第二章 - 语言及其文法

字母表

字母表是一个有穷符号集合(符号:字母、数字、标点符号等)

字母表运算

乘积:将两个字母表的元素进行依次结合

例如:A={0, 1} B={a, b}, AB={0a, 0b, 1a, 1b}

n次幂:字母表对自身的n次乘积后的集合

幂次为0:表示空集,使用符号ε表示

幂次为n:表示长度为n的符号串集合

例如:{0, 1} ^ 3 ={0, 1} {0, 1} {0, 1}

正闭包:长度为正数的符号串集合,从1次幂到n次幂运算结果的并集

例如:A^+=A U A^2 U A^3 U ...

克林闭包:在正闭包的基础上加入一个ε,即构成

例如:A^*=A^0 U A U A^2 U A^3 U ...

串

串是字母表中符号的一个有穷序列。

长度:表示符号符号个数(记作 | 串| |),如:| atao| = 4;空串表示长度为0 的串(也是使用 ϵ 表示)

串运算

连接:将两个串拼在一起形式一个新串

例如:x = atao, y = Firebasky, 则 z = xy = ataoFirebasky

x是z的前缀,y是z的后缀

空串在连接运算中可以表示为单位元(有点像线代中矩阵相乘中的单位矩阵),即 ϵs = ϵs = ϵs

幂:将幂次个串连接起来

例如: $s ^1 = (s ^0)s = \epsilon s = s$,或者s = a, $s ^2 = aa$, $s ^3 = aaa$

文法

在学习英文时,我们需要将一个句子转换成为主语、名词短语、动词短语等(如果有考研学习长难句应该深有体会),接着名词短语可以继续转换为形容词和名词,动词短语也是如此。单词就是语言的基本符号(句子的最小单位),而前面所提到的动名词短语是语法成分。

文法形式化定义

G = (VT, VN, P, S) 【这里的T和N是写在左下角的】

VT:终极符集合,例如:VT = {atao, Firebasky, m3w}

终极符是文法所定义的语言的基本符号,也可以称为token

表示的符号

- 1. 字母表中排在前面的小写字母, 如 a、b、c
- 2. 运算符, 如 +、*等
- 3. 标点符号,如括号、逗号等
- 4. 数字0、1、...、9
- 5. 粗体字符串,如id、if等

VN:非终极符集合,例如:VN = {<句子>, <动词短语>, <名词短语>, ...}

非终极符是用来表示语法成分的符号,也可以称为语法变量

表示的符号

- 1. 字母表中排在前面的大写字母,如A、B、C
- 2. 字母S。通常表示开始符号
- 3. 小写、斜体的名字,如 expr、stmt等

4. 代表程序构造的大写字母。如E(表达式)、T(项)和F(因子)

VT ∩ VN = 空集; VT U VN : 文法符号集

字母表中排在后面的大写字母(如X、Y、Z),表示文法符号(即终结符或非终结符)字母表中排在后面的小写字母(主要是u、v、...、z),表示终结符号串(包括空串)小写希腊字母,如 α 、 β 、 γ ,表示文法符号串(包括空串)

P:产生式集合,例如:P={<句子> → <主语><动词短词> <名词短语>}

产生式描述将终结符和非终极符组合成串的方法,一般形式: $\alpha \rightarrow \beta$ (α 定义 为 β)

 α ∈ (VT \cup VN) $^{\wedge}$ +,且 α 中至少包含VN中的一个元素:称为产生式的头或左部

β ∈ (VT ∪ VN): 称为产生式的体或右部

S:开始符号,例如:S=<句子>

开始符号表示该文法中最大的语法成分,除非特别说明,第一个产生式的 左部就是开始符号

表达式:

```
G = (\{id, +, *, (, )\}, \{E\}, P, E\})
P = \{E \rightarrow E + E, E \rightarrow E * E, E \rightarrow (E), E \rightarrow id\}
约定:不引起歧义的前提下,可以只写产生式简写为
G : E \rightarrow E + E, E \rightarrow E * E, E \rightarrow (E), E \rightarrow id
当一组相同左部的E产生式时,简写为
E \rightarrow E + E \mid E * E \mid (E) \mid id (读作:E定义为E + E,或者E * E,或者(E),或者id E + E, E * E, (E), id称为E的候选式
```

推导和归约

给定文法G=(VT, VN, P, S),如果 $\alpha \rightarrow \beta \in P$,那么可以将符号串γαδ中的α替换为 β,也就是说,将γαδ重写为γβδ,记作 γαδ \longrightarrow γβδ。此时,称文法中的符号串 γαδ 直接推导出 γβδ。简而言之,就是用产生式的右部替换产生式的左部。

例

文法:

- ① <句子>→<名词短语><动词短语>
- ② <名词短语>→<形容词><名词短语>
- ③ <名词短语>→<名词>
- ④ <动词短语>→<动词><名词短语>
- (5) <形 容词> → little
- ⑥ <名词>→ boy
- ⑦ <名词>→ apple
- ⑧ <动词>→eat

⇒<形容词><名词短语><动词短语>

归约

- ⇒ little <名词短语> <动词短语>
- ⇒ little <名词> <动词短语>

推导 ⇒little boy <动词短语>

- ⇒ little boy <动词><名词短语>
- ⇒ little boy eats <名词短语>
- ⇒ little boy eats <名词>
- \Rightarrow little boy eats apple

→*表示经过若干(可以是0)步推导

句型和句子

如果 S \longrightarrow * α,α ∈ (VTUVN)* $_{i}$ 则称α是G的一个句型

一个句型中既可以包含终结符,又可以包含非终 结符,也可能是空串

如果 S →* w,w ∈ VT*,则称w是G的一个句子

句子是不包含非终结符的句型

例

<句子>⇒<名词短语><动词短语>

- ⇒ <形容词> <名词短语> <动词短语>
- ⇒ little <名词短语> <动词短语>
- ⇒ little <名词> <动词短语>
- ⇒ little boy <动词短语>
- ⇒ little boy <动词><名词短语>
- ⇒ little boy eats <名词短语>
- ⇒ little boy eats <名词>

 \Rightarrow little boy eats apple

语言的形式化定义

由文法G的开始符号S推导出的所有句子构成的集合称为文法G生成的语言,记为 L(G)。即 L(G) = { w | S \longrightarrow * w, w \in VT }

文法的分类

文法分类体系

0型文法:无限制文法/短语结构文法

 $\forall \alpha \rightarrow \beta \in P$, α 中至少包含1个非终结符

0型语言:由0型文法G生成的语言L(G)

1型文法:上下文有关文法(CSG)

 $\forall \alpha \rightarrow \beta \in P, |\alpha| \leq |\beta|$

产生式的一般形式: $\alpha 1 A \alpha 2 \rightarrow \alpha 1 \beta \alpha 2 (\beta \neq \epsilon)$

CSG中不包含 ϵ -产生式:原因是如果 β 为 ϵ ,则 β β =0,但是 α 至少要包含一个非终结符,所以 α β β 1,前后矛盾不满足规则

1型语言(上下文有关语言):由上下文有关文法(1型文法)G生成的语言L(G)

2型文法:上下文无关文法(CFG)

 $\forall \alpha \rightarrow \beta \in P, \alpha \in VN$

产生式的一般形式:A→β

2型语言(上下文无关语言):由上下文无关文法(2型文法)G生成的语言L(G)

3型文法:正则文法(RG)

右线性文法: $A \rightarrow WB$ 或 $A \rightarrow W$ (w是终结符, B是非终结符)

左线性文法: A→Bw 或 A→w (w是终结符,B是非终结符)

3型语言(正则语言):由正则文法(3型文法)G生成的语言L(G)

四种文法之间的关系是从上往下逐级包含的

课后作业

1.请写出无符号整数和浮点数的文法

无符号整数文法

 $S \rightarrow C \mid AB$

 $A \rightarrow 1|2|3|4|5|6|7|8|9$

 $B \rightarrow AB|BC|A|C$

C → 0

浮点数文法

 $S \rightarrow B.C|AC.C$

 $A \rightarrow 1|2|3|4|5|6|7|8|9$

 $B \rightarrow 0$

 $C \rightarrow AC |BC|A|B$

2.写出于下列等价的左线性文法

例(右线性文法)

- ① $S \rightarrow a \mid b \mid c \mid d$
- ② $S \rightarrow aT \mid bT \mid cT \mid dT$

 $T \rightarrow aT \mid bT \mid cT \mid dT \mid 0T \mid 1T \mid 2T \mid 3T \mid 4T \mid 5T$

文法G(上下文无关文法)

- ① $S \rightarrow L \mid LT$
- $\bigcirc T \rightarrow L \mid D \mid TL \mid TD$
- $3 L \rightarrow a \mid b \mid c \mid d$
- **4** $D \rightarrow 0 | 1 | 2 | 3 | 4 | 5$

6

 $S \rightarrow a|b|c|d$

 $S \rightarrow Sa|Sb|Sc|Sd|S0|S1|S2|S3|S4|S5$