Soft Computing Clustering - I

Dr. Chun-Hao Chen

Outline

1. Types of Machine Learning (ML)

2. Clustering Algorithms and their Problems

3. Factors should be considered in Clustering

4. Implementation in Python I & II

Machine Learning

- ✓ Teach machine to learn to recognize things
- ✓ Divide into three categories

Utilizing a set of attributes
with or without the labels
to build a model (classifier)
to identify label of new instances
are supervised and unsupervised
learning

What is Label?

- ✓ For Tennis, the label is "to play(Yes)" or "not to play(No)"
 - e.g.

Consider only attributes for learning

Unsupervised Learning (Clustering)

Value

Value

If Outlook is Sunny and Wind is Weak, then playTennis is Yes

Attribute Name

Label

Consider attributes and label together for learning

→ Supervised Learning

Clustering Concept

- ✓ Divide instances into many groups by given attributes
 - ●e.g.
 - ✓ Use x and y axis values to obtain three clusters
 - ✓ Instances in the same cluster → Similar instances

source: https://mropengate.blogspot.com/2015/06/ai-ch16-5-k-introduction-to-clustering.html

Case Study: BMW Dealership Dataset

- √9 attributes in the dataset
 - CustomerID numeric, Dealership numeric, Showroom numeric,
 ComputerSearch numeric, M5 numeric, 3Series numeric,
 Z4 numeric, Financing numeric, Purchase numeric
- √ 20 instances selected from the dataset

@data	@data
1,1,0,0,0,0,0,0,0	11,1,0,1,1,1,1,1,0
2,1,1,1,0,0,0,1,0	12,1,0,1,1,0,1,0,0
3,1,0,0,0,0,0,0,0	13,1,0,1,1,0,0,1,1
4,1,1,1,1,0,0,1,1	14,1,1,1,0,0,1,1,0
5,1,0,1,1,1,0,1,1	15,1,0,1,1,1,1,0,0
6,1,1,1,0,1,0,0,0	16,1,1,1,1,1,0,1,1
7,1,0,1,0,0,0,1,1	17,1,0,1,0,0,0,1,1
8,1,0,1,0,1,0,0,0	18,1,0,1,0,0,0,1,0
9,1,1,1,0,1,0,1,0	19,1,1,0,1,1,0,0,0
10,1,0,1,1,1,1,1,1	20,1,0,0,1,0,0,0,0

Try to find customers with similar behavior from the 20 instances

Case Study: BMW Dealership Dataset (Cont.)

- ✓ Use *k*-means algorithm for finding groups
- ✓ When k = 5, via weak we can get following result

1 2 3 4	Attribute	Full Data (100)	Cluster# 0 (26)	1 (27)	2 (5)	3 (14)	4 (28)
5	Dealership	0.6	0.9615	0.6667	1	0.8571	0
6	Showroom	0.72	0.6923	0.6667	0	0.5714	1
7	ComputerSearch	0.43	0.6538	0	1	0.8571	0.3214
8	M5	0.53	0.4615	0.963	1	0.7143	0
9	3Series	0.55	0.3846	0.4444	0.8	0.0714	1
10	Z4	0.45	0.5385	0	0.8	0.5714	0.6786
11	Financing	0.61	0.4615	0.6296	0.8	1	0.5
12	Purchase	0.39	0	0.5185	0.4	1	0.3214
13							
14							
15	Clustered Instances						
16 17 18 19 20 21	0 26 (26%) 1 27 (27%) 2 5 (5%) 3 14 (14%) 4 28 (28%)						

Discussions

1 2 3 4	Attribute	Full Data (100)	Cluster# 0 (26)	1 (27)	2 (5)	3 (14)	4 (28)
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	Dealership Showroom ComputerSearch M5 3Series Z4 Financing Purchase Clustered Instances 0 26 (26%) 1 27 (27%) 2 5 (5%) 3 14 (14%) 4 28 (28%)	0.6 0.72 0.43 0.53 0.55 0.45 0.61 0.39	0.9615 0.6923 0.6538 0.4615 0.3846 0.5385 0.4615	0.6667 0.6667 0.963 0.4444 0 0.6296 0.5185	1 0 1 0.8 0.8 0.8 0.4	0.8571 0.5714 0.8571 0.7143 0.0714 0.5714 1	0 1 0.3214 0 1 0.6786 0.5 0.3214

What are the behaviors that you can find from the results?

The Well-Known Clustering Algorithm

- ✓ The *k*-means clustering algorithm
 - Proposed by MacQueen, 1967
 - Unsupervised learning algorithm
- ✓ Goal → Minimize intra-cluster distance, and Maximize inter-cluster distance
 - ●e.g.

An Example

- ✓ Assume
 - ●5 basketball players: P1, P2, P3, P4, P5
 - •Two attributes: Speed and Weight

	P1	P2	Р3	P4	P5
Speed	10sec(100m)	9sec(100m)	11sec(100m)	20sec(100m)	13sec(100m)
Weight	65kg	60kg	80kg	99kg	70kg

- ✓ Illustrate how *k*-means clustering algorithm work
 - Number of cluster k = 2

Step 1

- ✓Initialize *k* centers
 - Randomly select
 - $\bullet k = 2 \rightarrow$ Choose P1 and P2

	P1	P2	Р3	P4	P5
Speed	10sec(100m)	9sec(100m)	11sec(100m)	17sec(100m)	15sec(100m)
Weight	65kg	60kg	80kg	85kg	75kg

Step 2

- ✓ Assign each object to the group
 - According to the Euclidean distance
 - ●e.g. P5

After Step 2

✓ Assign other objects to the groups

Step 3

✓ Recalculate the new k centers

Center₂ \longrightarrow New Center₂ P1(65,10) ((65+75+80+85)/4, (10+15+11+17)/4)= (76.25, 13.25)

Step 4

✓ Repeat Steps 2 and 3

Instance

Concepts of *k*-Means

✓ Number of clusters = 3

The *k*-means Algorithm

- ✓ Parameter: A number of group k
- ✓ Algorithm: 4 Steps
 - Step 1: Initialize *k* centers
 - Step 2: Assign each object to the group✓ Find the closest center
 - •Step 3: Recalculate the new *k* centers
 - Step 4: Repeat Steps 2 and 3
 - ✓ Until the centers no longer move

Discussions

What are the problems of the k-means clustering algorithm that you can find?

Problems of *k*-means

- ✓ Limitations
 - Can not process outliners (noisy data points)
 - Cluster convergence
 - Number of clusters dependency
 - Cluster degeneracy

1. Noisy Data Points or Outliners

3. Number of Clusters Dependency

✓ Example $\rightarrow k = 4$ is the best

4. Cluster Degeneracy

✓ Example \rightarrow if k = 5

No object in cluster 5 → empty cluster

Discussions

- ✓4 limitations of *k*-means
 - Can not process outliners (noisy data points)
 - Cluster convergence
 - Number of clusters dependency
 - Cluster degeneracy

How to solve the four mentioned problems?

Solution I: Hierarchical Clustering

- ✓ Hierarchical Clustering Techniques
 - •Distinction between agglomerative and divisive techniques

Solution II: k-Medoids Clustering

- ✓ Difference between *k*-means and *k*-medoids
 - How to form next center points

Discussions: What if Dataset Like This...

✓ Instances with the same color mean the same cluster

How to find correct clustering results?

Solution I: DBSCAN Clustering

✓ Main Concept

MinPts: 4

DBSCAN Demo

Solution II: Grid-based Clustering

✓ Concept

An Example (Grid-based Clustering)

- ✓ Two parameters
 - Size of the predefined grids
 - Threshold of the significant cells

Size of The Predefined Grids

- ✓ Example
 - Predefined Grids → 5*5

Threshold of The Significant Cells

- ✓ Example
 - Threshold = 3

$$Cell(1, 2) = 3 \rightarrow Significant Cell$$

Cell
$$(2, 5) = 4 \rightarrow$$
 Significant Cell

$$Cell(1, 1) = 1 \rightarrow Not a Significant Cell$$

ADCC Approach

- ✓ Adaptable Deflect and Conquer Clustering (ADCC)
 - ●1. Call SGDC (first time) → Generate ClusterResult₁
 - ●2. Call SGDC (second time) → Generate ClusterResult₂
 - ●3. Call DedflectAndConquer procedure
 - ✓ Merge ClusterResult₁ & ClusterResult₂

Call SGDC (First Time)

- ✓ Example
 - ●The Predefined Grids → 5*5
 - ●Threshold = 3

Call SGDC (Second Time)

- ✓ Example
 - ●Shift half cell to form new grids → 6*6
 - ●Threshold = 3

1. Gray parts are significant cell

2. Combine connected significant cells to form cluster

Merging Clustering Results

Types of Clustering Methods

- ✓ Partitioning
 - K-Means, K-Medoids, PAM, CLARA, CLARANS, CAST, ...
- √ Hierarchical
 - HAC, BIRCH, CURE, ROCK, CHAMELEON, ...
- ✓ Density-based
 - DBSCAN, OPTICS, CLIQUE, WaveCluster, ...
- √ Grid-based
 - ADCC, STING, CLIQUE, WaveCluster, ...

Discussions

Could you find any possible ways to get a better clustering result?

Appropriate Similarity Measurement?

✓ The *k*-means clustering algorithm

How You Think About the Similarity?

Source: https://www.twgreatdaily.com/cat74/node1999089

However, computer may identify them as similar photos.
Why?

How You Think About the Similarity (Cont.)?

How you think about the similarity of the two stock price series?

Similarity Measurements

- ✓ Types of similarity measurements
 - Distance measurements
 - Correlation coefficients
 - Association coefficients
 - Probabilistic similarity coefficients

Correlation Coefficients

- ✓ Pearson correlation coefficient (1892)
 - Most popular correlation coefficient
- √ Correlation between
 - $X=\{X_1, X_2, ..., X_n\}$ and $Y=\{Y_1, Y_2, ..., Y_n\}$:

where
$$r = \frac{1}{n} \sum_{k=1}^{n} \left(\frac{X_k - \overline{X}}{\sigma_X} \right) \left(\frac{Y_k - \overline{Y}}{\sigma_Y} \right)$$

$$\sigma_G = \sqrt{\sum_{k=1}^n \frac{\left(G_k - \overline{G}\right)^2}{n}}$$

Correlation Coefficients (Cont.)

- ✓ Capture similarity of the "shapes" of two expression profiles
- ✓ Ignore differences between their magnitudes

r = 1.0

Discussion 1

k-means clustering

In k-means clustering, each data point should belong to a group.

How do you think about that?

Discussion 2

- ✓ Continue previous example
 - \bullet Number of clusters k = 2

Do we have any approach to get clusters without the *k* value?

Implementation In Python

- ✓ I Using Height & Weight for clustering
- ✓ II Using make_blobs to generate dataset for clustering.