Ejercicios resueltos de derivación. 1a parte.

Juan Gabriel Gomila, Arnau Mir y Llorenç Valverde

Ejercicio 1

Usando la definición de derivada, hallar f'(2) donde $f(x) = x^2 + 4x$.

Ejercicio 1

Usando la definición de derivada, hallar f'(2) donde $f(x) = x^2 + 4x$.

Solución

El valor de f'(2) usando la definición será:

$$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^2 + 4x - 12}{x - 2}$$

Ejercicio 1

Usando la definición de derivada, hallar f'(2) donde $f(x) = x^2 + 4x$.

Solución

El valor de f'(2) usando la definición será:

$$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^2 + 4x - 12}{x - 2}$$
$$= \lim_{x \to 2} \frac{(x - 2)(x + 6)}{x - 2} = \lim_{x \to 2} (x + 6) = 8.$$

Ejercicio 2

Usando la definición de derivada, hallar f'(1) donde $f(x) = -\frac{1}{x^2}$.

Ejercicio 2

Usando la definición de derivada, hallar f'(1) donde $f(x) = -\frac{1}{x^2}$.

Solución

El valor de f'(1) usando la definición será:

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{-\frac{1}{x^2} - (-1)}{x - 1}$$

Ejercicio 2

Usando la definición de derivada, hallar f'(1) donde $f(x) = -\frac{1}{x^2}$.

Solución

El valor de f'(1) usando la definición será:

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{-\frac{1}{x^2} - (-1)}{x - 1}$$
$$= \lim_{x \to 1} \frac{1 - \frac{1}{x^2}}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x^2 \cdot (x - 1)}$$

Ejercicio 2

Usando la definición de derivada, hallar f'(1) donde $f(x) = -\frac{1}{x^2}$.

Solución

El valor de f'(1) usando la definición será:

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{-\frac{1}{x^2} - (-1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{1 - \frac{1}{x^2}}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x^2 \cdot (x - 1)}$$

$$= \lim_{x \to 1} \frac{(x - 1) \cdot (x + 1)}{x^2 \cdot (x - 1)} = \lim_{x \to 1} \frac{x + 1}{x^2} = \frac{1 + 1}{1} = 2.$$

Ejercicio 3

Hallar f'(x) donde $f(x) = \sin(\ln(\cos x))$.

Ejercicio 3

Hallar f'(x) donde $f(x) = \sin(\ln(\cos x))$.

Solución

Ejercicio 3

Hallar f'(x) donde $f(x) = \sin(\ln(\cos x))$.

$$f'(x) = \cos(\ln(\cos x))$$

Ejercicio 3

Hallar f'(x) donde $f(x) = \sin(\ln(\cos x))$.

Solución

$$f'(x) = \cos(\ln(\cos x)) \cdot (\ln(\cos x))'$$

Ejercicio 3

Hallar f'(x) donde $f(x) = \sin(\ln(\cos x))$.

Solución

$$f'(x) = \cos(\ln(\cos x)) \cdot (\ln(\cos x))'$$
$$= \cos(\ln(\cos x)) \cdot \frac{1}{\cos x}.$$

Ejercicio 3

Hallar f'(x) donde $f(x) = \sin(\ln(\cos x))$.

Solución

$$f'(x) = \cos(\ln(\cos x)) \cdot (\ln(\cos x))'$$

$$= \cos(\ln(\cos x)) \cdot \frac{1}{\cos x} \cdot (\cos x)'$$

$$= \cos(\ln(\cos x)) \cdot \frac{1}{\cos x} \cdot (-\sin x)$$

$$= -\frac{\sin x \cdot \cos(\ln(\cos x))}{\cos x}.$$

Ejercicio 4

Hallar f'(x) donde $f(x) = \arcsin(x^2 + \tan x)$.

Ejercicio 4

Hallar f'(x) donde $f(x) = \arcsin(x^2 + \tan x)$.

Solución

Ejercicio 4

Hallar f'(x) donde $f(x) = \arcsin(x^2 + \tan x)$.

Solución

$$f'(x) = \frac{1}{\sqrt{1-(x^2+\tan x)^2}}$$

Ejercicio 4

Hallar f'(x) donde $f(x) = \arcsin(x^2 + \tan x)$.

Solución

$$f'(x) = \frac{1}{\sqrt{1 - (x^2 + \tan x)^2}} \cdot (x^2 + \tan x)'$$

Ejercicio 4

Hallar f'(x) donde $f(x) = \arcsin(x^2 + \tan x)$.

Solución

$$f'(x) = \frac{1}{\sqrt{1 - (x^2 + \tan x)^2}} \cdot (x^2 + \tan x)'$$
$$= \frac{1}{\sqrt{1 - (x^2 + \tan x)^2}} \cdot \left(2x + \frac{1}{\cos^2 x}\right).$$

Ejercicio 5

Hallar el punto(s) donde las curvas $f(x) = x^3 - 3x + 4$ y $g(x) = 3 \cdot (x^2 - x)$ son tangentes en dicho punto, es decir, que las rectas tangentes a las curvas en dicho punto son la misma. Hacer un gráfico ilustrativo.

Solución

Como las rectas tangentes deben ser las mismas en el punto a hallar, las pendientes de dichas rectas también deben ser la misma.

Solución

Como las rectas tangentes deben ser las mismas en el punto a hallar, las pendientes de dichas rectas también deben ser la misma. Recordemos que la pendiente de la recta tangente es precisamente la derivada.

Solución

Como las rectas tangentes deben ser las mismas en el punto a hallar, las pendientes de dichas rectas también deben ser la misma.

Recordemos que la pendiente de la recta tangente es precisamente la derivada.

Sea (x_0, y_0) el punto a hallar.

Solución

Como las rectas tangentes deben ser las mismas en el punto a hallar, las pendientes de dichas rectas también deben ser la misma.

Recordemos que la pendiente de la recta tangente es precisamente la derivada.

Sea (x_0, y_0) el punto a hallar.

La pendiente del punto anterior en la curva y = f(x) valdrá:

Solución

Como las rectas tangentes deben ser las mismas en el punto a hallar, las pendientes de dichas rectas también deben ser la misma.

Recordemos que la pendiente de la recta tangente es precisamente la derivada.

Sea (x_0, y_0) el punto a hallar.

La pendiente del punto anterior en la curva y = f(x) valdrá:

$$f'(x_0) = 3x_0^2 - 3,$$

Solución

Como las rectas tangentes deben ser las mismas en el punto a hallar, las pendientes de dichas rectas también deben ser la misma.

Recordemos que la pendiente de la recta tangente es precisamente la derivada.

Sea (x_0, y_0) el punto a hallar.

La pendiente del punto anterior en la curva y = f(x) valdrá:

$$f'(x_0) = 3x_0^2 - 3,$$

y la pendiente en la curva y = g(x) valdrá:

Solución

Como las rectas tangentes deben ser las mismas en el punto a hallar, las pendientes de dichas rectas también deben ser la misma.

Recordemos que la pendiente de la recta tangente es precisamente la derivada.

Sea (x_0, y_0) el punto a hallar.

La pendiente del punto anterior en la curva y = f(x) valdrá:

$$f'(x_0) = 3x_0^2 - 3,$$

y la pendiente en la curva y = g(x) valdrá:

$$g'(x_0) = 3 \cdot (2x_0 - 1).$$

Solución (cont.)

Solución (cont.)

$$3x_0^2 - 3 = 3 \cdot (2x_0 - 1),$$

Solución (cont.)

$$3x_0^2 - 3 = 3 \cdot (2x_0 - 1), \Rightarrow x_0^2 = 2x_0,$$

Solución (cont.)

$$3x_0^2 - 3 = 3 \cdot (2x_0 - 1), \ \Rightarrow x_0^2 = 2x_0, \ \Rightarrow x_0 = 0, \ x_0 = 2.$$

Solución (cont.)

Como las pendientes deben ser iguales debe verificarse que $f'(x_0) = g'(x_0)$:

$$3x_0^2 - 3 = 3 \cdot (2x_0 - 1), \Rightarrow x_0^2 = 2x_0, \Rightarrow x_0 = 0, x_0 = 2.$$

Analicemos las dos soluciones halladas:

Solución (cont.)

Como las pendientes deben ser iguales debe verificarse que $f'(x_0) = g'(x_0)$:

$$3x_0^2 - 3 = 3 \cdot (2x_0 - 1), \Rightarrow x_0^2 = 2x_0, \Rightarrow x_0 = 0, x_0 = 2.$$

Analicemos las dos soluciones halladas:

• $x_0 = 0$. El valor de $y_0 = f(x_0) = f(0)$ vale $y_0 = 4$ y el valor de $g(x_0) = g(0)$ vale g(0) = 0.

Solución (cont.)

Como las pendientes deben ser iguales debe verificarse que $f'(x_0) = g'(x_0)$:

$$3x_0^2 - 3 = 3 \cdot (2x_0 - 1), \Rightarrow x_0^2 = 2x_0, \Rightarrow x_0 = 0, x_0 = 2.$$

Analicemos las dos soluciones halladas:

• $x_0 = 0$. El valor de $y_0 = f(x_0) = f(0)$ vale $y_0 = 4$ y el valor de $g(x_0) = g(0)$ vale g(0) = 0. Como $f(0) \neq g(0)$ no es un punto de corte y queda descartada esta solución.

Solución (cont.)

Como las pendientes deben ser iguales debe verificarse que $f'(x_0) = g'(x_0)$:

$$3x_0^2 - 3 = 3 \cdot (2x_0 - 1), \Rightarrow x_0^2 = 2x_0, \Rightarrow x_0 = 0, x_0 = 2.$$

Analicemos las dos soluciones halladas:

- $x_0 = 0$. El valor de $y_0 = f(x_0) = f(0)$ vale $y_0 = 4$ y el valor de $g(x_0) = g(0)$ vale g(0) = 0. Como $f(0) \neq g(0)$ no es un punto de corte y queda descartada esta solución.
- $x_0 = 2$. El valor de $y_0 = f(x_0) = f(2)$ vale $y_0 = 6$ y el valor de $g(x_0) = g(2)$ vale g(2) = 6.

Solución (cont.)

Como las pendientes deben ser iguales debe verificarse que $f'(x_0) = g'(x_0)$:

$$3x_0^2 - 3 = 3 \cdot (2x_0 - 1), \Rightarrow x_0^2 = 2x_0, \Rightarrow x_0 = 0, x_0 = 2.$$

Analicemos las dos soluciones halladas:

- $x_0 = 0$. El valor de $y_0 = f(x_0) = f(0)$ vale $y_0 = 4$ y el valor de $g(x_0) = g(0)$ vale g(0) = 0. Como $f(0) \neq g(0)$ no es un punto de corte y queda descartada esta solución.
- $x_0 = 2$. El valor de $y_0 = f(x_0) = f(2)$ vale $y_0 = 6$ y el valor de $g(x_0) = g(2)$ vale g(2) = 6. Como f(2) = g(2), el punto (2,6) es un punto de corte donde las dos curvas son tangentes.

Ejercicio 6

- a) La función cúbica $f(x) = x \cdot (x 2) \cdot (x 6)$ tienen tres ceros distintos: 0, 2 y 6. Dibujar f y las rectas tangentes en los puntos medios de cada par de ceros. i Qué se observa?
- b) Consideremos ahora la función cúbica $f(x) = (x a) \cdot (x b) \cdot (x c)$ con tres ceros a, b y c. Demostrar que la recta tangente en el punto medio de los ceros a y b interseca la curva y = f(x) en el tercer cero c.

Solución

Solución (cont.)

Solución (cont.)

$$f'(x) = (x-a)' \cdot (x-b) \cdot (x-c) + (x-a) \cdot ((x-b) \cdot (x-c))$$

Solución (cont.)

$$f'(x) = (x-a)' \cdot (x-b) \cdot (x-c) + (x-a) \cdot ((x-b) \cdot (x-c))$$

= $(x-b) \cdot (x-c) + (x-a) \cdot (x-c+x-b)$

Solución (cont.)

$$f'(x) = (x-a)' \cdot (x-b) \cdot (x-c) + (x-a) \cdot ((x-b) \cdot (x-c))$$

= $(x-b) \cdot (x-c) + (x-a) \cdot (x-c+x-b)$
= $(x-b) \cdot (x-c) + (x-a) \cdot (2x-b-c).$

Solución (cont.)

Apartado b). Para hallar la recta tangente en el punto medio de los dos ceros, a y b, $\frac{a+b}{2}$, tenemos que hallar primero la derivada de f(x):

$$f'(x) = (x-a)' \cdot (x-b) \cdot (x-c) + (x-a) \cdot ((x-b) \cdot (x-c))$$

= $(x-b) \cdot (x-c) + (x-a) \cdot (x-c+x-b)$
= $(x-b) \cdot (x-c) + (x-a) \cdot (2x-b-c)$.

La pendiente de la recta tangente a f(x) en el punto $\frac{a+b}{2}$ valdrá:

Solución (cont.)

Apartado b). Para hallar la recta tangente en el punto medio de los dos ceros, a y b, $\frac{a+b}{2}$, tenemos que hallar primero la derivada de f(x):

$$f'(x) = (x-a)' \cdot (x-b) \cdot (x-c) + (x-a) \cdot ((x-b) \cdot (x-c))$$

= $(x-b) \cdot (x-c) + (x-a) \cdot (x-c+x-b)$
= $(x-b) \cdot (x-c) + (x-a) \cdot (2x-b-c).$

La pendiente de la recta tangente a f(x) en el punto $\frac{a+b}{2}$ valdrá:

$$f'\left(\frac{a+b}{2}\right) = \left(\frac{a+b}{2}-b\right) \cdot \left(\frac{a+b}{2}-c\right) + \left(\frac{a+b}{2}-a\right) \cdot (a+b-b-c)$$

$$f'\left(\frac{a+b}{2}\right) \ = \ \left(\frac{a-b}{2}\right)\cdot \left(\frac{a+b-2c}{2}\right) + \left(\frac{b-a}{2}\right)\cdot (a-c)$$

$$f'\left(\frac{a+b}{2}\right) = \left(\frac{a-b}{2}\right) \cdot \left(\frac{a+b-2c}{2}\right) + \left(\frac{b-a}{2}\right) \cdot (a-c)$$
$$= \left(\frac{a-b}{2}\right) \cdot \left(\frac{a+b-2c}{2} - a + c\right)$$

$$f'\left(\frac{a+b}{2}\right) = \left(\frac{a-b}{2}\right) \cdot \left(\frac{a+b-2c}{2}\right) + \left(\frac{b-a}{2}\right) \cdot (a-c)$$

$$= \left(\frac{a-b}{2}\right) \cdot \left(\frac{a+b-2c}{2} - a + c\right)$$

$$= \left(\frac{a-b}{2}\right) \cdot \left(\frac{a+b-2c-2a+2c}{2}\right)$$

$$f'\left(\frac{a+b}{2}\right) = \left(\frac{a-b}{2}\right) \cdot \left(\frac{a+b-2c}{2}\right) + \left(\frac{b-a}{2}\right) \cdot (a-c)$$

$$= \left(\frac{a-b}{2}\right) \cdot \left(\frac{a+b-2c}{2} - a + c\right)$$

$$= \left(\frac{a-b}{2}\right) \cdot \left(\frac{a+b-2c-2a+2c}{2}\right)$$

$$= \left(\frac{a-b}{2}\right) \cdot \left(\frac{b-a}{2}\right) = -\frac{(a-b)^2}{4}.$$

Solución (cont.)

La recta tangente en el punto $x_0 = \frac{a+b}{2}$ y

$$y_0 = f\left(\frac{a+b}{2}\right) = \left(\frac{a+b}{2} - a\right) \cdot \left(\frac{a+b}{2} - b\right) \cdot \left(\frac{a+b}{2} - c\right)$$

Solución (cont.)

La recta tangente en el punto $x_0 = \frac{a+b}{2}$ y

$$y_0 = f\left(\frac{a+b}{2}\right) = \left(\frac{a+b}{2} - a\right) \cdot \left(\frac{a+b}{2} - b\right) \cdot \left(\frac{a+b}{2} - c\right)$$
$$= \left(\frac{b-a}{2}\right) \cdot \left(\frac{a-b}{2}\right) \cdot \left(\frac{a+b-2c}{2}\right)$$

Solución (cont.)

La recta tangente en el punto $x_0 = \frac{a+b}{2}$ y

$$y_0 = f\left(\frac{a+b}{2}\right) = \left(\frac{a+b}{2} - a\right) \cdot \left(\frac{a+b}{2} - b\right) \cdot \left(\frac{a+b}{2} - c\right)$$

$$= \left(\frac{b-a}{2}\right) \cdot \left(\frac{a-b}{2}\right) \cdot \left(\frac{a+b-2c}{2}\right)$$

$$= -\frac{(a-b)^2 \cdot (a+b-2c)}{8},$$

será:

Solución (cont.)

La recta tangente en el punto $x_0 = \frac{a+b}{2}$ y

$$y_0 = f\left(\frac{a+b}{2}\right) = \left(\frac{a+b}{2} - a\right) \cdot \left(\frac{a+b}{2} - b\right) \cdot \left(\frac{a+b}{2} - c\right)$$

$$= \left(\frac{b-a}{2}\right) \cdot \left(\frac{a-b}{2}\right) \cdot \left(\frac{a+b-2c}{2}\right)$$

$$= -\frac{(a-b)^2 \cdot (a+b-2c)}{8},$$

será:

$$y - y_0 = f'(x_0) \cdot (x - x_0),$$

Solución (cont.)

La recta tangente en el punto $x_0 = \frac{a+b}{2}$ y

$$y_0 = f\left(\frac{a+b}{2}\right) = \left(\frac{a+b}{2} - a\right) \cdot \left(\frac{a+b}{2} - b\right) \cdot \left(\frac{a+b}{2} - c\right)$$

$$= \left(\frac{b-a}{2}\right) \cdot \left(\frac{a-b}{2}\right) \cdot \left(\frac{a+b-2c}{2}\right)$$

$$= -\frac{(a-b)^2 \cdot (a+b-2c)}{8},$$

será:

$$\begin{array}{rcl} y - y_0 & = & f'(x_0) \cdot (x - x_0), \ \Rightarrow \\ y + \frac{(a - b)^2 \cdot (a + b - 2c)}{8} & = & -\frac{(a - b)^2}{4} \cdot \left(x - \frac{a + b}{2}\right). \end{array}$$

Solución (cont.)

A continuación hemos de comprobar que el punto (c,0) es un punto de corte de la curva $y = f(x) = (x-a) \cdot (x-b) \cdot (x-c)$ y la recta tangente anterior:

$$y + \frac{(a-b)^2 \cdot (a+b-2c)}{8} = -\frac{(a-b)^2}{4} \cdot \left(x - \frac{a+b}{2}\right).$$

Solución (cont.)

A continuación hemos de comprobar que el punto (c,0) es un punto de corte de la curva $y = f(x) = (x-a) \cdot (x-b) \cdot (x-c)$ y la recta tangente anterior:

$$y + \frac{(a-b)^2 \cdot (a+b-2c)}{8} = -\frac{(a-b)^2}{4} \cdot \left(x - \frac{a+b}{2}\right).$$

El punto (c,0) pasa por la curva y = f(x) ya que y = f(c) = 0.

Solución (cont.)

A continuación hemos de comprobar que el punto (c,0) es un punto de corte de la curva $y=f(x)=(x-a)\cdot(x-b)\cdot(x-c)$ y la recta tangente anterior:

$$y + \frac{(a-b)^2 \cdot (a+b-2c)}{8} = -\frac{(a-b)^2}{4} \cdot \left(x - \frac{a+b}{2}\right).$$

El punto (c,0) pasa por la curva y = f(x) ya que y = f(c) = 0. Veamos que también pasa por la recta tangente.

Solución (cont.)

A continuación hemos de comprobar que el punto (c,0) es un punto de corte de la curva $y=f(x)=(x-a)\cdot(x-b)\cdot(x-c)$ y la recta tangente anterior:

$$y + \frac{(a-b)^2 \cdot (a+b-2c)}{8} = -\frac{(a-b)^2}{4} \cdot \left(x - \frac{a+b}{2}\right).$$

El punto (c,0) pasa por la curva y = f(x) ya que y = f(c) = 0.

Veamos que también pasa por la recta tangente.

Para ello hemos de comprobar que si sustituimos x por c en la expresión de la recta tangente, el valor de y vale 0:

$$y + \frac{(a-b)^2 \cdot (a+b-2c)}{8} = -\frac{(a-b)^2}{4} \cdot \left(c - \frac{a+b}{2}\right)$$

$$y + \frac{(a-b)^2 \cdot (a+b-2c)}{8} = -\frac{(a-b)^2}{4} \cdot \left(c - \frac{a+b}{2}\right)$$
$$y = \frac{(a-b)^2 \cdot (2c-a-b)}{8} - \frac{(a-b)^2 \cdot (2c-a-b)}{8}$$

Solución (cont.)

$$y + \frac{(a-b)^2 \cdot (a+b-2c)}{8} = -\frac{(a-b)^2}{4} \cdot \left(c - \frac{a+b}{2}\right)$$

$$y = \frac{(a-b)^2 \cdot (2c-a-b)}{8} - \frac{(a-b)^2 \cdot (2c-a-b)}{8}$$

$$y = \frac{(a-b)^2}{8} \cdot (2c-a-b-2c+a+b) = 0,$$

tal como queríamos ver.

Ejercicio 6

- a) ¿Existe una función derivable en el intervalo [0,2] con f(0)=-1, f(2)=4 y que verifica $f'(x)\leq 2$ para todo $x\in [0,2]$?
- b) Demostrar que la ecuación $2x 1 \sin x = 0$ tiene exactamente una raíz real.

Solución

a) Si aplicamos el Teorema del Valor medio a la función f(x) en el intervalo [0,2], deducimos que existe un valor $c \in (0,2)$ tal que:

$$f'(c) = \frac{f(2) - f(0)}{2 - 0} = \frac{4 - (-1)}{2 - 0} = \frac{5}{2} = 2.5.$$

Por tanto, la condición $f'(x) \leq 2$ falla para x = c y no puede existir tal función.

b) Consideramos la función $f(x) = 2x - 1 - \sin x$.

Solución

a) Si aplicamos el Teorema del Valor medio a la función f(x) en el intervalo [0,2], deducimos que existe un valor $c \in (0,2)$ tal que:

$$f'(c) = \frac{f(2) - f(0)}{2 - 0} = \frac{4 - (-1)}{2 - 0} = \frac{5}{2} = 2.5.$$

Por tanto, la condición $f'(x) \le 2$ falla para x = c y no puede existir tal función.

b) Consideramos la función $f(x)=2x-1-\sin x$. El valor de f(0) es $f(0)=2\cdot 0-1-\sin 0=-1<0$ y el valor de $f\left(\frac{\pi}{2}\right)$ vale $f\left(\frac{\pi}{2}\right)=2\cdot \frac{\pi}{2}-1-\sin \frac{\pi}{2}=\pi-2>0$.

Solución

a) Si aplicamos el Teorema del Valor medio a la función f(x) en el intervalo [0,2], deducimos que existe un valor $c \in (0,2)$ tal que:

$$f'(c) = \frac{f(2) - f(0)}{2 - 0} = \frac{4 - (-1)}{2 - 0} = \frac{5}{2} = 2.5.$$

Por tanto, la condición $f'(x) \le 2$ falla para x = c y no puede existir tal función.

b) Consideramos la función $f(x)=2x-1-\sin x$. El valor de f(0) es $f(0)=2\cdot 0-1-\sin 0=-1<0$ y el valor de $f\left(\frac{\pi}{2}\right)$ vale $f\left(\frac{\pi}{2}\right)=2\cdot \frac{\pi}{2}-1-\sin \frac{\pi}{2}=\pi-2>0$. Por el Teorema de Bolzano, tenemos que existe un valor $c\in (0,\frac{\pi}{2})$ tal que f(c).

Solución (cont.

Veamos que dicho c es único.

Solución (cont.)

Veamos que dicho c es único.

Supongamos que existiesen dos c's, c_1 y c_2 tal que $f(c_1) = f(c_2) = 0$.

Solución (cont.)

Veamos que dicho c es único.

Supongamos que existiesen dos c's, c_1 y c_2 tal que

$$f(c_1)=f(c_2)=0.$$

Por el Teorema de Rolle, existirá un $c_{1,2} \in < c_1, c_2 >$ tal que

$$f'(c_{1,2})=0$$

Solución (cont.

Veamos que dicho c es único.

Supongamos que existiesen dos c's, c_1 y c_2 tal que

$$f(c_1)=f(c_2)=0.$$

Por el Teorema de Rolle, existirá un $c_{1,2} \in \langle c_1, c_2 \rangle$ tal que $f'(c_{1,2}) = 0$ pero $f'(x) = 2 - \cos x$.

Solución (cont.)

Veamos que dicho c es único.

Supongamos que existiesen dos c's, c_1 y c_2 tal que

$$f(c_1)=f(c_2)=0.$$

Por el Teorema de Rolle, existirá un $c_{1,2} \in \langle c_1, c_2 \rangle$ tal que $f'(c_{1,2}) = 0$ pero $f'(x) = 2 - \cos x$.

Si intentamos resolver f'(x) = 0, obtenemos $2 = \cos x$ que no tiene

solución ya que $\cos x \in [-1,1]$ para cualquier valor de x.

Solución (cont.)

Veamos que dicho c es único.

Supongamos que existiesen dos c's, c_1 y c_2 tal que

$$f(c_1)=f(c_2)=0.$$

Por el Teorema de Rolle, existirá un $c_{1,2} \in \langle c_1, c_2 \rangle$ tal que $f'(c_{1,2}) = 0$ pero $f'(x) = 2 - \cos x$.

Si intentamos resolver f'(x) = 0, obtenemos $2 = \cos x$ que no tiene solución ya que $\cos x \in [-1, 1]$ para cualquier valor de x.

Llegamos a una contradicción por lo que el valor de $\it c$ es único.

Regla de l'Hôpital

Ejercicio 7

Calcular los límites siguientes:

- a) $\lim_{x \to 1} \frac{x^a 1}{x^b 1}$, con a, b > 0.
- b) $\lim_{x \to \infty} \frac{\ln \ln x}{x}$. c) $\lim_{x \to 1} \frac{\ln \ln x}{\sin(\pi x)}$.
- d) $\lim_{x\to 0} \frac{\tan px}{\tan qx}$, con $p, q \neq 0$.
- e) $\lim_{x \to \frac{\pi}{2}} \left(1 \tan \frac{x}{2} \right) \cdot \sec x$.
- f) $\lim_{x\to 0} (\cos(3x))^{\frac{5}{x}}$.

Solución

a) $\lim_{x\to 1} \frac{x^a-1}{x^b-1} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

Solución

a) $\lim_{x \to 1} \frac{x^a - 1}{x^b - 1} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

$$\lim_{x \to 1} \frac{x^a - 1}{x^b - 1} = \lim_{x \to 1} \frac{a \cdot x^{a-1}}{b \cdot x^{b-1}} = \frac{a}{b}.$$

Solución

a) $\lim_{x\to 1} \frac{x^a-1}{x^b-1} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

$$\lim_{x \to 1} \frac{x^a - 1}{x^b - 1} = \lim_{x \to 1} \frac{a \cdot x^{a-1}}{b \cdot x^{b-1}} = \frac{a}{b}.$$

b) $\lim_{x \to \infty} \frac{\ln \ln x}{x} = \frac{\infty}{\infty}$. Como es una indeterminación del tipo $\frac{\infty}{\infty}$, aplicamos la regla de l'Hôpital:

Solución

a) $\lim_{x\to 1} \frac{x^a-1}{x^b-1} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

$$\lim_{x \to 1} \frac{x^a - 1}{x^b - 1} = \lim_{x \to 1} \frac{a \cdot x^{a-1}}{b \cdot x^{b-1}} = \frac{a}{b}.$$

b) $\lim_{x \to \infty} \frac{\ln \ln x}{x} = \frac{\infty}{\infty}$. Como es una indeterminación del tipo $\frac{\infty}{\infty}$, aplicamos la regla de l'Hôpital:

$$\lim_{x \to \infty} \frac{\ln \ln x}{x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{\ln x}{1}} = \lim_{x \to \infty} \frac{1}{x \ln x} = \frac{1}{\infty} = 0.$$

Solución

c) $\lim_{x\to 1} \frac{\ln x}{\sin(\pi x)} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

Solución

c) $\lim_{x\to 1} \frac{\ln x}{\sin(\pi x)} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

$$\lim_{x\to 1} \frac{\ln x}{\sin(\pi x)} = \lim_{x\to 1} \frac{\frac{1}{x}}{\pi \cdot \cos(\pi x)} = -\frac{1}{\pi}.$$

Solución

c) $\lim_{x\to 1} \frac{\ln x}{\sin(\pi x)} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

$$\lim_{x\to 1} \frac{\ln x}{\sin(\pi x)} = \lim_{x\to 1} \frac{\frac{1}{x}}{\pi \cdot \cos(\pi x)} = -\frac{1}{\pi}.$$

d) $\lim_{x\to 0} \frac{\tan px}{\tan qx} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

Solución

c) $\lim_{x\to 1} \frac{\ln x}{\sin(\pi x)} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

$$\lim_{x \to 1} \frac{\ln x}{\sin(\pi x)} = \lim_{x \to 1} \frac{\frac{1}{x}}{\pi \cdot \cos(\pi x)} = -\frac{1}{\pi}.$$

d) $\lim_{x\to 0} \frac{\tan px}{\tan qx} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

$$\lim_{x\to 0} \frac{\tan px}{\tan qx} = \lim_{x\to 0} \frac{\frac{p}{\cos^2(px)}}{\frac{q}{\cos^2(qx)}} = \frac{p}{q}.$$

Solución

e) $\lim_{x \to \frac{\pi}{2}} \left(1 - \tan\frac{x}{2}\right) \cdot \sec x = \lim_{x \to \frac{\pi}{2}} \frac{1 - \tan\frac{x}{2}}{\cos x} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

Solución

e) $\lim_{x \to \frac{\pi}{2}} \left(1 - \tan\frac{x}{2}\right) \cdot \sec x = \lim_{x \to \frac{\pi}{2}} \frac{1 - \tan\frac{x}{2}}{\cos x} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \tan \frac{x}{2}}{\cos x} = \lim_{x \to \frac{\pi}{2}} \frac{-\frac{\frac{1}{2}}{\cos^2(\frac{x}{2})}}{-\sin x} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1.$$

Solución

e) $\lim_{x \to \frac{\pi}{2}} \left(1 - \tan \frac{x}{2}\right) \cdot \sec x = \lim_{x \to \frac{\pi}{2}} \frac{1 - \tan \frac{x}{2}}{\cos x} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \tan \frac{x}{2}}{\cos x} = \lim_{x \to \frac{\pi}{2}} \frac{-\frac{\frac{1}{2}}{\cos^2(\frac{x}{2})}}{-\sin x} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1.$$

f) $\lim_{x\to 0}(\cos(3x))^{\frac{5}{x}}=1^{\infty}$. Es un límite tipo e. Su valor será e^L donde L vale:

Solución

e) $\lim_{x \to \frac{\pi}{2}} \left(1 - \tan \frac{x}{2} \right) \cdot \sec x = \lim_{x \to \frac{\pi}{2}} \frac{1 - \tan \frac{x}{2}}{\cos x} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \tan \frac{x}{2}}{\cos x} = \lim_{x \to \frac{\pi}{2}} \frac{-\frac{\frac{1}{2}}{\cos^2(\frac{x}{2})}}{-\sin x} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1.$$

f) $\lim_{x\to 0}(\cos(3x))^{\frac{5}{x}}=1^{\infty}$. Es un límite tipo e. Su valor será e^L donde L vale:

$$L = \lim_{x \to 0} \frac{5 \cdot (\cos(3x) - 1)}{x} = \frac{0}{0} =$$

Solución

e) $\lim_{x \to \frac{\pi}{2}} \left(1 - \tan \frac{x}{2} \right) \cdot \sec x = \lim_{x \to \frac{\pi}{2}} \frac{1 - \tan \frac{x}{2}}{\cos x} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \tan \frac{x}{2}}{\cos x} = \lim_{x \to \frac{\pi}{2}} \frac{-\frac{\frac{1}{2}}{\cos^2(\frac{x}{2})}}{-\sin x} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1.$$

f) $\lim_{x\to 0}(\cos(3x))^{\frac{5}{x}}=1^{\infty}$. Es un límite tipo e. Su valor será e^L donde L vale:

$$L = \lim_{x \to 0} \frac{5 \cdot (\cos(3x) - 1)}{x} = \frac{0}{0} = \lim_{x \to 0} \frac{5 \cdot (-\sin(3x) \cdot 3)}{1} = 0.$$

Solución

e) $\lim_{x \to \frac{\pi}{2}} \left(1 - \tan \frac{x}{2} \right) \cdot \sec x = \lim_{x \to \frac{\pi}{2}} \frac{1 - \tan \frac{x}{2}}{\cos x} = \frac{0}{0}$. Como es una indeterminación del tipo $\frac{0}{0}$, aplicamos la regla de l'Hôpital:

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \tan \frac{x}{2}}{\cos x} = \lim_{x \to \frac{\pi}{2}} \frac{-\frac{\frac{1}{2}}{\cos^2(\frac{x}{2})}}{-\sin x} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1.$$

f) $\lim_{x\to 0}(\cos(3x))^{\frac{5}{x}}=1^{\infty}$. Es un límite tipo e. Su valor será e^L donde L vale:

$$L = \lim_{x \to 0} \frac{5 \cdot (\cos(3x) - 1)}{x} = \frac{0}{0} = \lim_{x \to 0} \frac{5 \cdot (-\sin(3x) \cdot 3)}{1} = 0.$$

El límite será, pues, $e^0 = 1$.