

基本共射放大电路

Common-emitter Amplifier Circuit

- □ 概念与性能指标 Concepts and Performances
- □ 工作原理 Operation Mechanisms

Feb. 2020

概念与性能指标 (Concepts and Performances)

① 放大的概念 (Concepts of amplification)

> 放大的对象:变化量

放大的本质:能量的控制

> 放大的特征: 功率放大

> 放大的基本要求: 不失真, 放大的前提

只有电路既放大电流又放大电压, 才称其有放大作用

- A 正确
- B 错误

放大电路中输出的电流和电压都是由有源元件提供的

- A 正确
- B 错误

概念与性能指标(Concepts and Performances)

② 放大的性能指标 (Performances of amplification)

▶ 放大倍数 (Gain): 输出量与输入量之比

电压

$$\dot{A}_{uu} = \dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}}$$

电流

$$\dot{A}_{ii} = \dot{A}_i = \frac{\dot{I}_o}{\dot{I}_i}$$

互阻

$$\dot{A}_{ui} = \frac{\dot{U}_{o}}{\dot{I}_{i}}$$

互导

$$\dot{A}_{iu} = \frac{\dot{I}_{o}}{\dot{U}_{i}}$$

电压放大倍数是最常研究和测试的参数

概念与性能指标 (Concepts and Performances)

③ 输入和输出电阻 (Input and output resistances)

输入电阻:从放大电路输入端看进去的等效电阻

电压放大时, Ri越大越好, 信号拾取能力强

$$R_{\rm i} = \frac{U_{\rm i}}{I_{\rm i}}$$

输出电阻:从放大电路输出端看 进去的等效电阻

Ro越小, 放大电路带负载的能力越强

$$R_{\rm o} = \frac{U_{\rm o}' - U_{\rm o}}{\frac{U_{\rm o}}{R_{\rm L}}} = (\frac{U_{\rm o}'}{U_{\rm o}} - 1)R_{\rm L}$$

概念与性能指标 (Concepts and Performances)

4 其他性能参数

通频带: 衡量放大电路对不同频率信号的适应能力

- ▶ 非线性失真系数D: 谐波成分与基波成分之比
- ▶ 最大不失真输出电压Uom (交流有效值)
- 最大输出功率(power) Pom与效率η

① 共射放大电路的组成及各元件的作用

▶ 静态(Static state):发射结正偏,集电结反偏,配置静态工作点

 V_{BB} 、 R_{b} : 使 $U_{\mathrm{BE}} > U_{\mathrm{on}}$,且有合适的 I_{B} 。

 V_{CC} : 使 $U_{\text{CE}} \ge U_{\text{on}}$, 同时作为负载的能源。

 $R_{\rm c}$: 将 $\Delta i_{\rm C}$ 转换成 $\Delta u_{\rm CE}(u_{\rm o})$ 。

> **动态(Dynamic state)**:使信号作用于输入回路,负载上获得 放大的动态信号

动态信号作用时: $u_{\rm i} \rightarrow i_{\rm b} \rightarrow i_{\rm c} \rightarrow \Delta i_{R_{\rm c}} \rightarrow \Delta u_{\rm CE} (u_{\rm o})$

②设置静态工作点的必要性(Quiescent Operating Point)

輸入电压 U_i 为零时,晶体管各极的电流、b-e间电压、管压降,称为静态工作点Q。记作 I_{BQ} 、 I_{CQ} (I_{EQ})、 U_{BEQ} 、 U_{CEO} 。 :

放大电路建立正确的静态工作点,是为了使三极管工作在线性区,以保证信号不失真

③波形分析 (Signal analysis)

动态信号 驮载在静 态之上

反相

Page 10

输出信号

只要是共射放大电路,输出电压的底部失真都是饱和失真

- A 正确
- B 错误

由于放大的对象是变化量,所以当输入信号为直流信号时,任何放大电路的输出都毫无变化

- A 正确
- B 错误

- ④ 放大电路的组成原则(Composition principles)
 - > 静态工作点合适: 合适的直流电源、合适的电路参数。
 - 动态信号能够作用于晶体管的输入回路,在负载上能够获得放大了的动态信号。
 - 对实用放大电路的要求:共地、直流电源种类尽可能少、 负载上无直流分量。

The choice of parameters for the required DC levels will affect the AC response.

⑤ 两种实用放大电路 (Two practical amplifier circuits)

基本共射放大电路

直接耦合放大电路

问题:

- 1、两种电源
- 2、信号源与放大电路不"共地"

静态时, $U_{BEQ} = U_{R_{b1}}$ 动态时,b-e间电压是 u_{I} 与 R_{b1} 上电压之和。

⑤ 两种实用放大电路 (Two practical amplifier circuits)

阻容耦合放大电路

耦合电容的容量应足够 大,即对于交流信号近似 为短路。其作用是"隔离 直流、通过交流"。

静态时, C、C。上电压?

$$U_{\text{C1}} = U_{\text{BEQ}}$$
, $U_{\text{C2}} = U_{\text{CEQ}}$

动态时, $u_{BE}=u_1+U_{BEQ}$,信号驮载在静态之上、负载上只有交流信号。

习题 (Excise)

试分析下图所示各电路是否能够放大正弦交流信号, 简述理由。设图中所有电容对交流信号均可视为短

- (a) 不能。因为输入信号被 $V_{
 m BB}$ 短路。
- (b) 不能。因为输入信号作用于基极与地之间,不能驮载在静态电压之上,必然失真。
 - (c) 不能。因为输出信号被 V_{CC} 短路,恒为零。Page 16

讨论 (Discussion)

 $u_{\rm O}$

- 用NPN型管组成一个在本节课中未见过的共射放大 电路
- ② 用PNP型管组成一个共射放大电路。

小结 (Summary)

- ① 概念与性能指标
 - 口放大的概念
 - 放大的对象
 - 放大的本质
 - 放大的特征
 - 放大的基本要求
 - 口放大的性能指标
 - 放大倍数
 - 输入电阻
 - 输出电阻
 - 通频带
 - 非线性失真系数
 - 最大不失真输出电压
 - 最大输出功率和效率

- ② 放大电路的工作原理
 - □组成及各元件作用
 - 静态参数
 - 动态信号作用流程
 - 口设置静态工作点的必要性
 - 静态参数设置 $I_{
 m BQ}$ 、 $I_{
 m CQ}$ $(I_{
 m EQ})$ 、 $U_{
 m BEQ}$ 、 $U_{
 m CEQ}$
 - 放大电路不产生失真
 - □工作原理及波形分析
 - 放大电路组成原则
 - 直接耦合放大电路
 - 阻容耦合放大电路