Excercise:

Solve the following higher order Cauchy Euler differential equations:

1.
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 2x + 1$$

2.
$$9\frac{d^2y}{dx^2} + 12\frac{dy}{dx} + 4y = e^{-2/3x}$$

3.
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 2e^{-x}$$

4.
$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{-3x}$$

5.
$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = e^{2x}$$

6.
$$\frac{d^2y}{dx^2} + 9y = x^2 + x + 1$$

7.
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = e^x$$

Solve the following higher order Cauchy Euler differential equations:

8.
$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = 0$$

9.
$$4x^2 \frac{d^2 y}{dx^2} + 8x \frac{dy}{dx} + y = 0$$

10.
$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + 3y = 0$$

11.
$$x^3 \frac{d^3 y}{dx^3} + 5x^2 \frac{d^2 y}{dx^2} + 7x \frac{dy}{dx} + 8y = 0$$

12.
$$x^3 \frac{d^3 y}{dx^3} - 4x^2 \frac{d^2 y}{dx^2} + 8x \frac{dy}{dx} - 8y = 0$$

13.
$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$$