

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호

10-2002-0058102

Application Number

출 원 년 월 일

인

2002년 09월 25일

Date of Application

SEP 25, 2002

출 원 Applicant(s) 주식회사 하이닉스반도체

Hynix Semiconductor Inc.

2003 년 05 월 14 의

특 허 청 COMMISSIONEI

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0002

【제출일자】 2002.09.25

【발명의 명칭】 반도체 소자의 이중 도핑 분포를 갖는 콘택플러그 형성 방

범

【발명의 영문명칭】 Method for making contact plug having double doping

distribution in semiconductor device

【출원인】

【명칭】 주식회사 하이닉스반도체

【출원인코드】 1-1998-004569-8

【대리인】

【명칭】 특허법인 신성

【대리인코드】 9-2000-100004-8

【지정된변리사】 변리사 정지원, 변리사 원석희, 변리사 박해천

【포괄위임등록번호】 2000-049307-2

【발명자】

【성명의 국문표기】 주성재

【성명의 영문표기】 J00,Sung Jae

【주민등록번호】 700523-1182411

【우편번호】 463-700

【주소】 경기도 성남시 분당구 구미동 금강아파트 1103-303

【국적】 KR ·

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합니다. 대

리인 특허법인 신

성 (인)

【수수료】

【기본출원료】 19 면 29,000 원

【가산출원료】 0 면 0 원

【우선권주장료】 0 건 0 원

【심사청구료】 0 항 0 원

【합계】 29.000 원

【첨부서류】

1. 요약서·명세서(도면)_1통

【요약서】

[요약]

본 발명은 도펀트의 농도 감소로 인한 콘택저항 증가를 방지하면서 콘택내에 주입된 도펀트의 확산을 억제하는데 적합한 반도체 소자의 콘택플러그 형성 방법을 제공하기위한 것으로, 본 발명은 콘택분리막이 제공하는 개구내에 도전막을 증착하면서 도전막의 깊이 방향으로 다른 농도분포를 갖도록 도펀트를 도핑하되, 도전막의 증착초기부터목표 두께까지는 도펀트의 도핑 농도가 제1 농도로부터 점진적으로 증가하여 제2 농도에이르도록 도핑하고, 목표 두께부터 증착 완료두께까지는 도펀트의 도핑 농도가 제2 농도로 균일하게 유지되도록 도핑한다.

【대표도】

도 3

【색인어】

폴리실리콘플러그, 도핑농도, 콘택저항, 도펀트 확산, 콘택플러그

【명세서】

【발명의 명칭】

반도체 소자의 이중 도핑 분포를 갖는 콘택플러그 형성 방법{Method for making contact plug having double doping distribution in semiconductor device}

【도면의 간단한 설명】

도 1은 종래기술에 따른 반도체 소자의 셀플러그를 도시한 도면,

도 2는 도 1의 폴리실리콘 플러그의 두께 방향에 대한 인(P)의 도핑 농도 분포를 도시한 그래프,

도 3은 본 발명의 실시예에 따른 반도체 소자의 콘택플러그 형성 방법을 도시한 공정 흐름도,

도 4는 도 3의 도펀트 주입 과정을 상세히 도시한 공정 흐름도,

도 5는 도 3에 따른 콘택플러그의 두께에 따른 도펀트의 농도 분포를 도시한 그래 프,

도 6a 내지 도 6c는 도 3에 따른 폴리실리콘플러그의 형성 방법을 도시한 공정 사시도.

*도면의 주요 부분에 대한 부호의 설명

31 : 반도체 기판 32 : 게이트산화막

33 : 게이트전국 34 : 하드마스크

35 : 절연막 스페이서 36 : 콘택분리막

37a: 1차 폴리실리콘막 37b: 2차 폴리실리콘막

37 : 폴리실리콘플러그

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<13> 본 발명은 반도체 제조 기술에 관한 것으로, 특히 반도체 소자의 콘택플러그 형성 방법에 관한 것이다.

- 이와 같이 폴리실리콘막을 이용한 셀플러그(이하 '폴리실리콘플러그'라고 약칭함)
 는 전기전도성을 증가시키기 위해 1×10²⁰/cm³ 이상의 농도의 n형 도펀트를 도핑한다. 주
 로 사용되는 n형 도펀트는 인(Phosphorous; P)이다.
- <16>도 1은 종래기술의 콘택플러그를 갖는 반도체 소자를 도시한 단면도이다.
- <17> 도 1을 참조하면, 반도체 기판(11)상에 게이트산화막(12), 게이트전극(13), 하드마스크(14)의 순서로 적충된 게이트라인이 소정 거리를 두고 이격되면서 복수개 형성되고, 각 게이트라인의 양측벽에 절연막스페이서(15)가 구비된다.

<18> 그리고, 인접 플러그간 분리 및 절연을 위한 콘택분리막(16)이 반도체 기판(11)을 노출시키면서 게이트라인 사이를 채우고 있고, 콘택분리막(16)이 제공하는 게이트라인 사이의 공간내에 폴리실리콘플러그(17)가 매립되어 있다.

- <19> 도 1에서, 콘택플러그인 폴리실리콘 플러그(17)는 저압화학기상증착법(Low Pressure Chemical Vapor Deposition; LPCVD)을 이용하여 증착한 것이며, 500℃~600℃
 의 온도 범위에서 SiH₄, SiH₂Cl₂ 등의 기체를 사용하여 증착과정을 진행하면서 PH₃ 기체를 사용하여 n형 도펀트인 인(P)을 도핑한다.
- <20> 콘택플러그로 폴리실리콘게르마늄 플러그를 적용하기도 하는데, 이때는 SiH₄,
 SiH₂Cl₂ 등의 기체에 GeH₄, GeH₂Cl₂, Ge₂H₆ 등의 기체를 첨가한다.
- 전술한 바와 같이, 종래기술에서는 PH₃ 기체를 사용하여 인(P)을 도핑하는데, PH₃ 가스의 유량을 증가시키면 폴리실리콘 플러그내의 인 농도가 증가하며, 반대로 PH₃ 가스의 유량을 감소시키면 인 농도는 감소한다. 일반적으로 폴리실리콘플러그내 인 농도는 전체 두께에 대래 균일하게 1⋊0²⁰/cm³ 이상을 유지한다. 이것은 고농도로 도핑을 하여 폴리실리콘 플러그의 전기전도도를 증가시키기 위한 것이다.
- <22> 도 2는 도 1의 폴리실리콘 플러그의 두께 방향에 대한 인(P)의 도핑 농도 분포를 도시한 그래프이다.
- <23> 도 2를 참조하면, 폴리실리콘 플러그의 두께(t)가 증가하더라도 폴리실리콘 플러그 내 인(P)의 도핑 농도는 균일한 고농도(C)를 유지한다.

<24> 그러나, 소자의 크기가 점점 작아지면서 얕은 접합(Shallow junction)을 형성해야할 필요성이 점점 증가하고, 이에 따라 폴리실리콘 플러그를 형성한 후 후속 열공정을 거칠때 실리콘 기판 내부로 인(P) 원자가 확산하는 현상이 발생된다.

- <25> 따라서 인 확산을 억제하기 위해서는 열공정의 온도와 시간을 감소시키는 동시에 폴리실리콘 플러그의 인의 도핑농도를 줄이는 것이 필요하다.
- <26> 그러나, 폴리실리콘 플러그 전체의 인 농도를 균일하게 줄일 경우에는 폴리실리콘 플러그의 전기전도도가 저하되어 폴리실리콘 플러그의 저항이 증가하므로,소자 특성을 열화시킨다.

【발명이 이루고자 하는 기술적 과제】

<27> 본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출한 것으로, 콘택저항 증가를 방지하면서 콘택내에 주입된 도펀트의 확산을 억제하는데 적합한 반도체 소자의 콘택플러그 형성 방법을 제공하는데 그 목적이 있다.

【발명의 구성 및 작용】

생기 목적을 달성하기 위한 본 발명의 반도체 소자의 콘택플러그 형성 방법은 반도체 기판상에 상기 반도체 기판의 일부분을 노출시키는 개구를 갖는 콘택분리막을 형성하는 단계, 상기 콘택분리막의 개구내에 도전막을 증착하는 단계, 상기 도전막을 형성하는 과정중에 상기 도전막의 깊이 방향으로 다른 농도분포를 갖도록 도펀트를 도핑하는 단계, 및 상기 도전막의 평탄화 과정을 통해 상기 개구내에 콘택플러그를 형성하는 단계를

포함함을 특징으로 하고, 상기 도펀트를 도핑하는 단계는 상기 도전막의 증착초기부터 목표 두께까지는 상기 도펀트의 도핑 농도가 제1 농도로부터 점진적으로 증가하여 제2 농도에 이르도록 도핑하는 제1 도핑 단계, 및 상기 목표 두께부터 증착 완료두께까지는 상기 도펀트의 도핑 농도가 상기 제2 농도로 균일하게 유지되도록 도핑하는 제2 도핑 단계를 포함함을 특징으로 한다.

- <29> 이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람 직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.
- 도 3은 본 발명의 실시예에 따른 반도체 소자의 콘택플러그 형성 방법을 도시한 공정 흐름도이고, 도 4는 도 3의 도펀트 주입 과정을 상세히 도시한 공정 흐름도이며, 도
 5는 도 3에 따른 콘택플러그의 두께에 따른 도펀트의 농도 분포를 도시한 그래프이다.
- 도 3에 도시된 바와 같이, 본 발명의 실시예에 따른 반도체 소자의 콘택플러그 형성 방법은, 크게 게이트라인 형성 과정(21), 절연막 스페이서 형성 과정(22), 콘택분리막 형성 과정(23), 콘택분리막이 제공하는 개구내에 도전막을 증착하는 과정(24), 도전막 증착과정중에 도전막의 두께 방향으로 다른 농도 분포를 갖는 도펀트를 주입하는 과정(25), 도전막의 평탄화를 통해 콘택플러그를 형성하는 과정(26)으로 구분된다.
- 이때, 도펀트를 주입하는 과정은, 도 4 및 도 5를 참조하면, 도전막의
 증착초기(t₀)부터 목표 두께(t₁)까지는 도펀트의 도핑 농도가 제1 농도(C₀)로부터 점진
 적으로 증가하여 제2 농도(C)에 이르도록 도핑하는 제1 도핑 과정(25a)과, 목표

두께 (t_1) 부터 증착 완료두께 (t_2) 까지는 도펀트의 도핑 농도가 제2 농도(C)로 균일하게 유지되도록 도핑하는 제2 도핑 과정(25b)으로 구성된다.

- 도 4에서, 제1 농도(C₀)와 제2 농도(C)의 차이를 유지하기 위해, 제1 도핑 과정
 (25a)은 제2 도핑 과정(25b)에 비해 도핑 가스를 상대적으로 적은 유량으로 주입하고,
 점진적으로 그 유량을 증가시켜 도펀트의 도핑 농도가 제1 농도(C₀)로부터 증가하여 제2
 농도(C)에 이르도록 도핑한다.
- <34> 그리고, 제2 도핑 과정(25b)은 제1 도핑 과정(25a)에 비해 도핑 가스를 상대적으로 많은 유량으로 주입하고, 도펀트의 도핑 농도가 제1 도핑 과정(25a)의 종말 농도인 제2 농도(C)를 유지하도록 균일하게 그 유량을 유지하면서 도핑한다.
- 한편, 도전막 증착 과정(24)은 저압화학기상증착법(LPCVD)을 이용하여
 500℃~600℃의 온도 범위에서 폴리실리콘막 또는 폴리실리콘게르마늄막을 증착한다. 이때, 도전막의 증착완료 두께(t₂)를 3000Å~3500Å이라 할 때 제1 도핑 과정(25a)이 이루어지는 목표 두께(t₁)는 500Å~1000Å이 바람직하다.
- <36> 그리고, 제1 농도(C₀)는 5內0¹⁸/cm³~1內0²⁰/cm³ 이고, 제2 농도(C)는 1內0²⁰/cm³~3內0²⁰/cm³이며, 이와 같은 제1,2 농도(C₀, C)는 콘택플러그의 전기전도도를 증가시키기 위한 농도로 적합하다.
- <37> 그리고, 도펀트를 주입하기 위한 도핑가스는 PH₃ 가스를 이용한다.
- <38> 도 6a 내지 도 6c는 도 3에 따른 폴리실리콘플러그의 형성 방법을 도시한 공정 사시도이다.

<39> 도 6a에 도시된 바와 같이, 반도체 기판(31)상에 게이트산화막(32), 게이트전극 (33), 하드마스크(34)의 순서로 적충된 게이트라인을 소정 거리를 두고 복수개 형성한다

- 다음에, 각 게이트라인의 양측벽에 절연막스페이서(35)를 형성하는데, 절연막 스페이서(35)는 산화막 또는 질화막을 게이트라인을 포함한 전면에 증착한 후 에치백
 (Etchback)하여 형성한다.
- 더음에, 절연막 스페이서(35)까지 형성된 반도체 기판(31) 상부에 충간절연막을 증착한 후, 게이트라인의 하드마스크(34) 표면이 드러날때까지 평탄화하고, 콘택마스크로 충간절연막을 식각하여 콘택분리막(36)을 형성한다.
- <42> 따라서, 콘택분리막(36)은 인접 플러그간 분리 및 절연을 위한 것으로 통상적인 층 간절연막(Inter Layer Dielectric; ILD)이고, 예를 들면, BPSG, BSG, TEOS, USG이다.
- 다음으로, 콘택분리막(36)이 제공하는 게이트 라인 사이의 개구(opening), 예컨대 콘택홀을 포함한 전면에 저압화학기상증착법(LPCVD)을 이용하여 주입되는 도펀트의 농도 가 제1 농도에서 제2 농도에 이르는 목표 두께(t₁)까지 1차 폴리실리콘막(37a)을 증착한 다.
- 이때, 1차 폴리실리콘막(37a)의 증착은, 저압화학기상증착법(LPCVD)을 이용하여
 500℃~600℃의 온도 범위에서 SiH₄, SiH₂Cl₂ 등의 원료기체를 사용하여 증착한다. 1차 폴리실리콘막(37a)의 증착과정을 진행하면서 PH₃ 기체를 사용하여 인(P)을 도핑하는데,
 1차 폴리실리콘막(37a)의 초기 증착두께(t₀)부터 목표두께(t1)까지 인(P)의 도핑 농도를 점진적으로 증가시킨다.

<45> 즉, 1차 폴리실리콘막(37a)과 콘택되는 반도체 기판(31) 부근에서부터 목표두께(t₁)까지 제1 농도(C₀)에서 제2 농도(C)까지 증가시킨다. 이때, 제1 농도(C₀)는 5×10¹⁸/cm³ ~1×10²⁰/cm³ 이고, 제2 농도(C)는 1×10²⁰/cm³~3×10²⁰/cm³이다.

- 여를 들어, 콘택플러그인 폴리실리콘막의 증착 완료 두께가 3000Å~3500Å인 경우, 1차 폴리실리콘막(37a)을 500Å~1000Å까지 증착하고, 1차 폴리실리콘막(37a)의 증착 과정중에 도핑가스인 PH₃ 가스를 상대적으로 적은 유량으로 도입하여 제1 농도(C₀)를 갖도록 하고, 점차 PH₃ 가스의 유량을 증가시켜 1차 폴리실리콘막(37a)내 인의 도핑 농도가 제2 농도(C)가 되도록 한다.
- 도 6b에 도시된 바와 같이, 1차 폴리실리콘막(37a)의 증착이 완료된 후, 계속해서 2차 폴리실리콘막(37b)을 증착 완료두께(t2)까지 증착한다. 이때, 1차 폴리실리콘막(37a)과 2차 폴리실리콘막(37b)은 저압화학기상증착법(LPCVD)을 이용하여 인시튜(in-situ)로 이루어지며, 1,2차 폴리실리콘막(37a, 37b)으로 구분한 이유는 도펀트인 인의 도핑농도가 제1 농도(C0)와 제2 농도(C)의 차이를 갖도록 하기 위해 도핑가스의 유량변화에 따른 증착 과정을 설명하기 위한 것이다.
- 따라서, 1차 폴리실리콘막(37a)내에 주입된 인의 도핑농도가 종말 농도인 제2 농도
 (C)에 이른 후, 2차 폴리실리콘막(37b)을 폴리실리콘플러그의 증착 완료 두께에 이를때까지 증착한다. 이러한 증착과정 중에 PH₃ 가스의 유량은 증착 완료 두께까지 제2 농도를 균일하게 유지하도록 유량 변화가 없다.
- (49) 결국, 증착 완료 두께인 3000Å~3500Å까지는 1차 폴리실리콘막(37a)의 초기 증착 시보다 PH₃ 가스를 상대적으로 많은 유량으로 일정하게 도입하여 2차 폴리실리콘막(37b) 내 인의 도핑 농도가 균일한 제2 농도(C)를 갖도록 한다. 이때, PH

3 가스의 유량은 1차 폴리실리콘막(37a)의 목표두께에서 제2 농도(C)를 갖도록 하는 유량을 그대로 증착완료시점까지 유지하는 것이고, 제2 농도(C)는 1×10^{20} cm³ 이다.

- 도 6c에 도시된 바와 같이, 1,2 차 폴리실리콘막(37a, 37b)을 화학적기계적연마법 또는 에치백 등의 일련의 공정을 거쳐서 개구내에 표면이 평탄화된 폴리실리콘플러그 (37)를 형성한다.
- 전술한 바와 같이, 폴리실리콘플러그(37)는 상대적으로 저농도로 인(P)이 주입되면서 점차 증가되는 농도 분포를 갖는 1차 폴리실리콘막(37a)과 1차 폴리실리콘막(37b)에비해 상대적으로 고농도로 인(P)이 주입되면 균일한 고농도 분포를 갖는 2차 폴리실리콘막(37b)로 이루어진다.
- <52> 즉, 폴리실리콘플러그(37)는 이중 도핑분포를 갖게 되는데, 반도체 기판(31)에 인접하는 부근에서는 제1 농도(C₀)로부터 점차 증가하는 농도 분포를 갖고 그 이외의 부분에서는 통상의 고농도 도핑 농도인 제2 농도(C)를 균일하게 유지한다.
- 이와 같이, 이중 도핑분포를 갖는 폴리실리콘플러그(37)를 형성하면, 후속 열공정을 거치더라도 인(P)의 확산을 최소화할 수 있고, 동시에 폴리실리콘플러그(37)의 저항증가를 방지할 수 있다. 즉, 열공정시 반도체 기판(31)에 인접하는 부근에서만 인(P)이확산할뿐 고농도 도핑이 이루어진 부분에서는 확산하지 않으므로 인의 도핑농도 감소를 최소화하여 저항 증가를 방지한다.
- 도 6a 내지 도 6c에서는 폴리실리콘막플러그로 적용한 경우를 예로 들었으나, 폴리실리콘막외에 폴리실리콘게르마늄을 콘택플러그로 적용하는 경우에도 이중 도핑분포를

구현할 수 있고, 이로써 폴리실리콘막에 비해 더 낮은 저항을 얻을 수 있다. 폴리실리콘 게르마늄이 폴리실리콘막에 비해 저항이 낮은 것은 공지된 기술이다.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.

【발명의 효과】

<56> 상술한 본 발명은 낮은 저항값을 가지면서도 인의 확산을 억제할 수 있는 셀플러그 공정을 확보하므로써 소자의 집적도를 향상시킬 수 있는 효과가 있다.

【특허청구범위】

【청구항 1】

반도체 기판상에 상기 반도체 기판의 일부분을 노출시키는 개구를 갖는 콘택분리막을 형성하는 단계;

상기 콘택분리막의 개구내에 도전막을 증착하는 단계;

상기 도전막을 형성하는 과정중에 상기 도전막의 깊이 방향으로 다른 농도분포를 갖도록 도펀트를 도핑하는 단계; 및

상기 도전막의 평탄화 과정을 통해 상기 개구내에 콘택플러그를 형성하는 단계를 포함함을 특징으로 하는 반도체 소자의 콘택 플러그 형성 방법.

【청구항 2】

제1 항에 있어서,

상기 도펀트를 도핑하는 단계는,

상기 도전막의 증착초기부터 목표 두께까지는 상기 도펀트의 도핑 농도가 제1 농도 로부터 점진적으로 증가하여 제2 농도에 이르도록 도핑하는 제1 도핑 단계; 및

상기 목표 두께부터 증착 완료두께까지는 상기 도편트의 도핑 농도가 상기 제2 농 도로 균일하게 유지되도록 도핑하는 제2 도핑 단계

를 포함함을 특징으로 하는 반도체 소자의 콘택 플러그 형성 방법.

【청구항 3】

제2 항에 있어서,

상기 제1 도핑 단계는,

상기 제2 도핑 단계에 비해 도핑 가스를 상대적으로 적은 유량으로 주입하고, 점진적으로 그 유량을 증가시켜 상기 도펀트의 도핑 농도가 상기 제1 농도로부터 증가하여 상기 제2 농도에 이르도록 도핑하는 것을 특징으로 하는 반도체 소자의 콘택플러그 형성 방법.

【청구항 4】

제2 항에 있어서,

상기 제2 도핑 단계는,

상기 제1 도핑단계에 비해 도핑 가스를 상대적으로 많은 유량으로 주입하고, 상기 도펀트의 도핑 농도가 상기 제2 농도를 유지하도록 균일하게 그 유량을 유지하면서 도핑 하는 것을 특징으로 하는 반도체 소자의 콘택플러그 형성 방법.

【청구항 5】

제2 항에 있어서,

상기 도전막의 증착완료 두께는 3000Å~3500Å이고, 상기 목표 두께는 500Å~ 1000Å인 것을 특징으로 하는 반도체 소자의 콘택플러그 형성 방법.

【청구항 6】

제2 항에 있어서,

상기 제1 농도는 5×10¹⁸/cm³~1×10²⁰/cm³ 이고, 상기 제2 농도는 1×10²⁰/cm³~3×10²⁰/cm³인 것을 특징으로 하는 반도체 소자의 콘택플러그 형성 방법.

【청구항 7】

제3 항 또는 제4 항에 있어서,

상기 도핑가스는 PH₃ 가스를 이용함을 특징으로 하는 반도체 소자의 콘택플러그 형 성 방법.

【청구항 8】

제1 항에 있어서,

상기 도전막은 폴리실리콘막 또는 폴리실리콘게르마늄막인 것을 특징으로 하는 반 도체 소자의 콘택플러그 형성 방법.

【도면】

[도 1]

[도 2]

【도 3】

[도 4]

[도 5]

[도 6a]

[도 6b]

[도 6c]

