

High G Flocculation

Roswell Lo, Mehrin Selimgir, Kanha Matai

Optimizing Flocculation

More at https://github.com/AguaClara/

AguaClara

- Clay particles aggregate to form flocs in flocculator
- Flocs at critical size settle more easily in sedimentation tank.

We want as many flocs as possible to be above a critical size.

AguaClara

- •Last semester, High G researched optimal values of G
- •Shear forces above 100 Hz had higher effluent turbidity

Pressure Increased Throughout our experiments

Pressure increase is a problem in our particle removal research!

Pressure increase in flocculator tubing is an issue that affects particle removal teams, although not our AguaClara flocculators.

- New flocculator design= better particle removal research!
- •Aid in becoming more open-sourced!
- •Find that optimal G!

Trial Process Flow Diagram

Effect of Hydrophobic tubing on pressure AguaClara build up

Control Experiment with Water Only

Coagulant shows an impact on pressure build up

Headloss Over Time in Regular Piping (Water+Coagulant)

Effect of Coagulant on Pressure (No Clay) AguaClara

Headloss over time in Hydrophobic (Water+Coagulant)

Pumping air bubbles may reduce pressure AguaClara build up

AguaClara

Current Conclusions

- Hydrophobic tubing is insignificant in reducing pressure build up
- Coagulant has an impact on pressure build up

Future Work

 Evaluate whether pressure build up can be mitigated by running the water pump at full speed for a short time.

 Determine an optimal G value by running trials at G values lower than 100 Hz.

 Conduct experiments to determine a relationship between coagulant dose and optimal G through varied coagulant dose trials.

Questions and Recommendations

Roswell Lo // rl732@cornell,edul

Mehrin Selimgir // ms3442@cornell.edu

Kanha Matai // km694@cornell.edu

Appendix Slides

Make s are using team co

Make si are usir team co

PaCI Dosing Calculations

```
from aide design.play import*
#inputs
C \text{ sys} = 1.4*(u.mg/u.L)
C labstock = 70.9*(u.g/u.L)
Q_{sys} = 1.48*(u.mL/u.s)
K dilution = .8*(u.mL/u.L)
V_{resivor} = 5*(u.L)
Frac resivor = .76
Q per rpm = .001828 * (u.mL/u.s)
#Calculations
M_flow_coag = (Q_sys * C_sys).to(u.mg/u.s)
C resivor = (C labstock * K dilution).to(u.gram/u.L)
Q_resivor = (M_flow_coag / C_resivor).to(u.mL/u.s)
V lab = ((V resivor * C resivor) / C labstock).to(u.L)
#Outputs
RPM = Q resivor / Q per rpm
RunTime = ((V resivor * Frac resivor) / O resivor).to(u.hour)
print('The RPM needed for this coagulent dosage is' ,RPM)
print('The run time is ', RunTime)
```


Appendix 2: Python Code

Flocculator Design Calculations

```
from aide design.play import*
import math as m
#Inputs
Q reactor=(4/3) *(u.mL/u.s) # flow rate of the system
Gtheta goal=20000 #target G*theta to design flocculator to
Diam floctube=(3/16)*(u.inch)
R c=5*u.cm #radius of curvature (the radius of the tube the flocculator is wrapped around)
Re pipetransition=2100
v=(1*10**-6)*(u.m**2/u.s)
e_pvc=0.12*u.mm #roughness of PVC Re_pipetransition
#Calculations
Re f= ((4*0 reactor)/(np.pi*Diam floctube*v)).to(u.dimensionless)
print(Re f)
#def fric function(Q reactor, Diam floctube, v,e pvc)
if Re f > Re pipetransition:
 print('Re f is greater than Re pipetransition')
 fric=0.25/((m.log((e pvc/3.7*Diam floctube)+(5.74/(Re f**0.9))))**2)
else:
 fric=64/(Re_f)
 print('Re f is not greater than Re pipetransition')
 print(fric)
h f=fric*(8/(pc.gravity*np.pi**2))*((L*Q reactor**2)/(Diam floctube**5))
R=R c.to(u.inch)
De=(((Diam floctube/R)**2)*Re f)
print(De)
friction_ratio=1+(0.33*m.log(De)**4)
print(friction_ratio)
```


Flocculator Design Calculations

```
h friction=h f*friction ratio
Area=(np.pi/4)*Diam_floctube**2
theta=(Area*L)/Q reactor
ED_floc=(h_friction*pc.gravity)/theta
epsilon=ED floc.to(u.mW/u.kg)
print('Energy dissipation rate is',epsilon)
G floc=((epsilon/v)**(1/2)).to(u.second**-1)
print(G floc)
theta goal=(Gtheta goal/G floc).to(u.minute)
print(theta goal)
L goal=theta goal*(Q reactor/Area)
L floc=L goal
print('The length of flocculator tubing should be', L floc.to(u.ft))
```

Appendix 3:

Calculating required Q.plant based on sed tank uplow of 3 mm/s

$$V_{sed} := 2 \frac{mm}{s}$$
 $D_{sed} := 1 \cdot in$

$$A_{sed}(D) := \pi \cdot \frac{D^2}{4}$$
 $A_{sed}(D_{sed}) = 5.067 \times 10^{-4} \text{ m}^2$

$$Q_{sed} := V_{sed} \cdot A_{sed}(D_{sed}) = 1.013 \cdot \frac{mL}{s}$$

The upflow velocity in the tube settler needs to be fixed (2mm/s) to allow formation of a floc blanket