Ordinary character table of $G \cong D26$: 10 20 13h 13a

The group G is isomorphic to the group labelled by [26, 1] in the Small Groups library.

	1a	2a	13a	13b	13c	13d	13e	13f
χ_1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	1	1	1	1
χ_3	2	0	$E(13)^2 + E(13)^{11}$	$E(13)^3 + E(13)^{10}$	$E(13)^6 + E(13)^7$	$E(13)^4 + E(13)^9$	$E(13)^5 + E(13)^8$	$E(13) + E(13)^{12}$
χ_4	2	0	$E(13)^6 + E(13)^7$	$E(13)^4 + E(13)^9$	$E(13)^5 + E(13)^8$	$E(13) + E(13)^{12}$	$E(13)^2 + E(13)^{11}$	$E(13)^3 + E(13)^{10}$
χ_5	2	0	$E(13)^5 + E(13)^8$	$E(13) + E(13)^{12}$	$E(13)^2 + E(13)^{11}$	$E(13)^3 + E(13)^{10}$	$E(13)^6 + E(13)^7$	$E(13)^4 + E(13)^9$
χ_6	2	0	$E(13) + E(13)^{12}$	$E(13)^5 + E(13)^8$	$E(13)^3 + E(13)^{10}$	$E(13)^2 + E(13)^{11}$	$E(13)^4 + E(13)^9$	$E(13)^6 + E(13)^7$
χ_7	2	0	$E(13)^3 + E(13)^{10}$	$E(13)^2 + E(13)^{11}$	$E(13)^4 + E(13)^9$	$E(13)^6 + E(13)^7$	$E(13) + E(13)^{12}$	$E(13)^5 + E(13)^8$
χ_8	2	0	$E(13)^4 + E(13)^9$	$E(13)^6 + E(13)^7$	$E(13) + E(13)^{12}$	$E(13)^5 + E(13)^8$	$E(13)^3 + E(13)^{10}$	$E(13)^2 + E(13)^{11}$

Trivial source character table of $G \cong D26$ at p = 13:

Normalisers N_i	N_1		N_2	
p-subgroups of G up to conjugacy in G	P_1		P_2	
Representatives $n_j \in N_i$	1a	2a	1a	2
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	13	-1	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	13	1	0	C
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	-1	1	_

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 19, 11, 3, 21, 13, 5, 23, 15, 7, 25, 17, 9)(2, 20, 12, 4, 22, 14, 6, 24, 16, 8, 26, 18, 10)]) \cong C13$

 $N_1 = Group([(1,2)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15),(1,3,5,7,9,11,13,15,17,19,21,23,25)(2,4,6,8,10,12,14,16,18,20,22,24,26)]) \cong D26$ $N_2 = Group([(1,19,11,3,21,13,5,23,15,7,25,17,9)(2,20,12,4,22,14,6,24,16,8,26,18,10),(1,2)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)]) \cong D26$