Financial data mining III Price movement prediction in Hong Kong equity market

GROUP LCW1004

Ying Ting Chung

Au Chun Man

Review

- To learn patterns from historical data
 - using data mining
 - for forecasting future price movement
- HSI (Hang Seng Index), daily prices

Prediction Problem

Semester 1

- Finished data collection and pre-processing
- Binary classification

- Target label: "8-day bottom"

Semester 1

- K-Nearest Neighbour (k-NN)
 - Low bias
- Sliding window testing
 - Model changes through time

D	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
\vdash			m ' '				T			
			Training	set			Test	point		

Data Visualization

- Label against various input attribute
- Label distribution through time
- Input Attributes:

Slope of SMA(22) and EMA(8, 13, 18)
Price Deviation from SMA(9, 22) and EMA(8, 16)
Percentage aggregate return for last 5 and 6 days
Daily gap open

Prediction Target: 5-day bottom

Data Visualization

Parameter Estimation

Selecting no. of voting neighbours

Parameter Estimation

- Selecting no. of days looking back
 - Window size reduced, performance improved?

Problem with fixed sliding window

- Given 3-NN majority voting
- Property of target label
 - Continually positive

- Fail to learn
 - From history
 - From input variable

- Recent labels are more important in trenddominant market
- New dimension in feature space:
 Exponential function of time index
- Recent data vectors pulled closer to current query point
- i.e. Memory decay
- controversial

New dimension in feature space:
 Sine function of time index

Data vectors at regular interval pulled closer

to each other

Choice of period?

Result

- Looking back: 540 days
- K = 3 neighbours

```
=== Confusion Matrix ===

a b c actual class
324 0 77 | a = -1
1 2 2 | b = 0
93 0 215 | c = 1
```

- Error rate: 24%
- Precision: 0.731; Recall: 0.698

Limitation of label definition

- Consider a use case:
 - A trader buys on first occurrence of positive prediction?
 - He needs a smart trading rule

Prediction Problem

Re-consider label definition

- N-bottom + r% gain after N days
 - For each time point t, if its closing price is lower than the low price by m% after N time points, then time point t is a hold-N-bottom.

Trading signal

Re-consider label definition

- N-bottom + m% stop-loss within N days
 - For each time point t, if its closing price is lower than the minimum low price within N time points in the future by m%, then time point t is a stop-Nbottom.

- More specific, more useful
- Fewer positive labels -> imbalanced dataset

New Result

- Looking back: 120 days
- K = 3 neighbours

```
=== Confusion Matrix ===

a b c actual class
791 0 79 | a = -1
2 12 0 | b = 0
131 0 119 | c = 1
```

- Error rate: 19.6%
- Precision: 0.601; Recall: 0.476

Artificial Neural Networks

- Theory
- Input and Output Selection
- Experiment

Artificial Neural Networks - Theory

Back Propagation Algorithm

- Step 1 : forward pass
- Step 2 : backward pass
- Step 3 : weight updates

Back Propagation Algorithm – Step 1 :forward pass

• set of input vectors: $(x_1, x_2, ..., x_p)$

set of output vectors: (y₁,y₂,...,y_p)

$$y_p = f\left(\sum_p w_{kj} h_p + \theta_0\right)$$

$$h_{p} = f\left(\sum_{p} w_{ji} x_{p} + \theta_{h}\right)$$

Back Propagation Algorithm – Step 1 :forward pass

• f(.) is a sigmoid activation function

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

(c) Sigmoid function

Back Propagation Algorithm – Step 2:backward pass

• Sum of squared errors:

Gradient Descent

- To minimize E
- partial derivation $\frac{\partial E}{\partial W_i}$

Gradient Descent – local minimum

Step 3: weight updates

Weight updating:

$$\Delta w(t) = -\,\eta \frac{\partial E}{\partial w} +\,\alpha \Delta w(t-1)$$

learning rate : η

momentum factor : α

Learning Rate & Momentum

Limitations

- requires lots of supervised training, with lots of input-output examples
- there is no guarantee that the system will converge to an acceptable solution
 - ~local minimum

Experiment

- The learning rate :0.25 to 0.5, and
- Momentum set to WEKA's default:0.2
- the size of training set: 500 to 400000.

Experiment

Confusion matrix

		Predicted Positive	Negative
True	Positive Negative	TP FP	FN TN

Experiment - Result

Size of training set	50	0	500	00	100	000	200	000	300	00	4000	000
Learning rate = 0.25	[399 111	69 44]	[402 109	66 43	[400 107	68 45]	[400 110	68 42	[405 103	63 38]	N/	A
Learning rate = 0.3	[445 148	²³ ₄]	[402 106	66 46]	[401 106	67 46]	[399 106	69 46]	[392 106	76 46]	[392 112	76] 40]
Learning rate = 0.35	[435 145	³³ ₇]	[393 109		[402 114	66] 38]	[402 113	66] 39]	[404 115	64 37]	[402 114	66 38]
Learning rate = 0.5	[393 129	73 23	[351 91	117 61	[349 91	119 61	[356 92	112 60	[360 94	108 ₅₈]	N/	A

Result analysis

Accuracy =
$$\frac{TP+TN}{TP+FP+TN+FN}$$

Precision =
$$\frac{TP}{TP+FP}$$

Result analysis

	RSI(14)	Accuracy	Precision	
4 day bottom	[577 451] [372 316]	0.5209627	0.6080084	
8 day bottom	[438 404] [405 465]	0.4274533	0.5185729	
12 day bottom	[451 431] [379 447]	0.5257611	0.54337349	
16 day bottom	[355 420] [413 516]	0.5111502	0.46223958	
20 day bottom	[314 379] [423 564]	0.5226190	0.42605156	

Size of training set	Learning rate = 0.35	Accuracy	Precision
500	[435 33] 145 7]	0.716129032	0.75
5000	[393 75] 109 43]	0.754838709	0.782868525
10000	[402 66] 114 38]	0.709677419	0.779068767
20000	[402 66] 113 39]	0.711290322	0.780582524
30000	[404 64] 115 37]	0/711290322	0.778420038
40000	[402 66] 114 38]	0.709677419	0.779069767

Result analysis - Problem?

False Positive

Special FP rate =
$$\frac{FP}{FP+TN+TP+FN}$$

		Predicted Positive	Negative
True	Positive	TP	FN
	Negative	$\left(\begin{array}{c}FP\end{array}\right)$	TN

False Positive

	RSI(14)	Special FP rate
4 day bottom	[577 451] [372 316]	0.216783216
8 day bottom	[438 404] 405 465]	0.23656542
12 day bottom	[451 431] [379 447]	0.221896955
16 day bottom	[355 420] 413 516]	0.242370892
20 day bottom	[314 379] 423 564]	0.251785714
Size of training set	Learning rate = 0.35	Special FP rate
500	[435 33] 145 7	0.233870967
5000	[393 75] 109 43]	0.175806451
10000	[402 66] 114 38]	0.183870967
20000	[402 66] 113 39]	0.182258064
30000	[404 64] 115 37]	0.185483871

Discussion

- 100% accuracy is impossible in practice
- Effectiveness of classification model also depends on how it is used, i.e. coupled with trading rules

Further Improvement

