1 Корректность и полнота

1.1 Значение секвенции

Определение

Пусть $s = \phi_1, \dots, \phi_n \vdash \phi_0$ - секвенция, и $\gamma : \bigcup \{V(\phi_i) | i \leq n\} \to \{0, 1\}$ - означивание всех переменных из s. Тогда можно определить **значение** $\gamma(s)$ секвенции s при означивании γ следующим образом:

$$\gamma(s) = 0 \stackrel{def}{\Leftrightarrow} \gamma(\phi_0) = 0 \land \gamma(\phi_1) = 1 \land \gamma(\phi_2) = 1 \land \ldots \land \gamma(\phi_n) = 1$$

Замечание

Отметим, что для любой секвенции $s = \phi_1, \dots, \phi_n \vdash \phi_0$ и означивания γ переменных из s, верно, что

$$\gamma(s) = \gamma \left(\bigwedge_{1 \le i \le n} \phi_i \to \phi_0 \right)$$

1.2 Тождественно истинные/выполнимые секвенции Определение

Секвенция *s* называется

- тождественно истинной, тогда и только тогда, когда $\gamma(s)=1$ для любого означивания γ
- выполнимой, тогда и только тогда, когда $\gamma(s)=1$ для некоторого означивания γ
- невыполнимой, тогда и только тогда, когда $\gamma(s)=0$ для любого означивания γ

Замечание

Секвенция $s = \phi_1, \dots, \phi_n \vdash \phi_0$ является тождественно истинной (невыполнимой) \iff формула $(\bigwedge_{1 \leq i \leq n} \phi_i \to \phi_0)$ является тождественно истинной (невыполнимой).

Доказательство

Следует из предыдущего замечания.

1.3 Корректность исчисления высказываний

Теорема (Корректность исчисления высказываний)

Если секвенция s является выводимой, то s тождественно истинна.

Доказательство

Доказательство индукцией по высоте дерева вывода s. Основание индукции: s - аксиома. Очевидно, что $\phi \vdash \phi$ является тождественно истинной. Шаг индукции. Предположим, что утверждение верно для всех деревьев вывода высоты < n, и дано дерево вывода T высоты n. Тогда

$$T = \frac{T_1 \dots T_n}{s}$$

Пусть $s_i=r(T_i)$ - все корни деревьев T_i . По предположению индукции все секвенции s_i являются тождественно истинными. Нужно показать, что s также тождественно истинна. Известно, что $\frac{s_1...s_n}{s} \in R_{PC}$ является правилом вывода. Теперь проверим, что все правила вывода в исчислении высказываний являются тождественно истинными, т.е. если $\frac{s_1...s_n}{s}$ - правило вывода в исчислении высказываний и все s_i тождественно истинны, то s также является тождественно истинной. Рассмотрим, например, правило:

$$\frac{\Gamma,\phi \vdash \chi \quad \Gamma,\psi \vdash \chi \quad \Gamma \vdash \phi \lor \psi}{\Gamma \vdash \gamma}$$

Предположим, что секвенции $\Gamma, \phi \vdash \chi$, $\Gamma, \psi \vdash \chi$ и $\Gamma \vdash \phi \lor \psi$ являются тождественно истинными, но секвенция $\Gamma \vdash \chi$ ложно при некотором означивании γ . Тогда по определению значения секвенции $\gamma(\chi) = 0$ и $\gamma(\phi') = 1$ для всех формул, входящих в Γ . Так как $\gamma(\Gamma, \phi \vdash \chi) = 1$ и $\gamma(\chi) = 0$, это означает, что некоторая формула из Γ, ϕ ложна при означивании γ . Это может быть только ϕ , поэтому $\gamma(\phi) = 0$. Аналогично рассматривая секвенцию $\Gamma, \psi \vdash \chi$, приходим к выводу, что $\gamma(\psi) = 0$. Следовательно $\gamma(\phi \lor \psi) = 0$. Но так как секвенция $\Gamma \vdash \phi \lor \psi$ является тождественно истинной, существует некоторая формула ϕ' из секвенции Γ такая, что $\gamma(\phi') = 0$ - противоречие. Все остальные 13 рассматриваются аналогично.

1.4 Непротиворечивость исчисления высказываний

Определение

Множество аксиом и правил вывода называется **непротиворечивым**, тогда и только тогда, когда формула $\phi \land \neg \phi$ не может быть доказано при помощи этих аксиом и правил вывода.

Следствие (корректности)

Исчисление высказываний непротиворечиво.

Доказательство

Формула $\phi \land \neg \phi$ невыполнима, следовательно, секвенция $\vdash \phi \land \neg \phi$ также невыполнима, поэтому она не может быть выведена в исчислении высказываний.

1.5 Лемма (сокращение выводимости)

Лемма 1 (сокращение выводимости)

Пусть $s=\phi_1,\ldots,\phi_n\vdash\phi_0$ - секвенция. Тогда s - выводима \Leftrightarrow секвенция

$$\bigwedge_{1 \le i \le n} \phi_i \vdash \phi_0$$

является выводимой

Доказательство

 \Rightarrow Применим n-1 раз допустимое правило вывода

$$\frac{\Gamma_1, \phi, \psi, \Gamma_2 \vdash \chi}{\Gamma_1, \phi \land \psi, \Gamma_2 \vdash \chi}$$

 \Leftarrow Затем применим n-1 раз допустимое правило

$$\frac{\Gamma_1, \phi \wedge \psi, \Gamma_2 \vdash \chi}{\Gamma_1, \phi, \psi, \Gamma_2 \vdash \chi}$$

Лемма 2 (сокращение выводимости)

Пусть $s = \phi_1, \dots, \phi_n \vdash \phi_0$ - секвенция. Тогда s - выводима \Leftrightarrow секвенция

$$\vdash \bigwedge_{1 \le i \le n} \phi_i \to \phi_0$$

является выводимой.

Доказательство

По предыдущей лемме можно предположить, что n=1. Тогда если секвенция $\phi_1 \vdash \phi_0$ является выводимой, то по правилу введения импликации секвенция $\vdash \phi_1 \to \phi_0$ также является выводимой. Обратное включение, если секвенция $\vdash \phi_1 \to \phi_0$ является выводимой, тогда, используя правило сечения, можно получить вывод:

$$\frac{\phi_1 \vdash \phi_1 \quad \vdash \phi_1 \to \phi_o}{\phi_1 \vdash \phi_0}$$

1.6 Теорема о полноте

Теорема (полнота исчисления высказываний)

- 1) Если секвенция s является тождественно истинной, то s выводима.
- 2) Если формула ϕ является тождественно истинной, то ϕ выводима.

Доказательство

По предыдущей лемме, 1) следует из 2). Действительно, предположим, что 2) доказано $s = \phi_1, \ldots, \phi_n \vdash \phi_0$ тождественно истинна. Тогда формула $\phi = \wedge_{1 \leq i \leq n} \phi_i \to \phi_0$ также будет тождественно истинной. По 2 ϕ выводима, тогда по лемме о сокращении выводимости, исходная секвенция s также является выводимой. Докажем 2. Пусть ϕ является тождественно истинной. Тогда существует формула ϕ' , находящаяся в КНФ, такая, что $\phi \equiv \phi'$. Следовательно, ϕ' также является тождественно истинной. Предположим, что ϕ не доказуема. Тогда ϕ' также не доказуема. Следовательно, по леммам о дизъюнктивных/конъюнктивных частях формул, существует такая элементарная дизъюнкция ψ в ϕ' , что не существует переменной v, такой, что v, $\neg v \in D(\psi)$. Пусть $X = \{v | v \in V(\phi), v \in D(\psi)\}$

и $Y=\{w|w\in V(\phi),\ \neg w\in D(\psi)\}$. Тогда $X\cap Y=\emptyset$. Рассмотрим такое означивание γ , что

$$\gamma(u) = \left\{ \begin{array}{ll} 0, & \text{если } u \in X, \\ 1 & \text{если } u \in Y \end{array} \right.$$

Следовательно, $\gamma(\psi)=0$, и так как ψ входит в ϕ' как конъюнкция, $\gamma(\phi')=0$ - противоречие с тождественной истинностью ϕ' . \square

Следствие 1

Для любой секвенции s: s является тождественно истинной $\Leftrightarrow s$ выводима.

Следствие 2

Для любой пары формул $\phi, \psi : \phi \sim \psi \Leftrightarrow \phi \equiv \psi$.

Доказательство

 \Rightarrow Пусть $\phi \sim \psi$. Тогда формула $\phi \to \psi$ является тождественно истинной, следовательно, по теореме о полноте, секвенция $\vdash \phi \to \psi$ доказуема, тогда секвенция $\phi \vdash \psi$ также доказуема. Так как $\psi \to \phi$ также является тождественно истинной, $\psi \vdash \phi$ также доказуема. Итак, получаем $\phi \equiv \psi$. \Leftarrow Пусть $\phi \equiv \psi$. Тогда $\rhd \phi \vdash \psi$ и $\rhd \psi \vdash \phi$, таким образом $\rhd \vdash \phi \to \psi$ и $\rhd \vdash \psi \to \phi$. По теореме о корректности формулы $\phi \to \psi$ и $\psi \to \phi$ является тождественно истинной, следовательно, $\phi \sim \psi$.