

velocity after 3 seconds.

		٠.		*	4	_	0		Λ	1	-	
C	Λ		Ω	•			•	•		,	. 17	/
	v	u		•		$\mathbf{\omega}$		$\mathbf{}$	v		1	/ 🔔

|Turn over

Register	-					
Number						
1 (1)	and the second second	and the same in the same and				

II Semester Diploma Examination, Nov./Dec.-2018

ENGINEERING MATHEMATICS – II

Time: 3 Hours	Max. Marks : 100
Note: (i) Answer any 10 questions in Section – A, each question (ii) Answer any 8 questions in Section – B, each question (iii) Answer any 5 questions in Section – C, each question	carries 5 Marks.
SECTION – A 1. Find the equation to the straight line passing through (2, 3) and	having slope 5. 3
2. Find the focus and length of the latus rectum of the parabola y^2	= 28 x.
3. Differentiate $x \sin x$ with respect to x .	3
4. Find $\frac{dy}{dx}$ if $x = at$, $y = at^2$.	3
5. Find $\frac{dy}{dx}$ if $y = \log(\sin x)$.	3
6. Find $\frac{dy}{dx}$ if $y = x^x$.	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
7. Find the slope of the tangent to the curve $y = x^2 - 3x + 2$ at (1,	0): 1.11
8. The displacement of a particle in time 't' seconds is given by s	$= t^3 - 6t^2 - 8$. Find the

1 of 4

9. Evaluate: $\int (x^4 + \cos 2x - \frac{1}{x}) dx.$

3

10. Evaluate: $\int \tan^2 x \, dx$.

3

11. Evaluate: $\int \sqrt{1+\cos 2x} \, dx.$

3

12. Evaluate $\int_{0}^{1} e^{5x+8} dx$.

- 3
- 13. Find the area bounded by the curve $y = 3x^2 + 2x$, x-axis and ordinates x = 0 and x = 1.
- 14. Form the differential equation by eliminating a and b from the equation $y = ae^x + be^{-x}$.

3

SECTION - B

- 15. Find the equation to the straight line passing through the point (6, -4) and perpendicular to the line 7x 6y + 3 = 0.
- 16. Differentiate sin x with respect to x by the method of first principle.
- 17. Find $\frac{dy}{dx}$ if $y = \frac{1 \tan x}{1 + \tan x^{(i)}}$
- 18. If $y = \tan^{-1} x$, prove that $(1 + x^2) y_2 + 2x y_1^{-1} = 0$.

19. Find $\frac{dy}{dx}$ if $x^2 + 2xy + y^3 = 0$.

- 5
- 20. The volume of a sphere is increasing at the rate of 20 cc/s. Find the rate of increase of its radius when the radius is 4 cm.
- 21. Evaluate $\int (\sec^2 x + e^{-3x} \frac{1}{1+x^2} + \frac{1}{x} + 5) dx$
- 22. Evaluate $\int \frac{6x-5}{\sqrt{3x^2-5x+2}} dx$.
- 23. Evaluate $\int_{0}^{1} (3x^2 6x + 2) dx$.
- 24. Find the volume of the solid generated by rotating the curve y = x + 1 about x-axis between x = 0 and x = 2.
- 25. Solve the differential equation (1 + y) dx + (1 + x) dy = 0.

SECTION - C

- 26. Find the equation to the straight line passing through the point (5, 2) and (-3, 3) and find the slope of the line.
- 27. Find the eccentricity, length of the latum of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$.
- 28. Find $\frac{dy}{dx}$ if $x = a \cos^3 \theta$ and $y = a \sin^3 \theta$ at $\theta = \frac{\pi}{4}$.

- 29. Find the maximum and minimum values of the function $y = 2x^3 3x^2 36x + 10$.
- 30. Find $\frac{dy}{dx}$ if $y = \tan^{-1}\left(\frac{1+x}{1-x}\right)$.

6

31. Evaluate $\int \tan^{-1} x \, dx$.

6

32. Evaluate $\int_{0}^{\pi/2} \sin^3 x \, dx.$

6

33. Solve the differential equation $\frac{dy}{dx} + 3y = e^{2x}$.

6