Practice Problems: Lesson 3 - IVP vs BVP

Critical distinction for exams!

Part A: Classification

Identify each as IVP or BVP, then predict existence/uniqueness:

1.
$$y'' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 2$

2.
$$y'' + 4y = 0$$
, $y(0) = 1$, $y(\pi/4) = 0$

3.
$$y'' = 2y'$$
, $y(0) = 0$, $y(1) = 1$, $y'(1) = e$

4.
$$y'' + y' + y = e^x$$
, $y(0) + y'(0) = 1$, $y(1) = 0$

5.
$$y^{(4)} = 0$$
, $y(0) = y'(0) = 0$, $y(1) = y'(1) = 1$

Part B: Solving IVPs

Solve these IVPs completely:

6.
$$y'' - y = 0$$
, $y(0) = 2$, $y'(0) = 0$

7.
$$y'' + 2y' + y = 0$$
, $y(0) = 1$, $y'(0) = 0$

8.
$$y'' = 6x$$
, $y(0) = 0$, $y'(0) = 1$

Part C: BVP Analysis

For each BVP, determine if solutions exist (none/unique/infinite):

9.
$$y'' = 0$$
, $y(0) = 0$, $y(1) = 1$

10.
$$y'' = 0$$
, $y'(0) = 1$, $y'(1) = 1$

11.
$$y'' + \pi^2 y = 0$$
, $y(0) = 0$, $y(1) = 0$

12.
$$y'' + 4\pi^2 y = 0$$
, $y(0) = 0$, $y(1/2) = 0$

Part D: Shooting Method

- 13. For the BVP: y'' + y = 0, y(0) = 0, $y(\pi/2) = 2$
 - (a) Set up the shooting method with parameter s = y'(0)
 - (b) Find the value of s that satisfies the boundary conditions
 - (c) Write the complete solution
- 14. Consider: y'' = -4y, y(0) = 1, $y(\pi/4) = 0$
 - (a) Use shooting method to find y'(0)
 - (b) Verify your solution satisfies both conditions

Part E: Eigenvalue Problems

15. Find all values of λ for which the BVP has non-trivial solutions:

$$y'' + \lambda y = 0$$
, $y(0) = 0$, $y(L) = 0$

16. For what values of μ does this BVP have solutions?

$$y'' + \mu^2 y = 0$$
, $y(0) = 0$, $y(1) = \sin(\mu)$

17. Consider the Sturm-Liouville problem:

$$y'' + \lambda y = 0$$
, $y'(0) = 0$, $y'(\pi) = 0$

Find the eigenvalues and eigenfunctions.

Part F: Mixed Problems

- 18. Given y'' = f(x) where f is continuous:
 - (a) How many conditions do you need for a unique solution?
 - (b) If given y(0) = A, y(1) = B, y(2) = C, when does a solution exist?
 - (c) Write the compatibility condition for the three-point BVP
- 19. A beam equation: $y^{(4)} = 0$ (fourth-order)
 - (a) How many initial conditions for an IVP?
 - (b) How many boundary conditions for a well-posed BVP?
 - (c) Give an example of each type
- 20. Consider the nonlinear BVP: $y'' = y^2$, y(0) = 1, y(1) = ?
 - (a) Can you always find a value at x = 1 to make this solvable?
 - (b) What if y(0) = 0 instead?
 - (c) Discuss existence based on the boundary values

Part G: Theoretical Questions

- 21. Explain why the IVP $y'' = y^{1/3}$, y(0) = 0, y'(0) = 0 might not have a unique solution.
- 22. For the BVP y'' + y = 0, y(0) = 0, $y(\alpha) = 0$:
 - (a) For which values of α is the solution unique?
 - (b) For which values are there infinitely many solutions?
 - (c) Can there be no solution for some α ?
- 23. Prove that if y_1 and y_2 both solve the linear BVP:

$$y'' + p(x)y' + q(x)y = 0$$
, $y(a) = A$, $y(b) = B$

then $y_1 \equiv y_2$ (uniqueness for linear BVP).

Part H: Exam-Style Questions

- 24. Professor Ditkowski asks: "Give an example of a second-order linear BVP with:
 - (a) No solution
 - (b) Exactly one solution
 - (c) Infinitely many solutions"
- 25. You're given: $y'' = -\lambda^2 y$, y(0) = 0, $\int_0^1 y(x) dx = 1$
 - (a) Is this an IVP or BVP?
 - (b) For which λ does a solution exist?
 - (c) Find the solution when it exists
- 26. Compare and contrast:
 - (a) IVP: y'' + y = 0, y(0) = 1, y'(0) = 0
 - (b) BVP: y'' + y = 0, y(0) = 1, $y(\pi) = 1$
 - (c) Which has a unique solution? Find both solutions.

Answer Guide

Key Points to Remember:

- $\bullet\,$ IVP: All conditions at one point \Rightarrow Usually unique solution
- \bullet BVP: Conditions at different points \Rightarrow Check existence carefully
- Linear BVP can have $0, 1, \text{ or } \infty$ solutions
- \bullet Eigenvalue problems have solutions only for special λ values
- \bullet Shooting method converts BVP to sequence of IVPs