МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМ. ТАРАСА ГРИГОРОВИЧА ШЕВЧЕНКА ФІЗИЧНИЙ ФАКУЛЬТЕТ

3BIT

до лабораторної роботи №4: «Транзистори»

Вакал €. А.

Реферат

Звіт до ЛР №4: 32с., 52 рис.

Об'єкт дослідження – польовий та біполярний транзистори.

Мета роботи: дослідити вихідні характеристики транзисторів різних типів (а саме біполярного та польового транзисторів).

Методи вимірювання:

- 1) одержання зображення ВАХ транзисторів на екрані двоканального осцилографа, що працює в режимі характериографа;
- 2) побудова сімейства ВАХ шляхом вимірювання певної кількості значень сили струму I_{κ} , що відповідають певним значенням напруги $U_{\kappa e}$ (для певної сили струму бази I_{6} або напруги U_{6e}) для біполярного транзистора та певної кількості значень сили струму стоку I_{c} , що відповідають певним значенням напруги $U_{c B}$ (для певних значень напруги між затвором і витоком $U_{3 B}$) для польового транзистора, подання результатів вимірів у вигляді графіків.

3MICT

Частина 1.	
Теоретичні відомості.	c
І. Основні означення	
Частина 2.	
Практична частина.	
І. Біполярний транзистор	
1. Схема установки	5
2. Виміри при 67%	6
3. Виміри при 33%	10
4. Виміри при 10%	14
II. Польовий транзистор	
1. Схема установки	18
2. Виміри при 67%	19
3. Виміри при 33%	
4. Виміри при 10%	27
Частина 3.	
І. Висновки	31
II. Джерела	32

Теоретичні відомості

І. Основні означення

Транзистор – керований нелінійний елемент, на основі якого можна створювати підсилювачі електричних сигналів.

Біполярний транзистор — це напівпровідниковий прилад з двома p-n—переходами, що взаємодіють між собою, та трьома виводами, підсилювальні властивості якого зумовлені явищами інжекції (введення) та екстракції (вилучення) *неосновних* носіїв заряду.

Вихідна вольт-амперна характеристика (ВАХ) біполярного транзистора — це залежність сили струму колектора I_{κ} від напруги між колектором та емітером $U_{\kappa e}$ при певному значенні струму бази I_{δ} (або напруги між базою та емітером $U_{\delta e}$) в схемі зі спільним емітером.

Польовий (уніполярний) транзистор — це напівпровідниковий прилад, підсилювальні властивості якого зумовлені струмом *основних* носіїв, що течуть по провідному каналу, провідність якого керується зовнішнім електричним полем.

Польовий транзистор з керувальним електродом — це польовий транзистор, керування струмом основних носіїв у якому здійснюється за допомогою p-n—переходу, зміщеного у зворотному напрямі.

Вихідна вольт-амперна характеристика (ВАХ) польового транзистора — це залежність сили струму стоку I_c від напруги між стоком та витоком U_{ce} при певному значенні напруги між затвором та витоком U_{3e} .

Практична частина

І. Біполярний транзистор

1. Схема установки

Рис.1. Параметри джерела

Рис. 2. Схема установки

2. Виміри при 67% (відсоткове значення опору реостату складає 67% від повного 1кОм)

Рис. 3. Напруга на базі (67%) (0.6115V)

Рис.4. Напруга на резисторі R3 (67%) (0.6597V)

Рис.5. Напруга на колекторі та емітері (67%) (0,0179V / 9.45nV)

Рис.6. Напруга на базі (67%)

Рис.7. Напруга на резисторі R3 (67%)

Рис. 8. Напруга на колекторі (жовтий графік) та емітері (рожевий) (67%)

Рис.9. Покази осцилографа

Рис.10. ВАХ біполярного транзистора

3. Виміри при 33% (відсоткове значення опору реостату складає 33% від повного 1кОм)

Рис.11. Напруга на базі (33%) (0.6791V)

Рис.12. Напруга на R3 (33%) (1.332V)

Рис.13. Напруга на колекторі (жовтий) та емітері (рожевий)(33%) (0,0181V та 128nV)

Рис.14. Напруга на базі (33%)

Рис.15. Напруга на резисторі R3 (33%)

Рис.16. Напруга на колекторі (жовтий графік) та емітері (рожевий) (33%)

Рис.17. Покази осцилографа

Рис.18. ВАХ біполярного транзистора

4. Виміри при 10% (відсоткове значення опору реостату складає 10% від повного $1\kappa Om)$

Рис.19. Напруга на базі (10%) (0.692V)

Рис.20. Напруга на R3 (10%) (1.78V)

Рис.21. Напруга на колекторі (жовтий) та емітері (рожевий) (10%) (0,0181V та 214nV)

Рис.22. Напруга на базі (10%)

Рис.23. Напруга на резисторі R3 (10%)

Рис.24. Напруга на колекторі(жовтий графік) та емітері (рожевий) (10%)

Рис.25. Покази осцилографа (10%)

Рис.26. ВАХ біполярного транзистора

ІІ. Польовий транзистор

1. Схема установки

Рис.27. Параметри джерела

Рис. 28. Схема установки

2. Виміри при 67% (відсоткове значення опору реостату складає 67% від повного 1кОм)

Рис.29. Напруга на базі (67%) (0.491V)

Рис.30. Напруга на резисторі R3 (67%) (0.659V)

Рис.31. Напруга на колекторі (жовтий) та емітері (рожевий) (67%) (0,00315V та 33nV)

Рис.32. Напруга на базі (67%)

Рис.33. Напруга на резисторі R3 (67%)

Рис.34. Напруга на колекторі(жовтий графік) та емітері (рожевий) (67%)

Рис.35. Покази осцилографа

Рис.36. ВАХ польового транзистора

3. Виміри при 33% (відсоткове значення опору реостату складає 33% від повного 1кОм)

Рис.37. Напруга на базі (33%) (0.535V)

Рис.38. Напруга на резисторі R3 (33%) (1.33V)

Рис.39. Напруга на колекторі (жовтий) та емітері (рожевий)(33%) (0,0121V та 156nV)

Рис.40. Напруга на базі (33%)

Рис.41. Напруга на резисторі R3 (33%)

Рис.42. Напруга на колекторі(жовтий графік) та емітері (рожевий) (33%)

Рис.43. Покази осцилографа

Рис.44. ВАХ польового транзистора

4. Виміри при 10% (відсоткове значення опору реостату складає 10% від повного $1\kappa Om)$

Рис.45. Напруга на базі (10%) (0,548V)

Рис.46. Напруга на резисторі R3 (10%) (1,78V)

Рис.47. Напруга на колекторі (жовтий) та емітері (рожевий) (10%) (0,0167V та 242nV)

Рис.48. Напруга на базі (10%)

Рис.49. Напруга на резисторі R3 (10%)

Рис.50. Напруга на колекторі(жовтий графік) та емітері (рожевий) (10%)

Рис.51. Покази осцилографа (10%)

Рис.52. ВАХ польового транзистора

Висновки

У даній роботі я дослідив вихідні характеристики транзисторів різних типів (а саме біполярного транзистору n-p-n типу та польового транзистора). Я одержав зображення ВАХ транзисторів на екрані характериографа, а також визначив значення напруги на базі, емітері (U_E) , колекторі (U_K) транзистора і на резисторі R3 (див. графіки та підписи до них).

Джерела

- 1. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк, Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с. 3. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян
- 2. Мягченко Ю.О., Дулич Ю.М., Хачатрян А.В. «Вивчення радіоелектронних схем методом комп'ютерного моделювання»: Методичне видання. К.: 2006.- 40 с. ISBN 966-594-501-7