Business Analytics Classification Models

Instructor: Hrant Davtyan

Course: Business Analytics, Fall, MSSM, 2018

Content

- 1. Recap
 - a. Classification Model Evaluation
 - b. Classification Model Selection
- 2. Introduction to Classification and Regression Trees (CART)
 - a. Intuition
 - b. Advantages
 - c. Model Fitting
 - d. Model Diagnostics
- 3. Introduction to Logistic Regression (Logit)
 - a. Intuition
 - b. Advantages
 - c. Model Fitting
 - d. Model Diagnostics (covered later)

Recap

Prediction Errors and Confusion Matrix

Confusion Matrix		Reality	
		0	1
Predicted	0	TN	FN
	1	FP	TP

Model evaluation metrics

- 1. Accuracy % of correct predictions
 - Doesn't concentrate on any of the classes, is only useful for balanced data only
- 2. Recall (Sensitivity, TPR) % of correctly predicted positives
 - Concentrates on FN only (TPR=1 ⇔ FN=0), useful for unbalanced data
- 3. Specificity (TNR) % of correctly predicted negatives
 - Concentrates on FP only (TNR=1

 FP=0), useful for unbalanced data
- 4. How to concentrate on both?
 - Use Harmonic Mean of TPR and TNR (F score)
 - Do your calculations for different possible thresholds (ROC AUC score Area under Receiver Operating Characteristics Curve)

Model Selection

Bias-Variance tradeoff

When making a prediction, we may have 2 objectives:

- to get as accurate model as possible (low bias),
- to get as consistent/generalizable model as possible (low variance).

Problem!

this is not always possible

Bias-Variance tradeoff (cont'd)

Bias-Variance tradeoff (cont'd)

- 1. The high variance problem is known as overfitting.
- 2. Overfitting decreases the model generalizability (i.e. model is not useful for external data).
- 3. To learn about overfitting, the (probably) best solution is train-test split.
- 4. Develop the model on train, and calculate its accuracy measures on train and test.
- 5. If they are close, then no overfitting.
- 6. If 2 measures are different, then you probably have overfitting.

How to fight overfitting?

Develop better models by tuning hyperparameters.

- Either manually put different values for hyperparameters, and choose the best ones.
- Or do the same thing automatically using an algorithm called GridSearch.
- For example: maximum depth of the decision tree to grow.

Problem with Hyperparameter tuning?

- To tune hyperparameters and avoid overfitting the train set, one should calculate accuracy on the test.
- Yet, it is possible, that one starts to overfit train set instead.
- Solution? Evaluate your model on different test sets, not only one.

Cross-Validation

- Train-test split helps to fight overfitting on the Training data.
- 2. What if we overfit test data?
- 3. Solution: test on different Test sets (known as Cross-Validation).
- 4. Example: 5 fold (5 component) cross validation (on the right).

Classification and Regression Tree

CART: intuition

How CART grows?

- 1. The objective is to make as accurate prediction as possible.
- 2. For that tree splits in a way to have as pure leafs (nodes) in the end as possible.
- 3. In other words, it aims to reduce variance after each split.
- 4. 2 measures of variance are usually aimed to minimize by decision trees:
 - Gini = 2*p*(1-p)
 - Entropy = -p*log(p)
- 5. Recommendation: almost always use Gini as a Loss function, because:
 - Theory does not suggest any dominance,
 - Published papers and projects report always identical results,
 - Gini is faster, as unlike entropy, there is no logarithm calculated behind.

Gini: derivation for binary case

General case (multiple classes): Gini index =
$$1 - \sum_{i=1}^{n} p_i^2$$

Binary case (2 classes: $n = 2$): Gini index = $1 - \sum_{i=1}^{2} p_i^2$
= $1 - p_1^2 - p_2^2 \stackrel{p_1 + p_2 = 1}{\Longleftrightarrow} 1 - p_1^2 - (1 - p_1)^2$
 $\stackrel{p \equiv p_1}{\Longleftrightarrow} (1 - p^2) - (1 - p)^2$
= $(1 - p)(1 + p) - (1 - p)(1 - p)$
= $(1 - p)(1 + p - 1 + p) = (1 - p)2p$
= $2p(1 - p)$
= Variance of Binomial distribution ($n = 2$)

Greedy Search algorithm

- 1. As mentioned, the tree aims to split using a variable (and a value) that minimizes the Gini value at each stage separately.
- 2. This algorithm is called Greedy Search algorithm, as the search for the optimal path is done by optimizing the split at every single stage.
- 3. Sometimes, this might not yield the global optimum. Like in chess, sometimes to win one has to sacrifice a figure during the game. But CART never sacrifices, thus, the path it takes may be just locally (and not globally) optimal.
- 4. The right hand side animation illustrates a similar situation when greedy search algorithm is unable to find the path achieving highest sum (7+3+99).

Logistic Regression

Intuition

- 1. Classical regression models are not very useful for predicting binary target.
- 2. As an alternative to Linear regression (for predicting continuous dependent variable), Logistic regression is suggested (for predicting discrete outcomes).
- 3. It is called Logistic regression as:
 - regression is run behind to predict an intermediate value Z (discussed later),
 - logit (also known as Sigmoid) function is used to transform this Z into probabilities,
 - given the probability threshold (usually 0.5), predicted probabilities as transformed to 1 (if >0.5) and 0 (otherwise).
- 4. As a result, a linear threshold is drawn between two (or more) classes of observations.
- 5. Key takeaway: logit is a **linear** model and it provides predicted **probabilities**.

Sigmoid function

Sigmoid function is used to transformed the Z continuous variable resulting from regression into probabilities as:

- Sigmoid assures that whatever value Z attains, it will be transformed into something from range (0,1).
- It is symmetric around 0.5 (outcome classes have equal chances of being predicted).
- It provides the opportunity to interpret Z.

Z: interpretation

- 1. Due to Sigmoid, Logistic Regression is fully interpretable model.
- 2. As shown on the right hand side derivation, the intermediate continuous variable Z achieved through regression is nothing else than the natural logarithm of odd ratio.
- 3. Maximizing log(odd ratio) maximizes odd ratio, which in its turn maximizes predicted probabilities, i.e. increases confidence in predictions.

$$\bullet \ \ Y = \frac{1}{1 + e^{(-z)}}$$

$$\bullet \ Y + Y \times e^{(-z)} = 1$$

$$\bullet \ Y \times e^{(-z)} = 1 - Y$$

$$\bullet \ e^{(-z)} = \frac{1-Y}{Y}$$

$$\bullet \ e^{(z)} = \frac{Y}{1-Y}$$

•
$$z = log(\frac{Y}{1-Y})$$

Loss function

- 1. On the one hand, we aim to maximize the probability of predicting one, if an observation has a true value of 1.
- 2. One the other hand, we aim to maximize the probability of of predicting 0, if an observation is truly 0. Thus, we basically aim to minimize the probability of predicting 1 in this case.
- 3. Conclusion: we need a Loss function which achieves both of the abovementioned contradicting objectives.
- Probability of $Y_t = 1$: $Y_p = G(z) \rightarrow max$
- Probability of $Y_t = 0$: $Y_p = 1 G(z) \rightarrow max$
- $G(z)^{Y_t} \times [1 G(z)]^{(1-Y_t)} \to max$

Cross-entropy: derivation

- $G(z)^{Y_t} \times [1 G(z)]^{(1-Y_t)} \to max$
- $log(G(z)^{Y_t} \times [1 G(z)]^{(1-Y_t)}) \rightarrow max$
- $log(G(z)^{Y_t}) + log([1 G(z)]^{(1-Y_t)}) \rightarrow max$
- $Y_t \times log(G(z)) + (1 Y_t) \times log(1 G(z)) \rightarrow max$

•
$$-Y_t \times log(G(z)) - (1 - Y_t) \times log(1 - G(z)) \rightarrow min$$

Gradient descent

- 1. Last question: how do we minimize the cross-entropy loss function?
- 2. Solution steps:
 - a. Randomly choose values for beta coefficients,
 - b. Make a prediction and calculate Loss,
 - c. Calculate the derivative of the Loss given the randomly initialized betas,
 - d. Update betas opposite to gradient direction with an amount proportional to the partial derivative.
 - e. Repeat steps b-d steps unless Loss is no longer minimized.
- 3. The only problem:
 - a. If Loss is not quadratic, then one may end up in a locally optimal point, not globally (i.e. local and global optimums are the same for a quadratic function).

Regularization

- 1. What do we do if CART overfits? We tune depth and/or other hyperparameters.
- 2. Hyperparameters for Logit? Lambda regularization rate.
- 3. Logit overfits if beta coefficients get to large. Regularization is the process of minimizing the absolute value or the square of betas directly in the loss function.
 - a. Absolute value L1 regularization
 - b. Squares L2 regularization
- 4. Lambda parameter controls the strength of regularization: higher lamda indicates stronger regularization and should be used whenever model overfits.
- 5. Note: in sklearn the parameter to tune is called C = inverse of lambda, i.e. lower values of C indicates higher values of lambda and stronger regularization.

Comparison

- 1. Logistic Regression
 - Is simple and fast
 - Is linear
 - Provides probabilities
 - Is fully interpretable
 - Is parametric
 - Has a few hyperparameters to tune
- 2. Decision Tree Classification
 - Is simple and fast
 - Is nonlinear
 - Does not provide probabilities
 - Is interpretable but not fully (e.g. does not provide p-values)
 - Is nonparametric
 - Has many hyperparameters to tune

Thank you