# **VİTMO**

#### ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

#### ОТЧЕТ

# по домашнему заданию №1

Расчет цепей постоянного тока

Группа Р3331

Вариант 002

Выполнил(а): Чураков Александр Алексеевич

Дата сдачи етчета: 21.10.2025 24.10.2025г

Дата защиты:

срок сдачи Контрольный защиты: 27.10.2025

Количество баллов: 13 баллов / 26.10.2025г

Основания для снижения баллов: ошибки вычисления

| Вари- | Схема | Параметры источников энергии: $J$ [A], $E$ [B] |                      |                             | Параметры резисторов<br>[Ом] |   |   |   |   |   |
|-------|-------|------------------------------------------------|----------------------|-----------------------------|------------------------------|---|---|---|---|---|
|       |       |                                                |                      |                             | 1                            | 2 | 3 | 4 | 5 | 6 |
| 002   | 1     | $\Psi J_6 = 0,15$                              | $\rightarrow E_3=12$ | <b>←</b> E <sub>2</sub> =28 | 6                            | 8 | 7 | 4 | 1 | - |



## Задание



Дано:

 $J_6 = 0.15 A$ 

 $E_3 = 12 A$ 

 $E_2=28\,A$ 

 $R_1 = 6 \text{ Om}$ 

 $R_2 = 8 \text{ Om}$ 

 $R_3 = 7 \text{ Om}$ 

 $R_4 = 4 \, \text{Om}$ 

 $R_5 = 1 \, \text{Om}$ 

НАЙТИ: значения всех неизвестных токов, используя: I) законы Кирхгофа, II) метод контурных токов <u>или</u> метод узловых напряжений; III) значение тока любой ветви, содержащей источник ЭДС, методом эквивалентных преобразований <u>или</u> методом эквивалентных преобразований <u>или</u> методом эквивалентного генератора; IV) значение напряжения, приложенного к источнику тока; значения мощностей всех источников энергии, всех резистивных элементов, суммарной мощности источников цепи и суммарной мощности потребителей цепи.

# Решение:

## **I Расчет по законам Кирхгоффа**



Дано:

Дано:  $J_6 = 0.15 A$   $E_3 = 12 A$   $E_2 = 28 A$   $R_1 = 6 OM$   $R_2 = 8 OM$   $R_3 = 7 OM$   $R_4 = 4 OM$   $R_5 = 1 OM$ 

Найти: значения всех неизвестных токов, используя законы Кирхгофа.

#### Решение



- 1. Определение топологии цепи.
  - общее кол-во ветвей в цепи  $p^* = 6$ .
  - кол-во ветвей с источниками тока = 1
  - кол-во ветвей с неизвестными токами  $p=p^*-p_{\scriptscriptstyle \mathrm{HT}}=6-1=5$
  - кол-во узлов q = 4
  - кол-во независимых контуров n = p (q 1) = 5 (4 1) = 2
  - кол-во уравнений по 3К1  $m_1 = q 1 = 3$
  - кол-во уравнений по 3К2  $m_2 = n = 2$

2. Системы уравнений по законам Кирхгофа





$$\begin{pmatrix} -1 & 0 & 0 & -1 & 0 \\ 1 & 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & 8 & 7 & 0 & 1 \\ 6 & -8 & 0 & -4 & 0 \end{pmatrix}^{-1} \begin{pmatrix} -0.15 \\ 0 \\ 0 \\ 40 \\ -28 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 0 & 0 & -1 & 0 \\ 1 & 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & 8 & 7 & 0 & 1 \\ 6 & -8 & 0 & -4 & 0 \end{pmatrix}^{-1} \cdot \begin{pmatrix} -\frac{3}{20} \\ 0 \\ 0 \\ 40 \\ -28 \end{pmatrix} = \begin{pmatrix} -\frac{293}{560} \\ \frac{6207}{2240} \\ \frac{1007}{448} \\ \frac{377}{560} \\ \frac{4699}{2240} \end{pmatrix}$$

### Ответ:

 $I_1 = -0.523 A$ 

 $I_2 = 2,771 A$ 

 $I_3 = 2,248 A$ 

 $I_4 = 0,673 A$ 

 $I_5 = 2,098 A$ 

### На Расчет методом контурных токов

Дано:

 $J_6 = 0.15 A$ 

 $E_3 = 12 A$ 

 $E_2^{\circ} = 28 A$ 

 $R_1 = 6 \text{ Om}$ 

 $R_2 = 8 \text{ Om}$ 

 $R_3 = 7 \text{ Om}$  $R_4 = 4 \text{ Om}$ 

 $R_5 = 1 \, \text{Om}$ 

Найти: значения всех неизвестных токов, используя МКТ.

#### Решение





Ответ:

 $I_1 = -0.523 A$ 

 $I_2 = 2,771 A$ 

 $I_3 = 2,248 A$ 

 $I_4 = 0,673 A$ 

 $I_5 = 2,098 A$ 

## Ша Расчет методом эквивалентных преобразований

Дано:

 $J_6 = 0.15 A$ 

 $E_3 = 12 A$ 

 $E_2 = 28 A$ 

 $R_1 = 6 \text{ Om}$ 

 $R_2 = 8 \text{ Om}$ 

 $R_3 = 7 \text{ Om}$ 

 $R_4 = 4 \text{ Om}$ 

 $R_5 = 1 \text{ Om}$ 

Найти:

Значение тока  $I_3$  используя МЭП





 $I_3 = \frac{1827}{800} = 2,284 A$  $\left(1 - \frac{2,248}{2,284}\right) * 100 = 1,576\%$ 

Сила тока, рассчитанная данным методом, отличается от силы тока, полученной методом контурных токов на 1.5~%

IV Баланс мощностей



Дано:

$$J_6 = 0.15 A$$

$$E_3 = 12 A$$

$$E_2 = 28 A$$

$$R_1 = 6 \text{ Om}$$

$$R_2 = 8 \text{ Om}$$

$$R_3^2 = 7 \text{ Om}$$

$$R_4^3 = 4 \text{ Om}$$

$$R_5 = 1 \text{ Om}$$

$$I_1 = -0.523 A = -\frac{293}{560} A$$

$$I_2 = 2,771 A = \frac{6207}{2240} A$$

$$I_3 = 2,248 A = \frac{1007}{448} A$$

$$I_4 = 0.673 A = \frac{377}{560} A$$

$$R_5 = 1 \text{ OM}$$

$$I_1 = -0.523 A = -\frac{293}{560} A$$

$$I_2 = 2.771 A = \frac{6207}{2240} A$$

$$I_3 = 2.248 A = \frac{1007}{448} A$$

$$I_4 = 0.673 A = \frac{377}{560} A$$

$$I_5 = 2.098 A = \frac{4699}{2240} A$$

Найти: значение напряжения, приложенного к источнику тока; значения мощностей всех источников энергии, всех резистивных элементов, суммарной мощности источников цепи и суммарной мощности потребителей цепи.

#### Решение:



1) Для контура (\*): 
$$U_J + I_4 R_4 - I_5 R_5 = 0$$

$$U_J = I_5 R_5 - I_4 R_4 = \left(\frac{4699}{2240}\right) * 1 - \left(\frac{377}{560}\right) * 4 = -\frac{1333}{2240} \text{BT} = -0,595 \text{ BT}$$
2)  $P_{J_6} = U_J J_6 = \left(-\frac{1333}{2240}\right) 0,15 = -\frac{3999}{4480} \text{ BT} = -0,0892634 \text{ BT}$ 

Неверно!

$$P_{E_2} = E_2 I_2 = 28 * \left(\frac{6207}{2240}\right) = \frac{6207}{80} \text{Bt } 77,5875 \text{ Bt}$$

$$P_{E_3} = E_3 I_3 = 12 * \left(\frac{1007}{448}\right) = \frac{3012}{112} \text{Bt} = 26,973 \text{ Bt}$$

Неверно!

$$P_{R_1} = R_1 I_1^2 = 6 * \left(-\frac{293}{560}\right)^2 = \frac{257547}{156800} \text{BT} = 1,6425 \text{ BT}$$
 $P_{R_2} = R_2 I_2^2 = 8 * \left(\frac{6207}{2240}\right)^2 = \frac{38526859}{627200} \text{BT} = 61,427 \text{ BT}$ 

$$P_{R_3} = R_3 I_3^2 = 7 * \left(\frac{1007}{448}\right)^2 = \frac{1014049}{28672} \text{BT} = 35,367 \text{ BT}$$

$$P_{R_4} = R_4 I_4^2 = 4 * \left(\frac{377}{560}\right)^2 = \frac{142129}{78400} \text{BT} = 1,813 \text{ BT}$$

$$P_5 = R_4 I_4^2 = \left(\frac{4699}{2240}\right)^2 = \frac{22080601}{5017600} \text{BT} = 4,4 \text{ BT}$$

$$3) P_{\text{M}} = P_{J_6} + P_{E_2} + P_{E_3} = -\frac{3999}{4480} + \frac{6207}{80} + \frac{3012}{112} = \frac{26046597}{251440} \text{BT} = 103,58971 \text{ BT}$$

$$P_{\text{H}} = \sum_{i=1}^{5} P_{R_i} = \frac{257547}{156800} + \frac{38526859}{627200} + \frac{1014049}{28672} + \frac{142129}{78400} + \frac{22080601}{5017600} = \frac{16409119}{156800} \text{BT} = 104,65 \text{ BT}$$

$$\left(1 - \frac{P_{\text{M}}}{P_{\text{H}}}\right) * 100 = 1,013\%$$

Мощность нагрузки отличается от мощности потребителя на 1%. Баланс мощностей имеет место.

## Ответ:

$$I_1 = -0.523 A$$
  
 $I_2 = 2.771 A$   
 $I_3 = 2.248 A$   
 $I_4 = 0.673 A$   
 $I_5 = 2.098 A$ 

$$P_{J_6} = -0.0892634 \, \mathrm{BT}$$
 $P_{E_2} = 77.5875 \, \mathrm{BT}$ 
 $P_{E_3} = 26.973 \, \mathrm{BT}$ 
 $P_{R_1} = 1.6425 \, \mathrm{BT}$ 
 $P_{R_2} = 61.427 \, \mathrm{BT}$ 
 $P_{R_3} = 35.367 \, \mathrm{BT}$ 
 $P_{R_4} = 1.813 \, \mathrm{BT}$ 
 $P_5 = 4.4 \, \mathrm{BT}$ 
 $P_{\Pi} = 103.58971 \, \mathrm{BT}$ 
 $P_{\Pi} = 104.65 \, \mathrm{BT}$