Homework 2

Due date: Oct. 31st, 2023

Turn in your hard-copy hand-writing homework in class

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

1. N is a linear resistive network with sources inside.

When $U_s = 6V$, $I_1 = 1A$, $U_1 = 2V$; When $U_s = 10V$, $I_1 = 2A$.

Use linear property to find I_1 and U_1 if $U_s = 12\text{V.}10^{\circ}$

- 2. $R_1=R_2=2\Omega$, $R_3=1\Omega$, $R_L=2\Omega$
- a. Calculate the current of R_L when an independent current source acts alone.5'
- b. Calculate the current of R_L when an independent voltage source acts alone.5'
- c. Calculate the current on R_L using the superposition theorem.5'

- 3. (a) Apply superposition to find U_0 in the circuit below when $R_L=250\Omega.5$
- (b) Find the Thevenin equivalent circuit for the left hand side circuit of node a and node b.10'

- 4. a. Find the equivalent resistance R_{ac} 5'
 - b. Find the Thevenin equivalent circuit between node a and b 15'

5. $R_1 = R_2 = R_3 = R_4 = 4\Omega$.

Find the Norton equivalent circuit of the two port network.15'

 $6.U_{\rm s1} = 20$ V, $U_{\rm s2} = 15$ V, $U_{\rm s3} = 25$ V, $I_{\rm s1} = 1$ A, using source transfer to calculate $U_{\rm ab}$ 10°

7.
$$R_1 = 2\Omega$$
, $R_2 = 6\Omega$, $R_3 = 1\Omega$

- a. Determine the value of R_L when maximum power could be transferred to it, and calculate the maximum power P_{RL} .10'
- b. Calculate the ratio of P_{RL} to the output power of the independent voltage source.5'

$$\frac{21}{3V(\frac{1}{2})} = \frac{21}{4V} + \frac{21}{3}R_{2} = 8V$$

$$\frac{1}{3}R_{2} = \frac{13}{4}A$$

$$\frac{1}{3}R_{2} = \frac{13}{4}A$$