Unveiling Profits: Leveraging Data Science for Predictive Profitability

By

Hajarat Titilope OLUFADE Ajarah Omowunmi AMBALI Nneka OKEKE Bashirat Amara

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- **Objective**: Use data science to analyze and predict profitability for strategic insights.
- **Dataset**: Sales data with metrics on region, product type, revenue, costs, and profit.

Methods:

- Data preprocessing and feature engineering.
- Regression modeling.
- **Key Models**: Linear, Random Forest, Gradient Boosting, and ridge regression optimized for accuracy.

• Outcomes:

- High accuracy in profit predictions.
- Identified key profit drivers: revenue and profit margin.
- Impact: Supports data-driven financial planning and growth strategy.

Introduction

- •Purpose: Develop a data-driven solution to analyze and predict profitability.
- •Problem: Identifying the factors that impact profit margins and forecasting future profits.

•Approach:

Utilize historical sales data to train machine learning models. Apply regression analysis to identify and predict profit trends.

•Goal: Enable informed decision-making for sustainable business growth through accurate profit forecasting

METODOLOGY

Data Collection

Source:

Kaggle dataset with historical sales transaction data.

Key Columns:

 Region, Item Type, Sales Channel, Units Sold, Unit Price, Unit Cost, Total Revenue, Total Cost, Profit Margin, Total Profit.

Tools Used:

 Data imported into a Pandas DataFrame for preparation and analysis.

Libraries and Modules Import

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
import numpy as np
from sklearn.model selection import train test split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean squared error, mean absolute error, r2 score
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import Ridge
```

Data Import and Preparation

- Loaded the dataset into a Pandas DataFrame as wdf.
- Created a copy as **df** to preserve the integrity of the original data in **wdf**.
- Verified successful data import and readiness for further analysis.
- Used one-hot encoding to transform categorical variables (Region, Item Type, Sales Channel) for analysis

Missing Values Check

Verified the dataset for missing values

 Observed that the dataset was clean with no missing entries

```
df.isnull().sum()
Region
Country
                   0
Item Type
Sales Channel
                   (3)
Order Priority
                   0
Order Date
                   0
Order ID
Ship Date
Units Sold
                   0
Unit Price
                   (2)
Unit Cost
                   (2)
Total Revenue
                   0
Total Cost
                   8
Total Profit
                   dtype: int64
```

Data Analysis Approach

Features and Target Variable Definition

Independent Variables:

- Units Sold: Quantity of items sold per order
- Unit Price: Price per unit item
- Unit Cost: Cost per unit item
- Total Revenue: Total earnings from each order
- Total Cost: Total expenses associated with each order
- **Profit Margin**: Profit relative to revenue
- Order Priority: Priority assigned to orders (e.g., high, medium, low, critical)
- Sales Channel: Platform or method used to complete the sale
- **Region**: Geographic region of the sale
- **Item Type**: Category of the product sold (e.g., beverage, electronics)

Target Variable:

 Total Profit: Net profit per order (calculated by subtracting total cost from total revenue)

Data Splitting for Training and Testing

Purpose of Split:

To evaluate the model's performance on unseen data.

Split Ratio:

- 80% Training Set
- 20% Testing Set

Hyperparameters Used:

- **test_size** = **0.2**: Defines the split ratio
- random_state = 42: Ensures reproducibility

Method:

Implemented using train_test_split from sklearn.model_selection

Models Used in Training

Linear Regression

Simple and interpretable model suitable for initial insights.

Random Forest Regressor

Ensemble model leveraging multiple decision trees for higher accuracy.

Gradient Boosting Regressor

Boosting technique that iteratively improves model predictions.

Ridge Regression

Linear model with regularization to reduce overfitting.

Model Evaluation

Evaluation Metrics Used:

- Mean Squared Error (MSE): Measures average squared difference between predicted and actual values, capturing overall accuracy.
- Mean Absolute Error (MAE): Measures the average absolute difference, indicating the model's precision.
- R-squared (R²): Represents the proportion of variance explained by the model, indicating its goodness of fit.

Exploratory Data Analysis

Descriptive Statistics Summary for Numerical Variables

	Units Sold	Unit Price	Unit Cost	Total	Total Cost	Total Profit	Profit
				Revenue			Margin
Mean	5003	268.1	188.8	1333355.1	938265.8	395089.3	0.34
Standard Deviation	2874	217.9	176.4	1465026.2	1145914.1	377555.0	0.13
Minimum	2	9.33	6.9	167.9	124.6	43.4	0.14
25 th Percentile	2531	109.3	56.7	288551.1	164785.5	98329.1	0.25
Median	4962	205.7	117.1	800051.2	481605.8	289099.0	0.36
75 th Percentile	7472	437.2	364.7	1819143.4	1183821.5	566422.7	0.41
Maximum	10000	668.3	525.0	6680026.9	5241725.6	1738178.4	0.67

Unique Values Summary for Categorical Features

s/n	Region	Item Type	Sales Channel	Order Priority
1	Europe	Personal Care	Online	Critical
2	Sub-Saharan Africa	Household	Offline	High
3	Asia	Clothes		Medium
4	Middle East and North	Baby Food		Low
5	Africa	Office Supplies		
6	Central America and the Caribbean	Vegetables		
7	Australia and Oceania	Cosmetics		
8	North America	Cereal		
9		Snacks		
10		Meat		
11		Fruits		
12		Beverages		

Comparative Analysis of Key Numerical Features by Item Type

Comparative Analysis of Key Numerical Features by Region

Comparative Analysis of Key Numerical Features by Sales Channel

Comparative Analysis of Key Numerical Features by Order Priority

Profit Hotspots: Total Profit Analysis by Region

Profitability Snapshot: How Each Item Type Contributes to Total Profit

Profit Performance Across Sales Channels

Profit Breakdown by Order Priority: Insights into High-Value Orders

Decoding Interactions: Correlation Heatmap of Key Numerical Variables

Z-Score Insights: Identifying Outliers in Numerical Data

Deriving the Profit Margin Metric

```
Profit margin as a derived feature
df = df[(df['Total Revenue'] != 0)]
 Calculate Profit Margin as a new feature
df['Profit Margin'] = df['Total Profit'] / df['Total Revenue']
df['Profit Margin'].describe()
        10000.0000000
count
            0.344981
mean
std
            0.132653
min
            0.135580
25%
            0.247999
50%
            0.361384
75%
            0.409775
            0.672035
max
Name: Profit Margin, dtype: float64
```

Box Plot Analysis of Engineered Profit Margin Feature

Comparative Analysis of Profit Margin by Order Priority and Sales Channel

Predictive Profitability Analysis

Model Performance Metrics Table

s/n	Model	Mean Square Error	Mean Absolute Error	R-squared
1	Linear Regression	4.13e-19	5.56e-10	1.000000
2	Random Forest Regression	9.94e+05	5.96e+02	0.999993
3	Gradient Boosting Regression	1.37e+08	8.48e+03	0.999070
4	Ridge Regression	7.68e-17	6.21e-09	1.000000

Performance Visualization of Linear Regression Model

Performance Visualization of Random Forest Regressor Model

Performance Visualization of Gradient Boosting Regressor Model

Performance Visualization of Ridge Regression Model

Feature Importance Rankings: Values in Order of Preference

Rank	Feature	Importance	
1 st	Total Revenue	8.2e-01	
2 nd	Profit Margin	1.1e-01	
3 rd	Units Sold	3.7e-02	
4 th	Total Cost	8.5e-03	
5 th	Unit Cost	3.7e-03	
6 th	Unit Price	1.3e-03	
7th	Order Priority	2.3e-06	
8 th	Sales Channel	1.1e-06	

Visual Representation of Key Features in Predictive Profitability Analysis

Conclusions

Key Insights from the Analysis

- Regional Profitability: Europe and Sub-Saharan Africa are profit hotspots.
- **Product Contributions**: Cosmetics and household items contribute significantly to total profit.
- Sales Channel Impact: No significant differences across sales channels.
- Order Priority: "Critical" orders yield the highest profits.
- Correlation Insights: Strong positive correlations found among unit price, unit cost, and total revenue. Medium negative correlations with profit margin.
- Outliers: Z-score analysis revealed outliers in total revenue, total cost, and total profit.

Model Performance Summary

High Predictive Accuracy

- Linear and Ridge Regression models achieved R² = 1.0, indicating perfect fit.
- Random Forest and Gradient Boosting also displayed strong predictive power with R² near 1.

Model Selection Insight

- Linear & Ridge Regression are preferred for simplicity and interpretability.
- Random Forest & Gradient Boosting offer robustness for capturing complex patterns.

Top Predictive Features

Total Revenue and Profit Margin are the most impactful, emphasizing the role
of revenue generation and cost efficiency in driving profitability.

Recommendations

Focus on Profitable Regions and Products

 Prioritize Europe, Sub-Saharan Africa, cosmetics, and household items for targeted marketing and operations.

Enhance High-Priority Orders

Develop strategies to optimize delivery and reduce processing time for critical orders.

Optimize Sales Channels

• Investigate channel-specific customer behavior to identify potential profitability improvements.

Monitor Cost and Price Dynamics

Regular analysis of pricing and cost management to maintain favorable profit margins.

Address Revenue and Cost Outliers

 Investigate outliers to identify operational inefficiencies or demand fluctuations for improved profit consistency.

Project Learnings

• Gained experience in feature engineering and predictive modeling.

 Enhanced understanding of profitability drivers in a real-world context.

 Developed skills in model evaluation, data-driven recommendations, and insight extraction for business applications.

Questions and Answers

Thank You for your Attention