Improved Bayes Risk Can Yield Reduced Social Welfare Under Competition

Meena Jagadeesan (UC Berkeley)

Joint work with Michael I. Jordan, Jacob Steinhardt, and Nika Haghtalab (UC Berkeley)

Scale improves accuracy for an isolated system

11B parameters

175B parameters

540B parameters

? 1.8T parameters

(Kaplan et al., 2020)

This work: impact of increases to scale under **competing decision-makers**

Marketplace of competing decision-makers

Marketplace of competing decision-makers

Marketplace of competing decision-makers

hidden layer 2

hidden layer 1

Decision-maker 1's fine-tuned model

Decision-maker 2's fine-tuned model

Leverages representations for downstream objective (market share)

Main question

Does improving data representation quality (Bayes risk) improve user social welfare (overall predictive accuracy) under competition?

Result (Informal): The social welfare (overall predictive accuracy) for users can be *non-monotonic* in data representation quality (Bayes risk).

Result (Informal): The social welfare (overall predictive accuracy) for users can be non-monotonic in data representation quality (Bayes risk).

Result (Informal): The social welfare (overall predictive accuracy) for users can be non-monotonic in data representation quality (Bayes risk).

Result (Informal): The social welfare (overall predictive accuracy) for users can be non-monotonic in data representation quality (Bayes risk).

Consequences for ML scaling trends: Increasing "scale" may decrease social welfare under competition.

Axis of varying representations

Our results

We study a model for competing model-providers, and we show non-monotonicity through:

1. A theoretical analysis of a stylized setup with closed-form equilibria

2. An empirical analysis on synthetic data simulations and CIFAR-10 representations from pretrained models for linear predictors

Overview of our model

Task: multi-class classification with:

- User distribution $(x, y) \sim D$ where $x \in \mathbb{R}^d$ and $y \in \{0, 1, 2, ..., K-1\}$
- Model family F of predictors f mapping $R^d \rightarrow \{0, 1, 2, ..., K-1\}$

Interaction between model-providers and users:

- Each of *m* model-providers chooses a predictor in *F*.
- Each user (x, y) noisily chooses the model-provider offering them the best prediction.
- A model-provider's utility is equal to the market share.

We study the Nash equilibria between model-providers.

Theoretical analysis of equilibria in stylized setups

Mixture of 1d Gaussians with means 0 and 1 σ := std dev of Gaussians

4 subpopulations that need increasing #s of dimensions to detect and classify

D := representation dimension

Overall predictive loss at equilibrium is non-monotonic in Bayes risk.

Simulations for linear predictors on CIFAR-10

Classification on CIFAR-10 with representations from pretrained networks

Overall predictive loss at equilibrium is non-monotonic in Bayes risk.

Takeaways

We showed that under competition, the equilibrium social welfare can be non-monotonic in representation quality (as measured by Bayes risk).

Consequence for ML scaling laws: Increases to "scale" may reduce overall predictive accuracy for users in real-world marketplaces with competing model-providers.

Future work: scaling laws under competition?

Model-provider in isolation

Competing model-providers

