Large Language Models and Causal Inference in Collaboration: A Survey

Announcement Date	@2025년 4월 10일
≡ Conference Name	NAACL 2025
i≡ Keywords	Causal Inference LLM

Causal Inference?

◎ 인과 추론이란?

예를 들어:

- 질문: 감기에 걸린 이유가 비를 맞아서일까?
- 이 질문의 답을 찾는 게 바로 인과 추론이에요!

🔍 상관관계 vs 인과관계

많이 헷갈리는 개념인데 쉽게 구분해 볼게요:

개념	설명	예시
상관관계	A와 B가 같이 일어나는 현상 (같이 변해요)	아이스크림 판매량이 늘면 익사 사고도 늘어요 (둘 다 여름에 늘어나기 때문)
인과관계	A가 B의 원인 이 되는 관계	비를 맞으면 몸이 젖고, 젖은 몸이 감기에 걸릴 확률을 높여요 → 비 → 감기

상관관계가 있다고 해서 꼭 인과관계가 있는 건 아니에요! 그래서 우리가 '진짜 원인'을 찾기 위해 인과 추론을 하는 거죠.

✓ 어떻게 인과를 추론할까?

1. 실험 (가장 정확함):

- 집단을 나눠서 한쪽엔 약을 주고, 다른 쪽은 안 줘요.
- 이후 결과를 비교하면 약이 효과가 있는지 알 수 있어요.

2. **관찰 데이터** (실험 못할 때):

- 그냥 관찰만으로는 원인을 단정하기 어려워요.
- 그래서 수학적 모델, 그래프, 통계 기법 등으로 조심스럽게 인과 관계를 추정해요.

🧠 인과 추론에서 자주 쓰는 개념들 (간단 요약)

용어	쉬운 설명
처치 (Treatment)	원인이 될 수 있는 것 (예: 약 복용)
결과 (Outcome)	우리가 알고 싶은 결과 (예: 병이 나았는가)
반사실 (Counterfactual)	"약 안 먹었으면 어땠을까?" 같은 상상 속 시나리오
DAG 그래프	변수 간 인과 관계를 방향 있는 화살표로 나타낸 그래프
혼란변수 (Confounder)	A와 B 둘 다에 영향을 주는 숨겨진 제3의 변수 (헷갈리게 만듦)

https://yonghwankim-dev.tistory.com/222 - DAG 그래프

1. Introduction

- 대형 언어 모델(LLMs)은 다양한 작업에서 뛰어난 성능을 보이며, 멀티모달 모델로 확장 되며 활용 가능성이 크게 증가하고 있음
- LLM의 핵심 역량은 추론 능력이며, 이를 향상시키기 위한 다양한 연구가 활발히 진행되고 있음
- 인과 추론은 NLP 모델의 정확성, 공정성, 견고성, 설명 가능성을 향상시키는 데 유용하며, 최근에는 LLM과의 통합이 주목받고 있음

• 본 연구에서는 인과 추론이 LLM 성능 향상에 어떻게 기여하는지와, 반대로 LLM이 인과 추론을 어떻게 지원할 수 있는지를 탐색

2. Causal Inference and Large Language Models

2.1 Evolution of the Large Language Models

- 대형 언어 모델(LLMs)은 Transformer 구조를 기반으로 발전했으며, 언어 생성과 이해 능력을 획기적으로 향상시켰음
- 모델 크기나 학습 데이터 규모를 늘릴수록, 다양한 하위 작업에서 더 우수한 성능을 보이는 경향이 확인
- 성능 향상을 위한 주요 기술로는 In-Context Learning(ICL), Chain-of-Thought(CoT) prompting, Instruction tuning 등이 사용됨
- 최근에는 이미지와 언어를 함께 처리할 수 있는 멀티모달 LLM(VLM/MLLM)도 등장하여 적용 영역이 확장되고 있음

2.2 Introduction of Causal Inference

- 인과 추론은 변수 간의 원인과 결과 관계를 식별하고 추정하는 이론적 틀로, 처치 효과 (treatment effect) ("어떤 개입(처치, treatment)이 결과에 얼마나 영향을 줬는가?" 를 측정하는 것) 를 계산하는 데 중점을 둠
- 대표적인 접근인 잠재 결과 모델(potential outcomes framework)은 실제로 관측할수 없는 반사실 데이터를 가정하여 인과 효과를 추정
- 인과 구조를 시각화하거나 설명하기 위해 구조 방정식 모델(SEM)과 인과 그래프(DAG) 가 자주 사용됨
- 이러한 이론들은 LLM과 접목되어, 인과 관계 추론 및 자동화된 원인 분석에 응용될 수 있는 기초가 됨

Figure 1: An overview of the interplay between causal inference frameworks and LLMs.

3. Causal Inference for Large Language Models

Causal for LLMs

인과 추론이 LLM의 성능 및 특성 향상에 어떻게 기여하는지를 다루는 분기입니다.

- ◆ Reasoning Capacity (추론 능력)
- Model Understanding (모델 이해)
 LLM이 단순히 훈련 데이터를 기억하는 것이 아닌 인과 구조를 이해하는지 평가

 ⇒ Zečević et al., Kim et al., Chen et al.
- Commonsense Reasoning (상식 추론)
 일상적 인과 관계를 통한 추론 능력

- → Gao et al., Lu et al., Zhang et al.
- Counterfactual Reasoning (반사실 추론)

"만약 ~였다면?" 같은 조건을 설정하고 모델의 인과 판단 능력을 평가

→ Betti et al., Li et al.

◆ Fairness and Bias (공정성 및 편향)

- 인과 그래프 기반 방법으로 사회적 편향(성별, 인종 등)을 모델에서 식별하고 제거
 - → Meade et al., Zhou et al., Jenny et al.

◆ Safety (안전성)

- LLM이 불안정하거나 헛소리를 할 때, 이를 인과적으로 분석하여 **문제 원인 파악 및 방어** 가능
 - → Zhao et al., Cao et al.

◆ Explanation (설명 가능성)

- 모델이 **왜 이런 출력을 했는가?**에 대해 인과 그래프나 개입 기법을 통해 설명력 확보
 - → Hou et al., Gurnee et al., Vig et al.

◆ Multi-modality (다중모달 처리)

- 텍스트+이미지 같은 멀티모달 입력에서 **텍스트 중심 인과성만 의존하지 않도록** 조정
 - → Ko et al., Li et al., Chen et al.

◆ Benchmark (평가 벤치마크)

- 위 모든 분야에 대해 인과성을 중심으로 설계된 **벤치마크 세트들**
 - → CRAB, CaLM, CLOMO, etc.

4. Large Language Models for Causal Inference

LLMs for Causal

반대로, LLM이 인과 추론 자체를 돕는 경우를 다루는 분기입니다.

4.1 Treatment Effect Estimation (처치 효과 추정)

LLM은 자연어 기반 정보와 반사실 시나리오 생성을 통해 처치 효과 추정에 활용될 수 있습니다.

예를 들어, DISCO와 같은 기법은 LLM이 인과 구조를 학습하고 개입의 결과를 추론하도록 돕습니다.

다만, 프롬프트 편향이나 외부 지식의 신뢰도 문제 등 한계도 존재합니다.

4.2 Causal Relationship Discovery (인과 관계 발견)

LLM은 변수 간 인과 관계를 텍스트 설명을 통해 추출하거나 DAG 구조를 직접 예측하는 데 활용됩니다.

이 방식은 전통적인 통계적 접근보다 직관적이고 빠르며, 다양한 도메인 지식과 결합이 가능합니다.

하지만 정확성과 해석 가능성 문제로 인해 보조 도구로의 활용이 권장됩니다.

4.3 Multimodal Causal Inference (멀티모달 인과 추론)

멀티모달 인과 추론은 이미지, 텍스트 등 다양한 모달 정보를 통합해 인과 관계를 추론하는 방식입니다.

LVLM 기반 모델은 의료, 시각 질의응답 등에서 원인과 결과 간 복잡한 상호작용을 파악하는데 유용합니다.

아직 초기 단계지만, 산업적 활용 가능성이 높아 적극적인 연구가 진행 중입니다.

5. Conclusion

- LLMs와 인과 추론의 융합은 상호 보완적인 가능성을 지니며, 앞으로 더욱 정교한 프롬 프트 설계, 반사실 생성, 그리고 멀티모달 인과 추론 분야에서 발전할 것임
- 특히 인과 추론 기반 LLM 성능 평가, 편향 제거, 인간과의 협력적 추론 설계는 핵심적인 연구 방향으로 제시됩니다.
- 궁극적으로 LLM의 신뢰성과 해석력을 강화하는 데 있어 인과 추론은 중요한 역할을 하게 될 것입니다.