Bayesian Mechanism Design

Jason D. Hartline Northwestern University

July 28, 2014

Vignettes from Manuscript
Mechanism Design and Approximation

http://jasonhartline.com/MDnA/

____ Mechanism Design ____

Basic Mechanism Design Question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

Mechanism Design ——

Basic Mechanism Design Question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

Internet Applications: file sharing, reputation systems, web search, web advertising, email, Internet auctions, congestion control, etc.

Mechanism Design ——

Basic Mechanism Design Question: How should an economic system be designed so that selfish agent behavior leads to good outcomes?

Internet Applications: file sharing, reputation systems, web search, web advertising, email, Internet auctions, congestion control, etc.

General Theme: resource allocation.

Overview _____

Part I: Optimal Mechanism Design

- single-item auction.
- objectives: social welfare vs. seller profit.
- characterization of Bayes-Nash equilibrium.
- consequences: solving and optimizing over BNE.
- inferring values from bids.

Part II: Approximation in Mechanism Design

- single-item auctions.
- multi-dimensional auctions.
- prior-independent auctions.
- computationally tractable mechanisms.

Overview _

Part I: Optimal Mechanism Design (Chapters 2 & 3)

- single-item auction.
- objectives: social welfare vs. seller profit.
- characterization of Bayes-Nash equilibrium.
- consequences: solving and optimizing over BNE.
- inferring values from bids.

Part II: Approximation in Mechanism Design

- single-item auctions. (Chapter 4)
- multi-dimensional auctions. (Chapter 7)
- prior-independent auctions. (Chapter 5)
- computationally tractable mechanisms. (Chapter 8)

Single-item Auction _____

Mechanism Design Problem: Single-item Auction

Given:

- one item for sale.
- n bidders (with unknown private values for item, v_1, \ldots, v_n)
- Bidders' objective: maximize *utility* = value price paid.

Design:

Auction to solicit bids and choose winner and payments.

Single-item Auction _____

Mechanism Design Problem: Single-item Auction

Given:

- one item for sale.
- n bidders (with unknown private values for item, v_1, \ldots, v_n)
- Bidders' objective: maximize <u>utility</u> = value price paid.

Design:

Auction to solicit bids and choose winner and payments.

Possible Auction Objectives:

- Maximize social surplus, i.e., the value of the winner.
- Maximize seller profit, i.e., the payment of the winner.

Objective 1: maximize social surplus

Example Auctions ____

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

Example Auctions __

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

Example Input: b = (2, 6, 4, 1).

Example Auctions _

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

Second-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

Example Input: b = (2, 6, 4, 1).

Example Auctions -

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

Second-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

Example Input: b = (2, 6, 4, 1).

Questions:

- what are equilibrium strategies?
- what is equilibrium outcome?
- which has higher surplus in equilibrium?
- which has higher profit in equilibrium?

Second-price Auction

- 1. Solicit sealed bids. 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

Second-price Auction

- 1. Solicit sealed bids. 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

- Let $t_i = \max_{j \neq i} b_j$.
- If $b_i > t_i$, bidder i wins and pays t_i ; otherwise loses.

Second-price Auction

- 1. Solicit sealed bids. 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

- Let $t_i = \max_{j \neq i} b_j$.
- If $b_i > t_i$, bidder i wins and pays t_i ; otherwise loses.

Case 1:
$$v_i > t_i$$
 Case 2: $v_i < t_i$

Second-price Auction

- 1. Solicit sealed bids. 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

- Let $t_i = \max_{j \neq i} b_j$.
- If $b_i > t_i$, bidder i wins and pays t_i ; otherwise loses.

Second-price Auction

- 1. Solicit sealed bids. 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

How should bidder *i* bid?

- Let $t_i = \max_{j \neq i} b_j$.
- If $b_i > t_i$, bidder i wins and pays t_i ; otherwise loses.

Result: Bidder *i*'s dominant strategy is to bid $b_i = v_i!$

Second-price Auction

- 1. Solicit sealed bids. 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

How should bidder *i* bid?

- Let $t_i = \max_{j \neq i} b_j$. \Leftarrow "critical value"
- If $b_i > t_i$, bidder i wins and pays t_i ; otherwise loses.

Result: Bidder *i*'s dominant strategy is to bid $b_i = v_i!$

Second-price Auction Conclusion _____

Second-price Auction

- 1. Solicit sealed bids. 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

Second-price Auction Conclusion ____

Second-price Auction

- 1. Solicit sealed bids. 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Second-price Auction Conclusion ____

Second-price Auction

- 1. Solicit sealed bids. 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

Second-price Auction Conclusion —

Second-price Auction

- 1. Solicit sealed bids. 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

- bids = values (from Lemma).
- winner is highest bidder (by definition).
- ⇒ winner is bidder with highest valuation (optimal social surplus).

Second-price Auction Conclusion ___

Second-price Auction

- 1. Solicit sealed bids. 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

Lemma: [Vickrey '61] Truthful bidding is dominant strategy in Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

- bids = values (from Lemma).
- winner is highest bidder (by definition).
- ⇒ winner is bidder with highest valuation (optimal social surplus).

What about first-price auction?

Recall First-price Auction _____

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

How would you bid?

Recall First-price Auction ____

First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

How would you bid?

Note: first-price auction has no DSE.

Review: Uniform Distributions _____

Uniform Distribution: draw value v uniformly from the interval [0,1].

Review: Uniform Distributions _

Uniform Distribution: draw value v uniformly from the interval [0,1].

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$.

Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Review: Uniform Distributions -

Uniform Distribution: draw value v uniformly from the interval [0,1].

Cumulative Distribution Function: $F(z)=\Pr[{\it v}\le z]=z.$ Probability Density Function: $f(z)=\frac{1}{dz}\Pr[{\it v}\le z]=1.$

Order Statistics: in expectation, uniform random variables evenly divide interval.

Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0,1].

Cumulative Distribution Function: $F(z) = \Pr[v \le z] = z$. Probability Density Function: $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$.

Order Statistics: in expectation, uniform random variables evenly divide interval.

First-price Auction Equilibrium Analysis _____

First-price Auction Equilibrium Analysis _____

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

First-price Auction Equilibrium Analysis —

- Suppose I bid half my value.
- How should you bid?

First-price Auction Equilibrium Analysis _

- Suppose I bid half my value.
- How should you bid?
- ullet What's your expected utility with value v and bid b?

$$\mathbf{E}[\mathrm{utility}(v,b)] = (v-b) \times \Pr[\mathrm{you\ win}]$$

First-price Auction Equilibrium Analysis

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid} \ \leq \ b] \ = \ \Pr[\frac{1}{2} \text{my value} \ \leq \ b] \ = \ \Pr[\text{my value} \ \leq \ 2b] \ = \ 2b} \end{aligned}$$

First-price Auction Equilibrium Analysis

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq \ b]} = \Pr[\frac{1}{2}\text{my value } \leq \ b] = \Pr[\text{my value } \leq \ 2b] = 2b \\ &= (v-b) \times 2b \\ &= 2vb - 2b^2 \end{aligned}$$

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq \ b]} = \Pr[\frac{1}{2}\text{my value } \leq \ b] = \Pr[\text{my value } \leq \ 2b] = 2b \\ &= (v-b) \times 2b \\ &= 2vb - 2b^2 \end{aligned}$$

 \bullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq \ b]} = \Pr[\frac{1}{2}\text{my value } \leq \ b] = \Pr[\text{my value } \leq \ 2b] = 2b \\ &= (v-b) \times 2b \\ &= 2vb - 2b^2 \end{aligned}$$

- ullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq \ b]} = \Pr[\frac{1}{2}\text{my value } \leq \ b] = \Pr[\text{my value } \leq \ 2b] = 2b \\ &= (v-b) \times 2b \\ &= 2vb - 2b^2 \end{aligned}$$

- ullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding "half of value" is equilibrium

Example: two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq \ b]} = \Pr[\frac{1}{2}\text{my value } \leq \ b] = \Pr[\text{my value } \leq \ 2b] = 2b \\ &= (v-b) \times 2b \\ &= 2vb - 2b^2 \end{aligned}$$

- ullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding "half of value" is equilibrium

Conclusion 2: bidder with highest value wins

Conclusion 3: first-price auction maximizes social surplus!

Bayes-Nash equilibrium _____

Defn: a *strategy* maps value to bid, i.e., $b_i = s_i(v_i)$.

Bayes-Nash equilibrium _____

Defn: a *strategy* maps value to bid, i.e., $b_i = s_i(v_i)$.

Defn: the *common prior assumption*: bidders' values are drawn from a known distribution, i.e., $v_i \sim F_i$.

Bayes-Nash equilibrium

Defn: a *strategy* maps value to bid, i.e., $b_i = s_i(v_i)$.

Defn: the *common prior assumption*: bidders' values are drawn from a known distribution, i.e., $v_i \sim F_i$.

Definition: a *strategy profile* is in *Bayes-Nash Equilibrium (BNE)* if for all i, $s_i(v_i)$ is best response when others play $s_j(v_j)$ and $v_j \sim F_j$.

Surplus Maximization Conclusions _____

Conclusions:

- second-price auction maximizes surplus in DSE regardless of distribution.
- first-price auction maximize surplus in BNE for i.i.d. distributions.

Surplus Maximization Conclusions _____

Conclusions:

- second-price auction maximizes surplus in DSE regardless of distribution.
- first-price auction maximize surplus in BNE for i.i.d. distributions.

Surprising Result: a single auction is optimal for any distribution.

Surplus Maximization Conclusions _____

Conclusions:

- second-price auction maximizes surplus in DSE regardless of distribution.
- first-price auction maximize surplus in BNE for i.i.d. distributions.

Surprising Result: a single auction is optimal for any distribution.

Questions?

Objective 2: maximize seller profit

(other objectives are similar)

Example Scenario: two bidders, uniform values

____ An example ____

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

• In expectation, values evenly divide unit interval.

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- ullet $\mathbf{E}[\mathsf{Profit}] = \mathbf{E}[v_2]$

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[\text{Profit}] = \mathbf{E}[v_2] = 1/3.$

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[\text{Profit}] = \mathbf{E}[v_2] = 1/3.$

What is profit of first-price auction?

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[\text{Profit}] = \mathbf{E}[v_2] = 1/3.$

What is profit of first-price auction?

•
$$E[Profit] = E[v_1]/2 = 1/3$$
.

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.

- In expectation, values evenly divide unit interval.
- $\mathbf{E}[\text{Profit}] = \mathbf{E}[v_2] = 1/3.$

What is profit of first-price auction?

• $\mathbf{E}[\text{Profit}] = \mathbf{E}[v_1]/2 = 1/3.$

Surprising Result: second-price and first-price auctions have same expected profit.

Can we get more profit?

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

- draw values from unit interval.
- Sort values, $v_1 \geq v_2$

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

- draw values from unit interval.
- Sort values, $v_1 \geq v_2$

Case Analysis:

Pr[Case i]

E Profit

Case 1:
$$\frac{1}{2} > v_1 \ge v_2$$

Case 2:
$$v_1 \ge v_2 \ge \frac{1}{2}$$

Case 3:
$$v_1 \ge \frac{1}{2} > v_2$$

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

- draw values from unit interval.
- ullet Sort values, $v_1 \geq v_2$

Case 1:
$$\frac{1}{2} > v_1 \ge v_2$$
 1/4

Case 2:
$$v_1 \ge v_2 \ge \frac{1}{2}$$
 1/4

Case 3:
$$v_1 \ge \frac{1}{2} > v_2$$

E Profit

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

- draw values from unit interval.
- Sort values, $v_1 \geq v_2$

Case Analysis:
 Pr[Case
$$i$$
]
 E[Profit]

 Case 1: $\frac{1}{2} > v_1 \ge v_2$
 1/4
 0

 Case 2: $v_1 \ge v_2 \ge \frac{1}{2}$
 1/4
 E[v_2 | Case 2]

 Case 3: $v_1 \ge \frac{1}{2} > v_2$
 1/2
 $\frac{1}{2}$

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

draw values from unit interval.

- Sort values, $v_1 \geq v_2$
 - **Case Analysis:**

Case 1:
$$\frac{1}{2} > v_1 \ge v_2$$
 1/4

Case 2:
$$v_1 \geq v_2 \geq \frac{1}{2}$$

Case 3:
$$v_1 \ge \frac{1}{2} > v_2$$

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

draw values from unit interval.

• Sort values, $v_1 \geq v_2$

$$\mathsf{Pr}[\mathsf{Case}\ i]$$

Case 1:
$$\frac{1}{2} > v_1 \ge v_2$$
 1/4

Case 2:
$$v_1 \ge v_2 \ge \frac{1}{2}$$
 $1/4$ $\mathbf{E}[v_2 \mid \text{Case 2}] = \frac{2}{3}$

$$\mathbf{E}[v_2 \mid \mathsf{Case} \ { extstyle 2}] = rac{2}{3}$$

Case 3:
$$v_1 \ge \frac{1}{2} > v_2$$

$$\frac{2}{2} + \frac{1}{1} \cdot \frac{1}{1} - \frac{5}{1}$$

$$\mathbf{E}[\text{profit of 2nd-price with reserve}] = \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{2} = \frac{5}{12}$$

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve $\frac{1}{2}$ on two bidders U[0,1]?

draw values from unit interval.

• Sort values, $v_1 \geq v_2$

Case Analysis:

E Profit

Case 1:
$$\frac{1}{2} > v_1 \ge v_2$$
 1/4

Case 2:
$$v_1 \ge v_2 \ge \frac{1}{2}$$
 $1/4$ $\mathbf{E}[v_2 \mid \text{Case 2}] = \frac{2}{3}$

$$\mathbf{E}[v_2 \mid \mathsf{Case} \ \mathsf{2}] = rac{2}{3}$$

Case 3:
$$v_1 \ge \frac{1}{2} > v_2$$

$$\begin{aligned} \mathbf{E}[\text{profit of 2nd-price with reserve}] &= \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{1}{2} = \frac{5}{12} \\ &\geq \mathbf{E}[\text{profit of 2nd-price}] = \frac{1}{3}. \end{aligned}$$

Profit Maximization Observations _____

Observations:

- pretending to value the good increases seller profit.
- which mechanism has better profit depends on distribution.

Profit Maximization Observations _____

Observations:

- pretending to value the good increases seller profit.
- which mechanism has better profit depends on distribution.

Questions?

Bayes-Nash Equilibrium Characterization and Consequences

- 0. characterization.
- 1. solving for BNE.
- 2. optimizing over BNE.

Notation

Notation:

- \mathbf{x} is an allocation, \mathbf{x}_i the allocation for i.
- \bullet $\mathbf{x}(\mathbf{v})$ is BNE allocation of mech. on valuations \mathbf{v} .
- $\mathbf{v}_{-i} = (v_1, \dots, v_{i-1}, ?, v_{i+1}, \dots, v_n).$

Notation

Notation:

- \mathbf{x} is an allocation, \mathbf{x}_i the allocation for i.
- \bullet $\mathbf{x}(\mathbf{v})$ is BNE allocation of mech. on valuations \mathbf{v} .
- $\mathbf{v}_{-i} = (v_1, \dots, v_{i-1}, ?, v_{i+1}, \dots, v_n).$
- $x_i(v_i) = \mathbf{E}_{\mathbf{v}_{-i}}[x_i(v_i, \mathbf{v}_{-i})]$. (Agent *i*'s interim prob. of allocation with \mathbf{v}_{-i} from \mathbf{F}_{-i})

Notation

Notation:

- \mathbf{x} is an allocation, \mathbf{x}_i the allocation for i.
- \bullet $\mathbf{x}(\mathbf{v})$ is BNE allocation of mech. on valuations \mathbf{v} .
- $\mathbf{v}_{-i} = (v_1, \dots, v_{i-1}, ?, v_{i+1}, \dots, v_n).$
- $x_i(v_i) = \mathbf{E}_{\mathbf{v}_{-i}}[x_i(v_i, \mathbf{v}_{-i})]$. (Agent i's interim prob. of allocation with \mathbf{v}_{-i} from \mathbf{F}_{-i})

Analogously, define \mathbf{p} , $\mathbf{p}(\mathbf{v})$, and $p_i(v_i)$ for payments.

- 1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .
- 2. payment identity (PI): $p_i(v_i)=v_ix_i(v_i)-\int_0^{v_i}x_i(z)dz+p_i(0)$. and usually $p_i(0)=0$.

- 1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .
- 2. payment identity (PI): $p_i(v_i)=v_ix_i(v_i)-\int_0^{v_i}x_i(z)dz+p_i(0)$. and usually $p_i(0)=0$.

- 1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .
- 2. payment identity (PI): $p_i(v_i)=v_ix_i(v_i)-\int_0^{v_i}x_i(z)dz+p_i(0)$. and usually $p_i(0)=0$.

- 1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .
- 2. payment identity (PI): $p_i(v_i)=v_ix_i(v_i)-\int_0^{v_i}x_i(z)dz+p_i(0)$. and usually $p_i(0)=0$.

- 1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .
- 2. payment identity (PI): $p_i(v_i)=v_ix_i(v_i)-\int_0^{v_i}x_i(z)dz+p_i(0)$. and usually $p_i(0)=0$.

- 1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .
- 2. payment identity (PI): $p_i(v_i)=v_ix_i(v_i)-\int_0^{v_i}x_i(z)dz+p_i(0)$. and usually $p_i(0)=0$.

Thm: a mechanism and strategy profile is in BNE iff

- 1. monotonicity (M): $x_i(v_i)$ is monotone in v_i .
- 2. payment identity (PI): $p_i(v_i)=v_ix_i(v_i)-\int_0^{v_i}x_i(z)dz+p_i(0)$. and usually $p_i(0)=0$.

Consequence: *(revenue equivalence)* in BNE, auctions with same outcome have same revenue (e.g., first and second-price auctions)

Questions?

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- \Rightarrow same expected payments as second-price auction.

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- ⇒ same expected payments as second-price auction.
- 2. What are equilibrium strategies?

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- ⇒ same expected payments as second-price auction.
- 2. What are equilibrium strategies?
 - $p(v) = \Pr[v \text{ wins}] \times b(v)$

(because first-price)

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- ⇒ same expected payments as second-price auction.
- 2. What are equilibrium strategies?
 - $p(v) = \Pr[v \text{ wins}] \times b(v)$ (because first-price)
 - $p(v) = \mathbf{E}[$ expected second-price payment |v| (by rev. equiv.)

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- ⇒ same expected payments as second-price auction.
- 2. What are equilibrium strategies?
 - $p(v) = \Pr[v \text{ wins}] \times b(v)$ (because first-price)
 - $\begin{array}{l} \bullet \ p(v) = \mathbf{E}[\mathsf{expected} \ \mathsf{second\text{-}price} \ \mathsf{payment} \ | \ v] \ \ (\mathsf{by} \ \mathsf{rev.} \ \mathsf{equiv.}) \\ = \mathbf{Pr}[v \ \mathsf{wins}] \times \mathbf{E}[\mathsf{second} \ \mathsf{highest} \ \mathsf{value} \ | \ v \ \mathsf{wins}] \end{array}$

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- ⇒ same expected payments as second-price auction.
- 2. What are equilibrium strategies?

 - $\begin{array}{l} \bullet \ \ p(v) = \mathbf{E}[\text{expected second-price payment} \ | \ v] \ \ (\text{by rev. equiv.}) \\ = \mathbf{Pr}[v \ \text{wins}] \times \mathbf{E}[\text{second highest value} \ | \ v \ \text{wins}] \\ \end{array}$
 - $\Rightarrow b(v) = \mathbf{E}[\text{second highest value} \mid v \text{ wins}]$

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- ⇒ same expected payments as second-price auction.
- 2. What are equilibrium strategies?

 - $\begin{array}{l} \bullet \ \ p(v) = \mathbf{E}[\text{expected second-price payment} \ | \ v] \ \ (\text{by rev. equiv.}) \\ = \mathbf{Pr}[v \ \text{wins}] \times \mathbf{E}[\text{second highest value} \ | \ v \ \text{wins}] \\ \end{array}$
 - $\Rightarrow b(v) = \mathbf{E}[\text{second highest value} \mid v \text{ wins}]$ (e.g., for two uniform bidders: b(v) = v/2.)

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

- \Rightarrow agents ranked by value
- \Rightarrow same outcome as second-price auction.
- ⇒ same expected payments as second-price auction.
- 2. What are equilibrium strategies?
 - $\bullet \ p(v) = \Pr[v \text{ wins}] \times b(v)$ (because first-price)
 - $\begin{array}{l} \bullet \ \ p(v) = \mathbf{E}[\text{expected second-price payment} \ | \ v] \ \ (\text{by rev. equiv.}) \\ = \mathbf{Pr}[v \ \text{wins}] \times \mathbf{E}[\text{second highest value} \ | \ v \ \text{wins}] \\ \end{array}$
 - $\Rightarrow b(v) = \mathbf{E}[\text{second highest value} \mid v \text{ wins}]$ (e.g., for two uniform bidders: b(v) = v/2.)
- 3. Verify guess and BNE: b(v) continuous, strictly increasing, symmetric.

Questions?

Defn: virtual value for i is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$.

Defn: virtual value for i is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$.

Lemma: [Myerson 81] In BNE, $\mathbf{E}[p_i(v_i)] = \mathbf{E}[\phi_i(v_i)x_i(v_i)]$

Defn: virtual value for i is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$.

Lemma: [Myerson 81] In BNE, $\mathbf{E}[p_i(v_i)] = \mathbf{E}[\phi_i(v_i)x_i(v_i)]$

General Approach:

- optimize revenue without incentive constraints (i.e., monotonicity).
 - ⇒ winner is agent with highest positive virtual value.
- check to see if incentive constraints are satisfied.
 - \Rightarrow if $\phi_i(\cdot)$ is monotone then mechanism is monotone.

Defn: virtual value for i is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$.

Lemma: [Myerson 81] In BNE, $\mathbf{E}[p_i(v_i)] = \mathbf{E}[\phi_i(v_i)x_i(v_i)]$

General Approach:

- optimize revenue without incentive constraints (i.e., monotonicity).
 - ⇒ winner is agent with highest positive virtual value.
- check to see if incentive constraints are satisfied.
 - \Rightarrow if $\phi_i(\cdot)$ is monotone then mechanism is monotone.

Defn: distribution F_i is *regular* if $\phi_i(\cdot)$ is monotone.

Defn: virtual value for i is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$.

Lemma: [Myerson 81] In BNE, $\mathbf{E}[p_i(v_i)] = \mathbf{E}[\phi_i(v_i)x_i(v_i)]$

General Approach:

- optimize revenue without incentive constraints (i.e., monotonicity).
 - ⇒ winner is agent with highest positive virtual value.
- check to see if incentive constraints are satisfied.
 - \Rightarrow if $\phi_i(\cdot)$ is monotone then mechanism is monotone.

Defn: distribution F_i is *regular* if $\phi_i(\cdot)$ is monotone.

Thm: [Myerson 81] If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

Defn: virtual value for i is $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$.

Lemma: [Myerson 81] In BNE, $\mathbf{E}[p_i(v_i)] = \mathbf{E}[\phi_i(v_i)x_i(v_i)]$

General Approach:

- optimize revenue without incentive constraints (i.e., monotonicity).
 - ⇒ winner is agent with highest positive virtual value.
- check to see if incentive constraints are satisfied.
 - \Rightarrow if $\phi_i(\cdot)$ is monotone then mechanism is monotone.

Defn: distribution F_i is *regular* if $\phi_i(\cdot)$ is monotone.

Thm: [Myerson 81] If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

Proof: expected virtual valuation of winner = expected payment.

Proof of Lemma

Recall Lemma: In BNE,
$$\mathbf{E}[p_i(v_i)] = \mathbf{E}\left[\left(v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}\right)x_i(v_i)\right]$$
.

Proof Sketch:

- Use characterization: $p_i(v_i) = v_i x_i(v_i) \int_0^{v_i} x_i(v) dv$.
- Use definition of expectation (integrate payment × density).
- Swap order of integration.
- Simplify.

Recall Thm: If ${f F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

Recall Thm: If ${f F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner i satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$

Recall Thm: If ${\bf F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

- Winner i satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$
- I.i.d. implies $\phi_i = \phi_j = \phi$.

Recall Thm: If ${f F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

- Winner i satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$
- I.i.d. implies $\phi_i = \phi_j = \phi$.
- So, $v_i \ge \max(v_j, \phi^{-1}(0))$.

Recall Thm: If ${f F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

- Winner i satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$
- I.i.d. implies $\phi_i = \phi_j = \phi$.
- So, $v_i \ge \max(v_j, \phi^{-1}(0))$.
- So, "critical value" = payment = $\max(v_j, \phi^{-1}(0))$

Recall Thm: If ${f F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

- Winner i satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$
- I.i.d. implies $\phi_i = \phi_j = \phi$.
- So, $v_i \ge \max(v_j, \phi^{-1}(0))$.
- So, "critical value" = payment = $\max(v_j, \phi^{-1}(0))$
- What is this auction?

Recall Thm: If ${f F}$ is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

- Winner i satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$
- I.i.d. implies $\phi_i = \phi_j = \phi$.
- So, $v_i \ge \max(v_j, \phi^{-1}(0))$.
- So, "critical value" = payment = $\max(v_j, \phi^{-1}(0))$
- What is this auction? second-price auction with reserve $\phi^{-1}(0)$!

Recall Thm: If \mathbf{F} is regular, optimal auction is to sell item to bidder with highest positive virtual valuation.

What does this mean in i.i.d. case?

- Winner i satisfies $\phi_i(v_i) \ge \max(\phi_j(v_j), 0)$
- I.i.d. implies $\phi_i = \phi_j = \phi$.
- So, $v_i \ge \max(v_j, \phi^{-1}(0))$.
- So, "critical value" = payment = $\max(v_j, \phi^{-1}(0))$
- What is this auction? second-price auction with reserve $\phi^{-1}(0)$!

What is optimal single-item auction for U[0,1]?

Optimal Auction for U[0,1]

Optimal auction for U[0,1]:

- $\bullet \ F(v_i) = v_i.$
- $f(v_i) = 1$.
- So, $\phi(v_i) = v_i \frac{1 F(v_i)}{f(v_i)} = 2v_i 1$.
- So, $\phi^{-1}(0) = 1/2$.

Optimal Auction for U[0,1]

Optimal auction for U[0,1]:

- $\bullet \ F(v_i) = v_i.$
- $f(v_i) = 1$.
- So, $\phi(v_i) = v_i \frac{1 F(v_i)}{f(v_i)} = 2v_i 1$.
- So, $\phi^{-1}(0) = 1/2$.
- So, optimal auction is Second-price Auction with reserve 1/2!

Optimal Mechanisms Conclusions _____

Conclusions:

- expected virtual value = expected revenue
- optimal mechanism maximizes virtual surplus.
- optimal auction depends on distribution.
- i.i.d., regular distributions: second-price with reserve is optimal.
- theory is "descriptive".

Questions?

____ Auction Design Challenge ____

Auction: Two-bidder one-item highest-bid-wins first-price auction.

Data: bids and revenues (for 200 auctions)

Auction Design Challenge ———

Auction: Two-bidder one-item highest-bid-wins first-price auction.

Data: bids and revenues (for 200 auctions)

Question: How to adapt auction to get more revenue?

Auction Design Challenge _____

Auction: Two-bidder one-item highest-bid-wins first-price auction.

Data: bids and revenues (for 200 auctions)

Question: How to adapt auction to get more revenue?

Auction Theory: revenue optimal auction is "first-price with reserve." [Myerson '81]

Auction Design Challenge ———

Auction: Two-bidder one-item highest-bid-wins first-price auction.

Data: bids and revenues (for 200 auctions)

Question: How to adapt auction to get more revenue?

Auction Theory: revenue optimal auction is "first-price with reserve." [Myerson '81]

Question: Determine good reserve price from data?

Auction Design Challenge ———

Auction: Two-bidder one-item highest-bid-wins first-price auction.

Data: bids and revenues (for 200 auctions)*

Question: How to adapt auction to get more revenue?

Auction Theory: revenue optimal auction is "first-price with reserve." [Myerson '81]

Question: Determine good reserve price from data?

^{*} all data is synthetic; counter-factuals known.

The Data

Auction	Bid 1	Bid 2	Revenue
1	0.74	0.34	0.74
2	0.11	0.42	0.42
3	0.08	0.86	0.86
4	0.50	0.48	0.50
5	0.69	0.83	0.83
6	0.46	0.58	0.58
7	0.53	0.03	0.53
8	0.77	0.60	0.77
9	0.91	0.49	0.91
10	0.54	0.50	0.54
11	0.44	0.35	0.44
:	:	:	:
200	0.44	0.54	0.54
 Average			0.68

___ The Data ____

Auction Bid 1		Bid 2	Revenue
1	0.74	0.34	0.74
2	0.11	0.42	0.42
3	0.08	0.86	0.86
4	0.50	0.48	0.50
5	0.69	0.83	0.83
6	0.46	0.58	0.58
7	0.53	0.03	0.53
8	0.77	0.60	0.77
9	0.91	0.49	0.91
10	0.54	0.50	0.54
11	0.44	0.35	0.44
:	: : :	:	:
200	0.44	0.54	0.54
Average			0.68

Failed Approach: simulate reserve prices with old bid data.

___ The Data ____

Auction	Bid 1	Bid 2	Revenue
1	0.74	0.34	0.74
2	0.11	0.42	0.42
3	0.08	0.86	0.86
4	0.50	0.48	0.50
5	0.69	0.83	0.83
6	0.46	0.58	0.58
7	0.53	0.03	0.53
8	0.77	0.60	0.77
9	0.91	0.49	0.91
10	0.54	0.50	0.54
11	0.44	0.35	0.44
:	:	:	· ·
200	0.44	0.54	0.54
Average			0.68

Failed Approach: simulate reserve prices with old bid data.

Discussion:

1. loss in revenue when bids below reserve.

The Data

Auction Bid		Bid 2	Revenue
1	0.74	0.34	0.74
2	0.11	0.42	0.42
3	0.08	0.86	0.86
4	0.50	0.48	0.50
5	0.69	0.83	0.83
6	0.46	0.58	0.58
7	0.53	0.03	0.53
8	0.77	0.60	0.77
9	0.91	0.49	0.91
10	0.54	0.50	0.54
11	0.44	0.35	0.44
:	:	:	:
200	0.44	0.54	0.54
Average			0.68

Failed Approach: simulate reserve prices with old bid data.

Discussion:

- 1. loss in revenue when bids below reserve.
- 2. with reserve price, bidders should raise their bids.

The Data

Auction	Bid 1	Bid 2	Revenue
1	0.74	0.34	0.74
2	0.11	0.42	0.42
3	80.0	0.86	0.86
4	0.50	0.48	0.50
5	0.69	0.83	0.83
6	0.46	0.58	0.58
7	0.53	0.03	0.53
8	0.77	0.60	0.77
9	0.91	0.49	0.91
10	0.54	0.50	0.54
11	0.44	0.35	0.44
:	:	:	:
200	0.44	0.54	0.54
Average			0.68

Failed Approach: simulate reserve prices with old bid data.

Discussion:

- 1. loss in revenue when bids below reserve.
- 2. with reserve price, bidders should raise their bids.

Problem: simulation does not account for bidders raising bids!

Behavior vs. Simulations _____

Auction	Bid 1	Bid 2	Revenue	
1	0.74	0.34	0.74	
2	0.11	0.42	0.42	
3	80.0	0.86	0.86	
4	0.50	0.48	0.50	
5	0.69	0.83	0.83	
6	0.46	0.58	0.58	
7	0.53	0.03	0.53	
8	0.77	0.60	0.77	
9	0.91	0.49	0.91	
10	0.54	0.50	0.54	
11	0.44	0.35	0.44	
	:	:	:	
•	•	•	•	
200	0.44	0.54	0.54	
Average			0.68	

Behavior vs. Simulations _____

Auction	Bid 1	Bid 2	Revenue	Sim 0.5	
1	0.74	0.34	0.74	0.74	
2	0.11	0.42	0.42	0.00	
3	0.08	0.86	0.86	0.86	
4	0.50	0.48	0.50	0.00	
5	0.69	0.83	0.83	0.83	
6	0.46	0.58	0.58	0.58	
7	0.53	0.03	0.53	0.53	
8	0.77	0.60	0.77	0.77	
9	0.91	0.49	0.91	0.91	
10	0.54	0.50	0.54	0.54	
11	0.44	0.35	0.44	0.00	
:			:	:	
•	•	•	•	•	
200	0.44	0.54	0.54	0.54	
Average			0.68	0.60	

Behavior vs. Simulations _____

Auction	Bid 1	Bid 2	Revenue	Sim 0.5	Real 0.5	
1	0.74	0.34	0.74	0.74	0.83	
2	0.11	0.42	0.42	0.00	0.57	
3	80.0	0.86	0.86	0.86	0.93	
4	0.50	0.48	0.50	0.00	0.62	
5	0.69	0.83	0.83	0.83	0.91	
6	0.46	0.58	0.58	0.58	0.69	
7	0.53	0.03	0.53	0.53	0.65	
8	0.77	0.60	0.77	0.77	0.85	
9	0.91	0.49	0.91	0.91	0.98	
10	0.54	0.50	0.54	0.54	0.65	
11	0.44	0.35	0.44	0.00	0.58	
	:		:		:	
200	0.44	0.54	0.54	0.54	0.66	
Average			0.68	0.60	0.76	

____ Behavior vs. Simulations ____

Auction	Bid 1	Bid 2	Revenue	Sim 0.5	Real 0.5	Sim 0.75	Real 0.75
1	0.74	0.34	0.74	0.74	0.83	0.00	0.93
2	0.11	0.42	0.42	0.00	0.57	0.00	0.76
3	80.0	0.86	0.86	0.86	0.93	0.86	1.02
4	0.50	0.48	0.50	0.00	0.62	0.00	0.78
5	0.69	0.83	0.83	0.83	0.91	0.83	1.00
6	0.46	0.58	0.58	0.58	0.69	0.00	0.82
7	0.53	0.03	0.53	0.53	0.65	0.00	0.80
8	0.77	0.60	0.77	0.77	0.85	0.77	0.95
9	0.91	0.49	0.91	0.91	0.98	0.91	1.06
10	0.54	0.50	0.54	0.54	0.65	0.00	0.80
11	0.44	0.35	0.44	0.00	0.58	0.00	0.76
:	:	:	: :	:	:	· ·	:
200	0.44	0.54	0.54	0.54	0.66	0.00	0.80
Average			0.68	0.60	0.76	0.38	0.85

Behavior vs. Simulations (cont.)

Behavior vs. Simulations (cont.) ____

Behavior vs. Simulations (cont.) ____

Behavior vs. Simulations (cont.) __

Behavior vs. Simulations (cont.) ____

Behavior vs. Simulations (cont.) _

Assumption: bidders are happy

with their bids.

Assumption: bidders are happy with their bids.

Equilibrium: bidder's bid must be best response to competing bid distribution.

Assumption: bidders are happy with their bids.

Equilibrium: bidder's bid must be best response to competing bid distribution.

Assumption: bidders are happy with their bids.

Equilibrium: bidder's bid must be best response to competing bid distribution.

Observation: competing bids distribution is observed in data.

Assumption: bidders are happy with their bids.

Equilibrium: bidder's bid must be best response to competing bid distribution.

Observation: competing bids distribution is observed in data.

Approach:

- given bid distribution, solve for bid strategy
- 2. invert bid strategy to get bidder's value for item from bid.

Example: two bidders, first-price auction.

ullet Competing bid is uniform on [0,1]

- ullet Competing bid is uniform on [0,1]
- How should you bid?

- ullet Competing bid is uniform on [0,1]
- How should you bid?
- What's your expected utility with value v and bid b?

- ullet Competing bid is uniform on [0,1]
- How should you bid?
- What's your expected utility with value v and bid b?

$$\mathbf{E}[\mathrm{utility}(v,b)] = (v-b) \times \mathbf{Pr}[\mathrm{you\ win\ with\ bid\ }b]$$

- ullet Competing bid is uniform on [0,1]
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \Pr[\text{you win with bid } b] \\ &= (v-b) \times b = vb - b^2 \end{aligned}$$

Example: two bidders, first-price auction.

- ullet Competing bid is uniform on [0,1]
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \Pr[\text{you win with bid } b] \\ &= (v-b) \times b = vb - b^2 \end{aligned}$$

ullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve

Bidder's Bid Optimization -

- ullet Competing bid is uniform on [0,1]
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \Pr[\text{you win with bid } b] \\ &= (v-b) \times b = vb - b^2 \end{aligned}$$

- ullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Bidder's Bid Optimization .

Example: two bidders, first-price auction.

- ullet Competing bid is uniform on [0,1]
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \Pr[\text{you win with bid } b] \\ &= (v-b) \times b = vb - b^2 \end{aligned}$$

- ullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: Infer that bidder with bid b has value v=2b.

Conclusion 2: So values are uniform on [0, 2].

Bidder's Bid Optimization -

Example: two bidders, first-price auction.

- ullet Competing bid is uniform on [0,1]
- How should you bid?
- ullet What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \Pr[\text{you win with bid } b] \\ &= (v-b) \times b = vb - b^2 \end{aligned}$$

- ullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: Infer that bidder with bid b has value v=2b.

Conclusion 2: So values are uniform on [0,2].

Conclusion 3: From value distribution can solve for equilibrium behavior in any auction!

Inference Equation: for first price auction

$$v(q) = b(q) + \frac{x(q)b'(q)}{x'(q)}$$

Inference Equation: for first price auction

$$v(q) = b(q) + \frac{x(q)b'(q)}{x'(q)}$$

Notes:

• allocation rule $x(\cdot)$ and derivative $x'(\cdot)$ are known.

Inference Equation: for first price auction

$$v(q) = b(q) + \frac{x(q)b'(q)}{x'(q)}$$

Notes:

- allocation rule $x(\cdot)$ and derivative $x'(\cdot)$ are known.
- bid function $b(\cdot)$, $b'(\cdot)$ must be inferred.

Inference Equation: for first price auction

$$v(q) = b(q) + \frac{x(q)b'(q)}{x'(q)}$$

Notes:

- allocation rule $x(\cdot)$ and derivative $x'(\cdot)$ are known.
- bid function $b(\cdot)$, $b'(\cdot)$ must be inferred.
- value function $v(\cdot)$ can be inferred from $\hat{v}(q) = \hat{b}(q) + \frac{x(q)b'(q)}{x'(q)}$.

Inference Equation: for first price auction

$$v(q) = b(q) + \frac{x(q)b'(q)}{x'(q)}$$

Notes:

- allocation rule $x(\cdot)$ and derivative $x'(\cdot)$ are known.
- bid function $b(\cdot)$, $b'(\cdot)$ must be inferred.
- value function $v(\cdot)$ can be inferred from $\hat{v}(q) = \hat{b}(q) + \frac{x(q)\hat{b}'(q)}{x'(q)}$.

Estimators: for N samples from $b(\cdot)$:

• standard $\hat{b}(\cdot)$ estimators have rate \sqrt{N} .

Inference Equation: for first price auction

$$v(q) = b(q) + \frac{x(q)b'(q)}{x'(q)}$$

Notes:

- allocation rule $x(\cdot)$ and derivative $x'(\cdot)$ are known.
- bid function $b(\cdot)$, $b'(\cdot)$ must be inferred.
- value function $v(\cdot)$ can be inferred from $\hat{v}(q) = \hat{b}(q) + \frac{x(q)b'(q)}{x'(q)}$.

Estimators: for N samples from $b(\cdot)$:

- standard $\hat{b}(\cdot)$ estimators have rate \sqrt{N} .
- standard $\hat{b}'(\cdot)$ estimators have rate worse than \sqrt{N} (under assumptions on $b(\cdot)$, e.g., continuity)

Inference Equation: for first price auction

$$v(q) = b(q) + \frac{x(q)b'(q)}{x'(q)}$$

Notes:

- allocation rule $x(\cdot)$ and derivative $x'(\cdot)$ are known.
- bid function $b(\cdot)$, $b'(\cdot)$ must be inferred.
- value function $v(\cdot)$ can be inferred from $\hat{v}(q) = \hat{b}(q) + \frac{x(q)b'(q)}{x'(q)}$.

Estimators: for N samples from $b(\cdot)$:

- standard $\hat{b}(\cdot)$ estimators have rate \sqrt{N} .
- standard $\hat{b}'(\cdot)$ estimators have rate worse than \sqrt{N} (under assumptions on $b(\cdot)$, e.g., continuity)
- "Mechanism Design for Data Science" [Chawla, Hartline, Nekipelov '14]

Inference Equation: for first price auction

$$v(q) = b(q) + \frac{x(q)b'(q)}{x'(q)}$$

Notes:

- allocation rule $x(\cdot)$ and derivative $x'(\cdot)$ are known.
- bid function $b(\cdot)$, $b'(\cdot)$ must be inferred.
- value function $v(\cdot)$ can be inferred from $\hat{v}(q) = \hat{b}(q) + \frac{x(q)b'(q)}{x'(q)}$.

Estimators: for N samples from $b(\cdot)$:

- standard $\hat{b}(\cdot)$ estimators have rate \sqrt{N} .
- standard $\hat{b}'(\cdot)$ estimators have rate worse than \sqrt{N} (under assumptions on $b(\cdot)$, e.g., continuity)
- "Mechanism Design for Data Science" [Chawla, Hartline, Nekipelov '14]

Note: require $x'(q) > \epsilon$ for estimation at q.

Inference Equation: for first price auction

$$v(q) = b(q) + \frac{x(q)b'(q)}{x'(q)}$$

Notes:

- allocation rule $x(\cdot)$ and derivative $x'(\cdot)$ are known.
- bid function $b(\cdot)$, $b'(\cdot)$ must be inferred.
- value function $v(\cdot)$ can be inferred from $\hat{v}(q) = \hat{b}(q) + \frac{x(q)b'(q)}{x'(q)}$.

Estimators: for N samples from $b(\cdot)$:

- standard $\hat{b}(\cdot)$ estimators have rate \sqrt{N} .
- standard $\hat{b}'(\cdot)$ estimators have rate worse than \sqrt{N} (under assumptions on $b(\cdot)$, e.g., continuity)
- "Mechanism Design for Data Science" [Chawla, Hartline, Nekipelov '14]

Note: require $x'(q) > \epsilon$ for estimation at q.

Questions?

Research Directions _

Research Directions:

- are there simple mechanisms that are approximately optimal?
 (e.g., price of anarchy or price of stability)
- is the optimal mechanism tractible to compute (even if it is complex)?
- what are optimal auctions for multi-dimensional agent preferences?
- what are the optimal auctions for non-linear agent preferences,
 e.g., from budgets or risk-aversion?
- are there good mechanisms that are less dependent on distributional assumptions?

BNE and Auction Theory Homework.

- 1. For two agents with values U[0,1] and U[0,2], respectively:
 - (a) show that the first-price auction is not socially optimal in BNE.
 - (b) give an auction with "pay your bid if you win" semantics that is.
- 2. What is the virtual value function for an agent with value U[0,2]?
- 3. What is revenue optimal single-item auction for:
 - (a) two agents with values U[0,2]? n agents?
 - (b) two agents with values U[a,b]?
 - (c) two values U[0,1] and U[0,2], respectively?
- 4. For n agents with values U[0,1] and a *public good*, i.e., where either all or none of the agents can be served,
 - (a) What is the revenue optimal auction?
 - (b) What is the expected revenue of the optimal auction?(use big-oh notation)

http://jasonhartline.com/MDnA/