FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Typografie a publikování - 2. projekt Sazba dokumentů a matematických výrazů

Úvod

V této úloze si vyzkoušíme sazbu titulní strany, matematických vzorců, prostředí a dalších textových struktur obvyklých pro technicky zaměřené texty, například rovnice (??) nebo definice ?? na straně ??.

Na titulní straně je využito sázení nadpisu podle optického středu s využitím zlatého řezu. Tento postup byl probírán na přednášce.

1 Matematický text

Nejprve se podíváme na sázení matematických symbolů a výrazů v plynulém textu. Pro množinu V označuje $\operatorname{card}(V)$ kardinalitu V. Pro množinu V reprezentuje V^* volný monoid generovaný množinou V s operací konkatenace. Prvek identity ve volném monoidu V^* značíme symbolem ε . Nechť $V^+ = V^* - \{\varepsilon\}$ Algebraicky je tedy V^+ volná pologrupa generovaná množinou V s operací konkatenace. Konečnou neprázdnou množinu V nazvěme abeceda. Pro $\omega \in V^*$ označuje $|\omega|$ délku řetězce ω . Pro $W \subseteq V$ označuje occur (ω,W) počet výskytů symbolů z W v řetězci ω a $\operatorname{sym}(\omega,i)$ určuje i-tý symbol řetězce ω ; například $\operatorname{sym}(abcd,3) = c$.

Nyní zkusíme sazbu definic a vět s využitím balíku amsthm.

Bezkontextová gramatika je čtveřice G=(V,T,P,S), kde V je totální abeceda, $T\subseteq V$ je abeceda terminálů, $S\in (V-T)$ je startující symbol a P je konečná množina pravidel tvaru $q\colon A\to \alpha$, kde $A\in (V-T)$, $\alpha\in V^*$ a q je návěští tohoto pravidla. Nechť N=V-T značí abecedu neterminálů. Pokud $q\colon A\to \alpha\in P, \, \gamma,\, \delta\in V^*,\, G$ provádí derivační krok z $\gamma A\delta$ do $\gamma \alpha\delta$ podle pravidla $q\colon A\to \alpha$, symbolicky píšeme $\gamma A\delta \Rightarrow \gamma \alpha\delta \ [q\colon A\to \alpha]$ nebo zjednodušeně $\gamma A\delta \Rightarrow \gamma \alpha\delta$. Standardním způsobem definujeme \Rightarrow^m , kde $m\geq 0$. Dále definujeme tranzitivní uzávěr \Rightarrow^+ a tranzitivně-reflexivní uzávěr \Rightarrow^* .

Algoritmus můžeme uvádět podobně jako definice textově, nebo využít pseudokódu vysázeného ve vhodném prostředí (například \algorithm2e).

Algoritmus pro ověření bezkontextovosti gramatiky. Mějme gramatiku G=(N,T,P,S).

- 1. Pro každé pravidlo $p \in P$ proveď test, zda p na levé straně obsahuje právě jeden symbol z N.
- 2. Pokud všechna pravidla splňují podmínku z kroku ??, tak je gramatika *G* bezkontextová.

Jazyk definovaný gramatikou G definujeme jako $L(G) = \{w \in T^* \mid S \Rightarrow^* w\}.$

1.1 Podsekce obsahující větu

Nech L je libovolný jazyk. L je bezkontextový jazyk, když a jen když L=L(G), kde G je libovolná bezkontextová gramatika.

Množinu $\mathcal{L}_{CF} = \{L \mid L \text{ je bezkontextový jazyk}\}$ nazýváme třídou bezkontextových jazyků.

Nech $L_{ABC}=\{a^nb^nc^n\,|\,n\geq 0\}.$ Platí, že $L_{abc}\not\in\mathcal{L}_{CF}.$

[Důkaz] Důkaz se provede pomocí Pumping lemma pro bezkontextové jazyky a je zřejmý, což implikuje pravdivost věty ??.

2 Rovnice a odkazy

Složitější matematické formulace sázíme mimo plynulý text. Lze umístit několik výrazů na jeden řádek, ale pak je třeba tyto vhodně oddělit, například příkazem \quad.

$$x^{2}\sqrt{y_{0}^{3}}$$
 $N = \{0, 1, 2, \ldots\}$ $x^{y^{y}} \neq x^{yy}$ $z_{i_{j}} \not\equiv z_{ij}$

V rovnici (??) jsou využity tři typy závorek s různou explicitně definovanou velikostí.

$$\left\{ \left[(a+b) * c \right]^d + 1 \right\} = 0 \tag{1}$$

$$\lim_{x \to \infty} \frac{\sin^2 x + \cos^2 x}{4} = y$$

V této větě vidíme, jak vypadá implicitní vysázení limity $\lim_{x \to \infty} f(n)$ v normálním odstavci textu. Podobně je to i s dalšími symboly jako \sum_1^n či $\bigcup_{A \in B}$. V případě vzorce $\lim_{x \to 0} \frac{\sin x}{x} = 1$ jsme si vynutili méně úspornou sazbu příkazem \limits.

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \qquad (2)$$

$$\left(\sqrt[5]{x^4}\right)' = \left(x^{\frac{4}{5}}\right)' = \frac{4}{5}x^{-\frac{1}{5}} = \frac{4}{5\sqrt[5]{x}}$$
 (3)

$$\overline{\overline{A \vee B}} = \overline{\overline{A} \wedge \overline{B}} \tag{4}$$

3 Matice

Pro sázení matic se velmi často používá prostředí array a závorky (\left, \right).

$$\mathbf{A} = \begin{pmatrix} a+b & b-a \\ \widehat{\xi+\omega} & \widehat{\pi} \\ \overrightarrow{a} & AC \\ 0 & \beta \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$\begin{vmatrix} t & u \\ v & w \end{vmatrix} = tw - uv$$

Prostředí array lze úspěšně využít i jinde.

$$nk = \{ n!k!.(n-k)! \quad \text{pro } 0 \le k \le n0 \quad \text{pro } k < 0 \text{ nebo } k > n \}$$

4 Závěrem

V případě, že budete potřebovat vyjádřit matematickou konstrukci nebo symbol a nebude se Vám dařit jej nalézt v samotném LATEXu, doporučuji prostudovat možnosti balíku maker -LATEX.