

## Introduction to Networks & Distributed Computing CECS 327





#### TCP/IP Layers

#### TCP/IP Prototocols

| Application Layer          | HTTP FTP     |  | Telnet     |     | SMTP | DNS                           |  |
|----------------------------|--------------|--|------------|-----|------|-------------------------------|--|
| Transport Layer            | TCP          |  |            | UDP |      |                               |  |
| Network Layer              | IP           |  | ARP        |     | ICMP | IGMP                          |  |
| Network Interface<br>Layer | Ethernet     |  | Token Ring |     |      | Other Link-Layer<br>Protocols |  |
| Physical                   | Bits of data |  |            |     |      |                               |  |



<u>IP addressing</u> is an addressing scheme that provides the illusion of a large, seamless network for users.

#### **IP addressing** is:

- an abstraction
- a uniform addressing scheme
- used by higher-layer protocols
- used by applications



An <u>IP address</u> does not identify a specific computer. Instead, each IP address identifies a connection between a computer and a network.

A computer with multiple network connections (e.g., a router) must be assigned one IP address for each connection.

#### **IPv4 addresses** are:

- Virtual (they are only understood by software)
- Used for all communication in TCP/IP
- 32-bit integers\*
- Unique for each host

#### \*Note:

- IPv4 uses 32-bit IP addresses.
- IPv6 uses 128-bit IP addresses.



#### **IP addresses** are divided into two parts

- Prefix -- which identifies the network
- Suffix -- which identifies the host

Prefix Suffix

The *Internet Assigned Number Authority* is the global authority that has control over the assignment a unique prefix to each network.

A local administrator assigns a unique suffix to each host.

The IP hierarchy guarantees that:

- Each computer is assigned a unique address.
- Suffixes can be assigned locally without global coordination.



- **IP address**: 32-bit identifier for host, router interface
- Interface: connection between host/router and physical link
  - router's typically have multiple interfaces
  - host typically has one interface
  - IP addresses associated with each interface









The <u>initial bits</u> determine the class of the address.

The <u>class</u> determines the boundary between prefix and suffix.



#### **Classes of Addresses**

The maximum network size is determined by the class of the address:

Class A -- large

Class B -- medium \_

Class C -- small

| Class | Range of Values |
|-------|-----------------|
| Α     | 0 through 127   |
| В     | 128 through 191 |
| С     | 192 through 223 |
| D     | 224 through 239 |
| E     | 240 through 255 |

| Fi   | irst Four  | Table Index  | Class of |
|------|------------|--------------|----------|
| Bits | Of Address | (in decimal) | Address  |
| 1    | 0000       | 0            | Α        |
|      | 0001       | 1            | Α        |
|      | 0010       | 2            | Α        |
|      | 0011       | 3            | Α        |
| ->   | 0100       | 4            | Α        |
|      | 0101       | 5            | Α        |
|      | 0110       | 6            | Α        |
|      | 0111       | 7            | A        |
|      | 1000       | 8            | В        |
|      | 1001       | 9            | В        |
|      | 1010       | 10           | В        |
|      | 1011       | 11           | В        |
|      | 1100       | 12           | С        |
| 1_   | 1101       | 13           | С        |
|      | 1110       | 14           | D        |
|      | 1111       | 15           | E        |
|      |            |              |          |



#### **Dotted Decimal Notation**

#### Dotted decimal notation is used:

as shorthand for IP addresses.

to let humans avoid binary numbers.

octet = byte : 8-hits

Dotted decimal notation represents each octet in decimal separated by dots.

| 32-bit Binary Number |          |          | <b>Equivalent Dotted Decimal</b> |                     |
|----------------------|----------|----------|----------------------------------|---------------------|
| 10000001             | 00110100 | 00000110 | 00000000                         | 129.52.6.0          |
| 11000000             | 00000101 | 00110000 | 00000011                         | 192.5.48.3          |
| 00001010             | 00000010 | 00000000 | 00100101                         | 10.2.0.37           |
| 10000000             | 00001010 | 00000010 | 00000011                         | 128.10.2.3          |
| 10000000             | 10000000 | 11111111 | 00000000                         | 128 . 128 . 255 . 0 |

For dotted decimal notation:

There are four decimal values per 32-bit address.

Each decimal number:

- -- Represents eight bits
- -- Has a value between 0 and 255

# References

- Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair. Fifth Edition, Pearson, 2012.
- Computer Networks, Fifth Edition: A Systems Approach (The Morgan Kaufmann Series in Networking).
- Computer Networks and Internets (5th Edition)
- Some slides by Dr. Tracy Bradley Maples