Właściwości metod iteracyjnych

iteratio=powtarzanie (procesu numerycznego w celu ulepszenia wcześniejszych wyników)=kolejne przybliżanie metoda iteracji prostej:

$$x=F(x)$$

równanie iteracji $x_{i+1} = F(x_i)$

dostateczny warunek zbieżności: |F'(x)| < 1

szybkość zbieżności tym większa im mniejszy |F'(x)|

Def.:

Niech x_i będzie ciągiem kolejnych przybliżeń zbieżnej metody iteracyjnej: $\lim_{i\to\infty}x_i=a$. Jeżeli istnieje liczba $p\geq 1$ taka, że

$$\lim_{i\to\infty} \frac{|x_{i+1}-a|}{|x_i-a|^p} = C \neq 0, \qquad C < 1 \quad gdy \quad p=1$$

to mówimy, że metoda jest rzędu p w punkcie a. Liczba C jest nazywana stałą asymptotyczną błędu.

Jeżeli z jedną iteracją związany jest koszt K to $E=p^{\overline{K}}$ nazywamy wskaźnikiem efektywności metody.

Tw.

Jeżeli równaniem iteracji jest $x_{i+1} = \Phi(x_i)$ i dla k=1,...,p-1 $\Phi^{(k)}(a) = 0$, to metoda jest rzędu p. dow.

$$x_{i+1} = \Phi(x_i) = \Phi(a) + (x_i - a)\Phi'(a) + \frac{(x_i - a)^2 \Phi''(a)}{2!} + \dots + \frac{(x_i - a)^p \Phi^{(p)}(a)}{p!} + O(|(x_i - a)|^{p+1}$$

$$\lim_{i \to \infty} \frac{x_{i+1} - a}{(x_i - a)^p} = \frac{\Phi^{(p)}(a)}{p!}$$

Metody iteracyjne rozwiązywania równań nieliniowych

Metoda bisekcji.

Weźmy przedział [a, b], na krańcach którego f(x) jest różnego znaku. Jeśli f(x) jest ciągła, to osiąga wartość zero wewnątrz [a, b]. Połowiąc przedział [a, b] i badając znak funkcji na krańcach przedziałów zawężamy przedział zawierający pierwiastek równania f(x)=0. Ponieważ prowadzimy obliczenia w arytmetyce zmiennopozycyjnej nie znajdziemy pewnie punktu, w którym f(x)=0. Naszym celem będzie wić znalezienie przedziału o długości nie przekraczajacej zadanej dokładności obliczeń (mogą to być dwie sąsiednie liczby zmiennoprzecinkowe), w którym f(x) zmienia znak.

Złoty podział

$$\frac{a+b}{a} = \frac{a}{b} = \frac{1+\sqrt{5}}{2} = 1.61803...$$

Szukamy rzeczywistego pierwiastka równania f(x)=0. Jeżeli jest nim ξ , a x_i jest przybliżeniem ξ (x_i leży w otoczeniu ξ), to $f(\xi)=0=$

$$= f(x_i) + (\xi - x_i)f'(x_i) + \frac{(\xi - x_i)^2}{2!}f''(x_i) + \frac{(\xi - x_i)^3}{3!}f^{(3)}(x_i) + \cdots$$

zaniedbując wyrazy rzędy większego niż ν otrzymujemy równanie do wyznaczenia kolejnego przybliżenia x_{i+1}

Dla v = 1 (metoda Newtona-Raphsona stopnia I): $0 = f(x_i) + (x_{i+1} - x_i)f'(x_i)$ $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

Dla $\nu = 2$ (metoda Newtona-Raphsona stopnia II):

$$0 = f(x_i) + (x_{i+1} - x_i)f'(x_i) + \frac{(x_{i+1} - x_i)^2}{2!}f''(x_i)$$

$$x_{i+1} = x_i - \frac{f'(x_i) \pm \sqrt{f'(x_i)^2 - 2f'(x_i)f''(x_i)}}{f''(x_i)}$$

Zbieżność lokalna!

Rząd zbieżności metody N-R I dla jednokrotnego zera $(f'(\xi) \neq 0)$:

$$x_{i+1} = \Phi(x_i), \qquad \Phi(x) = x - \frac{f(x)}{f'(x)}$$

$$\Phi'(\xi) = \left[1 - \frac{f'(x)}{f'(x)} + \frac{f(x)f''(x)}{f'(x)^2}\right]_{x=\xi} = 0, \text{ czyli } p=2$$

Rząd zbieżności metody N-R I dla m-krotnego zera (

$$f(x) = (x - \xi)^m g(x), g(\xi) \neq 0$$
:

$$f'(x) = m(x - \xi)^{m-1} g(x) + (x - \xi)^{m} g'(x),$$

$$\Phi(x) = x - \frac{(x - \xi)^{m} g(x)}{m(x - \xi)^{m-1} g(x) + (x - \xi)^{m} g'(x)},$$

$$\Phi'(\xi) = 1 - \frac{1}{m}, \text{czyli } p = 1 \quad C = 1 - \frac{1}{m}$$

PRZYKŁAD 1:

$$\sqrt[m]{a} \quad a > 0$$

$$x^{m} = a, \quad x^{m} - a = 0$$

$$x_{n+1} = x_{n} - \frac{x_{n}^{m} - a}{mx_{n}^{m-1}} \qquad x_{n+1} = \frac{a + (m-1)x_{n}^{m}}{mx_{n}^{m-1}}, \qquad m = 3, \ a = 7$$

$$x(n) \qquad x(13) - x(n) \qquad err(n-1)^{2}$$

	n	n	
n	x(n)	x(13)-x(n)	err(n-1)^2
0	4	-2,087068817	
1	2,8125	-0,899568817	
2	2,169979424	-0,257048241	0,809224057
3	1,94217793	-0,029246748	0,066073798
4	1,913369391	-0,000438208	0,000855372
5	1,912931283	-1,00353E-07	1,92027E-07
6	1,912931183	-5,55112E-15	1,00707E-14
7	1,912931183	0	3,08149E-29
8	1,912931183	0	0
9	1,912931183	0	0
10	1,912931183	0	0
11	1,912931183	0	0
12	1,912931183	0	0
13	1,912931183	0	0

PRZYKŁAD 2:

$$\frac{\pi}{2} = ?$$
 $\sin(x) - 1 = 0$

$$\frac{\pi}{2} = ? \quad \sin(x) - 1 = 0$$

$$x_{n+1} = x_n - \frac{\sin(x_n) - 1}{\cos(x_n)}$$

n	x(n)	x(23)-x(n)
0	1,000000000	0,5707962609
1	1,2934079930	0,2773882679
2	1,4329983667	0,1377978942
3	1,5020065769	0,0687896840
4	1,5364150214	0,0343812395
5	1,5536073677	0,0171888932
6	1,5622020589	0,0085942021
7	1,5664992193	0,0042970416
8	1,5686477763	0,0021484846
9	1,5697220520	0,0010742089
10	1,5702591894	0,0005370715
11	1,5705277581	0,0002685028
12	1,5706620425	0,0001342185
13	1,5707291846	0,0000670763
14	1,5707627557	0,0000335052
15	1,5707795413	0,0000167197
16	1,5707879340	0,0000083269
17	1,5707921304	0,0000041305
18	1,5707942286	0,0000020323
19		0,0000009832
20	1,5707958023	0,0000004587
21	1,5707960645	0,0000001964
22	1,5707961957	0,0000000652
23	1,5707962609	

$$cos(x) = 0$$

$$\cos(x) = 0$$

$$x_{n+1} = x_n - \frac{\cos(x_n)}{-\sin(x_n)}$$

n	x(n)	$\frac{\pi}{2}$ -x(n)
0	1,000000000	0,5707963268
1	1,6420926159	-0,0712962891
2	1,5706752772	0,0001210496
3	1,5707963268	0,000000000
4	1,5707963268	0,000000000
5	1,5707963268	0,000000000
6	1,5707963268	0,000000000
7	1,5707963268	0,000000000

Metoda siecznych

Odwrotna interpolacja kwadratowa (OIK, IQI)

Przypuśćmy, że mamy 3 wartosci argumentu x:a,b, i c, I odpowiadające im wartości funkcji y:f(a),f(b), i f(c). Możemy interpolować te wartości wielomianem stopnia 2 i przyjąć za kolejne przybliżenie punkt, w którym parabola przecina oś x. Ale może darzyć się, że parabola nie przecina osi x - wielomian nie ma pierwiastków rzeczywistych. Zamiast budować wielomian interpolacyjny stopnia 2 względem x możemy zbudować taki wielomian względem y (oznaczmy go P(y))— jego wykresem będzie "odwrócona" parabola. Taka parabola zawsze przetnie oś x i punkt przecięcia (x=P(0), y=0) będzie następnym przybliżeniem w metodzie iteracyjnej .

Algorytm uniwersalny:

- 1 Startujemy od a i b takich że f(a) i f(b) są różnych znaków.
- 2 Budujemy sieczną, która daje punkt c między a i b.
- 3 Powtarzamy dopóki $|b-a| < eps \cdot b$ lub f(b) = 0.

A Porządkujemy a, b, i c tak by:

- f(a) i f(b) były różnych znaków,
- $|f(b)| \le |f(a)|$
- c było poprzednia wartością b.

B Jeśli $c \neq a$, wykonujemy krok IQI.

C Jeśli c = a, wykonujemy krok metody siecznych.

D Jeśli wynik kroku IQI lub kroku metody siecznych jest wewnątrz [a; b], akceptujemy go.

E Jeśli wynik kroku IQI lub kroku metody siecznych jest poza [a; b] stosujemy bisekcję.

Układy równań nieliniowych

$$f_i(x_1, x_2, \dots, x_n) = 0, \quad i = 1, \dots, n$$

$$F(X) = \mathbf{0}, \quad X = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}^T, \quad F(\cdot) = \begin{bmatrix} f_1(\cdot) \\ f_2(\cdot) \\ \vdots \\ f_n(\cdot) \end{bmatrix}$$

Dla $\nu = 1$ (metoda Newtona-Raphsona stopnia I):

$$F'(X) = \begin{bmatrix} \frac{\partial f_1(x_1, \cdots x_n)}{\partial x_1} & \frac{\partial f_1(x_1, \cdots x_n)}{\partial x_n} & \cdots & \frac{\partial f_1(x_1, \cdots x_n)}{\partial x_n} \\ \frac{\partial f_2(x_1, \cdots x_n)}{\partial x_1} & \frac{\partial f_2(x_1, \cdots x_n)}{\partial x_n} & \cdots & \frac{\partial f_2(x_1, \cdots x_n)}{\partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n(x_1, \cdots x_n)}{\partial x_1} & \frac{\partial f_n(x_1, \cdots x_n)}{\partial x_n} & \cdots & \frac{\partial f_n(x_1, \cdots x_n)}{\partial x_n} \end{bmatrix}$$