Globally Convergent Type-I Anderson Acceleration for Non-Smooth Fixed-Point Iterations

Theo Koppenhöfer

Lund April 9, 2023

Table of contents

An introductory example

AA-II

AA-II

AA-I

Modifications to AA-I

Powell-type regularisation Restarting iteration Safeguarding steps

Convergence result

Numerical experiments

Regularised logistic regression

Elastic net regression

Summary

Sources

The problem setting

Problem (find fixed point)

Find a fixed point $x \in \mathbb{R}^n$ of $f \colon \mathbb{R}^n \to \mathbb{R}^n$, i.e. x = f(x). or equivalently

Problem (find a zero)

Find a zero $x \in \mathbb{R}^n$ of $g = \operatorname{Id} -f$, i.e. 0 = g(x).

We also assume

- ▶ f is nonexpansive, i.e. $||f(x) f(y)|| \le ||x y||$
- n is large → matrix-free
- ▶ ∇f is unknown \rightarrow no Newton
- **ightharpoonup** cost of evaluation of f is high \rightarrow no line search
- ▶ noisy problem →no finite difference derivatives

Algorithm 1: General AA

```
\begin{split} &\textbf{Input:} \, x^0 \in \mathbb{R}^n, f \colon \mathbb{R}^n \to \mathbb{R}^n \\ &\textbf{for } \, k = 0, 1, \dots \, \textbf{do} \\ & \mid \quad \text{Choose } \, m_k \in \{0, \dots, k\}; \\ & \quad \text{Choose } \, \alpha^k \in \mathbb{R}^{m_k} \, \text{such that } \sum_i \alpha_i^k = 1; \\ & \quad f_k = f(x_k) \, x_{k+1} = \sum_i \alpha_i^k f_{k-m_k+i}; \\ & \textbf{end} \end{split}
```

Algorithm 2: General AA

```
\begin{split} & \textbf{Input}: x^0 \in \mathbb{R}^n, f \colon \mathbb{R}^n \to \mathbb{R}^n \\ & \textbf{for } k = 0, 1, \dots \textbf{ do} \\ & \quad | \quad \text{Choose } m_k \in \{0, \dots, k\}; \\ & \quad \text{Choose } \alpha^k \in \mathbb{R}^{m_k} \text{ such that } \sum_i \alpha_i^k = 1 \text{ and such that } \alpha \\ & \quad \text{minimises } \| \sum_i \alpha_i^k g^i \|_2; \\ & \quad f_k = f(x_k); \\ & \quad x_{k+1} = \sum_i \alpha_i^k f_{k-m_k+i}; \\ & \quad \textbf{end} \end{split}
```

AA-II

Define residual $g = \operatorname{Id} - f \colon \mathbb{R}^n \to \mathbb{R}^n$ and $g_k = g(x_k)$. Choose $\alpha \in \mathbb{R}^{m_k}$ such that it minimises

$$\|\sum_i \alpha_i^k g_i\|_2$$

and

$$\sum_{i} \alpha_{i}^{k} = 1.$$

It can be shown that then

$$x_{k+1} = \sum_{i} \alpha_i^k f(x_{k-m_k+i}) = x_k - H_k g_k$$

for some $H_k \in \mathbb{R}^{n \times m_k}$ such that H_k minimises $\|H_k - \operatorname{Id}\|_F$.

AA-I

Algorithm 3: AA-I

Input: $x^0 \in \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^n$

Set
$$H_0 = \text{Id}, x_1 = f(x_0).$$

for
$$k = 0, 1, ...$$
 do

Set
$$g_k = g(x_k)$$
, $s_{k-1} = x_k - x_{k-1}$ and $y_{k-1} = g_k - g_{k-1}$.

Set
$$\hat{s}_{k-1} = s_{k-1} - \sum_{i=0}^{k-2} \frac{\hat{s}_i^{\top} s_{k-1}}{\|\hat{s}_i\|^2} s_i$$
.

Set
$$H_k = H_{k-1} + \frac{(s_{k-1} - H_{k-1} y_{k-1}) s_{k-1}^{\top} H_{k-1}}{\hat{s}_{k-1}^{\top}, H_{k-1} y_{k-1}}$$
 and $x_{k+1} = x_k - H_k g_k$.

end

Powell-type regularisation

Note that B_k may be singular. To solve this set

$$\tilde{y}_k = \theta_k y_k + (1 - \theta_k) B_k s_k$$

where

One can obtain

Lemma (Powell-type regularisation)

Let $s_k \in \mathbb{R}^n$, $B_0 = \operatorname{Id}$, and inductively

$$B_{k+1} = B_k + \frac{(\tilde{y}_k - B_k s_k) \hat{s}_k^\top}{\hat{s}_k^\top s_k}$$

with \hat{s}_k and \tilde{y}_k defined as before. If this is well-defined then $|\det(B_k)| \ge \theta^k > 0$ and B_k is invertible.

Proof.

See [1, Lemma 2].

Algorithm 4: AA-I with Powell-like-regularisation

Input:
$$x^0 \in \mathbb{R}^n$$
, $f : \mathbb{R}^n \to \mathbb{R}^n$ and $\bar{\theta} \in (0,1)$
Set $H_0 = \mathrm{Id}$, $x_1 = f(x_0)$.
for $k = 0, 1, \ldots$ do
$$| \text{Set } g_k = g(x_k), \ s_{k-1} = x_k - x_{k-1} \ \text{and} \ y_{k-1} = g_k - g_{k-1}.$$

$$| \text{Set } \hat{s}_{k-1} = s_{k-1} - \sum_{i=0}^{k-2} \frac{\hat{s}_i^\top s_{k-1}}{\|\hat{s}_i\|^2} s_i.$$

$$| \text{Set } \eta_{k-1} = \frac{\hat{s}_{k-1}^\top H_{k-1} y_{k-1}}{\|\hat{s}_{k-1}\|^2}, \ \theta_{k-1} = \phi_{\bar{\theta}}(\eta_{k-1}) \ \text{and}$$

$$| \tilde{y}_{k-1} = \theta_{k-1} y_{k-1} - (1 - \theta_{k-1}) g_{k-1}.$$

$$| \text{Set } H_k = H_{k-1} + \frac{(s_{k-1} - H_{k-1} \tilde{y}_{k-1})}{\hat{s}_{k-1}^\top H_{k-1} \tilde{y}_{k-1}} \ \text{and} \ x_{k+1} = x_k - H_k g_k.$$
end

Restarting iteration

Note that

$$B_{k+1} = B_k + \frac{(\tilde{y}_k - B_k s_k) \hat{s}_k^\top}{\hat{s}_k^\top s_k}$$

is ill-defined iff $\|\hat{s}_k\|^2 = \hat{s}_k^\top s_k = 0$, i.e. $\hat{s}_k = 0$. This can occur for $m_k > n$ as we then have $\hat{s}_k = 0$ by linear dependence. If we reset $m_k = 0$ if $m_k = m+1$ or $\|\hat{s}_{k-1}\| < \tau \|s_{k-1}\|$ for some $\tau \in (0,1)$ then

$$g_k \neq 0 \implies s_k = -B_k g_k \neq 0 \implies \hat{s}_k \neq 0.$$

Lemma (Restarting iteration)

If we additionally choose m_k by the rule above we have

$$||B_k|| \leq 3\left(\frac{1+\bar{\theta}+\tau}{\tau}\right)^m - 2.$$

Proof.

See [1, Lemma 3].

Algorithm 5: AA-I with Powell-like-regularisation and Restarting

Input:
$$x^0 \in \mathbb{R}^n$$
, $f : \mathbb{R}^n \to \mathbb{R}^n$, $m \in \mathbb{N}$ and $\bar{\theta}, \tau \in (0,1)$
Set $H_0 = \mathrm{Id}$, $x_1 = f(x_0)$, $m_0 = 0$.
for $k = 0, 1, \ldots$ do
$$\begin{cases} \text{Set } g_k = g(x_k), \ m_k = m_{k-1} + 1, \ s_{k-1} = x_k - x_{k-1} \ \text{and} \\ y_{k-1} = g_k - g_{k-1}. \end{cases}$$
Set $\hat{s}_{k-1} = s_{k-1} - \sum_{i=k-m_k}^{k-2} \frac{\hat{s}_i^\top s_{k-1}}{\|\hat{s}_i\|^2} s_i.$

if $m_k = m+1$ or $\|\hat{s}_{k-1}\| < \tau \|s_{k-1}\|$ then
$$\|\text{Set } m_k = 0, \ \hat{s}_{k-1} = s_{k-1} \ \text{and} \ H_{k-1} = \mathrm{Id}. \end{cases}$$
end
$$\begin{cases} \text{Set } \eta_{k-1} = \frac{\hat{s}_{k-1}^\top H_{k-1} y_{k-1}}{\|\hat{s}_{k-1}\|^2}, \ \theta_{k-1} = \phi_{\bar{\theta}}(\eta_{k-1}) \ \text{and} \\ \tilde{y}_{k-1} = \theta_{k-1} y_{k-1} - (1 - \theta_{k-1}) g_{k-1}. \end{cases}$$
Set $H_k = H_{k-1} + \frac{(s_{k-1} - H_{k-1} \tilde{y}_{k-1})}{\hat{s}_{k-1}^\top H_{k-1} \tilde{y}_{k-1}} \ \text{and} \ x_{k+1} = x_k - H_k g_k. \end{cases}$

Lemma (bound on $||H_k||_2$)

In algorithm 5 we have that

$$||H_k||_2 \leq \frac{1}{\bar{\theta}^m} \left(3\left(\frac{1+\bar{\theta}+\tau}{\tau}\right)^m - 2\right)^{n-1}.$$

Proof.

This follows from Lemma (Restarting iteration) and Lemma (Powell-type regularisation).

Safeguarding steps

To guarantee the decrease in $\|g_k\|$ one can interleave the AA-I steps with Krasnosel'skii-Mann steps which are given by

$$x_{k+1} = (1 - \alpha)x_k + \alpha f(x_k)$$

for some fixed $\alpha \in (0,1)$.

Algorithm 6: AA-I with Powell-like-regularisation, Restarting and Safeguarding

```
Input: x^0 \in \mathbb{R}^n, f: \mathbb{R}^n \to \mathbb{R}^n, m \in \mathbb{N}, \bar{\theta}, \tau, \alpha \in (0,1), safe-guarding constants
             D.\varepsilon > 0
Set H_0 = \text{Id}, x_1 = \tilde{x}_1 = f(x_0), m_0 = n_{AA} = 0 and \bar{U} = \|g_0\|_2.
for k = 0, 1, ... do
        Set g_k = g(x_k), m_k = m_{k-1} + 1, s_{k-1} = \tilde{x}_k - x_{k-1} and v_{k-1} = g(\tilde{x}_k) - g_{k-1}.
       Set \hat{s}_{k-1} = s_{k-1} - \sum_{i=k-m_k}^{k-2} \frac{\hat{s}_i^{+} s_{k-1}}{\|\hat{s}_i\|^2} s_i.
        if m_k = m+1 or \|\hat{s}_{k-1}\| < \tau \|s_{k-1}\| then
             Set m_{\nu} = 0, \hat{s}_{k-1} = s_{k-1} and H_{k-1} = \text{Id}.
        end
        Set \eta_{k-1} = \frac{\hat{s}_{k-1}^{\top} H_{k-1} y_{k-1}}{\|\hat{s}_{k-1}\|^2}, \theta_{k-1} = \phi_{\bar{\theta}}(\eta_{k-1}) and
          \tilde{y}_{k-1} = \theta_{k-1} y_{k-1} - (1 - \theta_{k-1}) g_{k-1}.
        Set H_k = H_{k-1} + \frac{(s_{k-1} - H_{k-1} \tilde{y}_{k-1})}{\hat{x}_{k-1}^\top H_{k-1} \tilde{y}_{k-1}} and \tilde{x}_{k+1} = x_k - H_k g_k.
        if \|g_{k}\| < D\bar{U}(n_{AA}+1)^{-(1+\varepsilon)} then
                Set x_{k+1} = \tilde{x}_{k+1} and n_{AA} = n_{AA} + 1.
        else
               Set x_{k+1} = (1-\alpha)x_k + \alpha f(x_k)
        end
end
```

Convergence result

Theorem (Convergence)

Let x_k be generated by algorithm 6 then $x_k \xrightarrow{k \to \infty} x_*$ and $f(x_*) = x_*$ is a fixed point.

Regularised logistic regression

We take $x \in \mathbb{R}^{2000 \times 500}$, $y \in \mathbb{R}^{2000}$ from the UCI Madelon dataset [2]. The aim is to minimise

$$F(\theta) = \frac{1}{2000} \sum_{i} \log(1 + \sum_{j} y_i x_{ij} \theta_j) + \frac{\lambda}{2} \|\theta\|^2$$

with gradient descent, i.e.

$$f: \mathbb{R}^{500} \to \mathbb{R}^{500}, \quad \theta \mapsto \theta - \alpha \nabla F(\theta)$$

for some α .

residual norms for the problem GD

Figure: Residual norms for the logistic regression problem.

Facility location

The aim is to minimise

$$F \colon \mathbb{R}^{300} \to \mathbb{R}, \quad y \mapsto \sum_{i=1}^{500} ||y - c_i||$$

for $c_i \in \mathbb{R}^{300}$ with sparsity 0.01. This can lead to the formulation

$$\tilde{f} \colon \mathbb{R}^{500 \times 300} \to \mathbb{R}^{500 \times 300}, \quad z \mapsto \left(z_i + 2 \langle x \rangle - x_i - \langle z \rangle\right)_i$$

$$\langle x \rangle = \frac{1}{500} \sum_i x_i \qquad x_i = \operatorname{prox}_{\|\cdot\|} (z_i + c_i) - c_i$$

and

with

$$\operatorname{prox}_{\|\cdot\|}(v) = \left(1 - \frac{1}{\|v\|}\right)_{\perp} v.$$

residual norms for the problem CO

Figure: Residual norms for the facility location problem.

Elastic net regression

Our aim is to minimise

$$F \colon \mathbb{R}^{1000} \to \mathbb{R}, \quad x \mapsto \frac{1}{2} ||Ax - b||^2 + \mu \left(\frac{1}{4} ||x||^2 + \frac{1}{2} ||x||_1 \right)$$

with $A \in \mathbb{R}^{500 \times 1000}$, $b \in \mathbb{R}^{500}$ and some $\mu \in \mathbb{R}$. From the Iterative Shrinkage-Thresholding Algorithm one obtains

$$f: \mathbb{R}^{1000} \to \mathbb{R}^{1000}, \quad x \mapsto S_{\alpha\mu/2} \left(x - \alpha \left(A^{\top} (Ax - b) + \frac{\mu}{2} x \right) \right)$$

with shrinkage operator

$$S_{\kappa}(x) = (\operatorname{sgn}(x_i)(|x_i| - \kappa)_+)_i$$

and some $\alpha \in \mathbb{R}$.

Figure: Residual norms for the elastic net regression problem.

Figure: Residual norms for the elastic net regression problem.

Summary

Sources I

- [1] J. Zhang, B. O'Donoghue, and S. Boyd, "Globally convergent type-I Anderson acceleration for nonsmooth fixed-point iterations," SIAM J. Optim., vol. 30, no. 4, pp. 3170–3197, 2020, ISSN: 1052-6234. DOI: 10.1137/18M1232772. [Online]. Available: https://doi-org.ludwig.lub.lu.se/10.1137/18M1232772.
- [2] I. Guyon. (2004), Madelon data set, [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Madelon.
- [3] H.-r. Fang and Y. Saad, "Two classes of multisecant methods for nonlinear acceleration," *Numer. Linear Algebra Appl.*, vol. 16, no. 3, pp. 197–221, 2009, ISSN: 1070-5325. DOI: 10.1002/nla.617. [Online]. Available: https://doi-org.ludwig.lub.lu.se/10.1002/nla.617.

Thank you for your attention.