Aula 01

Nome: Guilherme Fróes Camba de Freitas | Matricula: 718116

Nome: Bernardo Ferreira Temponi | Matricula: 699469

Nome: Diego Basilio Arruda | Matricula: 701139

Meio Somador

1. Logisim

2. Tabela Verdade

A0	В0	SOMA	CARRYOUT
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

3. Componentes

o 7408 - AND

o 7486 Xor

o 7432 Or

- VCC = 14
- o GND=7

4. Pinos

	No	men	clatur	ra típica da alimentação
BJT	FET			
V _{CC}	V_{DD}	V+	V _{S+}	Tensão de alimentação positiva
V _{EE}	V _{SS}	V-	V _S -	Tensão de alimentação negativa

0

5. Componentes – SIM-97

PERGUNTA 1: O terminal desconectado, é colocado como "energizado", isto é: 1.

7.

8.

9.

x1	у1	cin	s1	СО
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	- 1

A respeito do funcionamento do somador de 4 bits, pode-se perceber um total de 8 entradas, sendo cada uma de acordo com sua palavra binária. Visto isso, cada combinação entre 2 bits das palavras, mais o "carry in" resultante da soma anterior, irá passar pelo processo da soma em cada um dos somadores.

O "carry in" citado anteriormente, nada mais é do que o resultado da soma entre a combinação dos dois bits anteriores nas palavras binárias.

- **2)** Qual o problema de tempo associado a esse tipo de somador? (Pense no carry), considere o atraso médio de cada porta lógica de 10 ns.
- **R:** Outro problema associado ao emprego direto do mecanismo de predição de "vai um" está relacionado ao número de transistores necessários para implementar as portas lógicas que compõe o preditor, porque esse número de transistores é proporcional ao cubo do número de bits do somador, desse forma resultando na maior utilização de portas porque o carry representaria uma nova entrada ou uma nova saída!

- 3) Qual o tempo necessário para a computação de uma soma e do vai um em um somador de 4 bits?
- R: Se cada Soma -> temos 5 portas logicas e que cada uma tem um atraso medio de 10⁻⁹

Dessa forma temos 4 bits de soma -> acharemos o tempo(atraso medio de um somador de um bit) -> $5 * 10^{-9}$

Assim multiplicare mos por 4_{j} já quer trabalhare mos com 4_{j} bits de soma -> $1*_{10}$ -9 * $5*_{4}$ => $2*_{10}$ -8

- 4) O que seria necessário para um somador de 32 bits?
- R: Seria necessária uma herança de meia soma -> unindo com a formação de uma soma -> dessa forma teremos uma base para soma de 1 bit, portanto iremos colocar os circuitos de somatórios individuais em paralelo facilitando a ligação do carry out em uma próxima entrada do elemento (sendo interando 3 entradas)
- 5) Considerando esses tempos acima, calcule a frequência de operação de um somador de 32 bits.
- R: Seguindo a mesma logica de calculo -> f = 1/t (inverso do período) -> acharemos o período de cálculo ou o período para uma repetição -> $1/t^* 10^{-9*5*32} -> 26.8435456$
- 6) Você consegue propor alguma forma de tornar essa soma mais veloz?
- R: Se o tempo de cada porta for constante, a única forma é tentar propor uma amenização no entido logico, minimizando o circuito com algumas portas(xor, xnor, nand, etc...) uma vez que velocidade esta real relacionado com o tempo para uma repetição

Portanto, quanto menor tempo proposto para um repetição ou uma maior frequência,