Artificial Intelligence

Fuzzy Logic

Lesson 2: Theory of Fuzzy Logic

Vincenzo Piuri

Università degli Studi di Milano

Contents

- The Extension Principle
- Fuzzy Arithmetic
- Linguistic Information Processing
- Fuzzy Relations
- Binary Fuzzy Relations
- Binary Relations on a Single Set
- Fuzzy Control Basics
- Fuzzy Reasoning

The Extension Principle

Motivation (1)

- How to extend $\phi: X^n \to Y$ to $\widehat{\phi}: \mathcal{F}(X)n \to \mathcal{F}(Y)$? From functions defined on sets to functions defined on fuzzy sets
- Let $\mu \in \mathcal{F}(\mathbb{R})$ be a fuzzy set of the imprecise concept "about 2"

Then the degree of membership $\mu(2.2)$ can be seen as truth value of the statement "2.2 is about equal to 2"

Let $\mu' \in \mathcal{F}(\mathbb{R})$ be a fuzzy set of the imprecise concept "old"

Then the truth value of "2.2 is about equal 2 and 2.2 is old" can be seen as membership degree of 2.2 w.r.t. imprecise concept "about 2 and old"

Motivation (2): Operating on Truth Values

- Any triangular norm (t-norm) ⊤ can be used to represent conjunction
- Any triangular co-norm (t-conorm) ⊥ can be used to represent disjunction
- However, now only T_{\min} and I_{\max} will be used
- Let P be set of imprecise statements that can be combined by the operators "and" and "or":
 - truth: $\mathcal{P} \to [0,1]$ assigns truth value truth(a) to every $a \in \mathcal{P}$
 - truth(a) = 0 means a is definitely false
 - truth(a) = 1 means a is definitely true
 - If 0 < truth(a) < 1, then only gradual truth of statement a

Motivation (3): Extension Principle

- Combination of two statements $a, b \in \mathcal{P}$
 - truth(a and b) = truth(a \land b) = min{truth(a), truth(b)}
 - truth(a or b) = truth(a \vee b) = max{truth(a), truth(b)}
- For infinite number of statements a_i , $i \in I$:
 - truth($\forall i \in I : a_i$) = inf {truth(a_i) | $i \in I$ }
 - truth($\exists i \in I : a_i$) = sup {truth(a_i) | $i \in I$ }
- This concept helps to extend $\phi: X^n \to Y$ to $\widehat{\phi}: \mathcal{F}(X)^n \to \mathcal{F}(Y)$
- Crisp tuple $(x_1,...,x_n)$ is mapped to crisp value $\phi(x_1,...,x_n)$
- Imprecise descriptions $(\mu_1, ..., \mu_n)$ of $(x_1, ..., x_n)$ are mapped to fuzzy value $\hat{\phi}(\mu_1, ..., \mu_n)$

Example: How to extend the addition? (1)

- +: $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$, $(a,b) \mapsto a + b$
- Extensions to sets:

$$+: 2^{\mathbb{R}} \times 2^{\mathbb{R}} \to 2^{\mathbb{R}}$$

$$(A,B) \mapsto A + B$$

$$= \{y \mid (\exists a)(\exists b)(y = a + b) \land (a \in A) \land (b \in B)\}$$

Extensions to fuzzy sets:

$$+: \mathcal{F}(\mathbb{R}) \times \mathcal{F}(\mathbb{R}) \to \mathcal{F}(\mathbb{R}), (\mu_1, \mu_2) \mapsto \mu_1 \oplus \mu_2$$

truth
$$(y \in \mu_1 \oplus \mu_2)$$

=truth $((\exists a)(\exists b) : (y = a + b) \land (a \in \mu_1) \land (b \in \mu_2))$
= $\sup_{a,b} \{ \operatorname{truth}(y = a + b) \land \operatorname{truth}(a \in \mu_1) \land \operatorname{truth}(b \in \mu_2) \}$
= $\sup_{a,b:y=a+b} \{ \min(\mu_1(a), \mu_2(b)) \}$

Example: How to extend the addition? (2)

- $\mu(2) = 1$ because $\mu_1(1) = 1$ and $\mu_2(1) = 1$
- $\mu(5) = 0$ because if a + b = 5, then $\min\{\mu_1(a), \mu_2(b)\} = 0$
- $\mu(1) = 0.5$ because e.g. a = 0.5 and b = 0.5

Extension to Sets

Definition

Let $\phi: X^n \to Y$ be a mapping

The extension $\hat{\phi}$ of ϕ is given by

$$\hat{\phi}: [2^X]^n \to 2^Y \text{ with}$$

$$\hat{\phi}(A_1, \dots, A_n) = \{ y \in Y \mid \exists (x_1, \dots, x_n) \in A_1 \times \dots \times A_n : \phi(x_1, \dots, x_n) = y \}$$

Extension to Fuzzy Sets

Definition

Let $\phi: X^n \to Y$ be a mapping

The extension $\hat{\phi}$ of ϕ is given by

$$\hat{\phi}: [\mathcal{F}(X)]^n \to \mathcal{F}(Y) \text{ with}$$

$$\hat{\phi}(A_1, ..., A_n) = \sup \{\min\{\mu_1(x_1), ..., \mu_n(x_n)\} \mid (x_1, ..., x_n) \in X^n \land \phi(x_1, ..., x_n) = y\}$$

assuming that $\sup \emptyset = 0$

Example (1)

Let fuzzy set "approximately 2" be defined as

$$\mu(x) = \begin{cases} x - 1, & \text{if } 1 \le x \le 2\\ 3 - x, & \text{if } 2 \le x \le 3\\ 0, & \text{otherwise} \end{cases}$$

• The extension of $\phi: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ to fuzzy sets on \mathbb{R} is

$$\widehat{\phi}(\mu)(y) = \sup\{\mu(x) \mid x \in \mathbb{R} \land x^2 = y\}$$

$$= \begin{cases} \sqrt{y} - 1, & \text{if } 1 \le y \le 4 \\ 3 - \sqrt{y}, & \text{if } 4 \le y \le 9 \\ 0, & \text{otherwise} \end{cases}$$

Example (2)

 The extension principle is taken as basis for "fuzzifying" the whole theory

Fuzzy Arithmetic

Fuzzy Sets on the Real Numbers

- There are many different types of fuzzy sets
- Consider fuzzy sets defined on set R of real numbers
- Membership functions of such sets, i.e.

$$\mu: \mathbb{R} \to [0,1]$$

clearly indicate quantitative meaning

- Such concepts may essentially characterize states of fuzzy variables
- They play important role in many applications, e.g. fuzzy control, decision making, approximate reasoning, optimization, and statistics with imprecise probabilities

Some Special Fuzzy Sets (1)

• Some special classes $\mathcal{F}(\mathbb{R})$ of fuzzy sets μ on \mathbb{R}

- Definition
 - Normal Fuzzy Set

$$\mathcal{F}_N(\mathbb{R}) = ^{\mathrm{def}} \{ \mu \in \mathcal{F}(\mathbb{R}) \mid \exists x \in \mathbb{R} : \mu(x) = 1 \}$$

Upper Semi-Continuous Fuzzy Set

$$\mathcal{F}_{\mathcal{C}}(\mathbb{R}) = ^{\mathrm{def}} \{ \mu \in \mathcal{F}_{\mathcal{N}}(\mathbb{R}) \mid \forall \alpha \in (0,1] : [\mu]_{\alpha} \text{ is compact} \}$$

Fuzzy Intervals

$$F_I(\mathbb{R}) = {}^{def} \{ \mu \in \mathcal{F}_N(\mathbb{R}) \mid \forall a, b, c \in \mathbb{R} : c \in [a, b] \}$$
$$\Rightarrow \mu(c) \geq \min\{\mu(a), \mu(b)\} \}$$

Some Special Fuzzy Sets (2)

Normal Fuzzy Set

$$\mathcal{F}_N(\mathbb{R}) = ^{\mathrm{def}} \{ \mu \in \mathcal{F}(\mathbb{R}) \mid \exists x \in \mathbb{R} : \mu(x) = 1 \}$$

- An element in $\mathcal{F}_N(\mathbb{R})$ is called normal fuzzy set:
 - It's meaningful if $\mu \in \mathcal{F}_N(\mathbb{R})$ is used as imprecise description of an existing (but not precisely measurable) variable $\subseteq \mathbb{R}$
 - In such cases it would not be plausible to assign maximum membership degree of 1 to no single real number

Some Special Fuzzy Sets (3)

Upper Semi-Continuous Fuzzy Set

$$\mathcal{F}_{\mathcal{C}}(\mathbb{R}) = ^{\mathrm{def}} \{ \mu \in \mathcal{F}_{\mathcal{N}}(\mathbb{R}) \mid \forall \alpha \in (0,1] : [\mu]_{\alpha} \text{ is compact} \}$$

- Sets in $\mathcal{F}_{\mathcal{C}}(\mathbb{R})$ are upper semi-continuous:
 - Function f is upper semi-continuous at point x_0 if values near x_0 are either close to $f(x_0)$ or less than

$$f(x_0) \Rightarrow \lim_{x \to x_0} \sup f(x) \le f(x_0)$$

This simplifies arithmetic operations applied to them

Some Special Fuzzy Sets (4)

Fuzzy Intervals

$$F_I(\mathbb{R}) = {}^{def} \{ \mu \in \mathcal{F}_N(\mathbb{R}) \mid \forall a, b, c \in \mathbb{R} : c \in [a, b] \}$$
$$\Rightarrow \mu(c) \geq \min\{\mu(a), \mu(b)\} \}$$

- Fuzzy sets in $F_I(\mathbb{R})$ are called fuzzy intervals
 - The are normal and fuzzy convex
 - Their core is a classical interval
 - $\mu \in F_I(\mathbb{R})$ for real numbers are called fuzzy numbers

Comparison of Crisp Sets and Fuzzy Sets on $\mathbb R$

Basic Types of Fuzzy Numbers

Linguistic Information Processing

Quantitative Fuzzy Variables

- The concept of a fuzzy number plays fundamental role in formulating quantitative fuzzy variables
- These are variables whose states are fuzzy numbers
- When the fuzzy quantities represent linguistic concepts, e.g. very small, small, medium, etc. then fuzzy variables are called linguistic variables
- Each linguistic variable is defined in terms of base variable which is a variable in classical sense, e.g. temperature, pressure, age
- Linguistic terms representing approximate values of base variable are captured by appropriate fuzzy numbers

Linguistic Variables

- Each linguistic variable is defined by quintuple (ν, T, X, g, m)
 - name ν of the variable
 - set T of linguistic terms of ν
 - base variable $X \subseteq \mathbb{R}$
 - syntactic rule g (grammar) for generating linguistic terms
 - semantic rule m that assigns meaning m(t) to every $t \in T$, i.e. $m: T \to \mathcal{F}(X)$

Operations on Linguistic Variables

- To deal with linguistic variables, consider
 - not only set-theoretic operations
 - but also arithmetic operations on fuzzy numbers (i.e. interval arithmetic)
- e.g. statistics:
 - Given a sample = (small, medium, small, large, ...).
 - How to define mean value or standard deviation?

Analysis of Linguistic Data

Linguistic Data

	А	В	С
1	large	very large	medium
2	2.5	medium	about 7
3	[3, 4]	small	[7, 8]
:			

linguistic modeling

computing with words

"The mean w.r.t. A is approximatly 4."

linguistic approximation mean of attribute A

statistics with

Example: Application of Linguistic Data

- Consider the problem to model the climatic conditions of several towns
- A tourist may want information about tourist attractions
- Assume that linguistic random samples are based on subjective observations of selected people, e.g.
 - climatic attribute clouding
 - linguistic values cloudless, clear, fair, cloudy, . . .

Example: Linguistic Modeling by an Expert

 The attribute clouding is modeled by elementary linguistic values, e.g.

```
cloudless \mapsto sigmoid(0,-0.07)

clear \mapsto Gauss(25,15)

fair \mapsto Gauss(50,20)

cloudy \mapsto Gauss(75,15)

overcast \mapsto sigmoid(100,0.07)

exactly)(x) \mapsto exact(x)

approx)(x) \mapsto Gauss(x, 3)

between(x, y) \mapsto rectangle(x, y)

approx_between(x, y) \mapsto trapezoid(x - 20,x,y,y + 20)

where x,y \in [0,100] \subset \mathbb{R}.
```

Example

• Gauss(a, b) is, e.g. a function defined by

$$f(x) = \exp\left(-\left(\frac{x-a}{b}\right)^2\right), \qquad x, a, b \in \mathbb{R}, b > 0$$

induced language of expressions:

```
<expression> := <elementary linguistic value> |
  ( <expression> ) |
  { not | dil | con | int } <expression> |
  <expression> { and | or } <expression>
```

- dil = dilatation , con = concentration
- e.g. approx(x) and cloudy is represented by function min{Gauss(x, 3), Gauss(75, 15)}

Example – Linguistic Random Sample

Attribute : Clouding

Observations : Limassol, Cyprus

2009/10/23 : cloudy

2009/10/24 : dil approx_between(50, 70)

2009/10/25 : fair or cloudy 2009/10/26 : approx(75) 2009/10/27 : dil(clear or fa

2009/10/27 : dil(clear or fair) 2009/10/28 : int cloudy

2009/10/29 : con fair 2009/11/30 : approx(0) 2009/11/31 : cloudless

2009/11/01 : cloudless or dil clear

2009/11/02 : overcast

2009/11/03 : cloudy and between(70, 80)

2009/11/10 : clear

Statistics with fuzzy sets are necessary to analyze linguistic data

Example: Linguistic Random Sample of 3 People

no.	age (linguistic data)	age (fuzzy data)
1	approx. between 70 and 80 and definitely not older than 80	μ_1 64 70 80
2	between 60 and 65	μ_2 60 65
3	62	$ \begin{array}{c c} \mu_3 & \bullet \\ \hline & \bullet \\ \hline$

Example: Mean Value of Linguistic Random Sample

$$mean(\mu 1, \mu 2, \mu 3) = \frac{1}{3} (\mu 1 \oplus \mu 2 \oplus \mu 3)$$

i.e. approximately between 64 and 69 but not older than 69

Efficient Operations (1)

- How to define arithmetic operations for calculating with $\mathcal{F}(\mathbb{R})$?
- Using extension principle for sum $\mu \oplus \mu'$, product $\mu \odot \mu'$ and reciprocal value $rec(\mu)$ of arbitrary fuzzy sets $\mu, \mu' \in \mathcal{F}(\mathbb{R})$

$$(\mu \oplus \mu')(t) = \sup\{\min\{\mu(x_1), \mu'(x_2)\} | x_1, x_2 \in \mathbb{R}, x_1 + x_2 = t\}$$

$$(\mu \oplus \mu')(t) = \sup\{\min\{\mu(x_1), \mu'(x_2)\} | x_1, x_2 \in \mathbb{R}, x_1 \cdot x_2 = t\}$$

$$\operatorname{rec}(\mu)(t) = \sup\{\mu(x) | x \in \mathbb{R} \setminus \{0\}, \frac{1}{x} = t\}$$

- In general, operations on fuzzy sets are much more complex (especially if vertical instead of horizontal representation is applied)
- It's desirable to reduce fuzzy arithmetic to ordinary set arithmetic
- Then, we apply elementary operations of interval arithmetic

Efficient Operations (2)

Definition

A family $(A_{\alpha})_{\alpha \in (0,1)}$ of sets is called set representation of $\mu \in \mathcal{F}_N(\mathbb{R})$ if

- a) $0 < \alpha < \beta < 1 \Rightarrow A_{\alpha} \subseteq A_{\beta} \subseteq \mathbb{R}$ and
- b) $\mu(t) = \sup\{\alpha \in [0,1] \mid t \in A_{\alpha}\}\$

holds where sup $\emptyset = 0$

Theorem

Let $\mu \in \mathcal{F}_N(\mathbb{R})$

The family $(A_{\alpha})_{\alpha \in (0,1)}$ of sets is a set representation of μ if and only if

$$[\mu]_{\underline{\alpha}} = \{t \in \mathbb{R} | \mu(t) > \alpha\} \subseteq A_{\alpha} \subseteq \{t \in \mathbb{R} | \mu(t) \ge \alpha\} = [\mu]_{\alpha}$$
 is valid for all $\alpha \in (0,1)$

Efficient Operations

- Let $\mu_1, \mu_2, \dots, \mu_n$ be normal fuzzy sets of \mathbb{R} and $\phi : \mathbb{R}^n \to \mathbb{R}$ be a mapping. Then the following holds
 - $\forall \alpha \in [0,1) : \left[\hat{\phi}(\mu_1,\ldots,\mu_n) \right]_{\underline{\alpha}} = \phi([\mu_1]_{\underline{\alpha}},\ldots,[\mu_n]_{\underline{\alpha}}),$
 - $\forall \alpha \in (0,1] : \left[\hat{\phi}(\mu_1, \dots, \mu_n) \right]_{\alpha} \supseteq \phi([\mu_1]_{\alpha}, \dots, [\mu_n]_{\alpha}),$
 - if $(A_{\alpha})_{\alpha \in (0,1)}$ is a set representation of μ_i for $1 \leq i \leq n$, then $\left(\phi\big((A_1)_{\alpha},\dots,(A_n)_{\alpha}\big)\right)_{\alpha \in (0,1)}$ is a set representation of $\widehat{\phi}(\mu_1,\dots,\mu_n)$
- For arbitrary mapping ϕ , set representation of its extension $\hat{\phi}$ can be obtained with help of set representation $((A_i)_{\alpha})_{\alpha \in (0,1)}$, $i=1,2,\ldots,n$
- It's used to carry out arithmetic operations on fuzzy sets efficiently

Example (1)

- For μ_1 , μ_2 , the set representations are
 - $[\mu_1]_{\alpha} = [2\alpha 1, 2 \alpha]$
- Let add(x,y) = x + y, then $(A_{\alpha})_{\alpha \in (0,1)}$ represents $\mu_1 \oplus \mu_2$

$$A_{\alpha} = \operatorname{add}([\mu_{1}]_{\alpha}, [\mu_{2}]_{\alpha}) = [3\alpha + 2, 7 - 2\alpha] \cup [3\alpha + 4, 9 - 2\alpha]$$

$$= \begin{cases} [3\alpha + 2, 7 - 2\alpha] \cup [3\alpha + 4, 9 - 2\alpha], & \text{if } \alpha \geq 0.6 \\ [3\alpha + 2, 9 - 2\alpha], & \text{if } \alpha \leq 0 \end{cases}$$

Example (2)

$$(\mu 1 \oplus \mu 2)(x) = \begin{cases} \frac{x-2}{3}, & \text{if } 2 \le x \le 5\\ \frac{7-x}{2}, & \text{if } 5 \le x \le 5.8 \end{cases}$$

$$(\mu 1 \oplus \mu 2)(x) = \begin{cases} \frac{x-4}{3}, & \text{if } 5.8 \le x \le 7\\ \frac{9-x}{2}, & \text{if } 7 \le x \le 9\\ 0, & \text{otherwise} \end{cases}$$

Interval Arithmetic (1)

- Determining the set representations of arbitrary combinations of fuzzy sets can be reduced very often to simple interval arithmetic
- Using fundamental operations of arithmetic leads to the following $(a, b, c, d \in \mathbb{R})$

$$[a,b] + [c,d] = [a+c,b+d]$$

$$[a,b] - [c,d] = [a-d,b-c]$$

$$[a,b] \cdot [c,d] = \begin{cases} [ac,bd], & \text{for } a \ge 0 \land c \ge 0 \\ [bd,ac], & \text{for } b < 0 \land d < 0 \end{cases}$$

$$[min\{ad,bc\}, max\{ad,bc\}], & \text{for } ab \ge 0 \land cd \ge 0 \land ac < 0 \end{cases}$$

$$[min\{ad,bc\}, max\{ac,bd\}], & \text{for } ab < 0 \lor cd < 0 \end{cases}$$

$$\frac{1}{ab} = \begin{cases}
\left[\frac{1}{b}, \frac{1}{a}\right], & \text{if } 0 \notin [a, b] \\
\left[\frac{1}{b}, \infty\right) \cup \left(-\infty, \frac{1}{a}\right], & \text{if } a < 0 \land b > 0 \\
\left[\frac{1}{b}, \infty\right), & \text{if } a = 0 \land b > 0 \\
\left(-\infty, \frac{1}{a}\right], & \text{if } a < 0 \land b = 0
\end{cases}$$

Interval Arithmetic (2)

- In general, set representation of α -cuts of extensions $\hat{\phi}(\mu_1, \dots, \mu_n)$ cannot be determined directly from α -cuts.
- It only works always for continuous ϕ and fuzzy sets in $\mathcal{F}_{\mathcal{C}}(\mathbb{R})$
- Theorem
 - Let $\mu_1, \mu_2, \dots, \mu_n \in \mathcal{F}_{\mathcal{C}}(\mathbb{R})$ and $\phi : \mathbb{R}^n \to \mathbb{R}$ be a continuous mapping
 - Then $\forall \alpha \in (0,1]: \left[\hat{\phi}(\mu_1,\ldots,\mu_n)\right]_{\alpha} = \phi([\mu_1]_{\alpha},\ldots,[\mu_n]_{\alpha})$
 - So, a horizontal representation is better than a vertical one
 - Finding $\hat{\phi}$ values is easier than directly applying the extension principle
 - However, all α -cuts cannot be stored in a computer
 - Only a finite number of α -cuts can be stored

Fuzzy Relations

Motivation

 A crisp relation represents presence or absence of association, interaction or interconnection between elements of ≥ 2 sets

This concept can be generalized to various degrees or strengths of association or interaction between elements

 A fuzzy relation generalizes these degrees to membership grades

So, a crisp relation is a restricted case of a fuzzy relation

Definition of Relation

- A relation among crisp sets $X_1, ..., X_n$ is a subset of $X_1 \times ... \times X_n$ denoted as $R(X_1, ..., X_n)$ or $R(X_i | 1 \le i \le n)$
- So, the relation $R(X_1,...,X_n) \subseteq X_1 \times ... \times X_n$ is set, too
- The basic concept of sets can be also applied to relations:
 - containment, subset, union, intersection, complement
- Each crisp relation can be defined by its characteristic function

$$R(x_1,...,x_n) = \begin{cases} 1, & \text{if and only if } (x_1,...,x_n) \in R \\ 0, & \text{otherwise} \end{cases}$$

• The membership of $(X_1,...,X_n)$ in R means that the elements of $(X_1,...,X_n)$ are related to each other

Relation as Ordered Set of Tuples

- A relation can be written as a set of ordered tuples
- Thus $R(X_1,...,X_n)$ represents n-dimensional membership array $\mathbf{R} = [r_{i_1},...,i_n]$
 - Each element of i_1 of R corresponds to exactly one member of X_1
 - Each element of i_2 of R corresponds to exactly one member of X_2
 - And so on...
- If $(x_1,...,x_n) \in X_1 \times ... \times X_n$ corresponds to $r_{i_1},...,i_n \in \mathbb{R}$, then

$$r_{i_1}, \dots, i_n = \begin{cases} 1, & \text{if and only if } (x_1, \dots, x_n) \in R \\ 0, & \text{otherwise} \end{cases}$$

Fuzzy Relations

- The characteristic function of a crisp relation can be generalized to allow tuples to have degrees of membership
- Similar to the generalization of the characteristic function of a crisp set
- A fuzzy relation is a fuzzy set defined on tuples $(x_1, ..., x_n)$ that may have varying degrees of membership within the relation
- The membership grade indicates strength of the present relation between elements of the tuple
- The fuzzy relation can also be represented by an n-dimensional membership array

Example

Let R be a fuzzy relation between two sets
 X = {New York City, Paris}
 and Y = {Beijing, New York City, London}

- R shall represent relational concept "very far"
- It can be represented as two-dimensional membership array

	NYC	Paris
Beijing	1	0.9
NYC	0	0.7
London	0.6	0.3

Cartesian Product of Fuzzy Sets: n Dimensions

- Let $n \ge 2$ fuzzy sets A_1, \ldots, A_n be defined in the universes of discourse X_1, \ldots, X_n , respectively
- The Cartesian product of A_1, \ldots, A_n denoted by $A_1 \times \ldots \times A_n$ is a fuzzy relation in the product space $X_1 \times \ldots \times X_n$
- It is defined by its membership function

$$\mu_{A_1 \times \dots A_n}(x_1, \dots, x_n) = T(\mu_{A_1}(x_1), \dots, \mu_{A_n}(x_n))$$

whereas $x_i \in X_i$, $1 \le i \le n$

Usually T is the minimum (sometimes also the product)

Cartesian Product of Fuzzy Sets: 2 Dimensions

• A special case of the Cartesian product is when n=2

• The Cartesian product of fuzzy sets $A \in F(X)$ and $B \in F(Y)$ is a fuzzy relation $A \times B \in F(X \times Y)$ defined by $\mu_{A \times B}(x,y) = T[\mu_A(x), \mu_B(y)], \forall x \in X, \forall y \in Y$

Example: Cartesian Product in

 $F(X \times Y)$ with t - norm = min

Subsequences

Consider the Cartesian product of all sets in the family

$$\mathcal{X} = \{X_i \mid i \in \mathbb{N}_n = \{1, 2, ..., n\}\}$$

For each sequence (n-tuple)

$$\mathbf{x} = (x_1, \dots, x_n) \in \times_{i \in \mathbb{N}_n} X_i$$

and each sequence (r -tuple, $r \leq n$)

$$\mathbf{y} = (y_1, \dots, y_r) \in \times_{j \in J} X_j$$

where $J \subseteq \mathbb{N}_n$ and |J| = r

- y is called subsequence of x if and only if $y_j = x_j$, $\forall j \in J$
- y < x denotes that y is subsequence of x

Projection

- Given a relation $R(x_1,...,x_n)$
- Let $[R \downarrow Y]$ denote the projection of R on Y
- It disregards all sets in X except those in the family

$$\mathcal{Y} = \{X_j \mid j \in J \subseteq \mathbb{N}_n\}$$

• Then $[R \downarrow Y]$ is a fuzzy relation whose membership function is defined on the Cartesian product of the sets in

$$y[R \downarrow y](y) = \max_{\mathbf{x} > \mathbf{y}} R(x).$$

 Under special circumstances, this projection can be generalized by replacing the max operator by another t-conorm

Example

- Consider the sets $X_1 = \{0,1\}$, $X_2 = \{0,1\}$, $X_3 = \{0,1,2\}$ and the ternary fuzzy relation on $X_1 \times X_2 \times X_3$ defined as follows
- Let $R_{ij} = [R \downarrow \{X_i, X_j\}]$ and $R_i = [R \downarrow \{X_i\}]$ for all $i, j \in \{1, 2, 3\}$
- Using this notation, all possible projections of R are given below

$(x_1,$	<i>x</i> ₂ ,	x ₃)	$R(x_1, x_2, x_3)$	$R_{12}(x_1,x_2)$	$R_{13}(x_1,x_3)$	$R_{23}(x_2,x_3)$	$R_1(x_1)$	$R_2(x_2)$	$R_3(x_3)$
0	0	0	0.4	0.9	1.0	0.5	1.0	0.9	1.0
0	0	1	0.9	0.9	0.9	0.9	1.0	0.9	0.9
0	0	2	0.2	0.9	8.0	0.2	1.0	0.9	1.0
0	1	0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
0	1	1	0.0	1.0	0.9	0.5	1.0	1.0	0.9
0	1	2	0.8	1.0	8.0	1.0	1.0	1.0	1.0
1	0	0	0.5	0.5	0.5	0.5	1.0	0.9	1.0
1	0	1	0.3	0.5	0.5	0.9	1.0	0.9	0.9
1	0	2	0.1	0.5	1.0	0.2	1.0	0.9	1.0
1	1	0	0.0	1.0	0.5	1.0	1.0	1.0	1.0
1	1	1	0.5	1.0	0.5	0.5	1.0	1.0	0.9
1	1	2	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Example: Detailed Calculation

• Here, only consider the projection R_{12}

$(x_1,$	<i>x</i> ₂ ,	x_3)	$R(x_1, x_2, x_3)$	$R_{12}(x_1,x_2)$
0	0	0	0.4	
0	0	1	0.9	$\max[R(0,0,0),R(0,0,1),R(0,0,2)]=0.9$
0	0	2	0.2	
0	1	0	1.0	
0	1	1	0.0	$\max[R(0,1,0),R(0,1,1),R(0,1,2)]=1.0$
0	1	2	0.8	
1	0	0	0.5	
1	0	1	0.3	$\max[R(1,0,0),R(1,0,1),R(1,0,2)]=0.5$
1	0	2	0.1	
1	1	0	0.0	
1	1	1	0.5	$\max[R(1,1,0),R(1,1,1),R(1,1,2)]=1.0$
1	1	2	1.0	

Cylindric Extension

- Let $\mathcal X$ and $\mathcal Y$ denote the same families of sets as used for projection
- Let $\it R$ be a relation defined on Cartesian product of sets in family $\it y$
- Let $[R \uparrow X \setminus Y]$ denote the cylindric extension of R into sets X_1 , $(i \in \mathbb{N}_n)$ which are in X but not in Y
- For each x with x > y

$$[R \uparrow \mathcal{X} \backslash \mathcal{Y}](\mathbf{x}) = R(\mathbf{y})$$

- The cylindric extension
 - produces largest fuzzy relation that is compatible with projection
 - is the least specific of all relations compatible with projection
 - guarantees that no information not included in projection is used to determine extended relation

Example

- Consider again the example for the projection
- The membership functions of the cylindric extensions of all projections are already shown in the table under the assumption that their arguments are extended to (x_1, x_2, x_3) e.g.

$$[R_{23} \uparrow \{X_1\}](0,0,2) = [R_{23} \uparrow \{X_1\}](1,0,2) = R_{23}(0,2) = 0.2$$

- In this example none of the cylindric extensions are equal to the original fuzzy relation
- This is identical with the respective projections
- Some information was lost when the given relation was replaced by any one of its projections

Cylindric Closure

- Relations that can be reconstructed from one of their projections by cylindric extension exist
- However, they are rather rare and not is more common that relation can be exactly reconstructed
 - from several of its projections (max)
 - by taking set intersection of their cylindric extensions (min)
- The resulting relation is usually called cylindric closure
- Let the set of projections $\{Pi \mid i \in I\}$ of a relation on \mathcal{X} be given

Then the cylindric closure $\text{cyl}\{P_i\}$ is defined for each $x \in \mathcal{X}$ as

$$\operatorname{cyl}\{P_i\}(\boldsymbol{x}) = \min_{i \in I} [P_i \uparrow \mathcal{X} \backslash \mathcal{Y}_i](\boldsymbol{x})$$

 \mathcal{Y}_i denotes the family of sets on which P_i is defined

Example

The cylindric closures of three families of the projections are shown below

$(x_1,$	<i>X</i> ₂ ,	<i>x</i> ₃)	$R(x_1, x_2, x_3)$	$cyl(R_{12}, R_{13}, R_{23})$	$\operatorname{cyl}(R_1,R_2,R_3)$	$cyl(R_{12},R_3)$
0	0	0	0.4	0.5	0.9	0.9
0	0	1	0.9	0.9	0.9	0.9
0	0	2	0.2	0.2	0.9	0.9
0	1	0	1.0	1.0	1.0	1.0
0	1	1	0.0	0.5	0.9	0.9
0	1	2	0.8	8.0	1.0	1.0
1	0	0	0.5	0.5	0.9	0.5
1	0	1	0.3	0.5	0.9	0.5
1	0	2	0.1	0.2	0.9	0.5
1	1	0	0.0	0.5	1.0	1.0
1	1	1	0.5	0.5	0.9	0.9
1	1	2	1.0	1.0	1.0	1.0

- None of them is the same as the original relation R
- So the relation R is not fully reconstructable from its projections

Binary Fuzzy Relations

Motivation and Domain

- Binary relations are significant among n-dimensional relations
- They are generalized mathematical functions
- On the contrary to functions from X to Y, binary relations
 R(X,Y) may assign to each element of X two or more
 elements of Y
- Some basic operations on functions, e.g. inverse and composition, are applicable to binary relations as well
- Given a fuzzy binary relation R(X,Y)

Its domain dom R is the fuzzy set on X whose membership function is defined for each $x \in X$ as

$$\operatorname{dom} R(x) = \max_{y \in Y} \{R(x, y)\}\$$

i.e. each $x \in X$ belongs to the domain of R to a degree equal to the strength of its strongest relation to any $y \in Y$

Range and Height

• The range ran of R(X,Y) is a fuzzy binary relation on Y whose membership function is defined for each $y \in Y$ as

$$\operatorname{ran} R(y) = \max_{x \in X} \{R(x, y)\},\$$

i.e. the strength of the strongest relation which each $y \in Y$ has to an $x \in X$ equals to the degree of membership of y in the range of R

• The height h of R(X,Y) is a number defined by $h(R) = \max_{y \in Y} \max_{x \in X} \{R(x,y)\}.$

h(R) is the largest membership grade obtained by any pair $(x,y) \in R$

Representation and Inverse

Consider e.g. the membership matrix

$$R = [r_{xy}]$$
 with $r_{xy} = R(x, y)$

Its inverse $R^{-1}(Y,X)$ of R(X,Y) is a relation on $Y \times X$ defined by

$$R^{-1}(y,x) = R(x,y), \forall x \in X, \forall y \in Y$$

 $R^{-1} = [r_{xy}^{-1}]$ representing $R^{-1}(y,x)$ is the transpose of R for R(X,Y)

$$(\mathbf{R}^{-1})^{-1} = \mathbf{R}, \forall R$$

Standard Composition

• Consider the binary relations P(X,Y), Q(Y,Z) with common set Y

The standard composition of P and Q is defined as $(x,z) \in P \circ Q \iff \exists y \in Y : \{(x,y) \in P \land (y,z) \in Q\}$ In the fuzzy case this is generalized by $[P \circ Q](x,z) = \sup_{y \in Y} \{\min\{P(x,y),Q(y,z)\}, \forall x \in X, \forall z \in Z\}$

 If Y is finite, sup operator is replaced by max, then the standard composition is also called max-min composition

Inverse of Standard Composition

The inverse of the max-min composition follows from its definition

$$[P(X,Y) \circ Q(Y,Z)]^{-1} = Q^{-1}(Z,Y) \circ P^{-1}(Y,X)$$

Its associativity also comes directly from its definition:

$$[P(X,Y)] \circ Q(Y,Z)] \circ R(Z,W)$$

= $P(X,Y) \circ [Q(Y,Z) \circ R(Z,W)]$

- Note that the standard composition is not commutative
- Matrix notation: $[r_{ij}] = [p_{ik}] \circ [q_{kj}]$ with $r_{ij} = \max_k \min(p_{ik}, q_{kj})$

Example

$$P \circ Q = R$$

$$\begin{bmatrix} .3 & .5 & .8 \\ 0 & .7 & 1 \\ .4 & .6 & .5 \end{bmatrix} \circ \begin{bmatrix} .9 & .5 & .7 & .7 \\ .3 & .2 & 0 & .9 \\ 1 & 0 & .5 & .5 \end{bmatrix} = \begin{bmatrix} .8 & .3 & .5 & .5 \\ 1 & .2 & 5 & .7 \\ .5 & .4 & .5 & .5 \end{bmatrix}$$

For instance:

- $r_{11} = \max\{\min(p_{11}, q_{11}), \min(p_{12}, q_{21}), \min(p_{13}, q_{31})\}$ = $\max\{\min(.3, .9), \min(.5, .3), \min(.8, 1)\} = .8$
- $r_{32} = \max\{\min(p_{31}, q_{12}), \min(p_{32}, q_{22}), \min(p_{33}, q_{32})\}$ $= \max\{\min(.4, .5), \min(.6, .2), \min(.5, 0)\} = .4$

Relational Join

Relational Join yields triples (whereas composition returned pairs)

For P(X,Y) and Q(Y,Z), the relational join P*Q is defined by

$$[P * Q](x, y, z) = \min\{P(x, y), Q(y, z)\}, \forall x \in X, \forall y \in Y, \forall z \in Z$$

 Then the max-min composition is obtained by aggregating the join by the maximum

$$[P \circ Q](x,z) = \max_{y \in Y} [P * Q](x,y,z), \forall x \in X, \forall z \in Z$$

Example

- The join S = P * Q of the relations P and Q has the following membership function (shown below on left-hand side)
- To convert this join into its corresponding composition $R = P \circ Q$ (shown on right-hand side)
- The two indicated pairs of S(x, y, z) are aggregated using max

X	У	Z	$\mu_{S}x, y, z$
1	a	α	.6
1	a	β	.7*
1	b	β	.5*
2	a	α	.6
2	a	β	.8
3	b	β	1
4	Ь	β	.4* .3*
4	C	β	.3*

X	Z	$\mu_R(x,z)$
1	α	.6
1	β	.7
2	α	.6
2	β	.8
3	β	.1
4	β	.4

For instance,

$$R(1,\beta) = \max\{S(1,a,\beta), S(1,b,\beta)\} = \max\{.7,.5\} = .7$$

Binary Relations on a Single Set

Binary Relations on a Single Set

- It is also possible to define crisp or fuzzy binary relations among elements of a single set X
- Such a binary relation can be denoted by R(X,X) or $R(X^2)$ which is a subset of $X \times X = X^2$
- These relations are often referred to as directed graphs, which is also a representation of them
 - Each element of X is represented as node
 - Directed connections between nodes indicate pairs of $x \in X$ for which the grade of the membership is nonzero
 - Each connection is labeled by its actual membership grade of the corresponding pair in R

Example

- An example of R(X,X) defined on $X = \{1,2,3,4\}$
- Two different representation are shown below

	1	2	3	4
1	.7	0	.3	0
2	0	.7	1	0
1 2 3 3	.7 0 .9 0	0	0	1
3	0	0	.8	.5

Properties of Crisp Relations

- A crisp relation R(X,X) is called
 - reflexive if and only if $\forall x \in X : (x,x) \in R$
 - symmetric if and only if $\forall x, y \in X : (x, y) \in R \leftrightarrow (y, x) \in R$
 - transitive if and only if $(x,z) \in R$ whenever both $(x,y) \in R$ and $(y,z) \in R$ for at least one $y \in X$

All these properties are preserved under inversion of the relation

Properties of Fuzzy Relations

- These properties can be extended for fuzzy relations, by defining them in terms of the membership function of the relation
- A fuzzy relation R(X,X) is called
 - reflexive if and only if $\forall x \in X : R(x,x) = 1$
 - *symmetric* if and only if $\forall x, y \in X : R(x,y) = R(y,x)$
 - transitive if it satisfies $R(x,z) \ge \max_{y \in Y} \min\{R(x,y), R(y,z)\}, \ \forall (x,z) \in X^2$
- Note that a fuzzy binary relation that is reflexive, symmetric and transitive is called fuzzy equivalence relation

Fuzzy Control Basics

Example - Parking a car backwards

Questions:

- What is the meaning of satisfactory parking?
- Demand on precision?
- Realization of control?

Fuzzy Control

- Biggest success of fuzzy systems in industry and commerce
- Special kind of non-linear table-based control method
- Definition of non-linear transition function can be made without specifying each entry individually
- Examples: technical systems
 - Electrical engine moving an elevator
 - Heating installation
- Goal: define certain behavior
 - Engine should maintain certain number of revolutions per minute
 - Heating should guarantee certain room temperature

Table-based Control (1)

- Control systems all share a time-dependent output variable
 - Revolutions per minute
 - Room temperature
- Output is controlled by control variable
 - Adjustment of current
 - Thermostat
- Also, disturbance variables influence output
 - Load of elevator, . . .
 - Outside temperature or sunshine through a window, . . .

Table-based Control (2)

- Computation of actual value incorporates both control variable measurements of current output variable ξ and change of output variable $\Delta \xi = \frac{d\xi}{dt}$
- If ξ is given in finite time intervals, then set $\Delta \xi(t_{n+1}) = \xi(t_{n+1}) \xi(t_n).$ In this case measurement of $\Delta \xi$ not necessary

Notation

- Input variables ξ_1, \dots, ξ_n , control variable η
- Measurements used to determine actual value of η
- η may specify change of η
- Assumption: ξ_i , $1 \le i \le n$ is value of X_i , $\eta \in Y$
- Solution: control function φ

$$\varphi: X_1 \times \ldots \times X_n \to Y$$
$$(x_1, \ldots, x_n) \mapsto y$$

Example: Cartpole Problem (1)

- Balance an upright standing pole by moving its foot
- Lower end of pole can be moved unrestrained along horizontal axis
- Mass m at foot and mass M at head
- Influence of mass of shaft itself is negligible
- Determine force *F* (control variable) that is necessary to balance pole standing upright
- That is measurement of following output variables
 - angle θ of pole in relation to vertical axis,
 - change of angle, *i.e.* triangular velocity $\dot{\theta} = \frac{d\theta}{dt}$
- Both should converge to zero

Example: Cartpole Problem (2)

- Angle $\theta \in X_1 = [-90^{\circ}, 90^{\circ}]$
- Theoretically, every angle velocity $\dot{\theta}$ possible
- Extreme $\dot{ heta}$ are artificially achievable
- Assume $-45^{\circ}/s \le \dot{\theta} \le 45^{\circ}/s$ holds, i.e. $\dot{\theta} \in X_2 = [-45^{\circ}/s, 45^{\circ}/s]$
- Absolute value of force $|F| \le 10$ N
- Thus define $F \in Y = [-10N, 10N]$

Example: Cartpole Problem (3)

Differential equation of cartpole problem

$$(M+m)\sin^2\theta \cdot l \cdot \ddot{\theta} + m \cdot l \cdot \sin\theta \cos\theta \cdot \dot{\theta}^2 - (M+m) \cdot g \cdot \sin\theta$$

$$= -F \cdot \cos\theta$$

- Compute F(t) such that $\theta(t)$ and $\dot{\theta}(t)$ converge towards zero quickly
- Physical analysis demands knowledge about physical process

Problems of Classical Approach

- Often very difficult or even impossible to specify accurate mathematical model
- Description with differential equations is very complex
- Profound physical knowledge is needed
- Exact solution can be very difficult
- It should be possible to control a process without a physical-mathematical model
 - e.g. human being knows how to ride bike without knowing existence of differential equations

Fuzzy Approach

- Simulate behavior of human who knows how to control
- That is a knowledge-based analysis
- Directly ask expert to perform analysis
- Then expert specifies knowledge as linguistic rules
 e.g. for cartpole problem:

"If θ is approximately zero and $\dot{\theta}$ is also approximately zero, then F has to be approximately zero, too"

Fuzzy Approach: Fuzzy Partitioning (1)

- Formulate a set of linguistic rules
 - Determine linguistic terms (represented by fuzzy sets) X_1, \ldots, X_n and Y is partitioned into fuzzy sets
 - Define p1 distinct fuzzy sets $\mu_1^{(1)}, ..., \mu_{p1}^{(1)} \in \mathcal{F}(X_1)$ on set X_1
 - Associate linguistic term with each set

Fuzzy Approach: Fuzzy Partitioning (2)

• Set X_1 corresponds to interval [a,b] of real line, then $\mu_1^{(1)}, \dots, \mu_{p1}^{(1)} \in \mathcal{F}(X_1)$ are triangular functions

$$\mu_{x_{0,\varepsilon}}\colon [\mathsf{a},\mathsf{b}] \to [\mathsf{0},\mathsf{1}]$$

$$x \mapsto \mathsf{1} - \min\{\varepsilon \cdot |x - x_0|,\mathsf{1}\}$$
 If $a < x_1 < \ldots < x_{p1} < b$, only $\mu_2^{(1)},\ldots,\mu_{\mathsf{p}_1-1}^{(1)}$ are triangular

Boundaries are treated differently

Fuzzy Approach: Fuzzy Partitioning (3)

left fuzzy set:

$$\mu_1^{(1)} \colon [a,b] \to [0,1]$$

$$x \mapsto \begin{cases} 1, & \text{if } x \leq x_1 \\ 1 - \min\{\varepsilon \cdot (x - x_1), 1\}, & \text{otherwise} \end{cases}$$

right fuzzy set:

$$\mu_{p_1}^{(1)} \colon [a,b] \to [0,1]$$

$$x \mapsto \begin{cases} 1, & \text{if } x_{p_1} \leq x \\ 1 - \min\{\varepsilon \cdot (x_{p_1} - x), 1\}, & \text{otherwise} \end{cases}$$

Coarse and Fine Fuzzy Partitions

Example: Cartpole Problem (4)

- X₁ partitioned into 7 fuzzy sets
 - Support of fuzzy sets: intervals with length 1/4 of whole range X_1
 - Similar fuzzy partitions for X₂ and Y
- Specify rules
 - if ξ_1 is $A^{(1)}$ and . . . and ξ_n is $A^{(n)}$ then η is B, $A^{(1)}, \ldots, A^{(n)}$ and B represent linguistic terms corresponding to $\mu^{(1)}, \ldots, \mu^{(n)}$ and μ according to X_1, \ldots, X_n and Y
 - Rule base consists of k rules

Example: Cartpole Problem (5)

 θ

						V		
$\dot{ heta}$		nb	nm	ns	az	ps	pm	pb
	nb			ps	pb			
	nm				pm			
	ns	nm		ns	ps			
	az	nb	nm	ns	az	ps	pm	pb
	ps				ns	ps		pm
	pm pb				nm			
	pb				nb	ns		

• 19 rules for cartpole problem, often not necessary to determine all table entries e.g.

If θ is approximately zero and $\dot{\theta}$ is negative medium then F is positive medium

Fuzzy Approach: Challenge

• How to define function $\varphi: X \to Y$ that fits to rule set?

Idea:

- Represent set of rules as fuzzy relation
- Specify desired table-based controller by this fuzzy relation

Fuzzy Relation

Consider only crisp sets

Solving control problem means specifying control function

$$\varphi: X \to Y$$

 φ corresponds to relation

$$R_{\varphi} = \{(x, \varphi(x)) \mid x \in X\} \subseteq X \times Y$$

For measured input $x \in X$, control value

$$\{\varphi(x)\} = \{x\} \circ R_{\varphi}$$

Fuzzy Control Rules

 If temperature is very high and pressure is slightly low,

then heat change should be slightly negative

If rate of descent = positive big and airspeed = negative big and glide slope = positive big,

then rpm change = positive big **and** elevator angle change = insignificant change

Architecture of a Fuzzy Controller (1)

Architecture of a Fuzzy Controller

- Fuzzification interface
 - receives current input value (eventually maps it to suitable domain)
 - converts input value into linguistic term or into fuzzy set
- Knowledge base (consists of data base and rule base)
 - Data base contains information about boundaries, possible domain transformations, and fuzzy sets with corresponding linguistic terms
 - Rule base contains linguistic control rules
- Decision logic (represents processing unit)
 - computes output from measured input according to knowledge base
- Defuzzification interface (represents processing unit)
 - determines crisp output value
 (and eventually maps it back to appropriate domain)

Fuzzy Rule Bases

Approximate Reasoning with Fuzzy Rules

General schema

```
Rule 1: if X is M_1, then Y is N_1 Rule 2: if X is M_2, then Y is N_2
```

...

Rule r: if X is M_r , then Y is N_r

Fact: X is M'

Conclusion: Y is N'

- Given r if-then rules and fact "X is M'", we conclude "Y is N'".
- Typically used in fuzzy controllers

Approximate Reasoning: Disjunctive Imprecise Rule (1)

- Imprecise rule: **if** X = [3, 4] **then** Y = [5, 6]
- Interpretation: values coming from [3,4] × [5,6]

Approximate Reasoning: Disjunctive Imprecise Rules (2)

- Several imprecise rules
 - if $X = M_1$ then $Y = N_1$
 - if $X = M_2$ then $Y = N_2$
 - if $X = M_3$ then $Y = N_3$

Interpretation: rule 1 as well as rule 2 as well as rule 3 hold true

$$S = \bigcup_{i=1}^{r} M_i \times N_i$$

"patchwork rug"
describing function's
behavior as indicator
function

Approximate Reasoning: Conclusion

Approximate Reasoning: Disjunctive Fuzzy Rules (1)

one fuzzy rule:

if
$$X = nm$$
 then $Y = ps$

several fuzzy rules:

$$ns \rightarrow ns', az \rightarrow az', ps \rightarrow ps'$$

$$R = \mu_{\rm nm} \times v_{\rm ps}$$

$$R = \mu_{ns} \times \nu_{ns'} \cup \\ \mu_{az} \times \nu_{az'} \cup \mu_{ps} \times \nu_{ps'}$$

Approximate Reasoning: Disjunctive Fuzzy Rules (2)

- 3 fuzzy rules
- Every pyramid is specified by 1 fuzzy rule (Cartesian product)
- Input x_0 leads to gray-shaded fuzzy output $\{x_0\} \circ R$

Disjunctive or Conjunctive? (1)

- Fuzzy relation R employed in reasoning is obtained as follows
 - For each rule i, we determine relation R_i by $R_i(x,y) = \min[M_i(x),N_i(y)]$ for all $x \in X, y \in Y$
 - R is defined by union of R_i , i.e.

$$R = \bigcup_{1 \le i \le r} R_i$$
 if-then rules are treated **disjunctive**

If-then rules can be also treated conjunctive by

$$R = \bigcap_{1 \le i \le r} R_i$$

Disjunctive or Conjunctive? (2)

- Decision depends on intended use and how R_i are obtained
- For both interpretations, two possible ways of applying composition

$$B'_1 = A' \circ (\bigcup_{1 \le i \le r} R_i) \qquad \qquad B'_2 = A' \circ (\bigcap_{1 \le i \le r} R_i)$$

$$B'_3 = \bigcup_{1 \le i \le r} A' \circ R_i \qquad \qquad B'_4 = \bigcap_{1 \le i \le r} A' \circ R_i$$

Theorem

$$B_2' \subseteq B_4' \subseteq B_1' = B_3'$$

This holds for any continuous T used in composition

Approximate Reasoning: Conjunctive Imprecise Rules (1)

- if X = [3, 4] then Y = [5, 6]
- Gray-shaded values are impossible, white ones are possible

Approximate Reasoning: Conjunctive Imprecise Rules (2)

- Several imprecise rules
 - if $X = M_1$ then $Y = N_1$
 - if $X = M_2$ then $Y = N_2$
 - if $X = M_3$ then $Y = N_3$

Still possible are $R = \bigcap_{i=1}^{r} (M_i \times N_i) \cup (M_i^{C} \times Y)$ "corridor" describing
function's behavior

Approximate Reasoning with Crisp Input

Generalization to Fuzzy Rules

• **if** *X* is approx. 2.5 **then** *Y* is approx. 5.5

Modeling a Fuzzy Rule in Layers

$$R_1 : \text{if } X = \mu_{M_1} \text{ then } Y = \nu_{B_1}$$

$$\mu_{R_1}: X \times Y \to [0,1], I(x,y) = \begin{cases} 1, & \text{if } \mu_{M_1}(x) \le \nu_{B_1}(y) \\ \nu_{B_1}(y), & \text{otherwise} \end{cases}$$

Conjunctive Fuzzy Rule Base

$$R_1 : \text{if } X = \mu_{M_1} \text{ then } Y = \nu_{B_1}, \ldots,$$

$$R_n$$
: if $X = \mu_{M_n}$ then $Y = \nu_{B_n}$

$$\mu_R = \min_{1 \le i \le r} \mu_{R_i}$$

Input μ_A , then output η with

$$\eta(y) = \sup_{x \in X} \min\{\mu_A(x), \mu_R(x, y)\}\$$

Example: Fuzzy Relation

- Classes of cars $X = \{s, m, h\}$ (small, medium, high quality)
- Possible maximum speeds

$$Y = \{140, 160, 180, 200, 220\}$$
 (in km/h)

• For any $(x,y) \in X \times Y$, fuzzy relation ϱ states possibility that maximum speed of car of class x is y

Q	140	160	180	200	220
S	1	.5	.1	0	0
m	0	.5	1	.5	0
	0				1

Fuzzy Relational Equations

- Given μ_1, \dots, μ_r of X and ν_1, \dots, ν_r of Y and r rules if μ_i then ν_i
- What is a fuzzy relation g that fits the rule system?
- One solution is to find a relation g such that

$$\forall i \in \{1, \dots, r\} : \nu_i = \mu_i \circ \varrho$$

$$\mu \circ \varrho : Y \to [0, 1], \qquad y \mapsto \sup_{x \in X} \min\{\mu(x), \varrho(x, y)\}$$

Solution of a Relational Equation

Theorem

1. Let "if A then B'' be a rule with $\mu_A \in F(X)$ and $\nu_B \in F(Y)$ The relational equation $\nu_B = \mu_A \circ \varrho$ can be solved iff the Gödel relation $\varrho_{A \odot B}$ is a solution.

 $\varrho_{A \odot B} : X \times Y \rightarrow [0,1]$ is defined by

$$(x,y) \mapsto \begin{cases} 1, & \text{if } \mu_A(x) \leq \nu_B(y) \\ \nu_B(y), & \text{otherwise} \end{cases}$$

2. If ϱ is a solution, then the set of solutions

 $R = \{ \varrho_S \in \mathcal{F}(X \times Y) \mid \nu_B = \mu_A \circ \varrho_S \}$ has the following property: If $\varrho_{S'} \in R$, then $\varrho_{S'} \cup \varrho_{S''} \in R$

3. If $\varrho_{A \odot B}$ is a solution, then $\varrho_{A \odot B}$ is the largest solution w.r.t. \subseteq

Example

$$\mu_{A} = (.9 \ 1 \ .7)$$

$$\nu_B = (1 .4 .8 .7)$$

$$\varrho_{A \bigcirc B} = \begin{pmatrix} 1 & .4 & .8 & .7 \\ 1 & .4 & .8 & .7 \\ 1 & .4 & 1 & 1 \end{pmatrix}$$

$$\varrho_1 = \left(\begin{array}{cccc} 0 & 0 & 0 & .7 \\ 1 & .4 & .8 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$\varrho_2 = \left(\begin{array}{cccc} 0 & .4 & .8 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & .7 \end{array}\right)$$

- $\varrho_{A \otimes B}$ largest solution, ϱ_{1} , ϱ_{2} are two minimal solutions
- Solution space forms upper semilattice

Solution of a Set of Relational Equations

- Generalization of this result to system of r relational equations
- Theorem
 - Let $v_{B_i} = \mu_{A_i} \circ \varrho$ for i = 1,...,r be a system of relational equations
 - 1. There is a solution iff $\bigcap_{i=1}^r \varrho_{A_i} \otimes_{B_i}$ is a solution
 - 2. If $\bigcap_{i=1}^{r} \varrho_{A_i \bigotimes B_i}$ is a solution, then this solution is the biggest solution
 - Remark: if there is no solution, then Gödel relation is often at least a good approximation

Solving a System of Relational Equations

 Sometimes it is a good choice not to use the largest but a smaller solution

i.e. the Cartesian product $\varrho_{A\times B}(x,y)=\min\{\mu_A(x),\nu_B(y)\}$ If a solution of the relational equation $\nu_B=\mu_A\circ\varrho$ for ϱ exists, then $\varrho_{A\times B}$ is a solution, too

Theorem

- Let $\mu_A \in \mathcal{F}(X)$, $\nu_B \in \mathcal{F}(Y)$. Furthermore, let $\varrho \in F(X \times Y)$ be a fuzzy relation which satisfies the relational equation $\nu_B = \mu_A \circ \varrho$
- Then $v_B = \mu_A \circ \varrho_{A \times B}$ holds

Solving a System of Relational Equations by Using Cartesian product

• $\mu_{A_i} = \nu_{B_i} \circ \varrho$, $1 \le i \le r$ can be reasonably solved with $A \times B$ by

$$\varrho = \max\{\varrho_{A_i \times B_i} \mid 1 \le i \le r\}$$

• For crisp value $x_0 \in X$ (represented by $1_{\{x_0\}}$)

$$v(y) = (1_{\{x_0\}} \circ \varrho)(y)$$

$$= \max_{1 \le i \le r} \{ \sup_{x \in X} \min\{1_{\{x_0\}}(x), \varrho_{A_i \times B_i}(x, y) \} \}$$

$$= \max_{1 \le i \le r} \{ \min\{\mu_{A_i}(x_0), \nu_{B_i}(y) \} \}$$

This solution is the Mamdani-Assilian fuzzy control