Samenvatting wiskunde 3 ^{de} graad – module 2 – analyse – reële functies (1) – 7u wiskunde (Y) VOORWOORD Dit is de samenvatting ter voorbereiding van de toets over reële functies.	
(1) HET VELD DER REËLE GETALLEN	
*We hebben vo → Het een gro *In ℝ, +, . defin reëel getal om → Dit laatste r zonder dat v → EXTRA: In ℂ hebben en 2 kennen aan	PEND VELD DER REËLE GETALLEN rige module gezien dat \mathbb{R} , $+$, . een geordend veld is, dit betekende dat ep, commutatieve ring mét eenheidselement is $+$ een symmetrisch element heeft. ieerden we een totale orderrelatie, hierdoor kunnen we intervallen definiëren en elk sluiten tussen 2 opeenvolgende gehele getallen. Bv. $2 < 2,532 < 3$. Hoemen we de axioma van Archimedes , een axioma is iets dat we voor 'waar' nemen we er enig bewijs voor leveren. $4, +, +, +, +, +, +, +, +, +, +, +, +, +,$
	EK VAN (NIET-LEGE DEEL-)VERZAMELINGEN IN $\mathbb R$ voorhand: alle voorbeelden zijn gedaan op twee deelverzamelingen van $\mathbb R$, namelijk $V_1=\{0,1,2,3\}$ en $V_2=[2,15]$
	 bovengrens (majorant) = Alles hoger/gelijk aan de hoogste waarde in de verzameling → Majorant V₁ bestaat niet, de verzameling loopt tot in het oneindige door! → Majorant V₂ = voorbeelden: 15, 19, 32, 394 (alle antwoorden zijn juist) bondergrens (minorant) = Alles kleiner/gelijk aan de kleinste waarde → Minorant V₁ = 0, -1, -93384 ⇔ minorant V₂ = -1, 1, -6 supremum = de kleinste majorant (bovengrens) van de verzameling → Supremum V₁ bestaat niet, de verzameling loopt in het oneindige door. → Supremum V₂ = 15 infimum = de grootste minorant (ondergrens) van de verzameling → Infimum V₁ = 0 ⇔ Infimum V₂ = 2 (let op: desondanks 2 niet tot de verzameling behoort zal de verzameling 2 benaderen waardoor we het toch als inf. rekenen) maximum = als hij bestaat geld: max V = sup V (sup = supremum) → Max V₁ bestaat niet, de verzameling loopt in het oneindige door. → Max V₂ = 15 minimum = als hij bestaat geldt: min V = inf V → Min V₁ = 0

(1B) DE UITGEBREIDE REËLE RECHTE

* \mathbb{R} heeft géén grootste- of kleinste element. We breiden de reële getallenas uit met de getallen plus- en min oneindig. ∞ zelve is echter géén reëel getal!

 \rightarrow Min V₂ bestaat niet, desondanks de verzameling 2 nadert mogen we 2 niet als

minimum rekenen van de verzameling. 2 blijft wél de infimum van de verzameling.

(1BI) BELANGRIJKSTE REKENREGELS MET ONEINDIG

- *De meeste rekenregels zijn voor de hand liggend, echter is er iets speciaals.
- *VOORBEELDOEFENINGEN: (1) $7 + (+\infty) = +\infty$

Merk op dat je de haakjesregel die in R geldt ook voor oneindig geldt, echter als je iets vermenigvuldigt ermee of optelt en aftrekt blijft het oneindig.

- → Een getal vermeerdert met oneindig is oneindig.
- (2) $12 + (-\infty) = 12 \infty = -\infty$
- → Een getal vermindert met oneindig is min oneindig.
- $(3) \ 0.(\pm \infty) = /$
- → Nul vermenigualdigd met oneindig is onbepaald.
 - → Wie oneindig vermenigvuldigt met nul, is een snul.

$$(4) + \infty + (-\infty) = /$$

 \rightarrow We kunnen niet het symmetrisch element pakken van ∞

$$(5) (-4) \cdot (+\infty)^4 + 3 \cdot (-\infty) = -\infty$$

(1C) ABSOLUTE WAARDE VAN EEN REËEL GETAL

Definitie: $\forall \mathbf{x} \in \mathbb{R}$: $|\mathbf{x}| = \mathbf{x}$ \mathbf{v} $|\mathbf{x}| = -\mathbf{x} \rightarrow \text{Bijvoorbeeld: } |-3| = 3!$

Belangrijkste eigenschappen $|x| = 5 \Leftrightarrow x = 5 \ v \ x = -5$

Enkele andere voor de hand liggende eig.:

Ix . yI = IxI . IyI

lx/yl = lxl / lyl

 $|\chi^2| = |\chi|^2$

|!!! |x - y| = |y - x| !!!

→ Aftrekking is hier wél commutatief! Normaal in andere bewerkingen niet!

→ De vergelijking valt uiteen als je een vergelijking oplost.

$$|x| < 5 \Leftrightarrow -5 < x < 5$$

→ Als je een ongelijkheid oplost met kleiner dan zit x in een interval.

$$|x| > 5 \Leftrightarrow x > 5 v x < -5$$

→ Een ongelijkheid met groter dan zorgt voor een gebroken interval.

$$|x + y| \le |x| + |y| \rightarrow$$
 Neem bijvoorbeeld getallen: 5 = x en -3 = y

| 5+(-3)| ? ≤? |5| + |-3| ⇔ |2| ? ≤? |8| ⇔ 2! ≤!8

(1D) OMGEVINGEN IN $\mathbb R$

- *Een omgeving van een reëel getal a is een interval in \mathbb{R} dat a bevat.
- \rightarrow Bijvoorbeeld V₂ van puntje (1AI) is een omgeving van 13. Omdat I15 2I = 13 (dit is de afstand tussen het laagste reëel getal in die omgeving en het hoogste.
 - → Wij pakken altijd omgevingen met open intervallen tenzij het niet anders kan.
- *Een ε-omgeving is een omgeving met een welbepaalde straal epsilon (ε)
- \rightarrow De omgeving is dus het interval:]a ε , a + ε [
- \rightarrow Bijvoorbeeld V₂ van puntje (1AI) is een ϵ -omgeving van 8,5 met (ϵ -)straal van 6,5.
 - → Waarom? Want 8,5 is juist in het midden en de straal is dan tot het begin- en einde.
- *Terminologie: **Gereduceerde omgeving van a** = omgeving dat a zelf niet bevat

Herhaling: intervalnotatie

Bv. interval]1, 2], d.w.z. dat 1 niet in mijn interval hoort (daarom open haakje), maar 2 wél erin (daarom gesloten) \rightarrow Bijvoorbeeld V₂ =]2, 15[\ {8,5} is een gereduceerde omgeving.

Linkeromgeving = $]a - \varepsilon$, a], de rechterkant is dus weggelaten bij de linkeromgeving.

 \rightarrow Bijvoorbeeld $V_2 =]2; 8,5]$

Gereduceerde linkeromgeving = linkeromgeving zonder a: $]a - \varepsilon$, **a[**

 \rightarrow Bijvoorbeeld $V_2 =]2; 8,5[$

Rechteromgeving = [a], a + $\epsilon[$, de linkerkant is hier weggelaten.

 \rightarrow Bijvoorbeeld $V_2 = [8,5;15[$

Gereduceerde rechteromgeving = rechteromgeving zonder a: $a + \varepsilon$

 \rightarrow Bijvoorbeeld $V_2 = [8,5;15]$

(2) REËLE FUNCTIES

*Een reële functie is een verzameling koppels reële getallen (x, y) zodat elk reëel getal hoogstens 1x voorkomt als beeld (dus, 0 keer als beeld of 1 keer als beeld).

(2A) HERHALING BELANGRIJKSTE BASISBEGRIPPEN BIJ FUNCTIES (HERHALING 4DEJAAR)

(2AI) VOORSTELLING VAN FUNCTIES

- *Met een functievoorschrift: bv. \rightarrow F(x) = x² of y = x² of f: x --> x²
- *Met een functiewaardetabel: een tabel waar je x- en y-waarden op uitrekent.
- *Met een grafiek: in geval van $y = x^2$ verkrijgen we een parabool.

- *Domein: alle mogelijke x-waarden van een functie.
- \rightarrow y = x² \Leftrightarrow dom f = \mathbb{R} (waarom? De grafiek loopt tot in het oneindige door)
- *Bereik: alle mogelijke y-waarden van een functie
- \rightarrow y = x² \Leftrightarrow Ber f = \mathbb{R}^+ (zoals je kan waarnemen op de grafiek)

(2AIII) NULWAARDE EN TEKENVERLOOP VAN FUNCTIES

- *Nulwaarde: reëel getal dat als functiewaarde nul heeft → snijpunt x-as
- \rightarrow voor y = x^2 is de nulwaarde 0 (af te lezen van de grafiek)
- *Tekenverloop: Hier onderzoeken we simpelweg het teken van alle y-waarden
- \rightarrow voor y = x^3 vinden we:

(2AIV) STIJGEN, DALEN, CONSTANT ZIJN VAN FUNCTIES

- *Stijgen: Een functie stijgt letterlijk als je ze ziet stijgen op de grafiek van links naar rechts
- \rightarrow voor y = x^2 daalt de grafiek tot de nulwaarde, dan stijgt hij tot in het oneindige (zie grafiek 2AII)
 - → We noteren dit als:

- *Dalen: een functie daalt als ze op de grafiek (gelezen van rechts naar links) daalt.
- \rightarrow al besproken: y = x^2 daalt en stijgt daarna
- \rightarrow y = x³ daalt niet, ze stijgt enkel.
- *Constant zijn: een functie is constant als ze noch stijgt noch daalt.
- \rightarrow voor g: y = 0,05 is de functie constant, zie grafiek hiernaast.

(2AV) MAXIMA EN MINIMA VAN FUNCTIES (EXTREMAWAARDEN VAN FUNCTIES)

- *Absoluut maximum: grootste y-waarde van de functie ($y = x^2$ heeft bv. géén absoluut maximum)
- *Relatief maximum: grootste y-waarde in een interval (y = x² heeft géén relatief maximum)
- *Absoluut minimum: laagste y-waarde van de functie ($y = x^2$ heeft als absoluut minimum 0)
- *Relatief minimum: laagste y-waarde van de grafiek ($y = x^2$ heeft als relatief minimum 0)

(2AVI) SYMMETRIE BIJ FUNCTIES

- *Symmetrieas: een as waarop de functie op zichzelf wordt afgebeeld.
- \rightarrow voor y = x^2 is de symmetrieas de y-as (de rechte met vergelijking x = 0)
- → Functies met een af te lezen symmetrieas noemen we even functies.
- *Symmetriemiddelpunt: een punt waarop de functie wordt gepuntspiegeld.
- \rightarrow voor y = x^3 is het symmetriemiddelpunt de oorsprong (0).
- → Functies met een af te lezen symmetriemiddelpunt noemen we oneven functies.

.....

(2B) BIJZONDERE FUNCTIES

*Afbeelding en bijectie:

- → AFBEELDING: elke x-waarde précies een y-waarde, niet alle y-waarden moeten één x-waarde.
 - → Bv.: y = x² (grafiek vorige pagina), elke x-waarde heeft één y-waarde maar de y-waardes onder de x-as doen niet mee.
- → BIJECTIE: elke x-waarde précies een y-waarde, alle y-waarden précies één x-waarde.
 - → Bv.: y = x³ (grafiek vorige pagina), elke x-waarde heeft één y-waarde en elke y-waarde ook één x-waarde (zelfs onder de x-as ook hier).

*Bepalen of de functie even of oneven is:

- → GRAFISCH: functie met symmetriemiddelpunt = oneven ⇔ functie met symmetrieas = even
- → ALGEBRAÏSCH: EVEN functies → f(-x) = f(x) /// ONEVEN functies → f(-x) = -f(x)
 - → Bv.: $y = x^2$ → neem x = 5 ==> f(-5)?=? f(5) \Leftrightarrow $(-5)^2$?=? 5^2 \Leftrightarrow 25!=! 25 → Functie is even!
 - → Bv.: $y = x^3$ → neem $x = 5 ==> f(-5) ?=? -f(5) \Leftrightarrow (-5)^3 ?=? -5^3 \Leftrightarrow -125 !=! -125 → Function one one one of the content o$
 - → LET OP: een functie kan ook niet even en niet oneven zijn! Bv.: y = x

*Periodieke functies:

- → PERIODIEK: functies die zichzelf constant herhalen.
 - \rightarrow Bv.: y = sin (x)
 - \rightarrow De functie herhaalt zich precies tot in het ∞
 - → Deze functie is tevens een afbeelding, elke x heeft een y ⇔ niet elke y heeft een x!

v = sin(x)

(2C) SOORTEN REËLE FUNCTIES

- *Algebraïsche functies: functies waarin enkel bewerkingen in voorkomen (+, -, ., :, ...)
- → Bv.: veeltermfuncties, rationale functies, irrationale functies.
- *Transcedente functies: alle andere functies die niet algebraïsch zijn
- \rightarrow Bv.: y = G(x) \rightarrow Dit is een functie die de x-waarde afrond op het dichtstbijzijnde geheel getal.

→
$$x = 0.574783566...$$
 $\Leftrightarrow y = G(0.574783566...)$ $\Leftrightarrow y = 1$ (zo simple is het)

$$y = sign(x) \rightarrow x > 0$$
: $sign(x) = 1 \Leftrightarrow x < 0$: $sign(x) = -1 \Leftrightarrow x = 0$: $sign(x) = 0$

$$\rightarrow$$
 x = 4 \Leftrightarrow y = sign(4) = 1 (zo simpel is het)

andere functies: goniometrisch, cyclometrisch, hyperbolisch, exponentieel, logaritmisch ...

.....

(2D) BASISBEWERKINGEN MET FUNCTIES

$$f(x) = x^{2} - 2x + 1 \qquad f(x) + g(x) = (x^{2} - 2x + 1) + (x + 1) = x^{2} - 2x + 1 + x + 1$$

$$g(x) = x + 1 \qquad = x^{2} - x + 2$$

→ Voor + en – basisregels van optellen en haakjesregel, let op als je een min voor de haken hebt!

$$f(x) = x^2 - 2x + 1 \qquad f(x) \cdot g(x) = (x^2 - 2x + 1) \cdot (x + 1) = x^3 + x^2 - 2x^2 + 2x + x + 1$$

$$g(x) = x + 1 \qquad = x^3 - x^2 + 3x + 1$$

→ Voor . basisregels van distributief uitwerken.

$$f(x) = x^2 - 2x + 1$$

$$g(x) = x + 1$$

$$\int \frac{f(x)}{g(x)} = \frac{x^2 - 2x + 1}{x + 1} = x - 1 \text{ (uitgewerkt met Horner)}$$

→ Voor / gewoon op een breuk zetten, voor dit hoofdstuk hoef je nog niet te werken met Horner!

$$x^n$$
: $g(x) = x + 1 \rightarrow g^{2(x)} = [g(x)]^2 = (x + 1)(x + 1) = (x + 1)^2 = x^2 + 2x + 1$

→ Voor xⁿ gewoon basisregels merkwaardige producten OF distributief uitwerken

$$\sqrt[n]{x}$$
: $g(x) = x + 1 \to \sqrt{g(x)} = \sqrt{x + 1}$

→ Om de wortel te nemen gewoon de functie onder een wortel zetten.

.....

(2E) NIEUWE BEWERKING MET FUNCTIES: SAMENGESTELDE VAN TWEE FUNCTIES

o: dit bolletje betekent 'samengestelde van twee functies', de bewerking verloopt als volgt...

$$f(x) = x^2 - 2x + 1$$

$$f(x) \circ g(x) = (f \circ g)(x) = f[g(x)] = f[x+1] = (x+1)^2 - 2(x+1) + 1$$

$$g(x) = x + 1$$

$$= x^2 + 2x + 1 - 2x - 2 + 1 = x^2$$

→ Om de samengestelde te nemen, dan doe je de tweede functie 'in' de eerste functie, je vervangt de x-waarden van de eerste functie door de tweede en je rekent uit.

*LET OP! De samengestelde van twee functies is NIET COMMUTATIEF!

(2D) INVERSE RELATIE VAN EEN FUNCTIE

- *Neem de functie: g: y = x + 1, we willen g^{-1} algebraïsch en grafisch bepalen
- \rightarrow STAPPENPLAN: (1) Schrijf het normale functievoorschrift \rightarrow y = x + 1
 - (2) Verwissel (de) x('en) en y('en) met elkaar \rightarrow x = y + 1
 - (3) Los algebraïsch op, probeer y af te zonderen.

$$\rightarrow$$
 x = y + 1 \Leftrightarrow x - 1 = y \Leftrightarrow y = x - 1

- (X) PROFICIAT! Je hebt de inverse relatie algebraïsch bepaalt!
- (4) Maak een grafiek van y = x + 1
- (5) Teken vervolgens de eerste bissectrice (functie y = x, gaat door oorsprong, 45°)
- (6) Spiegel de grafiek t.o.v. de eerste bissectrice.
- (Y) PROFICIAT! Je hebt de inverse relatie grafisch getekend! (zie grafiek)

EINDE 1^{STE} SAMENVATTING REËLE FUNCTIES