Comparing Configurations of Multiple Array Plasma Actuators by Velocity and Flow Visualization

Elizabeth Matthews West Virginia University

AIAA 2022 Region I Student Conference, 25 March - 26 March 2022

Copyright © by Elizabeth Matthews/WVU

Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Overview

- Research on Plasma Actuators for flow and lift control
 - Add more arrays
 - Increase in control
 - Unwanted interactions
- Mitigating cross talk while using three arrays
 - Two possible ways shown
 - Insulation and Switching High Voltage Connections
 - Four Actuators Tested
- Schlieren, Pitot Probes, and Qualitative Photos
- Less Cross Talk using both methods
- Higher peak velocity

Introduction

- Voltage Differential induces plasma and velocity
- Possible Advantages and Disadvantages seen in Multiple-actuator designs
 - Cross Talk/Back Plasma

- DBD Actuators
 - Borosilicate glass dielectrics
 - Copper tape alternating between covered and exposed
 - No gaps between tape (x direction)
- Powered by an AC wave using a Minipuls
 - 12kV,15kHz

- Experiment 1
- Configuration 1
 - High Voltage connected alternating

- Experiment 2
 - Uses Insulation on the leading edge of exposed electrode
- Configuration 1
 - High Voltage connected alternating

- Experiment 3
- Configuration 2
 - High Voltage connected to reduce cross talk between actuators

- Experiment 4
- Configuration 3
 - Basic One Actuator Array

Photos of the Plasma Actuators

Experimental Procedure

Pitot Probe Setup allows for translation in the x axis

Rotated for negative flow

Z type schlieren setup to visualize the flow

Schlieren Results

Start up procedures of each experiment (0ms-10ms)

Schlieren Results

Steady State Flow

Plasma Photos

Pitot Probe Results

Pitot Probe Results

Configuration	Pitot Probe Position (mm)	Peak Velocity, U, (m/s)
Experiment 1: No Insulation	4 +-1	4.47 +-0.05
Experiment 2: Insulation	40 +-1	5.37 +-0.20
Experiment 3	5 +-1	5.42 +- 0.13
Experiment 4	4+-1	4.61+-0.22

Summary

- Four experiments
 - Three Three-Array Actuators
 - Insulation vs None
 - High Voltage Connections
 - One Array Actuator
- Reduction in Cross Talk with Experiment 2 and 3
- Higher Max Velocity in the three-actuator arrays (2 and 3)
- Back Plasma and Cross Talk cause velocity in the positive and negative x direction
 - Causes multiple actuator array advantages to be lessened

Acknowledgments

- Arctura, Inc
 - John Cooney and Pascal Mickelson
 - U.S. Department of Energy, Advanced Research Projects
 Agency Energy under Award Number DE-AR0001011

Questions?

