

Designnotat

Tittel: Variabel nivåregulator

Forfattere: Håkon Kartveit Mikalsen

Versjon: 1.0 Dato: 21.01.2025

Innhold

1	Problembeskrivelse	1
2	Prinsipiell løsning	2
3	Realisering og test	4
4	Konklusjon	7
5	Takk	7
Referanser		8
A	Vedlegg	8

1 Problembeskrivelse

Vi skal ta for oss en nivåregulator som ilustrert i Figur 1.

Figur 1: Nivåregulator med inngang v_1 og utgang v_2 .

Dette systemet tar inn et inngangssignal, $V_1(t)$, som levers av en kilde, $V_0(t)$, med tillhørende intern motsand R_k . Videre har den et utgangssignal, $V_2(t)$, som er koblet til en last L, bestående av en motsand R_L . Utgangssignalet $V_2(t)$ er propesjonalt med ingnagssignalet $V_1(t)$ og konstanten A slik at:

$$V_2(t) = A \cdot V_1(t) \tag{1}$$

Videre ønsker vi å kunne variere A mellom to spesifiserte punkter A_{min} og A_{max} som skaper en variabel nivåregulator. Denne reguleringen skal skje med et dreibart element. Begge disse punktene A ligger mellom 0 og 1 slik at for et hvert punkt vil nivåregulatoren fungere som et dempeledd. For denne implementeringen av systemet skal A reguleres innenfor intervallet $A[dB] \in [-15dB, -6dB]$ med en nøyaktighet på $\pm 0.1dB$. Kilden skal som tidligere nevnt bestå av en spenningsforsyning $V_0(t)$ som skal generer et sinussignal på 1kHz og en intern motsand R_k . Denne antas å være tilnærmet 0Ω . Lasten R_L antas å ha tilnærmet uendelig stor motstand.

2 Prinsipiell løsning

Det finnes flere forskjellige prisipper som kan tas i bruk for å oppfylle kravene til en slik demper. Her skal vi se på en som bygger på spenningsdeling. Prinsippet er ilustrert i Figur 2.

Figur 2: Prisipiell løsning for variabel demper.

Inngangssignalet V_1 koblet over to konstante motstander R_1 og R_2 og en variabel motstand R, som alle er koblet i serie. Videre er utgangen V_2 koblet opp slik at:

$$V_2(t) = V_{R_2} \tag{2}$$

Den variable motstanden har en motstand mellom R_{pmin} og R_{pmaks} . Fra dette forenkles kretsen til to tilsander, en for hvert ytterpunkt, og kombinere motstanden R_1 og R til en motstand R_3 slik som ilustert i Figur 3.

Figur 3: Forenklet krets for demper.

Spenningen over R_2 og derfor også $V_2(t)$ da:

$$V_{R_2} = V_2(t) = V_1 \cdot \frac{R_2}{R_3 + R_2}$$

 $V_2(t)$ byttes så med definisjonen gitt ved Ligning 1 som gir:

$$V_{2}(t) = V_{1}(t) \cdot \frac{R_{2}}{R_{3} + R_{2}}$$

$$V_{1}(t) \cdot A = V_{1}(t) \cdot \frac{R_{2}}{R_{3} + R_{2}}$$

$$A = \frac{R_{2}}{R_{3} + R_{2}}$$
(3)

Fra dette ser vi at blant annet at spenningen til inngangssignalet er vilkårlig og ikke inngår i demping nivået senere. Dette danner 2 likninger siden både A og R_3 har to ytterpunkter. A_1 defineres som den minste dempempingen og A_2 som den største dempingen. Vider defineres R_{31} og R_{32} slik:

$$R_{31} = R_1 + R_{pmin} \tag{4}$$

$$R_{32} = R_1 + R_{pmaks} \tag{5}$$

Siden $R_{31} < R_{32}$ vil det også føre til at det i denne tilstanden vil det ligge mer spenning over R_2 . Dette fører til minst demping og A_1 tilhører derfor denne tilstanden. Dette gir oss ligningssystemet:

$$A_1 = \frac{R_2}{R_{31}}$$

$$A_2 = \frac{R_2}{R_{31}}$$

 R_{31} og R_{32} byttes ut av definisjonene gitt i likning 4 og 5. Dette gir likningene for motstand R_1 og R_2 for ønsket demping:

$$R_{1} = \frac{A_{1} \cdot A_{2} \cdot (R_{pmin} - R_{pmaks}) - A_{1} \cdot R_{pmin} + A_{2} \cdot R_{p}maks}{(A_{1} - A_{2})}$$
(6)

$$R_2 = A_1 \cdot A_2 \cdot \frac{R_{pmaks} - R_{pmin}}{A_1 - A_2} \tag{7}$$

Siden A i likningene er gitt som konstanter, mens A(A[dB]) i kravene er oppgitt i desibel, må dette omformes for utregningen. Dette gjøres ved å bruke forholdet mellom desibel og konstanter, slik som gitt med Ligning 8 [1]. Denne må så løses på hensyn med A som gir oss formelen for A gitt A[dB] slik som vist i Ligning 9.

$$A[dB] = 20lgA \tag{8}$$

$$A = 10^{\frac{A[\text{dB}]}{20}} \tag{9}$$

3 Realisering og test

Den prinsipielle løsningen baserer seg på 3 gitte motstandsverdier og 2 verdier for A. Man står derfor fritt til å tilpasse disse verdiene til en gitt applikasjon. Her velges det en variabel motsand med oppgitt motstand på $10k\Omega$ som er R_{pmaks} . R_{pmin} antas å være tilnærmet likt 0Ω . A[dB] verdiene er definert i systemkravene. R_1 og R_2 kan derfor regnes ut fra Ligning 6 og Ligning 7.

Fra gitte spesifikasjoner skal de resterende motsandene R_1 og R_2 være henholdsvis 2743 Ω og 2756 Ω . Ingen av disse ligger relativ nært standar verdier for motsander alene. Derfor blir det tatt i bruk to motsander i serie for å skape bedre tilnærmede verdier. For R_1 brukes en $2.7k\Omega$ motsand og en 47Ω mostand. For R_2 brukes en $2.7k\Omega$ mostand og en 56Ω motsand. Denne oppkoblingen er illustrert i Figur 4.

Figur 4: Løsning med brukte verdier

En signalgenerator brukes for å generere inn signalet $V_1(t)$. $V_1(t)$ er et sinussignal signal med amplitude på 5V og frekvens på 1khz. Denne spenningen er valgt vilkårlig, som vi kan gjøre som vist tidligere i seksjon 2 med Ligning 3. Med små spenningsverdier vil derimot støy være mer betydelig så derfor er høyre spenninger mer gunstig. Samtidig måles inngangssignalet og utgangssignalet ved bruk av et oscilloskop. Videre blir verdiene lagret av samme instrument. Den ferdige oppkoblingen er vist i Figur 5.

Figur 5: Fysisk oppkobling av krets.

Disse målingene ble så analysert og fremstilt med et pythonscript som gir oss følgende resultat som vist i Figur 6 og Tabell 1. Fullstendig kode og data er lagt i vedlegg 1.

Figur 6: Måleverdier for $V_1(t)$ og $V_2(t)$ for begge dempningsnivå

Tabell 1: Sammenligning av teoretiske og målte verdier

$A^{\text{teoretisk}}$ [dB]	$V_2(t)^{\text{teoretisk}} [\mathbf{V}]$	$V_2(t)^{\mathbf{målt}}$ [V]	$A^{\mathrm{målt}} [d\mathbf{B}]$	$A^{\mathbf{differanse}}[\mathbf{dB}]$
-6	2.50594	2.52886	-5.97237	0.0276289
-15	0.88914	0.89246	-15.0191	0.0191296

De teoretiske spenningsverdiene er utregnet med definisjonene for $V_2(t)$ og definsjonen for desibell gitt i Ligning 1 og Ligning 9. For å regne ut $A^{\text{målt}}$ ble formelen for desibel forsterkningen mellom spenningsnivået ut gitt ved u_u og spenningsnivået inn gitt ved u_i slik som vist i Ligning 10 [1].

$$A[dB] = 20 \cdot \lg(\frac{u_u}{u_i}) \tag{10}$$

I dette tilfellet er disse gitt ved $u_u = maks\{V_2(t)^{\text{målt}}\}$ og $u_i = maks\{V_1(t)\}$ for hver av dempingsnivåene. For hver målingene er avviket mellom teoretisk og målt demping oppført med den absolutte differansen målt i desibel, gitt ved Ligning 11.

$$A^{\text{differanse}} = |A^{\text{målt}} - A^{\text{teoretisk}}| \tag{11}$$

Fra dette ser vi at verdiene er innenfor kravet på 0.1dB. Disse resultatene kan fortsatt forbedres ved å måle R_{pmaks} og R_{pmin} og justere motsandsverdier R_1 og R_2 etter dette, men for dette designet er dette ikke nødvendig. For en implementering av et design med laster som ikke kan antas å være uendelig store burde også en op-amp eller lignende implementers som en buffer.

4 Konklusjon

Det er designet en variabel nivåregulator med bruk av en $10 \mathrm{k}\Omega$ variabel motsand og 4 motsander med tilnærmet samlede verdier på 2743Ω og 2756Ω . Designet ble testet med et sinus signal med amplitude på 5V og 1khz. Dette resulterte i en demping på mellom -15dB til -6dB innenfor $\pm 0.03 \mathrm{dB}$ eller mindre.

5 Takk

Helga, jacob ask for gode diskusjoner og gjennomlesning og tips,

Referanser

[1] K. Hofstad, desibel, SNL.no, Hentet fra: https://snl.no/desibel (Lastet ned: 18.01.2025)

A Vedlegg

1. Kode på GitHub