Predicate Logic Instruction
Gatoman for Translation
John walks R.J.
i i i i i i i i i i i i i i properity.
Synthax
· Symbols for constants (objects) -> a, b, c
. Symbols vor variables -> x, y, z
. Symbols for predicates —> X, B, C
· Logical operators 7, 1, v, ->, ->
~E, xY ersifutnous.
Sylogisms
. Au A are B : +x (Ax -> Bx)
. Some A are B: 3x (Ax 1 Bx)
. AU A are net B: $\forall x (Ax->7Bx)(73xC)$
Relations_
. John sees Mary — ? S.j. m
. John gives Morg the book -> Gjmb
Complex quantifier patterns
. Everyone sees someone 4x Jy (Sxy)
. Everyone is seen by someone $\forall x \exists y (S g x)$
Examples
Lxy -> x lovesy Every boy loves a girl
G x -> x is girl +x C Bx -> = = (G = 1 2xg)
Bix i = > i x i s beg
Every girl who loves all boys ales not love
Every girl who loves all boys aloes not love every girl: $\forall x ((G_{\times} \land \varphi(x)) \longrightarrow \psi(x))$

Intuitue validities

$$\times \gamma \Gamma \times \mathcal{E} \equiv \times \gamma \times \forall \Gamma$$

any predicate

$$xyrx + \forall x \equiv xyx$$

$$xyr xEr = xyxy$$
.

$$\cdot \forall x (\varphi x \rightarrow \varphi x) = \exists x \forall (\varphi x \rightarrow \varphi x)$$

$$(x\psi \times (x\psi \times x))$$

$$\forall x (\varphi x \wedge \varphi x) \equiv \forall x \varphi x \wedge \forall x \varphi x$$

Evaluating formulas

Color is a property

- Ba true (a is blue)
- Jx Sx V Cb (x is either square or circle)
- . Ra 56 truc (a is not red)


```
Louguage
. Term t is a variable /constant
. Formula
1 Ptitz
2 Q 1 P
```

3 HX Q Sobstitution

Inside a term - replacing the occurences of the variable y for the term tinside 5

 $(s) \notin For a constant = (c) \notin := c$ $for a variable : (x) \notin := x$ $(9) \notin := t$

. Inside a formula

$$(Pt_{1} \cdots t_{n})_{t}^{y} := P(t_{1})_{t}^{y} \cdots (t_{n})_{t}^{y}$$

$$(\neg \varphi)_{t}^{y} := \neg (\varphi)_{t}^{y}$$

$$(\varphi \wedge \psi)_{t}^{y} := (\varphi)_{t}^{y} \wedge (\psi)_{t}^{y}$$

$$(\varphi \vee \psi)_{t}^{y} := (\varphi)_{t}^{y} \vee (\psi)_{t}^{y}$$

$$(\varphi \rightarrow \psi)_{t}^{y} := (\varphi)_{t}^{y} \vee (\psi)_{t}^{y}$$

$$(\varphi \rightarrow \psi)_{t}^{y} := (\varphi)_{t}^{y} \rightarrow (\psi)_{t}^{y}$$

$$(\varphi \leftrightarrow \psi)_{t}^{y} := (\varphi)_{t}^{y} \leftrightarrow (\psi)_{t}^{y}$$

$$(\exists y\varphi)_{t}^{y} := \exists x(\varphi)_{t}^{y}$$

$$(\exists y\varphi)_{t}^{y} := \exists y\varphi$$

Models

* model is a tuble H= < D, I, g>

- . D is the domain non-empty collection of obj
- I interpretation function assigns to each

2 a relation