```
exercise1 (Score: 13.0 / 14.0)

1. Test cell (Score: 2.0 / 2.0)

2. Test cell (Score: 1.0 / 1.0)

3. Test cell (Score: 1.0 / 1.0)

4. Test cell (Score: 1.0 / 1.0)

5. Test cell (Score: 0.0 / 1.0)

6. Test cell (Score: 3.0 / 3.0)

7. Test cell (Score: 2.0 / 2.0)

8. Task (Score: 3.0 / 3.0)
```

Lab 5

- 1. 提交作業之前,建議可以先點選上方工具列的Kernel,再選擇Restart & Run All,檢查一下是否程式跑起來都沒有問題,最後記得儲存。
- 2. 請先填上下方的姓名(name)及學號(stduent_id)再開始作答,例如:

```
name = "我的名字"
student id= "B06201000"
```

- 3. 演算法的實作可以參考lab-5 (https://yuanyuyuan.github.io/itcm/lab-5.html), 有任何問題歡迎找助教詢問。
- 4. Deadline: 12/11(Wed.)

```
In [1]:
```

```
name = "黃宇文"
student_id = "B06201029"
```

Exercise 1

An $m \times m$ Hilbert matrix H_m has entries $h_{ij} = 1/(i+j-1)$ for $1 \le i,j \le m$, and so it has the form

\$\$\left [

```
1 1/2 1/3 ...
1/2 1/3 1/4 ...
1/3 1/4 1/5 ...
: : : : ...
```

\right].\$\$

```
In [2]:
```

```
import numpy as np
from numpy import linalg as LA
import matplotlib.pyplot as plt
```

Part 1

Generate the Hilbert matrix of order m, for m = 2, 3, ..., 12.

For each m, compute the condition number of H_m , ie, in p-norm for p=1 and 2, and make a plot of the results.

Part 1.1

Define the function of Hilbert matrix

```
In [3]:
```

Test your function.

```
In [4]:
```

```
hilbert_matrix (Top)

print('H_2:\n', hilbert_matrix(2))

### BEGIN HIDDEN TESTS

assert np.mean(np.array(hilbert_matrix(3)) - np.array([[1, 1/2, 1/3], [1/2, 1/3, 1/4], [1/3, 1/4, 1/5]]))

< 1e-7

### END HIDDEN TESTS
```

```
H_2:

[[1. 0.5]

[0.5 0.33333333]]
```

Part 1.2

Collect all Hilbert matrices into the list H_m for m = 2, 3, ..., 12.

```
In [5]:
```

Check your Hilbert matrix list.

```
In [6]:
```

0.07142857 0.06666667]]

```
hilbert matrices
for i in range(len(H m)):
    print('H %d:' % (i+2))
    print(H m[i])
    print()
### BEGIN HIDDEN TESTS
error = 0
for m in range(2, 13):
    error += LA.norm(hilbert_matrix(m) - np.array([[1/(i + j + 1) for j in range(m)] for i in range(m)]))
assert error < 1e-16
### END HIDDEN TESTS
H 2:
[[1.
            0.5
            0.33333333]]
 [0.5
H 3:
            0.5
[[1.
                      0.333333331
 [0.5
           0.33333333 0.25
                             1
 [0.33333333 0.25
                      0.2
                                ]]
H 4:
            0.5
[[1.
                      0.33333333 0.25
            0.33333333 0.25 0.2
 [0.5
 [0.33333333 0.25 0.2
                               0.16666667]
 [0.25
           0.2
                      0.16666667 0.14285714]]
H 5:
[[1.
            0.5 0.33333333 0.25
                                           0.2
 [0.5
           0.33333333 0.25 0.2
                                          0.16666667]
 [0.33333333 0.25
                   0.2
                                 0.16666667 0.14285714]
                      0.16666667 0.14285714 0.125
 [0.25 0.2
 [0.2
            0.16666667 0.14285714 0.125
                                          0.11111111]]
H 6:
                      0.33333333 0.25
           0.5
                                          0.2
                                                     0.166666671
[[1.
 [0.5
            0.33333333 0.25 0.2
                                          0.16666667 0.14285714]
                                0.16666667 0.14285714 0.125
 [0.33333333 0.25 0.2
        0.2
                      0.16666667 0.14285714 0.125
 [0.25
                                                     0.11111111]
           0.16666667 0.14285714 0.125
 [0.2
                                         0.11111111 0.1
 [0.16666667 0.14285714 0.125 0.11111111 0.1
                                                    0.0909090911
H 7:
            0.5
                     0.33333333 0.25
                                           0.2
                                                      0.16666667
[[1.
 0.14285714]
 [0.5 0.33333333 0.25
                                 0.2
                                           0.16666667 0.14285714
 0.125
           1
 [0.33333333 0.25
                      0.2
                                 0.16666667 0.14285714 0.125
 0.11111111]
 [0.25
                      0.16666667 0.14285714 0.125 0.11111111
 0.1
 [0.2
            0.16666667 0.14285714 0.125
                                         0.11111111 0.1
 0.09090909]
 [0.16666667 0.14285714 0.125
                               0.11111111 0.1
                                                     0.09090909
 0.08333333]
 [0.14285714 0.125
                     0.11111111 0.1
                                          0.09090909 0.08333333
 0.0769230811
H 8:
                      0.33333333 0.25
[[1.
           0.5
                                           0.2
                                                      0.16666667
 0.14285714 0.125
                     ]
            0.33333333 0.25
                                           0.16666667 0.14285714
 [0.5
                                 0.2
 0.125
           0.11111111]
 [0.33333333 0.25
                                 0.16666667 0.14285714 0.125
                      0.2
 0.11111111 0.1
 [0.25]
        0.2
                      0.16666667 0.14285714 0.125
                                                     0.11111111
 0.1
            0.09090909]
            0.16666667 0.14285714 0.125
                                           0.11111111 0.1
 [0.2
 0.09090909 0.08333333]
 [0.16666667 0.14285714 0.125
                                 0.11111111 0.1
                                                      0.09090909
 0.08333333 0.07692308]
 [0.14285714 0.125
                      0.11111111 0.1
                                          0.09090909 0.08333333
 0.07692308 0.07142857]
                                 0.09090909 0.08333333 0.07692308
 [0.125 0.11111111 0.1
```

(Top)

```
9:
[1. 0.5 0.3333333 0.25
0.14285714 0.125 0.1111111]
                                                                                                          0.2 0.16666667
[[1.

      0.14263714
      0.125
      0.111111111

      [0.5
      0.33333333
      0.25
      0.2
      0.16666667
      0.14285714

      0.125
      0.11111111
      0.1
      ]

      [0.33333333
      0.25
      0.2
      0.16666667
      0.14285714
      0.125

      0.11111111
      0.1
      0.09090909
      0.14285714
      0.125
      0.11111111

      0.1
      0.09090909
      0.08333333
      0.11111111
      0.1

      0.00000000
      0.16666667
      0.14285714
      0.125
      0.11111111

      0.00000000
      0.08333333
      0.076032001
      0.11111111
      0.1

    0.09090909 0.08333333 0.07692308]
  [0.16666667 0.14285714 0.125 0.11111111 0.1
                                                                                                                                    0.09090909
    0.08333333 0.07692308 0.07142857]
  0.07692308 0.07142857 0.06666667]
  [0.11111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 0.05882353]]
H 10:

      d_10:

      [1.
      0.5
      0.333333333
      0.25
      0.2
      0.16666667

      0.14285714
      0.125
      0.11111111
      0.1
      ]

      [0.5
      0.33333333
      0.25
      0.2
      0.16666667
      0.14285714

      0.125
      0.11111111
      0.1
      0.09090909]

      [0.33333333
      0.25
      0.2
      0.16666667
      0.14285714
      0.125

      0.11111111
      0.1
      0.09090909
      0.083333333]

      [0.25
      0.2
      0.16666667
      0.14285714
      0.125
      0.11111111

      0.1
      0.09090909
      0.083333333
      0.076923081

[[1.
  0.1 0.09090909 0.08333333 0.07692308]
[0.2 0.16666667 0.14285714 0.125 0.11111111 0.1
    0.09090909 0.08333333 0.07692308 0.07142857]
  [0.16666667 0.14285714 0.125 0.11111111 0.1
                                                                                                                                  0.09090909
    0.08333333 0.07692308 0.07142857 0.06666667]
  [0.14285714 0.125 0.11111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.066666667 0.0625 ]
    [0.125
  [0.11111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 0.05882353 0.05555556]
  [0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 0.05882353 0.05555556 0.05263158]]
H 11:

      1.11:

      [1.
      0.5
      0.333333333
      0.25
      0.2
      0.16666667

      0.14285714
      0.125
      0.11111111
      0.1
      0.09090909]

      [0.5
      0.33333333
      0.25
      0.2
      0.16666667
      0.14285714

      0.125
      0.11111111
      0.1
      0.09090909
      0.083333333]

      [0.333333333
      0.25
      0.2
      0.166666667
      0.14285714
      0.125

      0.11111111
      0.1
      0.09090909
      0.083333333
      0.07692308
      0.071428571

      0.1
      0.09090909
      0.083333333
      0.07692308
      0.071428571

[[1.

      0.1
      0.09090909
      0.08333333
      0.07692308
      0.07142857]

      [0.2
      0.16666667
      0.14285714
      0.125
      0.111111111
      0.1

    0.09090909 0.08333333 0.07692308 0.07142857 0.06666667]
  [0.16666667 0.14285714 0.125 0.11111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 ]
  [0.14285714 0.125 0.11111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.066666667 0.0625 0.05882353]
  [0.11111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 0.05882353 0.05555556 0.05263158]
  [0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 0.05882353 0.05555556 0.05263158 0.05 ]
  [0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625
    0.05882353 0.05555556 0.05263158 0.05 0.04761905]]
H 12:

      1.12:

      [[1.
      0.5
      0.33333333
      0.25
      0.2
      0.16666667

      0.14285714
      0.125
      0.11111111
      0.1
      0.09090909
      0.08333333]

      [0.5
      0.33333333
      0.25
      0.2
      0.16666667
      0.14285714

      0.125
      0.11111111
      0.1
      0.09090909
      0.08333333
      0.07692308]

      [0.333333333
      0.25
      0.2
      0.16666667
      0.14285714
      0.125

      0.11111111
      0.1
      0.09090909
      0.08333333
      0.07692308
      0.07142857]

      [0.25
      0.2
      0.16666667
      0.14285714
      0.125
      0.11111111

      0.1
      0.09090909
      0.083333333
      0.07692308
      0.07142857
      0.060000000

[[1.
                 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667]
0.16666667 0.14285714 0.125 0.11111111 0.1
    0.1
  [0.2
    0.09090909 \ 0.08333333 \ 0.07692308 \ 0.07142857 \ 0.06666667 \ 0.0625
  [0.16666667 0.14285714 0.125 0.111111111 0.1 0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625 0.05882353]
```

```
[0.14285714 0.125
                       0.11111111 0.1
                                              0.09090909 0.08333333
0.07692308 0.07142857 0.06666667 0.0625
                                              0.05882353 0.05555556]
                                  0.09090909 \ 0.08333333 \ 0.07692308
           0.11111111 0.1
[0.125]
0.07142857 0.06666667 0.0625
                                  0.05882353 0.05555556 0.05263158]
[0.11111111 0.1
                       0.09090909 0.08333333 0.07692308 0.07142857
0.06666667 0.0625
                       0.05882353 0.05555556 0.05263158 0.05
            0.09090909 \ 0.08333333 \ 0.07692308 \ 0.07142857 \ 0.06666667
[0.1
0.0625
            0.05882353 0.05555556 0.05263158 0.05
                                                         0.04761905]
[0.09090909 0.08333333 0.07692308 0.07142857 0.06666667 0.0625
0.05882353 0.05555556 0.05263158 0.05
                                              0.04761905 0.04545455]
[0.08333333 0.07692308 0.07142857 0.06666667 0.0625
                                                         0.05882353
0.05555556 0.05263158 0.05
                                  0.04761905 0.04545455 0.04347826]]
```

Part 1.3

Plot the condition number of H_m for m = 2, 3, ..., 12

Collect all condition numbers in 1-norm of H_m into a list one_norm

In [7]:

In [8]:

```
kappa_one_norm

print('one_norm:\n', one_norm)
### BEGIN HIDDEN TESTS
assert len(one_norm) == 11
### END HIDDEN TESTS
```

one_norm:

[2.33333333333335, 3.69999999999997, 5.076190476190476, 6.456349206349206, 7.83852813852 8138, 9.22187257187257, 10.605949605949606, 11.99051683610507, 13.375428063508556, 14.7605899 1747846, 16.145939989027887]

In [9]:

```
plt.plot(range(2,13), one_norm)
plt.xlabel('m')
plt.title(r'$\kappa(H_m)$ in 1-norm')
plt.show()
```


Collect all condition numbers in 2-norm of H m into a list two norm

In [10]:

In [11]:

```
kappa_two_norm

print('two_norm:\n', two_norm)
### BEGIN HIDDEN TESTS
assert len(two_norm) == 11
### END HIDDEN TESTS
```

two norm:

 $\begin{array}{l} [1.\overline{2}692955176439846,\ 1.413624183909335,\ 1.5097340998183075,\ 1.580906263272022,\ 1.63702239330239,\ 1.6831324888435926,\ 1.7221431395612752,\ 1.755871909716653,\ 1.7855271226510334,\ 1.81195080908123,\ 1.835752037381468] \end{array}$

In [12]:

```
plt.plot(range(2,13), two_norm)
plt.xlabel('m')
plt.title(r'$\kappa(H_m)$ in 2-norm')
plt.show()
```


Part 2

Now generate the m-vector $b_m = H_m x$ also, where x is the m-vector with all of its components equal to 1.

Use Gaussian elimination to solve the resulting linear system $H_m x = b_m$ with H_m and b given above, obtaining an approximate solution \tilde{x} .

Part 2.1

Construct the *m*-vector b_m for m=2,3,...,12. Store all 1D np.array b_m into the list b_m .

```
In [13]:
 1.1.1
Hint:
    b_m = ?
# ==== 請實做程式 =====
b_m = []
for i in range(len(H_m)):
     b_m.append(H_m[i] @ np.ones((i+2,1)))
Print b_m
In [14]:
                                                                                                            (Top)
           b_m
for i in range(len(b_m)):
     print('b %d:' % (i+2))
     print(b_m[i])
     print()
 ### BEGIN HIDDEN TESTS
error = 0
for m in range(2,13):
     error += LA.norm(b_m[m-2] - np.array([[1/(i + j + 1) for j in range(m)] for i in range(m)])@np.ones(m)
))
assert error < 1e-16</pre>
### END HIDDEN TESTS
b 2:
[[1.5
 [0.8333333]]
b_3:
[\bar{1}.83333333]
 [1.08333333]
 [0.78333333]]
b 4:
[[2.08333333]
 [1.28333333]
 [0.95
 [0.75952381]]
b_5:
[[2.28333333]
 [1.45
 [1.09285714]
 [0.88452381]
 [0.74563492]]
b 6:
[[2.45
 [1.59285714]
 [1.21785714]
 [0.99563492]
 [0.84563492]
 [0.73654401]]
b_7:
[[2.59285714]
 [1.71785714]
 [1.32896825]
 [1.09563492]
 [0.93654401]
 [0.81987734]
 [0.73013376]]
[[2.71785714]
 [1.82896825]
```

```
[1.42896825]
 [1.18654401]
 [1.01987734]
 [0.89680042]
 [0.80156233]
 [0.72537185]]
b 9:
[[2.82896825]
 [1.92896825]
 [1.51987734]
 [1.26987734]
 [1.09680042]
 [0.96822899]
 [0.86822899]
 [0.78787185]
 [0.72169538]]
b 10:
[\bar{1}2.92896825]
 [2.01987734]
 [1.60321068]
 [1.34680042]
 [1.16822899]
 [1.03489566]
 [0.93072899]
 [0.84669538]
 [0.77725094]
 [0.7187714]]
b 11:
[[3.01987734]
 [2.10321068]
 [1.68013376]
 [1.41822899]
 [1.23489566]
 [1.09739566]
 [0.98955252]
 [0.90225094]
 [0.82988251]
 [0.7687714]
 [0.71639045]]
b 12:
[\bar{1}3.10321068]
 [2.18013376]
 [1.75156233]
 [1.48489566]
 [1.29739566]
 [1.15621919]
 [1.04510808]
 [0.95488251]
 [0.87988251]
 [0.81639045]
 [0.761845]
 [0.71441417]]
AssertionError
                                            Traceback (most recent call last)
<ipython-input-14-03ed81c14c8f> in <module>
      7 for m in range(2,13):
            error += LA.norm(b_m[m-2] - np.array([[1/(i + j + 1) for j in range(m)] for i in
range(m)])@np.ones(m))
----> 9 assert error < 1e-16
    10 ### END HIDDEN TESTS
AssertionError:
```

Part 2.2

Implement the function of Gaussian elimination.

(Note that you need to implement it by hand, simply using some package functions is not allowed.)

```
In [15]:
```

Store all approximate solutions x of H_m into a list x_m for m = 2, 3, ..., 12

for j in range(k+1,m):

L = new_L@L

for i in range(m):
 if i == 0:

=============

new L[j,k] = -U[j,k] / U[k,k]

 $x[-1,0] = new_b[-1,0] / U[-1,-1]$

 $U[j, k:] = U[j, k:] + new_L[j,k] * U[k,k:]$

 $new_b[j,0] = new_b[j,0] + new_L[j,k] * new_b[k,0]$

 $x[-1-i,0] = (new_b[-1-i,0] - U[-1-i,-i:]@x[-i:,0]) / U[-1-i,-1-i]$

```
In [16]:
```

return x

```
x_m = []
for i in range(len(H_m)):
    x = gaussian_elimination(H_m[i], b_m[i])
    x_m.append(x)
```

Part 3

Investigate the error behavior of the computed solution \tilde{x} .

- (i) Compute the ∞ -norm of the residual $r = b H_m \tilde{x}$.
- (ii) Compute the error $\delta x = \tilde{x} x$, where x is the vector of all ones.
- (iii) How large can you take m before there is no significant digits in the solution ?

Part 3.1

Compute the ∞ -norm of the residual $r_m = b_m - H_{m\tilde{x}}$ for m = 2, 3, ..., 12. And store the values into the list r_m .

```
In [17]:
```

In [18]:

```
infty_norm

print('r_m:\n', r_m)
### BEGIN HIDDEN TESTS
assert np.sum(r_m) < 1e-12
### END HIDDEN TESTS</pre>
```

 $\begin{array}{l} r_m\colon \\ \hline [0.0,\ 2.220446049250313e\text{-}16,\ 0.0,\ 2.220446049250313e\text{-}16,\ 2.220446049250313e\text{-}16,\ 2.220446049250313e\text{-}16,\ 2.220446049250313e\text{-}16,\ 4.440892098500626e\text{-}16,\ 4.440892098500626e\text{-}16] \end{array}$

Plot the figure of the ∞ -norm of the residual for m = 2, 3, ..., 12

In [19]:

```
plt.plot(range(2,13), r_m)
plt.xlabel('m')
plt.title(r'$||r_m||_\infty$')
plt.show()
```


Part 3.2

Compute the error $\delta x = \tilde{x} - x$, where x is the vector of all ones. And store the values into the list delta x.

In [20]:

Collect all errors δx in 2-norm into the list delta_x_two_norm for $m=2,3,\ldots,12$

```
In [21]:
```

In [22]:

```
delta_x_two_norm

print('delta_x_two_norm =', delta_x_two_norm)
### BEGIN HIDDEN TESTS
assert (len(delta_x_two_norm) == 11) and (np.mean(delta_x_two_norm) <= 0.1)
### END HIDDEN TESTS</pre>
```

In [23]:

```
plt.plot(range(2,13), delta_x_two_norm)
plt.xlabel('m')
plt.title(r'$||\delta_x||_2$')
plt.show()
```


(Top)

Part 3.3

How large can you take m before there is no significant digits in the solution?

When m = 10, the graph starts rising gradually. \ When m = 11, the graph starts rocketing. \ Hence, m should take the values which are not greater than 10.

```
In [ ]:
```