4. Closeness

Math 4341 (Topology)

▶ Let (X, \mathcal{T}) be a topological space, and let $Y \subset X$.

- ▶ Let (X, \mathcal{T}) be a topological space, and let $Y \subset X$.
 - The *interior* of Y, denoted \mathring{Y} or Int Y, is the union of all open subsets of X contained in Y.

- ▶ Let (X, \mathcal{T}) be a topological space, and let $Y \subset X$.
 - The *interior* of Y, denoted \mathring{Y} or Int Y, is the union of all open subsets of X contained in Y.
 - The *closure* of Y, denoted \overline{Y} , is the intersection of all closed subsets of X containing Y.

- ▶ Let (X, T) be a topological space, and let $Y \subset X$.
 - The *interior* of Y, denoted \mathring{Y} or Int Y, is the union of all open subsets of X contained in Y.
 - The *closure* of Y, denoted \overline{Y} , is the intersection of all closed subsets of X containing Y.
 - ▶ The subset *Y* is called *dense* in *X* if $\overline{Y} = X$.

- ▶ Let (X, \mathcal{T}) be a topological space, and let $Y \subset X$.
 - The *interior* of Y, denoted \mathring{Y} or Int Y, is the union of all open subsets of X contained in Y.
 - The *closure* of Y, denoted \overline{Y} , is the intersection of all closed subsets of X containing Y.
 - ▶ The subset *Y* is called *dense* in *X* if $\overline{Y} = X$.
- Int Y is open, since it is a union of open sets. Likewise, \overline{Y} is closed, and we have

$$\operatorname{Int} Y \subset Y \subset \overline{Y}.$$

- ▶ Let (X, T) be a topological space, and let $Y \subset X$.
 - The *interior* of Y, denoted \mathring{Y} or Int Y, is the union of all open subsets of X contained in Y.
 - ▶ The *closure* of Y, denoted \overline{Y} , is the intersection of all closed subsets of X containing Y.
 - ▶ The subset Y is called *dense* in X if $\overline{Y} = X$.
- Int Y is open, since it is a union of open sets. Likewise, \overline{Y} is closed, and we have

$$\operatorname{Int} Y \subset Y \subset \overline{Y}.$$

▶ Y is open iff Y = Int Y and Y is closed iff $Y = \overline{Y}$. Moreover, Int Y is the largest open subset contained in Y, and \overline{Y} is the smallest closed subset containing Y.

- ▶ Let (X, \mathcal{T}) be a topological space, and let $Y \subset X$.
 - The *interior* of Y, denoted \mathring{Y} or Int Y, is the union of all open subsets of X contained in Y.
 - ▶ The *closure* of Y, denoted \overline{Y} , is the intersection of all closed subsets of X containing Y.
 - ▶ The subset *Y* is called *dense* in *X* if $\overline{Y} = X$.
- Int Y is open, since it is a union of open sets. Likewise, \overline{Y} is closed, and we have

$$\mathsf{Int}\, Y \subset Y \subset \overline{Y}.$$

- ▶ Y is open iff $Y = \operatorname{Int} Y$ and Y is closed iff $Y = \overline{Y}$. Moreover, $\operatorname{Int} Y$ is the largest open subset contained in Y, and \overline{Y} is the smallest closed subset containing Y.
- ▶ Note that $Int(X \setminus Y) = X \setminus \overline{Y}$ and $\overline{X \setminus Y} = X \setminus Int(Y)$.

▶ **Proposition 4.1.** Let *Y* and *Z* be subsets of a topological space *X*. Then

- ▶ **Proposition 4.1.** Let *Y* and *Z* be subsets of a topological space *X*. Then
 - $\blacktriangleright \ \ (i) \ \overline{Y \cup Z} = \overline{Y} \cup \overline{Z},$

- ▶ **Proposition 4.1.** Let *Y* and *Z* be subsets of a topological space *X*. Then
 - $(i) \ \overline{Y \cup Z} = \overline{Y} \cup \overline{Z},$
 - $\blacktriangleright \text{ (ii) } \overline{Y \cap Z} \subset \overline{Y} \cap \overline{Z},$

- ▶ **Proposition 4.1.** Let *Y* and *Z* be subsets of a topological space *X*. Then
 - $(i) \ \overline{Y \cup Z} = \overline{Y} \cup \overline{Z},$
 - $\blacktriangleright \text{ (ii) } \overline{Y \cap Z} \subset \overline{Y} \cap \overline{Z},$
 - ▶ (iii) $Int Y \cup Int Z \subset Int(Y \cup Z)$, and

- ▶ Proposition 4.1. Let Y and Z be subsets of a topological space X. Then
 - $(i) \ \overline{Y \cup Z} = \overline{Y} \cup \overline{Z},$
 - $\blacktriangleright \text{ (ii) } \overline{Y \cap Z} \subset \overline{Y} \cap \overline{Z},$
 - ▶ (iii) $Int Y \cup Int Z \subset Int(Y \cup Z)$, and
 - $(iv) Int Y \cap Int Z = Int(Y \cap Z).$

- ▶ Proposition 4.1. Let Y and Z be subsets of a topological space X. Then
 - $(i) \ \overline{Y \cup Z} = \overline{Y} \cup \overline{Z},$
 - $\blacktriangleright \text{ (ii) } \overline{Y \cap Z} \subset \overline{Y} \cap \overline{Z},$
 - ▶ (iii) $Int Y \cup Int Z \subset Int(Y \cup Z)$, and
 - $(iv) Int Y \cap Int Z = Int(Y \cap Z).$
- Proof. We will show (i). The remaining ones are similar.

- ▶ Proposition 4.1. Let Y and Z be subsets of a topological space X. Then
 - $(i) \ \overline{Y \cup Z} = \overline{Y} \cup \overline{Z},$
 - $\blacktriangleright \text{ (ii) } \overline{Y \cap Z} \subset \overline{Y} \cap \overline{Z},$
 - ▶ (iii) $Int Y \cup Int Z \subset Int(Y \cup Z)$, and
 - $(iv) Int Y \cap Int Z = Int(Y \cap Z).$
- Proof. We will show (i). The remaining ones are similar.
 - Since $\overline{Y} \cup \overline{Z}$ is a closed subset containing $Y \cup Z$, we have $\overline{Y \cup Z} \subset \overline{Y} \cup \overline{Z}$.

- ▶ Proposition 4.1. Let Y and Z be subsets of a topological space X. Then
 - $(i) \ \overline{Y \cup Z} = \overline{Y} \cup \overline{Z},$
 - $\blacktriangleright \text{ (ii) } \overline{Y \cap Z} \subset \overline{Y} \cap \overline{Z},$
 - ▶ (iii) $Int Y \cup Int Z \subset Int(Y \cup Z)$, and
 - $(iv) Int Y \cap Int Z = Int(Y \cap Z).$
- ▶ *Proof.* We will show (i). The remaining ones are similar.
 - Since $\overline{Y} \cup \overline{Z}$ is a closed subset containing $Y \cup Z$, we have $\overline{Y \cup Z} \subset \overline{Y} \cup \overline{Z}$.
 - Since $\underline{Y} \subset \overline{Y \cup Z}$ and the latter set is closed, we have $\overline{Y} \subset \overline{Y \cup Z}$. For the same reason $\overline{Z} \subset \overline{Y \cup Z}$. Hence $\overline{Y} \cup \overline{Z} \subset \overline{Y \cup Z}$.

In a topological space X, we say that U is a *neighborhood* (nbhd) of a point x if U is open and $x \in U$.

- In a topological space X, we say that U is a *neighborhood* (nbhd) of a point x if U is open and $x \in U$.
- **Definition**. Let $Y \subset X$. Then

- In a topological space X, we say that U is a *neighborhood* (nbhd) of a point x if U is open and $x \in U$.
- **Definition**. Let $Y \subset X$. Then
 - ▶ The *boundary* of Y, denoted ∂Y , is the set

 $\partial Y = \{x \in X \mid U \cap Y \neq \emptyset \text{ and } U \cap Y^c \neq \emptyset \text{ for all nbhds } U \text{ of } x\}.$

That is, $x \in \partial Y$ iff all nbhds of x intersect both Y and Y^c .

- ▶ In a topological space X, we say that U is a *neighborhood* (nbhd) of a point x if U is open and $x \in U$.
- **Definition**. Let $Y \subset X$. Then
 - ▶ The *boundary* of Y, denoted ∂Y , is the set

$$\partial Y = \{ x \in X \mid U \cap Y \neq \emptyset \text{ and } U \cap Y^c \neq \emptyset \text{ for all nbhds } U \text{ of } x \}.$$

That is, $x \in \partial Y$ iff all nbhds of x intersect both Y and Y^c .

A *limit point* of Y is a point $x \in X$ with the property that all its nbhds intersect Y in a point which is not x itself. Let Y' denote the set of all limit points of Y.

- In a topological space X, we say that U is a *neighborhood* (nbhd) of a point x if U is open and $x \in U$.
- **Definition**. Let $Y \subset X$. Then
 - ▶ The *boundary* of Y, denoted ∂Y , is the set

$$\partial Y = \{ x \in X \mid U \cap Y \neq \emptyset \text{ and } U \cap Y^c \neq \emptyset \text{ for all nbhds } U \text{ of } x \}.$$

That is, $x \in \partial Y$ iff all nbhds of x intersect both Y and Y^c .

- A limit point of Y is a point x ∈ X with the property that all its nbhds intersect Y in a point which is not x itself. Let Y' denote the set of all limit points of Y.
- ▶ **Example.** Let $Y = [0,1) \cup \{2\} \subset \mathbb{R}$. Then Int Y = (0,1), $\bar{Y} = [0,1] \cup \{2\}$, $\partial Y = \{0,1,2\}$, and Y' = [0,1].

- ▶ **Theorem 4.2**. Let $Y \subset X$. Then
 - $(i) \partial Y = X \setminus (\operatorname{Int} Y \cup \operatorname{Int}(X \setminus Y)) = \overline{Y} \cap \overline{X \setminus Y},$
 - ightharpoonup (ii) $\overline{Y} = Y \cup \partial Y$, and
 - $(iii) \overline{Y} = Y \cup Y'.$

- ▶ **Theorem 4.2**. Let $Y \subset X$. Then
 - $(i) \partial Y = X \setminus (\operatorname{Int} Y \cup \operatorname{Int}(X \setminus Y)) = \overline{Y} \cap \overline{X \setminus Y},$
 - ightharpoonup (ii) $\overline{Y} = Y \cup \partial Y$, and
 - $\blacktriangleright \text{ (iii) } \overline{Y} = Y \cup Y'.$
- ▶ *Proof.* (i) is equivalent to $X \setminus \partial Y = \text{Int } Y \cup \text{Int}(X \setminus Y)$.
 - Let $x \in X \setminus \partial Y$. Then there is a nbhd U of x so that $U \subset Y$ or $U \subset X \setminus Y$. Hence $x \in IntY$ or $x \in Int(X \setminus Y)$.
 - ▶ Suppose $x \in IntY$. Then there is an open set U such that $x \in U \subset Y$. Since $U \cap Y^c = \emptyset$, we have $x \notin \partial Y$. Similarly, if $x \in Int(X \setminus Y)$, there is an open nbhd U of x with $U \cap Y = \emptyset$, so once again $x \notin \partial Y$. This shows (i).

- ▶ **Theorem 4.2**. Let $Y \subset X$. Then
 - $(i) \ \partial Y = X \setminus (\operatorname{Int} Y \cup \operatorname{Int}(X \setminus Y)) = \overline{Y} \cap \overline{X \setminus Y},$
 - ightharpoonup (ii) $\overline{Y} = Y \cup \partial Y$, and
 - ightharpoonup (iii) $\overline{Y} = Y \cup Y'$.
- ▶ *Proof.* (i) is equivalent to $X \setminus \partial Y = Int Y \cup Int(X \setminus Y)$.
 - Let $x \in X \setminus \partial Y$. Then there is a nbhd U of x so that $U \subset Y$ or $U \subset X \setminus Y$. Hence $x \in IntY$ or $x \in Int(X \setminus Y)$.
 - ▶ Suppose $x \in IntY$. Then there is an open set U such that $x \in U \subset Y$. Since $U \cap Y^c = \emptyset$, we have $x \notin \partial Y$. Similarly, if $x \in Int(X \setminus Y)$, there is an open nbhd U of x with $U \cap Y = \emptyset$, so once again $x \notin \partial Y$. This shows (i).
- (ii) follows from (i):

$$Y \cup \partial Y = Y \cup (\overline{Y} \cap \overline{X \setminus Y}) = \overline{Y} \cap X = \overline{Y}.$$

▶ Finally, we use (ii) and show that $Y \cup \partial Y = Y \cup Y'$. To see this, it suffices to show that $\partial Y \setminus Y = Y' \setminus Y$.

- ▶ Finally, we use (ii) and show that $Y \cup \partial Y = Y \cup Y'$. To see this, it suffices to show that $\partial Y \setminus Y = Y' \setminus Y$.
 - Let $x \in \partial Y \setminus Y$. Then any nbhd U of x intersects Y, and since $x \notin Y$, this necessarily means that U intersects Y in a point which is not x itself. Hence $x \in Y' \setminus Y$.

- ▶ Finally, we use (ii) and show that $Y \cup \partial Y = Y \cup Y'$. To see this, it suffices to show that $\partial Y \setminus Y = Y' \setminus Y$.
 - Let $x \in \partial Y \setminus Y$. Then any nbhd U of x intersects Y, and since $x \notin Y$, this necessarily means that U intersects Y in a point which is not x itself. Hence $x \in Y' \setminus Y$.
 - Let $x \in Y' \setminus Y$. Then any nbhd U of x will intersect Y; it will also intersect $X \setminus Y$, since x belongs to that set. Hence $x \in \partial Y \setminus Y$. This completes the proof.

- ▶ Finally, we use (ii) and show that $Y \cup \partial Y = Y \cup Y'$. To see this, it suffices to show that $\partial Y \setminus Y = Y' \setminus Y$.
 - Let $x \in \partial Y \setminus Y$. Then any nbhd U of x intersects Y, and since $x \notin Y$, this necessarily means that U intersects Y in a point which is not x itself. Hence $x \in Y' \setminus Y$.
 - Let $x \in Y' \setminus Y$. Then any nbhd U of x will intersect Y; it will also intersect $X \setminus Y$, since x belongs to that set. Hence $x \in \partial Y \setminus Y$. This completes the proof.
- **Remark.** The above theorem provides us with the following useful characterization of the closure: we see that $x \in \overline{Y}$ if and only if every nbhd of x intersects Y.

Example. We claim that $\mathbb Q$ is dense in $\mathbb R$, i.e. $\overline{\mathbb Q}=\mathbb R$. To see this, it suffices to show that $\partial \mathbb Q=\mathbb R$.

- **Example**. We claim that $\mathbb Q$ is dense in $\mathbb R$, i.e. $\overline{\mathbb Q}=\mathbb R$. To see this, it suffices to show that $\partial \mathbb Q=\mathbb R$.
 - ▶ Let $x \in \mathbb{R}$ and U a nbhd of x. Since U contains some open interval and any interval contains both rational and irrational numbers, we have $U \cap \mathbb{Q} \neq \emptyset$ and $U \cap (\mathbb{R} \setminus \mathbb{Q}) \neq \emptyset$. This is exactly the condition that $x \in \partial \mathbb{Q}$.

Definition. A topological space (X, \mathcal{T}) is called

- **Definition.** A topological space (X, \mathcal{T}) is called
 - ▶ T_0 if for every pair $x \neq y$ in X, there exists a nbhd of x that does not contain y or there exists a nbhd of y that does not contain x.

- **Definition.** A topological space (X, T) is called
 - ▶ T_0 if for every pair $x \neq y$ in X, there exists a nbhd of x that does not contain y or there exists a nbhd of y that does not contain x.
 - ▶ T_1 if for every pair $x \neq y$ in X, x has a nbhd not containing y and y has a nbhd not containing x.

- **Definition.** A topological space (X, \mathcal{T}) is called
 - ▶ T_0 if for every pair $x \neq y$ in X, there exists a nbhd of x that does not contain y or there exists a nbhd of y that does not contain x.
 - ▶ T_1 if for every pair $x \neq y$ in X, x has a nbhd not containing y and y has a nbhd not containing x.
 - ▶ T_2 (or *Hausdorff*) if for every pair $x \neq y$ in X, there exists nbhds U_x and U_y of x and y respectively s.t. $U_x \cap U_y = \emptyset$.

- **Definition.** A topological space (X, \mathcal{T}) is called
 - ▶ T_0 if for every pair $x \neq y$ in X, there exists a nbhd of x that does not contain y or there exists a nbhd of y that does not contain x.
 - ▶ T_1 if for every pair $x \neq y$ in X, x has a nbhd not containing y and y has a nbhd not containing x.
 - ▶ T_2 (or *Hausdorff*) if for every pair $x \neq y$ in X, there exists nbhds U_x and U_y of x and y respectively s.t. $U_x \cap U_y = \emptyset$.
- ▶ **Proposition 4.4.** X is T_1 iff $\{x\}$ is closed for all $x \in X$.

- **Definition.** A topological space (X, T) is called
 - ▶ T_0 if for every pair $x \neq y$ in X, there exists a nbhd of x that does not contain y or there exists a nbhd of y that does not contain x.
 - ▶ T_1 if for every pair $x \neq y$ in X, x has a nbhd not containing y and y has a nbhd not containing x.
 - ▶ T_2 (or *Hausdorff*) if for every pair $x \neq y$ in X, there exists nbhds U_x and U_y of x and y respectively s.t. $U_x \cap U_y = \emptyset$.
- ▶ **Proposition 4.4.** *X* is T_1 iff $\{x\}$ is closed for all $x \in X$.
- ▶ Proof. (⇐) Let $x \neq y$ in X. Then $X \setminus \{x\}$ is a nbhd of y not containing x, and $X \setminus \{y\}$ is a nbhd of x not containing y. (⇒) Every $y \in X$ has a nbhd U_y not containing x. Since $X \setminus \{x\} = \bigcup_{y \neq x} U_y$ is open, $\{x\}$ is closed.

Example. Suppose X contains at least two points. With the trivial topology X is not T_0 (or T_1 or T_2), since the only nbhd of a point X is X.

- **Example.** Suppose X contains at least two points. With the trivial topology X is not T_0 (or T_1 or T_2), since the only nbhd of a point X is X.
- **Example.** If X has the discrete topology, then X is Hausdorff (and T_1 and T_0).

- **Example.** Suppose X contains at least two points. With the trivial topology X is not T_0 (or T_1 or T_2), since the only nbhd of a point X is X.
- **Example.** If X has the discrete topology, then X is Hausdorff (and T_1 and T_0).
- **Example.** Let $X = \{a, b, c\}$ with the topology

$$\mathcal{T} = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}.$$

Then X is T_0 but not T_1 .

- **Example.** Suppose X contains at least two points. With the trivial topology X is not T_0 (or T_1 or T_2), since the only nbhd of a point X is X.
- **Example.** If X has the discrete topology, then X is Hausdorff (and T_1 and T_0).
- **Example.** Let $X = \{a, b, c\}$ with the topology

$$\mathcal{T} = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}.$$

Then X is T_0 but not T_1 .

- **Example.** Suppose X contains at least two points. With the trivial topology X is not T_0 (or T_1 or T_2), since the only nbhd of a point X is X.
- **Example.** If X has the discrete topology, then X is Hausdorff (and T_1 and T_0).
- **Example.** Let $X = \{a, b, c\}$ with the topology

$$\mathcal{T} = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}.$$

Then X is T_0 but not T_1 .

Example. All metric spaces (with the metric topology) are Hausdorff.

▶ **Definition.** Let X be a topological space. A *sequence* in X is a family $\{x_n\}_{n\in\mathbb{N}}$ of points in X.

- ▶ **Definition.** Let X be a topological space. A *sequence* in X is a family $\{x_n\}_{n\in\mathbb{N}}$ of points in X.
 - ▶ We say that a sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to a point $x\in X$, if for any nbhd U of x, there is an $N\in\mathbb{N}$ s.t. $x_n\in U$ for all n>N. In which case, we write $x_n\to x$.

- ▶ **Definition.** Let X be a topological space. A *sequence* in X is a family $\{x_n\}_{n\in\mathbb{N}}$ of points in X.
 - ▶ We say that a sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to a point $x\in X$, if for any nbhd U of x, there is an $N\in\mathbb{N}$ s.t. $x_n\in U$ for all n>N. In which case, we write $x_n\to x$.
 - A subsequence $\{y_n\}_{n\in\mathbb{N}}$ is a sequence such that $y_i=x_{n_i}$ for some $n_1< n_2<\dots$

- ▶ **Definition.** Let X be a topological space. A *sequence* in X is a family $\{x_n\}_{n\in\mathbb{N}}$ of points in X.
 - ▶ We say that a sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to a point $x\in X$, if for any nbhd U of x, there is an $N\in\mathbb{N}$ s.t. $x_n\in U$ for all n>N. In which case, we write $x_n\to x$.
 - A subsequence $\{y_n\}_{n \in \mathbb{N}}$ is a sequence such that $y_i = x_{n_i}$ for some $n_1 < n_2 < \dots$
- **Proposition 4.5.** If $\{y_n\}$ is a subsequence of $\{x_n\}$ and $x_n \to x$, then $y_n \to x$.

- ▶ **Definition.** Let X be a topological space. A *sequence* in X is a family $\{x_n\}_{n\in\mathbb{N}}$ of points in X.
 - ▶ We say that a sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to a point $x\in X$, if for any nbhd U of x, there is an $N\in\mathbb{N}$ s.t. $x_n\in U$ for all n>N. In which case, we write $x_n\to x$.
 - A subsequence $\{y_n\}_{n \in \mathbb{N}}$ is a sequence such that $y_i = x_{n_i}$ for some $n_1 < n_2 < \dots$
- **Proposition 4.5.** If $\{y_n\}$ is a subsequence of $\{x_n\}$ and $x_n \to x$, then $y_n \to x$.
- **Example.** In the trivial topology, all sequences converge to any given point. In the discrete topology, for a sequence $\{x_n\}$ to converge to a point x, it has to be constantly equal to x for all large enough n.

- ▶ **Definition.** Let X be a topological space. A *sequence* in X is a family $\{x_n\}_{n\in\mathbb{N}}$ of points in X.
 - ▶ We say that a sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to a point $x\in X$, if for any nbhd U of x, there is an $N\in\mathbb{N}$ s.t. $x_n\in U$ for all n>N. In which case, we write $x_n\to x$.
 - A subsequence $\{y_n\}_{n\in\mathbb{N}}$ is a sequence such that $y_i=x_{n_i}$ for some $n_1< n_2<\dots$
- **Proposition 4.5.** If $\{y_n\}$ is a subsequence of $\{x_n\}$ and $x_n \to x$, then $y_n \to x$.
- **Example.** In the trivial topology, all sequences converge to any given point. In the discrete topology, for a sequence $\{x_n\}$ to converge to a point x, it has to be constantly equal to x for all large enough n.
- **Example.** The constant sequence is convergent, regardless of the topology on the space.

▶ **Proposition 4.6.** Let (X, d) be a metric space with the metric topology. Then a sequence $\{x_n\}$ in X converges to $X \in X$ if and only if

$$\forall \epsilon > 0, \exists N > 0 : n > N \Rightarrow d(x_n, x) < \epsilon.$$

▶ **Proposition 4.6.** Let (X, d) be a metric space with the metric topology. Then a sequence $\{x_n\}$ in X converges to $X \in X$ if and only if

$$\forall \epsilon > 0, \exists N > 0 : n > N \Rightarrow d(x_n, x) < \epsilon.$$

Proof. There are two things to prove.

▶ **Proposition 4.6.** Let (X, d) be a metric space with the metric topology. Then a sequence $\{x_n\}$ in X converges to $X \in X$ if and only if

$$\forall \epsilon > 0, \exists N > 0 : n > N \Rightarrow d(x_n, x) < \epsilon.$$

- Proof. There are two things to prove.
 - Suppose $x_n \to x$ and let $\epsilon > 0$. Let $U = B_d(x, \epsilon)$. Then there exists an N > 0 s.t. $x_n \in U$ for all n > N, but this says that $d(x_n, x) < \epsilon$ for all n > N.

▶ **Proposition 4.6.** Let (X, d) be a metric space with the metric topology. Then a sequence $\{x_n\}$ in X converges to $X \in X$ if and only if

$$\forall \epsilon > 0, \exists N > 0 : n > N \Rightarrow d(x_n, x) < \epsilon.$$

- Proof. There are two things to prove.
 - Suppose $x_n \to x$ and let $\epsilon > 0$. Let $U = B_d(x, \epsilon)$. Then there exists an N > 0 s.t. $x_n \in U$ for all n > N, but this says that $d(x_n, x) < \epsilon$ for all n > N.
 - Let U be a nbhd of x. Then there exists an $\epsilon > 0$ s.t. $B_d(x,\epsilon) \subset U$. Now by assumption there is an N > 0 s.t. $x_n \in B_d(x,\epsilon) \subset U$ for all n > N.

Proposition 4.7. Let X be Hausdorff. If $x_n \to x$ and $x_n \to y$ in X, then x = y.

- ▶ **Proposition 4.7.** Let X be Hausdorff. If $x_n \to x$ and $x_n \to y$ in X, then x = y.
- ▶ *Proof.* Assume $x \neq y$. Choose U and V disjoint nbhds of x and y respectively. By definition of convergence, we get N_U , $N_V > 0$ such that $x_n \in U$ for all $n > N_U$ and $x_n \in V$ for all $n > N_V$. For $n > \max(N_U, N_V)$ we therefore have $x_n \in U \cap V = \emptyset$, which is a contradiction.

- ▶ **Proposition 4.7.** Let X be Hausdorff. If $x_n \to x$ and $x_n \to y$ in X, then x = y.
- ▶ *Proof.* Assume $x \neq y$. Choose U and V disjoint nbhds of x and y respectively. By definition of convergence, we get N_U , $N_V > 0$ such that $x_n \in U$ for all $n > N_U$ and $x_n \in V$ for all $n > N_V$. For $n > \max(N_U, N_V)$ we therefore have $x_n \in U \cap V = \emptyset$, which is a contradiction.
- ▶ **Definition.** Let *X* be a topological space.

- ▶ **Proposition 4.7.** Let X be Hausdorff. If $x_n \to x$ and $x_n \to y$ in X, then x = y.
- ▶ *Proof.* Assume $x \neq y$. Choose U and V disjoint nbhds of x and y respectively. By definition of convergence, we get N_U , $N_V > 0$ such that $x_n \in U$ for all $n > N_U$ and $x_n \in V$ for all $n > N_V$. For $n > \max(N_U, N_V)$ we therefore have $x_n \in U \cap V = \emptyset$, which is a contradiction.
- ▶ **Definition.** Let *X* be a topological space.
 - ▶ We say that X has a *countable basis at* $x \in X$ if there is a collection of nbhds $\{B_n\}_{n\in\mathbb{N}}$ of x s.t. if U is any nbhd of x there exists an $n \in \mathbb{N}$ s.t. $B_n \subset U$.

- ▶ **Proposition 4.7.** Let X be Hausdorff. If $x_n \to x$ and $x_n \to y$ in X, then x = y.
- ▶ *Proof.* Assume $x \neq y$. Choose U and V disjoint nbhds of x and y respectively. By definition of convergence, we get N_U , $N_V > 0$ such that $x_n \in U$ for all $n > N_U$ and $x_n \in V$ for all $n > N_V$. For $n > \max(N_U, N_V)$ we therefore have $x_n \in U \cap V = \emptyset$, which is a contradiction.
- ▶ **Definition.** Let *X* be a topological space.
 - ▶ We say that X has a *countable basis at* $x \in X$ if there is a collection of nbhds $\{B_n\}_{n\in\mathbb{N}}$ of x s.t. if U is any nbhd of x there exists an $n \in \mathbb{N}$ s.t. $B_n \subset U$.
 - lacksquare X is called *first-countable* if it has a countable basis at x for all $x \in X$.

- ▶ **Proposition 4.7.** Let X be Hausdorff. If $x_n \to x$ and $x_n \to y$ in X, then x = y.
- ▶ *Proof.* Assume $x \neq y$. Choose U and V disjoint nbhds of x and y respectively. By definition of convergence, we get N_U , $N_V > 0$ such that $x_n \in U$ for all $n > N_U$ and $x_n \in V$ for all $n > N_V$. For $n > \max(N_U, N_V)$ we therefore have $x_n \in U \cap V = \emptyset$, which is a contradiction.
- **Definition.** Let X be a topological space.
 - ▶ We say that X has a *countable basis at* $x \in X$ if there is a collection of nbhds $\{B_n\}_{n\in\mathbb{N}}$ of x s.t. if U is any nbhd of x there exists an $n \in \mathbb{N}$ s.t. $B_n \subset U$.
 - ▶ X is called *first-countable* if it has a countable basis at x for all $x \in X$.
- **Example.** All metric spaces are first-countable.

▶ **Lemma 4.8.** (The sequence lemma) Let $A \subset X$. If there is a sequence in A that converges to x then $x \in \overline{A}$. The converse holds if X is first-countable.

- ▶ **Lemma 4.8.** (The sequence lemma) Let $A \subset X$. If there is a sequence in A that converges to x then $x \in \bar{A}$. The converse holds if X is first-countable.
- ▶ *Proof.* Suppose $x_n \to x$ and $x_n \in A$ for all n. Let U be a nbhd of x; then there is an N > 0 s.t. $x_n \in U$ for all n > N. This implies that $U \cap A \neq \emptyset$. Hence $x \in \bar{A}$.

- ▶ **Lemma 4.8.** (The sequence lemma) Let $A \subset X$. If there is a sequence in A that converges to x then $x \in \bar{A}$. The converse holds if X is first-countable.
- ▶ *Proof.* Suppose $x_n \to x$ and $x_n \in A$ for all n. Let U be a nbhd of x; then there is an N > 0 s.t. $x_n \in U$ for all n > N. This implies that $U \cap A \neq \emptyset$. Hence $x \in \overline{A}$.
- ▶ Suppose X is first-countable and $x \in \bar{A}$. Let us show that there is a sequence $\{x_n\}$ in A with $x_n \to x$.

- ▶ **Lemma 4.8.** (The sequence lemma) Let $A \subset X$. If there is a sequence in A that converges to x then $x \in \bar{A}$. The converse holds if X is first-countable.
- ▶ *Proof.* Suppose $x_n \to x$ and $x_n \in A$ for all n. Let U be a nbhd of x; then there is an N > 0 s.t. $x_n \in U$ for all n > N. This implies that $U \cap A \neq \emptyset$. Hence $x \in \bar{A}$.
- ▶ Suppose X is first-countable and $x \in \bar{A}$. Let us show that there is a sequence $\{x_n\}$ in A with $x_n \to x$.
 - Let $\{B_n\}$ be a countable basis at x and define for every $n \in \mathbb{N}$ an open nbhd $U_n = \bigcap_{k=1}^n B_k$ of x. Since $x \in \overline{A}$, $U_n \cap A \neq \emptyset$.

- ▶ **Lemma 4.8.** (The sequence lemma) Let $A \subset X$. If there is a sequence in A that converges to x then $x \in \bar{A}$. The converse holds if X is first-countable.
- ▶ *Proof.* Suppose $x_n \to x$ and $x_n \in A$ for all n. Let U be a nbhd of x; then there is an N > 0 s.t. $x_n \in U$ for all n > N. This implies that $U \cap A \neq \emptyset$. Hence $x \in \bar{A}$.
- ▶ Suppose X is first-countable and $x \in \bar{A}$. Let us show that there is a sequence $\{x_n\}$ in A with $x_n \to x$.
 - Let $\{B_n\}$ be a countable basis at x and define for every $n \in \mathbb{N}$ an open nbhd $U_n = \bigcap_{k=1}^n B_k$ of x. Since $x \in \overline{A}$, $U_n \cap A \neq \emptyset$.
 - ▶ Choose $x_n \in U_n \cap A$ for every n. We claim that $x_n \to x$. To see this, let U be any nbhd of x. Since X is first-countable, there is an $N \in \mathbb{N}$ s.t. $B_N \subset U$. For all n > N, we have $x_n \in U_n \subset U_N \subset B_N \subset U$ which means that $x_n \to x$.

Remark. We will show that the sequence lemma does not hold for \mathbb{R}^{ω} in the box topology.

- **Remark.** We will show that the sequence lemma does not hold for \mathbb{R}^{ω} in the box topology.
 - Let A be the subset of \mathbb{R}^{ω} consisting of those points all of whose coordinates are positive:

$$A = \{(x_1, x_2, \cdots) \mid x_i > 0 \quad \forall i \in \mathbb{Z}_+\}.$$

- **Remark.** We will show that the sequence lemma does not hold for \mathbb{R}^{ω} in the box topology.
 - Let A be the subset of \mathbb{R}^{ω} consisting of those points all of whose coordinates are positive:

$$A = \{(x_1, x_2, \cdots) \mid x_i > 0 \quad \forall i \in \mathbb{Z}_+\}.$$

Let **0** be the origin in \mathbb{R}^{ω} , that is, the point $(0,0,\cdots)$ each of whose coordinates is 0.

- **Remark.** We will show that the sequence lemma does not hold for \mathbb{R}^{ω} in the box topology.
 - Let A be the subset of \mathbb{R}^{ω} consisting of those points all of whose coordinates are positive:

$$A = \{(x_1, x_2, \cdots) \mid x_i > 0 \quad \forall i \in \mathbb{Z}_+\}.$$

- Let $\mathbf{0}$ be the origin in \mathbb{R}^{ω} , that is, the point $(0,0,\cdots)$ each of whose coordinates is 0.
- ▶ Claim 1: In the box topology $\mathbf{0} \in \overline{A}$.

- **Remark.** We will show that the sequence lemma does not hold for \mathbb{R}^{ω} in the box topology.
 - Let A be the subset of \mathbb{R}^{ω} consisting of those points all of whose coordinates are positive:

$$A = \{(x_1, x_2, \cdots) \mid x_i > 0 \quad \forall i \in \mathbb{Z}_+\}.$$

- Let $\mathbf{0}$ be the origin in \mathbb{R}^{ω} , that is, the point $(0,0,\cdots)$ each of whose coordinates is 0.
- ▶ Claim 1: In the box topology $\mathbf{0} \in \overline{A}$.
 - ▶ Let U be any neighborhood of $\mathbf{0}$. Then there exists a basis element B such that $\mathbf{0} \in B \subset U$.

- **Remark.** We will show that the sequence lemma does not hold for \mathbb{R}^{ω} in the box topology.
 - Let A be the subset of \mathbb{R}^{ω} consisting of those points all of whose coordinates are positive:

$$A = \{(x_1, x_2, \cdots) \mid x_i > 0 \quad \forall i \in \mathbb{Z}_+\}.$$

- Let $\mathbf{0}$ be the origin in \mathbb{R}^{ω} , that is, the point $(0,0,\cdots)$ each of whose coordinates is 0.
- ▶ Claim 1: In the box topology $\mathbf{0} \in \overline{A}$.
 - ▶ Let *U* be any neighborhood of **0**. Then there exists a basis element *B* such that $\mathbf{0} \in B \subset U$.
 - Without loss of generality we can assume that

$$B = (-a_1, a_1) \times (-a_2, a_2) \times \cdots \times (-a_n, a_n) \times \cdots$$

where $a_i > 0$.

- **Remark.** We will show that the sequence lemma does not hold for \mathbb{R}^{ω} in the box topology.
 - Let A be the subset of \mathbb{R}^{ω} consisting of those points all of whose coordinates are positive:

$$A = \{(x_1, x_2, \cdots) \mid x_i > 0 \quad \forall i \in \mathbb{Z}_+\}.$$

- Let **0** be the origin in \mathbb{R}^{ω} , that is, the point $(0,0,\cdots)$ each of whose coordinates is 0.
- ▶ Claim 1: In the box topology $\mathbf{0} \in \overline{A}$.
 - ▶ Let *U* be any neighborhood of **0**. Then there exists a basis element *B* such that $\mathbf{0} \in B \subset U$.
 - Without loss of generality we can assume that

$$B = (-a_1, a_1) \times (-a_2, a_2) \times \cdots \times (-a_n, a_n) \times \cdots$$

where $a_i > 0$.

► The sequence $(\frac{1}{2}a_1, \frac{1}{2}a_2, \dots, \frac{1}{2}a_n, \dots)$ belongs to $A \cap B$, so B intersects A. Hence U also intersects A.

▶ Claim 2: There is no sequence of points in *A* converging to **0**.

- ▶ Claim 2: There is no sequence of points in A converging to **0**.
 - ightharpoonup Let (a_n) be a sequence of points in A, where

$$\mathbf{a}_n=(x_{1n},x_{2n},\cdots,x_{in},\cdots).$$

- ▶ Claim 2: There is no sequence of points in A converging to **0**.
 - ▶ Let (a_n) be a sequence of points in A, where

$$\mathbf{a}_n=(x_{1n},x_{2n},\cdots,x_{in},\cdots).$$

• Consider a basis element B for the box topology on \mathbb{R}^{ω} :

$$B = (-x_{11}, x_{11}) \times (-x_{22}, x_{22}) \times \cdots$$

- ▶ Claim 2: There is no sequence of points in A converging to **0**.
 - ightharpoonup Let (\mathbf{a}_n) be a sequence of points in A, where

$$\mathbf{a}_n=(x_{1n},x_{2n},\cdots,x_{in},\cdots).$$

• Consider a basis element B for the box topology on \mathbb{R}^{ω} :

$$B = (-x_{11}, x_{11}) \times (-x_{22}, x_{22}) \times \cdots$$

Then B contains $\mathbf{0}$, but it contains no member of the sequence (\mathbf{a}_n) since the nth coordinate x_{nn} of a_n does not belong to the interval $(-x_{nn}, x_{nn})$.

▶ **Theorem 4.9.** Let X and Y be topological spaces. If $f: X \to Y$ be continuous, then $x_n \to x$ in X implies that $f(x_n) \to f(x)$ in Y. The converse holds if X is first-countable; that is, if $x_n \to x$ implies that $f(x_n) \to f(x)$ for all convergent sequences $\{x_n\}$, then f is continuous.

- ▶ **Theorem 4.9.** Let X and Y be topological spaces. If $f: X \to Y$ be continuous, then $x_n \to x$ in X implies that $f(x_n) \to f(x)$ in Y. The converse holds if X is first-countable; that is, if $x_n \to x$ implies that $f(x_n) \to f(x)$ for all convergent sequences $\{x_n\}$, then f is continuous.
- ▶ Proof. Suppose f is continuous and $\{x_n\}$ is a sequence with $x_n \to x$. Let us show that $f(x_n) \to f(x)$. Let $U \subset Y$ be a nbhd of f(x). Then $f^{-1}(U)$ is a nbhd of x. Since $x_n \to x$, we can choose an N > 0 such that $x_n \in f^{-1}(U)$ for all n > N. Thus $f(x_n) \in U$ for all n > N, so $f(x_n) \to f(x)$.

Suppose that X is first-countable and that $f(x_n) \to f(x)$ whenever $x_n \to x$.

- Suppose that X is first-countable and that $f(x_n) \to f(x)$ whenever $x_n \to x$.
 - Let $B \subset Y$ be a closed set and $A = f^{-1}(B)$. Let us show that $\overline{A} = A$ (i.e. A is closed), which means that f is continuous.

- Suppose that X is first-countable and that $f(x_n) \to f(x)$ whenever $x_n \to x$.
 - Let $B \subset Y$ be a closed set and $A = f^{-1}(B)$. Let us show that $\overline{A} = A$ (i.e. A is closed), which means that f is continuous.
 - Let $x \in \overline{A}$ be arbitrary. Then by Lemma 4.8 (the sequence lemma), there is a sequence $\{x_n\}$ with $x_n \in A$ such that $x_n \to x$. Since $f(x_n) \in B$ and $f(x_n) \to f(x)$, we have $f(x) \in \overline{B} = B$. Hence $x \in f^{-1}(B) = A$.