142.351, 260032: Statistische Methoden der Datenanalyse

W. Waltenberger, R. Frühwirth

Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften A-1050 Wien, Nikolsdorfer Gasse 18

Wintersemester 2018/2019

Übung 3

Fällig bis: 23. November 2018

Beispiel 3.1

Die Lebensdauer eines elektronischen Bauteils wird als exponentialverteilt angenommen. Wie groß muß die mittlere Lebensdauer τ mindestens sein, damit ein Bauteil mit 50% bzw. 99% Wahrscheinlichkeit nach einem Jahr noch funktioniert?

Beispiel 3.2

Die Lebensdauer eines elektrischen Bauteils ist exponentialverteilt mit dem Mittel τ . Sie schalten N gleichartige Bauteile gleichzeitig ein. Wie ist die Wartezeit bis zum ersten Ausfall verteilt? Was ist ihr Mittelwert? Wie ist die Wartezeit bis zum letzten Ausfall verteilt?

Beispiel 3.3

Eine Messreihe x_1, \ldots, x_n vom Umfang n = 250 stammt aus einer Exponentialverteilung $\text{Ex}(\tau)$. Es ist $s = \sum x_i = 395.24$.

- a) Berechnen Sie den ML-Schätzer $\hat{\tau}$ vom Mittelwert τ der Exponential-verteilung.
- b) Zeigen Sie, dass der ML-Schätzer $\hat{\tau}$ effizient ist.
- c) Berechnen Sie näherungsweise den Standardfehler des ML-Schätzers $\hat{\tau}$.
- d) Berechnen Sie 95%-ige Konfidenzintervalle für τ (symmetrisch, linksseitig, rechtsseitig).

Beispiel 3.4

Verpflichtend nur für Studierende der TU!

Eine Messreihe x_1, \ldots, x_n vom Umfang n = 250 stammt aus einer Exponentialverteilung $\text{Ex}(1/\lambda)$. Es ist $s = \sum x_i = 395.24$.

- a) Berechnen Sie den ML-Schätzer $\hat{\lambda}$ von λ .
- b) Berechnen Sie näherungsweise den Standardfehler des ML-Schätzers $\hat{\lambda}$.
- c) Berechnen Sie 95%-ige Konfidenzintervalle für λ (symmetrisch, linksseitig, rechtsseitig).

Beispiel 3.5

Die Exponentialverteilung kann mit der mittleren Lebensdauer τ oder mit der mittleren Ereignisrate $\lambda = 1/\tau$ parametrisiert werden.

- a) Bestimmen Sie Jeffrey's prior für die Exponentialverteilung in beiden Parametrisierungen.
- b) Berechnen Sie die a-posteriori-Verteilung von λ , den Bayes-Schätzer und das symmetrische 95%-ige Vertrauensintervall mit Jeffrey's prior und den Daten aus dem vorigen Beispiel.

Beispiel 3.6 (Prog)

Simulieren Sie 5000 Stichproben vom Umfang n=100 aus der Exponentialverteilung $\operatorname{Ex}(\tau)$, wobei τ zufällig aus einer a-priori-Gammaverteilung mit a=4,b=1 gezogen wird. Ermitteln Sie für jede Stichprobe die a-posteriori-Dichte von τ , den Bayes-Schätzer und das 95%-ige symmetrische Vertrauensintervall. Zählen Sie, wie oft der gezogene Wert von τ im Vertrauensintervall liegt.