

Katedra Metrologii Elektronicznej i Fotonicznej

Nazwa kursu:

Metrologia optyczna - laboratorium

Temat projektu:

Bezdotykowy pomiar temperatury za pomocą pirometru opartym na czujniku MLX90614

Autorzy projektu:

inż. Piotr Rosiński inż. Patryk Niczke inż. Przemysław Lis

Wydział Elektroniki, Fotoniki i Mikrosystemów Kierunek: Elektronika

Miejsce i rok: Wrocław, 2024

Spis treści

1	Wst	tęp	3
	1.1	Wprowadzenie	3
	1.2	Cel projektu	3
	1.3	Zakres projektu	3
2	Założenia projektowe		
	2.1	Opis założeń funkcjonalnych	4
	2.2	Opis założeń konstrukcyjnych	4
	2.3	Opis założeń środowiskowych	4
	2.4	Opis założeń ekonomicznych	4
3	Cha	arakterystyka wykorzystanych komponentów sprzętowych	5
	3.1	Mikrokontroler Arduino Uno	5
	3.2	Czujnik temperatury MLX90614	5
	3.3	4-przyciskowa klawiatura	5
	3.4	Wyświetlacz LCD z konwerterem I2C HD44780	5
4	Ana	aliza struktury zastosowanego oprogramowania	6
	4.1	Połączenie z czujnikiem temperatury MLX90614	6
	4.2	Połączenie z wyświetlaczem LCD HD44780	6
	4.3	Synchroniczna współpraca LCD i czujnika temperatury z wykorzy-	
		staniem mikrokontrolera Arduino	6
5	Uru	nchomienie projektu i skalibrowanie urządzenia	7
	5.1	Proces uruchomienia	7
	5.2	Kalibracja urządzenia	7

6	Wy	konanie testów i dokonanie odpowiednich pomiarów	8	
	6.1	Opis metodyki testowania	8	
	6.2	Przygotowanie do testów	8	
	6.3	Przebieg testów	8	
	6.4	Dokonanie pomiarów	8	
	6.5	Analiza wyników	8	
7	Inst	trukcja użytkowania	9	
	7.1	Krótki opis pirometru i jego przeznaczenia	9	
	7.2	Ostrzeżenia dotyczące pomiarów wysokich temperatur/kontaktu z go-		
		rącymi obiektami	9	
	7.3	Podłączenie pirometru do źródła zasilania	9	
	7.4	Opcjonalna zmiana parametrów (emisyjność, odległość dokonywania		
		pomiaru)	9	
	7.5	Czyszczenie powierzchni czujnika	9	
	7.6	Informacje o przechowywaniu	9	
	7.7	Typowe problemy (np. brak odczytu, błędne wyniki) i ich możliwe		
		rozwiązania	9	
8	Poo	dsumowanie i Wnioski	10	
$\mathbf{B}^{\mathbf{i}}$	Bibliografia			

Wstęp

- 1.1 Wprowadzenie
- 1.2 Cel projektu
- 1.3 Zakres projektu

Założenia projektowe

- 2.1 Opis założeń funkcjonalnych
- 2.2 Opis założeń konstrukcyjnych
- 2.3 Opis założeń środowiskowych
- 2.4 Opis założeń ekonomicznych

Charakterystyka wykorzystanych komponentów sprzętowych

- 3.1 Mikrokontroler Arduino Uno
- 3.2 Czujnik temperatury MLX90614
- 3.3 4-przyciskowa klawiatura
- 3.4 Wyświetlacz LCD z konwerterem I2C HD44780

Analiza struktury zastosowanego oprogramowania

- 4.1 Połączenie z czujnikiem temperatury MLX90614
- 4.2 Połączenie z wyświetlaczem LCD HD44780
- 4.3 Synchroniczna współpraca LCD i czujnika temperatury z wykorzystaniem mikrokontrolera Arduino

Uruchomienie projektu i skalibrowanie urządzenia

- 5.1 Proces uruchomienia
- 5.2 Kalibracja urządzenia

Wykonanie testów i dokonanie odpowiednich pomiarów

- 6.1 Opis metodyki testowania
- 6.2 Przygotowanie do testów
- 6.3 Przebieg testów
- 6.4 Dokonanie pomiarów
- 6.5 Analiza wyników

Instrukcja użytkowania

- 7.1 Krótki opis pirometru i jego przeznaczenia
- 7.2 Ostrzeżenia dotyczące pomiarów wysokich temperatur/kontaktu z gorącymi obiektami
- 7.3 Podłączenie pirometru do źródła zasilania
- 7.4 Opcjonalna zmiana parametrów (emisyjność, odległość dokonywania pomiaru)
- 7.5 Czyszczenie powierzchni czujnika
- 7.6 Informacje o przechowywaniu
- 7.7 Typowe problemy (np. brak odczytu, błędne wyniki) i ich możliwe rozwiązania

Podsumowanie i Wnioski

Bibliografia