- STM32CubeMX
- STM32용 Base 코드 자동 생성 툴

- STM32CubeMX
- STM32용 Base 코드 자동 생성 툴

- STM32CubeMX
- STM32용 Base 코드 자동 생성 툴

- STM32CubeMX
- STM32용 Base 코드 자동 생성 툴

- STM32CubeMX
- STM32용 Base 코드 자동 생성 툴

- STM32CubeMX
- 사용자의 코드는 /*USERCODE*/ 주석 사이에 작성해야 한다.

추후 설정 변경시에, CubeMX
 는 이러한 주석 사이의 코드들
 은 변경하지 않은 채 나머지를
 수정한다.

```
main.c x
    int main(void)
       /* USER CODE BEGIN 1 */
       /* USER CODE END 1 */
      /* MCU Configuration---
      /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
      HAL Init();
       /* USER CODE BEGIN Init *
       /* USER CODE END Init */
      /* Configure the system clock */
      SystemClock Config();
      /* USER CODE BEGIN SysInit */
      /* USER CODE END SysInit */
      /* Initialize all configured peripherals */
      /* USER CODE BEGIN 2 */
       /* USER CODE END 2 */
      /* USER CODE BEGIN WHILE */
      while (1)
        /* USER CODE END WHILE */
        /* USER CODE BEGIN 3 */
       /* USER CODE END 3 */
       * @brief System Clock Configuration
```

- STM32CubeMX
- Nucleo를 연결하고 Download and Debug를 눌러 업로드 확인

- GPIO(General Purpose Input Output)
- 가장 기본적인 범용 입/출력 기능
- 아두이노의 digitalWrite, digitalRead에 대응되는 기능

[Output Mode]

- 특정 핀으로 High Voltage(3.3V) 또는 Low Voltage(0V)를 출력한다.

[Input Mode]

- 특정 핀으로 들어오는 전압이 High Voltage인지, 또는 Low Voltage인지 알아낸다.
- High Voltage와 Low Voltage는 특정 Threshold를 기준으로 한다.

GPIO(General Purpose Input Output)

Table 56. I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	FT, FTf, TTa and NRST I/O input low level voltage	1.7 V≤V _{DD} ≤3.6 V	-	-	0.35V _{DD} -0.04 ⁽¹⁾ 0.3V _{DD} ⁽²⁾	
	BOOT0 I/O input low level voltage	$1.75 \text{ V} \le \text{V}_{DD} \le$ 3.6 V, $-40 \text{ °C} \le \text{T}_{A} \le$ 105 °C	-	-	0.1V _{DD} +0.1 ⁽¹⁾	٧
		$1.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \\ 0 \text{ °C} \le \text{T}_{A} \le 105 \text{ °C}$	-			
V _{IH}	FT, FTf, TTa and NRST I/O input high level voltage ⁽⁴⁾	1.7 V≤V _{DD} ≤3.6 V	0.45V _{DD} +0.3 ⁽¹⁾	-	-	٧
			0.7V _{DD} ⁽²⁾			
	BOOT0 I/O input high level voltage	1.75 V≤V _{DD} ≤3.6 V, – 40 °C≤T _A ≤105 °C	0.17V _{DD} +0.7 ⁽¹⁾	-	-	
		1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C				
V _{HYS}	FT, FTf, TTa and NRST I/O input hysteresis	1.7 V≤V _{DD} ≤3.6 V	-	10%V _{DD}	-	v
	BOOT0 I/O input hysteresis	1.75 V≤V _{DD} ≤3.6 V, -40 °C≤T _A ≤105 °C	-	- 100m -	-	
		1.7 V≤V _{DD} ≤3.6 V, 0 °C≤T _A ≤105 °C	-		-	
I _{lkg}	I/O input leakage current (3)	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	μА
	I/O FT input leakage current	V _{IN} = 5 V	-	-	3	

- Guaranteed by design.
- 2. Tested in production.

GPIO Output

- 누클레오 보드 중앙에 있는 LD2 Led는 내부적으로 칩의 PA5 핀에 연결되어 있다.

GPIO Output

- CubeMX에서 PA5에 GPIO_Output을 지정해 주고 "GENERATE CODE"를 통해 코드를 재생성 한다.

- GPIO Output
- **HAL_GPIO_WritePin**(GPIOx, PIO_Pin, PinState)

[LED 점등]

```
/* USER CODE BEGIN SYSINIT */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */

MX_GPIO_Init();

/* USER CODE BEGIN 2 */

HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET);

/* USER CODE END 2 */

/* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1)
```

- GPIO Output
- HAL_GPIO_TogglePin(GPIOx, PIO_Pin)
- **HAL_Delay**(ms)

[LED 점멸]

```
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
    HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_4);
    HAL_Delay(500);
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
```

GPIO Input

- 누클레오 보드 중앙에 있는 USER 버튼(파란색)은 내부적으로 칩의 PC13 핀에 연결되어 있다.

GPIO Input

- 누클레오 보드 중앙에 있는 USER 버튼(파란색)은 내부적으로 칩의 PC13 핀에 연결되어 있다.

GPIO Input

- Pull Up과 Pull Down은 핀이 Floating 상태에 있는 것을 막아준다.

- GPIO Input
- CubeMX에서 PC13을 GPIO_Input으로 지정해 주고 "GENERATE CODE"를 통해 코드를 재생성 한다.

- GPIO Input
- **HAL_GPIO_ReadPin**(GPIOx, PIO_Pin)

[버튼을 이용한LED 점멸]

```
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
 if (HAL GPIO ReadPin (GPIOC, GPIO PIN 13) == GPIO PIN RESET) {
   HAL GPIO WritePin (GPIOA, GPIO PIN 4, GPIO PIN SET);
  }else{
    HAL GPIO WritePin (GPIOA, GPIO PIN 4, GPIO PIN RESET);
 HAL Delay(10);
  /* USER CODE END WHILE */
  /* USER CODE BEGIN 3 */
```


- 나는 지금 너무 바쁜데 지난주에 시킨 택배가 언제 올지 모른다.
- 택배가 왔는지 아닌지 확인하기 위하여 어떻게 해야 할까?

- 나는 지금 너무 바쁜데 지난주에 시킨 택배가 언제 올지 모른다.
- 택배가 왔는지 아닌지 확인하기 위하여 어떻게 해야 할까?

- NVIC(Nested Vecter Interrupt Controller)
- 여러 종류의 인터럽트를 NVIC에 등록하면 NVIC가 인터럽트를 관리하기 시작한다.
- 인터럽트의 우선순위를 통해 여러 인터럽트의 순서를 정의한다.

