Эндогенность

Эконометрика. Лекция 9

Разложение в сумму не однозначно

$$4 = 3 + 1$$

$$4 = 2 + 2$$

Несколько верных форм одной модели

Модель А:

$$y_i = 2x_i + \varepsilon_i$$

Модель Б:

$$y_i = 3x_i + u_i$$

Модели А и Б эквивалентны, если $\varepsilon_i = x_i + u_i$

Свойства МНК. Если...

Если:

модель представлена в форме

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$$

где $E(\varepsilon_i|X)=0$ и [другие предпосылки]

Свойства МНК. То...

To:

Оценки МНК состоятельны

$$\hat{\beta} \to \beta$$

и несмещены

$$E(\hat{\beta}|X) = \beta, \ E(\hat{\beta}) = \beta$$

Смысл предпосылки $E(\varepsilon_i|X)=0$

Среднее значение ε_i не зависит от значений объясняющих переменных и равно нулю.

В частности,

$$E(\varepsilon_i|X) = 0 \Rightarrow \begin{cases} E(\varepsilon_i) = 0 \\ Cov(x_i, \varepsilon_i) = 0 \end{cases}$$

Последствия нарушения предпосылки

Если $Cov(x_i, \varepsilon_i) \neq 0$, то оценки МНК несостоятельны:

$$\hat{\beta} \not\to \beta$$

и смещены

$$E(\hat{\beta}|X) \neq \beta, \ E(\hat{\beta}) \neq \beta$$

Пример у неоновой доски

$$y_i = 2 + 3x_i + \varepsilon_i$$

где
$$Var(x_i) = 4$$
, $Var(\varepsilon_i) = 3$, $Cov(x_i, \varepsilon_i) = -2$

Оцениваем параметр β_2 с помощью МНК, получаем $\hat{\beta}_2$.

Найдите $\operatorname{\mathsf{plim}} \hat{\beta}_2$ (предел по вероятности)

Полезные обозначения

Выборочная ковариация

$$sCov(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

Выборочная дисперсия

$$sVar(x) = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

Полезный факт

Следствие закона больших чисел:

Если выборка (x_i, y_i) случайна, то

$$\underset{n\to\infty}{\mathsf{plim}}\, \mathsf{sCov}(x,y) = \mathsf{Cov}(x_i,y_i)$$

$$\underset{n\to\infty}{\mathsf{plim}}\,\mathsf{sVar}(x)=\mathit{Var}(x_i)$$

Эндогенность

Коррелированность регрессоров и случайных ошибок, $Cov(x_i, \varepsilon_i) \neq 0$, называется эндогенностью

Зачем возиться с эндогенностью?

У любой модели есть форма записи, в которой $E(\varepsilon_i|X)=0$.

Зачем нужны те формы записи, в которых $E(\varepsilon_i|X) \neq 0$?

Два ответа

- Если модель используется для прогнозирования, то формы записи с эндогенностью возможно не нужны.
- В некоторых случаях форма записи с эндогенностью легче интерпретируется

Некоторые причины эндогенности в перекрёстных выборках

- Ошибка измерения регрессора
- Пропущенный регрессор
- Одновременность определения значения переменных

Ошибка измерения регрессора. Исходная форма модели.

Модель в форме А:

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

и
$$Cov(x_i, \varepsilon_i) = 0.$$

Наблюдаем y_i и $x_i^* = x_i + u_i$, где u_i , ошибка измерения регрессора x_i , не зависит от x_i и ε_i

Ошибка измерения регрессора. Вывод другой формы модели.

Подставим $x_i = x_i^* - u_i$ в форму A и получим:

$$y_i = \beta_1 + \beta_2 (x_i^* - u_i) + \varepsilon_i$$

и модель в форме Б:

$$y_i = \beta_1 + \beta_2 x_i^* + w_i, \ w_i = \varepsilon_i - \beta_2 u_i$$

Эндогенность в форме Б:

$$y_i = \beta_1 + \beta_2 x_i^* + w_i, \ w_i = \varepsilon_i - \beta_2 u_i$$

В форме Б:

$$Cov(x_i^*, w_i) = Cov(x_i + u_i, \varepsilon_i - \beta_2 u_i) = -\beta_2 Var(u_i) \neq 0$$

МНК оценки для формы Б несостоятельны

Пример у неоновой доски

$$y_i = 2 + 3x_i + \varepsilon_i$$

Регрессор хі ненаблюдаем

Наблюдаем
$$x_i^* = x_i + u_i$$
, $Var(x_i) = 9$, $Var(u_i = 4)$, $Var(\varepsilon_i) = 1$.

K чему стремится MHK оценка модели $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i^*$?

Мораль:

Модель с ошибкой измерения регрессора:

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$
, где наблюдаем $x_i^* = x_i + u_i$

• Хотим оценить β_2 , т.е. на сколько растёт y_i при росте настоящего x_i на единицу

Мораль. МНК для нашей цели не состоятелен.

При МНК оценивании регрессии

$$\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i^*$$

получаем оценку $\hat{\beta}_2$ несостоятельную для β_2

• МНК оценивает на сколько растёт y_i при росте наблюдаемого x_i^* (включающего ошибку) на единицу

Пропущенная объясняющая переменная

Хотим оценить форму записи А:

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 d_i + \varepsilon_i$$

где
$$Cov(x_i, d_i) \neq 0$$
, $Cov(x_i, \varepsilon_i) = 0$, $Cov(d_i, \varepsilon_i) = 0$.

Не наблюдаем d_i .

Пропущенная объясняющая переменная.

Форма записи Б:

$$y_i = \beta_1 + \beta_2 x_i + u_i \ u_i = \beta_3 d_i + \varepsilon_i$$

Эндогенность:

$$Cov(x_i, u_i) = Cov(x_i, \beta_3 d_i + \varepsilon_i) = \beta_3 Cov(x_i, d_i)$$

Пример у неоновой доски

$$y_i = 2 + 3x_i - 2d_i + \varepsilon_i$$

Регрессор d_i ненаблюдаем.

$$Var(x_i) = Var(d_i) = 9$$
, $Var(\varepsilon_i) = 1$, $Cov(x_i, d_i) = -6$.

K чему стремится МНК оценка модели $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$?

Мораль

Модель пропущенным регрессором:

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 d_i + \varepsilon_i$$
, регрессор d_i не наблюдаем

• Хотим оценить β_2 , т.е. на сколько растёт y_i при росте x_i на единицу и фиксированном d_i

Мораль. МНК для нашей цели не состоятелен.

При МНК оценивании регрессии

$$\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$$

получаем оценку $\hat{\beta}_2$ несостоятельную для β_2

• МНК оценивает на сколько растёт y_i при росте x_i на единицу (и сопряженных с этим изменениях в d_i)

Пример у неоновой доски

Равновесная цена и объем продаж определяются из системы:

$$\left\{ egin{aligned} q_i = 3 - p_i + arepsilon_i, & ext{ логарифм спроса} \ q_i = 3 + 2p_i + u_i, & ext{ логарифм предложения} \end{aligned}
ight.$$

Ошибки u_i и ε_i независимы и нормальны N(0,1)

К чему стремится оценка коэффициента при цене при оценке уравнения спроса с помощью MHK?

Инструментальные переменные

Хотим состоятельно оценить β_2 в форме записи:

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 d_i + \varepsilon_i$$
, $Cov(x_i, \varepsilon_i) \neq 0$

Возможный выход: найти "инструментальные переменные" z_i :

- $Cov(z_i, \varepsilon_i) = 0$
- $Cov(z_i, x_i) \neq 0$

Как использовать инструментальные переменные?

Модель:

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 d_i + \varepsilon_i$$

где $Cov(x_i, \varepsilon_i) \neq 0$ и $Cov(d_i, \varepsilon_i) = 0$.

 нельзя просто заменить проблемный регрессор на инструментальную переменную

Двухшаговый МНК:

Шаг 1. Построить регрессию каждого x_i коррелированного с ε_i на инструментальные переменные. Получить прогнозы \hat{x}_i .

Шаг 2. Оценить исходную модель, заменив x_i на \hat{x}_i

$$y_i = \beta_1 + \beta_2 \hat{x}_i + \beta_3 d_i + u_i$$

Получаем $\hat{\beta}_1^{IV}$, $\hat{\beta}_2^{IV}$ и $\hat{\beta}_3^{IV}$

Метод инструментальных переменных

Метод двухшагового МНК также называют методом инструментальных переменных:

$$\hat{\beta}^{2OLS} = \hat{\beta}^{IV}$$

Простейший случай двухшагового МНК

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

MHK:

$$\hat{\beta}_2^{OLS} = \frac{sCov(x, y)}{sVar(x)}$$

Метод инструментальных переменных:

$$\hat{\beta}_2^{IV} = \frac{sCov(z, y)}{sCov(z, x)}$$

Пример у неоновой доски. Спасение.

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 d_i + \varepsilon_i$$

Регрессор d_i ненаблюдаем.

$$Var(x_i) = Var(d_i) = 9$$
, $Var(\varepsilon_i) = 1$, $Cov(x_i, d_i) = -6$.

K чему стремится IV оценка модели $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$?

Есть инструментальная переменная z_i , $Cov(x_i, z_i) = 1$.

Как найти инструментальную переменую?

Инструментальная переменная z_i для регрессора x_i может влиять на y_i через через регрессор x_i , но не через ошибку ε_i .

Связи инструментальной переменной

Модель с эндогенностью:

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$

Стрелочки показывают направления влияния.

Статистическая связь не означает причинно-следственной

Randall Munroe, https://xkcd.com/552/

Типы данных

- Данные наблюдений
- Данные экспериментов

Данные наблюдений

Каждое утро выхожу на балкон и записываю, вижу ли я людей с зонтами и идет ли дождь

Утро	Люди с зонтами	Дождь
1	0	1
2	1	1
3	0	0
4	1	1

• По данным наблюдений не возможно определить направление причинно-следственной связи

Данные экспериментов

Каждое утро подбрасываю монетку и в зависимости от монетки, либо беру зонт, либо не беру

Утро	Монетка	Я с зонтом	Дождь
1	Орёл	0	1
2	Решка	1	1
3	Решка	1	0
4	Орёл	0	1

Эксперименты

- Искусственные. Проводятся человеком.
- Естественные. Сами собой возникают в природе.

Стратегия идентификации причинно-следственных связей

- Придумать идеальный эксперимент
- Найти похожий естественный эксперимент

Три маленьких зарисовки к данным наблюдений

- Публикационное смещение
- Выборочное исправление ошибок
- Байка про Абрахама Вальда

Публикационное смещение

• У сенсационного результата больше шансов быть опубликованным

Выборочное исправление ошибок

Исследователь Вениамин верит в H_0 , но проводит честное исследование

- Нет ошибок. Вениамин честно опубликует исследование.
- Есть ошибка, смещающая результат в пользу H_0 . Вениамин обрадуется результату и, вероятно, не заметит ошибку.
- ullet Есть ошибка, смещающая результат в пользу H_a . Вениамин будет удивлен, трижды перепроверит работу и найдёт ошибку.

История про Абрахама Вальда

Было проведено исследование повреждений полученных вернувшимися с вылета самолетами. И предполагалось укрепить их там, где имеется больше всего повреждений.

Абрахам Вальд обратил внимание, что статистика собирается именно по вернувшимся с вылета самолётам. И, следовательно, поврежденные участки не мешают самолёту вернуться. А значит увеличивать броню надо на тех участках, где нет попаданий.

Мораль

- Эндогенность коррелированность случайной ошибки с регрессором
- Метод инструментальных переменных позволяет оценить модель в желаемой форме
- Статистическая взаимосвязь не означает причинно-следственной
- Необходимо помнить об отличии экспериментальных данных от данных наблюдений