Содержание

1	Teo	рия булевых функций	1
	1.1	Определение булевой функции (Б Φ). Количество Б Φ от n переменных. Таблица истинности Б Φ	1
	1.2	Булевы функции одной и двух переменных (их таблицы, названия)	1
	1.3	Формулы догики высказываний. Представление БФ формулами	1

1 Теория булевых функций

1.1 Определение булевой функции (БФ). Количество БФ от
 n переменных. Таблица истинности БФ

Определение. Булева функция от n переменных - это отображение $\{0,1\}^n \to \{0,1\}$

3амечание. Количество Б Φ от n переменных - 2^{2^n}

Доказательство. Каждая булева функция определяется своим столбцом значений. Столбец является булевым вектором длины m=2n, где n – число аргументов функции. Число различных векторов длины m (а значит и число булевых функций, зависящих от n переменных) равно $2^m = 2^{2^n}$ ▶

1.2 Булевы функции одной и двух переменных (их таблицы, названия)

- отрицание (¬), f_4 - тождественная 1

Булевы функции двух переменных 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 $1 \mid 0$ 1

- 1. ∧ конъюнкция
- $2. \leftarrow$ антиимпликация
- $3. \rightarrow$ импликация
- 4. \lor дизъюнкция
- 5. | штрих Шеффера
- 6. ↓ стрелка Пирса
- 7. + взаимоисключающее или, сложение по модулю 2 (XOR)

1.3 Формулы логики высказываний. Представление БФ формулами

Определение. Формула логики высказываний - слово алфавита логики высказываний, построенное по следующим правилам:

- 1. символ переменной формула
- 2. символы 0 и 1 формулы
- 3. если Φ_1 и Φ_2 формулы, то слова $(\Phi_1\&\Phi_2), (\Phi_1\leftrightarrow\Phi_2), (\Phi_1\to\Phi_2), (\Phi_1|\Phi_2), \dots, \Phi_1'$ тоже формулы