

Provas de ingresso específicas para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica, Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA ELETROTÉCNICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

PROVA MODELO 2016

Duração da prova: 120 minutos

Nome:				
CC/BI	/ Passaporte N.º	 Validade:/	<i>/</i>	

INSTRUÇÕES (leia com atenção, por favor)

- Os candidatos com aprovação em cursos preparatórios para o ingresso no ensino superior, organizados no âmbito de uma área departamental, poderão optar pela creditação das classificações aí obtidas como sendo a classificação do conjunto das perguntas da prova relativas às matérias já avaliadas nesses cursos. Para este efeito, consideram-se apenas os cursos homologados pelo conselho técnico-científico.
- Indique em todas as folhas o número do seu CC, BI ou Passaporte. Coloque esse documento de identificação sobre a mesa para validação de identidade.
- As respostas devem ser efetuadas nos locais apropriados de resposta, nesta mesma prova, utilizando caneta preta ou azul.
- As questões de desenvolvimento devem ser também respondidas nas folhas de prova. Se necessitar de mais folhas de resposta solicite-as aos professores vigilantes. Numere todas as folhas suplementares que utilizar.
- Não utilize corretor ou borracha para eliminar respostas erradas. Caso se engane, risque a resposta errada e volte a responder.
- Se responder a alguma questão fora do local apropriado de resposta, indique no local da resposta que esta foi efetuada em folha anexa.
- Para a realização desta prova será permitido o seguinte material de apoio: caneta, lápis e máquina de calcular.
- Durante a realização da prova os telemóveis e outros meios de comunicação deverão estar desligados. A utilização destes equipamentos implica a anulação da prova.

ESTRUTURA DA PROVA

- **Grupo 1** Três questões de resposta múltipla de matemática.
- **Grupo 2** Um problema de matemática.
- **Grupo 3 -** Três questões de resposta múltipla de física.
- **Grupo 4** Um problema de física.
- Grupo 5 Dois problemas enquadrados nos conteúdos do curso.
- Grupo 6 Questão para desenvolvimento de assunto de cultura científica na área do curso.

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -1/5 de valor)

Para cada uma das questões indique **a resposta correta** do seguinte modo **X**.

- 1. Considere no espaço o plano de equação x + 2y z = 1. A reta que passa no ponto (2,1,2) e é perpendicular a este plano, pode ser definida por:
 - \square (A) $(x, y, z) = (2,1,2) + k(1, -2, -1), k \in \mathbb{R}$
 - \Box (B) $x = y + 3 \land z = y 5$
 - \square (C) $x-2=\frac{1}{2}(y-1)=2-z$
 - \square (D) $(x, y, z) = (2,1,2) + k(-1, -2, -1), k \in \mathbb{R}$
 - \square (E) $x-2=\frac{1}{2}(y-1)=z-2$
- 2. O domínio da função $f(x) = \sqrt{\frac{5-x}{x+3}}$ é:
 - $\square (A)] \infty, -3[$
 - \square (B) [5, + ∞ [
 - \Box (C)] 3,5]
 - \square (D)] $-\infty$, $-3[\cup [5,+\infty[$
 - \square (E) \mathbb{R}
- **3.** Um aluno tem 3 livros de Matemática, 4 de Física e 3 de Química (todos diferentes). De quantas formas distintas os pode arrumar numa prateleira caso queira manter juntos os livros da mesma disciplina?
 - \square (A) $7! \times 3!$
 - \square (B) $3! \times 4! \times 3!$
 - □ (C) 10!
 - \square (D) $3! \times 3! \times 4! \times 3!$
 - \square (E) $3! \times 10!$

CC / BI / Passa	porte N.º	
CC/DI/Passa	pone iv	

(Cotação: 2,0 valores)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Considere o polinómio $p(x) = x^3 - 3x^2 - 9x + 27$.

- a) Sabendo que x = 3 é um zero de p, determine os restantes zeros.
- b) Escreva os intervalos de monotonia de p. Justifique todos os passos.

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -1/5 de valor)

Indique <u>as respostas corretas</u> do seguinte modo ⊠

1. Num teste de performance, um automóvel é submetido durante 2 minutos a mudanças de velocidade e aceleração em movimento retilíneo. Sabe-se que no percurso total a sua velocidade foi constante durante 45 s e que o módulo da sua aceleração nunca excedeu os 3 m·s⁻².

Diga qual dos gráficos, A, B, C ou D, representa a sua velocidade durante o teste:

Ш	gráfico A	A	⊔ grá	tico l	3 L	⊥ grá	itico (C	⊔ gı	atico	D	Ш	nen	hum	dos	grái	1COS
---	-----------	----------	-------	--------	-----	-------	---------	---	------	-------	---	---	-----	-----	-----	------	------

- 2. Diga qual das seguintes afirmações é verdadeira:
 - ☐ (A) Quando um objeto é largado de um balão com movimento horizontal, a trajetória do objeto é igual quer para um observador no solo, quer para um observador no balão.
 - ☐ (B) A aceleração de um veículo com movimento retilíneo uniformemente retardado varia no tempo.
 - \Box (C) Se a velocidade de um veículo, inicialmente em repouso, varia a uma taxa de 10 m·s⁻² durante 5 s, a sua velocidade final será igual a 180 km·h⁻¹.
 - \square (D) Se um corpo, inicialmente em repouso, sofre uma aceleração de 10 m·s⁻², ao fim de 5 s alcança uma velocidade de 50 km·h⁻¹.
 - ☐ (E) A distância de travagem de um veículo em movimento depende apenas da velocidade no instante da travagem.

3. Um bloco de massa m desloca-se numa superfície horizontal sob a ação de várias forças, entre as quais a força \vec{F} de módulo F constante que atua com sentido oposto ao do movimento, como se mostra na figura.

O trabalho W realizado por esta força quando o bloco percorre uma distância d entre as posições A e B é:

- \square (A) W = mFd
- \square (B) W = -mFd
- \square (C) $W = \frac{F}{d}$
- \square (D) W = -Fd
- \square (E) W = 0

GRUPO 4

(Cotação: 2 valores)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Duas cargas pontuais $q_1 = +1$ C e $q_2 = +1$ C estão situadas a 2 m uma da outra como se mostra na figura.

Sabendo que $k = 9 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$, determine:

- a) em que posição o campo elétrico produzido pelas duas cargas é nulo.
- b) a força elétrica exercida pela carga q_1 sobre a carga q_2 .
- c) a força elétrica total exercida sobre uma terceira carga pontual $q_3 = -2$ C, colocada no ponto P.

(Cotação total: 6,0 valores; cotação parcial: 3,0 valores por problema)

Resolva os problemas propostos na folha de prova e indique claramente a resposta final dos mesmos. Se o espaço para responder se mostrar insuficiente poderá usar o verso da folha para continuar a resposta.

1) Considere o circuito:

Valores lidos nos aparelhos de medida:

A: 2 A

V: 18 V

Com base nos valores lidos nos aparelhos de medida, calcule justificadamente:

- a) O valor da resistência elétrica R da lâmpada.
- b) Os valores da potência dissipada e da energia consumida na lâmpada durante 6h15m de funcionamento.

2) No esquema seguinte ambos os interruptores $(S_1 \, e \, S_2)$ estão abertos.

Considerando que:

- 1- O amperímetro marcou 3 A com o interruptor S_1 fechado e S_2 aberto.
- 2- O amperímetro marcou 2 A com o interruptor S_1 aberto e S_2 fechado.
- a) Calcule o valor da tensão de alimentação U.
- b) Qual o valor da resistência total do circuito quando os interruptores S_1 e S_2 estiverem fechados?

CC / BI / Passa	norto Nº	
CC / DI / Fassa	porte ia.	

(Cotação: 4,0 valores)

Responda ou desenvolva o tema proposto. Escreva entre 10 a 15 linhas.

No nosso planeta encontramos diversos tipos de fontes de energia. Considere os seguintes exemplos:

- 1- Energia hidráulica
- 2- Energia fóssil
- 3- Energia solar
- 4- Energia de biomassa
- 5- Energia eólica
- 6- Energia nuclear
- 7- Energia geotérmica
- 8- Energia das marés
- 9- Energia das ondas

Escolha de entre os exemplos supracitados, *3 tipos de energia renovável* cuja utilização seja francamente viável em Portugal Continental e Ilhas.

Apresente as vantagens e desvantagens das energias por si escolhidas, em relação ao seu potencial de utilização em Portugal do ponto de vista económico e ambiental.

Que medidas regulamentares e de incentivo deverão ser incorporadas num futuro Plano Energético Nacional de modo a maximizar as vantagens das suas escolhas.