We Claim:

1. A process for preparing a compound of formula (I)

$$R^2$$
 R^3
 R^4
 R^1
 R^1
 R^3
 R^4

5

10

wherein

 R^1 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms;

 R^2 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms and is optionally C_1 - C_4 alkyl substituted;

 R^3 is selected from the group consisting of hydrogen, $arylC_1-C_5alkyl$, substituted $arylC_1-C_5alkyl$, (where the aryl substituents are independently selected from one or more of C_1-C_5alkyl , $C_1-C_5alkoxy$, halogen, amino, C_1-C_5alkyl amino or $di(C_1-C_5alkyl)$ amino), phthalimido C_1-C_5alkyl , succinimido C_1-C_5alkyl , C_1-C_5alkyl carbonyl C_1-C_5alkyl , aryloxycarbonyl C_1-C_5alkyl , and heteroaryl C_1-C_5akyl , where the heteroaryl contains 5 to 6 ring atoms;

25

20

p is an integer from 0 to 9;

10

15

20

25

30

X is selected from the group consisting of hydrogen, hydroxy, vinyl, substituted vinyl, (where one or more substituents are selected from fluorine or chlorine), ethynyl, substituted ethynyl (where the substituent is selected from fluorine or chlorine), C1-C5alkyl, substituted C_1 - C_5 alkyl (where the alkyl substituents are selected from one or more of C1-C5alkoxy, trihaloalkyl, phthalamido or amino), C₃-C₇cycloalkyl, C₁-C₅alkoxy, substituted C1-C5alkoxy (where the alkyl substituents are selected from phthalimido or amino), phthalimidooxy, phenoxy, substituted phenoxy (where the phenyl substituents are selected from C1-C5alkyl, fluorine, chlorine or C₁-C₅alkoxy), phenyl, substituted phenyl (where the phenyl substituents are selected from C1-C5alkyl, fluorine, chlorine or C₁-C₅alkoxy), arylC₁-C₅alkyl, substituted arylC₁-C₅alkyl (where the aryl substituents are selected from C₁-C₅alkyl, fluorine, chlorine or C₁-C5alkoxy), arylhydroxyC1-C5alkylamino, C1-C5alkylamino, $di(C_1-C_5alkyl)$ amino, nitrile, oxime, benzyloxyimino, C_1 -C5alkyloxyamino, phthalimido, succinimido, C1-C5alkylcarbonyloxy, phenylcarbonyloxy, substituted phenylcarbonyloxy (where the phenyl substituents are selected from C1-C5alkyl, fluorine, chlorine or C1-C₅alkoxy), phenylC₁-C₅alkylcarbonyloxy, (where the phenyl substituents are selected from C1-C5alkyl, fluorine, chlorine or C₁-C₅alkoxy), aminocarbonyloxy, C₁- C_5 alkylaminocarbonyloxy, di $(C_1-C_5$ alkyl)aminocarbonyloxy, C_1 - C_5 alkoxycarbonyloxy, substituted C_1 - C_5 alkoxycarbonyloxy (where the alkyl substituents are selected from the group consisting of methyl, ethyl, isopropyl and hexyl), phenoxycarbonyloxy, substituted phenoxycarbonyloxy (where the phenyl substituents are selected from C_1 - C_5 alkyl, fluorine, chlorine or C₁-C₅alkoxy), C₁-C₅alkylthio,

substituted C_1 - C_5 alkylthio (where the alkyl substituents are selected from hydroxy and phthalimido), C_1 - C_5 alkylsulfonyl, phenylsulfonyl and substituted phenylsulfonyl (where the phenyl substituents are selected from fluorine, chlorine, C_1 - C_5 alkoxy or trifluoromethyl); or pharmaceutically acceptable salts thereof;

comprising

10

15

5

reacting a compound of formula (VIII), wherein L^1 and L^2 are independently selected from the group consisting of C_1 - C_4 alkyl and C_1 - C_4 aralkyl; or L^1 together with L^2 is selected from the group consisting of $-CH_2$ - CH_2 - (optionally substituted with one to four C_1 - C_3 alkyl), and $-CH_2$ - CH_2 -(optionally substituted with one to six C_1 - C_3 alkyl); with a compound of formula (X), to produce the corresponding compound of formula (XI);

15

5

cyclizing the compound of formula (XI), under acid conditions of pH less than about 7, to produce the corresponding compound of formula (XII);

reacting the compound of formula (XII) with POBr $_3$, PBr $_5$, or a mixture of PBr $_3$ and Br $_2$, to yield the corresponding compound of formula (XIII);

displacing the bromine on the compound of formula (XIII) by reacting with a compound of formula (XIV), to produce the corresponding compound of formula (I).

2. A process for preparing a compound of formula (I)

10

15

20

25

$$R^2$$
 R^3
 R^4
 R^1
 R^3
 R^4

wherein

 R^1 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms;

 R^2 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms and is optionally C_1 - C_4 alkyl substituted;

 R^3 is selected from the group consisting of hydrogen, arylC₁-C₅alkyl, substituted arylC₁-C₅alkyl, (where the aryl substituents are independently selected from one or more of C₁-C₅alkyl, C₁-C₅alkoxy, halogen, amino, C₁-C₅alkylamino or di(C₁-C₅alkyl)amino), phthalimidoC₁-C₅alkyl, succinimidoC₁-C₅alkyl, C₁-C₅alkylcarbonylC₁-C₅alkyl, aryloxycarbonylC₁-C₅alkyl, and heteroarylC₁-C₅akyl, where the heteroaryl contains 5 to 6 ring atoms;

p is an integer from 0 to 9;

X is selected from the group consisting of hydrogen, hydroxy, vinyl, substituted vinyl, (where one or more substituents are selected from fluorine or chlorine), ethynyl, substituted ethynyl (where the substituent is

10

15

20

25

30

selected from fluorine or chlorine), C1-C5alkyl, substituted C_1 - C_5 alkyl (where the alkyl substituents are selected from one or more of C1-C5alkoxy, trihaloalkyl, phthalamido or amino), C₃-C₇cycloalkyl, C₁-C₅alkoxy, substituted C_1 - C_5 alkoxy (where the alkyl substituents are selected from phthalimido or amino), phthalimidooxy, phenoxy, substituted phenoxy (where the phenyl substituents are selected from C₁-C₅alkyl, fluorine, chlorine or C_{1} - C_{5} alkoxy), phenyl, substituted phenyl (where the phenyl substituents are selected from C₁-C₅alkyl, fluorine, chlorine or C_1-C_5 alkoxy), aryl C_1-C_5 alkyl, substituted $arylC_1-C_5alkyl$ (where the aryl substituents are selected from C₁-C₅alkyl, fluorine, chlorine or C₁- C_5 alkoxy), arylhydroxy C_1 - C_5 alkylamino, C_1 - C_5 alkylamino, $di(C_1-C_5alkyl)$ amino, nitrile, oxime, benzyloxyimino, C_1 -C5alkyloxyamino, phthalimido, succinimido, C1- C_5 alkylcarbonyloxy, phenylcarbonyloxy, substituted phenylcarbonyloxy (where the phenyl substituents are selected from C_1 - C_5 alkyl, fluorine, chlorine or C_1 - C_5 alkoxy), phenyl C_1 - C_5 alkylcarbonyloxy, (where the phenyl substituents are selected from C₁-C₅alkyl, fluorine, chlorine or C_1 - C_5 alkoxy), aminocarbonyloxy, C_1 - C_5 alkylaminocarbonyloxy, di(C_1 - C_5 alkyl)aminocarbonyloxy, C_1 - C_5 alkoxycarbonyloxy, substituted C_1 - C_5 alkoxycarbonyloxy (where the alkyl substituents are selected from the group consisting of methyl, ethyl, isopropyl and hexyl), phenoxycarbonyloxy, substituted phenoxycarbonyloxy (where the phenyl substituents are selected from C_1 - C_5 alkyl, fluorine, chlorine or C₁-C₅alkoxy), C₁-C₅alkylthio, substituted C_1 - C_5 alkylthio (where the alkyl substituents are selected from hydroxy and phthalimido), C_1 -C5alkylsulfonyl, phenylsulfonyl and substituted

the first state of the first test to the first test of the first state of the first test of the first

10

15

phenylsulfonyl (where the phenyl substituents are selected from fluorine, chlorine, C_1 - C_5 alkoxy or trifluoromethyl); or pharmaceutically acceptable salts thereof;

comprising

cyclizing a compound of formula (XI), wherein L^1 and L^2 are independently selected from the group consisting of C_1 - C_4 alkyl and C_1 - C_4 aralkyl; or L^1 together with L^2 is selected from the group consisting of $-CH_2$ - CH_2 - (optionally substituted with one to four C_1 - C_3 alkyl), and $-CH_2$ - CH_2 - (optionally substituted with one to six C_1 - C_3 alkyl), under acid conditions of pH less than about 7, to produce the corresponding compound of formula (XII);

$$R^2$$
 R^3
 R^3
 R^3
 R^1
 R^3
 R^3
 R^3
 R^3
 R^1
 R^3
 R^3

reacting the compound of formula (XII) with $POBr_3$, PBr_5 , or a mixture of PBr_3 and Br_2 , to yield the corresponding compound of formula (XIII);

20

15

5

displacing the bromine on the compound of formula (XIII) by reacting with a compound of formula (XIV), to produce the corresponding compound of formula (I).

3. A process for preparing a compound of formula (I)

$$R^2$$
 R^3
 R^4
 R^1
 R^1
 R^3

wherein

 R^1 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from $C_1\text{-}C_5$ alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms;

 R^2 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms and is optionally C_1 - C_4 alkyl substituted;

 R^3 is selected from the group consisting of hydrogen, $arylC_1-C_5alkyl$, substituted $arylC_1-C_5alkyl$, (where the aryl substituents are independently selected from one or more of C_1-C_5alkyl , $C_1-C_5alkoxy$, halogen, amino, C_1-C_5alkyl amino or di(C_1-C_5alkyl) amino), phthalimido C_1-C_5alkyl ,

10

15

20

25

30

 $succinimidoC_1-C_5alkyl,\ C_1-C_5alkylcarbonylC_1-C_5alkyl,$ $aryloxycarbonylC_1-C_5alkyl,\ and\ heteroarylC_1-C_5akyl,\ where$ the heteroaryl contains 5 to 6 ring atoms;

p is an integer from 0 to 9;

X is selected from the group consisting of hydrogen, hydroxy, vinyl, substituted vinyl, (where one or more substituents are selected from fluorine or chlorine), ethynyl, substituted ethynyl (where the substituent is selected from fluorine or chlorine), C1-C5alkyl, substituted C_1 - C_5 alkyl (where the alkyl substituents are selected from one or more of C1-C5alkoxy, trihaloalkyl, phthalamido or amino), C₃-C₇cycloalkyl, C₁-C₅alkoxy, substituted C_1 - C_5 alkoxy (where the alkyl substituents are selected from phthalimido or amino), phthalimidooxy, phenoxy, substituted phenoxy (where the phenyl substituents are selected from C_1 - C_5 alkyl, fluorine, chlorine or $C_{1-}C_{5}$ alkoxy), phenyl, substituted phenyl (where the phenyl substituents are selected from C1-C5alkyl, fluorine, chlorine or C₁-C₅alkoxy), arylC₁-C₅alkyl, substituted $arylC_1-C_5alkyl$ (where the aryl substituents are selected from C₁-C₅alkyl, fluorine, chlorine or C₁- C_5 alkoxy), arylhydroxy C_1 - C_5 alkylamino, C_1 - C_5 alkylamino, $di(C_1-C_5alkyl)$ amino, nitrile, oxime, benzyloxyimino, C_1 -C5alkyloxyamino, phthalimido, succinimido, C1- C_5 alkylcarbonyloxy, phenylcarbonyloxy, substituted phenylcarbonyloxy (where the phenyl substituents are selected from C₁-C₅alkyl, fluorine, chlorine or C₁- C_5 alkoxy), phenyl C_1 - C_5 alkylcarbonyloxy, (where the phenyl substituents are selected from C₁-C₅alkyl, fluorine, chlorine or C_1 - C_5 alkoxy), aminocarbonyloxy, C_1 - C_5 alkylaminocarbonyloxy, di(C_1 - C_5 alkyl)aminocarbonyloxy, C_1 - C_5 alkoxycarbonyloxy, substituted C_1 - C_5 alkoxycarbonyloxy (where the alkyl substituents are selected from the group consisting of methyl, ethyl, isopropyl and hexyl), phenoxycarbonyloxy, substituted phenoxycarbonyloxy (where the phenyl substituents are selected from C_1 - C_5 alkyl, fluorine, chlorine or $C_1\text{-}C_5alkoxy)$, $C_1\text{-}C_5alkylthio$, substituted C_1 - C_5 alkylthio (where the alkyl substituents are selected from hydroxy and phthalimido), C_1 - C_5 alkylsulfonyl, phenylsulfonyl and substituted phenylsulfonyl (where the phenyl substituents are selected from fluorine, chlorine, C_1 - C_5 alkoxy or trifluoromethyl); or pharmaceutically acceptable salts thereof;

comprising

$$R^2$$
 R^3
 R^3

reacting the compound of formula (XII) with $POBr_3$, PBr_5 , or a mixture of PBr_3 and Br_2 , to yield the corresponding compound of formula (XIII);

10

5

The state of the s 15

20

10

15

20

displacing the bromine on the compound of formula (XIII) by reacting with a compound of formula (XIV), to produce the corresponding compound of formula (I).

4. The process of Claim 1 wherein R^1 is 4-fluorophenyl, R^2 is 4-pyridyl, R^3 is 3-phenylpropyl and R^4 is

5. The process of Claim 3 wherein \mathbb{R}^1 is 4-fluorophenyl, \mathbb{R}^2 is 4-pyridyl, \mathbb{R}^3 is 3-phenylpropyl and \mathbb{R}^4 is

- 6. The process of Claim 1 wherein the compound of formula (XII) is reacted with $POBr_3$ in tetramethylenesulfone.
- 7. The process of Claim 3 wherein the compound of formula (XII) is reacted with $POBr_3$ in tetramethylenesulfone.
- 8. The process of Claim 1, wherein the compound of formula (XII) is reacted with about a 1:1 mixture of PBr₃ and Br₂ in $POCl_3$.
- 9. The process of Claim 3, wherein the compound of formula (XII) is reacted with about a 1:1 mixture of PBr₃ and Br₂ in POCl₃.
 - 10. A compound of formula (XI)

10

15

20

25

wherein

 R^1 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms;

 R^2 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms and is optionally C_1 - C_4 alkyl substituted;

 R^3 is selected from the group consisting of hydrogen, arylC₁-C₅alkyl, substituted arylC₁-C₅alkyl, (where the aryl substituents are independently selected from one or more of C₁-C₅alkyl, C₁-C₅alkoxy, halogen, amino, C₁-C₅alkylamino or di(C₁-C₅alkyl)amino), phthalimidoC₁-C₅alkyl, succinimidoC₁-C₅alkyl, C₁-C₅alkylcarbonylC₁-C₅alkyl, aryloxycarbonylC₁-C₅alkyl, and heteroarylC₁-C₅akyl, where the heteroaryl contains 5 to 6 ring atoms; and

 L^1 and L^2 are independently selected from the group consisting of C_1 - C_4 alkyl and C_1 - C_4 aralkyl; or L^1 together with L^2 is selected from the group consisting of - CH_2 - CH_2 -(optionally substituted with one to four C_1 - C_3 alkyl), and - CH_2 - CH_2 - CH_2 - (optionally substituted with one to six C_1 - C_3 alkyl).

11. A compound of the formula (XII)

10

15

20

wherein

 R^1 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from $C_1\text{-}C_5$ alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms;

 R^2 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethŷl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms and is optionally C_1 - C_4 alkyl substituted; and

 R^3 is selected from the group consisting of hydrogen, arylC₁-C₅alkyl, substituted arylC₁-C₅alkyl, (where the aryl substituents are independently selected from one or more of C₁-C₅alkyl, C₁-C₅alkoxy, halogen, amino, C₁-C₅alkylamino or di(C₁-C₅alkyl)amino), phthalimidoC₁-C₅alkyl, succinimidoC₁-C₅alkyl, C₁-C₅alkylcarbonylC₁-C₅alkyl, aryloxycarbonylC₁-C₅alkyl, and heteroarylC₁-C₅akyl, where the heteroaryl contains 5 to 6 ring atoms.

12. A process for preparing a compound of formula (XI)

(XI)

10

15

20

25

wherein

 R^1 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms;

 R^2 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms and is optionally C_1 - C_4 alkyl substituted;

 R^3 is selected from the group consisting of hydrogen, $arylC_1\text{-}C_5alkyl$, substituted $arylC_1\text{-}C_5alkyl$, (where the aryl substituents are independently selected from one or more of $C_1\text{-}C_5alkyl$, $C_1\text{-}C_5alkoxy$, halogen, amino, $C_1\text{-}C_5alkyl$ amino or di($C_1\text{-}C_5alkyl$) amino), phthalimido $C_1\text{-}C_5alkyl$, succinimido $C_1\text{-}C_5alkyl$, $C_1\text{-}C_5alkyl$ carbonyl $C_1\text{-}C_5alkyl$, aryloxycarbonyl $C_1\text{-}C_5alkyl$, and heteroaryl $C_1\text{-}C_5akyl$, where the heteroaryl contains 5 to 6 ring atoms; and

 L^1 and L^2 are independently selected from the group consisting of C_1 - C_4 alkyl and C_1 - C_4 aralkyl; or L^1 together with L^2 is selected from the group consisting of - CH_2 - CH_2 -(optionally substituted with one to four C_1 - C_3 alkyl), and - CH_2 - CH_2 - CH_2 - (optionally substituted with one to six C_1 - C_3 alkyl)

comprising

reacting a compound of formula (VIII), wherein L^1 and L^2 are independently selected from the group consisting of C_1 - C_4 alkyl and C_1 - C_4 aralkyl; or L^1 together with L^2 is selected from the group consisting of $-CH_2$ - CH_2 - (optionally substituted with one to four C_1 - C_3 alkyl), and $-CH_2$ - CH_2 -(optionally substituted with one to six C_1 - C_3 alkyl); with a compound of formula (X), to produce the corresponding compound of formula (XI).

10

15

5

13. A process for preparing a compound of formula (XII)

$$R^2$$
 R^3
 R^3

wherein

 R^1 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from $C_1\text{-}C_5$ alkyl, halogen or trifluoromethyl) and

10

15.

20

25

heteroaryl, where the heteroaryl contains 5 to 6 ring atoms:

 R^2 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms and is optionally C_1 - C_4 alkyl substituted; and

 R^3 is selected from the group consisting of hydrogen, arylC₁-C₅alkyl, substituted arylC₁-C₅alkyl, (where the aryl substituents are independently selected from one or more of C₁-C₅alkyl, C₁-C₅alkoxy, halogen, amino, C₁-C₅alkylamino or di(C₁-C₅alkyl)amino), phthalimidoC₁-C₅alkyl, succinimidoC₁-C₅alkyl, C₁-C₅alkylcarbonylC₁-C₅alkyl, aryloxycarbonylC₁-C₅alkyl, and heteroarylC₁-C₅akyl, where the heteroaryl contains 5 to 6 ring atoms

comprising

$$L^{1}O \qquad HN \qquad R^{3} \qquad R^{2} \qquad R^{1} \qquad R^{1} \qquad (XII)$$

cyclizing a compound of formula (XI), wherein L^1 and L^2 are independently selected from the group consisting of C_1 - C_4 alkyl and C_1 - C_4 aralkyl; or L^1 together with L^2 is selected from the group consisting of $-CH_2$ - CH_2 - (optionally substituted with one to four C_1 - C_3 alkyl), and $-CH_2$ - CH_2 - (optionally substituted with one to six C_1 - C_3 alkyl); under acid conditions of pH less than about 7, to produce the corresponding compound of formula (XII).

14. A process for preparing a compound of formula (XIII)

10

15

20

$$R^2$$
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

wherein

 R^1 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms;

 R^2 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms and is optionally C_1 - C_4 alkyl substituted; and

 R^3 is selected from the group consisting of hydrogen, $arylC_1\text{-}C_5alkyl$, substituted $arylC_1\text{-}C_5alkyl$, (where the aryl substituents are independently selected from one or more of $C_1\text{-}C_5alkyl$, $C_1\text{-}C_5alkoxy$, halogen, amino, $C_1\text{-}C_5alkyl$ amino or di($C_1\text{-}C_5alkyl$) amino), phthalimido $C_1\text{-}C_5alkyl$, succinimido $C_1\text{-}C_5alkyl$, $C_1\text{-}C_5alkyl$ carbonyl $C_1\text{-}C_5alkyl$, aryloxycarbonyl $C_1\text{-}C_5alkyl$, and heteroaryl $C_1\text{-}C_5akyl$, where the heteroaryl contains 5 to 6 ring atoms

comprising

$$R^{2}$$
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{4}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{4

15

20

25

5

reacting a compound of formula (XII) with POBr $_3$, PBr $_5$, or a mixture of PBr $_3$ and Br $_2$, to yield the corresponding compound of formula (XIII).

15. A process for preparing a compound of formula (XI)

(XI)

wherein

 R^1 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms;

 R^2 is selected from the group consisting of phenyl, substituted phenyl, (where the substituents are selected from C_1 - C_5 alkyl, halogen or trifluoromethyl) and heteroaryl, where the heteroaryl contains 5 to 6 ring atoms and is optionally C_1 - C_4 alkyl substituted;

 R^3 is selected from the group consisting of hydrogen, $arylC_1\text{-}C_5alkyl$, substituted $arylC_1\text{-}C_5alkyl$, (where the aryl substituents are independently selected from one or more of $C_1\text{-}C_5alkyl$, $C_1\text{-}C_5alkoxy$, halogen, amino, $C_1\text{-}C_5alkyl$ amino or di($C_1\text{-}C_5alkyl$) amino), phthalimido $C_1\text{-}C_5alkyl$, succinimido $C_1\text{-}C_5alkyl$, $C_1\text{-}C_5alkyl$ carbonyl $C_1\text{-}C_5alkyl$, aryloxycarbonyl $C_1\text{-}C_5alkyl$, and heteroaryl $C_1\text{-}C_5akyl$, where the heteroaryl contains 5 to 6 ring atoms; and

 L^1 and L^2 are independently selected from the group consisting of C_1 - C_4 alkyl and C_1 - C_4 aralkyl; or L^1 together with L^2 is selected from the group consisting of -CH₂-CH₂-

(optionally substituted with one to four C_1 - C_3 alkyl), and $-CH_2-CH_2-CH_2-$ (optionally substituted with one to six C_1 - C_3 alkyl);

comprising

$$L^{1}O \longrightarrow NH_{2} \longrightarrow L^{2}O \longrightarrow L^{2}O \longrightarrow HN \longrightarrow R^{3}$$

$$(VIII) \qquad (XI)$$

reacting a compound of formula (VIII) with a compound of formula (XV), to yield the corresponding compound of formula (XI).

16. A crystalline form of the compound of formula (II)

comprising the following x-ray powder diffraction peaks:

ANGLE °2θ	d-Spacing (Å)	Relative Intensity (%)
7.206	12.257	100.0
8.961	9.861	14.2
10.617	8.326	24.8
12.438	7.110	14.0
15.500	5.712	33.7
16.458	5.382	13.3
17.360	5.104	17.2
17.879	4.957	37.6
18.343	4.833	19.2
18.665	4.750	31.8

19.126	4.637	16.1
19.943	4.448	21.9
20.491	4.331	30.8
21.469	4.135	52.9
21.891	4.057	59.8
22.371	3.971	58.7
22.778	3.901	12.0
23.159	3.837	51.0
23.870	3.725	20.8
24.526	3.627	15.5
24.704	3.601	25.9
25.113	3.543	14.7
26.368	3.377	11.0
27.674	3.221	10.5
28.088	3.174	18.3
28.896	3.087	21.3
29.291	3.047	19.4
30.201	2.9568	10.6
30.501	2.9284	13.3