[Basic function, #1-3, pick 2]

- 1. Given $f(x) = 4 x^2$, if g(x) = -x + b where b > 0 has exactly one intersection. Find b.
- 2. Find the point of intersection in question 1 algebraically.
- 3. Graph both functions on the same coordinate plane. Verify your solution from question 2 with functions the graph.

[Matrices, do #1 and pick 2 from #2 - #5]

1. Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & -2 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
 and $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

If λ is a real number and $\det(A - \lambda I) = 0$

Find λ .

2. For every solution of λ , there exists at least one non-trivial (means, no all elements are

zeros) matrix
$$v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
, such that

$$(A-\lambda I)v=0$$

Find 3 matrices v_1, v_2, v_3 corresponding to 3 different solutions $\lambda_1, \lambda_2, \lambda_3$ from question 1.

- 3. Find A^{-1}
- 4. Find $\left(A^{-1}\right)^2$
- 5. Find $\left(A^2\right)^{-1}$

[System of Equations and vectors, pick 2]

1. Solve system of equations

$$\begin{cases} \frac{1}{m+1} + \frac{1}{n-2} - \frac{1}{k+3} = 1\\ \frac{-m}{m+1} - \frac{n-1}{n-2} + \frac{2}{k+3} = 5\\ \frac{m+2}{m+1} + \frac{n-3}{n-2} + \frac{k+1}{k+3} = -6 \end{cases}$$

- 2. Assume vector $\vec{u}=m\vec{i}+n\vec{j}$ and $\vec{v}=k\vec{i}+\vec{j}$, m, n and k are from questions 6. Find the angle between vector \vec{u} and \vec{v}
- 3. What is the area of the triangle formed by the origin, end point of vector $(\vec{u}+\vec{v})$ and $(\vec{u}-\vec{v})$

(u and v are from question 2)

[De Moivre Theorem, pick 1]

- 1. If the cubic root of a complex number $z=\sqrt{2}i \ \text{are} \ c_1,c_2,c_3 \ \text{, find} \ \frac{c_1+c_2}{c_3} \ \text{if} \ c_3 \ \text{is the}$ cubic root that does not have the real part.
- 2. Given $f(x) = x^5 + x^4 + 3x^2 x + 2$, if x = i is a zero of f(x),
- (A) find all other zeros for f(x)
- (B) Graph all zeros on a complex plane.
- (C) Let z_1,z_2,z_3,z_4,z_5 be all the zeros of f(x) in its trigonometric forms. $\theta_i,i=1,2,3,4,5$ are the arguments for each zero, if $\theta_1<\theta_2<...<\theta_5$, evaluate the exact value of $z_3^4+z_1^6+z_4^8+z_2^{10}+z_5^{12}$

[Trigonometric equation, pick 1]

1. $x \in [0, 2\pi)$,

Solve
$$\sin\left(\frac{x}{2}\right) = \cos x - 1$$

2. Given $x \in [0,\pi)$,

Solve $\cos 2x = \sin x$ (exact value)

[Partial Fractional Decomposition]

1. Let
$$f(x) = \frac{x^3 - 7x + 8}{(x^2 - x)(x^2 - 4x + 4)}$$
. If $f(x)$

can be uniquely written into the form of

$$f(x) = -\frac{a}{x} + \frac{b}{x-1} + \frac{c}{x-2} + \frac{d}{(x-2)^2}$$
 where

a,b,c and d are real numbers. Evaluate

$$\sqrt{\frac{a^2+c^2}{b^2+d^2}}$$

- 2. Let $g(x) = ax^3 + bx^2 + cx + d$ where a,b,c and d are from question 1.
- (a) Find the possible x-intercepts
- (b) Find the y-intercept
- (c) Describe the ending behaviors of g(x)
- (d) Evaluate the points in the following table

Х	3	1	1	1
	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	
g(x)				

(e) Sketch g(x) on a coordinate plane with information from (a)-(d)

[Applications]

Forest Fire

Two watch owers spotted the same forest fire with bearings N 42° E (from tower A) and N 45° W (from tower B). If two watch towers are 12 miles apart, and the bearing of tower A from tower B is S 75° W. If the rescue center C is 7 miles away from tower B and the bearing of center C from tower B is S 38° W

Find the bearing a helicopter pilot should set from center C to the fire. If the average speed of the helicopter is 40 mph, how long in time would it take the helicopter to reach the fire?

Height of a Tree

A tree is on a hillside of slope 28° (from horizontal). 75 feet downhill from where the tree is, the angle of elevation at the top of the tree is 45° . Find the height of the tree.

(Yeast Growth)

Following model represents a yeast population when a sour dough bread was rising:

$$Y(t) = \frac{180}{1 + 35e^{-.85t}}, t \ge 0$$

Where t represents the time (in hours), Y(t) represent the numbers of yeast in millions. And the domain is called the rising period.

- (a) What is the initial population when the yeast was just added into the dough?
- (b) Make a graph of Y(t) over the domain $t \in [0,10]$ by evaluating the yeast population at whole hours.
- (c) What is the final population of the yeast in the dough? (when $t \rightarrow \infty$)