1. Dany jest stan początkowy systemu:

$$A = \begin{bmatrix} 0 & 0 & 2 & 1 & 1 \\ 2 & 0 & 4 & 0 & 1 \\ 1 & 1 & 1 & 2 & 1 \end{bmatrix} \quad m = \begin{bmatrix} 5 \\ 9 \\ 9 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 5 & 3 & 5 & 3 \\ 2 & 1 & 5 & 9 & 6 \\ 2 & 2 & 4 & 2 & 6 \end{bmatrix}$$

- a) Stosując algorytm Holt'a sprawdź, czy stan jest bezpieczny.
- b) Zakładając, że konsekwentnie stosowane jest podejście unikania, podaj sekwencję stanów systemu (zaznaczając procesy zawieszone) odpowiadająca następującego ciągowi żądań zasobów:

• w chwili
$$t_1$$
: $\rho^a(P_2) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

• w chwili
$$t_1$$
: $\rho^a(P_2) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
• w chwili $t_2 > t_1$: $\rho^a(P_3) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$
• w chwili $t_3 > t_2$: $\rho^r(P_4) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

• w chwili
$$t_3 > t_2$$
: $\rho^r(P_4) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

Rozwiązanie:

a) Stosujemy algorytm Holt'a:

$$H = C - A = \begin{bmatrix} 3 & 5 & 1 & 4 & 2 \\ 0 & 1 & 1 & 9 & 5 \\ 1 & 1 & 3 & 0 & 5 \end{bmatrix} \qquad E = \begin{bmatrix} 1_3 & 2_5 & 3_1 & 4_4 & 5_2 \\ 0_1 & 1_2 & 1_3 & 5_5 & 9_4 \\ 0_4 & 1_1 & 1_2 & 3_3 & 5_5 \end{bmatrix} \qquad f = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

3.
$$c = \begin{bmatrix} 3 & 0 & 1 & 0 & 2 & 2 \end{bmatrix}$$

$$0 & 1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 2 & 0 \\ & & \downarrow & & \end{bmatrix}$$

$$f = \begin{bmatrix} 4 \\ 9 \\ 6 \end{bmatrix}$$

$$Q = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 5 \\ 9 \\ 8 \end{bmatrix}$$

5.
$$c = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \\ 0 & 0 & 0 & 0 & 0 \\ \downarrow & & & & & \\ P_2 & & & & & \\ \end{bmatrix} f = \begin{bmatrix} 5 \\ 9 \\ 9 \end{bmatrix}$$

Stan jest bezpieczny, istnieje bezpieczna sekwencja: P3, P1, P5, P4, P2

b)

I) Sprawdzamy, czy żądanie procesu P_2 może zostać spełnione. Rozwiązanie wg algorytmu Habermana.

$$t_1: \quad \rho^a(P_2) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Zakładając, że przydzielamy zasób dla P2 mamy:

$$A = \begin{bmatrix} 0 & 0 & 2 & 1 & 1 \\ 2 & 1 & 4 & 0 & 1 \\ 1 & 1 & 1 & 2 & 1 \end{bmatrix} \qquad H = C - A = \begin{bmatrix} 3 & 5 & 1 & 4 & 2 \\ 0 & 0 & 1 & 9 & 5 \\ 1 & 1 & 3 & 0 & 5 \end{bmatrix}$$

Macierz A przedstawia stan systemu po przydzieleniu procesowi P_2 jednej jednostki zasobu II. Łącznie przydzielone zostało więc:

$$0 + 0 + 2 + 1 + 1 = 4$$
 jednostki zasobu I,
 $2 + 1 + 4 + 0 + 1 = 8$ jednostek zasobu II i

1 + 1 + 1 + 2 + 1 = 6 jednostek zasobu III.

Pozostało więc wolne

$$f_{1} = \begin{bmatrix} 5 - 4 = 1 \\ 9 - 8 = 1 \\ 9 - 6 = 3 \end{bmatrix}$$

czyli 5-4=1 jednostka zasobu II, 9-8=1 jednostka zasobu II i 9-6=3 jednostki zasobu III. Jest to wystarczające do zakończenia procesu P_1 . Dokonując analizy, analogicznej do powyższej, dochodzi się do wniosku, że wystarczy to do zakończenia procesu, P_3 i P_5 .

$$f_{2} = \begin{bmatrix} 3 \\ 5 \\ 4 \end{bmatrix} \qquad f_{3} = \begin{bmatrix} 3 \\ 7 \\ 5 \end{bmatrix} \qquad f_{4} = \begin{bmatrix} 4 \\ 8 \\ 6 \end{bmatrix}$$

Dla procesu P_4 nie wystarczy zasobu II, jeżeli zażąda on maksymalną deklarowaną liczbę jednostek tego zasobu. Gdyby zatem proces P_4 zażądał maksymalną liczbę jednostek zasobu B, a inne procesy nie zwolnią przydzielonych jednostek tego zasobu, wówczas nastąpi zakleszczenie. Jest to więc stan zagrożenia, co oznacza, że zakleszczenie jest potencjalnie możliwe. Stosując strategię unikania zakleszczenia, nie można dopuścić do takiego stanu i tym samym nie można przydzielić dodatkowo jednej jednostki zasobu II procesowi P_2 .

II) Sprawdzamy, czy żądanie procesu P_3 może zostać spełnione.

$$t_2 > t_1$$
: $\rho^a(P_3) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

Podobnie jak wyżej zakładamy, że przydzielamy zasób dla P_3 mamy:

$$A = \begin{bmatrix} 0 & 0 & 2 & 1 & 1 \\ 2 & 0 & 5 & 0 & 1 \\ 1 & 1 & 2 & 2 & 1 \end{bmatrix} \qquad H = C - A = \begin{bmatrix} 3 & 5 & 1 & 4 & 2 \\ 0 & 1 & 0 & 9 & 5 \\ 1 & 1 & 2 & 0 & 5 \end{bmatrix}$$

Analogicznie jak wyżej otrzymujemy:

$$f_{1} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \qquad f_{2} = \begin{bmatrix} 3 \\ 6 \\ 4 \end{bmatrix} \qquad f_{3} = \begin{bmatrix} 3 \\ 8 \\ 5 \end{bmatrix} \qquad f_{4} = \begin{bmatrix} 4 \\ 9 \\ 6 \end{bmatrix} \qquad f_{5} = \begin{bmatrix} 5 \\ 9 \\ 8 \end{bmatrix}$$

Zatem przydzielenie zasobów żądanych przez proces P_3 nie spowoduje stanu niebezpiecznego, więc zasoby te mogą być przydzielone.

III)

Proces P_4 może zwolnić zasoby, w wyniku czego :

$$A = \begin{bmatrix} 0 & 0 & 2 & 0 & 1 \\ 2 & 0 & 5 & 0 & 1 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \qquad H = C - A = \begin{bmatrix} 3 & 5 & 1 & 5 & 2 \\ 0 & 1 & 0 & 9 & 5 \\ 1 & 1 & 2 & 1 & 5 \end{bmatrix}$$

IV)

Ponownie staramy się spełnić ządanie procesu P_2 :

$$A = \begin{bmatrix} 0 & 0 & 2 & 0 & 1 \\ 2 & 1 & 5 & 0 & 1 \\ 1 & 1 & 2 & 1 & 1 \end{bmatrix} \qquad H = C - A = \begin{bmatrix} 3 & 5 & 1 & 5 & 2 \\ 0 & 0 & 0 & 9 & 5 \\ 1 & 1 & 2 & 1 & 5 \end{bmatrix}$$

$$f_{1} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} \qquad f_{2} = \begin{bmatrix} 4 \\ 5 \\ 5 \end{bmatrix} \qquad f_{3} = \begin{bmatrix} 4 \\ 7 \\ 6 \end{bmatrix} \qquad f_{4} = \begin{bmatrix} 5 \\ 8 \\ 7 \end{bmatrix} \qquad f_{5} = \begin{bmatrix} 5 \\ 9 \\ 8 \end{bmatrix}$$

Otrzymujemy bezpieczną sekwencję P_3 , P_1 , P_5 , P_2 , P_4 . Żądanie procesu P_2 może być spełnione.