

Rozwiązania Kontestu 3 – PreOM 2025

Zadanie 1. Dodanie liczby rzeczywiste a i b spełniają następujące warunki:

- funkcja $f(x) = x^3 + ax^2 + 2bx 1$ ma trzy różne pierwiastki rzeczywiste,
- funkcja $q(x) = 2x^2 + 2bx + a$ nie ma pierwiastków rzeczywistych.

Udowodnij, że a - b > 1.

Źródło: Belarusian National Olympiad 2019, Problem 9.3: link

Rozwiązanie 1. Skoro $g(\cdot)$ nie ma pierwiastków rzeczywistych, mamy $b^2 < 2a$. Niech r_1, r_2, r_3 będą pierwiastkami $f(x) = x^3 + ax^2 + 2bx - 1$. Z wzorów Vieta mamy $r_1 + r_2 + r_3 = -a$, $r_1r_2 + r_1r_3 + r_2r_3 = 2b$ oraz $r_1r_2r_3 = 1$. Stąd $r_1^2 + r_2^2 + r_3^2 = a^2 - 4b$. Mamy również $|r_1| \cdot |r_2| \cdot |r_3| = 1$, więc z nierówności między średnią arytmetyczną i geometryczną mamy $a^2 - 4b \geqslant 3$.

Załóżmy nie wprost, że $a\leqslant b+1$. Z jednej strony, $b^2-2b+1\geqslant a^2-4b\geqslant 3$, co implikuje $b^2\geqslant 2b+2$. Z drugiej strony, $b^2<2a\leqslant 2b+2$. Oba warunki prowadzą do sprzeczności, więc założenie $a-b\leqslant 1$ jest fałszywe.

Źródło: AoPS, Rozwiązanie Użytkownika grupyorum link

Zadanie 2. Rozważ układ żetonów na płaszczyźnie, niekoniecznie umieszczonych w różnych punktach. Dozwolone jest wykonanie sekwencji ruchów następującego rodzaju: wybierz parę żetonów znajdujących się w punktach A i B i przesuń oba do punktu będącego środkiem odcinka AB.

Mówimy, że układ n żetonów jest **scalalny**, jeśli możliwe jest, po skończonej liczbie ruchów, sprowadzenie wszystkich n żetonów do jednego punktu. Udowodnij, że każdy układ n żetonów jest scalalny wtedy i tylko wtedy, gdy n jest potega dwójki.

Źródło: Canadian Mathematical Olympiad 2018, Problem 1: link

Rozwiązanie 2. Pokażemy, że jeśli n ma dzielnik nieparzysty różny od 1, to istnieje układ n żetonów, który nie jest scalalny. Rozważmy układ n żetonów na osi liczbowej, umieszczając 2 żetony w punkcie 2, a kolejne żetony w kolejnych potęgach dwójki. Niech waga żetonu będzie równa liczbie, w której się znajduje.

Na początku suma wag wynosi 2^n . Łatwo zauważyć, że suma wag pozostaje stała po każdym ruchu. Załóżmy nie wprost, że udało się sprowadzić wszystkie żetony do jednego punktu. Oznacza to, że istnieją liczby całkowite t i s takie, że $\frac{n \cdot t}{2^s} = 2^n$ lub $n \cdot t = 2^{n+s}$. Jest to sprzeczne, ponieważ LHS ma dzielnik nieparzysty różny od 1, a RHS nie. Zatem n musi być potęgą dwójki.

Źródło: AoPS, Rozwiązanie Użytkownika Mathdragon245 link

Zadanie 3. Znajdź wszystkkie dodatnie liczby całkowite n spełniające równość:

$$\phi(n) + \sigma(n) = 2n + 8.$$

Gdzie $\phi(n)$ oznacza liczbę liczb całkowitych ze zbioru $\{1, 2, ..., n\}$ względnie pierwszych z n, a $\sigma(n)$ oznacza sumę dzielników liczby n.

Źródło: AoPS: link

Rozwiązanie 3. Zauważmy, że $\varphi(n) \ge n - \sum_{p|n} \frac{n}{p}$ oraz $\sigma(n) \ge n + \sum_{p|n} \frac{n}{p}$, stąd $\varphi(n) + \sigma(n) \ge 2n$ z równością dla liczb pierwszych.

Rozważmy przypadki prawie-równości.

Jeśli n ma trzy różne dzielniki pierwsze p < q < r, to $\sigma(n)$ przekracza dolne ograniczenie od góry o co najmniej p + q + r > 8 (brak rozwiązania).

Jeśli
$$n = p^k$$
, to $\varphi(n) + \sigma(n) = 2n + p^{k-2} + p^{k-3} + \dots + p + 1$, stąd $p = 7$ i $k = 3$, a więc $n = 343$.

Wreszcie, jeśli $n=p^kq^\ell$, to zarówno $\varphi(n)$, jak i $\sigma(n)$ przekraczają dolne ograniczenie o co najmniej $\frac{n}{pq}$, stąd $p^{k-1}q^{\ell-1} \leq 4$ i zatem $n=p^kq$. Wtedy $p^{k-1} \leq 4$ i otrzymujemy k=3, p=2 (brak rozwiązania), k=1 (brak rozwiązania) lub $k=2, p\leq 3$, co prowadzi do q=3 i rozwiązania n=12.

Źródło: AoPS, Rozwiązanie Użytkownika Tintarn link

Zadanie 4. Dany jest trójkąt ABC oraz punkt P wewnątrz tego trójkąta. Niech P_a , P_b , P_c będą rzutami P na BC, AC, AB odpowiednio. Dodatkowo zakładamy, że AP_a , BP_b , CP_c przecinają się w punkcie R. Udowodnij, że punkty P, R i środek okręgu opisanego na $P_aP_bP_c$ leżą na jednej prostej.

Źródło: Delta 12-2016, artykuł "Pewne uogólnienie prostej Eulera" link

Rozwiązanie 4.

Lemat 1. Niech $P_aP_bP_c$, $Q_aQ_bQ_c$ będą trójkątami spodkowymi punktów P i Q, leżących wewnątrz trójkąta ABC. Punkty przecięcia prostych P_aQ_b i Q_aP_b , P_aQ_c i Q_aP_c oznaczamy odpowiednio jako L, M i N. Wówczas jeśli punkty P i Q są izogonalnie sprzężone, to punkty L, M, N leżą na prostej przechodzącej przez P i Q.

Dowód. Niech $A_1 = PP_b \cap BC$, $B_1 = PP_a \cap CA$ i $J = Q_aB_1 \cap A_1Q_b$. Wówczas na czworokącie $P_aA_1B_1P_b$ można opisać okrąg. Ponadto z wcześniejszych rozważań wynika, że na czworokącie $P_aP_bQ_bQ_a$ również można opisać okrąg.

W tej sytuacji

$$\stackrel{\checkmark}{\Rightarrow} B_1 A_1 C = \stackrel{\checkmark}{\Rightarrow} P_a P_b C = \stackrel{\checkmark}{\Rightarrow} Q_b Q_a C,$$

więc $A_1B_1 \parallel Q_bQ_a$. Mamy również $PA_1 \parallel QQ_b$ (oba są prostopadłe do AC), $PB_1 \parallel QQ_a$ (oba są prostopadłe do BC), co oznacza, że trójkąty PA_1B_1 i QQ_bQ_a są jednokładne, zatem proste łączące odpowiadające pary wierzchołków przecinają się w jednym punkcie, skąd wnioskujemy, że J należy do prostej PQ.

Następnie, stosując twierdzenie Pappusa dla dwóch układów trójkrotnych punktów wspólnoliniowych (P_a, A_1, Q_a) i (P_b, B_1, Q_b) z uwagą, że $P = P_a B_1 \cap P_b A_1$, $L = P_a Q_b \cap P_b Q_a$ i $J = Q_a B_1 \cap A_1 Q_b$ wnioskujemy, że P, L, J są współliniowe. Wiemy więc, że J leży na prostej PQ, a L leży na prostej PJ, zatem L leży na prostej PQ. Analogicznie dowodzimy, że punkty M i N leżą na prostej PQ, co kończy dowód lematu.

Lemat 2. Niech S_a , S_b , S_c będą punktami przecięcia okręgu opisanego na trójkącie Cevy $R_a R_b R_c$ wewnątrz trójkąta ABC odpowiednio z bokami BC, CA i AB. Wtedy proste AS_a , BS_b i CS_c przecinają się w jednym punkcie.

Dowód. Zgodnie z twierdzeniem Cevy, skoro proste AR_a , BR_b , CR_c przecinają się w punkcie R, zachodzi

$$\frac{R_a B}{R_a C} \cdot \frac{R_b C}{R_b A} \cdot \frac{R_c A}{R_c B} = 1.$$

Ponieważ R_a, R_b, S_b, R_c, S_c i S_a należą do wspólnego okręgu, więc z twierdzenia o potędze punktu względem okręgu mamy

$$AR_b \cdot AS_b = AR_c \cdot AS_c, \quad BR_c \cdot BS_c = BR_a \cdot BS_a, \quad CR_a \cdot CS_a = CR_b \cdot CS_b.$$

Stąd

$$\frac{S_b A}{S_c A} = \frac{R_c A}{R_b A}, \quad \frac{S_c B}{S_a B} = \frac{R_b B}{R_c B}, \quad \frac{S_a C}{S_b C} = \frac{R_c C}{R_a C}.$$

Podstawiając te wartości do pierwszego równania, otrzymujemy

$$\frac{S_b A}{S_c A} \cdot \frac{S_c B}{S_a B} \cdot \frac{S_a C}{S_b C} = 1.$$

Ostatnia równość, zgodnie z odwrotnym twierdzeniem Cevy, dowodzi, że AS_a , BS_b i CS_c zbiegają się w jednym punkcie.

Lemat 3. Niech R i S będą dwoma stowarzyszonymi punktami Cevy wewnątrz trójkąta ABC i niech odpowiadają im trójkąty Cevy $R_aR_bR_c$ i $S_aS_bS_c$. Niech X,Y i Z będą odpowiednio punktami przecięcia prostych S_bR_a i S_aR_b , R_aS_c i R_cS_a oraz R_bS_c i R_cS_b .

Wówczas punkty R, S, X, Y, Z są współliniowe (tworzą oś Cevy RS).

Dowód. Stosując twierdzenie Pappusa dla dwóch potrójnych układów punktów współliniowych (A, S_b, R_b) i (B, S_a, R_a) , z uwagą, że $S = AS_a \cap BS_b$, $R = AR_a \cap BR_b$ oraz $X = S_bR_a \cap S_aR_b$, wnioskujemy, że X leży na prostej RS.

Analogicznie dowodzimy, że punkty Y i Z leżą na prostej RS, co kończy dowód lematu.

Niech D będzie środkiem okręgu opisanego na $P_aP_bP_c$ i niech punkty L, M, N będą zdefiniowane tak, jak w lemacie 3. Zgodnie z tym lematem punkty te są współliniowe, a prosta przez nie przechodząca zawiera również punkty P i D (jest to oś trójkąta spodkowego dla punktu P). Prosta ta jest jednak również osią trójkąta Cevy punktu R, zatem zgodnie z lematem 3 przechodzi przez R, co dowodzi współliniowości punktów P, R, D.

Źródło: Delta 12-2016, artykuł "Pewne uogólnienie prostej Eulera" link

