§ Системы множеств

Определение 1: Если множества A_1, A_2, \ldots, A_n попарно не пересекаются (не имеют общих точек), то говорят, что они образуют дизъюнктный набор множеств. Объединение таких множеств обозначается: $\coprod_{i=1}^{n} A_i$ (дизъюнктное объединение)

Определение 2: Пусть X — множество, $\mathcal{P}\subset 2^X$ называется полукольцом $(2^X$ означает множество всех подмножеств X), если оно удовлетворяет аксиомам:

- 1. $\emptyset \in \mathcal{P}$
- 2. Если $A, B \in \mathcal{P}$, то $A \cap B \in \mathcal{P}$
- 3. Если $A, B \in \mathcal{P}$, то $\exists D_1, D_2, \dots, D_n \in \mathcal{P}$ (дизъюнктные) такие, что $A \setminus B = \bigsqcup_{i=1}^n D_i$

Определение 3: Ячейка в \mathbb{R}^m это множество $[a,b)=\{\,x\in\mathbb{R}^m\mid\forall\,i\in\{\,1,2,\ldots,m\,\}\;a_i\leqslant x_i< b_i\,\}.$ Множество ячеек (обозначим его \mathcal{P}^m) является полукольцом:

- 1. Если $a,b \in \mathbb{R}^m$ такие, что $\forall i \in \{1,2,\ldots,m\} \ a_i > b_i$, то $[a,b) = \varnothing$
- 2. $[a,b) \cap [c,d) = [u,v)$, где $\forall i \in \{1,2,\ldots,m\}, u_i = \max\{a_i,c_i\}, v_i = \min\{a_i,d_i\}$
- 3. Можно увидеть на каритинке...

Замечание 1: Полукольцо ячеек показывает, что если \mathcal{P} — любое полукольцо, то

- 1. Из того что $A \in \mathcal{P}$ не следует, что $A^{\complement} \in \mathcal{P}$ (A^{\complement} означает дополнение к A)
- 2. Из того, что $A,B\in\mathcal{P}$ не следует, что $A\cup B\in\mathcal{P},\,A\setminus B\in\mathcal{P}$
- 3. И из аксиомы 3 следует, что если $A, B_1, B_2, \dots, B_k \in \mathcal{P}$, то $\exists \underbrace{D_1, D_2, \dots, D_n}_{\text{дизъюнктные}} \in \mathcal{P}$ такие, что $A \setminus \left(\bigcup_{i=1}^k B_i\right) = \bigcup_{i=1}^n D_i$

$$A \setminus \left(\bigcup_{i=1}^k B_i\right) = \bigsqcup_{i=1}^n D_i$$

Доказательство: Индукция по k. База: аксиома 3 полукольца. Переход (от $k \kappa k + 1$):

по индукционному предположению
$$\exists D_1, D_2, \dots D_l \in \mathcal{P} \text{ (дизъюнктные):}$$

$$A \setminus \left(\bigcup_{i=1}^{k+1} B_i\right) = \left(A \setminus \left(\bigcup_{i=1}^k B_i\right)\right) \setminus B_{k+1} = \left(\bigcup_{i=1}^l D_i\right) \setminus B_{k+1} = \bigcup_{i=1}^l (D_i \setminus B_{k+1}) = \bigcup_{i=1}^l \bigcup_{j=1}^{l} D_j$$

Определение 4: Пусть X — множество, $\mathcal{A}\subset 2^X$ называется алгеброй $(2^X$ означает множество всех подмножеств X), если оно удовлетворяет аксиомам:

- 1. $X \in \mathcal{A}$
- 2. Если $A, B \in \mathcal{A}$, то $A \setminus B \in \mathcal{A}$

Свойства алгебры:

- 1. $\emptyset \in \mathcal{A}$, так как $\emptyset = X \setminus X$
- 2. Если $A \in \mathcal{A}$, то $A^{\complement} \in \mathcal{A}$, так как $A^{\complement} = X \setminus A$
- 3. Если $A,B\in\mathcal{A},$ то $A\cap B\in\mathcal{A},$ так как $A\cap B=A\setminus(A\setminus B)$
- 4. Если $A, B \in \mathcal{A}$, то $A \cup B \in \mathcal{A}$, так как $A \cup B = (A^{\complement} \cap B^{\complement})^{\complement}$
- 5. Если $A_1,A_2,\ldots,A_n\in\mathcal{A},$ то $\bigcup_{i=1}^nA_i\in\mathcal{A}$ и $\bigcap_{i=1}^nA_i\in\mathcal{A}$ (по индукции)
- 6. Алгебра является полукольцом (3 аксиома полукольца следует из 2 аксиомы алгебры, а остальные аксиомы полукольца это свойства 1 и 3 алгебры)

Определение 5: Алгебра $\mathcal A$ называется σ -алгеброй, если $\forall A_1,A_2,\ldots\in\mathcal A$ — счётного набора множеств, выполнено, что $\bigcup\limits_{i=1}^\infty A_i\in\mathcal A$

Замечание 2: Пересечение счётного набора множеств из σ -алгебры $\mathcal A$ тоже принадлежит $\mathcal A$, т.к.

$$X \setminus \bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} (X \setminus A_i) \in \mathcal{A} \quad \Rightarrow \quad \bigcap_{i=1}^{\infty} A_i \quad \text{(по 2 свойству алгебры)}$$

§ Объём

Определение 6: Пусть $\mathcal{P}-$ полукольцо, тогда функция $\mu\colon\mathcal{P}\to\overline{\mathbb{R}}$ называется конечно-аддитивной, если

- 1. $\mu(\emptyset) = 0$
- 2. В образе μ нет одновременно $+\infty$ и $-\infty$
- 3. $\forall A_1, A_2, \dots, A_n \in \mathcal{P}$ (дизъюнктные), если $\bigsqcup_{i=1}^n A_i \in \mathcal{P}$, то $\mu\left(\bigsqcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mu(A_i)$

Определение 7: Аддитивная функция $\mu \colon \mathcal{P} \to \overline{\mathbb{R}} \; (\mathcal{P}-$ полукольцо на мн-ве X) называется объёмом , если $\forall \, A \in \mathcal{P} \; \; \mu(A) \geqslant 0$. Если $X \in \mathcal{P} \;$ и $\mu(X)$ конечный, то μ называется конечным объём .

Если объём μ конечный, то и $\forall A \in \mathcal{P}$ $\mu(A)$ — конечен, потому что по аксиоме 3 полукольца $X = A \sqcup (X \setminus A) = A \sqcup \bigsqcup_{i=1}^n D_i$, то есть всё это объединение принадлежит полукольцу, значит $\mu(X) = \mu(A) + \sum_{i=1}^n \mu(D_i) \geqslant \mu(A)$. Такое свойство (что если $B \subset C$, то $\mu(B) \leqslant \mu(C)$) называется монотонностью объёма .

Замечание 3:

1. Если объём μ задан на алгебре \mathcal{A} , то аксиома 3 (объёма) $\Leftrightarrow \forall A, B \in \mathcal{A}$ (не пересекающихся)

$$\mu(A \sqcup B) = \mu(A) + \mu(B)$$

2. Классический объём в \mathbb{R}^m : в полукольце ячеек $\forall [a,b) \in \mathcal{P}^m$ определим $\mu[a,b) = \prod_{i=1}^m (b_i - a_i)$ и $\mu(\varnothing) = 0$. (Вообще нужно проверять аддитивность...)

Теорема 1 (Свойства объема):

Объём $\mu \colon \mathcal{P} \to \overline{\mathbb{R}}$ ($\mathcal{P}-$ полукольцо) имеет свойства:

- 1. $\forall A, \underbrace{A_1, A_2, \dots, A_n}_{\text{дизъюнктные}} \in \mathcal{P} : \bigsqcup_{k=1}^n A_k \subset A$ выполняется $\sum_{k=1}^n \mu(A_n) \leqslant \mu(A)$ (усиленная монотонность)
- 2. $\forall A_1, A_2, \dots, A_n \in \mathcal{P}, A \subset \bigcup_{k=1}^n A_k$ выполняется $\mu(A) \leqslant \sum_{k=1}^n \mu(A_k)$ (конечная полуаддитивность)
- 3. Пусть $A,B,A\setminus B\in\mathcal{P},\,\mu(B)$ конечный, тогда $\mu(A\setminus B)\geqslant \mu(A)-\mu(B)$

Доказательство:

- 1. Из замечания 1.3 $A \setminus \left(\bigsqcup_{k=1}^n A_k\right) = \bigsqcup_{k=1}^m D_k$, где все $D_k \in \mathcal{P}$, тогда по аддитивности объёма (опр. 6) $\mu(A) = \mu\left(\bigsqcup_{k=1}^n A_k \sqcup \bigsqcup_{k=1}^m D_k\right) = \sum_{k=1}^n \mu(A_k) + \sum_{k=1}^m \mu(D_k) \geqslant \sum_{k=1}^n \mu(A_k)$
- 2. Пусть $\forall k \in \{1, 2, \dots, m\}$ $B_k = A \cap A_k$, тогда $A = \bigcup_{k=1}^m B_k$ (убрали из объединения точки не входящие в A), и все $B_k \in \mathcal{P}$ по 2 аксиоме полукольца. Но множества B_k могут пересекаться, поэтому пусть $C_1 = B_1$ и $\forall k \in \{2, 3, \dots, m\}$ $C_k = B_k \setminus \bigcup_{i=1}^{k-1} B_i \stackrel{\text{зам.1.3}}{=} \bigsqcup_{i_k=1}^{l_k} D_{i_k}$, тогда $A = \bigcup_{k=1}^m C_k = \bigcup_{k=1}^{m,l_k} D_{i_k}$, где все $D_{i_k} \in \mathcal{P}$. Значит по аддитивности объёма (опр. 6) $\mu(A) = \sum_{k=1}^{m,l_k} \mu(D_{i_k})$ и по пункту $1 \ \forall k \in \{1, 2, \dots, m\}$ $\sum_{i_k=1}^{l_k} \mu(D_{i_k}) \leqslant \mu(A_k)$ (т.к. $\bigcup_{i_k=1}^{l_k} D_{i_k} = C_k \subset B_k \subset A_k$), то есть получаем, что $\mu(A) \leqslant \sum_{k=1}^m \mu(A_k)$
- 3. а) Пусть $B\subset A$, тогда $A=B\sqcup (A\setminus B)$, значит (по аддитивности объёма опр. 6) $\mu(A)=\mu(B)+\mu(B\setminus A)$ и так как $\mu(B)$ конечен, то можно перенести его через знак равенства.
 - b) Пусть $B \not\subset A$, тогда $A \setminus B = A \setminus (A \cap B)$ и тут $(A \cap B) \subset A, (A \cap B) \subset B, (A \cap B) \in \mathcal{P}$, значит по пунктам 3a и 1 получаем $\mu(A \setminus B) = \mu(A) \mu(A \cap B) \geqslant \mu(A) \mu(B)$

§ Mepa

Определение 8: Функция $\mu \colon \mathcal{P} \to \overline{\mathbb{R}}$ называется мерой $(\mathcal{P}-$ полукольцо), если она является объёмом, и если она счётно-аддитивна, то есть $\forall \, A_1, A_2, A_3 \ldots \in \mathcal{P}$ (дизъюнктные), если $\bigsqcup_{i=1}^{\infty} A_i \in \mathcal{P}$, то

$$\mu\left(\bigsqcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

Теорема 2 (об эквивалентности счетной аддитивности и счетной полуаддитивности):

Пусть $\mu \colon \mathcal{P} \to \overline{\mathbb{R}}$ — объём (\mathcal{P} — полукольцо), тогда эквивалентно:

- 1. μ мера (т.е. μ счётно-аддитивна)
- 2. μ счётно-полуаддитивна, т.е. $\forall A, A_1, A_2 \ldots \in \mathcal{P}$, если $A \subset \bigcup_{i=1}^{\infty} A_i$, то $\mu(A) \leqslant \sum_{i=1}^{\infty} \mu(A_i)$

Доказательство: $1 \Rightarrow 2$ аналогично доказательству пункта 2 теоремы 1 (заменить конечные суммы и конечные объединения на бесконечные)

$$\boxed{1 \Leftarrow 2}$$
 Возьмём $A, \underbrace{A_1, A_2, \dots}_{\text{дизъюнктные}} \in \mathcal{P} : A = \bigsqcup_{i=1}^{\infty} A_i$, тогда $\forall \, N \, \bigsqcup_{i=1}^N A_i \subset A$, и по усиленной монотонности $\sum_{i=1}^N \mu(A_i) \leqslant \mu(A)$ (свойство 1 объёма), но по условию $\mu(A) \leqslant \sum_{i=1}^{\infty} A_i$, значит $\mu(A) = \sum_{i=1}^{\infty} A_i$

Следствие 1: Если $A,A_1,A_2,\ldots\in\mathcal{P},\ A\subset\bigcup_{i=1}^\infty A_i,\ \forall\,i\in\{\,1,2,\ldots\}\ \mu(A_i)=0,\ \text{тогда}\ \mu(A)=0$ (Р—полукольцо, μ — мера). Это пункт 2 при $\mu(A_i)=0$

Теорема 3 (о непрерывности меры снизу):

Пусть $\mathcal{A}-$ алгебра, $\mu\colon \mathcal{A}\to \mathbb{R}-$ объём (конечный), тогда эквивалентно:

1. μ — мера (т.е. μ — счётно-аддитивна)

2.
$$\forall A, A_1, A_2, \ldots \in \mathcal{A} : A_1 \subset A_2 \subset A_3 \subset \ldots, A = \bigcup_{i=1}^{\infty} A_i \lim_{n \to \infty} \mu(A_n) = \mu(A)$$

Доказательство: Нужна только формулировка. Доказывается следующая теорема — о непрерывности меры сверху. \Box

Теорема 4 (о непрерывности меры сверху):

Пусть \mathcal{A} — алгебра, $\mu \colon \mathcal{A} \to \mathbb{R}$ — объём (конечный), тогда эквивалентно:

1. μ — мера (т.е. μ — счётно-аддитивна)

2.
$$\forall A, A_1, A_2, \ldots \in \mathcal{A} : A_1 \supset A_2 \supset A_3 \supset \ldots, A = \bigcap_{i=1}^{\infty} A_i \lim_{n \to \infty} \mu(A_n) = \mu(A)$$

Доказательство: $\boxed{1\Rightarrow 2}$ Пусть $\forall\,i\in\{\,1,2,\dots\}\,\,B_i=A_i\setminus A_{i+1},\,$ тогда $\forall\,k\,\,A_k=A\sqcup \bigsqcup_{i=k}^\infty B_i$ и из счётной аддитивности $\mu(A_k)=\mu(A)+\sum_{i=k}^\infty \mu(B_i).$ Делая предельный переход при $k\to\infty$, получаем, что $\lim_{k\to\infty}\mu(A_k)=\mu(A),\,$ так как остаток сходящегося ряда стремится к 0 (ряд $\sum_{i=1}^\infty \mu(B_i)$ сходится, т.к. $\mu(A_1)=\mu(A)+\sum_{i=1}^\infty \mu(B_i)\,$ и $\mu(A_1)$ конечен).

 $\boxed{1 \Leftarrow 2}$ Возьмём $C = \bigsqcup_{i=1}^{\infty} C_i \ (C_i \in \mathcal{A})$, тогда для $A_k = \bigsqcup_{i=k+1}^{\infty} C_i = C \setminus \bigsqcup_{i=1}^k C_i \in \mathcal{A}$ выполнено $A_1 \supset A_2 \supset A_3 \supset \ldots$ и $A = \bigcap_{i=1}^{\infty} A_i = \varnothing$ (т.к. если $x \in A$, то x должен принадлежать всем A_k и некоторому C_N , но $A_k = C \setminus \bigsqcup_{i=1}^k C_i$), значит $\mu(C) = \sum_{i=1}^k \mu(C_i) + \mu(A_k)$. Делая предельный переход при $k \to \infty$ получаем, что $\mu(C) = \sum_{i=1}^{\infty} C_i$ (т.к. $\lim_{n \to \infty} \mu(A_n) = \mu(\varnothing) = 0$), то есть μ счётно-аддитивна.

Теорема о продолжении меры

Определение 9: Мера $\mu\colon \mathcal{P}\to \mathbb{R}$ (где $\mathcal{P}-$ полукольцо на множестве X), называется σ -конечной, если $\exists\, P_1,P_2,\ldots\in \mathcal{P}$ такие, что $\forall\, i\in\{\,1,2,\ldots\}\;\mu(P_i)$ — конечный, и $X=\bigcup\limits_{i=1}^\infty P_i$

Определение 10: Мера $\mu \colon \mathcal{A} \to \mathbb{R}$ (где $\mathcal{A} - \sigma$ -алгебра) называется полной, если $\forall \, A \in \mathcal{A} \colon \mu(A) = 0$ выполнено, что $\forall \, B \subset A \ B \in \mathcal{A}$ (и тогда $\mu(B) = 0$ из-за монотонности объёма)

Теорема 5 (о стандартном (Лебеговоском) продолжении меры):

Пусть $\mu_0 \colon \mathcal{P}_0 \to \overline{\mathbb{R}} - \sigma$ -конечная мера $(\mathcal{P}_0 - \text{полукольцо}$ на множестве X), тогда существуют σ -алгебра $\mathcal{A} \colon \mathcal{P}_0 \subset \mathcal{A}$, и мера $\mu \colon \mathcal{A} \to \overline{\mathbb{R}}$ такая, что $\mu_0 = \mu_0$ (т.е. μ является продолжением μ_0) и у них есть свойства:

- 1. μ полная
- 2. $\forall \mathcal{P}_1 \subset A$ полукольцо : $\mathcal{P}_0 \subset \mathcal{P}_1$, $\forall \mu_1 \colon \mathcal{P}_1 \to \overline{\mathbb{R}}$ мера такая, что $\mu_1 \Big|_{\mathcal{P}_0} = \mu_0$ выполнено, что $\mu_1 \Big|_{\mathcal{P}_1} = \mu_1$
- 3. Если $\exists A_1 \sigma$ -алгебра, содержащая $A \supset \mathcal{P}_0$, и если $\exists \mu_1 \colon A_1 \to \overline{\mathbb{R}}$ полная мера такая, что $\mu_1 \Big|_{\mathcal{P}_0} = \mu_0$ тогда $\mu_1 \Big|_{\mathcal{A}} = \mu$
- 4. Для $A \in \mathcal{A}$ $\mu(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu_0(P_i) \mid P_i \in \mathcal{P}_0 : A \subset \bigcup_{i=1}^{\infty} P_i \right\}$

Замечание 4: $\forall A \in \mathcal{A} \ \exists B \in \mathcal{A} \ \text{такое, что } A \subset B, \ \mu(A) = \mu(B), \ \mu(B \setminus A) = 0 \ \text{и } B \ \text{имеет вид}$ $B = \bigcap_{j=1}^{\infty} \left(\bigcup_{i=1}^{\infty} P_{ij}\right), \ \text{где } P_{ij} \in \mathcal{P}$

§ Мера Лебега

Лемма 1 (счётная аддитивность классического объема):

Стандартный объём μ на полукольце ячеек \mathcal{P}^m $\big(\forall [a,b)\in\mathcal{P}^m \ \mu[a,b)=\prod\limits_{i=1}^m (b_i-a_i)\big)$ является σ -конечной мерой.

Доказательство: Проверим счётную полуаддитивность. Пусть $P = [a,b), P_k = [a_k,b_k)$ — ячейки такие, что $P \subset \bigcup_{k=1}^{\infty} P_k$. Возьмём $\varepsilon,b':[a,b'] \subset [a,b)$; $\mu(P) - \mu[a,b') < \varepsilon$ (чуть «уменьшили» b), и возьмём $a_k':[a_k,b_k) \subset (a_k',b_k)$; $\mu[a_k',b_k) - \mu(P_k) < \varepsilon/2^k$ (чуть «увеличили» a), тогда

$$[a,b'] \subset \bigcup_{k=1}^{\infty} (a'_k,b_k)$$

Так как [a,b'] — компакт, то из его покрытия $\bigcup_{k=1}^{\infty} (a'_k,b_k)$ открытыми множествами, можно выбрать конечное подпокрытие:

$$\exists N: [a,b') \subset [a,b'] \subset igcup_{k=1}^N (a_k',b_k) \subset igcup_{k=1}^N [a_k',b_k)$$

Объём конечно-полуаддитивен (свойство 2), значит $\mu[a,b')\leqslant \sum_{k=1}^N\mu[a_k',b_k)$, т.е. $\mu(P)-\varepsilon\leqslant \varepsilon+\sum_{k=1}^\infty\mu(P_k)$, тогда и $\mu(P)\leqslant \sum_{k=1}^\infty\mu(P_k)$ (можно взять $\varepsilon={}^1/n$ и сделать предельный переход при $n\to\infty$). Получили, что μ — счётно полуаддитивен, значит (по теореме 2) μ является мерой. Эта мера σ -конечна, т.к. счётное объединение, например, всех ячеек со стороной 1 равно \mathbb{R}^m

Определение 11: Стандартное продолжение меры (теорема 5) на полукольце ячеек (т.е. продолжение классического объёма в \mathbb{R}^m — замечание 3.2 и лемма 1) называется мерой Лебега. Соответствующая σ -алгебра обозначается \mathcal{M}^m , мера Лебега — λ . Множества, принадлежащие \mathcal{M}^m , называются измеримыми.

Замечание 5: Так как $\forall a \in \mathbb{R}^m$ $a = \bigcap_{n=1}^{\infty} Q(a, \frac{1}{n})$, где $Q(a, r) = [a_1 - r, a_1 + r) \times \ldots \times [a_m - r, a_m + r)$ и алгебра замкнута относительно пересечений, то $a \in \mathcal{M}^m$ и $\lambda(a) = 0$, потому что $\lambda\left(Q(a, \frac{1}{n})\right) = \left(\frac{2}{n}\right)^m \xrightarrow[n \to \infty]{} 0$, то есть inf $\left\{\lambda\left(Q(a, \frac{1}{n})\right) \mid n \in \mathbb{N}\right\} = 0$ (воспользовались формулой 4 из теоремы 5, рассматривая покрытие одноточечного множества одной ячейкой; получили, что inf по таким покрытиям равен 0, значит inf и по всевозможным покрытиям будет 0). Тогда любое счётное подмножество \mathbb{R}^m измеримо, и имеет меру 0, так как если $A_n \in \mathcal{M}^m$, $\lambda(A_n) = 0$, то $\bigcup_{n=1}^{\infty} A_n \in \mathcal{M}^m$ (замкнутость σ -алгебры относительно счётного объединения) и $\lambda\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$ (следствие 1).

Лемма 2 (о структуре открытых множеств u множеств меры 0):

- 1. Пусть $O \in \mathbb{R}^m$ открытое, тогда $O = \coprod_{i=1}^\infty Q_i$, где Q_i рациональная кубическая ячейка (и можно считать, что её координаты двоично-рациональные числа, т.е. вида $\frac{n}{2^k}, n \in \mathbb{Z}$, и что $\overline{Q_i} \subset O$)
- 2. Пусть $E\in\mathcal{M}^m:\lambda(E)=0$, тогда $\forall\, \varepsilon>0$ $\exists\, Q_i$ кубические ячейки такие, что $E\subset\bigcup_{i=1}^\infty Q_i$ и $\sum\limits_{i=1}^\infty\lambda(Q_i)<\varepsilon$ (или $\exists\, B_i$ открытые шары $E\subset\bigcup_{i=1}^\infty B_i$ и $\sum\limits_{i=1}^\infty\lambda(B_i)<\varepsilon$)

Доказательство:

- 1. Для каждого $x \in O$ фиксируем двоично-рациональную ячейку $Q(x): \overline{Q(x)} \subset O, x \in Q(x)$, тогда $O = \bigcup_{x \in O} Q(x)$, но ячейки рациональные, значит различных ячеек в этом объединении счётное число, поэтому $O = \bigcup_{i=1}^{\infty} Q_i(x)$. Но эти ячейки пересекаются, сделаем их дизъюнктными: пусть $Q_1 = Q_1(x), Q_2 = Q_2(x) \setminus Q_1 = \bigsqcup_{i=1}^{l_2} D_i, Q_3 = Q_3(x) \setminus (Q_2 \cup Q_1) = \bigsqcup_{i=1}^{l_3} E_i, \dots$ Тогда $O = Q_1 \sqcup \bigsqcup_{i=1}^{l_2} D_i \sqcup \bigsqcup_{i=1}^{l_3} E_i \sqcup \dots$ (и ячейки D_i, E_i, \dots являются двоично-рациональными, так как они являются разностью двоично-рациональной ячейки и объединения двоично-рациональных ячеек; такую разность можно представить в виде дизъюнктного объединения двоично-рациональных ячеек, которые тут обозначены D_i, E_i, \dots
- 2. По теореме 5 $\lambda(E)=\inf\left\{\sum_{i=1}^{\infty}\lambda(P_i)\mid E\subset\bigcup_{i=1}^{\infty}P_i,P_i$ ячейки $\right\}$. Если $\lambda(E)=0$, то

$$orall \, arepsilon > 0 \;\; \exists \, P_k - ext{sq-eйки} : E \subset igcup_{k=1}^\infty P_k \; \text{и} \; \sum_{k=1}^\infty \lambda(P_k) < arepsilon$$

Ячейки P_k можно покрыть кубическими ячейками Q_{k_i} так, чтобы $\lambda(P_k) \leqslant \sum\limits_{i=1}^{N_k} \lambda(Q_{k_i}) \leqslant \lambda(P_k) + \frac{\varepsilon}{2^k}$, т.е. тогда $E \subset \bigcup\limits_{i=1}^{\infty} Q_i$ и $\sum\limits_{i=1}^{\infty} \lambda(Q_i) = \sum\limits_{k=1}^{\infty} \sum\limits_{i=1}^{N_k} \lambda(Q_{k_i}) \leqslant \sum\limits_{k=1}^{\infty} \lambda(P_k) + \frac{\varepsilon}{2^k} = \varepsilon + \sum\limits_{k=1}^{\infty} \lambda(P_k) < 2\varepsilon$ Для шаров: возьмём покрытие E кубическими ячейками Q_i такими, что $\sum\limits_{i=1}^{\infty} \lambda(Q_i) \leqslant \frac{\varepsilon}{m^{m/2}}$, тогда шары B_i , описанные вокруг этих ячеек (с радиусом $r = \frac{s\sqrt{m}}{2}$, s — сторона ячейки) будут тоже покрывать E и $\lambda(B_i) \leqslant \lambda(Q_i^*)$, где Q_i^* — кубическая ячейка, описанная вокруг шара (т.е. со стороной 2r), но $\frac{\lambda(Q_i^*)}{\lambda(Q_i)} = \frac{(2r)^m}{\left(\frac{2r}{\sqrt{m}}\right)^m} = m^{m/2}$, значит $\sum\limits_{i=1}^{\infty} \lambda(B_i) \leqslant \sum\limits_{i=1}^{\infty} \lambda(Q_i^*) = m^{m/2} \cdot \sum\limits_{i=1}^{\infty} \lambda(Q_i) = m^{m/2} \cdot \frac{\varepsilon}{m^{m/2}} = \varepsilon$

Следствие 2: Все открытые и замкнутые множества измеримы

Замечание 6: Канторовское множество: (пример множества меры 0 мощности континуум) пусть

Тогда канторовским множеством называется $K = \bigcap_{n=1}^{\infty} K_n$. Мощность K — континуум, т.к. каждому числу из канторовского множества $a \in K$ соответствует последовательность из 0 и 1 (x_1, x_2, \ldots) . Если $a \in K_n$ принадлежит отрезку $[\alpha, \alpha + \frac{1}{3^n}] \subset K_n$ (левому), то $x_n = 0$, а если a принадлежит отрезку $[\beta - \frac{1}{3^n}, \beta] \subset K_n$ (правому), то $x_n = 0$, где $[\alpha, \beta] \subset K_{n-1}$ — отрезок, которому принадлежит $a \in K_{n-1}$. Это соответствие взаимно однозначно, и множество всех таких последовательностей имеет мощность континуум. Канторовское множество имеет меру 0, потому что $\forall n \ \lambda(K) \leqslant \lambda(K_n)$ и $\lambda(K_n) = 2^n \cdot \frac{1}{3^n} = \left(\frac{2}{3}\right)^n \xrightarrow[n \to 0]{} 0$

Замечание 7: Пример неизмеримого по Лебегу множества: пусть $\forall a, b \in \mathbb{R} \ a \sim b$, если $a-b \in \mathbb{Q}$ (это отношение эквивалентности). Из каждого класса эквивалентности возьмём по одной точки и получим множество A. Можно считать, что $A \subset [0,1]$. Рассмотрим множество

$$B = \bigsqcup_{q \in \mathbb{Q} \cap [-1,1]} (A+q)$$

Объединение дизъюнктное, потому что если $\exists x \in (A+q_1) \cap (A+q_2)$, то $\exists a,b \in A: x=a+q_1=b+q_2$, но тогда $a-b=q_2-q_1$, т.е. $a \sim b$ (но такого не может быть, т.к. в A все точки из разных классов эквивалентности). Заметим, что $[0,1] \subset B$ (потому что $\forall x \in [0,1] \ \exists a \in A: x-a \in \mathbb{Q}$ (такое a берётся из класса эквивалентности x), то есть $x=a+q \in B$). Также $B \subset [-1,2]$. Тогда, если A измеримо, то $\lambda(B) = \sum_{\text{счётн.}} \lambda(A)$ (мера множества не меняется при его сдвиге — следствие 7). Так как $\lambda(B) \leqslant \lambda[-1,2] = 3$, то $\lambda(A) = 0$ (иначе бесконечная сумма одинаковых чисел $\lambda(A)$ будет равна бесконечности), т.е. $\lambda(B) = 0$. Но также $\lambda(B) \geqslant \lambda[0,1] = 1$. Значит A — неизмеримое множество.

§ Регулярность меры Лебега

Теорема 6 (регулярность меры Лебега):

Пусть $A \in \mathcal{M}^m$, тогда $\forall \varepsilon > 0 \; \exists$ открытое $G_{\varepsilon} \supset A : \lambda(G_{\varepsilon} \setminus A) < \varepsilon$ и \exists замкнутое $F_{\varepsilon} \subset A : \lambda(A \setminus F_{\varepsilon}) < \varepsilon$

Доказательство:

1. Если $\lambda(A)$ конечная. Тогда по теореме 5 $\lambda(A)=\inf\left\{\sum\limits_{i=1}^{\infty}\lambda(P_i)\mid A\subset\bigcup\limits_{i=1}^{\infty}P_i,P_i-$ ячейки $\right\}$, то есть $\forall\,\varepsilon>0$ $\exists\,P_k$ — ячейки $:A\subset\bigcup\limits_{k=1}^{\infty}P_k$ и $\sum\limits_{k=1}^{\infty}\lambda(P_k)<\lambda(A)+\varepsilon/2$. Пусть $\widetilde{P_k}$ — открытые параллелепипеды такие, что $A\subset\bigcup\limits_{k=1}^{\infty}P_k\subset\bigcup\limits_{k=1}^{\infty}\widetilde{P_k}$ и $\lambda(P_k)<\lambda(\widetilde{P_k})<\lambda(P_k)+\frac{\varepsilon}{2^{k+1}}$. Возьмём $G_{\varepsilon}=\bigcup\limits_{k=1}^{\infty}\widetilde{P_k}$, тогда $\lambda(G_{\varepsilon})\leqslant\sum\limits_{k=1}^{\infty}\lambda(\widetilde{P_k})<\varepsilon/2+\sum\limits_{k=1}^{\infty}\lambda(P_k)<\lambda(A)+\varepsilon$, т.е. $\lambda(G_{\varepsilon}\backslash A)=\lambda(G_{\varepsilon})-\lambda(A)<\varepsilon$

2. Если $\lambda(A)=\infty$, то используем σ -конечность λ (т.е. $\exists\,Q_i:\mathbb{R}^m=\coprod_{i=1}^\infty Q_i$, где Q_i — ячейки с конечной мерой): $A=\coprod_{i=1}^\infty (A\cap Q_i)$. Тогда $\exists\,G_{\varepsilon_k}\supset (A\cap Q_k):\lambda\big(G_{\varepsilon_k}\setminus (A\cap Q_k)\big)<\frac{\varepsilon}{2^k}$, и можно взять $G_\varepsilon=\bigcup_{k=1}^\infty G_{\varepsilon_k}$. Тогда $\lambda(G_\varepsilon\setminus A)\leqslant \sum_{k=1}^\infty \lambda\big(G_{\varepsilon_k}\setminus (A\cap Q_k)\big)<\varepsilon$, так как $G_\varepsilon\setminus A=\begin{pmatrix}\bigcup_{k=1}^\infty G_{\varepsilon_k}\end{pmatrix}\setminus \begin{pmatrix}\bigcup_{i=1}^\infty (A\cap Q_i)\end{pmatrix}\subset \bigcup_{k=1}^\infty \left(G_{\varepsilon_k}\setminus (A\cap Q_k)\right)$

Про замкнутые: для A^{\complement} \exists открытое $G_{\varepsilon} \supset A^{\complement} : \lambda(G_{\varepsilon} \setminus A^{\complement}) < \varepsilon$, тогда можно взять $F_{\varepsilon} = (G_{\varepsilon})^{\complement}$, так как $G_{\varepsilon} \setminus A^{\complement} = A \setminus (G_{\varepsilon})^{\complement}$

- Определение 12: Наименьшая σ -алгебра $\mathcal{B} \subset \mathcal{M}^m$, содержащая все открытые множества, называется Борелевской σ -алгеброй.
- Следствие 3: $\forall A \in \mathcal{M}^m \ \exists B, C \in \mathcal{B}$ такие, что $B \subset A \subset C$ и $\lambda(A \setminus B) = \lambda(C \setminus A) = 0$. Доказамельство: в качестве B и C можно из теоремы 6 взять соответственно $\bigcup_{n=1}^{\infty} F_{\frac{1}{n}}$ и $\bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$, тогда $\lambda(A \setminus B) \leqslant \lambda(A \setminus F_{\frac{1}{n}}) < \frac{1}{n} \xrightarrow[n \to \infty]{} 0$ и $\lambda(C \setminus A) \leqslant \lambda(G_{\frac{1}{n}} \setminus C) < \frac{1}{n} \xrightarrow[n \to \infty]{} 0$.
- Следствие 4: Сразу из предыдущего следствия получается, что любое измеримое множество A можно представить в виде $A = \bigcap_{n=1}^{\infty} E_n \setminus N_1 = \bigcup_{n=1}^{\infty} D_n \cup N_2$, где E_n открытые, D_n замкнутые, N_1, N_2 множества меры 0. Так как любое замкнутое множество D_n представимо в виде объединения компактных множеств $D_n = \bigcup_{k=1}^{\infty} D_n \cap Q_{2k}$ (где Q_{2k} куб с центром в точке 0 и длиной стороны 2k), то ещё получаем, что $A = \bigcup_{n=1}^{\infty} K_n \cup N_2$, где K_n компакты.
- **Следствие 5**: Любое $A \in \mathcal{M}^m$ представимо в виде $A = B \cup N$, где $B \in \mathcal{B}$, N множество меры 0 (подходит B из следствия $3, N = A \setminus B$).
- **Следствие 6**: Регулярность меры Лебега: пусть A измеримо, тогда

$$\lambda(A) \stackrel{1}{=} \inf_{\substack{G: A \subset G \\ G \text{ - otkp.}}} \{ \lambda(G) \} \stackrel{2}{=} \sup_{\substack{F: F \subset A \\ F \text{ - samkh.}}} \{ \lambda(F) \} \stackrel{3}{=} \sup_{\substack{F: F \subset A \\ F \text{ - komhakt.}}} \{ \lambda(F) \}$$

Доказательство:

- 1. $\lambda(A) = \inf_{\substack{G: A \subset G \\ G \text{ откр.}}} \{\lambda(G)\} \Leftrightarrow \forall \, \varepsilon > 0 \; \exists \; \text{ открытое } G \supset A: \lambda(G) \lambda(A) < \varepsilon.$ Такое G существует по теореме 6.
- 2. $\lambda(A) = \sup_{\substack{F: F \subset A \\ F-3 \text{амкн.}}} \{\lambda(F)\} \Leftrightarrow \forall \, \varepsilon > 0 \; \exists \;$ замкнутое $F \subset A: \lambda(A) \lambda(F) < \varepsilon$. Такое F существует по теореме 6.
- 3. Если A ограничено, то это пункт 2. Если A не ограничено, то из пункта 2 для ε_0 возьмём замкнутое $F \subset A: \lambda(A) \lambda(F) < \varepsilon_0$ и рассмотрим компактные множества $B_n = F \cap Q_{2n}$, где Q_{2n} куб с центром в точке 0 и длиной стороны 2n. Тогда из непрерывности меры снизу (теорема 3) $\lambda(B_n) \xrightarrow[n \to \infty]{} \lambda(F)$, то есть $\forall \varepsilon > 0 \ \exists n : \lambda(F) \lambda(B_n) < \varepsilon$. Значит $\exists n_0 : \lambda(F) \lambda(B_{n_0}) < \varepsilon_0$ и тогда $\lambda(A) \lambda(B_{n_0}) < 2\varepsilon_0$. Это выполнено для любого ε_0 , поэтому $\lambda(A) = \sup_{F: F \subset A} \{\lambda(F)\}_{F \text{компакт}}$.

§ Преобразование меры Лебега при сдвигах и линейных отображениях

Пусть $f: X \to Y$, X и Y — множества, тогда $\forall A, B \subset X$, $\forall C, D \subset Y$ верно:

1. Если
$$A \subset B$$
, то $f(A) \subset f(B)$

2.
$$f(A \cup B) = f(A) \cup f(B)$$

3.
$$f(A \cap B) \subset f(A) \cap f(B)$$
; если f — инъекция, то будет равенство

4.
$$f(A^{\complement}) = (f(A))^{\complement}$$
, если f — биекция

5. Если
$$C \subset D$$
, то $f^{-1}(C) \subset f^{-1}(D)$

6.
$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$

7.
$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$

8.
$$f^{-1}(C^{\complement}) = (f^{-1}(C))^{\complement}$$

Доказательства: (буквы Л и П обозначают левые и правые части доказываемых равенств)

1.
$$\Lambda = \{ f(x) \mid x \in A \subset B \} \subset \{ f(x) \mid x \in B \} = \Pi$$

2.
$$\Lambda = \{\,f(x) \mid x \in A \text{ или } x \in B\,\} = \{\,f(x) \mid x \in A\,\} \cup \{\,f(x) \mid x \in B\,\} = \Pi$$

3.
$$\Lambda = \{ y \in Y \mid \exists t \in A : t \in B \text{ и } f(t) = y \} \subset \{ y \in Y \mid \exists t \in A : f(t) = y \} \cap \{ y \in Y \mid \exists t \in B : f(t) = y \} = \Pi$$

$$\text{если } f \text{ инъекция, то тут равенство}$$

$$\text{4. } \Lambda = \{ y \in Y \mid \exists t \in A^{\complement} : f(t) = y \} = \{ y \in Y \mid \exists t \notin A : f(t) = y \} = \{ y \in Y \mid \forall t \in A : f(t) \neq y \} = \Pi$$

4.
$$\Lambda = \{ y \in Y \mid \exists t \in A^{\complement} : f(t) = y \} = \{ y \in Y \mid \exists t \notin A : f(t) = y \} \stackrel{\not}{=} \{ y \in Y \mid \forall t \in A \ f(t) \neq y \} = \Pi$$

5.
$$\Lambda = \{ x \in X \mid f(x) \in C \subset D \} \subset \{ x \in X \mid f(x) \in D \} = \Pi$$

6.
$$\Lambda = \{ \, x \in X \mid f(x) \in C \text{ или } f(x) \in D \, \} = \{ \, x \in X \mid f(x) \in C \, \} \cup \{ \, x \in X \mid f(x) \in D \, \} = \Pi$$

$$7. \ \ \Lambda = \{ \, x \in X \mid f(x) \in C \ \text{if} \ f(x) \in D \, \} = \{ \, x \in X \mid f(x) \in C \, \} \cap \{ \, x \in X \mid f(x) \in D \, \} = \Pi$$

8.
$$\Lambda = \{ x \in X \mid f(x) \in A^{\complement} \} = \{ x \in X \mid f(x) \notin A \} = \{ x \in X \mid x \in A \}^{\complement} = \Pi$$

Лемма 3 (первая):

Пусть X', X — множества, $\mathcal{A}', \mathcal{A}$ — соответствующие σ -алгебры, μ' — мера на \mathcal{A}' , отображение $T: X \to X'$ — биекция такая, что $\forall A \in \mathcal{A} \ T(A) \in \mathcal{A}'$ (и $T(\emptyset) = \emptyset$), тогда функция $\mu: \mathcal{A} \to \mathbb{R}$ $\mu(A) = \mu'(T(A))$ является мерой на \mathcal{A}

Доказательство: Проверим счётную аддитивность μ (опр. 8). Пусть $A, A_1, A_2, \ldots \in \mathcal{A} : A = \coprod_{i=1}^{\infty} A_i$, тогда используя формулу 2 и счётную аддитивность μ' , получаем

$$\mu(A) = \mu'\big(T(A)\big) = \mu'\left(T\left(\bigsqcup_{i=1}^{\infty} A_i\right)\right) \stackrel{(*)}{=} \mu'\left(\bigsqcup_{i=1}^{\infty} T(A_i)\right) = \sum_{i=1}^{\infty} \mu'\big(T(A_i)\big) = \sum_{i=1}^{\infty} \mu(A_i)$$

(*) — формула 2 используется с дизъюнктным объединением, поэтому T должно быть биекцией

Лемма 4 (о сохранении измеримости при непрерывном отображении):

Пусть $T: \mathbb{R}^m \to \mathbb{R}^n$ — непрерывное отображение, $\forall E \in \mathcal{M}^m : \lambda(E) = 0$ T(E) — измеримо. Тогда $\forall A \in \mathcal{M}^m \ T(A)$ — измеримо

Доказательство: Любое $A \in \mathcal{M}^m$ представимо в виде $A = \bigcup_{i=1}^{\infty} K_i \cup N$, где K_i — компакты, N множество меры 0 (следствие 4). Тогда $T(A) = \bigcup_{i=1}^{\infty} T(K_i) \cup T(N)$ (формула 2). Множества $T(K_i)$ — измеримы, т.к. являются компактами, потому что при непрерывном отображении образ компакта — компакт.

Лемма 5 (о сохранении измеримости при гладком отображении):

Пусть $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m \in C^1(O), O$ — область. Тогда $\forall A \in \mathcal{M}^m \Phi(A) \in \mathcal{M}^m$

Доказательство: Пусть E — множество меры 0.

1. Если $\exists P -$ ячейка такая, что $E \subset P \subset \overline{P} \subset O$, то возьмём $L = \max_{x \in \overline{P}} \| \varPhi'(x) \|$ ($\overline{P} -$ компакт и по условию \varPhi' непрерывна на \overline{P} , поэтому тах достигается), тогда по теореме Лагранжа $\forall x,y \in P \ \| \varPhi(x) - \varPhi(y) \| \leqslant L \cdot \| x - y \|$, значит $\forall B(a,r) \subset P \ \varPhi(B(a,r)) \subset B(\varPhi(a),L \cdot r)$. Фиксируем $\varepsilon > 0$. По лемме 2.2 $\exists Q(a_i,r_i)$ — кубические ячейки такие, что $E \subset \bigcup_{i=1}^{\infty} Q(a_i,r_i)$ и $\sum_{i=1}^{\infty} \lambda \left(Q(a_i,r_i)\right) = \sum_{i=1}^{\infty} (2r_i)^m < \varepsilon$. Тогда $E \subset \bigcup_{i=1}^{\infty} B(a_i,\sqrt{m}r_i)$ (шары, описанные вокруг ячеек). Значит $\varPhi(E) \subset \bigcup_{i=1}^{\infty} \varPhi(B(a_i,\sqrt{m}r_i)) \subset \bigcup_{i=1}^{\infty} B(\varPhi(a_i),L \cdot \sqrt{m}r_i) \subset \bigcup_{i=1}^{\infty} Q(\varPhi(a_i),L \cdot \sqrt{m}r_i)$. И $\sum_{i=1}^{\infty} \lambda \left(Q(\varPhi(a_i),L \cdot \sqrt{m}r_i)\right) = \sum_{i=1}^{\infty} (2r_iL\sqrt{m})^m < (L\sqrt{m})^m \cdot \varepsilon$, т.е. $\lambda(\varPhi(E)) = 0$

2. Если E — любое, то O можно представить в виде дизъюнктного объединения ячеек D_j (лемма 2.1). Пусть $E_j = E \cap D_j$, тогда $\lambda \big(\Phi(E_j) \big) = 0$ по пункту 1, и $\Phi(E) = \bigsqcup_{j=1}^{\infty} \Phi(E_j)$, значит $\lambda \big(\Phi(E) \big) = 0$

Поэтому из леммы 4 получаем, что $\forall A \in \mathcal{M}^m A$ — измеримо.

Следствие 7: Инвариантность меры Лебега относительно сдвигов: $\forall A \in \mathcal{M}^m, \forall a \in \mathbb{R}^m$ выполнено $(a+A) \in \mathcal{M}^m$ (т.к. отображение $x \mapsto x+a$ гладкое) и $\lambda(a+A) = \lambda(A)$ (т.к. из формулы 4 меру множества A можно посчитать как inf сумм мер ячеек P_i по всем покрытиям A ячейками, тогда для множества a+A покрытия будут состоять из ячеек $a+P_i$, и очевидно, что мера ячейки не меняется при сдвиге).

Теорема 7 (о мерах, инвариантных относительно сдвигов):

Пусть μ — мера (не Лебега) на \mathcal{M}^m и

- 1. μ инвариантна относительно сдвигов (т.е. $\forall A \in \mathcal{M}^m, a \in \mathbb{R}^m \ (a+A) \in \mathcal{M}^m$ и $\mu(a+A) = \mu(A)$)
- 2. Мера ограниченного множества конечна

Тогда $\exists k \in [0,\infty) : \forall E \in \mathcal{M}^m \ \mu(E) = k \cdot \lambda(E) \ (\lambda - \text{мера Лебега})$

Доказательство: Без доказательства.

Теорема 8 (инвариантность меры Лебега при ортогональном преобразовании):

Пусть $T: \mathbb{R}^m \to \mathbb{R}^m$ — линейное ортогональное преобразование (т.е. линейное отображение, сохраняющее скалярное произведение). Тогда $\forall E \in \mathcal{M}^m \ T(E) \in \mathcal{M}^m$ и $\lambda(T(E)) = \lambda(E)$

Доказательство: По лемме 5 измеримость множеств сохраняется (т.к. линейное отображение — гладкое). Для $A \in \mathcal{M}^m$ определим $\mu(A) = \lambda \big(T(A) \big)$. Тогда по лемме 3 μ — мера, и она инвариантна относительно сдвигов: $\mu(A+a) = \lambda \big(T(A+a) \big) = \lambda \big(T(A) + T(a) \big) = \lambda \big(T(A) \big) = \mu(A)$, значит по теореме 7 μ пропорциональна мере Лебега. Коэффициент пропорциональности равен 1, т.к. для шара A = B(0,r) T(A) = A $(T - \text{сохраняет расстояние между векторами}), т.е. <math>\lambda \big(T(A) \big) = \lambda(A)$

Следствие 8: Пусть $L \subset \mathbb{R}^m$ — линейное подпространство, $\dim L = m-1$, тогда $\lambda(L) = 0$ (и $\forall A \subset L \ \lambda(A) = 0$ из-за монотонности меры). Доказательство: Применим к L такое ортагональное преобразование T, что $T(L) = \{x \in \mathbb{R}^m \mid x_m = 0\}$. Разобьём T(L) на единичные ячейки Q_k : $T(L) = \bigcup_{k=1}^{\infty} Q_k$. Длина их m-ой стороны равна 0; немного увеличим её: возьмём $\varepsilon > 0$ $T(L) \subset \bigcup_{k=1}^{\infty} Q_k \times \left[-\frac{\varepsilon}{2^{k+1}}, \frac{\varepsilon}{2^{k+1}}\right]$. Тогда $\lambda(T(L)) \leqslant \sum_{k=1}^{\infty} 1 \cdot \frac{\varepsilon}{2^k} = \varepsilon$. Это верно для любого $\varepsilon > 0$, значит $\lambda(T(L)) = 0$, поэтому $\lambda(L) = 0$ по теореме 8.

Лемма 6 («о структуре компактного оператора»):

Пусть $V: \mathbb{R}^m \to \mathbb{R}^m$ — линейный оператор, $\det V \neq 0$, тогда \exists ортонормированные базисы $g_1, g_2, \dots, g_m; h_1, h_2, \dots, h_m$ и числа $s_1, s_2, \dots, s_m > 0$ такие, что $\forall \, x \in \mathbb{R}^m \, V(x) = \sum_{k=0}^m s_k \cdot \langle x, g_k \rangle \cdot h_k$ и $|\det V| = s_1 \cdot s_2 \cdot \dots \cdot s_m$ (в стандартном базисе)

Доказательство: Пусть $c_1, c_2, \ldots c_m$ — собственные числа оператора $W = V^T V$. В качестве $g_1, g_2, \ldots g_m$ возьмём собственные вектора оператора W, составляющие ортонормированный базис \mathbb{R}^m . Тогда $\forall i \in \{1, 2, \ldots, m\}$ $c_i > 0$, т.к.

$$c_i = c_i \cdot ||g_i||^2 = \langle W(g_i), g_i \rangle = \langle (V^{\mathrm{T}}V)(g_i), g_i \rangle \stackrel{(*)}{=} \langle V(g_i), V(g_i) \rangle = ||(V(g_i))||^2$$

(*) — V^{T} является матрицей сопряжённого к V оператора, а по определению оператор A называется сопряжённым к V, если $\forall x \in \mathbb{R}^m \ \langle x, V(x) \rangle = \langle A(x), x \rangle$

Поэтому возьмём $s_i = \sqrt{c_i}$, $h_i = \frac{1}{s_i}V(g_i)$. Проверим ортогональность векторов h_1, h_2, \dots, h_m : $\forall i, j \in \{1, 2, \dots, m\}, i \neq j$

$$\langle h_i, h_j \rangle = \frac{1}{s_i s_j} \langle V(g_i), V(g_j) \rangle = \frac{1}{s_i s_j} \langle W(g_i), g_j \rangle = \frac{1}{s_i s_j} \langle c_i g_i, g_j \rangle = 0$$

Проверим формулу для вычисления значения V в точке x

$$V(x) = V\left(\sum_{i=1}^{m} \langle x, g_i \rangle g_i\right) = \sum_{i=1}^{m} \langle x, g_i \rangle V(g_i) = \sum_{i=1}^{m} s_i \langle x, g_i \rangle h_i$$

Посчитаем определитель V

$$(\det V)^2 = \det V^{\mathrm{T}} V = c_1 \cdot c_2 \cdot \ldots \cdot c_m \quad \Rightarrow \quad \det V = s_1 \cdot s_2 \cdot \ldots \cdot s_m$$

Это определитель матрицы оператора V в базисе g_1, g_2, \ldots, g_m , но так как этот базис и стандартный базис ортонормированные, то определители матриц оператора V в этих базисах совпадают.

Теорема 9 (преобразование меры Лебега при линейных отображениях):

Пусть $T: \mathbb{R}^m \to \mathbb{R}^m$ — линейное отображение. Тогда $\forall A \in \mathcal{M}^m$ $T(A) \in \mathcal{M}^m$ и $\lambda \big(T(A) \big) = |\det T| \cdot \lambda(A)$

Доказательство: По лемме 5 измеримость множеств сохраняется (т.к. линейное отображение — гладкое)

- 1. Если $\det T = 0$, то образ L отображения T лежит в \mathbb{R}^m и не совпадает с ним. Образ является линейным подпространством, значит по следствию 8 $\lambda(L) = 0$. Из-за монотонности меры $\forall \, A \in \mathcal{M}^m \, \lambda \big(T(A) \big) = 0$, что соответствует формуле $\lambda \big(T(A) \big) = |\det T| \cdot \lambda(A)$
- 2. Если $\det T \neq 0$, то для $A \in \mathcal{M}^m$ определим $\mu(A) = \lambda \big(T(A) \big)$. Тогда по лемме 3μ мера и она инвариантна относительно сдвигов: $\mu(A+a) = \lambda \big(T(A+a) \big) = \lambda \big(T(A) + T(a) \big) = \lambda \big(T(A) \big) = \mu(A)$, значит по теореме 7μ пропорциональна мере Лебега. Чтобы найти коэффициент пропорциональности, используя лемму 6 (и обозначения из неё), посчитаем меру образа единичного куба Q построенного на векторах g_1, g_2, \ldots, g_m . Из этой леммы получаем, что $\forall i \in \{1, 2, \ldots, m\}$ $T(g_i) = s_i h_i$, значит $\lambda \big(T(Q) \big) = s_1 \cdot s_2 \cdot \ldots \cdot s_m = |\det T|$ (длина векторов h_i равна 1), а $\lambda(Q) = 1$. То есть коэффициент пропорциональности равен $|\det T|$.

§ Метод Лапласа

Лемма 7 (о локализации):

Пусть функция $f:[a,b)\to\mathbb{R}$ положительна, непрерывна на $[a,b),\int\limits_a^b f(x)\,dx>0$ и \exists окрестность U(a) точки a такая, что $\forall\,x_0\in U(a)\int\limits_a^{x_0}f(x)\,dx\neq 0$. Пусть функция $g:[a,b)\to\mathbb{R}$ положительна, убывает на [a,b), непрерывна в точке a и $\forall\,t\in(a,b)$ $\exists\,t_1\in(a,t):g(t)< g(t_1)$, тогда $\forall\,c\in(a,b)$

$$\int_a^c f(t)e^{A\cdot g(t)}\,dt \,\sim \int_a^b f(t)e^{A\cdot g(t)}\,dt \qquad \text{при } A\to \infty$$

Функции $\alpha(x)$ и $\beta(x)$ эквивалентны при $x \to x_0$ означает, что $\exists \varphi(x) : \alpha(x) = \beta(x) \cdot \varphi(x)$ и $\varphi(x) \xrightarrow[x \to x_0]{} 1$ или ещё, если $\beta(x) \neq 0$, что $\frac{\alpha(x)}{\beta(x)} \xrightarrow[x \to x_0]{} 1$

Доказательство: обозначим $M=\int\limits_a^b f(x)\,dx>0$, тогда

$$\int_c^b f(t) e^{A \cdot g(t)} \, dt \leqslant e^{A \cdot g(c)} \int_c^b f(t) \, dt \leqslant e^{A \cdot g(c)} \cdot M$$

Возьмём $c_1 \in (a,c): g(c) < g(c_1),$ обозначим $N = \int\limits_a^{c_1} f(t) \, dt > 0,$ тогда

$$\int_{a}^{c} f(t)e^{A\cdot g(t)} dt \geqslant \int_{a}^{c_{1}} f(t)e^{A\cdot g(t)} dt \geqslant e^{A\cdot g(c_{1})} \int_{a}^{c_{1}} f(t) dt = e^{A\cdot g(c_{1})} \cdot N$$

Получили то, что нужно доказать, потому что

$$\frac{\int_{c}^{b} f(t)e^{A\cdot g(t)}\,dt}{\int_{a}^{c} f(t)e^{A\cdot g(t)}\,dt} \leqslant \frac{e^{A\cdot g(c)}\cdot M}{e^{A\cdot g(c_{1})}\cdot N} \xrightarrow[A\to\infty]{} 0, \text{ так как } g(c_{1})>g(c). \text{ Тогда}$$

$$\frac{\int_a^c f(t)e^{A\cdot g(t)}\,dt}{\int_a^b f(t)e^{A\cdot g(t)}\,dt} = \frac{\int_a^c f(t)e^{A\cdot g(t)}\,dt}{\int_a^c f(t)e^{A\cdot g(t)} + \int_c^b f(t)e^{A\cdot g(t)}\,dt} = 1 + \frac{\int_c^b f(t)e^{A\cdot g(t)}\,dt}{\int_a^c f(t)e^{A\cdot g(t)}\,dt} \xrightarrow[A \to \infty]{} 1$$

Следствие 9: В обозначениях леммы из определения сходимости частного этих интегралов к 1 получаем, что $\forall \varepsilon > 0 \; \exists A_0 : \forall A > A_0$ выполнено

$$(1-\varepsilon)\int_a^c f(t)e^{A\cdot g(t)}\,dt < \int_a^b f(t)e^{A\cdot g(t)}\,dt < (1+\varepsilon)\int_a^c f(t)e^{A\cdot g(t)}\,dt$$

Гамма функцией называется функция $\Gamma(p) = \int_0^\infty x^{p-1} e^{-x} dx$

Замечание 8: Пусть q > -1, p > 0, A > 0, s > 0, тогда

1.
$$\int_0^\infty t^q e^{-At^p} dt = \begin{bmatrix} 3 \text{амена:} \\ x = At^p \\ t = \left(\frac{x}{A}\right)^{\frac{1}{p}} \end{bmatrix} = \int_0^\infty \left(\frac{x}{A}\right)^{\frac{q}{p}} e^{-x} \frac{1}{pA^{\frac{1}{p}}} \ x^{\frac{1}{p}-1} dx = \frac{1}{pA^{\frac{q+1}{p}}} \cdot \Gamma\left(\frac{q+1}{p}\right)$$

2. $\int_0^s t^q e^{-At^p} \, dt = \frac{1}{pA^{\frac{q+1}{p}}} \int_0^{As^p} x^{\frac{q+1}{p}} e^{-x} \, dx$ и так как $\int_0^{As^p} x^{\frac{q+1}{p}} e^{-x} \, dx \xrightarrow[A \to \infty]{} \Gamma\left(\frac{q+1}{p}\right),$ то из определения сходимости получается, что $\forall \, s > 0, \forall \, \varepsilon > 0 \; \exists \, A_0 : \forall \, A > A_0$ выполнено

$$(1-\varepsilon)\frac{1}{pA^{\frac{q+1}{p}}}\cdot\Gamma\left(\frac{q+1}{p}\right)<\int_0^s t^q e^{-At^p}\,dt<(1+\varepsilon)\frac{1}{pA^{\frac{q+1}{p}}}\cdot\Gamma\left(\frac{q+1}{p}\right)$$

Тогда, заменяя везде A на $(1-\varepsilon)A$, получаем, что $\forall\, s>0, \forall\, \varepsilon>0$ $\exists\, A_1=\frac{A_0}{1-\varepsilon}: \forall\, A>A_1$

$$\frac{1-\varepsilon}{(1-\varepsilon)^{\frac{q+1}{p}}} \cdot \frac{1}{pA^{\frac{q+1}{p}}} \cdot \Gamma\left(\frac{q+1}{p}\right) < \int_0^s t^q e^{-(1-\varepsilon)At^p} \, dt < \frac{1+\varepsilon}{(1-\varepsilon)^{\frac{q+1}{p}}} \cdot \frac{1}{pA^{\frac{q+1}{p}}} \cdot \Gamma\left(\frac{q+1}{p}\right)$$

Теорема 10 (метод Лапласа):

Пусть функция $f:[a,b)\to\mathbb{R}$ положительна на $[a,b),\int\limits_a^b f(t)\,dt>0$ и $f(t)\sim L\cdot (t-a)^q$ при $t\to a,$ где $q>-1,L\in\mathbb{R}.$ Пусть функция $g:[a,b)\to\mathbb{R}$ строго убывает на [a,b) и $g(a)-g(t)\sim C\cdot (t-a)^p$ при $t\to a,$ где C,p>0. Тогда

$$\int_{a}^{b} f(t)e^{A\cdot g(t)} dt \sim \frac{L}{p} \cdot \frac{\Gamma\left(\frac{q+1}{p}\right)}{(CA)^{\frac{q+1}{p}}} \cdot e^{A\cdot g(a)} \qquad \text{при } A \to \infty$$

Доказательство: Фиксируем $\varepsilon > 0$, выберем $s \in (a,b)$ такое, что $\forall t \in [a,a+s]$ выполнено

$$(1-\varepsilon) < \frac{f(t)}{L \cdot (t-a)^q} < (1+\varepsilon) \quad \text{if} \quad (1-\varepsilon) < \frac{g(a)-g(t)}{C \cdot (t-a)^p} < (1+\varepsilon)$$

Выберем A_0 так, чтобы при $A>A_0$ выполнялись формулы из леммы 7 и замечания 8.2, тогда

$$\int_{a}^{b} f(t)e^{A\cdot g(t)} dt \stackrel{7}{<} (1+\varepsilon) \int_{a}^{a+s} f(t)e^{A\cdot g(t)} dt \leqslant (1+\varepsilon) \cdot e^{A\cdot g(a)} \int_{a}^{a+s} (1+\varepsilon) \cdot L \cdot (t-a)^{q} \cdot e^{-A\cdot (g(a)-g(t))} dt < (1+\varepsilon)^{2} \cdot e^{A\cdot g(a)} \int_{0}^{s} Lt^{q} \cdot e^{-A\cdot (1-\varepsilon)\cdot Ct^{p}} dt \stackrel{8.2}{<} \frac{(1+\varepsilon)^{3}}{(1-\varepsilon)^{\frac{q+1}{p}}} \cdot e^{A\cdot g(a)} \cdot \frac{L}{p(CA)^{\frac{q+1}{p}}} \cdot \Gamma\left(\frac{q+1}{p}\right)$$

Аналогично $\int_a^b f(t)e^{A\cdot g(t)}\,dt > \frac{(1-\varepsilon)^3}{(1-\varepsilon)^{\frac{q+1}{p}}}\cdot e^{A\cdot g(a)}\cdot \frac{L}{p(CA)^{\frac{q+1}{p}}}\cdot \Gamma\left(\frac{q+1}{p}\right), \text{ то есть получили эквивалентность.}$