Lecture 19: Decision trees

Reading: Section 8.1

STATS 202: Data mining and analysis

Sergio Bacallado November 9, 2013

Decision trees, mile high view

- 1. Find a partition of the space of predictors.
- Predict a constant in each set of the partition.
- 3. The partition is defined by splitting the range of one predictor at a time.
 - \rightarrow Not all partitions are possible.

Example: Predicting a baseball player's salary

The prediction for a point in R_i is the average of the training points in R_i .

How is a decision tree built?

- ▶ Start with a single region R_1 , and iterate:
 - 1. Select a region R_k , a predictor X_j , and a splitting point s, such that splitting R_k with the criterion $X_j < s$ produces the largest decrease in RSS:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2$$

- 2. Redefine the regions with this additional split.
- ► Terminate when there are 5 observations or fewer in each region.
- ▶ This grows the tree from the root towards the leaves.

How is a decision tree built?

How do we control overfitting?

- ▶ Idea 1: Find the optimal subtree by cross validation.
 - → There are too many possibilities, so we would still over fit.
- ▶ Idea 2: Stop growing the tree when the RSS doesn't drop by more than a threshold with any new cut.
 - ightarrow In our greedy algorithm, it is possible to find good cuts after bad ones.

How do we control overfitting?

Solution: Prune a large tree from the leaves to the root.

Weakest link pruning:

Starting with T_0 , substitute a subtree with a leaf to obtain T_1 , by minimizing:

$$\frac{RSS(T_1) - RSS(T_0)}{|T_0| - |T_1|}.$$

- Iterate this pruning to obtain a sequence $T_0, T_1, T_2, \dots, T_m$ where T_m is the null tree.
- \blacktriangleright Select the optimal tree T_i by cross validation.

How do we control overfitting?

... or an equivalent procedure

Cost complexity pruning:

▶ Solve the problem:

- When $\alpha = \infty$, we select the null tree.
- When $\alpha = 0$, we select the full tree.
- ▶ The solution for each α is among T_1, T_2, \ldots, T_m from weakest link pruning.
- Choose the optimal α (the optimal T_i) by cross validation.

Cross validation

- 1. Construct a sequence of trees T_0, \ldots, T_m .
- 2. Split the training points into 10 folds.
- 3. For $k = 1, \dots, 10$,
 - ▶ Use every fold except the kth to estimate the averages in each region, for each tree T_i .
 - For each tree T_i , calculate the RSS in the test fold.
- 4. For each tree, T_i , average the 10 test errors, and select the tree that minimizes the error.

Cross validation

- 1. Construct a sequence of trees T_0, \ldots, T_m .
- 2. Split the training points into 10 folds.
- 3. For $k = 1, \ldots, 10$,
 - For each tree T_i , use every fold except the kth to estimate the averages in each region.
 - \blacktriangleright For each tree T_i , calculate the RSS in the test fold.
- 4. For each tree, T_i , average the 10 test errors, and select the tree that minimizes the error.

WRONG WAY TO DO CROSS VALIDATION!

Cross validation, the right way

- 1. Split the training points into 10 folds.
- 2. For k = 1, ..., 10, using every fold except the kth:
 - ▶ Construct a sequence of trees T_1, \ldots, T_m , and find the prediction for each region.
 - \blacktriangleright For each tree T_i , calculate the RSS on the test set.
- 3. Select the tree that minimizes the average test error.

Note: We are doing all fitting, including the construction of the trees, using only the training data.

Example. Predicting baseball salaries

Example. Predicting baseball salaries

Classification trees

- ▶ They work much like regression trees.
- ▶ We predict the response by **majority vote**, i.e. pick the most common class in every region.
- ▶ Instead of trying to minimize the RSS:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \bar{y}_{R_m})^2$$

we minimize a classification loss function.

Classification losses

▶ The 0-1 loss or misclassification rate:

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} \mathbf{1}(y_i \neq \hat{y}_{R_m})$$

The Gini index:

$$\sum_{m=1}^{|T|} \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk}),$$

where $\hat{p}_{m,k}$ is the proportion of class k in R_m .

▶ The cross-entropy:

$$-\sum_{m=1}^{|T|}\sum_{k=1}^{K}\hat{p}_{mk}\log(\hat{p}_{mk}).$$

Classification losses

► The Gini index and cross-entropy are better measures of the purity of a region, i.e. they are low when the region is mostly one category.

Motivation for the Gini index:

If instead of predicting the most likely class, we predict a random sample from the distribution $(\hat{p}_{1,m},\hat{p}_{2,m},\ldots,\hat{p}_{K,m})$, the Gini index is the expected misclassification rate.

▶ It is typical to use the Gini index or cross-entropy for growing the tree, while using the misclassification rate when pruning the tree.

Example. Heart dataset.

Some advantages of decision trees

- ▶ Very easy to interpret!
- Closer to human decision-making.
- Easy to visualize graphically.
- ▶ They easily handle qualitative predictors and missing data.