EXERCICE N°1 (Le corrigé)

Soit la fonction définie sur \mathbb{R} par $f(x)=2x^3-6x^2-2x+6$.

1) Vérifier que pour tout réel x par : f(x)=2(x-1)(x+1)(x-3).

$$2(x-1)(x+1)(x-3) = 2(x-1)(x^2-2x-3) = 2[x^3-2x^2-3x-x^2+2x+3]$$

= $2(x^3-3x^2-x+3) = 2x^3-6x^2-2x+6 = f(x)$

Remarque : On ne commence pas par écrire f(x), on ne l'écrit qu' à la fin.

2) En déduire les racines de f sur \mathbb{R} .

D'après la question précédente les racines sont : -1; 1 et 3

Remarque:

$$f(x)=2(x-1)(x+1)(x-3)$$

3) Étudier le signe de f(x) sur \mathbb{R} .

f(x) est un produit de quatre facteurs, nous allons donc étudier le signe de chacun des facteurs puis dresser un tableau bilan à l'aide de la règle des signes.

- 2 > 0 est vrai quelque soit la valeur de x.
- $-x-1 > 0 \Leftrightarrow x > 1$
- $x+1 > 0 \Leftrightarrow x > -1$
- $x-3 > 0 \Leftrightarrow x > 3$

Attention on range les valeurs dans l'ordre croissant.

x	$-\infty$		-1		1		3		+∞
2		+		+		+		+	
x-1		_	0	_		+		+	
x+1		-		+	0	+		+	
x-3		_		-		_	0	+	
f(x)		_	0	+	0	_	0	+	

La dernière ligne du tableau nous indique le signe de f(x) en fonction de x

EXERCICE N°2 (Le corrigé)

Soit la fonction f définie sur \mathbb{R} par $f(t) = -2t^3 + 3t^2 + 5t$.

- 1) Montrer que f(t) = -2t(t+1)(t-2.5). $-2t(t+1)(t-2.5) = -2t(t^2-1.5t-2.5) = -2t^3+3t^2+5t = f(t)$
- 2) Quelles sont les racines de f?

D'après la question précédente, les racines sont $\begin{bmatrix} -1 & ; & 0 \text{ et } 2,5 \end{bmatrix}$ t=t-0

Remarque:

$$f(t) = -2t(t+1)(t-2,5)$$

- 3) Déterminer le tableau de signes de f(t) sur \mathbb{R} .
- -2 > 0 est faux quelque soit la valeur de t.
- $t > 0 \Leftrightarrow t > 0$ (bah oui....)
- $t+1 > 0 \Leftrightarrow t > -1$
- $x-2.5 > 0 \Leftrightarrow x > 2.5$

Attention on range les valeurs dans l'ordre croissant.

t	$-\infty$		-1		0		2,5		+∞
-2		_		_		_	1	_	
t		_	0	_		+	1	+	
t+1		_		+	0	+	1	+	
t-2,5		_		-		_	0	+	
f(t)		_	0	+	0	_	0	+	

La dernière ligne du tableau nous indique le signe de f(t) en fonction de t

4) En déduire les solutions de -2t(t+1)(t-2,5) > 0 sur \mathbb{R} . D'après le tableau de signes, l'ensemble des solutions est :]-1; $0[\cup]2,5$; $+\infty[$

Remarques:

« >0 » veut dire qu'on cherche les « + » dans la dernière ligne du tableau.
 Si on avait eu « ≥0 » les crochets auraient été « fermés » (sauf le dernier bien sûr)

EXERCICE N°3 (Le corrigé)

On considère une fonction f définie sur $\mathbb R$.

Déterminer la forme factorisée de f.

On voit dans le tableau que f(x)=0 pour $x \in \{-1,5; -0,5; 1\}$

Déterminer le signe de la fonction de f sur \mathbb{R} .

x	f(x)
-1,5	0
-1	0,3
-0,5	0
0	-0,45
0,5	-0,6
1	0

On sait que f(x)=a(x+1,5)(x+0,5)(x-1) et d'après le tableau f(-1)=0,3.

Or
$$f(-1)=a(-1+1,5)(-1+0,5)(-1-1)=0,5 a$$

Donc
$$0.5a = 0.3 \Leftrightarrow a = \frac{0.3}{0.5} \Leftrightarrow a = \frac{3}{5}$$

Enfin:

$$f(x) = \frac{3}{5}(x+1,5)(x+0,5)(x-1)$$

Dressons à présent le tableau de signes :

- $\frac{3}{5}$ = 0,6 > 0 est vrai quelque soit la valeur de x.
- $x+1.5 > 0 \Leftrightarrow x > -1.5$
- $x+0.5 > 0 \Leftrightarrow x > -0.5$
- $x-1 > 0 \Leftrightarrow x > 1$

Attention on range les valeurs dans l'ordre croissant.

x	$-\infty$		-1,5		-0,5		1		+ ∞
0,6		+		+		+		+	
x+1,5		_	0	+		+	1	+	
x+0,5		_		_	0	+	T	+	
x-1		_	I	_	I	_	0	+	
f(x)		_	0	+	0	_	0	+	

La dernière ligne du tableau nous indique le signe de f(x) en fonction de x

EXERCICE N°4 En vrac (Le corrigé)

1) Calculer la longueur de côté d'un carré de 529 cm² d'aire.

$$\sqrt{529} = 23$$

Le côté mesure 23 cm.

2) Calculer la longueur de l'arête d'un cube 343 cm³ de volume.

$$\sqrt[3]{343} = 7$$

Le côté mesure 7 cm.

3) Résoudre $3x^2+27=54$ et $x^3+1=12168$

 $3x^2+27 = 54 \Leftrightarrow 3x^2 = 27 \Leftrightarrow x^2 = 9$ Cette équation admet deux solutions : $-\sqrt{9}=-3$ et $\sqrt{9}=3$

 $x^3 + 1 = 12168 \Leftrightarrow x^3 = 12167$

Cette équation admet une unique solution : $\sqrt[3]{12167} = 23$

EXERCICE N°1

Soit la fonction définie sur \mathbb{R} par $f(x)=2x^3-6x^2-2x+6$.

- 1) Vérifier que pour tout réel x par : f(x)=2(x-1)(x+1)(x-3).
- 2) En déduire les racines de f sur \mathbb{R} .
- 3) Étudier le signe de f(x) sur \mathbb{R} .

EXERCICE N°2

Soit la fonction f définie sur \mathbb{R} par $f(t) = -2t^3 + 3t^2 + 5t$.

- 1) Montrer que f(t) = -2t(t+1)(t-2,5).
- 2) Quelles sont les racines de f?
- 3) Déterminer le tableau de signes de f(t) sur \mathbb{R} .
- 4) En déduire les solutions de -2t(t+1)(t-2,5) > 0 sur \mathbb{R} .

EXERCICE N°3

On considère une fonction f définie sur $\mathbb R$.

- 1) Déterminer la forme factorisée de f.
- 2) Déterminer le signe de la fonction de f sur \mathbb{R} .

x	f(x)
-1,5	0
-1	0,3
-0,5	0
0	-0,45
0,5	-0,6
1	0

EXERCICE N°4 En vrac

- 1) Calculer la longueur de côté d'un carré de 529 cm² d'aire.
- 2) Calculer la longueur de l'arête d'un cube 343 cm³ de volume.
- 3) Résoudre $3x^2+27=54$ et $x^3+1=12168$