

National University of Computer & Emerging Sciences, Karachi Fall 2021 CS-Department

Quiz-01-Solution

8th Oct 2021, 9:40 AM - 09:55 AM

Course Code: CS 1005	Course Name: Discrete Structure				
Instructor Name / Names: Safia Baloch					
Student Roll No:	Section:				

Instructions:

- Return the question paper in the end.
- Read the question completely before answering it.

Time: 15 minutes. Max Marks:20

1. Prove that: $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow [p \rightarrow r]$ is a tautology.

a. By using the truth table.

(0 points) (b)

/ · I	(* P*****) (*)								
p	q	r	$p \to q$	$q \to r$	$(p \to q) \land (q \to r)$	$p \to r$	$[(p \to q) \land (q \to r)] \to (p \to r)$		
T	T	T	T	T	T	T	T		
\mathbf{T}	T	F	\mathbf{T}	\mathbf{F}	F	F	T		
\mathbf{T}	\mathbf{F}	T	F	\mathbf{T}	F	\mathbf{T}	${f T}$		
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	F	\mathbf{F}	${f T}$		
\mathbf{F}	\mathbf{T}	T	\mathbf{T}	\mathbf{T}	T	\mathbf{T}	${f T}$		
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	F	\mathbf{T}	${f T}$		
\mathbf{F}	F	\mathbf{T}	\mathbf{T}	\mathbf{T}	${f T}$	\mathbf{T}	${f T}$		
F	F	F	T	T	T	T	T		

Since $[(p \to q) \land (q \to r)] \to (p \to r)$ is always T, it is a tautology.

b.By using logic equivalence laws

7. (0 points), page 35, problem 30. Show that $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$ is a tautology. sol:

$(p \lor q) \land (\neg p \lor r) \to (q \lor r)$	
$\equiv \neg [(p \lor q) \land (\neg p \lor r)] \lor (q \lor r)$	by implication law
$\equiv [\neg(p \vee q) \vee \neg(\neg p \vee r)] \vee (q \vee r)$	by de Morgan's law
$\equiv \! [(\neg p \wedge \neg q) \vee (p \wedge \neg r)] \vee (q \vee r)$	by de Morgan's law
$\equiv [(\neg p \wedge \neg q) \vee q] \vee [(p \wedge \neg r) \vee r]$	by commutative and associative laws
$\equiv \! [(\neg p \vee q) \wedge (\neg q \vee q)] \vee [(p \vee r) \wedge (\neg r \vee r)]$	by distributive laws
$\equiv (\neg p \vee q) \vee (p \vee r)$	by negation and identity laws
$\equiv (\neg p \lor p) \lor (q \lor r)$	by communicative and associative laws
$\equiv T$	by negation and domination laws