Recall that the cosecant function is defined as the reciprocal of the sine function: $\csc(x) = \frac{1}{\sin(x)}$. In this problem, we will find some properties of the cosecant function.

Exercise 1 (a) Recall that $\sin(x) = 0$ when x is a multiple of π : ..., -2π , $-\pi$, 0, π , 2π , 3π , Select the domain of the cosecant function.

Multiple Choice:

- (i) $(-\infty, \infty)$
- (ii) $(-\infty,0)\cup(0,\infty)$
- (iii) $\cdots \cup (-2\pi, -\pi) \cup (-\pi, 0) \cup (0, \pi) \cup (\pi, 2\pi) \cup \cdots \checkmark$

$$\text{(iv)} \ \cdots \cup \left(-\frac{5\pi}{2}, -\frac{3\pi}{2}\right) \cup \left(-\frac{3\pi}{2}, --\frac{\pi}{2}\right) \cup \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \cup \cdots$$

(b) Recall that sine is an odd function. Cosecant is

Multiple Choice:

- (i) *odd*. ✓
- (ii) even.
- (iii) odd and even.
- (iv) neither odd nor even.
- (c) On the interval $\left(0, \frac{\pi}{2}\right)$, cosecant is

Multiple Choice:

- (i) increasing.
- (ii) decreasing. ✓
- (iii) neither increasing nor decreasing.
- (d) Using knowledge of famous angles, $\csc\left(\frac{\pi}{3}\right) = \left|\frac{2}{\sqrt{3}}\right|$.
- (e) Which of the following graphs is the graph of $\csc(x)$?

Multiple Choice:

- (i) A ✓
- (ii) B
- (iii) C
- (iv) D

Figure 1: A on the left and B on the right

Figure 2: C on the left and D on the right