

Measurement of the 2vββ decay half-life and search for the 0vββ decay of ¹¹⁶Cd

Remoto A., Le Noblet T., LAPP, Annecy-le-Vieux (France) on behalf of the NEMO-3/SuperNEMO collaboration

NEMO-3 was a $\beta\beta$ decay experiment located in the Modane underground laboratory which combined tracker and calorimetric measurement.

The detector took data from February 2003 to January 2011 with 10kg of different $\beta\beta$, among which ¹⁰⁰Mo (7 kg) and ⁸²Se (1 kg).

Cd-116 source

440 g of metallic Cadmium shaped in 7 thin foils were installed in NEMO-3.

The sample was enriched in ¹¹⁶Cd by the centrifugation separation method.

An average enrichment of (93.2±0.2)% was achieved.

The data shows a non uniform event rate on the foil surface in the 1e channel suggesting the foils suffer from different background levels.

Three foil regions are defined and studied separately.

Backgrounds

- Radio-impurities in material, γ from (n,γ) and μ bremsstrahlung
- \bullet ^{208}TI (from $^{232}\text{Th})$ and ^{214}Bi (from $^{238}\text{U})$ contamination in foil source
- 214Bi from Rn decay in tracker volume

Take advantage of PID capabilities of NEMO-3 (e^- , e^+ , γ , α) and TOF measurement to constrain the background model in different channel.

2vββ decay

The best sensitivity to the $2\nu\beta\beta$ decay rate is obtained in the 2 electron channel.

Additional topological requirements are used to increase S/B ratio.

The signal selection efficiency estimated from the MC is $1.769\pm0.003~\%$

The $2\nu\beta\beta$ decay rate is determined adjusting the expected signal shape to the distribution of the sum of the 2 electron energy with a likelihood fit.

Backgrounds are constrained through Gaussian parameter to the values measured in the dedicated background channels.

$$T_{1/2}^{2\nu} = [2.74 \pm 0.04(\text{stat.}) \pm 0.18(\text{syst.})] \times 10^{19} \text{ y}$$

Results of the fit in the 2e channel

Contributions		A (mBq/kg)	N
²⁰⁸ Tl		0.13 ± 0.03	19±2
²¹⁴ Bi		0.4 ± 0.1	30 ± 5
$^{210}{ m B}$	Low	2804 ± 49	0.2 ± 0.1
	Medium	6707 ± 49	24 ± 10
$^{40}\mathrm{K}$	Low	12.9 ± 0.5	9.0 ± 0.5
	Medium	23.7 ± 0.5	26±1
234m Pa	Low	2.7 ± 0.5	28±5
	Medium	5.1 ± 0.5	73±7
Externals		-	136±14
Radon		-	49±2
Total background		-	393 ± 19
$2\nu\beta\beta$		-	4978±74
Data		_	5368

Comparison with previous results

Systematical uncertainties Uncertainty on $T_{1/2}^{2\nu}$ Origin Electron reconstruction efficiency 116Cd mass +0.25 % ¹¹⁶Cd foil modelling [+2.2, -3.2]% Energy calibration ²¹⁴Bi background ±0.01 % ²⁰⁸Tl background $\pm 0.05 \%$ Radon background $\pm 0.02 \%$ Internal background ±1.07 % External background -0.45]%Total [+6.2, -6.7] %

Ονββ decay

No significant excess of data over the expected background is observed.

Different kinematical variables are combined into a BDT to enhance S/B and increase sensitivity by about 10%, depending on the mechanism.

Limits at 90% C.L. are set for different mechanism with a frequentist approach.

A search for ββ decay of ¹¹⁶Cd to the excited states of ¹¹⁶Sn is ongoing

[1] K. Kume et al. (FRONTIER 1996). [2] D. Dassie et al. Nucl. Phys. A678, 341 (2000). [3] F. A. Danevich et al., Phys.Rev.C68, 035501 (2003). [4] F. A. Danevich et al., Arxiv:1601.05578v1.