COM3110/4115/6115:

Text Processing

Text Compression

Rob Gaizauskas

Department of Computer Science University of Sheffield

Overview

- Models
 - Static
 - Semi-static
 - Adaptive
- Coding
 - Huffman Coding
 - Arithmetic Coding
- Further topics:
 - Symbolwise Models
 - Dictionary Methods
 - Synchronisation
 - Performance Issues

Introduction

- Have seen a dramatic increase of
 - low cost disk storage
 - transmission bandwith
 - processor speed
- But also a massive increase in data volume:
 - text, sound and images
 - so, techniques to compress data remain significant
- We shall concentrate on techniques for text compression
- Text compression distinct from some other forms of data compression:
 - the text must be exactly reconstructable
 - onot so critical for digitised analogue signals, such as image/sound
 - text compressions requires so-called lossless coding

Introduction (ctd)

- Distinguish lossless vs. lossy compression methods
- Lossless Compression:
 - class of algorithms allowing original data to be perfectly reconstructed from compressed data
- Lossy Compression:
 - achieve data reduction by discarding (i.e. losing) information
 - suitable for certain media types, esp.: image / video / audio data
 - widely used in data streaming contexts
 - e.g. achieve data reduction of an image by computing a version with lower pixel density
 - Text data requires lossless compression
 - "text from which N% of info discarded" doesn't make sense
 - expect decompression to return text identical to original in form/content

(See Wikipedia pages for Lossy and Lossless Compression)

Introduction (ctd)

- Text compression techniques may be classified in several ways.
 - ♦ symbolwise vs. dictionary methods
 - static vs. adaptive methods
- Dictionary methods work by replacing word/text fragments with an index to an entry in a dictionary
- Symbolwise methods work by estimating the probabilities of symbols (characters/words) and coding one symbol at a time using shorter codewords for the more likely symbols
 - rely on a modeling step and a coding step
 - modeling: estimation of probabilities for the symbols in the text
 - the better the probability estimates, the higher the compression that can be achieved
 - coding: conversion of probabilities from model into a bitstream

Introduction (ctd)

- Static vs. adaptive methods:
 - Static: use a fixed model or fixed dictionary derived in advance of any text to be compressed
 - Semi-static: use current text to build a model or dictionary during one pass, then apply it in second pass
 - Adaptive: build model or dictionary adaptively during one pass

Coding and Decoding

- Function of model is to predict symbols
 - model amounts to a probability distribution for all possible symbols, i.e. the "alphabet"
- The encoder uses the model to encode (compress) the text
- The decoder must use the same model to decode it

Information Content

- The number of bits in which a symbol s should be coded is its information content, denoted I(s)
- Information content related to predicted probability P[s], as follows:

$$I(s) = -\log_2 P[s]$$

- e.g. for a fair coin toss in which the outcome is "heads", the best an encoder can do it use $-log_2(\frac{1}{2}) = 1$ bit.
- The entropy H of the probability distribution the average information per symbol over the whole alphabet — is given by:

$$H = \sum_{s} P[s] \cdot I(s) = \sum_{s} -P[s] \cdot log_2 P[s]$$
 bits/character

- ♦ akin to 'average' of code lengths weighted by probability
- The entropy H places a lower bound on compression
 - Shannon's Source Coding Theorem

Information Content (ctd)

Examples:

- With a 'fair' coin, P(head) = P(tail) = 0.5
 - \diamond hence: $I(\text{head}) = I(\text{tail}) = -log_2(0.5) = 1$
 - \diamond hence: $H = 0.5 \cdot 1 + 0.5 \cdot 1 = 1$
- With a 'biased' coin, such that P(head) = 0.99, P(tail) = 0.01
 - $l(head) = -log_2(0.99) = 0.0145, \quad I(tail) = -log_2(0.01) = 6.644$
 - Φ $H = 0.99 \cdot 0.0145 + 0.01 \cdot 6.644 = 0.0808$
- For a 'fair' 8-sided dice, $P(s) = \frac{1}{8} = 0.125$ for each side s
 - $\Diamond I(s) = -log_2(\frac{1}{8}) = 3$, and hence H = 3 also
- For a 'baised' 8-sided dice, with $P(s_0) = 0.9$ and other $P(s_i) = 0.0143$
 - $I(s_0) = -log_2(0.9) = 0.152, \quad I(s_i) = -log_2(0.0143) = 6.13$
 - $\Phi H = 0.7498$

Models and Context

- Probability of encountering a given symbol at a particular place in a text is influenced by preceding symbols
 - e.g. probability of u following q much higher than u occurring on average
- Models that take immediately preceding symbols into account are called finite-context models
 - best text compression results consider contexts of 3-5 characters
- Models that ignore preceding content are called zero order models

Static Zero Order Character-based Model for Moby Dick

Ch	Count	Pr	Ch	Count	Pr	Ch	Count	Pr	Ch	Count	Pr
SP	198111	0.1623	Р	16207	0.0132	С	1148	0.0009	К	178	0.0001
e	115863	0.0949	Ъ	15453		P	1049		V	171	
t	85544	0.0701	v	8428		x	1008		1	140	
а	75267		k	7882		?	1004		0	131	
0	68341			7558		0	990		2	60	
n	64434		-	5984		L	901		8	58	
5	62023		l ;	4174		j	830		5	54	
i	61893		I	3544		R	824		7	53	
h	61435		20	3071		F	804		3	47	
г	751314		,	2922		M	754		41	45	
1	741896		A	2651		D	752		4	39	
d	37469		T	2458		G	641		Z	38	
ш	26458		S	2209		z	594		6	37	
NL	22933		!	1767		Y	331		9	35	
m	22526		Н	1465		Q	322		_	26	
С	21361		В	1427		J	253		X	23	
w	20917		W	1306		U	240		be:	2	
g	20181		Е	1240		(215		5	2	
f	20031		q	1234)	215		[2	
,	19230		Ń	1186			196		ì	2	1.6e-06
y	16543								,		

- 81 characters in alphabet
- ♦ total character occurrences = 1,220,150
- entropy using this model: 4.4953 bits/char

Static vs. Adaptive Modelling

Probabilities may be estimated in various ways

- Static modelling derives, and then uses, a single model for all texts
 - will perform poorly on texts different from those used in constructing the model, e.g. texts with tables of numbers
- Semi-static modelling derives model for the file in a 1st pass
 - o model derived will be better suited to the text than a static one
 - but, is inefficient because:
 - must make two passes over text
 - must also transmit model
- Adaptive modelling derives model during encoding

Adaptive Models

- Adaptive models begin with a base probability distribution
 - refine the model as more symbols are encountered, during encoding
 - ♦ so, the text being encoded itself *re-defines the model*
- Decoder starts with same base probability distribution
 - it is decoding the same symbol sequence
 - so, it can refine the model in the same way
- Issues:
 - Care must be taken to ensure no character is ever predicted with zero probability simply because it has not been seen yet
 - Principal disadvantage: not suitable for random access to files
 - a text can only be decoded from the beginning
 - poses difficulties for retrieval applications

Adaptive Models (ctd)

- EXAMPLE: encoding Moby Dick
 - might start assuming a uniform probability of 1/81 per char
 - implies same minimal possible code length for all symbols at $-log_2(1/81) = 6.34$ bits
 - ♦ after encoding (say) 100,000 chars, and observing char distributions, we have a much more accurate 0-order model
 - suppose now about to encode e of whale:
 - ullet by now have observed that ${\sim}10\%$ of chars are e
 - thus, the e can be encoded in $\sim -log_2 0.1 = 3.32$ bits
 - decoder will refine its model in parallel manner for use in decoding

Huffman Coding

- Coding is the task of determining the output representation of a symbol, given the probability distribution supplied by the model
- Coder should output:
 - short codes for high probability symbols
 - long codes for low probability symbols
- Speed of coder may also be significant
 - computing optimal codes can be slow
 - hence, there is a trade-off between speed of compression and compression rate
- Huffman coding dates from 1952
 - was the dominant model till the 1970's
 - with refinements, it still has applications today, e.g. in text retrieval

Huffman Coding (ctd)

- Technique uses a code tree for encoding and decoding
 - each branch is labelled with a 0 or 1
 - each leaf node is a symbol in the alphabet
- code is prefix-free no codeword is the prefix of another
- Consider a seven symbol alphabet (example from Witten et al.)

Symbol	Prob	Codeword	
a	0.05	0000	0 1
b	0.05	0001	0 1
С	0.1	001	0 1 0 1
d	0.2	01	
е	0.3	10	0 1 0 1
f	0.2	110	
g	0.1	111	(a) (b) (c) (d) (e) (f) (g)

e.g. eefggfed is coded as 101011011111111101001

Huffman Coding (ctd)

- Given a set of codewords produced by the algorithm, can compute the expected average code length as follows:
 - multiply each symbol code length by associated probability
 - sum results across all symbols

Symbol	Prob	Code	len	$p \times len$
а	0.05	0000	4	0.2
b	0.05	0001	4	0.2
С	0.1	001	3	0.3
d	0.2	01	2	0.4
е	0.3	10	2	0.6
f	0.2	110	3	0.6
g	0.1	111	3	0.3
				2.6

- Compare this to minimal *fixed-length* code length for same symbol set
 - e.g. for above symbol set, could use a 3-bit fixed length code
 - \diamond 3-bit fixed length code allows for $2^3 = 8$ symbols

Huffman — the coding algorithm

- The code tree is constructed bottom up from the probabilistic model according to the following algorithm:
 - (a) Probabilities are associated with leaf nodes
 - (b) Identify the two nodes with smallest probabilities
 - join them under a parent node, whose probability is their sum
 - (c) Repeat step (b) until only one node remains
 - (d) 0's and 1's are then assigned to each binary split
- FXAMPLE:
 - start with leaf nodes:

join two nodes with smallest probabilities:

Huffman — the coding algorithm (ctd)

◇ repeat until only one node remains . . .

Huffman — the coding algorithm (ctd)

- \diamond assign 0/1 to branches of each binary fork
 - · doesn't matter which is which

Huffman Coding — further details

- Huffman coding is fast for both encoding and decoding
 - provided probability distribution is static
- Variants of Huffman coding developed for adaptive models
 - but these are complex
 - generally better to use arithmetic coding for adaptive models
- Huffman effective when used with a word-based model, rather than a character-based model
 - gives good compression
 - fast
 - supports random access to compressed files (given some additional requirements on how method used)

Canonical Huffman codes

- Huffman gives effective compression where there are many symbols, with a highly skewed distribution
 - arises, e.g. for word-based models
 - ♦ i.e. many symbols (words), some v.frequent, some rare
- Tree-based storage of v.large models is costly & inefficient
 - tree nodes store pointers to child nodes costly for memory
 - traversing tree involves much jumping between locations inefficient
- These issues addressed by use of canonical Huffman codes
 - special Huffman code, where codes generated in a standardised format
 - specifically, all codes for given code-length assigned values sequentially
 - this feature allows for both
 - efficient storage and/or transmission of codebook
 - more efficient decoding algorithm

Canonical Huffman codes (ctd)

- To create a canonical code:
 - first determine length of code for each symbol
 - can do this by applying standard Huffman coding algorithm
 - group symbols having same code-length into blocks, and order
 - e.g. could sort alphabetically, or in some other way
 - ♦ assign codes by 'counting up' addressing blocks in code-length order
- To illustrate, consider our 7-letter example again:

Symbol	Prob	Code	len
а	0.05	0000	4
b	0.05	0001	4
С	0.1	001	3
d	0.2	01	2
е	0.3	10	2
f	0.2	110	3
g	0.1	111	3

♦ ignore original codes, and group symbols by their code-length, i.e.:

[2] d e [3] c f g [4] a b

Canonical Huffman codes (ctd)

- Example continued: creating a canonical code . . .
 - First, group symbols by their code lengths:

- Assign codes:
 - assign first symbol a 'zero' code of required length
 - for successive symbols, simply count up 1
 - if code length goes up, then (i) count up & (ii) add 0s to get new len

- To store / transmit this code, is sufficient to specify:
 - ♦ sequence of symbols: d e c f g a b
 - onumber of symbols at each code-length: (0, 2, 3, 2)
 - i.e. len 1: 0 items; len 2: 2 items; len 3: 3 items; len 4: 2 items
 - this is sufficient info to reconstruct entire code

Canonical Huffman codes (ctd)

- This approach also supports an efficient decoding algorithm
 - does not require a code tree
- Method:
 - store blocks of symbols in sequential order
 - compute code for only the first symbol in each block
 - by comparing prefixes of input to these first-symbol codes (<,>), can determine which block next code belongs to, and hence its length
 - binary difference between next code and first-symbol code gives position of symbol in block sequence

Example:

- Example on last slide has first-symbol codes: 00, 100, 1110
- ♦ Assume input: 11001111......
- ♦ Find: prefix 11 > 00; prefix 110 > 100; prefix 1100 < 1110</p>
 - so next codeword is 110, of the length 3 block
- ♦ Difference of 100 and 110 shows symbol is 3rd item in block sequence

Reading

- Main:
 - ♦ Baeza-Yates and Ribeiro-Neto, Ch 7.4-7.5
- Other:
 - I. H. Witten, A. Moffat, T. C. Bell. Managing Gigabytes: Compressing and Indexing Documents and Images, 2nd ed. Morgan Kaufmann. 1999.
 - Nam Phamdo. Theory of Data Compression. www.data-compression.com/theory.html