Properties of Generating Functions — Shifting Property

Let
$$G(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n + \cdots$$
.

This sequence is given as $(a_0, a_1, \ldots, a_n, \ldots)$.

Multiply this sequence by `z`.

This new sequence is given as:

$$z \times G(z) = (a_0 z^1 + a_1 z^2 + a_2 z^3 + \dots + a_n z^{n+1} + \dots).$$

This gives the sequence as $(0, a_0, a_1, ..., a_n, ...)$, that is, the sequence is shifted by 1.

Similarly, $z^2 \times G(z)$ generates the sequence $(0,0,a_0,a_1,\ldots,a_n,\ldots)$.

In general , k times G(z) generates sequence $(0,0,0,\dots,0,a_0,a_1,\dots,a_n,\dots)$, where k zeroes precede the k times

sequence.

The left shift can be obtained as follows:

Let
$$G(z) - a_0 = a_1z + a_2z + a_2z^2 + \cdots + a_nz^n + \cdots$$
.
This leads to the sequence $(0, a_0, a_1, \dots, a_n, \dots)$.

Again,
$$G(z) - a_0 - a_1 z$$
 leads to the sequence $(0, 0, a_0, a_1, \dots, a_n, \dots)$

Again, $G(z) - a_0 - a_1 z - \dots - a_k z^{k-1}$ leads to the sequence $(0,0,0,\dots,0,a_k,a_{k+1},\dots,a_{k+n},\dots)$. That is `k` zeroes precede the sequence.

Similarly, a division by z leads to shifting of the sequence to the left , that is , $\frac{G(z)-a_0}{z}$ leads to the sequence: $(a_1,...,a_n,...)$.

Similarly,
$$\frac{G(z)-a_0-a_1z}{z^k}$$
 generates the sequence $(a_2,a_3,...,a_n,....)$.

In general,

$$\frac{G(z)-a_0-a_1z-\cdots-a_{k-1}z^{k-1}}{z^k}$$
 , generates the sequence
$$(a_k,a_{k+1},\dots)\ for\ k\geq 1.$$

These properties are used in converting a sequence into a generating function.
