Assignment 2

Name: Adharsh Kamath UIN: 671259918 NetID: ak128

Problem 1

Soln:

Let us use the symbol ψ to refer to the given formula.

$$\psi = (p \land (p \Rightarrow q)) \Rightarrow q$$

In order to show that ψ is valid, we can show that

$$\neg \psi = \neg \left((p \land (p \Rightarrow q) \Rightarrow q) \right)$$

is unsatisfiable. Rewriting the above formula:

$$\neg \psi = \neg ((p \land (p \Rightarrow q) \Rightarrow q))
\equiv \neg ((p \land (\neg p \lor q)) \Rightarrow q)
\equiv \neg (\neg (p \land (\neg p \lor q)) \lor q)
\equiv (p \land (\neg p \lor q)) \land \neg q$$

The last step is due to De Morgan's Law. We can now convert this to CNF, and construct a resolution refutation to show that it is unsatisfiable. To convert to CNF, we use the Tseitin transformation. We only need three new propositional variables, x_{ψ} , x_1 , x_2 , where x_{ψ} corresponds to ψ , x_1 corresponds to $(\neg p \lor q)$ and x_2 corresponds to $(p \land x_1)$. This gives us the following set of clauses:

$$\begin{cases}
\{\neg x_{\psi}\}, \\
\{\neg \neg x_{\psi}, x_{2}\}, \{\neg \neg x_{\psi}, \neg q\}, \{\neg x_{\psi}, \neg x_{2}, \neg \neg q\} \\
\{\neg x_{2}, p\}, \{\neg x_{2}, x_{1}\}, \{x_{2}, \neg p, \neg x_{1}\}, \\
\{x_{1}, \neg \neg p\}, \{x_{1}, \neg q\}, \{\neg x_{1}, \neg p, q\},
\end{cases}$$

Simplifying the set by replacing $\neg \neg p$ with p for all propositional variables, we get:

$$\begin{cases}
\{\neg x_{\psi}\}, \\
\{x_{\psi}, x_{2}\}, \{x_{\psi}, \neg q\}, \{\neg x_{\psi}, \neg x_{2}, q\} \\
\{\neg x_{2}, p\}, \{\neg x_{2}, x_{1}\}, \{x_{2}, \neg p, \neg x_{1}\}, \\
\{x_{1}, p\}, \{x_{1}, \neg q\}, \{\neg x_{1}, \neg p, q\},
\end{cases}$$

We can now create a resolution refutation to show that this set is unsatisfiable:

 $1.\{\neg x_{\psi}\}$ $2.\{x_{\psi}, x_{2}\}$ $3.\{x_{2}\}$ Resolvent of 1 and 2 $4.\{\neg x_{2}, p\}$ $5.\{p\}$ Resolvent of 3 and 4 $6.\{\neg x_{1}, \neg p, q\}$ $7.\{\neg x_{1}, q\}$ Resolvent of 5 and 6 $8.\{x_{\psi}, \neg q\}$ $9.\{x_{\psi}, \neg x_{1}\}$ Resolvent of 7 and 8 $10.\{\neg x_{1}\}$ Resolvent of 1 and 9 $11.\{\neg x_{2}, x_{1}\}$ $12.\{\neg x_{2}\}$ Resolvent of 3 and 11 $13.\{\}$ Resolvent of 10 and 12

By creating this resolution refutation, we have shown that there is no valuation that can satisfy $\neg \psi$. Since $\neg \psi$ is unsatisfiable, we can conclude that ψ is valid.

Problem 2 Soln:			
Problem 3 Soln:			