Observatoire de Paris, Universités Paris 6, Paris 7 et Paris 11, École Normale Supérieure

Master Astronomie, Astrophysique et Ingénierie Spatiale Année M2 - Parcours Recherche

2013 - 2014

UE FC5

Relativité générale

Éric Gourgoulhon

Laboratoire Univers et Théories (LUTH)

CNRS / Observatoire de Paris / Université Paris Diderot (Paris 7) eric.gourgoulhon@obspm.fr

http://luth.obspm.fr/~luthier/gourgoulhon/fr/master/relat.html

sont décrits par la métrique de Kerr-Newman, qui ne dépend que de trois paramètres réels : M, a et Q, ce dernier étant la charge électrique totale du trou noir.

5.5.3 Horizon des événements

Pour un paramètre de Kerr $\bar{a} \leq 1$, nous admettrons que l'horizon des événements \mathcal{H} de la métrique de Kerr est l'hypersurface définie par $r = R_{\mathcal{H}}$, où

$$R_{\mathcal{H}} := \frac{GM}{c^2} \left(1 + \sqrt{1 - \bar{a}^2} \right).$$
 (5.29)

À la limite a = 0, on retrouve $R_{\mathcal{H}} = 2GM/c^2 = R_{\rm S}$.

Pour $\bar{a} > 1$, la métrique de Kerr n'admet pas d'horizon des événements : elle décrit alors une singularité nue et non un trou noir (cf. § 5.3.1). Le cas critique $\bar{a} = 1$ est appelé espace-temps de Kerr extrême.

L'horizon des événements \mathcal{H} est une hypersurface de genre lumière (cf. § 5.3.2), qui admet le vecteur suivant comme normale :

$$\vec{\ell} := \vec{\xi}_{(0)} + \frac{\Omega_{\mathcal{H}}}{c} \vec{\xi}_{(z)}, \tag{5.30}$$

avec

$$\Omega_{\mathcal{H}} := \frac{c \, \bar{a}}{2R_{\mathcal{H}}} \,. \tag{5.31}$$

En tant que combinaison linéaire de vecteurs de Killing avec des coefficients constants (1 et $\Omega_{\mathcal{H}}$), $\vec{\ell}$ est également un vecteur de Killing ⁶. On peut vérifier que

$$\left. \vec{\ell} \cdot \vec{\ell} \right|_{r=R_{\mathcal{H}}} = 0, \tag{5.32}$$

comme il se doit pour toute normale à une hypersurface lumière. Les lignes de champ du vecteur $\vec{\ell}$ sont des géodésiques lumière tangentes à \mathcal{H} . $\Omega_{\mathcal{H}}$ mesure leur enroulement et on l'appelle <u>vitesse de rotation</u> du trou noir de Kerr. Une autre interprétation de $\Omega_{\mathcal{H}}$ sera fournie par l'Eq. (5.53) plus bas.

5.5.4 Ergosphère

Le carré scalaire du vecteur de Killing $\vec{\boldsymbol{\xi}}_{(0)} = \vec{\boldsymbol{\partial}}_0$ est

$$\vec{\xi}_{(0)} \cdot \vec{\xi}_{(0)} = g_{00} = -1 + \frac{2GMr}{c^2(r^2 + a^2\cos^2\theta)}.$$
 (5.33)

Les zéros de cette fonction sont

$$r = \frac{GM}{c^2} \left(1 \pm \sqrt{1 - \bar{a}^2 \cos^2 \theta} \right). \tag{5.34}$$

^{6.} Comme $\vec{\ell}$ n'est pas linéairement indépendant de $\vec{\xi}_{(0)}$ et $\vec{\xi}_{(z)}$, il n'introduit pas de nouvelle symétrie de l'espace-temps de Kerr