Portfolio Optimization Credit Risk Managment

Ali Hachem, Erisa Murati, Megi Kasemi Xinyu Wang, Zinan Zhou

21st January 2020

Group Organisation

Portfolio Optimization

Ali Hachem, Erisa Murati, Megi Kasemi

Studying the portfolio optimization process and proposing methods for having an optimal portfolio.

Credit Risk Managment

Xinyu Wang, Zinan Zhou

Getting the Credit Score Card and optimizing the model by using different methods on new dataset.

Contents

- 1 Portfolio Optimization
 - Introduction
 - Objectives
 - Sharpe Ratio
 - Omega Ratio
 - Conclusions
- 2 Credit Risk Management
 - Objectives
 - Previous work
 - Module evaluation
 - Comparision SVM and LR
 - Results and Conclusions
- 3 Conclusions

Contents

- 1 Portfolio Optimization
 - Introduction
 - Objectives
 - Sharpe Ratio
 - Omega Ratio
 - Conclusions
- 2 Credit Risk Management
 - Objectives
 - Previous work
 - Module evaluation
 - Comparision SVM and LR
 - Results and Conclusions
- 3 Conclusions

Introduction

Motivation

Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered, subject to maximizing expected return, and minimizing financial risk.

Several mechanisms to manage portfolios:

- Sharpe Ratio
- Omega Ratio

(Maximizing these two functions)

Objectives

Objective

Propose methods to maximize these two functions

- Monte Carlo Simulation
- Analytical method

- Using 3 different datasets (Istanbul, United States and ETF Stocks)
- Studied for 5 time periods (daily, weekly, monthly, quarterly, semester)

Sharpe Ratio

Sharpe Ratio measures the performance of an investment compared to a risk-free asset, after adjusting for its risk.

Sharpe Ratio =
$$f(x_1, x_2, ..., x_n)$$

 x_i - percentage of money of asset i

- Non-linear
 - Convex

It is used to help investors understand the return of an investment compared to its risk.

Monte Carlo Results

Figure: Monte Carlo results: max Sharpe Ratio value

Analytic method

- Going from non-linear to quadratic programming problem
- Using libraries supporting quadratic programming in Python

Analytic method results

Results comparison

Figure: Values of the weights for the assets of ETF stock: MC (left) AM (right)

maximum of sharpe ratio(daily data)

Results comparison

0.30

maximum of sharpe ratio(daily data)

Figure: Values of the weights for the assets of United States stock

Results comparison

 x_i - percentage of money of asset i

- Non-linear
- Non-convex

Figure: Values of the weights for the assets of Istanbul stock

Omega Ratio

Omega Ratio =
$$f(x_1, x_2, ..., x_n, \mathbf{L})$$

Non-linear

Non-convex

Monte Carlo Results

Figure: Monte Carlo results: max Omega Ratio for all datasets

Analytic method

L is usually chosen by the investor by considering how much risk he want to take.

Approximate the value of L by solving a linear programming Approximation from non-linear to linear programming of Omega Ratio problem

Analytic method results

Figure: Analytic method: max Omega Ratio value

Conclusions

Contents

- 1 Portfolio Optimization
 - Introduction
 - Objectives
 - Sharpe Ratio
 - Omega Ratio
 - Conclusions
- 2 Credit Risk Management
 - Objectives
 - Previous work
 - Module evaluation
 - Comparision SVM and LR
 - Results and Conclusions
- 3 Conclusions

Objective

Finding the module which can help bank do the right choice for issuing credit card and reduce the risk.

Data explication and feature selection

	Label	Explanation
XO	SeriousDlqin2yrs	Good clients and defaulting clients
X1	RevolvingUtilisationOfUnsecuredLines	Recycling of unsecured loans(Credit card and personal credit limit,
		except for real estate and non-amortization debts, which are divided
		by the sum of credit lines, such as car loans)
X2	Age	Age of client
Х3	NumberOfTime30-59DaysPastDueNotWorse	Times of 35-59 days overdue but not bad
X4	DebtRatio	Debt ratio
X5	Monthlylncome	Monthly Income real
Х6	NumberOfOpenCreditLinesAndLoans	Number of open credits and loans, open loans (instalments such as
		car loans or mortgages) and credit (such as credit cards)
X7	NumberOfTimes90DaysLate	The number of times the client has overdue for 90 days or more
X8	NumberRealEstateLoansOrLines	Real estate loans or quotas: Mortgage and real estate lending
		including home equity credit lines
X9	NumberOfTime60-89DaysPastDueNotWorse	Times of 60-89 days overdue but not bad
X10	NumberOfDependents	Number of dependents not including myself

- x1--RevolvingUtilizationOfUnsecuredLines.
- x7--NumberOfTimes90DaysLate
- x3--NumberOfTime30-59DaysPastDueNotWorse x9--NumberOfTime60-89DaysPastDueNotWorse
- x6-- NumberOfOpenCreditLinesAndLoans
- x8-- NumberRealEstateLoansOrLines
- x5-- MonthlyIncome x10-- NumberOfDependents
- x10-- NumberOfDependents
- x4-- DebtRatio

Figure: Data explication

Figure: Feature selection

logistic regression

Figure: Results of Regression Logistic

Result

Several scorecard parameters: the base score, PDO (the ratio doubles the score), and the quality ratio.

-4	А	В	C	D	Е	F	G	Н	- 1
1	Seri	ousD1qin	BaseScore	zationOf	age	-59DaysP	fTimes901	-89DaysP	Score
2	112283	1	435	-19	-9	-27	-34	-23	323
3	62127	1	435	-19	15	-14	-34	-23	360
4	43871	1	435	-19	-3	-14	-34	-23	342
5	103321	1	435	-19	-9	-14	-34	-23	336
6	65734	1	435	22	11	-14	-34	-23	397
7	26964	1	435	-19	-2	-14	-34	-23	343
8	24938	1	435	21	-9	-14	-34	-23	376

Figure: Credit Score Card

Module evaluation

Verify how predictive the model is. Automatic calculation of ROC and AUC

Figure: ROC curve which demonstrate the effect of binary classification and Confusion Matrix

Credit dataset

- German credit dataset 1000 sample
- Credit data: imbalanced data

Figure: Results of LR for GiveMeSomeCredit

- Balance data
 - LR: using SMOTE before LR
 - SVM : using parameter "classweight='balanced" in the fuction SVC

Balancing data

SMOTE: a simple upsampling method to directly copy a few samples of the minority class and add them to the sample set.

		precision	recall	fl-score	support
Good clients Bad clients	1 2	0.82 0.55	0. 86 0. 46	0. 84 0. 50	148 52
accur	асу			0.76	200

	precision	recall	f1-score	support
1 2	0.87 0.54	0. 80 0. 65	0. 84 0. 59	148 52
accuracy			0.77	200

Figure: Results of LR in German data

Figure: Results of LR after SMOTE in German data

■ SVC(classweight='balanced'): Increasing C value of the weights based on the class.

$$C_j = C * w_j$$
$$w_j = \frac{n}{k * n_j}$$

C is the hyperparameter responsible for penalizing misclassified data.

Support vector machines(SVM)

- In python, two methods SVC and LinearSVC.
- **SVC**: five different kernel functions of SVC method.
 - SVM rbf
 - SVM linear
 - SVM poly
 - SVM sigmoid
 - SVM precomputed
- Cross Validation: find the optimal penalty coefficient C.
- LinearSVC: more flexibility in the choice of penalties and loss functions and scale better to large numbers of samples.

		precision	recall	f1-score
	0 1	0.17 0.98	0.71 0.79	0.28 0.87
accu	racy			0.78

		precision	recall	f1-score
	0	0.56 0.95	0.17 0.99	0.26 0.97
accurac	су			0.94

Figure: Results of SVC(kernel=linear) in GiveMeSomeCredit

Figure: Results of LinearSVC in GiveMeSomeCredit

Comparision of LR and LinearSVC

Compare LR and LinearSVC after data balance

Figure: Results of LR in GiveMeSomeCredit

accuracy of [255 1 199 23		0.94223754	3592416
	precisio	n recall	f1-score
	0 0.5 1 0.9		0.26 0.97
accura	су		0.94

Figure: Results of LinearSVC in GiveMeSomeCredit

Results and Conclusions

- Risk of credit card is considered as binary classification problems.
- Before training the model, feature selection is a important part.
- We compare LR with SVM. SVM represent a better result for the imbalanced data.
- For further research, fuzzy logic is also a good model for credit data.

Contents

- 1 Portfolio Optimization
 - Introduction
 - Objectives
 - Sharpe Ratio
 - Omega Ratio
 - Conclusions
- 2 Credit Risk Management
 - Objectives
 - Previous work
 - Module evaluation
 - Comparision SVM and LR
 - Results and Conclusions
- 3 Conclusions

THANK YOU FOR YOUR ATTENTION Questions?