NAME:	INDEX NO:	
SCHOOL:	SIGNATURE:	

P525/3 CHEMISTRY (PRACTICAL) Paper3 August, 2019 3 1/4 hrs

UNNASE MOCK EXAMINATIONS

Uganda Advanced Certificate of Education CHEMISTRY PRACTICAL

PAPER 3

3HOURS 15MINUTES

INSTRUCTION TO CANDIDATES:

- Answer **all** questions.
- Record your answers on this paper in the **spaces provided**.
- Mathematical tables, slide rulers and silent non-programmable calculators may be used.
- Reference books (i.e. text books, books on qualitative analysis, etc.) should
 not be used.
- Candidates are not allowed to start working with apparatus for the first 15 minutes. This time is to enable candidates to read the question paper and make sure they have all the apparatus and chemicals that they may need.
 - Where necessary

K=39,O=16,S=32,N=14,Fe=56,I=127

For examiners use only				
Q.1 Q.2 Q.3 TOTAL				

1. You are provided with the following

FA1:which is approximately 0.02M potassium manganate (VII) solution.

FA2: which is a solution containing 5.2gdm⁻³ of a metal persulphate, molecular mass =270.

FA3:which is a solution of 2.0M sulphuric acid

Solid L: which is diammoniumiron(II) sulphate (NH₄)₂SO₄FeSO₄ .6H₂O

You are required to standardize FA1, and use it to determine the mole ratio for the reaction between aqueous iron(II) ions and the persulphate ions.

THEORY

In this reaction persulphate ions are reacted with excess iron (II) ions and the unreacted iron(II) ions titrated with acidified manganate(VII) ions.

PROCEDURE A

- (a) Weigh accurately about 6.0g of L. Dissolve it in 150cm³ of FA3 and transfer the solution into a 250cm³ volumetric flask.
 Make the solution up to the mark with distilled water and Label it FA4. Pipette 25cm³(or 20 cm³) of FA4into a conical flask and titrate with FA1 from the burette.
 - Repeat the titration until you obtain consistent results
- (i) Record your results in the table below

TABLE I

Final burette reading(cm ³)		
Initial burette reading(cm ³)		
Volume of FA1 used(cm ³)		

 $(4\frac{1}{2}$ marks)

(ii)Volumes of FA1 to be used to calculate average volume =
(iii)Calculate the average volume of FA1
(cm³) (2½ marks
Questions
(a) Calculate the molar concentration of iron (II) ions in FA4 . ($2\frac{1}{2}$ marks)
(b) Determine the concentration of FA1 in moldm ⁻³ . (4marks)

PROCEDURE B

(b) Pipette 25cm³(or 20 cm³) of **FA4**into a conical flask and add 10cm³ of **FA2.**Titrate the mixture with **FA1** from the burette.

Repeat the titration until you obtain consistent results

(i) Record your results in the table below

Results:				
Volumes of pipette used =	•••••		(cm ³)(1½ mark)
Γable II				
Final burette reading(cm ³)				
Initial burette reading(cm ³)				
Volume of FA1 used(cm ³)				
(4½ marks)	1			
(ii)Volumes of FA1 to be used to	o calculate a	average volu	ıme =	
ar	nd	• • • • • • • • • • • • • • • • • • • •	(cm ³)(½mark)
(iii)Calculate the average volume	e of FA1			
			(om 3) (21)	(marka)
••••••	••••••	••••••	(CIII°)(2 /	2111a1KSj
Questions:				
Questions: b) Calculate the number of mole	es of:			
(i)un-reacted iron(II) ions that re		the manga	nate (VII) ions	s in FA1
				(2marks)
				•••••
	•••••			

ii)iron(II) ions that reacted with persulphate ions.	$(1\frac{1}{2}marks)$
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	•••••
c) Determine the:	1
(i) number of moles of metal persulphate that reacted.	$(1\frac{1}{2}marks)$
	•••••
	•••••
	•••••
(ii) reaction mole ratio between metal persulphate and iron(II) ions	. (1 mark)

2. You are provided with substance Q which contains three cations and one anion. Carry out the following tests to identify the cations and anion in Q. Record your observations and deductions in the table below. Where a gas(es) is /are evolved must be identified. (30marks)

TESTS	OBSERVATIONS	DEDUCTIONS
(a) To one spatula end ful of Q add 5 drops of concentrated sulphuric acid and heat.		
(b) To two spatula end fuls of Q in the test tube add about 10cm³ of water and shake strongly, warm and then filter. Keep both the filtrate and residue. Divide the filtrate into six parts.		
(i) To the first part add dilute sodium solution hydroxide drop-wise until in excess.		
(ii) To the second part add aqueous ammonia solution drop-wise until in excess.		
(iii)To the third part add 0.5cm³of ammonium oxalate solution followed by dilute ethanoic acid.		

(iv) Use the fourth part	
tocarry out a test of	
your own to confirm	
the cation in the	
filtrate.	
Test:	
(v) To the fifth part add	
about 1cm ³ of dilute	
sodium hydroxide	
solution followed	
by half spatula of zinc	
powder and heat	
powder and neat	
(vi)To the sixth part add	
half spatula of copper	
turningsfollowed by	
5drops ofconcentrated	
sulphuric acid and	
heat.	
c) Wash the residue with	
and water then dissolve	
it in about 10cm ³ of	
dilute nitric acid.	
To half of the resultant	
solution in a boiling	
tube add dilute	
sodium hydroxide	
_	
solution drop-wise	
untill no further	
change.	
Then filter and keep	
both the filtrate and	
residue.	
d) To the filtrate add	
dilute nitric acid to	
acidify the solution.	
Divide the resultant	
solution into three	
portions.	

(i) To the first portion of acidified solution add dilutesodium hydroxide solution drop-wise until in excess.	
(ii) To the second portion of acidified solution add aqueous ammonia solution drop-wise until in excess.	
(ii) To the third portion of acidified solution add 2-3 drops potassium iodide solution followed by dilute sodium hydroxide solution.	
(e) Dissolve the residue in part (c) in minimum dilute nitric acid and divide the solution into four parts	
(i) To the first part add aqueous sodium hydroxide solution drop-wise until in excess.	
(ii)To the second part add aqueous ammonia solution drop-wise until in excess.	

(iii)To the third part add 2-3 drops ammonium oxalate solution.	
(iv) To the fourth part add half spatula end-ful of ammonium chloride followed by about 1cm³ of concentrated solution of disodium hydrogen phosphate then ammonia solution drop-wise until in excess.	
f) Identify the cations and an	nion in Q.
Cations:	

3. You are provided with substance **T** which is an organic compound. You are required to determine the nature of **T**. Carry out the following tests on **T** and record your observations and deductions in the table below.

(20marks)

TESTS	OBSERVATIONS	DEDUCTIONS
(a)Burn a small amount of T on a spatula end or in a porcelain dish.		
(b)Shake 0.5cm³ of T with about 1cm³ of water and then test the solution with litmus paper		
c) To about 0.5cm³ of T add drops of iron(III) chloride solution		
d) To about 0.5cm ³ of T add few drops bromine water and shake		

e) To about 0.5cm ³ of T add drops of acidified potassium dichromate (VI) solution and heat	
f) To about 0.5cm ³ of T addlucas reagent.	
g)To about 0.5cm ³ of T add drops of 2,4- dinitrophenyl hydrazine solution.	
g) Dissolve about 0.5cm³ of T in about 1cm³ of methanol. To the resultant solution add iodine solution followed by dilute sodium hydroxide solution drop-wise until the brown solution of iodine is just discharged.Heat and cool then allow to cool.	

h)To about 0.5cm³ of T add5drops of concentrated sulphuric acid followed by concentrated solution of sodium hydrogen sulphite and shake strongly		
---	--	--

(i)	Comment on the nature of T.

**** **END** ****