Modelado de temperaturas extremas en Uruguay

I. Alvarez-Castro J. Cugliari N. da Silva S. De Mello Agustín Estramil Manuel Hernández M. Renom

15 de Noviembre de 2019

orden

Intro:

- proyecto fsd (gente, inst, amigos)
- relevancia y objetivos del proyecto

Datos:

- origen y problemas en los datos
- definicion olas (punto, gralizada), percentiles
- Viz (estatica)

Modelos:

- GEV
- ▶ DLM: modelo
- ▶ DLM: estimacion

Resultados: mostrar shiny app

Antecedentes y conformación del equipo

- ▶ 2015 Jornadas de estadística en la Paloma.
- ▶ 2016 Presentación del proyecto I+D de CSIC (no financiado).
- ▶ 2017 Fondo sectorial de investigación a partir de datos.(\$\$:-))

Instituciones involucradas

- ▶ IESTA Facultad de Ciencias Económicas.
- ▶ DCA (DCAOF) Facultad de Ciencias.
- ► INUMET

Relevancia del problema

- ▶ Problema regional de series con datos faltantes.
- ▶ Relevancia del estudio de extremos.

• ...

Objetivo general

Modelización estadística de las series diarias de temperatura máxima y mínima en varias estaciones meteorológicas en Uruguay.

En base a esos modelos:

- Reconstruir series diarias.
- Analizar eventos de olas de frío y calor.

Modelado de temperaturas extremas en Uruguay

Objetivos específicos

- ▶ Imputación de datos faltantes.
- Visualización de series diarias.
- Definición y caraterización de olas de extremos.
- Métodos para comparar y evaluar series imputadas.

2. Datos de Temperatura máxima y mínima

Origen y problemas de los datos

Período de análisis: 1950 - 2014

Control de calidad

- Control de calidad RClimdex umbral 3 STD + Variabilidad interdiaria de Tx y Tn.
- ▶ Programa para visualizar los errores detectados por RClimDex.
- Se confeccionó una lista con los datos de todas las estaciones para revisar en el INUMET.

Olas de extremos

Ola de frío: al menos 3 días seguidos con temperaturas mínimas y máximas inferiores a los respectivos percentiles 10 esperados para tales días.

Sucesión de días t_1, \ldots, t_k constituyen una ola de frío de largo k si:

$$egin{cases} y_{t_i}^n < p_{10_i}^n \ y_{t_i}^n < p_{10_i}^n \end{cases}$$
 para $i=1,\ldots,k$ donde $k\geq 3$

Se debe verificar al menos 5 de las 6 condiciones anteriores.

Calcular percentiles

Percentiles para cada dia del año:

$$\begin{array}{l} p_{10_t}^n := \inf\{y : p(Y_t^n \le y) \ge 0.1\} \\ p_{10_t}^x := \inf\{y : p(Y_t^x \le y) \ge 0.1\} \end{array}$$

Muestral

- y_{at} es la temperatura de día t en año a
- ▶ cada diat t, calcular cuantiles de $\{y_{1t}, \dots, y_{At}\}$
- ightharpoonup obtener $p_{10_t}^n$ como media móvil de ventana 31 (en días)

Visualizar olas de temperatura

Distribución de datos superando el P90 - ARTIGAS

Olas de calor - ARTIGAS

Olas de calor - ARTIGAS

3. Modelos estadísticos

Modelos estadísticos

- \triangleright y_{ti}^n : temperatura mínima el día t en locación i
- \triangleright y_{ti}^{x} : temperatura máxima el día t en locación i

Imputar las series diarias:

- Modelos aditivos basados en GEV
- ► Modelos Bayesianos diámicos
- ▶ otros: Regresión + ACP, GAM + estructura dependencia, etc

Modelos estadísticos

- \triangleright y_{ti}^n : temperatura mínima el día t en locación i
- \triangleright y_{ti}^{x} : temperatura máxima el día t en locación i

Imputar las series diarias:

- Modelos aditivos basados en GEV
- ► Modelos Bayesianos diámicos
- ▶ otros: Regresión + ACP, GAM + estructura dependencia, etc

Ejemplo Imputación

En 1962, hay 40 dias sin temperatura minima en Paysandu

Modelos aditivos basados en GEV

$$G(y_{ti}^{x}) = \exp\left\{-\left[1 + \xi\left(\frac{y_{ti}^{x} - \mu_{it}}{\sigma_{i}}\right)\right]_{+}^{-1/\xi}\right\}$$
 $\mu_{it} = s(t) + s(mei) + cl_{i}$

- un parámetro de escala por estación, σ_i
- \blacktriangleright un parámetro de forma, ξ
- lacktriangle imputamos con la locación: $ilde{y}^{ ilde{x}}_{ti} = \hat{\mu}_{it}$

Modelo dinámico lineal

DLM para temperatura

- temperatura observada: real- ruido
- lackbox entendido como el valor no observable de la temperatura **sin** ruido
- ightharpoonup dependencia en θ_t : de otras estaciones y de si misma
- ▶ NO toma en cuenta caracter extremo

$$\begin{aligned} y_t^n &= \theta_t + v_t & v_t \sim \mathcal{N}(0, \sigma^2 I_{11}) \\ \theta_t &= \theta_{t-1} + w_t & w_t \sim \mathcal{N}(0, W) \end{aligned}$$

Estimación proceso de estados

Inferencia Bayesiana:

$$p(parámetro|datos) \propto p(datos|parámetro) \times p(parámetro)$$

Inferencia probabilística: concluciones se basan en una distribución de cantidades de interés *condicional* en los datos.

Dos posteriores relevantes:

- Filtro: $p(\theta_t|y_{1:t})$
- ▶ Suavizado: $p(\theta_t|y_{1:T})$

Filtro de Kalman: $p(\theta_t|y_{1:t})$

Estimacion recursiva, en base a $p(\theta_{t-1}|y_{1:(t-1)})$:

Previa:

$$p(\theta_{t}|y_{1:t-1}) = \int p(\theta_{t}|\theta_{t-1})p(\theta_{t-1}|y_{1:t-1})d\theta_{t-1}$$

Posterior Filtrada:

$$p(\theta_t|y_{1:t}) = \frac{p(y_t|\theta_t)p(\theta_t|y_{1:t-1})}{p(y_t|y_{1:t})} \propto p(y_t|\theta_t)p(\theta_t|y_{1:t-1})$$

- ▶ Previa para estado inicial: $\theta_0 \sim N(m_0, C_0)$
- ▶ Soluciones cerradas en el caso gaussiano lineal

Ejemplo Imputación

Los metodos para obtener posteriores de θ_t no se ven afectados

Resultados

Aplicacion shiny

Siguientes pasos

- evaluar efecto de la imputacion en las olas estimadas
- caracterizar olas

4. Muchas Gracias !!