Maths Assignment - Applied Mathematics Flavour

z5417727

October 14, 2022

Contents

1	Question 1															2							
	1.1	a)																					2
	1.2	b)				•		•			•		•				•	•					3
2	Question 2															3							
	2.1	a)																					3
	2.2	b)																					4
	2.3	c)																					5
	2.4	d)																					6
	2.5																						
3	Question 3															8							
	3.1	a)																					8
	3.2																						
	3.3																						

1 Question 1

1.1 a)

Prove that in modulo 9, it is not possible for a perfect square to be congruent to 2, 3, 4, 6 or 8. Proof: For any integer $n \in \mathbb{Z}$, we say that $n^2 \equiv 0, 1, 4, 7 \pmod{9}$.

This can be deduced by finding the squares of 0, 1, 2, 3, 4 respectively and applying the [] theorem for numbers up to 9.

$$0^2 \equiv 0 \pmod{9},$$

 $1^2 \equiv 1 \pmod{9},$
 $2^2 \equiv 4 \pmod{9},$
 $3^2 \equiv 0 \pmod{9},$
 $4^2 \equiv 7 \pmod{9}.$

Through [], we find the similar rule applied to 5 through 8 (since $9^2 \equiv 0 \pmod{9}$).

$$5^2 \equiv (-4)^2 \equiv 7 \pmod{9},$$

 $6^2 \equiv (-3)^2 \equiv 0 \pmod{9},$
 $7^2 \equiv (-2)^2 \equiv 4 \pmod{9},$
 $8^2 \equiv (-1)^2 \equiv 1 \pmod{9}.$

Here, we see that the modulo of perfect squares always end with the digits 0, 1, 4 and 7. Thus, it can be proved that in modulo 9, it is not possible for a perfect square to be congruent to 2, 3, 4, 6, or 8.

1.2 b)

ff Hence (and not otherwise) prove that there do not exist three consecutive integer values of n for which 41n + 39 is a perfect square. Consider a number n, n + 1 and n + 2 for $n \in \mathbb{R}$.

2 Question 2

A certain relation \star is defined on the set \mathbb{Z}^+ by:

 $x \star y$ if and only if every factor of x is a factor of y.

For each of the questions below, be sure to provide a proof supporting your answer.

2.1 a)

Is ★ reflexive?

2.2 b)

Is \star symmetric?

2.3 c)

Is \star anti-symmetric?

2.4 d)

Is \star transitive?

2.5 e)

Is \star an equivalence relation, a partial order, both or neither?

3 Question 3

Consider the two functions $f: X \to Y$ and $g: Y \to Z$ for non-empty sets X, Y, Z. Decide whether each of the following statements is true or false, and prove each claim.

3.1 a)

If $g \circ f$ is injective, then g is injective.

3.2 b)

If $g \circ f$ is injective, then f is injective.

3.3 c)

If $g \circ f$ is injective and f is surjective, then g is injective