A Partial Proof of B2a

 $\langle 1 \rangle 1$. Assume: Inv_B , $Producer_B$ PROVE: $\overline{Send_C}$ I use the ASSUME, PROVE to avoid an extra level of proof.

- $\langle 2 \rangle 1$. $Len(\overline{ch}) \neq N$
- $\langle 2 \rangle 2$. $\exists v \in Msg : \overline{ch}' = Append(\overline{ch}, v)$
 - $\langle 3 \rangle 1$. Pick $v \in Msg$ such that buf' = [buf EXCEPT ! [p % N] = v]

PROOF: Such a v exists by definition of $Producer_B$, which holds by the assumption of $\langle 1 \rangle 1$.

- $\langle 3 \rangle 2. \ \overline{ch}' = Append(\overline{ch}, v)$
 - $\langle 4 \rangle 1. \ p \ominus c \in 0...(N-1)$

PROOF: Inv_B implies $p \ominus c \in 0 ... N$, and $Producer_B$ implies $p \ominus c \neq N$.

- $\langle 4 \rangle 2. \ p' \ominus c' = (p \ominus c) + 1$
 - $\langle 5 \rangle 1. \ p' \ominus c' = (p \oplus 1) \ominus c$

PROOF: By definition of $Producer_B$, which is assumed in $\langle 1 \rangle 1$.

 $\langle 5 \rangle 2. \ (p \oplus 1) \ominus c = (p \ominus c) \oplus 1$

PROOF: By Inv_B , which implies that p and c are in 0..(2N-1), and the properties of \oplus and \ominus as operators on 0..(2N-1).

 $\langle 5 \rangle 3. \ (p \ominus c) \oplus 1 = (p \ominus c) + 1$

PROOF: By $\langle 4 \rangle 1$ and definition of \oplus .

 $\langle 5 \rangle 4$. Q.E.D.

PROOF: By $\langle 5 \rangle 1$, $\langle 5 \rangle 2$, and $\langle 5 \rangle 3$.

 $\langle 4 \rangle$ 3. Q.E.D.

PROOF: By $\langle 3 \rangle 1$, $\langle 4 \rangle 1$, $\langle 4 \rangle 2$, and the definition of \overline{ch} .

 $\langle 3 \rangle 3$. Q.E.D.

PROOF: By $\langle 3 \rangle 1$ (which asserts $v \in Msg$) and $\langle 3 \rangle 2$.

 $\langle 2 \rangle$ 3. Q.E.D.

PROOF: By $\langle 2 \rangle 1$, $\langle 2 \rangle 2$, and the definition of Send_C.

 $\langle 1 \rangle 2$. Assume: Inv_B , $Consumer_B$

PROVE: $\overline{Rcv_C}$

 $\langle 1 \rangle 3$. Q.E.D.

PROOF: By $\langle 1 \rangle 1$, $\langle 1 \rangle 2$, and the definitions of $Next_B$ and $Next_C$.