Introduction to Probability CST Part IA Paper 1

Victor Zhao xz398@cantab.ac.uk

1 Prerequisites and Introduction

1. Combinatorics:

Counting tasks on n objects			
Permutations (sort objects)		Combinations (choose r objects)	
Distinct	Indistinct	Distinct 1 group	Distinct k groups
n!	$\frac{n!}{n_1!n_2!\cdots n_r!}$	$\binom{n}{r} = \frac{n!}{r!(n-r)!}$	$\binom{n}{n_1, n_2, \cdots, n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}$

Pascal's identity:
$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r} \qquad (1 \leq r \leq n)$$

Binomial theorem:
$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}$$

2. Frequentist definition of probability: $\mathbb{P}[E] = \lim_{n \to \infty} \frac{\text{\# Trials where } E \text{ occurs}}{\text{\# Total trials } (n)}$

3. Probability axioms:

Axiom 1: For any event E, $0 \le \mathbb{P}[E] \le 1$

Axiom 2: Probability of the sample space S is $\mathbb{P}[S] = 1$

Axiom 3: If E and F are mutually exclusive (i.e., $E \cap F = \emptyset$), then $\mathbb{P}[E \cup F] = \mathbb{P}[E] + \mathbb{P}[F]$ In general, for all mutually exclusive events E_1, E_2, \cdots ,

$$\mathbb{P}\left[\bigcup_{i=1}^{\infty} E_i\right] = \sum_{i=1}^{\infty} \mathbb{P}[E_i]$$

4. General inclusion-exclusion principle: $\mathbb{P}\left[\bigcup_{i=1}^n E_i\right] = \sum_{r=1}^n (-1)^{r+1} \left(\sum_{i_1 < \dots < i_r}^n \mathbb{P}[E_{i_1} \cap \dots \cap E_{i_r}]\right)$ Case n=2: $\mathbb{P}[E \cup F] = \mathbb{P}[E] + \mathbb{P}[F] - \mathbb{P}[E \cap F]$

5. Union bound (Boole's inequality): For any events E_1, E_2, \dots, E_n ,

$$\mathbb{P}\left[\bigcup_{i=1}^{n} E_i\right] \le \sum_{i=1}^{n} \mathbb{P}[E_i]$$

2 Random Variables

1.

3 Moments and Limit Theorems

1.

4 Applications and Statistics

1.