车道数量滤波方案

目录

- 背景:
- 优化方案:
- 车道数量滤波器设计细节
- 车道存在性跟踪器设计
- 后处理

背景:

基于现在元素生成方案,梳理出目前性能以及实车影响项,预期通过避开风险项进行车道数量稳定滤波工作开展,同时通过车道数稳定做到 Segment&Lane层级元素几何&属性稳定。

1	元素	功能		方案/策略	当前性能	影响项
2	Link	生成		LETS算法搜索		
3	Dot	生成 预处理		去重,横向偏差,最大2米,平均1米	基本是单帧性能	影响Segment和Lane生成稳定性
4			创建	车道线起终点、分合流,变化1~1.5米		
5			后处理	聚合,dbscan阈值7.5米、分合流点阈值30米		
6		关联		欧式距离30米,投影纵向距离10米		
7		更新		使用最新观测数据		
8	Segment	生成	补线	根据dot延长车道线、左右边界线		1.影响LD属性投影模块
9			延长	缺失车道线补线		2.补线和延长策略单帧结果引起车道数、拓扑不稳定

10	关联	dot id、IOU贪心匹配最大		
11	更新	使用最新观测数据		
12 Line	关联	id关联		
13	更新	使用最新观测		
14 Lane	生成	相邻左右车道线生成	车道存	在性不稳定,直行时选道策略跳动,引起画龙
15	关联	lane id以及iou		
16	更新	使用最新观测		

优化方案:

- 1. Segment Target中增加车道数量滤波器,稳定帧间车道数量;
- 2. Lane Target中增加车道存在性跟踪器,提供数量滤波时的约束检验以及车道增减的参考;

整体方案流程图

车道数量滤波器设计细节

时序跟踪策略

通过匹配,将Tracker的几何数据更新为最新Measurement,同时初始化新生生成SegmentTarget的数量滤波器。 匹配策略

1			Measurement			
2	2		0	1	N	
3		0	-	初始化新的数量滤波器到tracker中	-	
4	Tracker	1	消亡	滤波器更新	iou最大通过匹配实现Target延续 非最大通过tracker作为初始值进行创建	
5		N	-	将Measurement按N个Tracker进行分段,每段独立滤波更新最后再对同样长度的段做聚合,不同长度创建新的segment	将N个Tracker的切分点投影到N个Measurement上操作同N-1匹配	

匹配示意图

时序融合策略

状态空间

定义 S 为车道数量,假设最多有7条车道 $S = \{1,2,3,4,5,6,7\}$

状态变量

每种车道数量的概率 π , 初始值 π_0 可参考LD中车道数量通过离散高斯模型进行概率计算

状态转移概率矩阵

假设在segment宽度稳定且和LD宽度接近情况下,车道数量只存在三种变化可能: P 不变、 0.5 - P/2 增加一条、 0.5 - P/2 减少一条。假设宽度多帧稳定,不变的概率最大。

另外可参考LD前后segment信息判断是否存在分流场景,进行状态转移矩阵设计

观测概率矩阵

考虑三个方面可观测segment车道数量:LD先验车道数量、基于segment宽度推理车道数量、基于模型观测车道数量以及置信度高的车道数量

$$a_{ij} = lpha a_{ij}^{LD} + eta a_{ij}^{Width} + \gamma a_{ij}^{Perception} + \delta a_{ij}^{HighCon}$$

此外可以添加距离因子, 距离越远高斯峰值越低

观测状态

定义 O 为观测的车道数量, 观测空间 $O = \{1, 2, 3, 4, 5, 6, 7\}$

前向算法(Forward Algorithm)求解最优估计

对于 t 时刻,每个状态概率为: $lpha_t(i) = \sum_j lpha_{t-1}(j) a_{ji} b_i(o_t)$,最大概率对应的车道数量为 $P_t = argmax(lpha_t(i))$

车道存在性跟踪器设计

基于稳定的segment段实现存在性跟踪。通过帧间车道匹配更新跟踪帧数,作为车道存在性高低置信度判断依据。

后处理

道路结构还原

以滤波前后车道数变作为参考,以及车道存在性作为约束,对segment车道几何进行修正

- 车道数不变:不做增补处理
- 车道数变多: 根据车道匹配结果, 做增补处理
 - 。 存在未匹配的高置信度车道, 作为增加的车道
 - 。 不存在未匹配的车道,则看是否存在一(tracker)对多(meas.)匹配关系,如存在则使用后者作为增加车道
- 车道数变少: 根据车道匹配结果, 做增补处理
 - 。操作与上述相反

Segment聚合

在进行车道数量滤波后,对Segment进行重组,相同的车道数量的Segment、line、lane进行合并,滤波器的转移概率进行加权更新。最终输出稳定的元素 几何信息。