Algorithmique et recherche opérationnelle

INFO-F310

Projet : CPLEX LP

26 avril 2020

Nom : BAKKALI Yahya

Matricule: 000445166

Université Libre de Bruxelles (ULB)

Table des matières

1	Introduction	2
2	Modèle	2
3	Fichier CPLEX LP généré	3
4	Log de GLPK obtenu	9
5	Explication du retour obtenu dans le fichier log	16

1 Introduction

Pour ce projet, il est demandé d'écrire un script python qui, à partir d'un fichier d'instance indiquant un ensemble de panneaux de longueur variable à découper dans des planches de longueur fixe, génère une instance de programme linéaire en langage CPLEX LP qui détermine un plan de découpe de panneaux qui minimise le nombre de planches utilisées.

$\mathbf{2}$ Modèle

Indices:

$$M = \{1, ..., m\}$$
 planches

$$N = \{1, ..., n\}$$
 panneaux

Constantes:

 $l_i = \text{longueur du panneau } i$

L =longueur des planches j

Variables de décision :

 $x_{i,j} \in \{0,1\}$ telle que

$$x_{i,j} = \begin{cases} 1 \text{ si une planche j est prise pour une découpe du panneau i} \\ 0 \text{ sinon} \end{cases}$$

 $m_i \in \{0,1\}$ telle que

$$m_j = \begin{cases} 1 \text{ si une planche j est prise pour une découpe} \\ 0 \text{ sinon} \end{cases}$$

Formulation 1 Formulation linéaire

min
$$\sum_{j \in M} m_j$$
 (1)
s.t. $\sum_{j \in M} x_{i,j} = 1$ $\forall i \in N$

s.t.
$$\sum_{j \in M} x_{i,j} = 1 \qquad \forall i \in N$$

$$\sum_{i \in N} l_i x_{i,j} \le L m_j \qquad \forall j \in M$$
 (3)

$$\sum_{i \in N} l_i x_{i,j} \le L m_j \qquad \forall j \in M \tag{3}$$

$$x_{i,j} \in \{0,1\} \quad \forall i \in \mathbb{N}, \quad \forall j \in M$$
 (4)

$$m_j \in \{0, 1\} \qquad \forall j \in M \tag{5}$$

Les contraintes (2) assurent que chaque planche a été correctement découpée. D'autre part, (3) assurent que la somme des longueurs d'un ensemble de panneaux découpés à partir d'une planche ne peut pas dépasser la longueur de cette dernière.

3 Fichier CPLEX LP généré

```
Minimize
                                                           obj: m \ 1 + m \ 2 + m \ 3 + m \ 4 + m \ 5 + m \ 6 + m \ 7 + m \ 8
Subject To
                                                          c 1 1: 4.0 \text{ m} 1 - 1.5 \text{ x} 1 1(1.5) - 1.5 \text{ x} 2 1(1.5) - 1.5 \text{ x} 3 1(1.5) - 1.5 \text{ x} 4 1(1.5) - 0.75
                                                                                              x = 5 - 1(0.75) - 0.75 \times 6 - 1(0.75) - 0.75 \times 7 - 1(0.75) - 0.75 \times 8 - 1(0.75) - 0.75 \times 9 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00 - 10.00
                                                                                             0.75 \times 10 \quad 1(0.75) - 0.22 \times 11 \quad 1(0.22) - 0.22 \times 12 \quad 1(0.22) - 0.22 \times 13 \quad 1(0.22) - 0.22 \times 10 \quad 1(0.22) 
                                                                                             {\tt x\_14\_1}(0.22) \, - \, 0.22 \, \, {\tt x\_15\_1}(0.22) \, - \, 0.22 \, \, {\tt x\_16\_1}(0.22) \, - \, 0.22 \, \, {\tt x\_17\_1}(0.22) \, - \, 0.22
                                                                                             x 18 1(0.22) - 0.22 x 19 1(0.22) - 0.22 x 20 1(0.22) - 0.22 x 21 1(0.22) - 0.22
                                                                                             x 22 1(0.22) >= 0
                                                          x_5 = 2(0.75) - 0.75 \times 6 = 2(0.75) - 0.75 \times 7 = 2(0.75) - 0.75 \times 8 = 2(0.75) - 0.75 \times 9 = 2(0.75) - 0.75 \times 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2} = 10^{-2}
                                                                                             0.75 \; \mathrm{x} \quad 10 \quad 2(0.75) \; - \; 0.22 \; \mathrm{x} \quad 11 \quad 2(0.22) \; - \; 0.22 \; \mathrm{x} \quad 12 \quad 2(0.22) \; - \; 0.22 \; \mathrm{x} \quad 13 \quad 2(0.22) \; - \; 0.22 \; \mathrm{x}
                                                                                             x \ 14 \ 2(0.22) - 0.22 \ x \ 15 \ 2(0.22) - 0.22 \ x \ 16 \ 2(0.22) - 0.22 \ x \ 17 \ 2(0.22) - 0.22
                                                                                              x = 18 - 2(0.22) - 0.22 \ x = 19 - 2(0.22) - 0.22 \ x = 20 - 2(0.22) - 0.22 \ x = 21 - 2(0.22) - 0.22 
                                                                                             x_22_2(0.22) >= 0
                                                          c 1 3: 4.0 \text{ m} 3 - 1.5 \text{ x} 1 3(1.5) - 1.5 \text{ x} 2 3(1.5) - 1.5 \text{ x} 3 3(1.5) - 1.5 \text{ x} 4 3(1.5) - 0.75
                                                                                              x_5_3(0.75) - 0.75 x_6_3(0.75) - 0.75 x_7_3(0.75) - 0.75 x_8_3(0.75) - 0.75 x_9_3(0.75) - 0.75 x_9_3(0.75)
                                                                                             0.75 \times 10 \ 3(0.75) - 0.22 \times 11 \ 3(0.22) - 0.22 \times 12 \ 3(0.22) - 0.22 \times 13 \ 3(0.22) - 0.22 \times 10 \ 3(0.22) 
                                                                                             {\tt x\_14\_3(0.22)-0.22\ x\_15\_3(0.22)-0.22\ x\_16\_3(0.22)-0.22\ x\_17\_3(0.22)-0.22}
                                                                                             x 18 3(0.22) - 0.22 x 19 3(0.22) - 0.22 x 20 3(0.22) - 0.22 x 21 3(0.22) - 0.22
                                                                                             x 22 3(0.22) >= 0
                                                          c 1 4: 4.0 \text{ m} 4 - 1.5 \text{ x} 1 4(1.5) - 1.5 \text{ x} 2 4(1.5) - 1.5 \text{ x} 3 4(1.5) - 1.5 \text{ x} 4 4(1.5) - 0.75
                                                                                              x_5_4(0.75) - 0.75 x_6_4(0.75) - 0.75 x_7_4(0.75) - 0.75 x_8_4(0.75) - 0.75 x_9_4(0.75) - 0.75 x_9_4(0.75)
                                                                                             0.75 \times 10^{\circ} 4(0.75) - 0.22 \times 11^{\circ} 4(0.22) - 0.22 \times 12^{\circ} 4(0.22) - 0.22 \times 13^{\circ} 4(0.22) - 0.22
                                                                                              x 14 4(0.22) - 0.22 x 15 4(0.22) - 0.22 x 16 4(0.22) - 0.22 x 17 4(0.22) - 0.22 
                                                                                             x = 18 = 4(0.22) - 0.22 = x = 19 = 4(0.22) - 0.22 = 20 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22) - 0.22 = 21 = 4(0.22)
                                                                                             x 22 4(0.22) >= 0
                                                          x_5_5(0.75) - 0.75 x_6_5(0.75) - 0.75 x_7_5(0.75) - 0.75 x_8_5(0.75) - 0.75 x_9_5(0.75) - 0.75 x_9_5(0.75)
                                                                                             0.75 \times 10 \quad 5(0.75) - 0.22 \times 11 \quad 5(0.22) - 0.22 \times 12 \quad 5(0.22) - 0.22 \times 13 \quad 5(0.22) 
                                                                                             x = 14 = 5(0.22) - 0.22 \times 15 = 5(0.22) - 0.22 \times 16 = 5(0.22) - 0.22 \times 17 = 5(0.22) - 0.22
                                                                                             x 22 5(0.22) >= 0
                                                          c 1 6: 4.0 \text{ m} 6 - 1.5 \text{ x} 1 6(1.5) - 1.5 \text{ x} 2 6(1.5) - 1.5 \text{ x} 3 6(1.5) - 1.5 \text{ x} 4 6(1.5) - 0.75
                                                                                              x = 5 - 6(0.75) - 0.75 \times 6 - 6(0.75) - 0.75 \times 7 - 6(0.75) - 0.75 \times 8 - 6(0.75) - 0.75 \times 9 - 6(0.75) - 0.75 \times 9
```

```
0.75 \; x\_10\_6 (0.75) \; - \; 0.22 \; x\_11\_6 (0.22) \; - \; 0.22 \; x\_12\_6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad 13 \quad 6 (0.22) \; - \; 0.22 \; x \quad
                            \times 14 6(0.22) - 0.22 \times 15 6(0.22) - 0.22 \times 16 6(0.22) - 0.22 \times 17 6(0.22) - 0.22
                            x = 18 - 6(0.22) - 0.22 \times 19 - 6(0.22) - 0.22 \times 20 - 6(0.22) - 0.22 \times 21 - 6(0.22) - 0.22
                           x 22 6(0.22) >= 0
c 1 7: 4.0 \text{ m} 7 - 1.5 \text{ x} 1 7(1.5) - 1.5 \text{ x} 2 7(1.5) - 1.5 \text{ x} 3 7(1.5) - 1.5 \text{ x} 4 7(1.5) - 0.75
                             x_5_7(0.75) - 0.75 x_6_7(0.75) - 0.75 x_7_7(0.75) - 0.75 x_8_7(0.75) - 0.75 x_9_7(0.75) - 0.75 x_9_7(0.75)
                            0.75 \times 10 \quad 7(0.75) - 0.22 \times 11 \quad 7(0.22) - 0.22 \times 12 \quad 7(0.22) - 0.22 \times 13 \quad 7(0.22) 
                            \times 14 7(0.22) - 0.22 \times 15 7(0.22) - 0.22 \times 16 7(0.22) - 0.22 \times 17 7(0.22) - 0.22
                             x  18  7(0.22) - 0.22  x  19  7(0.22) - 0.22  x  20  7(0.22) - 0.22  x  21  7(0.22) - 0.22  
                            x 22 7(0.22) >= 0
c 1 8: 4.0 \text{ m} 8 - 1.5 \text{ x} 1 8(1.5) - 1.5 \text{ x} 2 8(1.5) - 1.5 \text{ x} 3 8(1.5) - 1.5 \text{ x} 4 8(1.5) - 0.75 \text{ x}
                            0.75 \times 10 \quad 8(0.75) - 0.22 \times 11 \quad 8(0.22) - 0.22 \times 12 \quad 8(0.22) - 0.22 \times 13 \quad 8(0.22) - 0.22 \times 13 = 0.000 \times 10^{-2} \times 10^{-2
                                  x_14_8(0.22) - 0.22 \; x_15_8(0.22) - 0.22 \; x_16_8(0.22) - 0.22 \; x_17_8(0.22) - 0.22 
                            x 18 8(0.22) - 0.22 x 19 8(0.22) - 0.22 x 20 8(0.22) - 0.22 x 21 8(0.22) - 0.22
                            x 22 8(0.22) >= 0
x 1 7(1.5) + x 1 8(1.5) = 1
c_2 \\ 2: x_2 \\ 1(1.5) \\ + x_2 \\ 2(1.5) \\ + x_3 \\ 2(1.5) \\ + x_4 \\ 2(1.5) \\ + x_4 \\ 2(1.5) \\ + x_5 \\ 2(1.5)
                            x 2 7(1.5) + x 2 8(1.5) = 1
x \ 3 \ 7(1.5) + x \ 3 \ 8(1.5) = 1
c 2 4: x 4 1(1.5) + x 4 2(1.5) + x 4 3(1.5) + x 4 4(1.5) + x 4 5(1.5) + x 4 6(1.5) +
                            x 4 7(1.5) + x 4 8(1.5) = 1
x_5_7(0.75) + x_5_8(0.75) = 1
x 6 7(0.75) + x 6 8(0.75) = 1
x_7_7(0.75) + x_7_8(0.75) = 1
x 8 7(0.75) + x 8 8(0.75) = 1
x_9_7(0.75) + x_9_8(0.75) = 1
x_10_6(0.75) + x_10_7(0.75) + x_10_8(0.75) = 1
x 11 6(0.22) + x 11 7(0.22) + x 11 8(0.22) = 1
{\tt c\_2\_12: x\_12\_1(0.22) + x\_12\_2(0.22) + x\_12\_3(0.22) + x\_12\_4(0.22) + x\_12\_5(0.22) + x\_12\_5(0
                             x 12 6(0.22) + x 12 7(0.22) + x 12 8(0.22) = 1
{\tt c\_2\_13: x\_13\_1(0.22) + x\_13\_2(0.22) + x\_13\_3(0.22) + x\_13\_4(0.22) + x\_13\_5(0.22) + x\_13\_5(0
                            x 13 6(0.22) + x 13 7(0.22) + x 13 8(0.22) = 1
```

```
x 14 6(0.22) + x 14 7(0.22) + x 14 8(0.22) = 1
   x 15 6(0.22) + x 15 7(0.22) + x 15 8(0.22) = 1
   x = 16 - 6(0.22) + x - 16 - 7(0.22) + x - 16 - 8(0.22) = 1
   x 17 6(0.22) + x 17 7(0.22) + x 17 8(0.22) = 1
   x_18_6(0.22) + x_18_7(0.22) + x_18_8(0.22) = 1
   x 19 6(0.22) + x 19 7(0.22) + x 19 8(0.22) = 1
   x_20_6(0.22) + x_20_7(0.22) + x_20_8(0.22) = 1
   x 21 6(0.22) + x 21 7(0.22) + x 21 8(0.22) = 1
   x 22 6(0.22) + x 22 7(0.22) + x 22 8(0.22) = 1
BINARY
   m - 1
   m = 2
   m - 3
   m - 4
   m 5
   m 6
   m_{-}7
   m 8
   x 1 1(1.5)
   x 1 2(1.5)
   x 1 3(1.5)
   x 1 4(1.5)
   x 1 5(1.5)
   x 1 6(1.5)
   x 1 7(1.5)
   x 1 8(1.5)
   x_2_{1(1.5)}
   x 2 2(1.5)
   x 2 3(1.5)
   x 2 4(1.5)
   x 2 5(1.5)
   x_2_6(1.5)
   x 2 7(1.5)
   x_2_8(1.5)
```

- $x_3_1(1.5)$
- $x_3_2(1.5)$
- $x_3_3(1.5)$
- $x_3_4(1.5)$
- $x_3_{5}(1.5)$
- $x_3_6(1.5)$
- $x_3_7(1.5)$
- $x_3_8(1.5)$
- $x_4_{1(1.5)}$
- $x_4_2(1.5)$
- $x_4_3(1.5)$
- $x_4_4(1.5)$
- $x_4_{5}(1.5)$
- $x_4_6(1.5)$
- $x_4_7(1.5)$
- $x_4_8(1.5)$
- $x_5_1(0.75)$
- $x_5_2(0.75)$
- $x_5_3(0.75)$
- $x_5_4(0.75)$
- $x_5_5(0.75)$
- $x_5_6(0.75)$ $x_5_7(0.75)$
- $x_5_8(0.75)$ $x_6_1(0.75)$
- $x_6_2(0.75)$
- $x_6_3(0.75)$
- $x_6_4(0.75)$ $x_6_{5}(0.75)$
- $x_6_6(0.75)$
- $x_6_7(0.75)$
- $x_6_8(0.75)$
- $x_7_1(0.75)$
- $x_7_2(0.75)$
- $x_7_3(0.75)$
- $x_7_4(0.75)$
- $x_7_5(0.75)$
- $x_7_6(0.75)$
- $x_7_7(0.75)$
- $x_7_8(0.75)$
- $x_8_1(0.75)$
- $x_8_2(0.75)$
- $x_8_3(0.75)$

- $x_8_4(0.75)$
- $x_8_5(0.75)$
- $x_8_6(0.75)$
- $x_8_7(0.75)$
- x_8_8(0.75)
- $x_9_1(0.75)$
- $x_9_2(0.75)$
- $x_9_3(0.75)$
- x_5_0(0.10)
- $x_9_4(0.75)$ $x_9_5(0.75)$
- $x_9_6(0.75)$
- n_0_0(0110)
- $x_9_7(0.75)$
- $x_9_8(0.75)$
- $x_10_1(0.75)$
- $x_10_2 (0.75)$
- $x_10_3(0.75)$
- $x_10_4(0.75)$
- $x_10_5(0.75)$
- $x_10_6 (0.75)$
- $x_10_7(0.75)$
- x_10_8(0.75)
- $x_11_1(0.22)$
- $x_11_2(0.22)$
- $x_11_3(0.22)$
- x_11_4(0.22)
- $x_11_5(0.22)$
- $x_11_6(0.22)$
- $x_11_7(0.22)$
- $x_11_8(0.22)$
- $x_12_1(0.22)$
- $x_12_2(0.22)$
- $x_12_3(0.22)$
- x_12_4(0.22)
- $x_12_5(0.22)$
- $x_12_6(0.22)$
- $x_12_7(0.22)$
- $x_12_8(0.22)$
- $x_13_1(0.22)$
- $x_13_2(0.22)$
- $x_13_3(0.22)$
- $x_13_4(0.22)$
- $x_13_5(0.22)$
- $x_13_6(0.22)$

- $x_13_7(0.22)$
- x_13_8(0.22)
- $x_14_1(0.22)$
- $x_14_2(0.22)$
- $x_14_3(0.22)$
- $x_14_4(0.22)$
- $x_14_5(0.22)$
- $x_14_6(0.22)$
- $x_14_7(0.22)$
- $x_14_8(0.22)$
- $x_15_1(0.22)$
- $x_15_2(0.22)$
- $x_15_3(0.22)$
- $x_15_4(0.22)$
- x_15_5(0.22)
- $x_15_6(0.22)$
- $x_15_7(0.22)$
- $x_15_8(0.22)$
- $x_16_1(0.22)$
- $x_16_2(0.22)$
- x_16_3(0.22)
- x_16_4(0.22)
- $x_165(0.22)$
- $x_16_6(0.22)$
- x_16_7(0.22)
- $x_16_8(0.22)$
- $x_17_1(0.22)$
- x_17_2(0.22)
- $x_17_3(0.22)$
- $x_17_4(0.22)$
- x_17_5(0.22)
- $x_17_6(0.22)$
- 11_11_0(0122)
- $x_17_7(0.22)$
- $x_17_8(0.22)$
- $x_18_1(0.22)$
- $x_18_2(0.22)$
- $x_18_3 (0.22)$
- $x_18_4 (0.22)$
- $x_18_5 (0.22)$
- $x_18_6(0.22)$
- x_18_7(0.22)
- $x_18_8(0.22)$ $x_19_1(0.22)$

```
x_19_2(0.22)
      x_19_3(0.22)
      x_19_4(0.22)
      x_19_5(0.22)
      x_19_6(0.22)
      x_197(0.22)
      x_19_8(0.22)
      x_20_1(0.22)
      x_20_2(0.22)
      x_20_3(0.22)
      x 20 4(0.22)
      x_20_5(0.22)
      x_20_6(0.22)
      x_20_7(0.22)
      x_20_8(0.22)
      x_21_1(0.22)
      x_21_2(0.22)
      x_21_3(0.22)
      x_21_4(0.22)
      x_21_5(0.22)
      x_21_6(0.22)
      x_21_7(0.22)
      x_21_8(0.22)
      x_22_1(0.22)
      x_22_2(0.22)
      x_22_3(0.22)
      x_22_4(0.22)
      x_22_5(0.22)
      x_22_6(0.22)
      x_22_7(0.22)
      x_22_8(0.22)
END
```

4 Log de GLPK obtenu

Problem:

Rows: 30

Columns: 184 (184 integer, 184 binary)

Non-zeros: 360

Status: INTEGER OPTIMAL

Objective: obj = 4 (MINimum)

No. Row name	Activity	Lower bound	Upper bound
1 c_1_1	0	0	
2 c_1_2	0.21	0	
3 c_1_3	1.75	0	
4 c_1_4	0	0	
5 c_1_5	0	0	
6 c_1_6	0	0	
7 c_1_7	0.78	0	
8 c_1_8	0.12	0	
9 c_2_1	1	1	=
10 c_2_2	1	1	=
11 c_2_3	1	1	=
12 c_2_4	1	1	=
13 c_2_5	1	1	=
14 c_2_6	1	1	=
15 c_2_7	1	1	=
16 c_2_8	1	1	=
17 c_2_9	1	1	=
18 c_2_10	1	1	=
19 c_2_11	1	1	=
20 c_2_12	1	1	=
21 c_2_13	1	1	=
22 c_2_14	1	1	=
23 c_2_15	1	1	=
24 c_2_16	1	1	=
25 c_2_17	1	1	=
26 c_2_18	1	1	=
27 c_2_19	1	1	=
28 c_2_20	1	1	=
29 c_2_21	1	1	=
30 c_2_22	1	1	=

	No. Column na	ame	Activity	Lower bound	Upper bound
1	m_1	*	0	0	1
2	m_2	*	1	0	1
3	m_3	*	1	0	1
4	m_4	*	0	0	1
5	m_5	*	0	0	1
6	m_6	*	0	0	1
7	m_7	*	1	0	1
8	m_8	*	1	0	1
9	x_1_1(1.5)	*	0	0	1
10	x_2_1(1.5)	*	0	0	1
11	x_3_1(1.5)	*	0	0	1
12	x_4_1(1.5)	*	0	0	1
13	x_5_1(0.75)	*	0	0	1
14	x_6_1(0.75)	*	0	0	1
15	x_7_1(0.75)	*	0	0	1
16	x_8_1(0.75)	*	0	0	1
17	x_9_1(0.75)	*	0	0	1
18	x_10_1(0.75)	*	0	0	1
19	x_11_1(0.22)	*	0	0	1
20	x_12_1(0.22)	*	0	0	1
21	x_13_1(0.22)	*	0	0	1
22	x_14_1(0.22)	*	0	0	1
23	x_15_1(0.22)	*	0	0	1
24	x_16_1(0.22)	*	0	0	1
25	x_17_1(0.22)	*	0	0	1
26	x_18_1(0.22)	*	0	0	1
27	x_19_1(0.22)	*	0	0	1
28	x_20_1(0.22)	*	0	0	1
29	x_21_1(0.22)	*	0	0	1
30	x_22_1(0.22)	*	0	0	1
31	x_1_2(1.5)	*	0	0	1

32 x_2_2(1.5)	*	0	0	1
33 x ₃ 2(1.5)	*	0	0	1
34 x_4_2(1.5)	*	0	0	1
35 x_5_2(0.75)	*	0	0	1
36 x ₆ 2(0.75)	*	1	0	1
37 x_7_2(0.75)	*	1	0	1
38 x_8_2(0.75)	*	0	0	1
39 x_9_2(0.75)	*	0	0	1
40 x ₁₀ 2(0.75)	*	1	0	1
41 x_11_2(0.22)	*	1	0	1
42 x ₁₂ 2(0.22)	*	1	0	1
43 x ₁ 3 ₂ (0.22)	*	1	0	1
44 x_14_2(0.22)	*	1	0	1
45 x ₁₅ 2(0.22)	*	1	0	1
46 x ₁₆ 2(0.22)	*	1	0	1
47 x_17_2(0.22)	*	1	0	1
48 x ₁ 8 ₂ (0.22)	*	0	0	1
49 x ₁ 9 ₂ (0.22)	*	0	0	1
50 x ₂ 0 ₂ (0.22)	*	0	0	1
51 x_21_2(0.22)	*	0	0	1
52 x ₂₂ 2(0.22)	*	0	0	1
53 x ₁ 3(1.5)	*	0	0	1
54 x ₂ 3(1.5)	*	0	0	1
55 x_3_3(1.5)	*	0	0	1
56 x ₄ 3(1.5)	*	0	0	1
57 x_5_3(0.75)	*	1	0	1
58 x ₆ 3(0.75)	*	0	0	1
59 x ₇ 3(0.75)	*	0	0	1
60 x_8_3(0.75)	*	1	0	1
61 x_9_3(0.75)	*	1	0	1
62 x ₁₀ 3(0.75)	*	0	0	1
63 x_11_3(0.22)	*	0	0	1
64 x_12_3(0.22)	*	0	0	1
65 x ₁₃ 3(0.22)	*	0	0	1

6	6 x_14_3(0.22)	*	0	0	1
6	7 x_15_3(0.22)	*	0	0	1
6	8 x_16_3(0.22)	*	0	0	1
6	9 x_17_3(0.22)	*	0	0	1
7	0 x_18_3(0.22)	*	0	0	1
7	1 x_19_3(0.22)	*	0	0	1
7	2 x_20_3(0.22)	*	0	0	1
7	3 x_21_3(0.22)	*	0	0	1
7	4 x_22_3(0.22)	*	0	0	1
7	5 x_1_4(1.5)	*	0	0	1
7	6 x_2_4(1.5)	*	0	0	1
7	7 x_3_4(1.5)	*	0	0	1
7	8 x_4_4(1.5)	*	0	0	1
7	9 x_5_4(0.75)	*	0	0	1
8	$0 \times 6_4(0.75)$	*	0	0	1
8	1 x_7_4(0.75)	*	0	0	1
8	2 x_8_4(0.75)	*	0	0	1
8	3 x_9_4(0.75)	*	0	0	1
8	4 x_10_4(0.75)	*	0	0	1
8	5 x_11_4(0.22)	*	0	0	1
8	6 x_12_4(0.22)	*	0	0	1
8	7 x_13_4(0.22)	*	0	0	1
8	8 x_14_4(0.22)	*	0	0	1
8	9 x ₁₅ 4(0.22)	*	0	0	1
9	0 x_16_4(0.22)	*	0	0	1
9	1 x_17_4(0.22)	*	0	0	1
9	2 x_18_4(0.22)	*	0	0	1
9	3 x_19_4(0.22)	*	0	0	1
9	4 x_20_4(0.22)	*	0	0	1
9	5 x_21_4(0.22)	*	0	0	1
	6 x_22_4(0.22)	*	0	0	1
9	7 x_1_5(1.5)	*	0	0	1
9	8 x_2_5(1.5)	*	0	0	1
9	9 x_3_5(1.5)	*	0	0	1

100	x_4_5(1.5)	*	0	0	1
101	x_5_5(0.75)	*	0	0	1
102	x_6_5(0.75)	*	0	0	1
103	x_7_5(0.75)	*	0	0	1
104	x_8_5(0.75)	*	0	0	1
105	x_9_5(0.75)	*	0	0	1
106	x_10_5(0.75)	*	0	0	1
107	x_11_5(0.22)	*	0	0	1
108	x_12_5(0.22)	*	0	0	1
109	x_13_5(0.22)	*	0	0	1
110	x_14_5(0.22)	*	0	0	1
111	x_15_5(0.22)	*	0	0	1
112	x_16_5(0.22)	*	0	0	1
113	x_17_5(0.22)	*	0	0	1
114	x_18_5(0.22)	*	0	0	1
115	x_19_5(0.22)	*	0	0	1
116	x_20_5(0.22)	*	0	0	1
117	x_21_5(0.22)	*	0	0	1
118	x_22_5(0.22)	*	0	0	1
119	$x_1_6(1.5)$	*	0	0	1
120	$x_2_6(1.5)$	*	0	0	1
121	x_3_6(1.5)	*	0	0	1
122	$x_4_6(1.5)$	*	0	0	1
123	$x_5_6(0.75)$	*	0	0	1
124	$x_{6}=6(0.75)$	*	0	0	1
125	$x_7_6(0.75)$	*	0	0	1
126	$x_8_6(0.75)$	*	0	0	1
127	$x_9_6(0.75)$	*	0	0	1
128	x_10_6(0.75)	*	0	0	1
129	x_11_6(0.22)	*	0	0	1
130	x_12_6(0.22)	*	0	0	1
131	x_13_6(0.22)	*	0	0	1
132	x_14_6(0.22)	*	0	0	1
133	x_15_6(0.22)	*	0	0	1

134 x_16_6(0.22)	*	0	0	1
135 x_17_6(0.22)	*	0	0	1
136 x_18_6(0.22)	*	0	0	1
137 x_19_6(0.22)	*	0	0	1
138 x_20_6(0.22)	*	0	0	1
139 x_21_6(0.22)	*	0	0	1
140 x_22_6(0.22)	*	0	0	1
141 x_1_7(1.5)	*	0	0	1
142 x_2_7(1.5)	*	0	0	1
143 x_3_7(1.5)	*	1	0	1
144 x_4_7(1.5)	*	1	0	1
145 x_5_7(0.75)	*	0	0	1
146 x_6_7(0.75)	*	0	0	1
147 x_7_7(0.75)	*	0	0	1
148 x_8_7(0.75)	*	0	0	1
149 x_9_7(0.75)	*	0	0	1
150 x_10_7(0.75)	*	0	0	1
151 x_11_7(0.22)	*	0	0	1
152 x_12_7(0.22)	*	0	0	1
153 x_13_7(0.22)	*	0	0	1
154 x_14_7(0.22)	*	0	0	1
155 x_15_7(0.22)	*	0	0	1
156 x_16_7(0.22)	*	0	0	1
157 x_17_7(0.22)	*	0	0	1
158 x_18_7(0.22)	*	0	0	1
159 x_19_7(0.22)	*	0	0	1
160 x_20_7(0.22)	*	0	0	1
161 x_21_7(0.22)	*	0	0	1
162 x_22_7(0.22)	*	1	0	1
163 x_1_8(1.5)	*	1	0	1
164 x_2_8(1.5)	*	1	0	1
165 x_3_8(1.5)	*	0	0	1
166 x_4_8(1.5)	*	0	0	1
167 x_5_8(0.75)	*	0	0	1

```
168 \times 6_8(0.75) *
                                     0
                                                      0
                                                                      1
169 \times 7_8(0.75) *
                                     0
                                                                      1
                                                      0
170 \times 8_{8}(0.75) *
                                     0
                                                      0
                                                                      1
171 \times 9_8(0.75) *
                                     0
                                                      0
                                                                      1
172 \times 10_8(0.75) *
                                     0
                                                      0
                                                                      1
173 x_11_8(0.22) *
                                     0
                                                      0
                                                                      1
174 x_12_8(0.22) *
                                     0
                                                      0
                                                                      1
175 x_13_8(0.22) *
                                     0
                                                      0
                                                                      1
176 \text{ x}_{14} = 8(0.22) *
                                     0
                                                      0
                                                                      1
177 x_15_8(0.22) *
                                     0
                                                                      1
                                                      0
178 x_16_8(0.22) *
                                     0
                                                      0
                                                                      1
179 x_17_8(0.22) *
                                     0
                                                      0
                                                                      1
180 x_18_8(0.22) *
                                     1
                                                      0
                                                                      1
181 x_19_8(0.22) *
                                     1
                                                      0
                                                                      1
182 x_20_8(0.22) *
                                     1
                                                                      1
                                                      0
183 x_21_8(0.22) *
                                     1
                                                      0
                                                                      1
184 x_22_8(0.22) *
                                     0
```

Integer feasibility conditions:

End of output

```
KKT.PE: max.abs.err = 8.88e-16 on row 2
max.rel.err = 9.87e-17 on row 2
High quality

KKT.PB: max.abs.err = 0.00e+00 on row 0
max.rel.err = 0.00e+00 on row 0
High quality
```

5 Explication du retour obtenu dans le fichier log