Bug in distr::CompoundDistribution?

Vlada Milchevskaya

CompoundDistribution

I suspect, there is a bug in distr::CompoundDistribution function, in case when both arguments are discrete distributions. Namely, that the distribution function distr::p() returns not the $P(\chi \leq 1)$ value (as written in the help) but $P(\chi < 1)$.

Let us create a "toy" compound distribution:

$$\chi = \sum_{i=1}^{\eta} \xi_i,$$

where i.i.d summands $\xi_i \sim Discrete Distr$ and a degenerate distribution $\eta \sim Bern(p=1)$ which means $P(\eta=1)=1$.

```
CP1 <- distr::CompoundDistribution(
   NumbOfSummandsDistr = distr::Binom(prob=1,size=1),
   SummandsDistr = distr::Binom(prob=0.5,size=6))
distr::p(CP1)(1)</pre>
```

[1] 0.015625

According to the help page of the distr::p() function, it returns the value

$$P(\chi \leq x)$$
.

However, we know that the distribution of χ is Binomial with size=6 and prob=0.5. Therefore,

 $P(\chi \leq 1)$ is the following

```
pbinom(q = 1, size = 6, prob = 0.5)
```

[1] 0.109375

```
dbinom(x = 0, size = 6, prob = 0.5) + dbinom(x = 1, size = 6, prob = 0.5)
```

[1] 0.109375

And distr::p(CP1)(1) actually equals $P(\chi \leq 0)$, or, alternatively, $P(\chi < 1)$,:

```
pbinom(q = 0, size = 6, prob = 0.5)
## [1] 0.015625
dbinom(x = 0, size = 6, prob = 0.5)
## [1] 0.015625
Small note:
distr::p(CP1)(0)
## [1] 0
convpow
Does not reproduce this error. Here we use the properties of the Binomial distribution.
Compound_version <- distr::CompoundDistribution(</pre>
      NumbOfSummandsDistr = distr::Binom(prob=1,size=2),
      SummandsDistr = distr::Binom(prob=0.5,size=6))
p(Compound_version)(1)
## [1] 0.0002441406
convpow_version <- distr::convpow(D1 = distr::Binom(prob=0.5,size=6), N=2)</pre>
p(convpow_version)(1)
## [1] 0.003173828
pbinom(q = 1, size = 12, prob = 0.5)
## [1] 0.003173828
pbinom(q = 0, size = 12, prob = 0.5)
```

[1] 0.0002441406