- (d) (cf. Ex.2.14(b)) Consider Af = f' on E = C[-1,0] with $D(A_{\Psi}) = \{f \in C^1 : f'(0) = \Psi(f)\}$ where the linear functional Ψ satisfies $\Psi + \alpha \delta_{\stackrel{\frown}{O}} \ge 0$ for some $\alpha \in \mathbb{R}$ (see B-II,Ex.1.22). The corresponding semigroup is irreducible if and only if $-1 \in \text{supp } \Psi$.
- (e) The second derivative Af = f" generates an irreducible semigroup on $C_O(\mathbb{R})$ and on $C_O(0,1)$ (cf. A-I,2.7). With Neumann boundary conditions (or more generally: f'(0) = $\alpha_O(0)$, f'(1) = α_1 f(1) where α_O , $\alpha_1 \in \mathbb{R}$) the second derivative generates an irreducible semigroup on C[0,1] (cf. A-I,2.7).

The operator Af = f" - Vf on $C_O(\mathbb{R})$, where V is continuous, real-valued with inf $V(x) > -\infty$ (see Example 2.14(a)) also generates an irreducible semigroup. This can be derived from the maximum principle as follows: For $\lambda > -\inf V(x)$, $f \in C_O(\mathbb{R})$, $g := R(\lambda,A)f$ we have $g \in C^2$ and $g" - (\lambda + V)g = -f$. If f > 0, then g > 0, hence [Protter-Weinberger (1967), Chap.I, Thm.3] implies that g is strictly positive.

(f) The Laplacian Δ generates an irreducible semigroup on $C_O(\mathbb{R}^n)$ as can be seen easily from A-I,2.8. More general elliptic operators will be discussed below (see Ex.3.10(b)).

We now return to the general situation and show that irreducible semigroups possess several interesting properties.

<u>Proposition</u> 3.5. Suppose A is the generator of a strongly continuous semigroup on $C_{_{\hbox{\scriptsize O}}}(X)$ which is irreducible. Then the following assertions are true:

- (a) $\sigma(A) \neq \emptyset$;
- (b) every positive eigenfunction of A is strictly positive;
- (c) every positive eigenvector of A' is strictly positive;
- (d) if ker(s(A) A') contains a positive element (e.g., if X is compact (cf. Thm.1.6)), then $dim(ker(s(A) A)) \le 1$;
- (e) if s(A) is a pole of the resolvent, then it is algebraically simple. The residue has the form $P=\phi$ 0 u where $\phi\in E'$ and u $\in E$ are strictly positive eigenvectors of A' and A, respectively, satisfying $\langle u, \phi \rangle = 1$.
- <u>Proof.</u> (a) Take any $f_O \in C_O(X)$ which is positive and has compact support. If $\lambda > s(A)$, then $R(\lambda,A)f_O$ is strictly positive (by Def.3.1(v)), hence there exists $\varepsilon > 0$ such that $R(\lambda,A)f_O \ge \varepsilon f_O$. It follows that $R(\lambda,A)^n f_O \ge \varepsilon^n f_O \ge 0$ for all $n \in \mathbb{N}$ and therefore