Multiple Animals

Johannes Signer & Brian Smith

January 2022

Why should we care?

- Most telemetry studies consist of many animals.
- Often individual behave very differently (and we can fully account for these differences in a model).
- We are often interested in population-level effects.

How-to account for individual differences

- 1. Ignore individuals and fit data to all animals.
- 2. Fit an individual model for each individual.
- 3. Use a mixed-model strategy.

Resource Selection Function

- Global availability (unmatched)
- (weighted) Logistic regression¹

Step-Selection Function

- Availability conditioned on current position (matched)
- Conditional logistic regression

¹Fithian & Hastie. "Finite-sample equivalence in statistical models for presence-only data." The annals of applied statistics 7.4 (2013): 1917.

Resource Selection Function

- Global availability (unmatched)
- (weighted) Logistic regression¹

Step-Selection Function

- Availability conditioned on current position (matched)
- Conditional logistic regression

¹Fithian & Hastie. "Finite-sample equivalence in statistical models for presence-only data." The annals of applied statistics 7.4 (2013): 1917.

Resource Selection Function

- Global availability (unmatched)
- (weighted) Logistic regression¹

Step-Selection Function

- Availability conditioned on current position (matched)
- Conditional logistic regression

¹Fithian & Hastie. "Finite-sample equivalence in statistical models for presence-only data." The annals of applied statistics 7.4 (2013): 1917.

2. Fit an individual model for each individual.

- A somewhat naive approach could be, to fit to each individual animal the model of interests (e.g., a SSF or an iSSF).
- In a next step we can then "do statistics" with the coefficients of the individual model. For example, we could
 - calculate the mean and confidence intervals to obtain population level effects, or
 - use a linear models to relate coefficient values to other explanatory covariates.
- A difficulty is if we have extreme observations or some levels of a categorical covariate is not observed for all animals.

There are different programming strategies, how one could approach such a situation:

- a. Write customized code for each individual.
- b. Use some kind of looping structure (for example a for-loop).
- c. Use a nest-unnest approach, as we have seen previously (for example with the purr package).

An example of this approach was used in Signer et al. 2019

Figure 1: Source Signer et al. 2019

3. Use a mixed-model strategy.

- For HSF this is relatively straight forward. We can make use of well established tools that were developed for GLMMs.
- For iSSFs this is slightly more challenging. We have to use a likelihood equivalent reformulation of the iSSF as a poisson regression with random effects for each strata with a fixed large variance.

Random effects for HSFs

• Random effects were proposed for HSFs over 15 years ago²

 $^{^2}$ Gillies et al. "Application of random effects to the study of resource selection by animals." Journal of Animal Ecology 75.4 (2006): 887-898.

Random effects for HSFs

Random effects were proposed for HSFs over 15 years ago²

Application of random effects to the study of resource selection by animals CS Gillies, M Hebblewhite. SE Nelsen... - Journal of Animal ..., 2006 - Wiley Online Library) RSF models to those with random effects for the intercept, categorical ... of random effects in this empirical example, we simulated data for three common scenarios where random effects ... \$\frac{1}{2}\$ Save \$\sqrt{9}\$ Cite Cited by 78 Pealted articles All 22 versions

 $^{^2}$ Gillies et al. "Application of random effects to the study of resource selection by animals." Journal of Animal Ecology 75.4 (2006): 887-898.

Random effects for HSFs

Random effects were proposed for HSFs over 15 years ago²

 Majority of studies between 2016 and 2020 (80 %) only include random intercept and no random slope(s).

²Gillies et al. "Application of random effects to the study of resource selection by animals." Journal of Animal Ecology 75.4 (2006): 887-898.

- Data on habitat selection of Mountain Goats³
- Generalized linear model with binomial response (GLM), random intercept (GLMM 1), and random intercept and slopes (GLMM 2).

³Lele & Keim, (2006) Weighted distributions and estimation of resource selection probability functions. Ecology 87, 3021–3028.

Let us fit three models to tracking data from wild goats:

```
# This is a naive approach (ignoring different animals)
m1 <- glmmTMB(STATUS ~ ELEVATION + SLOPE,
              data = goats, family = binomial())
# This is the random intercept model
m2 <- glmmTMB(STATUS ~ ELEVATION + SLOPE + (1 | ID),
              data = goats, family = binomial())
# This is a random slope and intercept model
m3 <- glmmTMB(STATUS ~ ELEVATION + SLOPE +
                (ELEVATION + SLOPE | ID),
              data = goats, family = binomial())
```

Comparing the model coefficients:

⁴Schielzeth, & Forstmeier. "Conclusions beyond support: overconfident estimates in mixed models." Behavioral Ecology 20.2 (2008): 416-420.

Comparing the model coefficients:

For RSF use random intercept and random slope(s)⁴.

⁴Schielzeth, & Forstmeier. "Conclusions beyond support: overconfident estimates in mixed models." Behavioral Ecology 20.2 (2008): 416-420.

Accounting for animal-specific variation (SSF)

Conditional logistic regression with random effects is more difficult

$$P(y_{ntj} = 1 | \boldsymbol{x}_{nt\cdot}) = \pi_{ntj} = \frac{\exp(\boldsymbol{\beta}^{\top} \boldsymbol{x}_{ntj})}{\sum_{j=1}^{J} \exp(\boldsymbol{\beta}^{\top} \boldsymbol{x}_{nti})}$$

- n = 1, ..., N individuals, with realized steps,
- time points $t = 1, ..., T_n$, with
- $j = 1, \ldots, J_{n,t}$ location that were either used or available.

- The conditional logistic regression is a special case of the multinomial model.
- The multinomial model is likelihood-equivalent to the Poisson model.
- Thus we can rewrite to conditional logistic regression as a Poisson regression.

SSF as poisson model

Reformulation as Poisson model⁵ ⁶

$$\mathsf{E}(y_{nti}) = \mu_{nti} = \exp(\alpha_{nt} + \boldsymbol{\beta}^{\top} \boldsymbol{x}_{nti} + \boldsymbol{u}^{\top} \boldsymbol{z}_{nti}) \;, \quad y_{nti} \sim \mathsf{Po}(\mu_{nti})$$

- $\alpha_{nt} \sim N(0, \sigma_{\alpha}^2)$ are the stratum specific intercepts with σ_{α}^2 being fixed at a very large value.
- $\boldsymbol{\beta}^{\top} \boldsymbol{x}_{nti}$ are the selection coefficients and the design matrix, respectively.
- $\boldsymbol{u}^{\top}\boldsymbol{z}_{nti}$ specify the random effect structure.

⁵Armstrong et al. "Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis." BMC medical research methodology 14.1 (2014): 122.

⁶Muff, S., et al. "Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation". Journal of Animal Ecology, (2020): 89(1), 80-92.

Simulation study from Muff et al. 2020

- Simulation of movement for 20 animals with animal-specific selection coefficients.
- For RSFs sample random points within the availability domain
- For SSFs sample random steps from each location

An example from Roshier et al. 2021

- This work I did together with David Roshier from Australian Wildlife Conservancy.
- I was only involved in the statistical modeling.

Visitation of artificial watering points by the red fox (Vulpes vulpes) in semiarid Australia

```
David A. Roshier<sup>1,2</sup> | Johannes Signer<sup>3</sup> | Andrew Carter<sup>1,4</sup>
```

Data

- Telemetry data for 22 individual foxes at 20 min sampling rate
- Location of water sources (in blue)

Analysis

- 1. Revisitation rates with the recurse package¹
- 2. aKDE home ranges
- 3. integrated step selection analysis

¹Bracis, C., Bildstein, K. L., & Mueller, T. (2018). Revisitation analysis uncovers spatio-temporal patterns in animal movement data. Ecography, 41(11), 1801-1811.

Questions: iSSA

- Do foxes select for pixels closer to water sources?
- Does the selection depends on whether or not foxes are inside their home range?
- Do foxes move faster/slower when inside/outside their home range?

Habitat selection

Habitat selection of foxes inside (a) and outside (b) of their home range.

Expected displacement (i.e., how far do we expect a 'typical' fox to travel within a 20 minutes).

Key resources/publications

- Muff, S., Signer, J., & Fieberg, J. (2020). Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation. Journal of Animal Ecology, 89(1), 80-92.
- Schielzeth, H., & Forstmeier, W. (2009). Conclusions beyond support: overconfident estimates in mixed models. Behavioral ecology, 20(2), 416-420.