

Foundations of Scala

Foundations of Software

Martin Odersky

Uses of Abstract Types

- 1. To encode type parameters (as in List)
- 2. To hide information (as in KeyGen)
- 3. To resolve variance puzzlers

Resolving Variance Puzzlers with Abstract Types

A standard example to justify unsound covariance is this:

Let's model animals which eat food items.

Both Animal and Food are the root of a type hierarchy.

```
trait Animal
trait Cow extends Animal with Food
trait Lion extends Animal
```

trait Food
trait Grass extends Food

Adding eat

```
trait Animal {
  def eat(food: Food): Unit
}
trait Cow extends Animal {
  def eat(food: Grass): Unit
}
trait Lion extends Animal {
  def eat(food: Cow): Unit
}
```

Problem: eat in Cow or Lion does not override correctly the eat in Animal, because of the contravariance rule for function subtyping.

Refining the Model

We can get the right behavior with an abstract type.

```
trait Animal {
  type Diet <: Food
  def eat(food: Diet): Unit
trait Cow extends Animal {
  type Diet <: Grass
  def eat(food: this.Diet): Unit
object Milka extends Cow {
  type Diet = AlpineGrass
  def eat(food: AlpineGrass): Unit
```

Translating to DOT

```
type Animal = { this => {Diet: Nothing..Food} & {eat: this.Diet -> Unit}}
type Cow = { this => {Diet: Nothing..Grass} & {eat: this.Diet -> Unit}}
```

Do we have Cow <: Animal?

Translating to DOT

```
type Animal = { this => {Diet: Nothing..Food} & {eat: this.Diet -> Unit}}
type Cow = { this => {Diet: Nothing..Grass} & {eat: this.Diet -> Unit}}
```

Is Cow <: Animal?

No. There is no subtyping rule for recursive types.

Translating to DOT

But we do have:

```
x: Cow
==> // expand the definition
   x: { this => {Diet: Nothing..Grass} & {eat: this.Diet -> Unit}}
   // by (Rec-E)
   x: {Diet: Nothing..Grass} & {eat: x.Diet -> Unit}}
      // by (Sub)
   x: {Diet: Nothing..Food} & {eat: x.Diet -> Unit}}
      // bv (Rec-I)
   x: { this => {Diet: Nothing..Food} & {eat: this.Diet -> Unit}}
==> // Collapse the definition
   x: Animal
```

The Meta Theory

As usual, need to prove progress and preservation theorems.

Theorem (Preservation) If $\Gamma \vdash t : T$ and $t \longrightarrow u$ then $\Gamma \vdash u : T$.

Theorem (Progress) If $\vdash t : T$ then t is a value or there is a term u such that $t \longrightarrow u$.

(?)

The Meta Theory

As usual, need to prove progress and preservation theorems.

Theorem (Preservation) If $\Gamma \vdash t : T$ and $t \longrightarrow u$ then $\Gamma \vdash u : T$.

Theorem (Progress) If $\vdash t : T$ then t is a value or there is a term u such that $t \longrightarrow u$.

(?)

In fact this is wrong. Counter example:

```
t = let x = (y: Bool) \Rightarrow y in x
```

Fixing Progress

Theorem (Progress) If $\vdash t : T$ then t is an answer or there is a term u such that $t \longrightarrow u$.

Answers n are defined by the production

```
n ::= x \mid v \mid let x = v in n
```

Why It's Difficult

We always need some form of inversion.

E.g.:

▶ If $\Gamma \vdash x : \forall (x : S) T$ then x is bound to some lambda value $\lambda(x : S') t$, where S <: S' and $\Gamma \vdash t : T$.

This looks straightforward to show.

But it isn't.

User-Definable Theories

In DOT, the subtyping relation is given in part by user-definable definitions

This makes T a supertype of S and a subtype of U.

By transitivity, S <: U.

So the type definition above proves a subtype relationship which was potentially not provable before.

Bad Bounds

What if the bounds are non-sensical?

Example

```
type T >: Any <: Nothing</pre>
```

By the same argument as before, this implies that

```
Any <: Nothing
```

Once we have that, again by transitivity we get S <: T for arbitrary S and T.

That is the subtyping relations collapses to a point.

Bad Bounds and Inversion

A collapsed subtyping relation means that inversion fails.

Example: Say we have a binding $x = \nu(x:T)...$

So in the corresponding environment Γ we would expect a binding ${\it x}: \mu({\it x} \colon T).$

But if every type is a subtype of every other type, we also get with subsumption that $\Gamma \vdash x : \forall (x : S) U!$.

Hence, we cannot draw any conclusions from the type of x. Even if it is a function type, the actual value may still be a record.

Can We Exclude Bad Bounds Statically?

Unfortunately, no.

Consider:

```
type S = { type A; type B >: A <: Bot }
type T = { type A >: Top <: B; type B }</pre>
```

Individually, both types have good bounds. But their intersection does not:

```
type S \& T == \{ type A >: Top <: Bot; type B >: Top <: Bot \}
```

So, bad bounds can arise from intersecting types with good bounds.

But maybe we can verify all intersections in the program?

Bad Bounds Can Arise at Run-Time

The problem is that types can get more specific at run time.

Recall again preservation: If $\Gamma \vdash t : T$ and $t \longrightarrow u$ then $\Gamma \vdash u : T$.

Because of subsumption u might also have a type S which is a true subtype of \mathcal{T} .

That S could have bad bounds (say, arising from an intersection).

Dealing With It: A False Start

Bad bounds make problems by combining the selection subtyping rules with transitivity.

$$\frac{\Gamma \vdash x : \{A : S...T\}}{\Gamma \vdash x.A <: T}$$
 (SEL-<:)

$$\frac{\Gamma \vdash x : \{A : S..T\}}{\Gamma \vdash S <: x.A}$$
 (<:-Sel)

Can we "tame" these rules so that bad bounds cannot be exploited? E.g.

Dealing With It: A False Start

$$\frac{\Gamma \vdash x : \{A : S..T\} \qquad \Gamma \vdash S <: T}{\Gamma \vdash x.A <: T}$$
 (Sel-<:)

$$\frac{\Gamma \vdash x : \{A : S..T\} \qquad \Gamma \vdash S <: T}{\Gamma \vdash S <: x.A}$$
 (<:-Sel)

Problem: we lose monotonicity. Tighter assumptions may yield worse results.

Dealing With It: Another False Start

Can we get rid of transitivity instead?

I.e. only use algorithmic version of subtyping rules?

We tried (for a long time), but got nowhere.

Transitivity seems to be essential for inversion lemmas and many other aspects of the proof.

Dealing With It: The Solution

Observation: To prove preservation, we need to reason at the top-level only about environments that arise from an actual computation. I.e. in

▶ If
$$\Gamma \vdash t : T$$
 and $t \longrightarrow u$ then $\Gamma \vdash u : T$.

The environment Γ corresponds to an evaluated let prefix, which binds variables to values.

And values have guaranteed good bounds because all type members are aliases.

$$\Gamma \vdash \{A = T\} : \{A : T..T\}$$
 (Typ-I)

Introducing Explicit Stores

We have seen that the let prefix of a term acts like a store.

For the proofs of progress and preservation it turns out to be easier to model the store explicitly.

A store is a set of bindings x = v or variables to values.

The evaluation relation now relates terms and stores.

$$s \mid t \longrightarrow s' \mid t'$$

Evaluation $s \mid t \longrightarrow s' \mid t'$

Relationship between Stores and Environments

For the theorems and proofs of progress and preservation, we need to relate environment and store.

Definition: An environment Γ corresponds to a store s, written $\Gamma \sim s$, if for every binding x = v in s there is an entry $\Gamma \vdash x : T$ where $\Gamma \vdash_! v : T$.

 $\Gamma \vdash_! v : T$ is an exact typing relation.

We define $\Gamma \vdash_! x : T$ iff $\Gamma \vdash x : T$ by a typing derivation which ends in a (All-I) or ({}-I) rule

(i.e. no subsumption or substructural rules are allowed at the toplevel).

Progress and Preservation, 2nd Take

Theorem (Preservation)

If $\Gamma \vdash t : T$ and $G \sim s$ and $s \mid t \longrightarrow s' \mid t'$, then there exists an environment $\Gamma' \supset \Gamma$ such that, one has $\Gamma' \vdash t' : T$ and $\Gamma' \sim s'$.

Theorem (Progress)

If $\Gamma \vdash t : T$ and $\Gamma \sim s$ then either t is a normal form, or $s \mid t \longrightarrow s' \mid t'$, for some store s', term t'.