

Ministério da Educação Universidade Tecnológica Federal do Paraná **Campus Apucarana**

Informações da disciplina

Código Ofertado	Disciplina/Unidade Curricular	Modo de Avaliação	Modalidade da disciplina	Oferta
FNCO6A	Fundamentos De Controle	Nota/Conceito E Frequência	Presencial	Semestral

Carga Horária					
AT	АР	APS	ANP	APCC	Total
3	2	0	0	0	75

- AT: Atividades Teóricas (aulas semanais).
- AP: Atividades Práticas (aulas semanais).
- ANP: Atividades não presenciais (horas no período).
- APS: Atividades Práticas Supervisionadas (aulas no período).
- APCC: Atividades Práticas como Componente Curricular (aulas no período, esta carga horária está incluída em AP e AT).
- Total: carga horária total da disciplina em horas.

Objetivo

Ao final da disciplina o aluno deverá ser capaz de modelar sistemas dinâmicos em geral, assim como compreender e analisar sistemas lineares e invariantes no tempo utilizando ferramentas matemáticas no domínio do tempo e da frequência. Também deverá compreender as principais ações de controle usadas em sistemas de controle automático. Será capaz de analisar e projetar sistemas dinâmicos e de controle em tempo contínuo, utilizando o método do lugar das raízes, da resposta em frequência. Também deverá ser capaz de implementar os controladores projetados analogicamente.

Ementa

Introdução aos sistemas de controle. Modelagem matemática de sistemas dinâmicos. Representação de sistemas contínuos por diagrama de fluxo de sinal e diagrama de blocos. Estabilidade de sistemas dinâmicos. Propriedades de sistemas de controle: resposta transitória (versus) alocação de pólos, erro estacionário e sensibilidade. Análise e projeto utilizando o lugar das raízes. Análise pelo método da resposta em frequência. Técnicas de projeto e compensação: avanço, atraso, avanço-atraso, PID.

Conteúdo Programático

Ordem	Ementa	Conteúdo		
1	Introdução aos sistemas de controle.	Conceitos básicos dos sistemas de controle; Sistemas em malha aberta e malha fechada; Delimitação das aplicações do controle clássico.		

Ordem	m Ementa Conteúdo		
2	Modelagem matemática de sistemas dinâmicos.	Modelos matemáticos de sistemas dinâmicos; Linearização de um modelo não linear.	
3	Representação de sistemas contínuos por diagrama de fluxo de sinal e diagrama de blocos.	Diagramas de Blocos; Diagramas de fluxo de sinais.	
4	Estabilidade de sistemas dinâmicos.	Ação do tipo On-Off; Ação do tipo Proporcional; Ação do tipo Integral; Ação do tipo Derivativo. Critério de estabilidade de Routh.	
5	Propriedades de sistemas de controle: resposta transitória (versus) alocação de pólos, erro estacionário e sensibilidade.	·	
6	Análise e projeto utilizando o lugar das raízes.	Diagramas de lugar das raízes; Sumário das regras gerais; Análise de sistemas de controle pela correlação entre a resposta temporal utilizando o método do lugar das raízes.	
7	Análise pelo método da resposta em frequência.	Diagramas de Bode; Margens de Ganho e de Fase; Diagramas Polares; Critério de Estabilidade de Nyquist.	
8	Técnicas de projeto e compensação: avanço, atraso, avanço-atraso, PID.	Projeto de controlador em avanço (Lead); Projeto de controlador em atraso (Lag); Compensação avanço-atraso; Efeitos do controle proporcional, integral e derivativo; Otimização de controladores PID.	

Bibliografia Básica

OGATA, Katsuhiko. Engenharia de controle moderno. 5. ed. São Paulo, SP: Pearson Prentice Hall, c2010. x, 809 p. ISBN 9788576058106.

NISE, Norman S. Engenharia de sistemas de controle. 7. ed. Rio de Janeiro, RJ: LTC, 2017. xiv, 751 p. ISBN 9788521634355.

DORF, Richard C.; BISHOP, Robert H. Sistemas de controle modernos. 13. ed. Rio de Janeiro, RJ: LTC, 2018. xxi, 770 p. ISBN 9788521635123.

Bibliografia Complementar

CAPELLI, Alexandre. Automação industrial: controle do movimento e processos contínuos. 3. ed. São Paulo, SP: Érica, 2013. 236 p. ISBN 9788536501178.

MONTEIRO, Luiz Henrique Alves. Sistemas dinâmicos. 3. ed. São Paulo, SP: Livraria da Física, 2011. 670 p. ISBN 9788578611026.

LATHI, B. P. Sinais e sistemas lineares. 2. ed. Porto Alegre, RS: Bookman, 2007. 856 p. ISBN 9788560031139.

ALVES, José Luiz Loureiro. Instrumentação, controle e automação de processos. 2. ed. Rio de Janeiro, RJ: LTC, 2010. x, 201 p. ISBN 9788521617624.

FIALHO, Arivelto Bustamante. Instrumentação industrial: conceitos, aplicações e análises. 7. ed. rev. São Paulo, SP: Érica, 2010. 280 p. ISBN 9788571949225.

#	Resumo da Alteração	Edição	Data	Aprovação	Data
1	Preenchimento de plano de ensino e bibliografia.	Fernando Barreto	08/06/2021	Fernando Barreto	08/06/2021

11/08/2022 15:05