graph-based SLAM の解説

上田 隆一

2017年4月15日

1 はじめに

この文章は、[1] などのチュートリアルを見ても数式の細かいところが分からない graph-based SLAM について、実際の計算方法を細かく解説するためのものです。

2 問題

対向二輪型(その場で回転できるロボット)で、カメラでランドマーク観測ができるロボットで graph-based SLAM を実行する方法を考える。ランドマークは環境にいくつか存在し、ロボット からは互いに識別でき、距離と見える方角が観測できる。また、ランドマークには向きがあり、世界座標系でどの方角を向いているのかもロボットから観測できるものと仮定する。

2.1 ロボットの姿勢と座標系

世界座標系 $\Sigma_{\rm w}$ におけるロボットの姿勢(位置と向き)を

$$\boldsymbol{x} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} \tag{1}$$

で表す。また、 $[x,y]^T$ を原点として、X 軸が世界座標系で θ の方向を向いているロボット座標系 Σ_r を考える。これらの関係を図 1 に示す。

References

参考文献

[1] Grisetti, G., Kmmerle, R., Stachniss, C. and Burgard, W.: A Tutorial on Graph-Based SLAM, *IEEE Intelligent Transportation Systems Magazine*, Vol. 2 (2010), 31–43.

 $^{\ \}odot$ 2017 Ryuichi Ueda

図1 世界座標系とロボットの姿勢