CSE 015: Discrete Mathematics Homework #8 Solution

Arvind Kumar Lab CSE-015-07L

April 5, 2022

Chapter 2.3

1. Question 54: Show that if x is a real number and n is an integer, then

- (a) 54a: $x \le n$ if and only if $\lceil x \rceil \le n$. Lets set x = 3.1 and n = 4. We can see that this $(x \le n)$ is already satisfied. The ceiling of x gives us 4, and that is equal to 4. The conditions here are satisfied this way.
- (b) 54b: $n \le x$ if and only if $n \le \lfloor x \rfloor$. Lets set n = 1 and x = 2.4. We know that the floor of x is 2, and it is still greater than n. The conditions are satisfied here.
- 2. Question 70: Draw graphs of each of these functions The red dots are not inclusive within the graph.
 - (a) 70d: $f(x) = |x^2|$

(a) 70e: $f(x) = \lceil x/2 \rceil + \lfloor x/2 \rfloor$

Chapter 2.4

- 1. Question 10: Find the first six terms of the sequence defined by each of these recurrence relations and initial conditions.
 - (a) 10a: $a_n = -2a_{n-1}$, $a_0 = -1$, Found: $a_1 = 2$, $a_2 = -4$, $a_3 = 8$, $a_4 = -16$, $a_5 = 32$, $a_6 = -64$.
 - (b) 10b: $a_n = a_{n-1} a_{n-2}$, $a_0 = 2$, $a_1 = -1$, Found: $a_2 = -3$, $a_3 = -2$, $a_4 = 1$, $a_5 = 3$, $a_6 = 2$, $a_7 = -1$.
- 2. Question 12: Show that the sequence a_n is a solution of the recurrence relation $a_n = -3a_{n-1} + 4a_{n-2}$ if
 - (a) 12c: $a_n = (-4)^n$, lets replace n with n 1. so we will have $a_{n-1} = (-4)^{n-1}$. And lets replace n with n 2. so we will have $a_{n-2} = (-4)^{n-2}$. When deriving, we will have $-3a_{n-1} + 4a_{n-2} = -3(-4)^{n-1} + 4(-4)^{n-2}$ to then have $-3(-4)(-4)^{n-2} + 4(-4)^{n-2}$. So when we factor out $(-4)^{n-2}$, we will have $(-4)^{n-2}(-3(-4)+4)$, to have $(-4)^{n-2}(12+4)$, $(-4)^{n-2}(16)$ or $(-4)^{n-2}(-4)^2$ to $(-4)^n$, which is equal to a_n .
 - (b) 12d: $a_n = 2(-4)^n + 3$, lets replace n with n 1. so we will have $a_{n-1} = 2(-4)^{n-1} + 3$. And lets replace n with n 2. so we will have $a_{n-2} = 2(-4)^{n-2} + 3$. When deriving the function, we will have $-3a_{n-1} + 4a_{n-2} = -3(2(-4)^{n-1}+3)+4(2(-4)^{n-2}+3)$. Using the distributive property, we would have $-6(-4)^{n-1} 9 + 8(-4)^{n-2} + 12$. And lets group the powers of -4. We would then have $(-6(-4)^{n-1}+8(-4)^{n-2})-9+12$ to then equal $(-6(-4)(-4)^{n-2}+8(-4)^{n-2})+3$. So factoring $(-4)^{n-2}$, we would have $(-4)^{n-2}(-6(-4)+8)+3$. And then we would have $(-4)^{n-2}(24+8)+3$, $(-4)^{n-2}(32)+3$, $(-4)^{n-2}(16(2))+3$, $(-4)^{n-2}(-4)^2(2)+3$, $(-4)^n(2)+3$, $(-4)^n+3$, which is equal to a_n .
- 3. Question 16: Find the solution to each of these recurrence relations with the given initial conditions. Use an iterative approach such as that used in Example 10.
 - (a) 16a: $a_n = -a_{n-1}$, $a_0 = 5$ is the given, $a_n = -a_{n-1} = (-1)^1 \ a_{n-1}$ is the first step, $(-1)^1(-a^{n-2}) = (-1)^2 a_{n-2}$, $(-1)^2(-a^{n-3}) = (-1)^3 a_{n-3}$, and we have $(-1)^3(-a^{n-4}) = (-1)^4 a_{n-4}$. We will have $(-1)^n a_{n-n}$ or $(-1)^n a_0$ with $5(-1)^n$ as the final result.

(b) 16b: $a_n = a_{n-1} + 3$, $a_0 = 1$ is the given, $a_{n-1} + 3 = a_{n-1} + 3(1)$, then we have $(a_{n-2} + 3) + 3 = (a_{n-2} + 3(2))$, then $(a_{n-3} + 3 + 3(2)) = (a_{n-3} + 3(3))$, then $(a_{n-4} + 3 + 3(3)) = (a_{n-4} + 3(4))$. Now we have $a_{n-n} + 3n$, $a_0 +$

4. Question 40: Find sum with 200 at the top and k=99 and k^3

(a) 40: With the help of table 2, we have (200 at the top and k=1 and k^3) - (98 at the top and k=1 and k^3) as (404010000)-(23532201) = 380477799, which is the result.

Chapter 2.5

1. Question 12: Show that if A and B are sets and $A \subset B$ then $|A| \leq |B|$.

(a) 12: By the definition of a subset, we know that if $a \in A$, then $a \in B$. We can define this as $f: A \to B$, f(a) = a. We need to check if f is 1 to 1. So if we let f(a) = f(b), we then obtain a = b by the definition of f. So this is 1 to 1. And because of this, $|A| \le |B|$. This is proven by that result.

2. Question 22: Suppose that A is a countable set. Show that the set B is also countable if there is an onto function f from A to B

(a) 22: B is countable, because since A is countable, then it is either finite or countably infinite. Since f is a function from A to B: we know that the subsets have to be the same for every b in B, and there exists an element for a in A such that f(a) = b. Since the sets are the same, their cardinality is the same too. With this, we can say that A contains n elements, and contains at most n elements, which is f(A) being finite. But since f(A) and B have the same cardinality and since f(A) is finite, B then has to be finite as well and thus B is countable.

3. Question 28:. Show that the set $Z^+ \times Z^+$ is countable.

(a) 28: $Z^+ \times Z^+$ is countable, because if we define the function f as f: $Z^+ \times Z^+ \to Z^+$, f(m,n) = $2^m \times 3^n$. We will need to check is they are 1 to 1. So if f(a,b) = f(m,n), then $2^a \times 3^b = 2^a \times 3^b$. Because 2 and 3 are primes, we will have $2^a = 2^m$ and $3^b = 3^b$. The bases are the same so the powers are the same with a = m, b = n. We have shown that f is a 1 to 1 function. And by definition, $|Z^+Z^+| \le |Z^+|$. Hence set A is countable if and only if $|A| \le |Z^+|$. $Z^+ \times Z^+$ is shown to be countable.