Так как

$$\lim_{n \to \infty} \left(\frac{4}{n} (a - 1)^2 \right) = 0,$$

то и

$$\lim_{n \to \infty} \left(\frac{n}{a^n} \right) = 0 \quad \blacktriangle$$

Пример 12. Пусть a>1. Доказать , что $\lim_{n\to\infty}\frac{\log_a n}{n}=0$.

▲ Для доказательства воспользуемся определением предела и результатом предыдущего примера.

Пусть $\varepsilon > 0$. На множестве натуральных чисел n неравенство

$$\frac{\log_a n}{n} < \varepsilon$$

равносильно неравенству $n < (a^{\varepsilon})^n$. Поскольку $a^{\varepsilon} > 1$, имеем

$$\lim_{n \to \infty} \frac{n}{(a^{\varepsilon})^n} = 0,$$

поэтому существует натуральное N, такое, что для всех ngeqslantN

$$\frac{n}{(a^{\varepsilon})^n} < 1,$$

т.е. n < a Отсюда следует, что для всех $n \ge N$

$$0 \leqslant \frac{\log_a n}{n} < \varepsilon;$$

это означает, что

$$\lim_{n \to \infty} \frac{\log_a n}{n} = 0 \quad \blacktriangle$$

Таким образом, из трех последовательостей $\{a^n\}, \{n\}, \{\log_a n\}, a > 1$, превая возрастает существено быстрее других, а третья медленнее других. П р и м е р 13. Доказать, что $\lim_{n\to\infty}\frac{2^n}{n!}=0.$

lack Если $k\geqslant 4$, то $2/k\leqslant 1/2$, поэтому при $n\geqslant 4$

$$0 < \frac{2^n}{n!} = \frac{8}{1 \cdot 2 \cdot 3} \cdot \frac{2}{4 \cdot n} \leqslant \frac{4}{3} \left(\frac{1}{2}\right)^{n-3} = \frac{32}{3} \left(\frac{1}{2}\right)^n.$$

Так как $\lim_{n\to\infty}\frac{32}{3}\left(\frac{1}{2}\right)^n=0$), то и $\lim_{n\to\infty}\frac{2^n}{n!}=0$

 Π ример 14. Доказать, что $\lim_{n\to\infty}\sqrt{n}=+\infty.$

\Delta Пусть ε - произвольное положительне число, а N - такое натуральное число, что $N>\varepsilon^2$ *). Тогда для всех $n\geqslant N$ верно неравенство $\sqrt{n}\geqslant\sqrt{N}>\varepsilon$. Это и означает, что $\lim_{n \to \infty} \sqrt{n} = +\infty$.

П р и м е р 15. Доказать, что всякая неограниченная последовательность имеет частичный предел, равный либо $+\infty$, $-\infty$.

^{*)}Например, $N = E(\varepsilon^2) + 1$

▲ Неогранниченная последоватеьность непременно неограниченна либо сверху, либо снизу.

Пусть последовательность $\{x_n\}$ неограниченная снизу. Это означает, что для любого $\varepsilon>0$ найдется член послеловательности x_n такой, что $x_n<-\varepsilon$. Для varepsilon=1 найдется член послеловательности. Среди конечного числа членов последовательности x_{n_1} такой, что $x_{n_1}<-1$, его и примем за первый член подпослеловательности. Среди конечного числа членов последовательности с номерами от 1 до n_1 имеется наименьший, его обозначим m_1 . Возьмем теперь $\varepsilon=2$. Из неогранниченности последовательности снизу следует, что найдетсячлен x_{n_2} такой, что $x_{n_2}<-2$ и $x_{n_2}< m_1$. Последнее в силу выбора m_1 означает, что $n_2>n_1$. Примем x_{n_2} за второй член подпоследовательности. Аналогично будем находить члены подпоследовательности x_{n_3} и т.д.

Докажем, что этот процесс не оборвется. Допустим, что найден член подпоследовательности $x_{n_k},\ k\geqslant 2$, удовлетворяющий неравенству $x_{n_k}<-k$. Обозначим через m_k наименьший среди членов последовательности от x_1 до x_{n_k} . Возьмем $\varepsilon=k+1$. В силу неограниченности снизу найдется член последовательности $x_{n_{k+1}}$ такой, что $x_{n_{k+1}}<-(k+1)$ и $x_{n_{k+1}}< m_k$. Из последнего следует, что $n_{k+1}>n_k$, и, значит, x_{n_k+1} можно принять за (k+1)-й член подпоследовательности.

Таким образом, существует подпоследовательность $\{x_{n_k}\}$ такая, что $x_{n_k} < -k$ для любого k, и, значит,

$$\lim k \to \infty x_{n_k} = -\infty.$$

Аналогично доказывается, что последовательность, неограниченная сверху, имеет подпоследовательность, пределом которй служит $+\infty$.

Пример 16. Для последовательности

$$x_n = \frac{(3\cos\left(\pi n/2\right) - 1) + 1}{n}, \quad n \in N,$$

найти множество частичных пределов $\overline{\lim_{x\to\infty}}x_n$ и $\lim_{\underline{x_n}}$, а также $\sup\{x_n\}$ и $\inf\{x_n\}$.

 \blacktriangle При n=4k имеем

$$x_n = \frac{2n+1}{n} = 2 + \frac{1}{n}$$

, и, значит, $\lim_{k\to} x_{4k} = 2, 2 < x_{4k} \leqslant 2+1/4$, причем $x_4 = 9/4$. При n=4k+1 или n=4k+3 имеем

$$x_n = \frac{-n+1}{n} = -1 + \frac{1}{n},$$

и, значит, $-1 < x_n < 0$, $\lim_{k \to \infty} x_{4k+1} = \lim_{k \to \infty} x_{4k+1} = -1$. При nn = 4k+2 имеем

$$x_n = \frac{-n+1}{n} = -1 + \frac{1}{n},$$

и значит, $-1 < x_n < 0$, $\lim_{k \to \infty} = \lim_{k \to \infty} x_4 k + 3 = -1$. При n = 4k + 2 имеем

$$x_n = \frac{-4n+1}{n} = -4 + \frac{1}{n},$$

значит, $-4 < x_n < 0$, $\lim_{n \to \infty} x_{4k+2} = -4$.