

2-BIT BIDIRECTIONAL 1MHz, I²C BUS AND SMBUS VOLTAGE-LEVEL TRANSLATOR WITH 8kV HBM ESD

Check for Samples: TCA9406

FEATURES

- 2-Bit Bidirectional Translator for SDA and SCL Lines in Mixed-Mode I²C Applications
- 5.5-V Tolerant OE Input
- **Level Translation Range**
 - 1.8 V to 2.5 V/3.3 V/5 V
 - 2.5 V to 2.5 V/3.3 V/5 V
 - 3.3 V to 3.3 V/5 V
- Internal 10-kΩ Pullup Resistor on Each Port and Option to Add External Pullup Resistor if Required
- **Provides Bidirectional Voltage Translation** With No Direction Pin
- I_{off} Support Partial Power Down (V_{CC}= 0 V) With 2 mA
- High-Impedance Output SCL1, SDA1, SCL2, and SDA2 Pins When OE = Low or V_{CC} = 0 V
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- **ESD Protection Exceeds JESD 22**
 - A Port
 - 2500-V Human-Body Model (A114-B)
 - 250-V Machine Model (A115-A)
 - 1500-V Charged-Device Model (C101)
 - B Port
 - 8-kV Human-Body Model (A114-B)
 - 250-V Machine Model (A115-A)
 - 1500-V Charged-Device Model (C101)

TYPICAL LEVEL-SHIFTER APPLICATIONS

- I²C/SMBus
- **UART**
- **GPIO**

DQM PACKAGE (TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

The TCA9406 is a dual bidirectional I²C-Bus and SMBus Voltage-Level translator with enable (OE) Input. It is operational from 1.65 V to 3.6 V on A-Port and 2.3 V to 5.5 V on B-port. The Output Enable (OE) input is referenced to V_{CCA}, but is 5.5V tolerant

The device can also be used as a general purpose level-translator, supporting push-pull driving of the A and B ports. When driven with push-pull devices on both sides the TCA9406 can support up to 24Mps.

Under normal I2C and SMBus operation or other open drain configurations, the device can support up to 2Mbps. It is compatible with a standard I²C bus 100 kHz, 400 kHz and 1 MHz at both sides of A-Port and B-Port.

The TCA9406 features internal 10kOHM pullup resistors. Additional external pullup resistors can be added to the bus to reduce total pullup resistance.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NanoStar is a trademark of Texas Instruments.

The TCA9406 is not a bus buffer like the PCA9515B and PCA9517. The OE feature can be utilized to isolate one side of the bus from the other by placing both sides into a high impedence state.

The Enable (OE) should be tied to GND through a pulldown resistor to ensure the high-impedance state during power up or power down. The minimum value of the resistor is determined by the current-sourcing capability of the driver.

ORDERING INFORMATION(1)

T _A	PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING (3)
40°C to 95°C	NanoStar™ - WCSP (DSBGA) 0.23-mm Large Bump - YZP	Reel of 3000	TCA9406YZPR	
–40°C to 85°C	MicroQFN - DQM	Reel of 3000	TCA9406DQMR	
	VSSOP - DCU	Reel of 3000	TCA9406DCUR	

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
- (3) DQM: The actual top-side marking has three additional characters that designate the year, month, and wafer fab/assembly site. DCU: The actual top-side marking has one additional character that designates the wafer fab/assembly site. YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the wafer fab/assembly site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, = Pb-free).

PIN DESCRIPTION

N	0.			
DQM, DCU	YZP	NAME	TYPE	FUNCTION
1	A1	SDA_B	I/O	Input/output B. Referenced to V _{CCB} . Allow I2C_SDA configured to 2.5V/3.3V/5V
2	B1	GND	GND	Ground
3	C1	V_{CCA}	PWR	A-port supply voltage. 1.65 V \leq V _{CCA} \leq 3.6 V and V _{CCA} \leq V _{CCB} . Configuration for SDA_A, SCL_A, and OE
4	D1	SDA_A	I/O	Input/output A. Referenced to V _{CCA} . Allows I2C_SDA configured to 1.8V, 2.5V, 3.3V
5	D2	SCL_A	I/O	Input/output A. Referenced to V _{CCA} . Allows I2C_SCL configured to 1.8V, 2.5V, 3.3V
6	C2	OE	Input	Output enable (active High). Referenced to V_{CCA} . Pull OE to LOW to place all outputs in tri-state mode.
7	B2	V_{CCB}	PWR	B-port supply voltage. 2.3 V \leq V _{CCB} \leq 5.5 V for SDA_B, SCL_B
8	A2	SCL_B	I/O	Input/output B. Referenced to V _{CCB} . Allow I2C_SCL configured to 2.5V/3.3V/5V

TYPICAL OPERATING CIRCUIT

Design Notes:

OE can be tied directly to 1.8V (V_{CCA}) to always be in ENABLE mode.

ABSOLUTE MAXIMUM RATINGS(1)

over recommended operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CCA}	Supply voltage range		-0.5	4.6	V
V_{CCB}	Supply voltage range		-0.5	6.5	V
		A port	-0.5	4.6	
V_{I}	Input voltage range ⁽²⁾	B port	-0.5	6.5	V
		OE input	-0.5	6.5	
V	Voltage range applied to any output	A port	-0.5	4.6	V
Vo	in the high-impedance or power-off state (2)	B port	-0.5	6.5	V
V	Voltage range applied to any output in the high or law state (2) (3)	A port	-0.5	V _{CCA} + 0.5	V
Vo	Voltage range applied to any output in the high or low state (2) (3)	B port	-0.5	V _{CCB} + 0.5	V
I_{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
lo	Continuous output current			±50	mA
	Continuous current through V _{CCA} , V _{CCB} , or GND			±100	mA
		DQM package		220	
θ_{JA}	Package thermal impedance (4)	DCU package		227	°C/W
		YZP package		102	
T _{stg}	Storage temperature range		-65	150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.
- (4) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾ (2)

			V _{CCA}	V _{CCB}	MIN	MAX	UNIT
V_{CCA}	Supply voltage (3	3)			1.65	3.6	V
V_{CCB}	Supply voltage				2.3	5.5	V
		A part I/Os	1.65 V to 1.95 V	2.3 V to 5.5 V	V _{CCI} - 0.2	V_{CCI}	
.,	High-level	A-port I/Os	2.3 V to 3.6 V	2.3 V 10 5.5 V	V _{CCI} - 0.4	V_{CCI}	V
V _{IH}	input voltage	B-port I/Os	1.65 V to 3.6 V	2.3 V to 5.5 V	V _{CCI} - 0.4	V_{CCI}	V
		OE input	1.05 V 10 3.6 V	2.3 V 10 5.5 V	$V_{CCA} \times 0.65$	5.5	
		A-port I/Os			0	0.15	
V_{IL} (4)	Low-level input voltage	B-port I/Os	1.65 V to 3.6 V	2.3 V to 5.5 V	0	0.15	V
	input voltage	OE input			0	V _{CCA} × 0.35	
		A-port I/Os, push-pull driving				10	
Δt/Δν	Input transition rise or fall rate	B-port I/Os, push-pull driving	1.65 V to 3.6 V	2.3 V to 5.5 V		10	ns/V
	rise or fail rate	Control input	1			10	
T _A	Operating free-air temperature				-40	85	°C

 V_{CCI} is the supply voltage associated with the input port.

 V_{CCO} is the supply voltage associated with the output port.

 V_{CCA} must be less than or equal to V_{CCB} , and V_{CCA} must not exceed 3.6 V. The maximum V_{IL} value is provided to ensure that a valid V_{OL} is maintained. The V_{OL} value is V_{IL} plus the voltage drop across the passgate transistor.

ELECTRICAL CHARACTERISTICS(1) (2) (3)

over recommended operating free-air temperature range (unless otherwise noted)

D.	DAMETED	TEST	W	V	T _A = 25°C	-40°C to 85°C	LINUT
PF	ARAMETER	CONDITIONS	V _{CCA}	V _{CCB}	MIN TYP MAX	MIN MAX	UNIT
V _{OHA}		$I_{OH} = -20 \mu A,$ $V_{IB} \ge V_{CCB} - 0.4 V$	1.65 V to 3.6 V	2.3 V to 5.5 V		V _{CCA} × 0.67	V
V _{OLA}		$I_{OL} = 1 \text{ mA},$ $V_{IB} \le 0.15 \text{ V}$	1.65 V to 3.6 V	2.3 V to 5.5 V		0.4	V
V _{OHB}		$I_{OH} = -20 \mu A,$ $V_{IA} \ge V_{CCA} - 0.2 V$	1.65 V to 3.6 V	2.3 V to 5.5 V		V _{CCB} × 0.67	V
V _{OLB}		$I_{OL} = 1 \text{ mA},$ $V_{IA} \le 0.15 \text{ V}$	1.65 V to 3.6 V	2.3 V to 5.5 V		0.4	V
I _I	OE		1.65 V to 3.6 V	2.3 V to 5.5 V	±1	±2	μA
	A port		0 V	0 to 5.5 V	±1	±2	μA
I _{off}	B port		0 to 3.6 V	0 V	±1	±2	μA
I_{OZ}	A or B port		1.65 V to 3.6 V	2.3 V to 5.5 V	±1	±2	μA
			1.65 V to $V_{\rm CCB}$	2.3 V to 5.5 V		2.4	
I _{CCA}		$V_I = V_O = open,$ $I_O = 0$	3.6 V	0 V		2.2	μA
		10 - 0	0 V	5.5 V		-1	
			1.65 V to V _{CCB}	2.3 V to 5.5 V		12	
I _{CCB}		$V_I = V_O = open,$ $I_O = 0$	3.6 V	0 V		-1	μΑ
		10 - 0	0 V	5.5 V		1	
I _{CCA} +	· I _{CCB}	$V_I = V_{CCI}$ or GND, $I_O = 0$	1.65 V to V _{CCB}	2.3 V to 5.5 V		14.4	μΑ
Cı	OE		3.3 V	3.3 V	2.5	3.5	pF
	A or B port		3.3 V	3.3 V	10		
C _{io}	A port				5	6	pF
	B port				6	7.5	

Submit Documentation Feedback

 $[\]begin{array}{ll} \hbox{(1)} & V_{CCI} \text{ is the V_{CC} associated with the input port.} \\ \hbox{(2)} & V_{CCO} \text{ is the V_{CC} associated with the output port.} \\ \hbox{(3)} & V_{CCA} \text{ must be less than or equal to V_{CCB}, and V_{CCA} must not exceed 3.6 V.} \\ \end{array}$

TIMING REQUIREMENTS

over recommended operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (unless otherwise noted)

				V _{CCB} = 2 ± 0.2	2.5 V V	V _{CC} = 3. ± 0.3		V _{CC} = ± 0.5	5 V V	UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
	Data rate	Push-pull driving			21		22		24	Mhna
	Data fate	Open-drain driving			2		2		2	Mbps
	Pulse	Push-pull driving	Data innuta	47		45		41		20
t _w	t _w duration	Open-drain driving	Data inputs	500		500		500		ns

TIMING REQUIREMENTS

over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted)

				V _{CCB} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 5 V ± 0.5 V		UNIT
				MIN	MAX	MIN	MAX	MIN	MAX	
	Data vata	Push-pull driving			20		22		24	Mara
	Data rate	Open-drain driving			2		2		2	Mbps
	Pulse	Push-pull driving	Data inputa	50		45		41		
ı _w		Open-drain driving	Data inputs	500		500		500		ns

TIMING REQUIREMENTS

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted)

				V _{CC} = 3.3 ± 0.3 V	3 V /	V _{CC} = 5 V ± 0.5 V	V _{CC} = 5 V ± 0.5 V	
				MIN	MAX	MIN	MAX	
Data anto		Push-pull driving		23		24	Mana	
	Data rate	Open-drain driving		2		2	Mbps	
	Dulas dunation	Push-pull driving	Data innuta	43		41		
ι _w	Pulse duration	Open-drain driving	Data inputs	500		500		ns

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (unless otherwise noted)

PARAMETER	FROM	TO	TEST CONDITIONS	V _{CCB} = ± 0.2	2.5 V 2 V	V _{CCB} = ± 0.3	3.3 V 3 V	V _{CCB} = ± 0.5	= 5 V 5 V	UNIT	
	(INPUT)	(OUTPUT)		MIN	MAX	MIN	MAX	MIN	MAX		
			Push-pull driving		5.3		5.4		6.8		
t _{PHL}	۸	Б	Open-drain driving	2.3	8.8	2.4	9.6	2.6	10		
	Α	В	Push-pull driving		6.8		7.1		7.5	ns	
t _{PLH}			Open-drain driving	45	260	36	208	27	198		
			Push-pull driving		4.4		4.5		4.7		
t _{PHL}	PHL B		Open-drain driving	1.9	5.3	1.1	4.4	1.2	4	20	
		Α	Push-pull driving		5.3		4.5		0.5	ns	
t _{PLH}			Open-drain driving	45	175	36	140	27	102		
t _{en}	OE	A or B			200		200		200	ns	
t _{dis}	OE	A or B			50		40		35	ns	
	A mont	ion time	Push-pull driving	3.2	9.5	2.3	9.3	2	7.6	20	
t _{rA}	A-port i	rise time	Open-drain driving	38	165	30	132	22	95	ns 5	
	D nort	rise time	Push-pull driving	4	10.8	2.7	9.1	2.7	7.6	20	
t _{rB}	Б-роп і	ise time	Open-drain driving	34	145	23	106	10	58	ns	
	A port	fall time	Push-pull driving	2	5.9	1.9	6	1.7	13.3		
t _{fA}	A-port	iaii tiirie	Open-drain driving	4.4	6.9	4.3	6.4	4.2	6.1	ns	
	Phort	fall time	Push-pull driving	2.9	13.8	2.8	16.2	2.8	16.2	115	
t _{fB}	ь-роп	B-port fall time	Open-drain driving	6.9	13.8	7.5	16.2	7	16.2		
t _{SK(O)}	Channel-to-d	channel skew			0.7		0.7		0.7	ns	
Max data rate			Push-pull driving	21		22		24		Mbp	
iviax uala iale			Open-drain driving	2		2		2	·	Mbp	

Product Folder Links: TCA9406

Submit Documentation Feedback

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted)

PARAMETER	FROM	TO (OUTPUT)	TEST CONDITIONS	V _{CCB} = ± 0.2	2.5 V 2 V	V _{CCB} = ± 0.3	3.3 V 3 V	V _{CCB} = ± 0.5	= 5 V 5 V	UNIT	
	(INPUT)	(OUTPUT)		MIN	MAX	MIN	MAX	MIN	MAX		
			Push-pull driving		3.2		3.7		3.8		
t _{PHL}	^	Б	Open-drain driving	1.7	6.3	2	6	2.1	5.8		
	Α	В	Push-pull driving		3.5		4.1		4.4	ns	
t _{PLH}			Open-drain driving	43	250	36	206	27	190		
			Push-pull driving		3		3.6		4.3		
t _{PHL}	D	^	Open-drain driving	1.8	4.7	2.6	4.2	1.2	4		
	В	A	Push-pull driving		2.5		1.6		1	ns	
t _{PLH}			Open-drain driving	44	170	37	140	27	103		
t _{en}	OE	A or B			200		200		200	ns	
t _{dis}	OE	A or B			50		40		35	ns	
	A 2011	ioo timo	Push-pull driving	2.8	7.4	2.6	6.6	1.8	5.6		
t _{rA}	A-port i	rise time	Open-drain driving	34	149	28	121	24	89	ns	
	Doort	iaa tima	Push-pull driving	3.2	8.3	2.9	7.2	2.4	6.1		
t _{rB}	Б-роп п	ise time	Open-drain driving	35	151	24	112	12	64	ns	
	A north	fall time	Push-pull driving	1.9	5.7	1.9	5.5	1.8	5.3		
t _{fA}	А-роп	fall time	Open-drain driving	4.4	6.9	4.3	6.2	4.2	5.8	ns	
	Donati	fall #:	Push-pull driving	2.2	7.8	2.4	6.7	2.6	6.6		
t_fB	в-роп	fall time	Open-drain driving	5.1	8.8	5.4	9.4	5.4	10.4	ns	
t _{SK(O)}	Channel-to-c	channel skew			0.7		0.7		0.7	ns	
			Push-pull driving	20		22		24		Mhna	
Max data rate		Open-drain driving	2		2		2		Mbps		

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted)

PARAMETER	FROM	TO	TEST CONDITIONS	V _{CCB} = ± 0.3	3.3 V 3 V	V _{CCB} = ± 0.5	= 5 V 5 V	UNIT				
	(INPUT)	(OUTPUT)		MIN	MAX	MIN	MAX					
			Push-pull driving		2.4		3.1					
t _{PHL}	^	В	Open-drain driving	1.3	4.2	1.4	4.6					
4	Α	ь	Push-pull driving		4.2		4.4	ns				
t _{PLH}			Open-drain driving	36	204	28	165					
			Push-pull driving		2.5		3.3					
t _{PHL}	В	Α	Open-drain driving	1	124	1	97					
	Б	A	Push-pull driving		2.5		2.6	ns				
t _{PLH}			Open-drain driving	3	139	3						
t _{en}	OE	A or B			200		200	ns				
t _{dis}	OE	A or B			40		35	ns				
	A nort	ioo timo	Push-pull driving	2.3	5.6	1.9	4.8	20				
t _{rA}	A-port i	ise time	Open-drain driving	25	116	19	85	ns				
	D nort	iaa tima	Push-pull driving	2.5	6.4	2.1	7.4	20				
t _{rB}	Б-роп і	ise time	Open-drain driving	26	116	14	72	ns				
4	A nort	fall time	Push-pull driving	2	5.4	1.9	5	20				
t _{fA}	A-port	fall time	Open-drain driving	4.3	6.1	4.2	5.7	ns				
4	Doom	fall time	Push-pull driving	2.3	7.4	2.4	7.6	20				
t _{fB}	B-port fall time		Open-drain driving	5	7.6	4.8	8.3	ns				
t _{SK(O)}	Channel-to-	channel skew			0.7		0.7	ns				
			Push-pull driving	23		24		Mhna				
Max data rate			Open-drain driving	2		2		Mbps				

Submit Documentation Feedback

Product Folder Links: TCA9406

PRINCIPLES OF OPERATION

Application Notes

Figure 1. Typical Design Example

The TCA9406 has a V_{CC} isolation feature known as I_{off} partial power down and backdrive protection. If a cable is connected, and the connected external system is still powered own, the system can be put into standby mode by shutting down the power rail. In this state, the TCA9406 has a leakage current of approximately 2 μ A caused by current flow from powered-on system.

Power Up, Power Down

One advantage of the TCA9406 translator is that either power supply can be ramped up first. Another advantage is that either power supply can be set to 0 V, and the outputs are in high-impedance state.

The recommended power up sequence is:

- 1. Apply power to the first V_{CC} and apply the second V_{CC}
- 2. Drive the OE input high to enable the device

The recommended power down sequence is:

- 1. Drive OE input low to disable the device
- 2. Switch Off the power from either V_{CC} and remove power from other V_{CC}.

Enable/Disable

The TCA9406 has an OE input that is used to disable the device by setting OE low, which place all I/Os in the high-impedance state. The control OE is referenced to the V_{CCA} supply. A pulldown resistor tying OE to ground should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power up and power down. The value of resistor is based upon the current sinking capability of the device.

Integrated Pullup Resistors on the I/Os (A-Ports/B-Ports)

Each A-port I/O has an internal $10\text{-}k\Omega$ pullup resistor to V_{CCA} , and each B-port I/O has an internal $10\text{-}k\Omega$ pullup resistor to V_{CCB} . If a smaller value of pullup resistor is required, an external resistor must be added from the I/O to V_{CCB} (in parallel with the internal $10\text{-}k\Omega$ resistors). Adding lower value pull-up resistors may effect V_{OL} levels. The internal pullups of the TCA9406 are disabled when the OE pin is low.

PARAMETER MEASUREMENT INFORMATION

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, dv/dt \geq 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.
- J. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

www.ti.com 14-Feb-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
TCA9406DCTR	ACTIVE	SM8	DCT	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	NFE Z	Samples
TCA9406DCUR	ACTIVE	US8	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	NFER	Samples
TCA9406YZPR	ACTIVE	DSBGA	YZP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	7W	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

PACKAGE MATERIALS INFORMATION

www.ti.com 19-Feb-2013

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All differsions are norminal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TCA9406DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
TCA9406DCUR	US8	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
TCA9406YZPR	DSBGA	YZP	8	3000	180.0	8.4	1.11	2.1	0.56	4.0	8.0	Q1

www.ti.com 19-Feb-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)				
TCA9406DCTR	SM8	DCT	8	3000	182.0	182.0	20.0				
TCA9406DCUR	US8	DCU	8	3000	202.0	201.0	28.0				
TCA9406YZPR	DSBGA	YZP	8	3000	210.0	185.0	35.0				

DCT (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- D. Falls within JEDEC MO-187 variation DA.

DCT (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DCU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)

NOTES:

- : A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-187 variation CA.

DCU (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

YZP (R-XBGA-N8)

DIE-SIZE BALL GRID ARRAY

NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- This drawing is subject to change without notice.
- Ç. NanoFree™ package configuration.
- ⚠ The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative. E. This package is a Pb-free solder ball design. Refer to the 8 YEP package (drawing 4204725) for tin-lead (SnPb).

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>