

Packet Tracer : configuration du protocole OSPFv2 à zones multiples

Topologie

Table d'adressage

Périphérique	Interface	Adresse IP	Masque de sous-réseau	Zone OSPFv2
R1	G0/0	10.1.1.1	255.255.255.0	1
	G0/1	10.1.2.1	255.255.255.0	1
	S0/0/0	192.168.10.2	255.255.255.252	0
	G0/0	10.2.1.1	255.255.255.0	0
R2	S0/0/0	192.168.10.1	255.255.255.252	0
	S0/0/1	192.168.10.5	255.255.255.252	0
	G0/0	192.168.2.1	255.255.255.0	2
R3	G0/1	192.168.1.1	255.255.255.0	2
	S0/0/1	192.168.10.6	255.255.255.252	0

Objectifs

Partie 1 : configuration du routage OSPFv2 à zones multiples

Partie 2 : vérification et examen du routage OSPFv2 à zones multiples

Contexte

Au cours de cet exercice, vous allez configurer le routage OSPFv2 à zones multiples. Le réseau est déjà connecté et les interfaces ont été configurées avec l'adressage IPv4. Votre tâche consiste à activer le routage OSPFv2 à zones multiples, à vérifier la connectivité et à examiner le fonctionnement du routage OSPFv2 à zones multiples.

Partie 1 : Configuration du protocole OSPFv2

Étape 1 : Configurez OSPFv2 sur R1.

Configurez OSPFv2 sur R1 avec un ID de processus égal à 1 et un ID de routeur égal à 1.1.1.1.

Étape 2 : Annoncez chaque réseau connecté directement dans OSPFv2 sur R1.

Configurez chaque réseau dans OSPFv2 en attribuant les zones conformément à la table d'adressage.

```
R1(config-router)# network 10.1.1.0 0.0.0.255 area 1
R1(config-router)# network 10.1.2.0 0.0.0.255 area 1
R1(config-router)# network 192.168.10.0 0.0.0.3 area 0
```

Étape 3 : Configurez le protocole OSPFv2 sur R2 et R3.

Répétez les étapes ci-dessus pour **R2** et **R3** en utilisant un ID de routeur de 2.2.2.2 et 3.3.3.3, respectivement.

Partie 2 : Vérification et examen du protocole OSPFv2 à zones multiples

Étape 1 : Vérifiez la connectivité avec chaque zone OSPFv2.

À partir de R1, envoyez une requête ping aux périphériques distants suivants présents dans les zones 0 et 2 : 192.168.1.2, 192.168.2.2 et 10.2.1.2.

Étape 2 : Utilisez les commandes show pour examiner les opérations OSPFv2 en cours.

Utilisez les commandes suivantes pour collecter des informations relatives à l'implémentation du routage OSPFv2 à zones multiples.

```
show ip protocols
show ip route
show ip ospf database
show ip ospf interface
show ip ospf neighbor
```

Questions de réflexion

1.	Quels routeurs sont des routeurs internes ?	
2.	Quels routeurs sont des routeurs fédérateurs ?	
3.	Quels routeurs sont des routeurs ABR ?	
4.	Quels routeurs sont des routeurs ASBR ?	
5.	Quels routeurs génèrent des LSA de type 1 ?	

Packet Tracer : configuration du routage OSPFv2 à zones multiples

6.	Quels routeurs génèrent des LSA de type 2 ?
7.	Quels routeurs génèrent des LSA de type 3 ?
8.	Quels routeurs génèrent des LSA de types 4 et 5 ?
9.	Combien de routes interzone chaque routeur possède-t-il ?
10.	Pourquoi y a-t-il généralement un routeur ASBR dans ce type de réseau ?

Suggestion de barème de notation

Packet Tracer donne 80 points. Chacune des questions de réflexion vaut 2 points.