Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides

By R. D. Shannon

Central Research and Development Department, Experimental Station, E. I. Du Pont de Nemours and Company, Wilmington, Delaware 19898, U.S.A.

(Received 30 October 1975; accepted 9 March 1976)

The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations. Revisions are based on new structural data, empirical bond strength-bond length relationships, and plots of (1) radii vs volume, (2) radii vs coordination number, and (3) radii vs oxidation state. Factors which affect radii additivity are polyhedral distortion, partial occupancy of cation sites, covalence, and metallic character. Mean Nb5+O and Mo6+O octahedral distances are linearly dependent on distortion. A decrease in cation occupancy increases mean Li+O, Na+O, and Ag+O distances in a predictable manner. Covalence strongly shortens Fe²+X, Co²+X, Ni²+X, Mn²+X, Cu+X, Ag+X, and M-H bonds as the electronegativity of X or M decreases. Smaller effects are seen for Zn²+X, Cd²+X, In³+X, Pb²+X, and Tl+X. Bonds with delocalized electrons and therefore metallic character, e.g. Sm-S, V-S, and Re-O, are significantly shorter than similar bonds with localized electrons.

Introduction

A thorough and systematic knowledge of the relative sizes of ions in halides and chalcogenides is rapidly being developed by crystal chemists as a result of (1) extensive synthesis within certain structure types, e.g. rocksalt, spinel, perovskite and pyrochlore; (2) preparation of new compounds with unusual oxidation states and coordination numbers; and (3) the abundance of accurate crystal structure refinements of halides, chalcogenides, and molecular inorganic compounds. A set of effective ionic radii which showed a number of systematic trends with valence, electronic spin state, and coordination was recently developed (Shannon & Prewitt, 1969, hereafter referred to as SP 69). This work has since been supplemented and improved by studies of certain groups of ions: rare earth and actinide ions (Peterson & Cunningham, 1967, 1968); tetrahedral oxyanions (Kálmán, 1971); tetravalent ions in perovskites (Fukunaga & Fujita, 1973); rare earth ions (Greis & Petzel, 1974); and tetravalent cations (Knop & Carlow, 1974).

Further, the relative sizes of certain ions or ion pairs were studied by Khan & Baur (1972): NH₄⁺; Ribbe & Gibbs (1971): OH⁻; Wolfe & Newnham (1969): Bi³⁺-La³⁺; McCarthy (1971): Eu²⁺-Sr²⁺; Silva, McDowell, Keller & Tarrant (1974): No²⁺. These authors' results have been incorporated here into a comprehensive modification of the Shannon-Prewitt radii.

In this paper the revised list of effective ionic radii, along with the relations between radii, coordination number, and valence is presented. The factors responsible for the deviation of radii sums from additivity such as polyhedral distortion, partial occupancy of cation sites, covalence, and metallic behavior (electron delocalization) will be discussed.

Procedure

The same basic methods used in SP 69 were employed in preparing the revised list of effective ionic radii (Table 1). Some of the same assumptions were made:

- (1) Additivity of both cation and anion radii to reproduce interatomic distances is valid if one considers coordination number (CN), electronic spin, covalency, repulsive forces, and polyhedral distortion.*
- (2) With these limitations, radii are independent of structure type.
- (3) Both cation and anion radii vary with coordination number.
- (4) With a constant anion, unit-cell volumes of isostructural series are proportional (but not necessarily linearly) to the cation volumes.

Other assumptions made in SP 69 have been modified:

- (1) The effects of covalency on the shortening of M-F and M-O bonds are *not* comparable.
- (2) Average interatomic distances in similar polyhedra in one structure are *not* constant but vary in a predictable way with the degree of polyhedral distortion (and anion CN). Both of these modified assumptions will be discussed in detail later.

The anion radii used in SP 69 were subtracted from available average distances. Approximately 900 distances from oxide and fluoride structures were used, and Table 2 lists their references according to CN and spin. These references generally cover from 1969 to 1975. The cation radii were derived to a first approximation from these distances, and then adjusted to be consistent with both the experimental interatomic distances and radii–unit cell volume $(r^3 \ vs \ V)$ plots, as in

^{*} Polyhedral distortion was not considered in SP 69.

SP 69. Although such r^3 vs V plots are not always linear (Shannon, 1975), their regular curvilinear nature still allows prediction of radii. This system is particularly accurate for radii in the middle of a series, and least reliable for large polarizable cations like Cs⁺, Ba²⁺, and Tl³⁺. Radii-volume plots were used by Knop & Carlow (1974) and Fukunaga & Fujita (1973) to derive radii of tetravalent cations. These radii were used along with experimental interatomic distances in deriving the final radii. Greis & Petzel (1974) derived rare earth radii in eight- and nine-coordination using accurate cell dimensions for rare earth trifluorides and distances calculated using the structural parameters of YF₃ and LaF₃. These radii were used in Table 1 after applying small corrections (+0.030 Å to ^{IX}La³⁺, $^{IX}Ce^{3+}$, $^{IX}Pr^{3+}$, and $^{IX}Nd^{3+}$; +0.025 Å to all other Greis & Petzel ^{IX}RE³⁺ radii, and 0.015 Å to all VIIIRE³⁺ radii) for consistency with experimental interatomic distances and radii-CN plots.

Where structural data were not available or not accurate, plots of (1) radii vs unit cell volumes, (2) radii vs CN and (3) radii vs oxidation state, or combinations of these were used to obtain estimated values. Fig. 1 shows examples of radii–valence plots used to provide consistency between experimental radii and those anticipated from the regular nature of these plots. Cations whose final radii values were derived from both estimated values and experimental interatomic distances are: VIOs5+, VIOs6+, VIOs7+, VIRe4+, VIRe5+, VIRe6+, VIRe7+, VIRe7+, VIRH4+, VIIUS+, and VIIU6+.

Fig. 2(a)–(e) shows plots of radii vs CN. Generally, it was assumed that radii–CN plots for two different ions do not cross. Radii for ^{IV}Cu⁺, ^{VI}Cu⁺, ^{IX}Rb⁺, ^{VNi²⁺}, ^{VII}Er³⁺, ^{VII}Yb³⁺, ^{VII}Tb³⁺, ^{XII}Nd³⁺, ^{IV}Cr⁴⁺.

Table 1. Effective ionic radii

CR crystal radius, IR effective ionic radius, R from r^3 vs V plots, C calculated, E estimated, ? doubtful, * most reliable, M from metallic oxides.

ION EC CN SP	CR 'IR'	ION EC	CN SP	CR	'IR'	ION EC CN	SP CR	"IR"
AC+3 6P 6 VI		CL-1 3P 6		1.67	1.81 P	GD+3 4F 7 VII	1.14	1.00 1.053 R
AG+1 4D10 11	.81 .67 1.14 1.00	CL+5 3S 2 CL+7 2P 6	I I I PY	.26	.12	IX	1.193	1.107 RC
IVSQ	1.16 1.02	CM+3 5F 7	17	1.11	.27 A	GE+2 45 2 VI GE+4 3D10 IV	.87 .530	.73 A
VI	1.29 1.15	CH+4 5F 6	VΪ	.99	.85 R	VI	.670	.530 R*
VIII	1.36 1.22 1.42 1.28	CO+2 3D 7	VIII IV HS	1.09	.95 R	H +1 15 0 I	24	38 18
AG+2 4D 9 1VSQ	.93 .79	1	٧	.81	.67 C	HF+4 4F14 IV	.72 .85	.58 R
AG+3 4D 8 1VSQ	1.08 .94 .81 .67		VI LS HS	.79 .885	.745 R*	VII	.90	.76
VI AL+3 2P 6 IV	.89 .75 .53 .39	CO+3 3D 6	VIII VI LS	1.04	.90 .545 R#	. VIII HG+1 65 I III	.97 1.11	.83
v	.62 .48	1	HS	.75	•6l	V1	1.33	1.19
AM+2 5F 7 VII	.675 .535 1.35 1.21	1	VI HS	.54	.40 .53 R	īv	1.10	.96
VIII	1.40 1.26 1.45 1.31	CR+2 3D 4	VI LS	.87	.73 E	1V 111V	1.16	1.02 1.14 R
AM+3 5F 6 VI	1.115 .975		17	.755	.615 R*	HO+3 4F10 VI	1.041	.901 R
AM+4 SF 5 VI		CR+4 3D 2	VI	•55 •69	•41 •55 R	TI IV	1.155	1.015 R 1.072 R
A5+3 45 2 VI	1.09 .95	CR+5 3D 1	IV VI	.485	.345 R	I -1 5P 6 VI	1.26	1.12 2.20 A
AS+5 3D10 IV	.475 .335	i•	1117	.71	.57	1 +5 55 2 111PY	.58	.44 *
AT+7 5D10 VI		CR+6 3P 6	14	.40 .58	.26 .44 C	VI 1 +7 4D10 IV	1.09	.95
AU+1 5010 VI	1.51 1.37	CS+1 5P 6		1.81	1.67	VI IN+3 4D10 IV	.67	.53
AU+3 5D 8 1VSQ V1	.82 .68 .99 .85		IX	1.92	1.74	VI	.940	.800 R*
AU+5 50 6 VI 8 +3 15 2 111	.71 .57	.	X XI	1.95	1.81	VIII IR+3 50 6 VI	1.06 .82	.92 RC
17	.25 .11	• .	XII	2.02	1.88	IR+4 50 5 VI	.765	-A25 R
84+2 5P 6 VI	.41 .27 1.49 1.35	CU+1 3D10	I I	.60	.46 .60 E	1R+5 50 4 VI K +1 3P 6 1V	.71 1.51	.57 EM
VII	1.52 1.38	CU+2 3D 9	VΙ	.91	.77 E	VI VII	1.52	1.38
ix	1.61 1.47	1 .00-2 30 9	IVSQ	.71	.57 *	viii	1.65	1.51
X X1	1.66 1.52 1.71 1.57	1	V VI	•79 •87	.65 * .73	IX X	1.69	1.55
xit	1.75 1.61	CU+3 3D 8	VI LS	.68	10	X11 LA+3 4D10 VI	1.78	1.64 1.032 R
BE+2 1S 2 111		D +1 15 0 DY+2 4F10	VI	.04 1.21	1.07	VII	1.24	1.10
81+3 6S 2 V			VIII	1.27	1.13	VIII IX	1.300	1.160 R 1.216 R
l vi	1.17 1.03	R# UY+3 4F 9	VI.	1.052	.912 R	x x x x x x x x x x x x x x x x x x x	1.41	1.27 1.36 G
81+5 5010 VI	.90 .76	R E	VIII	1.11	.97 1.027 R	L1+1 15 2 IV	1.50 .730	.590 ●
8K+3 5F 8 V1 6K+4 5F 7 VI	1.10 .96	R ER+3 4F11	IX	1.223	1.083 R .890 R	V! V!!!	.90 1.06	.76 *
V111	1.07 .93	R	VII	1.085	.945	LU+3 4F14 VI	1.001	.861 R
BR-1 4P 6 VI BR+3 4P 2 IVSQ	.73 .59	P	VIII IX	1.144	1.004 R 1.062 R	VIII 1X	1.117	1.032 R
BR+5 4S 2 111PY BR+7 3D10 IV	.45 .31 .39 .25	Eu+2 4F 7	VI VII	1.31	1.17	MG+2 2P 6 1V	.71 .80	.57
l vi	.53 .39	4	VIII	1.39	1.25	νī	.860	.720 *
C +4 15 2 111	.0608 .29 .15	, [IX X	1.44	1.30	VIII MN+2 3D 5 IV	1.03 45 .80	.89 C
[vi	.30 .16	EU+3 4F 6	ΙV	1.087	.947 R	V 1	15 .89	.75 C
CA+2 3P 6 VI • VII		.	V11 V111	1.15	1.01 1.066 R	i .	.S .81 45 .970	.67 E
VIII	1.26 1.12 1.32 1.18	F -1 2P 6	1 X	1.260	1.120 R 1.285	VII +	15 1.04 1.10	.90 C
, x	1.37 1.23	C	111	1.16	1.30	MN+3 3D 4 V	.72	•58
CD+2 4010 IV	.92 .78	c	IV VI	1.17	1.31			.645 R*
V VI	1.01 .87	F +7 1S 2 FE+2 3D 6	. vi	.22	.08 A	MN+4 3D 3 IV	.53 .670	.39 R .530 R*
VII	1.17 1.03	c [IVSQ HS	.78	.64	MN+5 3D 2 1V	.47	.33 R
VIII	1.45 1.31	c	VI LS HS	.75 .920	.61 E .780 R*	MN+6 3D 1 1V MN+7 3P 6 1V	.395 .39	.255 .25
CE+3 65 1 VI	1.15 1.01	R E FF+3 30 S	ZH 111V	1.06	.92 C	VI MO+3 4D 3 VI	.60 .83	.46 A
VIII	1.283 1.143	Ř T	٧	.72	•58	MO+4 4D 2 VI	.790	.650 RM
ix	1.336 1.196 1.39 1.25	R	VI LS	.69 .785	•55 R •645 R*	MO+5 4D 1 IV	.60 .75	.46 R
- XII	1.48 1.34	c	VIII HS	•92	.78	MO+6 4P 6 1V	•55	.41 R*
CE+4 5P 6 VI VIII	1.11 .97	R FE+4 3D 4 R FE+6 3D 2	2 IV	.725 .39	.585 R .25 R	ı, Ai	.73	.50 .59 R*
X	1.21 1.07 1.28 1.14	FR+1 6P 6 GA+3 3D10	1 V E	1.94	1.80 A	VII N -3 2P 6 IV	.87 1.32	.73 1.46
CF+3 6D 1 VI	1.09 .95	R	٧	.69	.55	N +3 25 2 VI	.30	.16 A
CF+4 5F 8 VI VIII	.961 .821 1.06 .92	GD+3 4F 7	VI VI	.760 1.078	.620 R◆	N +5 1S 2 111 VI	.044 .27	104 -13 A

Table 1 (cont.)

ION EC CN	SP CR	"IR"	ION EC CN	SP CR	'IR'	ION EC CN	SP CR 'IR'
NA+1 2P 6 IV	1.13	.99	PR+3 4F 2 VI	1.13	.99 R	TC+4 40 3 VI	.785 .645 RM
٧	1.14	1.00	VIII	1.266	1.126 R	TC+5 4D 2 VI	•74 •60 ER
17	1.16	1.02	IX PR+4 4F 1 VI	1.319	1.179 R .85 R	TC+7 4P 6 IV VI	.51 .37 .70 .56 A
VIII	1.26	1.12	VIII	1.10	.96 R	TE-2 5P 6 VI	2.07 2.21 P
IX	1.38	1.24 C	PT+2 5D 8 LVSQ	.74	.60	TE+4 55 2 III	.66 .52
XII	1.53	1.39	VI.	.94	.80 A	IV VI	.80 .66 1.11 .97
NB+3 4D 2 VI NB+4 4D 1 VI	.86 .82	.72 .68 RE	PT+4 5D 6 VI PT+5 5D 5 VI	.765 .71	.625 R .57 ER	TE+6 4D10 IV	1.11 .97 .57 .43 C
1111	.93	.79	PU+3 5F 5 VI	1.14	1.00 R	VI VI	.70 .56 *
NB+5 4P 6 IV	.62	.48 C	PU+4 5F 4 VI	1.00	.86 R	TH+4 6P 6 VI	1.08 .94. C
٧t	.78	.64	VIII PU+5 5F 3 VI	1.10	.96 .74 E	VIII VIII	1.19 1.05 RC 1.23 1.09 *
VII VIII.	.83 .88	.69 C	PU+5 5F 3 VI PU+6 5F 2 VI	.88 .85	.74 E	, '^	1.27 1.13 E
ND+2 4F 4 VIII	1.43	1.29	RA+2 6P 6 VIII	1.62	1.48 R	l ŝi	1.32 1.18 C
ix	1.49	1.35	xI t	1.84	1.70 R	11x	1.35 1.21 C
ND+3 4F 3 VI	1.123	.983 R	RB+1 4P 6 VI	1.66	1.52	T1+2 30 2 VI	1.00 .86 E .810 .670 R*
VIII	1.249	1.109 R* 1.163 R	1114	1.70	1.56	T1+3 30 1 VI T1+4 3P 6 1V	.56 .42 C
ıîx	1.41	1.27 E	ix	1.77	1.63 E	٧	.65 .51 C
NI+2 30 8 IV	.69	.55	x .	1.80	1.66	VI.	.745 .605 R*
IVSQ	.63	.49	XI.	1.83	1.69	7L+1 6S 2 VI	.88 .74 C 1.64 1.50 R
V	.77 .830	.63 E	IIX VIX	1.86	1.72	1141 62 2 41	1.73 1.59 R
NI+3 3D 7 VI	LS .70	.56 R#	RE+4 5D 3 VI	•77	.63 RM	11x	1.84 1.70 RE
	HS .74	.60 E	RE+5 5D 2 VI	.72	.58 €	TL+3 5D10 IV	.89 .75
NI+4 3D 6 VI	LS .62	.48 R l.1 E	RE+6 5D 1 VI RE+7 5P 6 IV	.69 .52	.55 E	V111	1.025 .885 R 1.12 .98 C
NO+2 5F14 VI NP+2 5F 5 VI	1.24	1.1 E 1.10	RE+7 SP 6 IV	.67	.53	TM+2 4F13 VI	1.17 1.03
NP+3 5F 4 VI	1.15	1.01 R	RH+3 4D 6 VI	.805	.665 R	V11	1.23 1.09
NP+4 5F 3 VI	1.01	.87 R	RH+4 4D 5 VI	.74	.60 RM	TM+3 4F12 VI	1.020 .880 R 1.134 .994 R
VIII	1.12	.98 R	RH+5 4D 4 VI	•69	•55	V111	1.134 .994 R 1.192 1.052 R
NP+5 5F 2 VI NP+6 5F 1 VI	.89	.75 .72 R	RU+3 4D 5 VI RU+4 4D 4 VI	.82 .760	.68 .620 RM	U +3 5F 3 VÎ	1.165 1.025 R
NP+7 6P 6 VI	.85	.71 A	RU+5 4D 3 VI	.705	.565 ER	U +4 5F 2 VI	1.03 .89
0 -2 2P 6 II	1.21	1.35	RU+7 4D 1 1V	.52	.38	V11 V111	1.09 .95 E 1.14 1.00 R*
111 IV	1.22	1.36	RU+8 4P 6 1V S -2 · 3P 6 VI	.50 1.70	.36 1.84 P	l viii	1.14 1.00 R* 1.19 1.05
VI	1.26	1.40	S +4 35 2 VI	.51	.37 A	l kîı	1.31 1.17 E
viii	1.28	1.42	5 +6 2P 6 IV	.26	.12 •	U +5 5F 1 VI	.90 .76
OH-1 II	1.18	1.32	V1	.43	•29 C	U +6 6P 6 II	.98 .84 € .59 .45
111	1.20	1.34 1.35 E	SB+3 55,2 1VPY	.90 .94	.76 .80	l o to or o ii	.66 .52
vi	1.23	1.37 E	l vi	.90	.76 A	νi	.87 .73 *
OS+4 5D 4 VI	.770	.630 RM	S8+5 4010 VI	.74	·60 *	VII	.95 .81 E 1.00 .86
OS+5 5D 3 VI	.715	.575 E	SC+3 3P 6 VI	.885 1.010	.745 R*	V +2 3D 3 VI	1.00 .86 .93 .79
OS+6 5D 2 V	.63 .685	.49 .545 E	SE-2 4P 6 VI	1.84	1.98 P	V +3 30 2 VI	.780640 R*
0S+7 5D 1 VI	.665	.525 €	SE+4 4S 2 VI	.64	.50 A	V +4 30 1 V	.67 .53
OS+8 5P 6 IV	+53	.39	SE+6 3010 IV	•42	.28 *	1117	.72 .58 R* .86 .72 E
P +3 3S 2 VI P +5 2P 6 IV	.58 .31	.44 A	SI+4 2P 6 IV	•56 •40	.42 C	V +5 3P 6 IV	.495 .355 R*
r 1,5 2,7 0 1,1	.43	.29	vi	.540	.400 R*	l v	.60 .46 *
V1	.52	.38 C	SM+2 4F 6 VII	1.36	1.22	VI VI	.68 .54 .80 .66 RM
PA+3 5F 2 VI	1.18	1.04 E	1111 X1	1.41	1.27	W +4 50 2 VI W +5 50 1 VI	.80 .66 RM .76 .62 R
PA+4 6D 1 VI	1.04	.90 R 1.01	SM+3 4F 5 VI	1.098	.958 R	W +6 5P 6 IV	.56 .42 *
PA+5 6P 6 VI	•92	.78	117	1.16	1.02 E	· ·	.65 .51
ÄÏII	1.05	.91	VIII	1.219	1.079 R 1.132 R	VI XE+8 4D10 IV	.74 .60 * .54 .40
PB+2 6S 2 IVPY	1.09	.95 .98 C	1X X11	1.272	1.132 K	XE+8 4DIO IV	.62 .48
IV	1.33	1.19	SN+4 4D10 1V	.69	.55 R	Y +3 4P 6 VI	1.040 .900 R*
117	1.37	1.23 C	y.	.76	.62 C	VIII.	1.10 .96 1.159 1.019 R*
VIII	1.43	1.29 C 1.35 C	11 114	.830 .89	.690 K*	l Yill	1.215 1.075 R
X X	1.54	1.40 C	l viii	.95	.81 C	YB+2 4F14 VI	1.16 1.02
Χí	1.59	1.45 C	SR+2 4P 6 VI	1.32	1.18	V11	1.22 1.08 E
XII	1.63	1.49	V11	1.35	1.21	VIII YB+3 4F13 VI	1.28 1.14 1.008 .868 R*
PB+4 5010 IV	.79 .87	.65 € .73 E	VIII IX	1.40	1.31	VIII	1.065 .925 E
1 V	.915	.775 R	x	1.50	1.36 C	1111	1.125 .985 R
V111	1.08	.94 R	11x	1.58	1.44 C	XI IX	1.182 1.042 R
PD+1 40 9 II	.73	•59	TA+3 50 2 VI	.86	.72 E	ZN+2 3D10 IV	.74 .60 *
PD+2 4D 8 IVSQ	.78 1.00	.86	TA+4 5D 1 VI TA+5 5P 6 VI	.82 .78	.64	, vi	.880 .740 R*
PD+3 40 7 VI	.90	•76	VII	.83	.69	111V	1.04 .90 C
PD+4 4D 6 VI	.755	.615 R	VIII	.88	•74	ZR+4 4P 6 IV	.73 .59 R .80 .66 C
PM+3 4F 4 VI	1.11	.97 R 1.093 K	TB+3 4F 8 VI	1.063	.923 R .98 E	, vi	.80 .66 C
VIII	1.284	1.144 R	viii	1.180	1.040 R	VII	.92 .78 •
PO+4 65 2 VI	1.08	•94 R	1X	1.235	1.095 R	V111	.98 .84 *
1117	1.22	1.08 R	TB+4 4F 7 VI VIII	1.02	.76 R .88	ix	1.03 .89
PO+6 5010 VI	.81	.67 A	. 4111	1.02		•	

VIIIV⁴⁺, IVPb⁴⁺, and XTh⁴⁺ obtained from these plots were used to help determine the values in Table 1. The first estimate of VIIIV⁴⁺ was made from distances in C₃₂H₂₈S₈V (Bonamico, Dessy, Fares & Scaramuzza, 1974).

Another method used to estimate radii was based on the empirical relationship between interatomic distances and bond strengths. Brown & Shannon (1973) derived these relationships for the cations in the first three rows of the periodic table from a large number of experimental interatomic distances. These curves can be used to calculate hypothetical distances for cations in any coordination (Brown & Shannon, 1973; Shannon, 1975; Brown, 1975). Examples of cations whose radii were calculated in this way are: ^{IV}Mn²⁺, ^{VI}Be²⁺, ^{VI}B³⁺, ^{VI}P⁵⁺, ^{VI}S⁶⁺, ^{VIII}Mg²⁺, and ^{VIII}Fe²⁺. These are marked with a C in Table 1. In certain cases, these values were combined with known structural data (see Table 2) to obtain the radii in Table 1. Although the

majority of radii were derived from oxides and fluorides,* some were taken from chlorides, bromides, iodides, and sulfides. For large electropositive cations with highly ionic bonds, very little covalent shortening is believed to occur and radii derived from these other compounds should differ only slightly from those derived from fluorides and oxides. Examples are divalent rare earths such as Yb²⁺, Tm²⁺, Dy²⁺, Sm²⁺, Nd²⁺ and the ions Am²⁺, Ac³⁺, Np³⁺, and U⁴⁺.

Another useful scheme for estimation of radii is the comparison of unit-cell volumes of compounds containing cations of similar size. McCarthy (1971) prepared a number of isotypic Sr²⁺ and Eu²⁺ ternary oxides and generally found the unit cells of the Sr²⁺

^{*} Because of covalency differences in M-O and M-F bonds, oxide distances were emphasized. Therefore the radii in Table 1 are more applicable to oxides than fluorides. This subject is treated further in the discussion *Effects of covalence*.

Table 2. References for Table 1

The references here and in Tables 4, 5, 6 and 8 are abbreviated according to Codens for Periodic Titles (1966).

;	•	
98 JINCH 30 853 WC CF3	71 JCPSA 55 1093 BA H D4	72 MR8UA 7 1281 CL(+7) -D
AG+1 11 71 INOCA 10 719 AG FE 02	71 AMHIA 56 758 BA C 03 71 ZAACA 386 1 BAZ CO 04 73 ACBCA 29 2009 BAZ TI 04	62 ACCRA 15 18 H3 O CL O4 (-80 C)
71 NOCA 10 719 AG FE 02 72 ZAACA 393 Z66 SR AG6 04 73 ZENBA 288 Z63 BA AG6 04 AG+1 1V	8A+2 IX 71 244C4 386 1 842 CO O6	71 JCS1A 191 187 CL(**) -0 02 ACCRA 18 18 H8 O CL O* (-80 C) 04 ACCRA 18 18 H8 O CL O* (-80 C) 05 ACCRA 22 1875 N H3 O H CL O* 73 ACSAA 27 2829 70 H8 (O H)*13 C O3 (CL O*)10 73 ACSAA 27 2829 70 H8 (O H)*13 C O3 (CL O*)10
71 JSSCB 3 ,364 AG2 CR D4 AG+1 IVSQ	73 ACSAA 27 1695 8A TE (\$2 03)2.2 H2 0 73 ACSAA 27 1653 BA TE (\$2 03)2.3 H2 0 BA+2 X	CH++ VI
42 JACSA 64 354 AG3 AS D4 69 ACSAA 23 2261 AG2 S D3	BA+2 X 70 ŽKKKA 131 161 BA3 (V 04)2	C0+2 1V
AG+1 V 70 JSSCB 1 484 AG6 H010 033	70 ACBCA 26 105 8A3 SI4 NB6 026 67 BUFCA 90 24 BA PZ 06	69 ZAACA 369 306 CO VZ U4
AG+1 VI 32 ZKKKA 82 161 AG2 504	BA+2 XI 71 ACBCA 27 1263 BA FEZ 04	72 ACBCA 28 2883 CO2 P2 O7 ALPHA CO+2 VI
47 JACSA 69 222 AG3 PD4 71 JSSCB 3 364 AG2 CR 04 69 ACACB 25 5116 AG2 CR2 O7	8A+2 X11 70 ACBCA 26 102 BA5 TA4 015 22 CSCHC 1 1 BA TIA 013	68 ZAACA 358 125 CO SE 04 68 ZKKKA 126 299 CO GE 03 70 CJCHA 48 881 CO3 AS2 08
70 JSSCB 1 484 AG2 MO 04	71 MRBUA 6 725 BA CA FE4 DB 69 CHDCA 268C 1694 BA N12 AS2 DB	
70 JSSCB 1 484 AG6 MO10 033 69 ACACB 25 S116 AG2 CR2 O7	84-2 X11 70 AGBCA 26 102 8A5 TA4 015 72 CSCNC 1 1 8A T16 013 71 N88U 6 725 8A CA FE4 08 69 CNOCA 268C 1694 8A N12 AS2 08 75 ACBCA 31 596 RZ BAC U (N 0216 86-2 111 69 AGBCA 25 1647 SR BE3 04	73 ACACA 29 2304 CO3 V2 OA
AG+1 VIII 65 ACCRA 19 180 AG7 N 011 AG+2 IVSQ	69 ACBCA 25 1647 SR BE3 D4 66 ACBCA 20 295 CAL2 BE17 029 BE-2 IV	71 HCACA 54 1621 CO3 (O H)2 (S 04)2.2 H2 O REF 1 CO2 SI 04 72 ACBCA 28 2883 CO2 P2 O7
AG+2 195Q 71 JPCSA 32 543 AG F2 AG+2 V1	62 SPHCA 6 733 NA BE P D4 68 ACBCA 24 6772 LAZ BEZ D5 68 ACBCA 24 607 CS BE_F3	70 INDCA 9 151 CD (OMPA)3 (CL D4)2 73 ACBCA 29 2741 CD 51 F6.6 H2 O 74 AMHIA 59 475 CO2 SI O4 74 JCHLB 4 55 C16 H18 CO O6
71 JPCSA 32 543 AG F2 AG+3 IVSQ	68 ACBCA 24 807 CS BE F3 69 ACBCA 25 1647 SR BE3 04	74 JCMLB 4 55 C16 H18 CO 06 CO+2 VIII
65 ACCRA 19 180 AG7 N 011 AL+3 IV	71 SPHCA 15 999 FE3 BE SI3 D9 (F,OH)2 72 SPHCA 16 1021 BE2 SI U4	66 INDCA 5 1208 (AS(C6 H5)4)2(CD(N 03)4) CO+3 VI LS
67 ACCRA 23 754 NA T12 AL5 012 66 NJMMA 1968 80 CA AL 804 70 ACGCA 26 1230 CA AL4 07	72 ACBCA 28 1899 AL2 BE3 S16 Q18 73 ACBCA 229 2976 NA3 BE THID F45	68 CCJDA 1968 871 CO (N D313 68 CJCHA 46 3472 CO3 D4
70 N IMMA 1970 547 CA12 AL14 D33	59 ACCRA 12 634 BE ACETATE 67 ZKKKA 125 423 CS BEA BI12-X) AL4 028 HZ 74 ACBCA 30 396 NAG (SII6 AL2(BE(OH)2 039)	68 CJCHA 46 9472 CO3 04 66 JACSA 88 2951 CO (C5 H7 0213 74 ACBCA 30 822 CO (C5 H7 0213 69 JACSA 91 6881 (N H4)6 (H4 CO2 MO10 038)
71 SPHDA 15 995 CA AL4 07 71 ACBCA 27 1826 BETA-AL2 03	1.5 H2 II	7 74 ZAACA 408 97 K CO2 04
72 JSSCB 4 60 AG AL11 017 AL+3 V	74 AMMIA 59 1267 CA BEZ P2 08	CO+4 1V 71 744C4 386 1 842 CO D4
68 ACBCA 24 1518 (MG,FE) AL3 SI 8 U9 68 AMMIA 53 1096 AL2 PD4 (DH)3	69 SSCOA 7 1797 812 W O6 70 ACSAA 24 384 812 D3 ALPHA	73 ZAACA 398 54 LIB CO 06 74 ZAACA 408 75 CS2 CO 03
AL+3 VI 71 AMMIA 56 18 NA3 AL2 LI3 F12 72 JSSCB 4 11 NO AL O3	70 ACSAA 24 384 B12 O3 ALPHA	74 ZAACA 409 152 K6 COZ D7
	71 JPCSA 32 1315 B1 FE 03 B1+3 VIII 72 MRBUA 7 1025 B1 T1TANATES	67 STGBA 3 1 R3 VS V (FLUORIDES) 74 ZAACA 408 97 K CO2 D4 CR+2 V1 LS
72 ACBCA 28 1899 AL2 BE3 S16 D18	81+5 VI R3 VS V (BAZ LA B1 06)	CR+2 V1 LS 71 ANCPA 6 41 TAZ CR D6 69 ACBCA 25 925 R VS D ELECTRONS
66 JACSA 88:2951 AL(ACAC)3 73 ACBCA 29*2302 AL P 04.2 H2 O 67 ZKKKA 125 \423 C5 8E4 B112-X) AL4 D28 H2	BK+4 VI 67 INUCA 3 327 R (BK+4)	CR+3 VI
74 ACBCA 30 1317 NA AL3 (P 0412 (O H14 74 ZKKKA 139 129 AL (O H13	BR+3 IV SQ 69 JCSIA 1969 1936 K BR F4	70 INDCA 9 2228 NA3 (CR MO 06 024 H61-8 H2 0
72 JINCA 34 3427 AM 12	8R+5 III 69 ACACB 25 621 SM (BR 03)3.9H2 D	73 MRBUA 8 593 CA CR F5 65 ACCRA 19 131 CR (C5 H7 D2)3
AM+2 VIII 73 JINCA 35 483 AM BRZ AM+2 IX	67 ACSAA 21 2834 HG BR 03 BRYT IV T1 JCSIA 1971 1857 BR(+7)-0 C+4 111	CR+4 1V 74 ZAACA 407 129 BA2 CR 04 CR+4 VI
73 JINCA 35 483 AM CLZ AM+3 VIII	C+4 111 65 ACCRA 18 689 CA C 03	72 MRBUA 7 157 CR 02 CR+5 VI
AMAG VI	71 JNBAA 75A 27 CA C 03 73 AMMIA 58 1029 MG C 03	67 STGBA 3 1 R3 VS V (FLUDRIDES)
67 ADCSA 71 228 BA AM 03 67 INUCA 3 327 R (BK+4)	67 PRLAA 92 125 MN C D3 75 AGBCA 31 890 NA2 C D3.H2 D	68 CJCHA 46 935 K2 CR2 O7 70 ACBCA 26 222 CR 03 69 JCSIA 1969 1857 (NH4)2 CR 04
AS+5 IV 69 ZKKKA 130 231 ZH2 CU AS2 08 68 CJCHA 46 917 CU3 AS2 08	CA+2 VI 68 NJMAA 1968 - 80 CA AL B D4 69 ACBCA - 25 1933 CA NA (M2 P D2)3	69 ACACB 25 S116 AGZ CR2 D7 70 SPHDA 15 530 K2 CR4 D13 70 AMMIA 55 784 PBZ CR2 D5
68 CJCHA 46 917 CU3 A52 U8 63 BAPCA 11 361 MC2 A52 U7 69 ACBCA 25 1544 CA H A5 U4-2 H2 U	57 JCPSA 26 563 CA (O H)2 65 ACCRA 18 689 CA C D3	70 AMMIA 55 784 DB2 CD2 D5
69 ACBCA 25 2658 ZR (H AS 04)2 H2 O	CA+2 VII 71 CJCHA 49 1036 CA3 AS2 DB	71 SPHCA 15 820 NA2 CR2 07.2 H2 0 71 SPHCA 15 826 L12 CR2 07.2 H2 0
70 ACREA 26 1586 NA2 H AS GA. 7 H2 G	71 ACBCA 27 2311 CA2 AL FE 05 73 MRBUA 8 593 CA CR F5	73 ACBCA 29 B90 NAZ CR2 O7 ALPHA 71 ACSAA 25 44 RB2 CR2 O7
TO ACBCA 26 1574 NA2 H AS 04.7 H2 D 69 CHDCA 268 1694 BA N12 AS2 08 70 AMMIA 55 2023 MN9 (0 H19 (H2 0)2	69 ACBCA 25 1534 CA10 (P 04)6 (0 H)2 CA2 VIII 68 INOCA 7 1345 CA2 P2 07 74 CUCHA 52 1155 CA18 MG2 H2 (P 04)14	10 CJCHA 48 331 KB2 CK2 U1
70 ACRCA 26 1889 IN H612 H AS 06		72 ACBCA 28 2845 K2 CR 04 73 ACSAA 27 177 ZR4 (O H)6 (CR 0415.H2 0
70 ACSAA 24 3711 LI MO 02 AS 04 70 INOCA 9 2259 CA2 AS 04 CL	71 JNBAA 75 27 CA C 03 69 ACBCA 25 1534 CA10 (P 04)6 (0 H)2	73 ACBCA 29 2141 RB2 CR4 013 73 ACBCA 29 2963 NAZ CR 04.4 H2 0
65 ACCRA 18 777 CU3 AS 04 10 H13 TO CJCHA 48 890 MG2 AS2 D7 TO CJCHA 48 881 CO3 AS2 D8	GA+2 X 69 ACBCA 25 955 GA B2 Q4 III GA+2 XII	71 ACSAA 25 35 RB2 CR2 07 71 JSSCB 3 364 AB2 CR 04 72 ACBCA 28 2865 R2 CR 04 73 ACSAA 27 177 ZR4 CO H10 (CR 0415.H2 0 73 ACSAC 28 2141 RB2 CR4 013 73 ACBCA 28 2141 RB2 CR4 013 73 ACBCA 28 2463 RB2 CR 04. H2 0 73 ACBCA 28 2463 RB2 CR 04. H2 0 73 ACBCA 28 2463 RB2 CR 04. H2 0 73 ACBCA 28 2463 RB2 CR 04. H2 0 73 ACBCA 38 271 RC CR2 07 74 ACBCA 38 271 RC CR2 07
71 CJCHA 49 1036 CA3 AS2 DR	69 ACRCA 25 965 CA B2 D4 IV	74 AMM14 59 1160 PRA CR CLA X6 Y2
70 AMMIA 55 1489 MM7 SB AS Q12 71 ACBCA 27 2124 M3 AS Q4-12 M2 Q 73 ACBCA 29 2011 MG3 AS2 Q8	(P 03 (01/2 (0 H)1/2))2 74 JACSA 96 6606 K2 CA CU (N 02)6	CS+1 VIII 69 SPHCA 13 930 CS2 BE F4 CS+1 X
73 ACBCA 29 2611 MG3 AS2 08 61 AMM1A 46 1077 CA2 8 AS 04 (0H)4 73 CJCHA 51 2082 NA4 AS2 07 66 ZAACA 347 133 CA H AS 04 H2 0	CD+2 IV 59 ACCRA 12 1049 CD IN2 D4	69 INDCA B 1665 CS4 MG3 F10 69 SPHCA 13 930 CS2 BE F4
66 ZAACA 347 133 CA H MS 04 M2 0 66 ZAACA 347 140 SR H AS 04 H2 0 71 AMM14 36 1147 ZM4 AS 2 08 10H12.2H2 0 70 ACACA 26 403 CA M AS 04 70 ZAKAKA 132 332 CO3 AS 2 08	71 244C4 382 270 K2 CD2 03 CD+2 V 69 CJCHA 47 3409 CD2 P2 D7	CS+1 XI 69 INOCA 8 1665 CS4 MG3 F10 CS+1 XII
70 ACBCA 26 403 CA H AS 04 70 ZKKKA 132 332 CD3 AS2 08	70 ZKKKA 132 332 CD3 AS2 08	67 ACCRA 23 865 CS U F6 68 ACSAA 22 2793 CS CO CL3
73 ACBCA 29 2721 NH4 H2 AS D4	69 CJCHA 47 3409 CD2 P2 D7 70 ZKKKA 132 332 CD3 AS2 D8	
AS+5 VI 71 CJCHA 49 2539 CL F2 AS F6 73 J55CB 6 80 MG8-5 AS3 016	0 CUCMA 47 3409 CD2 P2 D7 70 ZMKRA 132 332 CD3 A52 D8 60 SPHDA 11 11 CD W D4 67 HCACA 50 2023 CD2 MH3 D8 74 JC51A 1974 674 CD C4 HG D6 74 ACBCA 30 1023 CD2 C4 HJ 2012	69 ŽKKKA 129 259 CU LA G2 70 ZAACA 379 113 SR CU2 G2 CU+1 IV
70 CJCMA 48 3124 CD8 AS3 U16 73 ACACD 29 266 CALCULATED	74 ACBCA 30 1880 CD2 C4 H12 D12 CD+2 VII	REF 2 CU F, CU CL, CU BR 49 ACCRA 2 158 K2 CU CL3
74 INDCA 13 780 XE AS F11.XE2 AS F9 74 ACBCA 30 250 K AS F6	74 ACSAA 28A 119 CD G(C H2 C O 0)2.3 1/2 H2 D CD G(C H2 C O U)2.3 H2 D 74 JCS1A-1974 1922 CD CS H5 CS	CU+1 VI TO_MRBUA
AU-3 1950 69 JCSIA 1969 1936 K AU F4 70 ZAACA 375 43 LI3 AU 03,K AU 02,RB AU 02 70 JCSIA 1970 3092 K AU (NO3)4		57 ACCRA 10 554 CU CR2 04 71 ACCEA 10 413 SR CU F4. CA CU F4
AU+> VI	69 ACBCA 25 1804 CD (N D312.4 D2 U 74 JCSIA 1974 674 CD C4 H6 D6	Cu+2 1v SQ
74 INUCA 13 775 XE2 AU F17 6 +3 111	CE+3 VIII 74 ZAACA 403 1 R3 VS V (CE F3) 74 JGSIA 1974 1105 C41 H24 CE F12 N 08 S4	67 FARKA 124 91 PM CU AS2 08 61 FARKA 24 91 PM CU AS2 08 61 FARKA 27 387 CU 1CA MSC MSC M32 C3 0212 65 JCPSA 43 3959 CU 1CA MSC M32 C3 0212 66 INCCA 5 517 CU (1CD M9 02) 67 JCSA 1967 309 CU 1CA C12 M18) 66 PM CA 25 11 CI 1 HID 04 CU
68 NJMMA 1968 80 CA AL B 04 70 ACBCA 26 906 82 03 1 71 SPHCA 15 802 K BE2 B D3 F2		65 JUDSA 43 3939 CU (C6 H51C H312 C3 0212 66 INCCA 5 517 CU (C10 H9 0212 67 JCS14 1947 309 CU (D4 C12 H181
	74 ZAACA 403 1 R3 VS V (CE F3)	
71 ACBCA 20 1189 K 8 02 71 ACBCA 27 900 L13 8 03 70 ZKKA 132 27 400 L13 8 03 71 ZKKA 132 27 LCA 83 05 10H) 71 JACGA 4 200 LU 8 03 74 JCFSA 80 1899 HN 84 07	60 AMMIA 45 1 CE4 ME MEZ TIZ SI4 022 CE44 VI TZ ACBČA 28 956 BA CE 03	CU+2 V 69 ACSAA 23 221 CU3 M D6 68 CJCMA 46 917 CU3 AS2 DB
74 JCPSA 60 1899 MM 84 07 74 MRSUA 9 1861 ND AL3 (8 03)4	73 JSSC8 & 331 R (CE4+)	68 JCPSA 48 2619 CU NO 04
8 +3 [V	09 INUCA 8 33 (M M4)2 CE F6 74 JCSIA 1974 2021 MAG CE MID 036 H2.30H2 D 74 JSTCA 15 397 CEIS U4)2 77 ACSAA 28 1079 A- CE (ACAC)4 CE+ XII	63 NATUA 197 70 CU3 S O4 O H 63 ACCRA 16 124 CU5 (P O4)2 (O H)4
68 ACBCA 24 1703 NA B F4 69 CJCHA 47 2579 NB F4 61 ACBCA 47 1579 CU 52 04	74 JSTCA 15 397 CELS 0412 74 ACSAA 28 1079 A- CE (ACAC)4	70 ACBCA 26 1020 CU N 04
71 ACBCA	CF+3 VI	68 CJCHA 46 605 CU2 P2 07 68 JACSA 90 5623 CU1(1C H3)2 N)2 - 1P1012 01)3 (CL 04)2
	74 JINCA 36 2023 R3 VS V (CF2 (S 0433) CL+5 L11 73 MRBUA 8 791 R8 CL 03	70 INOCA 9 151 CU (OMPA)3 (CL 04)2 73 ACBCA 29 1743 CU V2 06
71 AMMIA 56 1553 MG (86 07 (0 H)6) ,2 H2 0 73 AMMIA 58 909 CA B \$1 U4 0 M 71 ACACA 27 A72 7M MA (17	73 MRBUA 8 791 RB GL 03 CL+7 1V 72 ACBCA 28 839 TMPD CL U4	CU+3 VI 72 MRBUA 7 913 LA CU 03
B +3 VI 73 ACACB 29 266 CALCULATED	32 2KKKA 84 65 K CL Q4 60 ACCRA 13 855 N U2 CL D4.M CL D4.	DA+5 A11 DA+5 A1 DA+5 A1
BA+2 VI 70 ZKKRA 131 161 BA3 VZ OB 73 ZEMBA 280 263 BA AG6 O4		UNPUL DY CL2, DY BR2
73 ZEMBA 280 263 BA AG6 Q4 BA+2 YII 71 ACBCA - 27 1263 BA FE2 Q4	54 JPCHA 63 279 H CL 04-H2 0 58 JACSA 80 5075 C6 H6-AG CL 04 57 PISAA 56 134 H H4 CL 04 57 PISAA 56 143 K CL 04	UNPU1 DY CL2 DY-3 VI 63 PMSSA 3 K446 DY2 03
73 ACSCA 29 2009 BAZ T1 04	71 JCS14 1971 1371 CU (C10 M9 M312 (CL D4)2	0Y+3 VII
58 ZRRRA 110 231 CU BAZ IC U O H36.4 HZ O 69 JCPSA 51 4928 BA RN F4 73 JCPSA 53 3279 BA CU F4	73 ACBCA 26 1928 M2 M5 CL D4 71 ACBCA 27 898 M CL D4.2 1/2 M2 D	0Y+3 VIII 74 ZAACA 403 1 R3 VS V (DY F3) 70 SSCOA 8 1745 DV3 FE5 D12
IN JEPSA - 23 SELTY BA CU F4	73 ICHAA 7 477 (C M)2-TRIEN-CU CL 04 71 ACBCA 27 898 H CL 04.2 1/2 H2 0	70 SSCOA 8 1745 DV3 FE5 312 DV+3 IX

Table 2 (cont.)

The column 1		•	
1	ER+3 VI	73 ACBCA 29 869 HG MO D4	74 ACBCA 30 2491 MG2 V2 07
10 1	7ú ACBCA 26 484 ERZ SIZ O7 ER+3 VII	74 ACBCA 30 2049 K HO BE F6 70 SSCOA 8 1745 HO3 FE5 012	E 76 CJCHA 52 1155 CA18 MG2 H2 (P D6)16
The content of the	72 JCMLB 2 197 ERB U (THD)10 (O H)12 ER+3 VIII	74 ZAACA 403 1 R3 VS V (H0 F3)	70 INDEX 9 151 MG 10MPA)3 (CL 04)2 72 CJCHA 50 3619 MG 92 U6 73 ACBCA 29 2611 MG3 AS2 U8
The content of the	70 INOCA 9 2100 ER (C2 04) (H C2 04).3H2 0	74 ACBCA 30 2613 HO(CZ M5 5 04)3.9H2 0	MG+2 VIII 73 ACACB 29 266 CALCULATED
The color 13 A. P. 15 15 15 15 15 15 15 1	74 244C4 403 1 R3 V5 V (FR F3)	75 F I F HA 53 831 IN 0121401N 04151	70 AMMIA 55 1489 MN7 58 AS (1)2
1	ER+3 IX 59 ZKKKA 112 362 EN (C2 H5 S 04)3.9H2 D	71 JCPSA 54 2556 N H4 1 03 66 ACCRA 20 758 LI I 03	69 PHSSA 32 K91 MN CR2 D6 73 ACACB 24 266 CALCULATED
The control of the	FU+2 VI 70 ZAACA 374 201 LI EU3 04	58 ACCRA 9 1015 CE (1 0314	MN+2 V HS 68 AMMIA 53 1841 MN2 O H AS O4 74 MPMTA 21 246 MN2 AS O4 OM
10 10 10 10 10 10 10 10	69 ACBCA 25 1104 FU 12	I+5 VI 71 JCPSA 54 2556 N H4 I D3	MN+2 VI LS 49 ACBCA 25 925 R VS D ELECTRUMS
The column 1	73 REF 3 L12 EU5 08 EU+2 VIII SUBDILITED ST. EU 897	1+7 1V 70 ACBCA 26 1782 NA 1 04	69 SCIEA 165 586 MN2 GE U4
The color The	EU+2 IX 73 RVCMA 10 77 EU CL2	1+7 VI	69 ANNIA 54 1312 NN FEZ (P 0412 (DH)2.8H2 O 70 NJMIA 113 1 MN7 NA12 (S 04)13.15H2 O
## 15 19 19 19 19 19 19 19	EU+2 X 71 NATWA 58 218 EUZ 51 U4	37 JACSA 59 2036 (N H4)2 H3 [U6	72 AMM1A 57 621 MNZ GE 04 67 PRLAA 92 125 MN C 03
	68 REF 4 EU4 AL2 D9 70 ZAACA 374 201 L1 EU3 D4	74 ZAACA 409 97 RB2 IN4 07 73 ZAACA 395 280 SR2 IN2 05	MN+2 VII
10. 1. 12. 12. 12. 12. 12. 12. 12. 12. 12.	EU+3 VII 68 REF 4 EU4 AL2 09	74 ZAACA 409 97 RB2 IN4 07 61 ACSAA 15 1437 IN 0 H S 04.(HZ 0)2	MN+2 VIII 69 ZKKKA 129 427 MN3 FEZ GE3 D12
1	FU+3 VIII	68 ACBEA 24 388 CU2 IN2 05 70 ACSAA 24 1662 IN 0 0 H 69 INGEA 8 1985 IN2 03	74 JCPSA AJ 1899 MN H4 D7
1	73 ACSAA 27 2827 EU2 (C3 H2 04)3.8H2 0	74 ACBCA 30 1882 NA IN 512 06 74 SPMDA 18 761 INZ GEZ D7	67 ACSAA 21 2871 MN2 03 67 ZKKKA 124 428 MN2 03
	74 ZAACA 403 1 R3 V5 V (EU F3) 73 ACSAA 27 2827 EUZ (C3 H2 04)3.8H2 D	71 JSSC8 3 174 SR IR O3 IR+5 VI	
1	FE+2 IV SQ HS 74 AMMIA 59 1166 BA FE SI4 010	K+1 IV 68 ZAACA 358 241 K AG O	LA.95 CA.05 MN D3
## 1995 13 100 F 13 100 F 13 100 F 12 1		K+1 VI	73 JSSCB 6 16 NA MN7 D12 74 AMMIA 59 985 MG2 NN 8 05 NR ACRCA 24 1114 NA6 MN6 T15 D18
## ALCOLD 15 928 AV 1 A 16 52) *** STATEMEN STATEMENT S	71 JUPSA 31 452 FE2 TI D4 72 JUPSA 33 1296 FE2 MO D4	68 SPHDA 12 1095 K Y MO2 D8 69 CCJDA 11 606 K2 ZR2 O5 69 ACHCA 25 1919 K U2 F9	74 INOCA 13 1854 MN 1C7 H5 D213.1/4 C6 H5 CH3 74 INOCA 13 1864 MN (ACAC)3
1	69 ACBCA 25 925 R VS A (FE S2) FE+2 VI HS 69 NJMMA 1969 430 FF AI2 IP 0412 (0 H12 (0 H2)6	K+1 VII 68 CJCHA 46 935 K2 CR2 07	75 JSSCB 13 275 R3 VS V (M4 MN 04)
## 1 CECAM 22 710 ## 1981 AND COLORS OF 1981 AND CO	.2H2 0 70 BUFCA 93 190 FE 5 04	71 SSC0A 9 335 X FE F4 K+1 VIII	69 INDCA 8 335 NAIZ MN NBIZ D38.50HZ D 61 CZYPA 13 398 NAZ H4 MN (I D613.17HZ D
## 1	67 ACCRA 22 775 FE (NH4)2(S 04)2.6H2 0 68 CINYA 68 290 LI FE P 04	62 ZKKKA 117 411 K2 TI6 G13	MN+6 IV 72 ACBCA 28 2845 K2 MN 04
# 5 SCAR 20 200 CAC 20 20 CAC 20 20 CAC 20 20 CAC 20 CA	FE+2 V111	AR C (CMA 46 035 K) CO2 O7	MN+7 1V 68 ACBCA 24 1053 AG MN U4
9 ACCC 2 35 ADD X CET 22 71 ACCC 27 1230 BA F2 102 17 ACCC 27 1230 BA F2 103 18 ACCC 25 1230 BA F2 103 19 ACCC 25 1230 BA F2 103 10 ACCC 25 1230 BA F2	73 ACACB 29 266 CALCULATED	65 ACCRA 19 629 K4 H2 I2 010.8H2 0 K+1 1X 70 ZKKKA 132 27 K1.4 NAS.5 CAO.3 AL7.5	69 ACBCA 25 400 KJ MO CL6 69 INOCA 8 2694 K3 MO F6
	70 SSCOA	69 ACBCA 25 600 K CE F4	71 MRBUA 6 555 L12 MO F6 MO+5 IV
## 1 FEV 00 ## 1	71 ACSAA 25 3616 CA2 FE2 O5	K+1 X 73 CJCHA 51 2613 K AL PZ 07	MO+5 V1 71 INDEA 10 922 BAZ ND MO DA
71 55COA	FE+3 V 71 JSSCB 4 1 FE V 04	68 SPHCA 13 420 K Y W2 D8	68 JCPSA 48 2619 CU HD G4 68 SPHDA 12 1095 K Y MOZ G8
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70 ACBCA 26 1469 CAZ FEZ O5 70 SSCOA 8 1745 M3 FES O12	74 JACSA 96 6606 K2 CA CU IN 0216	
CATACORA 22 329 FE CCS M7 O2213 CATACORA 22 329 FE CCS M7 O221	71 JSSCB 4 1 FE V 04 71 JPCSA 32 1315 BI FF 03	LA+3 VI 69 ZKKKA 129 259 CU LA DZ	71 JCPSA 55 1093 CA HO O6. SR HO O6
## SPICE B 331 R3 V S V 15 RE FO 331 FE	67 ACCRA 23 239 FE (C5 H7 0213 69 CCJDA 1969 440 FE (C7 H5 0213	LA+3 VIII 76 AMMIA 59 1277 LA6 MG2 T13 S16 022	73 ACBCA 29 2074 LAZ MO3 012 71 JCSIA 1971 1857 MO(+A) -0
Feb 17 15 15 15 15 15 15 15	73 JSSCB 8 331 ESTIMATED	73 ACBCA 29 2014 LAZ MUS U12 68 INOCA 7 2295 LA (C5 H7 0213 (H2 012 74 ZAACA 403 1 R3 VS V (LA F3)	MD+6 VI
19 ACSCA 31 190 38 GAZ \$12 OB 70 12ACCA 379 137 LIZ CUI DZ 70 ACSCA 20 ACSC	R3 VS V (SR FE D3)	IA+3 1x	
19 ACSCA 31 190 38 GAZ \$12 OB 70 12ACCA 379 137 LIZ CUI DZ 70 ACSCA 20 ACSC	R3 VS V (K2 FE D4)	74 AMMIA 59 1277 LA4 MG2 TI3 S14 022	70 ACSAA 24 3711 L1 MD UZ AS U4 66 ACSAA 20 2698 MD F6 (GAS) 70 CCUDA 1970 50 MD U3 (H2 U)2
Cop Vii	GA+3 VI		72 ACBCA 28 2222 MO 03.2H2 0 64 INOCA 3 1603 K2 (MO 02 (C2 04) H2 012 0 73 ACBCA 29 869 HG MO 06
13 ACCC	GD+3 VII 70 ACBCA 26 484 GD2 S12 O7	71 AMMIA 56 18 NA3 ALZ LI3 F12 71 ACBCA 27 616 LIS GA D4 73 JSSCB 6 538 LI3 V D4	74 ACBCA 30 1795 MD 039HZ 0 N-3 IV
TABLEST TABL	72 ACBCA 28 60 GD2 MD3 012 72 SPHCA 16 790 GD2 GE2 D7	73 ACBCA 29 2625 L1 (N2 M5) BE F4 73 ACBCA 29 2628 L1 N H3 O H S O4 64 ACCRA 17 783 L12 C2 O4	N+5 111
72 SPECA 18 790 GD2 GE 07		74 ACBCA 30 2434 L12 BE SI 04	NA+1 IV 74 ZAACA 409 69 NA6 ZN U4 8FF 2 NA2 U
72 SPECA 18 790 GD2 GE 07	72 SPHCA 16 790 GD2 GE2 D7 74 ZAACA 403 L R3 VS V (GD F3) GG+3 IX	70 ZKKKA 132 118 LIZ ALZ 513 010 71 MRBUA 6 555 LIZ MQ F6	NA+1 V AR ACHCA 24 1077 NA2 512 D5
GE-1 V STACK 125 209 CD GE 01 71 ACSAA 25 337 LI M3 08 65 ACCRA 19 301 MA CB 07 NT CB 00 OF TRACK 125 209 NT CB 15 200 NT	72 SPHCA 16 790 GDZ GEZ G7 69 IVMMA 5 1823 GD9.33 516 026 74 ZAACA 403 1 R3 VS V (GD F3)	65 ACCRA 19 561 L1 C6 U7 H7 74 ACTEA 86 819 L1 NB U2	NA+1 VI
70 ADCR 102 124 ARZ 6E 03 TO 18 TO 1	CEAL IV	71 ACSAA 25 3337 LI NB3 08 73 CJCHA 51 265 LI V 03 73 ACRCA 29 2294 LI2 ZR F6	
70 ADCR 102 124 ARZ 6E 03 TO 18 TO 1	70 JSSCB 2 612 MG28 GE10 048	LU+3 VI 70 ZAACA 377 70 C4 LU2 U4 71 JACGA 4 284 LU B 03	58 ZKKKA 111 241 NA CL O3
1	70 ACSAA 24 1287 NA4 SN2 GE4 012 10 H)4 67 ACSAA 21 1281 NA8 SN4 GE10 030 10 H)4 70 MDCMB 102 964 NA2 GE 03	1 11+3 1X	59 ACCRA 12 526 NA U ACETATE 74 ACBCA 30 1872 NAZ W 04
GE - VI SCOR 5-7 CA2 GE OB 5-2 ACCEAN 3 085 NG ALT OB 7- ACCEAN 3 085 NG ALT OB	12 SPHCA 17 244 CD GE US	74 ZAACA 403 1 R3 V5 V (LU F3)	71 SPHCA 15 926 NA GD 51 04
71 MOCMB 102 1295 K2 GE4 09 71 ALGEA 22 133 GE 02 71 ALGEA 23 CE3 3 CE3	GE+4 VI	>2 ACCRA	73 ACBCA 29 890 NA2 CR2 Q7 ALPHA NA+1 VIII
1 1 1 1 1 1 1 1 1 1		MC+3 W	68 SPHDA 12 987 NAZ ZNZ \$12 07 71 AMNIA 56 18 NAS ALZ LIS F12
1	72 KKKA 136 387 GE (O H) P D4 72 MOCMB 103 1560 GE5 O (P 04)6	UNPU3 MG2 P2 07	/1 JSSC8 3 89 NAI3 NB35 094 32 ZKKKA 81 135 NA AL SI 04
71 CLCHA 49 1630 MG3 V2 08 M85-5 V1 10 JACCA 53 126 MF 02 10 JACCA 63 JASSA MF 03 10 JACCA 63 JACCA 63 10 JACCA 63 JACCA	57 JMOSA 1 43 T F 56 JCPSA 25 275 H F	65 CJCHA 43 1139 MG2 P2 D7 63 BAPCA 11 361 MG2 A52 D7	NG+3 V; 7+ ACIEA 86 819 L! NB OZ NB++ VIII
TO JACIA 23 154 HH CD H12 S OR-H2 O 69 FKKKA 129 65 MC ST U3 70 JSC6 1 419 H -H82 OS OF HEAL 23 154 HH CD H12 S OR-H2 O 69 FKKKA 129 53 MC W OR OF H2 OR H2	75 JSSCB 13 275 R3 VS V (M4 HF 04)		75 JACSA 97 2713 NBIDPMI4
7 1 ACSAA 27 2455 MF 10 M12 5 04 70 85F 1970 243 MC 5 04-M2 D 71 155CB 5 80 MA13 M835 094 MC=1 V1 71 ACSCA 27 815 MG 15 CD 71 244C A 360 119 MM M82 06 71 CCUDA 1971 466 MG2 F2 68 ACSGAA 22 1466 MG3 F2 08 7 4 JIMCA 36 1895 CAZ M82 U7	69 ACSAA 23 3541 HF (0 H)2 5 04.HZ 0 74 ACSAA 27 3467 HF4 (0H)8 (CR 0414.HZ 0	69 SPHCA 13 933 MG N 04 70 JSSCB 2 612 MG28 GE10 048	70 JSCC8 1 419 M -NB2 05 70 JSSC8 1 454 NAZ NB4 011 70 ARMIA 55 00 CA_NB2 06_
	73 ACSAA 27 2455 HF (0 H)2 5 04 HG+1 V1	70 BSCFA 1970 4243 MG S 00-M2 0 71 BCGA 27 815 MG S TE D6	55 PRVAA 98 903 CDZ NBZ U7
	HG+2 11		19 JINGA 30 1905 CAZ MBZ UT 71 JCSIA 1971 1280 BI3 MB17 047

Table 2 (cont.)

		_
70 ACBCA 26 105 BA3 514 NB6 D26	70 ACACB 26 501 PB2 03	SB+3 14
71 ACCAA 25 3347 11 NG3 08	PB+2 VII 69 ZKKKA 128 213 PB CAZ 513 09	70 ACSAA 24 320 58 P 04
59 SPMCA 4 796 LY, YB1 NB 04 73 JSSCB 8 L59 B1 NB 04 66 ACSAA 20 72 NB P 05 74 BUFCA 97 3 NA3 NB 04	64 ACCRA 17 1539 PB P2 Q6 PB+2 VIII 71 SPHCA 15 928 PB W Q4	TO AMMIA 55 1489 MNT SB AS 012 71 JCS1A 1971 942 AS SB F8 71 JCS1A 1971 2318 BRZ 583 F16
110 484 54 1 454 NAZ NB4 011	64 ACCRA 17 1539 PB P2 06 73 CJCHA 51 70 PB2 V2 07	74 JCSSR 9 345 NA 58 D3
71 JSSCB 3 89 NAI3 NB95 U94 71 ACBCA 27 1610 (NH4)3 NB U (C2 U4)3.M2 O 75 ACBCA 31 673 NB2 U5	72 MRBUA 7 1025 BI TITANATES	68 CJCHA 46 1446 SC2 03 68 ARKEA 29 343 SC2 03
75 ACBCA 31 673 NB2 O5 ND+2 VIII UNPUL ND I2	67 ACCRA 22 744 P8 F2 73 CJCHA 51 70 P82 V2 07 74 ZKKKA 139 215 P8 C 03 74 CJCHA 52 2701 P8 V2 06 PR+2 X	68 ARKEA 29 343 SC2 03 UNPU4 SC2 SC2 U7 73 SPHCA 17 749 SC2 S12 U7 73 INDCA 12 927 SC 1C5 H7 0213
ND+2 IX UNPUL ND CL2. ND BR2		73 ACBCA 29 2015 NA SC 512 06 74 INDCA 13 158 SC (C7 M5 U2)3
ND+3 VI 71 INOCA 10 922 BA2 ND MO 06 74 MRBUA 9 1661 NO AL3 B4 012	70 2KKKA 132 228 P83 P2 08 P8+2 XII	73 ACSAA 27 2841 SC U H (G3 H2 041-2H2 U
ND+3 VIII	57 ACCRA 10 103 PB IN 0312 R3 VS V (BA S 04) 70 ZKKKA 132 228 PB3 P2 08	
71 JSSCB 3 458 ND V 04 - 70 SPHCA 14 518 K ND W2 08	71 INOCA 10 1284 K2 PB CU (N 0216 PB+4 IV 72 JCSIA 1972 2448 R3 VS V INA4 PB 04)	74 INOCA 13 1886 H SC (CT H5 0214 74 INOCA 13 1880 H SC (CT H5 0214
TU ACBCA 26 484 ND2 T12 D7 TO ACSAA 24 3406 ND4 RE2 D11 T1 SPHDA 15 636 ND2 N D6 T1 SPHCA 15 991 ND4 N3 D15	72 JCSIA 1972 2448 R3 VS V (NA4 PB 04) PB+4 V 70 ZAAGA 375 255 RB2 PB 03	31+0 IV
71 SPHCA 15 991 ND4 W3 015 74 MRBUA 9 129 ND P5 014	PB+4 VI 70 ACACR 26 501 PR2 03	51 JCS1A 217 968 HZ SE 04 70 ACBCA 26 436 NAZ SE 04 70 ACBCA 26 1451 KZ SE 04
74 MRBUA 9 129 ND P5 D14 74 ZAACA 403 1 R3 VS V (ND F3) 74 ACBCA 30 468 ND P3 D9 ND+3 1X	65 JINCA 27 1509 PB3 04 74 CJCHA 52 2175 R3 VS V PD4+ VIII	70 ACBCA 26 436 NAZ SE 04 70 ACBCA 26 1451 KZ SE 04 70 ZAACA 379 204 NI SE 04,642 U 72 ACBCA 28 2645 KZ SE U4 69 ACBCA 25 19 CU NI H314 SE 04 71 SCTAL 1371 1877 SELABLE
70 ACSAA 24 2969 ND2 (C2 D413-10-5H2 D	68 MRBUA 3 153 PB 02 PD+2 IV SQ	SI++ IV
73 ACSAA	67 INOCA 6 730 PD (C6 H5 CH3 CH(C 0)2)2 68 JSICA 9 L66 PD ((C6 H5)2 CH C2 02)2	63 NATMA 50 91 FEZ \$1 04 73 ZKKKA 137 86 MGZ \$1 04
73 ACSAA 27 2813 ND2 (C3 H2 04)3.6H2 0 73 ACSAA 27 2973 ND OH C 03 74 AMMIA 59 1277 ND4 MG2 TI3 S14 022	PO++ VI 68 MRBUA 3 699 R3 VS V (M2 PD2 07)	1 70 ZKKKA 132 1 MN5 (0 H12 S12 OR
ND+3 XII 72 JS5C8 4 11 ND AL OF	73 INDCA 12 1726 XE PD F11 61 JCSIA 1961 3728 K2 PD F6 PM+3 VI PM+3 VIII	71 AMMEA 64 193 CH2 CA2 SES DED 2M2 D
NI+2 IV 61 JAPIA 32 68S NI CR2 D4 65 BSCFA 1965 1085 SPINELS	74 ZAACA 403 1 R3 VS V (PM F3)	71 SPHCA 15 806 Y2 SI 05
NI+2 IV SQ 66 INDCA S 1200 NI (DPM)2	PM+3 IX 74 ZAACA 403 1 R3 VS V (PM F3) PO+4 VI	71 MAINA 78 210 EU2 51 04 70 PEPÍA 3 161 CU2 51 04 70 ACBCA 26 105 BA3 514 NB6 026 71 ACBCA 27 747 CA2 51 04-CA CL2 71 ACBCA 27 848 CA2 51 04
NI+2 V 67 BAPCA 15 47 NI2 P2 D7 NI+2 VI	74 CJCHA 52 2175 R3 VS V PO+4 VIII	71 ACBCA 27 8-8 CA2 51 04 71 AMMIA 56 1222 NA.16 K.84 CA4 (S18 D20)F.8M2 71 AMMIA 56 1155 MG.5-6 FE.4 S13 012.MG F O N
74 ACBCA 30 1686 NI (PY N D)6 (B F4)2	R3 VS V (FLUORITE) PR+3 V1 11 MRBUA 6 545 R3 VS V (PR2 M03 012)	71 ANNIA 56 1222 NA-16 K-84 CA4 (SI8 020)F-8H2 71 ANNIA 56 1155 MGS-6 FE-4 SI3 012-MG F 0 H 69 MSAPA 2 31 LI N SI2 05-NA M SI2 06 CA MG SI2 06 69 MSAPA 2 95 FE0.1 MH.L MG-8 CA-1 SI8
NIF2 VI TA AMMIA 59 486 NIZ SI 04 TA ACBCA 30 1886 NI (PY N DI6 (B F4)2 68 ZARCA 358 125 NI SE 04 67 BAPCA 15 47 NIZ PZ 07 TO ACBCA 26 1464 RB NI F3	PR+3 V[1] 70 SPHCA 15 28 PR2 W2 D9	69 MSAPA 2 95 FE6.1 MN.1 MG.8 CA.1 SI8
70 ZAACA 378 129 SR2 NI TE 06		022.1 (OH)1.4 F.5 69 MSAPA 2 101 LIZ-4 NA.1 MGIZ-9 SI15-7 AL-1 043-4 F4-3 (OH)-3
71 PHSSA 438 125 NE (O H)2	70 SPHCA 15 28 PRZ WZ 09 59 ZKKKA 112 362 PR (C2 H5 S 04)3.9H2 0 74 ZAACA 403 1 R3 VS V (PR F3) PR+4 V1	70 ZKKKA 132 288 CA5 512 OT (C 03)2 71 ACBCA 27 2269 MAZ SI 03-6M2 0 72 SPHCA 16 1021 BEZ SI 04
64 ACCRA 17 1481 NI (C5 H7 02)2.2H2 0 73 ACBCA 29 2741 NI SI F6.6H2 0 63 ZKKKA 118 291 NI (H C 0 0)2.2H2 0	72 ACBCA 28 956 BA PR U3	72 ACBCA 28 1899 AL2 BE3 S16 D18 74 ACBCA 30 2434 L12 BE S1 D4
74 JCPSA 61 852 NI C4 04.2H2 0 73 JCML8 3 181 NI (C5 H7 0212.(C2 H5 0 H)2	75 AGBCA 31 971 PR7 012 73 JSSCB 8 331 R (PR+41 74 CJCHA 52 2175 R3 VS V	SI+4 VI AZ NATMA AQ 345 SI DZ
	PT+2 IV SQ 72 REF 5 PT3 CD DA	69 CJCHA 47 3859 CU SI F6.4HZ D 70 ACBCA 26 233 SI P2 D7 71 ACBCA 27 2133 SI D2
NI+3 VI LS 74 ZAACA 405 167 M2 M* NI F6 71 CHOCA 272 2163 HO NI U3 NI+4 VI MS	PT+4 VI 69 JINGA 31 3803 PT 02	71 ACBCA 27 594 CA3 SI (0 H16-12H2 D-504-CO3
NI+3 VI HS 54 JACSA 76 1499 NA NI D2 N1+4 VI LS	R3 VS V (M2 PT2 O7) 74 CJCHA 52 2175 R3 VS V PT+5 VI 67 STBGA 3 1 R3 VS V (FLUORIDES)	73 ACBGA 29 2748 CU SI F6.6H2 O 74 CJCHA 52 2175 R3 VS V SM+2 VII
67 STGBA 3 1 R3 VS V (FLUGRIDES) 74 JINGA 36 1561 K2 NI F6 NG-2 VIC	67 ST8GA 3 1 R3 VS V (FLUORIDES) 67 JCSIA 1967 478 XE PT F11 PU-3 VI	- UNPUL SM 12 SM+2 VIII
74 INDCA L3 2233 ESTIMATED NP+3 VI	67 INUCA 3 327 R (PU+3) 75 INUCA 37 763 R (PU+3)	UNPU1 SM BR2, SM F2 SM+2 IX UNPU1 SM CL2, SM BR2
68 JINCA: 30 823 NP CL3 NP+4 VI 67 INUCA: 3 327 ESTIMATED	PU+4 VI 67 INUCA 3 327 R (PU+4) 73 JSSCB 8 331 R (PU+4)	SM+3 V1 71 SPHCA 15 924 NA SN GE D4
67 INUCA 3 327 ESTIMATED 74 CJCMA 52 2175 R3 VS V NP+6 VI	74 CJCHA 52 2175 R3 VS V PU+6 VI	SN+3 VII 70 SPHCA 15 214 SM2 SI2 07 74 SPHCA 18 575 K2 SM F5
R3 VS V (8A2 SR NP 06) OH-1 11 71 AMMIA: 56 1155 MG6.6 FE.4 SI3 O12 F D H.	R3 VS V (8A2 SR PU G6) R8+1 VI 70 ZAACA 375 255 R82 PB G3	74 ZAACA 403 1 R3 VS V (SM F4)
71 AMMIA 56 1155 MG6.6 FE.4 SI3 OLZ F O H, RIGH-11=R(F-1)*.04	RB+1 1X 74 ACBCA 30 1640 RB2 5 D4	5M+3 1X 69 ACACR 25 A21 5M (BP D313.9M2 D
71 AMMIA 56 1155 MG6.6 FE.4 SI3 012 F D H. R(OH-1)=R(F-1)+.04	R8+1 X1 74 ACBCA 30 1640 R82 S 04 R8+1 X11	70 SPHCA 15 214 SM2 S12 D7 74 INDCA 13 290 N H4 SM 15 D417.4H2 D
R(OH-1)=R(F-1)+.04	70 ACBCA 26 1464 RR N1 F3	72 JSSCB 4 11 SM AL D3
R(OH-1)=R(F-1)+.04 OS+4 VI 69 JCOMA 17 459 DS D2 70 ACSAA 24 123 DS D2	RB+1 XIV	SN+4 IV 75 ACBCA 31 511 K4 SN 04 72 JC51A 1972 2448 R3 V5 V (NA4 SN 041 73 ACACB 29 266 CALCULATED
70 ACSAA 24 123 05 02 05+5 VI	05 ACCAM 19 205 RB U U2 (N U3)2 RE44 VI 68 INDCA 7 108 LA4 RE6 D19 74 CJCMA 52 2175 R3 VS V RE45 VI	
70 ALSAN 24 123 US UZ 05-5 VI 71 JCSIA 1971 2789 US F5 74 SSCOA 14 357 R3 VS V (COZ OSZ O7) 36 JINCA 2 79 K OS F6 05-6 VII	74 CJCMA 52 2175 R3 VS V RE+5 V1 70 ACSAA 24 3406 ND4 RE2 D11	70 AMMIA 55 367 SN TAZ D7
OS+6 VI R3 YS V (PEROVSKITES) OS+7 VI	UNPU2 CD2 RE2 07	TO JSSCB 2 410 K2 SN 03 SN+4 VI 69 ZAACA 368 248 LI8 SN 06 70 ACSAA 24 1287 NA4 SN2 GE4 012 (0 H)2 74 CJCHA 52 2175 R3 V5 V
R3 VS V (PEROVSKITES)	RE+6 VI 75 JSSCB 13 77 BAZ MN RE D6 R3 VS V (PERDIVSKITES)	74 CJCHA 52 2175 R3 VS V SN+4 VIII
66 ACSAA 20 395 05 04 73 ACBCA 29 1983 05 04 65 ACCRA 19 157 05 04 71 JCS1A 1971 1857 05(8+) -0	R3 VS V (PERUVSKITES) R VS VALENCE RE+7 IV 68 ACIEA 7 295 RE2 07 (0 H2)2	67 JCSIA 1967 1949 SN (N 03)4 SR+2 VI 70 ZAACA 379 113 SR CUZ DZ 72 ZAACA 393 266 SR AGG D4
71 JCSIA 1971 1857 OS(8+) -0 P+5 IV	71 JCSIA 1971 1857 RE(+7) -0 70 CJCHA - 48 219 IRE2 IN-C4 H7 D2121 (RE D412	SR+2 VII
PSS IV CALCAGE AS 28 28 3 CO2 P2 D7 88 CLCHA 44 60 50 CU2 P2 D7 65 CLCHA 43 1139 NGC P2 D7 68 1NGC 7 13+5 CA2 P2 D7 71 85CRA 1971 N42 AR P2 D7 71 85CRA 29 113 N49 D8-1/2 H2 D 71 85CRA 29 113 N49 D8-1/2 H2 D	RE+7 VI 68 ACIEA 7 295 RE2 07 (H2 D)2 RH+3 VI	72 ACBCA 28 3668 SRIO (P D4)6 (D H)2 SR+2 VIII 68 ZAACA 358 138 SR Y2 Q4
68 INOCA 7 1345 CA2 P2 D7 71 BSCFA 1971 424 ZR P2 D7	70 ACBCA 26 1876 RHZ 03	08 ZACA 358 138 SR Y2 04 71 JCPSA 55 1093 SR MO 04, SR M 04 71 AMMIA 56 758 SR C 03 71 ACBCA 27 2429 SR (M C O D)2.2N2 0
70 ACBCA 26 1826 M3 P 04-1/2 M2 0 71 ACBCA 27 291 NA2 M2 P2 07-6M2 0 71 NJMMA 1971 241 SR AL3 (P 04)2 (0 M15-M2 0 69 ZKKKA 130 148 K ZR2 (P 04)3	73 INGCA 12 2640 RM F5 RU+3 V1 R3 V5 V (LA RU 03)	74 SPHCA 18 575 LAZ SR3 84 012
71 ACBCA 27 2124 NA3 P 04.12H2 0	RU+4 VI 70 ACSAA 24 116 RU D2	69 ACBCA 25 1647 SR 8E3 U4 70 ZKKKA 131 455 SR C 03 72 ACBCA 28 679 SR (1 0312,H2 U 72 ACBCA 28 3668 SR5 IP U413 U H
68 ACSA4 22 1822 NA 2R2 P3 012 68 ZKKKA 127 21 AL3 P2 08.5H2 0 68 CINYA 68 290 L1 FE P 04 70 ACHCA 26 1826 H3 P 04	74 ACBCA 30 1459 NA(3-X) RU4 09 74 CJCHA 52 2175 R3 VS V	72 ACBCA 28 3668 SA5 (P 04)3 0 H 74 SPHCA 18 675 LAZ SR3 84 012 SR+2 X
	71 JCSIA 1971 2789 RU F5 REF 7 KA VS V (CD2 RUZ 07)	SR+2 X 70 AMNIA 55 1911 SR CA B14 020 10 H16.5H2 D 74 SPHCA 18 675 LAZ SR3 84 012
72 ACUCA 28 2005 (N H4)2 M P U4 73 ACBCA 29 141 LU P 04 11 ACUCA 27 2247 CA (H2 P 04)2.H2 U	73 INOCA 12 1717 XE RU F11 RU+7 IV	SR+2 XII
73 AGBGA 29 2292 AL P 04.2H2 0	54 JACSA 76 3317 K RU 04 RU+8 IY 67 ACSAA 21 737 RU 04	71 JSSCB 3 174 SR IN 03 71 NJMMA 1971 241 SR AL3 (P 04)2 (O H15.H2 O
70 JSSCB 1 120 ZNZ P2 07	S+6 IV 68 ACBCA 24 508 CU S D4.3 H2 U 70 ZKKKA 132 99 P82 S 05	71 AMMIA 55 307 SN TAZ 07
67 JACSA 89 2270 C23 H29 Q5 P P+5 VI	70 ZKKKA 132 99 P82 S 05 70 BUFCA 93 190 FE S 04 ALPHA 70 BUFCA 93 185 FE S 04 G 0	71 JSSCB 3 145 TA2 05 70 ACRCA 26 102 RAS TA4 015
71 ZAACA 380 51 P CL5 72 CCJDA 1972 676 ET3 N H IC6 H4 D213 P 73 ACACB 29 266 CALCULATED PA++ VI	70 BUFCA 93 190 FE S 04 ALPHA 70 BUFCA 93 185 FE S 04 D H 70 BUFCA 93 185 FE S 04 D H 70 BUFCA 1970 425 MG S 04 H2 0 71 ACBCA 27 272 N H4 H S 04 70 NJMIA 113 I HNT NAIZ (5 04)13.15H2 0	TA+5 VII
73 ACACB 29 206 CALCULATED PA+4 VI 67 INUCA 3 327 R (PA+4)	70 NJMIA 113 I MN7 NA12 IS 04)13-15M2 0 05 ACCRA 19 854 MN 8 04 71 ACSAA 25 3213 NA M S 04 M2 0	70 JSSCB 1 454 CA TA4 011 71 JSSCB 3 145 TA2 05 TA45 VIII 53/DANKA 90 781 TA B 04
74 CJCHA 52 2175 R3 V5 V PA+5 VI 21 ACRCA 37 731 W DA CA	72 ACBCA 28 RAG SN S DG	53/DANKA 90 781 TA B 04 TB+3 VI 68 ZAACA 363 145 TB2 03
71 ACOCA 27 731 K PA 03 PA+5 1X 67 JC51A 1967 1429 K2 PA F7 PB+2 1V PY	72 ACBCA 28 2845 K2 S 04	TB+3 VIII 70 SSCOA
PB+2 1V PY 68 P8 S1 G3	74 NJMIA 121 208 FE2 (5 D412	74 ZAACA 403 1 K3 VS V [18 F3]
be+5 AI	5+6 VI 73 ACACB 29 266 CALCULATED	74 ZAACA 403 1 R3 VS V (TB F3)

Table 2 (cont.)

```
72 ACBCA 28 956 BA TB U3
TC+5 V1
TC+5 V1
TC+5 V2
TC+6 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 71 J1MCA 33 2867 CR2 U D6
71 JACSCA 25 3469 U D2 (O H)2
73 AGSCA 29 7 U F6
U-6 V111
00 AGSCA 28 3609 U D3
U-6 V111
00 AGSCA 27 787 CA U O4
95 AGSCA 19 205 NB U O2 (N 0313
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           65 ACCRA 19 205 RB U 02 (N 0313 V22 V1 UPU5 V F2 V23 V1 T0 PRVBA 2 3771 V2 03 T3 355C6 6 419 V4 07 69 ACBCA 25 1354 V 1C5 H7 0213 69 204CA 369 306 H V2 04 C0 T1 MR00A 9 1091 1V0.79 CR0.0112 03 V2 04 C0 T1 MR00A 3 12 559 V2 C0 C0 T2 C0
                                                                                                           +4 VI
61 ZKKKA 116 345 TE OZ
71 ACBCA 27 602 M TE3 OB
71 ACBCA 27 608 U TE3 O9
71 ACBCA 27 602 M 1E3 UP
71 ACBCA 27 600 W 1E3 UP
71 ACBCA 27 600 W 1E3 UP
71 ACBCA 27 600 W 1E3 UP
71 E4 V 1
72 E4 V 1
73 E4 V 1
74 E4 V 1
75 E4 V 1
75 E4 V 1
76 E4 V 1
77 E4 V 1
77 E4 V 1
78 E7 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0 7 2ACC 1569 300 M V2 00
74 MR04M 9 1091 (V0.99 CR0.01)2 03
74 MR04M 9 1091 (V0.99 CR0.01)2 03
74 MR04M 19 1091 (V0.99 CR0.01)2 03
74 MR04M 19 42 11 V2 05
73 ACC 29 269 CA V3 07
73 ACC 29 269 CA V3 07
74 ACC 29 269 CA V3 07
74 ACC 29 269 CA V3 07
75 ACC 29 269 CA V3 07
76 ACC 29 269 CA V3 07
77 ACC 20 264 V3 07
77 ACC 20 264 V3 07
77 ACC 20 264 V3 07
78 ACC 20 264 V3 07
79 ACC 20 265 CA V3 07
79 ACC 20 27
79 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CRY-EV TO THE PROPERTY OF THE 
                                                                TH+4 VI
74 CJCHA 52 2175 R3 VS V
                                           THE NO. 1000 52 2175 R3 V5 V

14 ACOCA 27 878 K5 TH F9

14 ACOCA 27 878 K5 TH F9

14 ACOCA 27 878 K5 TH F9

14 ACOCA 27 8278 K7 TH F8 F3

15 ACOCA 27 8278 K7 TH F8 F3

16 ACOCA 25 1956 IN H614 TH F8

17 ACOCA 27 1823 K8 TH3 F13

18 ACOCA 27 1823 K8 TH3 F13

19 ACOCA 27 1823 K8 TH3 F13

10 ACOCA 27 1823 K8 TH3 F13

10 ACOCA 27 1823 K8 TH3 F13

11 ACOCA 27 1823 K8 TH3 F13

12 ACOCA 27 1835 K NA TH F6

17 ACOCA 27 2777 KH43 TH F6

18 ACOCA 27 2777 KH43 TH F6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          MET I G. E. BROWN, PH.O. THESIS, VIRGINIA POLYTECHNING, VINCENTRY OF THE STREET OF THE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        5 V

50 ACSAA 4 1119 V2 05

71 RVCMA 8 509 L1 V2 05

74 ACBCA 30 2644 V3 07

74 ACBCA 30 2491 MG2 V2 07

73 ACBCA 29 367 MG2 V2 07

70 CHOCA 270 952 CA V2 06
                                                  UNDUL H. GARKIUSHAUSEN FERDAMS COMMUNICATION
UNDUL C.CALVO, PERSONAL COMMUNICATION
UNDUG C.T. PRESIDENT COMMUNICATION
UNDUG C.T. PRESIDENT COMMUNICATION
ACAGA ACTA CRYST. SECT. A
ACCRA ACTA CACA. SCT. SER. SCT. CHIM.
BESTA BULL. CACA. POL. SCT. SER. SCT. CHIM.
BESTA BULL. CACA. POL. SCT. SER. SCT. CHIM.
BESTA BULL. SCC. CHIM. FER. CRISTALLOGR.
CACAC CROST. SECT. SECT. CACAC. CROST. SECT. B
CACAC CROST. SECT. COMM.
CACAC. CROST. CHEM. ACCA. SCT. SER. B
CHOLA C. R. HEBD. SEAN. ACCA. SCT. SER. B
CHOLA C. R. HEBD. SEAN. ACCA. SCT. SER. C
CHIR CHEM. PHYS. LETT.
CIPYA CARROCIC INST. MASM. YEARBOOK
CLIPYA CARROCIC INST. MASM. YEARBOOK
CLIPYA CARROCIC INST. MASM. YEARBOOK
CLIPYA CARROCIC INST. MASM.
CLIPYA CARROCIC INST.
CLIPYA CA
                                   80 ACCAR 20 836 TH (N 0314-3nz U TH4-X III 65 ACCAR 18 698 MG TH (N 0316-8H2 D T1-3 V 136-8H2 MG TH (N 0316-8H2 MG TH (N 0316-8H2 D T1-3 V 136-8H2 MG TH (N 0316-8H2 MG TH (N 0316
                                                  TI JUSTA 107 1697 170 3

TI ***

TI ***

TI ***

TI ***

TI **

T
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  17. ACBCA 30 1872. MAZ M 04-13
18. ACBCA 30 1878. AZZ M 04-13
18. ACBCA 30 333. MG M 04
18. ACBCA 30 333. MG M 04
19. ACBCA 31. ACBCA 31. ACBCA 31. ACBCA 31. ACBCA 32. ACBCA
                                                                       TI+4 VIII 66 JCSIA 1966 1496 TI (N 03)4
                                                  00 JUSIA 1906 1496 TI (N 0314
TL-1 VII

R3 VS V (MF)
TL-1 VIII
75 ACBCA
31 365 TL N 03
TL-3 INCA
31 365 TL N 03
TL-3 INCA
31 365 TL N 03
TL-3 INCA
31 365 TL N 03
TL SACCA
401 27 TR 2 TL 2 05
TL SACCA
405 17 TR 2 TL 2 05
TL SACCA
405 17 TR 2 TL 2 05
TL SACCA
405 17 TR 3 TL F4
TL UNPUI
TH-2 VII
03 PHSSA
TH-3 VII
04 TH-3 VII
05 TH-3 VII
06 JINCA
10 30 325 R (U-3)
TL SACCA
70 ACBCA
71 ACBCA
72 ACBCA
73 ACBCA
74 CJCHA
75 CJCHA
75 CJCHA
76 CJCHA
77 CJCHA
77 CJCHA
78 CJCHA
79 CJC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        +8 VI
64 INDCA 3 1412 NA4 XE D6.8H2 D
64 INDCA 3 1417 NA4 XE D6.6H2 D
K4 XE D6.9H2 D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Y+3 VI
OF ACCRA 22 354 Y2 BE 04
68 ZAACA 358 138 58 Y2 04
67 SPHCA 1 1 583 NA Y 51 04
69 ACBCA 25 Z140 Y2 03
71 SPHCA 1 5806 Y2 51 05
71 SPHCA 1 15 806 Y2 51 05
71 SPHCA 1 15 806 Y2 51 06
72 JC 31 1 197 2 27 26 66 W72 13 N12 06 Y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1 3 YHLA 13 800 TC 31 03
17 4 JCS16 1977 229 C66 H72 I3 N12 06 Y
17 3 YIL 1977 229 C66 H72 I3 N12 06 Y
18 YIL 1977 297 C66 H72 I3 N12 06 Y
18 YIL 1977 Y 16 C66 H72 I3 N12 06 Y
18 YIL 1978 Y 10 Y 10 Y
18 YIL 1978 Y 10 Y
18 YIL 1978 Y 10 Y
19 JC 18 Y 10 Y 10 Y
19 JC 18 JC 18 Y
19 JC 18 JC 18 Y
19 JC 18 JC 18 Y
20 JC 18 JC 18 Y
20 JC 18 JC 18 Y
20 JC 18 JC 18 JC 18 Y
20 JC 18 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Y8+2 VII
74 ZAACA 403 45 Y8 CL2
71 ZAACA 386 221 Y8 BR2
Y8+2 VIII
71 ZAACA 386 221 Y8 F2
Y8+3 VI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           07 SUFCA VO 257 O FE U4
15 VII
17 SPHCA VI
08 NCCA
09 4 COCA
09 4 COCA
25 787 SR U U4, BR U U4, CR2 U U5,
06 JOUQA
27 787 SR U U4, BR U U4, CR2 U 05,
06 JOUQA
27 726 MH U U4
08 ACSAA
19 1955 U F6 [GAS]
7 11 HVCA
7 7 555 U 05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     08 SPHDA 12 987 NAZ ZMZ SIZ OT
69 ACBCA 25 1233 ZM O
```

compounds to be slightly larger than those of the Eu²⁺ compounds. This difference was assumed to exist for all Sr²⁺ and Eu²⁺ coordinations. Because compounds of Am²⁺ and Sr²⁺ have similar cell volumes, the radius of Am²⁺ was made equal to that of Sr²⁺.

Wolfe & Newnham (1969) studied Bi_{4-x}RE_xTi₃O₁₂ and concluded that Bi3+ and La3+ have nearly equal radii. From a study of BiTaO₄ Sleight & Jones (1975) have concluded that although Bi³⁺ and La³⁺ have essentially equal radii, the size of Bi3+ depends on the degree of the 6s2 lone-pair character. When BiTaO4 transforms from a structure where the lone-pair character is dominant to the LaTaO4 structure, it undergoes a volume reduction. Table 3 shows a comparison of isotypic Bi³⁺ and La³⁺ compounds where the lone-pair character of Bi³⁺ is (1) constrained and (2) dominant. Bi pyrochlores such as Bi₂Ru₂O₇, Bi₂Ir₂O₇ and Bi₂Pt₂O₇ were omitted from the table because no corresponding La pyrochlore exists, but they have unit-cell volumes close to those of the Sm or Nd pyrochlores and thus have smaller volumes than those of La. When Bi³⁺ is forced into high symmetry, a Bi³⁺ compound has a smaller volume than that of La³⁺, but when the lonepair character is dominant, the Bi3+ compound is distorted and Bi3+ and La3+ compounds have approximately equal volumes. This behavior was also noted in the highly symmetric garnet structure where the hypothetical Bi₃Fe₅O₁₂ was estimated to have cell dimensions between those of the hypothetical Nd₃Fe₅O₁₂ and Pr₃Fe₅O₁₂ (Geller, Williams, Espinosa, Sherwood & Gilleo, 1963). For practical purposes, Bi³⁺ is listed as slightly smaller than La³⁺ but this dependence on lone-pair character must be kept in mind when comparing the volumes of Bi³⁺ and La³⁺ compounds. Similar behavior may also exist for Pb2+ and Sr²⁺, but this relationship was not investigated.

Table 3. Cell volumes of isotypic Bi³⁺ and La³⁺ compounds

(a) Lone pair character of Bi3+ constrained

Compound	Cell volume	Ratio
BiLi(MoO ₄) ₂	314.7	0.96
LaLi(MoO ₄) ₂	328.7	
$BiNa(MoO_4)_2$	320.5	0.97
$LaNa(MoO_4)_2$	332.1	
BiOF `	87.6	0.90
LaOF	97.7	
BiOCl	110.7	0.95
LaOCl	116.8	
BiOBr	123.8	0.98
LaOBr	126.4	
BiPO ₄	293.0	0.96
LaPO ₄	304.7	

(b) Lone pair character of Bi3+ dominant

Bi ₂ MoO ₆	$268.5 (\times 8)$	1.00
La ₂ MoO ₆	267.3	
BiFeO ₃	$62.49 \ (\times 6)$	1.03
LaFeO ₃	60·77 (×4)	
Bi ₂ Sn ₂ O ₇	$1219.9 (\times 8)$	1.00
La ₂ Sn ₂ O ₂	1225.3	

A similar study of relative cell volumes of isotypic compounds involving the pairs Cu⁺-Li⁺, Ag⁺-Na⁺, Tl⁺-Rb⁺, and Pb²⁺-Sr²⁺ was used to obtain more reliable estimates of the radii of Cu⁺, Ag⁺, Tl⁺, and Pb²⁺ (Shannon & Gumerman, 1975).

The nature of Sn²⁺, NH₄⁺, and H⁻ made it impossible to define their ionic radii. The coordination of Sn²⁺ by oxygen or fluorine is always extremely irregular,* leading to average distances which depend on the degree of distortion. Since this distortion varies widely from one compound to another, it is not meaningful to define an ionic radius.

Khan & Baur (1972) derived an apparent radius of the NH₄⁺ ion by analyzing the N-O distances in a large number of ammonium salts. They concluded that NH₄⁺ has an octahedral radius of 1.61 Å, between that of Rb⁺ (1.52 Å) and Cs⁺ (1.67 Å). Alternatively, cell volumes of NH₄⁺ and Rb⁺ fluorides, chlorides, bromides, iodides and oxides may be compared. This leads to the conclusion that NH₄⁺ is not significantly different in size from Rb⁺. No explanation is offered for this inconsistency and therefore the radius of NH₄⁺ is not included.

The radius of the hydride ion, H⁻, has been the subject of some controversy. A number of different radii have been proposed: 2.08 (Pauling, 1960); 1.40 (Gibb, 1962); and 1.53 Å (Morris & Reed, 1965). Gibb studied interatomic distances in many hydrides and concluded that good agreement between observed and calculated distances could be obtained using $r(^{VI}H^{-}) = 1.40$ Å if corrected for cation and anion coordination. The value of $r(^{IV}H^{-})$ was taken to be 1.22 Å.

Morris & Reed (1965) concluded that differences in observed distances in hydrides were caused by the large H⁻ polarizability. Because of such wide variations in the apparent H⁻ radius, it was omitted. However, an explanation for the variations based on covalence differences will be discussed later.

^{*} Although cell dimensions of $\rm Sn_2M_2O_7$ pyrochlores were used in SP 69 to derive $r(^{\rm VIII}\rm Sn^{2+})$, Stewart, Knop, Meads & Parker (1973) and Birchall & Sleight (1975) recently found that the pyrochlore A site in $\rm Sn_2Ta_2O_7$ is not fully occupied. Thus, even this example of apparently regular $\rm Sn^{2+}$ polyhedra is not valid.

Fig. 1. Effective ionic radius (Å) vs oxidation state.

Results and discussion

In Table 1 two sets of radii are included. The first is a set of traditional radii based on $r(^{VI}O^{2-}) = 1.40$ Å. The

other set is based on $r(^{VI}O^{2-}) = 1.26$ and $r(^{VI}F^{-}) = 1.19$ Å, and corresponds to crystal radii as defined by Fumi & Tosi (1964). As pointed out in SP 69, crystal radii differ from traditional radii only by a constant factor

Fig. 2. (a)-(e) Effective ionic radius (Å) vs CN for some common cations.

Fig. 2. (cont.)

of 0.14 Å. Although their inclusion in Table 1 may seem superfluous, it is felt that crystal radii correspond more closely to the physical size of ions in a solid. They should be used, for example, in discussions of closest packing of spheres, structure field maps (Muller & Roy, 1974), and diffusion in solids (Flygare & Huggins, 1973). Traditional radii have been retained because of their familiarity to crystal chemists and physicists. They will probably continue to be used for comparison of unit-cell volumes and interatomic distances. In the table, the ion is followed by electron configuration (EC), coordination number (CN), spin state (SP), crystal radius (CR), and effective ionic radius (IR), and in the last column, a symbol indicating the derivation of the radii and their reliability. Those with a question mark are doubtful because of: uncertainty in CN, or deviation from radii vs CN, or radii vs valence plots. Where at least five structural determinations resulted in radii differing by no more than ± 0.01 Å, the values are marked with an asterisk.

When the choice of a radius was influenced by any of the various correlations described earlier, it is indicated by the following: R – from r^3 vs unit cell volume plots; C – calculated from bond length–bond strength equations; E – estimated from one or more plots of r vs valence, r vs CN, and r vs cell volume. E implies poor or nonexistent structural data. Radii in this category include $^{VI}Fe^2+LS$, $^{VI}Mn^2+LS$, $^{VI}Cr^2+LS$, $^{VI}V^2+$, $^{VI}No^2+$, $^{VI}Ni^3+HS$, $^{VI}Ir^3+$, $^{VI}Mo^3+$, $^{VI}Ta^3+$, $^{VI}Pa^3+$, $^{VI}Ta^4+$, $^{IV}Pb^4+$, $^{VI}Ir^5+$, $^{VI}Os^5+$, $^{VI}Re^5+$, $^{VI}Pu^5+$, $^{VI}Bi^5+$,

VIOs⁶⁺, VIRe⁶⁺, and VIOs⁷⁺. The symbol A means that Ahrens (1952) ionic radius was used whereas P means Pauling's (1960) crystal radius was used. The symbol M means that the radius was derived from a compound having metallic conductivity. Distances calculated from these radii may be too small for use in compounds having localized electrons. (See discussion Effects of electron delocalization.)

In addition, the sources of the radii are indicated in Table 2.

Fig. 2(a)–(e) shows that r–CN plots are reasonably regular. Notable exceptions are ^{1V}Na⁺, ^VNa⁺, and ^{1V}K⁺. It is apparent that Na–O and K–O distances do not decrease as much as anticipated from the r–CN curve* when the CN falls below six. Typical distances and corresponding radii in Table 4 show that Na–O distances in four-coordination are only slightly less than in six-coordination. The reduction in interatomic distances is caused primarily by the decreased repulsive forces due to fewer ligands according to the expression of Pauling (1960):

$$\frac{R_{\text{CsCl}}}{R_{\text{NaCl}}} = \left[\frac{A_{\text{NaCl}}}{A_{\text{CsCl}}} \frac{B_{\text{CsCl}}}{B_{\text{NaCl}}}\right]^{1/(n-1)}$$

where R=interatomic distance, A=Madelung constant, B=the cation CN and n=Born repulsion coefficient. It appears that this equation is not valid for four-coordinated Na⁺ or K⁺.

There are a few small irregularities in r-CN plots probably caused by poor or insufficient data, e.g. curves for Tl³⁺ vs Y³⁺. The differences in slopes of Ti⁴⁺ vs Cr⁴⁺ and V⁵⁺ vs As⁵⁺ are probably caused by Ti⁴⁺-O and V⁵⁺-O octahedra being generally more distorted, which leads to greater average interatomic distances.

It is also interesting to compare distances in square planar coordination versus tetrahedral coordination. Radii of square planar Cu²⁺ and Ag⁺ are equal to or slightly greater than corresponding tetrahedral radii, consistent with the trend anticipated from anion

^{*} Extrapolation of the Na curve gives $r(^{1}VNa^+) = 0.90 \text{ Å}$.

Fig. 3. Typical bond length vs bond strength plot.

repulsion effects. A similar comparison with Fe²⁺ and Ni²⁺ cannot be made because of electron distribution changes from tetrahedral to square planar coordination.

Fig. 4. Mean Nb⁵⁺-O bond length vs distortion. Vertical bars represent average e.s.d.'s quoted by the authors. Solid circles represent more accurate data.

Fig. 5. Mean Mo⁶⁺-O bond length vs distortion.

Table 4. Interatomic distances in some compounds containing tetrahedral and octahedral Na+

Compound	R̄ (Å)	r (Å)	Reference
(a) ^{IV} Na +			
Na ₂ O	2.40	1.02	
Na ₅ P ₃ O ₁₀	2.37	0.99	60 ACCRA 13 263
NaOH.H ₂ O	2.36	1.00	57 ACCRA 10 462
Na ₆ ZnO ₄	2.39	0.99	69 ZAACA409 69
Mean	2.38	1.00	
(b) VINa+			
Na ₂ WO ₄	2.38	1.00	74 ACBCA 30 1872
NaC ₆ O ₇ H ₇	2.37	1.01	65 ACCRA 19 561
$Na_4Sn_2Ge_4O_{12}(OH)_4$	2.39	1.02	70 ACSAA 24 1287
$Na_2P_2O_7.10H_2O$	2.48	1.10	64 ACCRA 17 672
NaHCO₃	2.44	1.06	65 ACCRA 18 818
$Na_2B_4O_6(OH)_2.3H_2O$	2.41	1.04	67 SCIEA 154 1453
$Na_4P_4O_{12}.4H_2O$	2.415	1.05	61 ACCRA 14 555
$NaAl(SO_4)_2.12H_2O$	2.45	1.10	67 ACCRA 22 182
NaB(OH) ₄ .2H ₂ O	2.460	1.09	63 ACCRA 16 1233
NaU acetate	2.375	1.025	59 ACCRA 12 526
$C_{10}H_{13}N_5NaO_6P.6H_2O$	2.406	1.046	75 ACBCA 31 19
Mean	2.42	1.05	

Factors affecting mean interatomic distances

Additivity of radii to give mean interatomic distances is not so important to the synthetic chemist who is primarily interested in ionic radii for predicting substitution in crystal structures. Crystallographers and physicists, however, are concerned with comparing calculated and experimental interatomic distances and predicting distances, e.g. for distance least-squares (DLS) structure refinements (Baur, 1972; Tillmanns, Gebert & Baur, 1973; Dempsey & Strens, 1975). The effective ionic radii in Table 1 can be used to reproduce moderately well most average interatomic distances in oxides and fluorides. However, certain deviations do occur. Some of these are unexplained but others can be attributed to (1) polyhedral distortion, (2) covalence, (3) partial occupancy of cation sites, or (4) electron delocalization.

1. Polyhedral distortion

To see the effects of polyhedral distortion consider the relationship between bond length (R) and Pauling bond strength (s) (Brown & Shannon, 1973). The analytical expression $s = s_0(R/R_0)^{-N}$, where s_0 is an ideal bond strength associated with R_0 , and R_0 and N are fitted parameters, was evaluated for cation-oxygen pairs for the first three rows of the periodic table. Using these relationships, the sums of bond strengths about cations and anions were found to equal the valences with a mean deviation of about 5%. Accepting the approximate validity of Pauling's second rule, $p = \sum s$ where p = valence, it is possible to derive the effects of distortion of various polyhedra on their mean bond distances. Fig. 3 shows a typical R-s curve. An undistorted octahedron results in an average bond strength \bar{s} and a mean distance \bar{R}_1 . A distorted octahedron with three bonds of length R_a and three of length R_b results in the same average bond strength, \bar{s} , but a mean distance $\bar{R}_2 > \bar{R}_1$.

The effects of distortion on mean bond lengths in numerous polyhedra have been determined. Although distortions in tetrahedra are not as important as in octahedra, they can contribute to variations in mean tetrahedral distances (Baur, 1974; Hawthorne, 1973). Strongly distorted octahedra like those containing V⁵⁺, Cu²⁺, and Mn³⁺ show a significant variation in mean distance with distortion, △* (Brown & Shannon, 1973; Shannon & Calvo, 1973a; Shannon, Gumerman & Chenavas, 1975). Octahedra containing Mg²⁺, Zn²⁺, Co²⁺, and Li⁺ are generally less distorted than those of V⁵⁺, Cu²⁺, and Mn³⁺ and show a less pronounced dependence on mean bond length (Brown & Shannon, 1973).

The effects of distortion on mean bond lengths in Nb⁵⁺-O and Mo⁶⁺-O octahedra are illustrated in Figs. 4 and 5. Tables 5 and 6 list the data used to derive the figures.

Table 7 lists the results of linear regression analyses of mean bond length on distortion for all octahedra studied. It is clear from Fig. 4 that undistorted Nb⁵⁺ octahedra in pyrochlores have a distinctly smaller mean value than in compounds like NbOPO₄, CaNb₂O₆, and Na₃NbO₄. Most of the accurately refined molybdates have relatively distorted octahedra. However, certain ordered perovskites with no octahedral distortion such as Ba₂CaMoO₆ would be expected to have much smaller mean Mo⁶⁺-O distances than a typical molyb-

date. In fact, the Mo⁶⁺-O octahedra in Mo₂(O₂C₆Cl₄)₆ with a very small distortion have the short mean distance of 1.919 Å.

Table 7 also lists the results of regression analyses for Ta⁵⁺-O and W⁶⁺-O octahedra but they are only approximate because of the scarcity of accurate structural data. Analysis of Ti⁴⁺-O octahedra was unsuccessful because of scatter in the data. Distances in Ba₆Ti₁₇O₄₀ (Tillmanns & Baur, 1970) and BaTiO₃ (Evans, 1951) deviated significantly from a linear relation.

Relations between mean distance and distortion should be particularly useful to help determine oxidation states in mixed valence compounds with such combinations as $Mo^{5+}-Mo^{6+}$, $W^{5+}-W^{6+}$, $V^{4+}-V^{5+}$, $Nb^{4+}-Nb^{5+}$ and $Mn^{3+}-Mn^{4+}$. Such considerations helped rationalize Mn-O distances in $NaMn_7O_{12}$ and the mineral pinakiolite (Shannon, Gumerman & Chenavas, 1975).

The radii in Table 1 are generally derived for an average degree of distortion. Thus, interatomic distances calculated from these radii may be inaccurate if the distortion in a particular compound is much less or greater than usual. This applies particularly to cations whose polyhedra frequently show a large distortion, e.g. Mo⁶⁺, Nb⁵⁺, V⁵⁺, Ba²⁺, and the alkali ions.

2. Effects of partial occupancy of cation sites on mean cation-anion distances

In compounds with partially occupied sites, abnormally large cation-anion distances are usually found, as expected if the anions surrounding unoc-

Table 5. Comparison of mean octahedral Nb⁵⁺-O distances with distortion Only structures with e.s.d.'s for Nb-O distances of <0.025 Å were used.

		Distortion			
Compound	· $ar{R}$ (Å)	$\Delta = \langle (\Delta R/R)^2 \rangle \times 10^4$	Refe	rence	
$Hg_2Nb_2O_7$	1.999	0	68 INOCA	7	1704
$Cd_2Nb_2O_7$	1.957	0	72 CJCHA	50	3648
$Na_2Nb_4O_{11}$	1.977	1	70 JSSCB	1	454
$Ba_{0.27}Sr_{0.75}Nb_2O_{5.78}$	1.967	6	61 JCPSA	48	5048
$Na_{13}Nb_{35}O_{94}$	1.965	7	71 JSSCB	3	89
$Ba_3Si_4Nb_6O_{26}$	1.989	9	70 ACBCA	26	102
Na ₁₃ Nb ₃₅ O ₉₄	1.967	11	71 JSSCB	3	89
Na ₁₃ Nb ₃₅ O ₉₄	1.959	12	71 JSSCB	3 3	89
$Na_{13}Nb_{35}O_{94}$	1.964	12	71 JSSCB		89
NaNbO ₃	1.985	16	69 ACBÇA	25	851
Na ₁₃ Nb ₃₅ O ₉₄	1.947	18	71 JSSCB	3	89
$Na_{13}Nb_{35}O_{94}$	1.991	22	71 JSSCB	3 3 3	89
$Na_{13}Nb_{35}O_{94}$	1.987	22	71 JSSCB	3	89
$Na_{13}Nb_{35}O_{94}$	1.978	24	71 JSSCB		89
LiNb ₃ O ₈	1.993	28	71 ACSAA	25	3337
LiNbO ₃	2.000	31	66 JPCSA	27	997
$Ca_2Nb_2O_7$	1.997	31	74 JINCA	36	1965
$Ca_2Nb_2O_7$	2.005	34	74 JINCA	36	1965
SbNbO₄	2.003	37	65 CCJDA	1965	611
KNbO ₃	2.011	42	67 ACACA	22	639
Na ₃ NbO ₄	2.013	52	74 BUFCA	97	3
$Ca_2Nb_2O_7$	2.010	53	74 JINCA	36	1965
$Ca_2Nb_2O_7$	2.015	58	74 JINCA	36	. 1965
Na₃NbO₄	2.021	60	74 BUFCA	97	3
CaNb ₂ O ₆	2.021	76	70 AMMIA	55	90
GaNbO₄	2.031	83	65 ACACA	18	874

^{*} Octahedral distortion is defined by $\Delta = \frac{1}{6}\sum (R_t - \bar{R}/\bar{R})^2$ where $\bar{R} =$ average bond length and $R_t =$ an individual bond length.

Table 6. Comparison of mean octahedral Mo⁶⁺-O distances with distortion Only structures with e.s.d.'s for Mo-O distances of <0.025 Å were used.

		Distortion			
Compound	$ar{R}$ (Å)	$\Delta = \langle (\Delta R/R)^2 \rangle \times 10^4$	Re	ference	
$Mo_2(O_2C_6Cl_4)_6$	1.919	5	75 JACSA	97	2123
Mo ₄ O ₁₁ orthorhombic	1.944	9	63 ARKEA	21	365
Mo ₄ O ₁₁ monoclinic	1.946	10	63 ARKEA	21	365
Mo ₄ O ₁₁ monoclinic	1.937	56	63 ARKEA	21	365
Mo ₄ O ₁₁ orthorhombic	1.951	67	63 ARKEA	21	365
Mo ₄ O ₁₁ orthorhombic	1.911	96	63 ARKEA	21	365
Mo ₄ O ₁₁ monoclinic	1.945	96	63 ARKEA	21	365
$(C_{15}H_{11}O_2)_2MoO_2$	1.952	99	74 ACBCA	30	300
$(NH_4)_6[Mo_7O_{24}].4H_2O$	1.962	99	75 JCSIA	1975	505
$(NH_4)_6[Mo_7O_{24}].4H_2O$	1.972	101	75 JCSIA	1975	505
$(NH_4)_6[Mo_7O_{24}].4H_2O$	1.960	104	75 JCSIA	1975	505
LiMoO ₂ AsO ₄	1.967	104	70 ACSAA	24	4 3711
$(NH_4)_6Mo_8O_{27}.4H_2O$	1.960	106	74 ACBCA	30	48
HgMoO ₄	1.965	111	73 ACBCA	29	869
$(NH_4)_6[Mo_7O_{24}].4H_2O$	1.955	113	75 JCSIA	1975	505
$(NH_4)_6[MO_7O_{24}].4H_2O$	1.962	115	75 JCSIA	1975	505
$(NH_4)_6[MO_7O_{24}].4H_2O$	1.974	118	68 JACSA	90	3275
$MoO_3.2H_2O$	1.966	121	72 ACBCA	28 .	2222
$MoO_3.2H_2O$	1.961	123	72 ACBCA	28	2222
$MoO_3.2H_2O$	1.957	126	72 ACBCA	28	2222
$MoO_3.2H_2O$	1.953	134	72 ACBCA	28	2222
$(NH_4)_5[MoO_3)_5(PO_4) (HPO_4)].3H_2O$	1.970	140	74 JCSIA	1974	941
$Na_3(CrMo_6O_{24}H_6).8H_2O$	1.976	141	70 INOCA	9	2228
$(NH_4)_6Mo_8O_{27}.4H_2O$	1.976	141	74 ACBCA	30	48
$Na_3CrMo_6O_{24}H_6.8H_2O$	1.976	143	70 INOCA	9	2228
$(NH_4)_5[(MoO_3)_5(PO_4) (HPO_4)].3H_2O_4$	1.974	145	74 JCSIA	1974	941
$(NH_4)_6[TeMo_6O_{24}].Te(OH)_6.7H_2O$	1.981	147	74 ACBCA	30	2095
CoMoO ₄	1.991	150	65 ACACA	19	269
$(NH_4)_6Mo_8O_{27}.4H_2O$	1.972	151	74 ACBCA	30	48
MoO_3	1.981	151	63 ARKEA	21	357
$(NH_4)_6[Mo_7O_{24}].4H_2O$	1.976	152	68 JACSA	90	3275
$K_2\{[MoO_2(C_2O_4) (H_2O)]_2O\}$	1.976	152	64 INOCA	3	1603
$(NH_4)_6Mo_8O_{27}.4H_2O$	1.974	152	74 ACBCA	30	48
$(NH_4)_5[(MoO_3)_5(PO_4) (HPO_4)].3H_2O$	1.982	159	74 JCSIA	1974	941
$Na_3CrMo_6O_{24}H_6.8H_2O$	1.986	163	70 INOCA	9	2228
$(NH_4)_5[(MoO_3)_5(PO_4) (HPO_4)].3H_2O$	1.977	167	74 JCSIA	1974	941
$MoO_3 \cdot H_2O$	1.984	167	74 ACBCA	30	1795
$(NH_4)_5[(MoO_3)_5(PO_4) (HPO_4)].3H_2O$	1.991	186	74 JCSIA	1974	941
$(NH_4)_6[MO_7O_{24}].4H_2O$	1.991	189	75 JCSIA	1975	505
$(NH_4)_6[Mo_7O_{24}].4H_2O$	2.008	197	75 JCSIA	1975	505

 $Table \ 7. \textit{Variation of mean} \ \textbf{M-O} \ \textit{distance and effective ionic radius in octahedral environments} \ \textit{as a function of distortion}$

			33			,	, , , , , ,
Ion	Maximum $\Delta \times 10^4$	N*	$R_0\dagger$	$r_0\ddagger$	m	Correlation coefficient	Goodness of fit ($\times 10^3$)
Mo ⁶⁺	212	38	1.920		3.73	0.74	67
				0.572	3.01	0.63	70
W ⁶⁺	122	7	1.925		3.30	0.75	19
				0.565	3.28	0.66	24
V ⁵⁺	576	16	1.887		2.62	0.98	8
Nb ⁵⁺	83	29	1.976		6.45	0.69	71
				0.599	6.83	0.44	99
Ta ⁵⁺	79	6	1.984		6.70	0.81	18
				0.617	3.79	0.15	46
Mn ³⁺	71	15	1.994		7 ⋅ 0 8	0.82	30
				0.624	6.15	0∙54	50
Cu ²⁺	316	2 6	2.085		3.99	0.82	77
Mg ²⁺	156	28	2.094		8.31	0.72	21
:				0.728	8.86	0.77	- 18
Co ²⁺	46	15	2.106		7.38	0.42	19
- 1				0.734	11.70	0.70	16
$\mathbb{Z}n^{2+}$	71	. 16	2.099		7.70	0.64	21
T · ±	1.40	4.4	0.150	0.736	8.20	0.74	16
Li+	148	11	2.159	0.504	8.42	0.81	30
				0.784	9.02	0.79	35

^{*} N= number of independent octahedra † $R = R_0 + m\Delta$. ‡ $r = r_0 + m\Delta$.

cupied sites relax toward their bonded cation neighbors. Therefore average distances should increase as the occupancy factor decreases. In general, partial occupancy seems to be more prevalent for cations which are weakly bonded to oxygen like Cu+, Ag+, alkali ions, and large alkaline earths. The most prominent examples are Li and Na compounds. Table 8 summarizes the existent data on some structures with partial cation occupancy. Fig. 6 shows the dependence of mean Li-O bond length on the degree of occupancy. Although the data are not extensive, it is apparent that mean distance increases as occupancy factor decreases. Extrapolation of the Li curve in Fig. 6 to zero occupancy, i.e. a tetrahedral Li vacancy, gives 2·10–2·15 Å, which is close to the 2·11 Å found for α-Li₅GaO₄ by Stewner & Hoppe (1971) and for β eucryptite by Tscherry, Schulz & Laves (1972).

Another example of the effects of partial occupancy can be found in the non-stoichiometric feldspar $Sr_{0.84}Na_{0.03}\square_{0.13}Al_{1.69}Si_{2.29}O_8$ reported by Grundy & Ito (1974). The mean Sr-O distance in this compound is 0.03 Å greater than in the stoichiometric $SrAl_2Si_2O_8$ (Chiari, Calleri, Bruno & Ribbe, 1975).

The relation between mean distance and occupancy probably cannot be quantified precisely because the relaxation of oxygen ions will depend on the nature and number of other cation neighbors.

3. Effects of covalence

Changes in interatomic distances due to covalence effects are anticipated in compounds with (1) anions less electronegative than fluorine or oxygen, *i.e.* chlor-

ides, bromides, sulfides, selenides, etc. and (2) tetrahedral oxyanions such as the VO₄³⁻ and AsO₄³⁻ groups. The effects of covalence show up as a lack of additivity of the radii and are generally referred to as 'covalent shortening'.

(a) Halides and chalcogenides. Covalence effects can be observed by comparing the relative contraction of cation-anion distances in two different isotypic compounds as the anion becomes less electronegative, e.g. Fe²⁺ in Fe₂GeO₄ and Fe₂GeS₄ vs Mg²⁺ in Mg₂GeO₄ and Mg₂GeS₄. Covalence shortens both Fe-S and Mg-S bonds relative to Fe-O and Mg-O bonds, but because of the greater electronegativity of Fe²⁺ (1·8) compared to Mg²⁺ (1·2), the Fe-S bonds are shortened to a greater extent. Thus a 'covalency contraction' parameter (Shannon & Vincent, 1974) can be defined:

$$R_d = \frac{d(\text{Fe-X})^3}{d(\text{Mg-X})^3}$$

where d(Fe-X) = mean Fe-X distance.

A similar parameter

$$R_v = \frac{V(\mathrm{Fe}_m X_n)}{V(\mathrm{Mg}_m X_n)}$$

compares the volume of an Fe²⁺ compound with that of an isotypic Mg²⁺ compound. To see the effects of covalence on the Fe-X distance relative to the Mg-X distance, the ratio R_v or R_d may be plotted against the difference in electronegativity of the Fe-X bond, $\Delta\chi_{\rm Fe-X}$. Such schematic R_v - $\Delta\chi$ plots are shown in Fig. 7. The reference ions for Cd²⁺ and In³⁺ are Ca²⁺ and Sc³⁺ respectively. Such plots usually show a strong

Table 8. Mean distances in structures with partially occupied cation sites

	Occupancy				
Compound	factor	Ř	Refer	ence	
(a) IVLi+					
Typical	1.00	1.97	Table 1		
LiÂlSiO ₄ (β eucryptite)	1.00	2.020 (4)	73 AMMIA	58	681
		2.025 (7)	72 ZKKKA	135	175
$LiAlSi_2O_6$ II (β spodumene)	0.50	2.08 (4)	68 ZKKKA	126	46
		2.085 (9)	69 ZKKKA	130	420
LiAlSiO ₄ (β eucryptite)	0.50	2.056 (2)	72 ZKKKA	135	161
$Li_2Al_2Si_3O_{10}$	0.40	2.064 (4)	70 ZKKKA	132	118
LiAlSi ₂ O ₆ III	0.33	2.068 (5)	68 ZKKKA	127	327
α-Li ₅ GaO ₄	0.00	2.11	71 ACBCA	27	616
LiAlSiO ₄	0.00	2.11	72 ZKKKA	135	175
(b) VINa+					
Typical	1.00	2.42	Table 1		
Na ₂ Fe ₂ Al(PO ₄) ₃ (wyllieite)	0.91	2.533 (6)	74 AMMIA	59	280
NaSbO ₃	0.82	2.74	74 JSSCB	9	345
Na ₂ Fe ₂ Al(PO ₄) ₃ (wyllieite)	0.70	2.723 (6)	74 AMMIA	59	280
NaAlSi ₃ O ₈ (high albite)	0.50	2.600 (9)	69 ACBCA	25	1503
$NaAl_{11}O_{17} (\beta-Al_2O_3)$	0.35	2.839 (1)	68 ZKKKA	127	94
NaSbO ₃	0.29	2.65	74 JSSCB	9	345
$Na_{2.58}Al_{21.81}O_{34} (\beta-Al_2O_3)$	0.25	2.88	71 ACBCA	27	1826
(c) VIAg+					
Typical	1.00	2.50	Table 1		
AgSbO ₃	0.44	2.64	74 JSSCB	9	345
AgSbO ₃	0.33	2.75	74 JSSCB	9	345
Ag _{2,4} Al ₂₂ O _{34,2}	0.22	2.83	72 JSSCB	4	60
4 352,44 3122 34.2	V	205	, 2 000 CD	•	50

Fig. 6. Mean Li⁺-O bond length vs partial occupancy.

Fig. 7. Covalency contraction parameter, R_v or R_d , vs $\Delta \chi$ for filled and unfilled d shell cations.

Fig. 8. Covalency contraction parameter, R_{ν} or R_d , vs $\Delta \chi$ for hydrides. Solid circles represent ratios of cell volumes of isotypic compounds. Squares represent ratios of the cubed M-H distances to the cubed M-F distances.

dependence of R_v on $\Delta \chi$. For Fe²⁺-Mg²⁺ the Fe²⁺ fluoride volumes are ~110% of the corresponding Mg²⁺ fluoride volumes whereas the Fe²⁺ sulfide volumes are ~96% of the corresponding Mg²⁺ sulfide volumes. Plots for the cations with filled 'd' shells show a markedly smaller dependence on $\Delta \chi$. This appears to be due to the difference in covalence of hybrid orbitals formed from metal 'd' orbitals vs metal 's-p' orbitals.

These relations show that effective ionic radii derived primarily from oxides are not strictly applicable to fluorides – note the change in R_v for Fe²⁺, Co²⁺, Ni²⁺, and Mn²⁺ from fluorides to oxides. This effect is particularly noticeable in R_v – $\Delta\chi$ plots for the pairs Cu⁺-Li⁺ and Ag⁺-Na⁺ (Shannon & Gumerman, 1975). The Cu⁺-Li⁺ and Ag⁺-Na⁺ plots are very steep, e.g. the volume of AgF is 120% of the volume of NaF, whereas the volume of Ag₂Se is only 72% of the volume of Na₂Se. Although most of this change arises from covalency, double repulsion effects present in the Li and Na halides described by Pauling (1960) may also play a role.

Covalence effects are useful in explaining certain differences between the effective ionic radii of Table 1 and the ionic radii of Pauling (1927) and Ahrens (1952). Pauling's radii for Cu^+ (0.96 Å) and Ag^+ (1.26 Å) are considerably larger than those in Table 1 (0.77 and 1.15 Å respectively). Since these radii were derived from comparison of alkali halide distances, using an equation relating effective nuclear charge and screening constants (Pauling, 1927), they are valid in primarily ionic crystals. The smaller radii in Table 1 are applicable in the more covalent oxides. Extrapolation of Rvs $\Delta\chi$ curves such as in Fig. 7 leads to values of 0.91 Å and 1.23 Å for fluorides, which are close to Pauling's ionic values.

A final example of covalence effects concerns M⁺-H⁻ distances. According to Gibb (1962), the radius of the hydride ion is slightly larger than the radius of the fluoride ion. To rationalize the behavior of the hydride ion, the M-H bond has been treated as covalent. Therefore, it is useful to make $R_v vs \Delta \chi$ plots similar to those just discussed for Fe²⁺, Cu⁺, etc. In this case, the reference ion is F- and volumes of certain hydrides are compared to those of isotypic fluorides. The results of this analysis are shown in Fig. 8. The solid circles represent volume ratios, $R_v = V(M_m H_n)/V(M_m F_n)$; open squares represent ratios of typical distances R_d = $d(M-H)^3/d(M-F)^3$. In the more ionic hydrides of Cs, Rb, K, and Na, hydride volumes are considerably larger than those of the fluorides. For the Li and Mg compounds, hydride and fluoride volumes are approximately equal, whereas the more covalent hydrides have increasingly smaller relative volumes than the corresponding fluorides. Fig. 8 partly explains the differences in reported radii. The Morris & Reed (1965) value of 1.53 Å was derived essentially from the large alkali halides, while Gibb's value of 1.40 Å was derived primarily from hydrides of the more electronegative metals such as: Sc, Ti, Y, Zr, Hf, Nb, Ta, and Th. Because of this strong dependence of M-H distances on cation electronegativity, it does not seem very useful to quote a unique radius for H⁻.

(b) Tetrahedral oxyanions. Lack of additivity also appears in most small tetrahedral groups and is particularly noticeable for the ions ^{IV}B³⁺, ^{IV}Fe³⁺, ^{IV}Ge⁴⁺, ${}^{IV}As^{5+}$, ${}^{IV}V^{5+}$, ${}^{IV}S^{6+}$, ${}^{IV}Se^{6+}$, and ${}^{IV}Cl^{7+}$. The deviations in vanadates have been studied in detail (Shannon & Calvo, 1973b). Assuming that the V-O bond is strongly covalent, and that relatively electronegative cations such as Cu²⁺, Ni²⁺, and Co²⁺ tend to remove electron density from the V-O bond, a V-O bond length increase in Cu, Ni, and Co vanadates is anticipated. Plots of mean radii (\bar{r}) vs mean cation electronegativity (\bar{x}) show a marked slope with a gradual increase in $\bar{r}(^{1V}V^{5+})$ from vanadates of the alkali and alkaline earth ions to those of Cu, Ni, and Co. Similar plots for other ions, P⁵⁺, As⁵⁺ (Shannon & Calvo, 1973b), B³⁺, Si⁴⁺, Se⁶⁺ (Shannon, 1975), showed the same behavior. The statistical data on the tetrahedra of B³⁺, Si⁴⁺, Ge⁴⁺, P⁵⁺, As⁵⁺, S⁶⁺, Se⁶⁺, Cr⁶⁺, Mo⁶⁺, W⁶⁺, and Cl⁷⁺ have been summarized by Shannon (1975). The slopes of the \bar{r} vs $\bar{\chi}$ plots were greatest for V⁵⁺, Se⁶⁺, and Cl⁷⁺, and least for Si⁴⁺. Although the evidence for covalence as the origin of these effects in the above systems is only indirect, this behavior is consistent with accepted ideas of 'covalent shortening' of bonds.

The evidence for covalent shortening of $^{1V}\text{Fe}^{3+}$ -O bonds is more direct. Jeitschko, Sleight, McClellan & Weiher (1976) have found a good correlation between (1) the Fe Mössbauer isomer shift and mean Fe-O distance and (2) $\bar{\chi}$ and mean Fe-O distance (\bar{R}). Thus, in β -NaFeO₂ \bar{R} =1·86 Å and δ =0·18 mm s⁻¹ relative to α Fe whereas in Bi₃(FeO₄) (MoO₄)₂ \bar{R} =1·909 Å and δ =0·282 mm s⁻¹.

4. Effects of electron delocalization

At a pressure of 6.5 kbar SmS (NaCl structure) undergoes a semiconductor to metal transition and a reduction in cell edge from 5.97 to 5.70 Å (Jayaraman, Narayanamurti, Bucher & Maines, 1970). The reduction in cell volume was attributed to a partial conversion of Sm²⁺ to Sm³⁺; some of the electrons presumably go into a conduction band.

Electron delocalization effects can also be seen by comparing the volumes of the conducting V sulfides VS, V_7S_8 , V_3S_4 and V_5S_8 with the corresponding Cr sulfides which have localized 'd' electrons (de Vries & Jellinek, 1974). The V compounds have volumes $\sim 5\%$ smaller than the corresponding chromium compounds. This does not agree with the relative sizes of V and Cr in oxides and fluorides, e.g. $r(^{VI}V^{3+}) = 0.64$ and $r(^{VI}Cr^{3+}) = 0.615$ Å. For the sulfides, this unit-cell volume anomaly is not simply attributable to metallic vs semiconducting behavior. While Cr_3S_4 , Cr_5S_6 , and Cr_7S_8 show a positive temperature dependence of resistivity typical of a metal, magnetic susceptibility

measurements indicate Curie-Weiss behavior and therefore nearly localized electrons (van Bruggen, 1969). This is in contrast to the Pauli paramagnetic behavior of the corresponding V sulfides (de Vries & Haas, 1973) characteristic of delocalized electrons. Thus, in SmS and the sulfides of V metallic character accompanied by electron delocalization appears to be associated with reduced bond distances.

A further example of delocalization effects occurs in the compound NaVS₂ (Weigers, van der Meer, van Heinigen, Kloosterboer & Alberink, 1974). The molecular volume of Pauli paramagnetic NaVS₂ I (67·9 Å³) is significantly less than that of NaVS₂ II (72·7 Å³). NaVS₂ II is characterized by localized electrons (Jellinek, 1975) and its molecular volume is consistent with that of isotypic NaCrS₂ (71·1 Å³).

If electron delocalization in oxides results in reduced metal-oxygen distances and thereby an effective increase in valence, radii derived for the ions Mo⁴⁺, Tc⁴⁺, Ru⁴⁺, Rh⁴⁺, W⁴⁺, Re⁴⁺, Os⁴⁺, and Ir⁵⁺ from metallic oxides may not be reliable when applied to insulating oxides. Thus, radii obtained from distances in the metallic phases, e.g. RhO₂, ReO₂, and Cd₂Ir₂O₇, will be smaller than radii obtained from semiconducting or insulating compounds.* When both types of compounds have been studied, a significant difference in distances is generally found. The mean octahedral Re^{4+} -O distance in insulating $K_4[Re_2O_2(C_2O_4)_4]$. $3H_2O$ (Lis, 1975) of 2.021 (10) Å (r=0.671 Å) is greater than the estimated mean distance in metallic ReO₂ of 1.99 Å (r=0.63 Å). Knop & Carlow's (1974) value of r=0.662Å derived from cell volumes of the insulating Cs₂ReF₆ phases is consistent with the radius of Re4+ from $K_4[Re_2O_2(C_2O_4)_4].3H_2O$. The Re^{5+} -O distance in Nd₄Re₂O₁₁ (Wilhelmi, Lagervall & Muller, 1970) of 1.987 (12) Å (r=0.607 Å) is significantly greater than the distance in metallic Cd₂Re₂O₇ (Sleight, 1975) of 1.93 (2) Å (r = 0.55 Å). The radii of 0.58 Å derived from XeF₅RuF₆ and 0.60 Å from XeFRuF₆ (Bartlett, Gennis, Gibler, Morrell & Zalkin, 1973) are greater than the radius of 0.565 Å derived from the r^3-V plot for metallic Cd₂Ru₂O₇. In contrast, however, the Mo⁴⁺ radius of 0.64 Å derived from insulating Li₂MoF₆ (Brunton, 1971) is not greatly different from the radius of 0.65 Å derived from metallic MoO₂ (Brandt & Skapski, 1967).

Although there appears to be ample evidence to show that M-O bond distances in compounds with localized electrons are greater than M-O distances in compounds with delocalized electrons, the data are not yet sufficient to derive a reliable set of radii for semiconducting compounds containing Mo⁴⁺, Tc⁴⁺, Ru⁴⁺, Rh⁴⁺, W⁴⁺, Re⁴⁺, Os⁴⁺, and Ir⁵⁺. This will become possible as additional accurate structure refinements of fluorides, molecular inorganic compounds, and semiconducting oxides containing these ions become available.

^{*} This assumes that metallic character can be equated with delocalized electron behavior in these compounds.

I would like to acknowledge the help of F. Jellinek for providing unpublished data on NaVS₂, F. C. Hawthorne for pointing out numerous structures containing partially occupied cation sites, O. Muller for several sources of radii of unusual ions, M. Fouassier for unpublished data on K₄MO₄ compounds, I. D. Brown for unpublished bond length-bond strength curves, and P.S. Gumerman for assistance with data collection. Structure data on rare earth halides and an analysis of the radii of divalent rare earths provided by H. Bärnighausen were especially valuable. I am particularly indebted to Ruth Shannon for the tabulation of data and proof reading. Finally, I would like to thank R. J. Bouchard, W. H. Baur, and H. Bärnighausen for critically reviewing the manuscript prior to publication.

References

- AHRENS, L. H. (1952). Geochim. Cosmochim. Acta, 2, 155–169.
 BARTLETT, N., GENNIS, M., GIBLER, D., MORRELL, B. & ZALKIN, A. (1973). Inorg. Chem. 12, 1717–1721.
- BAUR, W. H. (1972). Amer. Min. 57, 709-731.
- BAUR, W. H. (1974). Acta Cryst. B30, 1195-1215.
- BIRCHALL, T. & SLEIGHT, A. W. (1975). J. Solid State Chem. 13, 118–130.
- BONAMICO, M., DESSY, G., FARES, V. & SCARAMUZZA, L. (1974). J. Chem. Soc. Dalton, pp. 1258–1263.
- Brandt, B. G. & Skapski, A. C. (1967). Acta Chem. Scand. **21**, 661–667.
- Brown, I. D. (1975). Private communication.
- Brown, I. D. & Shannon, R. D. (1973). Acta Cryst. A29, 266–282.
- Bruggen, C. F. van (1969). Ph.D. Thesis, Univ. of Groningen.
- Brunton, G. (1971). Mater. Res. Bull. 6, 555-560.
- CHIARI, G., CALLERI, M., BRUNO, E. & RIBBE, P. H. (1975). Amer. Min. 60, 111–119.
- Codens for Periodical Titles (1966). Vol. II. ASTM Data series DS23A, Philadelphia.
- DEMPSEY, M. J. & STRENS, R. G. J. (1975). Proc. NATO Conf. on Petrophysics, Newcastle-upon-Tyne, April 22-26
- EVANS, H. T. JR (1951). Acta Cryst. 4, 377.
- FLYGARE, W. H. & HUGGINS, R. A. (1973). J. Phys. Chem. Solids, 34, 1199-1204.
- Fukunaga, O. & Fujita, T. (1973). J. Solid State Chem. 8, 331–338.
- Fumi, F. G. & Tosi, M. P. (1964). J. Phys. Chem. Solids, 25, 31-43.
- Geller, S., Williams, H. J., Espinosa, G. P., Sherwood, R. C. & Gilleo, M. A. (1963). *Appl. Phys. Lett.* **3**, 21–22. Gibb, T. R. P. (1962). *Prog. Inorg. Chem.* **3**, 315–509.
- GREIS, O. & PETZEL, T. (1974). Z. anorg. allgem. Chem. 403, 1–22.
- GRUNDY, H. D. & ITO, J. (1974). Amer. Min. 59, 1319-1326. HAWTHORNE, F. C. (1973). The Crystal Chemistry of the Clino-Amphiboles, Ph.D. Thesis, McMaster Univ.
- JAYARAMAN, A., NARAYANAMURTI, V., BUCHER, E. & MAINES, R. G. (1970). Phys. Rev. Lett. 25, 1430-1433.

- JEITSCHKO, W., SLEIGHT, A. W., McClellan, W. R. & WEIHER, J. F. (1976). Acta Cryst. В 32, 1163–1170.
- JELLINEK, F. (1975). Private communication.
- KÁLMÁN, A. (1971). Chem. Commun. pp. 1857-1859.
- KHAN, A. A. & BAUR, W. (1972). Acta Cryst. B28, 683-693. KNOP, O. & CARLOW, J. S. (1974). Canad. J. Chem. 52, 2175-2183
- Lis, T. (1975). Acta Cryst. B31, 1594-1597.
- McCarthy, G. J. (1971). Mater. Res. Bull. 6, 31-40.
- MORRIS, D. F. C. & REED, G. L. (1965). J. Inorg. Nucl. Chem. 27, 1715–1717.
- Muller, O. & Roy, R. (1974). Crystal Chemistry of Non-Metallic Materials. 4. The Major Ternary Structural Families. New York: Springer-Verlag.
- PAULING, L. (1927). J. Amer. Chem. Soc. 49, 765-794.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- Peterson, J. R. & Cunningham, B. B. (1967). *Inorg. Nucl. Chem. Lett.* **3**, 327–336.
- Peterson, J. R. & Cunningham, B. B. (1968). *J. Inorg. Nucl. Chem.* **30**, 1775–1781.
- RIBBE, P. & GIBBS, G. V. (1971). Amer. Min. 56, 1155–1173. SHANNON, R. D. (1975). Proc. NATO Conf. on Petrophysics, Newcastle-upon-Tyne, April 22–26.
- Shannon, R. D. & Calvo, C. (1973a). Acta Cryst. B29, 1338-1345.
- SHANNON, R. D. & CALVO, C. (1973b). J. Solid State Chem. 6, 538-549.
- SHANNON, R. D. & GUMERMAN, P. S. (1975). J. Inorg. Nucl. Chem. 38, 699–703.
- SHANNON, R. D., GUMERMAN, P. S. & CHENAVAS, J. (1975). Amer. Min. 60, 714–716.
- SHANNON, R. D. & PREWITT, C. T. (1969). Acta Cryst. B25, 925–945.
- SHANNON, R. D. & VINCENT, H. (1974). Struct. Bond. (Berlin), 19, 1-43.
- SILVA, R. J., McDowell, W. J., Keller, O. L. & TARRANT, J. R. (1974). *Inorg. Chem.* 13, 2233–2237.
- SLEIGHT, A. W. (1975). Private communication.
- SLEIGHT, A. W. & JONES, G. (1975). Acta Cryst. B31, 2748-2749.
- STEWART, D., KNOP, O., MEADS, R. & PARKER, W. (1973). Canad. J. Chem. 51, 1041–1049.
- STEWNER, F. & HOPPE, R. (1971). Acta Cryst. B27, 616-621.
 TILLMANNS, E. & BAUR, W. H. (1970). Acta Cryst. B26, 1645-1654.
- TILLMANNS, E., GEBERT, W. & BAUR, W. H. (1973). J. Solid State Chem. 7, 69-84.
- Tscherry, V., Schulz, H., & Laves, F. (1972). Z. Kristallogr. 135, 175–198.
- VRIES, A. B. DE & HAAS, C. (1973). J. Phys. Chem. Solids, 34, 651-659.
- VRIES, A. B. DE & JELLINEK, F. (1974). Rev. Chim. Miner. 11, 624-636.
- Weigers, G., van der Meer, R., van Heiningen, H., Kloosterboer, H. & Alberink, A. (1974). *Mater. Res. Bull.* 9, 1261–1266.
- WILHELMI, K., LAGERVALL, E. & MULLER, O. (1970). Acta Chem. Scand. 24, 3406–3408.
- Wolfe, R. W. & Newnham, R. E. (1969). *J. Electrochem.* Soc. 116, 832–835.