Project 3.

Document search engine & Classification and Clustering

Part 1. Document search engine

1.Document Pre-processing & Indexing

(1) Stopwords

문서 분석) Document에서 자주 나오는 단어 중 100번 이상 검색된 단어(총 45개)

```
[ 'wing', 'hypersonic', ')', 'were', 'solution', 'transition', 'body', '(', 'temperature', 'surface', 'from', 'plate', 'be', 'buckling', 'heat', 'flutter', 'wa' 'layer', 'theory', 'method', 'number', 'mach', 'an', 'that', 'jet', 'shock', 'boundary', 'by', 'pressure', 'on', 'at', 'with', 'are', 'flow', 'for', 'is', 'to', 'in', 'a', 'and', ',', '.', 'of', 'the']
```

- ▶ 총 document 개수(1400개)를 고려하였을 때, 상당히 작은 개수
- ▶ 표시된 단어들의 경우, 품사가 명사인 단어들이 상당수 존재 : stopword로 사용하기 무리가 있음
- ▶ 실제 성능또한 nltk의 stopwords를 사용했을 때보다 떨어짐

∴ nltk에서 제공하는 stopwords를 사용하여 전처리

1.Document Pre-processing & Indexing

(2) Pos-tagging & lemmatize

- > Query term 중 명사와 그 주위의 형용사(수식)에 대해 가중치 부여 방안 선택
- ➢ Document 또한 pos-tagging을 통한 품사 분석 & lemmatize 필요

∴ nltk에서 제공하는 pos-tag와 WordNetLemmatizer을 사용하여 전처리

Ex) Words: Pos-tag "NNS" > Iemmatize > Word: Pos-tag "NN"

2. Query Pre-processing & Query Expansion

(1) Query Pre-Processing

- ➤ Whoosh 검색 엔진은 query와 document 내의 동일한 단어를 매칭함
- ➤ Query와 document는 동일한 방식으로 전처리되어야 함

∴ document와 마찬가지로 nltk에서 제공하는 pos-tag와 WordNetLemmatizer을 사용하여 전처리

2. Query Pre-processing & Query Expansion

(2) Term Weighting based on Linguistics

- ▶ 품사를 추출하고, 품사 간의 위치에 따라 가중치를 부여하여 성능을 높일 수 있음
- > Query의 품사 및 단어 간 위치에 따라 다른 가중치를 부여

⇒ '명사'와 '명사 주위를 수식하는 형용사'에 가중치를 부여할 때 높은 성능을 보임

Part 1. Document search engine

2. Query Pre-processing & Query Expansion

(3) Query Expansion_Keyword

- > Query와 연관 있는 keyword를 query에 추가하는 방식
- ➢ whoosh key_terms를 사용하여 검색 수행 결과 상위 document에서 자주 나오는 단어를 keyword로 추출
- ▶ 본 프로젝트에서는 상위 10개의 문서에서 자주 나오는 단어 7개를 선정하여 query에 추가

2. Query Pre-processing & Query Expansion

(3) Query Expansion_n-grams

- ▶ Query의 연속된 term에 대한 가중치를 부여
- ▶ Unigram 과 bigram을 혼합하여 사용하는 경우 가장 높은 성능을 보임

type	score
unigram	0.3699976150960649
bigram	0.28644325928144615
trigram	0.16368008603698192
unigram + bigram	0.34733665544845316
unigram^1.5 + bigram	0.3563802002219599
unigram^3 + bigram	0.37181867273084646
unigram^3.5 + bigram	0.3727205642890792
unigram^4 + bigram	0.37185477314507837
unigram^5 + bigram	0.3700769526692274
unigram^7 + bigram	0.368968747121309

3. Scoring

- ➤ Tf, ldf 등의 정보를 바탕으로 scoring function을 정의
- ▶ BM25의 다양한 변형 꼴에 대해 검색 엔진 수행

BM25	$\left(\log\left(\frac{\mathrm{d} c}{\mathrm{d} f+1}\right)+1\right)\cdot\frac{\mathrm{t} f\cdot\left(\mathrm{K} 1+1\right)}{\mathrm{K}_{1}\cdot\left(1-\mathrm{B}+\mathrm{B}\cdot\left(\frac{\mathrm{f} l}{\mathrm{avg} \mathrm{f} l}\right)\right)+\mathrm{t} f}$	0.391465760632322
Robertson et al.	$\log \left(\frac{\text{dc} - \text{df} + 0.5}{\text{df} + 0.5} \right) \cdot \frac{\text{tf}}{K_1 \cdot \left(1 - B + B \cdot \left(\frac{\text{fl}}{\text{avgfl}} \right) \right) + \text{tf}}$	0.390086739707641
Lucene (accurate)	$log \left(1 + \frac{dc - df + 0.5}{df + 0.5}\right) \cdot \frac{tf}{K_1 \cdot \left(1 - B + B \cdot \left(\frac{fl}{avgfl}\right)\right) + tf}$	0.390392830810121
ATIRE	$\log \left(\frac{\mathrm{dc}}{\mathrm{df}}\right) \cdot \frac{\mathrm{tf} \cdot (\mathrm{K1} + 1)}{\mathrm{K_1} \cdot \left(1 - \mathrm{B} + \mathrm{B} \cdot \left(\frac{\mathrm{fl}}{\mathrm{avgfl}}\right)\right) + \mathrm{tf}}$	0.390627671549542
$TF_{l} \circ \delta \circ p \times IDF$	$\log \left(\frac{\mathrm{d} c + 1}{\mathrm{d} f}\right) \cdot \left(1 + \log \left(1 + \log \left(\frac{\mathrm{t} f}{\left(1 - B + B \cdot \left(\frac{\mathrm{f} l}{\mathrm{avg} \mathrm{f} l}\right)\right)} + \delta\right)\right)\right)$	0.395575565451715

 \Rightarrow 평균 BPREF가 가장 높은 $TF_{l \circ \delta \circ p} \times IDF$ 을 선택

Part 1. Document search engine

4. Searching

- ▶ 총 두 번의 검색을 통해 검색 결과를 보여줌
- > 1. 전처리 및 품사에 따른 weighting이 된 query로 첫 번째 결과를 도출
- > 2. 추출한 keyword, bi-gram에 작은 가중치를 두어 query에 추가 expansion된 query로 두 번째 결과를 도출

	평균 BPREF	score가 0인 문서
첫 번째 검색만 사용	0.3681165190164179	15개
두 번째 검색까지 사용	0.3955755654517156	18개

Part 2. Classification and Clustering

(1) 데이터 전처리

- ① 특수 문자 제거(특수 문자는 중요한 정보가 없는 경우가 많음)
- ② 길이가 3 이하인 단어 제거(영어의 경우, 길이가 짧은 단어는 대부분 불용어)
- ③ 전체 단어 소문자 변환(document의 대부분 글자가 소문자)

```
import pandas as pd
import nltk

def preProcess(documents):
    news_df = pd.DataFrame({'document':documents})
    # 특수 문자 제거
    news_df['clean_doc'] = news_df['document'].str.replace("[^a-zA-Z]", " ")
    # 걸이가 3이하인 단어는 제거 (길이가 짧은 단어 제거)
    news_df['clean_doc'] = news_df['clean_doc'].apply(lambda x: ' '.join([w for w in x.split() if len(w)>3]))
    # 전체 단어에 대한 소문자 변환
    news_df['clean_doc'] = news_df['clean_doc'].apply(lambda x: x.lower())
    return news_df['clean_doc']
```


(2) Naive Bayes Classifier

- ① CountVectorizer로 Stopwords 제거 후, 벡터화
- ② TfidfTransformer로 tf-idf 가중치 부여
- ③ MultinomialNB로 classification 진행. Alpha값은 0.01 ~ 0.5의 값을 0.01 단위로 grid_search하여 가장 적합한 파라미터 적용

(2) Naive Bayes Classifier

- ① 44개의 test 데이터 중에서 32개를 정확하게 분류, accuracy = 73%
- ② Books와 Opinion 카테고리 분류에서 낮은 성능

```
NB accuracy: 32 / 44
              precision
                           recall f1-score
                   1.00
                             0.80
                                        0.89
        arts
                                                     6
                   0.50
                              0.83
                                        0.62
       books
    business
                   0.71
                              1.00
                                        0.83
                   0.75
                              0.50
                                        0.60
      movies
     opinion
                   0.50
                              0.20
                                        0.29
                                                     5
                              0.80
                                        0.89
      sports
                   1.00
                   0.83
                              0.83
                                        0.83
       world
                   0.71
                              0.83
                                        0.77
                                        0.73
    accuracy
                   0.75
                                                    44
                              0.73
                                        0.72
   macro avg
 weighted avg
                   0.75
                              0.73
                                        0.71
```


(3) SVM Classifier

- ① CountVectorizer로 Stopwords 제거 후, 벡터화
- ② TfidfTransformer로 tf-idf 가중치 부여
- ③ SVM로 classification 진행. C = 1, gamma = 1, kernel = 'linear' C는 1 ~ 5의 값을 1 단위로, gamma도 1 ~ 5의 값을 1 단위로, kernel은 linear, poly, rbf로 grid_search하여 적합한 파라미터 적용

(3) SVM Classifier

- ① 44개의 test 데이터 중에서 35개를 정확하게 분류, accuracy = 80%
- ② Opinion 카테고리 분류에서 낮은 성능
- ③ MultinomialNB보다 높은 정확도

SVM accuracy	: 35 / 44 precision	recall	f1-score	support
arts books business movies opinion sports us world	1.00 0.75 0.71 1.00 0.33 0.80 0.83	0.80 1.00 1.00 0.83 0.20 0.80 0.83 0.83	0.89 0.86 0.83 0.91 0.25 0.80 0.83	5 6 5 6 5 6 6
accuracy macro avg weighted avg	0.78 0.79	0.79 0.80	0.80 0.78 0.78	44 44 44
[0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0] 0 0 0] 0 0 0] 0 0 0] 0 1 1] 4 0 0] 0 5 0] 1 0 5]]			

[1] 데이터 전처리

순서	내용	세부내용
	1 Dataframe	load한 파일을 dataframe으로 생성함
(1)		label과 data를 column으로 부름
2	Text Lower	data를 모두 소문자로 전환함
3	Title Weight	data 중 title에 가중치를 부여함
4 Token > P1,P2 > lemma	tokenize 후 P1이나 P2를 거쳐 lemmatize함	
	10Ken > P1,P2 > 1emma	(P1의 성능이 더 우수함)
(5)	Stopwords	NLTK 패키지의 stopwords를 이용함

*P1 : Tokenize > Pos_tagging > Lemmatize

*P2 : Tokenize > Stemming > Lemmatize

[1] 데이터 전처리

```
# TODO - Data preprocessing and clustering

# dataframe, lower

dataframe = pd.DataFrame(data.data, data.target)

dataframe.columns=['text']

dataframe['text'] = dataframe['text'].str.lower()

# title split & weight

dataframe['text'] = dataframe['text'].str.split('\n')

dataframe2 = dataframe['text'].apply(pd.Series)

dataframe2.columns=['title', 'body', 'NAN']

dataframe2['NAN']

dataframe2['total'] = (dataframe2['title'] + ' ')*2 + ' ' + dataframe2['body']
```

```
w tokenizer = nltk.tokenize.WhitespaceTokenizer()
lemmatizer = nltk.stem.WordNetLemmatizer()
 ef get wordnet pos(treebank tag):
   if treebank_tag.startswith('J'):
        return wordnet.ADJ
    elif treebank tag.startswith('V'):
        return wordnet.VERB
   elif treebank_tag.startswith('N'):
        return wordnet.NOUN
    elif treebank_tag.startswith('R'):
        return wordnet.ADV
        return wordnet.NOUN
def pos tag(text):
    pos_tokens1 = [nltk.pos_tag(w_tokenizer.tokenize(text))]
    pos tokens2 = [[(lemmatizer.lemmatize(word, get wordnet pos(pos tag))) for (word, pos tag) in pos] for pos in pos tokens1]
    return pos_tokens2[0]
dataframe2['lemma'] = dataframe2.total.apply(pos tag)
sw = stopwords.words('english')
dataframe2['le st'] = dataframe2['lemma'].apply(lambda x: ' '.join([word for word in x if word not in sw]))
```


(2) Parameter 변경

Index	parameter	비고	
V 3	Vectorizer종류, Stop_words, analyzer, min_df, max_df, ngra	77H	
	m_range, max_feature		
V4	norm, use_idf, smooth_idf, sublinear	47H	
V 5	random_state, init, n_init, max_iter, algorithm, precompute_	0.711	
	distance,	67H	

(2) Parameter 변경

```
for k in range(1, 12):
    for m in list(np.arange(0.5, 1.0, 0.05)):
       for n in range(0, 15):
           V_list = [(k,m,n)]
           for a, b, c in V_list:
                vectorizer = CountVectorizer(stop_words='english', analyzer='word', min_df=a, max_df=b) ## V3
                data trans1 = vectorizer.fit transform((dataframe2['le st']))
                data_trans2 = TfidfTransformer().fit_transform(data_trans1)_##_V4
                clst = KMeans(n_clusters=8, random_state=c) ## V5
                clst.fit(data_trans2)
                print("end %d %f %d" % (a, b, c))
                print(metrics.v_measure_score(data.target, clst.labels_))
```


(3) 성능 향상 과정

1. Base

2. Countvectorizer: stopwords

3. Countvectorizer: min_df, max_df Kmeans: random_state

4. Countvectorizer: max_features Kmeans: n_init, max_iter

5. Text-preprocessing (Title weight)

6. 기타

	추가 variables/parameter	성능
1	(Base)	0.20652
2	V3 : Stopwords (English)	0.39794
3,4	V3 : min_df (9) V5 : random_state (10)	0.40513
5	추가적인 Preprocessing V1: title weight (2)	0.48766
6	V4 : smooth_idf (False)	0.48891

(4) Clustering 결과

```
keywords:
  ['israel', 'israeli', 'gaza', 'palestinian', 'hamas', 'netanyahu', 'rocket', 'jerusalem', 'arab', 'minister']

keywords:
  ['trump', 'biden', 'president', 'mr', 'republican', 'senate', 'vote', 'election', 'party', 'capitol']

keywords:
  ['art', 'music', 'museum', 'artist', 'new', 'york', 'work', 'song', 'gallery', 'album']
```

대략적으로 비슷한 유형의 키워드끼리 묶임

But 여전히 'israeli' 나 'mr' 등 이상한 단어 존재 또한 'israel' 과 'trump' 는 "world" 라는 카테고리에 함께 있지 않음

(4) Clustering 결과

Project 3.

Document search engine & Classification and Clustering