# Lecture 04: Mathematical Foundations II

**Cunsheng Ding** 

HKUST, Hong Kong

August 3, 2022

## Contents

- The Floor and Ceiling Function
- Greatest Common Divisor
- Euclidean Algorithm
- Modulo *n* Arithmetic
- The multiplicative inverse modulo n

# The Floor and Ceiling Function

### **Definition 1**

The floor function  $\lfloor x \rfloor$ : The largest integer  $\leq x$ .

# Example 2

$$\lfloor 3.99 \rfloor = 3. \ \lfloor 5/2 \rfloor = 2. \ \lfloor 3 \rfloor = 3.$$

### **Definition 3**

**The ceiling function**  $\lceil x \rceil$ **:** The smallest integer  $\geq x$ .

## Example 4

$$\lceil 3.99 \rceil = 4. \lceil 5/2 \rceil = 3. \lceil 3 \rceil = 3.$$

## **Quotient and Remainder**

# Theorem 5 (Division Algorithm)

Let  $b \neq 0$  be an integer and let a be any integer. Then there are two unique integers q and  $0 \leq r < |b|$  such that a = qb + r.

### Proof.

The proof is constructive. Define  $\varepsilon_b=1$  if b>0 and  $\varepsilon_b=-1$  if b<0. Let  $q=\lfloor a/b\varepsilon_b\rfloor$  and  $r=a-q\varepsilon_bb$ . It is easily checked that  $0\leq r<|b|$  and a=bq+r. The proof of the uniqueness of q and r with  $0\leq r<|b|$  is left as an exercise.

### **Definition 6**

The q and r in the proof above are the **quotient** and **remainder** when a is divided by b. We write  $r = a \mod b$ .

If  $a \mod b = 0$ , b is called a **divisor** or **factor** of a. In this case, we say that a is divisible by b or b divides a.

## **Quotient and Remainder**

### Example 7

 $73 \mod 7 = 3 \mod -11 \mod 7 = 3$ .

#### **Definition 8**

A **prime** is a positive integer n > 1 with only two positive divisors 1 and n.

#### **Definition 9**

A **common divisor** of two integers *a* and *b* is a divisor of both *a* and *b*.

## Example 10

60 and 24 have the positive common divisors 1, 2, 3, 4, 6, 12.

## The Greatest Common Divisor

#### **Definition 11**

The greatest common divisor (GCD) of two integers a and b, denoted by gcd(a,b), is the largest among all the common divisors of a and b.

## Example 12

gcd(60,24) = 12, as all the positive common divisors of 60 and 24 are 1,2,3,4,6,12.

## Proposition 13

$$\gcd(b,a)=\gcd(-b,a)=\gcd(b,-a)=\gcd(-b,-a)=\gcd(a,b).$$

Because of this proposition, we will consider only the case that  $a \ge 0$  and  $b \ge 0$  in the sequel.

## The Greatest Common Divisor

## **Proposition 14**

Let a and b be two integers such that  $(a,b) \neq (0,0)$ . Then  $\gcd(b,a)$  must exist.

### Proof.

The total number of positive common divisors of a and b is at most  $\max\{|a|,|b|\}$ .

### Question 1

Is there any efficient algorithm for computing gcd(a,b) for any two positive integers a and b?

#### **Answer**

Yes, the Euclidean algorithm.

# Computing gcd(a, b) Recursively

#### Lemma 15

Let  $b \neq 0$ . Then  $gcd(a, b) = gcd(b, a \mod b)$ .

### Proof.

Note that a = qb + r, where  $r = a \mod b$  is the remainder.

By this equation, any common divisor of a and b must be a common divisor of b and r. Conversely, any any common divisor of b and r must be a common divisor of a and b. Hence a and b have the same set of common divisors as b and c. Hence, the two sets of integers have the same GCD.

#### Remark

A recursive application of this lemma gives an efficient algorithm for computing the gcd(a,b), which is called the **Euclidean algorithm**.

# **Euclidean Algorithm**

Example: Find gcd(66,35).

**Algorithm:** It works as follows and stops when the remainder becomes 0:

$$66 = 1 \times 35 + 31$$
  $gcd(35,31)$   
 $35 = 1 \times 31 + 4$   $gcd(31,4)$   
 $31 = 7 \times 4 + 3$   $gcd(4,3)$   
 $4 = 1 \times 3 + 1$   $gcd(3,1)$   
 $3 = 3 \times 1 + 0$   $gcd(1,0)$ 

Hence by the lemma in the previous page

$$\gcd(66,35) = \gcd(35,31) = \gcd(31,4) = \gcd(4,3) = \gcd(3,1) = \gcd(1,0) = 1.$$

# **Euclidean Algorithm**

### Pseudo code

- $\bigcirc$   $x \leftarrow a; y \leftarrow b$
- ② If y = 0 return gcd(a, b) = x
- $\bigcirc$   $r \leftarrow x \mod y$ .
- $\bigcirc$   $x \leftarrow y$
- $\bigcirc$   $y \leftarrow r$
- goto step 2

### Remarks

- No need to read and explain this code. The example in the previous slide is clear enough.
- The time complexity is  $O(\log |b| \times [\log |b| + \log |a|]^2)$

## Modulo *n* Arithmetic

#### **Definition 16**

Let n > 1 be an integer. We define

$$x \oplus_n y = (x+y) \mod n$$
,  $[12 \oplus_5 7 = (12+7) \mod 5 = 4]$   
 $x \ominus_n y = (x-y) \mod n$ ,  $[12 \ominus_5 7 = (12-7) \mod 5 = 0]$   
 $x \otimes_n y = (x \times y) \mod n$ ,  $[12 \otimes_5 7 = (12 \times 7) \mod 5 = 4]$ 

where +, - and  $\times$  are the integer operations. The operations  $\oplus_n$ ,  $\ominus_n$  and  $\otimes_n$  are called the modulo-n addition, modulo-n subtraction, and modulo-n multiplication. The integer n is called the **modulus**.

# Properties of Modulo *n* Operations

## **Proposition 17**

Let n > 1 be the modulus,  $\mathbb{Z}_n = \{0, 1, \dots, (n-1)\}.$ 

Commutative laws:

$$x \oplus_n y = y \oplus_n x$$
,  $x \otimes_n y = y \otimes_n x$ .

Associative laws:

$$(x \oplus_n y) \oplus_n z = x \oplus_n (y \oplus_n z)$$
$$(x \otimes_n y) \otimes_n z = x \otimes_n (y \otimes_n z).$$

Distribution law:

$$z \otimes_n (x \oplus_n y) = (z \otimes_n x) \oplus_n (z \otimes_n y).$$



# Properties of Modulo *n* Operations

## Proof of Proposition 17

- Commutative laws: x⊕<sub>n</sub>y = y⊕<sub>n</sub>x, x⊗<sub>n</sub>y = y⊗<sub>n</sub>x.
   Proof: By definition and the commutative lows of integer addition and multiplication.
- Associative laws:

$$(x \oplus_n y) \oplus_n z = x \oplus_n (y \oplus_n z)$$
$$(x \otimes_n y) \otimes_n z = x \otimes_n (y \otimes_n z).$$

**Proof:** By definition and the associative lows of integer addition and multiplication.

Distribution law: z⊗<sub>n</sub>(x⊕<sub>n</sub>y) = (z⊗<sub>n</sub>x)⊕<sub>n</sub>(z⊗<sub>n</sub>y).
 Proof: By definition and the distribution low of integer addition and multiplication.

# The Multiplicative Inverse

#### **Definition 18**

Let  $x \in \mathbb{Z}_n = \{0, 1, \dots, n-1\}$ . If there is an integer  $y \in \mathbb{Z}_n$  such that

$$x \otimes_n y =: (x \times y) \mod n = 1.$$

The integer y is called a *multiplicative inverse* of x, usually denoted  $x^{-1}$  (it is unique if it exists).

## Example 19

Let n = 15. Then 2 has the multiplicative inverse 8. But 3 does not have one.

### Question 2

- Which elements of  $\mathbb{Z}_n$  have a multiplicative inverse?
- If x has a multiplicative inverse, is it unique?
- If x has a multiplicative inverse, is there any efficient algorithm for computing the inverse?

# gcd(a, b) as a Linear Combination of a and b

#### Lemma 20

There are two integers u and v such that gcd(a,b) = ua + vb.

### Proof.

Set  $a_0 = a$  and  $a_1 = b$ . By the EA, we have

$$a_0 = q_1 \times a_1 + a_2$$
 $a_1 = q_2 \times a_2 + a_3$ 
 $\vdots$ 
 $a_{t-2} = q_{t-1} \times a_{t-1} + a_t$ 
 $a_{t-1} = q_t \times a_t + 0$ 

where  $a_i \neq 0$  for  $i \leq t$ . Hence  $gcd(a,b) = a_t$ . Reversing back, we can express  $a_t$  as a linear combination of  $a_0$  and  $a_1$ .

# gcd(a, b) as a Linear Combination of a and b

### Example 21

Find integers u and v such that gcd(66,35) = u66 + v35.

#### Solution 22

The extended Euclidean algorithm works as follows:

$$66 = 1 \times 35 + 31 \qquad 1 = -9 \times 66 + 17 \times 35$$

$$35 = 1 \times 31 + 4 \qquad 1 = 8 \times 35 - 9 \times 31$$

$$31 = 7 \times 4 + 3 \qquad 1 = -1 \times 31 + 8 \times 4$$

$$4 = 1 \times 3 + 1 \qquad 1 = 4 - 1 \times 3$$

$$3 = 3 \times 1 + 0$$

Hence u = -9 and v = 17.

# The Multiplicative Inverse

## **Proposition 23**

If  $a \in \mathbb{Z}_n$  has a multiplicative inverse, then it is unique.

#### Proof.

Let  $b \in \mathbb{Z}_n$  and  $c \in \mathbb{Z}_n$  be two multiplicative inverses of a. Then  $a \otimes_n b = 1$  and  $a \otimes_n c = 1$ . By definition

$$a \otimes_n b \otimes_n c = (a \otimes_n b) \otimes_n c = 1 \otimes_n c = c.$$

On the other hand, by the associativity and commutativity,

$$a \otimes_n b \otimes_n c = b \otimes_n (a \otimes_n c) = b \otimes_n 1 = b.$$

Hence b = c.



# The Multiplicative Inverse

#### Theorem 24

Let n > 1 be an integer. Then any  $a \in \mathbb{Z}_n$  has the multiplicative inverse modulo n if and only if gcd(a, n) = 1.

### Proof.

Suppose that  $\gcd(a,n) = e \neq 1$ . Then  $n = en_1$  for some  $n_1 < n$ , and  $a = ea_1$ . Then  $n_1 \otimes_n a = 0$ . If there were an element  $b \in \mathbb{Z}_n$  such that  $a \otimes_n b = 1$ , then we would have

$$n_1 \otimes_n (a \otimes_n b) = n_1 \otimes 1 = n_1 \mod n = n_1$$

and

$$n_1 \otimes_n (a \otimes_n b) = (n_1 \otimes_n a) \otimes_n b = 0.$$

Hence,  $n_1 = 0$ , a contradiction.

By Lemma 20, there are two integers u and v such that 1 = ua + vn. Hence  $au \mod n = 1$ . Define  $a' = u \mod n$ . Then  $aa' \mod n = 1$ .

# Computing the Multiplicative Inverse

## The algorithm

Let  $a \in \mathbb{Z}_n$  with gcd(a, n) = 1. Apply the Extended Euclidean Algorithm to a and n to compute the two integers u and v such that 1 = ua + vn. Then  $u \mod n$  is the inverse of  $a \mod n$ .

## Example 25

Compute the inverse  $35^{-1} \mod 66$ .

### Solution 26

In Solution 22, we got

$$1 = -9 \times 66 + 17 \times 35$$
.

Hence,  $35^{-1} \mod 66 = (17) \mod 66 = 17$ .



# Finite Fields $\mathbb{Z}_p$ (denoted also by GF(p))

#### Theorem 27

Let p be a prime. Then every nonzero element in  $\mathbb{Z}_p$  has the multiplicative inverse modulo p.

#### **Definition 28**

Let p be a prime. Then the triple  $(\mathbb{Z}_p, \oplus_p, \otimes_p)$  is called a *finite field* with p elements.

|   |   |   | 2 | x | 0 | 1 | 2 |   |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 |   |   | 0 |   | _ |
|   |   | 2 |   |   |   | 1 |   |   |
| 2 | 2 | 0 | 1 | 2 | 0 | 2 | 1 |   |

## Finite field Z<sub>3</sub>

**Remarks:** Where + stands for  $\oplus_3$ , and  $\times$  for  $\otimes_3$ .