LendingClub

Fitting a Model

Lecture plan

- Decision Tree Geometric Interpretation
- Labeling the leaves
- Loss Function
- Regression Tree
- Linear Regression

Decision Tree Where we left off

leaf nodes = 2

Let $(x_1, ..., x_k)$ a tuple in the feature space, the a decision tree defines a function

$$y = Tree(x_1, ..., x_k)$$

• The decision tree induces a uni/multivariate piecewise constant function , aka a bar function

- The features of a particular individual $(x_1, ..., x_k)$ associates the individual to a group of individuals with features in a subspace in the feature space
- We must now associate with this group a number or label that will be the forecast for this group

In the setting of an urn with red and blue balls

 Our objective is to forecast a random draw from the urn

What would be a good forecast for the outcome?

Stat 101

What would be a good forecast depends on what is our *objective*

- [Case 1]: Guessing game where players are rewarded \$1 iff their forecast is identical to the draw
 - Objective:
 - maximize payoff / minimize loss
 - 0-1 win/loss
- [Case 2]: Guessing game with admission where players are rewarded \$1 less admission iff their forecast is identical to the draw
 - Objective:
 - play/not play
 - maximize payoff / minimize loss
 - Continuous win/loss

0-1 loss

[Case 1]: Guessing game where players are rewarded \$1 iff their forecast is identical to the draw

- Objective maximize the payoff
- 0-1 win/loss

Let $\widehat{x}_1 \dots \widehat{x}_k$ be a sample of individuals in the feature space, $\widehat{y}_1 \dots \widehat{y}_k$ be the corresponding labels of these individuals and l the forecast for a draw from the urn, we would like to optimize the following objective function

$$L(\widehat{y}) = \sum_{i} \chi_{\widehat{y_i} \neq l}$$

Optimizing Forecast: $L(\hat{y}) = Maj(\hat{y}_1 ... \hat{y}_k)$

 L_2 - loss

[Case 2]: Guessing game with admission where players are rewarded \$1 less admission iff their forecast is identical to the draw

- Objective:
 - play/not play
 - maximize payoff / minimize loss
- Continuous win/loss

Let $\widehat{y}_1 \dots \widehat{y}_k$ be as before and p the charge for playing the game

$$L(\widehat{y}) = \sum_{i} (\widehat{y}_i - p)^2$$

Optimizing Forecast: $L(\hat{y}) = mean(\hat{y}_1 ... \hat{y}_k) = \frac{1}{k} \sum_i \hat{y}_k$

 L_1 - loss

[Case 2]: Guessing game with admission where players are rewarded \$1 less admission iff their forecast is identical to the draw

- Objective:
 - play/not play
 - maximize payoff / minimize loss
- Continuous win/loss

Let $\widehat{y}_1 \dots \widehat{y}_k$ and p be as before $L(\widehat{y}) = \sum_i |\widehat{y}_i - p|$

Optimizing Forecast: $L(\hat{y}) = median(\hat{y}_1 ... \hat{y}_k)$

Maximal Likelihood

[Case 2]: Guessing game with admission where players are rewarded \$1 less admission iff their forecast is identical to the draw

- Objective:
 - play/not play
 - maximize payoff / minimize loss
- Continuous win/loss

Let
$$\widehat{y}_1 \dots \widehat{y}_k$$
 and p be as before and $k = \sum_i \widehat{y}_i$
 $L(\widehat{y}) = m \cdot \log(p) + (k - m) \cdot \log(1 - p)$

Optimizing Forecast: $p = \frac{m}{k} = median(\hat{y}_1 \dots \hat{y}_k)$

Decision Tree

Each leaf labeled 0/1
based on optimizing 0-1
loss on subspace of
feature space

Regression Tree

- Each leaf given the maximal likelihood probability on subspace of feature space
- ID3 algorithm optimizes on maximal likelihood loss

Regression Tree

The binary tree structure has 5 nodes with thefollowing structure:

node=0 test: if fico_range_low<=707.50 goto node 1 else to node 2

node=1 test: if term:: 36 months<=0.50 goto node 3 else to node 4

node=2 leaf

node=3 leaf

node=4 leaf

Linear Regression

