

هرف از ایی آزمایش

- √ با قابلیتهای اسیلسکوپ آشنا شویم.
 - √ با کلیدهای آن کار کنیم.
- √ نحوه اندازه گیری مشخصات سیگنالها را به
 - کمک اسیلسکوپ فرا بگیریم.
- √ محدودیتهای اسیلسکوپ را ببینیم و بدانیم.

آکارہ شویجا

- ✓ فایلهای ضمیمه جلسه مقدماتی دوم مربوط به اصول عملکرد اسیلسکوپ و مشخصات
 کلیدهای اسیلسکوپ GDS-1022 را مطالعه کنید.
- ببینید که صفحه نمایش این اسیلسکوپ چند خانه عمودی و چند خانه افقی دارد؟ این
 نکته بعدا که از شما خواسته می شود یک سیگنال را روی صفحه نمایش دهید مهم
 میشود.
- ببینید که کلید ۷/div هر یک از کانالهای این اسیلسکوپ چه اعدادی دارد؟ به عبارت دیگر شما نمی توانید کلید ۷/div را روی هر عددی قرار دهید و محدود به انتخابهای خود اسیلسکوپ هستید. این نکته بعدا که از شما خواسته می شود مثلا چند سیکل یک سیگنال را روی صفحه نمایش دهید مهم می شود.
 - همین کار را برای کلید Time/div هم انجام دهید.

ایشه نات یمهٔ تال دهتا

- √ این آزمایش فقط پیش گزارش دارد!
- √ تمام موارد و سوالاتی که با علامت ≣مشخص شده اند را باید در پیش گزارشتان بیاورید.
- √ اگر در بخشی سوال شده که روی صفحه اسیلسکوپ چه خواهید دید، انتظارتان را بر اساس صفحه GDS-1022 در پیش گزارش رسم کنید.

√ در طول انجام آزمایش از شما سوال

خواهد شد.

✓ اگر جواب سوالهایی را که دقیقا باید در پیش گزارش می آوردید ندانید نمره پیش گزارش را هم نمی گیرید!!!!

المُثِنِ اللهِ اللهِ اللهِ اللهِ اللهِ اللهِ اللهُ اللهِ اللهِ اللهِ اللهِ اللهِ اللهِ اللهِ اللهِ اللهِ الله

اسیلسکوپ را روشن کرده و در حالی که به ورودی های آن سیگنالی داده نشده است با تغییر دکمه time/div سرعت جاروب صفحه را تغییر دهید و نتیجه را مشاهده کنید. بنظر شما برای اینکه ببینیم صفحه از کدام طرف به کدام طرف جاروب می شود کلید Time/div حدودا باید روی چه مقداری باشد

بِمْشِ روم؛ ٱشْنَابِي بَا كَلِيرِهَاي V/div و Time/div

یک شکل موج ولتاژ سینوسی با دامنه ۳ ولت و با فرکانس ۱ کیلوهرتز با کمک سیگنال ژنراتور تولید می کنیم. نمایش این سیگنال در حالت 1V/div و 1V/di

جهت راهنمایی مجددا تکرار می کنم که شما باید بر طبق صفحه نمایش -GDS

رسم کنید و وقتی از

لرچ 1022 یک چیزی شبیه این

شما خواسته شده، سیگنال را روی آن نمایش دهید. مقادیر هر خانه عمودی و هر خانه افقی بر طبق کلیدهای V/div و Time/div تعیین می شوند.

VOLUME

بفش سوم؛ انرازه گیری مشفیات سیکنالها

یک شکل موج ولتاژ سینوسی با دامنه ۳ ولت و با فرکانس ۱ کیلوهرتز با کمک سیگنال ژنراتور تولید کرده و سه سیکل آنرا روی صفجه اسیلسکوپ نمایش دهید .فرکانس آنرا از روی اسیلسکوپ اندازه بگیرید و با مقدار تنظیم شده روی سیگنال ژنراتور مقایسه کنید. قدری تفاوت وجود دارد. حدس می زنید علت آن چیست ؟

- در حالت بدون ورودی دکمه V/div را در مقدار حداقل قرار دهید. روی اسیلسکوپ چه مشاهده می کنید؟ این همان نویز است. آیا می توانید دامنه و فرکانس آنرا بطور دقیق اندازه بگیرید \equiv ؟ دامنه آنرا بطور تقریبی اندازه بگیرید.
- در همان حالت فوق حالت اسیلسکوپ را در GND قرار دهید. روی اسیلسکوپ چه مشاهده می کنید \equiv نتیجه را با آزمایش فوق مقایسه کنید.

بفش پنهم، آشایی با بفش عملیات ریاشی

- یک شکل موج ولتاژ سینوسی با دامنه γ ولت و با فرکانس ۱ کیلوهرتز با کمک سیگنال ژنراتور تولید کرده و به هردو کانال بدهید. حال دو شکل موج را با استفاده از کلید Add با هم روی صفحه جمع کنید. روی صفحه چه می بینید γ
 - 🗖 اکنون کلید inv را بزنید و نتیجه را مشاهده کنید 🗐.
 - ☐ آزمایش بالا را با دو منبع سیگنال جداگانه دلخواه تکرار کنید و نتیجه را مشاهده کنید **☐**.

بِفْشِ شُشْعٍ: استفاره از مهار تهای کسپ شره!!!

در مدار زیر ورودی یک شکل موج ولتاژ سینوسی با دامنه $\mathfrak P$ ولت و با فرکانس $\mathfrak P$ کیلوهرتز است که توسط فانکشن $\mathfrak B$ را با کمک اسیلسکوپ بدست آورید و نمایش دهید $\mathfrak B$.

جهت راهنمایی شما باید دو کار انجام دهید:

اول اینکه شکل مدار را رسم کنید و مشخص کنید که GND و ورودی کانالهای اسیلسکوپ باید به کجاها وصل باشد. می توانید از یک کانال یا هر دو کانال استفاده کنید. شما باید تصمیم بگیرید و انتخاب صحیحی کنید. دوم اینکه صفحه نمایش اسیلسکوپ را رسم کنید و اختلاف ولتاژ خواسته شده را روی صفحه نشان دهید. دقت کنید چیزی که روی صفحه نمایش می دهید باید توسط کلیدهای اسیلسکوپ قابل بدست آوردن باشد.

بفش هنتم: یک قابلیت ویژهااا هراسازی بفش AC زا AC از AC

بنش هشتم دراقب زمانبنری باشیرا!!! تریگر

- در آزمایش فوق حالا levelسیگنال تریگر را در حالتهای و + قرار دهید و نتیجه را مشاهده کنید.
- AC در آزمایش فوق حالا حالت سیگنال تریگر را در \Box اine قرار دهید و نتیجه را مشاهده کنید.
- در حالت بدون ورودی پروب اسیلسکوپ را به یک کانال وصل کرده و سر آنرا در دست خود بگیرید. روی اسیلسکوپ چه مشاهده می کنید ∰؟ آیا می توانید دامنه و فرکانس آنرا بطور دقیق اندازه بگیرید؟ منبع این سیگنال چیست ∰؟ در چه مود تریگر حرکت آن روی صفحه اسیلسکوپ ثابت می شود ∰ ؟

راهنمایی: چیزی که مشاهده می کنید حدودا در فرکانس ۵۰ هرتز است اما هرگز دقیقا ۵۰ هرتز نیست. چه موجودی در اطرافتان می شناسید که این ویژگی را دارد 3?

ونش نهم عراقب گزشت زمان باشیرا!! سیکنال کالیبراسیون

ولتاژ کالیبراسیون اسیلسکوپ را نمایش دهید ... فرکانس و دامنه آنرا از روی اسیلسکوپ اندازه بگیرید.

بفش رهم: رقمی مِنان میانه میرانم آرزوست!!! لیسارو

- دو شکل موج ولتاژ سینوسی با فرکانس دلخواه به دو ورودی بدهید و در مود X-Y مشاهده کنید. سعی کنید شکل را ثابت کنید. به این شکل لیساژو گفته می شود. یک نمونه لیساژو در اینترنت پیدا کنید و در پیش گزارشتان بیاورید []. اگر دو کانال هم فرکانس ولی غیر هم دامنه باشند چه شکلی حاصل می شود []؟ اگر دو کانال هم فرکانس و هم فاز و غیر هم دامنه باشند چطور []?
- مدار زیر را ببندید و ولتاژ ورودی و خروجی آنرا در حالت x-y مشاهده کنید. فرکانس منبع ورودی را از ۱۰۰ هرتز تا ۱۰ کیلوهرتز تغییر دهید. در فرکانس ۱۵۹۰ هرتز اختلاف را به کمک لیساژو بدست آورید . و راهنمایی: در این مدار هر دو ولتاژ هم فرکانس ولی غیر هم دامنه و غیر هم فاز هستند.

