

Komplexe und Harmonische Analysis WS2023

Simon~Garger - simon.garger@gmail.com

3. Oktober 2023, Wien

Inhaltsverzeichnis

1	Grundlagen	3
2	Holomorphie	4

Komplexe Analysis

Bemerkung. Im Folgenden wird immer $z_k = x_k + iy_k = r_k \cdot e^{i\theta_k}$ gelten.

1 Grundlagen

Definition 1.1 (Komplexe Zahlen):

Wir definieren den komplexen Zahlenkörper als die Menge

$$\mathbb{C} := \{ z = x + iy | x, y \in \mathbb{R} \}$$

Dabei bezeichnet i die komplexe Einheit mit $i^2 = -1$. Man nennt $x = \Re \mathfrak{e}(z)$ den Realteil und $y = \Im \mathfrak{m}(z)$ den Imaginärteil. Der Betrag einer komplexen Zahl wird geschrieben durch $|z| = \sqrt{x^2 + y^2}$. Wir definieren $\bar{z} := x - iy$ als das komplex Konjugierte von z.

Proposition 1.2:

Die komplexen Zahlen erfüllen folgende Rechenregeln:

- 1. $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$ (Interpretation: Vektoraddition)
- 2. $z_1 z_2 = (x_1 x_2 y_1 y_2) + i(x_1 y_2 + x_2 y_1) = r_1 r_2 \cdot e^{i(\theta_1 + \theta_2)}$ (Interpretation: Streckung und Drehung)
- $3. |z_1 + z_2| \le |z_1| + |z_2|$
- 4. $|z|^2 = z\bar{z} \Rightarrow \frac{1}{z} = \frac{\bar{z}}{|z|^2}$

Definition 1.3:

Da $\mathbb{C} \cong \mathbb{R}^2$ gilt, können wir die topologischen Eigenschaften von \mathbb{R}^2 in \mathbb{C} übertragen und werden auch im Weiteren öfter die komplexen Zahlen mit der zweidimensionalen Zahlenebene identifizieren. Weiter werden wir eine Teilmenge von \mathbb{C} meist mit Ω bezeichnen. Wir erhalten damit:

- 1. Die komplexen Zahlen sind vollständig, es konvergiert also jede Cauchy-Folge.
- 2. Eine Folge konvergiert in \mathbb{C} genau dann, wenn Real- und Imaginärteil konvergieren und genau dann, wenn es eine Cauchy-Folge ist.
- 3. Das Innere von Ω ist $\Omega^{\circ} := \{a | \exists B_r : a \in B_r \subset \Omega \}$
- 4. Wir nennen Ω kompakt, sofern die Menge beschränkt und abgeschlossen ist.
- 5. Wir nennen Ω offen (abgeschlossen) zusammenhängend, wenn für Ω_1 , Ω_2 offen (abgeschlossen) gilt:

$$\Omega = \Omega_1 \cup \Omega_2 \quad \wedge \quad \emptyset = \Omega_1 \cap \Omega_2 \quad \Rightarrow \quad \Omega_1 = \emptyset \quad \vee \quad \Omega_2 = \emptyset$$

6. Wir nennen eine Funktion stetig, wenn gilt:

$$\lim_{n \to \infty} z_n = z \quad \Rightarrow \quad \lim_{n \to \infty} f(z_n) = f(z)$$

2 Holomorphie

Definition 2.1:

Sei $z_0 \in \Omega$, dann nennen wir f holomorph ("komplex differenzierbar") in z_0 falls

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z)}{h} = f'(z_0) \in \mathbb{C}$$

existiert.

Eine Funktion heißt auf Ω holomorph, wenn sie in jedem Punkt $z \in \Omega$ holomorph ist oder einfach "ganz", falls sie für alle $z \in \mathbb{C}$ holomorph ist.

Beispiel. Beispiele für holomorphe Funktionen sind:

- Konstante Funktionen
- Potenzfunktionen
- Polynomfunktionen
- Potenzreihen

Proposition 2.2 (Cauchy-Riemann Gleichungen):

Sei f eine auf Ω holomorphe Funktion. Identifizieren wir nun f(z) = u(z) + iv(z), wobei $u, v: \mathbb{C} \cong \mathbb{R}^2 \to \mathbb{R}$ sind, so gelten folgende Beziehungen:

$$\begin{split} \frac{\partial u}{\partial x}(x,\,y) &= \frac{\partial v}{\partial y}(x,\,y) \\ \frac{\partial u}{\partial y}(x,\,y) &= -\frac{\partial v}{\partial x}(x,\,y) \end{split}$$

Beweis. Wir definieren für ein beliebiges $x + iy = z_0 \in \Omega$:

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z)}{h} = f'(z_0) =: a + ib$$

Nun differenzieren wir nur partiell (der obige Limes beschreibt ja eine beliebige Nullfolge, also können wir auch die entlang der Achsen betrachten), indem wir die obige u, v Identifikation und $h = (h_1, h_2)$ verwenden:

$$a + ib = \lim_{h_1 \to 0} \frac{f(z_0 + h_1) - f(z)}{h_1}$$

$$= \lim_{h_1 \to 0} \frac{u(z_0 + h_1) + iv(z_0 + h_1) - u(z_0) - iv(z_0)}{h_1}$$

$$= \lim_{h_1 \to 0} \frac{u(z_0 + h_1) - u(z_0)}{h_1} + \lim_{h_1 \to 0} \frac{i(v(z_0 + h_1) - iv(z_0))}{h_1}$$

$$= \frac{\partial u}{\partial x}(x, y) + i\frac{\partial v}{\partial x}(x, y)$$

Genauso finden wir:

$$a + ib = \lim_{h_2 \to 0} \frac{f(z_0 + ih_2) - f(z)}{ih_2}$$

$$= \lim_{h_2 \to 0} \frac{u(z_0 + ih_2) + iv(z_0 + ih_2) - u(z_0) - iv(z_0)}{ih_2}$$

$$= \lim_{h_2 \to 0} \frac{u(z_0 + ih_2) - u(z_0)}{ih_2} + \lim_{h_2 \to 0} \frac{i(v(z_0 + ih_2) - v(z_0))}{ih_2}$$

$$= \frac{1}{i} \frac{\partial u}{\partial y}(x, y) + \frac{\partial v}{\partial y}(x, y)$$

Damit folgt:

$$a = \frac{\partial u}{\partial x}(x, y) = \frac{\partial v}{\partial y}(x, y)$$
$$b = \frac{\partial v}{\partial x}(x, y) = -\frac{\partial u}{\partial y}(x, y)$$