Γ Ц Φ О. 9 КЛАСС. 2014/15.

27	Два одинаковых заряда, удерживаемых на расстоянии l друг от друга, после того, как их отпустили, разлетаются с равными скоростями, стремящимися при бесконечном удалении зарядов друг от друга к предельному значению v . Какова предельная скорость, если первоначально три такие же заряда удерживали в вершинах правильного треугольника со сторонами длины l ?
28	Клин массы M с углом α при вершине плотно прилегает к вертикальной стенке и опирается на брусок массы m , находящийся на горизонтальной плоскости. Вершина клина находится на высоте H над этой плоскостью, а торец клина на высоте $h < H$ над верхней поверхностью бруска. Брусок сначала удерживают в этом положении, а потом отпускают. Найдите его скорость в момент отрыва от клина. Трением пренебречь.
29	На гладком горизонтальном столе лежат два одинаковых бруска, соединенных пружиной жесткости k и длины l_0 . На левый брусок внезапно начинает действовать постоянная сила F , направленная вдоль пружины. Найдите минимальное и максимальное расстояние между брусками.
30	На покоящийся шар налетает шар такой же массы. Найдите угол разлета шаров после нецентрального упругого удара.
31	Локомотив с постоянной силой тяги F начал двигаться к стоящему вагонуи столкнулся с ним через время Δt . Найдите время между последующими соударениями локомотива с этим вагоном. Удар упругий. Трением в осях колес пренебречь. Массы вагона и локомотива не одинаковы.
32	По горизонтальной плоскости мжет скользить без трения глад- кая "горка"высоты h и массы m_1 . Горка плавно переходит в плос- кость. При какой наименьшей скорости горки небольшое тело массы m_2 , неподвижно лежащее вначале на ее пути, перевалит через вершину?