Corrigé du contrôle : détection d'erreurs par codage CRC

Partie I. Bit de parité

Ouestion 1.

```
let ou_exclusif (x:int) = function
| y when y = x -> 0
| _ -> 1 ;;
```

Question 2.

a. On peut calculer b_n à l'aide de la formule : $b_n = b_0 \oplus b_1 \oplus \cdots \oplus b_{n-1}$, ce qui conduit à l'itération :

b. Si le message reçu contient un nombre impair de bits égaux à 1, il y a eu un nombre impair d'erreurs de transmissions, donc au moins une! En revanche, un nombre pair d'erreurs de transmissions ne sera pas détecté.

Partie II. Le codage CRC

Question 3.

Question 4.

```
let plus b c i j l =
   for k = 0 to 1-1 do
      b.(i+k) <- ou_exclusif b.(i+k) c.(j+k)
   done ;;</pre>
```

Question 5.

- a. Si le mot a été transmis sans erreur, il est associé au polynôme $T(X) = X^k P(X) \oplus R(X)$; or celui-ci est par définition divisible par G(X); ainsi, $(X^k P(X) \oplus R(X))$ mod G(X) = 0.
- b. Réciproquement, si on note $\widetilde{T}(X)$ le polynôme associé au mot reçu, posons $E(X) = T(X) \oplus \widetilde{T}(X)$; le message est donc transmis sans erreur si et seulement si E(X) = 0. Or il est tout à fait possible d'avoir $E(X) \neq 0$ sans que l'erreur soit détectée ; il suffit que E(X) soit divisible par G(X). On verra néanmoins qu'un choix judicieux de G(X) rend cette situation très improbable.

Question 6.

- a. Puisque G(X) divise T(X), si G(X) ne divise pas E(X), il ne divise pas non plus $\widetilde{T}(X)$, et donc $\widetilde{T}(X)$ mod $G(X) \neq 0$; l'erreur est détectée.
- b. Une erreur sur un seul bit correspond à $E(X) = X^i$ avec $i \in [[0, n+k]]$; si G(X) n'est pas un monôme, E(X) n'est pas divisible par G(X) et l'erreur est détectée.
- c. Supposons que G(X) soit divisible par (X + 1), et soit E(X) une erreur non détectée par le CRC. Alors G(X) divise E(X) et donc (X + 1) aussi. On en déduit que 1 est racine de E(X): E(1) = 0. Mais ceci ne peut avoir lieu que si l'erreur contient un nombre pair de 1. Ainsi, toute erreur portant sur un nombre impair de bits est détectée.

Question 7.

- a. Un paquet d'erreurs de longueur ℓ correspond à un polynôme $E(X) = X^{i+\ell-1} + \cdots + X^i = X^i F(X)$ avec deg $F = \ell 1$. Supposons que G(X) divise E(X). Si le coefficient constant de G(X) n'est pas nul, G(X) est premier avec X^i donc G(X) divise F(X). Puisque deg G(X) = k, on a : $\ell 1 \ge k$, soit $\ell > k$. En contraposant, on en déduit que tout paquet d'erreur de longueur $\ell \le k$ est détecté.
- b. Un paquet d'erreurs de longueur k+1 correspond à un polynôme $E(X) = X^{i+k} + \cdots + X^i = X^i F(X)$ avec deg F = k. Si cette erreur n'est pas détectée, G(X) divise F(X), et puisqu'ils ont même degré, F(X) = G(X). Il y a donc un seul paquet d'erreurs non détecté, parmi les 2^{k-1} possibles (correspondants au choix des coefficients de $X^{i+1}, X^{i+2}, \dots, X^{i+k-1}$ dans E(X)), donc un probabilité égale à $\frac{1}{2^{k-1}}$.
- c. Un paquet d'erreurs de longueur k+p, avec $p \ge 2$, correspond à un polynôme $\mathrm{E}(X) = X^{i+k+p-1} + \cdots + X^i = X^i\mathrm{F}(X)$, avec $\deg \mathrm{F} = k+p-1$. Si cette erreur n'est pas détectée, $\mathrm{F}(X) = \mathrm{G}(X)\mathrm{Q}(X)$, avec $\deg \mathrm{Q} = p-1$. De plus, X ne divise pas $\mathrm{F}(X)$, donc le coefficient de $\mathrm{Q}(X)$ n'est pas nul. Ainsi, $\mathrm{Q}(X) = X^{p-1} + \cdots + 1$; ce qui donne 2^{p-2} polynômes possibles. La probabilité que cette erreur ne soit pas détectée est donc égale à : $\frac{2^{p-2}}{2^{k+p-2}} = \frac{1}{2^k}$; la probabilité qu'elle le soit est donc égale à $1 \frac{1}{2^k}$.
- d. Nous avons $G(X) = (X+1)(X^{15}+X+1)$, donc d'après la question 6.c, les erreurs en nombre impair sont détectées. Le coefficient constant de G n'est pas nul, donc d'après les questions précédentes, tous les paquets d'erreurs de longueur inférieure ou égale à 16 sont détectés; la probabilité de détecter un paquet d'erreurs de longueur 17 est égale à $1-\frac{1}{2^{15}}\approx 99,997\%$; la probabilité de détecter un paquet d'erreurs de longueur supérieure ou égale à 18 est égale à $1-\frac{1}{2^{16}}\approx 99,998\%$.

Question 8.

a. Nous allons effectuer les calculs dans un tableau auxiliaire c correspondant à un polynôme C(X) initialement égal au polynôme $X^k P(X)$, et tant que $\deg C > k$, on remplace C(X) par $C(X) \oplus X^{\deg C - k} G(X)$.

b. Le coût spatial de cette fonction est lié à la création du tableau c; c'est donc un $\Theta(n+k)$. Le nombre d'itération est majoré par n, et la fonction plus a un coût proportionnel à son dernier argument, donc le coût temporel est un O(nk).

Question 9. Pour tout $i \in [0, n+k-2]$,

$$R_{i+1}(X) = \left(X(b_0X^i + b_1X^{i-1} + \dots + b_{i-1}X + b_i) + b_{i+1}\right) \bmod G(X) = \left(XR_i(X) + b_{i+1}\right) \bmod G(X).$$

Posons $R_i(X) = \alpha_0 X^{k-1} + \alpha_1 X^{k-2} + \dots + \alpha_{k-1}$. Alors $XR_i(X) + b_{i+1} = \alpha_0 X^k + \alpha_1 X^{k-1} + \dots + \alpha_{k-1} X + b_{i+1}$ donc $\deg(XR_i(X) + b_{i+1}) \oplus \alpha_0 G(X) \leqslant k-1$ et par conséquent :

$$(XR_i(X) + b_{i+1}) \oplus \alpha_0 G(X) = (XR_i(X) + b_{i+1}) \mod G(X) = R_{i+1}(X).$$

On notera en particulier que : $R_{n-1+k}(X) = X^k P(X) \mod G(X)$; cette formule permet le calcul par récurrence du CRC.

Question 10.

a. Les valeurs successives prises par le tableau $[|r_0;r_1;r_2;r_3;r_4|]$ définissent une suite de polynômes $(\widetilde{\mathbb{R}}_i(X))_{0 \le i \le n+4}$ débutant ainsi :

$$\widetilde{R}_{0}(X) = b_{0}$$

$$\widetilde{R}_{1}(X) = b_{0}X + b_{1}$$

$$\widetilde{R}_{2}(X) = b_{0}X^{2} + b_{1}X + b_{2}$$

$$\widetilde{R}_{3}(X) = b_{0}X^{3} + b_{1}X^{2} + b_{2}X + b_{3}$$

$$\widetilde{R}_{4}(X) = b_{0}X^{4} + b_{1}X^{3} + b_{2}X^{2} + b_{3}X + b_{4}$$

et enfin : $\widetilde{R}_5(X) = (b_1 X^4 + b_2 X^3 + b_3 X^2 + b_4 X + b_5) \oplus (b_0 X^4 + b_0 X^2 + b_0)$ Or, puisque $b_0 \oplus b_0 = 0$, on peut aussi écrire :

$$\widetilde{\mathsf{R}}_{5}(\mathsf{X}) = (b_{0}\mathsf{X}^{5} + b_{1}\mathsf{X}^{4} + b_{2}\mathsf{X}^{3} + b_{3}\mathsf{X}^{2} + b_{4}\mathsf{X} + b_{5}) \oplus (b_{0}\mathsf{X}^{5} + b_{0}\mathsf{X}^{4} + b_{0}\mathsf{X}^{2} + b_{0}),$$

soit:

$$\widetilde{\mathsf{R}}_5(\mathsf{X}) = (b_0 \mathsf{X}^5 + b_1 \mathsf{X}^4 + b_2 \mathsf{X}^3 + b_3 \mathsf{X}^2 + b_4 \mathsf{X} + b_5) \oplus \left(b_0 \mathsf{G}(\mathsf{X})\right) = (b_0 \mathsf{X}^5 + b_1 \mathsf{X}^4 + b_2 \mathsf{X}^3 + b_3 \mathsf{X}^2 + b_4 \mathsf{X} + b_5) \bmod \mathsf{G}(\mathsf{X}).$$

Plus généralement, si on note $\widetilde{R}_i(X) = \alpha_0 X^4 + \alpha_1 X^3 + \alpha_2 X^2 + \alpha_3 X + \alpha_4$, alors :

$$\widetilde{\mathbf{R}}_{i+1}(\mathbf{X}) = \left(\mathbf{X}\widetilde{\mathbf{R}}_{i}(\mathbf{X}) + b_{i+1}\right) \oplus \left(\alpha_0 \mathbf{G}(\mathbf{X})\right)$$

donc $\widetilde{R}_i(X) = R_i(X)$ et en particulier, $\widetilde{R}_{n+4}(X)$ est le polynôme associé au CRC. Ainsi, le circuit associé au polynôme générateur $G(X) = X^7 + X^5 + X^4 + X + 1$ est :

b. Considérons le polynôme générateur G(X) = X + 1. Il correspond au circuit suivant :

Autrement dit, le CRC est ici égal à : $b_0 \oplus b_1 \oplus \cdots \oplus b_{n-1}$; c'est le bit de parité.