- 1. A processor comprising:
- first and second instruction pointer (IP) sources to provide IPs for first and second
- instruction threads, respectively;
- an instruction cache to provide a cache line responsive to an IP;
- a source arbiter to provide an IP from the first or second IP source to the
- 6 instruction cache;
 - an instruction buffer (IB) to receive a first block of the cache line; and
- a temporary instruction cache (TIC) to receive a second block of the cache line.
 - 2. The processor of claim 1, wherein the IB and the TIC receive the first and second blocks of the cache line on a first clock interval.
 - 3. The system of claim 2, wherein the second block of the cache line is transferred to the IB on a subsequent clock interval.
- 1 4. The system of claim 3, wherein the source arbiter provides IPs from the first and second
- 2 sources on alternate clock intervals.
- 1 5. The system of claim 4, wherein the IB includes first and second IBs to store instructions
- 2 from the first and second threads, respectively.

- The processor of claim 1, wherein the IB receives first and second instruction blocks
- from the instruction cache and the TIB, respectively, on adjacent clock intervals.
- 8. The processor of claim 1, wherein the IB comprises first and second IBs and the
 instruction cache provides instruction blocks to the first and second IBs on adjacent clock cycles.
 - 9. The processor of claim 8, wherein the TIC provides instruction blocks to the first and second IBs on adjacent clock cycles.
 - 10. An instruction fetch engine comprising:

3

an instruction cache to provide a line of instructions in response to an instruction pointer;

- an instruction queue to receive a first block of the instruction line during a first clock interval; and
- a temporary instruction cache to receive a second block of the instruction line during the first clock interval.

3

4

- 1 11. The instruction fetch engine of claim 10, wherein the temporary instruction cache
- 2 provides the second block of the instruction line to the instruction queue during a subsequent
- 3 clock interval.
- 1 12. The instruction fetch engine of claim 10, wherein the instruction cache stores lines of
- 2 instructions for first and second instruction threads and the instruction queue includes first and
- 3 second instruction queues to store blocks of instructions for the first and second instruction
- 4 threads, respectively.
 - 13. The instruction fetch engine of claim 12, wherein the instruction cache provides first and second blocks of a line of instructions for the first instruction thread to the first instruction queue and the temporary instruction cache, respectively, during the first clock interval.
 - 14. The instruction fetch engine of claim 13, wherein the instruction cache provides first and second blocks of a line of instructions for the second instruction thread to the second instruction queue and the temporary instruction cache, respectively, during a second clock interval.
- 1 15. The instruction fetch engine of claim 10, wherein the instruction queue includes first and
- 2 second instruction queues and the instruction cache provides first blocks of instruction lines for
- 3 the first and second instruction threads to the first and second instruction queues on alternate
- 4 clock intervals.

115

6

7

8

1

- 1 16. The instruction fetch engine of claim 15, wherein the instruction queue provides second
- 2 blocks of the instruction lines for the first and second instruction threads to the temporary
- 3 instruction cache on alternate clock intervals.
- 1 17. The instruction fetch engine of claim 16, wherein the temporary instruction cache
- 2 provides the second blocks of the instruction lines for the first and second instruction threads to
- the first and second instruction queues, respectively, on alternate clock intervals.

18. A method comprising:

selecting first and second cache lines for first and second instruction threads; providing first and second instruction blocks of the first cache line to a first instruction queue and a temporary instruction cache, respectively, during a first clock interval; and

providing first and second instruction blocks of the second cache line to a second instruction queue and the temporary instruction cache, respectively, during a second clock interval.

- 19. The method of claim 18, further comprising providing the second block of the first cache
- line to the first instruction queue during the second clock interval.

1	20.	The method of claim 19, wherein selecting first and second cache lines comprises:
2		receiving instruction pointers for the first and second threads; and
3		providing first and second cache lines responsive to receipt of the instruction
4		pointers for the first and second threads, respectively.
5		
1	21.	The method of claim 20, wherein receiving instruction pointers for the first and second
2	thread	s comprises receiving instruction pointers for the first and second threads during adjacent
	clock	intervals.
L L	22.	The method of claim 21, wherein providing the first and second instruction blocks
	comp	rises providing the first and second instruction blocks during adjacent clock intervals.
Ï	23.	A system comprising:
2		1 st through n th instruction pointer (IP) sources;
3		1st through nth instruction queues associated with the 1st through nth IP sources,
4		respectively;
5		a cache to provide a first portion of an instruction block to one of the 1st through
6		4 th instruction queues, responsive to an IP from the associated IP source; and

a temporary storage to receive a second portion of the instruction block.

- 1 24. The system of claim 23, wherein the block of instructions is a cache line that comprises n
- 2 portions of instructions.
- 1 25. The system of claim 23, further comprising an arbiter to select an IP from one of the 1st
- 2 through 4th IP sources to send to the cache.
- The system of claim 23, wherein the cache provides the first portion of the instruction

 block to the one of the 1st through 4th instruction queues on a first clock interval and the

 temporary storage structure provides a second portion of the instruction block to the one of the

 1st through 4th instruction queues on a second clock interval.