Final Examination SM261 1330, Tuesday, December 14, 2004

1. [12 points] Let L and T be the linear transformations from \mathbb{R}^2 to \mathbb{R}^2

described by
$$L\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
 and $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

a. Are the composites $T \circ L$ and $L \circ T$ the same? Explain.

b. Find \vec{v} so that $(T \circ L)(\vec{v}) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

c. Let *S* be the square with vertices given by $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Carefully sketch and label the image of *S* under $T \circ L$.

- 2. [12 points] $T: \mathbb{R}^4 \to \mathbb{R}^3$ is described by $T(\vec{x}) = \begin{bmatrix} 1 & 1 & 2 & 0 \\ 2 & 1 & 3 & 1 \\ 3 & 2 & 5 & 1 \end{bmatrix} \vec{x}$.
 - a. Find a nonzero vector in ker(T). Explain.

b. Find a nonzero vector in im(T). Explain.

c. What is the dimension of ker(T)? Explain.

d. What is the dimension of im(T)? Explain.

e. Consider solutions \vec{x} of the equation $T(\vec{x}) = \vec{b}$ for fixed \vec{b} in \mathbb{R}^3 . For which \vec{b} , if any, will this equation have: no solutions? a unique solution? infinitely many solutions?

- 3. [12 points] Let H be the set of vectors in \mathbb{R}^4 that are orthogonal to $\begin{bmatrix} 1\\2\\1\\-1 \end{bmatrix}$.
 - a. Show that *H* is a subspace of \mathbb{R}^4 .

b. Find a basis for *H*.

c. What is the dimension of H? Explain.

- 4. [13 points] Give examples for each of the following and explain why your examples satisfy the specified conditions.
 - a. a transformation $M: \mathbb{R}^2 \to \mathbb{R}^2$ that is not linear.

b. a set of vectors in \mathbb{R}^4 that is not linearly independent.

c. a non-empty set of vectors in \mathbb{R}^3 that does not span \mathbb{R}^3 .

d. a set of vectors in \mathbb{R}^4 that is not a subspace.

5. [13 points] B is the basis for \mathbb{R}^3 consisting of the vectors

3.
$$[T3 \ points]$$
 B is the basis for \mathbb{R} consisting of the vectors
$$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \text{ and } \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \text{ and } T: \mathbb{R}^3 \to \mathbb{R}^3 \text{ is given by } T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$
a. $[\vec{v}]_B = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ is the *B*-coordinate vector for \vec{v} . What is \vec{v} ? I.e., what is

the coordinate vector with respect to the standard (natural) basis for \vec{v} ?

b. Determine the matrix that converts standard (natural) coordinate vectors to *B*-coordinate vectors.

c. Determine the *B*-matrix for *T*. That is, find the matrix for *T* with respect to the basis B.

6. [12 points] The vectors $\begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix}$ whose components satisfy the equation

x + y - z + t = 0 comprise a hyperplane *W* in \mathbb{R}^4 .

a. Find an orthogonal basis for W.

b. Write the vector $\begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$ as a linear combination of your basis vectors

using the dot product to find the coefficients.

c. Find the orthogonal projection of $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ onto W.

7. [13 points] Compute the volume of the tetrahedron whose vertices are

given by $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$, and $\begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$. Recall that a tetrahedron is a pyramid

with a triangular base and its volume is $\frac{1}{3}$ (base area)(height).

8. [13 points] A is a 2×2 matrix. $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A with

eigenvalue 2 and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is another eigenvector of A with eigenvalue -3.

a. Find a diagonal matrix D similar to A.

b. Find the matrix P such that $P^{-1}AP = D$.

c. Find A.