Lamb-Dicke regime/approximation

Yichao Yu

Journal Club

$$\omega + \frac{m}{2\hbar} \left(v + \frac{\hbar \omega}{mc} \right)^2 - \frac{mv^2}{2\hbar} = \omega + \frac{\omega v}{c} + \frac{\hbar \omega^2}{2mc^2}$$

Sideband

Sideband

Frequency: $\omega + n\omega_m$

Sideband

Frequency: $\omega + n\omega_m$

Strength: $\langle n|e^{ik\hat{x}}|n+\Delta n\rangle$

$$\langle n|\mathrm{e}^{\mathrm{i}k\hat{x}}|n+\Delta n\rangle$$

$$\langle n|\mathrm{e}^{\mathrm{i}k\hat{x}}|n+\Delta n\rangle$$

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(a + a^{\dagger} \right) = z_0 \left(a + a^{\dagger} \right)$$

$$\langle n|e^{ik\hat{x}}|n+\Delta n\rangle$$

 $\hat{x}=\sqrt{\frac{\hbar}{2m\omega}}\Big(a+a^{\dagger}\Big)=z_0\Big(a+a^{\dagger}\Big)$
 $k\hat{x}=\eta\Big(a+a^{\dagger}\Big)$
 $\eta\equiv kz_0=k\sqrt{\frac{\hbar}{2m\omega}}$

$$\langle n|e^{ik\hat{x}}|n+\Delta n\rangle$$
 $\hat{x}=\sqrt{\frac{\hbar}{2m\omega}}\Big(a+a^{\dagger}\Big)=z_0\Big(a+a^{\dagger}\Big)$
 $\eta=\frac{2\pi z_0}{\lambda}$
 $k\hat{x}=\eta\Big(a+a^{\dagger}\Big)$
 $\eta=\sqrt{\frac{\omega_R}{\omega_m}}$
 $\eta\equiv kz_0=k\sqrt{\frac{\hbar}{2m\omega}}$

Sideband strength

$$\langle n|e^{ik\hat{x}}|n+\Delta n\rangle$$

$$=e^{-\eta^2/2}\eta^{\Delta n}\sqrt{\frac{n_-!}{n_+!}}L_{n_-}^{\Delta n}(\eta^2)$$

$$n_- \equiv \min(n, n+\Delta n), \quad n_+ \equiv \max(n, n+\Delta n)$$

Sideband strength

$$\langle n|e^{ik\hat{x}}|n+\Delta n\rangle$$

$$=e^{-\eta^2/2}\eta^{\Delta n}\sqrt{\frac{n_-!}{n_+!}}L_{n_-}^{\Delta n}(\eta^2)$$

$$n_{-} \equiv \min(n, n + \Delta n), \quad n_{+} \equiv \max(n, n + \Delta n)$$

Sideband spectrum

$$e^{i\eta(a+a^{\dagger})} = 1 + i\eta(a+a^{\dagger}) - \frac{\eta^2}{2}(a+a^{\dagger})^2 + \mathcal{O}(\eta^3)$$

$$e^{i\eta(a+a^{\dagger})} = 1 + i\eta(a+a^{\dagger}) - \frac{\eta^2}{2}(a+a^{\dagger})^2 + \mathcal{O}(\eta^3)$$
When $\eta \ll 1$: $e^{i\eta(a+a^{\dagger})} \approx 1 + i\eta(a+a^{\dagger})$

$$e^{i\eta(a+a^{\dagger})} = 1 + i\eta(a+a^{\dagger}) - \frac{\eta^2}{2}(a+a^{\dagger})^2 + \mathcal{O}(\eta^3)$$
When $\eta \ll 1$: $e^{i\eta(a+a^{\dagger})} \approx 1 + i\eta(a+a^{\dagger})$

To the first order,

$$\langle n|e^{i\eta\left(a+a^{\dagger}\right)}|n\rangle \approx 1$$

$$\langle n+1|e^{i\eta\left(a+a^{\dagger}\right)}|n\rangle \approx i\eta\sqrt{n}$$

$$\langle n-1|e^{i\eta\left(a+a^{\dagger}\right)}|n\rangle \approx i\eta\sqrt{n+1}$$

$$e^{i\eta(a+a^{\dagger})} = 1 + i\eta(a+a^{\dagger}) - \frac{\eta^2}{2}(a+a^{\dagger})^2 + \mathcal{O}(\eta^3)$$
When $\eta \ll 1$: $e^{i\eta(a+a^{\dagger})} \approx 1 + i\eta(a+a^{\dagger})$

To the second order,

$$\langle n|e^{i\eta(a+a^{\dagger})}|n\rangle \approx 1-\frac{\eta^2(2n+1)}{2}$$

$$\langle n|e^{\mathrm{i}\eta\left(a+a^{\dagger}\right)}|n\rangle\approx 1-\frac{\eta^{2}(2n+1)}{2}$$

$$\langle n|e^{\mathrm{i}\eta\left(a+a^{\dagger}\right)}|n\rangle\approx 1-\frac{\eta^{2}(2n+1)}{2}$$

Wavefunction spread,

$$\langle n|x^2|n\rangle = z_0^2(2n+1)$$

$$\langle n|e^{\mathrm{i}\eta\left(a+a^{\dagger}\right)}|n\rangle\approx 1-\frac{\eta^{2}(2n+1)}{2}$$

Wavefunction spread,

$$\langle n|x^2|n\rangle = z_0^2(2n+1)$$

$$\eta_{\it eff} \equiv \eta \sqrt{2n+1}$$

Probability of remaining in n: $P_0 \approx 1 - \eta_{eff}^2/2$

Probability of remaining in n: $P_0 \approx 1 - \eta_{eff}^2/2$

Average energy gain,

$$\begin{split} \bar{n}' &= \langle n| \mathrm{e}^{\mathrm{i}\eta \left(a+a^{\dagger}\right)} a^{\dagger} a \mathrm{e}^{-\mathrm{i}\eta \left(a+a^{\dagger}\right)} |n\rangle \\ &= \langle n| \mathrm{e}^{\mathrm{i}\eta a^{\dagger}} \mathrm{e}^{\mathrm{i}\eta a} a^{\dagger} a \mathrm{e}^{-\mathrm{i}\eta a} \mathrm{e}^{-\mathrm{i}\eta a^{\dagger}} |n\rangle \\ &= \langle n| \mathrm{e}^{\mathrm{i}\eta a^{\dagger}} \left(a^{\dagger} \mathrm{e}^{\mathrm{i}\eta a} + \mathrm{i}\eta \mathrm{e}^{\mathrm{i}\eta a} \right) \mathrm{e}^{-\mathrm{i}\eta a} \left(\mathrm{e}^{-\mathrm{i}\eta a^{\dagger}} a - \mathrm{i}\eta \mathrm{e}^{-\mathrm{i}\eta a^{\dagger}} \right) |n\rangle \\ &= \langle n| (a^{\dagger} + \mathrm{i}\eta) (a - \mathrm{i}\eta) |n\rangle \\ &= n + \eta^{2} \end{split}$$

Questions

- Is energy gain always a constant?
- Is there a Δn upper bound on when $\langle n|e^{i\eta(a+a^{\dagger})}|n+\Delta n\rangle \neq 0$?

Questions

- Is energy gain always a constant?
- Is there a Δn upper bound on when $\langle n|e^{i\eta(a+a^{\dagger})}|n+\Delta n\rangle \neq 0$?

Coherence between *n*, momentum distribution.

$$\langle \alpha | e^{i\eta (a+a^{\dagger})} a^{\dagger} a e^{-i\eta (a+a^{\dagger})} | \alpha \rangle$$

$$= \langle \alpha | (a^{\dagger} + i\eta)(a - i\eta) | \alpha \rangle$$

$$= |\alpha - i\eta|^{2}$$

Questions

- Is energy gain always a constant?
- Is there a Δn upper bound on when $\langle n|e^{i\eta(a+a^{\dagger})}|n+\Delta n\rangle \neq 0$?

Coherence between n, momentum distribution.

$$e^{i\eta(a+a^{\dagger})}a^{\dagger}ae^{-i\eta(a+a^{\dagger})}$$

$$=(a^{\dagger}+i\eta)(a-i\eta)$$

$$=n+\eta^{2}+pk/m$$