Cenia Meeting 26-07-24 Compositional Generalization: Triangles Dataset

Dataset Generation

Con

$$egin{bmatrix} 0 & 1 & 1 & 1 & 1 \ 1 & 0 & 1 & 1 & 0 \ 1 & 1 & 0 & 0 & 0 \ 1 & 0 & 1 & 0 & 0 \ \end{bmatrix}$$

Sin

 $num_nodes \in \{5, \dots, 10\}$

2d Positional Encoding

Encoder Experiment

Encoder Experiment

Architecture:

- Input_projection -> Adj. Matrix to nn.Linear
- Positional Encoding -> Positional encoding 2D
- Standard Pytorch Attention Layer
- Binary Classifier -> Sigmoid

Hyperparameters:

- Hidden_dimension -> 4, 6, 32
- Attention_heads -> 4, 6, 8
- Learning_rate -> 1e-3
- Epochs -> 4500
- Max_nodes -> 10

Results

Experiment 2 Results

hidden_dim = 32 num_heads = 8 num_layers = 1

When tokenizing an adjacency matrix each token represents a relation between nodes

[0	1	1	1	1]
1	0	1	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
1 1 1	1	0	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
1	1	0	0	0
_1	0	1	0	0

Then attention is directly learning "relations between relations"

[0	1	1	1	17
1	0	1	1	$egin{array}{ccc} 1 \ 0 \ 1 \ 0 \ 0 \end{array}$
1 1 1	1	0	0	1
1	1	0	0	0
1	0	1	0	0

On NLP transformers, each input token represents a set of characters, but not directly their relationships (the relationships are learned)

Token relationships are learned through attention

The mismatch between the tokenized information might imply that our test is not assessing composition

Options?

Maybe our dataset should feature both nodes and relations as tokens expressed as a set of "fact" sequences

Node tokens: $\{a,b,c,d\}$

Input sequence:

 $\ddot{a} x b$

Relation tokens: $\{x,y\}$

(a)—x—(b)

Options?

And also include compositions as tokens, all of this expressed as a set of "fact" sequences

Node tokens: $\{a,b,c,d\}$

Relation tokens: $\{x,y\}$

Composition token: $\{z\}$

t1 t2 t3 sequence: " $a \ z \ c$ "