Cinemática PA10

Viktor Yosava

vikyosava@uma.es

Robótica Médica. Ingeniería de la Salud

A. Modelo cinemático directo

1. Construir la cadena cinemática del robot, especificando las distancias significativas, los ejes de rotación y los grados de libertad.

Fig. 1. Cadena cinemática

2. Asignación detallada de los sistemas de referencia correspondientes a cada elemento del manipulador.

Fig. 2. Ejes

Donde $\{E1,E2,E3,E4,E5,E6\}$ son los ejes, $\{\theta1,\theta2,\theta3,\theta4,\theta5,\theta6\}$ son los ángulos y las distancias vienen indicadas numéricamente.

 ${\bf 3.}$ Construir la tabla de los parámetros cinemáticos de DH1. Se supone el sistema 0 en la base del manipulador.

i	ai	αί	di	θi	i-1Ti
1	0	π/2	315	θ_1	0T1
2	450	0	0	θ_2	1T2
3	0	-π/2	0	θ_3	2T3
4	0	π/2	500	Θ_4	3T4
5	0	-π/2	0	θ_5	4T5
6	0	0	80	θ_6	5T6

Fig. 3. Tabla de parámetros cinemáticos

4. ¿Dispone este manipulador de muñeca esférica? Justifique la respuesta y en caso afirmativo, señale su ubicación.

El manipulador dispone de muñeca esférica, señalada por la flecha verde en la imagen anterior, donde cruzan los ejes E4, E5 y E6.

5. Realizar la función T=MCDPA10(Q)

.

```
function T=MCDPA10(Q)

a=[0 450 0 0 0 0];
alp=[pi/2 0 -pi/2 pi/2 -pi/2 0];
d=[315 0 0 500 0 80];

T01=desp([0 0 d(1)])*rotZ(Q(1))*desp([a(1) 0 0])*rotX(alp(1));
T12=desp([0 0 d(2)])*rotZ(Q(2))*desp([a(2) 0 0])*rotX(alp(2));
T23=desp([0 0 d(3)])*rotZ(Q(3))*desp([a(3) 0 0])*rotX(alp(3));
T34=desp([0 0 d(4)])*rotZ(Q(4))*desp([a(4) 0 0])*rotX(alp(4));
T45=desp([0 0 d(5)])*rotZ(Q(5))*desp([a(5) 0 0])*rotX(alp(5));
T56=desp([0 0 d(6)])*rotZ(Q(6))*desp([a(6) 0 0])*rotX(alp(6));
```

Fig. 4. T=MCDPA10(Q)

B. Modelo cinemático inverso

1. Calcular la posición de la muñeca del manipulador $0\mathrm{PW}$ cuando el efector final del se encuentra en la posición incluida en la matriz de transformación $\mathrm{T}.$

```
% Inicialización y desacoplo.
% -----
d1=315; d4=500; d6=80; a2=450;
Q=zeros(4,6);
Pm=T(1:3,4)-d6*T(1:3,3); % Desacoplo cinemático.
```

Fig. 5. Desacoplo cinemático

2. Resolver las variables articulares $\theta 1$, $\theta 2$ $\theta 3$ cuando la muñeca se encuentra en 0PW1 0 1. Esta resolución se realizará por métodos geométricos.

Fig. 6. Cálculo geométrico de $\theta 1$

Fig. 7. *θ*1

Fig. 8. Cálculo geométrico de $\theta 2$

```
L=sqrt(r^2+(Pm(3)-d1)^2);
ang1=atan2((Pm(3)-d1)/L,r/L);
ang2=arcos((a2^2+L^2-d4^2)/(2*a2*L));
Q(1,2)=ang1+ang2;
```

Fig. 9. θ 2

Fig. 10. Cálculo geométrico de $\theta 3$

```
fi=arcos((d4^2+a2^2-L^2)/(2*a2*d4));
Q(1,3)=pi/2+fi;
```

Fig. 11. $\theta 3$

Fig. 12. Cálculo geométrico de $\theta 2$ con el codo hacia abajo

Fig. 13. Cálculo geométrico de $\theta 3$ con el codo hacia abajo

```
% Q codo arriba muñeca -
Q(2,1)=Q(1,1);
Q(2,2)=Q(1,2);
Q(2,3)=Q(1,3);

% Q codo abajo muñeca +
Q(3,1)=atan2(Pm(2)/r,Pm(1)/r);
Q(3,2)=ang1-ang2;
Q(3,3)=pi/2-fi;

% Q codo abajo muñeca -
Q(4,1)=Q(3,1);
Q(4,2)=Q(3,2);
Q(4,3)=Q(3,3);
```

Fig. 14. Ángulos para las otras 3 posiciones que necesitaremos

4. Obtener las matrices 3R6 necesarias para alcanzar la orientación requerida 0R6 a través de la expresión $3R6 = (0R3(\theta 1, \theta 2, \theta 3))T * 0R6$ según todas las soluciones obtenidas en el apartado anterior.

```
T01=desp([0 0 d1])*rotZ(Q(i,1))*desp([0 0 0])*rotX(pi/2);
T12=desp([0 0 0])*rotZ(Q(i,2))*desp([a2 0 0])*rotX(0);
T23=desp([0 0 0])*rotZ(Q(i,3))*desp([0 0 0])*rotX(-pi/2);
T03=T01*T12*T23;
T36=inv(T03)*T;
```

Fig. 15. Obtención de las matrices

Con la ayuda de un script simbólico para MCDPA10, podemos averiguar que las matrices tienen la siguiente forma.

```
R36 =

[cos(q4)*cos(q5)*cos(q6) - sin(q4)*sin(q6), - cos(q6)*sin(q4) - cos(q4)*cos(q5)*sin(q6), -cos(q4)*sin(q5)]
[cos(q4)*sin(q6) + cos(q5)*cos(q6)*sin(q4), cos(q4)*cos(q6) - cos(q5)*sin(q4)*sin(q6), -sin(q4)*sin(q5)]
[ cos(q6)*sin(q5), -cos(q6)*sin(q5), cos(q6)
```

Fig. 16. Forma de las matrices

5. Resolver las variables articulares $\theta 4$, $\theta 5$ $\theta 6$ que producen la orientación 3R6 3 obtenida en el punto anterior para cada una de las soluciones.

Fig. 17. Resolvemos $\theta 4$, $\theta 5$ y $\theta 6$

```
if(i==1) (i==3)
   s5=sqrt(T36(3,1)^2+T36(3,2)^2);
   % Al aparecer una raiz cuadrada, puede ser - o +
   s5=-sqrt(T36(3,1)^2+T36(3,2)^2);
end
Q(i,5)=atan2(s5,T36(3,3));
if(round(s5,5)~=0)
   Q(i,4)=atan2(T36(2,3)/-s5,T36(1,3)/-s5);
   Q(i,6)=atan2(-T36(3,2)/s5,T36(3,1)/s5);
else
  % Estamos tratando con una solución degenerada, al no poder dividir
  % entre s5 en caso de ser 0, en esos casos Q4 y Q6 tienen infinitas
  % soluciones, igualamos uno de los dos ángulos a 0 y calculamos el
  % otro.
  Q(i,6)=0;
  Q(i,4)=atan2(T36(1,1),T36(1,2));
```

Fig. 18. $\theta 4$, $\theta 5$ y $\theta 6$

Realizar la función $Q=MCIPA10_v2(T)$ en la que se seguirán todos los pasos anteriores, pero esta vez, el paso 2 se realizará a través de métodos algebraicos y se obtendrán todas las soluciones.

2'. Resolver las variables articulares $\theta 1$, $\theta 2$ $\theta 3$ cuando la muñeca se encuentra en 0PW1 0 1. Esta resolución se realizará por métodos algebraicos.

```
s3=((Pm(1)^2+Pm(2)^2+(Pm(3)-d1)^2-a2^2-d4^2)/(-2*d4*a2));
c3=sqrt(1-s3^2);
Q(1,3)=atan2(s3,c3);
Q(2,3)=Q(1,3);
Q(3,3)=atan2(s3,c3);
Q(4,3)=Q(3,3);
A=d4*c3;
B=(-d4*s3)+a2;
C=Pm(3)-d1;
Q(1,2)=2*atan((B+sqrt(B^2+A^2-C^2))/(A+C));
Q(2,2)=2*atan((B-sqrt(B^2+A^2-C^2))/(A+C));
Q(3,2)=Q(1,2);
Q(4,2)=Q(2,2);
D=d4*sin(Q(1,2)+Q(1,3))-a2*cos(Q(1,2));
Q(1,1)=atan2(-Pm(2)/(D),-Pm(1)/D);
D=d4*sin(Q(2,2)+Q(2,3))-a2*cos(Q(2,2));
Q(2,1)=atan2(-Pm(2)/(D),-Pm(1)/D);
D=d4*sin(Q(3,2)+Q(3,3))-a2*cos(Q(3,2));
Q(3,1)=atan2(-Pm(2)/(D),-Pm(1)/D);
D=d4*sin(Q(4,2)+Q(4,3))-a2*cos(Q(4,2));
Q(4,1)=atan2(-Pm(2)/D,-Pm(1)/(D));
```

Fig. 19. Cálculo algebraico de $\theta 1$, $\theta 2$ y $\theta 1$

El programa se completa tal y como en la versión geométrica del resto del apartado B.

C. Validación

Para validar todas las posibles posiciones al mismo tiempo se ha modificado un poco el script de pruebas en MATLAB que se proporciona de la siguiente forma:

```
Q=[pi/4, pi/6, pi/3, 5*pi/12, pi/12, pi/4]
T=MCDPA10(Q);
Q2=MCIPA10(T)
for i=1:1:4
    MCDPA10(Q2(i,1:6))_T
end
```

Fig. 20. prueba.m

Tras ejecutar la prueba con el MCDPA10.m geométrico muestra los siguientes resultados:

```
Q =
   0.7854
          0.5236
                   1.0472
                          1.3090
                                    0.2618
                                             0.7854
Q2 =
  -2.3562
          2.6180 2.0944 -1.8326
                                   0.2618
                                           0.7854
  -2.3562 2.6180 2.0944 1.3090 -0.2618 -2.3562
          -0.3879
  -2.3562
                   1.0472 -2.8085
                                    2.2713
                                            2.3051
  -2.3562
          -0.3879
                   1.0472
                           0.3331
                                   -2.2713
```

Fig. 21. Ángulos resultantes Geométrico

```
ans =
                                   ans =
                                     1.0e-13 *
  1.0e-13 *
                                     -0.0011
                                                     0.0022
                                                              0.8527
  -0.0022
              0
                  0.0022
                           0.8527
                                     -0.0006
                                             0.0011 -0.0011
                                                              -0.2842
      0
          0.0019
                  -0.0011
                           -0.2842
                                      0.0011 -0.0011
                                                     -0.0007
                                                                   0
   0.0022
          -0.0011
                   -0.0010
                            0
                                          0
                                                 0
                                                          0
                                                                   0
            0
                     0
                                0
ans =
                                   ans =
  1.0e-13 *
                                     1.0e-13 *
       0 -0.0022
                     0
                            0.8527
                                      0.0011
                                             -0.0011 -0.0011
                                                               0.8527
  -0.0006
          -0.0014
                  -0.0011
                            0.2842
                                                     0
                                     -0.0006
                                             -0.0033
                                                               0.5684
   0.0011
           0
                    0.0014
                              0
                                          0
                                              0.0011
                                                      0.0014
                                                                   0
       0
               0
                       0
                                0
                                          0
```

Fig. 22. Errores resultantes Geométrico

Tras ejecutar la prueba con el MCDPA10_v2.m algebraico muestra los siguientes resultados:

Fig. 23. Ángulos resultantes Algebraico

ans =			a	ins =			
1.0e-13	*			1.0e-13	*		
0	-0.0022	0.0033	0.8527	0.0011	-0.0011	-0.0011	0.8527
-0.0011	0.0022	0	0.5684	-0.0006	-0.0033	0	0.5684
0.0033	0	-0.0006	0	0	0.0011	0.0014	0
0	0	0	0	0	0	0	0
ans =			a	ins =			
ans =	k		a	1.0e-13	*		
	-0.0022	0.0033	0.8527			-0.0011	0.8527
1.0e-13 '		0.0033		1.0e-13		-0.0011 0	0.8527 0.5684
1.0e-13 °	-0.0022		0.8527	1.0e-13 °	-0.0011		

Fig. 24. Errores resultantes Algebraico

Como podemos observar los errores son prácticamente iguales resolviendo por los dos métodos.