An Introduction to the Database Management Systems

By Hossein Rahmani

Slides originally by Book(s) Resources

Road Map

(Might change!)

The Enhanced Entity-Relationship (EER) Model

Subclasses, Superclasses

- Specialization and Generalization
- Constraints In Specialization/Generalization
- Modeling of UNION Types Using Categories
- Aggregation

Entity types in ER diagrams

- Until now, each entity was assigned to one entity type
- In many cases an entity type has numerous subgroupings or subtypes of its entities that are meaningful and need to be represented explicitly
- Members of the <u>EMPLOYEE</u> entity type may be distinguished further into <u>SECRETARY</u>, <u>ENGINEER</u>, <u>MANAGER</u>, etc

Subclasses and Superclasses

- Each of these subgroupings is called a subclass or subtype of the EMPLOYEE entity type, and the EMPLOYEE entity type is called the superclass or supertype
- Each subclass member is the same as the entity in the superclass, but in a distinct specific role

Subclasses and Superclasses

- An entity type A is a subclass of B if all entities of type A are always also of type B (but not vice versa)
- Entity type B is a superclass of A
- A subclass <u>inherits</u> all attributes and relation types of its superclass
- Entities belong to more than one entity type!

The Enhanced Entity-Relationship (EER) Model

- Subclasses, Superclasses
- Specialization and Generalization

- Constraints In Specialization/Generalization
- Modeling of UNION Types Using Categories
- Aggregation

Specialization

- Specialization is identifying a set of subclasses of an entity type
 - Additional attributes in the subclasses are called specific (or local) attributes
 - Additional relations on the subclasses are called specific (or local) relations
 - There can be more than one specialization of an entity type simultaneously!
- Example:
 - specialize student to graduate and freshman;
 - specialize student to field of study

Figure 8.2 Instances of a specialization.

Specialization Example

Generalization

- Generalization is the construction of an entity type that embodies the <u>common</u> <u>properties</u> (attributes and relations) of a number of given entity types
 - The <u>new entity type</u> is the generalized superclass of the entity types
 - An entity type can participate in multiple generalizations
- Example:
 - generalize bicycle and car to vehicle

Example

Figure 3.7: Generalization procedure

EER construct

 EER (extended ER model / schema) contains one construct for specialization and generalization together:

The Enhanced Entity-Relationship (EER) Model

- Subclasses, Superclasses
- Specialization and Generalization

- Constraints In Specialization/Generalization
- Modeling of UNION Types Using Categories
- Aggregation

Restrictions Total Vs Option

Total:

- <u>every entity</u> in the superclass must be a member of at least one subclass in the specialization
- total: double line from superclass;
- partial: optional participation in specialization

Restrictions Disjoint Vs overlapping

• Disjoint:

- entity can be a member of at most one of the subclasses of the specialization.
- Letter d

Overlapping:

- Entity may be a member of more than one subclass of the specialization.
- Letter o

Example 1: partial/disjoint

Example 2: total/overlapping

Hierarchy and Lattice

- Entity types can have complex sub/superclass relations
 - more specializations in a row
 - more superclasses
 - shared subclasses
- The sub/superclass-relation is transitive
 - So if A is-a B and B is-a C, then A is-a C
- Cycles are not allowed! (DAG)

Example 1: specialization lattice

Example 2: specialization lattice

Multiple Inheritance

Multiple inheritance

- Subclass with more than one superclass
- If attribute (or relationship) originating in the same superclass inherited more than once via different paths in lattice
 - Included only once in shared subclass

Single inheritance

Some models and languages limited to single inheritance

The Enhanced Entity-Relationship (EER) Model

- Subclasses, Superclasses
- Specialization and Generalization
- Constraints In Specialization/Generalization
- Modeling of UNION Types Using Categories
- Aggregation

Categories

- Sometimes we want to create a subclass out of the union of some (different) entity types
 - Example: OWNER from PERSON and COMPANY
- This is called a category or union-class
- One subclass has more than one superclass, but these are <u>not UNION-compatible</u>!
- union-compatible: that is, the two relations must have the same set of attributes
- An entity from the category belongs to <u>exactly</u> one of the superclasses, not more

EER construct

- Letter **u** in the circle
- Category can participate totally or optionally
 - total: double line to category

Example: category

A Sample UNIVERSITY EER Schema

- The UNIVERSITY Database Example
 - UNIVERSITY database
 - Students and their majors
 - Transcripts, and registration
 - University's course offerings

The Enhanced Entity-Relationship (EER) Model

- Subclasses, Superclasses
- Specialization and Generalization
- Constraints In Specialization/Generalization
- Modeling of UNION Types Using Categories
- Aggregation

Aggregation and Association

Aggregation

 Abstraction concept for building <u>composite</u> <u>objects</u> from their component objects

Association

- Associate objects from several independent classes
- Main structural distinction
 - When an association instance is deleted
 - Participating objects may continue to exist

E-R Diagram With Aggregation

Summary

- Enhanced ER or EER model
 - Extensions to ER model that improve its representational capabilities
 - Subclass and its superclass
 - Category or union type
 - Aggregation and Association

Quiz

Consider the BANK ER schema in following figure

- Suppose that it is necessary to keep track of different types of ACCOUNTS (SAVINGS ACCTS, CHECKING ACCTS, ...) and LOANS (CAR LOANS, HOME_LOANS, ...). Suppose that it is also desirable to keep track of each ACCOUNT's TRANSACTIONS (deposits, withdrawals, checks, ...) and each LOAN's PAYMENTS; both of these include the amount, date, and time.
- Modify the BANK schema, using ER and EER concepts of specialization and generalization.
 State any assumptions you make about the additional requirements.