

First-Order Logic

NOTICE

Presentation slides will be available for download along with the recording of this review session.

You are free to take pictures regardless if you'd like.

DISCLAIMER

I have tried to pull all information from the slides, the textbook, and other authorized resources, but I cannot guarantee the veracity of any information in the slides hereafter.

See presentation notes for sources (chapter pages are for 4th ed.)

OUTLINE

- FOL in the logics landscape
- Syntax & semantics for FOL

INTRO TO FIRST ORDER LOGIC

A logic among others

MAMA MIA

- **Propositional logic** has limited expressive power.
- For Wumpus World
 - Can't say "pits cause breezes in adjacent squares"
 - Must have 64 rules each for pits, breeze, etc.
- Propositional logic is declarative.
 - Declarative pieces of syntax corresponds to facts
- First-order logic (FOL) expands to objects, relations, and functions!

A WHOLE NEW WORLD

THIS BAD BOY CAN FIT SO MANY PROPOSITIONS IN IT

Propositional Logic

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

$$B_{...} \Leftrightarrow (P_{...} \vee P_{...} \vee P_{...})$$

First-Order Logic

 $\forall y \ Breezy(y) \Rightarrow$ $\exists x \ Pit(x) \land Adjacent(x, y)$

• • •

MODELING REALITY: TABLE OF CONTENTS

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	Facts	True/false/unknown
First-order logic	Facts, objects, relations	True/false/unknown
Temporal logic	Facts, objects, relations, times	True/false/unknown
Temporal logic Probability theory	Facts, objects, relations, times Facts	True/false/unknown Degree of belief

FOL SYNTAX & SEMANTICS

Speaking in the first order

A GRAND FANTASTIC POINT OF VIEW

- FOL expands from and adds to propositional logic syntax!
- Symbols are expanded from propositional logic to:
 - Constants Objects
 - Predicates Relations (always maps to T/F)
 - Functions Functions (can return objects, T/F, etc.)

SYMBOLS VS. THE COOLER SYMBOLS

John = {Attributes={Person, King, ...}, Brother={Richard}} Propositional Logic Symbols A = true B = false FOL Predicates 3 > 2 = true 2 > 3 = false

FOL Symbols

FOL Functions

FOL Objects

- IsEven(x) = x % 2 == 0
- NumOfAttributes(x) = len(x.Attributes)
- ∀x, y HaveAChild(x, y) ⇔
 ∃z Parent(x, z) ∧ Parent(y, z)

WORDS FOR THINGS

- FOL sentences have terms as well.
- Terms refer to **objects**.
- Examples:
 - KingJohn a constant symbol, representing an object
 - LeftLeg(KingJohn) a function which refers to an object
 - x a variable used by a quantifier
 - We'll get to that later

WORDS FOR CONCLUSIONS ABOUT THINGS

- FOL has atomic and complex sentences.
- An **atomic sentence** is a singular predicate (returns true/false).
 - Note term1 = term2 is a binary predicate
- A complex sentence is a:
 - Modification to a sentence
 - Wrapping in parentheses
 - Negation
 - Two sentences logically connected with Λ , V, \Rightarrow , or \Leftrightarrow
 - A quantifier, variable, sentence combo.

SENTENCE INCEPTION

HANDLING THE TRUTH (WHICH WE CAN DO)

- Sentences are true with respect to a model and an interpretation.
- Model contains ≥ 1 objects (domain elements) and relations among them.
- An atomic sentence $predicate(term_1, ..., term_n)$ is true **iff** the objects referred to by $term_1, ..., term_n$ are in the relation referred to by predicate.

MODELS FOR FOL

Under this interpretation, Brother(Richard, John) is true in relation to this model.

FOL MODELS (TO INFINITY AND BEYOND)

- If you wanted to enumerate FOL models:
- For each number of domain elements n from 1 to ∞
 - For each k-ary predicate P_k in the vocabulary
 - For each possible k-ary relation on n objects
 - ullet For each constant symbol ${\mathcal C}$ in the vocabulary
 - For each choice of referent for $\mathcal C$ from n objects...
- Computing entailment by enumerating FOL models is not easy...

UNIVERSAL VS. EXISTENTIAL QUANTIFIERS

UNIVERSAL QUANTIFICATION

- Expressing the statement: **Everyone at Berkeley is smart**
- Universal Quantifier: $\forall < variables > < sentence >$
 - ∀≈"for all"
 - $\forall x P$ is true in a model m iff P is true with x being **each** possible object in the model.

Propositional Logic*

• Additional example: $\forall x \ King(x) \Rightarrow Person(x)$

POP QUIZ!

Why \Rightarrow instead of \land ?

EXAM QUESTION: $\forall x \ King(x)(\land/\Rightarrow)Person(x)$

x value	Relationship	$\forall x \ King(x) \land Person(x)$ Result	$\forall x \ King(x) \Rightarrow Person(x)$ Result
Richard the Lionheart	Richard the Lionheart is a king (∧/⇒) Richard the Lionheart is a person.	false ∧ true = false	false ⇒ true = true
King John	King John is a king (∧/⇒) King John is a person.	true ∧ true = true	true ⇒ true = true
Richard's Left Leg	Richard's Left Leg is a king (∧/⇒) Richard's Left Leg is a person.	false ∧ false = false	false ⇒ false = true
John's Left Leg	John's Left Leg is a king (∧/⇒) John's Left Leg is a person.	false ∧ false = false	false ⇒ false = true
The Crown	The Crown is a king (Λ/\Rightarrow) The Crown is a person.	false ∧ false = false	false ⇒ false = true

EXISTENTIAL QUANTIFICATION

- Expressing the statement: Someone at Stanford is smart.
- Existential Quantifier: $\exists < variables > < sentence >$
 - ∃≈"there exists a" or "for some"
 - $\exists x P$ is true in a model m iff P is true with x being some possible object in the model.

Propositional Logic*

• Additional example: $\exists x \ Crown(x) \land OnHead(x, John)$

POP QUIZ!

Why \land instead of \Rightarrow ?

$\exists x \ Crown(x)(\Rightarrow / \land) OnHead(x, John)$

x value	Relationship	$\exists x \ Crown(x) \Rightarrow OnHead(x, John)$ Result	$\exists x \ Crown(x) \land OnHead(x, John)$ Result
Richard the Lionheart	Richard the Lionheart is a crown (∧/⇒) Richard the Lionheart is on John's head.	false ⇒ false = true	false ∧ false = false
King John	King John is a crown (∧/⇒) King John is on John's head.	false ⇒ false = true	false Λ false = false
Richard's Left Leg	Richard's Left Leg is a crown (∧/⇒) Richard's Left Leg is on John's head.	false ⇒ false = true	false Λ false = false
John's Left Leg	John's Left Leg is a crown (Λ/⇒) John's Left Leg is on John's head.	false ⇒ false = true	false Λ false = false
The Crown	The Crown is a crown (∧/⇒) The Crown is on John's head.	true ⇒ true = true	true ∧ true = true

PROPERTIES OF QUANTIFIERS

- Consecutive, same-type quantifiers are commutative.
 - $\forall x \forall y = \forall y \forall x = \forall x, y$
 - $\exists x \exists y = \exists y \exists x = \exists x, y$
- $\exists x \forall y \neq \forall y \exists x$
 - $\forall x \exists y \ Loves(x, y) = Everybody loves somebody$
 - $\exists y \forall x \ Loves(x, y)$ = There is someone who is loved by everyone

A QUANTIFIER'S GUIDE TO DUALITY & NEGATION (EXAM QUESTIONS!)

- Quantifier duality each can be expressed using the other!
 - $\forall x \ Likes(x, Money) \equiv \neg \exists x \ \neg Likes(x, Money)$
 - $\exists x \ Likes(x, Tests) \equiv \neg \forall x \ Likes(x, Tests)$
- De Morgan's rules for quantified sentences:
 - $\neg \exists x P \equiv \forall x \neg P$
 - $\neg \forall x P \equiv \exists x \neg P$
 - $\forall x P \equiv \neg \exists x \neg P$
 - $\exists x P \equiv \neg \forall x \neg P$

EQUALITY

- $term_1 = term_2$ is true under a given interpretation iff $term_1$ and $term_2$ refer to the same object.
 - 1 = 2 and $\forall x \times (Sqrt(x), Sqrt(x)) = x$ are satisfiable.
 - 2 = 2 is valid.
 - *Sibling* in terms of *Parent*:

```
\forall x, y \ Sibling(x, y) \Leftrightarrow
[\neg(x = y) \land \exists m, f \neg(m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]
```

- For all objects, x and y are siblings if
- x and y are not the same and
- There are two objects m and f and
- m and f are not the same and
- m and f are both parents to x and y

SUBSTITUTION

- Substitutions (also called binding lists) allow us to replace variables with values.
- Given a sentence S and a substitution σ , $S\sigma$ means plugging σ into S.
 - S = Smarter(x, y)
 - $\sigma = \{x/Hillary, y/Bill\}$
 - $S\sigma = Smarter(Hillary, Bill)$
- ASK(KB,S) returns some/all σ such that $KB \models S\sigma$

SUBSTITUTION REGARDING KBS

- ASKVARS(KB, Person(x))
- The KB returns multiple answers in the form of substitutions:
 - $\{x/John\}$
 - $\{x/Richard\}$
- Plugging these substitutions into the sentence Person(x) makes the sentence true.
- So, these are the objects that are applicable to the sentence.

APPLYING FOL

English Representation	FOL Representation
Brothers are siblings.	$\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y)$
If A is B's sibling, then B is A's sibling. ("Sibling" is symmetric)	$\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$
One's mother is one's female parent.	$\forall x, y \; Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y))$
A first cousin is a child of a parent's sibling.	$\forall x, y \ FirstCousin(x, y) \Leftrightarrow \\ \exists p, ps \ Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y)$

THANK YOU

Joshua Sheldon

jsheldon2022@my.fit.edu