Lecture 12: Convergence in distribution

Ciaran Evans

Logistics

- ▶ Reminder: Exam 1 released February 21 (covers HW 1–4)
- ► Early-semester feedback form sent out

Recap: Convergence in probability

Definition: A sequence of random variables $X_1, X_2, ...$ converges in probability to a random variable X if, for every $\varepsilon > 0$,

$$\lim_{n\to\infty} P(|X_n-X|\geq \varepsilon)=0$$

We write $X_n \stackrel{p}{\to} X$.

Example

Suppose that $X_1, X_2, ... \stackrel{iid}{\sim} Uniform(0, 1)$, and let $X_{(n)} = \max\{X_1, ..., X_n\}.$ Then $X_{(n)} \stackrel{p}{\to} 1.$

$$\lambda_{(n)} = \max\{\lambda_1, ..., \lambda_n\}. \text{ Then } \lambda_{(n)} \to 1.$$
Pf: wts $\rho(|X_{(n)} - I| > \epsilon) \Rightarrow 0$
Let $\epsilon \neq 0$

$$P(|X_{(n)}-(|X$$

$$= 1 - P(1 - \xi + X_{in} + 1 + \xi)$$
we when $X_{in} = 1 + \xi$

$$= X_{in} + 1 + \xi$$

as ~ >>00 \$ \$>0

werdness
$$x_{(n)} = 1 + 2$$
 $\Rightarrow P(1 - 2 + x_{(n)} + 1 + 2) = P(1 - 2 + x_{(n)})$

$$P(1-\xi \le x_{(m)}) = (1-(x_{(m)}-1)-x_{(m)}) = P(x_{(m)} \le 1-\xi)$$

$$= P(1+\xi x_{(m)}) = (1-\xi)^{2} \Rightarrow 0 \text{ as } n \Rightarrow \infty$$

$$P(1-\xi \leq X_{(n)}) = 1-P(X_{(n)} \leq 1-\xi)$$

$$P(1-\xi \leq X_{(n)}) = 1-P(X_{(n)} \leq 1-\xi)$$

=> P(1/xm -1/>E) => 0 cs n => 0

Convergence in distribution

Definition: A sequence of random variables $X_1, X_2, ...$ converges in distribution to a random variable X if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

at all points where $F_X(x)$ is continuous. We write $X_n \stackrel{d}{\to} X$.

Example

=> 1- (1- \(\frac{t}{2} \)^2 \rightarrow 1- e

Suppose that $X_1, X_2, ... \stackrel{iid}{\sim} Uniform(0, 1)$. Let $X_{(n)} = \max\{X_1, ..., X_n\}$. Then $n(1 - X_{(n)}) \stackrel{d}{\rightarrow} Y$, where $Y \sim Exp(1)$.

$$Y \sim Exp(1)$$
.

WTS: $F_{\gamma}(t) = 1 - e^{-t}$
 $F_{\gamma}(t) = 1 - e^{-t}$

Pf: Fn(1-xm) (t) = P(n(1-xm) + t) $= P(1-x_{1}) = P(x_{1}) = P(x_{2})$

= 1 - P(xm = 1-=) = 1 - (1- =) in general: $\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$ lim (1- =) = e-t

cdf= 1- e-Bt

Convergence in distribution: Central Limit Theorem

Let $X_1, X_2, ...$ be iid random variables, whose mgf exists in a neighborhood of 0. Let $\mu = \mathbb{E}[X_i]$ and $\sigma^2 = Var(X_i) < \infty$. Then

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \stackrel{d}{\to} Z$$

where $Z \sim N(0,1)$.

Intuition:
$$\bar{\chi}_n - m$$
 $\frac{\bar{r}_n}{r} = 0$

need to multiply by something increasing to "balance out" convergence to 0

uny $\bar{r}_n = 0$

uny $\bar{r}_n = 0$
 $\bar{r}_n = 0$

SD(Jn Xn) = or (not increasing or decreasing as n > 00)

Activity

Simulations to explore convergence in distribution:

 $https://sta711\text{-}s25.github.io/class_activities/ca_lecture_12.html\\$