Advanced data processing

3

Combining data from multiple sources Gene clustering example

- R has powerful functions to combine heterogeneous data into a single data set
- Gene clustering example data:
 - five sets of differentially expressed genes from various experimental conditions
 - file with names of experimentally verified genes
- Gene clustering exercise:
 - 1. combine this dataset into a single table and cluster to see which conditions are similar
 - repeat the clustering but only on a subset of experimentally verified genes

Combining gene tables

- input files have two columns: gene names and fold change
- we want to combine all five tables into a single table, with 0 for missing values

3.5795
3.1376
2.7492
2.7012
2.6247
2.4413
2.3804
2.3674
2.3574
2.26
2.1735
2.1421
2.0882
-2.0447
-2.1521
-2.2102
-2.4346
-2.4793
-2.616
-3.0595

Psa	3.8529
vnd	3.6457
ct	3.201
fs(1)h	3.1489
btd	3.1229
zfh2	2.8421
RhoBTB	2.6022
pros	2.5679
CG1124	2.5475
S	2.5424
ОС	2.5111
Fur1	2.43
PHDP	2.304
CG31241	2.2802
rux	2.2232
CG14889	2.1752
CG31163	2.1606
HmgZ	2.0795
svp	-2.0404
TER94	-2.1807
corto	-2.3481
olf413	-2.4404
brat	-2.7256
CG31368	-2.7293
mub	-2.9555
Awd	-3.1413
lola	-3.8882

lola	3.0121
CG31368	2.8063
Kr-h1	2.7262
svp	2.7055
mub	2.6475
CG5149	2.5248
run	2.4759
tna	2.4302
CG6954	2.4235
CG11153	2.3045
Awd	2.2295
CG6919	2.1324
CG14888	2.067
Psa	-2.0276
rux	-2.093
fs(1)h	-2.141
CG1124	-2.155
Fur1	-2.1588
S	-2.2539
corto	-2.2618
ОС	-2.3017
CG14889	-2.4393
zfh2	-2.5884
HmgZ	-3.6328
btd	-3.7627
brat	-3.7716

lola	3.3019
CG6919	2.9965
CG31368	2.817
CG5149	2.7675
Kr-h1	2.7647
TER94	2.6286
tna	2.5748
CG11153	2.4795
run	2.3831
CG14888	2.0938
S	-2.0243
rux	-2.0668
ОС	-2.3437
corto	-2.5556
fs(1)h	-2.6211
brat	-2.9904
ct	-3.3404
zfh2	-4.4947
CG6954	-4.7244

brat	5.2812
ct	4.828
CG31163	4.3345
LpR2	3.6882
vnd	3.6866
zfh2	3.5314
pros	3.4307
Psa	3.3998
fs(1)h	3.3869
CG31241	2.9973
HmgZ	2.9226
Fur1	2.7469
RhoBTB	2.7189
ОС	2.6543
Toll-7	2.6161
rux	2.5975
CG14889	2.3054
S	2.2324
CG1124	2.0216
Kr-h1	-2.1439
tna	-2.1793
CG5149	-2.1892
run	-2.2194
Trim9	-2.251
olf413	-2.3821
btd	-3.0293
CG6919	-3.3719

Script walkthrough 1

- To make the big table we first need to find out all the genes present in at least one of the files
- Make sure not to use factors in read.delim()

```
when loading in character data
# start with en empty collection of genes
                                                          use as.is=T to prevent it being
genes <- c()
                                                          converted to factors!
for( fileNum in 1:5 ){
   # load in files 13 DiffGenes1.tsv ...
   t <- read.delim(paste("13 DiffGenes", fileNum, ".tsv", sep=""),
                   as.is=TRUE, header=FALSE)
   # label the input columns to help code readability
   names(t) <- c("gene", "expression")</pre>
   genes <- union(genes, t$gene)
                                                    union() is a set operation, combines
                                                    two vectors by eliminating duplicates.
                                                    There are also intersect() and setdiff()
# for tidiness order our genes by name
genes <- sort(genes)</pre>
                                                                     Example code:
genes # show all genes
                                                                     13 geneClustering.R
```

Script walkthrough 2

 Using the complete list of genes, we can create the big table and fill in the values:

```
# make the destination table [rows = unique genes, cols = file numbers]
values <- matrix(0, nrow=length(genes), ncol=5)</pre>
rownames (values) <- genes # name the rows with the complete gene names
for(fileNum in 1:5){
  # read in the file again
     t <- read.delim(paste("13 DiffGenes", fileNum, ".tsv", sep=""),
             as.is=T, header=F)
     names(t) <- c("gene", "expression")</pre>
     # match the names of the genes to the rows in our big table
     index <- match(t$gene, rownames(values))</pre>
     # copy the expression levels
                                                      match() returns the index of first argument
                                                      in the second, i.e. index of input file genes
     values[index,fileNum] <- t$expression</pre>
                                                      in the big table
```

we use index to pick the rows in such way that they match the gene order in the input file

Script walkthrough 3

• Now we can do hierarchical clustering:

Script walkthrough 4

- In a second part of our analysis, we want to produce the same heatmap but only based on a list of experimentally verified genes
- The problem is data is not formatted in the most convenient way:

genes	citation
oc,run,RhoBTB,CG5149,CG11153,S,Fur1	Segal et al, Development 2001
tna,Kr-h1,rux	Krejci et al, Development 2002

Script walkthrough 5

 We load in this table, and only extract the gene names, then we use them to select a subset of values matrix

```
# load in the tab-delimited file with genes and citations
t.exp <- read.delim("13_ExperimentalGenes.tsv", as.is=T)
# split all gene names by "," and then flatten it out into a single vector
experim.genes <- unlist( strsplit(t.exp$genes, ",") )

unlist() flattens out a nested
list into a single vector

strsplit() splits a vector of strings by a custom
split character (","), the results is a list of split
values for each element of input vector
```

```
# redo the heatmap by using just the genes in the experimentally verified set
is.experimental <- rownames(values) %in% experim.genes
heatmap(values[ is.experimental, ], scale="none", col = cm.colors(256))</pre>
```

Gene clustering review

- We load in the five tables twice first to collect gene names, then to load expression values
- Based on expression table (values) we construct a clustered heatmap first on the whole set of genes, then on a selected subset
- Go through the code, try it out it and understand it
- Try answering the following questions:
 - what is rownames(values) ?
 - why is rownames(values)[index] and t\$gene giving the same output?
 - what is a difference between rownames(values) %in% experim.genes and experim.genes %in% rownames(values)

Example code: 13_geneClustering.R