Formula Summary: Hypothesis Tests & Confidence Intervals

H _o			Standard Error	Observed Stat	Test Stat	CI
$\mu_X - \mu_Y$	Independent Groups	σχ & σγ Known	$\sigma_{\overline{X}-\overline{Y}} = \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$	$(\mu_X - \mu_Y)_{HYP} \pm z \times \sigma_{\overline{X} - \overline{Y}}$	$z = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_X - \mu_Y\right)_{HYP}}{\sigma_{\overline{X} - \overline{Y}}}$	$(\overline{X} - \overline{Y}) \pm z \times \sigma_{\overline{X} - \overline{Y}}$
		σχ & σγ Unknown	$\hat{\sigma}_{\overline{X}-\overline{Y}} = \sqrt{\frac{n_X S_X^2 + n_Y S_Y^2}{n_X + n_Y - 2} \left(\frac{1}{n_X} + \frac{1}{n_Y}\right)}$	$(\mu_X - \mu_Y)_{HYP} \pm t \times \hat{\sigma}_{\overline{X} - \overline{Y}}$	$t = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_X - \mu_Y\right)_{HYP}}{\hat{\sigma}_{\overline{X} - \overline{Y}}}$ $df = n_X + n_Y - 2$	$(\overline{X}-\overline{Y})\pm t\times\hat{\sigma}_{\overline{X}-\overline{Y}}$
	Dependent Groups	Easy Way	$\hat{\sigma}_{\overline{D}} = \frac{S_D}{\sqrt{n-1}}$	$ig(\mu_{_{\! D}}ig)_{\!\scriptscriptstyle HYP}\pm t\! imes\!\hat{\sigma}_{_{\overline{D}}}$	$t = \frac{\overline{D} - (\mu_D)_{HYP}}{\hat{\sigma}_{\overline{D}}}$ $df = n - 1$	$\overline{D}\pm t imes\hat{\sigma}_{\overline{D}}$
		Hard Way	$\hat{\sigma}_{\overline{X}-\overline{Y}} = \sqrt{\frac{S_X^2}{n_X - 1} + \frac{S_Y^2}{n_Y - 1} - 2r \frac{S_X}{\sqrt{n_X - 1}} \cdot \frac{S_Y}{\sqrt{n_Y - 1}}}$			
ρ=0		0			$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$ $df = n-2$	
$ \rho $ = constant (not 0)			$\hat{\sigma}_{z'} = \sqrt{\frac{1}{n-3}} = \frac{1}{\sqrt{n-3}}$		$z = \frac{z' - z'_o}{\sqrt{\frac{1}{n-3}}}$	$z' \pm z \times \sqrt{\frac{1}{n-3}}$