# CMPSCI 688 : Graphical Models Assignment 1

Jeevan Shankar jshankar@cs.umass.edu

February 10, 2014

#### 1. Factorization

$$\begin{split} P(X) = \prod_{i=1}^{\#nodes} P(X_i|Pa_{X_i}^G) \\ P(A,G,CH,BP,HD,HR,CP,EIA,ECG) = P(A)P(G)(CH|A,G)P(BP|G)P(HD|CH,BP) \\ & \times P(HR|A,BP,HD)P(CP|HD)P(EIA|HD)P(ECG|HD) \end{split}$$

#### 2. Likelihood Function

$$\begin{split} L(\theta) &= \frac{1}{N} \sum_{n=1}^{N} \log P(X = x_n) \\ &= \frac{1}{N} \sum_{n=1}^{N} \log P(A = a_n, G = g_n, CH = ch_n, BP = bp_n, HD = hd_n, HR = hr_n, CP = cp_n, \\ EIA &= eia_n, ECG = ecg_n) \\ &= \frac{1}{N} \sum_{n=1}^{N} \log P(A = a_n) + \log P(G = g_n) + \log P(CH = ch_n | A = a_n, G = g_n) + \log P(BP = bp_n | G = g_n) \\ &+ \log P(HD = hd_n | CH = ch_n, BP = bp_n) + \log P(HR = hr_n | A = a_n, BP = bp_n, HD = hd_n) + \\ &+ \log P(CP = cp_n | HD = hd_n) + \log P(EIA = eia_n | HD = hd_n) + \log P(ECG = ecg_n | HD = hd_n) \\ &= \frac{1}{N} \sum_{n=1}^{N} \sum_{a} [a = a_n] \log P(A = a) + \sum_{g} [g = g_n] \log P(G = g) \\ &+ \sum_{ch, a, g} [ch = ch_n, a = a_n, g = g_n] \log P(CH = ch | A = a, G = g) + \sum_{bp, g} [bp = bp_n, g = g_n] \log P(BP = bp | G = g) \\ &+ \sum_{hd, ch, bp} [hd = hd_n, ch = ch_n, bp = bp_n] \log P(HD = hd | CH = ch, BP = bp) \\ &+ \sum_{hr, a, bp, hd} [hr = hr_n, a = a_n, bp = bp_n, hd = hd_n] \log P(HR = hr | A = a, BP = bp, HD = hd) \\ &+ \sum_{cia, hd} [eia = eia_n, hd = hd_n] \log P(EIA = eia | HD = hd) + \sum_{cop, hd} [ecg = ecg_n, hd = hd_n] \log P(ECG = ecg | HD = hd) \\ &+ \sum_{cp, hd} [ep = cp_n, hd = hd_n] \log P(CP = cp | HD = hd) \\ &L(\theta) = \frac{1}{N} \sum_{n=1}^{N} \sum_{a} [a = a_n] \log \theta_a^A + \sum_{g} [g = g_n] \log \theta_b^G + \sum_{ch, a, g} [ch = ch_n, a = a_n, g = g_n] \log \theta_{ch | a, g}^{CH} + \sum_{bp, g} [bp = bp_n, g = g_n] \log \theta_{bp | g}^{BR} \\ &+ \sum_{hd, ch, bp} [hd = hd_n, ch = ch_n, bp = bp_n] \log \theta_{hd | ch, bp}^{BR} + \sum_{hr, a, bp, hd} [hr = hr_n, a = a_n, bp = bp_n, hd = hd_n] \log \theta_{ccg | hd}^{BR} \\ &+ \sum_{cp, hd} [cp = cp_n, hd = hd_n] \log \theta_{cp | hd}^{CP} + \sum_{cia, hd} [eia = eia_n, hd = hd_n] \log \theta_{cia | hd}^{ELA} + \sum_{ccg, hd} [ecg = ecg_n, hd = hd_n] \log \theta_{ccg | hd}^{ECG} \\ &+ \sum_{cp, hd} [cp = cp_n, hd = hd_n] \log \theta_{cp | hd}^{CP} + \sum_{cia, hd} [eia = eia_n, hd = hd_n] \log \theta_{cia | hd}^{ELA} + \sum_{ccg, hd} [ecg = ecg_n, hd = hd_n] \log \theta_{ccg | hd}^{ECG} \\ &+ \sum_{ccp, hd} [ecg = ecg_n, hd = hd_n] \log \theta_{ccg | hd}^{CP} + \sum_{cia, hd} [ecg = ecg_n, hd = hd_n] \log \theta_{ccg | hd}^{ECG} \\ &+ \sum_{ccd, hd} [ecg = ecg_n, hd = hd_n] \log \theta_{ccg | hd}^{CP} + \sum_{cia, hd} [ecg = ecg_n, hd = hd_n] \log \theta_{ccg | hd}^{ECG} \\ &+ \sum_{ccd, h$$

#### 3. Maximum Likelihood Estimators

Forming the Lagrangian, we get

$$\begin{split} L(\theta,\lambda) &= \frac{1}{N} \sum_{n=1}^{N} \left( \sum_{a} [a = a_n] \log \theta_a^A \right) - \lambda^A \left( \sum_{a} \theta_a^A - 1 \right) \\ &+ \frac{1}{N} \sum_{n=1}^{N} \left( \sum_{g} [g = g_n] \log \theta_g^G \right) - \lambda^G \left( \sum_{g} \theta_g^G - 1 \right) \\ &+ \frac{1}{N} \sum_{n=1}^{N} \left( \sum_{ch,a,g} [ch = ch_n, a = a_n, g = g_n) \log \theta_{ch|a,g}^C \right) - \sum_{a,g} \lambda_{a,g}^{CH} \left( \sum_{ch} \theta_{ch|a,g}^{CH} - 1 \right) \\ &+ \frac{1}{N} \sum_{n=1}^{N} \left( \sum_{bp,g} [bp = bp_n, g = g_n] \log \theta_{bp|g}^{BP} \right) - \sum_{g} \lambda_g^{BP} \left( \sum_{bp} \theta_{bp|g}^{BP} - 1 \right) \\ &+ \frac{1}{N} \sum_{n=1}^{N} \left( \sum_{hd,ch,bp} [hd = hd_n, ch = ch_n, bp = bp_n] \log \theta_{hd|ch,bp}^{HD} \right) - \sum_{ch,bp} \lambda_{ch,bp}^{HD} \left( \sum_{hd} \theta_{hd|bp,ch}^{HD} - 1 \right) \\ &+ \frac{1}{N} \sum_{n=1}^{N} \left( \sum_{hr,a,bp,hd} [hr = hr_n, a = a_n, bp = bp_n, hd = hd_n] \log \theta_{hr|a,bp,hd}^{HR} \right) - \sum_{a,bp,hd} \lambda_{a,bp,hd}^{HR} \left( \sum_{hr} \theta_{hr|a,bp,hd}^{HR} - 1 \right) \\ &+ \frac{1}{N} \sum_{n=1}^{N} \left( \sum_{cp,hd} [cp = cp_n, hd = hd_n] \log \theta_{cp|hd}^{CP} \right) - \sum_{hd} \lambda_{hd}^{EIA} \left( \sum_{cp} \theta_{cp|hd}^{CP} - 1 \right) \\ &+ \frac{1}{N} \sum_{n=1}^{N} \left( \sum_{cia,hd} [eia = eia_n, hd = hd_n] \log \theta_{cej|hd}^{CP} \right) - \sum_{hd} \lambda_{hd}^{EIA} \left( \sum_{eia} \theta_{cia|hd}^{EIA} - 1 \right) \\ &+ \frac{1}{N} \sum_{n=1}^{N} \left( \sum_{ceg,hd} [ecg = ecg_n, hd = hd_n] \log \theta_{ceg|hd}^{CP} \right) - \sum_{hd} \lambda_{hd}^{ECG} \left( \sum_{ceg} \theta_{ceg|hd}^{ECG} - 1 \right) \end{split}$$

Now, to get MLE estimate of  $\theta^{HR}_{L|1,H,Y}$ , we put  $\frac{\partial L(\theta,\lambda)}{\partial \theta^{HR}_{L|1,H,Y}}=0$  and  $\frac{\partial L(\theta,\lambda)}{\partial \theta^{HR}_{H|1,H,Y}}=0$ 

$$\frac{1}{N} \sum_{n=1}^{N} [hr_n = L, a_n = 1, bp_n = H, = Y] \frac{1}{\theta_{L|1, H, Y}^{HR}} - \lambda_{1, H, Y}^{HR} = 0$$
 (1)

$$\frac{1}{N} \sum_{n=1}^{N} [hr_n = H, a_n = 1, bp_n = H, = Y] \frac{1}{\theta_{H|1, H, Y}^{HR}} - \lambda_{1, H, Y}^{HR} = 0$$
 (2)

To eliminate  $\lambda_{H|1,H,Y}^{HR}$ , we can use the constraint  $\theta_{L|1,H,Y}^{HR}+\theta_{H|1,H,Y}^{HR}=1$ 

$$\frac{1}{N} \sum_{n=1}^{N} [hr_n = L, a_n = 1, bp_n = H, hd_n = Y] \frac{1}{\lambda_{1,H,Y}^{HR}} + \frac{1}{N} \sum_{n=1}^{N} [hr_n = H, a_n = 1, bp_n = H, hd_n = Y] \frac{1}{\lambda_{1,H,Y}^{HR}} = 1$$

$$\frac{1}{N} \sum_{n=1}^{N} [a_n = 1, bp_n = H, hd_n = Y] \frac{1}{\lambda_{1,H,Y}^{HR}} = 1$$
(3)

Now, substitution (3) in (1), we get

$$\begin{split} \frac{1}{N} \sum_{n=1}^{N} [hr_n = L, a_n = 1, bp_n = H, = Y] \frac{1}{\theta_{L|1, H, Y}^{HR}} - \frac{1}{N} \sum_{n=1}^{N} [a_n = 1, bp_n = H, hd_n = Y] = 0 \\ \theta_{L|1, H, Y}^{HR} = \frac{\sum_{n=1}^{N} [hr_n = L, a_n = 1, bp_n = H, hd_n = Y]}{\sum_{n=1}^{N} [a_n = 1, bp_n = H, hd_n = Y]} \end{split}$$

Thus,

$$\theta_{L|1,H,Y}^{HR} = \frac{\sum_{n=1}^{N} [hr_n = L, a_n = 1, bp_n = H, hd_n = Y]}{\sum_{n=1}^{N} [a_n = 1, bp_n = H, hd_n = Y]}$$

# 4. Learning

| P(. | A) | Α     |
|-----|----|-------|
| 0.1 | 85 | < 45  |
| 0.2 | 68 | 45-55 |
| 0.5 | 47 | ≥ 55  |

| P(BP G) | BP   | G      |
|---------|------|--------|
| 0.333   | Low  | Female |
| 0.667   | High | Female |
| 0.476   | Low  | Male   |
| 0.524   | High | Male   |

| P(HD BP, CH) | HD | BP   | СН   |
|--------------|----|------|------|
| 0.5          | N  | Low  | Low  |
| 0.5          | Υ  | Low  | Low  |
| 0.556        | N  | High | Low  |
| 0.444        | Υ  | High | Low  |
| 0.576        | N  | Low  | High |
| 0.424        | Υ  | Low  | High |
| 0.492        | N  | High | High |
| 0.508        | Y  | High | High |

| P(HR A, BP, HD) | HR   | А         | BP   | HD |
|-----------------|------|-----------|------|----|
| 0.056           | Low  | < 45      | Low  | N  |
| 0.944           | High | < 45      | Low  | N  |
| 0.227           | Low  | 45 - 55   | Low  | N  |
| 0.773           | High | 45 - 55   | Low  | N  |
| 0.526           | Low  | $\geq 55$ | Low  | N  |
| 0.474           | High | $\geq 45$ | Low  | N  |
| 0.071           | Low  | < 45      | High | N  |
| 0.929           | High | < 45      | High | N  |
| 0.174           | Low  | 45 - 55   | High | N  |
| 0.826           | High | 45 - 55   | High | N  |
| 0.219           | Low  | $\geq 55$ | High | N  |
| 0.781           | High | $\geq 45$ | High | N  |
| 0.5             | Low  | < 45      | Low  | Υ  |
| 0.5             | High | < 45      | Low  | Υ  |
| 0.462           | Low  | 45 - 55   | Low  | Υ  |
| 0.538           | High | 45 - 55   | Low  | Υ  |
| 0.609           | Low  | $\geq 55$ | Low  | Υ  |
| 0.391           | High | $\geq 45$ | Low  | Υ  |
| 0.667           | Low  | < 45      | High | Υ  |
| 0.333           | High | < 45      | High | Υ  |
| 0.429           | Low  | 45 - 55   | High | Υ  |
| 0.571           | High | 45 - 55   | High | Υ  |
| 0.525           | Low  | $\geq 55$ | High | Y  |
| 0.475           | High | $\geq 45$ | High | Υ  |

### 5. Probability Queries

#### Part (a)

$$P(CH=L|A=2,G=M,CP=None,BP=L,ECG=normal,HR=L,EIA=no,HD=no) = \\ \frac{P(CH=Low,A=2,G=M,G=M,CP=None,BP=L,ECG=normal,HR=L,EIA=no,HD=no)}{P(A=2,G=M,CP=None,BP=L,ECG=normal,HR=L,EIA=no,HD=no)} = \\ \frac{P(CH=L,A=2,G=M,CP=None,BP=L,ECG=normal,HR=L,EIA=no,HD=no)}{\sum_{ch\in(L,H)}P(CH=ch,A=2,G=M,CP=None,BP=L,ECG=normal,HR=L,EIA=no,HD=no)} = \\ \frac{P(CH=L|A=2,G=M)P(HD=L|CH=L,BP=L)}{\sum_{ch\in(L,H)}P(CH=ch|A=2,G=M)P(HD=L|CH=ch,BP=L)} = \\ \text{(After applying factorization to Joint Probability)} \\ 0.135 \\ \text{(Looking up in CPTs of CH, HD)}$$

Therefore, P(CH=L|A=2,G=M,CP=None,BP=L,ECG=normal,HR=L,EIA=no,HD=no))=0.135 and P(CH=H|A=2,G=M,CP=None,BP=L,ECG=normal,HR=L,EIA=no,HD=no))=0.865

#### Part (b)

$$P(BP=L|A=2,CP=Typical,CH=H,ECG=normal,HR=H,EIA=yes,HD=no) = \frac{P(BP=L,A=2,CP=Typical,CH=H,ECG=normal,HR=H,EIA=yes,HD=no)}{\sum_{bp}P(BP=bp,A=2,CP=Typical,CH=H,ECG=normal,HR=H,EIA=yes,HD=no)} = \frac{\sum_{g}P(BP=L,A=2,G=g,CP=Typical,CH=H,ECG=normal,HR=H,EIA=yes,HD=no)}{\sum_{bp}\sum_{g}P(BP=bp,A=2,G=g,CP=Typical,CH=H,ECG=normal,HR=H,EIA=yes,HD=no)} = \frac{\sum_{g}P(G=g)P(CH=H|G=g,A=2)P(BP=L|G=g)P(HR=H|A=2,BP=L,HD=no)P(HD=no|BP=L,CH=H)}{\sum_{bp}\sum_{g}P(G=g)P(CH=H|G=g,A=2)P(BP=bp|G=g)P(HR=H|A=2,BP=bp,HD=no)P(HD=no|BP=bp,CH=H)}$$
 (After applying factorization to Joint Probability and Simplifying)

(Looking up in the CPTs )

Therefore, P(BP=L|A=2,CP=Typical,CH=H,ECG=normal,HR=H,EIA=yes,HD=no)=0.455 and P(BP=H|A=2,CP=Typical,CH=H,ECG=normal,HR=H,EIA=yes,HD=no)=0.545

#### 6. Classification

Part (a):

Part (b) :

P(HD = N|A = a, G = q, CH = ch, BP = bp, HR = hr, CP = cp, EIA = eia, ECG = ecq) = P(HD = N|A = a, G = q, CH = ch, BP = bp, HR = hr, CP = cp, EIA = eia, ECG = ecq)

 $\frac{P(A=a)P(G=g)P(CH=ch|A=a,G=g)P(BP=bp|G=g)P(HD=N|CH=ch,BP=bp)\times P(HR=hr|A=a,BP=bp,HD=N)P(CP=cp|HD=N)P(EIA=eia|HD=N)P(ECG=ecg|HD=N)}{P(A=a)P(G=g)P(CH=ch|A=a,G=g)P(BP=bp|G=g)P(HD=hd|CH=ch,BP=bp)\times P(HR=hr|A=a,BP=bp,HD=hd)P(CP=cp|HD=hd)P(EIA=eia|HD=hd)P(ECG=ecg|HD=hd)}$ 

 $\frac{P(A=a)P(G=g)P(CH=ch|A=a,G=g)P(BP=bp|G=g)P(HD=N|CH=ch,BP=bp)\times P(HR=hr|A=a,BP=bp,HD=N)P(CP=cp|HD=N)P(EIA=eia|HD=N)P(ECG=ecg|HD=N)}{P(A=a)P(G=g)P(CH=ch|A=a,G=g)P(BP=bp|G=g)P(HD=hd|CH=ch,BP=bp)\times P(HR=hr|A=a,BP=bp,HD=hd)P(CP=cp|HD=hd)P(EIA=eia|HD=hd)P(ECG=ecg|HD=hd)}$ 

 $\frac{P(HD=N|CH=ch,BP=bp)P(HR=hr|A=a,BP=bp,HD=N)P(CP=cp|HD=N)P(EIA=eia|HD=N)P(ECG=ecg|HD=N)}{\sum_{hd}P(HD=hd|CH=ch,BP=bp)P(HR=hr|A=a,BP=bp,HD=hd)P(CP=cp|HD=hd)P(EIA=eia|HD=hd)P(ECG=ecg|HD=hd)}$ 

## Part (c):

| Fold      | No correct | No total | %Accuracy |
|-----------|------------|----------|-----------|
| 1         | 48         | 60       | 80        |
| 2         | 48         | 60       | 80        |
| 3         | 43         | 60       | 71.66     |
| 4         | 43         | 60       | 71.66     |
| 5         | 44         | 60       | 73.33     |
| Avg(Mean) | 45.2       | 60       | 75.33     |

The variance is 3.862.

# 7. Modelling

# Part(a): model



## Part (b): factorization

$$P(X) = \prod_{i=1}^{\#nodes} P(X_i|Pa_{X_i}^G)$$

$$P(A,G,CH,BP,HD,HR,CP,EIA,ECG) = P(A)P(G)(CH|A,G)P(BP|A,G)P(HD|CH,BP)$$

$$\times P(HR|HD)P(CP|HD)P(EIA|HD)P(ECG|HD)$$

## Part (c): design choice

Idea was to kind of simulate neural-network style like structure with no latent variables.

Part (d): results

| Fold      | No correct | No total | %Accuracy |
|-----------|------------|----------|-----------|
| 1         | 48         | 60       | 80        |
| 2         | 47         | 60       | 78.33     |
| 3         | 45         | 60       | 75.00     |
| 4         | 43         | 60       | 71.66     |
| 5         | 42         | 60       | 70        |
| Avg(Mean) | 45         | 60       | 75        |

The Std Dev is 3.801.

Analysis: The average accuracy and Std Dev is slightly less than given model. Above model fairs better only in 3rd test data.