Mémo séries de fonctions et intégrales à paramètre

1 Convergence des séries et intégrales

On considère une série $\sum_{n\geq 0} a_n$ et une fonction f, continue par morceaux sur [a,b[(b peut valoir $+\infty$).

Série

• Converge si

$$\left(\sum_{n=0}^{N} a_n\right)_N \text{ converge lorsque } N \to \infty$$

• Converge absolument si

$$\left(\sum_{n=0}^{N} |a_n|\right)_N \text{converge lorsque } N \to \infty$$

Intégrale

• Converge si

$$\int_a^\beta f(t)dt \ \ \text{converge lorsque} \ \beta \to b$$

• Converge absolument si

$$\int_{a}^{\beta} |f(t)| dt \text{ converge lorsque } \beta \to b$$

Dans les deux cas, la convergence absolue implique la convergence.

2 Convergence des séries de fonctions et intégrales à paramètre

On considère une série de fonctions $\sum_{n\geq 0} f_n$ sur un intervalle I et une fonction $f:[a,b[\times I \ (b \ \text{peut valoir} \ +\infty)]$. On suppose que pour tout $x\in I,\ t\mapsto f(t,x)$ est continue par morceaux.

Série

• Convergence simple si pour tout $x \in I$

$$\sum_{n>0} f_n(x)$$
 converge vers une limite $F(x)$

• Convergence uniforme si la suite de fonctions

$$\left(\sum_{n=0}^{N} f_n\right)_N$$
 converge uniformément vers F

c'est-à-dire que pour tout $\epsilon>0$, il existe $N_0\in\mathbb{N}$ tel que pour tout $N\geq N_0$ et tout $x\in I$

$$\left| \sum_{n=0}^{N} f_n(x) - F(x) \right| \le \epsilon$$

- Convergence normale si il existe une suite (M_n) telle que
 - 1. $\forall n \in \mathbb{N}, \forall x \in I, |f_n(x)| \leq M_n$
 - 2. $\sum_{n\geq 0} M_n$ converge

Intégrale

• Convergence "simple" si pour tout $x \in I$

$$\int_{a}^{b} f(t, x) dt$$
 converge vers une limite $F(x)$

• Convergence uniforme si

$$\left(\int_a^\beta f(t,x)dt\right)_\beta \quad \text{converge uniformément vers } F$$
 lorsque $\beta \to b$

c'est-à-dire que pour tout $\epsilon > 0$, il existe $\eta > 0$ tel que pour tout $\beta \in [b-\eta,b[$ et tout $x \in I$

$$\left| \int_{a}^{\beta} f(t, x) dt - F(x) \right| \le \epsilon$$

- ullet Convergence "normale" si il existe une fonction M telle que
 - 1. $\forall t \in [a, b[, \forall x \in I, |f(t, x)| \le M(t)]$

2.
$$\int_{a}^{b} M(t)dt$$
 converge

Dans les deux cas, la convergence normale implique la convergence uniforme.

Conséquences de la convergence uniforme $\mathbf{3}$

On considère une série de fonctions $\sum_{n\geq 0} f_n$ sur un intervalle I et une fonction $f:[a,b[\times I \ (b \ \text{peut valoir} +\infty).$

• Pour tout $n \in \mathbb{N}$, f_n continue sur I

• $\sum_{n>0} f_n$ converge uniformément sur I vers F

On a alors les résultats suivants:

Série

- Continuité de la somme: F est continue sur I.
- Interversion somme-intégrale: si la suite de fonctions

$$\int_{\alpha}^{\beta} F(x)dx = \int_{\alpha}^{\beta} \left(\sum_{n=0}^{+\infty} f_n(x)\right) dx = \sum_{n=0}^{+\infty} \int_{\alpha}^{\beta} f_n(x)dx$$

Intégrale

- Continuité sous l'intégrale: F est continue sur I.
- Interversion intégrale-intégrale (Fubini): pour $\alpha < \beta$

$$\int_{\alpha}^{\beta} F(x)dx = \int_{\alpha}^{\beta} \int_{a}^{b} f(t, x)dtdx = \int_{a}^{b} \int_{\alpha}^{\beta} f(t, x)dxdt$$

Dérivation sous la somme/intégrale

On considère une série de fonctions $\sum_{n>0} f_n$ sur un intervalle I et une fonction $f:[a,b[\times I \ (b \text{ peut valoir } +\infty).$

Série

On suppose

- $\sum_{n \geq 0} f_n$ converge simplement sur I vers F
- Pour tout $n \in \mathbb{N}$, f_n est dérivable sur I
- $\sum_{n>0} f'_n$ converge uniformément sur I vers G

Alors F est dérivable sur I de dérivée G.

Intégrale

On suppose

- $\int_{a}^{b} f(t,x)dt$ converge simplement sur I vers F
- f est admet une dérivée partielle $\frac{\partial f}{\partial x}$ continue sur $[a,b[\times I.$
- $\int_a^b \frac{\partial f}{\partial x}(t,x)dt$ converge uniformément sur I vers G

Alors F est dérivable sur I de dérivée G.