UD08 - Tarjetas

Angel Berlanas

January 6, 2020

Contents

L	Introducción	1
2	Conexiones a la placa base	1
3	PCIExpress	1
1	Tipos de Tarjeta	2

1 Introducción

Conceptos sobre la ampliación y modificación. El modelo de PC y Amstrad. Conexiones en el modelo de Von Neumman.

2 Conexiones a la placa base

Historia de las conexiones AGP PCI Express

3 PCIExpress

PCI Express está organizado en lanes. Cada lane tiene un conjunto independiente de pines de transmisión y recepción, y los datos pueden enviarse en ambas direcciones simultáneamente. Y aquí es donde las cosas se vuelven engañosas. El ancho de banda en una sola dirección para un solo lane PCIe $1.0~(\rm x1)$ es de $250~\rm MB/s$, pero debido a que puede enviar y recibir $250~\rm MB/s$ al mismo tiempo a Intel le gusta indicar el ancho de banda disponible para una ranura PCIe $1.0~\rm x1$ como $500~\rm MB/s$. Si bien ese es el ancho de banda

total agregado disponible para una sola ranura, solo puedes alcanzar esa cifra de ancho de banda si estás leyendo y escribiendo al mismo tiempo.

- Las conexiones 'PCIe x1' tienen un lane de datos
- Las conexiones 'PCIe x4' tienen cuatro lanes de datos
- Las conexiones 'PCIe x8' tienen ocho lanes de datos
- Las conexiones 'PCIe x16' tienen dieciséis lanes de datos
- Las conexiones 'PCIe x32' tienen treinta y dos lanes de datos (actualmente, son muy raras)

Velocidad	PCI-e 1.0	PCI-e 2.x	PCI-e 3.0	PCI-e 4.x
x1	$250 \mathrm{MB/s}$	$500 \mathrm{MB/s}$	$985 \mathrm{MB/s}$	$1969 \mathrm{MB/s}$
x4	$1000 \mathrm{MB/s}$	$2000 \mathrm{MB/s}$	$3940 \mathrm{MB/s}$	$7876 \mathrm{MBs}$
x8	$2000 \mathrm{MB/s}$	$4000 \mathrm{MB/s}$	$7880 \mathrm{MB/s}$	$15752 \mathrm{MB/s}$
x16	$4000 \mathrm{MB/s}$	$8000\mathrm{MB/s}$	$15760 \mathrm{MB/s}$	$31504\mathrm{MB/s}$

4 Tipos de Tarjeta