Kernel Learning with a Million Kernels

IIT Delhi

Ashesh Jain SVN Vishwanathan **Purdue University**

Manik Varma

Microsoft Research India

Kernel Learning

- The objective in kernel learning is to jointly learn both SVM and kernel parameters from training data.
- Kernel parameterizations
 - Linear : $K = \sum_i d_i K_i$
 - Non-linear : $K = \prod_i K_i = \prod_i e^{-d_i D_i}$
- Regularizers
 - Sparse I_1
 - Sparse and non-sparse $I_{p>1}$
 - Log determinant

Kernel Learning for Object Detection

Vedaldi, Gulshan, Varma and Zisserman ICCV 2009

Kernel Learning for Object Recognition

Orabona, Jie and Caputo CVPR 2010

Kernel Learning for Feature Selection

Varma and Babu ICML 2009

FERET Gender Identification Data Set

# Feat	AdaBoost	Baluja <i>et al</i> . [IJCV 2007]	OWL-QN [ICML 2007]	LP-SVM [COA 2004]	SSVM QCQP [ICML 2007]	BAHSIC [ICML 2007]	Linear MKL	Non-Linear MKL
10	76.3 ± 0.9	79.5 ± 1.9	$\textbf{71.6} \pm \textbf{1.4}$	84.9 ± 1.9	79.5 ± 2.6	81.2 ± 3.2	80.8 ± 0.2	88.7 ± 0.8
20	-	82.6 ± 0.6	80.5 ± 3.3	87.6 ± 0.5	85.6 ± 0.7	86.5 ± 1.3	83.8 ± 0.7	93.2 ± 0.9
30	-	83.4 ± 0.3	84.8 ± 0.4	89.3 ± 1.1	88.6 ± 0.2	89.4 ± 2.4	86.3 ± 1.6	95.1 ± 0.5
50	-	86.9 ± 1.0	88.8 ± 0.4	90.6 ± 0.6	89.5 ± 0.2	91.0 ± 1.3	89.4 ± 0.9	95.5 ± 0.7
80	-	88.9 ± 0.6	90.4 ± 0.2	-	90.6 ± 1.1	$\textbf{92.4} \pm \textbf{1.4}$	90.5 ± 0.2	-
100	-	89.5 ± 0.2	90.6 ± 0.3	-	90.5 ± 0.2	94.1 ± 1.3	91.3 ± 1.3	-
150	-	91.3 ± 0.5	90.3 ± 0.8	-	90.7 ± 0.2	94.5 ± 0.7	-	-
252	-	93.1 ± 0.5	-	-	90.8 ± 0.0	94.3 ± 0.1	-	-
	76.3(12.6)	-	91 (221.3)	91 (58.3)	90.8 (252)	-	91.6(146.3)	95.5 (69.6)

The GMKL Primal Formulation

$$P = \operatorname{Min}_{\mathbf{w},b,\mathbf{d}} \ \ \frac{1}{2} \mathbf{w}^t \mathbf{w} + C \sum_i L(\mathbf{w}^t \mathbf{\phi_d}(\mathbf{x}_i) + b, y_i) + r(\mathbf{d})$$
s. t. $\mathbf{d} \in \mathbf{D}$

- $K_{\mathbf{d}}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{\phi}_{\mathbf{d}}^t(\mathbf{x}_i)\mathbf{\phi}_{\mathbf{d}}(\mathbf{x}_j) > 0 \quad \forall \mathbf{d} \in D$
- $\nabla_{\mathbf{d}}K$ and $\nabla_{\mathbf{d}}r$ exist and are continuous

The GMKL Primal Formulation

The GMKL primal formulation for binary classification.

$$P = \operatorname{Min}_{\mathbf{w},b,\mathbf{d},\xi} \qquad \frac{1}{2} \mathbf{w}^t \mathbf{w} + C \sum_i \xi_i + r(\mathbf{d})$$
s. t.
$$y_i(\mathbf{w}^t \mathbf{\phi_d}(\mathbf{x}_i) + b) \ge 1 - \xi_i$$

$$\xi_i \ge 0 \& \mathbf{d} \in \mathbf{D}$$

The GMKL Primal Formulation

The GMKL primal formulation for binary classification.

$$P = \operatorname{Min}_{\mathbf{w},b,\mathbf{d},\xi} \qquad \frac{1}{2} \mathbf{w}^t \mathbf{w} + C \sum_i \xi_i + r(\mathbf{d})$$
s. t.
$$y_i(\mathbf{w}^t \mathbf{\phi_d}(\mathbf{x}_i) + b) \ge 1 - \xi_i$$

$$\xi_i \ge 0 \& \mathbf{d} \in \mathbf{D}$$

Intermediate Dual

$$D = \operatorname{Min}_{\mathbf{d}} \operatorname{Max}_{\alpha} \qquad \mathbf{1}^{t} \alpha - \frac{1}{2} \alpha^{t} \mathbf{Y} \mathbf{K}_{\mathbf{d}} \mathbf{Y} \alpha + r(\mathbf{d})$$
s. t.
$$\mathbf{1}^{t} \mathbf{Y} \alpha = 0$$

$$\mathbf{0} \le \alpha \le \mathbf{C} \& \mathbf{d} \in \mathbf{D}$$

- PGD requires many function and gradient evaluations as
 - No step size information is available.
 - The Armijo rule might reject many step size proposals.
 - Inaccurate gradient values can lead to many tiny steps.

- PGD requires many function and gradient evaluations as
 - No step size information is available.
 - The Armijo rule might reject many step size proposals.
 - Inaccurate gradient values can lead to many tiny steps.
- Noisy function and gradient values can cause PGD to converge to points far away from the optimum.

- PGD requires many function and gradient evaluations as
 - No step size information is available.
 - The Armijo rule might reject many step size proposals.
 - Inaccurate gradient values can lead to many tiny steps.
- Noisy function and gradient values can cause PGD to converge to points far away from the optimum.
- Solving SVMs to high precision to obtain accurate function and gradient values is very expensive.

- PGD requires many function and gradient evaluations as
 - No step size information is available.
 - The Armijo rule might reject many step size proposals.
 - Inaccurate gradient values can lead to many tiny steps.
- Noisy function and gradient values can cause PGD to converge to points far away from the optimum.
- Solving SVMs to high precision to obtain accurate function and gradient values is very expensive.
- Repeated projection onto the feasible set might also be expensive.

SPG Solution – Spectral Step Length

• Quadratic approximation : $2\lambda^{-1}\mathbf{x}^t\mathbf{x} + \mathbf{c}^t\mathbf{x} + d$

• Spectral step length : $\lambda_{SPG} = \frac{\langle \mathbf{x}^n - \mathbf{x}^{n-1}, \mathbf{x}^n - \mathbf{x}^{n-1} \rangle}{\langle \mathbf{x}^n - \mathbf{x}^{n-1}, \nabla f(\mathbf{x}^n) - \nabla f(\mathbf{x}^{n-1}) \rangle}$

Approximation

SPG Solution – Spectral Step Length

• Spectral step length : $\lambda_{SPG} = \frac{\langle \mathbf{x}^n - \mathbf{x}^{n-1}, \mathbf{x}^n - \mathbf{x}^{n-1} \rangle}{\langle \mathbf{x}^n - \mathbf{x}^{n-1}, \nabla f(\mathbf{x}^n) - \nabla f(\mathbf{x}^{n-1}) \rangle}$

PGD Limitations – Repeated Projections

• Accept $P(\mathbf{z}^t)$ if it satisfies the Armijo rule $-\nabla f$ $P(\mathbf{z}^t)$

PGD Limitations – Repeated Projections

• Accept $P(\mathbf{z}^t)$ if it satisfies the Armijo rule

PGD Limitations – Repeated Projections

PGD might require many projections before accepting a point

SPG Solution — Spectral Proj Gradient

• SPG requires a single projection per step $-\nabla f$ $P(\mathbf{z}^t)$

SPG Solution – Non-Monotone Rule

- Handling function and gradient noise.
- Non-monotone rule: $f(x^t s\nabla f(x^t)) \le \max_{0 \le j \le M} \overline{f(x^{t-j}) \gamma s|\nabla f(x^t)|_2^2}$

PGD Limitations – Step Size Selection

The Armijo rule might get stuck due to noisy function values

SPG Solution – SVM Precision Tuning

SPG Advantages

- SPG requires fewer function and gradient evaluations due to
 - The 2nd order spectral step length estimation.
 - The non-monotone line search criterion.
- SPG is more robust to noisy function and gradient values due to the non-monotone line search criterion.
- SPG never needs to solve an SVM with high precision due to our precision tuning strategy.
- SPG needs to perform only a single projection per step.

SPG Algorithm

```
1: n \leftarrow 0
2: Initialize \mathbf{d}^0 randomly
3: repeat
            \mathbf{\alpha}^* \leftarrow \text{SolveSVM}(\mathbf{K}(\mathbf{d}^n), \epsilon)
4:
            \lambda \leftarrow SpectralStepLength
5:
            \mathbf{p}^n \leftarrow \mathbf{d}^n - \mathbf{P}(\mathbf{d}^n - \lambda \nabla W(\mathbf{d}^n, \boldsymbol{\alpha}^*))
6:
            s^n \leftarrow Non - Monotone
7:
            \epsilon \leftarrow TuneSVMPrecision
8:
             \mathbf{d}^{n+1} \leftarrow \mathbf{d}^n - \mathbf{s}^n \mathbf{p}^n
9:
10: until converged
```

- Covertype: Sum of kernels subject to $l_{1.33}$ regularization
 - Number of training points 581,012
 - Number of Kernels 5
 - SPG time taken 64.46 hrs
- SPG took 26 SVM evaluations
- First SVM evaluation took 44 hours
- Only 0.19% of SV were cached

- Sonar: Sum of kernels subject to $l_{1,33}$ regularization
 - Number of training points 208
 - Number of Kernels 1 Million
 - SPG time taken 105.62 hrs

• Sum of kernels subject to $l_{p\geq 1}$ regularization

Data Sots	# Train	# Kernels	p:	=1	p=1.33		
Data Sets			PGD (hrs)	SPG (hrs)	PGD (hrs)	SPG (hrs)	
Adult - 9	32,561	50	35.84	4.55	31.77	4.42	
Cod - RNA	59,535	50	-	25.17	66.48	19.10	
KDDCup04	50,000	50	-	40.10	-	42.20	

Results on Small Scale Data Sets

• Sum of kernels subject to l_1 regularization

Data Sets	SimpleMKL (s)	Shogun (s)	PGD (s)	SPG (s)
Wpbc	400 ± 128.4	15 ± 7.7	38 ± 17.6	6 ± 4.2
Breast - Cancer	676 ± 356.4	12 ± 1.2	57 ± 85.1	5 ± 0.6
Australian	383 ± 33.5	1094 ± 621.6	29 ± 7.1	10 ± 0.8
Ionosphere	1247 ± 680.0	107 ± 18.8	1392 ± 824.2	39 ± 6.8
Sonar	1468 ± 1252.7	935 ± 65.0	-	273 ± 64.0

• Product of kernels subject to $l_{p\geq 1}$ regularization

Data Cata	# Train	# Kernels	p=	=1	p=1.33		
Data Sets			PGD (hrs)	SPG (hrs)	PGD (hrs)	SPG (hrs)	
Letter	20,000	16	18.66	0.67	18.69	0.66	
Poker	25,010	10	5.57	0.49	2.29	0.96	
Adult - 8	22,696	42	-	1.73	-	3.42	
Web - 7	24,692	43	-	0.88	-	1.33	
RCV1	20,242	50		18.17	-	15.93	
Cod - RNA	59,535	8	-	3.45	-	8.99	

Effect of Individual Components

• Sum of kernels subject to $l_{1,1}$ regularization

	PGD		PGD + N		PGD + S		PGD + N + S	
Data Sets	Time (s)	# SVMs	Time (s)	# SVMs	Time (s)	# SVMs	Time (s)	# SVMs
Australian	39.4 ± 6.0	3230	32.7 ± 3.6	116	317.0 ± 49.1	5980	7.0 ± 1.6	621
Sonar	785.5 ± 471.1	209461	41.6 ± 17.1	3236	40.2 ± 24.6	3806	9.0 ± 1.8	2427
Breast - Cancer	237.3 ± 97.8	109599	42.2 ± 4.1	1187	14.9 ± 2.2	3537	8.6 ± 2.2	3006
Diabetes	73.6 ± 38.8	29347	26.3 ± 9.5	2966	10.5 ± 2.6	1239	4.1 ± 0.5	695
Wpbc	44.4 ± 11.6	14376	27.9 ± 13.6	9388	2.9 ± 0.8	340	1.2 ± 0.4	79

SVM Precision Tuning

• Sum of kernels subject to $l_{1.33}$ regularization

Data Sets	# Train	# Kernels	PGD (hrs)	PGD + N + S (hrs)	SPG (hrs)
Adult - 9	32,561	50	31.77	8.33	4.43
Web - 8	49,749	50	4.27	1.73	0.87
Sonar	208	100,000	53.91	3.35	2.19

SPG Scaling Properties

Scaling with the number of training points

Conclusions

- Developed a generic and efficient MKL optimizer.
- Experimented with four different MKL formulations and solved both small and large scale problems.
- Combining spectral step length and non-monotone rule gives best performance.
- Quasi Newton methods not suitable for MKL problems due to noisy gradient.

Acknowledgements

Kamal Gupta (IITD)

Subhashis Banerjee (IITD)

The Computer Services Center at IIT Delhi