet \in \mathcal{Q}, \\ X_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\mathsf{ind}} \mathcal{B}(\pi_{\bullet \bullet}) \end{split}$$

Stochastic Block Model: unknown parameters

Stochastic Block Model

Let n nodes divided into

- $Q = \{ \bullet, \bullet, \bullet \}$, card(Q) known
- $\alpha_{\bullet} = ?$,
- $\pi_{\bullet \bullet} = ?$

$$\begin{split} Z_i &= \mathbf{1}_{\{i \in \bullet\}} \ \sim^{\mathsf{iid}} \mathcal{M}(1, \alpha), \quad \forall \bullet \in \mathcal{Q}, \\ X_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\mathsf{ind}} \mathcal{B}(\pi_{\bullet \bullet}) \end{split}$$

Stochastic block models – examples of topology

Community network

Stochastic block models – examples of topology

Star network

```
pi <- matrix(c(0.05,0.3,0.3,0),2,2)
star <- igraph::sample_sbm(100, pi, c(4, 96))
plot(star, vertex.label=NA, vertex.color = rep(1:2,c(4,96)))</pre>
```


Degree distributions

Conditional degree distribution

The conditional degree distribution of a node $i \in q$ is

$$D_i|i \in q \sim \mathrm{b}(n-1,\bar{\pi}) \approx \mathcal{P}(\lambda_q), \qquad \bar{\pi}_q = \sum_{\ell=1}^Q \alpha_\ell \pi_{q\ell}, \quad \lambda_q = (n-1)\bar{\pi}_q$$

Conditional degree distribution

The degree distribution of a node i can be approximated by a mixture of Poisson distributions:

$$\mathbb{P}(D_i = k) = \sum_{q=1}^{Q} \alpha_q \exp\left\{-\lambda_q\right\} \frac{\lambda_q^k}{k!}$$

Likelihoods

Complete-data loglikelihood

$$\log L(\mathbf{X}, \mathbf{Z}) = \sum_{i,q} Z_{iq} \log \alpha_q + \sum_{i < i,q} Z_{iq} Z_{j\ell} \log \pi_{q\ell}^{X_{ij}} (1 - \pi_{q\ell})^{1 - X_{ij}}.$$

Conditional expectation of the complete-data loglikelihood

$$\mathbb{E}_{\mathbf{Z}|\mathbf{X}}\left[\log L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{Z})\right] = \sum_{i, q} \tau_{iq} \log \alpha_q + \sum_{i < j, q, \ell} \eta_{ijq\ell} \log \pi_{q\ell}^{X_{ij}} (1 - \pi_{q\ell})^{1 - X_{ij}}$$

where τ_{iq} , $\eta_{ijq\ell}$ are the posterior probabilities:

- $\tau_{iq} = \mathbb{P}(Z_{iq} = 1|\mathbf{X}) = \mathbb{E}[Z_{iq}|\mathbf{X}].$
- $\eta_{ijq\ell} = \mathbb{P}(Z_{iq}Z_{j\ell} = 1|\mathbf{X}) = \mathbb{E}[Z_{iq}Z_{j\ell}|\mathbf{X}].$

Outline

Model-based method

- 1 Mixture models
- 2 The Stochastic Block Model (SBM)

The Erdös-Rényi model and their limitations Mixture of Erdös-Rényi and the SBM

Inference in SBM with variational EM

The EM strategy does not apply directly for SBM

Ouch: another intractability problem

- the Z_{iq} are not independent conditional on $(X_{ij}, i < j)$...
- we cannot compute $\eta_{ijq\ell} = \mathbb{P}(Z_{iq}Z_{j\ell} = 1|\mathbf{X}) = \mathbb{E}\left[Z_{iq}Z_{j\ell}|\mathbf{X}\right]$,
- the conditional expectation $Q(\theta)$, i.e. the main EM ingredient, is intractable.

Solution: mean field approximation

Approximate $\eta_{ijq\ell}$ by $\tau_{iq}\tau_{j\ell}$, i.e., assume conditional independence between Z_{iq}

→ This can be formalized in the variational framework

Revisting the EM algorithm I

Proposition

Consider a distribution \mathbb{Q} for the $\{Z_{iq}\}$. We have

$$\log L(\boldsymbol{\theta}; \mathbf{X}) = \mathbb{E}_{\mathbb{Q}}[\log L(\boldsymbol{\theta}, \mathbf{X}, \mathbf{Z})] + \mathcal{H}(\mathbb{Q}) + \mathrm{KL}(\mathbb{Q} \mid \mathbb{P}(\mathbf{Z} | \mathbf{X}; \boldsymbol{\theta})),$$

where ${\cal H}$ is the entropy and ${\rm KL}(\cdot|\cdot)$ is the Kullback-Leibler divergence:

$$\mathcal{H}(\mathbb{Q}) = -\sum_{z} \mathbb{Q}(z) \log \mathbb{Q}(z) = -\mathbb{E}_{\mathbb{Q}}[\log \mathbb{Q}(Z)]$$
$$KL(\mathbb{Q} \mid \mathbb{P}(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta})) = \sum_{z} \mathbb{Q}(z) \log \frac{\mathbb{Q}(z)}{\mathbb{P}(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta})} = \mathbb{E}_{\mathbb{Q}} \left[\log \frac{\mathbb{Q}(z)}{\mathbb{P}(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta})} \right]$$

Revisting the EM algorithm II

Let

$$J(\mathbb{Q}, \boldsymbol{\theta}) \triangleq \mathbb{E}_{\mathbb{Q}} \left(\log L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{Z}) \right) + \mathcal{H}(\mathbb{Q})$$

The steps in the EM algorithm may be viewed as:

Expectation step : choose $\mathbb Q$ to maximize $J(\mathbb Q; \boldsymbol{\theta}^{(t)})$

The solution is $\mathbb{P}(\mathbf{Z}|\mathbf{X};\boldsymbol{\theta}^{(t)})$

Maximization step : choose $oldsymbol{ heta}$ to maximize $J(\mathbb{Q}^{(t)};oldsymbol{ heta})$

The solution maximizes $\mathbb{E}_{\mathbf{Z}|\mathbf{X};\boldsymbol{\theta}^{(t)}}\left(\log L(\boldsymbol{\theta};\mathbf{X},\mathbf{Z})\right)$

Variational approximation for SBM

Problem for SBM

 $\mathbb{P}(\mathbf{Z}|\mathbf{X}; \pmb{ heta}^{(t)})$ cannot be computed thus the E-step cannot be solved.

Idea

Choose $\mathbb Q$ in a class of function so that the E-step can be solved.

Family of distribution that factorizes

We chose $\mathbb Q$ the multinomial distribution so that

$$\mathbb{Q}(\mathbf{Z}) = \prod_{i=1}^{n} \mathbb{Q}_i(Z_i) = \prod_{i=1}^{n} \prod_{q=1}^{Q} \tau_{iq}^{Z_{iq}},$$

where
$$\tau_{iq} = \mathbb{Q}_i(Z_i = q) = \mathbb{E}_{\mathbb{Q}}(Z_{iq})$$
, with $\sum_q \tau_{iq} = 1$ for all $i = 1, \dots, n$.

Variational EM for SBM: the criterion

Lower bound of the loglikehood

Since $\mathbb Q$ is an approximation of $\mathbb P(\mathbf Z|\mathbf X),$ the Kullback-Leibler divergence is non-negative and

$$\log L(\boldsymbol{\theta}; \mathbf{X}) \geq \mathbb{E}_{\mathbb{Q}}[\log L(\boldsymbol{\theta}, \mathbf{X}, \mathbf{Z})] + \mathcal{H}(\mathbb{Q}) = J(\mathbb{Q}, \boldsymbol{\theta}).$$

For the SBM,

$$J(\mathbb{Q}, \boldsymbol{\theta}) = \sum_{i,q} \tau_{iq} \log \alpha_q + \sum_{i < j,q,\ell} \tau_{iq} \tau_{j\ell} \log b(X_{ij}; \pi_{q\ell}) - \sum_{i,q} \tau_{iq} \log(\tau_{iq}),$$

 \leadsto we optimize the loglikelihood lower bound $J(\mathbb{Q}, \theta) = J(\tau, \theta)$ in (τ, θ) .

E and M steps for SBM

Variational E-step

Maximizing $J(\tau)$ for fixed θ , we find a fixed-point relationship:

$$\hat{\tau}_{iq} \propto \alpha_q \prod_j \prod_\ell b(X_{ij}, \pi_{q\ell})^{\hat{\tau}_{j\ell}} \tag{1}$$

M-step

Maximizing $J(\boldsymbol{\theta})$ for fixed $\boldsymbol{\tau}$, we find,

$$\hat{\alpha}_q = \frac{1}{n} \sum_{i} \hat{\tau}_{iq}, \quad \hat{\pi}_{q\ell} = \frac{\sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{j\ell} X_{ij}}{\sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{j\ell}}.$$
 (2)

Model selection

We use our lower bound of the loglikelihood to compute an approximation of the $\ensuremath{\mathsf{ICL}}$

$$\begin{aligned} \text{vICL}(Q) &= \mathbb{E}_{\hat{\mathbb{Q}}}[\log L(\hat{\boldsymbol{\theta}}); \mathbf{X}, \mathbf{Z}] \\ &- \frac{1}{2} \left(\frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} + (Q-1) \log(n) \right), \end{aligned}$$

where

$$\mathbb{E}_{\hat{\mathbb{Q}}}[\log L(\hat{\boldsymbol{\theta}}; \mathbf{X}, \mathbf{Z})] = J(\hat{\boldsymbol{\tau}}, \hat{\boldsymbol{\theta}}) - \mathcal{H}(\hat{\mathbb{Q}}).$$

The variational BIC is just

$$\mathrm{vBIC}(Q) = J(\hat{\boldsymbol{\tau}}, \hat{\boldsymbol{\theta}}) - \frac{1}{2} \left(\frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} + (Q-1) \log(n) \right).$$

Example on the French blogsphere (I)

Example on the French blogsphere (II)

Example on the French blogsphere (III)

```
library(Matrix)
clusters <-
   apply(mySBM_collection$memberships[[10]]$Z, 1, which.max)
image(Matrix(adj_blog[order(clusters), order(clusters)]))</pre>
```


Example on the French blogsphere (IV) I

```
library(RColorBrewer); pal <- brewer.pal(10, "Set3")</pre>
g <- graph_from_adjacency_matrix(</pre>
  adj_blog,
  mode = "undirected",
  weighted = TRUE,
  diag = FALSE
V(g)$class <- clusters
V(g)$size <- 5
V(g) $frame.color <- "white"
V(g)$color <- pal[V(g)$class]
V(g)$label <- ""
E(g) $arrow.mode <- 0
par(mar = c(0,0,0,0))
plot(g, edge.width=E(g)$weight)
```

Example on the French blogsphere (IV) II

