Méthodes de résolution approchée d'une équation différentielle

On peut connaître l'évolution d'un phénomène M(t) de plusieurs façons:

- Soit connaître à tout instant la valeur de M(t): définition explicite
- Soit connaître une loi de passage de M(t) à M(t+h), h "petit": <u>définition différentielle</u> (on connaît $\frac{d\vec{M}}{dt}$ ou $\frac{d^2\vec{M}}{dt^2}$ Pour passer de la connaissance différentielle à la connaissance explicite, on réalise en général un échantillonnage:

Exemple: les données différentielles sont

- à l'instant t = 0, le mobile M est en z(0) = 1 (condition initiale)

Créer un échantillon de la trajectoire en suivant l'algorithme d'Euler (1768)

$$M_0 = (1, 0), \forall n >= 0$$
 $M_{n+1} = M_n + h V(M_n)$

On réalisera un programme C dont la sortie sur fichier texte sera une matrice formatée

$$[x_0, x_1,....,x_N; y_0, y_1,...., y_N]$$

On pourra alors visualiser par Matlab le résultat (voir annexe pour la manip)

Etudier plusieurs choix du pas de discrétisation temporel h

Autres algorithmes:

La méthode d'Euler précédente est fausse: la bonne relation entre deux points consécutifs étant

$$M(t_n + h) = M(t_n) + \int_{t_n}^{t_n + h} \overrightarrow{V}(M(t)) dt$$

La méthode d'Euler consiste à approximer l'intégrale par $h\vec{V}(M(t_n))$, c'est pourquoi vous avez sans doute entendu dire que la méthode d'Euler est identique à la méthode des rectangles.

La méthode de Runge (1895)

On calcule l'intégrale par un rectangle positionné au milieu de l'intervalle d'intégration: $M(t_n + h) = M(t_n) + h\vec{V}(M(t_n + \frac{h}{2}))$ Mais ne connaissant pas le point $M(t_n + \frac{h}{2})$, il faut en donner une approximation.

On le calcule par la méthode d'Euler: $M(t_n + \frac{h}{2}) = M(t_n) + \frac{h}{2} \overrightarrow{V} (M(t_n))$

Globalement, on passe de M_n à M_{n+1} par $M(t_n + h) = M(t_n) + h \sqrt[3]{M(t_n)} + \frac{h}{2} \sqrt[3]{M(t_n)}$

Les méthodes de Runge-Kutta d'ordre 4 (1901)

La plus connue (à gauche) est basée sur la formule de Simpson pour le calcul des intégrales (interpolation par une parabole)

La méthode de Bogacki-Shampine (1989)

C'est également une méthode de Runge-Kutta.

La méthode de Bogacki-Shampine pour une équation différentielle du type y'=f(x,y).

Amélioration de ces méthodes

Le choix du pas peut s'ajuster automatiquement au cas où la variation M_nM_{n+1} dépasse un seuil de tolérance.

Nous n'entrerons pas dans cette étude.

Travail à effectuer

Les exemples à traiter:

- Des exemples que l'on peut facilement résoudre par formules, et vérifier par algorithme.
- Le système différentiel de Lotka Volterra, x' = x (1-y), y' = y (x 1), x(0) = 5, y(0) = 1 modélisation une évolution de 2 populations, l'une étant constituée de prédateurs, l'autre de proies.
- L'équation différentielle du second ordre modélisant l'oscillation d'un pendule simple avec frottement:

$$\theta'' = -K \sin \theta - k \theta'$$
 qui s'écrit en système
$$\begin{cases} \theta' = \omega \\ \omega' = -k \omega - K \sin \theta \end{cases}$$

Programmer en C les différentes méthodes et les visualiser

Visualiser sur la même figure les différentes méthodes.

Faire varier le pas de discrétisation.

Le problème des trois corps

Il s'agit d'étudier le mouvement d'un corps soumis à l'attraction de la Lune et de la Terre. On suppose:

- Aucune autre force n'est supposée agir que les forces d'attraction entre ces trois corps.
- La Terre et la Lune sont en mouvement de rotation uniforme autour du centre de gravité du système.
- La masse du satellite est négligeable par rapport aux masses de la Terre et de la Lune.

On note $\mu=0.012277471$, $\mu'=1$ - μ , et ϵ les rapports de la masse de la Lune , de la Terre, du satellite à la masse totale du système,

Montrer que l'on peut considérer $A = -\mu e^{it}$ et $B = (1 - \mu) e^{it}$ (on note par la même lettre le point et son affixe)

$$\text{Etablir la formule}: \ \epsilon \ Y'' = \frac{\epsilon \ (\ 1 - \mu \)}{\parallel A - Y \parallel^2} \frac{A - Y}{\parallel A - Y \parallel} \ + \ \frac{\epsilon \ \mu}{\parallel B - Y \parallel^2} \frac{B - Y}{\parallel B - Y \parallel}$$

On introduit la variable $y(t) = e^{-it} Y(t)$, dont on note y_1 et y_2 les parties réelle et imaginaire Montrer que dans le système de coordonnées (y_1 , y_2) la Terre et la Lune ne se meuvent plus.

On pose $y_3 = y_1$ ' et $y_1 = y_2$ '. On obtient alors le système à quatre fonctions inconnues

$$\begin{cases} y_1' = y_3 \\ y_2' = y_4 \\ y_3' = y_1 + 2y_4 - (1-\mu)(y_1+\mu)/r_1^3 - \mu(y_1-1+\mu)/r_2^3 \\ y_4' = y_2 - 2y_3 - (1-\mu) y_2 /r_1^3 - \mu y_2 /r_2^3 \end{cases}$$

où
$$r_1 = \sqrt{(y_1 + \mu)^2 + y_2^2}$$
 et $r_2 = \sqrt{(y_1 + \mu - 1)^2 + y_2^2}$

Interpréter les valeurs initiales $y_1(0) = 0.994$, $y_2(0) = 0$, $y_3(0) = 0$, $y_4(0) = -2.0015851063790825224053786224$ Tester, vous devez trouver une solution périodique T = 17.0652165601579625588917206249Visualiser la trajectoire dans le plan (y_1, y_2)