Análisis de Algoritmos II

Un algoritmo de barrido de línea para agrupación espacial.

Profesores:

Jorge Urrutia Galicia Adriana Ramírez Vigueras Diego Jesús Favela Nava.

Aguilera Moreno Adrian.

Facultad de Ciencias, UNAM

Tabla de contenido.

- 1 Introducción.
- Categorías.
- Alternativas.
- Agrupación Espacial.

Un conjunto de datos agrupados en k grupos "similares".

Agrupamiento por K-means.

Categorías.

Existen dos categorías principales para realizar agrupamientos:

1. Algoritmos de agrupamiento jerárquico.

- 1.1 Aglomerantes. Inicialmente cada objeto es un grupo, conforme transcurren las iteraciones los objetos se deben ir fucionando.
- 1.2 Divisivos. Inicialmente todos los objetos son un solo grupo, conforma transcurren las iteraciones se van subdividiendo estos grupos.

2. Algoritmos de agrupamiento particional.

Cada objeto se asocia con el centro de agrupamiento del más cercano.

Agrupamiento Particional.

Agrupamiento Jerárquico.

Alternativas.

Algunas alternativas para agrupar son:

- 1. Redes neuronales.
- 2. k-means + Algoritmos genéticos.
- 3. Muestreos aleatorios.

Algunas alternativas para agrupar basadas en el entrenamiento inteligente, búsquedas aleatorias (como las heurísticas), y uso de algoritmos genéticos (como las colonias de hormigas) son recurridas cuando no podemos garantizar un "buen" agrupamiento.

Aleatorios.

Redes Neuronales.

K-means + Genéticos.

Agrupación Espacial: Propuestas I.

La agrupación espacial es un subconjunto espacial de agrupación. Este tipo de agrupamiento es relacionado, con frecuencia, a métodos gráficos.

1era ley de la geografía.

Propuestas:

 Zahn sugiere trabajar con un gráfico completo (con vértices cada elemento en el espacio), construir el árbol de expansión mínima y eliminar los "bordes" más largos comparando las longitudes de los arcos con la longitud promedio, eliminando aquellos con longitud mayor al doble de la longitud promedio.

Propuestas:

- Narendra sugiere el uso de diagramas de Voronoi para agrupar en tiempo $\mathcal{O}(n\log n)$. El problema de esta solución es que los algoritmos son dificiles de implementar.
- Kang usó triangulaciones de Delaunay y un diagrama dual de Voronoi. Después de construir la triangulación en $\mathcal{O}(n \log n)$, eliminamos las aristas con longitudes mayores a d.
- Yujian presentó un algoritmo de agrupamiento en subárboles máximos en distancia.

¿Problemas? ...