CHƯƠNG 6

Một số ứng dụng

GV: TRẦN QUỐC VIỆT

Một số ứng dụng

Giới thiệu 2 ứng dụng:

- Bài toán luồng cực đại (Max-flow problem)
- Bài toán ghép cặp (Matching problem)

1. Bài toán luồng cực đại (Max flow problem)

Dịnh nghĩa Mạng (network) là một đồ thị có hướng có trọng số G = (V,E) trên đó ta chọn một đỉnh gọi là đỉnh phát (source vertex) và 1 đỉnh gọi là đỉnh thu (sink vertex).

Dịnh nghĩa• Một mạng G = (V,E) với đinh phát là a, đinh thu là $z, c(e) \in N$ là trọng số của cung e. Với mỗi đinh x, ta đặt: $In(x) = \{e \in E \mid e \text{ tới trong } x\}$ $Out(x) = \{e \in E \mid e \text{ tới ngoài } x\}$ In(c)= $\{\overrightarrow{ac}, \overrightarrow{bc}\}$ $Out(c)=\{\overrightarrow{cd}, \overrightarrow{ce}\}$

Định nghĩa

☐ Một hàm tải (*flow function*) trên G được định nghĩa bởi ánh xa:

$$\varphi: E \rightarrow N$$

thỏa các điều kiện

(i)
$$\varphi(e) \le c(e), \forall e \in E$$

(ii)
$$\varphi(e) = 0$$
, $\forall e \in In(a) \cup Out(z)$

Ví dụ về hàm tải $\varphi(\overrightarrow{fa}) = 0$ $\varphi(\overrightarrow{zg}) = 0$ a:source, z:sink $\varphi(ab) = 4$ $\varphi(ac) = 1$ $\varphi(\vec{fc}) = 0$ $\phi(gc) = 0$ $\phi(bd) = 1$ $\varphi(\overrightarrow{be}) = 1$ $\varphi(\overrightarrow{bc}) = 2$ (2,0) $\varphi(\overrightarrow{cd}) = 2$ $\varphi(\vec{ce})=1$ $\varphi(\vec{dz}) = 4$ $\varphi(\overrightarrow{ez}) = 1$ $\varphi(\overrightarrow{ed}) = 1$

Định nghĩa

Một phép cắt (cut) xác định bởi 1 tập hợp con P của V, ký hiệu (P, P) là tập hợp:

$$(P, \overline{P}) = \{ \overrightarrow{xy} \mid x \in P \text{ và } y \in \overline{P} \}$$

Trong đó $\overline{P} = V \setminus P$

□Phép cắt (P, \overline{P}) gọi là 1 phép cắt a-z nếu $a \in P$ và $z \in \overline{P}$

Trọng số (capacity) của một phép cắt được định nghĩa là: $c(P, \overline{P}) = \sum_{e \in (P, \overline{P})} c(e)$

Định lý 6.3

 Với mọi hàm tải φ và với mọi phép cắt a-z trong mạng G, ta có:

$$|\varphi| \le c(P, \overline{P})$$

Chứng minh định lý 6.3

Thêm vào G một đỉnh a_0 và cạnh a_0 a (hướng từ a_0 đến a), $c(a_0a)=\infty$. Ta được mạng G'. Trong G' đặt $\phi'(a_0a)=\mid\phi\mid$ và ϕ '(e) $=\phi(e)$, $\forall\,e\in E$ Ta có:

14

Hệ quả

Với mọi hàm tải φ và mọi phép cắt a-z trong mạng G.
 |φ|= c(P, P) nếu và chỉ nếu thỏa 2 điều kiện:

(i)
$$\forall e \in (\overline{P}, P), \varphi(e) = 0$$

(ii)
$$\forall e \in (P, \overline{P}), \varphi(e) = c(e)$$

> Khi $| \varphi |$ = c(P, \overline{P}) thì φ là hàm tải có tải trọng lớn nhất và (P, \overline{P}) là phép cắt a-z có trọng số nhỏ nhất

Định nghĩa:

- Cho một mạng G, đỉnh phát a và đỉnh thu z, với một phép căt a-z (P, \overline{P})
- Một chuyền a-z K là một đường đi vô hướng nối a với z
- Ký hiệu $s(e) = c(e)-\varphi(e)$ gọi là độ lệch tải của e
- Ta định nghĩa:

$$\phi_K(e) = \begin{cases} 0 & : e \notin K \\ 1 & : e \in K \text{ và có hướng từ a đến z} \\ -1 & : e \in K \text{ và e có hướng từ z đến a} \end{cases}$$

Thuật toán Ford-Fulkerson (Tìm một phép cắt a-z tối thiểu)

Input: Mạng G, đỉnh phát a và đỉnh thu z Output: Tập P của phép cắt a-z tối thiểu $(P,\ \overline{P})$

Bắt đầu bằng 1 hàm tải φ bất kỳ trên G

- 1. Đánh dấu mọi đình đều chưa xét, gán nhãn cho a là $(-, \Delta(a))$ với $\Delta(a)=\infty$. Đặt $p_0=a$.
- 2. Xét p_0 .
 - a. Cạnh $e=\overrightarrow{p_0q}$ với q chưa có nhãn và s(e)>0 thì gán nhãn cho q là $(p_0^+, min(\Delta(p_0), s(e)))$
 - b. Cạnh $e = \overrightarrow{qp_0}$ với q chưa có nhãn và $\phi(e) > 0$ thì gán nhãn cho q là $(p_0^-, \min(\Delta(p_0), \phi(e)))$
- 3. Nếu đỉnh z đã được gán nhãn \rightarrow 4, ngược lại \rightarrow 5.
- 4. Xác định một dây chuyền (vô hướng) từ a đến z dựa vào thành phần thứ 1 của nhãn. Cập nhật lại ϕ như sau: ϕ (e) = ϕ (e) + Δ (z) × ϕ _K(e). Về bước 1.
- 5. Tìm 1 đình p đã có nhãn nhưng chưa xét. Nếu tồn tại p, đặt $p_0 = p$, \rightarrow bước 2. Ngược lại dừng.

Thuật toán Ford-Fulkerson

 Sau khi thuật toán kết thúc. P là tập hợp các đỉnh đã có nhãn và đã xét.

 p_0 =b: > Cạnh e_7 = $(\overline{b}, \overline{e})$ có $s(e_7)$ =3>0 nên gán nhãn cho đỉnh e là: $(b^+, \min\{\Delta(p_0), s(e_7)\})$ = $(b^+, 2)$ $(c^+, 2)$ $(c^+,$

ℱ<u>Lăp lần 2:</u>

- ▶ Gán nhãn cho đỉnh a là $(-,\Delta(a))$, với $\Delta(a)=\infty$
- ➤ Đặt p₀=a

> Đinh z chưa gán nhãn, đinh c đã gán nhãn nhưng chưa được xét, đặt p_0 =c

Định lý 6.4

 Khi kết thúc thuật toán Ford-Fulkerson thì φ là 1 hàm tải tối đại và (P,P) là 1 phép cắt a-z tối tiểu.

Định lý 6.5

Trong một mạng G, tải trọng của 1 hàm tải tối đại bằng trọng số của một phép cắt a-z tối tiểu.

Bài toán ghép cặp

Cho một đồ thị lưỡng phân G = (X,Y,E) với X là tập hợp các đinh trái và Y là tập hợp các đinh phải của G. Một bộ ghép (matching) của G là một tập hợp các cạnh của G đôi một không có đinh chung. Bài toán cặp ghép (matching problem) của G là tìm một bộ ghép tối đại (có số lượng các cạnh là lớn nhất) của G.

Một số khái niệm

- Xét 1 bộ ghép M của G. Khi đó:
- Các đỉnh trong M được gọi là các đỉnh đã được ghén.
- Một đường pha (alternating path) là một đường trong G bắt đầu bằng 1 đỉnh chưa ghép thuộc X và các cạnh lần lượt là thuộc rồi không thuộc M.
- Một đường mở (augmenting path) là 1 đường pha kết thúc bằng một đỉnh chưa ghép thuộc Y.

38

Một số khái niệm (tt)

- Từ 1 đỉnh u chưa ghép thuộc X, ta có thể xây dựng 1 cây pha (alternating tree) gốc u gồm tất cả các đường pha bắt đầu từ u.
- Một cây pha chứa ít nhất 1 đường mở được gọi là 1 cây mở (augmenting tree). Ngược lại sẽ được gọi là một cây đóng (Hungarian tree), gốc u của cây đóng này gọi là đỉnh đóng (Hungarian acorn).

Thuật toán xác định bộ ghép tối đại M -Thuật toán Hungarian

- Dặt mọi đỉnh thuộc X là chưa kiểm tra. Đặt $M=\emptyset$.
- Nếu mọi đỉnh thuộc X chưa ghép đều đã kiểm tra thì dừng. Nếu không, chọn một đỉnh u∈X chưa ghép và chưa kiểm tra để xây dựng 1 cây pha gốc u.
- Nếu cây pha này là cây mở thì → bước 4. Nếu không, đánh dấu u là đã kiểm tra → bước 2.
- 4. Mở rộng M bằng cây mở như sau: Trên đường mở, loại bỏ các cạnh trong M và thêm vào các cạnh ngoài M. Đánh dấu mọi đỉnh thuộc X là chưa kiểm tra. Quay về bước 2.

40

Định lý 6.5

 Bộ ghép nhận được sau khi áp dụng thuật toán Hungarian vào đồ thị lưỡng phân G là tối đại

Định lý 6.6 (định lý Hall)

Một bộ ghép M của đồ thị lưỡng phân G=(X,Y,E) được gọi là X-đầy đủ (X-complete matching) nếu M chứa mọi đỉnh của X. Với A⊂X, đặt Γ(A) là tập hợp các đỉnh y∈Y kề với một đỉnh x∈A. Khi này, G có 1 bộ ghép X-đầy đủ nếu và chỉ nếu ∀A⊂X, |Γ(A)| ≥|A|.

