Chapter Two Basic fiber theory

2.1 The basic equations of fiber optics

- 2.2 Waveguide field equation and eigen solution of guided
- 2.3 Fiber loss and the measurement methods
- 2.4 Fiber dispersion and the measurement methods

Waveguide field equation

In cylindrical coordinate system, the relationship between transverse and longitudinal coordinates

$$\begin{split} \chi^2 H_{_{\phi}} &= -i \Bigg(\omega \varepsilon \, \frac{\partial E_z}{\partial x} + \beta \, \frac{1}{r} \cdot \frac{\partial H_z}{\partial \phi} \Bigg) \\ \chi^2 E_r &= -i \Bigg(\omega \mu \, \frac{1}{r} \cdot \frac{\partial H_z}{\partial \phi} + \beta \, \frac{\partial E_z}{\partial r} \Bigg) \\ \chi^2 E_{_{\phi}} &= -i \Bigg(-\omega \mu \, \frac{\partial H_z}{\partial r} + \beta \, \frac{1}{r} \cdot \frac{\partial E_z}{\partial \phi} \Bigg) \\ \chi^2 H_{_{r}} &= -i \Bigg(-\omega \varepsilon \, \frac{1}{r} \cdot \frac{\partial E_z}{\partial \phi} + \beta \, \frac{\partial H_z}{\partial r} \Bigg) \end{split}$$

Waveguide field equation

According to above formulas, it concludes that the transverse components can be obtained if the longitudinal components E_{τ} , H_{τ} are given.

Scalar waveguide field equation: $\nabla_t^2 \psi + \chi^2 \psi = 0$ $\psi_{r,\phi} = \int_0^\infty \frac{E_z(r,\phi)}{H(r,\phi)}$

$$\frac{\partial^2 \psi(r,\phi)}{\partial r^2} + \frac{1}{r} \frac{\partial \psi(r,\phi)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \psi(r,\phi)}{\partial \phi^2} + \left(\omega^2 \varepsilon \mu_0 - \beta^2\right) \psi = 0$$

Assuming $g(\phi) = e^{il\phi}$ Amplitude at angular direction is periodic

Variables separation: $\psi(r,\phi) = F(r)g(\phi)$

We obtain $r^2 \left[\frac{1}{F} \frac{\mathrm{d}^2 F}{\mathrm{d}r^2} + \frac{1}{r} \frac{1}{F} \frac{\mathrm{d}F}{\mathrm{d}r} + \left(\omega^2 \varepsilon \mu_0 - \beta^2 \right) \right] + \frac{1}{g} \frac{\mathrm{d}^2 g}{\mathrm{d}\phi^2} = 0$

 $\frac{\mathrm{d}^2 F}{\mathrm{d}r^2} + \frac{1}{r} \frac{\mathrm{d}F}{\mathrm{d}r} + \left[\left(\omega^2 \varepsilon \mu_0 - \beta^2 \right) - \frac{l^2}{r^2} \right] F = 0 \quad \text{Field equation}$

Waveguide field equation

(2) when $\omega^2 \varepsilon \mu_0 - \beta^2 < 0$ cladding

$$F(r) = C_0 I_t \left[\sqrt{\beta^2 - \omega^2 \varepsilon \mu_0} \right] + D_0 K_t \left[\sqrt{\beta^2 - \omega^2 \varepsilon \mu_0} \right]$$

first kind Hankel function second kind Hankel function

Electromagnetic separation Maxwell equation Wave equation

Transverse-longitudinal separation Time-space separation Helmholtz ______ Waveguide field equation

$$\nabla_{\mathbf{t}}^{2} \psi(r, \phi) + \chi^{2} \psi(r, \phi) = 0$$

 ψ can represent each component $(E_r, E_{\phi}, E_z; H_r, H_{\phi}, H_z)$ $\psi(r,\phi,z) = \psi(r,\phi)e^{-i\beta z}$

Waveguide field equation

Transverse propagation constant (U, W)

 $\chi_1 = \sqrt{n_1^2 k_0^2 - \beta^2} \quad -(core)$ -Transverse propagation constant: $\chi_2 = \sqrt{n_2^2 k_0^2 - \beta^2} - \text{(cladding)}$

-Transverse constant:

-Satisfy:

$$U = a\chi_1 = \sqrt{n_1^2 k_0^2 - \beta^2} \cdot a$$

$$W = -ia\chi_2 = \sqrt{\beta^2 - n_2^2 k_0^2} \cdot a$$

 $V^2 = I^2 + W^2$

Waveguide field equation

Eigen solution of the guided modes

$$\frac{\mathrm{d}^2 F}{\mathrm{d}r^2} + \frac{1}{r} \frac{\mathrm{d}F}{\mathrm{d}r} + \left[\left(\omega^2 \varepsilon \mu_0 - \beta^2 \right) - \frac{l^2}{r^2} \right] F = 0$$

The solution of the above field equation is Bessel function

-Pseudo solution 伪解决方案

Waveguide field equation

Guided modes condition:

$$F(r) \begin{cases} A_0 J_1 \left[\frac{(k_0^2 r_1^2 - \beta^3)^{1/2} \cdot a}{a} r \right] = A_0 J_1 \left(\frac{U}{a} r \right) & (0 \le r \le a) \\ D_0 K_1 \left[\frac{(\beta^2 - k_0^2 r_1^2)^{1/2} \cdot a}{a} r \right] = D_0 K_1 \left(\frac{W}{a} r \right) & (r > a) \end{cases}$$

$$\psi(r, \phi) = F(r)g(\phi)$$

The longitudinal components of the electric and magnetic fields in the core and

$$\begin{bmatrix} E_z \\ H_z \end{bmatrix} = \begin{cases} \begin{bmatrix} A \\ B \end{bmatrix} J_i \left(\frac{U}{a} r \right) e^{il\phi} & (0 \le r \le a) \quad \mathbf{Core} \\ \begin{bmatrix} C \\ D \end{bmatrix} K_i \left(\frac{W}{a} r \right) e^{il\phi} & (r > a) \quad \mathbf{Cladding} \end{cases}$$

Waveguide field equation [比较重要]

$$\begin{bmatrix} E_z \\ H_z \end{bmatrix} = \begin{cases} \begin{bmatrix} A \\ B \end{bmatrix} J_i \left(\frac{U}{a} r \right) e^{il\phi} & (0 \le r \le a) \\ \begin{bmatrix} C \\ D \end{bmatrix} K_i \left(\frac{W}{a} r \right) e^{il\phi} & (r > a) \end{cases}$$

$$\text{TE mode: } E_z = 0, A = 0$$

$$\text{TM mode: } H_z = 0, B = 0$$

$$\text{EH mode: } H_z \propto iE_z$$

$$\text{HE mode: } H_z \propto -iE_z$$

 $\Gamma E \text{ mode: } E_z = 0, A = 0$

-The larger the W is, the faster the mode in cladding attenuates

The determination of the eigen solution:

- Eigenvalue: β and l are determined by the continuity requirement at the fiber surface 由光纤表面的连续性要求决定
- Longitudinal components: A,B,C,D are the uncertain constants determined by boundary conditions 由边界条件确定
- Transverse components: they can be derived from longitudinal components

Waveguide field equation

$$\left(\frac{J_{I}^{'}}{UJ_{I}} + \frac{K_{I}^{'}}{WK_{I}}\right)\left(\frac{k_{1}^{2}J_{I}^{'}}{UJ_{I}} + \frac{k_{2}^{2}K_{I}^{'}}{WK_{I}}\right) = l^{2}\beta^{2}\left(\frac{1}{U^{2}} + \frac{1}{W^{2}}\right)^{2}$$

It is called as characteristic equation or dispersion equation. It is actually a transcendental equation about β . There are many different β_{lm} (l=0,1,2,3... m=1,2,3...) values, each β_{lm} corresponds to a guided mode.

The property of Bessel function

Differential: 微分

$$J'_{\iota}(U) = (1/2) [J_{\iota-1}(U) - J_{\iota+1}(U)] \qquad K'_{\iota}(W) = -\frac{1}{2} [K_{\iota-1}(W) + K_{\iota+1}(W)]$$

Recursion: 递归 $(\iota/U)J_{\iota}(U)=(1/2)\lceil J_{\iota-1}(U)+J_{\iota+1}(U)\rceil$ $\frac{\iota}{W}K_{\iota}(W) = -\frac{1}{2}\left[K_{\iota-1}(W) - K_{\iota+1}(W)\right]$

Approximation: 近位

$$\lim_{U \to \infty} J_{\iota}(U) = \sqrt{\frac{2}{\pi U}} \cos\left(U - \frac{\pi}{4} - \frac{\iota \pi}{2}\right) \qquad \lim_{W \to \infty} K_{\iota}(W) = \sqrt{\frac{1}{W}} e^{-W}$$

$$\lim_{U \to 0} J_{\iota}(U) = \frac{1}{\iota!} \left(\frac{U}{2}\right)^{\iota} \qquad \lim_{W \to 0} K_{\iota}(W) = \begin{cases} (\iota - 1)! 2^{\iota - 1} W^{-\iota} & (\iota \ge 1) \\ \ln\left(\frac{2}{W\gamma}\right) = \ln\left(\frac{1.123}{W}\right) & (\iota = 0) \end{cases}$$

The property of Bessel function

(3) The eigenvalue equation of the EH or HE modes

$$\ell^{2}\beta^{2} \left(\frac{1}{U^{2}} + \frac{1}{W^{2}}\right)^{2} = \left(\frac{J_{\ell}'(U)}{UJ_{\ell}(U)} + \frac{K_{\ell}'(W)}{WK_{\ell}(W)}\right) \left(\frac{K_{1}^{2}J_{\ell}'(U)}{UJ_{\ell}(U)} + \frac{K_{2}^{2}K_{\ell}'(W)}{WK_{\ell}(W)}\right)$$

$$\det \frac{J_{\ell}'(U)}{UJ_{\ell}(U)} = \overline{J}_{\ell}, \quad \frac{K_{\ell}'(W)}{WK_{\ell}(W)} = \overline{K}_{\ell}$$

$$\text{we obtain } \overline{J}_{\ell} = -\frac{1}{2} \left(1 + \frac{K_{2}^{2}}{K_{1}^{2}}\right) \overline{K}_{\ell} \pm \sqrt{\left(1 + \frac{K_{2}^{2}}{K_{1}^{2}}\right)^{2} \overline{K}_{\ell} - 4\left[\frac{1}{K_{1}^{2}} \overline{K}_{\ell}^{2} - \ell^{2} \left(\frac{1}{U} + \frac{K_{2}^{2}}{K_{1}^{2}} \frac{1}{W^{2}}\right) \left(\frac{1}{U^{2}} + \frac{1}{W^{2}}\right)\right]}$$

set "+" as EH mode and "-" as HE mode

The eigenvalue equation of EH mode: 上

The eigenvalue equation of HE mode:

$$\frac{J_{\ell}'(U)}{UJ_{\ell}(U)} + \frac{K_{\ell}'(W)}{WK_{\ell}(W)} = \ell\left(\frac{1}{U^{2}} + \frac{1}{W^{2}}\right)$$

$$\frac{K_{1}^{2}}{K_{2}^{2}} \frac{J_{\ell}'(U)}{UJ_{\ell}(U)} + \frac{K_{\ell}'(W)}{WK_{\ell}(W)} = -\ell \left(\frac{K_{1}^{2}}{K_{2}^{2}} \frac{1}{U^{2}} + \frac{1}{W^{2}} \right)$$

Waveguide field equation

Eigenvalue equation (to determine A, B, C, D, β and l)

• 线性方程组系数矩阵行列式等于0

Considering E_{z} , E_{b} ; H_{z} , H_{b} are continuous at r=a $\begin{array}{c} \overset{\boldsymbol{\cdots}}{C} = \overset{\boldsymbol{\omega}}{D} = \overset{\boldsymbol{\kappa}_{l}(\boldsymbol{W})}{J_{l}(\boldsymbol{U})} \\ \\ & \underbrace{\begin{cases} i\beta l(\overset{1}{U^{2}} + \overset{1}{W^{2}})A - \omega\mu \left[\overset{1}{U} \cdot \overset{J_{l}'(\boldsymbol{U})}{J_{l}'(\boldsymbol{U})} + \overset{1}{W} \cdot \overset{\boldsymbol{K}_{l}'(\boldsymbol{W})}{K_{l}'(\boldsymbol{W})} \right]}_{\boldsymbol{W}} B = 0 \end{cases} \overset{\boldsymbol{E}_{r}}{\underbrace{\begin{cases} E_{\phi} = f_{1}(E_{z}, H_{z}) \\ E_{\phi} = f_{2}(E_{z}, H_{z}) \\ H_{r} = f_{3}(E_{z}, H_{z}) \end{cases}}_{\boldsymbol{H}_{\phi} = f_{4}(E_{z}, H_{z}) \end{aligned} }$

If they have the solutions, A and B are not all equal to zero, thus the characteristic determinant of the above equation 2 should equal to zero.

$$I^{2}\beta^{2}(\frac{1}{U^{2}} + \frac{1}{W^{2}})^{2} = \left[\frac{J_{i}(U)}{UJ_{i}(U)} + \frac{K_{i}(W)}{WK_{i}(W)}\right] \cdot \left[\frac{k_{i}^{2}J_{i}(U)}{UJ_{i}(U)} + \frac{k_{2}^{2}K_{i}(W)}{WK_{i}(W)}\right]$$

where
$$k_1 = n_1 k_0$$
 $k_2 = n_2 k_1$

If $\n_1, \n_2, a, \and 0$

are given, there are many \beta_m for a fixed l

Modes analysis [比较重要]

(1) Types of guided modes

orthogonal linear

→ polarized mode TE mode (only H_z exists, $E_z=0$) TM mode (only E_z exists, $H_z=0$) $\longrightarrow l=0$ 正交线性偏振光

EH mode (electric field dominates 占主导, H, is phase-leading相位超前) HE mode (magnetic field dominates, Ez is phase-leading) elliptical polarized light 椭圆偏振光

Define a parameter q which can reflect the mode type

$$q = \frac{\omega \mu_0}{i\beta} \cdot \frac{H_z}{E_z} = \frac{\omega \mu_0}{i\beta} \cdot \frac{B}{A}$$

q represents the relationship of phase and amplitude between E_z and H_z

TE mode: A=0 $\Longrightarrow q=\infty$ TM mode: $B=0 \Longrightarrow q=0$ EH mode: $H_z \propto iE_z \longrightarrow q = 1$ HE mode: $H_z \propto -iE_z \longrightarrow q = -1$

The property of Bessel function

(1) For TE mode: $E_z = 0$, $\ell = 0$, $H_z \neq 0$

To make the equation have the solutions not all equaling to zero

$$\frac{J_{\ell}'(U)}{UJ_{\ell}(U)} + \frac{K_{\ell}'(W)}{WK_{\ell}(W)} = 0$$

 $\frac{J_{\ell}'(U)}{UJ_{\ell}(U)} + \frac{K_{\ell}'(W)}{WK_{\ell}(W)} = 0$ The eigenvalue equation of the TE mode : $\frac{J_{0}'(U)}{UJ_{0}(U)} + \frac{K_{0}'(W)}{WK_{0}(W)} = 0$

(2) For TM mode: $H_z = 0$, $\ell = 0$, $E_z \neq 0$

To make the equation have the solutions not all equaling to zero

$$\frac{K_1^2 J_\ell'(U)}{U J_\ell(U)} + \frac{K_2^2 K_\ell'(W)}{W K_\ell(W)} = 0$$

The eigenvalue equation of the TM mode : $\frac{k_1^2 J_\ell'(U)}{U J_\ell(U)} + \frac{k_2^2 K_\ell'(W)}{W K_\ell(W)} = 0$ The eigenvalue equation of the TM mode : $\frac{k_1^2 J_0'(U)}{U J_0(U)} + \frac{k_2^2 K_0'(W)}{W K_0(W)} = 0$

The property of Bessel function

• The mode eigen value β can be determined by U or W

The expression of the electromagnetic field component in the cladding:

$$E_z = CK_l(\frac{W}{a}r)e^{jl\varphi}$$

 K_{I} is an attenuated exponent function

When $W \rightarrow \infty$, the electromagnetic wave attenuates very quickly in the cladding thus is well restricted in the core —— Far from cut-off

When $W \rightarrow 0$, the electromagnetic wave attenuates very slowly in the cladding thus escapes from the cladding ----- Near from cut-off

The property of Bessel function

2. The conditions of guided modes cut-off and far from cut-off

 $W \to 0$ cladding mode dose not attenuate, 导模截止cut-off

 $W \to \infty$ 包层模衰减很快cladding mode attenuates severely 远离截止far from cut-off

$$J_{0}'=(1/2)(J_{-1}-J_{1})=-J_{1}$$

$$K_{0}'=(-1/2)(K_{-1}+K_{1})=-K_{1}$$

$$J_{1}(U)$$

$$UJ_{0}(U)+\frac{K_{1}(W)}{WK_{0}(W)}=0$$

$$W \to \infty, \frac{K_1(W)}{WK_0(W)} \to 0 \Longrightarrow \frac{J_1(U)}{UJ_0(U)} \to 0 \Longrightarrow \frac{J_1(U) = 0, U_{0m}^{\infty}}{(U_{0m}^{\infty} \neq 0)}$$
sut off and time:

$$W \to 0, \frac{K_1(W)}{WK_0(W)} \to \infty \quad \Longrightarrow \quad \frac{J_1(U)}{UJ_0(U)} \to \infty \quad \Longrightarrow \quad J_0(U) = 0, U_{0m}^c$$

The property of Bessel function

2TM mode TM

Eigen equation
$$\frac{n_1^2 J_1(U)}{n_2^2 U J_0(U)} + \frac{K_1(W)}{W K_0(W)} = 0$$
 TE. TM modes appear in pairs are same as that of TE mode

$$TM_{01}(V > V_c = 2.405); TM_{02}(V > V_c = 5.52) \cdots$$

- ${\rm TE_{0m}}$ and ${\rm TM_{0m}}$ modes have the same eigenvalue near and far from cut-off, i.e., two modes are at the degenerate state;
- They have different eigenvalue between cut-off and far from cut-off, this phenomenon is called as degenerate states split 简并态分离

The property of Bessel function

$3 \text{ HE}_{lm} \text{ mode } >1, q=-1$

Eigenvalue equation
$$\frac{n_1^2}{n_2^2} \cdot \frac{J_1'(U)}{UJ_1(U)} + \frac{K_1'(W)}{WK_1(W)} = -l\left(\frac{n_1^2}{n_2^2} \cdot \frac{1}{U^2} + \frac{1}{W^2}\right)$$

According to Bessel function property:

$$\frac{n_1^2 J_{\iota-1}(U)}{n_2^2 U J_{\iota}(U)} - \frac{K_{\iota-1}(W)}{W K_{\iota}(W)} = 0$$

Near cut-off:
$$W \to 0, \frac{K_{l-1}(W)}{WK_1(W)} \to \frac{1}{2(l-1)}$$
 $\longrightarrow \frac{J_{l-1}(U)}{UJ_1(U)} = \frac{n_2^2}{n_1^2} \cdot \frac{1}{2(l-1)}$

$$\begin{split} \frac{2(I-1)J_{i-1}}{UJ_{i}} &= \frac{n_{2}^{2}}{n_{1}^{2}} \Rightarrow \frac{J_{i-2}+J_{i}}{J_{i}} = \frac{n_{2}^{2}}{n_{1}^{2}} \Rightarrow \frac{J_{i-2}}{J_{i}} = \frac{n_{2}^{2}}{n_{1}^{2}} - 1 \approx 0 \end{split}$$

$$J_{I-2}\left(U_{lm}^{c}\right) = 0$$

$$(U_{lm}^c \neq 0)$$

The property of Bessel function

4 EH_{lm} mode

Eigenvalue equation
$$\frac{J_l'(U)}{UJ_l(U)} + \frac{K_l'(W)}{WK_l(W)} = l\left(\frac{1}{U^2} + \frac{1}{W^2}\right)$$

According to Bessel function property: $\frac{J_{\iota+1}(U)}{UJ(U)} = \frac{K_{\iota+1}(W)}{WK(W)}$ Similarly we can obtain

 $J_l\left(U_{lm}^c\right) = 0 \quad \left(U_{lm}^c \neq 0\right)$ Near cut-off:

Far from cut-off: $J_{l+1}(U_{lm}^{\infty}) = 0 \quad (U_{lm}^{c} \neq 0)$

For some EH_{im} modes, the cut-off conditions are

mode

$$EH_{11}$$
 EH_{12}
 EH_{13}

 EH_{21}
 EH_{22}
 EH_{23}
 V_c
 3.832
 7.016
 10.173

 5.136
 8.417
 11.620

The property of Bessel function

Guided modes:

$$U \in (U_{0m}^c, U_{0m}^\infty), W \in (0, \infty),$$

$$V \in (U, \infty)$$

$$TE_{01}(V > V_c = 2.405); TE_{02}(V > V_c = 5.52) \cdots$$

The property of Bessel function

(3)
$$\text{HE}_{lm}$$
 mode $l=1, q=-1$

Eigenvalue equation

$$\frac{n_1^2}{n_2^2} \cdot \frac{J_1'(U)}{UJ_1(U)} + \frac{K_1'(W)}{WK_1(W)} = -\left(\frac{n_1^2}{n_2^2} \cdot \frac{1}{U^2} + \frac{1}{W^2}\right)$$

According to Bessel function property $\frac{n_1^2}{n^2} \cdot \frac{J_0(U)}{UJ_1(U)} - \frac{K_0(W)}{WK_1(W)} = 0$

$$\frac{n_1^2}{n_2^2} \cdot \frac{J_0(U)}{UJ_1(U)} - \frac{K_0(W)}{WK_1(W)} = 0$$

Near cut-off condition:

$$W \to 0, \frac{K_1(W)}{WK_0(W)} \to \infty \quad \Longrightarrow \quad \frac{n_1^2}{n_2^2} \cdot \frac{J_0(U)}{UJ_1(U)} = \infty \quad \Longrightarrow \quad J_1(U_{lm}^c) = 0$$

The property of Bessel function

Far from cut-off condition:

$$W \to \infty, \frac{K_{l-1}(W)}{WK_{l}(W)} \to 0 \qquad \qquad \frac{n_{1}^{2}}{n_{2}^{2}} \cdot \frac{J_{l-1}(U)}{UJ_{l}(U)} = 0 \qquad \qquad \frac{J_{l-1}\left(U_{lm}^{\infty}\right) = 0}{\left(U_{lm}^{\infty} \neq 0\right)}$$

Note that: $U_{l_{m}}^{\infty} = 0$ is also not the eigenvalue, so

when $U \to 0$, $\frac{J_{I-1}}{UJ_I} \to \frac{2l}{U^2} \to \infty$ instead of zero Considering the above two cases ,for HE_{Im} mode (I >0,

 $J_{l-2}(U_{lm}^c) = 0 \text{ (when } l > 1, \ U_{lm}^c \neq 0)$ Near cut-off:

Far from cut-off: $J_{l-1}(U_{lm}^{\infty}) = 0 \ (U_{lm}^{\infty} \neq 0)$

The property of Bessel function

Mode	Eigen equation	Cut-off condition	Far from cut- off condition		
TE_{0m}	$\frac{J_{1}(U)}{UJ_{0}(U)} + \frac{K_{1}(W)}{WJ_{0}(W)} = 0$	$J_{\scriptscriptstyle 0}(U^{\scriptscriptstyle c}_{\scriptscriptstyle 0m})=0$	$J_{1}(U_{0m}^{\infty}) = 0(U_{0m}^{\infty} \neq 0)$		
TM_{0m}	$\frac{\varepsilon_1}{\varepsilon_2} \frac{J_1(U)}{UJ_0(U)} + \frac{K_1(W)}{WJ_0(W)} = 0$	$J_0(U_{0m}^c)=0$	$J_1(U_{0m}^{\infty}) = 0(U_{0m}^{\infty} \neq 0)$		
HE_{1m}	$\frac{\varepsilon_1}{\varepsilon_2} \frac{J_0(U)}{UJ_1(U)} - \frac{K_0(W)}{WJ_1(W)} = 0$	$J_1(U_{1m}^{\infty}) = 0(U_{1m}^{\infty} = 0)$	$J_0(U_{1m}^\infty)=0$		
$HE_{lm}(l \ge 2)$	$\frac{\varepsilon_1}{\varepsilon_2} \frac{J_{l-1}(U)}{UJ_l(U)} - \frac{K_{l-1}(W)}{WJ_l(W)} = 0$	$J_{l-2}(U_{lm}^{\infty}) = 0(U_{lm}^{\infty} \neq 0)$	$J_{l-1}(U_{lm}^{\infty}) = 0(U_{lm}^{\infty} \neq 0)$		
$EH_{lm}(l>0)$	$\frac{J_{l+1}(U)}{UJ_{l}(U)} + \frac{K_{l+1}(W)}{WJ_{l}(W)} = 0$	$J_l(U_{lm}^{\infty}) = 0(U_{lm}^{\infty} \neq 0)$	$J_{l+1}(U_{lm}^{\infty}) = 0(U_{lm}^{\infty} \neq 0)$		

The property of Bessel function

The eigenvalues of low-order modes at cut off and far from cut-off

U in		1	- 1	2		3		4	Mode	
	U_{om}^{C}	U [∞] _{im}	$U_{\scriptscriptstyle im}^{c}$	U _{sm}	$U_{\mathfrak{m}}^{\mathcal{C}}$	U m	$U_{\mathfrak{m}}^{\mathcal{C}}$	U [∞] _{um}	off and far from cut-off	
0	2.405	3.823	5.520	7.016	8.654	10.173	11.792	13.324	TE _{0m} TM _{0m}	J ₀ =0 J ₁ =0
1	0	2.405	3.823	5.520	7.016	8.654	10.173	11.792	HE _{lm}	J ₁ =0 J ₀ =0
1	3.823	5.136	7.016	8.417	10.173	11.620	13.324	14.796	EH _{lm}	J ₁ =0 J ₂ =0
2	2.405	3.823	5.520	7.016	8.654	10.173	11.792	13.324	HE _{2m}	J ₀ =0 J ₁ =0
2	5.136	6.380	8.417	9.761	11.620	13.015	14.796	16.223	EH _{2m}	J ₂ =0 J ₃ =0
3	3.823	5.136	7.016	8.417	10.173	11.620	13.324	14.796	HE _{3m}	J ₁ =0 J ₂ =0
3	6.380	7.588	9.761	11.065	13.015	14.700	16.223	17.616	EH _{3m}	J ₃ =0 J ₄ =0
4	5.136	6.380	8.417	9.761	11.620	13.015	14.796	16.223	HE _{4m}	J ₂ =0 J ₂ =0

(3) Dispersion curve and single mode condition

· Dispersion curve

In a fiber with the given structure parameters, the modes distribution is fixed.

Based on the eigenvalue equation, the propagation constant of each guided mode β (or normalized propagation constant b) as a function of the fiber normalized frequency V can be obtained by numerical calculation.

(3) Dispersion curve and single mode condition

The analysis of dispersion curve

- Each curve corresponds to a guided mode.
- The number of the cross points for the line parallel to vertical axis with the dispersion curve represents the number of the guided modes allowed in the fiber.
- Larger V leads to more modes
- When V<2.405, only HE₁₁ mode is allowed in fiber, other modes are cut-off, thus the fiber operates at the single mode propagation state.

(LP modes) Lineally polarized modes and weakly guiding fiber

Longitudinal component — Transverse component

$$\frac{\left|E_{z}\right|}{\left|E_{i}\right|} \sim \frac{\left|H_{z}\right|}{\left|H_{i}\right|} \sim \sqrt{\Delta} \quad \text{where} \quad \Delta = \frac{n_{1}^{2} - n_{2}^{2}}{2n_{1}} \quad \text{Relative refractive index difference}$$

$$\frac{\Delta \in [0.1\%, 1.0\%]}{\sqrt{\Delta} \in [1/30, 1/10]} |E_z| << |E_t|, |H_z| << |H_t|$$

The transmission field in fiber is almost transverse. Thus the transverse component can better reveal the field characteristics.

However, the complex expression of transverse components leads to a difficult analysis

Solve the electromagnetic field distribution

• How to solve the electromagnetic field distribution of a given mode?

Taking TM_{0m} mode as an example:

$$\frac{J_0'(U)}{UJ_0(U)} + \frac{K_0'(W)}{WK_0(W)} = 0 \ (l=0, q=0)$$

$$U^2 + W^2 = V^2$$

$$0 \quad A = \frac{B}{I} = \frac{K_0(W)}{I}$$

$$U \text{ and } W \text{ can be obtained}$$

①
$$\frac{A}{C} = \frac{B}{D} = \frac{K_i(W)}{J_i(U)}$$

$$i\beta l(\frac{1}{U^2} + \frac{1}{W^2})A - \omega\mu \left[\frac{1}{U} \cdot \frac{J_i(U)}{J_i(U)} + \frac{1}{W} \cdot \frac{K_i(W)}{K_i(W)}\right]B = 0$$

$$\omega \left[\frac{\varepsilon_1}{U} \cdot \frac{J_i(U)}{J_i(U)} + \frac{\varepsilon_2}{W} \cdot \frac{K_i(W)}{K_i(W)}\right]A + i\beta l(\frac{1}{U^2} + \frac{1}{W^2})B = 0$$
A, B, C, D can be obtained

According to
$$\begin{bmatrix} E_s \\ H_s \end{bmatrix} = \begin{cases} \begin{bmatrix} A \\ B \end{bmatrix} J_t \left(\frac{U}{a} r \right) e^{ab} & (0 \le r \le a) \\ \begin{bmatrix} C \\ D \end{bmatrix} K_t \left(\frac{W}{a} r \right) e^{ab} & (r > a) \end{cases}$$

 E_z and H_z can be obtained

Then the other components such as E_r , E_{σ} , H_r , H_{σ} can be expressed.

(3) Dispersion curve and single mode condition

Figure 2.5 Normalized propagation constant b as a function of normalized frequency V for a few low-order fiber modes. The right scale shows the mode index \bar{n} . (After Ref. [31]. ©1981 Academic Press. Reprinted with permission.)

(3) Dispersion curve and single mode condition

☆The condition of single mode operation 单模工作条件

- The condition of single mode operation $V = \frac{2\pi a \sqrt{n_1^2 n_2^2}}{\lambda_0} < 2.405$
- The size of single mode fiber $a_c = 1.202 \lambda_0 / \left(\pi \sqrt{n_1^2 n_2^2}\right)$
- The cur-off wavelength of single mode fiber $\lambda_c = a\pi \sqrt{n_1^2 n_2^2} / 1.202$
- The cur-off frequency of single mode fiber $f_c = 1.202 c / \left(a \pi \sqrt{n_1^2 n_2^2} \right)$
- Only when $\lambda > \lambda_c$ or $f < f_c$, the fiber operates at the single mode propagation state. The transmission mode is HE₁₁ mode, named as fundamental mode

weakly guiding fiber

What is weakly guiding approximation?

$$\nabla \varepsilon \approx 0$$
, $n_1 = n_2$

The refractive indexes of core (n_1) and cladding (n_2) are very similar.

Therefore, the analysis of optical fiber is significantly simplified, this kind of fiber is called as the weakly guiding fiber.

weakly guiding fiber

- Under the weakly guiding approximation, we can find $\text{HE}_{t+1,m}$ and $\text{EH}_{t+1,m}$ modes have the similar dispersion curves thus are degenerate.
- Therefore we can offset one transverse component by linear superposition of the above two modes, hence significantly simplify field expression.

A type of new mode is proposed. It is the linearly polarized (LP_{lm}) mode which has only four field components

weakly guiding fiber

$$\begin{cases} \frac{UJ_{i}(U)}{J_{i+1}(U)} + \frac{WK_{i}(W)}{K_{i+1}(W)} = 0 & (EH)_{im} \text{ mode} \\ \frac{UJ_{i}(U)}{J_{i-1}(U)} - \frac{WK_{i}(W)}{K_{i-1}(W)} = 0 & (HE)_{im} \text{ mode} \end{cases}$$

Substitute l-1,m into the eigen equation of EH_{lm} , while substitute l+1,m into the eigen equation of HE_{lm} . Consequently, the two equations become same indicating $\mathrm{EH}_{l-1\ m}$ and $\mathrm{HE}_{l+1\ m}$ modes are degenerate

weakly guiding fiber

weakly guiding fiber

The eigen solutions along x polarization direction

$$E_{x} = A \begin{cases} \left[J_{i}(Ur/a)/J_{i}(U) \right] \cos l\varphi & (0 \le r \le a) \\ \left[K_{i}(Wr/a)/K_{i}(W) \right] \cos l\varphi & (r > a) \end{cases}$$

$$H_{y} = -\left(An/Z_{0}\right) \begin{cases} \left[J_{i}(Ur/a)/J_{i}(U) \right] \cos l\varphi & (0 \le r \le a) \\ \left[K_{i}(Wr/a)/K_{i}(W) \right] \cos l\varphi & (r > a) \end{cases}$$

$$E_{y} = 0$$

$$H_{x} \approx 0$$
and $\cos l\varphi \Rightarrow \sin l\varphi$

weakly guiding fiber

Mathematical proof that $EH_{l-1,m}$ and $HE_{l+1,m}$ modes are degenerate

According to the eigen equation when $n_1 = n_2$:

$$\left[\frac{1}{U}\cdot\frac{J_{t}(U)}{J_{t}(U)}+\frac{1}{W}\cdot\frac{K_{t}(W)}{K_{t}(W)}\right]^{2}=I^{2}\left(\frac{1}{U^{2}}+\frac{1}{W^{2}}\right)^{2}$$

The eigen equations of EH and HE modes can be obtained:

$$\begin{cases}
\frac{J_{I}(U)}{UJ_{I}(U)} + \frac{K_{I}(W)}{WK_{I}(W)} = l\left(\frac{1}{U^{2}} + \frac{1}{W^{2}}\right) \rightarrow (EH)_{lm} \\
\frac{J_{I}(U)}{UJ_{I}(U)} + \frac{K_{I}(W)}{WK_{I}(W)} = -l\left(\frac{1}{U^{2}} + \frac{1}{W^{2}}\right) \rightarrow (HE)_{lm}
\end{cases}$$

weakly guiding fiber

Scalar mode = superposition of vector modes 标量模式 = 矢量模式的叠加

$$\begin{split} & \begin{pmatrix} E \\ H \end{pmatrix} \begin{bmatrix} LP_{lm} \end{bmatrix} = \begin{pmatrix} E \\ H \end{pmatrix} \begin{bmatrix} EH_{l-1,m} \end{bmatrix} + \begin{pmatrix} E \\ H \end{pmatrix} \begin{bmatrix} HE_{l+1,m} \end{bmatrix}, l > 1 \\ & \begin{pmatrix} E \\ H \end{pmatrix} \begin{bmatrix} LP_{lm} \end{bmatrix} = \begin{pmatrix} E \\ H \end{pmatrix} \begin{bmatrix} TE_{0m} \end{bmatrix} + \begin{pmatrix} E \\ H \end{pmatrix} \begin{bmatrix} TM_{0m} \end{bmatrix} + \begin{pmatrix} E \\ H \end{pmatrix} \begin{bmatrix} HE_{2m} \end{bmatrix}, l = 1 \\ & \begin{pmatrix} E \\ H \end{pmatrix} \begin{bmatrix} LP_{0m} \end{bmatrix} = \begin{pmatrix} E \\ H \end{pmatrix} \begin{bmatrix} HE_{1m} \end{bmatrix}, l = 0 \end{split}$$

weakly guiding fiber

The eigen solutions of LP mode are demonstrated below indicating the simply field expressions

The eigen solutions along y polarization direction

$$E_{y} = A \begin{cases} \left[J_{I}(Ur/a)/J_{I}(U) \right] \cos l\varphi & (0 \le r \le a) \\ \left[\left(K_{I}(Wr/a)/K_{I}(W) \right] \cos l\varphi & (r > a) \right] \end{cases}$$

$$H_{x} = -(An/Z_{0}) \begin{cases} \left[J_{I}(Ur/a)/J_{I}(U) \right] \cos l\varphi & (0 \le r \le a) \\ \left[\left(K_{I}(Wr/a)/K_{I}(W) \right] \cos l\varphi & (r > a) \end{cases}$$

$$E_{x} = 0$$

$$H_{y} \approx 0$$

weakly guiding fiber

LP mode	Accurate modes 精确模式
LP_{01}	HE ₁₁
LP ₁₁	$HE_{21}, TE_{01}, TM_{01}$
LP_{02}	HE ₁₂
LP ₂₁	HE_{31} , EH_{11}
LP ₃₁	HE_{41} , EH_{21}
LP ₁₂	$\mathrm{HE}_{22}, \mathrm{TE}_{02}, \mathrm{TM}_{02}$
LP ₄₁	HE_{51} , EH_{31}
LP_{03}	HE ₁₃
LP_{22}	HE_{32} , EH_{12}
LP ₅₁	HE ₆₁ ,EH ₄₁
LP_{32}	HE_{42} , EH_{22}
LP ₁₃	HE_{23} , TE_{03} , TM_{03}
LP ₆₁	HE ₇₁ ,EH ₅₁

Mode group

For the *P*th mode group, how many LP modes there are?

$$P = 6$$
 $(l, m) = (0,3), (2,2), (4,1)$ three types

$$P = 7$$
 $(l, m) = (1, 3), (3, 2), (5, 1)$ three types

$$P = 8$$
 $(l, m) = (0, 4), (2, 3), (4, 2), (6, 1)$ four types

Taking P = 6 as an example,

$$(l,m) = (0,3), (2,2), (4,1)$$

$$\begin{cases} LP_{03} \Rightarrow HE_{13} \\ LP_{22} \Rightarrow HE_{32}, EH_{12} \\ LP_{41} \Rightarrow HE_{52}, EH_{31} \end{cases}$$

Mode group

Based on the approximation of Bessel function

$$U_{\scriptscriptstyle mn}^{\infty} \approx \left(l + 2m - 1/2\right)\pi/2$$

Same l+2m values lead to a same propagation constant β_{lm} indicating these LP modes are degenerate.

Set P=l+2m, the same P leads to a same propagation constant β_P Therefore, we defining the LP modes with the same P as a "mode group"

Review of the knowledge points

- •The development and applications of optical fiber
- •The types of optical fibers
- •Silica Fiber Manufacture
- •Basic equation of optical fiber—waveguide field equation
- •Modes and their basic properties
- •The eigen solutions of guided mode
- •The eigenvalue equation
- •Mode analysis including types, eigenvalues and dispersion curves, etc.
- •Single mode condition
- ·Linearly polarized mode and weakly guiding fiber