CS & IT ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE

Instruction & Addressing Modes

Lecture No.- 06

Recap of Previous Lecture

Topics to be Covered

Topic: Implied Mode

The opcode definition itself defines the operand

Opcode	Mode	Address
--------	------	---------

Topic: Immediate Mode

The address field of instruction specifies the operand value

Opcode Mode Address

Topic: Direct Mode

The address field of instruction specifies the effective address

Opcode	Mode	Address
		The second secon

	Memory
Operand	

Topic: Indirect Mode

The address field of instruction specifies the effective address

Topic: Register Mode

The address field of instruction specifies a register which holds operand

Topic: Register Indirect Mode

The address field of instruction specifies a register which holds operand

Topic: Autoincrement/Autodecrement Mode

Variant of register indirect mode, in which content of register is automatically incremented or decremented to access a table of content sequentially.

Topic: Indexed Mode

Address part of instruction (base address) is added to index register value to get the effective address $3 \sim 8$

	Memory
Operand	
h 1-	

Topic: PC-Relative Mode

Address part of instruction (offset) is added to PC register value to get the effective address

Topic: Base Register Mode

Address part of instruction (offset) is added to Base register value to get the effective address

Addressing modes Non-computable Computable Compulation is needed to -> Implied calculate E.A. -> Immediate - Auto inc./Lec. 3 Direct -> Indexed -> Indirect -> PC - Relative > Reg. mode > Base Reg. mode -> Reg. indirect PC-Relative ? Used for branch instructions & Base Reg. Mode) = E.A. => Target add. of branch

All other modes => used for computation type instas
except above two => they either provide = A. or operand

inst h

		1
opco de	mode	add = 500

add. of memory

_ [Memory		
	Opcode	Mode	
201	Addre	ess = (500)	
202	Next I	nstruction	
399		450	
400		700	
500	800		
600		900	
702			
800		300	

Ren	ist	ter	٨
U	121	Ser.	1)

AC

	1	
Mode	Effective Address	Operan d
1. Immediate Mode	201	500
2. Direct Mode	500	800
3. Indirect Mode	800	300
4. Register Mode		400
5. Register Indirect Mode	400	700
6. Autodecrement Mode	399	450
7. Indexed Mode	500+100=600	900
8. PC- Relative Mode	202+500=702	

#Q. An instruction is stored at Location 300 with its address field at location 301. The address field has the value 400. A processor register contains the number 150. Evaluate the effective address, if addressing mode is:

[MCQ]

#Q. In case the code is position independent, the most suitable addressing mode is

A Direct mode

B Indirect mode

Indexed mode

#Q. The addressing mode that permits relocation, without any change whatsoever in the code, is

A Indirect addressing

Base register addressing

C Indexed addressing

PC relative addressing

- #Q. A relative branch mode type instruction is stored in memory at address 300. The branch is made to an address 450.
 - 1. What should be the value of relative address field of the instruction?
 - 2. Determine the value of PC before instruction fetch, after the fetch and after execution phase?

FIRST:
$$E \cdot A = PC + off set$$

$$450 = 301 + off set$$

$$off set = 149$$

	PC
Before inst ⁿ fetch	300
After —11—	301
After execution phase	450

[MCQ]

LW RI, 20(R2);

#Q. Consider a hypothetical processor with an instruction of type LW R1, 20(R2); which during execution reads a 32-bit word from memory and stores it in a 32-bit register R1. The effective address of the memory location is obtained by the addition of a constant 20 and the contents of register R2. Which of the following best reflects the addressing mode implemented by this instruction for operand in memory?

A / Immediate Addressing

■ Register Addressing

Register indirect scaled addressing Base indexed addressing

20(R2) LW RI, 1 word of 32-bits from memory Load word E.A. = 20 + R2 index Reg. base add.

#Q. Consider a three word machine instruction

ADD A[RØ], @B

The first operand (destination) "A[R0]" uses indexed addressing mode with R0 as the index register. The second operand (Source) "@B" uses indirect addressing mode. A and B are memory addresses residing at the second and the third words, respectively. The first word of the instruction specifies the opcode, the index register designation and the source and destination addressing modes. During execution of ADD instruction, the two operands are added and stored in the destination (first operand).

The number of memory cycles needed during the execution cycle of the instruction is____. The memory references

#Q. Consider a 6-words instruction, which is of the following type:

Opcode	Mode1	Mode2	Address1	Address2

The first operand (destination) uses register indirect mode and second operand uses indirect mode. Assume each operand is of size 2 words, each address is of 2 words and main memory takes 50ns for 1 byte access. Further assume that the opcode denotes addition operation which copies result of addition of 2 operands. One word size is 4 bytes. Total time required in:

- 1. Fetch cycle of instruction
- 2. Execution cycle of instruction
- 3. Instruction cycle of instruction

Micro-operation

- 1. CPU Cycle => Time required to perform (one smallest operation) in CPU
- 2. CPU Clock rate => no. of CPU cycles per unit of time clock rate =
- 3. CPI (cycle Per Inst) => No. of CPU cycles to execute one inst. Cycle time
 4. Execution Time
- 4. Execution Time

Avg Instⁿ execution time

n inst^{ns} execution time = n * CPI * 1 cycle time

- 1. CPU Cycle
- 2. CPU Clock rate
- 3. CPI
- 4. Execution Time

Consider computing the overall CPI for a machine A for which the following performance measures were recorded when executing a set of benchmark programs. Assume that the clock rate of the CPU is 200 MHz

Instruction Category	Number of Instructions	No. of cycles per Instruction
ALU	48	1
Load & Store	10	3
Branch	39	4
Other	3	5

[NAT]

#Q. Consider two processors P1 and P2 executing the same instruction set. Assume that under identical conditions, for the same input, a program running on P2 takes 25% less time but incurs 20% more CPI (clock cycles per instruction) as compared to the program running on P1. If the clock frequency of P1 is 1GHz, then the clock frequency of P2 (in GHz) is _____?

2 mins Summary

Topic

Addressing Modes

Topic

Types of Addressing Modes

Topic

CPU, CPI, MIPS

Data path

Happy Learning

THANK - YOU