SESSION 2013 MPM1002

EPREUVE SPECIFIQUE - FILIERE MP

MATHEMATIQUES 1

Durée : 4 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Le sujet est composé de deux exercices et d'un problème, tous indépendants.

Exercice 1 : une série de Fourier

On considère la fonction f de \mathbb{R} dans \mathbb{R} , 2π -périodique, impaire, vérifiant : pour tout réel $x \in [0, \pi[$, f(x) = 1 et $f(0) = f(\pi) = 0$.

- 1. Représenter graphiquement la fonction f sur \mathbb{R} , puis déterminer la série de Fourier de la fonction f.
- 2. Justifier l'existence des sommes suivantes et utiliser la question précédente, en énonçant les théorèmes utilisés, pour donner leur valeur :

(a)
$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1}$$
 (b)
$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$
.

Exercice 2 : un système différentiel

On considère le système différentiel de fonctions inconnues x, y et de variable $t \in \mathbb{R}$:

$$\begin{cases} x' = x - y \\ y' = x + 3y \end{cases}$$

- 1. On considère la matrice $A = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$. Calculer le polynôme caractéristique de la matrice A et en déduire que la matrice $B = A 2I_2$ est nilpotente. En utilisant sans démonstration l'égalité $e^{tA} = e^{2t}e^{t(A-2I_2)}$, valable pour tout réel t, donner l'expression de la matrice e^{tA} .
- 2. En utilisant ce qui précède, ou à l'aide de toute autre méthode, trouver la solution du système différentiel vérifiant $\left\{ \begin{array}{l} x(0)=1\\ y(0)=2 \end{array} \right. .$

Problème : séries de Taylor et développement en série entière

Dans ce problème, toutes les fonctions considérées sont définies sur un intervalle I de \mathbb{R} et à valeurs réelles.

Partie préliminaire

Dans cette partie, les questions sont indépendantes les unes des autres et leurs résultats peuvent être admis dans la suite du problème.

- 1. Justifier, pour tout réel $x \in]-1,1[$, l'existence de $\sum_{n=1}^{+\infty} n \, x^{n-1}$ et donner sa valeur.
- 2. On rappelle que la fonction Γ est définie pour tout réel $x \in]0, +\infty[$ par :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

Démontrer que pour tout réel $x \in]0, +\infty[$, $\Gamma(x+1) = x\Gamma(x)$ et en déduire, pour tout entier naturel n non nul, la valeur de $\Gamma(n)$.

3. Démontrer la formule de Taylor avec reste de Laplace (ou reste intégral) : si I est un intervalle contenant le réel a, si f est une fonction de I dans \mathbb{R} de classe C^{∞} sur I, alors pour tout réel $x \in I$ et pour tout entier naturel n, on a :

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

ON RAPPELLE LE THEOREME SUIVANT :

Si une fonction f admet un développement en série entière sur l'intervalle]-a,a[, alors :

- la fonction f est de classe C^{∞} sur]-a, a[,
- son développement en série entière est unique et est donné par la série de Taylor de la fonction f à l'origine :

pour tout réel
$$x \in]-a, a[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$
.

I. Quelques exemples d'utilisation de ce théorème

4. On considère la fonction f définie sur \mathbb{R} par :

$$f(0) = 1$$
 et pour tout réel $x \neq 0$, $f(x) = \frac{\sin x}{x}$.

Démontrer que la fonction f est de classe C^{∞} sur \mathbb{R} .

- 5. Expliciter une fonction f de classe C^{∞} sur un voisinage de 0 et vérifiant, pour tout entier naturel n, l'égalité $f^{(n)}(0) = n$. n!
- 6. Un théorème des moments

Soit f une fonction développable en série entière sur]-R,R[avec R>1:

$$\forall x \in]-R, R[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

On suppose, que pour tout entier naturel n, $\int_0^1 x^n f(x) dx = 0$.

L'objectif de cette question est de montrer que f est identiquement nulle sur]-R,R[.

- (a) Démontrer que la série $\sum_{n>0} f(x) \frac{f^{(n)}(0)}{n!} x^n$ converge normalement sur l'intervalle [0,1].
- (b) A l'aide du calcul de $\int_0^1 (f(x))^2 dx$, démontrer que la fonction f est nulle sur l'intervalle [0,1].
- (c) Démontrer que f est la fonction nulle sur l'intervalle]-R,R[.

II. Contre-exemples

7. Donner un exemple de fonction f à la fois de classe C^{∞} sur un intervalle I et développable en série entière au voisinage de l'origine, mais qui ne coïncide pas avec sa série de Taylor en 0 sur I tout entier.

8. Un exemple de fonction ne coïncidant avec sa série de Taylor en 0 sur aucun voisinage de 0

On considère la fonction f définie sur $\mathbb R$ par :

pour tout réel
$$x \neq 0$$
, $f(x) = \exp\left(-\frac{1}{x^2}\right)$ et $f(0) = 0$.

- (a) Donner, à l'aide de la calculatrice (sans étude), l'allure de la courbe de la fonction f.
- (b) Par les théorèmes généraux, la fonction f est de classe C^{∞} sur $]0, +\infty[$. Démontrer que pour tout entier naturel n, il existe un polynôme P_n tel que, pour tout $x \in]0, +\infty[$, $f^{(n)}(x) = \frac{P_n(x)}{x^{3n}} \exp\left(-\frac{1}{x^2}\right)$.
- (c) Démontrer que la fonction f est de classe C^{∞} sur $[0, +\infty[$ avec pour tout entier naturel $n, f^{(n)}(0) = 0$.

Par parité, la fonction f ainsi définie est de classe C^{∞} sur \mathbb{R} .

- (d) La fonction f est-elle développable en série entière sur un intervalle]-r, r[?]
- 9. Un exemple où la série de Taylor de la fonction f en 0 a un rayon nul $f^{+\infty}$ e^{-t}

Pour tout
$$x$$
 réel, on pose : $f(x) = \int_0^{+\infty} \frac{e^{-t}}{1 + t x^2} dt$.

- (a) Justifier que, pour tout réel x, la fonction $t \mapsto \frac{e^{-t}}{1+t\,x^2}$ est bien intégrable sur $[0,+\infty[$, puis démontrer que la fonction f est de classe C^1 sur \mathbb{R} . On admettra que la fonction f est de classe C^∞ sur \mathbb{R} et que l'on obtient les dérivées successives en dérivant sous le signe intégrale.
- (b) Pour $t \in]0, +\infty[$, calculer, au moyen d'une série entière, les dérivées successives en zéro de la fonction $x \longmapsto \frac{e^{-t}}{1+t\,x^2}$ pour en déduire l'expression de $f^{(n)}(0)$ pour tout entier naturel n.
- (c) Quel est le rayon de la série entière $\sum_{n\geq 0} \frac{f^{(n)}(0)}{n!} x^n$?

La fonction f est-elle développable en série entière à l'origine ?

III. Condition suffisante

On se propose, dans cette partie, d'étudier une condition suffisante pour qu'une fonction de classe C^{∞} sur un intervalle centré en 0 soit développable en série entière au voisinage de 0.

- 10. Soient a un réel strictement positif et f une fonction de classe C^{∞} sur l'intervalle]-a,a[. On suppose qu'il existe un réel M>0 tel que, pour tout réel $x\in]-a,a[$ et pour tout entier naturel $n, |f^{(n)}(x)| \leq M$.
 - (a) Démontrer que la fonction f est développable en série entière au voisinage de l'origine.
 - (b) Donner un exemple simple de fonction pour laquelle ce résultat s'applique.

Fin de l'énoncé