Àlex Batlle Casellas

- 3.19. Sigui f un endomorfisme d'un espai vectorial E.
- (a) Proveu que $\operatorname{Im} f^{n+1} \subset \operatorname{Im} f^n$ i $\operatorname{Nuc} f^n \subset \operatorname{Nuc} f^{n+1}$ per a tot nombre natural n. Com que $f \in \operatorname{End} f$, E és f-invariant, és a dir, que $f(E) \subseteq E$. També tenim que, per ser endomorfisme, $f(f(E)) \subseteq f(E)$, o el que és el mateix, que $\operatorname{Im} f^2 \subseteq \operatorname{Im} f$. Fem un procés inductiu sobre n per veure que

$$\operatorname{Im} f^{n+1} \subset \operatorname{Im} f^n \tag{1}$$

és compleix:

- 1. <u>Cas base</u>: n = 0En aquest cas, veiem que Im $f^{0+1} \subseteq \text{Im } f^0 = E$ Com ja hem vist, $f(E) \subseteq E$, i per tant és cert per n = 0.
- 2. Hipòtesi d'inducció:

$$\forall n \le n_0 \in \mathbb{N} \ \operatorname{Im} f^{n+1} \subseteq \operatorname{Im} f^n. \tag{2}$$

3. <u>Pas inductiu:</u> volem veure que (2) és compleix per tota $n > n_0$. Per veure-ho, construïm l'aplicació lineal f^{n+1} :

$$f^{n+1}: \operatorname{Im} f^n \longrightarrow E$$

 $v \longmapsto f^{n+1}(v) := f(v)$.

Com que f és un endomorfisme, necessàriament $f(V) \subseteq V \ \forall V \subseteq E$ i $f^{n+1}(V) \subseteq \operatorname{Im} f^n \ \forall n > n_0, V \subseteq \operatorname{Im} f^n$. Per tant, $f^{n+1}(\operatorname{Im} f^n) \subseteq \operatorname{Im} f^n \ \forall n \in \mathbb{N}.\square$ Pel cas del nucli, tenim:

$$\begin{aligned} \operatorname{Nuc} f &\subseteq E \\ \operatorname{Nuc} f^2 &\subseteq \operatorname{Im} f \\ \dots \\ \operatorname{Nuc} f^n &\subseteq \operatorname{Im} f^{n-1} \end{aligned}$$

Utilitzant el resultat anterior:

$$\operatorname{Im} f^{n+1} \subseteq \operatorname{Im} f^n \subseteq \operatorname{Im} f^{n-1}$$

Ja que ${\rm Im}\, f^{k-1}$ és l'espai de sortida de l'aplicació f^k per tota k natural. Ara volem veure:

$$\operatorname{Nuc} f^n \subseteq \operatorname{Nuc} f^{n+1} \ \forall n \in \mathbb{N}. \tag{3}$$

Farem també un procés inductiu sobre n per veure aquest resultat:

- (a) Cas base: n = 0
- (b) Demostreu que, si E té dimensió finita, existeix un natural m tal que $\operatorname{Im} f^n = \operatorname{Im} f^m$ i $\operatorname{Nuc} f^n = \operatorname{Nuc} f^m$ per a tot $n \geq m$.
- (c) Proveu, donant un contraexemple a l'espai de polinomis $\mathbb{R}[x]$, que l'apartat (b) no és cert si E no té dimensió finita.