

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий Кафедра Вычислительной техники

Отчет по практической работе №5

по дисциплине «Теория автоматов»

Тема практической работы: «Сложение чисел с плавающей точкой»

Москва 2021

		студент группы ИВБО-02-19 ассистент	К. Ю. Денисов А. С. Боронников
Сод	цержа	ние	А. С. Боронников
1 0	бщее ст	роение автомата	3
2 И	Індивиду	уальное задание	4
3 A.	Алгоритм работы автомата		5
4 Pe	еализац	ия Операционного автомата	5
5 Pc	еализац	ия управляющего автомата	8
6 B	ывод		9
ПРИ.	ЛОЖЕН	ние А	10

1 Общее строение автомата

В любом устройстве обработки цифровой информации можно выделить два основных блока – операционный автомат (ОА) и управляющий автомат (УА). Операционный автомат (ОА) служит для хранения слов информации, выполнения набора микроопераций и вычисления значений логических условий, т.е. операционный автомат является структурой, организованной для выполнения действий над информацией. Микрооперации, выполняемые ОА, задаются множеством управляющих сигналов $Y\{y_1,....,y_M\}$, с каждым из которых отождествляется определенная микрооперация.

Значения логических условий, вычисляемые в операционном автомате, отображаются множеством *осведомительных* сигналов $X = \{x_1,...,x_L\}$, каждый из которых отождествляется с определенным логическим условием.

Управляющий автомат (УА) генерирует последовательность управляющих сигналов, предписанную микропрограммой и соответствующую значениям логическим условий. Управляющий автомат задает порядок выполнения действий в ОА, вытекающий из алгоритма выполнения операций. Наименование операции, которую необходимо выполнить в устройстве, определяется кодом g операции, поступающим в УА извне.

В отличие от УА с жесткой логикой, закон функционирования которого обеспечивается определенным образом соединенными логическими элементами, в автоматах, построенных на основе ПЗУ, заданная микропрограмма реализуется в явной форме и хранится в памяти в виде последовательности управляющих слов. Управляющее слово определяет порядок работы устройства в течение одного такта и на-

зывается микрокомандой (МК). Она содержит информацию о микрооперациях, которые должны выполняться в данном такте, и (или) об адресе следующей микрокоманды.

2 Индивидуальное задание

В ходе данной практической работы был реализован автомат, выполняющий сложение чисел с плавающей точкой, где мантисса числа представленна в виде 5 разрядов в доп.коде, а порядок в виде 5-ти разрядного положительного целого числа в смещенном коде (C=16). Управляющий автомат был построен по схеме с регулярной адресацией (последовательный вариант). Рассмотрим строение управляющего автомата. См рисунок 1.

Рис. 1: УА с регулярной адресацией

В конкретной реализации на информационные входы мультиплексора подаются следующие сигналы:

- Константа нуля;
- Ma_IS_NULL (признак нуля мантиссы А);
- Mb_IS_NULL (признак нуля мантиссы В);
- A<B (признак того, что порядок числа A меньше порядка числа B);

- A_IS_ANSWER (признак того, что ответ хранится в регистрах числа A);
- CT_dP_IS_NULL (признак того, что счетчик разницы порядков хранит "ноль");
- CT_Pa_IS_NULL (признак переполнения счетчика порядка числа A в большую сторону);
- CT_Pa_IS_MAX (признак переполнения счетчика порядка числа А в меньшую сторону);
- $|m_a \pm m_b| > 1$ (признак того, что модуль алгебраической суммы операндов больше единицы);
- op normalized (признак нормализации операндов);

В схему введен элемент M2, позволяющий инвертировать значение входного сигнала, что облегчает распределение микроинструкций по ячейкам управляющей памяти.

3 Алгоритм работы автомата

Опишем алгоритм работы автомата с помощью блок схемы. См. рисунок 2 и 3 в Приложении А.

После построения алгоритма работы автомата следует перейти к реализации операционной части.

4 Реализация Операционного автомата

Построим операционный автомат, выполняющий сложение двух чисел в формате с плавающей точкой. Приведем названия и назначе-

ния каждого из регистров, используемых в данном устройстве. См. таблицу 1.

Идентификатор	Назначение
RG Ma	Универсальный сдвиговый регистр. Хранит разря-
	ды мантиссы А
CT_Mb	Счетчик. Хранит разряды мантиссы В
CT_Pa	Счетчик. Хранит разряды порядка числа А
CT_Pb	Счетчик. Хранит разряды порядка числа В
CT dP	Счетчик. Хранит разряды разницы порядков чи-
	сел А и В
REG SUM	Триггер. Хранит разряд сигнала переноса суммы
	мантисс чисел А и В

Таблица 1: Регистры операционного автомата

Укажем необходимые признаки, которые впоследствии будут вырабатываться управляющим автоматом. См. таблицу 2.

Признак	Назначение		
S	Хранит адрес следующей операции		
Н	Адресный вход мультиплексора		
R0	Сигнализирует об окончании операции деления		
overflow	Сигнализирует об ошибке обработки – переполнение		
L_Ma	Загрузка в регистр RG_Ma		
	Правый сдвиг регистра RG_Ma если		
$SHIFT_Ma$	$SHIFT_Ma_Left = 0$ и левый, если		
	$SHIFT_Ma_Left = 1$		
RST	Асинхронный сброс всех элементов		
$COUNT_Pa$	Счет. Декремент счетчика, если $L_CT\ Pa == 1$		
L_CT_Pa	Загрузка счетчика CT_Pa		
CHANGE	Выбор источника загрузки в регистры мантисс и порядка		
CHANGE	чисел А и В		
	Управляющий сигнал для счетчика. Если $e=1$, следу-		
e	ет выполнить загрузку, а если $e=0$ – инкрементировать		
	счетчик.		

Таблица 2: Осведомительные сигналы (признаки)

С целью реализации левого и правого сдвига в регистре RG_Ma был построен элемент памяти, позволяющий выбрать направление сдвига с помощью двух управляющих сигналов. Данный элемент был размещен в отдельном файле и загружался в основной файл как внешняя библиотека Logisim. Устройство данного регистра можно увидеть на рисунке 7 в Приложении A.

При выполнении операции сложения предполагается, что числа, переданные на вход находятся в нормализованном виде, то есть имеют вид, представленный на сноске 1.

$$\frac{1}{2} \leq |M| < 1$$

$$M = 0.1XXXX$$

$$M = 1.0XXXX$$

$$M = 1.00000$$
(1)

Результат суммы также нормализуется в соответствии с данными правилами. Числа, представленные в ином виде считаются ненормализованными и не обрабатываются цифровым устройством.

Стоит отметить, что для формирования правильного выходного результата необходимо выполнить нормализацию значений суммы в зависимости от вида операндов. Для каждой комбинации операндов реализована отдельная операция нормализации. См таблицу 3.

Соединим все элементы в соответствии с алгоритмом задачи. См. рисунки 4 и 5 в приложении Приложении А.

Комбинация	Коррекция	
	Мантисса не нормализована. Сдвинуть регистр мантис-	
$ m \pm m > 1$	сы вправо, загрузить сигнал переноса сумматора. Уве-	
$ m_a \pm m_b \geqslant 1$	личить порядок результата на 1. При этом может про-	
	изойти переполнение счетчика в большую сторону	
$\frac{1}{2} \leqslant m_a \pm m_b < 1$	$ m_a \pm m_b < 1$ Нормализация результата не требуется	
_	Мантисса не нормализована. Сдвигая мантиссу влево,	
$\left m_a \pm m_b < \frac{1}{2} \right $	уменьшать порядок, при этом может произойти пере-	
_	полнение порядка в отрицательную сторону	

Таблица 3: Нормализация результата

5 Реализация управляющего автомата

Приступим к построению управляющего автомата, определяющего последовательность выполнения микрокоманд для сложения двух чисел в формате с плавающей точкой.

Определим разрядность ПЗУ, участвующего в построении УА по схеме с постоянной адресацией. Адрес должен иметь 5 разрядов — текущее значение параметра *S*. Микрокоманда представлена в виде 22 бит — 15 признаков, расположенных в следующем порядке: S, R0, RST, L_ma, SHIFT_Ma, SHIFT_Ma_LEFT, L_CT_Pa, COUNT_Pa, CHANGE, L_CT_dP, COUNT_dP, m_n, H, e. Адрес текущей команды хранится в 5 -ти разрядном счетчике. К входам мультиплексора подлючены сигналы, значения которых анализируются в данном состоянии автомата. Они описаны выше. См. список.

Заполним память в соответствии в алгоритмом, подключим ПЗУ, мультиплексор и счетчик последовательным способом. См рисунок 6 в Приложении A.

Ввод и вывод результатов осуществляется с помощью блока ввода и вывода. Числа передаются в нормализованном формате со смещением порядка в C=16. См. рисунок 8 в Приложении A.

6 Вывод

В ходе данной практической работы было рассмотрено строение и работа управляющего автомата, построенного по схеме регулярной адресацией. Использовав полученные знания на практике, на основе данного управляющего автомата построено вычислительное устройство (операционный и управляющий автомат), реализующее операцию сложения двух чисел в формате с плавающей точкой.

приложение а

Рис. 2: Алгоритм сложения чисел с плавающей точкой. Часть 1

Рис. 3: Алгоритм сложения чисел с плавающей точкой. Часть 2

Рис. 4: Схема операционного автомата, часть 1

Рис. 5: Схема операционного автомата, часть 2

Рис. 6: Схема управляющего автомата

Рис. 7: Устройство универсального регистра

Рис. 8: Блок ввода-вывода