1 Funkční závislosti stanovené z dat

Pro danou relaci \mathcal{D} chceme najít, co možná nejmenší teorii T tak, že $\mathcal{D} \models A \Rightarrow B$ právě, když $T \models A \Rightarrow B$.

Definice 1. Teorie T se nazývá <u>báze \mathcal{D} </u>, pokud pro každou $A \Rightarrow B$ platí $\mathcal{D} \models A \Rightarrow B$ p.k. $T \models A \Rightarrow B$.

Poznámka. Bází \mathcal{D} je obecně hodně. Např. pokud T je báze \mathcal{D} a navíc $T \models A \Rightarrow B$ pro nějakou $A \Rightarrow B \notin T$, pak $T \cup \{A \Rightarrow B\}$ je opět báze.

Z definice báze je zřejmé, že budeme-li mít dvě báze, budou mít stejné sémantické důsledky, je proto žádoucí si takový jev pojmenovat.

Definice 2. Teorie T_1 a T_2 jsou <u>sémanticky ekvivalentní</u>, značeno $T_1 \equiv T_2$, jestliže pro libovolnou $A \Rightarrow B$ platí $\overline{T_1} \models A \Rightarrow B$ právě, když $T_2 \models A \Rightarrow B$.

Sémanticky ekvivalentní teorie, pak mají úzký vztah k pojmu model teorie.

Věta 1 (o charakterizaci sémantické ekvivalence). Následující tvrzení jsou ekvivalentní:

- 1. $T_1 \equiv T_2$,
- 2. $\operatorname{Mod}(T_1) = \operatorname{Mod}(T_2),$
- 3. $\operatorname{Mod}_C(T_1) = \operatorname{Mod}_C(T_2)$,
- 4. Pro libovolnou $A \subseteq R$ máme $[A]_{T_1} = [A]_{T_2}$.

 $D\mathring{u}kaz$. $1 \Rightarrow 2$: Pro libovolnou $A \Rightarrow B$ máme $\operatorname{Mod}(T_1) \models A \Rightarrow B$ p.k. $T_1 \models A \Rightarrow B$ p.k. $T_2 \models A \Rightarrow B$ p.k. $\operatorname{Mod}(T_1) \models A \Rightarrow B$.

- $2 \Rightarrow 3$: Speciální případ.
- $3 \Rightarrow 4$: Stejné uzávěrové systémy mají stejné uzávěrové operátory.

 $4\Rightarrow 1$: Pro libovolnou $A\Rightarrow B$ máme $T_1\models A\Rightarrow B$ p.k. $B\subseteq [A]_{T_1}=[A]_{T_2}$ p.k. $T_2\models A\Rightarrow B.$

Důsledek. Pokud jsou T_1 a T_2 báze \mathcal{D} , pak $T_1 \equiv T_2$.

Pro snadnější charakterizaci pravdivosti v relaci si zavedeme operátor, který bude fungovat podobně jako sémantický uzávěr u teorie. Nejdříve však definujeme relaci na n-ticích.

Definice 3. Pro $\mathcal{D} \subseteq \prod_{y \in R} D_y$ a $M \subseteq R$ definijeme $E_{\mathcal{D}}: 2^R \to 2^{\mathcal{D} \times \mathcal{D}}$ předpisem

$$E_{\mathcal{D}}(M) = \{ \langle t, t' \rangle \in \mathcal{D} \times \mathcal{D} \mid t(M) = t'(M) \}.$$

Poznámka. • Z definice $E_{\mathcal{D}}$ je hned zřejmé, že relace $E_{\mathcal{D}}(M)$ je ekvivalencí na \mathcal{D} což také znamená, že můžeme udělat rozklad.

- Význam vztahu $E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(M')$ je, že všechny dvojce n-tic, které se rovnají na M se také rovnají na M'.
- $E_{\mathcal{D}}$ je zřejmě antinonní, protože pokud $M_1 \subseteq M_2$, všechny n-tice, které se rovnají na M_2 se tím spíš musí rovnat na M_1 , tedy $E_{\mathcal{D}}(M_2) \subseteq E_{\mathcal{D}}(M_1)$.

Definice 4. Pro $\mathcal{D} \subseteq \prod_{y \in R} D_y$ a $M \subseteq R$ definizeme $C_{\mathcal{D}} : 2^R \to 2^R$ předpisem

$$C_{\mathcal{D}}(M) = \{ y \in R \mid E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(\{y\}) \}.$$

Poznámka. $C_{\mathcal{D}}(M)$ je vlastně množina atributů, na kterých jsou si rovny všechny dvojice n-tic z \mathcal{D} , které jsou si rovny na M. Důsledkem pak je, že $E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(C_{\mathcal{D}}(M))$. Důkaz je ponechán čtenáři.

Věta 2. $C_{\mathcal{D}}$ je uzávěrový operátor na R.

- $D\mathring{u}kaz$. (extenzivita): Pokud $y \in M$, pak $E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(\{y\})$, protože pokud jsou si t,t' rovny na všech atributech z M, tím spíš jsou si rovny na $y \in M$. Odtud dle definice $C_{\mathcal{D}}$ dostáváme $y \in C_{\mathcal{D}}(M)$.
 - (monotonie): Předpokládejme $M_1 \subseteq M_2$ a vezmeme $y \in C_{\mathcal{D}}(M_1)$. Poslední znamená, že $E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(\{y\})$. Z antitonie $E_{\mathcal{D}}$ dostáváme $E_{\mathcal{D}}(M_2) \subseteq E_{\mathcal{D}}(M_1) \subseteq E_{\mathcal{D}}(\{y\})$. Z definice $C_{\mathcal{D}}$ je $y \in C_{\mathcal{D}}(M_2)$.
 - (idempotence): $C_{\mathcal{D}}(M) \subseteq C_{\mathcal{D}}(C_{\mathcal{D}}(M))$ platí z extenzivity. Pro obrácenou inkluzi máme následující posloupnost argumentů:

$$E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(C_{\mathcal{D}}(M))$$
$$\{y \in R \mid E_{\mathcal{D}}(C_{\mathcal{D}}(M)) \subseteq E_{\mathcal{D}}(\{y\})\} \subseteq \{y \in R \mid E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(\{y\})\}$$
$$C_{\mathcal{D}}(C_{\mathcal{D}}(M)) \subseteq C_{\mathcal{D}}(M)$$

Věta 3 (o charakterizaci pravdivosti). Následující jsou ekvivalentní:

- 1. $\mathcal{D} \models A \Rightarrow B$
- 2. $E_{\mathcal{D}}(A) \subseteq E_{\mathcal{D}}(B)$
- 3. $B \subseteq C_{\mathcal{D}}(A)$

 $D\mathring{u}kaz$. $1 \Rightarrow 2$: Z definice $\mathcal{D} \models A \Rightarrow B$, pokud t(A) = t'(A), pak t(B) = t'(B), tzn. pokud $\langle t, t' \rangle \in E_{\mathcal{D}}(A)$, pak $\langle t, t' \rangle \in E_{\mathcal{D}}(B)$, tj. $E_{\mathcal{D}}(A) \subseteq E_{\mathcal{D}}(B)$.

 $2 \Rightarrow 3$: Předpokládejme $E_{\mathcal{D}}(A) \subseteq E_{\mathcal{D}}(B)$. Pro libovolný $y \in B$ pak z antitonie platí $E_{\mathcal{D}}(A) \subseteq E_{\mathcal{D}}(B) \subseteq E_{\mathcal{D}}(\{y\})$. To podle definice $C_{\mathcal{D}}$ znamená, že $y \in C_{\mathcal{D}}(A)$, tj. $B \subseteq C_{\mathcal{D}}(A)$.

 $3 \Rightarrow 1$: Předpokládejme $B \subseteq C_{\mathcal{D}}(A)$. Dále mějme $t, t' \in \mathcal{D}$ takové, že t(A) = t'(A) a vezmeme libovolné $y \in B$. Pak nutně $\langle t, t' \rangle \in E_{\mathcal{D}}(A)$ a navíc $E_{\mathcal{D}}(A) \subseteq E_{\mathcal{D}}(\{y\})$. Důsledkem je, že t(y) = t'(y), tedy t(B) = t'(B).

Věta 4 (o charakterizaci báze). T je báze \mathcal{D} právě, když pro libovolné $A \subseteq R$ máme $C_{\mathcal{D}}(A) = [A]_T$.

Poznámka. Ekvivalentně $C_{\mathcal{D}}(M) = [M]_T = M_T^{\infty} = M_T^+$.

 $D\mathring{u}kaz$. " \Rightarrow ": Nechť T je báze \mathcal{D} . Pak $[M]_T \subseteq [M]_T$ p.k. $T \models M \Rightarrow [M]_T$ p.k. $\mathcal{D} \models M \Rightarrow [M]_T$ p.k. $[M]_T \subseteq C_{\mathcal{D}}(M)$. Obráceně máme $C_{\mathcal{D}}(M) \subseteq C_{\mathcal{D}}(M)$ p.k. $\mathcal{D} \models M \Rightarrow C_{\mathcal{D}}(M)$ p.k. $T \models M \Rightarrow C_{\mathcal{D}}(M)$ p.k. $C_{\mathcal{D}}(M) \subseteq [M]_T$. Dohromady tedy $C_{\mathcal{D}}(M) = [M]_T$.

"\(= \)": Pokud $C_{\mathcal{D}}$ má stejné pevné body jako $[\dots]_T$, pak $\mathcal{D} \models A \Rightarrow B$ p.k. $B \subseteq C_{\mathcal{D}}(A) = [A]_T$ p.k. $T \models A \Rightarrow B$.

Následující věta ukazuje, že pro libovolnou relaci existuje minimálně jedna báze.

Věta 5 (o existenci báze). $T = \{A \Rightarrow C_{\mathcal{D}}(A) \mid A \subseteq R\}$ je báze \mathcal{D} .

 $D\mathring{u}kaz$. Dle předchozí věty stačí ověřit, že $C_{\mathcal{D}}(M) = [M]_T$ pro libovolnou M, tzn. ověřit, že $M = C_{\mathcal{D}}(M)$ právě když $M \in \mathcal{M}_T$.

"⇒": Předpokládejme $M = C_{\mathcal{D}}(M)$ a vezmeme libovolnou $A \Rightarrow C_{\mathcal{D}}(A) \in T$ tak, že $A \subseteq M$. Z monotonie operátoru $C_{\mathcal{D}}$ dostaneme $C_{\mathcal{D}}(A) \subseteq C_{\mathcal{D}}(M) = M$. Dohromady tedy $\mathcal{D}_M \models A \Rightarrow C_{\mathcal{D}}(A)$ p.k. $\mathcal{D}_M \in \operatorname{Mod}_C(T)$ p.k. $M \in \mathcal{M}_T$.

"\(\infty\)": Předpokládejme, že $M \in \mathcal{M}_T$. To jest $\mathcal{D}_M \in \operatorname{Mod}_C(T)$. Speciálně pro $M \Rightarrow C_{\mathcal{D}}(M) \in T$ máme $\mathcal{D}_M \models M \Rightarrow C_{\mathcal{D}}(M)$. Odtud $C_{\mathcal{D}}(M) \subseteq M$ a přidáme-li extenzivitu $C_{\mathcal{D}}$ dostaneme $C_{\mathcal{D}}(M) = M$.

Když už víme, že báze vždy existuje, přesuneme pozornost na její velikost vzhledem k počtu FZ. Z předchozího textu vyplývá, že se budeme snažit najít bázi ekvivalentní, ale co nejmenší.