FinalProject_IS457_107.R

Mon Apr 29 02:50:46 2019

```
# QUESTION 1
Airbnb_dataset <- read.csv(file="Airbnb-Sydney.csv", header=TRUE, sep=",")
# nrow(Airbnb_dataset[Airbnb_dataset$host_response_rate == "N/A", ]) prints 2483
# nrow(Airbnb_dataset)
# What variables have missing values?
# Neighborhood_overview, house_rules, host_response_time,
# host_response_rate have missing values.
# What types/forms of missing values are they? (e.g blank,
# NA, N/A, -, etc.)
# Neighborhood_overview and house_rules are missing
# character descriptions. Their NAs are blank cells.
# Host response times and host response rate display N/A instead of blank
# cells, both are missing character descriptions. With host_response_rate
# being a percentage. Whenever either Host_response_times or host_response_rate
# is N/A the other is also N/A.
# Please briefly describe how you deal will with these missing values and justify
# why you chose these methods
# I would drop the observations with N/As. This is because there
# are 2483 values with N/As for host_response_rate
# and Host_response_times, it would skew the data too much if we were to
# replace all N/As with mean, median, or mode
# data. The data would lose accuracy. Hence we should drop the observations
# with NAs.
# Describe how your choice of method to deal with missing values
# will affect your later analysis.
# The dataset contains 10815 rows, dropping 2483 rows would mean we
# lose roughly 23% of our data.
# This would mean we would lose all data associated with those rows.
# This will limit our dataset
# and observations we can make.
row.has.na <- apply(Airbnb_dataset, 1, function(x){any(is.na(x)) || any(x == "N/A")})
Airbnb_dataset <- Airbnb_dataset[!row.has.na,]</pre>
dim(Airbnb_dataset)
## [1] 8327
# Comment on and explain any other data cleaning or preparation steps you think would be
# necessary from your inspection of the data (you do not need to carry them out).
# It is possible we can remove a row if it contains a blank value for a description.
# I think at this stage, however that would be uneccessary, and would result in us losing
# more data than we should.
```

```
# QUESTIONS 2 & 3

# Since it is hard to get an overview for large data sets, conduct a
# preliminary exploration to explore the variables of the Sydney Airbnb data by
# calculating some
# descriptive and distributional statistics. Describe what you find that is
# unexpected or interesting.

# summary(Airbnb_dataset)

cities = as.character(Airbnb_dataset$city)
top_cities = head(sort(table(cities),decreasing=TRUE), n = 10)
barplot(top_cities, main = "Airbnb Top 10 City Listings")
```

Airbnb Top 10 City Listings

The top Airbnb listings for cities are Sydney, Surry Hills, Bondi Beach etc.
As one of the most popular cities for tourists and the basis of our dataset it is not
suprising Syndey has the most Airbnb listings. It is interesting to see
where around Syndey Airbnbs are listed for.
Such as Surry Hills and Bondi Beach, both are very
touristy areas with great scenery around Syndey.

response_times = as.character(Airbnb_dataset\$host_response_time)
response_times_df = as.data.frame(table(response_times))

pct <- round(response_times_df\$Freq/sum(response_times_df\$Freq)*100)
lbls <- paste(response_times_df\$response_times, pct)
lbls <- paste(lbls,"%",sep="")

pie(table(response_times), main = "Frequency of Host Reponse Times", labels = lbls)</pre>

Frequency of Host Reponse Times


```
# Based on the data most hosts respond within an hour 69%.
# Significantly less hosts require more than an hour
# to respond. For example, hosts responding within a
# couple hours is 17%.

host_verifications = as.character(Airbnb_dataset$host_verifications)
top_host_verifications = head(sort(table(host_verifications),decreasing=TRUE), n = 10)
barplot(top_host_verifications, main = "Airbnb Top 10 Host Verifications", las= 2, cex.main=1.3)
```

Airbnb Top 10 Host Verifications

Histogram of Host Reponse Rates


```
# The data here is skewed left. The data is not symmetric, not uniformly distributed.
# The data is unimodal (has one peak) at 100% host reponse rate.
# Hosts are most likely to respond
# 100% of the time.

room_type = as.character(Airbnb_dataset$room_type)
room_type_df = as.data.frame(table(room_type))

pct <- round(room_type_df$Freq/sum(room_type_df$Freq)*100)
lbls <- paste(room_type_df$room_type, pct)
lbls <- paste(lbls,"%",sep="")</pre>
```

Airbnb Room Type Listings


```
# 73% of room types listed are entire home/apt. This is the most popular
# room type listing
# Question 4
# Now look at the relationships among several variables.
# For example, look at "review per month" and "number of reviews."
# They are both indicators of number of guests, but convey different information.
# What different information do they convey and what similar information?
# How are the two variables related? Answer this quantitatively.
# Find the top number of reviews per month and the top number of
# reviews total
top_rev_p_month_rows = head(Airbnb_dataset[order(Airbnb_dataset$reviews_per_month, decreasing= T),], n
top_num_rev = head(Airbnb_dataset[order(Airbnb_dataset$number_of_reviews, decreasing= T),], n = 100)
combined_ids = as.vector(top_rev_p_month_rows$id)
combined_ids = append(combined_ids, as.vector(top_num_rev$id), after = length(combined_ids))
indivListings = length(unique(combined_ids))/length(combined_ids)
paste0(formatC(100 - indivListings *100, format = "f", digits = 2), "%")
## [1] "10.00%"
# Out of each of the top 100 listings for reviews per month and total number of reviews,
# (that is 200 listings), 180 of the listings are unique listings. Meaning only 10% (20/200) of
# listings are both in the top 100 number of reviews and top 100 number of reviews per month.
# Find the overlapping host ids
overlapping_host_ids <- intersect(top_rev_p_month_rows$host_id, top_num_rev$host_id)
# Get the rows corresponding to the overlapping host ids
overlapping_rows_top_month = top_rev_p_month_rows[
```

```
match(overlapping_host_ids,top_rev_p_month_rows$host_id),]
overlapping rows_top_num = top_num_rev[match(overlapping_host_ids,top_num_rev$host_id),]
percentDifferentListings = length(intersect())
  overlapping_rows_top_month$id, overlapping_rows_top_num$id))/nrow(overlapping_rows_top_month)
percentDifferentListings = paste0(formatC(100 - (percentDifferentListings *100),
                                          format = "f", digits = 2), "%")
print(percentDifferentListings)
## [1] "11.11%"
# So 11.11% of the hosts with the top total number of reviews and top reviews per
# month have different Airbnb listings that have made the top in each category.
# Whereas 88.89% of hosts have the same listing that is both in the top total number
# of reviews and top reviews per month. So we can conclude as a host it is most likely
# to have a single one of your listings top in both categories, as opposed to one listing
# top in one category and a different listing top in the other.
# I have a hypothesis that the more amentities offered the higher
# people will rate review scores value because they feel the listing
# provided good value for the price.
listing_amenities = as.vector(Airbnb_dataset$amenities)
listing_amenities = strsplit(listing_amenities, ",")
num amenities = c()
for(val in listing_amenities){
 num_amenities = c(num_amenities, length(val))
}
xy amenities scores = as.data.frame(cbind(num amenities, Airbnb dataset$review scores value))
colnames(xy_amenities_scores) = c("x", "y")
# Find the mean number of ammentities for each rating score value.
all_rating_amenities_mean = c()
for(i in 1:10){
  rating_amenities_mean =
    as.data.frame(xy_amenities_scores[xy_amenities_scores$y == i,])
  all_rating_amenities_mean = c(all_rating_amenities_mean,
                                mean(rating amenities mean$x))
}
# Replace NaNs with O
all_rating_amenities_mean[is.nan(all_rating_amenities_mean)] <- 0</pre>
xy_coords = as.data.frame(cbind(all_rating_amenities_mean, 1:10))
colnames(xy_coords) = c("x", "y")
plot(xy_coords,
```

```
main ="Review Score Value vs. Mean Number of Amenities",
    xlab="Mean Number of Amenities", ylab = "Review Score Value")

abline(lm(xy_coords$y~xy_coords$x), col = "blue")
```

Review Score Value vs. Mean Number of Amenities

Correlation Coefficient
print(cor(xy_coords\$y, xy_coords\$x))

```
## [1] 0.6892049
```

```
# As we can see from the graph above. There is postive
# correlation between offering more amenities and
# higher review score value. This is inherently because
# people feel they are getting their money's worth.
# Airbnb should encourage its hosts to list all their
# amenities and prioritize listings that have more
# amenities than others. It results in happier customers.

# I have a hypothesis that the different propertes types
# will have different pricing. The airbnb dataset
# lists 31 different property types I would like to compare
# the top 5 property types and their pricing.

# Filter Airbnb dataset to not include rows with empty cells for
# property type or pricing
filtered_airbnb_data = Airbnb_dataset[
    (Airbnb_dataset$property_type != "") & (Airbnb_dataset$price != ""), ]
```

```
# Top 5 kinds of properties
top_prop_types = as.data.frame(head(sort(
  table(filtered_airbnb_data$property_type),
  decreasing=TRUE), n = 5))
colnames(top_prop_types) = c("PropertyType", "Frequency")
# Convert top 5 property types to vector
prop_types_vec = as.vector(top_prop_types$PropertyType)
median_price_per_type = c()
# Median price corresponding to each property type
for(type in prop_types_vec){
  typ_filter = filtered_airbnb_data[filtered_airbnb_data$property_type == type, ]
  median_price_per_type = c(median_price_per_type,
                            median(as.numeric(gsub('\\$|,', '', typ_filter$price))))
}
xy_prop_median_price = as.data.frame(cbind(prop_types_vec, median_price_per_type))
colnames(xy_prop_median_price) = c("x", "y")
barplot(as.numeric(as.vector(xy_prop_median_price$y)),
        names.arg=as.vector(xy_prop_median_price$x) ,
        main = "Airbnb's Median Prices for Top 5 Property Types",
        xlab = "Top 5 Property Types", ylab = "Median Price ($)")
```

Airbnb's Median Prices for Top 5 Property Types

Top 5 Property Types

```
# Based on the results the rankings from highest to lowest price
# listing is House > Condominium = Apartment > Townhouse > Guest Suite
```

```
# Generally townhouses include more sqft and amenities,
# it is suprising that from the listings their median price is $17 less
# than an apartment! Why is that? Is it because there is more
# demand for apartments than townhouses?
# I wonder what the relationship is between host response rate and host response
# time. I predict hosts with quicker response times will also have higher
# response rates as well.
host_response_times_vec = as.vector(Airbnb_dataset$host_response_time)
host_reponse_rate_vec = as.vector(Airbnb_dataset$host_response_rate)
host_reponse_time_types = as.vector(
  as.data.frame(table(host_response_times_vec))$host_response_times_vec)
avg_reponse_rate_by_time = c()
for(type in host_reponse_time_types){
  typ_filter = Airbnb_dataset[Airbnb_dataset$host_response_time == type, ]
  avg_reponse_rate_by_time = c(avg_reponse_rate_by_time,
                               mean(as.numeric(sub("%", "",
                                                   typ_filter$host_response_rate))))
}
xy_rep_time_rate = as.data.frame(cbind(host_reponse_time_types,
                                       avg_reponse_rate_by_time))
colnames(xy_rep_time_rate) = c("x", "y")
barplot(as.numeric(as.vector(xy_rep_time_rate$y)),
        names.arg=as.vector(xy_rep_time_rate$x) ,
        main = "Airbnb Host's Average Reponse Rate by Response Time",
        xlab = "Response Time Category", ylab = "Average Response Rate (%)")
```

Airbnb Host's Average Reponse Rate by Response Time

Response Time Category

```
cor(as.numeric(as.vector(xy_rep_time_rate$y)), c(1:4))
## [1] 0.8312174
# According to the results hosts with the quickest response times
# also have the highest reponse rate. This proves my hypothesis is
# correct.
# QUESTION 5
# Business Hypotheses
# I have a business hypothesis that the greater number of amentities a
# host offers the higher a customer will rate their review_score_value.
# Because then customers feel like they are getting the most
# value for what they are paying for. We can also look at pricing to see
# if a greater number of amentites combined with a lower price results
# in the highest review_score value. Relevant variables:
# amentities, review_score_value, price
# I have a business hypothesis that certain cities and property types
# will have higher pricings than others I would like to isolate the top
# property types listed and the top cities listed, and analyze
# prices for the top cities property types. Uses these results
# Airbnb could the property types and cities than are the most pricey
# in the Syndey area. Relevant variables: cities, property_type, price
# I have a business hypothesis that certain hosts with a quick response time
# will also have a high reponse rate and have a higher overall review. I
# also predict they are more likely to be a superhost. Relevant variables:
```

```
# response_time, response_rate, review_scores_rating, superhost
#install.packages("ggplot2")
library(ggplot2)
#install.packages("lattice")
library(lattice)
#install.packages("ggrepel")
library(ggrepel)
# QUESTION 6
# Reviews are an important factor when users choose listings. Users have
# different expectations for different types of property.
# For example, if a user chooses a house, he might expect the house
# to be more spacious than an apartment. Therefore, we would like to see
# if property type affects how users give their reviews.
# Make ONE plot to visualize the relationship between "review scores rating" and
# "number of reviews" for all categories of "property type." Explain what you
# find from your graph.
# 6.1
plot_data = as.data.frame(cbind(as.character(Airbnb_dataset$property_type),
                                Airbnb_dataset$review_scores_rating,
                                Airbnb_dataset$number_of_reviews))
colnames(plot_data) = c("PropType", "ScoreRating", "NumReviews")
property_types_vec = as.vector(as.data.frame(table(plot_data$PropType))$Var1)
total_num_revs = c()
avg_score_rating = c()
for(type in property_types_vec){
  typ_filter = plot_data[plot_data$PropType == type, ]
  total_num_revs = c(total_num_revs, sum(as.numeric(
    as.vector(typ_filter$NumReviews))))
 avg_score_rating = c(avg_score_rating, mean(as.numeric(
   as.vector(typ_filter$ScoreRating))))
}
filtered_plot_data = as.data.frame(cbind(property_types_vec, total_num_revs,
                                         avg_score_rating))
colnames(filtered_plot_data) = c("PropType", "NumReviews", "AvgScoreRating")
filtered_plot_data$AvgScoreRating =
  (as.numeric(as.character(filtered_plot_data$AvgScoreRating)))
filtered plot data$NumReviews =
  (as.numeric(as.character(filtered_plot_data$NumReviews)))
```



```
# From the data we find that Apartments > Houses > Townhouses
# had the greatest number of reviews. But just because a property
# has a greater number of reviews does not mean its average score
# is higher. Take the Tent property, for example, it only has 7
# reviews however it is the only property to have an average score
# rating of 100.

# 6.2

# Find top 10 property types
top_prop_types = as.data.frame(head(sort(
    table(Airbnb_dataset$property_type),
    decreasing=TRUE), n = 10))
```

```
# Extract the top property rows
top_prop_data = filtered_plot_data[
 match(top prop types$Var1, filtered plot data$PropType),]
# Sort the property rows by number of reviews (ascending).
top_prop_data = top_prop_data[
  order(as.numeric(as.vector(top_prop_data$NumReviews))), ]
# Print top number of reviews for top property types
tail(top_prop_data)
##
         PropType NumReviews AvgScoreRating
## 10 Condominium
                        7925
                                   94.55133
## 14 Guesthouse
                        8370
                                   94.79096
## 13 Guest suite
                       11817
                                   95.54260
## 25
       Townhouse
                     16147
                                   94.38280
## 17
           House
                       46707
                                   94.77154
## 2
       Apartment
                      151609
                                   94.00258
dataset_variables = as.data.frame(cbind(as.character(Airbnb_dataset$property_type),
                                        as.character(Airbnb_dataset$room_type),
                                        as.character(Airbnb_dataset$bed_type),
                                        Airbnb_dataset$reviews_per_month))
colnames(dataset_variables) = c("PropTyp", "RoomTyp", "BedTyp", "RevPMonth")
top_prop_types_vec = as.character(as.vector(top_prop_data$PropType))
dataset_variables = dataset_variables[
 dataset_variables$PropTyp %in% top_prop_types_vec, ]
dataset_variables$RoomTyp = as.vector(as.character(dataset_variables$RoomTyp))
# This took me hours. But it looks awesome.
ggplot(dataset_variables, aes(x=dataset_variables$PropTyp,
                              y=as.numeric(
                                as.vector(dataset variables$RevPMonth)),
                              group=dataset_variables$BedTyp,
                              fill=dataset variables$BedTyp,
                              alpha = dataset_variables$RoomTyp)) +
  geom_bar(stat="identity",position="dodge") +
  # scale_fill_manual(values = c("red", "green", "blue", "white") didn't look nice
  scale alpha manual(values=c(1, 0.5, 0.05)) +
  labs(x = "Property Type", y = "Reviews Per Month",
      fill = "Bed Type", alpha = "Room Type") +
  coord_flip()
```



```
# There are a number of interesting conclusions to
# draw from this graph. First to explain I used
# different fill colors for room types and different alphas to represent
# different bed types. Also if a room type or bed type doesn't exist
# for a certain property type a bar is not created for it
# or alpha value not displayed for it.
# Once conlusion to draw is that for all top 10 properties
# types the most reviews written are for Real Bed room types combined
# with Entire home/apt bed types. The most reviews per month are given to
# property type:Loft, Room Type: Real Bed, Bed Type: Entire home/apt.
# For 7/10 top property types pull-out-sofas are the room type
# to get the second most amount of reviews per month (after real beds).
# 6.3 Completed in Question 3. Refer back to Question 3.
# Question 7
# Clean price data. Convert to numeric.
Airbnb_dataset$price = as.numeric(gsub('\\$|,', '', Airbnb_dataset$price))
# 7.2
```

```
#install.packages("tibble")
library(tibble)
listing_amenities = as.vector(Airbnb_dataset$amenities)
listing_amenities = strsplit(listing_amenities, ",")
num_amenities = c()
for(val in listing amenities){
  num_amenities = c(num_amenities, length(val))
# Tibble used to insert column after amenities
Airbnb dataset = add column(Airbnb dataset, num amenities, .after = "amenities")
# 7.3
cancellation_types =
  as.character(as.data.frame(table(Airbnb_dataset$cancellation_policy))$Var1)
mean_rev_score_rat = c()
for(type in cancellation_types){
  type_filter = Airbnb_dataset[Airbnb_dataset$cancellation_policy == type, ]
  mean_rev_score_rat = c(mean_rev_score_rat,
                         mean(as.vector(type filter$review scores rating)))
}
cancellation_type_rev = as.data.frame(
  cbind(cancellation_types, mean_rev_score_rat))
colnames(cancellation_type_rev) = c("CancelTyp", "AvgRevScore")
ggplot(data = cancellation_type_rev,
       aes(y=as.numeric(as.vector(AvgRevScore)), x=CancelTyp)) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(x = "Cancellation Policy", y = "Average Review Score",
       title = "Average Review Score vs. Cancellation Policy")
```

Average Review Score vs. Cancellation Policy


```
# It is interesting to see that the flexible and moderate cancellation
# policies have the two highest average review score. I am guessing
# that is because the cancellation policies are the most
# lenient for customers. Hence it recieves the higher avg rev scores.
# Convert extra people and cleaning prices to numeric
Airbnb_dataset$extra_people = as.numeric(gsub('\\$|,', '',
                                              Airbnb_dataset$extra_people))
# If cleaning fee isn't present, NA will be produced, rightfully so
Airbnb_dataset$cleaning_fee = as.numeric(gsub('\\$|,', '',
                                              Airbnb_dataset$cleaning_fee))
# Convert host_response_rate percent to numeric
Airbnb_dataset$host_response_rate = as.numeric(sub("%", "",
                                              Airbnb_dataset$host_response_rate))
# QUESTION 8
# I chose number of reviews as the dependent variable.
# The number of reviews given is a more long-term metric
# as compared to the reviews per month which can vary drastically
# from month to month. Whereas number of reviews given overall is
# cummulative.
```

```
# 10 variables potentially affecting number of reviews
# Host response time. I think host response time affects
# number of reviews because hosts responded quicker might have
# more reviews because they are more popular.
# SuperHost. If superhost it could mean more reviews
# because more guests like their host/find listing more popular.
# Host identity verified. If host identity verified quests
# could feel more personable with host and write a review.
# Host verifications. If host has more verifications guests could
# feel more personable with host and write a review.
# Property types that are more popular will have more reviews.
# Accommodates. If a listing can accommodate more people. The listing
# could receive more reviews because more people spend time at the property.
# Amenities. If a listing has more amenities. More people might like the
# listing and give it a positive review.
# Price. If a price is high people may feel inclined to leave a review to
# describe whether they felt they got their money's worth.
# Description. Certain keywords in the description could render a property
# more popular, hence more likely for a user to leave a review.
# Host response rate. If hosts follows up with a customer, the customer
# knows whether they can stay at the property and then can leave a review
plot(Airbnb_dataset$host_response_rate, Airbnb_dataset$number_of_reviews,
     xlab = "Host Response Rate", ylab = "Number of Reviews",
     main = "Number of Reviews vs. Host Response Rate")
abline(lm(Airbnb dataset$number of reviews ~ Airbnb dataset$host response rate))
```

Number of Reviews vs. Host Response Rate

cor(Airbnb_dataset\$number_of_reviews, Airbnb_dataset\$host_response_rate)

```
## [1] 0.08685835
# The plot is not statistically significant, the correlation coefficient
# does not differ greatly from 0 (very weak positive correlation: 0.087).
\# p > 0.05.
# QUESTION 9
# 9.1
# Convert host_since to numeric and add as seperate column to dataset
host_since_dates_vec = as.vector(as.character(Airbnb_dataset$host_since))
host since numeric = c()
for(date in host_since_dates_vec){
  # Add 20 to year
  date =
    paste(substr(date, 1, nchar(date) - 2),
          "20", substr(date, nchar(date)-1, nchar(date)), sep = "")
  host_since_date = as.POSIXct(date, format="%m/%d/%Y")
  host_since_numeric = c(host_since_numeric,
                               as.numeric(host_since_date))
}
Airbnb_dataset = add_column(Airbnb_dataset,
                            host_since_numeric, .after = "host_since")
```

```
condense_data_set = as.data.frame(cbind(
      as.character(Airbnb_dataset$host_is_superhost),
      Airbnb dataset$host since numeric,
      as.character(Airbnb_dataset$host_response_time),
      Airbnb_dataset$host_response_rate,
      Airbnb_dataset$host_verifications,
      Airbnb_dataset$host_identity_verified))
colnames(condense_data_set) = c("Superhost", "HostSince",
                                "ResTime", "ResRate", "Verifications",
                                "IdentityVer")
ggplot(condense_data_set, aes(x=condense_data_set$Superhost,
                              y=as.numeric(condense_data_set$HostSince),
                              group=condense_data_set$ResTime,
                              fill=condense_data_set$ResTime,
                              alpha = as.logical(
                                as.numeric(condense_data_set$IdentityVer)-1))) +
  geom_bar(stat="identity",position="dodge") +
  scale_x_discrete(labels = c("False", "True")) +
  scale_alpha_manual(values = c(1, 0.1)) +
  labs(x = "SuperHost", y = "Host Since",
       fill = "Response Time", alpha = "Identity Verified") +
  coord_flip()
```



```
# According to the data, out of hosts that are
# superhosts, hosts that respond in an hour
# and have been a host the longest and have their
# identity verified are the most likely to be
# a superhost. However the majority of indviduals
# who aren't superhosts have had their identity verified
# have been hosts the longest, and have a quick response times.
# Yet they are still not superhosts.
# This leads me to believe whether someone is a super host
# has more to do with their with their ratings. As opposed
# to how long they've been a host or their reponse times,
# or whether their identity is verified.
mosaic_data = as.data.frame(cbind(as.character(Airbnb_dataset$host_response_time),
      as.logical(as.numeric(Airbnb_dataset$host_is_superhost) - 1)))
colnames(mosaic_data) = c("HostRespTime", "SuperHost")
mosaicplot(table(mosaic_data), xlab = "Host Response Time",
           ylab = "Super Host", main = "Super Host vs. Host Response Time")
```

Super Host vs. Host Response Time

Host Response Time

```
# This mosaic plot confirms a conclusion I had
# come across in the previous question (9.1).

# Like before, we see from this mosaic plot
# that the greatest number of superhosts out of all the
# host reponse time categories are the ones that respond within an hour.
# However we also see that the greatest number of non-superhosts
# out of all the host reponse time categories
# are the ones that respond within an hour. Percentage
# wise the greatest % of superhosts respond with an hour
```

```
# (48.7%). Second most are those who reponse within a few hours,
# then within a day, and lastly within a few days. s
# Question 10 (1)
# install.packages("stringr")
library(stringr)
stop_words =
                "able",
  c("a",
                           "about",
                                        "across", "after",
                                                  "among",
    "all",
               "almost",
                           "also",
                                       "am",
    "an" ,
               "and"
                                                 "as" ,
                           "any"
                                       "are"
   "at" ,
               "be"
                           "because" , "been" ,
                                                   "but"
    "by" ,
               "can" ,
                                       "could",
                           "cannot" ,
                                                   "dear"
               "do" ,
    "did" ,
                           "does",
                                       "either" ,
                                                   "else"
                           "for" ,
                                       "from" ,
    "ever",
                "every",
                                                   "get"
                                                 "he" ,
                         "has" ,
    "got",
              "had",
                                     "have",
                           "him" ,
                                      "his" ,
    "her" ,
               "hers",
                                                   "how"
                                     "in" ,
    "however",
               "i"
                           "if",
                                                 "into"
               "it" ,
                           "its",
                                       "just" ,
                                                   "least"
   "is"
               "like" ,
                           "likely",
    "let"
                                       "may"
                                                   "me"
                         "must" ,
                                     "my",
    "might",
             "most" ,
                                                 "neither"
    "no" ,
             "nor" ,
                         "not"
                                     "of"
                                                 "off"
               "on" ,
                           "only",
                                       "or"
    "often",
                                                 "other"
    "our" ,
               "own" ,
                           "rather",
                                       "said" ,
                                                   "say"
    "says",
              "she"
                          "should",
                                                   "so"
                                      "since"
             "than" ,
    "some",
                                     "the" ,
                         "that" ,
                                                 "their"
    "them" ,
                           "there" ,
                                       "these" ,
               "then",
                                                   "they"
    "this" ,
               "is" ,
                         "to"
                                     "too"
                                                 "was"
                                       "we"
    "us"
               "wants",
                           "was"
                                                   "were"
    "what" ,
               "when" ,
                           "where",
                                       "which",
                                                   "while"
               "whom" ,
                           "why" ,
    "who" ,
                                       "will" ,
                                                   "with"
                           "you" ,
    "would" ,
               "yet",
                                       "your")
removeStopWords = function(str, stop_words){
  str = tolower(str)
  str = gsub('[[:punct:]]', '', str)
  extract_words = unlist(strsplit(str, " "))
 return (paste(extract_words[!extract_words %in% stop_words], collapse = " "))
}
# Remove stop words in airbnb descriptions
removed_stop_words_desc = c()
for(desc in as.vector(Airbnb_dataset$description)){
  removed_stop_words_desc = c(removed_stop_words_desc,
                        removeStopWords(desc, stop_words))
}
```

```
Airbnb_dataset = add_column(Airbnb_dataset, removed_stop_words_desc,
                            .after= "description")
# Combine strings from removed_stop_words_desc vector into one string
combined_removed_words = paste(removed_stop_words_desc, sep="", collapse="")
# Remove punctuation from combined_removed_words
combined removed words = gsub('[[:punct:]]', '', combined removed words)
combined_removed_words = tolower(combined_removed_words)
# Top 10 words found in descriptions
desc_words_freq = sort(table(strsplit(combined_removed_words, " ")),
                       decreasing=TRUE)
top_desc_words = head(desc_words_freq, n = 10)
print(top_desc_words)
##
##
             apartment
                            walk
                                   bedroom
                                              sydney
                                                                 kitchen
                                                          room
##
       45548
                            7934
                                      7487
                                                7370
                                                                     6872
                 10742
                                                           7197
##
       beach
                   bed
                           house
        6629
                  6607
                            5394
##
# 10.2
beaches data frame =
  as.data.frame( Airbnb_dataset[
    (str detect(Airbnb dataset$removed stop words desc, "beach")
     str_detect(Airbnb_dataset$removed_stop_words_desc, "beaches")), ] )
# Beach keyword average price
avg beach price =
  sum(as.vector(beaches_data_frame$price))/nrow(beaches_data_frame)
no_beach_data_frame =
  as.data.frame( Airbnb_dataset[!(str_detect(
    Airbnb_dataset$removed_stop_words_desc, "beach") |
    str_detect(Airbnb_dataset$removed_stop_words_desc, "beaches")), ] )
# No beach keyword average price
avg_price_no_beach =
  sum(as.vector(no beach data frame$price))/nrow(no beach data frame)
# Round prices
avg_beach_price = round(avg_beach_price, 2)
avg_price_no_beach = round(avg_price_no_beach, 2)
print(paste("Average Beach Keyword Price: ", "$",
            avg_beach_price, sep = ""))
## [1] "Average Beach Keyword Price: $239.33"
print(paste("Average Non-beach Keyword Price: ", "$",
           avg_price_no_beach, sep = ""))
```

[1] "Average Non-beach Keyword Price: \$178.23"

```
# As we can see a description with keyword beach or "beaches" has an
# average price that is $61.10 more.
word_frequency = function(str, search_word){
 str = tolower(str)
 str = gsub('[[:punct:]]', '', str)
 table_string_freq = as.data.frame(table(strsplit(str, " ")))
 return(table_string_freq[table_string_freq$Var1 == search_word, ]$Freq)
}
# Example. Should print 3.
word_frequency("small, SMALL, cute two bedroom! !SMaLL!", "small")
## [1] 3
# 10.3
# Function for calculating average price with and without
# keyword in Airbnb dataset
avg_price_keyword = function(df, keyword){
 keyword = tolower(keyword)
 keyword = gsub('[[:punct:]]', '', keyword)
  word_data_frame =
    as.data.frame( df[str_detect(df$removed_stop_words_desc, keyword), ] )
  no word data frame =
   as.data.frame( df[!str_detect(df$removed_stop_words_desc, keyword), ] )
  avg_word_price = sum(as.vector(word_data_frame$price))/
   length(word_data_frame$price)
  avg_no_word_price = sum(as.vector(no_word_data_frame$price))/
   length(no_word_data_frame$price)
  avg_word_price = paste("$", round(avg_word_price, 2), sep = "")
  avg_no_word_price = paste("$", round(avg_no_word_price, 2), sep = "")
 result_df = as.data.frame(cbind(avg_word_price, avg_no_word_price))
  colnames(result df) = c("With Keyword", "Without Keyword")
  return (result_df)
}
# I predict descriptions with the word "penthouse" will have higher prices.
print("Keyword: penthouse")
## [1] "Keyword: penthouse"
print(avg_price_keyword(Airbnb_dataset, "penthouse"))
     With Keyword Without Keyword
## 1
          $297.94
                          $202.65
# That is confirmed true based on printed results.
# I predict descriptions with the word "bondi" will have higher prices
# because that area is by the beach and could be more expensive to live near.
print("Keyword: bondi")
```

```
## [1] "Keyword: bondi"
print(avg_price_keyword(Airbnb_dataset, "bondi"))
     With Keyword Without Keyword
## 1
          $209.16
# That is confirmed true based on printed results.
# I predict descriptions with the word "AC" will have higher prices
# because an AC is an important, Sydney can get hot.
print("Keyword: AC")
## [1] "Keyword: AC"
print(avg_price_keyword(Airbnb_dataset, "AC"))
##
     With Keyword Without Keyword
## 1
             $205
# That is confirmed true based on printed results.
# Question 10 (2)
# 10.2.1
# I will explore listings by city. Because I think most people
# looking at my data won't be familiar with all the
# zipcodes for a region, cities would be easier identifiable places
# for them as opposed to zipcodes.
cities = as.character(Airbnb_dataset$city)
top_cities = sort(table(cities),decreasing=TRUE)
# Number of listings for each city. Ordered decreasing.
# print(top_cities)
# Top 100 city listings
top_100_cities = head(top_cities, n = 100)
print(top_100_cities)
## cities
##
                Sydney
                                Surry Hills
                                                    Bondi Beach
##
                   400
                                        392
                                                             388
##
                 Manly
                               Darlinghurst
                                                          Coogee
##
                                                             209
                   311
                                        271
##
              Randwick
                                    Redfern
                                                           Bondi
##
                   174
                                        162
                                                             143
##
                Mosman
                                    Newtown
                                                     Chippendale
##
                   141
                                        138
                                                             137
                                North Bondi
##
            Paddington
                                                         Pyrmont
##
                   135
                                        124
                                                             124
##
           Potts Point
                                     Ultimo
                                                          Bronte
##
                   119
                                        108
                                                             107
##
              Waterloo
                               Avalon Beach
                                                 Bondi Junction
##
                   107
                                        106
                                                             106
##
              Maroubra
                                  Haymarket Sydney Olympic Park
```

##	95	85	82
##	Mascot	Zetland	Glebe
##	81	81	67
##	Elizabeth Bay	Fairlight	Camperdown
##	66	66	65
##	Marrickville	Alexandria	Balmain
##	65	64	62
##	Leichhardt	Annandale	Tamarama
##	58	57	56
##	Palm Beach	Erskineville	Rosebery
## ##	55	53 Clovelly	53
##	Freshwater 52	Clovelly 49	Rose Bay 49
##	Chatswood	Neutral Bay	Newport
##	46	46	46
##	Rushcutters Bay	Bellevue Hill	Forest Lodge
##	46	45	45
##	Woolloomooloo	Balgowlah	Cronulla
##	45	43	43
##	Cremorne	Dee Why	Rozelle
##	41	41	41
##	Wolli Creek	Ashfield	Waverley
##	40	39	38
##	Woollahra	North Sydney	Arncliffe
##	37	36	33
##	Kingsford	Vaucluse	Queenscliff
## ##	33 Birchgroyo	33 Rhodes	31 Strathfield
##	Birchgrove 30	30	30
##	Dulwich Hill	Mona Vale	Parramatta
##	29	29	29
##	Stanmore	Crows Nest	Burwood
##	28	27	26
##	Darling Point	Cammeray	Double Bay
##	25	24	24
##	Brighton-Le-Sands	Narrabeen	Bundeena
##	23	23	22
##	Enmore	Manly Vale	Millers Point
##	22	22	22
##	Ryde	Darlington	Drummoyne
## ##	22	21 Kirribilli	21 Wollstonecraft
##	Lilyfield 21	20	wollstonecraft 20
##	North Balgowlah	Wentworth Point	Edgecliff
##	19	18	17
##	Greenwich	Lewisham	Petersham
##	17	17	17
##	Roseville	Glenfield	Kensington
##	17	16	16
##	Lane Cove	North Narrabeen	Sans Souci
##	16	16	16
##	Avalon		
##	15		

```
# Bottom city listings
# bottom_cities = tail(top_cities, n = length(top_cities) - 100)
top_100_cities_vec = as.vector(as.data.frame(top_100_cities)$cities)
weighted_rating_cities = c()
num reviews = c()
for(city in top_100_cities_vec){
  city_filter =
    Airbnb_dataset[Airbnb_dataset$city == city, ]
  # Calculate weighted mean rating of each city
  weighted_rating_cities = c(weighted_rating_cities,
                      sum(city_filter$review_scores_rating *
                            city_filter$number_of_reviews/
                            sum(city_filter$number_of_reviews)))
 num_reviews = c(num_reviews, sum(city_filter$number_of_reviews))
top_city_rating_df = as.data.frame(
  cbind(as.data.frame(top_100_cities),
        num_reviews, as.numeric(weighted_rating_cities)))
colnames(top_city_rating_df) = c("Cities", "NumListings",
                                 "NumReviews", "WeightedRating")
# Is there correlation between a cities number of listing occurrences and its
# weighted rating?
plot(top_city_rating_df$NumListings, top_city_rating_df$WeightedRating,
     main = "Weighted Mean Rating vs. Number of Listings of Each City",
     xlab = "Number of Listings of Each City", ylab =
       "Weighted Mean Rating by Number of Reviews")
abline(lm(top_city_rating_df$WeightedRating ~ top_city_rating_df$NumListings),
       col = "blue")
```

Weighted Mean Rating vs. Number of Listings of Each City

Number of Listings of Each City

```
# There is weak negative correlation between the number of weighted
# mean rating and the number of listing occurences.
# Is there correlation between a cities number of reviews given and its
# weighted rating?
plot(top_city_rating_df$NumReviews, top_city_rating_df$WeightedRating,
     main = "Weighted Mean Rating vs. Number of Reviews of Each City",
     xlab = "Number of Reviews of Each City",
     ylab = "Weighted Mean Rating by Number of Reviews")
abline(lm(top_city_rating_df$WeightedRating ~ top_city_rating_df$NumReviews),
      col = "blue")
```

Weighted Mean Rating vs. Number of Reviews of Each City

Number of Reviews of Each City

```
# There is weak negative correlation between the number of weighted
# mean rating and the number of reviews given.
barplot(as.numeric(as.vector(top_city_rating_df$WeightedRating)),
       names.arg=as.vector(top_city_rating_df$Cities) ,
       main = "Weighted Mean Rating by Number of Reviews vs. City",
       xlab = "City", ylab = "Weighted Mean Rating by Number of Reviews")
```



```
range(top_city_rating_df$WeightedRating)
## [1] 90.84722 97.33333
# I can see from the plot that all top 100 cities have weighted mean
# ratings within 6.49% of each other. I conclude this means
# that the top city listings also have the topmost ratings. It
# is clear that since the range is small the top cities have ratings close
# to each other. All of them over 90. I explored other correlations above.
# 10.2.2
avg_rating_keyword = function(df, keyword){
  keyword = tolower(keyword)
  keyword = gsub('[[:punct:]]', '', keyword)
  word_data_frame =
    as.data.frame( df[str_detect(df$removed_stop_words_desc, keyword), ] )
  no word data frame =
    as.data.frame( df[!str_detect(df$removed_stop_words_desc, keyword), ] )
  avg_word_rating = sum(as.vector(word_data_frame$review_scores_rating))/
    length(word_data_frame$review_scores_rating)
  avg_no_word_rating = sum(as.vector(no_word_data_frame$review_scores_rating))/
    length(no_word_data_frame$review_scores_rating)
  avg_word_rating = round(avg_word_rating, 2)
  avg_no_word_rating = round(avg_no_word_rating, 2)
  result_df = as.data.frame(cbind(avg_word_rating, avg_no_word_rating))
```

```
colnames(result_df) = c("With Keyword", "Without Keyword")
 return (result_df)
}
# I predict descriptions with the word "beach" will have higher ratings.
print("Keyword: beach")
## [1] "Keyword: beach"
print(avg_rating_keyword(Airbnb_dataset, "beach"))
##
    With Keyword Without Keyword
## 1
            94.75
                            93.83
# Cool! That is confirmed true based on printed results.
# I predict descriptions with the word "comfortable" will have higher ratings.
print("Keyword: comfortable")
## [1] "Keyword: comfortable"
print(avg_rating_keyword(Airbnb_dataset, "comfortable"))
##
     With Keyword Without Keyword
## 1
            94.31
# Descriptions with keyword comfortable are slightly higher.
# So it is confirmed true.
# Part IV: Your turn
# I predict descriptions with the word "backpackers" will have lower ratings.
print("Keyword: backpackers")
## [1] "Keyword: backpackers"
print(avg_rating_keyword(Airbnb_dataset, "backpackers"))
    With Keyword Without Keyword
## 1
            81.18
                            94.28
# Descriptions with keyword backpackers are significantly lower.
# So it is confirmed true.
# Does strict rules affect user reviews?
rules_df = Airbnb_dataset[Airbnb_dataset$house_rules != "", ]
no_rules_df = Airbnb_dataset[Airbnb_dataset$house_rules == "", ]
print(mean(rules_df$review_scores_rating))
## [1] 94.11433
print(mean(no_rules_df$review_scores_rating))
## [1] 94.72279
```

```
# Hosts with no rules have slightly higher review scores
# I hypothesize hosts with rules have stricter cancellation policies.
perc_cancel_rule = (as.data.frame(table(rules_df$cancellation_policy))$Freq
                     / nrow(rules_df)) * 100
perc_cancel_no_rule = (as.data.frame(table(no_rules_df$cancellation_policy))$Freq
                       / nrow(no_rules_df)) * 100
has_rule = c(rep(T, 5), rep(F, 5))
cancel_policy_typ = c(as.character(as.data.frame(
 table(rules_df$cancellation_policy))$Var1))
cancel_policy_typ = c(cancel_policy_typ, cancel_policy_typ)
percent_cancels = c(perc_cancel_rule, perc_cancel_no_rule)
data_cancel_rule = as.data.frame(cbind(cancel_policy_typ, has_rule, percent_cancels))
colnames(data_cancel_rule) = c("CancelPolicy", "HasRule", "PercentCancels")
ggplot(data_cancel_rule, aes(x=data_cancel_rule$CancelPolicy,
                              y=as.numeric(
                                as.vector(data_cancel_rule$PercentCancels)),
                              group=data_cancel_rule$HasRule,
                              fill=data_cancel_rule$HasRule
                              )) +
  geom_bar(stat="identity",position="dodge") +
  labs(title = "Percentage of Listings vs. Cancellation Types & Rules Present" ,
      x = "Cancellation Policy Type", y = "Percentage of Listings",
      fill = "Property has rules") +
  coord_flip()
```

Percentage of Listings vs. Cancellation Types & Rules Pre


```
# My hypothesis is correct!
# Properties with rules listed have the highest percentage of super_strict_60,
# super_strict_30
# and strict_14_with_grace_period cancellation policies. In addition they also have
# a lower percentage of moderate and flexible cancellation policies as compared
# to the properties listed without rules.
# Part V: Conclusion
# Here are some concluding takeaways:
# The correlation coefficient between number of amenities a host lists having and
# their average
# review is 0.7. There is strong positive correlation between the variables.
# Hosts that provide more
# amenities are more likely to be reviewed higher.
# Houses are the second most popular property on the market compared to Apartments
# which are first. But unlike apartments houses have a median price that is
# $45 dollars per night higher. Airbnb can make significantly more money
# encouraging home owners to airbnb their homes.
# The correlation coefficient between how quickly a host responds and their
# response rate, is 0.83. This strong positive correlation indicates that hosts
# that respond the quickest are also most likely to have higher average
# response rates.
```

```
# When looking at all properties, properties with a greater number of reviews has
# no correlation with that respective properties average score rating.
# Apartments with real beds receive the most reviews per month (~15).
# This customer segment tends to be more vocal. It is likely they are a younger
# demographic because they are moving into individual smaller living spaces and
# not into larger homes like a family would.
# Flexible and moderate cancellation types have the highest average review scores.
# It could be because the cancellation policies are the most lenient for customers.
# Hence Airbnb should encourage hosts, to have less strict cancellation types where
# appropriate. It results in happier customers.
# Superhosts are most likely the ones that respond the quickest, have the
# highest response rates and most importantly receive the highest reviews.
# Certain keywords like "beach", "penthouse", "bondi", "AC" if included in listing
# descriptions result in higher list pricing. The underlying question is
# what keywords
# derive value? Why do hosts equate certain keywords with listing higher prices?
# This is more of a business psychological to explore.
# Certain keywords like "comfortable", and "backpackers" result in different average
# ratings. I would suggest Airbnb identify certain keywords in listing descriptions
# and filter the results a user sees so that they are more likely to choose a listing
# that they would rate highly. This will automatically filter out listings that a user
# would rate lower out of users sight.
# Part VI:
# Clearly the explain and describe the Lifecycle of Data Science for this project.
# We started this project by acquiring our data. In this case the data was made publicly
# available by and gathered by Airbnb.
# I then cleaned the data. I found that descriptions were left blank and that certain
# host information had N/As. I decided to drop rows that has N/As present in any column.
# Although we lost this data, the data we now had did not constantly need to be check for
# NAs every step moving forward. I significantly reduced the amount of time needed to clean the
# data moving forward by simply dropping the rows.
# I then analyzed general quantitate measurements. I analyzed the frequency of single variables
# in the dataset. I modeled the frequencies found of single variables with pie charts, bar graphs,
# and histograms. I then analyzed the relationship found between multiple variables (e.g., host
# response time vs. host response rate, variables that qualify a host as a "superhost", number
# of amenities vs. review score value....)
# Throughout the process of writing code and creating graphs, I was published new findings in
# my comments. I was sharing information collected and making business judgements throughout the
# process.
#
```

```
# To produce effective graphs I had to subset into specific portions of data I wanted to analyze
# and ignore the rest. I had to destroy data that included NAs and in some cases blank cells.
#
# Other times I had to modify existing data. For example pricing had the $ symbol, I had to curate
# data and convert it from a character to numeric type so it could be analyzed further.
# Preserving, destroying, and modifying data was essential to extracting the data needed to make
# appropriate conclusions.

# WholeTale
# WholeTale Link: https://dashboard.wholetale.org/tale/view/5cc6a1682744a50001c611b8
# If that link doesn't work: https://dashboard.wholetale.org/run/5cc6a1692744a50001c611bb
# Jupyter Link: https://tmp-w9mqmemqnu8y.wholetale.org/tree
```