

592056

Ersetzt SIA 380/4:2006

Électricité dans les bâtiments – Besoins en énergie et puissance requise Elettricità negli edifici – Fabbisogno di energia e di potenza

Elektrizität in Gebäuden – Energie- und Leistungsbedarf

Referenznummer SNR 592056:2019 de

Gültig ab: 2019-08-01

Herausgeber Schweizerischer Ingenieurund Architektenverein Postfach, CH-8027 Zürich

Anzahl Seiten: 130

Copyright © 2019 by SIA Zurich

Preisgruppe: 40

INHALTSVERZEICHNIS

	Se	eite
Vorwo	ort	4
0	Geltungsbereich	5
0.1	Abgrenzung	5
0.2	Allgemeine Bedingungen Bau	5
0.3	Normative Verweisungen	5
0.4	Abgrenzung zu anderen SIA-Publikationen	6
1	Verständigung	8
1.1	Begriffe und Definitionen	8
1.2	Symbole, Begriffe und Einheiten	10
1.3	Indizes	11
2	Energie und Leistungsbedarf	15
2.1	Berechnung des Energiebedarfs	15
2.2	Berechnung des Leistungsbedarfs	17
2.3	Korrekturfaktoren	19
3	Geräte	21
3.1	Gerätekombinationen (GK)	21
3.2	Gastro 1	23
3.3 3.4	Gastro 2	25 26
3.5	Büro normal	27
3.6	Informations- und Kommunikations-	
	technik 1 (IKT 1)	29
3.7	Informations- und Kommunikations-	
3.8	technik 2 (IKT 2)	30
3.0	technik Zentral (IKT Zentral)	31
3.9	Hotel	32
4	Prozessanlagen	34
4.1	Kühl- und Tiefkühlmöbel	34
4.2	Kälteanlage für Kühl- und Tiefkühl-	
4.0	raum	34
4.3	Grossküchengeräte	36

	S	eite
5	Beleuchtung	38
5.1	Berechnung der installierten Leistung	38
5.2	Berechnung der Volllaststundenzahl	40
5.3	Berechnung des Energiebedarfs	41
5.4	Leistungs- und Energiebilanz erstellen	42
6	Allgemeine Gebäudetechnik	43
6.1	Notlichtanlage	43
6.2	Beschattungsanlage	43
6.3	Schrankenanlage	45
6.4	Zentrale Parkuhr	45
6.5	Dreh- und Karusselltür	46
6.6	Schiebetür	47
6.7	Drehkreuz und -sperre	48
6.8	Dachrinnenheizung	48
6.9	Satellitenempfänger	49
6.10	Allgemeine elektrische Widerstands-	
	heizungen im Freien	50
6.11	Inhouse-Mobilfunkanlage	50
6.12	Gebäudeautomation	50
6.13	Brandvermeidungsanlage	51
6.14	Rauch- und Wärmeabzugsanlage	51
6.15	Audioanlage und elektroakustisches	F 0
6.16	Notfallwarnsystem	52 53
6.17	Einbruchmeldeanlage	53
6.18	Videoüberwachungsanlage	54
6.19	Transformator	56
6.20	Schaltgerätekombination	57
6.21	USV-Anlage	58
6.22	Dieselelektrische Netzersatzanlage	59
6.23	Aufzug	60
6.24	Fahrtreppe und Fahrsteig	65
6.25	Elektrofahrzeug	66
6.26	Kleinstverbraucher	67

In der vorliegenden Publikation gelten die männlichen Funktions- und Personenbezeichnungen sinngemäss auch für weibliche Personen.

Allfällige Korrekturen zur vorliegenden Publikation sind zu finden unter www.sia.ch/korrigenda.

Der SIA haftet nicht für Schäden, die durch die Anwendung der vorliegenden Publikation entstehen können.

	S	Seite
7	Wärme	68
7.1	Wärmepumpe	68
7.2	Hilfsenergie Wärmeerzeugung,	
	-verteilung und -abgabe	
7.3	Elektrische Widerstandsheizung	69
7.4	Elektrisches Heizband Warmwasser-	
	verteilung	
7.5	Elektrisches Heizband Frostschutz	70
8	Lüftung / Klimatisierung	71
8.1	Luftförderung	71
8.2	Regelkomponente Lüftung	72
8.3	Wärmerückgewinnungsanlage	72
8.4	Befeuchtung	73
8.5	Raumkühlung	74
8.6	Hilfsenergie Raumkühlung	74
9	Elektrizitätsbedarf von Wohnbauten	76
9.1	Berechnung des Elektrizitätsbedarfs	
	(personenbezogen)	76
9.2	Berechnung des Elektrizitätsbedarfs	
	(flächenbezogen)	79

	Seite
10	Elektrizitätserzeugung 82
10.1 10.2	Photovoltaik
10.2	warmekrankoppiung 65
Anhar	ng
Α	(informativ) Erläuterungen 86
В	(informativ) Mess- und Installations-
	konzept 96
С	(informativ) Beispiele
D	(informativ) Fallbeispiel 107
E	(informativ) Werte
F	(informativ) Erfassungsraster 120
G	(informativ) Publikationen
Н	(informativ) Verzeichnis der Begriffe 126

VORWORT

Das vorliegende Merkblatt dient zur Ermittlung des Energie- und Leistungsbedarfs von Gebäuden in der Phase Vorprojekt gemäss SIA 112.

2011 wurde entschieden, die damals gültige Norm SIA 380/4 *Elektrische Energie im Hochbau* aus dem Jahr 2006 zu revidieren, weil die Norm nicht mehr dem aktuellen Stand der Technik entsprach.

Zur Vorbereitung der Revision wurden 10 Forschungsprojekte mit Unterstützung von Energie Schweiz in Auftrag gegeben. Die Berichte zu diesen Forschungsprojekten können auf www.energytools.ch unter Grundlagenberichte kostenlos heruntergeladen werden.

Aufgrund der Forschungsresultate wurde entschieden, in Zukunft auf die Publikation einer umfassenden Norm SIA 380/4 zu verzichten. Die bisher in SIA 380/4 behandelten Themen wurden wie folgt aufgeteilt:

- Die Kapitel 3.4.2 L\u00e4ftung, 4.4.1.2 Anforderungen an die spezifische Ventilatorleistung und 4.4.1.3 Anforderungen an die Regelung wurden durch SIA 382/1:2014 ersetzt.
- Die Kapitel 3.3 Beleuchtung und 4.3 Beleuchtung wurden durch SIA 387/4 ersetzt.
- Die übrigen Elektrizitätsverbraucher werden im vorliegenden Merkblatt SIA 2056 behandelt.

Kommission SIA 387

0 GELTUNGSBEREICH

0.1 Abgrenzung

- 0.1.1 Das vorliegende Merkblatt findet Anwendung für Hochbauten in der Phase Vorprojekt gemäss SIA 112 bei Neubauten oder Umbauten von Gebäuden. Es hat den rationellen Einsatz der Elektrizität zum Ziel. Die Optimierung des Elektrizitätsbedarfs erfasst alle baulichen und gebäudetechnischen Einflussgrössen. Sie erfolgt daher aus Sicht des Planungsteams, nicht des einzelnen Fachplaners.
- 0.1.2 Das Merkblatt beinhaltet Erfahrungswerte, welche in der Phase Vorprojekt gemäss SIA 112 zur Abschätzung des Elektrizitätsbedarfs und der Anschlussleistung verwendet werden können.
- 0.1.3 Zusätzlich zu den unter 0.3 aufgeführten Normen können kantonale Vollzugsbestimmungen oder Vorschriften dritter (z.B. Werkvorschriften der Verteilnetzbetreiber) ergänzende relevante Anforderungen beinhalten und sind daher ebenfalls zu berücksichtigen.

0.2 Allgemeine Bedingungen Bau

Die Allgemeinen Bedingungen Bau (ABB), welche das vorliegende Merkblatt betreffen, sind in der Norm SIA 118/380 *Allgemeine Bedingungen für Gebäudetechnik* enthalten.

0.3 Normative Verweisungen

Im Text dieses Merkblatts wird auf die nachfolgend aufgeführten Publikationen verwiesen, die im Sinne der Verweisungen ganz oder teilweise mitgelten. Bei undatierten Verweisungen gilt die letzte Ausgabe (bei SN EN einschliesslich aller Änderungen), bei datierten Verweisungen die entsprechende Ausgabe der betreffenden Publikation.

0.3.1 Publikationen des SIA

Norm SIA 112	Modell Bauplanung
Norm SIA 118/380	Allgemeine Bedingungen für Gebäudetechnik
Norm SIA 380	Grundlagen für energetische Berechnungen von Gebäuden
Norm SIA 380/1	Heizwärmebedarf
Norm SIA 382/1	Lüftungs- und Klimaanlagen – Allgemeine Grundlagen und Anforderungen
Norm SIA 384/1	Heizungsanlagen in Gebäuden – Grundlagen und Anforderungen
Norm SIA 384/3	Heizungsanlagen in Gebäuden – Energiebedarf
Norm SIA 385/1	Anlagen für Trinkwarmwasser in Gebäuden – Grundlagen und Anforderungen
Norm SIA 385/2	Anlagen für Trinkwarmwasser in Gebäuden – Warmwasserbedarf, Gesamtanforderungen und Auslegung
Norm SIA 387/4	Elektrizität in Gebäuden – Beleuchtung: Berechnung und Anforderungen
Norm SIA 411	Modulare Darstellung der Gebäudetechnik
Norm SIA 416	Flächen und Volumen von Gebäuden
Merkblatt SIA 2024	Raumnutzungsdaten für Energie- und Gebäudetechnik
Merkblatt SIA 2028	Klimadaten für Bauphysik, Energie- und Gebäudetechnik
Merkblatt SIA 2048	Energetische Betriebsoptimierung

0.3.2 Internationale Normen

SN EN 54-16 Brandmeldeanlagen – Teil 16: Sprachalarmzentralen SN EN 12464-1 Beleuchtung von Arbeitsstätten in Innenräumen

SN EN 15232 Energieeffizienz von Gebäuden – Einfluss von Gebäudeautomation

und Gebäudemanagement

SN EN 16798-5-1 Energetische Bewertung von Gebäuden – Lüftung von Gebäuden –

Teil 5-1: Berechnungsmethoden für den Energiebedarf von Lüftungs- und Klimaanlagen (Module M5-6, M5-8, M6-5, M6-8,

M7-5, M7-8) – Methode 1: Verteilung und Erzeugung

SN EN 50160 Merkmale der Spannung in öffentlichen Elektrizitätsversorgungs-

netzen

BS HD 60364-8-1 Low-voltage electrical installations – Part 8-1: Energy efficiency

SN EN 60849 Elektroakustische Notfallwarnsysteme

SN EN 61215-1 Terrestrische Photovoltaik-(PV-)Module – Bauarteignung und

Bauartzulassung – Part 1: Prüfanforderungen

SN EN 62040-3 Unterbrechungsfreie Stromversorgungssysteme (USV) – Teil 3:

Methoden zum Festlegen der Leistungs- und Prüfungs-

anforderungen

0.4 Abgrenzung zu anderen SIA-Publikationen

0.4.1 Zur Norm SIA 382/1, Lüftungs- und Klimaanlagen – Allgemeine Grundlagen und Anforderungen

- 0.4.1.1 SIA 382/1 nennt die allgemeinen Grundlagen für die Bemessung von Lüftungsanlagen. Zusätzlich sind die Kriterien für die Wahl der Lüftungsstrategie und die technischen Rahmenbedingungen zur Erreichung eines möglichst geringen Energieverbrauchs für die Luftaufbereitung und Luftförderung in Lüftungs- und Klimaanlagen aufgenommen.
- 0.4.1.2 Das vorliegende Merkblatt ermittelt den Leistungs- und Energiebedarf von Lüftungsanlagen anhand der Nutzfläche, der spezifischen Ventilatorleistung oder der Druckdifferenz. Die Anlagendimensionierung muss vorgängig auf der Grundlage von SIA 382/1 erfolgen.
- 0.4.2 Zur Norm SIA 384/3, Heizungsanlagen in Gebäuden Energiebedarf
- 0.4.2.1 Die Hauptaufgabe von SIA 384/3 ist es, den Berechnungsgang zur Ermittlung des Energiebedarfs bei Heizungsanlagen darzustellen. Ein Teil der Berechnungen erfolgt nach der Bin-Methode.
- 0.4.2.2 Im vorliegenden Merkblatt lehnt die Berechnung der elektrischen Energie für Heizung und Warmwasser an die Typologiemethode von SIA 384/3 an. Zudem wird eine vereinfachte Methode für den Leistungsbedarf Elektro ergänzt. Die aufgeführten Berechnungsmethoden sind nicht für eine Dimensionierung einer Heizungsanlage geeignet. Es wird davon ausgegangen, dass der thermische Leistungs- und Energiebedarf bekannt ist.
- 0.4.3 Zur Norm SIA 385/2, Anlagen für Trinkwarmwasser in Gebäuden Warmwasserbedarf, Gesamtanforderungen und Auslegung
- 0.4.3.1 SIA 385/2 wird verwendet für die Grobauslegung von Warmwasserversorgungen in der Vorprojektphase, mit Einflussnahme auf die Raumanordnung im Grundriss, Feinplanung und Optimierung
 von Warmwasserversorgungen in der Bauprojektphase, Berechnung des Wärmeleistungsbedarfs
 der Wassererwärmungsanlage, Berechnung des Wärmebedarfs für Warmwasser und der dazugehörigen Hilfsenergie sowie Überprüfung der Ausstosszeiten durch Messungen in bestehenden
 Warmwasserversorgungen.
- 0.4.3.2 Im vorliegenden Merkblatt wird einzig eine vereinfachte elektrische Leistungs- und Energieermittlung von den elektrischen Heizbändern für die Warmwasserverteilung aufgeführt. Es wird davon ausgegangen, dass der Warmwasserbedarf bekannt ist.

0.4.4 **Zur Norm SIA 387/4, Elektrizität in Gebäuden – Beleuchtung: Berechnung und Anforderungen**

Das im Kapitel 5 beschriebene Berechnungsverfahren basiert auf dem Modell von SIA 387/4. Gegenüber der Norm geht es von verschiedenen vereinfachten Annahmen aus und eignet sich deshalb für die Phase Vorprojekt gemäss SIA 112, in der viele Parameter der effektiven späteren Nutzung noch nicht bekannt sind.

Tabelle 1 Unterschiede der zwei Verfahren

	Detailliertes Verfahren (SIA 387/4, Methode 1)	Vereinfachtes Verfahren SIA 2056 (SIA 387/4, Methode 1, mit vereinfachten Annahmen)
Berechnung der installierten Leistung	 Berechnung mit Simulations- programm, z. B. ReluxSuite. Wirkungsgradverfahren mit variablen Annahmen für Leuchtenlichtausbeute und Raumwirkungsgrad. 	Wirkungsgradverfahren mit festen Annahmen für den «Normalzustand» (Leuchten- lichtausbeute, Raumwirkungs- grad).
Berechnung der Volllaststunden	Jahresbilanzmodell auf der Basis eines Referenztages (31.3. bzw. 30.9.) und rund 10 Korrekturfaktoren (Beschattungsanlage, Transmission der Fenster, Raumhelligkeit, Beleuchtungssteuerung usw.).	Modell von SIA 387/4 mit festen Annahmen für den Normal- zustand. Nur Einflussgrössen Beschattungsanlage und Be- leuchtungssteuerung.
Berechnung Energiebedarf	Produkt von installierter Leistung und Volllaststundenzahl	Analog SIA 387/4
Energie- und Leistungsbilanz	Alle Räume im Gebäude werden einzeln erfasst und zur Energiebilanz des Gebäudes zusammengeführt.	Berechnung für Raumgruppen (nicht Einzelräume) und Hoch- rechnung zur Gesamtenergie- bilanz.
Anforderungen	Grenz- und Zielwerte	-

0.4.5 Zum Merkblatt SIA 2024, Raumnutzungsdaten für die Energie- und Gebäudetechnik

- 0.4.5.1 SIA 2024 dient der Vereinheitlichung von Annahmen über die Raumnutzungen. Diese Annahmen sollen bei den Berechnungen und Nachweisen nach den Normen der Energie- und Gebäudetechnik verwendet werden, solange keine genaueren Angaben vorliegen. Spätestens im Bauprojekt müssen für die Dimensionierung der Anlagen die projektspezifischen Gebäudedaten, Nutzungsbedingungen und Bemessungskriterien festgelegt und festgehalten werden.
- 0.4.5.2 SIA 2024 ermöglicht zudem die Abschätzung des thermischen und elektrischen Leistungs- und Energiebedarfs von Gebäuden in der Phase Vorprojekt gemäss SIA 112. Als Eingabedaten werden nur die Nettogeschossflächen pro Raumnutzung benötigt. Der Leistungs- und Energiebedarf der Allgemeinen Gebäudetechnik wird in SIA 2024 nicht behandelt.
- 0.4.5.3 Das vorliegende Merkblatt ermöglicht die Abschätzung des elektrischen Leistungs- und Energiebedarfs von Gebäuden. Als Eingabedaten werden sowohl Angaben zu den Nutzungsflächen als auch zu den geplanten Anlagen und der vorgesehenen Steuerungs- und Regelsysteme benötigt.

1 VERSTÄNDIGUNG

1.1 Begriffe und Definitionen

Für die Anwendung des vorliegenden Merkblatts gelten die Begriffe und Definitionen, die in SIA 380 festgelegt sind, sowie die folgenden Begriffe und Definitionen. Diese Begriffe sind im Anhang H in alphabetischer Reihenfolge in drei Sprachen aufgelistet.

Bei den im vorliegenden Merkblatt verwendeten Begriffen zu Leistung bzw. Energie geht man grundsätzlich davon aus, dass elektrische Leistung bzw. elektrische Energie gemeint ist. Bei thermischer Leistung bzw. Energie wird speziell ein Vermerk angebracht.

Für die Berechnung des Elektrizitätsbedarfs werden in der Regel drei Klassen (tief, mittel und hoch) definiert. Ausnahmen sind bei den entsprechenden Abschnitten definiert. In den Elektrizitätsbedarfsklassen sind die Effizienz der Geräte sowie das Nutzungsverhalten enthalten. Dabei stellt die Elektrizitätsbedarfsklasse «tief» die beste Effizienzklasse dar. Diese ist mit der Energieeffizienzklasse A (oder grüner Bereich) der Energieetikette von Betriebsmitteln vergleichbar. Die Elektrizitätsbedarfsklasse «mittel» stellt die Standardeffizienz (hellgrün bis hellorange) dar und die Elektrizitätsbedarfsklasse «hoch» bezeichnet Betriebsmittel mit der schlechtesten Energieeffizienzklasse (roter Bereich).

1.1.1 Allgemein

1.1.1.1	Anschlussleitung	Die dem Verteilnetzbetreiber gehörende Leitung, welche beim Anschlussüberstromunterbrecher endet.
1.1.1.2	Monovalent	Der Wärmebedarf wird nur durch einen Wärmeerzeuger gedeckt.
1.1.1.3	Eigenverbrauchsanteil	Anteil der eigenproduzierten Energie, welche während der Betrachtungsperiode für die Deckung des zeitgleichen Energiebedarfs verwendet wird, im Verhältnis zur gesamten eigenproduzierten Energie des betreffenden Energieträgers.
1.1.2	Leistung	
1.1.2.1	Wirkleistung	Wirkliche elektrische Leistung, die in eine andere Leistung umgewandelt werden kann (z.B. in thermische oder mechanische Leistung).
1.1.2.2	Blindleistung	Für die Erzeugung des elektrischen und magnetischen Feldes notwendige Leistung.
1.1.2.3	Scheinleistung	Wurzel aus der Summe der Quadrate von Wirk- und Blindleistung.
1.1.2.4	Anschlussleistung	Maximal mögliche, dauernde Bezugsleistung des Gebäudes unter Berücksichtigung des Bezügerüberstromunterbrechers.
		Die Anschlussleistung beinhaltet spezifische Reserven für Ausbau, Selektivität und Ähnliches.
1.1.2.5	Maximale Leistung Gebäude (¼-Stunden-Mittelwert)	Vom Elektrizitätswerk gemessene und verrechnete maximal bezogene Leistung aus dem Stromnetz.
		Der Wert wird für die Berechnung von Energie- und Leistungsbedarf in SIA 2056 nicht verwendet.

1.1.2.6	Maximale Betriebsleistung Gebäude (Stundenmittelwert)	Summe aller Betriebsleistungen von Geräten und Anlagen unter Berücksichtigung des zeitlich unterschiedlichen Betriebs und eines Korrekturfaktors (Auslastung).
1.1.2.7	Leistung ausserhalb der Nutzungszeit Gebäude	Leistungsbezug ausserhalb der Nutzungszeit. Summe der Leistungen von Geräten und Anlagen im Aus-Zustand, Bereit- schaftszustand und Betriebszustand ausserhalb der Nutzungs- zeit eines Gebäudes (während der Nacht und an Wochen- enden).
		Siehe Beispiel im Anhang C.1.2.
1.1.2.8	Spitzenleistung Verbraucher	Kurzzeitige Leistungsspitze (Dauer: < 1 bis einige Sekunden) beim Einschalten von Geräten und Anlagen.
		Der Wert wird für die Berechnung von Energie- und Leistungsbedarf in SIA 2056 nicht verwendet.
1.1.2.9	Nennleistung Verbraucher	Deklarierte Leistung eines Gerätes oder einer Anlage in Datenblättern oder auf Typenschildern.
		Der Wert ist je nach Anlage oder Gerät anders bzw. ungenau definiert und wird für die Berechnung von Energie- und Leistungsbedarf in SIA 2056 nicht verwendet. Siehe Beispiel im Anhang C.1.1.
1.1.2.10	Betriebsleistung Verbraucher (Stundenmittelwert)	Mittlere gemessene Leistung eines Gerätes oder einer Anlage im Normalbetrieb (Stundenmittelwert).
		Der Wert wird für die Berechnung von Energie- und Leistungsbedarf in SIA 2056 verwendet.
1.1.2.11	Bereitschaftsleistung Verbraucher	Mittlere gemessene Leistung eines Gerätes oder einer Anlage im Bereitschaftsmodus (Stundenmittelwert).
		Schnelle Umstellung in den Betriebsmodus.
1.1.2.12	Aus-Leistung Verbraucher	Mittlere gemessene Leistung eines Gerätes oder einer Anlage im Aus-Zustand (Stundenmittelwert).
		Lediglich der Aus-Zustand wird angezeigt und die Funktionen für die elektromagnetische Verträglichkeit werden bereitgestellt. Langsame Umstellung in den Betriebsmodus.
1.1.2.13	Vernetzte Bereitschaftsleistung Verbraucher	Leistung eines Gerätes oder einer Anlage im vernetzten Bereitschaftsbetrieb.
		Ein Gerät oder eine Anlage kann eine Funktion wieder auf- nehmen, indem sie über eine Netzwerkverbindung ein Fern- auslösesignal erhält.
1.1.3	Energie	
1.1.3.1	Energiebedarf Gebäude	Jährlicher Energiebedarf eines Gebäudes.
1.1.3.2	Energiebedarf Verbraucher	Der jährliche Energiebedarf eines Verbrauchers ist die Summe aller Energien der unterschiedlichen Betriebszustände.
		Der Wert wird verwendet für die Ermittlung des jährlichen Energiebedarfs eines Gebäudes.
1.1.3.3	Betriebsenergiebedarf Verbraucher	Jährlicher Energiebedarf eines Verbrauchers im Normalbetrieb.

1.1.3.4 Bereitschaftsenergiebedarf Verbraucher
 1.1.3.5 Aus-Zustands-Energiebedarf Verbraucher
 1.1.3.6 Blindenergie
 1.1.3.6 Produkt aus Blindleistung und Zeit.

 Ab einer bestimmten Grösse kann die Blindenergie vom Verteilnetzbetreiber verrechnet werden.

1.2 Symbole, Begriffe und Einheiten

Symbol	Begriff	Einheit
Α	Fläche	m^2
E_{vm}	Wartungswert der Beleuchtungsstärke	lx, lm/m ²
Ε	Energie	kWh
MF	Wartungsfaktor Beleuchtung	_
P	Leistung	kW
Q	Wärmeenergie	J, kWh
S	Scheinleistung	kVA
U	Wärmedurchgangskoeffizient	$W/(m^2K)$
V	Volumen	m ³
b	Ausbaugrad	-, %
f	Faktor	-, %
k	Korrekturfaktor	-, %
1	Länge	m
n	Anzahl	_
p	Druck	Pa, N/m²
q	Luftvolumenstrom	m ³ /h
t	Zeit	s (h)
γ	Auslastung	-, %
Δ	Differenz	_
ε	Arbeits-, Leistungszahl	_
η	Wirkungsgrad	-, %
θ	Temperatur	°C
ρ	Dichte	kg/m³
Φ	Wärme- oder Kälteleistung	W

1.3 Indizes

Die Indizes leiten sich im Allgemeinen aus der englischen Sprache ab.

	Deutsch	Englisch	Französisch	Italienisch
Α	Gerät	appliance	appareil	apparecchio
а	Luft	air	air	aria
ACS	Zutrittskontrolle	access control system	contrôle d'accès	controllo d'accesso
au	Autonomie	autonomy	autonomie	autonomia
AUS	Audioanlage	audio system	système de sonorisation	sistema audio
aux	Hilfs-(energie)	auxiliary (energy)	(énergie) auxiliaire	(energia) ausiliaria
В	basis	basic	de base	di base
b	Gebäude	building	bâtiment	edificio
BAC	Gebäudeautomation	building automation and control	automatisme du bâtiment	automazione dell'edificio
BAS	Einbruchmelde- anlage	burglar alarm system	installation de détection d'infraction	sistema d'allarme antifurto
Bat	Batterie	battery	batterie	batteria
BCS	Beschattungsanlage	blind control system	installation d'ombrage	sistema di ombreggiamento
BR	Schranke	barrier	barrière	barriera
С	Kühlung	cooling	refroidissement	raffreddamento
С	Bauteil	building component	élément d'ouvrage	elemento di costruzione
CAC	Umluftkühler	circulating air cooling unit	refroidisseur à circulation d'air	radiatore di raffreddamento ad aria
CAU	Auslastung	capacity utilization	charge	carico
CHI	Kältemaschine	chiller	machine de froid	macchina refrigerante
CHP	Wärmekraft- kopplung	combined heat and power	couplage chaleur-force	cogenerazione forza-calore
СОМ	Geräte- kombination (GK)	combination	combinaison d'appareils (CA)	combinazione di apparecchi (CA)
CON	konstant	constant	constant	costante
coo	Dauerbetrieb	continuous operation	fonctionnement en continu	funzionamento continuo
COP	Leistungszahl	coefficient of performance	coefficient de performance	coefficiente di prestazione
cor	Korrektur	correction	correction	correzione
CSR	Kühl- und Tiefkühlraum	cold storage room	chambre froide	cella frigorifera
D	Wohnung	dwelling	logement	appartamento
d	pro Tag	daily	par jour	al giorno
def	Vorgabe	default	par défaut	per default
des	Auslegung	design	dimensionnement	dimensiona- mento
dev	Verbraucher	device	consommateur	consumatore
dis	Verteilung	distribution	distribution	distribuzione

E Energie energy énergie energia e aussen external extérieur esterno EDG dieselelektrische emergency groupe diesel die engratore diesel EER Leistungszahl energy efficiency coefficient d'efficacité coefficiente eff Effizienz efficiency efficiacité defficienza el Elektrizität electricity électricité elettricità ELV Aufzug elevator ascensour ascensor eq Ausrüstung equipment equipement eq		Deutsch	Englisch	Französisch	Italienisch
dieselektrische Netzersatzanlage diesel generator diesel generat	Ε	Energie	energy	énergie	energia
Netzersatzanlage diesel generator de secours di emergenza coefficient d'efficiactié (réfroidissement) craftio (cooling) craftio (cooling) craftio (cooling) craftio (cooling) craftic (refroidissement) craftic prestatione (raffreddamento) efficienza efficiency efficienza efficienza electricity electricité elettricità installation di prestazione (raffreddamento) efficienza efficienza electricity electricité elettricità installazione d'éclairage d'emergenza d'emergenza d'emergenza d'emergenza d'emergenza d'emergenza escaler mécanique es	e	aussen	external	extérieur	esterno
eff Effizienz efficiency efficacité efficienze el Elektrizität electricity électricité elettricità el Elektrizität electricity électricité elettricità ELV Notlichtanlage emergency lighting systems installation installazione d'éclairage d'illuminazione de secours eq Ausrüstung elevator ascenseur ascenseur eq Ausrüstung equipment équipement equipaggiamento ESC Fahrtreppe escalator escalier mécanique scala mobile EV Elektrofahrzeug electric vehicle véhicule électrique veicolo elettrico FPD Brandvermeidungs- anlage derevention système de pré- vehicule électrique sistema g Gas gas gaz gas H Heizung heating chauffage riscaldamento HP Wärmerück- gewinnung heat pump pompa è chaleur pompa di calore HRE Wärmerück- gewinnung h	EDG		0 ,	0 1	U
el Elektrizität electricity électricité elettricità ELS Notlichtanlage emergency lighting systems installation d'éclairage d'esecours d'emergenza installation d'éclairage d'esecours d'emergenza ELV Aufzug elevator ascenseur ascensore eq Ausrüstung equipment équipement equipaggjamento ESC Fahrtreppe escalator escalier mécanique vélocole elettrique veicolo elettrico FPD Brandvermeidungs- anlage electric vehicle véhicule électrique veicolo elettrico FPD Brandvermeidungs- anlage fire prevention device vention d'incendie sistema g Gas gas gaz gas g Gas gas gaz gas HHP Wärmenuck- gewinnung heat pump pompe à chaleur pompa di calore HHPP Wärmerück- gewinnung heat recovery récupération recuperazione de la chaleur donestic hot water pipe récupération recuperazione du bydraul	EER	_			di prestazione
ELS Notlichtanlage emergency lighting systems installation d'éclairage de secours installazione d'éllminazione d'éllminazione d'érengraza ELV Aufzug elevator ascenseur ascensore eq Ausrüstung equipment équipement equipaggiamento ESC Fahrtreppe escalator escalier mécanique scala mobile EV Elektrofahrzeug electric vehicle véhicule électrique veicolo elettrico FPD Brandvermeidungs- anlage device vention d'incendie sala mobile fr Fraktion fraction fraction frazione g Gas gas gaz gas H Heizung heating chauffage riscaldamento HP Wärmepumpe heat pump pompe à chaleur pompa di calore HRE Wärmerück- gewinnung heat recovery récupération dicalore HWP Warmwasserrohr domestic hot water pipe récupération direcupération duitérieu hyd Hydraulik <td>eff</td> <td>Effizienz</td> <td>efficiency</td> <td>efficacité</td> <td>efficienza</td>	eff	Effizienz	efficiency	efficacité	efficienza
ELV Aufzug elevator ascenseur ascensore eq Ausrüstung equipment équipement equipaggiamento ESC Fahrtreppe escalator escalier mécanique veicolo elettrico EV Elektrofahrzeug electric vehicle véhicule électrique veicolo elettrico FPD Brandvermeidungs- anlage device vention d'incendie fr Fraktion fraction fraction fraction frazione g Gas gas gaz gas H Heizung heating chauffage riscaldamento HP Wärmepumpe heat pump pompe à chaleur pompa di calore gewinnung heat recovery récupération de la chaleur di calore hu Befeuchtung humidification humidification umidificazione hWW Warmwasserrohr domestic hot water pipe l'eau chaude calda hyd Hydraulik hydraulic hydraulique idraulico i innen, intern internal intérieur interno i, k Hilfsindex index kitchen equipment Lo Leuchtenbetrieb luminary operation L Beleuchtung mobile communi- cations system déperdition, perte perdita mech mechanisch mechanisch mechanisch mechanisch mechanisch mechanical mechanisch mechanisch mechanisch mechanical mechanisch mechanical mechanical mechanisch mechanical module module N nominal, Nenn- nominal nominal nominal nominal nat natürlich natural natural elevator di interio deliriluminazione di leefonia mobile telerona mobile cuerlaufverlust off mode arrêt spento fuori delle ore di freguita de ascensore devine description de avuoto perte à vide mode arrêt spentor officion en di freguita avuoto peration outside operating time dehors des heures	el	Elektrizität	electricity	électricité	elettricità
eq Ausrüstung equipment équipement equipaggiamento ESC Fahrtreppe escalator escalier mécanique scala mobile EV Elektrofahrzeug electric vehicle véhicule électrique veicolo elettrico FPD Brandvermeidungs- anlage fire prevention système de pré- vention d'incendie sistema fr Fraktion fraction fraction fraction g Gas gas gaz gas H Heizung heating chauffage riscaldamento HP Wärmerück- gewinnung heat recovery récupération recuperazione de la chaleur de la chaleur pompa di calore HWP Warmerück- gewinnung heat recovery récupération de la chaleur de la chaleur prompa di calore HWP Warmerück- gewinnung heat recovery récupération recuperazione de la chaleur tubo per l'acqua hu Befeuchtung humidification humidification umidification umidification	ELS	Notlichtanlage		d'éclairage	d'illuminazione
ESC Fahrtreppe escalator escalier mécanique scala mobile EV Elektrofahrzeug electric vehicle véhicule électrique veicolo elettrico FPD Brandvermeidungs-anlage fire prevention système de prévention d'incendie sistema antiincendio fr Fraktion fraction fraction frazione g Gas gas gaz gas H Heizung heating chauffage riscaldamento HP Wärmepumpe heat pump pompa è chaleur pompa di calore HRE Wärmerück-gewinung heat recovery récupération de la chaleur recuperazione di calore hu Befeuchtung humidification humidification umidificazione HWP Warmwasserrohr domestic hot water pipe récupération conduite pour tubo per l'acqua calda hyd Hydraulik hydraulic hydraulique idraulico i innen, intern internal intérieur interno i, k Hilfsindex kitchen equipment	ELV	Aufzug	elevator	ascenseur	ascensore
EV Elektrofahrzeug electric vehicle véhicule électrique veicolo elettrico FPD Brandvermeidungs anlage fire prevention device système de prévention of raction sistema antiincendio fr Fraktion fraction fraction fraction frazione g Gas gas gaz gas H Heizung heating chauffage riscaldamento HP Wärmepumpe heat pump pompe à chaleur pompa di calore HRE Wärmerück-gewinnung heat recovery récupération de la chaleur di calore HWP Warmwasserrohr gewinnung humidification humidification umidificazione HWP Warmwasserrohr gewinnung domestic hot water pipe récupération de la chaleur di calore HWP Warmwasserrohr domestic hot water pipe récupération du pour l'écupération HWP Warmwasserrohr intérieur tubo per l'acqua I warmwasserrohr internal intérieur intérieur internal I k	eq	Ausrüstung	equipment	équipement	equipaggiamento
FPD Brandvermeidungs- anlage fire prevention device système de pré- vention d'incendie sistema antiincendio fr Fraktion fraction fraction frazione g Gas gas gaz gas H Heizung heating chauffage riscaldamento HP Wärmepumpe heat pump pompe à chaleur pompa di calore HRE Wärmerück- gewinnung heat recovery récupération recuperazione hu Befeuchtung humidification humidification umidificazione hWP Warmwasserrohr domestic hot water pipe recupération recupération recupération hyd Hydraulik hydraulic hydraulique idraulico i innen, intern internal intérieur interno i, k Hilfsindex index indice auxiliaire indice d'aiuto KEQ Küchengerät kitchen equipment depareil de cuisine apparechio da cucina lb Verlust loss déperdition, perte	ESC	Fahrtreppe	escalator	escalier mécanique	scala mobile
anlage device vention d'incendie antiincendio fr Fraktion fraction fraction fraction frazione g Gas gas gas gas chauffage riscaldamento HP Wärmepumpe heat pump pompe à chaleur pompa di calore de la chaleur di calore di calore de la chaleur di calore di calore di calore de la chaleur di calore di	EV	Elektrofahrzeug	electric vehicle	véhicule électrique	veicolo elettrico
g Gas gas gaz gas H Heizung heating chauffage riscaldamento HP Wärmepumpe heat pump pompe à chaleur pompa di calore HRE Wärmerück- gewinnung heat recovery récupération recuperazione di calore hu Befeuchtung humidification humidification hWP Warmwasserrohr domestic hot water pipe conduite pour tubo per l'acqua calda hyd Hydraulik hydraulic hydraulique idraulico i innen, intern internal intérieur interno i, k Hilfsindex index indice auxiliaire indice d'aiuto KEQ Küchengerät kitchen equipment appareil de cuisine apparecchio da cucina L Beleuchtung lighting éclairage illuminazione Lo Leuchtenbetrieb luminary operation fonctionnement funzionamento Ms Verlust loss déperdition, perte perdita mcs Mobilfu	FPD	_	•	,	
H Heizung heating chauffage riscaldamento HP Wärmepumpe heat pump pompe à chaleur pompa di calore HRE Wärmerückgewinnung heat recovery récupération de la chaleur recuperazione di calore hu Befeuchtung humidification humidification umidification umidificazione HWP Warmwasserrohr domestic hot water pipe conduite pour calda tub per l'acqua calda hyd Hydraulik hydraulic hydraulique idraulico idraulico i innen, intern internal intérieur indice d'aiuto indice d'aiuto kEQ Küchengerät kitchen equipment appareil de cuisine apparecchio da cucina L Beleuchtung lighting éclairage illuminazione Lo Leuchtenbetrieb luminary operation déperdition, perte perdit mcs Mobilfunkanlage mobile communications system installation de téléphonie mobile	fr	Fraktion	fraction	fraction	frazione
HPWärmepumpeheat pumppompe à chaleurpompa di caloreHREWärmerückgewinnungheat recoveryrécupération de la chaleurrecuperazione di calorehuBefeuchtunghumidificationhumidificationumidificazioneHWPWarmwasserrohrdomestic hot water pipeconduite pour l'eau chaudetubo per l'acqua caldahydHydraulikhydraulichydrauliqueidraulicoiinnen, interninternalintérieurinternoi, kHilfsindexindexindice auxiliaireindice d'aiutoKEQKüchengerätkitchen equipmentappareil de cuisineapparecchio da cucinaLBeleuchtunglightingéclairageilluminazioneLoLeuchtenbetriebluminary operationfonctionnement luminairefunzionamento dell'illuminazionelsVerlustlossdéperdition, perteperditamcsMobilfunkanlagemobile communications systeminstallation de teléphonie mobileinstallazione di telefonia mobilemechmechanischmechanicalmécaniquemeccanicoMENMenümenumenumenuModModulmodulemodulemoduloNnominal, Nenn- nominalnominalnominalnominalenatnaturalnaturalenaturalepertita a vuotoleerlaufverlustoffmode arrêtspentooffausoffoperation outside operation interioufonctionnem	g	Gas	gas	gaz	gas
HREWärmerück- gewinnungheat recoveryrécupération de la chaleurrecuperazione di calorehuBefeuchtunghumidificationhumidificationumidificazioneHWPWarmwasserrohrdomestic hot water pipeconduite pour l'eau chaudetubo per l'acqua caldahydHydraulikhydraulichydrauliqueidraulicoiinnen, interninternalintérieurinternoi, kHilfsindexindexindice auxiliaireindice d'aiutoKEQKüchengerätkitchen equipmentappareil de cuisineapparecchio da cucinaLBeleuchtunglightingéclairageilluminazioneLoLeuchtenbetriebluminary operationfonctionnement luminairefunzionamento dell'illuminazionelsVerlustlossdéperdition, perteperditamcsMobilfunkanlagemobile communi- cations systeminstallation de téléphonie mobileinstallazione di telefonia mobilemechmechanischmechanicalmécaniquemeccanicoMENMenümenumenumenuModModulmodulemodulemoduloNnominal, Nenn- nominalnominalnominalnominalenatnaturalnaturalnaturalnaturalenllEisen-oder Leerlaufverlustno-load lossperte fer ou perte à videperdita a vuotooffausoffmode arrêtspentooffpop	Н	Heizung	heating	chauffage	riscaldamento
gewinnung hu Befeuchtung humidification humidification umidificazione HWP Warmwasserrohr domestic hot water pipe l'eau chaude calda hyd Hydraulik hydraulic hydraulique idraulico i innen, intern internal internal indice auxiliaire indice d'aiuto KEQ Küchengerät kitchen equipment appareil de cuisine L Beleuchtung lighting éclairage illuminazione Lo Leuchtenbetrieb luminary operation luminaire dell'illuminazione Is Verlust loss déperdition, perte perdita mcs Mobilfunkanlage mobile communications system téléphonie mobile telefonia mobile mech mechanisch mechanical mécanique mecuanico MEN Menü menu menu menu Mod Modul module module module modulo N nominal, Nenn- nominal nominal nominale natural natural natural natural naturale nIl Eisen-oder Leerlaufverlust off mode arrêt spento ooot Betrieb ausserhalb Nutzungszeit operating time off module financial fictions des heures funzione al di fuori delle ore di	HP	Wärmepumpe	heat pump	pompe à chaleur	pompa di calore
HWPWarmwasserrohrdomestic hot water pipeconduite pour l'eau chaudetubo per l'acqua caldahydHydraulikhydraulichydrauliqueidraulicoiinnen, interninternalintérieurinternoi, kHilfsindexindexindice auxiliaireindice d'aiutoKEQKüchengerätkitchen equipmentappareil de cuisineapparecchio da cucinaLBeleuchtunglightingéclairageilluminazioneLoLeuchtenbetriebluminary operationfonctionnement funzionamento dell'illuminazionelsVerlustlossdéperdition, perteperditamcsMobilfunkanlagemobile communications systeminstallation de teléfonia mobileinstallazione di telefonia mobilemechmechanischmechanicalmécaniquemeccanicoMENMenümenumenumenuModModulmodulemodulemoduloNnominal, Nenn-nominalnominalnominalnominalenatnatürlichnaturalnaturelnaturalenllEisen- oder Leerlaufverlustno-load lossperte fer ou perte à videperdita a vuotooffausoffmode arrêtspentooootBetrieb ausserhalboperation outside operating timefonctionnement en dehors des heuresfuori delle ore di	HRE		heat recovery	•	
hyd Hydraulik hydraulic hydraulique idraulico i innen, intern internal intérieur interno i, k Hilfsindex index indice auxiliaire indice d'aiuto KEQ Küchengerät kitchen equipment appareil de cuisine apparecchio da cucina L Beleuchtung lighting éclairage illuminazione Lo Leuchtenbetrieb luminary operation fonctionnement funzionament dell'illuminazione ls Verlust loss déperdition, perte perdita mcs Mobilfunkanlage mobile communications system mécanique meccanico mech mechanisch mechanical mécanique meccanico MEN Menü menu menu menu Mod Modul module module modulo N nominal, Nenn- nominal nominal nominal nominale nat natürilch natural naturel naturale nll Eisen- oder no-load loss perte fer ou perdita a vuoto o	hu	Befeuchtung	humidification	humidification	umidificazione
i innen, intern internal intérieur interno i, k Hilfsindex index indice auxiliaire indice d'aiuto KEQ Küchengerät kitchen equipment appareil de cuisine apparecchio da cucina L Beleuchtung lighting éclairage illuminazione Lo Leuchtenbetrieb luminary operation fonctionnement funzionamento dell'illuminazione ls Verlust loss déperdition, perte perdita mcs Mobilfunkanlage mobile communications system installation de téléphonie mobile installazione di telefonia mobile mech mechanisch mechanical mécanique meccanico MEN Menü menu menu menu Mod Modul module module modulo N nominal, Nenn- nominal nominal nominal nominale nat natürlich natural naturel naturale nII Eisen- oder no-load loss perte fer ou perdita a vuoto off mode arrêt spento off mo	HWP	Warmwasserrohr		•	
i, k Hilfsindex index indice auxiliaire indice d'aiuto KEQ Küchengerät kitchen equipment appareil de cuisine apparecchio da cucina L Beleuchtung lighting éclairage illuminazione Lo Leuchtenbetrieb luminary operation fonctionnement funzionamento dell'illuminazione ls Verlust loss déperdition, perte perdita mcs Mobilfunkanlage mobile communications system installation de téléphonie mobile installazione di telefonia mobile mech mechanisch mechanical mécanique meccanico MEN Menü menu menu menu Mod Modul module module modulo N nominal, Nenn- nominal nominal nominale nat natürilich natural naturel naturale nII Eisen- oder Leerlaufverlust no-load loss perte fer ou perte â vide perdita a vuoto off mode arrêt spento nootal peration outside operating time fonctionnement en dehors des heures	hyd	Hydraulik	hydraulic	hydraulique	idraulico
KEQKüchengerätkitchen equipmentappareil de cuisineapparecchio da cucinaLBeleuchtunglightingéclairageilluminazioneLoLeuchtenbetriebluminary operationfonctionnement funzionamento dell'illuminazionelsVerlustlossdéperdition, perteperditamcsMobilfunkanlagemobile communications systeminstallation de téléphonie mobileinstallazione di telefonia mobilemechmechanischmechanicalmécaniquemeccanicoMENMenümenumenumenuModModulmodulemodulemoduloNnominal, Nenn-nominalnominalnominalnominalenatnatürlichnaturalnaturelnaturalenllEisen-oder Leerlaufverlustno-load lossperte fer ou perdita a vuotooffausoffmode arrêtspentooootBetrieb ausserhalb Nutzungszeitoperation outside operating timefonctionnement en dehors des heuresfunzione al di fuori delle ore di	i	innen, intern	internal	intérieur	interno
L Beleuchtung lighting éclairage illuminazione Lo Leuchtenbetrieb luminary operation fonctionnement funzionamento dell'illuminazione Is Verlust loss déperdition, perte perdita mcs Mobilfunkanlage mobile communications system téléphonie mobile telefonia mobile mech mechanisch mechanical mécanique meccanico MEN Menü menu menu menu Mod Modul module module modulo N nominal, Nenn-nominal nominal nominale nat natürlich natural naturel naturale nIl Eisen- oder Leerlaufverlust off aus off mode arrêt spento ooot Betrieb ausserhalb Nutzungszeit operating time fonctionnement en dehors des heures	i, k	Hilfsindex	index	indice auxiliaire	indice d'aiuto
Lo Leuchtenbetrieb luminary operation fonctionnement dell'illuminazione Is Verlust loss déperdition, perte perdita mcs Mobilfunkanlage mobile communications system téléphonie mobile telefonia mobile mech mechanisch mechanical mécanique meccanico MEN Menü menu menu menu menu Mod Modul module module module modulo N nominal, Nenn-nominal nominal nominale nat natürlich natural naturel naturale nII Eisen- oder Leerlaufverlust off aus off mode arrêt spento ooot Betrieb ausserhalb Nutzungszeit operating time fonctionnement en dehors des heures funzione al di fuori delle ore di	KEQ	Küchengerät	kitchen equipment	appareil de cuisine	
IsVerlustlossdéperdition, perteperditamcsMobilfunkanlagemobile communications systeminstallation de téléphonie mobileinstallazione di telefonia mobilemechmechanischmechanicalmécaniquemeccanicoMENMenümenumenumenuModModulmodulemodulemoduloNnominal, Nenn- natnominalnominalnominalnominalenatnatürlichnaturalnaturelnaturalenllEisen- oder Leerlaufverlustno-load lossperte fer ou perte fer ou perte à videperdita a vuotooffausoffmode arrêtspentooootBetrieb ausserhalb Nutzungszeitoperation outside operating timefonctionnement en dehors des heuresfunzione al di fuori delle ore di	L	Beleuchtung		éclairage	illuminazione
mcsMobilfunkanlagemobile communications systeminstallation de téléphonie mobileinstallazione di telefonia mobilemechmechanischmechanicalmécaniquemeccanicoMENMenümenumenumenuModModulmodulemodulemoduloNnominal, Nenn- natnominalnominalnominalnatnatürlichnaturalnaturelnaturalenllEisen- oder Leerlaufverlustno-load lossperte fer ou perte fer ou perte à videperdita a vuotooffausoffmode arrêtspentooootBetrieb ausserhalb Nutzungszeitoperation outside operating timefonctionnement en dehors des heuresfunzione al di fuori delle ore di	Lo	Leuchtenbetrieb	luminary operation		
mechmechanischmechanicalmécaniquemeccanicoMENMenümenumenumenuModModulmodulemodulemoduloNnominal, Nenn- natnominalnominalnominalnominalenatnatürlichnaturalnaturelnaturalenllEisen- oder Leerlaufverlustno-load loss perte fer ou perte à videperdita a vuotooffausoffmode arrêtspentooootBetrieb ausserhalb Nutzungszeitoperation outside operating timefonctionnement en dehors des heuresfuori delle ore di	ls		loss		·
MENMenümenumenumenuModModulmodulemodulemoduloNnominal, Nenn- natnominalnominalnominalenatnatürlichnaturalnaturelnaturalenllEisen- oder Leerlaufverlustno-load lossperte fer ou perte à videperdita a vuotooffausoffmode arrêtspentooootBetrieb ausserhalb Nutzungszeitoperation outside operating timefonctionnement en dehors des heuresfuori delle ore di	mcs	Mobilfunkanlage			
ModModulmodulemodulemoduloNnominal, Nenn- natnominalnominalnominalenatnatürlichnaturalnaturelnaturalenllEisen- oder Leerlaufverlustno-load lossperte fer ou perte à videperdita a vuotooffausoffmode arrêtspentooootBetrieb ausserhalb Nutzungszeitoperation outside operating timefonctionnement en dehors des heuresfuori delle ore di	mech	mechanisch	mechanical	mécanique	meccanico
N nominal, Nenn- nominal nominal nominal nat natürlich natural naturel naturale nll Eisen- oder Leerlaufverlust no-load loss perte fer ou perdita a vuoto off aus off mode arrêt spento ooot Betrieb ausserhalb Nutzungszeit operation outside operating time fonctionnement en dehors des heures fuori delle ore di	MEN	Menü	menu	menu	menu
nat natürlich natural naturel naturale nll Eisen- oder Leerlaufverlust no-load loss perte fer ou perdita a vuoto perte à vide off aus off mode arrêt spento ooot Betrieb ausserhalb Nutzungszeit operation outside operating time fonctionnement en dehors des heures fuori delle ore di	Mod	Modul	module	module	modulo
nll Eisen- oder Leerlaufverlust no-load loss perte fer ou perte à vide perte à vide off aus off mode arrêt spento ooot Betrieb ausserhalb Nutzungszeit operation outside operating time fonctionnement en dehors des heures fuori delle ore di	Ν	nominal, Nenn-	nominal	nominal	nominale
Leerlaufverlust perte à vide off aus off mode arrêt spento ooot Betrieb ausserhalb operation outside fonctionnement en funzione al di Nutzungszeit operating time dehors des heures fuori delle ore di	nat	natürlich	natural	naturel	naturale
ooot Betrieb ausserhalb operation outside fonctionnement en funzione al di Nutzungszeit operating time dehors des heures fuori delle ore di	nll		no-load loss	•	perdita a vuoto
Nutzungszeit operating time dehors des heures fuori delle ore di	off	aus	off	mode arrêt	spento
	ooot			dehors des heures	fuori delle ore di

	Deutsch	Englisch	Französisch	Italienisch
Ор	Betrieb	operating	mode actif	modalità attiva
opm	Betriebsart	operating mode	mode de fonctionne- ment	modalità di funzionamento
P	Person	person	personne	persona
p	Schutz	protection	protection	protezione
PBA	Parabolantenne	parabolic aerial	antenne parabolique	antenna parabolica
pk	Spitze	peak	pic	punta
PLR	Teillastfaktor	part load ratio	facteur de charge partielle	fattore di carico parziale
PM	zentrale Parkuhr	parking meter	parcmètre	parchimetro
Pr	Präsenz	presence	présence	presenza
PV	Photovoltaik	photovoltaics	photovoltaïque	fotovoltaico
R	Raum	room	local	locale
RD	Dreh-/Karusselltür	rotating door	porte à tambour	porta girevole
rec	Rekuperation	recuperation	récupération	recuperazione
REH	Widerstandsheizung	resistance heater	chauffage à résistance	riscaldamento a resistenza
RGH	Dachrinnenheizung	roof gutter heating	chauffage des gouttières	riscaldamento delle grondaie
RMDC	Kühl-/Tiefkühlmöbel	refrigerator, freezer	réfrigérateur, congélateur	frigorifero, congelatore
SAT	Satellitenempfänger	satellite receiver	récepteur satellite	ricevitore satellitare
sc	Eigenverbrauch	self consumption	consommation propre	consumo proprio
scl	Kupfer- oder Kurzschlussverlust	short-circuit loss	perte cuivre ou perte en court- circuit	perdita di corto circuito
sdev	Kleinverbraucher	small device	petit consommateur	piccolo consumatore
SEA	Sitzplatz	seat	place assise	posto a sedere
SFP	spez. Ventilator- leistung	specific fan power	puissance spécifique du ventilateur	potenza specifica del ventilatore
SG	Schiebetür	sliding gate	porte coulissante	porta a scorrimento
SGA	Schaltgeräte- kombination	switchgear assembly	ensemble de commutateurs	apparecchiature assiemate
SHEV	Rauch- und Wärme- abzugsanlage	smoke and heat exhaust ventilator	installation d'éva- cuation de fumée et de chaleur	installazione di evacuazione fumi e calore
sls	Schleichfahrt	slow speed	vitesse lente	velocità di scorrimento
sp	spezifisch	specific	spécifique	specifico
SPFC	Jahresarbeitszahl (Kühlen)	seasonal performance factor (cooling)	coefficient de perfor- mance annuel (refroidissement)	coefficiente di rendimento annuale (raffreddamento)
SPFH	Jahresarbeitszahl (Heizen)	seasonal performance factor (heating)	coefficient de performance annuel (chauffage)	coefficiente di rendimento annuale (riscaldamento)

	Deutsch	Englisch	Französisch	Italienisch
St	Bereitschafts- zustand	standby	mode veille	modalità sospensione
STC	Standard-Test- bedingungen	standard test condition	conditions standard de test	condizioni test standard
STH	Heizband	strip heater	ruban chauffant	nastro riscaldante
su	Sommer	summer	été	estate
SUP	Zuluft	supply air	air fourni	aria immessa
Sys	System	system	système	sistema
tot	total	total	total	totale
TRF	Transformator	transformer	transformateur	trasformatore
TS	Drehkreuz	turnstile	tourniquet	tornello
и	benutzen	use	utiliser	utilizzare
UPS	unterbrechungsfreie Stromversorgung	uninterruptible power supply	alimentation électrique sans coupure	alimentazione elettrica ininterrotta
V	Lüftung	ventilation	ventilation	ventilazione
VMS	Videoüberwachungs- anlage	video monitoring system	installation de surveillance vidéo	impianto di videosorveglianza
W	Warmwasser	domestic hot water	eau chaude sanitaire	acqua calda sanitaria
W	Fenster	window	fenêtre	finestra

2 ENERGIE UND LEISTUNGSBEDARF

2.1 Berechnung des Energiebedarfs

2.1.1 Allgemein

Die Energie ist das Produkt von Leistung und Zeit. Bei den Berechnungen wird die Blindenergie nicht berücksichtigt, da davon ausgegangen werden kann, dass allfällige Kompensationsmassnahmen getroffen werden. Sofern nichts Spezifisches erwähnt ist, wird bei der Energie vom jährlichen Bedarf ausgegangen.

2.1.2 Energiebedarf Verbraucher

Der Energiebedarf eines Verbrauchers ist die Summe des Bedarfs aus dem Betriebs-, Bereitschaftsund dem Aus-Zustand.

$$E_{el,dev} = E_{el,Op,dev} + E_{el,St,dev} + E_{el,off,dev}$$

$$\tag{1}$$

$$E_{el,Op,dev} = P_{el,Op,dev} \cdot t_{Op,dev}$$
 (2)

$$E_{el,St,dev} = P_{el,St,dev} \cdot t_{St,dev}$$
 (3)

$$E_{el.off,dev} = P_{el.off,dev} \cdot t_{off,dev}$$
 (4)

Energiebedarf Verbraucher in kWh

 $\begin{array}{ll} E_{el,Op,dev} & \text{Betriebsenergiebedarf Verbraucher in kWh} \\ E_{el,St,dev} & \text{Bereitschaftsenergiebedarf Verbraucher in kWh} \\ E_{el,off,dev} & \text{Aus-Zustands-Energiebedarf Verbraucher in kWh} \end{array}$

 $P_{el,Op,dev}$ Betriebsleistung Verbraucher (Stundenmittelwert) in kW $P_{el,St,dev}$ Bereitschaftsleistung Verbraucher (Stundenmittelwert) in kW

 $P_{el,off,dev}$ Aus-Leistung Verbraucher (Stundenmittelwert) in kW

 $t_{Op,dev}$ jährliche Betriebsstunden Verbraucher in h $t_{St,dev}$ jährliche Bereitschaftsstunden Verbraucher in h $t_{off,dev}$ jährliche Aus-Zustands-Stunden Verbraucher in h

2.1.3 Energiebedarf Gebäude

2.1.3.1 Die Summe der Energien aller Verbraucher ergibt den Energiebedarf des Gebäudes. Der Energieertrag aus Elektrizitätserzeugungseinrichtungen ist separat zu betrachten, da dadurch der Verbrauch nicht gesenkt wird, sondern lediglich der Energiebezug vom Verteilnetzbetreiber.

$$E_{el,b} = \sum_{i=1}^{n} E_{el,dev,i} \tag{5}$$

 $E_{el,b}$ Energiebedarf Gebäude in kWh $E_{el,dev,i}$ Energiebedarf Verbraucher in kWh

2.1.3.2 Zur Ermittlung des jährlichen Energiebedarfs wird das Gebäude in die verschiedenen Gebäude-kategorien (I bis XII gemäss SIA 380/1) unterteilt. Durch die Auswahl von diversen Verbrauchergruppen (z. B. Geräte, Beleuchtung, Lüftung usw.) kann die Gesamtenergie pro Gebäudekategorie ermittelt werden. Die Allgemeine Gebäudetechnik und Wärmeanlagen werden einzeln betrachtet und zur Summe aller vorhandenen Gebäudekategorien addiert. Die Methodik zur Berechnung des jährlichen Energiebedarfs von Gebäuden ist in der Figur 1 ersichtlich.

Start Berechnung jährlicher Energiebedarf Kategorien definieren Gebäude-Gebäude-Gebäudekategorie I kategorie II kategorie XII Wohnen MFH Wohnen EFH Hallenbad Verbraucher-Verbraucher-Verbrauchergruppe 1 gruppe 2 gruppe n Summe der Gebäudekategorie Summe aller Kategorien jährlicher Energiebedarf Ende Berechnung jährlicher Energiebedarf

Figur 1 Methodik zur Berechnung des jährlichen elektrischen Energiebedarfs von Gebäuden

2.2 Berechnung des Leistungsbedarfs

2.2.1 Allgemein

Für die Dimensionierung der Infrastruktur wird die Wirkleistung bzw. die daraus resultierende Stromstärke benötigt. Bei der Berechnung wird nicht auf die Schein- und Blindleistung eingegangen, die ebenfalls einen Einfluss auf die Infrastruktur haben.

2.2.2 Verbraucherleistung

Figur 2 Definition der Verbraucherleistung

 $P_{el,pk,dev}$ Spitzenleistung Verbraucher $P_{el,N,dev}$ Nennleistung Verbraucher

 $P_{el,Op,dev}$ Betriebsleistung Verbraucher (Stundenmittelwert) $P_{el,St,dev}$ Bereitschaftsleistung Verbraucher (Stundenmittelwert) $P_{el,off,dev}$ Aus-Leistung Verbraucher (Stundenmittelwert)

- 2.2.2.1 Zusammen mit der Nennleistung wird die Spitzenleistung benötigt für die Dimensionierung der Vorsicherung und der Leitung. Die Summe aller Nennleistungen ergibt nicht die Nennleistung eines Gebäudes, da nicht alle Verbraucher gleichzeitig oder mit der Nennleistung betrieben werden. Um diesem Umstand Rechnung zu tragen, wird ein Stundenmittelwert für die Ermittlung der Anschlussleistung verwendet.
- 2.2.2.2 Die Aus- und Bereitschaftsleistung dient dazu, den Leistungsbedarf ausserhalb der Nutzungszeit besser zu verstehen.

2.2.3 Gebäudeleistung

Figur 3 Definition der Gebäudeleistung

 $P_{el,des,b}$ $P_{el,Op0.25h,pk,b}$ $P_{el,Op,pk,b}$ $P_{el,ooot,b}$

Anschlussleistung Gebäude

maximale Leistung Gebäude (¼-Stunden-Mittelwert) maximale Betriebsleistung Gebäude (Stunden-Mittelwert) Leistung ausserhalb der Nutzungszeit Gebäude

- 2.2.3.1 Die maximale Leistung (¼-Stunden-Mittelwert) dient als Basis für die Ermittlung der Anschlussleistung des Gebäudes und für die Dimensionierung der Anschlussleitung des Verteilnetzbetreibers.
- 2.2.3.2 Die Summe aller Betriebsleistungen der aktiven Verbraucher, zuzüglich den Bereitschaftsleistungen aller passiven Verbraucher, zuzüglich der Aus-Leistungen aller abgeschalteten Verbraucher, multipliziert mit einem Korrekturfaktor, ergibt die maximale Betriebsleistung (Stundenmittelwert) des Gebäudes. Der Korrekturfaktor ist notwendig, um der Nutzungsintensität der unterschiedlichen Gebäudetypen gerecht zu werden.

$$P_{el,Op,pk,b} = \left(\sum_{i=1}^{n} P_{el,Op,dev,i} + \sum_{i=1}^{n} P_{el,St,dev,i} + \sum_{i=1}^{n} P_{el,off,dev,i}\right) \cdot k_{cor}$$
(6)

 $P_{el,Op,pk,b}$ $P_{el,Op,dev}$ $P_{el,St,dev}$ $P_{el,off,dev}$ k_{cor}

maximale Betriebsleistung Gebäude (Stundenmittelwert) in kW Betriebsleistung aktive Verbraucher (Stundenmittelwert) in kW

Bereitschaftsleistung passive Verbraucher (Stundenmittelwert) in kW Aus-Leistung ausgeschaltete Verbraucher (Stundenmittelwert) in kW Korrekturfaktor nach Nutzungsintensität

- 2.2.3.3 Allfällige Leistungen aus Elektrizitätserzeugungsanlagen dürfen nicht die Anschlussleistung reduzieren, ausser wenn sichergestellt werden kann, dass beim Nichtbetreiben der Elektrizitätserzeugungsanlagen die maximale Leistung die Anschlussleistung nicht übersteigt.
- 2.2.3.4 Die Anschlussleistung des Gebäudes ergibt sich aus der maximalen Betriebsleistung (Stundenmittelwert), zuzüglich den Ausbaureserven und Ausbauschritten (Grösse der Netztransformatoren oder Abstufungen des Netzschutzes). Dies ist bei jedem Gebäude bzw. Nutzer spezifisch zu betrachten
- 2.2.3.5 Bei der maximalen Leistung (¼-Stunden-Mittelwert) handelt es sich um einen physikalisch gemessenen Wert. Er ist relevant für Ausbau- oder Optimierungsmassnahmen, kann jedoch in einer frühen Planungsphase nicht theoretisch ermittelt werden.

2.2.3.6 Die Leistungsermittlung spezifisch für Sommer, Winter, Tag oder Nacht ist unter Berücksichtigung der Verbraucher, die im Betriebs-, Bereitschafts- oder Aus-Modus sind, möglich. Dabei sind die Betriebsmodi der Verbraucher zum jeweiligen Zeitpunkt zu bestimmen. Beispielsweise ist im Sommer eine Heizung normalerweise im Aus-Modus.

2.3 Korrekturfaktoren

- 2.3.1 Solange keine projektspezifischen Werte für die Korrekturfaktoren vorliegen, können die Werte gemäss Tabelle 2 verwendet werden. Der Korrekturfaktor ist einem Gleichzeitigkeitsfaktor gleichzusetzen. Zur Ermittlung der Gesamtleistung wird das Gebäude in die verschiedenen Gebäudekategorien (I bis XII gemäss SIA 380/1) unterteilt. Durch die Auswahl von diversen Verbrauchergruppen (z. B. Geräte, Beleuchtung, Lüftung usw.) kann die Gesamtleistung pro Gebäudekategorie ermittelt werden, welche mit einem Korrekturfaktor multipliziert wird. Der Berechnungsablauf ist in der Figur 4 detailliert ersichtlich.
- 2.3.2 Der Korrekturfaktor ist von der Gebäudekategorie und der Effizienz (Neubau, Bestand) abhängig. Aus Tabelle 2 können die Werte des Korrekturfaktors entnommen werden.

Tabelle 2 Korrekturfaktoren nach Gebäudekategorie

Geb	äudekategorie	Korrekturfaktor
I	Wohnen MFH	1,0
П	Wohnen EFH	1,0
Ш	Verwaltung	0,6 0,8
IV	Schule	0,7 0,9
V	Verkauf	0,8 0,9
VI	Restaurant	0,8 0,9
VII	Versammlungslokal	0,8 0,9
VIII	Spital	0,8 0,9
IX	Industrie	1,0
Х	Lager	0,7 0,9
ΧI	Sportbaute	0,7 0,9
XII	Hallenbad	0,8 0,9

2.3.3 Die in Tabelle 2 aufgeführten Korrekturfaktoren sind Vorschläge, die jedoch in Abhängigkeit von genaueren Kenntnissen über die Verbraucher und deren Betriebsart angepasst werden müssen. Ausserdem können nicht im Merkblatt erfasste Verbraucher, wie zum Beispiel nutzungsspezifische Prozessanlagen (Bäckerei, Produktion u. Ä.), einen Einfluss auf die Grösse des Korrekturfaktors haben.

Bei vielen Verbrauchern der Allgemeinen Gebäudetechnik (z.B. Wärmepumpe, Lüftung usw.) ist der Korrekturfaktor höher anzusetzen, weil sie über mehrere Stunden betrieben werden.

2.3.4 In einem Gebäude mit überwiegender Büronutzung (Verwaltung) kann ein niedrigerer Korrekturfaktor angenommen werden, da die Verbraucher überwiegend mit den Grundlagen des vorliegenden Merkblatts übereinstimmen, zum Beispiel 0,6.

Start Berechnung Gesamtleistung Kategorien definieren Gebäude-Gebäude-Gebäudekategorie I kategorie II kategorie XII Wohnen MFH Wohnen EFH Hallenbad Verbraucher-Verbraucher-Verbrauchergruppe 1 gruppe 2 gruppe n Summe der Gebäudekategorie Korrekturfaktor nach Nutzungsintensität Summe aller Kategorien Gesamtleistung Ende Berechnung Gesamtleistung

Figur 4 Methodik zur Berechnung der elektrischen Gesamtleistung von Gebäuden

3 GERÄTE

3.1 Gerätekombinationen (GK)

3.1.1 Einführung

- 3.1.1.1 In diesem Kapitel sind verschiedene Gerätekombinationen (GK) mit den dazugehörigen Planungswerten aufgelistet. Mit diesen Kombinationen werden die typischen und relevanten Geräte für spezifische Raumnutzungen zusammengefasst. Damit sollen Standardnutzungen definiert werden, woraus sich der Elektrizitätsbedarf der Geräte berechnen lässt. Jede dieser GK lässt sich mindestens einer Raumnutzung von SIA 2024 zuordnen. Einige Kombinationen kommen auch in verschiedenen Raumnutzungen vor.
- 3.1.1.2 Zu jeder GK werden verschiedene Nutzungszeiten angegeben, da sich diese bei den verschiedenen Nutzungen unterscheiden können. Die daraus resultierenden Standard-Planungswerte sind als Elektrizitätsbedarf pro Jahr zu betrachten. Diese sind von der Nutzungsintensität, der Nutzungsfläche und den darin enthaltenen Geräten abhängig. Die Werte der jeweiligen Abhängigkeitsfaktoren sind in den Unterkapiteln ersichtlich.
- 3.1.1.3 Für Anpassungen der einzelnen Kombinationen kann nach dem Berechnungsablauf gemäss 3.1.2 vorgegangen werden.

3.1.2 Berechnungsablauf

Um den Elektrizitätsbedarf einer GK zu berechnen, kann nach Figur 5 vorgegangen werden. Nach der Bestimmung der geeigneten Kombination können Anpassungen an der GK vorgenommen werden, indem die vorhandenen Geräte gewählt werden. Für jedes Gerät kann eine eigene Elektrizitätsbedarfsklasse bestimmt werden. Mit den daraus resultierenden Werten kann, über die Nutzungstage und die Anzahl der Räume, der Elektrizitätsbedarf berechnet werden.

Nicht definierte Nutzungstypen können durch Zusammenziehen von einzelnen Geräten in eine eigene GK umgewandelt werden. Die Berechnung kann dann ebenfalls nach Figur 5 erfolgen.

3.1.3 Berechnungsmodell

$$E_{el,Op,COM} = \sum_{i=1}^{n} E_{el,Op,dev,i}$$
(7)

$$E_{el,St,COM} = \sum_{i=1}^{n} E_{el,St,dev,i}$$
(8)

$$P_{el,Op,COM} = \frac{E_{el,Op,COM}}{t_{Op,COM}}$$
(9)

$$P_{el,St,COM} = \frac{E_{el,St,COM}}{t_{St,COM}}$$
(10)

 $\begin{array}{ll} E_{el,Op,COM} & \text{Betriebsenergiebedarf Kombination in kWh} \\ E_{el,Op,dev} & \text{Betriebsenergiebedarf Verbraucher in kWh} \\ E_{el,St,COM} & \text{Bereitschaftsenergiebedarf Kombination in kWh} \\ E_{el,St,dev} & \text{Bereitschaftsenergiebedarf Verbraucher in kWh} \end{array}$

 $\begin{array}{ll} P_{el,Op,COM} & \text{Betriebsleistung Kombination (Stundenmittelwert) in kW} \\ P_{el,St,COM} & \text{Bereitschaftsleistung Kombination (Stundenmittelwert) in kW} \end{array}$

 $t_{Op,COM}$ jährliche Betriebsstunden in h $t_{St,COM}$ jährliche Bereitschaftsstunden in h

Beginn Berechnungsablauf Auswahl Geräte Elektrizitätsbedarfsklasse Leistung Nutzungstage pro Jahr Energie Betriebsleistung **Energiebedarf Betrieb** Energiebedarf Bereitschaftsleistung Bereitschaft Anzahl Geräte Anzahl Geräte Jahresgleichzeitigkeitsfaktor Ende Berechnungsablauf

Figur 5 Berechnungsablauf des Elektrizitätsbedarfs

3.1.4 **Nutzungstage**

Die Nutzungstage für die GK können nach SIA 2024 folgendermassen vereinheitlicht werden.

Tabelle 3 Nutzungstage pro Jahr

	Entspricht	Typische Nutzung	Betriebszeit h	Bereitschaftszeit h
261 Tage	5-Tage-Woche	Büro, Schule usw.	11	13
313 Tage	6-Tage-Woche	Verkauf usw.	13	11
365 Tage	7-Tage-Woche	Hotel, Kultur, Spital usw.	16	8

3.1.5 Jahresgleichzeitigkeitsfaktor

Der berechnete Energiebedarf wird mittels Jahresgleichzeitigkeitsfaktor angepasst. Dieser ist von der jeweiligen Nutzung und nicht von der GK abhängig. Dadurch können verschiedene GK der gleichen Nutzung zusammengefasst und mit demselben Jahresgleichzeitigkeitsfaktor berechnet werden.

Tabelle 4 Jahresgleichzeitigkeitsfaktor

Faktor	Nutzung
0,7	Hotelzimmer, Empfang, Schulzimmer, Lehrerzimmer, Bibliothek, Hörsaal, Schulfachraum, Turnhalle
0,8	Alle anderen Raumnutzungen gemäss SIA 2024

3.1.6 Verschiedene Gerätekombinationen (GK)

- 3.1.6.1 Folgende GK werden nachstehend behandelt:
 - Gastro 1 und 2
 - Büro sporadisch und normal
 - Informations- und Kommunikationstechnik 1, 2 und Zentral
 - Hotel
- 3.1.6.2 Eine Zusammenstellung des Energiebedarfs und aller Leistungsstunden-Mittelwerte der verschiedenen GK ist im Anhang E ersichtlich.

3.2 **Gastro 1**

3.2.1 Einführung und Abgrenzung

- 3.2.1.1 Die GK Gastro 1 beschreibt einen gastronomischen Standort für kurze Aufenthaltsdauer und/oder mit minimaler Bestückung an Geräten. Er dient zur Zubereitung und/oder Lagerung von Pausenverpflegung.
- 3.2.1.2 Folgende Nutzungskategorien gemäss SIA 2024 können Gastro-1-Standorte beinhalten:
 - Hotel
 - Verwaltung
 - Schulen
 - Verkauf
 - Versammlungslokale
 - Spitäler
 - zugeordnete Nutzungen

3.2.2 Verbraucherliste und Bezugsgrössen

- 3.2.2.1 Die GK Gastro 1 ist in der Regel mit folgenden Geräten ausgestattet:
 - Kaffeemaschine
 - Wasserkocher oder Rechaud
 - Kühlschrank
 - Geschirrspüler
 - Mikrowelle
- 3.2.2.2 Die Dimensionen der Geräte entsprechen einem Haushaltgebrauchsgerät.

3.2.3 Standardwerte

3.2.3.1 Betriebsenergiebedarf

Der Betriebsenergiebedarf einer GK Gastro 1 ist in Tabelle 5 ersichtlich.

Tabelle 5 Betriebsenergiebedarf innerhalb der Nutzungszeit für die Geräte Gastro 1

Klasse			Tief			Mittel		Hoch		
Nutzungstage		261	313	365	261	313	365	261	313	365
Betriebsenergiebedarf	kWh	190	230	280	330	400	490	520	650	810

3.2.3.2 Bereitschaftsenergiebedarf

Der Bereitschaftsenergiebedarf einer GK Gastro 1 ist in Tabelle 6 ersichtlich.

Tabelle 6 Bereitschaftsenergiebedarf ausserhalb der Nutzungszeit für Geräte Gastro 1

Klasse			Tief			Mittel		Hoch		
Nutzungstage		261	313	365	261	313	365	261	313	365
Bereitschaftsenergiebedarf	kWh	70	50	30	90	70	40	210	190	130

3.2.3.3 Energiebedarf nach Nutzungstagen

Der totale Energiebedarf einer GK Gastro 1 setzt sich aus dem Betriebs- und Bereitschaftsenergiebedarf zusammen. Die Ergebnisse in Tabelle 7 sind ohne den Faktor der Jahresgleichzeitigkeit gemäss SIA 2024 zu betrachten.

Tabelle 7 Energiebedarf für Geräte Gastro 1 nach Nutzungstagen (ohne Jahresgleichzeitigkeit)

Klasse			Tief			Mittel		Hoch		
Nutzungstage		261	313	365	261	313	365	261	313	365
Energiebedarf	kWh	260	280	310	420	470	530	730	840	940

3.2.3.4 Stundenmittelwert Leistung

Die Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für die GK Gastro 1 sind in Tabelle 8 ersichtlich.

Tabelle 8 Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für Geräte Gastro 1

Klasse		Tief				Mittel		Hoch		
Nutzungstage		261	313	365	261	313	365	261	313	365
Betriebsleistung	W	66	57	48	115	98	84	181	160	139
Bereitschaftsleistung	W	12	11	10	15	15	14	36	41	45

3.3 **Gastro 2**

3.3.1 Einführung und Abgrenzung

- 3.3.1.1 Die GK Gastro 2 beschreibt einen gastronomischen Standort, in welchem kalte und warme Speisen zubereitet und verkauft werden.
- 3.3.1.2 Folgende Raumnutzungen gemäss SIA 2024 können Gastro-2-Standorte beinhalten:
 - Verkauf
 - Versammlungslokale
 - zugeordnete Nutzungen

3.3.2 Verbraucherliste und Bezugsgrössen

- 3.3.2.1 Die GK Gastro 2 ist in der Regel zusätzlich zur Ausstattung von Gastro 1 mit folgenden Geräten ausgestattet:
 - Backofen, Kleinbackofen, Steamer
 - Grill, IR-Strahler
 - Warmhaltegeräten
 - Kasse

3.3.3 Standardwerte

3.3.3.1 Betriebsenergiebedarf

Der Betriebsenergiebedarf der Geräte einer GK Gastro 2 ist in Tabelle 9 ersichtlich.

Tabelle 9 Betriebsenergiebedarf innerhalb der Nutzungszeit für Geräte Gastro 2

Klasse		Tief			Mittel			Hoch			
Nutzungstage	261	313	365	261	313	365	261	313	365		
Betriebsenergiebedarf kWh	2100	2500	2900	3900	4700	5500	6300	7 600	8900		

3.3.3.2 Bereitschaftsenergiebedarf

Der Bereitschaftsenergiebedarf einer GK Gastro 2 ist in Tabelle 10 ersichtlich.

Tabelle 10 Bereitschaftsenergiebedarf ausserhalb der Nutzungszeit für Geräte Gastro 2

Klasse			Tief			Mittel		Hoch		
Nutzungstage		261	313	365	261	313	365	261	313	365
Bereitschaftsenergiebedarf	kWh	100	80	50	130	100	60	250	220	150

3.3.3.3 Energiebedarf nach Nutzungstagen

Der totale Energiebedarf einer GK Gastro 2 setzt sich aus dem Betriebs- und Bereitschaftsenergiebedarf zusammen. Die Ergebnisse in Tabelle 11 sind ohne den Faktor der Jahresgleichzeitigkeit gemäss SIA 2024 zu betrachten.

Tabelle 11 Energiebedarf für Geräte Gastro 2 nach Nutzungstagen (ohne Jahresgleichzeitigkeit)

Klasse			Tief			Mittel		Hoch		
Nutzungstage		261	313	365	261	313	365	261	313	365
Energiebedarf	kWh	2200	2580	2950	4030	4800	5560	6550	7820	9050

3.3.3.4 Stundenmittelwert Leistung

Die Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für die Gastro 2 sind in Tabelle 12 ersichtlich.

Tabelle 12 Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für Geräte Gastro 2

Klasse			Tief			Mittel			Hoch		
Nutzungstage		261	313	365	261	313	365	261	313	365	
Betriebsleistung	W	731	614	497	1358	1155	942	2194	1868	1524	
Bereitschaftsleistung	W	17	17	17	22	21	21	42	47	51	

3.4 Büro sporadisch

3.4.1 Einführung und Abgrenzung

3.4.1.1 Die GK Büro sporadisch beschreibt einen Arbeitsplatz mit sporadischer PC-Nutzung. Diese GK kann beispielsweise für einen Lobby- oder Empfangsarbeitsplatz verwendet werden.

Folgende Raumnutzungen gemäss SIA 2024 können Büro-sporadisch-Standorte beinhalten:

- Wohnen
- Hotel
- Verwaltung
- Schulen
- Verkauf
- Restaurant
- Versammlungslokale
- Spitäler
- Industrie
- zugeordnete Nutzungen

3.4.2 Verbraucherliste und Bezugsgrössen

- 3.4.2.1 Die GK Büro sporadisch ist in der Regel mit folgenden Geräten ausgestattet:
 - PC oder Laptop
 - Monitoren
 - Ladegerät für Smartphone oder Tablet
 - Telefonen
 - Arbeitsplatz- und Netzwerkdruckern (anteilmässig)

3.4.3 Standardwerte

3.4.3.1 Betriebsenergiebedarf

Der Betriebsenergiebedarf einer GK Büro sporadisch ist in Tabelle 13 ersichtlich.

Tabelle 13 Betriebsenergiebedarf innerhalb der Nutzungszeit für Geräte Büro sporadisch

Klasse			Tief			Mittel		Hoch		
Nutzungstage		261	313	365	261	313	365	261	313	365
Betriebsenergiebedarf	kWh	80	100	120	140	180	220	430	550	720

3.4.3.2 Bereitschaftsenergiebedarf

Der Bereitschaftsenergiebedarf einer GK Büro sporadisch ist in Tabelle 14 ersichtlich.

Tabelle 14 Bereitschaftsenergiebedarf ausserhalb der Nutzungszeit für Geräte Büro sporadisch

Klasse	Klasse		Tief			Mittel			Hoch	
Nutzungstage		261	313	365	261	313	365	261	313	365
Bereitschaftsenergiebedarf k\	٧h	28	27	22	56	54	44	240	240	200

3.4.3.3 Energiebedarf nach Nutzungstagen

Der totale Energiebedarf einer GK Büro sporadisch setzt sich aus dem Betriebs- und Bereitschaftsenergiebedarf zusammen. Die Ergebnisse in Tabelle 15 sind ohne den Faktor der Jahresgleichzeitigkeit gemäss SIA 2024 zu betrachten.

Tabelle 15 Energiebedarf für Geräte Büro sporadisch nach Nutzungstagen (ohne Jahresgleichzeitigkeit)

Klasse		Tief			Mittel		Hoch		
Nutzungstage	261	313	365	261	313	365	261	313	365
Energiebedarf kWh	108	127	142	196	234	264	670	790	920

3.4.3.4 Stundenmittelwert Leistung

Die Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für die GK Büro sporadisch sind in Tabelle 16 ersichtlich.

Tabelle 16 Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für Geräte Büro sporadisch

Klasse			Tief			Mittel			Hoch	
Nutzungstage		261	313	365	261	313	365	261	313	365
Betriebsleistung	W	28	25	21	49	44	38	150	135	123
Bereitschaftsleistung	W	5	6	8	10	12	15	41	51	68

3.5 Büro normal

3.5.1 Einführung und Abgrenzung

3.5.1.1 Die GK Büro normal beschreibt einen Arbeitsplatz mit intensiver PC-Nutzung. Diese kann für Einzel-, Gruppenbüros sowie Grossraumbüros verwendet werden.

Professionelle Arbeitsplätze sind in der Regel selten 365 Tage im Jahr in Betrieb.

- 3.5.1.2 Folgende Raumnutzungen gemäss SIA 2024 können Büro-normal-Standorte beinhalten:
 - Hotel
 - Verwaltung
 - Büro
 - Schulen

3.5.2 Verbraucherliste und Bezugsgrössen

- 3.5.2.1 Die GK Büro normal ist in der Regel mit folgenden Geräten ausgestattet:
 - PC oder Laptop
 - Monitoren
 - Ladegerät für Smartphone oder Tablet
 - Telefonen
 - Arbeitsplatz- und Netzwerkdruckern (anteilmässig)

3.5.3 **Standardwerte**

3.5.3.1 Betriebsenergiebedarf

Der Betriebsenergiebedarf einer GK Büro normal ist in Tabelle 17 ersichtlich.

Tabelle 17 Betriebsenergiebedarf innerhalb der Nutzungszeit für die Geräte Büro normal

Klasse		Tief			Mittel			Hoch	
Nutzungstage	261	313	365	261	313	365	261	313	365
Betriebsenergiebedarf kWh	170	210	260	350	430	520	850	1100	1300

3.5.3.2 Bereitschaftsenergiebedarf

Der Bereitschaftsenergiebedarf einer GK Büro normal ist in Tabelle 18 ersichtlich.

Tabelle 18 Bereitschaftsenergiebedarf ausserhalb der Nutzungszeit für Geräte Büro normal

Klasse			Tief			Mittel			Hoch	
Nutzungstage		261	313	365	261	313	365	261	313	365
Bereitschaftsenergiebedarf	kWh	30	29	23	60	58	47	260	260	210

3.5.3.3 Energiebedarf nach Nutzungstagen

Der totale Energiebedarf einer GK Büro normal setzt sich aus dem Betriebs- und Bereitschaftsenergiebedarf zusammen. Die Ergebnisse in Tabelle 19 sind ohne den Faktor der Jahresgleichzeitigkeit gemäss SIA 2024 zu betrachten.

Tabelle 19 Energiebedarf für Geräte Büro normal nach Nutzungstagen (ohne Jahresgleichzeitigkeit)

Klasse			Tief			Mittel			Hoch	
Nutzungstage		261	313	365	261	313	365	261	313	365
Energiebedarf	kWh	200	239	283	410	488	567	1110	1360	1510

3.5.3.4 Stundenmittelwert Leistung

Die Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für die GK Büro normal sind in Tabelle 20 ersichtlich.

Tabelle 20 Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für Geräte Büro normal

Klasse		Tief				Mittel			Hoch	
Nutzungstage		261	313	365	261	313	365	261	313	365
Betriebsleistung	W	59	52	45	122	106	89	296	270	223
Bereitschaftsleistung	W	5	6	8	10	12	16	44	55	72

3.6 Informations- und Kommunikationstechnik 1 (IKT 1)

3.6.1 Einführung und Abgrenzung

- 3.6.1.1 Die GK IKT 1 beschreibt die Ausstattung von Arbeitsplätzen oder Zimmern, welche nicht Büro sporadisch oder Büro normal sind, aber trotzdem über Kommunikationstechnik verfügen.
- 3.6.1.2 Folgende Raumnutzungen gemäss SIA 2024 können IKT-1-Standorte beinhalten:
 - Verwaltung
 - Schulen
 - Versammlungslokale
 - Spitäler
 - Industrie

3.6.2 Verbraucherliste und Bezugsgrössen

- 3.6.2.1 Die GK IKT 1 ist in der Regel mit folgenden Geräten ausgestattet:
 - Monitoren klein und mittel
 - kleinen Multimediageräten
 - Gerätesteuerungen
 - Telefonen
- 3.6.2.2 Arbeitsplätze oder Zimmer der GK IKT 1 verfügen über kleine Displays und TV- oder Videoübertragung, jedoch keine PC-Nutzung. Beispiele für die GK IKT 1 sind Betten-, Hotel- oder Sitzungszimmer.

3.6.3 Standardwerte

3.6.3.1 Betriebsenergiebedarf

Der Betriebsenergiebedarf der Geräte einer GK IKT 1 ist in Tabelle 21 ersichtlich.

Tabelle 21 Betriebsenergiebedarf innerhalb der Nutzungszeit für die Geräte IKT 1

Klasse			Tief			Mittel		Hoch		
Nutzungstage		261	313	365	261	313	365	261	313	365
Betriebsenergiebedarf	kWh	50	70	90	130	160	210	350	440	560

3.6.3.2 Bereitschaftsenergiebedarf

Der Bereitschaftsenergiebedarf einer GK IKT 1 ist in Tabelle 22 ersichtlich.

Tabelle 22 Bereitschaftsenergiebedarf ausserhalb der Nutzungszeit für Geräte IKT 1

Klasse	Klasse		Tief			Mittel			Hoch	
Nutzungstage		261	313	365	261	313	365	261	313	365
Bereitschaftsenergiebedarf	kWh	50	40	30	90	80	50	200	160	100

3.6.3.3 Energiebedarf nach Nutzungstagen

Der totale Energiebedarf einer GK IKT 1 setzt sich aus dem Betriebs- und Bereitschaftsenergiebedarf zusammen. Die Ergebnisse in Tabelle 23 sind ohne den Faktor der Jahresgleichzeitigkeit gemäss SIA 2024 zu betrachten.

Tabelle 23 Energiebedarf für Geräte IKT 1 nach Nutzungstagen (ohne Jahresgleichzeitigkeit)

Klasse		Tief			Mittel		Hoch		
Nutzungstage	261	313	365	261	313	365	261	313	365
Energiebedarf kW	100	110	120	220	240	260	550	600	660

3.6.3.4 Stundenmittelwert Leistung

Die Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für die GK IKT 1 sind in Tabelle 24 ersichtlich.

Tabelle 24 Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für Geräte IKT 1

Klasse		Tief				Mittel			Hoch	
Nutzungstage		261	313	365	261	313	365	261	313	365
Betriebsleistung	W	17	17	15	45	39	36	122	108	96
Bereitschaftsleistung	W	8	9	10	15	17	17	34	34	34

3.7 Informations- und Kommunikationstechnik 2 (IKT 2)

3.7.1 Einführung und Abgrenzung

- 3.7.1.1 Die GK IKT 2 beschreibt die Geräteausstattung eines Raumes, welcher für Präsentations- und Ausstellungszwecke genutzt wird.
- 3.7.1.2 Vor allem folgende Raumnutzungen gemäss SIA 2024 können IKT-2-Standorte beinhalten:
 - Verwaltung
 - Schulen
 - Versammlungslokale
 - Sportbauten

3.7.2 Verbraucherliste und Bezugsgrössen

- 3.7.2.1 Die GK IKT 2 ist in der Regel mit folgenden Geräten ausgestattet:
 - Videoanlage (Beamer, Projektor, Monitor)
 - Audioanlage
- 3.7.2.2 Mit einer GK IKT 2 können Bildungs- und Kulturbereiche abgedeckt werden.

3.7.3 **Standardwerte**

3.7.3.1 Betriebsenergiebedarf

Der Betriebsenergiebedarf der Geräte einer GK IKT 2 ist in Tabelle 25 ersichtlich.

Tabelle 25 Betriebsenergiebedarf innerhalb der Nutzungszeit für die Geräte IKT 2

Klasse		Tief		Mittel			Hoch			
Nutzungstage	105	261	365	105	261	365	105	261	365	
Betriebsenergiebedarf kWh	160	400	550	470	1200	1600	1300	3100	4400	

3.7.3.2 Bereitschaftsenergiebedarf

Der Bereitschaftsenergiebedarf einer GK IKT 2 ist in Tabelle 26 ersichtlich.

Tabelle 26 Bereitschaftsenergiebedarf ausserhalb der Nutzungszeit für Geräte IKT 2

Klasse			Tief		Mittel			Hoch		
Nutzungstage		105	261	365	105	261	365	105	261	365
Bereitschaftsenergiebedarf	kWh	32	25	12	43	33	16	63	49	24

3.7.3.3 Energiebedarf nach Nutzungstagen

Der totale Energiebedarf einer GK IKT 2 setzt sich aus dem Betriebs- und Bereitschaftsenergiebedarf zusammen. Die Ergebnisse in Tabelle 27 sind ohne den Faktor der Jahresgleichzeitigkeit gemäss SIA 2024 zu betrachten.

Tabelle 27 Energiebedarf für Geräte IKT 2 nach Nutzungstagen (ohne Jahresgleichzeitigkeit)

Klasse		Tief				Mittel		Hoch		
Nutzungstage		105	261	365	105	261	365	105	261	365
Energiebedarf	kWh	192	425	562	513	1233	1616	1363	3 149	4424

3.7.3.4 Stundenmittelwert Leistung

Die Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für die GK IKT 2 sind in Tabelle 28 ersichtlich.

Tabelle 28 Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für Geräte IKT 2

Klasse		Tief				Mittel			Hoch			
Nutzungstage		105	261	365	105	261	365	105	261	365		
Betriebsleistung	W	139	118	94	407	354	274	1126	914	753		
Bereitschaftsleistung	W	4	5	4	6	6	5	8	9	8		

3.8 Informations- und Kommunikationstechnik Zentral (IKT Zentral)

3.8.1 Einführung und Abgrenzung

- 3.8.1.1 Die IKT Zentral beinhaltet alle Geräte welche für den Betrieb und die Vernetzung der Informatik und Kommunikationsinfrastruktur im ganzen Gebäude erforderlich sind.
- 3.8.1.2 Nicht unter IKT Zentral fallen Rechenzentren und grössere Serverräume.

3.8.2 Verbraucherliste und Bezugsgrössen

- 3.8.2.1 IKT Zentral ist in der Regel mit folgenden Geräten ausgestattet:
 - Server
 - Router
 - Switches
 - Klein-USV
 - WLAN-Infrastruktur

3.8.3 Standardwerte

3.8.3.1 Betriebsenergiebedarf

Der Betriebsenergiebedarf der Geräte einer IKT Zentral ist in Tabelle 29 ersichtlich.

Tabelle 29 Betriebsenergiebedarf innerhalb der Nutzungszeit für die Geräte IKT Zentral

Klasse		Tief	Mittel	Hoch
Betriebsenergiebedarf	kWh/m²	2,2	4,4	8,8

3.8.3.2 Stundenmittelwert Leistung

Die Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für die IKT Zentral sind in Tabelle 30 ersichtlich.

Tabelle 30 Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für Geräte IKT Zentral

Klasse		Tief	Mittel	Hoch
Betriebsleistung	W/m²	0,25	0,50	1,00

3.9 Hotel

3.9.1 Einführung und Abgrenzung

- 3.9.1.1 Die GK Hotel beschreibt ein Standard-Hotelzimmer der mittleren Kategorie.
- 3.9.1.2 Folgende Raumnutzung gemäss SIA 2024 kann Hotel-Standorte beinhalten:
 - Hotel

3.9.2 Verbraucherliste und Bezugsgrössen

- 3.9.2.1 Die GK Hotel ist in der Regel mit folgenden Geräten ausgestattet:
 - TV
 - Telefon
 - Minibar (Kühlschrank)
 - kleinen Multimediageräten
 - Gerätesteuerungen
 - Haartrockner
- 3.9.2.2 Die GK Hotel beschreibt ein Hotelzimmer mit Doppelbett. Die Berechnungen basieren auf einer Belegung mit 2 Personen. Da alle Verbraucher, ausser dem Haartrockner, belegungsunabhängig sind, ist der Energiebedarf für ein Einzelzimmer ähnlich einem Doppelzimmer. Bei tieferen Hotelkategorien können entsprechende Geräte (Minibar, Komforttelefon) weggelassen werden.
- 3.9.2.3 Die Nutzungstage der GK Hotel sind nach Tabelle 31 definiert.

Tabelle 31 Nutzungstage für die Geräte Hotel

Nutzungstage	140	220	290
Auslastung	< 50 %	50 %-70 %	> 70 %

3.9.3 Standardwerte

3.9.3.1 Betriebsenergiebedarf

Der Betriebsenergiebedarf der Geräte einer GK Hotel ist in Tabelle 32 ersichtlich.

Tabelle 32 Betriebsenergiebedarf innerhalb der Nutzungszeit für die Geräte Hotel

Klasse		Tief			Mittel			Hoch	
Nutzungstage	140	220	290	140	220	290	140	220	290
Betriebsenergiebedarf kWI	70	100	140	100	150	200	160	250	330

3.9.3.2 Bereitschaftsenergiebedarf

Der Bereitschaftsenergiebedarf einer GK Hotel ist in Tabelle 33 ersichtlich.

Tabelle 33 Bereitschaftsenergiebedarf ausserhalb der Nutzungszeit für Geräte Hotel

Klasse			Tief		Mittel			Hoch		
Nutzungstage		140	220	290	140	220	290	140	220	290
Bereitschaftsenergiebedarf	kWh	78	66	56	160	140	120	350	300	250

3.9.3.3 Energiebedarf nach Nutzungstagen

Der totale Energiebedarf einer GK Hotel setzt sich aus dem Betriebs- und Bereitschaftsenergiebedarf zusammen. Die Ergebnisse in Tabelle 34 sind ohne den Faktor der Jahresgleichzeitigkeit gemäss SIA 2024 zu betrachten.

Tabelle 34 Energiebedarf für Geräte Hotel nach Nutzungstagen (ohne Jahresgleichzeitigkeit)

Klasse		Tief		Mittel			Hoch		
Nutzungstage	140	220	290	140	220	290	140	220	290
Energiebedarf kWh	148	166	196	260	290	320	510	550	580

3.9.3.4 Stundenmittelwert Leistung

Die Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für die GK Hotel sind in Tabelle 35 ersichtlich.

Tabelle 35 Stundenmittelwerte für die Betriebs- und die Bereitschaftsleistung für Geräte Hotel

Klasse			Tief		Mittel			Hoch		
Nutzungstage		140	220	290	140	220	290	140	220	290
Betriebsleistung	W	45	35	30	65	52	43	104	87	71
Bereitschaftsleistung	W	11	11	14	22	24	29	48	51	61

4 PROZESSANLAGEN

4.1 Kühl- und Tiefkühlmöbel

4.1.1 Berechnungsmodell

$$E_{el,RMDC} = E_{el,RMDC,sp} \cdot I_{RMDC} \tag{11}$$

$$P_{el,Op,RMDC} = \frac{E_{el,RMDC}}{t_{Op,RMDC}} \cdot f_{RMDC}$$
 (12)

 $E_{el,RMDC}$ elektrischer Energiebedarf Kühl- und Tiefkühlmöbel in kWh

 $E_{el,RMDC,sp}$ spezifischer Energiebedarf Kühl- und Tiefkühlmöbel pro Meter Länge in kWh/m

Länge Kühl- und Tiefkühlmöbel in m

 $P_{el,Op,RMDC}$ Betriebsleistung Kühl- und Tiefkühlmöbel (Stundenmittelwert) in kW

 $t_{\mathit{Op,RMDC}}$ jährliche Betriebsstunden Kühl- und Tiefkühlmöbel in h

 f_{RMDC} Quotient zwischen dem Tagbetrieb und dem Durchschnitt ($f_{RMDC} = 1,5$)

4.1.2 Standardwerte

 $E_{el,RMDC,sp} = 3000 \text{ kWh/m}$

Der spezifische Energiebedarf ist eine übliche Mischung zwischen Regalen und Truhen sowie von den unterschiedlichen Temperaturen. Dabei ist die übliche Anwendung der Lebensmittelverkauf mit gekühlten Verkaufsbereichen.

4.2 Kälteanlage für Kühl- und Tiefkühlraum

4.2.1 Berechnungsmodell

$$P_{el,Op,CSR} = \frac{E_{el,CSR}}{t_{Op,CSR}} \cdot f_{CSR}$$
 (13)

 $P_{el,Op,CSR}$ Betriebsleistung Kühl- und Tiefkühlraum (Stundenmittelwert) in kW

Energiebedarf Kühl- und Tiefkühlraum in kWh

 $t_{\mathit{Op,CSR}}$ jährliche Betriebsstunden Kühl- und Tiefkühlraum in h

 f_{CSR} Quotient zwischen dem Tagbetrieb und dem Durchschnitt ($f_{CSR} = 2,0$)

4.2.2 Standardwerte

Tabelle 36 Energiebedarf für Kühl- und Tiefkühlräume (Raumhöhe 2,5 m)

Nutzung	ဂိ Temperatur	ိ Einfuhrtemperatur	p) Beschickung	B. Luftwechsel	Häche m²	ж Жälteenergie	y El. Energie
			200	350	5	4900	1600
			400	480	10	7800	2600
Obst und Gemüse	4	6	600	560	15	10400	3500
			800	650	20	13000	4300
			1000	720	25	15 600	5200
			200	350	5	3600	1200
			400	480	10	5300	1800
Blumen	6	8	600	560	15	6700	2200
			800	650	20	8000	2700
			1000	720	25	9400	3100
			200	350	5	4500	1500
			400	480	10	6400	2100
Molkereiprodukte	2	4	600	560	15	8100	2700
			800	650	20	10 000	3300
			1000	720	25	11600	3900
			200	350	5	4600	1500
			400	480	10	6 600	2200
Fleischwaren	2	4	600	560	15	8400	2800
			800	650	20	10300	3400
			1000	720	25	12000	4000
			200	350	5	4700	1 600
			400	480	10	6900	2300
Fleischwaren frisch	0	2	600	560	15	8800	2900
IIISCII			800	650	20	10 600	3500
			1000	720	25	12 400	4100
			200	350	5	7000	3500
T. 0			400	480	10	9000	4500
Tiefkühlung allgemein	-20	-18	600	560	15	11600	5800
angomoni			800	650	20	13500	6800
			1000	720	25	16000	8000

4.3 Grossküchengeräte

4.3.1 Berechnungsmodell Leistung

$$P_{el,Op,KEQ,dev} = P_{el,N,KEQ,dev} \cdot f_{KEQ,dev}$$
 (14)

$$P_{el,Op,KEQ} = f_{KEQ,sdev} \cdot \sum_{i=1}^{n} P_{el,Op,KEQ,dev,i}$$
(15)

 $P_{el,Op,KEO,dev}$ Betriebsleistung einzelnes Küchengerät (Stundenmittelwert) in kW

 $P_{el,N,KEO,dev}$ Nennleistung einzelnes Küchengerät in kW

 $P_{el,Op,KEQ}$ Betriebsleistung Küchengeräte (Stundenmittelwert) in kW

 $f_{KEO,dev}$ küchengerätespezifischer Reduktionsfaktor $f_{KEO,sdev}$ Kleingerätezuschlag ($f_{KEO,sdev} = 1,05$)

Der Kleingerätezuschlag steht für kurzzeitig eingesetzte Arbeitsgeräte. Im Normalfall sind diese steckbar.

4.3.2 Berechnungsmodell Energie

$$E_{el,KEQ} = n_{MEN} \cdot E_{el,MEN,sp} \cdot f_{CAU} \cdot f_{eff,CAU} \cdot f_{eff,SEA}$$
 (16)

$$n_{MEN} = n_{SEA} \cdot \rho_{MEN} \cdot t \tag{17}$$

 $E_{el,KEQ}$ Energiebedarf Küchengeräte in kWh

 $E_{el,MEN,sp}$ spezifischer Energiebedarf pro Basismenü in kWh

n_{MEN} Anzahl Menüs pro Jahr

n_{SEA} Anzahl Sitzplätze

 $\begin{array}{ll} f_{CAU} & \text{Auslastungsfaktor (30 \% = 0,3)} \\ f_{eff,CAU} & \text{Effizienzfaktor Auslastung} \\ f_{eff,SEA} & \text{Effizienzfaktor Sitzplätze} \end{array}$

 $ho_{ extit{MEN}}$ Menüdichte, Anzahl Basismenüs pro Sitzplatz, Tag und 100 % Auslastung

t Anzahl Betriebstage pro Jahr

Die Effizienzfaktoren Auslastung und Sitzplätze berücksichtigen den Umstand, dass in Restaurants mit grosser Belegung oder mit einer grösseren Anzahl Sitzplätzen die Menüs energieeffizienter zubereitet werden können.

4.3.3 Standardwerte Leistung

Tabelle 37 Küchengerätespezifischer Reduktionsfaktor $f_{KEO,dev}$ in Abhängigkeit vom Verwendungszweck

	Reduktionsfaktor $f_{KEQ,dev}$	Weitere Geräte
Kochen, Braten	0,4 0,5	Rechaud, Bratpfanne, Druckgarbraiserie, Teppan Yaki, Induktionsrechaud, Kipp- bratpfanne
Steamer	0,2 0,4	Kombidämpfer
Fritteuse	0,1 0,3	
Warmhaltung	0,5 0,7	Bainmarie, Buffet, Wärmeschrank, Wärmestrahler, Tassenwärmer, Suppen- topf, Tellerstapler, Salamander
Grill	0,2 0,4	Salamander, Toaster
Abwaschanlage	0,2 0,4	Gläserspülmaschine, Geschirrwaschmaschine
Ofen	0,1 0,2	
Kippkessel	0,6 0,7	
Kaffee	0,02 0,05	
Kühl-/Tiefkühlschrank	0,4 0,6	

4.3.4 **Standardwerte Energie**

Tabelle 38 Menüdichte ρ_{MEN} und typische mittlere Auslastung

	Menüdichte ρ _{MEN} Anzahl Basismenüs pro Sitzplatz und Tag	Typische mittlere Auslastung %
Restaurant mit durchgehendem Angebot (07:00–22:00)	3	25 60
Betriebs-Restaurant (Mittagessen und Zwischenverpflegung, 09:00–17:00)	2	50 80
Heim-/Spital-Restaurant (Sitzplätze inkl. Betten, 07:00–19:00)	2,5	70 90
Selbstbedienungs-Restaurant (Mittagessen und Zwischenverpflegung)	5	50 80
Schnellimbiss, Take-away	0–30	40 70

Ein Basismenü entspricht einer warmen Mahlzeit. Eine Zwischenverpflegung oder ein Frühstück entspricht 0,25 Basismenü.

Tabelle 39 Spezifischer Energiebedarf pro Basismenü $E_{el,MEN,sp}$

Standard	Spezifischer Energiebedarf pro Basismenü <i>E_{el,MEN,sp}</i> kWh / Basismenü
einfach	1,00
mittel	1,75
gehoben	3,00

Tabelle 40 Auslastungsfaktor f_{CAU} und Effizienzfaktor Auslastung $f_{\it eff,CAU}$

Auslastung %	Auslastungsfaktor $f_{\it CAU}$	Effizienzfaktor Auslastung $f_{\it eff,CAU}$
30	0,30	1,3
40	0,40	1,2
50	0,50	1,1
65	0,65	1,0
80	0,80	0,9

Tabelle 41 Effizienzfaktor Sitzplätze $f_{\it eff,SEA}$

Anzahl Sitzplätze	Effizienzfaktor Sitzplätze $f_{\it eff,SEA}$
10	1,20
25	1,10
100	1,00
250	0,95

5 BELEUCHTUNG

Vereinfachtes Berechnungsverfahren für die frühe Planungsphase.

5.1 Berechnung der installierten Leistung

5.1.1 **Berechnungsmodell**

Die installierte Leistung für die Beleuchtung eines Raumes oder einer Raumgruppe berechnet sich nach dem sogenannten Wirkungsgradverfahren:

$$p_{L} = \frac{E_{vm}}{\eta_{v,Lo} \cdot \eta_{R} \cdot MF} \tag{18}$$

 $\begin{array}{ll} p_{L} & \text{spezifische Leistung Beleuchtung in W/m}^{2} \\ E_{vm} & \text{mittlere Beleuchtungsstärke in Lux} \\ \eta_{v,Lo} & \text{Leuchten-Lichtausbeute in Im/W} \end{array}$

 η_R Raumwirkungsgrad

MF Wartungsfaktor Beleuchtung

5.1.2 Beleuchtungsstärke

- 5.1.2.1 Die mittlere Beleuchtungsstärke ist abhängig von der Nutzung. In SN EN 12464-1 sind sogenannte Wartungswerte (minimal notwendige Werte) für die Beleuchtungsstärke für die meisten Nutzungen aufgeführt.
- 5.1.2.2 In Tabelle 42 sind die hauptsächlich verwendeten Beleuchtungsstärken für typische Nutzungen (inkl. zusätzlicher Akzent- oder Dekorationsbeleuchtung) aufgeführt.

Tabelle 42 Mittlere Beleuchtungsstärke E_{vm} nach Nutzung

Mittlere Beleuchtungsstärke E_{vm}	Nutzung
750	Verkaufsflächen
500	Büros, Schulräume, Küchen, Werkstätten (feine Arbeiten), Labore, Behandlungsräume, Turnhallen
300	Mehrzweckhallen, Lagerhallen, Werkstätten (grobe Arbeiten), Restaurants, Hotel- und Bettenzimmer
200	Treppenhäuser, WC, Garderoben, Korridore in Spitälern
100	Verkehrsflächen, Korridore, Nebenräume
75	Parkhäuser

5.1.3 Wartungsfaktor

Die Beleuchtungsstärke einer neuen Beleuchtungsanlage multipliziert mit dem Wartungsfaktor ergibt den Wartungswert der Beleuchtungsstärke nach einer bestimmten Zeit. Der Wartungsfaktor berücksichtigt den Lichtstromrückgang in der Anlage durch Verschmutzung und Alterung der Lampen, Leuchten und Raumoberflächen. Bei regelmässiger Wartung einer Anlage kann ein Wartungsfaktor von 0,8 angenommen werden.

5.1.4 Leuchten-Lichtausbeute

- 5.1.4.1 Der Quotient zwischen dem abgegebenen Gesamtlichtstrom einer Leuchte und der aufgenommenen elektrischen Leistung im Normalbetrieb entspricht der Energieeffizienz-Lichtausbeute einer Leuchte.
- 5.1.4.2 Für eine erste grobe Auslegung können drei Effizienzklassen unterschieden werden.

Tabelle 43 Leuchten-Lichtausbeute $\eta_{v,Lo}$ nach Leuchtentyp

Leuchten-Lichtausbeute $\eta_{v,Lo}$ Im/W	Leuchtentyp
70 (Grenzwert SIA 387/4)	Kleine LED-Spotlampen, LED-Leuchten mit sehr hoher Entblendung, LED-Leuchten mit dekorativem Charakter, Leuchten mit Leuchtstofflampen
100 (Zielwert SIA 387/4)	Gute neue LED-Leuchten in allen Kategorien
130	Bestprodukte in allen Kategorien

5.1.5 Raumwirkungsgrad

Das von den Leuchten abgestrahlte Licht trifft nur zum Teil direkt auf der Nutzfläche auf. Ein gewisser Teil wird von Decken, Wänden und Möbeln absorbiert. Der Raumwirkungsgrad ist von der Gesamthelligkeit und der Grösse des Raumes sowie den Abstrahleigenschaften der Leuchte abhängig. Für eine erste Auslegung im normal hellen Raum können drei Raumwirkungsgrade für unterschiedliche Räumgrössen definiert werden.

Tabelle 44 Raumwirkungsgrad η_R nach Raumtypen

Raumwirkungsgrad η_R	Raumtyp
50	Kleine Räume (Raumindex: 0,67): Korridore, WC, Garderoben, Treppenhäuser
70	Normale Räume (Raumindex: 1,33): Mehrpersonenbüros, Schulzimmer, Werkstätten, Restaurants, Garagen, Verkaufsflächen, Küchen, Betten- und Hotelzimmer, Turnhallen, Mehrzweckhallen
90	Grosse Räume (Raumindex: 2,67): Restaurants, Verkaufsflächen, Parkgaragen

5.1.6 **Installierte Leistung**

Unter Berücksichtigung der obigen Kennzahlen ergeben sich folgende installierte Leistungen für eine Referenzbeleuchtungsstärke von 100 Lux. Bei höheren Beleuchtungsstärken ist der Wert entsprechend zu multiplizieren.

Tabelle 45 Installierte Leistung nach Raumgrösse und Leuchten-Lichtausbeute $\eta_{v,Lo}$

Raumgrösse bzw. Raumwirkungsgrad $\eta_{\scriptscriptstyle R}$	Leuchten-Lichtausbeute $\eta_{ u,Lo}$ ${ m W/m}^2$						
	Mittel Gut Sehr gut (70 lm/W) (100 lm/W) (130 lm/W)						
Klein (50%)	3,6	2,6	2,0				
Mittel (70%)	2,5	1,8	1,4				
Gross (90%)	1,9	1,4	1,1				

5.1.7 **Bereitschaftsleistung**

Beleuchtungsanlagen mit dimmbaren Betriebsgeräten (z.B. Dali-EVG) weisen auch im ausgeschalteten Zustand eine Bereitschafts- oder Standby-Leistung auf. Je nach Qualität des Betriebsgerätes liegt diese Bereitschaftsleistung zwischen 0,2 W (guter Wert) und 1 und mehr Watt. Als Referenzgrösse für Neuanlagen kann eine Standby-Leistung von 0,5 Watt pro Leuchte angenommen werden.

5.2 Berechnung der Volllaststundenzahl

5.2.1 Berechnungsmodell

Die Volllaststundenzahl berechnet sich aus der Nutzungszeit eines Raumes bzw. einer Raumgruppe und Reduktion der Einsparungen durch die Beleuchtungssteuerung nach dem Tageslicht und der Präsenz.

$$t_L = d_p \cdot (t_u - t_c) \cdot k_{Pr} \tag{19}$$

t_i Volllaststunden Beleuchtung pro Jahr in h

 d_p Nutzungstage pro Jahr in d

 t_u Nutzungsstunden pro Tag in h/d

Stundenreduktion durch Beleuchtungssteuerung nach Tageslicht in h/d

 k_{Pr} Korrekturfaktor für Beleuchtungssteuerung nach Präsenz

5.2.2 Nutzungstage und -stunden

Die Nutzungsstunden entsprechen der Anwesenheitszeit von Personen in einem Gebäude bzw. in den einzelnen Raumtypen. In SIA 2024 sind die jährlichen Standard-Nutzungsstunden für 45 Raumtypen angegeben.

5.2.3 Stundenreduktion bei manueller Beleuchtungssteuerung nach Tageslicht

- 5.2.3.1 Auch in Räumen ohne automatische Beleuchtungssteuerung nach Tageslicht sinken die Volllaststunden für Beleuchtung bei ausreichendem Tageslicht durch die manuelle Schaltung der Nutzer.
- 5.2.3.2 Die Tabelle 46 zeigt die Reduktion der täglichen Volllaststunden gegenüber der Nutzungszeit bei manueller Tageslichtschaltung.

Tabelle 46 Reduktion der täglichen Volllaststunden bei manueller Beleuchtungssteuerung

Mittlere Beleuchtungsstärke E_{vm}	Tageslichtnutzung im Raum h/d			
lx	gut	mittel	gering	
500	3,0	2,0	0,5	
300	4,0	3,0	1,0	
200	4,0	3,5	1,5	
100	4,0	4,0	2,5	

5.2.4 Stundenreduktion bei automatischer Beleuchtungssteuerung nach Tageslicht

- 5.2.4.1 Bei ausreichend Tageslicht kann die Volllaststundenzahl einer Beleuchtungsanlage durch sensorgesteuerte Dimmung oder Abschaltung gegenüber der Nutzungszeit reduziert werden. Die durchschnittlich eingesparten Stunden an künstlicher Beleuchtung sind abhängig von der mittleren Beleuchtungsstärke im Raum und der Tageslichtsituation.
- 5.2.4.2 Eine gute Tageslichtsituation bedingt grosse Fenster, geringe Verschattung, helle Räume und optimale Verhältnisse weiterer Einflussfaktoren. Sobald einer oder mehrere Einflussgrössen weniger optimal sind, sinkt die Tageslichtnutzung auf die mittlere oder geringe Stufe.

5.2.4.3 Die Tabelle 47 zeigt die Reduktion der täglichen Volllaststunden (t_c) gegenüber der Nutzungszeit bei automatischer Beleuchtungssteuerung nach Tageslicht.

Tabelle 47 Reduktion der täglichen Volllaststunden bei automatischer Beleuchtungssteuerung nach Tageslicht

Mittlere Beleuchtungsstärke E_{vm}	Tageslichtnutzung im Raum h/d			
lx	gut	mittel	gering	
500	7,0	4,5	1,5	
300	8,5	6,5	3,0	
200	9,0	8,0	4,0	
100	9,0	9,0	5,5	

5.2.5 Korrekturfaktor für Beleuchtungssteuerung nach Präsenz- oder Bewegungsmeldern

5.2.5.1 Durch den Einsatz von Präsenz- oder Bewegungsmeldern lässt sich die Volllaststundenzahl reduzieren. Die Einsparung ist abhängig von der Nutzung bzw. der Personenfrequenz.

Tabelle 48 Korrekturfaktor Beleuchtungssteuerung durch Präsenz- oder Bewegungsmelder

Personenfrequenz	Normal	Sporadisch	Schwach
	(Hauptnutzflächen)	(Verkehrsflächen)	(Nebenräume)
Korrekturfaktor	0,8	0,6	0,4

5.2.5.2 In Räumen mit Tageslicht kommen in den meisten Fällen kombinierte Sensoren für die Beleuchtungssteuerung nach Tageslicht und Präsenz zur Anwendung. Zur Berechnung der Gesamteinsparung muss zuerst die Einsparung durch die Beleuchtungssteuerung nach Tageslicht und erst nachher die Einsparung durch die Beleuchtungssteuerung nach Präsenz ermittelt werden.

5.3 Berechnung des Energiebedarfs

5.3.1 Der Energiebedarf für die Beleuchtung in einem Raum bzw. einer Raumgruppe berechnet sich aus der Multiplikation von installierter Leistung und Volllaststundenzahl.

$$E_L = \frac{p_L \cdot t_L \cdot k_{St}}{1000} \tag{20}$$

 E_L spezifischer Elektrizitätsbedarf Beleuchtung in kWh/m²

p_L spezifische Leistung Beleuchtung in W/m²

t_L Volllaststunden Beleuchtung pro Jahr in h

k_{St} Faktor Standby

Mit Tabelle 49 kann der Faktor Standby in Abhängigkeit von der mittleren Betriebsleistung der eingesetzten Leuchten und der Volllaststundenzahl ermittelt werden.

Tabelle 49 Faktor Standby k_{St}

Volllaststundenzahl der Beleuchtung	Mittlere Betriebsleistung der eingesetzten Leuchten W							
h pro Jahr	10	20	30	50	70	100	150	200
500	1,83	1,41	1,28	1,17	1,12	1,08	1,06	1,04
1000	1,39	1,19	1,13	1,08	1,06	1,04	1,03	1,02
2000	1,24	1,12	1,08	1,05	1,03	1,02	1,02	1,01
3000	1,17	1,08	1,06	1,03	1,02	1,02	1,01	1,01
4000	1,10	1,05	1,03	1,02	1,01	1,01	1,01	1,00
6000	1,06	1,03	1,02	1,01	1,01	1,01	1,00	1,00
8760	1,02	1,01	1,01	1,00	1,00	1,00	1,00	1,00

5.3.2 Rechenbeispiel siehe Anhang C.2.1.

5.4 Leistungs- und Energiebilanz erstellen

- 5.4.1 Um eine Leistungs- und Energiebilanz für ein ganzes Gebäude zu erstellen, müssen alle einzelnen Räume wie oben berechnet, gelistet und summiert werden.
- 5.4.2 Für eine frühe Planungsphase ist es sinnvoll, Gruppen von Räumen gleicher Nutzung zusammenzufassen und die Berechnung jeweils für eine ganze Raumgruppe durchzuführen. Die erste grobe Gebäudeeinteilung folgt den drei grundsätzlichen Nutzungstypen im Gebäude.
 - Hauptnutzflächen: Büroräume, Schulzimmer, Bettenzimmer, Verkauf usw.
 - Verkehrsflächen: Korridore, Treppenhäuser, Eingangs- und Aufenthaltsbereich, Garagen
 - Nebenflächen: Lager, WC, Garderoben, Technik
- 5.4.3 Im Minimum sollen 3 Nutzungen (Hauptnutzung, Verkehrs- und Nebenflächen) gebildet werden. Mehr als 10 Nutzungen bzw. Raumgruppen sind in den meisten Fällen nicht sinnvoll.
- 5.4.4 Rechenbeispiel siehe Anhang C.2.2.

6 ALLGEMEINE GEBÄUDETECHNIK

6.1 Notlichtanlage

6.1.1 Berechnungsmodell

$$P_{el,St,ELS} = P_{el,St,ELS,sp} \cdot A_{ELS}$$
 (21)

$$E_{el,ELS} = P_{el,St,ELS} \cdot t_{St,ELS} \tag{22}$$

 $P_{el,St,ELS}$ Bereitschaftsleistung Notlichtanlage (Stundenmittelwert) in kW spezifischer Bereitschaftsleistungsmittelwert Notlichtanlage bezogen

auf die beleuchtete Fläche (Stundenmittelwert) in kW/m²

 $\begin{array}{ll} A_{ELS} & \text{Fläche mit Notbeleuchtung in m}^2 \\ E_{el,ELS} & \text{Energiebedarf Notlichtanlage in kWh} \\ t_{SLELS} & \text{Bereitschaftsstunden Notlichtanlage in h} \end{array}$

6.1.2 Standardwerte

Tabelle 50 Standardwerte für zentrale Notlichtanlage und Rettungszeichenleuchten in Bereitschaft

Ausbaustandard		Tief	Mittel	Hoch
Spez. Bereitschaftsleistung	W/m²	0,01	0,02	0,03
Jährliche Bereitschaftsstunden	h	8760	8760	8760
Jährlicher spez. Energiebedarf	kWh/m²	0,09	0,18	0,27

Tabelle 51 Standardwerte für zentrale Notlichtanlage und Rettungszeichenleuchten mit Dauerlicht

Ausbaustandard		Tief	Mittel	Hoch
Spez. Bereitschaftsleistung	W/m ²	0,03	0,12	0,20
Jährliche Bereitschaftsstunden	h	8760	8760	8760
Jährlicher spez. Energiebedarf	kWh/m²	0,27	1,05	1,75

6.2 Beschattungsanlage

6.2.1 Berechnungsmodell

$$E_{el,BCS} = E_{el,BCS,sp} \cdot A_w \tag{23}$$

 E_{elBCS} Energiebedarf Beschattungsanlage in kWh

 $E_{el,BCS,sp}$ jährlicher spezifischer Energiebedarf Beschattungsanlage pro Fensterfläche in kWh/m²

A_w Fensterfläche in m²

6.2.2 Standardwerte

Tabelle 52 Standardwerte für motorbetriebene Beschattungsanlagen mit manueller Steuerung (Funktionstyp 1 nach SN EN 15232 und nach SIA 411)

Ausbaustandard		Tief	Mittel	Hoch
Spez. Bereitschaftsleistung	W/m ²	20	25	30
Jährliche Bereitschaftsstunden	h	10	30	40
Jährlicher spez. Energiebedarf	kWh/m²	0,20	0,75	1,20

Tabelle 53 Standardwerte für motorbetriebene Beschattungsanlagen mit automatischer Steuerung (Funktionstyp 2 nach SN EN 15232 und nach SIA 411)

Ausbaustandard		Tief	Mittel	Hoch
Spez. Bereitschaftsleistung	W/m ²	20	25	30
Jährliche Bereitschaftsstunden	h	25	38	50
Jährlicher spez. Energiebedarf	kWh/m²	0,50	0,95	1,50

Die automatische Steuerung nutzt einen Aussenfühler zur Messung der Sonnenstrahlung und schützt vor direkter Sonneneinstrahlung. Dadurch werden die Blendung eliminiert und die Erhöhung der Raumtemperatur verringert.

Tabelle 54 Standardwerte für motorbetriebene Beschattungsanlagen mit kombinierter Steuerung der Beleuchtung und der HLK-Anlagen (Funktionstyp 3 nach SN EN 15232 und nach SIA 411)

Ausbaustandard		Tief	Mittel	Hoch
Spez. Bereitschaftsleistung	W/m ²	20	25	30
Jährliche Bereitschaftsstunden	h	30	45	60
Jährlicher spez. Energiebedarf	kWh/m²	0,60	1,13	1,80

Die kombinierte Steuerung der Beschattungsanlage, der Beleuchtung und der HLK-Anlagen verfügt über eine Lamellennachführung. Diese schützt vor direkter Sonneneinstrahlung und verändert zugleich den Winkel der Lamellen automatisch mit dem Ziel, dass der Raum trotz Beschattung optimal mit Tageslicht versorgt wird. Die Blendung wird eliminiert und die Erhöhung der Raumtemperatur sowie der Energiebedarf der Beleuchtung am Tag verringert. Die kombinierte Steuerung leistet zudem einen Beitrag zur Heizung während der Heizsaison. Die Beschattungsanlage wird bei nichtbelegten Räumen zur Nutzung solarer Wärmegewinne geöffnet, und sie wird nachts geschlossen, um ein Auskühlen über die Fenster zu verhindern.

Die kombinierte Steuerung nach Tabelle 54 führt im Vergleich zur einfacheren Steuerung nach Tabelle 53 zu einem geringeren Energiebedarf für Beleuchtung, Raumkühlung und eventuell Raumheizung. Dieser energetische Nutzen wird bei der Berechnung des Energiebedarfs für Beleuchtung, Heizung und Raumkühlung nach den Kapiteln 5, 7 und 8 nicht berücksichtigt.

Schrankenanlage 6.3

Berechnungsmodell 6.3.1

$$P_{el,St,BR,tot} = P_{el,St,BR} \cdot n \tag{24}$$

$$E_{el,St,BR,tot} = E_{el,St,BR} \cdot n \tag{25}$$

$$P_{el,Op,BR,tot} = P_{el,Op,BR} \cdot n \tag{26}$$

$$E_{el,Op,BR,tot} = E_{el,Op,BR} \cdot n \tag{27}$$

$$E_{el,BR} = E_{el,St,BR,tot} + E_{el,Op,BR,tot}$$
 (28)

P_{el.St.BR.tot} totale Bereitschaftsleistung Schrankenanlage (Stundenmittelwert) in kW Bereitschaftsleistung Schrankenanlage (Stundenmittelwert) in kW $P_{el,St,BR}$ totaler Bereitschaftsenergiebedarf Schrankenanlage in kWh $E_{el,St,BR,tot}$

Bereitschaftsenergiebedarf Schrankenanlage in kWh $E_{el,St,BR}$

totale Betriebsleistung Schrankenanlage (Stundenmittelwert) in kW $P_{\mathit{el,Op,BR,tot}}$ $P_{el,Op,BR}$ Betriebsleistung Schrankenanlage (Stundenmittelwert) in kW totaler Betriebsenergiebedarf Schrankenanlage in kWh

 $E_{\mathit{el,Op,BR,tot}}$ Betriebsenergiebedarf Schrankenanlage in kWh $E_{el,Op,BR}$

Energiebedarf Schrankenanlage in kWh $E_{el,BR}$

Anzahl n

6.3.2 **Standardwerte**

Tabelle 55 Standardwerte für Schrankenanlagen

Frequentierung		Tief	Mittel	Hoch
Bereitschaft				
Bereitschaftsleistung	W	7,5	7,5	7,5
Jährliche Bereitschaftsstunden	h	5900	5 000	2600
Bereitschaftsenergiebedarf	kWh	44,3	37,5	19,5
Betrieb				
Betriebsleistung (Stundenmittelwert)	W	11	30	33
Jährliche Betriebsstunden	h	2960	3760	6160
Betriebsenergiebedarf	kWh	32,6	112,8	203,3
Total Energiebedarf	kWh	76,9	150,3	222,8

Zentrale Parkuhr 6.4

6.4.1 Berechnungsmodell

$$P_{el,Op,PM,tot} = P_{el,Op,PM} \cdot n \tag{29}$$

$$E_{el,Op,PM,tot} = E_{el,Op,PM} \cdot n \tag{30}$$

totale Betriebsleistung zentrale Parkuhr (Stundenmittelwert) in kW P_{el.Op.PM.tot} Betriebsleistung zentrale Parkuhr (Stundenmittelwert) in kW $P_{el,Op,PM}$ totaler Betriebsenergiebedarf zentrale Parkuhr in kWh $E_{el,Op,PM,tot}$

Betriebsenergiebedarf zentrale Parkuhr in kWh

 $E_{el,Op,PM}$

Anzahl

6.4.2 Standardwerte

Tabelle 56 Standardwerte für zentrale Parkuhren

Betriebsleistung (Stundenmittelwert)	W	200
Jährliche Betriebsstunden	h	8760
Betriebsenergiebedarf	kWh	1752

6.5 Dreh- und Karusselltür

6.5.1 Berechnungsmodell

$$P_{el,St,RD,tot} = P_{el,St,RD} \cdot n \tag{31}$$

$$E_{el,St,RD,tot} = E_{el,St,RD} \cdot n \tag{32}$$

$$P_{el,Op,RD,tot} = P_{el,Op,RD} \cdot n \tag{33}$$

$$E_{el,Op,RD,tot} = E_{el,Op,RD} \cdot n \tag{34}$$

$$E_{el,RD} = E_{el,St,RD,tot} + E_{el,Op,RD,tot}$$
(35)

 $P_{el,St,RD,tot}$ totale Bereitschaftsleistung Dreh- und Karusselltüren (Stundenmittelwert) in kW Bereitschaftsleistung Dreh- und Karusselltüren (Stundenmittelwert) in kW totaler Bereitschaftsenergiebedarf Dreh- und Karusselltüren in kWh Bereitschaftsenergiebedarf Dreh- und Karusselltüren in kWh totaler Betriebeleistung Dreh- und Karusselltüren (Stundenmittelwert) in kWh

 $\begin{array}{ll} P_{el,Op,RD,tot} & \text{totale Betriebsleistung Dreh- und Karusselltüren (Stundenmittelwert) in kW} \\ P_{el,Op,RD} & \text{Betriebsleistung Dreh- und Karusselltüren (Stundenmittelwert) in kW} \end{array}$

 $\begin{array}{ll} E_{el,Op,RD,tot} & \text{totale Betriebsenergie Dreh- und Karusselltüren in kWh} \\ E_{el,Op,RD} & \text{Betriebsenergie Dreh- und Karusselltüren in kWh} \\ E_{el,RD} & \text{Energiebedarf Dreh- und Karusselltüren in kWh} \end{array}$

n Anzahl

6.5.2 Standardwerte

Tabelle 57 Standardwerte für Dreh- und Karusselltüren – Betriebsart: On/Off in Bereitschaft und Betrieb

Gebäudekategorie		Büro, Bank	Einkaufen	Hotel
Bereitschaft				
Bereitschaftsleistung	W	20	20	20
Jährliche Bereitschaftsstunden	h	5900	4700	1500
Bereitschaftsenergiebedarf	kWh	118	94	30
Betrieb				
Betriebsleistung (Stundenmittelwert)	W	150	290	149
Jährliche Betriebsstunden	h	2860	4060	7 2 6 0
Betriebsenergiebedarf	kWh	429	1177	1082
Total Energiebedarf	kWh	547	1271	1112

Tabelle 58 Standardwerte für Dreh- und Karusselltüren – Betriebsart: Schleichfahrt in Bereitschaft und Betrieb

Gebäudekategorie		Büro, Bank	Einkaufen	Hotel
Bereitschaft				
Bereitschaftsleistung	W	20	20	20
Jährliche Bereitschaftsstunden	h	5900	4700	1 500
Bereitschaftsenergiebedarf	kWh	118	94	30
Betrieb				
Betriebsleistung (Stundenmittelwert)	W	230	310	230
Jährliche Betriebsstunden	h	2860	4060	7 2 6 0
Betriebsenergiebedarf	kWh	658	1 259	1 670
Total Energiebedarf	kWh	776	1353	1700

6.6 Schiebetür

6.6.1 Berechnungsmodell

$$P_{el,St,SG,tot} = P_{el,St,SG} \cdot n \tag{36}$$

$$E_{el,St,SG,tot} = E_{el,St,SG} \cdot n \tag{37}$$

$$P_{el,Op,SG,tot} = P_{el,Op,SG} \cdot n \tag{38}$$

$$E_{el,Op,SG,tot} = E_{el,Op,SG} \cdot n \tag{39}$$

$$E_{el,SG} = E_{el,St,SG,tot} + E_{el,Op,SG,tot}$$

$$\tag{40}$$

 $\begin{array}{ll} P_{el,St,SG,tot} & \text{totale Bereitschaftsleistung Schiebetür (Stundenmittelwert) in kW} \\ P_{el,St,SG} & \text{Bereitschaftsleistung Schiebetür (Stundenmittelwert) in kW} \\ E_{el,St,SG,tot} & \text{totaler Bereitschaftsenergiebedarf Schiebetür in kWh} \end{array}$

 $E_{el,St,SG}$ Bereitschaftsenergiebedarf Schiebetür in kWh

 $P_{el,Op,SG,tot}$ totale Betriebsleistung Schiebetür (Stundenmittelwert) in kW Betriebsleistung Schiebetür (Stundenmittelwert) in kW totaler Betriebsenergiebedarf Schiebetür in kWh

 $E_{el,Op,SG}$ Betriebsenergiebedarf Schiebetür in kWh

 $E_{el,SG}$ Energiebedarf Schiebetür in kWh

n Anzahl

6.6.2 Standardwerte

Tabelle 59 Standardwerte für Schiebetüren

Gebäudekategorie		Büro, Bank	Einkaufen	Hotel
Bereitschaft				
Bereitschaftsleistung	W	30	30	30
Jährliche Bereitschaftsstunden	h	5900	4700	1 500
Bereitschaftsenergiebedarf	kWh	177	141	45
Betrieb				
Betriebsleistung (Stundenmittelwert)	W	31	44	31
Jährliche Betriebsstunden	h	2860	4060	7 2 6 0
Betriebsenergiebedarf	kWh	89	179	225
Total Energiebedarf	kWh	266	320	270

6.7 Drehkreuz und -sperre

6.7.1 Berechnungsmodell

$$P_{el.St.TS.tot} = P_{el.St.TS} \cdot n \tag{41}$$

$$E_{el,St,TS,tot} = E_{el,St,TS} \cdot n \tag{42}$$

 $\begin{array}{ll} P_{el,St,TS,tot} & \text{totale Bereitschaftsleistung Drehkreuz (Stundenmittelwert) in kW} \\ P_{el,St,TS} & \text{Bereitschaftsleistung Drehkreuz (Stundenmittelwert) in kW} \\ E_{el,St,TS,tot} & \text{totaler Bereitschaftsenergiebedarf Drehkreuz in kWh} \end{array}$

 $E_{el,St,TS}$ Bereitschaftsenergiebedarf Drehkreuz in kWh

n Anzahl

6.7.2 Standardwerte

Tabelle 60 Standardwerte für Drehkreuze und -sperren

		Drehsperren Schwenktüren	Halbhohe Drehkreuze	Hohe Drehkreuze
Bereitschaftsleistung	W	10	15	20
Jährliche Bereitschaftsstunden	h	8760	8760	8760
Bereitschaftsenergiebedarf	kWh	88	131	175

6.8 Dachrinnenheizung

6.8.1 Allgemein

Diese Anlagen sind gemäss Mustervorschriften der Kantone im Energiebereich (MuKEn) bis auf wenige Ausnahmen grundsätzlich verboten.

6.8.2 **Berechnungsmodell**

$$P_{el,Op,RGH,tot} = P_{el,Op,RGH,sp} \cdot I_{RGH}$$
(43)

$$E_{el,Op,RGH,tot} = P_{el,Op,RGH,tot} \cdot t_{Op,RGH}$$
(44)

$$t_{OD,RGH} = t_{\leq 3^{\circ}C} \cdot 0.2 \tag{45}$$

 $P_{el,Op,RGH,tot}$ totale Betriebsleistung Dachrinnenheizung (Stundenmittelwert) in kW

 $P_{el,Op,RGH,sp}$ spezifische Betriebsleistung Dachrinnenheizung pro Meter (Stundenmittelwert)

in kW/m

 I_{RGH} Länge Dachrinnenheizung in m

 $E_{el,Op,RGH,tot}$ totaler Betriebsenergiebedarf Dachrinnenheizung in kWh jährliche Betriebsstunden Dachrinnenheizung in h Summe aller Stunden unter 3°C Aussentemperatur in h

(SIA 2028 / z. B. Davos ca. 4300 h)

0,2 Reduktionsfaktor feuchteabhängige Steuerung

6.8.3 Standardwerte

Tabelle 61 Spezifische Betriebsleistung für Dachrinnenheizung

Betrieb		
Spezifische Betriebsleistung	W/m	25

6.9 Satellitenempfänger

6.9.1 Berechnungsmodell

6.9.1.1 Satellitenempfänger

$$P_{el,Op,SAT,tot} = P_{el,Op,SAT} \cdot n \tag{46}$$

$$E_{el,Op,SAT,tot} = P_{el,Op,SAT,tot} \cdot t_{Op,SAT} \tag{47}$$

 $\begin{array}{ll} P_{el,Op,SAT,tot} & \text{totale Betriebsleistung Satellitenempfänger (Stundenmittelwert) in kW} \\ P_{el,Op,SAT} & \text{Betriebsleistung Satellitenempfänger (Stundenmittelwert) in kW} \end{array}$

n Anzah

 $E_{el,Op,SAT,tot}$ totaler Betriebsenergiebedarf Satellitenempfänger in kWh jährliche Betriebsstunden Satellitenempfänger in h

6.9.1.2 Heizung Satellitenempfänger

$$P_{el,Op,H,SAT,tot} = P_{el,Op,H,SAT} \cdot n \tag{48}$$

$$E_{el,Op,H,SAT,tot} = P_{el,Op,H,SAT,tot} \cdot t_{Op,H,SAT} \tag{49}$$

$$t_{Op,H,SAT} = t_{\leq 3^{\circ}C} \cdot 0,2 \tag{50}$$

 $P_{el,Op,H,SAT,tot}$ totale Betriebsleistung Heizung Satellitenempfänger (Stundenmittelwert) in kW Betriebsleistung Heizung Satellitenempfänger (Stundenmittelwert) in kW

n Anzahl

 $E_{el,Op,H,SAT,tot}$ totaler Betriebsenergiebedarf Heizung Satellitenempfänger in kWh

 $t_{Op,H,SAT}$ jährliche Betriebsstunden Heizung Satellitenempfänger in h Summe aller Stunden unter 3°C Aussentemperatur in h

(SIA 2028 / z.B. Davos ca. 4300 h)

0,2 Reduktionsfaktor feuchteabhängige Steuerung

6.9.1.3 Heizung Parabolantenne

$$P_{el,Op,H,PBA,tot} = P_{el,Op,H,PBA} \cdot n \tag{51}$$

$$E_{el,Op,H,PBA,tot} = P_{el,Op,H,PBA,tot} \cdot t_{Op,H,PBA}$$
(52)

$$t_{Op,H,PBA} = t_{<5^{\circ}C} \tag{53}$$

 $P_{el,Op,H,PBA,tot}$ totale Betriebsleistung Heizung Parabolantenne (Stundenmittelwert) in kW $P_{el,Op,H,PBA}$ Betriebsleistung Heizung Parabolantenne (Stundenmittelwert) in kW

 $P_{el,Op,H,PBA}$ Betrieb n Anzahl

 $E_{el,Op,H,PBA,tot}$ totaler Betriebsenergiebedarf Heizung Parabolantenne in kWh jährliche Betriebsstunden Heizung Parabolantenne in h

 $t_{<5^{\circ}C}$ Summe aller Stunden unter 5 °C Aussentemperatur in h

(SIA 2028 / z. B. Davos ca. 4900 h)

6.9.2 Standardwerte

Tabelle 62 Standardwerte für Satellitenempfänger

		Satelliten- empfänger	Heizung Satelliten- empfänger	Heizung Parabol- antenne
Betriebsleistung (Stundenmittelwert)	W	200	1200	300
Jährliche Betriebsstunden	h	8760		
Betriebsenergiebedarf kV	Wh	1752		

Allgemeine elektrische Widerstandsheizungen im Freien 6.10

6.10.1 **Allgemein**

Diese Anlagen sind gemäss Mustervorschriften der Kantone im Energiebereich (MuKEn) bis auf wenige Ausnahmen grundsätzlich verboten.

6.10.2 Berechnungsmodell

$$P_{el.N,REH} = A_c \cdot U \cdot (\theta_i - \theta_e) \tag{54}$$

$$E_{elNBEH} = A_c \cdot U \cdot (\theta_i - \theta_e) \cdot t \tag{55}$$

Nennleistung elektrische Widerstandsheizung in kW

 A_c UBauteilfläche im m²

Wärmedurchgangskoeffizient in kW/(m²K)

 θ_i Raumtemperatur in K Aussentemperatur in K

 $E_{\mathit{el,N,REH}}$ Energiebedarf elektrische Widerstandsheizung in kWh

Zeit in h

Inhouse-Mobilfunkanlage 6.11

6.11.1 Berechnungsmodell

$$P_{el,Op,mcs} = P_{el,Op,mcs,sp} \cdot A_{mcs} \tag{56}$$

$$E_{el,Op,mcs} = P_{el,Op,mcs} \cdot t_{Op,mcs}$$
 (57)

Betriebsleistung Inhouse-Mobilfunkanlage (Stundenmittelwert) in kW $P_{el,Op,mcs}$

spezifische Betriebsleistung Inhouse-Mobilfunkanlage bezogen auf die abgedeckte $P_{el,Op,mcs,sp}$

Fläche (Stundenmittelwert) in kW/m²

abgedeckte Fläche Inhouse-Mobilfunkanlage in m² A_{mcs} Betriebsenergiebedarf Inhouse-Mobilfunkanlage in kWh $E_{el,Op,mcs}$

Betriebszeit Inhouse-Mobilfunkanlage h $t_{Op,mcs}$

6.11.2 **Standardwerte**

Tabelle 63 Standardwerte für Inhouse-Mobilfunkanlage

Spez. Betriebsleistung	W/m ²	0,15
Jährliche Betriebsstunden	h	8760
Spez. Betriebsenergiebedarf	kWh/m²	1,3

Gebäudeautomation 6.12

Berechnungsmodell 6.12.1

$$P_{el,Op,BAC} = P_{el,Op,BAC,sp} \cdot A_E \tag{58}$$

$$E_{el,Op,BAC} = E_{el,Op,BAC,sp} \cdot A_E \tag{59}$$

 $P_{el,Op,BAC}$ Betriebsleistung Gebäudeautomation (Stundenmittelwert) in kW

 $P_{el,Op,BAC,sp}$ spezifische Betriebsleistung Gebäudeautomation (Stundenmittelwert) in kW/m²

Energiebezugsfläche in m²

 $E_{el,Op,BAC}$ Betriebsenergiebedarf Gebäudeautomation in kWh

 $E_{el,Op,BAC,sp}$ spezifischer Betriebsenergiebedarf Gebäudeautomation in kWh/m²

6.12.2 **Standardwerte**

Tabelle 64 Standardwerte für Gebäudeautomation

		von	bis
Spez. Betriebsleistung	W	0,2	0,5
Jährliche Betriebsstunden	h	8760	8760
Spez. Betriebsenergiebedarf	kWh/m²	1,7	4,4

6.13 **Brandvermeidungsanlage**

6.13.1 Berechnungsmodell

$$P_{el,Op,FPD,tot} = P_{el,Op,FPD,sp} \cdot V_i \tag{60}$$

$$E_{el,Op,FPD,tot} = P_{el,Op,FPD,tot} \cdot t_{Op,FPD}$$
 (61)

totale Betriebsleistung Brandvermeidungsanlage (Stundenmittelwert) in kW

 $P_{el,Op,FPD,tot}$ $P_{el,Op,FPD,sp}$ V_i spezifische Betriebsleistung Brandvermeidungsanlage in kW/m³

Raumvolumen in m³

totaler Betriebsenergiebedarf Brandvermeidungsanlage in kWh $E_{el,Op,FPD,tot}$

jährliche Betriebsstunden Brandvermeidungsanlage in h $t_{Op,FPD}$

6.13.2 **Standardwerte**

Tabelle 65 Spezifische Betriebsleistung für Brandvermeidungsanlage in Abhängigkeit vom Raumvolumen, dem n50-Wert und der Sauerstoffreduktion

Raumgrösse	n50-Wert	14,9 Vol% O ₂		17,0 Vc	ol% O ₂
		Druckluft- bedarf	$P_{el,Op,FPD,sp}$	Druckluft- bedarf	$P_{el,Op,FPD,sp}$
m ³		Nm³/h	W/m³	Nm³/h	W/m³
250	1,5	45	24,3	30	17,8
500	1,2	70	16,2	42	12,2
1000	1,0	110	12,4	65	7,3
1500	0,7	120	9,5	70	5,4
2000	0,5	140	7,6	77	4,5
5 0 0 0	0,3	170	4,0	90	2,1

Rauch- und Wärmeabzugsanlage 6.14

6.14.1 Berechnungsmodell

6.14.1.1 Natürliche Entrauchung

$$P_{el,St,nat,SHEV,tot} = P_{el,St,nat,SHEV} \cdot n \tag{62}$$

$$E_{el,St,nat,SHEV,tot} = P_{el,St,nat,SHEV,tot} \cdot t_{St,nat,SHEV}$$
(63)

totale Bereitschaftsleistung natürliche RWA (Stundenmittelwert) in kW $P_{el,St,nat,SHEV,tot}$ Bereitschaftsleistung natürliche RWA (Stundenmittelwert) in kW $P_{el,St,nat,SHEV}$

Anzahl NRWG (motorisierte Abströmelemente)

totaler Bereitschaftsenergiebedarf natürliche RWA in kWh $E_{el,St,nat,SHEV,tot}$

Bereitschaftsstunden natürliche RWA in h $t_{St,nat,SHEV}$

6.14.1.2 Mechanische Entrauchung

$$P_{el.St.mech.SHEV} = P_{el.St.mech.SHEV.sp} \cdot A_{SHEV}$$
(64)

$$E_{el,St,mech,SHEV} = P_{el,St,mech,SHEV} \cdot t_{St,mech,SHEV}$$
 (65)

 $P_{el,St,mech,SHEV}$ Bereitschaftsleistung mechanische RWA (Stundenmittelwert) in kW

 $P_{el,St,mech,SHEV,sp}$ spezifische Bereitschaftsleistung mechanische RWA bezogen auf die entrauchte

Fläche (Stundenmittelwert) in kW/m²

A_{SHEV} entrauchte Fläche mit RWA in m²

 $E_{\textit{el,St,mech,SHEV}}$ Bereitschaftsenergiebedarf mechanische RWA in kWh

 $t_{\mathit{St,mech,SHEV}}$ Bereitschaftsstunden mechanische RWA in h

6.14.2 Standardwerte

Tabelle 66 Standardwerte für Rauch- und Wärmeabzugsanlagen

		Natürliche RWA	Mechanische RWA
Bereitschaftsleistung	W	20	
Spez. Bereitschaftsleistung	W/m ²		0,1
Jährliche Bereitschaftsstunden	h	8760	8760
Spez. Bereitschaftsenergiebedarf	kWh/m²		0,88
Bereitschaftsenergiebedarf	kWh	175	

6.15 Audioanlage und elektroakustisches Notfallwarnsystem

6.15.1 Berechnungsmodell

$$P_{el,St,AUS} = P_{el,St,AUS,sp} \cdot A_{AUS} \tag{66}$$

$$P_{el,Op,AUS} = P_{el,Op,AUS,sp} \cdot A_{AUS} \tag{67}$$

$$E_{el.St.AUS} = P_{el.St.AUS} \cdot t_{St.AUS} \tag{68}$$

$$E_{el,Op,AUS} = P_{el,Op,AUS} \cdot t_{Op,AUS}$$
 (69)

$$E_{el,AUS} = E_{el,St,AUS} + E_{el,Op,AUS} \tag{70}$$

P_{el St AUS} Bereitschaftsleistung Audioanlage (Stundenmittelwert) in kW

 $P_{el,St,AUS,sp}$ spezifische Bereitschaftsleistung Audioanlage innerhalb der beschallten Fläche

(Stundenmittelwert) in kW/m²

A_{AUS} beschallte Fläche mit Audioanlage in m²

 $P_{el,Op,AUS}$ Betriebsleistung Audioanlage (Stundenmittelwert) in kW

 $P_{el,Op,AUS,sp}$ spezifische Betriebsleistung Audioanlage innerhalb der beschallten Fläche

(Stundenmittelwert) in kW/m²

 $E_{el,St,AUS}$ Bereitschaftsenergiebedarf Audioanlage in kWh

 $\begin{array}{ll} t_{St,AUS} & \text{Bereitschaftsstunden Audioanlage in h} \\ E_{el,Op,AUS} & \text{Betriebsenergiebedarf Audioanlage in kWh} \\ t_{Op,AUS} & \text{jährliche Betriebsstunden Audioanlage in h} \end{array}$

 $E_{el,AUS}$ Energiebedarf Audioanlage in kWh

6.15.2 Standardwerte

Tabelle 67 Standardwerte für Audioanlagen und elektroakustische Notfallwarnsysteme

Spez. Bereitschaftsleistung	W/m ²	0,02
Spez. Betriebsleistung	W/m ²	0,2
Jährliche Bereitschaftsstunden	h	8760
Spez. Bereitschaftsenergiebedarf	kWh/m²	0,175

6.16 Einbruchmeldeanlage

6.16.1 Berechnungsmodell

$$P_{el.St.BAS} = P_{el.St.BAS.sp} \cdot A_{BAS} \tag{71}$$

$$E_{el,St,BAS} = P_{el,St,BAS} \cdot t_{St,BAS} \tag{72}$$

 $P_{el,St,BAS}$ Bereitschaftsleistung Einbruchmeldeanlage (Stundenmittelwert) in kW spezifische Bereitschaftsleistung Einbruchmeldeanlage pro Nutzungsfläche

(Stundenmittelwert) in kW/m²

 A_{BAS} Nutzungsfläche Einbruchmeldeanlage in m²

 $E_{el,St,BAS}$ Bereitschaftsenergiebedarf Einbruchmeldeanlage in kWh

 $t_{St,BAS}$ Bereitschaftsstunden Einbruchmeldeanlage in h

6.16.2 Standardwerte

Tabelle 68 Standardwerte für Einbruchmeldeanlagen

Spez. Bereitschaftsleistung	W/m ²	0,1
Jährliche Bereitschaftsstunden	h	8760
Spez. Bereitschaftsenergiebedarf	kWh/m²	0,88

6.17 Zutrittskontrolle

6.17.1 Berechnungsmodell

$$P_{el,St,ACS,tot} = P_{el,St,ACS} \cdot n \tag{73}$$

$$E_{el,St,ACS,tot} = E_{el,St,ACS} \cdot n \tag{74}$$

 $P_{el,St,ACS,tot}$ totale Bereitschaftsleistung Zutrittskontrolle (Stundenmittelwert) in kWh Bereitschaftsleistung Zutrittskontrolle pro Stück (Stundenmittelwert) in kW

n Anzah

 $\begin{array}{ll} E_{el,St,ACS,tot} & \text{totaler Bereitschaftsenergiebedarf Zutrittskontrolle in kWh} \\ E_{el,St,ACS} & \text{Bereitschaftsenergiebedarf Zutrittskontrolle pro Stück in kWh} \end{array}$

6.17.2 Standardwerte

Tabelle 69 Standardwerte für Zutrittskontrollen

		Tür mit Online-Leser, Türöffner	Tür mit Online-Leser, Motorschloss, Überwachung	Tür mit Online-Leser, Türöffner, Fluchttür- terminal
Bereitschaftsleistung	W	2	3	4
Jährliche Bereitschaftsstunden	h	8760	8760	8760
Bereitschaftsenergiebedarf	kWh	17,5	26,3	35,0

6.18 Videoüberwachungsanlage

6.18.1 **Berechnungsmodell**

6.18.1.1 Im Gebäudeinnern

$$P_{el,St,VMS} = P_{el,St,VMS,sp} \cdot A_{VMS} \tag{75}$$

$$E_{el,St,VMS} = P_{el,St,VMS} \cdot t_{St,VMS} \tag{76}$$

$$P_{el,Op,VMS} = P_{el,Op,VMS,sp} \cdot A_{VMS} \tag{77}$$

$$E_{el,Op,VMS} = P_{el,Op,VMS} \cdot t_{Op,VMS}$$
 (78)

$$E_{el,VMS} = E_{el,St,VMS} + E_{el,Op,VMS} \tag{79}$$

 $P_{el,St,VMS}$ Bereitschaftsleistung Videoüberwachungsanlage (Stundenmittelwert) in kW spezifische Bereitschaftsleistung Videoüberwachungsanlage pro Nutzungsfläche

(Stundenmittelwert) in kW/m²

A_{VMS} Nutzungsfläche Videoüberwachungsanlage in m²

 $E_{el,St,VMS}$ Bereitschaftsenergiebedarf Videoüberwachungsanlage in kWh

 $t_{St,VMS}$ Bereitschaftsstunden Videoüberwachungsanlage in h

 $P_{el,Op,VMS}$ Betriebsleistung Videoüberwachungsanlage (Stundenmittelwert) in kW spezifische Betriebsleistung Videoüberwachungsanlage pro Nutzungsfläche

(Stundenmittelwert) in kW/m²

 $E_{el,Op,VMS}$ Betriebsenergiebedarf Videoüberwachungsanlage in kWh t $_{Op,VMS}$ jährliche Betriebsstunden Videoüberwachungsanlage in h

 $E_{el,VMS}$ Energiebedarf Videoüberwachungsanlage in kWh

6.18.1.2 Im Freien

$$P_{el,St,VMS} = \sum_{i=1}^{n} P_{el,St,VMS,i}$$
(80)

$$E_{el,St,VMS} = P_{el,St,VMS} \cdot t_{St,VMS}$$
 (81)

$$P_{el,Op,VMS} = \sum_{i=1}^{n} P_{el,Op,VMS,i}$$
(82)

$$E_{el,Op,VMS} = P_{el,Op,VMS} \cdot t_{Op,VMS}$$
(83)

$$E_{el,VMS} = E_{el,St,VMS} + E_{el,Op,VMS}$$
(84)

 $P_{el,St,VMS}$ Bereitschaftsleistung Videoüberwachungsanlage (Stundenmittelwert) in kW Bereitschaftsleistung eines Verbrauchers Videoüberwachung (Stundenmittelwert)

in kW

 $E_{el,St,VMS}$ Bereitschaftsenergiebedarf Videoüberwachungsanlage in kWh

t_{St,VMS} Bereitschaftsstunden Videoüberwachungsanlage in h

 $P_{el,Op,VMS}$ Betriebsleistung Videoüberwachungsanlage (Stundenmittelwert) in kW

 $P_{el,Op,VMS,i}$ Betriebsleistung eines Verbrauchers Videoüberwachung (Stundenmittelwert) in kW

 $\begin{array}{ll} E_{el,Op,VMS} & \text{Betriebsenergiebedarf Videoüberwachungsanlage in kWh} \\ t_{Op,VMS} & \text{jährliche Betriebsstunden Videoüberwachungsanlage in h} \\ E_{el,VMS} & \text{Energiebedarf Videoüberwachungsanlage in kWh} \end{array}$

6.18.2 Standardwerte

Tabelle 70 Standardwerte für Videoüberwachungsanlage im Innern

Ausbaustandard		Tief	Mittel	Hoch
Spez. Bereitschaftsleistung	W/m ²	0,5	0,9	1,3
Spez. Betriebsleistung	W/m ²	0,8	1,6	2,4

Tabelle 71 Betriebsleistung für Videoüberwachungsanlage im Freien für verschiedene Geräte

Ausbaustandard		Tief	Mittel	Hoch
Kamera	W	10	30	50
Scheibenheizung Gehäuse	W	7	7	7
Infrarotscheinwerfer	W	50	75	100
Aufnahmegerät	W	40	80	120
Station für Überwachung	W	70	160	250

6.19 Transformator

6.19.1 Berechnungsmodell

$$P_{el,TRF,scl,i} = P_{el,TRF,scl} \cdot \gamma_i^2 \tag{85}$$

$$P_{el,TRF,ls,i} = P_{el,TRF,nll} + P_{el,TRF,scl,i}$$
(86)

$$E_{el,TRF,scl,i} = P_{el,TRF,scl} \cdot t_{TRF,scl,i}$$
(87)

$$E_{el,TRE,nll} = P_{el,TRE,nll} \cdot t_{TRE,nll}$$
 (88)

$$E_{el,TRF,ls} = E_{el,TRF,nll} + \sum_{i=1}^{n} E_{el,TRF,scl,i}$$
(89)

 $P_{el,TRF,scl,i}$ Kupferverluste Transformator bei Belastung i in kW

 $P_{el,TRF,scl}$ Kupferverluste Transformator in kW γ_i Belastung i Transformator (50 % = 0,5) $P_{el,TRF,ls,i}$ Verluste Transformator bei Belastung i in kW

 $P_{\it el.TRE,nll}$ Eisenverluste Transformator in kW

 $E_{el,TRF,scl,i}$ Energieverluste Transformator bei Belastung i aufgrund Kupferverlusten in kWh

 $t_{TRF,scl,i}$ jährliche Betriebsstunden bei Belastung i aufgrund Kupferverlusten in h

 $E_{el,TRF,nll}$ Energieverluste Transformator aufgrund Eisenverlusten in kWh

 t_{TREnll} jährliche Betriebsstunden aufgrund Eisenverlusten in h

 $E_{el.TREls}$ Energieverluste Transformator in kWh

6.19.2 Standardwerte

Tabelle 72 Standardwerte von Transformatoren-Eisenverlusten $P_{el,TRF,nll}$ in Abhängigkeit von der Bemessungsleistung für verschiedene Transformatortypen

Bemessungsleistung	Öltransformator verlustreduziert	Giessharz- transformator	Trocken- transformator
kVA	W	W	W
50			300
100	190		550
160	255	480	720
250	325	650	1 050
400	430	940	
630	600	1 250	
1000	890	1800	
1 250	1020	2100	
1600	1 280	2400	
2000	1 480	3000	
2500	1 650	3 600	

Tabelle 73 Standardwerte von Transformatoren-Kupferverlusten $P_{el,TRE,scl}$ 75 °C bei Nennleistung in Abhängigkeit von der Bemessungsleistung für verschiedene Transformatortypen

Bemessungsleistung kVA	Öltransformator verlustreduziert W	Giessharz- transformator W	Trocken- transformator W
50			1500
100	1 180		2000
160	1700	2550	2900
250	2 2 2 2 0	3300	4600
400	3050	4800	
630	4150	6 6 5 0	
1000	6150	9600	
1 250	8250	11 300	
1 600	12900	13900	
2000	17 150	16 650	
2500	23900	20 000	

Tabelle 74 Wirkungsgrad η_{TRF} am Beispiel Öltransformator in Abhängigkeit von der Auslastung und der Nennleistung

Auslastung Öltransformator	250 kVA	400 kVA	630 kVA	1000 kVA
25% der Nennleistung	99,75	99,75	99,73	99,67
50% der Nennleistung	99,38	99,31	99,22	98,97
75% der Nennleistung	98,76	98,58	98,37	97,78
100% der Nennleistung	97,90	97,57	97,17	96,13

6.20 Schaltgerätekombination

6.20.1 Berechnungsmodell

$$P_{el,SGA,i} = I_{SGA} \cdot P_{el,SGA,sp} \cdot b_{SGA} \cdot \left(\frac{I_{SGA,i}}{I_{SGA,N}}\right)^{2}$$
(90)

$$E_{el,SGA,i} = P_{el,SGA,i} \cdot t_{SGA,i}$$
(91)

$$E_{el,SGA,tot} = \sum_{i=1}^{n} E_{el,SGA,i}$$
(92)

 $P_{el,SGA,i}$ Verlustleistung Schaltgerätekombination bei Belastung i in W

I_{SGA} Länge der Schaltgerätekombination in m

 $P_{el,SGA,sp}$ Verlustleistung pro Meter bei Nennstrom und Vollausbau, 490 W/m

 b_{SGA} Ausbaugrad der Schaltgerätekombination (1 = voll / 0 = leer) $l_{SGA,i}$ Betriebsstrom Schaltgerätekombination bei Belastung i in A

I_{SGA,N} Nennstrom Schaltgerätekombination in A

 $E_{el,SGA,i}$ Energieverlust Schaltgerätekombination bei Belastung i in Wh $t_{SGA,i}$ Nutzungsstunden Schaltgerätekombination bei Belastung i in h

 $E_{el,SGA,tot}$ totaler Energieverlust Schaltgerätekombination in Wh

6.21 USV-Anlage

6.21.1 Berechnungsmodell

6.21.1.1 USV-Anlage ohne Kühlung

$$P_{el,UPS,ls,i} = P_{el,UPS,i} \cdot \left(\frac{1}{\eta_{UPS,i}} - 1 \right) \tag{93}$$

$$E_{el,UPS,ls,i} = P_{el,UPS,ls,i} \cdot t_{UPS,i} \tag{94}$$

$$E_{el,UPS,tot} = \sum_{i=1}^{n} E_{el,UPS,i}$$
(95)

 $\begin{array}{ll} P_{el,UPS,ls,i} & \text{Verlustleistung USV-Verbraucher bei Belastung } i \text{ in kW} \\ P_{el,UPS,i} & \text{Leistung USV-Verbraucher bei Belastung } i \text{ in kW} \end{array}$

 $\eta_{\mathit{UPS},i}$ Wirkungsgrad USV bei Belastung i

 $E_{el,UPS,ls,i}$ Energieverluste USV bei Belastung i in kWh jährliche Betriebsstunden USV bei Belastung i in h totaler Energieverbrauch USV bei Belastung i in kWh $E_{el,UPS,i}$ Energieverbrauch USV bei Belastung i in kWh

6.21.1.2 USV-Anlage mit Kühlung

$$P_{el,UPS,ls,i} = P_{el,UPS,i} \cdot \left(\frac{1}{\eta_{UPS,i}} - 1\right) \tag{96}$$

$$P_{el,UPS,C,i} = \frac{P_{el,UPS,ls,i}}{\varepsilon_{COP}} \tag{97}$$

$$E_{el,UPS,ls,i} = P_{el,UPS,ls,i} \cdot t_{UPS,i} \cdot \left(1 + \frac{1}{\varepsilon_{SPFC}}\right)$$
(98)

$$E_{el,UPS,ls,tot} = \sum_{i=1}^{n} E_{el,UPS,ls,i}$$
(99)

 $P_{el,UPS,is}$ Verlustleistung USV-Verbraucher bei Belastung i in kW Leistung USV-Verbraucher bei Belastung i in kW

 $\eta_{UPS,i}$ Wirkungsgrad USV bei Belastung i

 $P_{el.UPS,C,i}$ Kühlleistung USV-Verbraucher bei Belastung i in kW

 ε_{COP} Leistungszahl Kühlen

 $E_{el,UPS,ls,i}$ Energieverluste USV bei Belastung i in kWh $t_{UPS,i}$ jährliche Betriebsstunden USV bei Belastung i in h

 ε_{SPFC} Jahresarbeitszahl Kühlung

 $E_{el,UPS,ls,tot}$ totale Energieverluste USV in kWh

6.21.1.3 Flywheel

$$P_{el,UPS,ls,i} = P_{el,UPS,i} \cdot \left(\frac{1}{\eta_{UPS,i}} - 1\right) \tag{100}$$

$$E_{el.UPS,ls,i} = P_{el.UPS,ls,i} \cdot t_{UPS,i} \tag{101}$$

$$E_{el,UPS,ls,tot} = \sum_{i=1}^{n} E_{el,UPS,ls,i}$$
(102)

 $P_{el,UPS,is,i}$ Verlustleistung USV-Verbraucher bei Belastung i in kW Leistung USV-Verbraucher bei Belastung i in kW

 $\eta_{\mathit{UPS},i}$ Wirkungsgrad USV bei Belastung i

 $E_{el,UPS,ls,i}$ Energieverluste USV bei Belastung i in kWh jährliche Betriebsstunden USV bei Belastung i in h totale Energieverluste USV bei Belastung i in kWh

6.21.1.4 Schwungmasse

$$P_{el,UPS,ls} = P_{el,UPS,N} \cdot \left(\frac{1}{\eta_{UPS}} - 1 \right) \tag{103}$$

$$E_{el,UPS,ls} = P_{el,UPS,ls} \cdot t_{UPS} \tag{104}$$

 $\begin{array}{ll} P_{\textit{el,UPS,ls}} & \text{Verlustleistung Schwungmasse in kW} \\ P_{\textit{el,UPS,N}} & \text{Nennleistung Schwungmasse in kW} \end{array}$

 η_{UPS} Wirkungsgrad USV

 $E_{el,UPS,ls}$ Energieverluste USV in kWh jährliche Betriebsstunden USV in h

6.21.2 Standardwerte

Tabelle 75 Wirkungsgrad η_{UPS} einer Online-USV-Anlage in Abhängigkeit von der Auslastung und der Nennleistung bzw. Betriebsart

Auslastung der USV	≤ 40 kVA	40–200 kVA	≥ 200 kVA	ECO-Modus
25% der Nennleistung	0,94	0,96	0,97	0,99
50% der Nennleistung	0,96	0,96	0,97	0,99
75% der Nennleistung	0,96	0,96	0,96	0,99
100% der Nennleistung	0,95	0,95	0,94	0,99

Als Online-USV-Anlagen gelten Anlagen nach der Klassifizierung VFI-SS-111 von SN EN 62040-3.

Tabelle 76 Wirkungsgrad η_{UPS} einer USV-Anlage mit Flywheel oder Schwungmasse in Abhängigkeit von der Auslastung

Auslastung der USV	Flywheel < 100 kVA	Schwungmasse < 600 kVA
25% der Nennleistung	0,94	0,92-0,96
50% der Nennleistung	0,97	0,92–0,96
75% der Nennleistung	0,98	0,92-0,96
100% der Nennleistung	0,98	0,92-0,96

6.22 Dieselelektrische Netzersatzanlage

6.22.1 Berechnungsmodell

$$P_{el,St,EDG} = P_{el,St,EDG,sp} \cdot S_{el,EDG}$$
 (105)

$$E_{el,St,EDG} = P_{el,St,EDG} \cdot t_{St,EDG}$$
 (106)

 $P_{el.St.EDG}$ Bereitschaftsleistung dieselelektrischer Netzersatzanlage (Stundenmittelwert) in W

 $P_{el,St,EDG,sp}$ spezifische Bereitschaftsleistung dieselelektrischer Netzersatzanlage

(Stundenmittelwert) in W/kVA

 $S_{\it el,EDG}$ Scheinleistung dieselelektrischer Netzersatzanlage in kVA

 $E_{el,St,EDG}$ Bereitschaftsenergiebedarf dieselelektrischer Netzersatzanlage in Wh $t_{St,EDG}$ jährliche Bereitschaftsstunden dieselelektrischer Netzersatzanlage in h

6.22.2 Standardwerte

Tabelle 77 Standardwerte für dieselelektrische Netzersatzanlagen

Spez. Bereitschaftsleistung	W/kVA	1,5
Jährliche Bereitschaftsstunden	h	8760
Spez. Bereitschaftsenergiebedarf	kWh/kVA	13,140

6.23 Aufzug

6.23.1 Berechnungsmodell

 $E_{el,ELV} = E_{el,St,ELV} + E_{el,Op,ELV} \cdot f_{rec} \cdot f_{hyd}$ (107)

 $E_{el,ELV}$ Energiebedarf Aufzug in kWh

 $\begin{array}{ll} E_{el,St,ELV} & \text{Bereitschaftsenergiebedarf Aufzug in kWh} \\ E_{el,Op,ELV} & \text{Betriebsenergiebedarf Aufzug in kWh} \\ f_{rec} & \text{Reduktionsfaktor Rekuperation} \\ f_{hyd} & \text{Zuschlagsfaktor Hydraulikaufzug} \end{array}$

Die Korrekturfaktoren f_{rec} und f_{hyd} sind je nach Antriebstechnologie anzuwenden:

- Seilaufzug ohne Rückspeisung kein Korrekturfaktor

Seilaufzug mit Rückspeisung
 Hydraulikaufzug
 f_{hyd}

6.23.2 Standardwerte Energie

Der Energiebedarf von Aufzügen ist stark beeinflusst von der Bereitschaftsenergie. Bei Nutzungen mit einer geringen Intensität ist die Bereitschaftsenergie höher als die Energie für die Fahrten.

Tabelle 78 Nutzungsintensität von Aufzügen

Nutzungsintensität	Beschreibung
Sehr gering	Wohnhaus mit bis zu 6 Wohnungen Kleineres Büro- und Verwaltungsgebäude mit wenig Betrieb
Gering	Wohnhaus mit bis zu 20 Wohnungen Kleineres Büro- und Verwaltungsgebäude mit 2 bis 5 Geschossen Kleineres Hotel Lastenaufzug mit wenig Betrieb
Mittel	Wohnhaus mit bis zu 50 Wohnungen Mittleres Büro- und Verwaltungsgebäude mit bis zu 10 Geschossen Mittleres Hotel Lastenaufzug mit mittlerem Betrieb
Stark	Wohnhaus mit mehr als 50 Wohnungen Hohe Büro- und Verwaltungsgebäude mit über 10 Geschossen Grosses Hotel Kleineres bis mittleres Krankenhaus Lastenaufzug in Produktionsprozess bei einer Schicht

Tabelle 79 Bereitschaftsenergiebedarf von Aufzügen $E_{el,St,ELV}$

Nutzlast	Bereitschaftsenergiebedarf $E_{el,St,ELV}$ nach Nutzungsintensität kWh			
kg	sehr gering	gering	mittel	stark
630 bis 2500	650	640	620	550
3200 bis 5000	1300	1 280	1230	1110

Figur 6 Jährlicher Energiebedarf von Aufzügen $E_{el,ELV}$ nach Nutzungsintensität und Nutzlast bei einer Nenngeschwindigkeit von 1 m/s

Tabelle 80 Betriebsenergiebedarf von Aufzügen $E_{el,Op,ELV}$ nach Nutzungsintensität und Nutzlast bei einer Nenngeschwindigkeit von 1 m/s

Nutzlast	Betriebsenergiebedarf $E_{el,Op,ELV}$ nach Nutzungsintensität kWh				
kg	sehr gering	gering	mittel	stark	
630	120	300	730	1830	
800	160	380	930	2320	
1000	190	480	1160	2900	
1275	250	610	1 480	3700	
1 600	310	770	1850	4 640	
1800	350	860	2090	5220	
2000	2000 390		2320	5800	
2500	480	1210	2900	7 2 5 0	
3200	930	2320	5 5 7 0	13 930	
4000	1160	2900	6960	17410	
5000	1 450	3 6 3 0	8700	21760	
Reduktionsfaktor Rekuperation f_{rec}	0,9	0,9	0,8	0,65	
Zuschlagsfaktor Hydraulikaufzug f _{hyd}	1,25	1,25	1,35	_	

61

Figur 7 Energiebedarf von Aufzügen $E_{el,ELV}$ nach Nutzungsintensität und Nutzlast bei einer Nenngeschwindigkeit von 1,6 m/s

Tabelle 81 Betriebsenergiebedarf von Aufzügen $E_{el,Op,ELV}$ nach Nutzungsintensität und Nutzlast bei einer Nenngeschwindigkeit von 1,6 m/s

Nutzlast	Betriebsenergiebedarf $E_{el,Op,ELV}$ nach Nutzungsintensität kWh			
kg	sehr gering	gering	mittel	stark
630	180	450	1 070	2600
800	230	560	1 360	3310
1000	280	710	1700	4130
1275	360	890	2160	5 2 7 0
1600	450	1130	2710	6610
1800	510	1270	3050	7 440
2000	570	1410	3390	8260
2500	710	1770	4240	10330
3200	1 090	3400	8150	19860
4000	1360	4250	10 190	24820
5000	1700	5310	12740	31 030
Reduktionsfaktor Rekuperation f_{rec}	0,9	0,9	0,8	0,65
Zuschlagsfaktor Hydraulikaufzug f_{hyd}	-	-	_	-

6.23.3 Standardwerte Leistung

In den nachfolgenden Figuren ist ebenfalls die Bereitschaftsleistung $P_{el,St,ELV}$ ersichtlich. Die Bereitschaftsleistung ist von der Nutzungsintensität unabhängig.

Figur 8 Leistung Aufzug nach Nutzungsintensität und Nutzlast bei einer Nenngeschwindigkeit von 1 m/s

Tabelle 82 Leistung Aufzug nach Nutzungsintensität und Nutzlast bei einer Nenngeschwindigkeit von 1 m/s Nutzlast

Nutzlast	Bereit- schafts- leistung	Betriebsleistung (Stundenmittelwert) $P_{\it el,Op,ELV}$ nach Nutzungsintensität W				
kg	P _{el,St,ELV} W	sehr gering	gering	mittel	stark	
630	75	100	140	240	490	
800	75	110	160	290	600	
1000	75	120	190	340	740	
1275	75	130	210	410	920	
1 600	75	150	250	500	1130	
1800	75	155	270	550	1270	
2000	75	160	300	600	1 400	
2500	75	190	350	740	1730	
3200	150	360	680	1 420	3330	
4000	150	420	810	1740	4130	
5000	150	480	980	2 140	5120	

Figur 9 Leistung Aufzug nach Nutzungsintensität und Nutzlast bei einer Nenngeschwindigkeit von 1,6 m/s

Tabelle 83 Leistung Aufzug nach Nutzungsintensität und Nutzlast bei einer Nenngeschwindigkeit von 1,6 m/s Nutzlast

Nutzlast	Bereit- schafts- leistung	Betriebsleistung (Stundenmittelwert) P _{el,Op,ELV} nach Nutzungsintensität W			
kg	P _{el,St,ELV} W	sehr gering	gering	mittel	stark
630	75	110	180	320	670
800	75	120	200	380	830
1 000	75	130	240	460	1020
1 275	75	140	280	570	1 280
1 600	75	160	330	690	1 580
1800	75	170	370	770	1770
2000	75	180	400	850	1 960
2500	75	210	480	1 040	2430
3200	150	400	930	2010	4680
4000	150	460	1120	2 480	5820
5000	150	540	1 360	3 0 6 0	7 2 3 0

6.24 Fahrtreppe und Fahrsteig

6.24.1 Berechnungsmodell

$$P_{el,Op,coo,ESC} = P_{el,Op,ESC,dev} \cdot k_{coo,ESC} \cdot k_{dir,ESC}$$
(108)

$$P_{el,Op,sls,ESC} = P_{el,Op,ESC,dev} \cdot k_{sls,ESC}$$
 (109)

$$E_{el,Op,coo,ESC} = P_{el,Op,coo,ESC} \cdot t_{Op,coo,ESC}$$
(110)

$$E_{el,Op,sls,ESC} = P_{el,Op,sls,ESC} \cdot t_{Op,sls,ESC}$$
 (111)

$$E_{el,Op,ESC} = E_{el,Op,coo,ESC} + E_{el,Op,sls,ESC}$$
(112)

 $P_{el,Op,coo,ESC}$ Betriebsleistung Fahrtreppe / Fahrsteig (Stundenmittelwert) im Dauerbetrieb in kW

 $P_{el,Op,ESC,dev}$ Betriebsleistung Fahrtreppe / Fahrsteig unabhängig der Fahrtrichtung

(Stundenmittelwert) in kW

 $k_{coo,ESC}$ Betriebsartfaktor Dauerbetrieb (1,0)

 $k_{dir,ESC}$ Fahrtrichtungsfaktor (1,0 = Aufwärtsfahrt / 0,8 = Abwärtsfahrt)

 $P_{el,Op,sls,ESC}$ Betriebsleistung Fahrtreppe / Fahrsteig (Stundenmittelwert) in Schleichfahrt in kW

 $k_{s/s,ESC}$ Betriebsartfaktor Schleichfahrt (0,2)

 $\begin{array}{ll} E_{el,Op,coo,ESC} \\ E_{el,Op,sls,ESC} \\ \end{array} \quad \begin{array}{ll} \text{Betriebsenergiebedarf Fahrtreppe / Fahrsteig im Dauerbetrieb in kWh} \\ \text{jährliche Betriebsstunden Fahrtreppe / Fahrsteig im Dauerbetrieb in h} \\ \text{Betriebsenergiebedarf Fahrtreppe / Fahrsteig in Schleichfahrt in kWh} \\ \text{jährliche Betriebsstunden Fahrtreppe / Fahrsteig in Schleichfahrt in h} \\ \end{array}$

 $E_{el,Op,ESC}$ Betriebsenergiebedarf Fahrtreppe / Fahrsteig in kWh

Die Betriebsstunden sind anhand von einem möglichen Nutzungsprofil des Einsatzortes zu bestimmen.

6.24.2 Standardwerte

Die nachfolgenden Figuren basieren auf einer Nenngeschwindigkeit von 0,5 m/s und 1000 mm Stufen-, Paletten- bzw. Gummibandbreite.

Figur 10 Betriebsleistung Aufwärtsfahrt $P_{el,Op,ESC,dev}$ (Stundenmittelwert) von Fahrtreppen und geneigten Fahrsteigen nach der Höhendifferenz

8 000 --- Fahrsteig horizontal 7 000 6 000 Betriebsleistung in W 5 000 4 000 3 000 2 000 1 000 0 20 30 40 50 80 90 100 60 70 Länge horizontal in m

Figur 11 Betriebsleistung $P_{el,Op,ESC,dev}$ (Stundenmittelwert) von horizontalen Fahrsteigen

6.25 Elektrofahrzeug

6.25.1 Berechnungsmodell

$$P_{el,Op,EV,tot} = P_{el,Op,EV} \cdot n \tag{113}$$

$$E_{el,EV} = \rho_{EV} \cdot \frac{I_{EV}}{100} \tag{114}$$

 $\begin{array}{ll} P_{el,Op,EV,tot} & \text{totale Betriebsleistung Ladestation Elektrofahrzeug (Stundenmittelwert) in kW} \\ P_{el,Op,EV} & \text{Betriebsleistung Ladestation Elektrofahrzeug (Stundenmittelwert) in kW} \end{array}$

Anzahl

 $E_{\it el,EV}$ Energiebedarf Elektrofahrzeug in kWh

 ho_{EV} spezifischer Energiebedarf Elektrofahrzeug pro 100 km in kWh/km

I_{EV} jährlich gefahrene Distanz in km

6.25.2 Standardwerte

Tabelle 84 Spezifischer Energiebedarf ρ_{EV} für Elektrofahrzeuge pro 100 km

		Tief	Mittel	Hoch
E-Bikes	kWh	0,6	0,7	0,8
E-Scooters	kWh	3,0	4,0	5,0
E-Motorräder	kWh	7,5	8,0	9,0
Plug-in Hybrid Electric Vehicle	kWh	10,0	15,0	20,0
Dreirädrige Elektrofahrzeuge	kWh	11,0	15,0	19,0
Vierrädrige Elektrofahrzeuge	kWh	15,0	17,0	21,0
Elektrische Lieferwagen	kWh	_	_	35,0
Elektrische LKW	kWh	_	_	100,0

Das BFS geht beim motorisierten Individualverkehr von einer jährlichen Distanz von ca. 10 200 km pro Person aus. Trotzdem ist für das zu untersuchende Projekt das Fahrverhalten spezifisch zu ermitteln.

Tabelle 85 Leistungsbedarf für Ladestation für drei- und vierrädrige Elektrofahrzeuge in Abhängigkeit von der Speisespannung

Stromstärke	Α	10	16	32	63	80	180	220
AC-Ladestation 230 V	kW	2,3	3,6	_	_	_	_	_
AC-Ladestation 400 V	kW	_	11,0	22,0	43,0	_	_	-
DC-Ladestation 400 V	kW	_	11,0	22,0	43,0	55,0	125,0	150,0

Die Ladeleistung ist über den Ladezyklus nicht konstant und nimmt mit der Zeit ab. Zusätzlich kann die Leistung von der Ladestation, vom Ladekabel oder Fahrzeug begrenzt werden. Sofern die Infrastruktur nicht ausreichend ist, kann mit einem Lastmanagement oder teilweise direkt auf der Station die maximale Leistungsaufnahme begrenzt werden.

Tabelle 86 Leistungsbedarf für Ladestationen in Abhängigkeit vom Elektrofahrzeug

E-Bikes	kW	bis 2,0
E-Scooters	kW	bis 3,0
E-Motorräder	kW	bis 3,0
Plug-in Hybrid Electric Vehicle	kW	bis 3,6
Dreirädrige Elektrofahrzeuge	kW	bis 11,0
Vierrädrige Elektrofahrzeuge	kW	bis 22,0
Elektrische Lieferwagen	kW	bis 43,0
Elektrische LKW (DC)	kW	bis 150,0

6.26 Kleinstverbraucher

6.26.1 Standardwerte

Tabelle 87 Leistungsbedarf Kleinstverbraucher

	Leistung W				
	pro Wohnung	pro Gerät	pro m²	pro Anlage	pro kVar
Gegensprechanlage	0,5–1,2				
Stempeluhr, Zeiterfassungsgerät		9			
Uhrenanlage		0,2-12,0			
Verstärker TV-Anlage		5,0–20,0			
Smartmeter		0,5			
CO-Warnanlage			0,002-0,02		
Brandmeldeanlage			0,005–0,02		
Feuerwehrfunk				30,0	
Kompensationsanlage					5,0

7 WÄRME

Die elektrisch relevanten Wärmeerzeuger sind die Wärmepumpe und die Widerstandsheizung. Unabhängig von der Wärmeerzeugung benötigen alle Systeme elektrische Hilfsenergie. Bei allen Berechnungen handelt es sich um Vereinfachungen und monovalente Anlagen. Die Grundlage bilden SIA 384/3 und SIA 385/2.

7.1 Wärmepumpe

7.1.1 Berechnungsmodell

$$P_{el,HP} = \frac{\Phi_H}{COP} \tag{115}$$

$$E_{el,HP} = \frac{O_{H,dis}}{\varepsilon_{SPFH,H}} + \frac{O_{W,dis}}{\varepsilon_{SPFH,W}}$$
(116)

 $P_{el,HP}$ elektrische Leistung Wärmepumpe in kW

 Φ_H Heizwärmeleistung in kW COP Leistungszahl (Heizen)

 $E_{el,HP}$ elektrischer Energiebedarf Wärmepumpe in kWh

O_{H.dis} Wärmebedarf der Heizungsanlage (Heizwärmebedarf plus Verluste) in kWh

 $\varepsilon_{SPFH.H}$ Jahresarbeitszahl Heizung (SIA 384/3)

 Q_{Wdis} Wärmebedarf der Warmwassererwärmungsanlage

(inkl. Verteil- und Speicherverluste) in kWh

 $\varepsilon_{SPFH,W}$ Jahresarbeitszahl Warmwasser

7.1.2 Standardwerte

Im Gegensatz zur Wärmeleistung verändert sich die elektrische Leistung kaum in Abhängigkeit von der Quellentemperatur (Aussenluft, Wasser oder Sole), ausser wenn die Wärmepumpe entsprechend eingerichtet ist. Für die elektrische Leistung sind somit die Auslege- und die Vorlauftemperatur der Wärmepumpe massgebend mit der entsprechenden Leistungszahl bei diesen Temperaturen.

7.2 Hilfsenergie Wärmeerzeugung, -verteilung und -abgabe

7.2.1 Berechnungsmodell

$$P_{el,H,aux,sp} \cdot A_E \tag{117}$$

$$E_{el,H,aux} = E_{el,H,aux,sp} \cdot A_E \tag{118}$$

 $P_{el,H,aux}$ Hilfsleistung Heizung in kW

 $P_{el,H,aux,sp}$ spezifische Hilfsleistung Heizung in kW/m²

 A_E Energiebezugsfläche in m² Hilfsenergie Heizung in kWh

 $E_{el,H,aux,sp}$ spezifische Hilfsenergie Heizung in kWh/m²

7.2.2 Standardwerte

Tabelle 88 Standardwerte für Wärmeerzeugung, -verteilung und -abgabe

	Heizkörper		Fussbodenheizung		
	Hilfsleistung P _{el,H,aux,sp} W/m ²	Hilfsenergie E _{el,H,aux,sp} kWh/m ²	Hilfsleistung P _{el,H,aux,sp} W/m ²	Hilfsenergie $E_{el,H,aux,sp}$ kWh/m ²	
Öl- und Gasfeuerung	0,25	0,5	0,32	0,8	
Pelletfeuerung	0,47	0,7	0,50	1,0	
Holzschnitzel und auto- matische Stückholzfeuerung	0,60	0,9	0,80	1,2	
Wärmepumpe (nur Verteilung)	0,09	0,3	0,15	0,6	

7.3 **Elektrische Widerstandsheizung**

7.3.1 **Allgemein**

Diese Anlagen sind bis auf wenige Ausnahmen grundsätzlich nicht zulässig.

7.3.2 Berechnungsmodell

$$P_{el} = \Phi_H \tag{119}$$

$$E_{el} = \Phi_H \cdot t_H \tag{120}$$

elektrische Leistung in kW Heizwärmeleistung in kW

elektrischer Energiebedarf in kWh E_{el}

Nutzungszeit Heizung in h

Elektrisches Heizband Warmwasserverteilung 7.4

7.4.1 Berechnungsmodell

$$P_{el,Op,STH} = \frac{E_{el,STH}}{24 \text{ h} \cdot t_{STH}} \cdot \frac{3}{2}$$
 (121)

$$E_{el,STH} = Q_{ls,HWP,sp} \cdot t_{STH} \cdot I_{HWP} \cdot \frac{2}{3}$$
 (122)

 $P_{el,Op,STH}$ $E_{el,STH}$ Betriebsleistung Heizband (Stundenmittelwert) in kW

Energiebedarf Heizband in Wh

Nutzungstage t_{STH}

 $Q_{ls,HWP,sp}$ spezifische Wärmeverluste Warmwasserleitung pro Tag und Meter in Wh/d m

Länge Warmwasserleitung in m I_{HWP}

7.4.2 **Standardwerte**

Figur 12 Spezifische Wärmeverluste $Q_{ls,HWP,sp}$ Warmwasserleitung pro Tag und Meter in Abhängigkeit vom Aussendurchmesser der Warmwasserleitung bei verschiedenen Temperaturdifferenzen nach SIA 385/2

 $\Delta\theta$ ist die Temperaturdifferenz zwischen Leitung und ihrer Umgebungsluft

Elektrisches Heizband Frostschutz 7.5

7.5.1 Berechnungsmodell

$$P_{el,H,def} = I_p \cdot U_p \cdot \Delta\theta_{def} \tag{123}$$

$$E_{el,H,def} = P_{el,H,def} \cdot t_{def} \cdot \frac{2}{3}$$
 (124)

 $P_{el,H,def}$ Betriebsleistung Heizband zur Frostfreihaltung (Stundenmittelwert) in W

Länge der vor Frost geschützten Wasserleitung in m

 U_p spezifischer Wärmedurchgangskoeffizient pro Leitungslänge in W/mK;

typische Werte von neuen Installationen liegen im Bereich von 0,2 bis 0,3 W/mK

massgebende Temperaturdifferenz für die Auslegung des Heizbands in K; $\Delta \theta_{def}$

typische Werte Mittelland: 10°C; Davos (1590 m ü.M.): 20°C

 $E_{\it el,H,def}$ Energiebedarf Heizband zur Frostfreihaltung in Wh

jährliche Betriebszeit Frostschutz in h; t_{def}

typische Werte Mittelland: 1000 h; Davos (1590 m ü.M.): 3000 h

Typische Werte für $E_{el,H,def}$ pro Leitungsläge liegen im Mittelland bei 2000 Wh/m, in Davos bei 12000 Wh/m.

Der Faktor ²/₃ wurde von SIA 385/2:2015 übernommen.

8 LÜFTUNG / KLIMATISIERUNG

8.1 Luftförderung

8.1.1 Berechnungsmodell

8.1.1.1 Frühe Planungsphase

In einer frühen Planungsphase kann die Berechnung über spezifische Werte der Nutzfläche erfolgen. Voraussetzung ist, dass zu diesem Zeitpunkt die Lüftungsanlage nicht dimensioniert ist.

$$P_{el,V} = P_{el,V,sp} \cdot A_V \tag{125}$$

$$E_{el,V} = E_{el,Vsp} \cdot A_V \tag{126}$$

P_{el,V} Leistung Lüftung in kW

 $P_{el,V,sp}$ spezifische Leistung Lüftung (SIA 2024) in kW/m²

 A_V belüftete Nutzfläche in m² $E_{el,V}$ Energiebedarf Lüftung in kWh

 $E_{el,V,sp}$ spezifische Energie Lüftung (SIA 2024) in kWh/m²

8.1.1.2 Spezifische Ventilatorleistung

Sofern der Luftvolumenstrom bekannt ist, kann der Leistungs- und Energiebedarf über die spezifische Ventilatorleistung ermittelt werden.

$$P_{el.V} = q_{V.a} \cdot P_{SFP} \tag{127}$$

$$E_{elV} = P_{elV} \cdot t_V \tag{128}$$

 $P_{el,V}$ Leistung Lüftung in kW $q_{V,a}$ Luftvolumenstrom in m³/h

P_{SFP} spezifische Leistung Ventilator (SIA 382/1) in kWh/m³

 $E_{el,V}$ Energiebedarf Lüftung in kWh t_V Volllaststunden Lüftung in h

8.1.1.3 Druckdifferenz

$$P_{el,V} = \frac{\Delta p_V \cdot q_{V,a}}{\eta_V \cdot f_T} \tag{129}$$

$$E_{el,V} = P_{el,V} \cdot t_V \tag{130}$$

 $P_{el,V}$ Leistung Lüftung in kW

 Δp_V Druckdifferenz Lüftungsanlage total (SIA 382/1) in kPa

 $q_{V,a}$ geförderter Luftvolumenstrom in m³/h

 η_V Gesamtwirkungsgrad Ventilator, Motor, Antrieb

 f_T 3 600 s/h

 $E_{el,V}$ Energiebedarf Lüftung in kWh t_V jährliche Volllaststunden Lüftung in h

8.1.2 Standardwerte

Standardwerte für die Leistungs- und Energieermittlung können SIA 2024 und SIA 382/1 entnommen werden.

8.2 Regelkomponente Lüftung

8.2.1 Berechnungsmodell

$$P_{el,St,V,dev} = P_{el,St,V,dev,sp} \cdot A_V \tag{131}$$

$$E_{el,St,V,dev} = P_{el,St,V,dev} \cdot t_{St,V,dev}$$
 (132)

 $P_{el,St,V,dev}$ Bereitschaftsleistung Regelkomponente Lüftung (Stundenmittelwert) in kW spezifische Bereitschaftsleistung Regelkomponente Lüftung (Stundenmittelwert)

in kW/m²

 A_V belüftete Nutzfläche in m²

 $E_{el,St,V,dev}$ Bereitschaftsenergiebedarf Regelkomponente Lüftung in kWh

t_{St.V.dev} jährliche Bereitschaftsstunden Regelkomponente Lüftung in h (im Normalfall 8760 h)

8.2.2 Standardwerte

Tabelle 89 Standardwerte für Regelkomponente Lüftung

Ausbaustandard		Tief	Mittel	Hoch
Spez. Bereitschaftsleistung	W/m ²	0,03	0,06	0,09
Jährliche Bereitschaftsstunden	h	8760	8760	8760
Spez. Bereitschaftsenergiebedarf	kWh/m ²	0,26	0,53	0,79

Ausbau tief: Lüftungsanlage durchdringt kaum verschiedene Brandabschnitte

und versorgt wenige Einzelräume.

Ausbau mittel: Zentrale Lüftungsanlage, welche mehrere Stockwerke

und diverse Räume erschliesst.

Ausbau hoch: Lüftungsanlage erschliesst überdurchschnittlich viele Stockwerke

und Brandabschnitte. Die Produktion oder Nutzung stellt

hohe Anforderungen an die Lüftungsanlage.

8.3 Wärmerückgewinnungsanlage

8.3.1 Berechnungsmodell

$$E_{el,Op,HRE} = P_{el,Op,HRE} \cdot t_V \cdot f_{HRE}$$
 (133)

 $E_{el,Op,HRE}$ Betriebsenergiebedarf Wärmerückgewinnungsanlage in Wh

 $P_{el,Op,HRE}$ Betriebsleistung Wärmerückgewinnungsanlage (Stundenmittelwert) in W

 t_V Volllaststunden Lüftung in h f_{HRE} Betriebsfaktor WRG, 0,85

Bei Kreislaufverbundsystemen:

$$P_{el,Op,HRE} = q_{V,a} \cdot P_{el,Op,HRE,sp} \cdot f_{PLR} \tag{134}$$

 $q_{V,a}$ geförderter Luftvolumenstrom in m³/h

 $P_{el,Op,HRE,sp}$ spezifische Betriebsleistung Wärmerückgewinnungsanlage (Stundenmittelwert)

in W pro m³/h

f_{PLR} Teillastfaktor, 0,5

Eine Berechnung in Kombination mit flächenspezifischen Werten (Gleichungen 125 und 126) ist nicht möglich.

8.3.2 Standardwerte

Tabelle 90 Leistungsbedarf Wärmerückgewinnungsanlage $P_{el,Op,HRE,sp}$ in Abhängigkeit von der Energiebezugsfläche A_F

Ausbaustandard		Tief	Mittel	Hoch
Rotationswärmeübertrager	$P_{el,Op,HRE}$ W		120	
Kreislaufverbundsysteme	$P_{el,Op,HRE,sp}$ W pro m ³ /h	0,05	0,17	0,40

Die Werte für die Volllaststunden Lüftung können mit SIA 2024 ermittelt werden.

8.4 Befeuchtung

8.4.1 **Berechnungsmodell**

8.4.1.1 Alle Befeuchtertypen ausser Dampfbefeuchter

$$P_{el,Op,hu} = P_{el,Op,hu,sp} \cdot q_{V,a} \tag{135}$$

$$E_{el,Op,hu} = P_{el,Op,hu} \cdot t_{Op,hu}$$
 (136)

Pel On hu Betriebsleistung Befeuchtung (Stundenmittelwert) in W

 $P_{el,Op,hu,sp}$ spezifische Betriebsleistung Befeuchtung (Stundenmittelwert) in W pro m 3 /h

 $q_{V,a}$ Luftvolumenstrom in m³/h

 $\begin{array}{ll} E_{el,Op,hu} & \text{Betriebsenergiebedarf Befeuchtung in Wh} \\ t_{Op,hu} & \text{jährliche Betriebsstunden Befeuchtung in h} \end{array}$

8.4.1.2 Dampfbefeuchter

$$P_{el,Op,hu} = q_{V,a} \cdot \rho_a \cdot r_w \left(x_{SUP,set} - x_{e,des} \right) \tag{137}$$

$$E_{el,Op,hu} = P_{el,Op,hu} \cdot t_{Op,hu} \tag{138}$$

 $P_{el.Op.hu}$ Betriebsleistung Befeuchtung (Stundenmittelwert) in kW

 $q_{V,a}$ Luftvolumenstrom in m³/h ρ_a Dichte der Luft, 1,12 kg/m³

 r_{w} Verdampfungsenthalpie des Wassers, 0,68 kWh/kg $x_{SUP.set}$ Sollwert für den Feuchtegehalt der Zuluft in kg/kg

Auslegungs-Feuchtegehalt der Aussenluft in kg/kg gemäss SIA 2028:2015, Tabelle 6

(Mittellandstationen 0,0013 kg/kg)

 $E_{el,Op,hu}$ Betriebsenergiebedarf Befeuchtung in kWh $t_{Op,hu}$ jährliche Betriebsstunden Befeuchtung in h

8.4.2 Standardwerte

Tabelle 91 Spezifische Betriebsleistung Befeuchtung (Stundenmittelwert) $P_{el,Op,hu,sp}$ für verschiedene Typen nach SN EN 16798-5-1:2017, NA.3.9

	$P_{el,Op,hu,sp}$ W pro m ³ /h
Kontakt- und Rieselbefeuchtung	0,01
Umlaufsprühbefeuchtung	0,20
Hochdruckbefeuchtung	0,04
Hybridbefeuchtung	0,02

Tabelle 92 Jährliche Betriebsstunden für die Befeuchtung $t_{Op,hu}$ im Grossraumbüro in Abhängigkeit von der relativen Feuchte und mit WRG

	Relative Feuchte %	ohne WRG t _{Op,hu} h	mit WRG t _{Op,hu} h
	30	430	60
Regelung auf die Zuluft	40	760	280
	50	1000	620
	30	30	0
Regelung auf die Abluft	40	190	0
	50	540	100

Die Betriebsstunden für die Befeuchtung sind stark abhängig von der Regelung und davon, ob eine Wärmerückgewinnungsanlage (WRG) eingesetzt wird. Bei der WRG wird davon ausgegangen, dass eine Feuchterückgewinnung von 85% erreicht wird. Bei einem Plattenwärmeübertrager (ohne Feuchterückgewinnung) gelten die Zahlen ohne WRG.

8.5 Raumkühlung

8.5.1 Berechnungsmodell

$$P_{el,CHI} = \frac{\Phi_C}{\varepsilon_{EER}} \tag{139}$$

$$E_{el,CHI} = \frac{Q_C}{\varepsilon_{SPFC}} \tag{140}$$

 $P_{\it el,CHI}$ elektrische Leistung Kompaktkältemaschine oder Kältemaschine in kW

Φ_C Kälteleistung in kW

 $\varepsilon_{\it EER}$ Leistungszahl Kühlen (SIA 380)

 $E_{\it el,CHI}$ elektrischer Energiebedarf Kompaktkältemaschine oder Kältemaschine in kWh

O_C Kälteenergie in kWh

 $arepsilon_{\mathit{SPFC}}$ Jahresarbeitszahl Kompaktkältemaschine oder Kältemaschine

8.6 Hilfsenergie Raumkühlung

8.6.1 **Berechnungsmodell**

8.6.1.1 Kühlung

$$P_{el,Op,C,aux} = P_{el,Op,C,aux,sp} \cdot A_{E,C}$$
(141)

$$E_{el,Op,C,aux} = P_{el,Op,C,aux} \cdot t_{Op,C} \tag{142}$$

 $P_{el,Op,C,aux}$ Hilfsbetriebsleistung Kühlung (Stundenmittelwert) in kW

 $P_{el,Op,C,aux,sp}$ spezifische Hilfsbetriebsleistung Kühlung (Stundenmittelwert) in kW/m²

A_{E,C} Energiebezugsfläche Kühlung in m²

 $E_{el,Op,C,aux}$ Hilfsbetriebsenergiebedarf Kühlung in kWh $t_{Op,C}$ jährliche Betriebsstunden Kühlung in h

8.6.1.2 Umluftkühler

$$P_{el,Op,CAC} = \Phi_C \cdot 0.02 \tag{143}$$

$$E_{el,Op,CAC} = P_{el,Op,CAC} \cdot t_{Op,C} \tag{144}$$

 $P_{el,Op,CAC}$ Betriebsleistung Umluftkühler (Stundenmittelwert) in kW

 $\Phi_{\mathcal{C}}$ Kühlleistung in kW 0,02 Verhältnis Betriebs

0,02 Verhältnis Betriebsleistung Umluftkühler pro Kälteleistung (Stundenmittelwert)

 $E_{el,Op,CAC}$ Energiebedarf Umluftkühler in kWh jährliche Betriebsstunden Kühlung in h

8.6.2 **Standardwerte**

Tabelle 93 Hilfsleistung $P_{el,Op,C,aux,sp}$ für Verteilung und Abgabe

	Hilfsleistung <i>P_{el,Op,C,aux,sp}</i> W/m ²
Fussbodenkühlung	0,15
Thermoaktive Bauteilsysteme	0,15
Kühldecke	0,09
Umluftkühler (ohne Gebläse)	0,09

9 ELEKTRIZITÄTSBEDARF VON WOHNBAUTEN

9.1 Berechnung des Elektrizitätsbedarfs (personenbezogen)

9.1.1 Der jährliche Basis-Elektrizitätsbedarf einer Wohnung berechnet sich mit folgender Gleichung:

$$E_{el,D} = f_{eff} \cdot (E_{el,B} + E_{el,W} + E_{el,V} + E_{el,V} + E_{el,Q})$$
(145)

 $E_{el,D}$ gesamter Elektrizitätsbedarf einer Wohneinheit in kWh

 $f_{\it eff}$ Gesamtenergieeffizienzfaktor (vgl. Tabelle 95)

 $E_{el,B}$ Grundelektrizitätsverbrauch, einschliesslich Allgemeinstrom,

Beleuchtung und Kochen, in kWh

 $E_{el,W}$ Elektrizitätsbedarf für elektrische Warmwasserbereitung in kWh

 $E_{el,V}$ Elektrizitätsbedarf für mechanische Lüftung in kWh

 E_{ELV} Elektrizitätsbedarf für einen Aufzug in kWh

 $E_{el,q}$ Abzug, wenn die Küche einen Gasherd hat, in kWh

9.1.2 Grundelektrizitätsverbrauch, einschliesslich Allgemeinstrom, Beleuchtung und Kochen

9.1.2.1 Einfamilienhaus

$$E_{elB} = E_{elBCON} + (E_{elBP} \cdot N_P) \tag{146}$$

E_{el,B} Grundelektrizitätsverbrauch, einschliesslich Allgemeinstrom,

Beleuchtung und Kochen, in kWh

E_{el B CON} konstanter Elektrizitätsverbrauch, 1900 kWh

E_{el B.P.} Elektrizitätsverbrauch in Abhängigkeit von der Anzahl Bewohner, 800 kWh

 N_P Anzahl Bewohner

9.1.2.2 Mehrfamilienhaus

$$E_{el,B} = E_{el,B,CON} + (E_{el,B,P} \cdot N_P) \tag{147}$$

 $E_{el,B}$ Grundelektrizitätsverbrauch, einschliesslich Allgemeinstrom,

Beleuchtung und Kochen, in kWh

E_{el B CON} konstanter Elektrizitätsverbrauch, 1350 kWh

Elektrizitätsverbrauch in Abhängigkeit von der Anzahl Bewohner, 650 kWh

 N_P Anzahl Bewohner

Zusätzlicher Verbrauch für elektrische Warmwasserbereitung bei Wärmepumpe oder solarer Unterstützung

$$E_{el,W} = E_{el,W,CON} + (E_{el,W,P} \cdot N_P) \tag{148}$$

 $E_{el,W}$ Elektrizitätsbedarf für elektrische Warmwasserbereitung

bei Wärmepumpe in kWh

 $E_{el,W,CON}$ Konstanter Elektrizitätsverbrauch für elektrische Warmwasserbereitung

bei Wärmepumpe, 200 kWh

 $E_{el,W,P}$ Elektrizitätsverbrauch für elektrische Warmwasserbereitung bei Wärmepumpe

in Abhängigkeit von der Anzahl Bewohner, 400 kWh

 N_P Anzahl Bewohner

9.1.4 Zusätzlicher Verbrauch für elektrische Warmwasserbereitung ohne Wärmepumpe

 $E_{elW} = E_{elWCON} + (E_{elWP} \cdot N_P) \tag{149}$

 E_{elW} Elektrizitätsbedarf für elektrische Warmwasserbereitung

ohne Wärmepumpe in kWh

E_{el W CON} Konstanter Elektrizitätsverbrauch für elektrische Warmwasserbereitung

ohne Wärmepumpe, 400 kWh

 $E_{el,W,P}$ Elektrizitätsverbrauch für elektrische Warmwasserbereitung ohne Wärmepumpe

in Abhängigkeit von der Anzahl Bewohner, 800 kWh

N_P Anzahl Bewohner

9.1.5 Zusätzlicher Verbrauch für mechanische Lüftung (Abluftanlagen, kontrollierte Wohnungslüftung)

$$E_{el,V} = E_{el,V,E} \cdot A_E \tag{150}$$

 $E_{el,V}$ Elektrizitätsbedarf für mechanische Lüftung in kWh

 $E_{el,V,E}$ Elektrizitätsverbrauch für mechanische Lüftung in Abhängigkeit

von der Energiebezugsfläche, 2 kWh/m²

A_F Energiebezugsfläche in m²

9.1.6 Zusätzlicher Verbrauch für einen Aufzug

$$E_{FIV} = E_{FIVA} \cdot N_A \tag{151}$$

 $E_{\it ELV}$ Elektrizitätsbedarf für einen Aufzug in kWh

 $E_{\textit{ELV,A}}$ Elektrizitätsverbrauch für einen Aufzug in Abhängigkeit von der Anzahl Wohnungen,

100 kWh

 N_{Δ} Anzahl Wohnungen

9.1.7 Abzug, wenn die Küche einen Gasherd hat

$$E_{el,g} = E_{el,g,CON} + (E_{el,g,P} \cdot N_P)$$
 (152)

 E_{elg} Abzug Elektrizitätsbedarf, wenn die Küche einen Gasherd hat, in kWh

 $E_{el,g,CON}$ Abzug konstanter Elektrizitätsbedarf, wenn die Küche einen Gasherd hat, 120 kWh Abzug Elektrizitätsbedarf, wenn die Küche einen Gasherd hat, in Abhängigkeit

von der Anzahl Bewohner, 80 kWh

 N_P Anzahl Bewohner

9.1.8 $E_{el,W}$, $E_{el,V}$, $E_{El,V}$ sind null, wenn keine entsprechende Einrichtung vorhanden ist.

9.1.9 Die Tabellen 94 und 95 dienen der Bestimmung des Effizienzfaktors f_{eff} in Abhängigkeit von der energetischen Qualität der eingesetzten Geräte.

Tabelle 94 Effizienzklassen und Technologien nach Anwendungen¹

Anwendung	Energieeffizienz- kriterium	niedriger Verbrauch	Neubau, Erneuerung	Bestand (Standard)	hoher Verbrauch
Spülen		A+++	A++	В	С
Kühlen		A+++	A++	Α	D
Waschen	Effizienzklasse	A+++	A++	Α	С
Trocknen		A+++	А	В	С
Beleuchtung		A++	A bis C	A bis C	D
Kochen		Induktion	Glaskeramik	Glaskeramik	Gussplatten
Individuelle Geräte	Technologie	Bestgeräte	Standard neu	Standard alt	überdimens.
Allgemein- strom		reguliert	teilw. geregelt	geschaltet	überdimens.

Tabelle 95 Effizienzfaktoren nach Anwendungen

Anwendung	Energieeffizienz- kriterium	niedriger Verbrauch	Neubau, Erneuerung	Bestand (Standard)	hoher Verbrauch
Spülen		0,97	0,99	1	1,02
Kühlen		0,96	0,97	1	1,03
Waschen	Effizienzklasse	0,98	0,99	1	1,02
Trocknen		0,94	0,97	1	1,05
Beleuchtung		0,93	0,97	1	1,06
Kochen		0,99	0,99	1	1,02
Individuelle Geräte	Technologie	0,95	0,98	1	1,04
Allgemein- strom		0,95	0,98	1	1,04
Energieeffizienzfaktor $f_{\it eff}$		0,70	0,85	1	1,30

9.1.10 Im Mehrfamilienhaus berechnet sich der gesamte Elektrizitätsbedarf des Gebäudes $E_{el,tot}$ aus den Summen der Elektrizitätsbedarfswerte der einzelnen Wohnungen. Der Einfluss von Ausstattungsgrad und Nutzungsintensität kann – im Gegensatz zum Einfamilienhaus – kaum berücksichtigt werden.

$$E_{el,tot} = \sum E_{el,D} \tag{153}$$

 $\begin{array}{ll} \textit{E}_{\textit{el,tot}} & \text{gesamter Elektrizitätsbedarf eines Mehrfamilienhauses in kWh} \\ \textit{E}_{\textit{el,D}} & \text{gesamter Elektrizitätsbedarf einer Wohneinheit in kWh} \end{array}$

¹ Ab 2021 gelten neue Energieeffizienzklassen.

9.1.11 In Einfamilienhäusern kann die Berechnung des gesamten Elektrizitätsbedarfs $E_{el,tot}$ durch Verwendung von Effizienzfaktoren für den Ausstattungsgrad bzw. die Nutzungsintensität präzisiert werden.

$$E_{el,tot} = f_{ea} \cdot f_u \cdot E_{el,D} + \sum E_{el,A}$$
 (154)

E_{el tot} gesamter Elektrizitätsbedarf eines Einfamilienhauses in kWh

 f_{eq} Ausstattungsgrad (mehr oder weniger Geräte gegenüber dem Basishaushalt)

 f_u Nutzungsintensität (längere oder kürzere Betriebszeiten) $E_{el,D}$ gesamter Elektrizitätsbedarf einer Wohneinheit in kWh $E_{el,\Delta}$ Elektrizitätsbedarf energieintensiver Einzelgeräte in kWh

9.1.12 Tabelle 96 gibt Effizienzfaktoren für verschiedene Ausstattungsgrade und Nutzungsintensitäten an.

Tabelle 96 Effizienzfaktoren in Abhängigkeit vom Ausstattungsgrad f_{eq} und der Nutzungsintensität f_u

Niveau	Sehr hoch	Hoch	Standard	Tief	Sehr tief
Ausstattungsgrad f_{eq}	1,5	1,3	1,0	0,85	0,7
Nutzungsintensität f_u	1,5	1,3	1,0	0,85	0,7

9.1.13 Der Elektrizitätsbedarf $E_{el,A}$ besonders energieintensiver Einzelgeräte wird zusätzlich erfasst:

Jacuzzi 5000 kWhSauna 1200 kWhAquarium 1000 kWhWasserbett 400 kWh

9.2 Berechnung des Elektrizitätsbedarfs (flächenbezogen)

9.2.1 Oft ist die Personenbelegung beim Neubau oder der Erneuerung eines Wohnhauses nicht bekannt. In diesen Fällen kann eine Näherungsformel angewendet werden. Vor allem in grösseren Mehrfamilienhäusern (über 10 Wohneinheiten) liefert die Berechnung nach der vereinfachten Flächenmethode für den Gesamtelektrizitätsbedarf eines Wohnhauses eine recht gute Übereinstimmung zur Methode mit Personenbelegung.

$$E_{el,D} = f_{eff} \cdot (E_{el,B} + E_{el,W} + E_{el,V} + E_{el,V} - E_{el,g})$$
(155)

 $E_{el,D}$ gesamter Elektrizitätsbedarf einer Wohneinheit in kWh

Gesamtenergieeffizienzfaktor (vgl. Tabelle 95)

 $E_{el,B}$ Basis-Elektrizitätsverbrauch, einschliesslich Allgemeinstrom,

Beleuchtung und Kochen, in kWh

 $E_{el,W}$ Elektrizitätsbedarf für elektrische Warmwasserbereitung in kWh

 $E_{e/V}$ Elektrizitätsbedarf für mechanische Lüftung in kWh

 E_{ELV} Elektrizitätsbedarf für einen Aufzug in kWh

 $E_{el,g}$ Reduktion des Elektrizitätsbedarfs mit Gasherd in kWh

9.2.2 Grundelektrizitätsverbrauch $E_{el,B'}$ einschliesslich Allgemeinstrom, Beleuchtung und Kochen

$$E_{el,B} = E_{el,B,CON} + (E_{el,B,E} \cdot A_E) \tag{156}$$

 $E_{el,B}$ Basis-Elektrizitätsverbrauch, einschliesslich Allgemeinstrom,

Beleuchtung und Kochen in kWh

 $E_{el,B,CON}$ konstanter Elektrizitätsverbrauch, 800 kWh

 $E_{el,B,E}$ Elektrizitätsverbrauch in Abhängigkeit von der Energiebezugsfläche, 20 kWh/m²

 A_{F} Energiebezugsfläche in m²

9.2.3 Zusätzlicher Verbrauch für elektrische Warmwasserbereitung bei Wärmepumpe oder solarer Unterstützung

$$E_{el,W} = E_{el,WE} \cdot A_E \tag{157}$$

 $\begin{array}{ll} \textit{E}_{\textit{el},W} & \textit{Elektrizit} \\ \textit{E}_{\textit{el},WE} & \textit{Elektrizit} \\ \textit{Et} \\ \textit{Elektrizit} \\ \textit{Elektrizi$

in Abhängigkeit der Energiebezugsfläche, 9 kWh/m²

 A_E Energiebezugsfläche in m²

9.2.4 Zusätzlicher Verbrauch für elektrische Warmwasserbereitung bei Elektroboiler

$$E_{el,W} = E_{el,W,E} \cdot A_E \tag{158}$$

 $E_{el,W}$ Elektrizitätsbedarf für elektrische Warmwasserbereitung bei Elektroboiler in kWh Elektrizitätsbedarf für elektrische Warmwasserbereitung bei Elektroboiler

in Abhängigkeit von der Energiebezugsfläche, 18 kWh/m²

A_E Energiebezugsfläche in m²

9.2.5 Zusätzlicher Verbrauch für mechanische Lüftung

$$E_{elV} = E_{elVE} \cdot A_E \tag{159}$$

Elektrizitätsbedarf für mechanische Lüftung in kWh

 $E_{el,V,E}$ Elektrizitätsbedarf für mechanische Lüftung in Abhängigkeit

von der Energiebezugsfläche, 2 kWh/m²

 A_E Energiebezugsfläche in m²

9.2.6 Zusätzlicher Verbrauch für einen Aufzug

$$E_{ELV} = E_{ELV,A} \cdot N_A \tag{160}$$

 $E_{\it ELV}$ Elektrizitätsbedarf für einen Aufzug in kWh

 $E_{ELV,A}$ Elektrizitätsbedarf für einen Aufzug in Abhängigkeit von der Anzahl Wohnungen,

100 kWh

 N_A Anzahl Wohnungen

9.2.7 Abzug, wenn die Küche einen Gasherd hat

$$E_{el,g} = E_{el,g,E} \cdot A_E \tag{161}$$

 $E_{el,q}$ Abzug Elektrizitätsbedarf, wenn die Küche einen Gasherd hat, in kWh

 $E_{el,q,E}$ Abzug Elektrizitätsbedarf, wenn die Küche einen Gasherd hat, in Abhängigkeit

von der Energiebezugsfläche, 3 kWh/m²

A_F Energiebezugsfläche in m²

Figur 13 Spezifischer Elektrizitätsbedarf einer Wohneinheit in Funktion der Hauptnutzfläche

10 ELEKTRIZITÄTSERZEUGUNG

10.1 Photovoltaik

10.1.1 Die Nennleistung einer Photovoltaikanlage wird wie folgt berechnet:

$$P_{PV,STC} = A_{PV,Mod} \cdot n \cdot \eta_{PV,STC} \cdot I \tag{162}$$

P_{PVSTC} Nennleistung der Photovoltaikanlage in kW (wird auch als Generatorleistung

bezeichnet und mit der Einheit kW_D (Kilowatt-Peak) dargestellt)

 $A_{PV,Mod}$ Modulfläche in m² n Anzahl Module

 $\eta_{PV,STC}$ Modulwirkungsgrad unter Standard-Testbedingungen gemäss SN EN 61215-1

Sonneneinstrahlung bei STC, 1 kW/m²

(STC: 1 kW/m² Sonneneinstrahlung, 25 °C Modultemperatur)

Tabelle 97 Typische Modulwirkungsgrade $\eta_{PV.STC}$ unterschiedlicher PV-Modul-Typen

	Typische Modulwirkungsgrade $\eta_{PV,STC}$			
	% kW/m²			
Monokristallin	16 bis 24	0,16 bis 0,24		
Polykristallin	13 bis 19	0,13 bis 0,19		
Amorphes Silizium	5 bis 8	0,05 bis 0,08		
Mikrokristallin	7 bis 12	0,07 bis 0,12		
Kupfer-Indium-Diselenid (CIS)	9 bis 16	0,09 bis 0,16		

10.1.2 Der mittlere jährliche Energieertrag einer Photovoltaikanlage kann wie folgt abgeschätzt werden:

$$E_{PV} = G_H \cdot f_{PV} \cdot A_{PV} \cdot \eta_{PV,STC} \cdot \eta_{Svs} \tag{163}$$

E_{PV} mittlerer jährlicher Ertrag der PV-Anlage in kWh

 G_H Globalstrahlung horizontal pro Jahr am Aufstellungsort bzw. bei der zugehörigen

Klimastation gemäss SIA 2028 in kWh/m²

 f_{PV} Ertragsfaktor (s. Tabelle 98) je nach Neigung und Orientierung der PV-Module

 A_{PV} gesamthaft installierte Modulfläche der Photovoltaikanlage in m² $\eta_{PV,STC}$ Modulwirkungsgrad (s. Tabelle 97) unter Standard-Testbedingungen

gemäss SN EN 61215-1

 η_{Sys} mittlerer Jahresnutzungsgrad der PV-Anlage unter Berücksichtigung der Inverter-

verluste, der Verschmutzung, der Modultemperatur, der Degradation und der Kabel-

verluste; typischer Wert: 0,8

Tabelle 98 Ertragsfaktor f_{PV} je nach Neigung und Orientierung der PV-Module für einen Standort im Schweizer Mittelland, in kW/m²

Neigung β		Orientierung $lpha$				
° deg	Nord 180°	Nordost / Nordwest -135°/135°	Ost / West -90°/90°	Südost / Südwest -45°/45°	Süd 0°	
0	1,00	1,00	1,00	1,00	1,00	
10	0,90	0,93	0,99	1,05	1,08	
20	0,80	0,85	0,97	1,08	1,13	
25	0,75	0,80	0,96	1,09	1,15	
30	0,70	0,74	0,95	1,10	1,17	
40	0,60	0,69	0,90	1,08	1,16	
50	0,50	0,61	0,85	1,05	1,15	
60	0,45	0,55	0,80	1,02	1,11	
90	0,33	0,43	0,61	0,78	0,85	

10.1.3 Der Jahresdeckungsgrad einer PV-Anlage entspricht dem Verhältnis des mittleren jährlichen Energieertrags der PV-Anlage zum gesamten jährlichen Elektrizitätsbedarf des Gebäudes.

$$f_{fr,PV} = E_{PV} / E_{el,b} \tag{164}$$

 $f_{fr,PV}$ Jahresdeckungsgrad einer PV-Anlage

 E_{PV} mittlerer jährlicher Ertrag der PV-Anlage in kWh

E_{el b} jährlicher elektrischer Energiebedarf des Gebäudes in kWh

10.1.4 In einer frühen Projektphase kann der Eigenverbrauchsanteil wie folgt abgeschätzt werden.

$$f_{PV,sc} = \min \left[1 - 0.5 \cdot f_{fr,PV} ; \left(\frac{2 \cdot f_{el,b,d} \cdot f_{el,b,su}}{f_{fr,PV}} \right) \cdot (1 - 0.5 \cdot f_{PV,su}) \right]$$
 (165)

 $f_{PV,sc}$ Eigenverbrauchsanteil einer PV-Anlage; der Eigenverbrauchsanteil ist nie grösser

als 1.0

f_{fr,PV} Jahresdeckungsgrad einer PV-Anlage

Anteil des Elektrizitätsbedarfs am Tag (7–19 h) im Verhältnis zum gesamten

Elektrizitätsbedarf des Gebäudes; typische Werte liegen im Bereich von

0,5 (Wohnen) bis 0,6 (Büro)

 $f_{el,b,su}$ Anteil des Elektrizitätsbedarfs im Sommer (April bis September) im Verhältnis

zum gesamten Elektrizitätsbedarf des Gebäudes; typische Werte liegen im Bereich von 0,5 (Wohngebäude ohne Wärmepumpe) bis 0,2 (Gebäude mit hohem Heiz-

energieverbrauch mit Wärmepumpe)

 $f_{PV,su}$ Anteil des Energieertrags der PV-Anlage im Sommer (April bis September) im

Verhältnis zum gesamten jährlichen Energieertrag der PV-Anlage; typische Werte liegen im Bereich von 0,75 (horizontale Module) bis 0,6 (senkrechte PV-Module

an der Südfassade)

10.1.5 Der Autarkiegrad entspricht dem Verhältnis des Eigenverbrauchs zum gesamten Elektrizitätsbedarf eines Gebäudes. Er kann auch direkt aus dem Eigenverbrauchsanteil und dem Jahresdeckungsgrad ermittelt werden.

$$f_{PV,au} = f_{PV,sc} \cdot f_{fr,PV} \tag{166}$$

 $f_{PV,au}$ Autarkiegrad einer PV-Anlage

 $f_{PV,sc}$ Eigenverbrauchsanteil einer PV-Anlage $f_{fr,PV}$ Jahresdeckungsgrad einer PV-Anlage

10.1.6 In Kombination mit einem Batteriespeicher kann der Eigenverbrauchsanteil in der Regel deutlich erhöht werden. Die benötigte Kapazität des Batteriespeichers richtet sich bei PV-Anlagen nach dem mittleren nächtlichen Elektrizitätsbedarf des Gebäudes im Sommer.

$$C_{Bat} = (E_{el,b} \cdot f_{el,b,su} \cdot (1 - f_{el,b,d})) / 182$$
 (167)

 C_{Bat} benötigte nutzbare Speicherkapazität der Batterie in kWh jährlicher elektrischer Energiebedarf des Gebäudes in kWh

Anteil des Elektrizitätsbedarfs im Sommer (April bis September) im Verhältnis zum gesamten Elektrizitätsbedarf des Gebäudes; typische Werte liegen im Bereich von 0,5 (Wohngebäude ohne Wärmepumpe) bis 0,2 (Gebäude mit hohem Heizenergieverbrauch mit Wärmepumpe)

 $f_{el,b,d}$ Anteil des Elektrizitätsbedarfs am Tag (7 – 19 h) im Verhältnis zum gesamten Elektrizitätsbedarf des Gebäudes; typische Werte liegen im Bereich von 0,5 (Wohnen) bis 0,6 (Büro)

10.1.7 In einer frühen Projektphase kann die Auswirkung eines Batteriespeichers auf den Eigenverbrauchsanteil und den Autarkiegrad wie folgt abgeschätzt werden.

$$f_{PV,sc,Bat} = f_{PV,sc} + \min(f_{PV,sc} \cdot 1,5; (1 - f_{PV,sc}) \cdot 0,5)$$
 (168)

$$f_{PV,au,Bat} = f_{PV,sc,Bat} \cdot f_{fr,PV} \tag{169}$$

 $f_{PV,sc,Bat}$ Eigenverbrauchsanteil einer PV-Anlage mit Batteriespeicher

 $f_{PV,sc}$ Eigenverbrauchsanteil einer PV-Anlage

 $f_{PV,au,Bat}$ Autarkiegrad einer PV-Anlage mit Batteriespeicher

f_{fr,PV} Jahresdeckungsgrad einer PV-Anlage

Figur 14 Typischer Eigenverbrauchsanteil und Autarkiegrad eines neuen Mehrfamilienhauses mit Wärmepumpe

Figur 14 stellt das Diagramm für ein Neubau-Mehrfamilienhaus mit Wärmepumpe dar. Der Anteil des Elektrizitätsbedarfs am Tag liegt bei 0,5. Der Anteil des Elektrizitätsbedarfs im Sommer liegt aufgrund der Wärmepumpe nur bei 0,4. Die PV-Anlage deckt rund 70% des gesamten jährlichen Elektrizitätsbedarfs des Gebäudes (Jahresdeckungsgrad = 0,7). Rund 37% des jährlichen Energieertrags der PV-Anlage werden zeitgleich direkt im Haus verbraucht (Eigenverbrauchsanteil = 0,37), der Rest wird in das Netz zurückgeliefert. Das Mehrfamilienhaus deckt somit rund 26% seines jährlichen Elektrizitätsbedarfs zeitgleich selber (Autarkiegrad = 0,26). Mit einem korrekt dimensionierten Batteriespeicher steigen der Eigenverbrauchsanteil auf rund 0,69 und der Autarkiegrad auf rund 0,48.

10.2 Wärmekraftkopplung

10.2.1 Der jährliche elektrische Energieertrag einer Wärmekraftkopplungsanlage (WKK) kann wie folgt abgeschätzt werden:

$$E_{el,CHP} = P_{el,N,CHP} \cdot t_{CHP} \tag{170}$$

 $E_{\it el,CHP}$ jährlicher Energieertrag der WKK-Anlage in kWh

 $P_{el,N,CHP}$ Nennleistung WKK-Anlage in kW

 t_{CHP} jährliche Volllaststunden WKK-Anlage in h; typische Werte liegen bei

3500 h bis 5500 h

Anhang A (informativ) Erläuterungen

A.1 Geräte

A.1.1 Kühl- und Tiefkühlmöbel

- A.1.1.1 Kühl- und Tiefkühlmöbel werden mehrheitlich für den Verkauf von Lebensmitteln eingesetzt. Da sich die Bauformen stark unterscheiden können, wurde die Anzahl der Formen beschränkt.
- A.1.1.2 Die vereinfachte Leistungs- und Energieermittlung erfolgt über die Länge der Kühl- und Tiefkühlmöbel.

A.2 Prozessanlagen

A.2.1 Kälteanlagen für Kühl- und Tiefkühlraum

- A.2.1.1 Kühl- und Tiefkühlräume werden für die Lagerung von temperaturempfindlichen Waren genutzt. Der Leistungs- und Energiebedarf ist von diversen unterschiedlichen Faktoren abhängig, für welche gängige Annahmen getroffen wurden.
- A.2.1.2 Die vereinfachte Leistungs- und Energieermittlung erfolgt über die Grösse der Kühl- und Tiefkühlräume.

A.2.2 Grossküchengeräte

- A.2.2.1 Das Kapitel Küche zu Restaurant beinhaltet Küchen für grössere und gewerbliche Gastronomiebetriebe. Nicht berücksichtigt sind Küchen in Wohnbauten (Kapitel 9) oder Teeküchen in Bürobauten (Ziffern 3.2 und 3.3).
- A.2.2.2 Der Ansatz für die Ermittlung des Leistungs- und Energiebedarfs ist unterschiedlich. Die Leistung wird anhand der Geräte ermittelt, während der Energiebedarf aus der Anzahl der Menüs abgeleitet wird.
- A.2.2.3 Bei der Energieermittlung wird davon ausgegangen, dass elektrisch gekocht wird.

A.3 Allgemeine Gebäudetechnik

A.3.1 Notlichtanlage

- A.3.1.1 Bei einem Netzausfall beleuchtet die Notlichtanlage die Fluchtwege innerhalb eines Gebäudes. Separate Rettungszeichenleuchten markieren die Fluchtwege und die Ausleuchtung erfolgt über separate Leuchten oder einzelne Leuchten der Grundbeleuchtung. Mit separaten Leuchten kann der Fluchtweg gleichmässiger ausgeleuchtet werden und aufgrund der geringen Beleuchtungsanforderung ist die Systemleistung kleiner. Daraus folgen geringere Verluste. Teilweise besteht die Anforderung, dass Rettungszeichenleuchten auch ohne Ereignisfall zu beleuchten sind (Dauerlicht). Dies führt zu einem höheren Energiebedarf und ist mit den Behörden abzuklären. In diesem Merkblatt werden Systeme mit Einzelakku nicht berücksichtigt.
- A.3.1.2 Die Leistung und Energie setzt sich aus der Zentrale und teilweise aus den Rettungszeichenleuchten zusammen. Grundlage für die Leistungs- und Energieermittlung ist die durch die Notlichtanlage beleuchtete Fläche.

A.3.2 **Beschattungsanlage**

- A.3.2.1 Die Aufgaben einer Beschattungsanlage sind Blendschutz, Sichtschutz, solarer Überhitzungsschutz sowie bei hohem Automatisierungsgrad Beitrag zur Raumheizung (zum Beispiel bessere Nutzung solarer Wärmegewinne für die Heizung). Die Energieeinsparungen für die Raumkühlung steigen mit einer zentralen Zeitsteuerung und einer sonnenstandgeführten Steuerung. Der Energiebedarf für die Beschattungsanlage steigt mit dem Grad der Automatisierung.
- A.3.2.2 Für die Ermittlung der Leistung und der Energie ist die beschattete Fensterfläche massgebend. Bei der aufgeführten Leistung handelt es sich um einen Spitzenwert, der für die Gebäudeanschlussleistung nicht relevant ist. Bei der Energie ist der Anteil der Motorensteuerung und der Motoren miteingerechnet.

A.3.3 Schrankenanlage

- A.3.3.1 Schrankenanlagen werden in öffentlichen oder privaten Parkhäusern eingesetzt, um die Zufahrt oder Parkzeitvergütung zu kontrollieren.
- A.3.3.2 Bei den angegebenen Werten ist die Heizenergie für Anlagen im Freien oder eine Effektbeleuchtung nicht enthalten. Die Leistungs- und Energieermittlung erfolgt pro Stück.

A.3.4 Zentrale Parkuhr

- A.3.4.1 Zentrale Parkuhren (Kassenanlagen) dienen zur Abrechnung von Parkgebühren. Sie werden vorwiegend in öffentlich zugänglichen Parkhäusern eingesetzt.
- A.3.4.2 Bei den angegebenen Werten ist die Heizenergie für Anlagen im Freien nicht enthalten. Die Leistungs- und Energieermittlung erfolgt pro Stück. Bei der Berechnung wird nicht zwischen Bereitschafts- und Betriebsleistung unterschieden, da die Kassenanlage nur während kurzer Zeit bei der Betriebsleistung betrieben wird.

A.3.5 Dreh- und Karusselltür

- A.3.5.1 Dreh- und Karusselltüren dienen als Eingangstüren in Gebäuden mit grosser Personenfrequenz. Durch ihre Bauweise wird der Luftzug gehemmt und somit der Heiz- und Kühlenergiebedarf reduziert.
- A.3.5.2 Die Leistungs- und Energieermittlung erfolgt pro Stück. Die Betriebsart muss zwischen On/Off und Schleichfahrt unterschieden werden. Schleichfahrt bedeutet, dass die Karusselltür bei Benutzung mit Schrittgeschwindigkeit dreht und sonst in Schleichfahrt.

A.3.6 Schiebetür

- A.3.6.1 Schiebetüren dienen als Eingangs- oder Raumtüren in Gebäuden mit grosser Personenfrequenz. Die Türen öffnen und schliessen sich automatisch, wenn eine Person den Raum betreten oder verlassen möchte.
- A.3.6.2 Die Leistungs- und Energieermittlung erfolgt pro Stück.

A.3.7 Drehkreuz und -sperre

- A.3.7.1 Drehkreuze und -sperren dienen als Zutrittskontrolle oder zur Kontrolle von Personenflüssen. Allfällige Antriebe sind lediglich während einer Personennutzung aktiv.
- A.3.7.2 Die Leistungs- und Energieermittlung erfolgt pro Stück. Aufgrund der kurzen Betriebszeiten wird lediglich vom Bereitschaftsbetrieb ausgegangen.

A.3.8 Dachrinnenheizung

- A.3.8.1 Dachrinnenheizungen werden lediglich in alpinen Gebieten eingesetzt und verhindern die Bildung von Eiszapfen und die Beschädigung der Dachkonstruktion.
- A.3.8.2 Die Leistungs- und Energieermittlung erfolgt pro Meter Länge, wobei der Anteil für die Steuerung integriert ist. Dachrinnenheizungen müssen mit einer feuchte- und temperaturabhängigen Steuerung ausgeführt werden. Dadurch sinkt der Energiebedarf auf 20% gegenüber einer temperaturabhängigen Steuerung. Zusätzlich hat das Heizkabel durch den Aufbau einen Selbstregeleffekt. Somit ist die Leistung im Eiswasser höher als in der Luft. Für die Berechnung wird ein Leistungsmittelwert angenommen und eine Einschalttemperatur bei 3°C.

A.3.9 Satellitenempfänger

- A.3.9.1 Satellitenempfänger für TV-Geräte werden vorwiegend bei kleinen Arealnetzen, Spitälern oder Hotelanlagen eingesetzt. Diese Anlagen sind standardmässig ausgelegt für 100 bis 150 Sender und die Werte gelten nicht für Einfamilienhäuser.
- A.3.9.2 Die Leistungs- und Energieermittlung erfolgt pro Stück. Die Anzahl der angeschlossenen Empfänger spielt beim Leistungs- und Energiebedarf eine untergeordnete Rolle. Allfällige Serveranlagen sind nicht berücksichtigt.
- A.3.9.3 Heizungen für Kopfstationen werden in alpinen Regionen eingesetzt, damit die Kopfstation nicht eingeschneit wird. Dies ist notwendig bei Flachdächern; das Funktionsprinzip ist identisch mit demjenigen der Dachrinnenheizung.

A.3.10 Allgemeine elektrische Widerstandsheizungen im Freien

- A.3.10.1 Elektrische Widerstandsheizungen im Freien sind prinzipiell zu vermeiden. Durch die Standortwahl und das Verwenden von robusten Betriebsmitteln kann der Einsatz von Heizungen teilweise umgangen werden. Heizungen im Freien schützen Betriebsgeräte vor Frost und vermeiden Kondenswasser.
- A.3.10.2 Es werden elektrische Widerstandsheizungen behandelt, die in einem Gehäuse oder Schaltschrank eingebaut sind. Eine bedarfsgerechte Steuerung (Temperatur, Feuchte) ist zwingend notwendig.
- A.3.10.3 Für den Leistungs- und Energiebedarf sind der Wärmedurchgangskoeffizient, die Oberfläche und die Temperaturanforderung vor Ort massgebend. Für die Ermittlung des Energiebedarfs sind die Klimadaten gemäss SIA 2028 zu verwenden.

A.3.11 Inhouse-Mobilfunkanlage

- A.3.11.1 Inhouse-Mobilfunkanlagen werden in Gebäuden eingesetzt, die keine oder nur eine geringe Mobilfunkanlagen-Versorgung haben.
- A.3.11.2 Grundlage für die Leistungs- und Energieermittlung ist die durch die Inhouse-Mobilfunkanlage abgedeckte Fläche. Der Leistungsbedarf der Anlage variiert nicht mit der Anzahl der geführten Gespräche.

A.3.12 Gebäudeautomation

- A.3.12.1 Die Gebäudeautomation ist für die automatische Steuerung, Regelung, Überwachung, Optimierung sowie zur Bedienung der einzelnen Gebäudetechnikanlagen zuständig.
- A.3.12.2 Grundlage für die Leistungs- und Energieermittlung ist die Energiebezugsfläche. Der Anteil für Vorschaltgeräte Beleuchtung, Antriebe Storen und Lüftungsklappenantriebe sind unter den jeweiligen Ziffern aufgeführt und nicht in den Standardwerten für Gebäudeautomation enthalten.
- A.3.12.3 Der Verbrauch ist kaum abhängig von der GA-Effizienzklasse nach SN EN 15232 oder der Anzahl der Sensoren. Der Aufbau und die unterschiedlichen Produkte, im Speziellen im Bereich der Speisung, haben einen grossen Einfluss.

A.3.13 Brandvermeidungsanlage

- A.3.13.1 Brandvermeidungsanlagen reduzieren den Sauerstoffgehalt (O₂) in einem Raum und senken somit das Brandrisiko. Prinzipiell gilt, je tiefer der Sauerstoffgehalt ist, desto tiefer ist das Brandrisiko und desto höher ist der Energiebedarf der Luftzerlegungsanlage.
- A.3.13.2 Der Energiebedarf ist abhängig vom Volumen des Raumes, vom Sauerstoffgehalt und der Luftdichtheit. Bei der Berechnung wird von einem stabilen Zustand ausgegangen ohne grosse Personen- oder Warenbewegungen.

A.3.14 Rauch- und Wärmeabzugsanlage

- A.3.14.1 Rauch- und Wärmeabzugsanlagen (RWA) sind für den Abzug von Rauch und Wärme in einem Brandfall zuständig. Dabei handelt es sich nicht um eine Rauchverdrängungsanlage (RDA). Unterschieden wird zwischen mechanischer und natürlicher Entrauchung. Bei beiden Varianten ist der Bereitschaftsbetrieb massgebend.
- A.3.14.2 Bei der natürlichen Entrauchung ist die Stückzahl der Öffnungsvorrichtungen massgebend und bei der mechanischen Entrauchung die durch die RWA entrauchte Fläche.

A.3.15 Audioanlage und elektroakustisches Notfallwarnsystem

- A.3.15.1 Ein elektroakustisches Notfallwarnsystem (auch Evakuationsanlage genannt, nach SN EN 60849 bzw. SN EN 54-16) dient für die Evakuierung von Personen bei einem Extremereignis. Gleichzeitig kann die Anlage im alltäglichen Gebrauch Musik abspielen oder für allgemeine Durchsagen genutzt werden.
- A.3.15.2 Grundlage für die Leistungs- und Energieermittlung ist die Fläche mit Beschallung. Sofern die Anlage ausschliesslich als elektroakustisches Notfallwarnsystem genutzt wird, ist lediglich der Bereitschaftsbedarf zu ermitteln.

A.3.16 Einbruchmeldeanlage

- A.3.16.1 Einbruchmeldeanlagen werden bei sensitiven Gebäuden eingesetzt. Sie dienen zur Überwachung von Räumen, Fenstern oder Zugängen vor unbefugtem Eindringen.
- A.3.16.2 Grundlage für die Leistungs- und Energieermittlung ist die überwachte Fläche. Die Werte können nicht verwendet werden bei grossen Hallen mit wenigen überwachten Türen.

A.3.17 Zutrittskontrolle

- A.3.17.1 Zutrittskontrollsysteme werden bei Türen eingesetzt, die lediglich von einer bestimmten Personengruppe oder zu einer spezifischen Zeit benutzt werden dürfen. Zutrittskontrollsysteme, welche mit Batterien betrieben werden, oder visuell durchgeführte Zutrittskontrollen werden nicht erfasst.
- A.3.17.2 Die Leistungs- und Energieermittlung erfolgt pro Stück. Aufgrund der kurzen Betriebszeiten wird lediglich vom Bereitschaftsbetrieb ausgegangen.

A.3.18 Videoüberwachungsanlage

- A.3.18.1 Videoüberwachungsanlagen dienen zur Überwachung von Räumen oder sensiblen Bereichen. Jede Videoanlage hat ein Aufzeichnungsgerät sowie eine Station für die Überwachung. Bei der Leistungs- und Energieermittlung wird unterschieden zwischen Anlagen im Freien und im Gebäudeinnern. Als Grundlage dienen IP-Kameras mit einer digitalen Bildspeicherung.
- A.3.18.2 Grundlage für die Leistungs- und Energieermittlung ist die überwachte Fläche und im Aussenbereich die Stückzahl der verbauten Komponenten. Bereitschaft bedeutet, dass die Station für die Überwachung nicht in Betrieb ist.

A.3.19 Transformator

- A.3.19.1 Transformatoren transformieren die Mittelspannung (Netzebene 5) auf die Niederspannung (Netzebene 7). Dieser Vorgang verursacht Kupfer- und Eisenverluste (auch Kurzschluss- und Leerlaufverluste genannt). Die Kupferverluste sind abhängig von der Last, während die Eisenverluste konstant sind. Die Eisenverluste treten auf, sobald ein Transformator unter Spannung steht, und addieren sich zu den Kupferverlusten. Die Verluste werden lediglich erfasst, wenn das Gebäude auf der Netzebene 5 angeschlossen ist.
- A.3.19.2 Grundlage für die Leistungs- und Energieverluste sind Anzahl, Typ und Grösse der Transformatoren.

A.3.20 Schaltgerätekombination

- A.3.20.1 Schaltgerätekombinationen beinhalten Schalt- und Steuereinrichtungen der Stromversorgung. Die Geräte, Kontakte und Leiter verursachen Verluste in der Schaltgerätekombination. Das Berechnungsmodell in Ziffer 6.20.1 dient lediglich zu einer Abschätzung.
- A.3.20.2 Grundlage für die Leistungs- und Energieverluste ist die Länge der Schaltgerätekombination und die Höhe des Betriebsstroms.

A.3.21 USV-Anlage

- A.3.21.1 Unterbrechungsfreie Stromversorgungsanlagen werden eingesetzt bei sensiblen Verbrauchern. Sie schützen die Geräte vor Stromunterbrüchen, Frequenzschwankungen, Über- oder Unterspannungen und entfernten Blitzeinschlägen. Für die Ermittlung der Verluste muss die Art der Energiespeicherung berücksichtigt werden. Zusätzlich benötigen Anlagen mit Batterien unter Umständen eine Kühlung, damit die vorgegebene Lebensdauer erreicht werden kann. Die Kühlenergie ist bei den Verlusten zu berücksichtigen.
- A.3.21.2 Die Verluste sind abhängig von der Leistung der USV-Verbraucher oder von der Nennleistung der Anlage. Eine USV-Belastung von unter 25% ist aufgrund des tiefen Wirkungsgrades nicht wirtschaftlich. Um einen optimalen Betriebspunkt zu erreichen, empfiehlt sich ein modularer Ausbau.

A.3.22 Dieselelektrische Netzersatzanlage

- A.3.22.1 Dieselelektrische Netzersatzanlagen werden verwendet, um Stromunterbrüche zu überbrücken. Damit die Startzeit kurz gehalten werden kann, wird das Kühlwasser vorgeheizt. Das Berechnungsmodell in Ziffer 6.22.1 berücksichtigt die elektrische Kühlwasserheizung.
- A.3.22.2 Um die Verluste zu bestimmen, wird die Scheinleistung der Netzersatzanlage benötigt.

A.3.23 Aufzug

- A.3.23.1 Aufzüge dienen zur vertikalen Personen- und Warenbeförderung.
- A.3.23.2 Grundlage für eine vereinfachte Leistungs- und Energieermittlung sind die Nutzlast und die Nutzungsintensität.

A.3.24 Fahrtreppe und Fahrsteig

- A.3.24.1 Fahrtreppen und Fahrsteige dienen zur vertikalen und horizontalen Personenbeförderung.
- A.3.24.2 Grundlage für eine vereinfachte Leistungs- und Energieermittlung ist die Höhendifferenz / Länge, die Betriebszeit und die Betriebsart. Bei den angegebenen Werten wurde ein Tageslastprofil berücksichtigt.

Berechnungsvorgang mit unterschiedlichen Betriebsarten:

Dauerbetrieb:

Massgebend sind die Leistung im Dauerbetrieb, die Betriebszeit und die Fahrtrichtung.

Stop-and-go-Betrieb:

Die Berechnung erfolgt gleich wie im Dauerbetrieb. Die Leistung im Stillstand wird vereinfacht als null angenommen.

Dauerbetrieb mit Schleichfahrt:

Die Berechnung im Dauerbetrieb erfolgt gleich wie oben beschrieben. Für die Schleichfahrt spielt die Fahrtrichtung keine Rolle und die entsprechende Betriebszeit ist separat abzuschätzen.

A.3.25 Elektrofahrzeug

- A.3.25.1 Fahrzeuge, die unter Elektrofahrzeuge berücksichtigt werden, können oder müssen über das Stromnetz geladen werden und dienen für den Transport von Personen auf der Strasse. Nicht berücksichtigt werden Fahrzeuge für den Warentransport, -umschlag oder für den öffentlichen Transport.
- A.3.25.2 Für die Ermittlung der Ladeleistung ist die Bauart der Ladestation, die Infrastruktur oder das Lastmanagement massgebend. Da sich die Leistung über den Ladezyklus verringert, ist für die Energieermittlung die jährlich gefahrene Distanz massgebend. Beim Start einer Ladung befindet sich die Ladeleistung nahe der Nennleistung der Ladestation, somit kann beim Stundenmittelwert von der Nennleistung ausgegangen werden.
- A.3.25.3 Bei Standorten mit mehreren Ladestationen ist es üblich, die Ladeleistung zu begrenzen. Für die Leistungsgrenze gibt es unter anderen folgende Möglichkeiten:
 - einen fixen Wert,
 - maximale Leistung des Gebäudes (¼-Stunden-Mittelwert),
 - Differenz zwischen Leistung Eigenstromerzeugungsanlagen und Leistung Eigenbedarf.

A.3.26 Kleinstverbraucher

Diverse Verbraucher der Allgemeinen Gebäudetechnik haben einen extrem kleinen Leistungs- und Energieverbrauch. Aus diesem Grund werden die Kleinstverbraucher lediglich aufgeführt ohne Berechnungsmethode.

A.4 Wärme

A.4.1 Wärmepumpe

- A.4.1.1 Wärmepumpen können als Heizung und für die Warmwassererwärmung eingesetzt werden. Für industrielle Prozessanlagen sind spezifische Berechnungen durchzuführen. Die Energieermittlung mit der Jahresarbeitszahl ist standortabhängig. Die vereinfachte Berechnung gilt für das Schweizer Mittelland bis 800 m ü.M.
- A.4.1.2 Bei den Berechnungen sind allfällige Pumpen für die Förderung von Wasser oder Sole nicht enthalten. Diese sind notwendig bei Sole/Wasser- oder Wasser/Wasser-Wärmepumpen. Ebenfalls nicht berücksichtigt werden Wärmepumpenboiler, da davon ausgegangen wird, dass diese mehrheitlich in Wohnbauten zum Einsatz kommen.

- A.4.1.3 Der Ansatz für die Ermittlung des Leistungs- und Energiebedarfs ist unterschiedlich. Die Leistungs- ermittlung erfolgt über die Leistungszahl, die von der Auslegungstemperatur abhängig ist. Die Energieermittlung erfolgt über die Jahresarbeitszahl, welche abhängig ist von der Temperatur der Wärmequelle (Aussenluft, Sole, Wasser) und dem Verwendungszweck (Heizung, Warmwasser).
- A.4.1.4 Sofern keine Angaben über eine dimensionierte Anlage vorliegen, können die Heizwärmeleistungsund der Heizenergiebedarf mit SIA 2024 abgeschätzt werden.

A.4.2 Hilfsenergie Wärmeerzeugung, -verteilung und -abgabe

- A.4.2.1 Für die Wärmeerzeugung, -verteilung und -abgabe sind elektrische Hilfsenergien notwendig. Bei der Wärmepumpe muss der Energiebedarf für die Wärmeerzeugung separat berechnet werden. Die Werte beinhalten Umwälzpumpen, Brenner und allfällige Brennstoffförderanlagen.
- A.4.2.2 Die vereinfachte Leistungs- und Energieermittlung erfolgt über die Energiebezugsfläche. Die exakte Berechnung erfolgt nach SIA 384/3.

A.4.3 Elektrische Widerstandsheizung

- A.4.3.1 Einschränkungen für den Einsatz von elektrischen Widerstandsheizungen sind in SIA 384/1 und SIA 385/1 festgelegt.
- A.4.3.2 Bei kombinierten Anlagen, bei denen das Warmwasser teilweise elektrisch erwärmt wird, kann für die elektrische Widerstandsheizung als Standardannahme ein Wirkungsgrad von 100% eingesetzt werden.

A.4.4 Elektrisches Heizband Warmwasserverteilung

- A.4.4.1 Elektrische Heizbänder für die Warmhaltung der Warmwasserverteilung (Begleitheizungen) werden hauptsächlich in Wohngebäuden, Hotels und Spitälern eingesetzt. In diesen Objekten muss eine Mindesttemperatur an der Entnahmestelle (meistens 50°C) erreicht werden. Diese Mindesttemperatur wird für den Komfort benötigt. Für den Legionellenschutz muss gemäss SIA 385/1 eine Mindesttemperatur in der warmgehaltenen Verteilung von 55°C erreicht werden können.
- A.4.4.2 Der Energiebedarf ist abhängig von der Länge des Verteilnetzes, der Rohrisolation, dem Rohrdurchmesser und dem Warmwasserbedarf. Es wird angenommen, dass ²/₃ der thermischen Verluste durch das Heizband kompensiert werden, ¹/₃ wird aus dem (Speicher-)Wassererwärmer geliefert.

A.4.5 Elektrisches Heizband Frostschutz

- A.4.5.1 Elektrische Heizbänder werden teilweise auch für den Frostschutz von Wasser- und Heizverteilleitungen im Aussenbereich eingesetzt. Sie können einen erheblichen Energieverbrauch verursachen
- A.4.5.2 Der Energiebedarf ist abhängig von der Länge der frostfrei gehaltenen Leitung, der Rohrisolation, dem Rohrdurchmesser und der Klimazone. Es wird angenommen, dass ²/₃ der thermischen Verluste durch das Heizband kompensiert werden, ¹/₃ werden aus dem in der Leitung fliessenden Wasser gedeckt.

A.5 Lüftung / Klimatisierung

A.5.1 **Luftförderung**

A.5.1.1 Für die Leistungs- und Energieermittlung von Lüftungsanlagen können mehrere Methoden angewendet werden. Der Unterschied liegt in den unterschiedlichen Angaben, die für die Ermittlung notwendig sind. Im Allgemeinen werden der Teillastbetrieb und die Art der Lüftungssteuerung in den Volllaststunden berücksichtigt.

- A.5.1.2 In den aufgeführten Berechnungen sind folgende Punkte nicht enthalten:
 - Heiz- und Kühlenergie,
 - Regelkomponente,
 - Wärmerückgewinnung,
 - Befeuchtung.

Tabelle 99 Übersicht über Leistungs- und Energieermittlungsmethoden Lüftungsanlage

Bezugsgrössen	Belüftete Nutzfläche	Spez. Ventilator- leistung	Druckdifferenz
Spezifische Leistung / Energie W/m² kWh/m²	X		
Belüftete Nutzfläche m²	X		
Spezifische Ventilatorleistung Wh/m³		Х	
Luftvolumenstrom m ³ /h		X	X
Jährliche Volllaststunden h		X	Х
Druckdifferenz der Anlage Pa			X
Gesamtwirkungsgrad Ventilator, Motor und Antrieb			Х

A.5.2 Komponenten der Lüftung

- A.5.2.1 Komponenten von Lüftungsanlagen beinhalten folgende Verbraucher:
 - Brandschutzklappe,
 - elektrische Klappenantriebe,
 - elektrischer Volumenstromregler,
 - Aussenluft- und Fortluftklappenantriebe.

Der Einsatz von Volumenstromreglern und motorisierten Klappen erhöht die Effizienz der Lüftungsanlage und schützt Personen und Anlagen. Nicht berücksichtigt sind allfällige Frequenzumrichter für die Ventilatoren.

- A.5.2.2 Die Komponenten haben eine kleine Bereitschaftsleistung, jedoch fällt diese konstant über das ganze Jahr an. Die Betriebszeiten sind kurz und werden somit bei den Berechnungen nicht berücksichtigt.
- A.5.2.3 Die Leistungs- und Energieermittlung erfolgt über die belüftete Nutzfläche und den Ausbaustandard. Der Ausbaustandard gibt Auskunft über die Dichte der eingesetzten Regelkomponenten.

A.5.3 Wärmerückgewinnungsanlage

- A.5.3.1 Für eine Wärmerückgewinnungsanlage gibt es unterschiedliche Systeme und Bauarten. Teilweise ist keine Fremdenergie notwendig. Es werden lediglich Rotationswärmeübertrager und Kreislaufverbundsysteme (KVS) betrachtet.
- A.5.3.2 Die Leistung der Wärmeübertrager variiert nach den Temperaturen und teilweise nach der Luftfeuchtigkeit. Da sich die Einflussgrössen jederzeit ändern, erfolgt die Leistungs- und Energieermittlung vereinfacht über die Energiebezugsfläche.
- A.5.3.3 Es wird angenommen, dass die Wärmerückgewinnungsanlage in 85 % der Volllaststunden aktiv ist. Diese Annahme wird mit dem Faktor f_{HRE} abgebildet und steht in keinem Zusammenhang mit dem thermischen Wirkungsgrad einer Wärmerückgewinnungsanlage.

93

A.5.4 **Befeuchtung**

- A.5.4.1 Eine aktive Befeuchtung ist nur in Ausnahmefällen nötig (siehe auch SIA 2024, Ziffer 1.2.2).
- A.5.4.2 Eine Befeuchtung der Zuluft verhindert, dass eine Untergrenze der relativen Luftfeuchte im Raum unterschritten wird. Dieser Vorgang kann in der Heizperiode notwendig sein.
- A.5.4.3 Der Leistungs- und Energiebedarf ist unter anderem von folgenden Faktoren abhängig:
 - geographischer Lage des Objektes,
 - internen Feuchteguellen,
 - minimalem Feuchtebedarf im Raum,
 - Art der Wärmerückgewinnung.
- A.5.4.4 Bei der adiabatischen Befeuchtung ist eine Nachwärmung über ein Heizregister notwendig. Dieser Energiebedarf wird aus elektrischer Sicht nicht berücksichtigt.
- A.5.4.5 Der Leistungsbedarf wird anhand des Aussenvolumenstroms der Lüftungsanlage berechnet.

A.5.5 Raumkühlung

- A.5.5.1 Bei der Kälteerzeugung wird von Kältemaschinen ausgegangen. Hilfsenergien für die Verteilung und Abgabe sind separat unter 8.6 aufgeführt.
- A.5.5.2 Der Ansatz für die Ermittlung des Leistungs- und Energiebedarfs ist unterschiedlich. Die Leistungs- ermittlung erfolgt über die Leistungszahl, die von der Auslegungstemperatur abhängig ist. Die Energieermittlung erfolgt über die Jahresarbeitszahl.
- A.5.5.3 Der Kühlleistungs- und Kühlenergiebedarf kann mit SIA 2024 bestimmt werden, solange die Auslegung der Anlagen noch nicht erfolgt ist.
- A.5.5.4 Es wird davon ausgegangen, dass Gebäude mit einer Raumkühlung auch mit einer automatischen Beschattungsanlage ausgestattet sind. Die Steuerung muss den Sonnenstand berücksichtigen.

A.5.6 Hilfsenergie Raumkühlung

- A.5.6.1 Für die Verteilung und Abgabe sind elektrische Hilfsenergien notwendig. Es werden Kühlsysteme behandelt, die über die Fussbodenheizung, thermoaktive Bauteilsysteme oder die Kühldecke die Kälte an den Raum abgeben. Bei den Umluftkühlgeräten sind Leistung und Energie für das Gebläse zusätzlich zu ermitteln.
- A.5.6.2 Die vereinfachte Leistungs- und Energieermittlung erfolgt über die Energiebezugsfläche. Für die Berechnung der Umluftkühlgeräte ist die Kälteleistung notwendig.
- A.5.6.3 Die Betriebszeit und die Kälteleistung können mit SIA 2024 bestimmt werden.

A.6 Elektrizitätsbedarf in Wohnbauten

A.6.1 Allgemein

A.6.1.1 Der gesamte jährliche Elektrizitätsverbrauch für Wohnbauten in der Schweiz beträgt 18,3 TWh. Bei rund 3,5 Millionen Haushalten ergibt dies einen mittleren Stromverbrauch pro Haushalt von ca. 5300 kWh pro Jahr. Dieser Wert ist allerdings nicht repräsentativ für den typischen Haushalt der Schweiz, denn Haushalte mit sehr hohen Verbräuchen (z.B. wegen elektrischer Beheizung) drücken diesen Durchschnitt stark in die Höhe. Aussagekräftiger für Vergleiche ist der Medianwert (50% der Haushalte liegen darüber, 50% darunter) mit 3500 kWh pro Haushalt und Jahr oder der Modalwert (grösste Häufigkeit an Haushalten) mit 2000 kWh pro Haushalt und Jahr.

- A.6.1.2 Der Elektrizitätsbedarf in Wohnbauten ist in erster Linie von der Personenbelegung abhängig. Drei Einflussparameter bestimmen den Elektrizitätsbedarf zur Hauptsache:
 - Effizienz der eingesetzten Geräte,
 - Ausstattungsgrad an Geräten,
 - Nutzungsintensität der Geräte.
- A.6.1.3 Für die folgenden Berechnungen werden primär die Einflussparameter der Geräteeffizienz berücksichtigt. In Abhängigkeit vom Ausstattungsgrad (zusätzliche Geräte zum Basishaushalt) und der Nutzungsintensität (Häufigkeit der Nutzung durch die Bewohner) kann der effektive Elektrizitätsverbrauch stark gesenkt oder erhöht werden. Messungen haben gezeigt, dass der Elektrizitätsverbrauch von Haushalt zu Haushalt bei gleicher Grösse bis zu einem Faktor 10 differieren kann.

A.7 Elektrizitätserzeugung

A.7.1 Grundlagen

- A.7.1.1 Gebäude sollen in Zukunft gemäss den energiepolitischen Leitlinien der Konferenz kantonaler Energiedirektoren (EnDK) einen grossen Anteil ihres Elektrizitätsbedarfs selber decken. Die Elektrizitätserzeugung durch Photovoltaik (PV) und Wärmekraftkopplung (WKK) wird daher einen zunehmenden Beitrag zur Energiebilanz von Gebäuden leisten. Da die Leistungsspitze von PV-Anlagen im Sommer und von WKK-Anlagen im Winter auftritt, ergänzen sich diese Systeme gegenseitig.
- A.7.1.2 Um einen möglichst grossen Anteil der erzeugten Elektrizität direkt im Gebäude verbrauchen zu können, ist zudem ein hoher Eigenverbrauchsanteil durch eine entsprechende Anlagenkonfiguration, Leistungsbegrenzung, Lastmanagement und Speichersysteme anzustreben.

A.7.2 **Photovoltaik**

- A.7.2.1 Der Eigenverbrauchsanteil entspricht dem zeitgleich produzierten und verbrauchten PV-Ertrag im Verhältnis zum jährlichen Energieertrag einer PV-Anlage. Der Eigenverbrauchsanteil hängt ab von der Gebäudenutzung, der Art der Wärme- und Kälteerzeugung, der Grösse der PV-Anlage, der Ausrichtung der PV-Module und der vorhandenen Anlagen zur elektrischen und indirekten thermischen Speicherung des PV-Ertrags. Der Eigenverbrauchsanteil ist eine wichtige Kennzahl zur Berechnung der Wirtschaftlichkeit einer PV-Anlage, da der eigenverbrauchte PV-Ertrag in der Regel den Bezug im Hochtarif reduziert, während die zurückgespeiste Elektrizität nur zu einem reduzierten Tarif vergütet wird.
- A.7.2.2 Der Autarkiegrad einer PV-Anlage drückt aus, zu welchem Anteil ein Gebäude seinen Elektrizitätsbedarf zeitgleich selber decken kann. Er entspricht dem zeitgleich produzierten und verbrauchten PV-Ertrag im Verhältnis zum gesamten jährlichen Elektrizitätsbedarf eines Gebäudes. Für die Wirtschaftlichkeit einer PV-Anlage ist der Autarkiegrad nicht relevant.
- A.7.2.3 Für eine detaillierte Berechnung des Energieertrags und des Eigenverbrauchsanteils von PV-Anlagen stehen unter anderem folgende Tools gratis online zur Verfügung:

www.polysunonline.com

www.eigenverbrauchsrechner.ch

www.solar-toolbox.ch

https://www.minergie.ch/media/pvopti_1.06_de.xlsb

www.energieschweiz.ch/solarrechner

www.swissolar.ch/fuer-bauherren/planungshilfsmittel/solardachrechner

Anhang B (informativ)

Mess- und Installationskonzept

Die Anzahl und Art der Messstellen haben einen direkten Zusammenhang mit dem Installationskonzept. Somit sind bereits in einer frühen Phase die Bedürfnisse und Anforderungen an die Messungen zu definieren.

Zusätzlich sind Messungen und deren Auswertung wichtige Bestandteile von IEC 60364-8-1.

B.1 Begriffsbestimmung

Figur 15 Begriffsbestimmung

Messung Verteilnetzbetreiber:
Die Messeinrichtungen sind im Besitz des Verteilnetzbetreibers (VNB)
und werden zur Energiekostenabrechnung eingesetzt. Der Einbauort

und die Anzahl sind mit dem Betreiber abzusprechen.

Privatmessung: Privatmessungen sind im Besitz des Eigentümers und können

für detailliertere Messungen eingesetzt werden.

B.2 Bedürfnisse

Tabelle 100 Aufgaben, Zielsetzung und Nutzen eines Messkonzepts

Aufgaben	Zielsetzung	Nutzen
Energiebeschaffung	Aufzeichnung des 15-min-Last- gangs	Grundlagendaten für Strom- einkauf
Benchmarking	Gewinnung von standardisierten Kenndaten	Vergleich von gleichartigen Objekten oder Kennzahlen
Betriebsoptimierung	Ökologische und ökonomische Betriebsoptimierung	Reduktion Energieverbrauch
Energiecontrolling	Kontrolle des Energieflusses	Fehlererkennung
Garantiewerte	Überprüfung von Design- und Garantiewerten	Fehlererkennung
Kapazitäten	Beurteilung von Über- bzw. Unterkapazitäten	Basisdaten für Erneuerungen / Erweiterungen
Public Relations	Kommunikation von Energiezielen und -strategien	Stärkung der öffentlichen Meinung

B.2.1 Energiebeschaffung

Die Energiebeschaffung kommt für Endverbraucher in Betracht, welche auf dem freien Markt den Strom beschaffen dürfen. Die Versorgungsvarianten (Voll-, Teil-, Strukturversorgung usw.), der Aufwand und das Risiko sind stark variabel. Grundlagenwerte wie der Energiebedarf und der 15-min-Lastgang von einem Jahr sind notwendig.

B.2.2 **Benchmarking**

Für die Einschätzung des elektrischen Energieverbrauchs besteht die Möglichkeit, die Werte mit anderen Objekten oder mit vergangenen Jahren, Monaten, Wochen, Tagen zu vergleichen. Der Vergleich dient zur Kontrolle und Überwachung von Optimierungsmassnahmen. Bei Abweichungen kann der Verursacher anhand von Lastgangmessungen eruiert werden.

B.2.3 **Betriebsoptimierung**

Im Betrieb ist der Lastgang zu überprüfen und auszuwerten. Verbesserungsvorschläge zur Optimierung sind umzusetzen (siehe SIA 2048).

B.2.4 Energiecontrolling

Backupsysteme (z.B. Notheizungen) oder Geräte für Spitzenlasten sollten keine oder beschränkte Betriebszeiten ausweisen. Bei einer Überschreitung eines Schwellwertes im Energiebezug kann ein Leitsystem Informationen absetzen. Bei sensiblen Geräten (z.B. Prüflabor, Serverraum, Spital) empfiehlt es sich, einen Netzqualitätsanalysator einzubauen. Dieser registriert und alarmiert, wenn die Netzqualität nicht der Norm SN EN 50160 entspricht.

B.2.5 Garantiewerte

Garantiewerte von Geräten (z.B. Jahresarbeitszahl einer Wärmepumpe) oder Stromerzeugungsanlagen (Blockheizkraftwerke, Photovoltaikanlagen) können mit Langzeitmessungen kontrolliert werden. Dadurch sind Fehler in der Installation oder in der Automatisierung (keine Drehzahlregulierung) feststellbar. Kontrollen müssen innerhalb der Garantiezeiten durchgeführt werden.

B.2.6 Kapazitäten

Bei gestaffeltem Leistungszuwachs können die Verteilung und Installation laufend auf Überlast überprüft werden. So sind Engpässe frühzeitig erkennbar, ohne dass prophylaktische Investitionen vorgenommen werden. Zum Beispiel sind unterbruchsfreie Stromversorgungsanlagen (USV) teuer im Unterhalt. Ein Ausbau in Etappen kann so direkt Kosten einsparen. Bei Netzersatzanlagen ist allgemein darauf zu achten, dass auch im Normal- oder Testbetrieb der Leistungs- und Energieverbrauch gemessen werden können.

B.2.7 Public Relations

Nachhaltigkeitsziele oder Jahresenergiebilanzen finden Verwendung in der Firmenstrategie oder in der Kommunikation. Dadurch kann die öffentliche Meinung der Bevölkerung beeinflusst werden.

B.3 Kennzahlen

B.3.1 Damit die Bedürfnisse der Nutzungsgruppen befriedigt werden können, müssen objektspezifische Kennzahlen ausgearbeitet werden. Für den Vergleich, ob es sich um einen hohen oder tiefen Energieverbrauch handelt, müssen die Kennzahlen vergleichbar sein.

Kennzahlen:

- totaler Energieverbrauch
- totaler Energieverbrauch pro Fläche
- Energieverbrauch pro Verbrauchergruppe
- Energieverbrauch pro Verbrauchergruppe und Fläche
- ¼-Stunden-Mittelwert/-Maximum
- Leistung ausserhalb der Nutzungszeit

Vergleichsmöglichkeiten:

- Tages-, Wochen-, Monats-, Jahresvergleich
- gleichwertige Objekte
- SIA 2024
- gleichwertige Verbrauchergruppen
- Datenblätter
- Garantiebestimmungen
- Planungsunterlagen
- Energieabrechnung
- B.3.2 Verbrauchergruppen können vielseitig sein; die nachfolgende Auflistung ist nicht abschliessend.
 - Zonen (Abteilungen, Stockwerke, Gebäude, Areal)
 - Nutzungsgruppen (Büro, Ausstellungsfläche usw.)
 - Geräte (Apparate, Motoren, Prozesse)
 - Gebäudetechnik (HLKS-Anlagen)
 - Beleuchtung (Aussen-, Innen- und Akzentbeleuchtung)

B.4 Kosten-Nutzen-Verhältnis

B.4.1 Jede Messstelle verursacht Investitionskosten und muss für eine einfache Auswertung vernetzt sein. Für den Entscheid, ob eine Messung ausgeführt werden soll, gilt folgende Empfehlung:

Investitionskosten der Messeinrichtung < 1/3 der Kosten des prognostizierten elektrischen Energiebedarfs

- B.4.2 Sofern das Kosten-Nutzen-Verhältnis nicht gegeben ist, so bestehen folgende Möglichkeiten:
 - Zusammenfassung der Kleinverbraucher,
 - Installationen vorbereiten für mobile oder temporäre Messungen,
 - Einrichtung eines Musterstockwerkes oder -sektors für Referenzmessungen.
- B.4.3 Ausnahmen können Netzersatzanlagen oder ausgewählte Verbraucher sein.

B.5 Einbau von Privatmessungen

Die Tabelle 101 zeigt eine Auflistung möglicher privater Messstellen. Die Liste ist nicht abschliessend und ist mit den Interessensgruppen abzusprechen.

Tabelle 101 Empfohlene Privatmessungen

Anlage	Bemerkung
Technische Zentrale	
Heizungszentralen	Nur in Zentralen mit eigenen Schaltschränken; Unterstationen gelten nicht als Zentralen
Lüftungs- und Klimazentralen	Nur bei Zentralen mit eigenem Schaltschrank
Kältezentralen	Nur bei Zentralen mit eigenem Schaltschrank
Sanitärzentralen	Nur bei Zentralen mit eigenem Schaltschrank
Druckluftzentralen	Sofern Kosten-Nutzen-Verhältnis gegeben ist
Elektrizitätserzeuger	
Netzersatzanlagen	Zur Überwachung des Leistungszuwachses während des Betriebs
Photovoltaik / Solarzellen	Jeder PV-Umrichter besitzt heute eine nicht geeichte Leistungs- und Energiemessung
Stromerzeugungsanlagen	
Wärmeerzeugung	
Wärmepumpe	Sofern Kosten-Nutzen-Verhältnis gegeben ist
Wärmekraftkopplung, Blockheizkraftwerke	
Kälteerzeugung	
Kältemaschinen	Sofern Kosten-Nutzen-Verhältnis gegeben ist
Elektrizitätsverbraucher	
Prozesse	Sofern Kosten-Nutzen-Verhältnis gegeben ist
Grundwasserpumpen	Sofern Kosten-Nutzen-Verhältnis gegeben ist
Zentrale elektronische Datenverarbeitung (EDV)	Sofern Kosten-Nutzen-Verhältnis gegeben ist
Unterbruchsfreie Stromversorgung (USV)	Zur Überwachung des Leistungszuwachses während des Betriebs
Küchen mit gewerblicher Nutzung	Sofern Kosten-Nutzen-Verhältnis gegeben ist
Stockwerke oder Nutzungszonen	Sofern Kosten-Nutzen-Verhältnis gegeben ist
Fremdmieter	
Elektrizität	Messung und Abrechnung durch Verteilnetzbetreiber vorsehen

B.6 Aufbau einer Verteilung

- B.6.1 Eine Elektroverteilung ist in mehrere Sektoren einzuteilen. Dies erleichtert nicht nur die Messung, sondern auch die Bedienung. Im ersten Sektor befinden sich die Einspeisung mit dem Zähler des Verteilnetzbetreibers, danach die Grossverbraucher und die Abgänge der Unterverteilungen, welche jeweils separat gemessen werden. Einen eigenen Sektor können die sensitiven Verbraucher bilden. Bei Bedarf sind sie mit einer Netzqualitätsmessung auszurüsten.
- B.6.2 Am Ende der Verteilung befinden sich die Kleinverbraucher, welche zusammen eine Messung teilen.

B.6.3 Bei einem anderen Verteilungsaufbau (z.B. bei einer Einspeisung in der Verteilungsmitte) sind ebenfalls nahe bei der Einspeisung die Abgänge mit einer Einzelmessung vorzusehen und am Ende die Kleinverbraucher.

Figur 16 Möglicher Aufbau einer Verteilung

Anhang C (informativ) Beispiele

C.1 Beispiele Leistungsbedarf

C.1.1 Nennleistung

C.1.1.1 Motoren:

Nennleistung gemäss Typenschild und Datenblatt ist die Wellen- (mech. Abgabe-)Leistung bei Nenndaten für Spannung und Last. Die elektrische Input-Leistung lässt sich aus $U \cdot I \cdot cos\varphi \cdot \sqrt{3}$ berechnen. Die Leistungsaufnahme im praktischen Betrieb ist (ausser beim Startvorgang oder bei kurzzeitiger Überlast) immer kleiner als die Nenn-Inputleistung, oft viel kleiner, d. h. 25 % bis 50 % (Überdimensionierung oder Leistungsreserve für spezielle Lastzustände).

C.1.1.2 Geräte mit Heizung:

Sie haben oft hohe Typenschild-Leistungen, z.B. 1500 W (Kaffeemaschine, Laserdrucker). Diese Heizungen sind aber per Thermostat oder elektronisch geregelt und werden damit u. U. in kurzen Intervallen ein- und ausgeschaltet. Je nach Art des Geräts und der Nutzung wird diese hohe Leistung gar nie während einer Stunde beansprucht. Die Betriebsleistung (Stundenmittelwert) ist deshalb je nach Gerät festzulegen bzw. zu ermitteln.

C.1.1.3 Elektronische Geräte:

Die deklarierten Werte (Typenschild, Datenblatt) sind oft ganz grob geschätzt oder äusserst vorsichtig (hoch) angegeben. Sie haben oft wenig mit real messbaren Werten zu tun. Für die Ermittlung eines sinnvollen Wertes der Betriebsleistung sind daher gute Kenntnisse der Geräte erforderlich oder sie werden aus der Deklaration des Elektrizitätsverbrauchs bzw. der Verbrauchsklasse zurückgerechnet. Soweit es keine hohen Leistungen sind (d. h. ohne Heizung), spielen kurzzeitige Leistungen kaum eine Rolle.

C.1.2 Leistung ausserhalb der Nutzungszeit

Im Idealfall sind ausserhalb der Nutzungszeit alle Stromverbraucher im Bereitschafts- oder Aus-Zustand bei minimaler Leistungsaufnahme. Im Bereitschafts- und Aus-Zustand kommen keine hohen Leistungsaufnahmen vor. Teilweise sind im Bereitschaftszustand auch Aufheizphasen enthalten (etwa Warmhaltung bei Laserdruckern oder Kaffeemaschinen). Dann wird jedoch die hohe Leistung nur im Sekunden- bis Minutenbereich eingeschaltet und dürfte selbst für einen ¼-Stunden-Mittelwert kaum relevant sein. Für die Aufnahme von Leistungen ausserhalb der Nutzungszeit ist jedoch zu prüfen, ob nennenswerte Stromverbraucher automatisch auch ausserhalb der Nutzungszeit eingeschaltet werden könnten.

C.1.3 Schaltgerätekombination

Ein 1,2 Meter breites Feld mit Lasttrennschalter weist 30 % Ausbaureserve aus und es wird ein Betriebsstrom von 500 A erwartet. Der Nennstrom des Feldes beträgt 1500 A.

$$P_{el,SGA,i} = I_{SGA} \cdot P_{el,SGA,sp} \cdot b_{SGA} \cdot \left(\frac{I_{SGA,i}}{I_{SGA,N}}\right)^2 = 1.2 \text{ m} \cdot 490 \frac{\text{W}}{\text{m}} \cdot 0.7 \cdot \left(\frac{500 \text{ A}}{1500 \text{ A}}\right)^2 = 46 \text{ W}$$
 (171)

C.1.4 Wärmepumpe

Ein Gebäude im Mittelland benötigt bei der Auslegetemperatur von –8°C eine Heizleistung von 20 kW. Die notwendige Vorlauftemperatur beträgt 35°C. Eine Luft/Wasser-Wärmepumpe hat bei –8°C eine ungefähre Leistungszahl von 3.

$$P_{el,HP} = \frac{\Phi_H}{\varepsilon_{EER}} = \frac{20 \text{ kW}}{3} = 6.7 \text{ kW}$$
 (172)

c.2 Beispiele Energiebedarf

C.2.1 **Beleuchtung**

Tabelle 102 Berechnung spezifischer Elektrizitätsbedarf Beleuchtung

Kenngrösse	Kennwert	Bemerkung
Nutzung	Büro	
Beleuchtungsstärke E_{vm}	500 lx	Gemäss SN EN 12464-1
Wartungsfaktor	0,8	
Leuchten-Lichtausbeute $\eta_{v,Lo}$	100 lm/W	Gute LED-Leuchte
Raumwirkungsgrad $\eta_{\scriptscriptstyle R}$	70%	Normal heller Raum Raumindex: 1,33
Installierte spez. Leistung p_L	9 W/m ²	1,8 W/m² pro 100 Lux
Nutzungstage pro Jahr d_p	209 d	Standardnutzung
Nutzungsstunden pro Tag t_u	11 h	Standardnutzung
Stundenreduktion pro Tag durch Beleuchtungssteuerung nach Tageslicht t_c	4,5 h	Tageslichtnutzung: mittel
Korrekturfaktor für Beleuchtungs- steuerung nach Präsenz k _{Pr}	0,8	Hauptnutzfläche
Volllaststunden pro Jahr t_{Li}	1087 h	
Mittlere Bereitschaftsleistung der Leuchten	50 W	Typischer Wert für Büronutzung
Faktor Standby k_{St}	1,08	Vergleiche Ziffer 5.3, Tabelle 49
Spezifischer Elektrizitätsbedarf E_L	10,6 kWh/m ²	

Tabelle 103 Berechnung Leistungs- und Elektrizitätsbedarf Beleuchtung

Nutzung	Büro Süden	Büro Norden	Korri- dore	Trep- pen	Kan- tine	WC	Lager	Total
Beleuchtungs- stärke E_{vm} Ix	500	500	100	200	300	200	100	
Wartungsfaktor	0,8	0,8	0,8	0,8	0,8	0,8	0,8	
Leuchten-Licht- ausbeute $h_{v,Lo}$ Im/W	100	100	100	100	70	100	130	
Raumwirkungsgrad h_R	0,7	0,7	0,7	0,7	0,7	0,5	0,7	
	8,9	8,9	1,8	3,6	7,7	5,0	1,4	6,2
$\begin{array}{ccc} \text{Nutzungstage} \\ \text{pro Jahr } d_p & \text{d} \end{array}$	209	209	209	209	209	209	209	
Nutzungsstunden pro Tag t_u h	11	11	15	15	7	11	4	
Stundenreduktion pro Tag für Beleuchtungssteuerung nach Tageslicht t_c h	4,5	1,5	0	0	1,5	0	0	
Korrekturfaktor für Beleuchtungssteuerung nach Präsenz k _{Pr}	0,8	0,8	0,6	0,6	0,8	0,6	0,4	
$ \begin{array}{ccc} \text{Volllaststunden} \\ \text{pro Jahr } t_{\!\scriptscriptstyle L} & \text{h} \end{array} $	1087	1588	1881	1881	920	1379	334	1327
Mittlere Bereitschafts- leistung der Leuchten W	50	50	30	20	30	20	20	
Leuchten dimmbar ja/ nein	ja	nein	nein	nein	nein	nein	nein	
Faktor Standby k_{St} –	1,08	1	1	1	1	1	1	
Spezifischer Elektrizitätsbedarf E_L kWh/m²	10,5	14,2	3,4	6,7	7,0	6,9	0,5	8,3
Beleuchtete Fläche m²	1 200	800	800	400	200	100	200	3700
$ \begin{array}{ccc} \text{Installierte} \\ \text{Leistung } p_{\scriptscriptstyle L} & \text{kW} \end{array} $	10,7	7,1	1,4	1,4	1,5	0,5	0,3	25,0
Elektrizitätsbedarf pro Jahr E_L MWh	12,6	11,3	2,7	2,7	1,4	0,7	0,1	32,8

Wichtige Kennzahlen:

- gesamte Betriebsleistung Beleuchtung des Gebäudes: 23,0 kW
- gesamter elektrischer Betriebsenergiebedarf Beleuchtung des Gebäudes: 32,8 MWh pro Jahr
- Energiekennzahl Beleuchtung: 8,3 kWh/m²

C.2.2 Elektrische Widerstandsheizungen im Freien

Eine Schaltschrankheizung in der Region Aarau wird auf $10\,^{\circ}$ C Raumtemperatur und auf $-5\,^{\circ}$ C Aussentemperatur ausgelegt.

$$P_{el,N,REH} = 5.6 \text{ m}^2 \cdot 5.5 \frac{\text{W}}{\text{m}^2 \text{K}} \cdot (10 \,^{\circ}\text{C} - (-5 \,^{\circ}\text{C})) = 462 \text{ W}$$
 (173)

Für den Energiebedarf wird mit den monatlichen Temperaturmittelwerten gemäss SIA 2028 gerechnet. Massgebend sind die Monate, die eine tiefere mittlere Temperatur haben als die geforderten 10°C.

Tabelle 104 Berechnung Energiebedarf elektrische Widerstandsheizungen im Freien

	A_C m ²	<i>U</i> W/m²K	$^{ heta_i}$ $^{\circ}$ C	$^{ heta_e}_{ ext{c}}$ °C	t h	E _{el,N,REH} kWh
Januar	5,6	5,5	10,0	0,6	744	215,4
Februar	5,6	5,5	10,0	1,7	672	171,8
März	5,6	5,5	10,0	5,8	744	96,2
April	5,6	5,5	10,0	8,8	720	26,6
November	5,6	5,5	10,0	4,4	720	124,2
Dezember	5,6	5,5	10,0	2,0	744	183,3
Total						817,6

C.3 Beispiele Wohnbauten

C.3.1 Mehrfamilienhaus (personenbezogen)

- C.3.1.1 Die Hauptnutzfläche ist in SIA 416 definiert.
- C.3.1.2 In einem Mehrfamilienhaus mit 12 Wohnungen und total 1220 m² Hauptnutzfläche wird der Gesamtelektrizitätsbedarf (inkl. Allgemeinstrom) für den Standardfall (Bestand) sowie die drei Varianten Bestgeräte, Neubaustandard und Bestand mit alten Geräten berechnet. Die Berechnung basiert auf der Personenbelegung der einzelnen Wohnungen.

Tabelle 105 Berechnung des Gesamtelektrizitätsbedarfs eines Mehrfamilienhauses

Wohnung	Hauptnutz- fläche m²	Zimmerzahl	Bewohner <i>N_P</i>	Basis-Elektrizitätsbedarf <i>E_{el,D}</i> kWh
1	70	2	1	2000
2	70	2	1	2000
3	90	3	1	2000
4	90	3	1	2000
5	90	3	2	2650
6	90	3	2	2650
7	115	4	2	2650
8	115	4	2	2650
9	115	4	3	3300
10	115	4	4	3950
11	130	5	4	3950
12	130	5	4	3 9 5 0
Aufzug <i>E_{el,ELV}</i>				1200
Gesamtelektrizitätsbedarf $E_{el,tot}$				34950
Bestgeräte (topten.ch)			$f_{eff} = 0.7$	24465
Neubaustandard			$f_{eff} = 0.85$	29708
Bestand, Geräte ca. 5 Jahre			f _{eff} = 1,0	34950
Bestand, alte G	eräte (> 10 Jahre)	f _{eff} = 1,3	45 435

Annahmen:

- elektrische Kochherde ($\Delta E_{el,g} = 0$) keine elektrische Wassererwärmung ($E_{el,W} = 0$)
- keine Wohnungslüftung ($E_{el,V} = 0$)

C.3.2 Mehrfamilienhaus (flächenbezogen)

In einem Mehrfamilienhaus mit 12 Wohnungen und total 1220 m² Hauptnutzfläche wird der Gesamtelektrizitätsbedarf (inkl. Allgemeinstrom) für den Standardfall (Bestand) sowie die drei Varianten Bestgeräte, Neubaustandard und Bestand mit alten Geräten berechnet. Die Berechnung basiert auf den Nettoflächen der einzelnen Wohnungen. Im Vergleich zur Berechnung mit Personenbelegung weichen die einzelnen Wohneinheiten bis zu 27% ab; das Total ist mit +1% praktisch identisch.

Tabelle 106 Berechnung des Gesamtelektrizitätsbedarfs eines Mehrfamilienhauses

Wohnung	Hauptnutz- fläche m²	Zimmerzahl	Personenzahl N _P	Basis-Elektrizitätsbedarf $E_{el,D}$ kWh
1	70	2	1	2200
2	70	2	1	2200
3	90	3	1	2600
4	90	3	1	2600
5	90	3	2	2600
6	90	3	2	2600
7	115	4	2	3100
8	115	4	2	3100
9	115	4	3	3100
10	115	4	4	3100
11	130	5	4	3400
12	130	5	4	3400
Aufzug E _{el,ELV}				1 200
Gesamtelektrizitätsbedarf $E_{el,tot}$				35 200
Bestgeräte (topten.ch)			$f_{eff} = 0.7$	24640
Neubaustandard			$f_{eff} = 0.85$	29920
Bestand, Geräte ca. 5 Jahre			f _{eff} = 1,0	35 200
Bestand, alte G	eräte (> 10 Jahre)	f _{eff} = 1,3	45 760

Annahmen:

- elektrische Kochherde ($\Delta E_{el,g} = 0$)
- keine elektrische Wassererwärmung ($E_{el,W} = 0$)
- keine Wohnungslüftung ($E_{el,V} = 0$)

C.3.3 Einfamilienhaus (personenbezogen)

- C.3.3.1 In einem Einfamilienhaus kann der Elektrizitätsbedarf zwischen sehr effizient (sowohl bei Geräten, Ausstattung und Nutzung) und sehr ineffizient bei gleicher Personenbelegung annähernd um einen Faktor 10 differieren. Unter Berücksichtigung sehr energieintensiver Geräte wie Elektroheizungen, elektrischer Warmwasserbereitung, Sauna, Aquarium oder Wasserbett kann dieser Faktor auf über 30 steigen bei Haushalten mit gleicher Grösse!
- C.3.3.2 Die Tabelle 107 illustriert diese Bandbreite des Energieverbrauchs unter Berücksichtigung der Effizienzfaktoren für Geräteeffizienz f_{eff} (vgl. Tabelle 95) sowie Ausstattungsgrad f_{eq} und Nutzungsintensität f_u (vgl. Tabelle 96). Energieintensive Geräte wie Elektroheizungen, elektrische Warmwasserbereitung, Sauna, Aquarium oder Wasserbett sind nicht eingeschlossen!

Tabelle 107 Bandbreite des Elektrizitätsbedarfs eines Einfamilienhauses pro Jahr, in kWh

Ausstattungs-	Nutzungs-		Geräteeffizienz				
grad intensität	intensität	Bestgeräte	Neustandard	Bestand, Geräte ca. 5 Jahre	Bestand, alte Geräte (> 10 Jahre)		
sehr tief	sehr tief	1 544	1874	2 2 0 5	2867		
tief	sehr tief	1874	2276	2678	3481		
Standard	sehr tief	2 2 0 5	2678	3150	4 0 9 5		
hoch	sehr tief	2867	3481	4095	5324		
sehr hoch	sehr tief	3308	4016	4725	6143		
sehr tief	tief	1874	2276	2678	3481		
tief	tief	2276	2764	3 2 5 1	4227		
Standard	tief	2678	3251	3825	4973		
hoch	tief	3481	4227	4973	6464		
sehr hoch	tief	4016	4877	5738	7 4 5 9		
sehr tief	Standard	2 2 0 5	2678	3150	4 0 9 5		
tief	Standard	2678	3251	3825	4973		
Standard	Standard	3150	3825	4500	5850		
hoch	Standard	4095	4973	5850	7 605		
sehr hoch	Standard	4725	5738	6750	8775		
sehr tief	hoch	2867	3481	4095	5324		
tief	hoch	3481	4227	4973	6 4 6 4		
Standard	hoch	4095	4973	5850	7 605		
hoch	hoch	5324	6464	7 605	9887		
sehr hoch	hoch	6143	7 459	8775	11 408		
sehr tief	sehr hoch	3308	4016	4725	6143		
tief	sehr hoch	4016	4877	5738	7 459		
Standard	sehr hoch	4725	5738	6750	8775		
hoch	sehr hoch	6143	7 459	8775	11 408		
sehr hoch	sehr hoch	7 088	8606	10125	13163		

Annahmen:

Hauptnutzfläche: 180 m²
 Anzahl Personen: 3

Anhang D (informativ) Fallbeispiel

D.1 Schule

D.1.1 Ausgangslage

Anhand eines Schulhauses wird das Vorgehen für die Leistungs- und Energieermittlung erläutert. Dabei handelt es sich um ein Gebäude, welches komplett saniert wird, mit folgenden Kennzahlen:

- Nettogeschossfläche: 3690 m²
- 24 Unterrichtsräume
- eine Turnhalle
- diverse Zusatzräume für den Schulbetrieb
- mehrheitlich präsenz- und tageslichtabhängige Beleuchtungssteuerung
- Einsatz von Leuchten mit LED
- keine Lüftungsanlage
- die Wärmeversorgung erfolgt über das örtliche Fernwärmenetz.

D.1.2 Leistungsermittlung

- D.1.2.1 In einer ersten Phase sind die im Gebäude vorhandenen Verbrauchergruppen zu bestimmen und deren zugeordnete Verbraucher gemäss vorliegendem Merkblatt zu definieren. Je nach Gebäudenutzung können objektspezifische Verbraucher/-gruppen ergänzt werden (vgl. Figur 4).
- D.1.2.2 Pro Gebäudekategorie gibt es einen spezifischen Korrekturfaktor, welcher mit der Summe aller Leistungen multipliziert werden muss. Danach können alle Leistungen zur maximalen Betriebsleistung Gebäudetechnik (Stundenmittelwert) addiert werden. Dieser Wert entspricht nicht dem Wert $P_{el,Op,0.25h,pk,b'}$ sondern dem Stundenmittelwert $P_{el,Op,pk,b}$ und kann nicht direkt für die Dimensionierung eines Anschlusswertes verwendet werden.

Tabelle 108 Beispiel Leistungsermittlung

Verbrauchergruppen	Gebäudekategorie IV Schule
3 Geräte	0,9 kW
4 Prozessanlagen	0 kW
5 Beleuchtung	20,6 kW
6 Allg. Gebäudetechnik	0,3 kW
7 Wärme	1,2 kW
8 Lüftung / Klimatisierung	0 kW
Summe	23,0 kW
Korrekturfaktor k_{cor}	0,8
Maximale Betriebsleistung Gebäude (Stundenmittelwert) $P_{el,Op,pk,b}$	18,4 kW

D.1.3 Ermittlung des Energiebedarfs

D.1.3.1 Im Gegensatz zur Leistungsermittlung gibt es bei der Ermittlung des Energiebedarfs keine Korrekturfaktoren. Der Energiebedarf der einzelnen Verbraucher kann aufsummiert werden. Eine Strukturierung nach Verbrauchergruppen und Gebäudekategorie wird empfohlen.

Tabelle 109 Beispiel Ermittlung des Energiebedarfs

Verbrauchergruppen	Gebäudekategorie IV Schule
3 Geräte	35310 kWh
4 Prozessanlagen	0 kWh
5 Beleuchtung	9704 kWh
6 Allg. Gebäudetechnik	4300 kWh
7 Wärme	4584 kWh
8 Lüftung / Klimatisierung	10160 kWh
Energiebedarf Gebäude <i>E_{el,b}</i>	64058 kWh

D.1.4 Ermittlung der Leistung und des Energiebedarfs

Exemplarisch an der Verbraucherkategorie Allg. Gebäudetechnik (Kapitel 6) wird nachfolgend die Ermittlung der Leistung und der Energie dargestellt.

Tabelle 110 Beispiel Allgemeine Gebäudetechnik

Verbraucher	Bezugs- grösse	Menge	Wert	Energie	Leistung
Netichtonione	4	4.000 2	0,18 kWh/m ²	196 kWh	
Notlichtanlage	A_{ELS}	1 090 m ²	0,02 W/m ²		22 W
Beschattungsanlage	A_W	176 m ²	1,5 kWh/m ²	264 kWh	
Natürliche Rauch- und		1	175 kWh	175 kWh	
Wärmeabzugsanlage	n	1	20 W		20 W
Zutrittskontrolle	n	8	17,5 kWh	140 kWh	
Zutritiskontrolle	11	8	2 W		16 W
	I _{SGA}	3 m	490 W/m		
Calcalturauëta	b_{SGA}	0,5			
Schaltgeräte- kombination	I _{SGA,i}	40 A			
	$I_{SGA,N}$	100 A		1030 kWh	
	t _{SGA,i}	8760 h			118 W
	P _{el,UPS,i}	1 kW			
USV-Anlage	$\eta_{\mathit{UPS,i}}$	0,94		0,6 kWh	
	t _{UPS,i}	8760 h			64 W
Aufzug	E _{el,ELV}	2357 kWh		2357 kWh	
Auizug	t _{Op,ELV}	550 h			4285 W
Smartmeter	n	3	0,5 W	13 kWh	1,5 W
Brandmeldeanlage	A	1090 m ²	0,013 W/m ²	124 kWh	14 W
Total				4300 kWh	4541 W

D.1.4.1 Für die Schaltgerätekombination wurde aufgrund der geringen Leistung eine Vereinfachung angenommen. Es wurde von einem durchschnittlichen Betriebsstrom von 10 A ausgegangen.

Anhang E (informativ) Werte

E.1 Zusammenfassung Gerätekombinationen (GK)

E.1.1 Energiebedarf

Der Energiebedarf der verschiedenen GK ist in Tabelle 111 ersichtlich. Die Ergebnisse sind ohne den Faktor der Jahresgleichzeitigkeit gemäss SIA 2024 zu betrachten.

Tabelle 111 Energiebedarf pro GK (ohne Jahresgleichzeitigkeit)

Energiebedarf			Tief			Mittel			Hoch	
Nutzungstage		261	313	365	261	313	365	261	313	365
Gastro 1	kWh	260	280	310	420	470	530	730	840	940
Gastro 2	kWh	2200	2580	2950	4030	4800	5 5 6 0	6 5 5 0	7820	9 0 5 0
Büro sporadisch	kWh	108	127	142	196	234	264	670	790	920
Büro normal	kWh	200	239	283	410	488	567	1110	1360	1510
IKT 1	kWh	100	110	120	220	240	260	550	600	660
		1		1		1				
Nutzungstage IK	Γ2	105	261	365	105	261	365	105	261	365
IKT 2	kWh	192	425	562	513	1233	1616	1363	3149	4424
		l				l				
Nutzungstage Hotel		140	220	290	140	220	290	140	220	290
Hotel	kWh	148	166	196	260	290	320	510	550	580

E.1.2 Leistungs-Stundenmittelwerte

Der Stundenmittelwert der Betriebsleistung der verschiedenen GK ist in Tabelle 112 ersichtlich.

Tabelle 112 Stundenmittelwert Betriebsleistung pro GK

Stundenmittelwert Betriebsleistung	t		Tief			Mittel			Hoch	
Nutzungstage		261	313	365	261	313	365	261	313	365
Gastro 1	W	66	57	48	115	98	84	181	160	139
Gastro 2	W	731	614	497	1358	1 155	942	2 194	1868	1524
Büro sporadisch	W	28	25	21	49	44	38	150	135	123
Büro normal	W	59	52	45	122	106	89	296	270	223
IKT 1	W	17	17	15	45	39	36	122	108	96
Nutzungstage IKT	2	105	261	365	105	261	365	105	261	365
IKT 2	W	139	118	94	407	354	274	1126	914	753
Nutzungstage Hote	ما	140	220	290	140	220	290	140	220	290
ivulzungstage note	51	140	220	230	140	220	230	140	220	230
Hotel	W	45	35	30	65	52	43	104	87	71

Der Stundenmittelwert der Bereitschaftsleistung der verschiedenen GK ist in Tabelle 113 ersichtlich.

Tabelle 113 Stundenmittelwert Bereitschaftsleistung pro GK

Stundenmittelwert Bereitschaftsleistu			Tief			Mittel		Hoch		
Nutzungstage		261	313	365	261	313	365	261	313	365
Gastro 1	W	12	11	10	15	15	14	36	41	45
Gastro 2	W	17	17	17	22	21	21	42	47	51
Büro sporadisch	W	5	6	8	10	12	15	41	51	68
Büro normal	W	5	6	8	10	12	16	44	55	72
IKT 1	W	8	9	10	15	17	17	34	34	34
Nutzungstage IKT	2	105	261	365	105	261	365	105	261	365
IKT 2	W	4	5	4	6	6	5	8	9	8
Nutzungstage Hotel		140	220	290	140	220	290	140	220	290
Hotel	W	11	11	14	22	24	29	48	51	61

E.2 Spezifische Energiebedarfswerte für Geräte nach Gebäudekategorien (Beispiele)

In den folgenden Tabellen sind beispielhafte Berechnungen des Energiebedarfs für typische Ausrüstungen von Gerätekombinationen (GK) für die Gebäudekategorien gemäss SIA 380/1 (ohne Wohnbauten) zusammengestellt. Diese Werte müssen je nach spezifischer Nutzung, Gebäudegrösse, Technisierung wie auch der Zusammensetzung der Verbraucher der Allgemeinen Gebäudetechnik angepasst werden.

E.2.1 Verwaltung (III)

Tabelle 114 Berechnung des Energiebedarfs der Geräte eines Verwaltungsbaus bei 261 Nutzungstagen pro Jahr und einer Nettofläche von 3000 m²

Gerätekombina	ationen	I	Energiebedar	f	Auswahl	Anzahl	Energiebedarf
		tief	mittel	hoch			kWh/m²
Gastro 1	kWh	260	420	730	mittel	2	0,28
Gastro 2	kWh	2200	4030	6550			0,00
Büro normal	kWh	200	410	1110	mittel	90	12,30
Büro sporadisc	h kWh	108	196	670	mittel	45	2,94
IKT 1	kWh	100	220	550	mittel	4	0,29
IKT 2	kWh	192	513	1363	mittel	2	0,34
IKT Zusatz	kWh/m²	2,2	4,4	8,8	mittel	1	4,40
Hotelzimmer	kWh	148	260	510			0,00
Total							20,56

E.2.2 Schule (IV)

Tabelle 115 Berechnung des Energiebedarfs der Geräte einer Schule bei 261 Nutzungstagen pro Jahr und einer Nettofläche von 2000 m²

Gerätekombina	tionen	[Energiebedar	f	Auswahl	Anzahl	Energiebedarf
		tief	mittel	hoch			kWh/m²
Gastro 1	kWh	260	420	730	mittel	2	0,42
Gastro 2	kWh	2200	4030	6 5 5 0			0,00
Büro normal	kWh	200	410	1110	mittel	4	0,82
Büro sporadisc	h kWh	108	196	670	mittel	2	0,20
IKT 1	kWh	100	220	550	mittel	2	0,22
IKT 2	kWh	192	513	1363	mittel	1	0,26
IKT Zusatz	kWh/m²	2,2	4,4	8,8	mittel	1	4,40
Hotelzimmer	kWh	148	260	510			0,00
Total							6,31

E.2.3 Verkauf (V)

Tabelle 116 Berechnung des Energiebedarfs der Geräte eines Verkaufslokals bei 313 Nutzungstagen pro Jahr und einer Nettofläche von 2000 m²

Gerätekombinat	tionen	[Energiebedar	f	Auswahl	Anzahl	Energiebedarf
		tief	mittel	hoch			kWh/m²
Gastro 1	kWh	280	470	840			0,00
Gastro 2	kWh	2580	4800	7820			0,00
Büro normal	kWh	239	488	1360	mittel	2	0,49
Büro sporadisch	n kWh	127	234	790	mittel	3	0,35
IKT 1	kWh	110	240	600	mittel	2	0,24
IKT 2	kWh	425	1233	3149	mittel	1	0,62
IKT Zusatz	kWh/m²	2,2	4,4	8,8	mittel	1	4,40
Hotelzimmer	kWh	166	290	550			0,00
Total							6,10

E.2.4 Restaurant (VI)

Tabelle 117 Berechnung des Energiebedarfs der Geräte eines Restaurants bei 261 Nutzungstagen pro Jahr und einer Nettofläche von 500 m²

Gerätekombina	tionen	I	Energiebedar	f	Auswahl	Anzahl	Energiebedarf
		tief	mittel	hoch			kWh/m²
Gastro 1	kWh	260	420	730			0,00
Gastro 2	kWh	2 2 0 0	4030	6550			0,00
Büro normal	kWh	200	410	1110			0,00
Büro sporadiscl	h kWh	108	196	670	mittel	2	0,78
IKT 1	kWh	100	220	550	mittel	1	0,44
IKT 2	kWh	192	513	1363			0,00
IKT Zusatz	kWh/m²	2,2	4,4	8,8	mittel	1	4,40
Hotelzimmer	kWh	148	260	510			0,00
Total							5,62

E.2.5 Versammlungslokal (VII)

Tabelle 118 Berechnung des Energiebedarfs der Geräte eines Versammlungslokals bei 261 Nutzungstagen pro Jahr und einer Nettofläche von 1 000 m²

Gerätekombina	tionen	1	Energiebedar	f	Auswahl	Anzahl	Energiebedarf
		tief	mittel	hoch			kWh/m²
Gastro 1	kWh	260	420	730			0,00
Gastro 2	kWh	2 2 0 0	4030	6550			0,00
Büro normal	kWh	200	410	1110			0,00
Büro sporadisch	n kWh	108	196	670	mittel	2	0,39
IKT 1	kWh	100	220	550	mittel	2	0,44
IKT 2	kWh	192	513	1363			0,00
IKT Zusatz	kWh/m²	2,2	4,4	8,8	mittel	1	4,40
Hotelzimmer	kWh	148	260	510			0,00
Total							5,23

E.2.6 **Spital (VIII)**

Tabelle 119 Berechnung des Energiebedarfs der Geräte eines Spitals bei 365 Nutzungstagen pro Jahr und einer Nettofläche von 6000 m²

Gerätekombina	tionen	I	Energiebedar	f	Auswahl	Anzahl	Energiebedarf
		tief	mittel	hoch			kWh/m²
Gastro 1	kWh	310	530	940			0,00
Gastro 2	kWh	2950	5 5 6 0	9 0 5 0			0,00
Büro normal	kWh	283	567	1510	mittel	16	1,51
Büro sporadisc	h kWh	142	264	920	mittel	8	0,35
IKT 1	kWh	120	260	660	mittel	6	0,26
IKT 2	kWh	562	1616	4424			0,00
IKT Zusatz	kWh/m²	2,2	4,4	8,8	mittel	1	4,40
Hotelzimmer	kWh	196	320	580	mittel	80	4,27
Total							10,79

E.2.7 Industrie (IX)

Tabelle 120 Berechnung des Energiebedarfs der Geräte eines Industriebaus bei 261 Nutzungstagen pro Jahr und einer Nettofläche von 4000 m²

Gerätekombina	tionen	I	Energiebedar	f	Auswahl	Anzahl	Energiebedarf
		tief	mittel	hoch			kWh/m²
Gastro 1	kWh	260	420	730	mittel	1	0,11
Gastro 2	kWh	2200	4030	6 5 5 0			0,00
Büro normal	kWh	200	410	1110	mittel	20	2,05
Büro sporadisch	h kWh	108	196	670	mittel	20	0,98
IKT 1	kWh	100	220	550	mittel	5	0,28
IKT 2	kWh	192	513	1363	mittel	5	0,64
IKT Zusatz	kWh/m²	2,2	4,4	8,8	mittel	1	4,40
Hotelzimmer	kWh	148	260	510			0,00
Total							8,45

E.2.8 **Lager (X)**

Tabelle 121 Berechnung des Energiebedarfs der Geräte eines Lagers bei 261 Nutzungstagen pro Jahr und einer Nettofläche von 2000 m²

Gerätekombina	tionen	I	Energiebedar	f	Auswahl	Anzahl	Energiebedarf
		tief	mittel	hoch			kWh/m²
Gastro 1	kWh	260	420	730			0,00
Gastro 2	kWh	2200	4030	6550			0,00
Büro normal	kWh	200	410	1110	mittel	2	0,41
Büro sporadisch	n kWh	108	196	670	mittel	2	0,20
IKT 1	kWh	100	220	550			0,00
IKT 2	kWh	192	513	1 363			0,00
IKT Zusatz	kWh/m²	2,2	4,4	8,8	mittel	1	4,40
Hotelzimmer	kWh	148	260	510			0,00
Total							5,01

E.2.9 **Sportbaute (XI)**

Tabelle 122 Berechnung des Energiebedarfs der Geräte einer Sportbaute bei 261 Nutzungstagen pro Jahr und einer Nettofläche von 2 000 m²

Gerätekombinat	tionen	1	Energiebedar	f	Auswahl	Anzahl	Energiebedarf
		tief	mittel	hoch			kWh/m²
Gastro 1	kWh	260	420	730			0,00
Gastro 2	kWh	2 2 0 0	4030	6550			0,00
Büro normal	kWh	200	410	1110			0,00
Büro sporadisch	n kWh	108	196	670	mittel	1	0,10
IKT 1	kWh	100	220	550	mittel	1	0,11
IKT 2	kWh	192	513	1363			0,00
IKT Zusatz	kWh/m²	2,2	4,4	8,8	tief	1	2,20
Hotelzimmer	kWh	148	260	510			0,00
Total							2,41

E.2.10 Hallenbad (XII)

Tabelle 123 Berechnung des Energiebedarfs der Geräte eines Hallenbads bei 261 Nutzungstagen pro Jahr und einer Nettofläche von 2 000 m²

Gerätekombina	tionen		Energiebedar	f	Auswahl	Anzahl	Energiebedarf
		tief	mittel	hoch			kWh/m²
Gastro 1	kWh	260	420	730			0,00
Gastro 2	kWh	2200	4030	6550	mittel	1	2,02
Büro normal	kWh	200	410	1110	mittel	1	0,21
Büro sporadisch	n kWh	108	196	670	mittel	1	0,10
IKT 1	kWh	100	220	550	mittel	1	0,11
IKT 2	kWh	192	513	1363	mittel		0,00
IKT Zusatz	kWh/m²	2,2	4,4	8,8	mittel	1	4,40
Hotelzimmer	kWh	148	260	510			0,00
Total							6,83

E.3 Spezifische Energiebedarfswerte für die Allgemeine Gebäudetechnik nach Gebäudekategorien (Beispiele)

In den folgenden Tabellen sind beispielhafte Berechnungen der Energiebedarfswerte für typische Ausrüstungen der Allgemeinen Gebäudetechnik zusammengestellt. Diese Werte müssen je nach spezifischer Nutzung, Gebäudegrösse, Technisierung wie auch der Zusammensetzung der Verbraucher der Allgemeinen Gebäudetechnik angepasst werden.

Die Tabellen bilanzieren den Energiebedarf der Allgemeinen Gebäudetechnik typischer Bauten für die Gebäudekategorien gemäss SIA 380/1 (ohne Wohnbauten). Es handelt sich um Beispiele mit niedriger bis mittlerer Technisierung. Die Gebäudebeispiele entsprechen etwa dem gemessenen Median des Gebäudeparks.

Im Kapitel 6 aufgeführte Verbraucher, die energetisch wenig relevant sind (z.B. Brandvermeidung, Video), wurden weggelassen bzw. den Kleinverbrauchern zugeordnet. Im Kapitel 6 aufgeführte Verbraucher, die nur in wenigen Gebäuden vorkommen (z.B. Trafo, USV), wurden weggelassen.

Die Berechnung der Aufzüge wird in vereinfachter Form dargestellt.

E.3.1 Verwaltung (III)

Tabelle 124 Berechnung des Energiebedarfs der Allgemeinen Gebäudetechnik eines Verwaltungsbaus mit einer Nettofläche von 3000 m²

Elektroverbraucher	Elektroverbraucher		nergiebeda	arf	Aus- wahl	Anzahl	Energie- bedarf
		tief	mittel	hoch			kWh/m ²
Notlichtanlage mit Bereitschaft	kWh/m²	0,09	0,18	0,27	mittel		0,18
Notlichtanlage mit Dauerlicht	kWh/m²	0,27	1,05	1,75			0,00
Beschattungsanlage (manuell)	kWh/m²	0,20	0,75	1,20			0,00
Beschattungsanlage (automatisch)	kWh/m²	0,50	0,95	1,50	mittel		0,95
Beschattungsanlage (autom. + HLK)	kWh/m²	0,60	1,13	1,80			0,00
Gebäudeautomation	kWh/m²	1,5	3	4,5			0,00
Einbruchmeldeanlage	kWh/m²	0,88	0,88	0,88	mittel		0,88
Kleinstverbraucher	kWh/m²	0,5	1	1,5	mittel		1,00
Schrankenanlage kWh	pro Jahr	75,8	150,2	224			0,00
Zentrale Parkuhr kWh	pro Jahr	1752	1752	1752			0,00
Drehtür on/off kWh	pro Jahr	548	1 2 7 5	1118			0,00
Drehtür schleichend kWh	pro Jahr	767	1368	1678			0,00
Schiebetür kWh	pro Jahr	266	266	266			0,00
Drehkreuz kWh	pro Jahr	88	131	175			0,00
Zutrittskontrolle kWh	pro Jahr	17,5	26,3	35			0,00
Aufzug kWh	pro Jahr	1120	1800	3540	mittel	2	1,20
Total							4,21

E.3.2 Schule (IV)

Tabelle 125 Berechnung des Energiebedarfs der Allgemeinen Gebäudetechnik einer Schule mit einer Nettofläche von 2000 m²

Elektroverbraucher		Er	nergiebeda	arf	Aus- wahl	Anzahl	Energie- bedarf
		tief	mittel	hoch			kWh/m²
Notlichtanlage mit Bereitscha	ft kWh/m²	0,09	0,18	0,27	mittel		0,18
Notlichtanlage mit Dauerlicht	kWh/m²	0,27	1,05	1,75			0,00
Beschattungsanlage (manuell) kWh/m²	0,20	0,75	1,20			0,00
Beschattungsanlage (automa	tisch) kWh/m²	0,50	0,95	1,50	mittel		0,95
Beschattungsanlage (autom.	+ HLK) kWh/m²	0,60	1,13	1,80			0,00
Gebäudeautomation	kWh/m²	1,5	3	4,5			0,00
Einbruchmeldeanlage	kWh/m²	0,88	0,88	0,88	mittel		0,88
Kleinstverbraucher	kWh/m²	0,5	1	1,5	mittel		1,00
Schrankenanlage	kWh pro Jahr	75,8	150,2	224			0,00
Zentrale Parkuhr	kWh pro Jahr	1752	1752	1752			0,00
Drehtür on/off	kWh pro Jahr	548	1275	1118			0,00
Drehtür schleichend	kWh pro Jahr	767	1368	1678			0,00
Schiebetür	kWh pro Jahr	266	266	266			0,00
Drehkreuz	kWh pro Jahr	88	131	175			0,00
Zutrittskontrolle	kWh pro Jahr	17,5	26,3	35			0,00
Aufzug	kWh pro Jahr	1120	1800	3540	mittel	1	0,90
Total							3,91

E.3.3 Verkauf (V)

Tabelle 126 Berechnung des Energiebedarfs der Allgemeinen Gebäudetechnik eines Verkaufslokals mit einer Nettofläche von 2000 m²

Elektroverbraucher	Е	nergiebed	arf	Aus- wahl	Anzahl	Energie- bedarf
	tief	mittel	hoch	Walli		kWh/m ²
Notlichtanlage mit Bereitschaft kWh/m	0,09	0,18	0,27			0,00
Notlichtanlage mit Dauerlicht kWh/m	0,27	1,05	1,75	mittel		1,05
Beschattungsanlage (manuell) kWh/m	² 0,20	0,75	1,20			0,00
Beschattungsanlage (automatisch) kWh/m	² 0,50	0,95	1,50	mittel		0,95
Beschattungsanlage (autom. + HLK) kWh/m	² 0,60	1,13	1,80			0,00
Gebäudeautomation kWh/m	1,5	3	4,5	mittel		3,00
Einbruchmeldeanlage kWh/m	o,88	0,88	0,88	mittel		0,88
Kleinstverbraucher kWh/m	² 0,5	1	1,5	mittel		1,00
Schrankenanlage kWh pro Jah	ır 75,8	150,2	224	mittel	1	0,08
Zentrale Parkuhr kWh pro Jah	ır 1752	1752	1752	mittel	1	0,88
Drehtür on/off kWh pro Jah	ır 548	1275	1118			0,00
Drehtür schleichend kWh pro Jah	ır 767	1368	1678	mittel	1	0,68
Schiebetür kWh pro Jah	ır 266	266	266			0,00
Drehkreuz kWh pro Jah	ır 88	131	175			0,00
Zutrittskontrolle kWh pro Jah	ır 17,5	26,3	35	mittel	1	0,01
Aufzug kWh pro Jah	ır 1120	1800	3 5 4 0	mittel	1	0,90
Total					•	9,43

E.3.4 Restaurant (VI)

Tabelle 127 Berechnung des Energiebedarfs der Allgemeinen Gebäudetechnik eines Restaurants mit einer Nettofläche von 500 m²

Elektroverbraucher		Er	nergiebeda	arf	Aus- wahl	Anzahl	Energie- bedarf
		tief	mittel	hoch			kWh/m ²
Notlichtanlage mit Bereitscha	aft kWh/m²	0,09	0,18	0,27			0,00
Notlichtanlage mit Dauerlich	t kWh/m²	0,27	1,05	1,75	mittel		1,05
Beschattungsanlage (manuel	II) kWh/m²	0,20	0,75	1,20			0,00
Beschattungsanlage (automa	ntisch) kWh/m²	0,50	0,95	1,50	mittel		0,95
Beschattungsanlage (autom.	+ HLK) kWh/m ²	0,60	1,13	1,80			0,00
Gebäudeautomation	kWh/m²	1,5	3	4,5	mittel		3,00
Einbruchmeldeanlage	kWh/m²	0,88	0,88	0,88	mittel		0,88
Kleinstverbraucher	kWh/m²	0,5	1	1,5	mittel		1,00
Schrankenanlage	kWh pro Jahr	75,8	150,2	224			0,00
Zentrale Parkuhr	kWh pro Jahr	1752	1752	1752			0,00
Drehtür on/off	kWh pro Jahr	548	1275	1118			0,00
Drehtür schleichend	kWh pro Jahr	767	1368	1678			0,00
Schiebetür	kWh pro Jahr	266	266	266			0,00
Drehkreuz	kWh pro Jahr	88	131	175			0,00
Zutrittskontrolle	kWh pro Jahr	17,5	26,3	35			0,00
Aufzug	kWh pro Jahr	1120	1800	3540	mittel	1	3,60
Total	_						10,48

E.3.5 Versammlungslokal (VII)

Tabelle 128 Berechnung des Energiebedarfs der Allgemeinen Gebäudetechnik eines Versammlungslokals mit einer Nettofläche von 1000 m²

Elektroverbraucher		Er	nergiebeda	arf	Aus- wahl	Anzahl	Energie- bedarf
		tief	mittel	hoch			kWh/m²
Notlichtanlage mit Bereitschaft kWh	n/m²	0,09	0,18	0,27	mittel		0,18
Notlichtanlage mit Dauerlicht kWh	ı/m²	0,27	1,05	1,75			0,00
Beschattungsanlage (manuell) kWh	n/m²	0,20	0,75	1,20			0,00
Beschattungsanlage (automatisch) kWh	ı/m²	0,50	0,95	1,50	mittel		0,95
Beschattungsanlage (autom. + HLK) kWh	n/m²	0,60	1,13	1,80			0,00
Gebäudeautomation kWh	ı/m²	1,5	3	4,5			0,00
Einbruchmeldeanlage kWh	ı/m²	0,88	0,88	0,88	mittel		0,88
Kleinstverbraucher kWh	n/m²	0,5	1	1,5	mittel		1,00
Schrankenanlage kWh pro J	Jahr	75,8	150,2	224			0,00
Zentrale Parkuhr kWh pro J	Jahr	1752	1752	1752			0,00
Drehtür on/off kWh pro J	Jahr	548	1 2 7 5	1118			0,00
Drehtür schleichend kWh pro J	Jahr	767	1368	1678			0,00
Schiebetür kWh pro J	Jahr	266	266	266			0,00
Drehkreuz kWh pro J	Jahr	88	131	175			0,00
Zutrittskontrolle kWh pro J	Jahr	17,5	26,3	35			0,00
Aufzug kWh pro J	Jahr	1120	1800	3540	mittel	1	1,80
Total							4,81

E.3.6 **Spital (VIII)**

Tabelle 129 Berechnung des Energiebedarfs der Allgemeinen Gebäudetechnik eines Spitals mit einer Nettofläche von 6000 m²

Elektroverbraucher		Er	nergiebeda	arf	Aus- wahl	Anzahl	Energie- bedarf
		tief	mittel	hoch			kWh/m²
Notlichtanlage mit Bereitscha	aft kWh/m²	0,09	0,18	0,27			0,00
Notlichtanlage mit Dauerlicht	kWh/m ²	0,27	1,05	1,75	mittel		1,05
Beschattungsanlage (manuel	l) kWh/m²	0,20	0,75	1,20			0,00
Beschattungsanlage (automa	tisch) kWh/m²	0,50	0,95	1,50			0,00
Beschattungsanlage (autom.	+ HLK) kWh/m ²	0,60	1,13	1,80	mittel		1,13
Gebäudeautomation	kWh/m²	1,5	3	4,5	mittel		3,00
Einbruchmeldeanlage	kWh/m²	0,88	0,88	0,88	mittel		0,88
Kleinstverbraucher	kWh/m²	0,5	1	1,5	mittel		1,00
Schrankenanlage	kWh pro Jahr	75,8	150,2	224	mittel	1	0,03
Zentrale Parkuhr	kWh pro Jahr	1752	1752	1752	mittel	1	0,29
Drehtür on/off	kWh pro Jahr	548	1275	1118			0,00
Drehtür schleichend	kWh pro Jahr	767	1368	1678	mittel	2	0,46
Schiebetür	kWh pro Jahr	266	266	266			0,00
Drehkreuz	kWh pro Jahr	88	131	175			0,00
Zutrittskontrolle	kWh pro Jahr	17,5	26,3	35	mittel	4	0,02
Aufzug	kWh pro Jahr	1120	1800	3540	mittel	8	2,40
Total							10,25

E.3.7 Industrie (IX)

Tabelle 130 Berechnung des Energiebedarfs der Allgemeinen Gebäudetechnik eines Industriebaus mit einer Nettofläche von 4000 m²

Elektroverbraucher		Er	nergiebeda	arf	Aus- wahl	Anzahl	Energie- bedarf
		tief	mittel	hoch			kWh/m²
Notlichtanlage mit Bereitschaft kW	/h/m²	0,09	0,18	0,27	mittel		0,18
Notlichtanlage mit Dauerlicht kW	/h/m²	0,27	1,05	1,75			0,00
Beschattungsanlage (manuell) kW	/h/m²	0,20	0,75	1,20			0,00
Beschattungsanlage (automatisch) kW	/h/m²	0,50	0,95	1,50	mittel		0,95
Beschattungsanlage (autom. + HLK) kW	/h/m²	0,60	1,13	1,80			0,00
Gebäudeautomation kW	/h/m²	1,5	3	4,5	mittel		3,00
Einbruchmeldeanlage kW	/h/m²	0,88	0,88	0,88	mittel		0,88
Kleinstverbraucher kW	/h/m²	0,5	1	1,5	mittel		1,00
Schrankenanlage kWh pro	Jahr	75,8	150,2	224	mittel	1	0,04
Zentrale Parkuhr kWh pro	Jahr	1752	1752	1752	mittel	1	0,44
Drehtür on/off kWh pro	Jahr	548	1 275	1118			0,00
Drehtür schleichend kWh pro	Jahr	767	1368	1678			0,00
Schiebetür kWh pro	Jahr	266	266	266	mittel	1	0,07
Drehkreuz kWh pro	Jahr	88	131	175			0,00
Zutrittskontrolle kWh pro	Jahr	17,5	26,3	35	mittel	2	0,01
Aufzug kWh pro	Jahr	1120	1800	3540	mittel	4	1,80
Total							8,37

E.3.8 **Lager (X)**

Tabelle 131 Berechnung des Energiebedarfs der Allgemeinen Gebäudetechnik eines Lagers mit einer Nettofläche von 2000 m²

Elektroverbraucher		Er	nergiebeda	arf	Aus- wahl	Anzahl	Energie- bedarf
		tief	mittel	hoch			kWh/m²
Notlichtanlage mit Bereitscha	aft kWh/m²	0,09	0,18	0,27	mittel		0,18
Notlichtanlage mit Dauerlich	t kWh/m²	0,27	1,05	1,75			0,00
Beschattungsanlage (manuel	l) kWh/m ²	0,20	0,75	1,20			0,00
Beschattungsanlage (automa	itisch) kWh/m²	0,50	0,95	1,50			0,00
Beschattungsanlage (autom.	+ HLK) kWh/m ²	0,60	1,13	1,80			0,00
Gebäudeautomation	kWh/m²	1,5	3	4,5			0,00
Einbruchmeldeanlage	kWh/m²	0,88	0,88	0,88	mittel		0,88
Kleinstverbraucher	kWh/m²	0,5	1	1,5	mittel		1,00
Schrankenanlage	kWh pro Jahr	75,8	150,2	224			0,00
Zentrale Parkuhr	kWh pro Jahr	1752	1752	1752			0,00
Drehtür on/off	kWh pro Jahr	548	1275	1118			0,00
Drehtür schleichend	kWh pro Jahr	767	1368	1678			0,00
Schiebetür	kWh pro Jahr	266	266	266			0,00
Drehkreuz	kWh pro Jahr	88	131	175			0,00
Zutrittskontrolle	kWh pro Jahr	17,5	26,3	35			0,00
Aufzug	kWh pro Jahr	1120	1800	3540			0,00
Total							2,06

E.3.9 **Sportbaute (XI)**

Tabelle 132 Berechnung des Energiebedarfs der Allgemeinen Gebäudetechnik einer Sportbaute mit einer Nettofläche von 2000 m²

Elektroverbraucher		Er	nergiebeda	arf	Aus- wahl	Anzahl	Energie- bedarf
		tief	mittel	hoch			kWh/m²
Notlichtanlage mit Bereitscha	ft kWh/m²	0,09	0,18	0,27	mittel		0,18
Notlichtanlage mit Dauerlicht	kWh/m²	0,27	1,05	1,75			0,00
Beschattungsanlage (manuel	l) kWh/m²	0,20	0,75	1,20			0,00
Beschattungsanlage (automa	tisch) kWh/m²	0,50	0,95	1,50	mittel		0,95
Beschattungsanlage (autom.	+ HLK) kWh/m²	0,60	1,13	1,80			0,00
Gebäudeautomation	kWh/m²	1,5	3	4,5			0,00
Einbruchmeldeanlage	kWh/m²	0,88	0,88	0,88	mittel		0,88
Kleinstverbraucher	kWh/m²	0,5	1	1,5	mittel		1,00
Schrankenanlage	kWh pro Jahr	75,8	150,2	224			0,00
Zentrale Parkuhr	kWh pro Jahr	1752	1752	1752			0,00
Drehtür on/off	kWh pro Jahr	548	1 275	1118			0,00
Drehtür schleichend	kWh pro Jahr	767	1368	1678			0,00
Schiebetür	kWh pro Jahr	266	266	266	mittel	1	0,13
Drehkreuz	kWh pro Jahr	88	131	175			0,00
Zutrittskontrolle	kWh pro Jahr	17,5	26,3	35			0,00
Aufzug	kWh pro Jahr	1120	1800	3540	mittel	1	0,90
Total							4,04

E.3.10 Hallenbad (XII)

Tabelle 133 Berechnung des Energiebedarfs der Allgemeinen Gebäudetechnik eines Hallenbads mit einer Nettofläche von 2000 m²

Elektroverbraucher			nergiebeda		Aus- wahl	Anzahl	Energie- bedarf
		tief	mittel	hoch			kWh/m ²
Notlichtanlage mit Bereitsch	aft kWh/m ²	0,09	0,18	0,27			0,00
Notlichtanlage mit Dauerlich	t kWh/m²	0,27	1,05	1,75	mittel		1,05
Beschattungsanlage (manue	II) kWh/m²	0,20	0,75	1,20			0,00
Beschattungsanlage (automa	atisch) kWh/m²	0,50	0,95	1,50	mittel		0,95
Beschattungsanlage (autom.	+ HLK) kWh/m ²	0,60	1,13	1,80			0,00
Gebäudeautomation	kWh/m²	1,5	3	4,5	mittel		3,00
Einbruchmeldeanlage	kWh/m²	0,88	0,88	0,88	mittel		0,88
Kleinstverbraucher	kWh/m²	0,5	1	1,5	mittel		1,00
Schrankenanlage	kWh pro Jahr	75,8	150,2	224			0,00
Zentrale Parkuhr	kWh pro Jahr	1752	1752	1752			0,00
Drehtür on/off	kWh pro Jahr	548	1275	1118			0,00
Drehtür schleichend	kWh pro Jahr	767	1368	1678	mittel	1	0,68
Schiebetür	kWh pro Jahr	266	266	266			0,00
Drehkreuz	kWh pro Jahr	88	131	175	mittel	2	0,13
Zutrittskontrolle	kWh pro Jahr	17,5	26,3	35			0,00
Aufzug	kWh pro Jahr	1120	1800	3540	mittel	1	0,90
Total							8,60

Anhang F (informativ) Erfassungsraster

F.1 Prozessanlagen

Tabelle 134 Erfassungsraster Prozessanlagen

Kapitel	Prozess	Variante	Jährlicher Energiebedarf	Anschlussleistung
			kWh	kW
4.1	Kühl- und Tiefkühlmöbel			
4.2	Kühl- und Tiefkühlraum	Obst und Gemüse +2°C		
		Blumen +6°C		
		Milchprodukte +4°C		
		Fleischwaren +2°C		
		Fleischwaren frisch 0°C		
		Tiefkühlung allgemein –20°C		
4.3	Grossküchengeräte	Kochen / Braten	-	
		Steamer	_	
		Fritteuse	_	
		Warmhaltung	_	
		Grill	_	
		Abwaschanlage	_	
		Ofen	_	
		Kippkessel	_	
		Kaffee	_	
		Kühl-/Tiefkühlschrank	_	
		Kleingeräte	_	

F.2 Beleuchtung

Tabelle 135 Erfassungsraster Beleuchtung

Kapitel	Nutzung	Jährlicher Energiebedarf	Anschlussleistung
		kWh	kW
5	Büro Süd		
	Büro Nord		
	Korridore		
	Treppen		
	Kantine		
	WC		
	Lager		

F.3 Allgemeine Gebäudetechnik

Tabelle 136 Erfassungsraster Allgemeine Gebäudetechnik

Kapitel	Anlage	Variante	Jährlicher Energiebedarf	Anschlussleistung
			kWh	kW
6.1	Notlichtanlage	Bereitschaft		
		Dauerlicht		
6.2	Beschattungsanlage	Manuelle Steuerung		
		Automatische Steuerung		
		Kombinierte Steuerung		
6.3	Schrankenanlage			
6.4	Zentrale Parkuhr			
6.5	Dreh- und Karusselltür	On/Off		
		Schleichfahrt		
6.6	Schiebetür			
6.7	Drehkreuz und -sperre			
6.8	Dachrinnenheizung			
6.9	Satellitenempfänger			
6.10	Allgemeine elektrische Widerstandsheizungen im Freien			
6.11	Inhouse-Mobilfunkanlage			
6.12	Gebäudeautomation			

Tabelle 136 Erfassungsraster Allgemeine Gebäudetechnik (Fortsetzung)

Kapitel	Anlage	Variante	Jährlicher Energiebedarf	Anschlussleistung
			kWh	kW
6.13	Brandvermeidungsanlage	14,9 % O ₂		
0.4.4	D 1 124/2	17,0 % O ₂		
6.14	Rauch- und Wärmeabzugsanlage	Natürliche RWA		
0.45	A 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mechanische RWA		
6.15	Audioanlage und elektro- akustisches Notfallwarnsystem			
6.16	Einbruchmeldeanlage			
6.17	Zutrittskontrolle	Tür mit Online-Leser, Türöffner		
		Tür mit Online-Leser, Motor- schloss, Überwachung		
		Tür mit Online-Leser, Türöffner, Fluchttürterminal		
6.18	Videoüberwachungsanlage	Im Innern		
		Im Freien		
6.19	Transformator	Öltransformator verlustreduziert		
		Giessharztransformator		
		Trockentransformator		
6.20	Schaltgerätekombination			
6.21	USV-Anlage	≤ 40 kVA		
		40 bis 200 kVA		
		≥ 200 kVA		
		Eco-Modus		
		Flywheel < 100 kVA		
		Schwungmasse < 600 kVA		
6.22	Dieselelektrische Netzersatzanlage			
6.23	Aufzug	Nutzlast bis 750 kg		
		Nutzlast bis 1500 kg		
		Nutzlast bis 2500 kg		
		Nutzlast bis 5 000 kg		
6.24	Fahrtreppe und Fahrsteig	Fahrtreppe Aufwärtsfahrt		
		Fahrsteig horizontal		

Tabelle 136 Erfassungsraster Allgemeine Gebäudetechnik (Fortsetzung)

Kapitel	Anlage	Variante	Jährlicher Energiebedarf	Anschlussleistung
			kWh	kW
6.25	Elektrofahrzeug	E-Bikes		
		E-Scooters		
		E-Motorräder		
		Plug-in Hybrid Electric Vehicle		
		Dreirädrige Elektrofahrzeuge		
		Vierrädrige Elektrofahrzeuge		
		Elektrische Lieferwagen		
		Elektrische LKW		
6.26	Kleinstverbraucher	Gegensprechanlage		
		Stempeluhr / Zeiterfassungsgerät		
		Uhrenanlage		
		Verstärker TV-Anlage		
		Smartmeter		
		CO-Warnanlage		
		Brandmeldeanlage		
		Feuerwehrfunk		
		Kompensationsanlage		

F.4 Wärme

Tabelle 137 Erfassungsraster Wärme

Kapitel	Ausbaustandard	Variante	Jährlicher Energiebedarf	Anschlussleistung
			kWh	kW
7.1	Wärmepumpe			
7.2	Hilfsenergie Wärmeerzeugung,	Öl- und Gasfeuerung		
	-verteilung und -abgabe	Pelletfeuerung		
		Holzschnitzel und automatische Stückholzfeuerung		
		Wärmepumpe (nur Verteilung)		
7.3	Elektrische Widerstandsheizung			
7.4	Elektrisches Heizband Warm- wasserverteilung			
7.5	Elektrisches Heizband Frostschutz			

F.5 Lüftung / Klimatisierung

Tabelle 138 Erfassungsraster Lüftung / Klimatisierung

Kapitel	Ausbaustandard	Variante	Energiebedarf	Anschlussleistung
			kWh	kW
8.1	Luftförderung	Berechnung über belüftete Nutzfläche		
		Berechnung über spez. Ventilator- leistung		
		Berechnung über Druckdifferenz		
8.2	Regelkomponente Lüftung			
8.3	Wärmerückgewinnungsanlage	Rotationswärmeübertrager		
		Kreislaufverbundsystem		
8.4	Befeuchtung	Kontakt- und Rieselbefeuchtung		
		Umlaufsprühbefeuchtung		
		Hochdruckbefeuchtung		
		Hybridbefeuchtung		
8.5	Raumkühlung			
8.6	Hilfsenergie Raumkühlung	Fussbodenheizung		
		Thermoaktive Bauteilsysteme		
		Kühldecke		
		Umluftkühler (ohne Gebläse)		

Anhang G (informativ) Publikationen

Dieser Anhang verweist auf Publikationen zum Thema des vorliegenden Merkblatts. Sie haben ausschliesslich informativen Charakter.

SN EN ISO 23953-2:2012 Verkaufskühlmöbel – Teil 2: Klassifizierung, Anforderungen und Prüfbedin-

gungen

EU-Verordnung Nr. 801/2013 Verordnung der Kommission zur Änderung der Verordnung Nr. 1275/2008

im Hinblick auf die Festlegung von Ökodesign-Anforderungen an den Stromverbrauch elektrischer und elektronischer Haushalts- und Bürogeräte im Be-

reitschafts- und im Aus-Zustand [...]

Richtlinie VDI 4707-1:2009 Aufzüge – Energieeffizienz

Anhang H (informativ) Verzeichnis der Begriffe

Tabelle 139 Alphabetisches Verzeichnis der in Kapitel 1 definierten Begriffe

Deutsch	Französisch	Italienisch	Ziffer
Anschlussleistung	Puissance de raccordement du bâtiment	Potenza di allacciamento	1.1.2.4
Anschlussleitung	Ligne de raccordement	Linea elettrica di allaccia- mento	1.1.1.1
Aus-Leistung Verbraucher	Puissance en mode arrêt du consommateur	Potenza in modalità spento del consumatore	1.1.2.12
Aus-Zustands-Energiebedarf Verbraucher	Besoin énergétique en mode arrêt du consommateur	Fabbisogno energetico in modalità spento del consumatore	1.1.3.5
Bereitschaftsenergiebedarf Verbraucher	Besoin énergétique en mode veille du consommateur	Fabbisogno energetico in modalità sospensione del consumatore	1.1.3.4
Bereitschaftsleistung Verbraucher	Puissance en mode veille du consommateur	Potenza in modalità sospen- sione del consumatore	1.1.2.11
Betriebsenergiebedarf Verbraucher	Besoin énergétique en mode actif du consommateur	Fabbisogno energetico in modalità attiva del consuma- tore	1.1.3.3
Betriebsleistung Verbraucher (Stundenmittelwert)	Puissance en mode actif du consommateur (valeur horaire moyenne)	Potenza in modalità attiva del consumatore (valore orario medio)	1.1.2.10
Blindenergie	Énergie réactive	Energia reattiva	1.1.3.6
Blindleistung	Puissance réactive	Potenza reattiva	1.1.2.2
Eigenverbrauchsanteil	Part d'autoconsommation	Parte di autoconsumo	1.1.1.3
Energiebedarf Gebäude	Besoin énergétique du bâtiment	Fabbisogno energetico dell'edificio	1.1.3.1
Energiebedarf Verbraucher	Besoin énergétique du consommateur	Fabbisogno energetico del consumatore	1.1.3.2
Leistung ausserhalb der Nutzungszeit Gebäude	Puissance en dehors des heures d'utilisation du bâtiment	Potenza al di fuori delle ore di utilizzo dell'edificio	1.1.2.7
Maximale Betriebsleistung Gebäude (Stundenmittelwert)	Puissance d'utilisation maximale du bâtiment (valeur horaire moyenne)	Potenza d'utilizzo massima dell'edificio (valore orario medio)	1.1.2.6
Maximale Leistung Gebäude (¼-Stunden-Mittelwert)	Puissance maximale du bâtiment (moyenne ¼ horaire)	Potenza massima dell'edificio (media ¼ oraria)	1.1.2.5
Monovalent	Monovalent	Monovalente	1.1.1.2
Nennleistung Verbraucher	Puissance nominale du consommateur	Potenza nominale consumatore	1.1.2.9
Scheinleistung	Puissance apparente	Potenza apparente	1.1.2.3
Spitzenleistung Verbraucher	Puissance de pointe du consommateur	Potenza di punta consumatore	1.1.2.8
Vernetzte Bereitschafts- leistung Verbraucher	Puissance en mode veille d'un consommateur mis en réseau	Potenza in modalità sospensione di un consumatore messo in rete	1.1.2.13
Wirkleistung	Puissance active	Potenza attiva	1.1.2.1

In der Kommission SIA 387 vertretene Organisationen

BFE Bundesamt für Energie

Electrosuisse Verband für Elektro-, Energie- und Informationstechnik

EnFK Energiefachstellenkonferenz
FHNW Fachhochschule Nordwestschweiz
SIA BGT Berufsgruppe Technik des SIA

SIA KGE SIA-Kommission für Gebäudetechnik- und Energienormen

SLG Schweizer Licht Gesellschaft swissgee Swiss Gebäude-Elektroengineering

VSEI Verband Schweizerischer Elektro-Installationsfirmen

Kommission SIA 387

Sachbearbeitung

SIA Geschäftsstelle

Präsident Volker Wouters, dipl. El.-Ing. HTL/SIA, Pratteln SIA KGE, swissgee

Mitglieder Jürg Bichsel, Prof. Dr., dipl. El.-lng. ETH/SIA, Gipf-Oberfrick SIA BGT, FHNW

Olivier Brenner, dipl. Ing. HTL, Bern EnFK

Stefan Gasser, dipl. El.-Ing. ETH/SIA, Zürich Planer, SIA KGE

Vertreter von

Rudolf Geissler, dipl. El.-Ing FH, Zürich Planer Olivier Meile, dipl. Ing. FH, Bern (bis Januar 2018) BFE

Martin Ménard, dipl. Masch.-Ing. ETH/SIA, Zürich Planer, SIA KGE Jürg Nipkow, dipl. EI.-Ing. ETH/SIA, Zürich SIA KGE

Josef Schmucki, eidg. dipl. Elektroinstallateur, Fehraltorf Electrosuisse
Markus Simon, dipl. Energietechniker HF, Zürich Amt für Hochbauten,

Stadt Zürich

Jürg Tödtli, Dr. sc. techn., dipl. El.-Ing. ETH/SIA, Zürich

Daniel Tschudy, dipl. Arch. ETH/SIA, Zollikerberg

Stadt Zürich

SIA KGE

Planer, SLG

Daniel Tschudy, dipl. Arch. ETH/SIA, Zollikerberg Planer, Werner Ulrich, Saillon Planer

Beat Willi, eidg. dipl. Elektroinstallateur, Zürich VSEI

Patrick Baschnagel, Gebäudetechnikingenieur BSc FH, Pratteln Josua Rüegger, Gebäudetechnikingenieur BSc FH, Zürich

Verantwortlicher Luca Pirovino, dipl. Kultur-Ing. ETH/SIA, Zürich

Genehmigung und Gültigkeit

Die Zentralkommission für Normen des SIA hat das vorliegende Merkblatt SIA 2056 am 5. Juni 2019 genehmigt.

Es ist gültig ab 1. August 2019.

Es ersetzt die Norm SIA 380/4 Elektrische Energie im Hochbau, Ausgabe 2006.

Copyright © 2019 by SIA Zurich

Alle Rechte, auch das des auszugsweisen Nachdrucks, der auszugsweisen oder vollständigen Wiedergabe und Speicherung sowie das der Übersetzung, sind vorbehalten.