Table of Contents

Table of Contents1		
Week 4 Project: Spam Email Detection		
Objective2		
Data Preprocessing		
1.	Loading Data2	
2.	Handling Missing Values2	
3.	Class Distribution	
Feature Engineering 3		
1.	Encoding Target3	
2.	Train-Test Split	
3.	Text Vectorization3	
1.	Logistic Regression4	
2.	Support Vector Machine (SVM)	
Model Evaluation4		
1.	Logistic Regression Results4	
2.	SVM Results5	
Testing with New Emails5		
Conclusion		

Week 4 Project: Spam Email Detection

Objective

Email spam detection is a crucial task in natural language processing (NLP) and machine learning. This project aims to build a model that can classify emails as spam or ham (non-spam) using Logistic Regression and Support Vector Machine (SVM).

The dataset used contains 5,572 emails, with a significant class imbalance: 4825 ham and 747 spam emails. To address this imbalance, resampling techniques were applied.

Data Preprocessing

1. Loading Data

The dataset email_spam_detection.csv was loaded using pandas with latin-1 encoding to handle special characters.

2. Handling Missing Values

No missing values were found in the **Category** column.

data.isna().sum()

3. Class Distribution

Initial counts showed an imbalanced dataset:

Ham: 4825Spam: 747

To balance the dataset, resampling was applied:

```
data = pd.concat([resample_spam, ham])
```

After resampling, the dataset was balanced:

Ham: 4825Spam: 4825

Feature Engineering

1. Encoding Target

The target column was encoded as:

- Ham \rightarrow 0
- Spam $\rightarrow 1$

```
data['Category'] = data['Category'].map({'ham': 0, 'spam': 1})
```

2. Train-Test Split

The dataset was split into training and testing sets (70% train, 30% test).

3. Text Vectorization

Text data was converted to numerical features using **Bag-of-Words** representation with CountVectorizer.

```
from sklearn.feature_extraction.text import CountVectorizer

vectorizer = CountVectorizer(stop_words='english', max_features=3000)
x_train_vec = vectorizer.fit_transform(x_train)
x_test_vec = vectorizer.transform(x_test)
```

Model Training

1. Logistic Regression

A Logistic Regression model was trained on the vectorized data:

```
from sklearn.linear_model import LogisticRegression

model = LogisticRegression(max_iter=1000)

model.fit(x_train_vec, y_train)
y_pred = model.predict(x_test_vec)
```

2. Support Vector Machine (SVM)

A linear SVM model was also trained for comparison:

```
from sklearn.svm import SVC

svc_model = SVC(kernel='linear')
svc_model.fit(x_train_vec, y_train)
y_pred_svc = svc_model.predict(x_test_vec)
```

Model Evaluation

- 1. Logistic Regression Results
- Accuracy: 99.52%
- Classification metrics (Precision, Recall, F1-score) were all near 1.0.

```
-----LOGISTIC REGRESSION RESULTS-----
   Accuracy: 0.9951640759930915
   Classification Report:
                                   precision recall f1-score support
                  1.00 1.00
1.00 1.00
                                            1433
             0
                                  1.00
                                    1.00
                                            1462
                                    1.00
                                            2895
      accuracy
                  1.00 1.00
                                    1.00
                                            2895
      macro avg
                          1.00
                                   1.00
   weighted avg
                  1.00
                                            2895
   Confusion Matrix: [[1426
                            7]
    [ 7 1455]]
```

2. SVM Results

- Accuracy: 99.59%
- Classification metrics were similarly excellent.

```
→ -----SVM RESULTS-----
    Accuracy: 0.9958549222797928
    Classification Report:
                                      precision recall f1-score
                  1.00 1.00 1.00
1.00 1.00 1.00
                                              1433
                                              1462
                                      1.00
                                               2895
       accuracy
    macro avg 1.00 1.00 1.00
weighted avg 1.00 1.00 1.00
                                               2895
                                               2895
    Confusion Matrix: [[1426
                              71
     [ 5 1457]]
```

Both models performed exceptionally well due to the balanced dataset and robust feature representation.

Testing with New Emails

The trained Logistic Regression model was tested on a new email:

```
input = ["Congratulations, you won free 100 Bitcoins in a lottery"]
new_vec = vectorizer.transform(input)
result = model.predict(new_vec)

if result == 0:
    print("Not Spam")
else:
    print("Spam")
Output: Spam
```

Conclusion

- Both Logistic Regression and SVM achieved near-perfect accuracy on this dataset.
- Balancing the dataset using **resampling** improved model performance.
- The Bag-of-Words approach effectively converted text into features suitable for ML models.

•	This project demonstrates a practical approach to email spam detection , which is essential for improving email security and filtering unwanted messages.