Exemples du cours du chapitre calcul intÃľgral Partie 2 2019/2020

Frédéric Junier

Lycée du Parc 1 Boulevard Anatole France 69006 Lyon

18 mars 2020

Table des matières

- Exemple 1
- Exemple 2
- Exemple 3
- Exemple 4
- Exemple 5

Exemple 1 Partie 1

Soit f la fonction définie sur [0;2] par f(x)=2-x. La surface dont l'aire est égale à intégrale $I=\int_1^2 f(x) \ \mathrm{d}x$ est le triangle BCD rectangle isocèle en C dont l'aire est $\frac{1}{2}\times 1\times 1=\frac{1}{2}$.

Exemple 1 Partie 2

Soit f la fonction définie sur [0;2] par f(x) = 2-x. La surface dont l'aire est égale à intégrale $I = \int_0^1 f(x) \, dx$ est le trapèze OABC rectangle isocèle en O dont l'aire est $\frac{1}{2} \times (OA + BC) \times OC = \frac{3}{2}$.

Exemple 2 Question 1

Soit M(t) un point mobile sur un axe tel que à chaque instant $t \in [0; +\infty[$ (en secondes) on connaît sa vitesse instantanée v(t) en mètres par seconde.

A l'instant t = 0, le point mobile est à l'origine de l'axe et pour tout $t \in [0; +\infty[$, on a $v(t) = 3 \text{ m.s}^{-1}$.

Question 1 La fonction v est constante donc dérivable donc continue sur [0; +∞[. ∫₀⁴ v(t)dt est l'aire du rectangle EFGH c'est-à-dire 4 × 3 = 12. On peut l'interpréter comme la distance parcourue par le mobile en 3 secondes. Notons que la dimension de l'intégrale

est celle de v(t)dt: vitesse × temps = distance.

Exemple 2 Question 2

• Question 2 $\int_2^5 v(t) dt$ est égale à $(5-2) \times 3 = 9$. C'est la distance parcourue par le mobile entre les instants t=2 et t=5 à une vitesse de 3 m.s $^{-1}$. $\frac{1}{5-2} \int_2^5 v(t) dt$ est égale à $\frac{\text{distance}}{\text{temps}} = \frac{9}{3}$, c'est la vitesse moyenne du mobile entre les instants t=2 et t=5. Comme sa vitesse est constante, c'est sa vitesse instantanée à tout instant. On a un exemple, d'utilisation de l'intégrale dans un calcul de valeur moyenne. Notons que $\frac{1}{5-2} \int_2^5 v(t) dt$ a la même dimension que v(t), c'est une vitesse.

Exemple 2 Question 3

• Question 3 $g(t) = \int_0^t v(u) du$ est l'aire du rectangle *EFIJ* c'est-à-dire $t \times 3 = 3t$.

On peut l'interpréter comme la distance parcourue par le mobile en *t*3 secondes.

g est une fonction linéaire donc elle est dérivable sur $[0; +\infty[$ et g'(t) = 3. On remarque que g'(t) = v(t). On peut l'expliquer en prenant la limite du taux de variation $\frac{g(t+h)-g(t)}{h} = \frac{3(t+h)-3t}{h} = 3 \text{ quand } h \text{ tend vers } 0.$ $g(t) = \int_0^t v(u) \, \mathrm{d} u$ est une primitive de v.

