CSCI 325
Introduction to Parallel Systems and GPU Programming

Lecture 3
C++ Multithreading

Dr. Talgat Turanbekuly

Table of contents

Concurrency (Liveness) problems

Deadlock, Livelock, Starvation

Concurrency Problems **Deadlock**

Two or more threads get some resources (lock) and then wait each other indefinitely to release the lock. It happens when threads acquire the lock in different order.

```
T1
synchronize(A)

{
    synchronize(B)
    {
        synchronize(B)
        {
             synchronize(A)
        }
    }
}
```

Concurrency Problems **Deadlock Example**

Java Example

<u>C++</u>

offer your solutions

Concurrency Problems **Deadlock Solutions**

- Try not to use block threads within each other (cycles, nests)
- Use timed waiting to avoid indefinite block
- Any other?

Concurrency Problems Livelock

THREAD 1 THREAD 2 while (y < 2) while (y > -2)synchronized synchronized X++;x--; y = x;y = x;

```
possible output
THREAD 1
x = 0;
x = 1;
THREAD 2
x = 0;
x = -1;
THREAD 1
x = 0;
THREAD 2
x = -1;
THREAD 1
x = 0;
x = 1;
```

Concurrency Problems Livelock Example

C++ Livelock Example

How to figure out the error?

Offer solutions to the problem

Concurrency Problems Livelock Solutions

Identify livelock:

What if use counters for repeated situations?

Solution depends to the problem:

Use different timed waiting for concurrent threads;

Concurrency Problems Starvation

THREAD 1	THREAD 2	THREAD N	possible output
while $(x < 4)$	while $(x < 4)$	while $(x < 4)$	THREAD 1 $x = 1;$
{	{	{	x = 2;
synchronized	synchronized	synchronized	x = 3; x = 4;
(sharedObject)	(sharedObject)	(sharedObject)	THREAD 2
{	{	{	x = 1;
x++;	x++;	x++;	x = 2; $x = 3;$
}	}	}	x = 4;
}	}	}	THREAD N
,	,	J	x = 1;
			x = 2;
			x = 3;
			x = 4;

Concurrency Problems Starvation Example

C++ Starvation Example

Concurrency Problems Starvation Solutions

Identify starvation:

Are threads running randomly or in particular order?

Solution:

Use scheduling

Summary

Threads organization is important to avoid liveness problems: deadlock, livelock and starvation.

Famous problems in concurrency: Producer-Consumer Relationship (bounded-buffer problem), dining philosophers, readers-writers problem etc. have several solutions each.

Class work and Homework

- Read about liveness problems: deadlock, livelock and starvation
- Understand and implement reasons and solutions
- Please check if cuda is installed on your PC
- Sign up to learn.nvidia.com

Resources

Paul J. Deitel. C++20 Fundamentals, 3rd Edition. 2024;

Harvey Deitel, and Paul J. Deitel. C++20 for Programmers: An Object's-Natural Approach, 3rd Edition, 2022;