Proiectarea algoritmilor - Test scris 11.04.2014, B

Observatii:

- 1. Nu este permisă consultarea bibliografiei.
- 2. Toate întrebările sunt obligatorii.
- 3. Fiecare întrebare/item este notată cu un număr de puncte indicat în paranteză. Descrieți conceptele utilizate în răspunsuri.
- 4. Algorimii vor fi descriși în limbajul Alk. Se adimit extensii cu sintaxă inspirată din C++ (de exemplu, for, do-while, repeatuntil, etc.). Pentru structurile de date utilizate (de exemplu, liste, mulțimi)se va preciza operațiile (fără implementare daca nu se cere explicit) și complexitățile timp și spațiu ale acestora.
- 5. Nu este permisă utilizarea de foi suplimentare.
- 6. Timp de răspuns: 1 oră.
- 1. În contextul căutării cu expresii regulate. Se consderă expresia regula $e = (a((a + b) c)^*)b$. (Corectat pe tabla).
- a) [0.5] Să se dea definiția expresiilor regulate.
- b) [0.5] Să se arate că expresia *e* de mai sus este bine construită (se poate construi arborele sintactic abstract).
- c) [0.5] Să se precizeze primele 6 cele mai scurte cuvinte din limbajul desemnat de e.
- d) [1] Să se construiască automatul asociat lui e.
- e) [0.5] Să se explice cum se este utilizat automatul pentru a căuta un cuvânt desemnat de e în șirul "aacabcb".

Răspuns.

a)

. Mulțimea expresiilor regulate peste alfabetul A este definită recursiv astfel:

- ε, empty sunt expresii regulate
- orice caracter din A este o expresie regulată;
- dacă e_1 , e_2 sunt expresii regulate, atunci e_1e_2 și e_1+e_2 sunt expresii regulate;
- dacă e este expresie regulată, atunci (e) și e* sunt expresii regulate.

-- (concatenarea)

-- (concatenarea)

-- (concatenarea)

-- (concatenarea)

-- (concatenarea)

c) $L(c) = \{c\}$, $L(a+b) = \{a, b\}$, $L((a+b)c) = \{ac, bc\}$, $L(((a+b)c)^*) = \{\epsilon, ac, bc, acac, acbc, bcac, bcbc, ...\}$, $L((a((a+b)c)^*)b) = \{ab, aacb, abcb, aacacb, aacbcb, abcacb, abcbcb, ...\}$

Trebuie aratat si pasii cum se obtine.

- e) Se presupune ca starile sunt numerotate incepand cu 0 de la stanga la dreapta si de sus in jos (din pacate nu au putut fi puse in figura).
- 1) se pleaca din pozitia i = 0 din subject si starea initiala (st = 0).
- 2) primul caracter citit din subiect este a si exista arc etichetat cu a din starea 0; st devine 1, i devine 1.
- 3)

d)

- 2. În contextul programării dinamice.
- a) [0.5] Să se scrie formularea matematică a problemei rucasacului, varianta discretă.
- b) [0.5] Să se descrie noțiunea de stare pentru problema rucsacului.
- c) [1] Să se descrie cum este utilizat principiul de optim pentru a găsi relația de recurență.
- d) [1] Să se explice cum este aplicat algoritmul de programare dinamică pentru instanța n = 4 (numărul de obiecte), M = 10 (capacitatea rucsacului), w = (3, 3, 4, 5) (ponderile) și p = (50, 20, 10, 40). Se va construi tabelul valorilor si se va explica cum este obținută soluția din tabel.

Răspuns.

a)

- funcția obiectiv:

$$\max \sum_{i=1}^{n} x_i \cdot p_i$$

- restricţii:

$$\sum_{i=1}^{n} x_i \cdot w_i \leq M$$

$$x_i \in \{0, 1\}, i = 1, \dots, n$$

$$w_i \in \mathbb{Z}_+, p_i \in \mathbb{Z}, i = 1, \dots, n$$

$$M \in \mathbb{Z}$$

b)

- funcția obiectiv:

$$\max \sum_{i=1}^{j} x_i \cdot p_i$$

- restricții:

$$\sum_{i=1}^{j} x_i \cdot w_i \leq X$$

$$x_i \in \{0, 1\}, i = 1, \dots, j$$

$$w_i \in \mathbb{Z}_+, p_i \in \mathbb{Z}, i = 1, \dots, j$$

$$X \in \mathbb{Z}.$$

c)

Dacă $x_j=0$ (obiectul j nu este pus în rucsac) atunci, conform principiului de optim, $f_j(X)$ este valoarea optimă pentru starea $\mathrm{RUCSAC}(X,j-1)$ și de aici $f_i(X)=f_{j-1}(X)$.

Dacă $x_j=1$ (obiectul j este pus în rucsac) atunci, din nou conform principiului de optim, $f_j(X)$ este valoarea optimă pentru starea $\mathrm{RUCSAC}(j-1,X-w_j)$ la care se adaugă profitul p_i și de aici $f_i(X)=f_{j-1}(X-w_j)+p_i$.

$$f_{j}(X) = \begin{cases} -\infty & , \operatorname{dacă} X < 0 \\ 0 & , \operatorname{dacă} j = 0 \operatorname{si} X \ge 0 \\ \max\{f_{j-1}(X), f_{j-1}(X - w_{j}) + p_{j}\} & , \operatorname{dacă} j > 0 \operatorname{si} X \ge 0 \end{cases}$$
(2)

d)											
	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	50	50	50	50	50	50	50	50
2	0	0	0	50	50	50	70	70	70	70	70
3	0	0	0	50	50	50	70	70	70	70	80
4	0	0	0	50	50	50	70	70	90	90	90

X4 = 10, Y4=90

 $f_4(X4) != f_3(X4)$, rezulta ca $x_3 = 1$; X3 = 10-5= 5, Y3 = 90-40=50

 $f_3(X3) = f_2(X3)$, rezulta ca $x_2 = 0$; X2 = X3, Y2 = Y3

 $f_2(X2) = f_1(X2)$, rezulta ca $x_1 = 0$; X1 = X2, Y1 = Y2

 $f_1(X1) = f_0(X1)$, rezulta ca $x_0 = 1$; X0 = 5-3= 2, Y0 = 50-50=0

3. Se consideră problema Acoperirea unei mulțimi (AS): Intrare: o mulțime $T = \{t_1, t_2,, t_n\},\$ m submulțimi: $S_1, S_2, ..., S_m \subseteq T$ de ponderi (costuri) $w_1, w_2, ..., w_m$ Iesire: o submulțime $I \subseteq \{1,2,...,m\}$ care minimizează $\sum_{i\in I} w_i$ astfel încât $\bigcup_{i\in I} S_i = T$. a) [1] Să se arate că AS este în clasa NP. Justificare. Indicatie (pe tabla). Se arata ca varianta ca problema de decizie este in NP. b) [0.5] Există algoritmi determiniști polinomiali care rezolvă AS? Justificați răspunsul. c) [1] Să se dea un exemplu de algoritm greedy care calculează o aproximare a soluției optime. Ce se poate spune despre d) [0.5] Precizați complexitatea timp în cazul cel mai nefavorabil a algoritmului greedy. Răspuns. a) Ca problema de decizie: se adauga la intrare un numar intreg K si la iesire raspunsul la intrebarea: Exista o submulțime $I \subseteq \{1,2,...,m \text{ astfel încât } \bigcup_{i\in I} Si = T \text{ si } \sum_{i\in I} wi <= K?$ nondetASDec (T, S, w, K) { for (i=1; i <= m; ++i) x[i] = choice(2); // partea de ghicire //partea de verificare kg = 0;for (i=1; i <= m; ++i) kg = kg * x[i]; if (kg <= K) return succes; else return failure; } b) Oricare din cele doua variante este problema NP-completa. Deoarece nu se stie daca P = NP, nu se poate da un raspuns exact. Dar se stie ca pana acum nu s-a gasit pentru niciuna din probleme algoritm determinist polinomial care sa o rezolve. c) Definim **cost efectiv** al lui S_i ca fiind $w_i / |(S_i - C)|$. asGreedy(T, S, w) { $I = C = \emptyset;$ while $(T \neq C)$ { determina S_i cu cel mai mic cost efectiv; foreach ($t_i \in S_i$ -C) pret(t_i) = $w_j/|(S_j - C)|$; $I = I \cup \{j\};$ $C = C \cup S_i$; } Are ratia de aproximare marginita de $H_n = 1 + 1/2 + ... + 1/n$. - testul T \neq C se executa in O(n), S_i cu cel mai mic cost efectiv in O(m), foreach in O(n), reuniunea se poate executa in O(1) - bucla while se executa de cel mult n ori (cazul cel mai nefavorabil: fiecare Si include exact un element)

deosrece m <=n, O(m) = O(n)
 rezulta o complexitate O(n²).