

References

Abraham Silberschatz, Henry F. Korth, S. Sudarshan: "Database System Concepts", 7th Edition

• Chapter 1: Introduction

Jeffrey A. Hoffer, Mary B. Prescott, Heikki Topi : "Modern Database Management", 12th Edition

• Chapter 1: The Database Environment and Development Process

Definition (1/3)

Database

organized collection of logically related data

Data

stored representations of meaningful objects and events

Structured: numbers, text, dates

Unstructured: images, video, documents

Example:

Baker, Kenneth D.324917628Doyle, Joan E.476193248Finkle, Clive R.548429344Lewis, John C.551742186McFerran, Debra R.409723145

Definition (2/3)

Information

data processed to increase knowledge in the person using the data

Example:

Class Roster								
Course:	MGT 500 Business		Semester: Spring 2015					
Section:	2							
Nar	Name		Major	GPA				
Baker, Ker	Baker, Kenneth D.		MGT	2.9				
Doyle, Joa	Doyle, Joan E.		MKT	3.4				
Finkle, Clive R.		548429344	PRM	2.8				
Lewis, John C.		551742186	MGT	3.7				
McFerran, Debra R.		409723145	IS	2.9				
Sisneros, Michael		392416582	ACCT	3.3				

Summarized data Graphical displays turn
data into useful
information that
managers can use for
decision making and
interpretation

Data in context - Context helps users understand data

Definition (3/3)

Metadata

data that describes the properties and context of user data

Example:

TABLE 1-1	Example Metadata for Class Roster							
Data Item	Metadata							
Name	Туре	Length	Min	Max	Description	Source		
Course	Alphanumeric	30			Course ID and name	Academic Unit		
Section	Integer	1	1	9	Section number	Registrar		
Semester	Alphanumeric	10			Semester and year	Registrar		
Name	Alphanumeric	30			Student name	Student IS		
ID	Integer	9			Student ID (SSN)	Student IS		
Major	Alphanumeric	4			Student major	Student IS		
GPA	Decimal	3	0.0	4.0	Student grade point average	Academic Unit		

Descriptions of the properties or characteristics of the data, including data types, field sizes, allowable values, and data context

Traditional File Processing System

When computer-based data processing was first available, there were no databases. To be useful for business applications, computers had to store, manipulate, and retrieve large files of data.

File processing systems at Pine Valley Furniture Company

Disadvantages of File Processing (1)

Program-Data Dependence

 All programs maintain metadata for each file they use

Data Redundancy (Duplication of data)

 Different systems/ programs have separate copies of the same data

Limited Data Sharing

No centralized control of data

Lengthy Development Times

 Programmers must design their own file formats

Excessive Program Maintenance

 80% of information systems budget

Disadvantages of File Processing (2)

Difficulty in accessing data

 Need to write a new program to carry out each new task

Data isolation

Multiple files and formats

Integrity problems

- Integrity
 constraints (e.g.,
 account balance
 > 0) become
 "buried" in
 program code
 rather than being
 stated explicitly
- Hard to add new constraints or change existing ones

Atomicity of updates

 Failures may leave database in an inconsistent state with partial updates carried out

Concurrent access by multiple users

- Concurrent access needed for performance
- Uncontrolled concurrent accesses can lead to inconsistencies

Security problems

 Hard to provide user access to some, but not all, data

Problems with **Data**Dependency

Problems with **Data**Redundancy

Each application programmer must maintain their own data Each application program needs to include code for the metadata of each file

must have its own processing routines for reading, inserting, updating and deleting data

_ack of coordination and central control

Non-standard file format

Waste of space to have duplicate data

Causes more maintenance headaches

The biggest Problem:

- When data changes in one file, could cause inconsistencies
- Compromises data integrity

Solution: The Database Approach

CENTRAL REPOSITORY OF SHARED DATA

DATA IS MANAGED BY A CONTROLLING AGENT

STORED IN A STANDARDIZED, CONVENIENT FORM

Requires a Database Management System (DBMS)

Database Management System (DBMS)

A software system that is used to create, maintain, and provide controlled access to user databases DBMS manages data resources like an operating system manages hardware resources

Advantages of Database Approach

Improved Data Sharing

 Different users get different views of the data

Enforcement of Standards

 All data access is done in the same way

Improved Data Quality

 Constraints, data validation rules

Better Data Accessibility/ Responsiveness

 Use of standard data query language (SQL)

Security, Backup/Recovery, Concurrency

 Disaster recovery is easier

Costs and Risks of the Database Approach

Up-front costs

- Conversion Costs

Ongoing Costs

- Requires New,
 Specialized
 Personnel
- Need for Explicit Backup and Recovery

Organizational Conflict

 Old habits die hard

Developing a database application for Pine Valley Furniture Company (1/4)

Computer System for Pine Valley Furniture Company

Developing a database application for Pine Valley Furniture Company (2/4)

Preliminary data model for Home Office product line marketing support system

Project data model for Home Office product line marketing support system

Developing a database application for Pine Valley Furniture Company (3/4)

Four relations (Pine Valley Furniture Company)

Developing a database application for Pine Valley Furniture Company (4/4)

SELECT Product.ProductID, Product.ProductDescription, Product.PRCurrentYearSalesGoal,

(OrderQuantity * ProductPrice) AS SalesToDate

FROM Order.OrderLine, Product.ProductLine

WHERE Order.OrderNumber = OrderLine.OrderNumber

AND Product.ProductID = OrderedProduct.ProductID

AND Product.ProductID = ProductLine.ProductID

AND Product.ProductLineName = "Home Office";

SQL query for Home Office sales-to-goal comparison

Home Office product line sales comparison

Customer invoice (Pine Valley Furniture Company)

PVFC Customer Invoice

 Customer ID
 2

 Gustomer Name
 Value Furniture

 Address
 15145 S.W. 17th St.

 Plano, TX 75094

Product_ID	Product Description	Finish	Quantity	Unit Price	Extended Price:
7	Dining Table	Natural As	2	\$800.00	\$1,600.00
5	Writer's Desk	Cherry	2	\$325.00	\$650.00
4	Entertainment Center	Natural M	1	\$650.00	\$650.00
				220,000	100 A 100 M 100 M 100 M

Total \$2,900.0

10/24/2000

Components of the Database Environment

CASE Tools – computer-aided software engineering

Repository – centralized storehouse of metadata

Database Management System (DBMS) – software for managing the database

Database - storehouse of the data

Application Programs - software using the data

User Interface – text and graphical displays to users

Data Administrators – personnel responsible for maintaining the database

System Developers – personnel responsible for designing databases and software

End Users – people who use the applications and databases

The Range of Database Applications

LEDGE & SOFTWARE ENGINEERING

Evolution of Database Technologies

Hierarchical database model

Relational database model

Object-oriented database model

Multidimensional database model

Database Architecture

Levels of Abstraction

Physical level: describes how a record is stored.

Logical level: describes data stored in database, and the relationships among the data.

```
type instructor = record

ID : string;
    name : string;
    dept_name : string;
    salary : integer;
end;
```

View level: application programs hide details of data types. Views can also hide information (such as an employee's salary) for security purposes.

View of Data

An architecture for a database system (ANSI/SPARC Architecture)

Physical Data Independence

Physical Data Independence – the ability to modify the physical schema without changing the logical schema

- Applications depend on the logical schema
- In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.

Instances and Schemas

Schema: structure of the database

Logical Schema – the overall logical structure of the database

Physical Schema - the overall physical structure of the database

Instance: the actual content of the database at a particular point in time

Similar to types and variables in programming languages

Data Definition Language (DDL)

Data Manipulation Language (DML)

Specification notation for defining the database

schema

Example: create table instructor (

ID char(5),

name varchar(20),

dept_name varchar(20),

salary numeric(8,2))

DDL compiler generates a set of table templates stored in a *data dictionary* - contains metadata (i.e., data about data)

- Database schema
- Integrity constraints
 - Primary key (ID uniquely identifies instructors)
- Authorization
 - Who can access what

Language for accessing and updating the data organized by the appropriate data model

There are basically two types of datamanipulation language

- Procedural DML -- require a user to specify what data are needed and how to get those data.
- **Declarative DML** -- require a user to specify what data are needed without specifying how to get those data.

SQL Query Language

SQL query language is nonprocedural. A query takes as input several tables (possibly only one) and always returns a single table.

Example to find all instructors in Comp. Sci. dept
select name
from instructor
where dept_name = 'Comp. Sci.'

Application programs generally access databases through one of

- Language extensions to allow embedded SQL
- Application program interface (e.g., ODBC/JDBC) which allow SQL queries to be sent to a database

Database Design

Logical Design – Deciding on the database schema. Database design requires that we find a "good" collection of relation schemas.

Business decision – What attributes should we record?

Computer Science decision – What relation schemas should we have?

Physical Design - Deciding on the physical layout of the database

Database Engine

- •A database system is partitioned into modules that deal with each of the responsibilities of the overall system.
- ■The functional components of a database system can be divided into:

The storage manager

The query processor component

The transaction management component

A Database System Architecture

on a centralized server machine

The Database System Environment

Database System refers to an organization of components that define and regulate the collection, storage, management, and use of data within a database environment.

The database system is composed of the five major parts: hardware, software, people, procedures, and data.

C. Coronel, S. Morris, P. Rob, 'Database System: Design, Implementation, and Management', Ninth Edition, Cengage Learnin

Database Applications Architecture

Two-tier architecture -- the application resides at the client machine, where it invokes database system functionality at the server machine

Three-tier architecture -- the client machine acts as a front end and does not contain any direct database calls.

Database Users

