Modelo Matemático del Lobo Gris para Optimización de Portafolios

Javier Horacio Pérez Ricárdez

noviembre del 2024

Función Objetivo

El objetivo es maximizar el retorno del portafolio y minimizar el riesgo asociado, definido como:

$$\max_{n} \mathbb{E}(R_p) - \lambda \cdot \text{Var}(R_p)$$

donde:

- $w = [w_1, w_2, \dots, w_n]$ son los pesos asignados a cada activo.
- $\mathbb{E}(R_p) = \sum_{i=1}^n w_i \mathbb{E}(R_i)$ es el retorno esperado del portafolio.
- $Var(R_p) = w^{\top} \Sigma w$ es la varianza del portafolio.
- λ es el coeficiente de aversión al riesgo.
- Σ es la matriz de covarianzas de los activos.

Restricciones

$$\sum_{i=1}^{n} w_i = 1, \quad w_i \ge 0, \quad \forall i \in \{1, \dots, n\}$$

Comportamiento Social de los Lobos

La jerarquía de los lobos se representa matemáticamente como:

- α : la mejor solución actual.
- β : la segunda mejor solución.
- δ : la tercera mejor solución.
- ω : las restantes soluciones.

Ecuaciones de Encerramiento

Los lobos rodean a la presa utilizando las ecuaciones:

$$\vec{D} = |\vec{C} \cdot \vec{X}_p(t) - \vec{X}(t)|$$

$$\vec{X}(t+1) = \vec{X}_p(t) - \vec{A} \cdot \vec{D}$$

donde:

- $\vec{X}_p(t)$ es la posición de la presa.
- $\vec{X}(t)$ es la posición del lobo.
- $\vec{A} = 2\vec{a} \cdot \vec{r}_1 \vec{a}$.
- $\vec{C} = 2 \cdot \vec{r}_2$.
- \vec{a} decrece linealmente de 2 a 0 durante las iteraciones.
- \vec{r}_1, \vec{r}_2 son vectores aleatorios en [0, 1].

Ecuaciones de Caza

La posición del lobo se actualiza respecto a α , β y δ :

$$\begin{split} \vec{D}_{\alpha} &= |\vec{C}_{1} \cdot \vec{X}_{\alpha} - \vec{X}|, \quad \vec{D}_{\beta} = |\vec{C}_{2} \cdot \vec{X}_{\beta} - \vec{X}|, \quad \vec{D}_{\delta} = |\vec{C}_{3} \cdot \vec{X}_{\delta} - \vec{X}| \\ \vec{X}_{1} &= \vec{X}_{\alpha} - \vec{A}_{1} \cdot \vec{D}_{\alpha}, \quad \vec{X}_{2} = \vec{X}_{\beta} - \vec{A}_{2} \cdot \vec{D}_{\beta}, \quad \vec{X}_{3} = \vec{X}_{\delta} - \vec{A}_{3} \cdot \vec{D}_{\delta} \\ \vec{X}(t+1) &= \frac{\vec{X}_{1} + \vec{X}_{2} + \vec{X}_{3}}{3} \end{split}$$

Ecuaciones de Ataque y Exploración

La exploración y el ataque se controlan mediante \vec{a} y \vec{A} :

- Si $|\vec{A}| < 1$, los lobos atacan a la presa (explotación).
- Si $|\vec{A}| > 1$, los lobos exploran buscando nuevas presas.