Rezk Completions

Kobe Wullaert

Delft University of Technology

24/11/2022

Review: Rezk completion of a category

Goal: Rezk completion of a monoidal category

Future work: Rezk completion of structured categories

Review: Rezk completion of a category

Goal: Rezk completion of a monoidal category

Future work: Rezk completion of structured categories

If $x : \mathcal{C}$ satisfies a property, then so does $y : \mathcal{C}$ given $x \cong y$.

If $x : \mathcal{C}$ satisfies a property, then so does $y : \mathcal{C}$ given $x \cong y$. Is it really?

If $x : \mathcal{C}$ satisfies a property, then so does $y : \mathcal{C}$ given $x \cong y$. Is it really?

1. Example: $isInitial(x) \rightarrow isInitial(y)$.

If $x : \mathcal{C}$ satisfies a property, then so does $y : \mathcal{C}$ given $x \cong y$. Is it really?

- 1. Example: $isInitial(x) \rightarrow isInitial(y)$.
- 2. Counterexample: Is 5 an element of an object in a set?"

If $x : \mathcal{C}$ satisfies a property, then so does $y : \mathcal{C}$ given $x \cong y$. Is it really?

- 1. Example: $isInitial(x) \rightarrow isInitial(y)$.
- 2. Counterexample: Is 5 an element of an object in a set?"

One approach to make it precise is using univalent foundations and univalent categories.

Lemma

Let C be a category and x, y : C objects. Then

$$\mathsf{idtoiso}_{x,y}: (x=y) \to (x \cong y).$$

Lemma

Let $\mathcal C$ be a category and $x,y:\mathcal C$ objects. Then

$$\mathsf{idtoiso}_{x,y}: (x=y) \to (x \cong y).$$

Definition

A category C is **univalent** if for any x, y : C, the function idtoiso_{x,y} is an equivalence of types.

Example

Example

Univalent categories:

1. The category **Set** of (h)sets and functions.

Example

- 1. The category **Set** of (h)sets and functions.
- 2. A category of *structured sets* and functions that preserve the structure.

Example

- 1. The category **Set** of (h)sets and functions.
- 2. A category of *structured sets* and functions that preserve the structure.
 - 2.1 The category **Pos** of posets and monotone functions.
 - 2.2 The category **Monoid** of monoids and monoid-homomorphisms.

Example

- 1. The category **Set** of (h)sets and functions.
- 2. A category of *structured sets* and functions that preserve the structure.
 - 2.1 The category **Pos** of posets and monotone functions.
 - 2.2 The category **Monoid** of monoids and monoid-homomorphisms.
- 3. If \mathcal{D} is univalent, then so is the functor category $[\mathcal{C}, \mathcal{D}]$.

Example

Univalent categories:

- 1. The category **Set** of (h)sets and functions.
- 2. A category of *structured sets* and functions that preserve the structure.
 - 2.1 The category **Pos** of posets and monotone functions.
 - 2.2 The category **Monoid** of monoids and monoid-homomorphisms.
- 3. If \mathcal{D} is univalent, then so is the functor category $[\mathcal{C}, \mathcal{D}]$.

Non-univalent category:

1. Category generated by

such that $f \cdot g = \operatorname{Id} x$ and $g \cdot f = \operatorname{Id} y$.

Rezk completion

1. A **Rezk completion** RC(C) of a category C is the free univalent category associated to it.

Rezk completion

- 1. A **Rezk completion** RC(C) of a category C is the free univalent category associated to it.
- 2. Any functor $F:\mathcal{C}\to\mathcal{E}$ with \mathcal{E} univalent, factors *uniquely* via \mathcal{H} :

 Cat_{Univ} is a reflective sub-bicategory of Cat.

 Cat_{Univ} is a reflective sub-bicategory of Cat.

Definition

A **Rezk completion** of a category ${\mathcal C}$ consists of:

 Cat_{Univ} is a reflective sub-bicategory of Cat.

Definition

A **Rezk completion** of a category C consists of:

1. a univalent category RC(C);

 Cat_{Univ} is a reflective sub-bicategory of Cat.

Definition

A **Rezk completion** of a category $\mathcal C$ consists of:

- 1. a univalent category RC(C);
- 2. a functor $\mathcal{H}:\mathcal{C}\to\mathsf{RC}(\mathcal{C})$

 Cat_{Univ} is a reflective sub-bicategory of Cat.

Definition

A **Rezk completion** of a category \mathcal{C} consists of:

- 1. a univalent category RC(C);
- 2. a functor $\mathcal{H}:\mathcal{C}\to\mathsf{RC}(\mathcal{C})$

such that for any univalent category $\ensuremath{\mathcal{E}}$,

 Cat_{Univ} is a reflective sub-bicategory of Cat.

Definition

A **Rezk completion** of a category $\mathcal C$ consists of:

- 1. a univalent category RC(C);
- 2. a functor $\mathcal{H}:\mathcal{C}\to\mathsf{RC}(\mathcal{C})$

such that for any univalent category ${\cal E}$,

$$\mathcal{H}\cdot(-):[\mathsf{RC}(\mathcal{C}),\mathcal{E}]\to[\mathcal{C},\mathcal{E}],$$

is an isomorphism of categories.

 Cat_{Univ} is a reflective sub-bicategory of Cat.

Definition

A **Rezk completion** of a category $\mathcal C$ consists of:

- 1. a univalent category RC(C);
- 2. a functor $\mathcal{H}:\mathcal{C}\to\mathsf{RC}(\mathcal{C})$

such that for any univalent category \mathcal{E} ,

$$\mathcal{H}\cdot (-): [\mathsf{RC}(\mathcal{C}), \mathcal{E}] \to [\mathcal{C}, \mathcal{E}],$$

is an isomorphism of categories.

Remark

1. Equivalently: $\mathcal{H} \cdot (-)$ is adjoint equivalence of categories.

 Cat_{Univ} is a reflective sub-bicategory of Cat.

Definition

A **Rezk completion** of a category $\mathcal C$ consists of:

- 1. a univalent category RC(C);
- 2. a functor $\mathcal{H}:\mathcal{C}\to\mathsf{RC}(\mathcal{C})$

such that for any univalent category ${\mathcal E}$,

$$\mathcal{H} \cdot (-) : [\mathsf{RC}(\mathcal{C}), \mathcal{E}] \to [\mathcal{C}, \mathcal{E}],$$

is an isomorphism of categories.

Remark

- 1. Equivalently: $\mathcal{H} \cdot (-)$ is adjoint equivalence of categories.
- 2. Equivalently: $\mathcal{H} \cdot (-)$ is weak equivalence of categories.

Rezk completion: Construction

Lemma

If $\mathcal{H}:\mathcal{C}\to\mathcal{D}$ is a weak equivalence of categories, then

Rezk completion: Construction

Lemma

If $\mathcal{H}:\mathcal{C}\to\mathcal{D}$ is a weak equivalence of categories, then for any univalent category \mathcal{E} ,

Rezk completion: Construction

Lemma

If $\mathcal{H}:\mathcal{C}\to\mathcal{D}$ is a weak equivalence of categories, then for any univalent category \mathcal{E} ,

$$\mathcal{H}\cdot(-):[\mathcal{D},\mathcal{E}]\to[\mathcal{C},\mathcal{E}],$$

is an isomorphism of categories.

Review: Rezk completion of a category

Goal: Rezk completion of a monoidal category

Future work: Rezk completion of structured categories

 $MonCat_{Univ}$ is a reflective sub-bicategory of MonCat.

MonCat_{Univ} is a reflective sub-bicategory of **MonCat**.

Definition

A monoidal Rezk completion of a monoidal category ${\mathcal C}$

MonCat_{Univ} is a reflective sub-bicategory of **MonCat**.

Definition

A monoidal Rezk completion of a monoidal category ${\mathcal C}$

1. a univalent monoidal category $\mathsf{RC}(\mathcal{C})$

MonCat_{Univ} is a reflective sub-bicategory of **MonCat**.

Definition

A monoidal Rezk completion of a monoidal category ${\mathcal C}$

- 1. a univalent monoidal category RC(C);
- 2. a strong monoidal functor $\mathcal{H}:\mathcal{C}\to\mathsf{RC}(\mathcal{C})$

MonCat_{Univ} is a reflective sub-bicategory of MonCat.

Definition

A monoidal Rezk completion of a monoidal category ${\mathcal C}$

- 1. a univalent monoidal category RC(C);
- 2. a strong monoidal functor $\mathcal{H}:\mathcal{C}\to\mathsf{RC}(\mathcal{C})$

such that for any univalent monoidal category ${\mathcal E}$,

$$\mathcal{H} \cdot (-) : \mathsf{MonCat}(\mathsf{RC}(\mathcal{C}), \mathcal{E}) \to \mathsf{MonCat}(\mathcal{C}, \mathcal{E}),$$

is an isomorphism of categories.

Monoidal Rezk completion: Approach

Given: $(\mathcal{C}: \mathbf{Cat}, I:\mathcal{C}) \xrightarrow{\mathcal{H}} \mathcal{D}$

Given:
$$(C : \mathbf{Cat}, I : C) \xrightarrow{\mathcal{H}} \mathcal{D}$$

1. Unit object on \mathcal{D} : $\hat{I} := \mathcal{H}(I)$.

Given: $(C : \mathbf{Cat}, I : C) \xrightarrow{\mathcal{H}} \mathcal{D}$

- 1. Unit object on \mathcal{D} : $\hat{I} := \mathcal{H}(I)$.
- 2. \mathcal{H} preserves the unit: $Id_{\mathcal{H}(I)}$.

Given: $(C : \mathbf{Cat}, I : C) \xrightarrow{\mathcal{H}} \mathcal{D}$

- 1. Unit object on \mathcal{D} : $\hat{I} := \mathcal{H}(I)$.
- 2. \mathcal{H} preserves the unit: $Id_{\mathcal{H}(I)}$.
- 3. Universal property

1. Given: $(\mathcal{C}: \mathbf{Cat}, \otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}) \xrightarrow{\mathcal{H}} \mathcal{D}$.

- 1. Given: $(\mathcal{C}: \mathbf{Cat}, \otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}) \xrightarrow{\mathcal{H}} \mathcal{D}$.
- 2. Lifted tensor on \mathcal{D} : $\mathcal{D} \times \mathcal{D} \to \mathcal{D}$.

- 1. Given: $(C : \mathbf{Cat}, \otimes : C \times C \to C) \xrightarrow{\mathcal{H}} \mathcal{D}$.
- 2. Lifted tensor on $\mathcal{D} \colon \mathcal{D} \times \mathcal{D} \to \mathcal{D}$. Since $\mathcal{H} \times \mathcal{H} \colon \mathcal{C} \times \mathcal{C} \to \mathcal{D} \times \mathcal{D}$ is a weak equivalence, \mathcal{D} univalent

- 1. Given: $(C : \mathbf{Cat}, \otimes : C \times C \to C) \xrightarrow{\mathcal{H}} \mathcal{D}$.
- 2. Lifted tensor on $\mathcal{D} \colon \mathcal{D} \times \mathcal{D} \to \mathcal{D}$. Since $\mathcal{H} \times \mathcal{H} \colon \mathcal{C} \times \mathcal{C} \to \mathcal{D} \times \mathcal{D}$ is a weak equivalence, \mathcal{D} univalent :

- 1. Given: $(C : \mathbf{Cat}, \otimes : C \times C \to C) \xrightarrow{\mathcal{H}} \mathcal{D}$.
- 2. Lifted tensor on $\mathcal{D} \colon \mathcal{D} \times \mathcal{D} \to \mathcal{D}$. Since $\mathcal{H} \times \mathcal{H} \colon \mathcal{C} \times \mathcal{C} \to \mathcal{D} \times \mathcal{D}$ is a weak equivalence, \mathcal{D} univalent:

- 1. Given: $(C : \mathbf{Cat}, \otimes : C \times C \to C) \xrightarrow{\mathcal{H}} \mathcal{D}$.
- 2. Lifted tensor on $\mathcal{D} \colon \mathcal{D} \times \mathcal{D} \to \mathcal{D}$. Since $\mathcal{H} \times \mathcal{H} : \mathcal{C} \times \mathcal{C} \to \mathcal{D} \times \mathcal{D}$ is a weak equivalence, \mathcal{D} univalent:

$$\begin{array}{ccc} \mathcal{C} \times \mathcal{C} & \xrightarrow{\mathcal{H} \times \mathcal{H}} & \mathcal{D} \times \mathcal{D} \\ & & & \downarrow \hat{\otimes} \\ \mathcal{C} & \xrightarrow{\mathcal{H}} & \mathcal{D} \end{array}$$

- 1. Given: $(C : \mathbf{Cat}, \otimes : C \times C \to C) \xrightarrow{\mathcal{H}} \mathcal{D}$.
- 2. Lifted tensor on $\mathcal{D} \colon \mathcal{D} \times \mathcal{D} \to \mathcal{D}$. Since $\mathcal{H} \times \mathcal{H} \colon \mathcal{C} \times \mathcal{C} \to \mathcal{D} \times \mathcal{D}$ is a weak equivalence, \mathcal{D} univalent:

$$\begin{array}{ccc} \mathcal{C} \times \mathcal{C} & \xrightarrow{\mathcal{H} \times \mathcal{H}} & \mathcal{D} \times \mathcal{D} \\ & & & \downarrow \hat{\otimes} \\ \mathcal{C} & \xrightarrow{\mathcal{H}} & \mathcal{D} \end{array}$$

3. ${\cal H}$ preserves the tensor strongly.

1. Given $G: \mathcal{D} \to \mathcal{E}$ a functor;

- 1. Given $G: \mathcal{D} \to \mathcal{E}$ a functor;
- 2. And a witness of $\mathcal{H} \circ G$ being a lax tensor-preserving functor.

- 1. Given $G: \mathcal{D} \to \mathcal{E}$ a functor;
- 2. And a witness of $\mathcal{H} \circ G$ being a lax tensor-preserving functor.
- 3. Goal: Construct witness of *G* being a lax tensor-preserving functor:

- 1. Given $G: \mathcal{D} \to \mathcal{E}$ a functor;
- 2. And a witness of $\mathcal{H} \circ G$ being a lax tensor-preserving functor.
- 3. Goal: Construct witness of *G* being a lax tensor-preserving functor:

$$\mu_{G}: (G \times G) \circ \otimes_{\mathcal{E}} \Rightarrow \hat{\otimes} \circ G.$$

- 1. Given $G: \mathcal{D} \to \mathcal{E}$ a functor;
- 2. And a witness of $\mathcal{H} \circ G$ being a lax tensor-preserving functor.
- 3. Goal: Construct witness of *G* being a lax tensor-preserving functor:

$$\mu_G: (G \times G) \circ \otimes_{\mathcal{E}} \Rightarrow \hat{\otimes} \circ G.$$

4. Since $\mathcal{H} \times \mathcal{H}$ is a weak equivalence and \mathcal{E} is univalent,

1. Given: $(\mathcal{C}: \mathbf{Cat}, \otimes, I, \lambda: (I \otimes -) \Rightarrow \mathrm{Id}_{\mathcal{C}}) \xrightarrow{\mathcal{H}} \mathcal{D}$.

- 1. Given: $(\mathcal{C}: \mathbf{Cat}, \otimes, I, \lambda: (I \otimes -) \Rightarrow \mathsf{Id}_{\mathcal{C}}) \xrightarrow{\mathcal{H}} \mathcal{D}$.
- 2. Lifted unitor on $\mathcal{D} \colon \mathcal{D} \times \mathcal{D} \to \mathcal{D}$.

- 1. Given: $(\mathcal{C}: \mathbf{Cat}, \otimes, I, \lambda: (I \otimes -) \Rightarrow \mathsf{Id}_{\mathcal{C}}) \xrightarrow{\mathcal{H}} \mathcal{D}.$
- 2. Lifted unitor on $\mathcal{D} \colon \mathcal{D} \times \mathcal{D} \to \mathcal{D}$. Since $\mathcal{H} \colon \mathcal{C} \to \mathcal{D}$ is a weak equivalence, \mathcal{D} univalent:

- 1. Given: $(\mathcal{C}: \mathbf{Cat}, \otimes, I, \lambda: (I \otimes -) \Rightarrow \mathsf{Id}_{\mathcal{C}}) \xrightarrow{\mathcal{H}} \mathcal{D}.$
- 2. Lifted unitor on $\mathcal{D} \colon \mathcal{D} \times \mathcal{D} \to \mathcal{D}$. Since $\mathcal{H} \colon \mathcal{C} \to \mathcal{D}$ is a weak equivalence, \mathcal{D} univalent:

1. Right unitor: Analogous (to left unitor).

- 1. Right unitor: Analogous (to left unitor).
- 2. Associator: Analogous, use: $(\mathcal{H} \times \mathcal{H}) \times \mathcal{H}$.

- 1. Right unitor: Analogous (to left unitor).
- 2. Associator: Analogous, use: $(\mathcal{H} \times \mathcal{H}) \times \mathcal{H}$.
- 3. Pentagon and triangle equalities: (m)Eso of \mathcal{H} .

- 1. Right unitor: Analogous (to left unitor).
- 2. Associator: Analogous, use: $(\mathcal{H} \times \mathcal{H}) \times \mathcal{H}$.
- 3. Pentagon and triangle equalities: (m)Eso of \mathcal{H} .
- 4. Strong monoidal functors: Lift of natural iso is a natural iso.

Review: Rezk completion of a category

Goal: Rezk completion of a monoidal category

Future work: Rezk completion of structured categories

Rezk completion of a structured category

1. Structured category: Object in $\int \mathcal{D}$, where \mathcal{D} displayed bicategory over **Cat**.

Rezk completion of a structured category

1. Structured category: Object in $\int \mathcal{D}$, where \mathcal{D} displayed bicategory over **Cat**.

2.

Not always directly above Cat.

Not always directly above Cat.

 \leadsto Arbitrary bicategory ${\cal B}$

Not always directly above Cat.

- \leadsto Arbitrary bicategory ${\cal B}$
- → No internal notion of univalence

Not always directly above **Cat**.

- \leadsto Arbitrary bicategory ${\cal B}$
- → No internal notion of univalence
- $\Rightarrow \mathbb{P} : \mathsf{ob}(\mathcal{B}) \to \mathsf{hProp}$

Not always directly above Cat.

- \leadsto Arbitrary bicategory ${\cal B}$
- → No internal notion of univalence
- $\Rightarrow \mathbb{P} : \mathsf{ob}(\mathcal{B}) \to \mathsf{hProp}$

Goal: Study of lifting reflective sub-bicategories.

Conjecture

For any pseudo-functor $F:\mathcal{B} o\mathcal{B}$

Conjecture

```
For any pseudo-functor F: \mathcal{B} \to \mathcal{B}:
If F commutes with RC, i.e. F \cdot \mathsf{RC} \simeq \mathsf{RC} \cdot F,
```

Conjecture

For any pseudo-functor $F: \mathcal{B} \to \mathcal{B}$:

If *F* commutes with RC, i.e. $F \cdot RC \simeq RC \cdot F$,

Then $\mathcal{D} := Alg(F)$ admits Rezk-completions.

Conjecture

For any pseudo-functor $F: \mathcal{B} \to \mathcal{B}$:

If F commutes with RC, i.e. $F \cdot RC \simeq RC \cdot F$,

Then $\mathcal{D} := Alg(F)$ admits Rezk-completions.

A signature for those functors:

$$F := [c \mid \mathsf{Id} \mid F + F \mid F \times F]$$

Final slide

THANK YOU!