The KWANT package – electron transport simulations in magnetic field

A. M. K.

April 23, 2025; last update April 23, 2025

1 Scattering by the potential

Figure 1: Conductance as a function of energy of the incident electron in a system with a Gaussian scattering potential localized in the center of the nanowire.

Figure 2: Wave function and current density maps in a system with a Gaussian scattering potential localized in the center of the nanowire. The maps in the columns are at E = 0.03, 0.05, 0.1 eV, respectively.

2 External magnetic field / quantum Hall effect

Figure 3: Dispersion relation in the nanowire calculated at $B_z=2~\mathrm{T}$ with $W=40,100~\mathrm{nm}$.

Figure 4: Conductance as a function of energy of the incident electron at $B_z=2~\mathrm{T}$ and $W=100~\mathrm{nm}$.

Figure 5: Wave function of the lowest energy subband for electron incident from the left and right contact. Results at $B_z = 2$ T and W = 100 nm (here E = 0.02 eV).

3 Y-shaped junction

Figure 6: Dispersion relation in the left contact.

Figure 7: Conductance from the from the left lead to the upper and lower right lead as a function of magnetic field B_z at E=0.1 eV. The plot may vary depending on the actual geometry of the Y-junction.

Figure 8: Current density maps at selected B_z values: (a) $B_z = 1$ T, (b-c) $B_z = 5$ T: (b) 1st and (c) 2nd mode, (d) $B_z = 10$ T, (e) $B_z = -5$ T [(a), (b), (d) and (e) show the 1st mode]. The incident electron energy E = 0.1 eV.