Contents

- > Relations
- Definitions
- Examples
- ➤ Operation on Relations
- Examples

1. Relation

Relation is a word which is used to indicate a relationship between two objects. There are many kinds of relationships in the world. Such as

- Relation between a student and a teacher,
- Relation between employee and his or her salary,
- Relation between a person and a relative, and so on.

Mathematically

- ➤ In this we will discuss the mathematics of relations defined on Set.
- ➤ Direct way to express a relationship between elements of two sets is to use Ordered Pair.
- > Ordered Pair, It is a pair of objects whose components occur in a special order (a,b), where a is called the first component and b is called the second component.
- The relationships between elements of sets are represented using the structure called a relation, which is just a subset of the **Cartesian Product** of the sets.

Cartesian Product:

➤ Let A and B be two sets. Cartesian product of A and B, denoted by AXB is defined as

$$AXB = \{ (x,y) : x \in A, y \in B \}$$

i.e AXB is the set of all possible ordered pairs whose first component comes from A and second comes from B.

- •If we want to describe a relationship between elements of two sets A and B, we can use ordered pairs with their first element taken from A and their second element taken from B.
- •Since this is a relation between two sets, it is called a binary relation.
- •Definition: Let A and B be sets. A binary relation from A to B is a subset of A×B.
- •In other words, for a binary relation R we have $R \subseteq A \times B$. We use the notation aRb to denote that $(a, b) \notin R$ and aRb to denote that $(a, b) \notin R$.

Relations on a Set

Solution: $R = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$

R	1	2	3	4
1		х	X	X
2			×	×
3				X
4				

Example 2

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) | a \text{ divides } b \}$?

Since (a, b) is in R if and only if a and b are positive integers not exceeding 4 such that a divides b

Examples:

Ex 1) Let A and B are two sets as follows:

A= { Calcutta, Patna, lucknow, Chennai}

B={West Bengal, Bihar, Uttar Pradesh, Tamil Nadu}

Find a relation defined by " is capital of" among above.

Sol: R is a relation between the two sets and defined as "is capital of" and is denoted as R = AXB

R= {(Calcutta, West bengal), (Patna, Bihar)...etc}

 $R = \{(x,y): x \in A, y \in B, xRy\}$

Relations on a Set

- •How many different relations can we define on a set A with n elements?
- •A relation on a set A is a subset of A×A.
- •How many elements are in A×A?
- •There are n^2 elements in A×A, so how many subsets (= relations on A) does A×A have?
- •The number of subsets that we can form out of a set with m elements is 2^m . Therefore, 2^{n^2} subsets can be formed out of A×A.
- •Answer: We can define 2^{n²} different relation A

Ex 2) Let A and B are the two sets defined as $A=\{1,2,5\}$ and $b=\{2,4\}$, Find the relation defined by "<".

Sol: The cartesian product is given as

$$AXB = \{(1,2),(1,4),(2,2),(2,4)(5,2)(5,4)\}$$

and as the relation is defined on "<", we take all the ordered pairs satisfying (x < y), then relation will be

$$R = \{(1,2)(1,4)(2,4)\}$$

Ex3) Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ divides } b\}$?

Sol: The cartesian product is given as AXA $AXA = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 4)\}$ and as the relation is defined as "a divides b", we will take all the ordered pairs satisfying (a divides b), then relation will be

 $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)\}.$

2. Domain and Range

The set $\{a \in A: (a,b) \in R \text{ for some } b \in B\}$ is called domain of R and denoted by Dom R.

The set $\{b \in B: (a,b) \in R \text{ for some } a \in A\}$ is called range of R and denoted by Ran R.

i.e Domain- Set of first element

Range - Set of second element

Operations on Relation

Binary relations are set of ordered pairs, all set operations can be done on relations. Operations:

1) Union- If R and S denote two relations then $R \cup S$ denotes union of R and S,

$$x(R \cup S)y = xRy \cup xSy$$

1) **Intersection**: If R and S denote two relations then $R \cap S$ denotes intersection of R and S,

$$x(R \cap S)y = xRy \cap xSy$$

Operations on Relation

3) **Difference**: If R and S denote two relations then R - S denotes difference of R and S,

$$x(R - S)y = xRy \cap x(\notin S)y$$

4) **Complement**: If R denote a relation then R' denotes complement of R and is given as,

 $x(R)y=x(\not\in R)y$

Example

 $R1 \cap R2 = \{(1, 1)\},\$

 $R1 - R2 = \{(2, 2), (3, 3)\},\$

 $R2 - R1 = \{(1, 2), (1, 3), (1, 4)\}.$

```
Ex1: Let A = \{1, 2, 3\} and B = \{1, 2, 3, 4\}. The relations corresponding to A and B are R1 = \{(1, 1), (2, 2), (3, 3)\} and R2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}. Find? Sol: R1 \cup R2 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)\},
```

Example

```
Ex2: Let A = \{1,2,3\} and B = \{u,v\}. The relation corresponding to A and B are R1 = \{(1,u), (2,u), (2,v), (3,u)\} and R2 = \{(1,v), (3,u), (3,v)\}. Find?
```

Sol:

```
R1\cupR2 = {(1,u),(1,v),(2,u),(2,v),(3,u),(3,v)}
R1\capR2 = {(3,u)}
R1 - R2 = {(1,u),(2,u),(2,v)}
R2 - R1 = {(1,v),(3,v)}
```