Complexe Zahlen Skript S. 1 1

1.1 Grundlagen Skript S. 1ff

Cartesische Form

Normalform: $z = z_1 + jz_2$ $z_1 = \operatorname{Re}(z), \quad z_2 = \operatorname{Im}(z)$ Umrechnung in Polar:

$$r = |z| = \sqrt{z_1^2 + z_2^2}, \quad \varphi = \begin{cases} \arctan(\frac{z_2}{z_1}) & z_1 \ge 0\\ \arctan(\frac{z_2}{z_1}) + \pi & z_1 < 0 \end{cases}$$

Polarsystem

Normalform: $z = r \operatorname{cjs}(\varphi) = r(\cos \varphi + j \sin \varphi) = re^{j\varphi}$ $\varphi = \arg(z)$

Umrechnung in Cartesisch: $z_1 = |z|\cos\varphi, \quad z_2 = |z|\sin\varphi$

$j^2 = -1$ $e^{j\pi} = -1$ $\frac{1}{j} = -j$ Imaginäre Einheit

1.2 Recherregeln Skript S. 10ff

Selbige Regeln wie für \mathbb{R} +, -

Mulitplikation $a \cdot b = |a||b| \operatorname{cjs}(\alpha + \beta) = |a||b|e^{j(\alpha+\beta)}$

Division

Conjugiert complex

 $\begin{vmatrix} \frac{a}{b} \end{vmatrix} = \frac{|a|}{|b|} \operatorname{cjs}(\alpha - \beta) = \frac{|a|}{|b|} e^{j(\alpha - \beta)} \text{ (cartesisch: Mit conj. complex des Nenners erweitern)}$ $\overline{z} = \overline{z_1 + jz_2} = z_1 - jz_2; \qquad z \cdot \overline{z} = |z|^2$ $\sqrt[n]{a} = \sqrt[n]{|a|} \operatorname{cjs}(\frac{arg(a)}{n} + k\frac{2\pi}{n}) = \sqrt[n]{|a|} e^{j(\frac{\alpha}{n} + k\frac{2\pi}{n})} \quad (k = 0, 1, \dots, n - 1 \Rightarrow \text{n L\"osungen in } \mathbb{C}!)$ $a^n = |a|^n \operatorname{cjs}(n\alpha) = |a|^n e^{jn\alpha}$ $z_1 + iz_2 = z_1 \cdot z_2 \cdot z_1 \cdot z_2 \cdot z_2 \cdot z_2 \cdot z_1 \cdot z_2 \cdot z$ Wurzeln

Potenzen

 $e^{z_1+jz_2} = e^{z_1}\operatorname{cjs}(z_2) = e^{z_1}(\cos z_2 + j\sin z_2)$ e^z

 $cjs^{n}(\varphi) = (\cos \varphi + j\sin \varphi)^{n} = \cos(n\varphi) + j\sin(n\varphi) \quad (n \in \mathbb{N})$ Moivre'sche Formel

Logarithmus $Ln(z) = \ln|z| + j(\arg(z) + 2k\pi)$

Bemerkungen

- $p_n(z)$ $(n \ge 1, z \in \mathbb{C})$ hat n Lösungen und Nullstellen (in \mathbb{C})
- Allgemeine Potenzen $a^b,\ a,b\in\mathbb{C}$ können mit $e^{b\cdot Ln(a)}$ und den bekannten für $\mathbb R$ gültigen Potenzregel
n gelöst werden.
- Re $\left(\frac{a}{b}\right)$ = 0: Die beiden compl. Zahlen a, b stehen senkrecht zueinan-

12. Einheitswurzeln (k30°)

$$\begin{array}{l} e_1^{(12)} = 1, \; e_2^{(12)} = \frac{\sqrt{3}}{2} + \frac{1}{2}j, \; e_3^{(12)} = \frac{1}{2} + \frac{\sqrt{3}}{2}j, \; e_4^{(12)} = j, \; e_5^{(12)} = -\frac{1}{2} + \frac{\sqrt{3}}{2}j, \; e_6^{(12)} = -\frac{\sqrt{3}}{2} + \frac{1}{2}j, \\ e_7^{(12)} = -1, \; e_8^{(12)} = -\frac{\sqrt{3}}{2} - \frac{1}{2}j, \; e_9^{(12)} = -\frac{1}{2} - \frac{\sqrt{3}}{2}j, \; e_{10}^{(12)} = -j, \; e_{11}^{(12)} = \frac{1}{2} - \frac{\sqrt{3}}{2}j, \; e_{12}^{(12)} = \frac{\sqrt{3}}{2} - \frac{1}{2}j, \end{array}$$

Nullstellen von Polynomen

Ein complexes Polynom p(z) von Grad n hat in \mathbb{C} genau n Nullstellen.

Alle diese Nullstellen liegen in einer Kreisscheibe um den Ursprung mit dem Radius $\sum_{n=0}^{\infty} \left| \frac{a_k}{a_n} \right|$

Bei Polynomen mit reellen Koeffizienten treten nicht-reelle Nullstellen immer als conj.-compl. Paare $(z_0 \text{ und } \bar{z_0})$ auf.

Euler Skript S. 30f

$$\sin\alpha = \frac{e^{j\alpha} - e^{-j\alpha}}{2j} \quad \cos\alpha = \frac{e^{j\alpha} + e^{-j\alpha}}{2} \quad \tan\alpha = \frac{\sin\alpha}{\cos\alpha} \qquad \qquad \sinh\alpha = \frac{e^{\alpha} - e^{-\alpha}}{2} \quad \cosh\alpha = \frac{e^{\alpha} + e^{-\alpha}}{2}$$

Uberlagerung von harmonischen Schwingungen Skript S. 32f

$$A \cdot \sin(\omega t + \varphi) = Im[A \cdot e^{j(\omega t + \varphi)}] = Im[\underbrace{A \cdot e^{j\varphi}}_{\text{Complexe Amplitude Zeitfunktion}} \cdot \underbrace{e^{j\omega t}}_{\text{Zeitfunktion}}]$$

$$A_1 \cdot \sin(\omega t + \varphi_1) + A_2 \cdot \cos(\omega t + \varphi_2) \quad \Rightarrow \quad Im[A_1 \cdot e^{j(\omega t + \varphi_1)} + A_2 \cdot e^{j(\omega t + \varphi_2 + \frac{\pi}{2})}] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j\varphi_1} + A_2 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j\varphi_1} + A_2 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j\varphi_1} + A_2 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j\varphi_1} + A_2 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j\varphi_1} + A_2 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j\varphi_1} + A_2 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j\varphi_1} + A_2 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t} \cdot (A_1 \cdot e^{j(\varphi_2 + \frac{\pi}{2})})] \quad \Rightarrow \quad Im[e^{j\omega t}$$

Complexe Amplituden in cartesische Form umwandeln, zusammenzählen und wieder zurück in Polarform wandeln.

$$Im[e^{j\omega t} \cdot (A_{total} \cdot e^{j\varphi_{total}})] \Rightarrow Im[A_{total} \cdot e^{j(\omega t + \varphi_{total})}] \Rightarrow A_{total} \cdot \sin(\omega t + \varphi_{total})$$

2 Complexe Funktionen (Abbildungen) skript S. 37ff

Eine complexe Funktion hat einen 2-dimensionalen Input (z_1, z_2) und einen 2-dimensionalen Output (w_1, w_2) . Diese Abbildungen sind bis jeweils auf wenige Punkte (bei der Sinus-Funktion ± 1 , etc) winkeltreu.

$$f: \mathbb{D} \subseteq \mathbb{C} \mapsto \mathbb{C}$$
 $z \mapsto w = f(z)$
 $w_1 = \operatorname{Re}(f(r+jc)); w_2 = \operatorname{Im}(f(r+jc))$

2.1 Lineare Funktion Skript S. 41ff

$$f: z \mapsto w = az + b$$
 $(a, b \in \mathbb{C} \text{ und } a \neq 0)$

- für a=1 eine Translation um den Ortsvektor b
- für $a \neq 1$ eine Drehstreckung mit dem Zentrum $\frac{b}{1-a}$, dem Drehwinkel $\arg(a)$ und dem Streckfaktor |a|.

2.2 Quadratfunktion und Quadratwurzelfunktion skript S. 45ff

$$f: z \mapsto w = z^2$$
 $f: z \mapsto w = \sqrt{z}$

Bei der Quadratfunktion wird schon die rechte Hälfte der z-Ebene auf die ganze w-Ebene abgebildet (die Argumente werden verdoppelt). Daraus ergibt sich zwei bzw. mehrere Ebenen.

Eine Riemanische Fläche 3.Grades

2.3 Kehrwertfunktion und Kreisspiegelung skript S. 51ff

$$f:z\mapsto w=\frac{1}{z};\quad (\arg(w)=-\arg(z),|w|=\frac{1}{|z|}) \qquad \qquad \overline{f}:z\mapsto w=\frac{1}{\overline{z}};\quad (\arg(w)=\arg(z),|w|=\frac{1}{|z|})$$

Kreisspiegelung: Alle Punkte auf der z-Ebene werden am Einheitskreis gespiegelt. Geraden auf Kreise abgebildet und umgekehrt. Der Ursprungspunkt (0;0) wird auf ∞ abgebildet (auf allen Winkeln zwischen 0^o-360^o). Die Abbildungen sind im verallgemeinerten Sinn (Geraden sind Kreise mit unendlichem Radius) kreistreu. Ausserdem sind sie bis auf den Koordinatenursprung winkeltreu

- Gerade durch $0\Longrightarrow$ Fixgerade (gleiche Gerade, aber die Punkte darauf sind anders verteilt)
- Gerade nicht durch $0 \Longrightarrow \text{Kreis durch } 0$

- Kreis nicht durch $0 \Longrightarrow$ Spiegelung des Kreises an dem Einheitskreis
- Kreis durch $0 \Longrightarrow$ Gerade nicht durch 0

2.4 Möbiustransformation Skript S. 57ff

$$f: z \mapsto w = f(z) = \frac{az+b}{cz+d}$$

$$(a, b, c, d \in \mathbb{C} \text{ mit } c \neq 0 \text{ und } ad - bc \neq 0)$$

Die Möbiustransformation ist eine Verkettung einer linearen Funktion, der Kehrwertfunktion und einer weiteren linearen Funktion. Diese Transformationen sind winkel- und kreistreu. Die Umkehrfunktion ergibt wieder eine Möbiustransformation.

Eigentlich besitzt diese Funktion nur drei Parameter da man den Bruch $\frac{az+b}{cz+d}$ stets so kürzen kann dass einer der vier Parameter 1 ist. Durch die 3 Freiheitsgrade kann man unterschiedlichste kriterien vorgeben und damit komplizierte Umformungen machen, wie im Bild gezeigt wird:

2.5 Joukowski-Funktion Skript S. 60ff

$$f:z\mapsto w=z+\frac{1}{z}$$

Die Funktion ist winkeltreu bis auf ± 2

Wenn man einen Kreis, der nicht ganz im Zentrum steht transformiert ergibt sich ein Flügelprofil

2.6 Exponentialfunktion Skript S. 64ff

$$f: z \mapsto w = e^z$$

Waagrechte Gitternetzlinen gehen gemäss der obigen Gleichung in Strahlen über, die im Koordinatenursprung beginnen, senktrechte Gitternetzlinien in Kreise um den Koordinatenursprung. Die e^z -Funktion ist periodisch, deshalb braucht es eine Riemansche Fläche

Mit dieser Funktion kann man das Feld bei den Rändern des Plattenkondensator berechnen

2.7 Sinus-Funktion Skript S. 67f

$$f: z \mapsto w = \sin(z)$$

Die Sinusfunktion ist ausser bei den Punkten $z = \frac{\pi}{2} + k\pi(k \in \mathbb{Z}))$ winkeltreu

2.8 Kreisgleichung

Die Lösungen von z bilden einen Kreis in der mit dem Radius r um den Mittelpunkt $M = (m_x, m_y) \Rightarrow m = m_x + j m_y$.

$$|z-m|=r;$$
 $(z-m)(\overline{z}-\overline{m})=r^2;$ $z\overline{z}-\overline{m}z-m\overline{z}+m\overline{m}=r^2$
Parameterform: $f(t)=m+r\cdot e^{jt},$ mit $(0\leq t\leq 2\pi)$

3 Fourierreihen Skript S. 67ff

3.1 Orthogonalitätsbeziehungen der Basisfunktionen skript S. 75

$$\int_{0}^{T} \cos(n\omega t) \cdot \cos(m\omega t) dt = \begin{cases} T, \ n = m = 0 \\ \frac{T}{2}, \ n = m > 0 \end{cases} \qquad \int_{0}^{T} \sin(n\omega t) \cdot \sin(m\omega t) dt = \begin{cases} \frac{T}{2}, \ n = m \\ 0, \ n \neq m \end{cases} \qquad \int_{0}^{T} \cos(n\omega t) \cdot \sin(m\omega t) dt = 0$$

3.2 Allgemeine Form Skript S. 79

Eine periodische Funktion f mit Periode T>0, lässt sich durch eine Reihe von Sinus- und Kosinusfunktionen darstellen, deren Frequenzen ganzzahlige Vielfache der Grundfrequenz $\omega=2\pi/T$ sind:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cdot \cos(n\omega t) + b_n \cdot \sin(n\omega t))$$

Die Koeffizienten der Entwicklung von f(t) sind:

$$a_n = \frac{2}{T} \int_0^T f(t) \cdot \cos(n\omega t) dt \quad (n = 0, 1, 2, 3, ...)$$
 $b_n = \frac{2}{T} \int_0^T f(t) \cdot \sin(n\omega t) dt \quad (n = 1, 2, 3, ...)$

Der erste Summand der Reihe $a_0/2$ ist der Gleichstromanteil (Mittelwert) von f(t) im Intervall (0,T)

3.3 Komplexwertige Darstellung der Fourierreihen skript S. 95ff

$$f(t) = \sum_{k=-\infty}^{\infty} c_k \cdot e^{jk\omega t}$$
 mit $c_n = \overline{c_{-n}} = \frac{1}{T} \int_0^T f(t) \cdot e^{-jn\omega t} dt$

3.3.1 Umrechnungsformeln

$$c_n = \overline{c_{-n}} = \frac{a_n - jb_n}{2} (n = 0, 1, 2, 3, \dots \text{ wobei } b_0 = 0) \qquad a_n = 2 \cdot \text{Re}(c_n) \\ b_n = -2 \cdot \text{Im}(c_n)$$
 \(\begin{aligned} (n = 0, 1, 2, 3, \ldots, b_0 = 0) \)

3.4 LTI-Systeme Skript S. 72

3.4.1 Linear

3.4.2 Zeitinvarianz

Aus
$$f(t) \to \boxed{S} \to F(t)$$
 folgt $f(t+t_0) \to \boxed{S} \to F(t+t_0)$

3.5 Sätze zur Berechnung der Koeffizienten skript S. 80ff

3.5.1 Symmetrie Skript S. 80f

Falls
$$f(t)$$
 gerade $(f(-t) = f(t))$ ist $\implies b_n = 0, \quad a_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cdot \cos(n\omega t) dt$
Falls $f(t)$ ungerade $(f(-t) = -f(t))$ ist $\implies a_n = 0, \quad b_n = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cdot \sin(n\omega t) dt$

3.5.2 Linearität skript S. 82

$$h(t) = r \cdot f(t) + s \cdot g(t) \implies a_n^{(h)} = r \cdot a_n^{(f)} + s \cdot a_n^{(g)}, \quad b_n^{(h)} = r \cdot b_n^{(f)} + s \cdot b_n^{(g)}$$

3.5.3 Zeitstreckung/-stauchung (Ähnlichkeit) skript S. 83

$$g(t) = f(r \cdot t) \text{ (mit } 0 < r \in \mathbb{R} \text{) } \implies \quad a_n^{(g)} = a_n^{(f)}, \quad b_n^{(g)} = b_n^{(f)} \quad \ T^{(g)} = \frac{T^{(f)}}{r}.$$

3.5.4 Zeitverschiebung Skript S. 84

$$a_n^{(g)} = \cos(n\omega t_0) \cdot a_n^{(f)} + \sin(n\omega t_0) \cdot b_n^{(f)} \qquad (n = 0, 1, 2, ...)$$

$$b_n^{(g)} = -\sin(n\omega t_0) \cdot a_n^{(f)} + \cos(n\omega t_0) \cdot b_n^{(f)} \qquad (n = 1, 2, 3, ...)$$

$$c_n^{(g)} = e^{jk\omega t_o} \cdot c_k^{(f)} \qquad (k \in \mathbb{Z})$$

Integral und Differential Skript S. 88

Falls die T-periodische Funktion f (auf ganz \mathbb{R}) zweimal stetig differenzierbar ist und die Fourierkoeffizienten a_n und b_n besitzt, so gilt:

$$f'(t) = \sum_{n=1}^{\infty} [b_n n\omega \cdot \cos(n\omega t) - a_n n\omega \cdot \sin(n\omega t)] \qquad \int_0^t f(\tau)d\tau = \sum_{n=1}^{\infty} \frac{b_n}{n\omega} + \frac{a_0}{2}t + \sum_{n=1}^{\infty} \left[\frac{a_n}{n\omega} \cdot \sin(n\omega t) - \frac{b_n}{n\omega} \cdot \cos(n\omega t)\right]$$

Gibbs'sches Phänomen Skript S. 92f

Die Fourier-Reihen schwingen bei Unstetigkeitsstellen über. Die Höhe des Überschwingers lässt sich so berechnen:

$$\frac{1}{\pi} \int_{0}^{\pi} \frac{\sin t}{t} \, \mathrm{d}t - \frac{1}{2} = 0.089490\dots$$

Frequenz-, Amplituden- und Phasengang Skript S. 72 3.8

Frequenzgang eines Systems: $H(\omega) = A(\omega) \cdot e^{j\Phi(\omega)}$

Amplitudengang: $A(\omega) = |H(\omega)|$ Phasengang $\Phi(\omega) = arg[H(\omega)]$

Die komplexe Funktion $H(\omega)$ der reellwertigen Frequenz ω enthält zugleich die Informationen über die Veränderung der Amplitude und der Phasenverschiebung des Systems S bei der betrachteten Frequenz ω .

$$f(t) = Im[z(t)] \to \boxed{\mathbf{S}} \to F(t) = Im[z(t) \cdot H(\omega)] \qquad \text{oder} \qquad f(t) = Re[z(t)] \to \boxed{\mathbf{S}} \to F(t) = Re[z(t) \cdot H(\omega)]$$

Je nach Eingangssignal wird der Real- oder der Imaginärteil behandelt: $f(t) = \begin{cases} sin(nt) = Im[e^{j \cdot nt}] \\ cos(nt) = Re[e^{j \cdot nt}] \end{cases} \Rightarrow z(t) = e^{j \cdot nt}$

Somit kann die Antwort des Systems mittels einer komplexen Multiplikation mit der Hilfsfunktion z(t) berechnet werden.

$11. \int \cosh x \mathrm{d}x = \sinh x + C$	$\int dx + 1 = ax$
$12. \int \frac{\mathrm{d}x}{\sinh^2 x} = -\coth x + C, x \neq 0$	$-29. \int \frac{\mathrm{d}x}{\sin ax} = \frac{1}{a} \ln \left \tan \frac{ax}{2} \right + C, a \neq 0, x \neq k \frac{\pi}{a} \text{ mit } k \in \mathbb{Z}$ $-30. \int \frac{\mathrm{d}x}{\cos ax} = \frac{1}{a} \ln \left \tan \left(\frac{ax}{2} + \frac{\pi}{4} \right) \right + C, a \neq 0, x \neq \frac{\pi}{2a} + k \frac{\pi}{a} \text{ mit } k \in \mathbb{Z}$
$13. \int \frac{\mathrm{d}x}{\cosh^2 x} = \tanh x + C$	$31. \int \tan \alpha x dx = -\frac{1}{a} \ln \left \cos \alpha x \right + C, \alpha \neq 0, x \neq \frac{\pi}{2a} + k \frac{\pi}{a} \operatorname{mit} k \in \mathbb{Z}$
14. $\int \frac{dx}{ax+b} = \frac{1}{a} \ln ax+b + C, a \neq 0, x \neq -\frac{b}{a}$	32. $\int \cot ax dx = \frac{1}{a} \ln \sin ax + C, a \neq 0, x \neq k \frac{\pi}{a} \text{mit } k \in \mathbb{Z}$
15. $\int \frac{dx}{a^2 x^2 + b^2} = \frac{1}{ab} \arctan \frac{a}{b} x + C, a \neq 0, b \neq 0$	$a \qquad a$ $-33. \int x^n \sin ax dx = -\frac{x^n}{a} \cos ax + \frac{n}{a} \int x^{n-1} \cos ax dx, n \in \mathbb{N}, a \neq 0$
16. $\int \frac{dx}{a^2 x^2 - b^2} = \frac{1}{2ab} \ln \left \frac{ax - b}{ax + b} \right + C, a \neq 0, b \neq 0, x \neq \frac{b}{a}, x \neq -\frac{b}{a}$	$34. \int x^n \cos ax dx = \frac{x^n}{a} \sin ax - \frac{n}{a} \int x^{n-1} \sin ax dx, n \in \mathbb{N}, a \neq 0$
17. $\int \sqrt{a^2 x^2 + b^2} dx = \frac{x}{2} \sqrt{a^2 x^2 + b^2} + \frac{b^2}{2a} \ln(ax + \sqrt{a^2 x^2 + b^2}) + C, a \neq 0, b \neq 0$	35. $\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx, n \in \mathbb{N}, a \neq 0$
18. $\int \sqrt{a^2 x^2 - b^2} dx = \frac{x}{2} \sqrt{a^2 x^2 - b^2} - \frac{b^2}{2a} \ln ax + \sqrt{a^2 x^2 - b^2} + C, a \neq 0, b \neq 0, a^2 x^2 \ge b^2$ 19. $\int \sqrt{b^2 - a^2 x^2} dx = \frac{x}{2} \sqrt{b^2 - a^2 x^2} + \frac{b^2}{2a} \arcsin \frac{a}{b} x + C, a \neq 0, b \neq 0, a^2 x^2 \le b^2$	36. $\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C, a \neq 0, b \neq 0$
19. $\int \sqrt{b^2 - a^2 x^2} dx = \frac{1}{2} \sqrt{b^2 - a^2 x^2} + \frac{1}{2a} \arcsin \frac{1}{b} x + C, a \neq 0, b \neq 0, a = x \leq b^2$ 20. $\int \frac{dx}{\sqrt{a^2 x^2 + b^2}} = \frac{1}{a} \ln (ax + \sqrt{a^2 x^2 + b^2}) + C, a \neq 0, b \neq 0$	37. $\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C, a \neq 0, b \neq 0$
$21. \int \frac{dx}{\sqrt{a^2 x^2 + b^2}} a^{\ln(ax)} + \sqrt{a^2 x^2 + b^2} + C, a \neq 0, b \neq 0 a^2 x^2 > b^2$	38. $\int \ln x dx = x(\ln x - 1) + C$, $x \in \mathbb{R}^+$ 39. $\int x^{\alpha} \cdot \ln x dx = \frac{x^{\alpha+1}}{(\alpha+1)^2} \left[(\alpha+1) \ln x - 1 \right] + C$, $x \in \mathbb{R}^+, \alpha \in \mathbb{R} \setminus \{-1\}$
$\int \sqrt{a^2 x^2 - b^2} a$	$(\alpha+1)^2$

Spektren Skript S. 103 4

Spektraldarstellungen skript S. 103ff

Abbildung 1: Kosinus- und Sinusamplituden diagramm

Abbildung 2: Einseitiges Amplituden-/Phasendiagramm

Abbildung 3: Zweiseitiges Amplituden-/Phasendiagramm

4.1.1 (1) Kosinus- und Sinusamplitudendiagramm

Reelle Fourierkoeffizienten (a_n, b_n) können direkt abgelesen werden. Bei einer Phasenverschiebung ändern sich jedoch die Koeffizienten grafisch nicht nachvollziehbar.

Diese Darstellung hat gegenüber den anderen zwei mehr Nachteile und wird daher eher selten genutzt.

(2) Einseitiges Amplituden-/Phasendiagramm

$$A_n = |a_n - j \cdot b_n| = \sqrt{a_n^2 + b_n^2} \quad \text{oder} \quad A_n = 2 \cdot |c_n| \qquad \Phi_n = \arg(a_n - j \cdot b_n) \quad \text{oder} \quad \Phi_n = \arg(c_n)$$
 Spezialfall $n = 0 \Rightarrow A_0 = |\frac{a_0}{2}| \text{ und } \Phi_0 = \begin{cases} 0, & a_0 \ge 0 \\ \pi, & a_0 < 0 \end{cases}$

(3) Zweiseitiges Amplituden-/Phasendiagramm (komplexes Spektrum)

Amplitudendiagramm ist achsensymmetrisch wegen $c_n = \overline{c_{-n}}$. Phasendiagramm ist punktsymmetrisch. Ähnlichkeit mit Einseitigem: $|c_k| = \frac{1}{2}A_k$ und $\arg(c_k) = \Phi_k$ für alle $n \ge 0$.

Spezialfälle $_{ m Skript}$ S. 106 4.2

Funktion f gerade

(1) Sinusamplitudendiagramm überall 0

Funktion f ungerade

Weisses Rauschen

(2,3) Phasendiagramm enthält nur die Werte 0 und π

(1) Kosinusamplitudendiagramm überall 0

Ähnlichkeit $g(t) = f(r \cdot t)$

Zeitverschiebung $g(t) = f(t + t_0)$

(2,3) Phasendiagramm enthält nur die Werte $\pm \frac{\pi}{2}$ (oder 0 falls Amplitudenwert = 0)

(1,2,3) Das Spektrum von g ist das horizontal mit den Faktor r gestreckte Spektrum vom f. (1) (siehe auch 3.5.4, Zeitverschiebung (S. 5))

(2,3) Amplitudendiagramme sind identisch.

(2,3) Phasendiagramme: Die Sälule der Frequenz $k\omega_0$ wächst um $k\omega_0 t_0$.

Überlagerung von Schwingungen aller möglichen Frequenzen

mit gleichen Amplituden und zufälligen Phasen.

$1. \int \mathrm{d}x = x + C$	22. $\int \frac{dx}{\sqrt{h^2 - a^2 x^2}} = \frac{1}{a} \arcsin \frac{a}{b} x + C, a \neq 0, b \neq 0, a^2 x^2 < b^2$
2. $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, x \in \mathbb{R}^+, \alpha \in \mathbb{R} \setminus \{-1\}$	$\int \sqrt{b^2 - a^2 x^2} a \qquad b$ 23. Die Integrale $\int \frac{dx}{X}$, $\int \sqrt{X} dx$, $\int \frac{dx}{\sqrt{X}}$ mit $X = ax^2 + 2bx + c$, $a \neq 0$ werden durch die
$3. \int \frac{1}{x} dx = \ln x + C, x \neq 0$	Umformung $X = a\left(x + \frac{b}{a}\right)^2 + \left(c - \frac{b^2}{a}\right)$ und die Substitution $t = x + \frac{b}{a}$ in die Integrale
$4. \int e^x dx = e^x + C$	15. bis 22. transformiert.
5. $\int a^{x} dx = \frac{a^{x}}{\ln a} + C, a \in \mathbb{R}^{+} \setminus \{1\}$	24. $\int \frac{x dx}{X} = \frac{1}{2a} \ln X - \frac{b}{a} \int \frac{dx}{X}, a \neq 0, X = ax^2 + 2bx + c$
$6. \int \sin x \mathrm{d}x = -\cos x + C$	25. $\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a} \cdot \sin 2ax + C, a \neq 0$
$7. \int \cos x \mathrm{d}x = \sin x + C$	2 14
8. $\int \frac{\mathrm{d}x}{\sin^2 x} = -\cot x + C, x \neq k\pi \text{ mit } k \in \mathbb{Z}$	26. $\int \cos^2 ax dx = \frac{x}{2} + \frac{1}{4a} \cdot \sin 2ax + C, a \neq 0$
9. $\int \frac{\mathrm{d}x}{\cos^2 x} = \tan x + C, x \neq \frac{\pi}{2} + k\pi \text{ mit } k \in \mathbb{Z}$	$27. \int \sin^n ax dx = -\frac{\sin^{n-1} ax \cdot \cos ax}{na} + \frac{n-1}{n} \int \sin^{n-2} ax dx, n \in \mathbb{N}, a \neq 0$
$10. \int \sinh x \mathrm{d}x = \cosh x + C$	$28. \int \cos^n ax dx = \frac{\cos^{n-1} ax \cdot \sin ax}{na} + \frac{n-1}{n} \int \cos^{n-2} ax dx, n \in \mathbb{N}, a \neq 0$

5 DFT - Diskrete Fourier Transformation Skript S. 109

5.1 Definitionen

5.1.1 Diskrete komplexe Fourierkoeffizienten

 $\hat{c_k}$ sind die diskreten Fourierkoeffizienten die zu den (reellen Abtastwerten f_0, f_1, \dots, f_{N-1}) gehören

$$\hat{c}_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n \cdot e^{-\frac{2\pi j}{N} \cdot kn}$$

Kompakte Darstellung mit der Matrix W: $\begin{pmatrix} \hat{c_0} \\ \hat{c_1} \\ \hat{c_2} \\ \hat{c_3} \end{pmatrix} = \frac{1}{N} \begin{pmatrix} w^0 w^0 w^0 w^0 \\ w^0 w^1 w^2 w^3 \\ w^0 w^2 w^4 w^6 \\ w^0 w^3 w^6 w^9 \end{pmatrix} \cdot \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \end{pmatrix} \text{ wobei } w = e^{-\frac{2\pi j}{N}}$

5.1.2 Rechenaufwand DFT / FFT

Der Rechenaufwand für die DFT ist proportional zu N^2 hingegen ist er bei der Fast Fourier Transform (FFT) nur $N \cdot log(N)$.

5.2 Eigenschaften der Diskreten Fouriertransformation skript S. 112

5.2.1 Alias-Effekt

Mit $\hat{c_k}(\hat{c_0}, \dots, \hat{c_N} - 1)$ kennt man alle disktreten Fourierkoeffizienten. Es gilt: $\hat{c_k} = \sum_{l=-\infty}^{\infty} c_k + l \cdot N \quad l \in \mathbb{Z}$

5.2.2 Nyquist-Shannon-Abtasttheorem

Ein Signal muss mit mindestens der doppelten Frequenz seines höchstfrequentigen Anteils abgetastet werden.

5.3 Inverse Diskrete Fouriertransformation iDFT Skript S. 116

5.3.1 Abtastwerte berechnen

Die N diskreten Fourierkoeffizienten lassen sich mit der i
DFT wieder auf ihre Abtastwerte f_n zurückführen.

$$f_n = \sum_{k=0}^{N-1} (\hat{c_k} \cdot e^{\frac{2\pi j}{N} \cdot nk})$$

5.3.2 Kontinuirliche Funktion berechnen

Die N diskreten Fourierkoeffizienten lassen sich auch auf die kontinuirliche Funktion f(t) zurückführen.

$$t \mapsto \sum_{k=0}^{N-1} (\hat{c_k} e^{jk\omega_0 t})$$

ist eine Funktion die diese diskreten Fourierkoeffizienten besitzt. für $k=1,2,\ldots,\frac{N}{2}$ so ist auch

$$t \mapsto \hat{c_k} + \sum k = 1 \frac{N}{2} - 1[2Re(\hat{c_k}e^jk\omega_0t)] + \hat{c_{\frac{N}{2}}} \cdot \cos(\frac{N}{2}\omega_0t)$$

eine reelle Funktion mit halb so grossen höchsten Frequenzen.

6 Wichtige Formeln

$$\sin^2(b) + \cos^2(b) = 1$$
 $\tan(b) = \frac{\sin(b)}{\cos(b)}$

6.1 Funktionswerte für Winkelargumente

deg	rad	sin	cos	tan
0 °	0	0	1	0
30 °	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45 °	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60 °	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

deg	rad	sin	cos	
90 °	$\frac{\pi}{2}$	1	0	
120 °	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	
135 °	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	
150 °	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	

deg	rad	sin	cos	deg	rad	sin	cos
180 °	π	0	-1	270 °	$\frac{3\pi}{2}$	-1	0
210 °	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	300 °	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
225 °	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	315 °	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
240 °	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	330 °	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$

6.2 Periodizität

$$cos(a + k \cdot 2\pi) = cos(a)$$
 $sin(a + k \cdot 2\pi) = sin(a)$ $(k \in \mathbb{Z})$

6.3 Quadrantenbeziehungen

$$sin(-a) = -\sin(a)
sin(\pi - a) = \sin(a)
sin(\pi + a) = -\sin(a)
sin(\frac{\pi}{2} - a) = \sin(\frac{\pi}{2} + a) = \cos(a)$$

$$cos(-a) = cos(a)
cos(\pi - a) = -\cos(a)
cos(\pi + a) = -\cos(a)
cos(\pi - a) = -\cos(\pi \frac{\pi}{2} + a) = \sin(a)$$

6.4 Additions theoreme

$$\begin{aligned} \sin(a \pm b) &= \sin(a) \cdot \cos(b) \pm \cos(a) \cdot \sin(b) \\ \cos(a \pm b) &= \cos(a) \cdot \cos(b) \mp \sin(a) \cdot \sin(b) \\ \tan(a \pm b) &= \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \cdot \tan(b)} \end{aligned}$$

6.5 Doppel- und Halbwinkel

$$\sin(2a) = 2\sin(a)\cos(a) \cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a) \cos^2(\frac{a}{2}) = \frac{1+\cos(a)}{2} \qquad \sin^2(\frac{a}{2}) = \frac{1-\cos(a)}{2}$$

6.6 Produkte

$$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b))$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a-b) + \sin(a+b))$$

6.7 Summe und Differenz

$$\begin{split} \sin(a) + \sin(b) &= 2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right) \\ \sin(a) - \sin(b) &= 2 \cdot \sin\left(\frac{a-b}{2}\right) \cdot \cos\left(\frac{a+b}{2}\right) \\ \cos(a) + \cos(b) &= 2 \cdot \cos\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right) \\ \cos(a) - \cos(b) &= -2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right) \\ \tan(a) &\pm \tan(b) &= \frac{\sin(a\pm b)}{\cos(a)\cos(b)} \end{split}$$

7 Diverses

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} \qquad (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} \cdot b^k \qquad (a\pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \qquad (a\pm b)^4 = a^4 \pm 4a^3b + 6a^2b^2 \pm 4ab^3 + b^4$$

Partielle Integration: $\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$