Домашняя работа №2

Арслан Хабутдинов

1 Центральная предельная теорема

Теорема 1.1 (Линдеберга). Пусть $\{\xi_k\}_{k\geq 1}$ — независимые случайные величины, $\mathsf{E}\xi_k<+\infty,\ \forall k$ обозначим $m_k=\mathsf{E}\xi_k,\ \sigma_k^2=\mathsf{D}\xi_k>0: S_n=\sum\limits_{i=1}^n\xi_i;$

 $D_n^2=\sum\limits_{k=1}^n\sigma_k^2~u~F_k(x)$ функция распределения ξ_k . Пусть выполняется условие Линдберга, то есть

$$\forall \varepsilon > 0 \ \frac{1}{\mathsf{D}_n^2} \sum_{k=1}^n \int_{\{x:|x-m_k| > \varepsilon \mathsf{D}_n\}} (x-m_k)^2 \, df_k(x) \xrightarrow[n \to \infty]{} 0.$$

 $Tor\partial a \xrightarrow{S_n - \mathsf{E} S_n} \xrightarrow{d} \mathcal{N}(0,1), n \to \infty.$

2 Гауссовские случайные векторы

Определение 1. Случайный вектор $\vec{\xi} \sim (m, \Sigma)$ — гауссовский, если его характеристическая функция $\varphi_{\xi}(\vec{t}) = \exp\left(i\left(\vec{m}, \vec{t} - \frac{1}{2}\left(\Sigma \vec{t}, \vec{t}\right)\right), \ \vec{m} \in \mathbb{R}^n, \Sigma$ — симметричная неотрицательно определенная матрица.

Определение 2. Случайный вектор $\xi \sim \mathcal{N}(0,1)$ — гауссовский, если он представляется в следующем виде: $\vec{\xi} = A\vec{\eta} + \vec{b}$, где $\vec{b} \in \mathbb{R}^n$, $A \in Mat_{(n \times m)}$ и $\vec{\eta} = (\eta_1, \dots, \eta_m)$ — независимы и $n \sim \mathcal{N}(0,1)$.

Определение 3. Случайный вектор $\vec{\xi}$ — гауссовский, если $\forall \lambda \in \mathbb{R}^n$ случайная величина, $(\vec{\lambda}, \vec{\xi})$ имеем нормальное распределение.

Теорема 2.1 (об эквивалентности определений гауссовских векторов). *Предыдущие три определения эквивалентны.*

3 Астрономия

Задача 1. Загадочный круг

Установите астрономический азимут восхода звезды ε CMa ($6^{\rm h}$ $58^{\rm m}$ $38^{\rm s}$, -28° 58') при наблюдении из самой северной равноудалённой от Санкт-Петербурга (59° 57' с. ш., 30° 19' в. д.) и Красной Поляны (43° 41' с. ш., 40° 11' в. д.) точки земной поверхности. Атмосферой пренебрегите, Земля — шар.

Задача 2. Бейрут

В какой момент по истинному солнечному времени 1 сентября Регул ($\alpha_1 = 10^{\rm h} \, 9^{\rm m}$, $\delta_1 = 11^{\circ} \, 53'$) и Шератан ($\alpha_2 = 11^{\rm h} \, 15^{\rm m}$, $\delta_2 = 15^{\circ} \, 20'$) находятся на одном альмукантарате в Бейруте ($\delta = 33^{\circ} \, 53'$)?

Задача 3. К Сатурну!

Космический корабли запустили с поверхности Земли к Сатурну по наиболее энергетически выгодной траектории. При движении по орбите корабль пролетел мимо астероида-троянца (624) Гектор.

Определите большую полуось и эксцентриситет полученной орбиты, скорость старта с поверхности Земли, а также угол между направлением на Солнце и на Сатурн в момент старта корабля. Орбиты планет считать круговыми. Оцените относительную скорость корабля и астероида в момент сближения.

Задача 4. Н II

Обратным эффектом Комптона (ОЭК) называют явление рассеяния фотона на ультрарелятивистском свободном электроне, при котором происходит перенос энергии от электрона к фотону. Рассмотрите ОЭК для фотонов реликтового излучения. При какой энергии электронов в направленном пучке рассеянное излучение можно будет зарегистрировать на фотоприемнике?

4 Отзыв

♡ Мне нравится этот интенсивный курс.

- ♣ Он организован так, что порой не обойтись без подорожника.
- \bigstar Материал увлекательный, 5 IATEX звезд!