Zadanie 7 Lista 4

Piotr Popis, 245162

December 7, 2019

1 Zadanie 1

1.1 Opis problemu

Celem zadania jest implementacja funkcji obliczającej ilorazy różnicowe. Danymi wejściowymi są:

x- wektor długości n+1 zawierający węzły $x_0, ..., x_n$ $x[1] = x_0, ..., x[n+1] = x_n$ f- wektor długości n+1 zawierający wartości interpolowanejfunkcji w węzłach $f(x_0), ..., f(x_n)$

Wyniki:

fx- wektor długości
$$n+1$$
 zawierający obliczone ilorazy różnicowe
$$fx[1]=f[x_0],$$

$$fx[2]=f[x_0,x_1],...,fx[n]=f[x_0,...,x_{n-1}],fx[n+1]=f[x_0,...,x_n].$$

Addytywnym utrudnieniem jest restrykcja użycia tablicy dwuwymiarowej, czyli macierzy.

1.2 Rozwiązanie

Ilorazem różnicowym n- tego rzędu funkcji $f: X \longrightarrow Y$ w punktach $x_0, ..., x_n \in X$ nazywamy funkcję:

$$f(x_0, ..., x_n) := \sum_{i=1}^{n} \frac{f(x_i)}{\prod_{j=1}^{n} (x_i - x_j)}$$

W celu realizacji zadania, czyli uniknięcia wykorzystania macierzy skorzystamy z zależności rekurencyjnej:

$$\begin{split} 1.i &= 0 \\ f[x_0] &= f(x_0) \\ 2.i &= 1 \\ f[x_0, x_1] &= \frac{f(x_1) - f(x_0)}{x_1 - x_0} \\ 3.i &= n \\ f[x_0, ..., x_n] &= \frac{f(x_1, ..., x_n) - f(x_0, ..., x_{n-1})}{x_n - x_0} \\ \text{Znając węzły } x_n \text{ i wartości funkcji } f(x_n), \text{ można utworzyć dwuwymiarową tablicę ilorazów różnicowych. Jednak} \end{split}$$

Znając węzły x_n i wartości funkcji $f(x_n)$, można utworzyć dwuwymiarową tablicę ilorazów różnicowych. Jednak algorytm można zoopytmalizować, ponieważ wystarczy użyć tablicy jednowymiarowej w do zapamiętywania dwóch poprzednich wartości (tablicę aktualizujemy od dołu do góry i od lewej do prawej). Pozostałe wartości tylko i wyłącznie spowalniają nasz algorytm. Początkowymi wartości są w_i są odpowiadające im $f[x_i]$. W kolejnych krokach aktualizowane jest jedno miejsce mniej.

2 Zadanie 2

2.1 Opis problemu

Napisać funkcję obliczającą wartość wielomianu interpolacyjnego stopnia n w postaci Newtona $N_n(x)$ w punkcie x=t za pomocą algorytmu Hornera w czasie $\theta(n)$. Dane wejściowe:

x– wektor długości n+ 1 zawierający węzły
$$x_0,...,x_n$$

$$x[1] = x0,...,x[n+1] = x_n$$
 fx– wektor długości n+ 1 zawierający ilorazy różnicowe
$$fx[1] = f[x_0],$$

$$fx[2] = f[x_0,x_1],...,fx[n] = f[x_0,...,x_{n-1}],fx[n+1] = f[x_0,...,x_n]$$

Wyniki:

a – wektor długości n+1 zawierający obliczone współczynniki postaci naturalnej $a[1]=a_0,$ $a[2]=a_1,...,a[n]=a_{n-1},a[n+1]=a_n.$

2.2 Rozwiązanie

W celu wyznaczenia wartości wielomianu interpolacyjnego stopnia n w postaci Newton'a $N_n(x)$ w punkcie x = t zaimplementowano uogólniony schemat Hornera.

$$N_n(x) = \sum_{i=0}^k c_i \prod_{j=0}^{i-1} (x - x_j)$$

Wartość wielomianu przyjmowana w danym punkcie t obliczamy, kosztystając z:

$$w(x) = (x - t) \cdot q(z) \cdot w(t)$$

Można też śmiało stwierdzić, iż metoda Newton'a jest trudniejsza w impementacji niż np metoda Lagrange'a i wymaga większej ilości oddzielnych kroków. Jest jednak znacznie lepiej uwarunkowana nmerycznie. W metodzie najpierw wzynaczane są odpowiednie ilorazy różnicowe, a dopiero później z ich użyciem- interpolowa funkcja. Algorytm zaczynamy od przypisania do zmiennej nt konkretnego wektora ilorazów różnicowych. W kolejnych krokach od n-1 zwiększamy wartość wektora pomnożoną przez różnicę wartości węzła i weilomianu t. Otrzymujemy:

$$nt = f_x(i) + nt \cdot (t - \omega[i])$$
, gdzie f_x jest wektorem ilorazów różnicowych.

Algorytm działa w czasie liniowym.

3 Zadanie 3

3.1 Opis Problemu

Celem zadania jest kreacja funkcji obliczającej współczynniki postaci naturalnej wielomianu interpolacyjnego znając współczynniki wielomianu interpolacyjnego w postaci Newton'a $c_0 = f[x_0], c_1 = f[x_0, x_1], c_2 = f[x_0, x_1, x_2], ..., c_n = f[x_0, ..., x_n]$ (ilorazy różnicowe) oraz węzły $x_0, x_2, ..., x_n$ działającą w czasie $\theta(n^2)$. Dane wejściowe:

x- wektor długości n+ 1 zawierający węzły
$$x_0,...,x_nx[1]=x_0,...,x[n+1]=x_n$$
 fx- wektor długości n+ 1 zawierający ilorazy różnicowe $fx[1]=f[x_0],fx[2]=f[x_0,x_1],...,fx[n]=f[x_0,...,x_{n-1}],fx[n+1]=f[x_0,...,x_n]$

Wyniki:

a– wektor długości n+ 1 zawierający obliczone współczynniki postaci naturalnej
$$a[1]=a_0,$$

$$a[2]=a_{...},a[n]=a_{n-1},a[n+1]=a_n$$

3.2 Rozwiązanie

Korzystając z faktu, iż współczynnik sąsiadujący z x^k to $f[x_0, x_1, ..., x_k]$, czyli c_n przy najwyżej potędze wielomianu w postaci Newton'a. Ponownie wykorzystujemy ugólnienie schematu Hornera, a następnie z wzoru na postać Newton'a podanego na wykładzie:

$$p(x) = \sum_{k=0}^{n} f[x_0, ..., x_k] \prod_{j=0}^{k-1} (x - x_j)$$

Wielomian posiada współczynniki przy odpowiadających im potęgach $a_0, a_1, ..., a_k$, gdzie współczynnik a_k leży przy największej potędze. Dokonujemy mnożenia danego wielomianu począwszy od jego ostatnich potęg. W każdym kroku mnożemy nasz wielomian przez dwumian $(x - x_{n-1})$. Ostateczny wielomian wynikowy będzie zaprezentwoany jako prosty wektor współczynników analagoiczny do wektora wejściowego. W wyniku wykonanych mnożeń otrzymujemy postać wynikową wielomianu, którego współczynniki wynoszą kolejno $a_k, a_{k-1}, ..., a_0$. Aby wynik był postaci $a_0 + a_1x + a_2^2 + ... + a_nx^n$ musimy dokonać również przestawienia. Całkowita złożoność obliczeniowa wynosi $\theta(n^2)$, ponieważ złożoność obliczeniowa schmeatu Horner;a wynosi $\theta(n)$ oraz mnożenie wielomianów również $\theta(n)$