	Uffech
Name:	
Roll No.:	A Amount of Exempleign and Exemple
Invigilator's Signature :	

CS/B.TECH (IT-OLD/EEE-OLD)/SEM-4/CS-404/2012 2012

COMPUTER ORGANIZATION & ARCHITECTURE

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

- i) Booth's algorithm for computer arithmetic is used for
 - a) multiplication of numbers in sign magnitude form
 - b) multiplication of numbers in 2's complement form
 - c) division of numbers in sign magnitude form
 - d) division of numbers in 2's complement form.
- ii) In fourth generation computers, the main technology used is
 - a) transistor
- b) SSI

c) MSI

d) LSI & VLSI.

4102 (O) Turn over

CS/B.TECH (IT-OLD/EEE-OLD)/SEM-4/CS-404/2012

Maximum *n* bit 2's complement number is

iii)

	a)	2 ⁿ	b)	2 ⁿ -	To Amount ()	Kanadalp	Real Experience	b	
	c)	$2^{n-1}-1$	d)	2 n -	1.				
iv)	$(FAFAFB)_{16} = (?)_{8}$								
	a)	76767676	b)	765	75372				
	c)	76737672	d)	none	e of the	se.			
v)	Which logic gate has the highest speed?								
	a)	ECL	b)	TTL					
	c)	RTL	d)	DTL	•				
vi)	Subtractor can be implemented using								
	a)	adder	b)	complementer					
	c)	both (a) and (b)	d)	none	e of the	se.			
vii)	The	technique of p	lacing	softw	are in	a	RO	ΟM	
	sem	iconductor chip is c	alled						
	a)	PROM	b)	EPR	OM				
	c)	Microprocessor	d)	FIRM	MWARE	•			
viii)	i) What is the 2's complement representation of -							in	
	16-bit representation ?								
	a) 0000 0000 0001 1000								
	b) 1111 1111 1110 0111								
	c) 1111 1111 1110 1000								
	d) 0001 0001 1111 0011.								
ix)	How	many address	bits	are	require	ed	for	a	
	512	× 4 memory ?							
	a)	512	b)	4					
	c)	9	d)	16.					
4102 (O)		2							
-102 (0)		~							

- x) Overflow occurs when
 - a) data is out of range
 - b) data is within range
 - c) none of these
- xi) How many RAM chips of size ($256 \text{ k} \times 1 \text{ bit}$) are required to build 1M byte memory ?
 - a) 8

b) 10

c) 24

- d) 32.
- xii) Micro-instructions are kept in
 - a) main memory
- b) control memory
- c) cache memory
- d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- Explain how the real numbers are represented in computer memory? 2
- b) Describe IEEE 754 standard format for floating point representation.
- 3. a) Draw and explain the basic structure of a hard disk. 3
 - b) How are data retrieved and stored in a hard disk? 2
- 4. a) Explain the reading and writing operations of a SRAM. 3
 - b) Differentiae between SRAM and DRAM.

2

- 5. a) Explain the difference between instruction pipeline and arithmetic pipeline. 2
 - b) What are the different hazards in pipeline?

3

2.

a)

6. Explain the significance of Timing signals in a com a) system. b) Explain why every computer system is associated with a set of general purpose registers. 2 **GROUP - C** (Long Answer Type Questions) Answer any three of the following. $3 \times 15 = 45$ 7. Describe the function of major components of a digital a) computer with a block diagram. 10 b) Describe the Von-Neumann concept. 5 Give the Booth's algorithm for multiplication of signed 8. a) 2's complement numbers in flow chart and explain. 8 Multiply - 3 by - 6 using Booth's algorithm. 7 b) 9. a) Give the instruction code format and define opcode. 5 Differentiate between direct and indirect instructions b) and also differentiate between register reference and input-output reference instructions. 5 + 510. a) Explain the concept of virtual memory. 4 b) What do you understand by page fault? 3 What is control memory and control ward? 5 c) Why does a DRAM cell need refreshing? 3 d) 11. Write short notes on any three of the following: 3×5 a) Bus organization using tri-state buffer Serial and parallel adders b)

Magnetic recording

Addressing modes.

c)

d)