MATH 362 Elementary Number Theory Notes, 2019

Kieka Mynhardt

Contents

1	I Integers		1
	Week 1	 	1
	1.1 Mathematical Induction	 	1
	1.2 Division of Integers	 	3
	1.3 Greatest common divisor	 	5
	1.4 The Division Algorithm	 	5
	Week 2	 	7
	1.5 The Euclidean Algorithm	 	7
2	2 Unique Factorization		9
	2.1 Prime Numbers	 	9
	2.2 The Unique Factorization Theorem	 	12
3	B Linear Diophantine Equations		16
4	4 Congruences		19
	Week 3	 	19
	4.1 Definition and Equivalent Conditions	 	19
	4.2 Properties of the Congruence Relation	 	20
	4.3 Divisibility by 9	 	23
5	5 Linear Congruences		24
	5.1 Solutions of Linear Congruences	 	25
	5.2 The Chinese Remainder Theorem	 	29
3	Fermat's and Wilson's Theorems		31
	Week 4	 	31
	6.1 Fermat's Theorem		31

CONTENTS	•••
CONTENTS	11

Week 5 42 8.1 Euclid's Theorem 43 8.2 Euler's Theorem 43 8.3 Mersenne Primes 45 8.4 Last Digits of Perfect Numbers 45 8.5 Other Special Types of Numbers 46		6.2	Wilson's Theorem	36
7.1 Number of Divisors of an Integer 39 7.2 Sum of Divisors of an Integer 40 8 Perfect Numbers 42 Week 5 42 8.1 Euclid's Theorem 43 8.2 Euler's Theorem 43 8.3 Mersenne Primes 45 8.4 Last Digits of Perfect Numbers 45 8.5 Other Special Types of Numbers 46 9 Euler's Generalization of Fermat's Theorem 47 9.1 Euler's Phi Function 50 Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 64 10.4 Integers with Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 70 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion <t< td=""><td>7</td><td>The</td><td>Divisors of an Integer</td><td>30</td></t<>	7	The	Divisors of an Integer	30
7.2 Sum of Divisors of an Integer 40 8 Perfect Numbers 42 Week 5 42 8.1 Euclid's Theorem 43 8.2 Euler's Theorem 43 8.3 Mersenne Primes 45 8.4 Last Digits of Perfect Numbers 45 8.5 Other Special Types of Numbers 46 9 Euler's Generalization of Fermat's Theorem 47 9.1 Euler's Phi Function 50 Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 64 10.4 Integers with Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73	•		9	
8 Perfect Numbers 42 Week 5 42 8.1 Euclid's Theorem 43 8.2 Euler's Theorem 43 8.3 Mersenne Primes 45 8.4 Last Digits of Perfect Numbers 45 8.5 Other Special Types of Numbers 46 9 Euler's Generalization of Fermat's Theorem 47 9.1 Euler's Phi Function 50 Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 65 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75		•••		
Week 5 42 8.1 Euclid's Theorem 43 8.2 Euler's Theorem 43 8.3 Mersenne Primes 45 8.4 Last Digits of Perfect Numbers 45 8.5 Other Special Types of Numbers 46 9 Euler's Generalization of Fermat's Theorem 47 9.1 Euler's Phi Function 50 Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 65 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75		1.2	Sum of Divisors of an integer	40
8.1 Euclid's Theorem 43 8.2 Euler's Theorem 43 8.3 Mersenne Primes 45 8.4 Last Digits of Perfect Numbers 45 8.5 Other Special Types of Numbers 46 9 Euler's Generalization of Fermat's Theorem 47 9.1 Euler's Phi Function 50 Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75	8	Perf	ect Numbers	42
8.2 Euler's Theorem 43 8.3 Mersenne Primes 45 8.4 Last Digits of Perfect Numbers 45 8.5 Other Special Types of Numbers 46 9 Euler's Generalization of Fermat's Theorem 47 9.1 Euler's Phi Function 50 Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75		Wee	k 5	42
8.3 Mersenne Primes 45 8.4 Last Digits of Perfect Numbers 45 8.5 Other Special Types of Numbers 46 9 Euler's Generalization of Fermat's Theorem 47 9.1 Euler's Phi Function 50 Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75		8.1	Euclid's Theorem	43
8.4 Last Digits of Perfect Numbers 45 8.5 Other Special Types of Numbers 46 9 Euler's Generalization of Fermat's Theorem 47 9.1 Euler's Phi Function 50 Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75		8.2	Euler's Theorem \dots	43
8.5 Other Special Types of Numbers 46 9 Euler's Generalization of Fermat's Theorem 47 9.1 Euler's Phi Function 50 Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75		8.3	Mersenne Primes	45
9 Euler's Generalization of Fermat's Theorem 47 9.1 Euler's Phi Function 50 Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75		8.4	Last Digits of Perfect Numbers	45
9.1 Euler's Phi Function 50 Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75		8.5	Other Special Types of Numbers	46
Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75	9	Eule	er's Generalization of Fermat's Theorem	47
Week 6 54 9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75		9.1	Euler's Phi Function	50
9.2 An Application to Cryptography 54 Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75		Wee		
Week 7 60 10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75				
10 Primitive roots 60 10.1 The Order of a modulo m 60 10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75		Wee		
10.1 The Order of a modulo m 6010.2 Primitive Roots6410.3 Finding Primitive Roots6610.4 Integers with Primitive Roots6711 Quadratic Congruences69Week 86911.1 Simple Form of a Quadratic Congruence6911.2 Number of Solutions of Quadratic Congruences7011.3 Quadratic Residues and Nonresidues7111.4 Euler's Criterion7211.5 The Legendre Symbol7311.6 Evaluating Legendre Symbols75				
10.2 Primitive Roots 64 10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75	10			
10.3 Finding Primitive Roots 66 10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75				
10.4 Integers with Primitive Roots 67 11 Quadratic Congruences 69 Week 8 69 11.1 Simple Form of a Quadratic Congruence 69 11.2 Number of Solutions of Quadratic Congruences 70 11.3 Quadratic Residues and Nonresidues 71 11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75				
11 Quadratic Congruences69Week 86911.1 Simple Form of a Quadratic Congruence6911.2 Number of Solutions of Quadratic Congruences7011.3 Quadratic Residues and Nonresidues7111.4 Euler's Criterion7211.5 The Legendre Symbol7311.6 Evaluating Legendre Symbols75				
Week 86911.1 Simple Form of a Quadratic Congruence6911.2 Number of Solutions of Quadratic Congruences7011.3 Quadratic Residues and Nonresidues7111.4 Euler's Criterion7211.5 The Legendre Symbol7311.6 Evaluating Legendre Symbols75		10.4	Integers with Primitive Roots	67
11.1 Simple Form of a Quadratic Congruence6911.2 Number of Solutions of Quadratic Congruences7011.3 Quadratic Residues and Nonresidues7111.4 Euler's Criterion7211.5 The Legendre Symbol7311.6 Evaluating Legendre Symbols75	11	Qua	dratic Congruences	69
11.2 Number of Solutions of Quadratic Congruences7011.3 Quadratic Residues and Nonresidues7111.4 Euler's Criterion7211.5 The Legendre Symbol7311.6 Evaluating Legendre Symbols75		Wee	k 8	69
11.3 Quadratic Residues and Nonresidues7111.4 Euler's Criterion7211.5 The Legendre Symbol7311.6 Evaluating Legendre Symbols75				69
11.3 Quadratic Residues and Nonresidues7111.4 Euler's Criterion7211.5 The Legendre Symbol7311.6 Evaluating Legendre Symbols75		11.2	Number of Solutions of Quadratic Congruences	70
11.4 Euler's Criterion 72 11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75				71
11.5 The Legendre Symbol 73 11.6 Evaluating Legendre Symbols 75				
11.6 Evaluating Legendre Symbols				73
12 Quadratic Reciprocity 77				
	12	Qua	dratic Reciprocity	77

CONTENTS	iii

	12.1 Gauss's Lemma	77
	Week 9	80
	12.2 The value of $(2/p)$	80
	12.3 Equivalent Form of the Quadratic Reciprocity Theorem	82
13	Numbers in other bases	83
10	13.1 Writing Base 10 Integers in Other Bases	
	13.2 Converting Integers in Other Bases to Base 10	
	13.3 Working in Other Bases	
	13.4 Decimals in Other Bases	
14	Duodecimals	86
15	Decimals	87
	15.1 Terminating Decimal Expansions	87
	Week 10	90
	15.2 Non-Terminating Decimal expansions	90
	15.3 Expansions in Other Bases	93
16	Pythagorean Triangles	96
	16.1 Fundamental Pythagorean Triangles	96
	Week 11	99
17	Infinite Descent and Fermat's Conjecture	102
	Week 12	102
	17.1 The Equation $x^4 + y^4 = z^2$	102
	17.2 Infinite Descent	103
18	Sums of Squares	105
	18.1 Numbers Representable as Sums of Two Squares	106
	18.2 Proof of Necessity (Contrapositive)	106
	18.3 Proof of Sufficiency	107
	18.3.1 Some Lemmas	107
	18.3.2 A result based on Wilson's Theorem	109
	18.3.3 Thue's Lemma	109

CONTERNICO	
CONTENTS	13
CONTENTS	1 V

	Wook 13	
	18.3.4	Summary
	18.3.5	Sum of three squares
	18.3.6	Sum of four squares
	18.3.7	Sum of cubes
	18.3.8	Sum of k^{th} powers
	18.3.9	Goldbach Conjecture
19	More Abo	ut Primes 114
	19.1 The Pr	rime Number Theorem
	19.2 Primes	s in Arithmetic Progression
20	Continued	Fractions 118
	20.1 Finite	Continued Fractions
	20.2 Infinite	e Continued Fractions

Section 1

Integers

Week 1

1.1 Mathematical Induction

We begin by revising one of the most basic methods of proof in mathematics – mathematical induction. What is it, why does it "work" and how do we use it?

Well-Ordering Principle or Least-integer Principle:

Every non-empty set S of positive integers contains a smallest element. That is, there is some integer $a \in S$ such that $a \leq b$ for each $b \in S$.

The Well-Ordering Principle is an **axiom** which we accept, without proof, as a fact. We use the Well-Ordering Principle to prove the

Principle of Finite Induction (Mathematical Induction):

Let S be a set of positive integers with the properties

- $(i) 1 \in S$
- (ii) whenever the positive integer k is contained in S, then the next integer k+1 is contained in S.

Then S is the set of all positive integers.

Proof.

By contradiction: Suppose to the contrary that S does not contain all positive integers. Let T be the set of all positive integers that are not contained in S. By our assumption, T is non-empty.

By the Well Ordering Principle, T contains a smallest element, say a. Since $1 \in S$, it is clear that $a \neq 1$ and so a-1 is a positive integer. But a-1 < a and so by the choice of a as smallest element of T, $a-1 \notin T$. The only possibility is $a-1 \in S$. By (ii), this implies that $a \in S$, a contradiction.

Note: This is not a demonstration of how to prove results by the method of Mathematical Induction, but a proof of the validity of the Principle of Mathematical Induction.

The following result can be proved similarly.

Principle of Finite Induction (Mathematical Induction):

Let S be a set of integers with the properties

- (i) $n_0 \in S$ for some integer n_0 ;
- (ii) whenever the integer $k \geq n_0$ is contained in S, then k+1 is contained in S.

Then S contains all the integers $n_0, n_0 + 1, n_0 + 2, ...$

There is also the following (equivalent) form of induction:

Second Principle of Finite Induction (Strong form of Mathematical Induction):

Let S be a set of integers with the properties

- (i) $n_0 \in S$ for some $n_0 \in \mathbb{Z}$ (where \mathbb{Z} denotes the set of all integers),
- (ii) whenever the integers $n_0, n_0 + 1, ..., k$ are all contained in S, then the next integer k + 1 is contained in S.

Then S contains all the integers greater than or equal to n_0 .

Rephrasing the Principle of Induction:

Let P(n) be a statement about the integer n. If

- (i) P(1) is true, and
- (ii) the truth of P(k), for an arbitrary integer $k \geq 1$, implies the truth of P(k+1),

then P(n) is true for all positive integers n.

Or more general:

Let P(n) be a statement about the integer n. If

- (i) $P(n_0)$ is true, and
- (ii) the truth of P(k), for an arbitrary integer $k \geq n_0$, implies the truth of P(k+1),

then P(n) is true for all integers $n > n_0$.

Note: We are not concerned with the actual truth (or not) of the statement P(k), but with the fact that the truth of P(k) implies the truth of P(k+1).

1.2 Division of Integers

Let a and b be integers. We say that "a divides b" and write a|b if there exists an integer d such that ad = b. The proofs of the following two lemmas are easy and omitted.

Lemma 1.1 If d|a and d|b, then d|(a+b).

Lemma 1.2 If $d|a_1, d|a_2,..., d|a_n$, then $d|(c_1a_1+c_2a_2+\cdots+c_na_n)$ for any integers $c_1, c_2,..., c_n$.

Example: Use induction to prove that $6|(n^3-n)$ for all positive integers n.

Solution

Let P(n) be the statement $6|(n^3 - n)$.

Basis Step: Is P(1) true?

If n = 1, then $n^3 - n = 1 - 1 = 0$. Clearly, 6|0 and so P(1) is true.

Induction hypothesis:

Assume that P(k) is true for some integer $k \ge 1$, that is, $k^3 - k = 6d$ for some $d \in \mathbb{Z}$.

To prove: P(k+1) is true, that is, $(k+1)^3 - (k+1) = 6d'$ for some $d' \in \mathbb{Z}$.

ATTENTION!!!

Do not confuse the statement above of what is to be proved when n = k + 1 with the start of your proof!

Start your proof by beginning with one side of the equation only, working until you prove it equal to the other side. The obvious side to start with here is the left hand side:

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$
$$= k^3 - k + (3k^2 + 3k)$$
$$= 6d + (3k^2 + 3k)$$

by the induction hypothesis. By Lemma 1.1 we only need to show that $6|(3k^2+3k)$.

Suppose k is even. Then k = 2r for some integer r, so

$$3k^2 + 3k = 12r^2 + 6r = 6(2r^2 + r)$$

which is clearly divisible by 6. Suppose k is odd. Then k = 2s + 1 for some integer s, so

$$3k^{2} + 3k = 12s^{2} + 12s + 3 + 6s + 3$$
$$= 6(2s^{2} + 3s + 1),$$

which is also clearly divisible by 6. Hence the truth of P(k) implies the truth of P(k+1) and the result follows by the principle of induction.

Example: (Omitted in class, read on your own) Let P(n) be the statement

$$7^n - 2^n$$
 is divisible by 5.

Prove that P(n) is true for all nonnegative integers n.

Solution

Basis Step: P(0) is the statement

$$7^0 - 2^0$$
 is divisible by 5,

which is obviously true because $7^0 - 2^0 = 1 - 1 = 0$.

Induction hypothesis: Assume that P(k) is true for some $k \geq 0$, that is, assume that

$$7^k - 2^k$$
 is divisible by 5, i.e. $7^k - 2^k = 5d$ for some $d \in \mathbb{Z}$. (1.1)

To prove: P(k+1) is true, that is, using (1.1) we must show that

$$7^{k+1} - 2^{k+1}$$
 is divisible by 5.

Now,

$$7^{k+1} - 2^{k+1} = 7 \cdot 7^k - 2 \cdot 2^k$$

$$= 5 \cdot 7^k + 2 \cdot 7^k - 2 \cdot 2^k$$

$$= 5 \cdot 7^k + 2(7^k - 2^k)$$

$$= 5(7^k + 2d)$$

by (1.1). It follows that $7^{k+1} - 2^{k+1}$ is divisible by 5. Hence P(k+1) is true and the result follows by the principle of induction.

1.3 Greatest common divisor

Let a and b be integers, noth both equal to 0. We say of an integer d that

"d is the greatest common divisor of a and b"

and write (a, b) = d (other books also write gcd(a, b)), if and only if

- (i) d|a and d|b, and
- (ii) if c is any number such that c|a and c|b, then $c \leq d$.

Theorem 1.1 If (a, b) = d, then (a/d, b/d) = 1.

Proof.

Suppose c = (a/d, b/d).

We must prove that c = 1. We do this by proving that $c \le 1$ and $c \ge 1$.

Firstly, $c \ge 1$ is obvious , because 1 is a common divisor of any pair of integers, thus the greatest common divisor of any pair of integers is always at least 1.

 $c \leq 1$: Since c|(a/d) and c|(b/d), there exist integers q and r such that

$$a/d=cq \quad \text{ and } \quad b/d=cr,$$
 i.e. $a=cqd=(cd)q \quad \text{ and } \quad b=crd=(cd)r.$

Thus cd is a common divisor of a and b and hence is no greater than the greatest common divisor of a and b, which is d, i.e. $cd \leq d$. Since d is positive, this gives $c \leq 1$ as required. Hence c = 1.

1.4 The Division Algorithm

We now prove another result that you already know to be true: the division algorithm.

Theorem 1.2 (The Division Algorithm) Given positive integers a and b, there exist unique integers q and r, with $0 \le r < b$, such that

$$a = bq + r$$
.

Proof.

Consider the set of integers $T = \{a, a - b, a - 2b, ...\}$. Let $S = \{s \in T : s \geq 0\}$. Then $S \neq \emptyset$ because a > 0 and $a \in T$, so $a \in S$. Also, S consists of nonnegative integers. By the Well-Ordering Principle, S has a smallest element, say a - qb. Note that

- $a qb \ge 0$ (definition of S) and
- a qb < b, for if $a qb \ge b$, then $a (q + 1)b \ge 0$ and thus $a (q + 1)b \in S$; but then a (q + 1)b is a smaller element of S than a qb, which is not the case.

Let r = a - qb. Then

$$a = bq + r, (1.2)$$

where

$$0 \le r < b \tag{1.3}$$

as required.

We must still prove that q and r are the only integers with this property. Suppose q_1 and r_1 are integers such that

$$a = bq_1 + r_1, \tag{1.4}$$

where

$$0 \le r_1 < b. \tag{1.5}$$

Subtracting (1.4) from (1.2) we get

$$0 = b(q - q_1) + (r - r_1). (1.6)$$

Since b divides the left-hand side of (1.6) and the first term on the right-hand side, b also divides the remaining term $(r - r_1)$, that is,

$$r - r_1 = bt (1.7)$$

for some integer t. Combining (1.3) and (1.5) gives

$$-b < r - r_1 < b$$
.

Substituting (1.7) we get

$$-b < bt < b$$
.

But the only integer t for which this inequality is true is t = 0, so $r - r_1 = 0$, i.e. $r = r_1$, and since $b \neq 0$ it follows from (1.6) that $q = q_1$. This proves the uniqueness of q and r.

Note: The fact that a multiple bt of an integer b which lies strictly between b and -b can only be a zero multiple (t=0) will be used several times in the course.