Appello n.3 di **FAMP** 17 Luglio 2018

Scrivere sul foglio intestato le proprie generalità! COSA CONSEGNARE: questo foglio e il foglio protocollo intestato con TUTTI gli SVOLGIMENTI degli esercizi affrontati. NON INSERIRE FOGLI DI BRUTTA COPIA. Necessaria la sufficienza sulla teoria e sugli esercizi

TEMPO Esercizi (Analisi + Probabilità): 2 ore e 30 minuti

Analisi

- 1. Esiste una funzione $f: \mathbb{R}^2 \to \mathbb{R}$ di classe C^2 tale che $\nabla f(x,y) = (3x + 5y, 4x + 3y)$?
- 2. In quali punti (x,y) la direzione di maggior crescita della funzione $f(x,y)=x^2+y^2-2x-4y$ è $(1/\sqrt{2},1/\sqrt{2})$?
- 3. Calcolare l'integrale

$$\int_E (x^2 + y^2) \, dx \, dy \, dz,$$

dove
$$E = \{(x, y, z) : x^2 + y^2 \le 4, \sqrt{x^2 + y^2} \le z \le 2\}.$$

- 4. Trovare i punti dell'insieme $A = \{(x,y,z): z^2 = xy+1\}$ che sono più vicini all'origine (ammetterne l'esistenza). Sugg: il quadrato della distanza di un punto (x,y,z) di A all'origine è...)
- 5. Dire se il campo $\vec{F}(x,y) = (3+2xy,x^2-3y^2)$ è conservativo su \mathbb{R}^2 . Calcolare poi l'integrale

$$\int_{r} \vec{F}(x) \cdot dx,$$

dove
$$r(t) = (e^t \sin t, e^t \cos t), t \in [0, \pi].$$

6. Integrare x^2 sul cono $z = \sqrt{x^2 + y^2}, 0 \le z \le 1$.

Probabilità

Gli esercizi vanno svolti con le dovute giustificazioni sul foglio di bella. Questo foglio va consegnato unitamente al solo foglio di bella. Fare i conti fino alla fine, esprimendo i risultati in termini di frazioni

- 1. Quanti sono gli anagrammi di SANSCRITO nei quali non vi sono due S vicine?.
- 2. Una azienda produce tablet. La probabilità che un tablet prodotto abbia il difetto S (schermo) ma non il difetto T (tastiera) è 0.1; la probabilità che abbia entrami i difetti S e T è 0.2; sapendo che un tablet non ha il difetto T, la probabilità che abbia il difetto S è 0.125.
 - (a) Calcolare la probabilità che il tablet abbia il difetto S;
 - (b) Calcolare la probabilità che il tablet abbia il difetto T;
 - (c) Calcolare la probabilità che il tablet abbia il difetto T sapendo che non ha il difetto S.
- 3. Una azienda produce eliche per motori fuoribordo il cui passo è normalmente distribuito con media 11 cm e varianza 0.25 cm². Le eliche con passo compreso tra 10.8 cm e 11.2 cm sono ritenute accettabili per la commercializzazione.
 - (a) Calcolare la probabilità che un elica sia accettabile;
 - (b) Quanto dovrebbe valere la varianza affinché la probabilità che un elica sia accettabile superi il 70%? (esprimere il risultato in forma di frazione)
- 4. Siano X ed Y due variabili aleatorie con densità congiunta

$$f_c(x,y) = \begin{cases} c(x^2+y) & \text{se } 0 \le x \le y \le 2, \\ 0 & \text{altrimenti.} \end{cases}$$

- (a) Calcolare il valore della costante c.
- (b) Posto c uguale al valore determinato nel punto precedente, calcolare la densità marginale della v.a. Y.
- (c) (Facoltativo) Determinare $P(X \le 1/2|Y \le 1)$.

Standard Normal (Z) Table

Values in the table represent areas under the curve to the left of Z quantiles along the margins.

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Examples: $z_{.5000} = 0.00$; $z_{.9750} = +1.96$; $z_{.0250} = -1.96$

