بسم تعالى

حل تکلیف شماره ۲ کدگذاری کانال

(a) The matrix \mathbf{H}_1 is an $(n-k+1)\times(n+1)$ matrix. First we note that the n-k rows of \mathbf{H} are linearly independent. It is clear that the first (n-k) rows of \mathbf{H}_1 are also linearly independent. The last row of \mathbf{H}_1 has a "1" at its first position but other rows of \mathbf{H}_1 have a "0" at their first position. Any linear combination including the last row of \mathbf{H}_1 will never yield a zero vector. Thus all the rows of \mathbf{H}_1 are linearly independent. Hence the row space of \mathbf{H}_1 has dimension n-k+1. The dimension of its null space, C_1 , is then equal to

$$dim(C_1) = (n+1) - (n-k+1) = k$$

Hence C_1 is an (n+1,k) linear code.

(b) Note that the last row of H_1 is an all-one vector. The inner product of a vector with odd weight and the all-one vector is "1". Hence, for any odd weight vector \mathbf{v} ,

$$\mathbf{v} \cdot \mathbf{H}_1^T \neq \mathbf{0}$$

and \mathbf{v} cannot be a code word in C_1 . Therefore, C_1 consists of only even-weight code words.

(c) Let \mathbf{v} be a code word in C. Then $\mathbf{v} \cdot \mathbf{H}^T = \mathbf{0}$. Extend \mathbf{v} by adding a digit v_{∞} to its left.

This results in a vector of n + 1 digits,

$$\mathbf{v}_1 = (v_{\infty}, \mathbf{v}) = (v_{\infty}, v_0, v_1, \cdots, v_{n-1}).$$

For v_1 to be a vector in C_1 , we must require that

$$\mathbf{v}_1\mathbf{H}_1^T = \mathbf{0}.$$

First we note that the inner product of \mathbf{v}_1 with any of the first n-k rows of \mathbf{H}_1 is 0. The inner product of \mathbf{v}_1 with the last row of \mathbf{H}_1 is

$$v_{\infty} + v_0 + v_1 + \dots + v_{n-1}$$
.

For this sum to be zero, we must require that $v_{\infty} = 1$ if the vector \mathbf{v} has odd weight and $v_{\infty} = 0$ if the vector \mathbf{v} has even weight. Therefore, any vector \mathbf{v}_1 formed as above is a code word in C_1 , there are 2^k such code words. The dimension of C_1 is k, these 2^k code words are all the code words of C_1 .

2- Let C_e be the set of code words in C with even weight and let C_o be the set of code words in C with odd weight. Let \mathbf{x} be any odd-weight code vector from C_o . Adding \mathbf{x} to each vector in C_o , we obtain a set of C'_e of even weight vector. The number of vectors in C'_e is equal to the number of vectors in C_o , i.e. $|C'_e| = |C_o|$. Also $C'_e \subseteq C_e$. Thus,

$$|C_o| \le |C_e| \tag{1}$$

Now adding \mathbf{x} to each vector in C_e , we obtain a set C'_o of odd weight code words. The number of vectors in C'_o is equal to the number of vectors in C_e and

$$C'_{o} \subseteq C_{o}$$

Hence

$$|C_e| \le |C_o| \tag{2}$$

From (1) and (2), we conclude that $|C_o| = |C_e|$.

- (a) From the given condition on G, we see that, for any digit position, there is a row in G with a nonzero component at that position. This row is a code word in C. Hence in the code array, each column contains at least one nonzero entry. Therefore no column in the code array contains only zeros.
 - (b) Consider the ℓ -th column of the code array. From part (a) we see that this column contains at least one "1". Let S_0 be the code words with a "0" at the ℓ -th position and S_1 be the codewords with a "1" at the ℓ -th position. Let x be a code word from S_1 . Adding x to each vector in S_0 , we obtain a set S_1' of code words with a "1" at the ℓ -th position. Clearly,

$$|S_1'| = |S_0| \tag{1}$$

and

$$S_1' \subseteq S_1. \tag{2}$$

Adding x to each vector in S_1 , we obtain a set of S_0' of code words with a "0" at the ℓ -th location. We see that

$$|S_0'| = |S_1| \tag{3}$$

and

$$S_0' \subseteq S_0.$$
 (4)

From (1) and (2), we obtain

$$|S_0| \le |S_1|. \tag{5}$$

From (3) and (4) ,we obtain

$$|S_1| \le |S_0|. \tag{6}$$

From (5) and (6) we have $|S_0| = |S_1|$. This implies that the ℓ -th column of the code array consists 2^{k-1} zeros and 2^{k-1} ones.

(c) Let S_0 be the set of code words with a "0" at the ℓ -th position. From part (b), we see that S_0 consists of 2^{k-1} code words. Let x and y be any two code words in S_0 . The sum x + y also has a zero at the ℓ -th location and hence is code word in S_0 . Therefore S_0 is a subspace of the vector space of all n-tuples over GF(2). Since S_0 is a subset of C, it is a subspace of C. The dimension of S_0 is k-1.

4-

From the given condition, we see that $\lambda < \lfloor \frac{d_{min}-1}{2} \rfloor$. It follows from the theorem 3.5 that all the error patterns of λ or fewer errors can be used as coset leaders in a standard array. Hence, they are correctable. In order to show that any error pattern of ℓ or fewer errors is detectable, we need to show that no error pattern x of ℓ or fewer errors can be in the same coset as an error pattern y of λ or fewer errors. Suppose that x and y are in the same coset. Then x + y is a nonzero code word. The weight of this code word is

$$w(\mathbf{x} + \mathbf{y}) \le w(\mathbf{x}) + w(\mathbf{y}) \le \ell + \lambda < d_{min}.$$

This is impossible since the minimum weight of the code is d_{min} . Hence x and y are in different cosets. As a result, when x occurs, it will not be mistaken as y. Therefore x is detectable.

5- The generator matrix of the code is

$$\mathbf{G} = [\mathbf{P}_1 \quad \mathbf{I}_k \quad \mathbf{P}_2 \quad \mathbf{I}_k]$$

= $[\mathbf{G}_1 \quad \mathbf{G}_2]$

Hence a nonzero codeword in C is simply a cascade of a nonzero codeword \mathbf{v}_1 in C_1 and a nonzero codeword \mathbf{v}_2 in C_2 , i.e.,

$$({\bf v}_1,{\bf v}_2).$$

Since $w(\mathbf{v}_1) \geq d_1$ and $w(\mathbf{v}_2) \geq d_2$, hence $w[(\mathbf{v}_1, \mathbf{v}_2)] \geq d_1 + d_2$.

It follows from Theorem 3.5 that all the vectors of weight t or less can be used as coset leaders.

There are

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{t}$$
12

such vectors. Since there are 2^{n-k} cosets, we must have

$$2^{n-k} \ge \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{t}.$$

Taking logarithm on both sides of the above inequality, we obtain the Hamming bound on t,

$$n-k \ge log_2\{1+\binom{n}{1}+\cdots+\binom{n}{t}\}.$$