How SGD Selects the Global Minima in Over-parameterized Learning: A Dynamical Stability Perspective

Lei Wu¹, Chao Ma², Weinan E^{2,3}

¹School of Mathematical Science, Peking University, China ²Program of Applied and Computational Mathematics, Princeton University, USA ³Beijing Institute of Big Data Research, China Contact: leiwu@pku.edu.cn, chaom@princeton.edu, weinan@math.princeton.edu

INTRODUCTION

- In the over-parameterized setting, the empirical loss function has many global minima.
- Different algorithms choose different set of global minima, thus lead to different generalization performance.
- Question: What is the mechanism of global minima selecting for algorithms, especially SGD?

THE ESCAPE PHENOMENON

Figure 1: Fast escape phenomenon in fitting corrupted FashionMNIST.

- Though the GD iterations is already close to a global minimum, when the optimizer is switched from GD to SGD (with the same learning rate), the iterator escapes quickly from the global minimum and converges to another global minimum.
- By the right figure, the global minimum found by SGD generalizes better than that found by GD.

TOY EXAMPLE

 $f_1(x) = \min\{x^2, 0.1(x-1)^2\}, f_2(x) = \min\{x^2, 1.9(x-1)^2\}.$

SGD with learning rate 0.7 escapes the right minimum because of unstability.

LINEAR STABILITY

• Definition (Fixed point):

We say x^* is a fixed point of stochastic dynamics

$$x_{t+1} = x_t - G(x_t; \xi_t)$$
 (1)

if for any ξ , we have $G(x^*; \xi) = 0$.

Definition (Linear stability):

Let x^* be a fixed point of stochastic dynamics (1). Consider the linearized dynamical system:

$$\tilde{x}_{t+1} = \tilde{x}_t - A_{\mathcal{E}_t}(\tilde{x}_t - x^*), \tag{2}$$

where $A_{\xi_t} = \nabla_x G(x^*, \xi_t)$. We say that x^* is *linearly stable* if there exists a constant C such that,

$$\mathbb{E}\|\tilde{x}_t\|^2 \le C\|\tilde{x}_0\|^2, \text{ for all } t > 0.$$
 (3)

THEORY FOR SGD

THEOREM

Consider an approximation of f(x) near global minimum x^* , $f(x) \approx \frac{1}{2n} \sum_{i=1}^{n} (x - x^*)^{\top} H_i(x - x^*)$. The global minimum x^* is linearly stable for SGD with learning rate η and batch size B if the following condition is satisfied

$$\lambda_{\max} \left\{ (I - \eta H)^2 + \frac{\eta^2 (n - B)}{B(n - 1)} \Sigma \right\} \le 1.$$
 (4)

In (4), $H = \frac{1}{n} \sum_{i=1}^{n} H_i, \Sigma = \frac{1}{n} \sum_{i=1}^{n} H_i^2 - H^2$.

The selection of global minima can be shown in a sharpness-non-uniformity diagram, with sharpness $a = \lambda_{\max}(H)$, non-uniformity $s = \lambda_{\max}(\Sigma)$.

Figure 2: The sharpness-non-uniformity diagram, showing the rectangular region that is linearly stable for SGD. The left and right figure shows the influence of batch size B and learning rate η , respectively.

NUMERICAL EXPERIMENTS

Learning rate and sharpness

Table 1: Sharpness of the solutions found by GD with different learning rates. Dashes indicate that GD blows up with that learning rate.

η	0.01	0.05	0.1	0.5
FashionMNIST	53.5 ± 4.3	39.3 ± 0.5	19.6 ± 0.15	3.9 ± 0.0
CIFAR10	198.9 ± 0.6	39.8 ± 0.2	19.8 ± 0.1	3.6 ± 0.4
prediction $2/\eta$	200	40	20	4

- GD tends to select the sharpest possible minima.
- Minima selected by SGD

Figure 3: The sharpness-non-uniformity diagram for the minima selected by SGD. Different colors correspond to different set of hyper-parameters. The dash line shows the predicted upperbound for the non-uniformity.

- The points for different set of hyper-parameters lie below the corresponding dash line.
- The sharpness and non-uniformity are correlated.

• The correlation of sharpness and non-uniformity

Figure 4: Scatter plot of sharpness and non-uniformity, suggesting that the non-uniformity and sharpness are roughly proportional to each other for these models.