Section 15.2 – Limits and Continuity

THEOREM 12.2 Limit Laws for Functions of Two Variables

Let L and M be real numbers and suppose that $\lim_{(x,y)\to(a,b)} f(x,y) = L$ and $\lim_{(x,y)\to(a,b)} g(x,y) = M$.

Assume c is a constant, and m and n are integers.

1. Sum
$$\lim_{(x,y)\to(a,b)} (f(x, y) + g(x, y)) = L + M$$

2. Difference
$$\lim_{(x,y)\to(a,b)} (f(x, y) - g(x, y)) = L - M$$

3. Constant multiple
$$\lim_{(x,y)\to(a,b)} c f(x, y) = c L$$

4. Product
$$\lim_{(x,y)\to(a,b)} f(x, y) g(x, y) = L M$$

5. Quotient
$$\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{L}{M}$$
, provided $M \neq 0$

6. Power
$$\lim_{(x,y)\to(a,b)} (f(x, y))^n = L^n$$

7. Fractional power If
$$m$$
 and n have no common factors and $n \neq 0$, then $\lim_{(x,y)\to(a,b)} (f(x,y))^{m/n} = L^{m/n}$, where we assume $L>0$ if n is even.

• Evaluate the following limits:

$$\circ \lim_{(x,y)\to(2,-1)} (xy^8 - 3x^2y^3)$$

$$\circ \quad \lim_{(x,y)\to(2,0)} \left(\frac{x^2-3xy^2}{x+y}\right)$$

DEFINITION Interior and Boundary Points

Let R be a region in \mathbb{R}^2 . An **interior point** P of R lies entirely within R, which means it is possible to find a disk centered at P that contains only points of R (Figure 12.40).

A boundary point Q of R lies on the edge of R in the sense that every disk centered at Q contains at least one point in R and at least one point not in R.

DEFINITION Open and Closed Sets

A region is **open** if it consists entirely of interior points. A region is **closed** if it contains all its boundary points.

• Evaluate the following limits at boundary points.

$$0 \quad \lim_{(x,y)\to(1,-2)} \frac{y^2 + 2xy}{y + 2x}$$

- If $f(x,y) \to L_1$ as $(x,y) \to (a,b)$ along a path C_1 and $f(x,y) \to L_2$ as $(x,y) \to (a,b)$ along a path C_2 , where $L_1 \neq L_2$, then $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.
- Use two paths to prove that the following limits do not exist.

$$0 \quad \lim_{(x,y)\to(0,0)} \frac{x^3 - y^2}{x^3 + y^2}$$

$$0 \quad \lim_{(x,y)\to(0,0)} \frac{y^3 + x^3}{xy^2}$$

- We say f is continuous at the point (a, b) if:
 - o f is defined at (a, b).
 - $\lim_{(x,y)\to(a,b)} f(x,y) \text{ exists}$
 - o f(x, y) is continuous at (a, b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

• At what points of \mathbb{R}^2 are the following functions continuous? $f(x,y) = x^2 + 2xy - y^3$

$$f(x,y) = x^2 + 2xy - y^3$$

$$\circ \quad H(x,y) = \frac{e^x + e^y}{e^{xy} - 1}$$

• At what points of \mathbb{R}^2 are the following composite functions continuous? $g(x,y) = \ln(x-y)$

$$\circ \quad g(x,y) = \ln(x-y)$$

$$\circ \quad f(x,y) = \ln(x^2 + y^2)$$

• Find the limit, if it exists:

$$\lim_{(x,y)\to(0,0)} \frac{xy^2 + x^2y}{x^2 + y^2}$$