Exercise 3.2

Discuss whether V defined in problems 1 to 10 is a vector space. If V is not a vector space, state which of the properties are not satisfied.

- 1. Let V be the set of the real polynomials of degree $\leq m$ and having 2 as a root with the usual addition and scalar multiplication.
- 2. Let V be the set of all real polynomials of degree 4 or 6 with the usual addition and scalar multiplication.
- 3. Let V be the set of all real polynomials of degree ≥ 4 with the usual addition and scalar multiplication.
- 4. Let V be the set of all rational numbers with the usual addition and scalar multiplication.
- 5. Let V be the set of all positive real numbers with addition defined as x + y = xy and usual scalar multiplication.
- 6. Let V be the set of all ordered pairs (x, y) in \mathbb{R}^2 with vector addition defined as (x, y) + (u, v) =(x + u, y + v) and scalar multiplication defined as $\alpha(x, y) = (3\alpha x, y)$.
- 7. Let V be the set of all ordered triplets (x, y, z), $x, y, z \in \mathbb{R}$, with vector addition defined as

$$(x, y, z) + (u, v, w) = (3x + 4u, y - 2v, z + w)$$

and scalar multiplication defined as

$$\alpha(x, y, z) = (\alpha x, \alpha y, \alpha z/3).$$

- 8. Let V be the set of all positive real numbers with addition defined as x + y = xy and scalar multiplication defined as $\alpha x = x^{\alpha}$.
- 9. Let V be the set of all positive real valued continuous functions f on [a, b] such that
 - (i) $\int_a^b f(x) dx = 0$ and (ii) $\int_a^b f(x) dx = 2$ with usual addition and scalar multiplication.
- 10. Let V be the set of all solutions of the
 - (i) homogeneous linear differential equation y'' 3y' + 2y = 0.
 - (ii) non-homogeneous linear differential equation y'' 3y' + 2y = x.

under the usual addition and scalar multiplication.

Is W a subspace of V in problems 11 to 15? If not, state why?

11. Let V be the set of all 3×1 real matrices with usual matrix addition and scalar multiplication and W consisting of all 3×1 real matrices of the from

(i)
$$\begin{bmatrix} a \\ b \\ a+b \end{bmatrix}$$
, (ii) $\begin{bmatrix} a \\ a \\ a^2 \end{bmatrix}$, (iii) $\begin{bmatrix} a \\ b \\ 2 \end{bmatrix}$, (iv) $\begin{bmatrix} a \\ b \\ 0 \end{bmatrix}$.

- 12. Let V be the set of all 3×3 real matrices with the usual matrix addition and scalar multiplication and W consisting of all 3×3 matrices A which
 - (i) have positive elements,

(ii) are non-singular,

(iii) are symmetric,

- (iv) $\mathbf{A}^2 = \mathbf{A}$.
- 13. Let V be the set of all 2×2 complex matrices with the usual matrix addition and scalar multiplication and W consisting of all matrices with the usual addition and scalar multiplication and W consisting

of all martices of the form $\begin{bmatrix} z & x+iy \\ x-iy & u \end{bmatrix}$, where x, y, z, u are real numbers and (i) scalars are real

numbers, (ii) scalars are complex numbers.

3.38 Engineering Mathematics

tengineering maintains.

14. Let V consist of all real polynomials of degree ≤ 4 with the usual polynomial addition and state.

15. Let V consist of all real polynomials of degree ≤ 4 having

- multiplication and W consisting of polynomials of degree ≤ 4 having
 - (i) constant term 1,

(iv) only real roots.

- (iii) coefficient of t^3 as 1. (iv) only test (iv multiplication and W be the set of triplets of the form (x_1, x_2, x_3) such that

(i) $x_1 = 2x_2 = 3x_3$.

(ii) $x_1 = x_2 = x_3 + 1$,

(v) x_3 is an integer.

(iv) $x_1^2 + x_2^2 + x_3^2 \le 4$. (iii) $x_1 \ge 0$, x_2 , x_3 arbitrary, 16. Let u = (1, 2, -1), v = (2, 3, 4) and w = (1, 5, -3). Determine whether or not x is a linear combination

of u, v, w, where x is given by

(ii) (3, 2, 5)

(iii) (-2, 1, -5).

Exa

Fin

(i) (4, 3, 10), (1, 2, -1, 1) and w = (2, 3, 1, -1). Determine whether or not x is a linear 17. Let u = (1, -2, 1, 3), v = (1, 2, -1, 1) and v = (2, 3, 1, -1).

combination of u, v, w, where x is given by

(ii) (2, -7, 1, 11),

(iii) (4, 3, 0, 3).

18. Let $P_1(t) = t^2 - 4t - 6$, $P_2(t) = 2t^2 - 7t - 8$, $P_3(t) = 2t - 3$, Write P(t) as a linear combination of $P_1(t)$ $P_2(t)$, $P_3(t)$, when

(i) $P(t) = -t^2 + 1$,

(ii) $P(t) = 2t^2 - 3t - 25$.

19. Let V be the set of all 3×1 real matrices. Show that the set

$$S = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ spans } V,$$

20. Let V be the set of all 2×2 real matrices. Show that the set

$$S = \left\{ \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix} \right\} \text{ spans } V.$$

21. Examine whether the following vectors in $1R^3/\mathbb{C}^3$ are linearly independent. .

(i) (2, 2, 1), (1, -1, 1), (1, 0, 1),

(ii) (1, 2, 3), (3, 4, 5), (6, 7, 8),

(iii) (0, 0, 0), (1, 2, 3), (3, 4, 5),

(iv) (2, i, -1), (1, -3, i), (2i, -1, 5),(v) (1, 3, 4), (1, 1, 0), (1, 4, 2), (1, -2, 1).

- 22. Examine whether the following vectors in IR⁴ are linearly independent.
 - (i) (4, 1, 2, -6), (1, 1, 0, 3), (1, -1, 0, 2), (-2, 1, 0, 3),
 - (ii) (1, 2, 3,1), (2, 1, -1, 1), (4, 5, 5, 3), (5, 4, 1, 3),
 - (iii) (1, 2, 3, 4), (2, 0, 1, -2), (3, 2, 4, 2),
 - (iv) (1, 1, 0, 1), (1, 1, 1, 1), (-1, -1, 1, 1), (1, 0, 0, 1),
- (v) (1, 2, 3, -1), (0, 1, -1, 2), (1, 5, 1, 8), (-1, 7, 8, 3). 23. If x, y, z are linearly independent vectors in IR³, then show that

(ii) x, x + y, x + y + z

are also linearly independent in IR3.

24. Write (-4, 7, 9) as a linear combination of the elements of the set S: {(1, 2, 3), (-1, 3, 4), (3, 1, 2)}

Show that S is not a spanning set in IR³.

- 25. Write $t^2 + t + 1$ as a linear combination of the elements of the set S: $\{3t, t^2 1, t^2 + 2t + 2\}$. Show that S is the spanning set for all polynomials of degree 2 and can be taken as its basis.
- 26. Let V be the set of all vectors in \mathbb{R}^4 and S be a subset of V consisting of all vectors of the form (i) (x, y, -y, -x),

(iii)
$$(x, 0, z, w)$$
.

(ii)
$$(x, y, z, w)$$
 such that $x + y + z - w = 0$,

(iii)
$$(x, 0, z, w)$$
,

(iv)
$$(x, x, x, x)$$
.

Find the dimension and the basis of S.

- 27. For what values of k do the following set of vectors form a basis in \mathbb{R}^3 ?
 - (i) $\{(k, 1-k, k), (0, 3k-1, 2), (-k, 1, 0)\},\$
 - (ii) $\{(k, 1, 1), (0, 1, 1), (k, 0, k)\}.$
 - (iii) $\{(k, k, k), (0, k, k), (k, 0, k)\}$
 - (iv) $\{(1, k, 5), (1, -3, 2), (2, -1, 1)\}.$
- 28. Find the dimension and the basis for the vector space V, when V is the set of all 2×2 (i) real matrices (ii) symmetric matrices, (iii) skew-symmetric matrices, (iv) skew-Hermitian matrices, (v) real matrices $A = (a_{ij})$ with $a_{11} + a_{22} = 0$, (vi) real matrices $A = (a_{ij})$ with $a_{11} + a_{12} = 0$.
- 29. Find the dimension and the basis for the vector space V, when V is the set of all 3×3 (i) diagonal matrices (ii) upper triangular matrices, (iii) lower triangular matrices.
- 30. Find the dimension of the vector space V, when V is the set of all $n \times n$ (i) real matrices, (ii) diagonal matrices, (iii) symmetric matrices (iv) skew-symmetric matrices.

Examine whether the transformation T given in problems 31 to 35 is linear or not. If not linear, state why?

31. $T: \mathbb{R}^2 \to \mathbb{R}^1$; $T \begin{pmatrix} x \\ y \end{pmatrix} = x + y + a, a \neq 0$, a real constant.

32.
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
; $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ x+z \end{pmatrix}$.

33.
$$T: \mathbb{IR}^1 \to \mathbb{IR}^2$$
; $T(x) = \begin{pmatrix} x^2 \\ 3x \end{pmatrix}$.

34.
$$T: \mathbb{R}^2 \to \mathbb{R}^1$$
; $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} 0 & x \neq 0, y \neq 0 \\ 2y, & x = 0 \\ 3x, & y = 0. \end{cases}$ **35.** $T: \mathbb{R}^3 \to \mathbb{R}^1$; $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = xy + x + z$.

35.
$$T: \mathbb{R}^3 \to \mathbb{R}^1$$
; $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = xy + x + z$

Find ker(T) and ran(T) and their dimensions in problems 36 to 42.

36.
$$T: \mathbb{IR}^3 \to \mathbb{IR}^3$$
; $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ z \\ x-y \end{pmatrix}$.

37.
$$T: \mathbb{R}^2 \to \mathbb{R}^3; \ T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ y - x \\ 3x + 4y \end{pmatrix}.$$

38.
$$T: \mathbb{R}^4 \to \mathbb{R}^3$$
; $T \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x+y+w \\ z \\ y+2w \end{pmatrix}$.

39.
$$T: \mathbb{R}^2 \to \mathbb{R}^1$$
; $T \begin{pmatrix} x \\ y \end{pmatrix} = x + 3y$.

40.
$$T: \mathbb{R}^3 \to \mathbb{R}^1$$
; $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = x + 3y$.

41.
$$T: \mathbb{IR}^2 \to \mathbb{IR}^2; \ T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ x - y \end{pmatrix}.$$

42.
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
; $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - y \\ 3x + z \end{pmatrix}$.

43. Let
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 be a linear transformation defined by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ x-z \end{pmatrix}$.

Find the matrix representation of T with respect to the ordered basis

$$\mathbf{x} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} \text{ in } 1\mathbb{R}^3 \text{ and } \mathbf{y} = \left\{ \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \end{pmatrix} \right\} \text{ in } 1\mathbb{R}^2.$$

44. Let V and W be two vector spaces in \mathbb{R}^3 . Let $T:V\to W$ be a linear transformation defined by

$$T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ x+y \\ x+y+z \end{pmatrix}.$$

Find the matrix representation of T with respect to the ordered basis

$$\mathbf{x} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ in } V \text{ and } \mathbf{y} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} \text{ in } W.$$

45. Let V and W be two vector spaces in \mathbb{R}^3 . Let $T: V \to W$ be a linear transformation defined by

$$T\begin{pmatrix} x \\ y \\ x \end{pmatrix} = \begin{pmatrix} x+z \\ x+y \\ x+y+z \end{pmatrix}.$$

Find the matrix representation of T with respect to the ordered basis

$$\mathbf{x} = \left\{ \begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix} \right\} \text{ in } V \text{ and } \mathbf{y} = \left\{ \begin{pmatrix} 1\\-1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\1 \end{pmatrix} \right\} \text{ in } W'$$

46. Let
$$T: \mathbb{R}^3 \to \mathbb{R}^4$$
 be a linear transformation defined by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ y+z \\ x+z \\ x+y+z \end{pmatrix}$.
Find the matrix representation of T with respect to the ordered basis

$$\mathbf{x} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} \text{ in } IR^3 \quad \text{and} \quad \mathbf{y} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\} \text{ in } IR^4$$

In of is

Cr

hi

un

- Charles Con

47. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}$ be the matrix representation of the linear

transformation T with respect to the ordered basis vectors $\mathbf{v}_1 = [1, 2]^T$, $\mathbf{v}_2 = [3, 4]^T$ in IR^2 and $\mathbf{w}_1 = [-1, 1, 1]^T$, $\mathbf{w}_2 = [1, -1, 1]^T$, $\mathbf{w}_3 = [1, 1, -1]^T$ in IR^3 . Then, determine the linear transformation T.

- **48.** Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation. Let $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -3 & -4 \end{bmatrix}$ be the matrix representation of the linear transformation with respect to the ordered basis vectors $\mathbf{v}_1 = [1, -1, 1]^T$, $\mathbf{v}_2 = [2, 3, -1]^T$, $\mathbf{v}_3 = [1, 1, -1]^T$ in \mathbb{IR}^3 and $\mathbf{w}_1 = [1, 1]^T$, $\mathbf{w}_2 = [2, 3]^T$ in \mathbb{IR}^2 . Then, determine the linear transformation T.
- 49. Let $T: P_1(t) \to P_2(t)$ be a linear transformation. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ -1 & 1 \end{bmatrix}$ be the matrix representation of the

linear transformation with respect to the ordered basis [1 + t, t] in $P_1(t)$ and $[1 - t, 2t, 2 + 3t - t^2]$ in $P_2(t)$. Then, determine the linear transformation T.

50. Let V be the set of all vectors of the form (x_1, x_2, x_3) in IR^3 satisfying (i) $x_1 - 3x_2 + 2x_3 = 0$; (ii) $3x_1 - 2x_2 + x_3 = 0$ and $4x_1 + 5x_2 = 0$. Find the dimension and basis for V.

Solution of General linear System of Equations

In section 3.2.5, we have discussed the matrix method and the Cramer's rule for solving a system of n equations in n unknowns, Ax = b. We assumed that the coefficient matrix A is non-singular, that is $|A| \neq 0$, or the rank of the matrix A is n. The matrix method requires evaluation of n^2 determinants each of order (n-1), to generate the cofactor matrix, and one determinant of order n, whereas the Cramer's rule requires evaluation of (n + 1) determinants each of order n. Since the evaluation of high order determinants is very time consuming, these methods are not used for large values of n, say n > 4. In this section, we discuss a method for solving a general system of m equations in n unknowns, given by

(3.28)

where

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

are respectively called the coefficient matrix, right hand side column vector and the solution vector. The order of the matrices A, b, x are respectively $m \times n$, $m \times 1$ and $n \times 1$. The matrix

$$(\mathbf{A} \mid \mathbf{b}) = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \mid b_1 \\ a_{21} & a_{22} & \dots & a_{2n} \mid b_2 \\ \vdots & & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \mid b_m \end{bmatrix}$$
 (3.29)