线性方程组的迭代解法

计 72 谢兴宇 2017011326

June 2019

目录

1 第 2 题 2

1 第2题

取误差判据 $\epsilon_1 = 1e - 7$,残差判据 $\epsilon_2 = 1e - 7$,SOR 的常数 $\omega = 0.9$ 。 三种迭代算法求出的与精确解的误差如下表所示:

ϵ	1			0.0001
Jacobi	3.67e-4	0.783	0.975	1.000
G-S	3 73e-4	0.783	0.975	1.000
SOR	3.73e-4	0.783	0.975	1.000

表 1: 各算法与精确解的相对误差(2 范数)

由于判定准则中都含有残差判据的原因,各算法与精确解的相对误差基本一致。

为了考量三种算法的性能,我们选取了收敛所需的迭代步数这一指标。

ϵ	1	0.1	0.01	0.0001
Jacobi	22257	8577	634	119
G-S	10778	4211	364	109
SOR	13166	5135	437	136

表 2: 各算法的迭代步数

总体来讲,G-S 迭代法迭代次数最少,其次为 SOR 迭代法,Jacobi 迭代法需要最多的迭代次数。这里 SOR 迭代法的表现不好,可能是由于 ω 的 参数选择并不是十分恰当的原因。