Background Congratulations! You just got some contract work with an Ecommerce company based in New York City that sells clothing online but they also have in-store style and clothing advice sessions. Customers come in to the store, have sessions/meetings with a personal stylist, then they can go home and order either on a mobile app or website for the clothes they want.

The company is trying to decide whether to focus their efforts on their mobile app experience or their website. They've hired you on contract to help them figure it out! Let's get started!

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib as plt
   import seaborn as sns
   %matplotlib inline
```

Get the data

We'll work with the customer's csv file from the company. It has details of the customers such as email, address etc The description of the numerical column are:

- · Avg session length: average session of the in store style advice
- Time on app: Average time spent on the App in minutes.
- Time on website: Average time spent on the store website in minutes.
- Length of membership: How many years the customer has been a member

Read in the csv file

```
In [2]: customers = pd.read_csv("Ecommerce Customers.csv")
```

In [3]: customers

Out[3]:

	Email	Address	Avatar	Avg. Session Length	Time on App	
0	mstephenson@fernandez.com	835 Frank Tunnel\nWrightmouth, MI 82180-9605	Violet	34.497268	12.655651	35
1	hduke@hotmail.com	4547 Archer Common\nDiazchester, CA 06566-8576	DarkGreen	31.926272	11.109461	37
2	pallen@yahoo.com	24645 Valerie Unions Suite 582\nCobbborough, D	Bisque	33.000915	11.330278	37
3	riverarebecca@gmail.com	1414 David Throughway\nPort Jason, OH 22070-1220	SaddleBrown	34.305557	13.717514	36
4	mstephens@davidson- herman.com	14023 Rodriguez Passage\nPort Jacobville, PR 3	MediumAquaMarine	33.330673	12.795189	37
495	lewisjessica@craig-evans.com	4483 Jones Motorway Suite 872\nLake Jamiefurt,	Tan	33.237660	13.566160	3€
496	katrina56@gmail.com	172 Owen Divide Suite 497\nWest Richard, CA 19320	PaleVioletRed	34.702529	11.695736	37
497	dale88@hotmail.com	0787 Andrews Ranch Apt. 633\nSouth Chadburgh,	Cornsilk	32.646777	11.499409	38
498	cwilson@hotmail.com	680 Jennifer Lodge Apt. 808\nBrendachester, TX	Teal	33.322501	12.391423	36
499	hannahwilson@davidson.com	49791 Rachel Heights Apt. 898\nEast Drewboroug	DarkMagenta	33.715981	12.418808	3ŧ

500 rows × 8 columns

```
In [4]: customers.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):
```

Column	Non-Null Count	Dtype
Email	500 non-null	object
Address	500 non-null	object
Avatar	500 non-null	object
Avg. Session Length	500 non-null	float64
Time on App	500 non-null	float64
Time on Website	500 non-null	float64
Length of Membership	500 non-null	float64
Yearly Amount Spent	500 non-null	float64
	Email Address Avatar Avg. Session Length Time on App Time on Website Length of Membership	Email 500 non-null Address 500 non-null Avatar 500 non-null Avg. Session Length 500 non-null Time on App 500 non-null Time on Website 500 non-null Length of Membership 500 non-null

dtypes: float64(5), object(3)

memory usage: 31.4+ KB

We'll drop the object columns

In [6]: df

Out[6]:

	Avg. Session Length	Time on App	Time on Website	Length of Membership	Yearly Amount Spent
0	34.497268	12.655651	39.577668	4.082621	587.951054
1	31.926272	11.109461	37.268959	2.664034	392.204933
2	33.000915	11.330278	37.110597	4.104543	487.547505
3	34.305557	13.717514	36.721283	3.120179	581.852344
4	33.330673	12.795189	37.536653	4.446308	599.406092
495	33.237660	13.566160	36.417985	3.746573	573.847438
496	34.702529	11.695736	37.190268	3.576526	529.049004
497	32.646777	11.499409	38.332576	4.958264	551.620145
498	33.322501	12.391423	36.840086	2.336485	456.469510
499	33.715981	12.418808	35.771016	2.735160	497.778642

500 rows × 5 columns

EDA

let's look at our dataset, and ask a few questions.

1. Does the yearly amount spent correlate with any other variables?

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1ddbe513640>

In [8]: df.corr()

Out[8]:

	Avg. Session Length	Time on App	Time on Website	Length of Membership	Yearly Amount Spent
Avg. Session Length	1.000000	-0.027826	-0.034987	0.060247	0.355088
Time on App	-0.027826	1.000000	0.082388	0.029143	0.499328
Time on Website	-0.034987	0.082388	1.000000	-0.047582	-0.002641
Length of Membership	0.060247	0.029143	-0.047582	1.000000	0.809084
Yearly Amount Spent	0.355088	0.499328	-0.002641	0.809084	1.000000

In [9]: sns.jointplot(x = "Yearly Amount Spent", y = "Length of Membership", data = df)

Out[9]: <seaborn.axisgrid.JointGrid at 0x1ddc4579400>


```
In [10]: #Create a linear model plot
sns.lmplot(x = "Yearly Amount Spent", y = "Length of Membership", data = df)
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x1ddc4959040>

Normally, you should spend more time on EDA but the objective here is to walk through building a linear ,model

```
In [11]: sns.heatmap(df.drop(["Yearly Amount Spent"], axis = 1).corr(), annot = True, cmap
```

Out[11]: <AxesSubplot:>

Tarining and testing

We neeed to split our data to training and testing sets

Also, we need to separate the features and the label

```
In [12]: X = df[['Avg. Session Length', 'Time on App', 'Time on Website', 'Length of Memb
y = df['Yearly Amount Spent']
```

Sklearn has train test split method, we can specify our test size using this'm

In [13]: from sklearn.model_selection import train_test_split

In [14]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random
#random - keeping your data steady

In [15]: X_train

Out[15]:

	Avg. Session Length	Time on App	Time on Website	Length of Membership
202	31.525752	11.340036	37.039514	3.811248
428	31.862741	14.039867	37.022269	3.738225
392	33.258238	11.514949	37.128039	4.662845
86	33.877779	12.517666	37.151921	2.669942
443	33.025020	12.504220	37.645839	4.051382
63	32.789773	11.670066	37.408748	3.414688
326	33.217188	10.999684	38.442767	4.243813
337	31.827979	12.461147	37.428997	2.974737
11	33.879361	11.584783	37.087926	3.713209
351	32.189845	11.386776	38.197483	4.808320

350 rows × 4 columns

In [16]: X_test

Out[16]:

	Avg. Session Length	Time on App	Time on Website	Length of Membership
18	32.187812	14.715388	38.244115	1.516576
361	32.077590	10.347877	39.045156	3.434560
104	31.389585	10.994224	38.074452	3.428860
4	33.330673	12.795189	37.536653	4.446308
156	32.294642	12.443048	37.327848	5.084861
147	32.255901	10.480507	37.338670	4.514122
346	32.765665	12.506548	35.823467	3.126509
423	33.128693	10.398458	36.683393	3.859818
17	32.338899	12.013195	38.385137	2.420806
259	32.096109	10.804891	37.372762	2.699562

150 rows × 4 columns

```
In [26]: y_train
Out[26]: 202
                 443.965627
          428
                 556.298141
          392
                 549.131573
                 487.379306
          86
          443
                 561.516532
                    . . .
          63
                 483.159721
          326
                 505.230068
          337
                 440.002748
          11
                 522.337405
          351
                 533.396554
          Name: Yearly Amount Spent, Length: 350, dtype: float64
In [27]: y_test
Out[27]: 18
                 452.315675
                 401.033135
          361
          104
                 410.069611
          4
                 599.406092
          156
                 586.155870
                    . . .
          147
                 479.731938
          346
                 488.387526
          423
                 461.112248
          17
                 407.704548
          259
                 375.398455
          Name: Yearly Amount Spent, Length: 150, dtype: float64
```

NB

We only use train data to train and test data to test, don't test on your training data!

```
In [32]: model.coef_
Out[32]: array([25.98154972, 38.59015875, 0.19040528, 61.27909654])
In [33]: model.intercept_
Out[33]: -1047.932782250239
In [34]: #The equation of the regression is # Yearly amount spent = 26* Avg.session length + 38.6*Time on App + 0.19 * Time of the spent is # Yearly amount spent = 26* Avg.session length + 38.6*Time on App + 0.19 * Time of the spent is # Yearly amount spent = 26* Avg.session length + 38.6*Time on App + 0.19 * Time of the spent is # Yearly amount spent = 26* Avg.session length + 38.6*Time on App + 0.19 * Time of the spent is # Yearly amount spent = 26* Avg.session length + 38.6*Time on App + 0.19 * Time of the spent is # Yearly amount spent is # Yearly #
```

Predicting on test data

We want to evaluate the performance of the model on our test data

```
In [35]: prediction = model.predict(X_test)
```

Let's compare our prediction with the y_test on a scatterplot

```
In [36]: plt.pyplot.scatter(y_test, prediction)
    plt.pyplot.xlabel("Predicted values")
    plt.pyplot.ylabel("Actual values")
```

```
Out[36]: Text(0, 0.5, 'Actual values')
```


Mini Exercise

- 1. What evaluation metrics do we use for linear regression?
- 2. Briefly discuss these metrics within your group?
- 3. Evaluate the model here using the metrics you identified.
- 4. Based on your evaluation, is this a good model? why?
- 5. Explain briefly what the values you obtain for each metric mean in this particular case.

1&2:

What evaluation metrics do we use for linear regression? Briefly discuss these metrics within your group?

Mean Squared Error

Used to find the average squared difference between the actual and the predicted value. It
measures how close a regression line is to a set of data points. MSE of 0 means all the
predicted values match the expected values exactly. The lower the value the better.

Mean Absolute Error

Used to find the mean absolute distance when making predictions to know how close the
predictions are to the actual model on average.Low MAE values show the model is correctly
predicted. Large MAE show the model is poor at predicting.

R-Squared

 Determines the accuracy of our model in terms of distance. Values close to 100% indicate high accuracy.

3, 4, 5. Evaluate the model here using the metrics you identified.

```
In [58]: from sklearn.metrics import mean_squared_error
    from sklearn.metrics import mean_absolute_error
    from sklearn.metrics import r2_score

In [59]: mse = mean_squared_error(y_test,prediction)
    mse

Out[59]: 79.81305165097451

In [41]: mae =mean_absolute_error(y_test,prediction)
    mae

Out[41]: 7.228148653430837

In [43]: r2 = r2_score(y_test,prediction)
    r2

Out[43]: 0.9890046246741234

In [57]: print("The model predicted the values with", (r2 *100) ,"% accuracy")
    The model predicted the values with 98.90046246741234 % accuracy
```

According to the R-Squared the model is a good fit, however, the MAE and MSE show that the model is poor at predicting.