NASA TECHNICAL NOTE

CASEFILE

SUMMARY OF DESIGN AND BLADE-ELEMENT PERFORMANCE DATA FOR 12 AXIAL-FLOW PUMP ROTOR CONFIGURATIONS

by Max J. Miller, Theodore H. Okiishi,
George K. Serovy, Donald M. Sandercock,
and Werner R. Britsch
Lewis Research Center
Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . JANUARY 1973

1. Report No.	2. Government Accession No.	3. Recipient's Catalog	No.			
NASA TN D-7074						
4. Title and Subtitle	A DE ELEMENT DEDEODMANCE	5. Report Date	ı			
	LADE-ELEMENT PERFORMANCE					
DATA FOR 12 AXIAL-FLOW I	PUMP ROTOR CONFIGURATIONS	6. Performing Organiz	ration Code			
7. Author(s) Max J. Miller, Theodore	8. Performing Organization	ation Report No.				
	s, Iowa; and Donald M. Sandercock	E-6624				
and Werner R. Britsch, both of	ewis Research Center	10. Work Unit No.				
Performing Organization Name and Address		502-24				
Lewis Research Center		11. Contract or Grant	No.			
National Aeronautics and Space	Administration					
Cleveland, Ohio 44135		13. Type of Report an	nd Period Covered			
12. Sponsoring Agency Name and Address		Technical No				
National Aeronautics and Space	Administration	14. Sponsoring Agency	Code			
Washington, D.C. 20546						
15. Supplementary Notes		·				
10.0		•				
16. Abstract A carefully selected and evalua	ted collection of noncavitating blade	-element perform	mance data for			
	gurations is presented in tabular for					
	and data reduction and evaluation a					
	s described. All but one of the rote					
	lar-arc blade sections and were de	signed for high in	let relative			
flow angles. Hub-tip radius ra	tios ranged from 0.40 to 0.90.					
•						
·						
•						
			·			
17. Key Words (Suggested by Author(s)) Turbomachinery Tabula	18. Distribution Stateme ed data Unclassified -	nt unlimited				
17. Key Words (Suggested by Author(s)) Turbomachinery Tabulat Axial-flow pump Tip cle	ed data Unclassified -	nt unlimited				
Turbomachinery Tabulat	ed data Unclassified -	nt unlimited				
Turbomachinery Tabulat Axial-flow pump Tip cle	ed data Unclassified -	nt unlimited				
Turbomachinery Tabulat Axial-flow pump Tip cle Experimental data	ed data Unclassified -	nt unlimited	22. Price*			

Page Intentionally Left Blank

CONTENTS

Pa	ıgе
UMMARY	1
NTRODUCTION	2
OTOR DESIGN INFORMATION	3
Design Procedure	
Overall Design Features	
Blade-Element Design Features	7
APPARATUS AND PROCEDURE	10
DATA PRESENTATION	15
OATA QUALITY EVALUATION	18
OATA STORAGE AND RECALL PROGRAM	20
CONCLUDING REMARKS	21
PPENDIXES	
A - SYMBOLS	23
B - GLOSSARY OF COMPUTER PROGRAM OUTPUT VARIABLES	26
C - COMPUTER PROGRAM LISTING AND GLOSSARY OF	
FORTRAN VARIABLES	34
D - COMPUTER INPUT FORMAT	49
E - LISTING OF INPUT DATA	54
F - PARAMETER EQUATIONS	82
ABLES	91
OF FFD FNCFG	119

SUMMARY OF DESIGN AND BLADE-ELEMENT PERFORMANCE DATA FOR 12 AXIAL-FLOW PUMP ROTOR CONFIGURATIONS

by Max J. Miller,* Theodore H. Okiishi,† George K. Serovy,‡ Donald M. Sandercock, and Werner R. Britsch

Lewis Research Center

SUMMARY

During the period 1958-70 a comprehensive program of research on pumps for liquid-propellant rocket systems was carried on and supported by the National Aeronautics and Space Administration through the Lewis Research Center. One important phase of the research on axial-flow pumps was an extensive investigation of rotor blade row configurations operating in water. A carefully selected and evaluated collection of noncavitating blade-element performance data for 12 of these axial-flow pump rotor configurations is presented. Rotor design philosophy, test apparatus and procedure, and data reduction and evaluation are discussed.

All but one of the rotor configurations considered were composed of double-circular-arc blade sections and were designed for high inlet relative flow angles. Hubtip radius ratios ranged from 0.40 to 0.90.

This information should be useful for analysis and design purposes - not only for pumps, but also for axial-flow compressors and blowers. Except for the generally higher level of pump rotor blade chord Reynolds numbers involved, the flow conditions associated with the present pump rotor data are quite similar to those existing in the rear stages of industrial multistage axial-flow compressors and in fan and blower configurations with high hub-tip ratios.

To facilitate handling the large volume of experimental data presented, a data storage and recall computer program was developed. A listing and description of the program and detailed information concerning its use are presented. Other possible uses for the program are also suggested.

^{*}Research Associate, Iowa State University, Ames, Iowa.

[†]Associate Professor of Mechanical Engineering, Iowa State University, Ames, Iowa.

[‡]Professor of Mechanical Engineering, Iowa State University, Ames, Iowa.

INTRODUCTION

During the period 1958-70 a comprehensive program of research on pumps for liquid-propellant rocket systems was carried on and supported by the National Aeronautics and Space Administration through the Lewis Research Center. The program included numerous projects involving the fluid mechanics of inducers and centrifugal and axial-flow pump configurations.

One important phase of the research on axial-flow pumps was extensive experimental investigation of rotor blade rows operating in water. Several features of these studies justify careful consideration of the results. First, a wide range of rotor geometries was utilized and consistent design techniques were used. Second, experimental facilities were planned, constructed, and operated so that the effects of extraneous and random variables could be eliminated or minimized. Both overall performance and radial distributions of fluid properties and velocities at inlet and exit measuring stations were measured. The results are believed to be the most complete, if not the only available, collection of detailed experimental performance data of axial-flow pump blade rows.

From 1960 to the present the NASA Lewis Research Center has supported at Iowa State University a research program concerned with prediction of the performance of axial-flow pumps by blade-element methods. Development of these methods has depended on correlation of experimental data from the various NASA studies.

To support this work, a computer-based storage and recall system for experimental axial-flow pump data has been developed. The system is structured so that rotor and stage geometric parameters and basic fluid property measurements can be retrieved rapidly and used in the computation of currently recognized, as well as newly proposed, hydrodynamic and geometric parameters.

The major objective of this report is to present a carefully selected and evaluated collection of data for 12 axial-flow pump rotor configurations. In addition, the report includes a discussion of the test facilities in which the data were obtained, information about rotor design procedures, and an evaluation of the results. Noncavitating data only are presented, but it is noted that some cavitation data for included rotors are given in references 1 to 6. All but one of the data sets included are for rotors having double-circular-arc blade-section geometries on cylindrical surfaces. The rotor geometries are characterized by high inlet relative flow angles.

A secondary objective of this report is to describe and demonstrate the utility of the data storage and recall system. The 12 rotor data sets have been placed in the proper format for entry into the system, and it has been used to prepare the detailed data tabulations presented herein. Data of questionable validity were eliminated wherever possible.

ROTOR DESIGN INFORMATION

The 12 rotor configurations were part of a systematic study to show the effects of design parameters such as blade loading, flow coefficient, radius ratio, tip clearance, and energy addition distribution on the performance of a class of rotor geometry. This class is composed of high-inlet-relative-flow-angle, high-head-rise blade rows operating in an annulus having constant-diameter hub and casing surfaces.

Design Procedure

A two-part design procedure based on the blade-element method given in reference 7 was used. A detailed description of this procedure as applied to pump rotor design is given in reference 3. In the first part of the procedure, velocity diagrams were calculated at the blade-row entrance and exit stations, assuming axisymmetric flow and cylindrical stream surfaces. A computer program which performs the velocity diagram calculations is presented in reference 8. The second part of the design procedure consisted of selecting blade sections on the assumed cylindrical stream surfaces to produce the desired exit velocity diagrams and stacking the sections to form a blade. The stacking procedure can be carried out by using the computer program of reference 9. A typical blade formed from stacked sections is shown in the blade fabrication drawing of figure 1.

The choice of design parameters for the different blade rows in a multistage pump usually depends on the changing values of flow conditions (particularly pressure) through the pump. The first rotor in a multistage pump is often an inducer which has a low design flow coefficient $\overline{\phi}$, a low radius ratio r_h/r_t , and low blade loading to enhance cavitation performance. (All symbols are defined in appendix A.) Deeper in the pump, where the pressure is high enough to preclude cavitation, considerations of high head rise per stage dominate design decisions. Thus, it is desirable to raise $\overline{\phi}$ as much as possible because, as shown by examples presented in references 3 and 10, for a given blade loading (as measured by D-factor), energy addition increases as $\overline{\phi}$ is increased and this leads to higher head rise per stage. In a multistage pump having a constant tip diameter, the $\overline{\phi}$ for downstream stages is increased by increasing r_h/r_t . This leads to short blades which impose a practical limit on the maximum value of $\overline{\phi}$, depending on the scale of the pump. The blade loading of middle and rear stages is limited by hydrodynamic considerations other than cavitation; and accordingly, loading may be considerably higher for these stages than for inlet stages.

Figure 1. - Typical blade

- 1. Material must pass ultrasonic inspection as per NASA specification LRC-4-A.
- 2. Line of points Z is a radial line and perpendicular to airfoil sections.
- 3. Aerodynamic tolerance requirements will be satisfied if contour of blade is within +0.003 to -0.001 inch of true contour, provided contour is smooth and deviations from fairness do not exceed 0.002 inch per 0.250 inch of surface length.
- 4. To be dynamically balanced by NASA. See note 1 on CD843428.
- 5. "A" surfaces must be concentric, parallel, flat, square and true within 0.001 inch FIR.

 32

 all over unless otherwise specified.
- 7. Turn tip radius after assembly with rotor CD843430 to provide 0.015 to 0.020 clearance with 843433.
- 8. The 0.030-inch fillet radius must be polished smooth and be tangent to airfoil and
- 9. Finished part must pass Zyglo inspection.
- 10. Peen both ends of blade base at assembly.

Cross section			В	-В	C-	·C	D-D		
Point	х		0.4	170	0.4	180	0.4	0.4174	
Z	у		0.0	685	0.0	665	0,0660		
Y			38 ⁰	² 30'	410	29'	44 ⁰ 1'		
				Blade co	ordinates	a			
×			y _{ps}	y _{ss}	y _{ps}	y _{ss}	У _{рs}	y _{ss}	
0,0		0	. 0055	0.0055	0.0055	0.0055	0.0055	0.0055	
	000		. 0210	.0620	. 0210	. 0590	. 0210	. 0580	
, 21	000		. 0360	. 0960	. 0360	. 0935	. 0360	. 0915	
. 30	000		. 0455	. 1170	. 0447	. 1135	. 0450	. 1105	
. 41	000		. 0480	. 1240	. 0480	. 1215	. 0490	. 1180	
. 50	000		. 0455	. 1190	. 0460	. 1170	. 0470	. 1140	
	000		. 0970	. 1035	. 0375	. 1005	. 0385	. 0985	
	000		. 0235	. 0790	. 0250	. 0710	. 0255	. 0700	
	000		. 0060	. 0280	. 0065	. 0280	.0065	. 0280	
8	360	_	. 0055	. 0055	. 0055	. 0055	. 0055	. 0055	
Cross	ection	1	В	-В	С	-C	D-D		
Point	x		0.4	175	0.4	178	0.4177		
Z	у		0,0	655	0.0	598	0.0415		
γ			46	001	48 ⁰ 42'		55 ⁰ 40'		
				Blade c	oordinate	es			
х			y _{ps}	y _{ss}	y _{ps}	y _{ss}	y _{ps}	y _{ss}	
0.0	000	0	. 0055	0.0055	0,0055	0.0055	0.0055	0,0055	
	000		. 0205	.0570	. 0190	. 0535	.0110	.0415	
. 2	000		.0370	.0905	. 0335	. 0847	.0185	. 0638	
.3	000		. 0465	. 1095	.0425	. 1030	. 0230	. 0775	
	000		. 0495	. 1170	.0450	. 1095	. 0245	. 0820	
.5	000		. 0475	. 1130	. 0420	. 1045	.0225	. 0780	
.6	000		. 0395	. 0970	. 0340	. 0890	.0175	. 0660	
. 79	000		. 0255	. 0685	. 0215	. 0630	.0105	. 0480	
. 8	000		. 0070	. 0270	. 0055	. 0253	. 0025	. 0212	
. 8355		-					.0055	. 0055	
. 8360				0000		i	l	l	
	360	i	. 0055	.0055					

NO SCALE	REFERENCES		INITIAL	DATE	CHANGE	NO.	REVISION	DATE CK. APP.			
UNLESS CIECEWISE SPECIFIED	19 REO.	QŔ.	171.F1								
]		CK.		<u> </u>	<u>─</u>						
IX OIM, MAY YARY &	MAT_L-17-4PH	D.EHG			0.11/47	-0.0	NID ACCENDIN				
AN ONE MAY MAY AND AN	STAINLESS STL	P.ENG		<u> </u>	8 WATER PUMP ASSEMBLY 5'' ROTOR φ = 0. 466 ψ = 0. 420 <u>CD 84</u>						
100. E TEST YEN JUL EXX.	CONDITION	P ENG									
THERITYS DIAY ATT AYES # 0,22,	H-1200	D \$ 110			NATIO	NAL A	ERONAUTICS AND SPACE	OWG NO.			
DIN. HAY YART ±	SAFETY APPROVAL	2 5 HD	Γ		1	A	DMINISTRATION				
•	37 DATE	0.0 (11		LEWIS RESEARCH CENTER		CD 843429					
ESEAN SHARP EGGES	AREA, SAFETY COMM.	₹ E C11			l	CL	EVELAND, OHIO				

fabrication drawing.

Overall Design Features

The overall design features of the 12 rotor configurations, which are summarized in the following table, were chosen to be representative of rotors in a multistage pump:

Config-	Radius	Average	Average	Energy	Blade	Blade	Number	Radial tip	Reference
	ratio, a	ideal	ideal	addition	tip	chord,	of	clearance,	reieience
ui ation		flow	headrise	distribution	diffusion	in.,	blades,	in.	,
	r _h /r _t	coeffi-	coeffi-	aisti ibution	factor,	с	NB	,	,
		cient.	cient,		1 ′		, ""	,	•
		· '	′ ′		D _t				
	<u> </u>	$\overline{arphi}_{ ext{i}}$	Ψ_{i}						
02	0.4	0.293	0.161	Approximately	0.24	1.50	16	0.013 to 0.020	None
	ĺ			radially				ı	
	1			constant		<u>.</u>	 		
07	.7	. 294	. 294	Radially	. 43	1.52	19	0.005 to 0.012	1, 2
				constant		Ì			
09	.7	. 294		Approximately		3.04	8	0.013 to 0.020	None
1				radially					
7		İ		constant	}	· ·	\		· }
,5	. 8	.466	0.460	Increasing hub	0.66	1.50	19	0.015 to 0.017	3, 4,
	1. 1	1	1	to tip	1	ļ		Ì	
6	[[[]		[[1.50		0.025 to 0.027	None
8						. 833		0.007 to 0.009	
9	1	1		1	1	. 833	1 .1	0.015 to 0.017	1.
.10	, ∀	▼	\	Y	, ,	. 833	Y	0.022 to 0.024	
13A	. 85	. 500	.7225	Radially	.72	1.17	33	0.009 to 0.011	1 1
		ļ		constant	ĺ		ļ	. `	, ,
14A	. 9	.700	. 645	Rádially	.63	1.50	19	0'. 009 to 0, 011	5
	1 .		1.	constant	1 .				1
15	. 8	. 466	. 393	Increasing hub	. 56	1.50	19	0.009 to 0.010	6
		1		to tip	1]			
16	. 85	. 500	. 7225	Radially	.72	1.17	33	0.009 to 0.011	None
	L	<u> </u>		constant	<u></u>		<u> · </u>	·	<u> </u>

^aConfigurations 8, 9, and 10 have a 5-in. tip diameter. All other configurations have a 9-in. tip diameter.

Configuration 02 was intended to be typical of a transition rotor which would follow immediately downstream of an inducer stage. The other 11 configurations are typical middle- and rear-stage rotors. To avoid confusion, note that configurations 09 and 9 are different geometries.

Features common to all configurations include constant-diameter annulus surfaces, double-circular-arc blade sections (except configuration 16), and 9-inch outer-annulus

surface diameter (except configurations 8, 9, and 10, which had a 5-in. diameter). Tip clearance was obtained by grinding the required amount from the blade tips.

Certain subsets of the rotor configurations have identifiable common features:

- (1) Configuration 09 was derived from the configuration 07 design by doubling the chord length and reducing the number of blades from 19 to 8.
- (2) Configurations 5 and 6 are 9-inch-diameter rotors which differ only in the value of tip clearance.
- (3) Likewise, configurations 8, 9, and 10 (which are 5/9 scale models of configuration 5) differ from one another only in the values of tip clearance.
- (4) Configurations 13A and 16 have the same blade angles; but 13A has double-circular-arc blade sections, while configuration 16 has arbitrary blade profiles.
- (5) Configurations 02, 07, 5, 14A, and 15 are similar designs which demonstrate the effects of increasing blade loading and flow coefficient.

Blade-Element Design Features

Blade-element procedures were used to obtain the local values of velocity diagram and rotor blade geometric parameters, as previously mentioned. Special features applying to specific configurations are given in this section. For additional information the references in table I should be consulted. Radial distributions of velocity diagram and blade geometry parameters are summarized in tables II and III. Blade parameters are illustrated in figure 2 and defined in appendix A.

Configuration 02 was derived from the rotor described in reference 11 by reducing the number of blades from 19 to 16. The design parameters given for configuration 02 in tables II and III were reconstructed to reflect the reduced solidity. By using the procedure of reference 12, an ideal flow coefficient $\overline{\phi}_i$ value was selected for optimum cavitation performance. Inlet relative flow angles and solidities outside the ranges given in the correlations of design incidence angle and deviation angles presented in reference 7 required extrapolation for this configuration. Designers should note that water-cascade data for double-circular-arc blade sections are now available for high blade setting angles (ref. 13).

The same $\overline{\phi}_i$ used for configuration 02 was retained for configuration 07. Extrapolations of reference 7 correlations were required in computation of some incidence and deviation angles. No hydrodynamic design was carried out for configuration 09 since it was derived directly from configuration 07 by doubling the chord and reducing the number of blades from 19 to 8. For this reason, no design information is presented in tables II and III.

In the design of configurations 5, 6, 8, 9, and 10, a higher $\overline{\phi}_{\mathbf{i}}$ and an increasing

Figure 2. - Typical double-circular-arc blade elements and nomenclature.

energy addition from hub to tip were used to reduce gradients of exit flow coefficient φ_2 and head-rise coefficient ψ . Incidence and deviation angle data could be obtained directly from reference 7 without extrapolation.

The velocity diagrams for configuration 16 were computed by assuming zero inlet tangential velocity and radially constant values of inlet flow coefficient φ_1 , ideal headrise coefficient ψ_i , and efficiency η . These assumptions resulted in a radially constant exit flow coefficient φ_2 . Specific values of efficiency or loss could not be assigned because an arbitrary blade profile having unknown loss characteristics was specified. The

Section	Arc	Cub	Cubic equation constant coefficients						
		B1	B2	В3	B4	tangential direction, XT			
Tip	Mean camber line S1 S2 P1 P2	-1. 394 -2. 349 -2. 262 -1. 009 -1. 116	0. 486 2. 049 1. 163 . 085 . 158	-0. 342 -1. 108 417 316 324	1. 031 1. 183 1. 043 1. 023 1. 021	0. 9079 . 9079 . 8569 . 8569			
Hub	Mean camber line S1 S2 P1 P2	-0. 761 -1. 223 -2. 026 915 387	-0.649 .017 .314 034 -1.128	0. 592 . 313 . 477 . 033 . 644	0.648 .724 .662 .740 .636	0. 7706 7706 .6938 .6938			

Section	Axial co- ordinate at blade- row inlet, Z ₁	Axial co- ordinate at blade- row outlet, Z ₂	coordinate at blade-	Tangential coordinate at blade- row outlet, X ₂
Tip	0.9	0.1	0.1	1.0
Hub	. 9	.1	. 1	.7

Figure 3. - Detailed description of hub and tip blade sections used for configuration 16.

blade mean camber line, the pressure surface, and the suction surface were described by third-order polynomials, as shown in figure 3. The particular polynomials selected were such that the flow area between adjacent blade sections in the cascade increased uniformly from the leading edge to the trailing edge. Blade profiles were developed in this way on the hub and tip stream surfaces and stacked on a radial line through their centers of area. The remainder of the blade was defined by passing straight lines through points on the hub and tip profiles at equal percentages of the distance along the profile from the leading edge to the trailing edge. Incidence angles were arbitrarily chosen so that at the off-design flow coefficient of 0.35 the incidence angles would be zero. Carter's rule was used to estimate deviation angles.

Configuration 13A was obtained by substituting double-circular-arc blade sections, having the same leading- and trailing-edge blade angles, for the arbitrary blade profiles of configuration 16. Identical chord lengths but different mean-camber-line shapes resulted in blade-setting-angle values which differ for the two configurations (table III).

Because of the relatively short span (0.45 in.) of configuration 14A, three-dimensional flows were expected to affect the losses over a significant fraction of the span. However, since no procedure was available to estimate such losses, a radially constant $\overline{\omega}$ of 0.125 was chosen.

APPARATUS AND PROCEDURE

Performance tests of all 12 rotor configurations were carried out in the Lewis water tunnel. A photograph and a schematic diagram of the water tunnel are shown in figures 4 and 5, and a description of the facility is given in reference 11. Schematics of typical pump-inlet flow paths and test sections are shown in figure 6. Before each test series, the water in the loop was conditioned by reducing the gas content to approximately 1 part per million by weight and by circulating the water through a filter capable of removing solid particles larger than 5 micrometers. During tests, the gas content was maintained below 3 parts per million by weight. For tests of a given configuration, water temperature was held within a few degrees of a constant value. The water temperature was slightly different for each configuration; but for all configurations, nominal water-temperature values were in the range 65° to 85° F.

Noncavitating performance characteristics were obtained by maintaining the inlet pressure and rotative speed constant while varying flow rate. Maximum-flow operating points were established by the water-tunnel pressure losses with the throttling valve wide open. Each minimum-flow operating point (except for configuration 02) was set, at the discretion of the operator, close to a stalled condition made apparent through vibrations and noise in the test apparatus. At each selected flow rate the radial distributions

Figure 4. - Lewis water tunnel.

Figure 5. - Schematic diagram of Lewis water tunnel. (Dimensions are in inches.)

of flow conditions were surveyed at measuring stations no more than 1 chord length from the blade leading and trailing edges. Measurements of total pressure, static pressure, and flow angle were recorded at five or seven radial locations, which always included positions approximately 10, 30, 50, 70, and 90 percent of the passage height from the annulus outer surface. Blade elements were assumed to lie on cylindrical surfaces at these radial positions. Sketches showing details of typical survey probes are given in figure 7. All probes were automatically alined with the flow direction by means of a null pressure balance system. Static-pressure probes were calibrated in a low-speed air

(a) Configurations 02, 07, 09, 5, 6, 13A, 14A, 15, 16. (Configuration 02 had a rotating hub upstream.)

(b) Configurations 8, 9, and 10. Axial coordinate Z, 0.35 inch.

Figure 6. - Schematic diagrams of typical inlet flow paths and test sections. (Dimensions are in inches.)

Figure 8. - Typical static-pressure-probe calibration curve.

pind	indicated static pressure	V_{ind}	√2g _c (P - p _{ind})144.0/p _{ind}
p	true static pressure	μ	viscosity
P	true total pressure	d	probe static-pressure-tap
Pind	p _{ind} 144.0/RT		diameter
· mu	· IIIu /	Re	probe Reynolds number

tunnel. A typical calibration curve is shown in figure 8. The inlet plenum pressure was measured by using a wall static tap. Additional test instrumentation included a venturi meter, a water-temperature recording system, and a rotor-shaft-speed pickup used in conjunction with an electronic counter.

DATA PRESENTATION

The overall performance characteristics of the 12 pump rotors are summarized in figure 9 and table IV. (The headings of table IV are explained in appendix B.) For comparison, design operating-point values adjusted for boundary-layer blockage are indicated as solid symbols in figure 9. The data are presented in figure 9 in terms of the rotor subsets mentioned earlier. Starting with the configuration 07 design, doubling the chord length, and reducing the number of blades from 19 to 8 resulted in the 09 configuration. Data for these 9-inch-tip-diameter rotors are compared in figure 9(a). Rotor configurations 5 and 6, identical 9-inch-diameter rotors except for tip clearance, are compared in figure 9(b). Configurations 8, 9, and 10, identical 5-inch-diameter rotors except for tip clearance, form the comparison of figure 9(c). The basic rotor of configurations 8, 9, and 10 is a geometrically scaled 5/9 version of the basic rotor of configurations 5 and 6. The geometrically similar tip clearances of configurations 5 and 8 were scaled in the same ratio (5/9) as the rotor diameters. Data for these rotors are shown in figure 9(d). The tip clearances of configurations 5 and 9 are identical, and data for these rotors are compared in figure 9(e). Rotor configurations 13A and 16 have identical blade

Figure 9. - Overall performance of axial-flow pump rotor.

angles; however, configuration 13A was composed of double-circular-arc blade sections, while configuration 16 involved arbitrary (see fig. 3) blade sections. Data for these rotors are shown in figure 9(f). The configurations of figure 9(g), namely, 02, 07, 5, 14A, and 15, demonstrate the effects of increasing blade loading and design flow coefficient.

The blade-element data for the 12 rotors are presented in tables V to XVI. The table headings are explained in appendix B. The data-reduction computer program is discussed in the section DATA STORAGE AND RECALL PROGRAM, and a listing of the program is presented in appendix C.

The input data (see appendixes D and E) were available directly from NASA data-reduction computer output and were used as received, except as noted here. Since straightening tubes (fig. 5) and a converging passage (fig. 6) were used upstream of the test section, the entering absolute fluid flow angle was interpreted as being zero degrees even though very small angles were indicated in the NASA computer output. It was felt that this interpretation was well within the experimental precision involved. As explained in detail in the section DATA QUALITY EVALUATION, the as-measured data associated with rotor configurations 13 and 14 required significant adjustment. In order to permit calculation of approximate blade-chord Reynolds numbers, an average value of 9.28×10⁻⁶ ft²/sec (water at 80° F) was used for kinematic viscosity for all runs.

Two unusual features of the data deserve mention. First, at the lowest flow rate associated with the configuration 02 data, a nearly zero outlet axial velocity is indicated near the annulus inner surface (hub). This suggests a reversed-flow region, as noted in reference 11 for the 19-bladed version of this rotor. Secondly, the tests of configurations 8, 9, and 10 involved a significantly nonuniform inlet total-head profile that probably resulted from the abruptly converging passage upstream of the test section (fig. 6(b)). This nonuniform profile must be considered thoroughly before any conclusions about the effects of scale are drawn on the basis of comparing the data of configurations 5 and 6 with those of configurations 8, 9, and 10.

DATA QUALITY EVALUATION

Data for four of the configurations have been published previously (refs. 1 to 6). Comments regarding the validity and consistency of those data are included in the cited references. A limited evaluation of the data of all 12 configurations is given here for completeness. This evaluation should be supplemented by a thorough scrutiny and critical study of the data by the user in every application. A detailed description of adjustments to original measurements for configurations 13A and 14A are included.

The general procedure for evaluating the data was

⁽¹⁾ To examine the comparisons of integrated flow rate and venturi flow rate

- (2) To note occurrence of negative loss coefficients
- (3) To scan the data for abnormal flow conditions

Integrated-flow-rate comparisons are included in the summary listing for each configuration in table IV. Flow-rate comparisons within the limits of ±2 percent at the entrance station and ±4 percent at the exit station are generally considered acceptable. As the flow-rate comparisons depart from the acceptable range the chances of significant discrepancies in the data increase. Hence, data corresponding to unacceptable integrated-flow-rate comparisons should be examined carefully before use, and caution should be exercised in the interpretation of subsequent results obtained.

For rotor configurations having essentially constant inlet total-head H₁ profiles and zero prewhirl, negative values of loss coefficient are considered to indicate some inconsistency in the measurements. (Of course, positive loss coefficients alone are not necessarily a sign of consistent data.) Negative loss coefficients in varying numbers appear in the data for every configuration except 07, 13A, and 16. In most instances the negative values are very close to zero, indicating that very low positive loss coefficients probably existed. In the cases of configurations 8, 9, 10, and 14A, some caution must be used in the interpretation of negative loss coefficients since a significantly nonuniform inlet total-head profile existed. When H₁ is nonuniform, discrepancies between the real stream surfaces and those assumed for testing and data-reduction purposes may lead to computation of negative loss coefficients. If radial flow shifts occur such that the real stream surface at a given exit radius originates in a region of higher H₁ than was assumed, the measured actual head rise will be too high. The resulting loss coefficients will be too low, possibly even negative. This problem does not arise when H₁ is uniform and prewhirl is zero.

The data presented in tables XIII and XIV for configurations 13A and 14A contain values of inlet total head $\,\mathrm{H}_1$ which have been adjusted from the as-measured values. Full details on the analysis leading to these adjustments are presented in reference 14 and are summarized here for completeness. The as-measured values of $\,\mathrm{H}_1$ for configuration 13A were quite irregular in profile and unrealistically lower than the total head in the upstream plenum. Large discrepancies between the venturi-measured flow rate and the flow rate obtained by integrating the inlet axial velocities further indicated inconsistencies, as did a number of negative loss coefficients. All these indicated inconsistencies were significantly reduced by the use of a constant profile of $\,\mathrm{H}_1$ equal to the upstream plenum value.

A similar situation existed for configuration 14A data. Because of the proximity of the annulus surfaces to the hub and tip measuring stations for this configuration, replacement of all survey inlet total-head values by the upstream plenum total head was not considered appropriate. A preliminary adjustment was made by assuming the maximum value of inlet total head at each radial position to apply for that radial position at all flow rates. Again, all indicated inconsistencies were reduced by this adjustment.

DATA STORAGE AND RECALL PROGRAM

A computer program was written to read, reduce, and systematically store and print data as indicated by the general flow diagram of figure 10. The instructions are listed in FORTRAN IV on pages 34-40 of appendix C. In its present form, the program will handle isolated rotor or stage data measured up- and downstream of blade rows.

This program may be used for purposes other than producing the output data

Figure 10. - General logic block diagram of data-reduction and tape storage program.

associated with the 12 axial-flow pump rotor configurations described in table I. For instance, it could be used as a data-reduction program to process flow and performance measurements from other axial-flow pump configurations. Analyses and correlations of the data presented in this report or other data can be accomplished conveniently by using this program to store the data on magnetic tape. Then a second program can be written which reads the reduced data from the tape and performs other calculations desired by the user. The basis for this second program can be derived from the coding of appendix C by deleting all coding between the first READ statement and statement 3000 except the second statement after the first READ statement and statement 4700. The user must add coding after statement 4700 to effect further analysis of the data.

CONCLUDING REMARKS

Comments should be made in conclusion concerning two questions raised by publication of the data contained in this report. The first relates to the direct and immediate aspects of application of the data to design of axial-flow fans, compressors, and pumps. The second concerns longer-term utilization of the data in development of more satisfactory design and analysis methods for axial-flow turbomachinery.

The experimental information contained in the report should not be viewed as useful only to designers and manufacturers of multistage axial-flow pumps for liquid-propellant rocket propulsion systems. Although the primary goal in the organization of the test program was to evaluate configurations for such systems and to study the hydrodynamic problems encountered, the resulting data obviously have a much more general range of usability. It is notable that, with one exception, the rotors described are of relatively high hub-tip radius ratio (0.7 or higher) and have design relative-fluid-inlet angles greater than 50° at all spanwise stations. These values are typical of the geometric and aerodynamic conditions found in the final stage of multistage axial-flow compressors for industrial application. Very little experimental information is readily available on the performance of rotor configurations of this kind in air or other gases. A cursory inspection of some of the blade-element performance for rotors such as configurations 5 and 13A, where deviation angle distributions and loss gradients are vastly different from those considered normal for design practice in entrance stages of axial-flow compressors, should convince users that reevaluation of patterns assumed for design is in order. Single-stage blower and fan rotor configurations similar to those discussed in this report are also encountered in gas circulation systems for a number of industrial requirements. When due consideration is given to nonsimilar flow conditions, which may call for caution in cases where direct geometrical scaling may appear to be an easy solution. both overall performance and blade-element results presented herein may be of value.

In fields other than propulsion, designers of fluid components are likely to find multistage axial-flow pumps attractive for large-scaled projects such as pumped-storage hydroelectric systems and large industrial process systems. In all these cases some guidelines on the effects of scale, rotor tip clearance, and blade-element loading levels can be developed by consideration of data from selected subsets of the configurations in this report.

Collections of radial and circumferential probe traverse or survey data are recognized as the essential foundation of all current design and analysis procedures. Similar experimental data are likely to fill a substantial role in developing more satisfactory design and analysis procedures. The radial survey data of this report have several features which should enhance their usefulness in long-range improvement of these procedures. Data from a large number of configurations are presented in a single source. The data were all obtained by using the same basic facility, procedures, and instrumentation. The measurements were processed by the same data-reduction program and are presented in a common format. This report does not attempt to correlate data or to develop new design recommendations. However, the authors have attempted to provide an additional base for correlation and design by uniformly and consistently organizing a large body of valid data. A computerized storage and recall system has also been provided to expedite future analysis and correlation of the data.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, August 2, 1972, 502-24.

APPENDIX A

SYMBOLS

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
$\Delta \hat{\mathbf{A}}$	stream-tube cross-sectional area, in. ²
B1, B2, B3, B4	cubic equation constant coefficients (fig. 3)
one to make the	position of blade-element maximum camber as percent of total chord length
c ·	blade-element chord length, in.
D	blade-element diffusion factor (eqs. (F25) and (F26))
destruction with the	probe static-tap diameter (fig. 8), ft
	spanwise location as fraction of total passage height from annulus outer surface (eqs. (F1) and (F2))
FRC	comparison of integrated and venturi-metered volume flow rates (eqs. (F48) and (F49))
$\mathbf{g}_{\mathbf{c}}$	dimensional constant, 32.174 lbm-ft/lbf-sec ²
Н	total head, ft-lbf/lbm
H _{sv}	mass-averaged net positive suction head (eq. (F47)), ft-lbf/lbm
h	static head, ft-lbf/lbm
$\mathbf{h}_{\mathbf{v}}$	vapor pressure head, ft-lbf/lbm
I	number of axial stations being considered
i	incidence angle, angle between inlet flow direction and tangent to blade mean camber line at leading edge (fig. 2 and eq. (F22)), deg
J	number of blade elements being considered
K	blade-row configuration number
L	number of flow rates per configuration being considered
Z	static-pressure-wedge dimension (fig. 7(c))
M	Mach number
N	rotor rotational speed, rpm
NB	number of blades
P	total pressure, psi

```
static pressure, psi
p
        flow rate, gal/min
Q
        venturi-metered flow rate, gal/min
Q_{v}
\mathbf{R}
        gas constant for air. 53.36 ft-lbf/(lbm)(OR)
        probe Reynolds number (fig. 8)
Re
Rec
        blade-chord Reynolds number (eq. (F19)
RLE
        blade-element leading-edge radius, in.
RTE
        blade-element trailing-edge radius. in.
RR
        radius ratio (egs. (F3) and (F4))
r
        radius from pump axis, in.
        space between blades (fig. 2), in.
s
        absolute temperature, OR
Т
t_{max}
        maximum blade-element thickness, in.
U
        blade velocity (fig. 2 and eqs. (F13) and (F14)), ft/sec
V
        fluid velocity (fig. 2), ft/sec
\mathbf{X}
        coordinate in tangential direction (fig. 3), in.
X
        length coordinate for rotated blade section (fig. 1), in.
        height coordinate for rotated blade section (fig. 1), in.
У
\mathbf{Z}
        axial coordinate, in.
β
        axisymmetric flow angle with respect to axial direction (fig. 2), deg
        blade setting angle, angle between blade chord and axial direction (fig. 2), deg
γ
δ
        deviation angle, angle between outlet flow direction and tangent to blade camber
           line at trailing edge (fig. 2), deg
        wake momentum thickness parameter (eqs. (F39) and (F40))
        blade angle, angle between tangent to blade camber line and axial direction
к
           (fig. 2), deg
        hydraulic efficiency (eqs. (F31) and (F32))
η
        mass-averaged hydraulic efficiency (egs. (F45) and (F46))
η
        absolute-viscosity, lbf-sec-/ft<sup>2</sup>
        kinematic viscosity, ft<sup>2</sup>/sec
```

ν

```
fluid density, lbm/ft<sup>3</sup>
ρ
σ
                 solidity, c/s
                 flow coefficient (egs. (F33) and (F24)).
                 average flow coefficient (eq. (F54))
                 blade camber angle, \kappa_1 - \kappa_2, deg
                 head-rise coefficient (eqs. (F27) to (F30))
                 mass-averaged head-rise coefficient (eqs. (F41) to (F44))
                 total-head loss coefficient (eqs. (F37) and (F38))
Subscripts:
                 simplified form of two-dimensional version of wake momentum thickness
Α
                    parameter
                 average value
a
h
                 pump-arnulus inner surface (hub)
i
                 ideal
                 indicated
ind
J1
                 radial location index
                 pressure surface
ps
R
                 rotor
r1, r2, r3 r4,
                 radial positions between tip and hub
r5, r6, r7
S
                 stator
                 suction surface
SS
stage
                 stage
\mathbf{T}
                 transition (fig. 3)
t
                 pump-annulus outer surface (tip)
                 axial component
\mathbf{z}
θ
                 tangential component
1
                 blade-row-inlet calculation station
2
                 blade-row-outlet calculation station
Superscript:
                 relative to rotor
```

APPENDIX B

GLOSSARY OF COMPUTER PROGRAM OUTPUT VARIABLES

Each data column heading associated with the listing of overall performance parameters (table IV) and blade-element data (tables V to XVI) is explained in the accompanying glossary. For convenience, examples of the headings are included as figures 11 and 12.

0.85 HUB-TIP RI 1.172-INCH CHOI 0.72 DESIGN TII DOUBLE CIRCULAI 0.5 DESIGN FLOI PRELIMINARY.	RD, 0.010-INC P D-FACTOR, R ARC BLADE P	H RACIAL TIP							
PH I 81	ROTOR PSIE	ROTOR PS 1 1 B	ROTOR EFFB	HSVB FT	FRC1	FRC2	RPMA	UT1A FPS	UT2A FPS
								,,,	
NASA CONFIGURA 0.9 HUB-TIP RAI 1.5-INCH CHORD. 0.63 DESIGN TIE DOUBLE CIRCULAR 0.7 DESIGN FLOW PRELIMINARY.	(10, 19 BLADE , 0.010-INCH P D-FACTER, ARC BLADE P & COEFFICIENT ROTOR	S, 9-INCH TIP RACIAL TIP CL ROFILE, T ROTOR	DIAMETER,	HSV8	FRC1	FRC2	R P M A	UT1A	· .
PHIB1	PSIB	PSIIB	EFFB	FT				FPS .	FPS

Figure 11, - Example of overall performance data table.

0.7 1.5 0.4 00.0	SA CONFIGURATION TO THE SATION OF THE SATION	O. 19 ELADE O.005-0.0 D-FACTOP, ARC BLADE E OW COEFFICIE A TN D-2295	ROFILE,		R, EARANCZ,			1 / 9 .	4	. ; ;	1911 1912		
BLA 1 I	DE GECKETRIC INDICATES LEA	: FARAMETERS-	BLADE ROW	1 (FOTOR TRÁILING E) DGE		·	. ,	• . •		-		,
	R 1 I NCH ES	KAPPA1 DEGREES	92 INCHES	KAPPA2 Degrees		ITY	T HA X/C	CHORD INCHES	CAMB E DEGREE	ER SE S DEG	FIANG FREES	,	•
	·												
	RHUB1 '	RTIP1 Inches	EHUB2 INCHES	RTIP2 INCHES		0 ES		•					
FIC	OW RATE # 1		5784. GMI	CNS PER MIN	III T F								
RO?	TOR BLACE ELI INDICATES LEI	EMENT PAFAMET ADING EDGE,	rers										
1 2 3 4 5	PASS.HT.1 FROM TIP	R1/RT	U1 FFS	V 1 PPS	VZ1 FPS	VTH 1 FPS	BETA 1 DEG	W1 FPS	WTH1 . FPS	BETAP1 DEG.	H1 · ·		STRTUB1 SQ IN
1 2 3 4 5	PASS.HT.2 FROM TIP	R2/RT	U2 FPS	V2 PPS	VZ2 FPS	VTH 2 FPS	BETA 2 DEG	W 2 PPS	WTH2 FPS	BETAP2 DEG	H2 FT	P2 FT	STRTUB2 SQ IN
RO:	TOR BLACE ELI INDICATES LEI			TRAILING I	DGE								
1 2 3 4	PASS.HT.1 PROB TIP	R1/RT	INC CEG	PHI1	RPM	Q V GP M	DENSITY LB/CU FT	VISK SQ FT/SEC	•	REC	, N		
1 2 3 4 5	PASS.HT.2 PROM TIP	R2/PT	DEV DEG	PHI 5	PSI	PSII	' EFF	OMEGAB	D	DELTA H FT	DELTA P FT	(TH/C) A	
	ERAGED FARAMI INDICATES LEI		2 INDICATES	TRAILING I	DGE								
	PHIB1	ROTOR FSIE	ROTOR FSIIB	ROTO EFI		HSVB PT	FRC1	FRC	2	RPMA	UT1A FPS		T21 PPS

Figure 12. - Example of blade-element data table.

Computer output variable	Mathe- matical symbol	Program FORTRAN IV variable	Description	Unit
BETA1	eta_{1}	BETA(L1, I1, J1)	Absolute axisymmetric flow angle with respect to axial	deg
			direction at blade-row-inlet	
	•		calculation station (fig. 2)	•
BETA2	$^{eta}2$	BETA(L1, I1+1, J1)	Absolute axisymmetric flow	deg
:			angle with respect to axial	
			direction at blade-row-outlet	
	~1		calculation station (fig. 2)	e grande de la companya de la compan
BETAP1	$oldsymbol{eta_1'}$	BETAP1(L1, I1, J1)	Relative axisymmetric flow	deg
			angle with respect to axial direction at blade-row-inlet	
	•		calculation station (fig. 2 and	* * * * * * * * * * * * * * * * * * * *
			eq. (F20))	·
BETAP2	$oldsymbol{eta_2^i}$	BETAP2(L1, I1, J1)	Relative axisymmetric flow	deg
	,		angle with respect to axial	
	• .	\$	direction at blade-row-outlet	
•			calculation station (fig. 2 and	
			eq. (F21))	
CAMBER	$arphi^{\mathbf{O}}$	THTA(I1, J1)	Blade-element mean line	deg
			camber angle: $\kappa_1 - \kappa_2$ for	
			rotors, κ_2 - κ_1 for stators	i
CHORD	C	CHORD(II, J1)	Blade-element chord length	in.
D	$^{\mathrm{D}}_{\mathrm{R}}$	XD(L1, I1, J1)	Blade-element diffusion fac-	
			tor (eq. (F25))	a
DE LTA H	ΔH [*]	DELTAH(L1, I1, J1)	Blade-element total-head	ft-lbf/lbm
DETEN D	A la	DELEMAN/II II II)	rise (eq. (F11))	ft 1hf/1hm
DELTA P	Δh	DELTAP(L1, I1, J1)	Blade-element static-head	ft-lbf/lbm
DENSITY		RHO(L1)	rise (eq. (F12)) Fluid density	lbm/ft ³
DEV	ρ δ	DE L2(L1, I1, J1)	Deviation angle, angle be-	deg
•	$^{\delta}$ R		tween outlet flow direction	~~ 6
		المتعلقطة ميرواه والأالات	and tangent to mean camber	
			line at trailing edge (fig. 2	
			and eq. (F23))	•
EFF	$-\eta_{ m R}$	_XEFF(L1,-I1,-J1)	Blade-element hydraulic effi-	
		•	ciency (eq. (F31))	

Computer output variable	Mathe- matical symbol	Program FORTRAN IV variable	Description	Unit
FRC1	FRC ₁	QERR1(L1, I1)	Comparison of integrated and venturi-metered volume flow rates at blade-row-inlet calculation station (eq. (F48))	
FRC2	\mathtt{FRC}_2	QERR2(L1, I1)	Comparison of integrated and venturi-metered volume flow rates at blade-row-outlet calculation station (eq. (F49))	
H1	^H 1	H(L1, I1, J1)	Total head at blade-row-inlet calculation station	ft-lbf/lbm
H2	H ₂	H(L1, I1+1, J1)	Total head at blade-row-outlet calculation station	ft-lbf/lbm
HSVB	H _{sv}	HSVB(L1, I1)	Mass-averaged net positive suction head (eq. (F47))	ft-lbf/lbm
INC	i	FNC1(L1, I1)	Incidence angle, angle between inlet flow direction and tangent to blade mean camber line at leading edge (fig. 2 and eq. (F22))	deg
KAPPA1	к1	ALF1(I1, J1)	Blade inlet angle, angle between tangent to blade mean camber line and axial direction at leading-edge center (fig. 2)	deg
KAPPA2	^к 2	ALF2(I1, J1)	Blade outlet angle, angle between tangent to blade mean camber line and axial direction at trailing-edge center (fig. 2)	deg
NBLADES	NB	NBLADE(II)	Number of blades	<u>i</u>
OMEGAB	$\overline{\omega}_{ m R}$	OMEGB(L1, I1, J1)	Blade-element total-head loss coefficient (eq. (F37))	
P1	^h 1	P(L1, I1, J1)	Blade-element static head at blade-row-inlet calculation station	ft-lbf/lbm

Computer output variable	matical FORTRAN IV	Description Unit
P2	h ₂ P(L1, I1+1, J1)	Blade-element static head at ft-lbf/lbm
	8	blade-row-outlet calculation
-		station
	FFT FLOHIT(I1, J1)	Blade-element stream-surface
1 or 2		span location as fraction of
FROM TIP		total passage height from an-
	and the state of t	nulus outer surface at blade-
PASS, HT.	Sand Brown and Carlot Brown and Carlot	row-inlet (1) or -outlet (2)
		calculation station (eq. (F1) or
		(F2))
PHI1	$\varphi_{1,R}$ XPHI1(L1, I1, J1)	Blade-element flow coefficient
	(CLD) participation	at blade-row-inlet calculation
	and the state of t	station (eq. (F33))
PHI2	$\varphi_{2,R}$ XPHI2(L1, I1, J1)	Blade-element flow coefficient
		at blade-row-outlet (eq. (F34))
PHIB1	$\overline{\varphi}$ PHIB(L1)	Average flow coefficient
* 25	Carlo Carlo Maria	(eq. (F54))
PSI	$\psi_{\mathbf{R}}$ XPSI(L1, I1, J1)	Blade-element head-rise coef
		ficient (eq. (F27))
PSΠ	$\psi_{ ext{i, R}}$ XPSII(L1, I1, J1)	Blade-element ideal head-rise
·		coefficient (eq. (F29))
QV	Q _v GPM(L1)	Instantaneous volume flow rate gal/min
	San Art Strategy (1997)	as measured with a venturi
	Control of the second	meter
R1	r ₁ R(II, J1)	Radius of blade-element in.
	Santa Anna	stream surface from rotor
		axis at blade-row-inlet calcu-
		lation station
R2	r ₂ R(I1+1, J1)	Radius of blade-element in.
.:		stream surface from rotor
		axis at blade-row-outlet cal-
المحاد المسادية	. 10 July 1990, 1991, 1991, 1992, 1994, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995 	culation station

Computer output variable	Mathe- matical symbol	Program FORTRAN IV variable		Unit
R1/RT	r ₁ /r _{1,t}	RRT(I1, J1)	Ratio of a blade-element stream-surface radius to an-	
			nulus outer-surface radius at blade-row-inlet calculation station (eq. (F3))	
R2/RT	r ₂ /r _{2, t}	RRT(I1+1, J1)	Ratio of a blade-element stream-surface radius to	* <u>1118813</u> 11
			pump annulus outer-surface radius at blade-row-outlet calculation station (eq. (F4))	. , ,
REC	Re_{c}	REC(L1, I1, J1)	Blade-chord Reynolds num- ber (eq. (F19))	
RHUB 1	r _{1, h}	RHUB(II)	Annulus inner-surface radius from rotor axis at blade-row-	in.
RHUB 2	^r 2, h	RHUB(I1+1)	inlet calculation station Annulus inner-surface radius from rotor axis at blade-row-	in.
ROTOR EFFB	$\overline{\eta}_{\mathbf{R}}$	RMAE(L1, I1)	outlet calculation station Mass-averaged hydraulic ef- ficiency (eq. (F45))	
ROTOR PSIB	$\overline{\psi}_{\mathbf{R}}$	RHRCO(L1, I1)	Mass-averaged head-rise coefficient (eq. (F41))	· ;
ROTOR PSIIB	$\overline{\psi}_{ ext{i, R}}$	RHRCOI(L1, I1)	Mass-averaged ideal head- rise coefficient (eq. (F43))	
RPM	N	RN(L1, I1, J1)	Rotor rotational speed	rpm
RPMA	Na	RNA(L1, I1)	Average rotor rotational speed (eq. (F51))	rpm
RTIP 1	r _{1,t}	RTIP(I1)	Annulus outer-surface radius from rotor axis at blade-	in.
RTIP 2	r _{2, t}	RTIP(I1+1)	row-inlet calculation station Annulus outer-surface radius from rotor axis at blade- row-outlet calculation station	in.

Computer output variable	Mathe- matical symbol	Program FORTRAN IV variable	Description .	Unit
SETANG	γ	ANG LST (I1, J1)	Blade-element setting angle, angle between blade-element chord and axial direction (fig. 2)	deg
SOLIDITY	σ	SGMA(I1, J1)	Blade-row solidity based on stream-surface radius from rotor axis at blade-row-outlet calculation station	
STRTUB1	ΔA ₁	STRTUB(L1, I1, J1)	Stream-tube cross-sectional area at blade-row-inlet calculation station	in. 2
STRTUB2	ΔA ₂	STRTUB(L1, I1+1, J1)	Stream-tube cross-sectional area at blade-row-outlet calculation station	in. 2
(T/C)A	$(\theta/c)_{A}$	TCA(L1, I1, J1)	Wake momentum thickness parameter (eqs. (F39) and (F40))	
TMAX/C	t _{max} /c	TMAXC(I1, J1)	Ratio of blade-element maxi- mum thickness to chord length	
U1	U ₁	U1(L1, 11, J1)	Blade velocity at blade-row-inlet calculation station (fig. 2 and eq. (F13))	ft/sec
U2	U ₂	U2(L1, I1, J1)	Blade velocity at blade-row- outlet calculation station (fig. 2 and eq. (F14))	ft/sec
UT1A	^U 1, t, a	UTIP1A(L1, I1)	Average blade-tip velocity at blade-row-inlet calculation station (eq. (F52))	ft/sec
UT2A	^U 2, t, a	UTIP2A(L1, I1)	Average blade-tip velocity at blade-row-outlet calculation station (eq. (F53))	ft/sec
V1	v ₁	V(I.1, I1, J1)	Absolute axisymmetric fluid velocity at blade-row-inlet calculation station (fig. 2 and eq. (F5))	ft/sec

Computer output variable	Mathe- matical symbol	Program FORTRAN IV variable	Description	Unit
V2	v_2	XV(L1, I1+1, J1)	Absolute axisymmetric fluid velocity at blade-row-outlet calculation station (fig. 2 and eq. (F6))	ft/sec
VISK	ν	VISK(L1)	Fluid kinematic viscosity	ft ² /sec
VTH1	$\mathbf{v}_{ heta}$, 1	VU(L1, I1, J1)	Tangential component of V1 (fig. 2 and eq. (F7))	ft/sec
VTH2	$\mathbf{v}_{ heta,2}$	VU(L1, I1+1, J1)	Tangential component of V2 (fig. 2 and eq. (F8))	ft/sec
VZ1	v _{z, 1}	VZ(L1, I1, J1)	Axial component of V1 (fig. 2 and eq. (F9))	ft/sec
VZ2	$v_{z, 2}$	VZ(L1, I1+1, J1)	Axial component of V2 (fig. 2 and eq. (F10))	ft/sec
W1	v' ₁	XVP1(L1, I1, J1)	Relative axisymmetric fluid velocity at blade-row-inlet calculation station (fig. 2 and eq. (F17))	ft/sec
W2	v' ₂	XVP2(L1, I1, J1)	Relative axisymmetric fluid velocity at blade-row-outlet calculation station (fig. 2 and eq. (F18))	ft/sec
WTH1	$v'_{\theta, 1}$	VUP1(L1, I1, J1)	Tangential component of W1 (fig. 2 and eq. (F15))	ft/sec
WTH2	$v'_{\theta, 2}$	VUP2(L1, I1, J1)	Tangential component of W2 (fig. 2 and eq. (F16))	ft/sec

APPENDIX C

COMPUTER PROGRAM LISTING AND GLOSSARY OF FORTRAN VARIABLES

The FORTRAN IV program listed in this appendix was written for use on an IBM 360 model 65 operating on Release 20.1. Using a FORTRAN G compiler, 128 000 bytes of storage were required, and execution CPU time was approximately 6 seconds per configuration. The program was also compiled with a Version 1, Level 2 WATFIV Compiler. The input format is described in detail in appendix D, while a listing of all input data cards is given in appendix E. The variable arrays are presently dimensioned for a maximum of 16 flow rates, two blade rows, and seven blade elements per configuration. The mathematical relationships used in reducing data are presented in appendix F. All FORTRAN IV variables used in the program are defined in the Glossary of FORTRAN Variables in this appendix.

Computer Program Listing

```
THIS PROGRAM WILL INSTRUCT THE COMPUTER TO READ AXIAL-FLOW PUMP
      GEOMETRICAL AND FLOW DATA, CALCULATE A NUMBER OF BLADE-ELEMENT
C
      AND OVERALL PERFORMANCE PARAMETERS AND THEN SYSTEMATICALLY PRINT
C
      ON PAPER AS WELL AS STORE ON TAPE THE READ DATA AND CALCULATED
С
      RESULTS
С
      THE ENGLISH SYSTEM OF UNITS SHOULD BE USED WITH THIS PROGRAM
      DIMENSION RHUB(3), RTIP(3), ZCOORD(3), NBLADE(2), CMBRMX(2,7),
     1ALF1(2,7),ALF2(2,7),TMAXC(2,7),CHORD(2,7),ANGLST(2,7),
     2THTA(2,7), RADLE(2,7), RADTE(2,7), SGMA(2,7), R(3,7), GPMA(16),
     3PHIB(16),RHO(16),PV(16),BETA(16,3,7),H(16,3,7),P(16,3,7),
     4STRTUB(16,3,7),RN(16,3,7),GPM(16,3,7),VISK(16),TCA(16,2,7)
      CIMENSION FLOHIT (3,7), RRT (3,7), XV (16,3,7), VU(16,3,7),
     1VZ(16,3,7),U1(16,2,7),U2(16,2,7),VUP1(16,2,7),VUP2(16,2,7),
     2XVP1(16,2,7),XVP2(16,2,7),BETAP1(16,2,7),BETAP2(16,2,7),
     3FNC1(16,2,7), DEL2(16,2,7), XD(16,2,7), UTIP1(16,2,7),
     4UTIP2(16,2,7), XPSI(16,2,7), XPSII(16,2,7), XEFF(16,2,7),
     5XPHI1(16,2,7), XPHI2(16,2,7), OMEGB(16,2,7), RHRCO(16,2)
      CIMENSION RHRCGI(16,2), RMAE(16,2), REC(16,2,7)
      DIMENSION INFO (7,20), DELTAH(16,2,7 ), DELTAP(16,2,7 ), QERR1(16,2),
     1GERR 2(16, 2), RNA(16, 2), HSVB(16, 2), UTIP1A(16, 2), UTIP2A(16, 2)
      KI=5
      KC=6
      NCS=9
      READ NUMBER OF DATA SETS INVOLVED
      READ (KI,1111) NOTSET
      DO 3000 IKT=1,2
C
```

```
IKT=1 READ INPUT DATA, CALCULATE BLADE ELEMENT AND OVERALL
      PERFORMANCE PARAMETERS, PRINT OUT AND STORE ON TAPE THE INPUT
C
      AND CALCULATED DATA
     IKT=2 READ INPUT AND CALCULATED DATA STORED ON TAPE AND
C
C
      PRINT OUT THIS DATA
C
C
      CATA SET LOOP BEGINS HERE, ONE PER DATA SET
С
      DO 3000 KOUNT=1, NDTSET
      IF (IKT-1) 4,4,4700
C:
C
      READ ICENTIFICATION, GEOMETRIC AND FLUID FLOW DATA FOR ONE CONFIGURA
С
÷С
    4 DO 5 M1=1.7
    5 READ (KI,6) (INFO(M1,N1),N1=1,20)
      READ (KI,10) K,L,I,J
      II = I - 1
      DC 100 I1=1.II
      READ (KI,11) RHUB(I1), RTIP(I1), ZCOORD(I1), NBLADE(I1)
      DO 100 J1=1.J
  100 READ (KI,12) R(I1,J1), ALF1(I1,J1), ALF2(I1,J1), TMAXC(I1,J1),
     1CHORD(I1,J1), ANGLST(I1,J1), THTA(I1,J1), CMBRMX(I1,J1), RADLE(I1,J1),
      2RADTE(11, J1), SGMA(11, J1)
      READ (KI,11) RHUB(I), RTIP(I), ZCOORD(I)
      READ (KI,15) (R(I,J1),J1=1,J)
      DG 200 L1=1,L
      READ (KI,13)GPMA(L1),PHIB(L1),RHO(L1),PV(L1),VISK(L1).
      DO 200 I1=1,I
      DO 200 J1=1,J
  200 READ (KI,12) BETA(L1,I1,J1),H(L1,I1,J1),P(L1,I1,J1),
     1STRTUB(L1, I1, J1), RN(L1, I1, J1), GPM(L1, I1, J1)
C
C
      RN(L1,I1,J1)=RCTOR RPM AT EACH ROTOR INLET CALCULATION STATION
C
      (STATOR OUTLET CALCULATION STATION), RN(L1, I1, J1) = 0.0 AT EACH
C
      STATOR INLET CALCULATION STATION (ROTOR OUTLET CALCULATION STATION)
C
      DO 2100 I1=1,I
      D1=RTIP(I1)-RHUB(I1)
      DO 2100 J1=1.J
      FLOHIT(I1,J1) = (RTIP(I1)-R(I1,J1))/D1
 2100 RRT([1,J])=R([1,J])/RT[P([1])
C
C
      COMPUTE BLADE ELEMENT AND OVERALL PERFORMANCE PARAMETERS
C
      DO 2200 L1=1,L
      DO 2200 I1=1,I
      CO 2200 J1=1,J
      D2=64.348*(H(L1,I1,J1)-P(L1,I1,J1))
      B1=BETA(L1, I1, J1)*3.1415927/180.0
      XV(L1.I1.J1)=SCRT(D2)
      VU(L1,I1,J1)=XV(L1,I1,J1)*SIN(B1)
 2200 VZ(L1, I1, J1) = XV(L1, I1, J1) *COS(B1)
      DO 2300 L1=1,L
      DO 2300 I1=1,II
      01=0.0
      PSIN=0.0
      PSINI=0.0
```

```
PSIDI=0.0
     HSVBN=0.0
     RNN=0.0
     UTIP1N=0.0
     UTIP2N=0.0
     DO 2260 J1=1.J
     DELTAH(L1, I1, J1) = H(L1, I1+1, J1) - H(L1, I1, J1)
     DELTAP(L1, I1, J1) = P(L1, I1+1, J1) - P(L1, I1, J1)
     U1(L1, I1, J1) = RN(L1, I1, J1) * R(I1, J1) * 3.1415927/360.0
     U2(L1,I1,J1)=RN(L1,I1,J1)*R(I1+1,J1)*3.1415927/360.0
     VUP1(L1,I1,J1) = U1(L1,I1,J1) - VU(L1,I1,J1)
     VUP2(L1, I1, J1) = U2(L1, I1, J1) - VU(L1, I1+1, J1)
     D3=VUP1(L1, I1, J1) *VUP1(L1, I1, J1) + VZ(L1, I1, J1) * VZ(L1, I1, J1)
     XVP1(L1,I1,J1)=SQRT(D3)
     REC(L1,I1,J1)=CHCRD(I1,J1)*XVP1(L1,I1,J1)/(VISK(L1)*12.0)
     D4=VUP2(L1, [1, J1) *VUP2(L1, I1, J1) + VZ(L1, I1+1, J1) *VZ(L1, I1+1, J1)
     XVP2(L1,I1,J1)=SQRT(D4)
     D5=VUP1(L1, [1, J1)/XVP1(L1, [1, J1)
     BETAP1(L1,I1,J1)=(180.0/3.1415927)*ARSIN(D5)
     D6=VUP2(L1, I1, J1)/XVP2(L1, I1, J1)
     BETAP2(L1, I1, J1) = (180.0/3.1415927) *ARSIN(D6)
     BP2=BETAP2(L1, I1, J1) *3.141593/180.
     DB=ABS(BETAP1(L1,I1,J1))
     DALF=ABS(ALF1(I1,J1))
     FNC1(L1,I1,J1)=DB-DALF
     IF (RN(L1, I1, J1)-0.01) 2205,2206,2206
2205 DEL2(L1, I1, J1) = ALF2(I1, J1) - BETAP2(L1, I1, J1)
     GC TO 2207
2206 DEL2(L1, I1, J1) = BETAP2(L1, I1, J1) - ALF2(I1, J1)
2207 IF (RN(L1,I1,J1)-0.01) 2210,2250,2250
2210 D2A=R(I1+1,J1)*VU(L1,I1+1,J1)-R(I1,J1)*VU(L1,I1,J1)
     D2B=SGMA(I1,J1)*XV(L1,I1,J1)*(R(I1+1,J1)+R(I1,J1))
     D7=XV(L1, I1+1, J1)/XV(L1, I1, J1)
     XD(L1,I1,J1)=1.0-D7-(D2A/D2B)
     XPSI(L1,I1,J1)=32.174*(H(L1,I1+1,J1)-H(L1,I1-1,J1))/
    1(UTIP2(L1,I1-1,J1)*UTIP2(L1,I1-1,J1))
     XPSII(L1,I1,J1)=(U2(L1,I1-1,J1)*VU(L1,I1,J1)-U1(L1,I1-1,J1)*
    1VU(L1,I1-1,J1))/(UTIP2(L1,I1-1,J1)*UTIP2(L1,I1-1,J1))
     XEFF(L1, I1, J1) = XPSI(L1, I1, J1)/XPSII(L1, I1, J1)
     XPH[1(L1, I1, J1) = VZ(L1, I1, J1)/UTIP1(L1, I1-1, J1)
     XPHI2(L1, I1, J1)=VZ(L1, I1+1, J1)/UTIP1(L1, I1-1, J1)
     OMEGB(L1,I1,J1)=-DELTAH(L1,I1,J1)*2.0*32.174/ (XV(L1,I1,J1)**2)
     TCA(L1, I1, J1) = CMEGB(L1, I1, J1) *COS(BP2)/(2.0*SGMA(I1, J1))
     PSINI=PSINI+XPSII(L1,I1,J1)*VZ(L1,I1+1,J1)*STRTUB(L1,I1+1,J1)
     PSIDI=PSIDI+VZ(L1, I1+1, J1) *STRTUB(L1, I1+1, J1)
     PSIN=PSIN+XPSI(L1, I1, J1) *VZ(L1, I1+1, J1) *STRTUB(L1, I1+1, J1)
     Q1=Q1+VZ(L1, [1, J1) *STRTUB(L1, [1, J1)
     GC TO 2260
2250 D2A=R(I1,J1)*VU(L1,I1,J1)-R(I1+1,J1)*VU(L1,I1+1,J1)
     D2B=SGMA(I1,J1)*XVP1(L1,[1,J1)*(R(I1+1,J1)+R(I1,J1))
     D7=XVP2(L1, I1, J1)/XVP1(L1, I1, J1)
     XD(L1,I1,J1)=1.0-07-(D2A/D2B)
     UTIP1(L1, I1, J1)=RN(L1, I1, J1) *RTIP(I1) *3.1415927/360.0
     UTIP2(L1,I1,J1)=RN(L1,I1,J1)*RTIP(I1+1)*3.1415927/360.0
     XPSI(L1,I1,J1)=32.174*(H(L1,I1+1,J1)-H(L1,I1,J1))/(UTIP2(L1,I1,J1))
    1*UTIP2(L1,I1,J1))
     xpsi[(L1,I1,J1)=(U2(L1,I1,J1)*VU(L1,I1+1,J1)-U1(L1,I1,J1)*
    1VU(L1,I1,J1))/(UTIP2(L1,I1,J1)*UTIP2(L1,I1,J1)-
     XEFF(L1, I1, J1) = XPSI(L1, I1, J1)/XPSII(L1, I1, J1)
```

```
XPHI1(L1, I1, J1) = VZ(L1, I1, J1)/UTIP1(L1, I1, J1)
      XPHI2(L1, I1, J1) = VZ(L1, I1+1, J1)/UTIP2(L1, I1, J1)
      OMEGB(L1, I1, J1) = (XPSII(L1, I1, J1) - XPSI(L1, I1, J1)) *2.0*UTIP2(L1, I1,
     1J1)*UTIP2(L1,I1,J1)/(XVP1(L1,I1,J1)*XVP1(L1,I1,J1))
      TCA(L1, I1, J1) = CMEGB(L1, I1, J1) *COS(BP2)/(2.0*SGMA(I1, J1))
      PSINI=PSINI+XPSII(L1,I1,J1)*VZ(L1,I1+1,J1)*STRTUB(L1,I1+1,J1)
      PSIDI=PSIDI+VZ(L1,I1+1,J1) *STRTUB(L1,I1+1,J1)
     PSIN=PSIN+XPSI(L1,I1,J1)*VZ(L1,I1+1,J1)*STRTUB(L1,I1+1,J1)
      Q1=Q1+VZ(L1, I1, J1) *STRTUB(L1, I1, J1)
      HSVBN=HSVBN+(H(L1,I1,J1)-PV(L1))*VZ(L1,I1,J1)*STRTUB(L1,I1,J1)
      RNN=RNN+RN(L1, I1, J1)
      UTIP1N=UTIP1N+UTIP1(L1,I1,J1)
      UTIP2N=UTIP2N+UTIP2(L1,I1,J1)
 2260 CONTINUE
      RHRCO(L1.I1)=PSIN/PSIDI
      RHRCOI(L1, I1) = PSINI/PSIDI
      RMAE(L1,I1)=RHRCG(L1,I1)/RHRCOI(L1,I1)
      HSVB(L1, I1) = HSVBN/Q1
      QERR2(L1,I1)=(PSIDI*720.0/231.0-GPMA(L1))/(GPMA(L1))
      IF (RN(L1, I1, 1)-0.01) 2270, 2280, 2280
 2270 QERR1(L1,I1)=QERR2(L1,I1-1)
      GC TO 2300
 2280 QERR1(L1,I1)={G1*720.0/231.0-GPMA(L1))/(GPMA(L1))
      RNA(L1,I1)=RNN/J
      UTIP1A(L1, I1) = UTIP1N/J
      UTIP2A(L1, I1) = UTIP2N/J
 2300 CONTINUE
      WRITE (KC, 90)
      GO TO 4900
C
C
      READ INPUT AND CALCULATED DATA STORED ON TAPE FOR A CONFIGURATION
C
      IF IKT=2
 4700 READ (NDS) K, L, I, J, RHUB(I), RTIP(I), ZCOORD(I), (R(I, J1), J1=1, J), II,
     1(RHUB(I1), RTIP(I1), ZCOORD(I1), NELADE(I1), I1=1, II),
     2((R(I1,J1),ALF1(I1,J1),ALF2(I1,J1),TMAXC(I1,J1),CHORD(I1,J1),
     3ANGLST(I1,J1), THTA(I1,J1), CMBRMX(I1,J1), RADLE(I1,J1), RADTE(I1,J1),
     4SGMA(I1,J1),I1=1,II),J1=1,J),((INFO(M1,N1),M1=1,7),N1=1,20)
     1(((BETA(L1,I1,J1),H(L1,I1,J1),P(L1,I1,J1),STRTUB(L1,I1,J1),
     2RN(L1,I1,J1),GPM(L1,I1,J1),L1=1,L),I1=1,I),J1=1,J),
     3(GPMA(L1), PHIB(L1), RHO(L1), PV(L1), VISK(L1), L1=1,L),
     4({FLOHIT(I1,J1),RRT(I1,J1),I1=1,I),J1=1,J),
     5(((XV(L1,I1,J1),VU(L1,I1,J1),VZ(L1,I1,J1),L1=1,L),I1=1,I),J1=1,J)
      READ(NCS)
     1(((U1(L1,I1,J1),U2(L1,I1,J1),VUP1(L1,I1,J1),VUP2(L1,I1,J1),...
     2XVP1(L1,I1,J1),XVP2(L1,I1,J1),BETAP1(L1,I1,J1),BETAP2(L1,I1,J1),
     3FNC1(L1, I1, J1), DEL2(L1, I1, J1), XD(L1, I1, J1), UTIP1(L1, I1, J1),
     4UTIP2(L1,I1,J1),XPSI(L1,I1,J1),XPSII(L1,I1,J1),XEFF(L1,I1,J1),
     5XPHI1(L1,I1,J1),XPHI2(L1,I1,J1),OMEGB(L1,I1,J1),
     6REC(L1, I1, J1), TCA(L1, I1, J1), L1=1, L), I1=1, II), J1=1, J)
      READ(NDS)
               ((RHRCC(L1,I1),RHRCOI(L1,I1),RMAE(L1,I1),L1=1,L),I1=1,II),
     2((HSVB(L1,I1),QERR1(L1,I1),QERR2(L1,I1),RNA(L1,I1),
     3UTIP1A(L1,I1), UTIP2A(L1,I1), I1=1, II), L1=1,L),
     4(((DELTAH(L1,I1,J1),DELTAP(L1,I1,J1),L1=1,L),I1=1,II),J1=1,J)
 4900 WRITE (KD,23)
C
C
      PRINT OUT INPUT AND CALCULATED DATA FOR A CONFIGURATION
```

```
C
      DO 4901 M1=1.7
4901 WRITE (KO, 4902) (INFO(M1, N1), N1=1, 20)
      DO 4940 Il=1,II
      IF (RN(1, I1, 1)-0.01) 4910, 4910, 4915
4910 WRITE(KO, 4903) II
      GD TO, 4917.
4915 WRITE(KO, 4904) II
4917 WRITE (KO, 4920)
      DG 4930 J1=1.J
 4930 WRITE (KG,4931) J1,R(I1,J1),ALF1(I1,J1),R(I1+1,J1),ALF2(I1,J1),
     1SGMA(11,J1),TMAXC(11,J1),CHORD(11,J1),THTA(11,J1),ANGLST(11,J1)
      WRITE (KG, 4935)
      WRITE (KC.4936) RHUB(I1).RTIP(I1).RHUB(I1+1).RTIP(I1+1).NBLADE(I1)
4940 CONTINUE
      DO 6000 L1=1,L
      WRITE (KO,4999) L1,GPMA(L1)
      DO 5110 I1=1, II
      IF(RN(L1,I1,1)-.01)50,51,51
   50 WRITE(K0,53)
      GC TO 52
   51 WRITE(KO,57)
   52 WRITE (KC.5001)
      DO 5100 J1=1,J
5100 WRITE (KO,5002) J1,FLOHIT(I1,J1),RRT(I1,J1),U1(L1,I1,J1),
     1XV(L1,I1,J1),VZ(L1,I1,J1),VU(L1,I1,J1),BETA(L1,I1,J1),
     2XVP1(L1,I1,J1), VUP1(L1,I1,J1), BETAP1(L1,I1,J1), H(L1,I1,J1),
     3P(L1, I1, J1), STRTUB(L1, I1, J1)
      WRITE (K0,5003)
      I2=I1+1
      DO 5110 J1=1,J
 5110 WRITE (KO,5002) J1, FLOHIT(I2, J1), RRT(I2, J1), U2(L1, I1, J1),
     1XV(L1, I2, J1), VZ(L1, I2, J1), VU(L1, I2, J1), BETA(L1, I2, J1),
     2XVP2(L1,I1,J1),VUP2(L1,I1,J1),BETAP2(L1,I1,J1),H(L1,I2,J1),
     3P(L1, [2, J1), STRTUB(L1, [2, J1)
      DC 5210 I1=1,II
      IF(RN(L1, I1, 1)-.01)54,55,55
   54 WRITE(KO,53)
      GO TO 56
   55 WRITE(KO,57)
   56 WRITE (KO, 5201)
      DO 5200 J1=1,J
5200 WRITE (KO,5202) J1, FLOHIT(I1, J1), RRT(I1, J1), FNC1(L1, I1, J1),
     1XPHI1(L1,I1,J1),RN(L1,I1,J1),GPM(L1,I1,J1),RHO(L1),
     2VISK(L1), REC(L1, I1, J1)
      WRITE (KO,5203)
      DO 5210 J1=1.J
5210 WRITE (KO, 5204) J1, FLOHIT(I1+1, J1), RRT(I1+1, J1), DEL2(L1, I1, J1),
     1XPHI2(L1, I1, J1), XPSI(L1, I1, J1), XPSII(L1, I1, J1), XEFF(L1, I1, J1),
     20MEGB(L1, I1, J1), XD(L1, I1, J1), DELTAH(L1, I1, J1), DELTAP(L1, I1, J1)
     3, TCA(L1, I1, J1)
      WRITE (K0,5301)
      DO 5350 II=1,II
      IF (0.01-RN(1, I1, 1)) 5310,5310,5320
 5310 WRITE (KO,5311)
      WRITE (KG,5312) PHIB(L1), RHRCO(L1, I1), RHRCOI(L1, I1),
     1RMAE(L1,I1), HSVB(L1,I1), QERR1(L1,I1), QERR2(L1,I1), RNA(L1,I1),
     GO TO 5350
```

```
5320 WRITE (KO,5321)
      write (K0,5312) PHIB(L1), RHRCO(L1, I1), RHRCOI(L1, I1),
                               QERR1(L1,I1),QERR2(L1,I1)
     1RMAE(L1, I1),
 5350 CONTINUE
 6000 CCNTINUE
      IF (IKT-1) 540C,5400,3000
C
С
      STORE ON TAPE THE INPUT AND CALCULATED DATA FOR A CONFIGURATION.
C
      IF IKT=1
C
 5400 WRITE(NDS) K, L, I, J, RHUB(I), RTIP(I), ZCOORD(I), (R(I, J1), J1=1, J), II,
     1(RHUB(I1), RTIP(I1), ZCOCRD(I1), NBLADE(I1), I1=1, II),
     2((R(I1,J1),ALF1(I1,J1),ALF2(I1,J1),TMAXC(I1,J1),CHORD(I1,J1),
    3ANGLST(11,J1), THTA(11,J1), CMBRMX(11,J1), RADLE(11,J1), RADTE(11,J1).
     4SGMA(I1,J1),I1=1,II),J1=1,J),((INFG(M1,N1),M1=1,7),N1=1,20)
     1(((BETA(L1, I1, J1), H(L1, I1, J1), P(L1, I1, J1), STRTUB(L1, I1, J1),
     2RN(L1,I1,J1),GPM(L1,I1,J1),L1=1,L),[1=1,I),J1=1,J),
     3(GPMA(L1), PHIB(L1), RHO(L1), PV(L1), VISK(L1), L1=1,L),
     4((FLOHIT(I1,J1),RRT(I1,J1),I1=1,I),J1=1,J),
     5(((XV(L1,I1,J1),VU(L1,I1,J1),VZ(L1,I1,J1),L1=1,L),I1=1,I),J1=1,J)
      WRITE(NOS)
     1(((U1(L1,I1,J1),U2(L1,I1,J1),VUP1(L1,I1,J1),VUP2(L1,I1,J1),
     2XVP1(L1, I1, J1), XVP2(L1, I1, J1), BETAP1(L1, I1, J1), BETAP2(L1, I1, J1),
     3FNC1(L1,I1,J1),DEL2(L1,I1,J1),XD(L1,I1,J1),UTIP1(L1,I1,J1),
     4UTIP2(L1,I1,J1), XPSI(L1,I1,J1), XPSII(L1,I1,J1), XEFF(L1,I1,J1),
     5XPHI1(L1,I1,J1),XPHI2(L1,I1,J1),OMEGB(L1,I1,J1),
     6REC(L1, [1, J1), TCA(L1, [1, J1), L1=1, L), [1=1, [1), J1=1, J)
      WRITE(NDS)
               ((RHRCC(L1, I1), RHRCOI(L1, I1), RMAE(L1, I1), L1=1, L), I1=1, II),
     2((HSVB(L1,I1),QERR1(L1,I1),QERR2(L1,I1),RNA(L1,I1),
     3UTIP1A(L1,I1), UTIP2A(L1,I1),I1=1,II),L1=1,L),
     4(((DELTAF(L1, I1, J1), DELTAP(L1, I1, J1), L1=1,L), I1=1, II), J1=1, J)
      IF (KCUNT-NOTSET) 3000,5410,5410
END FILE NDS
 5410 END FILE NDS
      REWIND NOS
 3000 CONTINUE
    6 FORMAT (20A4)
   10 FCRMAT (412)
   11 FORMAT (3F10.5,110)
   12 FORMAT (6F10.5)
   13 FORMAT(4F10.5, E7.1)
   15 FCRMAT (7F10.5)
   23 FORMAT (1H1,6F10.5)
   53 FORMAT(/, STATOR BLADE ELEMENT PARAMETERS , /, 1 1 INDICATES LEADIN
     1G EDGE, 2 INDICATES TRAILING EDGE.)
   57 FORMAT(/, ROTOR BLADE ELEMENT PARAMETERS . . / . 1 INDICATES LEADING
     1 EDGE, 2 INDICATES TRAILING EDGE!)
   90 FORMAT (1H0,//)
1111 FORMAT (12)
4902 FORMAT (1X,20A4)
 4903 FCRMAT(1HO,//* BLADE GECMETRIC PARAMETERS- BLADE ROW#*,12,2X,*(STA
     1TOR) ',/, 1 INCICATES LEADING EDGE, 2 INDICATES TRAILING EDGE')
 4904 FCRMAT(1H0,//' BLADE GECMETRIC PARAMETERS- BLADE ROW#',I2,2X,'(ROT
     10R) , /, 1 INDICATES LEADING EDGE, 2 INDICATES TRAILING EDGE!)
 4920 FCRMAT(1HO//,11x,"R1",6x,"KAPPA1",10x,"R2",6x,"KAPPA2",4x,
     1'SOLIDITY',6X,'TMAX/C',7X,'CHORD',6X,'CAMBER',6X,'SETANG',/,7X,
     2'INCHES',5X,'DEGREES',6X,'INCHES',5X,'DEGREES',30X,'INCHES',5X,
     3'DEGREES',5X,'CEGREES',/)
```

```
4931 FORMAT (1H , I1, 2X, F9.6, 3X, F9.6, 3X, F9.6, 3X, F9.3, 3X, 3 (F9.6, 3X),
    12(F9.3,3X))
4935 FORMAT (1H0,//,8X,*RHUB1*,7X,*RTIP1*,7X,*RHUB2*,7X,*RTIP2*,5X,
    1 *NBL ADES *, /, 7X, * INCHES *, 6X, * INCHES *, 6X, * INCHES *, 6X, * INCHES *, /)
4936 FORMAT (4X,4(F5.6,3X),19)
4999 FCRMAT (1H1///, FLOW RATE #', 12, 10X, F9. 0, GALLONS PER MINUTE')
5001 FCRMAT ( /3X, PASS.HT.1
                                     R1/RT*,8X,*U1*,8X,*V1*,7X,*VZ1*,6X,
    1*VTH1*,5X, BETA1*,8X, W1*,6X, WTH1*,4X, BETAP1*,8X, H1*,8X, P1*,
    23X, 'STRTUB1', /, 5X, 'FROM TIP', 17X, 'FPS', 7X, 'FPS', 7X, 'FPS', 7X, 'FPS',
    37X, "DEG", 7X, "FPS", 7X, "FPS", 7X, "DEG", 8X, "FT", 8X, "FT", 5X, "SQ [N")
5002 FCRMAT (1H ,I1,1X,2F10.6,1X,10(F9.3,1X),F9.5)
                                     R2/RT*,8X,*U2*,8X,*V2*,7X,*VZ2*,6X,
5003 FORMAT ( /3X, PASS.HT.2
    1 *VTH2 *,5X, *BET A2 *,8X, *W2 *,6X, *WTH2 *,4X, *BET AP2 *,8X, *H2 *,8X, *P2 *,
    23X, 'STRTUB2', /, 5X, 'FROM TIP', 17X, 'FPS', 7X, 'FPS', 7X, 'FPS', 7X, 'FPS',
    37x, "DEG", 7x, "FPS", 7x, "FPS", 7x, "DEG", 8x, "FT", 8x, "FT", 5x, "SQ IN")
5201 FCRMAT ( /,3X, PASS.HT.1
                                     R1/RT',7X,'INC',6X,'PHI1',7X,'RPM',
    18X, 'QV', 3X, 'DENSITY', 10X, 'VISK', 10X, 'REC',
    2/,5X, FROM TIP',17X, DEG',27X, GPM LB/CU FT',5X, SQ FT/SEC')
5202 FORMAT (1H , I1, 2X, 2(F9.6, 1X), F9.3, 1X, F9.6, 1X, 3(F9.3, 1X) .
    1,1X,E12.4,1X,E12.4)
5203 FCRMAT ( /,3X, PASS.HT.2
                                      R2/RT*,7X,*DEV*,6X,*PHI2*,7X,*PSI*,
    16X, PSII , 7X, EFF, 4X, CMEGAB, 9X, D DELTA H DELTA P,
    24X, (TH/C)A',/,5X,'FROM TIP',17X,'DEG',68X,'FT',8X,'FT')
5204 FORMAT (1H , I1, 2X, 2(F9, 6, 1X), F9, 3, 1X, 6(F9, 6, 1X), 2(F9, 3, 1X),
5301 FORMAT (1HO, AVERAGED PARAMETERS . . / , 1 INDICATES LEADING EDGE, 2
    1INDICATES TRAILING EDGE',/)
5311 FORMAT (19X, 'RCTCR', 8X, 'ROTOR', 8X, 'ROTOR', 9X, 'HSVB', 9X, 'FRC1',
    19X, "FRC2", 9X, "RPMA", 9X, "UT1A", 9X, "UT2A", /, 6X, "PHIB1", 9X, "PSIB",
    28X,*PSIIB*,9X,*EFFB*,11X,*FT*,49X,*FPS*,10X,*FPS*)
5312 FORMAT (2X,4(F9.6,4X),6(F9.3,4X))
5321 FORMAT (19X, 'STAGE', 8X, 'STAGE', 8X, 'STAGE', 9X, 'FRC1',
    19X, *FRC2*,/,6X,*PHIB1*,9X,*PSIB*,8X,*PSIIB*,9X,*EFFB*)
     STOP
     END
```

Glossary of FORTRAN Variables

FORTRAN IV variable	Mathe- matical symbol	Definition	Unit
ALF1(I1, J1)	^κ 1	Inlet blade angle, angle between tangent to blade mean camber line and axial direction at leading edge (fig. 2)	deg
ALF2(I1, J1)	^κ 2	Outlet blade angle, angle between tangent to blade mean camber line and axial direction at trailing edge (fig. 2)	deg
ANGLST(II, J1)	γ	Blade setting angle, angle between blade-element chord and axial direction (fig. 2)	deg
B1		β_1 expressed in radians	radians
BETA(L1, I1, J1)	β	Absolute axisymmetric flow	deg
		angle with respect to axial direc-	
		tion	
BETAP1(L1, I1, J1)	β_1^{\prime}	Relative axisymmetric flow	deg
. , , ,	· 1	angle with respect to axial direc-	-
		tion at blade-row-inlet calcula-	
		tion station (fig. 2 and eq. (F20))	
BETAP2(L1, I1, J1)	β_2'	Relative axisymmetric flow	deg
	~2	angle with respect to axial direc-	ucg
		tion at blade-row-outlet calcula-	
		tion station (fig. 2 and eq. (F21))	
BP2		β_2' expressed in radians	radians
CHORD(I1, J1)	c	Blade-element chord length	in.
CMBRMX(I1, J1)	CM	Position of blade-element maxi-	percent
, , ,		mum camber as percent of total	•
		chord length	
D 1		Intermediate result, r _t - r _h	in.
D2		Intermediate result, H - h	ft-lbf/lbm
D3		Intermediate result, $(V'_{\theta,1})^2$ +	ft ² /sec ²
		$(V_{\bullet})^2$,
D4		Intermediate result, $(V'_{\theta}, 2)^2 + (V'_{\theta}, 2)^2$	$\rm ft^2/sec^2$
		$(V_{z,2})^2$	
		· Z, Z	

FORTRAN IV variable	Mathe- matical symbol	Definition	ţ.	Unit	•
D5 D6 D7	· ·	Intermediate result, $V_{\theta, 1}^{'}/V_{1}^{'}$ Intermediate result, $V_{\theta, 2}^{'}/V_{1}^{'}$ Intermediate result: $V_{2}^{'}/V_{1}^{'}$			
D2A		for rotors, V_2/V_1 for stators Intermediate result: $r_2V_{\theta,2}$ - $r_1V_{\theta,1}$ for stators, $r_1V_{\theta,1}$ -	inft/sec	e .	
D2B		$r_2V_{\theta,2}$ for rotors Intermediate result: $V_1'(r_2 + r_1)$ for rotors, $V_1(r_2 + r_1)$ for stators	inft/sec	2	
DALF DB	$\left egin{array}{c} \kappa_{f 1} \ eta_{f 1} \ \end{array} ight $	Absolute value of ALF1(L1,I1,J1) Absolute value of	deg		• • • • • • • • • • • • • • • • • • •
DE L2(L1, I1, J1)	, δ, ,	BETAP1(L1, I1, J1) Deviation angle, angle between outlet flow direction and tangent	deg		
		to mean camber line at trailing edge (fig. 2 and eqs. (F23) and (F24))			m d Salayan
DELTAH(L1, I1, J1)	ΔН	Blade-element total-head rise (eq. (F11))	ft-lbf/lbm	1	~.
DELTAP(L1, I1, J1)	Δh	Blade-element static-head rise (eq. (F12))	ft-lbf/lbm	1	
FLOHIT(I1, J1)		Blade-element stream-surface span location as fraction of total passage height from pump annu-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		,
	• •	lus outer surface at a blade-row calculation station (eqs. (F1) and			
FNC1(L1, I1, J1)	i	(F2)) Incidence angle, angle between inlet flow direction and tangent to mean camber line at leading	deg		
GPM(L1, I1, J1)	Q _v	edge (fig. 2 and eq. (F22)) Instantaneous volume flow rate as measured with a venturi meter	gal/min		

FORTRAN IV variable	Mathe- matical symbol	Definition	Unit
GPMA(L1)	Q _{v,a}	Average volume flow rate as measured with a venturi meter (eq. (F50))	gal/min
H(L1, I1, J1)	H	Blade-element total head	ft-lbf/lbm
HSVB(L1, I1)	\overline{H}_{sv}	Mass-averaged net positive suction head (eq. (F47))	ft-lbf/lbm
HSVBN	is a	Cumulative value of integrated- volume-flow-rate-weighted net positive suction head	$(ft^2)(in.^2)(lbf)/(lbm)(sec)$
I	Ι	Number of axial stations being considered	
· I1		Axial station loop index	
I2		II + 1	
П		Number of blade rows being considered	
IKT		Overall program loop index	
INFO(M1, N1)	,	Rotor configuration identification information	
J	\mathbf{J}^{-1}	Number of blade elements being considered	
J1		Blade-element radial position loop index	
K	K	Blade-row configuration number	
KI	.:	Card reader unit reference number	
КО	,	Line printer unit reference number	
KOUNT		Configuration loop index	
L	$\mathbf{L}^{(i)}$	Number of flow rates per configuration being considered	
L1		Flow-rate loop index	
M1		Identification information	
		''READ'' and ''WRITE'' loops index	
		*******	•

FORTRAN IV variable	Mathe- matical	Definition	Unit
	symbol	tevet .	
N1	٠.	Identification information ''READ'' and ''WRITE'' loops index	,
NBLADE(II)	NB .	index Number of blades in blade row being considered	
NDS		Tape unit reference number	~===
NDTSET		Number of blade-row configura-	
		tions being considered	
OMEGB(L1, I1, J1)	$\overline{\omega}$	Blade-element loss coefficient	
		(eqs. (F37) and (F38))	
P(L1, I1, J1)	h	Blade-element static head at an	ft-lbf/lbm
		axial calculation station	,
PHIB(L1)	$\overline{\varphi}$	Average flow coefficient	
		(eq. (F54))	
PSIDI		Cumulative value of integrated	$(ft)(in.^2)/sec$
		volume flow rate at blade-row-	
		outlet calculation station	_
PSIN		Cumulative value of integrated-	$(ft)(in.^2)/sec$
		volume-flow-rate-weighted rotor	
·		or stage head-rise coefficient	9
PSINI		Cumulative value of integrated-	$(ft)(in.^2)/sec$
		volume-flow-rate-weighted ideal	
		head-rise coefficient	
PV(L1)	$^{ m h}{ m v}$	Flowing fluid vapor pressure	ft-lbf/lbm
Q1		Cumulative value of integrated	$(ft)(in.^2)/sec$
		volume flow rate at blade-row-	
OEDD1/I1 I1)		inlet calculation station	
QERR1(L1, I1)	1	Comparison of integrated and	
		venturi-metered volume flow	
		rates at blade-row-inlet calcu-	
OFPD9/I1 I1)		lation station (eq. (F48))	<u></u>
QERR2(L1, I1)	4	Comparison of integrated and	
		venturi-metered volume flow	
		rates at blade-row-outlet calcu-	
	_	lation station (eq. (F49))	

FORTRAN IV variable	Mathe- matical symbol	Definition	Unit
R(II, JI)	r	Radius of blade-element stream surface from pump axis at an axial calculation station	in.
RADLE(I1, J1)	RLE	Blade-element leading-edge radius	in.
RADTE(II, J1)	RTE	Blade-element trailing-edge radius	in.
REC(L1, I1, J1)	Re_{c}	Blade-chord Reynolds number (eq. (F19))	
RHO(L1) RHRCO(L1, I1)	$rac{ ho}{\psi}$	Fluid density Mass-averaged rotor or stage head-rise coefficient (eqs. (F41)	lbm/ft ³
RHRCOI(L1, I1)	$\overline{\psi}_{\mathbf{i}}$	and (F42)) Mass-averaged rotor or stage ideal head-rise coefficient (eqs. (F43) and (F44))	
RHUB(II)	$\mathbf{r}_{\mathbf{h}}$	Pump annulus inner-surface radius from pump axis at an axial calculation station	in.
RMAE(L1, I1)	$\overline{\eta}$	Mass-averaged rotor or stage hydraulic efficiency (eqs. (F45) and (F46))	
RN(L1, I1, J1)	N	Instantaneous value of pump rotor speed: equal to rotor rpm at each rotor-inlet calculation station (stator-outlet calculation station), equal to zero at each stator-inlet calculation station (rotor-outlet calculation station)	rpm
RNA(L1, I1)	N _a	Average pump rotor speed (eq. (F51))	rpm
RNN		Cumulative value of summation of rotor speeds	rpm

FORTRAN IV variable	Mathe- matical symbol	Definition	Unit
RRT(I1, J1)	r/r _t	Ratio of a blade-element stream-surface radius to pump- annulus outer-surface radius at an axial calculation station (eqs. (F3) and (F4))	
RTIP(II)	r t	Pump annulus outer-surface radius at an axial calculation station	in.
SGMA(I1, J1)	σ	Blade-row solidity based on stream-surface radius at blade- row-outlet calculation station	
STRTUB(L1, I1, J1)	ΔΑ	Stream-tube cross-sectional area at an axial calculation station including boundary-layer correction	in. ²
TCA(L1, I1, J1)	$(\theta/c)_{A}$	Wake momentum thickness parameter (eqs. (F39) and (F40))	
THTA(I1, J1)	φ^{0}	Blade camber angle; $\kappa_1 - \kappa_2$ for rotors, $\kappa_2 - \kappa_1$ for stators	deg
TMAXC(I1, J1)	t_{max}/c	Ratio of blade-element maximum thickness to chord length	
U1(L1, I1, J1)	U ₁	Blade velocity at blade-row- inlet calculation station (fig. 2 and eq. (F13))	ft/sec
U2(L1, I1, J1)	U 2	Blade velocity at blade-row- outlet calculation station (fig. 2 and eq. (F14))	ft/sec
UTIP1(L1, I1, J1)	U _{1, t}	Instantaneous value of blade- tip velocity at blade-row-inlet calculation station	ft/sec
UTIP2(L1, I1, J1)	^U 2, t	Instantaneous value of blade-tip velocity at blade-row-outlet cal-	ft/sec
		culation station	

FORTRAN IV variable	Mathe- matical symbol	Definition		'i Unit
-UTIP1N -		Cumulative value of summation of instantaneous blade-tip velocities at blade-row-inlet calculation station	ft/sec	
UTIP1A(L1, I1)	^U 1, t, a	Average blade-tip velocity at blade-row-inlet calculation station (eq. (F52))	ft/sec	
UTIP2N		Cumulative value of summation of instantaneous blade-tip velocities at blade-row-outlet calculation station	ft/sec	e ette.
UTIP2A(L1, I1)	U _{2, t, a}	Average blade-tip velocity at blade-row-outlet calculation station (eq. (F53))	ft/sec	
VISK(L1)	ν	Fluid kinematic viscosity	ft ² /sec	
VU(L1, I1, J1)	\mathbf{v}_{θ}	Tangential component of absolute fluid velocity at an axial calcula- tion station (fig. 2 and eqs. (F7)	ft/sec	
		and (F8))		· . ·
VUP1(L1, I1, J1)	$v'_{\theta, 1}$	Tangential component of relative fluid velocity at blade-row-inlet	ft/sec	• ,
	•	calculation station (fig. 2 and eq. (F15))	•	
VUP2(L1, I1, J1)	$V_{\theta, 2}'$	Tangential component of relative fluid velocity at blade-row-outlet calculation station (fig. 2 and eq. (F16))	ft/sec	, 14 ·
VZ(L1, I1, J1)	$V_{\mathbf{z}}$	Axial component of fluid velocity at an axial calculation station	ft/sec	e de la companya de l
XD(L1, I1, J1)	D	(fig. 2 and eqs. (F9) and (F10)) Blade-element diffusion factor (eqs. (F25) and (F26))		
XEFF(L1, I1, J1)	η	Blade-element hydraulic efficiency (eqs. (F31) and (F32))		

FORTRAN IV Mat variable mat sym		Unit
XPHI1(L1, I1, J1) φ_1	Blade-element flow coefficient a	at
	blade-row-inlet calculation sta-	And the second second
•	tion (eqs. (F33) and (F35))	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
XPHI2(L1, I1, J1) φ_2	Blade-element flow coefficient a	ut
2	blade-row-outlet calculation sta	en e
•	tion (eqs. (F34) and (F36))	
XPSI(L1, I1, J1) ψ	Blade-element head-rise coeffi-	
· ·	cient (eqs. $(F27)$ and $(F28)$)	Section 1999
XPSII(L1, I1, J1) ψ_i	Blade-element ideal head-rise	
•	coefficient (eqs. (F29) and (F30)))
XV(L1, I1, J1) V	Absolute axisymmetric fluid	ft/sec
	velocity at an axial calculation	
	station (fig. 2 and eqs. (F5) and (F6))	
XVP1(L1, I1, J1) V ₁ '	Relative axisymmetric fluid	ft/sec
	velocity at blade-row-inlet cal-	
	culation station (fig. 2 and	
	eq. (F17))	•
$XVP2(L1, I1, J1)$ V_2'	Relative axisymmetric fluid	ft/sec
	velocity at blade-row-outlet	•
	calculation station (fig. 2 and	
•	eq. (F18))	
ZCOORD(II) Z	Distance between reference and	in.
	other axial calculation stations	

APPENDIX D

COMPUTER INPUT FORMAT

The computer data input format is as follows: All the FORTRAN IV variables involved are explained in appendix C. Columns 72 to 80 were used for identification. The "A" and "B" notation appearing in the J1 columns (79 and 80) indicate blade-row-inlet and -outlet calculation stations, respectively. Sample numbers have been inserted appropriately for clarification in the coding sheet example shown in figure 13. Rotor speed is read in at the rotor-inlet calculation station as RN(L1, I1, J1). At the rotor-outlet calculation station, RN(L1, I1, J1) must be equal to zero if a stator is downstream of the rotor.

```
NDTSET
12
INFORMATION CARD 1
NASA CONFIGURATION 02
INFORMATION CARD 2
O.4 HUB-TIP RATIO, 16 BLADES,
                                     9-INCH TIP DIAMETER.
INFORMATION CARD 3
1.5-INCH CHORD
                      O. 013-0.020-INCH RADIAL TIP CLEARANCE.
INFORMATION CARD 4
0.23 DESIGN TIP
                    D-FACTOR,
INFORMATION CARD 5
DOUBLE CIRCULAR ARC BLADE PROFILE
INFORMATION CARD 6
O.293 DESIGN FLOW COEFFICIENT
INFORMATION CARD 7
NOT REPORTED.
 K L I J
02827
                                                                                          02
RHUB(1)
             RTIP(1)
                         ZCOORD(1)
                                     NBLADE(1)
                                                                                               1
   1.800
                4.50
                             0.0
             ALF1(1,1)
                         ALF2(1,1)
                                     TMAXC(1,1)
                                                  CHORD(1,1)
                                                               ANGLST(1,1)
R(1,1)
                                                                                               IJЛ
                                                                                               1 A 1
   4.35
               72.4
                           66.3
                                         0.072
                                                     1.50
                                                                 69.35
THTA(1,1)
             CMBRMX(1,1)
                         RADLE(1,1)
                                     RADTE(1,1)
                                                  SGMA(1,1)
                                                                                               I1J1
    6.10
               50.0
                             0.010
                                         0.010
                                                      0.8781
R(1,2)
             ALF1(1,2)
                         ALF2(1,2)
                                     TMAXC(1,2)
                                                  CHORD(1,2)
                                                               ANGLST(1,2)
                                                                                               I1J1
   4.25
               72.0
                           65.6
                                         0.073
                                                      1.50
                                                                 68.8
                                                                                          02
                                                                                              1 A2
            CMBRMX(1,2)
                         RADLE(1,2)
                                     RADTE(1,2)
THTA(1,2)
                                                  SGMA(1,2)
                                                                                              I1 J1
               50.0
                             0.010
                                         0.010
                                                      0.8988
   6.40
                                                                                         0 2
                                                                                              1 B2
                                     TMAXC(1,J)
                                                  CHORD(1,J)
R(1<u>J)</u>
             ALF1(1,J)
                         ALF2(1,J)
                                                              ANGLST(1,J)
                                                                                              I1 J1
                                                                                              1 A 7
   1.95
                                         0.098
                                                     1.50
                                                                                         02
               51.2
                            3.8
                                                                 27.5
THTA(1,J)
            CMBRMX(1,J)
                         RADLE(1,J)
                                     RADTE(1,J)
                                                  SGMA(1,J)
                                                                                              Il Jl
                                                                                              1B7
  47.40
               50.0
                             0.010
                                         0.010
                                                     1.9588
RHUB(2)
            RTIP(2)
                         ZCOORD(2)
                                     NBLADE(2)
                                                                                              11
                                                                                          K
R(2,1)
            ALF1(2,1)
                         ALF2(2,1)
                                     TMAXC(2,1)
                                                  CHORD(2,1)
                                                              ANGLST(2,1)
                                                                                              Il J1
```

Figure 13. - Example of input data coding sheet.

```
THTA(2,1)
            CMBRMX(2.1) RADLE(2.1)
                                      RADTE(2,1) SGMA(2,1)
                                                                                             I1 J1
R(2,J)
            ALF1(2.J)
                                      TMAXC(2.J) CHORD(2.J)
                                                             ANGLST(2,J)
                         ALF2(2.J)
                                                                                             ті лі--
THTA(2,J)
            CMBRMX(2,J) RADLE(2,J)
                                      RADTE(2,J) SGMA(2,J)
                                                                                             II J1'.
RHUB(I-1)
            RTIP(I-1)
                         ZCOORD(I-1)
                                      NBLADE('I-1)
R(I-1,1)
             ALF1(I-1,1) ALF2(I-1,1)
                                      TMAXC(I-1,1) CHORD(I-1,1) ANGLST(I-1,1)
                                                                                             Il Jl
            CMBRMX(I-1,1) RADLE(I-1,1) RADTE(I-1,1) SGMA(I-1,1)
THTA(I-1,1)
                                                                                            · I1 J1
R(I-1,J)
             ALF1(I-1,J) ALF2(I-1,J) TMAXC(I-1,J) CHORD(I-1,J) ANGLST(I-1,J)
                                                                                             Il Jl
THTA(I-1,J) CMBRMX(I-1,J) RADLE(I-1,J) RADTE(I-1,J) SGMA(I-1,J)
                                                                                          K Il Jl
RHUB(I)
                         ZCOORD(I)
             RTIP(I)
                                                                                          K
                                                                                             11
 1.800
                                                                                         02
                                                                                            - 2
                4.50
                            0.0
R(I,1)
            R(I,2)
                         R(I,3)
                                                                           R(I.7)
                                                                                         K
                                                                                             II ·
   4.35
                4.25
                             3.70
                                         3.15
                                                     2.60
                                                                                         02
            R(I,J)
R(I,8)
                                      PV(1)
GPMA(1)
             PHIB(1)
                         RHO(1)
                                                  VISK(1)
8602.6
                0.337
                           62.15
                                        1.330
                                                   9.28E-6
                                                                                         021
BETA(1,1,1)
                         P(1,1,1)
                                      STRTUB(1,1,1)
                                                   RN(1,1,1)
                                                              GPM(1,1,1)
            H(1,1,1)
                                                                                         K Ll Il Jl
                                       4.7276
                                                   3898.8
                                                              8602.6
                                                                                         02 1 1 1
 0.0
             112.90
                         77.969
                                     STRTUB(1,1,2)
                                                   RN(1,1,2)
BETA(1,1,2)
                                                              GPM(1,1,2)
            H(1,1,2)
                         P(1,1,2)
                                                                                         K Ll Il Jl
                                       8.4489
                                                                                         0.5 1
             112.90
                           74.0798
                                                   3898.8
                                                              8602.6
   0.0
BETA(1,1,J) H(1,1,J)
                         P(1,1,J)
                                     STRUB(1,1,J)
                                                   RN)1,1,J)
                                                              GPM(1,1,J)
                                                                                         K L1 I1 J1
            112.90
                           68.817
                                        1.5860
                                                   3898.8
                                                              8602.6
                                                                                         02 1 1 7
BETA(1,2,1)
            H(1,2,1)
                         P(1,2,1)
                                     STRUB(1,2,1)
                                                   RN(1,2,1)
                                                              GPM(1,2,1)
                                                                                         K L1 I1 J1
  27.774
             172.50
                         131.005
                                        4.7276
                                                      0.0
                                                              8602.6
                                                                                         0212
BETA(1,2,2,) H(1,2,2)
                         P(1,2,2,)
                                     STRTUB(1,2,2)
                                                   RN(1,2,2)
                                                              GPM(1,2,2)
                                                                                         K LI II Jl
                         129.401
  21.833
            179.58
                                       8.4489
                                                      0.0
                                                              8602.6
                                                                                         02 1 2
BETA(1,2,J) H(1,2,J)
                         P(1,2,J)
                                     STRTUB(1,2,J) RN(1,2,J)
                                                              GPM(1,2,J)
                                                                                         K L1 I1 J1
  41.842
             203.80
                         115.269
                                       1.5860
                                                              8602.6
                                                                                         02 1 2 1
```

Figure 13. - Continued.

BETA(1,1,1) BETA(1,1,2)		P(1,I,1) P(1,I,2)	STRTUB(1,I,1) STRTUB(1,I,2)	RN(1,1,1) RN(1,1,2)	GPM(1,I,1) GPM(1,I,2)		K L1 I1 J1 K L1 I1 J1
BETA(1,I,J) GPMA(2)	H(1,I,J) PHIB(2)	P(1,I,J) NHO(2)	STRTUB(1,I,J) PV(2)	RN(1,1,J) VISK(2)	GPM(1,I,J)		K L1 I1 J1 K L1
8313.7	0.325	62.15	1.330	9.28E-06		£	022
BETA(2,1,1)	H(2,1,1)	P(2,1,1)	STRTUB(2,1,1)	RN(2,1,1)	GPM(2,1,1)		K L1 I1 J1
0.0	113.17	81.181	4.7276	3909.1	8313.7		02 2 1 1
BETA(2,1,2)	H(2,1,2)	P(2,1,2)	STRTUB(2,1,2)	RN(2,1,2)	GPM(2,1,2)		K L1 I1 J1
0.0	113.17	76.630	8.4489	3 90 9.1	8313.7		02212
•	•						,
•							*
BETA(2,1,J)	H(2,1,J)	P(2,1,J)	STRTUB(2,1,J)	RN(2,1,J)	GPM(2,1,J)		K L1 İ1 J1
0.0	113.17	72.384	1.5860	3909.1	8313.7.		02 2 1 7
BETA(2,2,1)	H(2,2,1)	P(2,2,1)	STRTUB(2,2,1)	RN(2,2,1)	GPM(2,2,1)		K L1 I1 J1
30.378	191.00	147.449	4.7276	0.0	8313.7		02 2 2 1
BETA(2,2,2)	H(2,2,2)	P(2,2,2)	STRTUB(2,2,2)	RN(2,2,2)	GPM(2,2,2)	-	K Ll Il Jl
26.444	193.37	143.738	8.4489	0.0	8313.7	:	02 2 2 2
•			•				
•				•			
BETA(2,2,J)		P(2,2,J)	STRTUB(2,2,J)		GPM(2,2,J)	•	K L1 I1 J1
43.658	209.39	125.769	1.5860	0.0	8313.7		02227
•					• .		
•					• •		i
•							
BETA(2,1,1)		P(2,I,1)	STRTUB(2,I,1)		GPM(2,1,1)	,	K Ll Il Jl
BETA(2,1,2)	н(2,1,2)	P(2,I,2)	STRTUB(2,1,2)	RN(2,I,2)	GPM(2,1,2)		K .Ll I1 J1
•	•					•	
•							
BETA(2,I,J)	H(2,I,J)	P(2,I,J)	STRTUB(2,I,J)	RN(2,I,J)	GPM(2,1,J)		K Ll Il Jl
•							
•							
			(-)				
GPMA(L)	ьн́ів(г)	RHO(L)	bA(r)	AISK(r)			K L1
		•					
N 2			Figure 13	Continued.			,

				•			
6712,7	0.262	62.15	1.330 9.	28E-6		• •	028
BETA(L,1,1)	H(L,1,1)	P(L,1,1)	STRTUB(L,1,1) RI	N(L,1,1)	GPM(L,1,1)	,	K Ll Il Jl
0.0	113.36	90.967		3913.6	6712.7	: :	02 8 1 1
BETA(L,1,2)	H(L,1,2)	P(L,1,2)	STRTUB(L,1,2) RI	N(L,1,2)	GPM(L,1,2)		K Ll Il Jl
0.0	113.36	88.545	8.4489 3	3913.6	6712.7		02812
•						•	
•							
•				•			
BETA(L,1,J)	H(L,1,J)	P(L,1,J)	STRTUB(Ĺ,1,J) RI	N(L,1,J)	GPM(L,1,J)		K Ll Il Jl
0.0	113.36	90.564	1.5860 3	3913.6	6712.7	•	02 8 1 7
BETA(L,2,1)	H(L,2,1)	P(L,2,1)	STRTUB(L,2,1) RI	N(L,2,1)	GPM(L,2,1)	_	K Ll Il Jl
37.750	248.98	202.271	4.7276	0.0	6712.7		02 8 2 1
BETA(L,2,2)	H(L,2,2)	P(L,2,2)	STRTUB(L,2,2) RI	N(L,2,2)	GPM(L,2,2)	•	K Ll Il Jl
36.042	246.88	196.716	8.4489	0.0	6712.7	'	02 8 2 2
•				-		• •	
•							
•							i
BETA(L,2,J)	H(L,2,J)	P(L,2,J)	STRTUB(L,2,J) RI	N(L,2,J)	GPM(L,2,J)		K Ll Il Jl
-65.283	162.72	160.897	1.5860	0.0	6712.7		02827
•						•	
•							
BETA(L,I,1)	H(L,I,1)	P(L,I,1)	STRTUB(L,I,1) RI	N(L,I,1)	GPM(L,I,1)		K L1 I1 J1
BETA(L,I,2)	H(L,I,2)	P(L,I,2)	STRTUB(L,1,2) RI	N(L,I,2)	GPM(L,I,2)	5	K Ll Il Jl
•							
							:
BETA(L,I,J)	H(L,I,J)	P(L,I,J)	STRTUB(L,I,J) R	N(L,I,J)	GPM(L,I,J)		K Ll Il Jl
							•

Figure 13. - Concluded.

APPENDIX E

LISTING OF INPUT DATA

All the input cards associated with the pump data presently considered are listed here, following a key which identifies the values listed. Instantaneous values of rotor speeds and volume flow rates were entered where available. In other instances, average values were used.

Number of data sets
Identification - line 1
Identification - line 2
Identification - line 3
Identification - line 4
Identification - line 5
Identification - line 6
Identification - line 7

KLIJ

^r 1, h	^r 1, t	$^{\mathbf{z}}$ 1	NB			
r _{1, r1}	^κ 1. r1	κ _{2. r1}	$(t_{max}/c)_{r1}$	c_{r1}	γ_{r1}	
$arphi_{{f r}{f 1}}^{{f o}}$	CM _{r1}	RLE _{r1}	$\mathtt{RTE}_{\mathtt{r1}}$	$\sigma_{\mathbf{r}1}$		
r _{1, r2}	^κ 1. r2	κ _{2. r2}	$(t_{max}/c)_{r2}$	$^{\mathrm{c}}\mathbf{_{r2}}$	$\gamma_{\mathbf{r2}}$	
$arphi_{\mathbf{r}2}^{o'}$	CM _{r2}	RLE _{r2}	$\mathtt{RTE}_{\mathtt{r2}}$	$\sigma_{\mathbf{r2}}$	*	
r _{1, r3}	$\kappa_{1,r3}$	κ _{2. r3}	$(t_{\text{max}}/c)_{\text{r}3}$	$^{\mathrm{c}}$ r3	γ_{r3}	
$arphi_{\mathbf{r3}}^{\mathrm{o}}$	CM _{r3}	RLE _{r3}	RTE _{r3}	$\sigma_{\mathbf{r}3}$	***	
^r 1, r4	^κ 1, r4	κ _{2, r4}	${^{(t}}_{ ext{max}}/{^{c})}_{ ext{r4}}$	c_{r4}	$\gamma_{{f r}{f 4}}$	
$arphi_{{f r}{f 4}}^{{f o}}$	CM _{r4}	RLE _{r4}	RTE_{r4}	$\sigma_{\mathbf{r}4}$	•	
^r 1, r5	^κ 1, r5	^κ 2, r5	$(t_{\mathrm{max}}/c)_{\mathrm{r}5}$	c_{r5}	$\gamma_{{f r}5}$	
$arphi^{o'}_{{f r}f 5}$	CM _{r5}	RLE _{r5}	$\mathtt{RTE}_{\mathtt{r}5}$	$\sigma_{\mathbf{r}5}$		
^r 1, r6	^κ 1. r 6	κ _{2, r6}	$(t_{\text{max}}/c)_{\text{r6}}$	$^{\mathrm{c}}$ r6	$\gamma_{{f r}6}$	
$arphi_{\mathbf{r}6}^{\mathrm{o}}$	CM _{r6}	RLE _{r6}	RTE _{r6}	$\sigma_{\mathbf{r}6}$		
^r 1, r7	$\kappa_{1, r7}$	$\kappa_{2, r7}$	$^{(\mathrm{t}}_{\mathrm{max}}/\mathrm{c})_{\mathrm{r7}}$	c _{r7}	$\gamma_{\mathbf{r7}}$	
$arphi_{\mathbf{r7}}^{\acute{\mathbf{o}}}$	CM _{r7}	RLE _{r7}	$\mathtt{RTE}_{\mathtt{r7}}$	$\sigma_{\mathbf{r7}}$		
^r 2, h	r _{2, t}		,			•
2, 11						
	r _{2, r2}	^r 2, r3	r _{2, r4}	r _{2, r5}	^r 2, r6	r _{2, r7}
^r 2, r1	$\frac{\mathbf{r_{2, r2}}}{\overline{\varphi}}$	^r 2, r3 ρ	^r 2, r4 h _v	^r 2, r5 ν	^r 2, r6	^r 2, r7
^r 2, r1 Q _{v, a}	$\frac{^{\mathbf{r}}}{\varphi}$, r2	ρ	h _v ΔΑ _{Ι, Γ} Ι	ν		^r 2, r7
$^{r}_{2, r1}$ $Q_{v, a}$ $^{\beta_{1, r1}}$	$\frac{^{\mathbf{r}}_{2,\mathbf{r}2}}{\overline{\varphi}}$	ρ ^h 1, r1	h _v ΔA _{1, r} 1 ΔA _{1, r} 2	N _{1, r1} N _{1, r2}	Q _{v, 1, r1}	^r 2, r7
^r 2, r1 Q _{v, a} β _{1, r1} β _{1, r2}	$\frac{r_{2, r2}}{\overline{\varphi}}$ $\frac{H_{1, r1}}{H_{1, r2}}$	ρ ^h 1, r1 ^h 1, r2	$^{\mathrm{h}}_{\mathrm{v}}$ $^{\Delta\mathrm{A}}_{\mathrm{1,r1}}$ $^{\Delta\mathrm{A}}_{\mathrm{1,r2}}$ $^{\Delta\mathrm{A}}_{\mathrm{1,r3}}$	N _{1, r1} N _{1, r2} N _{1, r3}	Q _{v, 1, r1} Q _{v, 1, r2} Q _{v, 1, r3}	^r 2, r7
r 2, r1 Q v, a $^{\beta}$ 1, r1 $^{\beta}$ 1, r2 $^{\beta}$ 1, r3	$\frac{^{r}2, r2}{\overline{\phi}}$ $\frac{^{H}1, r1}{^{H}1, r2}$ $\frac{^{H}1, r3}{^{H}1, r3}$	ρ h1, r1 h1, r2 h1, r3	$^{h}_{v}$ $^{\Delta A}_{1, r1}$ $^{\Delta A}_{1, r2}$ $^{\Delta A}_{1, r3}$ $^{\Delta A}_{1, r4}$	N _{1,r1} N _{1,r2} N _{1,r3} N _{1,r4}	$Q_{v, 1, r1}$ $Q_{v, 1, r2}$ $Q_{v, 1, r3}$ $Q_{v, 1, r4}$	r _{2, r7}
r 2, r1 Q v, a $^{\beta}$ 1, r1 $^{\beta}$ 1, r2 $^{\beta}$ 1, r3 $^{\beta}$ 1, r4	$\frac{r_{2}, r_{2}}{\varphi}$ $\frac{H_{1, r_{1}}}{H_{1, r_{2}}}$ $\frac{H_{1, r_{3}}}{H_{1, r_{3}}}$	ρ h1, r1 h1, r2 h1, r3 h1, r4	$^{h}_{v}$ $^{\Delta A}_{1, r1}$ $^{\Delta A}_{1, r2}$ $^{\Delta A}_{1, r3}$ $^{\Delta A}_{1, r4}$ $^{\Delta A}_{1, r5}$	N ₁ , r ₁ N ₁ , r ₂ N ₁ , r ₃ N ₁ , r ₄ N ₁ , r ₅	Q _{v, 1, r1} Q _{v, 1, r2} Q _{v, 1, r3} Q _{v, 1, r4} Q _{v, 1, r5}	r _{2, r7}
$^{r}_{2}$, $^{r}_{1}$ $^{Q}_{v, a}$ $^{\beta_{1}}$, $^{r}_{1}$ $^{\beta_{1}}$, $^{r}_{2}$ $^{\beta_{1}}$, $^{r}_{3}$ $^{\beta_{1}}$, $^{r}_{4}$ $^{\beta_{1}}$, $^{r}_{5}$	^r ₂ , r ² φ H _{1, r1} H _{1, r2} H _{1, r3} H _{1, r4} H _{1, r5}	ρ h _{1, r1} h _{1, r2} h _{1, r3} h _{1, r4} h _{1, r5}	h_{v} $^{\Delta A}_{1, r1}$ $^{\Delta A}_{1, r2}$ $^{\Delta A}_{1, r3}$ $^{\Delta A}_{1, r4}$ $^{\Delta A}_{1, r5}$ $^{\Delta A}_{1, r6}$	N _{1,r1} N _{1,r2} N _{1,r3} N _{1,r4} N _{1,r5} N _{1,r6}	Q _{v, 1, r1} Q _{v, 1, r2} Q _{v, 1, r3} Q _{v, 1, r4} Q _{v, 1, r5}	r _{2, r} 7
$^{r}_{2, r1}$ $Q_{v, a}$ $^{\beta_{1}, r1}$ $^{\beta_{1}, r2}$ $^{\beta_{1}, r3}$ $^{\beta_{1}, r4}$ $^{\beta_{1}, r5}$ $^{\beta_{1}, r6}$	r ₂ , r ₂ φ H _{1, r1} H _{1, r2} H _{1, r3} H _{1, r4} H _{1, r5} H _{1, r6}	ρ h _{1, r1} h _{1, r2} h _{1, r3} h _{1, r4} h _{1, r5} h _{1, r6}	h_{v} $\triangle^{A}_{1, r1}$ $A^{A}_{1, r2}$ $A^{A}_{1, r3}$ $A^{A}_{1, r4}$ $A^{A}_{1, r5}$ $A^{A}_{1, r6}$ $A^{A}_{1, r7}$	N _{1,r1} N _{1,r2} N _{1,r3} N _{1,r4} N _{1,r5} N _{1,r6}	Q _v , 1, r1 Q _v , 1, r2 Q _v , 1, r3 Q _v , 1, r4 Q _v , 1, r5 Q _v , 1, r6	^r 2, r7
$^{r}_{2}$, $^{r}_{1}$ $^{Q}_{v, a}$ $^{\beta_{1}}$, $^{r}_{1}$ $^{\beta_{1}}$, $^{r}_{2}$ $^{\beta_{1}}$, $^{r}_{3}$ $^{\beta_{1}}$, $^{r}_{4}$ $^{\beta_{1}}$, $^{r}_{5}$ $^{\beta_{1}}$, $^{r}_{6}$ $^{\beta_{1}}$, $^{r}_{7}$	r ₂ , r ₂ φ H ₁ , r ₁ H ₁ , r ₂ H ₁ , r ₃ H ₁ , r ₄ H ₁ , r ₅ H ₁ , r ₆ H ₁ , r ₇	ρ h ₁ , r ₁ h ₁ , r ₂ h ₁ , r ₃ h ₁ , r ₄ h ₁ , r ₅ h ₁ , r ₆ h ₁ , r ₇	h_{v} $^{\Delta A}_{1, r1}$ $^{\Delta A}_{1, r2}$ $^{\Delta A}_{1, r3}$ $^{\Delta A}_{1, r4}$ $^{\Delta A}_{1, r5}$ $^{\Delta A}_{1, r6}$ $^{\Delta A}_{1, r7}$ $^{\Delta A}_{2, r1}$	N ₁ , r ₁ N ₁ , r ₂ N ₁ , r ₃ N ₁ , r ₄ N ₁ , r ₅ N ₁ , r ₆ N ₁ , r ₇	Q _v , 1, r1 Q _v , 1, r2 Q _v , 1, r3 Q _v , 1, r4 Q _v , 1, r5 Q _v , 1, r6 Q _v , 1, r7	r _{2, r} 7
$^{r}2, r1$ $Q_{v, a}$ $^{\beta_1, r1}$ $^{\beta_1, r2}$ $^{\beta_1, r3}$ $^{\beta_1, r4}$ $^{\beta_1, r5}$ $^{\beta_1, r6}$ $^{\beta_1, r7}$ $^{\beta_2, r1}$	r ₂ , r ₂ φ H ₁ , r ₁ H ₁ , r ₂ H ₁ , r ₃ H ₁ , r ₄ H ₁ , r ₅ H ₁ , r ₆ H ₁ , r ₇ H ₂ , r ₁	ρ h ₁ , r ₁ h ₁ , r ₂ h ₁ , r ₃ h ₁ , r ₄ h ₁ , r ₅ h ₁ , r ₆ h ₁ , r ₇ h ₂ , r ₁	h_{v} \triangle^{A}_{1} , r1 \triangle^{A}_{1} , r2 \triangle^{A}_{1} , r3 \triangle^{A}_{1} , r4 \triangle^{A}_{1} , r5 \triangle^{A}_{1} , r6 \triangle^{A}_{1} , r7 \triangle^{A}_{2} , r1 \triangle^{A}_{2} , r2	N ₁ , r ₁ N ₁ , r ₂ N ₁ , r ₃ N ₁ , r ₄ N ₁ , r ₅ N ₁ , r ₆ N ₁ , r ₇ N ₂ , r ₁	Q _v , 1, r1 Q _v , 1, r2 Q _v , 1, r3 Q _v , 1, r4 Q _v , 1, r5 Q _v , 1, r6 Q _v , 1, r7 Q _v , 2, r1	^r 2, r7
$^{r}_{2, r1}$ $^{q}_{v, a}$ $^{\beta_{1}, r_{1}}$ $^{\beta_{1}, r_{2}}$ $^{\beta_{1}, r_{3}}$ $^{\beta_{1}, r_{4}}$ $^{\beta_{1}, r_{5}}$ $^{\beta_{1}, r_{6}}$ $^{\beta_{1}, r_{7}}$ $^{\beta_{2}, r_{1}}$ $^{\beta_{2}, r_{2}}$	r ₂ , r ₂ φ H ₁ , r ₁ H ₁ , r ₂ H ₁ , r ₃ H ₁ , r ₄ H ₁ , r ₅ H ₁ , r ₆ H ₁ , r ₇ H ₂ , r ₁ H ₂ , r ₂	ρ h1, r1 h1, r2 h1, r3 h1, r4 h1, r5 h1, r6 h1, r7 h2, r1 h2, r2	h_{v} $^{\Delta A}_{1}$, r1 $^{\Delta A}_{1}$, r2 $^{\Delta A}_{1}$, r3 $^{\Delta A}_{1}$, r4 $^{\Delta A}_{1}$, r5 $^{\Delta A}_{1}$, r6 $^{\Delta A}_{1}$, r7 $^{\Delta A}_{2}$, r1 $^{\Delta A}_{2}$, r2 $^{\Delta A}_{2}$, r3	N ₁ , r ₁ N ₁ , r ₂ N ₁ , r ₃ N ₁ , r ₄ N ₁ , r ₅ N ₁ , r ₆ N ₁ , r ₇ N ₂ , r ₁ N ₂ , r ₂ N ₂ , r ₃	Q _v , 1, r1 Q _v , 1, r2 Q _v , 1, r3 Q _v , 1, r4 Q _v , 1, r5 Q _v , 1, r6 Q _v , 1, r7 Q _v , 2, r1 Q _v , 2, r2 Q _v , 2, r3	^r 2, r7
$^{r}2, r1$ $Q_{v, a}$ $^{\beta_1, r1}$ $^{\beta_1, r2}$ $^{\beta_1, r3}$ $^{\beta_1, r4}$ $^{\beta_1, r5}$ $^{\beta_1, r6}$ $^{\beta_1, r7}$ $^{\beta_2, r1}$ $^{\beta_2, r2}$ $^{\beta_2, r3}$	r ₂ , r ₂ φ H ₁ , r ₁ H ₁ , r ₂ H ₁ , r ₃ H ₁ , r ₄ H ₁ , r ₅ H ₁ , r ₆ H ₁ , r ₇ H ₂ , r ₁ H ₂ , r ₂ H ₂ , r ₃	ρ h ₁ , r ₁ h ₁ , r ₂ h ₁ , r ₃ h ₁ , r ₄ h ₁ , r ₅ h ₁ , r ₆ h ₁ , r ₇ h ₂ , r ₁ h ₂ , r ₂ h ₂ , r ₃	h _v ΔA ₁ , r1 ΔA ₁ , r2 ΔA ₁ , r3 ΔA ₁ , r4 ΔA ₁ , r5 ΔA ₁ , r6 ΔA ₁ , r7 ΔA ₂ , r1 ΔA ₂ , r2 ΔA ₂ , r3 ΔA ₂ , r4	N1, r1 N1, r2 N1, r3 N1, r4 N1, r5 N1, r6 N1, r7 N2, r1 N2, r2 N2, r3 N2, r4	Q _v , 1, r1 Q _v , 1, r2 Q _v , 1, r3 Q _v , 1, r4 Q _v , 1, r5 Q _v , 1, r6 Q _v , 1, r7 Q _v , 2, r1 Q _v , 2, r2 Q _v , 2, r3	^r 2, r7
r 2, r1 Q v, a $^{\beta}$ 1, r1 $^{\beta}$ 1, r2 $^{\beta}$ 1, r3 $^{\beta}$ 1, r4 $^{\beta}$ 1, r5 $^{\beta}$ 1, r6 $^{\beta}$ 1, r7 $^{\beta}$ 2, r1 $^{\beta}$ 2, r2 $^{\beta}$ 2, r3 $^{\beta}$ 2, r4	r ₂ , r ₂ φ H ₁ , r ₁ H ₁ , r ₂ H ₁ , r ₃ H ₁ , r ₄ H ₁ , r ₅ H ₁ , r ₆ H ₁ , r ₇ H ₂ , r ₁ H ₂ , r ₂ H ₂ , r ₃ H ₂ , r ₄	ρ h1, r1 h1, r2 h1, r3 h1, r4 h1, r5 h1, r6 h1, r7 h2, r1 h2, r2 h2, r3 h2, r4	h _v ΔA ₁ , r1 ΔA ₁ , r2 ΔA ₁ , r3 ΔA ₁ , r4 ΔA ₁ , r5 ΔA ₁ , r6 ΔA ₁ , r6 ΔA ₂ , r1 ΔA ₂ , r2 ΔA ₂ , r3 ΔA ₂ , r4 ΔA ₂ , r5	N1, r1 N1, r2 N1, r3 N1, r4 N1, r5 N1, r6 N1, r7 N2, r1 N2, r2 N2, r3 N2, r4 N2, r5	Qv, 1, r1 Qv, 1, r2 Qv, 1, r3 Qv, 1, r4 Qv, 1, r5 Qv, 1, r6 Qv, 1, r7 Qv, 2, r1 Qv, 2, r2 Qv, 2, r3 Qv, 2, r4 Qv, 2, r5	^r 2, r7
$^{r}2, r1$ $Q_{v, a}$ $^{\beta_1, r1}$ $^{\beta_1, r2}$ $^{\beta_1, r3}$ $^{\beta_1, r4}$ $^{\beta_1, r5}$ $^{\beta_1, r6}$ $^{\beta_1, r7}$ $^{\beta_2, r1}$ $^{\beta_2, r2}$ $^{\beta_2, r3}$	r ₂ , r ₂ φ H ₁ , r ₁ H ₁ , r ₂ H ₁ , r ₃ H ₁ , r ₄ H ₁ , r ₅ H ₁ , r ₆ H ₁ , r ₇ H ₂ , r ₁ H ₂ , r ₂ H ₂ , r ₃	ρ h ₁ , r ₁ h ₁ , r ₂ h ₁ , r ₃ h ₁ , r ₄ h ₁ , r ₅ h ₁ , r ₆ h ₁ , r ₇ h ₂ , r ₁ h ₂ , r ₂ h ₂ , r ₃	h_{v} $^{\Delta A}_{1}$, r1 $^{\Delta A}_{1}$, r2 $^{\Delta A}_{1}$, r3 $^{\Delta A}_{1}$, r4 $^{\Delta A}_{1}$, r5 $^{\Delta A}_{1}$, r6 $^{\Delta A}_{1}$, r7 $^{\Delta A}_{2}$, r1 $^{\Delta A}_{2}$, r2 $^{\Delta A}_{2}$, r3	N ₁ , r ₁ N ₁ , r ₂ N ₁ , r ₃ N ₁ , r ₄ N ₁ , r ₅ N ₁ , r ₆ N ₁ , r ₇ N ₂ , r ₁ N ₂ , r ₂ N ₂ , r ₃	Q _v , 1, r1 Q _v , 1, r2 Q _v , 1, r3 Q _v , 1, r4 Q _v , 1, r5 Q _v , 1, r6 Q _v , 1, r7 Q _v , 2, r1 Q _v , 2, r2 Q _v , 2, r3	r _{2, r} 7

Input Data

```
NASA CONFIGURATION 02
C.4 HUE-TIP RATIO, 16 BLADES, 9-INCH TIP DIAMETER,
1.5 INCH CHORE,
                  0.013-0.020-INCH RADIAL TIP CLEARANCE,
C.24 DESIGN TIP D-FACTER,
DCUBLE CIRCULAR ARC BLADE PROFILE,
0.293 CESIGN FLOW COEFFICIENT.
NCT REPORTED.
C2 & 2 7
                                                                                02
   1.800
              4.50
                         0.0
                                          16
                                                                                02
                                                                                      1
   4.35
                                     0.072
                                                1.50
                                                          69.39
             72.4
                        66.38
                                                                                02
                                                                                      141
   6.02
             50.0
                         0.010
                                     0.010
                                                0.8781
                                                                                02
                                                                                      181
   4.25
                        65.6
                                     0.073
                                                1.50
                                                          68.8
                                                                                02
                                                                                      142
             72.0
   6.40
             5C.C
                         0.010
                                     0.010
                                                C.8988
                                                                                02
                                                                                     182
   3.70
             65.5
                        60.5
                                     0.079
                                                1.50
                                                          65.0
                                                                                02
                                                                                      1A3
   9.00
             50.0
                         0.010
                                     0.010
                                                1.0324
                                                                                02
                                                                                      183
                                     0.085
                                                          59.4
                                                                                02
   3.15
             66.4
                        52.4
                                                1.50
                                                                                      144
  14.00
             50.0
                         0.010
                                     C.010
                                                1.2126
                                                                                02
                                                                                      1B4
                                                          50.4
                                    0.091
                                                                                      1A5
                                                1.50
                                                                                02
   2:60
             62.4
                        38.4
                                     0.010
                                                                                02
                                                                                     185
  24.00
             5C.0
                         0.010
                                                1.4691
                                                1.50
   2.05
             55.4
                        10.0
                                    0.097
                                                          32.7
                                                                                02
                                                                                      1A6
                                    0.010
                                                                                02
                                                                                      186
  45.40
             50.0
                         0.010
                                                1.8633
                         3.5
                                     0:098
                                                1.50
                                                          28.52
                                                                                02
                                                                                     1A7
   1.95
             53.53
                         0.010
                                     0.010
                                                1.9588
                                                                                     187
  50.03
             5C.0
                                                                                02
   1.800
              4.50
                                                                                02
                                                                                      2
                         3.70
                                    3.15
                                                           2.05
                                                                      1.95
                                                                                02
                                                                                      2
   4.35
              4.25
                                                2.60
                                   1.330
                                            9.28E-6
                                                                                02 1
8602.6
              C.337
                        62.15
   0.0
            112.90
                        77.969
                                   4.7276
                                             3898.8
                                                       8602.6
                                                                                02 1 1 1
            112.90
                        74.0798
                                   8.4489
                                              3898.8
                                                       8602.6
                                                                                02 1 1 2
   0.0
                                  12.7863
            112.90
                        70.181
                                              3898.8
                                                       8602.6
                                                                                02 1 1 3
   0.0
            112.90
                        68.119
                                  10.8856
   0.0
                                              3898.8
                                                       8602.6
                                                                                02 1 1 4
   0.0
            112.90
                        67.718
                                   8.9849
                                              3898.8
                                                       8602.6
   0.0
            112.90
                        67.365
                                   4.4159
                                              3898.8
                                                       86C2.6
                                                                                02 1 1 6
                                   1.5860
   0.0
            112.90
                        68.817
                                              3898.8
                                                       8602.6
                                                                                02 1 1 7
  27.774
            172.50
                       131.005
                                   4.7276
                                                 0.0
                                                       8602.6
                                                                                02 1 2 1
  21.833
            179.58
                       129.401
                                   8.4489
                                                       8602.6
                                                                                02 1 2 2
                                                 0.0
  20.767
            180.14
                       124.853
                                  12.7863
                                                 0.0
                                                       8602.6
                                                                                02 1 2 3
  25.536
            18€.54
                       124.481
                                  10.8856
                                                 0.0
                                                       8602.6
                                                                                02 1 2 4
  30.250
            194.41
                       124.167
                                   8.5849
                                                                                02 1 2 5
                                                 0.0
                                                       8602.6
  38.533
            205.39
                       115.840
                                   4.4159
                                                 0.0
                                                       8602.6
                                                                                02 1 2 6
                       115.269
                                   1.5860
  41.842
            203.80
                                                 0.0
                                                       8602.6
                                                                                02 1 2 7
              C.325
                                   1.330
                        62.15
8313.7
                                            9.28E-6
                                                                                02 2
   0.0
            113.17
                        81.181
                                   4.7276
                                              3909.1
                                                       8313.7
                                                                                02 2 1 1
   0.0
            113.17
                        76.630
                                   8.4489
                                              3909.1
                                                       8313.7
                                                                                02 2 1 2
   0.0
            113.17
                        73.223
                                  12.7863
                                              3909.1
                                                       8313.7
                                                                                02 2 1 3
   0.0
            113.17
                        71.503
                                  10.8856
                                             3909.1
                                                                                02 2 1 4
                                                       8313.7
   0.0
            113.17
                        71.197
                                   8.9849
                                              3909.1
                                                       8313.7
                                                                                02 2 1 5
                        70.695
   C.0
            112.17
                                   4.4159
                                              3909.1
                                                       8313.7
                                                                                02 2 1 6
                                   1.5860
   C.0
            113.17
                        72.384
                                              3909.1
                                                       8313.7
                                                                                02 2 1 7
  30.378
            191.00
                       147.449
                                                 0.0
                                   4.7276
                                                       8313.7
                                                                                02 2 2 1
  26.444
            193.37
                       143.738
                                   8.4489
                                                 0.0
                                                       8313.7
                                                                                02 2 2 2
  24.007
                                  12.7863
            189.58
                       136.278
                                                 0.0
                                                       8313.7
                                                                                02 2 2 3
  28.307
            193.89
                       134.104
                                  10.8856
                                                       8313.7
                                                 0.0
                                                                                0.2 2 .. 2 .. 4
  32.00C
            195.66
                       133.150
                                   8.9849
                                                 0.0
                                                       8313.7
                                                                                02 2 2 5
  40.567
            210.01
                       125.683
                                   4.4159
                                                 0.0
                                                       8313.7
                                                                                02 2 2 6
  43.658
            209.39
                       125.769
                                   1.5860
                                                       8313.7
                                                 0.0
                                                                                02 2 2 7
8065.8
              C.315
                        €2.15
                                   1.330
                                            9.28E-6
                                                                                02 3
   0.0
            113.51
                        82.943
                                    4.7276
                                              3912.1
                                                       8065.8
                                                                                02 3 1 1
                        79.239
            113.51
                                   8.4489
                                             3912.1 ___8065.8
```

```
0.0
          113.51
                     75.708
                              12.7863
                                        3912.1
                                                 8065.8
                                                                      02 3 1 3
                              10.8856
                                        3912.1
  C.0
          113.51
                     74.050
                                                 8065.8
                                                                      02 3 1 4
                                                                      02 3 1 5
  C.0
          113.51
                     73.736
                              8.5849
                                        3912.1
                                                 8065.8
                               4.4159
  0.0
          113.51
                     73.752
                                        3912.1
                                                 8065.8
                                                                      02 3 1 6
                     75.785
                                                                      02 3 1 7
                              1.5860
  C.0
          113.51
                                        3912.1
                                                8065.8
                              4.7276
          197.45
                    155.308
                                           0.0
                                                 8065.8
                                                                      02 3 2 1
 33.345
 28.650
          201.47
                   152.563
                              8.4489
                                           0.0
                                                 8065.8
                                                                      02 3 2 2
                              12.7863
                                                                      02 3 2 3
 25.519
          199.71
                   147.624
                                           0.0
                                                 8065.8
                                                                      02 3 2 4
 32.700
          202.37
                    145.246
                              10.8856
                                           0.0
                                                 8065.8
                              8.5849
 35.315
          206.06
                    141.680
                                           0.0
                                                 8065.8
                                                                      02 3 2 5
                                                                      02 3 2 6
 42.167
          212.00
                    131.093
                              4.4159
                                           0.0
                                                 8065.8
                                                                      02 3 2 7
                              1.5860
          212.28
                    132.009
                                                 8065.8
 45.183
                                           0.0
                              1.330 9.28E-6
            C.302
7734.3
                    €2.15
                                                                      02 4
          113.74
                     85.219
                              4.7276 3910.0
                                                 7734.3
                                                                      02 4 1 1
  0.0
                              8.4489 3910.0 7734.3
                                                                      02 4 1 2
  0.0
          113.74
                     82.201
          113.74
                              12.7863 3910.0
  0.0
                     78.957
                                                 7734.3
                                                                      02 4 1 3
                             10.8856
  C.0
          113.74
                     77.606
                                        3910.0
                                                 7734.3
                                                                      02 4 1 4
  0.0
          113.74
                     77.230
                              8.9849
                                        3910.0
                                                 7734.3
                                                                      02 4 1 5
                              4.4159
  C.0
          113.74
                     77.800
                                        3910.0
                                                 7734.3
                                                                      02 4 1 6
          113.74
                    79.615
                              1.5860
                                        3910.0
                                                 7734.3
                                                                      02 4 1 7
  0.0
 34.408
          211.72
                   168.436
                              4.7276
                                           0.0
                                                 7734.3
                                                                      02 4 2 1
 30.620
         215.62
                   166.970
                              8.4489
                                           0.0
                                                 7734.3
                                                                      02 4 2 2
 28.444
          210.47
                   160.599
                              12.7863
                                           0.0
                                                 7734.3
                                                                      02 4 2 3
                                           0.0
 32.744
          210.30
                    156.930
                              10.8856
                                                 7734.3
                                                                      02 4 2 4
                             8.9849
 36.923
          213.82
                    153.322
                                           0.0
                                                 7734.3
                                                                      02 4 2 5
                              4.4159
                                                                      02 4 2 6
                                                 7734.3
 45.000
          213.81
                    139.431
                                           0.0
                                                                      02 4 2 7
 48.617
          215.56
                    140.493
                              1.5860
                                           0.0
                                                 7734.3
                              1.330 9.28E-6
                                                                      02 5
7481.C
           C.292
                    62.15
   C.O
          113.82
                    86.459
                              4.7276 3918.6
                                                 7481.0
                                                                      02 5 1 1
                     83.952
                                                                      02 5 1 2
  0.0
          113.82
                              8.4489 3918.6
                                                 7481.0
                     £1.093
                                                                      02 5 1 3
  0.0
          113.82
                              12.7863 3918.6
                                                 7481.0
                             10.8856
          113.82
                     79.812
                                        3918.6
                                                                      02 5 1 4
  0.0
                                                 7481.0
                              8.9849
  0.0
          113.82
                     80.015
                                        3918.6
                                                 7481.0
                                                                      02 5 1 5
                              4.4159
          113.82
                                        3918.6
                                                 7481.0
                                                                      02 5 1 6
  0.0
                     8C.721
                                                                      02 5 1 7
  0.0
          113.82
                     82.070
                              1.5860 3918.6
                                                 7481.0
                                                                      02 5 2 1
 35.848
          223.46
                    178.860
                              4.7276
                                           0.0
                                                 7481.0
                   176.894
                                                                      02 5 2 2
 32.503
          225.55
                              8.4489
                                           0.0
                                                 7481.0
                              12.7863
                                           0.0
          219.55
                    171.789
                                                 7481.0
                                                                      02 5 2 3
 30.362
                                                                      02 5 2 4
02 5 2 5
 33.900
          218.87
                    165.568
                              10.8856
                                           0.0
                                                 7481.0
 40.217
          217.57
                    158.973
                              8.9849
                                           0.0
                                                 7481.0
 49.075
          215.31
                    145.604
                              4.4159
                                           0.0
                                                 7481.0
                                                                      02 5 2 6
                                                                      02 5 2 7
 52.542
          218.59
                   145.068
                              1.5860
                                           0.0
                                                 7481.0
7216.0
           C.282
                    62.15
                              1.330
                                      9.28E-6
                                                                      02 6
                              4.7276 3917.7
          114.10
                    88.635
                                                7216.0
                                                                      02 6 1 1
  0.0
                                      3917.7
                                                 7216.0
  0.0
          114.10
                     £5.792
                              8.4489
                                                                      02 6 1 2
                                        3917.7
          114.10
                     83.478
                              12.7863
  0.0
                                                 7216.0
                                                                      02 6 1 3
                              10.8856
  C. 0
          114.10
                     82.406
                                        3917.7
                                                 7216.0
                                                                      02 6 1 4
                              8.9849 3917.7
  0.0
          114.10
                                                                      02 6 1 5
                     £2.672
                                                 7216.0
  0.0
          114.10
                    83.326
                              4.4159
                                        3917.7
                                                 7216.0
                                                                      02 6 1 6
  C.0
          114.10
                    85.712
                              1.5860 3917.7
                                                 7216.0
                                                                      02 6 1 7
 38.175
          235.34
                  189.469
                              4.7276
                                           0.0
                                                 7216.0
                                                                      02 6 2 1
                              8.4489
          236.53
                   187.591
                                                                      02 6 2 2
 34.653
                                           0.0
                                                 7216.0
 34.894
          227.08
                    179.843
                              12.7863
                                          0.0
                                                 7216.0
                                                                      02 6 2 3
 37.176
          227.42
                    173.668
                              10.8856
                                           0.0
                                                 7216.0
                                                                      02 6 2 4
          222.95
                                                 7216.0
                                                                      02 6 2 5
 43.267
                    166.702
                              8.9849
                                           0.0
 51.958
                   151.337
                                                                      02 6 2 6
          217.63
                              4.4159
                                           0.0
                                                 7216.0
                              1.5860
                                                                      02 6 2 7
 55.800
          223.46
                   154.410
                                           0.0
                                                 7216.G
6983.6
           0.273
                    62.15
                              1.330
                                       9.28E-6
                                                                      02 7
                                      3915.9
                                                                      02 7 1 1
  0.0
                     E9.3C7
                              4.7276
                                                6983.6
          113.09
  0.0
          113.09
                     86.531
                              8.4489
                                       3915.9
                                                6983.6
                                                                      02 7 1 . 2
          113.09
                     84.275
                              12.7863
                                        3915.9
                                                 6983.6
                                                                      02 7 1 3
  0.0
                                                                      02 7 1 4
          113.09
                     83.535
                              10.8856
                                        3915.9
                                                 6983.6
  0.0
          113.09
                              8.9849
                                        3915.9
                                                                      02 7 1 5
  0.0
                    83.521
                                                6983.6
                              4.4159
                                        3915.9
                                                6983.6
                                                                      02 7 1 6
  0.0
          113.09
                    85.126
          113.09
                              1.5860
                                                                      02 7 1 7
  C.0
                    86.979
                                        3915.9
                                                 6983.6
```

```
39.528
            244.58
                       158.352
                                   4.7276
                                                0.0
                                                       6983.6
                                                                                02 7 2 1
  37.179
            244.41
                                   8.4489
                       194.992
                                                0.0
                                                       6983.6
                                                                               02 7 2 2
  36.485
            234.16
                       187.258
                                  12.7863
                                                 0.0
                                                       6983.6
                                                                                02 7 2 3
  40.263
            233.09
                       180.644
                                  10.8856
                                                0.0
                                                       6983.6
                                                                                   7 2 4
                                                                                02
  44.854
            225.70
                       170.839
                                   8.9849
                                                 0.0
                                                       6983.6
                                                                                02 7 2 5
  54.269
            218.48
                       157.305
                                   4.4159
                                                0.0
                                                       6983.6
                                                                               02 7 2 6
  57.688
            225.10
                       157.057
                                   1.5860
                                                0.0
                                                       6983.6
                                                                               02 7 2 7
6712.7
                                            9.28E-6
              C.262
                        62.15
                                   1.330
                                                                               02 8
   0.0
            113.36
                        90.967
                                   4.7276
                                             3913.6
                                                       6712.7
                                                                               0.2 8 1 1
   0.0
                                                                               02 8 1 2
02 8 1 3
            113.36
                        88.545
                                   8.4489
                                             3913.6
                                                       6712.7
   C.0
            113.36
                        86.479
                                  12.7863
                                             3913.6
                                                       6712.7
   0.0
                        86.051
            113.36
                                  10.8856
                                             3913.6
                                                       6712.7
                                                                                02
                                                                                  8
   0.0
            113.36
                        86.698
                                   8.9849
                                                       6712.7
                                             3913.6
                                                                                02 8 1 5
   0.0
                        88.520
                                   4.4159
            113.36
                                             3913.6
                                                       6712.7
                                                                               02 8 1 6
   0.0
            113.36
                        90.564
                                   1.5860
                                             3913.6
                                                       6712.7
                                                                                02 8 1 7
  37.750
                       202.271
            248.98
                                   4.7276
                                                0.0
                                                       6712.7
                                                                               02 8 2 1
  36.042
            246.88
                       196.716
                                   8.4489
                                                       6712.7
                                                0.0
                                                                               02 8 2 2
  34.846
                       185.358
                                  12.7863
            233.64
                                                0.0
                                                       6712.7
                                                                               02 8 2 3
  38.C7C
            235.62
                       181.360
                                  10.8856
                                                0.0
                                                       6712.7
                                                                               02 8 2
                                   8.9849
  43.661
                       170.774
            226.73
                                                0.0
                                                       6712.7
                                                                                02 8 2 5
  63.333
            173.58
                       151.619
                                   4.4159
                                                0.0
                                                       6712.7
                                                                               02 8 2 6
-65.283
            162.72
                       160.897
                                   1.5860
                                                 0.0
                                                       6712.7
                                                                                02 8 2 7
```

- 0.7 HUB-TIP RATIO, 19 ELADES, 9-INCH TIP DIAMETER, 1.5-INCH CHCRD, 0.005-0.012-INCH RACIAL TIP CLEARANCE, G.43 CESIGN TIP D-FACTOR, CCUBLE CIRCULAR ARC BLADE PROFILE, C.294 CESIGN FLOW COEFFICIENT. REPORTED IN NASA TH E-2295 AND TH D-2481. 07 6 2 5 07 3.15 4.5 0.0 07 70.0 0.07138 4.375 61.70 1.52 65.85 07 1A1 0.010 1.0506 8.30 50.0 0.010 07 181 4.075 71.03 55.00 0.C7472 1.52 63.015 07 1 4 2 16.03 5C.0 0.010 0.010 1.1279 07 182 50.64 3.825 76.42 0.0775 1.52 60.53 0.7 1 A 3 19.78 1.2017 50.0 0.010 0.010 07 1B3 3.575 57.905 69.08 46.73 0.08027 1.52 07 144 22.35 50.0 0.010 0.C10 1.2857 07 184 3.275 66.92 41.00 0.08361 1.52 53.96 07 1A5 25.52 50.0 0.010 0.010 1.4035 07 · 185 07 3.15 4.5 2 3.825 3.575 4.375 4.075 3.275 07 2 1.3354 9.28E-6 5784.4 07 1 C.40511 62.15 0.0 185.66 137.05 6.7004 3596.3 5784.5 07 1 1 1 188.52 134.54 7.0411 3592.5 5781.6 0.0 07 1 1 2 C.C 188.46 133.65 6.CC83 3600.0 5788.2 07 1 1 3 $C \cdot O$ 188.36 6.1772 3587.5 134.34 5777.9 07 1 1 4 0.0 188.36 132.76 5.C158 3602.5 5789.6 07 1 1 5 23.040 241.74 197.61 6.7004 0.0 5784.5 07 1 2 1 19.485 194.36 7.0411 5781.6 26C.40 0.0 07 1 2 6.0083 22.050 193.56 5788.2 267.26 0.0 07 1 2 3 21.735 271.48 193.49 6.1772 0.0 5777.9 07 1 2 5-0158-----0.0-5789.6 24.525 271.72 -- 191.94 ---07 1 2 5438.7 C.38C79 62.15 1.3318 9.28E-6 07 2 0.0 184.69 142.48 6.7004 3588.8 5419.2 07 2:1 1 C.0 188.52 141.11 7.0411 3597.5 5434.8 07 2 1 2 5425.5 0.0 188.47 140.55 6.CC83 3591.3 07 2 1 3 140.23 6.1772 3603.8 5455.1 0.0 188.36 07 2 1

1

NASA CONFIGURATION 07

```
0.0
             188.57
                        139.84
                                      5.0158 3602.8
                                                          5459.0
                                                                                   07
                                                                                      2
                                                                                        1
  30.825
             272.26
                                                         5419.2
                        227.21
                                      6.7004
                                                 0.0
                                                                                   07
                                                                                      2
  25.875
             286.40
                        224.17
                                      7.0411
                                                .0.0
                                                          5434.8
                                                                                   07
                                                                                      2
  24.775
             290.21
                        221.69
                                      6.0083
                                                 0.0
                                                         5425.5
                                                                                        2
                                                                                   07
                                                                                      2
  27.990
             293.49
                        220.17
                                      6.1772
                                                 0.0
                                                         5455.1
                                                                                      2
                                                                                        2
                                                                                   07
  31.815
             291.72
                        216.50
                                      5.0158
                                                 0.0
                                                         5459.0
                                                                                      2
                                                                                   07
5C47.8
                                      1.3350 9.28E-6
               C.35179
                         62.15
                                                                                   07
                                                                                      3
   0.0
             186.90
                        149.86
                                      6.7004 3610.5
                                                         5041.8
                                                                                   07
                                                                                      3 1
   C.C
             188.89
                        148.21
                                      7.0411 3615.8
                                                         5061.1
                                                                                      3 1
                                                                                   07
                                                                                           2
   0.0
             188.84
                        147.87
                                      6.0083 3615.8
                                                         5047.7
                                                                                      3 1
                                                                                  07
                                                                                           3
   C.C
            188.41
                        147.74
                                      6.1772 3606.5
                                                         5023.2
                                                                                  07
                                                                                      3 1
   C. 0
            188.57
                        146.86
                                      5.0158 3618.5
                                                         5065.3
                                                                                  07
                                                                                      3 1
  38.880
            303.04
                        254.49
                                      6.7004
                                                 0.0
                                                         5048.8
                                                                                  07
                                                                                      3 2
  30.465
            310.07
                        249.17
                                                 0.0
                                      7.0411
                                                         5061.1
                                                                                  07.3 2
  31.590
            314.12
                        247.52
                                      6.0083
                                                 0.0
                                                         5047.7
                                                                                  07
                                                                                      3 2
                                                                                          3
  34.920
            316.26
                        245.52
                                                 0.0
                                      6.1772
                                                         5023.2
                                                                                  07
                                                                                      3 2
  37.485
            311.74
                        239.99
                                      5.0158
                                                 0.0
                                                         5065.3
                                                                                  07 3 2
4651.0
               C.32425
                        62.15
                                      1.3515 9.28E-6
                                                                                  07
                                                                                     4
   0.0
            187.12
                        155.79
                                      6.7004 3606.5
                                                         4641.9
                                                                                  07
                                                                                     4 1 1
                                                         4653.7
   0.0
            188.62
                        154.17
                                      7.0411 3619.8
                                                                                  07 4 1 2
   0.0
            188.95
                        154.02
                                     6.0083 3613.3
                                                         4649.2
                                                                                  07 4 1
                                                                                          3
   0.0
            185.06
                        153.75
                                     6.1772 3616.0
                                                         4667.4
                                                                                      4
                                                                                  07
                                                                                        1
   0.0
            188.52
                        152.94
                                      5.C158 3605.3
                                                         4642.8
                                                                                  07
                                                                                      4
                                                                                        1
                                                                                          5
  43.875
            325.50
                        275.81
                                     6.7004
                                                 0.0
                                                         4641.9
                                                                                  07
                                                                                      4
                                                                                        2
                                                                                          1
  35.870
            331.93
                        270.76
                                      7.0411
                                                 0.0
                                                         4653.7
                                                                                  07
                                                                                      4
                                                                                        2
                                                                                          2
  40.140
            332.72
                        268.55
                                      6.0083
                                                 0.0
                                                         4649.2
                                                                                  07
                                                                                      4
                                                                                        2
                                                                                          3
  40.095
            331.78
                        264.26
                                     6.1772
                                                 0.0
                                                         4667.4
                                                                                  07
                                                                                      4
                                                                                       2
                                                                                          4
  43.155
            332.06
                        259.01
                                      5.0158
                                                 0.0
                                                         4642.8
                                                                                      4
                                                                                  07
                                                                                        2
                                                                                          5
4323.1
              C.30222
                                     1.4487 9.28E-6
                        62.15
                                                                                  07
                                                                                      5
   0.0
            161.24
                        132.64
                                     6.7004 3596.3
                                                         4314.4
                                                                                  07
                                                                                      5
                                                                                        1
                                                                                          1
   0.0
            163.02
                        131.30
                                     7.0411 3604.3
                                                         4332.2
                                                                                  07
                                                                                      5
                                                                                        1
                                                                                          2
   0.0
            163.02
                        130.44
                                     6.0083 3612.0
                                                         4324.4
                                                                                      5
                                                                                  07
            162.80
   0.0
                        130.25
                                     6.1772 3597.5
                                                         4306.7
                                                                                  07
                                                                                      5
   0.0
            162.86
                        128.98
                                     5.0158 3601.3
                                                         4338.1
                                                                                      5
                                                                                  07
                                                                                          5
                        266.33
  48.780
            318.36
                                     6.7004
                                                 0.0
                                                         4314.4
                                                                                      5
                                                                                  07
                                                                                        2
 42.750
            315.20
                        259.71
                                                         4332.2
                                      7.0411
                                                 0.0
                                                                                  07
                                                                                      5
                                                                                        2
                                                                                          2
  42.840
            318.15
                        254.78
                                     6.0083
                                                 0.0
                                                         4324.4
                                                                                      5
                                                                                  07
                                                                                        2
                                                                                          3
  45.495
            317.58
                        250.82
                                     6.1772
                                                 0.0
                                                         4306.7
                                                                                  07
                                                                                      5
                                                                                        2
                                                                                          4
  48.375
            319.15
                        244.80
                                     5.0158
                                                 0.0
                                                         4338.1
                                                                                  07
                                                                                      5
                                                                                          5
4065.1
               C.28413
                         62.15
                                     1.5313 9.28E-6
                                                                                  07
                                                                                      Ó
   0.0
            161.72
                        137.24
                                     6.7004 3604.0
                                                         4040.6
                                                                                  07
                                                                                      6
                                                                                        1
   C.0
            163.02
                        134.95
                                     7.0411 3605.0
                                                         4080.4
                                                                                  07
                                                                                      6
                                                                                       1
                                                                                          2
   0.0
            163.02
                        134:33
                                     6.CC83 3595.0
                                                         4091.8
                                                                                  07 6
                                                                                        1
                                                                                          3
   C.0
            163.02
                        133.91
                                     6.1772 3605.5
                                                         4072.1
                                                                                  07
                                                                                      6
                                                                                       1
   C.O
            162.86
                        133.19
                                     5.0158 3605.3
                                                         4040.6
                                                                                  07
                                                                                     ·6 · 1
  58.590
            362.74
                       280.85
                                     6.7004
                                                 0.0
                                                         4040.6.
                                                                                  07
                                                                                      6
                                                                                          1
  45.945
            334.C7
                       270.27
                                     7.0411
                                                 0.0
                                                         4080.4
                                                                                  07
                                                                                      6
                                                                                          2
  46.980
            332.08
                       265.73
                                     6.0083
                                                 0.0
                                                         4051.8
                                                                                  07
                                                                                     6 2
                                                                                          3
  48.285
            329.97
                       261.29
                                                 0.0
                                     6.1772
                                                         4072.1
                                                                                  07 6 2 4
  51.615
            331.80
                       253.95
                                     5.0158
                                                 0.0
                                                         4040.6
```

NASA CONFIGURATION 09
0.7 HUE-TIP RATIO, 8 ELADES, 9-INCH TIP DIAMETER,
3.04-INCH CHORD, 0.013-0.020-INCH RADIAL TIP CLEARANCE,
0.46 DESIGN TIP D-FACTOR,
DCUBLE CIRCULAR ARC ELADE PROFILE,
0.294 CESIGN FLOW COEFFICIENT.
NCT REPORTEC.
09 9 2 5
3.150 4.50 0.0 8
4.375 70.00 61.70 0.0714 3.04 65.85
8.300 C.5 0.020 0.020 0.88472

09 9 2 5							09
3.150	4.50	0.0	8	3			C9 1
4.375	70.00	61.70	0.0714	3.04	65.850		09 141
8.300	′ (•5	0.020	0.020	0.88472			09 181
4.075	71.03	55.00	0.0747	3.04	63.015		09 1A2
16.030	C•5	0.020	0.020	0.94985		·	09 182
3.825	70.42	50.64	0.0775	3.04	60.530		09 1A3
19.780	C.5	0.020	0.020	1.0119			09 183
3.575	65.08	46.73	0.0803	3.04	57.905		09 1A4
22.350	C.5	0.020	0.020	1.0827			09 184
3.275	66.92	41.00	0.0836	3.04	53.960		09 1A5
25.920	C.5	0.020	0.020	1.1819			09 185
3.150	4.50						09 2
4.375	4.C75	3.825	3.575	3.275			09 2
5782.3	C.4045	62.15	1.3059				09 1
0.0	168.50	124.80	6.7004	3600.0	5768.8		09 1 1 1
0.0	171.15	121.84	7.0411	3600.0	5768.8		09 1 1 2
0.0	176.74	120.48	6.0083	3600.0	5786.4		09 1 1 3
0.0	17C.86	119.77	6.1772	3600.0	5794.5		09 1 1 4
0.0	170.86	118.71	5.0158		5793.1		09 1 1 5
21.060	217.74	181.29	6.7004	0.0	5768.8		09 1 2 1
21.105	239.46	180.05	7.0411	0.0	5768.8		09 1 2 2
18.180	244.38	178.81	6.0083	0.0	5786.4		09 1 2 3
15.890	247.02	177.48	6.1772	0.0	5794.5		09 1 2 4
21.420	246.08	174.84	5.0158	0.0	5793.1		09 1 2 5
5453.5	C.38149		1.2978	9.28E-6	3,7341		09 2
0.0	167.86	129.70	6.7004	3600.0	5460.7		09 2 1 1
0.0	170.86	127.23	7.0411		5473.5		09 2 1 2
0.0	170.86	126.76	6.0083		5459.2		09 2 1 3
0.0	170.86	126.34	6.1772	3600.0	5436.4	•	09 2 1 4
0.0	176.80	124.01	5.0158	3600.0	5437.8		09 2 1 5
27.585	239.73	204.61	6.7004	0.0	5460.7		09 2 2 1
21.960	255.49	202.26	7.0411	0.0	5473.5	*,	09 2 2 2
23.220	262.42	200.31	6.0083		5459.2		09 2 2 3
24.840	263.99	198.02	6.1772	0.0	5436.4		09 2 2 4
27.225	263.73	195.24	5.0158	0.0	5437.8		09 2 2 5
5138.5	C.35948			9.28E-6			09 2 2 3
0.0	168.80	135.01	6.7004	3600.0	5152.2		09 3 1 1
0.0	171.27	132.69	7.0411	3600.0	5147.8		09 3 1 2
C.O	171.21	132.06	6.0083	3600.0	5152.3		09 3 1 3
0.0	170.56	130.97	6.1772	3600.0	5123.5		09 3 1 4
0.0	170.68	129.20	5.0158	3600.0	5118.9		09 3 1 5
34.965	258.69	223.37	6.7004	0.0	5152.2	•	09 3 2 1
27.270	275.40	220.72	7.0411	0.0	5147.8		09 3 2 2
27.900	275.02	218.72	6.0083	0.0			09 3 2 3
29.475	275.83	215.44	6.1772		5152.3		
32.310	279.63	212.08		0.0	5123.5		09 3 2 4 C9 3 2 5
	C.32540		5.0158	0.0	5118.9		
				9.28E-6	1171 6		09 4
0.0	168.15	141.52	6.7004	3600.0	4676.5		09 4 1 1
0.0	171.04	139.68	7.0411	3600.0	4671.5		09 4 1 2
0.0	171.04	139.14	6.0083	3600.0	4646.4		09 4 1 3
0.0	171.45	138.72	6.1772	3600.0	4644.7		09.4.1 4
0.0	-1-7133	137-39	5.0158	3600.0	4619.5		09 4 1 5
44.055	291.14 302.09	252.64	6.7004	0.0	4676.5		09 4 2 1
35.370		248.78	7.0411	0.0	4671.5		09 4 2 2
35.730 37.260	305.66	246.68	6.CC83	0.0	4646.4		09 4 2 3
37.260 41.130	309.32	244.55	6.1772	0.0	4644.7		09 4 2 4
41.130	305.75	237.82	5.0158	0.0	4619.5		09 4 2 5

```
09 5
4309.E
            C.30148
                                 1.2948
                                           9.28E-6
                     62.15
 0.0
          168.45
                     145.50
                                 6.7004
                                             3600.0
                                                      4328.4
                                                                              09 5 1 1
                                                                               09
 0.0
                                 7.0411
                                             3600.0
                                                      4325.0
                                                                                  5
          171.27
                     144.08
 C.C
                                                      4312.3
          171.68
                     143.99
                                 6.0083
                                             3600.0
                                                                              09
                                                                                      3
                                                                               09
 0.0
          171.80
                     143.47
                                 6.1772
                                             3600.0
                                                      4255.7
                                                                              09 5
 0.0
          171.68
                     142.25
                                 5.0158
                                             3600.0
                                                      4283.3
                                                                                       5
53.730
          314.17
                     270.56
                                 6.7004
                                                0.0
                                                      4328.4
                                                                               09 5
                                                                                      1
40.680
                                                                               09 5
          319.62
                     265.74
                                 7.0411
                                                0.0
                                                      4325.0
39.915
          322.44
                     262.44
                                 6.0083
                                                0.0
                                                      4312.3
                                                                               09
                                                                                  5 2
                                                                                       3
41.40C
                     259.02
                                                      4299.7
                                                                               09
                                                                                  5
                                                                                       4
          324.55
                                  6.1772
                                                0.0
                                  5.0158
                                                      4283.3
                                                                               09 5 2
                                                                                      5
46.125
          321.39
                     251.41
                                                0.0
                                                                               09 6
4080.5
                                  1.3011
                                           9.28E-6
            C.28547
                      62.15
 0.0
          169.80
                     148.89
                                  6.7004
                                             3600.0
                                                      4091.6
                                                                               09 6 1
                                                      4093.5
                                                                               09 6 1 2
 C.C
          171.80
                     147.46
                                  7.0411
                                             3600.0
                                                                               09 6 1 3
                                  6.0083
                                             3600.0
                                                      408C.1
 0.0
          171.80
                     147.04
 C.0
          171.86
                     146.42
                                  6.1772
                                             3600.0
                                                      4078.3
                                                                               09 6 1 4
                                                                               09 6 1
                                  5.0158
          170.92
                     144.38
                                             3600.0
                                                      4061.0
 C.0
                                  6.7.CO4
                                                      4051.6
                                                                               09 6 2 1
58.68C
          335.95
                     281.80
                                                0.0
                                                      4093.5
                                                                               09 6 2.2
45.72C
          330.41
                     276.31
                                  7.0411
                                                0.0
          334.71
                                  6.CC83
                                                      4080.1
                                                                               09 6 2 3
                     272.95
                                                0.0
42.660
          335.81
                     268.77
                                  6.1772
                                                      4078.3
                                                                               09 6 2 4
44.190
                                                0.0
                                                                               09 6 2 5
49.635
          332.99
                     259.83
                                  5.C158
                                                0.0
                                                      4061.0
                                           9.28E-6
                                                                               09 7
3829.5
            C.26788
                     £2.15
                                  1.2994
 C.C
          17(.38
                     151.98
                                  6.7004
                                             3600.0
                                                      3836.0
                                                                               09 7 1 1
                                  7.0411
                                             3600.0
                                                      3844.1
                                                                               09 7 1 2
 C. 0
          172.15
                     150.76
                     149.96
                                  6.CO83
                                             3600.0
                                                      3827.8
                                                                               09 7 1 3
 0.0
          171.74
 0.0
          171.39
                     148.75
                                  6.1772
                                             3600.0
                                                      3817.7
                                                                               09 7 1 4
                                                                               09 7 1 5
 0.0
          171.80
                     148.16
                                  5.0158
                                             3600.0
                                                      3821.8
                                                                               09 7 2 1
63.720
          367.24
                     295.19
                                  6.7004
                                                0.0
                                                      3836.0
52.920
          346.69
                     288.11
                                  7.0411
                                                0.0
                                                      3844.1
                                                                               09 7 2 2
                                                                               09 7 2 3
46.530
          344.81
                     282.62
                                  6.0083
                                                0.0
                                                      3827.8
                                                                               09 7 2 4
47.115
          344.04
                     275.50
                                  6.1772
                                                0.0
                                                      3817.7
                                                                               09 7 2 5
52.920
          343.61
                     268.38
                                  5.0158
                                                0.0
                                                      3821.8
                                                                               C9 8
            C.25303
                                  1.2946
                                           9.28E-6
3617.2
                      62.15
 0.0
                     154.01
                                  6.7004
                                             3600.0
                                                      3627.1
                                                                               09 8 1.1
          176.91
                                  7.0411
                                                                               09 8 1 2
          171.97
                                             3600.0
                                                      3622.8
 0.0
                     153.16
 C.C
          172.21
                                  6.0083
                                             3600.0
                                                      3633.6
                                                                               09 8 1 3
                     152.68
 0.0
          172.27
                                  6.1772
                                             3600.0
                                                      36C5.6
                                                                               09 8 1 4
                     152.11
          171.92
                                  5.0158
                                             3600.0
                                                      3556.8
                                                                               09 8 1
                                                                                       5
 C.0
                     150.83
                     303.41
                                                                               09
65.655
          389.03
                                  6.7004
                                                0.0
                                                      3627.1
                                                                                  8
                                                                                    2 1
          356.36
                                                                               09
59.400
                     293.56
                                  7.0411
                                                0.0
                                                      3622.8
                                                                                  8 2
                                                                                       2
                     289.36
                                                                               60
                                                                                  8
51.165
          352.72
                                 6.0083
                                                0.0
                                                      3633.6
                                                                               09
                                                                                  8
49.C50
          352.51
                     283.46
                                  6.1772
                                                0.0
                                                      3605.6
                                              ′ 0.0
                                                      3596.8
                                                                               09
                                                                                  8
53.865
          348.13
                     272.29
                                  5.0158
                                                                               09
3574.2
                                           9.28E-6
                                                                                  9
            C.25002
                     62.15
                                  1.2945
 C.0
          171.68
                                  6.7004
                                             3600.0
                                                      3518.0
                                                                             . 09
                                                                                  9 1 1
                     154.99
                                                                                  9
 0.0
          172.39
                     153.15
                                  7.0411
                                             3600.0
                                                      3575.6
                                                                               09
                                                                               09 9
 C.0
          171.86
                     151.80
                                  6.0083
                                             3600.0
                                                      3611.9
 C. 0
          172.03
                     151.11
                                  6.1772
                                             3600.0
                                                      3573.1
                                                                               09 9
                                                                                  9
                                                                               09
 C.0
          172.27
                     150.35
                                  5.0158
                                             3600.0
                                                      3588.2
                                                                                  9
66.690
          390.32
                                                                               09
                     303.13
                                  6.7004
                                                0.0
                                                      3518.0
60.210
          355.72
                                                                               09
                                                                                  9
                     292.60
                                  7.C411
                                                0.0
                                                      3579.6
                                                                                  9
51.120
                                                                               09
          35C.27
                                                                                       3
                     287.63
                                  6.C083
                                                0.0
                                                      3611.9
48.960
          352.75
                                                0.0
                                                      3573.1
                                                                               09 9 2
                     282.87
                                  6.1772
53.730
          347.96
                                                                               09 9
                     272.27
                                  5.C158
                                                0.0
                                                      3588.2
```

```
NASA CONFIGURATION 5
C.8 HUB-TIP RATIO, 19 BLADES, 9-INCH TIP DIAMETER.
 1.5-INCH CHERE, 0.016-INCH RADIAL TIP CLEARANCE,
 C.66 DESIGN TIP D-FACTOR,
CCUBLE CIRCULAR ARC ELADE PROFILE,
 C.466 DESIGN FLOW COEFFICIENT.
 REPORTED IN NASA TN C-3024 AND TN D-3602.
  5 7 2 7
    3.6
            4.5
                      0.0
                                       19
                                 0.0709 1.50
0.0100 1.0090
    4.46
            68.5
                      39.9
                                                      54.200
                                                                          5 . 1A1
 28.60
                                                                            181
            50.0
                      0.010
            68.6
                                 0.0720 1.50
                                                                          5 142
   4.41
                      38.0
                                                      53.300
                                                                          5 182
                                0:0100 1:0204
   30.60
            50.0
                      0.010
                                0.0742 1.50
0.0100 1.0441
                                                                          5 143
                                                     :51.400
   4.31
            68.6
                      34.2
   34.40
            50.0
                      C.010
                                                                          5. 183
                                0.0753 1.50
0.0100 1.0563
0.0798 1.50
0.0100 1.1084
                      32.25
   4.26
                                                     . 50.475
                                                                          5: :144
            68.6
                                                                          5 184
5 1A5
   36.35
            50.0
                      0.010
                                                                          - 5
   4.06
            67.7
                      25.1
                                                      46.400
                                                                          5 185
   42.60
            50.0
                      C.010
                                 0.0831 1.50.
                                                      44.450
   3.91
            65.8
                      23.1
                                                                          5 .146
                                                                         5 186
5 1A7
   42.70
            50.0
                      0.010
                                 0.0100 1.1509
                                                     1 2 3
                      20.15
   3.71
            63.1
                                 0.0876 1.50
                                                      41.625
 42.95
                      C.010
            50.0 .
                                 0.0100 1.2129
                                                                          500 :187
  3.6
                                                                          5 :2
            4.5
                                                              3.71
    4.46
            4.41
                      4.31
                                4.26
                                         4.06
                                                    3.91
                                                                          5
                                                                              2
                                                               . .
                                1.3194
  5120.0
                                                                          5 1
                      62,16
            0.60680
                                         9.28E-6
                                                    47
  0.0
            231.97
                      160.64
                                1.5721
                                         3005.1
                                                   5112.8
                                                                          5 1 1 1
                      158.73 2.0782
                                         3002.5
                                                   5101.2
                                                                          5 1 1 2
    0.0
            233.34
                                                   5116.1
                                                                  . .
    0.0
            241.43
                      161.21
                                2.0310
                                         3004.9
                                                                          5 1 1 3
                                                                         ··5 11 1 4
            240.48
                     156.63
                                3.3458
                                                   5130.2
  - C.C
                                         3016.2
                                         3009.9,
    0.0
            239.02
                      152.60
                                4.4642
                                                   5112.6
                                                                          5 1 1 5
                                         3017.5
                                                                          5-1 1 6
   0.0
            235.60
                      151.44
                                4.2993
                                                   5129.1
 0.0
            240.58
                      150.49
                                4.4367
                                         3015.0
                                                   5137.7
                                                                          5 1 1 7
  34.425
                      249.94
                                                                          5 1 2 1
            327.87
                                1.6795
                                                   5112.8
                                            0.0
  31.860
                                           0.0
                                                   5101.2
            333.52
                     249.41
                                2.0782
                                                                          5 1 2 2
                                                   5116.1
   29.340
            344.65
                     249.05
                                2.0310
                                           0.0
                                                                          5 1 2 3
27.450
            347.72
                    245.41
                                3.3458
                                            0.0
                                                   5130.2
                                                                          5 1 2 4
                                           0.0 5112.6
            358.05
                     239.46
                                                                          5 1 2 5
  25.380
                                4.4642
                                            0.0
   25.965
            360.78
                      237.70
                                4.2993
                                                   5129.1
                                                                          5 1 2 6
   27.540
            363.44
                      233.97
                                4.6146
                                           0.0
                                                   5137.7.
                                                                          5 1 2 7
  4830.5
            0.57321
                      62.16
                                1.2965
                                         9.28E-6
                                                                          5 2 0
   0.0
                      167.48
                                                   4829.C
                                                                          5 2 1 1
            230.28
                                1.5721 3006.4
    0.0
            234.98
                      167.87
                                2.0782
                                                   4831.3
                                                                          5 2 1 2
                                         3007.4
    0.0
            241.84
                     167.68
                                2.0310
                                         3013.7
                                                   4835.6
  0.0
            241.24
                      167.44
                                       2998.8
                                                                          5 2 1 4
                               3.3458
                                                   4816.5
            240.30
                      163.55
    C.0
                                         2998.9
                                                                          5 2 1 5
                                4.4642
                                                   4823.2
  0.0
            241.25
                      162.47
                                4.2993
                                         3006.3
                                                   4843.8
                                                                          5 2 1 6
                      161.39 ¿ 4.4367
272.22 Æ 1.67.95
                      161.39
            241.20
                                         3013.8
                                                                          5
                                                                            2 1
  . 0.0
                                                   4834.1
   37.575
            340.53
                                            0.0
                                                   4829.0
                                                                          5 2 2 1
  .37.170
            352.91
                                                                          5 2 2 2
                     273.48
                                            0.0
                                2.0782
                                                   4831.3
                                           0.0
   31.365
            369.29
                     272.44
                                2.0310
                                                   4835.6
                                                                          5 2 2 3
            373.16
   28.935
                      269.38
                                3.3458
                                                                          5 2 2 4
                                          0.0
                                                   4816.5
                                                                          5 2 2 5
   28.350
            378.53
                      262.92
                                4.4642
                                           0.0
                                                   4823.2
  30.240
            377.38
                      260.97
                                4.2993
                                                                          5 2 2 6
                                            0.0
                                                   4843.8
                      256.67
   32.085
            38C.67
                                4.6146
                                            0.0
                                                   4834.1
  4427.3
            0.52415
                      62.16
                                1.3267
                                         9.28E-6.
            231.88
                      179.37.
                                1.5721
                                         3010.0 4435.0
                                                                          5 3 1 1
    0.0
                      181.74
                                                                          5-3-1-2
    0.0
            237.90
                                2.0782 3017.6 4420.1
                      180.62
    0.0
           242.56
                                                                         5 3 1 3
                               2.0310 3016.3
                                                   4414.5
                      179.11
    0.0
            241.15
                                3.3458
                                         3013.8
                                                   4429.4
            241.22
                      176.45
    0.0
                                4.4642
                                         3016.4
                                                   4426.6
    0.0
            241.99
                      176.08
                                4.2993
                                         3013.7
                                                   4442.2
                                                                          5 3 1 6
                                                4423.1
    0.0
            242.57
                      176.02
                                4.4367
                                         3006.3
                                                                          5 3 1 7
            357.99
                                                                         --5-3-2-1
   44.640
                      295.57
                                1.6755
                                         ___0.0__
                                                   _44-35.0-
   44.19C
            370.88
                      298.74
                                2.0782
                                            0.0
                                                                          5 3 2 2
                                                   4420.1
```

```
0.0 4414.5
                                                    4414.5
4429.4
   36.720
            385.51
                      296.49
                                 2.0310
                                                                            5 '3 2 3
                                                                 3 ( . A.)
   32.445
            396.48
                      292.65
                                 3.3458
                                             0.0
   33.210
            395.53
                      289.29
                                 4.4642
                                             0.0
                                                    4426.6
                                 4.2993
   34.515
            393.97
                      284.78
                                                    4442.2
                                             0.0
   37.395
            397.77
                                                    4423.1
                      279.67
                                 4.6146
                                             0.0
                                                                             5 3 2 7
  4093.0
            C.48463
                       €2.16
                                 1.3241
                                          9.28E-6
                                                                             5 4
   0.0
            233.81
                      189.01
                                1.5721
                                          3007.4
                                                    4098.2
                                                                             5 4 1 1
   0.0
            234.53
                                                    4103.7
                      186.50
                                 2.0782
                                          3017.6
                                                                             5 4 1 2
   0.0
            242.75
                      190.04
                                 2.0310
                                          3008.6
                                                    4077.7
                                                                             5 4 1 3
                                                    4077.4
   0.0
            242.89
                      190.14
                                          3003.9
                                 3.3458
                                                                             5 4 1 4
   0.0
                                                                             5 4 1 5
            242.24
                      186.63
                                 4.4642
                                          3023.7
                                                    4109.1
 . 0.0
            242.90
                                                    4094.7
                                 4.2993
                      186.16
                                          3017.5
                                                                             5 4 1
 0.0
            243.29
                      186.46
                                 4.4367
                                          3012.5
                                                    4090.5
                                                                             5 4 1 7
  53.280
            376.57
                      313.81
                                 1.6795
                                          0.0
                                                    4098.2
                                                                             5 4 2 1
  49.950
            375.42
                                                    4103.7
                      309.10
                                 2.0782
                                             0.0
                                                                             5 4 2 2
            394.68
                                                    4077.7
  42.165
                                                                             5 4 2 3
                      313.01
                                 2.0310
                                             0.0
  38.475
            4CC.31
                      311.47
                                 3.3458
                                             0.0
                                                    40.77.4
                                                                            5 4 2 4
                                                                          5 4 2 5
  37.215
            407.45
                      304.45
                                 4.4642
                                                    4109.1
                                             0.0
                                                    4094.7
  37.890
                      300.26
                                 4.2993
            407.90
                                             0.0
                                                                             5 4 2 6
                                                                         5 4 2 7
5 5
41.490 411.40
                      295.17
                                                    4090.5
                                            0.0
                                 4.6146
 3807.3
            C.45098
                                         9.28E-6
                      62.16
                                1.2468
                                                            5 5 1 2
5 5 1 3
5 5 1 4
5 5 1 5
5 5 1 6
                                                    3819.2
   0.0
            237.43
                      157.88
                                1.5721
                                          3008.7
                                                   3819.2
   0.0
            238.42
                      197.01
                                2.0782
                                          3013.7
                                 2.0310
                                                   3815.8
   0.0
            241.39
                      195.57
                                          3011.3
                                                                5 5 1 7 5 5 2 1 5 5 2 2 5 5 2 4 5 5 2 5 5 2 6 7 5 2 7
   0.0
            243.C8
                      197.24
                                 3.3458
                                          3013.8
                                                    3813.6
   0.0
                      195.60
            243.32
                                 4.4642
                                          3017.5
                                                    3803.5
                                          3008.7 3787.4
                      194.12
  0.0
            242.65
                                 4.2993
                                          3008.8 3794.0
0.0 3819.2
                              4.4367
1.6795
   0.0
            241.55
                      192.51
                                         0.0
  62.460
            392.80
                      323.40
                                                 3817.2
  57.060
            395.48
                      323.81
                                 2.0782
                                            0.0
                                                    3815.8
                                           0.0 3815.8
0.0 3813.6
0.0 3803.5
0.0 3787.4
 46.260
            398.60
                      320.07
                                 2.0310
  41.715
            404.C8
                      320.10
                                 3.3458
                                                    3813.6
  39.870
            417.56
                      316.76
                                 4.4642
                                                                 5 5 2
5 6
 40.005
            417.64
                      310.90
                                4.2993
  44.460
            421.89
                      303.91
                                            0.0
                                                    3794.0
                                 4.6146
                                         9.28E-6
                                                                  5 6 1 1
5 6 1 2
5 6 1 3
  3450.0
            0.40918
                      62.16
                                1.2593
· 0.0
            239.00
                      206.87
                                1.5721
                                         3005.1
                                                    3463.7
  0.0
            241.07
                                 2.0782
                                          3005.1
                      206.60
                                                    3441.9
                                                                 5 6 1
5 6 1
5 6 1
5 6 1
   0.0
            242.77
                      205.66
                                 2.0310
                                          3006.2
                                                    3454.8
   0.0
            242.84
                      204.91
                                 3.3458
                                          3003.9
                                                    3448.7
                                                                            5 6 1 4
  0.0
            245.29
                      206.07
                                                    3453.1
                                 4.4642
                                          3011.3
                      205.16
                                                    3448.5
   0.0
            245.15
                                 4.2993
                                          3012.5
  0.0
            244.03
                                                    3439.5
                      203.57
                                 4.4367
                                        3012.5
                                                                            5617
                                1.6795 0.0
            414.39
  69.435
                      337.80
                                                    3463.7
                                                                            5 6 2 1
            415.20
                      336.74
                                            0.0
                                                    3441.9
  64.845
                                 2.0782
                                                                            5 6 2 2
                                            0.0
                                                                 1. · · ·
  55.395
            407.12
                      331.82
                                 2.0310
                                                    3454.8
                                                                            5 6 2 3
                                             0.0
  49.455
            406.00
                      328.24
                                                    3448.7
                                                                            5 6 2 4
                                 3.3458
42.165
            426.64
                      329.02
                                 4.4642
                                             0.0
                                                    3453.I
                                                                            5 6 2 5
                                                                 5 6
5 6
5 7
5 7
42.795
                                4.2993
            430.86
                      324.53
                                                    3448.5
                                                                            5 6 2
                                             0.0
                                                                                   6
 47.565
            431.96
                     315.33
                                 4.6146
                                             0.0
                                                    3439.5
                                                                            5627
  3191.0
            0.37855
                      62.16
                                1.3218
                                         9.28E-6
            239.97
   0.0
                      213.76
                                1.5721
                                          3015.1
                                                    3201.2
                                                                            5711
                                                    3189.3
3175.0
3203.7
   0.0
            242.12
                      213.02
                                 2.0782
                                          2999.9
                                                                            5 7 1 2
                                                                        5 7 1 4
5 7 1 4
5 7 1 5
  0.0
            243.81
                      215.01
                                2.0310
                                          3004.9
  0.0
            242.98
                      210.89
                                 3.3458
                                          3004.9
   0.0
            244.62
                      211.14
                                 4.4642
                                          3008.7
                                                    3201.4
                                                    3182.3
   0.0
            244.85
                                 4.2993
                                          3011.3
                                                                            5 7 1 6
                      210.69
                                                    3184.4
  0.0
                                                                            5 7 1 7
            244.64
                      210.27
                                 4.4367
                                          3006.3
 69.615
            428.31
                      346.30
                                1.6795
                                           0.0
                                                    3201.2
 67.005
                                                                            5 7 2 2
            428.65
                      343.60
                                                    3189...
                                                    3189.3
                                 2.0782
                                             0.0
 59.670
            419.65
                      337.98
                                 2.0310
                                            0.0
                                                                            5 7 2 3
 54.990
            414.05
                      336.33
                                 3.3458
                                            0.0
 44.010
                                                    3201.4
            426.47
                      334.51
                                 4.4642
                                            0.0
 44.280
                                4.2993
            432.39
                      330.34
                                                    3182.3
                                                                            5726
                                            0.0
 49.995
            436.54
                      320.99
                                4.6146
                                            0.0
                                                    3184.4
```

0.8 HUE-TIP RATIO, 19 BLADES, S-INCH TIP DIAMETER, 1.5-INCH CHGRE, 0.026-INCH RADIAL TIP CLEARANCE, G.66 DESIGN TIP D-FACTOR, DCUBLE CIRCULAR ARC BLADE PROFILE, C.466 DESIGN FLOW COEFFICIENT. NCT REPORTED. 6727 6 3.60 4.5 0.0 19 6 1.50 4.46 39.9 68.5 C.C7089 54.2 6 141 28.6 5C-0 0.010 0.010 1.0090 6 181 4.41 1.50 53.3 66.6 38.0 0.0720 6 142 30.6 5C.0 0.010 0.010 1.0204 182 6 68.6 4.31 34.2 1.50 51.4 0.07422 6 1 4 3 34.4 50.0 0.010 0.010 1.0441 6 183 4.26 68.6 32.25 0.07533 1.50 50.425 6 1 44 36.35 50.0 0.010 0.010 1.0563 6 184 1.50 4.06 6 1A5 67.7 25.1 C. C7978 46.4 42.6 50.0 0.010 0.010 1.1084 6 185 3.91 65.8 0.08311 44.45 6 23.1 1.50 146 42.7 50.0 0.010 0.010 1.1509 6 186 63.1 3.71 0.08756 41.625 20.15 1.50 6 1 4 7 42.55 50.0 0.010 0.010 1.2129 6 187 3.60 4.5 6 2 4.46 4.41 4.31 4.26 3.91 3.71 6 2 4.06 C.60686 5058.6 62.192 1.1682 9.28E-6 6 1 0.0 264.85 193.61 1.5721 2998.7 5098.2 6 1 1 1 0.0 271.01 197.92 2.0782 3012.4 5110.0 6 1 1 2 0.0 2.0310 2991.3 5074.7 277.54 196.79 6 1 1 3 C.O 277.54 195.38 3.3458 2988.8 5089.4 1 1 4 6 0.0 276.36 191.13 4.4642 3005.1 5099.7 4.2993 2993.7 0.0 276.81 189.88 5110.0 6 1 1 6 0.0 276.81 189.39 4.4367 2991.2 51C8.5 6 1 1 7 284.69 31.365 350.82 1.6116 0.0 5098.2 1 2 1 31.905 367.76 290.04 2.0782 0.0 5110.0 6 1 2 288.60 2.0310 5074.7 29.160 1 2 3 382.15 0.0 6 27.135 387.76 285.49 3.3458 0.0 5089.4 6 1 2 4 397.13 0.0 5099.7 6 1 2 5 24.57C 279.70 4.4642 4.2993 25.560 398.82 277.36 0.0 5110.0 6126 28. 620 397.02 272.91 4.5524 0.0 5108.5 6127 4830.7 C.57435 62.192 1.1682 9.28E-6 6 2 0.0 266.93 263.92 1.5721 3001.2 4839.1 6211 207.26 2.0782 3002.5 4831.3 6 2 1 2 0.0 272.73 2.0310 3004.9 2 1 3 0.0 276.90 204.30 4839.1 6 6 2 1 4 204.11 3.3458 2996.3 4817.4 277.63 0.0 0.0 277.72 201.45 4.4642 3002.5 4840.6 6 2 1 6 277.54 199.99 4.2993 2998.7 4822.0 6 0.0 6 2 1 7 0.0 277.54 199.52 4.4367 2997.5 4825.1 1.6116 4839.1 6 2 2 1 304.29 0.0 38.025 361.21 309.20 6 2 2 39.285 375.14 2.0782 0.0 4831.3 399.13 305.64 2.0310 0.0 4839.1 6 2 2 33.705 3.3458 2 2 4 29.790 406.59 305.98 0.0 4817.4 6 4.4642 4840.6 6 2 2 5 27.810 414.54 300.47 0.0 411.55 256.99 4.2553 6226 29.160 0.0 4822.0 31.905 412.23 292.03 4.5524 0.0 4825.1 6227 62.192 4423.6 C.52734 1.1682 9.28E-6 6 3 213.11 1.5721 2987.6 4423.7 6 3 1 1 0.0 265.12 2.0782 2990.0 2.0310 3002.5 6.312 0.0 269.92 215.06 4433.8 C.C 274.73 213.58 4443.9 6 3 1 3 3.3458 2989.9 0.0 274.91 213.42 4408.4 6 3 1 4 274.18 210.57 4.4642 2987.6 4410.1 6 C . 0 0.0 274.00 208.90 4.2993 2996.4 4418.6 6 3 1 6 209.05 4.4367 2995.0 4427.0 6 3 1 7 C.0 274.73 325.50 4423.7 47.430 380.28 1.6116 0.0 6 3 47-610 385.01 321.33 2.0782 0.0 4433.8

NASA CCNFIGURATION 6

```
2.0310 0.0
3.2458 0.0
4.4642 0.0
4.2993 0.0
4.5524 0.0
                        326.70
324.75
319.42
  38.57C
             413.91
                                                                4443.9
                                                                                              6 3 2 3
  36.225
             415.32
                                                                4408.4
                                                                                             6 3 2 4
  32.220
             422.45
                                                                4410.1
                                                                                7 . .
                                                                                              6 3 2.5
                        315.60
312.12
                                                                4418.6
  33.255
              422.38
                                                                                              6 3 2.6
  36.495
              425.80
                                                                4427.0
                                                                                              6 3 2 7
4115.3
                                          1.1682 9.28E-6
              C.48825 62.192
                                                                                              6 4
   C.O.
                       221.72
              265.74
                                          1.5721 3001.2
                                                                4113.2
                                                                                              6 4 1 - 1
                         223.76
222.70
                                                                4118.7
    0.0
              270.74
                                          2.0782 3011.3
                                                                                              6 4 1 2
   0.0
              275.36
                                          2.0310 3006.2
                                                                                              6 4 1 3
                                                                4116.9
   C . C
              274.37
                          221.44
                                          3.3458 3002.5
                                                                4082.2
                                                                                            . 6 4 1 4
                         219.07
              274.64
                                          4.4642 3014.9
   0.0
                                                                4122.3
                                                                                             6415
                                         4.2993 3007.5
   0.0
             274.82
                         218.12
                                                                4127.8
                                                                                              6416
   C.0
             275.63
                         218.89
                                         4.4367 3005.0
                                                                4125.9
                                                                                             6417
  55.575
                                                                4113.2
             39€.80
                         340.48
                                          1.6116 0.0
                                                                                             6 4 2 1
                                        2.0782 0.0
2.0310 0.0
3.3458 0.0
4.4642 0.0
4.2963 0.0
4.5524 0.0
                        340.62
340.07
  53.010
             406.44
                         342.45
                                                                4118.7
                                                                                            6422
  45.405
             420.49
                                                                4116.9
                                                                                              6 4 2 3
  40.320
             426.34
                                                                4082.2
                                                                                             6 4 2 4
  35.280
             435.59
                           335.14
                                                                4122.3
                                                                                             6 4 2 5
                       329.86
326.66
             435.32
  35.865
                                                                4127.8
                                                                                              6426
  39.870
              44C.18
                                                                4125.9
                                                                                              6 4 2 7
                                          1.1682 9.28E-6
                                                                                              6 5
3756.9
              C.44666 62.192
   0.0
                       232.53
              265.29
                                          1.5721 3002.5
                                                                3783.3
                                                                                              6 5 1 1
                         233.35
   0.0
             272.46
                                         2.0782 2999.9
                                                                3765.5
                                                                                              6 5 1 2
                         231.93
230.95
230.00
              275.63
                                                                                              6 5 1 3
   0.0
                                          2.0310 2998.8
                                                                3747.5
              275.36
                                          3.3458 3006.3
   0.0
                                                                3757.5
                                                                                             6 5 1 4
   0.0
             275.63

    4.4642
    3002.5
    3751.5

    4.2993
    2994.9
    3743.5

    4.4367
    3000.0
    3749.5

    1.6116
    0.0
    3783.3

    2.0782
    0.0
    3765.5

    2.0310
    0.0
    3747.5

    3.3458
    0.0
    3757.5

    4.4642
    0.0
    3751.5

    4.2993
    0.0
    3743.5

    4.5524
    0.0
    3749.5

    1.1682
    9.285-6

                                         4.4642 3002.5
                                                                3751.5
                                                                                             6 5 1 5
                         229.71
   0.0
             276.09
                                                                                             6516
   0.0
             276.00
                        355.44
356.49
                         229.23
                                                                                             6517
  62.955
            423.73
                                                                                              6 5 2 1
            425.11
  66.390
                                                                                              6 5 2 2
                       351.89
351.13
348.58
  51.57C
             425.59
                                                                                            6523
            428.68
  46.755
                                                                                              6 5 2 4
            444.67
  38.565
                                                                                              6.5 2 5
                       342.88
337.55
  39.195
            446.24
                                                                                              6 5 2 6
  43.065
              452.66
                                                                                            6527
3447.9
              C•40895 62.192
                                         1.1682 9.28E-6
                                                                                            6 6
             27C.11 239.45 1.5721 2998.7

274.28 241.11 2.0782 3005.1

275.54 238.79 2.0310 3003.8

275.63 238.41 3.3458 3007.6

276.18 237.67 4.4642 3009.9

276.63 237.49 4.2953 3011.3
   C.O
                                         1.5721 2998.7
                                                                3463.1
                                                                                              6611
   0.0
                                                                3454.4
                                                                                           , 6 6; 1 2
 · C.O
                                                                3447.9
                                                                                              6613
                                                             3443.5
3447.9
   0.0
                                                                                              6 6 1 4
   0.0
             276.18
                                                                                              6 6 1 5
                                        4.4642 3009.9 3447.9

4.2963 3011.3 3434.8

4.4367 3018.8 3443.5

1.6116 0.0 3463.1

2.0782 0.0 3454.4

2.0310 0.0 3447.9

3.3458 0.0 3447.9

4.4642 0.0 3447.5

4.4642 0.0 3443.5

4.5524 0.0 3443.5
   0.0
             276.63
                                                                                           6616
   0.0
              276.72
                        237.24
                                                                                             6617
  67.950
             443.29
                        367.12
                                                                                              6 6 2 1
  66.330
             447.46
                           368.75
                                                                                              6 6 2 2
            435.15
  57.600
                          360.85
                                                                                              6 6 2 3
                         359.07
  52.290
            432.32
                                                                                              6 6 2 4
           451.72
  41.265
                       359.11
                                                                                              6 6 2 5
             458.01 354.70
463.15 347.10
  41.085
                                                                                             6626
  45.225
                                         4.5524 0.0
                                                                3443.5
                                                                                             6627
3253.€
              C.38747 62.192
                                         1.1682 9.28E-6
                                                                                              6 7
             272.46 244.32 1.5721 2991.2
270.38 243.29 2.0782 2990.0
275.73 243.00 2.0310 2992.4
276.63 243.10 3.3458 2998.7
   0.0
                                                                3235.1
                                                                                            £6 7:1 1
   C.C
                                                                3255.8
                                                                                             6712
   0.0
                                                                3255.8
                                                                                              6713
             276.63
   0.0
                                                                3253.5
                                                                                              6714
                                        4.4642 2998.9
   0.0
             276.63
                         241.97
                                                                                              6 7:1,5
                                                                3262.7
   0.0
              276.09
                         240.80
                                        4.2993 3002.5
                                                                3260.4
                                                                                              6 7 1 6
   0.0
             275.73
                         240.28
                                         4.4367 2997.5
                                                                                              6717
                                                                3253.5
                          371.65
  69.120
             450.59
                                                                3235.1
                                        1.6116 0.0
                                                                                              6721
                                                   0.0
0.0
0.0
  67.410
             451.76
                          370.78
                                         2.C782
                                                                3255.8
                                                                                              6 7 2 2
  61.425
             444.20
                          365.71
                                          2.0310
                                                                3255.8
                                                                                              6 7 2 3
  56.970
             435.04
                         362.21
                                          3.3458
                                                                3253.5
                                                                                              6724
                         360.60
                                         4.4642
  44.100
            448.36
                                                                3262.7
                                                                                              6725
  42.57C
             457.69
                         355.98
                                         4.2993
                                                     .0.0
                                                                3260.4
                                                                                              6726
  46.800
             462.83
                         348.04
                                         4.5524
                                                   0.0
                                                                3253.5
```

NASA CONFIGURATION 8 C.8 HUE-TIP RATIO, 19 ELADES, 5-INCH TIP DIAMETER, C.834-INCH CHCRD, O.CO8-INCH RADIAL TIP CLEARANCE, C.66 DESIGN TIP D-FACTOR, C.66 DESIGN TIP D-FACTOR, DOUBLE CIRCULAR ARC BLADE PROFILE, 0.466 CESIGN FLOW COEFFICIENT. NCT REPORTED. 810 2 7 8 2.00C 2.509 0.0 19 8 38.59 2.459 68.55 0.07164 0.8333 53.57 29.96 50.0 0.00556 0.00556 1.0203 Я 181 35.08 0.8333 2.409 68.61 0.07364 51.845 8 142 1B2 33.53 50.0 0.00556 0.00556 8 . 1.0415 0.8333 1.0636 0.0756+
0.00556 1.00_
0.07964 0.8333 -0.00556 1.1107
0.08364 0.8333 44.100
0.00556 1.1621
0.08564 0.8333 42.875
1.1897
1.8333 41.50 8 2.359 31.50 68.55 50.025 143 8 183 0.00556 37.05 50.0 8 1A4 2.259 67.10 25.25 41.85 56.0 0.00556 22.75 8 145 65.45 2.159 185 42.70 50.0 0.00556 8 2.109 64.20 21.55 8 146 42.65 50.0 0.00556 8 1B6 8 1A7 2.059 20.00 63.00 8 . 187 43.00 50.0 0.00556 2 2.000 2.509 8 2.359 2.259 C.63821 62.152 1.1682 9 2.109 2.059 2.459 2.159 8 2 1687.6 1.1682 9.28E=6 0.97352 5389.850 1676.6 8 1 248.30 176.07 257.46 176.56 265.44 175.99 0.0 8 1 1 1 0.75681 5382.322 1687.1 0.0 8 1 1 2 1.1117 5370.106 1676.1 1.4194 5367.390 1693.1 0.0 8 1 1 3 174.05 270.51 8 1 1 4 C . O 171.47 1.0174 5379.801 1694.8 0.0 270.42 8 1 1 5 0.66256 5367.493 1696.4 168.75 0.0 266.89 .0.0 257.01 168.17 0.89413 5362.486 1689.3 8 1 1 7 257.01 168.17 0.89413 5362.486 1689.3 346.63 263.28 1.0326 0.0 1676.6 348.82 259.57 0.75681 0.0 1687.1 357.70 257.03 1.1117 0.0 1676.1 374.22 252.15 1.4194 0.0 1693.1 384.12 247.66 1.0174 0.0 1694.8 381.82 242.54 0.66256 0.0 1696.4 371.15 242.19 0.94974 0.0 1689.3 30.690 8 1 2 1 8 1 2 2 8 1 2 3 27.945 27.495 8 1 2 4 25.830 24.345 8 1 2 5 23.985 8 1 2 6 24.755 8 1 2 7 C.61704 62.192 1.1682 9.28E-6 245.95 180.74 0.97352 5369.820 1636.9 257.55 180.34 0.75681 5392.314 1649.9 266.07 180.09 1.1117 5394.881 1634.0 271.69 179.21 1.4194 5392.749 1630.6 1636.3 8 2 0.0 8 2 1 1 0.0 8 2 1 2 0.0 . 8 2 Î 3 8 2 1 4 0.0 8 2 1 5 0.0 272.33 271.06 . 0.0 0.0 259.54 8 2 1 7 8 2 2 1 8 2 2 2 356.05 32.085 362.94 273.83 271 30.600 8 2 2 3 31.095 371.46 390.89 8 2 2 4 28.260 400.50 8 2 2 5 26.550 0.66256 0.0 1628.9 0.54974 0.0 1644.8 266.43 26.865 4CC.36 0.66256 8 2 2 6 389.63 262.49 28.215 8 2 2 7 C.59343 62.192 1.1682 9.28E-6 8, 3 1566.5 186.32 0.97352 5365.156 1570.4 247.31 8 3 1 1 0.0 186.50 186.31 185.37 _8 3_1 2 0.0 257.19 0.75681 5355.209 1570.4 1.1117 5357.478 1573.9 1.4194 5372.455 1569.8 1.0174 5377.681 1560.9 8 3 1 3 8 3 1 4 264.98 0.0 . 0.0 269.57 184.88 8 - 3 1 5 270.78 0.0 0.0 269.15 184.69. 0.66256 5359.988 1560.3 8 3 1 6 183.69 0.89413 5367.493 1559.7 8 3 1 7 . C.O 261.18 296.50 0.0 1570.4 35.820 365.94 1.0326 8_3_2_1 373.24 8 3 2 2 36.270 293.32 0.75681 0.0 1570.4

```
34.920
           381.38
                      290.25
                                  1.1117
                                              0.0
                                                    1573.9
                                 1.4194 0.0
1.C174 0.0
                                                    1569.8
 29.880
          401.40
                    286.95
 29.115
           411.20
                     283.39
                                                    1560.9
                   280.62
                                  0.66256 0.0
0.94974 0.0
                                                    1560.3
           407.54
 29.835
                                                    1559.7
                     278.84
                                                                             8 3 2 7
  32.175
           40C.47
             C.55595 62.192
                                  1.1682 9.28E-6
                                                                             8 4
1468.9
                                                                             8 4 1 1
                   200.68
202.49
  C . 0
           255.65
                                  0.97352 5377.268 1476.7
                                  0.75681 5372.341 1475.4
           263.53
  0.0
                    202.59
                                  1.1117 5359.907 1457.7
           270.78
  .0.0
                                  1.4194 5367.390 1467.9
  0.0
           275.23
                     201.48
                    199.03
  0.0
           274.59
                                  1.0174 5367.597 1462.8
                                                                             8 4 1 5
                    198.22
196.80
                                   0.66256 5372.490 1478.6
                                                                             8 4 1 6
           272.60
  0.0
  -'C.O
           262.54
                                  0.89413 5372.501 1463.4
                                                                             8 4 1 7
                                 0.0 1476.7
           390.90
                      319.19
                                                                             8 4 2 1
  35.145
                                                                             8 4 2 2
  32.220
           392.38
                      317.92
                                                    1475.4
                                                   1457.7
                                                                             8 4 2 3
                      314.94
  31.320
           358.29
           420.46
                    311.03
                                                   1467.9
                                                                             8 4 2 4
  30.600
32.310
           424.66
                    305.18
                                                    1462.8.
                                                                             8 4 2 5
                  302.56
298.30
                                0.66256 0.0
0.94974 0.0
                                                                            8 4 2 6
  33.435
           421.54
                                                    1478.6
                                                                             8 4. 2 7
                                                    1463.4
  35.910
           415.41
1388.0
            (.52529 62.192
                                  1.1682 9.28E-6
                                                                           8 5 1 1
                                  0.97352 5367.482 1390.0
0.75681 5369.957 1388.0
                   208.43
209.16
           25€.01
  0.0
                                                                             8 5 .1 2
  0.0
           264.26
                   209.41
207.86
                                  1.1117 5377.394 1382.0
                                                                             8 5 1 3
           270.69
   C.0
                                  1.4194 5364.846 1394.0
                                                                             8 5 1 4
  0.0
           274.59
                                                                            8 5 1,5
           275.23
                   206.95
                                  1.0174 5370.244 1392.7
   0.0
                                  0.66256 5369.992 1388.0
  0.0
                   205.62
                                                                             8 5 1 6
           272.69
                   204.17
           264.35
                                  0.89413 5372.501 1381.3
                                                                             8 5 1 7
  C.O
           410.00
                      332.89
                                  1.0326 0.0 1390.0
0.75681 0.0 1388.0
                                                                             8 5 2
43.200
                                  0.75681 0.0 1362.0
1.1117 0.0 1382.0
1.4194 0.0 1394.0
1.0174 0.0 1392.7
                                                                             8 5 2 2
  37.980
           412.30
                      331.60
                                                    1388.0
           419.52
                      328.90
                                                                             8 5 2 3
 35.775
                                                                             8 5 2 4
 34.425
           430.72
                    323.21
                                 1.4194
           431.69
                    317.78
                                                                             8 5 2 5
 35.325
                   314.18
311.83
                                  0.66256 0.0 1388.0
0.94974 0.0 1381.3
                                                                             8 5 2 6
  35.955
           428.14
                                                   1381.3
                                                                             8 5 2 7
  39.015
           424.96
            C.48861 62.192
                                  1.1682 9.28E-6
1291.0
                                                                           86
                                  0.97352 5362.360 1291.1
0.75681 5367.585 1289.7
                   217.83
218.85
           258.91
                                                                             8611
 0.0
                                                                             8 6 1 2
  0.0
           266.16
                                  1.1117 5370.106 1286.1
                    218.46
218.21
           271.69
                                                                            8 6 1 3
  .0.0
                                  1.4194 5372.455 1289.0
           275.95
                                                                             8 6 1 4
  0.0
  °C.0
                   216.64
                                  1.0174 5379.800 1291.1
                                                                            8615
           275.77
                   216.18
                                  0.66256 5369.992 1292.5
                                                                             8 6 1 6
  0.0
           273.32
                   213.35
                                  0.89413 5367.493 1297.6
  0.0
           265.62
                                                                             8 6 1 7
                      350.01
                                  1.0220
0.75681 0.0
1.1117 0.0
1.4194 0.0
2.74 0.0
                                  1.0326 0.0 1251.1
  49.005
           428.17
                                                                             8 6 2 1
                   348.53
                                                    1289.7
                                                                             8, 6, 2, 2
  43.830
           428.35
                                                  1286.1
           431.75
                     343.93
                                                                             8 6 2 3
  41.400
                    339.69
  37.665
           442.07
                                                   1289.0
                                                                             8 6 2 4
  38.790
           440.76
                     332.71
                                                    1291.1
                                                                             8:625
                    328.99
                                           0.0
  39.645
           438.32
                                  0.66256
                                                    1292.5
                                                                             8 6 2 6
             34.76 323.45
C.45577 62.192
                                  0.94974
  42.390
                                                    1297.6
           434.76
                                                                             8 6 2 7
                                              0.0
                                  1.1682 9.28E-6
1205.0
                                                                             8 7
                                                                           . 8 7 1 1
   0.0
           261.09
                     225.27
                                   0.97352 5380.064 1205.7
                     226.24
                                  C.75681 5359.965 1204.9
                                                                            8 7 1 2
  0.0
           26€.98
                                  1.1117 5370.106 1194.1
           272.14
                                                                             8 7 1 3
  0.0
                     226.22
                                                                             8 7 1 4
           275.32
                    224.73
                                  1.4194 5364.846 1205.7
   0.0
                                  1.0174 5379.801 1215.7
0.66256 5387.478 1206.5
           275.50
                                                                             8 7 1 5
  0.0
                   223.99
  0.0
           273.41
                     223.16
                                                                             8.716
  0.0
           266.98
                     222.83
                                  0.89413 5372.501 1202.6
                                                                             8 7 1 7
 55.575
           441.68
                      360.37
                                   1.0326
                                              0.0 1205.7
                                                                             8 7 2 1
                      359.05
  49.005
           441.96
                                  0.75681
                                              0.0
                                                    1204.9
                                                                             8 7 2 2
                                  1.1117 0.0
1.4194 0.0
  44.910
           443.09
                     356.54
                                                    1194.1
                                                                             8 7 2 3
                     348.47
  40.725
           446.93
                                                    1205.7
  41.265
           447.00
                     342.31
                                  1.C174
                                              0.0
                                                    1215.7
  42.435
           444.92
                     338.29
                                  0.66256
                                             0.0
                                                    1206.5
  45.630
           445.89
                      335.79
                                  0.94974
                                             .0.0
                                                    1202.6
```

```
1146.1
             C.43213 62.152
                                  1.1682 9.28E-6
                                                                             8 8
           263.26
  C.0
                      230.93
                                   0.97352 5362.360 1134.4
                                                                             8 8 1 1
   0.0
           26E.C7
                      231.23
                                   0.75681 5377.566 1145.0
   0.0
           271.51
                      230.98
                                           5374.965 1130.3
                                  1.1117
                                  1.4194
                                                                             8 8 1 4
   C. 0
           275.32
                      229.44
                                           5357.753 1136.0
   0.0
           275.32
                      228.63
                                                                             8 8 1 5
                                   1.0174
                                           5352.734 11.45.8
                                   0.66256 5352.493 1145.8
   0.0
           274.23
                      228.62
                                                                             8 8 1 6
                                   0.89413 5357.467 1143.3
           267.34
                      226.89
   0.0
                                                                             8 8 1
  59.715
           446.32
                      367.61
                                              0.0
                                                    1134.4
                                                                             8 8 2 1
                                  1.0326
  54.180
           445.63
                      364.10
                                   0.75681
                                              0.0
                                                    1145.0
                                                                             8 8 2 2
  49.545
           445.37
                      360.70
                                  1.1117
                                              0.0
                                                    1130.3
  43.110
           448.62
                      352.75
                                   1.4194
                                              0.0
                                                    1136.0
                                                                             8 8 2 4
                      345.78
  42.930
           447.38
                                   1.0174
                                              0.0
                                                    1145.8
                                                                             8 8 2 5
                                                                             8 8 2 6
 43.740
           449.10
                      344.52
                                              0.0
                                                    1145.8
                                   0.66256
  46.665
           445.39
                      340.29
                                   0.94974
                                              0.0
                                                    1143.3
                                                                             8 8 2 7
1075.4
                                                                             8 9
            C.40705
                     62.192
                                   1.1682 9.28E-6
   0.0
           264.35
                      234.32
                                   0.97352 5362.360 1087.7
                                                                             8 9 1 1
   0.0
           268.34
                      235.85
                                   0.75681 5372.341 1088.5
                                                                             8 9 1 2
   0.0
                      235.73
                                                                             8 9 1 3
           271.78
                                   1.1117 5372.535 1065.3
                                                                             8 9 1 4
   0.0
           275.59
                      234.14
                                   1.4194
                                           5372.455 1085.1
                                                                             8 9 1 5
   0.0
           275.32
                      234.34
                                   1.0174
                                           5360.160 1060.0
                                   0.66256 5372.490 1073.9
   0.0
           275.05
                      234.02
                                                                             8 9 1 6
                                                                             8 9 1 7
  0.0
                      233.25
                                   0.89413 5372.501 1067.0
           268.70
                                  1.0326
                                                                             8 9 2 1
  63.315
                      370.27
                                                    1087.7
           448.58
                                             0.0
  58.545
           448.37
                      368.89
                                   0.75681
                                              0.0
                                                    1088.5
  54.900
                                                                             8 9 2 3
           445.75
                      365.11
                                   1.1117
                                              0.0
                                                     1065.3
                                                                             8 9 2 4
  46.485
           445.56
                      358.55
                                   1.4194
                                              0.0
                                                    1085.1
  44.865
           451.65
                      353.13
                                   1.0174
                                              0.0
                                                    1060.0
                                                                             8 9 2 5
  45.585
           454.97
                      350.71
                                              0.0
                                                     1073.9
                                                                             8 9 2
                                   0.66256
                                                                                   6
  48.060
           455.52
                     346.54
                                   0.94974
                                              0.0
                                                     1067.0
                                                                             8 9 2
1014.2
            C.38376 62.192
                                   1.1682 9.28E-6
                                                                             810
  0.0
           265.62
                      239.97
                                   0.97352 5360.034 1027.2
                                                                             810 1 1
   0.0
           269.43
                      240.76
                                   0.75681 5372.341 10(7.1
                                                                             810 1 2
   0.0
           272.69
                      240.28
                                   1.1117 5362.337 1008.9
                                                                             810 1 3
                                   1.4194 5374.999 1019.0
   0.0
           275.59
                      239.43
                                                                             810 1 4
   0.0
           276.13
                      239.17:
                                   1.0174 5367.597 1016.3
                                                                             810 1 5
  0.0
           275.41
                      238.47
                                   0.66256 5379.984 1014.4
                                                                             810 1 6
                                   0.89413 5380.007 1006.2
           269.24
                      237.25
  ·C.O
                                                                             810 1 7
           455.42
. 65.070
                      375.71
                                              0.0
                                                                             810 2 1
                                  1.0326
                                                    1027.2
  61.380
           453.05
                      374.06
                                   0.75681
                                              0.0
                                                     1007.1
                                                                            810 2 2
  58.410
           447.85
                      369.02
                                   1.1117
                                              0.0
                                                     1008.9
                                                                             810 2 3
  50.040
           447.43
                      363.64
                                                                             810 2 4
                                   1.4194
                                              0.0
                                                    1019.0
  46.125
           454.71
                      358.56
                                  1.0174
                                              0.0
                                                                             810 2 5
                                                    1016.3
                      355.49
  46.575
           45 E. 81
                                   0.66256
                                              0.0
                                                     1014.4
                                                                             810 2
                                                                                   6
  48.825
           460.61
                      350.96
                                   0.94974
                                              0.0
                                                     1006.2
                                                                             810 2 7
```

```
NASA CONFIGURATION 9
C.8 HUE-TIP RATIO, 19 ELACES, 5-INCH TIP DIAMETER,
0.834-INCH CHCRD, 0.C16-INCH RADIAL TIP CLEARANCE,
C.66 CESIGN TIP D-FACTOR,
CCUBLE CIRCULAR ARC ELADE PROFILE,
C.466 DESIGN FLOW COEFFICIENT.
ACT REPORTEC.
```

9921					•	9	
_2.000	2509	00	19			9	1
2.459	68.55	38.59	0.07164	0.8333	53.57	9	141
29.96	50.0	0.00556	0.00556	1.0203		9	181
2.409	68.61	35.08	0.07364	0.8333	51.845	9	142
33.53	50.0	0.00556	0.00556	1.0415		9	182
2.359	68.55	31.50	0.07564	0.8333	50.025	9	1A3
 37.05	5.00	0.00556_	-0.C0556-	10636		9	1B3
2.259	67.10	25.25	0.07964	0.8333	46.175	9	1 44

```
41.85
            5C.C
                        0.00556
                                   0.00556
                                              1.1107
                                                                                  184
   2.159
            65.45
                                                       44.10C
                       22.75
                                   0.08364
                                              0.8333
                                                                                  145
            50.0
  42.70
                        0.00556
                                   0.00556
                                             1.1621
                                                                              q
                                                                                  1B5
                                                                   13 .
                                                       42.875
   2.109
            64.20
                       21.55
                                   0.08564
                                              0.8333
                                                                              9
                                                                                  146
  42.65
            50.0
                        0.00556
                                   0.00556
                                              1.1897
                                                                              9
                                                                                  186
   2.059
            63.00
                       20.00
                                   0.08764
                                              0.8333
                                                       41.50
                                                                              Q
                                                                                  147
                                   0.00556
  43.00
            50.0
                        0.00556
                                                                              9
                                             1.2186
                                                                                  187
             2.509
   2.000
                                                                                  2
   2.459
             2.409
                        2.359
                                   2.259
                                              2.159
                                                        2.109
                                                                   2.059
                                                                              9
                                                                                  2
1690.7
             C.63751
                      62.192
                                   1.1682 9.28E-6
                                                                              Q
   0.0
           242.72
                      175.48
                                                                              9 1 1 1
                                   0.99716 5392.65
                                                    1683.2
           258.85
   0.0
                      179.79
                                   0.75681 5382.33
                                                     1682.7
   0.0
           268.19
                      176.27
                                   1.1117
                                           5382.26
                                                     1686.5
                                                                              9
                                           5394.79
   C.O
           272.63
                      173.91
                                   1.4194
                                                     1696.4
                                                                              Q
                                                                                1
                                                                                  1
   0.0
           272.90
                      172.05
                                   1.0174 5397.32
                                                     1693.7
                                                                              g
                                                                               1 1 5
                                                                              9116
   0.0
           272.00
                      170.84
                                   0.66256 5389.99
                                                     1693.7
           267.92
                      169.57
                                   0.91637 5389.98
                                                                              9117
  C.0
                                                    1698.6
  31.905
                                               0. C
                                                                              9 1 2 1
           342.27
                      261.30
                                   1.0563
                                                     1683.2
  28.845
           351.00
                      262.64
                                               0.0
                                                                              9 1 2 2
                                   0.75681
                                                     1682.7
  27.810
           355.96
                      256.56
                                   1.1117
                                               0.0
                                                     1686.5
                                                                              9 1 2
                                                                                    3
  24.435
           371.74
                      250.22
                                   1.4194
                                               0.0
                                                     1656.4
                                                                              9
                                                                                1 2 4
  22.140
           383.01
                      245.33
                                   1.0174
                                               0.0
                                                     1653.7
                                                                              9
                                                                                1
                                                                                  Ż
                                                                                    5
                                                                              9 1
           382.89
                      242.34
                                                     1693.7
  22.770
                                   0.66256
                                               0.0
                                                                                  2
                      237.87
                                   0.97198
                                                     1658.6
                                                                              9 1 2 7
 25.200
           371.63
                                               0.0
             C.62085 62.192
                                   1.1682 9.28E-6
1647.9
                                                                              9 2
                                                                              9 2 1 1
   0.0
           242.45
                      179.37
                                   0.99716 5392.65
                                                    1645.4
           258,94
                      179.74
                                                     1650.4
                                                                              9 2 1 2
                                   0.75681 5395.17
   0.0
   0.0
           270.09
                      181.87
                                   1.1117
                                           5385.17
                                                     1649.9
                                                                              9 2 1 3
           274.17
                      179.77
                                           5404.93
                                                                              9
   0.0
                                   1.4194
                                                     1646.5
                                                                                2 1 4
                                   1.0174 5395.20
                                                                              9 2
   0.0
           273.18
                      177.21
                                                     1639.7
                                                                                  1
                                                                                    5
                                   0.66256 5392.49
                                                                              9
           272.90
                      176.80
                                                     165C.4
                                                                                2 1
  0.0
   0.0
                     175.51
           268.37
                                   0.91637 5397.49
                                                     1653.2
                                                                              9 2 1 7
  32.67C
           354.46
                      273.43
                                                     1645.4
                                                                              9 2 2 1
                                   1.0563
                                              0.0
                                                                              9 2 2 2
           362.65
  29.610
                      273.24
                                   0.75681
                                               0.0
                                                     1650.4
           371.56
                      270.95
                                                                              9 2 2 3
  29.205
                                               0.C
                                                     1649.9
                                   1.1117
                                                                              9
  26.145
           385.18
                      264.66
                                   1.4194
                                               0.0
                                                     1646.5
                                                                                2 2 4
  24.435
           392.15
                      258.33
                                   1.0174
                                               0.0
                                                     1639.7
                                                                              9
                                                                                2
                                                                                  2
                                                                                    5
                                                                              9 2
           391.88
                      257.07
  25.425
                                   0.66256
                                               0.0
                                                     1650.4
                                                                                  2
  27.765
           381.73
                      254.87
                                                                              9 2 2 7
                                   0.97198
                                               0.0
                                                     1653.2
             C.59404 62.192
                                   1.1682 9.28E-6
                                                                              9 3
1575.2
                                                                              9 3 1 1
           244.89
   0.0
                      186.97
                                   0.99716 5380.07
                                                     1572.8
   0.0
           259.03
                                                                              9 3 1 2
                      188.66
                                   0.75681 5379.95
                                                     1569.8
                                                                              9
   0.0
           268.82
                      188.89
                                   1.1117
                                           5394.89
                                                     1576.9
                                                                                3 1 3
           272.99
                      187.47
                                           5402.39
                                                     1575.1
                                                                              9
                                                                                3
   C.0
                                   1.4194
                                                                                 1 4
                                                                              9 3
   0.0
           273.12
                      186.31
                                   1.0174 5402.63
                                                     1578.0
                                                                                  1
                                                                                    5
                                   0.66256 5384.99
                                                                              9
                                                                               3 1
           273.45
                      185.23
                                                     1578.0
   0.0
                                                                                    6
   0.0
           266.73
                      184.70
                                   0.51637 5380.02
                                                    1575.7
                                                                              9 3 1 7
                                   1.0563
  36.990
           368.24
                      292.24
                                                     1572.8
                                                                              9 3 2 1
                                               0.0
                                                                              9 3 2 2
  36.180
           374.64
                      287.43
                                   0.75681
                                               0.0
                                                     1569.8
 35.235
           386.34
                      288.27
                                   1.1117
                                                                              9 3 2 3
                                              0.0
                                                     1576.9
  29.025
           398.03
                      281.53
                                                                              9
                                   1.4194
                                               0.0
                                                     1575.1
                                                                                3 2 4
 27.900
           405.71
                      279.40
                                   1.0174
                                               0.0
                                                     1578.0
                                                                              9 3 2 5
                                                                              9 3 2 6
 28.575
           402.53
                      275.51
                                   0.66256
                                              0.0
                                                     1578.0
                                                                              9 3 2 7
 31.815
           392.20
                                                     1575.7
                      271.56
                                   0.97198
                                              0.0
1460.1
             C.55219
                                   1.1682 9.28E-6
                                                                              9 4
                      €2.192
  0.0
                                                                              9411
           248.97
                      198.80
                                   0.99716 5367.49
                                                     1461.5
                                                                              9 4 1 2
  0.0
           260.49
                      199.78
                                   0.75681 5372.34
                                                     1457.1
                                   1.1117 5372.54
   0.0
           269.01
                      200.69
                                                     1460.9
                                                                              9.4 1 3
                                                                              9414
  0.0
           273.81
                      159.77
                                   1.4194
                                           5375.00
                                                     1460.9
  0.0
           273.81
                      197.93
                                   1.0174
                                           5379.81
                                                     1464.1
                                                                              9 4
                                                                                    5
   0.0
           272.81
                      196.83
                                   0.66256 5377.49
                                                                              9 4
                                                     1471.0
                                                                                    6
  C.0
           269.28
                                   C. 91637 5372.50
                      195.23
                                                     1444.9
                                                                              9417
 36.315
           377.26
                                   1.0563
                                              0.0
                      315.15
                                                     1461.5
                                                                              9 4 2 1
 34.200
           384.73
                      312.03
                                   0.75681
                                               0.0
                                                     1457.1
                                                                              9 4 2 2
                                   1.1117
 33.210
           390.79
                      308.49
                                              0.0
                                                     1460.9
                                                                                 2 3
```

			. •			;
28.755	415.12	305.24	1.4194 0.0	1460.9		9 4 2 4
31.545	417.59	259.60	1.0174 0.0	1464.1	,	9 4 2 5
33.120	413.11	295.79	0.66256 0.0	1471.0	•	9 4 2 6
35.555						9420
	405.59	292.30	0.97198 0.0	1444.9		9. 4 2 7
1382.2	C.52315	_	1.1682 9.28E-6		\$	9 5
0.0	251.06	206.85	0.99716 5372.62	1385.3		9511
G • O	262.21	208.07	0.75681 5362.35	1387.3	;	9512
C • C	265.64	207.67	1.1117 5362.34	1371.9	,	9513
0.0	273.90	207.53	1.4194 5362.32	1382.6		9514
C.O	273.99	205.40	1.0174 5370.25	1387.3	·	9515
G.O	272.90	204.96	0.66256 5379.99	1384.7		9516
0.0	270.28	203.79	0.91637 5377.51	1375.9	•	9517
45.675		329.55				9 5 1 7
	402.81		1.0563 0.0	1385.3		9 5 2 1
38.340	407.89	325.27	0.75681 0.0	1387.3	• •	9 5 2 2
34.655	416.34	323.12	1.1117 0.0	1371.9		9 5 2 3
32.760	427.11	318.17	1.4194 0.0	1382.6		9 5 2 4
35.685	420.69	308.88	1.0174 0.0	1387.3		9525
35.10C	420.27	308.63	0.66256 0.0	1384.7		9 5 2 6
38.790	415.96	305.26	0.97198 0.0	1375.9		9527
1292.6	C.48861	62.192	1.1682 9.28E-6		**	96
0.0	253.05	215.00	0.99716 5367.49	1293.3		9611
0.0	263.20	217.65	0.75681 5379.95	1286.8	. `	9612
0.0	269.64	216.96	1.1117 5390.03	1281.7	•	9613
	274.17				•	
0.0		216.20	1.4194 5362.32	1298.3	1 to 1 to 1	9614
0.0	274.35	214.92	1.0174 5385.11	1296.8	•	9615
0.0	273.81	214.65	0.66256 5377.49	1293.3		9616
, C • O	270.46	213.07	0.91637 5375.01	1298.3		9617
51.480	413.22	341.01	1.0563 0.0	1293.3	, ,	9621
47.520	418.10	340.93	0.75681 0.0	1286.8		96'22
44.145	423.75	337.31	1.1117 0.0	1281.7	•	9623
37.395	431.20	330.70	1.4194 0.0	1298.3		9624
37.710	430.03	325.39	1.0174 0.0	1296.8	•	9 6 2 5
38.565	429.04	322.64	0.66256 0.0	1293.3		9626
		•				9627
41.985	428.04		0.97198 0.0	1298.3	•	
1197.0		€2.192	1.1682 9.28E-6			9 7
0.0	255.77	224.34	0.997165387.53	1200.3	•	9711
C • O	26.3.84	224.68	0.756815375.20	1195.7	•	97.12
0.0	270.55	225.29	1.1117 5382.26	1202.6		9713
C.C	274.08	224.53	1.4194 5387.68	1191.0		9714
C.O	274.17	223.51	,1.0174 5382.46	1194.1	•	9715
~0•0	274.44	223.27	0.662565384.99	1198.0		9716
0.0	271.63	222.57	0.916375387.47	1197.2		9717
55.350	431.54	354.48	1.0563 0.0	1200.3		9721
48.645	426.59	349.64	0.75681 0.0	1195.7		9722
44.550	428.81	347.89	1.1117 0.0	1202.6		9723
39.465	437.05	342.62	1.4194 0.0	1191.0		9724
						9725
39.780	438.16	336.00	1.0174 0.0	1194.1		
40.860	437.58	333.34	0.66256 0.0	1198.0		9726
44.460	438.42	329.10	0.97198 0.0	1197.2	•	9727
1139.5		62,192	1.1682 9.28E-6			98
C.C	258.13	228.86	0.99716 5385.20	1135.2		9811
(O.O.)	265.56	230.00	0.75681 5382.33	1149.0	•	9812
0.0	270.64	229.51	1.1117 5382.26	1152.2		9.8 1 3
0.0	273.54	228.42	1.4194 5369.93	1134.4	•	9 8 1 4
0.0	273.54	227.42	1.0174 5375.03	1131.1		9815
C.O	274.44	227.81	0.66256 5389.99	1137.7		9816
0.0	272.00	227.20	0.91637 5375.01	1136.8		9817
59.175	435.24	359.67	1.0563 0.0	1135.2	= = = = = = = = = = = = = = = = =	9.8.2.1
		-356.75		1149.0		9 8 2 2
48.285	432.26	352.39	1.1117 0.0	1152.2		9823
42.345	437.86	345.91	1.4194 0.0	1134.4	•	9824
41.535	44C.33	340.32	1.0174 0.0	1131.1		9825
42,255	441.57	338.20	0.66256 0.0	1137.7	;	9826
45.63C	441.59	333.15	0.97198 0.0	1136.8		9827
					the state of the s	

```
99
                                                                                                                                                                                                                                                                                                            9911
                                                                                                                                                                                                                                                                                                                                                        9914
                                                                                                                                                                                                                                                                                                                                                        9 9 1 5
                                                                                                                                                                                                                                                                                                                     9 9 1 6
9 9 1 7
9 9 2 1
9 9 2 2
                                                                                                                                                                                                                                                                                                                                                       9 9 2 4
                                                                                                                                                                                                                                                                                                                                                       9925
                                                                                                                                                                                                                                                                                                                         9926
                                                                                                                                                                                                                                                                                                                          .
    NASA CCNFIGURATION 10
    C.8 HUB-TIP RATIO, 19 ELADES, 5-INCH TIP DIAMETER,
    0.834-INCH CHCRD, 0.023-INCH RADIAL TIP CLEARANCE,
    0.66 CESIGN TIP D-FACTOR,
CUBLE CIRCLIAR ARC PLADE PROFILE, C.466 CESIGN FLCW COFFFICIENT.

NOT REFERRET.

1010 2 7

2.000 2.509 0.0 19

2.459 6.55 38.59 0.07164 0.8333 53.57 10 1A2

29.96 5C.0 0.00556 0.00556 1.0203 10 1B1

22.409 6E.61 25.08 0.7364 0.8333 51.845 10 1A2

22.53 50.0 0.00556 0.00556 1.0415 10 1B2

2.359 6E.55 31.50 0.07564 0.8333 50.025 10 1A3

37.05 50.0 0.00556 0.00556 1.0636 10 1B3

2.255 67.10 25.25 0.77664 0.8333 46.175 10 1A4

41.85 5C.0 0.00556 0.00556 1.1007 10 1B4

42.155 6E.45 22.75 0.08364 0.8333 44.100 10 1A5

2.119 64.20 21.55 0.0556 1.1221 10 1B2

2.109 64.20 21.55 0.0556 1.1221 10 1B2

2.109 64.20 20.0556 0.00556 1.1221 10 1B3

2.200 2.509 2.309 2.359 2.259 2.159 2.109 2.059 10 2

1665.3 (.69242 62.152 1.1682 9.28E-6 10 1

C.0 224.36 180.02 0.75681 5359.97 1662.7 10 1 12

0.0 271.70 175.46 1.4194 5380.07 1666.5 10 1 1 1 1

C.0 271.70 175.46 1.4194 5380.07 1666.5 10 1 1 1 2

2.255 371.59 24.93 0.0569 5392.48 1674.9 10 1 1 2

2.255 3 50.0 0.00556 0.0556 3.75681 1.286 10 1 1 1 2

2.000 2.25.39 2.399 1.00 0.06256 3.00556 1.2886 10 1 1 1 2

2.109 2.459 2.409 2.359 2.259 2.159 2.109 2.059 10 2

1665.3 (.69242 62.152 1.1682 9.28E-6 10 1

C.0 271.88 173.99 1.0174 5377.68 1670.0 10 1.15

C.0 271.88 173.99 1.0174 5377.68 1670.0 10 1.2 2

2.559 381.60 240.67 254.24 0.75681 0.066.5 10 10 1 2

2.2559 381.60 240.67 254.24 0.75681 0.066.5 10 10 1 2

2.2559 381.60 240.67 254.24 0.75681 382.33 1639.1 10 2 1

2.2559 381.60 240.65 0.66256 0.0 1671.6 10 1 2 5

2.24593 372.22 238.65 0.67939 0.0 1666.5 10 1 2 4

2.2550 381.60 240.65 0.66256 0.0 1671.6 10 1 2 5

2.24593 372.22 238.65 0.67939 0.0 1674.9 10 1 2 7

1637.9 C.61938 62.192 1.1682 9.28E-6 10 10 12 2

2.2550 381.60 240.65 0.66256 0.0 1671.6 10 1 2 5

2.24593 372.22 238.65 0.67939 0.0 1666.5 10 1 2 1

0.0 266.60 180.34 1.117 5370.11 1621.2 10 2 1 5
    CCURLE CIRCULAR ARC BLADE PROFILE.
                                                                                                                                                                                                                                                                     C.466 CESIGN FLOW COEFFICIENT.
```

```
0.0
           271.52
                     176.30
                                0.66256 5369.99
                                                  1636.3
                                                                       10 2 1 6
  0.0
          266.64
                     173.80
                                0.90896 5372.50
                                                 1638.0
                                                                       10 2 1 7
 33.750
           343.79
                     264.85
                                1.0642
                                           0.0
                                                  1638.0
                                                                       10 2 2 1
          352.95
                     265.13
                                            0.0
 32.175
                                0.75681
                                                  1639.1
                                                                       10 2 2 2
 E1.230
          35E.80
                     263.10
                                1.1117
                                           0.0
                                                  1631.2
                                                                       10 2 2 3
 25.920
           376.46
                     256.49
                                1.4194
                                            0.0
                                                  1638.6
                                                                       10 2 2 4

    23.175

           389.33
                     252.75
                                1.C174
                                            0.0
                                                  1644.2
                                                                        10 2 2 5
                     249.71
 24.120
           386.45
                                0.66256
                                            0.0
                                                  1636.3
                                                                        10 2 2
          374.39
                                0.57939 0.0
                                                                        10 2 2 7
 26.280
                     246.09
                                                  1638.0
1574.5
           C.59453 62.192
                                1.1682 9.28E-6
                                                                       10 3
  0.0
           244.52
                    186.27
                                0.98928 5372.62 1572.2
                                                                        10 3 1 1
  0.0
           257.79
                     186.96
                                0.75681 5377.57 1575.1
                                                                        10 3 1 2
  0.0
          267.82
                    187.91
                                1.1117 5382.26 1571.6
                                                                       10 3 1 3
         271.25
                                1.4194 5394.78
1.0174 5379.81
  0.0
                     185.62
                                                 1582.2
                                                                        10 3 1 4
  0.0
           271.25
                     183.97
                                                  1575.7
                                                                        10 3 1 5
                                0.66256 5387.49
           270.86
                                                                        10 3 1 6
                    183.12
                                                 1571.0
  0.0
  0.0
          267.28
                    181.59
                                0.90896 5382.52 1573.9
                                                                        10 3 1 7
           355.34
                                1.0642
                                                                        10 3 2 1
 35.460
                   285.43
                                           0.0
                                                 1572.2
                                                                        10 3 2 2
 34.110
           361.73
                    280.42
                                0.75681
                                            0.0
                                                  1575.1
                     279.40
                                1.1117
                                                                        10 3 2 3
 34.650
          364.23
                                           0.0
                                                 1571.6
 3C.240
          378.55
                     273.25
                                1.4194
                                           0.0
                                                 1582.2
                                                                        10 3 2 4
25.965
           358.19
                     268.95
                                1.0174
                                            0.0
                                                  1575.7
                                                                        10 3 2 5
          396.17
                                                                        10 3 2 6
                    266.38
                                0.66256
                                                 1571.0
 27.090
                                            0.0
30.510
           385.24
                    263.06
                                0.97939
                                                 1573.9
                                                                        10 3 2 7
                                            0.0
1520.2
           C.57477 €2.192
                                1.1682 9.28E-6
                                                                        10 4
                                                                       10 4 1 1
  0.0
           244.79
                    191.03
                                0.98928 5362.36 1518.2
          258.79
                     193.01
                                0.75681 5375.20 1523.6
                                                                       10 4 1 2
  0.0
                     192.81
                                1.1117 5379.83 1521.2
                                                                       10 4 1 3
          267.37
  0.0
                     192.11
                                1.4194 5367.39
1.0174 5379.81
  0.0
           271.34
                                                 1515.7
                                                                        10 4 1 4
  0.0
           271.25
                     190.32
                                                  1521.2
                                                                        10 4 1 5
                                0.66256 5372.49
                                                                        10 4 1 6
           270.98
                     188.48
  0.0
                                                  1515.1
                    187.87
                                0.90896 5389.98
                                                                        10 4 1 7
  0.0
           268.18
                                                 1526.1
                  295.63
34.605
           372.86
                                1.0642 0.0
                                                  1518.2
                                                                        10 4 2 1
 21.590
          376.08
                   294.11
                                0.75681
                                            0.0 . 1523.6
                                                                        10 4 2 2
 29.790
                     291.53
                                1.1117
                                                                        10 4 2 3
          377.47
                                          0.0 1521.2
27.495
                                           0.0
                                                                        10 4 2 4
           387.17
                     287.06
                                1.4194
                                                 1515.7
           404.59
                     280.65
                                                                        10 4 2 5
 28.305
                                1.0174
                                            0.0
                                                  1521.2
                                                                        10 4 2 6
 29.655
           401.62
                     277.30
                                0.66256
                                            0.0
                                                  1515.1
                    274.57
                                0.97939 0.0
                                                                        10 4 2 7
 32.805
           393.21
                                                 1526.1
1464.3
           C.55263 62.192
                                1.1682 9.28E-6
                                                                        10 5
  0.0
           247.50
                    197.68
                                0.98928 5385.20 1467.2
                                                                        10 5 1 1
                                                                        10 5 1 2
  .0.0
          260.50
                     198.64
                                0.75681 5389.94 1469.8
          268.54
                    199.22
                                1.1117 5392.46
                                                                       10 5 1 3
  0.0
                                                 1464.7
                                1.4194 5375.00
1.0174 5392.54
                                                 1452.6
                                                                       10 5 1 4
. . 0.0
           271.70
                     197.39
                                                                        10 5 1 5
           271.79
                     195.88
  0.0
                                                  1465.3
                                0.66256 5389.99
                                                                        10 5 1 6
                     196.10
  0.0
           272.06
                                                  1467.9
0.0
                    193.72
                                0.90896 5372.50 1462.8
                                                                       10 5 1 7
           267.55
                     308.07
                                                                       10 5 2 1
 39.655
           386.56
                                1.0642 0.0
                                                  1467.2
 35.010
                    305.88 .
                                                                       10 5 2 2
          391.49
                               0.75681
                                            0.0
                                                  1469.8
                 30.
295.66.
291.25
289.59
283.08
192
                                                                       10 5 2 3
 33.435
          396.27
                                1.1117 0.6
                                                  1464.7
                                1.4194
                                           0.0
                                                                        10 5 2 4
 29.475
          401.45
                                                  1452.6
                                                                        10 5 2 5
 30.825
           412.65
                                1.0174
                                           0.0
                                                  1465.3
                                                                        10 5 2 6
 31.725
           410.12
                                0.66256
                                           0.0
                                                  1467.9
                                0.97939 0.0
                                                                        10 5 2 7
 35.190
           398.64
                                                  1462.8
           C.52316 62.192
                                1.1682 9.28E-6
                                                                        10 6
1383.0
           249.76 205.31
                               0.98928 5374.95 1378.6
                                                                        10 6 1 1
 0.0
                  205.86
206.04
                               0.75681 5372.34 1386.0
  C.0
          266.86
                                                                        10 6 1 2
  0.0
           268.45
                                1.1117 5364.77 1380.0
                                                                        10 6 1 3
 0.0 272.15 205.40 -- 1.4194 5372.46
                                                  1387.3
                                                                        10 6 1 4
                            1.0174 5372.37
                  203.25
   0.0
          272.15
                     204.32
                                                  1382.0
                                                                        10 6 1 5
                                0.66256 5384.99
  0.0
           271.97
                                                  1392.0
                                                                        10 6 1 6
                  202.05
                                                                        10 6 1 7
   C.0
           268.72
                                0.90896 5367.49
                                                  1375.3
                  320.12
319.92
  43.830
           393.76
                                1.0642
                                         0.0
                                                  1378.6
                                                                       10 6 2 1
  39.555
           398.47
                                0.75681
                                            0.0
                                                  1386.0
                                                                       10 6 2 2
                                                                        10 6 2 3
  37.980 4CC.78 314.90 1.1117
                                           -0-0--1380-0
```

```
C 408.97 308.42 1.4194 0.0 1387.3

0 418.51 304.22 1.0174 0.0 1382.0

0 415.97 300.75 0.66256 0.0 1392.0

C 407.67 296.47 0.97939 0.0 1375.3

C.48743 62.192 1.1682 9.28E-6

252.47 214.71 0.98928 5369.82 1286.8

261.95 215.18 0.75681 5365.21 1273.0

268.72 215.74 1.1117 5370.11 1298.3

271.88 214.20 1.4194 5364.85 1289.7

272.15 213.53 1.0174 5372.37 1286.1

271.79 212.57 0.66256
                                                                                                                                                                                                                                               10 6 2 4
       34.47C
                                                                                                                                                                                                                                               10 6 2 5
       33.480 418.51
       34.290
                                                                                                                                                                                                                                                10 6 2 6
        37.8CC
                                                                                                                                                                                                                                                10 6 2 7
 1287.7
                                                                                                                                                                                                                                                10 7
        261.95
                                                                                                                                                                                                                                                10 7 1 1
       0.0
                                                                                                                                                                                                                                               10 7 1 2
          C.0
                                                                                                                                                                                                                                                10 7 1 3
                                                                                                                                                                                                                                                 10 7 1 4
        .0.0
                               272.15 213.53
271.79 212.57
269.44 212.06
                                                                                                                                                                                                                                                 10 7 1 5
          0.0

      272.15
      213.53
      1.0174
      5372.37
      1286.1

      271.79
      212.57
      0.66256
      5364.99
      1284.6

      269.44
      212.06
      0.90896
      5377.51
      1295.4

      0
      407.58
      333.23
      1.0642
      0.0
      1286.8

      5
      409.54
      332.21
      0.75681
      0.0
      1273.0

      0
      411.26
      326.54
      1.1117
      0.0
      1288.3

      0
      418.35
      321.33
      1.4194
      0.0
      1289.7

      0
      423.34
      316.22
      1.0174
      0.0
      1286.1

      5
      421.07
      312.41
      0.66256
      0.0
      1284.6

      6
      418.05
      310.43
      0.97939
      0.0
      1295.4

      0
      45179
      62.192
      1.1682
      9.28E-6

      254.99
      222.64
      0.98928
      5369.82
      1193.3

      269.26
      223.65
      1.1117
      5362.34
      1198.8

      271.97
      222.10
      1.4194
      5375.00
      1195.7

      272.06
      221.48
      1.0174
      5379.81
      1189.4

                               271.79
                                                                                                                                                                                                                                                 10 7 1
          0.0
                                                                                                                                                                                                                                               10 7 1 7
          0.0
       48.060 407.58
                                                                                                                                                                                                                                               10 7 2 1
        44.235
                                                                                                                                                                                                                                               10 7 2 2
        42.390
                                                                                                                                                                                                                                               10 7 2 3
                                                                                                                                                                                                                                                10 7 2 4
        38.880
        36.810
                                                                                                                                                                                                                                                10 7 2 5
        37.125
                                                                                                                                                                                                                                                 10 7 2 6
                                                                                                                                                                                                                                                 10 7 2 7
        40.590
                                                                                                                                                                                                                                               10 8
 1194.1
    C.O.
                                                                                                                                                                                                                                                10 8 1 1
           0.0
                                                                                                                                                                                                                                                10 8 1 2
                                                                                                                                                                                                                                              10 8 1 3
           0.0
                                                                                                                                                                                                                                                10 8 1 4
          0.0
                                                                                                                                                                                                                                                10 8 1 5
          0.0
                                                                                                                                                                                                                                                 10 8 1 6
          0.0
                                                                                                       0.9C896 5380.02 1194.1
1.0642 0.0 1193.3
0.75681 0.0 1194.1
C.O 270.25 220.22 C.9C896 5380.02 1194.1
52.615 417.52 341.95 1.0642 0.0 1193.3
48.060 414.15 340.30 0.75681 0.0 1194.1
45.495 414.28 336.94 1.1117 0.0 1198.8
42.120 415.00 331.58 1.4194 0.0 1195.7
39.690 425.83 325.33 1.0174 0.0 1189.4
39.465 427.09 322.56 0.66256 0.0 1193.3
42.480 426.94 318.83 0.57939 0.0 1154.1
1132.7 C.42791 62.192 1.1682 9.28E-6
C.C 255.99 225.88 0.98928 5369.82 1126.2
0.0 264.30 227.60 0.75681 5377.57 1149.8
0.0 270.16 228.26 1.1117 5387.60 1131.9
0.0 271.88 226.46 1.4194 5377.68 1134.4
0.0 271.97 225.82 1.0174 5377.68 1134.4
0.0 271.97 225.42 0.66256 5379.99 1122.1
0.0 265.80 224.68 0.9C896 5385.02 1126.2
55.800 421.09 344.81 1.0642 0.0 1126.2
51.075 417.17 343.25 0.75681 0.0 1149.8
48.420 416.86 342.01 1.1117 0.0 1131.9
                                                                                                                                                                                                                                               10 8 1 7
          C.0
        52.875 417.52 341.95
                                                                                                                                                                                                                                               10 8 2 1
                                                                                                                                                                                                                                              10 8 2 2
                                                                                                                                                                                                                                               10 8 2 3
                                                                                                                                                                                                                                                10 8 2 4
                                                                                                                                                                                                                                                10 8 2 5
                                                                                                                                                                                                                                                10 8 2 6
                                                                                                                                                                                                                                               10 8 2 7
                                                                                                                                                                                                                                               10 9
                                                                                                                                                                                                                                               10 9 1 1
                                                                                                                                                                                                                                              10 9 1 2
                                                                                                                                                                                                                                              10 9 1 3
                                                                                                                                                                                                                                              10 9 1 4
                                                                                                                                                                                                                                              10 9 1 5
10 9 1 6
10 9 1 7

      421.09
      344.81
      1.0642
      0.0
      1126.2

      417.17
      343.25
      0.75681
      0.0
      1149.8

      416.86
      342.01
      1.1117
      0.0
      1131.9

      418.47
      334.84
      1.4194
      0.0
      1138.5

      426.57
      329.95
      1.0174
      0.0
      1134.4

      428.21
      326.16
      0.66256
      0.0
      1122.1

      429.57
      322.96
      0.97939
      0.0
      1126.2

      0.40736
      62.192
      1.1682
      9.28E-6

      258.34
      232.20
      0.98928
      5385.20
      1083.4

      264.66
      232.44
      0.75681
      5377.57
      1070.5

      269.44
      232.18
      1.1117
      5377.40
      1081.7

      272.24
      231.57
      1.4194
      5372.46
      1088.4

      272.33
      230.67
      1.0174
      5379.81
      1069.6

                                                                                                                                                                                                                                              10 9 2 1
                                                                                                                                                                                                                                               10 9 2 2
        48.420
                                                                                                                                                                                                                                                10 9 2 3
                                                                                                                                                                                                                                             10 9 2 4
    44.145
                                                                                                                                                                                                                            10 9 2 5
        41.085
                                                                                                                                                                                                                                               10 9 2 6
10 9 2 7
        40.770
        43.335
                                                                                                                                                                                                                                                1010
 1077.2
                                                                                                                                                                                                                                              1010 1 1
         0.0
                                                                                                                                                                                                                                              1010 1 2
           0.0
                                                                                                         1.1117 5377.40 1081.7
1.4194 5372.46 1088.4
1.0174 5379.81 1069.6
0.66256 5364.99 1074.8
                                                                                                                                                                                                                                              1010 1 3
          0.0
                                272.24 231.57
272.33 230.67
272.15 230.19
270.25 230.05
                                                                                                                                                                                                                                              1010 1 4
          0.0
                                                                                                                                                                                                                                              1010 1 5
1010 1 6
1010 1 7
          C. 0
                                                                                                                                                                       1074.8
          0.0
                                                                                                             0.90896 5364.99 1077.4
          0.0
                                   349.02
420.67 346.65
414.12 340.70
415.23 325
        59.850 426.36
                                                                                                            1.0642 0.0
                                                                                                                                                                                                                                               1010 2 1
                                                                                                                                                                        1083.4
                                                                                                         0.75681
                                                                                                                                                                                                                                              1010 2 2
        56.520
                                420.67
                                                                                                                                                 0.0
                                                                                                                                                                        107C.5
                                                                                                          1.1117 0.0
        52.920
                                                                                                                                                                        1081.7
                                                                                                                                                                                                                                               1010 2 3
                                                                                                        1.4154 0.0
1.0174 0.0
0.66256 0.0
0.57939 0.0
        46.125
                                                                                                                                                                        1088.4
                                                                                                                                                                                                                                                1010 2 4
                                                                   332.44
                                                                                                                                                                                                                                                1010 2 5
        42.435
                                    426.10
                                                                                                                                                                        1069.6
                                    429.62 329.51
433.90 327.33
        41.855
                                                                                                                                                                       1074.8
                                                                                                                                                                                                                                                1010 2 6
        44.055
                                                                                                                                                                        1077.4
                                                                                                                                                                                                                                                 1010 2 7
```

1.172-INCH CHCRD, O.CIO-INCH RADIAL TIP CLEARANCE, C.72 DESIGN TIP D-FACTOR. COUBLE CIRCULAR ARC PLADE PROFILE. 0.5 DESIGN FLCW COEFFICIENT, PRELIMINARY. 13 9 2 5 13A 3.825 4.50C 0.0 33 134 1 11.80 4.433 70.30 0.05668 1.172 41.05 13A 1A1 0.00977 58.5 1.3886 50.0 0.00577 13A 181 4.298 0.06208 36.95 65.80 4.10 1.172 13A 1 A 2 5C.0 65.7 0.01011 0.C1C11 1.4322 13A 182 4.162 69.20 -3.60 0.06752 1.172 32.8C 13A 1 A 3 1.4790 72.8 50.0 0.01045 0.01045 13A **1B3** 4.028 68.50 -11.80 0.C7288 1.172 28.35 13A 1A4 80.3 5C.0 0.01079 0.01079 1.5282 13A 184 -19.70 3.893 67.90 0.07828 24.10 13A 1A5 1.172 87.6 5C.0 0.01113 0.01113 1.5812 13A 185 3.825 13A 4.5 2 4.433 4.298 4.162 4.C28 3.893 13A C.74649 62.284 0.792 9.28E-6 13A 1 3905.63 0.0 435.098 358.045 3.6088 2421.0 3894.60 13A 1 1 1 0.0 435.021 358.111 3.6592 2414.2 3912.08 134 1 1 2 C.0 435.262 357.158 3.5303 2419.0 3914.10 134 1 1 3 C . O 434.860 356.379 3.4040 2426.0 3912.31 134 1 1 4 424.871 3.2353 2427.0 0 - 0353.861 3895.07 13A 1 1 5 58.729 498.55 406.67 3.6088 3894.60 13A 1 2 1 0.0 3.6592 13A 1 2 2 45.468 5CC.45 407.21 3912.08 0.0 541.83 405.50 3.5303 13A 1 2 3 32.773 0.0 3914.10 3.4040 13A 1 2 4 32.9,89 590.06 3912.31 404.04 0.0 3.2353 38.025 80.336 406.08 3895.07 13A 1 2 5 0.0 C.72283 62.284 C.800 9.28E-6 13A 2 3756.30 3.6088 2430.0 0.0 434.731 363.512 3792.15 134 2 1 1 0.0 435.C69 362.761 3.6592 2427.0 3785.97 13A 2 1 2 435.068 359.596 3.5303 2430.5 3819.26 13A 2 1 3 CAC 0.0 435.049 359.827 3.4040 2433.2 379C.92 13A 2 1 4 359.343 3.2353 2432.7 134 2 1 5 0.0 434.867 3793.19 59.247 519.Cl 425.98 3.6088 3792.15 13A 2 2 1 0.0 47.011 513.70 419.53 3.6592 3785.97 13A 2 2 2 0.0 13A 2 2 3 35.338 418.09 555.55 3.5303 0.0 3819.26 35.248 596.82 415.50 3.4040 0.0 3750.92 13A 2 2 4 3.2353 13A 2 2 5 415.08 35.726 611.31 0.0 3793.19 13A 3 3655.39 C.69834 62.284 0.802 9.28E-6 3.6088 2424.0 13A 3 1 1 0.0 435.016 368.447 3660.70 0.0 435.086 367.605 3.6592 2424.7 3669.06 134 3 1 2 0.0 435.074 365.944 3.5303 2427.0 3666.32 13A 3 1 3 C. 0 434.900 367.179 3.4040 2417.7 3635.91 13A 3 1 4 13A 3 1 5 0.0 435.063 365.908 3.2353 2419.2 3644.58 59.188 535.14 438.67 3.6088 0.0 3660.70 13A 3 2 1 47.196 0.0 527.99 429.68 3.6592 3669.06 13A 3 2 2 565.39 35.959 429.48 3.5303 0.0 13A 3 2 3 3666.32 597.01 424.88 3.4040 0.0 3635.91 13A 3 2 4 36.922 3.2353 13A 3 2 5 422.70 0.0 610.64 3644.58 42.421 C.67629 C.803 9.28E-6 3533.C4 62.284 13A 4 134 4 1 1 435.052 373.364 3.6088 2413.0 C.0 3536.78 434.912 372.084 3.6592 2415.2 3538.23 13A 4 1 2 0.0 0.0 434.974 371.750 3.5303 2413.2 3525.00 13A 4 1 3 3532.66 0.0 435.148 370.345 3.4040 2423.0 13A 4 1 4 0.0 435.893 369.321 3.2353 2424.5 3532.54 134 4 1 5 545.24 451.56 3.6088 0.0 13A 4 2 1 57.631 3536.78 47.511 542.81 443.15 3.6592 0.0 3538.23 13A 4 2 2 37.813 574.C7 437.66 .3.5303 0.0 -- 3525.00 13A 4 2 3 39.105 602.20 433.85 3.4040 0.0 3532.66 13A 4 2 4 3.2353 134 4 2 5 44.388 613.57 423.73 0.0 3532.54 3399.73 C.64952 62.284 0.792 9.28E-6 13A 5 435.103 377.747 3.6088 2424.2 3402.55 13A 5 1 1 0.0 0.0 434.904 377.054 3.6592 2420.2 3405.63 13A 5 1 2 13A-5-1-3-3.5303 2421.7 C.0 434.826 375.530 3404.37 0-0 434-565 376.309 3.4040 2423.0 3387.90 13A 5 1 4 434.895 13A 5 1 5

3.2353 2423.0

3398.19

MASA CENFIGURATION 13 ADJUSTED-SEE ERI-77900

C.ES HUB-TIP RATIO, 23 BLADES, 9-INCH TIP DIAMETER,

0.0

373.998

```
57.919 563.70 463.00

47.493 555.96 454.76

39.145 581.27 446.63

40.662 601.84 444.61

46.570 615.72 442.18
                                  3.6088 0.0 3402.55
3.6592 0.0 3405.63
3.5303 0.0 3404.37
3.4040 0.0 3387.90
                                                                               13A 5 2 1
                                                                              13A 5 2 2
                                                                      13A 5 2 3
                                                                              13A 5 2 4
                                                                          13A 5 2 5
                                    3.2353
                                                       3398.19
                                                0.0
 3277. 85
                                   0.792 9.28E-6
3.6088 2426.2
3.6592 2414.5
            435.454 382.420
435.080
                                                                                13A 6
                                                      3276.97
328C.11
                                                                                134 6 1 1
0.0
    0.0 435.454 382.420
0.0 435.080 380.280
                                                                               13A 6 1 2
            435.209 379.642
                                    3.5303 2424.2
                                                                          13A 6 1 3
13A 6 1 4
                                                       3290.87
    0.0
```

```
NASA CONFIGURATION 14 ADJUSTED-SEE ERI-77900
C.9 HUB-TIP RATIO, 19 ELADES, 9-INCH TIP DIAMETER,
1.5-INCH CHORE, 0.010-INCH RADIAL TIP CLEARANCE,
0.63 CESIGN TIP D-FACTOR.
CCUBLE CIRCULAR ARC BLADE PROFILE.
0.7 DESIGN FLOW COEFFICIENT,
PRELIMINARY.
14 9 2 5
  14A
 4.050
                                                       144 1
                                        36.240
                                                       14A 1A1
 54.26
                                                      14A - 181
                                        .4
                 6.45 0.0715 1.5
                                        34.580
  4.365 62.70
                                                      14A 1A2
```

	•		,				
56.25	50.0	0.010	0.010	1.031			
4.275	62.09	3.67	0.0725		22 222		14A 1B2
58.42	50.0	0.010			32.880		14A 1A3
4.185	61.54		0.010	1.052			14A 1B3
		0.83	0.0735		., 31 . 190		14A 1A4
60.71	5C.O	0.010	0.010		• •		14A 1B4
4.095	6C.80	-2.16	0.0745	1.5	29.32		14A 1A5
. 62.96	50.0	0.010	0.010	1.099	•		14A 185
4.050	4.50						
4.455	4.365	4.275	4.185	4.095			14A 2
3301.03		7 62.265		9.28E-6			14A 2
0.0	427.0	301.676		2508.7	3304 30	÷	144 1
C. O	438.0	314.017	2 ((02	2300.1	3306.30		14A 1 1 1
, c.o.	437.4	210 (/2	2.4083	2495.0	3284.93		144 1 1 2
, , 0.0 ,	431.4	310.442	2.4115	2504.0	3299.90	•	144 1 1 3
0.0	437.6	309.513	2.3666	2507.0	3296.97		14A 1 1 4
C.O	430.0	305.376	2.2521	2512.7	3317.06		144 1 1 5
28.845	502.23	371.37	2.3793	0.0	3306.30	•	14A 1 2 1
20.758	542.24	374.44	2.4683		3284.93		14A 1 2 2
21.370	564.55	368.71	2.4175		3299.90		
29.178	553.06	364.63	2.3666	0.0	3277.70	•	14A 1 2 3
39.402	538.03	359.66	2.2435		3296.97	•	144 1 2 4
3150.19		62.265			3317.06		
0.0				9.28E-6			14A 2
	427.0	312.574	2.4149	2495.7	3171.67		14A 2 1 1
0.0	438.0	323.121	2.4683	2493.7	3157.3C		14A 2 1 2
0.0	437.4	323.783	2.4175	2471.2	3127.43		14A 2 1 3
0.0	437.6	319.637	2,3666		3146.14		14A 2 1 4
0.0	430.0		2.2521	2409 7	3148.42		
31.117	511.81	391.20	2.3793				144 2 1 5
24.781	555.87	391.40	2.4683	0.0	3171.67	.;	144 2 2 1
24.286	569.45	388.77	2.4083	0.0	3157.30	ن.	14A 2 2 2
30.586		300-11	2.4175		3127.43	÷	14A 2 2 3
	558.58	380.68	2.3666	0.0	3146.14		14A 2 2 4
39.892	554.31	380.36	2.2435	0.0	3148.42		14A 2 2 5
3031.50	C.82051	. 62.265	C.875	9.28E-6			14A 3
C • O	427.0	324.154	2.4149	2499.2	3032.01		14A 3 1 1
C.O	438.0	325.571	2.4683	2493.2	3011.86		
0.0	437.4	331.906	2.4175	2493.0	3034.50	•	144 3 1 2
0.0	437.6	330.171	2.3666	2607.0			14A 3 1 3
0.0	430.0	324.224	2.2521	2504 5	3043.03		14A 3 1 4
32.922	526.35	404.74			3036.11		14A 3 1 5
27.225	566.C4		2.3793	0.0	3032.01		14A 3 2 1
25.371		411.63	2.4683	0.0	3011.86		14A 3 2 2
	586.89	404.56	2.4175	0.0	3034.50		14A 3 2 3
34.159	569.26	399.21	2.3666	0.0	3043.03		14A 3 2 4
41.607	567.31	396.70	2.2435	0.0	3036.11		14A 3 2 5
2893.09	C.78095	62.265	C.876	9.28E-6			14A 4
0.0	427.0	334.849	2.4149	2491-0	2868.98		14A 4 1 1
0.0	438.0	343.201	2.4683	2502.2	2892.94		
0.0	437.4	339.587	2.4175		2891.90		14A 4 1 2
0.0	437.6	339.103	2.3666				14A 4 1 3
0.0	430.0	335.320			2919.20	•	14A 4 1 4
32.742	539.07		2.2521		2892.42		14A 4 1 5
		423.24	2.3793	0.0	2868.98		14A 4 2 1
29.358	577.46	425.80	2.4683	0.0	2892.94		14A 4 2 2
29.835	582.56	416.55	2.4175	0.0	2891.90		14A 4 2 3
36.518	579.88	412.73	2.3666	0.0	2919.20	_	14A 4 2 4
43.605	578.19	412.56	2.2435	0.0	2892.42	•	14A 4 2 5
2750.86	C.74011			9.28E-6	20 /20 12		144 4 2 3
C.O	427.0	341.771	2.4149	2512 A	2757 70		14A 5
0.0	438.0	350.488	2.4683	2516 2	2757.79		14A 5 1 1
0.0	437.4	349.600			2762.57		14A 5 1 2
0.0	437.6		2.4175	2510.7	2730.50		14A 5 1 3
		346.071	2.3666	2513.2	2746.77		14A 5 1 4
0.0	430.0		2.2521	2506 -7	2756.66	می تمنیدندا میامی	144 5 1 5
36.072	548.07	437.65	2.3793	0.0	2757.79		14A 5 2 1
32.026	583.74	439.14	2.4683	0.0	2762.57		14A 5 2 2
32.346	588.80	431.32	2.4175	0.0	2730.50		
39.019	592.33	430.97	2.3666	0.0	2746.77	*	14A 5 2 3
45.972	587.08	425.69	2.2435	0.0	2756.66		14A 5 2 4
· .				U+U .	£170.00		14A 5 2 5

```
0.867
2599.18
              C.69817 62.265
                                            9.28E-6
                                                                              14A 6
   0.0
                       354.463
                                    2.4149 2508.7
                                                       2590.64
                                                                              14A 6 1 1
            427.0
   0.0
                                    2.4683 2521.7
                                                       2628.90
                                                                              14A 6 1 2
            438.0
                       361.142
                                    2.4175 2524.5
                                                       2600.80
                                                                              14A 6 1 3
   0.0
            437.4
                       358.613
                                                       2573.36
   0.0
                                    2.3666 2511.2
                                                                              14A 6 1 4
                       356.883
            437.6
   0.0
            430.0
                       354.941
                                    2.2521 2516.0
                                                       2602.18
                                                                              14A 6 1 5
  38.938
                       455.58
                                    2.3793
                                               0.0
                                                       2590.64
                                                                              14A 6 2 1
            566.16
  33.736
                                    2.4683
                                                       2628.90
                                                                              14A 6 2 2
            591.43
                       454.76
                                               0.0
  35.356
                       448.20
                                    2.4175
                                               0.0
                                                       2600.80
                                                                              14A 6 2 3
            598.07
                                                       2573.36
                                                                              14A 6 2 4
  41.436
            598.87
                       443.21
                                    2.3666
                                               0.0
  49.113
            595.09
                       439.90
                                    2.2435
                                               0.0
                                                       26C2.18
                                                                              14A 6
                                                                                     2 5
2445.83
                                    0.866
                                            9.28E-6
                                                                              14A 7
              C.65569
                        62,265
                                    2.4149 2522.5
   0.0
                                                       2447.05
                                                                              14A 7 1 1
            427.0
                       359.394
   0.0
                                                       2444.32
                                                                              14A 7 1 2
            438.0
                       368.423
                                    2.4683 2519.7
   0.0
                                                                              14A 7 1
            437.4
                       367.476
                                    2.4175 2521.7
                                                       2436.24
   0.0
                                    2.3666 2524.7
                                                       2456.31
                                                                              14A 7 1 4
            437.6
                       367.151
                                                                              14A 7 1 5
   0.0
            430.0
                       363.963
                                    2.2521 2518.2
                                                       2445.25
  41.760
            570.39
                       464.07
                                    2.3793
                                               0.0
                                                       2447.05
                                                                              14A 7
                                                                                       1
                                                       2444.32
                                                                              14A 7
  36.247
            597.84
                       466.21
                                    2.4683
                                               0.0
                                                                                     2
                                                                                       2
  38.057
                                                                              14A 7 2 3
                       460.22
                                    2.4175
                                               0.0
                                                       2436.24
            601.11
            604.41
                                    2.3666
  43.02C
                       453.97
                                               0.0
                                                       2456.31
                                                                              14A 7 2 4
  50.098
                                    2.2435
                                               0.0
                                                       2445.25
                                                                              14A 7 2 5
            598.16
                       451.23
                                            9.28E-6
                                                                              14A 8
2286.29
              C.61670
                        62.265
                                    0.861
                                    2.4149 2504.5
                                                       2285.13
                                                                              14A 8 1
   0.0
                       369.655
                                                                                       1
            427.0
   C. 0
            438.0
                       376.844
                                    2.4683 2506.5
                                                       2307.52
                                                                              14A 8 1
                                                                                       2
   0.0
                       375.612
                                    2.4175 2506.5
                                                       2267.62
                                                                              14A 8 1
            437.4
   0.0
            437.6
                       372.765
                                    2.3666 2503.0
                                                       2283.54
                                                                              14A 8
                                                                                    1
                                                                                       4
                                    2.2521 2509.2
                                                       2287.65
                                                                              14A 8 1
                                                                                       5
   0.0
            43C.0
                       372.136
  46.237
                                                       2285.13
                                                                              14A 8 2 1
            572.54
                       471.92
                                    2.3793
                                               0.0
  39.676
            596.65
                       474.75
                                    2.4683
                                               0.0
                                                       2307.52
                                                                              14A 8 2 2
                                    2.4175
  38.209
                                                                              14A 8 2 3
                                               0.0
                                                       2267.62
            603.13
                       468.06
            605.45
  43.686
                       465.36
                                    2.3666
                                               0.0
                                                       2283.54
                                                                              14A 8 2 4
  49.657
                                                       2287.65
                                                                              14A 8
            607.32
                       462.00
                                    2.2435
                                               0.0
                                                                                     2 5
                                            9.28E-6
2167.87
              C.58501
                        62.265
                                    0.861
                                                                              14A 9
                                    2.4149 2510.2
   0.0
            427.0
                       377.240
                                                       2178.71
                                                                              14A 9
                                                                                    1
   0.0
            438.0
                                    2.4683 2508.7
                                                       2170.44
                                                                              14A 9
                                                                                    1 2
                       382.422
                                    2.4175 2508.2
   0.0
            437.4
                       381,980
                                                       2169.15
                                                                              144 9 1 3
                                                                              144 9 1 4
   0.0
                       381.857
                                    2.3666 2504.0
                                                       2161.92
            437.6
                                    2.2521 2493.0
                                                       2159.14
   0.0
                                                                              14A 9 1 5
            430.0
                       379.359
  50.143
            572.90
                       474.44
                                    2.3793
                                               0.0
                                                       2178.71
                                                                              14A 9
                                                                                    2 1
  42.665
            587.05
                       478.95
                                    2.4683
                                               0.0
                                                       2170.44
                                                                              14A
                                                                                  9
  38.259
                                                                                   Q
            601.02
                       472.59
                                    2.4175
                                               0.0
                                                       2169.15
                                                                              14A
                                                                                     2 3
                                    2.3666
  44.131
            614.61
                                                       2161.92
                                                                              14A 9 2 4
                       470.01
                                               0.0
                                                       2159.14
                                                                              14A
                                                                                   9
                                                                                       5
  49.662
            611.65
                       466.65
                                    2.2435
                                               0.0
                                                                                     2
```

```
NASA CONFIGURATION 15
C.8 HUE-TIP RATIO, 19 ELADES, 9 INCH TIP DIAMETER
    INCH CFOFD. C.009-C.010 INCH RADIAL TIP CLEARANCE
C.556 DESIGN TIP C-FACTOR
COUBLE CIRCULAR ARC BLADE PROFILE
C.466 CESIGN FLOW COEFFICIENT
NCT REPORTED
15 7 2 5
                                                                               15
                                                                               15
3.6
           4.5
                                          19
                                                                                      1
                      C.C
                                                                               15
4.410
           67.52
                      42.35
                                 0.072
                                             1.5
                                                        54.935
                                                                                      1A1
                                                                               15
                                                                                      181
25.17
           50.C
                      C.010
                                 0.010
                                             1.02
                                                                               15
4.23
           65.86
                      39.49
                                 0.076
                                            1.5
                                                        52.675
                                                                                      142
                                                                               15
                                                                                      182
26.37
           50.0
                      C.010
                                 0.010
                                             1.064
                                                                               15
4.05
           64.32
                      35.33
                                 C.080
                                             1.5
                                                        49.825
                                                                                      1A3
28.99
                                                                               15
           50.C
                                                                                      183
                      C.C10
                                 0.010
                                             1.111
3.87
                                                        47.86
                                                                               15
                                                                                      144
           62.69
                      21.03
                                 C. C84
                                             1.5
                                                                               15
                                                                                      1B4
31.66
           50.C
                      C.010
                                 0.010
                                             1.163
```

··,				
3.69 4.60.66	26.8 7 0.088	1.5	43.73	15 1A5»
33.86 ×50.0	C C10 0 010	1 22		15 185
	C.C10 0.010	1422	•	
3.6 4.5	C.O. 12-8-13			15 2
4.41 4.23	4.05014	3.69	· · · · · · · · · · · · · · · · · · ·	15 .2.
5191.82 0.61552	62.32*** .0.65	9.28F-6	. 42 (2)	15 1
	348.872 4.84	2005 5	E100 (E	16 1 1 1
			(0102.00	15 1 1 1
C.O: 422.187	345.523 4.784	3005•7	5179.23	15 1 1 2
0.0 418.556	343.129 4.5804	. 3003.2	5176.80	15 1 1 2 15 1 1 3
	340.616 - 4.3769	3017.0	5215.81	15 1 1 4
			5215.01	15 1 1 4
0.0 425.733	340.428///4.0817			15 1 1 5
26.514 \$\$503.44	431.17 4.6415.	3005.5	5182.65	15 1 2 1
25,992 1/525,43	427-98 4 14-7840	3005.7	5179.23	15 1 2 2
24.583 529.59	423.74 4.5804	300307	5176.80	15 1 2 2 15 1 2 3
24.505 527.57	423.14. 4.3004	. 3003.2	5176.86	10 1 2 3
25.834 531.73	420.68 4.3769		5215.81	15 1 2 4
28.030 527.96	419.12. 4.0013	3014.2	5204.61	∍15 1 2 5°
4828.71 C.56962	62.32 0.649	9.28E-6		15 2 . ·
0.0 423.622	358.948 4.84	3029.7	4837.23	15 2 1 1
C.O 423.117	357.005 4.784	3020.0	4824.52	15 2 1 2
C.O 420.152	255.105 4.5804	3015.0	4815.02	15 2 1 3
0.0 420.107	253.611 4.3769	3029.7	4831.18	15 2 1 4
0.0 425.429	352.635 4.0817	3026.5	4835.61	15 2 1 5
	152.035 4.0017		, .	
33.156 527.79	458.43 4.6415	3029.7		15 2 2 1
30.420 547.58	453.49 4.784	3020.0	4824.52	15 2 2 2
28.548 551.42	449.32 4.5804	3015.0	4815.02	15 2 2 3
	446.64 4.3769	3029.7		15 2 2 4
				10 2 2 7
34.200 549.77	444.38 4.0013	3026.5	4835.61	15 2 2 5
4480.15 0.53056	62.321 0.6475	9•28E-6		15 3
C.O 423.58	369.29 4.84	3017.2 3010.7	4474.39	15 3 1 1
0.0 424.68	267.455 4.784	3010.7	4479.66	15 3 1 2
•				15 3 1 2
	365.405 4.58043	3012.0	4476.11	15 3 1 3
0.0 421.786	364.630 4.3769	3018.2	449C•12	15 3 1 4
C.O. 426.664	364.362 4.0817	3004.2	4480.48	15 3 1 5
38.965 544.C	/77 07 / //15	3017.2	4474.39	15 3 2 1
	472.11 4.7840			
34.636 560.32		3010.7		15 3 2 2
32.665 / 561.96	468.51 4.5804 464.82 4.3769	3012.0	4476.11	15 3 2 3
34.636 561.50	464.82 4.3769	3018.2	449C.12	15 3 2 4
38.704 561.32	462.35 4.0013	3004.2	448C.48	15 3 2 5
			14000,40	15 4
4032.56: 0.47749	62.321 0.6465	9.28E-6		
0.0 425.414	381.051 4.84	3019.2	4048.72	15 4 1 1
0.00 - 425.996	379.386 4.784	3019.5	4037.03	15 4 1 2
0.0 423.744	378.202 4.5864	3007.2	4022.46	15 4 1 3
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	The state of the s	3006.2	4026.50	15 4 1 4
0.0 423.348				
0,0% / AI 427.410	376.698 4.0817	3012.0	4028.07	15 4 1 5
45.477 , 561.35	503.04 . 4.6415.	3019.2	4048.72	15 4 2 1
40.972 577.41		3019.5	4037.03	15 4 2 2
39.024 577.77	491.85 4.5804	3007.2	4022.46	15 4 2 3
			1022.50	
40.050 576.76		3006.2	4026.50	
44.685 582.55	485.92 4.0013	3012.0	4028.07	15 4 2 5
3594.88 C.42514	62.322 0.646	9.28E-6		15 5 15 5 1 1
C.O. 4 425.584	391.197 4.84	30.14.0	3595.25	15 5 1 1
				15 5 1 2
0.0	390.131 4.784	3019.5	3602.03	
C.O. 7 🦸 425.438	388.808 4.5804	3016.5	3594.24	15 5 1 3
C.O 0: 425.039	388.322 4.3769	3009.0	3588.88	15 5 1 4
0.0 4 428.073	388.080 4.0817	3024.0	3594.02	15 5 1 5
55 45 570 34	523.10 4.6415	3014.0	3595.25	15 5 2 1
48.46 588.55	516.95, 4.7840	3019.5	3602.03	15 5 2 2
44.955 ; 592.97	512.52 4.5804	3016.5	3594.24	15 5 2 3
45.342 593.99	506.20 4.3769	3009.0	3588.88	' 15 5 2 4
48.645 604.16=		3024.0		15-525
2222 A2 C 20242			39741067	
3233.02 C.38263	62.322 0.645	9.28E-6	2210 22	15 6
C.O 426.392	39 8 • 951 4 • 84	3017.0	3240.23	15 6 1 1
0.0 428.073	398.104 4.784	3019.2	3236.58	15 6 1 2
0.0 . 426.707	397.218, 4.5804	3009.2	3228.70	15 6 1 3
	396.035 4.3769	3008.5	3231.10	15 6 1 4
-0.0 428.830 ···	-395•3414•0817	3017 • 7	3668-4-1	6-15

```
62.145
          594.C5
                     536.C7
                             4.6415
                                                    3240.23
                                                                          15 6 2 1
                                          3017.0
                                          3019.2
54.751
          597.15
                     528.23
                             4.784
                                                    3236.58
                                                                          15 6 2 2
48.915
          603.9
                     523.32
                               4.5804
                                                    3228.70
                                          3009.2
                                                                          15
                                                                               6 2 3
48.933
          6C8.C2
                     518.26
                               4.3769
                                          3008.5
                                                    3231.10
                                                                         . 15
                                                                               6 2 . 4
52.717
          613.87
                     513.26
                               4.0013
                                          3017.7
                                                    3228.47
                                                                          15
                                                                               6.2 5
2949.34
          0.34904
                     €2.322
                               0.643
                                          9.28E-6
                                                                          15
          428.370
0.0
                                          3006.0
                                                    2943.03
                     405.617
                              4.84
                                                                          15
                                                                               7 1 1:
C.0
          429.183
                     404.175
                               4.784
                                                    2957.27
                                          3012.7
                                                                          15
                                                                              7 1 2
          428.C83
                                                    2951.81
0.0
                               4.5804
                     403.444
                                          3018.2
                                                                          15
C.0
          427.545
                     402.652
                               4.3769
                                          3022.2
                                                    2951.05
                                                                          15
                                                                               7 1 4
                     402.703 4.0817
C . 0
          429.593
                                                    2943.53
                                          3013.2
                                                                          15
69.43
                                                    2943.03
                                                                              7 2 1
          604.63
                     540.87
                               4.6415
                                          3006.0
                                                                          15
62.199
          604.83
                     532.43
                               4.784
                                          3012.7
                                                    2957.27
                                                                          15
54.157
                               4.5804
                                                                              7 2 3
          609.96
                     527.61
                                          3018.2
                                                    2951.81
                                                                          15
          617.34
51.584
                     523.54
                               4.3769
                                                    2951.05
                                                                          15
                                                                              7 2 4
                                          3022.2
55.084
          618.38
                     515.57
                               4.0013
                                          3018.2
                                                    2943.53
```

```
NASA CONFIGURATION 16
C.85 HUE-TIP RATIC, 33 BLADES, 9-INCH TIP DIAMETER,
1.172-INCH CHCRD, 0.010-INCH RADIAL TIP CLEARANCE,
C.72 CESIGN TIP D-FACTOR,
CUBIC PLACE PROFILE.
C.5 DESIGN FLCW COEFFICIENT,
FRELIMINARY.
1610 2 5
                                                                          16
            4.500
   3.825
                       0.0
                                                                          16
   4.433
            70.30
                                                                               141
                      11.80
                                 0.05668
                                           1.172
                                                      41.05
                                                                          16
                       0.00977
                                           1.3886
                                                                               181
  58.5
            58.0
                                 0.00977
                                                                          16
                                 0.06208
  4.298
            69.80
                       4.10
                                            1.172
                                                     36.95
                                                                          16
                                                                               1 A 2
                                                                               182
  65.7
            6C.0
                       0.01011
                                  0.01011
                                            1.4322
                                                                          16
                                                                               143
   4.162
            65.20
                      -3.60
                                  0.06752
                                            1.172
                                                     32.80
                                                                          16
                                            1.4790
                                                                               183
  72.8
            61.0
                       0.01045
                                  0.01045
                                                                          16
   4.C28
            68.50
                     -11.80
                                  0.07288
                                            1.172
                                                      28.35
                                                                          16
                                                                              144
  80.3
            63.0
                     0.01079
                                  0.01079
                                            1.5282
                                                                          16
                                                                               1B4
  3.893
            67.90
                     -19.70
                                                     24.10
                                                                          16
                                                                               145
                                 0.07828
                                            1.172
                      0.01113
  87.6
            65.0
                                                                          16
                                                                               185
                                  0.01113
                                            1.5812
   3.825
            4.500
                                                                          16
                                                                               2
            4.298
                       4.162
                                  4.028
                                            3.893
                                                                          16
                                                                               2
   4.433
            C.54432 62.306
                                  0.709 9.28E-6
                                                                          16 1
2944.65
           431.036 394.454
                                  3.6088 2510.2
                                                   2952.43
  0.0
                                                                          16 1 1:1
   0.0
           436.278
                     393.335
                                 3.6592
                                         2506.0
                                                   2947.20
                                                                          16 1 1 2
   0.0
           433.862
                     392.734
                                  3.5303 2505.2
                                                   2949.60
                                                                          16 1 1 3
                                                   2937.81
                                                                          16 1 1 4
  0.0
           4.33.117
                     391.650
                                  3.4040 2500.2
           432.161
                     391.001
                                 3.2345 2496.7
                                                   2936.22
                                                                          16 1 1 5
  0.0
  55.228
           529.94
                     445.21
                                             0.0
                                                   2952.43
                                                                          16 1 2 1
                                 -3.5046
           515.81
                                                   2947.20
                                                                          16 1 2 2
  48.487
                     439.66
                                 3.6592
                                             0.0
 43.920
           520.55
                     435.87
                                 3.5303
                                             0.0
                                                   2949.6C
                                                                          16 1 2 3
                                                   2937.81
                                                                          16 1 2 4
  41.953
           529.10
                     433.85
                                 3.4040
                                             0.0
                                                                          16 1 2 5
  42.376
           544.C5
                     437.41
                                 3.1936
                                             0.0
                                                   2936.22
                                 0.712 9.28E-6
2857.89
            C.53519 62.305
                                                                          16 2
                                                                          16 2 1 1
16 2 1 2
  0.0
           431.685
                     396.320
                                 3.6088 2510.7
                                                   2894.34
                                                   2901.51
  0.0
           435.677
                     395.136
                                  3.6592
                                          2507.2
  0.0
           432.938
                     394.037
                                 3.5303 2507.2
3.4040 2500.2
                                                   2891.97
                                                                          16 2 1 3
                                                                          16 2 1 4
                                                   2898.71
  0.0
           433.555
                     393.389
                                                                          16 2 1 5
  0.0
           432.667
                     392.423
                                  3.2345
                                          2504.5
                                                    2902.92
  55.323
           542.85
                     453.20
                                  3.5046
                                             0.0
                                                   2894.34
                                                                          16 2 2 1
  49.423
                                                                          16 2 2 2
           527.30
                                                   2901.51
                     446.71
                                 3.6592
                                             0.0
  45.585
           525.26
                     441.54
                                  3.5303
                                             0.0
                                                   2891.97
                                                                          16 2 2 3
                                  3.4040
  44.271
           540.04
                     440.34
                                                    2858.71
                                                                          16 2 2 4
                                             0.0
 43.173
           550.45
                                                   2902.92
                                                                          16 2 2 5
                     441.81
                                  3.1936
                                             0.0
```

0.712 9.28E-6

2859.60

3.6088 2505.5

2860.93

C.52852 62.305

396.890

431.184

16 3

16 3 1 1

```
0.0
           436.157
                     396.376
                                 3.6592 2503.7
                                                  2858.74
                                                                         16 3 1 2
   0.0
           434.008
                                 3.5303 2505.7
                                                                         16 3 1 3
                     395.527
                                                  2857.C9
  0.0
           433.495
                     394.133
                                 3.4040
                                         2505.2
                                                   2864.06
                                                                         16 3 1 4
           432.912
                     393.775
                                 3.2345
   0.0
                                                   2865.26
                                          2506.0
                                                                         16 3 1 5
  56.727
           548.85
                     460.20
                                 3.5046
                                            0.0
                                                   2859.60
                                                                         16 3 2 1
  50.332
           533.83
                     452.66
                                                   2858.74
                                 3.6592
                                             0.0
                                                                         16 3 2 2
  46.251
           533.93
                    446.58
                                 3.5303
                                             0.0
                                                   2857.09
                                                                         16 3 2 3
  45.261
           547.95
                   . 447.93
                                                   2864.06
                                 3.4040
                                                                         16 3 2 4
                                            0.0
  44.748
           556.63
                     448.21
                                 3.1936
                                            0.0
                                                   2865.26
                                                                         16 3 2 5
2804.94
            C.51832 62.304
                                 0.718 9.28E-6
                                                                         16 4
                                                  2800.02
           431.519
  0.0
                    399.278
                                 3.6088 2496.0
                                                                         16 4 1 1
                                                  2803.69
   0.0
           435.431
                     397.793
                                 3.6592 2503.0
                                                                         16 4 1 2
                                 3.5303 2503.2
3.4040 2510.5
   0.0
           434.148
                     397.228
                                                   2796.58
                                                                         16 4 1 3
   0.0
           433.660
                     396.276
                                                   2814.07
                                                                         16 4 1 4
                                 3.2345 2510.0
   0.0
           433.380
                     395.793
                                                   2810.34
                                                                         16 4 1 5
           555.69
                                 3.5046
  56.988
                                                  2800.02
                                                                         16 4 2.1
                     466.72
                                            0.0
                                                                         16 4 2 2
                                                               51.124
           54C.20
                     459.28
                                 3.6592
                                            0.0
                                                  2803.69
                                          0.0
  47.218
           542.39
                     455.44
                                 3.5303
                                                   2796.58
                                                                         16 4 2 3
                                                                         16 4 2 4
  46.170
           556.24
                     457.07
                                 3.4040
                                            0.0
                                                   2814.07
                     455.68
  45.445
           562.51
                                 3.1936
                                            040
                                                  2810.34
                                                                         16 4 2 5
2722.00
           C.50258 62.303
                                 0.722 9.28E-6
                                                                         16 5 -
                                                  2719.30
                                                                16 5 1 1
   0.0
           432.179
                     401.625
                                 3.6088 2505.5
                                                                         16 5 1 2
   0.0
           435.986
                     400.806
                                 3.6592
                                         2505.2
                                                  2721.74
                                                  2726.86
                                                                         16 5 1 3
   0.0
           434.575
                     399.234
                                 3.5303 2508.7
                                                  2716.00
   0.0
           434.144
                     398.836
                                 3.4040 2504.5
                                                                         16 5 1 4
                                                                3 - 42 - 1
           434.297
                                 3.2345 2509.0
                                                                         16 5 1 5
  0.0
                     358.620
                                                  2726.08
                                                                58:752
                                 3.5046 0.0
                                                                         16, 5 2 1
           566.73
                     478.69
                                                  2719.30
                                                                51.772
           553.84
                     473.21
                                 3.6592
                                             0.0
                                                   2721.74
                                                                         16:5 2:2
  48.978
           552.35
                     463.35
                                 3.5303
                                                   2726.86
                                                                         16.5 2 3
                                            0.0
  48.253
           564.02
                     464.20
                                 3.4040
                                            0.0
                                                  2716.00
                                                                         16 5 2 4
                                                                         16 5 2 5
1610
           570.15
                                                  2726.C8
  47.421
                     464.65
                                 3.1936
                                            0.0
2654.02
           C.49024 62.300
                                 0.734 9.28E-6
  0.0
           431.937
                                 3.6088 2518.2
                                                  2665.75
                     402.434
                                                                         1610 1 1
                                 3.6592
  C. 0
           436.267
                     401.721
                                         2502.2
                                                  2643.23
                                                                        1610 1 2
  0.0
           434.514
                     401.235
                                 3.5303 2502.0
                                                  2650.26
                                                                         1610 1 3
                                 3.4040 2502.7
3.2345 2502.5
                                                  2657.29
                                                                         1610 1 4
  0.0
           434.701
                     400.855
           434.408
                     400.047
  0.0
                                                  2653.57
                                                                         1610 1 5
  62.086
           566.89
                    484.38
                                 3.5046
                                            0.0
                                                   2665.75
                                                                         1610 2 1
  54.144
           555.44
                    478.15
                               3.6592
                                                                        1610 2 2
                                            0.0
                                                  2643.23
  50.67C
           558.91
                    472.38
                                 3.5303
                                            0.0
                                                  2650.26
                                                                        1610 2 3
  49.54C
           574.17
                     472.76
                                 3.4040
                                            0.0
                                                   2657.29
                                                                         1610 2 4
                                 3.1936
  48.069
           580.56
                     471.19
                                                                        1610 2 5
                                             0.0
                                                  2653.57
           C.47564 62.302
                                 C.725 9.28E-6
2575.25
                                                                         16 6
  0.0
           432.536
                    404.968
                                 3.6088 2508.2
                                                  2579.34
                                                                         16 6 1 1
                                 3.6592 2501.7
  0.0
           436.028
                     404.481
                                                  2576.27
                                                                         16 6 1 2
                                 3.5303 2508.7
           435.107
                    403.839
                                                                         16 6 1 3
  0.0
                                                  2570.94
           434.967
                                 3.4040 2499.5
                                                  2568.28
                                                                        16 6 1 4
  0.0
                     403.702
                                 3.2345 2510.7
                                                   2581.43
           434.910
  0.0
                     402.468
                                                                        16 6 1 5
  64.057
           565.42
                     488.48
                                 3.5046
                                            0.0
                                                   2579.34
                                                                         16 6 2 1
                     483.53
                                 3.6592
  54.841
           557.86
                                                   2576.27
                                             0.0
                                                                         16 6 2 2
  51.691
                                            0.0
                                                                         16 6 2 3
           564.58
                     478.76
                                 3.5303
                                                  2570.94
  49.738
           580.82
                     477.93
                                 3.4040
                                             0.0
                                                   2568.28
                                                                         16 6 2 4
  48.433
           589.21
                     476.02
                                 3.1936
                                             0.0
                                                   2581.43
                                                                         16 6 2 5
                                 0.728 9.28E-6
                                                                         16 7
2503.57
           (.46231 62.301
  0.0
           432.938
                     406.916
                                 3.6088 2509.2
                                                  2510.07
                                                                         16 7 1 1
           436.266
                                 3.6592 2510.2
                                                                         16 7 1 2
  0.0
                     406.441
                                                  2503.06
                                 3.5303 2500.7
                                                                         16 7 1 3
  0.0
           435.274
                     405.613
                                                   2488.64
                                 3.4040 2507.5
                                                   2517.40
  0.0
           435.088
                     405.038
                                                                         16 7 1 4
                                                                         16 7 1 5
 -0.0
        ---435.089
                     404.634 ----
                                3-2345 -2503-7
                                                   2498.70
  67.873
           568.28
                     494.58
                                 3.5046
                                            0.0
                                                   2510.07
                                                                         16 7 2 1
                                                   2503.06
  56.272
           562.36
                     486.93
                                 3.6592
                                             0.0
                                                                         16 7 2 2
  52.389
           565.41
                     486.43
                                 3.5303
                                            0.0
                                                   2488.64
                                                                         16 7 2 3
  50.917
           583.53
                     478.74
                                 3.4040
                                             0.0
                                                   2517.40
                                                                         16 7 2 4
  48.865
           595.05
                     480.01
                                 3.1936
                                          0.0
                                                   2498.70
                                                                         16 7 2 5
```

•										
0.0	436.516	407.514	3.6592	2509.5	2457.55	• 1	16	8	1	2
0.0	435.630	406.987	3.5303	2510.0	2462.61		16	8	1	3
G • G	435.363	406.887	3.4040	2494.5	2452.32		16	8	1	4
0.0	425.330	405.458	3.2345	2495.2	2444.27		16	8	1	5
70.366	566.82	495.00	3.5046	0.0	2437.68		16	8	2	1
58.842	564.29	490.06	3.6592	0.0	2457.55		·1ò	8	2	2
53.136	573.31	485.66 .	3.5303	0.0	2462.61		- 16	3	2	3
50.962	585.06	483.59	3.4040	0. ö	2452.32		16	8	2	4
48.672	601.23	483.52	3.1936	0.0	2444.27		16	8	2	5
2291.91	C.42302	62.300	0.732	9.28E-6	•		16	9		
0.0	434.803	411.662	3.6088	2511.2	2302.74		16	9	1	1
0.0	437.664	411.513	3.6592	2511.0	2280.02	•	16	9	1	2
0.0	437.068	411.889	3.5303	2496.7	2259.82		16	9	1	3
C.O	437.081	410.269	3.4040	2506.5	2312.67		16	9	1	4
C • O	435.902	409.844	3.2345	2512.0	2304.32		. 16	9	1	5
71.874	580.16	500.99	3.5046	0.0	2302.74		16	9	2	1
62.456	569.33	491.97	3.6592	0.0	2280.02		16	9	2	2
55.849	58C.37	488.49	3.5303	0.0	2259.82	•	16	9	2	3
52.114	598.10	486.13	3.4040	0.0	2312.67		16	9	2	4
50.445	606.73	486.90	3.1936	0.0	2304.32		16	9	2	5
2450.89	(.45306	62.301	0.731	9.28E-6			16	8		
0.0	433.725	408.444	3.60'88	2509.0	2437.68		16	8	1	1.

APPENDIX F

PARAMETER EQUATIONS

The equations used in calculating parameters are presented. All symbols are defined in appendix A. The sign convention is shown in figure 14. Integrals are approximated by finite summations. Also, in several instances, different formulae for calculating the value of a particular parameter for a rotor, stator, or stage are required.

Figure 14. - Sign convention for blade-element parameters. Absolute tangential component of velocity is positive (+) in direction of blade velocity for stators and rotors; relative tangential component of velocity is positive (+) in direction opposite to blade velocity for stators and rotors.

Blade-Element Parameter Equations

Spanwise location as fraction of total passage height from annulus outer surface, FLOHIT(I1, J1):

$$FFT_1 = \frac{r_{1,t} - r_{1}}{r_{1,t} - r_{1,h}}$$
 (F1)

$$FFT_2 = \frac{r_{2, t} - r_{2}}{r_{2, t} - r_{2, h}}$$
 (F2)

Spanwise location as fraction of tip radius, RRT(II, J1):

$$RR_1 = \frac{r_1}{r_{1,t}} \tag{F3}$$

$$RR_2 = \frac{\mathbf{r_2}}{\mathbf{r_2, t}} \tag{F4}$$

Absolute fluid velocity, XV(L1, I1, J1):

$$V_1 = \sqrt{2g_c(H_1 - h_1)}$$
 (F5)

$$V_2 = \sqrt{2g_c(H_2 - h_2)}$$
 (F6)

Tangential component of absolute fluid velocity (see fig. 14 for sign convention), VU(L1, I1, J1):

$$V_{\theta, 1} = V_1 \sin \beta_1 \tag{F7}$$

$$V_{\theta, 2} = V_2 \sin \beta_2 \tag{F8}$$

Axial component of fluid velocity, VZ(L1, I1, J1):

$$V_{z, 1} = V_1 \cos \beta_1 \tag{F9}$$

$$V_{z,2} = V_2 \cos \beta_2 \tag{F10}$$

Total-head rise, DELTAH(L1, I1, J1):

$$\Delta H = H_2 - H_1 \tag{F11}$$

Static-head rise, DELTAP(L1, I1, J1):

$$\Delta h = h_2 - h_1 \tag{F12}$$

Blade velocity at blade-row inlet, U1(L1, I1, J1):

$$U_1 = r_1 N\pi/360.0$$
 (F13)

Blade velocity at blade-row outlet, U2(L1, I1, J1):

$$U_2 = r_2 N\pi/360.0 (F14)$$

Tangential component of inlet relative fluid velocity (see fig. 14 for sign convention), VUP1(L1, I1, J1):

$$V'_{\theta, 1} = U_1 - V_{\theta, 1}$$
 (F15)

Tangential component of outlet relative fluid velocity (see fig. 14 for sign convention), VUP2(L1, I1, J1):

$$V'_{\theta,2} = U_2 - V_{\theta,2} \tag{F16}$$

Inlet relative fluid velocity, XVP1(L1, I1, J1):

$$V_1' = \sqrt{(V_{\theta,1}')^2 + (V_{z,1})^2}$$
 (F17)

Outlet relative fluid velocity, XVP2(L1, I1, J1):

$$V_2' = \sqrt{(V_{\theta,2}')^2 + (V_{z,2})^2}$$
 (F18)

Reynolds number, REC(L1, I1, J1):

$$Re_{\mathbf{C}} = \frac{cV_{\mathbf{1}}^{\mathsf{T}}}{12.0 \ \nu} \tag{F19}$$

Inlet relative axisymmetric flow angle (see fig. 14 for sign convention), BETAP1(L1, I1, J1):

$$\beta_1' = \frac{180.0}{\pi} \sin^{-1} \frac{V_{\theta, 1}'}{V_1'}$$
 (F20)

Outlet relative axisymmetric flow angle (see fig. 14 for sign convention), BETAP2(L1, I1, J1):

$$\beta_2' = \frac{180.0}{\pi} \sin^{-1} \frac{V_{\theta, 2}'}{V_2'}$$
 (F21)

. .

Incidence angle (see fig. 14 for sign convention), FNC1(L1, I1, J1):

$$i = \left| \beta_1' \right| - \left| \kappa_1 \right| \tag{F22}$$

Deviation angle for rotor (see fig. 14 for sign convention), DEL2(L1, I1, J1):

$$\delta_{\mathbf{R}} = \beta_{\mathbf{2}, \mathbf{R}}' - \kappa_{\mathbf{2}, \mathbf{R}} \tag{F23}$$

Deviation angle for stator (see fig. 14 for sign convention), DEL2(L1, I1, J1):

$$\delta_{\mathbf{S}} = \kappa_{\mathbf{2}, \mathbf{S}} - \beta_{\mathbf{2}, \mathbf{S}}' \tag{F24}$$

Diffusion factor for rotor, XD(L1, I1, J1):

$$D_{R} = 1 - \frac{V'_{2,R}}{V'_{1,R}} - \frac{r_{1,R}V_{\theta,1,R} - r_{2,R}V_{\theta,2,R}}{\sigma V'_{1,R}(r_{2,R} + r_{1,R})}$$
(F25)

Diffusion factor for stator, XD(L1, I1, J1):

$$D_{S} = 1 - \frac{V_{2, S}}{V_{1, S}} - \frac{r_{2, S}V_{\theta, 2, S} - r_{1}V_{\theta, 1, S}}{\sigma V_{1, S}(r_{2, S} + r_{1, S})}$$
(F26)

Head-rise coefficient for rotor, XPSI(L1, I1, J1):

$$\psi_{R} = \frac{g_{c}(H_{2,R} - H_{1,R})}{(U_{2,t,R})^{2}}$$
 (F27)

Head-rise coefficient for stage, XPSI(L1, I1, J1):

$$\psi_{\text{stage}} = \frac{g_{c}(H_{2, S} - H_{1, R})}{(U_{2, t, R})^{2}}$$
(F28)

Ideal head-rise coefficient for rotor, XPSII(L1, I1, J1):

$$\psi_{i,R} = \frac{U_{2,R}V_{\theta,2,R} - U_{1,R}V_{\theta,1,R}}{(U_{2,t,R})^{2}}$$
 (F29)

Ideal-head-rise coefficient for stage, XPSII(L1, I1, J1):

$$\psi_{i, \text{ stage}} = \frac{U_{2, R} V_{\theta, 1, S} - U_{1, R} V_{\theta, 1, R}}{\left(U_{2, t, R}\right)^2}$$
(F30)

Hydraulic efficiency for rotor, XEFF(L1, I1, J1):

$$\eta_{\mathbf{R}} = \frac{\psi_{\mathbf{R}}}{\psi_{\mathbf{i}, \mathbf{R}}} \tag{F31}$$

Hydraulic efficiency for stage, XEFF(L1, I1, J1):

$$\eta_{\text{stage}} = \frac{\psi_{\text{stage}}}{\psi_{\text{i, stage}}}$$
(F32)

Inlet flow coefficient for rotor, XPHI1(L1, I1, J1):

$$\varphi_{1,R} = \frac{V_{z,1,R}}{U_{1,t,R}}$$
 (F33)

Outlet flow coefficient for rotor, XPHI2(L1, I1, J1):

$$\varphi_{2,R} = \frac{V_{z,2,R}}{U_{z,t,R}}$$
 (F34)

Inlet flow coefficient for stator, XPHII(L1, II, J1):

$$\varphi_{1, S} = \frac{V_{z, 1, S}}{U_{1, t, R}}$$
 (F35)

1000

的医气管

3.50

Outlet flow coefficient for stator, XPHI2(L1, I1, J1):

$$\varphi_{2, S} = \frac{V_{z, 2, S}}{U_{1, t, R}}$$
 (F36)

Total-head loss coefficient for rotor, OMEGB(L1, I1, J1):

$$\overline{\omega}_{R} = 2(\psi_{i,R} - \psi_{R}) \frac{(U_{2,t,R})^{2}}{(v'_{1,R})^{2}}$$
 (F37)

Total-head loss coefficient for stator, OMEGB(L1, I1, J1):

$$\overline{\omega}_{S} = -2g_{c} \frac{H_{2, S} - H_{1, S}}{(V_{1, S})^{2}}$$
 (F38)

Wake momentum thickness parameter for rotor, TCA(L1, I1, J1):

$$(\theta/c)_{A,R} = \frac{\overline{\omega}_R \cos \beta'_{2,R}}{2\sigma_{D}}$$
 (F39)

Wake momentum thickness parameters for stator, TCA(L1, I1, J1):

$$(\theta/c)_{A, S} = \frac{\overline{\omega}_S \cos \beta_{2, S}}{2\sigma_S}$$
 (F40)

Mass-Averaged Parameter Equations

Head-rise coefficient for rotor, RHRCO(L1, I1):

$$\overline{\psi}_{R} = \frac{\sum_{J1=1}^{J1=J} \psi_{R, J1} V_{z, 2, R, J1} \Delta A_{2, R, J1}}{\sum_{J1=1}^{J1=J} V_{z, 2, R, J1} \Delta A_{2, R, J1}}$$
(F41)

Head-rise coefficient for stage, RHRCO(L1, I1):

$$\overline{\psi}_{\text{stage}} = \frac{\sum_{J1=1}^{J1=J} \psi_{\text{stage, J1}} V_{z, 2, S, J1} \Delta A_{2, S, J1}}{\sum_{J1=1}^{J1=J} V_{z, 2, S, J1} \Delta A_{2, S, J1}}$$
(F42)

Ideal head-rise coefficient for rotor, RHRCOI(L1, I1):

$$\overline{\psi}_{i,R} = \frac{\sum_{J1=1}^{J1=J} \psi_{i,R,J1} V_{z,2,R,J1} \Delta A_{2,R,J1}}{\sum_{J1=1}^{J1=J} V_{z,2,R,J1} \Delta A_{2,R,J1}}$$
(F43)

Ideal head-rise coefficient for stage, RHRCOI(L1, I1):

$$\overline{\psi}_{i, \text{ stage}} = \frac{\sum_{J1=1}^{J1=J} \psi_{i, \text{ stage, } J1} V_{z, 2, S, J1} \Delta A_{2, S, J1}}{\sum_{J1=1}^{J1=J} V_{z, 2, S, J1} \Delta A_{2, S, J1}}$$
(F44)

Hydraulic efficiency for rotor, RMAE(L1, I1):

$$\frac{\overline{\eta}_{R}}{\overline{\eta}_{i,R}} = \frac{\overline{\psi}_{R}}{\overline{\psi}_{i,R}}$$
 (F45)

Hydraulic efficiency for stage, RMAE(L1, I1):

$$\overline{\eta}_{\text{stage}} = \frac{\overline{\psi}_{\text{stage}}}{\overline{\psi}_{i, \text{ stage}}}$$
(F46)

Net positive suction head (rotor only), HSVB(L1, I1):

$$\overline{H}_{SV} = \frac{\sum_{J1=1}^{J1=J} (H_{1, R, J1} - h_{v, J1}) V_{z, 1, R, J1} \Delta A_{1, R, J1}}{\sum_{J1=J}^{J1=J} V_{z, 1, R, J1} \Delta A_{1, R, J1}}$$
(F47)

Integrated and venturi-metered flow-rate comparison at blade-row inlet, QERR1(L1, I1):

$$FRC_{1} = \frac{\left\{ \sum_{J1=1}^{J1=J} V_{z, 1, J1} \Delta A_{1, J1} \left(\frac{720.0}{231.0} \right) \right\} - Q_{v, a}}{Q_{v, a}}$$
 (F48)

Integrated and venturi-metered flow-rate comparison at blade-row outlet, QERR2(L1, I1):

$$FRC_{2} = \frac{\left\{\sum_{J1=1}^{J1=J} V_{z, 2, J1} \Delta A_{2, J1} \left(\frac{720.0}{231.0}\right)\right\} - Q_{v, a}}{Q_{v, a}}$$
(F49)

Average Parameter Equations

Average venturi-metered flow rate, GPMA(L1) (calculated external to the program and read in):

$$Q_{v, a} = \frac{\sum_{J1=1}^{J1=J} Q_{v, J1}}{J}$$
 (F50)

Average rotational speed, RNA(L1, I1):

$$N_{a} = \frac{\sum_{J1=1}^{J1=J} N_{J1}}{J}$$
 (F51)

Average blade-tip velocity at rotor inlet, UTIP1A(L1, I1):

$$U_{1, t, a} = \frac{\sum_{J=1}^{J=1} U_{1, t, J1}}{J}$$
 (F52)

Average blade-tip velocity at rotor outlet, UTIP2A(L1, I1):

$$U_{2, t, a} = \frac{\sum_{J=1}^{J=J} U_{2, t, J1}}{J}$$
 (F53)

Average flow coefficient, PH1B(L1) (calculated external to the program and read in):

$$\overline{\varphi} = \frac{144.0 \text{ Q}_{\text{v, a}}}{448.8\pi \left(r_{1, \text{t}}^2 - r_{1, \text{h}}^2\right) U_{1, \text{t}}}$$
(F54)

Average ideal flow coefficient (design calculation parameter not used in computer program):

$$\overline{\varphi}_{i} = \frac{144.0 Q}{448.8\pi \left[r_{1,t}^{2} - r_{1,h}^{2}\right] U_{1,t}}$$
 (F55)

TABLE 1. - OVERALL ROTOR DESIGN PARAMETERS

						25 4	: ; .		<u>_</u>		3 .	ء ۾ .	
Minimum blade- chord Reynolds number, Re _c	1.0×10 ⁶	1.5	ன் . [*]	1.5	1.5 8.0×10 ⁵	8.0	1.0×10 ⁶	1.5	1.5	1.0			•
Refer- ences	None	1, 2	None	3, 4	None		-	2	9	None			
Experimental flow coefficient to use when comparing data with design values, $\frac{\sigma}{\varphi}$	0.284	. 284	284	. 452	452	. 435	491	. 670	. 460	. 491	ş.	400	,•
Radial tip clearance, in.	0.013 to 0.020	0.005 to 0.012	0.013 to 0.020	0.015 to 0.017	0.025 to.0.027 0.007 to 0.009	0.015 to 0.017 0.022 to 0.024	0.009 to 0.011	0.009 to 0.011	0.009 to 0.010	0.009 to 0.011	ımeter.		
Number of blades, NB	16	19	. · · · · · · · · · · · · · · · · · · ·	19			33	19	.‱. .‱.		n. tip dia		L.
Blade chord, c, in.	1.50	1.52	3.04	1.50	1.50	. 833	1.17	1.50	1.50	1. ì7	ave a 9-i	•	
Blade- tip diffusion factor, D _t	0.24	. 43		99.	<u> </u>		0.72	. 63	. 56	.72	rations h	•	
Energy addition distribution	Approximately radially constant	Radially constant	Approximately radially constant	Increasing hub	·:		Radially constant	Radially constant	Increasing hub to tip	Radially constant	All other configurations have a 9-in, tip diameter	447 T	
Average ideal head-rise coeffi-	0.161	. 294		. 460,			0.7225	. 645	. 393	0.7225	tip diameter.		
Average hydraulic efficiency,	0.90	. 917		. 928	3	- 	None	0,865	. 929	None .		o greek Organis	ġ,
Average head-rise coeffi-cient,	0.145	. 269		0.427	-,		None -	0.558	. 365	None	9, and 10 have a 5-in.		
Hub-tip Average radius ideal ratio, a flow r_h/r_t coefficient, $\overline{\phi}_i$	0.293	. 294	. 294	. 466			0.500	. 700	. 466	. 500			
	0.4	. 7	2.	æ.			. 85	6.	ω .	. 85	aConfigurations 8,		
Config- uration	02	20	60	ഗ	ပ ထ	9	13A	14A	15	16	^a Configu		

^aConfigurations 8, 9, and 10 have a 5-in. tip diameter. All other configurations have a 9-in. tip diameter.

TABLE II. - DESIGN VELOCITY DIAGRAM PARAMETERS

	- :-				<u> </u>		<u> </u>		
Configuration		Inlet flow	Exit flow	Relative	1 –	Head-rise	Ideal	D-factor,	Loss
	ratio,	coeffi-	coeffi-	inlet	relative	coeffi-	head-rise	D	coeffi-
. ,	$^{\mathbf{r}/\mathbf{r}}_{t}$	cient,	cient,	flow	flow	cient,	coeffi-	ļ	cient,
		$arphi_1$	$arphi_{f 2}$	angle,	angle,	ψ	cient,		$\overline{\omega}$
				β_{1}' ,	Δβ',		$\Psi_{\mathbf{i}}$		
				deg	deg				
02	1.00	0.293	0.293	73.6	2.8	0.288	0.320	0.238	0.030
	. 90	1	1	71.9	4.2	. 291	. 323	. 279	. 036
	. 80			69.8	6.1	. 291	. 324	. 331	. 045
	.70			67.2	9.4	. 291	. 323	. 397	. 056
•	. 60			63.8	15.1	. 288	. 320	. 479	. 072
	. 50			59.5	27.6	. 286	. 318	. 568	. 095
-	. 40		. ▼	53.6	52.9	. 288	. 316	. 591	.129
07	1.00	0.294	0.233	73.6	1.8	0.238	0. 294	0.426	0.100
]	. 95		. 305	72.8	8.4	. 279		. 433	. 030
	. 90		. 312	71.9	10.4	. 281		. 464	. 025
	. 85		. 308	70.9	12.5	. 280		. 505	. 032
	. 80		. 297	69.8	14.4	. 273		. 555	. 055
İ	.75		. 281	68.6	16.8	. 263		. 615	. 090
	.70	*	. 254	67.2	19.5	. 249	🔻	. 693	. 150
5, 6, 8, 9, 10	1.00	0.466	0.415	65.0	16.0	0.438	0.533	0.664	0.1396
3,3,3,3,	. 95	1	. 457	63.9	20.2	. 437	.488	. 632	. 0906
	. 90		. 499	62.6	24.2	. 439	. 454	. 595	. 0291
	. 85		. 479	61.3	25.5	. 414	. 429	. 614	. 0319
	. 80	♦	. 454	59.8	26.7	. 387	. 403	. 631	. 0364
13A, 16	1.00	0.500	0.500	63.4	34.4		0.723	0.725	
	. 975	1		62.9	37.8			.737	-
	. 950			62.2	41.5			.748	-
	. 925			61.6	45.6			.756	
	900			61.0	50.0			.762	
	. 875			60.3	54.6			.763	<i>-</i>
	. 850	▼	♦	59.5	59.5		♥	.761	
14A	1.000	0.700	0.692	55.0	27.8	0.552	0.645	0.627	0.125
	. 975		. 696	54.3	30.0	. 555		633	. 125
	. 950		700	53.6	32.4	. 558		. 637	. 125
	. 925		.704	52.9	35.0	. 561		. 640	. 125
	. 900	j ∀	.708	52.1	37.6	. 564	j †	. 641	. 125
15	1.00	0.466	0.425	65.0	11.2	0.350	0.420	0.556	0.1152
	. 95	1	. 448	63.9	13.9	. 357	. 395	.526	. 0690
	. 90		. 473	62.6	17.8	. 365	. 388	.536	. 0437
	. 85		. 491	61.3	22.2	. 373	. 384	536	. 0240
	80		488	598	26.5	371	383	555	0266
<u> </u>	l	l	L	l	<u> </u>		L	L	L

TABLE III. - BLADE DESIGN PARAMETERS

[Leading- and trailing-edge radii are radially constant at 0.010 in., except configurations 8, 9, and 10 (0.0055 in.) and configurations 13A and 16 (linear variation from 0.0096 in. at tip to 0.0113 in. at hub).]

Configuration	Pading	Incidence	Dovintion	Camber	Blade	Solidity.	Ratio of
Comiguration	ratio,	angle,	angle,	angle.	setting	σ	maximum
	r/r _t	i,	δ,	σ^0 .	angle,	Ů	thickness
	*/*t	deg	deg	deg	ľ		to chord,
1		aeg	ueg	ueg)′. deg		
					шев		t _{max} /c
02	1.00	0.7	3.4	5.4	70.2	0.84	0.070
1	. 90	. 6	3.8	7.2	67.6	. 94	. 075
	. 80	, 6	4.5	9.8	64.1	1.05	. 080°
	. 70	. 7	5.5	13.9	59.4	1.20	. 085
	. 60	.7	7.0	21.3	52.5	1.40	. 090
	. 50	1.3	9.0	35.2	40.6	1.68	. 095
ļ	. 40	3.0	11.6	61.4	20.0	2.11	. 100
07	1.00	6.4	4.6	0	67.1	1.01	0.0700
	. 95	2.0	5.4	11.8	64.9	1.06	. 0725
	. 90	. 9	6.9	16.4	62.8	1.12	. 0750
	. 85	. 5	7.8	19.8	60.5	1.19	. 0775
	. 80	. 6	8.3	22. İ	58.2	1.26	. 0800
ţ .	.75	1.0	8.8	24.6	55.3	1.35	. 0825
	. 70	1.2	9.3	27.6	52.2	1.44	. 0850
5, 6, 8, 9, 10	1.00	-3.5	7.5	27.0	55.0	1.00	0.070
	. 95	-4.8	11.0	35.8	50.7	1.05	. 075
	. 90	-5.1	13,7	42.7	46.2	1.11	. 080
1	. 85	-3.4	13.8	42.6	43.3	1.18	. 085
	. 80	-1.7	15.0	43.4	39.8	1.25	. 090
13A	1.00	-7.2	13, 1	54.7	43.2	1.37	0.0540
	. 975	-7.3	15.7	60.8	39.7	1.40	. 0578
	. 950	-7.5	18.1	67.1	36.2	1.44	.0618
]	. 925	-7.6	19.7	72.8	32.8	1.48	. 0660
	. 900	-7.7	21.4	79.0	29.1	1.52	. 0707
	. 875	-7.8	22.5	85.0	25.6	1.56	. 0757
,	. 850	-8.3	23.5	91.3	22.2	1.61	. 0810
14A	1.000	-8.6	16.7	53.3	37.0	1.00	0.0700
] .	. 975	-8.5	17.1	55.7	35.0	1.03	. 0713
	. 950	-8.5	17.5	58.4	32.9	1.05	. 0725
	. 925	-8.5	.17, 8	61.2	30.7	1.08	. 07 37
	. 900	-8.3	18.2	63.9	28.4	1.11	. 0750
15	1.00	-3.5	10.5	25.1	55.9	1.00	0.070
J J	. 95	-2.4	9.7	26.0	53.3	1.05	. 075
·	. 90	-1.7	9.5	29.0	49.8	1.11	. 080
j l	. 85	-1.0	9.1	32.3	46.1	1.18	. 085
	. 80	. 3	8.5	34.7	42.1	1.25	. 090
16	1.000	-7.2	13.1	54.7	48.4	1.37	0.0540
	. 975	-7.3	15.7	60.8	46.7	1.40	. 0578
	. 950	-7.5	18.1	67.1	45.0	1.44	. 0618
j i	. 925	-7.6	19.7	72.8	43.2	1.48	. 0660
	. 900	-7.7	21.4	79.0	41.2	1.52	. 0707
	. 875	-7.8	22.5	85.0	39. 1	1.56	. 0757
	. 850	-8.3	23.5	91.3	36.9	1.61	. 0810
·							

UTIA FPS 153.105 153.628 153.628 153.883 153.848 153.883 153.687 153.687 151.267 141.2247	78 141.850 79 141.461 59 141.488
	8 6 6 6 6
R PMA 3898. 797 3909. 098 3912. 098 3912. 699 3917. 699 3913. 598 3913. 598 3595. 837 3595. 837	3612, 178 3602, 279 3602, 959
FRC2 0.039 0.032 0.017 0.017 0.017 0.011 -0.001 FRC2 FRC2 -0.004	-0.015 -0.012 0.019
PRC1 -0.018 -0.020 -0.019 -0.017 -0.018 -0.016 -0.016 -0.018 -0.026 -0.024 -0.028	-0.027 0.008 0.004
M	187,095 161,134 161,198
BLE IV 11 AMETER, TIP CLEAR, ROTOR EFFB -82231 -882827 -906446 -902530 -918964 -948716 -948716 -11P CLEAR ROTOR ROTOR EFFB -819358 -819358	0.908948 0.924421 0.898647
	0.250425 0.271067 0.313286
TION 02 TION 02 TION 02 TO 0.013-0.0 TO COEFICI TO COEF	0,-227623 C-25058C O-281533
NASA CONFIGURATION 02 10.4 HUB-TIP RATIG, 16 ELADES, 9-INCH TO 10.24 DESIGN TIP D-FACTCR, DOUBLE CIRCULAR ARC BLADE PROFILE, 10.293 DESIGN TED D-FACTCR, 10.293 DESIGN TED D-FACTCR, 10.293 DESIGN TED D-FACTCR, 10.337000 0.101020 0.127422 10.337000 0.101020 0.127422 10.35000 0.112376 0.138759 10.35000 0.12376 0.152519 10.25000 0.124280 0.152519 10.262000 0.154756 0.177468 10.273000 0.154756 0.1778709 10.262000 0.164227 0.178709 10.262000 0.164287 0.178709 10.262000 0.164857 0.178768 10.43 DESIGN TIP RATIGN 19 BLADES; 9-INCH TO 10.5-INCH CHORD, 0.005-0.012-INCH RAD 10.43 DESIGN TIP D-FACTCR, 10.43 DESIGN TIP P-FACTCR, 10.43 DESIGN TIP P-FACTCR, 10.43 DESIGN TIP P-FACTCR, 10.44 DESIGN TIP P-FACTCR, 10.45 DESIGN TIP P-FACTCR, 10.45 DESIGN TIP P-FACTCR, 10.46857 0.182897 10.45510 0.12096 0.182897 10.380790 0.196333 0.214450	0.324250 0.302220 0.284130

NA SA CONFIGURATION 09	RATICN 09								
0.7 HUB-TIP RATIO,	RATIO, 8 BLA	8 BLADES, 9-INCH T	TIP DIAMETER,		-		•		
3.04-INCH CH	3.04-INCH CHORD, 0.013-0.020-INCH R	œ	ADIAL TIP CLEARANCE,	INCE.					
DOUBLE CIRCUL 0.294 DESIGN	DOUBLE CIRCULAR ARC BLADE PROFILE, 0.294 DESIGN FLCW CCEFFICIENT,	PROFILE. I ENT.							
מפואטוא וטא	• acroa	90109	0 TO	avou	100	EPC2	V N CI CI	41711	11 2 A
PHEB	PSTP	PSTIB	. EFFB	13.F	104	7 2 -	45.4	S d H	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.404500	0.111263	0.128487	0.865950	169,114	-0.063	-0.038	3600.000	141,372	141,372
0.381490	0.141924	0.151052	0.939573	168,941	-0.068	-0.035	3600.000	141,372	141:372
0.359480	0.168255	0.178739	0.941345	169,203	690.0-	-0.036	3600,000	141.372	141.372
0.325400	0.213363	0.222154	0.960428	169.296	-0.073	-0.033	3,600,000	141.372	141.372
0.301480	0.240548	0.251554	0.957836	169,670	-0.069	-0.027	3600.000	141.372	141.372
0.285470	0.261675	0.276518	0.946321	169,959	-0.067	-0.016	3600,000	141.372	141.372
0,267880	0.284588	0.309161	0.921811	170,199	-0.066	-0.012	3600,000	141,372	141.372
0.253030	0.301638	0.333904	0.903366	170,560	-0.064	-0.007	3600.000	141.372	141.372
0.250020	0.300132	0.334525	0.897189	170.754	-0.042	900.0-	3600,000	141.372	141.372
			٠						٠
	r							•	
				•					
NASA CONFIGU	RATION 5								
0.8 HUB-TIP	RATIO, 19 BLA		TIP DIAMETER,	-	•				
1. 5- INCH CHO	1.5-INCH CHORD, 0.016-INCH RACIAL II	σ.	P CLEARANCE,	·					.:
0.66 CESIGN	TIP D-FACTCR,								
DOUBLE CIRCU	DOUBLE CIRCULAR ARC BLADE PROFILE,	PROFILE,						٠	
C. 466 DESIGN	C. 466 DESIGN FLOW COEFFICIENT.	I ENT.			***			•	
PEPORTED IN	NASA TN D-302	TN D-	3602.	•					
	RCTOR	ROTOR	ROTOR	HSV8	FRC1	FRC2	RPMA	UTIA	UT2A
PH I B 1	PSIE	PSIIB	EFF8	FT				FPS	FPS
0.606800	0.263254	0.257436	0.885079	237.613	-0.004	0.021	3010.156	118.208	118,208
0,573210	0.307428	0.325829	0.943525	238.538	-0.003	0.027	3006,469	118,064	118.064
0.524150	0.343206	0.357096	0.961105	239,537	+00.0-	0.021	3013,441	118,338	118,338
0.484630	0.369854	0.388136	0.953002	240.180	-0.004	0.014	3013.028	118,321	118,321
0.450980	0.392489	0.411072	0.954793	240.550	-0.005	0.022	3011, 784	118.272	118,272
0.409180	0.413616	0.437054	0.946374	242.368	+00•0-	0.022	3008.085	118.127	118.127
0.378550	0.425092	0.452229	0.939992	. 242.512 .	-0.012	0.040	3007.298	118.096	118.096
			•						

TABLE IV. - Continued. OVERALL PERFORMANCE PARAMETERS

·	UT2A FPS	117.704	117.830	117.523	118.082	117,837	118.119	117.648		100	4210 FPC	117,669	118.005	117,469	117,575	117.584	117.576	117.654	117,406	117.561	117.600
	UT1A FPS	117.704	117,830	117.523	118.082	117,837	118,119	117.648		* * * * * * * * * * * * * * * * * * * *	4 4 4	117.669	118.005	117,469	117.575	117.584	117.576	117,654	117.406	117,561	117.600
	RPMA	2997.313	3000.513	2992, 713	3006.942	3000.698	3007,883	2 995. 885		6	4 E L	5374,203	5389.570	5365,063	5369,926	5370,344	5369,969	5373, 535	5362.191	5369, 262	5371.043
	FRC2	0.007	000 0	-0.014	-0.011	900*0-	0.011	0.016			2787	-0.019	-0.028	-0.047	-0.015	-0.007	-0.012	-0.012	-0.022	-0.041	-0.046
	FRC1	-0.007	-0.010	-0.010	-0.008	-0.015	-0.015	-0.013	٠.		TACE	-0.042	-0.039	-0.038	-0.042	-0.038	-0.039	-0.041	-0.037	-0.034	-0.036
	HSVB FT,	274.432	275.249	272.287	273.068	273,901	274.514	274.290			0 Y C	262.159	263.348	262.673	267.596	267.941	269.278	269.731	270,116	270.633	271,303
TIP DIAMETER, CLEARANCE,	. ROTOR EFFB	0.910676	0.934168	0.943579	0.954400	0.948999	0.952746	0.932755	IP DIAMETER, P CLEARANCE,	00100	70 - 07 8 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	0.842516	0.887890	0.912421	1.003210	0.979633	0.971214	0.961694	0.946804	0.931610	0.927387
ES, 9-INCH TII RAGIAL TIP CI PROFILE,	ROTOR PSIIB	0.291669	0.320479	0.354300	0.377325	0.405634	0.424944	0.441486	ES, 5-INCH TIF CH RACIAL TIP PROFILE,	00100	P. 1.13	0.288483	0.309365	0.331385	0.329622	0.367209	0.396076	0.420304	0.434248	0.446736	0.453839
ATICN 6 ATIO, 19 BLAD 0, 0.026-INCH IP D-FACICR, AR ARC BLADE FUCW COEFFICI	ROTOR	0.265615	0.299381	0.334310	C. 360119	0.384946	0.404864	0.411798	ATICN 8 ATION 19 BLADI SRD, 0.008-IN IP D-FACTCR, AR ARC BLADE		4010d	0.243051	0.274682	0.302363	0.330680	0.359730	0.384675	0.404204	0.411147	0.416183	0.420885
NASA CONFIGURATION 6 0.8 HUB-TIP RATIO, 19 BLADES, 9-INCH 1.5-INCH CHORD, 0.026-INCH RACIAL TIP 0.66 DESIGN TIP D-FACTCR, DOUBLE CIRCULAR ARC BLADE PROFILE, 0.466 DESIGN FÜCW COEFFICIENT.	181 Hd	0.666860	0,574350	0,527340	0,488250	0,446660	0,408950	0.387470	NASA CONFIGURATION 8 0.83 HUB-TIP RATIO, 19 ELADES, 5-INCH T 0.834-INCH CHORD, 0.038-INCH RACIAL TII 0.66 DESIGN TIP D-FACTCR, DOUGLE CIRCULAR ARC BLADE PROFILE, 0.466 DESIGN FLOW COEFFICIENT.	NOI KEPUKIEU.	PHIRI	0.638210	0,617040	0,553430	0.555950	0.525290	0,488610	0,455770	0.432130	0,407050	0,383760

	FPS 118.013 118.013 117.999 117.569 117.569 117.759 117.795 117.742	UT2A FPS 117.734 117.849	117.693 117.6137 117.637 117.561 117.614 117.797
	FPS 118.013 118.013 117.999 117.662 117.569 117.725 117.882 117.742	UT1A FPS 117-734 117-678	117.693 117.613 117.637 117.561 117.614 117.6797
. ,	5389, 902 5394, 727 5389, 273 5373, 879 5369, 625 5376, 770 5379, 961 5377, 527	R P M A 5377.195 5374.609	5375, 253 5385, 375 5372, 766 5369, 266 5371, 707 5380, 039
·	-0.012 -0.009 -0.008 -0.018 -0.034 -0.003 -0.012	F RC 2 0.004	0.006 0.008 0.008 0.011 0.011 0.007
	-0.029 -0.026 -0.026 -0.026 -0.033 -0.033 -0.033	FRC1 -0.034 -0.027	-0.031 -0.031 -0.031 -0.031 -0.032
	FT 264.927 265.745 265.781 266.672 267.431 268.030 268.785 269.082 269.487	HSVB FT 263.429 263.882 264.227	264.464 265.355 265.971 266.501 267.228 267.438
IP DIAMETER, IP CLEARANCE,	EFF9 0.824290 0.862310 0.8662310 0.966398 0.953131 0.923982 0.927071	ROTOR EFFB 0.827435 0.8274041	0.921389 0.921389 0.917704 0.896182 0.896121 0.878660
 	PSIIB 0.281966 0.281966 0.331130 0.362933 0.362933 0.403483 0.418327 0.429903		0.308837 0.336957 0.360274 0.38568 0.358171 0.406439
NASA CONFIGURATICN 9 0.8 HUB-TIP RATIO, 19 BLADES, 5-INCH 0.834-INCH CHORD, 0.016-INCH RACIAL T 0.66 DESIGN TIP D-FACTGR, DOUBLE CIRCULAR ARC BLADE PROFILE, 0.466 DESIGN FLCW CCEFFICIENT.	PHIBI PSIB 37510 0.232421 20850 0.257081 94040 0.287009 52190 0.313570 23150 0.345922 88610 0.363269 81860 0.389714 304720 0.389752	0.834-[NCH CHORD, 0.023-INCH RACIAL 0.66 DESIGN TIP C-FACTGR, 0.466 DESIGN FLCW CGEFFICIENT. NOT REPORTED. RGTOR. PHIBI PSIB 0.231265 0.279496 0.619380 0.231265 0.279496	0.284559 0.3084559 0.324997 0.345539 0.354420 0.354122
NASA CONFIGURATION 9 0.8 HUB-TIP RATIO, 19 BLAD 0.834-INCH CHORD, 0.016-IN 0.66 DESIGN TIP D-FACTOR, DOUBLE CIRCULAR ARC BLADE 0.466 DESIGN FLOW CCEFFICI	PH I B I 0. 6375 10 0. 620850 0. 594040 0. 592150 0. 523150 0. 4886 10 0. 430470 0. 4404720 0. 404720	0.834-10.4 CHORD, 0.00.30-10.5 9-10.5 0.834-10.4 CHORD, 0.00.30-10.4 RAGIAL TO.66 DESIGN TIP C-FACTOR, 0.466 DESIGN FLCW COEFFICIENT. NOT REPORTED. RGTOR ROTOR PSIIB PHIBI PSIE PSIE PSIE PSIE PSIE PSIE PSIE PSI	0.57470 0.552630 0.523160 0.487430 0.487430 0.427910

TABLE IV. - Concluded. OVERALL PERFORMANCE PARAMETERS

	UT2A FPS		118,759	118.299	118.462	118.372	118,377		UT2A	FPS	98.318	98. 80	98,353	98,433	98,391	98.401	98.421	98.318	894.86
	UT1A FPS	118,168	118,759	118,299	118.462	118.372	118,377		UT1A	FPS	98,318	082.80	98,353	98,433	98,391	98.401	98.421	98.318	98.468
	RPMA	3009,119	3024.180	3012,459	3016-619	3014,319	3014,459		R PMA		2503.659	2505-219	2504,540	2 50 6. 5 80	2505.520	2505, 759	2506, 259	2503.640	2501.479
	FRC2	-0.042	-0.040	-0.051	-0-0-0	-0.087	-0.104		FRC2	•	-0.049	F 70 0-	-0.039	-0.044	990.0-	-0.061	-0.070	-0.071	-0.041
	FRCI	-0.039	-0.041	-0.042	-0.042	-0.040	-0.044		FRC1:		-0.057	0000	-0.064	-0.061	-0.056	-0.061	090.0-	-0.059	-0.041
	HSVB FT	420.885	421.837	423.118	425, 775	426-619	427.911		HSVB	FT	432.654	432,895	432.949	433.547	433.669	434.009	434.228	434.604	435.799
P DIAMETER IAL TIP CLEARANCE	ROTOR EFF8	0.887306	0.924127	0.928149	0.957043	0.548596	0,911634	H TIP OLAMETER, TIP CLEARANCE,	ROTOR	EFF8	0.621319	0.482648	0.720556	0.756660	0.783755	0.809103	0.824739	0.838093	0.831856
T I R A D	ROTOR PSIIB	0.267124	0.305588	0.333438	0.3672610	0-428451	0.461873	DES, 9-INCH T CH RADIAL TIP T,	ROTOR	PSITB	0.508550	0.530411	0.544816	0.557436	0.565466	0.567056	0.573656	0.582237	0.610396
NASA CONFIGURATION 15 0.8 HUB-TIP RATIO,198LADES,9 INCH TIP DI 1.5 INCH CHORD,0.009-C.010 INCH RADIAL 0.556 DESIGN TIP D-FACTOR DOUBLE CIRCULAR ARC BLADE NOT REPORTED	ROTOR PSI8	0.237020	0.282403	0.3054.80	0.380291	0.406427	0.421059	NASA CONFIGURATION 16 0.85 HUB-TIP RATIO, 33 BLADES, 9-INC 1.172-INCH CHORD, 0.010-INCH RADIAL 0.72 CESIGN TIP D-FACTCR, 0.10 LACE PROFILE, 0.5 DESIGN FLOW COEFFICIENT, PREL IMINARY.	RCTOR	P.S.I.B.	0.315972	0.3680.0	0.392571	0.421790	0.443187	0.458807	0.473116	0.487568	791105-0
NASA CONFIGURATION 15 0.8. HUB-TIP RATIO:198LADE: 1.5 INCH CHORD:0.009-C.0 0.556 DESIGN TIP D-FACTOR DOUBLE CIRCULAR ARC BLADE 0.466 DESIGN FLCH COEFFIC NOT REPORTED	PHIBI	0.615520	0.569620	0.530560	0.47140	0.382630	0.349040	NASA CONFIGURATION IN 0.85 HUB-TIP RATIO. 1.172-INCH CHORD, O. 0.72 EFSIGN TIP D-FA CUBIC BLACE PROFILE, 0.5 DESIGN FLOW COEFI PRELIMINARY.		PH I 8 1	0.544320	0.528520	0.518320	0,502580	0.490240	0.475640	0.462310	0.453060	0.423020

TABLE V. - BLADE-ELEMENT DATA FOR CONFIGURATION 02

NASA, CONFIGURATION 02 0.4 HUB-TIP RATIC, 16 ELADES, 9-INCH TIP DIAMETER, 1.5-INCH CHORD, 0.013-0.020-INCH RADIAL TIP CLEARRNCE, 0.24 BESIGN TIP D-FACTOR, DOUBLE CIFCULAR ARC BLADE PROFILE, 0.293 DESIGN FLOW COEFFICIENT.	BLADE GECHETRIC PARAMETERS- BLADE ROW# 1 (ROTOR) 1 INDICATES LEADING EDGE, 2 INDICATES TRAILING EDGE
NASA, CONFIGUR 0.4 HUB-TIP F 1.5-INCH CHOR 0.24 DESIGN T DOUBLE CIRCUL 0.293 DESIGN NOT REPORTED.	 BLADE GECMETE 1 INDICATES I

	r T		•	16	4.500000	1.800000	4.500000	1.800000
				NBLADES	RTIP2 INCHES	RHUB2 INCHES	RTIF1 INCHES	RHUB1 INCHES
28.520	50.030	1.500000	0.08800.0	1.958800	3.500	1.950000	53.530	1.950000
32.700	45.400	1.500000	0.097000	1.863300	10.000	2.050000	55.400	2.050000
50,400	24.000	1,500000	0.091000	1.469100	38.400	2.600000	62.400	2.600000
20, 400	14.000	1.500000	0.085000	1.212600	52.400	3.150000	004.99	3.150000
65.000	9.000	1.500000	0.079000	1.032400	60.500	3.700000	69.500	3.700000
68.800	00 n · 9	1.500000	0.073000	0.898800	65.600	4.250000	72.000	4.250000
69, 390	6.020	1.500000	0.072000	0.878100	66.380	4.350000	72.400	4.350000
SETANG DEGREES	CAMBER DEGREES	CHORD	TMA X/C	SOLIBITY	KAPPA2 Degrees	R2 INCHES	KAPPA1 DEGREES	INCHES
								_

0.05555 0.96666/ 0.092593 0.944444 0.296296 0.82222 0.500000 0.700000	00.5	0.309658 0.326442 0.342442 0.350609	3898.800 3898.800 3898.800 3898.800	GPM 8602.602 8602.602 8602.602 8602.602	62, 150 62, 150 62, 150 62, 150	SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	0000	093E 07 061E 07 837E 07 615E 07			
	-3.764 -3.214 -2.286 3.286 3.369 1.267 1.06 2.098 4.829 10.717 12.390 2. INDICA	.352176 .353549 .344519 .344519 .364262 .372423 .372423 .372423 .372423 .37260	8988. 8988. 8988. .093 .111. .1124 .126 .126 .1278	8602.602 8602.602 8602.602 90.130360 0.130360 0.127814 0.127813 0.142503 HSVB HSVB	9. •	0.9280E 0.9280E 0.9280E 0.9280E 0.136315 0.053659 0.053659 0.069618 0.082765 114896	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		DELTA P FI 53.036 55.321 56.362 56.362 56.449 48.475 46.452	(TH/C) P 0.02681 0.01700 0.01720 0.020772 0.02821	UTZA FPS FPS

86C3. GALLONS PER MINUTE

PLOW RATE # 1

8314. GALLONS PER MINUTE

PLOW RATE # 2

ROTOR BLADE ELEMENT PAFAMETERS 1 INDICATES LEADING EDGE, 2 INDICATES TRAILING EDGE

.944445 0,433333 13.159 0.345709 0.131370 0.142949 0.919001 0.077411 0.494189 96.220 53;385 GED PARAMETERS ICATES LEADING EDGE, 2 INDICATES TRAILING EDGE ROTOR ROTOR ROTOR HSVB FRC1 FRC2 RPMA UT1A PSIE FSIE FFFB	703704. 0.5777 907445 0.4333 944445 0.455 907477 0.455 908593 0.9444 9074407 0.455 944446 0.5777 908593 0.9444 81 ADE LEADING 8.HI.1 R1/ 08 TIP 0.9666 095593 0.9444 095593 0.9444 095593 0.9444 095593 0.455 944445 0.455 944445 0.455 944445 0.455 9666 095593 0.9444 05593 0.9444	148. 393 144. 982 107. 457 88. 695 69. 932 66. 521 144. 582 107. 457 88. 695 69. 932 69. 932 107. 457 88. 695 69. 932 107. 457 88. 695 107. 457 88. 695 107. 457 88. 695 107. 457 88. 695 107. 457 88. 695 107. 457 88. 695 107. 457 88. 695 107. 457 88. 695 107. 457 88. 695 107. 457 88. 695 107. 497 107. 497 107. 497 107. 497 107. 497 107. 497 107. 497 107. 497	# 42.470 # 42.470 \$ 51.780 \$ 51.780 \$ 51.970 \$ 51.970 \$ 51.970 \$ 51.970 \$ 52.280 \$ 52.280 \$ 58.565 \$ 58.563 \$ 58.563 \$ 58.565 \$ 58.563 \$ 58.565 \$ 58.5	#8.490 50.700 51.270 51.270 51.270 51.270 51.270 51.270 51.270 51.479 51.479 51.470 51.479 51.470 51	mmxmwm 000000	90511446	152.376 136.021 102.739 87.314 83.961 130.062 1130.062	26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000 H 0000000 H 0000000 H 0000000	113.170 113.170 113.170 113.170 113.170 113.170 193.370 193.89	73.233 71.503 71.503 71.197 70.695 136.278 136.278 136.278 136.278 125.683 125.683 125.683 0.01979 0.01979 0.01979	12.78630 10.88560 10.88560 11.58600 12.885600 13.885600 13.885600 14.72760 15.885600 16.985600 17.58600 17.58600
DICATES LEADING EDGE, 2 INDICATES TRAILING EDGE ROTOR ROTOR ROTOR HSVB FRC1 FRC2 RPMA UT1A PHIET PSIE FSIE FIEB FT	0.907407 0.0.944445 0.46ED FARAMET	11.48	0.3645	0.131370	 -		061503 077411	0.458484 0.494189	96.840	54,988	0.01536	
	DICATES LEADING	EE, 2 INDIC	ES RE	EDG OR	S	. fr.	•		e.	UTTA	•	T2A FPS

ROTOR BLADE	ELEMENT P	TERS 2 INDIC	ATES TR	AILING EDGE								
PASS.HI.1 PRON.TIP 0.055555 2 0.092593 3 0.296296 4 0.500000 6 0.907407 7 0.994445	R1/RT 5 0.966667 3 0.944444 6 0.82222 0 0.577778 7 0.45555 5 0.433333	U148.507 148.507 145.093 126.316 107.539 88.763 69.986	44,350 49,320 50,390 50,390 50,590 49,270	VZ1 PS H4.350 H6.960 H9.320 50.390 50.590 H9.270	VTHH Y THH THH Y	BE 10.00.00.00.00.00.00.00.00.00.00.00.00.0	FPS 154,988 152,503 135,603 118,760 108,350 82,821	#TH1 FP8 148.507 116.316 107.539 89.986 69.986	BETAP1 73:372 72:065 69:672 64:893 60:114 54:149	H13.510 113.510 113.510 113.510 113.510 113.510	P1 82.943. 79.239- 74.050 73.736 73.755	STRTUB1 SQ IN 4, 72760 8, 44890 10, 88560 8, 98490 4, 41590 1, 58600
PASS.HT.2 PASS.HT.2 PROM TIP 0.055555 2 0.092593 3 0.296296 0.500005 6 0.907407	. 0000000	148.567 145.603 145.603 126.316 107.539 88.763 69.586	V2 FPS 55.074 56.099 57.893 60.660 64.364 72.154	1.7 V22 43.502 49.230 52.070 52.020 52.520 53.480	VTH2 FP2 28.624 26.897 25.305 32.305 37.207 48.437	BETA 33. DEG 28.650 25.919 32.170 42.167	#2 FPS. 127.5315. 128.039. 113.642 90.531 73.596. 57.659	#TH2 FPS 119.883 118.196 101.011 77.556 51.556 15.590	BETAP2 DEG 70.056 67.388 62.729 55.698 44.469 21.947	H2 FT 197.450 201.470 199.710 206.060 212.280	P2 FT 155.308 152.563 147.624 145.246 141.680 131.093	STRTUB2 SQ IN CO IN 4, 72760 8, 44890 10, 386560 8, 98490 4, 41590 1, 58600
ROTOR BLADE 4 INDICATES	ELEME	AMETERS E, 2 INDICAT	ATES TRAILING	ING EDGE			•					
PASS.HT. PROM TI 0.05555 2 0.09259 4 0.29629 4 0.29629 5 0.70370 6 0.90740	R1/RT 1P 0.96667 93 0.944444 96 0.82222 00 0.707778 07 0.45556 45 0.433333	INC 0.0572 0.0557 0.0557 -0.828 -1.256	PHI1 0.288685 0.305676 0.328002 0.329304 0.329238	3912.100 3912.100 3912.100 3912.100 3912.100	2 V GP M 8065; 801 8065; 8	DENSITY LB/CU FT 62.150 62.150 62.150 62.150 62.150	VISK SQ PT/SDC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	0.20	REC 1888 07 1542 07 1272 07 1762 07 1635 07			
PASS.HT.2 PROM TIP 0.055555 2 0.092593 3 0.296296 4 0.506090 5 0.703704 6 0.907407	R2/RT 5 0.966667 3 0.944444 6 0.82222 0 0.77778 7 0.45555 5 0.433333	DEV DEG 3.676 1.288 2.298 3.298 6.069 11:947	PHI2 0.283163 0.320452 0.339936 0.341866 0.341866	PSI 0.114429 0.119909 0.117509 0.121136 0.126166 0.134645	PSII 0.180111 0.165352 0.145434 0.149242 0.139931 0.143803	EFF 0.635321 0.725172 0.867650 0.811671 0.934788 0.936319	OMEGAB 0.129070 0.092232 0.094068 0.062250 0.059295	0.282315 0.258534 0.252330 0.351420 0.482796	DELTA H 83.940 87.960 86.200 88.860 92.550 98.490	DELTA P FT 72.365 73.324 71.916 77.944 57.341	(TH/C) A 0.02507 0.01973 0.01973 0.011812 0.01476 0.01537	
AVERAGED PA 1 INDICATES 1 PHIB1 0.315000	LEACING EDGE, ROTCE PSIE 0.121953	2 IND 0.1	S TR	AILING EDGE ROTOR EFFB 0.822231	HSVB FT 112,180	FRC1		FRC2	RPMA 3912.098	UT1A FPS 153,628	U. 153.	UT2A FPS .628

8066. GALLONS PER MINUTE

FLOW RATE # 3

TABLE V. - Continued. BLADE ELEMENT DATA FOR CONFIGURATION 02

7734. GALLONS PER MINUTE

FLOW RATE # 4

1 IN	ROTOR BLACE EL INDICATES LE	EMENT PABA ADING EDGE	METERS, 2 INDICAT	ATES TRAILING	ING EDGE		•						
- Um 4 N O C	ASS.HT.1 PROM TIP 0.055555 0.092593 0.296296 0.703704 0.967407	81/RT 0.966667 0.544444 0.702020 0.777778 0.455556 0.433333	U1 FES 148.427 145.015 107.482 88.715 69.948	V1 FPS 42.840 45.050 47.310 48.420 48.420 48.090	VZ1 FPS 42.840 45.050 47.310 48.420 48.420 48.60	VTHTY	BETA1 0.000 0.000 0.000 0.000 0.000 0.000 0.000	#1 FPS 154.486 151.851 134.822 117.893 101.093 64.885	MTH1 PPS 148.427 145.015 126.248 107.442 88.715 69.948	BETAP1 DEG 73.900 72.742 69.457 65.4837 61.350 55.491	H13.740 113.740 113.740 113.740 113.740 113.740	P1 85.219 82.201 73.957 77.230 77.800	STRTUB1 SQ IN 4,72760 8,44890 12,78630 10,88560 8,98490 4,41590
E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2	ASS.HT.2 FROM TIP 0.05555 0.092593 0.256296 0.500000 0.703704 0.907407	R2/RT 0.96667 0.94444 0.62222 0.70000 0.577778 0.455556	02 FFS 148.427 145.015 126.248 107.482 88.715 69.948	V2 FPS 52.775 55.951 56.649 58.602 69.182 69.686	VZZ 13. FPS 13. 541 48. 150 49. 810 49. 880 48. 919 46. 069	VTH2 29.822 28.498 26.982 31.698 31.482 48.919	BETA2 DEG 34,408 30,620 28,444 32,924 45,000 48,617	#2 126.345 126.074 11.063 90.404 71.504 63.248	WIH2 FPS 116.605 116.517 19.267 75.734 51.233 21.029	BETAP2 DEG 69.841 67.548 63.353 56.960 45.767 23.262 17.188	H2 FT 211.720 215.620 210.470 210.430 213.820 213.810 213.910	P2 FT 168.436 166.970 150.599 155.322 139.431	STRTUB2 SQ IN L 72760 8.44890 12.78630 10.88560 8.98490 4.41590
ROTOR 1 INI	R BLADE E	LEMENT PARAMI EADING EDGE,	STERS 2 INDIC	ATES TRAILIN	ING EDGE								
- 44 w 3 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r 2 r	RASS. HI.1 PROM TIP 0.055555 0.092593 0.296296 0.703704 0.907407	81/8T 0.966667 0.82222 0.700000 0.577778 0.455556 0.433333	1NC 1.500 0.742 -0.643 -0.563 -1.050 0.691	PHI1 0.279006 0.293396 0.308116 0.314043 0.315673 0.313199	3910.000 3910.000 3910.000 3910.000 3910.000	0V GPM 7734.301 7734.301 7734.301 7734.301 7734.301	DENSITY LE/CU FT 62.150 62.150 62.150 62.150 62.150 62.150	VISE SQ F1/SE 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0	0.20	REC 45E 07 45E 07 16E 07 62E 07 43E 07 96E 07			
76554W21	ASS. HT. 2 P. 0. 0. 55555 0. 0. 92593 0. 296296 0. 703704 0. 907407	R2/RT 0.96667 0.944444 0.82222 0.577778 0.455556	DEV DEG 3.461 1.948 2.853 4.560 7.367 13.262	PHI2 0.283574 0.313585 0.324402 0.3244859 0.318596 0.318596	PSI 0.133712 0.139034 0.132006 0.136577 0.136577 0.136564	0.187751 0.175290 0.14485 0.144605 0.144605 0.145138	D. 712175 0.793164 0.913627 0.913627 0.9168344 0.946922	0MEGAB 0.106767 0.074740 0.032373 0.0203258 0.056111	D .292082 0.274158 0.274158 0.343534 0.418879 0.527353	DELTA H 97.980 101.880 95.730 96.730 96.060 100.070	DELTA P 83.217 84.769 81.642 79.324 76.092 61.631	(TH/C) A 0.62095 0.01575 0.00703 0.00489 0.01383	
AVER 1 IN 0.	AGED PARA DICATES L PHIE1 302000	METERS EADING EDGE ROTOR PSIB 0.134646	FOTOI FOTOI PSTIE	ES TRAI R B 9 0	LING EDGE ROTOR EFF9 .882827	HSVB FT 112.410	FRC1	.019 0	FBC2	RPMA 910.000	UT1A FPS 153.545	u 153.	UT2A FPS • 545

	SIRTUB1 SQ IN 4.72760 8.44990 2.78630 0.88560 8.98490 4.41590	STRTUB2 SQ IN 4. 727 60 8. 448 90 2. 786 30 0. 885 60 8. 984 90 4. 415 90			-	« W M
	F1 ST 86.459 4. 83.952 8. 81.093 12. 79.003 12. 80.015 8.	FT FT FT FT FT FT FT FT FT FT FT FT FT F		-	(TH/C)A 0.01885 0.01418 0.00336 0.00871 0.01964	UT2A FPS 153.883
	H1 FT 113.820 113.820 113.820 113.820 113.820	H2 FT FT 725.550 1.25.550 219.550 217.570 217.570 215.310			PELTA 2 92.401 92.942 90.696 85.756 78.958 64.883	UT18 FPS 153.883
	BETAP1 74.247 73.214 70.065 66.326 62.326 56.642 56.642	DETAP2 DEG 69.698 67.736 64.099 57.000 46.414 23.963		BEC / 45E 07 13E 07 13E 07 52E 07 31E 07 85E 07	DELTA H 109:640 105:730 105:730 105:050 103:750 101:490	RPM8 1918, 598
	HTH1 FPS 148. 754 145. 334 126. 526 107 718 88. 910 70. 102	FPE2 117.380 115.257 98.504 75.054 49.262 19.499		0.20 0.20 0.20 0.15 0.15	D 0.305826 0.289689 0.287223 0.353260 0.457019 0.539756	FRC2
	FPS 154.558 151.802 134.591 110.401 100.401 83.930	#2 125.155 124.553 109.505 89.010 48.010 43.542		VISK SQ FT/SFC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	OMEGAB 0.095391 0.067257 0.015866 0.037120 0.0837120	
	BETA1 0.000 0.000 0.000 0.000 0.000 0.000	BETA2 35,848 32,503 30,362 31,900 40,075 52,542		DENSITY 1B/CU FT 62.150 62.150 62.150 62.150 62.150 62.150	2FF 0.755864 0.822659 0.959469 0.946928 0.946928 0.925854	FRC1
	VTH 1	VTH 2 3 1 2 37 4 3 4 0 6 7 2 8 4 7 2 3 2 6 6 6 3 5 0 6 6 3 5 0 6 6 3 5 0 6 6 3		QV GPH GPH 7481.000 7481.000 7481.000 7481.000	PSII 0.197083 0.184533 0.149724 0.148866 0.149805	HSVB FT 112.490
ING EDGE	VZ1 FPS 41.960 43.840 45.890 46.640 46.150 46.150	422 FPS 43, 424 47, 190 47, 834 46, 889 43, 872 41, 832	ING EDGE	RPM 3918.600 3918.600 3918.600 3918.600 3918.600	PSI 0.148968 0.151807 0.143655 0.142365 0.140965	TRAILING EDGE ROTOR EFFB 0.906446
ATES TRAILING	V1 FPS 41.960 43.840 45.690 76.640 46.150 46.150	72 FPS 53, 572 55, 955 55, 438 56, 408 66, 973	ATES TRAILIN	PHI1 0.272673 0.284892 0.298215 0.303996 0.303087 0.299905	PHI2 0.282187 0.310648 0.310848 0.304707 0.285102 0.271842	ស ∝ ៣ ←
PARAMETERS EDGE, 2 INDICAT	148.754 148.754 145.334 126.526 107.718 88.910 70.102	148.754 148.754 145.334 126.526 107.718 88.510 70.102	AMETERS E, 2 INDIC	INC DEG 1.847 1.214 0.565 0.166 -0.680 1.242 2.339	EEV DEG 3.318 2.136 3.599 4.670 8.014 13.963 12.612	2 INE 2 0.1
ELEMENT PARAMI LEADING EDGE,	81/RT 0.966667 0.944444 0.82222 0.70700 0.577777 0.455556	R2/RT 0.966667 0.944444 0.82222 0.707000 0.577778 0.455556	ELEMENT PARAME LEADING EDGE,	R1/RT 0.966667 0.904444 0.82222 0.70000 0.577778 0.455556	R2/RT 0.96667 0.944444 0.82222 0.777778 0.5777778 0.455556	METERS FALING EDGE, ROTOR PSIE 0.144280
ROTOR BLADE E	PASS.HI.1 PRCM TIP 0.055555 0.092593 0.296296 0.500000 0.703704 0.907407	PROS.HT.2 PROM TIP 0.055555 0.092593 0.092596 0.266296 0.560600 0.703704 0.907407	RELADE	PASS.HI.1 FROM TIP 0.055555 0.092593 0.296296 0.703704 0.907407	PASS.HI.2 PROM TIP 0.05555 0.092593 0.296296 0.50000 0.703704 0.907407	ERAGED PARA INDICATES I PHIE1
1	765422	- 0 m 4 m 0 r	ROTOI	7e2ta2-	7004m57	1 1 1 0

TABLE V. - Continued. BLADE ELEMENT DATA FOR CONFIGURATION 02

				1									
FLO	OW RATE # 6		7216.	GALLONS PE	R MINUTE	. #							
1. I	OR BLALE NDICATES	ELEMENT PARAMILEADING EDGE,	ETERS 2 INDIC	ATES TRAILI	ING EDGE								
	SS.HT.	R1/RT	+ C	7 4	127	VTHIV	BETA1	7 C	WTH1	SETAP 1	# #	U #	മ ⊦
	.05555	0.966667	٠,	ं	0	.00	30	54.13	æ	.77	14.1	æ	7276
7	.09259	77777	m :	7	2.6	000	000	<u>.</u>	ů,	.63	14.	٠ ن	4489
m ż	25629	0.822222	. .	u te	יון בי ה'	200	200	34.03 16.77	٠,	9 6	 	ň.,	7 55 5 8 5 6 6
ŧ ſŊ	.70376	0.577778	2 30	-	6.4	20.	28	99.61	. &	.16		5:	6 1186
φr	10.907407	0.455556	70.086	44.500	44.500	000.0	0.000	83.020	70.086	57,587	114.100	83.326	4.41590
•	***	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	•	;		?	3		•	•	-	•	2
	SS.HT	R2/RT	0.2 10.2 10.2	V 2	V Z Z	VTHZ	BETA 2	24.2	ZHTR ZOR	BETAP 2	H2	P2	STRTUB2
-	.05555	0.566667	7	4.33	2.7	3.57	17		5.1	.64	35,3	9.45	727
7	.09259	7777776	8	6.11	9	1.94	69		ლ. ლ.:	.85	36.5	7,59	871
m =	.29629	0.822222	9 7	5. 13. 2. 13.	บูล เล่ต		8 5		_ −	5.53	0.72	יי עינג עינג	785 885
, 10.	70370	0.57773	96	0.16	9 F	1.23	26		7.6	400	22.5	5.70	934
9	0 1 2 0 6	0.455556	80	65,313	40.249	m	51.958	44.359	8,0	24.859	217.630	151.337	15
7	77776	0, 433333	. 66	6.65	7.4	5.13	90		വ	Ξ.	23.4	. 4	5.96
TOT 1	OR BLADE NDICATES	ELEMENT FARAN LEADING EDGE,	AMETERS E, 2 INCIC.	ATES TSALLI	ING EDGE								
	PASS. HT	R1/RT	INC	PHI 1	RPM	ΛÖ	SI		10	REC			
-	00		DEG 2 3211	696	017 7	216	LB/CU PT	SO FT/S)	5C 0 20	7			
- ~	.0925	50000000	1.631	0.277416	3917.700	20		928	0	OE 07			
n	.2562	Ö		.288	917.7	216.00	<u> </u>	5	0.18	6E 0			
= 7 (.5000	0		.293	917.7	216.00	ς.	22	0.15	3E 9 6			
n 4	4636	, c		283	917.7	216.00		22	05 0.11	0 E E			
7	1116	o		.277	917.7	216.00	Ψ.	28	05 0.10	7E 0			
	SS.H	E2/RT	LEV	PHI2	PSI	IISd	EPF	OMEGAB	a	DELTA H	DELTA P	(TH/C)A	
-	0555	0,9666		2776	.1643	.21098	78111	09202	.327	. 24	:0	.013	
~~	.0925	1115 0	•	2999	.1664	.19607	84875	06121	309	.43		.012	
· .	2962	0.8222		2567.	0.000	16460	71116	000000	675.		າ ເ	200	
n t	20000	0.5777	•	. 3 C 4 7	1479	.15485	45547	50970	000.	2,6	40	. 007	
9	. =	0	14.859	0.261613	0.140731	0.152312	0.923963	0.079544	0.631946	103.530	68.011	0.01937	
7	7776.	0.4333	•	.2435	.1486	.15528	1676.	5003	. 682	36	٥	210.	
AVE TI	RAGED FAR	AMETERS LEADING EDGE,	2 INDIC	ATES TRAILI	ING EDGE								
			i		1	;	i	į	0	;		•	•
•	PHIE		. '		((. c		FRCZ	α α .			UTZA FPS
0	12820	Ω	1.0	997	56706	11.7	0.01	<u> </u>	•	660*116	90°50	n	0 1 0

FLOW RATE	# 7	• 11869	GALLONS PE	R MINUTE						,		
ROTOR BLAD	E ELEMENT PA S LEADING ED	ARAMETERS OCE, 2 INDIC	CATES TRAILI	ING EDGE								
PASS.HT FROM H 1 0.0555 2 0.0925 3 0.2562 5 0.7037 6 0.9074 7 0.9444	1.1 55 0.96667 93 0.94444 96 0.82222 0.82222 0.82222 0.82222 0.82222 0.82222 0.82222 0.82222 0.9222 0.9222 0.9222	77 148.651 7 148.651 4 145.234 2 126.439 0 107.644 8 88.849 6 70.054 3 66.637	V V V V V V V V V V V V V V V V V V V	VZ1 TPS 39.120 41.340 43.060 43.610 42.420 40.990	VIH1000000000000000000000000000000000000	EET# 0 0000 0000 0000 0000 0000 0000 000	#153.713 153.713 151.003 133.570 116.142 916.979 81.896	MIH PPS 148.657 145.234 126.439 107.644 88.849 70.054	DETAP1 DEG 75.256 74.111 71.193 67.946 63.851 58.804	H13.090 113.090 113.090 113.090 113.090 113.090	89.307 86.531 84.275 83.535 83.521 85.126	STRTUB SQ II 4. 727 6 8. 448 9 12. 786 3 10. 885 6 8. 984 9 4. 4.15 9 1. 586 00
######################################	1.2 55 0.966667- 93 0.944444 96 0.822222 00 0.77773 07 0.455556	U2 FPS 148, 651 145, 234 126, 439 107, 88, 8449 70, 054	V V V V V V V V V V V V V V V V V V V	VZ2 41.825 44.930 44.170 44.130 42.120 36.540 35.370	VTH2 35.005 34.077 32.666 41.906 50.931	BETA2 39, 928 37, 179 36, 485 40, 264 54, 269 57, 588	121.098 119.098 119.098 103.655 63.069 641.330	WTH2 FPS 113.646 111.156 93.773 70.099 46.943 19.123	BETAP2 DEG 69.795 67.991 64.778 57.691 48.100 27.560	H2 244.530 244.410 234.160 234.160 235.700 225.700 225.700	P2 FT 198.352 194.992 137.258 180.644 170.839 157.305	STRTUB SQ II 4. 7276 8. 4489 112. 7863 10. 8856 4. 4159 1. 58601
FOTOR BLAC 1 INDICATE PASS. HT 0.0555 2 0.0925 3 0.2962 4 0.5000 5 C.7037 7 0.9074	E LLENENT E S LEADING E S LEADING E S 0.96666 93 0.94444 0.057777 0.057777 0.05555 0.0	EAMETERS CE, 2 INDIC INC 2.856 2.856 2.11 1.546 1.451 3.404	CATES TRAILI PHI1 0.254395 0.280018 0.283590 0.283559	1NG EDGE RPM 3915,900 3915,900 3915,900 3915,900 3915,900	6983.602 6983.602 6983.602 6983.602 6983.602 6983.602	DENSITY 62.150 62.150 62.150 62.150 62.150 62.150 62.150	SQ 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 S 80 P F 7 V 9 V 9 V 9 V 9 V 9 V 9 V 9 V 9 V 9 V	ESK 050 050 050 050 050 050 050 050 050 05	REC 70E 07 99E 07 99E 07 33E 07 03E 07 54E 07			
PASS.HT FROK T 0.0555 3 0.2962 4 0.2962 5 0.7037 6 0.9074	.2 R2/RT 1P 0.96667 93 0.94444 96 C.822222 00 0.70202 04 0.577778 07 0.45555 45 0.433333	T DEV DEG 7 3.415 4 2.391 6 5.291 8 9.700 6 17.560 3 113.351	PHI2 0.271982 0.292174 0.288274 0.273903. 0.273903.	PSI 0.178902 0.178670 0.164725 0.163259 0.153214 0.153314	PSII 0.220050 0.209292 0.174661 0.157450 0.157450	EZF 0.813090 0.853690 0.943114 0.95394 0.950355	OMEGAB 0.082366 0.08314 0.026784 0.020451 0.052820 0.040105	D 341856 0.331562 0.332410 0.419177 0.506896 0.66223	DELTA H 131.490 131.320 121.070 120.000 112.610 105.390	DELTA P 109.045 108.461 102.983 97.318 72.179	(TH/C) A 0.01620 0.001324 0.00590 0.00465 0.00465 0.009800 0.00980	
AVERAGED E 1 INDICATE PHIE1 0,273000	ARAMETERS S LEADING EDO ROTO PSI	EF 2 INDI	ATES TRAIL TOR II3 709 0.	LING EDGE ROTOR EFF3	HSVE FT 111.760	FRC1	٠.	FRC2 .0.009	RPMA 3915.898	UT1A FPS 153,777	 U	T2A FPS

	STRTUBI SQ. IN 4. 72760 8. 44390 2. 78530 0. 98560 8. 98490 4. 41590	STRTUBE SQ IN 4.72760 8.44890 2.78630 0.88560 3.98490 4.41590				W S L
	PT 8T 90.967 4.88 54.5 8.479 12.86.698 8.520 4.90.554 1.	P2 ST1 202, 271 4, 196, 716 8, 4 195, 716 8, 4 185, 358 12, 185, 358 10, 8 170, 774 3, 9 151, 619, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,		, a d	(TH/C) A 0.010,64 0.010,38 0.003,68 0.001,49 0.01,438	UT2A PPS 153.687
	H13.360 113.360 113.360 113.360 113.360 113.360	H2 PT 248.950 246.880 233.640 235.40 235.730 173.580			DELTA P 111.304 108.171 95.879 95.879 95.099 63.099	UT1A F2S 153,687
	BETAP 1 DFG 75.667 74.608 71.762 68.993 60.272	BETAPP DEG 69.346 67.647 64.174 56.821 47.497 65.144		REC 55E 07 28E 07 32E 07 36E 07 35E 07	DELTA H 135.620 133.520 120.280 122.260 113.370 60.220	RPMA 3913.598
	WTH1 FPS 145.564 145.149 126.365 107 70.013	WTH2 FPS 115.000 111.720 94.517 71.145 47.370 36.420		SEC 0.2065E -05 0.2028E -05 0.1792E -05 0.1320E -05 0.1086E -05 0.1086E -05 0.1035E	.323144 0.323149 0.32628 0.335624 0.488147 0.613969	FRC2
	#153.837 150.549 133.033 115.649 17.982 80.624	722.899 120.796 120.796 105.005 85.003 64.252 40.138		VISK SQ FI/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	0.052990 0.052990 0.017465 0.006465 0.127514	
	BETAL 0.000 0.000 0.000 0.000 0.000 0.000	BETA2 DTG 37.750 36.042 34.846 34.846 13.661 63.333 -65.283		DENS ITY 1.B/CU FT 62.150 62.150 62.150 62.150 62.150	2FF 0.875069 0.885353 0.0961598 1.0961564 0.991564 0.823792	FRC1
	VTH V TH V TH V V V V V V V V V V V V V	VTH2 83.564 83.429 81.848 86.41.425 41.423 41.423 93.593		0V GPM 6712.699 6712.699 6712.699 0712.699	PSII 0.211112 0.205428 0.170385 0.165954 0.099576	HSVB FT 112.030
ING EDGE	VZ1 FPS 37.960 39.960 41.590 41.420 41.420 41.420 39.980	VZ2 43. FPS 43. 348 45. 940 45. 745 46. 518 43. 416. 871	ING EDGE	3913.600 3913.600 3913.600 3913.600 3913.600 3913.600	PSI 0.184738 0.183842 0.16539 0.16539 0.082030	AILING EDGE ROTOR EFFB 3.948716
ATES TRAILING	PPS 37.960 39.960 41.590 41.420 41.420 41.420 39.980	V2 FPS 54,824 56,815 55,739 59,005 60,005 37,592 10,831	ATES TRAILIN	PHI1 0.246994 0.260009 0.270616 0.27562 0.269512 0.260140	PHI2 0.292057 0.297648 0.3026489 0.109778 0.029467	TES TR OR IB 68
AMETERS E, 2 INDICATES	U1 FPS 148.564 145.149 126.355 107.35 70.013	148.564 145.149 126.365 107.581 70.013	AMETERS E, 2 INDICA	INC 1.05 1.267 1.2608 1.2608 1.261 1.261 1.261 1.261 1.261	DEV CEG 2.966 2.047 3.674 4.421 9.097 55.144 83.110	E, 2 IND 0.1
ELEMENT PAR LEADING EDC	R1/RT 0.966667 0.944444 0.82222 0.577773 0.5777778 0.455556	R2/RT 0,56667 0,944444 0,62222 0,577778 0,45555 0,43333	EMENT PAF	R1/RT 0,96667 0,92222 0,77777 0,45555 0,433333	R2/RT 0 966667 0 944444 0 777778 0 577778 0 45555 0 433333	METERS EADING EDGI ROTOR PSIE 0.164857
R BLACE DICATES	PASS.HT.1 PROM TIP 0.05555 0.092593 0.296296 0.500000 0.700704 0.907407	FASS.HT.2 0.055555 0.092593 0.296296 0.700000 0.700704 0.907407	OR BLADE ELI	PASS.HT.1 PROM TIP 0.055555 0.092593 0.266296 0.703764 0.907407	PASS.HT.2 FROM TIP 0.055555 0.092593 0.296296 0.500000 0.907407	RAGED FARAINDICATES LI
FOTO 1 IN	700tm07	-00400c	RO TO	765432	- 0m 3 50 67	AVE 1 IN

TABLE VI. - BLADE-ELEMENT DATA FOR CONFIGURATION 07

7

NASA CONFIGURATION 07 1.5- THUB-TIP RATIO, 19 ELADES, 9-INCH TIP DIAMETER, 1.5- THUB-TIP RATIO, 19 ELADES, 9-INCH TIP DIAMETER, 1.5- THUB-TIP RATIO, 19 ELADES, 9-INCH RADIAL TIP CLEARANCE, 0.43 DESIGN TIP D-FACTOR, DOUBLE CIRCULAR ARC BLADE PROFILE, 0.294 DESIGN FLOW COEFFICIENT. REPORTED IN NASA TN D-2295 AND TN D-2481. BLADE GECRETRIC FARAMEIERS- BIADE ROW# 1 (ROTOR) 1 INDICATES LEADING EDGE, 2 INDICATES TRAILING EDGE	KAPPAZ SOLIDITY TMAX/C CHORD CAMBER DEGREES DEGREES	61,700 1,050600 0,071380 1,520000	55.000 1.12/900 0.0/4/20 1.520000 16.030 50.640 1.201700 0.077500 1.520000 19.780	46.730 1.285700 0.080270 1.520000	41.000 1.403500 0.083510 1.520000	. RTIP2 NBLADES INCHES	
ES, 9-INCH RAD PROFILE, SNT. AND TN D-24:	R2 INCHES	4.375000	3.825000	3.575000	3.275000	RHUBZ	3,150000
ICON 07 IO, 19 ELADI IO, 19 ELADI D-FACTOR, A ARC BLADE I ON COEFFICII A TN D-2295 EARAMEIERS- IDING EDGE, 2	KAPPA1 DEGREES	70.000	70.420	69.080	66.920	RTIP1 INCHES	4.500000
NASA CONFIGURATION 07 0.7 HUB-TIP STION 19 ELADES, 9-INCH TIP DIAMETER 0.7 HUB-TIP STION, 19 ELADES, 9-INCH TIP DIAMETER 0.43 DESIGN TIP D-FACTOR, DOUBLE CIFCULAR ARC BLADE PROFILE, 0.294 DESIGN FLOW COEFFICIENT. REPORTED IN NASA TN D-2295 AND TN D-2481. BLADE GECRETRIC FARAMEIERS- BIADE ROW# 1 (ROTOR) 1 INDICATES LEADING EDGE, 2 INDICATES TRAILING ET	R1 INCHES	4.375000	3.825000	3.575000	3.275000	RHUB1	3,150000

SETANG DEGREES 65.850 63.015 60.530 57.905 53.960

TABLE VI, - Continued, BLADE-ELEMENT DATA FOR CONFIGURATION 07

50	ROTOR BLACE 1	ELEMENT PARAM LEADING EDGE,	PARAMETERS EDGE, 2 INDICAT	ATES. TRAILI	ING ROSE								
	PASS.HT.1		101	V 1 V C C C C C C C C C C C C C C C C C	V21	VTH 1	BETA1	F 0	WTH1	BETAP 1	Н 1	191	S
-	0.092593		137, 303	55.928	55,928	90.	000.0	148.257	137,303	67.837	185,660	137.050	9
7	.0.314815		127.753	58.936	93	.00	000.0	140.692	, 127,753	65,235	8.5	134.540	
m	0.500000		120.166	59,388	59.388	000.0	•	134.040	120,166	•	188.460	133, 650.	
=	0.685185		111.922	53,958	95	00.	000.0	126.501	↑111.922	62,221	188.360	134,340	
2	C-907407		102,559	59.814	59.814	00.	•	119.072	102.959	. 84	8	ż	
	PASS.HI.2	R2/RT	0.5		N 3	VTH 2	BETA 2	23.	WTHZ	BETAP2	H2	P2 .	
	FROM TIP	_	Ser		n.	. FPS	DEG	FPS	RPS	DEG	F	E+	
.	0.092593		137, 303		~	20.856	23.040	~	116.448	67, 163	241.740	197,610	6. 70040
^	0:314815	0.905555	127.753			21.744	19,485			59.898	260.400	194.360	
۳ ا	0.50000		120.156		\sim 1	25,853	22.050	•	94.313	55.911	267, 260	193,560	
7	0.685185		111.922			26.234	21,735	\sim	85.688	52.477	271.480	193,490	
S	0.907407		102.959	71.650	65, 185	29.741	24.525	98.030	73.217	. 48.321.	271.720	191.940	ທີ
BO.	ROTOR BLACE	ELEMENT PARAMETERS LEADING EDGE, 2 INDICAT	AMETERS E, 2 INDIC	ATES TRAILING	ING EDGE							٠	
	PASS.HT.1	R1/RT	INC	PHI1	Ki di	ΛΟ	DENS	Λ	VISK	REC			
	FROM TIP		CEG			GPM	LB/CU	SQ FT/					
- 1	0.092593	0.972222	-2.163	0.396018	35.96, 300	5784.500	629	0.9280E					
۶ اد	0.314815		-5.795	9//:::	3592.500	2781.602	95	0.9280E		> <			
n :	0000000		617.01	0.707 1	000.0000	961.001.0	70	0.9280E		> <			
r un	0.907407	0.727778	-7.075	0.422806	3602,500	5789.602	62.150	0.9280E-05	-05 0.1625E	0			
	PASS.HT.2		CEV	PHI 2	ISd	ISI	12. (2.)	OMEGAB		, H	DELTA P	(TH/C) A	
	FROM TIP		DEC										
- 0	0.092593	0.972222	5.463	0.347229	0.090465	0.143574	0.630095	0.095382	0.214701	56.080	60.560	0.01780	
7	0.314815		4.598	0.435613	0.110198	0.1395/3	÷	00/ 40 00/	0.197577	088.17	29.850	0.01045	
~	0.500000		5.271	0.451493	0.125855	0.155442	o ·	0.063601	0.230645	78.800	59.910	0.01483	
寸	0.685185		7	160194.0	0.134/43	0.14/934	•	0.032721	0.226580	83.120	59.150	0.00775	
ń	0.907407		7, 321	0.460773	0.134009	0.153000	Ö	0.053614	0.265698	83,360	59.180	0.01270	
AV.	ERAGED FARAMETER	AMETERS LEADING EDGE,	E, 2 INDICAT	ATES TRAILI	ING EDGE					÷			
		ROICE	ROTOR	TOR	ROTOR	HSVB	FRC1	c1	FRC2	RPMA	UTIA		UTZA
_	0,405110	Ó.123986	0	0	.819358	196.522	-0.024		0.012	3595.759	141.205	141	. 205
		-											

		STRTUB1 SQ IN 6.70040 7.04110 6.00830 6.17720 5.01580	STRTUB2 SQ IN 6.70040 7.04110 6.00830 6.17720 5.01580				
•		-) A 50 50 20 21 80	UT2A FPS 141.247
		P1 FT 142.480 141.310 140.550 140.230	P2 FT 227.210 224.170 221.690 220.170			(TH/C)A 0.01650 0.00865 0.00820 0.00721	·
	-	H1 184.690 188.520 188.470 188.360	H2 FT 272.260 286.400 290.210 293.490 291.720			DELTA P 84.730 83.060 61.140 79.940	UITA FPS 141,247
•		BETAP1 DEG 69.175 66.648 65.145 63.665	BETAP2 07.095 60.422 56.617 52.899	ţ	85C 01E 07 02E 07 03E 07 12E 07	DELTA H 87.570 97.880 101.740 105.130	RPMA 3.596.837
		FPS 137.017 127.931 119.875 112.430	WTH2 FPS 109.428 100.315 89.963 80.194 66.290	.	VISK R	D.279203 0.260080 0.278702 0.298432	FRC2 0.004
		#1 FPS 146.594 139.345 132.112 125.450	#2 FPS 118.795 115.346 107.739 100.548	į	VISK SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	OMEGAB 0.089597 0.035803 0.030740	1
		BETA1 . DEG 0.000 0.000 0.000	BETA2 DEG 30.825 25.875 26.775 27.990	E	LB/CU FT 62.150 62.150 62.150 62.150 62.150	EFF 0.745327 0.891378 0.912866 0.933260	FRC1
		VTH1 FPS 0.00 0.00 0.00 0.00 0.00 0.00	VTH2 FPS 27.589 27.616 29.913 32.236	ç	6PM 6PM 5419.199 5434.801 5425.500 5455.102	PSII 0.190325 0.177017 0.180288 0.180962	HSVB PT 186,366
R MINUTE	RAILING EDGE	VZ1 FPS 52.116 55.233 55.530 55.651 55.997	VZ2 #6.235 \$6.936 59.282 60.653	39CE	3588.800 3597.500 3591.300 3603.800	PSI 0.141854 0.157739 0.164879 0.168885	AILING EDGE ROIOR EPFB 0.875346
GALLONS PER	ES T	V 52.03 55.233 55.233 55.530 55.651	V2 FPS 53.841 63.280 66.401 68.688	S	0.369799 0.390969 0.393744 0.393238	PHI2 0.328069 0.403021 0.428381. 0.417857	S
5439.	METERS 2 INDICAT	U1 FPS 137. C17 127. 931 119. E75 112. 430	U2 FFS 137.C17 127.931 119.875 112.430	TETERS, 2 IND	INC D. 825 - 4.382 - 5.275 - 5.415 - 5.459	DEV DEG 5.395 5.422 5.972 6.169	2 IND
:	ELEMENT PAFAMETES LEADING EDGE, 2 I	R1/RT 0.97222 0.905555 0.50000 0.794444	R2/RI 0.97222 0.905555 0.850000 0.794444	T FAFA G EDGE	41/KI 0.972222 0.905555 0.859000 0.794444	R2/RT 0.972222 0.905555 0.850000 0.794444	ACTERS EACING EDGE ROTOF PSIE 0.160098
FLOW RATE # 2	ROTOR BLACE E	PASS.HT.1 PFOM.TIP 0.092593 0.314815 0.6850000 4 0.685185 5 0.907407	PASS.HT.2 FROM TIP 0.092593 2 0.314815 3 0.500000 4 0.685185 5 0.907407	BLADE ICATES	FROCE TIP FROCE TIP 1 0.3148153 2 0.500000 4 0.685185 5 0.907407	PASS.HT.2 FROM TIP 0.092593 2 0.314E15 3 0.500000 4 0.685185 5 0.907407	AVERAGED FARAL 1 INDICATES L1 PHIE1 0.380790
_	- '			-	,	,	-, .

TABLE VI. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 07

ROTOR 1 IND PA	BLADE ICATES SS.HI.1	LEMENT EADING R1/	ETER 2 I	ATES TRAILING V1 FPS	ED	VTH 1 FPS		F PS	WTH1	BETAP1 DEG	H H T T	9 1	STRTUB1 SQ IN
- 7	0.092593		137.846	48.821	48.821	000.00	0.000	146.236	137.846	70.497	186.900	149.860	6.70040
, m	יטי	•	63	51,345	51,345	00000	0.000	131.161	120.693	ns6 - 99	188.840	147.870	6.00830
= † 1	0.685185	44444	112,515	51.157	51.157	0000	0.000	123.598	112.515	65.550	188.410	147.740	6. 177 20
S	5		Ξ.	21.80/	108.16	0000	0000	115.667	103.416	•	ņ	146.860	08610.6
_	PASS.HT.2	R2/RT	0.2	V 2	V 22	VTH2	BETA 2	¥2	WTHZ	BETAP 2	Н2	P2	STRTUB2
	FROM TIP			FPS	FPS	FPS	១ ខេ	PPS	FPS		E-1 (I.A.	NI OS
,	0.092593	0.972222	37	55.894	43.511	35.084	38.880	111.594	102.162	67.057	303.040	254 - 490	6. 70040
71	3148	0.905555	28.	62.600	53,958	31.739	30,465	110.860	96.843	60.875	310.070	249.170	7.04110
ກ =	20000	0000000	5.5	40.400	55 321	34.293	066.15	92 307	73.894	53.180	316, 260	245.520	6.177.20
רגוים	074(1 0.727.78	103.416	67.948	53.918	41.350	37.485	82.215	62.066	49.018	311.740	239.990	5.01580
ROIC 1 II	TOR BLADE I	ELEMENT PARA LEADING EDGE	PARAMETERS EDGE, Z INDICATES		TRAILING EDGE								
_	PASS.HI.1	R 1/RT	INC	PHI1	RPM	ΛÕ	DENSITY	VISK	SK	REC			
	FROM TIP		DEG			GPM	_	SQ FT/S					
-	0.092593	0.972222	0.497	0.344331	3610.500	5041.801		0.9280E-05	-05 0.1996E	6E 07		ı	
7	0.314815		-2.728	0.360324	3615,800	5061.102		0.9280E-					
m	0.500000		-3.466	0.361607	3615.800	5047.699		0.9280E-					
7	٠		-3.530	5	3606.500	5023, 199		0.9280E-					
ŵ	ς.		-3.529	0.364585	3618.500	5065.301		0.9280E-					
	PASS.HT.2 FROM TIP	R2/RT	DEV	PHI2	PSI	PSII	E4 63	OMEGAD	Ω	DELTA H	DELTA P	(TH/C) A	
-	0.092593		5,351	0.306883	0.185880	0.240573	0.772655		0.351070	116.140	104.630	0.01908	
~ (0.314815	0.905555	5.875	0.380004	0.193378	0.202416	0.955350		0.300585	121.180	100.960	0.00411	
٠,	0.00000		176.0	47/765-0	176661 • 0	#87C07 °C	0.97/38/5		0.324/03	123.200	94.000	0.00284	
ភ េស	0.907407	0.794444	6. 450 8. 018	0.379440	9.205076 3.196261	0.211781	0.926715	0.030371 0.046848	0.374685	123.470	97.780	0.00708	
AVEI 1 II	RAGED FAR.	ERAGED FARAMETERS INDICATES LEADING EDGE,	, 2 INDICATES		TRAILING EDGE								
		ROTOR	FO		ROTOR	HSVB	FRC1	1 5	F RC2	RPMA	UT 1A		UTZA
	PHIE1 351790	PSIB 0.196333	PSIIB 0.214450		. EFFB 0.915518	FT 186.982	-0.030	ı	0.001	3613.419	FPS 141.899	141	. 899

		STRTUB1 "SQ IN 6, 700 40 7, 04110 6, 177 20 6, 175 80	STRTUB2 SQ IN 6.70040 7.04110 6.00830 6.17720 5.01580				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
		P1 155.790 154.170 154.020 153.750	P2 275.810 270.760 268.550 264.260 259.010		·	(TH/C)A 0.01638 0.01277 0.00968 0.00596	UT2A PPS 141.850
		H1 FT 187, 120 188, 620 188, 950 189, 060	H2 FT 325.500 331.930 332.720 331.780			DELTA P 120.020 116.590 114.530 110.510	UT1A FPS 141.850
-		DECTAP1 DEC 71.939 69.909 68.541 67.094	BETAP2 DEG 67.520 61.451 58.186 54.372 48.304		REC 77E 07 71E 07 69E 07 51E 07	DELTA H 138.380 143.310 143.770 142.720	, RPMA 3612.178
		#TH1 FPS 137.693 128.724 120.610 112.811	WTH2 FPS 98.502 88.505 79.185 70.358		SEC -05 0.1977E -05 0.1977E -05 0.1871E -05 0.1769E -05 0.1672E	D 0.392728 0.394976 0.413944 0.428005	FRC2
		#1 FPS 144.829 137.064 129.593 122.468	W2 FPS 106.602 100.756 93.185 86.561		VISK SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	OMEGAB 0.090022 0.060281 0.044134 0.026308	ı
		BETA1 DEG 0.000 0.000 0.000	BETA2 DEG 43.870 39.870 40.140 40.095		DENSITY LB/CU FT 62.150 62.150 62.150 62.150	BFF 0.825045 0.925824 0.958805 0.955786	FRC1
		VTH1 FPS 0.000 0.000 0.000 0.000	VTH2 FPS 39.191 40.219 41.425 42.453		QV GPM 4641.898 4653.699 4649.199 4667.398	PSII 0.269035 0.256211 0.248151 0.237511	HSVB FT 187.095
CNS PER MINUTE	ANG EDGE	VZ1 PPS 44.900 47.083 47.410 47.667	VZ2 FPS 40.761 48.152 49.124 50.423	ING EDGE	3606.500 3619.800 3613.300 3616.000	PSI 0.221966 0.228188 0.229745 0.227726	TRAILING EDGE ROTOR EFFB 0.908948
GALLONS PE	ATES TRAILING	V1 44.900 47.083 47.410 47.667 47.849	V2 FPS 56.546 62.739 64.259 65.915	ATES TRAILING	PHI1 0.317031 0.3341221 0.335682 0.335682	PHI2 0.287808 0.338743 0.346203 0.355095	S R R S
+011	PABAMETERS EDGE, 2 INDIC	U1 FFS 137.693 128.724 120.610 112.811	U2 FPS 137.693 128.724 120.610 112.811	PARAMETERS EDGE, 2 INDICAT	INC FEG 1.939 -1.121 -1.829 -1.829	DEV DEG 5.820 6.451 7.546 7.642 7.304	2 INI
;	ELEMENT PAFAMETERS LEADING EDGE, 2 INDICATE	81/RT 0.972222 0.905555 0.850000 0.794444	R2/RT 0.972222 0.905555 0.850000 0.794444	ELEMENT PARAM LEADING EDGE,	R1/RT 0.972222 0.905555 0.850000 0.794444	R2/RT 0.972222 0.905555 0.850000 0.794444	METERS EADING EDGE, ROTOR PSIE 0.227623
FLUR KAIE # 4	ROTOR BLADE E 1 INDICATES L	PASS. HT.1 PROM TIP 0.092593 0.314815 0.500000 0.685185	PASS.HT.2 FROM TIP 0.092593 0.314815 0.500000 0.685185	ROTOR BLADE E 1 INDICATES L	PASS.HT.1 PROM TIP 0.092593 0.314815 0.50000 0.685185	PASS.HT.2 FROM TIP 0.092593 0.314815 0.500000 0.685185	AVERAGED PARAHETERS 1 INDICATES LEADING RO PHIE1 1 0.324250 0.222
-	¥ -	← 0 € 3 €	- 7 m = w	¥ -	- C m + G	- 0 m 4 m	A -

TABLE VI. - Concluded. BLADE-ELEMENT DATA FOR CONFIGURATION 07

RO1	ROTOR BLADE E	ELEMENT PABA	PAFAMETERS									-	
-	CATES		2 I	ATES TRAILING	ING EDGE							•	
	PASS.HT.1	R1/RT	1 0	V 1	VZ1	VTH1	BETA 1	24	WTHI	BETAP 1	H.1	P1	STRTUB1
	FROM TIP		FPS	FPS	FPS	FPS	DEG	FPS	FPS	DEG	FT	FT	NI OS
-	0.092593	0.972222	137,303	42.899	42.899	000.0	000.0	143.849	137,303	72.649	161.240	132.640	6. 700 40
7	0.314815		128, 173	45,179	45.179	00000	00000	135,902	128,173	70,583	163.020	131.300	7.04110
m	0.500000		120.566	45.787	45.787	00000	000.0	128.968	120.566	69,205	163,020	130.440	6.00830
3	0.685185		112.234	45.766	45.766	0.000	00000	121.206	112.234	67.816	162.800	130.250	6. 177 20
'n	0.907407	0.72777	102,924	46.692	46.692	00000	00000	113.020	102.924	65.599	162,860	128.980	5.01580
	PASS.HI.2	R2/RT	0.5	V 2	VZ2	VTH 2	BETA 2	W2	WTHZ	BETAP2	Н2	P2	STRTUBS
	FROM TIP		FPS	FPS	FPS	FPS	DEG	FPS	PPS	DEG	FT	FT	SO IN
-	0.092593	0.972222	137,303	57.862	38, 128	43.523	48.780	101.235	93.780	67.875	318,360	266.330	6.70040
7	0.314815		128.173	61.871	45.434	41.998	42.750	97.418	86.174	62.201	319,200	259.710	7.04110
٣	0.500000		120.566	63.857	46.824	43.420	42.840	90.244	77.147	58.745	318,150	254.780	6.00930
3	0.685185		112,234	65.543	45.944	46.744	45.495	79.998	65.489	54.949	317,580	250.820	6.17720
S	0.907407	0.72777	102.924	69.168	45.945	51.704	48,375	68.808	51.220	48.108	319,150	244.800	5.01580
ROTO	R BLADE	ELEMENT PARAN TRADING HERE	PARAMETERS FDGE: 2 INDICATE	SMITTER TRATETING	ING EDGE								
				,	}								
	PASS. HI. 1	R1/RT	INC	PHI 1	RPM	A E		[A E	N N N	REC			
	L ROB III		5 d			E .	•	/12 70					
۰ ۲	0.092593	01.972222	2.649	0.319163	3596,300	4314.398	62.150	0.9280E-05	-05 0.1963E -05 0.1855E	3E 07		•	
٠,	0.50000		-1.215	0.322801	3612,000	4324.398		0.9280E-					
=	0.685185		-1.264	0.323953	3597.500	4306.699		0.9280E-					
Ŋ	0.907407	0.727778	-1.321	0.330157	3601,300	4338.102		0.9280E-					
	PASS.HT.2	R2/RT	V 23 C	21Ha	ISā	PSII	FPF	CMEGAB	а	DELTA H	DELTA P	(TH/C) A	
-	2010000		222	1,00037	0 253457	200616	0.505620	200000	250000	157 130	133 690	10010	
- c	0.026030			0.20002	0.50000	0.05036.0	0.040.04	0.000000	0.440630	756	000,000	00000	
7 1	0000000	0.85000	101	0.330108	0.248076	0.260195	0.933424	0.029319	0.420339	155 130	124 340	0.00023	
n =3	0.685185		8.219	0.325211	0.249516	0.262865	0.949217	0.036271	0.489966	154.780	120.570	0.00810	
'n	0.907407	177777	10	0.324879	0.251419	0.266074	0.944919	0.045895	0.554168	156,290	115.820	0.01092	
AVE 1 I	AVERAGED PARAMETERS 1 INDICATES LEADING	AMETERS LEADING EDGE,	, 2 INDICAT	S	TRAILING EDGE								
		TO FOO	Ĉ		a C # C a	0 200	ü		0.000	200	e e e	Ē	- C
c	PHIB1	FSIE 75058C	FSIIB		EFFB	161,134	0.008			3602, 279	FPS Tulin61	141	PPS PPS p61
,	24420	,		•			,				, , ,	•	

FLOW RATE # 6		4065.	GALLONS PE	ER MINUTE	•							
ROTOR BLADE E	ELEMENT PABAME LEADING EDGE,	PABAMETERS EDGE, 2 INDICA	ATES TRAILING	ING EDGE							•	
PASS.HT.1	R1/RT	01	VI	VZ1	VTHI	BETA1	5 T	WTHI	BETAP 1	E	P1	STRTUB1
		FFS 137,597	6	39, 689	0000	0.000	FPS -143.207	FPS 137.597	DEG 73.910		FT 137,240	SQ 1N 6.70040
2 0.314815	0,905555	128.198	ċ	42.500	000.0	000.0	135.059	.128.198	71.659		•	7.04110
		119.999	2	42.967	000.0	000.0	127.459	119.999	70.300		٠	6.00830
4 0.685185 5 0.907407	0.727778	112.484	43.280	43.230	000.0	0.000	120.523	112.484	68.955 67.020	163.020	133.910 133.190	6. 177 20 5. 015 80
PASS.HI.2	R2/RT	0.2	. v2	V Z 2	VTHZ	BETAZ	25	WTHZ	BET AP 2	H2	26	STRTUB2
FROM TIP	1	1 C	1 G 4	. t-	FPS	DEG	FP S	FPS	;	FT	E E	NI OS
1 0.092593	0.972222	137, 597	C1	37.831	61.953	58,590		75.644	63.429	362.740	280.850	6.70040
2 0.314815		128.198	₹.	44.553	46.048	45.945		82.150	61.527	334.070	270	7.04110
3 0.500000		1.19. 99.9	5,34	÷.	47.772	46.980	84.877	72.227	58.317		730	6.00830
4 0.685185	0.794444	112. 484	66.479	44.237	49.624	48,285	76.865	62.860	54.865	329.970	261.290	6.17720
,				ر پ	55.480	•	;	4/.00%	41.239		753.950	5.01580
ROTOR BLADE E 1 INDICATES L	ELEMENT PARA LEADING EDGE	PARAMETERS EDGE, 2 INDICATES	ATES TRAILING	ING EDGE					r			
PASS.HT.1	R1/RT	INC	PHI 1	RPM	A 6	DENSIT	SIA		REC			
		3.910	0.280433	3604.000	4040.600	_	0.9280E-(ຸກ				
		0.629	0,300209	3605,000	7.0	5.	0.9280E-	ı,				
		-0.120	0.304350	3595.000	4091,800	<u>ر</u> 1	0.92805-0	ν.			_	:
5 0.907407	0.727778	0.100	0.308621	3605.300	4040.600	62, 150	0.9280E-0	05 0.1528E	10 T 0 1			.
PASS.HT.2	R2/RT	VEJ	21Hã	PSI	PSII	F F F	OMEGAB	Д	DELTA H	DELTA P	(TH/C).A	ĩ
1 0.092593		1,729	730	0.322890	42553	75.0			201.020	143 610	0.04270	-
		6,527	1471	0.274598	29455	32	043842		171.050	135,320	0.00927	
3 0.50c000	0.850000	7.677	0.315773	0.2729.16	0.287630	0.948843	0.036103	0.490035	169.060	131.400	0.00789	
4 0.685185		8.135	1243	0.267942	.27843	962	028973		166.950	127.380	0.00648	
E 0.907407		6.259	1041	0.271166	.28518	950	94840		168.940	120.760	0 108	• • • •
AVERAGED PARA 1 INDICATES L	RAMETERS LEADING EDGE	E, 2 INDICATES	€4 -	RAILING EDGE					•		••	
. !	ROTOF	RO	TOR	ROTOR	HSVB	FRC		FRC2	RPMA	UTIA	U	.2A
PHIE1 0.284130	PSIE 0.281533	FSII 0.31328	о О•	EFFB 898647	FT 161.198	0.004		0.019 3	1602.959	FPS 141.488	141.4	FPS . 488

TABLE VII. - BLADE-ELEMENT DATA FOR CONFIGURATION 09

	·	SETANG DEGREES	65.850 63.015 60.530 57.905 53.960	
		CAMBER DEGREES D	6.300 16.030 19.780 22.350 25.920	
	,	CHORD	3.040000 3.040000 3.040000 3.040000 3.040000	:
		TMAX/C	0.071400 0.074700 0.077500 0.080300	
RANCE,	(u	SOLIBITY	0.884720 0.949850 1.011999 1.082709	Nalades 8
P DIAMETER,	BIADE ROW# 1 (ROZOR) INDICATES TRAILING EDGE	KAPPA2 DEGREES	61.700 55.000 50.640 46.730 41.000	STIP2 INCHES 4.570000
S, 9-INCH TI 20-INCH RADI ROFILE,	BLADE ROW# INDICATES I	R2 INCHES	4.375000 4.075000 3.825000 3.575000 3.275000	RHUB2 INCHES
ICN 09 ICN 09 ELADE C-FACTOR ARC ELADE CN COEFFICIE	PARAMETERS- DING EDGE, 2	KAPPA1 DEGREES	76.000 71.030 70.420 69.080 66.920	RTIP1 INCHES 4.500000
NASA CONFIGURATION 09 0.7 HUB-TIP RATIO, 8 ELADES, 9-INCH TIP DIAMETER, 0.74-INCH CHORD, 0.013-0.020-INCH RADIAL TIP CLEARANCE, 0.46 DESIGN TIP D-FACTOR, DOUBLE CIRCULAR ARC ELADE PROFILE, 0.294 DESIGN FLOW COEFFICIENT.	BLADE GECKETRIC PARAMETERS- BLADE ROW# '	R1 INCHES	4.375000 4.075000 3.825000 3.575000	RHUS1 INCHES
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P.		2432	

		STRTUB1 SQ IN 6.70040 7.04110 6.00830 6.17720 5.01580	STRTUB2 SQ IN 6.70040 7.04110 6.00830 6.17720 5.01580			· .		
		FT FT FT FT FT FT FT FT FT FT FT FT FT F	P2 ST FT FT 181.290 6. 180.050 7. 178.810 6. 177.480 6.			(TH/C) A 0.01482 0.01681 0.00194 0.00353	•	UT2A FPS 141.372
		H1 FT 168.500 171.150 170.740 170.860	H2 FT 239.460 239.460 244.380 247.020 246.030			DELTA P 56.490 58.210 58.330 57.710		UI1A FPS 141.372
		BETAP1 68.903 66.250 64.674 62.955	BETAP2 DEG 69, 369 61,391 58,294 54,915		REC 2E 07 8E 07 9E 07 3E 07	DELTA H 49.240 68.319 73.640 75.220	•,	RPMA 3600.000
		#TH1 FPS 137.445 128.020 120.166 112.312	WTH2 FPS 120.042 105.756 99.899 89.554 78.161		SK 05 0.4022E 05 0.3818E 05 0.3629E 05 0.3442E 05 0.323E	0.196086 0.222499 0.192062 0.215487 0.238209	•	FRC2
		#1 FPS 147.320 139.865 132.943 126.101	W2 FPS 123.268 120.464 117.424 109.438		VISK SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	OMEGAB 0.074434 0.066697 0.007474 0.013288		53 -0
		BETA1 DEG 0.000 0.000 0.000 0.000	BETA2 21.060 21.105 18.180 19.890		DBNS ITY LB/CU FT 62.150 62.150 62.150 62.150	EFF 0.662318 0.771113 0.972879 0.958667		FRC1-0.063
		VTH11 FPS 0.000 0.000 0.000	VTH2 FPS 17.403 22.264 20.266 22.758 24.726		QV GPM 5768.801 5768.801 5786.398 5794.500	.0.119583 0.142609 0.121853 0.127891		HSVE FT 169.114
R MINUTE	ING EDGE	VZ1 FPS 53.028 56.329 56.869 57.337	VZ2 PPS 45.195 57.682 61.714 62.903	ING EDGE	3600.000 3600.000 3600.000 3600.000	0.079268 0.109968 0.118548 0.122605	ING EDGE	ROTOR ZFFB 865950
GALLONS PER	ATES TRAILING	V1 FPS 53.028 56.329 56.859 57.337	V2 FPS 48.430 61.330 64.956 66.894	ATES TRALLING	PHI1 0.375099 0.402269 0.402269 0.409577	PHI2 0.319691 0.436534 0.44949	ATES TRAILING	ROTOR PSIIB 28487 0.8
5782.	PARAMETERS EDGE, 2 INDICAT	U1 FPS 137.445 128.020 120.166 112.312	U2 FFS 137.445 128.020 120.166 112.312	METERS 2 INDIC	INC EEG -1.097 -4.780 -5.746 -6.125	DEC 7.669 6.391 7.654 8.186	. 2 INDICATE	ROTOR PSIIB 0.128497
	ELEMENT PARAMET LEADING EDGE, 2	R1/RT 0.972222 0.905555 0.850000 0.794444	R2/RT 0.972222 0.905555 C.850000 0.794444	ELEMENT PARAMETERS LEADING EDGE, 2 INDICAT	R1/RT 0.972222 0.905555 0.850000 0.79444	R2/RT 0.972222 0.905555 0.850000 0.794444	AVERAGED FARAMÉTERS 1 INDICATES LEADING EDGE,	RCTOF PSLE 0.111263
OW RATE # 1	ROTOR BLALE F	PASS.HT.1 PROM. TIP 0.092593 0.314815 0.500000 0.685185	PASS.HT.2 FROK TIP 0.092593 0.314815 0.500000 0.685185	ROTOR BLADE E	PASS.HT.1 FROM TIP 0.092593 0.314815 0.500000 0.685185	PASS.HT.2 FROM TIP 0.092593 0.314815 0.500000 C.685185	ERAGED FAR! INDICATES I	PHIB1 0.404500
FLOW	1	2437	- 2 E 3 E	£ ₩	2 4 3 3 2 4	₽ # 3 B →	A v	_

TABLE VII. - Continued, BLADE-ELEMENT DATA FOR CONFIGURATION 09

•		STRTUB1 SQ IN 6.70040 7.04110 6.00330 6.17720 5.01580	SIRTUB2 SQ IN 50 TO 40 7.04110 6.00830 6.17720 5.01580		UT2A FPS 372
,		F1 135.010 132.690 132.060 130.970	P2 223.370 220.720 218.720 215.440 212.080	(Ti/C)A 0.01548 0.001334 0.00102	UT2A FPS 141,372
. !		H1 168.800 171.270 171.210 170.560	H2 258.690 275.400 279.020 279.830	DELTA R 8.350 88.030 86.660 84.470	UT1A FPS 141.372
		BETAP1 DEG 71.260 68.734 67.330 65.801	BETAP2 DEG 70.467 62.397 58.833 55.204	REC 05 07 05 07 05 07 12 07 12 07 35 07 35 07 10 07 10 07 10 07 10 09 10 09 10 09	RPMA 3600.000
1		WIH1 FPS 137.445 128.020 120.166 112.312	NTH2 FPS 110.124 100.842 91.018 80.640 67.648	55K 0.3962E 0.5 0.3962E 0.5 0.33555E 0.5 0.3143E 0.301300 0.275797 0.293781 10 0.321281 10	PRC2
		FPS 145.139 137.374 130.227 123.132	#2 116.849 113.793 106.371 98.199	VISK SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.013880 0.2 0.013880 0.2 0.003998 0.2	0
		BETA1 DEG 0.000 0.000 0.000 0.000	BETA2 DEG 34.965 27.270 27.900 29.475	DENSITY LB/CU FT 62.150 62.	FRC1
		VIH1 FPS 0.000 0.000 0.000	VIH2 FPS 27.321 27.178 29.148 31.672 35.239	97 6PH 5152.199 5147.801 5152.301 5123.500 5118.898 0.187485 0.177964 0.177964	HSVE FT 169.203
R MINUTE	AILING ZDGE	VZ1 #6.530 #9.825 50.192 50.473	722 39.069 52.725 55.051 55.038	AAILING EDGE HII RPN B37 3600.000 u41 3600.000 024 3600.000 u47 3600.000 u47 3600.000 u47 3600.000 u47 3600.000 u47 3600.000 u47 3600.000 u47 3600.000 u47 3600.000 u47 3600.000 u47 081 00.15332	AILING EDGE ROTOR EFFB 0.941345
GALLONS PER	CATES TRAIL	V1 46.630 49.825 50.192 50.473 51.664	V2 47.674 59.317 62.291 64.369	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ES 73 8 9 9 9
5139.	TEPS 2 INDI	U1 FPS 137, 445 128, 020 120, 166 112, 512	U2 FFS 137, 445 128, 620 120, 166 112, 312	A RETENSE 2 INC 1.2500 C -2.2500 C -3.279 C -3.270	, 2 INDICATION BOTOE PSILE PSILE
	ELEMENT PARAME LEADING EDGE,	81/PT 0.972222 0.905555 0.850000 0.754444	R2/RT 0.972222 0.965555 0.85060 0.794444	ELEADING EDGE, R1/R1 0.97222 0.905555 0.850000 0.72778 R2/R1 R2/R1 0.57222 0.905555 0.72778	READING EDGE ROTOF PSIE 0.168255
W BATE # 3	ROTOR BLACE EI 1 INDICATES LE	PASS.HT.1 PPOM TIP 0.092593 0.314815 0.50000 0.685185	PASS.HT.2 PROM TIP 0.092593 0.314815 0.50000 0.685185	PASS.HT.1 PASS.HT.1 PROM TIP 0.092593 0.314815 0.500000 0.685185 0.907407 PASS.HT.2 PRCM TIP 0.092593 0.314815 0.500000 0.685185	AGED FADICATES
FLOW	FOT	← 0 m a v	- 0 w a w		AVER 1 IN 0.

TABLE VII. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 09

- RO-1	ROTOR BLACE EL 1 INDICATES LE	ELEMENT PARAM LEADING EDGE,	PARAMETERS EDGE, 2 INDICAT	ATES TRAILIN	ING EDGE		-						
- N m +:0	PRCM TIP 0.092593 0.314815 0.500000 0.685185	81/RT 0.572222 0.905555 0.850000 0.794444	U1 FPS 137.445 128.020 120.166 112.312	V1 FPS 41.395 44.925 45.307 45.892	VZ1 FPS 41.395 44.922 45.307 45.892	VTH1 FPS 0.000 0.000 0.000 0.000	BETA1 DEG 0.000 0.000 0.000	#1 FPS 143.543 135.673 128.423 121.326	#TH1 FPS 137.445 128.020 120.166 112.312	DEG 73.239 70.664 69.342 67.774 65.572	H1 FT 168.150 171.040 171.040 171.450	P1 FT 141.520 139.680 139.140 138.720	STRTUB1 SQ IN 6,70040 7,04110 6,00830 6,17720 5,01580
- 0 m + 10	PASS.HT.2 PROW. 1TP 0.092593 0.314815 0.500000 0.685185	R2/RT 0.972222 0.905555 0.850000 0.794444	U2 FPS 137, 445 128, 020 120, 165	V2 19.773 58.570 61.606 64.559	VZ2 FPS 35.771 47.759 50.010 51.382 49.799	VTH2 FPS 34.610 33.903 35.976 39.086 43.498	BETA2 DEG 44.055 35.370 35.730 37.260 41.130	#2 FPS 108.879 105.541 97.923 89.455	WTH2 FPS 102.835 94.117 84.190 73.226 59.399	BETAP2 DEG 70.820 63.094 59.289 54.943	H2 291.140 302.090 305.660 309.320	P2 252.640 248.780 246.680 244.550 237.820	SIRTUBE SQ IN 6.70040 7.04110 6.00830 6.17720 5.01580
ROTO!	R BLACE DICATES	ELEMENT PARAM LEADING EDGE,	METERS 2 INDICAT	ATES TRAILING	ING EDGE								
= 01 m → 10	PASS.HT.1 0.092593 0.314615 0.50000 0.685165	81/RT 0.972222 0.905555 0.850000 0.794444	INC 3.239 -0.366 -1.073 -1.306	PHI1 0.292813 0.317756 0.320480 0.334622	3600.000 3600.000 3600.000 3600.000	QV GPM 4676.500 4671.500 4646.398 4614.699	DENSITY L3/CU FT 62.150 62.150 62.150 62.150	VISK SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	VISK /SEC E-05 0.3919P E-05 0.37042 E-05 0.3312E E-05 0.33312E E-05 0.3085E	REC 19E 07 04E 07 06E 07 12E 07 85E 07			
E 2 m + 10	PASS.HT.2 FROM TIP 0.092593 0.314815 0.500000 0.685185	A2/8T 0.97222 0.905555 0.850000 0.794844 0.727773	9. CEG 9. 120 9. 649 9. 213	PHI2 0.253026 0.33748 0.353748 0.353453	PSI 0.197993 0.210968 0.216715 0.221947	PSII 0.238014 0.217167 0.216303 0.219645	2FF 0.831854 0.971457 1.001904 1.010482 0.966576	ONEGAB 0.077639 0.013460 -0.006252 0.023423	0.377756 0.353632 0.375913 0.411467	FT 122.990 131.050 137.870 134.420	DELTA P 111.120 109.100 107.540 105.830	(TH/C) A 0.01442 0.00321 -0.00025 -0.00166	
	RAGED PARAM NDICATES LE PHIB1	directions ender, porter porter Porte	, 2 INDICATS 30203 50103 0.222154	ATES TRABLING SOT TIP TEP 0.9664	ING EDGE ROTOR EFF3 960428	HSVB FT 169.296	FRC1-0.073		PRC2 0.033	RPMA 3600,000	UT1A FPS 141.372	UT2A FP5 141.372	T2A 372

ROTO 1 IN	ROTOR BLADE E	ELEMENT PA5A LEADING EDGE	PABAMETERS EDGE, 2 INDICATE	ATES TRAILING	abda bni	`							
ρı	PASS.HT.1	31/RT	11		V21	VTH 1	BETA1	± 0	WTH1		m F	G 6	STRIUB1
	0.092593		137.445	38.4	38.429	0.000	0.000	142.716	137,445	74.379	168.450	145.500	6.70040
N 60	0.314815	0.905555	128.020	च च	41.828 42.211	0000.0	000 .0	134.680	129.020		171.270	144,080	7.04110
	0.685185		112,312	7	42.696	00000	00000	120.154	112.312		171.800	143.470	6. 177 20
u)	0.907407	0.727778	102.887	ਤ	43.517	00000	00000	111.712	102,887		171.680	142.250	5.01580
Δ,	ASS.H1.2	R2/RT	U 2		VZ2	VTHZ	BETA2	. 2	WIHZ	ш	H2	P2	SIRIUBZ
	FECM TIP		FPS		PPS	ខ្មា	DEG	FPS	ក្ខភ		FT	F.	SQ IN
	0.092593	0.972222	137.445	LO U	31,339	42.709	53.730	99.784	94.735	- (314.170	270.560	6.70040
	0.500000	0.650000	120.166	ביי נו	44.004	39.870	39.915	93.374	89.039	59.320	322 440	26 3 140	6 00830
.	0.685185	0.794444	112.312		48.709	42.943	1.40	84.762	69.369	54.	324.550	259.020	6.17720
	0.907407	0.72778	102.887	•	46.510	48.373	46, 125	71.659	54.514	• 67	321.390	251.410	5.01580
ROTO 1 IN	ROTOR BLADE E	ELEMENT PARA LEADING EDGE	PARAMETERS EDGE, 2 INDICATES		TRAILING EDGE								
ď	PASS.HT.1	R1/RT	INC	PHI 1	яРм	ΛÖ	DENS	. V	VISK	REC			
	FRCM TIP		0 0 0			GPM	LB/CU	SO FT/					
	0.092593	0.972222	4.379		3600.000	4328.398	62,	0.9280E					
	0.3.4815	444444	0. 6 76	2.0		4 125 000	62.	0.9280E					
	0.000000	200000	22.0			100.2164	.70	0.9250					
n t	0.907407	0.727778	0. 153	0.307622		4293.801	62.150	0.9280E-05		0.3050E 07			
ū	PASS.HT.2 FROM TIP	R2/RT	LEV	PHI2	ISd	PSII	स् स	OMEGAB	D	DELTA H	DELTA P	(TH/C) A	
	0.092593	0.972222	955.6	0.221676		0.293715	0.798680	116044	0.469947		125,060	0.02060	
	0.314815	0.905555	8.520	0.315861		0.245850	0.971398	115496	0.406435	148	121.660	0.00364	
	0.500000	0.850000	8.670	0.337112		0.239716	1.012438	007347	9.421548		118.450	-0.00185	-
ar vo	0.907407	0.794444	8.194 8.531	0.344549	0.245902 0.241008	0.241321 0.249022	1.018983 0.967818	-0.012683 0.025669	0.459603		115.550 109.160	-0.00337	
AV ER	ERAGED FARAMETERS INDICATES LEADING	METERS EADING EDGE,	2 IND		TRAILING EDGE								
	# #	ROTOR	OH C	708 1108	ROTOR	HSVB	F3C1	.10	FRC2	RPMA	UTIA		T 2A
0.	0.301480	0.240948	0.2515	25118 251554 0.9	Errs 957836	169.670	-0,069		-0.027	3600,000	FPS 141,372	FPS 141.372	FPS 372

TABLE VII. - Continued, BLADE-ELEMENT DATA FOR CONFIGURATION 09

S NDICATES TRAILING EDGE	U1 V1 VZ1 VTH1 BETA1 W1 WTH1 BETAP1 H1 P1 STRTUBL FPS FPS FPS FPS FPS FPS FT SQ_IN 445 36.681 0.000 0.000 142.255 137.445 75.057 169.800 148.890 6.70040 620 39.576 0.000 0.000 133.997 128.020 72.822 171.800 147.460 7.04110 312 40.460 40.460 0.000 0.000 126.622 120.166 71.625 171.800 147.040 6.00830 312 40.460 40.460 0.000 0.000 119.377 112.312 70.189 171.360 144.380 5.01580 887 41.325 41.325 0.000 0.000 110.876 102.887 68.117 170.920 144.380 5.01580	U2 VZ VZZ VTH2 BETA2 WZ WTH2 BETAP2 HZ PT PZ PZ SQ IN FPS FPS PS PS PS PS PT SQ IN 445 59.029 30.684 92.269 87.017 70.576 335.950 281.800 6.70040 020 59.029 41.279 44.348 330.410 276.310 7.04110 16 63.041 46.389 42.719 42.660 90.262 77.447 59.095 331.710 276.370 6.00930 312 65.680 47.095 45.718 44.190 81.512 65.530 54.706 332.810 26.28770 6.00930 87 68.613 44.437 52.278 49.635 67.349 50.609 48.715 332.990 259.830 5.01580	NDICATES TRAILING EDGE INC PHII RPM QV DENSITY CPM LB/CU FT SQ FT/SEC 0.3883E 07 205 0.259467 3600.000 4091.600 62.150 0.9280E-05 0.3457E 07 205 0.286345 3600.000 4080.100 62.150 0.9280E-05 0.3457E 07 109 0.286196 3600.000 4061.000 62.150 0.9280E-05 0.3259E 07 1157 0.292318 3600.000 4061.000 62.150 0.9280E-05 0.3657E 07	LEV PHIZ PSI PSI EFF OMEGAB D DELTA H DELTA P (TH/C)A FT FT FT FT FT FT FT FT FT FT FT FT FT	TRAILING EDGE
TRAILING	FPS FPS 6.681 36.681 39.576 39.576 39.916 39.916 1.325 41.325	V2 VZ2. PPS 9,029 30,684 9,002 41,193 3,041 46,359 5,680 44,437	TRALLING EDGE PHI1 RPM CPS 59467 3600.000 4093.50 82345 3600.000 4078.30 86196 3600.000 4078.30	PHI2 PSI 17048 0.267473 91381 0.255335 27926 0.262257 33128 0.263932 14329 0.260905	TRAILING EDGE ROIOP
ELEMENT PARAMETERS LEADING EDGE, 2 INDICATE	72605181	PASS.HI.2 R2/RT U2 PROM TIP 0.092593 0.572222 137.445 0.314815 0.905555 128.020 0.500000 0.850000 120.166 0.685185 0.754444 172.312 0.907407 0.727778 102.587	ELEMENT PARAMETERS LEADING EDGE, 2 INDICA 181/RT INC 181/RT EEG 186000000000000000000000000000000000000	ASS.HT.2 R2/RT LEV PROM TIP 0.092593 0.97222 8.876 0.3 0.314815 0.905555 9.348 0.3 0.500000 0.853000 8.455 0.3 0.685185 0.794444 7.576 0.3 0.907407 0.727778 7.715 0.3	ENAGED PARAMETERS INDICATES LEADING EDCE, 2 INCICATES ROTOR ROTOR
ROTOR BLADE 1 INDICATES	. L 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	POTO'R BLALE 1 INDICATES PASS.HT.1 0.092592 2 0.314812 3 0.500000 4 0.665186 6 0.9074076	PASS 2 0 0 3 3 0 0 5 3 0 0 0 5 3 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 5 5 0 0 0 0 5 5 0	AVERAGE 1 INDIC

PLOW RATE	· L #	3830.	GALLONS	PEP MINUTE		•	•				-	
ROTOR BLADI	E ELEMENT	PARAMETERS EDGE, 2 INDICATE	CATES TRAILING	LING EDGE					i.			
PASS.HT.1	R1/R	T 01		V21	HI.V	E REER		17.17.14 17.00.17	BETAP1		15	STRTUB1
			J.F.		00.0	000.0	121.	137 445	75 985	170	· ~	27 70 V
			37		00.0	000.0	133.28	128.020	73,838	172	عي ج	7.04110
3 0.500	0000 0.850000		. 37		00.00	00000	125.86	120.166	72,696	171		6,00830
			39		00.0	0.000	118.62	112,312	71,230	171.	ıΩ	6. 177 20
			. 39		00.00	0000	.03	102.887	69.239		9	5,01590
PASS.HT.2	I.2 R2/RT			V2.2	VTH 2	BETA 2	84.2	WIRZ	BE78P2	#2	29	CHITATIS
				FPS	FPS	DEG	٠ ٢ ٢	FPS		FT	E E	NI OS
	0.97222	137.	68	30.147	61.052	63, 720	82.126	76.392	ヒ	367.240	5	6.70040
2 0.3148	0.90555		9	37.013	48.982	52,920	87.277	79.038	64,904	346.690	Ξ	7.04110
	0.85000	120.	63.	f 7	45.910	46.530	96.070	74,256	S	344,810	2,5	6.00830
	0.79444	112.	99	45,	. 48.661	47,115	78.064	63.651	9		50	6.17720
	0.72777	102.	.59	7	55.508	52,920	63.282	47.379	_	343.610	258.380	5.01580
FOTOR BLADI	ELEMENT : LEADING	PARAMETERS EDGE, 2 INDICATI	CATES, TRAILING	EDCS DNIT		,						
PASS. H	R1/R	fra:	PHI 1	RPM	ΛÖ			ISK	8EC			
					Web .	_		OEIS				
		Š,	0.24		3836.000			o	58E 07	å		
			0.26		3844 100			0	07			
		7 (0.25		3827.800			o o				•
5 0.907407	407 0.727778	4 2.150 8 2.319	0.275835	3600.000 3600.000	3817.700	62.150	0.9280E-05	-05 0.3238E -05 0.3004E	07			
PASS.H.	R2/F	T CEV	PHI 2	ISã	PSII	4 i i	OMEGAB	Q	DELTA H	DELTA P	(TH/C) A	
			21325	. 160315 0		007037 6		000000	FT.	Li		
				0.280980	3137	0.895450		0.533638		, r	0.04233	. •
			0.30784	0.273613	.27603	1.009346	•	496394		132,660	-0.00163	
4 0.685185	185 0.794444	7.894	0.31968	0.277937	0:273451	1:016407	-0.012745	0.531343	172.650	9	-0.00341	
		•	0.2301	0/2	. 283.3	0.957917		0.638292		120.220	6,800.0	
AVERAGED 1	ERAGED FARAMETERS INDICATES LEADING EI	DCE, 2 INDICATE	S	TRAILING EDGE.			٠					
		15.	_	POTOR		5.H	FSC1	FRC2	SPMA	UTIA		TZA
PH161 0.267880	0.284581	re PSIIE 36 0.309161	· -	EFFB	170.159	0.0-		0.012 3	3600.000	FPS 141.372	147	FPS .372

TABLE VII. - Concluded. BLADE-ELEMENT DATA FOR CONFIGURATION 09

		STRTUB1 SQ IN 6.70040 7.04110 6.00830 6.17720 5.01580	ST RTUB2 SQ IN 6.70040 7.04110 6.00830 6.17720 5.01580					
			ST				UT2A FPS	;
		PT FT 154.990 153.150 151.800 151.110	P2 FT 303.130 292.600 287.630 282.870			(TH/C) A 0.05431 0.02819 0.00613 -0.00538	<u>-</u>	
		H1 FT 171.680 172.390 171.860 172.030	H2 390.320 355.720 350.270 352.750 347.960			DELTA P PT 148.140 139.450 135.830 131.760	UT1A PPS 141,372	
		BETAP1 DEG 76.589 74.632 73.354 71.909 69.946	BETAP2 DEG 66.4649 60.606 54.504 48.472		7 7 6,0	DELTA H FT 218.640 183.330 178.410 180.720	RPMA 3600,000	
		FPS 137,445 128,020 120,166 112,312	FPS 68.655 72.711 70.743 61.734	ó	0000	0.745901 0.621961 0.547336 0.555923	PRC2 0.006	
		W1 FPS 141.298 132.767 125.422 118.153	#2 FPS 74 - 780 79 - 306 81 - 195 75 - 826 62 - 274	VI SQ FT/ 0.9280E	928 928 928 928	OMEGAB 0.242447 0.134134 0.025279 0.025279 0.022749	ı	
		BETA1 DEG 0.000 0.000 0.000	BETA2 DEG 66.690 60.210 51.120 48.960 53.730	DENSITY L3/CU FT 62,150	வ விவிவ	EFF 0.744020 0.966522 1.023589	FRC1	•
		VTH1 FPS 0.000 0.000 0.000	VTH2 FPS 68.790 55.309 49.423 50.578	QV GPM 3513,000	20 20 20 20	PSII 0.473070 0.354282 0.297158 0.284224	HSVB FT 170,754	
PER MINUTE	ING EDGE	VZ1 32.771 35.186 35.928 36.690	V222 FPS 29.640 31.663 39.851 44.029	ING EDGE 3600,000	3600.000 3600.000 3600.000	0.351973 0.295130 0.297210 0.290329	ING EDGE ROTOR : EFFB 897189	
GALLONS PE	ATES TRAILING	V1 32.771 35.136 35.929 36.690	V2 PPS- 74.903 63.731 63.468 67.057	TES TR PH 0.2318	0.248890 0.254139 0.259529 0.265659	PHIZ 0.209658 0.223970 0.281639 0.311439	ICATES TRALLING ROTOR ROT FSILB ES 34525 0.8971	
3514.	PAFAMETERS EDGE, 2 INDICA	U1 FFS 137.445 128.020 129.166 112.312	U2 FPS 137.445 128.020 120.166 112.312	E 2	3.602 2.934 2.829 3.026	DEV DEG 11.469 9.966 7.774	2 IND 0.3	
	ELEMENT PARAMILEADING EDGE,	R1/RT 0.972222 0.905555 0.850000 0.79444	R2/RT 0.97222 0.90555 0.50000 0.79444		0.905555 0.850000 0.794444 0.727778	\$2/RT 0.972222 0.905555 0.850000 0.794444	METERS EADING EDGE, ROTOR PSIE PSIE 0,300132	
FLOW RATE # 9	ROTOR BLADE E 1 INDICATES L	PASS.HT.1 FROM TIP 0.092593 0.314815 0.500000 0.685185	PASS.HT.2 FRCM TIP 0.092593 0.314815 0.5CC000 0.685185	INDICATES INDICATES PASS.HT.1 PROM TIE	0.314815 0.500000 0.6851E5 0.907407	PASS.HT.2 FROM TIP 0.092593 0.314815 0.500000 0.685185	VERACED, EARAMETER INDICATES, LEADIN PHIB1 0.250020	
Σ.,	ř.	/ - Cate and -	- 2 m 3 m	- F	U TE M V	. ←aman	AV.	

		•		· .	*
		. 765#32 <u>1</u>	•	EL AI	NASA 0.8 H 1.5-I 0.66 DOUBL 0.466 REPOR
3.600000	RHUB1 INCHES	4.46000 4.410000 4.310000 4.260000 4.060000 3.910000	R1 INCEES	DE GECKETRIC	NASA CONFIGURATION 5 0.8 HUB-TIP RATIO, 19 ELA 1.5-INCH CHOFD, 0.015-INC 0.66 DESIGN TIP D-FACTCR, 0.0466 DESIGN FLCW CCEFFIC 0.466 DESIGN FLCW CCEFFIC REPORTED IN NASA TN D-302
4.500000	RTIP1	68.500 68.600 68.600 63.600 63.700 65.800	KAPPA1 DEGREES	PLADE GECKETRIC PARAHETERS- 1 INDICATES LEADING EDGE, 2	NASA CONFIGURATION 5 0.8 HUB-TIP RATIO, 19 ELADES, 9-I 1.5-INCH CHOFD, 0.016-INCH RALIAL 0.66 DESIGN TIP D-FACTOR, DOUBLE CIRCULAR ARC ELADE PROFILE 0.466 DESIGN FLOW COEFFICIENT. REPORTED IN NASA TN D-3024 AND IN
3.600000	RHUB2	#.#10000 #.310000 #.260000 #.260000 3.910000 3.710000	R2 INCHES	- BIADE ROW# 1. (ROTOR) 2 INDICATES TRAILING EDGE	NASA CONEIGURATION 5 0.8 HUB-TIP RATIO, 19 ELADES, 9-INCH TIP DIAMETER, 1.5-INCH CHORD, 0.016-INCH RALIAL TIP CLEARANCE, 0.66 DESIGN TIP D-FACTOR, 0.0466 DESIGN FLOW COEFFICIENT. REPORTED IN NASA TN D-3024 AND TN D-3602.
4.500000	RTIP2	39.900 38.000 34.200 32.250 25.100 23.100 20.150	KAPPA2 DEGREES	1. (ROTOR) RAILING EDG	P DIAMETER, LEARANCE,
. 19	NBLADES	1.00900 1.020400 1.044100 1.056300 1.103400 1.150900	SOLIDITY	eo _.	
		0.07000 0.072000 0.074200 0.075300 0.075800 0.083100 0.087600	TMA X/C		
		1.50000 1.50000 1.50000 1.50000 1.50000 1.500000	CHORD	: :	
		28.600 30.600 34.400 36.350 42.600 42.700 42.950	CAMBER	, ,	
	· ·	541 200 531 300 511 400 501 475 461 400 411 450	SET ANG DEGREES	:	
٠		200 300 400 475 450	ANG		

		STRTUB1 SQ IN 1.572 10 2.078 20 3.345 80 4.464 20 4.299 30 4.436 70	STRTUB2 SQ IN 1.67950 2.07820 2.03100 3.34580 4.46420 4.59930		UT2A FPS .208
		P1 160.640 158.730 161.210 152.600 152.440	P2 249.940 249.410 249.050 245.410 239.460 237.700	(TH/C)A 0.05238 0.04309 0.02718 0.00554 0.006471	u 118.
		H1 E31.970 233.340 240.480 239.600 239.600	#2 327.870 333.520 344.650 347.720 358.050 360.780	DELTA P FT 89.300 90.680 87.840 86.260 85.260 83.480	UT1A FPS 118.208
		BETAP1 DEC 59.919 59.051 57.556 56.772 55.036 53.813 52.046	BETAP2 DEG 52.790 50.838 47.490 46.063 41.243 38.655 34.398	REC 821E 07 884E 07 804E 07 753E 07 7758E 07 7758E 07 7768E 07 1668E 07 1668E 07 103.220 103.220 103.220 119.030 111.180	RPMA 3010.156
		HZH1 FPS 116, 961 113, 550 112, 129 106, 641 102, 961	#TH2 FPS 76.928 74.589 74.726 69.997 55.411	0.000000000000000000000000000000000000	FRC2
		FPS 135.166 134.732 133.923 134.046 130.128 127.569	W2 FPS 96.591 98.944 101.184 104.965- 102.457 98.084	VISK SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-06 0.9280E-06 0.9280E-06 0.174805 0.114019 0.082765 0.013871 0.021746 0.021746	
		BETAL DEG 0.000 0.000 0.000 0.000 0.000	BETA2 DEG 34.425 31.860 29.340 27.450 25.380 25.965	DENSITY LB/CU FT 62.160 62.160 62.160 62.160 62.160 62.160 0.058966 0.718322 0.7832200.959119 0.959119	FRC1
		VATH PATH PATH PATH PATH PATH PATH PATH P	VTH2 FPS 40.033 38.833 38.431 37.403 37.442 38.964 42.203	QV GPM 5112.601 5101.139 5130.199 5130.199 5137.602 5137.602 5137.695 0.33.620 0.32.261 0.32.261 0.298937 0.285802 0.298937	HSVB FT 237.613
R MINUTE	ING EDGE	VZ1 FPS 67.749 69.289 71.847 73.455 74.572 75.319	10 40 40 75 30 30	22.74 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	A1L1NG EDGE RÓTOR BFF3 0.885079
GALLCNS PE	ATES TRAILIN	V1 FPS 67.749 69.289 71.847 73.455 74.557 75.319	707 738 788 788 788 788	PH PH PH PH PH PH PH PH PH PH PH PH PH P	A.
5120.	AMETERS E, 2 INDICATE	U16.961 115.961 113.020 112.129 106.641 102.961	U2 FPS 116.961 113.050 112.129 102.961 97.613	1 11111 1111111111111111111111111111111	0.2
	ELEMENT PARI LEADING EDGI	R1/RT 0.991111 0.98000 0.957778 0.90222 0.668889 0.824444	R2/RT 0.991111 0.980000 0.95778 0.95222 0.96889 0.86889 0.86889	E 1010183 E 1019183	0
W BATE # 1	R BLADE DICATES	PASS.HI.1 FGOM TIP 0.044444 0.100000 0.211111 0.26666 0.4 E88889 0.655556	78S.HI.2 7.044444 7.1040404 7.211111 0.26666 0.48889 0.48889 0.65556	185S. HT.1 185S. HT.1 180M TIE 180M PHIE1	
PL OW	FOTO 1 IN	- 00 c c c c c c c c c c c c c c c c c c	1 1 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	1 10 10 10 10 10 10 10 10 10 10 10 10 10	-

TABLE VIII. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 5

PARAMETERS BDGE, 2 INDICATES TRAILING EDGE	FPS FPS	11 11 11 11 11 11 11 1	EE, 2 INDICATE ROTO
ETERS 2 INDICATES	101 101 101 101 101 101 101 101 101 101	U2 V2 117.012 66.299 113.738 71.492 113.351 78.944 1106.252 86.251 102.578 85.549 97.574 89.326 ETERS 2 INDICATES TRAILIN INC PHI1 CEG 0.538444 -7.014 0.538444 -9.960 0.585729 -10.322 0.565729 -10.322 0.565718 -10.322 0.6633091 -2.395 0.665511 EEV PHI2 DEG 0.448273 12.790 0.569572 12.790 0.569572 12.790 0.6639472 12.790 0.6639472 15.645 0.448273 15.645 0.663308 15.645 0.663333 15.645 0.663333 15.645 0.663333 15.645 0.663333	2 INDICATES T ROTOR
ROTOR BLADE ELEMENT PARR 1 INDICATES LEADING EDGE	PASS.HT.1 FROM IIP 0.044444 0.991111 0.100000 0.580000 0.26666 0.946667 0.488889 0.905222 6 0.655556 0.668889 7 0.877778 0.824444	PASS.HT.2 FROM TIP 0.044444 0.100000 0.9910 0.246666 0.9466 0.489899 0.9022 0.65555 0.8688 0.87778 0.8244 0.00000 0.9910 0.044444 0.9911 0.0044444 0.9910 0.100000 0.9800 0.488899 0.9577 0.266666 0.9466 0.488899 0.9577 0.266666 0.9466 0.488899 0.9577 0.266666 0.9466 0.488899 0.9577 0.266666 0.9466 0.044444 0.99577 0.266666 0.9466 0.044444 0.99577 0.266666 0.9466 0.211111 0.9577	DG OF

	ERTUB1 SQ IN S7210 07820 03100 34580 46420 29930	STRTUBS SQ IN 1. 67950 2.07820 3.34580 4.46420 4.29930 4.61460				
	K + 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Ettass.			S 400100 P	UT2A FPS 8.338
	PT FT 179.370 181.740 180.620 179.110 176.450 176.080	P2 FT 295.570 296.490 292.650 289.290 284.780		••.	(TH/C)A 0.03544 0.02110 0.02019 -0.00141 -0.0057 0.00805	Ξ
	H1 231.880 237.900 242.560 241.150 241.220 241.990 242.570	H2 357.990 370.880 395.510 390.480 395.530 393.570			DELTA P FT 116.200 117.000 113.5870 113.5840 112.840 108.700	UT1A FPS 118.339
	BETAP1 DEC 63.610 62.632 60.905 60.880 58.865 57.653	BETAP 2 DEG 58.161 54.559 48.344 46.057 41.677 38.701		REC 52E 07 11E 07 19E 07 33E 07 10E 07	DELTA H 126.110 132.980 142.950 149.310 154.310 151.980	RPMA 3013.441
	#TH1 FPS 117.152 116.131 113.449 112.040 106.872 102.831	WTH2 FPS 72.620 68.640 68.196 69.473 61.586 55.336		SEC 0.17628 -05 0.17618 -05 0.17618 -05 0.1749 -05 0.1682 -05 0.1640	D .515102 0.533684 0.463887 0.421813 0.421813 0.42430	FRC2
	FPS 130.780 130.768 129.832 128.627 124.857 121.718	# FP S 85.482 84.250 91.275 92.618 88.2601 82.262		VISK SQ PT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	OMEGAB 0.135585 0.144541 0.063427 0.063427 0.060783	RC1
	BETA1 DEG 0.000 0.000 0.000 0.000 0.000	BETAL DEG 44.640 44.190 36.720 33.240 34.515 37.395		DENSITY 1B/CU FT 62.160 62.160 62.160 62.160 62.160 62.160	EFF 0.777746 0.395873 1.007891 1.005829 1.001187	FRC1
	A P P P P P P P P P P P P P P P P P P P	VTHS FPS 44.532 47.491 45.253 42.266 47.495		0 V 44425.000 44420.102 44425.000 4444.500 44425.000 44442.199 44423.102	PSII 0.373391 0.352751 0.365910 0.34492 0.346703 0.346703	HSVB FT 239.537
ING EDGE	VZ1 FPS 58.128 60.115 63.133 64.559 65.124 65.440	VZ2 FPS 46.095 46.853 60.667 69.178 69.068	ING EDGE	3010.000 3017.600 3016.300 3016.400 3013.700	PSI 0.290403 0.304683 0.327809 0.343836 0.349117 0.358272	RAILING EDGE ROTOR EFFB 0.961105
ATES TRAILING	FPS 58.128 . 60.115 63.133 64.559 65.124 65.124	V2 63.377 63.133 75.685 75.685 79.685 83.822	ATES TRAILIN	PHI1 0.491770 0.507294 0.532990 0.53862 0.545012 0.550279	PHI2 0.331504 0.412251 0.512749 0.584004 0.583599	63
PAFAMETERS EDGE, 2 INDICAT	U17. 152 117. 152 116. 131 113. 449 112. 040 106. 872 102. 831	U2 FPS 117.152 116.131 113.449 112.040 106.872 102.831	METERS , 2 INDIC	1NC FEG -4.890 -5.968 -7.695 -8.020 -8.835 -7.014	LEV DEG 18.261 16.559 14.144 13.807 16.577 15.601	2 INI
ELEMENT PAFA LEADING EDGE	R1/RT 0.991111 0.980000 0.957778 0.902222 0.868889	R2/RT 0.991111 0.980000 0.957778 0.902222 0.868889	ELEMENT PAFA LEADING EDGE	81/PET 0.991111 0.957778 0.902222 0.868889	R2/RT 0.991111 0.980000 0.94667 0.902222 0.86889	AMETERS LEADING EDGE ROTOR PSIE
ROTOR BLACE F	PASS.HT.1 FROM TIP 0.044444 0.10000 0.211111 0.2665556 0.48889	PASS.HT.2 FFOM TIP 0.044444 0.100C00 0.211111 0.268899 0.655556	OTOR BLADE E INDICATES L	PASS.HT.1 FRCM TIP 0.044444 0.10000 0.211111 0.26889 0.655556	PASS.HI.2 FROM TIP 0.044444 0.10000 0.211111 0.268899 0.65556	ERAGED FAR INDICATES FHIE1 0.524150
1	- 0 m 4 m 9 h	165FW21	- F	1654321	7654357	1

, iz

4427. GALLONS PER MINUTE

TABLE VIII. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 5.

FLC	OW RATE # 4	,	4093.	GALLONS PE	Ř MINUTE				٠.	٠.	*. *		
- 0 T	OTOR BLACE E INDICATES L	LEMENT PABA EADING EDGE	METĖRS , 2 INDIC	ATES TRAILI	ING EDGE								
7004007	PASS.HI.1 PROM TIP 0.044444 0.100000 0.211111 0.26666 0.48888 0.655556	81/RT 0.991111 0.957778 0.9042657 0.9042657 0.863889	U1 FPS 117, 051 116, 131 113, 159 111, 672 107, 130 102, 961 97, 532	V T E V S S S S S S S S S S S S S S S S S S	VZ1 53.692 55.593 58.239 58.239 58.820 60.424	PTH TY THE TY TH	BETA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	128.777 128.752 127.266 127.266 122.700 119.382	FPS 117.051 116.131 113.159 111.672 107.961 97.532	BETAP1 DEG 65.359 64.419 62.767 62.448 60.823 59.593	H1 233.810 234.530 242.750 242.890 242.900 242.900 243.290	P1 189.010 186.500 190.040 190.140 186.160 186.460	STRTUB1 SQ IN 1.57210 2.07820 2.03100 3.34580 4.46420 4.29930
	ASS.HT.2 0.0040404 0.0040404 0.2111111 0.26666 0.488889 0.655556	R2/RT 0.991111 0.980000 0.957778 0.946667 0.868889 0.868889	117. 116. 113. 111. 107.	V 2 63.549 63.549 67.268 72.493 72.493 75.493 83.225 86.482	VZZ TFUS 37.596 43.284 53.733 59.733 66.834 65.680	VTH 2 50.939 51.492 48.662 47.042 47.23 51.112 57.293	BETAL 53, 280 49, 950 42, 165 38, 475 37, 890	76.253 77.792 83.947 86.919 86.919 76.261	WTH2 FPS 64,639 64,497 64,497 64,830 57,892 51,848	BETAP2 DEG 60.113 56.193 50.202 47.514 41.763 38.288 31.846	H2 376.570 379.420 394.680 407.450 407.900	P2 313.810 309.100 313.010 311.470 304.450 300.260	STRTUBZ SQ 1.679 50 2.078 20 2.031 00 3.34580 4.464 20 4.29930
2 - 10 w a z o o t	PASS.HI.1 PASS.HI.1 PROW TIP 0.10C000 0.256666 0.486889 0.658889 0.658889	EALING EDGE R1/RT C-991111 C-98000 0-95778 0-95778 0-96667 0-96222 C-868888 0-824444	2 INDIC 2 INDIC 13 IEG 14 181 16 183 16 182 16 182 16 207 16 200	ATES TRAIL PHF1 0.454627 0.469140 0.492935 0.509923	ENG EDGE PPM 3037.400 3017.600 3008.600 3028.700 3017.500 3012.500	00 628 4098.199 4077.400 4077.400 4099.102	DENS ITY LB/CU ITY 62.160 62.160 62.160 62.160 62.160 62.160	SQ_FI_/SQ_E_FI_/SQ_0.9280E-0.9	005 005 005 005 005 005 005 005 005 005	REC 35E 07 34E 07 14E 07 97E 07 53E 07 68E 07			
し、ころはららて	PASS.HI.2 FROM TIP 0.044444 0.100000 0.211111 C.26666 0.48888 0.655556	R2/RI 0.991111 0.957778 0.902657 0.902222 0.863889	DEV DEG 20.213 18.193 16.002 15.264 15.488 11.696	PHI2 0.321729 0.355261 0.541798 0.546013 0.546013 0.54280	PSI 0.329314 0.331971 0.350187 0.3577002 0.378072 0.386478	PSII 0.427484 0.425840 0.334489 0.3747126 0.374736	EFF 0.779568 0.779568 0.964798 1.007687 1.007687	0.165133 0.159033 0.076361 0.076361 0.005387 -0.006474 0.027214	0.603886 0.591766 0.523494 0.472636 0.472636	DELTA H 142.760 144.890 151.930 157.420 165.210 165.000	DELTA P FT 124.800 122.600 121.330 171.820 114.100	(TH/C) A 0.04078 0.02341 0.002341 0.00221 0.00221	
A L	RAGED FARA NDICATES L FHIE1	METERS EADING EDGE ROTOR PSIE 0.369894	, 2 IND	88 TR B 6	AILING EDGE ROTO3 EFFB 0.953002	HSVB FT 240.180	FRC1	FRC1	FRC2	EPMA 013.028	UT1A FPS 118,321		1712A FPS .321

		STRTUB: SQ IN: 1.57210 2.07820 2.03100 3.34580 4.46420 4.29930 4.43670	STRTUBS SQ IN 1.67950 2.07920 2.04310 4.29930 4.61460				T2A Pps 272
		P1 197.880 197.010 195.570 195.240 195.600	P2 FT 323.400 323.810 320.070 320.100 316.760 310.900			(TH/C)A 0.05571 0.05023 0.02865 0.00401 -0.00806	118.
		H1 237.430 238.420 241.390 243.080 243.650 241.550	H2 392.80C 395.480 398.600 404.090 417.560 417.640			DELTA P FT 125.520 126.800 124.500 121.600 116.780	UT1A FPS 118.272
		BETAP1 DEG 66.693 66.007 64.386 64.138 62.601 61.439	BETAP2 DEG 61.892 57.953 51.552 48.999 41.808 37.879		REC 7E 07 7E 07 22E 07 22E 07 4E 07	DELTA H FT 155.370 157.060 157.210 161.000 174.990 180.340	RPMA 3011.784
		FPS. 117. 101 115. 981 113. 261 112. 040 105. 911 102. 660 97. 412	WIH2 FPS 57.847 58.988 61.902 63.123 55.262 49.383		SEC 0.171 005 0.171 005 0.171 005 0.162 005 0.162 005 0.157	D.715941 0.671792 0.566530 0.514210 0.504746 0.509925	FRC2 0.022
		FPS 127,505 126,950 125,604 124,509 120,418 116,884 112,449	FPS FPS 65,582 69,593 79,040 83,640 82,927 72,051		SQ FT/S 0.9280E-1 0.9280E-1 0.9280E-1 0.9280E-1 0.9280E-1 0.9280E-1	OMEGAB 0.238638 0.193204 0.096199 0.038775 0.01914	,
		BEZA DEG 0.000 0.0	BETA 2 DEG 62, u60 57, 060 46, 260 u1, 175 39, 870 40, 005		DENSITY LB/CU FT 62.160 62.160 62.160 62.160 62.160 62.160	EFF 0.720432 0.764473 0.869546 0.9451550 1.015550 1.029369	FRC1
		VTH PP PP PP PP PP PP PP PP PP PP PP PP PP	V7H 2 FPB 2 FPB 2 FPB 2 56.993 51.359 48.315 61.628 63.277		0V GPM 3819.200 3817.200 3813.800 3813.600 3803.500 3787.400	PSII 0.497052 0.471942 0.415973 0.393092 0.391804 0.425827	HSVB FT 240.550
RMINUTE	ING EDGE	V21 FPS 50,448 51,620 54,299 54,311 55,414 55,414	V22 10.818 36.927 49.148 54.813 61.813 62.189	ING EDGE	3008.700 3013.700 3013.300 3017.500 3008.700	0.358092 0.360737 0.361708 0.395944 0.403311	ING EDGE ROTOR EFFR 954793
GALLONS PER	ATES TRAIL	V1 50,448 51,620 54,299 54,311 55,414 55,414	V2 FPS 66.326 67.910 71.086 73.537 82.376	ATES TRAILI	PHII 0.426974 0.436175 0.459178 0.467639 0.472970	PHI2 0.261515 0.312021 0.415616 0.463650 0.537297 0.537297	ES TRAIL R B C 2
3807.	RAMETERS GE, 2 INDIC	FPS 117. 101 115. 581 113. 261 1106. 911 1002. 660 97. 412	U2 117.101 115.981 113.261 112.040 106.911	RAMETERS SE, 2 INDICA	INC -1.567 -2.593 -4.214 -4.462 -5.099	DEV DEG 21, 99 2 19, 95 3 17, 35 2 16, 74 9 16, 77 9	2 IND . 0 . 4
	ELEMENT PARALEADING EDGE	R1/BT 0.9911111 0.980000 0.957778 0.946667 0.902222 0.868889 0.824444	R2/RT 0.991111 0.98000 0.957778 0.94667 0.902222 0.868889	ELEMENT PARALEADING EDGE	81/87 0.991111 0.98000 0.957778 0.94665 0.902222 0.868889	R2/RT 0.991111 0.957778 0.946667 0.90222 0.668889 0.824444	RAMETERS LEADING ELGE ROTOR PSIB 0.392489
OW RATE # 5	R BLADE DICATES	PASS.HI.1 FROM TIP 0.044444 0.100000 0.211111 0.26666 0.655556 C.877778	PASS.HI.2 PROM TIP 0.044444 0.100000 0.211111 0.26666 0.488889 0.655556	R BLACE DICATES	PASS.HT.1 PROM TIP 0.044444 0.100000 0.211111 0.26666 0.48E889 0.655556	PASS.HT.2 PROM TIP 0.044444 0.100000 0.211111 0.26666 0.488889 0.65556 0.877778	ERAGED PARA INDICATES L PHIB1 0.450980
FLOW	ROTO!	- 0 m 4 m 0 r	- 0 m = 10 o r	1 IN	- 2m = 50 0 F		AVE 1 I

TABLE VIII. - Concluded, BLADE-ELEMENT DATA FOR CONFIGURATION 5

	STRTUB1 SQ IN 1.57210 2.07820 2.03100 3.34580 4.46420 4.29930	STRTUB2 SQ IN 1.67950 2.07820 2.03100 3.34580 4.46420 4.29930				2A 27
	P1 206.870 205.600 205.660 204.010 206.070 205.160	P2 RT 337.800 334.740 331.820 321.820 322.240 322.240 324.530 315.330		•	0.05581 0.05850 0.05850 0.04345 0.0273 -0.00760	UT2A FPS 118.127
	H1 239.000 241.070 242.770 245.290 245.290 245.290	H2 #14.390 #15.200 #05.120 #06.640 #26.640 #30.860			DELTA P 130.930 130.140 126.160 123.330 122.950 119.370	UT1A FPS 118.127
	BETAP1 DEG 68.756 67.842 66.627 66.135 64.786 63.733	BETAP2 DEG 64.297 59.529 54.672 51.554 42.318 37.512 29.887		REC 90E 07 80E 07 59E 07 45E 07 44E 07 44E 07	DELTA H 175.390 174.130 164.350 163.160 181.350 185.710	RPMA 3008.085
	HTH1 FPS 116.961 115.650 1113.069 111.672 106.691 102.790	WTH2 FTPS 51.232 51.334 55.775 57.49 53.498 46.594 33.595		50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D.806461 0.775408 0.667742 0.6627742 0.529799 0.529799	FRC2 0.022
	FPS 125.489 124.872 123.177 123.177 17.927 114.626	#2 FPS 56.858 59.560 68.364 79.449 76.519 67.421		VIS SQ FT/SE 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0	OMEGAB 0.259690 0.235446 0.156913 0.101014 -0.022798 -0.030236	
	BETAL DEG 0.000 0.000 0.000 0.000 0.000	3ETA2 69.435 64.845 55.395 49.455 42.165 42.795 47.565		DENSITY LB/CU FT 62.160 62.160 62.160 62.160 62.160 62.160	EFF 0.734028 0.753210 0.816247 0.874534 1.027927 1.034388	FRC1
	V F F F S C C C C C C C C C C C C C C C C	VTH2 65.729 64.316 57.294 53.203 53.203 63.937		QV GPN 3463.700 3441.900 3454.800 3454.800 3453.100 3448.500	PSII 0.552026 0.454834 0.464834 0.465912 0.412746	HSVB FT 242.368
ING EDGE	VZ1 FPS 45.470 47.096 48.867 49.404 50.237 50.727	VZ2 PYZ 24.660 30.203 39.532 43.5432 45.746 60.697 58.454	ING EDGE	3005.100 3005.100 3006.200 3006.200 3011.300 3012.500	PSI 0.405202 0.402291 0.379419 0.379419 0.417248 0.426940	AILING EDGE ROTOR EFFB 0.946374
ATES TRAILING	V1 FPS 45.470 47.096 48.867 49.404 50.727 50.727	V2 FPS 70.203 71.054 69.609 70.257 79.257 82.717	ATES TRAILIN	PHI1 0.385305 0.399089 0.413938 0.414807 0.428801 0.428801	PHI2 0.2C8966 0.334866 0.384860 0.496783 0.496783 0.513074	E E E E E E E E E E E E E E E E E E E
PARAMETERS EDGE, 2 INDIC	U116.561 115.650 113.069 1113.069 111.672 106.691	U2 116.961 115.650 113.069 111.672 101.790 97.532	IRAMETERS GE, 2 INDICATI	INC DEG 0.256 -0.758 -1.453 -2.914 -2.914 -2.067	DEV DEG 24.397 21.529 20.472 19.472 11.218 14.412	E, 2 INDICAT ROTO PSII 0.43705
ELEMENT PARAM LEADING EDGE,	R1/RT 0.9911111 0.957778 0.902622 0.868889 0.824444	R2/RT 0.9911111 0.980000 0.946667 0.90222 0.968899 0.824444	ELEMENT PARAL LEADING EDGE	R1/RT 0.991111 0.957778 0.946667 0.90222 0.868889 0.824444	R2/RT 0.991111 0.957778 0.95222 0.968889 0.824444	METERS BADING EDGE ROTOR PSIE 0.413616
A BLADE DICATES	ASS.HI.1 FROM TIP 0.004444 0.100000 0.26666 0.48889 0.655556	ASS.HT.2 PFGM TIP 0.0004040 0.100000 0.211111 0.26666 0.48889 0.65555 0.87778	R BLACE DICATES	ASS.HI.1 0.044444 0.100000 0.211111 0.26666 0.48889 0.655556	ASS.HT.2 0.04444 0.100000 0.211111 0.26666 0.48689 0.65555	AGED PARAMEDICATES LEAFERE
FOTO 1 IN	-0.04 2 0.0 L	- CM450/	FOTO 1 IN	- CE # 29 P	- 1654 1655	AVER 1 IN

LEMENT PARAMETERS RAINT PARAMETERS 0.991111 117.350 41.068 0.960000 115.450 45.441 0.90222 106.599 46.415 0.957778 113.020 445.441 0.90222 106.599 46.415 0.991111 117.350 72.644 0.991111 117.350 72.644 0.991111 117.350 72.644 0.991111 117.350 72.644 0.991111 117.350 72.644 0.991111 117.350 72.644 0.991111 117.350 72.644 0.991111 117.350 72.644 0.991111 117.350 72.644 0.991111 12.212 0.364316 3 0.96088 9 0.364316 3 0.991111 2.212 0.346848 3 0.98080 11.22 0.392847 3 0.991111 2.212 0.392847 3 0.991111 2.212 0.392847 3 0.991111 2.212 0.39284 0 0.991111 2.290 0.213711 0 0.991111 22.909 0.213711 0 0.991111 22.909 0.213711 0 0.991111 22.909 0.213711 0 0.991111 22.909 0.213711 0 0.991111 22.909 0.213711 0 0.991111 22.909 0.213711 0 0.991111 22.909 0.213711 0 0.991111 22.909 0.213711 0 0.98889 15.415 0.469540 0 0.92222 18.752 0.469540 0 0.92222 18.752 0.998														
RANE # 7 RELATE FIRST EMBARRESS NATIONS BORN HANDE RELATE FIRST STATE TO THE THE PER PRINCIPLE RELATE FIRST STATE TO THE THE PER PRINCIPLE RECOMMEND 0.990000 115.450 43.273 43.273 0.000 0.000 123.233 115.400 69.433 24.2.73 213.750 1.000 0.000 120.341 115.000 0.990000 115.400 0.000 120.341 115.000 0.990000 115.400 0.000 120.341 115.000 0.990000 115.400 0.000 120.341 115.000 0.990000 115.400 0.000 120.341 115.000 0.990000 115.400 0.000 120.341 115.000 0.990000 120.341 115.000 0.990000 115.400 0.000 120.341 115.000 0.990000 115.400 0.000 120.341 115.400 0.990000 0.9900000 0.990000 0.990000 0.990000 0.990000 0.990000 0.990000 0.9900000 0.990000 0.990000 0.990000 0.990000 0.990000 0.990000 0.9900000 0.990000 0.9900000 0.9900000 0.990000 0.9900000 0.9900000 0.9900000 0.9900000 0.9900000 0.9900000 0.9900000 0.9900000 0.9900000 0.9900000 0.9900000 0.9900000 0.9900000 0.9900000 0.9900000	2A PS 96		UT 1 FP 8.09	RPMA 3007.298	FRC2 .040	,	FR -0 -0	~	ROTOR EFF3 939992	0.	₹.	ROTO PSI .42509	PHI B 37855	
BENTER 1 11 12 15 15 15 15 15			-						EDG	ខ	6	METERS EADING	ERAGED FARA INDICATES I	A -
RATE ELENEN ZARAMETER		(TH/C) 0.0565 0.0543 0.0543 0.0378 0.0073	000000	18 34 4 5 3 3 4 4 5 3 3 4 4 5 5 4 5 5 5 5	D.826015 0.820726 0.732373 0.668687 0.547487 0.567111	OMEGAB 0.249880 0.244809 0.193390 0.022718 0.034617	SFF 334 334 542 542 451 400	PSII 0.569999 0.566507 0.507867 0.464678 0.408123 0.415702	PSI 0.432239 0.432434 0.406296 0.395275 0.419122 0.431490	(4,(4)))))	10000E	R2/8T 0.991111 0.59000 0.557778 0.946667 0.90222 0.86889	000000000000000000000000000000000000000	765437
RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEE ELERRY PARAMETERS RELEGIS 110, 104 10 10 10 10 10 10 10 10 10 10 10 10 10				0000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	SQ FT/S 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.9280E-	B/CU 62. 62. 62. 62. 62. 62.	GPM 3201.200 3189.300 3175.000 3203.700 3201.400 3182.300	- a a a - a -	34684 36732 36431 38509 39284 39835	1223453 12234 12234 1234 1234 1234 1234 1234 1	188523	FFOM TIP 0.044444 0.100000 0.211111 0.26666 0.48E889 0.655556	1654321
RELATE ELEMENT PARAMETERS RELATE ELEMENT PARAMETERS DICATES LEADING EDGE, 2 INDICATES TRAILING EDGE ROAS.HT.1 R1/RT						•				TES T	ETERS 2 INDIC		TOR BLADE INDICATES	20
RELATE ELEMENT PARAMETERS DICATES LEADING EDGE RELATE ELEMENT PARAMETERS DICATES LEADING EDGE ASS.HT.1 RIVET U1 V1 VZ1 VTH1 BETA1 W1 WTH1 BETAP1 H1 P7 ST COLUMN U.0.000 0.000 124.329 117.350 70.712 239.970 213.760 1.0.000 0.000 123.293 115.450 69.453 242.120 213.020 0.0.000 0.000 123.293 115.450 69.453 242.120 213.020 0.0.000 0.000 120.991 113.020 69.493 242.120 213.020 0.0.000 0.000 120.991 113.020 69.493 242.120 213.020 0.0.000 0.000 120.991 113.020 69.493 242.120 213.020 0.0.000 0.000 120.991 113.020 69.493 242.120 213.020 0.000 0.000 120.991 113.020 69.493 242.120 213.020 0.0.000 0.000 120.991 113.091 65.497 243.890 210.890 0.000 0.000 120.991 113.091 65.497 244.800 210.890 0.000 0.000 0.000 112.990 0.0.991 65.497 244.800 210.899 0.000 0.000 0.000 112.990 0.0.000 102.999 65.497 244.800 210.890 0.000 0.000 0.000 0.000 112.990 0.0.000 112.990 0.0.000 112.990 0.0.000 0	3.34580 4.46420 4.29930 4.61460	330 340 990	170 · 100 ·	1333	53.786 53.153 46.173 31.281	67.373 76.721 74.147 63.650	99 28 99	7.92 3.44 6.57 6.05	40.573 55.326 58.016 55.433	0 - 0	33.50	90.99	0.266666 0.48889 0.655556 0.877778	100t
RELATE ELEMENT PARAMETERS DICATES LEADING EDGE, 2 INDICATES TRAILING EDGE ASS.HT.1 RI/RT FPS DEG FPS DEG FPS DEG FPS DEG FPS DEG FPS DEG FPS DEG FPS DEG FPS DEG FPS DEG PPS	STRTUB2 SQ IN 1.67950. 2.07820. 2.03100	P2 FT 300 600	H2 FT 310 550	900 S	FPS FPS 49.255 47.350	FPS FPS 55,375 55,472 62,331	TA DE 61 67	VTH FP 8.09 8.10 2.57	VZ2 FPS 25.304 28.900	2.6.2	25 E E	α ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	A SS F RC 0 . 0	F 7 F
RATE # 7 3191. GALLONS PER MINUTE R ELALE ELEMENT PARAMETERS DICATES LEADING EDGE, 2 INDICATES TRAILING EDGE ASS.HT.1 R1/RT U1 V1 VZ1 VTH1 BETA1 W1 WTH1 BETAP1 H1 P1 S7 FROM TIP FROM TIP 0.0044444 0.991111 117.350 41.068 41.068 0.000 0.000 123.293 115.450 69.453 242.120 213.020 2.010000 0.990000 115.450 43.049 43.049 0.000 0.000 120.941 113.020 69.148 243.810 215.010 2.	3.34580 4.46420 4.29930 4.43670	0.890 1.140 0.690 0.270	980 520 850 540	67.864 66.471 65.473 64.211	111.709 106.599 102.749 97.332	120.597 116.265 112.940 108.097	0.000	8888	7.86	10,000	33	0.0.00	0.266666 0.488889 0.655556 0.877778	700t
RATE # 7 3191. GALLONS PER MINUTE R BLADE ELEMENT PARAMETERS DICATES LEADING EDGE, 2 INDICATES TRAILING EDGE	STRTUB1 SQ IN 1.57210 2.07820 2.03100	FT 3.760 3.020 5.010	H1 FT 970 120	BETAP1 DEG 70.712 69.453	WTH1 FPS 117.350 115.450	FPS 124, 329 123, 293 120, 941	BETA1 DEG 0.000 0.000	VIH FP	3.0		15 35 15 02	01010	A SS F F C 0 . 0	7 7 E
RATE # 7 3191. GALLONS PER		s							G EDG	TES T	STERS 2 INDIC	LEMENT PARA EADING EDGE	R BLACE DICATES	. L
		•				•		•	R MINUTE	GNS PE			RATE	FL

TABLE IX. - BLADE-ELEMENT DATA FOR CONFIGURATION 6

	•												
				CAMBER DEGREES	28,600	30.600	34.400	42,600	42.700	42.950			
				CHORD	1.500000	1.500000	1.500000	1.500000	1.500000	1.500000			
				TMAX/C	0.070890	0.072000	0.074220	0.079780	0.083110	0.087569			- -
				SOLIDITY	1:009000	1.020400	1.056300	1.108400	1.150900	1.212900		NBLADES	19
CP DIAMETER,		SLADE GECNETRIC FARANETERS- ELACE RCW# 1 (ROTOR) 1 INDICATES LEADING EDGE, 2 INDICATES TRAILING EDGE		KAPPA2 DEGREES	39.900	38.000	32.250	25.100	23.100	20, 150	·	RTIP2 INCHES	000005.4
NASA CONPIGURATION 6 0.8 HUB-TIP RATIO, 19 ELADES, 9-INCH TIP DIAMETER, 1.5-INCH CHCRD, 0.026-INCH RAEIAL TIP CLEARANCE, 0.66 DESIGN TIP L-FACTOR, DOUBLE CIRCLAR ARC BLADE PROFILE, 0.466 DESIGN FLCW COEFFICIENT.		BLADE GECMETRIC FARAMETERS- ELACE RCW# 1 1 INDICATES LEADING EDGE, 2 INDICATES TR		R2 INCHES	4.460000	4.410000	4.260000	000090.4	3.910000	3.710000		RHUB2 INCHES	3.600000
NASA CONFIGURATION 6 0.8 HUB TIP RATIO, 19 ELADES, 9-IN 1.5-INCH CHCRD, 0.026-INCH RALIAL 0.66 LESIGN TIP E-FACTOR, DOUBLE CIRCULAR ARC BLADE PROFILE, 0.466 DESIGN FLCW COEFFICIENT.		FARAMETERS-		KAPPA1 Degrees	68.500	68,600	68.600	67.700	65.800	03.100		RTIPI	4.500000
NASA CONFIGURATION 6 0.8 HUB-TIP RATIO, 19 ELA 0.6 ESIGN TIP D-FACTOR DOUBLE CIRCULAR ARC BLADE 0.466 DESIGN FICH COEFFIC	ندي . شڌ .	DE GËCMETRIC NDICATES LEA	-	I NCHES	4.460000	4.410000	4.26000	000090-1	3.910000	3.7.6000	·	RHUB1 INCHES	3.60000
0.000000000000000000000000000000000000		BLA!			- (7 6	1 ar	'n.	۱ ت				

SETANG DEGREES

		STRTUB1 SQ IN 1.57210 2.07820 22.03100 4.46420 4.29930 4.43670	STRTUB2 SQ IN 1. 61160 2. 07182 2. 03100 3. 34580 4. 46420 4. 29930 4. 55240			2 A P S 0 4
	·	P1 193.610 197.920 195.380 195.380 191.130 189.880	P2 284.690 290.040 288.600 288.400 279.700 277.360 277.360		(TH/C) A 0.03637 0.04002 0.03199 0.02116 -0.00149 -0.0124	UT2A FPS 117,704
		H1 FT 264.850 271.010 277.540 276.810 276.810	H2 FT 350.820 367.760 382.150 397.130 397.020		DELTA P 1 083 92.120 91.810 90.110 88.570 83.520	UT1A FPS 117,704
		BETAP1 DEC 59.881 59.393 57.352 56.799 55.719 53.789	BETAP2 DEG 56.058 52.612 47.793 47.793 41.655 38.748		REC 14E 07 14E 07 00E 07 89E 07 47E 07 65E 07 56E 07 104.610 110.220 120.770 120.770	RPMA 2997.313
		HTH1 FPS 116.712 115.931 112.508 111.110 106.149 96.843	WTH2 82,759 78,555 74,704 74,111 70,326 64,005 54,037		56 50 50 50 50 50 50 50 50 50 50	FRC2
		134.929 134.929 133.620 133.620 132.787 126.604 122.490	#2 FPS FPS 100,853 103,462 105,810 102,262		SQ FT/SI 0.9280E- 0.9380E- 0.9	PRC1
-		BE TAL 0.00000000000000000000000000000000000	BETA2 DEG 31,365, 31,905, 29,160 27,135 24,573 25,560 28,620		DENS ITY	FR-0.0
		VTH T T T T T T T T T T T T T T T T T T	VIH2 33.953 37.976 37.804 36.143 42.836		5099.000 5510.000 5510.000 5510.000 55089.599 55089.599 510.000 5108.500 5108.500 60.208238 60.208238 60.208238 60.208238 60.208238 60.208238 60.208238	HSVB FT 274.432
a minute	ING 3DGE	VET VET VET VET VET VET VET VET VET VET	VZ2 FPS 55.700 60.035 67.754 79.056 79.754	, ING EDGE	11 RPM 59 .2908.700 28 3012.400 43 2991.200 45 3005.100 86 2993.700 10 2991.200 11 PSI 05 0.199465 96 0.252439 95 0.243915 96 0.257426 13 0.2534030 95 0.283030	103 F73 576
GALLONS PE	ATES TRAILIN	V1 FPS 67.706 68.580 72.084 72.084 74.057	V2 FPS 65.233 70.719 77.587 81.123 86.927 88.406	ATES TRAIL	PH - 57449 - 57449 - 57449 - 57449 - 57454 - 57575 - 5	; ; ; ; <u> </u>
5059.	AMETERS E, 2 INDIC	116.712 115.931 112.508 111.110:106.413	U2 116.712 115.931 112.508 111.110 106.471 102.149	AMETERS E, 2. INDIC	100 100 100 100 100 100 100 100 100 100	0.2
	ELEMENT PAR LEADING EDG	R1/RT 6.9911111 0.957778 0.946667 0.90222 0.866889 0.924444	R2/ET 0.991111 0.980000 0.95778 0.90222 0.968889 0.324444	ELEMENT PAR LEADING EDG	81/81 0.991111 0.957770 0.96677 0.96667 0.96689 0.824444 1.7.82/81 1.7.82/81 1.0.991111 0.99667 0.946667 0.946667 0.946667 0.9668989 0.946667 0.96687 0.946667 0.96687	ROTOR FSIE
OW RATE # 1	R BLACE DICATES	FROM TIP 0.044444 0.190000 0.211111 0.26666 0.48889 0.655556	FRCM TIP 0.044444 0.105000 0.2511111 0.2511111 0.26666 0.48888 0.655556	R BLAGE DICATES	PASS.HT.1 0.044444 0.100000 0.26666 0.48E889 0.48E889 0.655556 0.877778 PASS.HT.2 PROM TIP 0.1044444 0.106666 0.211111 0.266666 0.48E889 0.255556	PHIB1 506860
FLOW	FOTO1	7007FWV-	-0m2m6-	FOTO 1 IN	7654321 7654321	

TABLE IX. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 6

ROTOR BLADE ELÊMENT P.	PASS.HT.1 R1/PT 0.044444 0.991111 2 0.100000 0.980000 3 0.211111 0.557778 4 0.26666 0.946667778 5 0.48889 0.902225 6 0.65556 0.868889	PASS.HT.2 PRCM IIF 0.044444 0.99111 0.100000 0.58000 2 0.11111 0.95777 4 0.26666 0.90222 6 0.48889 0.90222 6 0.65556 0.66898 7 0.877778 0.824444	INDICATES LEADING EDITOR PASS.HT.1 R1/RT PASS.HT.1 R1/RT PASS.HT.1 R1/RT PASS.HT.1 PASS.HT.2 P	VERAGED PARAMETEES INDICATES LEADING PHIET RO 0, 574350 0.299
PARAMETERS EDGE, 2 INDIC	116.809 115.550 8 113.020 7 111.389 9 102.319 4 97.047	T U2 1 116. 609 0 115. 550 8 113. 020 7 111. 116. 113. 020 9 1102. 319 9 102. 319 4 97. 047	DGE, 2 INDIC T INC 1 -7.096 0 -7.924 8 -7.026 1 -7.096 0 -7.924 1 -9.234 1)GE, 2 IND)F
ATES TRAILING	V1 63.675 64.507 68.350 68.350 70.056 70.641	V2 FPS 60.520 67.086 77.562 80.675 85.675	PHI1 PHI1 0.50485 0.550485 0.594157 0.594157 0.594157 0.404384 0.404510 0.404510 0.404510 0.404510 0.404510 0.593457	TES TR
ING EDGE	VZ1 63.675 64.907 68.350 68.350 70.056 70.641	VZZ FPS 47.674 51.925 64.524 64.524 75.779 74.977	A PART OF THE PROPERTY OF THE	INC PRC 1936
	1 H H H B B B B B B B B B B B B B B B B	VTH2 PPS 37,281 42,477 43,041 39,975 41,835 46,481	QV 4839.102 4839.102 48173.301 48173.301 48173.301 4822.102 4825.102 4825.102 625.102 625.102 633355 0.35554 0.305854	. 32.334 HSV F 275.24
	BETAL 0.000 0.000 0.000 0.000 0.000 0.000	BETA2 DEG 36.025 39.285 33.705 29.160 29.160 31.905	DENSITY LB/CJ FT 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 0.09558 0.69558 0.69558 0.0931814 1.035274	
	#1 133.037 132.037 132.080 130.914 127.375 124.336	FPS 92.723 89.642 95.187 99.880 100.760 96.332	VIS SQ F1/SE 0.9280E-0 0.9280E	
	WTH1 FPS 116.809 115.550 113.020 111.389 106.379 97.047	#THS FPS 79.529 73.073 69.979 71.414 66.408 60.485	VISK 6-05 0.1792E E-05 0.1792E E-05 0.1779E E-05 0.1779E E-05 0.1779E E-05 0.1779E E-05 0.1679E E-05 0.1679E O.441892 0.1679E O.48063 100.48366 130.483594 120.483594 120.483594 120.483663 100.483663 100.483663 100.483663 100.483663 100.483663 100.483663 100.483663 100.483663 100.4836663 100.4836663 100.4836663 100.4836663 100.4836663 100.4836663 100.4836663 100.4836663 100.4836663 100.4836663 100.483663 100.483663 100.4836665 100.48366665 100.48366665 100.48366665 100.48366665 100.48366665 100.48366665 100.	RC2
	BETAP 1 DEG 61.404 60.676 58.836 58.836 58.335 55.3373	BETAPP 2 DEG 59.059 54.603 47.322 45.643 41.229 38.893	PEC 92E 07 35E 07 79E 07 75E 0	RPMA 3000, 513
	#1 266.930 272.730 276.900 277.630 277.540 277.540	H2 361.210 379.140 379.130 406.590 411.540 411.550	DELTA P 100.370 101.340 101.340 101.870 99.020 97.000	UT1A FPS 117,830
•	P1 203.920 207.260 204.300 204.110 201.450 199.990	P2 304.290 309.200 305.640 305.640 305.470 296.990 296.990	(TH/C)A 0.03804 0.04798 0.03468 0.03468	
	STRTUB1 SQ IN 1.572 10 2.031 00 2.031 00 3.345 80 4.464 20 4.29930	STRTUB2 SQ IN 1.61160 2.07820 2.03100 3.34580 4.46420 4.29930		UTZA FPS •830

FLOW RATE #	3	4424.	GALLONS PE	R MINUTE								·
ROTOR BLADE I	ELEMENT PARAM LEADING EDGE,	ETERS 2 INDIC	ATES TRAILI	ING EDGE								
PASS.HT.1 PRCM TIP 0.044444 2 0.10000 3. 0.211111 0.26689 6 0.48689 6 0.65556	R1/RT 0.991111 0.980000 0.95778 0.94665 0.90222 0.688889	U1 FPS 116.280 115.689 112.930 111.151 105.851 102.241	V FPS 57.851 59.415 62.729 63.978 64.723 65.011	VZ1 FPS 57.851 59.415 62.729 63.978 64.723	V F F F S O O O O O O O O O O O O O O O O	BETA1 DEG . 0 . 000 0 . 000 0 . 000 0 . 000 0 . 000 0 . 000	#1 FPS 129.876 129.503 129.182 127.116 123.684 121.005	RTH1 FPS 116.280 115.069 111.930 111.81 105.851 102.241	BETAP1 DEG 63.549 60.949 60.494 58.851 57.664	H1 265.120 269.920 274.730 274.910 274.000 274.000	P1 213.110 215.060 213.580 213.420 210.570 208.900	STRTUB1 SQ IN 1.57210 2.07820 3.33100 4.46450 4.29930 4.29930
PASS.HI.2 FROM TIP 0.044444 2 0.10000 3 0.211111 4 0.26666 5 0.48E889 6 0.48E889 7 0.877778.	R2/RT C.991111 0.96000 0.957778 0.96667 0.902222 0.868889	U2 FPS 116.280 115.069 112.930 111.151 105.851 102.241	VS FPS 65.993 74.912 76.341 82.892 85.528	VZ2 40.164 44.491 58.242 61.885 68.885 69.317	VTH2 43.724 48.741 47.113 45.113 45.455 50.868	BETAA2 DEG 47. 430 47. 610 38. 970 38. 220 33. 225 33. 255 36. 495	62.931 79.868 87.886 87.886 90.397 92.971 89.607	#TH2 FPS 72.556 66.328 65.816 66.037 62.439 56.786	BETAP2 DEG 61.033 56.148 48.494 46.998 42.190 39.325 33.840	H2 380.280 389.010 413.910 415.320 422.450 422.380	P2 325.500 321.330 326.700 324.750 319.420 315.600	STRTUB2 SQ IN 1.61160 2.07820 3.31300 4.46420 4.29930
PASS.HT.1 PASS.HT.1 PROM TIP 0.044444 0.106000 0.211111 0.26666 0.4868666 0.48686666666666666666666666666666666666	ELEMENT PARAM LEADING EDGE, R1/RT 0.9911111 0.957778 0.94665778 0.902222	ETERS 2 INDIC 1 INC 1 LEG -4.951 -5.909 -7.651 -8.846 -8.846 -8.136	ATES TRAILIN PHI1 0.493093 2 0.506016 2 0.532014 3 0.545739 2 0.545735 2 0.555045 2	RPM RPM 2987.600 2990.000 2989.900 2989.900 2996.400	QV 4423.699 4443.801 4443.898 4410.398 4410.302	DENSITY LB/CU FT 62.192 62.192 62.192 62.192 62.192	VIS SQ.F.T/SE 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0	KK 55 55 6.17 6.17 6.17 6.16 6.17 6.16 6.17 6.16 6.17 6.17	REC 49E 07 44E 07 40E 07 20E 07 30E 07			
PASS.HT.2 FROM TIP 0.044444 0.10C000 0.211111 4 0.26666 0.488899 5 0.65556	R2/RT 0.991111 0.980000 0.957778 0.902222 0.869889	DEBV 21. 133 18. 148 14. 294 14. 748 17. 090 16. 225	PHI2 0.342340 0.378911 0.54513 0.587139 0.589091	PSI 0.279179 0.277919 0.327104 0.346572 0.344795	PSII 0.369371 0.406804 0.382734 0.383744 0.333847 0.335650	EFF 0.728751 0.683177 0.841655 0.900895 1.038117 1.027244 0.985417	OMEGAB 0.163519 0.211903 0.100965 -0.022900 -0.017294	D.528292 0.567696 0.494322 0.460194 0.406648 0.422670	PELTA H 115.160 119.090 139.180 140.410 148.270 148.380	DELTA P 116.390 116.270 113.120 111.330 108.850 106.700	(TH/C) A 0.03924 0.05784 0.01967 -0.00765 -0.00581	
NVERAGED FARA I INDICATES I PHIB1 0.527340	RAMETERS S LEADING EDGE, ROTOR PSIE 0.334310	, 2 INDICATION ROTOI PSITI	TES TRAIL OR 1B 00	ING EDGE ROTOR 'EFFB 943579	HSVB FT 272,287	F. 10.0	.010 -0	FRC2	R P M A	UT1A FPS 117.523	117	UT2A FPS .523

TABLE IX. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 6

FLOW BATE # 4

ROTOR BLADE BLEMENT FARAMETERS.
1 INDICATES LEADING EDGE, 2 INDICATES TRAILING EDGE

SS.HT.1	PEZET PEZET PEZET PEGET	OR BLADE ELEMENT PARAKETER NDICATES: LEALING EDGE, 2 I PASS.HI:1 R1/PT 0.044444 0.991111 -3. 0.10000 0.991111 -3. 0.211111 0.957778 -5. 0.26666 0.946667 -6. 0.48889 0.90222 -6. 0.65556 C.66889 -6. 0.67778 0.824444 -4.	492,780	ES LEAD
U1 VT FPS FPS FPS FPS FPS FPS FPS FPS FPS FPS	U2 FPS FPS 809 80.200 889 60.200 71.690 71.690 71.690 81.398 82.378	NECATES TR INC PR 1NC PR 1949 0.4716 949 0.4716 941 0.4936 203 0.4949 204 0.5050 944 0.5120 1104 0.5120	224 0.2897 148 0.3264 148 0.3264 738 0.4263 693 0.4317 515 0.5543 789 0.5558	INDICATES TRAN ROTOR ESITE 0.377325 (
VZ1 VZ1 SS 55.588 25.5882 15.88211 58.211 58.211 60.424	VZZ FPS 34.033 38.609 36.833 7.56.807 8.66.759 8.66.759	AILING EDGE II RPM 54 3001.200 55 30.6.200 67 30.2.500 67 30.2.500 73 3014.900 73 3014.900 74 3005.000	0.2943 0.3120 0.3350 0.3517 0.3694 0.3702	AILING EDGE ROTOR. EFFB 0.954400
A P P P P P P P P P P P P P P P P P P P	VTH2 PPS 49.657 51.254 51.050 46.435 46.435 48.263	.07 6113.199 4118.699 4116.898 4082.200 4122.301 4127.801	0.41759 0.424756 0.414170 0.367073 0.353859. 0.355072	HSVB FT 273.068
BETAL DEG 0.000 0.000 0.000 0.000 0.000 0.000	BETA2 DEG 55.575 53.010 45.405 40.320 40.320 35.280 35.865	DENSITY LB/CU FT 62, 192 62, 192 62, 192 62, 192 62, 192 62, 192	0.704781 0.735048 0.608961 0.908623 1.044001 1.042635	FRC1
H1 FPS 129.361 128.270 127.174 125.956. 119.077	FPS 75.284 75.284 79.874 85.134 89.183 86.089	VIS SO FT/51 0.9280E-0	0.204656 0.191300 0.136362 0.061989 0.029128 0.029785 0.005514	,
WITH1 FPS 116. 409 115.888 113.069 111.619 102.619 97.289	#TH2 FPS 67.152 64.634 62.019 63.409 63.409 64.383 54.356	SK DEC 05 0.1742E 05 0.1728E 05 0.1697E 05 0.1649E 05 0.1649E 05 0.1649E 05 0.15449E 05 0.15449E	0.608257 0.608850 0.564164 0.505273 0.442595 0.453113	FRC2 0.011 30
BETAP1 64.551 64.618 62.759 62.397 60.759 59.156	BETAP2 63.124 59.148 50.938 42.615 39.153	REC 07 07 07 07 07 07	127.060 135.700 145.130 151.970 160.950 164.550	RPMA 006.942
H1 FT. 259.740 276.740 274.370 274.820 274.820 275.630	H2 396.800 406.440 420.490 426.340 435.590 435.320	OELTA P	118.760 118.690 117.920 116.630 111.740 167.770	UT1A FPS 118.082
F1 221.720 223.760 221.440 219.070 218.120 218.120 218.120	P2 840.480 342.450 340.620 340.070 335.140 329.860	(TH/C) A	0.04585 0.04807 0.04115 0.01958 -0.00967 -0.01003	118
STRTUB1 50 IN 1.57210 2.07820 2.03180 4.46420 4.29930 4.43670	STRTUB2 SQ IN 1.61160 2.07820 2.03100 3.34580 4.46420 4.29930			UT2A FPS • 082

	STRIUB1 SQ IN 1. 572 10 2. 078 20 2. 031 00 3. 34580 4. 464 20 4. 299 30	STRTUB2 SQ IN 1. 67820 2.03100 3.34580 4.46420 4.29930				. A.S. 7.
	232.530 233.350 233.350 231.930 230.000 229.710	855.440 356.490 351.890 331.890 348.530 342.880		• • 4	0.05520 0.05380 0.04570 0.01570 0.03758 -0.01049	UT2A FPS 117.837
	#1 269.290 272.460 275.630 275.360 275.090 276.090	H2 FT 423.730 425.110 425.590 424.670 444.670 444.670			DELTA P 122.910 123.140 119.960 120.180 118.580 113.170	UT1A FPS 117.937
	67.403 67.403 66.514 66.514 64.819 64.037 63.007 61.871	BETAP2 DEG 62,467 60,350 53,967 51,251 43,012 38,708 31,387	E G	96E 07 79E 07 69E 07 68E 07 61E 07	DELTA H FT 154.440 152.650 149.960 153.320 169.040 170.150	RPMA 3000, 698
	#FPS 116.860 115.450 112.790 111.761 106.379 102.189	WTH2 57.819 57.678 58.843 67.353 50.651 38.360	· · · · · · · · · · · · · · · · · · ·	00000000000000000000000000000000000000	0.716010 0.697649 0.623454 0.572470 0.490906 0.494245	FRC2
	#7 126.577 125.878 124.634 123.888 119.385 115.876	782 65.204 66.368 72.765 77.323 77.84.085	V SQ FT	0.92800 0.92800 0.92800 0.92800 0.92800	0.240993 0.221944 0.162214 0.165214 0.030933	
	8 EFF 3 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	EETA2 62.955 60.390 51.570 46.755 38.565 43.065	FIG	62, 192 62, 192 62, 192 62, 192 62, 192 62, 192	0.720189 0.736364 0.792942 0.85753 1.042951 1.039431	FRC1
	000000000000000000000000000000000000000	VTH2 59.041 57.772 53.947 51.457 49.020 51.539	0,00	3765.500 3747.500 3747.500 3751.500 3743.500	PSII 0.496286 0.480592 0.438758 0.412621 0.375098 0.380765	HSVB FT 273.901
RAILING EDGE	VZ7 FPS 46.636 50.166 53.028 53.457 54.457 54.630 54.859	VZ2 PPS 30.141 32.832 42.804 42.804 46.396 61.483 63.204 62.877		2999.900 2998.900 3006.300 3602.500 2994.900	PSI 0.357420 0.353890 0.347909 0.35391209 0.391209 0.395779	RAILING FUGE ROTOR EFFB 0.948999
ATES T	FPS 48.636 50.166 53.028 53.457 54.457 54.859	V2 66.290 66.450 68.865 70.641 78.633 91.554 86.064	ATES TRAI PHI1	0.425838 0.450298 0.452810 0.459567 0.464506	PHI2 0.25534 0.363476 0.40351 0.521453 0.537407	E E E E E E E E E E E E E E E E E E E
AMETERS E, 2 INDIC	FPS 116, E60 115, 450 112, 790 111, 761 106, 379 102, 189	116. EE0 115. 450 112. 790 111. 761 106. 379 102. 189	AMETERS E, 2 IND IN	12.086 13.781 14.163 14.693 12.559	DEG 22. 567 22. 350 19. 767 19. 001 17. 912 15. 608	E, 2 INI
ELEMENT PAR LEACING EDG	67/67 0.991111 0.980000 0.957778 0.946667 0.90222 0.868889 0.868889	R2/ET 0.991111 0.980000 0.95778 0.946667 0.90222 C.868989 0.824444	EADI	0.580000 0.957778 0.946667 0.902222 0.868889	R2/RT 0.991111 0.980000 0.557778 0.946667 0.90222 0.868899 0.824444	STEES LEING E ROT PS
FOTOR BLADE 1	PASS. HT. 1 FROM TIP 0.044444 0.100000 0.211111 0.26666 C.488889 0.655556	PASS.HT.2 FROM TIP 0.044444 0.100000 0.211111 0.26666 C.488889 0.655556	TOR BLADE INDICATES PASS-HT-1 FROM TIP	0.100000 0.211111 0.26666 0.486889 0.655556	F60M TIP 0.044444 0.100000 0.211111 0.26666 0.488899 0.655556	ERAGED PARAMI INDICATES LEA PHIB1
1.0	- 0m = m o r	702tm5-	0	-165 E W D	しのられるひし	A L

TABLE IX. - Concluded, BLADE-ELEMENT DATA FOR CONFIGURATION 6

10	R BLADE	PA	ETE										
-	DICATES	LEADING EDGE,	, 2 INDICA	ATES TRAILING	ING EDGE								
	PASS. HT. 1	R1/RT	101 201	V V	VZ1	VTH1	BETA1	← 0/ ≥ 0. ≥.	THE M	BETAP 1	H1	0. E	STRTUB1
-	3	.9911		4.418	44.418	00.	0.000	124.878	116.712	69.164	•	239.450	1, 572 10
7 r	5:	0.580000	115,650	46.200	46.200	0000	0.000	124.536	115.650	68.224		241.110	2,07820
) ə	2 6	9946		48.939	48,939	30	000.0	122.050	111.809	66.361		238.410	3.34580
'n	8 7	.9022		49:780	49.780	00.	0.000	117.688	106.641	•	9	237,670	4.46420
91	UD F	.8688	۸ir	56, 185	50. 185	00.	0.000	114.350	102.749	63.968	ė,	237, 490	4.29930
-	20	7779	:	504.403	50.403		3	196.601	97.736	•	•	23/.240	4. 435 /0
	Š	R2/RT	. 02	V2	V 22	VTH 2	BETA2	W 2 .	WTH2	BETAP 2	H2	P2	H
	ž,		FF	E .	<u>ъ</u> ,	FP	DEG	FPS	FPS	DEG	FI	FF	S
 ر	•	.99111	7 3	0.01	2 5	14.88 1.38	67.950	58.107	51.323	63.107	443.290	367.120	56
٧ ٣	•	55777	3 5	10	٦	0 0	57.500	65.981	54.597	55,839	447.150	360 850	5 6
) =		99976	80	8.65	o o	4.31	52, 290	71.198	57,495	53.856	432,320	359.070	3 (2)
2	₹.	.90222	77	7.19	0	0.91	41.265	80.452	55.727	43.842	451.720	359.110	9
9 1	0.655556	0.868389	102.749	81,534	61.455	53.582	41.085	78.703"	49.167	38.661	458.010	354.700	4.29930
-	•	* * * 7 0 •	Ú	•	Ď.		677.64	* 6.0	30.392	0/0.00	463. 130	347.130	2
101	TOR BLADE EN	LÉMENT PABA EADING EDGE	METERS 2 INDIC	ATES TRAILING	ING EDGE								
	23	R1/3T	INC	PHI 1	RPM	ΛÖ	ENS IT	IA	ISK	REC			
-	20	99111	E E	1771	2998 700	GPM 31163 100	[ii 0	SQ FT/S		0			
- 2		98000	37	3914	3005,100	3454.400	50	0.9280E	0.16	1 61		٠	ì
m		55777	33	.4122	3903.800	3447.900	5	0.9280E	0.16	0			
⇒ ι		.94666	23	.4143	3007.600	3443.500	19	0.9280E	0.16	о 6			
Λ,	٠,	77706.	7 0	1124.	300%.400	3447.900	2 0	30826.0	0.15	ວ < ນ ເ		•	
م ه	0.877778	0.824444	-0.380	0.425169	3018.800	3434.800	62, 192	0.9280E-05	0.14	402 07 81E 07			
	S	R2/RT	LEV	PHI2	ISG	Ilsd	EPF	OMEGAB	Ω .	DELTA H	DELTA P	(TH/C) A	
٠	ຂູ	11100	∵ ເ	22310		613	מנדינד ס	4033310	702105	£., C	FT.		
۰ ،	• •	98000	7 7	24211		54013	0.739163	0.253554	0.790769	2 0	127, 640	0.05121	
m		577	9	31409		. 47	0.778568	0.193076	0.690862	6.1	122.060	0.05192	
a	(4.	999116	ø	.35555		. 43534	0.830153	0.13	0.627297	69	120.660	0.03866	
s v	. u	90222	~ u	.49097 51069		.36853	1.040200	-0.031519	0.511551	54	121.440	-0.01025	
٦,	0.877778	82444	10.726	0.513415	0.426808	0.425619	1.000442	-0.000438	0.585095	186.430	109.860	-0.00015	
N -	ERAGED FARAL	METERS FAITTING PECT	TRUTC.	, v. ⊆ €	ACCE CATITER								
•	1			; ;									
	,	ROTOR	080	ROTOR	ROTOR	HSVB	FRC1	C1 ,	FRC2	RPMA	UTIA		UTZA
_	05680 + 0	0.404864	0.424	. 0	9.5	274.514	-0.015		0.011	3007,883	118.119	118	119

				·	
		STRTUB1 SQ IN 1.57210 2.07820 2.03100 3.34580 4.46420 4.29930	STRTUB2 20 IN 1. 61160 2. 07820 2. 03100 3. 34580 4. 46420 4. 55240		UT2A FPS
		P1 244.320 243.290 243.000 243.100 240.800 240.800	P2 FT 371.650 370.780 365.710 362.210 360.600 355.980	(TH/C) A 0.05922 0.05959 0.05959 0.05150	117.
		H1 272.460 270.380 275.730 276.630 276.630 276.760 276.760	H2 FT 450.590 451.760 434.200 434.360 448.360 457.690	DELTA P 127.330 127.490 122.710 119.119.630 115.190	UT1A PPS 117.548
		BETAP1 DEG 69.922 70.057 67.817 67.380 66.036 65.036	BETAP 2 DEG 62.988 60.201 55.864 53.884 44.995 38.693	REC 70E 07 49E 07 37E 07 57E 07 52E 07 57E 07 57E 07 17E 130 181.360 162.410 171.730 181.600	RPMA 2995.885
		FPS 116.420 115.069 1112.550 1111.478 106.252 102.449	WTH2 FPS 49.829 48.421 50.138 52.529 53.955 47.721	55.0 0.16.005 0.16.005 0.16.005 0.16.005 0.16.005 0.15.00.001 0.005 0.00	FBC2
		FPS 123.953 122.409 121.546 120.768 116.274 112.989	#2 FPS 55.930 60.575 65.024 76.331 76.331	VII SQ. 7175 0.9280E- 0	0
		DEG 0.000 0.	BETA2 59.120 67.410 61.425 56.970 44.100 42.570	DENSITY LB/CU FT 62.192 62.192 62.192 62.192 62.192 62.192 0.739263 0.739263 0.795155 0.994365 1.042083	FRC1 -0.013
		FPS 0.000 0.	V7H2 66.591 66.648 62.411 58.4949 52.296 54.728	235.10 3255.10 3255.80 3255.80 3255.80 3253.50 3260.40 3253.50 3253.50 6.551866 6.551866 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555267 6.555368 6.4738 6	HSVB FT 274.290
R MINUTE	ENG EDGE	VZ1 FPS FPS FPS FPS FPS FPS FPS FPS FPS FPS	VZ2 FPS 27, 729 27, 729 33, 992 33, 965 59, 574	AILING EDGE 21 RPH 63 2991.200 82 2990.000 49 2998.700 49 2998.700 53 3002.500 46 2997.500 61 0.413285 61 0.413285 61 0.413285 61 0.423285 61 0.423285 61 0.43285 61 0.43285 61 0.43285 61 0.43285 61 0.43285 61 0.43285 61 0.43285 61 0.434371 61 0.434371	ROTOR EFFB 932755
GALLONS PER	TES TRAILI	V1 42.553 41.751 45.692 46.450 47.525 47.651	V2 F75 71.272 72.187 71.968 70.313 75.143 80.900 85.945	72 TP PH PH PH PH PH PH PH PH PH PH PH PH PH	.0
3254. 6	RETERS . 2 INDICA	116.420 115.069 112.550 111.478 106.252	U2 FPS 116.420 115.069 111.478 106.252 102.469	METERS 1 INC 1 1422 1 452 1 452 1 452 1 664 2 165 2 2 20 2 2 20 2 2 20 2 2 66 2 3 C88 2 2 66 2 3 C88 2 1 65 1 65 2 1 65 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	FOT01 PSIII 0.441436
	ELEMENT PAFAMI LEADING EDGE,	81/RT 0.991111 0.980000 0.9946667 0.902222 0.868899 0.824444	R2/RT 0.991111 0.980000 0.95778 0.90222 0.668839 0.824444	EMENT FARA BDING ELGE R1/RT C.991111 D.980000 D.946667 D.946667 D.824444 R2/RT R2/RT R2/RT R2/RT D.9911111 D.980000 D.986667 D.966667 D.966889 D.966667 D.966889 D.966889 D.966889 D.9668889 D.9668889 D.9668889 D.9668889	ROTOR PSIE 0.411798
W RATE # 7	TOR BLADE EN	FRON TIP 0.044444 0.100000 0.211111 0.26666 0.486889 0.655556	FROS.HT.2 FROM TIP 0.044444 0.100C00 0.211111 0.26666 C.48E8B9 0.65556	BLALE DICATES ASS.HT.1 7804 444 7100000 0.266666 0.65556 0.87778 ASS.HT.2 0.100000 0.266666 0.266666 0.266666 0.266666 0.266666 0.266666 0.266666 0.266666 0.266666 0.266666	FHIE1 0.387470
FLOW	ROT 1 I	165£321	765FW27	1 IN IN IN IN IN IN IN IN IN IN IN IN IN	0

TABLE X. - BLADE-ELEMENT DATA FOR CONFIGURATION 8

NASA CONFIGURATION .8

0.8 HUB-TIP RATIO; 19 ELADES, 5-INCH TIP DIAMETER,
0.834-INCH CHORD, 0.006-INCH RADIAL TIP CLEABANCE,
0.66 DESIGN TIP L'PACTOR,
DOUBLE CIRCULAR ARC BLADE PROFILE,
0.466 DESIGN FLCK COEFFICIENT.

						-			
EL 1	ADE GECKETRI INDICATES LE	C FARAMETERS	BLADE GECKETRIC FARAMETERS- BLADE RGW# 1 (ROTOR) 1 INDICATES LEALING EDGE, 2 INDICATES TRAILING EDGE	. 1 (ROTOR) TRAILING EDG	្រ			·	
	R1	.KAPPA1 DEGFFES	R2 INCHES	KAPPA2 DEGRFES	SOLIDITY	TMAX/C	CHORD	CAMBER DEGREES	SETANG
-	000088	0 7	000034	0	600				
٠,	2.405000	68,610	2.409000	35,080	1.041500	0.073640	0.833300	29.960	53.570
(۳)	2,359000	68.550	2,359000	31,500	1.063500	0.075640	0.833300	37,050	50.025
ŧ	2.259000	67.100	2.259000	25,250	1.110700	0.079640	0.833300	41.850	46.175
S	2.159000	65.450	2.159000	22.750	1.162100	0.083640	0.833300	42,700	44, 100
Ψ	2.109000	64.200	2,109060	21,550	1.189700	0.085640	0.833300	42,650	42,875
·~	2.059000	63.000	2.059000	20,000	1.218600	0.087640	0.833300	43.000	41.500
				•					•
	RHUB1	RTIF1 INCHES	· RHUB2	RTIP2 INCHES	NBLADES			,	
	2.000000	2,509000	2.000000	2.599000	19				

		STRTUBI SQ IN 0.97352 0.75681 1.11170 1.41940 1.01740 0.66256	STRTUB2 SQ IN SQ ON 0.75681 1.1170 1.1170 1.41940 1.61740 0.66256				,		2A PS 69
		P1 176.070 175.070 175.990 174.470 168.750	P2 263.280 259.570 257.030 257.030 247.660 242.540			(TH/C) A	0.03952 0.03757 0.04155 0.02964 0.01072 0.00445		UT2A FPS 117.669
		H1 248.300 257.460 270.5140 270.420 270.420 256.890	#2 FT 346.630 348.620 357.700 374.220 384.120 381.820			DELTA P	87.210 83.010 81.040 78.100 76.190 73.790		UT1A FPS 117.669
		BETAP1 DEG 59.483 57.476 55.539 53.329 51.789 51.185	BETAP2 DEG 51.183 49.228 45.790 40.108 36.308 34.883		REC 05E 07 04E 07 03E 07 71E 06 53E 06 87E 06 65E 06	DELTA H	98.330 91.360 92.260 103.710 113.700 114.930		RPMA 5374.203
		FPS 115.660 113.150 110.550 105.810 101.360 98.786	FPS 78.281 77.636 73.392 67.194 62.731 58.151		0.00 0.10 0.10 0.94 0.098 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94	Ω	0.388100 0.36631 0.341125 0.307575 0.295896		FRC2
		N FPS 134.257 134.257 134.196 134.920 131.920 125.782 122.478	# 2	٠	VIS SQ FT/SI 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0	OMEGAB	0.128659 0.119826 0.126762 0.086095 0.030913 0.012918		12 -1
		BETA1 DEG 0.000 0.000 0.000 0.000 0.000	BETA2 DEG 30.690 27.945 27.495 25.495 24.345 23.985		DENSITY LB/CU FT 62.192 62.192 62.192 62.192 62.192 62.192	EFF	0.731786 0.731496 0.722621 0.816652 0.934308 0.972689		FR6-
	`	VIH1 VIH1 0.000 0.000 0.000 0.000 0.000	VIH2 37,379 35,514 37,158 38,629 38,483 38,203		2V GPM 1676.600 1687.100 1693.100 1694.800 1696.400	PSII	0.310425 0.289344 0.297130 0.295846 0.282194 0.275249		HSVB FT 262.159
ER MINUTE	ING EDGE	VZ1 FPS 68.175 72.151 75.868 78.795 79.468 75.609	VZZ FPS 62.978 66.946 71.395 71.73 79.773 85.374 86.495	ING EDGE	8 PM 5389, 852 5382, 320 5370, 105 5379, 801 5367, 492	PSI	0.2271654 0.211654 0.214712 0.241603 0.263656 0.267732	ING EDGE	ROTOR . EFFB
GALLONS 'PE	ATES TRAILE	V1 FPS 68.175 72.151 75.868 78.795 79.468 75.609	V2 PPS 73.235 75.783 90.485 93.707 94.670 91.095	ATES TRAILI	PHI1 0.577699 0.612243 0.649248 0.677425 0.677425	PHI2	0.533659. 0.568081 0.67205 0.678809 0.724791 0.735992	CATES TRAILING	ROTOR PSIIB 88483 0.
1688.	ABAMETERS DGE, 2 INDIC	U15.660 113.150 110.550 1105.810 101.360 98.786	U2 FFS 115.660 113.150 110.550 101.360 98.786	RAMETERS 'GE, 2 INCIC	INC -9,067 -11,134 -13,011 -13,661 -13,015	E F	12.59 14.29 14.29 14.858 13.558 13.333	E, 2 INDIC!	0.2
	LEMENT F	R1/RT 0.580C72 0.960144 0.940215 0.960359 0.860502 0.840574 C.829646	R2/RT 0.980072 0.966144 0.940215 0.960359 0.860502 0.840574	LEMENT PA EADING ED	81/RT 0.980072 0.960144 0.940215 0.960359 0.860502 0.840574 C.820646	R2/RT	0.980072 0.960144 0.940215 0.900359 0.860502 0.840574	METERS EADING EDG	ROTOR PSIE 0. 243051
FLOW RATE # 1	ROTOR BLADE E	PASS.HT.1 FRCM TIP 0.096232 2 0.196463 3 0.294695 4 0.491159 5 0.687625 6 0.785654 7 0.884086	PASS.HT.2 FROM IIP 0.098232 2 0.196463 3 0.294695 4 0.491159 5 0.687622 6 0.785E54 7 0.884CE6	ROTOR BLADE E 1 INDICATES L	PASS.HT.1 FROM TIP 0.05E232 2 0.196463 3 0.294695 4 0.491155 5 0.687622 6 0.785854 7 0.884086	SS.HT.	: നെ നന്നെ നന	AVERAGED PARA 1 INDICATES L	PHIE1 0.638210

TABLE X, - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 8

ROTOR BLADE ELEMENT PARAMETERS 1 INDICATES LEADING EDGE, 2 IN	PASS.HT.1 R1/RT FROM TIP 0.096232 0.586672 115.2 0.196463 0.960144 113.3 0.294695 C.940215 111.0 0.491159 0.960359 110.5 0.687622 0.860502 110.5 0.840574 99.0 0.785854 0.820646 97.1	PASS.HI.2 R2/RI F 1 0.098232 0.980072 115.2 2 0.196463 0.960144 113.3 3 0.294695 0.940215 111.0 0.491159 0.960359 110.5 0.687622 0.860502 110.5 6 0.785854 0.840574 99.0 7 0.884026 0.820646 97.1	RATABLETERS RAI/RT RAI/RT BS00022 BS000215 BS000215 REST RE	VERACED FARAMETERS INDICATES LEADING EDGE, 2 I ROTOR PHIEI PSIE 0.617040 0.274682 0
RS INDICATES TRAILING	U1 PT EFS 64.778 360 70.486 060 74.382 310 77.142 77.517 062 78.013 163 73.218	U2 FPS 230 70.441 360 74.364 060 79.261 310 92.660 062 92.834 163 90.450	NDICATES TRAILIN INC EEG 993 0.550956 984 995 0.659704 506 0.659704 506 0.659704 506 0.659704 506 0.659704 506 0.659704 507 507 507 507 507 507 507	ICATES TRA ROTOR PSIIB 09365
ING EDGE	VZ1 FPS 64.778 70.486 74.382 77.517 77.517 73.218	VZZ FPS 59.682 64.309 67.872 77.833 82.882	5369.320 5392.330 5392.750 5394.983 5394.983 5387.238 5387.238 5387.238 5407.508 6407.508 0.256258 0.243253 0.243021 0.295390	NG EDG ROTOR EFFB 87890
	PPB 1	VTH2 FPS 37.416 37.855 40.935 41.455 41.417 41.951	2V GPM GPM 1636.900 1639.900 1630.600 1628.900 1628.900 1628.900 1628.900 1628.900 1628.900 1628.900 1628.900 1628.900 1628.900 1644.800 16	HSV F 263.34
	BETA1 DEG 0.000 0.000 0.000 0.000 0.000	BETA2 32.085 30.600 31.095 28.260 26.855 26.865 28.215	DENSITY 1.BZCU FT 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 0.21609 0.821609 0.740182 0.740182 0.740182 0.740182	FRC
	#1 FPS 132.190 133.487 133.667 131.73.49 127.715 126.092	#2 98.065 98.986 97.592 100.374 100.598	NIS SQ FT/SE 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.101059 0.101059 0.101059 0.101059 0.101059 0.101059 0.101059 0.101059	0-
	MIH1 FPS 113.360 113.360 106.310 101.500 99.062 97.163	FTH2 FTH5 77.814 75.505 70.125 64.756 60.083 57.111		FRC2 .028 5
	BETAP1 DEG 60.657 58.127 56.188 54.034 52.631 51.779	BETAP2 DEG 52.512 49.711 45.935 39.935 34.591 34.315	REC 2E 06 9E 06 0E 07 9E 06 7E 06 4E 06 4E 06 4E 06 110.100 115.390 119.290	RPMA 889.570
-	H1 FT 245.950 257.550 271.690 271.060 271.060	H2 356.050 362.940 371.460 390.500 400.500 400.360	DELTA P 98.200 93.740 91.980 88.120	. 20 d
	P1 180.740 180.340 179.210:178.950 176.480	P2 278.940 277.000 273.830 271.190 267.070 266.430	(TH/C) A 0.02625 0.03137 0.04229 0.02330	118
	STRTUB1 SQ IN 0.97352 0.75681 1.11170 1.41940 1.01740 0.66256	STRTUBE SQ IN 1.03260 0.75681 1.11170 1.41940 1.01740 0.66256		UT 2A FPS

FLOW RATE #	3	1567.	GALLONS PE	R MINUTE					4 			
ROTOR BLADE 1 INDICATES	ELEMENT PARAM LEADING EDGE,	ETERS 2 INDIC	ATES TRAIL	EDCE SNI								
PASS.HT.1 PROM TIE 1 0.098232 2 0.196463 3 0.294699 4 0.491159 5 0.687622 6 0.785854	11 R1/RI 2 0.980072 3 0.560144 5 0.940215 0.960502 4 0.860502 4 0.820646	U1 FPS 115, 130 110, 530 1105, 910 101, 320 98, 648	73.77	VZ1 FPS 62.646 67.444 71.150 73.347 74.347 73.721	ATH T P P P P P P P P P P P P P P P P P P	BETAN 0.0000 0.0000 0.0000 0.0000 0.0000	#1 FPS 131.070 131.248 129.076 125.671 123.151	#TH1 FPS 115.580 110.590 105.910 101.320 98.648	BETAP1 DEG 61.448 59.075 57.173 55.137 53.729 53.229	H1 247.310 257.190 264.980 269.70 269.150	P1 186.320 136.500 136.310 135.310 184.690 183.690	STRTUB1 S O IN 0. 97352 0. 75681 1. 11170 1. 41940 1. 01740 0. 66256
PASS.HT.2 PROM TIP 1 0.096232 2 0.196463 3 0.294699 4 0.494696 5 0.637622 6 0.785854	2 0.980072 2 0.980072 3 0.560144 5 0.940215 5 0.960502 4 0.840574 6 0.820646	U2 FPS 115.130 112.580 110.290 105.910 101.320 98.643	V EPS FPS FPS FPS FPS FPS FPS FPS FPS FPS F	VZ2 FPS 54.202 57.817 62.789 74.10 79.229 78.394 74.882	VIHS 39.121 42.424 43.835 44.126 44.126 44.126	BETA2 35.820 35.270 34.920 29.115 29.835	W2 P82 93.356 90.910 91.426 97.716 95.016	NTH2 FPS 76.009 70.155 66.455 63.157 57.194 53.688	BETAP2 DEG 54.507 46.624 40.324 35.825 34.405	H2 365.940 373.240 381.380 4011.200 407.540	P2 296.500 293.320 290.250 293.390 280.620	STRTUB2 SQ IN 1.03260 0.75681 1.11170 1.01740 0.66256 0.94974
PASS. HT.1 PASS. HT.1 PASS. HT.1 PASS. HT.1 0.098232 0.196463 0.0897623 0.0897623 0.0897623 0.0884086 10.098232 PASS. HT.3 PASS. HT.3 PAS	ELEMENT PARAM LEADING EDGE, R1/RT 0.980072 0.960144 0.960149 0.960359 0.860360 0.980072 0.980072 0.980072 0.980072 0.980072 0.980070 0.980070 0.980070	ETERS 2 INDIC 10.27 11.963 11.963 11.963 11.963 11.963 11.963 11.963 11.963	ATES TRAILIN PHI1 0.53294 0.60546 0.60546 0.60546 0.627237 0.628175 0.628175 0.628175 0.628175 0.632871 0.632871 0.672887	ING EDGE 325.211 5365.156 5355.211 5372.453 5372.495 5372.492 5367.492 0.276591 0.276591 0.305603	2V GPX 1570.400 1573.400 1569.800 1569.800 1560.300 1559.700 1559.700 1559.700 1559.700 1559.700 1559.700	DENSITY LB/CU FTT 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 100.847432 0.781760 0.781761	NO 12 104 1 0 0 1 2 8 9 2 8 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SK 055 055 05980 055 05982 055 05965 05966 05966 05968 03940 0392971 0392971 0392971 0392971	REC 8E 06 0E 06 0E 06 9E 06 9E 06 4E 06 4E 06 116.050 116.050 116.050 116.050 116.050	DELTA P 110.180 105.820 101.580 98.510 98.510	(TH/C)A 0.02276 0.03696 0.01233 -0.00208	
VERAGED FA INDICATES PHIE1 0.593430	AMETERS LEADING E ROT ROT PS	2 INDIC RC RC PS 0.331	O. 03/1/2 ATES TRAIL TOR IIB 385	0.324 NG ED ROTOR EFFB	.32530 HSI F 262.67	0-	c1 38	V.4113	RPMA 365.063		117	UT2A FPS . 469

TABLE X. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 8

	ROTOR BLADE E	ELEMENT PARAM LEADING EDGE,	METERS 2 INDICAT	ATES TRAILING	ING EDGE								
	SS.HI.	R1/FT	101 105	V 7	V21	VIH 1	BETA 1		WIH1	BETAP1	H1	P P T	m H
-	0.096232	58007	115, 390	0, 0	59.474	0.000	000.00	\sim	115, 390	62.732	55.	0	0.97352
7 6	. 19646 . 29469	96014 94674	7. 94 0. 34	977	7.0.7	200	38	9. 15 8. 69	112.940	. 0	63.5 70.7	2.59	1117
3	.49115	5036	5.81	8.88	8.83	00	8	26.25	105,810	93	75.2	1.48	4 19 4
Ŋ	.68762	86050	1, 13	9.72	9.72	0	00	22.83	101,130	14.	74.5	9.03	0174
9 1	78585	0.840574	98.878	69.182	69.182	000.0	000.00	20.67 16.40	98,878	55.020	272.600	198.220	ς-
		7000	•	•	•		3	•	*		•	,	
	HI.	R2/RI	=	V2	2	VIHZ	⋖; :	(E (WTH2	BETAP2	H2	5 g d	ω ⊢
•	TI WON	70000	, r	יי מינ	יי ניינ	; -	7 =	 	. ^	4 5		10	400
- 7	19646	. 56014	2.94	9.22	8.56	90	22	5.97	. ^	5		. 92	7568
m	.29469	.94021	0.34	3.23	2.56	90	32	5.58	\sim	Ξ		ħ6•	1117
4	.49115	.90035	5.81	3.91	2.22	7.1	9	5.90	_	ლ :		.03	4 19 4
<u>(1)</u>	.68762	0.66050	1.13	7.68	4.10	96	31	1.85	∧ı ı	7		. 18	0174
9 ~	0.785854	0.840574	98.878	86.809	73.019	48.211 50.915	33, 435 35, 910	83.813	50,66/45,619	34.156	421.540	302.560	0.94974
	TA TA GOT	TEMPNT DAMP	[2										
	INDICATES	EADING EDGE	2 INDIC	ATES TRAILE	ING EDGE							:	
	SS.HŢ.	RIZRT	INC	PHI 1	RPM	V C	H		10 6	REC			
	KCM 11	. 98007	-1 α	50515	377.	5.70	. 5	# 25 c	5. 0.	0 37			
7	. 19646	.96014	9	53279	372.	5.40	6	928	0.96	53.0			
m :	.29469	.94021	an e	77799	359.	2.70	.19	. 928	0.96	0 30			
-	0.687622	0.860502	-10.16/	0.593316	5367,598	1462.330	62, 192	0.9280E-	05 0.944	85 U6 2E 06			
9	.78585	.84057	·	58812	372.	3,60	. 19	.928	0.90	0E 0			
7	.88408	82064	o,	55291	372.	3.40	. 19	.928	0.87	0 30			
	PASS.HT.2	R2/RT	CEV	PHI2	129	PSII	FFF	OMEGAB	Q	DELTA H	DELTA P	(TH/C)A	
	09823	58007			3139	32550	4644	01906	000	25	8	0.00550	
~ ~	.19646	.95014			. 2996	.30124	9945	00270	391	28.85	2	0.00079	
e	.29469	6		0.533107	an a	0.304995	0.976 665	0.011836	0.396311	5	112.350	0.00364	
3	.49115	90035		w	.3383	32726	.033821	0.01917	.392	45.23		-0.00650	
<u> </u>	29/89.	94050		ט ע	345	34315	005237	9/110	 	70.00		-0.00408	
7	9840E	82064	12.977	0.557713	355	35520	.000700	0.00050	• •	52.87	-	-0.00018	
- A	ERAGED FARA INDICATES L	METERS EADING EDGE	, 2 INDIC!	ATES TRAILE	ING EDGE								
		FOTO	RC	بر 0 ال	ROTOR		FRC.	C1	FRC2	RPMA	UTIA		r2A
	PHIE1 0.555950	0.33068C	0.329	29622 1.	.003210	267.596	-0.042	42 -0	5 015 5	369.926	117.575	117	. 575
		٠.						,					

		STRTUBH SQ IN 0.97352 0.75681 1.1170 1.41940 0.66256 0.89413	STRTUBS SQ IN 1.03260 0.75681 1.41940 1.01740 0.66256			22 84 84
		208.430 209.160 209.160 209.410 1206.980 1206.950 205.620	P2 S FT FT 332.690 331.600 328.900 323.210 317.780 314.780 311.830		0.02190 0.002190 0.00609 0.00609 -0.00123 -0.00157	UT2 FP
		H1 256.010 264.250 274.590 274.590 275.230 275.690 264.350	H2 FT 410.000 412.300 419.520 431.690 428.140		DELTA P 124.460 122.440 119.490 115.830 116.830 108.560	UT1A FPS 117,584
-		BETAP1 DFG 64.340 62.190 60.436 58.218 56.388 57.193	BETAP2 52.517 50.352 46.836 40.568 35.409 32.861	REC 28 06 21 06 51	PELTA H FT 153.990 148.040 149.830 156.460 155.450	REMA 5370,344
-		WTH1 115.180 112.890 110.700 105.760 101.180 98.832	WTH2 66.960 68.544 66.058 51.39 739 42.822	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.524564 0.469322 0.453299 0.444193 0.447451 0.464926	PRC2 0.607
		FFS 127, 781 127, 631 127, 270 124, 415 120, 959 118, 674	W 2 84,382 89,020 90,565 90,565 96,683 84,633	50 9280 9280 9280 9280 9280 9280 9280	OMEGAB 0.073430 0.029853 0.018938 -0.005611 -0.00442 0.004574	FRC1
		DEG 0.000 0.	BETA2 BEG 43.200 37.990 35.775 35.425 34.425 35.925 36.935	NS LT CU F 22.19 22.19 22.19 22.19 22.19	0.892062 0.951431 0.968963 1.005028 1.005028 1.006481	- 0 - 6 - 6
		VTHT8 0.000	VZHZZ PPS 48.220 44.346 HH.642 49.021 49.504 60.280 53.712	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PSII 0.402129 0.362134 0.366414 0.366414 0.36282 0.359457	HSVB FT 267,941
ELONIN SE	ELNG EDJE	721 55, 332 59, 545 59, 545 65, 595 65, 695 62, 225	51,349 56,861 61,494 63,861 63,850 63,850 66,335 66,235	186 ED 35 2367.48 5369.99 5377.39 5370.24 5370.24	0.358724 0.344546 0.345427 0.364103 0.364103 0.361786	LING EDGE ROTOR EFPS -979633
GALLONS PE	CATES TRAII	V 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	V2. F92. 70,441 72,062 76,365 85,175 85,613 85,633 85,833	E C C C C C C C C C C C C C C C C C C C	PHI2 0.436932 0.526201 0.56201 0.594067 0.589559 0.563563	ATES TRAI TOR II3
1388.	AMETERS E, 2 indic	U15.160 112.890 110.700 105.700 105.700 98.832 95.534	02 FFS 115.1EC 112.69C 110.700 105.76C 101.183 98.832 96.534	4000t000t	EEV FEG 13.927 15.272 15.336 15.318 13.744 13.458	E, 2 INDIC BO PS PS PS
:	LEMENT PAB EADING EDG	81/RT 0.980072 0.960144 0.940215 0.860359 0.8605024 0.820646	R2/RT 0.980072 0.960144 0.9603159 0.860505 0.840574	LEMENT PAR EADING EDG 0.960144 0.960359 0.860562 0.860562 0.840574	R2/RT 0.980072 0.960144 0.940215 0.960505 0.8605074 0.820546	METERS EALING EDG FOTOF PSIE 0.359736
OW RATE # 5	TOR BLACE INDICATES	PASS.HT.1 FROW TIP 0.096232 0.196463 0.254695 0.451159 0.687622 0.785854	PASS.HT.2 FROM IIF 0.098232 0.196463 0.294655 0.491159 0.687625 0.785854	TOR BLADE E INDICATES I PASS. HI.1 FROM TIP 0.096433 0.196463 0.294695 0.491159 0.687622 0.785854	PASS.HT.2 FROM TIP 0.098232 0.196463 0.491159 0.491159 0.687622 0.785654	ERAGED PARA INDICATES I PHIE1
17	RO.	- 0 m = m o r	-0w4w0¢	7024373	10m3n9r	A L

TABLE X. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 8

: 	2144540	1001	21011	7 10 11 11 11 11 11 11 11	700								
ф	ASS.HT.1	R1/BT	1 D #	- A	VZ1 FPS	VIB1	BETA1	FPS.	WIH1 FPS	BETAP 1 DEG	H1 FT	P.T.	STRTUB1
	960.	.9800	115.070	÷.	- :	90.	00	5.03	115.070	S	٥.	17,83	973
7 -0	.196	σ.	30 1	55.175	55.175	00	0000.0	90	112.840	63.943	256.160	8.85	~ ~
	127	2006.	C G	ė d	ė d	200	30	2.19	105.910	10	90	18.21	4194
	687	8605	101.360	61.684	; ;	00.	00	3.65	101.360	œ.		16.64	017
	.785	.8405	9	ċ	•	00.	00	5.95	98.832	യ	~	16. 18	6625
•	1 88.	.8206	7	57,995	۲.	00.	S	2,53	96.444	oc .	·o	13, 35	#68 8
Δ,	A SS	R2/RT	U.2	V 2	VZ2	VTH 2	BETA2	3	WTHZ	BETAP 2	312	p2	STRTUES
	80		11	FPS	FPS	다	Ω	C.	FP	DEG		<u> </u>	
	Š.	. 58007	0	70.918	46.522	3.52	00	7.14	25	52.913	œ (0.0	
	-	.96014	⇒ 1	71.658	51.701	9,63	8	3.66	50	50.79	'n.	α. 	
	5	.94021	LO .	75.173	56.388	9.71	0 1	2.95	9 3	47.1/3	<u>.</u> ,		
	₹.	.90035	- '	81.166	64.251	9.59	99	5.43 4.43	۳,	27 003	· .	y. 0. t	
	Ď	85039	0.0	83,383	15. T. O. O. O. O. O. O. O. O. O. O. O. O. O.	2.63	٦.	- 0	7 :	37.003	• •	- 0	
٥.	0.884086	0.820645	58°837	84.632	64.585	57.057	42,390	73.881	39.387	32.216	434.760	323.450	0.94974
Poro!	R BLADE E	LEMENT PARAMIEADING EDGE,	METERS , 2 INDIC	ATES TRAILI	ING EDGE								1
Δ.	ASS.HT	B1/BT	23	PHI1	RP	ΛÖ	II	IV	LO.	PFC			
	FROM T		D.			¥1.09	ľΨ	SQ FT	E C				
	.0982	.98307	62	. 43790	3	1291,100	19	.9280	05 0.94	1E 0	•		
	.1964	.56014	99	.46943	36	1289.700	19	.9280	05 0.93	9E 0			
	. 29 4 6 : 29 4 6	.94021	37 (C	. 4 9775	<u>س</u> ر	1286.100	5	.9280	05 0.93	0 E			
	ברעי.	. 4CO35	7 5	81810	56	1289.000	ν. C	0026.	0.9 C) C		•	
	000		- (10620.	7 0	202 50	. 6	0000	0.00 0.00	110			
م.ر	0.884086	C.820646	-4.020,	0.493486	5367.492	1297.500	62.192	0.9280E-	05 0.842	1E 06			
C.	ASS.HI	R2/RT	DEV	PHI2	PST	IISd	[-]	OMEGAB	Ð	DELTA H	DELTA P	(TH/C) A	
•	FPCM T	•	DEG							ít.,			
	.098232	0.5800	14, 323	നു.	.395	.44681	0.884149	39984	.596	69.26	- 1	0.02655	
	.156463	9601	Ų.	J	377	40547	0.931//3	14843	.539	61.79	Ω.	0.01472	
	.294655	9402	0	J (374	.39 752	0.937042	27 11 110	223	20.00	.	o d	
	.451159	c • eco 3	U١	'n.	.386	.3/961	1.01/522	0.01232	τα Σ	7.	+ 1	· .	
	.687622	8605	וויי	ויט	.382	.33160	1.002577	00193	.502	55	റ	-0.00067	
<u>ن</u> م	0. /80804 0. ABLCB6	i 0.820646	12.016	0.531870	0.394015	0.398421	0.988939	0.009611	0.551525	169.140	110.100	0.00334	
	•	2	•	•	•	1)				
AV ER	AGED FARA DICATES L	METERS EADING EDGE	, 2 INDICAT	ATES TRAILT	ING EDGE								
		10	OM	TOR	ROTOR		FR	c1	FRC2	RPMR	UTIA		T 2A
0	PHIE1 488610	FSIE 0.384675	ES 0.396	SIIB 0076 0.	EFFB 971214	269.278	0.0-	0-0-680	.012 5	369.969	117.576	117	.576

ROTOR BLADE ELEMENT PARAMETERS INDICATES TRAILING EDGE INDICATES TRAILING EDGE

1291. GALLONS PER MINUTE

	STRTUB1 SQ IN 0.97352 0.75681 1.11170 1.41940 1.01740 0.66256	STRTUBE SQ IN 1.03260 0.75681 1.11170 1.41940 1.01740 0.66256				2.8 2.9 5.4.
	P1	P2 FT 350.370 359.050 346.540 342.340 3342.390 338.290			(TH/C) A 0.03996 0.02335 0.01355 -0.00135 0.00125	UT2A FPS 117,654.
	H1 261.090 266.980 272.140 275.500 275.500 273.410	H2 FT 441.630 441.960 443.090 447.000 444.920			DELTA P FT 135.100 130.320 130.320 123.740 118.320 115.130	011A FPS 117.654
	9 PETAP 1 DEC 67.420 65.563 63.816 61.654 60.404 60.166	BETAP2 DEG 53.757 50.220 47.591 41.144 37.444 35.285	,	REC 56E 06 61E 06 92E 06 53E 06 52E 06	DELTA H 180.590 170.590 170.550 171.510 171.510	RPMA 5373.535
	WTH1 115.450 112.680 110.550 105.760 105.360 99.154	#TH2 55.784 57.550 57.863 53.863 47.227 43.262		00.92 00.92 00.83 00.83	0.680667 0.608786 0.564907 0.531288 0.550285	FRC2
	FPS 125.034 123.767 123.191 120.69 116.569 114.302	#2 FPS 69.167 74.886 78.368 80.347 77.695 74.893	:	SQ 71/5F 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0	OMEGAB 0.137916. 0.076010 0.042749 -0.004651 0.003639	c1 4.1 -0.
	BETAL 0.000 0.000 0.000 0.000 0.000 0.000	BETA2 DEG 55.575 49.005 44.910 40.725 41.2630		DENSITY LB/CU FT 62.192 62.192 62.192 62.192 62.192 62.192	EFF 0.843496 0.906283 0.944308 1.005634 0.995711	FRC1
	VTH T P P P P P P P P P P P P P P P P P P	VTH2 55.665 55.129 52.687 54.193 55.892		2V GPM 1205.700 1204.900 1194.100 1205.700 1215.700 1206.500	PSII 0.496415 0.421038 0.395458 0.395458 0.398285	HSVB FT 269.731
ING EDGE	VZ1 48.010 51.201 54.359 57.575 56.864 53.301	VZ2 40.892 47.915 52.453 60.691.866	NG EDGE	8280.063 5359.965 5370.105 5364.848 5379.801 5387.477	PSI 0.418724 0.408765 0.397844 0.400163 0.397685 0.396577 0.415998	ING EDGE ROTOR EFFB 961694
ATES TRAILING	PPS 48.010 51.201 54.359 57.575 57.575 56.864	V2 FPS 72.333 73.042 74.628 79.597 82.077 82.834	ICATES TRAILI	PHII 0,407564 0,48283 0,462314 0,485730 0,488764 0,492061	PHIZ- 0.347139 0.468282 0.449507 0.513541 0.523759 0.518269	ES TRAIL R B 4 0.
PABAMETERS EDGE, 2 INDICAT	U115.450 112.680 110.550 105.50 105.360 99.154	U2 FPS 115.450 112.680 110.550 105.760 701.760 99.154	ETERS 2 IND	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DEV TS. 167 15. 167 15. 140 16. 094 16. 094 11. 735	2 IND 0.4
FLEMENT PARAY	81/FT 0.580072 0.960144 0.940215 0.960359 0.860502 0.840574	R2/RT 0.980072 0.940215 0.960359 0.860502 0.840574	но е п п	31/81 0.980072 0.960144 0.900359 0.960359 0.860502 0.840574		S. LEADING EDGE, S. ROTOF SOLOHOUS
ROTOR BLADE F	PASS.HI.1 FROM TIP 0.098232 0.196463 0.294695 0.697625 0.785854 0.884086	PASS.HT.2 PROM TIP 0.098232 0.196463 0.294695 0.697622 0.785654 0.884CE6	RELADE	PASS.HT.1 PROM TIP 0.0196463 0.294695 0.491159 0.687622 0.785854	PASS.HT.2 FROM TIP 0.098232 0.196463 0.291695 0.697622 0.687622 0.785854	ERAGED EARA INDICATES L PHIE1 0.455770
1 1	-0mzm2r	1084881	ROTOI	-0m+mor	7654327	AVE.

TABLE X. - Continued, BLADE-ELEMENT DATA FOR CONFIGURATION 8

LEMENT PARABETERS 1. EADING EDGE, 2 INDICATES TRAILING EDG 0. 980072	HSVB FRC1 FRC2 RPMA UT1A UT2A FT FPS 270.116 -0.037 -0.022 5362.191 117.406 117.406		PSII EFF OMEGAB D DELTA H DELTA P (TH/C)A 0.512994 0.832873 0.154276 0.722070 183.060 136.660 0.04206 0.4478917 0.900088 0.012240 0.669300 177.560 132.870 0.0313 0.448717 0.900088 0.0033618 0.621401 173.800 129.720 0.02595 0.404349 0.996739 0.002750 0.552052 173.300 123.310 0.00443 0.406804 1.006995 -0.006185 0.556954 174.870 115.900 -0.00212 0.426355 0.998406 0.001576 0.610119 182.050 113.400 0.00058	QV DENSITY VISK REC GPM LB/CU FT SQ FZ/SEC 1134.400 62.192 0.9280E-05 0.9262E 06 1145.000 62.192 0.9280E-05 0.9211E 06 1136.000 62.192 0.9280E-05 0.919E 06 1145.800 62.192 0.9280E-05 0.8689E 06 1145.300 62.192 0.9280E-05 0.8413E 06 1143.300 62.192 0.9280E-05 0.8413E 06	59.732 54.180 68.901 54.318 52.032 445.630 364.100 0.75681 56.165 49.545 72.542 54.484 48.683 445.370 360.700 1.11170 53.677 43.110 77.369 51.943 42.173 44.7.380 345.780 1.41940 56.717 43.740 72.521 41.793 35.190 449.100 344.520 0.66256 60.943 46.665 67.482 35.321 31.561 449.390 340.290 0.94974	VTH1 BETAP1 HT WTH1 BETAP1 HT FT SQ IN 0.000 0.000 123.780 115.070 66.699 268.276 230.930 0.97352 0.000 0.000 123.780 113.050 66.699 268.070 231.230 0.97352 0.000 0.000 121.866 110.650 65.225 271.510 230.980 1.1170 0.000 0.000 118.777 105.620 62.777 275.320 229.440 1.41940 0.000 0.000 114.783 100.850 61.476 275.320 229.440 1.41940 0.000 0.000 112.424 98.510 61.192 274.230 228.620 0.66256 0.000 0.000 108.948 96.264 62.077 267.340 226.890 0.89413	
ELEMENT PAFANETERS 1. R1/RT	AILING EDG ROTOR EFFB 0.946804	AILING EDGE	PSI 0.427259 0.403685 0.403685 0.403630 0.403630 0.403650 0.425677	LING EDGE 3 5362.35 3 5377.56 2 5377.96 2 5357.75 9 5357.75 9 5357.49	331 422.39 331 47.89 43 57.34 56 59.26 38 57.50	LING ED E E E E E E E E E E E E E E E E E E	
R PA FAN	Z INDICATES T ROTOR PSIIB 0.434248	2 INDICATES TR	DEEV 611 0.3 952 0.3 183 0.4 963 0.5 640 0.5	ETERS 2 INDICATES T INC -0.172 0.388 -1.511 0.413 -1.525 0.463 -1.520 0.465 -1.508 0.465 -1.508 0.465	3.050 72. 0.650 73. 5.620 78. 0.850 80. 8.510 82.	U1 U1 FPS 45 113.050 48 113.050 69 105.620 54 100.850 54 98.510 54	TERS 2 INDICATES
	LEADING EDG ROTOF PSIE 0.411147	RAMETERS LEADING EDGE	R2/R 0 98007 0 98007 0 94021 0 86050 0 84057 0 82064	ELEMENT FAR LEADING EDG R1/RT 0,980072 0,940215 0,960359 0,860502 0,640574	3 0.96014 3 0.96014 5 0.96035 2 0.86050 4 0.84057 6 32064	R1/RT R1/RT 0.980072 0.960144 0.960144 0.960359 0.860502	LEMENT PAFAN EADING EDGE
PASS HT: PASS HT: PROW TI 0.09823 0.09	INDICATE PHIE1 0432130	ES ES	PASS. 0 0090 0 190 0 256 0 0 68 0 0 88	DIOR BLADE PNDICATES PASS.HI. PRCM II 0.09821 0.19646 0.29469 0.49115 C.699116	0.19646 0.29469 0.49115 0.68762 0.88408	PASS - H PROM 0.098 0.194 0.294 0.491 0.785	TOR BLAD INDICATE

FLOW RATE # 9	6	1075.	GALLONS PE	B MINUTE						;		
ROTOR BLADE F	LEMENT PARAM EADING EDGE,	ETERS 2 INDIC	ATES TRAILIN	ING EDGE								
PASS.HI.1 FEOM TIP 0.09E232 2 0.196463 0.294655 4 0.697159 0 0.687625 5 0.785854	R1/RT 0.580072 0.960144 0.940215 0.900359 0.860502 0.840574 0.820646	115. C70 112.940 112.940 110.600 100.990 98. E78	V 1 5.24 43. 959 45. 724 46. 164 55. 1	VZ1 FPS1 43.959 45.724 48.164 51.645 51.353 47.761	V + H H H H H H H H H H H H H H H H H H	BE TA TA TA TA TA TA TA TA TA TA TA TA TA	#1 PPS 123.181 121.845 120.632 113.296 111.432	FPS 115.070 110.600 105.990 990 990 990 990 990 990 990 990 990	BETAP1 DEG 69.092 67.959 66.468 64.005 63.047 63.676	H1 264.350 268.340 271.780 275.390 275.320 275.050	P1 234.320 235.850 235.730 234.340 234.020 233.250	STRTUB1 SQ IN 0.97352 0.75681 1.11170 1.41940 1.01740 0.66256
PASS.HT.2 FROM IIP 0.096232 0.196463 0.294695 0.687625 0.687622 0.687622 0.884086	R2/RT 0.980072 0.960144 0.940215 0.940215 0.860502 0.840574 0.820646.	U2 FPS 115. C70 112. 940 110. 60 105. 910 100. 990 98. 878	V2 FPS 71.168 71.515 72.035 76.527 76.621 81.908	VZ2 31.960 37.319 41.420 55.433 56.433	VTH 2 53.587 61.006 53.935 55.168 58.506 62.405	BETARS 53. 3155 58. 545 54. 900 44. 485 45. 585 48. 060	W2 FPS 60.596 63.952 66.218 72.067 70.113	WTH2 FPS 51.482 51.934 51.665 50.413 44.822 40.372	BETAP2 DEG 58.168 54.300 51.280 43.734 38.458 35.156	H2 FT 448.980 448.750 445.750 451.650 451.650 455.920	P2 370.270 368.890 365.110 353.150 353.550 353.710	STRTUBEZ SQ IN 1.03260 0.75681 1.11170 1.41940 1.01740 0.66256
FOTOR BLADE E I INDICATES I PASS.HI.1 FROM IIP 0.098232 0.196463 0.294695 4 0.691159 4 0.691159 5 0.785854 7 0.884086	ELEMENT PARAL LEADING EDGE R1/RT 0.980072 0.940215 0.940574 0.940574	METERS 2 INDIC INC EEG 0.542 -0.651 -2.095 -2.4095 -1.659 0.676	ATES TRAIL: PHI1 0.374405 0.439415 0.439443 0.43550 0.436813 0.406023	ING EDGE RPM 5362,359 5372,340 5372,535 5372,453 5360,488	QV GPM 1087.700 1088.500 1055.300 1065.100 1073.900	DENSITY LB/CU FT 62.192 62.192 62.192 62.192 62.192 62.192	SQ FT/S 0.9280E/ 0.9280E/ 0.9280E/ 0.9280E/ 0.9280E/ 0.9280E/ 0.9280E/ 0.9280E/	SEC 5.EC 6.50.9218E 6.50.90118E 6.50.98817E 6.50.88178E 6.60.88178E 6.60.88178E	REC 8E 06 8E 06 7E 06 7E 06 8E 06 9E 06			•
PASS.H1.2 FROM TIP 0.098232 2 0.196463 3 0.294695 0 0.4917622 5 0.687622 6 0.785854 7 0.884066	R2/RT 0.980072 0.960144 0.900215 0.90025 0.860502 0.840574 0.820646	LEV DEG 19. 578 19. 780 19. 780 18. 484 15. 708 13. 606	PHI2 0.272212 0.317259 0.352117 0.447944 0.480850 0.487313	PSI 0.430923 0.413627 0.404536 0.404518 0.411883 0.411883	PSII 0.530793 0.497962 0.471059 0.4211057 0.411827 0.418074	EFF 0.811846 0.840680 0.858716 0.95271 1.000148 1.000654 0.999905	OMEGAB 0.181465 0.147879 0.126569 0.040380 -0.000131 -0.000610	D.761041 0.715504 0.591134 0.591134 0.591136	DELTA H 184.630 180.030 173.970 173.970 176.330 179.920	DELTA P 135.950 133.040 129.380 124.410 118.790 116.690	(TH/C) A 0.04690 0.04143 0.01313 -0.00004 -0.00021	
AVERAGED PARA 1 INDICATES 1 PHIE1 0.407050	AMETERS LEADING EDGE ROTOF PSIE 0.416183	2 INDI	ATES TRAIL TOR IIB 736 0.	ING EDGE ROTOR EFFB 931610	HSVB FT 270.633	F F 6	FRC1 .034(PRC2	RPMA 5369 <u>. 2</u> 62	UT1A FPS 117.561	147	UT 2A FPS .561

TABLE X. - Concluded, BLADE-ELEMENT DATA FOR CONFIGURATION 8

NO TO	TOR BLADE ELENINDICATES LEAD	EMENT PARAMETE	ETERS, 2 INDICA	TES TRAILIN	ING EDGE								
	SS	R1/BT	101	> C	12V	3C F	BETA 1	35 C	WTH1	BETAP 1	H +	L d	STRIUB1
-	.09	.98007	4 2	0.52	40.627	00.	000	98	115.020	32.	65.6	9.97	0.97352
7	.19	1096	3 1	2,95	42.	50.	00	83	112.940	.17	4.69	0.76	0.75681
m :	2.5	.94021	110.390	5.66	. 45,667.	90.	88	÷.	110.390	52	75.6 75.5	67.0	1.111/0
3 L/I	3, 00	.86050	101, 130	8.76	48.768	000	38	. 27	101.130	25.	76.1	9.17	1.01740
9	0.785854	0.840574	99.016	48.755	48.755	000-0	0.000	110.368	99.016	63.785	275.410	47	0.65256
_	æ.	.82054	96.669	7.3	45.37	9	3	0	96.009	0	7.60	67.	0.094 13
	SS.	R2/PT	0.5	\Rightarrow	VZ2	VTH 2	BETA2	36	WTH2	BETAP2	н2	P2	STRTUB2
	80 E		FPS	E E	Бų ·	다 (다	DE	F		920		۰ بط ع. ا	200
	50	270086.	115.020	1.61	 - =		, c	יי מ		55.857	53.0	7.06	756 756
۷ m	. 29	.940215	110.390	1.24	7.3	68	3.41	2.1		53.102	, &	. 6	1.11170
⇉	6 7.	.900359	105.960	3.42	7:	. 28	7° 04	9,49	•	46.490	47.4	3.64	4 19
יוט	69	.860502	101,130	8.65	±, ′	70	5. 12	0.32		39.179	54.7	9.56	017
٥ ٢	0.884086	0.820646	96.669	83.999	55, 301	63.226	48.825	64.627	33.443	31.163	460.610	96	6116
RO.	TOR BLADE E	EMENT PAS	AMETERS F 2 INDICA	111484 844	A DOG S NI								
	NUTCALES E	9 4 4 6	71 72 7		9								
.—	SS.HT	R1/RT	INC	PHI 1	RPM	> 0 0	SIT	IV	SK	REC			
•	FOM T	70089	1 2 3 6 6	1617	360.0	2.0	<u>.</u> . 5	7 FT/5 9280E-	5 0.912	85.0			
- ~	1964	.96014	0.568	5514	372.3	10	. 19	9280E-	406.0	2E 0			
m	2946	.94021	-1.025	3896	362.3	06.	. 19	9280E-	5 0.893	9E 0			
= U	0.491159	\$6035	-1.577	1987 11955	375.0	00.5	5	9280E-	5 0.871	2E 0			
0 1	0100			0 0		? ?	•	10000	0.00 E	1 6			
9 ~	0.884086	0.820646	1.857	0.385162	5380.008	1006.200	62, 192	0.9280E-0	5 0.799	1E 06			
	PASS.H1.2	R2/RT	EEV	PHIS	PSI	IISd	E E	OMEGAB	Ω	DEL TA H	DELTA P	(TH/C) A	
	FROM TI		DEG								FT		
- (9823	.58007	20.326	200	. 443	.54236	.81748	m 0	.78	600		163	
7 (700	1000.	20.602	7	0 Z 2 Z		61111	ם מ	; -			0 7 7	
∩ ±	9467	96035	21.240	- 00	666.	43058	92707	7.7	.62		124.210	198	
L)	8762	.86050	16.429	÷	415	.41515	.00200	Ξ	5,5	•	19.	9000-0	
91	0.785854	0.840574	13.826	0.475320	0.425252	0.422579	1.006327	-0.006091	0.602667	183.400	117.020	-0.00209	
•	0	12070.	•	2	1 1	, ,		•	•	•	•	ì	
AV.	FRAGED PARAMINDICATES LE	ETERS ADING EDGE	, 2 INDICAT	ATES TRAILI!	ING EDGE								
		30.105	FO.	,0 F	80508	a vz y	9	108	FRC2	RPMA	IIT 1 A		T 2.A
	PHIB1	:	-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ř		•	1 .		Ser	,	FPS
	0. 383760	0.420885	0.4538	• •	921381	2/1.303	-0.038	0	0.40	371.043	009*/11	=	000

TABLE XI. - BLADE-ELEMENT DATA FOR CONFIGURATION 9

A CONFIGURATION 9	HUB-TIP RATIO, 19 ELADES, 5-INCH TIP DIAMETER,	34-INCH CHORD, 0.016-INCH RADIAL TIP CLEARANCE,	5 DESIGN TIP D-FACTCR,	BLE CIRCULAR ARC SLADE PPOFILE,	56 DESIGN FLCW COEFFICIENT.	REPORTED.
NASA CON	-En		0.66 DES	DOUBLE C	0.466 DE	194

NDICATES LE R1 INCHES	BLADE GECKTERIC FARANETERS- BLADE ROW# 1 (ROTOR) 1 INDICATES LEADING EDGE, 2 INDICATES TAAILING EDGE ROOTE	2 INDICATES R2 INCHES	KAPPA2 DEGREES		TMAX/C	CHOE
00066#*7	050.50	000657-7	34.390	1.020300	0.071640	0.8333
2.405000	68.610	2.409000	35.080	1.041500	0.073640	0.8333
2.359000	68,550	2.359000	31,500	1.063600	0.075640	0.8333
2.259000	67.100	2.259000	25.250	1.110700	0.079640	0.83330
2.159000	65.450	2.159000	22,750	1,162100	0.083640	0.8333
2,109000	64.200	2.109000	21.550	1.189700	0.085640	0.8333
2 05000	000 69	000000	000	0000101	011100	,,,,,

R1 INCHES	KAPPA1 DEGREES	R2 INCHES	KAPPA2 DEGREES	SOLIDITY	THAX/C	CHORD	CAMBER DEGREES	S ET ANG DEGREES
459000	68.550	2.459000	38,590	1.020300	0.071640	0.833300	29,960	53.570
359000	68,550	2.359000	31,500	1.063600	0.075640	0.833300	37.050	50.025
.259000	67.100	2.259000	25.250	1.110700	0.079640	0.833300	41.850	46.175
.159000	65.450	2.159000	22,750	1.162100	0.083640	0.833300	42.700	44.100
109000	64.200	2.109000	21.550	1.189700	0.085640	0.833300	42.650	42,875
.059000	63.060	2.059000	20.000	1.218600	0.087640	0.833300	43.000	41.500
RHUB1 INCRES	RTIE1 INCHES	RHUB2 INCHES	RTIP2	NBLADES	٠			
000000	2.509000	2.000000	2.509000	19				

TABLE XI. - Continued, BLADE-ELEMENT DATA FOR CONFIGURATION 9

	STRTUBI SQ IN 0.99716 0.75681 1.11170 1.41940 1.01740 0.66256	TRTUB2 SQ IN .05630 .75681 .11170 .41940 .01740				at 10 m
	P1 ST PT 75.480 0.179.790 0.176.270 1.172.910 1.172.050 1.176.940 0.169.570	P2 ST FT 1.261.300 1.262.640 0.256.250 1.2456.320 1.242.340 0.242 3.37.870 0.237.870 0.237.870 0.237.870 0.237.870 0.242.340 0		. , ,	(TH/C) A 0.04155 0.04696 0.0263 0.0263 0.00263 0.00350	UT2A FPS 118.013
	H1 242.720 258.850 268.190 272.900 272.000 272.000	H2 342.270 351.000 355.960 371.740 383.010 382.890			DELTA P FT 85.820 82.290 76.310 73.280 71.500 68.300	UT1A FPS 118.013
	BETAP1 DEG 60.385 57.774 55.235 53.235 53.616 50.878	BETAP2 DEC 51.693 49.294 46.092 40.913 37.217 35.433		REC 60E 06 09E 07 09E 07 09E 06 68E 06 79E 06	DELTA H P9.550 92.150 87.770 99.110 110.890	RPMA 5389.902
	FPS 115.720 113.150 110.800 1106.800 99.200 96.848	WTH2 77.571 76.772 73.488 69.371 66.217 62.393		55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.397792 0.373410 0.37382 0.373782 0.273782 0.279318	PRC2-0.012
	FPS 133.754 134.876 134.876 129.732 127.867	#2 FPS 98.854 101.274 102.002 106.534 109.480 107.621		VIS SQ. F1/SE 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0	OMEGAB 0.136776 0.128712 0.0144053 0.007670 0.010212	FRC1 029
	BETA1 DEG 0.000 0.000 0.000 0.000 0.000	BETA2 31.905 28.845 27.810 24.405 22.770 22.770 25.200		DENSITY LB/CU FT 62.192 62.192 62.192 62.192 62.192 62.192	EFF 0.725528 0.720287 0.683064 0.982106 0.977136	F. O
ELEMENT PAFAMETERS LEADING EDGE, 2 INDICATES TRAILING EDGE	PTH TY PES 0.000 0	VTH2 FPS 38.149 36.378 37.312 36.473 36.807		QV GPM 1683.200 1682.700 1696.500 1693.700 1693.700 1693.700	PSII 0.316659 0.296386 0.297690 0.258298 0.262163	HSVB FT 264.927
	V21 FPS 65.778 71.326 76.908 79.5908 80.681	VZ2 FPS 61.277 66.049 70.739 80.589 87.689 87.689	ING EDGE	8392.648 5382.328 5382.262 5394.320 5397.320 5389.988	PSI 0.229745 0.20341 0.25354 0.253676 0.25168	RAILING EDGE RCTOR EFFB 0.824290
	V1 FPS 65,773 71,326 76,908 79,908 80,557 79,553	72, FPS 72, 182 75, 404 75, 404 89, 976 94, 125 95, 100	CATES TRAILIN	PHI1 0.557097 0.605241 0.672519 0.674678 0.681678 0.683654	PdI2 0.518978 0.562461 0.600268 0.637755 0.743034 0.71313	E 8 8 9 9
	115, 720 113, 150 110, 880 101, 690 101, 690 99, 200	FPS 115, 720 113, 150 110, 800 106, 350 99, 200 96, 848	PABAMETERS EDGE, 2 INDICA	INC -8, 165 -10, 836 -13, 949 -13, 836 -13, 400	DEC 13, 103 14,214 14,592 14,693 15,467 13,883	E, 2 INI
	R1/RT 0.980072 0.940215 0.940215 0.960359 0.860502 0.840574	R2/RT 0.580072 0.960144 0.940215 0.900359 0.860502 0.840574	ELEMENT FAR	81/81 0.980072 0.960144 0.940215 0.500359 0.860502 0.840574 0.820646	R2/RT 0.980072 0.940215 0.900359 0.860502 0.840574 C.820646	LEADING EDG ROTOF PSIE 0.232421
ROTOR BLADE 1	PASS.HT.1 PROM TIP 0.096232 2 0.196463 3 0.294695 4 0.494695 5 0.687622 6 0.785654 7 0.884086	PASS.HT.2 PROM TIP 0.098232 2 0.196463 3 0.294695 4 0.484695 6 0.785654 7 0.884086	ROTOR BLADE 1	PASS.HT.1 PROH TIP 0.098232 2 0.196463 3 0.294695 4 0.491695 5 0.687622 6 0.785854 7 0.884086	PASS.HT.2 PROM TIP 0.098232 2 0.196463 3 0.294695 4 0.487622 6 0.785854 7 0.884C86	AVERACED FARAMFIERS 1 INDICATES LEADING RO EHIE1 0.637510 0.23
				. ,,		

FLOW RATE #	2	1648.	GALLCNS PE	R MINUTE								-
ROTOR BLADE 1 INDICATES	ELEMENT PAR LEADING EDG	AMFTERS E, 2 INDIC	ATES TRAILIN(I.NG EDGE								
PASS. HI.1 PROM TIP 1 0.096232 2 0.1964633 3 0.294695 4 0.4937622 5 0.687622 6 0.785654	R1/PT 0.980072 0.960144 0.940215 0.960359 0.860359 0.860364	U15. 720 113. 420 110. 860 106. 550 101. 650 99. 246	V1 FPS 63.711 71.389 75.344 77.389 78.584	VZ1 FPS 63.711 71.389 75.344 77.936 78.584 78.637	PTH 1 0.0000 0.000 0.000 0.000 0.000	BETA1 DEG 0.000 0.000 0.000 0.000 0.000	#1 FPS 132.099 134.017 134.017 132.013 128.484 125.624	FPS 113. 420 110. 860 100. 650 101. 650 99. 246 96. 983	BETAP1 DEG 61.165 57.813 55.799 53.815 52.293 51.609	H1 FT 242.450 258.940 270.090 274.170 273.180 272.900 268.370	P1 179.370 179.740 179.770 177.210 176.600	STRTUBI SQ IN 0.99716 0.75681 1.11170 1.01740 0.66256
PASS.HI.2 FROM TIE 0.098232 2 0.1964633 3 0.294659 4 0.494652 5 0.687622 6 0.785854	R2/RT 2 0.980072 3 0.960144 5 0.900359 0.900359 2 0.860562 4 0.640574 6 0.820646	US FPS 115.720 113.420 110.860 106.860 106.999.246	V2 72.209 75.209 75.351 80.462 88.462 88.796 93.138	VZ2 FPS 60.785 65.945 70.233 79.084 84.118 79.948	VTH2 FPS 33.978 37.477 39.260 38.386 39.987 42.089	BETA2 DEG 32.670 29.670 29.205 26.145 26.425 27.765	H2 FPS 97.898 100.579 100.296 104.110 105.546 102.895	MTH2 FPS 76, 742 75, 943 71, 600 67, 745 63, 264 59, 259	BETAP2 DEG 51.618 49.030 45.552 40.595 36.827 35.164	H2 FT 354.460 371.560 371.560 392.150 391.680	P2 273.430 273.240 270.950.254.660 258.330 257.070	STRTUB2 SQ IN 1.05630 0.75681 1.11170 1.01740 0.66256
POTOR BLALE 1 INDICATES PASS.HT.1 PROP HIP 0.098232 2 0.1964633 3 0.254695 4 0.497159 5 0.687155 6 0.785654	LEADING EDG R1/RT 0.580072 0.940215 0.900359 0.860502 0.820646	AMETERS E, 2 INDIC INC -7.385 -10.797 -12.781 -13.285 -13.585	ATES TRAI PHI11 0.539589 0.639509 0.658590 0.66529 0.66627	EING EDGE RPM 5392, 648 5395, 172 5385, 172 5404, 930 5395, 199 5395, 488	QV G2M 1645.400 1650.400 1649.900 1639.700 1653.400	DENSITY LB/CU FT 62.192 62.192 62.192 62.192 62.192 62.192	SO FT/S 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.9280E-	ESK ESC 05 0.98 05 0.98 05 0.98 05 0.98	REC 85E 06 03E 07 03E 07 14E 06 75E 06 80E 06			
PASS. HT.2 PROM TIE 0.0968232 0.196463 0.294694 0.491694 0.491694 0.491694 0.491694 0.491694 0.491697 0.4884086	R2/RT 2 0.980072 3 0.960144 5 0.940215 9 0.960359 2 0.860502 4 C.840574 6 0.820646	DEV 13.058 13.058 11.052 11.052 11.052 11.052 11.077	PHIZ 0.514809 0.558253 0.558065 0.66806 0.715186 0.715186	PSI 0.258501 0.239122 0.234827 0.255030 0.274603 0.274603	PSII 0.323542 0.304616 0.313062 0.275620 0.284680	EFF 0.798972 0.784995 0.750996 0.853830 0.980987 0.964600	OMEGAB 0.103925 0.101770 0.101770 0.064613 0.008988	D.403501 0.403501 0.383759 0.38439 0.343691 0.307075 0.320115	DELTA H 112.010 103.710 101.470 111.010 118.980 113.360	DELTA P 94.060 93.500 89.890 81.120 80.270	(TH/C) A 0.03162 0.03203 0.03286 0.00310 0.00310 0.00602	n e
AVERAGED PAR 1 INDICATES PHIE1 0.620850	LEADING EDC ROTOR PSIE 0.257681	E, 2 INCI	ATES TR FOR IIB	AILING EDGE ROTOR EFFB 0.862310	HSVB FT 265,745	FR -0.0	.026 -0	FRC2 0.009	RPMA 5394,727	UT1A FPS 118.118	u 118.	172a 118

FLOW RATE # 3

S NDICATES TR LINC PH LEG 0.5182 402 0.6712 402 0.6712 402 0.6712 402 0.6712 402 0.6712 402 0.6712 402 0.6712 402 0.6712 403 0.6713 403 0.6713 403 0.6713 403 0.6713 403 0.6712	R1/RT 60144 100215 -1 100359 -1 120646 -1 120646 -1 100215 100359
ALLING EDGE 11 RPM GPM GPM 58 5380.070 1572.800 62 5373.949 1569.800 64 5402.391 1575.100 68 5402.691 1575.100 68 5402.020 1575.100 69 5380.020 1575.700 12 5380.020 1575.700 142 5380.020 1575.700 142 5380.020 1575.700 181 0.286004 0.350073 19 0.286004 0.350073 19 0.287532 0.386902 25 0.301058 0.303099 25 0.301058 0.323687 ALLING EDGE ALLI	INC PHII RPM -6.420 0.518258 5380.070 -9.362 0.571262 5379.949 -11.402 0.677144 5394.891 -11.832 0.627144 5402.391 -11.832 0.627144 5402.391 -11.443 0.639026 5384.891 -10.259 0.624242 5380.020 EFY PHIZ PSI 13.641 0.513319 0.286004 13.641 0.513319 0.270992 15.175 0.640045 0.270992 15.175 0.640045 0.286288 13.853 0.675586 0.286288 13.853 0.675586 0.286288 EFFB E INDICATES TRAILING EDGE ESIER ESIER ESIER EFFB
	INC PH 126 0.5182 -9.362 0.57182 -11.402 0.67712 -11.402 0.67712 -11.402 0.63712 -11.402 0.63712 -11.402 0.63712 -11.402 0.6772 13.64 0.6750 14.050 0.6735 13.853 0.6755 13.853 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 13.855 0.6355 0

156

W RATE # 4 OR SLADE ELEMENT PAFAMETERS	ICATES LEADING EDGE, 2 I	PASS.HT.1 R1/RT U1 FROM TIP 0.098232 0.580072 115.18C 0.196463 0.960144 112.940 0.294695 0.940215 110.600 0.491159 0.9603159 105.960 0.687622 0.860502 101.360 0.785564 0.840574 98.57C	ES.H1.2 R2/ET U P P P P P P P P P P P P P P P P P P	ATES LEADING EDGE, 2 INDICA "HI.1 RI/RT INC R TIP EEGO 2 -4, 807 96483 0.96014 -7.571 94483 0.96014 -7.571 94159 0.960359 -10.181 87622 0.860502 -10.032 8554 0.640574 -9.441 84086 0.820646 -8.567 "HI.2 R2/RT EEV	32 0.980072 18.175 63 0.960144 17.708 95 0.940215 17.782 59 0.960359 16.376 22 0.660502 14.159 54 0.840574 13.735 86 0.820646 13.78C ARAMETERS	2 C C C C C C C C C C C C C C C C C C C
LLONS PER	TES TRAILIN	V1 FPS 62.503 66.304 69.877 69.823	567462	ស ១ ពេល លេល ស	0.433453 0.0.480913 0.0.626389 0.0.626389 0.0.618053 0.0.568585 0.	Cr.
KINUT	EDGE 51	VZ1 FPS 56.818 62.503 66.304 69.024 69.677	772 772 772 772 772	G ED3 367.4 372.3 372.5 375.0 379.8 377.4 977.4	298897 2883156 328266 338266 333406 325618	-
		VTH FFS O O O O O O O O O O O O O O O O O O	V T T T T T T T T T T T T T T T T T T T	0 V GPM 1461.503 1460.503 1460.900 1460.100 1471.000	0.312229 0.313605 0.318579 0.30877 0.333018 0.338929 0.350355	200
		BETANO 000000000000000000000000000000000000	8 T B B T B B T B B T B B T B B T B B T B B T	DENS ITY LB/CU FT 62.192 62.192 62.192 62.192 62.192 62.192	0.957164 0.920627 0.88810 1.00730 1.001164 0.960727	¢
		#128.435 128.435 128.952 128.952 123.112	FPP 993.544 993.554 993.554 993.554 993.554 993.554 993.554 993.554 993.559	SQ FTZ, 0.9280E, 0.92	0.022398 0.041368 0.058954 0.000255 0.025133 0.063323	
		HTH1 FPS 115, 180 110, 600 105, 960 101, 360 98, 97,	XTH2 77.140 70.140 70.742 65.509 55.774 66.314	0 C C T C C C	0.419182 0.418326 0.421503 0.304149 0.428981	i C
		BETAP1 DEG 63.743 61.039 59.057 56.919 55.418	TAP DE 762 78 28 62 62 62 78	REC 103 06 195 06 195 06 125 06 185 06 305 06	128.290 124.240 121.760 141.310 143.780 14C.300	2
		H1 248.570 260.490 269.010 273.810 273.810	53.50	DELTA P	116, 353 112, 250 1107, 800 105, 470 101, 670 98, 960 97, 070	41.411
		FT 198.800 199.780 200.690 199.770 199.770 199.770 196.830	www.www.v	, (TH/C) A	0.00602 0.01201 0.01808 -0.01808 0.0024 0.00862	
		STRTUB1 SQ IN 0.99716 0.75681 1.1170 1.41940 1.01740 0.66276	STRTUB2 S2 IN 1.05630 0.75681 1.1170 1.41940 1.01740 0.61298			11T 2A

TABLE X1 - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 9

ROTOR BLADE 1 INDICATES		ELEMENT PAFAI LEALING EDGE	AMETERS E, 2 INDICA	TES TP	AILING EDGE				i.				
PASS. PRO	S. HT. 1	R1/RT	U1 FPS	V1 FPS	VZ1 FPS	VIH 1	BETA 1 DEG	.7e O.	WTH1	BETAP1 DEG	H1	σ. r.	STRIUB
0	cn i	0.580072	5.29	3,33	3.3	0	000.0	03	115.290		0	206.850	0.9971
2 0 2	J 0	0.960144	112.730	59.024 63.148	59.024	00	00000	127.247	112.730	62.364	262.210	208.070	0.7568
0	Š	0.900359		5,35	. m		000.0	27	105.710		ാത	201.02	10101
0	· con	0.860562	01.18	6.43		0	0.000	10	101.180		١ ٥	205.400	1.0174
0	C C3	0.840574	99.016	6.12	6, 1	0	000.0	0.	99.016		•	204.960	0.6625
	ω,	0.820646	6.62	5.47	5.	0	0.000	.68	96.624		\sim	203.790	0,9163
P.A.S.		. R2/RT	0.2	V 2	2	VTH2	BETA2		WTH2	BETAP 2	H CH	6	STETIES
	5	•	FPS	FPS	FP	FPS	DEG	E-1	FPS		E (Eu	ſĽ.	•
	œ	0.580072	115.290	68,660	97	ď	45.675	81.7	Ġ	•	402.810	55	1.0563
	œ .	0.960144	112.730	72.914	8	<u>.</u>	38,340	7.88		•	407.890	27	0.7568
	7 6	C. 940215	110.390	77.450	67		34.695	91.9	œ.	•	416.340	21	1.1117
	D 0	0.960359	105.7.00	83.120) o	റ്റ	32. 760	7.76	·.	•	427.110	- 5	1.4194
	` u	0.00000	00.016	270.10	3.4	• • a	35,003	ה ה ה ה	ے :	•	069.024	g d	0.014
7 0.86	983488	0.820646	96.624	84.400	65.785	52.874	38, 790	79.005	43.750	33.626	415.960	305,260	0.97198
ROTOR 1	R BLACE E	ELEMENT PARAY LEADING EDGE	AMETERS E, 2 INDIC	ATES TRAILI	ING EDGE				-				
PASS	H 1	R1/RT	INC	PHI 1	RPM	ΟN	DENS	Λ		REC			
	H		e	-		G P	25	SQ FT/					
	V =		ή,		3/2.0	385,30	vi c	0.9280E	0.93	06E 0			
162.0	294695	0.940215	-8-321	0.537843	5362.340	1371.900	62, 192	0.9280E-(0.93	122E 00			
	-		ω		362,3	382,60	c	0.9280E	0.93	OCEO			
	9	Ψ.	ъ		370.2	387.30	d	0.9280E	06.0	57E 0			
	8	Ψ,	-		379.9	384.70	2	0.9280E	0.85	0 360			
	0	Ψ.	r.		377.5	375.90	2	0.9280E	5 0.87	31E 0			
PASS.	S.HT.2	R2/RT	CEV	PHI2	ISC	PSII	. Z I Z	OMEGAB	а	DEL TA H	DELTA P	(TH/C) A	•
	H (000	ď	-	. 0 . 0		,	1			اعب ر ا	; ;	
	0 0	2/0000.0	'n.	•	00700	276050	700	2/960.	0.0400.0		2 8	2/70	
	, r	0.0000	• • =	•	00000	. 35 353	n 0	01000	0.470388		2 :	7510	
) c	-	0. 2702.0	70.21	700000	0.046.0	0.333333	1.0000	-0 018139	0.440092		C ~	06500.0	
	7	0.866502	٠. خ	• "	34138	36.210	2 4	00000	0 464247		7 0	2000	
	5.89	0.840574	7		34170	34777	982	01187	0.452624		67	0 70 0	
	0	0.820646	÷.		0.338101.	.36852	0.917445	.06195	0.508832	145.680	101.470	0.02117	
AV ERAGI	AGED FARA DICATES L	METERS EADING EDGE,	, 2 INDICAT	ATES TRAILI	ING EDGE		•						
		e Ce	C p	n C	. o	0 11 0 11	ţ	Ţ	C	4			
	PHIE1	14				C,	754	_	7 7	지 기 대	FPS		UTZA FPS
0.52	S	0.345922	0.362	°.	9.5	267.431	-0.02	v	0.003	5369,625	117.569	117	269

FLOW RATE # 5

1382. GALLONS PER MINUTE

FLOW	RAIE # 6	6 6 7 8 8	.1293.	GALLONS PE	R MINUTE						,		
T IN	N BLADE E	LENENT FARS EADING EDGE	ALLERS 2 INDIC.	ATES TRAIL	ING EDGE								
1 11	SS HI.	R1/RT	101	V 1	2 2	VIH 1	BETA1	13 C	FHT#	BETAP1	## ##	O'R	STRTUB1
_	ב ס	98007	5, 18	9.	49.482	0.000	000 0	Š	115.180		÷	5	
٦ ،	.19646	56014	3.13	4.13	13	00.	80	5.39 2.39	113.100		m a	<u>.</u> ,	
בר	.49115	90035	5.71	1.07	920	38	38	2.08	105.710		• •		
ın v	.69762	66050	1.46	1.84	3 6	00.	000-0	8.82	101.460		· -		
۸ ه	. 8840E	2 10	96.579	3.5	9 0	000.0	38	10	96.579	57.821	270.460	213.070	0.91637
E4	HT.	R2/RT	0.2	v 2	V22		BETA 2	71.2	WTH2	BETAP2	Н2	22	STRTUB2
	TI		FP.	FP	E.	C.	DEG	D.	FPS	DE		Č.	S
- c	7777	70000	2.4	9.0	寸 4		51.480	5.01	61.848	5	* a	Ξ 2	056
, ~	9476	5000	9 9	20.0	າແ	7.94	44.345	9 4 9	59.017	70	. ~	2 5	5 =
. . .	9115	90035	5.71	0.41	က	8.83	37.395	5.53	56.872	. 67	-	2	4 19
2	3762	86050	1.46	2.05	6	0.19	37.710	2.72	51.268	30	ċ	39	017
9 ~	0.785854	0.840574	98.570	82.744	64.698	51.583	39,565 41,985	80.196	47.387	36.220	429.043	322.640	0.66256
ROTO 1 IN	R BLADE DICATES	ELEMENT PARAMI LEADING EDGE,	ETERS 2 INDIC	ATES TRAILI	ING EDGE								
•~	HT	R1/RT	INC	PHI1	M dd M	A G	DENSITY LBACU FT	IV SVTT-02	ISK PR	REC			
_	09823	9896	-	40104	367.	293,30	2	י <i>ס</i> יג	0.43	C			
- ~	.19646	9601	;	0965 1	379.	9.00	62. 192	, 0,	0.93	0		,	
ന	.29469	9402	•	46334	390.	281.70	62, 192	σ,	35 0.93	0			
寸 !	.49115	036	۲.	52019	362.	298.30	62. 192	٠,	0.91	0			
י וש	.68762	8605	٠.	52447	385	296.80	62. 192	<u>ۍ</u> د	35 0.88	0			
۷	. /83468 .88468	0.820646	-5.179	0.516367	5375.012	1298.300	62.192	0.9280E-0	0.85	39E 06			
111	HT	R2/RT	CEV	PH12	ISd	PSII	다 다	OMEGAB	Q .	DELTA H	DELTA P	(TH/C) A	
	11. [16.944	36123		46476	33	12593	6100	. בר	,	0349	
	9646		17.019	00505		42361	847	11374	5811	90	3.2	.0335	
	6911		ġ	. 45347	•	41382	860	10257	. 5590	Ξ.	٠. م	.0323	
	115		٠	54415	•	37451	978 555	01481	4794	93	in i	6700.	
വര	0.587622	0.840574	15.550	0.549494	0.360268	0.368261	0.983581 0.578296	0.011840	0.485568	155.230	107.990	0.00400	
	408		12.575	.52988	•	.39133	935	5377	.5503	. 58	٠. ت	.0185	
AVER 1 IN	RAGED FARA NDICATES L	METERS EADING EDGE,	2 INDIC	ATES TRAILE	ING EDGE								
•		ROIOF	RO	TOR	ROTOR		19.5	121	FRC2	RPMA	UT1A		T2A
0	PHIB1 488610	PSIE 0.363269	FS 0.393	FSIIB 193156 0.	EFFB 923982	FT 268.030	-0.03	133 -0	.034	5376.770	FPS 117,725	117	FPS .725
									•				

	H1 P1 STRTUB1 255.770 224.340 0.99716 263.840 224.680 0.75681 270.550 225.290 1.1170 274.080 224.530 1.1170 274.440 223.570 0.66256 271.630 222.570 0.91637	H2 PT STRTUB2 STRTUB2 PT SQ IN 431.540 354.480 1.05630 426.590 349.640 0.75681 437.050 335.000 1.01740 438.420 329.100 0.97198	DELTA P (TH/C)A 130.140 0.03784 124.960 0.02812 122.600 0.02079 118.090 0.00086 112.490 -0.00076 110.070 0.00303	UT1A UT2A PPS FPS 117.892 117.882
	BETAP1 DEG 68.744 66.048 64.031 64.003 62.003 59.930 59.868	ВЕТАР2 DEG 55.235 52.311 49.485 43.277 38.483 36.202 32.446	REC 283E 06 253E 06 222E 06 301E 06 370E 06 375E 06 375E 06 175.770 162.750 162.750 163.990 163.990 163.990	RPMA 5383, 941
	FPS 124.049 115.610 123.648 113.000 120.287 106.210 116.378 106.210 114.521 99.108 111.927 96.803	#2 FPS 70.215 76.048 60.180 79.157 60.178 82.658 79.599 49.532 76.909 45.425	VISK SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280T-05 0	FRC2
	BETA11 DEG 0.000 0.000 0.000 0.000 0.000 0.000 0.000	BETA2 5 5 350 148.645 14.550 14.65 39.740 40.860 44.460	DENSITY LD/CU FT 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 7.0096407 7.0096407 7.00998975 7.098975 7.098975 7.098975 7.098975 7.098975 7.098975 7.0998975 7.098975 7.098975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975 7.0998975	E FRC1
	1 H T T T T T T T T T T T T T T T T T T	VTH2 TPH2 57.928 50.622 49.624 49.51.8748 53.683	00V 11200.300 1195.700 1196.700 1194.000 1198.000 1198.000 1197.200 0.430915 0.430915 0.430915 0.430915 0.430915 0.430915 0.430915	HSVE FT
AILING EDGE	V21 FP2 FP2 50.198 53.967 53.967 57.0956 57.382 56.186	VZZ FPZ 40.037 46.493 51.424 51.424 60.310 62.310 62.061	AILLING EDGE 11 RPM 43 5387.531 27 5375.199 44 5382.262 74 5382.469 74 5387.469 78 5387.469 78 5387.469 78 5387.469 78 5387.469 79 0.378043 69 0.378043 69 0.378043 86 0.378043 86 0.378043 86 0.378043	ROTOR EFFB
ATES TR	V1 FPS #4.972 50.198 53.967 57.965 57.382 56.186	V2 FPS 70.418 70.368 72.160 77.98 81.079 82.057 83.872	PH. PH. PH. P. P. P. P. P. P. P. P. P. P. P. P. P.	OTOE SIIB
RAMETERS GE, 2 INDIC	U115. 610 113. 610 113. 00C 110. 800 106. 210 99. 108	U2 115.61C 113.60C 110.800 106.101 99.108 96.803	INC. INC. IC. IC. IC. IC. IC. IC. IC. IC. IC. I	ς π ω ς
, ELEMENT PAR LEADING EDG	R1/RT 0.980072 0.960144 0.900215 0.900359 0.800502 0.840574	32/RT 0.980072 0.960144 0.960315 0.960359 0.860502 0.840574 0.820646	LEMENT PAR BALNG EDG BALNG EDG 0.980072 0.960144 0.960144 0.960150 0.840574 0.820646 RZ/RT 0.960150 0.960	ROTOR FSIE
ROTOR BLACE E	PASS.HI.1 PROM TIP 0.098232 2 0.196463 3 0.294695 4 0.491159 6 0.785854 0.384086	PASS.HT.2 FRCM 11P 0.096232 2 0.196463 3 0.294695 4 0.894695 6 0.785854 7 0.884086	POTOR BLADE E 1 INDICATES I PASS. HT.1 PASS. HT.1 0.095463	PHIE

		11 IN 11 IN	981 100 100 100 100 100 100 100 100 100 1	* 9 mg/d market	
		STRTU SQ 0.997 0.756 1.111 1.419 1.017 0.662	STRTUB2 SQ IN 1.05630 0.75681 1.1170 1.01740 1.01740 0.66256 0.97198	€	UTZA FPS . 795
		FT 228.860 230.000 229.510 228.420 227.420 227.810	P2 FT 359.670 356.750 352.390 345.910 340.320 333.150	(TH/C)A 0.04244 0.03659 0.03914 0.00343	1
		H1 258.130 265.560 273.540 273.540 274.440 272.000	H2 FT 435.240 432.260 437.860 440.330 441.570	DELTA P 130.810 126.750 112.880 117.990	0 U
		BETAP1 DEG 69.416 67.683 65.094 63.024 61.093	BETAP2 DEG 57.308 53.420 50.214 43.551 38.309 32.256		- 169.590 RPMA 5379.961
		WIH1 FPS 115.560 113.150 110.800 105.860 101.270 99.200 96.579	MTH2 55.677 56.812 57.286 54.047 48.077 44.358	SX BC 05 05 0.91 05 0.88 0.88 0.88 0.82 0.82 0.82 0.644264 0.595690 0.595690 0.535983 0.542333	0,5966 PRC2
		FPS 123.441 122.846 122.161 114.993 113.319	#2 FPS 56.157 70.747 74.548 78.443 76.924 74.911	VIS SQ FT/SI 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.160355 0.127878 0.028083 0.028083 0.028083 0.028083 0.028083 0.028083 0.028083	.050884
		BEHAL 0.000 0.000 0.000 0.000 0.000 0.000	BETAS 59.175 53.190 48.285 41.535 42.255	DENSITY LB/CU FT 62.192 62.192 62.192 62.192 62.192 62.192 62.192 0.823453 0.348633 0.96187 0.988405	.946132 FR -0.0
		0.0000 0.0000 0.0000 0.0000 0.0000	VTHS 59.883.55.338 55.338 55.338 55.4842 55.713	QV GPM 1135. GPM 1149.000 1152.200 1134.400 1137.700 1137.700 1136.800 20.459007 0.459007 0.459007 0.3390519	.41638 HSV F E
R MINUTE	ING EDGE	VZ1 FPS 43.399 k7.835 51.445 53.883 54.777 53.692	722 FPS 35.733 42.162 67.704 56.055 60.356	ING EDGE 385.19 5385.19 5382.328 5382.262 5389.930 5375.031 5375.012 0.409873 0.389529 0.387451	0.3939 NG EDG ROTOR EFFB 27071
GALLONS PE	TES TRAILI	V1 FPS 43.399 47.835 51.445 51.445 54.477 54.777	V2 FPS 69.734 70.367 71.690 76.022 80.22 81.553	TES TRAIL PHI1 0.369068 0.465911 0.43650 0.464156 0.464156 0.464156 0.4525 0.357766 0.404805 0.404805 0.404805	0.496354 TES TRAIL OR 1B
1140.	AMETERS E, 2 INDICA	U15.560 113.150 113.150 110.800 105.260 101.270 99.200	U2 FPS 115.560 113.150 110.800 105.860 101.270 99.200	E. 2 INDICA INC D. 866 -1.327 -3.456 -4.076 -3.107 -2.071 -2.071 -2.071 -2.071 -3.107 -3.107 -1.301 -18.714 -18.714 -18.714 -18.714 -18.714 -18.714 -18.714	12.256 , 2 INDIC RO FS 0.418
	EMENT PAR ADING EDC	81/8T 0.580072 0.960144 0.900359 0.860502 0.840574 0.820646	R2/RT 0.580C72 0.960144 0.940215 0.860502 0.860502	EADING EDE EADING EDE R1/RT 0.980072 0.960144 0.960359 0.840574 0.940215 0.960146 0.96010000000000000000000000000000000000	0.820646 METEFS EALLING EDGE ROTOR FSIE 0.387819
FLOW RATE # 8	TOR BLACE EL INDICATES LE	PASS.HI.1 FROM TIP 0.098232 0.196463 0.294695 0.491159 C.649159 0.785854	PASS.HI.2 PFOM II? 0.098233 0.196463 0.294695 0.687622 0.687622	ROTOR BLADE E 1 INDICATES L PASS.HT.1 FROM TIP 0.094695 0.196463 0.196463 0.091159 0.091159 0.098232 0.098232 0.098232 0.098232 0.098232 0.098232 0.098232 0.098232 0.098232 0.098232 0.098232 0.098232	0.884CR ERAGED FA INDICATES PHIE1
FI	. F	しんきゅうるて	165 t w 2 t	01 - HOMPHOL - HOMPHO	7 AV

TABLE XI, - Concluded, BLADE-ELEMENT DATA FOR CONFIGURATION 9

	STRTUBI SQ IN 0.99716 0.75681 1.11170 1.41940 1.01740 0.66256	STRTUB2 SQ IN 1.05630 0.75681 1.11170 1.41940 1.01740 0.66256			2.A P.S 4.2
	P1 233.530 233.800 233.680 233.680 233.960 233.560 233.190	P2 360.290 357.680 343.390 345.790 342.670 338.490		(TH/C) A 0.04846 0.04592 0.04312 0.00351 0.00406	UT2A FPS 117.742
	H1 258.400 255.290 270.460 274.900 274.900 271.730	H2 436.410 432.860 430.620 436.770 443.030 444.600		DELTA P 126.760 123.880 120.220 115.190 111.830 105.300	UT1A FPS 117.742
	BETAP1 DFG 70.905 68.260 66.267 64.415 63.155 62.464	BETAP2 DEG 58.627 55.526 52.350 45.065 39.357 36.276		REC 51E 06 45E 06 45E 06 65E 06 65E 06 48E 06 25E 06 178.010 167.00 167.160 162.420 169.130 169.160	RPMA 5377.527
	FPS 115, 560 112, 890 110, 650 106, 160 101, 410 98, 924 96, 489	WTH2 FPS 53.708 54.076 54.165 54.165 54.397 42.976		15 0.91 15 0.90 15 0.90 15 0.85 15 0.83 17 33463 17 33463 18 363694 18 36894 18 36894 18 36894 18 36896 18 36896	FRC2
	#1 PPS 122. 288 121.534 120.872 113.659 111.562	62.905 68.596 68.412 74.417 72.635 67.862		SQ FT.VIS 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.1689952 0.1689952 0.1689952 0.1689952 0.1689952 0.1689952 0.1689952 0.1689952	,
	DEG 0.000 0.	BETA2 62. 100 62. 100 57. 735 63. 505 43. 695 46. 440		DENSITY LB/CU FT 62.192 62.192 62.192 62.192 62.192 62.192 62.192 0.801288 0.812024 0.812024 0.987572 0.964678	FRC1
យ	NTH PS 00000000000000000000000000000000000	VIHES 59.052 58.052 58.4084 54.013 55.013 60.502		0.00 C C C C C C C C C C C C C C C C C C	HSVB FT 259.487
AILING EDGE	VZ1 40.004 45.015 48.649 50.829 51.326 51.577	VZZ 132. 749 37. 130 41. 789 52. 604 53. 556 57. 535	ING EDGE	55385.1 55386.9 55374.9 553374.9 553374.9 60.40119 60.30758 60.30758 60.30758 60.30758 60.30758	LING EDGE RCTOR EFFB
ATES TR	V1 PPS 40.004 45.015 48.649 50.329 51.577 49.799	V2 FPS 69.987 69.554 70.262 74.985 80.988 83.491	ATES TRAILLI	PHI1 0.339277 0.413380 0.413380 0.435524 0.433552 0.423547 PHI2 0.277746 0.355087 0.446145 0.490375 0.499375	ATES FRAL TOR IIB 903 0
AMETERS E, 2 INDIC	115.560 112.890 110.650 106.160 101.416 96.924	115.560 112.690 110.650 106.410 98.924 96.489	AMETERS E, 2 IND	20.025 20.035 20	E, Z 1ND1C. FO: FS: 0.429°
ELEMENT PAF LEADING EDG	R1/RT 0.580072 0.960144 0.940215 0.860502 0.840574 0.820646	R2/RT 0.990072 0.940215 0.940235 0.960359 0.860350 0.840574 0.820646	LEMENT PAR EADING EDG	H 0400010 H 0400010 H	ACIN 0.3
ROTOR BLADE E	PASS.HT.1 PROM TIP 0.098232 2 0.196463 3 0.294695 4 0.6491159 5 0.649159 6 0.785854 7 0.884086	PASS.HT.2 FFOM TIP 1 0.098232 2 0.196463 3 0.294695 4 0.6491159 6 0.785854 7 0.884066	ROTOR BLADE E	PASS. HI.1 FROM TIP 1 0.098232 2 0.1964633 4 0.4914695 6 0.687622 6 0.785854 7 0.884066 PECM TIP 1 0.098232 2 0.2964633 3 0.2964633 4 0.491159 5 0.687622 6 0.884036	INDICATES FRIED PHIB1

TABLE XII. - BLADE-ELEMENT DATA FOR CONFIGURATION 10

	<i>2</i>	SETANG DEGREES	53.570 51.845 50.025 46.175 44.100 42.875	·
		CAMBER DEGREES	29.960 33.530 37.050 41.850 42.700 42.650	
	i	CHORD	0.833300 0.833300 0.833300 0.833300 0.833300 0.833300	
		TMAX/C	0.071640 0.073640 0.075640 0.079640 0.083640 0.083640	·
	ω	SOLIDITY	1.020300 1.041500 1.063600 1.110700 1.162100 1.218600	NZLADES
, S-INCH TIP DIAMETER, RADIAL TIP CLEARANCE, PELLE,	BLACE ROW# 1 (ROTOR) INDICATES TRAILING EDGE	KAPPA2 DEGREES	38.590 35.080 31.500 25.250 22.750 21.550 20.000	RTIP2 INCHES 2.509000
TICN 10 TIO, 19 ELADES, S-INCH TIP DIAMETER, RD, 0.023-INCH RADIAL TIP CLEARANCE, F D-FACTOF, R ARC BLADE PROFILE, LCW COEFFICIENT.		R2 INCHES	2.459000 2.469000 2.359000 2.259000 2.159000 2.109000	RHUB2 INCHES 2.00000
TICN 10 TIO, 19 ELADES, 5-I RD, 0.023-INCH RADI. F D-FACTCE, R ARC BLADE PROFILE LCW COEFFICIENT.	C PARAMETERS- ADING EDGE, 2	KAFFA1 DEGREES	68.550 68.610 68.550 67.100 65.450 64.200	RTIE1 INCHES 2.5090C0
NASA CONFIGURATION 0.8 HUB-TIP RATIO, 0.834-INCH CHORD, 0 0.66 DESIGN TIF D-F DOUBLE CIRCULAR ARC C.466 DESIGN FLCW NOT REPORTED.	ELADE GECMETRIC 1 INDICATES LE	R1 INCHES	2.459000 2.409000 2.359000 2.259000 2.159000 2.109000	RHUB1 INCHES 2.000000
Z 0 0 0 0 Z Z	TE T	•.	- Sudanoi.	

TABLE XII. - Continued, BLADE-ELEMENT DATA FOR CONFIGURATION 10

	ST RTUB1 SQ IN 0.98928 0.75681 1.11170 1.41140 0.66256 0.90896	STRTUB2 SQ IN 1. 064 20 0. 756 81 1. 11170 1. 01740 0. 66256 0. 97939		2.8 3.4
	P1 FT 177.160 1180.020 1177.320 177.320 175.990 172.200	P2 FT 257.240 254.240 253.200 243.360 243.390 240.650 238.850	(TH/C) A 0.03950 0.04824 0.05371	0.00047 0.00302 0.01879 UT2A 117.734
	H1 FT 234.380 254.360 271.360 271.250 271.250 268.180	H2 FT 335.130 340.670 351.160 371.590 381.890 372.220	DELTA P FT 80.080 74.220 75.880	69.400 68.450 68.560 UT1A FPS
	BETAP1 DEG 61.379 58.458 55.633 53.425 51.142 50.679	BETAP2 52.285 49.495 46.270 40.986 36.884 35.386	REC 05E 06 9JE 06 05E 07 82E 06 3JE 06 7ZE 06 7ZE 06 7ZE 06 86.310 86.310	111. 1104. 104. RF
	HTH1 FPS 112.680 110.860 106.060 101.320 99.108	#TH2 FPS 124 76.036 70.647 65.499 62.499	57K EC 0.98 0.98 0.10 0.95 0.95 0.95 0.95 0.93 0.384250 0.384250	313
	FPS 131.030 132.213 134.304 134.304 128.704 127.264 125.249	PPS 98.763 100.002 100.864 107.713 109.894 107.929	VI SQ FT/SI 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0	.001352
	DETAI DEG 0.000 0.000 0.000 0.000 0.000	BETA2 DEG 31,410 29,430 28,575 23,535 21,915 24,930	DENSITY LB/CU FT 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192	966. 9888.
	VTH1 FPS 0.000 0.000 0.000 0.000 0.000	VTH2 36.896 36.644 37.975 35.413 35.609 39.049	QV GPM 1653.800 1662.700 1660.500 1670.000 1671.900 1674.900 1674.900 1674.900 1674.900	.25842 .26099 .27140 HSV F
AILING EDGE	VZ1 FPS 62, 765 69, 164 75, 813 73, 695 79, 835	VZ2 FPS 60.421 64.953 69.724 87.399 87.991 84.008	AILLING EDGE II RPM 09 5360.031 43 5359.969 75 5385.172 50 5377.680 02 5392.480 II PSI 44 0.22609 59 0.201625 35 0.201625	25576 2558 22558 22558 0103 0103 EFFB
ATES TR	V1 62.765 69.164 75.813 79.835	V2 PPS 70.796 74.576 79.395 94.745 95.303	PH PH PH PH PH PH PH PH PH PH PH PH PH P	.746513 .746290 .711513 ES TRAIL
ETERS 2 INDIC	U15.020 112.68C 110.860 106.320 99.108	115.020 112.68C 112.68C 110.860 106.06C 101.32D 99.108	1 NOTERS 1 NOTERS 1 NOTERS 1 NOTERS 1 NOTERS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14. 13. 63 14. 55 14. 55 14. 55 0.2
ELEMENT FARAMI LEADING EDGE,	R1/RT 0.983072 0.960144 0.960215 0.8602502 0.840574 0.820646	R2/RT 0.930072 0.960144 0.900359 0.800350 0.840574 0.820646	EADING EDGE R1/RT 0.580C72 0.960144 0.960146 0.900359 0.860502 0.820646 R2/RT 0.980072 0.960144 0.960144	. 860502 . 840574 . 820646 ITERS IDING EDG ROTOR PSIE
ROTOR BLADE ET INDICATES L	PASS.HT.1 FROM TIP 0.098232 0.196463 0.294695 0.649159 0.649159 0.785654	PASS.HI.2 FROM IIP 0.098232 0.196463 0.294695 0.491159 0.687622 0.7884086	PASS. HT.1 PASS. HT.1 FFOM TIP 0.098232 0.294695 0.687622 0.687622 0.687622 0.687622 0.687622 0.687632 0.9864086 10.098232 10.098232	ERAGE INDIC
~ ~	-0m4n0r	165427	<u>g</u> 0w3v0r -0w3	180 100

FLOW RATE # 2	2	1638.	GALLONS PER	R MINUTE								
FOTOR BLACE E	LEMENT PAR EADING EDG	METERS , 2 INDIC	ATES TRAILI	ING EDGE						:		
PASS.HT.1 FROM TIP 0.098232 0.196463 0.294695 0.491159 0.687625 0.785554	R1/RT 0.980072 0.960144 0.940215 0.960502 0.860502	FPS 115.500 113.150 110.550 105.5860 101.270 98.832 96.534	V1 FPS 63.412 70.546 75.105 77.105 77.128 78.277	VZ1 F9S 63.412 70.546 75.105 77.1297 78.277	TTH T T T T T T T T T T T T T T T T T T	BETA 0.000 0.000 0.000 0.000 0.000 0.000	FPS 131.762 133.340 133.649 137.507 127.905 126.075	FPS 115, 500 113, 150 110, 550 101, 270 101, 270 98, 832	BETAP1 DEC 61.232 58.058 55.809 53.786 52.350 51.620	H1 241.090 256.980 266.000 271.700 271.520 271.520	P1 178.600 179.640 178.340 178.140 176.840 176.300	STRTUB1 SQ IN 0.98928 0.75681 1.11170 1.41940 1.01740 0.66256
PASS.HT.2 PROM TIP 0.098232 0.196463 0.294695 0.491695 0.687622 0.785854	R2/RT 0.980072 0.940215 0.940215 0.960359 0.860359	PPS 115.500 113.150 110.550 105.860 101.270 98.832	V2 71.271 75.173 75.173 78.474 87.463 93.748 93.803	VZ2 FPS 59.250 63.629 67.102 79.024 86.183 85.613	VTH2 FPS 39.596 40.030 40.587 36.897 36.8906	BETA2 DEG 33.750 32.175 31.230 23.175 23.175 24.120 26.280	#2 FPS 96.297 96.928 96.869 103.87 107.572 104.832	#TH2 FPS. 904 73.120 69.863 67.454 64.376 60.500	BETAP2 DEG 52.020 48.970 46.155 40.484 36.759 35.247	H2 343.790 352.950 358.800 376.460 386.450 374.390	P2 264.850 265.130 265.490 256.490 252.750 249.710	STRTUB2 SQ IN 1.06420 0.75681 1.11170 1.01740 0.66256
ELALE ICATES 55.HT.1 30M TIP 1964632	EADING EDG R1/RT 0.980072 0.560144	E, 2 INDIC INC INC -7.318	ATES TRA PHI 0.53808 0.59862	NG. EDG R 5382.3 5382.3	0 GP 33.00 39.10	17 19 19	0.66	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 0 30 88 0			
0.294695 0.491159 0.687622 0.785854 0.884C86	0.940215 0.900359 0.860502 0.840574 0.820646	-12,741 -13,314 -13,100 -12,580 -11,683	0.638759 0.659292 0.663865 0.665749 0.657068	5370,109 5369,930 5375,031 5369,989 5372,500	1631.200 1638.600 1644.200 1636.300	62, 192 62, 192 62, 192 62, 192 62, 192	0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0	-05 0.100 -05 0.981 -05 0.957 -05 0.943 -05 0.925	00000			
PASS.HT.2 FROM TIP 0.098232 0.196463 0.294659 0.494159 0.497622 0.785854 0.884086	R2/RT 0.980072 0.960144 0.940215 0.960359 0.860502 0.840574	DEG 13. USG 13. ESG 14. ESS 15. 23.4 14. COS 14. E48	PHI2 0.502950 0.5329927 0.570697 0.672113 0.732306 0.728145	PSI 0.237918 0.222333 0.211314 0.244238 0.273254 0.267483	PSII 0.329238 0.326143 0.294103 0.294103 0.269758 0.280659	0.722503 0.681705 0.649504 0.836450 1.072959 0.976058	0.146198 0.146194 0.1765174 0.080084 -0.005919 0.011413	0.416429 0.417200 0.418311 0.339903 0.283070 0.296278	FT 102.700 95.970 90.800 104.940 117.630-104.940 117.630-104.940 117.630-104.930 107.750	ETT 86.250 85.490 82.760 76.350 75.910 75.910 72.290	(TH/C) A 0.04409 0.05111 0.05742 0.02742 0.00204 0.00392	:
AVERAGED FARA 1 INDICATES I PHIE1 0.619380	AMETERS LEADING EDGE, ROTOR PSIE 0.245111	2 · IND	ATES TRAIL TOR IIB u50 0.	ING EDGE ROTOR EFFB 824341	HSVE FT 263.882	PR -0.0	PRC1	FRC2	RPMA 5374.609	UT1A PPS 117.678	117	UT2A FPS .678

TABLE XII, - Continued, BLADE-ELEMENT DATA FOR CONFIGURATION 10

1575, GALLONS PER MINUTE

Nat	6
TY WITH BETART HIS PETART HIS PETART FPS DEG PETART	117.84
PA1	117,849
PA1 PA1 PA1 PATH PAT	5382.434
TTY SQ P 131.653 130.653 131.653 131.653 131.653 131.653 131.956 1	-0.038
3000000 F 20222244 005000000000000000000000000000	.030
10000000000000000000000000000000000000	.0-
1572. 1573. 15	264.227
N N N N N N N N N N N N N N N N N N N	19
ATES TR. 667-157-167-158-168-169-169-169-169-169-169-169-169-169-169	0
E. 2 IND. 113. C50. 350. 135. 290.	0
EBB B B B B B B B B B B B B B B B B B B	0.26265
NA 6000 0000 11 0000 0000 000 0000 0000 0	0.594530

	P1) STRTUB1 80 IN SQ IN SQ IN 3,010 0.75691 2,810 1.11170 1,	FT SQ IN 5.630 1.06420 4.110 0.75681 1.530 1.11170 1.550 1.01740 10.650 1.01740 17.300 0.66256 4.570 0.97939		(TH/C).A 0.01746 0.01888 0.01993 0.00771 0.00786	UT2A PPS 117.693
	H1 .FT 244.790 19 258.790 19 267.370 19 271.340 19 271.250 19 268.180 19 268.180 19	H2 372.860 29: 376.080 29: 377.470 29: 387.10 28: 404.590 28: 401.620 27: 393.210 27:		DELTA P. 104.600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UTIA FPS 117.693
	BETAP1 02.029 60.069 57.977 55.988 54.551 53.415	BETAP2 52,285 50,465 49,632 44,633 36,891 35,099	REC 70E 06 57E 06 52E 06 11E 06 91E 06	PELTA H 128.070 117.290 110.100 115.830 135.340 130.640	RPMA 5375, 293
	FPS 115.070 113.0070 110.750 105.810 101.360 96.848	WTH2 FPS 75.034 74.956 73.804 68.59.015 59.015	VISK F-05 F-05 F-05 F-05 F-05 F-05 F-05 F-05	0.417839 0.394713 0.382416 0.352416 0.356308 0.377947	FRC2
	129. 230 130. 331 130. 627 127. 648 124. 425 120. 612	RPS 94.855 97.188 98.041 98.3116 95.001	SO FT/V 9280E 0.9280E 0.9280E 0.9280E 0.9280E 0.9280E 0.9280E	OMEGAB 0.058244 0.061797 0.064795 0.023813 0.00260 0.02285	FRC1
	BETA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BETA 2 34.605 31.590 29.790 27.790 27.790 27.790 27.790 27.790 27.790 27.790 27.790	DENSITY LB/CU FT 62.192 62.192 62.192 62.192 62.192	0.894430 0.877802 0.865729 0.95572 0.99530 0.96585	F.R.
	V H H H P S O O O O O O O O O O O O O O O O O O	VTH 2 FPS 40.035 38.044 36.044 37.094 42.34.54 42.34.54 44.253	2V GPM 1518.200 1523.600 1521.200 1515.100 1515.100	PSII 0.334194 0.310373 0.294902 0.293892 0.309343 0.316227	HSVB FT 264.464
TONIN R	58. 65. 77. 72.	VZ2 FPS 58.024 61.865 64.537 71.78.627 77.726	EDGE RPM 5362,359 5375,199 5375,828 5379,809 5372,488 5372,488	0.298913 0.272447 0.255447 0.255305 0.269838 0.303163 0.303763	LING EDGE ROTOR EFFB .921389
GALLONS PE	58.06 69.06 69.06 71.40 72.16	V2 FPS 70,495 72,626 74,364 80,261 89,305 89,441 87,374	PHII 0.500949 0.52805 0.52805 0.607577 0.607577 0.612643	PHI2 0.494200 0.525653 0.547891 0.667508 0.667508	ATES TRAITOR TOR IIB 837 0
est, C	115.070 115.070 113.000 111.75.070 105.810 101.360 98.878 98.878	U2 FPS 115. C70 111. 750 105. 810 101. 360 98. 878	E. 2 INDIC E. 2 INDIC INC -5: 623 -8: 541 -10: 573 -10: 899 -10: 586 -9: 586	DBV 13. 695 15.385 17.385 17.332 18.549 13.549 13.549	E, 2 INDIC RO BO 303
HERE ENERGY.	E1/RT 0.960144 0.960144 0.960359 0.960359 0.860562 0.840574	R2/ET 0.980C72 0.960144 0.960215 0.900259 0.8605C2 C.840574	LEMENT P EADING E R1/R 0.98007 0.96010 0.96050 0.86050 0.86050	32/81 0.980104 0.940215 0.940215 0.960502 0.860502 0.810574	METEES EDGEDING EDGE ROTOF PSIE
FLOW RATE # 4 ROTOR BLADE E	PASS.HI.1 PROM 11P 0.096232 0.1964655 0.294695 0.687159 0.687622 0.785624	PASS.HT.2 FFON TIP 1 0.098232 2 0.196463 4 0.4911695 4 0.687622 6 0.785854 7 0.884086	FOTOR BLALE E 1 INDICATES! I PASS.HT.1 FRCM TIP 0.098232 2 0.196463 3 0.294634 4 0.451159 5 0.687622 6 0.785854 7 0.884086	PASS.HT.2 FROM TIF 0.09E232 0.19E463 3 0.294695 4 0.4911695 6 0.687622 6 0.785854	AVERAGED FARA 1 INDICATES L PHIE1 0.574770

TABLE XII. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 10

	FRTUB1 SQ IN 98928 75681 11170 41940 01740 66256	NRTUB2 SQ IN SQ IN 75681 11170 41940 01740 66256	
	n ooreroo	8 -000	C) A 790 272 375 515 515 708 815 UTZA TPS
	PT FT 197.680 198.640 199.220 197.390 195.880 196.100	P2 FT 308.070 305.880 303.430 295.820 291.250 289.590	(TH/C) A 0.02790 0.02275 0.02375 0.00515 0.00708
	H1 FT 247,500 268,540 271,700 271,700 272,066 267,550	H2 386.560 391.490 396.270 401.450 410.120 398.640	DELTA P FT 110.390 107.240 104.210 98.430 98.430 93.490 89.360 UTIA
	BETAP 1 DEG 63.897 60.891 58.967 55.476 54.825 54.473	BETAP2 DEG 52.069 49.321 46.690 45.590 42.337 35.225 33.610	REC 29E 06 94E 06 68E 06 68E 06 81E 06 76E 06 139 060 127 750 129 750 129 750 129 750 129 750 129 750 129 750
	WIH1 PPS 115.560 113.310 111.010 105.960 101.600 99.200 96.534	WTH2 FPS 70.207 70.728 68.423 65.394 56.310 52.890	55 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
	#1 FPS 129,685 129,591 129,552 126,357 123,317 121,361	N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	VI SQ FTZ/S 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.0280E- 0.0280E- 0.0280E- 0.03846 0.015469 0.015469 0.020637
	BETA 1 0.000 0.000 0.000 0.000 0.000 0.000	BETA2 39.655 35.010 33.435 29.475 30.825 31.725	DENSITY L3/CU FT 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.193 0.971194 0.9859346 0.984915 0.984915 0.984915
	HHH	VTHS 45.353 42.582 42.587 42.587 46.310 46.310	90V 1467.200 1469.800 1464.700 1452.600 1467.900 1462.900 1462.900 1462.900 1462.900 1462.900 1462.900 1462.900 1462.900 1462.900 146691 1878 1878
ING EDGE	VZ1 56.620 63.092 66.788 69.890 69.913	VZZ FPS 54.715 60.791 64.501 71.909 70.473	ALLING EDGE 11 RPM 97 5385,199 14 5389,341 58 5392,461 58 5392,639 37 5392,539 13 5389,988 14 6,321816 12 0,302607 12 0,302607 13 0,301411 14 0,321816 15 0,302607 16 0,304807 17 0,301411 18 0,3014
ATES TRALLI	FPS 56.520 63.092 66.788 69.390 69.913 68.926	V2 FPS 71.068 74.222 77.292 88.385 88.067 86.232	TRAII PHI1 80197 34614 65568 6757 9737 9737 92413 E5949 PHI2 161044 16302 142829 142829 99100
AMETERS E, 2 INDICA	U15.560 113.310 111.010 105.960 101.600 99.200	115.560 113.310 113.310 111.010 105.560 99.200 96.534	E, 2 INDICATES INC TEG 1
LEMENT PAR EADING EDG	R1/RI 0.580072 0.960144 0.960215 0.960502 0.860502 0.840574	R2/RE 0.580072 0.960144 0.90215 0.860502 0.840574 0.820646	ALENT PARA 31/81 31/81 31/81 3.980072 3.960144 3.960359 3.860359 3.860359 3.960359 3.980072 3.9
R. BLADE DICATES	PASS.HI.1 PROM TIP 0.096232 0.196463 0.294695 0.491159 0.687622 0.785854 0.884086	PASS.HT.2 FROM TIP 0.096232 0.196463 0.254695 0.491159 0.687622 0.785854	PASS.HT.1 PASS.HT.1 PASS.HT.1 PASS.HT.2 2 0.196463 3 0.294695 4 0.497159 6 0.785854 7 0.884086 PASS.HT.2 FROM TIP 1 0.098232 6 0.785854 7 0.884086 6 0.785854 7 0.884086 7 0.98423 6 0.99423 1 0.098232 6 0.984286 7 0.98463 1 0.098232 8 0.294653 1 0.098232 1 0.098232 6 0.785854 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086 7 0.884086
ROTO 1 IN	165422	7657	01 - 40 40 40 - 40 40 40 40 40 40 40 40 40 40 40 40 40

FLOW RATE # 6	9	1383.	GALLONS PE	R MINUTE	-							
ROTOR BLADE F 1 INDICATES L	ELEMENT PARAMI LEADING EDGE,	ETERS 2 INDIC	ATES TRAI	LING EDGE								
PASS.HT.1 FROM TIP 0.096232 2 0.196463 3 0.294695 4 0.451159 6 0.687625 6 0.785854	81/RT 0.980072 0.960144 0.940215 0.960359 0.860502 0.840574 0.820646	U1 FPS 115.340 112.940 110.440 105.910 99.108	FPS 53.491 59.491 63.372 66.0536 66.066.498	VZ1 FPS 53. 491 59. 491 63. 372 65. 056 66. 498	VTH 1 0.000 0.000 0.000 0.000 0.000	BETA1 0.000 0.000 0.000 0.000 0.000 0.000	#1 FPS 127.136 127.550 127.530 120.873 119.350	HTH1 FPS 115.340 112.940 110.440 100.220 99.108 96.444	BETAP1 DEG 65.124 62.222 60.152 56.856 56.140 55.818	H1 249.760 260.860 269.450 272.150 272.150 271.970 268.720	P1 205.310 205.860 205.040 205.040 204.320 203.250	STRTUB1 SQ IN 0.98928 0.75681 1.11170 1.01740 0.66256
PASS.HT.2 FROM TIP 0.098232 2 0.196463 3 0.294695 4 0.491159 5 0.637622 6 0.785854	F2/RT 0.980072 0.960144 0.940215 0.960359 0.866562 0.840574 0.820646	U2 FPS 115.340 112.940 110.440 105.910 101.220 99.103	V2 68.637 71.095 74.339 80.438 85.757 86.106	VZ2 49.659 54.815 58.596 66.314 71.528	VTH2 FPS 47.671 45.275 45.747 45.747 45.308 47.308 48.510	BETA2 DEG 43.830 39.555 37.980 34.290 34.290	83.935 87.082 87.082 87.285 89.570 87.299	#THS FTHS 67.669 67.669 64.665 60.384 53.912 50.598 44.598	BETAP2 DEG 53.727 50.989 47.831 42.330 37.006 35.422	H2 393.760 398.470 400.780 408.510 418.510 415.970	P2 320.120 319.920 314.900 304.220 304.220	STRIUBZ SQ IN 1.06420 0.75681 1.11170 1.01740 1.01740 0.66256
PASS.HT.1 FECM TIP 0.098232 0.094653 0.0986532 0.0946532 0.098232 0.098232 0.098232 0.098232 0.098232 0.098232 0.098232 0.098232	ELEMENT PRARA LEADING EDGE, R1/RT 0.980072 0.960359 0.900359 0.865502 0.865502 0.865502 0.865502 0.86502 0.940215 0.96014 0.96012 0.96014 0.96012 0.96016 0.96016	ETERS INDIC -3.426 -3.426 -8.398 -8.582 -8.582 -8.582 -8.582 -7.182 7.182 15.909 15.913 17.000 17.000 13.713	ATES TRAI PHI11 0.45445 0.539505 0.557149 0.557396 0.557332 0.45733 0.46606 0.498845 0.66335 0.66336	LING EDGE RPM 5372,949 5372,461 5384,770 53812,371 5381,988 5367,488 5367,488 60.334521 0.318986 0.308578 0.3183274 0.323687	QV 1378.600 1385.600 1387.300 1387.300 1382.000 1375.300 1375.300 1375.300 1375.300 1375.300 0.366176 0.366176 0.366176 0.366176	DENSITY 197CU FT 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.193 0.842705 0.942705 0.983363 0.983363	SQ FT// 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.9280E- 0.0260E- 0.084184 0.054095- 0.0240528	DSK -05 0.95 -05 0.95 -05 0.95 -05 0.995 -05 0.995 -05 0.995 -05 0.995 -05 0.995 -05 0.493 -06 0.423 -07 0.424 -07 0.423 -07 0	PEC. 142 06 52D 06 28E 06 20E 06 45E 06 31E 06 24E 06 13T 00 137.610 132.330 146.360 144.360	DELTA P FT 114.810 114.060 108.860 103.020 99.900 97.500	(TH/C) A 0.03104 0.02544 0.03094 0.01801 0.00370 0.00540	
AVERAGED FARA I INDICATES L PHIB1 0.523160	METERS LEADING EDGE, ROTOR PSIE 0.324997	2 IND 0.3	ES TRAIL R B W 0.	LING EDGE ROTOR EPFB	HSVE FT 265.971	F F 0 0 0	c1 26 -	FRC2 0.011	RPMA 5372.766	UI1A PPS 117.637	U 117.	128 FPS 637

TABLE XII, - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 10

	STRTUB1 SQ IN 0.98928 0.75681 1.11170 1.41940 1.01740 0.66256	STRTUB2 SQ IN 1.06420 1.75681 1.11170 1.41940 1.01740 0.66256		₹ \(\(\sigma_{\text{\color}}\)
	P1 P1 S214.710 0 215.180 0 215.740 1 213.530 1 212.570 0 212.570 0 212.060 0	P2 S 333.230 1 332.210 0 326.540 1 321.330 1 316.220 1 310.430 0	(TH/C) A 0.03435 0.03683 0.03683 0.02378 0.00829 0.00905	UT2A FPS 117,561
	H1 252,470 261,950 271,880 272,150 271,790 269,440	H2 FT 409,530 409,540 411,260 418,350 423,340 421,070	DELTA P FT 118,520 117,030 110,300 102,690 99,840	UT1A FPS 117.561
	BETAP1 DEG 66.840 64.062 62.159 60.056 58.752 57.983	BETAP2 54.064 54.064 51.054 48.058 42.400 42.400 37.754 35.906 33.909	NEC 18E 06 55E 06 55E 06 55E 06 99E 06 19E 06 11E 0	RPMA 5369, 266
÷	WTH1 FPS 115, 230 112, 790 110, 550 105, 760 101, 220 98, 740 96, 624	WIH2 FPS 63.580 60.779 60.779 56.164 56.164 48.271 48.271	15K 5EC -05 0.937 -05 0.938 -05 0.913 -05 0.913 0.913 0.51267 0.5140781 0.50487 0.473682 0.473300 0.527533	FBC2
	#125.330 125.424 125.022 125.052 128.396 118.396	78.771 81.227 81.652 83.293 84.072.	NIT SO STATES OF	
	BETA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3ETA2 48.050 44.235 42.390 38.880 36.810 37.125	DENSITY 13/CU FT 62.192 62.192 62.192 62.192 62.192 62.192 62.192 62.192 63.193 0.833397 0.833397 0.833816 0.956816 0.956093 0.956093	FRC -0.03
	PER S PER S	VTH2 FPS 51 451 49.210 49.596 49.745 50.465 54.145	28	HSVB FT 266.501
ING EDGE	VZ1 49.293 54.859 58.388 60.417 61.731	VZZ 46.529 50.542 50.542 50.542 61.509 66.471 66.671	55 25 25 25 25 25 25 25 25 25 25 25 25 2	ING EDGE ROTOR EFF3 896182
ATES TRAIDI	V1 FPS 49.293 54.859 58.388 60.492 61.731	V2 PPS 70,168 73,835 79,013 93,024 83,619	PHI 0.4466999 0.525712 0.525712 0.525712 0.45379 0.556750 0.566750 0	ICATES TRAILI ROTOR ESILB 0.8
FAMETERS GE, 2 INDIC!	115.230 112.790 110.550 105.760 101.220 98.740	115.230 1115.230 1112.790 1105.760 1015.760 101.220 98.740 96.624	1 1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E, 2 IND 0.3
ELEMENT PAF: LEADING EDGI	R1/RT 0.980072 0.960144 0.940215 0.980502 0.860502 0.840574	R2/RT 0.9600144 0.9601144 0.960359 0.960359 0.860502 0.840574 0.820646	0.9800124 0.9800124 0.9800215 0.860502 0.860502 0.980502 0.980502 0.980359 0.980359 0.980359 0.980359 0.980359	METERS EADING FEC BOTOF PSIB 0.345539
ROTOR BLADE E 1 INDICATES L	PASS.HT.1 FROM IIP 0.098232 2 0.196463 3 0.294695 4 0.491159 5 C.687622 6 0.785854 7 C.884086	PASS.HI.2 FEON TIP 1 0.096463 2 0.196463 3 0.294695 4 0.491159 6 0.491159 6 0.785854 7 0.984086	182. H1.1 182. H1.1 196463 1.096465 1.294695 1.491159 1.785854 1.964695 1.196463 1.196465 1.196465 1.196465 1.196465 1.196465 1.196465	AVERACED PARA 1 INDICATES I PHIE1 2. 0.487430

FLOW RATE # (භ	1194.	GALLCMS PE	STUNIE E								
ROTOR BLADE 1	ELEMENT PARAM LEADING EDGE,	METERS , 2 INDIC	ATES TRAIL	ESGE SNI								
PASS. HI.P FROM TIP 0.098232 2 0.196463 3 0.294655 4 0.494655 5 0.687622 6 0.7856547	81/RT 0.580072 0.960144 0.96015 0.960502 0.860502 0.820646	115.230 112.890 110.390 105.960 101.360 98.740	45.625 50.607 50.607 54.175 56.648 57.050 57.275	VZ1 FPS 50,625 50,607 54,175 54,175 57,050 57,275	VTH V V V V V V V V V V V V V V V V V V	B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#123.934 123.934 123.714 122.967 120.152 116.312 114.149	ATH1 FPS 115,230 112,890 110,390 101,360 98,740 96,669	BETAP1 DEG 68.399 65.854 63.860 61.870 60.687 59.884	H1 254.990 263.750 271.970 271.970 271.970	F1 222.640 223.950 223.650 222.480 220.990	STRTUBI SQ IN 0.98928 0.75681 1.11170 1.41940 1.01740 0.66256
PASS.HT.2 FROM TIP 0.098232 2 0.196463 3 0.294695 4 0.4971629 6 0.785654 7 0.884C86	R2/RT 0.98C072 0.960144 0.940215 0.960505 0.860502	U2 FPS 115.230 112.890 110.390 105.960 101.350 98.740	V2 69.734 69.935 70.546 75.002 80.417 82.014	VZ2. YPS2 46.058 46.073 49.450 55.632 63.316	VTH2 55.600 51.277 50.312 50.312 51.357 52.129	BETAL 52.875 48.060 45.495 42.495 42.480	72.987 76.987 76.987 77.834 78.683 78.683	WTH2 FPS 59.630 61.613 60.078 55.003 46.611	BETAP2 DEG 54.785 53.211 50.542 45.013 38.939 36.360	H2 417.520 414.150 414.280 419.000 425.830 427.090	P2 341.950 340.300 331.940 331.580 325.560 318.830	STRTUBE SQ IN 1.06420 0.75681 1.11170 1.41940 1.01740 0.66256
POTOR BLADE I INDICATES I INDICATES I PASS.HT.1 FRCH TIP 0.098232 0.196463 0.294695 0.687159 0.687159 0.08840867 7 0.8840867 7	ELEMENT PARA: LEADING EDGS, R1/RT 0.980072 0.960144 0.960155 0.960505 0.860505 0.860504	METERS 2 INDIC INC -0.151 -2.756 -2.756 -2.756 -4.823 -4.823 -4.816	PHIES TRAPES O. 4 8 9 1 5 0 0 1 4 5 1 4 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1	11 NG EDGE 11 RPM 18 5369.820 7 5369.961 9 5362.000 11 5379.809 14 5365.000	QV GPM 1193.300 1194.100 1195.700 1195.400 1193.300	DENSITY 13/CU 5TT 62.192 62.192 62.192 62.192 62.192 62.192	SQ 87 Y Y 9280 P Y 9280 P P Y 9280 P P P P P P P P P P P P P P P P P P P	115K - 05 0.927 - 05 0.927 - 05 0.839 - 05 0.838	REC 12 TO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
PASS.HI.2 FRCM TIP 0.098232 2 0.156463 3 0.294695 4 0.487622 6 0.785654 7 0.384C86	R2/RT 0.960144 0.960144 0.900215 0.860502 0.840574 0.820646	DEG 16.195 18.131 19.042 19.763 16.189 14.810	PHIZ 0.357975 0.421130 0.421130 0.525352 0.525352	PSI 0.373289. 0.35037 0.348476 0.345572 0.356572	FSII 0.463474 0.418737 0.402902 0.384840 0.375180 0.375180	5.816202 0.835935 0.835935 0.847519 0.950403 0.959623	OMEGAB 0.153331 0.124104 0.117467 0.039168 0.02399 0.064270	0.630930 0.537113 0.557113 0.523556 0.5235618 0.503156	DELTA H 162.530 162.630 145.020 145.030 153.770 155.120	DELTA P FT 119.310 113.290 103.850 101.570 98.610	(TH/C) A 0.04333 0.03568 0.03569 0.02643 0.01277 0.00812	:
AVERAGED FARE 1 INDICATES I PHIE1 0.451790	AMETERS LEADING EDGE, FOTCF PSIE 0.354420	RO' PS:	ATES TRAIL TOR IIB 0.	ING EDGE RCTOR EFFB 890121	HSVB FT 267.228	F 8 . 0 . 0 .	30 -	FRC2 0.011 5	BPMA 371.707	UT1A FPS 117.614	117	UT2A FPS . 614

TABLE XII, - Concluded, BLADE-ELEMENT DATA FOR CONFIGURATION 10

1133. GALLONS PER MINUTE

	STRTUB1 SQ IN 0.98928 0.75681 1.11170 1.41940 1.01740 0.66256	TRTUB2 SQ IN 06420 75681 11170 41940 01740				
	P1 ST 225.880 0. 227.600 0. 228.260 1. 225.420 1. 225.420 0.	344.810 1.342.010 1.334.250 0.334.950 1.334.356.010 1.325.050 0.322.950 0.322.960 0.0			0.04982 0.04288 0.04288 0.03094 0.01372 0.01118	UT2A PPS 117.797
	81 255. 990 264. 300 271. 880 271. 970 271. 970 269. 800	H2 421.093 417.170 416.860 416.470 426.970 428.210			PELTR P 118.930 115.650 113.750 108.330 100.740 98.280	UT1A FPS 117.797
	BETAP1 DEG 69.093 66.739 64.912 63.002 61.727 61.069 60.887	BETAP2 DEG 55.494 53.887 52.021 46.265 39.672 36.912		REC 305 06 08E 06 64E 06 09E 06 09E 06 66E 06	DELTA H FT 165.100 152.970 146.700 146.590 155.000 156.240	RPMA 380.039
	FPS 115.230 113.050 110.910 106.310 99.016 96.759	NTH2 FPS 57.284 59.395 58.996 55.018 49.394 46.098		55 0 0 9 9 2 0 0 9 9 2 0 0 9 9 2 0 0 9 9 2 0 0 9 9 9 2 0 0 9 9 9 9	D.666657 0.661844 0.563108 0.553140 0.55318	FRC2 5
	#1 FPS 123. 351 122. 463 119. 088 115. 045 113. 135	#2 69.514 73.522 74.846 76.144 77.373 76.756		SQ FT/SS 0.9280E-(0.9280E-(0.9280E-(0.9280E-(0.9280E-(0.9280E-(OMEGAB 0.179441 0.151535 0.138402 0.091422 0.0011422 0.033260	·
	BETA DEG 0.000 0.000 0.000 0.000 0.000 0.000 0.000	BETA2 DEG 55.800 51.075 43.420 441.085 40.770 43.335		DENSITY L2/CU FT 62, 192 62, 192 62, 192 62, 192 62, 192 62, 192	EFF 0.795548 0.810861 0.869752 0.547526 0.959376	FRC1
	VTH F F F F F F F F F F F F F F F F F F F	VTH 2 FPS 57.946 53.655 51.934 51.926 52.918		0.0 GPM 1126.200 1131.900 1131.900 1134.400 1122.100	PSII 0.453026 0.437777 0.390323 0.379431 0.37616	HSVB FT 267.438
ING EDGE	VZ1 44.017 48.596 51.925 51.925 54.495 54.730	VZ2 39.380 43.333 46.059 52.640 52.555 61.371	ING EDGE	RPM 5369.820 5377.570 5387.602 5387.680 5377.680 5379.983	PSI 0.384270 0.354760 0.339195 0.359769 0.359769 0.362275	ILING EDGE ROTOR EFFB 0.37860
ATES TRAILING	V PPS 44.017 48.596 51.925 54.4062 54.430 53.883	70.060 68.968 69.401 79.013 81.035	ATES TRAILIN	PHI1 0.37u332 0.u12731 0.u458720 0.u58720 0.u62813 0.u64620	PHIZ 0.334939 0.358030 0.390453 0.44656 0.505795 0.520995	ATES TRA TOR IIB 439
RAMETERS	FPS 115. 230 113. 050 110. 910 106. 99. 016 96. 759	U2 115.230 113.050 110.910 106.310 99.016 96.759	AMETERS E, 2 INDIC	10.00 EEEG	DEC DEC 16.504 18.807 20.521 21.0.922 15.362	E, 2 INDIC RO FS 0.406
LEMENT PA EADING ED	81/RT 3.580C72 0.960144 0.940215 0.860502 0.840574 0.820646	R2/ST 0.960072 0.960144 0.940215 0.860502 0.840574 0.820646	LEMENT PAR EADING EDG	R1/RT 0.980072 0.960144 0.960359 0.860502 0.840574 0.820646	R2/37 0.980072 0.960144 0.960359 0.860502 0.640574	METERS EADING EDG ROTOF FSTE
ROTOR BLADE EN INDICATES L	PASS.HT.1 PRON TIP 0.098232 2 0.196463 3 0.254655 6 0.491759 6 0.785854 7 0.884086	PASS.HT.2 FROM TIP 0.096232 2 0.196463 3 0.294695 4 0.491159 6 0.785854 6 0.785854	OTOR BÍADE F INDICATES L	PASS.HT.1 FROM TIP 0.098232 0.196463 0.294695 0.697622 0.687622	PASS.HT.2 FROM TIP 0.098232 0.196463 0.294695 0.294695 0.491159 0.487625 0.785854	VERAGED PARA INDICATES L FHIB1 0.427910
'		/	a	165492	-0m+m0-	≪

		STRTUB1 SQ IN 0.98928 0.75681 1.11170 1.41940 1.01740 0.66256	STRTUB2 SO IN 1.06420 0.75681 1.11170 1.41940 1.01740 0.66256				& & &
		P1 ST 232.200 0. 232.440 0. 232.180 1. 232.180 1. 230.670 1. 230.190 0.	22 S 849.020 346.650 340.700 335.530 332.440 329.510 327.330			(TH/C)A 0.05835 0.05442 0.05411 0.03907 0.01929 0.01215	UT2 FP 117,67
		H1 258.340 269.440 272.240 272.330 272.150 270.253	H2 426.360 420.670 414.120 415.230 426.130 429.620			DELTA P 116.820 114.210 108.520 103.960 101.770 99.320 97.280	UT1A PPS 117.678
	,	BETAP1 DEG 70.460 68.062 66.139 64.218 62.942 62.942	3ETAP2 DEC 56.999 55.544 53.431 47.563 40.524 37.075		REC 6E 06 0E 06 0E 06 1E 06 7E 06 6E 06	DELTA H FT 168.020 156.010 142.990 153.770 157.470	RPMA 374.629
		MTH1 FPS 115.560 113.050 110.700 105.910 98.740 96.399	WTH2 FPS 54.558 55.486 55.864 54.287 48.977 45.144		55K 055 0.917 05 0.912 05 0.905 05 0.881 05 0.834	0.713262 0.674613 0.638328 0.572189 0.535764 0.530756	FRC2 .019 5
		FPS 122.622 121.875 121.046 113.818 111.578	#2 FPS 65.054 69.557 73.557 75.377 74.882		SQ FT/SE 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0	OMEGAB 0.218603 0.220370 0.193202 0.15320 0.055909 0.036243	0-
		DETA1 DEG 0.000 0.000 0.000 0.000 0.000 0.000	BETA2 DEG 59.850 56.520 52.920 46.435 41.895		DENSITY LB/CU FT 62, 192 62, 192 62, 192 62, 192 62, 192 62, 192	EFF 0.76861 0.771327 0.766833 0.641454 0.931794 0.957369 0.948552	FRC1
		FP S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V1H2 FPS 57.564 54.634 52.383 53.596 57.582		2V GPM 1083 400 1070.500 1081.700 1069.600 1074.800	PSII 0.507049 0.469408 0.437398 0.39272 0.382672	HSVB FT 267.888
A MINUTE	ING EDGE	VZ1 FPS 41.013 49.965 51.75 51.75 51.962 50.860	V22 15.433 38.072 41.442 49.635 57.296 59.514	ING EDSE	5365.199 5377.570 5377.461 5379.809 5364.988	PSI 0.363836 0.362067 0.332494 0.3326572 0.367172	AILING EDGE ROTO3 EFF3 0.858447
GALLONS PER	ATES TRAÍLI	V1 FP. 1.013 45.533 48.965 51.775 51.757 50.860	V2 FPS 70.546 69.015 68.015 71.633 80.261	ATES TRAIL	PHI1 0.347833 0.386719 0.434894 0.439554 0.42352	PHIZ 0.3005J6 0.323347 0.421993 0.486421 0.508602 0.508602	2
1077.	AMETERS E, 2 INDIC	EFS 115.560 113.050 110.700 101.360 98.740 96.339	115.560 113.050 1110.700 110.700 105.510 101.360 98.740	METERS , 2 INDIC	INC -0.5 E4 B - 2.8 B 411 - 2.8 B 411 - 2.9 B 95 6 - 1.9 95 6 B - 1.9 95 6	LEG 18.409 20.464 21.931 22.313 17.774 15.525	, 2 INDIC RO 25 0.417
	ELEMENT PAFA LEADING EDGE	R1/RT 0.980072 0.960144 0.940215 0.940215 0.860502 0.860502	R2/RT 0.980C72 0.960144 0.940215 C.500359 0.860502 0.840574	LEMENT PABA SADING EDGE	B1/RT 0.980072 0.560144 0.940215 0.860502 0.860502	R2/RT 0.980672 0.966144 0.940215 6.960359 0.860502 0.840574	METERS EADING EDGE ROTOF PSIE 0.358334
W RATE #10	TOR BLADE EI INDICATES LE	PASS.HT.1 FROM TIP 0.096232 0.196463 0.294695 0.687622 0.785854	PASS.HI.2 PROM. TIP. 0.098232 0.196463 0.491159 0.687622 0.785854	TOR BLADE ELI INDICATES LEI	PASS.HT.1 PROM TIP 0.098232 0.156463 0.294695 0.491159 0.687622 0.785854	PASS.HI.2 PROM TIP 0.098232 0.196463 0.491159 0.687622 0.785954 0.884086	RAGED FARA NDICATES L PHIP1
FLOW	1 L	- 0 m 3 m 0 r	- 26 d to 97	ROT(- CA W 3 W 9 P	- 10 m + m o r	AV 1 II

TABLE XIII, - BLADE-ELEMENT DATA FOR CONFIGURATION 13A

NASA 0.85 1.177 0.72 DOUBL 0.5 E	NASA CONFIGURATION 13 ADJUSTEE-SEE 0.85 HUB-TIP RATIO, 33.BLADES, 9-11.17.2-INCH CHORP, 0.010-INCH RADIN 0.72 DESIGN TIP D-FACTCR, DOUBLE CIRCULAR ARC SLADE PROFILE, 0.5 DESIGN FLOW COEFFICIENT, PRELIMINAFY.	CCM -13 ADJUST LIO, 33 BLADI 0, 0.010-INCE D-FACTCR, ARC BLADE PE COEFFICIENT,	NASA CONFIGURATION 13 ADJUSTED-SEE ERI-77900 0.85 HUB-TIP RATIO, 33 BLADES, 9-INCH TIP-DIAMETER 1.172-INCH CHORD, 0.010-INCH RADIAL TIP CLEARANCE, 0.72 DESIGN TIP D-FACTOR, DOUBLE CIRCULAR ASC SLADE PROFILE, 0.5 DESIGN FLOW COEFFICIENT, PRELIMINAFY.	900 · DIAMETER, LEARANCE,			·		
BLAN 1 II	BLADE GECNETRIC FARANETERS- 1 INDICATES LEADING EDGE, 2	FARAMETERS- DING EDGE, 2	BLADE GECMETRIC FARAMETERS- BLALE RCW# 1 (NOTOR) 1 INDICATES LEADING EDGE, 2 INDICATES TRAILING EDGE	(ROTOR) ILING EDGE					
	R1 INCHES	KAPPA1 DEGREES	R2 . INCHES	KAPPA2 Degrees	SOLIDITY	TMAX/C	CHORD	CAM BER DEGREES	
- 2	4.433000	70.300		11.800	1.388600	0.056680	1.172000	58.500 65.700	
m⇒	4.162000	69.200	4.162000 4.028000	-3.600	1.479000	0.067520	1.172000	72,800	
S	3.893000	906.19		-19.700	1.581200	0.078280	1,172000	87.600	
	RHUB1 INCHES	RTIF1 INCHES	RHUB2 INCHES	RTIP2 INCHES	NBLADES				
	3.825000	4.500000	3.825000 4	4.500000	33.				

SETANG DEGREES 41.050 36.950 32.800 28.350

FLOW RATE #		3906.	GALLONS PE	E MINUTE								
ROTOR BLADE 1	ELEMENT PARAN LEADING EDGE,	PARAMETERS EDGE, 2 INDICAT	ATES TRAILING	ING EDGE								
PASS. HT. 1	RIZRT	101	VI	ł Z A	VTH	BE 7.4.1	1.1	WTH1	BETAP 1	H	P1	STRTUB1
		~		70 115		DEG 0	117 174	F55	53 053	FT 1135 OGB	77 378	SQ IN
			, 0	70.349	00.0	000	114.666	90.550	52.156	435.021	358, 111	3.65920
3 0.500741	0.924889	87.859	70.893	70.893	00.0	000.0	112,894	87.859	51,100	435.262	357,158	3,53030
	0.895111	ŝ	~	71.064	00.0	000 0	111.005	85.276	50.194	434.860	356, 379	3.40400
0.89926	0.865111	?	\sim	72.200	0	000.0	109.595	82.452	48.793	434.871	353,861	3.23530
PASS.HT.2	R2/RT	02	72	V Z 2		BETA2	W 2	WTH2	BETAP 2	Н2	P 2	SIRTUB2
FROM II				FPS		DEG	FPS	FPS	DEG	FT	í.	SQ IN
1 0.099260	0.985111	m.	•	39,913		58.729	48.719	27.936	34.989	498.550	406.670	3.60880
0.2992			٠,	54.322		45, 468	64.802	35, 333	33.041	500,450	~ 3	3.65920
0.5067		٠,		78.753		32. 7/3	87.019	37.158	25.250	541.830	405.500	3.53030
5 0.899260	0.865111	82.452	114.010	89.811	70.231	38.025	90.638	12.221	7.749	608.080	38	3, 23530
ROTOR BLADE 1	ELEMENT PARAN LEADING EDGE,	PARAMETERS EDGE, 2 INDICAT	ATES TRAILING	ING EDGE								
PASS.HT.1	R1/RT	INC	PHI 1	RPM	O S	DENSITY	IA		REC			
		-17, 237	0.740640	2421.000		62,284	0.9280E-	5 0.12				
	0.0	-17.644	7.	2414.200		62.284	0.9280E	5 0.12	7E 07			
	200	138 206	- r	2419.000		62.284	0.9280E	 				
5 0.899260	0.865111	-19.107	0.757543	2427.000	3895.070	62.284	0.92805-0	5 0.11	53E 07			
PASS.HI.2	82/8T	VET	PHIZ	PSI	PSII	EI EI	OMEGAB	Q	DELTA H	DELTA P	(TH/C) A	
		517 .				٠	2000		u u		61711	
2 0.299259	0.955111	28.941-		0.225851	0.556279	0.421033	0.440327	0.602976	65,426	660-64	0.12886	
	6.0	28.860	0.92	0.379963		٠.,	0.160965	0.380487	99	48,342	0.04921	
	0	27.449	0.96	0.550168		٠,	0.014039	0.317054	20	47.661	0.00442	
	0.6	27. 449	0.94	0.613502			0.036274	0.375611	20	52.219	0.01137	
AVERAGED PARAMETE 1 INDICATES LEADII	AMETERS LEADING EDGE,	, 2 INDICAT	ATES TRAILING	ING EDGE								
	ROTOF	RO	ROTOR	ROTOR	HSVB	FRC1	c1	PRC2	RPMA	UTIA		UTZA
06 19 14 20	631E40	0.57687	0	.757608	F.T.	-0.013	13 -0	.023	2421.440	95.090	. 95	090

TABLE XIII. - Continued, BLADE-ELEMENT DATA FOR CONFIGURATION 13A

E G W 3 €	PASS.HT.1 FROM TIP 0.099260 0.299259 0.500741 0.699259	81/RI 0.985111 0.924889 0.895111	U1 FPS 94.005 91.030 88.276 85.529	V1 PPS 67.696 68.212 69.698 69.573	VZ1 FPS 67.696 68.212 69.698 69.573	VTH 1 FPS 0.000 0.000 0.000	BETA1 DEG 0.000 0.000 0.000 0.000	W1 FPS 115.844 113.751 112.474 110.253	WIH1 FPS 94.005 91.030 88.276 85.529	BETAP1 DEG 54.241 53.154 51.708 50.874	H1 434.731 435.069 435.088 435.049	P1 363.512 362.761 359.596 359.8270	STRTUB1 SQ IN 3.60880 3.65920 3.53030 3.40400
- C t t t t	PASS.HI.2 FROM TIP 0.099260 0.295259 0.500741 0.699259	R2/RT 0.585111 0.954689 0.895111	U2 FPS 94.005 91.030 88.276 85.527 82.646	V2 FPS 77.371 77.844 94.049 107.897	VZ2 FPS 39.563. 53.078 76.721 88.115	VIH2 FPS 66.491 56.941 54.398 62.269	BETA2 DEG 59.247 47.011 35.338 35.248	W2 FPS 48.190 63.082 83.868 91.134 87.100	HTH2 FPS 27.514 34.088 33.878 23.260 10.828	BETAP2 DEG 34.817 32.710 23.825 14.787	H2 FT 513.010 513.700 555.550 596.820 611.310	P2 FT 425.980 419.530 418.090 415.900	STRTUB2 SQ IN 3.60880 3.65920 3.53030 3.40400 3.23530
1 1 IN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BLADE DICATES DICATES ASS.HT. 0.099260 0.50074 0.699256	LEMENT PARA RAZIO EDGE RAZIO 0.985111 C.555111 0.924889 0.924889	METERS 2 INDICAT INC 16. C59 (-16. C46 0 -17. 492 0 -17. 696 0	ATES TRAILING PHI1 0.709413 243 0.715700 242 0.728120 243 0.728120 243	ING EDGE. RPM 2430.000 2427.000 2433.700 2433.700	2V GPM 3792.150 3795.970 3799.260 3793.920	DENSITY LB/CU FT 62.234 62.284 62.284 62.284 62.284	VISK SQ FT/SEC 0.9230E-05 0.9280E-05 0.9280E-05 0.9280E-05	SEC -05 0.1219E -05 0.1194E -05 0.1184E -05 0.1188E	REC 19E 07 97E 07 84E 07 86E 07	·		
P-04	PASS.HT.2 FROM TIP 0.099260 0.299259 0.50741 0.699259					PSII 0.696409 0.570628 0.523329 0.650360	EFF 0.433820 0.488074 0.807101 0.977275	OMEGAB 0.527419 0.10146 0.019914 0.014230	790 620 417 490	DELTA H FT 84.279 78.631 120.462 161.771	DELTA P 82, 468 56, 769 58, 494 56, 073 55, 737	(TH/C) A 0.15591 0.12048 0.00650 0.01388	
AVER 1 IN	AGED DICAT PHIE	ES LEADING EDGE RS LEADING EDGE ROTOR 1 ESIE 0 0.468896	2 INF	TES TR OR IB	AILING EDGE ROTO3 EFFB 0.785917	HSVB FT 434.162	E 0 •	C1 13	FRC2	RPMA 2430.680	UT1A PPS 95,453	95	UT 2A F PS • 453

FLOW RATE #	æ	3655.	GALLONS PER	R MINUTE								
ROTOR BLADE 1 INDICATES	ELEMENT PAFAMETER LEADING EDGE, 2 I	S	ATES TRAILING	ING BDGE				•				
PASS.HT.1	R1/RT	u.1	V 1	V Z 1	VTH 1	BETA 1	28	WTH1	3ETAP1	H	P 1	STRIUBI
	0.0	FFS 93,773	' رہٰ	FPS 65,449	FPS 0-000	0-000	114.354	FPS 93, 773	DEG 55_087	35.0	FT 363.447	3.60880
	_	75 .0		'n	00000	00000	112.307		54.074		367.605	3.65920
	٠,	3.14	Ġ,	66.696	0.000	80	110.538	c o:	52,888	435.074	365.944	3.53030
4 0.899259 5 0.899260	0.865111	82.187	66.708	• •	00000	0.000	105.852	82.187	52.161	435.063	365.908	3, 23530
PASS.HT.2	R2/RT	0.2	V 2	V 2.2	VTH 2	BETA2	11.2	WTH2	BETAP2	Н2	P2	STRTUB2
			FPS	FP	FPS	DEG	FPS	FPS	DEG	F.		ഗ
	_	~	78.789	40.357	67.668	59.138	48.064	26.105	32.897	-	œ.	Φ
	_	0	o.	54.044	58,355	47, 196	63.110	32,589	31.090	527.990		9
		മാ	ຕໍ່ທ	75.697	54.914	35,959	82.671	33.235	23.704	565.390	429.480	3, 53030
5 0.899260	0.865111	82.187	109.971	81.181	74.183	42.421	81,575	8.004	5.631	610.640	422.700	3, 23530
ROTOR BLADE 1 INDICATES	ELEMENT PARAN LEADING EDGE,	PARAMETERS EDGE, 2 INDICATES	ATES TRAILING	ING EDGE						٠		
PASS. HT. 1	R1/RT	INC	PHI 1	R 2 R	٥٥	DENS	IV	I S K	REC			
	•	DEG - 15, 213	0.687561	2424.000	9 9 - 199	1.B/CU	SQ FT/8					
	0.95511	-15.726	920	2424.700	669.0	62.	0.9280E-				٠.	
	_	-16.312		2427.000	666.3	62.	0.9280E-					
4 0.699259 5 0.899260	0.865111	-16.339 -16.965	0.695291	2417.760 2419.200	3635.910 3644.980	62.284 62.284	0.9280E-05 0.9280E-05	-05 0.1133E	335 07 145 07			
PASS.HT.2	R2/RT	CEV	PHIZ	PSI	PSII	9 6 9	OMEGAB	a	DEL TA H	DELTA P	(TH/C) A	
		DEG 21.097	0	0.355515		179703.0	0. 477791	0.792758	100 124	FT 70.233	0 10005	
		26.990		0.329689		0.563240	0.367537	0.619461	10		0.10988	
		27.304	0.7	0.461576		0.866163	0.105044	0.420048	130.316	ë.	0.03283	
4 0.699259 5 0.899260	C.895111 0.865111	26.301 25.331	9.0	0.573616 0.625906	0.596057 0.675532	0.97073.9	0.027153	0,384626. 0,450962	7.7	57.70,1	0.00860	
AVERAGED FAR	ERAGED PARAMETERS INDICATES LEADING BOGE,	, 2.INDICATES	E.	AILING EDGE			-	•				· '
	ROTOR	FO		ROTOR	HSVB	FRC1	5	F FC2	RPMA	UTIA	Ď	rza
PHIE1 0.698340	PSIE 0.491888	PS 0.610	PSIIB .610765 0.8	2FF3 0.805364	FT 434.227	-0.017		-0.011	2422.520	FPS 95.132	95.	FPS

TABLE XIII. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 13A

	STRTUB1 SQ IN 3.60880 3.65920 3.53030 3.40400	STRIUB2 SQ IN 3.60860 3.65920 3.4030 3.23530 3.23530	UT2A . FPS .
	P1 FE 373.364 372.084 371.750 370.345	FT u51.560 u43.560 u433.660 u433.730 u33.730 u33.730 0.12426 0.029248 0.02979 0.01206	TU 7. 9. 49
	H1 435.052 434.912 434.974 435.148	H2 549.240 574.810 574.070 603.200 613.570 613.570 71.066 65.910 63.505 64.409	UT18 PPS 94.946
	BETAP1 DEG 55.983 54.935 53.956 52.831	BETAP2 31.867 30.242 22.202 13.588 5.289 5.289 18.07 1E 07 7E 07 7E 07 7E 17.677	RPNA 417.780
	WTH1 FPS 93.347 90.587 87.648 85.171	FPS 26.385 30.206 19.525 7.117 7.117 8 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	FRC2 • 002 2
	W1 FPS 112.620 110.675 108.400 106.883	FPS 49.977 62.612 73.0943 39.0943 37.204 77.204 77.204 SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	0
	BETA1 0.000 0.000 0.000 0.000	DENSITY DENSITY LACO FT 62.284	FRC1
	VTH 1 FP 5 0.000 0.000 0.000 0.000	0.5962 59.052 59.052 57.440 65.649 75.250 028 3536.230 3532.660 35322.660 3	HSVB FT 434,382
ING EDGE	VZ1 FPS 63.004 63.584 63.784 64.575	V2 V22 FPS .281 42.445 .081 54.090 .083 74.016 .085 74.016 .575 76.875 FPMILING EDGE EHIT FPM ENGE 2415.200 3063 2415.200 3063 2415.200 3063 2415.200 3063 2415.200 3063 2415.200 3063 2415.200 3063 2415.200 3063 2415.200 3063 2415.200 3063 2415.200 3063 2415.200 3063 2415.200 3063 2415.200 3063 2415.200 3063 0.998325 8824 0.593649 7427 0.409158 0.365916 7427 0.409158	ROTOR EFF8 829260
ATES TRAILING	V1 63.004 63.584 63.784 64.575	25 30 00 44 00 00 00 00 00 00 00 00 00 00 00	TCR IIB 559 0.8
PASAMETERS EDGE, 2 INDICATE	U1 FPS 93.347 90.587 67.648 85.171	ET 102 FPS 111 99.587 1990.587 111 82.367 1 1 1 82.367 1 1 1 1 4.285 0.0 111 - 14.285 0.0 111 - 15.569 0.1 11 20.066 0.1 25.388 0.1 26.388 0.1 26.388 0.1 26.388 0.1 26.388 0.1 26.38 0.1	FOTOR PSIIE 0.625559
ELEMENT PASAMI LEADING EDGE,	6.985111 0.955111 0.924889 0.895111	\@ \ r-@ \ r-@	EOTOE PSIE 0.518752
FOTOR BLADE EI	PASS.HT.1 FBOM TIP 0.099260 0.299259 3 0.50741 4 0.699259 5 0.899260	PASS.HT.2 FEGY TIP 0.095260 0.9857 2 0.295259 0.9559 3 0.500741 0.9244 0.699260 0.865 PASS.HT.1 PROM TIP 0.099259 0.9857 3 0.500741 0.9244 0.699259 0.9857 1 0.699259 0.9857 2 0.299260 0.9857 3 0.500741 0.9244 0.699259 0.8957 3 0.699259 0.8957 3 0.699259 0.8957 4 0.699259 0.8957 3 0.899260 0.9857 4 0.699259 0.8957 3 0.899260 0.9857 4 0.699259 0.8957 3 0.899260 0.9857 1 0.099269 0.8957 3 0.899260 0.8657	EHIE1 0.676290

FLOW RATE # 5	ĸ	3400.	GALLONS PE	R KINUTE								
FOTOR BLACE F	ELEMENT PARAMETE LEADING EDGE, 2	fETERS , 2 INDICATE	ATES TRAILING	ING EDGE								
PASS.HI.1 FROM TIP 0.099260 0.299259 3 0.50C741 4 0.699260 5 0.899260	R1/FI 0.985111 0.955111 0.924889 C.895111	U1 FES 93.781 90.775 87.957 85.171	FPS 60.751 61.013 61.770 61.447	V21 FPS 60.751 61.013 61.770 61.447	VTH11 FPS 0.000 0.000 0.000 0.000	BETA1 DEG 0.000 0.000 0.000	W1 FPS 111.739 109.374 107.480 105.022	#TH1 FPS 93.781 90.775 67.957 85.171	BETAP1 DEG 57.065 56.094 54.920 54.191 52.748	H1 435.103 434.904 434.826 434.985 434.985	P1 377,747 377,054 375,530 376,309	STRTUB1 SQ IN 3.60880 3.65920 3.53030 3.40400
PASS.HT.2 FRCM TIP 0.099260 2 0.299259 3 0.50C741 4 0.699259 5 0.899260	R2/RT 0.985111 0.955111 0.924889 6.895111	U2 FPS 93.781 90.775 87.957 85.171	V2 FPS 80.497 80.697 93.080 100.585	V22 FPS 42.754 54.525 72.188 76.301	VTH2 FPS 68.205 59.489 58.760 65.541	BETA2 DEG 57.919 47.493 39.145 40.662	W2 FPS 49.819 62.863 77.869 78.785	WIH2 FPS 25.575 31.285 29.197 19.630	BETAP2 DEG 30.888 29.846 22.021 14.427	H2 FT 563.700 555.960 581.270 601.840 615.720	P2 FT 463.000 454.760 446.630 444.610	STRTUB2 SQ IN 3.60880 3.65920 3.53030 3.40400
DTOR BLALE INDICATES PASS.HT.1 FRCM TIE 0.099260 0.2992550 0.899260 0.899260 0.899260 0.899260 0.899260 0.899260 0.899260 0.899260	LEMENT PARAM EADING EDGE, R1/RT 0.985111 0.985111 0.895111 R2/RT 0.985111	FO 1111 CO	64 64 65 65 65 65 65 65	TPAILING EDGE PHI1	0V GFM 3402.550 3405.630 3387.900 3398.190 PSII	 00	SQ FT// 00.9280E/ 00.9280E/ 00.9280E/ 00.9280E/ 00.9290E	SK 05 0.1176E 05 0.1131E 05 0.1131E 05 0.1105E 05 0.1088E 0 0 DE	REC 76E 07 31E 07 31E 07 05E 07 88E 07 DELTA H 128.597 121.056	DELTA P FT 85.253 77,706	(TH/C) A 0.11181	
0674 9926 9926 9926 ATES	995 1 E 6 6 5 1 N N N N N N N N N N N N N N N N N N	25.62 26.22 24.08 24.08	.759 .801 .763 .763 .78	075 0.529975 891 0.592949 495 0.642594 AMILING EDGE RAILING EDGE	0.571465 0.697735 0.697735 HSVB	0.911648 0 0.961703 0 0.920971 0 FRC1	079057 038765 093362	0.460326 0.454008 0.530105 PRC2	146.444 166.855 180.825 RPMA	71.100 68.301 68.182 UT1A FPS	0.02476 0.0228 0.02944	UTZA FPS
0.649520	57	0.632	527 0.8	851469	434.151	-0.017	0	.012	2 42 2 . 4 1 9	95.128	95.	128

TABLE XIII. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 13A

	H1 FT STRTUB1 FT SQ IN 454 382.420 3.60880 209 389.280 3.55920 209 379.642 3.53030 940 380.081 3.40400 195 378.268 3.23530	# F 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ELTA P (TH/C)A FT FT 0.10021	438 0.01944 799 0.01210 662 0.03564 UT1A UT2A FPS FPS FPS
	S DEG 435.4 8 58.102 435.4 1 56.746 435.6 55.001 434.9 9 53.669 435.1	23.28.805 21.945 13.247 2.577	9EC 64E 07 40E 07 20E 07 75E 07 75E 07 139.826	153.651 171.560 184.375 RPMA 2420.290
	FPS PPS PPS PPS PPS PPS PPS PPS PPS PPS	W2 KTH2 FPS FPS ESS 48.953 24.884 62.449 30.091 74.689 27.913 75.940 17.402 68.172 3.066	00000000000000000000000000000000000000	0.061992 0.489262 0.037996 0.479950 0.112830 0.577934 11 FRC2
	VTH1 BETA1 FPS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	PPS BETA2 FPS DEG 3.974 58.567 0.476 47.657 1.134 40.959 1.452 42.331 49.233 49.320	2V DENSITY 970 62.284 62.284 62.284 62.284 62.284 62.284 62.284 62.284 62.284 62.284 62.284 63.284 63.284 63.284 63.284 63.284 63.284 63.284 63.284 63.284 63.284 63.284	720 0.93364 5908 0.964334 5537 0.909711 77 FRC 77 -0.0
TRAILING EDGE	VZ1 PPS 59.418 59.718 59.796 59.414 60.524	V2 V22 P5 FPS 68 37 42.156 68 54 54.721 60 36 69.277 60 69 73.919 67 80 68.103 79	2426.200 2414.500 2424.200 2414.000 2422.500 2422.500 PSI	0.555480 0.614224 0.6514224 0.655480 0.655480 ING EDGE ROTOR EFFS
ETERS 2 INDICATES	U1 FFS - FFS 93.E58.9382 99.861 59.382 88.048 59.418 82.299 60.524	U2 FES 80.8 90.561 81.5 68.048 91.7 84.854 100.0 82.299 104.4	INC PHI1 -12.198 0.613139 -13.054 0.626233 -13.382 0.628127 -14.231 0.6362149 -14.231 0.636214 EEV PHI2 EEG PHI2 13.753 0.442463	0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
ADE ELEMENT PABAMET TES LEADING EDGE, 2	11P 11P 250 0.985111 259 0.955111 7741 0.924869 1259 0.895111	0.985111 0.955111 0.924889 0.865111 ELEMENT PARA LEADING EDGE	T.1 Z60 0.985111 Z59 0.955111 Z59 0.955111 Z60 0.865111 Z60 0.865111 T.2 R2/RT T1P C985111	59 00 00 00 00 00 00 00 00 00 00 00 00 00
ROTOR BLAC	PASS.HI. FROM II 1 0.09926 2 0.29525 3 0.50C74 4 0.69925 5 0.89926	PASS.HI.2 FROM TIP 1 0.099260 2 0.299259 3 0.500741 4 0.699259 5 0.899260 ROTOR BLADE E	4 # 0 0 0 0 0 4 # 0 0	2 0.50974 4 0.69929 5 0.89922 AVERAGED FOR TINDICATE FOR THE THE THE THE THE THE THE THE THE THE

FLOW RATE #	7	3118.	GALLCNS PE	ER MINUTE								
POTOR BLACE 1 INDICATES	EL EM ENT L EADING	PARAMETERS EDGE, 2 INDICAT	TATES TRAILING	ING EDGE						•		
PASS.HT.1	1 R1/RT	U 1	V 1	V21	VTH 1	BETA1	E 0	WTH1	BETAP1	Ξŝ	0. f	STRTUBI
	0 0.985111	93, 831	55.768	Š	00000	0.000	109, 153	93,831	59.275	435.464	•	3, 608.80
2 0.29525	0.95	90.737	41	56.257	0.00.0	0.000	106,762		58.201	2.5		3,65920
		38.066	u,	ė,	0.000	0.000	104.870	88.066	57.115	35.	0	3, 530 30
		84.679	Lr)	Ġ	00000	0.00	101.936	9	56.171	35.		3, 40400
		2.16	57.231	7.	0.000	000.0	100.131		55.141	35.	384.377	3,23530
PASS.HT.2	2 R2/RT	0.2		V 2 2	VTHZ		14.2	WTH2	BETAP2	H2	P 2	STRTUBS
FROM II		FPS		FPS	See		FPS	FPS	DEG	H	E-	SO IN
		93.831		42.079	68.788	ц,	48.967	25.043	30,759	585.080		3.60880
2 0.29925	O	90.737	82.526	55.085	61,451	48, 127	62.386	29.286	27.997	578,500	099	, m
		990.88		66.834	62,731	J	71.475	25, 335	20.761	601.460	470.890	3, 530 30
	0	84.679		69.554	68.556	7	71,398	16, 123	13.051	608.150	459.930	3.40400
	0 0.865111	82.163	103,390	64.263	80.992	51.	64.273	1.171	\circ	626.150	460.030	3, 23530
ROTOR BLADE 1 INDICATES	ELEMENT PARAMET	E 7	ts :NDICATES TRAIL	TRAILING EDGE								
PASS.HI.	1 R1/ET	INC	PHI 1	RPM	ΔQ		IA	3. K	BEC			
		DEG			R 6 9		S/II CS	EC				
		-11.025	יט	2425.500	3117.920		0.9280E-		0			
	0.955111	-11.599	4	2419.200	3135,110		0.9280E-		0			
	0.524839	-12.085	٠,	2424.700	3112.520		0.9280E-		0			
4 0.699259 5 0.899260	0.895111	-12.329	0.599873	2409,000	3106.700	62,284	0.9280E-05	05 0.10735	35 07			ı
		601.31.	•	000.01.42	006.0116		1. 9260E=		>			
PASS.HT.2	2 R2/RT	CEV	PHI2	ISd	PSII	E	OMEGAB	D	DEL TA H	DELTA F	(TH/C)A	
	0 005111	2000	<	03069		246			E-1 4	FT	6	
0.26625		23.897	0 579829	0.510740		· c		0.178305	143.616	96.898	0.08522	
	1 0.924889	24.361	ò	0.583318		ò		0.520667	166 066	00.00	0.05227	
		24. 651	0	0.620555		0		0.519621	172 639	70.00	0.01043	
	0 0.865111	20.744	o	0.680824	0.737751	0	0.102430	0.613881	190.872	75.653	0.03238	
AVERAGED PAPAMETERS	d d		;	1								a e
I INDICALES	LEADING EDGE,	Z TINDICAL	G	TRAILING EDGE				٠				•
1010	ROTOB		ROTOR	ROTOR	HSVB	FRC1		F RC2	RPMA	UTTA		UTZA
0.596420	0.590950	0.660805	•	894283	434.534	-0.014	C	.034 2	419.386	95.009	95.	FPS 009
											}	

TABLE XIII, - Concluded. BLADE-ELEMENT DATA FOR CONFIGURATION 13A

	RTUB1	3.60880	65920	53030	0000	23530	RTUB2	NI ÖS	60880	65920	53030	3.40400	23530					•								•			
•							ST													•					_	;		UTZA	F.PS
	P1	391.596					P2	FF	493.070	0 77 7 98 7	477.290	468.730	469,970								(TH/C) A	0.07412	0.03457	0.01277	0.01580	0.03494			5
	H1	732		6 76	974	435,347	Н2	FI	587,370	589.270	602.250	614.700	641.270								DELTA :P	101.474	96.194	88.132	79.501	81,196		UTIA	94.910
	BETAP 1 DEG	60.283	59.199	58.282	57.413	56.377	BETAP2	DEG	33.644	28.559	20.904	11,833	-4.616		REC		1 E 07				DELTA H	151.638	154.320	167.301	179.726	205,923		RPMA	2416.859
	WTH1	93.367	90.568	87.830	84.879	82,323	WTHZ	595	25.809	28.826	24.090	13.804	-4.738		¥ (05 0.1131E				Q	0.792952	0.632569	0.554781	0.562590	9682890		FRC2	0.020
	13 G	107.505	105.441	103.250	100.737	98.863	¥2	FPS	46.585	60.297	67.517	67.318	58.870		VISK CTOVER	20000	0.9280E-0	0.9280E-	0.9280E-	C.9280E-	OMEGAB	247255	112755	040422	0.049327	110852			
	SETA1 DEG	000.0	0.000	0.000	0.000	0.000	BETA 2	DEG	60.142	49.378	45,301	47,169	56.020		DENSITY	110000	62.284	62.284	62.284	62.284	त न न				0.958512			FRC1	800.0-
	VIHI	0.000	0.000	000.0	0.000	0.000	VTH 2	FPS	67.557	61,742	63.739	71.075	87.061		V &	1 L L L L L L L L L L L L L L L L L L L	2970.440	2966.110	2946.680	2965.890	PSII	0.732185	0.621888	0.620790	0.670921	0.791490		HSVB	T.3 134°397
ING EDGE	V21	3.	3.9	54.282	4.2	4.7	V Z 2	œ	~	52,961	63.073	65,838	58.679	ING EDGE	RPM	6	2413.500	2418.200	2414.700	2423.200	PSI	0.543124	0.552181	0.596897	0.643086	0.731664	RAILING EDGE	ROTOR	2.910771
ATES TRAILING	V 1			54.282			V 2		77.837			91		ATES TRAILING	PHI 1		0.562285				PHI2	0.409183	0.558508	0.664190	0.694835	0.616643	₽		
PARAMETERS EDGE, 2 INDICATE	10 H	93,367	90.568	87.830	84.879	82.323	0.2	FPS	93,367	90.563	87.830	.87	82,323	METERS 2 INDIC	INC	511	-10.017	-10.918	-11.087	-11:523	CEV	21.844	24. 459	24.504	23, 633	15.084	, 2 INEICATES	E C	0.677721
LEMENT PARA	R1/RT	0.985111	0.955111	0.924889	0.895111	0.855111	R2/RT		0.985111	0.955111	0.524889	.89	0.865111	ELEMENT PARAMETERS LEADING EDGE, 2 INDICATE	R 1/RT	,			0.895111		R2/RT	0.985111	0.955111	0.924889	0.895111	0.865111	METERS EADING EDGE,	ROTOR	0.617249
ROTOR BLACE ELEMENT 1 INDICATES LEADING	PASS.HT.1			3 0.500741		0.89926	PASS.HT.2	FROM TIP				4 0.699259	0.89926	ROTOR BLACE E	PASS.HT.1		1 0.095260 2 0.299259				PASS.HT.2 FROM TIP				4 0.699259		AVERAGED FARAMETERS 1 INDICATES LEADING	,	0.567800

FLOW RATE #	6	2832.	GALLONS PER	R MINUTE								
ROTOR BLACE 1 INDICATES	EL EM ENT LEADING	PARAMETERS EDGE, 2 INCICATE	ATES TRAILING	ING EDGE	•							÷
PASS.HT.1	1 R1/RT	111	V 1	VZ1	VTH 1	BETA 1	- E	WTH1	BETAP 1	H1	p.1	STRTUB1
FROM TI	c	S + 15 C C	u	S de la	14 (DEG	FUS	FPS	DEG	FT	FT	SQ IN
	9 0.955111	90.861	., 4	50.823		000	100.050	93.751	0 10 0 0 0	435.243	395.102	3.50880
3 0.50074		87.757	1 (1)	52, 123	? ?	000.0	102.069	87.757	59.292	•	7	3. 530 30
		85,107	ישי	52,240	9	000.0	99.861	85, 107	58.458		, ~	3.40400
	0 0.865111	82.248	· Ci	52,515	•	000 0	97.584	82.248	57.442		392,355	3, 23530
PASS.HT.	2 R2/RT	0.2		V Z 2	VTH 2	BETA2	W 2	WTHZ	BETAP 2	Н2	P 2	STRTUB2
FROM II		FPS		FPS	FPS	DEG	FPS	FPS	DEG	PT	FT	SQ IN
1 0.09926		93.761	75.	36.578	66.560	61.209	45.584	27.201	36.637	589.040	000.667	3.60880
2 0.29925		90.861	81.	51.532	63.746	51.048	58.231	27.115	27.752	595.250	490.830	3.65920
3 0.50074		87.757	88	61.820	63,983	45,985	66.234	23, 775	21.036	604.250	481.240	3.53030
4 0.699259 5 0 696260	9 0.895111	85.107	95.825	64.302	71.047	47.853	65.821	14.060	12.334	619.170	476.470	3, 40400
07660*0		247-76	.00	216.16	8/.8	50.569	58.239	٠. ک	-5.485	0/1.949	001 ***	3.23530
ROTOR BLACE 1 INDICATES	ELEMENT LEADING	FARAMETERS EDGE, 2 INDICAT	ATES TRAILING	ING EDGE								
PASS.HT.	1 R1/RI	INC	PHI1	яъм	NO.	DENSITY	VISIA	ISK	PEC			
FROM 1.			,		5 G G	LB/CU FT	SQ FT/					
0.09526	0.985111	•	0 9	2423.700	2836.300	62.284	0.9280E					
226570 2				2422.500	7852.900	62.284	0.92808					
1000		000		24.0.200	00/-1707	******	0.9200					•
0.899260		-10.458	0.552368	2421.000	2837.300	62.284	0.9280E-05	-05 0.1027E	27E 07			
PASS.HT.	2 R2/RT	VII	PHIZ	ISd	PSII	EL GL	OMEGAB		DELTA H	DELTA P	(TH/C) A	
FROR II		. D II I		1	1		3	1	FT	I.S.	() ()	
1 0.09926		24.637	0	0.546230	0.688904	0.792897	0.227265		153.797	104.298		
2 0.29925		23.652	0	0.568461	0.640009	0.888208	0.118235		159.898			
3 0.50074		24.636	0,0	0.603125	0.623676	0.967049	0.035518		168.767	•		
0.899260	0 0.865111	24. 134 14.214	0.609766	0.750913	0.799078	0.939724	0.02/338	0.687755	183.699	81.745	0.02878	
IVERAGED PARAMI	RAMETERS IEADING EDGE.	PATESTER C.		TRAILING EDGE								
		ı										
-	ROTOR	80	TOR	ROTOR	HSVB	EL.	FRC1	FRC2	RPMA	UTIA	D	12A
0.541460	C.629318	0.681309	0	EFFB 923690	434.553	±00°0-		0,040	2420,919	95.069	95.	. 069
						•)	3	

TABLE XIV. - BLADE-ELEMENT DATA FOR CONFIGURATION 14A

0000	NASA CONFIGURATION 14 ADJUSTED-SEE ERI-77900 0.9 HUB-TIP RATIO, 19 ELADES, 9-INCH TIP DIAMETER 1.5-INCH CHORD, 0.010-INCH RALIAL TIP CLEARANCE, DOUBLE CIRCULAR ARC BLADE PROFILE, 0.7 DESIGN FLOW COEFFICIENT,	ICN 14 ADJUSTED-SEE IO, 19 ELADES, 9-IN C.010-INCH RADIAL D-PACTOR, ARC BLADE PROFILE, COEFFICIENT,	TED-SEE ERI- IS, 9-INCH TI RADIAL TIP O ROFILE,	-77900 IP DIAMETER, SLEARANCE,					
BL !	BLADE GECHETRIC PARAMETERS- BLADE:ROW# 1 (ROTOR) 1 INDICATES LEADING EDGE, 2 INDICATES TRAILING EDGE	PARAMETERS- DING EDGE, 2	BIADE ROW#	1 (ROTOR) RAILING EDGE					
	R1 INCEES	KAPPA1 DEGREES	R2 INCHES	KAPPA2 DEGREES	SOLIDITY	TMA X/C	CHORD	CAMBER DEGREES	SETANG
-2m+5	4.455000 4.365000 4.275000 4.185000	63.370 62.700 62.050 61.540 60.800	4.455000 4.355000 4.275000 4.185000	9.110 6.450 3.670 0.830	1.010000 1.031000 1.052000 1.075000	0.070500 0.071500 0.072500 0.073500	1,500000 1,500000 1,500000 1,500000	54,260 56,250 58,420 60,710 62,960	36.240 34.580 32.880 31.190 29.320
	RHUB1 INCHES	ATIE1 INCHES	RHUB2 INCHES	RTIP2 INCHES	NBLADES				•
	4.050000	4.50000	4.050000	4.500000	19		٠		

		STRTUB1 SQ IN 2.41490 2.46830 2.41750 2.36660 2.25210	STRTUB2 SQ IN 2.37930 2.46830 2.41750 2.36660 2.24350	4 6 9 9 6 6	UTZA FPS 3.390
		P1 301.676 314.017 310.442 309.513	P2 871.370 374.440 369.710 364.630	(TH/C)A 0.08909 0.00716 -0.01356 0.06249	86
		H1 427.000 438.000 437.400 437.600	H2 FT 502.230 542.240 564.550 553.050	DELTA P FT 69.594 60.423 58.268 55.117 54.284	UT1A FPS 98.390
		BETAP1 DEG 47.363 46.777 45.944 45.243	BETAP2 DEG 33.529 30.925 26.670 21.502	REC 86E 07 51E 07 51E 07 37E 07 06E 07 06E 07 15.230 104.240 115.460 115.460	RPMA 2505.479
		WIH1 FPS 97.531 93.415 91.558	#TH2 FPS 53.261 58.211 52.510 37.875 21.789	0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	F3C2 .036
		FPS 132.577 130.424 129.934 128.938	#2 FPS 96.423 113.268 116.947 103.333	SQ FT/C 0.9280E- 0.92	0
		BETA1 DEG 0.000 0.000 0.000 0.000	BETA2 DEG 20.758 21.370 29.178	DENSITY LB/CU FT 62.265 62.265 62.265 62.265 62.265 62.265 0.260579 0.560579 0.958195 1.070582	FEC1
		VTH1 FPS 0.000 0.000 0.000 0.000	VTH2 FPS 44.271 36.828 40.936 53.683 68.004	2305.300 3294.930 3294.930 3295.970 3317.060 3317.060 0.364607 0.395196 0.507116	HSVE FT 433.202
P MINUTE	RAILING EDGE	V21 FPS 89.802 89.320 90.385 90.786	V22 80.378 97.166 104.540 96.142	HII RPM 541 25C8.700 629 2495.000 160 2504.000 544 2512.700 544 2512.700 HI2 PSI 838 0.249390 710 0.349364 135 0.423091	PALLING SDGE RCTOR EFFB 0.777204
GALLCNS PE	ı. S	V1 89.802 89.320 90.335 90.736	V2 PPS 91,764 103,911 112,258 110,114	P P P P P P P P P P P P P P P P P P P	A FES TOR TIES TES TES TES TES TES TES TES TES TES T
3301.	METERS 2 INDICATE	U1 FPS 97.531 95.039 93.415 91.556	U2 97.531 95.039 93.639 91.556	INDIC INDIC 1007 1007 1007 1009 1009 1009 1009 1009	2 INDIC 30 80 6.459
	ELEMENT PAFAMETE LEADING EDGE, 2	R1/RT 0.990000 0.970000 0.930000 0.910000	32/RT 0.99000 0.970000 0.930000 0.910000	LEMENT E EADING E EADING E E E DING E E E DING E E E DING E E E DING E E DING E E E DING E E E E E E E E E E E E E E E E E E E	EADIN 0.3
FLOW RATE # 1	ROTOR BLADE E	PASS.HT.1 FFCM TIP 0.100000 0.300001 0.500001 0.659999	PASS. HT. 2 FROM TIP C. 100 000 0. 300001 0. 500001 0. 699999	OTOR BLADE INDICATES PASS.HT.1 FRCH TIE 0.100000 0.500001 0.500000 0.900000 0.1000000 0.1000000 0.10000000000	INDICALES I PHIE1 0.890570
12.	æ –	2437	v € m D →	י א מרשאט בשאט אַיּ	-

TABLE XIV. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 14A

	STRTUB1 SQ IN 2.41490 2.46830 2.41750 2.3660 2.25210	STRTUB2 SQ IN 2.37930 2.46830 2.41750 2.36660 2.24350	• ,	UT2A FPS .804
	812.574 J 323.121 J 323.783 319.637 316.260	P2	(TH/C) A 0.08230 0.01568 0.05799 0.11847	UT F 97.8
	H1 427.000 438.000 437.400 437.600	H2 FT 511.810 555.870 569.450 558.590 554.310	DELTA P FT 78.626 68.279 6u.987 61.043	UT1A FPS 97.804
	BETAP1 DEG 48.511 47.851 47.155 46.267	BETAP2 DEG 34.326 29.045 25.956 21.684	REC 45E 07 26B 07 94E 07 94E 07 56E 07 17.87 132.050 120.980 124.310	RPMA 2490,559
	WTH1 FPS 97.026 94.990 92.192 91.065	WTH2 FPS 51.499 51.869 47.844 36.624 21.439	5EC 0.17456 05 0.172656 05 0.16945 05 0.16945 05 0.16681 0.329340 0.329331 0.414431 0.570702	PRC2
	FPS 129,526 128,122 125,739 126,030	H2 FPS 91.326 106.838 109.310 99.121 83.958	VISK SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.02893 0.0302 0.030293 0.0302030	
	BETA1 DEG 0.000 0.000 0.000	BETA2 DEG 31.117 24.286 30.586 39.892	DEMSITY LB/CU FT 62.265 62.265 62.265 62.265 0.617724 0.951724 0.785122	FRC1
	VTH1 5.000 0.000 0.000 0.000	VTH 2 FPS 45.527 43.120 44.348 54.441 67.853	3171.678 3157.678 3157.670 3157.430 3140.140 3148.420 6.45990 6.45990 6.454139 6.517062 0.629270	HSVE FT 433.200
ING EDGE	VZ1 85.808 85.978 85.978 87.125	V22 FPS 75.421 93.402 98.284 92.107 81.174	RPM 2495.700 2493.700 2471.200 2493.700 2493.700 2493.700 0.2498.700 0.284085 0.284085 0.45357	ING EDGE ROTOR EFFS 808436
ATES TRAILING	V1 85.808 85.978 85.505 87.125 85.551	V2 FPS 68.097 102.875 107.826 106.993	ATES TRAILING PHI1 0.875543 249 0.877979 240 0.889757 249 0.871867 249 0.871867 249 0.95379 0.2	POTCATES TRAILING ROTO ROTO ROTO ROTO ROTO ROTO REFURE RES176 0.8084
PAFAMETERS EDGE, 2 INDICATE	FES 97.026 94.990 92.192 91.065	U2 FPS 97.026 94.990 92.192 91.065	TRT	0.6
ELEMENT PAFA LEADING EDGE	R1/RT 0.990000 0.970000 0.930000 0.910000	R2, 0.9900 0.9700 0.9300 0.9100	EADING C.9900 0.9300 0.9300 0.9900 0.9900 0.9100	RAMETERS I LEADING EDGZ, FOTOR PSIE 0.394659
ROTOR BLADE H	PASS.HT.1 FRCM TIP 0.100000 0.300001 0.500001 0.69959	PASHT.2 FROM TIP C.100000 0.300001 0.500001 0.659999	PASS.HI. PASS.HI. 0.10CC0 0.30CC0 0.50C0 0.9000 0.9000 0.10CC0 0.10CC0 0.9000 0.9000 0.90000	ENACED FR INDICATES PHIE1 0.854960
ж -	24324	0 t m 7 ¬		A

		STRTUB1 SQ IN 2.41490 2.46830 2.41750 2.36660 2.25210	STRTUBEZ SQ IN 2.37930 2.46830 2.41750 2.36660 2.36660		2A 72
		P1 .FT 334.154 335.571 331.906 330.171	22 FT FT 404.740 401.660 399.210	(TH/C)A 0.07586 0.01150 -0.06407	UT2A FPS 98.072
	•	H1 427.000 438.000 437.400 437.600	H2 FT 526.350 566.040 580.890 569.260	DELTA P 80,586 76,059 72,654 69,039	· (T)
		BETAP1 DEG 50.062 49.475 48.463 47.644	3ETAP2 DEG 33.465 29.115 26.202 20.555	REC 1707E 07 683E 07 663E 07 662E 07 662E 07 128.040 143.490 143.490	RPNA 2497.380
		WTH1 FPS 97.162 94.970 93.005 91.193	итн2 49.084 49.362 47.363 32.458	0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.0 0.1 0.1	
		#1 FPS 126.722 124.942 124.251 123.406	W2 FPS 89.011 101.452 107.269 92.445	VISK SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.027144 0.027144 0.027144 0.027144 0.027144	
		EETA1 DEG 0.000 0.000 0.000 0.000	3ETA2 DEG 32.922 27.229 25.371 34.159	DENSITY LB/CU FT 62.265 62.265 62.265 62.265 62.265 62.265 0.265 0.265 0.051087	FRC1
		VTH11 FPS 0.000 0.000 0.000 0.000	VTH2 FPS 48.078 45.6078 45.641 58.735	20 V GPM 3032.010 3031.860 3034.500 3043.030 3043.030 3043.030 3043.030 30451853 30.45	33.19
F MINUTE	ING EDGE	VZ1 FPS 81.351 81.186 82.391 83.144	VZ2 FPS 74.255 88.635 96.246 86.559	1NG EDGE 3PM 2499.200 2493.200 2497.000 2497.000 2564.500 2564.500 2564.500 2497.000 2564.500 2497.000 2564.500 2	ING EDG ROTOR EFFB 845389
GALLCNS PE	ATES TAALLING	V1 FPS 81.351 81.186 82.391 83.144	V2 PPS 88.461 99.679 106.520 104.606	ATES TRAILING PHI1 0.928896 249 0.847587 249 0.847587 249 0.848941 249 0.838941 250 PHI2 0.756600 0.3 0.756500 0.4 0.965747 0.4	.
3032.	FAMETERS GE, 2 INDICATES	U1 FPS 97.162 94.570 93.005 91.193	UZ FPS 97.162 94.970 93.005 91.193	PARAMETERS EDGE, Z INDICAT RT INC 00 -13.308 0 -13.225 0 00 -13.470 0 01 -13.470 0 00 24.355 0 00 22.665 0 00 15.430 0	2 .
	ELEMENT PASS LEADING EDGE	R1/RT 0.990000 0.970000 0.930000	R2/FI 0.990000 0.570000 0.950000 0.930000	EADLING 0.9900 0.9900 0.9300 0.9300 0.9900 0.9300 0.9900 0.9900	
CH RATE # 3	ROTOR BLACE F	PASS.HT.1 FRCM TIP 0.100000 0.300001 0.500001 0.699999	PASS.HT.2 FROM TIP C.10C000 0.30C001 0.50C0C1 0.699999	PROTOR BLADE E I INDICATES I EASS.HT.1 FEOM TIP 0.1000001	GED FARICATES PHIE1 20510
FLCH	₽0 -	2 # 3 5 7	2 6 3 5	0E	

TABLE XIV. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 14A

ROTOR BLADE ELEMENT PARAMETERS 1 INDICATES LEADING EDGE, 2 IN	ELEMENT PARA LEADING EDGE	PARAMETERS EDGE, 2 INDICATE	ATES TRAILING	ING EDGE								
PASS.HT.1 FROM TIP 0.100000 2 0.300001 3 0.500001 4 0.699999 5 0.900000	R1/RT 0.990000 0.570000 0.550000 0.530000	U1 FPS 96.843 95.312 93.740 91.850	V1 FPS 77.005 78.103 79.335 79.612	VZ1 FPS 77.005 78.103 79.335 79.612	FPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BET111 DEG 0.000 0.000 0.000	#1 FPS 123.727 123.226 122.806 121.551	WIH1 FPS 96.843 95.313 93.740 91.850	BETAP1 51.510 50.668 49.758 49.083	H1 427.000 438.000 437.400 437.600	P1 344.649 343.201 339.587 339.103	STRTUB1 SQ IN 2.41490 2.46830 2.41750 2.36660 2.25210
PASS.HT.2 FROM TIP 0.100000 2 0.300001 3 0.500001 4 0.69999 5 0.900000	R2/ET 0.990000 0.570000 0.930000	U2 EPS 96.843 95.313 93.740 91.850 89.321	V2 FPS 86.33 98.738 103.356 103.710	VZ2 FPS 72.616 86.101 89.657 82.916	VTH 2 FP 8 46.694 48.432 51.420 62.296	BETAL DEG 32, 742 29, 358 29, 835 36, 918 43, 605	#2 FPS 88.250 98.037 99.143 88.026	WIH2 FPS 50.149 46.881 42.320 29.555 18.120	BETAP2 DEG 34.629 28.568 25.268 19.618	H2 FT 539.070 577.460 582.560 579.880 579.780	P2 FT 423.240 425.600 416.550 412.730	STRTUBS SQIN 2.37930 2.46830 2.46830 2.3660 2.24350
ROTOR BLADE	ELEMENT PARAMELEADING EDGE,	PARAMETERS EDGE, 2 INDICATES	ATES TRAILING	ING EDGE								
PASS.HI.1 FRCM TIP 1 C.100000 2 C.300001 3 0.500001 4 C.69999 5 0.900000	8 1/RT 0.990000 0.570000 0.550000 0.930000	INC EEG -11.860 -12.632 -12:32 -12.457 -11.949	PHI10.7871970.7848550.8040170.806056	2491.000 2502.200 2512.700 2515.000 2499.500	2868.980 2892.940 2891.900 2919.200 2892.420	DENSITY LB/CU FT 62.265 62.265 62.265 62.265	VISK SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	SK EC 05 0.1667E 05 0.1660E 05 0.1654E 05 0.1596E	REC 7E 07 0E 07 4E 07 7E 07			
PASS.HT.2 FROM IIP 1 0.100000 2 0.300001 3 0.500001 4 0.69999 5 0.900000	B2/RT 0.990000 0.570000 0.550000 0.930000	LEV LEG 25.519 22.118 21.593 13.788	PHI2 0.742334 0.876244 0.969624 0.839535	PSI 0.376814 0.464719 0.479680 0.469302 0.494877	PSII 0.472565 0.478105 0.495056 0.586600	EFF 0.797380 0.972002 0.968940 0.800037	OMEGAB 0.119705 0.017023 0.019854 0.154883	0.473565 0.395027 0.391688 0.514188	DELTA H 112.070 139.460 145.160 142.280	DELTA P 88.391 82.599 76.963 73.627	(TH/C) A 0.04876 0.00725 0.00853 0.06786	
AVERAGED FARAMETERS 1 INDICATES LEADING RC PHIE1 E	EDGE TOR SIE	2 INI 2	ATES TIOR 556	TRAILING EDGE ROTOR EFF3 0.857759	HSVB FT 433.227	FRC1		FRC2	RPMA 2504.080	UT1A F7S 98.335	86	UT2A FPS . 335

ROTOR BLACE E 1 INDICATES L PASS.HI.1	ELEMENT PASAN LEADING EDGE, R1/RT	E7 E 2 I	83	EDG V	NET V	SETA1	- 0	14 E1 E1 E1 E1 E1	BETAP 1	H D	C 6	STRTUB1
	00006	PPS 97.660	74.056	FPS 74.056	FPS 0.000	DEG 0.000	FPS 122,563	FPS 97.660	DEG 52.827	FT 427.000	FT 341.771	SQ IN 2.41490
	0.00075.0	95, 961	75.041	75.041	000.0	000.0	121.818	95,961	51.975	438.000	350,488	2.46830
	930006	91.785	76.744	76.744	.00	0.000	119.642	91.785	50.100	437.600	346.071	2, 36660
	910006	89.578	74.636	74.636	00.	000 0	116.597	89.578	50.199	430.000	343.431	2.25210
PASS.HT.2	R2/RT	0.2	V 2	V Z 2	VTH2	EETA2	. #2	WTHZ	BETAP2	Н2	P 2	STRTUB2
		11 V	FPS	FPS	FPS	DEG	FPS	FPS	DEG	: : : : : : : : : : : : : : : : : : :	E 0	NI OS
	000066	31.650	84.293	68.132	49.632	36.072	83,359	46.028	15.181	248.070	437.650	2.37930
	000075	95,561	100.00	31.780	51.154	32,026	93.251	44.807	28.718	583.740	439.140	2. 468 30
	000000	93.000	100.000	70.040	60.00	30 010	90.7.00	0.00 .00	19 058	593 330	070 070	0511.5
0.900000	0.910000	89.578	101.907	70.827	73.271	45.972	72,680	16.307	12.966	587.080	425.690	2.24350
ELE	ELEMENT PAFAM LEADING EDGE,	AMETERS. E, 2 INDICA	ATES TRAILING	ING EDRE								
	R1/RT	INC	PHI1	R 2 N	A C		Α	ISK	REC			
		LEG		•	E G G	Н	VII OS					
0.100000	0.990000	-10.543	0.0	2512.000	2757.790	62.265	0.9280E-05	-05 0.1651E	51E 07			
	000000	-10 836		2510 700	072.05.5		0.0200		185 07			
	930000	- 11. 440		2513,200	2746.770		0.9280		12E 07			
0 000006*0	910000	-10.601	0.758205	2506.700	2756.660		. 0. 9280E		71E 07			
PASS.HT.2 FROM TTP	R2/RT	A ⊞ ⊕	PHI2	15d	PSII	EPF	OMEGAB	Д	DELTA H	DELTA P	(TH/C) A	
	000066.	26.071	0	0.400298	Ü	_	0.126712	0.520342	121.070	95.879	0.05127	
	.970000	22, 268		0.479114	O	0	0.029611	0.438155	145.740	88.652	0.01259	
	.950000	21,412	•	0.501097		_	0.024069	0.431271	151.400	81.720	0.01036	
0 00000	0.530000	18.228 15.126	0.804649	0.514403	0.606391	0.848302 0.769994	0.125191	0.547922	155.730	84.899 82.259	0.05504	
AMET	ERAGED FARAMETERS INDICATES LEADING EDGE,	E, 2 INDICATE	ATES TRAILING	ING EDGE								
	FOICE	2		ROTOR	HSVB	7 R	2RC1	PRC2	RPMA	Aran		UTZA
0	FSTE 1.484700	0.556	55831 0.	Errs .870462	FT 433.231	0.015		0.038	2512.359	98.660	98.	660

TABLE XIV. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 14A

	STRTUB1 SQ IN 2.41490 2.46830	2.41/50 2.36660 2.25210 STRTUB2	SQ IN 2.37930 2.46830 2.41750 2.36660 2.24350	e v			UT2A FPS •820
	P1 354.463 361.142	356.883 354.941 P2	FT 455.580 454.760 448.200 443.210		(TH/C) A	0.04006 0.00395 0.01128 0.05734 0.10192	10 1 18*86
	H1 FT 427.000 438.000		FT 566.160 591.430 598.070 598.870		DELTAP	71 101.117 93.618 89.587 86.327 84.959	UT1A FPS 98.820
	BETAP1 DEG 54.989	52.297 52.297 BETAP 2	DEG 34.156 29.417 25.004 18.756 12.384	٠.	m 00000 H	F7 139.160 153.430 160.670 161.270 165.090	PPMA 2516.419
	WIH1 FPS 97,531 96,056	94. 160 91. 712 89. 911	FPS 44.517 43.975 37.354 25.479 14.363		8EC 05 0.1604E 05 0.1504E 05 0.1590E 05 0.1531E 05 0.1531E	0.554549 0.460111 0.480242 0.584,765 0.713138	FRC2
	FPS 119,080	116.640 113.639	79.289 89.530 88.374 79.239		VISK SQ. FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	0.097780 0.009355 0.026176 0.130187	
	BETA1 DEG 0.000 C.000	0.000 0.000 0.000	38,938 33,736 35,356 41,436		DENS ITY 62, 265 62, 265 62, 265 62, 265 62, 265	0.865923 0.566749 0.965910 0.854206	FRC1
	VTH1 FPS 0.000	0.000 0.000 0.000	FPS 53.015 52.082 56.826 66.233 75.548		0V GPM 2590.640 2623.900 2600.800 2573.360 2573.360 2602.190	0.532749 0.510155 0.544544 0.624517 0.695914	HSVB FT 433.257
TRAILING EDGE	VZ1 FPS 68.320 70.325	72.069 72.069 69.497	65.613 77.987 80.092 75.031 65.412	ING EDGE	2508.700 2521.700 2521.700 2511.200 2511.200 2516.000	6008 0.461320 7532 0.503395 7590 0.525981 0851 0.533552 2041 0.544108 TRAILING EDGE	ROTOR EFFB 0.891002
S	V1 FPS 68.320 70.325	72.069 69.497	FPS 84.354 93.779 98.203 100.082 99.931	AIES TRAILING	PHI1 0.693488 0.710164 0.718223 0.730813 0.73394	566 73 76 66 66	ROTOF FSII3 176805 0.
, 2 INDICATE	11 FFS 97, £31 96, 056	94. 180 91.712 89.511	FPS 531 96.056 94.180 91.712 89.911	PASAMETERS EDGE, 2 INDICATE	LEG	25.046 0.22.967 0.21.334 0.17.926 0.14.544 0.	RO FS 0.576
INDICATES LEADING EDGE,	R1/RT 0.993000 0.973000	0.930000 0.930000 0.910000	0.990000 0.970000 0.950000 0.930000	ELEMENT PASAM LEALING EDGE,	0.990000 0.970000 0.956000 0.93000 0.910000	0.990000 0.970000 0.950000 0.910000 0.910000 METEFS	FCTOF FSIE 0.513935
INDICATES L	PASS.HT.1 FROM TIP 0.100000	0.500001 0.699999 0.900000	FRCM TIP C.10C000 O.30CC01 O.50C001 O.699999	FOTOR BLACE F	PASS.HT.1 FROM TIP 0.10C0C0 0.30C0C1 0.5090C0 0.9C0C0 PASS.HT.2	FRCM TIP 0.10C0C0 0.99, 2 0.300001 0.97, 3 0.5000C1 0.95, 4 0.69999 0.93, 5 0.90000 0.91	FHIE1 0.698170
-	- 2	ግ ታ ኒሳ	C 6 8 8 9 3	F0	C C C C C C C C C C C C C C C C C C C	1 N D T N N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

		STRTUB1 SQ IN 2.41490 2.46830 2.41750 2.3660 2.25210	STRTUB2 SQ IN 2.37930 2.46830 2.41750 2.36660 2.24350	·		UT2A PPS .013
		P1 359,394 368,423 367,476 367,151	P2 FT 464.070 466.210 460.220 453.970 451.230		(TH/C) A 0.04589 0.00496 0.01671 0.05542	
		H1 427.000 438.000 437.400 437.600	H2 FT 570.390 597.840 601.110 604.410 598.160	<u>د</u> .	DELTA P FT 104.676 97.787 92.744 86.819	UT1A FPS 99.013
		BETAP1 56.077 55.118 54.510 53.862 54.081	BETAP2 34.861 29.248 25.243 19.220	REC 92E 07 76E 07 56E 07 97E 07	DELTA H 143.390 159.840 163.710 166.810	R P M A 521. 359
		#TH1 FPS 98.068 95.980 94.076 92.205	FPS FPS 41.564 35.328 25.078	0000 2000 2000 2000 2000 2000	D 0.594514, 0.498486 0.524668 0.606217	PRC2 .047 , 2
		#1 PPS 118.185 117.001 115.541	#2 FPS 75.193 85.069 82.842 76.180	VISK SQ T7/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	OMEGAB 0.112965 0.011714 0.038976 0.126190	0. E 9
		BETA1 DEG 0.000 0.000 0.000	BETA2 DEG 41.760 36.247 38.097 43.020 50.098	DENSITY LB/CU FT 6.2.265 62.265 62.265 62.265	EFF 0.853967 0.984649 0.953048 0.8667320	FRC1
		VTH1 FPS 0.000 0.000 0.000	VTH2 FPS 55.08 54.416 58.747 67.127	0.V GPM 2447 GPM 2444.320 2436.310 2456.310	PSII 0.550555 0.533448 0.563595 0.629663	HSVB FT 433.239
a MINUTE	ING EDGE	V21 FPS 65.957 66.911 67.078 57.330	V22 FES 61.699 74.223 74.931 71.934 62.374	ING FDGE - RPH 2522.500 2519.700 2521.700 2524.700 2518.200	251 0.470156 0.525259 0.537124 0.545994	AILING EDGE ROTOR EFFS 0.894657
GALLONS PE	TES TRAILIN	FPS 65,957 66,911 67,078 67,330 65,187	V2 82,713 92,033 95,216 98,390	TES TRAILING PH11 0.665839 252 0.672525 251 0.677371 252 0.679104 252	PHI2 0.622857 0.750115 0.756678 0.725547	ES TR 3
2446.	PABAMBTERS EDGE, 2 INDICAS	11 FPS 98.068 95.980 94.076 92.205	02 08.06E 95.98C 94.076 92.205	PARAMETERS EDGE, 2 INDICATION RT INC 00 -7.292 0.00 -7.582 0.00 -7.580 0.00 -7.580 0.00 0.00 -7.519 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	25. 751 22. 798 21. 573 18. 390	ROTOR FSIIB PSIS
	ELEMENT PASAN LEALING EDGE,	81/87 C.990000 C.570000 0.550000 0.930000	R2/RT 0.990000 0.970000 0.950000 0.910000	ELEMENT PARAN LEADING EDGE 3 0.990000 0.570000 0.950000	R2/RT 0.990000 0.57000 0.950000 0.910000	RADENG EDGE, ROTOR PSIE 0.527094
FLOW RATE # 7	ROTOR BLADE EN INDICATES L	PASS.HT.1 PROM TIP 0.10C000 2 0.30CC01 3 0.50CC01 4 0.699999	FASS.HI.2 FECN TIP 0.100000 0.30CG01 0.50CG01 4 0.695999 5	PASS.HT.1 PASS.HT.1 PASS.HT.1 PRCM TIP 0.1000001 0.500001 0.659959 0.900000	PASS.HT.2 PPCM TIP 0.100000 2 0.3000001 3 0.500001 4 0.699999	AVERAGED PARAMETERS 1 INDICATES LEADING FOUNDATION OF PHIET PO. 655650 0.527

TABLE XIV. - Concluded. BLADE-ELEMENT DATA FOR CONFIGURATION 14A

0.990000 -5.329 0.570000 -6.006 0.950000 -6.003 0.930000 -5.036 R2/RT EEV 0.590000 25.036 0.570000 23.282 0.930000 18.850 0.910000 16.466
.329 0.6 .006 0.6 .083 0.6 .036 0.6 .036 0.6 .086 0.5 .403 0.7 .403 0.7 .466 0.6 .466 0.6

		SQ IN 41490 46830 41750 3660 25210	RTUB2 SQ IN 37930 46830 41750 36660 24350		
		22. ST 22	22.22.2 22.22.23.23.23.23.23.23.23.23.23.23.23.2		UT2A FPS
		P1 377.240 382.422 381.980 381.857	P2 FT u7u.u40 u78.950 u72.590 u70.010	(TH/C) A 0.08029 0.03903 0.03020 0.03641	86
		H1 FT 427.000 438.000 437.400 437.600	H2 FT 572.900 587.050 601.020 614.610	DELTA P 97.20 96.528 96.510 88.153	UT1A FPS 98,364
		BETAP1 DEG 59.893 57.961 57.454 56.779 57.350	EETAP2 DEG 35.575 32.477 27.576 19.327	PEC. 0E 07 5E 07 5E 07 5E 07 5E 07 145.900 149.050 149.050 149.050 177.010	RPMA 2504.819
		FPS 97.590 95.561 93.572 91.449	WTH2 FPS 36.487 39.034 37.280 24.283	SK DEC 0.15201 0.5 0.14951 0.6 0.14251 0.712176 0.712176 0.598339 0.515542 0.615542	PRC2 0.078 2
		FPS 112.808 112.731 111.004 109.315	.W2 FPS 62.718 72.693 80.531 73.370 64.408	VISK SQ, FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280H-10 0.19940H-00	
		DECTA1 0.000 0.000 0.000 0.000	9ETA2 - DEG 50. 143 42.669 38.259 44.131	DENSITY LB/CU FT 62.265 62.265 62.265 62.265 62.265 62.265 0.78724 0.999431 0.92728	FRC1 0.005
		VT#11 0.0000 0.0000 0.0000	VIH2 FPS 51.102 56.527 56.292 67.166	QV 2173.710 2163.710 2163.715 2163.715 2159.716 PSII 0.613656 0.556571 0.634233 0.684387	HSVE FT 433.312
S MINUTE	ING EDGE	V21 775 56,586 59,808 59,717 59,831	V22 FPS 51.012 61.324 71.382 69.235	EDG3 2510.200 2503.200 2503.200 2503.200 2603.000 2493.000 2493.000 0.494106 0.542623 0.542623 0.59389	CTO 9
GALLCNS PE	TES TRAILING	V1 FPS 56.586 59.402 59.717 59.891	V2 FPS 79.597 83.403 96.908 96.461	PHII 0.57+037 25 0.605087 25 0.605087 25 0.609073 25 0.593092 24 PHIZ 0.517489 0. 0.522480 0. 0.724719 0.	*0 66
2169. 6	ETERS , 2 INDICA	11 97.590 95.561 93.572 91.449	02.000 97.590 95.561 93.572 91.449	A S A S A S A S A S A S A S A S A S A S	1 0
	ELEMENT PARAMETER LEADING EDGE, 2 I	R1/FI C.\$90000 0.570000 0.550000 0.930000 0.910000	R2/RI 0.990000 0.570000 0.930000 0.910000	EMENT F F F F F F F F F F F F F F F F F F F	FOTOF PSIE 0.545691
W RATE # 9	R BLADE DICATES	FRCM IIF C.100000 0.300001 0.500001 0.699999	FECM TIP 0.100000 0.300001 0.50001 0.699999	DR BLALE PASS. HT. 1 0.100000 0.300000 0.500000 0.500000 0.500000 0.500000 0.500000 0.5000000 0.300000 0.300000 0.30000000000	PHIE1
FLOW	ROTO1	e a wa a a	e a w a ≈	1	1 0

•••		SETANG DEGREES	54.935 52.675 49.825 47.860 43.730			
; ·		CAMBER	25.170 26.370 28.990 31.660	. •	*	
		CHORD INCHES .	1.500000 1.500000 1.500000 1.500000			
· -	•	TMA X/C	0.072000 0.076000 0.080000 0.084000	12	a	
ක වු		SOLIDITY	1.020000 1.064000 1.111000 1.163000 1.220000	NBLADES	· ,	
JIAMETER , TIP CLEARANCE	1 (ROTOR) TRAILING EDGE	KAPPA2 DEGREES	42,350 39,490 35,330 31,030 26,800	3TIP2 INCHES	• .	
9 INCH TIP DIAMBTER O INCH PADIÁL TIP CL PPOFILE	ELADE ROW# INDICATES	R2 INCHES	4.410000 4.230000 4.050000 3.870000	RHUB2 INCHES		
15 19 ELADES 309 - C. C.1 - FACTOR C BLADE COEFFICT	C PARAMETERS- ADING EDGE, 2	KAPPA1 DEGREES	67.520 65.860 61.320 62.690 60.660	RTIP1 INCHES 4.500000		
NASA CONFIGURATION C.8 HUB-TIP RATIC, T.5 HURCH CHORD, O.556 DESIGN TIP D DOUBLE CIRCULAR AR C.466 DESIGN FLCA	BLADE GECMETRIC 1 INDICATES LEA	R1 INCHES	4.4.10000 4.230000 4.050000 3.870000	RHUB1 INCHES	ð. T	
NASA C.8 1.5 0.55 DOUE C.46	BLAL 1 IN		- 0 m 4 m			
		,				

FLOW RATE #	-	5192.	GALLONS PE	B MINUTE					•			
ROTOR BLALE 1 INDICATES	FLEMENT PAFA LEADING EDGE	PAFAMETERS EDGE, 2 INDICAT	ATES TRAILING	ING EDGE								
PASS.HI.1	R1/8T	101	V 4	VZ1	VIH1	BETA 1	1 E C	WTH1	BETAP1	# E	1 d	STRTUBI
		17.00		FFS		520		FP5) i c	1 t		200
•	000000	110 650		766.07	000	000		110 053	59.001	423.013	345.612	700000
		100.001		70.23	000.0	000.0	, č	106 122	56 101	110 555	343,123	00000
		101.890		70.367	000			101 890	55.270	417.566	340.616	4.37690
5 0.900001	0.820000	97.061		74.089	00000	0.000	122.107	57,051	52.645	425.733	340.428	4.08170
PASS.HT.2	R2/BT	0.2		V22	VTH 2	BETAZ	14.2	WTH2	BETAP2	Н2	P.2	STRTUB
FROM TIP		FFS		FPS	29.5	530	FPS	FPS	DE	Ę-	E-4	SOIL
		115.665		80	30.868	26, 914	104.346	84.797	. 35	503,440	431,170	4.64150
		110.952		17	34.734	25.992	104.308	76.248	96.	525.430	427,980	4. 7840
3 0.500000	Ö	106.142	82.530	75,050	34.333	. 24. 583	103.870	71.808	43.736	529.590	423.740	4.5804(
		101.890	٠	30	36.837	25.834	100,105	65.054	.53	531,730	420,680	4.37690
5 0.900001		97.061		87	39,328	28.030	93.756	57.734	00	527.960	419.120	4.00130
ROTOR BLADE 1 INDICALES	ELEMENT FARAYETE LEADING EDGE, 2	YETERS 2 INDICATI	ATES TRAILING	ING EDGE								
PASS. HI. 1	R1/RT	INC	PRI 1	RPM	0.0			ISK	REC			
		DEG			GPM	LB/CU FT						٠
		-8.459		200	. 5182.648	62.320						
		10.1		3005.700	5179.230	62.320						
		nn:		202.202	108.0710	02.320						
5 . 0.900001	0.820000	-7.320 -8.015	0.625925	3014.200	5204.609	62.320	0.9280E-05 0.9280E-05	-05 0.1568E	45E 07			
PASS.HT.2	R2/RT	753	PHI2	ISE	IISd	443	OMEGAB	Ω.	DELTA H	DELTA P	(TH/C) A	
	,	DEG.	•		•	1			F	Ld	1	
		12.006	o o	0.184463	0.25630	0.719693	0.110066	0.338432	79.865	82.298	0.03144	
		5/7°/		0.238426	0.27637	0.862693	0.061321	0.329855	103.243	82.45/	0.01966	
		0.4C		0.251340	0.20200	167625.0	0.000000	0.303534	11:034	80.08	0.000.0	
5 0.900001	0.820000	11.209	0.624084	0.234751	0.272446	0.861643	0.070843	0.364182	102.227	78.692	0.02288	
AVERAGED FARI 1 INDICATES 1	AMETERS LEACING FOGE	, 2 INDECAT	ATES TRAILING	ING EDGE								
	ROTOR	OH	BOTOB	ROTOR	HSVR	i ca		F RC 2	a a a	UT11		11.7.24
PHIE1 0.615520	ESTE 0.237626	PS 0.267		EFF 88730	FT 420.865	0.0-	.039 -0.	.042	3009.119	FPS 118.168	118.	FPS 168

TABLE XV. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 15

FLOW	RATE # 2		4829. 0	GALLCNS PER	RMINUTE			,				•	٠.,
ROTOF 1 INI	ROTOR BLADE E	ELEMENT FAFAME LEADING EDGE,	FAFAMETERS EDGE, 2 INDICATE	S	TRAILING EDGE								
- UN 3 W	FROM TIP 0.10 CO00 0.300001 0.5CCC0 0.7C0001	R1/FT 0.980000 0.940000 0.960000 0.820000	U1 FES 1116.596 1111.479 106.559 102.319	V1 FPS 64.511 65.224 64.697 65.413	VZ1 FPS 64.511 65.224 64.697 65.413	V7H17 FPS 0.000 0.000 0.000 0.000	BETA1 DEG 0.000 0.000 0.000 0.000	#1 FPS 133.258 129.158 124.661 121.442 119.088	WTH1 FPS 116.596 111.479 106.559 102.319	BETAP1 DEG 61.045 59.669 58.736 57.409 54.921	H1 #23.622 #23.117 #20.152 #20.107	P1 858.948 357.005 355.105 353.611	STRTUB1 SQ IN 4.84000 4.78400 4.58040 4.37690
- 0 m 3 m	FECM TIP 0.100000 0.30CC01 0.50CC00 0.7C0000	R2/FT 0.980000 0.540000 0.900000 0.860000	02 FPS 116.596 111.479 106.559 102.319	V2 FPS 66.807 77.811 81.055 81.983	VZ2 FPS 55.930 67.099 71.200 70.527	VTH2 FPS 36.538 39.396 38.736 41.799	BETA2 DEG 33.156 30.420 28.548 30.654 34.200	W2 FPS 97.660 98.478 98.333 92.934	NTH2 FPS 80.058 72.081 67.823 60.520	BETAP2 DEG 55.061 47.050 43.608 40.634 36.916	H2 FT 527.790 547.580 551.420 551.090 549.770	P2 458.430 453.490 449.320 446.640	STRTUB2 SQ IN 4.64150 4.78400 4.58040 4.37690
1010 1010 1010 1010 1010 1010 1010 101	DICATES DICATES ASS. HT. 1 PROW TIP 0.300C01 0.50CC00 0.900001	ELEMENT PARAMETER LEADING EDGE, 2 I R1/KT 0.980000 -6. 0.900000 -5. 0.860000 -5.	EDGE, 2 INDICATE FT INC 00 -6.475 00 -5.281 00 -5.281 00 -5.739 00 -5.739	S TRAIL) PHI1 542217 549972 546430 549801	RNG EDGE RPM 3029.700 3020.000 3029.700 3029.700	QV GPM 4837.230 4824.520 4815.020 4831.180	DENSITY L3/CU FT 62.320 62.320 62.320 62.320	VISK SQ FL/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9289E-05	VISK /SEC 6-05 0.1795E E-05 0.1740E E-05 0.1679E E-05 0.1636E	BEC			
E 0 W 3 7	PASS.HT.2 FROM TIF 0.100000 0.300001 0.500000 0.700000	R2/ET 0.980000 0.540000 0.900000 0.867000	DEV DEG 12. 711 7. 560 8. 276 9. 604	PHI2 0.470093 0.565782 0.592780 0.592780	PSI 0.236767 0.284716 0.301279 0.297715	PSII 0.300963 0.312275 0.29447 0.302136	EFF 0.786697 0.911747 1.023202 0.985363	OMEGAB 0.102354 0.046471 -0.012325 0.008489	0,401521 0,380883 0,351038 0,382721	DELTA H 104.168 124.463 131.268 130.983	DELTA P 99.482 96.485 94.215 93.029	(TH/C) A 0.02873 0.01488 -0.00402 0.00277	
AVERA 1 INI 0.5	AVERAGED FARA 1 INDICATES L PHIE1 0.569620	S LEADING EDGE, S ROTOR ROTOR PSIE 0.282403	2 IND 0.3	E .	AILING EDGE ROTOR ETF3 0.924127	HSVB FT 421.837	0 • 0 •	FPC1	FRC2	RPMA 3024. 180	UT18 FPS 118.759	<u> </u>	UT2A FPS 8.759

71. 82. 308 118.608 118.608 115.618 115.618 92.24 7 91.841 86.442 77.925 80.9280E-05.00.92	BEZA1 DEG 0.000 0.000 0.000 0.000 0.000 EBTA2 33.653 34.636 34.636 34.636 34.636 52.653 117Y LB/CU FT 62.321 62.321	VTH1 FPS 0.0000 0.000 0.	्याच्य	EDGE EDGE 59.323 59.325 60.682 60.225 60.682 63.317 72.281 61.988 65.281 61.988 61.988 61.988 61.988 61.988 61.988 61.988 61.989 61.988	LONS PER NINUIE S. TRAILING EDGE V1 V1 V2 V2 FPS 59.323 60.642 60.225 60.225 60.225 60.225 60.225 60.45 60.225 75.340 61.988 77.546 65.281 75.340 62.277 75.340 62.277 8886 77.546 86.896 79.903 8881 8881 8881 8881 8881 8881 8881 88	GALLONS PER NINUTE CATES TRAILING EDGE V1 V21 V21 V21 V21 V22 60.682 60.682 60.682 60.225 60.645 60.645 60.645 60.645 60.645 60.225 60.645 60.225 60.645 60.225 60.645 60.225 60.645 60.645 75.340 61.989 77.546 65.281 77.546 66.896 77.546 66.896	CATES TAILING EDGE CATES TAILING EDGE V1 V21 FPS 59.323 60.642 60.642 60.645 60.645 60.645 60.645 60.645 60.645 70.645 60.645 60.625 60.645 60.625 70.645 60.625 70.645 70.645 70.645 60.625 70.645 70.645 70.645 70.645 70.645 70.645 60.625 70.645 70.645 70.645 70.645 70.645 70.666 70
	77. 92.5 7. 92.5 7. 92.5 7. 92.5 7. 92.5 7. 92.5 7. 92.5 7. 92.5 7. 92.5 7. 92.5 7. 92.5 7. 92.5 7. 92.5 7. 92.5 7. 92.5	21	VTH1 BETA1 FPS 0.000 PDGE V21 VTH FPS 0.000	S TAALLING EDGE	V1 V21 VTH1 BETA1 FPS FPS PPS PPS PPS PPS PPS PPS PPS PPS	### PANAMETRAS ###################################	

TABLE XV. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 15

,	STRTUB1 SQ IN 4.34000 4.78400 4.58040 4.37690	STRTUB2 SQ IN 4.64150 4.78400 4.59040 4.37690			12A 133
٠	P1 381.051 379.386 375.202 377.422	F7. 503.C40 497.720 491.850 488.420		0.02141 0.01417 0.001417 0.0050 0.02012	UI.
	91 425.414 425.996 423.744 423.348	561. 350 577. 410 577. 770 576. 760 562. 550		DELTA P FT 121,989 1118,344 113,648 116,998	UT1A FES 118.313
	3ETAP1 DEG 65.305 63.833 63.008 61.833	EETARP2 59.353 50.032 45.831 42.568 36.535	REC 238 C7 738 07 075 07 168 07	DELTA H 135.936 151.414 154.026 153.412	3012,819
	#TH1 FPS 116.192 111.461 106.283 101.526 96.990	WTH2 FPS 72.520 64.597 59.465 53.012 41.536	* ೧୯୯୯୯୯ 0000 0000 0000	0.508346 0.499917 0.481591 0.500637	eRC2
	#1 127,888 124,189 119,276 115,164	#2 84.285 84.169 82.904 78.366	89 21 VIS 0.9280E-0 0.9280E-0 0.9280E-0 0.9280E-0	0.085701 0.085701 0.096929 0.002855 0.001581	L 3
	BFTA1 DEC 0.000 0.000 0.000 0.000	3ETA2 DEG 45,477 40,972 39,024 40,050	DENSITY 19/CU FT 62,321 62,321 62,321 62,321	EFF 0.961890 0.995919 1.002129	FRC1 -0.042
	VEH 1 FPS 0.000 0.000 0.000	### ##################################	20 328 328 4037 4037 4037 460 4022 460 4026 500 0028	PSII 0.3509R1 0.372221 0.356905 0.353416	HSV3 FT 424,535
EDGE DNI	V21 F23 53.429 54.766 54.134 54.362	VZ2 FPS 94.951 57.766 57.766 57.766	ING EDGZ 3019.200 3019.500 30017.200 3606.200 3612.000	0.311126 0.345482 0.355349 0.354168	ILING EDSE ROTOR BPFB 0.947512
TIVEL S	V1 53.429 54.766 54.134 54.362 57.125	, FPS 61.255 71.605 74.356 75.396 75.896	ATES TEALLING C.450037 30 0.461862 30 0.460488 30 0.462956 30	PHI2 0.362265 0.455975 0.489155 0.468932 0.473956	41 53 13 3 13 13 13 13 13 13 13 13 13 13 13
AMETERS E. D. TREICATE	116.192 111.461 106.283 101.526 96.990		2 INDIC 1NC EEG -2.215 -2.027 -1.312 -0.857	DEG 17.013 10.542 10.501 11.538	E, 2 INCLUI
ELENENT PAPAN LEADING EDGE,	F1/FT 0.940000 0.940000 0.500000 0.860000	00000 E	EADING FEGE R1/FT 0.980000 0.980000 0.820000	20000	ROTOP ROTOP PSTS 0.346106
ROTOR BLADE FL	PASS.HI.1 FROM TIP 0.1000001 0.30001 0.500000 0.700000	4 SS + HT - 2 F F C & T T P 0 - 30 C C C O 0 - 30 C C C C O 0 - 30 C C C C O 0 - 30 C C C C O	ASS. HT.1 FFOR TIE C.10C000 0.300C01 0.500CC0	PASS.H1.2 PFOM TIP 0.1000000 0.300000 0.50000 0.70000	ENDICATES LE ENTE1
101 101	e α m a Ω	n, ←Nmarun	— — — симати н	- (A W 3 R)	4 - 5 -

	STRTUB1 SQ IN 4.84000 4.78400 4.58040 4.37690	SQ IN 20 IN			
	P1 ST FT 391.197 4. 398.808 4. 388.322 4. 389.080 4.	P2 ST F1 F1 6.553.100 4.516.950 4.5506.200 4		(TH/C) A 0.01764 0.0131 0.00131 0.0015	FPS 118.462
	H1 FT 873 39 425,438 38 425,039 38	H2 FT FT 578,740 588,550 592,970 593,990 604,160 504,160		•	FPS 118.462
	BETAP1 DEG 67.910 66.232 65.516 64.437 62.482	BETAP2 62.053 63.421 47.608 42.352 35.016	REC 687E 07 640E 07 1578E 07 1479E 07	DELTA H 152.756 160.977 168.951 176.087	3016.600
	UTH1 FPS 115.992 111.461 106.612 101.620	MTH2 FPS 68.426 60.655 55.776 48.157 37.145	. 00000	0.567795 0.575847 0.550628 0.569458 0.635243	-0.081
	725.270 121.790 117.146 112.647	#2 77. FPS 75. 533 75. 521 71. FB4 64. 735	VISK SQ PT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	OMEGAB 0.075791 0.065202 0.000450 0.033133	
	BEER 1 0.000 0.000 0.000 0.000 0.000	BETA2 DEG 52.050 48.460 44.955 45.342 48.645	DENSITY LB/CU FT 62.322 62.322 62.322 62.322 62.322	0.890794 0.9146794 0.994542 1.000537 0.965948	-0.041
	VTH 1 FPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VTH 2 FP 5 60.806 50.836 53.463 60.231	28 3595.250 3602.030 3594.240 3588.880	PSII 0.393840 0.4093840 0.3862756 0.389106 0.415906	FT 425.775
AILING EDGE	VZ1 47.312 49.085 48.550 48.607 50.729	B 32.	3014.000 3019.500 3016.500 3009.000	HI2 704 0.350830 609 0.368366 826 0.384128 080 0.389315 452 0.401743 RAILING EDGE	EFF8 0.957043
TES TR	V1 47.312 49.085 48.550 48.607 50.729	V2 FPS 59.336 67.377 71.950 75.161 80.241	PHI11 0.399735 0.413953 0.469847 0.411357	P 006 179 179 147 146 146 146 146 146 146 146 146 146 146	
PASAMETERS EDGE, 2 INDICA	U1 FPS 115. 592 1111.461 106. 612 101. 620	RT	INC D. 290 0.372 0.372 1.196	19. 17. 17. 18.	FSIIB 0.397361
ELEMENT PASAMI LEADING EDGE,	R1/RT 0.980000 0.940000 0.860000	R2/ 0.9800 0.9000 0.9600 0.8600 0.8200	R1/RT 0.980000 0.940000 0.900000 0.860000	F 7 000 000 000 000 000 000 000 000 000	PSIE 0,380291
ROTOR BLADE E 1 INDICATES D	PASS.HT.1 PROM IIP 0.100000 0.300001 0.500000 0.700000	ASS.HI.	PASS. HT.1 FFCM TIP 0.10C000 0.300001 0.500000 0.7C0000	PASS.H1.2 R2. FECK TIP 0.98001 0.100000 0.98003 3 0.500000 0.9600 4 0.700000 0.6600 5 0.900CC1 0.820 AVERAGED FARAMETERS 1 INDICATES LEADING	FHIE1 0.425140
10,	C1 # M M H	P P 1 2 2 2 2 2 3 2 4 4 4 5 5 1 1 END I I INI	0.430	, E 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-

TABLE XV. - Concluded, BLADE-ELEMENT DATA FOR CONFIGURATION 15

RPMA 3014, 319	FRC2		FRC1	HSVB FF	ROTOR EFFB Garsse	ć	FOTOR FSTTE	FOIOF PSIE	FHIE1	
							•	1		
					EDCE DNI		2	KETERS EADING EDGS,	FRAGED FARA INDICATES L	¥ -
				0.442986	0.423935	0.411289	7.425		0.900001	2
		•		0.417095	0.418777	0.422596	10.555		0.70000	t
				0.413362	0.468253	0.400454	12.410		0.500000	8
				.0.431174	0.385978	C. 324162.	16.549		0.300001	7
				0.446699	0.384290	L.A	22,969		0.10000	_
				 	1	1	DEG		FROM TIP	
	Q	ONEGAB	EF P	PSII	PSI	PHI2	LEV		PASS.HI.2	
0			62, 322	3223.470	3017.700	9172	3.805	0.820000	.9000	2
			62,322	3231.100	3008.500	0.373804	3.813	000096.0	0.70000	3
			62, 322	3228.700	3009.200	0.368627	3.407		0.500000	<u>س</u>
			62, 322	3236.580	3019,200	0.3546/7	2.634		0.300001	- ~
			LD/CU FT	G 7 M	6		LEG		FRCM TIP	,
REC	IISK		DENSITY	ΛĈ	RPM	PHI 1	INC	R1/RT	PASS.HI.1	
					ING EDGE		AMETERS E, 2 INDIC	LEMENT PAP.	ROTOR BLACE E	5-
	33.154	UX.	52,717	64.019	48.740	80.462	97.174	0.820000	0.90001	S
	44.304	99	48,933	57,299	49.927	75,999	101,603	0.860000	0.100000	=
	52.079	70.	46.915	54.275	47.322	72,008	106.354	0.900000	0.500000	3
	57.055	.89	54,751	54,335	38.434	66.595	111.450		0.300001	~
	62,104	9	62, 145	100.45	28.539	61,031	116, 108		0.10000	-
	7 T T T T T T T T T T T T T T T T T T T		2 K 1 1 U	503 503	4 i i	1 V	10 E		TROS TIP	
	WTHZ		BETA2	VTH 2	V 22	V 2	0.2		PASS.HI.2	
. 49			00000	000.0	46.421	46.421	97.174	0.820000	0.900001	· w
999			000.0	000.0	43,301	43.361	101.603	0.860.00	000000	าฮ
35			•	000.0	7	* · · · · · · · · · · · · · · · · · · ·	3000	0000000	00000	
2 0	111 450	110 780	000	000	$\sim c$	42.1121	110.108	0000000	0.10000	
,	FPS	1 F E	280	2 C C C C	S d d	Sec	PES.		FROM TIP	
מ	- 7 C C C C C C C C C C C C C C C C C C	- (c	DEIA	- 64.7	174		- t		PASS HI.	
6	E	2	E	# E					£ 5	
					ING EDGE	ιo.	E3.5		ROTOR BLACE E	8-
	BE 648 659 659 659 659 659 659 659 659 659 659	MTH1 116.108 111.450 106.354 101.603 97.174 87.174	FPS FPS 116.108 119.789 116.108 119.789 111.450 111.450 111.450 111.450 110.786 101.603 107.693 97.174 8.8 107.693 97.174 8.8 107.693 97.174 8.8 10.9280 9.280 9	DEG 123.478 116.108 0.000 119.789 116.108 0.000 119.789 106.354 0.000 110.786 101.603 0.000 110.786 101.603 0.000 110.786 101.603 0.000 110.786 101.603 0.000 110.786 101.603 0.000 107.693 97.174 BETAZ FPS FPS FPS 62.104 54.751 68.348 62.104 54.751 68.348 62.104 52.322 0.9280E-05 0.1665 62.322 0.9280E-05 0.1665 62.322 0.9280E-05 0.1455 62.322 0.9280E-05 0.1455 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456 62.322 0.9280E-05 0.1456	DEG 123 478 116.108 0.000 119.789 116.108 0.000 119.789 116.108 0.000 119.789 111.450 0.000 110.786 101.603 0.000 107.693 97.174 0.000 107.693 97.174 0.000 107.693 97.174 0.000 107.693 97.174 0.000 107.693 116.1663 0.000 107.693 116.1663 0.000 107.693 116.603 0.000 107.693 116.603 0.000 107.693 116.603 0.000 107.693 116.603 0.000 107.693 0.1663 0.000 107.693 0.633997 0.000 1000 1000 1000 1000 1000 1000 100	VTH1	TRALLING EDGE V1 V21 V21 VTH1 BETA1 W1 WTH1 V2 V2 VTH2 0.000 0.000 119.789 1116.108 3.561 43.561 0.000 0.000 119.789 1116.108 3.561 44.3561 0.000 0.000 110.786 101.603 4.163 44.163 0.000 0.000 107.693 97.174 4.21 46.421 0.000 0.000 107.693 97.174 5.421 46.421 0.000 0.000 107.693 97.174 5.421 48.361 0.000 0.000 107.693 97.174 5.421 48.361 0.000 0.000 107.693 97.174 5.595 36.43 54.385 54.094 62.145 68.401 57.065 5.999 49.927 57.299 48.933 66.750 44.304 5.999 49.927 57.299 48.933 66.750 44.304 5.999 49.927 57.299 58.717 58.947 33.154 5.999 49.927 57.299 62.322 0.9280E-05 0.1667 5.999 49.927 57.299 62.322 0.9280E-05 0.1667 5.999 49.927 57.299 62.322 0.9280E-05 0.1667 5.999 49.927 57.299 62.322 0.9280E-05 0.1667 5.999 49.927 57.299 62.322 0.9280E-05 0.1667 5.999 49.920 3228.700 3228.700 62.322 0.9280E-05 0.1667 5.999 49.908.500 3228.700 62.322 0.9280E-05 0.1667 5.909 49.920 0.960288 0.114914 0.6638997 5.905 0.418777 0.417095 1.004632 0.001883 0.639844 5.909 0.423935 0.442586 0.956994 0.006137 0.696267	TRALLING EDGE V1 V21 V21 VTH1 BETA1 W1 WTH1 V2 V2 VTH2 0.000 0.000 119.789 1116.108 3.561 43.561 0.000 0.000 119.789 1116.108 3.561 44.3561 0.000 0.000 110.786 101.603 4.163 44.163 0.000 0.000 107.693 97.174 4.21 46.421 0.000 0.000 107.693 97.174 5.421 46.421 0.000 0.000 107.693 97.174 5.421 48.361 0.000 0.000 107.693 97.174 5.421 48.361 0.000 0.000 107.693 97.174 5.595 36.43 54.385 54.094 62.145 68.401 57.065 5.999 49.927 57.299 48.933 66.750 44.304 5.999 49.927 57.299 48.933 66.750 44.304 5.999 49.927 57.299 58.717 58.947 33.154 5.999 49.927 57.299 62.322 0.9280E-05 0.1667 5.999 49.927 57.299 62.322 0.9280E-05 0.1667 5.999 49.927 57.299 62.322 0.9280E-05 0.1667 5.999 49.927 57.299 62.322 0.9280E-05 0.1667 5.999 49.927 57.299 62.322 0.9280E-05 0.1667 5.999 49.920 3228.700 3228.700 62.322 0.9280E-05 0.1667 5.999 49.908.500 3228.700 62.322 0.9280E-05 0.1667 5.909 49.920 0.960288 0.114914 0.6638997 5.905 0.418777 0.417095 1.004632 0.001883 0.639844 5.909 0.423935 0.442586 0.956994 0.006137 0.696267	PARAMETERS EDGE, Z INDICATES TRAILING EDGE FOR 116.108 110.409	FERENCY PARAMETERS LEADING EDGE, Z INDICATES TRALLING EDGE RI/RT RI/R

FLOW	W RATE # 7	_	2949.	GALLONS P	ER MINUTE	•					·;	:	. •
1 1	ROTOR BLADE E 1 INDICATES L	ELEMENT PARAME' LEADING EDGE,	METERS , 2 INDICAT	CATES TRAILING	ING EDGE								
	PASS.HT.1	R1/RT	101		127	VIRI		THE A	WTH1	BETAP 1	H	P1	STRTUBI
-	0.100000	-	115, 684	8	38 268	200		121 848	115 601	71 693	FT 170	FT 47	SQ LN
- ~	0.300001		111, 210	0 3	40.115	000.0		118.224		70.165	429, 183	404.175	4. 784 00
٣	0.500000	0	106.672	39.	39.818	0.000		113.861	106.672	69.531	428.083	403.444	4.58040
⇒ ι	0.70000	8.0	102.066	0 †	40.023	000.0	000.0	109,632	102.066	68.589	427.545	402.652	4.37690
٠	0.90001	0.820000	97.029	41.	41.597	000.0		105.570	97.029	. 79	429.593	462.703	4.08170
	PASS.HT.2	R2/RI	0.2		VZ2		9.5	¥2	WTH2	BETAP2	Н2	P2	STRTUB2
,	FFOR TIP	,	FPS	,	FPS			FPS	FPS	DEG		F.7	SQIN
- (0.10000	0 0	115.684	90	22.505			60.089	55.715	68.005	70	540.870	4.64150
7 ~	0.0000	<u>ه</u> د	106 633	α 1 α	31.834			6/6.64	50.833	57.00	604.830	532.430	784 00
າສາ	0.70000		102.066	77.691	47.848			62,943	47.003	40.495	617,340	523,540	4. 380 40
S	0.900001	0	97.029	81.	46.555	66.695	55,084	55.565	30.334	33,067	618,380	515.570	4.00130
ROTO 1 IN	R BLALE	ELEMENT PARAL LEADING EDGE	PARAMETERS EDGE, 2 INDICAT	ES T	PAILING EDGE								
- •	PASS.HI.1	R1/RT	INC	PHI 1	RPM	2.0	DENS	[A]	LSK	REC			
-	C.100000		1. 178	0	3006.000		LB/CU 62.	SQ FT/: 0.9280E-		+1E 07	٠		
رع د	0.30001	o o	4.305	0	3012.700		62.	0.9280E		12E 07			•
n at re	0.70000	0.0000	5.899	0.337226	3022.200	2951.050		0.9280E-05	-05 0.1477E	7 E 07			
n		•	•	•		066.6462	• 70	0.9780 E		7 E O /			
	PASS.HT.2 FROM TIP	R2/RT	DEC	PHI2	PSI	PSII	T T T	OMEGAB	ū	DELTA H	DELTA P	(TH/C)A	
٠- ر	0.100000		25, 655	0 0	0.406968		0		0.748113	176.260	135.253	0.03132	
4 m :	0.50000	0.00000	12.863	000	0.416550	0.448078	0.929638	0.068326	0.671649	181.877	124. 166	0.02050	
3. ₹U	0.900001	0.820000	6.287	00	0.433535		0		0.666113	189.795.	120.888	0.02448	
AV ER	AGED	PARAMETERS ES LEADING EDGE,	, 2 INDICAT	ES	TRAILING EDGE								
		ROTOR	7.0	FOTOR	ROTOR	HSVB	FRC1	C1	FRC2	RPMA	UTIA		UTZA
•	349040	0.421059	ESTIR 0.461873	1873 0.	EFF3	£1.	770-0-		-0.104 3	3014.459	FPS 118.377	118	FPS

TABLE XVI. - BLADE-ELEMENT DATA FOR CONFIGURATION 16

A3 ECADL CTOF, CTOF, CTOF, FICTBNT, FICTBNT, SEES. SECO. SEC	CLUBANCE,	(POTOK) AAILING EDGE	KAPPAZ SOLIDITY TNAX/C CHORD CAMBER DEGREES DEGREES	11.800 1.388560 0.056680 1.172900 58.500 4.106 1.432200 0.062880 1.172000 65.700 -3.600 1.479000 0.067520 1.172000 72.800 -11.800 1.526200 0.072880 1.172000 80.300 -19.760 1.581200 0.078280 1.172900 87.600	TIP2 NBLADES INCHES A SOCIOL
TONFIGURATICE 16 TONFIGURATICE 16 TENCH CHORD, 0.010-INCH EALTA DESIGN TIP D-FACTOR, ESIGN TIP D-FACTOR, ESIGN FLOW COMFFICIENT, INAFY. AND COMFFICIENT, AND COMFFICIE	NCH TIP DIAMBTER, I TIP CLEARANCE,	14 14	KAPPA2 DEGREES	11,800 4,100 -3,600 -11,809 -15,760	INCRES
HUB-TIP RATIO, 10-10-11-10-10	6 33 ECADLS, 9-T F10-1MCH RADIA CTOF, FICIENT,	METERS - BLADF EDGE, 2 INDICA			
	NASA CONFIGURATICA 10.85 HUB-TIP RATIO, 1.172-INCH CHORD, 0.72 DESIGN TIP D-FACUE E BLADE EROFILE, 0.5 DESIGN FLON COFF PRELIMINAFY.	GECMETRIC PASA ICATES LEADING		4.433600 4.298600 699 4.162600 69 4.028000 63.893000 67	

SETANG DEGREES 41.050 36.950 32.860 28.350 24.100

FLOW BATE # 1	_	2945.	GALLONS PE	ER MINJIE								
ROTOR BLACE I	ELEMENT PASAMI LEADING EDGE,	STERS 2 INDIC	N SE SE	RATLING EDGE								
PASS.HT.1 FROM TIP 0.099260 2 0.299259 3 0.500741 4 0.699259 5 0.899260	R1/PT 0.985111 0.924689 0.895111 0.865111	U1 FPS 97.108 93.993 90.990 '87.684	V1 FPS 48.518 52.567 51.444 51.656	VZ1 FPS 48.518 52.567 51.444 51.656	VTH1 FPS 0.000 0.000 0.000	BETA1 DEC 0.000 0.000 0.000 0.000	RPS 108.553 107.694 104.526 101.941 99.212	######################################	BETAP1 DEG 63.452 60.783 60.517 59.554 53.753	H1 ET 431.036 436.278 433.117 432.161	94. 454 394. 454 393. 335 392. 734 391. 650	STRTUB1 SQ IN 3.60880 3.65920 3.53030 3.23450
PASS.HT.2 FECM 0.095260 2 0.299259 3 0.500741 4 0.699259 5 0.899260	R2/8T 0.985111 0.924969 0.895111	02 FPS 97,103 93,993 90,990 87,684	V2 FPS 73.839 70.001 73.817 78.239	VZ2 FPS 442, 111 46, 395 53, 171 58; 223 61, 195	VTH2 FPS 60.653 52.417 51.204 52.338	BETA2 DEG 55.229 48.487 43.920 41.953	F2S F2S 62.298 66.409 68.216	WTH2 FPS 36. 454 41.576 39.786 35.547	BETAP2 U0.882 41.864 36.806 31.405	H2 529.940 515.810 520.550 529.100 544.050	P2 145.210 439.660 435.870 433.850 437.410	STRTUBS SQ IN 3.50460 3.65920 3.40400 3.19360
P BLACE DICATES	ELEMENT PASAM LEADING FEGE,	1 5 E E E	'n	503 5								
PASS.HI.1 FRCM TIP 0.299259 3 0.500741 4 0.699259 5 0.899260	0.985111 0.955111 0.924889 0.895111	1 NC DEG -6.848 -9.017 -8.683 -9.946	PHI1 0.492189 0.534162 0.522920 0.526120	2510.200 2506.000 2505.200 2500.200 2496.700	2952.430 2947.200 2949.600 2937.810	DENSITY LB/CU FT 62.306 62.306 62.306 62.306 62.306	SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	58 50 50 50 50 50 50 50 50 50 50	REC 2E 07 3E 07 0E 07 4E 07			
PASS.H1.2 FROM TIP 0.099260 2 0.299259 3 0.500741 4 0.699259 5 C.899260	32/8E 0.955111 0.955111 0.955111 0.865111	DEG 29.082 37.764 40.406 43.205 45.047	PHI2 0.427199 0.471452 0.540473 0.593006	PSI 0.327479 0.264220 0.238177 0.320355 0.374490	PSII 0.606139 0.508727 0.481379 0.477152	EFF 0.540269 0.513374 0.598649 0.671388	OMEGN3 0.459573 0.408340 0.342295 0.290898 0.230772	0.688096 0.591441 0.530274 0.493805	DELTA H 98.904 79.532 86.688 95.963	DELIA P 50.756 46.325 43.136 42.200 46.409	(TH/C) A 0.12511 0.10617 0.09265 0.08123	
AVERAGED FARAL 1 INDICATES L PHIE1 0.544320	LEADING EDGE, POTOS FSIE 0.315972	2 INDICA FOT PSI 0.5085	TES TR 02 13 50	AILING EDGE POTOR POTOR EFFE	HSVB 2T 432,654	FRC1 -0.057		FRC2	RPMA 503, 659	HT1A FPS 98,318	65	UTZA FPS .318

TABLE XVI. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 16

FLOW RATE # 2

FOTOR BLADE ELEMENT PARAMETERS
1 INDICATES LEADING EDGE, 2 INDICATES TRAILING EDGE

3, 60880 3, 65920 3, 40400 3, 23450 50 IN 50 IN 50 IN 50 IN 50 IN 1, 50460 3, 53030 3, 40400 3, 19360	: .		UT2A FPS
396.320 395.136 394.037 394.037 392.423 P2 P2 P2 P2 P1 P2 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	(TH/C)A	0.11946 0.10251 0.09234 0.08249	UT2A FPS 98.409
431,685 435,677 433,555 432,667 87 87 87 87 87 87 87 87 87 87 87 87 87	DELTA	F 00 C 00 F	UT1A FPS 98,409
63.842 60.907 59.907 59.117 BETAP2 BETAP2 38.737 40.026 35.422 29.138 24.570 REC	6E 07 7E 07 9E 07 3E 07 DELTA H	# 40 KJ KJ 60 40 ·	RPMA 505.959
27. 885. 887. 23.33.33.33.33.33.33.33.33.33.33.33.33.3	05 0.1126E 05 0.1097E 05 0.1069E 05 0.1043E	0.695881 0.606811 0.554933 0.533442 0.506186	FRC2 0.034 2
	0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	0.425312 0.383449 0.335172 0.288645 0.219325	ı
0.000 0.000	62.305 62.305 62.305 62.305 EFF		FRC1
0.000 0.000	2901.510 2891.970 2898.710 2902.920	0.624082 0.530591 0.504117 0.509736	HSV E FT 432,839
7.704 1.076 0.671 0.839 0.888 0.888 1.725 1.353 0.977 0.977	2507.200 2507.200 2500.200 2504.500		TRAILING EDGE ROTOR - EFFB 0.655237
47.704 4 51.076 5 50.671 5 50.889 5 50.888 5 75.953 4 72.013 7 72.013 5 80.097 8 80.097 8 81.611 6 81.611 6	0.518759 0.514648 0.517800 0.517412	0.438290 0.475758 0.534639 0.584146	
94.038 94.038 97.062 87.085 02.127 94.038 97.127 94.038 91.062 87.884 85.085 11ERS 2 INDIC		26.937 35.926 39.022 40.538	2 IND 0.5
0.985111 0.955111 0.955111 0.865111 0.985111 0.985111 0.955111 0.955111 0.895111 0.895111 0.895111 0.895111	C.955111 O.924889 O.895111 O.865111	0.985111 0.955111 0.924889 0.855111	METERS EADING EDGE, ROTOF PSIB 0.347545
1 0.095260 2 0.299259 3 0.50C741 0.699259 5 0.899260 1 0.099260 2 0.299269 3 0.50C741 4 0.699269 5 0.899269 5 0.899269 1 INDICATES L FROM TIP 1 INDICATES L	0.299259 0.500741 0.699259 0.899260	FRCM TIP 0.095260 0.299259 0.500741 0.699259	AVERAGED PARAMETERS 1 INDICATES LEADING RC PHIE1 0.535190 0.347
	2 6 3 5	- 2 E = 5	1 1

		ST RTUB1 SQ IN 3.60880 3.65920 3.53030 3.40400 3.23450	STRTUB2 SQ IN 3.50460 3.65920 3.53030 3.40400		UT2A FPS .380
	٠	P1 396.890 396.376 395.527 394.133	P2 FT 460.200 452.660 446.580 447.930	(TH/C) A 0.11233 0.09831 0.08779 0.06074	86
		H1 431.184 436.157 434.008 433.495	H2 FT 533.850 533.830 533.930 547.950 556.630	DELTA P 63.310 56.284 51.053 53.797 54.435	UT 1A FPS 98.380
		5ETAP1 DEG 64.142 61.685 61.331 60.251 59.483	BETAP2 DEG 39.187 39.681 35.405 28.824 23.938	REC 44E 07 23 E 07 22 D 07 72 D 07 40E 07 117.666 97.673 99.922 114.455	RPMA 2505.219
		FPS 96.926 93.907 91.008 88.060 85.136	#TH2 FPS 33.780 38.275 36.850 31.074 26.334	VISK 6-05 0.1134E E-05 0.1032E E-05 0.1092E E-05 0.1040E E-05 0.1040E E-05 0.1040E 0.620109 0.620109 0.620109 0.531400 12	FRC2
		#1 FPS 107.710 106.669 103.724 101.427 98.826	FPS 53.461 59.944 63.605 64.454 64.904	VISK SQ FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05 0.285891 0.365891 0.365891 0.259673 0.59673 0.50028 0.50028	·
		BETA1 DEG 0.000 0.000 0.000 0.000	BETA2 DEG 56.727 50.332 46.251 44.748	DENSITY LB/CU FT 62.305 62.305 62.305 62.305 62.305 0.616542 0.601541 0.652267 0.733829	FRC1 -0.059
	•	VTH1 FPS 0.000 0.000 0.000	VTH2 FPS 63.146 55.631 54.158 56.986 58.801	2859.600 2859.600 2857.090 2867.090 2865.260 2865.260 2865.260 0.51899052 0.518999052	HSVB FT 432,895
A MINUTE	ING EDGE	VZ1 FPS 46.976 50.595 49.761 50.328	VZ2 41.437 46.133 51.843 56.469	ALLING EDGE 11 RPM 45 2505.500 92 2503.700 69 2505.700 69 2505.200 12 2506.000 12 PSI 45 0.391064 17 0.325084 68 0.332038 92 0.380483 92 0.411013	
GALLONS PER	ATES TRAILING	V1 46.976 50.595 49.761 50.328 50.184	V2 FPS 72.528 72.271 74.972 80.225	ES TR PH 4 474 4 42115 - 5057 4 5057 4 6 6 6 6 6 6 6 7 6 6 6 6 6 7 6 6 6 6	ਲ -
2861.	PARAMETERS EDGE, 2 INDICATE	U1 FPS 96.926 93.907 91.008 88.060	U2 EPS. 96.926.926 93.907 91.008 88.060	EDGE, 2 INDICATES RT INC 11 -6.158 6.4 11 -6.158 0.5 11 -8.417 0.5 11 -8.417 0.5 11 35.581 0.4 11 35.581 0.4 11 35.581 0.4 11 35.581 0.4 11 43.638 0.6	i .
	ELEMENT PARAM LEADING EDGE,	81/RT 0.985111 0.924889 0.895111 0.865111	R2/RT 0.985111 0.955111 0.924869 0.895111	RHENT ADING 0.9851 0.98	ROTOF PSIE 0.368080
FLOW RATE # 3	ROTOR BLADE E	PASS.HT.1 FROK IIP 1 0.099260 2 0.299259 3 0.50741 4 0.699259 5 0.899260	PASS.HT.2 FFOM TIP 0.099260 2 0.295259 3 0.50C741 4 0.699259 5 0.899260	ROTOR BLACE EL 1 INDICATES LE PASS. HT.1 PRON TIP 0.095260 0.299259 0.899260 0.899260 0.99260 0.29529 0.999260 0.29529 0.999260 0.29529 0.999260 0.999269 0.999260 0.	PHIE1 0.528520

TABLE XVI, '- Continued, BLADE-ELEMENT DATA FOR CONFIGURATION 16

FLOW RATE # 4

10 1 5 4 5 9 9 9 3 1

	STRTUB1 SQ IN 3.60880 3.65920 3.53030 3.40400	STRTUB2 SQ IN 3.50460 3.65920 3.53030 3.40400 3.19360			UT2A FPS • 353
	299.278 397.793 397.228, 396.276	22 FT 456.720 459.280 455.440 455.680		0.10499 0.09089 0.07820 0.06412	1 86
	H1 431. 519 435. 431 434. 148 433. 660	H2 FT 555.690 540.200 542.390 556.240 563.510		DELTA P 67.442 61.487 58.212 60.794 59.887	UT18 FPS 98.353
	SETAP1 - DEG - 64 - 746 - 62 - 336 - 61 - 804 - 60 - 935 - 60 - 026	38.777 39.777 39.777 35.335 28.963 23.914	REC 248 07 16E 07 86E 07 83E 07 36E 07	DELTA H 124.171 104.769. 103.242 122.580 130.130.130.	RPMA 2504.540
	4781 FPS 96.558 93.880 90.917 89.246	HTH2 FPS 33.110 37.704 36.018 30.619	00000	D.718748 0.629066 0.576208 0.560479	FRC2
	752 106.762 105.097 103.158 100.960	82. 82.873 58.933 62.277 63.229 63.309	VISX SQ PT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-06	OMEGAB 0.373991 0.338760 0.283543 0.223988	ı
	DEC	85782 56.988 51.124 47.218 46.170 45.445	DENSITY LB/CU FT 62.304 62.304 62.304 62.304 62.304	0.652100 0.639155 0.637736 0.775525	PRC1
	VTB3 0.000 0.000 0.000 0.000	VTH2 63. u 49 56. 177 54. 899 57. 62 8	2V 6PK 2800.020 2803.690 2796.580 2814.070	PSII 0.637679 0.545871 0.5716534 0.523225	H5VB FT 432.949
ING EDGE	V27 45.543 49.213 48.741 49.047	VZ2 FPS 41.223 45.290 50.305 55.321 58.442	ING EDGE RPM 2496.000 2503.000 2503.200 2510.500 2510.500	PSI 0.415830 0.343896 0.360404 0.405775 0.430939	AILING EDGE ROTOR EFFR 0.720556
DICATES TRÀILING	V1 45.548 49.213 49.741 49.047	V2 75.664 72.169 74.800 79.884 83.299	PHIING PHII 0.464694 249 0.500679 250 0.497497 250 0.49894 250	PHI2 0.420565 0.460763 0.516834 0.561139	NDICATES TRAIL FOTOR PSIL3 S44816
AMETERS F; 2 INDIC	01 96.558 93.880 90.91 88.246	р р р р р р р р р р р р р		756.2571 26.5771 35.6777 38.935 40.763	2 T
LEMENT PAB EADING EDG	81/8T 0.985111 0.924889 0.695111	0.9851 0.9851 0.09851 0.8951 0.8651	LEADING ENGE. 1	82/8T 0.985111 0.955111 0.895111	METERS EADING EDGE ROTOR PSIE 0.392571
ROTOR BLADE E	PASS.HI.1 FROM TIP 0.095269 0.295259 0.5C0741 0.699259		1 INDICATES L PROS. HI.1 PROM TIP. 0.099260 2 0.299259 3 0.500741 4 0.699259 5 0.899260	PASS. HI. 2 FROM TIP 0.099260 0.299259 0.50C741 0.699259	1. INDICATES LE PHIE1
0.1	. Fama.	- 2 m = 12 m		~ 0 m ⇒ w	1.

FLOW RATE # 5		2722. GALL	GALLONS PER	R MINUTE	٠					.*		
ROTOR BLADE 1	ELEMENT PARAY LEADING EDGE,	ARAMETERS DGE, 2 INDICAT	SATES TRAILING	ING EDGE								
PASS.HT.1	R1/RT	נט		V Z 1	VIH 1	BETA 1	28	HTH1	BETAP 1	H	P.1	STRTUB1
~ `		FFS	-	EST OF	4 C	920	FPS	FPS	DEG	FT	FT	NI OS
-		93,563	, ,	44.54.	00.0	000.0	105.387	926.96	53.417	432.179	901	3.65920
3 0.500741		91.117	47	47.689		000.0	102.842	91,117	62.374	434,575	399.234	3. 530.30
_		85.035	7 11	47.666	000	000.0	100.111	88.035	61.567	434.144	398.836	3.40400
_	0.865111	85.238	ਤ	47.914	00.	000 0	97.782	85,238	60.659	434.297	398.620	3.23450
PASS.HT.2	R2/RT	0.2	-	V Z 2	VTH 2	BETA2	11.5	WTH2	BETAP 2	Н2	P 2	STRTUB2
FROM TIP		FES		FPS	FPS	DEG	P.P.S.	FPS	DE	£.	FF	н
		96.926	75.	39.045	64.348	58.752	50.850	32,577	39.840	566.730	478.690	3.50460
		93,.963	72.	44.572	56.584	51.772	58:171	37, 379	139.984	553,840	473.210	3.65920
3 0.500741	6.924889	91, 117		49.670	57.095	48.078	60.205	34.022	34.409	552,350	463.350	3.53030
		88.035	80.	53,364	59.796	48.253	60.376	28.240	27.888	564.020	454.200	3, 40400
٠		85.238	82.	55.743	60.670	47.421	60.921	24.568	23.783	570.150	164.650	3.19360
FOTOR BLADE E	LEMENT P	ABAMETERS DCE, 2 INDIC	ATES	TRAILING EDGE								
PASS.HT.1	R 1/F	INC	PHI 1	RPM	ΛĊ	DENS	V 1	VISK	REC			:
F 6		4 6	-	, , ,	G-2.3	LB/CU	SQ FT/5					
		0.10	0-483631	2505.200	2721.740	.79	0.92808					٠
0		(1)	₹.	2508,700	2726,860	·w	0.9280E-					
4 0.699259 5 0.899260	0.895111 0.865111	-6.533	0.484645	2504.500	2716.639 2726.080	62. 62.	0.9280E-05 0.9280E-05	-05 0.1054E -05 0.1029E	54E 07		٠.	
PASS.HT.2	E2 / BT	7 1	pH12	150	1120	ţs ts fu	E R C E W C		DEL TA	OFITA P	ATH ACLA	
•	1	. E		4	1100	;		3	;	1 (F.	u / ɔ / ;; ·	
1 0.099260	0.985111	28.040	0	0.447181			0.335891	0.740304	134.551	77.065	.0928	
	0 0		0 0	0.391782			0.274943	0.635247	117.854	72.404	.0735	
	5 6		5 C	0.530429			0.26/199	0.602271	129 876	64.116	764/0-0	
5 0.899260			0	0.450249	0.532734	0.845213	0.167439		135.853	66.030	1840	
AVERAGED FARA	METERS EADING EDGE,	Z IND	ICATES TRAILING	ING EDGE			-					
	# 0 T 0 P.	36	3070R	POTOR	HSVE		FRC1	F RC2	RPMA	U21A:	D	UTZA
0.502580	0.421790	0.557	ć	756660	7 t 5 t 7 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1 t 1	-0.061		-0.044	2506.580	98.433	. 98	.433

TABLE XVI. - Continued. BLADE-ELEMENT DATA FOR CONFIGURATION 16

ROTOR BLADE ELEMENT PARAMETERS 1 INDICATES LEADING EDGE, 2 INDICATES TRAILING EDGE

2654. GALLONS PER MINUTE

						0. = 0	\n - + +	
UT2A PPS 98.391	:				3, 53030 3, 40400 3, 19360	STRTUB2 SQ IN 3.50460 3.65920	3.65920 3.53030 3.40400 3.23450	STRTUB1 SQ IN
) .86		0.08770 0.08770 0.05416 0.05416			472.380 472.760 471.190	P2 FT #84.380 478.150	401.721 401.235 400.855	₽ B.
UT1A FPS 98.391		FT 81.946 76.429 71.145 71.905			910 170 560	H2 FT 890	436.267 434.514 434.701 434.408	H H
RPMA 2505.520	7		1123E 07 1105E 07 1073E 07 1048E 07	REC	35.033 26.826 21.962	BETAP2 DEG 44.077	63.326 63.013 62.055 61.054	BETAP 1 DEG
PRC2-0.066		0.772315 0.663929 0.624977 0.612064	00000	VISK	33.155 26.510 22.606	WTH2 FPS 33.030 36.692	93.850 90.873 87.972 85.017	WTH1 FPS
0-	:		50 FT/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	IA	57.757 58.742 60.445	#2 FPS #7.482 55.251	105.028 101.977 99.584 97.154	DE CHI
FRC1 -0.056	;		62.300 62.300 62.300 62.300 62.300 62.300	DENSITY	50, 670 49, 540 48, 069	BETA2 DEG 62.086 54.144	0,000	BETA1
HSVB PT 433.669	· ·	0.641411 0.555584 0.543323 0.559784 0.559784	2665.750 2643.230 2650.260 2657.290 2653.570	ΔÖ	57.719 61.463 62.411	VTH2 FPS 64.387 57.158	00000	VTH 1
ROTOR EPFB 0.783755	TRAILING EDGE	0.444004 0.397117 0.414588 0.464564 0.486903	2518.200 2502.200 2502.000 2502.700 2502.500	FRAILING EDGE	47.293 52.420 56.059	VZ2 F2S 34.112 41.309	47.148 46.276 46.668 47.022	VZV FPS
		0.344947 0.420397 0.481334 0.533369 0.570443	0.440606 0.479828 0.470982 0.474845 0.478482	E1 124			47.148 46.276 46.668 47.022	7 P V 1
ROTOR PSIIB 0.565466	2 INDICATES		66.144 66	EDGE, 2 INDICATES RT INC	90.873 87.572 85.017	U2 . FPS 97.417 93.850	93.850 90.873 87.972 85.017	EPS
FOTOR PSIB 0.443187	METERS EADING EDGE,	0.985111 0.955111 0.924889 0.895111	0.985111 0.955111 0.924889 0.895111	ELEMENT PAFAM LEADING EDGE,	0.924889 0.895111 0.865111	R2/RT 0.985111 0.955111	0.955111 0.924889 0.895111 0.865111	R1/RT
PHIB1.	VERAGED FARAMETERS INDICATES LEADING	FECM TIP 0.095260 0.299259 0.500741 0.699259	FROM TIP 0.099260 0.299259 0.500741 0.699259 0.899260	OTOR BLADE EI INDICATES LE PASS.HT.1	0.500741 0.699259 0.899260	PASS.HT.2 FECM TIP 0.099260 0.299259	0.295259 0.500741 0.699259 0.899260	PASS.HI.1 PROB TIP
:	A H			01				

PLOW RATE #		2575.	GALLONS PER	R MINUTE				-			.•	
ROTOR BLADE 1 INDICATES	ELEMENT PARAM LEADING EDGE,	PARAMETERS EDGE, 2 INDICAT	ATES TRALLING	ING EDGE						•		
PASS.HI.1	R1/RT	0.1	. v 1	VZ1	VTHI	BETA 1	- (WTH1	BETAP1	E	- d	STRTUB
1 O COGGEO	. 000 0	27 CO	Sdar	FPS	•	930	Tres	07 CO	DEG 646	FT 425 CEN	1.3	200
		050.40	27.1.2	45.055	•	000	100 088	97.030	60.330	436.028		3,6592
3 0.500741	0.924889	91, 117	44.856	44.956	000.0	000-0	101,559	91,117	63.790	435, 107	403.839	3, 5303
0.6992		87. 660	44.854	44.854	0	0000	98.647	87.860	62,955	434.967	403.702	3.4040
5 0.899260		85.296	45.690	.45.690	0.000	0.000	96.762	. 85, 296	61.824	34.	402.468	3,2345
PASS HT. 2	R2/RT	0.5	v 42	. VZ2	VTH.2	BETA 2	11.2	WTH2	BETAP2	Н2	P2	STRTUB
FROM . TIP		FPS	PPS	PPS	PPS	DEG	FPS	FPS	DEG	FI	FT	z os
:	0.985111	97,030	70,363	30,782	63.272	. 64.057	45.685	33,758	47.640	565.420	488.480	3,5046
		93.832	69.159	39.825	56.542	54.841	54.558	37.290	43.117	557.860	483.530	3.6592
0.50074	0.924889	-91, 117	74.313	46.066	58,311	51.691	56.554	32,805	35,456	564.580	478.760	230
392	0.895111	87.860	81,368	52.587	62.092	49, 738	58.561	25.768	26.105	580.820	477.930	# 0 # F
5 0.899260		85.296	85.344	56.625	63.852	48.433	60.249	21.443	20.747	589.210	476.020	3. 1936
HOTOR BLADE	ELEMENT PARAM LEADING EDGE,	PARAMETERS EDGE, 2 INDICATI	S	TRAILING EDGE					•	•	;	. 4
PASS.HI.1	R1/RT	INC	PHI 1	RPM	۸٥	DENSITY	Δ	ISK	REC			
FROM TIP		DEC			W45.	LB/CU FT	\sim	ပ္ထ			٠.	,
		-3.764	•	2508.200	2579.340	62, 302	m 6	5.5	13E 07		· · · · · · · · · · · · · · · · · · ·	
		- 5. 449	3	501	0/7:9/67	62.302	Ň.	ζ.				
.1 m =		15.410	45531	508.	2570.940	62.302		מי מ		•	•	
5 0.899260	0.865111	-6.076	7 7	2510.700	2581.430	62.302	0.9280E-C	2 50	0.1018E 07			
PASS.HT.2	R2/RT	CEV	PHI2	PSI	PSII	EFF	OMEGAB	Q	DEL'TA H	DELTA P	(TH/C) A	
	•	CEG							T.d	FT	-	
		35.840	•	0.440691	0.632815	0.696397	0.333176		132.884	83,512	0.08083	,
2 0.299259		39.017	•	0.406141		0.736839	0.255//2		121.832	79.049	0.06518	-
,		900-66	, ,	6202679.0		0.764031	0.222303		115 052	176.47	0.00127	
5 0.899260	0.865111	40.441	0.574321	0.510695	56026	0.911521	0.102934	0.582914	154.300	73.552	0.03044	٠,
AVERAGED PARAMETERS	AMETERS LEADING EDGE,	, 2 INDICAT	ATES TRAILING	ING EDGE	•							
	ROTOR	P.O.		ROTOR	HSVB	PRC	C1	FRC2	RPMA	UTIA		UT 2A
PHIE1 0.475640	PSIE 0.458807	PS 0.567	FSIIB 67056 0.1	EFFB 809103	FT 434.009	-0.061		-0.061	2505. 759	FPS 98.401	. 98.	FPS 401
		•		:	}: : :							

TABLE XVI. - Continued, BLADE-ELEMENT DATA FOR CONFIGURATION 16

ROTOR BLADE 1 INDICATES	ELEMENT PAR! LEADING EDGE	PARAMETERS EDGE, 2 INDICATES	ATES TRAILING	ING EDGE					:	,		
PASS.HT.1 FROM TIP	R1/RT	U 1	V1 PPS	VZ1 FPS	VTH 1 FPS	BETA 1 DEG	FPS	WTH1 FPS	BETAP 1 DEG	FT	1 d g	STRTUB1 SO IN
	0	97.069	40.920	40.920	0.000	00000	105.342	97.069	67.142	432.938	406.916	3.60880
2 0.299259	0	94.150	43.809	43.809	00000	000 0	103.844	94.150	65.047	436.266	406.441	3,65920
		90.826	43.688	43.688	00000	000.0	100.787	90.826	64.312	435.274	405,613	3,53030
	0	88.141	43.973	43.973	0.000	000.0	98.501	8	63.486	Ġ	405.038	3. 4 04 00
		85.058	44.269	44.269	0.000	0.000	95.888	85.058	62,505	435.089	404.634	3, 23450
PASS.HT.2	R2/RT	U 2	V 2	V Z 2	VTH2	BETA2	11.2	WTHZ	BETAP2	Н2	P.2	STRIUBS
FROM TIP		FPS	FPS	FPS	FPS	DEG	PPS	PPS	DEG	PT	14	SO IN
		97.069	69.865	25,939	63.793	67,873	42,191	33.275	52,063	\sim	494.580	3, 50460
		94.150	69.69	38.684	57.943	56.272	52.985	36.208	43,106	562,360	486.930	3,65920
		90.826	73.073	44.596	57.886	52,389	55.442	32.940	36,451	569.410	486.430	3,53030
4 0.699259	0.895	88.141	82.116	51.770	63.741	50.917	57.231		25.235	583,530	478.740	3. 40400
		85, 056	86.038	56.599	64.801	48,865	60.115	20.257	19.692	595.050	480.010	3.19360
1 INDICATES	LEADING EDGE	EDGE, 2 INDICATES	TR	AILING EDGE								
PASS.HI.1	R1/RT	INC	PHI 1	RPM	ΛÕ	DENSITY		VISK	REC			
		CEG			5 P R	LB/CU FT	SQ FT/SE					
1 0.099260	0	3, 158	0.415281	2509.200	2510.070	62,301	0.9280E-05	-05 0.1109E	19E 07			
	ပ	-4.753	0.444417	2510.200	2503.060	62, 301	0.9280E-					
	0	-4.888	0.444875	2500, 700	2488.640	62,301	0.9280E-					
	0.89	-5. C14	0.446568	2507.500	2517,400	62.301	0.9280E-					
		-5,395	0.450251	2503.700	2498.700	62.301	0.9280E-					
PASS.HT.2	R2/RT	. DEV	PHI2	PSI	IISd	EFF	OMEGAB	Ω	DELTA H	DELTA P	(TH/C) A	
FROM TIP		DEG			•				FT	FT	•	
1 0.099260	~	40.263	0.263243	0.448484	0.637773	0.703204	0.331242	0.817540	135,342	87.664	0.07333	
	0	30.68	0.392429	0.417506	0.561414	0.743669	259353	0.684557	126.094	80.489	0.06610	
	_	40.051	0.454123	0.447515	0.545182	0.820853	185445	0.644071	134.136	80.817	0.05043	
	9.0	37.035	0.525744	0.492562	0.579423	0.850090	173610	0.630699	148.442	73.702	0.05138	
9.0		39, 392	0.575661	0.532396	0.570177	0.933738	179443	0.586770	159.961	75.376	0,02365	•
AVERAGED FARAMETERS 1 INDICATES LEADING	AMETERS LEADING EDGE	E, 2 INDICATES	E	AFLING EDGE	•							
:								•				
FHIE	ROTOF	•	ROTOR ESIIB	ROTOR EFFB	HSVB	H .	FRC1	FRC2	RPMA	PPS		UT 2A P PS
0.462310	0.473116	,	O	.824739	434.228	090*0-		. 070.0-	2506.259	98.421	86	421
•												

		STRTUB1 SQ IN 3.60880 3.65920 3.53030 3.40400	STRTUB2 SQ IN 3.50460 3.65920 3.50400 3.19360	•		•	≪ v3 c0
		P1 S FT FT 403.444 3 405.987 3 406.887 3	P2 S P495.000 3 490.060 3 485.660 3 483.520 3		(TH/C) A 0.07165 0.06774 0.05744 0.04162	Ģ.	UT2A FPS 98.318
		H1 433.725 436.516 435.630 435.363 435.330	H2 FT 66.820 64.290 73.310 89.060 01.230	**************************************	DELTA P 86.556 82.546 78.673 76.703		UT1A FPS 98.318
		BETAP1 DEG 67.435 65.346 64.783 63.979 63.048	BETAR2 DEG 55.335 44.370 44.598 24.595 18.665	REC 06E 07 90E 07 61E 07 01E 07	DELTA H 133.095 127.774 137.680 153.697		RPMA 2503.640
		HTH1 FPS 97.061 94.124 91.164 87.684	WTH2 FPS 33.032 34.981 31.079 23.696 19.414	SEC -05 0.1106E -05 0.1090E -05 0.1061E -05 0.1061E -05 0.1001E	0.837253 0.716345 0.658411 0.629969		FRC2
		FPS 105.108 103.564 100.767 97.575 95.098	#2 F95 40.161 50.024 54.734 60.663	VISK SQ FI/SEC 0.9280E-05 0.9280E-05 0.9280E-05 0.9280E-05	OMEGAB 0.349852 0.271454 0.206397 0.135842		
		BETA1 DEG 0.000 0.000 0.000	BETA2 DEG 70.366 56.842 53.136 50.962 48.672	DENSITY LB/CU FT 62,301 62,301 62,301 62,301	D.689041 0.738492 0.808698 0.881352 0.963461		FRC1-0.059
		VTH1 FPS 0.000 0.000 0.000	VTH 2 64, 029 59, 143 60, 085 63, 988 65, 355	2437.690 2457.550 2457.550 2462.610 2452.320 2444.270	PSII 0.640177 3.573202 0.563797 0.584702 0.577014		HSVB FT 434.604
R MINUTE	AILING EDGE	VZ1 40.333 43.203 42.931 42.806 43.103	VZ2 PPS 22.842 35.759 45.054 51.887 57.473	RPM 2509.000 2509.500 2510.000 2494.500 2495.200	PSI 0.441108 0.453305 0.455941 0.515328	ING EDGE	ROTOR EFFB 838093
GALLONS PE	ATES TR	V1 FPS 40.333 43.203 42.931 42.806	FPS 67.981 69.113 75.101 82.332 87.031 ATES TRAILING	PHI1 0.409359 0.438365 0.435554 0.436982	PHI2 0.231837 0.362858 0.457090 0.529682 0.586537	ATES TRAILING	FOTOR FSITB 82237 0.
2451.	PARAMETERS EDGE, 2 INDIC	U1 FPS 97.061 94.124 91.164 87.684	U2 FPS 97.061 94.124 91.164 87.684 84.769 FAMETERS GE, 2 INDICA	1NC -2.665 -4.454 -4.417 -4.5417	DEV DEG 43.535 40.270 38.198 36.345	E, 2 INCIC	FS FS 0.582
_	ELEĤENT PARJ IEADING EDGI	R1/RT 0.985111 0.924889 0.895111	/RT 1111 1111 339 1111 FA	R1/RT 0.985111 0.954889 0.895111	R2/RT 0.985111 0.954889 0.954889 0.865111	90	ROTOR PSIE 0.487968
OW RATE # 9	ROTOR BLADE F	PASS.HT.1 FECM TIP 0.095260 0.299259 0.50C741 0.699259	PASS.HI.2 PROK. TIP 0.099260 0.299259 0.50C741 0.699259 0.899260 rtor blade e	FROM TIP 0.099260 0.299259 0.500741 0.699259	PASS. HT.2 FROM TIP 0.099260 0.295259 0.50C741 0.699259	ERAGED FARA INDICATES L	PHIE1 0. 453060
FLOW	301 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- a m a m	. F0m=s	AV E	. !

TABLE XVI. - Concluded. BLADE-ELEMENT DATA FOR CONFIGURATION 16

ROTOR BLADE ELEMENT PARAMETERS

	STRTHB1 SQ IN 3.60880 3.65920 3.53030 3.40400 3.23450	STRTUB2 SQ IN 3.50460 3.65920 3.53030 3.19360					UTZA Fes .468
TTE	#11.662 #11.562 #11.513 #10.269	P2 FT 500.990 491.970 486.130 486.900	. '	*.	0.07613 0.07873 0.06750 0.04614 0.01896		UT F 98.
• .	H1 434,803 437,664 437,068 437,081	H2 FT 580.150 569.330 580.370 598.100			DELTA P 89.323 80.457 76.601 77.056		UI1A FPS 98.463
	387AP1 68.336 66.464 66.064 64.759	BETAP2 52.855 44.123 32.072 22.050 17.504		9EC 00E 07 81E 07 44E 07 25E 07 62E 06	DELTA H FT 145.357 131.666 143.302 161.019		RP#A 2507.479
	#TH1 FPS 97, 146 90, 681 88, 106	WEH2 29.313 21.600 27.048 21.114		0.10	D 0.891860 0.770630 0.703390 0.647652 0.606721		FRC2 • 041
	7104.530 102.726 99.213 97.406	#2 36.77# 45.389 50.940 56.239		VISK 50 PT/SEC 0.9290E-05 0.9280E-05 0.9280E-05 0.9280E-05	OMEGAB 0.350165 0.314162 0.235621 0.152147		P
	DETA1 DEG 0.000 0.000 0.000	BETA2 DEG 71.874 62.496 55.849 52.114		DENSITY LB/CU FT 62.300 62.300 62.300 62.300	EFF 3.709696 0.716753 0.799031 0.877715 0.951262		FRC1 -0.041
•	VTH1 FPS 0.000 0.000 0.000 0.000	VTH2 FPS 67.838 62.580 63.632 65.992		2302.740 22302.740 2230.020 2259.820 2312.670	PSII 0.677620 0.600252 0.609219 0.593751		HSVB FT 435,799
ING EDGE	VZ1 FPS 38.588 41.022 40.252 40.252	V ZZ 22. 205 32. 205 32. 583 43. 165 52. 126	ING EDGE	2511.200 2511.600 2496.700 2506.500	PSI 0.43090¢ 0.435679. 0.479629 0.534721	ING EDGE	ROTOR EFFB 831856
ATES TRAILING	71 38.588 41.022 40.252 41.537	71.375 71.375 70.555 76.891 84.883	ATES TRAILI	PHE1 0.391306 0.416012 0.410546 0.421992 0.415106	PHI2 0.225174 0.330433 0.440256 0.529572 0.566874	ATES TRAILE	TOR IIB 396 0.8
E, 2 INDICAT	111 FPS 97, 146 94, 180 90, 681 88, 106	97.146 94.18C 90.681 88.106	TERS 2 INDIC	INC EEG -3.3664 -3.736 -3.741 -3.741	DEV DEG u1.055- u0.023 35.672 33.850 37.204	2 INDICATE	30T01 FSIII 0.610396
EADING EDGE	81/2T 0.985111 0.954889 C.895111 0.865111	a2/8T 0.985111 0.955171 0.924889 0.895111	ELEMENT PABAME LEADING FDGE,	0.985111 0.924889 0.895111 0.895111	R2/3T 0.985111 0.954889 0.895111	METERS EADING EDGE,	acros PSIE 0.507762
NDICATES	PASS.HI.1 FECM TIP 0.095269 0.299259 0.50C741 0.699259	PASS.HT.2 PROM TIP 0.099260 0.299259 0.500741 0.699259	R BLADE DICATES	PASS.HT.1 PECM TIP 0.099260 0.299259 0.50C741 0.699259	FROM TIP 0.099260 0.299259 0.500741 0.699259	ERAGED FARAM INDICATES LE	FHIB1
1	2437	- 2 E # 5	ROTO 1 IN	- 2 m a s	± u w a rù	AVE	0

REFERENCES

- Crouse, James E.; and Sandercock, Donald M.: Design and Overall Performance of an Axial-Flow-Pump Rotor With a Blade Tip Diffusion Factor of 0.43. NASA TN D-2295, 1964.
- 2. Crouse, James E.; and Sandercock, Donald M.: Blade-Element Performance of 0.7 Hub-Tip Radius Ratio Axial-Flow-Pump Rotor With Tip Diffusion Factor of 0.43. NASA TN D-2481, 1964.
- 3. Miller, Max J.; and Crouse, James E.: Design and Overall Performance of an Axial-Flow Pump Rotor With a Blade-Tip Diffusion Factor of 0.66. NASA TN D-3024, 1965.
- 4. Miller, Max J.; and Sandercock, Donald M.: Blade Element Performance of Axial-Flow Pump Rotor With Blade Tip Diffusion Factor of 0.66. NASA TN D-3602, 1966.
- 5. Urasek, Donald C.: Design and Performance of a 0.9 Hub-Tip-Ratio Axial-Flow Pump Rotor With a Blade-Tip Diffusion Factor of 0.63. NASA TM X-2235, 1971.
- 6. Urasek, Donald C.: Design and Performance of an 0.8-Hub-Tip-Ratio Axial-Flow Pump Rotor with a Blade-Tip Diffusion Factor of 0.55. NASA TM X-2485, 1972.
- 7. Johnsen, Irving A.; and Bullock, Robert O.; eds.: Aerodynamic Design of Axial-Flow Compressors. NASA SP-36, 1965.
- 8. Kavanagh, P.; and Miller, M. J.: Axial-Flow Pump Design Digital Computer Program. Rep. ISU-ERI-AMES-66300, Iowa State Univ. (NASA CR-111574), Sept. 1970.
- 9. Crouse, James E.; Janetzke, David C.; and Schwirian, Richard E.: A Computer Program for Composing Compressor Blading from Simulated Circular-Arc Elements on Conical Surfaces. NASA TN D-5437, 1969.
- 10. Kavanagh, P.; Miller, M. J.; and Serovy, G. K.: Application of Blade-Element Design Methods to the Design of Highly Loaded Pump Stages. Trans IAHR 5th Symposium for Hydraulic Research, pt. 1, 1970.
- 11. Crouse, James E.; Montgomery, John C.; and Soltis, Richard F.: Investigation of the Performance of an Axial-Flow-Pump Stage Designed by the Blade-Element Theory Design and Overall Performance. NASA TN D-591, 1961.
- 12. Ross, C. C.; and Banerian, Gordon: Some Aspects of High-Suction Specific-Speed Pump Inducers. Trans. ASME, vol. 78, no. 8, Nov. 1956, pp. 1715-1721.

- 13. Taylor, W. E.; Murrin, T. A.; and Colombo, R. M.: Systematic Two-Dimensional Cascade Tests. Vol. 1: Double Circular-Arc Hydrofoils. Rep. UARL-H 910254-50, United Aircraft Corp. NASA CR-72498), Dec. 19, 1969.
- 14. Miller, M. J.; Okiishi, T. H.; Kavanagh, P.; and Serovy, G. K.: Application of Blade-Element Techniques to Design and Performance Prediction Problems for Axial-Flow Turbomachinery. Rep. ISU-ERI-AMES-77900, Iowa State Univ., July 1970.

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

FIRST CLASS MAIL

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546