

쉽게 배우는 데이터 통신과 컴퓨터 네트워크

학습목표

- ✔ 전송 계층 프로토콜이 제공하는 기능을 이해
- ✔ 전송 계층 프로토콜을 설계하는 과정에서 고려할 사항
- ✓ TCP 헤더에 정의된 필드의 역할
- ✓ TCP에서 사용하는 Well-known 포토
- ✓ TCP의 연결 설정, 데이터 전송, 연결 해제 과정을 이해
- ✓ TCP/IP의 혼잡 제어 기능을 이해

2절. TCP 프로토콜

☐TCP 헤더

- 캡슐화
 - IP 프로토콜에 캡슐화되어 전송 [그림 9-9]

[그림 9-9] TCP 세그먼트의 캡슐화

그림 9-8 TCP 헤더의 구조

2절. TCP 프로토콜

□포트 번호

- 통신 양단의 고유 주소 = IP 주소 + 호스트의 포트 주소
- TCP, UDP 프로토콜이 상위 계층에 제공하는 주소 표현 방식
- TCP, UDP가 독립적으로(따로 포트 주소를 관리) 관리하는 고유의 포트 번호
- Well-known 포트 [표 9-1]
 - 많이 사용하는 인터넷 서비스에 고정된 포트 번호 할당

[표 9-1] Well-known 포트

서비스	포트 번호
FTP(데이터 채널)	20
FTP(제어 채널)	21
Telnet(텔넷)	23
SMTP	25
DNS	53
HTTP	80
rlogin	513
rsh	514
portmap	111

2절. TCP(참고 자료)

Internet Assigned Numbers Authority

- ❖ 인터넷 할당 번호 관리 기관(IANA)의 정의
 - 잘 알려진(Well-Known) 포트번호: 0~1023번, IANA에 등록,

IANA에 의한 할당 & 통제됨

• 등록(registered) 포트 번호 : 1024~49151 번 : 중복 방지를 위해 등록, IANA에 의한 할당이나 통제는 없음

(주로 기업 제품용 포트번호)

• 동적(dynamic) 포트 번호 : 49152 -65535 번 : 통제 않음,임시 포트

Figure 23.3 IP 주소 대 포트 번호

2절. TCP(참고 자료)

등록(registered) 포트 번호의 예

- □ ▲ 1214번: 카자
 - ▲ 1720번: 넷미팅
 - ▲ 1863, 6891~6900번: MSN 메신저
 - ▲ 3389번: 터미널 서비스(원격 데스크톱)
 - ▲ 4000번: ICQ
 - ▲ 4000, 6112번: 배틀넷(디아블로, 스타크래스트, 워크래프트)
 - ▲ 4662번: e동키(기본값)
 - ▲ 5500, 5800, 5900번: VNC
 - ▲ 6257, 6699번: 윈MX(기본값)
 - ▲ 6346번: 그누텔라
 - ▲ 6699번: 냅스터
 - ▲ 7674, 22321번: 소리바다 2
 - ▲ 9292, 9999번: 구루구루
 - ▲ 28290번: PDBOX

□TCP의 연결 설정

- 3단계 설정 방식(Three-Way Handshake) [그림 9-10]
 - 전송데이터와 응답 데이터를 함께 전송하는 피기 배킹 기능 사용
 - A가 연결을 요청하고 B가 수락하는 경우
 - SYN 플래그와 ACK 플래그를 이용하여 설정
 - A 프로세스가 세 번째 단계에서 전송할 데이터가 없는 경우

□TCP의 데이터 전송

- 정상적인 데이터 전송 [그림 9-11]
 - 그림 9-10의 세 번째 단계에서 전송할 데이터가 있는 경우

[그림 9-11] TCP 데이터 전송

□TCP의 데이터 전송

- 데이터 전송 오류 [그림 9-12]
 - TCP는 부정 응답 기능인 NAK를 지원하지 않음
 - 오류시 송신 프로세서의 타임 아웃(time out) 기능에 의해 복구됨

□TCP의 연결 해제(점진적 연결 해제)

- FIN 플래그를 지정하여 요구 [그림 9-13]
 - FIN 플래그로 요청하고 상대방 FIN 플래그를 수신하면 연결해제
 - 상대방은 전송하고자 하는 데이터를 계속 전송할 수 있음
 - Fin신호를 받으면 Ack 신호는 Seg+1을 보냄

[그림 9-13] TCP 연결 해제