PCT

世界知的所有権機関 際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C08G 73/10, C07C 217/76, 217/84, 219/32, 219/34, 237/32, 237/34, 237/36, C09K 19/56, G02F 1/1337

A1

(11) 国際公開番号

WO97/30107

(43) 国際公開日

1997年8月21日(21.08.97)

CN, KR, US, 欧州特許 (AT, BE, CH, DE, DK,

(21) 国際出願番号

PCT/JP97/00358

JP

(22) 国際出願日

1997年2月12日(12.02.97)

(30) 優先権データ

特願平8/28020

1996年2月15日(15.02.96)

添付公開書類

(81) 指定国

国際調査報告書

ES, FI, FR, GB, GR, IE, IT, LU, MC, NI., PT, SE).

(71) 出願人 (米国を除くすべての指定国について)

日産化学工業株式会社

(NISSAN CHEMICAL INDUSTRIES, LTD.)[JP/JP]

〒101 東京都千代田区神田錦町3丁目7番地1 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

仁平貴康(NIHIRA, Takayasu)[JP/JP]

縄田秀行(NAWATA, Hideyuki)[JP/JP]

袋 裕善(FUKURO, Hiroyoshi)[JP/JP]

〒274 千葉県船橋市坪井町722番地1

日産化学工業株式会社 中央研究所内 Chiba, (JP)

(74) 代理人

弁理士 山本量三,外(YAMAMOTO, Ryozo et al.)

〒101 東京都千代田区神田東松下町38番地

鳥本鋼業ビル Tokyo, (JP)

DIAMINOBENZENE DERIVATIVES, POLYIMIDES PREPARED THEREFROM, AND ALIGNMENT FILM FOR (54)Title: LIQUID CRYSTALS

ジアミノベンゼン誘導体及びそれを用いたポリイミド並びに液晶配向膜 (54)発明の名称

$$\begin{array}{c|c}
 & \text{NH}_{2} & \text{NH}_{2} \\
 & \text{P-Q-R}^{1}-R^{2} \\
 & \text{CO} & \text{CO} \\
 & \text{N-B} \\
 & \text{CO} & \text{R}^{2}
\end{array}$$
(2)

(57) Abstract

Diaminobenzene derivatives of general formula [1]; polyimides comprising repeating units of general formula [2] and prepared by reacting a diamine component containing the derivatives in an amount of at least 1 mole % with a tetracarboxylic acid or a derivative thereof to form a polyimide precursor having a reduced viscosity of 0.05 to 5.0 dl/g (as determined at 30 °C in N-methylpyrrolidone at a concentration of 0.5 g/dl), and subjecting this precursor to ring-closing reaction; and alignment films for liquid crystals containing the polyimides: wherein P is a single bond or a divalent organic group selected among -O-, -COO- and -CONH-; Q is a cyclic substituent selected among optionally substituted aromatic and aliphatic rings and heterocycles: R¹ is an aliphatic ring; R² is C₁-C₂₂ linear alkyl; A is a tetravalent organic group constituting a tetracarboxylic acid; and B is a divalent organic group constituting the diaminobenzene derivative.

(57) 要約

一般式 [1] で表されるジアミノベンゼン誘導体及び該ジアミノベンゼン誘導体を少なくとも1モル%以上含有するジアミンとテトラカルボン酸及びその誘導体とを反応させ、還元粘度が0.05~5.0dl/g(温度30℃のNーメチルピロリドン中、濃度0.5g/dl)のポリイミド前駆体とし、これを閉環させてなる、一般式 [2] で表される繰り返し単位を有するポリイミド並びに該ボリイミドを含有してなる液晶配向膜。

(式 [1] 中、Pは単結合または-O-、-COO-、-CONH-より選ばれる2価の有機基であり、Qは芳香環、脂肪族環、複素環及びそれらの置換体より選ばれる環状置換基を表し、R¹は脂肪族環であり、R²は炭素数が1以上22以下の直鎖状アルキル基を表し、式[2]中、Aはテトラカルボン酸を構成する4価の有機基、Bはジアミンを構成する2価の有機基を表し、P、Q、R¹及びR²は上記式[1]と同じである。)

明細書

1

ジアミノベンゼン誘導体及びそれを用いたポリイミド並びに液晶配向膜 技術分野

本発明は、新規なジアミノベンゼン誘導体及び該化合物を原料の一つとして合成されるポリイミド並びに該ポリイミドを用いた液晶配向膜に関するものであり、更に詳しくは工業的に製造容易な特定の構造を有するジアミン及びそれを用いたポリイミド並びに該ポリイミドを用いた液晶配向膜に関するものである。本発明のジアミンを用いて合成されるポリイミドは、液晶表示素子の配向膜として用いるのに特に有用である。

背景技術

従来、ポリイミドはその特徴である高い機械的強度、耐熱性、耐溶剤性のために、電気・電子分野における保護材料、絶縁材料として広く用いられている。しかし、近年の電気・電子分野の発展は目覚ましく、それに対応して、用いられる材料に対しても益々高度な特性が要求されるようになっている。中でも液晶表示素子の配向膜用途においては、塗膜表面の均質性と耐久性故に、従来よりポリイミドがもっぱら用いられてきた。しかし、液晶表示の高密度化、高性能化が図られる中で、ポリイミド塗膜の表面特性が重視され、従来のポリイミドにはない新たな特性の付与が必要になってきている。

液晶表示素子は、液晶の電気光学的変化を利用した表示素子であり、装置的に 小型軽量であり、消費電力が小さい等の特性が注目され、近年、各種ディスプレ イ用の表示装置として目覚ましい発展を遂げている。中でも正の誘電異方性を有 するネマティック液晶を用い、相対向する一対の電極基板のそれぞれの界面で液 晶分子を基板に対し平行に配列させ、かつ、液晶分子の配向方向が互いに直交す るように両基板を組み合わせた、ツイステッドネマティック型(TN型)の電界 効果型液晶表示素子は、その代表的なものである。

このようなTN型の液晶表示素子においては、液晶分子の長軸方向を基板表面 に均一に平行に配向させること、更に液晶分子を基板に対して一定の傾斜配向角 (以下、チルト角という)をもって配向させることが重要である。この様に液晶 分子を配向させる代表的な方法としては、従来より二つの方法が知られている。 WO 97/30107 PCT/JP97/00358

2

第一の方法は、酸化珪素等の無機物を基板に対して斜めから蒸着することにより基板上に無機膜を形成し、蒸着方向に液晶分子を配向させる方法である。この方法では、一定のチルト角を有する安定した配向は得られるものの工業的には効率的ではない。

第二の方法は、基板表面に有機被膜をもうけ、その表面を綿、ナイロン、ポリエステル等の布で一定方向にラビングし、ラビング方向に液晶分子を配向させる方法である。この方法は、比較的容易に安定した配向が得られるため、工業的には専らこの方法が採用されている。有機膜としては、ポリビニルアルコール、ポリオキシエチレン、ポリアミド、ポリイミド等が挙げられるが、化学的安定性、熱的安定性等の点からポリイミドが最も一般的に使用されている。

液晶配向膜の分野においては、ポリイミドなどの有機膜をラビングする方法では、従来高いチルト角を安定に得ることは困難であった。これを解決する手段として、特開昭62-297819号公報には、長鎖アルキル化合物とポリイミド前駆体の混合物よりなる液晶配向処理剤が提案されている。更に、特開昭64-25126号公報には、アルキル基を有するジアミンを原料としたポリイミドよりなる液晶配向処理剤が提案されている。この様に、ポリイミド中にアルキル基を導入して液晶のチルト角を高めようとする試みは数多くなされ、チルト角を高めることに関しては可能となった。

しかし、上記のようなポリイミド中にアルキル基を導入する液晶配向膜においては、チルト角の熱安定性が充分ではなかった。即ち、従来のアルキル基を導入したポリイミド配向膜においては、液晶注入後のチルト角は高められるものの、液晶のアイソトロピック温度以上に加熱(以下アイソトロピック処理という)した際にチルト角が低下してしまう問題があった。特にチルト角が高い場合、或は配向膜形成時の硬化温度が低い場合などには、アイソトロピック処理によるチルト角の低下が一層顕著となる。また基板上にポリイミド膜を形成する際、一般には200~300℃の高い温度で焼成されることが多いが、この際アルキル側鎖自体の耐熱性が十分でないことから、特に高温焼成においてはチルト角が低下してしまったり、バラツキが発生することがあるなどの問題があった。これらの問題は、今後の液晶表示素子に於いて、更に高コントラストで均一な液晶表示を

達成する上では極めて重要な課題であり、単にチルト角が高いだけではなく、より熱的に安定なチルト角を与えるポリイミド配向膜が切望されていた。

発明の開示

本発明は、液晶配向膜による液晶のチルト角の熱的安定性をより向上させるべく詳細且つ系統的に鋭意検討した結果、本発明を完成するに至った。

即ち、本発明は、一般式[1]

$$\begin{array}{c} NH_2 \\ NH_2 \\ P-Q-R^1-R^2 \end{array}$$

(式中、Pは単結合または-O-、-COO-、-CONH-より選ばれる2価の有機基であり、Qは芳香環、脂肪族環、複素環及びそれらの置換体より選ばれる環状置換基を表し、R¹は脂肪族環及びその置換体より選ばれる環状置換基であり、R²は炭素数が1以上22以下の直鎖状アルキル基を表し、mは1を表す。)で表されるジアミノベンゼン誘導体に関するものである。

又、本発明は前記の一般式 [1] で表されるジアミノベンゼン誘導体を少なくとも1モル%以上含有するジアミンとテトラカルボン酸及びその誘導体とを反応させ、還元粘度が0.05~5.0dl・g(温度30℃のN-メチルピロリドン中、濃度0.5g/dl)のポリイミド前駆体とし、これを閉環させてなる、一般式 [2]

(式中、Aはテトラカルボン酸を構成する4価の有機基、Bはジアミンを構成する2価の有機基を表し、P、Q、R¹及びR²は上記式[1]と同じである。)で表される繰り返し単位を有するポリイミドに関するものである。

4

更に、本発明は、上記一般式[2]で表される繰り返し単位を少なくとも1モル%以上含有するポリイミドを含有してなる液晶配向膜に関する。 以下、本発明を詳細に説明する。

発明を実施するための最良の形態

本発明のジアミノベンゼン誘導体は合成が容易であり、ポリイミド、ボリアミドなどの原料として有用である。更に、これを原料の1つとして用い、側鎖に特定の環状置換基を有するポリイミドが得られる。このポリイミドは、特に、液晶表示素子の配向膜用途用に用いることが有用であり、液晶の配向性が良好で、しかも熱的に安定した高いチルト角を得ることができる。

特に本発明は、ジアミノベンゼン誘導体及びそれから得られる特定の環状置換基を有するポリイミドを液晶配向膜として用いることで、液晶のチルト角を高め、その熱的な安定性を向上させることが大きな目的の1つである。そのためには一般式[1]におけるQは環状側鎖の熱的な安定性を高める上で脂肪族環状置換基、芳香族環状置換基或いは複素環状置換基等の環状置換基であり、R¹の脂肪族環状置換基はチルト角の熱的安定性を向上させる上で必須であり、R²は炭素数1~22の直鎖状アルキル基であり、チルト角の大きさを制御する上で必須であり、これらは連結部Pを介してポリイミド主鎖に連結される。

一般式[1]

で表されるジアミノベンゼン誘導体は、特定の構造を有するジアミンであって 、ジアミン部

連結部P、環状置換基Q、R¹、及び線状のアルキル基部R²より構成され、その合成方法は特に限定されるものではない。例えば、以下に述べる方法により合成することができる。

ジアミンの合成に於いては、対応する一般式 [II] で示す

ジニトロ体を合成し、更に、通常の方法でニトロ基を還元してアミノ基に変換 することが一般的である。

連結部Pは、単結合(結合のみ)、エーテル結合-O-、エステル結合-COO-、アミド結合-CONH-などの結合基であり、これらの結合基は通常の有機合成的手法で形成させることができる。例えば、エーテル結合では対応するハロゲン誘導体と水酸基置換誘導体をアルカリ存在下で反応させたり、アミド結合では対応する酸クロリドとアミノ基置換誘導体をアカリ存在下で反応させたりする方法が一般的である。

ジニトロ部形成のための原料の具体例としては、結合部Pの形成のための置換基、例えばハロゲン原子、ヒドロキシル基、ハロゲン化アシル基で置換されたジニトロベンゼンであり、これらで置換されたジニトロベンゼンの具体例は、2、3ージニトロベンゼン、2、4ージニトロベンゼン、3、5ージニトロベンゼン、2、6ージニトロベンゼン、3、4ージニトロベンゼン、3、5ージニトロベンゼンンをどが挙げられるが、原料の入手性、ポリイミド重合の際の反応性の点から、2、4ージニトロクロロベンゼン、2、4ージニトロフェノール、2、4ージニトロ安息香酸クロリドが最も一般的である。

一般式 [1] における環状置換基Qの具体例としてはとしてはシクロヘキサン 環、ビシクロヘキシル環、ターシクロヘキシル環等の脂肪族環状置換基、ベンゼ ン環、ビフェニル環、ターフェニル環等の芳香族環及びフェニルピリミジン環等 の複素環等の環状置換基が挙げられる。 本発明の環状置換基Qは、これらの環状化合物及びその類似体が用いられ、原料の入手性、合成反応のし易さなどから、Qとしてはシクロヘキサン環、ベンゼン環、ビフェニル環を用いるのが好ましい。特に好ましいのはベンゼン環である

一般式[1]における脂肪族環状置換基R¹の具体例としてはシクロヘキサン 、ビシクロヘキシル環、ターシクロヘキシル環等の脂肪族環状置換基である。本 発明の脂肪族環状置換基R¹は、これらの環状化合物及びその類似体が用いられる が、特に原料の入手性、合成反応のし易さなどから、R¹としてはシクロヘキサン 環、ビシクロヘキシル環を用いるのが好ましい。

一般式[1]におけるR²は、炭素数1~22、好ましくは3~10の直鎖状アルキル基である。炭素数としては対応するポリイミドを配向膜として用いた場合に目的とするチルト角を得るために適宜選択することができる。

Q, R¹, R²の連結方法としては種々の方法があるが、グリニャ反応、芳香環のフリーデルークラフツアシル化法、キシュナー還元法などの一般的有機合成手法を用いることで適宜連結することが可能である。

以上述べたような製造方法により得られる前記一般式 [1] で表される本発明 のジアミノベンゼン誘導体は、テトラカルボン酸、テトラカルボン酸ジハライド 、テトラカルボン酸2無水物などのテトラカルボン酸及びその誘導体との重縮合 をおこなうことにより、側鎖に特定の構造を有するポリイミドを合成することが できる。

本発明のポリイミドを得る方法は特に限定されない。具体的にはテトラカルボン酸及びその誘導体と前記ジアミンを反応、重合させてポリイミド前駆体とし、閉環イミド化して得ることができる。

本発明のポリイミドを得るために使用されるテトラカルボン酸及びその誘導体 は特に限定されない。

その具体例を挙げると、ピロメリット酸、2, 3, 6, 7-ナフタレンテトラカルボン酸、1, 2, 5, 6-ナフタレンテトラカルボン酸、1, 4, 5, 8-ナフタレンテトラカルボン酸、2, 3, 6, 7-アントラセンテトラカルボン酸、1, 2, 5, 6-アントラセンテトラカルボン酸、3, 3, 4, 4, 4

ェニルテトラカルボン酸、2,3,3',4-ビフェニルテトラカルボン酸、ビ ス (3, 4-ジカルボキシフェニル) エーテル、3, 3', 4, 4'ーベンゾフ ・ェノンテトラカルボン酸、ビス (3,4-ジカルボキシフェニル)スルホン、ビ ス (3, 4-ジカルボキシフェニル) メタン、2, 2-ビス (3, 4-ジカルボ キシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロー2,2-ビス (3, 4-ジカルボキシフェニル) プロパン、ビス (3, 4-ジカルボキシ フェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニル シラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジンなどの芳香族テトラカルボン酸及びこれらの2 無水物並びにこれらのジカルボン酸ジ酸ハロゲン化物、1,2,3,4-シクロ ブタンテトラカルボン酸、1, 2, 3, 4-シクロペンタンテトラカルボン酸 、1, 2, 4, 5-シクロヘキサンテトラカルボン酸、2, 3, 5-トリカルボ キシシクロペンチル酢酸、3, 4-ジカルボキシ-1, 2, 3, 4-テトラヒド ロー1ーナフタレンコハク酸などの脂環式テトラカルボン酸及びこれらの2無水 物並びにこれらのジカルボン酸ジ酸ハロゲン化物、1,2,3,4ープタンテト ラカルボン酸などの脂肪族テトラカルボン酸及びこれらの2無水物並びにこれら のジカルボン酸ジ酸ハロゲン化物などが挙げられる。

特に配向膜用途としては、塗膜の透明性の点から脂環式テトラカルボン酸及びこれらの2無水物並びにこれらのジカルボン酸ジ酸ハロゲン化物が好ましく、特に、1,2,3,4-シクロブタンテトラカルボン酸2無水物および3,4-ジアカルボキシー1,2,3,4-テトラヒドロー1-ナフタレンコハク酸2無水物が好ましい。又、これらのテトラカルボン酸及びその誘導体の1種又は2種以上を混合して使用することもできる。

本発明は、テトラカルボン酸及びその誘導体と一般式 [1] で表されるジアミノベンゼン誘導体 (以下、ジアミン [1] と略す) とそれ以外の一般のジアミン(以下、一般ジアミンと略す) を共重合することもできる。

この際用いられる一般ジアミンは、一般にポリイミド合成に使用される1級ジアミンであって、特に限定されるものではない。敢えてその具体例を挙げれば、p-フェニレンジアミン、2,5-ジアミノトルエ

ン、2,6ージアミノトルエン、4,4'ージアミノビフェニル、3,3'ージメチルー4,4'ージアミノビフェニル、3,3'ージメトキシー4,4'ージアミノビフェニル、3,3'ージメトキシー4,4'ージアミノビフェニル、ジアミノジフェニルエーテル、2,2'ージアミノジフェニルプロパン、ビス(3,5ージエチル4ーアミノフェニル)メタン、ジアミノジフェニルスルホン、ジアミノベンソフェノン、ジアミノナフタレン、1,4ービス(4ーアミノフェノキシ)ベンゼン、1,4ービス(4ーアミノフェニル)ベンゼン、9,10ービス(4ーアミノフェニル)アントラセン、1,3ービス(4ーアミノフェノキシ)ベンゼン、4,4'ービス(4ーアミノフェノキシ)ジフェニルスルホン、2,2ービス[4ー(4ーアミノフェノキシ)フェニル]プロパン、2,2ービス(4ーアミノフェニル)へキサフルオロプロパン等の芳香族ジアミン、ビス(4ーアミノシクロへキシル)メタン、ビス(4ーアミノー3ーメチルシクロへキシル)メタン、ビス(4ーアミノー3ーメチルシクロへキシル)メタン等の脂肪族ジアミン、更には、

$$H_2N - (CH_2)_3 - (Si-O)_m - Si - (CH_2)_3 - NH_2$$
 $CH_3 CH_3$

(式中、mは1から10の整数を表す。)

等のジアミノシロキサン等が挙げられる。

又、これらのジアミンの1種又は2種以上を混合して使用することもできる。

本発明のポリイミドを重合する際に、使用するジアミンの総モル数に対するジアミン [1] のモル数の割合を調節することにより、撥水性などのポリイミドの表面特性を改質でき、更に液晶配向膜として用いる場合には、液晶との濡れ性、更には、液晶のチルト角を高めることが可能である。この際使用するジアミンの総モル数に対するジアミン [1] のモル数の割合は1モル%以上である。

また液晶配向膜として用いる場合、実使用上適切な重合度のポリイミドを得易いこと、或いは一般的な液晶表示方式 (例えばスーパーツイステッドネマティッ

ク方式等)において必要とされるチルト角としては数度~10数度程度が多用されること、などの点から、使用するジアミンの総モル数に対するジアミン [1] のモル数の割合は1モル%~49モル%の範囲とするのが一般的である。

テトラカルボン酸及びその誘導体と上記ジアミンとを反応、重合させポリイミド前駆体とした後、これを閉環イミド化するが、この際用いるテトラカルボン酸及びその誘導体としてはテトラカルボン酸2無水物をもちいるのが一般的である。テトラカルボン酸2無水物のモル数とジアミン [1] と一般ジアミンの総モル数との比は0.8から1.2であることが好ましい。通常の重縮合反応同様、このモル比が1に近いほど生成する重合体の重合度は大きくなる。

重合度が小さすぎるとポリイミド膜の強度が不十分となる。又、重合度が大きすぎるとポリイミド膜形成時の作業性が悪くなる場合がある。従って、本反応における生成物の重合度は、ポリイミド前駆体溶液の還元粘度換算で0.05~5.0 d l/g (温度30℃のNーメチルピロリドン中、濃度0.5 g/d l) とするのが好ましい。

テトラカルボン酸2無水物と上記ジアミンとを反応、重合させる方法は、特に限定されるものではなく、一般にはN-メチルピロリドン、N, N-ジメチルアセトアミド、N, N-ジメチルホルムアミド等の有機極性溶媒中に上記ジアミンを溶解し、その溶液中にテトラカルボン酸2無水物を添加、反応させてポリイミド前駆体を合成した後、脱水閉環イミド化する方法がとられる。

テトラカルボン酸2無水物と上記ジアミンとを反応させポリイミド前駆体とする際の反応温度は-20から150℃、好ましくは-5から100℃の任意の温度を選択することができる。更に、このポリイミド前駆体を100~400℃で加熱脱水するか、又は通常用いられているピリジン/無水酢酸などのイミド化触媒を用いて化学的イミド化を行うことによりポリイミドとすることができる。

本発明のポリイミドを電気・電子素子の絶縁膜、保護膜更には液晶表示素子の配向膜として使用するに際しては、基板上に均一膜厚のポリイミド塗膜を形成する必要がある。

このポリイミド塗膜を形成するには、通常はポリイミド前駆体溶液をそのまま 基板に塗布し、基板上で加熱イミド化してポリイミド塗膜を形成することができ WO 97/30107 PCT/JP97/00358

る。この際用いるポリイミド前駆体溶液は、上記重合溶液をそのまま用いてもよく、又、生成したポリイミド前駆体を大過剰の水、メタノールのごとき貧溶媒中に投入し、沈殿回収した後、溶媒に再溶解して用いてもよい。上記ポリイミド前駆体溶液の希釈溶媒及び/又は沈殿回収したポリイミド前駆体の再溶解溶媒は、ポリイミド前駆体を溶解するものであれば特に限定されない。

それらの溶媒の具体例としては、Nーメチルピロリドン、N, Nージメチルアセトアミド、N, Nージメチルホルムアミド等を挙げることができる。これらは単独でも混合して使用してもよい。更に、単独で均一溶液が得られない溶媒であっても、均一溶液が得られる範囲でその溶媒を加えて使用してもよい。その例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールでセテート、エチレングリコール等が挙げられる。更に、ポリイミド膜と基板の密着性を向上させる目的で、得られたボリイミド前駆体溶液にカップリング剤等の添加剤を加えることはもちろん好ましい。又、基板上で加熱イミド化させる温度は100~400℃の任意の温度を採用できるが、特に150~350℃の範囲が好ましい。

一方、本発明のポリイミドが溶媒に溶解する場合には、テトラカルボン酸2無水物と上記ジアミンを反応して得られたポリイミド前駆体を溶液中でイミド化し、ポリイミド溶液とすることができる。溶液中でポリイミド前駆体をポリイミドに転化する場合には、通常は加熱により脱水閉環させる方法が採用される。この加熱脱水による閉環温度は、150~350℃、好ましくは120~250℃の任意の温度を選択できる。又、ポリイミド前駆体をポリイミドに転化する他の方法としては、公知の脱水閉環触媒を使用して化学的に閉環することもできる。

この様にして得られたポリイミド溶液はそのまま使用することもでき、又メタノール、エタノール等の貧溶媒に沈殿させ単離した後、適当な溶媒に再溶解させて使用することもできる。再溶解させる溶媒は、得られたポリイミドを溶解させるものであれば特に限定されないが、その例としては2ーピロリドン、Nーメチルピロリドン、Nーエチルピロリドン、Nービニルピロリドン、N, Nジメチルアセトアミド、N, Nージメチルホルムアミド、γーブチロラクトン等が挙げられる。

その他、単独ではこのポリイミドを溶解させない溶媒であっても、溶解性を損なわない範囲内であれば上記溶媒に加えても構わない。その例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール等が挙げられる。

又、ポリイミド膜と基板の密着性を更に向上させる目的で、得られたポリイミド 溶液にカップリング剤等の添加剤を加えることはもちろん好ましい。

この溶液を基板に塗布し、溶媒を蒸発させることにより基板上にポリイミド被膜を形成させることができる。この際の温度は溶媒が蒸発すれば充分であり、通常は80から150℃で充分である。

更に、液晶配向膜として用いる場合には、透明電極の付いたガラス又はプラス チックフィルム等の透明基板上に膜厚100から3000オングストロームのポ リイミド膜を形成し、次いでポリイミド膜をラビング処理することにより液晶配 向膜とすることができる。

以下に実施例を示し、本発明を更に詳細に説明するが、これに限定されるものではない。

実施例1

(4-(4-トランス-n - ヘプチルシクロヘキシルフェノキシ)-1, 3-ジアミノベンゼンの合成)

2,4-ジニトロクロロベンゼン23.3gと4-トランス-n-ヘプチルシクロヘキシルフェノール30gをテトラヒドロフラン270CCに溶解した。この溶液に18-クラウン-6 - エーテル2.9gと水酸ナトリウム5.3gを加え、50℃で5時間攪拌した。反応混合物を水にあけ、乾燥後アセトニトリル水溶液から再結晶すると4-(4-トランス-n-ヘプチルシクロヘキシルフェノキシ)-1,3-ジニトロベンゼンが46.4g(96%),得られた。融点118℃

得られたジニトロ化合物40gをジオキサン500CCに溶解した。この溶液に窒素雰囲気下、Pd-C3.8gを加えたのち、水素雰囲気で終夜攪拌した。Pd-Cろ過後、ろ液を水にあけ、析出した結晶をろ過した。乾燥後、ヘキサン-ベンゼン混合溶媒から再結晶すると4-(トランス-n-ヘプチルシクロヘキシルフェノキシ)-1.3-ジアミノベンゼンが29g(84%)得られた。融点128°C

IR, NMR, MASSスペクトルよりこの結晶は目的とする4-(4-トランス-n- ヘプチルシクロヘキシルフェノキシ)-1, 3-ジアミノベンゼンであることが確認された。分析結果を以下に示す。

マススペクトル(m/e):380(M+)

 $^{1}H-NMR$ (CDC1₃, δ ppm) 7. 1 (2H, d) $_{\star}$ 6. 8 (2H, d) $_{\star}$ 6. 7 (1H, d) $_{\star}$ 6. 2 (1H, s),

6.1(1H, d), 3.6(4H, bs), $2.5 \sim 0.8$ (m)

IR(KBr, cm⁻¹)3462, 3357, 3222(NH₂), 2948, 2917, 2847(CH₂)

実施例2

(4-(4-トランス-n-ペンチルシクロヘキシルフェノキシ)-1,3-ジアミノベンゼン の合成)

2,4-ジニトロクロロベンゼン25.95gと4-トランス-n-ペンチルシクロヘキシルフェノール30gをテトラヒドロフラン270CCに溶解した。この溶液に18-クラウン-6-エーテル3.1gと水酸化ナトリウム5.85gを加え、50°Cで5時間攪拌した。反応混合物を水にあけ、乾燥後アセトニトリル水溶液から再結晶すると4-〔4-トランス-n-ペンチルシクロヘキシルフエノキシ)-1,3-ジニトロベンゼンが41.9g(80%)得られた。融点118°C

得られたジニトロ化合物41.9gをジオキサン500CCに溶解した。この溶液に窒素雰囲気下、Pd-C3.6gを加えたのち、水素雰囲気で終夜攪拌した。Pd-Cをろ過後ろ液を水にあけ、折出した結晶をろ過した。乾燥後、ヘキサン-ベンゼン混合溶媒から再結晶すると4-(4-トランス-n-ペンチルシクロヘキシルフェノキシ)-1,3-ジアミノベンゼンが34.4g(96%)得られた。融点130 C

IR. NMR. MASSスペクトルよりこの結晶は目的とする4-(4-トランス-n-ペンチルシクロヘキシルフェノキシ)-1,3-ジアミノベンゼンであることが確認された。分析結果を以下に示す。

マススペクトル(m/e):352(M+)

¹H-NMR (CDCl₃, δ ppm) 7. 1 (2H, d), 6. 8 (2H, d), 6. 7 (1H, d), 6. 2 (1H, s), 6. 1 (1H, d), 3. 6 (4H, bs), 2. 5~0. 8 (m)

 $IR(KBr, cm^{-1}): 3459, 3360, 3213(NH₂), 2952, 2917, 2847(CH₂)$

実施例3

(4-トランス-n-ペンチルビシクロヘキシル-3、5-ジアミノベンゾエートの合成)

4-トランス-n-ペンチルシクロヘキシルシクロヘキサノール32gをテトラヒドロフラン60CCとトリエチルアミン18gに溶解した。

この溶夜に3,5-ジニトロベンゾイルクロリド29gを加え、50℃で1時間攪拌した。反応混合物を水にあけ、乾燥後アセトニトリルから再結晶すると4-トランス-n-ペンチルビシクロヘキシル-3,5-ジニトロベンゾエート45g(80%)得られた。融点146°C

得られたジニトロ化合物38gをジオキサン650CCに溶解した。この溶解液に窒素 雰囲気下、Pd-C 3.1gを加えたのち、水素雰囲気で終夜攪拌した。Pd-Cろ過後、ろ 液を水にあけ、折出した結晶をろ過した。乾燥後、ヘキサン-ベンゼン混合溶媒か ら再結晶すると目的物のが31g(71%)得られた。融点175°C

マススペクトル(m/e):386(M+)

¹H-NMR (CDCI3, δ ppm) 6.8(2H, s), 6.2(1H, s), 4.9(1H, bs), 3.7(3H, bs), 2.1~0.8(m)

IR (KBr, cm^{-1}): 3416, 3395, 3304, 3206 (NH₂), 2938, 2917, 2847 (CH₂)

実施例4

(4-(4-トランス-n-プロピルシクロヘキシルフェノキシ)-1, 3-ジアミノベンゼンの合成)

2,4-ジニトロクロロベンゼン23.3gと4-トランス-n-プロピルシクロヘキシルフェノール23.9gを用い実施例1同様にして4-(4-トランス-n-プロピルシクロヘキシルフェノキシ)-1,3-ジニトロベンゼン35.7g(81%)を得た。融点134℃

得られたジニトロ化合物11.2gを用いて実施例1と同様に還元し、再結晶して4-(4-トランス-n-プロピルシクロヘキシルフェノキシ)-1,3-ジアミノベンゼンが7.4g(78%)得られた。融点131°C

IR. NMR. MASSスペクトルよりこの結晶は目的とする4-(4-トランス-n-ブチルシクロヘキシルフェノキシ)-1, 3-ジアミノベンゼンであることが確認された。分析結果を以下に示す。

マススペクトル(m/e):324(M+)

¹H-NMR (CDCl₃, δ ppm):7.1(2H.d), 6.8(2H.d), 6.7(1H.d), 6.2(1H,s), 6.1(1H,d), 3.6(4H,bs), 2.5~0.8(m)

IR(KBr, cm⁻¹):3416, 3395, 3332, 3227(NH₂), 2932, 2924, 2847(CH₂)

実施例5

(4-(4-トランス-ブチルシクロヘキシルフェノキシ)-1, 3-ジアミノベンゼンの 合成)

2, 4-ジニトロクロロベンゼン23. 3gと4-トランス-n-ブチルシクロヘキシルフェノール25. 5gを用い実施例 1 同様にして4-(4-トランス-n-ブチルシクロヘキシルフェノキシ)-1, 3-ジニトロベンゼン37. 3g(81%)を得た。融点122^{\circ}

得られたジニトロ化合物21.9gを用いて実施例 1 と同様に還元し、再結晶して4 - (4-トランス-n-ブチルシクロヘキシルフェノキシ)-1, 3-ジアミノベンゼンが16. 8g (90%) 得られた。融点129° C

IR. NMR. MASSスペクトルよりこの結晶は目的とする4-(4-トランス-n-プロビルビシクロヘキシル-1, 3-ジアミノベンゼンであることが確認された。分析結果を以下に示す。

マススペクトル(m/e):338(M+)

 1 H-NMR (CDCl₃, δ ppm): 7. 1 (2H, d), 6. 8 (2H, d), 6. 7 (1H, d), 6. 2 (1H, s), 6. 1 (1H, d), 3. 6 (4H, bs), 2. 5~0. 8 (m)

IR (KBr, cm^{-1}): 3459, 3360, 3332, 3213 (NH₂), 2959, 2917, 2847 (CH₂)

実施例6

(4-トランス-n-プロピルビシクロヘキシル-3,5-ジアミノベンゾエートの合成) 4-トランス-n-プロピルシクロヘキシルシクロヘキサノール23.6gと3,5-ジニトロベンゾイルクロリド24.2gを用い実施例3と同様にして 4-トランス-n-プロピルビシクロヘキシルフ-3,5-ジニトロベンゾエート19.3g(44%)を得た。融点134℃ 得られたジニトロ化合物19.3gを用いて実施例3と同様に還元し、再結晶して4 -トランス-n-プロピルビシクロヘキシル-3,5-ジアミノベンゾエートが10g(61%)得られた。融点157°C

IR. NMR. MASSスペクトルよりこの結晶は目的とする4-(4-トランス-n-プロビルビシクロヘキシル)-3,5-ジアミノベンゾエートであることが確認された。分析結果を以下に示す。

マススペクトル (m/e):359(M+)

¹H-NMR (CDC1₃, δ ppm): 6.8(2H, S), 6.2(1H, s), 4.9(1H, bs), 3.7(3H, bs), 2.1 \sim 0.8 (m)

 $IR(KBr, cm^{-1}): 3416, 3395, 3304, 3213(NH₂), 2945, 2917, 2354(CH₂)$

実施例 7

(4-トランス-n-ブチルビシクロヘキシル-3,5-ジアミノベンゾエートの合成) 4-トランス-n-ブチルシクロヘキシルシクロヘキサノール23gと3,5-ジニトロベ ンゾイルクロリド22.3gを用い実施例3と同様にして 4-トランス-n-ブチルビシク ロヘキシル-3.5-ジニトロベンゾエート14.7g(67%)を得た。融点124℃

得られたジニトロ化合物14.7gを用いて実施例3と同様に還元し、再結晶して4-トランス-n-ブチルビシクロヘキシル-3,5-ジアミノベンゾエートが10g(79%)得られた。融点110°C

IR. NMR. MASSスペクトルよりこの結晶は目的とする4-トランス-n-ブチルビシクロヘキシル-3,5-ジアミノベンゾエートであることが確認された。分析結果を以下に示す。

マススペクトル(m/e):373(M+)

 $^{1}\text{H-NMR}$ (CDC1₃, δ ppm):6.8(2H, s),6.2(1H, s),4.9(1H, bs),3.7(3H, bs),2.1~0.8(m)

IR (KBr, cm^{-1}): 3452, 3360, 3191 (NH₂), 2924, 2854 (CH₂)

実施例8

(ポリイミドの製造)

実施例 1 で得られた4-(4-トランス-n- ヘプチルシクロヘキシルフェノキシ)-1, 3-ジアミノベンゼン5g(13.1 mmol)、1, 2, 3, 4-シクロブタン酸2無水物2. 58g(13.1 mmol)をN-メチルピロリドン43gに溶解して、20°Cで4時間攪拌し重縮合反応を行い、ポリイミド前駆体溶液を調製した。

得られたポリイミド前駆体の還元粘度は0.51d1/g(濃度0.5g/d1,NMP中、30°C)であった。

この溶液をガラス基板にコートし、250度/1時間熱処理して均一なポリイミド塗膜を形成させた。

得られた塗膜のIR測定を行い、ヘプチルシクロヘキシルフェニルオキシ基を含有するポリイミドであることを確認した。

実施例 9~14

(ポリイミドの合成)

実施例2~7で得られたジアミンを用い、実施例8と同様にしてポリイミド前 駆溶液を調製した。得られたポリイミド前駆体溶液の還元粘度(濃度0.5g/d1,NMP 中、30°C)はそれぞれ実施例9; 0.50d1/g、実施例10; 0.52d1/g、実施例11 ; 0.47d1/g、実施例12; 0.51d1/g、実施例13; 0.49d1/g、実施例14; 0.50d1/gであった。また、実施例4と同様にしてIR測定を行い、各々のジアミン に対応したアルキル環状置換基を有するポリイミドであることを確認した。

実施例15~21

(液晶配向膜の製造)

次に実施例8~14で得られたポリイミド前駆体溶液をガラス基板上にコート し、所定の温度で熱処理してポリイミド塗膜を形成させ、以下に示す方法により ポリイミド表面の撥水性と液晶配向膜とした場合の液晶の配向性およびチルト角 を測定した。結果を表に示した。

撥水性の評価:ポリイミド前駆体溶液をN-メチルビロリドンで希釈し、樹脂濃度6%の溶液とし、ガラス基板に3500回転/分でスピンコートし、80°Cで5分、250°Cで1時間熱処理して均一なポリイミド塗膜を形成させ、この塗膜上の水とヨウ化メチレンの接触角を測定し、Fowkesの式よりポリイミドの表面エネルギーを算出した。

チルト角の評価:ポリイミド前駆体溶液をN-メチルピロリドンで希釈し、樹脂 濃度6%の溶液とし、透明電極付ガラス基板に3500回転/分でスピンコートし、80 Cで10分、250°Cで1時間加熱処理して均一なポリイミド塗膜を形成させた。この塗 膜を布でラビング後、23μmのスペーサーを挟んでラビング方向を平行にして組み 立て、液晶(メルク社製:ZLI-2293)を注入してホモジニアス配向したセルを作成 した。

このセルについて、偏光顕微鏡下で液晶配向の均一性を確認し、液晶注入直後 および120°C1時間熱処理したものについて磁場容量法でチルト角を測定した。 結果を表1に示す。尚、比較のため以下に示すジアミンを合成し、それを用いて ポリイミド前駆体を合成し、液晶配向膜を作製し同様に評価した。結果を併せて 表1に示す。

比較例1

実施例1と同様にして4-(4-シクロヘキシルフェノキシ)-1,3-ジアミノベンゼン (融点101℃)を得、得られたジアミンを用い、実施例8と同様に1,2,3,4-シクロブタンテトラカルボン酸2無水物から、ポリイミド前駆体溶液を調製した。次に実施例15に準じて配向膜の製造および撥水性の評価、チルト角の評価を行った。結果を表1に示す。

比較例2

実施例3と全く同様にして合成されるジアミン4-ビシクロへキシル-3, 5-ジアミノベンゾエート (黄色オイル)を用い、実施例4と同様に1,2,3,4-シクロブタンテトラカルボン酸2無水物から、ポリイミド前駆体溶液を調製した。次に実施例7~9に準じて配向膜の製造および撥水性の評価、チルト角の評価を行った。

[評価結果]

表 1

実施例	ポリイミド	ジアミン	表面エネルギー	チルト角
	(実施例)	(実施例)	(dyn/cm)	(*)
15	8	1	33. 0	89 (90)
16	9	2	34. 0	89 (90)
17	10	3	35. 0	89 (89)
18	11	4	36. 9	88. 1 (87. 4)
19	12	5	36. 1	90.0(90.0)
20	13	6	37. 5	90.0(81.2)
21	14	7	37. 0	81.6(85.0)
比較例		·		
1	1	1	42. 8	2.4(1.3)
2	2	2	41. 2	32. 8 (15. 9)

チルト角()内は、120°C1時間熱処理後の値

いずれのセルも欠陥の全くない均一な配向が観察され、高いチルト角が得られた。

実施例22

ジアミンとして実施例1の4-(4-トランス-n-ヘプチルシクロヘキシルフェノキシ)-1.3-ジアミノベンゼン6.92gと2,2-ビス(4-アミノフェノキシフェニル)プロパン8.09g、テトラカルボン酸として1,2.3,4-シクロブタンテトラカルボン酸7.59gを200mm1フラスコ中窒素気流下で、N-メチルピロリドン87gに溶解し、20℃で4時間攪拌して、重縮合反応を行い、ポリイミド前駆体溶液を調整した。

得られたボリイミド前駆体の還元粘度は0.45 (濃度0.5g/d1、NMP中、30℃)であった。

また、この溶液をガラス基板にコートし、180℃もしくは250℃で1時間熱処理して、ポリイミド塗膜を形成させ、得られた塗膜のIR測定を行い、ヘプチルシクロ ヘキシルフェノキシ基を有するポリイミドであることを確認した。,

得られたポリイミド前駆体を用いて、ポリイミド途膜の撥水性を調べたところ

、その表面エネルギーは180℃で1時間熱処理したものは36dyn/cmで、250℃で1時間熱処理したものは37dyn/cmであった。

また液晶セルを作製し、配向性を調べたところ、欠陥が全くなく均一な配向性を示した。

さらにこのセルを用い、チルト角を測定したところ、180 で1時間熱処理したものは液晶注入直後で43°、120 で1時間熱処理したもので50°だった。また250 で1時間熱処理したものは液晶の注入直後で35°、120 で1時間熱処理したもので35°だった。

実施例23

ジアミンとして実施例 1 の4-(4-トランス-n・ヘプチルシクロヘキシルフェノキシ)-1.3 ジアミノベンゼン3.48gと2,2-ビス(4-アミノフェノキシフェニル)プロパン12.2g、テトラカルボン酸として1,2.3,4-シクロブタンテトラカルボン酸7.6 4gを200mm1フラスコ中窒素気流下で、N-メチルピロリドン82gに溶解し、20℃で4時間攪拌して、重縮合反応を行い、ポリイミド前駆体溶液を調整した。

得られたボリイミド前駆体の還元粘度は0.47 (濃度0.5g/d1、NMP中、30℃)であった。

また、この溶液をガラス基板にコートし、180℃もしくは250℃で1時間熱処理して、ポリイミド塗膜を形成させ、得られた塗膜のIR測定を行い、ヘプチルシクロ ヘキシルフェノキシ基を有するポりイミドであることを確認した。,

得られたポリイミド前駆体を用いて、ポリイミド塗膜の撥水性を調べたところ、その表面エネルギーは180℃で1時間熱処理したものは40dyn/cmで、250℃で1時間熱処理したものは41dyn/cmであった。

また液晶セルを作製し、配向性を調べたところ、欠陥が全くなく均一な配向性を示した。

さらにこのセルを用い、チルト角を測定したところ、180[©]で1時間熱処理したものは液晶注入直後で6°、120[©]1時間熱処理したものは6°だった。また250[©]で1時間熱処理したものは7⁵だった。

実施例24

ジアミンとして実施例 2 の4-(4-トランス-n-ペンチルシクロヘキシルフェノキシ)-1,3-ジアミノベンゼン9.50gと2,2-ビス(4-アミノフェノキシフェニル)プロパン11.06g、テトラカルボン酸として1,2,3,4・シクロブタンテトラカルボン酸10.36gを200mlフラスコ中窒素気流下で、N-メチルピロリドン195gに溶解し、20℃で4時間攪拌して、重縮合反応を行い、ポリイミド前駆体溶液を調整した。

得られたポリイミド前駆体の還元粘度は0.40(濃度0.5g/d1、NMP中、30℃)であった。

また、この溶液をガラス基板にコートし、180℃もしくは250℃で1時間熱処理して、ポリイミド塗膜を形成させ、得られた塗膜のIR測定を行いペンチルシクロへキシルフェノキシ基を有するポリイミドであることを確認した。

得られたポリイミド前駆体を用いて、ポリイミド塗膜の撥水性を調べたところ、その表面エネルギーは180℃で1時間熱処理したものは37dyn/cmで、250℃で1時間熱処理したものは37dyn/cmであた。

また液晶セルを作製し、配向性を調べたところ、欠陥が全くなく均一な配向性を示した。

さらにこのセルを用い、チルト角を測定したところ、180 で1時間熱処理したものは液晶注入直後で36° その後120 で1時間熱処理したもので37° だった。また 250 で1時間熱処理したものは液晶注入直後で20° その後120 で1時間熱処理したもので21° だった。

実施例25

ジアミンとして実施例 2 の4-(4-トランス-n-ペンチルシクロヘキシルフェノキシ)-1,3-ジアミノベンゼン4.80gと2,2-ビス(4-アミノフェノキシフェニル)プロパン16.77 g,テトラカルボン酸として1,2,3,4-シクロブタンテトラカルボン酸10.4 7gを200mlフラスコ中窒素気流下で、N-メチルピロリドン180gに溶解し、20℃で4時間攪拌して、重縮合反応を行い、ポリイミド前駆体溶液を調整した。

得られたポリイミド前駆体の還元粘度は0.41(濃度0.5g/d1、NMP中、30℃)であった。

また、この溶液をガラス基板にコートし、180℃もしくは250℃で1時間熱処理して、ポリイミド塗膜を形成させ、得られた塗膜のIR測定を行いペンチルシクロへ

キシルフェノキシ基を有するポリイミドであることを確認した。

得られたポリイミド前駆体を用いて、ポリイミド塗膜の撥水性を調べたところ、その表面エネルギーは180℃で1時間熱処理したものは41dyn/cmで、250℃で1時間熱処理したものは43dyn/cmであた。

また液晶セルを作製し、配向性を調べたところ、欠陥が全くなく均一な配向性 を示した。

さらにこのセルを用い、チルト角を測定したところ、180℃で1時間熱処理したものは液晶注入直後で5°で、その後120℃1時間熱処理したもので5°だった。また250℃で1時間熱処理したものは液晶注入直後で7°で、その後120℃1時間熱処理したもので7°だった。

実施例 2 6

ジアミンとして実施例 3 のペンチルビシクロヘキシル3, 5-ジアミノベンゾエート6.00gと2, 2-ビス(4-アミノフェノキシフェニル) プロパン6.37g、テトラカルボン酸として1, 2, 3, 4-シクロブタンテトラカルボン酸5.97gを200m1フラスコ中窒素気流下で、N-メチルピロリドン103gに溶解し、20℃で4時間攪拌して、重縮合反応を行いポリイミド前駆体溶液を調製した。

得られたポリイミド前駆体の還元粘度は0.46(濃度0.5g/d1、NMP中、30℃)であった。

また、この溶液をガラス基板上にコートし、180度もしくは250℃で1時間熱処理 して、ポリイミド途膜を形成させ、得られた途膜のIR測定を行いペンチルビシク ロヘキシルオキシカルボニル基を有するポりイミドであることを確認した。

得られたポリイミド前駆体を用いて、ポリイミド塗膜の撥水性を調べたところ、その表面エネルギーは180℃で1時間熱処理したものは37dyn/cmで、250℃で1時間熱処理したものは40dyn/cmであった。

また液晶セルを作製し、配向性を調べたところ、欠陥が全くなく均一な配向性を示した。

さらにこのセルを用い、チルト角を測定したところ、180℃で1時間熱処理した ものは液晶注入直後で80°で、その後120℃1時間熱処理したもので85°だった 。また250℃で1時間熱処理したものは液晶注入直後で59°で、その後120℃1時間 熱処理したもので62°だった。

実施例27

ジアミンとして実施例3のペンチルビシクロヘキシル3,5-ジアミノベンゾエート3.00gと2,2-ビス(4-アミノフェノキシフェニル)プロパン9.56g、テトラカルボン酸として1,2,3,4-シクロブタンテトラカルボン酸5.97gを200m1フラスコ中窒素気流下で、N-メチルピロリドン100gに溶解し、20℃で4時間攪拌して、重縮合反応を行いポリイミド前駆体溶液を調製した。

得られたポリイミド前駆体の還元粘度は0.49(濃度0.5g/d1、NMP中、30℃)であった。

また、この溶液をガラス基板上にコートし、180℃もしくは250℃で1時間熱処理 して、ポリイミド途膜を形成させ、得られた塗膜のIR測定を行いペンチルビシク ロヘキシルオキシカルボニル基を有するポりイミドであることを確認した。

得られたポリイミド前駆体を用いて、ポリイミド塗膜の撥水性を調べたところ、その表面エネルギーは180℃で1時間熱処理したものは40dyn/cmで、250℃で1時間熱処理したものは43dyn/cmであった。

また液晶セルを作製し、配向性を調べたところ、欠陥が全くなく均一な配向性を示した。

さらにこのセルを用い、チルト角を測定したところ、180 で1時間熱処理したものは液晶注入直後で24°で、その後120 で1時間熱処理したもので30°だった。また250 で1時間熱処理したものは液晶注入直後で25°で、その後120 で1時間熱処理したもので31°だった。

比較例3

ジアミンとしてヘキサデシルオキシ-2.5 - ジアミノベンゼン1.60gとテトラカルボン酸として1,2,3,4-シクロブタンテトラカルボン酸1.80gを100mlフラスコ中窒素気流下で、N-メチルピロリドン31gに溶解し、20℃で4時間攪拌して、重縮合反応を行い、ポリイミド前駆体溶液を調製した。

得られたポリイミド前駆体の還元粘度は0.49(濃度0.5g/d1、NMP中、30℃)であった。

また、この溶液をガラス基板上にコートし、180℃もしくは250℃で1時間熱処理

して、ポリイド**金膜を形成させ、得られた金膜のIR測定を行い、ヘキサデシルオキシ基を有するポリイミドであることを確認した。**

得られたポリイミド前駆体を用いて、ポリイミド塗膜の撥水性を調べたところ、その表面エネルギーは180℃で1時間熱処理したものは35dyn/cmで、250℃で1時間熱処理したものは39dyn/cmであった。

また液晶セルを作製し、配向性を調べたところ、欠陥が全くなく均一な配向性を示した。

さらにこのセルを用い、チルト角を測定したところ、180℃で1時間熱処理したものは液晶注入直後で77°で、その後120℃で1時間熱処理したもので33°だった。また250℃で1時間熱処理したものは液晶注入直後で11°で、その後120℃で1時間熱処理したもので9°だった。

以下の表 2 に実施例 2 2 ~ 2 7 及び比較例 3 でのチルト角の測定結果をまとめて示す。

	_
	٠,
20	

実施例	180℃キュア	250℃キュア	
	チルト角(°)	チルト角(゚)	
22	43 (50) *	35 (35) *	
23	6(9)	6(7)	
24	36 (37)	20 (21)	
25	5(5)	7(7)	
26	80 (85)	59 (62)	
27	24 (30)	25(31)	
比較例			
3	77 (33)	11(9)	

*()内は120℃加熱処理後の値

産業上の利用可能性

本発明のジアミノベンゼン誘導体は合成が容易であり、これを原料としたポリ イミドを合成することにより、耐熱性や撥水性などのポりイミドの表面特性を改 質することができる。さらに液晶表示素子の配向膜用のポリイミドの場合には 、液晶を均一に配向させ、高いチルト角が得られる。さらにこの場合、高いチルト角を有しかつ、熱処理してもそのチルト角はほとんど変化しないという特徴を 有する。

請求の範囲

1. 一般式[1]

(式中、Pは単結合または-O-、-COO-、-CONH-より選ばれる2価の有機基であり、Qは芳香環、脂肪族環、複素環及びそれらの置換体より選ばれる環状置換基を表し、R'は脂肪族環であり、R²は炭素数が1以上22以下の直鎖状アルキル基を表す。)

で表されるジアミノベンゼン誘導体。

- 2. 一般式 [1] 中のPが-O-である請求項1記載のジアミノベンゼン誘導体
- 3. 一般式 [1] 中のQがベンゼン環である請求項1又は2に記載のジアミノベンゼン誘導体。
- 4. 一般式[1]中のR'がシクロヘキサン環である請求項1乃至3のいずれかに記載のジアミノベンゼン誘導体。
 - 5. 一般式[1]

$$\begin{array}{c} NH_2 \\ NH_2 \\ P-Q-R^1-R^2 \end{array}$$

(式中、Pは単結合または-O-、-COO-、-CONH-より選ばれる2価の有機基であり、Qは芳香環、脂肪族環、複素環及びそれらの置換体より選ばれる環状置換基を表し、R¹は脂肪族環であり、R²は炭素数が1以上22以下の直鎖状アルキル基を表す。)

で表されるジアミノベンゼン誘導体を少なくとも1モル%以上含有するジアミン

とテトラカルボン酸及びその誘導体とを反応させ、還元粘度が 0.05~5.0 d l / g (温度 30℃のN-メチルピロリドン中、濃度 0.5 g / d l) のポリイミド前駆体とし、これを閉環させてなる、一般式 [2]

(式中、Aはテトラカルボン酸を構成する4価の有機基、Bはジアミンを構成する2価の有機基を表し、P、Q、R'及びR²は上記式[1]と同じである。)で表される繰り返し単位を有するポリイミド。

- 6. 一般式 [1] 中のPが-O-である請求項5記載のポリイミド。
- 7. 一般式 [1] 中のQがベンゼン環である請求項5又は6に記載のポリイミド。
- 8. 一般式 [1] 中のR¹がシクロヘキサン環である請求項5万至7のいずれかに記載のポリイミド。
- 9. テトラカルボン酸及びその誘導体が、脂環式テトラカルボン酸及びその 誘導体である請求項5万至8のいずれかに記載のポリイミド。
- 10. テトラカルボン酸及びその誘導体が、1,2,3,4-シクロブタンテトラカルボン酸2無水物及びその誘導体である請求項5乃至9のいずれかに記載のポリイミド。
- 11. テトラカルボン酸及びその誘導体が、3, 4 ジカルボキシ-1, 2, 3, 4 テトラヒドロ-1 ナフタレンコハク酸2無水物及びその誘導体である請求項5万至9のいずれかに記載のポリイミド。

12. 一般式[2]

(式中、Aはテトラカルボン酸を構成する4価の有機基、Bはジアミンを構成する2価の有機基を表し、P、Q、R¹及びR²は上記式[1]と同じである。)で表される繰り返し単位を有するボリイミドを含有してなる液晶配向膜。

- 13. 一般式[2]中のPが一〇一である請求項12記載の液晶配向膜。
- 14. 一般式 [2] 中のQがベンゼン環である請求項12又は13記載の液晶配向膜。
- 15. 一般式 [2] 中のR¹がシクロヘキサン環である請求項12乃至請求項14いずれかに記載の液晶配向膜。
- 16.一般式[2]中のAが、脂環式テトラカルボン酸及びその誘導体の残 基である請求項12乃至15のいずれかに記載の液晶配向膜。
- 17. 脂環式テトラカルボン酸及びその誘導体が、1,2,3,4-シクロブタンテトラカルボン酸2無水物及びその誘導体である請求項16に記載の液晶配向膜。
- 18. 脂環式テトラカルボン酸及びその誘導体が、3,4ージカルボキシー 1,2,3,4ーテトラヒドロー1ーナフタレンコハク酸2無水物及びその誘導 体である請求項16に記載の液晶配向膜。
 - 19. 一般式 [2] において-P-Q-R'-R²が一般式 [3]

$$-0 \longrightarrow (CH_2)_K CH_3$$

(式中、kは0~21の整数を表す。)

であるボリイミドを用いた請求項12乃至18のいずれかに記載の液晶配向膜。

20. 一般式[3]の側鎖を有するジアミン成分が全ジアミン成分の1~4

9モル%含有するジアミン成分から得られたポリイミドである請求項19記載の液晶配向膜。

.... PAGE BLANN (O....

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

International application No.

		PCT/J	P9//00358				
A. CLASSIFICATION OF SUBJECT MATTER Int. C16 C08G73/10, C07C217/76, C07C217/84, C07C219/32, C07C219/34, C07C237/32, C07C237/34, C07C237/36, C09K19/56, G02F1/1337 According to International Patent Classification (IPC) or to both national classification and IPC							
B FIEI	DS SEARCHED						
C070	Minimum documentation searched (classification system followed by classification symbols) Int. C1 ⁶ C08G73/10, C07C217/76, C07C217/84, C07C219/32, C07C219/34, C07C237/32, C07C237/34, C07C237/36, C09K19/56, G02F1/1337						
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE, WPI/L							
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.				
X Y	<pre>JP, 3-179323, A (Seiko Epson Corp.), August 5, 1991 (05. 08. 91), Claim (Family: none)</pre>		1-9, 12-16 10-11, 17-18				
X Y	JP, 3-121132, A (Nippon Kar May 23, 1991 (23. 05. 91), Claim (Family: none)	1-9, 12-16 10-11, 17-18					
Y	JP, 8-12759, A (Nissan Chem Ltd.), January 16, 1996 (16. 01. 9 Claim; column 7 & EP, 67963	06),	10-11, 17-18				
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.					
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance to be of particular relevance to be of particular relevance of the international filing date to document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "A" document member of the same patent family "A" document member of the same patent family Date of the actual completion of the international search "Date of mailing of the international search report							
	13, 1997 (13. 05. 97)		03. 311				
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer					

Telephone No.

Facsimile No.

国家調查報告 発明の属する分野の分類(国際特許分類(IPC)) C08G73/10, C07C217/76, C07C217/84, C07C219/32, Int. C1* C07C219/34, C07C237/32, C07C237/34, C07C237/36, C09K19/56, G02F1/1337 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) C08G73/10, C07C217/76, C07C217/84, C07C219/32, Int. Cl° C07C219/34, C07C237/32, C07C237/34, C07C237/36, C09K19/56, G02F1/1337 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAS ONLINE WP I/L 関連すると認められる文献 関連する 引用文献の 請求の範囲の番号 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 カテゴリー* JP, 3-179323, A (セイコーエブソン株式会社) 5.8月.1991 1-9, 12-16 10-11, 17-18 (05.08.91), 特許請求の範囲 Y ファミリーなし JP, 3-121132, A (日本カーリット株式会社) 23. 5月. 1991 1- 9, 12-16 Х 10-11, 17-18 (23.05.91), 特許請求の範囲 Y ファミリーなし JP, 8-12759, A (日産化学工業株式会社) 16.1月.1996 . 10-11, 17-18 Y (16.01.96),請求の範囲、第7欄 &EP, 679633, A1 □ パテントファミリーに関する別紙を参照。 □ C欄の続きにも文献が列挙されている。 の日の後に公表された文献 * 引用文献のカテゴリー 「丁」国際出願日又は優先日後に公表された文献であって 「A」特に関連のある文献ではなく、一般的技術水準を示す て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの 「E」先行文献ではあるが、国際出願日以後に公表されたも 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献 (理由を付す) よって進歩性がないと考えられるもの 「〇」ロ頭による開示、使用、展示等に含及する文献 「&」間一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 国際調査報告の発送日 20.05.97 国際調査を完了した日 13.05.97 9285 4 J 特許庁審査官(権限のある職員) 国際関査機関の名称及びあて先 重

安藤

達也

電話番号 03-3581-1101 内線 3459

ন্ট

東京都千代田区霞が関三丁目4番3号

日本国特許庁(ISA/JP)

郵便番号100