EC2104 Tutorial 1 solution

Question 1: Finding limits

Before finding limits

Before you apply fancy L'Hopital rule or any other techniques

- Check if limit exist (left limit = right limit)
 - There is no point trying to find something that does not exist
- ② Check if the limit is in indeterminate form $(\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot 0, \infty \cdot \infty)$
 - If there is a solution simply by substituting the value of the limit (e.g. $\lim_{x\to 0} x + 4 = 0 + 4 = 4$), why bother wasting time
- If limit is in indeterminate form and value tends towards infinity, check if denominator has higher rate of growth than numerator
 - Intuitively, if only the denominator is infinity, the fraction will tends towards 0
 - Example: solve question 1a) $\lim_{x\to\infty} \frac{x}{e^x} = 0$ by eyeballing
 - Order of growth (when value tends towards infinity only): $O(1) < O(log(x)) < O(x^n) < O(e^x)$
 - note: require strong intuition and might be hard to observe for more complicated questions

Question 1b)

Q: Find
$$\lim_{x\to -4} \left(\frac{x^2-16}{x+4}\right) \ln |x|$$

1 Identify: $\ln |-4| = \ln(4)$ is a constant

Method 1: Simplification

- **1** Observe $x^2 16 = (x+4)(x-4)$
- ② Simplify question: $\lim_{x\to -4}\left(\frac{x^2-16}{x+4}\right)\ln|x|=\lim_{x\to -4}(x-4)\ln|x|=-8\ln(4)$

Method 2: L'H

• Since the fraction is indeterminate, apply L'H:

$$\Rightarrow \lim_{x \to -4} \frac{\frac{d}{dx}x^2 - 16}{\frac{d}{dx}x + 4} \ln|-x| = \lim_{x \to -4} \frac{2x}{1} \ln|-x| = -8 \ln(4)$$

Why bother with other methods when almost all questions can be solved by L'H?

Solving differentiation can be challenging sometimes

Question 1c)

Q: Find
$$\lim_{x \to 1.5} \frac{2x^2 - 3x}{|2x - 3|} = \lim_{x \to 1.5} \frac{x(2x - 3)}{|2x - 3|}$$

- Observe:
 - although fraction is indeterminate, absolute function is not differentiable.
 - Therefore, L'H cannot be used directly
 - and we cannot simplify the question directly.
 - We need to use piecewise function and find limit by finding the left limit and right limit
- **1** Left limit: $\lim_{x\to 1.5} \frac{x(2x-3)}{-(2x-3)} = \lim_{x\to 1.5} -x = -1.5$
- **②** Right limit: $\lim_{x\to 1.5} \frac{x(2x-3)}{2x-3} = \lim_{x\to 1.5} x = 1.5$
- Observe: since left limit ≠ right limit, by definition of limits the limit does not exist

Question 1d): challenging but important

Q: Find
$$\lim_{x\to\infty} \sqrt{x^2 + x} - x$$

- Observe:
 - The question is not in a fraction form, L'H cannot be applied directly.
 - Although $\sqrt{x^2+x}>0$ but -x<0, and it seems like $\sqrt{x^2+x}\approx x$. So it is hard to decide if the limit will diverge (positive or negative infinity) or it will converge
- Use an important trick in solving limits question:

$$\lim_{x \to \infty} \sqrt{x^2 + x} - x = \lim_{x \to \infty} \frac{(\sqrt{x^2 + x} - x)(\sqrt{x^2 + x} + x)}{(\sqrt{x^2 + x} + x)}$$

- Note: since $\frac{(\sqrt{x^2+x}+x)}{(\sqrt{x^2+x}+x)}=1$, we can multiply any functions with 1 without changing the function.
- Note: furthermore, we simplify the function using identity: $(a + b)(a b) = a^2 b^2$
- Therefore, $\lim_{x\to\infty} \sqrt{x^2+x} x = \lim_{x\to\infty} \frac{x^2+x-x^2}{\sqrt{x^2+x}+x}$
 - to be continued in the next slide

Question 1d) cont

Now, we solve $\lim_{x\to\infty} \frac{x^2+x-x^2}{\sqrt{x^2+x}+x} = \lim_{x\to\infty} \frac{x}{\sqrt{x^2+x}+x}$

- Reapplying the trick in step (1):
 - $\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + x} + x} = \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + x} + x} \cdot \frac{1/x}{1/x} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{1}{x^2}} + 1}$

Note: We skipped some detailed working here, you can refer to the step by step procedure in tutorial solution or work it out yourself.

ling EC2104 Tutorial 1 solution

Question 1e)

Similar idea as question 1d), refer to tutorial solution for detailed steps.

Question 1f)

Q: Find
$$a, b$$
 such that $\lim_{x\to 0} \frac{\sqrt{ax+b}-2}{x} = 1$

- For L'Hopital to work, assume $\lim_{x\to 0} \sqrt{ax+b} 2 = 0 \Rightarrow \sqrt{b} = 2 \Rightarrow b = 4$
- **1** Applying L'Hopital rule: $\Rightarrow \lim_{x\to 0} \frac{a}{2\sqrt{ax+b}} = 1$
- 2 Substitute x = 0: $\Rightarrow \frac{a}{2\sqrt{b}} = 1$
- **3** Find relationship between $a, b: \Rightarrow a = 2\sqrt{b}$
- Since from step (0): $b = 4 \Rightarrow a = 4$

Question 2: Finding equilibrium

Question 2: Finding equilibrium

Important things to know:

- Competitive market always clears
 - quantity demanded = quantity supplied, $Q_S = Q_D$
 - Assumes no regulations and firms, buyers have no market power (perfect competition)
- To solve the equilibrium (the easier way):
 - 1, 2 variables: substitution
 - > 2 variable: matrix operations (linear algebra)
- A shift in line when intercept changes, a rotation in line when gradient changes
 - $Q_S = 10P_J 5P_A \Rightarrow P_J = \frac{Q_S}{10} + \frac{1}{2}P_A$
 - Note in plotting demand and supply curve, we usually plot price as the function output (inverse demand and supply)

$$\Leftrightarrow P_J(Q_S) = f(Q_S) = \frac{Q_S}{10} + \frac{1}{2}P_A$$

 When asked about price ceiling (max price), price floor (min price), check if the policy is binding first

Question 3: Finding inverse

Question 3a

Q:
$$f(x) = \frac{1}{2}(e^x - e^{-x})$$

- **1** Solve for x: $y = \frac{1}{2}(e^x e^{-x})$
- ② Multiply both side by e^x : $ye^x = \frac{1}{2}(e^{2x} 1)$
- Let $z = e^x$, solve for: $yz \frac{1}{2}z^2 + \frac{1}{2} = 0$
 - \Leftrightarrow solve $z^2 1 2yz = 0$
- $\Rightarrow z = y + \sqrt{y^2 + 1}$
 - Reject $z = y \sqrt{y^2 + 1}$ since $z = e^x > 0$
- **5** Take In: $y = \ln(x + \sqrt{x^2 + 1})$
 - Key trick: substituting the function of x

Question 3b

Q:
$$f(x) = 40x - 4x^2, x \in [0, 10]$$

- Show function is not valid (not one-to-one) with numeric example: f(4) = f(6)
- Key learning point: if function is not one-to-one, the inverse function does not exist

Question 4: Finding first derivatives

Question 4a

Show f is differentiable at x=1

$$f(x) = \begin{cases} 2 + \sqrt{x}, & x \ge 1\\ \frac{1}{2}x + \frac{5}{2}, & x < 1 \end{cases}$$

- Key: show by definition (limit of Newton's quotient exist)
- Write down the definition

$$f'(1) = \lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - 3}{\Delta x}$$

- Test if limit exist (left limit = right limit)
 - Left limit: $\lim_{\Delta x \to 0} \frac{2+\sqrt{1+\Delta x}-3}{\Delta x} = \frac{1}{2}$ Right limit: $\lim_{\Delta x \to 0} \frac{\frac{1}{2}(1+\Delta x)+\frac{5}{2}-3}{\Delta x} = \frac{1}{2}$
- Since limit exist, f is differentiable at x=1 and $f'(1)=\frac{1}{2}$

Question 4b

Determine if
$$f$$
 is differentiable at $x=2$, $f(x)=\begin{cases} \frac{1}{4}x^3-\frac{1}{2}x^2, & x\geq 2\\ \frac{-6x-6}{x^2+2}, & x<2 \end{cases}$

- Note that non-continuous function are not differentiable
- **o** For a quick check, try if f(2) from the left equals to the right
- More formally:
 - Left limit (x < 2): $\lim_{x \to 2^{-}} f(x) = \frac{-6 \times 2 6}{2^{2} + 2} = -3$
 - Right limit $(x \ge 2)$: $\lim_{x \to 2^+} f(x) = \frac{1}{4}2^3 \frac{1}{2}2^2 = 0$
- ② Since limit does not exist (left limit not equal to right limit), function is not continuous at x=2 and is not differentiable

Question 5: Finding roots with Intermediate Value Theorem

Question 5a

Q: Use IVT to show $2^x = \frac{10}{x}$ for some x > 0

- **①** Express function in a more familiar way: $\Rightarrow 2^x \frac{10}{x} = 0$
- Check if function is continuous in the domain
 - Note: although function is not continuous in the whole real line, when restricted to only positive values the function is continuous
- ② Find alternating functional value. For example: f(2) < 0, f(3) > 0
- Invoke IVT
 - By IVT, there exists at least one value c in [2,3] such that $f(c)=2^c-\frac{10}{c}=0$

Question 5b

Q: Can we use IVT to conclude function has no roots in the interval?

- No, IVT only allows us to conclude there exists at least one root.
- In Math and Logic, one way deduction is different from two way deduction $(P \Rightarrow Q \neq P \Leftarrow Q)$
 - If a definition/theorem works two ways, we say it is both a necessary and sufficient condition, or say P if and only if Q $P \Leftrightarrow Q$
- Example: $f(x) = (x 1)^2$
 - f(0) = 1 = f(2) > 0, but $f(1) = 0 \Rightarrow$ there is at least one root

Question 6: Elasticity

Question 6: Elasticity

Given:

- $P_{t-1} = 20
- $Q_{t-1} = 100 \text{ mil}$
- PED = $\epsilon_D = -0.25$
- PES = $\epsilon_S = 0.5$
- demand function: $Q_d = a bP$
- supply function: $Q_s = c + dP$

Q6a: Solve for demand and supply function

- **1** Demand function: $\epsilon_D = \frac{dQ_d}{dP} \left(\frac{P}{Q_d} \right) = -b \frac{20}{100} = -0.25 \Rightarrow b = 1.25$
 - Since $Q_d = a bP \Rightarrow 100 = a 1.25 \cdot 20 \Rightarrow a = 125$
 - Therefore: $Q_d = 125 1.25P$
- ② Supply function: $\epsilon_S = \frac{dQ_s}{dP} \left(\frac{P}{Q_s} \right) = d \frac{20}{100} = 0.5 \Rightarrow d = 2.5$
 - Since $Q_s = c dP \Rightarrow 100 = c 2.5 \cdot 20 \Rightarrow c = 50$
 - Therefore: $Q_S = 50 + 2.5P$

Question 6b

- Demand and Supply have same slope, different intercepts
 - Shift in demand and supply
- Name any factor that shifted demand and supply