

(5)

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 06-234715
 (43)Date of publication of application : 23.08.1994

(51)Int.CI. C07C237/22
 C07C309/70
 C07C309/72

(21)Application number : 05-266972
 (22)Date of filing : 26.10.1993

(71)Applicant : KYOWA HAKKO KOGYO CO LTD
 (72)Inventor : INOUE KUNIMI
 YAMADA YOSHIYUKI
 AMATSU KAZUMI
 MIMURA YUKITERU
 NAKAGUCHI YASUNORI
 NIIMURA HIROYUKI
 ONO YASUYUKI
 OSAWA YUTAKA
 MIZUTAKI SHIYOUICHI
 KASAI MASAJI
 TOMIOKA SHINJI

(30)Priority
 Priority number : 04291139 Priority date : 29.10.1992 Priority country : JP

(54) PRODUCTION OF ALANYLGLUTAMINE

(57)Abstract:

PURPOSE: To obtain alanylglutamine in high purity at a low cost by reacting a partially new N-(2-substituted)-propionylglutamine derivative with ammonia at a prescribed temperature or below.

CONSTITUTION: A partially new N-(2-substituted)-propionylglutamine derivative expressed by formula I [X is halogen, alkylsulfonyloxy or (substituted) arylsulfonyloxy] [e.g. new N-(2-D-chloro)propionyl-L-glutamine] is made to react with ammonia at $\leq 60^{\circ}\text{C}$ to afford the objective alanylglutamine. A compound expressed by formula III (X¹ is Cl, I or X other than halogen) in the compound expressed by formula I is new. This compound expressed by formula I is obtained by reacting a 2-substituted-propionyl halide expressed by formula II (Hal is halogen) with an alkaline aqueous solution of glutamine in the presence of a water-immiscible organic solvent and recovering the resultant compound expressed by formula I from the prepared reactional solution. L-Alanyl-L-glutamine is useful as a pharmaceutical bulk, etc., for infusion.

I

II

III

LEGAL STATUS

[Date of request for examination] 24.12.1999
 [Date of sending the examiner's decision of rejection]
 [Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3473976

[Date of registration]

19.09.2003

[Number of appeal against examiner's decision of
rejection]

[Date of requesting appeal against examiner's decision of
rejection]

[Date of extinction of right]

Copyright (C) 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-234715

(43)公開日 平成6年(1994)8月23日

(51)Int.Cl.
C 07 C 237/22
309/70
309/72

識別記号
7106-4H
7419-4H
7419-4H

F I

技術表示箇所

審査請求 未請求 請求項の数3 O L (全6頁)

(21)出願番号 特願平5-266972
(22)出願日 平成5年(1993)10月26日
(31)優先権主張番号 特願平4-291139
(32)優先日 平4(1992)10月29日
(33)優先権主張国 日本 (JP)

(71)出願人 000001029
協和醸酵工業株式会社
東京都千代田区大手町1丁目6番1号
(72)発明者 井上 国見
大阪府堺市今池町1-2-3
(72)発明者 山田 義之
大阪府堺市草尾420-3
(72)発明者 天津 和美
大阪府堺市新在家町西2-2-9
(72)発明者 三村 幸輝
静岡県駿東郡長泉町東野692-304
(72)発明者 中口 康範
大阪府堺市今池町1-2-3

最終頁に続く

(54)【発明の名称】アラニルグルタミンの製造法

(57)【要約】

【構成】式(I)

〔式中、Xはハロゲン原子、アルキルスルホニルオキシまたは置換もしくは非置換のアリールスルホニルオキシ基を表す〕で表されるN-(2-置換)-プロピオニルグルタミン誘導体を、アンモニアと60°C以下で反応せしめることを特徴とするアラニルグルタミンの製造法。

【効果】本発明によりL-グルタミンの安定誘導体として輸液用原末等に用いられるL-アラニル-L-グルタミンが効率よく安価に製造される。

1

【特許請求の範囲】

〔請求項1〕 式(Ⅰ)

〔化1〕

〔式中、Xはハロゲン原子、アルキルスルホニルオキシまたは置換もしくは非置換のアリールスルホニルオキシ基を表す〕で表されるN-(2-置換)-ブロビオニルグルタミン誘導体を、アンモニアと60°C以下で反応せしめることを特徴とするアラニルグルタミンの製造法。

〔請求項2〕 式(Ⅱ)

〔化2〕

〔式中、Xは前記と同義であり、Ha1はハロゲン原子を表す〕で表される2-置換-ブロビオニルハライドをグルタミンのアルカリ水溶液と、水と混和しない有機溶媒存在下に反応させ、得られた反応液から式(Ⅰ)

〔化3〕

〔式中、Xは前記と同義である〕で表されるN-(2-置換)-ブロビオニルグルタミン誘導体を回収することを特徴とするN-(2-置換)-ブロビオニルグルタミン誘導体の製造法。

〔請求項3〕 式(Ⅰ')

〔化4〕

〔式中、X¹は塩素原子、ヨウ素原子、アルキルスルホニルオキシまたは置換もしくは非置換のアリールスルホニルオキシ基を表す〕で表されるN-(2-置換)-ブロビオニルグルタミン誘導体またはその塩。

〔発明の詳細な説明〕

〔0001〕

〔産業上の利用分野〕 本発明はアラニルグルタミンの製造法およびその中間体であるN-(2-置換)-ブロビオニルグルタミン誘導体の製造法並びに該方法により製造される新規N-(2-置換)-ブロビオニルグルタミン誘導体に関する。L-アラニル-L-グルタミンは、L-グルタミンに比べて安定であり、且つ水に対する溶解度が高いことから、L-グルタミンの安定誘導体として輸液用原末等に用いられる。

10

2

〔0002〕

〔従来の技術〕 アラニルグルタミンの製造法としては、①保護基を用いる方法、例えば、N-ベンジルオキシカルボニルアラニン(以下、Z-アラニンと称する)と保護グルタミンをジシクロヘキシリカルボジイミド(DCC)で縮合し、脱保護して合成する方法〔Bull.Chem.Soc.Jpn., 34, 739(1961)、Bull.Chem.Soc.Jpn., 35, 1966(1962)〕、Z-アラニンと保護グルタミン酸-アーメチルエステルをDCCで縮合し、脱保護後、アンモニアと反応させて合成する方法〔Bull.Chem.Soc.Jpn., 37, 200(1964)〕、Z-アラニンの活性エステルと無保護のグルタミンを反応させ、脱保護して合成する方法〔欧州特許第311057号〕等、②N-カルボキシ無水物を経由する方法〔ドイツ特許第3206784号〕、③2-ブロモブロビオニルクロリドを原料とし、2-ブロモブロビオニルグルタミンを中間体として合成する方法〔Hoppe-Seyler's Z.Physiol.Chem., 105, 58(1919)〕等が知られている。

〔0003〕 ①の保護基を用いる方法は脱保護が必要であり、操作が煩雑で安価にアラニルグルタミンを製造することができない。②の方法は、アラニンのN-カルボキシ無水物を用いる方法で保護基を必要としないが、トリペプチド等の副生物が多く生成するため収率が低く、また精製が困難である。③の方法は、2-ブロモブロビオニルクロリドとグルタミンとの反応において、水との反応性の高い酸クロリドをグルタミンの水溶液に添加しているため、目的の反応以外に酸クロリドの加水分解反応が進行し、副生物が生成して収率が低い。また、当該方法においては、生成した2-ブロモブロビオニルグルタミンを有機溶媒を用いた抽出法で精製しているため収率が低く、かつ光学純度も低い。さらに、当該方法においては、2-ブロモブロビオニルグルタミンのアンモニリシスを高温で行っているため、副生成物が多くかつ生成するアラニルグルタミンの光学純度も低下する傾向がある。

〔0004〕

〔発明が解決しようとする課題〕 本発明の目的は、工業上、安価かつ高純度なアラニルグルタミンの製造法およびその中間体であるN-(2-置換)-ブロビオニルグルタミン誘導体の製造法並びに該方法により製造される新規N-(2-置換)-ブロビオニルグルタミン誘導体を提供することにある。

〔0005〕

〔課題を解決するための手段〕 本発明は、式(Ⅱ)

〔0006〕

〔化5〕

50 〔0007〕 〔式中、Xはハロゲン原子、アルキルスル

3

ホニルオキシまたは置換もしくは非置換のアリールスルホニルオキシ基を表し、H a 1はハロゲン原子を表す】で表される2-置換-プロピオニルハライド【以下、化合物(II)と称する】とグルタミンのアルカリ水溶液とを、水と混和しない有機溶媒存在下に反応させることを特徴とする式(I)

【0008】

【化6】

【0009】【式中、Xは前記と同義である】で表されるN-(2-置換)-プロピオニルグルタミン誘導体【以下、化合物(I)と称する】の製造法並びに化合物(I)を60°C以下でアンモニアと反応せしめること特徴とするアラニルグルタミンの製造法に関する。式(I)および式(II)の定義中、アルキルスルホニルオキシ基のアルキル部分としては、炭素数1~6の直鎖もしくは分岐状アルキル基、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ベンチル、ヘキシル等が含まれ、アリールスルホニルオキシのアリール部分としては、フェニル、ナフチル等が、置換アリールとしては、トリル等がそれぞれ含まれる。また、ハロゲン原子としては、塩素、臭素、ヨウ素の各原子が含まれる。

【0010】本発明の化合物(I)の製造法において、水と混和しない有機溶媒としては、エーテル、トルエン、クロロホルム、塩化メチレン、ジクロロエタン、酢酸エチル等が単独もしくは混合して用いられるが、トルエン、クロロホルム、塩化メチレンが好適に用いられる。用いられる有機溶媒の量は、グルタミンのアルカリ水溶液に対して、0.1~5倍量、好ましくは0.3~1倍量用いられる。グルタミンのアルカリ水溶液としては反応を阻害しないものであればとくに制限はなく、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム等の無機アルカリ水溶液、トリメチルアミン、トリエチルアミン、ビリジン等の有機アルカリ水溶液があげられるが、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミンが好適に用いられる。グルタミンは、化合物(II)に対して、0.5~2.0当量用いられるが、当量用いるのが好ましい。アルカリ水溶液に含まれるグルタミンの量としては、0.01~3M、好*

4

*ましくは、0.1~1Mである。反応は、-5~40°C、好ましくは、0~10°Cで行われ、0.1~5時間、好ましくは、0.5~2時間で終了する。反応中、アルカリ水溶液のpHは7~11、好ましくは9~10.5である。反応の進行に伴い塩酸が生成するため、反応液のpHは低下する。従って、反応中、反応液に塩基を加えることにより、反応液のpHを上記の範囲に設定することが好ましい。用いられる塩基は、反応を阻害しない限りとくに制限はなく、例えば、水酸化ナトリウム等の無機塩基、トリエチルアミン等の有機塩基等が用いられる。

【0011】上記反応で使用した有機溶媒を分液等により除去後、アルカリ水溶液に塩を加え、塩酸、硫酸等の強酸でpH0.1~4、好ましくはpH0.5~2.5に調整し、塩析することにより化合物(I)の結晶を收率よく得ることができる。用いられる塩としては、例えば塩化ナトリウム、塩化カリウム、硫酸ナトリウム等があげられるが、塩化ナトリウムが好適に用いられる。添加する塩の量はとくに制限はないが、アルカリ水溶液がその塩の飽和溶液になる量が好ましい。

【0012】本発明の化合物(I)のうち、下記式(I')

【0013】
【化7】

【0014】【式中、X'は塩素原子、ヨウ素原子、アルキルスルホニルオキシまたは置換もしくは非置換のアリールスルホニルオキシ基を表す】で示される化合物【以下、化合物(I')と称する】およびその塩は、新規化合物である。化合物(I')の塩としては、化合物(I')のナトリウム、カリウム等のアルカリ金属塩、アンモニウム、トリメチルアンモニウム、トリエチルアンモニウム等のアンモニウム塩、ビリジニウム塩等があげられる。

【0015】本発明のアラニルグルタミンの製造法において、化合物(I)またはその塩を60°C以下の温度でアンモニアと、溶媒中で反応させることにより、收率よくアラニルグルタミンを得ることができる。

【0016】
【化8】

[0017] [式中、Xは前記と同義である。]

[0018] 上記反応で使用される溶媒としては、メタノール、エタノール、プロパンノール等のアルコール類もしくは水または水酸化ナトリウム、水酸化カリウム等のアルカリ水溶液があげられるが、水が好適に用いられる。酢酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、臭化アンモニウム、炭酸アンモニウム等のアンモニウム塩を添加することにより反応性が向上することがある。反応温度は通常0～60°Cである。反応は常圧または加圧下に1～100時間好ましくは4～50時間で終了する。アンモニアは化合物(I)に対し1～200当量、好ましくは、10～50当量用いられる。反応時の化合物(I)の濃度は0.01～2M、好ましくは0.1～0.6Mである。反応の進行は高速液体クロマトグラフィー(HPLC)で追跡する。反応終了を確認後、減圧濃縮等により、過剰のアンモニアと水を除きアルコール類、好ましくはメタノール、エタノール、2-プロパンノールを加えることにより高純度のアラニルグルタミンを収率よく得ることができる。化合物(I)においてXが臭素原子である場合は、反応を20～30°Cで行うことにより、高生成率でかつラセミ化をおこすことなく、有利に高純度のアラニルグルタミンを収率よく得ることができる。

[0019] 光学活性なアラニルグルタミンを所望の場合は、光学活性な化合物(II)およびグルタミンを使用して得ることもできるが、光学不活性な化合物(I)および光学活性なグルタミンを用い、化合物(II)あるいはアラニルグルタミンのジアステレオマー混合物を得、これを常法に従い、分離、精製すればよい。以下に、本発明の実施例を示す。

【0020】

【実施例】

実施例1 N-(2-D-クロロ)プロピオニル-L-グルタミンの合成

水300mLとトルエン150mLに室温下、L-グルタミン48.2g(0.33モル)を加え0～5°Cに冷却し、5規定水酸化ナトリウム66mL(0.33モル)を添加しL-グルタミンを溶解させた。この溶液に2-D-クロロプロピオニルクロリド42.0g(0.33モル、光学純度：92.8%ee)を含むトルエン90mLと5規定水酸化ナトリウム74mLを0～5°Cで、pH1.0に保ちながら2時間かけて加えた。0～5°Cで1時間攪拌後、トルエンを分液して除去し、室温下、水層に塩化ナトリウム60gを加えた。この溶液に室温下、濃塩酸22mLを加えてpH2.5に調整後、種晶し30分間攪拌した。さらに濃塩酸8mLを加えてpH1.0に調整し、室温下1時間晶析した。得られた結晶を濾取し、減圧下乾燥することにより、N-(2-D-クロロ)プロピオニル-L-グルタミンを71.6g(収率：85.3%)(純度：92.9%)、光学純

度：99.4%de、融点：148°C(分解)】得た。
【0021】N-(2-D-クロロ)プロピオニル-L-グルタミンの理化学的性質は以下の通りである。

¹H-NMR(300MHz,DMSO-d₆) δ(ppm): 1.54(3H,d,J=6.6Hz), 1.70～2.10(2H,m), 2.14(2H,t,J=7.1Hz), 4.13～4.23(1H,m), 4.59(1H,q,J=6.7Hz), 6.82(1H,s), 7.37(1H,s), 8.60(1H,d,J=7.7Hz)

¹³C-NMR(75.5MHz,DMSO-d₆) δ(ppm): 21.7, 26.6, 31.2, 51.9, 54.1, 168.9, 172.8, 173.5

MS(CI,m/e): 237(M⁺+1)

IR(KBr,cm⁻¹): 1738, 1662

【0022】実施例2 N-(2-D-(p-トルエンスルホニルオキシ))プロピオニル-L-グルタミンの合成

水300mLとトルエン150mLに室温下、L-グルタミン47.4g(0.32モル)を加え0～5°Cに冷却し、5規定水酸化ナトリウム66mL(0.32モル)を添加しL-グルタミンを溶解させた。この溶液に2-D-(p-トルエンスルホニルオキシ)プロピオニルクロリド91.0g(0.32モル)を含むトルエン90mLと5規定水酸化ナトリウム75mLを0～5°Cで、pH1.0に保ちながら2時間かけて加えた。0～5°Cで1時間攪拌後、トルエンを分液して除去し、水層に室温下、塩化ナトリウム59gを加えた。この溶液に室温下、濃塩酸25mLを加えてpH2.5に調整後、種晶し30分間攪拌した。さらに濃塩酸8mLを加えてpH1.0に調整し、室温下1時間晶析した。得られた結晶を濾取し、減圧下乾燥することにより、N-(2-D-(p-トルエンスルホニルオキシ))プロピオニル-L-グルタミンを76.9g(収率：63.8%、光学純度：99.6%de、融点：102°C)得た。N-(2-D-(p-トルエンスルホニルオキシ))プロピオニル-L-グルタミンの理化学的性質は以下の通りである。

¹H-NMR(300MHz,DMSO-d₆) δ(ppm): 1.35(3H,d,J=6.7Hz), 1.72～1.98(2H,m), 2.03(2H,t,J=6.6Hz), 2.43(3H,s), 4.07～4.14(1H,m), 4.90(1H,q,J=6.7Hz), 6.83(1H,s), 7.31(1H,s), 7.48(2H,d,J=8.1Hz), 7.82(2H,d,J=8.1Hz), 8.44(1H,d,J=7.8Hz)

¹³C-NMR(75.5MHz,DMSO-d₆-D₂O) δ(ppm): 19.8, 22.1, 27.4, 31.9, 52.3, 76.9, 128.6, 131.1, 133.4, 146.4, 169.4, 173.6, 175.2

MS(SIMS,m/e): 373(M⁺+1)

IR(KBr,cm⁻¹): 1712, 1675

【0023】実施例3 N-(2-D-メタンスルホニルオキシ)プロピオニル-L-グルタミンの合成

水185mLとトルエン92mLに室温下、L-グルタミン29.2g(0.20モル)を加え0～5°Cに冷却し、5規定水酸化ナトリウム40mL(0.20モル)を添加しL-グルタミンを溶解させた。この溶液に2-

D-メタンスルホニルプロピオニルクロリド 38.0 g (0.20モル) を含むトルエン 20 mLと5規定水酸化ナトリウム 50 mLを0~5°Cで、pH 1.0に保ちながら2時間かけて加えた。0~5°Cで1時間攪拌後、トルエンを分液して除去し、室温下、水層に塩化ナトリウム 7.6 gを加えた。この溶液に室温下、濃塩酸 21 mLを加えて pH 0.9に調整後、150 mLのクロロホルム/2-ブロバノール (1:1) で2回抽出した。有機層を分取し、濃縮乾固させることにより、N-(2-D-メタンスルホニルオキシ) プロピオニル-L-グルタミンを 27.2 g [収率: 45.8%, 光学純度: 95.8% de] 得た。

【0024】 N-(2-D-メタンスルホニルオキシ) プロピオニル-L-グルタミンの理化学的性質は以下の通りである。

¹H-NMR(300MHz,DMSO-d₆) δ(ppm); 1.47(3H,d,J=6.6Hz), 1.77~2.12(2H,m), 2.15(2H,t,J=7.5Hz), 3.23(3H,s), 4.17~4.24(1H,m), 5.07(1H,q,J=6.6Hz), 6.84(1H,s), 7.35(1H,s), 8.60(1H,d,J=7.7Hz)

¹³C-NMR(75.5MHz,DMSO-d₆) δ(ppm); 19.4, 25.6, 31.5, 51.9, 62.6, 75.9, 169.2, 173.2, 174.4

MS(SIMS,m/e); 297(M⁺ +1)

【0025】 実施例4 N-(2-D-ブロモ) プロピオニル-L-グルタミンの合成

水 300 mLとトルエン 75 mLを室温下、L-グルタミン 21.9 g (0.15モル) を加え、0~5°Cに冷却し、5規定水酸化ナトリウム 30 mL (0.15モル) を添加し、L-グルタミンを溶解させた。この溶液に2-D-ブロモプロピオニルクロリド 25.7 g (0.15モル) を含むトルエン 30 mLを、0~5°Cで、5規定水酸化ナトリウム 25 mLを滴下することにより、pH 1.0に保ちつつ2時間かけて加えた。0~5°Cで1時間攪拌後、トルエンを分液して除去し、室温下、水層に塩化ナトリウム 40 gを加えた。この溶液に室温下、濃塩酸 15 mLを加えて pH 1.0に調整し、室温下1時間晶析した。得られた結晶を濾取し、減圧下乾燥することにより、N-(2-D-ブロモ) プロピオニル-L-グルタミンを 40.4 g (収率: 95.8%, 光学純度: 97.9% de, 融点: 142°C) 得た。

【0026】 実施例5 N-(2-D-クロロ) プロピオニル-L-グルタミンを原料としたL-アラニル-L-グルタミンの合成

1リットルのガラスオートクレイブにN-(2-D-クロロ) プロピオニル-L-グルタミン 60.0 g (純度: 92.9%, 0.24モル) と28%アンモニア水 600 mLを加え室温下溶解させた。この溶液を60°Cへ昇温し、内圧約2 kg/cm²で8時間反応させた。室温へ冷却後、減圧下濃縮し、得られた残渣に水 30 mLを加え全量を 150 gとした。この溶液に室温下、メ

タノール 450 mLを1時間かけて滴下した。2時間晶析後、析出した結晶を濾取し、減圧下乾燥することによりL-アラニル-L-グルタミンの粗成物を 35.4 g (収率: 69.0%, 光学純度: 97.6% de) 得た。

【0027】 このL-アラニル-L-グルタミンの粗成物 30 gを、水 50 mLに溶解させ、活性炭 0.6 gを加え、室温下 10 分間攪拌した。活性炭を濾別し、濾液に 30°Cでメタノール 42 mLを加えた後種晶し、2時間晶析した。さらにメタノール 138 mLを、30°Cで1時間かけて添加した後2時間攪拌した。析出した結晶を濾取し、減圧下乾燥することによりL-アラニル-L-グルタミンを 26.38 g [収率: 88%, 光学純度: 99.9% de, 融点: 216°C (分解)、比旋光度: [α]²⁰ = -3.49° (c = 10, 1N-HCl)] 得た。

【0028】 実施例5 N-(2-D-ブロモ) プロピオニル-L-グルタミンを原料としたL-アラニル-L-グルタミンの合成

N-(2-D-ブロモ) プロピオニル-L-グルタミン 20.0 g (0.07モル) に28%アンモニア水 300 mLを加え室温下溶解させ、室温下 20 時間反応させた。反応混合物を減圧濃縮し、得られた残渣に水約 6 mLを加え、全量を 40 gとした。その溶液に室温下、メタノール 126 mLを1時間かけて滴下した後、2時間晶析した。得られた結晶を濾取後、減圧下乾燥し、L-アラニル-L-グルタミンの粗成物を 12.1 g (収率: 78.1%, 光学純度: 98.9% de) 得た。

【0029】 このL-アラニル-L-グルタミンの粗成物 11.0 gを水 18.3 mLに溶解させ、活性炭 0.22 gを加え、室温下 10 分間攪拌した。活性炭を濾別し、得られた濾液に 30°Cでメタノール 15.4 mLを加えた後種晶し、2時間晶析した。さらにメタノール 50.6 mLを 30°Cで1時間かけて添加し、2時間攪拌した。得られた結晶を濾取後、減圧下乾燥し、L-アラニル-L-グルタミンを 9.84 g (収率: 89.5%, 光学純度: 99.8% de) 得た。

【0030】 実施例6 N-[2-D-(p-トルエンスルホニルオキシ)] プロピオニル-L-グルタミンを原料としたL-アラニル-L-グルタミンの合成

N-[2-D-(p-トルエンスルホニルオキシ)] プロピオニル-L-グルタミン 30.0 g (0.08モル) に28%アンモニア水 300 mLを加え室温下溶解させ、室温下 24 時間反応させた。反応混合物を減圧下濃縮し、得られた残渣に水約 1 mLを加え、全量を 50 gとした。その溶液に室温下、メタノール 200 mLを1時間かけて滴下した後、2時間晶析した。得られた結晶を濾取後、減圧下乾燥し、L-アラニル-L-グルタミンの粗成物を 8.6 g (収率: 49.1%, 光学純度: 99.3% de) 得た。

【0031】このL-アラニル-L-グルタミンの粗成物8 gを水13.3mlに溶解させ、活性炭0.16gを加え、室温下10分間攪拌した。活性炭を濾別し、得られた濾液に30°Cでメタノール11.2mlを加えた後種晶し、2時間晶析した。さらにメタノール36.8mlを30°Cで1時間かけて添加し、2時間攪拌した。得られた結晶を濾取後、減圧下乾燥し、L-アラニル-L-グルタミンを7.41g(収率: 92.6%、光学純度: 99.9%de)を得た。

【0032】実施例7 N-(2-D-メタンスルホニルオキシ)プロピオニル-L-グルタミンを原料にしたL-アラニル-L-グルタミンの合成
N-(2-D-メタンスルホニルオキシ)プロピオニル-L-グルタミン15.6g(0.053モル)に28%アンモニア水15.6mlを加え室温下溶解させ、46時間反応させた。反応混合物を減圧下濃縮し、得られた残渣に水約7mlを加え全量を35gとした。これにメタノール100mlを室温下、1時間かけて滴下した後、2時間晶析した。得られた結晶を濾取し、減圧下乾燥しL-アラニル-L-グルタミンの粗成物を5.78g(収率: 50.5%、光学純度: 96.4%de)を得た。²⁰

【0033】このL-アラニル-L-グルタミンの粗成物5.0gを水8.3mlに溶解させ、活性炭0.1gを加え、室温下10分間攪拌した。活性炭を濾別し、得られた濾液に30°Cでメタノール7.0mlを加えた後種晶し、2時間晶析した。さらにメタノール23.0mlを30°Cで1時間かけて添加し2時間攪拌した。得られた結晶を濾取後、減圧下乾燥し、L-アラニル-L-グルタミンを4.30g(収率: 86.0%、光学純度: 99.0%de)を得た。

【0034】実施例8 N-(2-D-プロモ)プロ*

* ピオニル-L-グルタミンのアミノ化反応

実施例5と同様にN-(2-D-プロモ)プロピオニル-L-グルタミン300mg(1.07ミリモル、光学純度: 97.9%de)に28%アンモニア水3mlを加え室温下溶解させ、室温下20時間反応させた。反応混合物を減圧濃縮しアンモニアを留去し、以下の条件によるHPLCの分析を行い、L-アラニル-L-グルタミン202mg(収率: 87.1%、光学純度: 98.2%de)の生成を確認した。

10 【0035】HPLCの条件

カラム: YMC-pack ODS-AQ313
移動相: 0.01M KH₂PO₄
検出: UV210nm

【0036】一方、N-(2-D-プロモ)プロピオニル-L-グルタミンのアミノ化反応をHoppe-Seyler's Z.Physiol.Chem., 105, 58(1919)に記載の方法に従って行った。すなわち、N-(2-D-プロモ)プロピオニル-L-グルタミン300mg(1.07ミリモル、光学純度: 97.9%de)に26.7%アンモニア水2mlを加え室温下溶解させた。この溶液を100°Cの水浴中で1時間反応させた。反応混合物を減圧濃縮しアンモニアを留去した後に、上記と同様の条件によるHPLCによる分析を行い、L-アラニル-L-グルタミン147mg(収率: 63.4%、光学純度: 96.8%de)の生成を確認した。

【0037】

【発明の効果】本発明により、工業上、安価かつ高純度なアラニルグルタミンの製造法およびその中間体N-(2-置換)-プロピオニルグルタミンの製造法並びに該方法により製造される新規N-(2-置換)-プロピオニルグルタミン誘導体が提供される。

フロントページの続き

(72)発明者 新村 浩行

大阪府堺市北清水町1-2-13

(72)発明者 小野 康幸

神奈川県伊勢原市高森1540白金山団地2-205

(72)発明者 大澤 豊

千葉県市川市中山3-14-26

(72)発明者 水滝 彰一

大阪府河内長野市美加ノ台1-37-1-401

(72)発明者 河西 政次

神奈川県藤沢市鵠沼松ヶ岡3-12-15

(72)発明者 富岡 新二

和歌山县橋本市隅田町下兵庫690-4

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第3部門第2区分

【発行日】平成13年2月6日(2001.2.6)

【公開番号】特開平6-234715

【公開日】平成6年8月23日(1994.8.23)

【年通号数】公開特許公報6-2348

【出願番号】特願平5-266972

【国際特許分類第7版】

C07C 237/22

309/70

309/72

【F I】

C07C 237/22

309/70

309/72

【手続補正書】

【提出日】平成11年12月24日(1999.12.24)

【化3】

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】式(I)

【化1】

〔式中、Xはハロゲン原子、アルキルスルホニルオキシまたは置換もしくは非置換のアリールスルホニルオキシ基を表す〕で表されるN-(2-置換)-プロピオニルグルタミン誘導体を、アンモニアと60°C以下で反応せしめることを特徴とするアラニルグルタミンの製造法。

【請求項2】式(II)

【化2】

〔式中、Xは前記と同義であり、Halはハロゲン原子を表す〕で表される2-置換-プロピオニルハライドをグルタミンのアルカリ水溶液と、水と混和しない有機溶媒存在下に反応させ、得られた反応液から式(I)

〔式中、Xは前記と同義である〕で表されるN-(2-置換)-プロピオニルグルタミン誘導体を回収することを特徴とするN-(2-置換)-プロピオニルグルタミン誘導体の製造法。

【請求項3】式(I')

【化4】

〔式中、X¹は塩素原子、ヨウ素原子、アルキルスルホニルオキシまたは置換もしくは非置換のアリールスルホニルオキシ基を表す〕で表されるN-(2-置換)-プロピオニルグルタミン誘導体またはその塩。

【請求項4】X¹が塩素原子である請求項3記載のN-(2-置換)-プロピオニルグルタミン誘導体またはその塩。

【請求項5】請求項2に記載の式(II)で表される2-置換-プロピオニルハライドをグルタミンのアルカリ水溶液と、水と混和しない有機溶媒存在下に反応させ、得られた反応液から、請求項2に記載の式(I)で表されるN-(2-置換)-プロピオニルグルタミン誘導体を得、得られたN-(2-置換)-プロピオニルグ

ルタミン誘導体をアンモニアと60°C以下で反応せしめることを特徴とするアラニルグルタミンの製造法。

【請求項6】水と混和しない有機溶媒がトルエンである請求項2記載のN-(2-置換)-プロピオニルグルタミン誘導体の製造法。

【請求項7】Xが塩素原子である請求項2または6記載のN-(2-置換)-プロピオニルグルタミン誘導体の製造法。

【請求項8】Halが塩素原子である請求項2、6または7記載のN-(2-置換)-プロピオニルグルタミン誘導体の製造法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0003

【補正方法】変更

【補正内容】

【0003】①の保護基を用いる方法は脱保護が必要であり、操作が煩雑で安価にアラニルグルタミンを製造することができない。②の方法は、アラニンのN-カルボキシ無水物を用いる方法で保護基を必要としないが、トリペプチド等の副生成物が多く生成するため収率が低く、また精製が困難である。③の方法は、2-プロモプロピオニルクロリドとグルタミンとの反応において、水との反応性の高い酸クロリドをグルタミンの水溶液に添加しているため、目的の反応以外に酸クロリドの加水分解反応が進行し、副生成物が生成して収率が低い。また、当該方法においては、生成した2-プロモプロピオニルグルタミンを有機溶媒を用いた抽出法で精製しているため収率が低く、かつ光学純度も低い。さらに、当該方法においては、2-プロモプロピオニルグルタミンのアンモノリシスを高温で行っているため、副生成物が多くかつ生成するアラニルグルタミンの光学純度も低下する傾向がある。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0010

【補正方法】変更

【補正内容】

【0010】本発明の化合物(I)の製造法において、水と混和しない有機溶媒としては、エーテル、トルエン、クロロホルム、塩化メチレン、ジクロロエタン、酢酸エチル等が単独もしくは混合して用いられるが、トルエン、クロロホルム、塩化メチレンが好適に用いられる。有機溶媒は、グルタミンのアルカリ水溶液に対して、0.1~5倍量、好ましくは0.3~1倍量用いられる。グルタミンのアルカリ水溶液としては反応を阻害しないものであればとくに制限はなく、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム等の無機アルカリ水溶液、トリメチルアミン、トリエチルアミン、ビリジン等の有機

アルカリ水溶液があげられるが、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミンの水溶液が好適に用いられる。グルタミンは、化合物(I)に対して、0.5~2.0当量用いられるが、当量用いるのが好ましい。アルカリ水溶液に含まれるグルタミンの量としては、0.01~3M、好ましくは0.1~1Mである。反応は、-5~40°C、好ましくは、0~10°Cで行われ、0.1~5時間、好ましくは、0.5~2時間で終了する。反応中、アルカリ水溶液のpHは7~11、好ましくは9~10.5である。反応の進行に伴いハロゲン化水素が生成するため、反応液のpHは低下する。従って、反応中、反応液に塩基を加えることにより、反応液のpHを上記の範囲に設定することが好ましい。用いられる塩基は、反応を阻害しない限りとくに制限はなく、例えば、水酸化ナトリウム等の無機塩基、トリエチルアミン等の有機塩基等が用いられる。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0028

【補正方法】変更

【補正内容】

【0028】実施例6 N-(2-D-プロモ)プロピオニル-L-グルタミンを原料としたL-アラニル-L-グルタミンの合成

N-(2-D-プロモ)プロピオニル-L-グルタミン 20.0g(0.07モル)に28%アンモニア水300mlを加え室温下溶解させ、室温下20時間反応させた。反応混合物を減圧濃縮し、得られた残渣に水約6mlを加え、全量を40.0gとした。その溶液に室温下、メタノール126mlを1時間かけて滴下した後、2時間晶析した。得られた結晶を濾取後、減圧下乾燥し、L-アラニル-L-グルタミンの粗成物を12.1g(收率: 78.1%、光学純度: 98.9% d.e.) 得た。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0030

【補正方法】変更

【補正内容】

【0030】実施例7 N-[2-D-(p-トルエンスルホニルオキシ)]プロピオニル-L-グルタミンを原料としたL-アラニル-L-グルタミンの合成

N-[2-D-(p-トルエンスルホニルオキシ)]プロピオニル-L-グルタミン 30.0g(0.08モル)に28%アンモニア水300mlを加え室温下溶解させ、室温下24時間反応させた。反応混合物を減圧濃縮し、得られた残渣に水約1mlを加え、全量を50.0gとした。その溶液に室温下、メタノール200mlを1時間かけて滴下した後、2時間晶析した。得られた結晶を濾取後、減圧下乾燥し、L-アラニル-L-グルタミ

ンの粗成物を8.6g（収率：49.1%、光学純度：99.3%de）得た。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0032

【補正方法】変更

【補正内容】

【0032】実施例8 N-(2-D-メタンスルホニルオキシ)プロピオニル-L-グルタミンを原料にしたL-アラニル-L-グルタミンの合成
N-(2-D-メタンスルホニルオキシ)プロピオニル-L-グルタミン15.6g(0.053モル)に28%アンモニア水156mlを加え室温下溶解させ、46時間反応させた。反応混合物を減圧下濃縮し、得られた残渣に水約7mlを加え全量を35gとした。これにメタノール100mlを室温下、1時間かけて滴下した後、2時間晶析した。得られた結晶を濾取し、減圧下乾燥しL-アラニル-L-グルタミンの粗成物を5.78g（収率：50.5%、光学純度：96.4%de）得た。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0034

【補正方法】変更

【補正内容】

【0034】実施例9 N-(2-D-プロモ)プロピオニル-L-グルタミンのアミノ化反応

実施例6と同様にN-(2-D-プロモ)プロピオニル-L-グルタミン300mg(1.07ミリモル、光学純度：97.9%de)に28%アンモニア水3mlを加え室温下溶解させ、室温下20時間反応させた。反応混合物を減圧濃縮しアンモニアを留去し、以下の条件によるHPLCによる分析を行い、L-アラニル-L-グルタミン202mg(収率：87.1%、光学純度：98.2%de)の生成を確認した。

【手続補正8】

【補正対象書類名】明細書

【補正対象項目名】0037

【補正方法】変更

【補正内容】

【0037】

【発明の効果】本発明により、工業上、安価かつ高純度なアラニルグルタミンの製造法およびその中間体N-(2-置換)-プロピオニルグルタミン誘導体の製造法並びに該方法により製造される新規N-(2-置換)-プロピオニルグルタミン誘導体が提供される。