Conjuntos y lógica Tarea 2 completa

Profesora: Cecilia Chávez Aguilera Ayudante: José A. Árevalo Ávalos

7 de noviembre de 2020

1. ¿Cuáles de las siguientes proposiciones son verdaderas y cuáles falsas? Justifique su respuesta.

- 2. Demuestre usando dos esquemas diferentes de prueba que $A\subseteq C$ si y sólo si $A\cup (B\cap C)=(A\cup B)\cap C$
- 3. Diferencia de conjuntos. Sean $A, B \ y \ C$ conjuntos. Muestre los siguientes hechos.

$$A \setminus B = (A \cup B) \setminus B$$

$$(A \setminus C) \setminus (B \setminus C) = (A \setminus B) \setminus C$$

- 4. Sean A,B,C,D conjuntos. Demuestre especificando el tipo de prueba usada los siguientes hechos:
 - $\bullet (A \times C) \cap (B \times D) = (A \cap B) \times (C \cap D)$
 - $(A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D)$. Muestre que es posible que no se dé la igualdad.
- 5. Sean $\{A_i:i\in I\}$ y $\{B_j:j\in J\}$ familias indizadas de conjuntos Muestre que

$$\left[\bigcap_{i\in I} A_i\right] \times \left[\bigcap_{j\in J} B_j\right] = \bigcap \{A_i \times B_j : (i,j) \in I \times J\}$$

6. Sean $f:A\to B$ y $g:B\to C$ funciones. Pruebe que si $C'\subseteq C$, enonces $(g\circ f)^{-1}(C')=f^{-1}(g^{-1}(C')).$

- 7. Sean $f: A \to B$ y $g: B \to C$ functiones.
 - \blacksquare Si $g\circ f$ es inyectiva, qué se puede decir de la inyectividad de f y de g.
 - \blacksquare Si $g\circ f$ es sobreyectiva, qué se puede decir de la sobreyectividad de f y g.
- 8. Sean $f:A\to B$ y $g:B\to C$ funciones. Demostrar que existe una función $h:B\to C$ tal que $f=h\circ g$ si y sólo si para cada $x,y\in A$ g(x)=g(y) implica f(x)=f(y).
- 9. Brinde los siguientes ejemplos:
 - Dar un ejemplo de una función que tenga inversa izquierda pero no inversa derecha
 - Dar un ejemplo de una función que tenga inversa derecha pero no inversa derecha
- 10. Muestre que si $f:A\to B$ y $g:B\to C$ son funciones biyectivas, entonces $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$