Summary Part 3: Applications of Concentration Inequalities

Tianpei Xie

Jan. 26th., 2023

${\bf Contents}$

1	Apj	plications	2
	1.1	U-Statistics	2
	1.2	Jackknife Estimation and Boostrapping	2
	1.3	Kernel-Density Estimation	2
	1.4	Random Graph	3
	1.5	Minimum Weight Spanning Tree	3
	1.6	Rademacher Complexity	3
	1.7	Dimensionality Reduction	3
2	Self	f-Bounding Functions	3
	2.1	Definitions, Variance Bounds and Concentration	3
	2.2	Configuration Function	4
	2.3	VC-Dimension and Growth Function	5
	2.4	Longest Increasing Subsequence	5
	2.5	Weakly Self-Bounding Functions	5
3	Rar	ndom Matrices	5
	3.1	Definitions	5
	3.2	Concentration Inequalities of Random Vectors	5
	3.3	Concentration of Norm of Gaussian Vectors	5
	3.4	Spectral Distribution of Hermitian Matrix: Semi-Circular Law	5
	3.5	Largest Eigenvalue of Hermitian Random Matrix	5
4	Em	pirical Process	5
	4.1	Definition	5
	4.2	Uniform Law of Large Numbers	5
	4.3	Suprema of Gaussian Process	5
	4.4	Covering Number, Packing Number and Metric Entropy	5
	4.5		5
	4.6	<u> </u>	5
	4.7		5

1 Applications

1.1 U-Statistics

1.2 Jackknife Estimation and Boostrapping

1.3 Kernel-Density Estimation

• Example (Kernel Density Estimation)

Let Z_1, \ldots, Z_n be i.i.d. samples drawn according to some (unknown) density ϕ on the real line. The density is estimated by the kernel estimate

$$\phi_n(z) = \frac{1}{n h_n} \sum_{i=1}^n K\left(\frac{z - Z_i}{h_n}\right),$$

where $h_n > 0$ is a *smoothing parameter*, and K is a nonnegative function with $\int K(z) = 1$. The performance of the estimate is typically measured by **the** L_1 **error**:

$$X(n):=f(Z_1,\ldots,Z_n)=\int |\phi(z)-\phi_n(z)|\,dz.$$

It is easy to see that

$$\left| f(z_1, \dots, z_n) - f_i(z_1, \dots, z_{i-1}, z_i', z_{i+1}, \dots, z_n) \right| \le \frac{1}{nh_n} \int \left| K\left(\frac{z - z_i}{h_n}\right) - K\left(\frac{z - z_i'}{h_n}\right) \right| dz$$

$$\le \frac{2}{n},$$

so without further work we obtain

$$\operatorname{Var}\left(X(n)\right) \le \frac{1}{n}$$

It is known that for every ϕ , $\sqrt{n}\mathbb{E}[X(n)] \to \infty$, which implies, by Chebyshev's inequality, that for every $\epsilon > 0$

$$\mathbb{P}\left\{\left|\frac{X(n)}{\mathbb{E}\left[X(n)\right]} - 1\right| > \epsilon\right\} = \mathbb{P}\left\{\left|X(n) - \mathbb{E}\left[X(n)\right]\right| > \epsilon\mathbb{E}\left[X(n)\right]\right\} \le \frac{\mathrm{Var}(X(n))}{\epsilon^2(\mathbb{E}\left[X(n)\right])^2} \to 0$$

as $n \to \infty$. That is, $\frac{X(n)}{\mathbb{E}[X(n)]} \to 1$ in probability, or in other words, X(n) is relatively stable. This means that the random L_1 -error essentially behaves like its expected value.

By bounded difference inequality, we have

$$\mathbb{P}\left\{|X(n) - \mathbb{E}\left[X(n)\right]| \ge t\right\} \le 2\exp\left(-\frac{nt^2}{2}\right) \quad \blacksquare$$

- 1.4 Random Graph
- 1.5 Minimum Weight Spanning Tree
- 1.6 Rademacher Complexity
- 1.7 Dimensionality Reduction

2 Self-Bounding Functions

2.1 Definitions, Variance Bounds and Concentration

• Another simple property which is satisfied for many important examples is the so-called self-bounding property.

Definition (Self-Bounding Property)

A nonnegative function $f: \mathcal{X}^n \to [0, \infty)$ has the <u>self-bounding property</u> if there exist functions $f_i: \mathcal{X}^{n-1} \to \mathbb{R}$ such that for all $z_1, \ldots, z_n \in \mathcal{X}$ and all $i = 1, \ldots, n$,

$$0 \le f(z_1, \dots, z_n) - f_i(z_1, \dots, z_{i-1}, z_{i+1}, \dots, z_n) \le 1$$
(1)

and also

$$\sum_{i=1}^{n} \left(f(z_1, \dots, z_n) - f_i(z_1, \dots, z_{i-1}, z_{i+1}, \dots, z_n) \right) \le f(z_1, \dots, z_n). \tag{2}$$

• Remark Clearly if f has the self-bounding property,

$$\sum_{i=1}^{n} (f(z_1, \dots, z_n) - f_i(z_1, \dots, z_{i-1}, z_{i+1}, \dots, z_n))^2 \le f(z_1, \dots, z_n)$$
(3)

Taking expectation on both sides, we have the following inequality

• Corollary 2.1 [Boucheron et al., 2013] If f has the self-bounding property, then

$$Var(f(Z)) \leq \mathbb{E}[f(Z)].$$

• Remark (*Relative Stability*) [Boucheron et al., 2013] A sequence of nonnegative random variables $(Z_n)_{n\in\mathbb{N}}$ is said to be *relatively stable* if

$$\frac{Z_n}{\mathbb{E}\left[Z_n\right]} \stackrel{\mathbb{P}}{\to} 1.$$

This property guarantees that the random fluctuations of Z_n around its expectation are of negligible size when compared to the expectation, and therefore most information about the size of Z_n is given by $\mathbb{E}[Z_n]$.

Bounding the variance of Z_n by its expected value implies, in many cases, the relative stability of $(Z_n)_{n\in\mathbb{N}}$. If Z_n has the self-bounding property, then, by Chebyshev's inequality, for all $\epsilon > 0$,

$$\mathbb{P}\left\{ \left| \frac{Z_n}{\mathbb{E}\left[Z_n\right]} - 1 \right| > \epsilon \right\} \le \frac{\operatorname{Var}(Z_n)}{\epsilon^2 (\mathbb{E}\left[Z_n\right])^2} \le \frac{1}{\epsilon^2 \mathbb{E}\left[Z_n\right]}.$$

Thus, for relative stability, it suffices to have $\mathbb{E}[Z_n] \to \infty$.

2.2 Configuration Function

• An important class of functions satisfying the self-bounding property consists of the so-called configuration functions.

$\ \, \textbf{Definition} \ \, (\textbf{\textit{Configuration Function}}) \\$

Assume that we have a property Π defined over the union of finite products of a set \mathcal{X} , that is, a sequence of sets

$$\Pi_1 \subset \mathcal{X}, \ \Pi_2 \subset \mathcal{X} \times \mathcal{X}, \ \dots, \ \Pi_n \subset \mathcal{X}^n.$$

We say that $(z_1, \ldots, z_m) \in \mathcal{X}^m$ satisfies the property Π if $(z_1, \ldots, z_m) \in \Pi_m$.

We assume that Π is <u>hereditary</u> in the sense that if (z_1, \ldots, z_m) satisfies Π then so does any sub-sequence $\{z_{i_1}, \ldots, z_{i_k}\}$ of (z_1, \ldots, z_m) .

The function f that maps any vector $z = (z_1, \ldots, z_n)$ to **the size** of a **largest sub-sequence** satisfying Π is **the configuration function** associated with property Π .

• Corollary 2.2 [Boucheron et al., 2013] Let f be a configuration function, and let $X = f(Z_1, ..., Z_n)$, where $Z_1, ..., Z_n$ are independent random variables. Then

$$Var(f(Z)) \leq \mathbb{E}[f(Z)].$$

- 2.3 VC-Dimension and Growth Function
- 2.4 Longest Increasing Subsequence
- 2.5 Weakly Self-Bounding Functions
- 3 Random Matrices
- 3.1 Definitions
- 3.2 Concentration Inequalities of Random Vectors
- 3.3 Concentration of Norm of Gaussian Vectors
- 3.4 Spectral Distribution of Hermitian Matrix: Semi-Circular Law
- 3.5 Largest Eigenvalue of Hermitian Random Matrix
- 4 Empirical Process
- 4.1 Definition
- 4.2 Uniform Law of Large Numbers
- 4.3 Suprema of Gaussian Process
- 4.4 Covering Number, Packing Number and Metric Entropy
- 4.5 Chaining
- 4.6 VC-Dimension
- 4.7 Variance Bounds

References

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. $Concentration\ inequalities:\ A\ nonasymptotic\ theory\ of\ independence.$ Oxford university press, 2013.