PLANO DE AULA DE MATEMÁTICA	Aula: 13-14-15 – 1BIM2022
Título: Dízimas periódicas	Prof. Edilson Fonseca

DÍZIMAS PERIÓDICAS

1 – **Organização da sala:** verificar o posicionamento das carteiras, proximidades, alunos no corredor, utilização de máscara, disponibilidade de álcool para as mãos.

2 Conteúdo desenvolvido:

Os números racionais e as dízimas periódicas (páginas 21-22 do livro didático)

Toda dízima periódica é um número racional, pois pode ser transformada em uma fração. Essa fração é chamada de fração geratriz, pois ela gera, dá origem à **dízima periódica**.

Observe a dízima 0,123321456789» Como ela não é periódica (não há parte que se repete), não é possível transformá-la em uma fração. Esse tipo de número, que você estudará no livro do 90 ano, não pertence ao conjunto dos números racionais.

Algumas dízimas periódicas são simples, pois o período (parte que se repete) aparece logo depois da vírgula. Por exemplo, $0.33 \dots 3.262626 \dots e 0.\overline{248}$ são dízimas periódicas simples.

Para transformar uma dízima periódica em uma fração, ou seja, para determinar a fração geratriz de uma dízima periódica, podemos usar equações. Veja como isso é possível acompanhando, inicialmente, os exemplos para as dízimas periódicas simples.

Dízima periódica simples: 0,7777... = ?

$$x = 0,7777...$$
 $10x = 7,7777...$
 $10x = 7 + 0,7777...$
 $x = 0,7777.$

Dízima periódica simples: 0,353535... = ?
$$x = 0,353535...$$

$$100x = 35,353535...$$

$$100x = 35 + \underbrace{0,35353535...}_{x}$$

$$100x = 35 + x$$

$$100x - x = 35$$

$$99x = 35$$

$$x = \frac{35}{99}$$

Processo prático: Escrever no numerador o número formado pela parte periódica e, no denominador, o número formado por tantos algarismos 9 quantos forem os algarismos do numerador (ou seja, da parte periódica).

Exemplos:

Processo prático: 0,353535... =
$$\frac{35}{99}$$
 dois algarismos 9

período com
2 algarismos

Veja outros exemplos para dízimas periódicas simples.

•
$$0,666... = \frac{6}{9} = \frac{2}{3}$$
 • $1,444... = 1 + \frac{4}{9} = 1\frac{4}{9} = \frac{13}{9}$
• $0,\overline{376} = \frac{376}{999}$ • $0,181818... = \frac{18}{99} = \frac{2}{11}$

Agora, acompanhe os exemplos de como determinar a fração geratriz de dízimas periódicas compostas.

Dízima periódica composta: 0,25555... = ?
$$x = 0,25555...$$

$$10x = 2,5555...$$

$$10x = 2 + 0,5555...$$

$$\frac{5}{9}$$

$$10x = 2 + \frac{5}{9}$$

$$90x = 18 + 5$$

$$90x = 23$$

$$x = \frac{23}{90}$$

Dízima periódica composta: 0,25444... = ?
$$x = 0,25444...$$

$$100x = 25,444...$$

$$100x = 25 + 0,444...$$

$$\frac{4}{9}$$

$$100x = 25 + \frac{4}{9}$$

$$900x = 225 + 4$$

$$900x = 229$$

$$x = \frac{229}{900}$$

Fonte: Dante, Luiz Roberto. Teláris matemática, 7º ano: ensino fundamental, anos finais / Luiz Roberto Dante. -- 3. ed. -- São Paulo: Ática, 2018.

PLANO DE AULA DE MATEMÁTICA	Aula: 13-14-15 – 1BIM2022
Título: Dízimas periódicas	Prof. Edilson Fonseca

Outros exemplos:

• 0,5212121... =
$$\frac{521-5}{990} = \frac{516}{990}$$
 • 0,7222... = $\frac{72-7}{90} = \frac{65}{90}$ • 0,25 $\frac{1}{37} = \frac{2537-25}{9900} = \frac{2512}{9900}$

•
$$0,7222... = \frac{72-7}{90} = \frac{65}{90}$$

•
$$0.25\overline{37} = \frac{2537 - 25}{9900} = \frac{2512}{9900}$$

Atividade

No caderno, transforme cada dízima periódica em fração irredutível.

a) 0,151515...

e) 0,3263 c) 0,777...

g) 1,111...

i) 2,1222...

b) 0, 287

d) 0,2414141... f) 0,185222...

h) 0,0111...

j) 5,546

Fonte: Dante, Luiz Roberto. Teláris matemática, 7º ano: ensino fundamental, anos finais / Luiz Roberto Dante. -- 3. ed. -- São Paulo: Ática, 2018.