

In the Claims:

Please add new claims 31-36, and amend the pending claims as follows:

Claim 3, line 2, delete "or 2".

1 Claim 8 (Amended) A method for the formation of an embedded
2 electroconductive layer, comprising the steps of:
3 forming an opening part or a depressed part in an insulating layer;
4 forming a barrier layer for covering one of said opening part [or] and said
5 depressed part, said barrier layer being formed of a material selected from the group
6 consisting of TiSiN, WN, TaN, TiN, and Al₂O₃;
7 forming on said barrier layer a growth promoting [TiN] layer containing
8 oxygen at a lower concentration than said barrier layer;
9 depositing [aCu] an electroconductive layer on and in contact with said growth
10 promoting [TiN] layer by the use of a chemical vapor [growth] deposition method and
11 embedding said electroconductive [Cu]layer in one of said opening part [or] and said
12 depressed part; and
13 removing the unwanted parts of said barrier layer, said growth promoting
14 [TiN] layer [of a low oxygen concentration], and said electroconductive [Cu] layer [by
15 chemical mechanical polishing].

Claim 10, line 1, delete "9" and insert --8--.

Claim 12, line 2 delete "Ti" and insert --TiN--.

1 Claim 15 (Amended) The method according to claim 8, wherein said
2 growth promoting [TiN] layer containing oxygen at a lower concentration than said barrier
3 layer is deposited by a chemical vapor [growth] deposition method.

3
1 Claim 16 (Amended) The method according to claim 8, wherein said
2 growth promoting [TiN] layer containing oxygen at a lower concentration than said barrier
3 layer is deposited by a collimation sputtering method or long throw sputtering method
4 interposing an interval of not less than 10 cm between a target and a substrate under
5 treatment.

--Claim 31 (New) The method according to claim 8, wherein said step of
removing the unwanted parts is conducted using a chemical mechanical polishing method.

1 Claim 32 (New) The method according to claim 8, wherein said growth
2 promoting layer is made of TiN.

1 Claim 33 (New) The method according to claim 8, wherein said
2 electroconductive layer is made of a material selected from the group of Cu, Al and Al alloy.

1 Claim 34 (New) A method for the formation of an embedded
2 electroconductive layer, comprising the steps of:

3 forming an opening part or a depressed part in an insulating layer;

4 forming a barrier layer for covering said opening part or said depressed part

5 by the use of a physical vapor deposition method;

6 forming on said barrier layer a growth promoting layer by the use of a chemical
7 vapor deposition method;

8 depositing said electroconductive layer on said growth promoting layer to
9 embed said electroconductive layer in said opening part or said depressed part; and

10 removing the unwanted parts of said barrier layer, said growth promoting layer
11 of a lower oxygen concentration, and aid electroconductive layer.

35
1 Claim 34 (New) A method for the formation of an embedded
2 electroconductive layer, comprising the steps of:

3 forming an opening part or a depressed part in an insulating layer;

4 forming a barrier layer for covering said opening part or said depressed part

5 by the use of a physical vapor deposition method, said barrier layer being formed of a
6 material selected from the group consisting of TiSiN, WN, TaN, TiN, and Al₂O₃;

7 forming on said barrier layer a growth promoting layer by the use of a chemical
8 vapor deposition method;

9 depositing said electroconductive layer on said growth promoting layer to
10 embed said electroconductive layer in said opening part or said depressed part; and

11 removing the unwanted parts of said barrier layer, said growth promoting layer
12 of a lower oxygen concentration, and said electroconductive layer.

1 Claim ³⁶ ~~35~~ (New) A method for the formation of an embedded
2 electroconductive layer, comprising the steps of:

3 forming at least one of an opening part and a depressed part in an insulating
4 layer;

5 forming a barrier layer for covering said at least one opening part and
6 depressed part, said barrier layer being formed of a material selected from the group
7 consisting of TiSiN, WN, TaN, TiN, and Al₂O₃;

8 forming on said barrier layer a growth promoting layer containing oxygen at
9 a lower concentration than said barrier layer;

10 depositing said electroconductive layer on and in contact with said growth
11 promoting layer and embedding said electroconductive layer in said at least one opening part
12 and depressed part; and

13 removing the unwanted parts of ~~said barrier layer, said growth promoting layer~~
14 of a lower oxygen concentration, and said ~~electroconductive layer.~~

37
1 Claim 36 (New) A method for the formation of an embedded
2 electroconductive layer, comprising the steps of:

3 forming at least one of an opening part and a depressed part in an insulating
4 layer;

5 forming a barrier layer against Cu for covering said at least one opening part
and depressed part;

6 forming on said barrier layer a growth promoting layer containing oxygen at
7 a lower concentration than said barrier layer;

8 depositing Cu film as an electroconductive layer on and in contact with said
9 growth promoting layer and embedding said electroconductive layer in said at least one
10 opening part and depressed part; and

11 removing the unwanted parts of said barrier layer, said growth promoting layer
12 of a lower oxygen concentration, and said electroconductive layer. --