CS 524: Introduction to Optimization Lecture 22: Constraint logic extensions

Michael Ferris

Computer Sciences Department University of Wisconsin-Madison

October 25, 2023

Constraint Logic Programming

Binary variables δ_i represent statements P_i via the following construction:

$$\delta_i = \begin{cases} 1 & \text{if statement } P_i \text{ is true} \\ 0 & \text{if statement } P_i \text{ is false} \end{cases}$$

 P_i could be "do project i" or " $f(x) \le 0$ "

 δ_i is an indicator variable for whether the statement is true or false.

Standard boolean algebra notation for connectives between statements:

- ∨ means 'or'
- ∧ means 'and'
- ¬ means 'not'
- → means 'implies'
- \leftrightarrow means 'if and only if'

Other connectives such as "nor" or "nand" are also used in the literature.

Equivalences between CLP and MIP

- Next slides detail standard ways to equivalently express statement logic in terms of constraints on the corresponding indicator variables in a MIP.
- The examples shown in the table are useful in building models since they construct a tight approximation of the logic typically, even when the solution algorithm used to solve the MIP relaxes some of the variables to be continuous (i.e. in [0,1] instead on being in $\{0,1\}$).
- Note that we add some slides (More details, definition of y variables representing other modeing constructs) that are for information only here. Please keep these only for future reference!

Statement MIP (Constraint
-----------------	------------

1.
$$\neg P_1$$

$$\delta_1 = 0$$

2.
$$P_1 \vee P_2$$

$$\delta_1 + \delta_2 \ge 1$$

3.
$$P_1 \vee P_2$$

$$\delta_1 + \delta_2 = 1$$

4.
$$P_1 \wedge P_2$$

$$\delta_1=1$$
, $\delta_2=1$

5.
$$\neg (P_1 \lor P_2)$$
 $\delta_1 = 0, \ \delta_2 = 0$

$$\delta_1 = 0, \ \delta_2 = 0$$

6.
$$P_1 \rightarrow P_2$$
 $\delta_1 \leq \delta_2$

6.
$$P_1 \to P_2$$
 $\theta_1 \ge \theta_2$
7. $P_1 \to (\neg P_2)$ $\delta_1 + \delta_2 < 1$

$$\delta_1 = \delta_2$$

8.
$$P_1 \leftrightarrow P_2$$
 $\delta_1 = \delta_2$

9.
$$P_1 \rightarrow (P_2 \wedge P_3)$$
 $\delta_1 \leq \delta_2$, $\delta_1 \leq \delta_3$

9.
$$\Gamma_1 \rightarrow (\Gamma_2 \land \Gamma_3)$$

10. $P_1 \rightarrow (P_2 \lor P_3)$

10.
$$P_1 \rightarrow (P_2 \vee P_3)$$
 $\delta_1 \leq \delta_2 + \delta_3$

11.
$$(P_1 \wedge P_2) \rightarrow P_3$$
 $\delta_1 + \delta_2 \leq 1 + \delta_3$

$$\delta_1 + \delta_2 \leq 1 + \delta_3$$

12.
$$(P_1 \vee P_2) \rightarrow P_3$$
 $\delta_1 \leq \delta_3$, $\delta_2 \leq \delta_3$

$$\delta_1 \leq \delta_3$$
, $\delta_2 \leq \delta_3$

13.
$$P_1 \wedge (P_2 \vee P_3)$$
 $\delta_1 = 1, \ \delta_2 + \delta_3 \geq 1$

$$\delta_1 = 1$$
, $\delta_2 + \delta_3 \ge 1$

14.
$$P_1 \lor (P_2 \land P_3)$$
 $\delta_1 + \delta_2 \ge 1, \ \delta_1 + \delta_3 \ge 1$

Example: pitcher.gms

Consider the draft day statement: "if DE and ST are signed, then BS cannot be signed."

- Let P_{DE} mean "sign DE" and represent this using an indicator δ_{DE} with $\delta_{DE}=1$ iff P_{DE} is true
- ullet Similarly for P_{ST} and δ_{ST} and P_{BS} and δ_{BS}
- The statement "DE and ST are signed" is the statement $P_{DE} \wedge P_{ST}$ is true, while "BS is not signed" can be expressed as $\neg P_{BS}$ is true.
- The draft statement "if DE and ST are signed, then BS cannot be signed" is thus equivalent to the statement $(P_{DE} \wedge P_{ST}) \rightarrow (\neg P_{BS})$ being true.
- The table above (line 11) expresses the truth of this statement by simply imposing the constraint:

$$\delta_{DE} + \delta_{ST} \leq 1 + (1 - \delta_{BS})$$

Note that $1 - \delta_{BS}$ represents $\neg P_{BS}$.

Logical AND and OR

- Statements 2. and 4. of the table above allow forcing of AND or OR
- If we wish to have a new binary variable δ_n represent the AND or OR condition then we need the following if and only if statements

$$P_n \leftrightarrow (P_1 \land \dots \land P_k) \quad \delta_n + k \ge 1 + \sum_{i=1}^k \delta_i, \ \delta_j \ge \delta_n, \ j = 1, \dots, k$$
 (or equivalently)
$$\delta_n = \min(\delta_1, \dots, \delta_k)$$
 (or equivalently)
$$\delta_n = \delta_1 \times \delta_2 \times \dots \times \delta_k$$

$$P_n \leftrightarrow (P_1 \lor \dots \lor P_k) \quad \sum_{i=1}^k \delta_i \ge \delta_n, \ \delta_n \ge \delta_j, \ j = 1, \dots, k$$
 (or equivalently)
$$\delta_n = \max(\delta_1, \dots, \delta_k)$$

Note: It's *not* necessary to make δ_n a binary variable! Thus cut down on the number of binary variables in the model. An upper bound of 1 on δ_n can be added instead.

QAP – The second most famous problem

"Quadratic" Assignment Problem

- Set of facilities F
- Set of locations L
- d_{ij} distance from $i \in L$ to $j \in L$
- f_{kl} flow from $k \in F$ to $l \in F$

QAP

$$\begin{aligned} x_{ij} &= \left\{ \begin{array}{l} 1 & \text{assign facility } i \text{ to location } j \\ 0 & \text{Otherwise} \end{array} \right. \\ & \min \sum_{k \in F} \sum_{i \in L} \sum_{l \in F} \sum_{j \in L} d_{ij} f_{kl} x_{ki} x_{lj} \\ & \sum_{i \in F} x_{ij} &= 1 \ \forall j \in L \\ & \sum_{j \in L} x_{ij} &= 1 \ \forall i \in F \\ & x_{ij} &\in \left\{ 0, 1 \right\} \ \forall i \in F, \forall j \in L \end{aligned}$$

QAP

- x_{ki}x_{lj} is nonlinear!
- What you really want it is to count $d_{ij}f_{kl}$ towards your objective if and only if you assign facility $f \to i$ and facility $k \to j$
- There is one more "trick" you should know when you are multiplying two binary variables, that you may have missed above!

A Final Trick

Modeling Trick: Linearizing product of two binaries

$$z_{kilj} = 1 \Leftrightarrow x_{ki} = 1, x_{lj} = 1 \Leftrightarrow x_{ki} \wedge x_{lj}$$

$$z_{kilj} \leq x_{ki} \ \forall k \in F, i \in L, l \in F, j \in L$$

$$z_{kilj} \leq x_{lj} \ \forall k \in F, i \in L, l \in F, j \in L$$

$$z_{kilj} \geq x_{ki} + x_{lj} - 1 \ \forall k \in F, i \in L, l \in F, j \in L$$

ullet This is a special case of $P_{z_{lilj}} \leftrightarrow (P_{x_{ki}} \wedge P_{x_{lj}})$

$$z_{kilj} + 2 \ge 1 + x_{ki} + x_{lj}, x_{ki} \ge z_{kilj}, x_{lj} \ge z_{kilj}$$

ullet We can also do it using (reverse key obs) $z_{kilj}=1\Rightarrow x_{ki}+x_{lj}\geq 2$

$$-x_{ki} - x_{lj} + 2 \le 2(1 - z_{kilj}),$$
 i.e. $x_{ki} + x_{lj} - 2z_{kilj} \ge 0$

$y = x\delta$ for continuous x, binary δ

- Must know lower and upper bounds $L \le x \le U$
- MIP formulation:

$$L\delta \le y \le U\delta$$

$$L(1-\delta) \le x - y \le U(1-\delta)$$

$y = \min(x_1, x_2)$ for continuous variables x_1, x_2

- Must know lower and upper bounds $L_i \le x_i \le U_i$
- Introduce binary variables δ_1 , δ_2 to mean

$$\delta_i = \begin{cases} 1 & \text{if } x_i \text{ is the minimum value} \\ 0 & \text{otherwise} \end{cases}$$

MIP formulation:

$$L_{i} \leq x_{i} \leq U_{i}$$

 $y \leq x_{i}$
 $y \geq x_{1} - (U_{1} - L_{min})(1 - \delta_{1})$
 $y \geq x_{2} - (U_{2} - L_{min})(1 - \delta_{2})$
 $1 = \delta_{1} + \delta_{2}$

Obvious extension to minimum of n variables

 $y = \max(x_1, x_2, \dots, x_n)$ for continuous variables x_1, \dots, x_n

- Must know lower and upper bounds $L_i \le x_i \le U_i$
- Introduce binary variables δ_i , i = 1, ..., n to mean

$$\delta_i = \begin{cases} 1 & \text{if } x_i \text{ is the maximum value} \\ 0 & \text{otherwise} \end{cases}$$

MIP formulation:

$$L_i \le x_i \le U_i$$

 $y \ge x_i$
 $y \le x_i + (U_{max} - L_i)(1 - \delta_i)$
 $1 = \sum_i \delta_i$

$$y = |x_1 - x_2|$$
 for continuous variables x_1 , x_2

- Must know lower and upper bounds $0 \le x_i \le U$
- Introduce binary variables δ_1 , δ_2 to mean

$$\delta_i = egin{cases} 1 & ext{if } x_i - x_j ext{ is the positive value } (j
eq i) \\ 0 & ext{otherwise} \end{cases}$$

MIP formulation:

$$0 \le x_i \le U$$

$$0 \le y - (x_1 - x_2) \le 2U\delta_2$$

$$0 \le y - (x_2 - x_1) \le 2U\delta_1$$

$$1 = \delta_1 + \delta_2$$

Extensions

- Also can turn on/off constraints using the model construct: indicator constraints
- Other operators like "before", "last" or "notequal", "allDifferent" are often allowed in constraint logic programming (CLP) languages
- There is a growing literature on how to reformulate some of these within a MIP code and lots of specialized codes that treat these constraints explicitly
- Merging these two techniques (MIP and CLP) is an active area of research
- The techniques used in CLP are essentially clever ways to do complete enumeration very efficiently and quickly.