3 **	1	الامتحان الوطني الموحد البكالوريا الدورة العادية 2020 - الموضوع –			المملكة المغربية ورارة التربية الوضية المغربية المعادل المسلمة المعادل المسلمة المسلم	
		SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS		NS 22		
3	لإنجاز	مدة ١١	الرياضيات			المادة
7	عامل	المع	شعبة العلوم التجريبية مسلك العلوم الفيزيائية ومسلك علوم الحياة والأرض ومسلك العلوم الزراعية			الشعبة أو المسلك

تعليمات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؛
- يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؟
 - ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة.

مكونات الموضوع

يتكون الموضوع من ثلاثة تمارين و مسألة، مستقلة فيما بينها، و تتوزع حسب المجالات كما يلي:

4 نقط	المتتاليات العددية	التمرين الأول
5 نقط	الأعداد العقدية	التمرين الثاني
4 نقط	النهايات و الاشتقاق و حساب التكامل	التمرين الثالث
7 نقطة	دراسة دالة عددية	المسألة

- z نرمز ب المرافق العدد العقدي •
- ln يرمز لدالة اللوغاريتم النبيري.

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - الموضوع المعدية العلوم التجريبية مسلك العلوم الفيزيانية ومسلك علوم الحياة والأرض ومسلك العلوم الزراعية العلوم الزراعية العلوم الزراعية	-
ين الأول (4 نقط):	التم
$I\!\!N$ نكل $u_{n+1}=rac{2u_n}{2u_n+5}$ و $u_0=rac{3}{2}$ نكل u من $u_0=1$	
u_1	0.25
$u_n > 0$ ، $I\!\!N$ من n من بالترجع أن لكل n من	(2 0.5
$I\!\!N$ بين أن $u < u_n \le rac{3}{2} \left(rac{2}{5} ight)^n$ بين أن $u < u_{n+1} \le rac{2}{5} u_n$ نكل n من n	(1)
$\lim u_n$ احسب النهاية ا	0.5
$I\!N$ عتبر (v_n) المتتالية العددية المعرفة ب $v_n=rac{4u_n}{2u_n+3}$ لكل المتتالية العددية المعرفة ب	<u>ن</u> (4
$rac{2}{5}$ بین أن $\left(v_{n} ight)$ متتالیة هندسیة أساسها	(0.75
$I\!\!N$ من u_n بدلالة n ثم استنتج u_n بدلالة u_n لكل u_n من v_n	
ين الثاني (5 نقط) :	التمر
$(E): \; z^2-2(\sqrt{2}+\sqrt{6})z+16=0$ تبر في مجموعة الأعداد العقدية \square المعادلة :	(1) تــ
$\Delta = -4ig(\sqrt{6}-\sqrt{2}ig)^2$ هو (E) هو أن مميز المعادلة	() 0.5
) استنتج حلي المعادلة (E)	
$c=\sqrt{2}+i\sqrt{2}$ و $b=1+i\sqrt{3}$ و $a=\left(\sqrt{6}+\sqrt{2} ight)+i\left(\sqrt{6}-\sqrt{2} ight)$ و والاعداد العقدية :	<u>ن</u> (2
$ac=4b$ و استنتج أن $b\overline{c}=a$	() 0.75
أكتب العددين العقديين b و c على الشكل المثلثي أكتب العددين العقديين الم	0.5 ب
. $a=4\left(\cos\frac{\pi}{12}+i\sin\frac{\pi}{12}\right)$ استنتج أن	(E 0.5
التي ألمستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر $(O,ec u,ec v)$ ، نعتبر النقط B و D و D التي ألحاقها على	(3 ف
$d=a^4$ و c و b محیث . $d=a^4$	التواا
$rac{\pi}{12}$ ن z لحق نقطة M و z' لحق النقطة M' صورة النقطة M بالدوران R الذي مركزه O و زاويته	ليك
$z' = \frac{1}{4}az$ تحقق أن	(0.5
R عدد صورة النقطة C بالدوران C	0.25 ب
. OBC حدد طبيعة المثلث	0.25
بین أن $a^4 = 128 b$ و D و B و D و B بین أن	0.75 د
	•

$\frac{1}{3}$ NS 22 $\frac{1}{3}$ NS 25 $\frac{1}{3}$ NS 26 $\frac{1}{3}$ NS 27 $\frac{1}{3}$ NS 26 $\frac{1}{3}$ NS 27 $\frac{1}{3}$ NS 28 $\frac{1}{3}$ NS 28 $\frac{1}{3}$ NS 29 $\frac{1}{3}$ NS 20 $\frac{1}{3}$ N		
$g(x) = 2\sqrt{x} - 2 - \ln x$: بيا بن الدالية العددية g المعرفية على $g'(x) = \frac{\sqrt{x} - 1}{x}$ ، $g'(x) = \frac{\sqrt{x} - 1}{x}$. $g'(x)$	العلوم الزراعية	
$g'(x) = \frac{\sqrt{x} - 1}{x} , \]0; +\infty[\] لبيان الدالة g من الدولة $	التمرين الثالث (4 نقط):	
	$g(x)=2\sqrt{x}-2-\ln x$: بما يلي $g(x)=2\sqrt{x}-2-\ln x$: بما يلي به الدالة العددية $g(x)=2\sqrt{x}-2-\ln x$	
$\lim_{x \to \infty} \frac{(\ln x)^3}{x^2} \text{ in this possible in } 0 \le \ln x \le 2\sqrt{x} \text{ in } [1; +\infty[1]; +\infty[1$	$g'(x)=rac{\sqrt{x}-1}{x}$ ، $]0;+\infty$ ر من المجال $[0;+\infty]$ بين أن لكل $[0;+\infty]$	0.5
$\lim_{x \to +\infty} \frac{(\ln x)^3}{x^2} \stackrel{?}{=} \lim_{x \to +\infty} \frac{(\ln x)^3}{x^2} \leq \frac{8}{\sqrt{x}} [1; +\infty[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$[1;+\infty[$ بين أن الدالة g تزايدية قطعا على المجال ا $[1;+\infty[$	0.5
g المبدلة العالم المعلقة على $G(x) = x \left(-1 + \frac{4}{3} \sqrt{x} - \ln x \right)$: يا بين أن الدالة المعلقة على $G(x) = x \left(-1 + \frac{4}{3} \sqrt{x} - \ln x \right)$: $g(x) dx$ المعلقة $G(x) dx$ المعاللة $G(x) dx$ المعلقة على $G(x) dx$ المعالمة $G(x) dx$ المعلقة على $G(x) dx$ المعلقة $G(x) dx$ المعلقة المعلقة المعلقة المعلقة المعلقة المعلقة المعلقة $G(x) dx$ المعلقة المع	$(2\sqrt{x}-2\leq 2\sqrt{x})$ (الاحظ أن $2\sqrt{x}-2\leq 2\sqrt{x}$) $0\leq \ln x\leq 2\sqrt{x}$ ($[1;+\infty[$ عن المجال x استنتج أن لكل x من المجال	0.5
$ \int_{1}^{4} g(x) dx \ dx$	$\lim_{x\to +\infty} \frac{(\ln x)^3}{x^2}$ يين أن لكل x من المجال $1;+\infty$ ، $1;+\infty$ ، $1;+\infty$ ثم استنتج النهاية $0\leq \frac{(\ln x)^3}{x^2}\leq \frac{8}{\sqrt{x}}$ ، $1;+\infty$	1
المسالة (7 نقط): $f(x) = -x + \frac{5}{2} - \frac{1}{2}e^{x-2}(e^{x-2} - 4) : $ $e (2) is the first is the probability of the probab$	g بين أن الدالة G المعرفة على g بما يلي: g بما يلي: g بما يلي: g بين أن الدالة g المعرفة على g بين أن الدالة g بين أن الدالة g المعرفة على g	0.75
$f(x) = -x + \frac{5}{2} - \frac{1}{2}e^{x-2}(e^{x-2} - 4)$: نعتبر الدالة العددية f المعرفة على \Box بما يلي : $(2\text{cm} : \frac{5}{2} - \frac{1}{2}e^{x-2}(e^{x-2} - 4))$ (الوحدة : $(2\text{cm} : \frac{1}{2})$ (الوحدة : $(2\text{cm} : \frac{1}{2})$ (الوحدة : $(2\text{cm} : \frac{1}{2})$ (البين أن $(2\text{cm} : \frac{1}{2})$ (المنتقيم $(2\text{cm} : \frac{1}{2})$ (المنتقيم $(2\text{cm} : \frac{1}{2})$ (الذي معادلته $(2\text{cm} : \frac{1}{2})$ (مقارب المنحنى $(2\text{cm} : \frac{1}{2})$ (مي المجال $(2\text{cm} : \frac{1}{2})$ (مي المجال $(2\text{cm} : \frac{1}{2})$ (مي معادلته $(2\text{cm} : \frac{1}{2})$ (مي المحادلة $(2\text{cm} : \frac{1}{2})$ (مي المحا	$\int_{1}^{4} g(x)dx$ ب) احسب التكامل	0.75
$\lim_{x \to +\infty} f(x) = -\infty \text{if} \lim_{x \to -\infty} f(x) = +\infty \text{if} \text{if}$	$f(x) = -x + rac{5}{2} - rac{1}{2}e^{x-2}\left(e^{x-2} - 4 ight)$: نعتبر الدالة العددية f المعرفة على \Box بما يلي :	
$\lim_{x \to +\infty} f(x) = -\infty \text{if} \lim_{x \to -\infty} f(x) = +\infty \text{if} \text{if}$	و (C) المنحنى الممثل للدالة f في معلم متعامد ممنظم $O(\vec{i}, \vec{j})$ (الوحدة : C	
$[2+\ln 4,+\infty[$ للمعادلة (Δ) على المجال $e^{x-2}-4=0$ ثم بين أن المنحنى (C) يوجد تحت (Δ) على المجال $e^{x-2}-4=0$ ثم بين أن المنحنى (Δ) على المجال (Δ) على المحال (Δ) على المحل (Δ) على المحل (Δ) على المحل (Δ) المحل المحل (Δ) المحل المحل المحل (Δ) المحل		0.5
$-\infty, 2 + \ln 4$ على المجال [$-\infty, 2 + \ln 4$] على المجال $-\infty, 2 + \ln 4$ على المجال $-\infty, 2 + \ln 4$ المجال $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$	$-\infty$) الذي معادلته $y=-x+rac{5}{2}$ مقارب للمنحنى C) بجوار (Δ) الذي معادلته (Δ) معادلته (Δ)	0.5
$-\infty, 2 + \ln 4$ على المجال [$-\infty, 2 + \ln 4$] على المجال $-\infty, 2 + \ln 4$ على المجال $-\infty, 2 + \ln 4$ المجال $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$ على المنصف الأول للمعلم $-\infty, 2 + \ln 4$	$\left[2+\ln 4,+\infty ight[$ ب) حل المعادلة $e^{x-2}-4=0$ ثم بين أن المنحنى (C) يوجد تحت (Δ) على المجال $e^{x-2}-4=0$	
$f'(x) = -\left(e^{x-2}-1\right)^2$: \Box نم x من \Box نم x من \Box أبين أن لكل x من \Box نم بين أن C الحسب C في الحسب C الحسب C المعادلة C المدادلة C المدادلة C المدادلة C المدادة C المدادلة C المدادلة C المدادلة C المدادلة C المدادة C المدادلة C المداد C المدا		0.75
f عدول تغيرات الدالة $f''(x)$ بن ضع جدول تغيرات الدالة $f''(x)$ بن أن $f''(x)$ نقطة انعطاف للمنحنى (5) 0.75 0.75 $f''(x)$ لكل $f''(x)$ من $f''(x)$ نقطة انعطاف للمنحنى $f(x) = 0$ تقبل حلا وحيدا $f(x) = 0$ تقبل حلا وحيدا $f(x) = 0$ بن أن أن الدالة $f(x) = 0$ تقبل دالة عكسية f^{-1} معرفة على f^{-1} معرفة على f^{-1} معرفة على f^{-1} معرفة على المنحنى الممثل للدالة f^{-1} المنحنى الممثل للدالة f^{-1} (لاحظ أن المستقيم (f^{-1}) عمودي على المنصف الأول للمعلم)	$\lim_{x o +\infty}rac{f(x)}{x}=-\infty$ بين أن $\int_{x o +\infty}rac{\sin f(x)}{x}=1$ ثم أول النتيجة هندسيا	0.5
(C) المعادلة (C) كا لكل (C) من (C) نقطة انعطاف للمنحنى (C) نقطة انعطاف للمنحنى (C) المعادلة (C) تقبل حلا وحيدا (C) بحيث (C) بحيث (C) عقبل حلا وحيدا (C) تقبل حلا وحيدا (C) بحيث (C) المعادلة (C) و (D, \vec{i}, \vec{j}) في نفس المعلم (C, \vec{i}, \vec{j}) (ناخذ القيمتين المقربتين التاليتين (C) و (D, \vec{i}, \vec{j}) بين أن الدالة (C) تقبل دالة عكسية (C) معرفة على (C) بين أن الدالة (C) تقبل دالة عكسية (C) المنحنى الممثل للدالة (C) المنحنى الممثل للدالة (C) عمودي على المنصف الأول للمعلم (C) عمودي على المنصف الأول للمعلم (C) عمودي على المنصف الأول للمعلم (C)	$f'(x) = -\left(e^{x-2}-1 ight)^2$: \Box ن نکل x من x ا) بین ان نکل x من x ا	0.5
$2 + \ln 3 < \alpha < 2 + \ln 4$ بحيث α بحيث α بحيث α بحيث β بحيث β اثبت أن المعادلة β بقبل حلا وحيدا β بحيث β بحيث β المقربتين التاليتين β بعد المعام β بعد المعام β بعد المعام المعام β بعد المعام المعام β بعد المعام المعام المعام β المنحنى الممثل للدالة β المنحنى الممثل للدالة β المنحنى الممثل للدالة β المنحنى الممثل للدالة β المنحنى الممثل المعام المعا	f ب) ضع جدول تغیرات الداله f	0.25
(10.3 10.3	(C) احسب $f''(x)$ لكل x من \Box ثم بين أن $A(2,2)$ نقطة انعطاف للمنحنى (5)	0.75
\Box معرفة على \Box بين أن الدالة f تقبل دالة عكسية d معرفة على d معرفة على d بين أن الدالة d تقبل دالة عكسية d معرفة على المنصف الأول للمعلم d المنحنى الممثل للدالة d المنحنى الممثل للدالة d المنحنى الممثل للدالة d المنحنى الممثل للدالة d المنحنى الممثل الدالة d المنحنى الممثل الدالة d المعلم d عمودي على المنصف الأول للمعلم d المنحنى الممثل الدالة d الممثل الدالة d المنحنى الممثل الممثل الدالة d المنحنى الممثل الدالة d المنحنى الممثل الدالة d المنحنى الممثل	$2+\ln 3 < lpha < 2+\ln 4$ أثبت أن المعادلة $f(x)=0$ تقبل حلا وحيدا $lpha$ بحيث $f(x)=0$	0.5
ب) أنشئ في نفس المعلم $\left(O,\vec{i},\vec{j} ight)$ المنحنى الممثل للدالة f^{-1} (لاحظ أن المستقيم Δ) عمودي على المنصف الأول للمعلم) 0.75	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
	\square این آن الداله f تقبل داله عکسیه f^{-1} معرفه علی g	0.5
($f^{-1}(2-\ln 3) = 2 + \ln 3$) (f^{-1} ($(2-\ln 3)$) ((f^{-1}) ($(2-\ln 3)$) (0.5	$igg $ با أنشئ في نفس المعلم $ig(O,ec{i},ec{j}ig)$ المنحنى الممثل للدالة f^{-1} (لاحظ أن المستقيم Δ) عمودي على المنصف الأول للمعلم)	0.75
	($f^{-1}(2-\ln 3) = 2 + \ln 3$) (لاحظ أن $\left(f^{-1}\right)'(2-\ln 3)$) (الاحظ أن	0.5

تصحيح وطني 2020 الدورة العادية - علوم تجريبية

التمرين الأول (4 نقاط)

 \mathbb{N} من $u_{n+1} = \frac{2u_n}{2u_n + 5}$ و $u_0 = \frac{3}{2}$: لكل u_0 من u_0 لكل المتتالية العددية المعرفة كما يلي

 u_1 أحسب (1 0.25

0.5

0.75

0.5

1

0.75

0.5

0.25

- $u_n > 0$ ، ابین بالترجع أن لكل n من الترجع (2 0.5
- \mathbb{N} من n من $0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$ اکل n من n من n ککل $0 < u_{n+1} \le \frac{2}{5} u_n$ اکل n من n
 - ب) أحسب النهاية بين النهاية بين النهاية بين النهاية بين النهاية التين النهاية التين النهاية التين الت
 - \mathbb{N} من $v_n = \frac{4u_n}{2u_1 + 3}$ نعتبر (v_n) المتتالية العددية المعرفة ب
 - $\frac{2}{5}$ اساسها متتالیة هندسیة أساسها أ
 - $\mathbb N$ من n لکل n من u_n بدلالة n ثم استنتج بدلالة v_n حدد v_n

التمرين الثاني (5 نقاط)

- $(E): z^2-2(\sqrt{2}+\sqrt{6})z+16=0:$ نعتبر في مجموعة الأعداد العقدية $\mathbb C$ المعادلة (1
 - $\Delta = -4$ $\sqrt{6} \sqrt{2}^2$: هو (E) المعادلة أ
 - ب) استنتج حلى المعادلة (E)
- $c=\sqrt{2}+i\sqrt{2}$ و $b=1+i\sqrt{3}$ و $a=\sqrt{6}+\sqrt{2}+i\sqrt{6}-\sqrt{2}$: نعتبر الأعداد العقدية (2

 - ac=4b و استنتج أن $b\overline{c}=a$ و استنتج أن بحقق من أن با تحقق من أن $b\overline{c}=a$ و المثلثي با أكتب العددين العقديين b0.5
 - $a=4\left(\cos\left(\frac{\pi}{12}\right)+i\sin\left(\frac{\pi}{12}\right)\right)$ استنتج أن (ج
- D و D و D و D ، نعتبر النقط D و D و D و D التي (3 $d=a^4$ ألحاقها على التوالي هي d و c و d حيث
- O ليكن M بالدوران M الذي مركزه M ليكن M ليكن M بالدوران M الذي مركزه
 - $\frac{\pi}{12}$ و زاویته
 - $z' = \frac{1}{4}az$ أ) تحقق أن 0.5
 - R بالدوران C بالدوران C
 - ج) حدد طبيعة المثلث OBC 0.25
 - د) بين أن $a^4 = 128b$ و استنتج أن النقط O و B و مستقيمية 0.75

1/16 -07/2020

0.5

0.5

0.5

1

0.75

0.75

التمرين الثالث (4 نقاط)

$$g \; x = 2\sqrt{x} - 2 - \ln \; x$$
 : يلي $g \; = 0, +\infty$ المعرفة على والمعرفة على يلي يا

$$g'(x) = \frac{\sqrt{x}-1}{x}$$
 ، $0,+\infty$ من المجال x من الكل أ) بين أن لكل أ

$$1,+\infty$$
 بين أن الدالة g تزايدية على المجال

$$(2\sqrt{x}-2\leq 2\sqrt{x}$$
 استنتج أن لكل x من المجال $x\leq 2\sqrt{x}$ ، $x\leq 2\sqrt{x}$ ، $x\leq 2\sqrt{x}$

$$\lim_{x\to+\infty}\frac{\ln x^3}{x^2}$$
 غم استنتج النهاية $0\leq\frac{\ln x^3}{x^2}\leq\frac{8}{\sqrt{x}}$ ، المجال $1,+\infty$ من المجال (ع

$$0,+\infty$$
 على g على G $x=x\left(-1+rac{4}{3}\sqrt{x}-\ln x
ight)$ على الدالة G المعرفة بما يلي: G المعرفة بما يلي:

$$\int_{1}^{4} g \ x \ dx$$
 ب) أحسب التكامل (ب

المسألة (7 نقاط)

$$f(x) = -x + \frac{5}{2} - \frac{1}{2}e^{x-2} - e^{x-2} - 4$$
 : نعتبر الدالة العددية $f(x) = -x + \frac{5}{2} - \frac{1}{2}e^{x-2} - 4$

(2cm: الوحدة) المنحنى الممثل للدالة f في معلم متعامد ممنظم C و

$$\lim_{x \to +\infty} f(x) = -\infty$$
 و أن $\lim_{x \to -\infty} f(x) = +\infty$ يين أن (1 | 0.5

$$-\infty$$
 بجوار C مقارب للمنحنى $y=-x+rac{5}{2}$ الذي معادلته Δ الذي معادلته 0.5

$$-\infty,2+\ln 4$$
 للمعادلة Δ على المجال $e^{x-2}-4=0$ ثم بين أن المنحنى C يوجد فوق Δ على المجال $e^{x-2}-4=0$ و تحت Δ على المجال Δ

بين أن
$$-\infty = \lim_{x \to +\infty} \frac{f(x)}{x} = -\infty$$
 بين أن (3) بين أن 0.5

$$f'(x) = -e^{x-2} - 1^2$$
: \mathbb{R} من x الله أن لكل أن لكل أن لكل أن الكل أن

$$f$$
 الدالة با ضع جدول تغيرات الدالة f

$$C$$
 كالمنحنى A 2,2 كالمنحنى x كالمنحنى

$$2+\ln 3 < \alpha < 2+\ln 4$$
 بحيث α بحيث $f(x)=0$ تقبل حلا وحيدا (6 معادلة وما 10.5

$$(\ln 3\simeq 1,1)$$
 و Δ و Δ في نفس المعلم O,\vec{i},\vec{j} (نأخذ القيمتين المقربتين التاليتين: Δ و Δ و Δ

$$\mathbb{R}$$
 معرقة على f^{-1} معرقة على f^{-1} معرقة على f^{-1}

ب) أنشئ في نفس المعلم
$$\vec{i}$$
 , \vec{j} المنحنى الممثل للدالة f^{-1} (لاحظ أن المستقيم O, \vec{i} , \vec{j} عمودي على المنصف الأول للمعلم)

$$(f^{-1} 2 - \ln 3 = 2 + \ln 3)$$
 (الحظ أن $f^{-1} 2 - \ln 3$) (حسب $f^{-1} 2 - \ln 3$

2/16 -07/2020

تصحيح التمرين الأول

$$u_{1} = \frac{2u_{0}}{2u_{0} + 5} = \frac{2 \times \frac{3}{2}}{2 \times \frac{3}{2} + 5} = \frac{3}{3 + 5} = \frac{3}{8}$$
 (1)

$$u_n > 0$$
 ، النبين بالترجع أن لكل n من الترجع (2

$$n=0$$
 من أجل

$$u_0=rac{3}{2}$$
: لدينا

$$u_0 > 0$$
 : إذن

$$n \in \mathbb{N}$$
 ليكن \checkmark

$$u_n > 0$$
: نفترض أن

$$u_{n+1} > 0$$
: و نبين أن

$$u_n > 0$$
 لدينا دسب الافتراض

$$2u_n + 5 > 0$$
 و $2u_n > 0$ إذن

$$\frac{2u_n}{2u_n+5} > 0$$
 إذن

$$u_{n+1} > 0$$
 و منه

$$u_n > 0$$
 ، $\mathbb N$ من n فستنتج أن ياكل الكل \checkmark

(1 (3

$$n \in \mathbb{N}$$
 ليكن \circ

$$u_{n+1} > 0$$
 نعلم أن $u_n > 0$ إذن من الواضح أن •

$$5 \le 2u_n + 5$$
 لدينا

$$\frac{1}{2u+5} \le \frac{1}{5}$$
 إذن

$$\frac{1}{2u_n+5} \times 2u_n \le \frac{1}{5} \times 2u_n$$
 إذن

$$u_{n+1} \leq \frac{2}{5}u_n$$
 إذن

$$\mathbb N$$
 نستنتج أن $n < u_{n+1} \leq \frac{2}{5}u_n$ نستنتج

$$\mathbb N$$
 من n لكل $0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$ من أجل $n = 0$ لكل $n = 0$

$$\frac{3}{2} \left(\frac{2}{5}\right)^0 = \frac{3}{2} \quad 9 \quad u_0 = \frac{3}{2} : \text{ Light}$$

$$0 < u_0 \le \frac{3}{2} \left(\frac{2}{5}\right)^0 \quad : \text{ Will}$$

$$n \in \mathbb{N} \quad \text{Will} \quad \checkmark$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^{n+1} \quad \text{Will} \quad >$$

$$0 < u_{n+1} \le \frac{3}{2} \left(\frac{2}{5}\right)^{n+1} \quad \text{Will} \quad >$$

$$0 < u_{n+1} \le \frac{3}{2} \left(\frac{2}{5}\right)^{n+1} \quad \text{Will} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_{n+1} \le \frac{3}{2} \left(\frac{2}{5}\right)^{n+1} \quad >$$

$$0 < u_{n+1} \le \frac{3}{2} \left(\frac{2}{5}\right)^{n+1} : \text{Light} \quad >$$

$$0 < u_{n+1} \le \frac{3}{2} \left(\frac{2}{5}\right)^{n+1} : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \ge \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n : \text{Light} \quad >$$

$$0 < u_n \le \frac{3$$

 $n \in \mathbb{N}$ أ) ليكن (4 لدينا :

$$v_{n+1} = \frac{4u_{n+1}}{2u_{n+1}+3}$$

$$= \frac{4(\frac{2u_n}{2u_n+5})}{2(\frac{2u_n}{2u_n+5})+3}$$

$$= \frac{\frac{8u_n}{2u_n+5}}{\frac{4u_n+6u_n+15}{2u_n+5}}$$

$$= \frac{8u_n}{10u_n+15}$$

$$= \frac{2\times 4u_n}{5\times (2u_n+3)}$$

$$= \frac{2}{5}\times v_n$$
 \mathbb{N} نه n من $v_{n+1} = \frac{2}{5}\times v_n$: إذن v_n متنالية هندسية أساسها v_n

 $v_0 = \frac{4u_0}{2u_0 + 3} = \frac{4\left(\frac{3}{2}\right)}{2\left(\frac{3}{2}\right) + 3} = \frac{6}{6} = 1$ و حدها الأول $q = \frac{2}{5}$ الدينا (v_n) متتالية هندسية أساسها $q = \frac{2}{5}$ و حدها الأول $q = \frac{2}{5}$

$$v_n = v_0 \times q^n$$
 إذن

$$v_n = 1 \times \left(\frac{2}{5}\right)^n$$
 : إذن

$$\mathbb{N}$$
 منه n لکل $v_n = \left(\frac{2}{5}\right)^n$: منه

< لدينا: ⊳

 $n \in \mathbb{N}$ بکن (ب

$$v_n = \frac{4u_n}{2u_n + 3} \Leftrightarrow 4u_n = 2u_n v_n + 3v_n$$
 $\Leftrightarrow 4u_n - 2u_n v_n = 3v_n$
 $\Leftrightarrow u_n (4 - 2v_n) = 3v_n$
 $\Leftrightarrow u_n = \frac{3v_n}{4 - 2v_n}$

N نف n لکل $u_n = \frac{3\left(\frac{2}{5}\right)^n}{4 - 2\left(\frac{2}{5}\right)^n}$: ناذن :

تصحيح التمرين الثانى

(1)

$$\Delta = -2 \sqrt{2} + \sqrt{6}^{2} - 4 \times 1 \times 16$$

$$= 4(8 + 2\sqrt{12}) - 64$$

$$= -32 + 8\sqrt{12}$$

$$= -4 8 - 2\sqrt{12}$$

$$= -4 \sqrt{6}^{2} - 2\sqrt{6}\sqrt{2} + \sqrt{2}^{2}$$

$$= -4 \sqrt{6} - \sqrt{2}^{2}$$

$$(E) : z^2 - 2(\sqrt{2} + \sqrt{6})z + 16 = 0$$

$$\Delta = -4 \sqrt{6} - \sqrt{2}^2$$

$$\downarrow c$$

0

0

(1 (2

$$b\overline{c} = 1 + i\sqrt{3} \quad \sqrt{2} - i\sqrt{2}$$

$$= \sqrt{2} - i\sqrt{2} + i\sqrt{6} + \sqrt{6}$$

$$= \sqrt{6} + \sqrt{2} + i\sqrt{6} - \sqrt{2}$$

$$= a$$

 $cc = b\overline{c}c$ $= b \times |c|^{2}$ $= b \times \left(\sqrt{\sqrt{2}^{2} + \sqrt{2}^{2}}\right)^{2}$ = 4b

 $b = 1 + i\sqrt{3} : لدينا > b$ $|b| = \sqrt{1^2 + \sqrt{3}^2} = \sqrt{4} = 2 : b$ $a = 2\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$ $c = \sqrt{2} + i\sqrt{2} : b$ $|c| = \sqrt{\sqrt{2}^2 + \sqrt{2}^2} = \sqrt{4} = 2 : c$ $a = 2\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = 2\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$

$$ac = 4b$$
 جينا (ج $a = 4\frac{b}{c}$ الدينا (ج

$$a = 4\frac{2\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)}{2\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)} = 4 \times \left(\cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)\right) = 4\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right)$$
يٰذِن $\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$

(1)

 $\frac{\pi}{12}$ مورة النقطة M بالدوران M الذي مركزه M و زاويته M' z'

$$z' - 0 = e^{i\frac{\pi}{12}}(z - 0)$$
$$z' = \left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right)z$$
$$z' = \frac{1}{4}az$$

R بالدوران C بالدوران C

$$rac{1}{4}ac=rac{1}{4} imes4b=b$$
 لدينا R هي صورة C بالدوران

R ج) لدينا B هي صورة C بالدوران $\overrightarrow{\overrightarrow{OC}}, \overrightarrow{\overrightarrow{OB}} \equiv \frac{\pi}{12} 2\pi$ و OC = OBو منه المثلث OBC متساوى الساقين

(۷

$$a = 4\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right)$$
 ادینا \triangleright

إذن حسب علاقة موافر

$$a^{4} = 4^{4} \left(\cos \left(4\frac{\pi}{12} \right) + i \sin \left(4\frac{\pi}{12} \right) \right) = 256 \left(\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} \right) \right) = 256 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = 128 \ 1 + i \sqrt{3} = 128b$$

$$rac{d-0}{b-0}=rac{a^4}{b}=rac{128b}{b}=128$$
 ho بما أن $rac{d-0}{b-0}\in\mathbb{R}$ فإن النقط O و B و D مستقيمية.

تصحيح التمرين الثالث

$$0,+\infty$$
 الدالة g قابلة للاشتقاق على المجال $(1$

$$x \in 0, +\infty$$
 ليكن

$$g'(x) = 2\sqrt{x} - 2 - \ln x = 2 \times \frac{1}{2\sqrt{x}} - 0 - \frac{1}{x} = \frac{1}{\sqrt{x}} - \frac{1}{x}$$

$$g'(x) = \frac{\sqrt{x-1}}{x}$$
 ، $0,+\infty$ اذن : لكل x من المجال

$$x \in 1,+\infty$$
 ب) لیکن $(x \in 1,+\infty)$

$$g' x = \frac{\sqrt{x-1}}{x}$$
لدينا

$$\sqrt{x}-1$$
 بما أن $x>0$ هي إشارة $x>0$

$$x \ge 1$$
 نعلم أن

$$\sqrt{x} \ge 1$$
 إذن

$$\sqrt{x}-1 \ge 0$$
 إذن

$$1,+\infty$$
 من x لكل y' $x \ge 0$ و منه

$$1,+\infty$$
 الدالة g تزايدية على المجال g

$$x \in 1,+\infty$$
 ليكن (ج

$$0 \le \ln x$$
 لدينا $x \ge 1$ لذن $>$

$$1,+\infty$$
 ولدينا $1 \le x$ و الدالة و متصلة و تزايدية على المجال $1 \le x$

$$g \ 1 \leq g \ x$$
 إذن

$$(g \ 1 = 0 \ \dot{V}) \ 0 \le 2\sqrt{x} - 2 - \ln x$$
 إذن

$$\ln x < 2\sqrt{x} - 2$$
 إذن

$$2\sqrt{x}-2 \le 2\sqrt{x}$$
 وبما أن

$$\ln x \le 2\sqrt{x}$$
 فإن

$$0 \le \ln x \le 2\sqrt{x}$$
 ، $1,+\infty$ المجال x من المجال x

(7

$$x \in 1,+\infty$$
 ليكن

$$0 \le \ln x \le 2\sqrt{x}$$
: (ج (1 السؤال) لدينا حسب نتيجة السؤال

$$0 \le \ln x^{-3} \le 8x\sqrt{x}$$
 : إذن

9/16 -07/2020

$$0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8x\sqrt{x}}{x^2} : 0$$
 و منه : لكل x من المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ لينا لكل x من المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ و منه : لكل x من المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} = 0$ و $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} = 0$ و $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} = 0$ و $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{1}{\sqrt{x}} \cdot 1, +\infty$ المجال $0 \le \frac{1}{\sqrt{x}} \cdot 1, +$

 $(0,+\infty$ الدالة G قابلة للاشتقاق على $0,+\infty$ الدالة G قابلة للاشتقاق على \checkmark

 $x \in 0,+\infty$ لیکن \checkmark

لدىنا ٠

$$G'(x) = \left(x\left(-1 + \frac{4}{3}\sqrt{x} - \ln x\right)\right)'$$

$$= x'\left(-1 + \frac{4}{3}\sqrt{x} - \ln x\right) + x\left(-1 + \frac{4}{3}\sqrt{x} - \ln x\right)'$$

$$= 1 \times \left(-1 + \frac{4}{3}\sqrt{x} - \ln x\right) + x \times \left(\frac{4}{3} \times \frac{1}{2\sqrt{x}} - \frac{1}{x}\right)$$

$$= -1 + \frac{4}{3}\sqrt{x} - \ln x + \frac{2}{3}\sqrt{x} - 1$$

$$= 2\sqrt{x} - 2 - \ln x$$

$$= g(x)$$

$$= 0, +\infty \text{ linch is finally } x \text{ of } x = g(x) \text{ i.i.}$$

$$0, +\infty \text{ optimize } g \text{ also } G \text{ optimize } g$$

ب)

$$\int_{1}^{4} g \ x \ dx = \left[G \ x \right]_{1}^{4}$$

$$= G \ 4 - G \ 1$$

$$= 4 \left(\frac{5}{3} - \ln 4 \right) - 1 \left(\frac{1}{3} \right)$$

$$= \frac{19}{3} - 4 \ln 4$$

تصحيح المسألة

(1

$$\lim_{x \to -\infty} f \ x = \lim_{x \to -\infty} -x + \frac{5}{2} - \frac{1}{2} e^{x-2} \ e^{x-2} - 4 = +\infty$$

$$\begin{cases} \lim_{x \to -\infty} -x + \frac{5}{2} = +\infty \\ \lim_{x \to -\infty} -\frac{1}{2} e^{x-2} = \lim_{x \to -\infty} -\frac{e^x}{2e^2} = 0 & \lim_{x \to -\infty} e^x = 0 \\ \lim_{x \to -\infty} e^{x-2} - 4 = -4 \end{cases}$$

$$\vdots$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -x + \frac{5}{2} - \frac{1}{2}e^{x-2} e^{x-2} - 4 = -\infty$$

$$\lim_{x \to +\infty} -x + \frac{5}{2} = -\infty$$

$$\lim_{x \to +\infty} \frac{-1}{2}e^{x-2} = \lim_{x \to +\infty} -\frac{e^x}{2e^2} = -\infty \qquad \lim_{x \to +\infty} e^x = +\infty \qquad \vdots$$

$$\lim_{x \to +\infty} e^{x-2} - 4 = +\infty$$

$$\lim_{x \to -\infty} f(x) - \left(-x + \frac{5}{2}\right) = \lim_{x \to -\infty} -\frac{1}{2}e^{x-2} e^{x-2} - 4 = 0$$

$$\lim_{x \to -\infty} \frac{-1}{2}e^{x-2} = \lim_{x \to -\infty} -\frac{e^x}{2e^2} = 0 \qquad \lim_{x \to -\infty} e^x = 0$$

$$\lim_{x \to -\infty} e^{x-2} - 4 = -4$$

$$\lim_{x \to -\infty} e^{x-2} - 4 = -4$$

 $-\infty$ بجوار C مقارب مائل للمنحنى $y=-x+rac{5}{2}$ بجوار Δ

(<u></u>

$$e^{x-2}-4=0$$
 : المعادلة $\mathbb R$ لنحل في للحينا ho : الدينا $e^{x-2}-4=0 \ \Leftrightarrow \ e^{x-2}=4$

$$e^{x-2} - 4 = 0 \Leftrightarrow e^{x-2} = 4$$

 $\Leftrightarrow x - 2 = \ln 4$
 $\Leftrightarrow x = 2 + \ln 4$

$$S = 2 + \ln 4$$
 : إذن

 Δ لندر س الوضع النسبي للمنحنى C و المستقيم

 $x \in \mathbb{R}$ ليكن

$$f(x)-\left(-x+rac{5}{2}
ight)=-rac{1}{2}e^{x-2}e^{x-2}-4$$
: لدينا $-rac{1}{2}e^{x-2}-4$ إذن إشارة $f(x)-\left(-x+rac{5}{2}
ight)$ هي إشارة $e^{x-2}>0$ نعلم أن

x	$-\infty$		2+ln4	+	∞
(-1/2)(Exp(x-2)-4)		+	þ	_	

 $\sim -\infty, 2 + \ln 4$ المجال \checkmark

$$f x - \left(-x + \frac{5}{2}\right) \ge 0$$
: لدينا

 \triangle إذن المنحنى C يوجد فوق

: $2+\ln 4,+\infty$ المجال \checkmark

$$f x - \left(-x + \frac{5}{2}\right) \le 0$$
 لدينا

 Δ يوجد تحت C إذن المنحنى

(3

√ لدينا:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{-x + \frac{5}{2} - \frac{1}{2}e^{x-2} e^{x-2} - 4}{x}$$

$$= \lim_{x \to +\infty} -1 + \frac{5}{2x} - \frac{1}{2}\frac{e^{x-2}}{x} e^{x-2} - 4$$

$$= -\infty$$

$$\begin{cases} \lim_{x \to +\infty} -1 + \frac{5}{2x} = -1 \\ \lim_{x \to +\infty} \frac{-1}{2} \frac{e^{x-2}}{x} = \lim_{x \to +\infty} -\frac{1}{2e^2} \frac{e^x}{x} = -\infty & \left(\lim_{x \to +\infty} \frac{e^x}{x} = +\infty\right) : \text{ if } e^{x-2} = -1 \end{cases}$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = -\infty$$
 و $\lim_{x \to +\infty} f(x) = -\infty$ بما أن

 $+\infty$ فإن المنحنى C يقبل فرعا شلجميا في اتجاه محور الأراتيب بجوار

$\mathbb R$ أ) الدالة f قابلة للاشتقاق على ال

 $x \in \mathbb{R}$ ليكن دينا :

$$f' x = \left(-x + \frac{5}{2} - \frac{1}{2}e^{x-2} e^{x-2} - 4\right)'$$

$$= -1 - \frac{1}{2} \left(e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2} - 4\right)'$$

$$= -1 - \frac{1}{2} \left(x - 2 e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2} - 4\right)'$$

$$= -1 - \frac{1}{2} e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -\left(1 + \frac{1}{2} e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}\right)'$$

$$= -1 - \frac{1}{2} e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$f'x = -e^{x-2}-1^2$$
 : \mathbb{R} من x

f جدول تغیرات الداله f

x	$-\infty$	2	$+\infty$
f'(x)	_	þ	_
f(x)	+∞/		$-\infty$

\mathbb{R} قابلة للاشتقاق على f' (5 ليكن $x \in \mathbb{R}$ ليكن لينا :

$$f''(x) = -e^{x-2} - 1^{2^{-1}}$$

$$= -2e^{x-2} - 1^{-1}e^{x-2} - 1$$

$$= -2x - 2^{-1}e^{x-2}e^{x-2} - 1$$

$$= -2e^{x-2}e^{x-2} - 1$$

$$= 2e^{x-2} - e^{x-2} + 1$$

$$f''(x) = 2e^{x-2} - e^{x-2} + 1 : \mathbb{R}$$
 $f''(x) = 2e^{x-2} - e^{x-2} + 1 : \mathbb{R}$

$$\begin{array}{|c|c|c|c|c|c|} \hline x & -\infty & 2 & +\infty \\ \hline f''(x) & + & 0 & - \\ \hline \end{array}$$

(f(2)=2) C تنعدم و تغير إشارتها عند 2 فإن A 2,2 نقطة انعطاف للمنحنى f'' تنعدم و تغير إشارتها عند 2 فإن

(6

$$(\mathbb{R}$$
 لدینا f متصلة علی \mathbb{R} (کمجموع و جداء دوال متصلة علی f

$$\mathbb R$$
 و $x=0$ \Rightarrow $x=2$ و $\forall x\in\mathbb R$ و الما أن $f'(x)=0$ فإن $f'(x)=0$ و $\forall x\in\mathbb R$

$$f + 2 + \ln 3 = -2 + \ln 3 + \frac{5}{2} - \frac{1}{2}e^{2 + \ln 3 - 2} + e^{2 + \ln 3 - 2} - 4 = 2 - \ln 3$$
 ولاينا \checkmark

$$f = 2 + \ln 3 > 0$$
 إذن

$$f + 2 + \ln 4 = -2 + \ln 4 + \frac{5}{2} - \frac{1}{2}e^{2 + \ln 4 - 2} + e^{2 + \ln 4 - 2} - 4 = \frac{1}{2} - \ln 4$$
 و لدينا

$$f$$
 $2+\ln 4$ <0 إذن

$$f$$
 $2+\ln 3 imes f$ $2+\ln 4$ <0 و منه

و بالتالي حسب مبر هنة القيم الوسيطية : المعادلة
$$f(x) = 0$$
 تقبل حلا وحيدا α بحيث

$$2 + \ln 3 < \alpha < 2 + \ln 4$$

(ب

 \mathbb{R} انحو f معرفة على مجال J نحو f نحو الله عكسية f^{-1} معرفة على مجال J نحو J انحو J بما أن J متصلة و تناقصية قطعا على J اJ بما أن J معرفة على مجال J بحدث J بنحو J بنح

 (C_{f-1}) $(\Delta): y = -x + \frac{5}{2}$ (C_{f-1})

$$f^{-1}$$
 $^{\prime}$ $2 - \ln 3 = f^{-1}$ $^{\prime}$ f $2 + \ln 3 = \frac{1}{f' + 2 + \ln 3} = \frac{1}{-4}$ (ε

