# Multispectral Imaging Guidelines



Filter Wheel

WORKING DRAFT Version 7 (July 2020)

Camera Head

\*NOTE: filters will be rectangular

# 1. Mastcam-Z Filter Overview

Each Mastcam-Z takes images through a Bayer pattern of RGB microfilters bonded onto a 1600x1200 pixel CCD. Each Mastcam-Z also images through an 8-position filter wheel to take color images in "human-like" visible wavelengths in filter positions L0 and R0, as well as additional narrowband images through visible, near-IR, and solar neutral density filters in L7 and R7.



## Mastcam-Z Left (L) and Right (R) filtersa

| Filter Number        | $\lambda_{eff} \pm HWHM$ (nm) $^{b}$ |                  |
|----------------------|--------------------------------------|------------------|
| LO/RO (Red Bayer)    | 630 ± 43                             | 631 ± 43         |
| LO/RO (Green Bayer)  | 544 ± 41                             | 544 ± 42         |
| LO/RO (Blue Bayer)   | 480 ± 46                             | 480 ± 46         |
| L1 / R1              | 800 ± 9                              | 800 ± 9          |
| L2 / R2              | 754 ± 10                             | 866 ± 10         |
| L3 / R3              | 677 ± 11                             | 910 ± 12         |
| L4 / R4              | 605 ± 9                              | 939 ± 12         |
| L5 / R5              | 528 ± 11                             | 978 ± 10         |
| L6 / R6              | 442 ± 12                             | 1022 ± 19        |
| L7 / R7 <sup>c</sup> | 590 ± 88, ND6                        | $880\pm10$ , ND5 |



Above Left: a Red text means new performance compared to MSL/Mastcam; b effective band center wavelength with half-width of the bandpass at half-maximum for each filter; c Filters L7 and R7 are for direct imaging of the Sun using Neutral Density (ND) coatings that attenuate the flux by factors of 106 and 105, respectively. Above Right: Mastcam-Z filter transmission profiles as measured during calibration (see Hayes et al. submitted SSR paper for details).

## Helpful Resources

#### **Helpful Mastcam-Z Science Team Contacts:**

- Jim Bell (Mastcam-Z PI): Jim.Bell@asu.edu; (607) 227-6402
- Justin Maki (Mastcam-Z Deputy PI): justin.n.maki@jpl.nasa.gov; (818) 354-6227
- Melissa Rice (Multispectral Co-Lead): melissa.rice@wwu.edu; (626) 840-2521
- Jeff Johnson (Multispectral Co-Lead): Jeffrey.R.Johnson@jhuapl.edu; (443) 876-1718
- Alex Hayes (Calibration Expert): hayes@astro.cornell.edu; (607) 793-7531
- Kjartan Kinch (Calibration Target Expert): kinch@nbi.ku.dk; (+45) 28 96 32 86
- Elsa Jensen (Mastcam-Z Uplink Lead): jensen@msss.com; (858) 361-6940
- Kristen Paris (Mastcam-Z Downlink Lead): kparis@asu.edu; (716) 348-7979

References: Bell et al.(2014):

http://ssed.gsfc.nasa.gov/IPM/PDF/1151.pdf

SSR papers: Bell et al., Hayes et al., and Kinch et al. (links to be added when in press)

Online Spectral Database: Laboratory spectra compiled from multiple databases are available to view, plot interactively, and download for comparison to Mastcam-Z data: http://spectro.geol.wwu.edu/

# Example mineral spectra convolved to Mastcam-Z bandpasses





# Multispectral Imaging Guidelines



WORKING DRAFT
Version 7
(July 2020)

# 2. Planning Multispectral Observations

#### 2.1 Target Considerations

Indications of a promising multispectral target may include (but are not limited to):

- Color variations in previously acquired imaging (such as RGB or orbital imaging)
- **Unusual morphologies**, including small scale (but resolvable) features that may indicate alteration or diagenesis
- Significant **differences in chemistry** relative to a previous site or within the present site, especially variations in Fe or Mn abundance
- Potential for diverse lithologies within the field-of-view, including conglomerate rocks, unit contacts, and long-distance observations of different units.
- "Fresh" surfaces created by the rover (e.g., brushed/broken rocks, drill fines)
- Sample caching targets should be well-documented in all filters.

Low-dust surfaces are always preferred.



MSL Mastcam enhanced color example of an iron meteorite multispectral target



MSL Mastcam enhanced color example of a rock target broken by MSL's wheels, with a "fresh," dust-free surface exposed

When possible, the frame should also include **targets of other instruments** as well, to facilitate exposed comparisons with other data.

#### 2.2 Lighting and Geometry

- Targets need to be as fully illuminated as possible. Minimize shadows, either from rocks or other topographic elements, or rover components.
- For horizontal surfaces, the best results are at low emission angles (when Mastcam is looking as straight down as possible at the target).
- For vertical surfaces, the best results are when the surface is directly illuminated, which may be late afternoon or early morning. Consult with a Mastcam-Z PUL to model shadowing at different times of day.

### 2.3 Time of Day Restrictions

- Best results come from measurements taken as close to 12:00 LTST as possible (minimizes shadows; also, assumptions used in the cal target calibration procedure break down when the Sun is low).
- Restrict multispectral observations to after ~10:30 LTST and before ~13:30 LTST.
- Exceptions can be made to these timing restrictions for vertical surfaces that require other times of day for direct illumination (see 2.2 above).

## 2.4 Exposure Times

- Bright elements in the field of view (e.g., glints from rover hardware, light-toned veins, and other high-albedo materials) can lead to image saturation in one or more filters. To avoid saturation, work with a Mastcam-Z PUL to check the exposure time.
- In downlinked raw data, check the bright portions of each image for saturation (DN > 3000; ask a Mastcam-Z team member)

# 2.5 Calibration Target Imaging

- For any multispectral sequence that requires calibration to radiance factor (I/F), associated images of the primary target must be acquired at the same approximate local time of sol (within 20 min) and with the same filter set as the to-becalibrated multispectral sequence.
- Images of the secondary target will be taken periodically, but do not need to be associated with every multispectral sequence.
- Calibration sequences are available at several zoom settings. Work with a Mastcam-Z PUL to select the best sequence.

## **Coming Soon!**

- · Zoom, resolution and compression guidelines
- Recommended filter subsets for iron oxides, hydration, etc.
- Links to calibrated IOF Mastcam-Z data and "quicklook" products
- · Mastcam-Z SIS

