Power Grid Anomaly Detection

CMPT 318 - Cyber Security

Sajandeep Toor, Steven Xia

Overview

- Threat of cyber attacks are increasing
- Critical infrastructure such as power grids are under attack
- Use Hidden Markov Models to detect anomalies in power grid stream data

Introduction

- Advanced Persistent Threats (APTs)
- Supervisory Control and Data Acquisition (SCADA)
- Hidden Markov Models

Threats to Cybersecurity

- Number of threats growing rapidly
- Threats themselves are evolving
- Rise of IoT devices
- Advanced Persistent Threats

- What is an anomaly?
- Types of anomalies
 - Point Anomalies
 - Contextual Anomalies
 - Collective Anomalies

Use of Hidden Markov Models

- Modeling normal behavior
- Detecting non-normal behaviour

Fitting of a Model

- Overfitting
- Underfitting

IBM Cloud Education. (2021, March 23). *What is underfitting?* IBM. Retrieved December 4, 2021, from https://www.ibm.com/cloud/learn/underfitting.

Methodology

Data Analysis

- Power grid time series data December 16th, 2006 to December 1th 2009
- Features:
 - Global Active Power
 - Global Reactive Power
 - Global Intensity
 - Voltage
 - Sub metering 1 3

Data Cleaning and Scaling

- Problem: Data had a lot of missing values
- Solution: Processing and cleaning the data
 - Linear Interpolation
- Scaling
 - Scaled using standardization

- Too few features is going to underfitting
- Too many features will cause overfitting
- Choice: Global_active_power and Global_intensity

Figure 1: Principal Component Analysis Variance of Project Data

Figure 2: Variance of each feature in PC1

Figure 3: Variance of each feature in PC2

Figure 4: PCA Graph: PC1 vs PC2

Figure 5: PCA Graph: PC2 vs PC3

Training Models

Training Models

- Use a third of the data for testing
- Train 21 models to determine the best number of states

Training Models

2.0 -1.5 Normalized BIC 0.5 0.0 -10 20 15 Number of States

Figure 6: Log Likelihood of Training and Testing Data

Figure 7: Normalized BIC of Training

- Run the trained model on data with injected anomalies
- Choose threshold for detecting anomalies
 - Depends on properties of false positives to false negatives

Point Anomaly Detection

- Used a different approach than HMMs
 - Took the average of each minute of each feature in the interval
 - This represents normal behaviour of the power grid for the interval
 - Find thresholds using testing data
- Results:
 - Anomaly Dataset 1: 47
 - Anomaly Dataset 2: 47
 - Anomaly Dataset 3: 2,530

Conclusion

Accomplishments

- An HMM that represents normal behavior in power grids
 - Can be used to find anomalies
- Adjustment of log-likelihood thresholds for anomalies
- For threshold -0.342, we get 25.5% of normal data as false positive and 9.3% of anomalous data as false negative.

Challenges

 Substantial amount of overlap between the log-likelihoods of individual intervals from the testing data set and the anomaly data set

Lessons Learned

- Feature selection is important!
- How we split the dataset into training and testing is also important!

Thank you for listening!

Any questions?

References

- [1] Canadian Centre for Cyber Security. National Cyber Threat Assessment 2020. Communications Security Establishment, Government of Canada, 2020.
- [2] Oracle. What is the internet of things (IOT)? Retrieved December 3, 2021, from https://www.oracle.com/ca-en/internet-of-things/what-is-iot/.