ESMA 6205: Multiple Linerar Regression

Alejandro Ouslan

Spring 2025

Contents

1	Introduction	1
2	Model Diagnostic	1
_		2
4	Example: Rat population	2

1 Introduction

2 Model Diagnostic

- 1. It is possible that all of the predictors are associateded with the repsonse, but it is more often the case that the response is only related to a subset of the predictor.
- 2. The task of determining which predictors are associated with the reponce, in order to fit a single model involving only those predictors, is referred to as variable selection.
- 3. All subset regressions tests all posssibel subsets of the set of potential independent variables. If there are K potential independent variables (beside the contant), then there are 2^K distinct subsets of them to be tested.

3 Model Selection

We can then select the best model out of all of the models that we have considered. How do we determine which model is best?

- 1. Mallow's C_p
- 2. Beyesian Information Criterion (BIC)
- 3. Akaike's Information Criterion (AIC)
- 4. Adjusted R^2

3.1 Mallow's C_p

Malllow's C_p value is given by.

$$C_p = \frac{SSE_P}{\hat{\sigma}^2} - (n - 2p)$$

where SSE_P is the sums of square of the error with p predictors and $\hat{\sigma}^2$ is the estimated mean squared error

- 1. $SSE_P = \sum_{i=1}^n (y_i \hat{y}_i)^2$
- 2. $\hat{\sigma}^2 = MMSE$ of the model

3.2 Introduction to the likelihood funtion

snuppose that $y = X\beta + \epsilon$ where $\epsilon \sim N(0, \sigma^2 I_n)$

1.
$$\epsilon \sim N(0, \sigma^2 I_n) \leftrightarrow y \sim N(X\beta, \sigma^2 I_n)$$

$$f(y|X\beta, \sigma^2) = (2\pi)^{-n/2} |\sigma^2 I_n|^{-1/2} \exp\left(-\frac{1}{2\sigma^2} (y - X\beta)^T (y - X\beta)\right)$$

$$= \max f(y|X\beta, \sigma^2)$$

$$= \log f(y|X\beta, \sigma^2)$$

$$= \max \log f(y|X\beta, \sigma^2)$$

$$= \log(\hat{\theta}) = \max \log f(y|X\beta, \sigma^2)$$

2. We are looking the ver

3.3 Akaike's Information Criterion (AIC)

The AIC is given by

$$AIC = -2\log(\hat{\theta}) + 2p \rightarrow \log f(y|\hat{\theta}) + 2p$$

3.4 Bayesian Information Criterion (BIC)

The BIC is given by

$$BIC = -2\log(\hat{\theta}) + p\log(n)$$

4 Example: Rat population