Coupled 3D Finite and Boundary Element Formulation

Donald R. Wilton

Scattering notes, pp. 39-41 3D-FEM pp. 41-43, hybrid FEM/BEM

Strong and Weak Forms of the 3-D Helmholtz Equation

Strong form:

$$\nabla \times \mu_r^{-1} \nabla \times \mathbf{E} - k_0^2 \varepsilon_r \mathbf{E} = -j\omega \mu_0 \mathbf{J}^-, \ \mathbf{r} \in \mathcal{V}$$

Weak form:

$$\frac{1}{j\omega\mu_{0}} < \nabla \times \mathbf{\Omega}_{m}, \mu_{r}^{-1}\nabla \times \mathbf{E} > + j\omega\varepsilon_{0} < \mathbf{\Omega}_{m}, \varepsilon_{r}\mathbf{E} >$$

$$- \oint_{\mathcal{L}} \mathbf{\Omega}_{m} \cdot \hat{\mathbf{n}} \times \mathbf{H} dS = - < \mathbf{\Omega}_{m}, \mathbf{J}^{-} >, \mathbf{r} \in \mathcal{V}$$

Vanishes if either

 Ω_m or $\hat{\mathbf{n}} \times \mathbf{H}$ vanishes on \mathcal{S}

Volume Coordinates for Tetrahedral Meshes

Volume Coordinates:

$$\xi_i = \frac{V_i}{V^e}, \quad i = 1, 2, 3, 4$$

$$\Rightarrow \xi_1 + \xi_2 + \xi_3 + \xi_4 = 1$$

Geometry Parametrization:

$$\mathbf{r} = \mathbf{r}_1^e \xi_1 + \mathbf{r}_2^e \xi_2 + \mathbf{r}_3^e \xi_3 + \mathbf{r}_4^e \xi_4,$$

 \mathbf{r}_{i}^{e} = vector from global origin to i th vertex of element e

Traversing the path from vertices 1-2-3 should determine outward normal \hat{n} according to the right hand rule.

Geometrical Parameters Associated with a Tetrahedron

Our convention: Choose vertices 1,2,3, such that traversing them in order produces an outward normal by right hand rule

Edge vectors	$\ell_{ij} = r_j^e - r_i^e; \ \ell_{ij} = \ell_{ij} ;$
	$\hat{\ell}_{ij} = \frac{\ell_{ij}}{i}, i \neq j \in \{1, 2, 3, 4\}$

Volume $V^e = \frac{|\boldsymbol{\ell}_{14}\cdot(\boldsymbol{\ell}_{24}\times\boldsymbol{\ell}_{34})|}{6}$ $= \frac{A_ih_i}{3}\;,$ $A_i = \text{area of face }i,$ $h_i = \text{height of vertex }i$

Coordinate gradients,

$$\nabla \xi_i = -\frac{\hat{h}_i}{h_i}$$

$$oldsymbol{
abla} \xi_1 = rac{oldsymbol{\ell}_{24} imes oldsymbol{\ell}_{34}}{6V^e}$$
 ,

$$oldsymbol{
abla} \xi_2 \ = \ rac{oldsymbol{\ell}_{34} imes oldsymbol{\ell}_{14}}{6V^e}$$
 ,

$$oldsymbol{
abla} \xi_3 = rac{oldsymbol{\ell}_{14} imes oldsymbol{\ell}_{24}}{6V^{arepsilon}}$$
 ,

$$\nabla \xi_4 = -\nabla \xi_1 - \nabla \xi_2 - \nabla \xi_3$$

- Gradient *direction* is from face i to vertex $i = -\hat{\mathbf{h}}_i$
- Gradient *magnitude* = change in ξ_i from face i to vertex $i \div$ distance $(=1/h_i \Rightarrow |\nabla \xi_i| = 1/h_i)$

$$\Rightarrow \nabla \xi_i = -\hat{\mathbf{h}}_i / h_i$$

Local Edge Numbering and Reference Directions

- Note $\ell_{ii} = 0$.
- Also $\ell_{ij} = -\ell_{ji}$, so for independent edge vectors, use only ℓ_{ij} , j > i.

 $\begin{array}{ccc} \text{Local edge} & \text{Edge reference} \\ \text{number} & \text{direction} \\ & 1 & \ell_{12} \\ & 2 & \ell_{13} \\ & 3 & \ell_{14} \\ & 4 & \ell_{23} \\ & 5 & \ell_{24} \\ & 6 & \ell_{34} \\ \end{array}$

Parameterization of Integrals and Numerical Integration over Tetrahedrons

$$\int_{V^{e}} f(\mathbf{r}) d\mathcal{V} = 6V^{e} \int_{0}^{1} \int_{0}^{1-\xi_{k}} \int_{0}^{1-\xi_{j}-\xi_{k}} f(\mathbf{r}) d\xi_{i} d\xi_{j} d\xi_{k}, i \neq j \neq k$$

$$\approx \underbrace{6V^{e}}_{\mathcal{J}^{e}} \sum_{k=1}^{K} w_{k} f(\mathbf{r}_{1}^{e} \xi_{1}^{(k)} + \mathbf{r}_{2}^{e} \xi_{2}^{(k)} + \mathbf{r}_{3}^{e} \xi_{3}^{(k)} + \mathbf{r}_{4}^{e} \xi_{4}^{(k)})$$

Table 13 Sample points and weighting coefficients for **K**-point quadrature on tetrahedrons.

Sample Points, $\left(\xi_1^{(k)}, \xi_2^{(k)}, \xi_3^{(k)}\right)$	Weights, w_k
$(\xi_4^{(k)} = 1 - \xi_1^{(k)} - \xi_2^{(k)} - \xi_3^{(k)})$	
$K=1$, error $\mathcal{O}(\xi_i^2)$: (0.25000000,0.25000000,0.25000000)	0.16666667
K=4, error $\mathcal{O}(\xi_i^3)$: (0.58541020, 0.13819660, 0.13819660)	0.041666667
(0.13819660, 0.58541020, 0.13819660)	0.041666667
(0.13819660, 0.13819660, 0.58541020)	0.041666667
(0.13819660, 0.13819660, 0.13819660)	0.041666667

...or use the exact result

$$\int_{V^e} \xi_1^{\alpha} \xi_2^{\beta} \xi_3^{\gamma} \xi_4^{\delta} d\mathcal{V} = \frac{6V^e \alpha ! \beta ! \gamma ! \delta !}{(\alpha + \beta + \gamma + \delta + 3)!}$$

Properties of Curl-Conforming Bases Needed on Tetrahedral Meshes

- Assume medium parameters constant within a tetrahedron
- Make tangential electric field continuous across medium boundaries by defining DOFs at edges
- Make interpolatory by allowing only the basis associated with the DOF at an edge to have a unit tangential component there

Planar Triangle Curl-Conforming Bases May Be Extended to Tetrahedrons by Viewing Them as Embedded in Infinite Cylinders

$$\mathbf{\Omega}_{ij}^{e}(\mathbf{r}) \propto \hat{\ell}_{k\ell} \times \mathbf{\rho}_{ij} \quad \Rightarrow$$

$$\Omega_{ij}^{e}(\mathbf{r}) = \ell_{ij} \left(\xi_{i} \nabla \xi_{j} - \xi_{j} \nabla \xi_{i} \right),$$

$$\nabla \times \Omega_{ij}^{e}(\mathbf{r}) = 2\ell_{ij} \left(\nabla \xi_{i} \times \nabla \xi_{j} \right),$$

$$j > i, \quad \mathbf{r} \in V^{e}$$

Demonstration of Interpolatory Properties of Curl-Conforming Bases

$$\mathbf{\Omega}_{ij}^{e}\left(\mathbf{r}\right) = \ell_{ij}\left(\xi_{i}\nabla\xi_{j} - \xi_{j}\nabla\xi_{i}\right)$$

• $\nabla \xi_i$ is \perp to face i and hence to edges jk, $k\ell$, ℓj

$$\Rightarrow \mathbf{\Omega}_{ij}^{e}(\mathbf{r})\Big|_{\xi_{i}=0} \cdot \hat{\ell}_{jk} = \mathbf{\Omega}_{ij}^{e}(\mathbf{r})\Big|_{\xi_{i}=0} \cdot \hat{\ell}_{k\ell} = \mathbf{\Omega}_{ij}^{e}(\mathbf{r})\Big|_{\xi_{i}=0} \cdot \hat{\ell}_{\ell j} = 0$$

• $\nabla \xi_j$ is \perp to face j and hence to edges $i\ell$, ℓk , ki

$$\Rightarrow \mathbf{\Omega}_{ij}^{e}(\mathbf{r})\Big|_{\xi_{j}=0} \cdot \hat{\ell}_{il} = \mathbf{\Omega}_{ij}^{e}(\mathbf{r})\Big|_{\xi_{j}=0} \cdot \hat{\ell}_{\ell k} = \mathbf{\Omega}_{ij}^{e}(\mathbf{r})\Big|_{\xi_{j}=0} \cdot \hat{\ell}_{ki} = 0$$

Finally,

$$\Omega_{ij}^{e}(\mathbf{r})\Big|_{\xi_{k}=\xi_{\ell}=0} \cdot \hat{\ell}_{ij} = \ell_{ij}\hat{\ell}_{ij} \cdot \left(\xi_{i}\nabla\xi_{j} - \xi_{j}\nabla\xi_{i}\right)$$

$$= -\ell_{ij} \cdot \left(\xi_{i}\frac{\hat{\mathbf{h}}_{j}}{h_{j}} - \xi_{j}\frac{\hat{\mathbf{h}}_{i}}{h_{i}}\right)\Big|_{\xi_{k}=\xi_{\ell}=0} = \xi_{i}\frac{\cancel{p}_{j}}{\cancel{p}_{j}} + \xi_{j}\frac{\cancel{p}_{i}}{\cancel{p}_{i}}$$

$$= \xi_{i} + \xi_{j} = 1$$

Discretized Equations Obtained by Substituting Representations for Electric and Surface Magnetic Fields

$$\mathbf{E} \approx = \sum_{n=1}^{N_V} \underbrace{V_n^V}_{\text{volume}} \mathbf{\Omega}_n(\mathbf{r}) + \sum_{n=1}^{N_S} \underbrace{V_n^S}_{\text{surface DoFs}} \mathbf{\Omega}_{N_V+n}(\mathbf{r})$$

$$\mathbf{J} \equiv \hat{\mathbf{n}} \times \mathbf{H} \approx \sum_{n=1}^{N_S} I_n^S \mathbf{\Omega}_n^S(\mathbf{r})$$

- 2 equation blocks,3 vector unknown blocks
- If S is not PEC or PMC, need another block of equations to determine I_n^S and supply radiation conditions

$$\begin{bmatrix} Y_{mn}^{VV} \end{bmatrix} \begin{bmatrix} V_n^V \end{bmatrix} + \begin{bmatrix} Y_{mn}^{VS} \end{bmatrix} \begin{bmatrix} V_n^S \end{bmatrix} = \begin{bmatrix} I_n^{-V} \\ Mn \end{bmatrix} \begin{bmatrix} Y_{mn}^{SV} \end{bmatrix} \begin{bmatrix} V_n^S \end{bmatrix} + \begin{bmatrix} Y_{mn}^{SS} \end{bmatrix} \begin{bmatrix} V_n^S \end{bmatrix} + \begin{bmatrix} Y_{mn}^{SS} \end{bmatrix} \begin{bmatrix} I_n^S \end{bmatrix} = \begin{bmatrix} I_n^{-S} \end{bmatrix}$$

$$\mathcal{S}$$
 is PEC

 ${\cal S}$ is PMC

$$\mathbf{PEC} : \hat{\mathbf{n}} \times \mathbf{E} \big|_{S} = 0 \Longrightarrow \left[V_{n}^{S} \right] = 0$$

$$\mathbf{PMC}: \hat{\mathbf{n}} \times \mathbf{H}|_{S} = 0 \Longrightarrow \left[I_{n}^{S}\right] = 0$$

Matrix Block Definitions

$$Y_{mn}^{VV} = \frac{1}{j\omega\mu_0} \langle \nabla \times \mathbf{\Omega}_m, \mu_r^{-1} \nabla \times \mathbf{\Omega}_n \rangle + j\omega\varepsilon_0 \langle \mathbf{\Omega}_m, \varepsilon_r \mathbf{\Omega}_n \rangle$$

$$Y_{mn}^{VS} = \frac{1}{j\omega\mu_0} \langle \nabla \times \mathbf{\Omega}_m, \mu_r^{-1} \nabla \times \mathbf{\Omega}_{N_V+n} \rangle + j\omega\varepsilon_0 \langle \mathbf{\Omega}_m, \varepsilon_r \mathbf{\Omega}_{N_V+n} \rangle$$

$$Y_{mn}^{SV} = \frac{1}{j\omega\mu_0} \langle \nabla \times \mathbf{\Omega}_{N_V+m}, \mu_r^{-1} \nabla \times \mathbf{\Omega}_n \rangle + j\omega\varepsilon_0 \langle \mathbf{\Omega}_{N_V+m}, \varepsilon_r \mathbf{\Omega}_n \rangle$$

$$Y_{mn}^{SS} = \frac{1}{j\omega\mu_0} \langle \nabla \times \mathbf{\Omega}_{N_V+m}, \mu_r^{-1} \nabla \times \mathbf{\Omega}_{N_V+n} \rangle + j\omega\varepsilon_0 \langle \mathbf{\Omega}_{N_V+m}, \varepsilon_r \mathbf{\Omega}_{N_V+n} \rangle$$

$$\gamma_{mn}^{SS} = - < \Omega_{N_V+m}^S, \Omega_n^S > = - < \Omega_m^S, \Omega_n^S > = - < \Lambda_m^S, \Lambda_n^S >$$
 Surface integral!

Index ranges:

$$_{p}^{V} \Rightarrow p = 1, 2, ..., N_{V}$$

$$p \Rightarrow p = 1, 2, ..., N_S$$

$$egin{aligned} oldsymbol{\Lambda}_{m}^{S} &= oldsymbol{\Omega}_{m}^{S} imes \hat{\mathbf{n}} \ -\hat{\mathbf{n}} imes \hat{\mathbf{n}} imes oldsymbol{\Omega}_{N_{V}+m} \Big|_{\mathbf{r} \in \mathcal{S}} &= oldsymbol{\Omega}_{m}^{S} \end{aligned} egin{aligned} oldsymbol{I}_{m}^{-V} &= - < oldsymbol{\Omega}_{m}, \mathbf{J}^{-} > \ oldsymbol{I}_{m}^{-S} &= - < oldsymbol{\Omega}_{N_{V}+m}, \mathbf{J}^{-} > \end{aligned}$$

$$egin{aligned} I_m^{-S} &= - < oldsymbol{\Omega}_{N_m+m}, \mathbf{J}^- > \end{aligned}$$

Volume integrals!

In Far Field, We Also Know the *Ratio* of Tangential Surface Electric and Magnetic Fields ...

In the far field,

$$\hat{\mathbf{r}} \times \mathbf{H} = \hat{\mathbf{n}} \times \mathbf{H} = -\frac{\mathbf{E}_{tan}}{\eta_0} \Rightarrow \left[I_n^S \right] = -\frac{1}{\eta_0} \left[V_n^S \right],$$

$$\mathbf{J}^{-}|_{S} = 0 \implies \left[I_{m}^{-S}\right] = 0$$
:

$$\Rightarrow \begin{bmatrix} \begin{bmatrix} Y_{mn}^{VV} \end{bmatrix} & \begin{bmatrix} Y_{mn}^{VS} \end{bmatrix} \\ \begin{bmatrix} Y_{mn}^{SV} \end{bmatrix} & \begin{bmatrix} Y_{mn}^{SS} - \frac{\gamma_{mn}^{SS}}{\eta_0} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} V_n^V \end{bmatrix} \\ \begin{bmatrix} V_n^S \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} I_{m}^{-V} \end{bmatrix} \\ \begin{bmatrix} 0 \end{bmatrix} \end{bmatrix}$$

E n → H

Note we also know their ratio for surface impedances:

$$\left(\hat{\mathbf{n}} \times \mathbf{H} = -\frac{\mathbf{E}_{tan}}{Z_s} \Rightarrow \left[I_n^S\right] = -\frac{1}{Z_s} \left[V_n^S\right]\right)$$

Mesh fills scatterer and surrounding region out to the far field!

...Or Null Field Condition Provides Add'l Eq. at Boundary

Expressing the magnetic null field condition (see PMCHWT formulation) using equivalent currents and potentials provides the missing equation:

$$-\hat{\mathbf{n}} \times \mathbf{H}^{\mathrm{sc}}[\mathbf{J}, \mathbf{M}] = \hat{\mathbf{n}} \times \mathbf{H}^{\mathrm{inc}}, \quad \mathbf{r} \uparrow S$$

$$\Rightarrow \frac{\mathbf{J}}{2} - \frac{1}{\mu_0} \hat{\mathbf{n}} \times \int_{S} \nabla \times \mathbf{\mathcal{G}}^{A}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{J}(\mathbf{r}') dS' + j\omega \varepsilon_0 \hat{\mathbf{n}} \times \int_{S} G(\mathbf{r}, \mathbf{r}') \mathbf{M}(\mathbf{r}') dS'$$
$$- \frac{1}{j\omega\mu_0} \hat{\mathbf{n}} \times \nabla \int_{S} G(\mathbf{r}, \mathbf{r}') \nabla' \cdot \mathbf{M}(\mathbf{r}') dS' = \hat{\mathbf{n}} \times \mathbf{H}^{inc}$$

Relate equivalent currents to fields of the Helmholtz eq.:

$$\mathbf{J} \equiv \hat{\mathbf{n}} \times \mathbf{H} = \sum_{n=1}^{N_S} I_n^S \, \mathbf{\Omega}_n^S(\mathbf{r}), \quad \mathbf{M} \equiv \mathbf{E} \times \hat{\mathbf{n}} = \sum_{n=1}^{N_S} V_n^S \mathbf{\Lambda}_n^S(\mathbf{r})$$

Substituting into above and testing with Ω_n^S yields

final matrix equation:

$$\Rightarrow \left[\widehat{\beta}_{mn}^{SS}\right] \left[I_n^S\right] + \left[\frac{Z_{mn}^{SS}}{\eta_0^2}\right] \left[V_n^S\right] = \left[I_m^{inc}\right]$$
Homogeneous background medium is assumed to be free space

Integral Equation Matrix Block Definitions

$$\frac{Z_{mn}^{SS}}{\eta_0^2} = j\omega\varepsilon_0 < \Lambda_m^S; G, \Lambda_n^S > + \frac{1}{j\omega\mu_0} < \nabla \cdot \Lambda_m^S, G, \nabla \cdot \Lambda_n^S >, m, n = 1, ..., N_S$$

$$\widehat{\beta}_{mn}^{SS} = \frac{1}{2} \langle \mathbf{\Omega}_{m}^{S}, \mathbf{\Omega}_{n}^{S} \rangle - \frac{1}{\mu_{0}} \langle \mathbf{\Omega}_{m}^{S}; \hat{\mathbf{n}} \times \nabla \times \mathbf{\mathcal{G}}^{A}; \mathbf{\Omega}_{n}^{S} \rangle$$

$$= -\frac{1}{2} \gamma_{mn}^{SS} - \frac{1}{\mu_{0}} \langle \mathbf{\Omega}_{m}^{S}; \hat{\mathbf{n}} \times \nabla \times \mathbf{\mathcal{G}}^{A}; \mathbf{\Omega}_{n}^{S} \rangle, \quad m, n = 1, \dots, N_{S},$$

$$I_m^{\rm inc} = \langle \Lambda_m^S, \mathbf{H}^{\rm inc} \rangle$$

Pictorial Representation of Surface Bases, Interior and Surface Volume Bases

$$\mathbf{E} \approx = \sum_{n=1}^{N_V} \underbrace{V_n^V}_{\text{volume DoFs}} \mathbf{\Omega}_n(\mathbf{r}) + \sum_{n=1}^{N_S} \underbrace{V_n^S}_{\text{surface DoFs}} \mathbf{\Omega}_{N_V+n}(\mathbf{r})$$

$$\mathbf{J} \equiv \hat{\mathbf{n}} \times \mathbf{H} \approx \sum_{n=1}^{N_S} I_n^S \mathbf{\Omega}_n^S(\mathbf{r})$$

$$\mathbf{\Lambda}_{m}^{S} = \mathbf{\Omega}_{m}^{S} \times \hat{\mathbf{n}}$$
$$-\hat{\mathbf{n}} \times \hat{\mathbf{n}} \times \mathbf{\Omega}_{N_{V}+m} \Big|_{\mathbf{n} \in S} = \mathbf{\Omega}_{m}^{S}$$

Complete System of Coupled FEM and Integral (Hybrid) Equations

$$\begin{bmatrix} \begin{bmatrix} Y_{mn}^{VV} \end{bmatrix} & \begin{bmatrix} Y_{mn}^{VS} \end{bmatrix} & \begin{bmatrix} 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} V_n^V \end{bmatrix} \\ \begin{bmatrix} Y_{mn}^{SV} \end{bmatrix} & \begin{bmatrix} Y_{mn}^{SS} \end{bmatrix} & \begin{bmatrix} Y_{mn}^{SS} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} V_n^S \end{bmatrix} \\ \begin{bmatrix} V_n^S \end{bmatrix} \end{bmatrix} = \begin{bmatrix} I_{-,S}^{-,S} \end{bmatrix} \begin{bmatrix} I_{mn}^{-,S} \end{bmatrix}$$

$$\begin{bmatrix} \begin{bmatrix} 0 \end{bmatrix} & \begin{bmatrix} Z_{mn}^{SS} / \eta_0^2 \end{bmatrix} & \begin{bmatrix} \widehat{\beta}_{mn}^{SS} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \widehat{\beta}_{mn}^{SS} \end{bmatrix} \begin{bmatrix} I_n^{S} \end{bmatrix}$$

Typical Matrix Structure for Hybrid Problems

Check: Reduce Medium to Free Space

The End