A Sustainable Future for Inevitable Urban Construction

Data Dictionary

General Discussion of ConcreteDirect

Concrete Direct is an application that offers a seamless and transparent way of collaboration across the delivery supply chain and increases crew utilization. ConcreteDirect has an underlying idea of simplifying the concrete ordering and delivering process. From order to pour using its one centralized platform, one can get to place, change and confirm orders as well as track delivery progress. This tool caters to the three most important elements of any concrete delivery chain - partners/customers, drivers and dispatchers.

General Discussion of Converge

ConcreteDNA is a construction intelligence platform that allows contractors to build more efficiently, safely, and sustainably. The system is powered by a fully wireless and embeddable sensor that measures and transmits the temperature and compressive strength of the pour in real-time to the platform. Paired with an artificial intelligence feature that is able to predict the curing time of a given mix, contractors are able to plan ahead and strike concrete formwork that lies on the critical path precisely when it is safe to, rather than waiting on slow test cube lab reports. By determining the compressive strength of concrete in real-time, contractors can choose a concrete mix that is only as performant as they need, allowing them to significantly reduce the cement content and be more responsive with design mixes

Detailed Data Description

ConcreteDirect Data:

Note: All files in ConcreteDirect Data link to each other by the "order_id" or the "payload id" columns. There might be repeats of the same payload id throughout the files, do

not discard them, it could be due to the different product items and mix descriptions. ConcreteDirect Data and Converge Data DO NOT have a direct link.

a) Payload Level > HackZurich Truck PlantLevel

This table has Truck specific information such as which driver is linked to a specific truck, which payloads are they connected to, which plant they picked up the delivery from and which plant they actually are assigned to as well as the capacity of the truck.

Column Name	Description
payload_id	Unique identifier generated for each payload.
vehicle_id	Unique identifier generated for each vehicle.
driver_id	Unique identifier generated for each driver.
source_plant_id	Unique identifier generated for each truck from there they are supposed to pick up the delivery.
source_plant_longitude	Longitude of the source plant
source_plant_latitude	Latitude of the source plant
home_plant_site_id	Unique identifier generated for the plant where the trucks originated from.
home_plant_longitude	Longitude of the home plant
home_plant_latitude	Latitude of the home plant
max_load_size_cubic_meters	The largest quantity the truck is able to deliver. Units in Cubic Meters.

b) Payload Level > HackZurich_PourLogistics

Pour logistics has all data from when a ticket is created in the system. The process is that one order has multiple tickets or payloads; one payload is one delivery of concrete; and each payload or ticket is created on the day of delivery and

assigned to a truck which then is batch at a plant. A batch is a mixing of the concrete in the truck once the material has been loaded. This table contains all the logistical timestamps and locations of pours. It tells the story of a lifecycle of one ticket, starting from when the ticket was created till when it was poured out into the site and back to the plant.

Column name	Description
site_id	Unique identifier of the site
order_id	Unique identifier of the order that customer places on Concrete Direct.
payload_id	Unique identifier generated for each payload .
ticket_created_ts	Time stamp signifying when the ticket was created. (GMT) Format: YYYY-MM-DD HH:MM:SS+ss
payload_status	Status of the payload: There are 2 different types of Status in this database: 1. Recalled: Loads that were sent back/canceled either from the jobsite or right after being loaded. 2. Delivered: Loads that were delivered.
status_updated_at	Time stamp signifying when the ticket/payload status was last updated. (GMT) Format: YYYY-MM-DD HH:MM:SS+ss
pour_quantity	Quantity poured per ticket/payload in Yards
cumulative_quantity	Sum of quantity poured per ticket in one particular order in Yards.
eta	Estimated time of arrival for each truck. Collected from Google. (GMT) Format: YYYY-MM-DD HH:MM:SS+ss
product_item_id	Unique identifier of the type of product that went into the batching mix.
product_quantity	Quantity of the type of product that went into the batching mix.

payload_event_batch_start_time	Start-time of loading concrete mixture onto trucks. (GMT¹) Format: YYYY-MM-DD HH:MM:SS+ss
payload_event_batch_end_time	End-time of loading concrete mixture onto trucks. (GMT) Format: YYYY-MM-DD HH:MM:SS+ss
payload_event_departure_time	Departure-time of loaded trucks from the plant. (GMT) Format: YYYY-MM-DD HH:MM:SS+ss
payload_event_arrival_time	Arrival-time of loaded trucks on the job-site. (GMT) Format: YYYY-MM-DD HH:MM:SS+ss
payload_event_pouring_start_time	Start-time of concrete pouring on the job-site. (GMT) Format: YYYY-MM-DD HH:MM:SS+ss
payload_event_pouring_finish_time	End-time of concrete pouring on the job-site. (GMT) Format: YYYY-MM-DD HH:MM:SS+ss
payload_event_wash_time	Start-time of truck wash after payload delivery (GMT) Format: YYYY-MM-DD HH:MM:SS+ss
payload_event_to_plant_time	Timestamp of when truck left the jobsite(GMT) Format: YYYY-MM-DD HH:MM:SS+ss
payload_event_at_plant_time	Timestamp of when the truck reached the plant (GMT) Format: YYYY-MM-DD HH:MM:SS+ss
delivered_at	Local time zone of the jobsite
pouring_longitude	Latitude of the pour
pouring_latitude	Longitude of the pour

c) Payload Level > HackZurich_Batch_MixDesigns

This file contains all the mix designs. AKA the components of what the type of concrete was made of as well as their ratios. These data fields are at an order as well as a payload level, so the mixtures for each payload/ticket can be seen in the table.

¹ **GMT:** Greenwich Mean Time, this might need to be manipulated and changed to the local time zone using the **local_time_zone** column when using external data.

Column Name	Description
order_id	Unique identifier of the order
payload_id	Unique identifier for each payload.
product_mix_id	Unique identifier for the type of product in the batching mix
prodct_mix_item_type	Description of the item type of product in the batching mix
product_mix_description	Description of the type of product in the batching mix
order_item_description	Detailed description or the order item (first numeric value is the PSI of the mix)
material	Actual components that make the specific mix. Ex: Cement, Fly ash, aggregates, water
design_qty	Quantity designed to be in mix per unit of Concrete
design_qty_uom	UOM of design qty
required_qty	design quantity x load quantity
required_qty_uom	UOM of required qty
batched_qty	Actual amount of the material batched
batched_qty_uom	UOM of batched qty
water	Amount of water in the load
water_uom	UOM of water
moisture	Variation percentage between required and batched

d) HackZurich_OrderLevel

This file has all Order level details. This table is populated before the order date and when the order was placed on the app. This table gives an understanding of what the plan was for that particular day and order. Data points like spacing_minutes, and description gives an indication of what was the wishlist for that order for that particular day.

Column Name	Description
order_id	Unique identifier generated for each order that customer places on Concrete Direct.
product_item_id	Unique identifier for the type of product in the batching mix
start_time	Scheduled order start time
order_created_ts	Order creation timestamp
last_modified_ts	Order last modified timestamp
spacing_minutes	Specified truck arrival intervals, requested by the customers
rate_type	Specifying if the <i>spacing_mins</i> is supposed to be in intervals of minutes or in intervals of quantity.
order_item_id	Unique identifier generated for each order item
psi/description	Description of the <i>order_item_id</i>
pour_element	Description of the structure being built (ex: floor, column)
extended_pour_element	Detailed description of the structure being built

pour_element_information	Comments on the structure being built
pour_method	Description of the method used to make the pour on site. (ex: bucket and crane, pump)
local_time_zone	Time Zone of the order/ticket/jobsite
location_latitude	Pin drop latitude of the jobsite
location_longitude	Pin drop longitude of the jobsite

Converge data:

Background & context

The key data available from the Converge platform is 'maturity data'. This data provides insights on the temperature and strength development within specific concrete pours. A technique known as the maturity method allows the compressive strength of concrete to be calculated as a function of its temperature. Concrete strength development occurs as a result of a chemical reaction known as hydration. The warmer the concrete, the faster the rate of reaction and strength gain. Conversely, at cooler temperatures the rate of reaction and strength gain will be slower.

Typically concrete strength is determined by casting samples (either cube or cylinder samples) which are stored in standard conditions (in a water bath at a fixed temperature - often 20°C or 23°C depending on the country) and crushed after 7 & 28 days. Since the hydration reaction is exothermic, it is common for actual pours of the same concrete to reach much higher temperatures, and this allows contractors to take actions such as formwork removal sooner. Furthermore, strength calculations are performed every 20 minutes, so the information is available sooner than with traditional test methods.

Where concrete is being used in time-critical applications, the contractor will sometimes specifically request a mix which gains strength faster. This reduces the risk of delays when relying on the concrete to hit certain key strength milestones. Typically, formwork can be removed at strengths of 10-25MPa. To satisfy such requests, the concrete supplier may have to increase the cement content of the mix, or use a cement type which has higher initial strength gain. In both cases, this 'overspecification' of the mix will typically result in a concrete with a higher embodied carbon overall. Portland cement, the key ingredient driving strength gain in concrete, has a high embodied carbon (often >700 kg CO₂ per tonne) in relation to other

ingredients. Reducing cement contents enables a reduction in the embodied carbon for the concrete. Since maturity monitoring provides a potential for contractors to take action sooner, it might be possible to use mixes with lower cement contents and lower embodied carbon.

Mix designs have also been provided, along with estimates of the embodied carbon for each mix. 5 different mixes were selected with a range of embodied carbon values. Each mix belongs to a different construction site (jobsite). The sites can be identified from their IDs, given below:

- site 189
- site 190
- site 232
- site 246
- site 247

Each sensor is generally given a name referencing where it has been placed in the structure. This information is entered by the contractor at point of use, and they will typically follow a naming convention depending on the use case. Some information has been provided below to help understand the naming conventions used:

- Site 189
 - For this project, each sensor has been cast into a slab pour during the
 construction of a large office black. Floor numbers (or level numbers) are
 included at the start of each sensor name as with the prefix "L" or "MGYLevel". Each floor (or level) consists of up to 6 individual slab pours.
 Again, the pour number is included in the sensor name.
 - The key strength requirement for this project was 25MPa.
- Site 190
 - Two towers were constructed on this project (Tower 1 and Tower 2). Each sensor has been cast into a slab pour (or in some cases a beam pour). The tower number is included at the start of each sensor name with the prefix "T1", "T2", or "Tower-1", "Tower-2". Floor numbers are included at the start of each sensor name as with the prefix "L" or "Level". Each floor (or level) consists of up to 2 individual slab pours. Again, the pour number is included in the sensor name.
 - The key strength requirement for this project was 25MPa.
- Site 232
 - For this project (a university research campus), each sensor has been cast into a <u>core</u>. These are a set of walls at the centre of the building, containing lift shafts or staircases. In total, 4 cores were constructed between the atrium (on level 0) and level 10. The core number and the level are contained within the sensor name.
 - The key strength requirement for this project was 40MPa.
- Site 246

- This project is a large commercial shopping centre. Each sensor has been cast into a slab pour. The contractor has named each sensor with the prefix "SLA" followed by a two-letter location code (eg. "-AS") followed by the floor number (eg. "-00") and finally the pour number (eg. "-04"). There are up to 15 pours on each floor.
- The key strength requirement for this project was 25MPa.

Site 247

- For this project, a series of 3 tall towers, sensors have been cast into slab pours. The towers were designated "A1", "A3" and "A4" which is the prefix of each sensor name. Construction went up to floor 30 and pours were situated on the North and South sides of each tower. This information should be clear from the sensor name.
- The key strength requirement for this project was 20MPa.

Each site is based in Europe, and units are given in metric.

Some common conversions are provided below:

- $1 \text{ kg/m}^3 = 1.68555 \text{ lb/yd}^3$
- 1 litre = 33.814 fluid oz
- $^{\circ}F = (^{\circ}C \times 9/5) + 32$

a. <site_id>/<site_id>_mix_design.csv

This file contains information relating to the concrete mix composition. Each row represents a material, and contains information regarding that material and the quantity (mass per cubic metre) contained within each batch.

Column Name	Description
material_description	String containing a description for this material.
quantity	Number representing the mass of material batched in every cubic metre.
units_of_measure	String containing the units of measure, associated to the quantity column. Values are either "kg/m3" or "l/m3"
manufacturer	String containing the name of the supplier for that material.
source	String containing the geographical source of

	the material.
material_type	String containing the type of material (eg. `Aggregate`, `Binder (cement)`, `Binder (slag`), `Water`)

b. <site id>/<site id> schedule.csv

This file contains information regarding the pour time associated with each sensor. This is the time at which the sensor was cast into a concrete element.

NOTE: There may be multiple sensors cast into a single pour, in which case their times may differ by a few hours.

Column Name	Description
device_id	Unique identifier for each sensor.
pour_time	Timestamp for when the sensor was cast into the concrete. Format: YYYY-MM-DD HH:MM:SS+ss <timezone></timezone>

This folder contains CSV files representing each sensor used on a site. Each sensor has a unique device_id (numeric or alphanumeric) contained at the end of the filename, as well as the name of the pour it has been cast into. Each pour may contain 1 or more sensors.

Within these files, each row represents a single data point, and contains the temperature and strength of the concrete along with a timestamp. The strength at any given time is calculated based on the temperature measured by the sensor, using a technique known as the maturity method.

Sensors will be positioned prior to the pour commencing. In some cases, temperature data is recorded for some time before the concrete is poured. Each file may contain some rows at the beginning before the strength calculation begins. The strength calculations (shown in the column 'strength') will begin for a given sensor after the 'pour_time'. The pour time can be found for each sensor in the site's 'schedule' file. This can be used to calculate the elapsed time for each datapoint (by taking the difference between the pour time and the timestamp at any given row).

Data collection will typically stop after the mix reaches the key strengths required by the contractor (in the case of slabs or core walls this generally means the strength at which they can remove the formwork, supporting the hardening concrete). As such, the amount of data collected for each sensor varies.

Column Name	Description
time	Timestamp for the data point. Format: YYYY-MM-DD HH:MM:SS+ss <timezone></timezone>
timezone	Timezone Format: GMT+HH Please ignore this field. The correct timezone is found in the time column.
temperature	Number representing the temperature of the concrete at that time Units: °C
strength	Number representing the strength of the concrete at that time Units: MPa

Bonus Data:

Hack Swiss Data(LAB)_AGR:

This file has some sample data from the Quality data collected from a RMX lab in Switzerland. The process of collecting this data starts when a truck is batched. A little sample from that batch is collected and brought to the lab to understand the quality of the material.

a) Production Data

Column Name	Description
Delivery Note Number	one identical delivery note number equals to a truck load of concrete with its individual raw materials
Mix Design	Commercial description can contain several mix designs, e.g. mix design for summer vs. Winter, mix design with admix supplier A vs. supplier B, etc.

Material No.	raw materials of the concrete, cement (Z/), water (W/), fine and coarse aggregates (K/), as well as chemical admixtures (C/)
Material Descr.	material description of material number
Target Value	target quantity of material to be put into batch, in kg
Target Value (m3)	target quantity of material to be put into batch, per m3 of concrete
Actual Value	actual quantity of material batched, in kg
Actual Value (m3)	actual quantity of material batched, per m3
Variance (ABS)	difference between actual and target quantity batched, in kg
Variance (%)	relative difference between actual and target quantity, in %

b) Concrete Technical

Column Name	Description
Delivery Note Number	one identical delivery note number equals to a truck load of concrete with its individual raw materials
Mix Design	Commercial description can contain several mix designs, e.g. mix design for summer vs. Winter, mix design with admix supplier A vs. supplier B, etc.
Classification 1	Reference to the respective concrete norm

Compr. Strength	strength class acc SN EN 206. Example C30/37: C=concrete, 30=minimum compressive strength at 5% fractile for cylinder specimens, 37=maximum compressive strength at 5% fractile for cubic specimens
Dmax	maximum size of aggregates in the concrete
Exposure Class	exposure of concrete against the environment, e.g. exposure against carbonation, chloride ingress, freeze-thaw attack. In this case (XC4, XF1) the concrete is suitable for exterior horizontal walls without attack of deicing salts
Customer	Customer ID
Plant	Plant ID
Delivery Date	Date where concrete was delivered to job site
Delivery Time	Time when concrete has arrived at job site (hh:mm:ss)
Air Temperature	measured air temperature during concrete testing (at RMX plant) - Units: °C
Concrete Temperature	measured fresh concrete temperature during concrete testing (at RMX plant) - Units: °C
Compressive Strength 28d (N/mm2)	compressive strength at 28 days of cubic specimens, cubic samples taken at rmx plant.
w/c-Value (m3)	water to cement ratio (=main factor which is driving compressive strength)

