Day 3 - Text (Advanced)

UMN CSS Workshop 2025

Instructor: Alvin Zhou

Group

- Group 1
 - Gretchen Corcoran
 - Jikai Sun
 - Shreepriya Dogra
 - Jialu Fan
- Group 2
 - Jiacheng Huang
 - Paulina Vergara Buitrago
 - Jong Won Lee
 - Eun Sun Kyoung

- Group 3
 - Sijin Chen
 - Michael Ofori
 - Jinny Zhang
 - Dongwook Kim
- Group 4
 - Raj Wahlquist
 - Nicole Marie Klevanskaya
 - Wenhui Cheng
 - Rita Rongwei Tang
- Mixed background and coding skills
- Group members who are confident in their coding skills, please help other members during the afternoon coding labs

Learning Goals

- Learn word embedding
- Understand topic modeling and its use in social science
- Explore creative uses of computational text methods
- Practice using external text APIs and topic modeling

Last Class

- Dictionary-Based Methods
- Traditional Classifier (pre-2020)
 - Create features (independent variables) from text: n-grams (bag of words), metadata (emoji, length), TF-IDF, dictionaries (LIWC, MFD)
 - For example, the text "I love data science! ~ " can have these features
 - "I": 1, "love": 1, "data": 1, "science": 1, "
 - · No. of Characters: 22
 - Punctuation Count: 1
 - "PRP (personal pronoun)": 1, "VBP (verb)": 1, "NN (noun)": 2, "SYM (symbol)": 1
 - The Y (dependent variable) is binary (uncivil/civil; relevant/irrelevant, etc.)
 - Fit different models (e.g., logistic regression with regularization) with training data
 - Evaluate how the model performs
 - Apply the model to the remaining dataset

Limitations of Traditional Features

- Bag of Words and TF-IDF are sparse and high-dimensional
- Vocabulary is rigid: struggles with new/rare words
- Ignores word meaning and semantic similarity
 - "happy" and "joyful" are treated as unrelated
- Doesn't capture context: "good" ≠ "not good"
- Performance plateaus in many classification tasks

Word Embedding

- Each word is represented by a vector
- Words with similar meanings are close in vector space
- Captures semantic and syntactic similarity
 - "king" "man" + "woman" ≈ "queen"
 - "love" and "like" have similar embeddings
- The "GloVe 6B 300-dimensional" model from Stanford
 - trained on Wikipedia + Gigaword, in which:
 - "man" → [0.20217, 0.12963, -0.17952, -0.00857, 0.05105, -0.32036, 0.18403, 0.39143, 0.46551, -0.22903, ...]
 - cosine_similarity("man", "woman") ≈ high

Why Use Word Embeddings? (post-2020)

- Low-dimensional: ~100–300 dimensions vs. 10,000s for BoW
- Generalizes across similar terms (e.g., "happy", "joyful")
- Pretrained models available (Word2Vec, GloVe, BERT) simply download to your computer and you are good to go
- Reduces need for manual feature engineering (e.g., L1/L2 regularization)
- Improved performance in many areas of NLP

How Embeddings Are Used in Practice

- Average word vectors for each document, so that one document is represented by a vector. If
 - "man" is [1, 0, 1]
 - "and" is [1, 0, 0]
 - "woman" is [1, 1, 1]
 - A document with "man and woman" is represented as [1, 0.333, 0.666]
- TF-IDF-weighted average
 - If "man" appears too many times in the document, its influence on "averaging word vectors for each document" decreases
- Sentence or document embeddings (e.g., Sentence-BERT)
- Feed into any classifier (logistic, SVM, NN)

TF-IDF vs. Word Embedding

Feature Type	TF-IDF	Word Embedding
Sparse/Dense	Sparse	Dense
Dimensionality	High	Low
Handles Synonyms?	No	Yes
Context-Aware?	No	Sometimes (if BERT)
Pretrained?	Not really	Yes (Word2Vec, GloVe, BERT)
Model Input	Classic ML	ML + DL

Presentation: Toubia et al. (2021)

Presentation: Toubia et al. (2021)

- How quantifying the shape of stories predicts success
- Track emotional arc over time using NLP
- Shape features predict box office revenue
- Social science application: narrative structure & diffusion

You can fine-tune embeddings for your study

- TF-IDF studies usually "start from scratch"
- But studies using embeddings usually grab an existing model and fine-tune it with new data
- "Fine-tuning" means continuing to train a pretrained model on a new, domain-specific corpus, so it adapts to the language and meaning specific to your data.

For Example

- Fine-Tuning GloVe on Social Media
 - Let's say you're studying vaccine discourse on Twitter. You start with GloVe (trained on news/Wikipedia), but you want to adapt it to Twitter slang + COVID-specific terms.
 - In Python (conceptually):

```
from gensim.models import Word2Vec
from gensim.models.keyedvectors import KeyedVectors

# Load pretrained word vectors (e.g., from GloVe)
pretrained_model = KeyedVectors.load_word2vec_format("glove.6B.300d.txt", binary=False)

# Load your own corpus (e.g., tokenized tweets)
custom_corpus = [["get", "vaccinated", "bro"], ["vax", "saves", "lives"]]

# Initialize a Word2Vec model with pretrained weights
model = Word2Vec(vector_size=300, window=5, min_count=1)
model.build_vocab(custom_corpus)
model.build_vocab([list(pretrained_model.key_to_index.keys())], update=True)
model.wv.vectors_lockf = np.ones(len(model.wv), dtype=np.float32)  # allows updating
model.wv.intersect_word2vec_format("glove.6B.300d.txt", binary=False, lockf=1.0)

# Fine-tune on your corpus
model.train(custom_corpus, total_examples=len(custom_corpus), epochs=5)
```

For Example

- You get an embedding model that understands "vax," "jabbed," "anti-vaxxer" as used in your data, but still retains core semantic structure from GloVe.
- https://pmc.ncbi.nlm.nih.gov/articles/PMC9578521/
 - Our study investigated and compared public sentiment related to COVID-19 vaccines expressed on 2 popular social media platforms—Reddit and Twitter—harvested from January 1, 2020, to March 1, 2022.
 - To accomplish this task, we created a fine-tuned DistilRoBERTa model to predict the sentiments of approximately 9.5 million tweets and 70 thousand Reddit comments. To fine-tune our model, our team manually labeled the sentiment of 3600 tweets and then augmented our data set through back-translation. Text sentiment for each social media platform was then classified with our fine-tuned model using Python programming language and the Hugging Face sentiment analysis pipeline.

You can definitely train it from scratch

• Presentation: Kozlowski et al. (2019)

Presentation: Kozlowski et al. (2019)

- Trained custom Word2Vec embeddings on Google Books Ngram data from each decade (1900–1999)
 - Downloaded the Google Books Ngram corpus, stratified by decade (1900–1999).
 - Trained separate Word2Vec models for each decade.
 - Used these decade-specific embeddings to:
 - Measure how meanings of cultural terms shifted across time.
 - Project words into latent dimensions (e.g., class, gender, affluence) defined by antonym word pairs (e.g., rich vs. poor).

Other Text-Based Methods

- Choose methods to answer your questions!
 - Named entity recognition
 - PoS Tagging
 - Topic models

Presentation: Knight (2022)

Presentation: Knight (2022)

- The New York Times (1890–1934) and Wall Street Journal (1905–1934)
 - OCR, 400,000+ articles
- Analyzed "agentic talk" linguistic indicators that describe corporations as intentional actors (e.g., "decided," "believed")
- Named entity recognition (NER) to identify organizations
 - Standard Named Entity Recognizer
 - Authors' own + manual cleaning
- Parsing
 - "nsubj" the active subject in a sentence
 - Stanford Tagger + manual cleaning
- Dictionary for Verbs
 - Harvard General Inquirer database
 - "cognitive orientation" and "communicating"
- STM

Topic Models

- An unsupervised method to discover hidden thematic structure
 - "what do these documents/text talk about?"
- Useful for exploratory analysis when labels aren't available
- Widely popular in social sciences

- Three Levels:
 - Documents
 - Topics
 - Words
- Documents are composed of multiple topics, with weights
- Each topic is described by a set of words, with weights

- Early/Most topic models based on TF-IDF
- Newer models based on word embedding
- If two words (word 1 and word 2) always co-occur, the computer understands that they might belong to the same topic

	words1	words2	words3	words4	words5
doc1	0	0	1	0	0
doc2	2	0	1	1	0
doc3	0	0	1	1	0
doc4	0	0	1	1	1

Latent Dirichlet Allocation (LDA)

- Introduced by Blei, Ng, and Jordan (2003)
- Assumption
 - Each document is a mixture of topics
 - Each topic is a mixture of words
 - Both mixtures are drawn from Dirichlet distributions
- Widely used, but with limitations:
 - Cannot integrating metadata
 - Doesn't work well with short text

Structural Topic Modeling (STM)

- Extends LDA by incorporating document-level metadata/covariate
 - Year
 - Political Party
 - Before/After Treatment
- Instead of assuming Dirichlet distributions, it uses logisticnormal prior (has a normal distribution in log-space)
 - Don't ask me what they mean ☺
- Allows topic prevalence and content to vary by covariates
- Excellent for theory-testing in social science
- Implemented in R using stm package

LDA/STM Output Example

- You get:
 - A list of topics (top words per topic)
 - Topic 1's top words: animal, cat, dog, cow, farm, ...
 - Topic 2's top words: work, employ, farm, rice...
 - ...
 - Document-topic proportions
 - This document consists of 50% Topic 1, 25% Topic 2, 15% Topic 3, and 10% Topic 4
- Specific to STM:
 - Topic correlations across all documents
 - How likely Topic 1 and Topic 2 can co-occur (i.e., a network)
 - Covariate effect (e.g., topic prevalence by party/time/treatment)

Topic Modeling Does Not Give You Labels

You get:

- A list of topics (top words per topic)
 - Topic 1's top words: animal, cat, dog, cow, farm, ...
 - Topic 2's top words: work, employ, farm, rice...
 - ...
- But they never tell you what the topics are, the computer only knows that these words seem to co-occur here
 - No labels like "animal," "farming," or "climate change" / "terrorism" etc
 - Labels are interpretive, researcher-assigned summaries
 - Needs researchers' substantial expertise to cover research areas

You must:

- Inspect top words
- Read exemplar documents for each topic
- Assign a topic label and discuss with co-authors

Topic Modeling Does Not Give You Labels

- Topic modeling is a discovery tool, not a labeling machine.
- It helps uncover patterns you provide the meaning.
- A topic with top words like "children," "school," "teacher," "lunch,"
 "bus" might sound like it's about "Education"
- But since I am aware that the documents I have are all NY Times articles mentioning "gun," I should know that it's mostly about "school shootings."
- If I did the search about "poverty," then I should label it "childhood hunger."
- Reading top representative documents is also helpful.

Specify the No. of Topics (K) (LDA/STM)

- There is no "correct" K, as much art as science
 - It's a modeling choice, not a ground truth
 - Too few topics → overgeneralized, mixed themes
 - Too many topics → fragmented, redundant, hard to interpret
 - Need to find a balanced K with human interpretation
- Model diagnosis does help
 - Held-out likelihood (predictive performance)
 - Semantic coherence (do top words make sense together?)
 - Exclusivity (are top words unique to topics?)
 - But most important: <u>Interpretability</u> (read top documents, qualitative)
- Tip
 - Plot "Exclusivity vs. Semantic Coherence" to find a sweet spot
 - Favor interpretability over statistical fit for most social science audiences
 - Be transparent and communicate the transparency (in appendix)

Limitations of LDA/STM

- Bag-of-words assumption: no word order
- Topics can be hard to interpret
- Sensitive to preprocessing choices
- STM assumes linear effects of covariates

What Comes After STM?

- BERTopic: combines transformer embeddings with clustering
 - No need to specify topic count in advance
 - More coherent topics via sentence-level context
 - Better for short texts (e.g., tweets)
- Not always good
 - You might get 15 topics, but your theory posits 6 dimensions
 - So when social scientists use BERTopic (which typically returns more topics than they want), they have to do *post-hoc merging*
 - Merge topics 3, 8, and 14 because they all relate to "government surveillance."
 - This is defensible but might come off weird in eyes of reviewers
- Instead, use STM, run various K models, and pick the consensus

Topic Modeling Summary

- Use LDA to explore topics of long documents
- Use STM when you have metadata and theory-driven questions
- Use BERTopic for modern, contextual embeddings + better clustering
- All topic models are tools interpret with care

Case: Zhou et al. (2023)

- Exploring PR research topics via topic modeling
- Use STM to identify topics and clusters
- Compare topic distributions across journals and time
- Network simulation to test inter-cluster dynamics

RQ & Findings

- What topics do public relations scholars study?
- What clusters/themes emerge?
- Do these clusters/themes intersect with each other?

RQ & Findings

- What topics do public relations scholars study?
- What clusters/themes emerge?
- Do these clusters/themes intersect with each other?
- Identify 65 topics
- These 65 topics cluster into 9 subfields
- These subfields do not talk to each other

- Web Scraping Data
 - Time: from 2010 to 2020
 - Journals:
 - Public Relations Review (PRR)
 - Journal of Public Relations Research (JPRR)
 - 1093 papers from PRR and 200 from JPRR
 - 7,400,685 words

- Method 1: Structural Topic Modeling
 - We identified 65 topics, such as
 - "Twitter" "Facebook"
 - "Relationship management" "Nonprofit Management"
 - "Image Repair" "Situational Crisis Communication Theory"

- Method 1: Structural Topic Modeling
 - We identified 65 topics, such as
 - "Twitter" "Facebook" --- "Digital Media"
 - "Relationship management" "Nonprofit Management" --- "Strategic Management"
 - "Image Repair" "Situational Crisis Communication Theory" --- "Crisis Comm"

- Method 1: Structural Topic Modeling
 - We identified 65 topics, such as
 - "Twitter" "Facebook" --- "Digital Media"
 - "Relationship management" "Nonprofit Management" --- "Strategic Management"
 - "Image Repair" "Situational Crisis Communication Theory" --- "Crisis Comm"
 - <Like, comment, and share on Facebook: How each behavior differs from the other> is detected to have:
 - Digital Media (73.7%)
 - Strategic Management (18.7%)
 - Public Relations Professionalism (0.1%), Crisis Communication (2.3%), Internal Communication (0.8%), Global Public Relations (0.0%), Rhetoric and Philosophy (0.1%), Media Relations (0.2%), Critical Studies (0.0%)

• Method 2: Inter-Cluster Network Analysis

	Cluster A	Cluster B	Cluster C	Cluster D
Article 1	0.1	0.2	0.3	0.4

Article 1's Contribution to the Tie Strength in the Inter-Cluster Network								
	Cluster A	Cluster D						
Cluster A	-	0.1*0.2	0.1*0.3	0.1*0.4				
Cluster B	-	-	0.2*0.3	0.2*0.4				
Cluster C	-	-	-	0.3*0.4				
Cluster D	-	-	-	-				

• Method 2: Inter-Cluster Network Analysis

• Method 3: Network Simulation

Article	Crisis	Digital	Global	***	Management	Critical	Media
1	0.000	0.003	0.001	•••	0.749	0.001	0.000
2	0.006	0.002	0.070	•••	0.420	0.005	0.003
3	0.204	0.010	0.004	•••	0.226	0.025	0.370
4	0.167	0.028	0.031		0.124	0.000	0.012
•••	•••	•••	• • •	•••	•••	•••	•••
1291	0.008	0.061	0.012		0.076	0.063	0.007
1292	0.786	0.001	0.002	***	0.102	0.001	0.001
1293	0.003	0.233	0.001	•••	0.142	0.082	0.006

- Method 3: Network Simulation
 - For each article, cluster proportions add up to 100%
 - For each cluster, its proportion across all articles remains the same

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	•••	Cluster 7	Cluster 8	Cluster 9
Paper 1								
Paper 2								
Paper 3								
Paper 1292								
Paper 1293								

- Method 3: Network Simulation
 - For each article, cluster proportions add up to 100%
 - For each cluster, its proportion across all articles remains the same

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	 Cluster 7	Cluster 8	Cluster 9
Paper 1							
Paper 2							
Paper 3							
Paper 1292							
Paper 1293							

- Method 3: Network Simulation
 - For each article, cluster proportions add up to 100%
 - For each cluster, its proportion across all articles remains the same

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	 Cluster 7	Cluster 8	Cluster 9
Paper 1							
Paper 2							
Paper 3			[i ₁ , j ₁]		[i ₁ , j ₂]		
Paper 1292			[i ₂ , j ₁]		[i ₂ , j ₂]		
Paper 1293							

- Method 3: Network Simulation
 - For each article, cluster proportions add up to 100%
 - For each cluster, its proportion across all articles remains the same

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	•••	Cluster 7	Cluster 8	Cluster 9
Paper 1								
Paper 2								
Paper 3			[i ₁ , j ₁] - Δ			$[i_1, j_2] + \Delta$		
Paper 1292			$[i_2, j_1] + \Delta$			[i ₂ , j ₂] - Δ		
Paper 1293								

- Method 3: Network Simulation
 - For each article, cluster proportions add up to 100%
 - For each cluster, its proportion across all articles remains the same

- 1000 Simulated Networks / Alternative Universes/Timelines
- 95%/5% upper/lower bound as the confidence interval for tie strengths
- We simulated "what the field's interconnection could have been".

• Method 3: Network Simulation

	Public Relations	Digital	Crisis	Internal	Global	Rhetoric and	Media	Critical
	Professionalism	Media	Communication	Communication	Public Relations	Philosophy	Relations	Studies
Strategic	20.549	28.031	20.493	16.518	12.960	11.071	12.801	10.528
•	[26.535,	[25.162,	[23.409,	[18.079,	[14.895,	[14.593,	[14.059,	[13.308,
Management	26.615]	25.240]	23.483]	18.139]	14.946]	14.644]	14.110]	13.355]
Public Relations		8.494	4.114	8.630	7.934	6.890	3.735	7.889
Professionalism		[13.193,	[12.235,	[9.337,	[7.661,	[7.490,	[7.185,	[6.823,
Fiolessionalism		13.244]	12.286]	9.377]	7.696]	7.523]	Relations 12.801 [14.059, 14.110] 3.735	6.855]
Digital			7.872	6.484	4.181	5.363	5.337	2.900
_			[11.559,	[8.755,	[7.168,	[7.036,	[6.742,	[6.377,
Media			11.607]	8.793]	7.200]	7.068]	Relations 12.801 [14.059, 14.110] 3.735 [7.185, 7.218] 5.337 [6.742, 6.774] 7.374 [6.293, 6.323] 2.110 [4.698, 4.723] 3.071 [3.832, 3.853] 1.579 [3.751,	6.406]
Crisis				4.440	3.236	3.048	7.374	1.411
				[8.144,	[6.648,	[6.521,	[6.293,	[5.910,
Communication				8.180]	6.680]	6.552]	6.323]	5.938]
Internal					4.044	3.107	2.110	3.210
Communication					[4.997,	[4.890,	[4.698,	[4.441,
Communication					5.022]	4.915]	4.723]	4.464]
Global						2.664	3.071	2.714
Public Relations						[3.981,	[3.832,	[3.612,
Public Relations						4.002]	12.801 [14.059, 14.110] 3.735 [7.185, 7.218] 5.337 [6.742, 6.774] 7.374 [6.293, 6.323] 2.110 [4.698, 4.723] 3.071 [3.832, 3.853] 1.579 [3.751,	3.632]
Rhetoric and							1.579	5.239
							[3.751,	[3.558,
Philosophy							3.772]	3.579]
Media								1.035
								[3.402,
Relations								3.421]

Lab Preview

- Explore semantic similarity using word embedding
- Practice Google Perspective API
- Run STM with presidential speech corpus and metadata
- Pick K, generate the model, label topics
- Explore covariates' effects on topical proportion
- Visualize topic correlations
- Tomorrow's Presentation
 - Eunsun Kyoung
 - Dongwook Kim
 - Rita Tang