Hausdorff Spaces

Recall that 4×3 and $\{(x,y)^3\}$ for $x,y \in \mathbb{R}^2$ are closed in \mathbb{R} and \mathbb{R}^2 respectively.

However, singletons need not be closed in general topological spaces.

 $X = \{a,b,c\}$ $T = \{\emptyset,X\}$ or $T = \{\emptyset,X,\{a,b\},\{b,c\},\{b\}\}$ Obviously, $\{b\}$ is not closed in X. (for either topology)

Also, recall that (in R or \mathbb{R}^2), a sequence (x_n) converges, if at all, to a unique point.

How would we extend this notion to general topological spaces? Can we extend this in a meaningful way in general?

Def. Let (X,T) be a topological space and (x_n) a sequence in $X \cdot x_n$ is convergence solid to converge to $x \in X$ if for all open sets $U \ni x$ in X, there exists NEN such that $x_n \in U$ for all $n \ge N$.

However, sequences need not have unique limits in general! Let $X = \{a,b,c\}$ and $T = \{g,x,\{a,b\},\{b,c\},\{b,s\}\}$. Consider the constant sequence $x_n = b$. By our above definition, x_n converges to any of a,b,c.

In what spaces are limits unique? When showing uniqueness of limits in metric spaces, we only really used the fact that there is a separating open set.

Def. A topological space X is called a Hausdorff space if for any $x_1, x_2 \in X$ $(x_1 \neq x_2)$, there are open sets $U_1 \ni x_1$ and $U_2 \ni x_2$ space such that $U_1 \cap U_2 = \emptyset$.

Observe that metric spaces are Hausdorff.

Theo Every finite point set in a Howedorff space X is closed.

Proof: It suffices to show that singletons are closed (closed sets are closed under finite unions). Let $x_i \in X$. If $x_i \in X \setminus \{x_i\}$, there are disjoint neighborrhoods U, V of x_i, x_i . Since V does not intersect $\{x_i\}$, x_i cannot belong to the closure of $\{x_i\}$. As a result, using Theo 1.15, the closure of $\{x_i\}$ is itself and it is closed.

Is the converse true? No, consider R under the cofinite topology.

The condition that finite point sets are closed is called the T, axiom.

Theo Let X be a topological space satisfying the T_i axiom and $A \subseteq X$. (2.2) Then x is a limit point of A iff every neighbourhood of x contains infinitely many points of A.

Proof The backward direction is trivial. For the forward direction, suppose $x \in A'$ and some neighbourhood U of x intersects A at finitely many points. Then $U \cap (X \setminus (U \cap (A \setminus \{x\})))$

finite so closed and complement is open. is a neighbourhood of x that does not intersect A, thus giving a contradiction and proving the claim.

- Theo If X is a Hausdorff space, then a sequence of points of X (2.3) converges, if at all, to a unique point in X.
- Proof. Let x_n be a sequence in X that converges to x. Let $y \neq x$. Since $y \neq x$. Since $y \neq x$. Then $y \neq x$ is not a limit point of $\{x_n\}$ (as a set) by Theo $y \neq x$. So $y \neq x$. So $y \neq x$.