Inertial Navigation System

Projektbeschreibung SWP Regelungstechnik "Inertial Navigation System"

Dokumentenversion

Revision	Datum	Autor(en)	Beschreibung
0.01	03.05.2010	Ruml Fabian	Vorstellung des Projekts
0.02	26.05.2010	Ruml Fabian	Anpassung Kapitel Hardware, Hinzufügen der verwendeten Bauteile
0.03	20.09.2010	Ruml Fabian	Importieren des Dokuments in Word
0.04	13.11.2010	Ruml Fabian	Sensoren aktualisiert
1.00	04.05.2011	Ruml Fabian	Gesamtes Dokument aktualisiert

Autor(en)

Ruml Fabian

Johannes-Haag-Str. 34

86153 Augsburg

Phone: +49 (0)821 21 99 55 7

E-Mail: ruml.fabian@googlemail.com

Inhaltsverzeichnis

1	Einl	eitur	g	1
2	Fun	ktior	sübersicht des Trägheitsnavigationssystems	2
	2.1	Har	dware	2
	2.2	Leit	erplatine	3
	2.3	Nöti	ge Anpassungen des Layouts	3
	2.4	Ver	wendete Bauteile, Bezugsquellen und Preise	4
	2.5	Her	stellungskosten der Leiterplatten	5
3	Sch	nitts	tellen und Sensoren des Trägheitsnavigationssystems	5
	3.1	Ser	vo-Schnittstelle	5
	3.1.	1	Ansteuerungsgrundlagen	5
	3.1.	2	Einstellungen des PWM-Moduls des Mikrocontrollers	6
	3.1.	3	Ansteuerung der Servos	7
	3.1.	4	Mögliche Optimierungen der Servo-Ansteuerung	7
	3.2	Gyr	oskope	7
	3.2.	1	Softwarefunktionen der Gyroskope	8
	3.2.	2	Abschließende Bemerkungen der Gyroskopauswertung	9
	3.3	Мас	netfeldsensor Honeywell HMC 5843	9
	3.3.	1	Softwarefunktionen des Magnetfeldsensors	.10
	3.4	Bes	chleunigungssensor	.10
	3.4.	1	Softwarefunktionen des Magnetfeldsensors	.10
	3.5	Luft	drucksensor	.10
	3.5.	1	Softwarefunktionen des Luftdrucksensors	.11
	3.5.	2	Abschließende Bemerkungen	.12
	3.6	Sch	nittstellen und Erweiterungsstiftleisten	.12
	3.6.	1	Belegungen der Stiftleisten	.13
	3.7	USE	3-Schnittstelle	.13
4	Ste	Jerui	ngssoftware	.14
5	Aktı	uelle	Stand der Entwicklung	.15
	5.1	Har	dware	.15
	5.2	Firm	nware des Mikrocontrollers	.15
	5.3	PC-	Steuerungssoftware	.15
Aı	nhang	A: C	D-ROM	.16

Abbildungsverzeichnis

Anh	hang B: Schaltplan des Trägheitsnavigationssystems	17
6	Literaturverzeichnis	20

Abbildungsverzeichnis

Abbildungsverzeichnis

Abbildung 2-1: Ansicht Bestückung Oben	3
Abbildung 3-1:Impulsfolge der Servoansteuerung [1]	5
Abbildung 3-2:Single slope PWM [2]	
Abbildung 3-3: Gyroskope [3], [4]	
Abbildung 3-4: Interner Aufbau und Anschlussübersicht des HMC 5843 [5]	
Abbildung 3-5: Schaltplan des Luftdrucksensors	11
Abbildung 3-6: Anordnung der Erweiterungsstiftleisten	12
Abbildung 3-7: Pin-Belegung der Stiftleisten	
Abbildung 3-8: FT232R der Firma FTDI Chip (http://ftdichip.com)	

Einleitung

Das Ziel dieser Projektarbeit war, eine Hardwareplattform für ein Trägheitsnavigationssystem (engl.: Inertial Navigation System) zu entwickeln. Diese Hardwareplattform beinhaltet zahlreiche Sensoren zur Erfassung der Position und der Bewegung eines Flugmodells (z. B. Quadrokopter) im Raum. Zusätzlich können insgesamt acht Servos, wie sie im Modellbau verwendet werden, angesteuert werden. Die Auswertung und Steuerung des Trägheitsnavigationssystems erfolgt durch einen ATXmega Mikrocontroller der Firma Atmel¹.

Die Kommunikation mit dem Trägheitsnavigationssystem erfolgt entweder über die USB-Schnittstelle oder durch die zusätzlichen Schnittstellen der Erweiterungsstiftleisten.

Durch die Kommunikationsschnittstellen kann die spätere Regelung und Stabilisierung des Fluggerätes über den integrierten Mikrocontroller oder über eine externe Steuerungssoftware geschehen.

Dieses Dokument enthält nicht die Beschreibung eines Abgeschlossenen Projekts, sondern soll den aktuellen Stand der Entwicklung des Trägheitsnavigationssystems erläutern. Dazu ist der Aufbau der Hardware und die Funktion der einzelnen Sensoren beschrieben. Während der Entwicklung der Hardware wurde bereits mit dem Entwurf der Firmware begonnen.

In diesem Dokument werden bereits einige Funktionen der Firmware beschrieben. Eine vollständige Dokumentation der aktuellen Firmware ist mit Doxygen² erstellt worden. Diese ist auf der beigefügten CD-ROM enthalten (s. Anhang A) oder kann durch **Dokumentation Firmware** geöffnet werden.

¹ http://atmel.com

² http://doxygen.org

2 Funktionsübersicht des Trägheitsnavigationssystems

2.1 Hardware

Die Hardware des Trägheitsnavigationssystems beinhaltet folgende Bereiche:

- Spannungsversorgung
 - +5 V analoge Versorgungsspannung
 - +3,3 V digitale Versorgungsspannung
 - +3,3 V analoge Versorgungsspannung
 - getrennte Versorgungsspannung für die Servos (wahlweise mit 5 V Spannungsregler)
- Mikrocontroller: ATXmega128A1 (32 MHz, 128 Kbytes Flash)
- 3-Achsen Beschleunigungssensor (Bosch BMA 150)
 - o ±2 g, ±4 g, ±8 g einstellbar, I2C-Schnittstelle
- Gyroskope (STMicroelectronics)
 - LY550ALH ±500 º/s yaw- Gyroskop
 - LPR550AL ±500 % pitch- und roll-Gyroskop
- Luftdrucksensor (Motorola)
 - o MPXH6115A6U, 15-115kPa Messbereich, analoges Ausgangssignal
- Magnetfeldsensor (Honeywell)
 - o 3-Achsen digitaler Magnetfeldsensor (HMC5843) mit I2C-Schnittstelle
- USB-Schnittstelle (FTDI)
 - o über FT232RL, direkt als virtueller Com-Port verwendbar
- 8-Kanal Modellbau-Servo Schnittstelle(Auflösung 0,18 %)
- Schnittstellen (alle zusätzlich 3,3 V und 5 V Spannungsversorgung)
 - Platine zu Platine Schnittstelle
 - USART-Schnittstelle (3,3 V)
 - I²C-Schnittstelle (3,3 V)
 - Erweiterungsstiftleisten
 - insgesamt 16 I/O's frei konfigurierbar als
 - Ein- und Ausgänge (3,3 V)
 - 2x I2C-Schnittstelle
 - 2x USART-Schnittstelle
 - 2x SPI-Schnittstelle

In den nachfolgenden Kapiteln werden die einzelnen Teilbereiche der Hardware beschrieben.

2.2 Leiterplatine

Das Layout und die Schaltpläne der Leiterplatte wurden mit dem Programm *TARGET 3001!*³ erstellt. Der vollständige Schaltplan des Trägheitsnavigationssystems ist in Anhang B zu finden.

Abbildung 2-1: Ansicht Bestückung Oben

In Abbildung 2-1 ist die Bestückungsseite der Leiterplatine dargestellt. Die Bestückung der Bauteile erfolgt nur auf der Oberseite der Leiterplatine.

Die Daten des Layouts befinden sich wie der dazugehörige Target-Viewer auf der beigefügten CD-ROM (s. Anhang A).

2.3 Nötige Anpassungen des Layouts

Folgende Anpassungen an der Layout-Datei der Prototypen müssen noch durchgeführt werden. Diese Änderungen sind auf den bestückten Prototypen bereits vorgenommen worden.

- Das Signal "P_Offset" muss an den PIN PB2 des Mikrocontrollers angeschlossen werden (nicht PB1).
- Das Signal "D/A_Reserve" muss an den PIN PB3 des Mikrocontrollers angeschlossen werden (nicht PB2).
- PWM-Singale "Servo3", "Servo4", "Servo7" und "Servo8" stimmen nicht mit der Belegung des Mikrocontrollers und dessen PWM-Modul überein. Diese müssen auf die noch ungenutzten Pins der PWM-Module gelegt werden.

-

³ http://www.ibfriedrich.com

Funktionsübersicht des Trägheitsnavigationssystems

2.4 Verwendete Bauteile, Bezugsquellen und Preise

Nachfolgend sind die Bestellnummern, Herstellerbezeichnungen und Preise der verwendeten Bauteile aufgelistet:

Pos	Anzahl Name	Wert	Gehäuse	Lieferant	Best.Nr.:	Preis/stk.	Preis/Gesammt
1	3 C1,C2,C3	220µF	RM3,5	Reichelt	RAD 105 220/16	0,05€	0,15€
	C4,C5,C6,C7,C10,C11,C12,C 13,C14,C15,C16,C17,C18,C1 9,C40,C42,C20,C22,C24,C29						
2	25,C32,C33,C38,C39,C41	0,1µF	0805	Reichelt	X7R-G0805 100N	0,05€	1,25€
3	3 C8,C26,C35	10nF	0805	Reichelt	X7R-G0805 10N	0,05€	0,15€
4	1 C9	1nF	0805	Reichelt	NP0-G0805 1,0N	0,05€	0,05€
5	1 C21	0,22uF	0805	Digikey	490-1684-1-ND	0,10 €	0,10€
6	5 C23,C27,C28,C30,C31	4,7uF	0805	Reichelt	X7R-G0805 4,7/16	0,11€	0,55€
7	2 C25,C34	470nF	0805	Digikey	445-1357-1-ND	0,28€	0,56 €
8	2 C36,C37	15pF	0805	Reichelt	NP0-G0805 15pF	0,05€	0,10€
9	1 D1	MBRS240TR	SMB	Reichelt	MBRS 240 SMD	0,22€	0,22€
10	3 D2,D3,D4	Grün	1206-D	Reichelt	LED 1206-220 GN	0,32€	0,96€
11	1 103	USB_MINI	USB_MINI	Reichelt	USB BWM SMD	0,24 €	0,24 €
12	2 IC4,IC5	AKL383-02	AKL383-02	Reichelt	AKL 086-02	0,34 €	0,68€
13	1 IC7	LF33C	TO220	Reichelt	LF 33 CV	0,55€	0,55€
14	1 IC8	7805	TO220	Reichelt	μΑ 7805	0,25€	0,25€
15	1 IC10	Atxmega 128A1		Reichelt	ATXMEGA 128A1-AU	7,95€	7,95€
16	1 IC9	HMC5843		Digikey	342-1071-ND	15,84 €	15,84 €
17	1 IC10	BMA150	BMA150_GEH	Sander electronic	BMA150	8,21 €	8.21€
18	1 IC11	74HCT245	SO20	Digikey	497-1906-1-ND	0,54 €	0,54 €
19	1 IC12	OPA2340	SO8_SOT96-1	Reichelt	OPA 2340 UA	2,70 €	2,70 €
20	1 IC13	LPY550AL	LPR550AL	Sander electronic	LPY550AL	9,13 €	9,13€
21	1 IC14	LY550ALH	LPR550AL	Sander electronic	LPR550AL	9,13 €	9,13€
22	1 IC15	MPXH6115A6U	TSSOP8	Digikey	MPXH6115A6U-ND	7,97 €	7,97€
23	1 IC16	78L05_SMD	SO8_SOT96-1	Digikey	LM78L05ACM-ND	0,53 €	0,53€
24	2 K1,K2	K1X12	1X12	Reichelt	SPL 20	0,34 €	0,68€
25	1 K3	JTAG/PDI	MICROMATCH 10POL	Reichelt	MM FL 10G	0,28 €	0,28€
26	1 K4,K5,K6,K7	K1X08	1X08	Reichelt	SL 1X36G 2,54	0,12€	0,12€
27	1 L1	LQH3C 1uH	LQH3C	Reichelt	LQH3C 1,0µ	0,19€	0,19€
28	1 Q1	16Meg	HC49_SMD	Reichelt	16,0000-HC49-SMD	0,24 €	0,24 €
29	5R1,R3,R8,R16,R20	10K	0805	Reichelt	SMD-0805 10,0K	0,10€	0,50€
30	4 R2,R4,R5,R17	33K	0805	Reichelt	SMD-0805 33,0K	0,10€	0,40€
31	2 R6,R7	270	0805	Reichelt	SMD-0805 270	0,10€	0,20€
32	5 R9,R10,R11,R12,R13	4K7	0805	Reichelt	SMD-0805 4,70K	0,10€	0,50€
33	1 R14	18K	0805	Reichelt	SMD-0805 18,0K	0,10 €	i i
34	1 R15	82K	0805	Reichelt	SMD-0805 82,0K	0,10€	0,10€
35	1 R18	1K	0805	Reichelt	SMD-0805 1,00K	0,10 €	0,10€
36	1 R23	220	0805	Reichelt	SMD-0805 220	0,10€	0,10€
37	2 RN1,RN2	100	YC324	Reichelt	BCN16 100	0,02€	0,04 €
	•	•	•	•	•	Summe:	71,36 €

2.5 Herstellungskosten der Leiterplatten

Die Preise der Platinen wurde bei <u>www.Leiton.de</u> online kalkuliert. Die Preise beziehen sich dabei auf 2-Lagen mit Bestückungsdruck auf der Oberseite, Lötstoppfarbe Grün (günstigste), Strukturen < 5 mil (0,13 mm) und notwendigen E-Test.

Anzahl	Preis bei 8AT (100%) Netto	Preis bei 15AT (80%) Netto
3	128,02€	112,68 €
5	143,34 €	125,32 €
10	170,32€	147,56 €

3 Schnittstellen und Sensoren des Trägheitsnavigationssystems

3.1 Servo-Schnittstelle

Diese Schnittstelle dient zum Anschluss von maximal acht Servos, wie sie z. B. im R/C Modellbau verwendet werden. Diese Servos können unabhängig voneinander angesteuert werden. Die Regelung der Servos geschieht dabei über die PWM-Schnittstellen des Mikrocontrollers.

3.1.1 Ansteuerungsgrundlagen

Die Servos werden durch eine Impulsfolge angesteuert, die sich alle 20 ms wiederholt. Dies entspricht einer Frequenz von 50 Hz. Die Impulse besitzen eine Länge zwischen 1,0 ms und 2,0 ms. Durch die Veränderung der Impulsdauer wird die Position des Servos bestimmt.

Abbildung 3-1:Impulsfolge der Servoansteuerung [1]

Der Positionswinkel eines Servos kann in einem Bereich von -90° und +90° variiert werden. Je nach Länge der Impulse ändert sich der Positionswinkel der Servos. Dabei entspricht eine Impulslänge von 1,5 ms die Mittelstellung des Servos. Für eine maximale Aussteuerung von +90° ist eine Dauer von 2,0 ms erforderlich, bzw. 1,0 ms für -90°.

3.1.2 Einstellungen des PWM-Moduls des Mikrocontrollers

Zu Beginn wird der geeignete Vorteiler des PWM-Moduls gewählt. Der Vorteiler muss so bestimmt werden, dass eine Dauer von 20 ms gezählt werden kann und dieser Wert im Zählerregister des PWM-Moduls ohne einen Überlauf der Variable gespeichert werden kann. Je größer der Vorteiler ist, desto geringer ist die Auflösung der Servoansteuerung. Bei dem geeigneten Vorteiler von 64 ergibt sich eine PWM-Auflösung von:

PWM Auflösung =
$$\frac{Vorteiler}{Systemtakt} = \frac{64}{32 \text{ MHz}} = 2 * 10^{-6} \text{s}$$

Anschließend muss der Zählerstand des Zählers überprüft werden. Bei einer Wiederholrate von 20 ms ergibt sich ein maximaler Zählerstand von:

$$Z\ddot{a}hlerstand = \frac{Wiederholrate}{Auflösung\ der\ PWM} = \frac{20\ ms}{2*10^{-6}\ s} = 10000\ Schritte$$

Der Zählerstand muss kleiner als die Größe des Zählerregisters sein. Der AtXmega verfügt insgesamt über 4 Timer/Counter0 die eine Registerbreite von 16 Bit aufweisen. Jeder dieser 4 Timer besitzt 4-Kanäle, die auf die jeweiligen Ports verfügbar sind. Diese Timer werden für die Ansteuerung der Servos genutzt.

Für den relevanten Bereich von 1,0 ms ergibt sich eine Auflösung von:

$$Schrittweite = \frac{Auflösung\ der\ PWM*Aussteuerung\ Servo}{Impulsdauer} = \frac{2*10^{-6}s*180^{\circ}}{1*10^{-3}s} = 0,36\ ^{\circ}/Schritt$$

Abbildung 3-2:Single slope PWM [2]

In Abbildung 3-2 ist die Generierung des PWM-Signals dargestellt. Die Frequenz des Signals wird durch den TOP-Wert festgelegt. Dieser TOP-Wert wird auf den zuvor berechneten Wert von 10000 Schritten eingestellt. Daraus ergibt sich die geforderte Frequenz von 50 Hz.

Zur Erzeugung der Impulsdauer wird der jeweilige Wert für jeden Einzelnen Servo in das CCx Register geschrieben. Dabei sind Werte zwischen 500 (entspricht -90°) und 1000 (entspricht +90°) zulässig.

3.1.3 Ansteuerung der Servos

Sämtliche Funktionen und die zugehörige Servo-Struktur sind in den Dateien servo.c und servo.c enthalten. Folgende Funktionen werden unterstützt:

- void InitServo (SERVO_t *servo) Diese Funktion initialisiert die Ausgänge und die benötigten Timer des ATXmegas.
- void UpdateServo (uint16_t value1, uint16_t value2, uint16_t value3, uint16_t value4, uint16_t value5, uint16_t value6, uint16_t value7, uint16_t value8, SERVO_t *servo) Durch den Aufruf dieser Funktion werden alle Servopositionen auf die übergebenen Werten aktualisiert.

3.1.4 Mögliche Optimierungen der Servo-Ansteuerung

Durch die 16-Bit Einschränkung der verwendeten Timer kann der Vorteiler der Module nicht optimal genutzt werden. Der kleinste mögliche Vorteiler ist 64. Leider geht dadurch ein großer Teil der Auflösung verloren.

Eventuell kann dies durch die Verwendung der Dual Slope PWM des AtXmegas verbessert werden (s. Kapitel 14, TC-16-bit Timer/Counter des Xmegas Datenblatts).

3.2 Gyroskope

Zur Erfassung der Drehwinkel werden zwei Gyroskope der Firma STMicroelectronics eingesetzt (s. Abbildung 3-3).

Das Gyroskop LY550ALH erfasst den Gier-Winkel (engl.: Yaw) des Fluggerätes. Zur Bestimmung des Roll-und Nick-Winkels (engl.: Roll und Pitch) wird das LPR550AL Gyroskop verwendet.

Abbildung 3-3: Gyroskope [3], [4]

Diese Gyroskope besitzen einen analogen Ausgang, der sich proportional zur Winkelgeschwindigkeit ω ändert. Die Ausgangsspannung V_{Out} beträgt bei der vierfachen Verstärkung des Sensors [3]:

$$V_{Out} = 1.23 V + (2 mV * \omega)$$

Die Gyroskope sind an den analogen Eingängen des Mikrocontrollers angeschlossen (PORTA). Die Auswertung erfolgt dabei über den differentiellen Modus des Mikrocontrollers. Als Referenzspannung V_{ref} wird die interne $\frac{1,6\ V}{3,3\ V}$ Spannungsreferenz verwendet. Mit der maximalen Auflösung von 12 Bit (Top=2048) und der Verstärkung Gain=2 berechnet sich die Differenzeingangsspannung des DA-Wandlers wie folgt [3]:

$$V_{inp} - V_{inn} = \frac{Result * V_{ref}}{Gain * Top} = Result * 503,54 * 10^{-3} \frac{V}{Counts}$$

Die Variable Result enthält dabei das bereitgestellte Ergebnis des DA-Wandlers, nachdem die Eingangsspannung gemessen wurde. Mit diesem Messwert kann direkt die Winkelgeschwindigkeit und durch Integrieren der Winkel berechnet werden.

3.2.1 Softwarefunktionen der Gyroskope

Sämtliche Funktionen und die zugehörige Gyroskop-Struktur sind in den Dateien gyroscope.c und gyroscope.h enthalten. Folgende Funktionen sind bereits implementiert:

- bool InitGyroscopeSensor (GYROSCOPE_SENSOR_t *gyro, PRESSURE_SENSOR_t *pressure) Diese Funktion Konfiguriert den benötigten DA-Wandler und ermittelt den einzelnen Offset der DA-Kanäle. Abschließend wird ein Timer initialisiert, welcher zur Integration der Winkelgeschwindigkeit dient. Dadurch kann der Winkel des Fluggerätes bestimmt werden.
- bool ReadGyroscopeSensor (GYROSCOPE_SENSOR_t *gyro) Diese Funktion dient zum Auslesen der Winkelgeschwindigkeit aller drei Achsen. Der in der Initialisierung ermittelte Offset der einzelnen Kanäle wird bereits subtrahiert.
- bool **GyroscopeInterruptHandler**(GYROSCOPE_SENSOR_t *gyro) **Durch den** zyklischen Aufruf dieser Funktion wird der Winkel aus den einzelnen

Winkelgeschwindigkeiten der Gyroskope berechnet. Die aktuellen Winkelgeschwindigkeiten und Winkel werden in der übergebenen Struktur abgelegt.

3.2.2 Abschließende Bemerkungen der Gyroskopauswertung

- Es sind bereits die ersten Versuche zur Berechnung der Winkel der Leiterplatine durchgeführt worden. Allerdings ist die aktuelle Drift der Gyroskope sehr groß.
- Bei der Offset-Berechnung der einzelnen AD-Kanäle ist eine sehr große Streuung der Werte erkennbar. Die Ursache dieser Streuung muss noch untersucht werden.

3.3 Magnetfeldsensor Honeywell HMC 5843

Abbildung 3-4: Interner Aufbau und Anschlussübersicht des HMC 5843 [5]

Die Erfassung des Erdmagnetfeldes geschieht über den HMC 5843 Magnetfeldsensor der Firma Honeywell (s. Abbildung 3-4).

Dieses IC beinhaltet drei Präzisions Anisotropic Magneto-Resistive (AMR) Messbrücken zur Messung der X-Y-Z Magnetfeldstärken. Der Messteil des IC's beinhaltet ebenso eine Offsetspule die zur Korrektur der Messbrücke und für den internen Selbsttest genutzt wird. Eine zweite Spule dient zur Durchführung der Entmagnetisierung bei einem Reset des Sensors. Zur Wandlung des analogen Signals in ein digitales Signal befindet sich ein 12 Bit AD-Wandler auf dem Chip.

Die Kommunikation mit dem Mikrocontroller geschieht über die integrierte I2C-Schnittstelle. Dabei wird das Auslesen der Messdaten und die Einstellungen des Sensors über interne Register realisiert. Auf eine nähere Beschreibung der Register wird an dieser Stelle

verzichtet. Die einzelnen Funktionen können in dem Datenblatt des HMC5843 nachgeschlagen werden.

3.3.1 Softwarefunktionen des Magnetfeldsensors

Sämtliche Funktionen und die zugehörige Magnetfeldsensor-Struktur sind in den Dateien magnetic_sensor.c und magnetic_sensor.h enthalten. Folgende Funktionen sind bereits implementiert:

- bool **InitMagneticSensor**(MAG_SENSOR_t *mag, TWI_Master_t *twi) initialisiert den Magnetfeldsensor.
- bool **GetMagneticSensor** (MAG_SENSOR_t *mag, TWI_Master_t *twi) **liest die** aktuellen Werte des Magnetfeldsensors aus und hinterlegt diese in der übergebenen Magnetfeldsensor-Struktur.

3.4 Beschleunigungssensor

Als Beschleunigungssensor wird der 3-Achsen BMA150 Sensor der Firma Bosch verwendet. Dieser besitzt eine Auflösung von 10 Bit und kann Beschleunigungen bis maximal $\pm 8~g$ messen [6]. Zusätzlich ist ein Temperatursensor integriert, der eine Auflösung von 0,5 K/LSB besitzt.

Der Anschluss des Beschleunigungssensors erfolgt über die I2C-Schnittstelle, welche bereits für den Magnetfeldsensor genutzt wird.

3.4.1 Softwarefunktionen des Magnetfeldsensors

Sämtliche Funktionen und die zugehörige Beschleunigungssensor-Struktur sind in den Dateien <u>acceleration sensor.c</u> und <u>acceleration sensor.h</u> enthalten. Folgende Funktionen sind bereits implementiert:

- bool InitAccelerationSensor(TWI_Master_t *twi) initialisiert den Beschleunigungssensor.
- bool ReadAccelerationSensor(TWI_Master_t *twi, ACC_SENSOR_t *acc) liest die aktuellen Beschleunigungswerte der drei Achsen und die Temperatur aus.
- bool **SleepAccelerationSensor**(TWI_Master_t *twi) **Versetzt den** Beschleunigungssensor in den Standby-Mode.
- bool WakeUpAccelerationSensor(TWI_Master_t *twi) aktiviert den Sensor wieder, wenn dieser zuvor in den Standby-Mode gesetzt wurde.
- bool **SoftResetAccelerationSensor**(TWI_Master_t *twi) **führt einen Neustart** des Beschleunigungssensors durch.

3.5 Luftdrucksensor

Als zusätzlicher Sensor zur Bestimmung der Flughöhe wird der Luftdrucksensor MPXH6115A6U eingesetzt. Dieser Sensor kann einen Druck von 15 bis 115 kPa messen

und liefert ein analoges Ausgangssignal zwischen 0,2 bis 4,8 V [7]. Nachfolgend ist der Schaltplan des Luftdrucksensors und des nachgeschalteten Subtrahierers dargestellt:

Abbildung 3-5: Schaltplan des Luftdrucksensors

Das analoge Ausgangssignal des Luftdrucksensors wird durch einen Spannungsteiler verringert. Dies ist nötig, um anschließend einen Offset subtrahieren zu können. Die Ausgangsspannung des Spannungsteilers berechnet sich zu:

$$U_{Teiler} = \frac{R16}{(R15 + R14) * R16} * U_{Sensor} = \frac{10 \, k\Omega}{(82 \, k\Omega + 18 \, k\Omega) * 10 \, k\Omega} * U_{Sensor} = \frac{1}{10} * U_{Sensor}$$

Die Offsetspannung, welche anschließend subtrahiert wird, liefert der DA-Wandler des ATXmegas. Durch den einstellbaren Offset kann die Auflösung des Luftdrucksensors gesteigert werden, da nicht der vollständige Messbereich des Sensors benötigt wird. Die Eingangsspannung $U_{P_{Sense}}$ am ATXmega berechnet sich wie folgt:

$$\begin{split} U_{P_{Sense}} &= \ U_{Teiler} * \left(1 + \frac{R17}{R19 + R18} \right) - U_{Offset} * \frac{R17}{R19 + R18} \\ &= \ U_{Teiler} * \left(1 + \frac{33 \ k\Omega}{11 \ k\Omega} \right) - U_{Offset} * \frac{33 \ k\Omega}{11 \ k\Omega} = \ U_{Teiler} * 4 - \ U_{Offset} * 3 \end{split}$$

Somit gilt für die Ausgangsspannung des Sensors:

$$U_{P_{Sense}} = 0.4 * U_{Sensor} - 3 * U_{Offset}$$

3.5.1 Softwarefunktionen des Luftdrucksensors

Sämtliche Funktionen und die zugehörige Beschleunigungssensor-Struktur sind in den Dateien <u>pressure sensor.c</u> und <u>pressure sensor.h</u> enthalten. Folgende Funktionen sind bereits implementiert:

• void InitPressureSensor(PRESSURE_SENSOR_t *pressure) in dieser Funktion wird der für die Offsetspannung benötigte DA-Kanal des Mikrocontrollers initialisiert.

Der AD-Kanal für die Messung der Ausgangsspannung des Subtrahierers wird durch die Initialisierungs-Funktion der Gyroskope eingerichetet.

- bool **ReadPressureSensor**(PRESSURE_SENSOR_t *pressure) **liest die aktuelle**Ausgangsspannung des Subtrahierers ein.
- **void CalibratePressureSensor**(PRESSURE_SENSOR_t *pressure) **diese Funktion** stellt die Offsetspannung an dem Subtrahierer ein.

3.5.2 Abschließende Bemerkungen

Die Funktionen des Luftdrucksensors sind noch nicht vollständig getestet worden und müssen noch erweitert werden.

3.6 Schnittstellen und Erweiterungsstiftleisten

Abbildung 3-6: Anordnung der Erweiterungsstiftleisten

Für eine Erweiterung der Leiterplatte und zur Kommunikation mit einer Master-Platine stehen insgesamt drei Erweiterungsleisten (K1, K2 und K7) zur Verfügung (s. Abbildung 3-6: Anordnung der Erweiterungsstiftleisten). Es ist zu beachten, dass die Signale jeweils nur 3,3 V kompatibel sind. Die benötigten Pull-Up Widerstände für die I²C-Schnittstelle der K7-Stiftleiste sind bereits auf der Leiterplatine vorhanden.

3.6.1 Belegungen der Stiftleisten

In der nachfolgenden Abbildung sind die Belegungen und die zugehörigen Funktionen der Erweiterungsstiftleisten dargestellt:

Bestückungsposition	K1			K2			K7		
Verwendungszweck	Aufstecken eines Zusatzboards			Aufstecken eines Zusatzboards			Master-Slave Kommunikation		
	PORT	Funktion	Interface	PORT	Funktion	Interface	PORT	Funktion	Interface
PIN 1	+3,3V			+3,3V			+3,3V		
PIN 2	+5V			+5V			+5V		
PIN 3	Gnd			Gnd			Gnd		
PIN 4	n.c			PB2	DACB1	DAC	n.c		
PIN 5	PE0	SDA	I ² C	PF0	SDA	I ² C	PD3	TXD0	USART
PIN 6	PE1	SCL	I ² C	PF1	SCL	I ² C	PD2	RXD0	USART
PIN 7	PE2	RXD0	USART	PF2	RXD0	USART	PD1	SCL	I ² C
PIN 8	PE3	TXD0	USART	PF3	TXD0	USART	PD0	SDA	I ² C
PIN 9	PE4	SS	SPI	PF4	SS	SPI			
PIN 10	PE5	MOSI	SPI	PF5	MOSI	SPI			
PIN 11	PE6	MISO	SPI	PF6	MISO	SPI			
PIN 12	PE7	SCK	SPI	PF7	SCK	SPI			

Abbildung 3-7: Pin-Belegung der Stiftleisten

3.7 USB-Schnittstelle

Über IC3 kann die Platine an die USB-Schnittstelle eines Computers angeschlossen werden. Als Brücke zwischen dem USART des ATXmegas und dem USB kommt ein FT232RL der Firma FTDI zum Einsatz.

Abbildung 3-8: FT232R der Firma FTDI Chip (http://ftdichip.com)

Der FT232R wird als virtueller Com-Port eingebunden. Der passende Treiber kann auf der Webseite der Firma FTDI <u>www.ftdichip.com</u> heruntergeladen werden.

4 Steuerungssoftware

Um die einzelnen Sensoren während der Entwicklung der Hardware zu verifizieren, ist ein zusätzliches Programm entwickelt worden. Dieses wurde in C# (gesprochen: see sharp) entwickelt und baut auf die Microsoft Software-Plattform .NET auf.

Die Kommunikation zwischen der Steuerungssoftware und dem Trägheitsnavigationssystem erfolgt über die USB-Schnittstelle (s. Kapitel 3.7). Zur Kommunikation sind bereits zahlreiche Funktionen in der Steuerungssoftware implementiert worden, so dass eine einfache Erweiterung oder Anpassung möglich ist.

Die USB-Schnittstelle auf der Leiterplatine wird durch einen USB-Seriell-Wandler realisiert. Dieser Wandler wird durch die USART-Schnittstelle des Mikrocontrollers gesteuert. Die benötigten Funktionen befinden sich in der communication.c Datei.

Der Quellcode dieser Steuerungssoftware ist auf der beigefügten CD-ROM enthalten (s. Anhang A).

5 Aktueller Stand der Entwicklung

Abschließend wird der aktuelle Stand der Entwicklung des Trägheitsnavigationssystems beschrieben.

5.1 Hardware

- Es sind zwei vollständige Prototypen der Hardware aufgebaut worden. Zusätzlich sind noch Bauteile und eine Leiterplatine vorhanden, um einen dritten Prototyp aufzubauen.
- o Die prinzipielle Funktionalität der Sensoren ist überprüft worden.
- o Die USB-Schnittstelle ist vollständig eingebunden.
- o Die Servoansteuerung wurde implementiert.

5.2 Firmware des Mikrocontrollers

- o Initialisieren aller Schnittstellen
- o Einlesen der Sensordaten
- o Kommunikation über die USB-Schnittstelle

5.3 PC-Steuerungssoftware

- USB-Schnittstelle zur Kommunikation mit dem Trägheitsnavigationssystem ist implementiert.
- o Sämtliche Sensordaten werden bereits dargestellt.

Anhang A: CD-ROM

Die beigefügte CD-ROM beinhaltet folgende Verzeichnisse:

- </documentation> Dieses Verzeichnis enthält die Dokumentation des Trägheitsnavigationssystems und die Datenblätter der verwendeten Bauteile. Die Dokumentation der Firmware wurde mit Doxygen erstellt und kann durch den Aufruf </socumentation/doc_doxygen/index.html> eingesehen werden.
- **</firmware>** In diesem Verzeichnis ist der vollständige Quellcode des Trägheitsnavigationssystems enthalten.
- </layout> Das Verzeichnis Layout enthält die Layout-Datei der Leiterplatine.
- </tools> Mit Hilfe des Target 3001! Viewer kann die Layout-Datei der Leiterplatine betrachtet werden.
- </control_software> beinhaltet die zur Überprüfung der Sensoren geschriebene externe Steuerungssoftware.

Anhang B: Schaltplan des Trägheitsnavigationssystems

Literaturverzeichnis

6 Literaturverzeichnis

- [1] (2011, Mai) Mikrocontroller.Net. [Online]. http://www.mikrocontroller.net/articles/Modellbauservo_Ansteuerung
- [2] Atmel Coprpration. (2008, Februar) AVR1306: Using the XMEGA Timer/Counter. [Online]. http://www2.atmel.com/
- [3] STMicroelectronics. (2009, July) Datasheet LPR550AL. [Online]. http://www.st.com
- [4] STMicroelectronics. (2009, July) Datasheet LY550ALH. [Online]. http://www.st.com
- [5] Honeywell. (2009, February) Datasheet MMC5843 3-Axis Digital Compass. [Online]. http://honeywell.com
- [6] BOSCH Sensortec. (2008, May) Datasheet BMA150 Digital, triaxial acceleration sensor. [Online]. http://www.bosch-sensortec.com
- [7] Motorola. (2003) Datasheet MPXA6115A. [Online]. http://www.motorola.com