Lecture 17

Friday, 17 September 2021 8:17 AM

COL 351: Analysis and Design of **Algorithms**

Lecture 17

Single Source Distances in graph with negative edge-weights

Single Source Distance Problem

Given: A directed weighted graph G = (V, E) with possibly negative edge weights, and a source s.

Output: Either a Shortest-path-tree rooted at s, or report that G contains a negative cycle reachable from s.

Example:

Level (v): Number of ancestors of "v" in T

Shortest path tree, T

Example: Level and Distances

Levels

Shortest path tree, T

Definition

An n sized array D is said to be valid up to level i if:

- For $v \in V$ with level at most i, D[v] = distance(s, v, G).
- For $v \in V$ with level greater than i, $D[v] \ge distance(s, v, G)$.

Levels

valid up to level i = 0, 1, 2

Lemma (assuming no negative weight cycle)

2

2

Lemma: Let D be an n sized array that is valid upto level i. Then executing the following step ensures that D is valid upto level i + 1.

3

For Each
$$(x, y) \in E$$
:
If $(D[y] > D[x] + weight(x, y))$ then
 $D[y] = D[x] + weight(x, y)$

Proof Sketch:

Levels

0

Consider a vertex y in level i + 1. Let x be parent of y in T. Then, level(x) = i.

Now, distance(s, y) = distance(s, x) + weight(x, y), as x is predecessor of y on a s - y shortest path.

The level of x is i which means D[x] is correct, so executing the above code will ensure D[y] = distance(s, y).

<u>Homework</u>: Argue that for vertices upto level i, there will be no change in D on executing the above code.

Algorithm (assuming no negative weight cycle)

```
For Each v \in V:
    D[v]=\infty and parent[v]=null
D[s]=0
For i = 1 to n - 1:
    For Each (x, y) \in E:
         If (D[y] > D[x] + weight(x, y)) then
             D[y] = D[x] + weight(x, y)
             parent[y] = x
Return D, parent.
```

What if G has negative weight cycle reachable from s?

Lemma: G has 'negative weight cycle' if and only if we can make improvement in vector D even in n^{th} round by using the following procedure.

For Each
$$(x, y) \in E$$
:
If $(D[y] > D[x] + weight(x, y))$ then
 $D[y] = D[x] + weight(x, y)$

Proof: Homework

Bellman Ford algorithm

```
For Each v \in V:
    D[v]=\infty and parent[v]=null
D[s]=0
For i = 1 to n-1:
    For Each (x, y) \in E:
         If (D[y] > D[x] + weight(x, y)) then
             D[y] = D[x] + weight(x, y)
             parent[y] = x
For Each (x, y) \in E:
    If (D[y] > D[x] + weight(x, y)) then
         Return "Negative-weight cycle found"
Return D, parent.
```

O(mn) time algorithm for graphs with negative weights