Arquitetura e Organização de Computadores

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

28 de Março de 2023

Conceitos básicos e evolução do computador

- Arquitetura de computador refere-se aos atributos de um sistema visíveis a um programador.
- Organização de computador refere-se às unidades operacionais e suas interconexões que percebam as especificações de arquitetura.
- Historicamente, e ainda hoje, a distinção entre arquitetura e organização tem sido importante.
- Os diferentes modelos na família têm diferentes características de preço e desempenho.

Estrutura e Função

- Em cada nível, o projetista está interessado em:
- Estrutura: o modo como os componentes são inter-relacionados.
- Função: a operação individual de cada componente como parte da estrutura.
- Em termos de descrição, temos duas escolhas:
 - começar de baixo e subir até uma descrição completa, ou
 - começar com uma visão de cima e decompor o sistema em suas subpartes.

Função

- Em termos gerais, há somente quatro funções básicas que podem ser apresentadas pelo computador:
 - Processamento de dados.
 - Armazenamento de dados.
 - Movimentação de dados.
 - Controle.

- Há quatro componentes estruturais principais:
 - Unidade central de processamento (CPU do inglês, Central Processing Unit).
 - Memória principal.
 - E/S.
 - Sistema de interconexão.

- O mais complexo componente é a CPU.
- Seus principais componentes estruturais são os seguintes:
 - Unidade de controle.
 - Unidade lógica e aritmética (ALU do inglês, Arithmetic and Logic Unit).
 - Registradores.
 - Interconexão da CPU.

- Quando os processadores todos residem em um único chip, o termo computador multicore é usado.
- Cada unidade de processamento é chamada de core.
- Uso de múltiplas camadas de memória, chamada de memória cache, entre o processador e a memória principal.

- Uma placa de circuito impresso (PCB do inglês, Printed Circuit Board) é uma placa rígida e plana que mantém e interconecta chips e outros componentes eletrônicos.
- A placa de circuito impresso principal em um computador é chamada de placa de sistema ou placa-mãe.
- Um chip é um pedaço único de material semicondutor, em geral de silício, no qual os circuitos eletrônicos e portas lógicas são fabricados.
- O produto resultante é referido como um circuito integrado.

Estrutura - PCB "CASEIRA"

- Em linhas gerais, os elementos funcionais de um core são:
- Lógica de instrução: inclui as tarefas envolvidas em buscar instruções, e decodificar cada instrução a fim de determinar a operação de instrução e os locais de memória dos operandos.
- Unidade lógica e aritmética (ALU): executa a operação especificada por uma instrução.
- Lógica de load/store: gerencia a transferência de dados para e de uma memória principal através da cache.

Breve histórias dos computadores

- A primeira geração: válvulas
- O mais famoso computador de primeira geração é conhecido como computador IAS.
- Consiste em:
- Uma memória principal.
- Uma unidade lógica e aritmética (ALU).
- Uma unidade de controle.
- Equipamento de entrada/saída (E/S).

Segunda geração transistores

- A segunda geração: transistores.
- A primeira mudança principal no computador eletrônico vem com a substituição das válvulas pelo transistor.
- O transistor é menor, mais barato e gera menos calor do que a válvula.
- Ao contrário da válvula, que requer fios, placas de metal e cápsula de vidro, o transistor é um dispositivo de estado sólido, feito de silício.

Segunda geração transistores

- A segunda geração viu uma introdução de unidades aritméticas e lógicas e unidades de controle, o uso de linguagem de programação de alto nível e a disponibilização dos softwares de sistema com o computador.
- Tornou-se amplamente aceito classificar os computadores em gerações com base na tecnologia nos fundamentos de hardware empregados.

História dos computadores

Geração	Datas aproximadas	Tecnologia	Velocidade normal (operações por segundo)
1	1946–1957	Válvula	40.000
2	1957-1964	Transistor	200.000
3	1965–1971	Integração em pequena e média escala	1.000.000
4	1972–1977	Integração em grande escala	10.000.000
5	1978–1991	Integração em escala muito grande	100.000.000
6	1991–	Integração de escala ultra grande	> 1.000.000.000

A terceira geração

- Em 1958, chegou a realização que revolucionou a eletrônica e iniciou a era da microeletrônica: a invenção do circuito integrado.
- Os primeiros circuitos integrados são conhecidos como integração em pequena escala (SSI).

Circuito integrado

A terceira geração: circuitos integrados

- Por volta de 1964, a IBM anunciou o System/360, uma nova família de produtos de computador.
- O conceito de uma família de computadores compatíveis foi moderno e extremamente bem-sucedido.
- As características de uma família são as seguintes:
- Conjunto de instruções semelhante ou idêntico
- Sistema operacional semelhante ou idêntico

Terceira geração

- Maior velocidade.
- Número cada vez maior de portas de E/S.
- Aumento do tamanho de memória.
- Maior custo.

	(a) Processadores da década de 1970				
	4004	8008	8080	8086	8088
Introduzido	1971	1972	1974	1978	1979
Velocidade de clock	108 kHz	108 kHz	2 MHz	5 MHz, 8 MHz, 10 MHz	5 MHz, 8 MHz
Largura do barramento	4 bits	8 bits	8 bits	16 bits	8 bits
Número de transistores	2.300	3.500	6.000	29.000	29.000
Dimensão da tecnologia de fabricação (µm)	10	8	6	3	6
Memória endereçável	640 bytes	16 kB	64 kB	1 MB	1 MB

	(b) Processadores da década de 1980			
	80286	386TM DX	386TM SX	486TM DX CPU
Introduzido	1982	1985	1988	1989
Velocidade de clock	6-12,5 MHz	16-33 MHz	16-33 MHz	25-50 MHz
Largura do barramento	16 bits	32 bits	16 bits	32 bits
Número de transistores	134.000	275.000	275.000	1,2 milhão
Dimensão da tecnologia de fabricação (µm)	1,5	1	1	0,8–1
Memória endereçável	16 MB	4 GB	16 MB	4 GB
Memória virtual	1 GB	64 TB	64 TB	64 TB
Cache	_	_	_	8 kB

	(c) Processadores da década de 1990			
	486TM SX	Pentium	Pentium Pro	Pentium II
Introduzido	1991	1993	1995	1997
Velocidade de clock	16-33 MHz	60-166 MHz,	150-200 MHz	200-300 MHz
Largura do barramento	32 bits	32 bits	64 bits	64 bits
Número de transistores	1,185 milhão	3,1 milhões	5,5 milhões	7,5 milhões
Dimensão da tecnologia de fabricação (µm)	1	0,8	0,6	0,35
Memória endereçável	4 GB	4 GB	64 GB	64 GB
Memória virtual	64 TB	64 TB	64 TB	64 TB
Cache	8 kB	8 kB	512 kB L1 e 1 MB L2	512 kB L2

	(d) Processadores recentes			
	Pentium III	Pentium 4	Core 2 Duo	Core i7 EE 4960X
Introduzido	1999	2000	2006	2013
Velocidade de clock	450-660 MHz	1,3-1,8 GHz	1,06-1,2 GHz	4 GHz
Largura do barramento	64 bits	64 bits	64 bits	64 bits
Número de transistores	9,5 milhões	42 milhões	167 milhões	1,86 bilhão
Dimensão da tecnologia de fabricação (nm)	250	180	65	22
Memória endereçável	64 GB	64 GB	64 GB	64 GB
Memória virtual	64 TB	64 TB	64 TB	64 TB
Cache	512 kB L2	256 kB L2	2 MB L2	1,5 MB L2/15 MB L3
Número de cores	1	1	2	6

Sistemas embarcados

- O termo sistema embarcado refere-se ao uso de eletrônica e software dentro de um produto, ao contrário de um computador de uso geral, como um sistema de laptop ou desktop.
- Hoje em dia, alguns, ou a maioria, dos dispositivos que usam energia elétrica têm um sistema computacional embarcado.
- Além do processador e da memória, existem diversos elementos que diferem do desktop ou laptop típico.

Sistemas embarcados

Internet das Coisas

- A Internet das Coisas (IoT do inglês, Internet of Things) é um termo que se refere à interconexão expansiva dos dispositivos inteligentes, indo de aplicações a minúsculos sensores.
- Com referência aos sistemas terminais suportados, a internet passou por cerca de quatro gerações de implantação:
 - Tecnologia da informação (TI)
 - Tecnologia operacional (TO)
 - Tecnologia pessoal
 - Tecnologia de sensor/atuador

Sistemas Operacionais Embarcados

- Há duas técnicas gerais para desenvolver o sistema operacional (SO) embarcado:
- A primeira técnica é pegar um SO existente e adaptar para a aplicação embarcada. Por exemplo, há versões embarcadas de Linux, Windows e Mac, bem como outros sistemas operacionais comerciais e particulares especializados para sistemas embarcados.
- A outra técnica é desenvolver e implementar um SO direcionado unicamente para o uso embarcado. Um exemplo é o TinyOS, amplamente usado em redes de sensor sem fio.

Processadores para aplicações versus processadores dedicados

- Processadores de aplicações são definidos pela capacidade do processador de executar sistemas operacionais complexos, como Linux, Android e Chrome.
- O processador de aplicações é naturalmente de uso geral.
- Um processador dedicado é dedicado a uma ou a algumas poucas tarefas específicas exigidas pelo dispositivo hospedeiro.
- Por conta de tal sistema embarcado ser dedicado a uma tarefa ou a tarefas específicas, o processador e os componentes associados podem ser construídos para reduzir o tamanho e o custo.

Microprocessadores versus microcontroladores

- Os primeiros chips de microprocessadores incluíam registradores, uma ALU e algum tipo de unidade de controle ou de lógica de processamento de instrução.
- Chips de microprocessadores atuais incluem diversos cores e uma quantidade substancial de memória cache.

Chip Microcontrolador

Arquitetura ARM

- A arquitetura ARM refere-se a uma arquitetura de processador que evoluiu dos princípios de desenvolvimento do RISC e é usada em sistemas embarcados.
- Os chips ARM são processadores de alta velocidade que são conhecidos pelo pequeno tamanho do die (tamanho físico) e pelo baixo consumo de energia.
- Os chips ARM são os processadores dos populares dispositivos Apple, o iPod e o iPhone, e são usados em praticamente todos os smartphones Android.
- O conjunto de instruções ARM é altamente regular.

Computação em nuvem

- Computação em nuvem é um modelo para possibilitar acesso onipresente, conveniente e sob demanda a um grupo compartilhado de recursos de computação configuráveis que pode ser rapidamente fornecido e liberado com um esforço mínimo de gerenciamento ou interação do provedor de serviço.
- A rede em nuvem refere-se às redes e funcionalidades de gerenciamento de rede que devem estar em ordem para possibilitar a computação em nuvem.

Computação em nuvem

- O armazenamento em nuvem consiste em um armazenamento de base de dados e aplicações de base de dados hospedadas nos servidores da nuvem.
- O provedor de serviço de nuvem (CSP) mantém os recursos de computação e armazenamento de dados que estão disponíveis na internet ou em redes privadas.
- Praticamente todos os serviços de nuvem são providos pelo uso de um dos três modelos: SaaS, PaaS e laaS.

Computação em nuvem

Objetivos de aprendizagem

- Explicar as funções gerais e a estrutura de um computador digital.
- Apresentar uma visão geral da evolução da tecnologia dos computadores desde os primeiros computadores digitais até os últimos microprocessadores.
- Apresentar uma visão geral da arquitetura.
- Definir sistemas embarcados e listar alguns dos requisitos e das restrições que vários sistemas embarcados podem encontrar.

Bibliografia

- STALLINGS, W. Arquitetura e Organização de Computadores. 10 ed. São Paulo: Pearson, 2017;
- TANENBAUM, A. S. Organização Estruturada de Computadores. 5 ed. Pearson 2007;
- HENNESY, J. PATTERSON, D. Organização e Projeto de Computadores. 3 ed. Editora Campus, 2005.

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2023