Sheet 8: Proving Connectedness

Theorem 1 Let A be a bounded infinite set. Then A has a limit point.

Proof. Assume that A has no limit points. Then A is closed because it vacuously contains all its limit points. Because A is closed and bounded it is compact. Since A has no limit points, for all $a \in A$ there exists some region R_a with $a \in R_a$ such that $R_a \cap (A \setminus a) = \emptyset$. Let $A = \{R_a \mid a \in A\}$ be an open cover for A. Since A is compact there exists a finite subcover, B, of A for A. But then B is a finite open cover for A containing only regions which contain one point of A and A is an infinite set. This is a contradiction and so A must have a limit point.

Theorem 2 Let O be a nonempty, bounded, open set. Then $\sup O$ is a limit point of both O and the complement of O.

Proof. We have O is nonempty and bounded so $\sup O$ exists. Let (a;b) be a region containing $\sup O$. Suppose there are no points of O in $(a;\sup O)$. We know that regions are nonempty and since $\sup O$ is greater than every point in O, there exists a point in $(a;\sup O)$ which is greater than every point in O, but is less than $\sup O$. This is a contradiction and so there exists a point in $(a;\sup O)$ which is also in O and in (a;b). Thus, any region containing $\sup O$ must also contain an additional point from O and so $\sup O$ is a limit point of O. Additionally if we take the region (a;b) containing $\sup O$ then $(\sup O;b)$ is a nonempty region containing at least one point greater than $\sup O$ which is therefore not in O. Thus (a;b) contains a point which is in the complement of O and so $\sup O$ is a limit point of the complement of O.

Theorem 3 Let A be a set which is open and closed such that $A \neq \emptyset$ and $A \neq C$. Let B be the complement of A. Let $a \in A$ and $b \in B$ and without loss of generality assume that a < b. Now let $s = \sup(A \cap (a;b))$. Then s is a limit point of A and B.

Proof. Suppose that s is not a limit point of A. Then there exists some region (p;q) which contains s but no other points of A. Thus (p;q) contains no points of $(A \cap (a;b)) \setminus s$ as well. But $s \geq x$ for all $x \in A \cap (a;b)$ there exists an element of (p;s) which is greater than or equal to every element of $A \cap (a;b)$ but less than s. This is a contradiction and so s must be a limit point of A.

To show s is a limit point of B consider two cases.

Case 1: Suppose $s \neq b$. First suppose s > b. Then there exists $c \in (b; s)$. For all $x \in A \cap (a; b)$ we have x < b < c so c is an upper bound for $A \cap (a; b)$ which is less than s. This is a contradiction so s < b. Suppose that s < a. Then for all $x \in A \cap (a; b)$ we have s < a < x which is a contradiction since $s \geq x$ for all $x \in A \cap (a; b)$. Thus, $s \in (a; b)$. Consider the region (s; b). Suppose there exists $x \in (s; b)$ such that $x \in A$. Then $x \in A \cap (s; b) \subseteq A \cap (a; b)$. But this is a contradiction since x > s. So for all $x \in (s; b)$ we have $x \in B$ so $(s; b) \subseteq B$. But then every region containing s will contain a point in $(s; b) \subseteq B$ so s is a limit point of B.

Case 2: Suppose s = b. Then A is closed and so B is open. Thus there exists some region $R \subseteq B$ such that $s \in R$. But then every region containing s will intersect $R \setminus s$ nontrivially so s must be a limit point of B.

Theorem 4 If every bounded nonempty point set has a least upper bound and regions are nonempty, then the only sets that are both open and closed are C and \emptyset .

Proof. Suppose to the contrary that there exists an open and closed set A such that $A \neq \emptyset$ and $A \neq C$. Then we can construct B, (a; b) and s as in Theorem 3 so that s is a limit point of both A and B. But A is closed so $s \in A$. But A is open so B is closed and since s is a limit point of B we have $s \in B$ which is a contradiction. Therefore the only sets which are open and closed must be \emptyset and B.