Lecture 4: CMOS Inverter Physical Characteristics

Outline

- CMOS Inverter Equivalent Resistance and Capacitance
 - Resistance vs. V_{DD}
 - Capacitance of Logic Circuit
- CMOS Inverter Propagation Delay
 - Delay vs. Resistance & Capacitance
 - Miller Theorem and C_{GD}
- CMOS Inverter Power Consumption
 - Static & Dynamic power
 - Switching Power Consumption
 - Short-circuit Power Consumption

Review: Equivalent Resistance

■ Method 1: Integration

$$R_{on} = \frac{1}{-V_{DD}/2} \int_{V_{DD}}^{V_{DD}/2} \frac{V}{I_{DSAT} \cdot (1 + \lambda V)} dV \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} (1 - \frac{7}{9} \lambda V_{DD})$$

□ Method 2: Averaging

$$R_{on} = \frac{1}{2} \left(\frac{V_{DD}}{I_{DSAT} \cdot (1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT} \cdot (1 + \lambda V_{DD}/2)} \right) \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{5}{6} \lambda V_{DD} \right)$$

Review: Capacitance of MOSFET

- \square Gate Capacitance C_{GC} parallel capacitance.
- \square Parasitic Capacitance C_{SB} and C_{DB} p-n junction diffusion capacitance.
- ☐ The capacitance counts ONLY when the voltage across it changes during the PUN and/or PDN process.

CMOS Inverter Delay Definitions

- **□** Propagation time is the charge/discharge time of capacitance.
- \square During PDN functioning, C_L discharges, t_{pHL} relates to time difference of $V_{\text{in}} = V_{\text{DD}}/2 -> V_{\text{out}} = V_{\text{DD}}/2$.
- \square During PUN functioning, C_L charges, t_{pLH} relates to time difference of $V_{\text{in}} = V_{\text{DD}}/2 \rightarrow V_{\text{out}} = V_{\text{DD}}/2$.

Inverter Equivalent Circuit

☐ A first-order RC network: Step Response

Discharge

 V_{DD}

$$\tau_n = R_n \cdot C_L$$

$$\tau_p = R_p \cdot C_L$$

Kirchhoff's Current Law

$$\frac{1}{1} V_{\text{out}} \qquad \frac{V_{in} - V_{out}}{R} = C_L \cdot \frac{dV_{out}}{dt}$$

The general solution of linear first-order

differential equation
$$\frac{dy}{dx} + P(x)y = Q(x)$$
 is: $y = e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx} dx + C \right)$

$$V_{out}(t=0) = V_o$$

$$V_{out}(t=\infty) = V_{\infty}$$

$$V_{out}(t) = V_{\infty} + (V_0 - V_{\infty}) \cdot e^{-t/\tau}, \ \tau = RC$$

□ For PDN: $V_0 = V_{DD} \& V_{\infty} = 0$ $V_{out}(t) = V_{DD} e^{-t/\tau_n}$

0 & V_{out} =
$$V_{DD} V_{out}(t) = V_{DD} (1 - e^{-t/\tau_p})$$

□ For PUN:
$$V_0 = 0$$
 & $V_{\infty} = V_{DD} V_{out}(t) = V_{DD} (1 - e^{-t/\tau_p})$

Inverter Propagation Delay

☐ A first-order RC discharge network

$$V_{out}(t) = V_{DD}e^{-t/\tau_n}, \quad \tau_n = R_n \cdot C_L$$

At
$$t = t_{pHL}$$
 $V_{out}(t_{pHL}) = V_{DD}e^{-t_{pHL}/\tau_n} = V_{DD}/2$

$$t_{pHL} = \tau_n \ln \frac{V_{DD}}{V_{DD}/2} = \tau_n \ln 2 = 0.69 R_n \cdot C_L$$

$$\square$$
 Similarly, for PUN $V_{out}(t) = V_{DD} (1 - e^{-t/\tau_p}), \ \tau_p = R_p \cdot C_L$

$$t_{pLH} = \tau_p \ln 2 = 0.69 R_p \cdot C_L$$

Inverter Propagation Delay

Goal: To optimize the propagation delay

- Modifying supply voltage V_{DD} -- equivalent resistance
- □ Sizing PMOS/NMOS ratio -- Switching Threshold

$$t_{p} = \left(t_{pHL} + t_{pLH}\right) / 2 = 0.69R \cdot C_{L} = 0.69 \left(\frac{R_{n} + R_{p}}{2}\right) \cdot \left(C_{par1} + C_{g2} + C_{w}\right)$$

Inverter Delay as a Function of $V_{\rm DD}$

Inverter Delay vs. PMOS/NMOS Size Ratio

$$\beta = \frac{W_p}{L_p} / \frac{W_n}{L_n} = \frac{W_p}{W_n} \quad (L_n = L_p = L_0)$$

- □ Larger β (wider PMOS) means stronger PUN strength in terms of smaller R_p , higher V_M , and shorter t_{pLH} .
- ■We will choose β = 2 in this course as standard inverter for optimized t_p with almost equivalent NMOS/PMOS strength and resistance.

Propagation Delay vs. Inverter Sizing

Neglect C_{w} and C_{GD}

$$t_{p1} = t_{p,\text{int}} + t_{p,ext} = 0.69 \cdot [R_0 \cdot C_{par} + R_0 \cdot C_{g2}]$$

Increase the first INV. size by S

$$t_{p1} = t_{p,\text{int}} + t_{p,ext} = 0.69R_0 \cdot C_{par1} + 0.69\frac{R_0}{S} \cdot \frac{C_{g2}}{S}$$

Size Independent

Reduce with Size

Self-loading effect:

Intrinsic capacitance dominates

The Effect of C_{GD}

 \square When V_{in} changes abruptly, the nature of C_{GD} ensures relative stable voltage drop across it at that moment.

Miller Theorem

☐ In an amplifier circuit, if the impedance is connected in between the input & output nodes, then connected impedance can be changed to two separated impedances near input & output respectively, and Z1=Z/(1-A), Z2=Z/(1-1/A).

Impedance -> resistance / inductance / capacitance

$$i_{11} = V_{in} \cdot \frac{1 - A}{Z_F}, \quad i_{12} = i_{11}$$

Equivalent $i_{11} = i_{21}$ *circuit:* $i_{12} = i_{22}$

$$i_{21} = V_{\rm in} / Z_1$$

$$i_{22} = -AV_{\rm in}/Z_2$$

$$Z_1 = \frac{Z_F}{1 - A}, \quad Z_2 = \frac{Z_F}{1 - 1/A}$$

Miller Theorem and CMOS Inverter

$$Z_1 = \frac{Z_F}{1 - A}, \quad Z_2 = \frac{Z_F}{1 - 1/A}$$
 \longrightarrow $Z_1 = \frac{Z_F}{2}, \quad Z_2 = \frac{Z_F}{2}$ \longrightarrow $Z=1/\omega C$ $C_1 = C_2 = 2C_{GD}$

Miller Theorem and CMOS Inverter

- \Box C_{GD1} will contribute to t_{p1} by adding $2C_{GD1}$ to the output.
- \square Yet C_{GD2} will NOT affect t_{p1} due to the relatively constant voltage difference between X and Y during the process.