Излучение двухантенного Wi-Fi роутера

Целью данного проекта является моделирование распространения электромагнитного излучения от роутера с двумя антеннами в условиях жилого дома. В физической основе модели, учтены явления электродинамики и волновой оптики, такие как интерференция, еуменьшение интенсивности излучения с расстоянием и поглощение энергии излучения стенами.

Постановка задачи: имеется двух антенный Wi-Fi роутер в помещении с перегородками.

Дано:

- Частота излучения
- Мощность излучения или амплитуда сигнала
- Точное положение антенн
- Планировка помещения (известны все габариты)
- Коэффициент поглощения каждой стены

Найти интенсивность сигнала в каждой возможной точке приёма.

Учёт основных физических явлений и свойств волн:

- 1. Когерентность. При построении первичной модели излучение можно считать монохроматическим(!). На самом деле спектр излучения типичного Wi-Fi роутера имеет конечную ширину, обычно ~22МГц. Однако это малая величина по сравнению с частотой излучения (2,4ГГц). То есть таких данных длина когерентности сравнима с масштабами квартиры. Кроме того, сдвиг фаз между волнами от первой и второй антенны постоянен (в силу внутренней электрической схемы роутера). Так что излучение когерентно.
- 2. Интерференция. Из когерентности волн следует, что они будут интерферировать. В модели придётся учесть интерференцию во всех областях рассматриваемого пространства.
- 3. Ослабевание сигнала с расстоянием. Антенны считаются точечными. Такое приближение не будет сильно уменьшать точность моделирования, однако облегчит его реализацию. Такая антенна испускает сферические волны. Амплитуда сферической электромагнитной волны при распространении в вакууме уменьшается пропорционально расстоянию.
- 4. Ослабление сигнала препятствиями. При прохождении электромагнитной волной препятствия часть энергии поглощается им.
- 5. Отражение от препятствий. Как показали исследования, отражением сигнала от стен можно пренебречь, так как отражается очень маленькая часть излучения.
- 6. Дифракция. Дифракция возможна в проёмах дверей, окнах, а также на решетчатой структуре из арматур внутри несущих стен. Проведём оценку. Длина волн Wi-Fi диапазона λ составляет примерно 10 см. Размеры окон, дверей, расстояние между арматурами это величины порядка метра, D~1-2м.

Линейные размеры квартиры это величины порядка десятков метров, $z\sim10$ м. Тогда волновой параметр $\frac{z*\lambda}{D^2} \le 1$. То есть в принципе на относительно больших расстояниях возможно возникновение дифракции Френеля, однако в первом приближении можно считать, что явление слабо проявляется и ,следовательно, пренебречь им.(!)

Итак, сделаны некоторые допущения.

Допущения:

В данной задаче возможно сделать следующие допущения.

- Можно считать излучение монохроматическим(!).
- Антенны считаются точечными
- Излучения 1-й и 2-й антенн считаем когерентными

Ход решения:

- 1. Рассчитать в каждой точке интенсивность, создаваемую каждой антенной в отдельности.
- 2. Рассчитать результирующую интенсивность.
- 3. Учесть ослабление стенами.
- 4. Рассмотреть область вблизи антены

Решение задачи

1. Излучение одной антенны

Точечная антенна излучает сферические волны. Уравнение такой волны $E(r,t) = \frac{A}{r}\cos(\omega t - kr - \phi)$. Здесь А — начальная амплитуда излучаемой волны, ω — круговая частота, $k = \frac{2\pi}{\lambda}$, r — расстояние от наблюдаемой точки до антенны, ϕ — фаза, в которой волна была излучена.

Или учитывая, что интенсивность — это величина, пропорциональная квадрату амплитуды(!): $I = \frac{A^2}{r^2}$

Пусть координаты антенны (x_0,y_0,z_0) , тогда $r=\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}$. Соответственно A^2

$$I = \frac{A^2}{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}$$
 - интенсивность излучения в точке (x,y,z) .

2. Результирующая интенсивность

Теперь рассматриваем уже две антенны, излучающие когерентно.

Учтём интерференцию двух монохроматических волн: $I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos{(\Delta\varphi)}$. Преобразуем формулу.

Волны, испускаемые первой и второй антенной, описываются соответственно уравнениями:

$$E_1(r_1,t) = \frac{A_1}{r_1} \cos \left(\omega t - k r_1 - \varphi_1\right) \quad \mathbf{и} \quad E_2(r_2,t) = \frac{A_2}{r_2} \cos \left(\omega t - k r_2 - \varphi_2\right) \quad \mathbf{.} \text{ Тогда} \quad I = \frac{A_1^2}{r_1^2} + \frac{A_2^2}{r_2^2} + \frac{A_1}{r_1} \frac{A_2}{r_2} \cos \left(\Delta \varphi\right) \quad \mathbf{.} \text{ теперь рассмотрим } \Delta \varphi$$
 (разность фаз волн):
$$\Delta \varphi = \left(\omega t - k r_2 - \varphi_2\right) - \left(\omega t - k r_1 - \varphi_1\right) = k \left(r_1 - r_2\right) + \left(\varphi_1 - \varphi_2\right)$$

Сделаем оговорку. Будем считать, что антенны излучают с одинаковыми фазами, это не приведёт к изменению интерференционной картины более чем на одну длину волны (≈ 10 см). К тому же это вполне логично, так как в большинстве роутеров, скорее всего, антенны подключены к электрической цепи симметрично. Итак, $\varphi_1 = \varphi_2$. Тогда $\Delta \varphi = k(r_1 - r_2) = \frac{2\pi}{\lambda}(r_1 - r_2)$.

В итоге, $I = \frac{A_1^2}{r_1^2} + \frac{A_2^2}{r_2^2} + \frac{A_1}{r_1} \frac{A_2}{r_2} \cos \left(2 \frac{\pi}{\lambda} (r_1 - r_2) \right)$. Так как у подавляющего большинства роутеров антенны одинаковые, то чаще всего будет выполнятся $A_1 = A_2$.

Перепишем в координатном виде:
$$I = \frac{A_1^2}{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2} + \frac{A_2^2}{(x-x_2)^2 + (y-y_2)^2 + (z-z_2)^2} + \frac{A_1}{\sqrt{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2}} \frac{A_2}{\sqrt{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2}} \cos \left(2\frac{\pi}{\lambda} \left(\sqrt{(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2} - \sqrt{(x-x_2)^2 + (y-y_2)^2 + (z-z_2)^2}\right)\right)$$

Эта формула позволяет вычислит интенсивность сигнала в точке (x,y,z) .

3. Учёт ослабления сигнала препятствиями

При прохождении через стену амплитуда электромагнитной волны уменьшается. Далее приведена таблица с коэффициентами затухания

Препятствие	Потери (dB)	Коэффициент затухания k
Открытое пространство	0	1
Окно без тонировки (отсутствует металлизированное покрытие)	3	2
Окно с тонировкой (металлизированное покрытие)	5-8	3,16 - 6,31
Деревянная стена	10	10
Межкомнатная стена (15,2 см)	15-20	31,62 - 100
Несущая стена (30,5 см)	20-25	100 - 316,23
Бетонный пол/потолок	15-25	31,62 - 316,23
Монолитное железобетонное перекрытие	20-25	100 - 316,23

То есть при прохождении, например, деревянной стены **интенсивность** сигнала уменьшится в k=10 раз.

Итак, рассмотри точку пространства (x,y,z). Пусть волна от первой антенны при распространении до этой точки прошла п стен с коэффициентами затухания $k_{11},k_{12},k_{13},...k_{1n}$, а волна от второй антенны m стен с коэффициентами затухания $k_{21},k_{22},k_{23},...k_{2m}$. Тогда интенсивность первого сигнала в точке (x,y,z) будет

равна
$$I_1 = \frac{A_1^2}{r_1^2 * k_{11} * k_{12} * k_{13} * ... * k_{1n}}$$
, а второго – $I_2 = \frac{A_2^2}{r_2^2 * k_{21} * k_{22} * k_{23} * ... * k_{2m}}$. Конечная формула с учётом

интерференции выглядит так:

$$I = \frac{A_{1}^{2}}{(x-x_{1})^{2} + (y-y_{1})^{2} + (z-z_{1})^{2}} \frac{1}{k_{11} * k_{12} * k_{13} * \dots * k_{1n}} + \frac{A_{2}^{2}}{(x-x_{2})^{2} + (y-y_{2})^{2} + (z-z_{2})^{2}} \frac{1}{k_{21} * k_{22} * k_{23} * \dots * k_{2m}} + \frac{1}{k_{11} * \dots * k_{1n}} \frac{1}{k_{21} * \dots * k_{2m}} \frac{A_{1}}{\sqrt{(x-x_{1})^{2} + (y-y_{1})^{2} + (z-z_{1})^{2}}} \frac{A_{2}}{\sqrt{(x-x_{2})^{2} + (y-y_{2})^{2} + (z-z_{2})^{2}}} \cos \left(2 \frac{\pi}{\lambda} \left(\sqrt{(x-x_{1})^{2} + (y-y_{1})^{2} + (z-z_{1})^{2}} - \sqrt{(x-x_{2})^{2} + (y-y_{2})^{2} + (z-z_{2})^{2}}\right)\right)$$

Эта формула лежит в основе всего проекта!

4. Интенсивность вблизи антенны

Ранее было сказано, что амплитуда сферической волны обратно пропорциональна расстоянию до источника $\frac{A}{r}$. Однако если мы устремим г к нулю, то есть приблизимся к источнику, то получиться, что амплитуда сигнала возле источника стремится к бесконечности. Однако она имеет конкретное конечное значение. Дело в том, что амплитуда волны подчиняется закону $\frac{A\sin(r)}{r}$, а не $\frac{A}{r}$. В физике чаще всего пользуются второй формулой, так как она удобнее для расчётов и даёт такие же результаты. Однако вблизи источника зависимости сильно различаются. $\frac{A}{r}$ Уходит в бесконечность, а $\frac{A\sin(r)}{r}$ стремится к А. Таким образом полученная нами формула верна, только начиная с некого расстояния. Выберем в качестве такого расстояния четверть длины волны излучения $\frac{\lambda}{4}$. В диапазоне для которого ведётся моделирование эта величина будет примерно несколько сантиметров. Внутри этой области амлитуду можно считать равной А.

5. Итог

Итак, координаты антенн (x_1,y_1,z_1) и (x_2,y_2,z_2) . В комнате имеются стены с известными коэффициентами затухания k. Известны мощности излучения, испускаемые антеннами I_{01} и I_{02} . Частота излучения ω , длина волны λ . $A_1=\sqrt{I_{01}}$, $A_2=\sqrt{I_{02}}$.

Тогда в точке (x, y, z) интенсивность излучения I равна:

$$I = \frac{A_{1}^{2}}{(x-x_{1})^{2} + (y-y_{1})^{2} + (z-z_{1})^{2}} \frac{1}{k_{11} * k_{12} * k_{13} * ... * k_{1n}} + \frac{A_{2}^{2}}{(x-x_{2})^{2} + (y-y_{2})^{2} + (z-z_{2})^{2}} \frac{1}{k_{21} * k_{22} * k_{23} * ... * k_{2m}} + \frac{A_{1}^{2}}{k_{11} * ... * k_{1n}} \frac{A_{1}}{k_{21} * ... * k_{2m}} \frac{A_{2}}{\sqrt{(x-x_{1})^{2} + (y-y_{1})^{2} + (z-z_{1})^{2}}} \cos \left(2 \frac{\pi}{\lambda} \left(\sqrt{(x-x_{1})^{2} + (y-y_{1})^{2} + (z-z_{1})^{2}} - \sqrt{(x-x_{2})^{2} + (y-y_{2})^{2} + (z-z_{2})^{2}}\right)\right)$$

эта формула применяется для тех точек, которые отстоят от каждой из антенн более чем на $\frac{\lambda}{4}$,

то есть
$$\sqrt{(x-x_1)^2+(y-y_1)^2+(z-z_1)^2} > \frac{\lambda}{4}$$
 и $\sqrt{(x-x_2)^2+(y-y_2)^2+(z-z_2)^2} > \frac{\lambda}{4}$.

Для точек же, которое отстоят от хотя бы одной из антенн на длину меньшую, чем $\frac{\lambda}{4}$ значение можно не определять (так обычно и поступают). Однако можно задать в этой области интенсивность каждой антенны равной начальному значению $I_1 = I_{01}, I_2 = I_{02}$.