79094422805

Фотон с энергией

Ответ:430

Фотон с энергией

1. Фотон с энергией 0,75 МэВ рассеялся на свободном электроне под углом 60 градусов. Кинетическая энергия и импульс электрона до соударения с фотоном малы. Найти кинетическую энергию электрона отдачи.

Ответ дайте в целых кэВ.

Ответ:

Ответ: 320

Квантовая частица движется(1ая область)

Квантовая частица движется в пространстве с потенциальным барьером в форме ступеньки. Частица имеет энергию $E < U_0$ (см. рисунок). Выберите какой вид будет иметь волновая функция в области I.

- $\psi(x) = a \exp(ik_1x)$
- $\psi(x) = b \exp(-k_1 x)$
- $\psi(x) = a \exp(k_1 x)$
- $\psi(x) = a \exp(k_1 x) + b \exp(-k_1 x)$
- $\psi(x) = a \exp(k_1 x) + b \exp(k_1 x)$
- $\psi(x) = a \exp(k_1 x) b \exp(-k_1 x)$
- $\psi(x) = b \exp\left(-ik_1x\right)$

$$\psi(x) = a \exp{(ik_1x)} + b \exp{(-ik_1x)}$$

$$\psi(x) = a \exp(-k_1 x) + b \exp(-k_1 x)$$

Квантовая частица движется(1ая область)

Квантовая частица движется в пространстве с потенциальным барьером прямоугольной формы. Частица имеет энергию $E < U_0$ (см. рисунок). Выберите какой вид будет иметь волновая функция в области *I*.

$$\begin{array}{c|c}
I & U = U_s \\
III & IIII \\
\hline
E < U_s > & X
\end{array}$$

- $\psi(x) = b \exp\left(-k_1 x\right)$
- $\forall \psi(x) = a \exp(-ik_1x) + b \exp(-ik_1x)$

- $\quad \ \ \, \square \;\; \psi(x) = a \exp\left(k_1 x\right)$
- $\psi(x) = a \exp(k_1 x) b \exp(-k_1 x)$

$$\psi(x) = a \exp{(ik_1x)} + b \exp{(-ik_1x)}$$

- $\psi(x) = a \exp\left(-k_1 x\right) + b \exp\left(-k_1 x\right)$

$$\ \ \ \ \ \ \ \psi(x)=a\exp\left(k_1x
ight)+b\exp\left(k_1x
ight)$$

$$\ \ \ \ \ \ \ \ \ \ \psi(x)=a\exp\left(k_1x
ight)+b\exp\left(-k_1x
ight)$$

Квантовая частица движется(2ая область)

Квантовая частица движется в пространстве с потенциальным барьером прямоугольной формы. Частица имеет энергию $E < U_0$ (см. рисунок). Выберите какой вид будет иметь волновая функция в области $\emph{\textbf{II}}$.

$$I \qquad \qquad I \qquad$$

- $\quad \square \ \psi(x) = a \exp\left(k_2 x\right)$
- $\psi(x) = b \exp(-k_2 x)$
- $\psi(x) = a \exp(ik_2x) b \exp(-ik_2x)$
- $\psi(x) = b \exp\left(-ik_2 x\right)$

- $\psi(x) = a \exp(k_2 x) b \exp(-k_2 x)$

- $\psi(x) = a \exp(k_2 x) + b \exp(k_2 x)$

Ответ:

Квантовая частица движется(2ая область)

Квантовая частица движется в пространстве с потенциальным барьером в форме ступеньки. Частица имеет энергию $E < U_0$ (см. рисунок). Выберите какой вид будет иметь волновая функция в области **II**.

- $oxdot \psi(x) = a \exp\left(-ik_1x
 ight) + b \exp\left(-ik_1x
 ight)$
- $\quad \square \ \psi(x) = a \exp\left(k_2 x\right)$
- $\psi(x) = b \exp(-k_2 x)$
- $\psi(x) = a \exp\left(k_2 x
 ight) + b \exp\left(-k_2 x
 ight)$
- $\ \ \ \psi(x)=a\exp\left(-ik_{2}x
 ight)$

- $\psi(x) = a \exp(-k_2 x) + b \exp(-k_2 x)$

Fredi Kats (#p-gh-stats, projects) @tom_gnill#6420 Там конфликт в ветке. Умеешь фиксить их?

Квантовая частица(Зья область)

Квантовая частица движется в пространстве с потенциальным барьером прямоугольной формы. Частица имеет энергию $E < U_0$ (см. рисунок). Выберите какой вид будет иметь волновая функция в области $extbf{\it III}$.

- $\psi(x) = a \exp(ik_3x) b \exp(-ik_3x)$
- $\psi(x) = a \exp(k_3 x)$

- $\psi(x) = b \exp\left(-k_3 x\right)$

- $\psi(x) = a \exp(-ik_3x) + b \exp(-ik_3x)$
- $\psi(x) = a \exp{(ik_3x)} + b \exp{(-ik_3x)}$

Ответ:

Уравнением Шредингера

Уравнением Шрёдингера для стационарных состояний квантовой частицы является:

$$\hat{H}\psi(\vec{r}) = E\psi(\vec{r})$$

$$\Box -i\hbar\Delta\psi(\vec{r}) + (E-U)\psi(\vec{r}) = 0$$

$$^{\square}~i\hbar\hat{H}\psi(ec{r})=E\psi(ec{r})$$

$$\Delta \psi(ec{r}) + rac{2m}{\hbar^2}(E-U)\psi(ec{r}) = 0$$

Ответ:

Уравнением Шредингера для стационарных(в одномерном)

Уравнением Шрёдингера для стационарных состояний квантовой частицы в одномерном случае является:

$$egin{aligned} -rac{\hbar}{2m}rac{d^2\psi(x)}{dx^2}+(U-E)\psi(x)&=0 \ \hline &rac{d^2\psi(x)}{dx^2}+rac{2m}{\hbar^2}(E-U)\psi(x)&=0 \ \hline &rac{d^2\psi(x)}{dx^2}+rac{2m}{\hbar^2}(U-E)\psi(x)&=0 \ \hline &-rac{d^2\psi(x)}{dx^2}+rac{2m}{\hbar^2}(E-U)\psi(x)&=0 \end{aligned}$$

Ответ:

Оператор кинетической энергии

Оператор кинетической энергии квантовой частицы:

Ответ:

Гамильтониан квантовой частицы

Гамильтониан квантовой частицы:

$$egin{aligned} & rac{i\hbar}{2m}
abla - \hat{U}(ec{r}) \ & -rac{\hbar^2}{2m}\Delta + \hat{U}(ec{r}) \ & -rac{\hbar^2}{2m}
abla^2 + \hat{U}(ec{r}) \end{aligned}$$

На цезий

На цезий (работа выхода $A_{_{\mathtt{B}}}=1,94$ эВ), посветили светом с $\lambda=400$ нм. Электроны, если вылетают из материала, попадают в однородное магнитное поле с индукцией $\mathtt{B}=9\cdot 10^{-4}$ Тл так, что угол к линиям магнитного поля составляет 90 градусов. Рассчитайте максимальный радиус окружности r, по которой будут двигаться электроны?

Ответ округлите до целых миллиметров

Ответ: 4

На медь

На медь (${
m A_{\rm B}}=4,36$ эВ), посветили светом с $\lambda=200$ нм. Электроны, если они вылетают из катода, попадают в однородное магнитное поле с индукцией В $=1\cdot10^{-4}$ Тл так, что угол к линиям индукции этого поля равен 90 градусов. Рассчитайте максимальный радиус окружности r, по которой будут двигаться электроны?

Ответ округлите до целых миллиметров

Ответ: 46

Ответ: 46

Фотоны, которые падают

Фотоны, которые падают на катод, вызывают фотоэффект и выбитые электроны ускоряются напряжением $\Delta U=14000$ В и попадают на экран, из-за которого возникают вспышки при попадании каждого электрона. Частота падающего света $u_1=500$ ТГц, а для света, излучаемого экраном, $u_2=1000$ ТГц. Во сколько раз N (целое) увеличивается число фотонов, если один фотоэлектрон появляется при падении на катод в среднем k=7 фотонов? Работу выхода электронов $A_{\mathtt{B}}$ можно принять равной 2 эВ. Предположим, что энергия электронов падает на экран переходит в энергию света без потерь.

Ответ: 485

Ответ: 483

50

Фотоны, которые падают на катод

Фотоны, которые падают на катод, вызывают фотоэффект и выбитые электроны ускоряются напряжением $\Delta U=14000$ В и попадают на экран, из-за которого возникают вспышки при попадании каждого электрона. Частота падающего света $u_1=500$ ТГц, а для света, излучаемого экраном, $u_2=1000$ ТГц. Во сколько раз N (целое) увеличивается число фотонов, если один фотоэлектрон появляется при падении на катод в среднем k=20 фотонов? Работу выхода электронов $\Lambda_{\rm B}$ можно принять равной 2 эВ. Предположим, что энергия электронов падает на экран переходит в энергию света без потерь.

Ответ: 171

Фотоны, которые падают на катод

Фотоны, которые падают на катод, вызывают фотоэффект и выбитые электроны ускоряются напряжением $\Delta U=16000$ В и попадают на экран, из-за которого возникают вспышки при попадании каждого электрона. Частота падающего света $\nu_1=375$ ТГц, а для света, излучаемого экраном, $\nu_2=750$ ТГц. Во сколько раз N (целое) увеличивается число фотонов, если один фотоэлектрон появляется при падении на катод в среднем k=12 фотонов? Работу выхода электронов $A_{\rm B}$ можно принять равной 2 эВ. Предположим, что энергия электронов падает на экран переходит в энергию света без потерь.

Ответ:429

Какую разность потенциалов

Какую разность потенциалов в вольтах нужно пройти электронному пучку, чтобы после дифракции на двух щелях с расстоянием между ними 200 нм, первые максимумы дифракции оказались на расстоянии 0,5 см. при расстоянии от щели до экрана L=1 м.

(Ответ округлить до целого числа В)

Ответ: 46

Ответ:6

Какую разность потенциалов

Какую разность потенциалов в вольтах нужно пройти электронному пучку, чтобы после дифракции на решетке с периодом 1 мкм, первые максимумы дифракции оказались на расстоянии 0.5 см, при расстоянии от щели до экрана L=1 м.

(Ответ округлить до целого числа В)

Ответ: 5

Ответ: 0,24(?)

Какую разность потенциалов

Какую разность потенциалов в вольтах нужно пройти электронному пучку, чтобы после дифракции на одиночной щели шириной 100 нм, первые минимумы дифракции оказались на расстоянии 1 см, при расстоянии от щели до экрана L=1 м.

(Ответ округлить до целого числа В)

Ответ:

Ответ:6

После отражения от кристаллической

После отражения от кристаллической решетки монокристалла никеля с периодом 0.089 нм электронный пучок давал дифракционный максимум при угле скольжения 70 градусов. Определите ускоряющую разность потенциалов для этих условий. (Ответ округлить до целого числа В)
Ответ:
Ответ: 54
Энергия падающего фотона
Энергия падающего фотона в процессе комптоновского рассеяния распределилась одинаково между фотоном и электроном отдачи. Угол рассеяния 90 градусо Найти импульс рассеянного фотона.
Ответ дайте в СИ, деленый на 10^{-22} с точностью до десятых .
Пример: если ответ $2, 56 \cdot 10^{-22}$, то ответом будет число $2, 6$
Ответ: 1,4
Ответ: 1,4
При каком значении кинетической энергии (W в эВ) длина волны альфа-частицы будет равна 10 пм? (Масса альфа-частицы равна 4*1,67×10 ⁻²⁷ кг. Ответ округлить до целого числа эВ). Ответ: 21
Ответ:2
При каком значении
При каком значении кинетической энергии (W в $_{^{9}B}$) длина волны для протона будет равна 28.5 пм? (Масса протона равна $1,67\cdot 10^{-27}$.
(Ответ округлить до целого числа эВ).
Ответ: 1
Ответ:1
При каком значении
При каком значении кинетической энергии (W в эВ) длина волны электрона будет равна 205 пм? (Масса электрона равна 9.1×10 ⁻³¹ кг.
Ответ округлить до целого числа эВ).
Ответ: 36
Ответ:36

Фотон рассеялся

Фотон рассеялся на свободном электроне под углом 90 градусов. Кинетическая энергия и импульс электрона до соударения с фотоном малы. Энергия рассеянного фотона 216 кэВ. Найти кинетическую энергию электрона отдачи.

Ответ дайте в целых кэВ.

Ответ: 1

Ответ:158

Фотон рассеялся

Фотон рассеялся на свободном электроне под углом 90 градусов. Кинетическая энергия и импульс электрона до соударения с фотоном малы. Энергия рассеянного фотона 216 кэВ. Найти энергию фотона до рассеяния.

Ответ дайте в целых кэВ.

Ответ: 374

Ответ:374

На конденсаторе появляется заряд

На конденсаторе появляется заряд $q=11\cdot 10^{-9}$ Кл, если некоторый промежуток времени освещать катод светом. Катод состоит из лития $A_{\text{выхода}}=2.49\,$ эВ. Определите длину волны λ света, освещающего катод, если емкость конденсатора

лития ${
m A_{BEIXOДA}}=2.49\,$ эВ. Определите длину волны λ света, освещающего катод, если емкость конденсатора $C=600\,$ пФ.

Ответ округлите до целых нанометров

Ответ: 5553535

Ответ:60

На конденсаторе появляется заряд

На конденсаторе появляется заряд $q=9\cdot 10^{-9}\,$ Кл, если некоторый промежуток времени освещать катод светом. Катод состоит из

ниобия ${
m A_{\scriptscriptstyle BLIXOJA}}=3.99\;$ зВ. Определите длину волны λ света, освещающего катод, если емкость конденсатора $C=600\;$ пФ.

Ответ округлите до целых нанометров

Ответ:

Ответ:66

Рентгеновское монохроматическое излучение

Рентгеновское монохроматическое излучение узким пучком направляется на вещество так, что рассеянные под углами 60 и 120 градусов излучения волны имеют длины волн, различающиеся в 1,5 раза. Считая, что рассеяние имеет место на свободных электронах, вычислить длину волны падающего излучения.

Ответ дайте в пм с точностью до десятых.

Ответ:	3.6	
--------	-----	--

Ответ:1,1

При какой скорости

При какой скорости электроны будут иметь энергию, равную энергии фотонов с длиной волны 209 нм (Масса электрона равна 9.1×10^{-31} кг. Ответ округлить до целого числа км/с).

Ответ:	1404	
Ответ:	1404	

Ответ:1446

Для эффекта Комптона

Для эффекта Комптона вычислить энергию электрона при отражении рассеянного фотона (длина волны 100 пм) на угол 180 градусов.

Ответ дайте в виде целого числа эВ.

Ответ: 574,4