Weights & Biases Demo

Recyclable Material Classifier

January 8th, 2020 Casey Duncan

About Me

Education

Colorado School of Mines
MS - Mechanical Engineering, Robotics & Automation
Minor - Computer Science

- Main Focus:
 - Robot path planning
 - Robot perception
 - Robot human interaction
- Favorite Topics
 - Computer Vision
 - Reinforcement Learning for path planning

<u>Professional Background</u>

Raytheon Vision Systems
Manufacturing Engineer (2013 - Current)

- Main Responsibilities:
 - Write documentation
 - Train & Assist lab personnel
 - Product-to-Customer delivery process

University of California, Santa Barbara BS - Mechanical Engineering (2010 - 2014)

Overview

- 1. Machine Learning / Computer Vision
- 2. Project Description
- 3. ML Model Management Approach
 - Previous Approach
 - Weights & Biases
- 4. Benefits of Weights & Biases
- 5. Questions

Machine Learning

What is Machine Learning?

- Application of artificial intelligence (AI)
- Allows computer to learn & improve from experience.

Computer Vision

What is Computer Vision?

- Allows computers to gain a high-level understanding from digital photos & videos
- Modern Computer Vision utilizes Machine Learning to increase intelligence

How is it used?

- Facial Recognition
- Autonomous Driving
- Agriculture Crop Selection

Image Classifier

What is an Image Classifier?

- Built using Machine Learning & Computer Vision
- Input: Image of an item
- Output: Prediction of what item is

Recyclable Material Classifier

What is a Recyclable Material Classifier?

- Input: Image of Material
- Output: Material Type

Robotic Recyclable Sorter

Motivation

Why Recycling?

- Recycling is hard, even for people
 - Dynamic market, desirable materials constantly shifting
 - Best practices are confusing and locality dependent
- Contribute to the Circular Economy
 - Reduces waste in landfills
 - Reduces overall carbon footprint
- Critical Industry with exceptional returns¹
 - Largest US operator: Waste Management, \$42.2bn Market Cap
 - Up ~300% from 2012

Goal

- Train model with 90% prediction accuracy
 - Leverage transfer learning of proven successful classification models
 - Compare different model performance

Dataset

Collect a dataset of images²

- 6 Classes
 - Paper (594 images)
 - Plastic (482 images)
 - o Glass (501 images)
 - Metal (410 images)
 - Cardboard (403 images)
 - Trash (137 images)
- Total Number of Images: 2527 images

What are Hyperparameters?

- Values used to control the learning process
- Defined prior to training

My Hyperparameters include:

- Data augmentation
- Train / Validation / Test Data Split Ratios
- Training Epoch Quantity
- Learning Rate
- Model Architecture

Hyperparameters Data Augmentations

- Great for when not enough data to produce robust results
- Augmentation Types:
 - Random Horizontal Flip
 - Random Vertical Flip
 - Random Rotation (Up to ± 30°)
 - Random Artificial Noise
 - Random Gaussian Blur
- Any combination of augmentations can be chosen

Hyperparameters

Model Architectures

- Pretrained models
 - ResNet 18
 - ResNet 34
 - ResNet 50
- Customized Model
 - ResNet50-ModNet

Model Performance Metrics

- Training
 - Loss penalty for a wrong prediction
- Validation
 - Material Accuracy per Epoch
 - Overall Accuracy per Epoch

- Test
 - Material Accuracy
 - Overall Accuracy
 - Confusion Matrix
 - Table displaying predictions vs. actuals
 - Rows: Predicted Material
 - Columns: Actual Material

Previous Approach

	A	В	C	D	E	F
1	Model file name:	resnet18_v1				
2						
3	Selected Transforms:					
4	1) Random Horizontal Flip	F				
5	- 12 Table 1 T					
6	Training Ratio:	0.68				
7	Validation Ratio:	0.16				
8	Testing Ratio:	0.16				
9	_					
10	Epoch Quantity:	15				
11						
12	Confusion Matrix					
13	Cardboard	Glass	Metal	Paper	Plastic	Trash
14	57	0	3	1	2	1
15	0	18	29	0	33	2
16	1	1	62	0	2	1
17	3	0	10	54	4	14
18	0	0	11	0	73	1
19	0	0	2	0	0	19
20		7				
21	Class Accuracy					
22	Cardboard	Glass	Metal	Paper	Plastic	Trash
23	0.890625	0.219512195121951	0.925373134328358	0.635294117647059	0.858823529411765	0.904761904761905
24						
25	Overall Accuracy:	0.70049504950495				

Weights & Biases - Logging

Logging performance using Weights & Biases is easy! Example: Logging Test Accuracy

1. Initialize new job before Testing Model

- Test Model
- 3. Calculate Test Accuracy
 - Save to variable: test_accuracy
- 4. Log Test Accuracy in Weights & Biases Project

```
o wandb.log({"Test Accuracy": test_accuracy})
```

- 5. Finish Run
 - o run.finish()

Weights & Biases - Logging

Test Accuracy

Weights & Biases - Logging

name

- resnet18_v1_train
- resnet18_v2_train
- resnet34_v1_train
- resnet50-modnet_v1_train
- resnet50-modnet_v2_train
- resnet50 v1 train

Weights & Biases - Logging

When training & testing new models, it is important to save:

- Model Files
- Data
 - Raw image data files
 - Training / Validation / Test data files

Saving Files Previous Approach

Popular method for this is saving to local computer:

- Model Files
 - PATH = "/Computer-Vision-Recyclable-Classifier/saved_models/resnet18_v1.pth"
 torch.save(model.state dict(), PATH)

- Saving Training / Validation / Test data
 - Did not save

Weights & Biases - Artifacts

Weights & Biases 'Artifacts' feature:

- Saves important files when training & testing new models.
 For example:
 - Models
 - Raw Data
 - Data after splitting into Training / Validation / Test
- Creates diagram for how files all tie together

Weights & Biases - Artifacts

Saving File

Example: Saving Model

1. Initialize new job before Training Model

- Train Model
- 3. Saved to Trained Model file on local computer
- 4. Log Model Artifact in Weights & Biases Project

Finish Run

o run.finish()

Type: model

- resnet50modnet v1 trained
- resnet50modnet_v1_untrained
- ▼ resnet18_v1_trained

v0 latest

resnet18_v1_untrained

Weights & Biases - Artifacts

Type: model

▼ resnet18_v1_trained

v0 latest

resnet18_v1_untrained

Weights & Biases - Artifacts

Type: split_data

▼ Test_Data_505

v0 latest

- ▶ Val_Data_505
- ▶ Train_Data_1517

Overview AF	Pl Metadata	Files	Graph view	
> root				
Q Search				
Cardboard /			1.6MB	88 files
☐ Glass /			1.3MB	102 files
☐ Metal /			1.4MB	82 files
Paper/			2.6MB	115 files
Plastic /			1.3MB	93 files
Trash /			312.3KB	25 files

Weights & Biases - Artifacts

Type: split_data

▼ Test_Data_505

v0 latest

- ▶ Val_Data_505
- ▶ Train_Data_1517

Saving Files Weights & Biases - Artifacts

Create Diagram through 'using Artifacts'

Example: Linking Train / Val Data to Model

1. Initialize new job before Training Model

2. Use Training & Validation data Artifacts

```
o run.use_artifact("Train_Data_180:latest")
run.use artifact("Val Data 60:latest")
```

- 3. Train Model
- 4. Saved to Trained Model file on local computer
- 5. Log Model Artifact in Weights & Biases Project
- 6. Finish Run

```
o run.finish()
```


Weights & Biases - Artifacts

Type: model

▼ resnet18_v1_trained

v0 latest

resnet18_v1_untrained

- How is model performance optimized?
 - Choosing best hyperparameter values
 - There is an art to this due to:
 - Model Architecture
 - Raw Data
 - Project Type

Previous Approach

Used excel files to compare different training results

Weights & Biases - Sweeps

Weights & Biases assists with Model Optimization through the 'Sweeps' feature.

1. Define dictionary of Hyperparameters Defaults at beginning of main file.

- Tailor code to:
 - Use Hyperparameter dictionary
 - Accept arguments from command line using hyperparameter variable names.
 - For example, the following should run:

```
$ python main_wandb.py --epoch_qty=8 --transform_horz=True
```

Weights & Biases - Sweeps

- 2. Create a YAML file (<u>sweep.yaml</u>) in base directory containing sweep parameters
 - o Add metric Goal, Name, & Target
 - Change hyperparameter ranges

3. Initialize sweep

• Run the following in the command line

\$ wandb sweep.yaml

4. Run sweep

Run sweep command in the command line. Sweep command obtained from step 4.
 For example:

\$ wandb agent caseyduncan/recycling-classifier-demo/7x90t06x

Weights & Biases - Sweeps

Using Plots

Weights & Biases - Reports

Weights & Biases 'Reports' feature lets users easily share model results.

- Simple to build report
- Easily shareable
- Similar to project dashboard

Example Report

Benefits to Weights & Biases

- Logging Metrics
 - o Easily save all performance metrics to W&B project
 - No plotting required
 - Easy to compare different models
- Saving Files
 - Model files
 - Raw & Split Data
 - Creates diagram for how 'Artifacts' connect
- Optimizing Model
 - Intelligently tunes hyperparameters
 - Ranks hyperparameter importance
- Other:
 - No need to build own management tool
 - Easy to share with others
 - Easy to implement on existing projects

Background

Selected Toolset

- Python
 - Weights & Biases wandb
 - Pytorch
 - o OpenCV
 - Various python modules for providing interfaces

Hyperparameters Data Split

- Data is split into training, validation, and test data
 - Training used to train model
 - Validation used to check model accuracy during training
 - Test used to test model accuracy
- Augmentations are applied after split
 - Only applied to training data
 - Not applied to validation & testing
- Split Ratios for my project

• **Training:** 60% - 80%

Validation: 10% - 20%

• **Test:** 10% - 20%

Hyperparameters

Epoch Quantity

- The number of epochs defined governs how many times the model is trained using the training data.
 - If epoch quantity is 2, then the model is trained with the training data two times.
 - Training model with the training data only one time is typically not enough to achieve a high test accuracy

Hyperparameters Learning Rate

- Learning Rate controls how much to change the model in response to the prediction error each time the model trained.
 - Too small of learning rate results in long training process that may get stuck learning.
 - Too large of learning rate results in unstable training process where optimal learned features (weights & biases) may be skipped.

Example

 You're blind & walking down mountain to find bottom of valley.

Hyperparameters

Model Architectures

- Leverage transfer learning
 - Pretrained models
 - ResNet 18, ResNet 34, ResNet 50
 - Freeze pre-trained layers to prevent back propagation
 - Define Fully Connected (FC) layer at end to learn the 6 classes
 - Customized Model
 - ResNet50-ModNet
 - Added ReLu, Dropout, FC, and LogSoftmax to last layer

Hyperparameters Dropout

- Rate at which neurons in a layer are ignored
 - Great for preventing overfitting
 - Forces network to learn more robust features
 - Reduces training time

(a) Standard Neural Net

(b) After applying dropout.

ImageNet Dataset

ImageNet³ 2011 Fall Release (32326)

- plant, flora, plant life (4486)
- geological formation, formation (175)
- natural object (1112)
- sport, athletics (176)
- artifact, artefact (10504)
- fungus (308)
- person, individual, someone, somebody, mortal, soul (6978)
- animal, animate being, beast, brute, creature, fauna (3998)
- Misc (20400)

Previous Work

- Top-1 vs. Top-5 Accuracy Scoring
 - Top-1: ground truth matching the greatest prediction
 - Top-5: ground truth matching one of the top 5 predictions
- ResNet⁴
 - Implements Skip Connections
 - adds outputs from previous layers to outputs of stacked layers
 - Avoids vanishing / exploding gradient
- ResNeXt⁵
 - Same as ResNet but increases number of channels from one layer to the next)
- EfficientNet⁶
 - Top-1 Accuracy: 88.61%
- Effectiveness of Data Augmentation⁷

Deep Neural Network Comparison⁸

(The size of the blobs is proportional to the number of network parameters)

⁴ Deep Residual Learning for Image Recognition. https://arxiv.org/abs/1512.03385

⁵Aggregated Residual Transformations for Deep Neural Networks. https://arxiv.org/abs/1611.05431

⁶ EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. https://arxiv.org/pdf/1905.11946.pdf

⁷ The Effectiveness of Data Augmentation in Image Classification using Deep Learning. https://arxiv.org/pdf/1712.04621.pdf?source=post_page

⁸ An Analysis of Deep Neural Network Models for Practical Applications. https://arxiv.org/abs/1605.07678

Computer Interpretation of Image

- Image Size: 22 x 16
- Number of Pixels = 352
- Activation Number = Pixel Value

Neural Networks

- First Layer
 - o **Input:** 352 pixel values
- Last Layer
 - Output: 10 values corresponding to number in image
- Hidden Layers
 - o 16 neurons per hidden layer
 - Each input neuron has a weight
 - Each neuron recognizes feature in image

Neural Network - Hidden Layers

2nd Hidden Layer

1st Hidden Layer

Neural Network - Weights & Biases

- Connection between each neuron has a weight (w_n)
- Activations (a_n) are multiplied by weights and summed
- Activation function is applied to squish weighted sum to between 0 and 1
- Each weighted sum is assigned a bias
 (b)
 - Neuron activates if weighted sum is larger than bias
- Learnable Values = 6090
 - Weights = 6048(352x16)+(16x16)+(16x10) = 6048
 - \circ Biases = 42 16 + 16 + 10 = 42

Neural Network - Back Propagation

- 1. Assign random value for weights (w_n) & biases (b)
- 2. Train on new image
- 3. Apply Cost Function to model output
 - Quantifies model predictions vs true value performance
- 4. Minimize Cost
 - This is called **gradient descent**
 - Step towards minimum is called **learning rate**
- 5. Change weight (w_n) & bias (b) values by negative gradient of cost function for each layer
- 6. Repeat steps 2 5

For more information, reference these videos.

Convolutions

1. Start with Kernel:

0	1	2
2	2	0
0	1	2

- 2. Slide along image pixel values
 - a. Perform an element-wise multiplication
 - b. Sum results
- Place results into image of new pixel values

30	3,	22	1	0
02	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Convolutions

- Convolution Parameters
 - Kernel Values
 - Kernel Size
 - Padding
 - Stride
 - Max / Min Pooling
- More Information

