APRESENTAÇÃO FÍSICA EXPERIMENTAL IV: Experimento desafio

Nome: Gabriel de Freitas Garcia RA:216179 Turma:H Nome: Giovana Kerche Bonás RA:216832 Turma:H Nome: Kaio Ken - ichi de Carvalho Takuma RA:219510 Turma:H

O problema

Comportamento do circuito

- Comparando o modelo usado no RLC para descrever um filtro passa-banda com o teórico.
- Diferença entre o real e o teórico.
- Descobrir a capacitância e a resistência espúria do indutor.
- Definir um procedimento experimental que respondesse a todas as perguntas.

Descrição dos desafios

Desafio 1

Comparar o gráfico dos dados experimentais com o teórico

Desafio 2

Entender o motivo da diferença entre o teórico e o experimental

Desafio 3

Entender o porque se transforma em um rejeita banda.

MONTAGEM EXPERIMENTAL

MONTAGEM PASSA BANDA

MODELO EXPERIMENTAL

Solução

GRÁFICOS

R = 10Ω ; C = 22μ F; L = 48,78mH

PARTE 1

FÓRMULA:

$$T[dB] = \log_{(\frac{R1}{R_L + R1})^2}$$

PARTE 2

FÓRMULA:

$$T[dB] = \log \left| \frac{L}{Z_L + R + \frac{1}{jwC}} \right|^2$$

$$f_s = \frac{1}{2\pi\sqrt{LC}}$$

Influência da impedância

Altas Frequências

Ramo do indutor, tem impedância alta/Não passa corrente.

Ramo do capacitor tem impedância baixa/Passa corrente.

Baixas Frequências

Ramo do indutor, tem impedância baixa/Passa corrente.

Ramo do capacitor tem impedância alta/Não passa corrente.

 $Z_c = 1/jwc$

 $Z_1 = jwL$

Conclusões

- \rightarrow Para baixas frequências (ω < 1/ \sqrt LC) teremos ZC > ZL, o circuito terá características predominantemente capacitiva;
- \rightarrow Para altas frequências ($\hat{}$ ω > 1/ \sqrt LC), teremos ZC < ZL, e o circuito terá características indutivas;

Capacitância espúria = 0,51 pFResistência espúria = $58,5 \Omega$

Incertezas

Osciloscópio

Para calcular a incerteza dos dados coletados foi considerada a incerteza das frequências características como 3%, pois o erro horizontal do osciloscópio

Resistor:

Calculado com o multímetro 2%.

Capacitor:

Tabelado 3%

Frequência de ressonância:

 $f_0 : \qquad \mu \text{f2=($\partial f \partial L$ μL)2+($\partial f \partial C$ μC)2} \ \to \ \mu \text{f2=(14.$\pi.$C. $L3/2. μL)2+(14.$\pi.$L. $C3/2. μC)2}$