

Neural Attention for Object Tracking

Brian Cheung

bcheung@berkeley.edu

Redwood Center for Theoretical Neuroscience, UC Berkeley Visual Computing Research, NVIDIA

Source: Wikipedia "School Bus"

Motivation

Solving complex vision problems

- Question Answering
- Search
- Navigation

Two core components:

- Attention
- Memory

Emergent Properties from Attention

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Xu et. al. 2015

Recurrent Networks

$$h(t) = \sigma(x(t)W_{xh} + h(t-1)W_{hh})$$

$$o(t) = \sigma(h(t)W_{ho})$$

$$h(t+1) = \sigma(x(t+1)W_{xh} + h(t)W_{hh})$$

Formulating a Glimpse

$$V_i = \sum_{n=1}^{H} \sum_{m=1}^{W} U(n, m) k_i(m, n)$$
$$\forall i \in [1, ..., H'W']$$

Parameters in the kernel control the layout of the attention window over the original image.

Spatial Transformer

Spatial Transformer Network

Benefits of Attention

- Less parameters/Less Computation
 - Smaller Convolutional Network
- Better Performance
 - Significant performance over ConvNet over entire image
 - Breaks down complex problems into a sequence of simpler problems
 - Filters out noise and distractors
- Localization information is free

KITTI Tracking Dataset

Geiger et. al. 2012

- 375x1240 video
- Bounding boxes over time of cars, pedestrians, etc.

Pretraining on Classification Task

{'Car', 'Pedestrian', 'Truck', 'Tram', 'Cyclist', 'Misc', 'Van', 'Person Sitting'} **Convolutional Network** ~3% Classification Error on validation set **Grid Generator**

Pretraining on the Registration Task

Pretraining on the Registration Task

- Simpler task similar to tracking: Fix a bad glimpse
- Useful signal for Localization Network

Comparing Training Gradients

Without pretraining (Random Initialization)

With ConvNet Pretraining

Bouncing MNIST

Bouncing MNIST

Bouncing MNIST

Conclusions

- End-to-End visual attention works for simple tasks
- Robust to encoding of attention parameters

Conclusions

- Difficult to train on more complex tasks
 - First Step toward Model-Free, Anonymous Object Tracking with Recurrent Neural Networks (Gan et. al. 2015)
 - RATM: Recurrent Attentive Tracking Model (Kahou et. al. 2015)
- Scaling computational costs

Future Work

- Integrate more tailored components
 - Spatial Memory (Weiss et. al. 2015)
- Train compact ImageNet models for initialization
- Exploration/Unsupervised strategies to recover from mistakes
 - Error Based Attention (Rezende et. al. 2016)

Acknowledgements

Special thanks to:

Shalini Gupta

Jan Kautz

Pavlo Molchanov

Stephen Tyree

Eric Weiss

