Homework 1

Christopher Canaday

September 21, 2024

Problem 1: Let the strong speedup of a problem of size n that is computationally solved using P processors by a parallel algorithm in time T(n, P) be defined by:

$$S(p) = \frac{T(n,1)}{T(n,P)} \tag{1}$$

and the efficiency of the same parallel algorithm be defined by

$$E(p) = \frac{S(p)}{P} \tag{2}$$

Suppose a parallel algorithm has a parallel runtime complexity of:

$$T(n,p) = \Theta(\frac{n^2}{P} + \sqrt{n})$$
 for $P \le n^2$ (3)

- i. What is the execution time of this parallel algorithm on a single processor (we assume a single process is mapped to a single processor)?
 - (a) The execution time of the parallel algorithm with a single processor would be:

$$T(n,1) = \Theta(n^2 + \sqrt{n}) \tag{4}$$

- ii. In terms of n, at what processor count, P_{\max} , will the algorithm achieve maximum parallel speedup?
 - (a) The algorithm will achieve maximum parallel speedup when $P_{\rm max}=n^2.$ The runtime complexity would be:

$$\begin{split} T(n,P_{\max}) &= \Theta(\frac{n^2}{P_{\max}} + \sqrt{n}) \qquad \text{for } P_{\max} = n^2 \\ &= \Theta(\frac{n^2}{n^2} + \sqrt{n}) \\ &= \Theta(1 + \sqrt{n}) \\ &= \Theta(\sqrt{n}) \end{split}$$

The speedup $S(P_{\text{max}})$ would be:

$$\begin{split} S(P_{\text{max}}) &= \frac{T(n,1)}{T(n,P_{\text{max}})} \\ &= \frac{\Theta(n^2 + \sqrt{n})}{\Theta(\sqrt{n})} \\ &= \Theta(\frac{n^2 + \sqrt{n}}{\sqrt{n}}) \\ &= \Theta(\frac{n^2 + \sqrt{n}}{\sqrt{n}} * \frac{\sqrt{n}}{\sqrt{n}}) \\ &= \Theta(\frac{n^2 \sqrt{n} + n}{n}) \\ &= \Theta(n\sqrt{n}) \end{split}$$

- iii. What is the parallel efficiency achieved when P_{max} processors are used?
 - (a) The parallel efficiency is:

$$\begin{split} E(P_{\text{max}}) &= \frac{S(P_{\text{max}})}{P_{\text{max}}} \\ &= \frac{n\sqrt{n}}{n^2} \\ &= \frac{\sqrt{n}}{n} \end{split}$$

- iv. Maximum parallel efficiency is achieved when $E(P) \approx 1$. At what processor count will this algorithm achieve its maximum parallel efficiency?
 - (a) The maximum efficiency would be with 1 processor.

$$E(P) = \frac{S(P)}{P} \quad \text{for } S(P) = \frac{T(n,1)}{T(n,P)} \text{ and } E(P) \approx 1$$

$$1 \approx \frac{\frac{T(n,1)}{T(n,P)}}{P}$$

$$1 \approx \frac{\frac{n^2 + \sqrt{n}}{\frac{n^2}{p} + \sqrt{n}}}{P}$$

$$1 \approx \frac{n^2 + \sqrt{n}}{\frac{n^2}{p} + \sqrt{n}} * \frac{1}{P}$$

$$1 \approx \frac{n^2 + \sqrt{n}}{n^2 + P\sqrt{n}}$$

Problem 2: The following is a polynomial of a single unknown variable x and degree n-1 where a_0, a_1, \dots, a_{n-1} are known constants.

$$P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{n-1} x_{n-1}$$
(5)

The goal here is to compute the value of the polynomial at a given value of x, say, x_0 , that is, evaluate $P(x_0)$. Describe step-by-step a parallel algorithm to compute $P(x_0)$. Assume that $n = k_1p$ and $p = 2^{k_2}$ where k_1 and k_2 are both positive integers greater than 1. What are the parallel computation and communication costs of your algorithm.

- i. The problem is perfect for Horner's Method. The algorithm steps are:
 - (a) Partition a_i in parts and assign them to p processes.
 - (b) Broadcast the value of x_0 .
 - (c) Do parallel prefix with the multiplication operation.
 - (d) Locally multiply the partial products with the right coefficient.
 - (e) Locally add all the products.
 - (f) Do a reduce to add all the local products together.
- ii. The computation cost is:

$$T(n,p)_{comp} = \Theta(C_{op} * (\frac{n}{p} + \log_2 p))$$
(6)

Where C_{op} is the cost of performing the multiplication operation. There are $\frac{n}{p}$ computations in each process and during the parallel prefix you will additionally multiply $\log_2 p$ times. There are also $\frac{n}{p}$ additions in each process, but this gets consumed by the Θ .

iii. The communication cost is:

$$T(n,p)_{comm} = C_{reduce} + C_{parallelPrefix} + C_{broadcast} + C_{personalizedSend}$$
 (7)

Considering that p is guaranteed to be a power of two I am going to assume that the network is in a HyperCube configuration. With a HyperCube Configuration the cost of a reduce would be:

$$C_{reduce}^{HyperCube} = \Theta((\tau + \mu m_0) * \log_2 p)$$
 (8)

Where m_0 is the message size. In this case the message size would be one number from each process. The cost for the parallel prefix would be:

$$C_{parallelPrefix}^{HyperCube} = \Theta((\tau + \mu m_0) * \log_2 p)$$
 (9)

Where m_0 is a number being sent to the process to the right. The $\log_2 p$ comes from the number of times this occurs during the parallel prefix. The cost for the broadcast of x is:

$$C_{broadcast}^{HyperCube} = \Theta((\tau + \mu m_0) * \log_2 p)$$
 (10)

This operation is the same as reduce, but in reverse so it has the same cost. To send the a's we have to do a personalized send to give processes the correct value. The cost for a personalized send is:

$$C_{personalizedSend}^{HyperCube} = \Theta(\tau \log_2 p + \mu m_1 p)$$
 (11)

Here m_1 is the size of $\frac{n}{p}$ numbers. In other words.

$$m_1 = \frac{n}{p} * m_0 \tag{12}$$

Thus,

$$C_{personalizedSend}^{HyperCube} = \Theta(\tau \log_2 p + \mu m_0 n)$$
 (13)

So the communication cost assuming a HyperCube network configuration is:

$$\begin{split} T(n,p)_{comm}^{HyperCube} &= \Theta((\tau + \mu m_0) * \log_2 p) \\ &+ \Theta((\tau + \mu m_0) * \log_2 p) \\ &+ \Theta((\tau + \mu m_0) * \log_2 p) \\ &+ \Theta(\tau \log_2 p + \mu m_0 n) \end{split}$$

Which simplified is:

$$\begin{split} T(n,p)_{comm}^{HyperCube} &= \Theta((\tau + \mu m_0) * \log_2 p + \tau \log_2 p + \mu m_0 n) \\ &= \Theta(\tau \log_2 p + \mu m_0 \log_2 p + \mu m_0 n) \\ &= \Theta(\tau \log_2 p + \mu m_0 (\log_2 p + n)) \end{split}$$

So, the total cost is:

$$T(n, p)_{total}^{HyperCube} = \Theta(C_{op} * (\frac{n}{p} + \log_2 p) + \tau \log_2 p + \mu m_0(\log_2 p + n))$$
 (14)

Where C_{op} is the cost of the multiplication operation, m_0 is the size of a number, and μ is $\frac{1}{transferRate}$.