Sorting

Lots of Sorting Applications. Some are:

Commercial Applications:

data stored ordered by one "key". Processing requires it ordered by another key(s).

- e.g., enumerate hash tabled
- e.g., transactions on e-commerce site ordered by server arrival timestamp. Sort by "expiry date on credit card" to send out "card about to expire email"
- e.g., iPhone app-usage log ordered by timestamp of usage user wants to see app list ordered by frequency of use. Sort the log by app.
 - e.g., "messaging sites" ordered by timestamp, but want to know: what's trending, who are the chattiest users, who is the chattiest country, etc. Sort by these.

Operating Systems Research

- e.g., Complete N jobs, each requiring T(N) units of processing time.
- Must schedule to maximize customer satisfaction by minimizing average job completion times.
- e.g., M processors and N jobs. Must schedule so that last job to complete finishes as soon as possible.
- Algorithms to accomplish these require sorting (and re-sorting) by time-to-completion, T(N), etc.

Simulations:

- e.g., weather prediction, financial markets, traffic flow, urban planning, etc. usually require events/items sorted on various keys

Graph Algorithms:

- e.g., shortest path through network, fastest path through network, etc.
- algorithms require sorting by "weights" (e.g., bandwidth, cost of fuel)

Huffman Compression:

- sort by frequencies

Order Statistics:

e.g.:

- Efficient (speed up) Searching How can we efficiently test whether element, k, is in set S?
- Uniqueness Testing How can we test if the elements of a given collection of items, S, are all distinct?
- Deleting Duplicates How can we remove all but one copy of any repeated elements in S?
- Median/Selection How can we find the k-th largest item in set S?
- Frequency Counting Which is the most frequently occurring element in set S, i.e., the mode?
- Reconstructing the Original Order How can we restore the original arrangement of a set of items after we permute them for some application?
- Set Intersection/Union How can we intersect or union the elements of two containers?
- Finding a Target Pair How can we test whether there are two integers, x,y in S, such that x+y=z for some target z?

Sorting Effciency

- 1) number of comparisons
- 2) number of data moves

O(nlogn) – best average case (comps) for comparison-based sorts O(n) – best average case (adat moves) for address-based sorts

Types of sorts:

Insertion-type sorts:

- start with empty container
- insert items one-by-one (in order in container)
- Tree Sort, Insertion Sort

Priority Q-type sorts:

- insert items into P.Q.
- remove one-by-one => get sorted order
- Heap Sort, Selection Sort

Divide and Conquer-type sorts:

- divide unsorted part into 2 parts
- sort each part and recombine
- Quick Sort, Merge Sort

Diminishing Increment-type sorts:

- Shell sort

Transposition-type sorts:

- Bubble sort

Address-type sorts:

- items are not compared to each other
- categorized based on specific properties
- Radix Sort, Proxmap Sort

_

Sorting Animations:

As far as they may help one understand algorithms covered in text/class.

(Note: tests assume algorithms as covered in text/class.)

Human subject Insertion/Selection/Merge:

http://www.youtube.com/watch?v=INHF 5RIxTE&feature=related

Robot QS vs BS sort-off:

https://www.youtube.com/watch?v=aXXWXz5rF64&feature=iv&src_vid=H5kAcmGOn4Q&annotation_id=annotation_2512573901

Robot OS vs MS sort-off:

https://www.youtube.com/watch?v=es2T6KY45cA&feature=iv&src_vid=H5kAcmGOn4Q&annotation_i d=annotation_2685924271 etc.

Enable java/script: http://www.csse.monash.edu.au/~dwa/Animations/index.html

Mergesort can help visualize the recursion:

http://www.ee.ryerson.ca/~courses/coe428/sorting/sorting.html

Insertion Sort

- A divides into 2 parts: Left Hand Sides (LHS) is sorted, Right-Hand-Side(RHS) is not
- each step:
 - o get next from RHS (x) (and remove)
 - o find spot in LHS it should go
 - o shuffle if necessary
 - o insert x

e.g.

```
Unsorted
Sorted
    5 | 3 9 6 1 7
                                   (3)
                            A[1]
    5 | 9 6 1 7
R
    _ 5|9 6 1 7
S
    3 5 | 9 6 1 7
Ι
R
    3 5 | 6 1 7
                            A[2]
                                   (9)
    3 5 [6 1 7
S
Ι
    3 5 9 6 1 7
    3 5 6 9 1 7
                            after A[3] done (6)
    1 3 5 6 9 | 7
                            after A[4] done (1)
    1 3 5 6 7 9
                            after A[5] done (7)
                  Unsorted
           Sorted
```

Insertion Sort Algorithm

```
A - Array
n - size of array
insertionSort(A, n)

for i from 1 to n - 1 by 1

    key = A[i];
    j = i-1;

Loop while j >= 0 && A[j] > key
    A[j+1] = A[j];
    j = j-1;

A[j+1] = key;
```

Analysis of Insertion Sort

Comparisons

Worst Case: compare A[i] to all items to left of it (reverse ordered list)

$$A[1]$$
 \rightarrow 1 comp (to $A[0]$)

$$A[2] \rightarrow 2 comps$$

...

$$A[n-1] \rightarrow \underline{n-1 \text{ comps}}$$

total
$$1+2+...(n+1) = \frac{(n-1)n}{2} = > O(n^2)$$

Average: as above, but for each A[i]

do average of 1, 2, 3 .. I comps
$$=\frac{i(i+1)}{2i} = \frac{(i+1)}{2}$$

total
$$\sum_{i=1}^{n-1} \frac{(i+1)}{2} = \frac{1}{2} [(n-1) + \sum_{i=1}^{n-1} i] = \frac{1}{2} [(n-1) + \frac{(n-1)n}{2}] \implies O(n^2)$$

Best: at each step 1 comp

$$1 + 1 + 1 \dots + 1 = n - 1 => O(n)$$

Data Moves

Worst Case: (reverse ordered list)

- each step shuffle all items in "sorted"

A[1]
$$\rightarrow$$
 1 shuffle and insert item in hole = 2

A[2]
$$\rightarrow$$
 1 shuffle and insert item in hole = 3

...

A[n-1]
$$\rightarrow$$
 n-1 shuffle and insert item in hole = n

total
$$\frac{(n+1)n}{2} - 1 => O(n^2)$$

Average: A[1] average of 1 shuffle and insertion in hole = 2

A[2] average of 2 shuffle and insertion in hole =
$$3$$

• • •

A[n-1] average of n-1 shuffle and insertion in hole = n

 $=> O(n^2)$

Best: (ordered list)

No shuffling. Code may do the 1 "insert" so
$$1 + 1 + 1 \dots + 1 = n-1 \Rightarrow O(n)$$

OR O(1) if no "copy over"

idea:

- [unsorted list]. Choose pivot
- rearrange list such that

[(< pivot) | pivot | (> pivot)]

- pivot is in final position
- Run quick sort on (< pivot) and (> pivot)\
 NOTE: can "re-arrange" by starting from both ends and swapping if out-of-place

Choose Pivot 8

- 5, 10, 3, 2, 7, 8, 9, 15, 1, 4, 20,
- 5, 4, 3, 2, 7, 1, 9, 15, 8, 10, 20,
- 1, 2, 3, 4, 7, 5, 9, 15, 8, 10, 20,
- 1, 2, 3, 4, 7, 5, 9, 15, 8, 10, 20,
- $1, \quad 2, \quad 3, \quad 4, \quad 5, \quad 7, \quad 9, \quad 15, \quad 8, \quad 10, \quad 20,$
- 1, 2, 3, 4, 5, 7, 9, 15, 8, 10, 20,
- 1, 2, 3, 4, 5, 7, 8, 15, 9, 10, 20,
- 1, 2, 3, 4, 5, 7, 8, 9, 15, 10, 20,
- 1, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20,

Quick Sort Algorithm

Quicksort from Standish (does not move pivot into center)

```
Partition (array A, i, j)
 pivpos=(i+j)/2
 pivot = A[ pivpos ] //middle key
  while ( A[i] < pivot ) i++
  while (A[*j] > pivot) j--
   if (*i <= *j )
     temp = A[*i]
     A[*i]=A[*j]
     A[*j]=temp; //swap i, j
      i++
      j--
   until i <= j;
QuickSort (array A, m, n) {
 if (m < n)
    i=m
    j=n
    Partition (A, i, j)
    QuickSort(A,m,j)
    QuickSort(A,i,n)
```

Analysis of Quick Sort

Best Case: when choose pivot, list is divided equally in half

(1/2 n) p (1/2n)

Comparisons:

1st call to QS
$$\approx n$$
 comps (comp each with pivot) + 2 recursive calls on each $\frac{1}{2}$ $\approx \frac{n}{2} + \frac{n}{2} = n$ total comps + 4 recursive calls on each $\frac{1}{4}$ $\approx \frac{n}{4} + \frac{n}{4} + \frac{n}{4} = n$ total comps + 8 recursive calls

. . .

on each level $\approx n$ comps

How many levels?

 \approx height of recursive tree

 \approx how many x can cut list length n in half? $\log(n)$

=? O(n log n) comps

ore recurrence relations: C(n)=n+2C(n/2), C(2)=2

Worst: pivot largest/smallest in list $[p \mid rest \text{ of list }]$ divide lists length 0 + n - 1

each step is approximately n comps $n+(n-1)+(n-2)\dots 1 => O(n^2)$

Average: recurrence relations(test) O(nlogn)

Merge Sort

idea:

- if list has 1 item, return
- divide list in half
- MergeSort each half
- merge the 2 halves into one

e.g.)

```
23 L. 4 82 67

23 L. 4 82 67

23 L. 4 82 67

39 14 28 67

1349 2678
```

Merge Sort Algorithm

```
Merge (left, right)
  create temp array T
  loop while !empty(left && !empty(right)
    if first(left) < first(right)
       Append(T, first(left))
       removeFirst(left)
    else
       Append(T, first(right))
       removeFirst(left)
  if !emppty(left)
       Append(T, leftOver(left))
  if !emppty(right)
       Append(T, leftOver(right))</pre>
```

Analysis of Merge Sort

Worst Case: in half each time which is about logn height of call tree

each level (except leafs) total is about n comps so O(nlogn)

Best Case: same but n/2 comps so O(nlogn)

Average Case: O(nlogn)

[Generally proved that for any comparison-based sort, fastest average time comparisons is O(nlogn)]

Tree Sort

idea:

- unsorted array A (A[0] ... A[n-1])
- create BST B
- for each I, insert(B, A[i])
- In-order traversal of B

e.g.)

Analysis of Tree Sort

- insertion of BST is O(logn)
- insert n items and thus generally O(nlogn)
 comps = log1 + log2 + log3 + ... + log(n-1) = nlogn => O(nlogn) best/average

Note: In-order traversal takes no comps.

Worst $O(n^2)$ – degenerate tree

Data Moves

- move each item from A to B :n
- move each item from B to A :n
- $2n \Rightarrow O(n)$

Heap Sort

Heap:

- What is a Heap? Heap is a binary tree such that
 - o value of node >= value of kids (descendants)
 - o every level is full except for possibly the last, but items on last level are filled inserted as far left as possible

Note: largest item in tree must be at root
if remove root, re-heapify by:
moving "last" item to root "7"
keep swapping node with largest of kids until it is in place

idea:

- make data into heap
- while items left in tree
 - o remove root and put in "final" array
 - o replace root by "last" item
 - o re-heapify

if fill "final array" back-to-front, it is in sorted order once tree is empty

5-7

Can do this "in" array.

Store root at mode 1 ALIJ

Best child of mode in ALIJ is at ALZiJ

right " "A [Zi+1]

(9) A: [20/5/10 5/7] = 20

each step swap "last" in heap with root + ne-heapisty

17 15 10 5 20 Ne-Lespity (15 7 10.5 RO)

Swap 15 7 10 115 20 Ne-Leapity 10 7 5 15 20 Swap 15 7 10 15 20 Ne-Leapity 17 5 10 15 20 ist swap 15 2 15 7 10 15 20 1

Analysis of Heap Sort

- Comparisons and data moves are similar

- insert n items and thus generally O(nlogn)

Data Moves:

Worst case: to transform A into Heap takes O(n) (from Trees notes)

 $swap-constant\ K2$

re-heapify heap into I - 1 nodes – at most log(i-1) saps, (height of heap)

Total:

$$O(n) + K2log(n-1)+k2+k2log(n-2)+...+k2log(2)+k2$$

$$= k2 \sum_{i=2}^{n-1} \log(i) + (n-2)k2 + OO(n) + k2$$

$$< k2nlog(n) + (n-1)k2 + O(n)$$
 => O(nlogn)

Worst, Average, Best time

Radix Sort

idea:

- radix (e.g. 129 radix is 10, 111010 radix is 2)

let p = max number of digits in keys to be sorted let r = radix of keys

Sorted p passes where each pass moved n items to Qs and from $Q \Rightarrow 2pn \Rightarrow O(n)$

No comparisons, only data moves

Stability of Sorts

- A sorting method is **stable** if it is:
 - o preserves relative order of equal keys

e.g.) e- commerce site

- transactions put on array as arrive (ordered by timestamp)
- application needs to process by province so sort by province.
- if sort is unstable, timestamp ordering is not necessarily preserved within prince

original		Sorted by province (unstable)	
ONT	08:00:00	AB	08:01:32
AB	08:00:03	AB	08:00:03
ONT	08:01:00	AB	08:02:21
NB	08:01:09	BC	08:02:04
AB	08:01:32	NB	08:01:09
BC	08:02:04	ONT	08:01:00
ONT	08:02:11	ONT	08:02:11
AB	08:02:21	ONT	08:00:00

Stable Sorts: Insertion Sort, Merge Sort, Radix, BSTs

Unstable: Quick Sort, Heap Sort

Stability of Sorts

	Best	Average	Worst
Quick Sort	nlogn	nlogn	n^2
Merge Sort	nlogn	nlogn	nlogn
Heap Sort	nlogn	nlogn	nlogn
Insertion Sort	n	n^2	n^2
Tree Sort	nlogn	nlogn	n^2
Radix Sort	pn	pn	pn

Is Radix Sort Best?

- if p is large, pn maybe no better than nlogn or n²
- if space is limited, Rardix sort is bad (all those Qs)

Quick sort is about 2x faster than Heap Sort and Merge sort in practice Is Quick Sort Best?

- space is limited, Quick Sort and Merge Sort are bad because lots of stack space or recursive calls) Heap sort is best
- if guarantee required (e.g. real-time applications), Quick Sort is bad $O(n^2)$ worst case Heap or Merger Sorts is best
- if Stability requires Merge Sort is best

If A is already mostly in order – Insertion Sort is good => approximately O(n) best time vs O(nlogn)

No Single method is better than all others in all situations