LA LOI NORMALE

introduction

La loi normale s'applique en général à une variable aléatoire continue représentée par l'ensemble des valeurs qu'elle prend n'est pas dénombrable (un intervalle).

Ex: glycémie; cholestérolémie ;poids......

• Elle est caractérisée par deux paramètres qui sont la moyenne et l'écart type.

Intérêt d'utilisation de la loi normale

- Soit X la variable aléatoire « poids de naissance ». On suppose que X suit une loi normale de moyenne μ = 3200 g, et d'écart-type s = 400 g.
- Quelle est la probabilité qu'un nouveau né ait un poids supérieur à 4 kg ?
- Quelle est la probabilité que son poids soit compris entre 2500 g et 3500 g ?

1. NOTIONS FONDAMENTALES

Loi de probabilité = Modèle mathématique

Loi normale = loi de Gauss = loi de Laplace-gauss :

- > Courbe en forme de cloche
- > Symétrique
- Mode, moyenne et médiane se confondent
- Caractérisée par sa moyenne m et son écart-type s
- ➤ N (m,s)

$$f(x) = \frac{1}{s \, \eth 2f}$$

Loi normale centrée réduite : N (0,1)

Loi tabulée

Reporter les autres distributions après changement de variable Loi normale centrée réduite: moyenne = 0, écart type = 1.

 1^{ere} transformation : $X = x - \mu$

 2^{eme} transformation : $Z=X/\sigma$

x = variable d'étude d'une loi N (m,s): abscise

Ecart-réduit z = Ecart par rapport à la moyenne rapporté à l'écart-type

$$z = \frac{x - m}{s}$$
 = Abscisse de la courbe N (0,1)

 $w = s y = Ordonn\acute{e}e de la courbe N (0,1)$ $y = Ordonn\acute{e}e de la courbe N (m,s)$

Courbe normale centrée : $\mathcal{N}(0,\sigma)$

2. TABLES DE LA LOI NORMALE 2.1. TABLE DES ORDONNEES (w) DE LA LOI NORMALE CENTREE REDUITE, N(0,1)

Donne l'ordonnée w = probabilité d'observer une valeur z w = Fréquence relative simple:

$$f(x) = \frac{1}{62f}e^{-x^2/2}$$

TABLE DES ORDONNEES (w) DE LA LOI NORMALE CENTREE REDUITE, N(0,1)

Z	0	1	2	3	4.	 5 	6 .	7	8	9
.0,	0,3989	0,3970	0,3910	0,3814	0,3683	0,3521	0,3332	0,3123	U,2897	0,266
1,	0,2420	0,2179	0,1942	0,1714	0,1497	0,1295	0,1109	0,0940	0,0390	0,065
2,	0,0540	0,04-10	0,0355	0,0283	0,0224	0,0175	0,0136	0,0104	0,0079	0,0060
3,	0,0044	0,0033	0,0024	0,0617	0,0012	0,0009	0,0006	0,0004	0,0003	0.0002

Soit la population N (10,6) Probabilité d'observer x = 7?

$$z = \frac{7 - 10}{6} = 0,5$$

z	0] 	2	3	4.	5	6	7	8	9
.0,	0,3989	0,3970	0,3910	0,3814	U,3083	0,3521	0,3332	0,3123	0,2897	0,2661
1,	0,2420	0,2179	0,1942	0,1714	0,1497	0,1295	0,1109	0,0940	0,0290	0,0656
2,	0,0540	0,04-10	0,0355	0,0283	0,0224	0,0175	0,0136	0,0104	0,0079	0,0060
3,	0,0044	0,0033	0,0024	0,0617	0,0012	0,0009	0,0006	0,0004	0.0003	0,0002

$$w(0,50) = 0,3521$$

 $y = w/s = 0,3521 / 6 = 0,0587$

La probabilité d'observer une valeur de 7 = 5,87 %

Soit la population N (10,9) Probabilité d'observer x = 7?

$$w(0,33) = 0,38$$

 $y = w/s = 0,38 / 9 = 0,0422$

La probabilité d'observer une valeur de 7 = 4,22 %

2.2. TABLE DES AIRES LIMITEES PAR LA COURBE N(0,1)

Surface entre la courbe et l'axe de abscisses entre deux valeurs (- z , + z)

Probabilité cumulée d'observer des valeurs comprises entre (-z) et (+z)

Table de l'écart-réduit (loi normale) (*)

La table donne la probabilité α pour que l'écartréduit égale ou dépasse, en valeur absolue, une valeur donnée ε , c'est-à-thre la probabilité extérieure à l'intervalle $(-\varepsilon, +\varepsilon)$.

α	0,00	0,01	0,02	0,03	0,04	0,05	0,05	0,07	0,08	0,09
0,00	120	2,576	2,326	2,170	2,054	1,960	1,881	1,812	1,751	1,695
0,10	1,645	1,598	1,555	1,514	1,476	1,440	1,405	1,372	1,341	1,311
0,20	1,282	1,254	1,227	1,200	1,175	1,150	1,126	1,103	1,080	1,058
0,30	1,036	1,015	0,994	0.974	0,954	0,935	0,915	0,896	0,878	0,860
0,40	0,842	0,824	0.806	0.789	0,772	0.755	0,739	0,722	0,706	0,690
0,50	0,674	0,659	0.643	0,628	0,613	0.598	0.583	0,568	0,553	0,539
0,60	0,524	0,510	0.496	0,482	0,468	0.454	0,440	0,426	0,412	0,399
0,70	0,385	0,372	0,358	0,345	0,332	0.319	0,305	0,292	0,279	0,266
0,80	0,253	0,240	0,228	0,215	0,202	0,189	0,176	0,164	0,151	
0,90	0,126	0,113	0,100	0,088	0,075	0,063	0,050	0,038	0,025	0,138

La probabilité α s'obtient par addition des nombres inscrits en marge.

Exemple: Pour $\epsilon = 1,960$ la probabilité est $\alpha = 0,00-0,05=0,05$.

Table pour les petites valeurs de la probabilité

X	100,0	0.000 1	0,000.01	100 000,0	0,000 000 1	0,000 000 01	0,000 000 001
ε	3,29053	3,89059	4,41717	4,89164	5,32672	5,73073	6,10941

^(*) D'après Fisher et Yates, Statistical tables for biological, agricultural, and medical research (Oliver and Boyd, Edinburgh) avec l'aimable autorisation des auteurs et des éditeurs.

r = Probabilité d'avoir des valeurs à l'extérieur d'un intervalle (- z , + z)

Surface entre la courbe et l'axe de abscisses à gauche d'une valeur z

Probabilité cumulée d'observer des valeurs inférieures à la valeur z

Surface entre la courbe et l'axe de abscisses à droite d'une valeur z

=

Probabilité cumulée d'observer des valeurs supérieures à la valeur z

Probabilité d'avoir des valeurs comprises entre la moyenne et une valeur z =(1-1)/2

Glycémie d'une population: N (1; 0,2) Probabilité pour un sujet d'avoir une glycémie comprise entre 0,8 et 1,2 g/l

$$z = \frac{0.8 - 1}{0.2} = -1$$
 et $z = \frac{1.2 - 1}{0.2} + 1$

Table de l'écart-réduit (loi normale) (*)

La table donne la probabilité α pour que l'écartréduit égale ou dépasse, en valeur absolue, une valeur donnée ε , c'est-à-dire la probabilité extérieure à l'intervalle (ε , + ε).

α	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	00	2,576	2,126	2,170	2,054	1,960	1,881	1,812	1,751	1,695
0,10	1,645	1,598	1,155	1,514	1,476	1,440	1,405-	1,372	1,341	1,311
0,20	1,282	1,254	1,227	1,200	1,175	1,150	1,126	1,103	1,080	1,058
0,30	1,030	1,015	0,994	0,974	0,954	0,935	0,915	0,896	0,878	0,860
0,40	0,842	0,824	0,806	0,789	0,772	0,755	0,739	0,722	0,706	0,690
0,50	0,674	0,659	0,643	0,628	0,613	0,598	0,583	0,568	0,553	0,539
0,60	0,524	0,510	0,496	0,482	0,468	0,454	0,440	0,426	0,412	0,399
0,70	0,385	0,372	0,358	0,345	0,332	0,319	0,305	0,292	0,279	0,266
0,80	0,253	0,240	0,228	0,215	0,202	0,189	0,176	0,164	0,151	0,138
0,90	0,126	0,113	0,100	0,088	0,075	0,063	0,050	0,038	0,025	0,013

Probabilité d'être a l'extérieur de l'intervalle $(-1, +1) = 0.3 + 0.02 = \alpha = 0.32$ Probabilité d'être a l'intérieur de l'intervalle $= 1 - 0.32 = \alpha = 0.68 = 68 \%$

Glycémie d'une population: N (1; 0,2)

Probabilité pour un sujet d'avoir une glycémie comprise entre 0,9 et 1,2 g/l

3 étapes :

1) Probabilité entre 0,9 et 1 g/l Déterminer les écarts-reduits correspondants z

$$z = \frac{0;9-1}{0,2} = 0,5$$

Table de l'écart-réduit (loi normale) (*)

La table donne la probabilité α pour que l'écart-réduit égale ou dépasse, en valeur absolue, une valeur donnée ϵ , c'est-à-dire la probabilité extérieure à l'intervalle $(-\epsilon, -\epsilon)$.

Ω	0,00	0.01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00 0,10 0,20 0,30 0,40 0,50 0,60	1,645 1,282 1,036 0,842 0,674	2,576 1,598 1,254 1,015 0,824 0,659	2, 26 1, 55 1, 27 0, 94 0, 06 0,643 0,496	2,170 1,514 1,200 0,974 0,789 0,628	2,054 1,476 1,175 0,954 0,772 0,613	1,960 1,440 1,150 0,935 0,755 0,598	1,881 1,405 1,126 0,915 0,739 0,583	1,812 1,372 1,103 0,896 0,722 0,568	1,751 1,341 1,080 0,878 0,706 0,553	1,695 1,311 1,058 0,860 0,690 0,539
0,70 0,80 0,90	0,385 0,253 0,126	0,372 0,240 0,113	0,496 9,358 0,228 0,100	0,482 0,345 0,215 0,088	0,468 0,332 0,202 0,075	0,454 0,319 0,189 0,063	0,440 0,305 0,176 0,050	0,426 0,292 0,164 0,038	0,412 0,279 0,151 0,025	0,399 0,266 0,138 0,013

La probabilité α s'obtient par addition des nombres inscrits en marge.

Exemple: Pour v = 1,960 la probabilité est $\alpha = 0.00 - 0.05 = 0.05$.

Probabilité d'être a l'extérieur de l'intervalle (-0,50, +0,50) = 0,60 + 0,02 = α = 0,62 Probabilité d'être a l'intérieur de l'intervalle = 1 - α = 38 % Probabilité recherchée (glycémie entre 0,9 et 1 g/l) = 1- α /2 = 0,38/2 = 0,19 = 19 %

- 2) Probabilité entre 1 g /l et 1,2 g/l Probabilité recherchée (glycémie entre 1 et 1,2 g/l) = 0.68/2 = 0.34 = 34 %
- 3) Additionner les deux probabilités :

$$0,19 + 0,34 = 0,53 = 53 \%$$

Glycémie d'une population : N (1; 0,2) Probabilité pour un sujet d'avoir une glycémie supérieure à 1,4 g/l

Déterminer l'écarts-reduit correspondant z

$$z = \frac{1,4-1}{0,2} = 2$$

Probabilité d'être a l'extérieur de l'intervalle $(-2, +2) = \alpha = 0.05$ Probabilité recherchée (glycémie > 1,4 g/l) = α /2 = 0,05/2 = 0,025 = 2,5 %

3. AJUSTEMENT D'UNE DISTRIBUTION OBSERVEE A UNE LOI NORMALE

Une distribution observée (expérimentale) rassemble t-elle une distribution théorique ? Existence d'écarts plus ou moins importants

3.1. AJUSTEMENT ANALYTIQUE

Distribution observée la plus proche d'une loi théorique = - Même effectif

- Même moyenne

- Même écart-type

Ajustement = - Calcul des effectifs théoriques - Confrontation avec les effectifs observés

- 1. Déterminer l'écart-réduit z de chaque modalité ou borne supérieure de la classe
- 2. Déterminer la probabilité cumulée d'observer une valeur inférieure
- Déterminer les fréquence relatives de chaque modalité ou de chaque classe (Différence entre deux classe successives)
- 4. Calcul des effectifs théoriques : multiplier les fréquences relatives par l'effectif Total

Probabilité de trouver une valeur inférieure à z .

m	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
8.0	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670

2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997

Poids de 19 étudiants (kg)

Classe	Lim sup	Xi	Ni	Ni Xi	Z	Freq	Freq rel	Effectif
						cum		Th
-∞ - 50	50		0	0	-2,24	0,012	0,012	0,22
50 - 55	55	52,5	1	52,5	-1,60	0,054	0,042	0,79
55 - 60	60	57,5	2	115	-0,96	0,16	0,106	2
60 - 65	65	62,5	5	312,5	-0,32	0,37	0,21	4
65 - 70	70	67,5	4	270	0,32	0,62	0,25	4,75
70 - 75	75	72,5	3	217,5	0,96	0,83	0,21	4
75 - 80	80	77,5	3	232,5	1,60	0,94	0,11	2,1
80 - 85	85	82,5	1	82,5	2,24	0,98	0,04	0,76
85 - +∞			0	0		1	0,02	0,38
			19	1282,5				19

Poids de 19 étudiants (kg)

Effectifs

Poids

$$z = \frac{x - m}{s}$$

0 10

$$x-m$$

$$z =$$

S

$$x - m = z s$$

$$x = m + z s$$

$$x-m = -zs$$

$$x = m - z s$$

Calcul des paramètres de position : Les quartiles

$$x = zs + m$$

 $Q_1 = -0.674 \times 5.44 + 173.47 = 169.8 \text{ cm}$
 $Q_3 = +0.674 \times 5.44 + 173.47 = 177.1 \text{ cm}$

Table de l'écart-réduit (loi normale) (*)

La table donne la probabilité α pour que l'écartréduit égale ou dépasse, en valeur absolue, une valeur donnée ε , c'est-à-dire la probabilité extérieure à l'intervalle $(-\varepsilon, +\varepsilon)$.

α	0.00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
	1,545 1,182 1,436 0,842 0,674	2,576 1,598 1,254 1,015 0,824 0,659	2,326 1,555 1,227 0,994 0,806 0,643	2,170 1,514 1,200 0,974 0,789 0,628	2,054 1,476 1,175 0,954 0,772 0,613	1,960 1,440 1,150 0,935 0,755 0,598	1,881 1,405 1,126 0,915 0,739 0,583	1,812 1,372 1,103 0,896 0,722 0,568	1,751 1,341 1,080 0,878 0,706 0,553	1,695 1,311 1,058 0,860 0,690 0,539
0,60 0,70 0,80 0,90	0,524 0,385 0,253 0,126	0,510 0,372 0,240 0,113	0,496 0,358 0,228 0,100	0,482 0,345 0,215 0,088	0,468 0,332 0,202 0,075	0,454 0,319 0,189 0,063	0,440 0,305 0,176 0,050	0,426 0,292 0,164 0,038	0,412 0,279 0,151 0,025	0,399 0,266 0,138 0,013

La probabilité α s'obtient par addition des nombres inscrits en marge.

Exemple: Pour $\varepsilon = 1,960$ la probabilité est $\alpha = 0,00 + 0,05 = 0,05$.

Les déciles

 D_1 et D_9 :

20 % à l'extérieur et 80 % à l'intérieur : z = 1,282

$$D_1 = m - 1,282 s$$

$$D_9 = m + 1,282 s$$

Table de l'écart-réduit (loi normale) (*)

La table donne la probabilité α pour que l'écartréduit égale ou dépasse, en valeur absolue, une valeur donnée ε , c'est-à-dire la probabilité extérieure à l'intervalle ($-\varepsilon$, $-\varepsilon$).

α	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	V	2,576	2,326	2,170	2,054	1,960	1,881	1,812	1,751	1,695
0,10	1,445	1,598	1,555	1,514	1,476	1,440	1,405	1,372	1,341	1,311
0,200	111111111111111111111111111111111111111		1,227	1,200	1,175	1,150	1,126	1,103	1,080	1,058
0,30	1,036	1,015	0,994	0,974	0,954	0,935	0,915	0.896	0,878	0,860
0,40	0,842	0,824	0,805	0,789	0,772	0,755	0,739	0,722	0,706	0,690
0,50	0,674	0,659	0,643	0,628	0,613	0,598	0,583	0.568	0,553	0,539
0,60	0,524	0,510	0,496	0,482	0,468	0,454	0,440	0.426	0,412	0,399
0,70	0,385	0,372	0,358	0,345	0,332	0,319	0,305	0.292	0,279	0,266
0,80	0,253	0,240	0,228	0,215	0,202	0,189	0,176	0.164	0,151	0,138
0,90	0,126	0,113	0,100	0,088	0,075	0,063	0,050	0.038	0,025	0,013

La probabilité α s'obtient par addition des nombres inscrits en marge.

Exemple : Pour $\varepsilon = 1,960$ la probabilité est $\alpha = 0,00 + 0,05 = 0,05$.

D_2 et D_8 :

40 % à l'extérieur et 60 % à l'intérieur : z = 0,842

$$D_2 = m - 0.842 s$$

$$D_8 = m + 0.842 s$$

Table de l'écart-réduit (loi normale) (*)

La table donne la probabilité α pour que l'écartréduit égale ou dépasse, en valeur absolue, une valeur donnée ε , c'est-à-dire la probabilité extérieure à l'intervalle ($-\varepsilon$, $+\varepsilon$).

α	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0)	2,576	2,326	2,170	2,054	1,960	1,881	1,812	1,751	1,695
0,10	1.645	1,598 1,254	1,555	1,514	1,476	1,440	1,405	1,372	1,341	1,311
0,30	1,036	1,015	0,994	0,974	1,175 0,954	1,150	1,126 0,915	1,103 0,896	1,080	1,058
400000000000000000000000000000000000000	0,842	0,824	0,806	0.789	0,772	0,755	0,739	0,722	0,706	0,860
0,50	0,674	0,659	0.643	0,628	0,613	0,598	0,583	0,568	0,553	0,539
0,60	0,524	0,510	0,496	0,482	0,468	0,454	0,440	0,426	0,412	0,399
0,70	0,385	0,372	0,358	0,345	0,332	0,319	0,305	0,292	0,279	0,266
0,80	0,253	0,240	0,228	0,215	0,202	0,189	0,176	0,164	0,151	0,138
0,90	0,126	0,113	0,100	0,088	0,075	0,063	0,050	0,038	0,025	0,013

La probabilité a s'obtient par addition des nombres inscrits en marge.

Exemple: Pour $\varepsilon = 1,960$ la probabilité est $\alpha = 0,00 + 0,05 = 0,05$.

D_3 et D_7 :

60 % à l'extérieur et 40 % à l'intérieur : z = 0,524

$$D_3 = m - 0.524 s$$

$$D_7 = m + 0.524 s$$

Table de l'écart-réduit (loi normale) (*)

La table donne la probabilité α pour que l'écartréduit égale ou dépasse, en valeur absolue, une valeur donnée ε , c'est-à-dire la probabilité extérieure à l'intervalle ($-\varepsilon$, $+\varepsilon$).

α	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70	0,0 1,645 1,282 1,036 0,122 0,674 0,524 0,385 0,253	2,576 1,598 1,254 1,015 0,824 0,659 0,510 0,372 0,240	2,326 1,555 1,227 0,994 0,806 0,643 0,496 0,358 0,228	2,170 1,514 1,200 0,974 0,789 0,628 0,482 0,345 0,215	2,054 1,476 1,175 0,954 0,772 0,613 0,468 0,332 0,202	1,960 1,440 1,150 0,935 0,755 0,598 0,454 0,319 0,189	1,881 1,405 1,126 0,915 0,739 0,583 0,440 0,305 0,176	1,812 1,372 1,103 0,896 0,722 0,568 0,426 0,292 0,164	1,751 1,341 1,080 0,878 0,706 0,553 0,412 0,279	1,695 1,311 1,058 0,860 0,690 0,539 0,399 0,266
90,	0,126	0,113	0,100	0,088	0,075	0,063	0,050	0,038	0,151	0,138

La probabilité a s'obtient par addition des nombres inscrits en marge.

Exemple : Pour $\varepsilon = 1,960$ la probabilité est $\alpha = 0,00 + 0,05 = 0,05$.

D_4 et D_6 :

80 % à l'extérieur et 20 % à l'intérieur : z = 0,253

$$D_4 = m - 0.253 s$$

$$D_6 = m + 0.253 s$$

Table de l'écart-réduit (loi normale) (*)

La table donne la probabilité α pour que l'écartréduit égale ou dépasse, en valeur absolue, une valeur donnée ε , c'est-à-dire la probabilité extérieure à l'intervalle ($-\varepsilon$, $+\varepsilon$).

α	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	0)	2,576	2,326	2,170	2,054	1,960	1,881	1,812	1,751	1,695
0,10	1,645	1,598	1,555	1,514	1,476	1,440	1,405	1,372	1,341	1,311
0,20	1,382	1,254	1,227	1,200	1,175	1,150	1,126	1,103	1,080	1,058
0,30	1,036	1,015	0,994	0,974	0,954	0,935	0,915	0,896	0,878	0,860
0,40	0,842	0,824	0.806	0,789	0,772	0,755	0,739	0,722	0,706	0,690
0,50	0.674	0,659	0,643	0,628	0,613	0,598	0,583	0,568	0,553	0,539
0,60	0,4	0,510	0,496	0,482	0,468	0,454	0,440	0,426	0,412	0,399
0,70	0,385	0,372	0,358	0,345	0,332	0,319	0,305	0,292	0,279	0,266
08,0	0,253	0,240	0,228	0,215	0,202	0,189	0,176	0,164	0,151	0,138
0,90	0,126	0,113	0,100	0,088	0,075	0,063	0,050	0,038	0,025	0,013

La probabilité a s'obtient par addition des nombres inscrits en marge.

Exemple: Pour $\iota = 1,960$ la probabilité est $\alpha = 0,00 + 0,05 = 0,05$.