CHENNAI MATHEMATICAL INSTITUTE

B.Sc. Analysis-2

End-term Examination, 2023, Aug-Nov

100

10

Part A

The problems in this section are either already discussed in the class or a slight variation of that. Give the required proof completely with all details. You can score up to a maximum of 50 marks from this section.

- 1. If $U \subseteq \mathbb{R}^n$ is open and connected, then show that U is path connected.
- 2. Answer (with proofs) whether the set of all real invertible matrices in $M_n(\mathbb{R})$ and the set of all complex invertible matrices in $M_n(\mathbb{C})$ are path connected?
- 3. Let X be a compact metric space. Let A be a subalgebra of $C(X)_{\mathbb{R}}$. Assume that A separates points of X. Show that the closure of A in C(X) with respect to $\|\cdot\|_{\infty}$ is either C(X) or there exists an $x_0 \in X$ such that $A = \{f \in C(X) : f(x_0) = 0\}$. ((You can assume Stone-Weistrass theorem.)
- 4. Let $k \in C([0,1] \times [0,1])$. Define $T_k : C([0,1]) \mapsto C([0,1])$ by

$$(T_k f)(x) = \int_0^1 k(x, y) f(y) dy.$$

Show that the set $\{T_k f : ||f|| \le 1\}$ is totally bounded in C([0,1]).

- 5. Let H be a separable Hilbert space. Show that an orthonormal set $\{e_i\}_{i\in I}$ (where I is countable) is maximal if and only if $x = \sum_{i\in I} \langle x, e_i \rangle e_i$ for all $x \in H$.
- 6. Assuming uniform boundedness principle prove the existence of a function whose Fourier series does not converge at any given point.
- 7. Let $f:[0,2\pi] \to \mathbb{C}$ is continuously differentiable, prove that the Fourier sum $S_N(f)$ converges to f uniformly as $|N| \to \infty$.

Part B

You may use any result proved in the class or in assignments. You can score up to a maximum of 75 marks from this section.

- 1. Let X and Y be compact metric spaces and $f: X \mapsto Y$ a continuous surjection such that for all $y \in Y$, $f^{-1}(y)$ is connected. Show that for every connected subset $C \subseteq Y$, $f^{-1}(C)$ is connected.
- 2. Let $F:[0,1]\times[0,1]\mapsto\mathbb{R}$ be continuous and satisfy

$$\int_{0}^{1} \int_{0}^{1} F(x, y) f(x) g(y) dx dy = 0,$$

15

35

for all $f, g \in C([0, 1])$. Show that F identically equals to 0.

- 3. Let $K \subset L^2([-\pi, \pi])$ be a compact subset. Prove that for any given $\epsilon \geq 0$, there exists an $N \in \mathbb{N}$, so that for any $f \in K$, $|n| \geq N$, $|\hat{f}(n)| < \epsilon$.
- 4. Prove either (i) or (ii)
 - (i) Let

$$\Delta_f(r) = \sup_{s,t \in [-\pi,\pi], |s-t| < r} |f(s) - f(t)|.$$

Let $f \in C^0([-\pi, \pi])$ satisfies

$$\int_{-\pi}^{\pi} \frac{\Delta_f(r)}{|r|} dr < \infty.$$

Then show that the Fourier series $\{S_n(f): n \in \mathbb{Z}\}$ onverges uniformly to f.

(ii) Let $f \in C^0([-\pi, \pi])$ which satisfies for some C > 0, $\alpha \in (0, 1]$,

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$

for all $x, y \in [-\pi, \pi]$. Show that the Fourier series $\{S_n(f) : n \in \mathbb{Z}\}$ converges uniformly to f.

- 5. Assuming (Part A, Problem 6), prove that there exists uncountably many continuous functions on $[0, 2\pi]$, whose Fourier series diverge on a dense G_{δ} subset of $[0, 2\pi]$. 20
- 6. Let $f \in C^0([0, 2\pi])$. For a > 0, define

$$(A_a f)(t) = \sum_{n=-\infty}^{\infty} e^{-a|n|} \hat{f}(n) e^{int}, \quad \forall t \in [0, 2\pi]).$$

Prove that $A_a f \mapsto f$ uniformly as $a \mapsto 0$.

7. Prove that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. (Hint: Consider $f(x) = x^2$ on $[-\pi, \pi]$.)