第一章 绪论

1.1 天气图基本知识

1816年世界上第一张天气图

小圆投影为椭圆

重要性 早期的天气预报,主要依靠天气图分析技术

随着观测技术的发展和天气预报方法的增多,数值预报、卫星、雷达等极大地丰富了天气预报产品, 提高了预报准确率。但是,天气图的分析预报方法仍然是天气预报中不可缺少的工具之一。

天气图 天气图是指填有各地同一时间气象要素的特制地图。

在天气图底图上,填有各城市、测站的位置以及主要的河流、湖泊、山脉等地理标志。 经过绘制和分析,能够反映一定地区范围内天气情况。

历史发展 **1816 年,德国**气象学家**布兰德斯**收集了 1783 年 3 月 6 日欧洲 39 个地面观测站资料,并将这些观测 记录填在地图上,在莱比锡绘成了世界上第一张天气图。这是近代地面天气图的先驱,现代天气图就 是在此基础上发展起来的。

1856年、法国成立了世界上第一个正规的天气预报服务系统。

1857 年,比、荷、英、俄、奥、瑞士等国的响应,开始用<mark>电报</mark>传送当日气象观测记录。

以后不久、欧美各国和日本也都开始拍发电报、绘制天气图。

1915年,中国的第一张天气图;1916年正式发布天气预报

20 世纪 30 年代,世界上建立高空观测网之后,才有高空天气图。

① 地面天气图 (简称地面图) 分类

- ② 高空天气图 (简称高空图,普遍采用等压面图)
- ③ 辅助图表(剖面图、单站高空风分析图、温度-对数压力图等)

内容 天气图包含**天气图底图、测站资料、等值线**等

在天气图底图上,填有各城市、测站的位置以及主要的河流、湖泊、山脉等地理标志

意义 1. 修正电脑绘制的等值线。绘制槽线、切变线和锋面等。

- 2. 有利于掌握天气系统演变分析和总结的能力, 初步建立以天气图方法为主的天气预报思路。
- 3. 巩固和加深对天气学原理的理解,有助于应用所学到的天气学原理和动力气象学的知识来解决天气 分析中的实际问题。

1.2 地图投影

1.2.1 地图投影的概念

概念 地图投影就是按照一定的数学条件,将地球上的**经纬线及海陆地块等地球表面**情况在**平面**上表示出来

1.2.2 投影误差

投影面上**长度的缩放倍数随地点和方向的变化**而不同 距离误差

面积误差 是指投影面上**面积的缩放倍数随地点的变化**而变化

角度误差 也叫形状误差,它是指投影面上**任意两条交线的夹角不等于地球表面上相应两条交线的夹角**,或者说, 投影面上某一地理区域的形状与地球表面上相应区域的形状不相似。

1.2.3 投影种类

1.2.3.1 按投影误差分类

是指经过投影后地球表面微小区域的任意两条交线的夹角保持不变,并且投影面上任意一点在各个方 正形投影

向上长度的放大或缩小的倍数相等,也就是说,投影之后不产生角度、形状和距离误差。

会产生面积误差,如墨卡托投影、横轴墨卡托投影。

地图中任何部分的面积与地球表面相应实际面积的比例都相等,没有面积误差,有形状与距离误差 等积投影

投影后既有形状误差、距离误差. 又有面积误差 任意投影

1.2.3.2 按投影面形状分类

也称为方位投影,把地表经纬线网格投影到一个与地球仪相切之平面,从切点到图上任一点的方位角 平面投影

皆保持不变。常用于两极地区。地图的经线均为放射状直线、纬线都是同心圆

以圆锥面和地球仪相交于一条纬线上,把地表经纬网格投影到圆锥面。适用于中纬度地区 圆锥投影

把地表经纬线网格投影到圆柱面上,产生一组正交经线与纬线。适用于一般世界地图 圆柱投影

圆锥投影

1.2.4 基本概念与重要因子

映像面 投影的投射面(投影面) 即上图框罩部分

映像面沿投影后的某一条经线切开所展成的平面 即上图右侧部分 映像平面

映像平面按一定比例缩小后的图。 地图

映像面与地球表面相切的投影。上图示例均为切投影 割投影 映像面与地球表面相割的投影。 切投影

指映像面**与地球表面相交的纬度**。在标准纬度,映像面的距离是精确的等于地球表面的距离。 标准纬度

映象比例尺 映象面上的距离/地球表面相应距离

缩小比例尺 地球上任意纬度上的距离/映象平面上相应距离

比例尺表示 比例式 1:10000000 分数式 1/10000000

文字式 千万分之一 图解式

复合图解式

1.2.5 常用投影

1.2.5.1 极射赤面投影

极射赤面投影是一种**正形割投影**,属平面投影。光源位于南极,标准维度为60N 概述

经线 一组由北极向赤道发出的放射状直线

纬线 一组以北极点为圆心的同心圆

在极地和高纬地区产生的变形较小,这种投影方式通 用途

常用于制作极地天气图和北半球天气图底图

极射赤面投影

1.2.5.2 兰勃特投影

兰勃特投影也是一种**正形割投影**,属圆锥投影。光源位于地心, 概述

标准维度为30N、60N

一组由北极向赤道发出的放射状直线 经线 一组以北极点为圆心的同心圆弧 纬线

在中纬度地区产生的形变较小,这种投影方式通常用于 用涂

制作中纬度地区的天气图,如欧亚天气图底图

1.2.5.3 墨卡托投影

一种**正形割投影**,光源为地球球心,是圆柱投影,标准维度为22.5N、22.5S 概述

兰伯特投影