INSTALAÇÕES ELÉTRICAS

PROVA II de ELT 224

BATISTA, H.O.B., Alves, W.F.O. ES96704 ES96708

Departamento de Engenharia Elétrica, Universidade Federal de Viçosa (UFV) E-mail:hiago.batista@ufv.br, werikson.alves@ufv.br

Determinar a seção dos condutores alimentados pelo CCM1

Sendo $L=50m, T=40^{\circ}C, \ V=380 \ V, \ FP=\eta=1$, e utilizando isolação de PVC e cabo multipolar (3 circuitos) em bandeja, temos:

Primeiro faremos a conversão da potência em cv para watt, sendo assim:

$$M_1 = 735, 5 \cdot 150 = 110, 3 \, kW$$
 (1) $M_3 = 735, 5 \cdot 7, 5 = 5, 52 \, kW$ (3)

$$M_2 = 735, 5 \cdot 75 = 55, 16 \, kW$$
 (2)

Sendo assim, temos que a corrente de projeto para cada motor será:

$$I_1 = \frac{110,3 k}{\sqrt{3} \cdot 380} = 152,4 A$$
 (4) $I_3 = \frac{5,52 k}{\sqrt{3} \cdot 380} = 8,39 A$ (6)

$$I_2 = \frac{55,16 \, k}{\sqrt{3} \cdot 380} = 83,81 \, A \tag{5}$$

Para uma temperatura de $T=40^{\circ}C$ em PVC, temos uma correção de 0,87. Para o fator de agrupamento, temos 3 circuitos (cabo multipolar) em camada de multipolar, portanto o fator de correção é 0,82:

$$I_1' = \frac{110,3 k}{\sqrt{3} \cdot 380 \cdot 0,87 \cdot 0,82} = 213,62 A \qquad (7) \qquad \qquad I_3' = \frac{5,52 k}{\sqrt{3} \cdot 380 \cdot 0,87 \cdot 0,82} = 11,76 A \qquad (9)$$

$$I_2' = \frac{55,16 \ k}{\sqrt{3} \cdot 380 \cdot 0,87 \cdot 0,82} = 117,48 \ A$$
 (8)

Portanto pelo método da condução de corrente e a instalação B2 com 3 fios carregados:

$$S_1 = 150mm^2$$
 $S_2 = 50mm^2$ $S_3 = 1mm^2$ (10)

Pelo método da queda de tensão, temos que a distancia L=50m, e as correntes foram dadas na Eq. 7, 8 e 9, portanto:

$$S_{c1} = \frac{100\sqrt{3}}{57} \cdot \frac{213,62 \cdot 50}{380 \cdot 4} = 21,35 \ mm^2 \qquad (11) \qquad \qquad S_{c3} = \frac{100\sqrt{3}}{57} \cdot \frac{11,76 \cdot 50}{380 \cdot 4} = 1,18mm^2 \qquad (13)$$

$$S_{c2} = \frac{100\sqrt{3}}{57} \cdot \frac{117,48 \cdot 50}{380 \cdot 4} = 11,74 \, mm^2 \qquad (12)$$

Portanto, utilizando valores comerciais, pelo método da queda de tensão temos:

$$S_{c1} = 25mm^2$$
 $S_{c2} = 16mm^2$ $S_{c3} = 1,5mm^2$ (14)

Por fim, utilizaremos os maiores valores obtidos pelo método da condução de corrente, e da queda de tensão, mas sempre respeitando os valores mínimos da norma, portanto os valores serão:

$$S_{c1} = 150 \text{ mm}^2 \quad S_{c2} = 50 \text{ mm}^2 \quad S_{c3} = 2,5 \text{ mm}^2$$
 (15)

Vantagens da utilização das eletrocalhas em relação aos eletrodutos.

Os eletroduto tem como função principal proteger os fios condutores contra agentes externos (choques mecânicos e agentes químicos). Já as eletrocalhas possuem como função principal proteger e dar suporte a rede elétrica do local, havendo dois modelos: a perfurada e a não perfurada. Portanto, uma das principais diferenças é que em caso de haver algum problema no condutor, com o uso do eletrocalha, torna-se mais fácil a manutenção da rede elétrica do local, em relação ao eletroduto que está embutido na alvenaria.

Outra vantagem, é que com o uso da eletrocalha a capacidade de condução de corrente do condutor será diferente. Observe, por exemplo que, para três circuitos em um mesmo condutor utilizando eletrodutos, temos um fator de correção de 0,7 e para a eletrocalha não perfurada temos um fator de 0,79 e para a perfurada temos 0,82.

Harmônicas no sistema elétrico brasileiro.

As harmônicas são injeções de ondas de alta frequência múltiplas de 60 Hz na rede elétrica. Essa forma de onda, de acordo com a NBR5410 4.1.12, é danoso e indesejado para uma boa eficiência e funcionamento dos componentes, e dependendo da sua amplitude deve ser levado em consideração os efeitos das harmônicas. Além disso o item 4.2.7.1 da NBR5410, nos diz que devemos tomar providencias quando qualquer tipo de característica seja prejudicial aos outros componentes.

Portanto, verificado a presença de harmônicas no sistema elétrico, a NBR5410, nos diz nos itens 6.2.6.1.2 até 6.2.6.1.5, que devemos adotar medidas de correção na seção do condutor de fase e neutro, pois as harmônicas diminuem a capacidade de corrente do condutor.

Comentários sobre aterramento.

Existe basicamente dois tipos de aterramento, o aterramento funcional e o de proteção. Sendo que o funcional, tem o objetivo de fornecer mais estabilidade e eficiência da rede elétrica, enquanto o de proteção tem o objetivo de evitar choques elétricos.

No item 4.2.2.2.1 da NBR5410, no diz que o aterramento TN possui um ponto da alimentação diretamente aterrado, e sendo as massas ligadas diretamente a esse ponto através de condutores de proteção. Para o modelo da figura 1, temos que o condutor de proteção e o neutro estão separados, ou seja, são distintos.

Figura 1: Esquema de aterramento TN-S

A NBR5410 no item 4.2.2.2.2 no mostra o aterramento do tipo TT. Neste tipo de aterramento o condutor neutro, está aterrado em um ponto distinto das massas. Observe na Figura 2 que existem dois pontos de aterramento distintos, onde um será para o condutor neutro e o outro será apenas para o condutor de proteção onde fica conectado todas as massas, e todas partes metálicas estranhas a instalação elétrica.

Figura 2: Esquema de aterramento TT