for Comparison-Based Quantile Summaries Tight Lower Bound

Pavel Veselý

University of Warwick

8 April 2020

Based on joint work with Graham Cormode (Warwick)

Overview of the talk

Source: C. Masson, J.E. Rim, and H.K. Lee. Ddsketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12):2195-2205, 2019.

Millions of observations

no need to store all observed latencies

Source: C. Masson, J.E. Rim, and H.K. Lee. Ddsketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12):2195–2205, 2019

Millions of observations

no need to store all observed latencies

How does the distribution look like?

What is the median latency?

Source: C. Masson, J.E. Rim, and H.K. Lee. Ddsketch: A fast and fully-mergeable quantile sketch with relative-error guarantees. PVLDB, 12(12):2195–2205, 2019

Millions of observations

no need to store all observed latencies

How does the distribution look like?

What is the median latency?

Average latency too high due to $\sim 2\%$ of very high latencies

Motivation: monitoring latencies of requests

Motivation: monitoring latencies of requests

Streaming model = one pass over data & limited memory

Motivation: monitoring latencies of requests

Streaming model = one pass over data & limited memory

Streaming algorithm

- receives data in a stream, item by item
- uses memory sublinear in N= stream length
- at the end, computes the answer

Motivation: monitoring latencies of requests

Streaming model = one pass over data & limited memory

Streaming algorithm

- receives data in a stream, item by item
- uses memory sublinear in N= stream length
- at the end, computes the answer

Challenges:

- N very large & not known
- Data independent
- Stream ordered arbitrarily
- No random access to data

Motivation: monitoring latencies of requests

Streaming model = one pass over data & limited memory

Streaming algorithm

- receives data in a stream, item by item
- uses memory sublinear in N= stream length
- at the end, computes the answer

Challenges:

- N very large & not known
- Data independent
- Stream ordered arbitrarily
- No random access to data

Main objective: space

Motivation: monitoring latencies of requests

Streaming model = one pass over data & limited memory

Streaming algorithm

- receives data in a stream, item by item
- uses memory sublinear in N= stream length
- at the end, computes the answer

Challenges:

- N very large & not known
- Data independent
- Stream ordered arbitrarily
- No random access to data

Main objective: space

How to summarize the input?

- Input: stream of N numbers
- Goal: find the k-th smallest
- e.g.: the median, 99th percentile
- $\mathcal{O}(N)$ time offline algorithm [Blum *et al.* '73]

- Input: stream of N numbers
- Goal: find the k-th smallest
- e.g.: the median, 99th percentile
- $\mathcal{O}(N)$ time offline algorithm [Blum et al. '73]
- Streaming restrictions:
- just one pass over the data
- limited memory: o(N)

- Input: stream of N numbers
- Goal: find the k-th smallest
- e.g.: the median, 99th percentile
- $\mathcal{O}(N)$ time offline algorithm [Blum *et al.* '73]
- Streaming restrictions:
- just one pass over the data
- limited memory: o(N)

No streaming algorithm for exact selection [Munro & Paterson '80, Guha & McGregor '07] $\Omega(N)$ space needed to find the median

- Input: stream of N numbers
- Goal: find the k-th smallest
- e.g.: the median, 99th percentile
- $\mathcal{O}(N)$ time offline algorithm [Blum *et al.* '73]
- Streaming restrictions:
- just one pass over the data
- limited memory: o(N)

No streaming algorithm for exact selection [Munro & Paterson '80, Guha & McGregor '07] $\Omega(N)$ space needed to find the median

What about finding an approximate median?

How to define an approximate median?

How to define an approximate median?

 $\phi ext{-quantile} = \lceil \phi \cdot N
ceil ext{-th smallest element } (\phi \in [0,1])$

• Median = .5-quantile

How to define an approximate median?

 $\phi ext{-quantile} = \lceil \phi \cdot N
ceil ext{-th smallest element } (\phi \in [0,1])$

- Median = .5-quantile
- Quartiles = .25, .5, and .75-quantiles
- Percentiles = .01, .02, ..., .99-quantiles

How to define an approximate median?

 $\phi ext{-quantile} = \lceil \phi \cdot \mathcal{N}
ceil ext{-th smallest element } (\phi \in [0,1])$ Sorted data

- Median = .5-quantile
- Quartiles = .25, .5, and .75-quantiles
- Percentiles = .01, .02, ..., .99-quantiles

 ε -approximate ϕ -quantile = any ϕ' -quantile for $\phi' = [\phi - \varepsilon, \phi + \varepsilon]$

.01-approximate medians are .49- and .51-quantiles (and items in between)

How to define an approximate median?

 $\phi ext{-quantile} = \lceil \phi \cdot \mathcal{N}
ceil ext{-th smallest element } (\phi \in [0,1])$

- Median = .5-quantile
- \bullet Quartiles = .25, .5, and .75-quantiles
- Percentiles = .01, .02, ..., .99-quantiles

 ε -approximate ϕ -quantile = any ϕ' -quantile for $\phi' = [\phi - \varepsilon, \phi + \varepsilon]$

.01-approximate medians are .49- and .51-quantiles (and items in between)

 ε -approximate selection:

query k-th smallest o return k'-th smallest for $k'=k\pm arepsilon \mathcal{N}$

How to define an approximate median?

 $\phi ext{-quantile} = \lceil \phi \cdot extstyle N
ceil ext{-th smallest element } (\phi \in [0,1])$

- Median = .5-quantile
- Quartiles = .25, .5, and .75-quantiles
- Percentiles = .01, .02, ..., .99-quantiles

 ε -approximate ϕ -quantile = any ϕ' -quantile for $\phi' = [\phi - \varepsilon, \phi + \varepsilon]$

.01-approximate medians are .49- and .51-quantiles (and items in between)

 ε -approximate selection:

query k-th smallest \to return k'-th smallest for $k'=k\pm \varepsilon N$

Offline summary: sort data & select $\sim \frac{-}{2\varepsilon}$ items

ε -Approximate Quantile Summaries

Data structure with two operations:

• UPDATE(x):

x = new item from the stream

ε-Approximate Quantile Summaries

Data structure with two operations:

• UPDATE(x):

x = new item from the stream

• QUANTILE_QUERY (ϕ) : For $\phi \in [0,1]$, return ε -approximate ϕ -quantile

ε -Approximate Quantile Summaries

Data structure with two operations:

• UPDATE(x):

- x = new item from the stream
- QUANTILE_QUERY (ϕ) : For $\phi \in [0, 1]$, return ε -approximate ϕ -quantile
- Additional operations:
- $RANK_QUERY(x)$:
- ullet For item x, determine its rank = position in the ordering of the input

ε -Approximate Quantile Summaries

Data structure with two operations:

• Update(x):

- x = new item from the stream
- QUANTILE_QUERY (ϕ) : For $\phi \in [0, 1]$, return ε -approximate ϕ -quantile

Additional operations:

- Rank_Query(x):
- ullet For item x, determine its rank = position in the ordering of the input
- Merge of two quantile summaries
- Preserve space bounds, while maintaining accuracy

$\varepsilon ext{-}$ Approximate Quantile Summaries

Data structure with two operations:

• UPDATE(x):

- x = new item from the stream
- QUANTILE_QUERY (ϕ) : For $\phi \in [0, 1]$, return ε -approximate ϕ -quantile

Additional operations:

- Rank_Query(x):
- For item x, determine its rank = position in the ordering of the input
- Merge of two quantile summaries
- Preserve space bounds, while maintaining accuracy

Quantile summaries \rightarrow streaming algorithms for:

- Approximating distributions
- Equi-depth histograms
- Streaming Bin Packing [Cormode & V. '20]

ε -Approximate Quantile Summaries

Data structure with two operations:

UPDATE(x):

- x = new item from the stream
- QUANTILE_QUERY (ϕ) : For $\phi \in [0, 1]$, return ε -approximate ϕ -quantile

Additional operations:

- $Rank_Query(x)$:
- For item x, determine its rank = position in the ordering of the input
- Merge of two quantile summaries
- Preserve space bounds, while maintaining accuracy

Quantile summaries \rightarrow streaming algorithms for:

- Approximating distributions
- Equi-depth histograms
- Streaming Bin Packing [Cormode & V. '20]

Bottom line: Finding arepsilon-approximate median in data streams

State-of-the-art results

space $\sim \#$ of stored items

State-of-the-art results

space $\sim \#$ of stored items

 $\bullet \ \mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log \varepsilon \mathcal{N}\right)$

deterministic comparison-based [Greenwald & Khanna '01]

maintains a subset of items + bounds on their ranks

State-of-the-art results

space $\sim \#$ of stored items

 $O\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$

deterministic comparison-based [Greenwald & Khanna '01]

maintains a subset of items + bounds on their ranks

 $\left(\frac{1}{\varepsilon} \cdot \log M\right)$

— deterministic for integers $\{1,\ldots,M\}$ [Shrivastava et al. '04]

not for floats or strings

State-of-the-art results

space $\sim \#$ of stored items

- $O\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$
 - deterministic comparison-based [Greenwald & Khanna '01]

maintains a subset of items + bounds on their ranks

- $\left(\frac{1}{\varepsilon} \cdot \log M\right)$
 - deterministic for integers $\{1,\ldots,M\}$ [Shrivastava et al. '04]

not for floats or strings

- - randomized [Karnin et al. '16] 🤲 🚳

const. probability of violating $\pm arepsilon N$ error guarantee

State-of-the-art results

space $\sim \#$ of stored items

- $O\left(\frac{1}{\varepsilon} \cdot \log \varepsilon N\right)$
 - deterministic comparison-based [Greenwald & Khanna '01]

maintains a subset of items + bounds on their ranks

- $\circ O\left(\frac{1}{\varepsilon} \cdot \log M\right)$
 - deterministic for integers $\{1,\ldots,M\}$ [Shrivastava et al. '04]

not for floats or strings

- - randomized [Karnin et al. '16] 🤲 🚳

const. probability of violating $\pm \varepsilon N$ error guarantee

Many more papers: [Munro & Paterson '80, Manku et al. '98, Manku et al. '99]

[Hung & Ting '10, Agarwal et al. '12, Wang et al. '13, Felber & Ostrovsky '15, ...]

Approx. Median & Quantiles: Is There a "Perfect" Algorithm?

Approx. Median & Quantiles: Is There a "Perfect" Algorithm?

What would be a "perfect" streaming algorithm?

- finds ε -approximate median
- deterministic

Approx. Median & Quantiles: Is There a "Perfect" Algorithm?

What would be a "perfect" streaming algorithm?

deterministic

- constant space for fixed arepsilon
- ullet ideally $\mathcal{O}\left(rac{1}{arepsilon}
 ight)$; or e.g. $\mathcal{O}\left(rac{1}{arepsilon^2}
 ight)$

Approx. Median & Quantiles: Is There a "Perfect" Algorithm?

What would be a "perfect" streaming algorithm?

deterministic

constant space for fixed arepsilon

$$ullet$$
 ideally $\mathcal{O}\left(rac{1}{arepsilon}
ight)$; or e.g. $\mathcal{O}\left(rac{1}{arepsilon^2}
ight)$

- no additional knowledge about items
- comparison-based

Approx. Median & Quantiles: Is There a "Perfect" Algorithm?

What would be a "perfect" streaming algorithm?

finds ε -approximate median

deterministic

constant space for fixed arepsilon

$$ullet$$
 ideally $\mathcal{O}\left(rac{1}{arepsilon}
ight)$; or e.g. $\mathcal{O}\left(rac{1}{arepsilon^2}
ight)$

- no additional knowledge about items
- comparison-based

Theorem (Cormode, V. '20)

There is **no** perfect streaming algorithm for ε -approximate median

Approx. Median & Quantiles: Is There a "Perfect" Algorithm?

What would be a "perfect" streaming algorithm?

finds ε -approximate median

deterministic 🗼

constant space for fixed arepsilon

$$ullet$$
 ideally $\mathcal{O}\left(rac{1}{arepsilon}
ight)$; or e.g. $\mathcal{O}\left(rac{1}{arepsilon^2}
ight)$

- no additional knowledge about items
- comparison-based

Theorem (Cormode, V. '20)

There is **no** perfect streaming algorithm for ε -approximate median

- Optimal space lower bound $\Omega\left(rac{1}{arepsilon}\cdot\logarepsilon\mathsf{N}
 ight)$
- Matches the result in [Greenwald & Khanna '01]

Comparison-based algorithm

 \Rightarrow cannot compare with items deleted from the memory

Comparison-based algorithm

⇒ cannot compare with items deleted from the memory

Comparison-based algorithm

⇒ cannot compare with items deleted from the memory

Comparison-based algorithm

⇒ cannot compare with items deleted from the memory

How does 30 compare to discarded items between 10 and 50?

Comparison-based algorithm

⇒ cannot compare with items deleted from the memory

How does 30 compare to discarded items between 10 and 50?

Idea: Introduce uncertainty

too high uncertainty ⇒ not accurate-enough answers

⇒ cannot compare with items deleted from the memory

How does 30 compare to discarded items between 10 and 50?

Idea: Introduce uncertainty

- too high uncertainty ⇒ not accurate-enough answers
- need to show: low uncertainty \Rightarrow many items stored \Rightarrow large space needed

Comparison-based algorithm

⇒ cannot compare with items deleted from the memory

How does 30 compare to discarded items between 10 and 50?

Idea: Introduce uncertainty

- too high uncertainty ⇒ not accurate-enough answers
- need to show: low uncertainty \Rightarrow many items stored \Rightarrow large space needed
- o recursive construction of worst-case stream o lower bound $\Omega \left(rac{1}{arepsilon} \cdot \log arepsilon \mathcal{N}
 ight)$

Problem solved:

- Deterministic algorithms: space $\Theta\left(rac{1}{arepsilon}\cdot\logarepsilon\mathcal{N}
 ight)$ optimal [Greenwald & Khanna '01]
- [Cormode, **V.** '20]
- Randomized algorithms: space $\Theta \left(rac{1}{arepsilon}
 ight)$ optimal (const. probability of too high error) [Karnin et al. '16]

Problem solved:

- Deterministic algorithms: space $\Theta\left(rac{1}{arepsilon}\cdot\logarepsilon\mathcal{N}
 ight)$ optimal [Greenwald & Khanna '01]
- [Cormode, **V.** '20]
- Randomized algorithms: space $\Theta \left(rac{1}{arepsilon}
 ight)$ optimal (const. probability of too high error) [Karnin et al. '16]

Figure out constant factors

Problem solved:

- Deterministic algorithms: space $\Theta\left(rac{1}{arepsilon}\cdot\logarepsilon\mathcal{N}
 ight)$ optimal [Greenwald & Khanna '01] [Cormode, **V.** '20]
- Randomized algorithms: space $\Theta \left(rac{1}{arepsilon}
 ight)$ optimal (const. probability of too high error) [Karnin *et al.* '16]

- **Figure out constant factors**
- Randomized algorithm with good expected space, but guaranteed $\pm \varepsilon N$ error

Problem solved:

- Deterministic algorithms: space $\Theta\left(rac{1}{arepsilon}\cdot\logarepsilon\mathsf{N}
 ight)$ optimal [Greenwald & Khanna '01]
- Randomized algorithms: space $\Theta \left(rac{1}{arepsilon}
 ight)$ optimal (const. probability of too high error) [Karnin *et al.* '16] [Cormode, **V.** '20]

- Figure out constant factors
- Randomized algorithm with good expected space, but guaranteed $\pm \varepsilon N$ error
- A non-trivial lower bound for integers $\{1, \ldots, M\}$?
- Or can we do better than $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log M\right)$?

Problem solved:

- Deterministic algorithms: space $\Theta\left(rac{1}{arepsilon}\cdot\logarepsilon\mathsf{N}
 ight)$ optimal [Greenwald & Khanna '01]
- [Cormode, V. '20]
- Randomized algorithms: space $\Theta \left(rac{1}{arepsilon}
 ight)$ optimal (const. probability of too high error) [Karnin *et al.* '16]

- Figure out constant factors
- Randomized algorithm with good expected space, but guaranteed $\pm \varepsilon N$ error
- A non-trivial lower bound for integers $\{1, \ldots, M\}$?
- Or can we do better than $\mathcal{O}\left(\frac{1}{\varepsilon} \cdot \log M\right)$?
- Dynamic streams w/ insertions and deletions of items

