Équipe 29

Nicholas Langevin 111 184 631

PROCESSUS STOCHASTIQUE ACT-2009

Devoir

Travail présenté à Ghislain Léveillé

École d'actuariat Université Laval 21 novembre 2018

Table des matières

Question	1 1																					2
1.1																						2
	A)																					2
	B)																					4
	C)																					4
	D)																					5
1.2																						6
	A)																					6
	B)	•	•	•		•	•	•	•	•	•	•	•			•						7
Question	1 2																					9
2.1																						9
	A)																					9
	B)																					9
	C)																					9
2.2																						9

Question 1

1.1

Pour cette question, les choix suivant on été fait :

$$\Lambda \sim \Gamma(\alpha_1 = 3, \beta_1 = 1/2)$$

$$X \sim \Gamma(\alpha_2 = 2, \beta_2 = 1500)$$

tels que:

$$E[\Lambda] = \alpha \cdot \beta = 1.5 = \lambda$$

A)

 $\{N_1(t); t \ge 0\}$ est un processus de Poisson homogène, avec taux $\lambda = 1.5$. La probabilité d'obtenir n événement dans un intrervalle de temps t = 1, 2, 3, 4, 5 est données par :

$$\Pr(N_1(t) = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$
(1.1)

L'équation 1.1 permet de trouver les valeurs théorique de ses probabilités. La première partie du tableau 1.1 comporte ses valeurs. La deuxième partie comporte le résultat de ses valeurs obtenue a l'aide de 100 000 simulations pour chacun des t. On remarque que les valeurs simulées sont exact pour les 2 première décimales. Certaine différence commence à apparaître vers la $3^{\rm e}$ décimales, mais les approximations reste très bonne. Pour augmenter la précision, il aurait été possible d'effectuer plus de simulations avec plus de puissance machine.

TABLEAU $1.1 - Pr(N_1(t) = n)$

	Valeur théorique											
n	t = 1	t = 2	t = 3	t = 4	t = 5							
0	0.2231	0.0498	0.0111	0.0025	0.0006							
1	0.3347	0.1494	0.0500	0.0149	0.0041							
2	0.2510	0.2240	0.1125	0.0446	0.0156							
3	0.1255	0.2240	0.1687	0.0892	0.0389							
4	0.0471	0.1680	0.1898	0.1339	0.0729							
5	0.0141	0.1008	0.1708	0.1606	0.1094							
6	0.0035	0.0504	0.1281	0.1606	0.1367							
7	0.0008	0.0216	0.0824	0.1377	0.1465							
8	0.0001	0.0081	0.0463	0.1033	0.1373							
9	0.0000	0.0027	0.0232	0.0688	0.1144							
10	0.0000	0.0008	0.0104	0.0413	0.0858							
		Valeur	rs simulée	es								
n	t = 1	t = 2	t = 3	t = 4	t = 5							
0	0.2237	0.0485	0.0115	0.0025	0.0005							
1	0.225,	0.0403	0.0113	0.0023	0.0003							
1	0.3355	0.1500	0.0488	0.0023	0.0003							
2												
	0.3355	0.1500	0.0488	0.0148	0.0043							
2	0.3355 0.2502	0.1500 0.2255	0.0488 0.1125	0.0148 0.0443	0.0043 0.0152							
2 3	0.3355 0.2502 0.1251	0.1500 0.2255 0.2232	0.0488 0.1125 0.1677	0.0148 0.0443 0.0890	0.0043 0.0152 0.0385							
2 3 4	0.3355 0.2502 0.1251 0.0478	0.1500 0.2255 0.2232 0.1676	0.0488 0.1125 0.1677 0.1923	0.0148 0.0443 0.0890 0.1340	0.0043 0.0152 0.0385 0.0723							
2 3 4 5	0.3355 0.2502 0.1251 0.0478 0.0136	0.1500 0.2255 0.2232 0.1676 0.1014	0.0488 0.1125 0.1677 0.1923 0.1703 0.1270 0.0824	0.0148 0.0443 0.0890 0.1340 0.1605	0.0043 0.0152 0.0385 0.0723 0.1104							
2 3 4 5 6	0.3355 0.2502 0.1251 0.0478 0.0136 0.0032	0.1500 0.2255 0.2232 0.1676 0.1014 0.0508	0.0488 0.1125 0.1677 0.1923 0.1703 0.1270	0.0148 0.0443 0.0890 0.1340 0.1605 0.1611	0.0043 0.0152 0.0385 0.0723 0.1104 0.1384							
2 3 4 5 6 7	0.3355 0.2502 0.1251 0.0478 0.0136 0.0032 0.0008	0.1500 0.2255 0.2232 0.1676 0.1014 0.0508 0.0216	0.0488 0.1125 0.1677 0.1923 0.1703 0.1270 0.0824	0.0148 0.0443 0.0890 0.1340 0.1605 0.1611 0.1378	0.0043 0.0152 0.0385 0.0723 0.1104 0.1384 0.1467							

^{*}Valeurs obtenue à l'aide de 100 000 simulations.

 $\{N_2(t); t \geq 0\}$ est un processus de Poisson homogène conditionnel avec taux aléatoire Λ . Comme défini au début de la question, Λ suit une distribution gamma. La probabilité d'obtenir n événement dans un intrervalle de temps t=1,2,3,4,5 est données par :

$$\Pr(N_2(t) = n) = \int_0^\infty \frac{(\lambda t)^n}{n!} e^{-\lambda t} \cdot f_{\Lambda}(\lambda) \, d\lambda$$
 (1.2)

$$= \int_0^\infty \frac{(\lambda t)^n}{n!} e^{-\lambda t} \cdot \frac{\lambda^{\alpha_1 - 1}}{\Gamma(\alpha_1) \beta_1^{\alpha}} e^{-\lambda/\beta_1} d\lambda$$
 (1.3)

$$= \frac{\Gamma(\alpha+n)\beta_1^n}{\Gamma(\alpha_1)t^{\alpha}n!} \int_0^{\infty} \frac{\lambda^{\alpha+n-1}}{\Gamma(\alpha+n)} \left(\frac{t}{\beta_1}\right)^{\alpha+n} e^{-t\lambda/\beta_1} d\lambda$$
 (1.4)

B)

L'espérance du nombre d'événement survenant dans l'intrervalle [0,t] pour le 1^e processus est donné par l'équation 1.5, alors que l'espérance du 2^2 processus est donné par l'équation 1.6. Les processus de poisson détermine le nombre d'événement survenue alors que la V.A. X représente la sévérité pour chaque événement. Tels que mentionné plus haut, la sévérité suit aussi une loi gamma. L'espérance des coûts pour une réclamation est alors donné par l'équation 1.7.

$$E[N_1(t)] = \lambda t$$

$$E[N_2(t)] = E[E[N_2(t)|\Lambda]]$$

$$= tE[\Lambda]$$

$$= t\alpha_1 \beta_1$$
(1.5)

$$E[X] = \alpha_2 \beta_2 \tag{1.7}$$

C)

$$\operatorname{Var}(N_{1}(t)) = \lambda t$$

$$\operatorname{Var}(N_{2}(t)) = E[\operatorname{Var}(N_{2}(t)|\Lambda)] + \operatorname{Var}(E[N_{2}(t)|\Lambda = \lambda])$$

$$= tE[\Lambda] + t^{2}\operatorname{Var}(\Lambda)$$

$$= t\alpha_{1}\beta_{1} + t^{2}\alpha_{1}\beta_{1}^{2}$$
(1.8)

$$Var(X) = \alpha_2 \beta_2^2 \tag{1.10}$$

TABLEAU $1.2 - E[N_i(t)], E[X]$

	Valeurs théorique												
	t = 1	t = 2	t = 3	t = 4	t = 5								
$E[N_1(t)]$	1.5	3.0	4.5	6.0	7.5								
$E[N_2(t)]$													
E[X]			3000.0										
	Valeurs simulées												
	t = 1	t = 2	t = 3	t = 4	t = 5								
$E[N_1(t)]$	1.4965	2.9997	4.5065	6.0041	7.4885								
$E[N_2(t)]$													
E[X]			3003.4										

*Valeurs obtenue à l'aide de 100 000 simulations.

TABLEAU 1.3 – $Var(N_i(t))$, Var(X)

Valeurs théorique												
	t = 1	t = 2	t = 3	t = 4	t = 5							
$\operatorname{Var}(N_1(t))$	1.5	3.0	4.5	6.0	7.5							
$\operatorname{Var}(N_2(t))$												
Var(X)			4500000									
	Valeurs simulées											
	t = 1	t = 2	t = 3	t = 4	t = 5							
$\operatorname{Var}(N_1(t))$	1.4936	2.9798	4.5253	6.0038	7.4334							
$\operatorname{Var}(N_2(t))$												
Var(X)			4507109									

D)

La variable aléatoire $S_i(t)$ représante les coûts pour un risque selon l'approche Fréquence-Sévérité. La fréquence sur un intrervalle de temps [0,t] est modèliser par le i° processus de poisson selon les 2 définitions donné plus haut. De son côté, la sévérité est modèliser par une loi de gamma. La v.a. $S_i(t)$ est alors défini par :

$$S_i(t) = \sum_{n=1}^{N_1(t)} X_n \tag{1.11}$$

Il est important de précisé qu'avec cette approche, la sévérité est supposé indé-

pendant de la fréquence et identiquement distribuer. Ainsi, les coûts moyens de plus que la variance de ceux-ci sont représenté par :

$$E[S_{i}(t)] = E\left[\sum_{n=1}^{N_{i}(t)} X_{n}\right]$$

$$= E\left[E\left[\sum_{n=1}^{N_{i}(t)} X_{n} \middle| N_{i}(t)\right]\right]$$

$$\stackrel{\text{i.i.d}}{=} E[N_{1}(t)] E[N_{i}(t) \cdot E[X_{n}]]$$

$$= E[N_{i}(t)] E[X_{n}] \qquad (1.12)$$

$$\text{Var}(S_{i}(t)) = E\left[\text{Var}(S_{i}(t)|N_{i}(t))\right] + \text{Var}(E[S_{2}(t)|N_{2}(t)])$$

$$\stackrel{\text{i.i.d}}{=} E[N_{i}(t) \text{Var}(X_{n})] + \text{Var}(N_{i}(t) E[X_{n}])$$

$$= E[N_{i}(t)] \text{Var}(X_{n}) + E^{2}[N_{i}(t)] \text{Var}(X_{n}) \qquad (1.13)$$

TABLEAU $1.4 - E[S_i(t)]$, $Var(S_i(t))$

Valeurs théorique

			1							
	t = 1	t = 2	t = 3	t = 4	t = 5					
$E[S_1(t)]$	4500.00	9000.00	13500.00	18000.00	22500.00					
$E[S_2(t)]$										
$Var(S_1(t))$	20250000	40500000	60750000	81000000	101250000					
$\operatorname{Var}(S_2(t))$										
Valeurs simulées										
	t = 1	t = 2	t = 3	t = 4	t = 5					
$E[S_1(t)]$	4494.83	9012.77	13530.15	18030.01	22493.86					
$E[S_2(t)]$										
$Var(S_1(t))$	20252408	40402835	61088884	81400200	101564244					
$Var(S_2(t))$										

1.2

A)

Le graphique 1.1 représente les fonctiones de répartition empirique du 1^{e} processus. Plus t est petit, plus la masse à 0 est grande. Ce constat est normal puisque

plus l'intrervalle [0, t] est petit, plus il y a de chance d'avoir aucune réclamation. En effet, avec un t = 5, la probabilité d'observé des coûts égaux à 0 est presque nulle. Dans le même sans d'idée, une augmentation de l'intrervalle [0, t] à pour effet de déplacer la densité vers la droite, c'est à dire vers des coûts plus élevés.

FIGURE 1.1 – Fonction de répartition empirique de $S_1(t)$

B)

Équation VaR

Le tableau 1.5 présente les valeurs simulées de la *Value at Risk* (VaR) pour le 1° processus de poisson pour 3 différentes valeurs de α . Comme observé dans la section précédante, plus l'intrervalle [0, t] augmente, plus les valeurs sont en moyenne élevés du à l'augmentation de la fréquence. Il est donc encore logique, pour un même niveau α , d'obtenir une VaR plus élévé pour une valeur de t plus élevés. Le tableau 1.6 présente les valeurs simulées de la *Tail Value at Risk* (TVaR) pour le 1° processus de poisson pour 3 différentes valeurs de α . L'avantage de cette mesure de risque est qu'elle donne une information sur la queue de la distribution.

Encore une fois, plus t augmente, plus la TVAR est grande. Le graphique 1.2 permet de visualisé les queues des distributions qui augmente avec t.

TABLEAU $1.5 - VaR_{\alpha}\{S_1(t)\}$

α	t = 1	t = 2	t = 3	t = 4	t = 5
95.0%	13320.86	20956.17	27909.60	34401.73	40614.64
97.5%	15795.33	24034.05	31485.11	38337.27	44959.93
99.0%	18774.93	27665.03	35879.80	43285.67	50109.22

TABLEAU $1.6 - TVaR_{\alpha}\{S_1(t)\}$

α	t = 1	t = 2	t = 3	t = 4	t = 5
95.0%	16743.80	25148.66	32847.72	39852.71	46492.07
97.5%	19070.86	27980.19	36193.06	43533.68	50452.44
99.0%	22091.67	31468.25	40415.74	48232.16	55239.44

FIGURE 1.2 – Densité de $S_1(t)$

Question 2

- 2.1
- A)
- B)
- C)
- 2.2