Unidad 6: Inducción Álgebra y Geometría Analítica

Iker M. Canut

2 de agosto de $2020\,$

1. Inducción

Objetivo general: Demostrar enunciados del estilo: $\forall n, P(n)$, donde P(n) es una proposición que depende del numero natural n.

Axiomas: $\forall a, b, c \in \mathbb{R}$:

$$S_1$$
) $(a+b)+c=a+(b+c)$

$$P_1$$
) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

$$S_2$$
) $(a+b) = (b+a)$

$$P_2$$
) $(a \cdot b) = (b \cdot a)$

$$S_3$$
) $\exists 0 \in \mathbb{R} : a + 0 = a$

$$P_3$$
) $\exists 1 \in \mathbb{R} : 1 \neq 0 \land a \cdot 1 = a$

$$S_4$$
) $\exists -a \in \mathbb{R} : a + (-a) = 0$

$$P_4$$
) $(a \neq 0) \Rightarrow \exists a^{-1} \in \mathbb{R} : a \cdot a^{-1} = 1$

$$D) \ a \cdot (b+c) = a \cdot b + a \cdot c$$

$$O_1$$
) $(a = b) \underline{\vee} (a < b) \underline{\vee} (a > b)$

$$O_2$$
) $[(a < b) \land (b < c)] \Rightarrow (a < c)$

$$CS \ (a < b) \Rightarrow (a + c < b + c)$$

$$CP [(a < b) \land (0 < c)] \Rightarrow (a \cdot c) < (b \cdot c)$$

AS Axioma del Supremo

.....

Un subconjunto $H \subset \mathbb{R}$ se llama **inductivo** si:

- 1 ∈ *H*
- $x \in H \Rightarrow x + 1 \in H$

.....

Lema 1: La intersección de una familia arbitraria de subconjuntos inductivos de \mathbb{R} es un subconjunto inductivo. Se demuestra considerando una familia $\{X_i : i \in I\}$ en donde $X_i \subset \mathbb{R}$ es inductivo $\forall i \in I$. Entonces tenemos que:

•
$$1 \in X_i \ \forall i \in I$$
, luego $1 \in \bigcap_{i \in I} X_i$

$$\bullet$$
 Si $x\in X_i\Rightarrow x+1\in X_i \ \forall i\in I,$ luego $x\in \bigcap_{i\in I}X_i\Rightarrow x+1\in \bigcap_{i\in I}X_i$

Entonces tenemos que $\bigcap_{i \in I} X_i$ es un subconjunto inductivo.

Se define a $\mathbb N$ como la intersección de todos los subconjuntos inductivos de $\mathbb R$. Como el único valor

que **debe** estar por definición es el 1 (y sus sucesores), entonces $\mathbb{N} = \{1, 2, 3, 4, 5...\}$

Transcription of the desired of the Conference o

Teorema: Principio de Inducción: Sea P(n) una proposición que depende de $n \in \mathbb{N}$. Si:

- 1. P(1) es verdadera
- 2. $P(k) \Rightarrow P(k+1) \ \forall k \in \mathbb{N}$

Entonces P(n) es verdadera $\forall n \in \mathbb{N}$.

Se demuestra considerando $H = \{k \in \mathbb{N} : P(k) \text{ es verdadera}\}$. Sabemos que $1 \in H$ y que si $k \in H \Rightarrow k+1 \in H$. Luego, H es un subconjunto inductivo de \mathbb{R} , contenido en \mathbb{N} . Y como \mathbb{N} es el menor de subconjunto inductivo de \mathbb{R} , resulta $H = \mathbb{N}$ y $\therefore P(n)$ es verdadera $\forall n \in \mathbb{N}$.

......

Teorema: Sea P(n) una proposición que depende de $n \in \mathbb{N}$. Si:

- 1. $P(n_0)$ es verdadera
- 2. $P(k) \Rightarrow P(k+1) \ \forall k \geq n_0$

Entonces P(n) es verdadera $\forall k \geq n_0$

Se demuestra considerando $Q(n) = P(n_0 + n - 1)$. Luego sabemos que $Q(1) = P(n_0)$ es verdadera. Y sea $k \ge 1$, vemos que si $Q(k) = P(n_0 + k - 1)$ es verdadera, entonces $Q(k + 1) = P(n_0 + k)$ también lo es. Y por el principio de inducción, Q(n) es verdadera $\forall n \in \mathbb{N}$. I.e P(n) es verdadera $\forall n \ge n_0$.

Observación: $P(n) \Rightarrow P(n+1)$ ocurre siempre. Pero que $P(1) \Rightarrow P(2)$ no quiere decir que P(2) sea verdadera... Es decir, P(1) puede ser falso y sin importar el valor de P(2), la proposición es verdadera.

.....

Propiedades elementales de los \mathbb{N}

- 1. $n \in \mathbb{N} \land n \neq 1 \Rightarrow n-1 \in \mathbb{N}$, es decir, $\exists m \in \mathbb{N} : n = m+1$ P(1) es falsa, P(2) es verdadera. Suponemos P(n) y probamos P(n+1): (n+1)-1=n. Luego es verdadera $\forall n \geq 2$, que es equivalente a decir P(n), $(\forall n \in \mathbb{N} \land n \neq 1)$
- 2. $m, n \in \mathbb{N} \Rightarrow (m+n \in \mathbb{N} \land m \cdot n \in \mathbb{N})$ Fijamos m, inducción en n. P(n) = m+n, $Q(n) = m \cdot n$. Luego, $P(1) \lor Q(1)$ son verdaderas. $P(n) \Rightarrow P(n+1) = m+(n+1) = (m+n)+1 \in \mathbb{N}$. $Q(n) \Rightarrow Q(n+1) = m(n+1) = mn+m \in \mathbb{N}$
- 3. $m, n \in \mathbb{N} \land m < n \Rightarrow n m \in \mathbb{N}$ Fijamos n y hacemos inducción en m. $P(1): 1 < n \Rightarrow n - 1 \in \mathbb{N}$. Luego $P(m) \Rightarrow P(m+1): (m+1) < n \Rightarrow n - (m+1) \in \mathbb{N}$. Tenemos que m < n y por HI. tenemos que 1 < n - m. Luego, $n - (m+1) = (n-m) - 1 \in \mathbb{N}$
- 4. $n \in \mathbb{N} \land (a \in \mathbb{R} : n-1 < a < n) \Rightarrow a \notin \mathbb{N}$ P(1) es veradera, pues $0 < a < 1 \Rightarrow a \notin \mathbb{N}$. $P(n) \Rightarrow P(n+1)$: n < a < n+1. Suponemos que $a \in \mathbb{N}$, luego 0 < a-n < 1, pero es absurdo ya que $a > n \Rightarrow a-n \in \mathbb{N}$.

2. Definiciones Recursivas

Una sucesión $u_1, u_2, ... u_n$ está **definida recursivamente** si puede obtenerse de la siguiente manera:

- Se explicita el/los primer/os elemento/s $u_1[, u_2, ..., u_{n0}]$.
- Hay una regla para obtener el elemento u_{n+1} con $n \ge 1$ [o $n \ge n_0$] en función de los elementos anteriores de la sucesión.

2.1. Sumatoria

Dados n números $x_1, x_2, ..., x_n$, podemos definir recursivamente su suma $\sum_{i=1}^n x_i$ como:

$$\begin{cases} \sum_{i=1}^{n} x_i = x_1 \\ \sum_{i=1}^{k+1} x_i = \sum_{i=1}^{k} x_i + x_{k+1}, \ 2 \le k \le n-1 \end{cases}$$

2.2. Productoria

Dados n números $x_1, x_2, ..., x_n$, podemos definir recursivamente su producto $\prod_{i=1}^n x_i$ como:

$$\begin{cases} \prod_{i=1}^{n} x_i = x_1 \\ \prod_{i=1}^{k+1} x_i = \prod_{i=1}^{k} x_i \cdot x_{k+1}, \ 2 \le k \le n-1 \end{cases}$$

.....

3. Orden

Un subconjunto A de \mathbb{R} tiene **primer elemento** si $\exists a \in A : a \leq x, \forall x \in A$ (se dice que a es el mínimo, no hay que confundirlo con el ínfimo)

Un subconjunto A de \mathbb{R} se dice **bien ordenado** si todo subconjunto no vacio de A tiene primer elemento. Hay que tener cuidado porque el conjunto vacio está bien ordenado.

Sea a < b, los intervalos (a, b) y (a, b] no tienen primer elemento, mientras que [a, b) y [a, b] si tienen. De todas maneras, ninguno de éstos está bien ordenado, ya que se puede encontrar un intervalo dentro del mismo en donde no se tenga un primer elemento!

Teorema: Principio de buena ordenación: N es un conjunto bien ordenado.

Demostración: Por el absurdo, suponemos $X \subset \mathbb{N}$: que no tiene primer elemento.

Sea $H = \{n \in \mathbb{N} : \{1, ..., n\} \subset \mathbb{N} - X\}$; la idea es demostrar que H es inductivo, ergo X es \emptyset .

Comenzamos con que $1 \in H$ (si no sucede es primer elemento de X).

Luego, si tenemos que el natural $k \in H$, hay dos posibilidades para k+1, que esté en H o que no esté, significando ésto que pertenece a X. Pero si perteneciera a X, éste sería el primer elemento, lo cual es absurdo. Entonces $x+1 \in H$ y H es inductivo $\Rightarrow H = \mathbb{N}$ y $X = \emptyset$.

... Todo subconjunto no vacío de N tiene primer elemento.

Teorema: Principio de Inducción Fuerte Sea P(n) una proposición que depende del natural n:

- 1. Si P(1) es verdadera
- 2. Si $\forall k \geq 1$, si P(1), P(2), ..., P(k) son verdaderas, entonces P(k+1) es verdadera.

Entonces P(n) es verdadera para todo $n \in \mathbb{N}$.

Demostración: Sea $X = \{n \in \mathbb{N} : P(n) \text{ es falsa}\}\$, queremos ver que $X = \emptyset$.

Supongamos $x \neq \emptyset$ y que n_0 es el primer elemento de X. Observar que $n_0 \geq 2$, pues P(1) es verdadera. Luego, $1, ..., n_0 - 1 \not\in X$, o equivalentemente, $P(1), ..., P(n_0 - 1)$ son verdaderas. Pero el *item* 2 nos dice implica que $P(n_0)$ tiene que ser verdadera, y por ende no pertenecer a X, lo cual es absurdo.