MAT137 Lecture 17 — Definition of Derivative

Before next class:

Watch videos 3.4, 3.5, 3.8

Tangent line to a line?

What is the equation of the line tangent to the graph of y = x at the point with x-coordinate 7?

- (A) y = x + 7
- (B) y = x
- (C) y = 7
- (D) x = 7
- (E) There is no tangent line at that point.
- (F) There is more than one tangent line at that point.

Prove these statements are false with counterexamples

Let C be a curve. Let P be a point in C.

- (A) The line tangent to C at P intersects C at only one point: P.
- (B) If a line intersects C only at P, then that line must be the tangent line to C at P.
- (C) The tangent line to C at P intersects C at P and "does not cross" C at P.(This means that, near P, it stays on one side of C.)
- (D) If a line intersects C at P and "does not cross" C at P, then it is the tangent line to C at P.

Tangent line from a graph

This is the graph of the function f. Write the (approximate) equation of the line tangent to it at the point with x-coordinate -2.

Tangent line from a graph

This is the graph of the function f. Write the (approximate) equation of the line tangent to it at the point with x-coordinate -1.

Derivative from a graph

This is the graph of the function f. Sketch the graph of its derivative f'.

Derivatives from the definition

Let

$$g(x) = \frac{2}{\sqrt{x}}$$

Calculate g'(4) directly from the definition of derivative as a limit.

MAT137 Lecture 18 — Differentiation Rules

Warmup:

Sketch y = f'(x).

Before next class:

• Watch videos 3.6, 3.7, 3.9

Differentiable functions

Let $a \in \mathbb{R}$.

Let f be a function with domain \mathbb{R} .

Assume f is differentiable everywhere.

What can we conclude?

(A)
$$f(a)$$
 is defined. (D) $f'(a)$ exists.

(B)
$$\lim_{x \to a} f(x)$$
 exists. (E) $\lim_{x \to a} f'(x)$ exists.

(C)
$$f$$
 is continuous at a . (F) f' is continuous at a .

Computations: Basic differentiation rules

Compute the derivative of the following functions:

(A)
$$f(x) = x^{100} - 3x^9 - 2$$
 (D) $f(x) = \sqrt{x}(1 + 2x)$

(B)
$$f(x) = \sqrt[3]{x} + 6$$
 (E) $f(x) = \frac{x^6 + 1}{x^3}$

(C)
$$f(x) = \frac{4}{x^4}$$
 (F) $f(x) = \frac{x^2 - 2}{x^2 + 2}$

Higher order derivatives

Let
$$g(x) = \frac{1}{x^3}$$
.

- Calculate the first few derivatives.
- Make a conjecture for a formula for the *n*-th derivative $g^{(n)}(x)$.
- Prove it by induction.

Estimations - 2

Without using a calculator, estimate $\sqrt[20]{1.01}$ as well as you can.

Hint: You know the value of $f(x) = \sqrt[20]{x}$ and its derivative at one point very close to 1.01. Use the tangent line at that point as an approximation.

Estimations – 3

(A) We know
$$f(0) = 2$$
, $f'(0) = 3$, $g(0) = 7$, $g'(0) = 5$. Compute $\lim_{x \to 0} \frac{f(x)}{g(x)}$.

- (B) We know f(0) = 0, f'(0) = 3, g(0) = 0, g'(0) = 5.
 - When x is close to 0, give estimates for f(x) and g(x) using the tangent lines at 0.
 - Use those estimates to compute $\lim_{x\to 0} \frac{f(x)}{g(x)}$.

MAT137 Lecture 19 — Proof of Differentiation Rules

Before next class:

Watch videos 3.10, 3.11

Estimations - 1

Let f be a continuous function with domain \mathbb{R} .

- (A) We know f(4) = 3 and f(4.2) = 2.2. Based only on this, give your best estimate for f(4.1).
- (B) We know f(4) = 3 and f'(4) = 0.6. Based only on this, give your best estimate for f(4.1).
- (C) We know f(4) = 3 and f(4.1) = 4. Based only on this, give your best estimate for f'(4).

Absolute value and tangent lines

- At (0,0) the graph of y = |x|...
- (A) ... has one tangent line: y = 0
- (B) ... has one tangent line: x = 0
- (C) ... has two tangent lines y = x and y = -x
- (D) ... has no tangent line

Absolute value and derivatives

Let
$$h(x) = x|x|$$
. What is $h'(0)$?

- (A) It is 0.
- (B) It doesn't exist because |x| is not differentiable at 0.
- (C) It doesn't exist because the right- and left-limits, when computing the derivative, are different.
- (D) It doesn't exist because it has a corner.
- (E) It doesn't exist for a different reason.

Write a proof for the quotient rule for derivatives

Theorem

- Let $a \in \mathbb{R}$.
- Let f and g be functions defined at and near a. Assume $g(x) \neq 0$ for x close to a.
- We define the function h by $h(x) = \frac{f(x)}{g(x)}$.

IF f and g are differentiable at a, THEN h is differentiable at a, and

$$h'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}.$$

Write a proof directly from the definition of derivative. Hint: Imitate the proof of the product rule in Video 3.6.

Check your proof

- (A) Did you use the *definition* of derivative?
- (B) Are there words or only equations?
- (C) Does every step follow logically?
- (D) Did you only assume things you could assume?
- (E) Did you assume at some point that a function was differentiable? If so, did you justify it?
- (F) Did you assume at some point that a function was continuous? If so, did you justify it?

If you answered "no" to (F), you probably missed something important.

Critique this proof

$$h'(a) = \lim_{x \to a} \frac{h(x) - h(a)}{x - a} = \lim_{x \to a} \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a}$$

$$= \lim_{x\to a} \frac{f(x)g(a) - f(a)g(x)}{g(x)g(a)(x-a)}$$

$$= \lim_{x \to a} \frac{f(x)g(a) - f(a)g(a)}{g(x)g(a)}$$

$$= \lim_{x \to a} \frac{f(x)g(a) - f(a)g(a) + f(a)g(a) - f(a)g(x)}{g(x)g(a)(x - a)}$$

$$\left\{ \left[f(x) - f(a) - g(a) \right] - g(a) \right\}$$

$$= \lim_{x \to a} \left\{ \left[\frac{f(x) - f(a)}{x - a} g(a) - f(a) \frac{g(x) - g(a)}{x - a} \right] \frac{1}{g(x)g(a)} \right\}$$

$$= \lim_{x \to a} \left\{ \left[\frac{f(x) - f(a)}{x - a} g(a) - f(a) \frac{g(x) - b}{x - a} \right] \right\}$$
$$= \left[f'(a)g(a) - f(a)g'(a) \right] \frac{1}{g(a)g(a)}$$

True or False - Differentiability vs Continuity

Let f be a function with domain \mathbb{R} . Let $c \in \mathbb{R}$. Which of these implications are true?

- (A) IF f is continuous at c, THEN f is differentiable at c
- (B) IF f is differentiable at c, THEN f is continuous at c
- (C) IF f is differentiable at c, THEN f' is continuous at c
- (D) IF f' is continuous at c, THEN f is continuous at c
- (E) IF f is differentiable at c, THEN f is continuous at and near c.
- (F) IF f is continuous at and near c, THEN f is differentiable at c.

True or False - Differentiability and Operations

Let f be a function with domain \mathbb{R} . Let $c \in \mathbb{R}$. Let $g(x) = f(x)^2$. Which of these implications are true?

- (A) IF f is differentiable at c, THEN f + f' is continuous at c
- (B) IF f is differentiable at c, THEN 3f is differentiable at c.
- (C) IF f is differentiable at c, THEN g is differentiable at c.
- (D) IF g is differentiable at c, THEN f is differentiable at c.
- (E) IF f is differentiable at c, THEN 1/f is differentiable at c.

MAT137 Lecture 20 — The Chain Rule

Before next class:

Watch videos 3.12, 3.13

Quick composition

Let f and g be differentiable functions and let $h = f \circ g$. What is h'(2)?

- (A) $f'(2) \circ g'(2)$
- (B) f'(2)g'(2)
- (C) f'(g(2))g'(2)
- (D) f'(g(x))g'(2)

True or False - Differentiability and Composition

Let f and g be functions with domain \mathbb{R} . Let $c \in \mathbb{R}$. Assume f and g are differentiable at c. What can we conclude?

- (A) $f \circ g$ is differentiable at c.
- (B) $f \circ f$ is differentiable at c.
- (C) $f \circ \sin$ is differentiable at c.
- (D) $\sin \circ f$ is differentiable at c.

Computations: Chain rule

Compute the derivative of

(A)
$$f(x) = (2x^2 + x + 1)^8$$

(B)
$$f(x) = \frac{1}{\left(x + \sqrt{x^2 + x}\right)^{137}}$$

MAT137 Lecture 21 — Trig Derivatives and Implicit Differentiation

Before next class:

Watch videos 4.1, 4.2

From the derivative to the function

- (A) Sketch the graph of a continuous function with domain \mathbb{R} , whose derivative has the graph below.
- (B) Sketch the graph of a non-continuous function whose derivative has the graph below.

Bella

The graph below describes Bella's distance from home one morning as she drives drive between her home and school.

Describe a possible scenario for her travels that morning. Then sketch the corresponding graph of his velocity.

Edward and Jacob

Jacob walked at 5 km/h for 20 minutes and then sprinted at 15 km/h for 8 minutes.

- (A) How fast would Edward have to walk or run to go the same distance as Jacob did in the same time while moving at a constant speed?
- (B) Sketch a graph of Jacob's and Edward's positions over time on the same set of axes.

A long chain

The function below has 137 square roots:

$$f(x) = \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x + 1}}}}}$$

Find the equation of the line tangent to the graph of f at the point with x-coordinate 0.

Computations: Trig derivatives

Compute the derivatives of the following functions:

(A)
$$f(x) = \tan(3x^2 + 1)$$

(B)
$$f(x) = (\cos x)(\sin 2x)(\tan 3x)$$

(C)
$$f(x) = \cos(\sin(\tan x))$$

(D)
$$f(x) = \cos\left(3x + \sqrt{1 + \sin^2 x^2}\right)$$

Vertical things

- Construct a function f that has a vertical asymptote at x = 2.
- Construct a function g that has a vertical tangent line at x = 2.

Absolute value and derivatives - 2

True or False?

For all $n \in \mathbb{Z}$ and all x, $\frac{d}{dx}|x|^n = nx|x|^{n-2}$.

Nixon

Richard Nixon, during the 1972 US Presidential campaign, (paraphrased):

Inflation is increasing, but the rate of increase of inflation is decreasing.

Let

- $C = \cos t$ of life
- *t* = time

What did Nixon say in terms of derivatives?

Chain rule from a graph

If f and g are the functions whose graphs are shown.

Let u(x) = f(g(x)) and v(x) = g(f(x)).

Find each derivative, if it exists.

If it does not exist, explain why.

- (A) u'(1)
- (B) v'(1)

Balloon

I am inflating a spherical balloon. Below is the graph of the radius r (in cm) as a function of time t (in s). At what rate is the volume of the balloon increasing at time 4s?

Balloon

I am inflating a spherical balloon. Below is the graph of the radius r (in cm) as a function of time t (in s). At what rate is the volume of the balloon increasing at time 4s?

An alternative proof of the quotient rule

Assume we have already proven the product rule, the power rule, and the chain rule.

Obtain a formula for the derivative of $h(x) = \frac{f(x)}{g(x)}$.

Hint:
$$\frac{f(x)}{g(x)} = f(x) \cdot g(x)^{-1}$$

Derivatives of $(f \circ g)$

Assume f and g are functions that have all their derivatives. Find formulas for

- (A) $(f \circ g)'(x)$
- (B) $(f \circ g)''(x)$
- (C) $(f \circ g)'''(x)$

in terms of the values of f, g and their derivatives.

Hint: The first one is simply the chain rule.

Derivatives of $(f \circ g)$

Assume f and g are functions that have all their derivatives. Find formulas for

- (A) $(f \circ g)'(x)$
- (B) $(f \circ g)''(x)$
- (C) $(f \circ g)'''(x)$

in terms of the values of f, g and their derivatives.

Hint: The first one is simply the chain rule.

Challenge: Find a formula for $(f \circ g)^{(n)}(x)$ (This is beyond the scope of this course).

Derivative of cos

Let $g(x) = \cos x$.

Obtain and prove a formula for its derivative directly from the definition of derivative as a limit.

Hint: Imitate the derivation in Video 3.12. If you need a trig identity that you do not know, google it or ask another student.

Derivatives of the other trig functions

Use the basic differentiation rules, as well as

$$\frac{d}{dx}\sin x = \cos x, \qquad \frac{d}{dx}\cos x = -\sin x,$$

to quickly obtain and prove formulas for the derivatives of tan, cot, sec, and csc.

Product of trig functions

Let
$$f(x) = \sin x \cos x$$
. What is its derivative $f'(x)$?

- (A) $1 2\sin^2(x)$
- (B) $2\cos^2(x) 1$
- (C) $\cos 2x$
- (D) all of the above
- (E) none of the above

A pesky function

Let
$$h(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
.

- (A) Calculate h'(x) for any $x \neq 0$.
- (B) Using the definition of derivative, calculate h'(0).
- (C) Calculate $\lim_{x\to 0} h'(x)$

Hint: Questions 2 and 3 have different answers.

A pesky function

Let
$$h(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
.

- (A) Calculate h'(x) for any $x \neq 0$.
- (B) Using the definition of derivative, calculate h'(0).
- (C) Calculate $\lim_{x\to 0} h'(x)$

Hint: Questions 2 and 3 have different answers.

- (D) Is h continuous at 0?
- (E) Is *h* differentiable at 0?
- (F) Is h' continuous at 0?

Implicit differentiation

The equation

$$\sin(x+y) + xy^2 = 0$$

defines a function y = h(x) near (0,0). Using implicit differentiation, compute

(A) h(0) (B) h'(0) (C) h''(0) (D) h'''(0)