2005 13 JAN 2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年 7月16日

出願番号

Application Number:

特願2002-206469

[ST.10/C]:

[JP2002-206469]

出 願
Applicant(s):

ソニー株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 5月30日

特 許 庁 長 官 Commissioner, Japan Patent Office

特2002-206469

【書類名】

特許願

【整理番号】

0290473717

【提出日】

平成14年 7月16日

【あて先】

特許庁長官殿

【国際特許分類】

G06F 15/18

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

近藤 哲二郎

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

木村 裕人

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

渡辺 勉

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

服部 正明

【発明者】

【住所又は居所】

東京都品川区北品川6丁目7番35号 ソニー株式会社

内

【氏名】

福士 岳歩

【特許出願人】

【識別番号】

000002185

【氏名又は名称】

ソニー株式会社

【代理人】

【識別番号】 100082131

【弁理士】

【氏名又は名称】 稲本 義雄

【電話番号】

03-3369-6479

【手数料の表示】

【予納台帳番号】 032089

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9708842

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 送信装置および送信方法、受信装置および受信方法、送受信装置、通信装置および方法、記録媒体、並びにプログラム

【特許請求の範囲】

【請求項1】 入力された音声データを送信する送信装置であって、 前記音声データを符号化し、符号化音声データを出力する符号化手段と、 前記符号化音声データを送信する送信手段と、

前記符号化手段による符号化に関するパラメータ、および前記送信手段による 送信に関するパラメータを、前記符号化音声データを受信する受信側を特定する 特定情報に対応させて記憶するパラメータ記憶手段と、

前記特定情報に基づいて、前記パラメータ記憶手段により記憶されている前記符号化手段による符号化に関するパラメータ、および前記送信手段による送信に関するパラメータを選択し、設定するパラメータ設定手段と

を備えることを特徴とする送信装置。

【請求項2】 前記符号化に関するパラメータは、符号化方式および前記符 号化に用いられるコードブックを含む

ことを特徴とする請求項1に記載の送信装置。

【請求項3】 前記送信に関するパラメータは、変調方式および前記送信におけるデータの単位時間あたりの送信データ量を含む

ことを特徴とする請求項1に記載の送信装置。

【請求項4】 前記パラメータ記憶手段は、1つの前記特定情報に対して、 互いに異なる優先度が付加された複数の前記符号化に関するパラメータおよび前 記送信に関するパラメータの組み合わせを記憶する

ことを特徴とする請求項1に記載の送信装置。

【請求項5】 前記符号化に関するパラメータおよび前記送信に関するパラメータの初期値を記憶する初期値記憶手段をさらに備え、

前記設定手段は、前記特定情報に対応付けられた前記符号化に関するパラメータおよび前記送信に関するパラメータが存在しない場合、前記初期値記憶手段に 記憶された前記初期値を設定する ことを特徴とする請求項1に記載の送信装置。

【請求項6】 前記初期値記憶手段は、前記受信側の状態に関する情報に対応付けて前記初期値を記憶する

ことを特徴とする請求項5に記載の送信装置。

【請求項7】 前記受信側において出力される音声の品質を向上させる高品質化データの学習を、過去の学習に用いられた音声データと、新たに入力された音声データに基づいて行う学習手段をさらに備え、

前記送信手段は、前記符号化音声データとともに、前記高品質化データを送信 する

ことを特徴とする請求項1に記載の送信装置。

【請求項8】 前記学習手段は、前記符号化音声データを復号した復号音声 データを高品質化した高品質音声データの予測値を求める予測演算を行うのに、 前記復号音声データとともに用いるタップ係数を、前記高品質化データとして求 める学習を行う

ことを特徴とする請求項7に記載の送信装置。

【請求項9】 入力された音声データを送信する送信装置の送信方法であって、

前記音声データを符号化し、符号化音声データを出力する符号化ステップと、 前記符号化音声データの送信を制御する送信制御ステップと、

前記符号化ステップの処理による符号化に関するパラメータ、および前記送信 制御ステップの処理により制御された送信に関するパラメータを前記符号化音声 データの、受信する受信側を特定する特定情報に対応させた記憶を制御するパラ メータ記憶制御ステップと、

前記特定情報に基づいて、前記パラメータ記憶制御ステップの処理により記憶が制御されている前記符号化ステップの処理による符号化に関するパラメータ、 および前記送信制御ステップの処理により制御された送信に関するパラメータを 選択し、設定するパラメータ設定ステップと

を含むことを特徴とする送信方法。

【請求項10】 入力された音声データを送信する送信装置用のプログラム

であって、

前記音声データを符号化し、符号化音声データを出力する符号化ステップと、 前記符号化音声データの送信を制御する送信制御ステップと、

前記符号化ステップの処理による符号化に関するパラメータ、および前記送信制御ステップの処理により制御された送信に関するパラメータを前記符号化音声データの、受信する受信側を特定する特定情報に対応させた記憶を制御するパラメータ記憶制御ステップと、

前記特定情報に基づいて、前記パラメータ記憶制御ステップの処理により記憶が制御されている前記符号化ステップの処理による符号化に関するパラメータ、 および前記送信制御ステップの処理により制御された送信に関するパラメータを 選択し、設定するパラメータ設定ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが記録されている記録媒体。

【請求項11】 入力された音声データを送信する送信装置を制御するコン ピュータが実行可能なプログラムであって、

前記音声データを符号化し、符号化音声データを出力する符号化ステップと、 前記符号化音声データの送信を制御する送信制御ステップと、

前記符号化ステップの処理による符号化に関するパラメータ、および前記送信制御ステップの処理により制御された送信に関するパラメータを前記符号化音声データの、受信する受信側を特定する特定情報に対応させた記憶を制御するパラメータ記憶制御ステップと、

前記特定情報に基づいて、前記パラメータ記憶制御ステップの処理により記憶が制御されている前記符号化ステップの処理による符号化に関するパラメータ、 および前記送信制御ステップの処理により制御された送信に関するパラメータを 選択し、設定するパラメータ設定ステップと

を含むことを特徴とするプログラム。

【請求項12】 音声データを符号化した符号化音声データを受信する受信 装置であって、

前記符号化音声データを受信する受信手段と、

前記受信手段において受信された符号化音声データを復号する復号手段と、

前記受信手段による受信に関するパラメータ、および前記復号手段による復号 に関するパラメータを、前記符号化音声データを送信する送信側を特定する特定 情報に対応させて記憶するパラメータ記憶手段と、

前記特定情報に基づいて、前記パラメータ記憶手段により記憶されている前記 受信手段による受信に関するパラメータ、および前記復号手段による復号に関す るパラメータを選択し、設定するパラメータ設定手段と

を備えることを特徴とする受信装置。

【請求項13】 前記復号に関するパラメータは、前記符号化音声データを送信する送信側による符号化の符号化方式および前記符号化に用いられたコードブックを含む

ことを特徴とする請求項12に記載の受信装置。

【請求項14】 前記受信に関するパラメータは、前記送信側による前記符 号化音声データを送信する際の変調方式に対応する復調方式を含む

ことを特徴とする請求項12に記載の受信装置。

【請求項15】 前記パラメータ記憶手段は、1つの前記特定情報に対して、互いに異なる優先度が付加された複数の前記受信に関するパラメータおよび前記復号に関するパラメータの組み合わせを記憶する

ことを特徴とする請求項12に記載の受信装置。

【請求項16】 前記受信に関するパラメータおよび前記復号に関するパラメータの初期値を記憶する初期値記憶手段をさらに備え、

前記設定手段は、前記特定情報に対応付けられた前記受信に関するパラメータ および前記復号に関するパラメータが存在しない場合、前記初期値記憶手段に記 憶された前記初期値を設定する

ことを特徴とする請求項12に記載の受信装置。

【請求項17】 前記初期値記憶手段は、前記受信手段により受信された信 号の状態に関する情報に対応付けて前記初期値を記憶する

ことを特徴とする請求項12に記載の受信装置。

【請求項18】 前記受信手段により受信された信号の状態に関する情報は

、前記信号に含まれるノイズ量、前記信号の信号強度、および前記信号のキャリア周波数を含む

ことを特徴とする請求項17に記載の受信装置。

【請求項19】 前記受信手段は、前記符号化音声データを復号した復号音声データの品質を向上させる高品質化データをさらに受信し、

前記パラメータ記憶手段は、前記受信手段により受信された前記高品質化データを、前記特定情報に対応させてさらに記憶する

ことを特徴とする請求項12に記載の受信装置。

【請求項20】 前記高品質化データは、髙品質化した髙品質音声データの 予測値を求める予測演算を行うのに、前記復号音声データとともに用いるタップ 係数を含む

ことを特徴とする請求項19に記載の受信装置。

【請求項21】 音声データを符号化した符号化音声データを受信する受信 装置の受信方法であって、

前記符号化音声データの受信を制御する受信制御ステップと、

前記受信制御ステップの処理において受信が制御された符号化音声データを復 号する復号ステップと、

前記受信制御ステップの処理により制御された受信に関するパラメータ、および前記復号ステップの処理による復号に関するパラメータの、前記符号化音声データを送信する送信側を特定する特定情報に対応させた記憶を制御するパラメータ記憶制御ステップと、

前記特定情報に基づいて、前記パラメータ記憶制御ステップの処理により記憶が制御されている前記受信制御ステップの処理により制御された受信に関するパラメータ、および前記復号ステップの処理による復号に関するパラメータを選択し、設定するパラメータ設定ステップと

を含むことを特徴とする受信方法。

【請求項22】 音声データを符号化した符号化音声データを受信する受信 装置用のプログラムであって、

前記符号化音声データの受信を制御する受信制御ステップと、

前記受信制御ステップの処理において受信が制御された符号化音声データを復 号する復号ステップと、

前記受信制御ステップの処理により制御された受信に関するパラメータ、および前記復号ステップの処理による復号に関するパラメータの、前記符号化音声データを送信する送信側を特定する特定情報に対応させた記憶を制御するパラメータ記憶制御ステップと、

前記特定情報に基づいて、前記パラメータ記憶制御ステップの処理により記憶が制御されている前記受信制御ステップの処理により制御された受信に関するパラメータ、および前記復号ステップの処理による復号に関するパラメータを選択し、設定するパラメータ設定ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが記録されている記録媒体。

【請求項23】 音声データを符号化した符号化音声データを受信する受信 装置を制御するコンピュータが実行可能なプログラムであって、

前記符号化音声データの受信を制御する受信制御ステップと、

前記受信制御ステップの処理において受信が制御された符号化音声データを復 号する復号ステップと、

前記受信制御ステップの処理により制御された受信に関するパラメータ、および前記復号ステップの処理による復号に関するパラメータの、前記符号化音声データを送信する送信側を特定する特定情報に対応させた記憶を制御するパラメータ記憶制御ステップと、

前記特定情報に基づいて、前記パラメータ記憶制御ステップの処理により記憶が制御されている前記受信制御ステップの処理により制御された受信に関するパラメータ、および前記復号ステップの処理による復号に関するパラメータを選択し、設定するパラメータ設定ステップと

を含むことを特徴とするプログラム。

【請求項24】 送信装置と受信装置とから構成される送受信装置であって

前記送信装置は、

前記音声データを符号化し、符号化音声データを出力する符号化手段と、 前記符号化音声データを送信する送信手段と、

前記符号化手段による符号化に関するパラメータ、および前記送信手段による送信に関するパラメータを、前記符号化音声データを受信する受信側を特定する第1の特定情報に対応させて記憶する第1のパラメータ記憶手段と、

前記第1の特定情報に基づいて、前記第1のパラメータ記憶手段により記憶されている前記符号化手段による符号化に関するパラメータ、および前記送信手段による送信に関するパラメータを選択し、設定する第1のパラメータ設定手段と

を備え、

前記受信装置は、

前記符号化音声データを受信する受信手段と、

前記受信手段により受信された符号化音声データを復号する復号手段と、

前記受信手段による受信に関するパラメータ、および前記復号手段による復 号に関するパラメータを、前記符号化音声データを送信する送信側を特定する第 2の特定情報に対応させて記憶する第2のパラメータ記憶手段と、

前記第2の特定情報に基づいて、前記第2のパラメータ記憶手段により記憶されている前記受信手段による受信に関するパラメータ、および前記復号手段による復号に関するパラメータを選択し、設定する第2のパラメータ設定手段とを備えることを特徴とする送受信装置。

【請求項25】 送受信装置と通信を行う通信装置であって、

前記送受信装置より符号化音声データを復号した復号音声データの品質を向上 させる高品質化データを取得する取得手段と、

前記取得手段により取得された前記高品質化データを、前記送受信装置を特定 する特定情報に対応させて記憶する記憶手段と、

前記記憶手段により記憶されている前記高品質化データを、前記特定情報が特 定する前記送受信装置に供給する供給手段と

を備えることを特徴とする通信装置。

【請求項26】 前記取得手段は、前記送受信装置において行われる符号化

および復号に関するパラメータ、並びに前記送受信装置による送受信に関するパ ラメータをさらに取得し、

前記記憶手段は、前記取得手段により取得された前記符号化および復号に関するパラメータ、並びに前記送受信に関するパラメータを、前記送受信装置を特定する特定情報に対応させてさらに記憶し、

前記供給手段は、前記記憶手段により記憶されている前記符号化および復号に 関するパラメータ、並びに前記送受信に関するパラメータをさらに供給する

ことを特徴とする請求項25に記載の通信装置。

【請求項27】 前記記憶手段は、前記高品質化データ、前記符号化および復号に関するパラメータ、並びに前記送受信に関するパラメータの初期値を、前記送受信装置に関する情報に対応させてさらに記憶し、

前記供給手段は、前記特定情報に対応付けられた前記高品質化データ、前記符 号化および復号に関するパラメータ、並びに前記送受信に関するパラメータが存 在しない場合、前記記憶手段に記憶された前記初期値を前記送受信装置に供給す る

ことを特徴とする請求項25に記載の通信装置。

【請求項28】 送受信装置と通信を行う通信装置の通信方法であって、

前記送受信装置から供給された符号化音声データを復号した復号音声データの 品質を向上させる高品質化データの取得を制御する取得制御ステップと、

前記取得制御ステップの処理により取得が制御された前記高品質化データの、 前記送受信装置を特定する特定情報に対応させた記憶を制御する記憶制御ステップと、

前記記憶制御ステップの処理により記憶が制御されている前記高品質化データの、前記特定情報が特定する前記送受信装置への供給を制御する供給制御ステップと

を含むことを特徴とする通信方法。

【請求項29】 送受信装置と通信を行う通信装置用のプログラムであって

前記送受信装置から供給された符号化音声データを復号した復号音声データの

品質を向上させる髙品質化データの取得を制御する取得制御ステップと、

前記取得制御ステップの処理により取得が制御された前記高品質化データの、 前記送受信装置を特定する特定情報に対応させた記憶を制御する記憶制御ステップと、

前記記憶制御ステップの処理により記憶が制御されている前記高品質化データの、前記特定情報が特定する前記送受信装置への供給を制御する供給制御ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが記録されている記録媒体。

【請求項30】 送受信装置と通信を行う通信装置を制御するコンピュータ が実行可能なプログラムであって、

前記送受信装置から供給された符号化音声データを復号した復号音声データの 品質を向上させる高品質化データの取得を制御する取得制御ステップと、

前記取得制御ステップの処理により取得が制御された前記高品質化データの、 前記送受信装置を特定する特定情報に対応させた記憶を制御する記憶制御ステップと、

前記記憶制御ステップの処理により記憶が制御されている前記高品質化データの、前記特定情報が特定する前記送受信装置への供給を制御する供給制御ステップと

を含むことを特徴とするプログラム。

【請求項31】 送受信装置と通信を行う通信装置であって、

前記送受信装置より符号化音声データの送受信に関する特徴量を取得する取得 手段と、

前記取得手段により取得された前記特徴量に基づいて、前記符号化音声データ を復号した復号音声データの品質を向上させる高品質化データを算出する算出手 段と、

前記算出手段により算出された前記高品質化データを、前記特徴量を取得した 前記送受信装置に供給する供給手段と

を備えることを特徴とする通信装置。

【請求項32】 前記算出手段により算出された前記高品質化データを、前記送受信装置を特定する特定情報に対応させて記憶する記憶手段をさらに備え、

前記供給手段は、前記記憶手段により記憶された前記高品質化データを、前記 特徴量を取得した前記送受信装置に供給する

ことを特徴とする請求項31に記載の通信装置。

【請求項33】 送受信装置と通信を行う通信装置の通信方法であって、

前記送受信装置より供給された符号化音声データの送受信に関する特徴量の取得を制御する取得制御ステップと、

前記取得制御ステップの処理により取得が制御された前記特徴量に基づいて、 前記符号化音声データを復号した復号音声データの品質を向上させる高品質化データを算出する算出ステップと、

前記算出ステップの処理により算出された前記高品質化データの、前記特徴量 を取得した前記送受信装置への供給を制御する供給制御ステップと

を含むことを特徴とする通信方法。

【請求項34】 送受信装置と通信を行う通信装置用のプログラムであって

前記送受信装置より供給された符号化音声データの送受信に関する特徴量の取得を制御する取得制御ステップと、

前記取得制御ステップの処理により取得が制御された前記特徴量に基づいて、 前記符号化音声データを復号した復号音声データの品質を向上させる高品質化データを算出する算出ステップと、

前記算出ステップの処理により算出された前記高品質化データの、前記特徴量 を取得した前記送受信装置への供給を制御する供給制御ステップと

を含むことを特徴とするコンピュータが読み取り可能なプログラムが記録されている記録媒体。

【請求項35】 送受信装置と通信を行う通信装置を制御するコンピュータ が実行可能なプログラムであって、

前記送受信装置より供給された符号化音声データの送受信に関する特徴量の取得を制御する取得制御ステップと、

前記取得制御ステップの処理により取得が制御された前記特徴量に基づいて、 前記符号化音声データを復号した復号音声データの品質を向上させる髙品質化データを算出する算出ステップと、

前記算出ステップの処理により算出された前記髙品質化データの、前記特徴量 を取得した前記送受信装置への供給を制御する供給制御ステップと

を含むことを特徴とするプログラム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、送信装置および送信方法、受信装置および受信方法、送受信装置、通信装置および方法、記録媒体、並びにプログラムに関し、特に、例えば、携帯電話機等において、高音質の音声による通話を行うことができるようにする送信装置および送信方法、受信装置および受信方法、送受信装置、通信装置および方法、記録媒体、並びにプログラムに関する。

[0002]

【従来の技術】

例えば、携帯電話機での音声通話においては、伝送帯域が制限されていること 等に起因して、受信された音声の音質は、ユーザが発した実際の音声の音質より も比較的大きく劣化したものとなる。

[0003]

そこで、従来の携帯電話機では、受信した音声の音質を改善するために、受信 した音声に対して、例えば、その音声の周波数スペクトルを調整するフィルタリ ング等の信号処理が施される。

[0004]

【発明が解決しようとする課題】

しかしながら、ユーザの音声は、ユーザごとに特徴があるため、同一のタップ 係数のフィルタによって、受信した音声のフィルタリングを行うのでは、ユーザ ごとに異なる音声の周波数特性によっては、その音声の音質を十分に改善するこ とができない場合がある。

本発明は、このような状況に鑑みてなされたものであり、ユーザごとに、音質 を十分に改善した音声を得ることができるようにするものである。

[0006]

【課題を解決するための手段】

本発明の送信装置は、音声データを符号化し、符号化音声データを出力する符号化手段と、符号化音声データを送信する送信手段と、符号化手段による符号化に関するパラメータ、および送信手段による送信に関するパラメータを、符号化音声データを受信する受信側を特定する特定情報に対応させて記憶するパラメータ記憶手段と、特定情報に基づいて、パラメータ記憶手段により記憶されている符号化手段による符号化に関するパラメータ、および送信手段による送信に関するパラメータを選択し、設定するパラメータ設定手段とを備えることを特徴とする。

[0007]

本発明の送信方法は、音声データを符号化し、符号化音声データを出力する符号化ステップと、符号化音声データの送信を制御する送信制御ステップと、符号化ステップの処理による符号化に関するパラメータ、および送信制御ステップの処理により制御された送信に関するパラメータを符号化音声データの、受信する受信側を特定する特定情報に対応させた記憶を制御するパラメータ記憶制御ステップと、特定情報に基づいて、パラメータ記憶制御ステップの処理により記憶が制御されている符号化ステップの処理による符号化に関するパラメータ、および送信制御ステップの処理により制御された送信に関するパラメータを選択し、設定するパラメータ設定ステップとを含むことを特徴とする。

[0008]

本発明の第1の記録媒体は、音声データを符号化し、符号化音声データを出力する符号化ステップと、符号化音声データの送信を制御する送信制御ステップと、符号化ステップの処理による符号化に関するパラメータ、および送信制御ステップの処理により制御された送信に関するパラメータを符号化音声データの、受信する受信側を特定する特定情報に対応させた記憶を制御するパラメータ記憶制

御ステップと、特定情報に基づいて、パラメータ記憶制御ステップの処理により 記憶が制御されている符号化ステップの処理による符号化に関するパラメータ、 および送信制御ステップの処理により制御された送信に関するパラメータを選択 し、設定するパラメータ設定ステップとを含むことを特徴とする。

[0009]

本発明の第1のプログラムは、音声データを符号化し、符号化音声データを出力する符号化ステップと、符号化音声データの送信を制御する送信制御ステップと、符号化ステップの処理による符号化に関するパラメータ、および送信制御ステップの処理により制御された送信に関するパラメータを符号化音声データの、受信する受信側を特定する特定情報に対応させた記憶を制御するパラメータ記憶制御ステップと、特定情報に基づいて、パラメータ記憶制御ステップの処理により記憶が制御されている符号化ステップの処理による符号化に関するパラメータ、および送信制御ステップの処理により制御された送信に関するパラメータを選択し、設定するパラメータ設定ステップとをコンピュータに実現させることを特徴とする。

[0010]

本発明の受信装置は、符号化音声データを受信する受信手段と、受信手段において受信された符号化音声データを復号する復号手段と、受信手段による受信に関するパラメータ、および復号手段による復号に関するパラメータを、符号化音声データを送信する送信側を特定する特定情報に対応させて記憶するパラメータ記憶手段と、特定情報に基づいて、パラメータ記憶手段により記憶されている受信手段による受信に関するパラメータ、および復号手段による復号に関するパラメータを選択し、設定するパラメータ設定手段とを備えることを特徴とする。

[0011]

本発明の受信方法は、符号化音声データの受信を制御する受信制御ステップと、受信制御ステップの処理において受信が制御された符号化音声データを復号する復号ステップと、受信制御ステップの処理により制御された受信に関するパラメータ、および復号ステップの処理による復号に関するパラメータの、符号化音声データを送信する送信側を特定する特定情報に対応させた記憶を制御するパラ

メータ記憶制御ステップと、特定情報に基づいて、パラメータ記憶制御ステップ の処理により記憶が制御されている受信制御ステップの処理により制御された受 信に関するパラメータ、および復号ステップの処理による復号に関するパラメー タを選択し、設定するパラメータ設定ステップとを含むことを特徴とする。

[0012]

本発明の第2の記録媒体は、符号化音声データの受信を制御する受信制御ステップと、受信制御ステップの処理において受信が制御された符号化音声データを復号する復号ステップと、受信制御ステップの処理により制御された受信に関するパラメータ、および復号ステップの処理による復号に関するパラメータの、符号化音声データを送信する送信側を特定する特定情報に対応させた記憶を制御するパラメータ記憶制御ステップと、特定情報に基づいて、パラメータ記憶制御ステップの処理により記憶が制御されている受信制御ステップの処理により制御された受信に関するパラメータ、および復号ステップの処理による復号に関するパラメータを選択し、設定するパラメータ設定ステップとを含むことを特徴とする

[0013]

本発明の第2のプログラムは、符号化音声データの受信を制御する受信制御ステップと、受信制御ステップの処理において受信が制御された符号化音声データを復号する復号ステップと、受信制御ステップの処理により制御された受信に関するパラメータ、および復号ステップの処理による復号に関するパラメータの、符号化音声データを送信する送信側を特定する特定情報に対応させた記憶を制御するパラメータ記憶制御ステップと、特定情報に基づいて、パラメータ記憶制御ステップの処理により記憶が制御されている受信制御ステップの処理により制御された受信に関するパラメータ、および復号ステップの処理による復号に関するパラメータを選択し、設定するパラメータ設定ステップとをコンピュータに実現させることを特徴とする。

[0014]

本発明の送受信装置は、音声データを符号化し、符号化音声データを出力する符号化手段と、符号化音声データを送信する送信手段と、符号化手段による符号

化に関するパラメータ、および送信手段による送信に関するパラメータを、符号 化音声データを受信する受信側を特定する第1の特定情報に対応させて記憶する 第1のパラメータ記憶手段と、第1の特定情報に基づいて、第1のパラメータ記 憶手段により記憶されている符号化手段による符号化に関するパラメータ、およ び送信手段による送信に関するパラメータを選択し、設定する第1のパラメータ 設定手段と、符号化音声データを受信する受信手段と、受信手段により受信され た符号化音声データを復号する復号手段と、受信手段により受信され た符号化音声データを復号する復号手段と、受信手段による受信に関するパラメータ、および復号手段による復号に関するパラメータを、符号化音声データを送 信する送信側を特定する第2の特定情報に対応させて記憶する第2のパラメータ 記憶手段と、第2の特定情報に基づいて、第2のパラメータ記憶手段により記憶 されている受信手段による受信に関するパラメータ、および復号手段による復号 に関するパラメータを選択し、設定する第2のパラメータ設定手段とを備えることを特徴とする。

[0015]

本発明の第1の通信装置は、送受信装置より符号化音声データを復号した復号音声データの品質を向上させる高品質化データを取得する取得手段と、取得手段により取得された高品質化データを、送受信装置を特定する特定情報に対応させて記憶する記憶手段と、記憶手段により記憶されている高品質化データを、特定情報が特定する送受信装置に供給する供給手段とを備えることを特徴とする。

[0016]

本発明の第1の通信方法は、送受信装置から供給された符号化音声データを復号した復号音声データの品質を向上させる高品質化データの取得を制御する取得制御ステップと、取得制御ステップの処理により取得が制御された高品質化データの、送受信装置を特定する特定情報に対応させた記憶を制御する記憶制御ステップと、記憶制御ステップの処理により記憶が制御されている高品質化データの、特定情報が特定する送受信装置への供給を制御する供給制御ステップとを含むことを特徴とする。

[0017]

本発明の第3の記録媒体は、送受信装置から供給された符号化音声データを復

号した復号音声データの品質を向上させる高品質化データの取得を制御する取得 制御ステップと、取得制御ステップの処理により取得が制御された高品質化デー タの、送受信装置を特定する特定情報に対応させた記憶を制御する記憶制御ステ ップと、記憶制御ステップの処理により記憶が制御されている高品質化データの 、特定情報が特定する送受信装置への供給を制御する供給制御ステップとを含む ことを特徴とする。

[0018]

本発明の第3のプログラムは、送受信装置から供給された符号化音声データを 復号した復号音声データの品質を向上させる高品質化データの取得を制御する取 得制御ステップと、取得制御ステップの処理により取得が制御された高品質化データの、送受信装置を特定する特定情報に対応させた記憶を制御する記憶制御ステップと、記憶制御ステップの処理により記憶が制御されている高品質化データの、特定情報が特定する送受信装置への供給を制御する供給制御ステップとをコンピュータに実現させることを特徴とする。

[0019]

本発明の第2の通信装置は、送受信装置より符号化音声データの送受信に関する特徴量を取得する取得手段と、取得手段により取得された特徴量に基づいて、符号化音声データを復号した復号音声データの品質を向上させる高品質化データを算出する算出手段と、算出手段により算出された高品質化データを、特徴量を取得した送受信装置に供給する供給手段とを備えることを特徴とする。

[0020]

本発明の第2の通信方法は、送受信装置より供給された符号化音声データの送 受信に関する特徴量の取得を制御する取得制御ステップと、取得制御ステップの 処理により取得が制御された特徴量に基づいて、符号化音声データを復号した復 号音声データの品質を向上させる高品質化データを算出する算出ステップと、算 出ステップの処理により算出された高品質化データの、特徴量を取得した送受信 装置への供給を制御する供給制御ステップとを含むことを特徴とする。

[0021]

本発明の第4の記録媒体は、送受信装置より供給された符号化音声データの送

受信に関する特徴量の取得を制御する取得制御ステップと、取得制御ステップの 処理により取得が制御された特徴量に基づいて、符号化音声データを復号した復 号音声データの品質を向上させる高品質化データを算出する算出ステップと、算 出ステップの処理により算出された高品質化データの、特徴量を取得した送受信 装置への供給を制御する供給制御ステップとを含むことを特徴とする。

[0022]

本発明の第4のプログラムは、送受信装置より供給された符号化音声データの送受信に関する特徴量の取得を制御する取得制御ステップと、取得制御ステップの処理により取得が制御された特徴量に基づいて、符号化音声データを復号した復号音声データの品質を向上させる高品質化データを算出する算出ステップと、算出ステップの処理により算出された高品質化データの、特徴量を取得した送受信装置への供給を制御する供給制御ステップとをコンピュータに実現させることを特徴とする。

[0023]

本発明の送信装置および送信方法、並びに第1のプログラムにおいては、音声 データが符号化され、符号化音声データが送信される。一方、符号化に関するパ ラメータ送信に関するパラメータが、符号化音声データを受信する受信側を特定 する特定情報に対応させて記憶されており、その特定情報に基づいて、記憶され ている符号化に関するパラメータおよび送信に関するパラメータが選択されて設 定される。

[0024]

本発明の受信装置及び受信方法、並びに第2のプログラムにおいては、符号化音声データが受信されて復号される。また、その受信に関するパラメータおよび復号に関するパラメータが、符号化音声データを送信する送信側を特定する特定情報に対応させて記憶されており、その特定情報に基づいて、記憶されている受信に関するパラメータおよび復号に関するパラメータが選択されて設定される。

[0025]

本発明の送受信装置においては、音声データが符号化されて、符号化音声データが出力されて送信される。一方、符号化に関するパラメータおよび送信に関す

るパラメータが、符号化音声データを受信する受信側を特定する第1の特定情報に対応させて記憶されており、第1の特定情報に基づいて、その記憶されている符号化に関するパラメータおよび送信に関するパラメータが選択されて設定される。また、符号化音声データが受信されて復号される。一方、その受信に関するパラメータおよび復号に関するパラメータが、前記符号化音声データを送信する送信側を特定する第2の特定情報に対応させて記憶されており、第2の特定情報に基づいて、その記憶されている受信に関するパラメータおよび復号に関するパラメータが選択されて設定される。

[0026]

本発明の第1の通信装置および第1の通信方法、並びに第3のプログラムにおいては、送受信装置より符号化音声データを復号した復号音声データの品質を向上させる高品質化データが取得され、その取得された高品質化データが、送受信装置を特定する特定情報に対応させて記憶され、その記憶されている高品質化データが、特定情報が特定する送受信装置に供給される。

[0027]

本発明の第2の通信装置及び第2の通信方法、並びに第4のプログラムにおいては、送受信装置より符号化音声データの送受信に関する特徴量が取得され、その取得された特徴量に基づいて、符号化音声データを復号した復号音声データの品質を向上させる高品質化データが算出され、算出された高品質化データが、特徴量を取得した送受信装置に供給される。

[0028]

【発明の実施の形態】

図1は、本発明を適用した伝送システム(システムとは、複数の装置が論理的 に集合した物をいい、各構成の装置が同一筐体中にあるか否かは問わない)の一 実施の形態の構成を示している。

[0029]

この伝送システムでは、携帯電話機 101_1 と 101_2 が、基地局 102_1 と 102_2 それぞれとの間で、無線による送受信を行うとともに、基地局 102_1 と 102_2 それぞれが、交換局103との間で送受信を行うことにより、最終的には

、携帯電話機 101_1 と 101_2 との間において、基地局 102_1 および 102_2 、並びに交換局103を介して、音声の送受信を行うことができるようになっている。なお、基地局 102_1 と 102_2 は、同一の基地局であっても良いし、異なる基地局であっても良い。

[0030]

ここで、以下、特に区別する必要がない限り、携帯電話機 101_1 と 101_2 を、携帯電話機101と記述する。

[0031]

次に、図2は、図1の携帯電話機101 $_1$ の構成例を示している。なお、携帯電話機101 $_2$ も、以下説明する携帯電話機101 $_1$ と同様に構成されるため、その説明は省略する。

[0032]

アンテナ111は、基地局 102_1 または 102_2 からの電波を受信し、変復調部112に供給するとともに、変復調部112からの信号を、電波で、基地局 102_1 または 102_2 に送信する。変復調部112は、アンテナ111からの信号を、例えば、CDMA(Code Division Multiple Access)方式等によって復調し、その結果得られる復調信号を、受信部114に供給する。また、変復調部112は、送信部113から供給される送信データを、例えば、CDMA方式等で変調し、その結果得られる変調信号を、アンテナ111に供給する。送信部113は、そこに入力されるユーザの音声を符号化する等の所定の処理を行い、送信データを得て、変復調部112に供給する。受信部114は、変復調部112からの復調信号である受信データを受信し、高音質の音声を復号して出力する。

[0033]

操作部115は、発呼先の電話番号や、所定のコマンド等を入力するときに、 ユーザによって操作され、その操作に対応する操作信号は、送信部113や受信 部114に供給される。

[0034]

なお、送信部 1 1 3 と受信部 1 1 4 との間では、必要に応じて情報をやりとり することができるようになっている。 [0035]

次に、図3は、図2の送信部113の構成例を示している。

[0036]

マイク121には、ユーザの音声が入力され、マイク121は、そのユーザの音声を、電気信号としての音声信号として、A/D(Analog/Digital)変換部12 2に出力する。A/D変換部122は、マイク121からのアナログの音声信号をA/D変換することにより、ディジタルの音声データとし、符号化部123および学習部125に出力する。

[0037]

符号化部123は、A/D変換部122からの音声データを所定の符号化方式 によって符号化し、その結果得られる符号化音声データを、送信制御部124に 出力する。

[0038]

送信制御部124は、符号化部123が出力する符号化音声データと、後述する管理部127が出力するデータの送信制御を行う。即ち、送信制御部124は、符号化部123が出力する符号化音声データ、または後述する管理部127が出力するデータを選択し、所定の送信タイミングにおいて、送信データとして、変復調部112(図2)に出力する。なお、送信制御部124は、符号化音声データおよび高品質化データの他、操作部115が操作されることによって入力される、発信先の電話番号や、発信元である自身の電話番号、その他の必要な情報を、必要に応じて、送信データとして出力する。

[0039]

学習部125は、符号化部123が出力する符号化音声データを受信する受信側において出力される音声の品質を向上させる高品質化データの学習を、過去の学習に用いられた音声データと、新たにA/D変換部122から入力される音声データに基づいて行う。学習部125は、学習を行うことにより、新たな高品質化データを得ると、その高品質化データを、記憶部126に供給する。

[0040]

記憶部126は、学習部125から供給される髙品質化データを記憶する。

[0041]

管理部127は、受信部114から供給される情報を必要に応じて参照しなが ら、記憶部126に記憶された髙品質化データの送信を管理する。

[0042]

以上のように構成される送信部113では、マイク121に入力されたユーザ の音声が、A/D変換部122を介して、符号化部123および学習部125に 供給される。

[0043]

. 符号化部123は、A/D変換部122から供給される音声データを符号化し、その結果得られる符号化音声データを、送信制御部124に出力する。送信制御部124は、符号化部123から供給される符号化音声データを送信データとして、変復調部112(図2)に出力する。

[0044]

一方、学習部125は、過去の学習に用いられた音声データと、新たにA/D 変換部122から入力される音声データに基づいて、高品質化データを学習し、 その結果得られる高品質化データを、記憶部126に供給して記憶させる。

[0045]

ここで、このように、学習部125では、新たに入力されたユーザの音声データだけではなく、過去の学習に用いられた音声データにも基づいて、高品質化データの学習が行われるので、ユーザが通話を行うほど、より、そのユーザの音声データを符号化した符号化音声データを、高品質の音声データに復号することのできる高品質化データが得られることになる。

[0046]

そして、管理部127は、所定のタイミングにおいて、記憶部126に記憶された高品質化データを、記憶部126から読み出し、送信制御部124に供給する。送信制御部124は、管理部127が出力する高品質化データを、所定の送信タイミングにおいて、送信データとして、変復調部112(図2)に出力する

[0047]

以上のように、送信部113では、通常の通話のための音声としての符号化音 声データの他に、高品質化データも送信される。

[0048]

次に、図4は、図2の受信部114の構成例を示している。

[0049]

図2の変復調部112が出力する復調信号としての受信データは、受信制御部 131に供給され、受信制御部131は、その受信データを受信する。そして、 受信制御部131は、受信データが符号化音声データである場合には、その符号 化音声データを、復号部132に供給し、受信データが高品質化データである場合には、その高品質化データを、管理部135に供給する。

[0050]

なお、受信データには、符号化音声データおよび高品質化データの他、必要に応じて、発信元の電話番号その他の情報が含まれており、受信制御部131は、そのような情報を、必要に応じて、管理部135や、送信部113(の管理部127)に供給する。

[0051]

復号部132は、受信制御部132から供給される符号化音声データを、管理部135から供給される高品質化データを用いて復号し、これにより、高品質の復号音声データを得て、D/A(Digital/Analog)変換部133に供給する。

[0052].

D/A変換部133は、復号部132が出力するディジタルの復号音声データをD/A変換し、その結果得られるアナログの音声信号を、スピーカ134に供給する。スピーカ134は、D/A変換部133からの音声信号に対応する音声を出力する。

[0053]

管理部135は、高品質化データの管理を行う。即ち、管理部135は、着呼時に、受信制御部131から、発信元の電話番号を受信し、その電話番号に基づいて、記憶部136またはデフォルトデータメモリ137に記憶された高品質化データを選択し、復号部132に供給する。また、管理部135は、受信制御部

131から、最新の高品質化データを受信し、その最新の高品質化データによって、記憶部136の記憶内容を更新する。

[0054]

記憶部136は、例えば、書き換え可能なEEPROM(Electrically Erasab le Programmable Read-only Memory)で構成され、管理部135から供給される 高品質化データを、その高品質化データを送信してきた発信元を特定する特定情報としての、例えば、その発信元の電話番号と対応付けて記憶する。

[0055]

デフォルトデータメモリ137は、例えば、ROM (Read-only Memory) で構成され、デフォルトの高品質化データを、あらかじめ記憶している。

[0056]

以上のように構成される受信部114では、着呼があると、受信制御部131は、そこに供給される受信データを受信し、その受信データに含まれる発信元の電話番号を、管理部135に供給する。管理部135は、例えば、受信制御部131から発信元の電話番号を受信し、音声通話が可能な状態となると、その音声通話で用いる高品質化データを設定する高品質化データ設定処理を、図5のフローチャートにしたがって行う。

[0057]

即ち、高品質化データ設定処理では、まず最初に、ステップS141において、管理部135は、発信元の電話番号を、記憶部136から検索し、ステップS142では、管理部135は、ステップS141の検索によって、発信元の電話番号が見つかったかどうか(記憶部136に記憶されているかどうか)を判定する。

[0058]

ステップS142において、発信元の電話番号が見つかったと判定された場合、ステップS143に進み、管理部135は、記憶部136に記憶されている高品質化データの中から、発信元の電話番号に対応付けられている高品質化データを選択し、復号部132に供給、設定して、高品質化データ設定処理を終了する

[0059]

また、ステップS142において、発信元の電話番号が見つからなかったと判定された場合、ステップS144に進み、管理部135は、デフォルトデータメモリ137から、デフォルトの高品質化データ(以下、適宜、デフォルトデータという)を読み出し、復号部132に供給、設定して、高品質化データ設定処理を終了する。

[0060]

なお、図5の実施の形態では、発信元の電話番号が見つかった場合、即ち、発信元の電話番号が、記憶部136に記憶されている場合に、その発信元の電話番号に対応付けられている高品質化データを、復号部132に設定するようにしたが、操作部115(図2)を操作することにより、発信元の電話番号が見つかった場合であっても、デフォルトデータを、復号部132に設定するように、管理部135を制御することが可能である。

[0061]

以上のようにして、高品質化データが、復号部132に設定された後、受信制御部131に対し、受信データとして、発信元から送信されてきた符号化音声データの供給が開始されると、その符号化音声データは、受信制御部131から復号部132に供給される。復号部132は、受信制御部131から供給される、発信元から送信されてきた符号化音声データを、着呼直後に行われた図5の高品質化データ設定処理で設定された高品質化データ、即ち、発信元の電話番号と対応付けられている高品質化データに基づいて復号し、復号音声データを出力する。この復号音声データは、復号部132から、D/A変換部133を介してスピーカ134に供給されて出力される。

[0062]

一方、受信制御部131は、受信データとして、発信元から送信されてきた高 品質化データを受信すると、その高品質化データを、管理部135に供給する。 管理部135は、受信制御部131から供給される高品質化データを、その高品 質化データを送信してきた発信元の電話番号と対応付け、記憶部136に供給し て記憶させる。

[0063]

ここで、上述のように、記憶部135において、発信元の電話番号と対応付けられて記憶される高品質化データは、発信元の送信部113(図3)の学習部125において、その発信元のユーザの音声に基づいて学習を行うことにより得られたものであり、発信元のユーザの音声を符号化した符号化音声データを、高品質の復号音声データに復号するものである。

[0064]

そして、受信部114の復号部132では、発信元から送信されてきた符号化音声データが、発信元の電話番号と対応付けられている高品質化データに基づいて復号されるので、発信元から送信されてきた符号化音声データに適した復号処理(その符号化音声データに対応する音声を発話したユーザの音声の特性ごとに異なる復号処理)が施されることになり、高品質の復号音声データを得ることができる。

[0065]

ところで、上述のように、発信元から送信されてきた符号化音声データに適した復号処理を施すことにより、高品質の復号音声データを得るには、復号部132において、その発信元の送信部113(図3)の学習部125で学習された高品質化データを用いて処理を行う必要があり、さらに、そのためには、記憶部136に、その高品質符号化データが、発信元の電話番号と対応付けて記憶されている必要がある。

[0066]

そこで、発信元(送信側)の送信部113(図3)は、学習により得られた最新の高品質化データを、着信側(受信側)に送信する高品質化データ送信処理を行い、着信側の受信部114は、発信元において、その高品質化データ送信処理が行われることにより送信されてくる高品質化データによって、記憶部136の記憶内容を更新する高品質化データ更新処理を行うようになっている。

[0067]

そこで、いま、例えば、携帯電話機 101_1 を発信元とするとともに、携帯電話機 101_2 を着信側として、髙品質化データ送信処理と、髙品質化データ更新

処理について説明する。

[0068]

図6は、高品質化データ送信処理の第1実施の形態を示すフローチャートである。

[0069]

発信元である携帯電話機 101_1 では、ユーザが、操作部115(図2)を操作して、着信側としての携帯電話機 101_2 の電話番号を入力すると、送信部13において、高品質化データ送信処理が開始される。

[0.070]

即ち、高品質化データ送信処理では、まず最初に、ステップS1において、送信部113(図3)の送信制御部124が、操作部115が操作されることにより入力された携帯電話機 101_2 の電話番号を、送信データとして出力することにより、携帯電話機 101_2 の呼び出しが行われる。

[0071]

そして、携帯電話機 101_2 のユーザが、携帯電話機 101_1 からの呼び出しに応じて、操作部115を操作することにより、携帯電話機 101_2 をオフフック状態にすると、ステップS2に進み、送信制御部124は、着信側の携帯電話機 101_2 との間の通信リンクを確立し、ステップS3に進む。

[0072]

ステップS3では、管理部127が、記憶部126に記憶された高品質化データの更新の状況を表す更新情報を、送信制御部124に送信し、送信制御部12 4は、その更新情報を、送信データとして選択、出力して、ステップS4に進む

[0073]

ここで、学習部125は、学習を行って、新たな高品質化データを得ると、例えば、その高品質化データを得た日時(年月を含む)を、その高品質化データと対応付けて、記憶部126に記憶させるようになっており、更新情報としては、この高品質化データと対応付けられている日時を用いることができる。

[0074]

着信側の携帯電話機 101_2 は、発信元の携帯電話機 101_1 から更新情報を受信すると、後述するように、最新の高品質化データが必要な場合は、その送信を要求する転送要求を送信してくるので、ステップS4において、管理部127は、着信側の携帯電話機 101_2 から転送要求が送信されてきたかどうかを判定する。

[0075]

ステップS4において、転送要求が送信されてきていないと判定された場合、即ち、携帯電話機 101_1 の受信部114の受信制御部131において、受信データとして、着信側の携帯電話機 101_2 からの転送要求が受信されなかった場合、ステップS5をスキップして、ステップS6に進む。

[0076]

また、ステップS4において、転送要求が送信されてきたと判定された場合、即ち、携帯電話機101₁の受信部114の受信制御部131において、受信データとして、着信側の携帯電話機101₂からの転送要求が受信され、その転送要求が、送信部113の管理部127に供給された場合、ステップS5に進み、管理部127は、記憶部126から最新の髙品質化データを読み出し、送信制御部124に供給する。さらに、ステップS5では、送信制御部124が、管理部127からの最新の髙品質化データを選択し、送信データとして送信する。なお、髙品質化データは、その髙品質化データが学習によって得られた日時、即ち、更新情報とともに送信されるようになっている。

[0077]

その後、ステップS5からS6に進み、管理部127は、準備完了通知が、着信側の携帯電話機1012から送信されてきたかどうかを判定する。

[0078]

即ち、着信側の携帯電話機 101_2 は、通常の音声通話が可能な状態となると、音声通話の準備が完了したことを表す準備完了通知を送信するようになっており、ステップS6では、そのような準備完了通知が、携帯電話機 101_2 から送信されてきたかどうかが判定される。

[0079]

ステップS6において、準備完了通知が送信されてきていないと判定された場合、即ち、携帯電話機 101_1 の受信部114の受信制御部131において、受信データとして、着信側の携帯電話機 101_2 からの準備完了通知が受信されていない場合、ステップS6に戻り、準備完了通知が送信されてくるまで待つ。

[0080]

そして、ステップS6において、準備完了通知が送信されてきたと判定された場合、即ち、携帯電話機101₁の受信部114の受信制御部131において、受信データとして、着信側の携帯電話機101₂からの準備完了通知が受信され、その準備完了通知が、送信部113の管理部127に供給された場合、ステップS7に進み、送信制御部124は、符号化部123の出力を選択することにより、音声通話が可能な状態、即ち、符号化部123が出力する符号化音声データを、送信データとして選択する状態となって、高品質化データ送信処理を終了する。

[0081]

次に、図7のフローチャートを参照して、発信側の携帯電話機 101_1 で図6の高品質化データ送信処理が行われる場合の、着信側の携帯電話機 101_2 による高品質化データ更新処理について説明する。

[0082]

着信側の携帯電話機101₂では、例えば、着呼があると、受信部114(図4)において、高品質化データ更新処理が開始される。

[0083]

即ち、高品質化データ更新処理では、まず最初に、ステップS11において、 受信制御部131が、ユーザが操作部115を操作することによりオフフック状態とされたかどうかを判定し、オフフック状態とされていないと判定した場合、 ステップS11に戻る。

[0084]

また、ステップS11において、オフフック状態とされたと判定された場合、ステップS12に進み、受信制御部131は、発信側の携帯電話機101₁との通信リンクを確立し、ステップS13に進む。

[0085]

ステップS13では、図6のステップS3で説明したように、発信側の携帯電話機 101_1 から更新情報が送信されてくるので、受信制御部131は、この更新情報を含む受信データを受信し、管理部135に供給する。

[0086]

管理部135は、ステップS14において、発信側の携帯電話機 101_1 から 受信した更新情報を参照し、記憶部136に、発信側の携帯電話機 101_1 のユーザについての最新の高品質化データが記憶されているかどうかを判定する。

[0087]

即ち、図1の伝送システムにおける通信では、発信側の携帯電話機10 1_1 (または10 1_2)から、着信側の携帯電話機10 1_2 (または10 1_1)の着呼時に、発信側の携帯電話機10 1_1 の電話番号が送信されるようになっており、この電話番号は、受信データとして、受信制御部131で受信され、管理部135に供給されるようになっている。管理部135は、その発信側である携帯電話機10 1_1 の電話番号と対応付けられている高品質化データが、記憶部136に既に記憶されているかどうか、さらに、記憶されている場合には、その記憶されている高品質化データが最新のものかどうかを調査することにより、ステップ1400円定処理を行う。

[0088]

ステップS14において、記憶部136に、発信側の携帯電話機101₁のユーザについての最新の高品質化データが記憶されていると判定された場合、即ち、記憶部136に、発信元の携帯電話機101₁の電話番号と対応付けられている高品質化データが記憶されており、その高品質化データに対応付けられている更新情報が表す日時が、ステップS13で受信された更新情報が表す日時と一致する場合、記憶部136における、発信元の携帯電話機101₁の電話番号と対応付けられている高品質化データを更新する必要はないので、ステップS15乃至S18をスキップして、ステップS19に進む。

[0089]

ここで、図6のステップS5で説明したように、発信側の携帯電話機1011

は、高品質化データを、その更新情報とともに送信してくるようになっており、着信側の携帯電話機1012の管理部135は、発信側の携帯電話機1011からの高品質化データを記憶部136に記憶させる場合、その高品質化データに、その高品質化データとともに送信されてくる更新情報を対応付けて記憶させるようになっている。ステップS14では、このようにして、記憶部136に記憶されている高品質化データに対応付けられている更新情報と、ステップS13で受信された更新情報とを比較することにより、記憶部136に記憶されている高品質化データが最新のものであるかどうかが判定される。

[0090]

一方、ステップS14において、記憶部136に、発信側の携帯電話機101₁のユーザについての最新の高品質化データが記憶されていないと判定された場合、即ち、記憶部136に、発信元の携帯電話機101₁の電話番号と対応付けられている高品質化データが記憶されていないか、または記憶されていても、その高品質化データに対応付けられている更新情報が表す日時が、ステップS13で受信された更新情報が表す日時よりも過去を表す(古い)ものである場合、ステップS15に進み、管理部135は、最新の高品質化データへの更新が禁止されているかどうかを判定する。

[0091]

即ち、例えば、ユーザは、操作部115を操作することにより、高品質化データの更新を行わないように、管理部135を設定することが可能であり、管理部135は、高品質化データの更新を行うかどうかの設定に基づいて、ステップS15の判定処理を行う。

[0092]

ステップS15において、最新の髙品質化データへの更新が禁止されていると判定された場合、即ち、管理部135が、髙品質化データの更新を行わないように設定されている場合、ステップS16乃至S18をスキップして、ステップS19に進む。

[0093]

また、ステップS15において、最新の髙品質化データへの更新が禁止されて

いないと判定された場合、即ち、管理部135が、高品質化データの更新を行わないように設定されていない場合、ステップS16に進み、管理部135は、発信元の携帯電話機101₁に対して、最新の高品質化データの送信を要求する転送要求を、送信部113(図3)の送信制御部124に供給する。これにより、送信部113の送信制御部124は、転送要求を、送信データとして送信する。

[0094]

図 6 のステップ S 4 および S 5 で説明したように、転送要求を受信した発信元の携帯電話機 1 0 1 1 は、最新の高品質化データを、その更新情報とともに送信してくるので、受信制御部 1 3 1 は、ステップ S 1 7 において、その最新の高品質化データおよび更新情報を含む受信データを受信し、管理部 1 3 5 に供給する

. [0095]

管理部135は、ステップS18において、ステップS17で得た最新の高品質化データを、着呼時に受信した発信側の携帯電話機101₁の電話番号、さらには、その高品質化データとともに送信されてきた更新情報と対応付けて、記憶部136に記憶させることにより、記憶部136の記憶内容を更新する。

[0096]

即ち、管理部135は、発信側の携帯電話機101₁の電話番号と対応付けられた高品質化データが、記憶部136に記憶されていない場合には、ステップS17で得た最新の高品質化データ、着呼時に受信した発信側の携帯電話機101₁の電話番号、および更新情報(最新の高品質化データの更新情報)を、記憶部136に、新たに記憶させる。

[0097]

また、管理部135は、発信側の携帯電話機 101_1 の電話番号と対応付けられた髙品質化データ(最新でない髙品質化データ)が、記憶部136に記憶されている場合には、その髙品質化データと、その髙品質化データに対応付けられている電話番号および更新情報に代えて、ステップS17で得た最新の髙品質化データ、着呼時に受信した発信側の携帯電話機 101_1 の電話番号、および更新情報を、記憶部136に記憶させる(上書きする)。

[0098]

そして、ステップS19に進み、管理部135は、送信部113の送信制御部 124を制御することにより、音声通話の準備が完了したことを表す準備完了通 知を、送信データとして送信させ、ステップS20に進む。

[0099]

ステップS20では、受信制御部131は、そこに供給される受信データに含まれる符号化音声データを復号部132に出力する、音声通話が可能な状態となって、高品質化データ更新処理を終了する。

[0100]

次に、図8は、高品質化データ送信処理の第2実施の形態を示すフローチャートである。

[0101]

図6における場合と同様に、発信元である携帯電話機101₁では、ユーザが、操作部115(図2)を操作して、着信側としての携帯電話機101₂の電話番号を入力すると、送信部113において、高品質化データ送信処理が開始される。

[0102]

即ち、高品質化データ送信処理では、まず最初に、ステップS31において、送信部113(図3)の送信制御部124が、操作部115が操作されることにより入力された携帯電話機 101_2 の電話番号を、送信データとして出力することにより、携帯電話機 101_2 の呼び出しが行われる。

[0103]

そして、携帯電話機 101_2 のユーザが、携帯電話機 101_1 からの呼び出しに応じて、操作部115を操作することにより、携帯電話機 101_2 をオフフック状態にすると、ステップS32に進み、送信制御部124は、着信側の携帯電話機 101_2 との間の通信リンクを確立し、ステップS13に進む。

[0104]

ステップS33では、管理部127は、記憶部126から最新の高品質化データを読み出し、送信制御部124に供給する。さらに、ステップS33では、送

信制御部124が、管理部127からの最新の高品質化データを選択し、送信データとして送信する。なお、高品質化データは、上述したように、その高品質化データが学習によって得られた日時を表す更新情報とともに送信される。

[0105]

その後、ステップS33からS34に進み、管理部127は、図6のステップS6における場合と同様に、準備完了通知が、着信側の携帯電話機101₂から送信されてきたかどうかを判定し、準備完了通知が送信されてきていないと判定した場合、ステップS34に戻り、準備完了通知が送信されてくるまで待つ。

[0106]

そして、ステップS34において、準備完了通知が送信されてきたと判定された場合、ステップS35に進み、送信制御部124は、図6のステップS7における場合と同様に、音声通話が可能な状態となって、高品質化データ送信処理を終了する。

[0107]

次に、図9のフローチャートを参照して、発信側の携帯電話機 101_1 で図8の高品質化データ送信処理が行われる場合の、着信側の携帯電話機 101_2 による高品質化データ更新処理について説明する。

[0108]

着信側の携帯電話機101₂では、図7における場合と同様に、着呼があると、受信部114(図4)において、高品質化データ更新処理が開始され、まず最初に、ステップS41において、受信制御部131が、ユーザが操作部115を操作することによりオフフック状態としたかどうかを判定し、オフフック状態とされていないと判定した場合、ステップS41に戻る。

[0109]

また、ステップS41において、オフフック状態とされたと判定された場合、ステップS42に進み、図7のステップS12における場合と同様に、通信リンクが確立され、ステップS43に進む。ステップS43では、受信制御部131は、発信側の携帯電話機101₁から送信されてくる最新の高品質化データを含む受信データを受信し、管理部135に供給する。

[0110]

即ち、図8の髙品質化データ送信処理では、上述したように、ステップS33において、携帯電話機1011が、最新の髙品質化データを、更新情報とともに送信してくるので、ステップS43では、その髙品質化データと更新情報が受信される。

[0111]

その後、ステップS44に進み、管理部135は、図7のステップS14における場合と同様にして、発信側の携帯電話機 101_1 から受信した更新情報を参照し、記憶部136に、発信側の携帯電話機 101_1 のユーザについての最新の高品質化データが記憶されているかどうかを判定する。

[0112]

ステップS44において、記憶部136に、発信側の携帯電話機101₁のユーザについての最新の高品質化データが記憶されていると判定された場合、ステップS45に進み、管理部135は、ステップS43で受信した高品質化データと更新情報を破棄し、ステップS47に進む。

[0113]

また、ステップS44において、記憶部136に、発信側の携帯電話機10110ユーザについての最新の高品質化データが記憶されていないと判定された場合、ステップS46に進み、管理部135は、図70ステップS18における場合と同様に、ステップS43で得た最新の高品質化データを、着呼時に受信した発信側の携帯電話機10110電話番号、さらには、その高品質化データとともに送信されてきた更新情報と対応付けて、記憶部136に記憶させることにより、記憶部136の記憶内容を更新する。

[0114]

そして、ステップS47に進み、管理部135は、送信部113の送信制御部 124を制御することにより、音声通話の準備が完了したことを表す準備完了通 知を、送信データとして送信させ、ステップS48に進む。

[0115]

ステップS48では、受信制御部131は、そこに供給される受信データに含

まれる符号化音声データを復号部132に出力する、音声通話が可能な状態となって、高品質化データ更新処理を終了する。

[0116]

図9の高品質化データ更新処理によれば、着信側の携帯電話機 101_2 において、発信側の携帯電話機 101_1 のユーザについての最新の高品質化データが記憶されていない限り、必ず、記憶部136の記憶内容が更新されることになる。

[0117]

次に、図10は、高品質化データ送信処理の第3実施の形態を示すフローチャートである。

[0118]

発信元である携帯電話機 101_1 では、ユーザが、操作部115(図2)を操作して、着信側としての携帯電話機 101_2 の電話番号を入力すると、送信部13(図3)において、高品質化データ送信処理が開始され、まず最初に、ステップS51において、管理部127は、操作部115が操作されることにより入力された電話番号に対応する携帯電話機 101_2 への高品質化データの送信履歴を検索する。

[0119]

即ち、図10の実施の形態では、管理部127は、後述するステップS58において、高品質化データを、着信側へ送信した場合、その高品質化データの送信履歴として、着信側の電話番号と、送信した高品質化データの更新情報を、その内蔵するメモリ(図示せず)に記憶しておくようになっており、ステップS52では、そのような送信履歴の中から、操作部115が操作されることにより入力された着信側の電話番号が記述されているものが検索される。

[0120]

そして、ステップS52に進み、管理部127は、ステップS51での検索結果に基づき、着信側に対して、最新の高品質化データが、既に送信されているかどうかを判定する。

[0121]

ステップS52において、最新の高品質化データが、着信側に対して送信され

ていないと判定された場合、即ち、送信履歴の中に、着信側の電話番号が記述されたものがなかったか、または、そのような送信履歴があっても、その送信履歴に記述されている更新情報が、最新の高品質化データの更新情報と一致しない場合、ステップS53に進み、管理部127は、最新の高品質化データを送信すべきであるかどうかを表す転送フラグをオン状態にして、ステップS55に進む。

[0122]

また、ステップS52において、最新の高品質化データが、着信側に対して、 既に送信されていると判定された場合、即ち、送信履歴の中に、着信側の電話番号が記述されたものがあり、その送信履歴に記述されている更新情報が、最新の 更新情報と一致する場合、ステップS54に進み、管理部127は、転送フラグをオフ状態にして、ステップS55に進む。

[0123]

ステップS 5 5 では、送信制御部 1 2 4 が、操作部 1 1 5 が操作されることにより入力された着信側である携帯電話機 1 0 1 2 の電話番号を、送信データとして出力することにより、携帯電話機 1 0 1 2 の呼び出しが行われる。

[0124]

そして、携帯電話機 101_2 のユーザが、携帯電話機 101_1 からの呼び出しに応じて、操作部 115を操作することにより、携帯電話機 101_2 をオフフック状態にすると、ステップ S56 に進み、送信制御部 124 は、着信側の携帯電話機 101_2 との間の通信リンクを確立し、ステップ S57 に進む。

[0125]

ステップS57では、管理部127は、転送フラグがオン状態になっているかどうかを判定し、オン状態になっていないと判定した場合、即ち、転送フラグがオフ状態になっている場合、ステップS58をスキップして、ステップS59に進む。

[0126]

また、ステップS57において、転送フラグがオン状態になっていると判定された場合、ステップS58に進み、管理部127は、記憶部126から最新の高品質化データと更新情報を読み出し、送信制御部124に供給する。さらに、ス

テップS58では、送信制御部124が、管理部127からの最新の高品質化データと更新情報を選択し、送信データとして送信する。さらに、ステップS58では、管理部127は、最新の高品質化データを送信した携帯電話機 101_2 の電話番号(着信側の電話番号)と、その更新情報を、送信履歴として記憶し、ステップS59に進む。

[0127]

ステップS59では、管理部127は、図6のステップS6における場合と同様に、準備完了通知が、着信側の携帯電話機101₂から送信されてきたかどうかを判定し、送信されてきていないと判定した場合、ステップS59に戻り、準備完了通知が送信されてくるまで待つ。

[0128]

そして、ステップS59において、準備完了通知が送信されてきたと判定された場合、ステップS60に進み、送信制御部124は、音声通話が可能な状態となって、高品質化データ送信処理を終了する。

[0129]

次に、図11のフローチャートを参照して、発信側の携帯電話機 101_1 で図10の高品質化データ送信処理が行われる場合の、着信側の携帯電話機 101_2 による高品質化データ更新処理について説明する。

[0130]

着信側の携帯電話機101₂では、例えば、着呼があると、受信部114(図4)において、高品質化データ更新処理が開始される。

[0131]

即ち、高品質化データ更新処理では、まず最初に、ステップS71において、 受信制御部131が、ユーザが操作部115を操作することによりオフフック状態とされたかどうかを判定し、オフフック状態とされていないと判定した場合、 ステップS71に戻る。

[0132]

また、ステップS71において、オフフック状態とされたと判定された場合、ステップS72に進み、受信制御部131は、発信側の携帯電話機 101_1 との

通信リンクを確立し、ステップS73に進む。

[0133]

ステップS73では、受信制御部131が、髙品質化データが送信されてきたかどうかを判定し、送信されてこなかったと判定した場合、ステップS74およびS75をスキップして、ステップS76に進む。

[0134]

また、ステップS73において、高品質化データが送信されてきたと判定された場合、即ち、図10のステップS58において、発信側の携帯電話機101₁から、最新の高品質化データおよび更新情報が送信された場合、ステップS74に進み、受信制御部131は、その最新の高品質化データおよび更新情報を含む受信データを受信し、管理部135に供給する。

[0135]

管理部135は、ステップS75において、図7のステップS18における場合と同様に、ステップS74で得た最新の高品質化データを、着呼時に受信した発信側の携帯電話機 101_1 の電話番号、さらには、その高品質化データとともに送信されてきた更新情報と対応付けて、記憶部136に記憶させることにより、記憶部136の記憶内容を更新する。

[0136]

そして、ステップS76に進み、管理部135は、送信部113の送信制御部 124を制御することにより、音声通話の準備が完了したことを表す準備完了通 知を、送信データとして送信させ、ステップS77に進む。

[0137]

ステップS77では、受信制御部131は、音声通話が可能な状態となって、 高品質化データ更新処理を終了する。

[0138]

次に、図6万至図11で説明した髙品質化データ送信処理または髙品質化データ更新処理は、発呼時または着呼時に行われるが、髙品質化データ送信処理または髙品質化データ更新処理は、その他、任意のタイミングで行うことも可能である。

[0139]

そこで、図12は、発信側としての携帯電話機101₁において、例えば、最新の高品質化データが学習により得られた後に、送信部113(図3)で行われる高品質化データ送信処理を示すフローチャートである。

[0140]

まず最初に、ステップS81において、管理部127は、電子メールのメッセージとして、記憶部126に記憶された最新の高品質化データとその更新情報、および自身の電話番号を配置し、ステップS82に進む。

[0141]

ステップS82では、管理部127は、最新の高品質化データ、その更新情報、自身の電話番号をメッセージとして配置した電子メール(以下、適宜、高品質化データ送信用電子メールという)のサブジェクト(件名)として、その電子メールが、最新の高品質化データを含むものであることを表すものを配置する。即ち、管理部127は、例えば、「更新通知」等を、高品質化データ送信用電子メールのサブジェクトに配置する。

[0142]

そして、ステップS83に進み、管理部127は、高品質化データ送信用電子メールに、その宛先となるメールアドレスを設定する。ここで、高品質化データ送信用電子メールの宛先となるメールアドレスとしては、例えば、過去に電子メールのやりとりをしたことがある相手のメールアドレスを記憶しておき、そのメールアドレスすべて、あるいは、そのメールアドレスのうちのユーザが指定したもの等を配置することが可能である。

[0143]

その後、ステップS84に進み、管理部127は、高品質化データ送信用電子 メールを、送信制御部124に供給し、送信データとして送信させ、高品質化データ送信処理を終了する。

[0144]

以上のようにして送信された髙品質化データ送信用電子メールは、所定のサー バを経由して、髙品質化データ送信用電子メールの宛先に配置されたメールアド

[0145]

次に、図13のフローチャートを参照して、発信側の携帯電話機 101_1 で図 12の高品質化データ送信処理が行われる場合の、着信側の携帯電話機 101_2 による高品質化データ更新処理について説明する。

[0146]

着信側の携帯電話機101₂では、例えば、任意のタイミングや、ユーザからの指示に応じて、所定のメールサーバに対して、電子メールの受信が要求され、この要求が行われると、受信部114(図4)において、高品質化データ更新処理が開始される。

[0147]

即ち、まず最初に、ステップS91において、上述の電子メールの受信の要求 に応じてメールサーバから送信されてくる電子メールが、受信データとして、受 信制御部131で受信され、管理部135に供給される。

[0148]

管理部135は、ステップS92において、受信制御部131から供給された電子メールのサブジェクトが、最新の高品質化データを含むものであることを表す「更新通知」であるかどうかを判定し、「更新通知」でないと判定した場合、即ち、電子メールが、高品質化データ送信用電子メールではない場合、高品質化データ更新処理を終了する。

[0149]

また、ステップS92において、電子メールのサブジェクトが、「更新通知」であると判定された場合、即ち、電子メールが、高品質化データ送信用電子メールである場合、ステップS93に進み、管理部135は、その高品質化データ送信用電子メールのメッセージとして配置されている最新の高品質化データ、更新情報、および発信側の電話番号を取得し、ステップS94に進む。

[0150]

ステップS94では、管理部135は、図7のステップS14における場合と 同様にして、高品質化データ送信用電子メールから取得した更新情報および発信

[0151]

ステップS94において、記憶部136に、発信側の携帯電話機101₁のユーザについての最新の高品質化データが記憶されていると判定された場合、ステップS95に進み、管理部135は、ステップS93で取得した高品質化データ、更新情報、および電話番号を破棄し、高品質化データ更新処理を終了する。

[0152]

また、ステップS94において、記憶部136に、発信側の携帯電話機101 $_1$ のユーザについての最新の高品質化データが記憶されていないと判定された場合、ステップS96に進み、管理部135は、図7のステップS18における場合と同様に、ステップS93で取得した高品質化データ、更新情報、および発信側の携帯電話機 $_1$ 0 $_1$ 0電話番号を、記憶部136に記憶させることにより、記憶部136の記憶内容を更新し、高品質化データ更新処理を終了する。

[0153]

次に、図14は、図3の送信部113における学習部125の構成例を示している。

[0154]

図14の実施の形態においては、学習部125は、本件出願人が先に提案した クラス分類適応処理に用いられるタップ係数を、高品質化データとして学習する ようになっている。

[0155]

クラス分類適応処理は、クラス分類処理と適応処理とからなり、クラス分類処理によって、データが、その性質に基づいてクラス分けされ、各クラスごとに適応処理が施される。

[0156]

ここで、適応処理について、低音質の音声(以下、適宜、低音質音声という) を、髙音質の音声(以下、適宜、髙音質音声という)に変換する場合を例に説明 する。 [0157]

この場合、適応処理では、低音質音声を構成する音声サンプル(以下、適宜、 低音質音声サンプルという)と、所定のタップ係数との線形結合により、その低 音質音声の音質を向上させた高音質音声の音声サンプルの予測値を求めることで 、その低音質音声の音質を高くした音声が得られる。

[0158]

具体的には、例えば、いま、ある高音質音声データを教師データとするとともに、その高音質音声の音質を劣化させた低音質音声データを生徒データとして、高音質音声を構成する音声サンプル(以下、適宜、高音質音声サンプルという)yの予測値E[y]を、幾つかの低音質音声サンプル(低音質音声を構成する音声サンプル) x_1, x_2, \cdots の集合と、所定のタップ係数 w_1, w_2, \cdots の線形結合により規定される線形 1 次結合モデルにより求めることを考える。この場合、予測値E[y]は、次式で表すことができる。

[0159]

$$E[y] = w_1x_1 + w_2x_2 + \cdots$$

• • • (1)

[0160]

式(1)を一般化するために、タップ係数 w_j の集合でなる行列W、生徒データ x_{ij} の集合でなる行列X、および予測値 $E[y_j]$ の集合でなる行列Y'を、【数 1 】

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1J} \\ x_{21} & x_{22} & \cdots & x_{2J} \\ \cdots & \cdots & \cdots & \cdots \\ x_{I1} & x_{I2} & \cdots & x_{IJ} \end{bmatrix}$$

$$W = \begin{bmatrix} w_1 \\ w_2 \\ \dots \\ w_J \end{bmatrix}, Y' = \begin{bmatrix} E[y_1] \\ E[y_2] \\ \dots \\ E[y_J] \end{bmatrix}$$

で定義すると、次のような観測方程式が成立する。

[0161]

XW = Y'

 \cdots (2)

ここで、行列Xの成分xijは、i件目の生徒データの集合(i件目の教師データ y_i の予測に用いる生徒データの集合)の中の j 番目の生徒データを意味し、行列Wの成分 w_j は、生徒データの集合の中の j 番目の生徒データとの積が演算されるタップ係数を表す。また、 y_i は、i件目の教師データを表し、従って、E [y_i] は、i件目の教師データの予測値を表す。なお、式(1)の左辺におけるyは、行列Yの成分 y_i のサフィックスiを省略したものであり、また、式(1)の右辺における x_1 , x_2 , ···も、行列Xの成分 x_{ij} のサフィックスiを省略したものである。

[0162]

式(2)の観測方程式に最小自乗法を適用して、高音質音声サンプルタに近い 予測値E [y]を求めることを考える。この場合、教師データとなる高音質音声 サンプルの真値yの集合でなる行列Y、および高音質音声サンプルタの予測値E [y]の残差(真値yに対する誤差)eの集合でなる行列Eを、

【数2】

$$\mathsf{E} = \begin{bmatrix} \mathsf{e}_1 \\ \mathsf{e}_2 \\ \dots \\ \mathsf{e}_{\mathsf{I}} \end{bmatrix} \text{ , } \mathsf{Y} = \begin{bmatrix} \mathsf{y}_1 \\ \mathsf{y}_2 \\ \dots \\ \mathsf{y}_{\mathsf{I}} \end{bmatrix}$$

で定義すると、式(2)から、次のような残差方程式が成立する。

[0163]

XW = Y + E

 \cdots (3)

[0164]

この場合、高音質音声サンプルッに近い予測値E[y]を求めるためのタップ係数 w_i は、自乗誤差

【数3】

$$\sum_{i=1}^{I} e_i^2$$

を最小にすることで求めることができる。

[0165]

従って、上述の自乗誤差をタップ係数 w_j で微分したものが0になる場合、即ち、次式を満たすタップ係数 w_j が、高音質音声サンプルyに近い予測値E[y] を求めるため最適値ということになる。

[0166]

【数4】

$$e_1 \frac{\partial e_1}{\partial w_i} + e_2 \frac{\partial e_2}{\partial w_i} + \dots + e_1 \frac{\partial e_1}{\partial w_j} = 0 \ (j=1,2,\dots,J)$$

 $\cdots (4)$

[0167]

そこで、まず、式(3)を、タップ係数 $\mathbf{w}_{\mathbf{j}}$ で微分することにより、次式が成立する。

[0168]

【数5】

$$\frac{\partial e_i}{\partial w_1} = x_{i1}, \quad \frac{\partial e_i}{\partial w_2} = x_{i2}, \quad \cdots, \quad \frac{\partial e_i}{\partial w_J} = x_{iJ}, \ (i=1,2,\cdots,I)$$

• • • (5)

[0169]

式 (4) および (5) より、式 (6) が得られる。

[0170]

【数 6 】

$$\sum_{i=1}^{I} e_i x_{i1} = 0, \sum_{i=1}^{I} e_i x_{i2} = 0, \cdots \sum_{i=1}^{I} e_i x_{iJ} = 0$$

 \cdots (6)

[0171]

さらに、式 (3) の残差方程式における生徒データ \mathbf{x}_{ij} 、タップ係数 \mathbf{w}_{j} 、教師データ \mathbf{y}_{i} 、および残差 \mathbf{e}_{i} の関係を考慮すると、式 (6) から、次のような正規方程式を得ることができる。

[0172]

【数7】

$$\begin{cases} (\sum_{i=1}^{I} x_{i1} x_{i1}) w_1 + (\sum_{i=1}^{I} x_{i1} x_{i2}) w_2 + \dots + (\sum_{i=1}^{I} x_{i1} x_{iJ}) w_J = (\sum_{i=1}^{I} x_{i1} y_i) \\ (\sum_{i=1}^{I} x_{i2} x_{i1}) w_1 + (\sum_{i=1}^{I} x_{i2} x_{i2}) w_2 + \dots + (\sum_{i=1}^{I} x_{i2} x_{iJ}) w_J = (\sum_{i=1}^{I} x_{i2} y_i) \\ \dots \\ (\sum_{i=1}^{I} x_{iJ} x_{i1}) w_1 + (\sum_{i=1}^{I} x_{iJ} x_{i2}) w_2 + \dots + (\sum_{i=1}^{I} x_{iJ} x_{iJ}) w_J = (\sum_{i=1}^{I} x_{iJ} y_i) \end{cases}$$

...(7)

[0173]

なお、式 (7) に示した正規方程式は、行列(共分散行列) Aおよびベクトル vを、

【数8】

$$A = \begin{pmatrix} \sum_{i=1}^{I} x_{i1}x_{i1} & \sum_{i=1}^{I} x_{i1}x_{i2} & \cdots & \sum_{i=1}^{I} x_{i1}x_{iJ} \\ \sum_{i=1}^{I} x_{i2}x_{i1} & \sum_{i=1}^{I} x_{i2}x_{i2} & \cdots & \sum_{i=1}^{I} x_{i2}x_{iJ} \\ & \cdots & & & & & & \\ \sum_{i=1}^{I} x_{i,j}x_{i1} & \sum_{i=1}^{I} x_{i,j}x_{i2} & \cdots & \sum_{i=1}^{I} x_{i,j}x_{iJ} \end{pmatrix}$$

$$V = \begin{pmatrix} \sum_{i=1}^{I} x_{i1}y_i \\ \sum_{i=1}^{I} x_{i2}y_i \\ \vdots \\ \sum_{i=1}^{I} x_{iJ}y_i \end{pmatrix}$$

で定義するとともに、ベクトルWを、数1で示したように定義すると、式 AW=v

• • • (8)

で表すことができる。

[0174]

式(7)における各正規方程式は、生徒データ \mathbf{x}_{ij} および教師データ \mathbf{y}_{i} のセットを、ある程度の数だけ用意することで、求めるべきタップ係数 \mathbf{w}_{j} の数 $_{J}$ と同じ数だけたてることができ、従って、式(8)を、ベクトルWについて解くことで(但し、式(8)を解くには、式(8)における行列Aが正則である必要がある)、最適なタップ係数 \mathbf{w}_{j} を求めることができる。なお、式(8)を解くにあたっては、例えば、掃き出し法(Gauss-Jordanの消去法)などを用いることが可能である。

[0175]

以上のように、生徒データと教師データを用いて、最適なタップ係数 $\mathbf{w}_{\mathbf{j}}$ を求める学習をしておき、さらに、そのタップ係数 $\mathbf{w}_{\mathbf{j}}$ を用い、式(1)により、教師データッに近い予測値 \mathbf{E} [\mathbf{y}] を求めるのが適応処理である。

[0176]

なお、適応処理は、低音質音声には含まれていないが、高音質音声に含まれる成分が再現される点で、単なる補間とは異なる。即ち、適応処理では、式(1)だけを見る限りは、いわゆる補間フィルタを用いての単なる補間と同一に見えるが、その補間フィルタのタップ係数に相当するタップ係数wが、教師データyを用いての、いわば学習により求められるため、高音質音声に含まれる成分を再現することができる。このことから、適応処理は、いわば音声の創造作用がある処理ということができる。

[0177]

また、上述の場合には、高音質音声の予測値を、線形一次予測するようにしたが、その他、予測値は、2以上の式によって予測することも可能である。

[0178]

図14の学習部125は、以上のようなクラス分類適応処理で用いられるタップ係数を、高品質化データとして学習する。

[0179]

即ち、バッファ141には、A/D変換部122(図3)が出力する音声データが、学習用のデータとして供給されるようになっており、バッファ141は、その音声データを、学習の教師となる教師データとして一時記憶する。

[0180]

生徒データ生成部142は、バッファ141に記憶された教師データとしての 音声データから、学習の生徒となる生徒データを生成する。

[0181]

即ち、生徒データ生成部142は、エンコーダ142Eとデコーダ142Dとから構成されている。エンコーダ142Eは、送信部113(図3)の符号化部123と同様に構成されており、バッファ141に記憶された教師データを、符号化部123と同様にして符号化して、符号化音声データを出力する。デコーダ

142Dは、後述する図16のデコーダ161と同様に構成されており、符号化 音声データを、符号化部123における符号化方式に対応する復号方式で復号し 、その結果得られる復号音声データを、生徒データとして出力する。

[0182]

なお、ここでは、教師データを、符号化部123における場合と同様に、符号 化音声データに符号化し、さらに、その符号化音声データを復号することによっ て、生徒データを生成するようにしたが、その他、生徒データは、例えば、教師 データとしての音声データを、ローパスフィルタ等によってフィルタリングする ことで、その音質を劣化させることにより生成すること等が可能である。

[0183]

また、生徒データ生成部142を構成するエンコーダ142Eとしては、符号 化部123を用いることが可能であり、さらに、デコーダ142Dとしては、後 述する図16のデコーダ161を用いることが可能である。

[0184]

, 生徒データメモリ143は、生徒データ生成部142のデコーダ142Dが出力する生徒データを一時記憶する。

[0185]

予測タップ生成部144は、バッファ141に記憶された教師データの音声サンプルを、順次、注目データとし、さらに、その注目データを予測するのに用いる生徒データとしての幾つかの音声サンプルを、生徒データメモリ143から読み出すことにより、予測タップ(注目データの予測値を求めるためのタップ)を生成する。この予測タップは、予測タップ生成部144から足し込み部147に供給される。

[0186]

クラスタップ生成部 1 4 5 は、注目データをクラス分けするクラス分類に用いる生徒データとしての幾つかの音声サンプルを、生徒データメモリ 1 4 3 から読み出すことにより、クラスタップ(クラス分類に用いるタップ)を生成する。このクラスタップは、クラスタップ生成部 1 4 5 からクラス分類部 1 4 6 に供給される。

[0187]

ここで、予測タップやクラスタップを構成する音声サンプルとしては、例えば、注目データとなっている教師データの音声サンプルに対応する生徒データの音声サンプルに対して時間的に近い位置にある音声サンプルを用いることができる

[0188]

また、予測タップとクラスタップを構成する音声サンプルとしては、同一の音声サンプルを用いることもできるし、異なる音声サンプルを用いることも可能である。

[0189]

クラス分類部146は、クラスタップ生成部145からのクラスタップに基づき、注目データをクラス分類し、その結果得られるクラスに対応するクラスコードを、足し込み部147に出力する。

[0190]

ここで、クラス分類を行う方法としては、例えば、ADRC(Adaptive Dynamic Range Coding)等を採用することができる。

[0191]

ADRCを用いる方法では、クラスタップを構成する音声サンプルが、ADRC処理され、その結果得られるADRCコードにしたがって、注目データのクラスが決定される。

[0192]

なお、KビットADRCにおいては、例えば、クラスタップを構成する音声サンプルの最大値MAXと最小値MINが検出され、DR=MAX-MINを、集合の局所的なダイナミックレンジとし、このダイナミックレンジDRに基づいて、クラスタップを構成する音声サンプルがKビットに再量子化される。即ち、クラスタップを構成する各音声サンプルから、最小値MINが減算され、その減算値がDR/2Kで除算(量子化)される。そして、以上のようにして得られる、クラスタップを構成するKビットの各音声サンプルを、所定の順番で並べたビット列が、ADRCコードとして出力される。従って、クラスタップが、例えば、1ビットADRC処理された場合には、そ

のクラスタップを構成する各音声サンプルは、最小値MINが減算された後に、最大値MAXと最小値MINとの平均値で除算され、これにより、各音声サンプルが1ビットとされる(2値化される)。そして、その1ビットの音声サンプルを所定の順番で並べたビット列が、ADRCコードとして出力される。

[0193]

なお、クラス分類部146には、例えば、クラスタップを構成する音声サンプルのレベル分布のパターンを、そのままクラスコードとして出力させることも可能であるが、この場合、クラスタップが、N個の音声サンプルで構成され、各音声サンプルに、Kビットが割り当てられているとすると、クラス分類部146が出力するクラスコードの場合の数は、(2^N)K通りとなり、音声サンプルのビット数Kに指数的に比例した膨大な数となる。

[0194]

従って、クラス分類部146においては、クラスタップの情報量を、上述のAD RC処理や、あるいはベクトル量子化等によって圧縮してから、クラス分類を行うのが好ましい。

[0195]

足し込み部147は、バッファ141から、注目データとなっている教師データの音声サンプルを読み出し、予測タップ生成部144からの予測タップを構成する生徒データ、および注目データとしての教師データを対象とした足し込みを、初期コンポーネント記憶部148およびユーザ用コンポーネント記憶部149の記憶内容を必要に応じて用いながら、クラス分類部146から供給されるクラスごとに行う。

[0196]

即ち、足し込み部 147は、基本的には、クラス分類部 146から供給されるクラスコードに対応するクラスごとに、予測タップ(生徒データ)を用い、式(8)の行列Aにおける各コンポーネントとなっている、生徒データどうしの乗算($\mathbf{x_{in}x_{im}}$)と、サメーション($\mathbf{\Sigma}$)に相当する演算を行う。

[0197]

さらに、足し込み部147は、やはり、クラス分類部146から供給されるク

ラスコードに対応するクラスごとに、予測タップ(生徒データ)および注目データ (教師データ) を用い、式 (8) のベクトルャにおける各コンポーネントとなっている、生徒データと教師データの乗算 $(\mathbf{x_{in}y_{i}})$ と、サメーション (Σ) に相当する演算を行う。

[0198]

一方、初期コンポーネント記憶部148は、例えば、ROMで構成され、あらかじめ用意された不特定多数の話者の音声データを学習用のデータとして学習を行うことにより得られた、式(8)における行列Aのコンポーネントと、ベクトルャのコンポーネントを、クラスごとに記憶している。

[0199]

また、ユーザ用コンポーネント記憶部149は、例えば、EEPROMで構成され、足し込み部147において前回の学習で求められた式(8)における行列Aのコンポーネントと、ベクトルャのコンポーネントを、クラスごとに記憶する

[0200]

[0201]

従って、足し込み部147では、新たに入力された音声データだけではなく、 過去の学習に用いられた音声データにも基づいて、式(8)の正規方程式がたて られる。

[0202]

なお、学習部125で、初めて学習が行われる場合や、ユーザ用コンポーネン

ト記憶部149がクリアされた直後等に学習が行われる場合おいては、ユーザ用コンポーネント記憶部149には、前回の学習で求められた行列Aとベクトルマのコンポーネントは記憶されていないため、式(8)の正規方程式は、ユーザから入力された音声データだけを用いてたてられることになる。

[0203]

この場合、入力される音声データのサンプル数が十分でないこと等に起因して、タップ係数を求めるのに必要な数の正規方程式が得られないクラスが生じることがあり得る。

[0204]

そこで、初期コンポーネント記憶部148は、あらかじめ用意された不特定十分な数の話者の音声データを学習用のデータとして学習を行うことにより得られた、式(8)における行列Aのコンポーネントと、ベクトルャのコンポーネントを、クラスごとに記憶しており、学習部125は、この初期コンポーネント記憶部148に記憶された行列Aおよびベクトルャのコンポーネントと、入力された音声データから得られる行列Aおよびベクトルャのコンポーネントとを必要に応じて用いて、式(8)の正規方程式をたてることで、タップ係数を求めるのに必要な数の正規方程式が得られないクラスが生じることを防止するようになっている。

[0205]

足し込み部147は、新たに入力された音声データから得られた行列Aおよびベクトルマのコンポーネントと、ユーザ用コンポーネント記憶部149(または初期コンポーネント記憶部148)に記憶された行列Aおよびベクトルマのコンポーネントと用いて、新たに、クラスごとの行列Aおよびベクトルマのコンポーネントを求めると、それらのコンポーネントを、ユーザ用コンポーネント記憶部149に供給し、上書きする形で記憶させる。

[0206]

さらに、足し込み部147は、新たに求めたクラスごとの行列Aおよびベクトル v のコンポーネントで構成される式(8)の正規方程式を、タップ係数決定部150に供給する。

[0207]

その後、タップ係数決定部150は、足し込み部147から供給されるクラス ごとの正規方程式を解くことにより、クラスごとに、タップ係数を求め、このク ラスごとのタップ係数を、高品質化データとして、その更新情報とともに、記憶 部126に供給し、上書きする形で記憶させる。

[0208]

次に、図15のフローチャートを参照して、図14の学習部125で行われる 、高品質化データとしてのタップ係数の学習処理について説明する。

[0209]

例えば、ユーザが通話時に行った発話、あるいは任意のタイミングで行った発話による音声データが、A/D変換部122(図3)からバッファ141に供給され、バッファ141は、そこに供給される音声データを記憶する。

[0210]

そして、例えば、ユーザが通話を終了すると、あるいは、発話を開始してから 所定時間が経過すると、学習部125は、通話中に、バッファ141に記憶され た音声データ、あるいは、一連の発話を開始してから終了するまでに、バッファ 141に記憶された音声データを、新たに入力された音声データとして、学習処 理を開始する。

[0211]

即ち、まず最初に、生徒データ生成部142は、ステップS101において、 バッファ141に記憶された音声データを教師データとして、その教師データか ら生徒データを生成し、生徒データメモリ143に供給して記憶させ、ステップ S102に進む。

[0212]

ステップS102では、予測タップ生成部144は、バッファ141に記憶された教師データとしての音声サンプルのうち、まだ注目データとしていないものの1つを注目データとして、その注目データについて、生徒データメモリ143に記憶された生徒データとしての音声サンプルの幾つかを読み出すことにより、予測タップを生成して、足し込み部147に供給する。

[0213]

さらに、ステップS102では、クラスタップ生成部145が、予測タップ生成部144における場合と同様にして、注目データについて、クラスタップを生成し、クラス分類部146に供給する。

[0214]

ステップS102の処理後は、ステップS103に進み、クラス分類部146が、クラスタップ生成部145からのクラスタップに基づいて、クラス分類を行い、その結果得られるクラスコードを、足し込み部147に供給する。

[0215]

そして、ステップS104に進み、足し込み部147は、バッファ141から 注目データを読み出し、その注目データと、予測タップ生成部144からの予測 タップを用いて、行列Aとベクトル v のコンポーネントを計算する。 さらに、足し込み部147は、ユーザ用コンポーネント記憶部149に記憶された行列Aとベクトル v のコンポーネントのうち、クラス分類部146からのクラスコードに 対応するものに対して、注目データと予測タップから求められた行列Aとベクトル v のコンポーネントを足し込み、ステップS105に進む。

[0216]

ステップS105では、予測タップ生成部144が、バッファ141に、まだ、注目データとしていない教師データが存在するかどうかを判定し、存在すると判定した場合、ステップS102に戻り、まだ、注目データとされていない教師データを、新たに注目データとして、以下、同様の処理が繰り返される。

[0217]

また、ステップS105において、バッファ141に、注目データとしていない教師データが存在しないと判定された場合、足し込み部147は、ユーザ用コンポーネント記憶部149に記憶されたクラスごとの行列Aおよびベクトルvのコンポーネントで構成される式(8)の正規方程式を、タップ係数決定部150に供給し、ステップS106に進む。

[0218]

ステップS106では、タップ係数決定部150は、足し込み部147から供

給される各クラスごとの正規方程式を解くことにより、各クラスごとに、タップ 係数を求める。さらに、ステップS106では、タップ係数決定部150は、各 クラスごとのタップ係数を、更新情報とともに、記憶部126に供給し、上書き する形で記憶させ、学習処理を終了する。

[0219]

なお、ここでは、学習処理をリアルタイムで行わないようにしたが、ハードウェアが十分な性能を有する場合には、リアルタイムで行っても良い。

[0220]

以上のように、学習部125では、新たに入力された音声データと、過去の学習に用いられた音声データに基づく学習処理が、通話時その他の任意のタイミングで行われ、これにより、ユーザが発話を行うほど、符号化音声データを、そのユーザの音声に近い音声に復号することのできるタップ係数が求められる。従って、通話相手側において、そのようなタップ係数を用いて、符号化音声データの復号を行うことにより、ユーザの音声の特性に適した処理が施され、十分に音質を改善した復号音声データを得ることができ、ユーザが携帯電話機101を使い込むことにより、通話相手側において、より品質の良い音声が出力されることになる。

[0221]

ここで、送信部113(図3)の学習部125が図14に示したように構成される場合には、高品質化データはタップ係数であるから、受信部114(図4)の記憶部136には、タップ係数が記憶される。なお、この場合、受信部114のデフォルトデータメモリ137には、例えば、図14の初期コンポーネント記憶部148に記憶されたコンポーネントによる正規方程式を解くことによって得られるクラスごとのタップ係数が、デフォルトデータとして記憶される。

[0222]

次に、図16は、送信部113 (図3)の学習部125が図14に示したよう に構成される場合の、受信部114 (図4)の復号部132の構成例を示してい る。

[0223]

デコーダ161には、受信制御部131(図4)が出力する符号化音声データが供給されるようになっており、デコーダ161は、その符号化音声データを、送信部113(図3)の符号化部123における符号化方式に対応する復号方式で復号し、その結果得られる復号音声データを、バッファ162に出力する。

[0224]

バッファ162は、デコーダ161が出力する復号音声データを一時記憶する

[0225]

予測タップ生成部163は、復号音声データの音質を向上させた音質向上データを、順次、注目データとして、その注目データの予測値を、式(1)の線形一次予測演算により求めるのに用いる予測タップを、バッファ162に記憶された復号音声データのうちの幾つかの音声サンプルによって構成(生成)し、予測部167に供給する。なお、予測タップ生成部163は、図14の学習部125における予測タップ生成部144が生成するのと同一の予測タップを生成する。

[0226]

クラスタップ生成部164は、バッファ162に記憶された復号音声データのうちの幾つかの音声サンプルによって、注目データについて、クラスタップを構成(生成)し、クラス分類部165に供給する。なお、クラスタップ生成部164は、図14の学習部125におけるクラスタップ生成部145が生成するのと同一のクラスタップを生成する。

[0227]

クラス分類部165は、クラスタップ生成部164からのクラスタップを用い、図14の学習部125におけるクラス分類部146と同様のクラス分類を行い、その結果得られるクラスコードを、係数メモリ166に供給する。

[0228]

係数メモリ166は、管理部135から供給される髙品質化データとしてのクラスごとのタップ係数を、そのクラスに対応するアドレスに記憶する。さらに、係数メモリ166は、クラス分類部165から供給されるクラスコードに対応するアドレスに記憶されているタップ係数を、予測部167に供給する。

[0229]

予測部167は、予測タップ生成部163が出力する予測タップと、係数メモリ166が出力するタップ係数とを取得し、その予測タップとタップ係数とを用いて、式(1)に示した線形予測演算を行う。これにより、予測部167は、注目データとしての音質向上データ(の予測値)を求め、D/A変換部133(図4)に供給する。

[0230]

次に、図17のフローチャートを参照して、図16の復号部132の処理について説明する。

[0231]

デコーダ161は、受信制御部131(図4)が出力する符号化音声データを 復号し、その結果得られる復号音声データを、バッファ162に出力して記憶させている。

[0232]

そして、まず最初に、ステップS111において、予測タップ生成部163が、復号音声データの音質を向上させた音質向上データのうち、例えば、時系列順で、まだ注目データとしていない音声サンプルを、注目データとし、その注目データについて、バッファ162から復号音声データのうちの幾つかの音声サンプルを読み出すことにより、予測タップを構成して、予測部167に供給する。

[0233]

さらに、ステップS111では、クラスタップ生成部164が、バッファ16 2に記憶された復号音声データのうちの幾つかの音声サンプルを読み出すことにより、注目データについて、クラスタップを構成し、クラス分類部165に供給する。

[0234]

クラス分類部165は、クラスタップ生成部164からクラスタップを受信すると、ステップS112に進み、そのクラスタップを用いてクラス分類を行い、その結果得られるクラスコードを、係数メモリ166に供給して、ステップS113に進む。

[0235]

ステップS113では、係数メモリ166は、クラス分類部165からのクラスコードに対応するアドレスに記憶されているタップ係数を読み出し、予測部167に供給して、ステップS114に進む。

[0236]

ステップS114では、予測部167は、係数メモリ166が出力するタップ 係数を取得し、そのタップ係数と、予測タップ生成部163からの予測タップと を用いて、式(1)に示した積和演算を行い、音質向上データ(の予測値)を得 る。

[0237]

以上のようにして得られた音質向上データは、予測部167から、D/A変換部133 (図4)を介して、スピーカ134に供給され、これにより、スピーカ134からは、高音質の音声が出力される。

[0238]

即ち、タップ係数は、ユーザの音声を教師とするとともに、その音声を符号化し、さらに復号したものを生徒として、学習を行うことにより得られたものであるので、デコーダ161が出力する復号音声データから、元のユーザの音声を、精度良く予測することを可能とするものであり、従って、スピーカ134からは、通信相手のユーザの音声の肉声により近い音声、即ち、デコーダ161(図16)が出力する復号音声データの音質を向上させたものが出力されることになる

[0239]

ステップS114の処理後は、ステップS115に進み、まだ、注目データとして処理すべき音質向上データがあるかどうかが判定され、あると判定された場合、ステップS111に戻り、以下、同様の処理が繰り返される。また、ステップS115において、注目データとして処理すべき音質向上データがないと判定された場合、処理を終了する。

[0240]

なお、携帯電話機 101_1 と 101_2 との間で通話が行われる場合、携帯電話機

 101_2 では、図5で説明したことから、高品質化データとしてのタップ係数として、通話相手である携帯電話機 101_1 の電話番号と対応付けられたもの、即ち、携帯電話機 101_1 を所有するユーザの音声データを学習用のデータとして学習したものが用いられる。従って、携帯電話機 101_1 から携帯電話機 101_2 に対して送信されてくる音声が、携帯電話機 101_1 のユーザの音声であれば、携帯電話機 101_2 において、携帯電話機 101_1 のユーザ用のタップ係数を用いて復号が行われることにより、高音質の音声が出力されることとなる。

[0241]

しかしながら、携帯電話機101₁から携帯電話機101₂に対して送信されてくる音声が、携帯電話機101₁のユーザの音声でない場合、即ち、携帯電話機101₁の所有者でないユーザが、携帯電話機101₁を使用している場合、携帯電話機101₂では、やはり、携帯電話機101₁のユーザ用のタップ係数を用いて復号が行われることから、その復号によって得られる音声は、携帯電話機101₁の真のユーザ(所有者)の音声における場合よりも、音質が向上したものにはならない。即ち、単純には、携帯電話機101₂では、携帯電話機101₁を、そのの所有者が使用していれば、高音質の音声が出力され、携帯電話機101₁を、その所有者以外のユーザが使用している場合には、あまり音質の良い音声は出力されない。この点に注目すれば、携帯電話機101によって、簡易な個人認証が可能であるということができる。

[0242]

次に、図18は、携帯電話機101が、例えば、CELP(Code Excited Line r Prediction coding)方式のものである場合の、送信部113 (図3)を構成する符号化部123の構成例を示している。

[0243]

A/D変換部122 (図3) が出力する音声データは、演算器3とLPC(Liner Prediction Coefficient)分析部4に供給される。

[0244]

LPC分析部4は、A/D変換部122(図3)からの音声データを、所定の音声サンプルを1フレームとして、フレームごとにLPC分析し、P次の線形予

測係数 α_1 , α_2 , · · · , α_P を求める。そして、LPC分析部 4 は、この P 次の線形予測係数 α_p (p=1, 2, · · · , P) を要素とするベクトルを、音声の特徴ベクトルとして、ベクトル量子化部 5 に供給する。

[0245]

ベクトル量子化部 5 は、線形予測係数を要素とするコードベクトルとコードとを対応付けたコードブックを記憶しており、そのコードブックに基づいて、LP C分析部 4 からの特徴ベクトル α をベクトル量子化し、そのベクトル量子化の結果得られるコード (以下、適宜、Aコード(A_code)という)を、コード決定部 1 5 に供給する。

[0246]

さらに、ベクトル量子化部 5 は、A コードに対応するコードベクトル α 'を構成する要素となっている線形予測係数 α_1 ', α_2 ', · · · · , α_P 'を、音声合成フィルタ 6 に供給する。

$\cdot [0247]$

音声合成フィルタ 6 は、例えば、IIR (Infinite Impulse Response)型のディジタルフィルタで、ベクトル量子化部 5 からの線形予測係数 α_p (p=1, 2, \cdots , P) を I IR フィルタのタップ係数とするとともに、演算器 1 4 から供給される残差信号 e を入力信号として、音声合成を行う。

[0248]

即ち、LPC分析部 4 で行われるLPC分析は、現在時刻n の音声データ(のサンプル値) s_n 、およびこれに隣接する過去のp 個のサンプル値 s_{n-1} , s_{n-2} , ・・・, s_{n-p} に、式

$$s_{n} + \alpha_{1} s_{n-1} + \alpha_{2} s_{n-2} + \cdots + \alpha_{p} s_{n-p} = e_{n}$$

$$\cdots \qquad (9)$$

で示す線形 1 次結合が成立すると仮定し、現在時刻 n のサンプル値 s n の予測値 (線形予測値) s n を、過去の P 個の標本値 s n-1, s n-2,・・・, s n-P を用いて、式

$$s_{n}' = -(\alpha_{1} s_{n-1} + \alpha_{2} s_{n-2} + \cdots + \alpha_{p} s_{n-p})$$
 $\cdots (10)$

によって線形予測したときに、実際のサンプル値 \mathbf{s}_n と線形予測値 \mathbf{s}_n との間の自乗誤差を最小にする線形予測係数 α_n を求めるものである。

[0249]

ここで、式(9)において、 $\{e_n\}$ (・・・, e_{n-1} , e_n , e_{n+1} , ·・・)は、 平均値が 0 で、分散が所定値 σ_2 の互いに無相関な確率変数である。

[0250]

式(9)から、サンプル値snは、式

$$s_{n} = e_{n} - (\alpha_{1} s_{n-1} + \alpha_{2} s_{n-2} + \cdots + \alpha_{p} s_{n-p})$$

$$\cdots (1.1)$$

で表すことができ、これを、Z変換すると、次式が成立する。

[0251]

$$S = E / (1 + \alpha_1 z^{-1} + \alpha_2 z^{-2} + \cdots + \alpha_P z^{-P})$$

[0252]

ここで、式 (9) および (10) から、enは、式

$$e_n = s_n - s_n'$$

· · (13)

で表すことができ、実際のサンプル値 s_n と線形予測値 s_n との間の残差信号と呼ばれる。

[0253]

[0254]

そこで、音声合成フィルタ 6 は、上述したように、ベクトル量子化部 5 からの線形予測係数 α_p をタップ係数とするとともに、演算器 1 4 から供給される残差信号 e を入力信号として、式(1 2)を演算し、音声データ(合成音データ)

ssを求める。

[0255]

なお、音声合成フィルタ6では、LPC分析部4によるLPC分析の結果得られる線形予測係数 α_p ではなく、そのベクトル量子化の結果得られるコードに対応するコードベクトルとしての線形予測係数 α_p が用いられるため、音声合成フィルタ6が出力する合成音信号は、A/D変換部 1 2 2 (図 3)が出力する音声データとは、基本的に同一にはならない。

[0256]

音声合成フィルタ6が出力する合成音データssは、演算器3に供給される。 演算器3は、音声合成フィルタ6からの合成音データssから、A/D変換部1 22(図3)が出力する音声データsを減算し、その減算値を、自乗誤差演算部 7に供給する。自乗誤差演算部7は、演算器3からの減算値の自乗和(第kフレームのサンプル値についての自乗和)を演算し、その結果得られる自乗誤差を、 自乗誤差最小判定部8に供給する。

[0257]

自乗誤差最小判定部 8 は、自乗誤差演算部 7 が出力する自乗誤差に対応付けて、長期予測ラグを表すコードとしてのLコード(L_code)、ゲインを表すコードとしてのGコード(G_code)、および符号語(励起コードブック)を表すコードとしてのIコード(I_code)を記憶しており、自乗誤差演算部 7 が出力する自乗誤差に対応するLコード、Gコード、およびIコードを出力する。Lコードは、適応コードブック記憶部 9 に、Gコードは、ゲイン復号器 1 0 に、Iコードは、励起コードブック記憶部 1 1 に、それぞれ供給される。さらに、Lコード、Gコード、およびIコードは、コード決定部 1 5 にも供給される。

[0258]

適応コードブック記憶部9は、例えば7ビットのLコードと、所定の遅延時間 (ラグ) とを対応付けた適応コードブックを記憶しており、演算器14から供給 される残差信号 e を、自乗誤差最小判定部8から供給されるLコードに対応付けられた遅延時間(長期予測ラグ)だけ遅延して、演算器12に出力する。

[0259]

ここで、適応コードブック記憶部9は、残差信号eを、Lコードに対応する時間だけ遅延して出力することから、その出力信号は、その遅延時間を周期とする周期信号に近い信号となる。この信号は、線形予測係数を用いた音声合成において、主として、有声音の合成音を生成するための駆動信号となる。従って、Lコードは、概念的には、音声のピッチ周期を表す。なお、CELPの規格によれば、レコードは、20万至146の範囲の整数値をとる。

[0260]

ゲイン復号器10は、Gコードと、所定のゲイン β および γ とを対応付けたテーブルを記憶しており、自乗誤差最小判定部8から供給されるGコードに対応付けられたゲイン β および γ を出力する。ゲイン β と γ は、演算器12と13に、それぞれ供給される。ここで、ゲイン β は、長期フィルタ状態出力ゲインと呼ばれるものであり、また、ゲイン γ は、励起コードブックゲインと呼ばれるものである。

[0261]

励起コードブック記憶部11は、例えば9ビットのIコードと、所定の励起信号とを対応付けた励起コードブックを記憶しており、自乗誤差最小判定部8から供給されるIコードに対応付けられた励起信号を、演算器13に出力する。

[0262]

ここで、励起コードブックに記憶されている励起信号は、例えば、ホワイトノイズ等に近い信号であり、線形予測係数を用いた音声合成において、主として、 無声音の合成音を生成するための駆動信号となる。

[0263]

演算器12は、適応コードブック記憶部9の出力信号と、ゲイン復号器10が出力するゲインβとを乗算し、その乗算値1を、演算器14に供給する。演算器13は、励起コードブック記憶部11の出力信号と、ゲイン復号器10が出力するゲインγとを乗算し、その乗算値nを、演算器14に供給する。演算器14は、演算器12からの乗算値1と、演算器13からの乗算値nとを加算し、その加算値を、残差信号eとして、音声合成フィルタ6と適応コードブック記憶部9に供給する。

音声合成フィルタ6では、以上のようにして、演算器 14 から供給される残差信号 e を入力信号が、ベクトル量子化部 5 から供給される線形予測係数 α_p を タップ係数とする I I R フィルタでフィルタリングされ、その結果得られる合成音データが、演算器 3 に供給される。そして、演算器 3 および自乗誤差演算部 7 において、上述の場合と同様の処理が行われ、その結果得られる自乗誤差が、自乗誤差最小判定部 8 に供給される。

[0265]

自乗誤差最小判定部 8 は、自乗誤差演算部 7 からの自乗誤差が最小(極小)になったかどうかを判定する。そして、自乗誤差最小判定部 8 は、自乗誤差が最小になっていないと判定した場合、上述のように、その自乗誤差に対応する L コード、G コード、および L コードを出力し、以下、同様の処理が繰り返される。

[0266]

一方、自乗誤差最小判定部 8 は、自乗誤差が最小になったと判定した場合、確定信号を、コード決定部 1 5 に出力する。コード決定部 1 5 は、ベクトル量子化部 5 から供給される A コードをラッチするとともに、自乗誤差最小判定部 8 から供給される L コード、G コード、および I コードを順次ラッチするようになっており、自乗誤差最小判定部 8 から確定信号を受信すると、そのときラッチしている A コード、L コード、G コード、および I コードを多重化し、符号化音声データとして出力する。

[0267]

以上から、符号化音声データは、復号に用いられる情報であるAコード、Lコード、Gコード、およびIコードを、フレーム単位ごとに有するものとなっている。

[0268]

ここで、図18(後述する図19および図20においても同様)では、各変数に、[k]が付され、配列変数とされている。このkは、フレーム数を表すが、明細書中では、その記述は、適宜省略する。

[0269]

次に、図19は、携帯電話機101が、CELP方式のものである場合の、受信部114(図4)を構成する復号部132の構成例を示している。なお、図中、図16における場合と対応する部分については、同一の符号を付してある。

[0270]

受信制御部131(図4)が出力する符号化音声データは、DEMUX(デマルチプレクサ)21に供給され、DEMUX21は、符号化音声データから、Lコード、Gコード、Iコード、Aコードを分離し、それぞれを、適応コードブック記憶部22、ゲイン復号器23、励起コードブック記憶部24、フィルタ係数復号器25に供給する。

[0271]

適応コードブック記憶部22、ゲイン復号器23、励起コードブック記憶部24、演算器26乃至28は、図18の適応コードブック記憶部9、ゲイン復号器10、励起コードブック記憶部11、演算器12乃至14とそれぞれ同様に構成されるもので、図18で説明した場合と同様の処理が行われることにより、Lコード、Gコード、およびIコードが、残差信号eに復号される。この残差信号eは、音声合成フィルタ29に対して、入力信号として与えられる。

[0272]

フィルタ係数復号器 25 は、図 18 のベクトル量子化部 5 が記憶しているのと同一のコードブックを記憶しており、Aコードを、線形予測係数 α_p に復号し、音声合成フィルタ 29 に供給する。

[0273]

音声合成フィルタ29は、図18の音声合成フィルタ6と同様に構成されており、フィルタ係数復号器25からの線形予測係数 α_p , をタップ係数とするとともに、演算器28から供給される残差信号 e を入力信号として、式(12)を演算し、これにより、図18の自乗誤差最小判定部8において自乗誤差が最小と判定されたときの合成音データを生成し、復号音声データとして出力する。

[0274]

ここで、発信側の符号化部123から、着信側の復号部132に対しては、図18で説明したことから、復号部132の音声合成フィルタ29に与えられる入

力信号としての残差信号と線形予測係数がコード化されて送信されてくるため、 復号部132では、そのコードが、残差信号と線形予測係数に復号される。しか しながら、この復号された残差信号や線形予測係数(以下、適宜、それぞれを、 復号残差信号または復号線形予測係数という)には、量子化誤差等の誤差が含ま れるため、発信側におけるユーザの音声をLPC分析して得られる残差信号と線 形予測係数には一致しない。

[0275]

このため、復号部132の音声合成フィルタ29が出力する合成音データである復号音声データは、発信側のユーザの音声データに対して、歪み等を有する、音質の劣化したものとなる。

[0276]

そこで、復号部132は、上述のクラス分類適応処理を行うことによって、復 号音声データを、歪みのない(歪みを低減した)、発信側のユーザの音声データ に近い音質向上データに変換するようになっている。

[0277]

即ち、音声合成フィルタ29が出力する合成音データである復号音声データは、バッファ162に供給され、バッファ162は、その復号音声データを一時記憶する。

[0278]

そして、予測タップ生成部163は、復号音声データの音質を向上させた音質向上データを、順次、注目データとし、その注目データについて、バッファ162から復号音声データのうちの幾つかの音声サンプルを読み出すことにより、予測タップを構成して、予測部167に供給する。また、クラスタップ生成部164は、バッファ162に記憶された復号音声データのうちの幾つかの音声サンプルを読み出すことにより、注目データについて、クラスタップを構成し、クラス分類部165に供給する。

[0279]

クラス分類部165は、クラスタップ生成部164からクラスタップを用いて クラス分類を行い、その結果得られるクラスコードを、係数メモリ166に供給 する。係数メモリ166は、クラス分類部165からのクラスコードに対応するアドレスに記憶されているタップ係数を読み出し、予測部167に供給する。

[0280]

そして、予測部167は、係数メモリ166が出力するタップ係数と、予測タップ生成部163からの予測タップとを用いて、式(1)に示した積和演算を行い、音質向上データ(の予測値)を得る。

[0281]

以上のようにして得られた音質向上データは、予測部167から、D/A変換部133(図4)を介して、スピーカ134に供給され、これにより、スピーカ134からは、高音質の音声が出力される。

[0282]

次に、図20は、携帯電話機101が、CELP方式のものである場合の、送信部113(図3)を構成する学習部125の構成例を示している。なお、図中、図14における場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。

[0283]

演算器183万至コード決定部195は、図18の演算器3万至コード決定部15とそれぞれ同様に構成される。演算器183には、A/D変換部122(図3)が出力する音声データが、学習用のデータとして入力されるようになっており、従って、演算器183万至コード決定部195では、その学習用の音声データに対して、図18の符号化部123における場合と同様の処理が施される。

[0284]

そして、自乗誤差最小判定部188において自乗誤差が最小になったと判定されたときの音声合成フィルタ186が出力する合成音データが、生徒データとして、生徒データメモリ143に供給される。

[0285]

その後は、生徒データメモリ143万至タップ係数決定部150において、図14および15における場合と同様の処理が行われ、これにより、クラスごとのタップ係数が、高品質化データとして生成される。

[0286]

なお、図19または図20の実施の形態では、予測タップやクラスタップを、音声合成フィルタ29または186が出力する合成音データから構成するようにしたが、予測タップやクラスタップは、図19または図20において点線で示すように、I コードや、L コード、G コード、A コード、A コードから得られる線形予測係数 α p、G コードから得られるゲイン β , γ 、その他の、L コード、G コード、I コード、またはA コードから得られる情報(例えば、残差信号 e や、残差信号 e を得るための1, n、さらには、 $1/\beta$, n/γ など)のうちの1以上を含めて構成することが可能である。

[0287]

次に、図21は、送信部113(図3)を構成する符号化部123の他の構成 例を示している。

[0288]

図21の実施の形態においては、符号化部123は、A/D変換部122 (図3)が出力する音声データをベクトル量子化することにより符号化するようになっている。

[0289]

即ち、A/D変換部122(図3)が出力する音声データは、バッファ201 に供給され、バッファ201は、そこに供給される音声データを一時記憶する。

[0290]

ベクトル化部202は、バッファ201に記憶された音声データを時系列に読み出して、所定数の音声サンプルを1フレームとし、各フレームの音声データをベクトル化する。

[0291]

ここで、ベクトル化部202では、例えば、1フレームの各音声サンプルを、そのまま、ベクトルの各コンポーネントとすることにより、音声データをベクトル化することも可能であるし、また、例えば、1フレームを構成する音声サンプルについて、LPC分析等の音響分析を施し、その結果得られる音声の特徴量を、ベクトルのコンポーネントとすることにより、音声データをベクトル化するこ

とも可能である。なお、ここでは、説明を簡単にするために、例えば、1フレームの各音声サンプルを、そのまま、ベクトルの各コンポーネントとすることにより、音声データをベクトル化するものとする。

[0292]

ベクトル化部202は、1フレームの各音声サンプルを、そのままコンポーネントとして構成したベクトル(以下、適宜、音声ベクトルとする)を、距離計算部203に出力する。

[0293]

距離計算部203は、コードブック記憶部204に記憶されたコードブックに登録されている各コードベクトルと、ベクトル化部202からの音声ベクトルとの距離(例えば、ユークリッド距離など)を計算し、各コードベクトルについて求められた距離を、そのコードベクトルに対応するコードとともに、コード決定部205に供給する。

[0294]

即ち、コードブック記憶部204は、後述する図22の学習部125における 学習によって得られる髙品質化データとしてのコードブックを記憶し、距離計算 部203は、そのコードブックに登録されている各コードベクトルについて、ベクトル化部202からの音声ベクトルとの距離を計算して、各コードベクトルに 対応するコードとともに、コード決定部205に供給する。

[0295]

コード決定部205は、距離計算部203から供給される、各コードベクトルについての距離のうち、最も短いものを検出し、その最も短い距離を与えるコードベクトル、即ち、音声ベクトルについての量子化誤差(ベクトル量子化誤差)を最も小さくするコードベクトルに対応するコードを、ベクトル化部202が出力した音声ベクトルについてのベクトル量子化結果として決定する。そして、コード決定部205は、そのベクトル量子化結果としてのコードを、符号化音声データとして、送信制御部124(図3)に出力する。

[0296]

次に、図22は、符号化部123が図21に示したように構成される場合の、

図3の送信部113を構成する学習部125の構成例を示している。

[0297]

バッファ211には、A/D変換部122が出力する音声データが供給されるようになっており、バッファ211は、そこに供給される音声データを記憶する

[0298]

ベクトル化部212は、バッファ211に記憶された音声データを用いて、図21のベクトル化部202における場合と同様にして、音声ベクトルを構成し、ユーザ用ベクトル記憶部213に供給する。

[0299]

ユーザ用ベクトル記憶部213は、例えば、EEPROMなどで構成され、ベクトル化部212から供給される音声ベクトルを順次記憶する。初期ベクトル記憶部214は、例えば、ROMなどで構成され、不特定多数のユーザの音声データを用いて構成された多数の音声ベクトルをあらかじめ記憶している。

[0300]

コードブック生成部215は、初期ベクトル記憶部214およびユーザベクトル記憶部213に記憶された音声ベクトルをすべて用い、例えば、LBG (Lind e, Buzo, Gray) アルゴリズムによって、コードブックを生成する学習を行い、その学習の結果得られるコードブックを、高品質化データとして出力する。

[0301]

なお、コードブック生成部215が出力する高品質化データとしてのコードブックは、記憶部126(図3)に供給され、更新情報(コードブックが得られた日時)とともに記憶されるとともに、符号化部123(図21)にも供給され、コードブック記憶部204に書き込まれる(上書きされる)。

[0302]

ここで、図22の学習部125で、初めて学習が行われる場合や、ユーザ用ベクトル記憶部213がクリアされた直後等に学習が行われる場合おいては、ユーザ用ベクトル記憶部213には、音声ベクトルが記憶されていないため、コードブック生成部215において、ユーザ用ベクトル記憶部213だけを参照するの

では、コードブックを生成することができない。また、携帯電話機101の使用が開始されてから間もない場合においては、ユーザ用ベクトル記憶部213には、それほど多くの音声ベクトルが記憶されていない。この場合、コードブック生成部215において、ユーザ用ベクトル記憶部213を参照するだけでも、コードブックを生成することは可能ではあるが、そのようなコードブックを用いたベクトル量子化は、かなり精度の悪いもの(量子化誤差が大きいもの)となる。

[0303]

そこで、初期ベクトル記憶部 2 1 4 には、上述のように、多数の音声ベクトルが記憶されており、コードブック生成部 2 1 5 は、ユーザ用ベクトル記憶部 2 1 3 だけでなく、初期ベクトル記憶部 2 1 4 も参照することで、上述のような精度の悪いベクトル量子化が行われるようなコードブックが生成されることを防止するようになっている。

[0304]

なお、ユーザ用ベクトル記憶部213に、ある程度の数の音声ベクトルが記憶された後は、コードブック生成部215において、初期ベクトル記憶部214を参照せずに、ユーザ用ベクトル記憶部213だけを参照して、コードブックを生成するようにすることが可能である。

[0305]

次に、図23のフローチャートを参照して、図22の学習部125で行われる 、高品質化データとしてのコードブックの学習処理について説明する。

[0306]

例えば、ユーザが通話時に行った発話、あるいは任意のタイミングで行った発話による音声データが、A/D変換部122(図3)からバッファ211に供給され、バッファ211は、そこに供給される音声データを記憶する。

[0307]

そして、例えば、ユーザが通話を終了すると、あるいは、発話を開始してから 所定時間が経過すると、学習部125は、通話中に、バッファ211に記憶され た音声データ、あるいは、一連の発話を開始してから終了するまでに、バッファ 211に記憶された音声データを、新たに入力された音声データとして、学習処 理を開始する。

[0308]

即ち、ベクトル化部212は、バッファ211に記憶された音声データを時系列に読み出し、所定数の音声サンプルを1フレームとして、各フレームの音声データをベクトル化する。そして、ベクトル化部212は、そのベクトル化の結果得られる音声ベクトルを、ユーザ用ベクトル記憶部213に供給して追加記憶させる。

[0309]

バッファ 2 1 1 に記憶された音声データすべてのベクトル化が終了すると、コードブック生成部 2 1 5 は、ステップ S 1 2 1 において、ユーザ用ベクトル記憶部 2 1 3 と初期ベクトル記憶部 2 1 4 に記憶された各音声ベクトルとの距離の総和を最小にするベクトル y_1 を求める。そしてコードブック生成部 2 1 5 は、そのベクトル y_1 を、コートベクトル y_1 として、ステップ S 1 2 2 に進む。

[0310]

ステップS122では、コードブック生成部215は、現在得られているコードベクトルの総数を変数 n に設定し、コードベクトル y_1 , y_2 , · · · , y_n それぞれを2分割する。即ち、コードブック生成部215は、例えば、 Δ を微小なベクトルとするとき、コードベクトル y_i (i=1, 2, · · · , n) から、ベクトル y_i + Δ および y_i - Δ を生成し、ベクトル y_i + Δ を、新たなコードベクトル y_i とするとともに、ベクトル y_i - Δ を、新たなコードベクトル y_i - Δ を、新たなコードベクトル y_i - Δ を、新たなコードベクトル y_i - Δ を、新たなコードベクトル y_i - Δ 。

[0311]

そして、ステップS123に進み、コードブック生成部215は、ユーザ用ベクトル記憶部213と初期ベクトル記憶部214に記憶された各音声ベクトル $_{\mathbf{j}}$ ($\mathbf{j}=1$, $\mathbf{2}$, \cdots , \mathbf{J} (ユーザ用ベクトル記憶部213と初期ベクトル記憶部214に記憶された音声ベクトルの総数)) を、その音声ベクトル $\mathbf{x}_{\mathbf{j}}$ と最も距離が近いコードベクトル $\mathbf{y}_{\mathbf{i}}$ ($\mathbf{i}=1$, $\mathbf{2}$, \cdots , $\mathbf{2}$ n) に分類し、ステップS124に進む。

[0312]

ステップS124では、コードブック生成部215は、各コードベクトル y_i を、そのコードベクトル y_i に分類された各音声ベクトルとの距離の総和が最小になるように更新する。なお、この更新は、例えば、コードベクトル y_i に分類された0個以上の音声ベクトルが指す点の重心を求めることによって行うことができる。即ち、その重心を指すベクトルが、コードベクトル y_i に分類された各音声ベクトルとの距離の総和を最小にするものとなる。但し、コードベクトル y_i に分類された音声ベクトルが 0 個の場合は、コードベクトル y_i は、そのままとされる。

[0313]

その後、ステップS125に進み、コードブック生成部215は、更新後の各コードベクトルッiについて、そのコードベクトルッiに分類された各音声ベクトルとの距離の総和(以下、適宜、コードベクトルッiについての距離の総和という)を求め、さらに、すべてのコードベクトルッiについての距離の総和の総和(以下、適宜、全総和という)を求める。そして、コードブック生成部215は、その全総和の変化、即ち、今回のステップS125で求めた全総和(以下、適宜、今回の全総和という)と、前回のステップS125で求めた全総和(以下、適宜、今回の全総和という)と、前回のステップS125で求めた全総和(以下、適宜、前回の全総和という)との差の絶対値が、所定の閾値以下であるかどうかを判定する。

[0314]

ステップS125において、今回の全総和と前回の全総和との差の絶対値が、 所定の閾値以下でないと判定された場合、即ち、コードベクトルッ_iを更新する ことにより、全総和が大きく変化した場合、ステップS123に戻り、以下、同 様の処理を繰り返す。

[0315]

また、ステップS125において、今回の全総和と前回の全総和との差の絶対値が、所定の閾値以下であると判定された場合、即ち、コードベクトルタ_iを更新しても、全総和がほとんど変化しない場合、ステップS126に進み、コードブック生成部215は、現在得られているコードベクトルの総数を表す変数nが、コードブックにあらかじめ設定されているコードベクトルの数(以下、適宜、

設定コードベクトル数という)Nに等しいかどうかを判定する。

[0316]

ステップS126において、変数nが、設定コードベクトル数Nに等しくないと判定された場合、即ち、まだ、設定コードベクトル数Nに等しい数のコードベクトル y_i が得られていない場合、ステップS122に戻り、以下、同様の処理を繰り返す。

[0317]

また、ステップS126において、変数 n が、設定コードベクトル数N に等しいと判定された場合、即ち、設定コードベクトル数N に等しい数のコードベクトル y_i が得られた場合、コードブック生成部215は、そのN 個のコードベクトル y_i で構成されるコードブックを、高品質化データとして出力し、学習処理を終了する。

[0318]

なお、図23の学習処理では、ユーザ用ベクトル記憶部213に、いままでに 入力された音声ベクトルを記憶しておき、その音声ベクトルを用いて、コードブックを更新(生成)するようにしたが、コードブックの更新は、過去に入力された音声ベクトルを記憶しておかずに、今回入力された音声ベクトルと、既に得られているコードブックを用い、ステップS123およびS124の処理により、いわば簡略化した形で行うことも可能である。

[0319]

即ち、この場合、コードブック生成部 2 1 5 は、ステップ S 1 2 3 において、今回入力された各音声ベクトル $\mathbf{x}_{\mathbf{j}}$ ($\mathbf{j}=1$, $\mathbf{2}$, · · · · , \mathbf{J} (今回入力された音声ベクトルの総数))を、その音声ベクトル $\mathbf{x}_{\mathbf{j}}$ と最も距離が近いコードベクトル $\mathbf{y}_{\mathbf{i}}$ ($\mathbf{i}=1$, $\mathbf{2}$, · · · · , \mathbf{N} (コードブックにおけるコードベクトルの総数))に分類し、ステップ \mathbf{S} $\mathbf{1}$ $\mathbf{2}$ $\mathbf{4}$ に進む。

[0320]

ステップS124では、コードブック生成部215は、各コードベクトル y_i を、そのコードベクトル y_i に分類された各音声ベクトルとの距離の総和が最小になるように更新する。なお、この更新は、上述したように、コードベクトルy

 $_i$ に分類された $_0$ 個以上の音声ベクトルが指す点の重心を求めることによって行うことができるから、例えば、いま、更新後のコードベクトルを $_{i}$ 'と、更新前のコードベクトル $_{i}$ に分類されている過去に入力された音声ベクトルを $_{i}$ 、 $_{i}$ $_{i$

[0321]

$$y_{i} = (x_{1} + x_{2} + \cdots + x_{M-L})/(M-L)$$

• • • (14)

[0322]

$$y_{i}' = (x_{1} + x_{2} + \cdots + x_{M-L} + x_{M-L} + 1 + x_{M-L+2} + \cdots + x_{M})/M$$

$$\cdots (15)$$

[0323]

ところで、いまの場合、過去に入力された音声ベクトル \mathbf{x}_1 , \mathbf{x}_2 , ・・・, \mathbf{x}_{M-L} は記憶されていない。そこで、式(1 5)を次式にように変形する。

[0324]

$$y_{i}' = (x_{1} + x_{2} + \cdots + x_{M-L} + x_{M-L+1})/M$$

$$+ (x_{M-L+2} + \cdots + x_{M})/M$$

$$= (x_{1} + x_{2} + \cdots + x_{M-L} + x_{M-L+1})/(M-L) \times (M-L)/M$$

$$+ (x_{M-L+2} + \cdots + x_{M})/M$$

 \cdots (16)

[0325]

式(16)に、式(14)を代入すると次式が得られる。

[0326]

$$y_i' = y_i \times (M-L)/M+(x_{M-L+2}+\cdots+x_M)/M$$

 \cdots (17)

· [0327]

式(17)によれば、今回入力された音声ベクトル $\mathbf{x}_{\mathtt{M-L+1}}$, $\mathbf{x}_{\mathtt{M-L+2}}$, ・・・

, $\mathbf{x}_{\mathtt{M}}$ と、既に得られているコードブックにおけるコードベクトル $\mathbf{y}_{\mathbf{i}}$ を用いることによって、そのコードベクトル $\mathbf{y}_{\mathbf{i}}$ を更新し、更新後のコードベクトル $\mathbf{y}_{\mathbf{i}}$ を求めることができる。

[0328]

この場合、過去に入力された音声ベクトルを記憶しておく必要がないので、ユーザ用ベクトル記憶部 2 1 3 の記憶容量が少なくて済む。但し、この場合、ユーザ用ベクトル記憶部 2 1 3 には、今回入力された音声ベクトルの他、いままでに各コードベクトルッiに分類された音声ベクトルの総数を記憶させておくとともに、コードベクトルッiの更新に伴って、その更新後のコードベクトルッi'についても、そのコードベクトルッi'に分類された音声ベクトルの総数を更新する必要がある。さらに、初期ベクトル記憶部 2 1 4 には、不特定多数の音声ベクトルを用いて生成されたコードブックと各コードベクトルに分類された音声ベクトルの総数を記憶させておく必要がある。図 2 2 の学習部 1 2 5 で、初めて学習が行われる場合や、ユーザ用ベクトル記憶部 2 1 3 がクリアされた直後等に学習が行われる場合おいては、初期ベクトル記憶部 2 1 4 に記憶されたコードブックを用いて、そのコードブックの更新が行われることになる。

[0329]

以上のように、図22の実施の形態における学習部125でも、新たに入力された音声データと、過去の学習に用いられた音声データに基づく図23の学習処理が、通話時その他の任意のタイミングで行われ、これにより、ユーザが発話を行うほど、そのユーザに適したコードブック、即ち、そのユーザの音声に対して量子化誤差を小さくするコードブックが求められる。従って、通話相手側において、そのようなコードブックを用いて、符号化音声データの復号(ここでは、ベクトル逆量子化)を行うことにより、やはり、ユーザの音声の特性に適した処理(ベクトル逆量子化処理)が施され、従来の場合(不特定多数の話者の発話から求められたコードブックを用いる場合)に比較して、十分に音質を改善した復号音声データを得ることができることになる。

[0330]

次に、図24は、送信部113(図3)の学習部125が図22に示したように構成される場合の、受信部114(図4)の復号部132の構成例を示している。

[0331]

バッファ221は、受信制御部131(図4)が出力する符号化音声データ(ここでは、ベクトル量子化結果としてのコード)を一時記憶する。ベクトル逆量子化部222は、バッファ221に記憶されたコードを読み出し、コードブック記憶部223に記憶されたコードブックを参照することでベクトル逆量子化を行うことにより、そのコードを、音声ベクトルに復号し、逆ベクトル化部224に供給する。

[0332]

コードブック記憶部223は、管理部135が高品質化データとして供給する コードブックを記憶する。

[0333]

ここで、送信部113 (図3)の学習部125が図22に示したように構成される場合には、高品質化データはコードブックであるから、受信部114 (図4)の記憶部136には、コードブックが記憶される。なお、この場合、受信部114のデフォルトデータメモリ137には、例えば、図22の初期ベクトル記憶部214に記憶された音声ベクトルを用いて生成されたコードブックが、デフォルトデータとして記憶される。

[0334]

逆ベクトル化部224は、ベクトル逆量子化部222が出力する音声ベクトル を、時系列の音声データに逆ベクトル化して出力する。

[0335]

次に、図25のフローチャートを参照して、図24の復号部132の処理(復 号処理)について説明する。

[0336]

バッファ221は、そこに供給される符号化音声データとしてのコードを順次 記憶する。 [0337]

そして、ベクトル逆量子化部 2 2 2 は、ステップ S 1 3 1 において、バッファ 2 2 1 に記憶されたコードのうち、まだ読み出していない時間的に最も古いものを、注目コードとして読み出し、ベクトル逆量子化する。即ち、ベクトル逆量子化部 2 2 2 は、コードブック記憶部 2 2 3 に記憶されたコードブックのコードベクトルのうち、注目コードが対応付けられているものを検出し、そのコードベクトルを、音声ベクトルとして、逆ベクトル化部 2 2 4 に出力する。

[0338]

逆ベクトル化部224は、ステップS132において、ベクトル逆量子化部2 2からの音声ベクトルを逆ベクトル化することにより、音声データに復号して出力し、ステップS133に進む。

[0339]

ステップS133では、ベクトル逆量子化部222が、バッファ221に、注目コードとされていないコードが、まだ記憶されているかどうかを判定する。ステップS133において、バッファ221に、注目コードとされていないコードが、まだ記憶されていると判定された場合、ステップS131に戻り、バッファ221に記憶されたコードのうち、まだ読み出していない時間的に最も古いものを、新たな注目コードとして、以下、同様の処理が繰り返される。

[0340]

また、ステップS133において、バッファ221に、注目コードとされていないコードが記憶されていないと判定された場合、処理を終了する。

[0341]

以上においては、高品質化データとして、クラス分類適応処理のタップ係数やコードブック等を用いる場合について説明したが、これ以外にも、例えば、変調方式やビットレート等の伝送形態に関するパラメータ、符号化方式等の符号化構造に関するパラメータ、並びに、クラス構造や予測構造等のクリエーションに関するパラメータ等であってもよい。

[0342]

以上のように、生成され、利用される髙品質化データは、記憶部136または

記憶部126に通話相手(電話番号)に対応付けられてデータベース化されて(ユーザ情報データベースとして)記憶される。また、上述したように、学習部125の学習により高品質化データが生成されるまで、初期値として供給されるデフォルトデータベースがデフォルトデータメモリ137、記憶部136または記憶部126に記憶され、使用される。例えば、管理部135は、後述するユーザ情報データベースより発信元電話番号を検索し、見つからない場合、図26に示されるようなデフォルトデータベースを用いて、高品質化データを設定する。

[0343]

デフォルトデータメモリ137のデフォルトデータベースには、高品質化データとして使用される各種のパラメータが、計測される特徴量と関連付けて記憶されている。例えば、図26Aにおいては、高品質化データがノイズ量に関連付けられており、受信信号に含まれるノイズ量に応じて、変調方式、ビットレート、符号化方式、コードブック、クラス構造、予測構造、および予測係数等の値が選択されるようになっている。

[0344]

例えば、受信信号のノイズ量が所定の2つの基準値より大きく、「大」であると判定された場合、管理部135は、デフォルトデータメモリ137にアクセスし、図26Aのデフォルトデータベースに基づいて、変調方式を「A」に設定し、ビットレートを「B」に設定し、符号化方式を「C」に設定し、コードブックを「A」に設定し、クラス構造を「B」に設定し、予測構造を「C」に設定し、予測係数を「A」に設定する。

[0345]

また、それ以外にも、高品質化データが、図26Bのように、受信信号の信号 強度に関連付けられていてもよいし、図26Cのように、受信信号のキャリア周 波数に関連付けられていてもよい。また、高品質化データは、それ以外の特徴量 に対応付けられていてももちろんよいし、これらの特徴量の組み合わせに対して 関連付けられていてもよい。

[0346]

図27は、記憶部136に記憶されるユーザ情報データベースの例を示す図で

ある。

[0347]

ユーザ情報データベースは、使用された高品質化データの値を、その時の通話相手(電話番号等)に対応付けたデータベースである。記憶部136に記憶されているユーザ情報データベースにおいては、図27Aに示されるように、変調方式、ビットレート、符号化方式、コードブック、クラス構造、予測構造、および予測係数等の高品質化データの設定値がユーザ毎に関連付けられている。

[0348]

すなわち、例えば、第1のユーザと音声通信を行う場合、管理部135は、図 27Aのユーザ情報データベースに基づいて、変調方式を「A」に設定し、ビットレートを「C」に設定し、符号化方式を「A」に設定し、コードブックを「D」に設定し、クラス構造を「B」に設定し、予測構造を「C」に設定し、予測係数を「B」に設定する。

[0349]

なお、これらの値は、最も新しい設定値が通話相手と関連付けて記憶されるようにしてもよいが、通話相手と相関がある場合が多く、過去に使用された頻度の 最も多い値が通信相手と関連付けて記憶されるようにするのが望ましい。

[0350]

また、図27Bのように、一人の通信相手に対して複数の設定値を対応付けるようにしてもよい。図27においては、第1のユーザに対して、複数の設定値が対応付けられており、それぞれ、優先度が設定されている。

[0351]

従って、例えば、管理部125は、通話相手が第1のユーザの場合、最初、図27Bのユーザ情報データベースに基づいて、優先度が「1」の高品質化データを設定し、通信環境等により、高品質な音声が得られない場合、ユーザの指示等に基づいて、優先度が「2」以降の高品質化データを選択し、設定する。

[0352]

上述したように、高品質化データは、上述したタップ係数やコードブックのように、通話相手の携帯電話機が生成し、受信部114が取得するものだけでなく

[0353]

図28は、受信部114の内部の構成の、他の例を示す図である。

[0354]

図28において、管理部401は、受信制御部131より供給された高品質化データ等を復号部132に供給し、設定するだけでなく、復号部132において生成される高品質化データ等を復号部132より取得する。

[0355]

これらの高品質化データは、管理部401により、記憶部402に供給され、記憶部402に内蔵される一時蓄積部411に一度保持される。そして、後述するように、ユーザの指示等に基づいて、ユーザ情報データベース412の更新が決定されると、一時蓄積部411に保持されている高品質化データがユーザ情報データベース412は、ユーザ毎に(通話相手毎に)、最適な高品質化データが登録されており、一時蓄積部411より高品質化データが供給されると、その高品質化データも含めて算出された最適な高品質化データを記憶する。

[0356]

管理部401は、以上のように記憶された、通話相手に対応する高品質化データの最適値を取得し、復号部132に設定したり、関連情報を送信制御部124に供給し、通話相手の携帯電話機に供給したりする。

[0357]

管理部401による高品質化データ最適値設定処理を、図29のフローチャートを参照して説明する。

[0358]

最初に、ステップS201において、管理部401は、通話相手の電話番号等の通話相手情報を受信制御部131より取得すると、その情報に基づいて、記憶部402のユーザ情報データベース412より、通話相手情報に対応する高品質化データの最適値を検索する。

[0359]

そして、ステップS202において、管理部401は、ユーザ情報データベース412より供給される検索結果に基づいて、該当する情報が存在するか否かを判定する。通話相手情報に対応する髙品質化データの最適値がユーザ情報データベース412に存在すると判定した場合、管理部401は、ステップS203において、通話相手情報に対応付けられている髙品質化データの最適値を選択し、復号部132に供給して設定する。髙品質化データの最適値を設定した管理部401は、処理をステップS205に進める。

[0360]

また、ステップS202において、通話相手情報に対応する高品質化データの最適値がユーザ情報データベース412に存在しないと判定した場合、管理部401は、処理をステップS204に進め、デフォルトデータメモリ137に記憶されている図26に示されるようなデフォルトデータベースより、該当するデフォルトデータを取得し、復号部132に供給して設定する。デフォルトデータを設定した管理部401は、処理をステップS205に進める。

[0361]

高品質化データの最適値またはデフォルトデータが設定されると、音声通話が開始され、復号部132において高品質化データが生成され管理部401に供給されたり、通話相手より供給された高品質化データが、受信制御部131より、管理部401に供給されたりする。

[0362]

ステップS205において、管理部401は、これらの新たな高品質化データを取得したか否かを判定する。そして、新たな高品質化データを取得したと判定した場合、管理部401は、処理をステップS206に進め、取得した新たな高品質化データを記憶部402の一時蓄積部411に供給して保持させ、処理をステップS207に進める。

[0363]

また、ステップS205において、新たな髙品質化データを取得していないと 判定した場合、管理部401は、ステップS206の処理を省略し、ステップS 207に処理を進める。

[0364]

音声通話中に音質が良くないと感じたユーザは、操作部115を操作して、最初にステップS203またはS204において設定されたデータの変更を、管理部401に要求する。すなわち、ユーザは、現在行われている音声通話に対して生成された高品質化データを設定値に反映させるために、操作部115を操作して、設定変更要求を管理部401に供給する。

[0365]

管理部401は、ステップS207において、その設定変更要求を取得したか否かを判定し、取得したと判定した場合、処理をステップS208に進め、保持している新たな高品質化データを反映させた仮の最適値を算出し、復号部132に供給して設定し、処理をステップS209に進める。

[0366]

また、ステップS207において、設定変更要求を取得していないと判定した 場合、管理部401は、ステップS208の処理を省略し、ステップS209に 処理を進める。

[0367]

ステップS209において、管理部401は、音声通話が終了したか否かを判定し、終了していないと判定した場合、処理をステップS205に戻し、それ以降の処理を繰り返す。音声通話が終了したと判定した場合、管理部401は、処理をステップS210に進める。

[0368]

音声通話が終了すると、管理部401は、ステップS210において、ユーザ情報データベース412を更新するか否かをユーザに選択させる所定のGUI (Graphical User Interface) 情報を図示せぬディスプレイ等に表示し、操作部115を介して入力を受け付ける。

[0369]

そして、ステップS211において、管理部401は、入力されたユーザの指示に基づいて、ユーザ情報データベース412を更新するか否かを判定し、更新

すると判定した場合、処理をステップS212に進め、保持している仮の最適値を用いて、ユーザ情報データベース412を更新し、高品質化データ最適値設定 処理を終了する。

[0370]

また、ステップS211において、ユーザ情報データベース412を更新しないと判定した場合、管理部401は、ステップS212の処理を省略し、高品質化データ最適値設定処理を終了する。

[0371]

以上においては、携帯電話機において、高品質化データを算出し、記憶するように説明したが、これに限らず、例えば、図30に示すように、交換局において、高品質化データを算出し、記憶するようにし、音声通話時に携帯電話機に供給するようにしてもよい。

[0372]

図30において、交換局423は、高品質化データ算出部424と記憶部42 5を有しており、携帯電話機421-1および携帯電話機421-2において用いられる高品質化データを生成し、記憶する。そして、例えば、携帯電話機42 1-1と携帯電話機421-2の間で音声通話が開始される際に、交換局423 は、対応する高品質化データを携帯電話機421-1と携帯電話機421-2の 両方にそれぞれ供給し、設定させる。

[0373]

ここで、以下、特に区別する必要がない限り、携帯電話機421-1と421 -2を、携帯電話機421と記述する。

[0374]

次に、クラス分類適応処理に用いられるタップ係数が高品質化データとして用いられる場合について説明する。

[0375]

クラス分類適応処理に用いられるタップ係数が高品質化データとして用いられる場合、携帯電話機421は、図2に示される携帯電話機101と同様に構成されているので、図2に示される携帯電話機101の内部の構成例を、携帯電話機

421の内部の構成例としても引用する。但し、送信部113の内部の構成は、 携帯電話機421の場合、図31に示されるような構成であり、図3に示される 送信部113の構成例とは異なる。

[0376]

図31に示される送信部113には、図3の送信部113の学習部125の代わりに、サンプルデータ生成部431が構成されている。サンプルデータ生成部431は、A/D変換部122において、ディジタル化された音声データより、所定の数のデータを抽出し、サンプルデータとして、記憶部126に記憶させる。

[0377]

また、図31の管理部432は、図3の管理部127とは異なり、記憶部12 6に記憶されている非圧縮の音声データであるサンプルデータを取得し、送信制 御部124を介して、交換局423に供給する。

[0378]

図32は、交換局423の内部の構成例を示す図である。

[0379]

図32において、交換局423のCPU (Central Processing Unit) 441は、ROM442に記憶されているプログラム、または記憶部425からRAM (Random A ccess Memory) 443にロードされたプログラムに従って各種の処理を実行する。RAM443にはまた、CPU441が各種の処理を実行する上において必要なデータなども適宜記憶される。

[0380]

*

CPU441、ROM442、およびRAM443は、バス450を介して相互に接続されている。このバス450にはまた、高品質化データ算出部424が接続されており、通信部464を介して取得されたサンプルデータより、クラス分類適応処理に用いられるタップ係数が生成される。

[0381]

さらに、このバス450にはまた、入出力インタフェース460も接続されている。入出力インタフェース460には、キーボード、マウスなどよりなる入力部461、CRT (Cathode Ray Tube)、LCD (Liquid Crystal Display) などよりな

るディスプレイ、並びにスピーカなどよりなる出力部462、ハードディスクな どより構成される記憶部425、基地局102等と通信を行う通信部464が接 続されている。

[0382]

記憶部425は、交換局423において実行されるプログラムやデータを記憶するとともに、高品質化データ算出部424において算出された高品質化データの最適値をユーザに対応させたユーザ情報データベースを記憶している。

[0383]

入出力インタフェース460にはまた、必要に応じてドライブ470が接続され、磁気ディスク471、光ディスク472、光磁気ディスク473、或いは半導体メモリ474などが適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて記憶部425にインストールされる。

[0384]

図33は、図32の髙品質化データ算出部424の内部の構成例を示すブロック図である。

[0385]

図33に示される各部の構成と動作は、図14に示される学習部125の各部の場合の構成と動作と同様であり、その説明は省略する。なお、高品質化データ算出部424の場合、バッファ141に入力される音声データは、通信部464を介して入力された、非圧縮の音声データであるサンプルデータであり、高品質化データ算出部424は、このサンプルデータに基づいて、タップ係数を算出し、高品質化データとして出力する。

[0386]

次に、図30の伝送システムの携帯電話機421-1および421-2、並びに交換局423による、高品質化データを利用する高品質化データ利用処理について、図34のフローチャートを参照して説明する。なお、以下においては、携帯電話機421-1が発信側の携帯電話機であり、携帯電話機421-2が着信側の携帯電話機であるものとする。

[0387]

最初に、ステップS231において、発信側の携帯電話機である携帯電話機4 21-1の送信部113および受信部114は、ユーザの指示に基づいて、通話 相手となるユーザが有する携帯電話機421-2に対する発信処理を行い、交換 局423にアクセスして接続要求を行う。

[0388]

交換局423のCPU441は、ステップS251において、その接続要求を取得すると、ステップS252において、通信部464を制御して、接続処理を行い、着信側携帯電話機である携帯電話機421-2にアクセスして接続要求を行う。

[0389]

携帯電話機421-2の送信部113および受信部114は、ステップS27 1において、その接続要求を取得するとステップS272において、着信処理を 行い、携帯電話機421-1との接続を確立する。

[0390]

接続が確立すると、交換局423のCPU441は、ステップS253において、記憶部425に記憶されているユーザ情報データベースより携帯電話機421-1および421-2に対応する最適な高品質化データを検索し、最適な高品質化データが存在する場合は、通信部464を制御してそのデータを対応する携帯電話機に供給する。また、対応する最適な高品質化データが存在しないと判定した場合、交換局423のCPU441は、記憶部425に記憶されているデフォルトデータベースより対応するデフォルトデータを検索し、通信部464を制御して、最適な高品質化データの代わりに携帯電話機に供給する。

[0391]

携帯電話機421-1の受信部114は、ステップS232において、交換局423より供給された最適な高品質化データ(またはデフォルトデータ)を取得すると、ステップS233において、取得したデータを設定する。

[0392]

最適な高品質化データ(またはデフォルトデータ)を設定すると、携帯電話機 421-1の送信部113および受信部114は、ステップS234において、 携帯電話機421-2との音声通話処理を行い、その音声通話処理において生成 される特徴量に関する情報である特徴量情報を抽出する。

[0393]

そして、音声通話処理が完了し、携帯電話機421-2との回線が切断されると、携帯電話機421-1の送信部113は、ステップS235において、操作部115を介して入力されるユーザの指示に基づいて、ユーザ情報データベースを更新するか否かを判定し、更新すると判定した場合は、ステップS236において、抽出した特徴量情報を交換局423に供給し、処理を終了する。また、ステップS235において、ユーザ情報データベースを更新しないと判定した場合、送信部113は、ステップS236の処理を省略し、処理を終了する。

[0394]

携帯電話機421-1の場合と同様に、携帯電話機421-2の受信部114 は、ステップS273において、ステップS253の処理により供給された最適 な高品質化データ(またはデフォルトデータ)を取得すると、ステップS274 において、取得した最適な高品質化データ(またはデフォルトデータ)を設定す る。

[0395]

データが設定されると、携帯電話機421-2の送信部113および受信部1 14は、ステップS275において、携帯電話機421-1との音声通話処理を 行い、その音声通話処理において生成される特徴量に関する情報である特徴量情報を抽出する。

[0396]

そして、音声通話処理が完了し、携帯電話機421-1との回線が切断されると、携帯電話機421-2の送信部113は、ステップS276において、操作部115を介して入力されるユーザの指示に基づいて、ユーザ情報データベースを更新するか否かを判定し、更新すると判定した場合は、ステップS277において、抽出した特徴量情報を交換局423に供給し、処理を終了する。また、ステップS276において、ユーザ情報データベースを更新しないと判定した場合、送信部113は、ステップS277の処理を省略し、処理を終了する。

[0397]

ステップS253において、最適な高品質化データ(またはデフォルトデータ)を供給した交換局423のCPU441は、ステップS236の処理により携帯電話機421-1から特徴量情報を供給された場合、または、ステップS277の処理により携帯電話機421-2から特徴量情報を供給された場合、ステップS254において、供給された特徴量情報を取得する。

[0398]

そして、交換局423のCPU441は、ステップS255において、それらの特徴量情報を取得したか否かを判定し、取得したと判定した場合、ステップS256において、高品質化データ算出部424を制御して、取得した特徴量情報に基づいて、高品質化データを算出させ、算出させた高品質化データを用いて最適な高品質化データを算出させ、ユーザ情報データベースを更新し、処理を終了する。

[0399]

また、ステップS255において、特徴量情報を携帯電話機421-1または 421-2より取得していないと判定した場合、交換局423のCPU441は、 ステップS256の処理を省略し、処理を終了する。

[0400]

以上のようにして、携帯電話機421-1および421-2より特徴量情報が 交換局423に供給され、交換局423の高品質化データ算出部424において 、最適な高品質化データが算出され、更新されたユーザ情報データベースが記憶 部425に記憶される。これにより、携帯電話機101の、高品質化データに関 する処理による負荷を軽減することができる。

[0401]

次に、図33の高品質化データ算出部424による高品質化データ算出処理を 図35のフローチャートを参照して説明する。

[0402]

例えば、非圧縮の音声データよりタップ係数を髙品質化データとして算出する 図33の髙品質化データ算出部424において、通信部464より供給された、 非圧縮の音声データであるサンプルデータは、最初に、バッファ141に供給される。そして、所定量のサンプルデータが取得されると、高品質化データ算出処理が開始される。

[0403]

最初に、生徒データ生成部142は、ステップS291において、バッファ141に記憶された音声データを教師データとして、その教師データから生徒データを生成し、生徒データメモリ143に供給して記憶させ、ステップS292に進む。

[0404]

ステップS292では、予測タップ生成部144は、バッファ141に記憶された教師データとしての音声サンプルのうち、まだ注目データとしていないものの1つを注目データとして、その注目データについて、生徒データメモリ143に記憶された生徒データとしての音声サンプルの幾つかを読み出すことにより、予測タップを生成して、足し込み部147に供給する。

[0405]

さらに、ステップS292では、クラスタップ生成部145が、予測タップ生成部144における場合と同様にして、注目データについて、クラスタップを生成し、クラス分類部146に供給する。

[0406]

ステップS292の処理後は、ステップS293に進み、クラス分類部146が、クラスタップ生成部145からのクラスタップに基づいて、クラス分類を行い、その結果得られるクラスコードを、足し込み部147に供給する。

[0407]

そして、ステップS294に進み、足し込み部147は、バッファ141から注目データを読み出し、その注目データと、予測タップ生成部144からの予測タップを用いて、行列Aとベクトルャのコンポーネントを計算する。さらに、足し込み部147は、ユーザ用コンポーネント記憶部149に記憶された行列Aとベクトルャのコンポーネントのうち、クラス分類部146からのクラスコードに対応するものに対して、注目データと予測タップから求められた行列Aとベクト

ルvのコンポーネントを足し込み、ステップS295に進む。

[0408]

ステップS295では、予測タップ生成部144が、バッファ141に、まだ、注目データとしていない教師データが存在するかどうかを判定し、存在すると判定した場合、ステップS292に戻り、まだ、注目データとされていない教師データを、新たに注目データとして、以下、同様の処理が繰り返される。

[0409]

また、ステップS295において、バッファ141に、注目データとしていない教師データが存在しないと判定された場合、足し込み部147は、ユーザ用コンポーネント記憶部149に記憶されたクラスごとの行列Aおよびベクトルvのコンポーネントで構成される式(8)の正規方程式を、タップ係数決定部150に供給し、ステップS296に進む。

[0410]

ステップS296では、タップ係数決定部150は、足し込み部147から供給される各クラスごとの正規方程式を解くことにより、各クラスごとに、タップ係数を求める。そして、ステップS297に処理を進め、タップ係数決定部150は、各クラスごとのタップ係数を、更新情報とともに、記憶部425に供給し、サンプルデータの供給元に対応させて、上書きする形で記憶させ、高品質化データ算出処理を終了する。

[0411]

以上のように、髙品質化データ算出部424では、新たに入力された音声データと、過去の学習に用いられた音声データに基づく髙品質化データ算出処理(学習処理)が行われ、これにより、ユーザが発話を行うほど、符号化音声データを、そのユーザの音声に近い音声に復号することのできるタップ係数が求められる。従って、特徴量情報の供給元である携帯電話機の通話相手側において、そのようなタップ係数を用いて、符号化音声データの復号を行うことにより、ユーザの音声の特性に適した処理が施され、十分に音質を改善した復号音声データを得ることができ、ユーザが携帯電話機421を使い込むことにより、通話相手側において、より品質の良い音声が出力されることになる。

[0412]

以上の例では、交換局423において、高品質化データを算出し、算出した高 品質化データを記憶するように説明したが、図36に示すように、高品質化デー タの算出は、特徴量を抽出する携帯電話機において行われるようにし、算出され た高品質化データ(ユーザ情報データベース)の記憶は、交換局423において 行われるようにしてもよい。

[0413]

図36において、携帯電話機 101_1 および 101_2 は、図3に示されるように、送信部113に学習部125を有しており、クラス分類適応処理に用いられるタップ係数(高品質化データ)を生成することができる。

[0414]

また、交換局423は、図32に示されるように、記憶部425を有しており、最適な高品質化データが電話番号等のユーザ情報に対応付けられたユーザ情報データベースを記憶している。

[0415]

図36に示されるような伝送システムにおける、例えば、携帯電話機 101_1 から携帯電話機 101_2 に電話をかける場合の各装置により実行される処理について、図37のフローチャートを参照して説明する。

[0416]

最初に、発信側携帯電話機である携帯電話機 101_1 の送信部113は、ステップS311において、ユーザの指示に基づいて、通話相手となるユーザが有する携帯電話機 101_2 に対する発信処理を行い、交換局423にアクセスして接続要求を行う。

[0417]

交換局423のCPU441は、ステップS331において、その接続要求を取得すると、ステップS332において、通信部464を制御して、接続処理を行い、着信側携帯電話機である携帯電話機 101_2 にアクセスして接続要求を行う

[0418]

携帯電話機 101_2 の送信部113および受信部114は、ステップS351において、その接続要求を取得するとステップS352において、着信処理を行い、携帯電話機 101_1 との接続を確立する。

[0419]

接続が確立すると、交換局423のCPU441は、ステップS333において、記憶部425に記憶されているユーザ情報データベースより携帯電話機1011かよび1012に対応する最適な高品質化データを検索し、最適な高品質化データが存在する場合は、通信部464を制御してそのデータを対応する携帯電話機に供給する。また、対応する最適な高品質化データが存在しないと判定した場合、交換局423のCPU441は、記憶部425に記憶されているデフォルトデータベースより対応するデフォルトデータを検索し、通信部464を制御して、最適な高品質化データの代わりに携帯電話機に供給する。

[0420]

携帯電話機101₁の受信部114は、ステップS312において、交換局4 23より供給された最適な高品質化データ(またはデフォルトデータ)を取得す ると、ステップS313において、取得したデータを設定する。

[0421]

最適な高品質化データ(またはデフォルトデータ)を設定すると、携帯電話機 101_1 の送信部 113 および受信部 114 は、ステップ 114 において、携帯電話機 101_2 との音声通話処理を行い、その音声通話処理において生成される特徴量に基づいて、高品質化データを生成する。

[0422]

そして、音声通話処理が完了し、携帯電話機101₂との回線が切断されると、携帯電話機101₁の送信部113は、ステップS315において、操作部115を介して入力されるユーザの指示に基づいて、ユーザ情報データベースを更新するか否かを判定し、更新すると判定した場合は、ステップS316において、生成した高品質化データを交換局423に供給し、処理を終了する。また、ステップS315において、ユーザ情報データベースを更新しないと判定した場合、送信部113は、ステップS316の処理を省略し、処理を終了する。

[0423]

携帯電話機101₁の場合と同様に、携帯電話機101₂の受信部114は、ステップS353において、ステップS333の処理により供給された最適な高品質化データ(またはデフォルトデータ)を取得すると、ステップS354において、取得した最適な高品質化データ(またはデフォルトデータ)を設定する。

[0424]

データが設定されると、携帯電話機 101_2 の送信部113および受信部114は、ステップ8355において、携帯電話機 101_1 との音声通話処理を行い、その音声通話処理において生成される特徴量に基づいて、高品質化データを生成する。

[0425]

そして、音声通話処理が完了し、携帯電話機101₁との回線が切断されると、携帯電話機101₂の送信部113は、ステップS356において、操作部115を介して入力されるユーザの指示に基づいて、ユーザ情報データベースを更新するか否かを判定し、更新すると判定した場合は、ステップS357において、生成した髙品質化データを交換局423に供給し、処理を終了する。また、ステップS356において、ユーザ情報データベースを更新しないと判定した場合、送信部113は、ステップS357の処理を省略し、処理を終了する。

[0426]

ステップS333において、最適な高品質化データ(またはデフォルトデータ)を供給した交換局423のCPU441は、ステップS316の処理により携帯電話機101₁から高品質化データを供給された場合、または、ステップS357の処理により携帯電話機101₂から高品質化データを供給された場合、ステップS334において、供給された高品質化データを取得する。

[0427]

そして、交換局423のCPU441は、ステップS335において、それらの 高品質化データを取得したか否かを判定し、取得したと判定した場合、ステップ S336において、記憶部425を制御して、取得した高品質化データをユーザ 情報データベースに反映させて更新し、処理を終了する。

[0428]

また、ステップS 2 5 5 において、髙品質化データを携帯電話機 1 0 1 $_1$ または 1 0 1 $_2$ より取得していないと判定した場合、交換局 4 2 3 のCPU 4 4 1 は、ステップS 3 3 6 の処理を省略し、処理を終了する。

[0429]

以上のようにして、携帯電話機 101_1 および 101_2 において生成された高品質化データが交換局423に供給され、供給された高品質化データに基づいて、交換局423の記憶部425に記憶されているユーザ情報データベースが更新される。これにより、携帯電話機101がユーザ情報データベースを記憶する必要がなくなり、記憶領域の空き容量を増やすことができる。

[0430]

以上の例では、高品質化データの算出は、特徴量を抽出する携帯電話機101 1または101₂が行い、算出された高品質化データ(ユーザ情報データベース) の記憶は、交換局423が行うように説明したが、逆に、図38に示すように、 交換局423が高品質化データの算出を行い、算出された高品質化データを携帯 電話機に供給し、記憶させるようにしてもよい。

[0431]

図38において、携帯電話機 101_1 は、図3に示される記憶部126および図4に示される記憶部136を含む記憶部481-1を有しており、交換局423より供給される高品質化データに基づいて作成されたユーザ情報データベースを記憶する。また、携帯電話機 101_2 も、記憶部481-1と同様の記憶部481-2を有しており、交換局423より供給される高品質化データに基づいて作成されたユーザ情報データベースを記憶する。

[0432]

交換局423は、図32に示されるように髙品質化データ算出部424を有しており、携帯電話機 101_1 および 101_2 より供給される特徴量情報に基づいて、髙品質化データを算出する。

[0433]

図38に示されるような伝送システムにおける、例えば、携帯電話機 101_1

から携帯電話機101₂に電話をかける場合の各装置により実行される処理について、図39のフローチャートを参照して説明する。

[0434]

最初に、発信側携帯電話機である携帯電話機 101_1 の送信部113は、ステップS371において、ユーザの指示に基づいて、通話相手となるユーザが有する携帯電話機 101_2 に対する発信処理を行い、交換局423にアクセスして接続要求を行う。

[0435]

交換局 $4\ 2\ 3\ o$ CPU $4\ 4\ 1$ は、ステップ $S\ 3\ 9\ 1$ において、その接続要求を取得すると、ステップ $S\ 3\ 9\ 2$ において、通信部 $4\ 6\ 4$ を制御して、接続処理を行い、着信側携帯電話機である携帯電話機 $1\ 0\ 1\ 2$ にアクセスして接続要求を行う

[0436]

携帯電話機 101_2 の送信部113および受信部114は、ステップS411において、その接続要求を取得するとステップS412において、着信処理を行い、携帯電話機 101_1 との接続を確立する。

[0437]

接続が確立すると、携帯電話機 101_1 の受信部114は、ステップS373において、記憶部481-1に記憶されているユーザ情報データベースより最適な高品質化データを検索し、最適な高品質化データが存在する場合はそのデータを設定し、存在しない場合は、予め定められたデフォルトデータを設定する。そして、携帯電話機 101_1 の送信部113および受信部114は、ステップS374において、携帯電話機 101_2 との音声通話処理を行い、その音声通話処理において生成される特徴量情報を抽出する。

[0438]

音声通話処理が完了し、携帯電話機 101_2 との回線が切断されると、携帯電話機 101_1 の送信部113は、ステップS375において、抽出した特徴量情報を交換局423に供給する。

[0439]

携帯電話機 101_1 の場合と同様に、接続が確立すると、携帯電話機 101_2 の受信部114は、ステップS414において、記憶部481-2に記憶されているユーザ情報データベースより最適な高品質化データを検索し、最適な高品質化データが存在する場合はそのデータを設定し、存在しない場合は、予め定められたデフォルトデータを設定する。そして、携帯電話機 101_2 の送信部113 および受信部114は、ステップS415において、携帯電話機 101_1 との音声通話処理を行い、その音声通話処理において生成される特徴量情報を抽出する。

[0440]

音声通話処理が完了し、携帯電話機 101_1 との回線が切断されると、携帯電話機 101_2 の送信部113は、ステップS416において、抽出した特徴量情報を交換局423に供給する。

[0441]

特徴量情報を供給された交換局 423 の CPU 441 は、ステップ 8394 において、携帯電話機 101_1 および 101_2 より供給された特徴量情報を取得し、取得した特徴量情報を高品質化データ算出部 424 に供給する。

[0442]

交換局423の高品質化データ算出部424は、ステップS395において、供給された特徴量情報に基づいて、高品質化データを算出する。そして、ステップS396において、交換局423のCPU441は、高品質化データ算出部424により算出された高品質化データを、通信部464を介して、特徴量情報の供給元である携帯電話機101₁または101₂に供給し、処理を終了する。

[0443]

特徴量情報を供給した携帯電話機101₁の受信部114は、ステップS376において、交換局423より供給された高品質化データを取得すると、ステップS377において、操作部115を介して入力されるユーザの指示に基づいて、ユーザ情報データベースを更新するか否かを判定し、更新すると判定した場合は、ステップS378において、取得した高品質化データを記憶部481-1に記憶されているユーザ情報データベースに反映させて、ユーザ情報データベースを更新し、処理を終了する。また、ステップS377において、ユーザ情報デー

タベースを更新しないと判定した場合、受信部114は、ステップS378の処理を省略し、処理を終了する。

[0444]

携帯電話機101₁の場合と同様に、特徴量情報を供給した携帯電話機101₂の受信部114は、ステップS417において、交換局423より供給された高品質化データを取得すると、ステップS418において、操作部115を介して入力されるユーザの指示に基づいて、ユーザ情報データベースを更新するか否かを判定し、更新すると判定した場合は、ステップS419において、取得した高品質化データを記憶部481-2に記憶されているユーザ情報データベースに反映させて、ユーザ情報データベースを更新し、処理を終了する。また、ステップS418において、ユーザ情報データベースを更新しないと判定した場合、受信部114は、ステップS419の処理を省略し、処理を終了する。

[0445]

以上のようにして、交換局423において生成された髙品質化データが携帯電話機101₁および101₂に供給され、供給された髙品質化データに基づいて、記憶部481-1および481-2に記憶されているユーザ情報データベースが更新される。これにより、携帯電話機101の、髙品質化データの算出に関する負荷を軽減することができる。

[0446]

以上の例で示されるように、高品質化データの算出および記憶の各処理は、図 1、図30、図36、または図38に示されるように伝送システムの携帯電話機 側で行ってもよいし、交換局側で行ってもよい。

[0447]

[0448]

さらに、例えば、図40に示されるように、携帯電話機 101_1 および 101_2 のユーザの家に設置されるような、ホームサーバ501-1および501-2を用いて、髙品質化データの算出および記憶の各処理を行うようにしてもよい。

[0449]

図40において、ホームサーバ501-1は、携帯電話機 101_1 の家に設置されたコンピュータであり、携帯電話機 101_1 と有線または無線により通信を行うことができるコンピュータである。

[0450]

同様に、ホームサーバ501-2は、携帯電話機 101_2 の家に設置されたコンピュータであり、携帯電話機 101_2 と有線または無線により通信を行うことができるコンピュータである。

[0451]

ホームサーバ501-1および501-2は、それぞれ、携帯電話機 101_1 および 101_2 と、交換局423とは別に、有線または無線により接続され、図30, 36、または38を参照して説明した交換局423における高品質化データに関する処理を行う。なお、ホームサーバ501-1は、交換局423における高品質化データに関する処理の、携帯電話機 101_1 に対応する処理を行い、ホームサーバ501-2は、交換局423における高品質化データに関する処理を行い、水ームサーバ501-2は、交換局423における高品質化データに関する処理を行う。

[0452]

ここで、以下、特に区別する必要がない限り、ホームサーバ501-1と50 1-2を、ホームサーバ501と記述する。

[0453]

図41は、ホームサーバ501の内部の構成例を示す図である。

[0454]

図41において、ホームサーバ501は、図32に示される交換局423と同様に構成されている。すなわち、図41に示されるホームサーバ501のCPU511乃至半導体メモリ534は、図32に示される交換局423のCPU441乃至半導体メモリ474にそれぞれ対応している。

[0455]

なお、ホームサーバ501の通信部524は、有線または無線により、携帯電 話機101と通信を行う。

[0456]

次に、図40の伝送システムにおいて、ホームサーバ501が図30の伝送システムの交換局423と同様の処理を行う場合、すなわち、ホームサーバ501が高品質化データの算出と記憶の両方の処理を行う場合の、ホームサーバ501および携帯電話機101により実行される処理を、図42のフローチャートを参照して説明する。

[0457]

最初に、ステップS431において、携帯電話機101の送信部113および 受信部114は、交換局423を介して通話相手の携帯電話機に回線を接続する 音声通話接続処理を行う。すなわち、携帯電話機 101_1 の場合、図34のステップS231の処理が行われ、携帯電話機 101_2 の場合、図34のステップS271およびS272の処理が行われ、回線が接続される。

[0458]

回線が接続されると、携帯電話機101の送信部113は、ステップS432 において、ホームサーバ501にアクセスし、高品質化データを要求する。ホームサーバ501のCPU511は、ステップS451において、この要求を取得すると、ステップS452において、記憶部523に記憶されているユーザ情報データベースより通話相手のユーザ情報に対応する高品質化データを検索し、該当する高品質化データが存在する場合は、通信部524を制御して、その高品質化データを携帯電話機101に供給し、存在しない場合は、通信部524を制御して、デフォルトデータを携帯電話機101に供給する。

[0459]

携帯電話機101の受信部114は、ステップS433において、ホームサーバ101より供給された最適な高品質化データまたはデフォルトデータを取得すると、ステップS434において、取得した最適な高品質化データまたはデフォルトデータを設定する。

[0460]

そして、ステップS435において、携帯電話機101の送信部113および 受信部114は、音声通話処理を行い、その音声通話処理において生成される特 徴量に関する情報である特徴量情報を抽出する。

[0461]

そして、音声通話処理が完了し、通話相手の携帯電話機との回線が切断されると、携帯電話機101の送信部113は、ステップS436において、操作部115を介して入力されるユーザの指示に基づいて、ホームサーバ501の記憶部523のユーザ情報データベースを更新するか否かを判定し、更新すると判定した場合は、ステップS437において、抽出した特徴量情報をホームサーバ501に供給し、処理を終了する。また、ステップS436において、ユーザ情報データベースを更新しないと判定した場合、送信部113は、ステップS437の処理を省略し、処理を終了する。

[0462]

ステップS452において、最適な高品質化データ(またはデフォルトデータ)を供給したホームサーバ501のCPU511は、ステップS437の処理により携帯電話機101から特徴量情報を供給された場合、ステップS453において、供給された特徴量情報を取得する。

[0463]

そして、ホームサーバ501のCPU511は、ステップS454において、それらの特徴量情報を取得したか否かを判定し、取得したと判定した場合、ステップS455において、高品質化データ算出部514を制御して、取得した特徴量情報に基づいて、高品質化データを算出させ、算出させた高品質化データおよび記憶部523のユーザ情報データベースの情報を用いて、新たな、最適な高品質化データを算出し、記憶部523のユーザ情報データベースを更新し、処理を終了する。

[0464]

また、ステップS454において、特徴量情報を携帯電話機101より取得していないと判定した場合、ホームサーバ101のCPU511は、ステップS45

5の処理を省略し、処理を終了する。

[0465]

以上のようにして、携帯電話機101より特徴量情報がホームサーバ501に 供給され、ホームサーバ501の高品質化データ算出部514において、最適な 高品質化データが算出され、更新されたユーザ情報データベースが記憶部523 に記憶される。これにより、携帯電話機101の、高品質化データに関する処理 による負荷を軽減することができる。

[0466]

次に、図40の伝送システムにおいて、ホームサーバ501が図36の伝送システムの交換局423と同様の処理を行う場合、すなわち、ホームサーバ501が高品質化データの記憶に関する処理を行い、携帯電話機101が高品質化データの算出に関する処理を行う場合の、ホームサーバ501および携帯電話機101により実行される処理を、図43のフローチャートを参照して説明する。

[0467]

最初に、ステップS471において、携帯電話機101の送信部113および 受信部114は、図42のステップS431の場合と同様に、音声通話接続処理 を行う。

[0468]

回線が接続されると、携帯電話機101の送信部113は、ステップS472において、図42のステップS432の場合と同様に、ホームサーバ501にアクセスし、高品質化データを要求する。ホームサーバ501のCPU511は、図42のステップS451およびS452の場合と同様に、ステップS491において、この要求を取得すると、ステップS492において、記憶部523のユーザ情報データベースより通話相手のユーザ情報に対応する高品質化データを検索し、該当する高品質化データが存在する場合は、その高品質化データを携帯電話機101に供給し、存在しない場合は、デフォルトデータを携帯電話機101に供給し、存在しない場合は、デフォルトデータを携帯電話機101に供給する。

[0469]

携帯電話機101の受信部114は、図42のステップS433およびS43

4の場合と同様に、ステップS473において、最適な高品質化データまたはデフォルトデータを取得すると、ステップS474において、それらを設定する。

[0470]

そして、ステップS475において、携帯電話機101の送信部113および 受信部114は、音声通話処理を行い、その音声通話処理において生成される特 徴量情報に基づいて、高品質化データを生成する。

[0471]

音声通話処理が完了し、通話相手の携帯電話機との回線が切断されると、携帯電話機101の送信部113は、図42のステップS436の場合と同様に、ステップS476において、ユーザの指示に基づいて、ユーザ情報データベースを更新するか否かを判定し、更新すると判定した場合は、ステップS477において、生成した高品質化データをホームサーバ501に供給し、処理を終了する。また、ステップS476において、ユーザ情報データベースを更新しないと判定した場合、送信部113は、ステップS477の処理を省略し、処理を終了する

[0472]

ホームサーバ501のCPU511は、ステップS477の処理により携帯電話機101から高品質化データを供給された場合、ステップS493においてそれを取得する。

[0473]

そして、ホームサーバ501のCPU511は、ステップS494において、高 品質化データを取得したか否かを判定し、取得したと判定した場合、ステップS 495において、取得した高品質化データおよび記憶部523のユーザ情報デー タベースの情報を用いて、新たな、最適な高品質化データを算出し、記憶部52 3のユーザ情報データベースを更新し、処理を終了する。

[0474]

また、ステップS494において、髙品質化データを携帯電話機101より取得していないと判定した場合、ホームサーバ101のCPU511は、ステップS495の処理を省略し、処理を終了する。

[0475]

以上のようにして、携帯電話機101において算出された高品質化データがホームサーバ501に供給され、ホームサーバ501において更新されたユーザ情報データベースが記憶部523に記憶される。これにより、携帯電話機101がユーザ情報データベースを記憶する必要がなくなり、記憶領域の空き容量を増やすことができる。

[0476]

次に、図40の伝送システムにおいて、ホームサーバ501が図38の伝送システムの交換局423と同様の処理を行う場合、すなわち、ホームサーバ501が高品質化データの算出に関する処理を行い、携帯電話機101が高品質化データの記憶に関する処理を行う場合の、ホームサーバ501および携帯電話機101により実行される処理を、図44のフローチャートを参照して説明する。

[0477]

最初に、ステップS511において、携帯電話機101の送信部113および 受信部114は、図42のステップS431の場合と同様に、音声通話接続処理 を行う。

[0478]

回線が接続されると、携帯電話機101の送信部113および受信部114は、ステップS514において、記憶部126または136(記憶部481)のユーザ情報データベースより最適な高品質化データを検索し、設定する。なお、該当する最適な高品質化データが存在しない場合、携帯電話機101の送信部113および受信部114は、デフォルトデータメモリ137等のデフォルトデータベースよりデフォルトデータを選択し、設定する。

[0479]

そして、ステップS515において、携帯電話機101の送信部113および 受信部114は、図42のステップS435の場合と同様に、音声通話処理を行 い、その音声通話処理において生成される特徴量に関する情報である特徴量情報 を抽出する。

[0480]

音声通話処理が完了し、通話相手の携帯電話機との回線が切断されると、携帯電話機101の送信部113は、ステップS516において、抽出した特徴量情報をホームサーバ501に供給する。

[0481]

特徴量情報を供給されたホームサーバ501のCPU511は、ステップS53 3においてそれを取得し、髙品質化データ算出部514に供給する。

[0482]

ホームサーバ501の高品質化データ算出部514は、ステップS534において、供給された特徴量情報に基づいて、高品質化データを算出する。そして、ステップS535において、ホームサーバ501のCPU511は、高品質化データ算出部514により算出された高品質化データを、通信部524を介して、特徴量情報の供給元である携帯電話機101に供給し、処理を終了する。

[0483]

携帯電話機101の受信部114は、ステップS517において、ホームサーバ501より供給された高品質化データを取得すると、ステップS518において、操作部115を介して入力されるユーザの指示に基づいて、ユーザ情報データベースを更新するか否かを判定し、更新すると判定した場合は、ステップS519において、取得した高品質化データを記憶部126または136(記憶部481)に記憶されているユーザ情報データベースに反映させて、ユーザ情報データベースを更新し、処理を終了する。また、ステップS518において、ユーザ情報データベースを更新しないと判定した場合、受信部114は、ステップS519の処理を省略し、処理を終了する。

[0484]

以上のようにして、ホームサーバ501において生成された高品質化データが 携帯電話機101に供給され、供給された高品質化データに基づいて、記憶部1 26または136(記憶部481)に記憶されているユーザ情報データベースが 更新される。これにより、携帯電話機101の、高品質化データの算出に関する 負荷を軽減することができる。

[0485]

次に、上述した一連の処理は、ハードウェアにより行うこともできるし、ソフトウェアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフトウェアを構成するプログラムが、汎用のコンピュータ等にインストールされる。

[0486]

そこで、図45は、携帯電話機101の、上述した一連の処理を実行するプログラムがインストールされるコンピュータの一実施の形態の構成例を示している

[0487]

プログラムは、コンピュータに内蔵されている記録媒体としてのハードディスク605やROM603に予め記録しておくことができる。

[0488]

あるいはまた、プログラムは、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory), MO(Magneto optical)ディスク,DVD(Digital Versatile Disc)、磁気ディスク、半導体メモリなどのリムーバブル記録媒体 611に、一時的あるいは永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体 611は、いわゆるパッケージソフトウエアとして提供することができる。

[0489]

なお、プログラムは、上述したようなリムーバブル記録媒体 6 1 1 からコンピュータにインストールする他、ダウンロードサイトから、ディジタル衛星放送用の人工衛星を介して、コンピュータに無線で転送したり、LAN(Local Area Network)、インターネットといったネットワークを介して、コンピュータに有線で転送し、コンピュータでは、そのようにして転送されてくるプログラムを、通信部608で受信し、内蔵するハードディスク605にインストールすることができる。

[0490]

コンピュータは、CPU 6 0 2を内蔵している。CPU 6 0 2には、バス 6 0 1 を介して、入出力インタフェース 6 1 0 が接続されており、CPU 6 0 2 は、入出力イ

ンタフェース610を介して、ユーザによって、キーボードや、マウス、マイク等で構成される入力部607が操作等されることにより指令が入力されると、それにしたがって、ROM603に格納されているプログラムを実行する。あるいは、また、CPU602は、ハードディスク605に格納されているプログラム、衛星若しくはネットワークから転送され、通信部608で受信されてハードディスク605にインストールされたプログラム、またはドライブ609に装着されたリムーバブル記録媒体411から読み出されてハードディスク605にインストールされたプログラムを、RAM604にロードして実行する。これにより、CPU602は、上述したフローチャートにしたがった処理、あるいは上述したブロック図の構成により行われる処理を行う。そして、CPU602は、その処理結果を、必要に応じて、例えば、入出力インタフェース610を介して、LCDやスピーカ等で構成される出力部606から出力、あるいは、通信部608から送信、さらには、ハードディスク605に記録等させる。

[0491]

ここで、本明細書において、コンピュータに各種の処理を行わせるためのプログラムを記述する処理ステップは、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいは個別に実行される処理 (例えば、並列処理あるいはオブジェクトによる処理) も含むものである。

[0492]

また、プログラムは、1のコンピュータにより処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。さらに、プログラムは、遠方のコンピュータに転送されて実行されるものであっても良い

[0493]

なお、本実施の形態では、着信側において、着呼時に、発信側から送信されて くる電話番号を、発信側を特定する特定情報とするようにしたが、その他、例え ば、ユーザ等に、ユニークなID(Identification)を割り当てておき、そのIDを、 特定情報として用いることも可能である。

[0494]

また、本実施の形態では、本発明を、携帯電話機どうしで音声通話を行う伝送 システムに適用した場合について説明したが、本発明は、その他、音声通信を行 うシステムに広く適用可能である。

[0495]

【発明の効果】

本発明の送信装置および送信方法、並びに第1のプログラムによれば、符号化 音声データを送信することができる。特に、最適な設定で、符号化音声データを 送信することができ、受信側において、高品質の音声を復号することが可能とな る。

[0496]

本発明の受信装置及び受信方法、並びに第2のプログラムによれば、符号化音 声データを受信することができる。特に、最適な設定で、符号化音声データを受 信することができ、高品質の音声を復号することが可能となる。

[0497]

本発明の送受信装置によれば、符号化音声データを送受信することができる。特に、最適な設定で、符号化音声データを送受信することができ、高品質の音声を復号することが可能となる。

[0498]

本発明の第1の通信装置及び第1の通信方法、並びに第3のプログラムによれば、送受信装置と通信を行うことができる。特に、送受信装置の必要な記憶領域を小さくすることができる。

[0499]

本発明の第2の通信装置及び第2の通信方法、並びに第4のプログラムによれば、送受信装置と通信を行うことができる。特に、送受信装置にかかる負荷を軽減することができる。

【図面の簡単な説明】

【図1】

本発明を適用した伝送システムの一実施の形態の構成例を示すブロック図である。

【図2】

携帯電話機101の構成例を示すブロック図である。

【図3】

送信部113の構成例を示すブロック図である。

【図4】

受信部114の構成例を示すブロック図である。

[図5]

受信部114による高品質化データ設定処理を説明するフローチャートである

[図6]

発信側の髙品質化データ送信処理の第1実施の形態を示すフローチャートである。

【図7】

着信側の高品質化データ更新処理の第1実施の形態を示すフローチャートである。

【図8】

発信側の高品質化データ送信処理の第2実施の形態を示すフローチャートである。

[図9]

着信側の高品質化データ更新処理の第2実施の形態を示すフローチャートである。

【図10】

発信側の高品質化データ送信処理の第3実施の形態を示すフローチャートである。

【図11】

着信側の高品質化データ更新処理の第3実施の形態を示すフローチャートである。

【図12】

発信側の高品質化データ送信処理の第4実施の形態を示すフローチャートであ

る。

【図13】

着信側の高品質化データ更新処理の第4実施の形態を示すフローチャートである。

【図14】

学習部125の構成例を示すブロック図である。

【図15】

学習部125の学習処理を説明するフローチャートである。

【図16】

復号部132の構成例を示すブロック図である。

【図17】

復号部132の処理を説明するフローチャートである。

【図18】

CELP方式の符号化部123の構成例を示すブロック図である。

【図19】

CELP方式の符号化部123を採用した場合の復号部132の構成例を示す ブロック図である。

【図20】

CELP方式の符号化部123を採用した場合の学習部125の構成例を示す ブロック図である。

【図21】

ベクトル量子化を行う符号化部123の構成例を示すブロック図である。

【図22】

符号化部123がベクトル量子化を行う場合の学習部125の構成例を示すブロック図である。

[図23]

符号化部123がベクトル量子化を行う場合の学習部125の学習処理を説明 するフローチャートである。

【図24】

符号化部123がベクトル量子化を行う場合の復号部132の構成例を示すブロック図である。

【図25】

符号化部123がベクトル量子化を行う場合の復号部132の処理を説明するフローチャートである。

【図26】

デフォルトデータベースの例を示す図である。

【図27】

ユーザ情報データベースの例を示す図である。

【図28】

受信部114の他の構成例を示すブロック図である。

【図29】

髙品質化データ最適値設定処理を説明するフローチャートである。

【図30】

本発明を適用した伝送システムの他の構成例を示すブロック図である。

【図31】

送信部113の他の構成例を示すブロック図である。

【図32】

交換局423の構成例を示すブロック図である。

【図33】

高品質データ算出部424の構成例を示すブロック図である。

【図34】

図30の伝送システムにより実行される処理を説明するフローチャートである

【図35】

高品質化データ算出処理を説明するフローチャートである。

【図36】

本発明を適用した伝送システムの、さらに他の構成例を示すブロック図である

【図37】

図36の伝送システムにより実行される処理を説明するフローチャートである

【図38】

本発明を適用した伝送システムの、さらに他の構成例を示すブロック図である

【図39】

図38の伝送システムにより実行される処理を説明するフローチャートである

【図40】

本発明を適用した伝送システムの、さらに他の構成例を示すブロック図である

【図41】

ホームサーバ501の構成例を示すブロック図である。

【図42】

図40の伝送システムにより実行される処理を説明するフローチャートである

【図43】

図40の伝送システムにより実行される処理の他の例を説明するフローチャートである。

【図44】

図40の伝送システムにより実行される処理の、さらに他の例を説明するフロ ーチャートである。

【図4.5】

本発明を適用したコンピュータの一実施の形態の構成例を示すブロック図である。

【符号の説明】

3 演算器, 4 LPC分析部, 5 ベクトル量子化部, 6 音声合成 フィルタ, 7 自乗誤差演算部, 8 自乗誤差最小判定部, 9 適応コー

ドブック記憶部, 10 ゲイン復号器, 11 励起コードブック記憶部, 12乃至14 演算器, 15 コード決定部, 21 DEMUX, 22 適応コードブック記憶部, 23 ゲイン復号器, 24 励起コードブック記 憶部, 25 フィルタ係数復号器, 26乃至28 演算器, 29 音声合 成フィルタ, 1011, 1012 携帯電話機, 1021, 1022 基地局, 102 交換局, 111 アンテナ, 112 変復調部, 113 送信 部, 114 受信部, 115 操作部, 121 マイク (マイクロフォン), 122 A/D変換部, 123 符号化部, 124 送信制御部, 125 学習部, 126 記憶部, 127 管理部, 128 送信制御部 , 131 受信制御部, 132 復号部, 133 D/A変換部, 13 4 スピーカ, 135 管理部, 136 記憶部, 137 デフォルトデ ータメモリ, 141 バッファ, 142 生徒データ生成部, 142E エンコーダ, 142D デコーダ, 143 生徒データメモリ, 144 予測タップ生成部, 145 クラスタップ生成部, 146 クラス分類部, 147 足し込み部, 148 初期コンポーネント記憶部, 149 ユー ザ用コンポーネント記憶部, 150 タップ係数決定部, 161 デコーダ , 162 バッファ, 163 予測タップ生成部, 164 クラスタップ 生成部, 165 クラス分類部, 166 係数メモリ, 167 予測部, 183 演算器, 184 LPC分析部, 185 ベクトル量子化部, 186 音声合成フィルタ, 187 自乗誤差演算部, 188 自乗誤差最 小判定部, 189 適応コードブック記憶部, 190 ゲイン復号器, 1 91 励起コードブック記憶部, 192乃至194 演算器, 195 コー ド決定部, 201 バッファ, 202 ベクトル化部, 203 距離計算 部, 204 コードブック記憶部, 205 コード決定部, 211 バッ ファ, 212 ベクトル化部, 213 ユーザ用ベクトル記憶部, 214 初期ベクトル記憶部, 215 コードブック生成部, 221 バッファ, 222 ベクトル逆量子化部, 223 コードブック記憶部, 224 逆 ベクトル化部, 501 ホームサーバ

【書類名】図面

【図1】

伝送システム

【図2】

携帯電話機 101

【図3】

送信部 113

【図4】

受信部 114

図5

高品質化データ設定処理

発信元電話番号検索 S141

N 発信元電話番号あり? S142

発信元電話番号に 対応付けられている 高品質化データを選択、設定

デフォルトデータを設定 S144

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図14】

図14

学習部 125

【図16】

図16

復号部 132

【図19】

特2002-206469

【図20】

学習部 125

【図21】

図21

【図22】

出証特2003-3041287

【図23】 図23 学習処理 すべての音声ベクトルとの距離を IS121 最小にするコードベクトルy₁を求める コードベクトル数をnとして、コードベクトルyiを、 **IS122** y; ←y_i+Δ、y_{n+i} ←y_i-Δに分割 各音声ベクトルxiを、 S123 距離の最も近いコードベクトルに分類 コードベクトルを、そのコードベクトルに **S124** 分類された音声ベクトルとの距離の 総和を最小にするように更新 音声ペクトルとコードベクトルとの 距離の全総和の変化が閾値以下? n == 設定コードベクトル数N?

おわり

2 4

	ノイズ	変調方式	ビット	符号化	7- 10	T	T		
		方式	レート	符号化 方式	ブック	クラス 構造	予測 構造	予測係数	
ŀ	大	A	В	С	Α	В	C	Δ Δ	-
F	中	В	С	Α	В	С	Δ		
L	小	С	Α	В	С	A		В	
							В	С	

Α

	信号 強度	変調 方式	ビットレート	符号化 方式	コード	クラス 構造	予測	予測	T 1
-	大	В	C	A		構造	予測構造	予測 係数	<u> </u>
ſ	中	С			В	С	Α	В	
t	/ \		A	В	С	A	В	С	
L	.1,	A	В	С	A	В	С	_	
								A	

В

	周波数	変調	ビット	符号化	7-10	T 	T			
	高	方式 C	レート	符号化 方式	ブック	クラス 構造	予測 構造	予測 係数		7
	中		A	В	С	Α	В	C	 	1
ŀ	低	A	В	С	Α	В	С	Α		١,
L	1650	В	С	Α	В	С	Α	В		!
									1	

C

通話相手	変調方式	ビット レート	符号化 方式	コード ブック	クラス 構造	予測 構造	予測 係数	• • •
第1 ユーザ	Α	С	A	D	В	С	B [.]	
第2 ユーザ	Α	Α	Α	Α	Α	Α	Α	
第3	В	D	С	E	. A	D	С	
第4 ユーザ	В	В	С	G	С	Н	D	
	·							

Α

通話 相手	優先度	変調 方式	ビットレート	符号化 方式	コード ブック	クラス 構造	予測 構造	予測 係数	
第1 ユーザ	1	Α	В	С	D	Α	В	С	
	2	В	С	D	Α	В	С	D	
	3	С	D	А	В	С	D	А	
	4	D	А	В	С	D	А	В	
	:	:	:	:	:		:	:	

В

[図28]

伝送システム

図31

4

出証特2003-3041287

図32

0

品質化データ算出部 424

【図35】

【図36】

伝送システム

【図38】 図38

伝送システム

【図40】

伝送システム

[図41]

【図45】 図45 ドディスク F 517 609 RAM 入出カインタフェース 通信部 608 ROM 入力部 607

CPU

コンプィータ

出力部

909

要約書

【要約】

【課題】 髙音質の音声を復号する。

【解決手段】 携帯電話機421-1では、ユーザの音声データが符号化され、符号化音声データが出力される。さらに、携帯電話機421-1では、符号化される前の音声サンプルデータが非通話時に交換局423に供給される。交換局423では、符号化音声データを受信する携帯電話機421-2において出力される音声の品質を向上させる高品質化データの算出処理が、過去の算出処理に用いられた音声データと、新たに入力された音声データに基づいて行われ、最適な高品質化データがユーザ情報データベースとして携帯電話機421-1の電話番号と対応付けられて記憶される。そして、携帯電話機421-2では、交換局423より供給された最適な高品質化データに基づいて、受信された符号化音声データが復号される。

'【選択図】

出願入履歴情報

識別番号

[000002185]

1. 変更年月日 1990年 8月30日

[変更理由] 新規登録

住 所 東京都品川区北品川6丁目7番35号

氏 名 ソニー株式会社