Formation SIO

Supervision des Réseaux et des Équipements

1. Introduction

Buts de la supervision

- Lément clé de la fourniture de services aux organisations
- Déceler les dysfonctionnements le plus rapidement possible
- ✓ Si possible avant qu'ils ne se produisent (maintenance pro-active)
- Donner les moyens d'agir rapidement aux techniciens
- Fournir à posteriori
 - Des statistiques de disponibilité
 - Des informations temporelles et géographiques des incidents

Objectifs de la supervision

- Objectifs techniques
- Surveillance du réseau
- Surveillance de l'infrastructure
- Surveillance des machines,
- Objectif applicatif
- Surveillance des applications
- Objectifs de respect du contrat de services
- Surveillance du respect des indicateurs
- √Taux de disponibilité
- Temps de reprise sur incident
- Objectif métier
- Surveillance des processus métiers et des fonctions de l'entreprise.

Fonctions de la supervision

- Surveillance du fonctionnement et des performances des équipements et des services
- Visualisation de l'état instantané des éléments surveillés
- Mémorisation des événements
- Visualisation des historiques
- Recherche d'événements passés
- Réalisations de statistiques, de graphes
- Résolution automatique des problèmes, passage en dégradé
- Alerte graduée des personnels techniques (escalation)

Objets techniques surveillés

- Machines
- Matériels d'électronique active
- Liens
- Services
- Matériels spécifiques
- En bref, tout ce qui possède une adresse (IP ou autre) et qui est accessible par le réseau
- Dont on a la propriété, la maîtrise, ou pas

Méthode de surveillance

Externe

- Toujours possible sous condition d'accès au socket
- L'élément surveillé voit le superviseur comme un client
- Permet la surveillance au moins jusqu'à la couche 4 OSI
- Limites
 - Pare-feu intermédiaire
 - Pare-feu local
 - Droits d'accès au delà de la couche 4
 - Droits d'accès aux informations en principe non publiques

✓ Interne

- Implique la maîtrise de l'équipement
- Peut induire des problèmes de sécurité

Méthode de surveillance

Externe

- Toujours possible sous condition d'accès au socket
- L'élément surveillé voit le superviseur comme un client
- Permet la surveillance au moins jusqu'à la couche 4 OSI
- Limites
 - Pare-feu intermédiaire
 - Pare-feu local
 - Droits d'accès au delà de la couche 4
 - Droits d'accès aux informations en principe non publiques

✓ Interne

- Implique la maîtrise de l'équipement
- Peut induire des problèmes de sécurité

Représentation de l'information

- **Textuelle**
 - Affichage de l'état (ex1, ex2)
 - Affichage d'informations complémentaires (ex3, ex4)
- Graphique
 - Diagrammes en fonction du temps (ex5, ex6)
 - Schémas logiques du réseau (ex7, ex8)
- Géographique
 - Sur image/photographie réelle (ex9)
 - Sur plan ou carte géographique (ex10, ex11, ex12)

Logiciels de supervision

- Produits Constructeurs
 - Hp Openview
 - Cisco Prime Unified Communications Management Suite
- Produits Propriétaires
 - IT Supervisor
 - NetView
 - OP Manager
- Produits Libres
 - Cacti
 - Nagios
 - MRTG
 - Centreon
- Distributions libres complètes
 - Shinken

Critères de choix

- Coûts
- Type d'équipement supervisables
- Nombre d'équipements
- Mode de licences
- Protocoles utilisés
- Overload induit sur le réseau et les équipements
- Modularisation
- Associativité
- Évolutivité
- Documentation
- Facilité de mise en œuvre et d'exploitation
- Qualité des graphes et des cartes
- Fonctionnalités

Points communs

- Architecture d'exploitation : Client-Serveur
- Architecture de surveillance
 - Client-Server (mode passif)
 - Manager-Agent (mode-actif)
- Interface d'exploitation graphique Web
- Pages dynamiques (php, ajax)
- Centralisation possible des données et des évènements dans une base de données
- Utilisation du protocole SNMP

2. Nagios Niveau Basique

Avantages

- Gratuit
- Nombre d'équipements illimité
- Gère tous les type d'équipements et de SE
- Modularité totale sous forme de plugins
- Associativité avec tous les produits libres
 - Cacti, MRTG, Nagvis, Munin, Glpi...
- Protocoles standard
 - ✓ SNMP, ICMP...
- Architectures monolitiques ou distribuées
- Très bien documenté
- Communauté très nombreuse et très active
- Alerte par mail, sms, serveur vocal
- Exploitable sur pc, <u>iphone</u>, <u>Androide</u>, <u>Blackberry</u>

Inconvénients

- Réputé (à tort) difficile à configurer
- Ne gère pas en natif les architectures distribuées
- Ne gère pas le planning des astreintes des personnels techniques lors de l'escalation

Principes de base

- Nagios est un ordonnanceur de tâches (check)
- Configurable en mode texte à la base
- Exploité par interface Web interactive
- Gère le stockage d'historisation mais peut alimenter une base de données externe (fonction de broking)
- Permet de regrouper les machines et les services selon une infinité de combinaisons
- Propose des graphes, des rapports et des schéma assez rudimentaires
- Se couple avec de nombreux autres logiciels
 - Pour enrichir ses fonctionnalités
 - Pour faciliter son exploitation
 - Pour faciliter sa configuration
- Repose sur des logiciels très courants
 - Apache2
 - Mysql

Installation

- Sur une machine Debian Based (Ubuntu & co)
 - apt-get install nagios3 nagios3-doc
 - Installe par dépendance tous les logiciels nécessaires
 - Apache2
 - Php5
 - ✓ Gd
 - v ...
 - Installe les plugins de base
- Sur une machine Linux autre (y compris Mac OS X)
 - Installer préalablement les logiciels indispensables
 - Récupérer les sources et les installer selon la procédure habituelle
- Sur une machine Windows
 - Installer le programme NagWin fourni par Nagios

Contexte de démonstration

- Entreprise « i15 »
- Deux sites
 - Paris
 - Moscou
- Liaison par ligne spécialisée louée
- Deux routeurs
- Un serveur web à Moscou
- Un commutateur à Paris
- Quelques serveurs à Paris (un Mac, un Windows, quelques Linux)
- Schéma et plan d'adressage

Configuration par défaut

- Nagios gère la machine sur laquelle il est implanté
- ✓ II surveille
 - Le remplissage des disques
 - Le nombre de processus
 - La charge processeur
 - Le nombre d'utilisateurs
 - Les services http et ssh
- On visualise l'état via l'interface Web Voir
- On ne peut pas interagir
- Toutes les fonctionnalités sont présentes
- Il fonctionne en démon
- Il ne renseigne pas de base de données externe

Emplacement et rôle des fichiers de configuration

- Configuration de Nagios et son interface
 - /etc/default/nagios3
 - /etc/nagios3/cgi.cfg
 - /etc/nagios3/nagios.cfg
- Plugins de supervision
 - /usr/lib/nagios/plugins/check_xxxx
- Modèle d'exploitation des plugins (commandes)
 - /etc/nagios-plugins/config/xxxx.cfg
- Définition des machines, des groupes, des services...
 - /etc/nagios3/conf.d/xxxx.cfg
- Répertoire d'interactivité avec l'interface web

Modification initiale

- Réglage de l'interface graphique
 - Éditer /etc/nagios3/cgi.cfg
 - Régler la fréquence de rafraîchissement de l'écran
 - refresh_rate=5
- Autoriser l'interactivité avec le serveur web
 - Éditer /etc/nagios3/nagios.cfg
 - check_external_command=1
 - Ajouter www-data dans le groupe nagios
 - adduser www-data nagios
 - Donner les droits d'écriture au groupe nagios donc à www-data sur /var/lib/nagios3/rw/
 - chmod g+rwx /var/lib/nagios3/rw
 - chmod u+s /var/lib/nagios3/rw
 - Redémarrer le démon nagios3
 - /etc/init.d/nagios3 restart
- Autoriser l'exploitation de tous les plugins, même ceux qui utilisent des commandes nécessitant les droits de root
 - chmod u+s /usr/lib/nagios/plugins/*

Architecture de la configuration des objets

- Un hôte (host) utilise un modèle (template)
- Un hôte est supervisé par une commande
- Un groupe d'hôtes (hostgroup) contient un ou plusieurs hôtes
- Un service utilise un modèle
- Un service est présent sur un hôte ou sur un groupe d'hôtes
- Un service est supervisé par une commande
- Une commande utilise un plugin
- Un hôte ou un service est géré à certaines heures (timeperiod) par un administrateur (contact) ou un groupe d'administrateurs (contactsgroup)
- Un groupe de services est un ensemble de couples hôte/service qui assurent généralement un processus métier ou un ensemble fonctionnel de l'entreprise
- Schéma

Groupes d'hôtes

- On peut assembler les hôtes selon les besoins
- Il faut pour des raisons pratiques créer des groupes
 - Par système d'exploitation (linux, mac, win2k3...)
 - Par service rendu (http, ssh, ftp...)
 - Par type de matériels (routeur, switch, serveurs...)
 - Par marque de matériels (switch cisco, switch 3com...)
 - Par surveillance à effectuer (mémoire, température, occupation disque...)
- Car une commande surveille un service rendu par un groupe d'hôtes

Groupes d'hôtes facultatifs

- On créera autant d'autres groupes que de besoin pour une vision synthétique des données
 - Groupes géographiques (Paris, Moscou,
 - ✓ bâtiment B...)
 - Groupes fonctionnels (liaison Paris-Moscou, dmz...)
 - Groupe métiers (service clients, paye...)

V ...

Les commandes

- Une commande est une interface entre Nagios et le plugin
- Elle définie donc l'usage fait du plugin
- Un plugin peut être utilisé de différentes manières pour effectuer diverses surveillances
- Il est de coutume de définir l'ensemble des commandes pour un même plugin dans un fichier portant le nom du plugin
- Les commandes permettent de simplifier l'usage des plugins en masquant leur implémentation technique et en définissant des valeurs par défaut
- Les commandes utilisent des macros pour transmettre les paramètres au plugin
- Les macros sont préfixée et suffixées par \$ (\$ARG1\$)
- Pour définir la surveillance d'un service il faut regarder la définition de la commande afin de connaître la syntaxe et les paramètres à fournir
- Les commandes sont dans /etc/nagios-plugins/config/
- Exemple : fichier des commandes du plugin check ssh

Fichiers de configuration

- Les fichiers de configuration sont libres
 - Ils peuvent contenir n'importe quels objets
 - Être in-homogènes
 - En quantité quelconque
 - Sous n'importe quel nom
 - Mais il est préférable de garder la structure par défaut et de l'enrichir
- Deux contraintes
 - Les fichiers doivent être suffixés .cfg
 - Stockés dans /etc/nagios3/conf.d/
- Exemples
 - <u>TimePeriod</u>, <u>Contact</u>, groupe de contacts
 - HostTemplate, Hôtes, Groupe d'Hôtes
 - ServiceTemplate, Services

3. Réalisation basique pas à pas

- Création d'un hôte
 - Objet créé dans le fichier hosts.cfg
 - Test1 Test2
- Création de deux groupes d'hôtes
 - Objets créés dans le fichier mesgroupes.cfg
 - ✓ Test
- Création d'un service
 - Objet créé dans le fichier messervices.cfg
 - Test1 Test2
- Supervision du contexte exemple
 - Les fichiers de configurations
 - Hôtes
 - Service ajouté
 - Services d'origine
 - Groupes

4. Exploitation

- Ce qu'on peut voir
 - États <u>vue1 vue2 vue3</u>
 - Ok, Warning, Critical
 - Flapping
 - Historique
 - Schémas
 - Rapports
 - Graphes
- Ce qu'on peut faire
 - Lancer un contrôle
 - Activer/désactiver la surveillance

V ...

5. Nagios niveau 2

Deux principaux problèmes dans ce qu'on vient de mettre en place

- On ne voit que l'aspect public des éléments surveillés
 - Réponse de l'hôte
 - Réponse des services
 - Ça ne permet pas de faire de la maintenance pro-active
 - Température
 - Remplissage disque
 - v ...
- Si un élément tombe en panne
 - Tous ceux situés en aval ont l'air d'être en panne
 - Dans un réseau étendu, on va donc déranger des dizaines d'administrateurs à travers le monde
 - Graphiquement on ne voit pas d'où vient la panne

Voir la partie privée d'un équipement

Quatre possibilités

- 1. Écrire des plugins qui lancent les commandes via ssh sur une machine distante
 - Authentification ssh par certificat
 - Très fort overload réseau et équipement pour l'ouverture du tunnel ssh
 - Rarement utilisée
- 2. Implanter des agents (NRPE ou NS-client) qui vont exécuter les plugins localement, à la demande de Nagios, et lui renvoyer les résultats schéma
 - Surveillance dite « active »
 - Nrpe sous linux et Mac OS X, NS-client sur Windows schéma
 - Ne permet pas de surveiller les architectures distribuées
 - Non utilisable sur des matériels d'électronique active
- 3. Implanter des démons (NSCA) sur les machines à surveiller qui déclencheront eux-même les contrôles et feront remonter l'information vers Nagios schéma
 - Pas de contrôle par Nagios
 - Diminue l'overload réseau
 - Permet de surveiller les architectures distribuées
- mardi 15 mai 2012 utilisable sur des équipements d'électronique active
 - 4. Utiliser des agents SNMP

Mise en œuvre de NRPE

- Installation du plugin NRPE sur le serveur Nagios
 - apt-get install nagios-nrpe-plugin
- Installation de l'agent NRPE et des plugins sur le client linux
- Exploitation du plugin check_nrpe
 - Comme une commande normale mais :
 - Il y a au moins un paramètre
 - Qui indique le plugin à exécuter sur l'hôte distant

Construire les dépendances

- Notion de parent
 - Toujours du point de vue de Nagios
 - Un équipement peut avoir plusieurs parents
 - Le parent est indiqué dans la définition du « host »
 - Exemple Test
- Amélioration du schéma
 - On ajoute des icônes
 - Fournis par nagios
 - Des photos
 - ...
 - Dans un objet hostextinfo
 - La taille et le format des images sont imposés
 - Exemple Test
- Établissement des dépendances entre services (servicedependency)
 - Fixe les dépendances entre les services
 - Assez complexe à concevoir

Exemple

6. Nagios niveau 3

- Écrire ses propres plugins
 - Le langage est libre
 - Un plugin peut accepter 0..n paramètres
 - Un plugin doit fournir un état de sortie (exit), parmi 4, après l'exécution d'un algorithme
 - $\sim 0 \rightarrow OK$
 - ✓ 1 → Warning
 - √ 2 → Critical
 - \checkmark 3 \rightarrow Unknown
 - Un plugin peut générer un message sur une ou plusieurs lignes.
 Ce message sera inclus dans les vues détaillées de Nagios
 - Un plugin est stocké (en principe) dans /usr/lib/nagios/plugins
 - On peut le tester indépendamment de Nagios
 - Et vérifier la valeur de retour, sous linux avec : echo \$?

Exemple trivial de plugin

- Objectif : compter le nombre d'utilisateurs potentiels, déclarés sur une machine, en comptant le nombre de répertoires dans /home/
- ✓ Le <u>programme</u> du plugin
- Test du plugin
- Définition de la commande associée au plugin
 - Stockée dans /etc/nagios-plugins/config/
- Intégration dans la surveillance de la machine hôte
 - Définition d'un nouveau service utilisant la nouvelle commande
- ✓ Test1 Test2
- Intégration dans les autres machines
 - Copie du plugin sur chaque machine
 - Définition du service pour le groupe de machines

7. Nagios niveau 4

- Surveiller le fonctionnement des équipements réseau avec SNMP
- Fonctionnement similaire à NRPE
- Mais s'appuie sur un protocole normalisé
- Principe
 - Un agent dans l'équipement à surveiller
 - Qui récupère des données d'après leur OID (Object IDentifier)
 - Le tout est défini par la Mibs de l'équipement
 - Définie par des RFC
 - Comporte une partie propre à chaque constructeur
 - Cohérente même avec des constructeurs différents
- Activation sur l'équipement
- Nagios utilisera le plugin check_snmp

Mise en œuvre de SNMP

- Objectif : surveiller le débit d'un port en
- auto-négociation (10/100Mbps) d'un commutateur
 - Création de la commande et des services associés à check snmp
 - Exploitation sur le commutateur du contexte
 - On pourrait améliorer les choses par la création d'un plugin synthétique qui :
 - Boucle sur N ports
 - Exécute le plugin check_snmp
 - Vérifie si tous les ports sont à 100Mpbs

mardia Liste les ports qui ne respectent pas cette contrainte 33

Exploitation de SNMP sur une machine

- Installation de l'agent SNMP : Installation du démon SNMP, du protocole et des Mibs
 - apt-get install snmpd snmp snmp-mibs-downloader
- Installation des mibs et configuration du démon snmpd
 - Éditer le fichier /etc/default/snmpd de la machine à surveiller
 - Ajouter la MIBS désirée
 - MIBS=UCD-SNMP-MIBS
 - Configurer le démon snmpd pour :
 - Qu'il écoute le réseau
 - AgentAddress udp:161
 - Lui indiquer la hiérarchie des Oid à rendre visible à tous
 - View systemonly included 1.3.6.1.4
 - Redémarrer le démon snmpd
- Exploitation avec le plugin check_snmp sur Nagios
 - Test avec snmpwalk
 - snmpwalk -v « version snmp » -c « communauté » « adresselP » « oid »
 - Exemple: snmpwalk -v 1 -c public 192.168.1.50 1.3.6.1.4.1.2021.9.1.6.1
 - Donne la taille en Ko du premier point de montage (son nom est en 1.3.6.1.4.1.2021.9.1.3.1)
- Attention aux problèmes de sécurité car on publie des informations sensibles
- <u>Intégration</u> de la surveillance de la machine d'après la <u>commande</u> pré-établie snmp_disk

8. Plus Ioin avec Nagios

- Configuration graphique des objets
 - ✓ Plus simple (humm... à voir !), plus intuitif (humm... pas sûr !)
 - Structure stockée dans une base mysql
 - Génère les fichiers de configuration Nagios d'après la base de donr
 - Ne permet plus d'avoir une gestion manuelle des fichiers
- Enrichissement
 - des rapports
 - des graphes
 - des schémas
- Distribution des serveurs Nagios à travers le réseau

Configuration graphique de Nagios

- Deux logiciels principalement
 - Nconf
 - Simple
 - Intuitif
 - Facile à installer
 - Facile à utiliser
 - Ne permet que la configuration de Nagios en générant les fichiers .cfg
 - L'exploitation reste inchangée
 - Exemple
 - Centreon
 - Très riche de possibilités
 - Interface complexe
 - Installation complexe
 - Permet la configuration ET l'exploitation de Nagios
 - Enrichi Nagios de nombreuses fonctionnalités

9. Centreon

- Considéré comme le complément indispensable de Nagios
 - Permet la configuration graphique de Nagios
 - Génère des rapports, des historiques, des graphes
 - 100% paramétrables
 - De bien meilleure qualité
 - Permet la distribution des processus de supervision sur plusieurs serveurs Nagios
 - Utilise MySql par défaut mais peut utilser Postgresql
 - Pour stocker la configuration de Nagios
 - Pour stocker les informations transmises par Nagios
 - Utilise NDoUtils
 - Pour récupérer les informations de Nagios
 - Nagios voit NdoUtils comme un « broker »

Architecture de communication

- Nagios « refourgue » ses résultats à Ndo schéma après les avoir exploitées
- - Écoute les données transmises par Nagios
 - Les stocke dans une base de données MySql
- Cette architecture permet :
 - À une multitude d'applications (dont Centreon) de récupérer ces données dans la base de données
 - De centraliser les données de plusieurs serveurs Nagios répartis dans le réseau
 - À plusieurs administrateurs de travailler simultanément en plusieurs points du réseau sur le même jeu de données

Installation de Centreon

- Sous forme de sources à installer
- Avec un programme de configuration complexe, en perl
- Nécessite d'avoir bien assimilé l'architecture de communication et le fonctionnement de Nagios
- Trop complexe pour être abordée ici mais disponible sur internet
- Heureusement, plusieurs distributions Linux gratuites dédiées à l'administration réseau existent dont : FullyAutomatedNagios (FAN)
 - Basée sur CentOs, fork de Red Hat Enterprise
 - Sont installés et correctement configurés de base
 - Nagios
 - Centreon
 - Nagvis
 - Mysql, NdoUtils, php5, gd, ... tout ce qu'il faut pour que ça fonctionne
 - Disponible en téléchargement à http://www.fullyautomatednagios.org

Exploitation de Centreon

- Interface Graphique qu'il suffit d'explorer
- Ne pas oublier d'exporter la configuration vers Nagios
- Écrase les fichiers de Nagios
- Rend l'interface de Nagios inutilisable (ou presque) mais elle n'est plus nécessaire
- Permet de définir tous les objets Nagios
 - Les hosts
 - Les services
 - Les commandes
 - Les groupes
 - Les administrateurs
 - v ...
- Permet d'exploiter les données de supervision produites par Nagios
- Offre beaucoup plus de fonctionnalités que Nagios
- Implique quand même d'avoir bien compris et assimilé l'architecture de Nagios
- Vue1 Vue2 Vue3 Vue4 Vue5 Vue6

10. Cacti

- √ Évolution de MRTG
- Fonctionne indépendamment de Nagios
- En reprend en partie l'architecture
- Entièrement basée sur SNMP
- Très orienté sur la supervision :
 - Des éléments réseau
 - Des trafics
 - ✓ Du QOS
- Intègre les Mibs Cisco et des autres grands constructeurs
- Peut aussi surveiller les machines si elles offrent le service SNMP

Installation de Cacti

- Sur une machine Linux debian, Fedora, Gentoo ou Suse
 - Installation par les dépôts (apt-get install cacti) pour Debian
 - Installe, par dépendance, tous les logiciels nécessaires de base (apache2, php5, gd, ...)
- Sur une machine Linux autre (y compris Mac OS X)
 - Installer les logiciels indispensables
 - Récupérer les sources et les installer selon la procédure habituelle
- Sur une machine Windows
 - Installation par fichier .zip
- Sous Mac Os X
 - Ce n'est pas vraiment prévu
 - Mais il existe sur le net des procédures pour y arriver
 - Ça semble marcher...

Exploitation de Cacti

- √100% full web
- Interface graphique qu'il suffit d'explorer
- ✓ Il faut bien connaître le protocole SNMP
- Assez complexe tout de même à configurer
- Vue1 Vue2 Vue3 Vue4

11. Nagvis

- Permet de placer l'état des matériels sur des images
 - Sur des plans logiques de réseau
 - Sur des plans d'architecture
 - Sur des photos de baies
 - Sur des cartes géographiques
 - **v** . . .
 - En fait sur n'importe quelle image de fond