# COMS W4701: Artificial Intelligence

Lecture 6b: Probabilistic Models

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

## Today

- Probability, random variables, and distributions
- Joint and conditional probabilities and distributions

- Product rule, chain rule
- Bayes' theorem, independence

Markov chains

### Uncertainty

- So far: Planning and decision making in fully observable environments
- How do we reason in uncertain and partially observable environments?

- Belief state: A probability distribution over the entire state space
- Represent both uncertainty in the problem as well as degree of belief
- We can avoid the hard requirements of logic-based approaches

- Recall 90s AI resurgence relied heavily on probabilistic approaches
  - Diagnosis, speech and image recognition, tracking, mapping, error correction, etc.

### **Probabilities**

- Sample space: Set  $\Omega$  of all possible outcomes of a random experiment
- Event: Subset of a sample space (often described by a logical proposition)
- Probability model (function):  $P: \Omega \to [0,1]$  s.t.  $\sum_{\omega \in \Omega} P(\omega) = 1$
- Probability of an event  $\phi: P(\phi) = \sum_{\omega \in \phi} P(\omega)$ 
  - Properties:  $P(\emptyset) = 0$ ,  $P(\Omega) = 1$ ,  $P(\overline{\phi}) = 1 P(\phi)$
- Uniform probability model:  $P(\omega) = 1/|\Omega| \ \forall \omega$  and  $P(\phi) = |\phi|/|\Omega|$
- Probabilities may represent frequencies or subjective degrees of belief

### Random Variables

- A random variable  $X: \Omega \to R$  maps sample space outcomes to some range R
- Ranges may be discrete/continuous, finite/infinite, ordered/unordered
- The **probability distribution** of a RV *X* enumerates range value probabilities
- Categorical distributions describe discrete and finite RVs in a table or vector
- Can use logical operators to combine different outcomes

|  | P(W | = sun) | = P | (sun) | ) = 0.6 |
|--|-----|--------|-----|-------|---------|
|--|-----|--------|-----|-------|---------|

- $P(sun \ OR \ rain) = 0.6 + 0.1 = 0.7$
- $P(cloud \ OR \sim snow)$

$$= P(cloud) + P(\sim snow) - P(cloud AND \sim snow) = 0.29 + 0.99 - 0.29 = 0.99$$

### Joint Probability Distributions

- Joint distributions enumerate probabilities of combinations of multiple RVs together
- Size of full categorial joint distribution =  $|X_1| \times |X_2| \times \cdots \times |X_n|$
- Given a joint distribution, we can also find distributions over subsets of RVs
- Marginalization: Sum out irrelevant RVs

$$P(x) = \sum_{y \in Y} P(x, y)$$

| Т    | W    | Pr(T,W) |
|------|------|---------|
| hot  | sun  | 0.4     |
| hot  | rain | 0.1     |
| cold | sun  | 0.2     |
| cold | rain | 0.3     |

$$P(w) = \sum_{t} P(t, w)$$

| W    | P(W) |
|------|------|
| sun  | 0.6  |
| rain | 0.4  |

## **Conditional Probability Distributions**

- Conditional probability: Probability of an event given that another one occurred
- Ratio between joint probability and marginal probability of known event

| Т    | W    | Pr(T,W) |
|------|------|---------|
| hot  | sun  | 0.4     |
| hot  | rain | 0.1     |
| cold | sun  | 0.2     |
| cold | rain | 0.3     |

$$P(sun|hot) = \frac{P(sun,hot)}{P(hot)} = \frac{0.4}{0.5} = \frac{4}{5}$$

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

$$P(sun|cold) = \frac{P(sun,cold)}{P(cold)} = \frac{0.2}{0.5} = \frac{2}{5}$$

- A conditional distribution contains the probabilities of an unobserved variable, all conditioned on one outcome
- Equivalent to normalizing all joint probabilities with the conditioned outcome values

| W    | P(W hot) |
|------|----------|
| sun  | 0.8      |
| rain | 0.2      |

| W    | P(W cold) |  |  |
|------|-----------|--|--|
| sun  | 0.4       |  |  |
| rain | 0.6       |  |  |

### **Product Rule**

• The **product rule** yields joint probability P(x,y) from a marginal P(y) and conditional P(x|y) P(y)P(x|y) = P(x,y)

• We can also follow with marginalization to find the "other" marginal P(x)





| D   | W    | Pr   |
|-----|------|------|
| wet | sun  | 0.08 |
| dry | sun  | 0.72 |
| wet | rain | 0.14 |
| dry | rain | 0.06 |

P(D,W)



### Chain Rule

- The product rule can be extended to more than two RVs
- Idea: Successively build up larger joint probabilities

$$P(x_1)P(x_2|x_1)P(x_3|x_1,x_2) = P(x_1,x_2)P(x_3|x_1,x_2)$$

$$= P(x_1,x_2)\frac{P(x_1,x_2,x_3)}{P(x_1,x_2)} = P(x_1,x_2,x_3)$$

• In general:  $P(x_1, ..., x_n) = P(x_1)P(x_2|x_1) \cdots P(x_n|x_1, ..., x_{n-1})$ =  $\prod_i P(x_i|x_1, ..., x_{i-1})$ 

### Chain Rule

The chain rule can also be applied when all probabilities are conditioned on the same observation:

$$P(x_{1}|\mathbf{x}_{0})P(x_{2}|x_{1},\mathbf{x}_{0})P(x_{3}|x_{1},x_{2},\mathbf{x}_{0})$$

$$= \frac{P(\mathbf{x}_{0},x_{1})}{P(\mathbf{x}_{0})} \frac{P(\mathbf{x}_{0},x_{1},x_{2})}{P(\mathbf{x}_{0},x_{1})} \frac{P(\mathbf{x}_{0},x_{1},x_{2},x_{3})}{P(\mathbf{x}_{0},x_{1},x_{2})}$$

$$= \frac{P(\mathbf{x}_{0},x_{1},x_{2},x_{3})}{P(\mathbf{x}_{0})} = P(x_{1},x_{2},x_{3}|\mathbf{x}_{0})$$

• In general:  $P(x_1, ..., x_n | y_1, ..., y_m) = \prod_i P(x_i | x_1, ..., x_{i-1}, y_1, ..., y_m)$ 

### Example: Chain Rule

- Given: P(a) = 0.5, P(b|a) = 0.2, P(c|a,b) = 0.7
- Product rule:  $P(a,b) = P(a)P(b|a) = 0.5 \times 0.2 = 0.1$
- (Also) product rule:  $P(b, c|a) = P(b|a)P(c|a, b) = 0.2 \times 0.7 = 0.14$
- Chain rule:  $P(a,b,c) = P(a)P(b|a)P(c|a,b) = 0.5 \times 0.2 \times 0.7$ =  $P(a,b)P(c|a,b) = 0.1 \times 0.7$ =  $P(a)P(b,c|a) = 0.5 \times 0.14$
- What if we were given P(c|a) or P(c|b) instead of P(c|a,b)?
- Can compute P(a,c) = P(a)P(c|a), but we can't do anything with P(c|b)!

## Bayes' Theorem

 We can combine conditional probability with the product rule to express a posterior probability given evidence:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$
  $P(x|y) = \frac{P(y|x)}{P(y)}P(x)$ 

• P(x) is the *prior* and P(y|x) is the *likelihood* of the evidence

As with chain rule, this also holds if all terms are conditioned on another variable(s) z:

$$P(x|y,z) = \frac{P(y|x,z)P(x|z)}{P(y|z)}$$

### Example: Probabilistic Inference

Bayes' theorem can be used to infer hidden information given evidence

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

#### Binary random variables:

- M: meningitis
- S: stiff neck

$$P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01$$
 Known probabilities

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)}$$

$$= \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999} = 0.008 \qquad \text{Much smaller than } P(+s|+m)!$$

### Independence

- Two variables are independent if we can factor their joint distribution
- Breaks down a large joint distribution into smaller marginal ones

$$X \perp \!\!\! \perp Y$$
  $\forall x, y: P(x, y) = P(x)P(y); P(x|y) = P(x)$ 

Knowing something about X tells us nothing about Y

- This is the *only case* in which we can put together marginal distributions to reconstruct a joint distribution!
- Second identity also useful for simplifying chain rule

### Example: Independence

- Suppose we have N binary RVs
- Joint distribution would have size  $O(2^N)$  (rows)
- What if we can assert independence?



• We can represent the same information using N 2-row tables (O(2N))

| $P(X_1)$ |     | <br>$P(X_2)$ |     | $P(X_n)$ |     |
|----------|-----|--------------|-----|----------|-----|
| Н        | 0.5 | Н            | 0.5 | <br>Η    | 0.5 |
| Т        | 0.5 | Т            | 0.5 | Т        | 0.5 |

## Conditional Independence

- Absolute / marginal independence is often difficult to assert
- It is easier to assert this relationship given some evidence

Two variables can be conditionally independent given a third variable:

$$X \perp \!\!\!\perp Y | Z \qquad \qquad \forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$
$$\forall x, y, z : P(x|z, y) = P(x|z)$$

• Given Z, knowing something about X does not affect our belief about Y

## **Temporal Reasoning**

- Scenario: An agent's state changes over time, but not directly observable
- Belief state: A random variable  $X_t$  representing the agent's current state, along with a probability distribution over the state space
- A probabilistic *transition model* describes how  $X_t$  is derived from past states

• We will be interested in looking at how  $X_t$  changes over time, possibly incorporating sensor information





### **Markov Chains**

- Markov chain: A sequence of RVs  $X_1, X_2, ...,$  s.t.  $X_t$  only depends on  $X_{t-1}$
- Parameters: Initial state  $P(X_1)$ , transition model  $P(X_t|X_{t-1})$
- If  $|X_t| = n$ , we have  $n^2$  different  $P(x_t|x_{t-1})$  transition probabilities
- Define a  $n \times n$  transition matrix T, where  $T_{ij} = P(X_t = j \mid X_{t-1} = i)$

$$T = \begin{bmatrix} P(X_t = 1 \mid X_{t-1} = 1) & \cdots & P(X_t = n \mid X_{t-1} = 1) \\ \vdots & \ddots & \vdots \\ P(X_t = 1 \mid X_{t-1} = n) & \cdots & P(X_t = n \mid X_{t-1} = n) \end{bmatrix}$$

• Sum of each row  $\sum_{j} T_{ij} = \sum_{j} P(X_t = j \mid X_{t-1} = i) = 1$ 

### Markov Assumption

• Markov assumption:  $X_t$  is independent of all past states given  $X_{t-1}$ 

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow X_3 \coprod X_1 \mid X_2$$

$$X_1 \coprod X_1, \dots, X_{t-2} \mid X_{t-1} \longrightarrow X_4 \coprod X_1, X_2 \mid X_3 \longrightarrow X_4 \coprod X_1 \longrightarrow X_4 \longrightarrow X_4 \coprod X_1 \longrightarrow X_4 \coprod X$$

Chain rule for joint distribution can be greatly simplified!

$$P(X_1, X_2, \dots, X_T) = P(X_1)P(X_2|X_1)P(X_3|X_2)\dots P(X_T|X_{T-1})$$
$$= P(X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})$$

### **Example: Markov Chains**

rain sun
$$P(X_1) = \begin{pmatrix} 0.8 & 0.2 \end{pmatrix} \qquad T = \begin{pmatrix} 0.7 & 0.3 \\ 0.1 & 0.9 \end{pmatrix} \text{ rain sun}$$



- $P(X_2 = rain) = \sum_{x_1} P(x_1) P(X_2 = rain | x_1) = 0.8(0.7) + 0.2(0.1) = 0.58$
- $P(X_2 = sun) = \sum_{x_1} P(x_1) P(X_2 = sun | x_1) = 0.8(0.3) + 0.2(0.9) = 0.42$
- Alternatively, can compute  $P(X_2) = P(X_1)T$ ,  $P(X_3) = P(X_2)T$ , ...,  $P(X_t) = P(X_{t-1})T$
- More generally,  $P(X_t) = P(X_1)T^{t-1}$

### **Stationary Distributions**

- Observation:  $\pi = (.25 ..75)$  satisfies  $\pi = \pi \cdot T$
- $\pi$  is an *eigenvector* of  $T^{\top}$  corresponding to eigenvalue 1
- $\pi$  is a **stationary distribution** of this transition matrix

$$T = \begin{pmatrix} 0.7 & 0.3 \\ 0.1 & 0.9 \end{pmatrix}$$

- All transition matrices have at least one stationary distribution
- Find the appropriate eigenvector  $\pi$  of  $T^{\top}$  and rescale as  $\pi/\sum_i \pi_i$  to ensure that the vector sum is 1

Some Markov chains may have multiple stationary distributions

## Markov Chain Applications

- Bioinformatics, population dynamics, epidemic modeling
- Thermodynamics, statistical mechanics, chemical reaction modeling
- Queuing theory, income and market modeling, game modeling

- Speech recognition and text generation, n-gram models
  - Unigram model:  $P(word_t = i)$ , bigram model:  $P(word_t = i \mid word_{t-1} = j)$
- Web browsing: PageRank algorithm to determine webpage traffic
  - Model probabilities of navigating to existing outgoing link or arbitrary webpage

### Summary

- Probability is the language of uncertainty
- Belief states are probability distributions, usually over random variables

- Given a joint distribution, we can do find marginal and conditional probs
- For inference, use conditioning, product/chain rule, Bayes' theorem

 Independence and conditional independence assert relationships between variables, can help simplify models