MAT 137Y: Calculus! Problem Set 1 Due on Friday, September 30, 2016 by 3pm

1. Negate the following statement without using any negative words ("no", "not", "none", etc.):

"Every MAT137 student who was born in a Canadian province with a name that starts with a letter that comes alphabetically before 'L' obtains less than 75% on one of their term tests and more than 75% on another."

Solution: There exists a MAT137 student who was born in a Canadian province with a name that starts with a letter that comes alphabetically before 'L', and who obtains either 75% or more on all of their term tests, or 75% or less on all of their term tests.

- 2. Construct a function f that satisfies all of the following properties at once:
 - (a) The domain of f is \mathbb{R} .
 - (b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$, such that x < y and f(x) < f(y).
 - (c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$, such that x < y and f(x) > f(y).

Solution: There are many different correct solutions. Here is an example:

$$f(x) = x\sin(x)$$

To show that properties (b) and (c) are true, consider, for $n \in \mathbb{N}$, the values $y_n = (4n+1)\frac{\pi}{2}$ and $y'_n = (4n+3)\frac{\pi}{2}$.

- Notice that $f(y_n) = y_n$, and we can take y_n as large as needed, so this guarantess that property (b) is true.
- Notice that $f(y'_n) = -y'_n$, and we can take y'_n are large as needed, so this guarantess that property (c) is true.
- 3. Let $A \subseteq \mathbb{R}$. We define two new concepts:
 - We say that A is a blue set when $\exists M \in \mathbb{R}$ such that for every $x \in A$, x < M.
 - We say that A is a sad set when $\exists M \in \mathbb{R}$ such that for every $x \in A$, $x \leq M$.
 - (a) The following argument is WRONG. Explain why.

Being blue and being sad are not the same thing. For example, take the set A = [0, 1] and M = 1. Then the set A is sad because for every $x \in A$, $x \le M$. However, A is not blue because $x = 1 \in A$ but $x \not< M$.

Solution: In this argument, the proof that [0,1] is sad is correct, but the proof that [0,1] is blue is wrong. We have only checked that one value of M does not work in the definition of blue, but there could be other values of M that work. Indeed, A is blue because x < 2 for all $x \in A$, so we can take M = 2. The flaw of the argument is that it falsely assumes that we must use the same M in the definitions of blue and sad sets.

(b) Prove that a blue set is exactly the same thing as a sad set.

Note: You have to prove two things. First prove that if a set is blue, then it must be sad. Second prove that if a set is sad, then it must be blue.

Proof:

- i. Suppose A is a blue set. By the definition of blue set, there exists $M \in \mathbb{R}$ such that for every $x \in A$, x < M.
 - We want to show that A is a sad set. We must show there exists $N \in \mathbb{R}$ such that for every $x \in A$, $x \leq N$.
 - We can simply take N = M. Since for every $x \in A$, x < M, then it is also true that for every $x \in A$, $x \le M$.
- ii. Suppose A is a sad set. By the definition of sad set, there exists $M \in \mathbb{R}$ such that for every $x \in A, x \leq M$.
 - We want to show that A is a sad set. We must show there exists $N \in \mathbb{R}$ such that for every $x \in A$, x < N.

We can simply take N = M + 1. Then for every $x \in A$, $x \le M < M + 1 = N$. Thus we have shown that for every $x \in A$, x < N. \square

(c) Is the empty set blue? Prove it.

Solution: Yes, it is blue.

Proof: By definition, \emptyset is blue iff the following statement is true:

$$\exists M \in \mathbb{R}$$
 such that for every $x \in \emptyset$, $x < M$.

This statement is true because any real number M the condition $\forall x \in \emptyset, x < M$ is vacuously true. For example, if you take M = 1, the statement $\forall x \in \emptyset, x < 1$ is vacuously true. \square

(d) Prove the following theorem.

Theorem: Let $A, B \subseteq \mathbb{R}$. IF A and B are blue, THEN $A \cup B$ is blue.

Proof:

- Since A is blue, there exists $M \in \mathbb{R}$ such that for every $x \in A$, x < M.
- Since B is blue, there exists $M' \in \mathbb{R}$ such that for every $x \in B$, x < M'.
- Let us call M'' the larger of the two number, M or M'. We will show that for every $x \in A \cup B$, x < M''. This will conclude the proof that $A \cup B$ is blue.

Let $x \in A \cup B$. This means that $x \in A$ or $x \in B$.

- If $x \in A$, then $x < M \le M''$, and hence x < M''.
- If $x \in B$, then $x < M' \le M''$, and hence x < M''.

4. We want to find a formula for the sum S_N , as defined below:

$$S_{1} = \frac{1}{1 \cdot 3}$$

$$S_{2} = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5}$$

$$S_{3} = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7}$$
...
$$S_{N} = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \dots + \frac{1}{???}$$
(1)

(a) First, clean up the expression in Equation (1). Instead of '???', what should it say?

Solution:

$$S_N = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \frac{1}{7 \cdot 9} + \dots + \frac{1}{(2N-1)(2N+1)}$$

(b) Calculate the first few values S_1 , S_2 , S_3 , S_4 (more if needed). Then make a conjecture for a formula for S_N .

Solution:

$$S_1 = \frac{1}{3}, S_2 = \frac{2}{5}, S_3 = \frac{3}{7}, S_4 = \frac{4}{9}.$$

We conjecture that

$$S_N = \frac{N}{2N+1}.$$

(c) Prove your formula using induction.

Proof: We give a proof by induction.

Base case (n=1): $S_1 = \frac{1}{3} = \frac{(1)}{2(1)+1}$.

Induction step: Let $N \ge 1$. Assume that the formula is true for N. That is, we assume that

$$S_N = \frac{N}{2N+1}$$

We want to prove that the formula is true for N + 1. That is, we want to prove that

$$S_{N+1} = \frac{N+1}{2(N+1)+1} = \frac{N+1}{2N+3}$$

$$S_{N+1} = \frac{1}{1 \cdot 3} + \dots + \frac{1}{(2N-1)(2N+1)} + \frac{1}{(2(N+1)-1)(2(N+1)+1)}$$

$$= S_N + \frac{1}{(2(N+1)-1)(2(N+1)+1)}$$

$$= \frac{N}{2N+1} + \frac{1}{(2N+1)(2N+3)} \text{ by the induction hypothesis.}$$

$$= \frac{N(2N+3)+1}{(2N+1)(2N+3)}$$

$$= \frac{(N+1)(2N+1)}{(2N+1)(2N+3)}$$

$$= \frac{(N+1)}{2N+3}$$

as desired.

Thus we have proven by induction that for all $N \in \mathbb{N}$, $S_N = \frac{N}{2N+1}$. \square