Linear Regression

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing, svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [2]:

```
1 df=pd.read_csv(r"C:\Users\91955\Downloads\used_cars_data.csv")
2 df
```

Out[2]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mile
(0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	kr
,	1 1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	1
2	2 2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	ı
;	3 3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	2
4	4 4	Audi A4 New 2.0	Coimbatore	2013	40670	Diesel	Automatic	Second	

In [3]:

1 df.head(10)

Out[3]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Se
5	5	Hyundai EON LPG Era Plus Option	Hyderabad	2012	75000	LPG	Manual	
6	6	Nissan Micra Diesel XV	Jaipur	2013	86999	Diesel	Manual	
7	7	Toyota Innova Crysta 2.8 GX AT 8S	Mumbai	2016	36000	Diesel	Automatic	
8	8	Volkswagen Vento Diesel Comfortline	Pune	2013	64430	Diesel	Manual	
9	9	Tata Indica Vista Quadrajet LS	Chennai	2012	65932	Diesel	Manual	Se
4								

In [4]:

```
1 df.describe()
```

Out[4]:

	S.No.	Year	Kilometers_Driven	Seats	Price
count	7253.000000	7253.000000	7.253000e+03	7200.000000	6019.000000
mean	3626.000000	2013.365366	5.869906e+04	5.279722	9.479468
std	2093.905084	3.254421	8.442772e+04	0.811660	11.187917
min	0.000000	1996.000000	1.710000e+02	0.000000	0.440000
25%	1813.000000	2011.000000	3.400000e+04	5.000000	3.500000
50%	3626.000000	2014.000000	5.341600e+04	5.000000	5.640000
75%	5439.000000	2016.000000	7.300000e+04	5.000000	9.950000
max	7252.000000	2019.000000	6.500000e+06	10.000000	160.000000

In [5]:

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):

#	:	Column	Non-Null Count	Dtype
	-			
0	1	S.No.	7253 non-null	int64
1		Name	7253 non-null	object
2		Location	7253 non-null	object
3		Year	7253 non-null	int64
4		Kilometers_Driven	7253 non-null	int64
5		Fuel_Type	7253 non-null	object
6		Transmission	7253 non-null	object
7		Owner_Type	7253 non-null	object
8		Mileage	7251 non-null	object
9		Engine	7207 non-null	object
1	0	Power	7207 non-null	object
1	1	Seats	7200 non-null	float64
1	2	New_Price	1006 non-null	object
1	3	Price	6019 non-null	float64

dtypes: float64(2), int64(3), object(9)

memory usage: 793.4+ KB

In [6]:

```
1 df.isnull().sum()
```

Out[6]:

S.No.	0
Name	0
Location	0
Year	0
Kilometers_Driven	0
Fuel_Type	0
Transmission	0
Owner_Type	0
Mileage	2
Engine	46
Power	46
Seats	53
New_Price	6247
Price	1234
dtype: int64	

In [7]:

```
1 df.fillna(value=0,inplace=True)
```

In [8]:

```
1 df=df[['Year','Price']]
2 #Taking only the selected two attributes from the dataset
3 df.columns=['year','price']
4 #Renaming the columns for easier writing of the code
```

In [9]:

```
sns.lmplot(x='year',y='price',data=df,order=2,ci=None)
```

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x20d22da9ff0>

In [10]:

```
1 X=np.array(df['year']).reshape(-1,1)
```

In [11]:

```
1 y=np.array(df['price']).reshape(-1,1)
```

In [12]:

```
1 X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
2 reg=LinearRegression()
3 reg.fit(X_train,y_train)
4 print(reg.score(X_test,y_test))
```

0.06991033923398071

In [13]:

```
1  y_pred=reg.predict(X_test)
2  plt.scatter(X_test,y_test,color='b')
3  plt.plot(X_test,y_pred,color='k')
4  plt.show()
```


In [14]:

```
df500=df[:][:500]
sns.lmplot(x='year',y='price',data=df500,order=1,ci=None)
```

Out[14]:

<seaborn.axisgrid.FacetGrid at 0x20d10969630>

In [15]:

```
df500.fillna(method='ffill',inplace=True)
   X=np.array(df500['year']).reshape(-1,1)
   y=np.array(df500['price']).reshape(-1,1)
   df500.dropna(inplace=True)
 5
   X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
   reg=LinearRegression()
   reg.fit(X_train,y_train)
 7
   print("Regression:",reg.score(X_test,y_test))
9
   y_pred=reg.predict(X_test)
10 | plt.scatter(X_test,y_test,color='b')
11 plt.plot(X_test,y_pred,color='k')
12
  plt.show
```

Regression: 0.13705136277958996

Out[15]:

<function matplotlib.pyplot.show(close=None, block=None)>

In [16]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 score: ",r2)
```

R2 score: 0.13705136277958996

In [17]:

```
plt.figure(figsize = (10, 10))
sns.heatmap(df.corr(), annot = True)
```

Out[17]:

<Axes: >

Logistic Regression

In [1]:

```
import pandas as pd
import numpy as np
from sklearn import preprocessing
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="white")
sns.set(style="whitegrid",color_codes=True)
import warnings
warnings.simplefilter(action='ignore')
```

In [2]:

```
db=pd.read_csv(r"C:\Users\91955\Downloads\used_cars_data.csv")
db
```

Out[2]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owr
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	

7253 rows × 14 columns

In [3]:

1 db.head()

Out[3]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_T
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	F
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	F
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	F
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	F
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Sec
4		_						•

In [4]:

1 db.tail()

Out[4]:

	S.No.	Name	Location	Year	Kilometers_Driv	en Fuel_Type	Transmission	Own
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	894	.11 Diesel	Manual	
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	590	00 Petrol	Automatic	
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	280	00 Diesel	Manual	
7251	7251	Volkswagen Polo GT TSI	Pune	2013	522	62 Petrol	Automatic	
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	724	43 Diesel	Automatic	
4								

```
In [5]:
```

1 db.shape

Out[5]:

(7253, 14)

In [6]:

1 db.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	S.No.	7253 non-null	int64
1	Name	7253 non-null	object
2	Location	7253 non-null	object
3	Year	7253 non-null	int64
4	Kilometers_Driven	7253 non-null	int64
5	Fuel_Type	7253 non-null	object
6	Transmission	7253 non-null	object
7	Owner_Type	7253 non-null	object
8	Mileage	7251 non-null	object
9	Engine	7207 non-null	object
10	Power	7207 non-null	object
11	Seats	7200 non-null	float64
12	New_Price	1006 non-null	object
13	Price	6019 non-null	float64
	63		

dtypes: float64(2), int64(3), object(9)

memory usage: 793.4+ KB

In [7]:

1 db.describe()

Out[7]:

	S.No.	Year	Kilometers_Driven	Seats	Price
count	7253.000000	7253.000000	7.253000e+03	7200.000000	6019.000000
mean	3626.000000	2013.365366	5.869906e+04	5.279722	9.479468
std	2093.905084	3.254421	8.442772e+04	0.811660	11.187917
min	0.000000	1996.000000	1.710000e+02	0.000000	0.440000
25%	1813.000000	2011.000000	3.400000e+04	5.000000	3.500000
50%	3626.000000	2014.000000	5.341600e+04	5.000000	5.640000
75%	5439.000000	2016.000000	7.300000e+04	5.000000	9.950000
max	7252.000000	2019.000000	6.500000e+06	10.000000	160.000000

```
In [8]:
```

```
1 db.isnull().sum()
```

Out[8]:

S.No.	0
Name	0
Location	0
Year	0
Kilometers_Driven	0
Fuel_Type	0
Transmission	0
Owner_Type	0
Mileage	2
Engine	46
Power	46
Seats	53
New_Price	6247
Price	1234
dtype: int64	

In [9]:

```
1 db.duplicated().any()
```

Out[9]:

False

In [11]:

```
1 ax=db['Seats'].hist(bins=10,density=True,stacked=True,color='blue',alpha=0.6)
2 db['Seats'].plot(kind='density',color='violet')
3 ax.set(xlabel='Seats')
9 plt.xlim(-0,25)
5 plt.show()
```


In [12]:

```
print(db["Seats"].mean(skipna=True))
print(db["Seats"].median(skipna=True))
```

5.27972222222222

5.0

In [14]:

```
print(db["New_Price"].isnull().sum()/db.shape[0])
print(db["Price"].isnull().sum()/db.shape[0])
print(db["Mileage"].isnull().sum()/db.shape[0])
print(db["Engine"].isnull().sum()/db.shape[0])
print(db["Power"].isnull().sum()/db.shape[0])
```

- 0.8612987729215497
- 0.1701364952433476
- 0.0002757479663587481
- 0.006342203226251206
- 0.006342203226251206

In [15]:

```
print(db['Engine'].value_counts())
sns.countplot(x='Engine',data=db,palette='Set3')
plt.xlim(-0,45)
plt.show()
```

Engine 1197 CC 732 1248 CC 610 1498 CC 370 998 CC 309 1198 CC 281 1489 CC 1 1422 CC 1 2706 CC 1 1978 CC 1 1389 CC 1

Name: count, Length: 150, dtype: int64

In [16]:

```
data=db.copy()
  data['Seats'].fillna(db['Seats'].median(skipna=True),inplace=True)
2
  data.drop('New_Price',axis=1,inplace=True)
  data['Price'].fillna(db['Price'].median(skipna=True),inplace=True)
  data['Mileage'].fillna(db['Mileage'].value_counts().idxmax(),inplace=True)
  data.drop('Engine',axis=1,inplace=True)
  data.drop('Power',axis=1,inplace=True)
```

In [17]:

data.isnull().sum()

Out[17]:

S.No. 0 0 Name Location 0 Year 0 0 Kilometers_Driven Fuel_Type 0 Transmission 0 Owner_Type 0 Mileage 0 Seats 0 Price 0 dtype: int64

In [18]:

1 data.head()

Out[18]:

Owner_T	Transmission	Fuel_Type	Kilometers_Driven	Year	Location	Name	S.No.	
F	Manual	CNG	72000	2010	Mumbai	Maruti Wagon R LXI CNG	0	0
F	Manual	Diesel	41000	2015	Pune	Hyundai Creta 1.6 CRDi SX Option	1	1
F	Manual	Petrol	46000	2011	Chennai	Honda Jazz V	2	2
F	Manual	Diesel	87000	2012	Chennai	Maruti Ertiga VDI	3	3
Sec	Automatic	Diesel	40670	2013	Coimbatore	Audi A4 New 2.0 TDI Multitronic	4	4
				-				4

In [19]:

```
plt.figure(figsize=(15,8))
ax=db["Price"].hist(bins=10,density=True,stacked=True,color='blue',alpha=0.6)
db["Price"].plot(kind='density',color='teal')
ax.legend(['Mileage','Seats'])
ax.set(xlabel='Price')
plt.xlim(-9,80)
plt.show()
```


In [20]:

```
training=pd.get_dummies(data,columns=["S.No."])
final_train=training
```

3 final_train.head()

Out[20]:

	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mi
0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First	
1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First	
2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First	
3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First	
4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second	

5 rows × 7263 columns

In [21]:

```
sns.barplot(x='Price',y='Year',data=final_train,color='mediumturquoise')
plt.show()
```


In [22]:

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.barplot(x='Year',y='Seats',data=db,color='aquamarine')
plt.show()
```


In []:

1