Sustainability Intelligence Platform – Documentation (for Development & Simulation)

1. Project Context

- Event: JunctionX Vaasa 2025 Hack the Future of Energy & Tech
- Challenge Partner: Wärtsilä
- Theme: Sustainability Intelligence Platform
- **Objective:** Build a prototype tool that simulates real-time power sector metrics, hosted on Supabase, with a dashboard for sustainability intelligence.

2. Problem Statement

The power sector produces ~36% of global CO₂ emissions. Current reporting is fragmented and retrospective.

Our solution: A real-time simulation of key sustainability KPIs stored in **Supabase** and visualized in a dashboard, helping companies measure progress toward **net zero 2050** and comply with reporting standards.

3. Core KPIs (Chosen for Simulation)

- 1. CO₂ Intensity of Electricity (gCO₂/kWh)
 - Formula: Emissions ÷ Total Electricity Generated.
 - Simulated range: 100–300 gCO₂/kWh (depending on renewables share).
- 2. Renewable Share of Generation (%)

- Formula: (Renewable Generation ÷ Total Generation) × 100.
- o Renewables include hydro, wind, solar.
- Simulated range: 30–60%.

3. Net Zero Trajectory Alignment (%)

- o Formula: (Reduction achieved ÷ Required reduction path to 2050) × 100.
- Requires historical baseline (2020 = 30 Mt CO₂) and yearly target path.
- o Simulated as a percentage showing if we are ahead / on track / behind.

4. Database Schema (Supabase)

We will simulate and store the KPI data in Supabase. Tables:

Table 1: co2_intensity

id	timestamp	co2_intensity_g_per_kw h
1	2025-09-27 09:00:00	145
2	2025-09-27 09:15:00	138
3	2025-09-27 09:30:00	150
4	2025-09-27 09:45:00	132
5	2025-09-27 10:00:00	128

Table 2: generation_mix

i	timesta	hydro_	wind_	solar_	nuclear_	fossil_	total_	renewable_shar
d	mp	mw	mw	mw	mw	mw	mw	e_pct

1	2025-09 -27 09:00:0 0	950	1800	150	2700	1400	6950	40.9
2	2025-09 -27 09:15:0 0	940	1820	160	2700	1350	6970	42.0
3	2025-09 -27 09:30:0 0	930	1750	170	2700	1500	7050	40.0
4	2025-09 -27 09:45:0 0	920	1700	180	2700	1550	7050	39.2
5	2025-09 -27 10:00:0 0	910	1650	200	2700	1600	7060	38.3

Table 3: netzero_alignment

year	actual_emissions_ mt	target_emissions_ mt	alignment_pc t
2020	30	30	100
2021	28	29	110
2022	27	28	110
2023	26	27	106
2024	26	26	100
2025	27	25	83

5. Architecture

- Supabase: stores simulated data tables.
- Backend: Python Flask / Node.js → fetch data from Supabase and serve via API endpoints.
- **Frontend:** React + Chart.js/Plotly → fetch from backend and render dashboard.

6. Dashboard Features

- **KPI Cards:** show current CO₂ Intensity, Renewable Share, Alignment % in real time.
- Time Series Graphs: trends of emissions and renewable share.
- Trajectory Chart: actual vs target emissions (net zero path).
- Simulation Updates: script inserts new rows into Supabase every few minutes to mimic real-time feed.

7. Team Roles

- Data Scientist (you): build simulation logic for KPIs, insert into Supabase.
- **Web Developer:** connect frontend to Supabase API, design dashboard.
- Business/Finance Student: prepare business case, market potential, compliance value.

8. Development Roadmap

Step 1: Define schema in Supabase (done

- Step 2: Write Python script to simulate & insert data periodically.
- Step 3: Build backend endpoints to query Supabase.
- Step 4: Build frontend dashboard (React) to show KPIs & charts.
- Step 5: Integrate and polish for demo.

9. Deliverables

- Working dashboard with live simulated data.
- Documentation of KPI logic.
- Business presentation linking solution to net zero goals.