DSE 210: Probability and Statistics using Python

Worksheet 4 — Random variables, expectation, and variance

- 1. A die is thrown twice. Let X_1 and X_2 denote the outcomes, and define random variable X to be the minimum of X_1 and X_2 . Determine the distribution of X.
- 2. A fair die is rolled repeatedly until a six is seen. What is the expected number of rolls?
- 3. A die has six sides that come up with different probabilities:

$$Pr(1) = Pr(2) = Pr(3) = Pr(4) = 1/8, Pr(5) = Pr(6) = 1/4.$$

- (a) You roll the die; let Z be the outcome. What is $\mathbb{E}(Z)$?
- (b) What is var(Z)?
- (c) You roll the die 10 times. What is the probability that exactly five of the rolls are sixes?
- (d) You keep rolling the die until you get a six. What is expected number of rolls?
- (e) You keep rolling until you get a second six (that is, roll until the first six, and then keep going until you get another six; they don't have to be consecutive). What is the expected number of rolls?
- 4. You have two different dice, each with four sides. For the first die, the probabilities of the various outcomes are:

$$Pr(1) = Pr(2) = \frac{1}{4}, Pr(3) = \frac{1}{3}, Pr(4) = \frac{1}{6}.$$

For the second die, they are:

$$Pr(1) = \frac{1}{2}, Pr(2) = Pr(3) = Pr(4) = \frac{1}{6}.$$

Suppose you roll both dice. Let X_1 be the outcome of the first die, and X_2 the outcome of the second die. Moreover, define random variable Y to be the sum of the X_1 and X_2 , and define random variable Z to be the larger of X_1 and X_2 .

- (a) Specify the distribution of Y.
- (b) Specify the distribution of Z.
- 5. Random variable Z is uniformly distributed in [-1,1].
 - (a) What is the density of Z?
 - (b) What is the expected value of Z?
 - (c) What is the median value of Z?
 - (d) What is the variance of Z?
 - (e) What is the standard deviation of Z?

- 6. You have a balloon that is perfectly spherical with radius 1. There is a particular gas molecule inside the balloon whose position is uniformly distributed (that is, equally likely to be anywhere in the balloon). Let random variable R denote the distance from this molecule to the center of the balloon.
 - (a) What is the range of values that R can take?
 - (b) The cumulative distribution function (cdf) of R is $F(r) = Pr(R \le r)$. What is F(r)?
 - (c) What is the density of R?
 - (d) What is the probability that $1/3 \le R \le 2/3$?
 - (e) What is the expected value of R?
 - (f) What is the median value of R?
- 7. A random variable X is uniformly distributed over the set $[1,2] \cup [3,4]$.
 - (a) Specify the density of X.
 - (b) What is $\mathbb{E}(X)$?
 - (c) What is the median of X?
 - (d) What is $\mathbb{E}(X^2)$?
 - (e) What is var(X)?
- 8. After studying your favorite insect carefully, you determine that length X (in centimeters) of a member of that species has expected value 5, with a standard deviation of 2.
 - (a) What is the variance of X?
 - (b) Let Z denote the length of an insect in millimeters (so Z = 10X). What is $\mathbb{E}(Z)$?
 - (c) What is std(Z)?
 - (d) What is var(Z)?
- 9. An elevator operates in a building with 10 floors. One day, n people get into the elevator, and each of them chooses to go to a floor selected uniformly at random from 1 to 10.
 - (a) What is the probability that exactly one person gets out at the ith floor? Give your answer in terms of n.
 - (b) What is the expected number of floors in which exactly one person gets out? Hint: let X_i be 1 if exactly one person gets out on floor i, and 0 otherwise. Then use linearity of expectation.
- 10. You throw m balls into n bins, each independently at random. Let X be the number of balls that end up in bin 1.
 - (a) Let X_i be the event that the *i*th ball falls in bin 1. Write X as a function of the X_i .
 - (b) What is the expected value of X?
- 11. In each of the following cases, say whether X and Y are independent.
 - (a) You randomly permute (1, 2, ..., n). X is the number in the first position and Y is the number in the second position.
 - (b) You randomly pick a sentence out of *Hamlet*. X is the first word in the sentence and Y is the second word.

- (c) You randomly pick a card from a pack of 52 cards. X is 1 if the card is a nine, and is 0 otherwise. Y is 1 if the card is a heart, and is 0 otherwise.
- (d) You randomly deal a ten-card hand from a pack of 52 cards. X is 1 if the hand contains a nine, and is 0 otherwise. Y is 1 if all cards in the hand are hearts, and is 0 otherwise.
- 12. Suppose the probability that a car accident occurs on Monday is 5%, Tuesday 10%, Wednesday 10%, Thursday 20%, Friday 20%, Saturday 30%, and Sunday 5%. Suppose a series of 200 accidents occur at random, independently. Let X denote the number of them that occur on Sunday.
 - (a) What is the expected value and variance of X?
 - (b) What is the probability that X is exactly its expected value?
- 13. In a sequence of coin tosses, a run is a series of consecutive heads or consecutive tails. For instance, the longest run in HTHHHTTHHTHH consists of three heads. We are interested in the following question: when a fair coin is tossed n times, how long a run is the resulting sequence likely to contain? To study this, pick any k between 1 and n, and let R_k denote the number of runs of length exactly k (for instance, a run of length k+1 doesn't count). In order to figure out $\mathbb{E}(R_k)$, we define the following random variables: $X_i = 1$ if a run of length exactly k begins at position i, where $i \leq n k + 1$.
 - (a) What are $\mathbb{E}(X_1)$ and $\mathbb{E}(X_{n-k+1})$?
 - (b) What is $\mathbb{E}(X_i)$ for 1 < i < n k + 1?
 - (c) What is $\mathbb{E}(R_k)$?
 - (d) What is, roughly, the largest k for which $\mathbb{E}(R_k) \geq 1$?
- 14. Let $X_1, X_2, \ldots, X_{100}$ be the outcomes of 100 independent rolls of a fair die.
 - (a) What are $\mathbb{E}(X_1)$ and $\text{var}(X_1)$?
 - (b) Define the random variable X to be $X_1 X_2$. What are $\mathbb{E}(X)$ and var(X)?
 - (c) Define the random variable Y to be $X_1 2X_2 + X_3$. What is $\mathbb{E}(Y)$ and var(Y)?
 - (d) Define the random variable $Z = X_1 X_2 + X_3 X_4 + \cdots + X_{99} X_{100}$. What are $\mathbb{E}(Z)$ and var(Z)?
- 15. Pick a random permutation of (1, 2, ..., n). Let X_i be the number that ends up in the *i*th position. For instance, if the permutation is (3, 2, 4, 1) then $X_1 = 3$, $X_2 = 2$, $X_3 = 4$, and $X_4 = 1$.
 - (a) What is the expected number of positions at which $X_i \neq i$?
 - (b) What is the expected number of positions at which $X_i = i + 1$?
 - (c) What is the expected number of positions at which $X_i \geq i$?
 - (d) What is the expected number of positions at which $X_i > \max(X_1, \dots, X_{i-1})$? You can give a rough approximation.
- 16. A set of n people are lined up against a wall in a random order. Among them are Alice, Bob, and Chet.
 - (a) What is the probability that Alice appears somewhere to the left of Bob, and Bob appears somewhere to the left of Chet?
 - (b) What is the expected number of people between Alice and Bob?

- 17. Suppose a fair coin is tossed repeatedly until the same outcome occurs twice in a row (that is, two heads in a row or two tails in a row). What is the expected number of tosses?
- 18. Random variables X and Y take values in $\{1,2,3\}$, and are known to be independent. The joint distribution of X and Y is given in the table below, but some of the entries are missing. Provide the missing entries.

			Y	
		1	2	3
	1	1/12	1/24	1/8
X	2	???	???	???
	3	1/12	1/24	1/8

- 19. Let $X, Y \in \{0, 1\}$ be independent fair coin flips. Let U be the exclusive-OR of X and Y, and let V be the AND of X and Y.
 - (a) Are X and U independent? Why or why not?
 - (b) Are X and V independent? Why or why not?
- 20. Biased random walk. A drunken man leaves a bar. At each time t = 1, 2, ..., he either takes one step to the left, with probability 1/3, or one step to the right, with probability 2/3. Let X denote his position after n steps. For instance, if he takes a total of 3n/4 steps to the left and n/4 steps to the right, then his final position is $X = -1 \cdot (3n/4) + 1 \cdot (n/4) = -n/2$.
 - (a) What is $\mathbb{E}(X)$?
 - (b) What is var(X)?
 - (c) Use the standard deviation of X to summarize roughly where you would expect the man to be after n steps.
- 21. Stumbling race. Mario and Luigi decide to race against each other. Each of them runs in an unusual manner: at each time t = 1, 2, ...,
 - Mario moves ahead two steps with probability 1/2 and moves back one step with probability 1/2
 - Luigi moves one step ahead if t is even; but if t is odd, then he moves forward one step with probability 1/3 and backwards one step with probability 2/3

What are their expected positions after T steps, where T is an even number?