

Abwehr von Pflanzen gegen Herbivore

- > chemische Abwehr:
 - quantitative Abwehrstoffe
 - qualitative Abwehrstoffe

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Quantitative Abwehrstoffe: wirksam in größeren Mengen

Qualitative Abwehrstoffe: wirksam oft schon in geringsten Mengen

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Cellulose; Hemicellulose
- ➤ Lignine
- > Tannine
- ➤ Kieselsäure

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Quantitative Abwehrstoffe: Cellulose, Hemicellulose

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Cellulose; Hemicellulose
- > Lignine
- > Tannine
- ➤ Kieselsäure

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Biogenese: Derivate von Phenylpropan
- > Shikimatbiogenese: Ausgangssubstanz: Phenylalanin; wichtiges Enzym: Phenylalanin-Ammonium-Lyase (PAL)
- ➤ Reißfestes Polymer mit C-C und Etherbindungen
- ➤ Einlagerung in Zellwand; oft gebunden an Polysaccharide: Lignifizierung

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Cellulose; Hemicellulose
- ➤ Lignine
- > Tannine
- ➤ Kieselsäure

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Quantitative Abwehrstoffe: Tannine: (a) Hydrolisierbar: Gallussäure + Zucker = Esterbindung

- ➤ Biogenese: Derivate der Gallussäure; Shikimatweg;
- ➤ Polymer mit Esterbindungen
- ➤ i.G. zu Ligninen weniger an Polysaccharide gebunden, eher frei im Cytoplasma

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Quantitative Abwehrstoffe: Tannine: (a) kondensierte Tannine: Flavan-3-ol-Polymere

- ➤ Biogenese: Derivate von (a) Flavan-3-ol; (b) Flavandiolen; (c) anderen phenol. Subst. (z.B. Kaffeesäure)
- > Shikimatweg
- ➤ Polymer mit C-C-Bindungen

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Quantitative Abwehrstoffe: Tannine: allgemein

- Polyphenole; hydrolisierbar oder kondensiert;
- > früher zum Gerben von Leder verwendet
- > in z.B. Rotwein und schwarzem Tee: Geschmack
- Funktionsweise gegenüber Herbivoren:
 - > OH-Gruppen der Polyphenole gehen leicht Bindungen zu Proteinen / Aminosäuren ein
 - Wasserstoffbrückenbindungen
 - Ionische "Bindungen"
 - kovalente Bindungen
 - > Phenole werden zu ortho-Chinonen oxidiert: sehr reaktiv: Oxidativer Stress; Peroxidbildung
- > Effekte:
 - Fraßdeterrens
 - Komplexierung von Nahrungseiweißen: verdauungsmindernd
 - Komplexierung von Enzymen: verdauungsmindernd
 - Membranschädigend
 - Metallkomplexbildung

Bei Wiederkäuern: 20% Tannine / g Trockengewicht: lethal!

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Cellulose; Hemicellulose
- ➤ Lignine
- > Tannine
- ➤ Kieselsäure

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Kieselsäure

Ortho-Kieselsäure

Meta-Kieselsäure

Poly-Kieselsäure

Ackerschachtelhalm

Kieselsäure und Wasserstoffbrückenbindungen

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Quantitative Abwehrstoffe: wirksam in größeren Mengen

Qualitative Abwehrstoffe: wirksam oft schon in geringsten Mengen

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Alkaloide
- > Toxische Aminosäuren
- Cyanogene Verbindungen
- ➤ Glukosinolate
- > Proteinaseinhibitoren
- > Terpene
- Cardenolide
- > Hormon-Analoga

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Alkaloide

Alkaloide sind (zumeist) N-haltige Heterozyklen

Alkaloide sind strukturell sehr vielfältig

Biogenese:

für zahlreiche Alkaloide: Ausgangssubstanzen Aminosäuren

andere: Ausgangssubstanz: andere N-haltige Verbindungen wie z. B. Purin, Pyrimidin

Vorkommen:

- In 10 – 15 % aller Gefäßpflanzen, in Pilzen, in Tieren

- Produktion in spezialisierten Geweben, Kompartimenten

Funktionsweise:

Je nach Alkaloidstruktur werden sehr unterschiedliche zelluläre Targets angegriffen

z.B. Nikotin aus Tabakpflanze: Acetylcholinrezeptor beeinflussend

z.B. Solanin aus Kartoffel: Membran-Destabilisierung

z.B. Koffein aus Kaffee: an Adenosin-Rezeptoren bindend

- Adenosin wird von Nevenzellen abgegeben zur gegenseitigen Zellberuhigung

- bei Müdigkeit: hoher Adenosintiter zwischen Nervenzellen

Wirkungen:

- Fraßhemmung aufgrund bitteren Geschmacks
- Toxisch

Glutamat>	Ornithin	\rightarrow	Tropanalkaloide	z.B. Atropin aus Tollkirsche
<i>></i> →	Aspartat	7	Nicotiana-Alkaloide	Z.B. Nikotin aus Tabak
Aspartat	Lysin	<u></u> >	Chinolizidin-Alkaloide	z.B. Spartein / Besenginster
_>	Tyrosin	~	Isochinolin-Alkaloide – z.B. N	Benzylisochinolin-Alkaloide Morphin u. Codein aus Mohn
Shikimat>	Phenylalanin	\longrightarrow	Amaryllidaceae-Alkaloid	le → z.B. Belladin aus <i>Amaryllis</i>
	Tryptophan	>	Indol-Alkaloide	belladonna z.B. Lysergol (LSD-analog)
		<i>>>></i>	Chinolin-Alkaloide	Pilze u. Convolvulaceae z.B. Chinin / Chinarinde
Serin ->	Glycin	>	Purin-Alkaloide	(Cinchona) z.B. Crimin / Crimanide (Cinchona) z.B. Koffein oder Strychnin

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Alkaloide
- > Toxische Aminosäuren
- Cyanogene Verbindungen
- ➤ Glukosinolate
- > Proteinaseinhibitoren
- > Terpene
- > Cardenolide
- > Hormon-Analoga

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: toxische Aminosäuren

in Leguminosensamen: non-protein amino acids

Canavanin als Arginin-Analogon wenn fälschlicherweise anstelle von Arginin in Proteine eingebaut:

"falsche funktionsuntüchtige Enzyme"

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Alkaloide
- > Toxische Aminosäuren
- Cyanogene Verbindungen
- ➤ Glukosinolate
- > Proteinaseinhibitoren
- > Terpene
- > Cardenolide
- > Hormon-Analoga

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: cyanogene Verbindungen

z.B. in verschiedenen Leguminosae (*Trifolium, Lotus, Phaseolus*)

z.B. in Rosaceae

- Blausäure (das Cyanid-Ion) hemmt die Atmung
- bildet Komplex mit Fe3+ der Cytochromoxidase

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Alkaloide
- > Toxische Aminosäuren
- Cyanogene Verbindungen
- Glukosinolate
- > Proteinaseinhibitoren
- > Terpene
- > Cardenolide
- > Hormon-Analoga

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Glukosinolate (Senfölglykoside)

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Glukosinolate (Senfölglykoside)

in Brassicaceae

Glucotropaeoloin in einigen Brassicaceae, z.B. Meerrettich

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Alkaloide
- > Toxische Aminosäuren
- Cyanogene Verbindungen
- ➤ Glukosinolate
- Proteinaseinhibitoren
- > Terpene
- Cardenolide
- > Hormon-Analoga

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

z.B. in Kartoffeln, Tomaten

Mechanism of induction of proteinase inhibitors in plants in response to insect herbivory

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Alkaloide
- > Toxische Aminosäuren
- Cyanogene Verbindungen
- ➤ Glukosinolate
- > Proteinaseinhibitoren
- > Terpene
- > Cardenolide
- > Hormon-Analoga

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Terpene ubiquitär

Terpene sind aus Isopreneinheiten (C5) aufgebaut

Monoterpene: 2 Isopren-Einheiten: C10: z.B. Pinen, Thujon

Sesquiterpene: 3 Isopren-Einheiten: C15: z.B. Farnesen, Hemigossypol

Diterpene: 4 Isopren-Einheiten: C20: z.B. Gossypol Triterpene: 6 Isopren-Einheiten: C30: z.B. Azadirachtin

Homoterpene: aus Sesquiterpen (C15) minus C4: C11:

aus Diterpen (C20) minus C4: C16:

Dimethyl-nonatrien = DMNT Trimethyl-tridecatraen=TMTT

Wirkungen:

Bitterstoffe; Toxine: durch z.B. Interaktion mit Membranen

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Terpene ubiquitär

Andrea Krühn
Cem Pahl
Patrick Husmann

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Terpene

ubiquitär

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Terpene

ubiquitär

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Terpene

ubiquitär

Gäbler & Boland (1991) Helvetica Chim. Acta 74: 1773-1789.

C11: 4,8-Dimethyl-nona-1,3,7-trien (DMNT):

Nerolidol (C15)

C09704

DMNT (C11)

Homoterpen:

C16: 4,8,12-Trimethyl-trideca-1,3,7,11-tetraen (TMTT):

Geranyllinalool (C20)

TMNT (C16)

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Alkaloide
- > Toxische Aminosäuren
- Cyanogene Verbindungen
- ➤ Glukosinolate
- > Proteinaseinhibitoren
- > Terpene
- Cardenolide
- > Hormon-Analoga

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Cardenolide / Herzglykoside

z.B. Fingerhut, Maiglöckchen, Adonisröschen

Funktionsweise und Wirkung:

- -Hemmung Na+ / K+-ATPase
- -Erhöhung der intrazell. Na+ -Konzentration
- -Stört weitere Zellfunktionen
- -einige Cardenolide: bitter / Fraßhemmstoffe

Digitoxigenin

Digoxigenin

Zucker in Herzglykosiden

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Alkaloide
- > Toxische Aminosäuren
- Cyanogene Verbindungen
- ➤ Glukosinolate
- > Proteinaseinhibitoren
- > Terpene
- Cardenolide
- > Hormon-Analoga

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Hormon-Analoga

Analog bwz. contra Hormone Insekten:

➤ Juvenilhormon-Analoga als Naturstoffe in Pflanzen
➤ Juvenilhormon-Blocker als Naturstoffe in Pflanzen

→ Papi

Papierfaktor-"story"

➤ Ecdyson in Pflanzen

Analog Hormone Vertebraten:

> Phytooestrogene

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Hormon-Analoga

Juvenilhormon-Analoga als Naturstoffe in Pflanzen

Papierfaktor-"story"

- Sláma 1964
- Feuerwanzenzucht *Pyrrhocoris apterus*
- Zucht auf Lindensamen in Dosen mit Papier
- In USA: überzählige Larvalhäutungen
- 6 Larvalstadien statt 5 mit rückgebildeten Prothoraxdrüsen
- Unfruchtbare Imagines
- Ursache: ??
- Scott Filterpapier
- Wall Street Journal, New York Times, Boston Globe
- London Times

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Juvenilhormone und pflanzliche Analoga

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Precocene aus Pflanzen als Anti-Juvenilhormone

z.B in Ageratum (Heimat: Tropen, Subtropen)

Aufnahme bei Insekten:

- Per Kontakt durch Kutikula

Wirkung:

- selektives Absterben der Corpara allata Zellen

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Ecdyson

v.a. in Farnen (*Polypodium*) und einigen Gymnospermen (z.B. *Taxus*)

POH R OH OH HO HO HO HO HO A ecdysone, R = H 20-hydroxyecdysone, R = OH

Aufnahme bei Insekten:

- Per Kontakt durch Kutikula

Wirkung:

- Löst frühzeitige Imaginalmetamorphose aus
- Führt zu infertilen Imagines

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

Qualitative Abwehrstoffe: Phytooestrogene gegen Vertebraten

z.B. in verschiedenen Leguminosae (Trifolium, Medicago, Soja)

Oestrone

HO O R

genistein, R=OH daidzein, R=H formononetin, R =H (Me at 4´-OH)

Aufnahme bei Vertebraten:

- -Oral
- Wirkung:
- "Antibabypille"

coumestrol

d diethylstilboestrol

- üppige Vegetation: Konz. Isoflavoinide gering
- wenig Biomasse: Konz. Isoflavonoide rel. hoch

isogenistein

- Isoflavonoide "ahmen" Struktur des Oestrons nach
- Hydroxyfunktion in Position 4'wichtig

Abwehr von Pflanzen gegen Herbivore: chemische Abwehr

- ➤ Alkaloide
- > Toxische Aminosäuren
- Cyanogene Verbindungen
- ➤ Glukosinolate
- > Proteinaseinhibitoren
- > Terpene
- Cardenolide
- > Hormon-Analoga