Estimating Returns from RIOS Portfolios

Water Fund Prioritization Tool Technical Workshop

1 – 3 August, 2012 Lima Peru

The Birth of the RIOS (Resource Investment Optimization System) Tool

- Investment Portfolio
 (Objectives, Activities, Budget, Diagnostic Screen, Priority Areas)
- Estimated Return on Investment (Estimate Returns)
- 3 Estimated Value of Science (Business case for approach)

Portfolio Selection (Ranking Models)

Choose Objectives

Negotiate

Choose Activities

Experience

Allocate Budget

Experience

Diagnostic Screen

Ranking Models

Select Priority Areas

ROI

InVEST Tier 1 Tools

RIOS TOOL

2 Objectives:

Erosion Control for Drinking Water Quality Erosion Control for Reservoir Maintenance

PLANNED

Phosphorus Retention for Drinking Water Quality Nitrogen Retention for Drinking Water Quality Flood Mitigation

Groundwater Recharge (karst)

Outputs - Estimation of Returns

CHANGE IN SEDIMENT EXPORT

CHANGE IN VALUE – AVOIDED TREATMENT COST

Outputs - Estimation of Returns

Portfolio Selection (Ranking Models)

Choose Objectives

Negotiate

Choose Activities

Experience

Allocate Budget

Experience

Diagnostic Screen

Ranking Models

Select Priority Areas

ROI

Options

100% Transition

All activities result in complete transition to target land cover

100% Dependency

Ending land cover is defined by starting land cover, ending land cover, and transition/activity combination

- Non-informative
- Makes no distinction between starting points for ability to achieve the transition (i.e. restoration from bare ground to forest = restoration from pasture to forest)

 Adds huge burden on developers and users to define new land covers and model parameters for all possible combinations of transitions, starting and ending LULC

Options

100% Transition

All activities result in complete transition to target land cover

Compromise

Estimation of returns –
Estimate model
parameters only for
transitions chosen by
portfolio, based on
general rules & linear
interpolation

100% Dependency

Ending land cover is defined by starting land cover, ending land cover, and transition/activity combination

Options

100% Transition

All activities result in complete transition to target land cover

Compromise

Estimation of returns – Estimate model parameters only for

100% Dependency

Ending land cover is defined by starting land cover, ending land cover, and transition/activity combination

LULC base - target	Export	Retention
Pasture	0.8	0.3
Forest	0.2	0.9
Pasture – forest (assisted)	???	???
Pasture – forest (un-assisted)	???	???
Pasture – paramo (assisted)	???	???
Pasture – paramo (un-assisted)	???	???

3 major types of transitions

Estimate returns

Protection:
Estimate avoided
conversion; users
specify likely
transition LULC

Re-vegetation:
Use neighborhood to
define target "native"
LULC

Decrease Ag Inputs, etc: Users input multiplier for each LULC-Transition

	PT
Pasture – forest (assisted)	0.7
Pasture – forest (un-assisted)	0.4
Pasture – paramo (assisted)	0.6
Pasture – paramo (un-assisted)	0.2

Sediment export = 100

CALCULATE RETURNS: Sc2 – Sc1 = 5

Total benefit = 15