

<u>Home</u> Maths Geometry Trigonometry Angles and Projection

Angles and Projection

Part A Finding $\cos \phi$ and $\tan \phi$

Find, without using a calculator, $\cos\phi$ and $\tan\phi$ given that $\sin\phi=\frac{5}{13}$ and that ϕ is an obtuse angle.

- $\cos \phi = -\frac{5}{12}$, $\tan \phi = -\frac{12}{13}$
- $\bigcirc \quad \cos \phi = -\frac{12}{13}, \tan \phi = \frac{5}{12}$
- $\cos \phi = \frac{5}{12}, \tan \phi = \frac{12}{13}$
- $\cos \phi = \frac{12}{13}, \tan \phi = \frac{5}{12}$
- $\cos \phi = -\frac{12}{13}$, $\tan \phi = -\frac{5}{12}$

Part B Value of θ

A particle is projected into the air with a speed of $50\,\mathrm{m\,s^{-1}}$ at an angle of θ to the horizontal. It lands a horizontal distance of $250\,\mathrm{m}$ away after $6.4\,\mathrm{s}$. Assuming that it travels at a constant velocity in the horizontal direction find the value of θ .

Created for isaacphysics.org by Julia Riley.

<u>Home</u> Maths Geometry Trigonometry Exact Values of Angles 1

Exact Values of Angles 1

For the range $0 \le \theta \le 360^\circ$, write down all the values of θ which have the following: (a) $\sin \theta = \sqrt{3}/2$, (b) $\sin \theta = -1/2$.

(a) 60° , 120° , (b) 210° , 330° (a) 30° , 150° , (b) 240° , 300° (a) 60° , 120° , (b) 150° , 330° (a) 60° , 120° , (b) 150° , 330° (a) 60° , 120° , (b) 150° , 120° ,

Created for isaacphysics.org by Julia Riley.

<u>Home</u> Maths Geometry Trigonometry Addition of Forces 2

Addition of Forces 2

Forces $\underline{F_1} = \begin{pmatrix} F_{1x} \\ F_{1y} \end{pmatrix}$ and $\underline{F_2} = \begin{pmatrix} F_{2x} \\ F_{2y} \end{pmatrix}$ act in the x-y plane, having magnitudes F_1 and F_2 and making angles of θ and ϕ with the positive x axis respectively. Find expressions for (a) F_{1x} , F_{1y} , F_{2x} and F_{2y} , (b) the magnitude of the vector sum of the two forces and (c) the angle the vector sum of the two forces makes with the x axis.

Part A The components of the forces

Write down an expression in terms of F_1 and θ for F_{1x} .

The following symbols may be useful: F_1 , arccos(), arcsin(), arctan(), cos(), sin(), tan(), theta

Write down an expression in terms of F_1 and θ for F_{1y} .

The following symbols may be useful: F_1, theta

Write down an expression in terms of F_2 and ϕ for F_{2x} .

The following symbols may be useful: F_2 , phi

Write down an expression in terms of F_2 and ϕ for F_{2y} .

The following symbols may be useful: F_2 , phi

Part B The magnitude

Consider the sums of the components of the two forces in the x-direction and the y-direction. Hence find an expression for the magnitude of the vector sum of the two forces.

The following symbols may be useful: F_1x , F_1y , F_2x , F_2y

Part C The angle

Consider the sums of the components of the two forces in the x-direction and in the y-direction. Hence find an expression for the angle the vector sum of the two forces makes to the x-axis,.

 $The following symbols may be useful: F_1x, \ F_1y, \ F_2x, \ F_2y, \ arccos(), \ arcsin(), \ arctan(), \ cos(), \ sin(), \ tan(), \ tan($

Created for isaacphysics.org by Julia Riley.

Home Maths Geometry Trigonometry Values of Angles 1

Values of Angles 1

For the range $-180^{\circ} \le \alpha \le 180^{\circ}$, consider all the values of α which satisfy $\sin \alpha = 0.2$.

Part A Values of α

How many values of α , satisfying the equation, are in this range?

Part B Largest value of α

What is the largest positive value of α satisfying the equation in this range? Give your answer to 3.s.f.

Created for isaacphysics.org by Julia Riley.

<u>Home</u> Maths Geometry Trigonometry Simplify Trig Expressions

Simplify Trig Expressions

Simplify the following trigonometric expressions.

Part A
$$1/(\cos^2 t - 1)$$

Simplify the following expression to give a single trigonometric function:

$$\frac{1}{\cos^2 t - 1}$$

The following symbols may be useful: cos(), cosec(), cot(), sec(), sin(), t, tan()

Part B
$$(1 - \sin^2 x)/(\cos^2 t - 1)$$

Simplify the following expression to give a single trigonometric function:

$$\frac{1-\sin^2 x}{\cos x}$$

The following symbols may be useful: cos(), cosec(), cot(), sec(), sin(), tan(), x

Part C
$$\sin \alpha \cos \alpha - 1/(\cos^2 t - 1)$$

Simplify the following expression to give a single trigonometric function:

$$\sin\alpha\tan\alpha - \frac{1}{\cos\alpha}$$

The following symbols may be useful: alpha, cos(), cosec(), cot(), sec(), sin(), tan()

Part D
$$an w - rac{\cos w}{1-\sin w}$$

Simplify the following expression to give a single trigonometric function:

$$\tan w - \frac{\cos w}{1 - \sin w}$$

The following symbols may be useful: $\cos()$, $\csc()$, $\cot()$, $\sec()$, $\sin()$, $\tan()$, w

Created for isaacphysics.org by Julia Riley.