Équations différentielles

Calcul formel – TP 9

Toutes les questions peuvent être traitées avec l'aide de Sage, sauf lorsque l'on vous demande de faire une preuve « à la main »!

1. Une équation avec condition initiale

On considère l'équation différentielle

$$y' = 2y + \exp(x).$$

- 1. Résoudre cette équation différentielle.
- 2. On considère la solution qui vérifie la condition initiale y(0) = k.
 Énigme. Trouver la valeur de k ∈ ℚ telle que la solution vérifie y(ln(7)) = 123456. Vous donnerez la réponse sous la forme d'un entier. Par exemple si la valeur de k était ⁵⁶⁷/₈₉ alors la réponse attendue serait 56789.

2. Le poulet de Newton

Comment Newton peut-il nous aider à cuire un poulet?

Le loi de réchauffement (ou de refroidissement) de Newton affirme que la vitesse de réchauffement d'un corps est proportionnelle à l'écart de température entre le corps et le milieu où il se trouve. Mathématiquement la loi de Newton s'écrit :

$$\frac{\mathrm{d}T}{\mathrm{d}t}(t) = c(F - T(t))$$

οù

- T est la température du poulet (en °C);
- *F* est la température du four ;
- *t* est le temps (en minutes);
- *c* est une constante.
- 1. Dans un four chaud à $F_0 = 250\,^{\circ}$ C, on enfourne un poulet sortant du réfrigérateur à $T_0 = 5\,^{\circ}$ C. Le poulet est cuit lorsque sa température atteint 200 °C. Sachant que le poulet est cuit au bout de 100 minutes, combien vaut la constante c? (Une solution numérique suffira pour la suite.)
- 2. Quelques jours plus tard, on veut de nouveau faire cuire un poulet, mais cette fois on a oublié de préchauffer le four. La température du four varie selon la loi :

$$F(t) = 250 - 230 \exp\left(-\frac{1}{5}t\right).$$

On supposera que la constante *c* est la même qu'auparavant. La réponse sera donnée en minutes, arrondie à l'entier le plus proche.

3. Balistique

On lance un boulet de canon. Une fois le boulet parti, il est soumis à son poids et éventuellement une force de frottement. Le principe fondamental de la mécanique s'écrit

$$\vec{P} + \vec{F} = m\vec{a}$$

où \vec{P} est le poids, \vec{F} est la force de frottement, m la masse et \vec{a} l'accélération.

Le tir part de l'origine $x_0=0$, $z_0=0$, avec un vitesse initiale $\vec{v_0}$ selon un angle α avec l'horizontale. Le vecteur vitesse initial se décompose donc en $\vec{v_0}=v_0\cos\alpha\vec{i}+v_0\sin\alpha\vec{j}$.

1. Sans frottements.

Les équations du mouvement sont déterminées par les équations différentielles :

$$\begin{cases} x''(t) = 0 \\ z''(t) = -g \end{cases} \begin{cases} x'(0) = v_0 \cos \alpha \\ z'(0) = v_0 \sin \alpha \end{cases} \begin{cases} x(0) = 0 \\ z(0) = 0 \end{cases}$$

Calculer les équations x(t) et z(t) du mouvement du boulet. Tracer les trajectoires (x(t), z(t)) pour différentes valeurs de l'angle α . On prendra $v_0 = 100$ et g = 9.8.

2. Parabole de sécurité.

Fixons v_0 et g. La parabole d'équation

$$z = \frac{v_0^2}{2g} - \frac{g}{2v_0^2}x^2$$

est l'enveloppe de la famille des trajectoires indexées par l'angle α . Tracer cette parabole sur le graphique de la question précédente.

Un point situé au-dessus de cette parabole de sécurité ne peut jamais être atteint par le boulet, quelque soit l'angle α (par contre ν_0 et g sont fixés).

3. Avec frottements.

On suppose maintenant qu'il y a des frottements et que ceux-ci s'opposent au déplacement. On modélise ceci par $\vec{F} = -f \, m \vec{v}$ où \vec{v} est le vecteur vitesse. Les équations du mouvement vérifient alors :

$$\begin{cases} x''(t) = -fx'(t) \\ z''(t) = -g - fz'(t) \end{cases}$$

avec les mêmes conditions initiales qu'auparavant.

Calculer les nouvelles trajectoires et les tracer pour différentes valeurs de l'angle α . On prendra $\nu_0 = 100$, g = 9.8 et f = 0.03.

4. **Énigme.** Vous êtes à une abscisse $x_S = 500$. On fixe $v_0 = 100$, g = 9.8 et f = 0.03.

À quelle hauteur minimale z_S , serez-vous sûr d'être en sécurité?

Par lecture graphique, vous donnerez la réponse sous la forme d'un entier, obtenu par arrondi à la valeur supérieure. Par exemple si vous aviez obtenu $z_S = 123.2$ alors la réponse attendue serait 124.

4. Méthode d'Euler

Lorsque l'on ne sait pas trouver une solution formelle d'une équation différentielle, on peut cependant en calculer une solution approchée.

Partie I. Méthode d'Euler classique.

Soit une équation différentielle y' = f(x, y). La pente m de la solution passant par le point de coordonnées (x_0, y_0) est $m = y'(x_0)$, c'est donc aussi $m = f(x_0, y_0)$. On approxime donc la courbe entre x_0 et x_1 par la portion de la droite tangente en x_0 . Ainsi on pose $y_1 = y_0 + (x_1 - x_0)f(x_0, y_0)$. On réitère le procédé sur $[x_1, x_2]$ en considérant la fonction solution passant par le point (x_1, y_1) ...

Les calculs à chaque étape seront effectués par la même formule :

$$\begin{cases} x_{k+1} = x_k + h \\ y_{k+1} = y_k + hf(x_k, y_k) \end{cases}$$

où h > 0 est un pas fixé et (x_0, y_0) est un point donné par la condition initiale.

- 1. Étant donnés f, (x_0, y_0) , h et un entier n, écrire une fonction qui retourne les points (x_0, y_0) , (x_1, y_1) ,..., (x_n, y_n) .
- 2. Tracer la ligne polygonale obtenue pour $y' = x \cos(x)$, y(0) = 1 (donc $(x_0, y_0) = (0, 1)$) et h = 0.4. Comparer avec la courbe de la solution exacte.

3. Tracer plusieurs (approximations de) courbes intégrales de l'équation $y' = \sin(x^2y)$ pour laquelle on ne connaît pas de solution explicite.

Partie II. Méthode d'Euler améliorée.

On améliore la méthode précédente en choisissant une meilleure pente pour la portion de droite. On commence comme auparavant : on calcule la pente $m = f(x_0, y_0)$ au point (x_0, y_0) . On calcule comme précédemment le point (x_1, y_1) , la pente d'une courbe intégrale en ce point est $m' = f(x_1, y_1)$. On repart du point (x_0, y_0) et cette fois on trace la droite passant par ce point et de pente $\frac{m+m'}{2}$, on obtient un point (x_1, \tilde{y}_1) . Les calculs à chaque étape seront donc effectués par la formule :

$$\begin{cases} x_{k+1} &= x_k + h \\ \tilde{y}_{k+1} &= \tilde{y}_k + \frac{h}{2} \left(f(x_k, \tilde{y}_k) + f(x_k + h, \tilde{y}_k + h f(x_k, \tilde{y}_k)) \right) \end{cases}$$

- 1. Reprendre les questions de la première partie et comparer les deux méthodes.
- 2. Pour l'équation différentielle y'=y, y(0)=1 et $h=\frac{1}{1000}$, alors $\tilde{y}(1)$ donne une approximation de e par un rationnel.

Énigme. Combien de chiffres après la virgule sont exacts?