

Description

Image

Caption

1. Bearing made of high carbon steel. © Granta Design 2. Drawing board clips made of high carbon steel. © Granta Design

The material

High carbon steels (0.5-1.7% carbon) harden when quenched - a quality that gives great control over properties. High carbon steels achieve hardness sufficient for them to be used as cutting tools, chisels and cables, and "piano wire" - the metal strings of pianos and violins.

Composition (summary)

Fe/0.7 - 1.7%C

General properties

General properties				
Density	487	- 4	93	lb/ft^3
Price	* 0.236	- 0	.263	USD/lb
Date first used	1610			
Mechanical properties				
Young's modulus	29	- 3	1.2	10^6 psi
Shear modulus	11.2	- 1	2.2	10^6 psi
Bulk modulus	22.5	- 2	5.4	10^6 psi
Poisson's ratio	0.285	- 0	.295	
Yield strength (elastic limit)	58	- 1	68	ksi
Tensile strength	79.8	- 2	38	ksi
Compressive strength	48.6	- 1	68	ksi
Elongation	7	- 3	0	% strain
Hardness - Vickers	160	- 6	50	HV
Fatigue strength at 10^7 cycles	* 40.8	- 8	7.9	ksi
Fracture toughness	24.6	- 8	3.7	ksi.in^0.5
Mechanical loss coefficient (tan delta)	* 3e-4	- 9	.8e-4	
Thermal properties				
Melting point	2.35e3	- 2	.69e3	°F
Maximum service temperature	* 662	- 7	52	°F
Minimum service temperature	* -99.7	2	27.7	°F
Thermal conductor or insulator?	Good co	nducto	r	
Thermal conductivity	27.2	- 3	0.6	BTU.ft/h.ft^2.F
Specific heat capacity	0.105	- 0	.122	BTU/lb.°F

Thermal expansion coefficient	6.11 - 7.5 μstrain/°F	
Electrical properties		
Electrical conductor or insulator?	Good conductor	
Electrical resistivity	17 - 20 μohm.cm	
Optical properties		
Transparency	Opaque	
Processability		
Castability	2 - 3	
Formability	4 - 5	
Machinability	3 - 4	
Weldability	5	
Solder/brazability	5	
Eco properties		
Embodied energy, primary production	* 2.74e3 - 3.03e3 kcal/lb	
CO2 footprint, primary production	* 1.71 - 1.89 lb/lb	
Recycle	✓	

Supporting information

Design guidelines

Hardenability measures the degree to which it can be hardened in thick sections; plain carbon steels have poor hardenability - additional alloying elements are used to increase it (see Low alloy steels).

Technical notes

The two standard classifications for steels, the AISI and the SAE standards, have now been merged. In the SAE-AISI system, each steel has a four-digit code. The first two digits indicate the major alloying elements. The second two give the amount of carbon, in hundredths of a percent. Thus the plain carbon steels have designations starting 10xx, 11xx, 12xx or 14xxx, depending on how much manganese, sulfur and phosphorus they contain. The common low-carbon steels have the designations 1015,1020, 1022, 1117,1118; the common medium carbon steels are 1030,1040, 1050, 1060, 1137, 1141, 1144 and 1340; the common high alloy steels are 1080and 1095. More information on designations and equivalent grades can be found on the Granta Design website at www.grantadesign.com/designations

Phase diagram

Phase diagram description

High carbon steels are alloys of iron (Fe) with 0.7 - 1.7% carbon (C), for which this is the phase diagram.

Typical uses

Cutting tools; high performance bearings, cranks and shafts, springs, knives and scissors, rail track.

Links

Reference

ProcessUniverse

Producers