Computational Physics (PHYS414/514) Final Project

Mehmet Eren Erken Koç University

Newton

This part gives calculations of the structures of various types of stars in Newtonian gravity, general relativity (GR), and alternative theories of gravity which try to surpass GR.

A. Lane-Emden Equation

A.1. Stellar Structure in Newtonian Gravity

We start with the standard Newtonian equations for hydrostatic equilibrium in a spherically symmetric star:

1. Mass Continuity:

$$\frac{dm}{dr} = 4\pi r^2 \rho(r),$$

2. Hydrostatic Equilibrium:

$$\frac{dp}{dr} = -\frac{Gm(r)\rho(r)}{r^2}.$$

where:

• m(r): mass enclosed within radius r,

• $\rho(r)$: mass density,

• p(r): pressure,

• G: gravitational constant.

A.2. Polytropic Equation of State

We then close the system using a polytropic equation of state:

$$p = K\rho^{\gamma} = K\rho^{1+\frac{1}{n}},$$

where:

- K: constant related to the microphysics of the stellar material,
- n: polytropic index,
- $\gamma = 1 + \frac{1}{n}$: adiabatic index.

A.3. Dimensionless Variables

To simplify the equations, we introduce dimensionless variables (e.g., Lane–Emden variables):

$$\theta = \left(\frac{\rho}{\rho_c}\right)^{1/n}, \quad \xi = \frac{r}{r_0},$$

where:

- ρ_c : central density,
- $r_0 = \sqrt{\frac{(n+1)K\rho_c^{1/n-1}}{4\pi G}}$: scaling factor for radius.

Substituting $\rho(r) = \rho_c \theta^n(\xi)$ into the equations and using r_0 , we transform the ODEs into the Lane–Emden equation.

A.4. The Lane–Emden Equation

The final result of this procedure is the Lane–Emden equation of index n:

$$\boxed{\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) + \theta^n = 0.}$$

The corresponding boundary conditions at the center $(\xi = 0)$ are: 1. $\theta(0) = 1$, since $\rho(0) = \rho_c$, 2. $\theta'(0) = 0$, for regularity at the origin.

Thus, the Lane–Emden problem is defined by:

$$\begin{cases} \frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) + \theta^n = 0, \\ \theta(0) = 1, \quad \theta'(0) = 0. \end{cases}$$

A.5. Series Expansion at the Center

We verify the regularity condition near $\xi=0$ by performing a power-series expansion. Assume:

$$\theta(\xi) = 1 + a_2 \xi^2 + a_4 \xi^4 + \dots$$

Plugging this into the Lane–Emden equation yields the coefficients a_2, a_4, \ldots A calculation from Newton.ipynb part A.1 gives:

$$\theta(\xi) = 1 - \frac{1}{6}\xi^2 + \frac{n}{120}\xi^4 - \cdots,$$

confirming $\theta'(0) = 0$.

A.5.1. Solving the Lane–Emden equation for n = 1

When n = 1, the Lane–Emden equation becomes

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) + \theta = 0,$$

with $\theta(0) = 1$ and $\theta'(0) = 0$.

This ODE can be solved analytically. For n = 1, the solution is:

$$\theta(\xi) = \frac{\sin \xi}{\xi}.$$

Indeed, one checks that

$$\theta(0) = \lim_{\xi \to 0} \frac{\sin \xi}{\xi} = 1, \quad \theta'(0) = 0,$$

and it satisfies the differential equation upon direct substitution. The solution can also be solved using sympy, which is demonstrated in Newton.ipynb part A.2.

A.6. Defining the stellar surface and total mass

A.6.1. Surface of the polytrope

Because $\rho(r) \propto \theta^n(\xi)$, the surface of the star is (by definition) at the first positive $\xi = \xi_n$ such that

$$\theta(\xi_n) = 0.$$

Then the physical radius of the star is

$$R = a\xi_n$$
.

For n = 1, from $\sin(\xi_n)/\xi_n = 0$, the first positive root is $\xi_n = \pi$. For other integer n, one must solve numerically or use known special-function expansions.

A.6.2. Total Mass of the Star

To find the total mass of the star, we start with the dimensionless form of the mass-continuity equation:

$$\frac{dm}{d\xi} = \xi^2 \theta^n.$$

The total mass M of the star is the mass enclosed at the surface, which corresponds to $\xi = \xi_n$, where ξ_n is the dimensionless radius at which $\theta(\xi_n) = 0$. Integrating from the center $(\xi = 0)$ to the surface $(\xi = \xi_n)$:

$$M = 4\pi \rho_c a^3 \int_0^{\xi_n} \xi^2 \theta^n \, d\xi.$$

Using integration by parts to simplify the integral, we start by rewriting the integrand:

$$\int_0^{\xi_n} \xi^2 \theta^n \, d\xi = \left[-\xi^2 \theta' \right]_0^{\xi_n} + \int_0^{\xi_n} 2\xi \theta' \, d\xi.$$

From the Lane–Emden equation:

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) + \theta^n = 0,$$

we know:

$$\xi^2 \theta^n = -\frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right).$$

This implies that the integral of $\xi^2\theta^n$ simplifies directly using the surface boundary conditions:

$$\int_0^{\xi_n} \xi^2 \theta^n \, d\xi = -\left[\xi^2 \frac{d\theta}{d\xi}\right]_0^{\xi_n}.$$

At the center, $\xi=0,$ the regularity condition ensures that $\xi^2\theta'\to 0.$ Therefore:

$$M = 4\pi \rho_c a^3 \left[-\xi_n^2 \theta'(\xi_n) \right].$$

Rewriting $a = R/\xi_n$, where R is the physical radius of the star, we obtain:

$$M = 4\pi \rho_c R^3 \left[-\frac{\theta'(\xi_n)}{\xi_n} \right].$$

A.7. Mass-radius relation for polytropes

Finally, if one fixes the same polytropic index n (i.e., all stars in the family have the same value of n) but allows different central densities ρ_c , then the scaling of a with ρ_c implies a specific power-law relation between M and R.

A.7.1. How a depends on ρ_c

Recall

$$a^2 = \frac{(n+1)K\rho_c^{1/n}}{4\pi G} \implies a \propto \rho_c^{1/(2n)}.$$

Hence

$$R = a\xi_n \propto \rho_c^{1/(2n)}.$$

A.7.2. How M Depends on R

Substituting this into the expression for M:

$$M \propto \rho_c \cdot R^3 \propto R^{-2n} \cdot R^3$$
.

Simplifying gives:

$$M \propto R^{3-2n}$$
.

Using the polytropic equation of state $p \propto \rho^{1+1/n}$ leads to:

$$M \propto R^{\frac{3-n}{1-n}}$$
.

A.7.3. Finding the Constant of Proportionality

To determine the constant of proportionality, we start by expressing the central density ρ_c in terms of other variables. Recall the expression for the Lane–Emden scaling factor a:

$$a^2 = \frac{(n+1)K\rho_c^{1/n}}{4\pi G}.$$

Solving for ρ_c :

$$\rho_c = \left(\frac{4\pi G}{(n+1)K}\right)^n a^{-2n}.$$

Substituting $a = R/\xi_n$, we express ρ_c as:

$$\rho_c = \left(\frac{4\pi G}{(n+1)K}\right)^n \left(\frac{R}{\xi_n}\right)^{-2n}.$$

Now, substitute this expression for ρ_c into the total mass formula:

$$M = 4\pi \rho_c R^3 \left(-\frac{\theta'(\xi_n)}{\xi_n} \right).$$

Expanding ρ_c explicitly:

$$M = 4\pi \left(\frac{4\pi G}{(n+1)K}\right)^n \left(\frac{R}{\xi_n}\right)^{-2n} R^3 \left(-\frac{\theta'(\xi_n)}{\xi_n}\right).$$

Simplify the powers of R to consolidate the mass-radius relation:

$$M = (-4\pi) \left(\frac{4\pi G}{(n+1)K} \right)^n \xi_n^{1-n} \left(-\theta'(\xi_n) \right) R^{3-n}.$$

Factor out the terms that depend only on n, K, and G:

$$M = C(n)K^{n/(n-1)}G^{-n/(n-1)}R^{\frac{3-n}{1-n}},$$

where the dimensionless constant C(n) is:

$$C(n) = 4\pi (4\pi)^n \frac{\xi_n^{1-n} (-\theta'(\xi_n))}{(n+1)^n}.$$

B. White Dwarf Data Fitting

B.1. Converting $\log g$ to Radius

The surface gravity of a star g (in CGS units) is related to its mass M and radius R through Newtonian gravity:

$$g = \frac{GM}{R^2},$$

where G is the gravitational constant. For white dwarfs, g is typically given as $\log g$ (base-10 logarithm in CGS units), and the mass M is expressed in solar masses (M_{\odot}) . To compute the radius R in Earth radii (R_{\oplus}) , we follow these steps:

1. Compute g in cm/s² using:

$$g = 10^{\log g}.$$

2. Convert M from solar masses to grams:

$$M_{\rm grams} = \left(\frac{M}{M_{\odot}}\right) \times 1.989 \times 10^{33}.$$

3. Solve for R in cm:

$$R = \sqrt{\frac{GM_{\text{grams}}}{g}}.$$

4. Convert R to Earth radii:

$$R_{R_{\oplus}} = \frac{R}{6.371 \times 10^8}.$$

B.2. Figure: Plot of White Dwarf Data

Below, the plotted results of the White Dwarf data can be seen. The plotting is done on Newton.ipynb part B.

Figure 1: Visualization of the white dwarf data.

C. Polytropic Fit for White Dwarfs

We have the EOS for cold WDs (in CGS units for pressure):

$$P(\rho) = C\left[x(2x^2 - 3)\sqrt{1 + x^2} + 3\sinh^{-1}(x)\right], \quad x = \left(\frac{\rho}{D}\right)^{1/q}.$$

We want the leading term for **small** x. This corresponds to **low-mass** WDs where the density ρ is still well below the scale set by D.

C.1. Series Expansion for Small x

Let's expand, term by term, for $x \to 0$.

C.1.1. Inside the Bracket [...]:

$$x(2x^{2}-3)\sqrt{1+x^{2}} = x(-3+2x^{2})\left[1+\frac{x^{2}}{2}-\frac{x^{4}}{8}+\dots\right]$$

$$= x\left[-3+2x^{2}+\dots\right]\left[1+\frac{x^{2}}{2}+\dots\right]$$

$$= -3x+0.5x^{3}+1.375x^{5}+\dots \text{ (we keep up to } x^{5} \text{ terms)}.$$

C.1.2. The Term $3 \sinh^{-1}(x)$:

Recall for small x,

$$\sinh^{-1}(x) = x - x^3/6 + (3/40)x^5 + \dots$$

Multiplying by 3 yields:

$$3 \sinh^{-1}(x) \approx 3x - \frac{1}{2}x^3 + 0.225x^5 + \dots$$

C.1.3. Summation:

Combining the terms:

$$[x(2x^{2}-3)\sqrt{1+x^{2}}] + 3 \sinh^{-1}(x) = \underbrace{(-3x+3x)}_{0} + \underbrace{(0.5x^{3}-0.5x^{3})}_{0} + \underbrace{(1.375+0.225)x^{5}}_{1.6x^{5}} + \dots$$

Hence, the first **nonzero** term is:

$$= \frac{8}{5} x^5 + \mathcal{O}(x^7).^1$$

Therefore:

$$P(\rho) \approx C \frac{8}{5} x^5 \text{ for } x \to 0.$$

C.1.4. Rewrite $x = \left(\frac{\rho}{D}\right)^{1/q}$:

$$P(\rho) \approx \frac{8C}{5} \left(\frac{\rho}{D}\right)^{\frac{5}{q}} = \underbrace{\left[\frac{8C}{5} \frac{1}{D^{5/q}}\right]}_{K_{\star}} \rho^{\frac{5}{q}}$$

¹This derivation is also done by symbolic calculations through sympy in Newton.ipynb part C.1 through series expansion.

Hence the polytropic index in the exponent:

$$P \propto \rho^{5/q}$$

Compare to a standard polytrope:

$$P \propto \rho^{1+\frac{1}{n_{\star}}} \implies 1+\frac{1}{n_{\star}} = \frac{5}{q}$$

Solve for n_{\star} :

$$\frac{1}{n_{\star}} = \frac{5}{q} - 1 = \frac{5 - q}{q} \implies n_{\star} = \frac{q}{5 - q}$$

And the overall coefficient:

$$K_{\star} = \frac{8C}{5} \frac{1}{D^{5/q}}.$$

Thus:

$$n_{\star} = \frac{q}{5-q}, \quad K_{\star} = \frac{8C}{5} D^{-\frac{5}{q}}$$

These final relations are exactly what we wanted to show.

C.2. Figure: Line Fitting to White Dwarf Data

Below, the fitted line to the White Dwarf data can be seen. The plotting is done in Newton.ipynb, part C.2.

Figure 2: Fitting a line through the White Dwarf data.

The results of the fitting process are as follows. The inferred polytropic index is $n_{\star} = 1.5521$. The effective scaling constant is given by

$$c = 10^{\text{intercept}} = 3.6434 \times 10^{21} \,\text{cm g}^{-1/2}.$$

The effective constant K_{\star} was calculated using the scaling relation:

$$K_{\star} = \frac{4\pi Gc^2}{(n_{\star} + 1)^2 \xi_1^2},$$

where ξ_1 is the first zero of the Lane-Emden equation for $n_{\star} = 1.55$ ($\xi_1 \approx 3.65$).

Finally, the calculated value of K_{\star} is:

$$K_{\star} = 1.285 \times 10^{35} \,\mathrm{erg} \,\mathrm{cm}^{3(1-n_{\star})} \,\mathrm{g}^{-n_{\star}}.$$

C.3. Figure: Central Density ρ_c vs Mass M

The relationship between Central Density ρ_c and Mass M for White Dwarfs is shown below. The plots are generated in Newton.ipynb, parts C.2.2 and C.2.3.

Figure 3: Plot of Central Density ρ_c vs Mass M for White Dwarfs. Full dataset shown to highlight the low-mass turning point.

Figure 4: Focus on low-mass White Dwarf data.

D. Finding best fits of C and D

D.1. We Already Know q

Previously, we assumed $q \approx 3$. Substituting into the EOS for Cold WDs, we have:

$$P(\rho) = C \left[x \left(2x^2 - 3 \right) \sqrt{x^2 + 1} + 3 \sinh^{-1}(x) \right], \quad x = \left(\frac{\rho}{D} \right)^{1/q}.$$

Once D is chosen, we compute:

$$C = \frac{5}{8} K_{\star} \left[D^{5/q} \right] \implies \text{ (thus, } P(\rho) \text{ is fully specified)}.$$

D.2. Hydrostatic Equilibrium IVP

We solve the usual ODEs (in CGS units):

$$\begin{cases} \frac{dP}{dr} = -\rho(r) \frac{G m(r)}{r^2}, \\ \frac{dm}{dr} = 4\pi r^2 \rho(r), \end{cases}$$

starting from r = 0 with

$$\rho(0) = \rho_c, \quad m(0) = 0.$$

We integrate outward until $\rho \approx 0$ (the star's surface). At each step:

$$P(r) = P(\rho(r)) = (EOS \text{ for Cold WDs}),$$

and invert $P \leftrightarrow \rho$ numerically. Since we have an explicit expression for $P(\rho)$, we can invert $\rho(P)$ either using a small root-finding method inside the ODE solver or through a direct formula if the equation is rearranged appropriately. Alternatively, ρ can be kept as the integration variable, and $d\rho/dr$ can be derived from $dP/d\rho$.

D.3. Getting (R, M)

Once ρ becomes negligible, we record:

$$R_{\star}(\rho_c), \quad M_{\star}(\rho_c).$$

By scanning over different ρ_c values, we produce discrete points:

$$\{(R_i, M_i)\}_{i=1}^{10}$$
.

This process is performed **once** for a single choice of D.

D.4. Final Result

The actual values of C and D, calculated theoretically, are as follows:

$$C = \frac{m^4 e^5}{24\pi^2 \hbar^3} = 6.002332185660436 \times 10^{21},$$

$$D = \frac{\mu m^3 e^3 \mu_e}{3\pi^2 \hbar^3} = 1.947864333345182 \times 10^9.$$

Through computations from Newton.ipynb, part D, best-fitted values are

as follows:

$$\hat{D} = 3.3333 \times 10^{-6},$$

$$\hat{C} = 1.6938 \times 10^{12}.$$

E. Plotting the Full R vs M Curve

E.1. Full Electron-Degenerate EOS in the Relativistic Limit

We start with the general (T=0) electron degeneracy pressure:

$$P(\rho) = C\left[x(2x^2-3)\sqrt{1+x^2} + 3\sinh^{-1}(x)\right], \quad x = \left(\frac{\rho}{D}\right)^{1/q}, \text{ with } q = 3.$$

Nonrelativistic limit ($x \ll 1$). By following part C.1.4 and substituting q = 3, one finds $P \propto \rho^{5/3}$, i.e. a polytrope with $n = \frac{3}{2}$.

Ultrarelativistic limit $(x \gg 1)$. Expanding the expression in the $P(\rho)$:

$$x(2x^2-3)\sqrt{1+x^2} + 3\sinh^{-1}(x)$$

for $x \to \infty$ using symoblic computations from Newton.ipynb, part E.1: gives a leading term *proportional to* x^4 :

$$x(2x^2 - 3)\sqrt{1 + x^2} \approx 2x^4$$
 as $x \to \infty$,

After substituting $x^3 = \rho/D$, we get:

$$P(\rho) \propto \rho^{4/3}$$

which corresponds to a polytrope of index n = 3.

Thus, the **relativistic limit** yields $P(\rho) \propto \rho^{4/3}$, and n = 3.

E.2. Chandrasekhar Mass via n = 3 Polytrope

From polytrope theory (Lane–Emden approach), the mass-radius relation for a polytrope of index n is summarized as:

$$M \propto R^{\frac{3-n}{1-n}}$$
.

For n < 3, this results in a continuous family of solutions. However, when n = 3, the exponent becomes:

$$\frac{3-3}{1-3} = 0,$$

which means M becomes a **constant**, independent of R. Physically, this implies the star's mass saturates at a maximum value in the ultrarelativistic regime, known as the **Chandrasekhar mass**, M_{Ch} .

E.2.1. Analytical Formula

From detailed polytrope analysis, the Chandrasekhar mass is given (in CGS units, for $\mu_e = 2$) by:

$$M_{\rm Ch} = \underbrace{\kappa}_{\text{a constant of nature}} (\mu_e)^{-2},$$

where κ depends on \hbar , c, m_e , etc. Substituting:

$$C = \frac{m_e^4 c^5}{24\pi^2 \hbar^3}, \quad D = \frac{m_u m_e^3 c^3 \mu_e}{3\pi^2 \hbar^3}, \quad \mu_e = 2,$$

and performing the polytrope calculations for n=3, we recover the well-known result:

$$M_{\rm Ch}~\approx~1.44\,M_{\odot}$$

E.3. Numerical Confirmation

When solving the full EOS over a range of central densities ρ_c , the White Dwarf mass $M(\rho_c)$ initially increases with ρ_c but eventually peaks and begins to **decrease** for very high ρ_c . This peak corresponds to the Chandrasekhar limit, beyond which no stable solutions exist.