Departamento de Matemática - UFV MAT 131-Introdução à Álgebra

PRODUTO CARTESIANO

Intuitivamente, um **par ordenado** é um conjunto de dois elementos, no qual cada elemento ocupa uma posição bem definida. Se os elementos são a e b, o par ordenado é simbolizado por $(a,b) = \{\{a\},\{a,b\}\}$, onde $\{a\}$ determina que a é o primeiro elemento ou primeira coordenada do par e $\{a,b\}$ determina o segundo elemento ou segunda coordenada do par.

Teorema 1 Dois pares ordenados (a,b) e (c,d) são iguais se e somente se a=c e b=d.

Definição 1 Dados dois conjuntos A e B, definimos o produto cartesiano de A por B, nessa ordem, denotado por $A \times B$, ao conjunto formado pelos pares ordenados (a,b) tais que $a \in A$ e $b \in B$.

$$A \times B = \{(a, b) : a \in A, b \in B\}, \qquad (a, b) \in A \times B \longleftrightarrow a \in A \quad e \quad b \in B$$

Se os conjuntos A eB são finitos, então $n(A \times B) = n(A) \cdot n(B)$.

Quando A = B, escrevemos $A^2 = A \times A$ e de forma geral $A^n = A \times A \times ... \times A$ (n vezes A), para $n \in \mathbb{N}$.

Definição 2 A diagonal de um conjunto A, define-se por $D(A) = \{(a,b) \in A^2/a = b\}$.

PROPRIEDADES:

- 1. Se $A \neq B$, então $A \times B \neq B \times A$;
- $2. \ A \times \emptyset = \emptyset \times A = \emptyset;$
- 3. $A \times (B \cap C) = (A \times B) \cap (A \times C)$, para todo A, B, C;
- 4. $A \times (B \cup C) = (A \times B) \cup (A \times C)$, para todo A, B, C;
- 5. $A \times (B C) = (A \times B) (A \times C)$, para todo A, B, C;
- 6. $A \times (B \times C) \neq (A \times B) \times C$, para todo A, B, C;
- 7. Se $A \subset B$, então $A \times C \subset B \times C$, para todo C;
- 8. Se $A \subset B$ e $C \subset D$, então $A \times C \subset B \times D$, para todo A, B, C, D;
- 9. $[A^c \times B^c] \subset (A \times B)^c$, para todo A, B;
- 10. Se $A \times C = B \times C$ e $C \neq \emptyset$, então A = B;
- 11. $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$, para todo A, B, C, D;
- 12. $(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$, para todo A, B, C, D;

Exemplo 1 Para $A = \{x \in \mathbb{Z} : -1 \le x \le 1\}$ $e B = \{x \in \mathbb{N} : 0 < x < 3\}$. Determinar $(A \times B) \cap B^2$ $e (A - B) \times (A \cap B)$.

Note que
$$A = \{-1,0,1\}$$
 e $B = \{1,2\}$. Logo, $A - B = \{-1,0\}$ e $A \cap B = \{1\}$. Assim, $A \times B = \{(-1,1), (-1,2), (0,1), (0,2), (1,1), (1,2)\}$ e $B \times B = \{(1,1), (1,2), (2,1), (2,2)\}$. Portanto, $(A \times B) \cap B^2 = \{(1,1), (1,2)\}$ e $(A - B) \times (A \cap B) = \{(-1,1), (0,1)\}$

Exemplo 2 Os conjuntos $A \times B$ e $B \times A$ são iguais? Justifique sua resposta.

Para dar resposta distinguimos dois casos:

- 1. Se A = B, então a igualdade se cumpre.
- 2. Se $A \neq B$, como por exemplo $A = \{1,2\}$ e $B = \{3\}$, temos $A \times B = \{(1,3),(2,3)\}$ e $B \times A = \{(3,1),(3,2)\}$. Claramente $A \times B \neq B \times A$

Exemplo 3 Determinar o número de elementos de $A \times B$.

Para fazer isto, estamos pensando em conjuntos finitos A e B. Suponha que n(A) = k, n(B) = m e $(a,b) \in A \times B$. Temos k formas de escolher o primeiro elemento do par ordenado e para cada escolha desse primeiro elemento temos m escolhas possíveis para o segundo elemento do par ordenado. No total temos $k \times m$ pares ordenados, isto nos dá $n(A \times B) = km$.

Exemplo 4
$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x,y): x,y \in \mathbb{R}\}, \quad \mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x,y,z): x,y,z \in \mathbb{R}\}$$

$$\mathbb{R}^2 \times \mathbb{R} = \{(w,z): w = (a,b) \in \mathbb{R}^2, \ z \in \mathbb{R}\} \ e \ \mathbb{R} \times \mathbb{R}^2 = \{(x,w): x \in \mathbb{R}, \ w = (a,b) \in \mathbb{R}^2\}$$

Exemplo 5 Sejam A, B e C conjuntos quaisquer. Sabendo que:

$$(i) \ n(C-B^c) \le 0, \ (ii) \ n[A \times (B \cup C)] = 60, \ (iii) \ n(A \times B) = 2n(A \times C).$$
 Determinar $n(A \times C)$.

Notamos que $C - B^c = C \cap (B^c)^c = C \cap B$. Logo, como o número de elementos de um conjunto é maior ou igual do que zero temos:

De (i) que $n(C \cap B) = 0$ e daqui $B \cap C = \emptyset$.

De (ii) e pela propriedade distributiva resulta $n[A \times (B \cup C)] = n(A \times B) + n(A \times C) = 60$, pois $B \cap C = \emptyset$. E, usando (iii) temos $n(A \times B) + n(A \times C) = 2n(A \times C) + n(A \times C) = 60$, de onde $n(A \times C) = 20$.

Exemplo 6 Considerando $U = \{1, 2, 3, 4\}$, $A = \{1, 3\}$ $e B = \{2, 4\}$. Determinar o número de elementos de $\mathscr{C}_{U^2}(A \times \mathscr{C}_B)$.

Como
$$B = \{2, 4\}$$
, $\mathscr{C}B = \{1, 3\}$, de onde $n(A \times \mathscr{C}B) = 4$ e $n(U^2) = 16$. Portanto, $n(\mathscr{C}_{U^2}(A \times \mathscr{C}B) = 16 - 4 = 12$

Exemplo 7 Sejam A, B, C e D conjuntos quaisquer. Mostre que se $(A \times B) \subset (C \times D)$, então $A \subset C$ e $B \subset D$.

De fato, sejam $x \in A$ e $y \in B$, então $(x,y) \in A \times B$. Usando a hipótese dada temos que $(x,y) \in C \times D$, de onde $x \in C$ e $y \in D$. Assim, conseguimos $x \in A \longrightarrow x \in C$ e $y \in B \longrightarrow y \in D$.

Exemplo 8 Sejam A, B, C e D conjuntos quaisquer. Estabelecer a validade das seguintes afirmações:

- 1. Se $(A \times B) \subset (C \times D)$, então $[B \cap (C \cup A)] \times [A \cup (B \cap D)] = (B \cap C) \times (A \cup B)$.
- 2. $A^c \times B^c = (A \times B)^c$.
- 3. Se $A \subset B \subset D$, então $[(B D) \times C] \cap (A \times C) = A \times C$.
- 4. Se $A \subset D \subset B$, então $[(B D) \times C] \cap (A \times C) = A \times C$.

Vejamos cada um dos itens.

- 1. Do exemplo anterior temos que $A \subset C$ e $B \subset D$, logo $A \cup C = C$ e $B \cap D = B$. Assim, $[B \cap (C \cup A)] \times [A \cup (B \cap D)] = (B \cap C) \times (A \cup B)$. Portanto, a afirmação é verdadeira.
- 2. Se $(x,y) \in A^c \times B^c$, temos $x \in A^c$ e $y \in B^c$, de onde $x \notin A$ e $y \notin B$. Por outro lado, se $(x,y) \in (A \times B)^c$, temos $(x,y) \notin (A \times B)$ de onde, $x \notin A$ ou $y \notin B$. Claramente, $(x \notin A \ e \ y \notin B)$ e $(x \notin A \ ou \ y \notin B)$ não são equivalentes. Portanto, $A^c \times B^c \neq (A \times B)^c$ e a afirmação é falsa. (OBS. Pode verificar que essa igualdade não é verdade considerando $U = \{1,3\}$, $A = \{1\}$ e $B = \{3\}$)
- 3. A afirmação é falsa. De fato, como $A\subset B\subset D$ então $B-D=\emptyset$ e $(B-D)\cap A=\emptyset$. De onde

$$[(B-D)\times C]\cap (A\times C)=[(B-D)\cap A]\times C=\emptyset\times C=\emptyset\neq A\times C$$

4. A afirmação é falsa. De fato, como $A\subset D\subset B$ temos $(B-D)\cap A=\emptyset$. De onde $[(B-D)\times C]\cap (A\times C)=[(B-D)\cap A]\times C=\emptyset\times C=\emptyset\neq A\times C$

RELAÇÕES

Definição 3 Dados dois conjuntos A e B. Uma relação de A em B é um subconjunto de $A \times B$. Denotamos a relação por R e escrevemos $R = \{(x, y) \in A \times B/p(x, y)\}$.

Observações:

- 1. Para saber se R é uma relação de A em B, é necessário e suficiente verificar que $R \subset A \times B$ $(R:A\longrightarrow B \iff R\subset A\times B)$;
- 2. Se $(x,y) \in A \times B$ é tal que $(x,y) \in R$, a proposição p(x,y) é verdadeirax e escrevemos xRy, que se lê x está relacionado com y;
- 3. Se $(x,y) \in A \times B$ é tal que $(x,y) \notin R$, a proposição p(x,y) é falsa. Nesse caso escrevemos $x \mathcal{R} y$, que se lê x não está relacionado com y;
- 4. Quando A = B e R é uma relação de A em B, dizemos que R é uma relação em A;
- 5. Usamos letras maiúsculas, R, T, S para denotar as relações. Também usamos letras com subíndices para fazer diferencia uma da outra, como por exemplo $R_1, R_2, R_3, R_4, \ldots$
- 6. Quando $A = \{a_1, a_2, a_3, \dots, a_n\}$ e $B = \{b_1, b_2, b_3, \dots, b_m\}$ (são finitos), a representação da relação R pode ser feita:
 - (a) Mediante diagrama de Venn;
 - (b) Mediante grafos dirigidos (dígrafos);
 - (c) Mediante uma matriz, $M_R = (m_{ij})$, de ordem $n \times m$, onde $m_{ij} = \begin{cases} 1, & se \quad (a_i, b_j) \in R \\ 0, & se \quad (a_i, b_j) \notin R \end{cases}$

Exemplo 9 Dados $A = \{1, 2\}, B = \{3, 4, 5\}.$ Verificar qual dos seguintes conjuntos é uma relação de A em B

- 1. $R_1 = \emptyset$
- 2. $R_2 = A \times B$
- 3. $R_3 = \{(1,2), (1,3), (2,3), (2,5)\}$
- 4. $R_4 = \{(1,3), (2,4), (2,5)\}$

Vamos a analisar cada um desses conjuntos.

- 1. R_1 se é uma relação de A em B, pois $\emptyset \subset A \times B$;
- 2. R_2 é uma relação de A em B, uma vez que $A \times B \subset A \times B$;
- 3. Claramente $(1,2) \in R_3$, mas $(1,2) \notin A \times B$. Assim, $R_3 \not\subset A \times B$. Portanto, R_3 não é uma relação de A em B;
- 4. Todos os elementos de R_4 são também elementos de $A \times B$. Assim, $R_4 \subset A \times B$. Portanto, R_4 é uma relação de A em B.

Exemplo 10 Seja L o conjunto de todas as retas do plano. Os conjuntos $R_1 = \{(L_1, L_2)/L_1//L_2\}$ e $R_2 = \{(L_1, L_2)/L_1 \perp L_2\}$ são relações em L.

 R_1 é uma relação em L. De fato, se $L_1, L_2 \in L$ e $L_1//L_2$, então $(L_1, L_2) \in R_1$ e também $(L_1, L_2) \in L^2$. Assim, $R_1 \subset L^2$.

 R_2 é uma relação em L. De fato, se $L_1, L_2 \in L$ e $L_1 \perp L_2$, então $(L_1, L_2) \in R_1$ e também $(L_1, L_2) \in L^2$. Assim, $R_2 \subset L^2$.

Exemplo 11 Seja U o conjunto formado por todos os conjuntos, isto é, $U = \{X/A \text{ \'e um conjunto}\}$. A inclusão de conjuntos é uma relação definida em U.

De fato, definamos a relação R por $R = \{(A, B)/A \subset B\}$. Claramente, se $(A, B) \in R$ temos $(A, B) \in U^2$. Logo, $R \subset U^2$ e daqui R é uma relação em U.

Exemplo 12 O conjunto $\{(x,y)/x \text{ é divisor de y}, x,y \in \mathbb{N}\}$ é uma relação em \mathbb{N} .

De fato, $\mathbb{N} \times \mathbb{N} = \{(a,b)/a, b \in \mathbb{N}\}$. Seja $R = \{(x,y)/x \text{ \'e divisor de y}, x,y \in \mathbb{N}\}$. Se $(x,y) \in R$ então $x,y \in \mathbb{N}$ e daqui $(x,y) \in \mathbb{N} \times \mathbb{N}$. Assim, $R \subset \mathbb{N}^2$.

Exemplo 13 Sejam $A = \{1, 2, 3, 4, ..., 100\}$ e $B = \mathcal{P}(A)$. Para $X, Z \in B$ quaisquer, define-se $R = \{(X, Z)/X - Z \in B\}$. Verificar se R é uma relação em B.

De fato, seja $(X, Z) \in R$, da forma como foi definida $R, X, Z \in B$, logo $(X, Z) \in B$. Desse modo, $R \subset \mathcal{P}(A) \times \mathcal{P}(A)$. Portanto, R é uma relação em B.

Exemplo 14 Sejam $A = \{a, b, c, d\}, b = \{x, y, z\}.$ Representar mediante uma matriz a relação $R = \{(a, x), (a, y), (b, z), (c, y), (d, z)\}$

DOMÍNIO E IMAGEM DE UMA RELAÇÃO

Definição 4 Seja R uma relação de A em B, definimos o domínio de R como o conjunto de todas as primeiras coordenadas dos pares ordenados da relação R e denotamos por Dom(R). Isto é,

$$Dom(R) = \{x \in A/\exists y \in B, (x,y) \in R\}$$

Assim,
$$x \in Dom(R) \iff \exists y \in B \text{ tal que } (x, y) \in R$$

$$x\notin Dom(R)\Longleftrightarrow \forall y\in B,\quad (x,y)\notin R$$

Definição 5 Seja R uma relação de A em B, definimos a imagem de R como o conjunto de todas as segundas coordenadas dos pares ordenados da relação R e denotamos por Im(R). Isto é,

$$Im(R) = \{ y \in B / \exists x \in A, \quad (x, y) \in R \}$$

Assim,
$$y \in Im(R) \iff \exists x \in A \text{ tal que } (x, y) \in R$$

$$y \notin Im(R) \iff \forall x \in A, \quad (x,y) \notin R$$

PROPRIEDADES Sejam R_1 e R_2 duas relações de A em B. Valem as seguintes propriedades:

Para o Domínio	Para a Imagem
$(1) \ Dom(R_1 \cup R_2) = Dom(R_1) \cup Dom(R_2)$	(1) $Im(R_1 \cup R_2) = Im(R_1) \cup Im(R_2)$
(2) $Dom(R_1 \cap R_2) \subset Dom(R_1) \cap Dom(R_2)$	$(2) Im(R_1 \cap R_2) \subset Im(R_1) \cap Im(R_2)$
$(3) \ Dom(R_1) - Dom(R_2) \subset Dom(R_1 - R_2)$	(3) $Im(R_1) - Im(R_2) \subset Im(R_1 - R_2)$

Exemplo 15 Seja $M = \{1, 2, 3, ..., 9\}$ e $R = \{(x, y) \in M \times M/2x - y = 5\}$. Determinar $n(Dom(R)) \cdot n(Im(R))$

Da relação R dada, temos p(x,y): 2x-y=5. Os valores de $x,y\in M$ que tornam verdadeira p(x,y), são tais que $x\in \{3,4,5,6,7\}$ e $y\in \{1,3,5,7,9\}$. Assim, $Dom(R)=\{3,4,5,6,7\}$ e $Im(R)=\{1,3,5,7,9\}$. Daqui, $n(Dom(R))\cdot n(Im(R))=(5)(5)=25$

Exemplo 16 Seja $R = \{(x,y) \in \mathbb{Z}^2 / y = 2x^2 - 5\}$. Determinar o valor de verdade das seguintes afirmações: (a) $(2,4) \in R$ (b) $4 \in Dom(R)$ e $5 \in Im(R)$ (c) $-5 \in Im(R)$ ou $5 \in Im(R)$

- (a) Note que $p(x,y): y = 2x^2 5$. Assim, p(2,4) é falsa, pois $4 \neq 2(2)^2 5$.
- (b)Note que $4 \in Dom(R)$ é verdadeira, já que existe y = 27 tal que $(4,27) \in R$. Mas $5 \in Im(R)$ falsa, já que $5 = 2x^2 5$ implica $x \in \{\sqrt{5}, -\sqrt{5}\} \not\subset \mathbb{Z}$. Portanto, a afirmação (b) é falsa.
- (c) Note que $-5 \in Im(R)$ é verdadeira, pois existe $x = 0 \in \mathbb{Z}$ tal que $(0, -5) \in R$ e $5 \in Im(R)$ é falsa conforme visto no item (b). Portanto, a afirmação (c) é verdadeira.

RELAÇÃO INVERSA OU RECÍPROCA OU DUAL

Definição 6 Dada uma relação R de A em B, $R = \{(x, y) \in A \times B / p(x, y)\}$. A relação inversa ou recíproca de R, é o conjunto definido por $R^* = R^{-1} = \{(y, x) \in B \times A \mid (x, y) \in R\}.$

Note que $Dom(R^{-1}) = Im(R)$ e $Im(R^{-1}) = Dom(R)$.

PROPRIEDADES: Sejam as relações $R, S \subset A \times B$. Então vale:

(1)
$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}$$

(2) $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$
(3) $(R - S)^{-1} = R^{-1} - S^{-1}$

$$(2) (R \cap S)^{-1} = R^{-1} \cap S^{-1}$$

(3)
$$(R-S)^{-1} = R^{-1} - S^{-1}$$

Exemplo 17 Seja $R = \{(1,2), (3,4), (3,5), (6,5)\}$. Determinar a relação inversa R^{-1} .

De acordo com a definição de relação inversa temos $R^{-1} = \{(2,1), (4,3), (5,3), (5,6)\}.$

Exemplo 18 Sejam R e T relações de A em B. Mostre que $(R-T)^{-1}=R^{-1}-T^{-1}$.

(a) Mostremos que $(R-T)^{-1} \subset R^{-1} - T^{-1}$.

 $Seja \ (y,x) \in (R-T)^{-1}, \ ent \~ao \ (x,y) \in (R-T) \ e \ daqui, \ (x,y) \in R \ e \ (x,y) \notin T. \ Segue \ que \ (y,x) \in R^{-1} \ e \ (y,x) \notin T^{-1}. \ Portanto, \ (y,x) \in [R^{-1}-T^{-1}].$

(b) Mostremos que $R^{-1} - T^{-1} \subset (R - T)^{-1}$.

 $Seja \ (y,x) \in R^{-1} - T^{-1}, \ ent \ ao \ (y,x) \in R^{-1} \ e \ (y,x) \notin T^{-1} \ e, \ daqui \ (x,y) \in R \ e \ (x,y) \notin T.$ Seque, $(x,y) \in (R-T)$. Portanto, $(y,x) \in (R-T)^{-1}$.

Exemplo 19 Sejam R, T e S relações de A em B. Mostre que $[(R \cup T) \cap S]^{-1} = (R \cap S)^{-1} \cup S$ $(T \cap S)^{-1}$.

Note que $[(R \cup T) \cap S] = (R \cap S) \cup (T \cap S)$. Logo, aplicando a propriedade 1 da relação inversa, $temos \ [(R \cup T) \cap S]^{-1} = [(R \cap S) \cup (T \cap S)]^{-1} = (R \cap S)^{-1} \cup (T \cap S)^{-1}.$

Exemplo 20 Se $A = \{1, 2, 3, 4\}, B = \{1, 3, 5\}$ e $R = \{(x, y) \in A \times B / x \le y\}$. Determinar o valor de verdade das seguintes afirmações:

$$(a)\ Dom(R)\cap Dom(R^{-1})=\emptyset$$

(b)
$$n(R \cap R^{-1}) = 12$$

(b)
$$n(R \cap R^{-1}) = 12$$
 (c) $n(R \cup R^{-1}) = 12$

(d)
$$n(Dom(R)) = 4$$

(e)
$$n(Im(R)) = 2$$

 $R = \{(1,1), (1,3), (1,5), (2,3), (2,5), (3,3), (3,5), (4,5)\}, \ Dom(R) = Im(R^{-1}) = \{1,2,3,4\}, \ Dom(R) = Im(R^{-1})$ $Im(R) = Dom(R^{-1}) = \{1, 3, 5\}, R^{-1} = \{(1, 1), (3, 1), (5, 1), (3, 2), (5, 2), (3, 3), (5, 3), (5, 4)\}.$ Com isto, (a), (b), (c) e (e) são falsas e, (d) é verdadeira.

Exemplo 21 Mostrar ou dar um contraexemplo para o seguinte enunciado: Se R^{-1} é uma relação de B em A tal que $D(B) \subset R^{-1}$, então $B \subset A$.

Como $D(B) \subset R^{-1}$ concluímos que $B \subset Dom(R^{-1})$ e $B \subset Im(R^{-1}) = Dom(R) \subseteq A$. Portanto, $B \subset A$.

Exemplo 22 Mostrar ou dar um contraexemplo para o seguinte enunciado: Se R é uma relação de A em B tal que D(A) = R, então B = A.

Como D(A) = R, temos $A = Dom(R) = Im(R) \subseteq B$. Asim $A \subseteq B$. Mas, não é possível concluir que $B \subset A$. Para ver isto, basta tomar $A = \{1, 2\}$, $B = \{1, 2, 3\}$ e $R = \{(1, 1), (2, 2)\}$. Claramente, D(A) = R e $A \neq B$.

COMPOSIÇÃO DE RELAÇÕES

Sejam $R_1 \subset A \times B$ e $R_2 \subset B \times C$ duas relações. A composta de R_2 e R_1 , simbolizado por $R_2 \circ R_1$, é a relação dada por

$$R_2 \circ R_1 = \{(x, z) \in A \times C / \exists y \in B, (x, y) \in R_1 \ e \ (y, z) \in R_2 \}$$

$$(x,z) \in (R_2 \circ R_1) \iff \exists y \in B, \quad (x,y) \in R_1 \quad \text{e} \quad (y,z) \in R_2$$

$$(x,z) \notin (R_2 \circ R_1) \iff \forall y \in B, \quad (x,y) \notin R_1 \quad \text{ou} \quad (y,z) \notin R_2$$

Observações:

- 1. Para a composta existir e ser não vazia, devemos verificar que $Dom(R_2) \cap Im(R_1) \neq \emptyset$;
- 2. $Dom(R_2 \circ R_1) = \{x \in A / \exists y \in B, \exists \in C, (x, y) \in R_1 \mid e \mid (y, z) \in R_2 \}$
- 3. $Im(R_2 \circ R_1) = \{ z \in C/\exists x \in A, \exists y \in B, (x, y) \in R_1 \text{ e } (y, z) \in R_2 \}$

PROPRIEDADES: A composta de duas relação, quando ela existe, satisfaz:

(1)
$$(R_1 \circ R_2) \neq (R_2 \circ R_1)$$

(2)
$$(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$$

(3)
$$(R_1 \circ R_2)^{-1} = R_2^{-1} \circ R_1^{-1}$$

RELAÇÕES SOBRE UM CONJUNTO A

Já sabemos que se R é uma relação em A, $R \subset A \times A$. Assim, $R \subset A \times A \iff R \in \mathcal{P}(A \times A)$

Observe que se n(A) = m, então $n(A \times A) = m^2$ e $n(\mathcal{P}(A \times A)) = 2^{m^2}$. E daqui, concluímos que sobre um conjunto finito A podem ser definidas 2^{m^2} relações.

CLASSES DE RELAÇÕES SOBRE UM CONJUNTO $A^{\mathbb{N}}$

1. Relação Reflexiva: Uma relação R é reflexiva se, e somente se, todo elemento de A está relacionado com ele mesmo. Isto é, para todo $x \in A$, $(x, x) \in R$.

$$R$$
é reflexiva $\Longleftrightarrow [\forall x \in A; x \in A \longrightarrow (x,x) \in R] \Longleftrightarrow D(A) \subset R$

$$R$$
não é reflexiva $\Longleftrightarrow [\exists x \in A; x \in A \quad e \quad (x,x) \notin R] \Longleftrightarrow D(A) \not\subset R$

Exemplo 23 Sejam $A = \{1, 2, 3, 4, 5\}$ e $R = \{(1, 1), (1, 2), (2, 2), (2, 4), (3, 1), (3, 3), (4, 1), (4, 2), (4, 4), (5, 3), (5, 4), (5, 5)\}$. A relação R é uma relação reflexiva.

De fato, note que $D(A) = \{(1,1), (2,2), (3,3), (4,4), (5,5)\} \subset R$. Portanto, R é reflexiva.

Exemplo 24 A relação $R = \{(L_1, L_2)/L_1//L_2\}$ definida sobre o conjunto de todas as retas do plano é uma relação reflexiva.

De fato, seja \mathbb{P} o conjunto de todas as retas do plano e seja $L \in \mathbb{P}$, sabemos que L//L, assim $(L,L) \in R$ para todo $L \in \mathbb{P}$. Portanto, R é reflexiva.

Exemplo 25 Seja $R = \{(x, y) \in \mathbb{R}^2 | x - y \le 0\}$. $R \notin uma \ relação \ reflexiva$.

De fato, sabemos que para qualquer número real x, vale $x-x=0 \le 0$. Logo, $(x,x) \in R$. Assim, R é reflexiva.

Exemplo 26 Seja R a relação sobre \mathbb{Q} , definida por $R = \{(x, y) \in \mathbb{Q}^2 / x \cdot y = 1\}$. É R uma relação reflexiva?

 $N\~ao, n\~ao \'e reflexiva, pois para <math>x=0 \in \mathbb{Q} n\~ao \'e verdade que 0 \cdot 0 = 1 e daqui (0,0) \notin R.$

Exemplo 27 Seja $R = \{(x, y) \in \mathbb{R}^2 / |x| = |y + 1|\}$. R é reflexiva?

Não, pois para qualquer $x \in \mathbb{R}$ temos $|x| \neq |x+1|$, de onde $(x,x) \notin R$.

2. Relação Simétrica: Uma relação R é simétrica se, e somente se, para qualquer $(x,y) \in R$ tem-se $(y,x) \in R$.

$$R$$
é simétrica
 $\Longleftrightarrow [\forall (x,y) \in R; (x,y) \in R \longrightarrow (y,x) \in R]$

$$R$$
 não é simétrica $\iff [\exists (x,y) \in R; (x,y) \in R \quad e \quad (y,x) \notin R]$

Exemplo 28 Seja $A = \{1, 2, 3\}$ e $R = \{(1, 1), (2, 2), (1, 2), (2, 1), (3, 3)\}$. A relação R é simétrica.

De fato, como pode ser visto rapidamente, para qualquer $(x,y) \in R$, tem-se também $(y,x) \in R$.

Exemplo 29 As relações $R_1 = \{(L_1, L_2)/L_1//L_2\}$ e $R_2 = \{(L_1, L_2)/L_1 \perp L_2\}$ definidas sobre o conjunto de todas as retas do plano são relações simétricas.

De fato, seja \mathbb{P} o conjunto de todas as retas do plano e $L_1, L_2 \in \mathbb{P}$. Sabemos que se $L_1//L_2$, então $L_2//L_1$. E, que se $L_1 \perp L_2$, então $L_2 \perp L_1$. Portanto, as relações dadas são simétricas.

Exemplo 30 É simétrica a relação $R = \{(x, y) \in \mathbb{R}^2 / (x - y) \in \mathbb{Z}\}$?

 $Sim,\ pois\ se\ (x,y)\in R,\ \'e\ verdade\ que\ (x-y)\in \mathbb{Z}\ e\ tamb\'em\ \'e\ verdade\ que\ (y-x)=-(x-y)\in \mathbb{Z}.\ Com\ isto,\ (y,x)\in R.$

Exemplo 31 Seja A um conjunto finito com k elementos. E, seja R = D(A). Afirmamos que R é simétrica.

De fato, sejam $a \neq b$ elementos de A. Como R = D(A), $(b,a) \notin R$ implica que $(a,b) \notin R$. Portanto, R é simétrica.

Exemplo 32 Mostrar ou dar um contraexemplo para a seguinte afirmação: Se $R \subset R^{-1}$, então R é simétrica.

Seja $(x,y) \in R$, então pela hipótese temos $(x,y) \in R^{-1}$. Agora, pela definição da relação inversa temos que $(y,x) \in R$. Portanto, R é simétrica.

Exemplo 33 Mostrar ou dar um contraexemplo para a seguinte afirmação: Se $R^{-1} \subset R$, então R é simétrica.

Seja $(x,y) \in R$, então $(y,x) \in R^{-1}$. Como $R^{-1} \subset R$, temos que $(y,x) \in R$. Portanto, $R \notin sim \acute{e}trica$.

Exemplo 34 É simétrica a relação $R = \{(x, y) \in \mathbb{R}^2 / y = x - 1\}$?

 $N\~ao.$ Observe que $(2,1) \in R$, pois 1=2-1. Mas, $(1,2) \notin R$, j'a que $2 \neq 1-1$.

Exemplo 35 Verificar se a relação $R = \{(x, y) \in \mathbb{R}^2 / x^2 - y^2 = 1\}$ é simétrica.

A relação não simétrica já que $(1,0) \in R$, mas $(0,1) \notin R$.

3. Relação Transitiva: Uma relação R é transitiva se, e somente se, a partir de $(x,y) \in R$ e $(y,z) \in R$ tem-se $(x,z) \in R$.

$$R$$
é transitiva $\Longleftrightarrow \{[(x,y) \in R \quad e \quad (y,z) \in R] \longrightarrow (x,z) \in R\} \Longleftrightarrow (R \circ R) \subset R$

$$R$$
 não é transitiva \iff $\{[(x,y) \in R \mid e \mid (y,z) \in R] \mid e \mid (x,z) \notin R\} \iff (R \circ R) \not\subset R$

Exemplo 36 Seja $A = \{1, 2, 3\}$. A relação $R = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 3)\}$ é transitiva, como pode ser verificado sem dificuldade.

Exemplo 37 A relação $R = \{(L_1, L_2)/L_1//L_2\}$ definida sobre o conjunto de todas as retas do plano é transitiva.

De fato, denotemos por \mathbb{P} o conjunto de todas as retas do plano e sejam $L_1, L_2, L_3 \in \mathbb{P}$, tais que $(L_1, L_2), (L_2, L_3) \in R$. Sabemos que se $L_1//L_2$ e $L_2//L_3$ então $L_1//L_3$. Isto é $(L_1, L_3) \in R$.

Exemplo 38 A relação $R = \{(L_1, L_2)/L_1 \perp L_2\}$ definida sobre o conjunto de todas as retas do plano não é transitiva.

De fato, denotemos por \mathbb{P} o conjunto de todas as retas do plano e sejam $L_1, L_2, L_3 \in \mathbb{P}$, tais que $(L_1, L_2), (L_2, L_3) \in R$. Sabemos que se $L_1 \perp L_2$ e $L_2 \perp L_3$, então $L_1//L_3$. Isto é $(L_1, L_3) \notin R$.

Exemplo 39 Verificar se a relação $R = \{(x, y) \in \mathbb{R}^2 / x < y\}$ é transitiva.

De fato, se $(x,y) \in R$ e $(y,z) \in R$, temos x < y e y < z. Pela propriedade transitiva de desigualdades, temos que x < z. Isto é, $(x,z) \in R$.

Exemplo 40 Verificar se é transitiva a relação $R = \{(x, y) \in \mathbb{R}^2 / y = x - 1\}$

Sejam $(x,y),(y,z)\in R$, então y=x-1 e z=y-1, mas $z\neq x-1$, já que z=(x-1)-1=x-2. Assim, $(x,z)\notin R$. Portanto, R não é transitiva.

Exemplo 41 Verificar se a relação $R = \{(x,y) \in \mathbb{R}^2/x^2 - y^2 = 1\}$ é transitiva.

Sejam $(x,y), (y,z) \in R$, então $x^2 - y^2 = 1$ e $y^2 - z^2 = 1$, mas $x^2 - z^2 \neq 1$, já que $x^2 = y^2 + 1 = (z^2 + 1) + 1 = z^2 + 2 \Longrightarrow x^2 - z^2 = 2$. Portanto, R não é transitiva.

Exemplo 42 Mostra ou dar um contraexemplo para a seguinte afirmação: Se R é reflexiva e simétrica, então R é transitiva.

Considere $A = \{1, 2, 3, 4\}$ e $R = \{(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (3, 4), (4, 3), (4, 4)\}$. Claramente, R é reflexiva, pois $D(A) \subset R$. Também, R é simétrica. No entanto, R não é transitiva, já que $(1, 3), (3, 4) \in R$, mas $(1, 4) \notin R$.

4. Relação Antissimétrica: Uma relação R é antissimétrica se, e somente se, a partir de $(x,y) \in R$ e $(y,x) \in R$, concluí-se que x=y.

$$R \not \text{ antissim\'etrica} \Longleftrightarrow \{[(x,y) \in R \quad e \quad (y,x) \in R] \longrightarrow x = y\} \Longleftrightarrow (R \cap R^{-1}) \subset D(A)$$

$$R$$
 não é antissimétrica \iff $\{[(x,y) \in R \mid e \mid (y,x) \in R] \mid e \mid x \neq y\} \iff (R \cap R^{-1}) \not\subset D(A)$

Exemplo 43 A relação $R = \{(A,B)/A \subset B\}$, definida sobre o conjunto \mathbb{F} de todos os conjuntos é antissimétrica.

De fato, se $(A, B) \in R$ e $(B, A) \in R$ temos $A \subset B$ e $B \subset A$. Por definição de igualdade de conjuntos concluímos que A = B.

Exemplo 44 Verifique que $R = \{(x, y) \in \mathbb{R}^2 | x \leq y \}$ é antissimétrica.

Sejam $(x,y), (y,x) \in R$. Pela definição de R temos $x \leq y$ e $y \leq x$, então x=y. Portanto, R é antissimétrica.

Exemplo 45 Seja $A = \{1, 2, 3\}$. A relação $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$ é antissimétrica?

Observe que mostrar que $[(x,y) \in R \ e \ (y,x) \in R] \longrightarrow x = y$ equivale a mostrar que $x \neq y \longrightarrow [(x,y) \notin R \ ou \ (y,x) \notin R].$

Claramente, para $1 \neq 2$ temos $(1,2) \in R$, mas $(2,1) \notin R$. Para $1 \neq 3$ temos $(1,3) \in R$, mas $(3,1) \notin R$. Para $2 \neq 3$ temos $(2,3) \notin R$ e $(3,2) \notin R$. Portanto, R é antissimétrica.

Exemplo 46 Seja R = D(A), para $A = \{a_1, a_2, \dots, a_k\}$. R é antissimétrica?

Note que A é um conjunto finito com k elementos. Isto implica que $a_i \neq a_j$, para todo $i \neq j$. Desse modo, para $a_i \neq a_j$, temos que nem $(a_i, a_j) \in R$ e nem $(a_j, a_i) \in R$. Portanto, R é antissimétrica.

Exemplo 47 A relação $R = \{(a, b) \in \mathbb{N}^2 | a \text{ divide } b\}$ é antissimétrica?

Sim. Sejam $(a,b), (b,a) \in R$, então b=ma e a=nb, para alguns $m,n \in \mathbb{N}$. Logo, b=ma=m(nb)=(mn)b. Para isto último ser verdade, devemos ter mn=1, com $m,n \in \mathbb{N}$. Assim, m=n=1. Portanto, a=b.

Exemplo 48 Seja A o conjunto de todas as pessoas que moram em Viçosa. Seja R a relação definida em A, tal que $(a,b) \in R$ se, e somente se a e b nasceram no mesmo dia. R é uma relação antissimétrica?

 $N\~ao$, pois se $(a,b) \in R$ e $(b,a) \in R$, temos que a e b nasceram no mesmo dia, mas n $\~ao$ necessariamente a=b. O que torna falsa a implicaç $\~ao$ $[(a,b) \in R$ e $(b,a) \in R] \longrightarrow a=b$.

Exemplo 49 Seja R a relação definida sobre \mathbb{R} tal que $(x, y) \in R$ se, e somente se y = 2x. É R antissimétrica?

Não, já que se $(x,y) \in R$ e $(y,x) \in R$, temos y = 2x e x = 2y, e isto ocorre somente se x = y = 0. Assim, se $x \neq y$, não temos simultaneamente $(x,y) \in R$ e $(y,x) \in R$.

5. **Relação de Equivalência**: Uma relação R é de equivalência se, e somente se, R é reflexiva, simétrica e transitiva.

Assim, uma relação R deixa de ser de equivalência se, e somente se, R não é reflexiva ou R não é simétrica ou R não é transitiva.

Exemplo 50 Seja A o conjunto de todas as pessoas que moram em Viçosa. A relação R definida em A por: $(a,b) \in R$ se, e somente se a e b nasceram no mesmo dia, é de equivalência.

De fato, para qualquer $a \in A$, tem-se que a e a nascem no mesmo dia, logo $(a, a) \in R$, $\forall a \in A$. $R \notin reflexiva$.

Agora se a nasce no mesmo que b, b nasce no mesmo dia que a, assim $(a,b) \in R$ implica $(b,a) \in R$. $R \notin sim \acute{e}trica$.

Por último, se a nasce no mesmo dia que b e b nasce no mesmo dia que c, sem dúvida a nasce no mesmo dia que c. Assim, $(a,b) \in R$ e $(b,c) \in R$ implica $(a,c) \in R$. R é transitiva. Portanto, R é uma relação de equivalência.

Exemplo 51 Seja $R = \{(x, y) \in \mathbb{N}^2 / xy \mid \text{\'e par}\}$. Quais das seguintes afirmações são verdadeiras?

(a) R é reflexiva (b) R é simétrica (c) R é transitiva (d) R é de equivalência

Vejamos, para R ser reflexiva, para cada $x \in \mathbb{N}$ deve-se ter $(x, x) \in R$. Mas, para x = 3, $(3,3) \notin R$, já que $3 \cdot 3 = 9$ não é par. Logo, R não reflexiva.

Se $x \cdot y$ é par, então $y \cdot x$ também é par. Assim, $(x,y) \in R \longrightarrow (y,x) \in R$. Segue que R é simétrica.

 $Agora, (3,2) \in R \ e \ (2,5) \in R, \ mas \ (3,5) \notin R \ j\'a \ que \ 3 \cdot 5 = 15 \ n\~ao \ \'e \ par. \ Logo, \ R \ n\~ao \ \'e \ transitiva.$

Portanto, somente a afirmação (b) é verdadeira.

Exemplo 52 Analisar se a relação $R = \{(x, y) \in \mathbb{Z}^2 | x - y = 3k, para algum<math>k \in \mathbb{Z}\}$ é de equivalência.

Como x - x = 3(0), segue que $(x, x) \in R, \forall x \in \mathbb{Z}$. Logo, R é reflexiva.

Agora, se $(x,y) \in R$, temos x-y=3k e daqui y-x=-(x-y)=3(-k). Assim, R é simétrica.

Finalmente, se $(x,y) \in R$ e $(y,z) \in R$, temos $x-y=3k_1$ e $y-z=3k_2$, de onde $x-z=3(k_1+k_2)$. Assim, e $(x,z) \in R$ e R é transitiva. Portanto, R é uma relação de equivalência.

Exemplo 53 Seja R a relação definida em A. Estabelecer a validade das afirmações abaixo:

- (a) Se R é reflexiva, então $Dom(R) = Dom(R^{-1});$
- (b) Se R é simétrica e transitiva, então R é reflexiva;

- (c) Se $A=\{a,b,c\}$ e $R=\{(a,a),(b,b),(a,c),(b,c),(c,c)\}$, então R é uma relação de equivalência.
- (a) Note que se R reflexiva temos A = Dom(R) = Im(R) e como $Dom(R^{-1}) = Im(R)$, concluímos que $Dom(R) = Dom(R^{-1})$. Portanto, esta afirmação é verdadeira.
- (b) Esta afirmação é falsa. Veja o contraexemplo: para $A = \{1, 2, 3\}$ e $R = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$, claramente R é simétrica e transitiva, porém R não é reflexiva, pois $(3, 3) \notin R$.
- (c) Como $D(A) \subset R$, R é reflexiva. Por outro lado, R não é simétrica, já que $(b,c) \in R$, $mas(c,b) \notin R$. Assim, R não é relação de equivalência. Portanto, a afirmação é falsa.

Exemplo 54 Seja R uma relação definida em $\mathbb{N} \times \mathbb{N}$ por

$$((a,b),(c,d)) \in R \Longleftrightarrow a+d=b+c$$

Mostre que R é uma relação de equivalência.

De fato,

R é reflexiva: Seja $(a,b) \in \mathbb{N} \times \mathbb{N}$ qualquer, então $((a,b),(a,b)) \in R$, pois a+b=a+b.

 $R \in sim \acute{e}trica: Seja \ ((a,b),(c,d)) \in R, \ ent \~ao \ a+d=b+c, \ logo \ c+b=d+a.$ Isto $\acute{e}, \ ((c,d),(a,b)) \in R.$

 $R \ \'e \ transitiva: \ Sejam \ ((a,b),(c,d)) \in R \ e \ ((c,d),(e,f)) \in R, \ ent\~ao \ a+d=b+c \ e \ c+f=d+e.$ Assim, $a+d+c+f=b+c+d+e \ e \ daqui \ a+f=b+e.$ Logo, $((a,b),(e,f)) \in R.$

Exemplo 55 Seja A o conjunto formado pelos alunos da disciplina MAT131. Defina a relação R em A por aRb se, e somente se, a veste camisa ou blusa da mesma cor que b. É R uma relação de equivalência?

R é reflexiva: Seja $a \in A$ qualquer, claramente a veste camisa ou blusa da mesma cor que a.

R é simétrica: Se aRb, a veste a mesma cor de camisa ou blusa que b, logo b veste a mesma cor de camisa ou blusa que a. Assim, bRa.

R é transitiva: Se aRb e bRc, a veste a mesma cor de blusa ou camisa que b e b veste a mesma cor de blusa ou camisa que c. Logo, a veste a mesma cor de blusa ou camisa que c.

Portanto, R é relação de equivalência.

Exemplo 56 Seja $R = \{(x,y) \in \mathbb{R}^e / |x-y| < 1\}$. É R uma relação de equivalência?

Não, pois embora |x-x|=0<1 implique $(x,x)\in R$, garantindo a reflexividade $e\ |x-y|=|y-x|<1$ nos garanta que $(x,y)\in R$ implique que $(y,x)\in R$. Com isto, que R seja simétrica. Não é verdade, R seja transitiva, pois para $x=\sqrt{2},y=2,z=\sqrt{7}$, temos |x-y|<1 e |y-z|<1, mas |x-z|>1

6. Relação de Ordem ou Ordem Parcial: Uma relação R é de ordem se, e somente se, R é reflexiva, antissimétrica e transitiva.

Assim, uma relação R deixa de ser de ordem se, e somente se, R não é reflexiva ou R não é antissimétrica ou R não é transitiva.

Exemplo 57 A relação $R = \{(A, B)/A \subset B\}$, definida sobre o conjunto \mathbb{F} de todos os conjuntos é uma relação de ordem.

Exemplo 58 Verifique que $R = \{(x, y) \in \mathbb{R}^2 | x \leq y \}$ é uma relação de ordem.

Exemplo 59 A relação $R = \{(a,b) \in \mathbb{N}^2 / a \quad divide \quad b\}$ é uma relação de ordem?

Exemplo 60 Seja A o conjunto de todas as pessoas que moram em Viçosa. Seja R a relação definida em A, tal que $(a,b) \in R$ se, e somente se a e b nasceram no mesmo dia. R é uma relação de ordem?

Exemplo 61 Seja $A = \{1, 2, 3, 4, \}$ e $R = \{(1, 1), (1, 2), (2, 2), (3, 3), (2, 4), (4, 4)\}$. É R uma relação de ordem?

Exemplo 62

EXERCÍCIOS

- 1. Se $A = \{x \in \mathbb{N} : x = \frac{1}{3}(2k-1), k \in \mathbb{N}\}$ e $B = \{x \in \mathbb{N} : x^2 + 1 \le 12\}$. Determinar $(A \cap B) \times (B A)$.
- 2. Se n(A) = 3, n(B) = 8, n(C) = 9 e $n(B \cap C) = 2$. Determinar $n[P(A \times B) \cap P(A \times C)]$
- 3. Sejam $A = \{2, 3, 5\}$, $B = \{x \in \mathbb{Z}/0 \le x \le 3\}$, $C = \{x \in \mathbb{Z}/-1 \le x \le 2\}$. Estabelecer a validade ou falsidade das seguintes afirmações:
 - (a) $(A \times B) \cup (B \times A)$ possui 24 elementos;
 - (b) $(A \cap B)^2$ possui 4 elementos;
 - (c) $A^2 \cap B^2 \cap C^2$ é um conjunto unitário.
- 4. Considerando conjuntos A, B, C e D quaisquer. Pede-se:
 - (a) Usando intervalos, fazer uma representação geométrica de $(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$.
 - (b) Mostrar que $(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$
- 5. Sejam A, B, C e D conjuntos quaisquer. Decidir quais das afirmações a seguir são verdadeiras.
 - (a) Se $(A \times B) \subset (B \times D)$, então $[B \cap (C \cup A)] \times [A \cup (B \cap D)] = (B \cap C) \times (A \cup B)$.
 - (b) Se $A = B \cap C$, então $A \times A = (B \times B) \cap (C \times C)$.
 - (c) Se $A \subset B \subset C$, então $[(B-D) \times C] \cap (A \times C) = A \times C$.
- 6. Mostrar ou dar um contraexemplo para as seguintes afirmações:
 - (a) Se $A \subset B$ e $(B \times C) \subset (A \times C)$ então B = A.
 - (b) Para quaisquer conjuntos A e B não vazios $n[(A \cup B) \times C] = n(A \times C) + n(B \times C)$.
 - (c) $(A\triangle B) \times C \subset (A \cup B) \times C$, para para quaisquer conjuntos $A, B \in C$.
 - (d) Existem conjuntos $A \neq B \neq F \neq G$ tais que $(A \cup B) \times (F \cup G) = (A \times F) \cup (B \times G)$.
- 7. Mostrar que $P[A \times (B \cap C)] = P(A \times B) \cap P(A \times C)$
- 8. Sejam A,B,C e D conjuntos tais que $A\cap C^c=\emptyset$ e $B^c\cap D=\emptyset$. Mostrar que $[A\times (B-D)]\cup (A\times D)\cup [(C-A)\times D]\subset C\times B$

16

9. Considerando U o conjunto universo. Mostrar ou dar um contraexemplo para $(AC \times BC) + (A \times BC) + (AC \times B) = (U \times U \times B) + (U \times B) + (U \times B)$

$$(A^c \times B^c) \cup (A \times B^c) \cup (A^c \times B) = (U \times U - U \times B) \cup (U \times B - A \times B)$$

RELAÇÕES

- 1. Para $A = \{x \in \mathbb{Z}_0^+ : x \le 9\}$, definem-se as relações: $R = \{(x,y) \in A^2 : y = x^2\}, \ S = \{(x,y) \in A^2 : y = 2x\} \ \text{e} \ T = \{(x,y) \in A^2 : x < 4 \ \text{e} \ y > 7\}.$ Encontrar n(R) + n(S) + n(T).
- 2. Sobre $A = \{0, 1, 2, 3, 4, 5\}$, definem-se: $R_1 = \{(1, 1), (2, 1), (3, 2), (5, 4), (1, 2), (4, 5), (2, 3)\}$, $R_2 = \{(x, y) \in A^2 : x^2 + y^2 = 25\}$ e $R_3 = \{(x, y) \in A^2 : xy > 0\}$. Determinar quais dessas relações são simétricas.
- 3. Sobre $Z = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ definem-se as relações $R_1 = \{(x, y) \in Z^2 : y x = 0\}$, $R_2 = \{(x, y) \in Z^2 : y^2 = 4x\}$, $R_3 = \{(x, y) \in Z^2 : |y x| = 3\}$, $R_4 = \{(x, y) \in Z^2 : y^2 x^2 = 0\}$, $R_5 = \{(x, y) \in Z^2 : |x| + y = 1\}$, $R_6 = \{(x, y) \in Z^2 : |x| + |y| = 1\}$. Determinar quais dessas relações são reflexivas, simétricas, transitivas e antissimétricas.
- 4. Sobre o conjunto $A = \{a, b, c, d, e\}$ definem-se as relações: $S = \{(a, d), (d, e), (e, a), (e, e)\}$, $R = \{(a, b), (b, c), (d, e), (e, d), (a, c), (d, d), (e, e), (c, c)\}$ e $T = \{(b, a), (a, b)\}$. Determinar quais dessas relações são transitivas. Adicionalmente, para as que não são transitivas, completar com os elementos necessários para torná-la transitiva.
- 5. Se $R=\{(x,y)\in\mathbb{Q}^2: x-y\geq 3,\,y-x\geq 4\}$. Determinar quais das afirmações a seguir são verdadeiras:
 - (a) R não é reflexiva.

(b) R é simétrica.

(c) R é transitiva.

(d) R é uma relação de equivalência.

(e)R é antissimétrica

- (f) R não é uma relação de ordem.
- 6. Sobre \mathbb{Z} , definem-se: $R_1 = \{(x,y) : x^2 + y = y^2 + x\}$, $R_2 = \{(x,y) : x \leq |y|\}$ e $R_3 = \{(x,y) : xy = n^2$, para algum $n \in \mathbb{Z}$. Estabelecer a validade das afirmações a seguir:
 - (a) As três relações são reflexivas.
- (b) Somente R_1 e R_2 são simétricas.
- (c) Somente R_1 e R_3 são transitivas.
- (d) Pelo menos uma das relações é de ordem.
- 7. Sejam R_1 e R_2 relações definidas no conjunto A. Mostrar ou dar um contraexemplo:
 - (a) Se R_1 e R_2 são reflexivas, então $(R_1 \cup R_2)$ e $(R_1 \cap R_2)$ são também reflexivas.
 - (b) Se $(x,y) \in (R_1 \cup R_1^{-1})$, então $(y,x) \in (R_1^{-1} \cap R_1)$.
 - (c) Se R_1 e R_2 são simétricas, então $R_1 \cap R_2$ é simétrica.
 - (d) Se R_1 é reflexiva e R_2 é simétrica, então $R_1 \cup R_2$ é antissimétrica.
 - (e) Se R_1 e R_2 são transitivas, então $R_1 \cup R_2$ é transitiva.
 - (f) Se R_1 e R_2 são transitivas, então $R_1 R_2$ é transitiva.
 - (g) Se R_1 e R_2 são antissimétricas, então $R_1 \cap R_2$ é reflexiva.

- (h) Se R_1 é transitiva e antissimétrica, então R_1 é reflexiva.
- (i) Se $R_1 \cap R_2$ é reflexiva, então R_1 e R_2 são reflexivas.
- (j) Se $R_1 \cup R_2$ é simétrica, então R_1 e R_2 são simétricas.
- (k) Se $(R_1 \cup R_2)^{-1}$ é transitiva, então R_1 ou R_2 é transitiva.
- (l) Se $(R_1 \cup R_2)^{-1}$ é transitiva, então R_1 e R_2 são transitivas.
- (m) Se $(R_1 \cap R_2)^{-1}$ é simétrica, então R_1 e R_2 são simétricas.
- 8. Seja $T = \{(x,y) \in \mathbb{Z}^2 : (xy)^2 \text{ é par}\}$. Verificar se T é uma relação de equivalência.
- 9. Sejam $A = \{x : x = 2n, n \in \mathbb{N}, 5 < x < 25\}$ e R uma relação definida em A. Analisar a validade das seguintes afirmações:
 - (a) Se n(R) < 10, então R é reflexiva.
 - (b) Se $n(R) \ge 10$, então R é reflexiva.
 - (c) Se R é transitiva, então $n(R) \geq 3$.
- 10. Sejam $A=\{a,b,c\},\ W=\{R\subset A^2:R$ é simétrica} e $V=\{R\subset A^2:R$ é reflexiva}. Das seguintes afirmações, quais são verdadeiras?
 - (a) $\{(a,b),(b,a)\}\subset W$.
 - (b) $\{(a,a)\} \in (W \cap V)$.
 - (c) $\{(a,c),(c,a)\}\in W$.
- 11. Sejam R_1, R_2 e R_3 relações definidas em \mathbb{Z} tais que "Se $(a,b) \in R_1$ e $(c,d) \in R_2$ então $(a-c,b-d) \in R_3$ ". Mostrar ou dar um contraexemplo de que se R_1 e R_2 são relações de equivalência, então R_3 é uma relação de equivalência.
- 12. Encontrar o domínio, imagem e esboçar o gráfico das relações dadas a seguir:
 - (a) $R = \{(x, y) \in \mathbb{Z} \times \mathbb{R} : -2 \le x < 5, -3 < y < 6\}$
 - (b) $R = \{(x, y) \in \mathbb{Z}^2 : y > \sqrt{9 x^2}, -6 \le x \le 6\}$
 - (c) $R = \{(x,y) \in \mathbb{R}^2 : y x^2 > 0, \ y x 2 < 0\}$
 - (d) $R = \{(x, y) \in \mathbb{R}^2 : (x y)(x + 2y) > 0\}$
 - (e) $R = \{(x, y) \in \mathbb{R}^2 : (2x y)(x + 5y) < 0\}$
 - (f) $R = \{(x, y) \in \mathbb{R}^2 : x \le y \le 2x\}$
 - (g) $R = \{(x, y) \in \mathbb{R}^2 : x^2 6xy + 5y^2 \ge 0\}$
 - (h) $R = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4, |y| \le x^2\}$
 - (i) $R = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, |x| \le |y|\}$
 - (j) $R = \{(x, y) \in \mathbb{R}^2 : |x| < y^2, |x| > |y|\}$
 - (k) $R = \{(x, y) \in \mathbb{R}^2 : |x 1| = |y 1|\}$
 - (l) $R = \{(x, y) \in \mathbb{R}^2 : y x^2 + 10x \ge 24, x + y 6 < 0\}$
 - (m) De R^{-1} sabendo que $R = \{(x, y) \in \mathbb{R}^2 : 4x 5y + 11 = 0, -4 < x \le 1\}$

- (n) De R^{-1} sabendo que $R = \{(x, y) \in \mathbb{R}^2 : y = x^2 + 2\}$
- (o) De R^{-1} sabendo que $R = \{(x, y) \in \mathbb{R}^2 : |x| \le y 1, y \le x + 3, 1 \le x \le 3\}$
- (p) De $R_1 \cap R_2$ sabendo que $R_1 = \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 4\}$ e $R_2 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 8\}$. Adicionalmente encontrar a área de $R_1 \cap R_2$.
- (q) De $R_1^c \cap R_2$ sabendo que $R_1 = \{(x,y) \in \mathbb{R}^2 : x \geq y\}$ e $R_2 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 > 9\}$

CONJUNTOS PARCIALMENTE ORDENADOS

- 13. Verificar se a relação $R = \{(x, y) \in \mathbb{R} : x \leq y\}$ é uma relação de ordem parcial.
- 14. Sobre a família de conjuntos $\mathfrak F$ define-se $R=\{(A,B)\in \mathfrak F^2: A\subset B\}$. R é uma relação de ordem parcial?
- 15. Um subconjunto A de \mathbb{R} é dito:
 - (i) limitado inferiormente se existe um $x_0 \in \mathbb{R}$ tal que $x_0 \le x$, para todo $x \in A$. E, x_0 é dito cota inferior.
 - (ii) limitado superiormente se existe um $x_1 \in \mathbb{R}$ tal que $x \leq x_1$, para todo $x \in A$. E, x_1 é dito $cota \ superior$
 - (iii) limitado se é limitado superior e inferiormente.
 - (a) Verificar se o conjunto $A=\{x\in\mathbb{R}:x=\frac{1}{n},\,n\in\mathbb{N}\}$ é limitado.
 - (b) Verificar se o conjunto $A=\{x: x=\frac{n+2}{n+3}, \ n\in\mathbb{N}\}$ é limitado.
 - (c) Mostrar que o conjunto $A=\{x: x=\frac{3+2n}{3-2n}, n\in\mathbb{N}\}$ é limitado.
 - (d) Mostrar que o conjunto $A = \{x : x^2 4x 12 \le 0\}$ é limitado.
 - (e) Verificar o conjunto $A = \{x^2 4x 12 : -5 < x \le 3\}$ é limitado.
- 16. A menor das cotas inferiores de um conjunto limitado superiormente é o Supremo de A, denotado por $\sup(A)$. E, a maior de todas as cotas inferiores é o Infimo de A, denotado por $\inf(A)$.

Determinar, caso seja possível, o ínfimo e o supremo dos seguintes conjuntos:

$$A = \{x \in \mathbb{R} : x = \frac{1}{n}, n \in \mathbb{N}\}, \ B = \{x : x = \frac{n+2}{n+3}, n \in \mathbb{N}\}, \ C = \{x : x = \frac{3+2n}{3-2n}, n \in \mathbb{N}\}, \ D = \{x : x^2 - 4x - 12 \le 0\}, \ E = \{x^2 - 4x - 12 : -5 < x \le 3\}$$

- 17. Dizemos que $x_0 \in A$ é o máximo de A se $x \leq x_0$, para todo $x \in A$. Denotamos por $\max(A) = x_0$. Dizemos que x_1 é o mínimo ou elemento mínimo de A se $x_1 \leq x$ para todo $x \in A$. Denotamos por $\min(A) = x_1$.
 - (a) Determinar, caso seja possível, o $\max(A)$ e o $\min(A)$, se $A = \{x \in \mathbb{R} : |3x 4| \le 2\}$.
 - (b) Encontrar, caso seja possível, o $\max(A)$ e o $\min(A)$, se $A = \{x \in \mathbb{R} : x^2 4x 12 \le 0\}$.
 - (c) É verdade que sempre $\sup(A) = \max(A)$? E no caso do ínfimo e o mínimo?

19

- (d) Sejam $A \subset B$ tais que $\sup(A) = a$ e $\sup(B) = b$. Dar um argumento válido ou um contraexemplo para a seguintes desigualdades $\sup(A) \leq \sup(B)$; $\inf(A) \geq \inf(B)$.
- (e) Sejam $A \in B$ tais que $A \cap B = \emptyset$ e $\sup(A) = a$, $\sup(B) = b$. Dar um argumento válido ou um contraexemplo para a seguinte igualdade $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}$.
- (f) Sejam $A \in B$ tais que $A \cap B = \emptyset$ e $\inf(A) = c$, $\inf(B) = d$. Dar um argumento válido ou um contraexemplo para a seguinte igualdade $\inf(A \cap B) \ge \sup\{\inf(A), \inf(B)\}$.

FUNÇÕES

- 1. Num triângulo ABC de base AB = 10 e altura H = 6 se inscreve um retângulo PQRS, tal que o lado RS esteja contido no lado AB. Se y representa a área desse retângulo, expressar y em função de sua base RS = x. Adicionalmente determinar o domínio da função resultante.
- 2. Uma esfera de raio R tem inscrito um cilindro cujo eixo central passa pelo diâmetro da esfera. Expressar o volume V do cilindro em função de sua altura. Adicionalmente, determinar o domínio da função resultante.
- 3. Encontrar o domínio e a imagem da função f, onde f(x) representa a área de um triângulo de base x e cujo perímetro é igual a 2b (b > 0).
- 4. No primeiro quadrante do plano cartesiano \mathbb{R}^2 é desenhado um trapézio isósceles com dois de seus vértices em (0,0) e (6,0). Os ângulos iguais a $\frac{\pi}{4}$ e lado menor igual a 3 unidades. Se os lados não paralelos e lado paralelo menor representa o gráfico de uma função f. Determinar a regra de correspondência de f.
- 5. Dada a função f definida por $f(x) = x^2$. Considere os pontos A = (-2, f(-2)), B = (3, f(3)) e C = (0, p). Determinar o valor de p.
- 6. O triângulo retângulo ABC tem catetos de medidas AB = 10 e AC = 10. O ponto P sobre o lado AB está a uma distância x de A. O ponto Q sobre o lado AC é tal que PQ é paralelo a BC. Os pontos R e S sobre BC são tais que QR é paralelo a AB e PS é paralelo a AC. A união dos paralelogramos PBRQ e PSCQ determina uma região de área f(x) no interior do triângulo ABC. Determinar f(2), f(8) e f(x) para $0 \le x \le 10$.
- 7. Um quadrado ABCD tem 8cm de lado. O ponto P, no interior do quadrado, é tal que a área do triângulo APD é o dobro da área do triângulo ABP. Seja x a distância, em centímetros, do ponto P ao lado AB. Esboçar o gráfico da função f que representa a área do quadrilátero BPDC em função de x.
- 8. Verificar se as funções, cujas regras de correspondência são dadas a seguir, são bijetivas e, em caso afirmativo determinar a inversa:

(a)
$$f(x) = e^{x+1}$$

(b)
$$g(x) = \sqrt{4 - x^2}, \quad x \in [0, 2]$$

(d) $g(x) = \sqrt{\frac{x - 1}{x + 1}}$

(c)
$$f(x) = 1 - x^3$$

$$(d) g(x) = \sqrt{\frac{x-1}{x+1}}$$

(e)
$$f(x) = \frac{9 - x^2}{4 - x^2}, x \ge 0$$

(f)
$$g(x) = 4\sqrt{x} - x, x \in [0, 1]$$

(g)
$$f(x) = \begin{cases} 3 - 2x, & x \in [-2, 1[\\ 4x - x^2 - 3, & x \in [2, 4]]] \end{cases}$$

(h)
$$g(x) = \begin{cases} (x-3)^3, & x \in [3,9] \\ 5x-9, & x > 9 \end{cases}$$

(i)
$$f(x) = \frac{4x}{1+|x|}$$

(j)
$$g(x) = \begin{cases} \sqrt{x - x^2 + 2} + 1, & x \in [-1, 1/2] \\ 2 - \frac{7}{x + 1}, & x \in]2, 4[\end{cases}$$

- 9. Verificar se a função $f: \mathbb{R} \{2\} \longrightarrow \mathbb{R} \{1\}$ dada por $f(x) = \frac{x}{x-2}$ é sobrejetiva.
- 10. Seja $f:A \longrightarrow [-9,-1[$, dada por $f(x)=\frac{10+3x}{10-2x}$. Determinar A para que: (i) f seja injetiva e (ii) f seja sobrejetiva.
- 11. Seja $f:]1,2] \longrightarrow B$, dada por $f(x) = \frac{x+1}{x^2-1}$. Determinar B para que f seja sobrejetiva.
- 12. Quantas funções injetivas de $A = \{0, 1, 2\}$ em $B = \{a, b, c\}$ podem ser definidas?
- 13. Se $B = \{a, b, c\}$, quantas funções bijetivas $f : B \longrightarrow B$ podem ser definidas?
- 14. Encontrar a e b para que a função $f:[a,b] \longrightarrow [-1,5]$, dada por $f(x)=\sqrt[3]{x-1}$ seja bijetiva.
- 15. Encontrar a e b para que a função $f:[2,5] \longrightarrow [2,5]$, dada por $f(x) = \frac{ax+b+1}{ax+b}$ seja bijetiva.
- 16. Encontrar a e b para que a função $f:[b,-2] \longrightarrow [a,\frac{-1}{24}]$, dada por $f(x)=\frac{1}{6x+6}$ seja bijetiva.
- 17. Encontrar uma função linear tal que $f = f^{-1}$.
- 18. Se f é dada por f(x) = ax + b. Determinar os valores de a e b de tal modo que $f^{-1}(2) = 4$ e $f^{-1}(1) + f^{-1}(-1) = 2$.
- 19. Sejam $f(x) = x^2$ e g(x) = ax + 1, com domínios apropriados para que ambas sejam bijetivas. Se $(f^{-1} \circ g^{-1})(3/2) = 1/2$, encontrar $(g \circ f)(2)$.
- 20. Determinar $(g \circ f)$, caso exista, para $f(x) = \frac{|2x-3|}{x}$ e $g(x) = \sqrt{x-1}$.
- 21. Se $(f \circ g)(x) = x^2 4$ e g(x) = x 1. Determinar f(x).
- 22. Se $f(x) = x^2$, determinar duas funções g tais que $(f \circ g)(x) = 4x^2 12x + 9$
- 23. Encontrar funções f e g tais que $h = f \circ g$, onde $h(x) = \sqrt{3x 1}$.
- 24. Encontrar funções f e g tais que $h = f \circ g$, onde $h(x) = \frac{1}{|x| + 3}$

- 25. Determinar $f\circ g$ e $g\circ f,$ caso seja possível, para f de (8g) e g de (8h).
- 26. Determinar $f \circ g$ e $g \circ f$, caso seja possível, para f de (8i) e g de (8j).
- 27. Esboçar o gráfico da função dada em (8i).
- 28. Esboçar o gráfico da função dada em (8d).