Gruppierung chemischer Reaktionen

1. Oxidation

V Eine Kerze wird angezündet

B Die Kerze wird angezündet (gelbe Flamme)

E exotherme Reaktion: Licht und Wärme

$$C_{15}H_{32} + 23 O_2 \rightarrow 15 CO_2 + 16 H_2O (g)$$

Wachs(eigentlich ist Wachs ein Gemisch)

Reaktionen mit Sauerstoff nennt man Oxidation.

V Die brennende Kerze wird in Gas gestellt:

- 1. N₂
- 2. O₂

B

- 1. die Flamme geht aus
- 2. gelbe Flamme

 ${\bf E}$ Hier liegt tatsächlich eine Reaktion mit ${\bf O}_2$ vor.

Zusammensetzung von Luft

Die Gasglocke füllt sich mit Rauch B Die Flüssigkeit hat sich von gelb nach rot verfärbt.

(Farbstoff in Wasser) ca. 1/5 weniger V (Gas)

$$E4 P + 5 O_2 \rightarrow P_4O_{10}$$

Wertigkeit P: V

⇒ In Luft befindet sich ca. 20% Sauerstoff.

Das Phosphoroxid hat sich in Wasser aufgel st und dabei die Farbe geändert.

Luftzusammensetzung

Luftverschmutzung

Die moderne Zivilisation bring in zunehmendem Mafl schädlich wirkende Stoffe in de Atmosphäre. z.B. Kohlenstoffdioxid (CO_2)

- Pflanzen brauchen es für die Photosynthese $6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \text{ (Licht + Chlorophyll)} \rightarrow 6 \text{ CO}_2 + \text{C}_6\text{H}_{12}\text{O}_6$
- Ist harmlos (Wir atmen es ständig aus!)
- Entsteht bei der Verbrennung (Fossile Brennstoffe)
- Problem: Globale Klimaerwärmung (Treibhauseffekt)

Folgen der Erderwärmung:

- Abschmelzen der Polarkappen \rightarrow Meeresspiegel steigt
- Extremeres Wetter (Stürme, Niederschläge, Dürren)
- Eventuell stillstand des Golfstromes → Eventuelle Abkühlung des Klimas in Europa (Eiszeit)

Was können wir tun?

- keine Tropenh^lzer kaufen → keine Abholzung der Regenwälder
- ^ffentliche Verkehrsmittel nutzen
- Strom sparen (Energiesparlampen, Regenerative Energien, Wasser- und Windenergie,

Name	Formel	Quelle	Problematik / Besonderheiten Starke Reaktion
Ozon	O_3	NO ₂ →NO Autobahnen	 Zellmembranen Stoffwechselprodukte St^rt Photosynthese Kautschuk / Kunststoffe Atemwege
Schwefeldioxid	SO_2	Erd ¹ l, Kohle Verbrennung Oxidation in Sümpfen (Metallgewinnung)	Versauerung, RostenWaldsterben
Stickstoffoxid	NO ₂ NO	Verbrennungen an der Luft, Gewitter, Bakterien	Kann in Verbindung mit Regen zu Nitraten führen → Düngung sehr giftig, führt zur Bildung von Ozon
Halogenwasserstoffe: Chlormethan Flurkohlenwasserstoffe (FCKWs)	CH ₃ Cl CFCl ₃ CFCl ₂	Chemische Reaktionen im Meerwasser	In der Atmosphäre freisetzung von Cl- Atomen durch Reaktion durch Licht → Ozon wird durch Cl-Atome zersetzt. Es wird mehr Ozon zersetzt als Produziert wird: • Entstehung eines Ozonlochs • Ungiftig • Nicht Brennbar
Kohlenwasserstoffe	C_xH_y	Erd^lf^rderung Fäulnisprozesse Aufbereitung, Vorrats- und Transportbehälter	Krebserregend Benzol Schadstoffe
Kohlenwasserstoffmonoxid	СО	unvollständige Verbrennung (z.B. Auto)	 Atemgift (verhindert den O₂ Transport im Blut) Wird in der Atmosphäre schnell zu CO₂ umgebaut.

Luftreinhaltung

Beispiele:

- MüllverbrennungsanlagenAutoabgase (Kfz-Katalysator)

$$\begin{aligned} &\text{CO, NO, NO}_2, \text{CO}_2, \text{CH}_4 \\ &\text{2 CO + 2 NO} \rightarrow \text{N}_2 + 2 \text{ CO}_2 \\ &\text{CH}_4 + 2 \text{ O}_2 \rightarrow 2 \text{ H}_2 \text{O} + \text{CO}_2 \\ &\text{CH}_4 + 4 \text{ NO} \rightarrow 2 \text{ H}_2 \text{O} + \text{CO}_2 + 2 \text{ N}_2 \end{aligned}$$

Kohlekraftwerk z.B. Rauchgasreinigung z.B. SO₂

$$\begin{split} &\mathrm{SO_2} + \mathrm{H_2O} \rightarrow \mathrm{H_2SO_3} \\ &2\,\mathrm{H_2SO_3} + \mathrm{O_2} \rightarrow 2\,\mathrm{H_2SO_4} \\ &\mathrm{CaCO_3} + \mathrm{H_2SO_4} \rightarrow \mathrm{CaSO_4} + \mathrm{CO_2} + \mathrm{H_2O} \end{split}$$

Vielfalt und Bedeutung von Oxidationsprozessen

- 1. Stille Oxidation (exotherm), z.B.
 - Rosten von Eisen $4 \text{ Fe} + 3 \text{ O}_2 \rightarrow 2 \text{Fe}_2 \text{O}_3$ $\Delta H_R > 0$
 - Zellatmung $C_6H_{12}O_6 \rightarrow 6 H_2O + 6 CO_2$ $\Delta H_R > 0$
- 2. Verbrennung, z.B.:
 - Kerze (vereinfacht) $C_{12}H_{32} + 23 O_2 \rightarrow 15 CO_2 + 16 H_2O$ $\Delta H_R > 0$
 - Magnesium: $2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$
 - Gasbrenner $2 C_4H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2O$ $\Delta H_R > 0$
- 3. Explosion, z.B.:
 - Benzinmotor $2 H_2 + O_2 \rightarrow 2 H_2O$ $2 C_8H_{18} + 25 O_2 \rightarrow 16 CO_2 + 18 H_2O$ $\Delta H_R > 0$

Wichtige Oxide

- H₂O: Wasser
- CO₂: Nachweisreaktion für Kohlenstoffdioxidgas

Calciumhydroxidl sung Ca(OH)₂ (aq.)

Wir leiten das Testgas durch die L^sung. z.B. mit einem Strohalm pusten wir Atemluft durch die L^sung $CO_2(g) + Ca(OH)(aq) \rightarrow CaCO_3(s) + H_2O(l)$

Wichtige Oxidationsmittel:

Oxidationsmittel k[^]nnen Stoffe oxidieren.

$$\begin{aligned} \mathbf{C} + \mathbf{O}_2 &\rightarrow \mathbf{CO}_2 \\ \Delta \mathbf{H}_\mathbf{R} &> 0 \end{aligned}$$

hier: Sauerstoffgas O₂

- O₂: Zellatmung, Kerze, Raketenantrieb, Verbrennungsmotor
- KNO₃ (Kaliumnitrat): Schwarzpulver, Feuerwerksk[^]rper
 C + S + 4 KNO₃ → 4 KNO₂ + SO₂
- H₂O₂ (Wasserstoffperoxyd): Bleichmittel, Desinfektionsmittel

Wichtige Säuren und Laugen:

Name	Formel	Bedeutung
Salzsäure	HCl (aq.)	Entkalkung, Magensäure
Ascorbinsäure (Vitamine)		lebensnotwendiger Nahrungsbestandteil Vitamine kann der K^rper nicht selbst herstellen
Natronlauge	NaOH (aq.)	Laugengebäck Aluminiumherstellung Abflussreiniger
Schwefelsäure	H_2SO_4	Batteriesäure Herstellung von Farben
Salpetersäure	HNO_3	Herstellung von Sprengstoffen Kunstdünger
Ammoniak	NH ₃	Kuhstallgeruch Düngemittel
Aminosäuren		Bausteine der Proteine

Reduktion

V

B Es bilden sich Wassertr^pfchen am Ende des Glasrohres: Das schwarze Kupferoxid wird kupferfarben (rot)

E CuO (s) +
$$H_2$$
 (g) \rightarrow Cu(s) + H_2 O (l)
Reduktion: 2 CuO \rightarrow 2 Cu + O_2
Oxidation: 2 H_2 + O_2 \rightarrow 2 H_2 O
2 CuO + 2 H_2 \rightarrow 2 Cu + 2 H_2 O + O_2
CuO + H_2 \rightarrow Cu + H_2 O (Redoxreaktion)

Reduktion

Eine chemische Reaktion bei der Sauerstoff abgegeben wird.

H₂ ist bei dieser Reaktion das Reduktionsmittel. CuO ist bei dieser Reaktion das Oxidationsmittel

Weitere Reaktionen:

$$\begin{aligned} &\mathrm{C} + 2\ \mathrm{KNO_3} \rightarrow \mathrm{CO_2} + 2\ \mathrm{KNO_2} \\ &\mathrm{C} + \mathrm{O_2} \rightarrow \mathrm{CO_2} \\ &2\ \mathrm{KNO_3} \rightarrow + \mathrm{O_2} \\ &2\ \mathrm{KNO_3} + \mathrm{C} + \mathrm{O_2} \rightarrow 2\ \mathrm{KNO_2} + \mathrm{CO_2} + \mathrm{O_2} \end{aligned}$$

Anwendung: das Thermit-Verfahren z.B.

- · Schweiflen von Eisenbahnschienen
- Brandbomben

Technische Anwendungen von Redoxreaktionen

z.B. die Herstellung von Eisen im Hochofen (über 3000 °C)

$$C + O_2 \rightarrow CO_2$$

2 Fe₂O₃ + 3 C \rightarrow 4 Fe + 3 CO₂

1: Eisenerz (= Fe_2O_3 mit Gestein) + Koks (= speziell bearbeitete Kohle) + Zuschläge (z.B. Kalk)

2: Gichtgas (CO₂, CO, N₂)

Die Zuschläge bilden zusammen mit dem Kalk die flüssige Schlacke. Sie verhindert die Oxidation der heiflen Luft und des gewonnenen Eisens.

- 1. Eisenerz, Koks und Zuschläge werden in den Hochofen gegeben.
- 2. Die heifle Luft oxidiert mit einem Teil des Koks ⇒ Erwärmung
- 3. Eisenoxid wird durch Koks reduziert ⇒ flüssiges Eisen entsteht
- 4. Die Zuschläge bilden mit dem Gestein flüssige, auf dem Eisen schwimmende, Schlacke.