Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia - Departamento de Química

Fenómenos de Transferência II

2°teste B - 29 de Abril de 2015

T

Um reactor de leito fluidizado constituído por partículas de carvão é operado à pressão atmosférica e à temperatura de 1475 K. A esta temperatura o processo é limitado pela difusão do oxigénio presente no ar, em contra corrente em relação ao fluxo de CO que se forma por reacção instantânea na superfície das partículas. O carvão usado tem uma densidade de 1.28x10³Kg/m³ e as partículas são esféricas com um diâmetro médio de 1.5 cm. Considere que o coeficiente de difusão do oxigénio na mistura gasosa é de 1.0x10⁻⁴m²/s. Calcule:

- a) O tempo necessário para reduzir o diâmetro das partículas a metade, considerando válido o estado estacionário.
- b) Repita o cálculo anterior utilizando a abordagem de estado pseudo-estacionário.
- c) Qual a abordagem que lhe parece mais adequada? Justifique.
- d) Como seria afetado o processo se usasse oxigénio puro em vez de ar?

II

Num processo de fabrico de um semicondutor, lâminas de silício são expostas a uma atmosfera gasosa com átomos de fósforo. A concentração de átomos de fósforo na superfície da lâmina é mantida constante e igual a 7.5x10²⁰ átomos/cm³. Após 5h, a concentração de fósforo para a posição z=1 μm é igual a 6.3 x 10¹⁹ átomos/cm³.

- a) Determine o coeficiente de difusão do fósforo no silício.
- b) Determine a concentração de átomos de fósforo para a mesma distância após 10h do início do ensaio.

0.36 0.38933

0.40 0.42839 0.44 0.46622

$$\frac{c_{As} - c_A}{c_{As} - c_{A0}} = erf\left(\frac{z}{\sqrt{4Dt}}\right)$$

$$\xi = \frac{z}{\sqrt{4Dt}}$$

a	erf(a)	a	erf(a)	a	erf(a)
0.0	0.0	0.48	0.50275	0.96	0.82542
0.04	0.04511	0.52	0.53790	1.00	0.84270
0.08	0.09008	0.56	0.57162	1.10	0.88021
0.12	0.13476	0.60	0.60386	1.20	0.91031
0.16	0.17901	0.64	0.63459	1.30	0.93401
0.20	0.22270	0.68	0.66378	1.40	0.95229
0.24	0.26570	0.72	0.69143	1.50	0.96611
0.28	6.30788	0.76	0.71754	1.60	0.97635
0.32	0.34913	0.80	0.7421	1.70	0.98379

0.76514

0.78669

0.80677

0.98909

0.99532

1.80 2.00

Table 7-1. Error function values. For negative a, erf(a) is negative

ext(|a|) = [1-(1+0.2784|a|+0.2314|a|+0.0781|a|)]

0.88

0.92