初学者のための集合論入門 演習編

1 命題

例題 1.1. P,Q を命題とする.真偽表を書くことにより, $\neg P \land \neg Q$ と $\neg (P \lor Q)$ が同値であることを示せ.

解答表より、各行の真偽が一致しているため、同値である.

P	Q	$\neg P$	$\neg Q$	$\neg P \wedge \neg Q$	$P \lor Q$	$\neg (P \lor Q)$
\overline{T}	T	F	F	F	T	F
\overline{T}	F	F	T	F	T	F
\overline{F}	T	T	F	F	T	F
\overline{F}	F	T	T	T	F	T

問題 1.2. P,Q を命題とする. 真偽表を書くことにより以下の同値を示せ.

- (i). $\neg P \lor \neg Q \Leftrightarrow \neg (P \land Q)$
- (ii). (背理法) *P* ⇔ ¬(¬*P*)
- (iii). (対偶) $P \Rightarrow Q \Leftrightarrow \neg Q \Rightarrow \neg P$
- (iv). $\neg(P \Rightarrow Q) \Leftrightarrow P \land \neg Q$

問題 1.3. P,Q,R を命題とする. 真偽表を書くことにより以下の同値を示せ. (ヒント: 命題が3つあるので、真偽表の行は8行必要である.)

- (i). $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$
- (ii). $(P \wedge Q) \wedge R \Leftrightarrow P \wedge (Q \wedge R)$
- (iii). $(P \land Q) \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$
- (iv). $(P \lor Q) \land R \Leftrightarrow (P \land R) \lor (Q \land R)$

問題 1.4. P,Q を命題とする. 以下の命題が真であることを示せ.

$$(P$$
 かつ $(P \Rightarrow Q)) \Rightarrow Q$

問題 1.5. P,Q を命題とするとき, $P \Rightarrow Q$ と $\neg (\neg P \Rightarrow \neg Q)$ は同値でないことを示せ.

問題 1.6. P,Q を命題とするとき, $P \Rightarrow Q$ と $\neg(Q \Rightarrow P)$ は同値でないことを示せ.

例題 1.7. P を x,y を変数とする命題とするとき, $\forall x \exists y \ P(x,y)$ の否定を書け.

解答1)

$$\exists x \ \forall y \ \neg P(x,y)$$

問題 1.8. P を a,b,c,d を変数とする命題とするとき、 $\forall a \exists b \exists c \forall d \ P(a,b,c,d)$ の否定を書け、

問題 1.9. 以下の命題の否定を書け.

$$\forall a, b, c \in X \ a \sim b \text{ to } b \sim c \Rightarrow a \sim c$$

問題 1.10. 以下の命題の否定を書け.

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathbb{R} \ |a - x| < \delta \Rightarrow |f(a) - f(x)| < \varepsilon$$

問題 1.11. 以下の命題を証明せよ(ε , δ は実数とする).

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathbb{R} \ |x| < \delta \Rightarrow x^2 < \varepsilon$$

問題 1.12. 以下の命題の真偽を判定し、真ならば証明し、偽ならば反例を挙げよ (ε, δ) は 実数とする).

$$\exists \delta > 0 \ \forall \varepsilon > 0 \ \forall x \in \mathbb{R} \ |x| < \delta \Rightarrow x^2 < \varepsilon$$

2 集合

問題 2.1. X を集合とするとき、A が X の部分集合であることの定義を述べよ.

例題 2.2. 集合 A, B, C に対し、 $A \subset B$ かつ $B \subset C$ ならば、 $A \subset C$ であることを示せ.

解答

任意に $a \in A$ をとる.このとき, $A \subset B$ より $a \in B$ である.さらに, $B \subset C$ より, $a \in C$ である.a は任意であったから, $A \subset C$ が成立する 2).

問題 2.3. A, B を集合とするとき、 $A \cup B, A \cap B, A \setminus B$ の定義をそれぞれ述べよ.

問題 2.4. A, B を集合とする. 以下の包含を示せ.

- (i). $A \subset A$
- (ii). $A \cap B \subset A$

 $^{^{1)}}$ 意味を考えると、 $\forall x \exists y \ P(x,y)$ は任意の x に対し P を満たすようなある y が存在することを意味しており、それの否定であるから、何らかの x があり、どのように y を選んでも P が成り立たないという意味になる。しかし、実際否定をとるたびにこのようなことを考えていては大変なので、否定をとると、 \forall と \exists が入れ替わると覚えておけばよい(意味を考えなくてもよいというわけではない).

 $a \in A$ $a \in C$ が示されたということである.

(iii). $A \subset A \cup B$

問題 2.5. A, B を集合とする. 以下の同値を示せ.

$$A = B \Leftrightarrow \forall a \in A \ a \in B$$
かつ $\forall b \in B \ b \in A$

問題 2.6. A, B を集合とする. 以下の同値を示せ.

$$A = B \Leftrightarrow (x \in A \Leftrightarrow x \in B)$$

例題 2.7. A, B, C を集合とする. 以下の相等を示せ.

$$(A \cup B) \cup C = A \cup (B \cup C)$$

解答

問題 1.3 より、命題 P,Q,R に対し $(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$ が成り立つから、

$$x \in (A \cup B) \cup C \Leftrightarrow x \in A \cup B$$
 かつ $x \in C$
 $\Leftrightarrow (x \in A \Rightarrow x \in B) \Rightarrow x \in C$
 $\Leftrightarrow x \in A \Rightarrow x \in B \Rightarrow x \in C$
 $\Leftrightarrow x \in A \Rightarrow x \in B \cup C$
 $\Leftrightarrow x \in A \cup (B \cup C)$

よって、問題 2.6 より、 $(A \cup B) \cup C = A \cup (B \cup C)$ となる.

問題 2.8. A, B, C を集合とする. 以下の相等を示せ.

- (i). $(A \cap B) \cap C = A \cap (B \cap C)$
- (ii). $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- (iii). $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

問題 2.9. A_1, \ldots, A_n, B を集合とする.以下の相等を示せ.(ヒント:例えば $x \in \bigcap_{i=1}^n A_i$ は、 $\forall i \in \{1, \ldots, n\}$ $x \in A_i$ と言い換えられることを用いる.)

(i).
$$\left(\bigcap_{i=1}^n A_i\right) \cup B = \bigcap_{i=1}^n \left(A_i \cup B\right)$$

(ii).
$$\left(\bigcup_{i=1}^n A_i\right) \cap B = \bigcup_{i=1}^n (A_i \cap B)$$

問題 2.10. X を集合とし、 $A \subset X$ とする. 以下の相等を示せ.

$$X \setminus (X \setminus A) = A$$

問題 2.11. $X = \{a, b, c, d\}, Y = \{p, q, r\}$ とするとき, $X \times Y$ の要素を具体的に全て書け.

問題 2.12. $X = \{a, b, c\}$ とするとき、 2^X の要素を具体的に全て書け.

3 写像

問題 3.1. X, Y を集合とし, $f: X \to Y$ とする.

- (i). $A \subset X$ に対し f(A) の定義を述べよ.
- (ii). $B \subset Y$ に対し $f^{-1}(B)$ の定義を述べよ.

例題 3.2. X,Y を集合とし, $f:X\to Y$ とする. $A,B\subset X$ とするとき, $f(A\cup B)=f(A)\cup f(B)$ を示せ.

解答

$$x \in f(A \cup B) \Leftrightarrow \exists a \in A \cup B \ x = f(a)$$
 $\Leftrightarrow \exists a \in A \ x = f(a) \$ または $\exists a \in B \ x = f(a)$
 $\Leftrightarrow x \in f(A) \$ または $x \in f(B)$
 $\Leftrightarrow x \in f(A) \cup f(B)$

問題 3.3. X, Y を集合とし、 $f: X \to Y$ とする. また、 $A, B \subset X$ とする.

- (i). $f(A \cap B) \subset f(A) \cap f(B)$ を示せ.
- (ii). $f(A \cap B) \neq f(A) \cap f(B)$ である例を示せ.

問題 3.4. X, Y を集合とし、 $f: X \to Y$ とする. また、 $A, B \subset Y$ とする.

- (i). $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ を示せ.
- (ii). $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ を示せ.

問題 3.5. X, Y を集合とし、 $f: X \to Y$ とする. また、 $A \subset X$ とする.

- (i). $A \subset f^{-1}(f(A))$ を示せ.
- (ii). $A \neq f^{-1}(f(A))$ である例を示せ.

問題 3.6. X, Y, Z, W を集合とし、 $f: X \to Y, g: Y \to Z, h: Z \to W$ とする. このとき、

$$(h \circ q) \circ f = h \circ (q \circ f)$$

が成り立つことを示せ.

問題 3.7. A, B を集合とし、 $f: A \to Y$ とする.このとき以下の二つは同値であることを示せ.

- (i). *f* は単射である.
- (ii). $\forall a, b \in A \ f(a) = f(b) \Rightarrow a = b$

問題 3.8. 以下で与えられる写像が単射かどうか判定せよ. また, 全射かどうかも判定せよ.

- (i). $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^x$
- (ii). $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$
- (iii). $f: \mathbb{R} \to \mathbb{R}, x \mapsto \tan x$

問題 3.9. A, B を集合とし、 $f: A \rightarrow B$ を全単射とする. このとき、

$$f^{-1} \circ f = \mathrm{id}_{\mathrm{A}}$$

 $f \circ f^{-1} = \mathrm{id}_{\mathrm{B}}$

が成り立つことを示せ.

例題 3.10. A, B, C を集合とし, $f: A \to B, g: B \to C$ をそれぞれ単射とする.このとき,合成写像 $g \circ f$ も単射であることを示せ.

解答

問題 3.7(ii) の形を示す。任意に $a,b \in A$ をとり, $g \circ f(a) = g \circ f(b)$ と仮定する.このとき,g(f(a)) = g(f(b)) であり,g の単射性から f(a) = f(b) が成り立ち,さらに f の単射性から a = b が成り立つ.a,b は任意であったから, $g \circ f$ が単射であることが示された.

問題 3.11. A, B, C を集合とし、 $f: A \to B, g: B \to C$ とする.

- (i). f,g がどちらも全射であるとき、 $g \circ f$ も全射であることを示せ.
- (ii). f,g がどちらも全単射であるとき、 $g \circ f$ も全単射であることを示せ.

問題 3.12. A, B, C を集合とし、 $f: A \rightarrow B, g: B \rightarrow C$ とする.

- (i). $g \circ f$ が単射ならば、f は単射であることを示せ.
- (ii). $q \circ f$ が単射だが q は単射でない例を示せ.
- (iii). $g \circ f$ が全射ならば、g は全射であることを示せ.
- (iv). $q \circ f$ が全射だが f は全射でない例を示せ.

問題 3.13. A, B を集合とし, $f: A \to B$ とする.ある $g: B \to A$ があり, $g \circ f = \mathrm{id}_A$, $f \circ g = \mathrm{id}_B$ を満たすならば,f は全単射であり,さらに $g = f^{-1}$ であることを示せ.(ヒント:問題 3.12 を使う.)

4 二項関係

問題 4.1. X を集合とする. R が X 上の二項関係であることの定義を述べよ. さらに, X 上の二項関係 R が同値関係であることの定義を述べよ.

問題 4.2. X を集合とし、 \sim $extit{$>$}$ $extit{$>$}$ extit

(i). $a \sim b$

(ii).
$$C(a) = C(b)$$

(iii). $a \in C(b)$

例題 4.3. X を集合とし、 \sim を X 上の同値関係とする. このとき、 $a,b \in X$ に対して、

$$C(a) \neq C(B) \Rightarrow C(a) \cap C(b) = \phi$$

が成り立つことを示せ.

解答

対偶を考えて、 $a,b \in X$ に対し、 $C(a) \cap C(b) \neq \phi$ ならば C(a) = C(b) を示せばよい。 $C(a) \cap C(b) \neq \phi$ と仮定する。 $C(a) \cap C(b)$ の元 c を取る。このとき、 $c \in C(a)$ であるから $c \sim a$ となり、問題 4.2 から、C(c) = C(a) が成り立つ。同様に C(c) = C(b) も成り立つから、C(a) = C(b) となる。

問題 4.4.

$$\sim = \{(a,b) \in \mathbb{Z}^2 \mid a-b \text{ は 3 の倍数 } \}$$

とおくと~はℤ上の同値関係であることを示せ.

問題 4.5.

$$\sim = \{(a, b) \in \mathbb{R}^2 \mid a + b = 5\}$$

とおくと~はℝ上の同値関係であるか.

問題 4.6.

$$\sim = \{(a, b) \in \mathbb{R}^2 \mid a - b \ge 0\}$$

とおくと~はℝ上の同値関係であるか.

問題 4.7. X,Y を集合とし、 $f,g:X\to Y$ とする. このとき、

$$\sim = \{(a,b) \in X \times X \mid f(a) = g(b)\}$$

とおくと \sim はX上の同値関係であるか.

問題 4.8. X, Y を集合とし、 $f: X \to Y$ とする.また、 $\sim = \{(a, b) \in X \times X \mid f(a) = f(b)\}$ とおく.

- (i). \sim は X 上の同値関係であることを示せ.
- (ii). $a, b \in X$ に対し、 $b \in C(a)$ ならば f(a) = f(b) であることを示せ.
- (iii). $\tilde{f}: X/\sim \to Y, C(a) \mapsto f(a)$ とする³⁾とこれは単射となることを示せ. 特に、f が全射ならば \tilde{f} は全単射であることを示せ.
- (iv). (iii) と同様に \tilde{f} を決める. また, π を X から X/\sim への自然な全射とするとき, $f=\tilde{f}\circ\pi$ となることを示せ.

 $^{^{3)}}$ このように定義できることは (ii) に基づいているがここでは深く追求しない(well-defined 性などという).