Materials Chemistry III Day 8

Day 8

- 1) Sp² hybridiztion, conjugated systems and energy transition energy calculation-conjugated polymer system.
- 2) Electronic transition energy calculation.
- 3) Concept of Particle in a Ring!
- 4) Conjugated polymer system and their band gap.
- 5) Optical property measurement using UV-Visible absorbance spectroscopy, Lambert beers law.

For Electronic Transition in Conjugated System

π bonds

Bonding combination of p orbitals (π)

electron density builds up between the nuclei

Antibonding combination of p orbitals (π^*)

The wavefunctions cancel between the nuclei.

Butadiene

n=2

To generate the molecular orbitals of larger molecules, we take linear combinations of the atomic orbitals from each atom. If there are n atoms, there will be n different combinations.

fully antibonding

partially antibonding

partially bonding

fully bonding

An important application of particle in a 1D box is in explaining the color of conjugated systems. The π -electrons in polyene behaves similar to the system of particle in 1D box. The π -electrons are distributed by following Pauli exclusion principle and Aufbau principle.

 $n=(number of \pi-electrons/2)$

$$E=n^2h^2/8mL^2$$

For Electronic Transition in Conjugated System

Effect of Conjugation

Compare 1D box?

Molecule

Ethylene

1,3-butadiene

1,3,5-hexatriene

B-Carotene

 λ_{max} (nm)

165

217

258

470

Calculated (1D box model)

220 nm (for 1,3 butadiene)

1370 nm (for 1,3 butadiene)

Spectrum?

Butadiene; $\Delta E=9.02 \times 10^{-19} J$

length=0.578 nm

β-carotene-extended conjugated system

9

 $\Delta E=1.6 \times 10^{-19} J$

- To compute the absorption wavelength, we need the following data:
- Butadiene, length = 0.578 nm.
- β-carotene, length=2.94 nm.
- $m_e = 9.109 \times 10^{-31} \text{ kg}$, $h = 6.626 \times 10^{-34} \text{ J-s}$
- $C = 2.99 \times 10^8 \,\mathrm{m \ s^{-1}}$

Conjugated Polymers-Plastic solar cells

- Conjugated polymer: Trans-polyacetylene

Conjugated Polymers

Trans-polyacetylene (t-PA)

How do we explain the band properties of large conjugated system?

Applications
OLED
OFET

OPV

Nobel Prize in Chemistry 2000

"For the Discovery and Development of Conductive Polymers"

Alan Heeger
University of California
at Santa Barbara

Hideki Shirakawa
University of Tsukuba

Alan MacDiarmid
University of
Pennsylvania

Effect of Conjugation

Compare 1D box?

Molecule λ_{max} (nm) Ethylene 165 1,3-butadiene 217 1,3,5-hexatriene 258 470 **B-Carotene** H₃Ç H₃C-ÇH₃ ÇH₃ ÇH₃ -CH₃ ĊH₃ ĊH₃ CH₃

Spectrum?

Why deviation?

- Effect of solvent!
 - •Chain rotation!
- 1D Box model is a crude model, which provides the trend!

UV-Visible spectroscopy-Measurement of Electronic Transition Electron-Mater Interaction!

Lambert-Beers law

When a monochromatic radiation is passed through an absorbing medium a part of the incident radiation is scattered by the absorbing medium, a part is absorbed and rest of which is transmitted.

Scattering effect may be minimized by using a specific geometry of the sample holder/cuvette.

$$\mathbf{I_o} = \mathbf{I_t} + \mathbf{I_s} + \mathbf{I_A}$$

Lambert's law

When a monochromatic radiation is passed through a medium, the decrease in intensity of the radiation w.r.t the length of the absorbing medium is proportional to the intensity of the radiation.

$$-[dI/dL] \alpha I$$

$$log(I_t/I_o) = -ZL$$

Where **Z** is the extinction co-efficient.