МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский национальный исследовательский университет ИТМО Мегафакультет трансляционных информационных технологий

Факультет информационных технологий и программирования

Лабораторная работа №7. Исследование микропрограммного устройства управления.

По дисциплине «Аппаратное обеспечение вычислительных систем» Вариант № 4

Выполнил студент группы №М3112

Тимофеев Вячеслав

Проверила

Шевчик

Цель работы

Исследование микропрограмм выполнения нескольких команд базовой ЭВМ, способов программирования отдельных машинных циклов и дешифрирования команд, а также принципа кодирования отдельных микрокоманд. Работа является завершением первой части домашнего задания №4. В ней производится проверка правильности анализа порядка выполнения микрокоманд заданной программы.

Часть І

Напишите последовательность адресов микрокоманд, которые должны быть выполнены при реализации заданного фрагмента программы, начинающегося с команды, расположенной по адресу 002 (перед выполнением программы исполняется команда "Пуск", очищающая аккумулятор и регистр переноса).

Адрес	Вариант 1	Вариант 2	Вариант 3	Вариант 4	Вариант 5	Вариант 6				
1	0	1	1	1	1	1				
2	СМА	INC	DEC	ADD Ø1	+ BEQ 05	СМС				
3	BMI 05	BLP Ø5	BMI 05	+ BPL 05	NOP	BCS 05				
4	NOP	NOP	NOP	NOP	ADD 01	NOP				
5	+ MOV 01	+ ADD 01	+ ADD 01	DEC	INC	+ ADC 01				

Результат Дз4 в табличной форме:

Команд а	Машинный цикл	Последовательность адресов микрокоманд
ADD 1 (4001)	 Выборка команды Исполнение Прерывание	89 01, 02, 03, 04, 05, 06, 07, 0C 1D, 1E, 1F, 20, 27, 28, 2B; 3C, 3D, 3E; 8F, 90, F5 88
BPL 05 + (9005)	 Выборка команды Исполнение Прерывание	89 01, 02, 03, 04, 05, 06, 07, 08, 0C 1D, 2D, 30, 33, 34; 4A, 4B, 47, 48, 49; 8F, 90, F5 88
NOP (F100)	-	Пропуск команды (из-за предыдущей)
DEC (F900)	Выборка команды Исполнение Прерывание	89 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A; 5E, 5F, 6C, 6F; 73, 74, 75; 8F, 90, F5 88

Кроме того необходимо описать поля шести последних микрокоманд цикла "ИСПОЛНЕНИЕ" команды, отмеченной знаком +. Описания каждой микрокоманды выполнить в виде рисунков:

(Aдрес: 034) if PC[3] == 0 GOTO 004A

Горизонтальная схема: 824А0008

1000 0010 0100 1010 0000 0000 0000 1000

1 - Код операции

0001 - Проверочный регистр

0 - Бит сравнения

01001010 - Адрес перехода

0 - Проверочный бит

Вертикальная схема: C28F

1100 0010 1000 1111

1 - Код операции

0 - Бит сравнения

00 - Проверяемый регистр

0011 - Проверяемый бит

01001010 - Адрес перехода

(Aдрес: 04A) if PC[2] == 1 GOTO 008F

Горизонтальная схема: 838F0004

1000 0011 1000 1111 0000 0000 0000 0100

1 - Код операции

0001 - Проверочный регистр

1 - Бит сравнения

0001111 - Адрес перехода

0 - Проверочный бит

Вертикальная схема: С28F

1100 0010 1000 1111

1 - Код операции

1 - Бит сравнения

00 - Проверяемый регистр

0010 - Проверяемый бит

10001111 - Адрес перехода

(Aдрес: 4B) if PC[3] == 0 GOTO 0047

Горизонтальная схема: 82470008

1000 0010 0100 0111 0000 0000 0000 1000

0 - Код операции

0010 - Проверочный регистр

0 - Бит сравнения

1000111 - Адрес перехода

0 - Проверочный бит

Вертикальная схема: 8347

1000 0011 0100 0111

1 - Код операции

0 - Бит сравнения

00 - Проверяемый регистр

0011 - Проверяемый бит

01000111 - Адрес перехода

(Адрес: 047) БР=0 +РД

Горизонтальная схема: 00000002

 $0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0010$

0 – Код операции 0010 - В1 РК==>АЛУ

<u>Вертикальная схема:</u> 0100 0000 0001 0000 0000

00 - Код операции

00 - Левый вход

00 - Пустое место

01 - Правый вход

00 - Обратный код

00 - Операция

00 - Сдвиг

00 - Память

(Адрес: 048) СК = БР

Горизонтальная схема: 00200000

0000 0000 0010 0000 0000 0000 0000 0000

0 – Код операции

0010 - В21 БР==>СК

Вертикальная схема: 0100 0100 0000 0000 0100

01 - Код операции

00 - Пустое место

0 - Включить прерывания

0 - Выключить прерывания

0 - Сброс готовности ВУ

0 - Запуск контролера ВУ

00 - Регистр С

0 - Регистр N

0 - Регистр Z

0 - Остановочка

100 - Выход АЛУ

(Адрес: 049) if PC[3] == 0 GOTO 008F

Горизонтальная схема: 828А0008

1000 0010 1000 1111 0000 0000 0000 1000

1 - Код операции

0001 - Проверочный регистр

0 - Бит сравнения

10001000 - Адрес перехода

0 - Проверочный бит

Вертикальная схема: 838F 1000 0011 1000 1111

1 - Код операции

0 - Бит сравнения

00 - Проверяемый регистр

0011 - Проверяемый бит

10001111 - Адрес перехода

Порядок выполнения работы

Занести в память машины заданный фрагмент программы, ввести ее пусковой адрес, нажать "ПУСК" и после завершения начальной установки устройств ЭВМ перевести ее в режим потактового выполнения программы. Последовательно выполнить все микрокоманды, записывая в подготовленные таблицы адреса выполняемых микрокоманд и для шести из них - содержимое регистров.

 для записи последовательности микрокоманд, которые будут выполняться базовой ЭВМ при реализации фрагмента программы первой части домашнего задания №4 (форма таблицы аналогична таблице этого задания);

Таблица последовательности микрокоманд:

ADD 001 (4001)	BPL 005 (9005)	DEC (F900)			
89	89	89			
1	1	1			
2	2	2			
3	3	3			
4	4	4			
5	5	5			
6	6	6			
7	7	7			
00C	8	8			
01D	00C	9			
01E	01D	00A			
01F	02D	05E			
20	30	05F			
27	33	06C			
28	34	06F			
02B	04A	70			

03C	04B	71
03D	47	72
03E	48	08F
08F	49	90
90	08F	0F5
0F5	90	88
88	0F5	
	88	

 для записи результатов выполнения шести последних микрокоманд цикла "ИСПОЛНЕНИЕ" команды, которая отмечена символом "+" в заданном фрагменте программы:

Итоговая таблица:

СчМК до выборки	Содержимое регистров после выборки и исполнения МК										
MK	ВМК	СК	PA	РК	РД	A	C	БР	N	Z	СчМК
4A	C28F	0004	0003	9005	9005	0001	0	9005	0	0	004B
4B	8347	0004	0003	9005	9005	0001	0	9005	0	0	0047
47	0100	0004	0003	9005	9005	0001	0	9005	0	0	0048
48	4004	0005	0003	9005	9005	0001	0	9005	0	0	0049
49	838F	0005	0003	9005	9005	0001	0	9005	0	0	008F
8F	C591	0005	0003	9005	9005	0001	0	9005	0	0	0090

Вывод: В ходе лабораторной работы были исследованы ключевые аспекты функционирования микропрограмм, включая выполнение различных команд базовой ЭВМ, способы программирования машинных циклов и дешифрирования команд, а также принципы кодирования микрокоманд. Это позволило углубить понимание процессов работы вычислительных систем на уровне микроархитектуры. Произведена проверка анализа порядка выполнения микрокоманд заданной программы (Завершение Дз4).