Examen:

Introduction à l'apprentissage automatique

18 novembre 2022

Aucun document n'est autorisé.

Les questions peuvent être traitées de manière indépendante en admettant les résultats des questions précédentes.

Le barème (sur 20 points, auxquels s'ajoutent 3 points bonus) n'est donné qu'à titre indicatif.

Notations

Dans tout le sujet, on notera :

- 1. $\mathcal{N}(\mu, \Sigma)$ la loi normale multivariée d'espérance μ et de matrice de variance-covariance Σ (symétrique et semi-définie positive), dont la densité (par rapport à la mesure de Lebesgue sur \mathbb{R}^d) lorsque Σ est définie positive est $x \in \mathbb{R}^d \mapsto \frac{1}{\sqrt{2\pi}^d \sqrt{\det(\Sigma)}} e^{-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)}$.
- 2. $\mathcal{B}(p)$ la loi de Bernoulli de paramètre $p \in (0,1)$, qui a pour densité $x \in \{0,1\} \mapsto p^x (1-p)^{1-x}$ (par rapport à la mesure de comptage sur $\{0,1\}$).
- 3. $\mathcal{B}(m,p)$ la loi binomiale de paramètres $m \in \mathbb{N}^*$ et $p \in (0,1)$.
- 4. 1 le vecteur rempli de 1 (de taille adéquate).
- 5. I_n la matrice identité de taille n (la taille peut varier).

6.
$$\operatorname{sign}: x \in \mathbb{R} \mapsto \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{sinon.} \end{cases}$$

Exercice 1 (Modèle mixte, 7 points)

Soit (X, Y) une pair de variables aléatoires à valeurs dans $\mathbb{R}^{d+m} \times \{\pm 1\}$. On souhaite modéliser des données de la forme

$$X_{1} = \begin{pmatrix} 0.49\\1.34\\-0.70\\-1.81\\-0.02\\1\\0\\1 \end{pmatrix}, \quad X_{2} = \begin{pmatrix} 0.69\\-0.92\\-0.07\\-0.82\\0.28\\0\\0\\1 \end{pmatrix}, \quad X_{3} = \begin{pmatrix} -0.74\\-1.75\\1.08\\-0.15\\-0.40\\1\\1\\0 \end{pmatrix}, \quad \dots$$

Pour ce faire, on décompose X en $\begin{bmatrix} U \\ V \end{bmatrix}$ de sorte que (U,V) soit à valeurs dans $\mathbb{R}^d \times \{0,1\}^m$, U représentant les données continues, V les données discrètes. Soit maintenant le modèle

$$\begin{cases} \mathbb{P}(Y=1) = \pi \in (0,1) \\ U|Y=1 \sim \mathcal{N}(\mu_+, \Sigma_+) \text{ est indépendant de } V|Y=1 \sim \mathcal{B}(p_1) \otimes \cdots \otimes \mathcal{B}(p_m) \\ U|Y=-1 \sim \mathcal{N}(\mu_-, \Sigma_-) \text{ est indépendant de } V|Y=-1 \sim \mathcal{B}(q_1) \otimes \cdots \otimes \mathcal{B}(q_m), \end{cases}$$

avec Σ_+ et Σ_- deux matrices de taille $d \times d$ symétriques et définies positives, $\mu_+, \mu_- \in \mathbb{R}^d$, $p_1, \ldots, p_m \in (0, 1), q_1, \ldots, q_m \in (0, 1)^1$.

- 1. (1 point) Donner une mesure dominante pour la loi de (X,Y) ainsi qu'une fonction de densité.
- 2. (1½ points) Montrer que le classifieur de Bayes pour ce modèle est

$$g^*: (u, v) \in \mathbb{R}^d \times \{0, 1\}^m \mapsto \operatorname{sign}\left(\frac{1}{2}u^\top Q u + \alpha^\top u + \beta^\top v + b\right),$$

où

$$\begin{cases} Q &= \Sigma_{-}^{-1} - \Sigma_{+}^{-1} \\ \alpha &= \Sigma_{+}^{-1} \mu_{+} - \Sigma_{-}^{-1} \mu_{-} \\ \beta &= \left[\log \left(\frac{p_{1}(1-q_{1})}{q_{1}(1-p_{1})} \right), \dots, \log \left(\frac{p_{m}(1-q_{m})}{q_{m}(1-p_{m})} \right) \right] \\ b &= \log \left(\frac{\pi}{1-\pi} \right) + \frac{1}{2} \log \left(\frac{\det(\Sigma_{-})}{\det(\Sigma_{+})} \right) + \frac{1}{2} \left(\mu_{-}^{\top} \Sigma_{-}^{-1} \mu_{-} - \mu_{+}^{\top} \Sigma_{+}^{-1} \mu_{+} \right) + \sum_{j=1}^{m} \log \left(\frac{1-p_{j}}{1-q_{j}} \right). \end{cases}$$

- 3. (1 point) On suppose disposer d'un échantillon $(X_1, Y_1), \ldots, (X_n, Y_n)$ de même loi que (X, Y). Préciser les estimateurs du maximum de vraisemblance des paramètres $p_1, \ldots, p_m, q_1, \ldots, q_m$.
- 4. On suppose que $\Sigma_{+} = \Sigma_{-} = I_{d}$, $\pi = \frac{1}{2}$, $p_{1} = \cdots = p_{m}$, $q_{1} = \cdots = q_{m}$ et $\mu_{+} \neq \mu_{-}$.
 - a) (1 point) Montrer que

$$\alpha^{\top}U + b \mid Y = 1 \sim \mathcal{N}\left(\delta c, \delta^2\right),$$

où
$$\delta = \|\mu_+ - \mu_-\|_{\ell_2}$$
 et $c = \frac{\delta}{2} + \frac{m}{\delta} \log \left(\frac{1 - p_1}{1 - q_1}\right)$.

b) (1½ points) En déduire que $\alpha^{\top}U + \beta^{\top}V + b \mid Y = 1$ a même loi que

$$\delta c + \delta A + eB$$
.

où $A \sim \mathcal{N}(0,1) \perp \!\!\!\perp B \sim \mathcal{B}(m,p_1)$ et $e = \log\left(\frac{p_1(1-q_1)}{q_1(1-p_1)}\right)$, puis que

$$\mathbb{P}(g^{\star}(X) = -1 \mid Y = 1) = \sum_{k=0}^{m} {m \choose k} p_1^k (1 - p_1)^{m-k} \Phi\left(-c - \frac{k}{\delta}e\right),$$

où Φ est la fonction de répartition de $\mathcal{N}(0,1)$.

c) (1 point) Conclure que lorsque $p_1 = q_1$, $\mathbb{P}(g^*(X) \neq Y) = \Phi\left(-\frac{\delta}{2}\right)$.

Exercice 2 (Régression à vecteurs supports, 5½ points)

Soient $(X_1, Y_1), \dots, (X_n, Y_n)$ des couples aléatoires i.i.d. à valeurs dans $\mathbb{R}^d \times \mathbb{R}$, $\varepsilon > 0$ et

$$\ell_{\varepsilon}: u \in \mathbb{R} \mapsto \frac{1}{2} \max(0, |u| - \varepsilon)^2.$$

^{1.} Pour rappel, si $(V_1, \ldots, V_m) \sim P_1 \otimes \cdots \otimes P_m$ alors les variables aléatoires V_1, \ldots, V_m sont indépendantes et $V_i \sim P_i, \forall i \in [1, m]$.

On considère un RKHS \mathcal{H} de noyau $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ et, pour $\lambda > 0$, le problème d'optimisation :

$$\underset{h \in \mathcal{H}}{\text{minimiser}} \frac{\lambda}{2} \|h\|_{\mathcal{H}}^2 + \sum_{i=1}^n \ell_{\varepsilon} \left(Y_i - h(X_i) \right). \tag{P1}$$

- 1. (1 point) Est-ce un problème de classification ou de régression? Quelle est sa particularité par rapport à ce qui a été vu en cours?
- 2. (1 point) Expliquer pourquoi le problème (P1) est équivalent à

$$\underset{h \in \mathcal{H}, \xi \in \mathbb{R}^n}{\text{minimiser}} \frac{\lambda}{2} \|h\|_{\mathcal{H}}^2 + \frac{1}{2} \|\xi\|_{\ell_2}^2$$
s. c.
$$\forall i \in [1, n] \begin{cases} Y_i - h(X_i) \le \xi_i + \varepsilon &: \alpha_i \ge 0 \\ h(X_i) - Y_i \le \xi_i + \varepsilon &: \beta_i \ge 0 \\ \xi_i \ge 0 &: \delta_i \ge 0 \end{cases}$$
(P2)

où on a donné à titre indicatif les multiplicateurs de Lagrange α_i, β_i et δ_i $(i \in [1, n])$ associés à chaque contrainte.

- 3. (1½ points) Définir le lagrangien associé à (P2) et énoncer les conditions KKT.
- 4. (1 point) Montrer qu'en notant $y=(Y_1,\ldots,Y_n)\in\mathbb{R}^n$, le problème dual à (P2) est

οù

$$\begin{cases} K &= (k(X_i, X_j))_{1 \le i, j \le n} \\ Q &= I_n + \frac{K}{\lambda} \\ P &= I_n - \frac{K}{\lambda}. \end{cases}$$

5. (1 point) Soient $\alpha \in \mathbb{R}^n_+, \beta \in \mathbb{R}^n_+$. Montrer que $\forall \delta \in \mathbb{R}^n_+, \|\delta\|_{\ell_2}^2 + 2\delta^\top(\alpha + \beta) \geq 0$ et en déduire $\inf_{\delta \in \mathbb{R}^n_+} \|\delta\|_{\ell_2}^2 + 2\delta^\top(\alpha + \beta)$. Montrer que (P3) est équivalent à

$$\underset{\alpha \in \mathbb{R}_+^n, \beta \in \mathbb{R}_+^n}{\text{minimiser}} \ \frac{1}{2} \alpha^\top Q \alpha + \frac{1}{2} \beta^\top Q \beta + \alpha^\top P \beta + \alpha^\top (\varepsilon \mathbf{1} - y) + \beta^\top (\varepsilon \mathbf{1} + y).$$

6. (1 point (bonus)) On suppose $\varepsilon = 0$ et K inversible. Montrer que (P1) a une unique solution et l'expliciter.

Exercice 3 (Analyse en composantes principales, 7½ points)

Dans cet exercice, pour une matrice notée en majuscule, par exemple $A \in \mathbb{R}^{n \times d}$, nous noterons en minuscule ces colonnes : $a_1, \ldots, a_d \in \mathbb{R}^n$. On rappelle qu'alors

range(A) = span({a₁,..., a_d}) =
$$\left\{\sum_{i=1}^{d} t_i a_i, t \in \mathbb{R}^d\right\}$$
,

qui est un sous-espace vectoriel de \mathbb{R}^n .

De plus, pour une matrice $Q \in \mathbb{R}^{n \times n}$ réelle symétrique, on appellera décomposition en éléments propres de Q une factorisation $Q = U\Lambda U^{\top}$, où $U \in \mathbb{R}^{n \times n}$ est une matrice orthogonale $(U^{\top}U = I_n)$, dont les colonnes u_1, \ldots, u_n sont les vecteurs propres de Q, et $\Lambda \in \mathbb{R}^{n \times n}$ est une matrice diagonale, dont les éléments diagonaux sont les valeurs propres $\lambda_1 \geq \cdots \geq \lambda_n$ de Q rangées par ordre décroissant.

On notera alors, pour tout $p \leq n$, $U_p = [u_1| \dots | u_p] \in \mathbb{R}^{n \times p}$ la matrice rectangulaire des p premières colonnes de U et

$$\Lambda_p = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_p \end{pmatrix} \in \mathbb{R}^{p \times p}$$

la matrice diagonale carrée des p premières valeurs propres.

- 1. a) (1 point) Soient $Q \in \mathbb{R}^{n \times n}$ une matrice symétrique et semi-définie positive de rang r et $x \in \mathbb{R}^n$. Montrer que la projection orthogonale de x sur range(Q), notée Px, vérifie $Px = Q\alpha$ avec $\alpha \in \mathbb{R}^n$ tel que $Qx = Q^2\alpha$.
 - b) $(1\frac{1}{2} \text{ points})$ Soit $Q = U\Lambda U^{\mathsf{T}}$ une décomposition en éléments propres de Q. Montrer que $Q = U_r\Lambda_r U_r^{\mathsf{T}}$ puis que le projecteur orthogonal sur range(Q) est $P = U_r U_r^{\mathsf{T}}$.
- 2. (1 point) Soit $A \in \mathbb{R}^{n \times d}$ (avec $n \leq d$) une matrice de rang $r \leq n \leq d$. En remarquant que range $(A) = \text{range}(AA^{\top})$, déterminer le projecteur orthogonal sur range(A).
- 3. a) (1 point) Soit $AA^{\top} = U\Lambda U^{\top}$ une décomposition en éléments propres de AA^{\top} . On note

$$V = A^{\top} U_r \Lambda_r^{-1/2}, \quad \text{avec} \quad \Lambda_r^{-1/2} = \begin{pmatrix} \lambda_1^{-1/2} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_r^{-1/2} \end{pmatrix}.$$

Montrer que les colonnes de V sont orthonormales.

- b) (1 point) En notant $\Sigma = \Lambda_r^{1/2}$, montrer que $U_r \Sigma V^{\top} = A$. La décomposition de la forme $A = U \Sigma V^{\top}$, où $U \in \mathbb{R}^{n \times r}$ et $V \in \mathbb{R}^{d \times r}$ sont deux matrices possédant des colonnes orthonormales ($U^{\top}U = I_r$ et $V^{\top}V = I_r$) et $\Sigma \in \mathbb{R}^{r \times r}$ est une matrice diagonale, dont les éléments diagonaux $\sigma_1 \geq \cdots \geq \sigma_r \geq 0$ sont rangés par ordre décroissant, est appelée décomposition en éléments singuliers (SVD) de A.
- 4. (1 point) Comment peut-on lier une décomposition en éléments propres de $A^{T}A$ à une décomposition en éléments singuliers de A?
- 5. (1 point) Soient $\{X_1, \ldots, X_n\}$ n vecteurs aléatoires i.i.d. à valeurs dans \mathbb{R}^d tels que $\mathbb{E}[X_1] = 0$ et $\mathbf{X} \in \mathbb{R}^{n \times d}$ la matrice des données correspondante. Exprimer un estimateur de $\mathrm{Var}(X_1)$ en fonction de \mathbf{X} puis décrire une procédure fondée sur la SVD permettant d'implémenter l'analyse en p composantes principales des données, avec p < r.
- 6. (1 point (bonus)) Exprimer la matrice (« des données réduites ») de taille $n \times p$ dont la i^e ligne est la compression de X_i en fonction des éléments singuliers déterminés à la question précédente.
- 7. (1 point (bonus)) En remarquant que, pour tout matrice réelle B, $\operatorname{range}(B) = \ker(B^{\top})^{\perp}$ (l'espace orthogonal à $\ker(B^{\top})$), montrer que $\operatorname{range}(B) = \operatorname{range}(BB^{\top})$.

Exercice 1 (Modèle mixte, 7 points)

Soit (X,Y) une pair de variables aléatoires à valeurs dans $\mathbb{R}^{d+m} \times \{\pm 1\}$. On souhaite modéliser des données de la forme

$$X_{1} = \begin{pmatrix} 0.49\\1.34\\-0.70\\-1.81\\-0.02\\1\\0\\1 \end{pmatrix}, \quad X_{2} = \begin{pmatrix} 0.69\\-0.92\\-0.07\\-0.82\\0.28\\0\\0\\1 \end{pmatrix}, \quad X_{3} = \begin{pmatrix} -0.74\\-1.75\\1.08\\-0.15\\-0.40\\1\\1\\0 \end{pmatrix}, \quad \dots$$

Pour ce faire, on décompose X en $\begin{bmatrix} U \\ V \end{bmatrix}$ de sorte que (U,V) soit à valeurs dans $\mathbb{R}^d \times \{0,1\}^m$, U représentant les données continues, V les données discrètes. Soit maintenant le modèle

$$\begin{cases} \mathbb{P}(Y=1) = \pi \in (0,1) \\ U|Y=1 \sim \mathcal{N}(\mu_+, \Sigma_+) \text{ est indépendant de } V|Y=1 \sim \mathcal{B}(p_1) \otimes \cdots \otimes \mathcal{B}(p_m) \\ U|Y=-1 \sim \mathcal{N}(\mu_-, \Sigma_-) \text{ est indépendant de } V|Y=-1 \sim \mathcal{B}(q_1) \otimes \cdots \otimes \mathcal{B}(q_m), \end{cases}$$

avec Σ_+ et Σ_- deux matrices de taille $d \times d$ symétriques et définies positives, $\mu_+, \mu_- \in \mathbb{R}^d$, $p_1, \ldots, p_m \in (0,1), q_1, \ldots, q_m \in (0,1)^1$.

1. (1 point) Donner une mesure dominante pour la loi de (X,Y) ainsi qu'une fonction de densité.

1) Mesure dominante

Soit leb est la mesure de lebesgue sur Rd, Si est la mesure de comptage sur {0,1}, Sr est la mesure de comptage sur {-1,1}.

La mesure dominante pour (X,Y) est Leb × S, × Sz.

Fonction de densité

Soid
$$X = (U, V)^T$$
,
$$\int_{(x,\gamma)} (x,y) = \left[\pi \cdot \frac{\exp(-\frac{1}{r}(u-\mu_*)\Sigma_*^{-1}(u-\mu_*))}{\sqrt{2\pi} \sqrt{|\det \Sigma_*|}} \cdot \prod_{i=1}^{m} \rho_i^{V_i} (1-\rho_i)^{1-V_i} \right] \\
+ \left[(1-\pi) \cdot \frac{\exp(-\frac{1}{r}(u-\mu_*)\Sigma_*^{-1}(u-\mu_*))}{\sqrt{2\pi} \sqrt{|\det \Sigma_*|}} \cdot \prod_{i=1}^{m} q_i^{V_i} (1-q_i)^{1-V_i} \right]$$

2. (1½ points) Montrer que le classifieur de Bayes pour ce modèle est

$$g^{\star}: (u, v) \in \mathbb{R}^d \times \{0, 1\}^m \mapsto \operatorname{sign}\left(\frac{1}{2}u^{\top}Qu + \alpha^{\top}u + \beta^{\top}v + b\right),$$

où

$$\begin{cases} Q = \Sigma_{-}^{-1} - \Sigma_{+}^{-1} \\ \alpha = \Sigma_{+}^{-1} \mu_{+} - \Sigma_{-}^{-1} \mu_{-} \\ \beta = \left[\log \left(\frac{p_{1}(1-q_{1})}{q_{1}(1-p_{1})} \right), \dots, \log \left(\frac{p_{m}(1-q_{m})}{q_{m}(1-p_{m})} \right) \right] \\ b = \log \left(\frac{\pi}{1-\pi} \right) + \frac{1}{2} \log \left(\frac{\det(\Sigma_{-})}{\det(\Sigma_{+})} \right) + \frac{1}{2} \left(\mu_{-}^{\top} \Sigma_{-}^{-1} \mu_{-} - \mu_{+}^{\top} \Sigma_{+}^{-1} \mu_{+} \right) + \sum_{j=1}^{m} \log \left(\frac{1-p_{j}}{1-q_{j}} \right). \end{cases}$$

(2) D'après la définition,

$$g^{*}(u,v) = \begin{cases} 1 & \text{si } P(\gamma=1|x) \geq P(\gamma=-1|x) \\ -1 & \text{sinon} \end{cases}$$

$$= sign(log \frac{P(\gamma=1|x)}{P(\gamma=-1|x)})$$

= sign (
$$\log \frac{P(x, Y=1)}{P(x, Y=-1)}$$
)

$$\log P(x, Y=1) = \log x - \frac{1}{7} (u - \mu_{*})^{T} \sum_{i=1}^{7} (u - \mu_{*}) - \frac{1}{7} \log(2x) - \frac{1}{7} \log(\det |\Sigma_{*}|) + \sum_{i=1}^{m} V_{i} \cdot \log p_{i} + \sum_{i=1}^{m} (1 - V_{i}) \cdot \log(1 - p_{i})$$

$$log P(X,Y=-1) = log(1-\pi) - \frac{1}{2}(u-\mu_{-})^{T} \sum_{i=1}^{-1} (u-\mu_{-}) - \frac{d}{2}log(\pi\lambda) - \frac{1}{2}log(de^{2}|\Sigma_{-}|)$$

$$+ \sum_{i=1}^{m} Vi \cdot log q_{i} + \sum_{i=1}^{m} (1-Vi) \cdot log(1-q_{i})$$

alors

$$\log \frac{P(x, Y=1)}{P(x, Y=-1)} = \log P(x, Y=1) - \log P(x, Y=-1)$$

$$= \frac{1}{7} u^{T} Q u + \alpha^{T} u + \beta^{T} v + b$$

3.	(1 point) On suppose disposer d'un échantillon $(X_1,Y_1),\ldots,(X_n,Y_n)$ de même loi que
	(X,Y) . Préciser les estimateurs du maximum de vraisemblance des paramètres $p_1,\ldots,p_m,$
	$q_1 \dots q_m$

(3) D'après (2)

abors

$$\mathcal{L}(P,q) = \sum_{k=1}^{n} \mathbb{1}_{\{Y_{k}=1\}} \cdot \log P(X_{k},Y_{k}=1) + \sum_{k=1}^{n} \mathbb{1}_{\{Y_{k}=-1\}} \cdot \log P(X_{k},Y_{k}=-1)$$

$$O = \frac{\partial l}{\partial p_i} \langle p, q \rangle = \sum_{k=1}^{n} 1_{\left\{ Y_k = 1 \right\}} \cdot \left(\frac{V_{ki}}{p_i} + \frac{1 - V_{ki}}{1 - p_i} \right)$$

on a

$$\frac{\partial l}{\partial p_{i}}(p,q) = \sum_{k=1}^{n} 1_{\{Y_{k}=1\}} \cdot \left(\frac{V_{ki}}{p_{i}} + \frac{1-V_{ki}}{1-p_{i}}\right)$$
 $pour \frac{\partial l}{\partial p_{i}} = 0$, on a $\hat{p}_{i} = \frac{\sum_{k=1}^{n} 1_{\{Y_{k}=1\}} \cdot V_{ki}}{\sum_{k=1}^{n} 1_{\{Y_{k}=1\}} \cdot V_{ki}}$

$$\frac{\partial \ell}{\partial q_{i}}(p,q) = \sum_{k=1}^{n} \|_{\{\gamma_{k}=-i\}} \cdot (\frac{v_{ki}}{q_{i}} + \frac{1-v_{ki}}{1-q_{i}})$$

$$\frac{\partial \ell}{\partial q_{i}}(p,q) = \sum_{k=1}^{n} \|_{\{\gamma_{k}=-i\}} \cdot v_{ki}$$

$$\frac{\partial \ell}{\partial q_{i}} = 0 , \text{ on } a \quad \hat{q}_{i} = \frac{\sum_{k=1}^{n} \|_{\{\gamma_{k}=-i\}} \cdot v_{ki}}{\sum_{k=1}^{n} \|_{\{\gamma_{k}=-i\}} \cdot (2v_{ki}-1)}$$

4. On suppose que
$$\Sigma_{+} = \Sigma_{-} = I_{d}$$
, $\pi = \frac{1}{2}$, $p_{1} = \cdots = p_{m}$, $q_{1} = \cdots = q_{m}$ et $\mu_{+} \neq \mu_{-}$.

a) (1 point) Montrer que
$$\alpha^{\top}U + b \mid Y = 1 \sim \mathcal{N}\left(\delta c, \delta^{2}\right),$$
où $\delta = \|\mu_{+} - \mu_{-}\|_{\ell_{2}}$ et $c = \frac{\delta}{2} + \frac{m}{\delta}\log\left(\frac{1-p_{1}}{1-q_{1}}\right)$.

(4) (a)
$$U|Y=1 \sim \mathcal{N}(\mu_*, \Sigma_*)$$

$$\alpha^{T}U \mid Y_{=1} \sim \mathcal{N}(\alpha^{T}\mu_{*}, \alpha \Sigma_{*}\alpha^{T})$$

$$ZU+b|Y=1 \sim N(\alpha Ju_{+}+b, \alpha \Sigma_{+}\alpha^{T})$$

$$\frac{\alpha^{T} \mu_{x} + b}{2} = \frac{\mu_{x}^{T} \mu_{x} - \mu_{x}^{T} \mu_{x}}{2} + \frac{1}{2} \mu_{x}^{T} \mu_{x} - \frac{1}{2} \mu_{x}^{T} \mu_{x} + m \cdot \log \frac{1 - P_{x}}{1 - q_{x}}$$

$$= \frac{1}{2} \|\mu_{x} - \mu_{x}\|_{C_{x}}^{2} + m \cdot \log \frac{1 - P_{x}}{1 - q_{x}}$$

$$= S \cdot C$$

$$\alpha \sum_{t} \alpha^{T} = (\mu_{t} - \mu_{r})(\mu_{t} - \mu_{r})^{T} = \|\mu_{t} - \mu_{r}\|_{C_{x}}^{2} = S^{2}$$

b) (1½ points) En déduire que
$$\alpha^\top U + \beta^\top V + b \, \big| \, Y = 1$$
 a même loi que
$$\delta c + \delta A + eB,$$

où
$$A \sim \mathcal{N}(0,1) \perp \!\!\!\perp B \sim \mathcal{B}(m,p_1)$$
 et $e = \log\left(\frac{p_1(1-q_1)}{q_1(1-p_1)}\right)$, puis que

$$\mathbb{P}(g^{\star}(X) = -1 \mid Y = 1) = \sum_{k=0}^{m} {m \choose k} p_1^k (1 - p_1)^{m-k} \Phi\left(-c - \frac{k}{\delta}e\right),$$

où Φ est la fonction de répartition de $\mathcal{N}(0,1)$.

$$V|Y=1 \sim B(m,p_1)$$
 $\beta^{T}V|Y=1 \sim eB$

$$g^*(x) = g^*(v,v) = sign(\alpha^T U + \beta^T V + b)$$

donc

$$P(g^{*}(x)=-1|Y=1) = P(a^{T}U+b^{T}V+b<0|Y=1)$$

$$= P(sc+sA+eB<0)$$

$$= E[1|_{sc+sA+eB<0}]$$

$$= E[4[1|_{A<-c-\frac{e}{s}B}]B]$$

$$= E[4[-c-\frac{e}{s}B)]$$

$$= \sum_{k=0}^{\infty} {m \choose k} P_{k}^{k} (1-P_{k})^{m-k} \Phi(-c-\frac{e}{s}k)$$

c) (1 point) Conclure que lorsque $p_1 = q_1$, $\mathbb{P}(g^*(X) \neq Y) = \Phi\left(-\frac{\delta}{2}\right)$.

(c) Lorsque
$$P_1 = q_1$$
, $e = 0$, $c = \frac{8}{2}$

$$P(g^*(x) = -1 | Y = 1) = \mathbb{E}\left[\frac{1}{2}(-c)\right]$$

$$= \frac{1}{2}(-\frac{8}{2})$$

la même

$$\alpha^{7}U + \beta \mid \gamma = -1 \sim -8c + 8A$$

 $\beta^{7}V \mid \gamma = -1 \sim eB$

$$P(g^*(x)=1|Y=-1) = P(-Sc+SA+eB>0)$$

$$= \mathbb{E}\left[\mathbb{E}\left[1|\{A>c-\frac{e}{S}B\}|B\right]\right]$$

$$= \mathbb{E}\left[1-\frac{1}{2}(c-\frac{e}{S}B)\right]$$

$$= 1-\frac{1}{2}(\frac{S}{2})$$

$$= \frac{1}{2}(-\frac{S}{2})$$

alors

$$P(g^{*}(x) * Y) = P(g^{*}(x) = 1 | Y = -1) \cdot P(Y = -1)$$

$$+ P(g^{*}(x) = -1 | Y = 1) \cdot P(Y = 1)$$

$$= \Phi(-\frac{5}{2}) \cdot \frac{1}{2} + \Phi(-\frac{5}{2}) \cdot \frac{1}{2}$$

$$= \Phi(-\frac{5}{2})$$

Exercice 2 (Régression à vecteurs supports, 5½ points)

Soient $(X_1, Y_1), \ldots, (X_n, Y_n)$ des couples aléatoires i.i.d. à valeurs dans $\mathbb{R}^d \times \mathbb{R}$, $\varepsilon > 0$ et

$$\ell_{\varepsilon}: u \in \mathbb{R} \mapsto \frac{1}{2} \max(0, |u| - \varepsilon)^2.$$

On considère un RKHS \mathcal{H} de noyau $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ et, pour $\lambda > 0$, le problème d'optimisation :

$$\underset{h \in \mathcal{H}}{\text{minimiser}} \ \frac{\lambda}{2} \|h\|_{\mathcal{H}}^{2} + \sum_{i=1}^{n} \ell_{\varepsilon} \left(Y_{i} - h(X_{i}) \right). \tag{P1}$$

1. (1 point) Est-ce un problème de classification ou de régression? Quelle est sa particularité par rapport à ce qui a été vu en cours?

1) C'est un problème de régression.

Dans le cours, la fonction de loss est $\{z: u \in \mathbb{R} \longrightarrow \max(0, |u| - \varepsilon)\}$

qui est different de le

2. (1 point) Expliquer pourquoi le problème (P1) est équivalent à

$$\underset{h \in \mathcal{H}, \xi \in \mathbb{R}^{n}}{\text{minimiser}} \frac{\lambda}{2} \|h\|_{\mathcal{H}}^{2} + \frac{1}{2} \|\xi\|_{\ell_{2}}^{2}$$
s. c.
$$\forall i \in [1, n] \begin{cases}
Y_{i} - h(X_{i}) \leq \xi_{i} + \varepsilon & : \alpha_{i} \geq 0 \\
h(X_{i}) - Y_{i} \leq \xi_{i} + \varepsilon & : \beta_{i} \geq 0 \\
\xi_{i} \geq 0 & : \delta_{i} \geq 0
\end{cases}$$
(P2)

où on a donné à titre indicatif les multiplicateurs de Lagrange α_i, β_i et δ_i $(i \in [1, n])$ associés à chaque contrainte.

(2)
$$\forall u \in \mathbb{R}$$
, $\{\varepsilon(u) = \inf_{\frac{1}{2}} \frac{1}{2}\xi^{2} = \inf_{\frac{1}{2}} \frac{1}{2}\xi^{2}$
 $\xi > |u-\varepsilon|$
 $= \sup_{\frac{1}{2}} \frac{1}{2}\xi^{2}$

abrs pour $\xi = (\xi_1, ..., \xi_n) \in \mathbb{R}^n$

minimiser $\frac{\lambda}{2} \|\lambda\|_{\mathcal{H}}^2 + \sum_{i=1}^n l_{\mathcal{E}}(\gamma_i - h(x_i))$ $h \in \mathcal{H}$

 \iff

minimiser $\frac{1}{2} \|h\|_{\mathcal{A}}^{2} + \frac{1}{2} \sum_{i=1}^{n} \frac{x^{2}}{3i}$ heh $x \in \mathbb{R}^{n}$

S.c.
$$\begin{cases} \gamma_i - h(x_i) \leq \tilde{z}_i + \epsilon \\ \\ \forall i \in [1,n] \end{cases} \begin{cases} h(x_i) - \gamma_i \leq \tilde{z}_i + \epsilon \\ \\ \tilde{z}_i \geq 0 \end{cases}$$

3. (1½ points) Définir le lagrangien associé à (P2) et énoncer les conditions KKT.

(3) D'après (2), soit
$$\forall i \in (1, n)$$

 $f(h, \xi) = \frac{\lambda}{2} ||h||_{H}^{2} + \frac{1}{2} ||\xi||_{L}^{2}$
 $g_{i}^{(2)}(h, \xi) = \gamma_{i} - h(x_{i}) - \xi_{i} - \xi$
 $g_{i}^{(3)}(h, \xi) = h(x_{i}) - \gamma_{i} - \xi_{i} - \xi$
 $g_{i}^{(3)}(h, \xi) = -\xi_{i}$

alors or a

$$\forall (h, \xi, \alpha, \beta, \delta) \in H \times \mathbb{R}^n \times \mathbb{R}^n_+ \times \mathbb{R}^n_+ \times \mathbb{R}^n_+$$

日期:

Le condition KKT

Si le problème (Pr) est convexe et si les

conditions de Slater sont vérifiées.

Alors (h_n^*, ξ_n^*) est la solution de (P_2) et $(\alpha^*, \beta^*, \xi^*)$

est la solution du problème dual, ssi

0 $g_i(h_n^*, \xi_n) \leq 0$, $\forall i \in \mathbb{Z}, n \mathbb{J}$, $\forall k \in \mathbb{Z}, 3 \mathbb{J}$

3 $\forall i \in [1,n]$, $\alpha_i^* = 0$ or $g_i^{(i)}(\lambda_n^*, \mathbf{x}_n^*) = 0$

 $\beta_{i}^{*}=0$ ou $g_{i}^{(*)}(h_{n}^{*},\xi_{n}^{*})=0$

 $S_{i}^{*}=0$ ou $g_{i}^{(3)}(h_{n}^{*}, \tilde{s}_{n}^{*})=0$

 \oplus $\nabla_{\lambda} \angle(\lambda, 3, \alpha, \beta, 8) = 0$

 $\nabla_{\xi} \angle(h, \xi, \alpha, \beta, \delta) = 0$

 $\Rightarrow \begin{cases} \lambda_n^* - \frac{1}{\lambda} \cdot \sum_{i=1}^n (\alpha_i - \beta_i) \cdot k(\cdot, X_i) \\ \tilde{z}_n^* - \alpha + \beta + \delta \end{cases}$

Le condition KKT

Si hn solution de (P_i) , alors (D) a la solution (α^*, β^*, S^*) tel que

•
$$\lambda_n = \frac{1}{\lambda} \cdot \sum_{i=1}^n (\alpha_i^* - \beta_i^*) \cdot k(\cdot, X_i)$$

•
$$\forall i \in [1,n]$$
, $\forall i - h_n(x_i) > E \implies \alpha_i^* = 0$

$$\gamma_i - \lambda_n(X_i) < \xi \implies \alpha_i^* = 1$$

$$\lambda_n(x_i) - \gamma_i > \varepsilon \implies \beta_i^* = 0$$

$$h_n(X_i) - Y_i < \xi \implies \beta_i^* = 1$$

$$h_n^* = \frac{1}{3} \cdot \sum_{i=1}^n (\alpha_i - \beta_i) \cdot k(\cdot, X_i)$$

$$\tilde{z}_n^* = \alpha + \beta + \delta$$

4. (1 point) Montrer qu'en notant $y=(Y_1,\ldots,Y_n)\in\mathbb{R}^n$, le problème dual à (P2) est

$$\max_{\alpha \in \mathbb{R}^{n}_{+}, \beta \in \mathbb{R}^{n}_{+}, \delta \in \mathbb{R}^{n}_{+}} = -\frac{1}{2} \left(\alpha^{\top} Q \alpha + \beta^{\top} Q \beta + \|\delta\|_{\ell_{2}}^{2} \right) - \alpha^{\top} P \beta
-\delta^{\top} (\alpha + \beta) - \alpha^{\top} (\varepsilon \mathbf{1} - y) - \beta^{\top} (\varepsilon \mathbf{1} + y),$$
(P3)

où

$$\begin{cases} K &= (k(X_i, X_j))_{1 \le i, j \le n} \\ Q &= I_n + \frac{K}{\lambda} \\ P &= I_n - \frac{K}{\lambda}. \end{cases}$$

(4) Daprès (3)

$$D(\alpha,\beta,\delta) = \inf_{h \in \mathcal{H}} \angle(h,\xi,\alpha,\beta,\delta) = \angle(h^*,b^*,\alpha,\beta,\delta)$$

$$= \frac{\lambda}{2} \cdot \left\| \frac{1}{\lambda} \sum_{i=1}^{n} (\alpha_i - \beta_i) \cdot k(\cdot, X_i) \right\|_{\mathcal{H}}^2 + \frac{1}{2} \left\| \alpha + \beta + \delta \right\|_{\mathcal{L}_2}^2$$

$$-\alpha^{T}(\varepsilon 1 - y) - \alpha^{T}(\alpha + \beta + \delta) - \sum_{i=1}^{n} \alpha_{i} \frac{1}{\lambda} \sum_{j=1}^{n} (\alpha_{j} - \beta_{j}) \cdot k(x_{i}, x_{j})$$

$$-\beta^{\mathsf{T}}(\mathbf{z}1|-\mathbf{y})-\beta^{\mathsf{T}}(\alpha+\beta+\delta)-\frac{\sum\limits_{i=1}^{n}\beta_{i}\cdot\frac{1}{\lambda}\sum\limits_{j=1}^{n}(\alpha_{j}-\beta_{j})\cdot k(\mathbf{x}_{i},\mathbf{x}_{j})$$

$$= \frac{\lambda}{2} \cdot \frac{1}{\lambda^{2}} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} (\alpha_{i} - \beta_{i})(\alpha_{j} - \beta_{j}) \cdot k(X_{i}, X_{j}) - \frac{1}{2} \|\alpha + \beta + \beta\|_{C_{r}}^{2}$$
$$-\alpha^{T}(\varepsilon \| - \gamma) - \beta^{T}(\varepsilon \| - \gamma) - \alpha^{T} k(\alpha - \beta) - \beta^{T} k(\alpha - \beta)$$

$$= \frac{1}{7} (\alpha - \beta)^{T} \frac{K}{3} (\alpha - \beta) - \alpha^{T} \frac{K}{3} (\alpha - \beta) - \beta^{T} \frac{K}{3} (\alpha - \beta)$$

$$- \alpha^{T} (\xi 1 - \xi) - \beta^{T} (\xi 1 - \xi) - \frac{1}{7} ||\alpha + \beta + \delta||_{C_{2}}^{2}$$

$$= -\frac{1}{2}\alpha^{T}\frac{k}{\lambda}\alpha - \frac{1}{2}\beta^{T}\frac{k}{\lambda}\beta - \alpha^{T}\frac{k}{\lambda}\beta$$

=
$$-\frac{1}{2}\alpha^{T}Q\alpha - \frac{1}{2}\beta^{T}Q\beta - \alpha^{T}P\beta - \frac{1}{2}\|S\|_{L_{2}}^{2} - S^{T}(\alpha+\beta)$$

- $\alpha^{T}(\epsilon 11 - \epsilon) - \beta^{T}(\epsilon 11 - \epsilon)$

5. (1 point) Soient $\alpha \in \mathbb{R}^n_+, \beta \in \mathbb{R}^n_+$. Montrer que $\forall \delta \in \mathbb{R}^n_+, \|\delta\|_{\ell_2}^2 + 2\delta^\top(\alpha + \beta) \geq 0$ et en déduire $\inf_{\delta \in \mathbb{R}^n_+} \|\delta\|_{\ell_2}^2 + 2\delta^\top(\alpha + \beta)$. Montrer que (P3) est équivalent à

$$\underset{\alpha \in \mathbb{R}^n_+, \beta \in \mathbb{R}^n_+}{\text{minimiser}} \ \frac{1}{2} \alpha^\top Q \alpha + \frac{1}{2} \beta^\top Q \beta + \alpha^\top P \beta + \alpha^\top (\varepsilon \mathbf{1} - y) + \beta^\top (\varepsilon \mathbf{1} + y).$$

(5)
$$\|S\|_{C}^{2} + 2S'(\alpha+\beta) = \|\alpha+\beta+S\|_{C}^{2} - \|\alpha+\beta\|_{C}^{2}$$

quand
$$S=0$$
, or a inf $||S||_{L_{T}}^{2}+2S^{T}(\alpha+\beta)=0$

$$\Rightarrow \underset{\alpha,\beta,\delta}{\text{minimiser}} \frac{1}{2} (\alpha^T Q \alpha + \beta^T Q \beta + \|S\|_{\mathcal{E}}^2) + \alpha^T P \beta + S^T (\alpha + \beta) \\ + \alpha^T (\varepsilon \| - \gamma) + \beta^T (\varepsilon \| - \gamma)$$

$$\implies \text{minimiser } \frac{1}{2}(\alpha^T Q \alpha + \beta^T Q \beta) + \alpha^T \beta + \alpha^T (\epsilon 1 - \gamma) + \beta^T (\epsilon 1 - \gamma)$$

6	5. (1 point (bonus))	On suppose	$\varepsilon =$	0	et	K	inversible.	Montrer	que	(P1)	a	une	unique
	solution et l'explic	citer.											

(6) Pour &=0 et k inversible, on a

(P4) minimiser $\frac{1}{2}\alpha^2Q\alpha + \frac{1}{2}\beta^2Q\beta + \alpha^2P\beta - \alpha^7y + \beta^7y$ $\alpha \in \mathbb{R}^+, \beta \in \mathbb{R}^+$

 $\nabla_{\alpha}F(\alpha,\beta) = Q\alpha + P\beta - y$

 $\nabla_{\beta}F(\alpha,\beta) = Q\beta + P\alpha + y$

on prend $\begin{cases} Q\alpha + P\beta - y = 0 \\ Q\beta + P\alpha + y = 0 \end{cases}$

alors $\alpha^* = \frac{3}{2}$ $\beta^* = -\frac{3}{2}$

on a la urique solution $h_n^* = \frac{1}{\lambda} \sum_{i=1}^n Y_i \cdot k(\cdot, X_i)$

Exercice 3 (Analyse en composantes principales, $7\frac{1}{2}$ points)

Dans cet exercice, pour une matrice notée en majuscule, par exemple $A \in \mathbb{R}^{n \times d}$, nous noterons en minuscule ces colonnes : $a_1, \dots, a_d \in \mathbb{R}^n$. On rappelle qu'alors

range(A) = span({a₁,..., a_d}) =
$$\left\{\sum_{i=1}^{d} t_i a_i, t \in \mathbb{R}^d\right\}$$
,

qui est un sous-espace vectoriel de \mathbb{R}^n .

De plus, pour une matrice $Q \in \mathbb{R}^{n \times n}$ réelle symétrique, on appellera décomposition en éléments propres de Q une factorisation $Q = U\Lambda U^{\top}$, où $U \in \mathbb{R}^{n \times n}$ est une matrice orthogonale $(U^{\top}U = I_n)$, dont les colonnes u_1, \ldots, u_n sont les vecteurs propres de Q, et $\Lambda \in \mathbb{R}^{n \times n}$ est une matrice diagonale, dont les éléments diagonaux sont les valeurs propres $\lambda_1 \geq \cdots \geq \lambda_n$ de Q rangées par ordre décroissant.

On notera alors, pour tout $p \leq n, U_p = [u_1|\dots|u_p] \in \mathbb{R}^{n \times p}$ la matrice rectangulaire des p premières colonnes de U et

$$\Lambda_p = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_p \end{pmatrix} \in \mathbb{R}^{p \times p}$$

la matrice diagonale carrée des p premières valeurs propres.

- 1. a) (1 point) Soient $Q \in \mathbb{R}^{n \times n}$ une matrice symétrique et semi-définie positive de rang r et $x \in \mathbb{R}^n$. Montrer que la projection orthogonale de x sur range(Q), notée Px, vérifie $Px = Q\alpha$ avec $\alpha \in \mathbb{R}^n$ tel que $Qx = Q^2\alpha$.
- (i) (a) Pour $Q = (q_1, ..., q_n) \in \mathbb{R}^{n \times n}$, on a $Yang(Q) = Span(\{q_1, ..., q_n\}) = \{\sum_{i=1}^{n} \alpha_i \cdot q_i, \alpha \in \mathbb{R}^d\}$
 - Si Px est une projection orthogonale de x sur rang(Q), alors $Px \in \{\frac{\sum_{i=1}^{n} \alpha_i q_i, \alpha \in \mathbb{R}^n}\}$ $c-\lambda-d$ il existe $\alpha \in \mathbb{R}^n$, tel que $Px = Q\alpha$
 - It comme $x \in \mathbb{R}^n$, $Qx = \sum_{i=1}^n x_i q_i \in rang(Q)$, alors $Qx = P(Qx) = QPx = QQx = Q^2x$ where

b) (1½ points) Soit $Q = U\Lambda U^{\top}$ une décomposition en éléments propres de Q . Montrer que $Q = U_r\Lambda_r U_r^{\top}$ puis que le projecteur orthogonal sur range (Q) est $P = U_r U_r^{\top}$.
(b) Comme Q∈R ^{n×n} est symétrique et de rang r,
alors les valeurs propres sont 7,>> dr ed
les autres sont 0.
Donc Q = UNUT = Ur ArUT
D'après (a)
$Px = Q\alpha = \overline{Q'}QQ\alpha = \overline{Q'}Qx$
donc P = Q'Q = Ur Ar'Ur Ur ArUr = UrUr
2. (1 point) Soit $A \in \mathbb{R}^{n \times d}$ (avec $n \leq d$) une matrice de rang $r \leq n \leq d$. En remarquant que range $(A) = \text{range}(AA^{\top})$, déterminer le projecteur orthogonal sur range (A) .
(2) comme $A \in \mathbb{R}^{n \times d}$, alors $AA^T \in \mathbb{R}^{n \times n}$
et A est de rang r, donc AAT est de rang r
il existe $Ur \in \mathbb{R}^{r \times r}$, $\Lambda_r \in \mathbb{R}^{r \times r}$, tel que
AAT = Ur Ar Ur
d'après (1), le projecteur orthogonal sur rang(AA^{T}) = rang(A) est $P = U_{T}U_{T}^{T}$

3. a) (1 point) Soit $AA^{\top} = U\Lambda U^{\top}$ une décomposition en éléments propres de AA^{\top} . On note

$$V = A^{\top} U_r \Lambda_r^{-1/2}, \quad \text{avec} \quad \Lambda_r^{-1/2} = \begin{pmatrix} \lambda_1^{-1/2} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_r^{-1/2} \end{pmatrix}.$$

Montrer que les colonnes de V sont orthonormales.

(3) (a)
$$V^{T}V = \Lambda_{r}^{-\frac{1}{2}}U^{T}AA^{T}U_{r}\Lambda_{r}^{-\frac{1}{2}}$$

$$= \Lambda_{r}^{-\frac{1}{2}}U^{T}U_{r}\Lambda_{r}U^{T}U_{r}\Lambda_{r}^{-\frac{1}{2}}$$

$$= \Lambda_{r}^{-\frac{1}{2}}\Lambda_{r}\Lambda_{r}^{-\frac{1}{2}}$$

$$= 7$$

donc les colonnes de V sont orthonormales

b) (1 point) En notant $\Sigma = \Lambda_r^{1/2}$, montrer que $U_r \Sigma V^{\top} = A$. La décomposition de la forme $A = U \Sigma V^{\top}$, où $U \in \mathbb{R}^{n \times r}$ et $V \in \mathbb{R}^{d \times r}$ sont deux matrices possédant des colonnes orthonormales $(U^{\top}U = I_r \text{ et } V^{\top}V = I_r)$ et $\Sigma \in \mathbb{R}^{r \times r}$ est une matrice diagonale, dont les éléments diagonaux $\sigma_1 \geq \cdots \geq \sigma_r \geq 0$ sont rangés par ordre décroissant, est appelée décomposition en éléments singuliers (SVD) de A.

$$U_r \Sigma V^T = U_r \Lambda_r^{\frac{1}{2}} \Lambda_r^{-\frac{1}{2}} U_r^T A$$

$$= I_n A$$

	55500 TO	Comment peut-on lier une décomposition en éléments propres de $A^{\top}A$ à une ition en éléments singuliers de A ?
(4)	Pour	la décomposition en éléments propres de AA^T , $AA^T = U_r \Lambda_r U_r^T$
	pow	la décomposition en éléments singuliers de A , $A = U_r \Sigma V^T$ $\text{avec} \qquad \left\{ \sum = \Lambda_r^{\frac{1}{2}} \right\}$ $V = A^T U_r \Lambda_r^{\frac{1}{2}}$
		$V = A^T U_r \Lambda_r^{\frac{7}{2}}$
/	Alors,	pour la décomposition en éléments propres de ATA, $A^{T}A = V \sum U_{r}^{T} U_{r} \sum V^{T}$ $= V \Lambda_{r} V^{T}$
	donc	V=(V1,, Vr) sont des vecteurs propres de AA

5.	(1 point) Soient $\{X_1, \ldots, X_n\}$ n vecteurs aléatoires i.i.d. à valeurs dans \mathbb{R}^d tels que $\mathbb{E}[X_1]$
	0 et $\mathbf{X} \in \mathbb{R}^{n \times d}$ la matrice des données correspondante. Exprimer un estimateur de $\mathrm{Var}(X_1)$
	en fonction de ${\bf X}$ puis décrire une procédure fondée sur la SVD permettant d'implémenter
	l'analyse en p composantes principales des données, avec $p \leq r$.

(5) D'après la définition
$$V_{ar}(X_i) = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_i - \mathbb{E}[X_i])^T]$$
donc l'estimateur est

$$V(x) = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \frac{1}{n} \sum_{j=1}^{n} X_{j}) (X_{i} - \frac{1}{n} \sum_{k=1}^{n} X_{k})^{T}$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{T} - \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{k=1}^{n} X_{i} X_{k}^{T} - \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} X_{j} X_{i}^{T} + \frac{1}{n^{2}} (\sum_{j=1}^{n} X_{j}) (\sum_{k=1}^{n} X_{k}^{T})$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{T} - \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} X_{i} X_{j}^{T}$$

$$= \frac{1}{n} X^{T} X_{i} - \frac{1}{n^{2}} (X^{T} |)^{T} (X^{T} |)$$

6. (1 point (bonus)) Exprimer la matrice (« des données réduites ») de taille $n \times p$ dont la i^e ligne est la compression de X_i en fonction des éléments singuliers déterminés à la question précédente.						
(6)						

7. (1 point (bonus)) En remarquant que, pour tout matrice réelle B , $\operatorname{range}(B) = \ker(B^{\top})^{\perp}$ (l'espace orthogonal à $\ker(B^{\top})$), montrer que $\operatorname{range}(B) = \operatorname{range}(BB^{\top})$.
(7) Soit $B \in \mathbb{R}^{n \times m}$, $\ker(B^T) = \{x \in \mathbb{R}^n \mid B^T x = 0\}$ $\operatorname{range}(B) = \{\sum_{i=1}^m b_i \cdot \alpha_i \mid \alpha \in \mathbb{R}^m\} = \{x \in \mathbb{R}^n \mid B^T x \neq 0\}$
© Pour montrer range (B) \subseteq range (BBT)
il suffit de montrer que \(\text{y} \in \text{range}(B), \(\text{y} \in \text{range}(BB^T)\)
\forall ye range(B), il existe $x \in \mathbb{R}^m$
y-Bx
il suffit de trouver ZERn, tel que y=BBz
on peut choisir $Z=Bx$, alors $B^Tz \neq 0$, et on a
$y = BB^7z = BB^7Bx = B(B^7B)x \in rang(BB^7)$
& Pour montrer range (BBT) = range (B)
$\forall w \in range(BB^T)$, il existe $u \in \mathbb{R}^n$
$w = BB^{T}u$
or peut choisir $V = B^T u \in \mathbb{R}^m$, tel que
w=Bv
donc $w \in \text{rang}(B)$
donc range (B) = range (BB)

日期:		