BLACKBOARD PROOFS

CSE202 - WEEK 3

1. Properties of primitive roots of unity

1. If ω is a primitive *n*th root of unity, then so is ω^{-1} .

Proof. First ω is invertible, since $\omega^n=1=\omega\omega^{n-1}$ shows that ω^{n-1} is the inverse of ω . Next, multiplying both sides of $\omega^n=1$ by ω^{-n} gives $1=\omega^{-n}=(\omega^{-1})^n$, which shows that ω^{-1} is a nth root of 1. It is primitive since if $\omega^{-t}=1$, then multiplying both sides by ω^t implies $1=\omega^t$, which cannot happen for $t\in\{1,\ldots,n-1\}$ since ω is primitive.

2. If n = pq then ω^p is a primitive qth root of unity.

Proof. It is a qth root of 1 since $(\omega^p)^q = \omega^{pq} = \omega^n = 1$. It is primitive, since $(\omega^p)^t = \omega^{pt}$ and $t \in \{1, \dots, q-1\}$ implies $pt \in \{1, \dots, n-p\}$ and $(\omega^p)^t \neq 1$ for those values.

3. For
$$\ell \in \{1, \dots, n-1\}$$
, $\sum_{i=0}^{n-1} \omega^{\ell j} = 0$.

Proof.

$$(\underbrace{1-\omega^{\ell}}_{\neq 0})(1+\omega^{\ell}+\cdots+\omega^{(n-1)\ell})=1-\omega^{n\ell}=0$$

shows that the second factor in the left-hand side is 0.

2. The DFT of a linear combination of cosines

By linearity it is sufficient to consider the DFT of

$$c\cos(kx+\ell) = c\frac{e^{i\ell}e^{ikx} + e^{-i\ell}e^{-ikx}}{2},$$

given by its evaluations at $(0, 2\pi/n, \dots, 2(n-1)\pi/n)$. Again by linearity, this DFT decomposes as

$$\frac{ce^{i\ell}}{2} \operatorname{DFT}_{\omega}(1, e^{2ik\pi/n}, \dots, e^{2ik(n-1)\pi/n}) + \frac{ce^{-i\ell}}{2} \operatorname{DFT}_{\omega}(1, e^{-2ik\pi/n}, \dots, e^{-2ik(n-1)\pi/n}).$$

Since in this computation $\omega = e^{-2i\pi/n}$, this rewrites

$$\frac{ce^{i\ell}}{2} \operatorname{DFT}_{\omega}(1, \omega^{-k}, \dots, \omega^{-k(n-1)}) + \frac{ce^{-i\ell}}{2} \operatorname{DFT}_{\omega}(1, \omega^{k}, \dots, \omega^{k(n-1)}).$$

The first DFT $_{\omega}$ in this sum is the evaluation of

$$1 + \omega^{-k}X + \dots + \omega^{-k(n-1)}X^{n-1}$$

at the powers of ω . Clearly, at $X=\omega^k$, all summands are equal to 1 and the sum is n. At $X=\omega^j$ with $j\neq k$, the polynomial evaluates to the sum of the first n $\omega^{j-k}=\omega^{n-k+j}$. By the 3rd part of the properties of Section 1, that sum is 0.

Thus we obtain that the first DFT $_{\omega}$ is 0 everywhere except at index k, where it is n. Similarly, the second one is everywhere 0, except at index n-k, where it is n. The final formula is obtained by linear combination.

3. Lemma for Divide-And-Conquer

Since n=2k and $\omega^n=1$, it follows that

$$0 = \omega^n - 1 = (\omega^k - 1)(\omega^k + 1).$$

Now, since ω is a *primitive* root of 1, $\omega^k \neq 1$ and therefore the last term of the product is 0, ie, $\omega^k = -1$.

Alternatively, this is a special case of part 2 of the properties of primitive roots of unity, with q = k and p = 2, as -1 is the only primitive root of unity of order 2.

4. Proof of correctness of the FFT algorithm

For n = 1, the algorithm must return A(1), which is a_0 in that case.

Otherwise, since n is a power of 2, k is well-defined and strictly smaller than n, which gives termination of the algorithm.

By Slide 15, the polynomials R_e and R_o are the remainders of the Euclidean division of A by X^k-1 and X^k+1 . Then by Slide 14, for all m, R_e and S_o are such that $R_e(\omega^{2m})=A(\omega^{2m})$ while $S_o(\omega^{2m})=R_o(\omega^{2m+1})=A(\omega^{2m+1})$, which concludes the proof.