Размерность мер с преобразованием Фурье в L_p

Добронравов Никита Петрович СПбГУ dobronravov1999@mail.ru

Секция: Вещественный и функциональный анализ

Принцип неопределённости в математическом анализе — это семейство фактов о том, что функция и её преобразование Φ урье не могут быть одновременно малы. Одной из версий это принципа является следующая теорема.

Теорема. Пусть $S \subset \mathbb{R}^d$ — компакт, такой что $\mathcal{H}_{\alpha}(S) < \infty$. Пусть обобщённая функция ζ такая что $supp(\zeta) \subset S$ и $\hat{\zeta} \in L_p(\mathbb{R}^d)$ для некоторого $p < \frac{2d}{\alpha}$. Тогда $\zeta = 0$.

Здесь \mathcal{H}_{α} — это α -мера Хаусдорфа. Мы разобрали, что происходит в предельном случае $p=\frac{2d}{\alpha}$. Оказалось, что в этом случае принцип неопределённости неверен, а именно удалось доказать следующую теорему:

Теорема. Существуют компакт $S \subset \mathbb{R}^d$ и такая вероятностная мера μ , что $supp(\mu) \subset S$, $\hat{\mu} \in L_p(\mathbb{R}^d)$ и $\mathcal{H}_{\frac{2d}{2}}(S) = 0$.