3.6.1. Спектральный анализ электрических сигналов

Рябых Владислав и Валеев Сергей, Б05-905 27 ноября 2020 г.

Цель работы: изучение спектрального состава периодических электрических сигналов.

В работе используются: персональный компьютер, USB-осциллограф АКИП-4107, функциональный генератор WaveStation 2012, соединительные кабели.

Теория

В работе изучается спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно-модулированных гармонических колебаний. Спектры этих сигналов наблюдаются с помощью промышленного анализатора спектра и сравниваются с рассчитанными теоретически.

Функциональный генератор WaveStation 2012 позволяет сформировать два различных электрических сигнала, которые выводятся на два независимых канала — СН1 и СН2. Сигнал с первого канала подается на вход А, а сигнал со второго канала на вход В USB-осциллографа. Затем эти сигналы подаются на вход компьютера через USB-соединение. При работе USB-осциллографа в режиме осциллографа, на экране компьютера можно наблюдать каждый из сигналов в отдельности, а также их произведение. В режиме спектроанализа можно наблюдать спектры этих сигналов.

Рис. 1 – Структурная схема анализатора спектра

Ход работы

Исследование спектра периодической последовательности прямоугольных импульсов

Проведём анализ спектра периодической последовательности прямоугольных импульсов при различных значениях частоты повторения импульсов и длительности импульсов. Спектры полученные в ходе работы приведены на рисунках 2-5. Проведем измерения зависимости ширины спектра $\Delta \nu$ от длительности импульса τ , результаты измерений запишем в таблицу 1.

$\Delta \nu$, к Γ ц	25	16.3	12.5	8.72	7	6.2	5.6	5
au, MKC	40	60	80	120	140	160	180	200
$1/\tau, 10^3 \cdot c^{-1}$	25	16.7	12.5	8.3	7.1	6.3	5.6	5

Таблица 1: результаты измерений

Рис. $2 - f_{\text{повт}} = 1 \text{ к}\Gamma$ ц, $\tau = 50 \text{ мкс}$

Рис. 3 – $f_{\text{повт}}=1$ к Γ ц, au=100 мкс

При частоте повторения сигналов $f_{\text{повт}}=1$ к Γ ц и au=50 мкс измерим частоты и амплитуды спектральных составляющих сигнала и запишем результаты в таблице 2. Аналогичные измерения проведем при $\tau = 100$ мкс, результаты см. в таблице 3.

№ гармоники	0	1	2	3	4	5	6	7	8	9	10
$ u$, к Γ ц	0.01	1.002	1.999	2.981	4.008	5.001	5.998	7.006	8.012	8.989	10
A, MB	141.5	69.32	68.7	65.87	62.74	58.66	56.78	52.07	47.68	43.91	40.78

Таблица 2: результаты измерений при $f_{\text{повт}}=1$ к Γ ц и au=50 мкс

№ гармоники	0	1	2	3	4	5	6	7	8	9	10
$ u$, к Γ ц	0.005	1.007	1.999	3.006	4.003	5.01	6.012	6.999	7.961	9.011	_
A, MB	243.4	136.1	128.6	117.9	103.8	85.95	68.07	48.31	32.94	14.43	_

Таблица 3: результаты измерений при $f_{\text{повт}}=1$ к Γ ц и au=100 мкс

По результатам измерений построим график зависимости $\Delta \nu = f(1/\tau)$, см. на рис. 6. Убеждаемся в справедливости соотношения неопределенностей: коэффициент наклона графика $k \approx 1$.

Исследование спектра периодической последовательности цугов гармонических колебаний

Установим частоту несущей $\nu_0=25$ к Γ ц, проведем анализ спектра при различных параметрах сигнала. Спектры при различных параметрах см. на рис. 7 – 10.

Рис. 6 – График зависимости $\Delta \nu(1/ au)$

Проведем измерения зависимости ширины спектра $\Delta \nu$ от частоты повторения импульсов $f_{\text{повт}}$, результаты измерений запишем в таблицу 4.

Δu , к Γ ц		l			
$f_{\text{повт}}$, к Γ ц	1.00	2.00	3.00	4.00	5.00

Таблица 4: результаты измерений

При частоте повторения сигналов $f_{\text{повт}}=1$ к Γ ц и $\tau=100$ мкс измерим частоты и амплитуды спектральных составляющих сигнала и запишем результаты в таблицу 5. Аналогичные измерения проведем при $f_{\text{повт}}=2$ к Γ ц, результаты см. в таблице 6.

$N_{\scriptscriptstyle \Gamma}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
ν , к Γ ц	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
A, мк B	0	1.7	3.7	5.9	7.7	9.2	10	11.6	12.6	13	15.6	14	13	12	10.7	9	6.8

Таблица 5: Результаты измерений при $f_{\text{повт}}=1$ к Γ ц и au=100 мкс

Рис. 7 – Спектр при $f_{\text{повт}}=1$ кГц, $\tau=100$ Рис. 8 – Спектр при $f_{\text{повт}}=1$ кГц, $\tau=200$ мкс, $\nu_0=25$ кГц

Рис. 9 – Спектр при $f_{\text{повт}}=1$ к Γ ц, au=100 мкс, $u_0=10$ к Γ ц

Рис. 10 – Спектр при $f_{\text{повт}}=1$ к Γ ц, au=100 мкс, $u_0=40$ к Γ ц

	$N_{\scriptscriptstyle \Gamma}$	1	2	3	4	5	6	7	8	9	10
	$ u$, к Γ ц	20	22	24	26	28	30	32	34	36	38
ĺ	A , мк B	0	7.50	15.4	21.3	25.7	29.3	26.2	21.0	13.8	6.2

Таблица 6: Результаты измерений при $f_{\text{повт}}=2$ к Γ ц и au=100 мкс

По результатам измерений построим график зависимости $\Delta \nu(f_{\text{повт}})$, и убедимся в справедливости соотношения неопределенностей, так как наклон графика $k\approx 1$, см. на рис. 11.

Рис. 11 – График зависимости $\Delta \nu(f_{\text{повт}})$

Исследование спектра гармонических сигналов, модулированных по амплитуд

Проведем измерение амплитуды сигнала в зависимости от глубины модуляции, результаты запишем в таблицу 7.

A(CH1), B	0.2	0.5	0.8	1.1	1.4	1.7	2.0
A_{max} , дел	113.7	130.4	146.1	161.9	176.6	190.0	203.0
A_{min} , дел	92.0	75.2	61.5	46.7	30.0	15.3	0
$A_{\rm och}$, дел	68.8	68.8	68.8	68.8	68.8	68.8	68.8
$A_{\text{бок}}$, дел	3.2	8.1	13.1	18.1	23.3	28.2	33.0
m	0.105	0.268	0.408	0.552	0.710	0.851	1.000
$A_{ m 6ok}/A_{ m och}$	0.047	0.118	0.190	0.263	0.339	0.410	0.480

Таблица 7: Результаты измерений при $f_{\text{повт}}=2$ к Γ ц и au=100 мкс

По данным таблицы 7 построим график зависимости $A_{\text{бок}}/A_{\text{осн}}(m)$, см. на рис. 12.

Рис. 12 – График зависимости $A_{\text{бок}}/A_{\text{осн}}(m)$

Ожидаемы наклон графика 0.5 совпадает с полученным экспериментально в пределах погрешности:

$$k = 0.48 \pm 0.03$$

При глубине модуляции 100% посмотрим на изменение спектра при увеличении $f_{\text{повт}},$ см на рис. 13-14. Видим, что спектр расширяется.

Выводы

- 1. В ходе лабораторной работы мы изучили спектральный состав периодических электрических сигналов различной формы: последовательности прямоугольных импульсов, последовательности цугов и амплитудно-модулированных гармонических колебаний.
- 2. Проверили выполнение соотношений неопределённости для всех видов сигналов, убедились в его справедливости.