

Создание тонких пленок из наночастиц серебра и их применение как основы для современных сенсоров

Цели и задачи проекта

Цель проекта:

создание тонких пленок из наночастиц серебра и тестирование их как сенсорных элементов.

Предмет исследования:

проведение самосборки наночастиц серебра (AgNPs) и помещение пленок AgNPs на твердую подложку.

Объект исследования:

наночастицы серебра на твердых подложках.

Задачи:

- 1. Изучение научных исследований и литературы по теме проекта.
- 2. Синтез наночастиц серебра, изучение полученных растворов.
- 3. Проведение самосборки наночастиц серебра на границе раздела двух сред.
- 4. Перенесение полученных тонких плёнок из наночастиц серебра на твёрдую подложку
- 5. Изучение микроструктуры пленок с помощью атомно-силового микроскопа.
- 6. Тестирование твердых подложек с помощью красителей. Проверка работоспособности сенсорного элемента в рамановской спектроскопии.

Актуальность проекта

- **1.** Тонкие пленки из наночастиц серебра, помещенные на твердые подложки, служат сенсорным материалом для **рамановской спектроскопии**.
- **2.** <u>Способ получения</u> тонких пленок из AgNPs (самосборка пленок на границе двух жидкостей) достаточно <u>прост, доступен и экономичен</u>:
- не требуется сложных лабораторных условий;
- можно получить пленки на поверхностях большой площади;
- не требуется большого расхода наночастиц.
- 3. <u>Достоинства</u> сенсорного материала на основе пленок из AgNPs:
- эффективно усиливает интенсивность сигнала рамановского рассеяния;
- обладает высокой реакционной способностью;
- позволяет получать однородный сигнал по всей поверхности.
- **4.** Также сенсоры на основе пленок AgNPs на твердой подложке могут применятся в **электрохимии** и спектрофлуориметрии.

Схема рамановской спектроскопии с использованием подложки, усиливающей сигнал

Рамановская спектроскопия

Рамановская спектроскопия – современный неразрушающий и неконтактный метод количественного и качественного анализа вещества.

Для применения данного метода необходим сенсорный материал, который усиливает интенсивность сигнала рамановского рассеяния.

Одним из таких сенсорных материалов являются пленки из наночастиц серебра на твердой подложке.

Сферы применения рамановской спектроскопии:

Медицина - диагностика опухолей, мониторинг рака, неинвазивное исследование биологических тканей и жидкостей

Химия - анализ веществ (в том числе опасных, взрывчатых), лекарств

<u>История</u> – исследование, атрибуция предметов искусства и артефактов

Криминалистика - исследование улик

Портативный спектрометр для анализа веществ на основе рамановской спектроскопии

Материалы и оборудование

Оборудование для синтеза

наночастиц серебра:

Обратный холодильник (для

охлаждения паров),

Шланги, штативы и лапки,

Термостойкие круглодонные колбы,

Химическая посуда,

Нагревательные лабораторные плитки,

Магнитная мешалка и якорёк,

Пипетдозатор,

Силанизированный стакан.

Реактивы:

AgNO3 (нитрат серебра),

NH2OH*HCI (раствор

гидроксиламин гидрохлорида),

NaOH (гидроксид натрия),

Деионизированная вода,

ТТГ (Тетратиафульвален),

С6Н14 (Гексан)

Оборудование для изучения наночастиц:

Спектрофотометр для UV-VIS спектроскопии,

Оптический микроскоп,

Атомно-силовой микроскоп

Ход работы

I. Получение коллоидов наночастиц серебра по методу Леопольда-Лендла

1. Собрали установку для синтеза наночастиц серебра (AgNPs)

2. При непрерывном помешивании внесли в колбу реактивы для получения AgNPs

3. Полученный коллоидный раствор AgNPs перелили в емкости для хранения

II. Получение слоя наночастиц серебра на границе раздела двух сред (вода – гексан)

1. С помощью UV-VIS спектроскопии определили средний диаметр и концентрацию наночастиц серебра.

3. Пипетдозатором капали необходимое количество наночастиц серебра на каплю TTF в пробирке и встряхивали для образования монослоя.

4. В силанизированный стакан с деионизированной водой добавили гексан, образовалась граница раздела двух сред.

5. Пипетдозатором капали раствор AgNPs с TTF. Получили слой наночастиц серебра на границе раздела.

III. Перенос получившихся пленок из наночастиц серебра на подложки

1. Использовали метод аквапринт: пинцетом брали подложки, окунали их на уровень границы раздела фаз, где образовалась пленка AgNPs.

2. Покрытые слоем AgNPs подложки выкладывали в чашку Петри или на стекло.

IV. Получение изображения и изучение микроструктуры поверхности пленок с AgNPs

1. Находили и устанавливали резонансную частоту для использовавшегося зонда атомносилового микроскопа.

2. Работу проводили в полуконтактном режиме, снимали участки пленок размером 1х1 мкм.

3. Обнаруженные дефекты на пленках AgNPs не превышали 200-300 нм.

V. Тестирование твердых подложек с AgNPs. Проверка работоспособности сенсорного элемента

Этап тестирования пленок из AgNPs на твердых подложках в качестве сенсорных элементов для рамановской спектроскопии на данный момент не завершен и находится на стадии реализации.

Выводы

- 1. Был проведен синтез наночастиц серебра (AgNPs).
- 2. Были определены средние диаметры AgNPs и их концентрация по размерам с помощью UV-Vis (ультрафиолетово—видимая спектроскопии). На основе полученных данных были проведены расчеты для определения количества AgNPs, необходимого для заполнения определенной площади поверхности.
- 3. Была проведена самосборка AgNPs и получены пленки на границе раздела сред.
- 4. Пленки были перенесены на твердые подложки и изучены с помощью атомносилового микроскопа.

Получение тонких пленок из наночастиц серебра с помощью самосборки частиц на границе двух сред является эффективным и доступным способом.

Тонкие пленки из AgNPs, помещенные на твердую подложку могут успешно использоваться в качестве сенсоров при проведении рамановской спектроскопии.

Список литературы

- 1. Новикова В.А., Варжель С.В. Рассеяние света и его применение в волоконной оптике СПб: Университет ИТМО, 2019.
- 2. *Поджарая К. С.* Анализ методов получения наноразмерных частиц серебра // Успехи в химии и химической технологии. 2012. №7 (136). Стр. 85-87.
- 3. Беккер Ю. Спектроскопия. Москва: Техносфера, 2009.
- 4. Нанотехнологии. Азбука для всех. Под ред. Третьякова Ю.Д., М.: 2008.
- 5. Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Determination of Size and Concentration of Gold Nano particles from UV-Vis Spectra. Anal. Chem. 2007, 79 (11), 4215–4221.
- 6. *Jiang, L.; Chen, X.; Lu, N.; Chi, L.* Spatially Confined Assembly of Nanoparticles. Acc. Chem. Res. 2014, 47 (10), 3009–3017.
- 7. Zheng, Yiqun et al. "Successive, Seed-Mediated Growth for the Synthesis of Single-Crystal Gold Nanospheres with Uniform Diameters Controlled in the Range of 5–150 nm." Particle & Particle Systems Characterization 31 (2014).
- 8. *Tran, Quang Huy et al.* "Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives." Advances in Natural Sciences: Nanoscience and Nanotechnology 4 (2013)
- 9. Smirnov, E.; Scanlon, M. D.; Momotenko, D.; Vrubel, H.; Méndez, M. a; Brevet, P.-F.; Girault, H. H. Gold Metal Liquid-Like Droplets. ACS Nano 2014, 8 (9), 9471–9481.
- 10. *N. Leopold, B. Lendl.* A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B 2003, 107, 5723-5727.

Работа была выполнена в научно-образовательном центре Инфохимии (НОЦ Инфохимии) федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский университет ИТМО»

Наставник: Смирнов Е. А. (Профессор национального исследовательского университета ИТМО, кандидат химических наук)

Ментор: Павлова А. А. (Бакалавр 3 курса университета ИТМО)

