Examen FINAL de Física 20 de gener de 2017

Model A

Qüestions: 40% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** Com hem de connectar 4 fonts de tensió iguals, de fem ε i resistència interna nul·la, a una resistència R per què la potència consumida sigui màxima?
 - a) Dos conjunts de 2 fonts en sèrie, connectats en paral·lel.
 - b) Dos conjunts de 2 fonts en paral·lel, connectats en sèrie.
 - c) Totes en sèrie.
 - d) Totes en paral·lel.
- T2) En un circuit RL, quan ha transcorregut un interval de temps igual a la meitat de la constant de temps desprès de connectar-lo, la intensitat
 - a) val un 39% del seu valor final.
 - b) val un 61% del seu valor final.
 - c) ha assolit la quarta part del seu valor final.
 - d) ha assolit la meitat del seu valor final.
- T3) En el circuit de la figura, la intensitat que circula per \overline{Z} va retardada en 90° respecte a la intensitat de la branca R-L-C. Els valors eficaços d' I_1 i I_2 són iguals. Sabent que $\omega = 100\,\pi\,\mathrm{rad/s},\,R = 1000\,\Omega,\,C = 1\cdot 10^{-6}\,\mathrm{F}$ i $L = 0.085\,\mathrm{H}$, podem assegurar que el valor de la impedància \overline{Z} val:

a)
$$\overline{Z} = 1000 - j \, 3156 \, \Omega$$
.

b)
$$\overline{Z} = 3156 + j \, 1000 \, \Omega$$
.

c)
$$\overline{Z} = 3156 - j \, 1000 \, \Omega$$
.

d)
$$\overline{Z} = 1000 + j \, 3156 \, \Omega$$
.

T4) Determineu el valor efectiu de la resistència font-drenador (r_{DS}) del transistor de la figura

$$(V_T = 1 \text{ V}, \beta = 1 \text{ mA/V}^2)$$

b) 200Ω .

d) 250 Ω .

T5) Quina funció lògica implementa el circuit CMOS de la figura?

a)
$$\overline{(A+B)C}$$
.

b)
$$\overline{A+B+C}$$
.

c)
$$\overline{AB+C}$$
.

d)
$$\overline{A + BC}$$
.

T6) Una pertorbació viatgera ve descrita per la funció d'ona $f(x) = 0.15 e^{-(x+1.5)^2}$ en t = 0. L'ona avança en el sentit positiu de l'eix x. Si el punt de coordenades x=2.5 m arriba a l'elongació màxima en t=0.25 s, la velocitat de propagació de l'ona és

a)
$$v = 12 \,\text{m/s}$$
.

b)
$$v = 16 \,\text{m/s}$$
.

c)
$$v = 15 \,\text{m/s}$$
.

d)
$$v = 24 \,\text{m/s}$$
.

T7) Considereu dos focus emissors d'ones electromagnètiques linealment polaritzades amb el camp elèctric en la direcció z, que emeten amb una diferència de fase π rad i longitud d'ona comuna λ . Si d₁ i d₂ són les distàncies dels focus a un punt P, quina de les afirmacions següents és certa?

a) Si $d_2 - d_1 = \lambda$, al punt P hi ha interferència constructiva.

b) Si $d_2 - d_1 = 3\lambda$, les ones al punt P estan en fase.

c) Si $d_2 - d_1 = 3\lambda/2$, les ones al punt P estan en fase.

d) Si $d_2 - d_1 = \lambda/2$, les ones al punt P estan desfasades en π .

T8) El làser Vulcan, que s'utilitza en experiments orientats a assolir la fusió nuclear, emet llum de longitud d'ona $\lambda=633$ nm en polsos de 10^{-12} s. Si durant un pols emet $3.18\cdot 10^{21}$ fotons, la potència del làser és aproximadament ($h = 6.63 \cdot 10^{-34} \text{ Js}$)

- a) 10^{10} W.
- b) 10^5 W. c) 10^5 mW. d) 10^{15} W.

Examen FINAL de Física 20 de gener de 2017

Model B

Qüestions: 40% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

T1) Determineu el valor efectiu de la resistència font-drenador (r_{DS}) del transistor de la figura

$$(V_T = 1 \text{ V}, \beta = 1 \text{ mA/V}^2)$$

- a) 250 Ω .
- b) 200Ω .
- c) 500 Ω .
- d) 0Ω .

T2) Una pertorbació viatgera ve descrita per la funció d'ona $f(x) = 0.15 e^{-(x+1.5)^2}$ en t = 0. L'ona avança en el sentit positiu de l'eix x. Si el punt de coordenades x = 2.5 m arriba a l'elongació màxima en t = 0.25 s, la velocitat de propagació de l'ona és

a) $v = 15 \,\text{m/s}$.

b) $v = 12 \,\text{m/s}$.

c) $v = 24 \,\text{m/s}$.

d) $v = 16 \,\text{m/s}$.

T3) En un circuit RL, quan ha transcorregut un interval de temps igual a la meitat de la constant de temps desprès de connectar-lo, la intensitat

- a) ha assolit la meitat del seu valor final.
- b) val un 61% del seu valor final.
- c) ha assolit la quarta part del seu valor final.
- d) val un 39% del seu valor final.

T4) Quina funció lògica implementa el circuit CMOS de la figura?

- a) $\overline{A + BC}$.
- b) $\overline{(A+B)C}$.
- c) $\overline{AB+C}$.
- d) $\overline{A+B+C}$.

T5) El làser Vulcan, que s'utilitza en experiments orientats a assolir la fusió nuclear, emet llum de longitud d'ona $\lambda = 633$ nm en polsos de 10^{-12} s. Si durant un pols emet $3.18 \cdot 10^{21}$ fotons, la potència del làser és aproximadament ($h = 6.63 \cdot 10^{-34}$ Js)

a) 10^{10} W.

b) 10^{15} W.

c) $10^5 \text{ mW}.$

d) 10^5 W.

T6) Com hem de connectar 4 fonts de tensió iguals, de fem ε i resistència interna nul·la, a una resistència R per què la potència consumida sigui màxima?

a) Totes en sèrie.

- b) Totes en paral·lel.
- c) Dos conjunts de 2 fonts en sèrie, connectats en paral·lel.
- d) Dos conjunts de 2 fonts en paral·lel, connectats en sèrie.
- T7) Considereu dos focus emissors d'ones electromagnètiques linealment polaritzades amb el camp elèctric en la direcció z, que emeten amb una diferència de fase π rad i longitud d'ona comuna λ . Si d_1 i d_2 són les distàncies dels focus a un punt P, quina de les afirmacions següents és certa?

a) Si $d_2 - d_1 = \lambda/2$, les ones al punt P estan desfasades en π .

b) Si $d_2 - d_1 = 3\lambda/2$, les ones al punt P estan en fase.

c) Si $d_2-d_1=3\lambda$, les ones al punt P estan en fase.

d) Si $d_2 - d_1 = \lambda$, al punt P hi ha interferència constructiva.

T8) En el circuit de la figura, la intensitat que circula per \overline{Z} va retardada en 90° respecte a la intensitat de la branca R-L-C. Els valors eficaços d' I_1 i I_2 són iguals. Sabent que $\omega = 100\,\pi\,\mathrm{rad/s},\,R = 1000\,\Omega,\,C = 1\cdot 10^{-6}\,\mathrm{F}$ i $L = 0.085\,\mathrm{H}$, podem assegurar que el valor de la impedància \overline{Z} val:

a) $\overline{Z} = 3156 + j \, 1000 \, \Omega$.

b) $\overline{Z} = 1000 + i \, 3156 \, \Omega$.

c) $\overline{Z} = 3156 - j \, 1000 \, \Omega$.

d) $\overline{Z} = 1000 - j \, 3156 \, \Omega$.

Examen FINAL de Física 20 de gener de 2017

Problema 1 (20% de l'examen)

Per poder escalfar la seva habitació un estudiant compra dos radiadors elèctrics, un de 1 kW i l'altre de 2 kW de potència. L'estudiant descobreix que l'energia elèctrica que necessita consumir per escalfar l'habitació correspon a connectar el radiador de 1 kW durant una hora a la xarxa elèctrica de 220 V. Determineu:

- a) Utilitzant només el radiador de 1 kW, quants diners li costa escalfar l'habitació si la tarifa de consum elèctric és de $0.15 \in /(kW \cdot h)$?
- b) Quant temps necessita per escalfar l'habitació utilitzant únicament el radiador de 2 kW de potència?
- c) Quant temps necessita per escalfar l'habitació utilitzant els dos radiadors connectats en paral·lel a la xarxa elèctrica?
- d) Quant temps necessita per escalfar l'habitació connectant els dos radiadors en sèrie?

Problema 2 (20% de l'examen)

Dues impedàncies Z_1 i Z_2 de tipus inductiu es connecten en paral·lel a la xarxa de corrent altern domèstica, amb una tensió eficaç de 220 V i una freqüència de 50 Hz. La potència activa i el factor de potència de la impedància Z_1 són $P_1 = 60$ W i $\cos \phi_1 = 0.173$, respectivament, i les de la impedància Z_2 són $P_2 = 900$ W i $\cos \phi_2 = 0.985$. Determineu:

- a) La intensitat eficaç, la potència reactiva i la potència aparent en cada una de les impedàncies.
- b) La intensitat eficaç total i la potència activa de tot el circuit.
- c) El factor de potència del circuit i la capacitat del condensador que s'ha de connectar en sèrie (a tot el circuit) per corregir-lo.

Problema 3 (20% de l'examen)

Al circuit de la figura, els dos transistors tenen els mateixos paràmetres característics $V_T = 2 \, \mathrm{V}$ i $\beta = 0.1 \, \mathrm{mA/V^2}$.

- a) Amb $V_A = 0$ V, determineu el règim de treball de tots dos transistors, així com la tensió de sortida V_{out} i el corrent I_D .
- b) Amb $V_A = 5 \,\mathrm{V}$, determineu el règim de treball de cada transistor i el valor de la tensió de sortida V_{out} .

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	С	a
T2)	a	d
T3)	b	d
T4)	d	c
T5)	c	b
T6)	b	a
T7)	c	b
T8)	d	a

Resolució del Model A

- T1) La potència subministrada és $P = \varepsilon_{\rm eq} I = \varepsilon_{\rm eq} (\varepsilon_{\rm eq}/R) = \varepsilon_{\rm eq}^2/R$, per tant serà màxima quan ho sigui la fem equivalent, això correspon a tenir les 4 fonts connectades en sèrie, essent en aquest cas $\varepsilon_{\rm eq} = 4\varepsilon$.
- **T2)** El valor de I serà $I(\tau/2) = I_f(1 \exp(-1/2)) = 0.393 I_f$. Per tant, la intensitat serà el ~ 39 % del valor final.
- T3) La impedància de la branca R-L-C val R+j $(L\omega-\frac{1}{C\omega})=1000-j$ 3156 Ω . Això és: $Z_{RLC}=3310\,\Omega$, $\varphi=-72.4^{\circ}$ i per tant la intensitat va avançada 72.4° respecte al potencial. Com que les dues intensitats eficaces són iguals, $Z_2=Z_{RLC}=3310\,\Omega$, i sabent que la intensitat I_2 va retardada en 90° respecte a I_1 , sabem que $\varphi_2=-72.4^{\circ}+90^{\circ}=17.6^{\circ}$ Així doncs, $\overline{Z}_2=3310/\underline{17.6^{\circ}}\,\Omega=3156+j\,1000\,\Omega$
- **T4)** Com $V_G = 5$ V tindrem $r_{DS} = \frac{1}{\beta V_{GT}} = \frac{1}{10^{-3} \cdot (5 0 1)} = 250 \ \Omega.$
- **T5)** Si ens fixem en la part inferior formada per transistors NMOS, veiem que el conjunt avalua la negació de la composició de C OR (A AND B), mentre que la part superior s'obté de convertir les tecnologies NMOS per PMOS, intercanviant connexions en sèrie per connexions en paral·lel i viceversa. Així doncs, aquesta porta CMOS implementa la funció lògica $\overline{AB+C}$.
- **T6)** Si l'ona viatja cap a la dreta amb velocitat v la funció d'ona per un instant de temps t qualsevol serà

$$f(x,t) = 0.15 e^{-((x-vt)+1.5)^2}$$

La condició de màxima elongació correspon al màxim de la funció f(x,t) que s'assoleix quan $((x-vt)+1.5)^2=0$. Per tant, per un x fix a un temps t=(x+1.5)/v. Introduint les dades de l'enunciat, 0.25=(2.5+1.5)/v trobem que $v=16\,\mathrm{m/s}$.

- **T7**) La diferència de fase entre les dues serà en general $\delta = k \Delta d + \pi$. Analitzem les diferents propostes per veure quina d'elles és la correcta:
 - $\Delta d = \lambda \Rightarrow \delta = 3\pi$. No estan en fase i la interferència es destructiva.
 - $\Delta d = \lambda/2 \Rightarrow \delta = 2\pi$. Estan en fase i la interferència és constructiva.
 - $\Delta d = 3\lambda \Rightarrow \delta = 7\pi$. No estan en fase i la interferència es destructiva.
 - $\Delta d = 3\lambda/2 \Rightarrow \delta = 4\pi$. Estan en fase i la interferència és constructiva. Aquesta és la correcta.
- **T8)** El nombre de fotons emesos per unitat de temps és $3.18 \cdot 10^{33}$ fotons/s. Com que cada fotó té una energia $E = hc/\lambda = 3.14 \cdot 10^{-19}$ J, la potència d'emissió del làser és $P = (3.18 \cdot 10^{33})(3.14 \cdot 10^{-19}) = 10^{15}$ W.

Resolució dels Problemes

Problema 1

- a) La quantitat de calor (energia) produïda pel radiador és $Q = P \cdot t = 1 \text{kW} \cdot \text{h}$. Com que el cost del kW·h és de 0.15, el cost total per escalfar l'habitació és de 0.15.
- b) Es requereix la mateixa quantitat de calor Q. El temps necessari ara serà t = Q/P = 1 kW·h / 2 kW = 0.5 h=30 min.
- c) Si la connexió es fa en paral·lel el voltatge en cada radiador és el mateix, 220 V. La potència total de que disposem és la summa de les dues, P=1 kW + 2 kW = 3 kW. El temps necessari és per tant t=Q/P=1kW·h / 3 kW = 1/3 h = 20 min.
- d) Quan els connectem en sèrie el voltatge en borns de cada radiador és menor de 220 V i la resistència total és la suma de les dues resistències. Les resistències dels radiadors les conec, $R_1 = V^2/P_1$ i $R_2 = V^2/P_2$. La resistència total és $R_e = R_1 + R_2 = V^2(1/P_1 + 1/P_2)$. La potència de que disposem serà $P = V^2/R_e = P_1P_2/(P_1 + P_2) = 2/3$ kW. El temps necessari per escalfar l'habitació en aquest cas és t = Q/P = (3/2) h = 90 min. Com veiem, és el temps més gran perquè la intensitat de corrent és més petita amb la mateixa caiguda de tensió de 220 V.

Problema 2

a) La intensitat en cada branca es pot trobar a partir de la potència i el factor de potència,

$$I_1 = P_1/(V\cos\phi_1) = 60\text{W}/(220\text{V}\cdot0.173) = 1.58 \text{ A},$$

 $I_2 = P_2/(V\cos\phi_2) = 900\text{W}/(220\text{V}\cdot0.985) = 4.15 \text{ A}.$

Es pot trobar la potència reactiva i aparent utilitzant el triangle de potencies. El desfasament en cada branca és

$$\phi_1 = \arccos(0.173) = 80.0^{\circ},$$

$$\phi_1 = \arccos(0.985) = 9.9^{\circ}.$$

Las potències reactives són

$$Q_1 = P_1 \tan \phi_1 = 60 \text{W } \tan(80.0^\circ) = 340 \text{ VA reactius},$$

$$Q_2 = P_2 \tan \phi_2 = 900 \text{W } \tan(9.9^\circ) = 157 \text{ VA reactius}$$

i las potències aparents

$$S_1 = P_1/\cos\phi_1 = 60$$
W $/0.173 = 347$ VA,

$$S_2 = P_2/\cos\phi_2 = 900 \text{W}/0.985 = 914 \text{ VA}.$$

- b) Suposant que la fase de la tensió és zero, les intensitats eficaces a cada branca són: $\bar{I}_1 = 1.58 / -80^{\circ} \text{A}$ i $\bar{I}_2 = 4.15 / -9.9^{\circ} \text{A}$. Sumant les intensitats trobem $\bar{I} = \bar{I}_1 + \bar{I}_2 = 4.92 / -27.5^{\circ} \text{A}$. Per tant la intensitat eficaç total és de 4.92 A. Aleshores, la potència activa consumida total serà $P = V I \cos(-27.5) = 960 \text{ W}$. Aquesta potència es pot obtenir també com la suma de P_1 i P_2 .
- c) Del càlcul fet a l'apartat anterior sabem que el desfasament total és $\phi=27.5^{\circ}$. Així, el factor de potència és $\cos\phi=0.89$.

La impedància del circuit és Z=V/I=220 V/4.92 A = 44.7 Ω i la reactància $X=Z\sin\phi=44.7$ $\Omega\sin27.5^\circ=20.6$ Ω . S'ha de connectar un condensador amb el mateix valor absolut de la reactància, $X=1/(C\omega)$, llavors la capacitat del condensador és $C=1/(\omega X)=1/(2\pi f X)=1/(2\pi\cdot50$ Hz·20.6 $\Omega)=1.54\cdot10^{-4}$ F = 154 μ F.

Problema 3

- a) Amb $V_A = 0\,\mathrm{V}$, la tensió de porta del transistor T1 és de 0 V. La tensió de font V_S de T1 és desconeguda, però necessàriament haurà de ser de valor positiu o zero, donat que la tensió a dalt és de 5 V i T2 es troba connectat a terra (=0 V). Per tant, la tensió porta-font haurà de ser $V_{GS} = V_G V_S = 0 V_S \leq 0$, la qual cosa ens indica que T1 es troba en tall. Però si es troba en tall, el corrent de drenador és $I_D = 0\,\mathrm{A}$. D'altra banda, al transistor T2 el drenador i la porta estan connectats, i per tant es troben a la mateixa tensió, $V_G = V_D$. Amb això resulta $V_{GS} = V_G V_S = V_D V_S = V_{DS}$, de forma que $V_{GS} V_T < V_{DS}$, la qual cosa ens indica que T2 treballa en saturació. Així doncs, el corrent de drenador per T2 ve donat per l'expressió $I_D = \beta (V_{GS} V_T)^2/2$, tot i que sabem d'abans que $I_D = 0\,\mathrm{A}$. Aquestes condicions només es verifiquen quan $V_{GS} = V_T$, i amb $V_S = 0\,\mathrm{V}$ això vol dir $V_G = V_T = 2\,\mathrm{V}$. Com que V_G es troba connectat directament al punt de sortida, resulta $V_{out} = 2\,\mathrm{V}$.
- b) Amb $V_A = 5 \,\mathrm{V}$, veiem dels resultats de l'apartat anterior que T1 no es pot trobar en tall, doncs si ho fes seria $V_S = V_{out} = 2 \,\mathrm{V}$ i això implicaria que $V_{GS} V_T = (5-2) 2 = 1 > 0$, incompatible amb l'assumpció original de que es troba en tall. De fet podem veure directament que T1 treballa en saturació, donat que V_A i V_D es troben al mateix valor de tensió de 5 V i per tant $V_{GS} = 5 V_{out} = V_{DS}$, la qual cosa implica que $V_{GS} V_T < V_{DS}$. Així doncs, per T1 resulta

$$I_D = \frac{1}{2}\beta (V_{GS} - V_T)^2 = \frac{1}{2}\beta (5 - V_{out} - 2)^2$$
.

D'altra banda sabem que T2 es troba en saturació tal com hem vist a l'apartat anterior, de forma que per aquest transistor, amb $V_G = V_{out}$ i $V_S = 0$ V, tenim que

$$I_D = \frac{1}{2}\beta(V_{out} - 0 - 2)^2$$
.

Com que T1 i T2 es troben connectats en sèrie, el corrent I_D és el mateix per tots dos i això implica la igualtat

$$(5 - V_{out} - 2)^2 = (V_{out} - 0 - 2)^2$$
,

o equivalentment $(3 - V_{out})^2 = (V_{out} - 2)^2$. Si expandim aquesta equació resulta

$$9 + V_{out}^2 - 6V_{out} = V_{out}^2 + 4 - 4V_{out}$$

d'on obtenim $2V_{out} = 5$ i per tant $V_{out} = 2.5 \,\text{V}$.