РАЗДЕЛ IV. МОДЕЛИРОВАНИЕ СЛОЖНЫХ СИСТЕМ

УДК 004.853

В.В. Голенков, Н.А. Гулякина, Ю.А. Кравченко, В.В. Марков

АНАЛИЗ ДАННЫХ В СЛОЖНЫХ СИСТЕМАХ НА ОСНОВЕ СЕТЕЙ ПЕТРИ *

В данной статье приведена информация об использовании аппарата имитационного моделирования сетей Петри при интеллектуальном анализе данных для задач принятия решений в сложных динамических системах. Рассматриваются преимущества использования имитационных моделей при анализе априорной информации о состоянии сложного объекта и динамики его развития в условиях воздействия факторов внешней среды. Рассмотрен абстрактный пример функционирования сети Петри на трех множествах априорной информации. Описаны перспективы применения данного подхода для представления и извлечения знаний из различных предметных областей.

Ключевые слова: принятие решений; неопределенность; извлечение знаний; имитационное моделирование; интеллектуальный анализ данных.

V.V. Golenkov, N.A. Gulyakina, Y.A. Kravchenko, V.V. Markov

THE DATA ANALYSIS IN THE COMPLEX SYSTEMS ON THE BASE OF PETRI NETS

This article contains information about using the simulation nets Petri by data mining for decision-making problems in complex dynamic systems. The advantages of simulation models in the analysis of a priori information about the state of a complex object and the dynamics of its development under the impact of environmental factors were described. We considered an abstract example of a network function on the three sets a priori information. We described the prospects of applying this approach to representation and extraction knowledge from different subject areas.

Decision-making; uncertainty; knowledge extraction; simulation modeling; intelligent data analysis.

Введение

В работе рассматривается взаимодействие внутренних моделей компонентов интеллектуальных информационных систем с помощью аппарата сетей Петри. Модели компонентов создаются на основе комбинации свойств интеллектуальных агентов. Каждый агент имеет механизм обработки входящих и исходящих сообщений, получения данных из входящих сообщений и преобразования исходящей информации в единый заданный формат.

^{*} Работа выполнена при поддержке РФФИ (проекты: № 10-10-90017-Бел_а, 10-07-00538-а, 11-07-00064-а), г/б № Т12.8.08.

В случае экстраполяции свойств современных сложных объектов проверка условия достоверности оказывается настолько проблематичной, что вынуждает идти по пути использования математических моделей, которые могут быть воплощены в программном обеспечении испытательных комплексов. Использование математической модели позволяет широко использовать возможности ЭВМ в контуре контроля и управления при проверке сложного объекта. Суть контроля заключается в сравнении состояний сложного объекта и модели после отработки каждого управляющего воздействия в соответствии с программой испытаний.

Сложность объектов не позволяет строить для них абсолютно адекватные модели. Математическая модель, будучи формализованным абстрактным описанием объекта, в состоянии охватить только основные, характерные его свойства, оставляя в стороне несущественные факторы [1,2].

Моделирование в сетях Петри осуществляется на событийном уровне. Определяются: какие действия происходят в подсистеме, какие состояние предшествовали этим действиям и какие состояния примет подсистема после выполнения действия. Выполнения событийной модели в сетях Петри описывает поведение подсистемы. Анализируя результаты выполнения, можно сказать о том, в каких состояниях пребывала или не пребывала подсистема, какие состояния в принципе не достижимы.

Моделирование на основе сетей петри

Сеть Петри определяется как четверка < P, T, I, O >, где P и T – конечные множества позиций и переходов, I и O – множества входных и выходных функций. Другими словами, сеть Петри представляет собой двудольный ориентированный граф, в котором позициям P соответствуют вершины, изображаемые кружками, а переходам T — вершины, изображаемые утолщенными черточками; функциям I соответствуют дуги, направленные от позиций к переходам, а функциям O — дуги, направленные от переходов к позициям I.

В сетях Петри вводятся объекты двух типов: динамические, которые изображаются метками (маркерами) внутри позиций, и статические, которые соответствуют вершинам сети Петри.

Маркировка — распределение маркеров по позициям. Маркеры могут перемещаться в сети. Каждое изменение маркировки называют событием, причем каждое событие связано с определенным переходом. События происходят мгновенно и разновременно при выполнении некоторых условий.

Каждому условию в сети Петри соответствует определенная позиция. Совершению события соответствует срабатывание перехода, при котором маркеры из входных позиций этого перехода перемещаются в выходные позиции. Последовательность событий образует моделируемый процесс [1].

В рассматриваемом случае начальными условиями для имитационной модели функционирования сложной системы будут служить три множества (рис. 1):

- 1) C множество воздействий внешней среды;
- 2) A множество внутренних характеристик системы;
- 3) A_1 множество управляющих воздействий на систему.

Предложим возможный вариант состава элементов данных множеств, мощности множеств выберем случайным образом, реализуя тем самым абстрактный пример функционирования сети. Множество $C = \{c_1, c_2, c_3, c_4, c_5, c_6, c_{zero}\}$, где c_1 - c_6 – информация о возможных воздействиях внешней среды, c_{zero} – эта вершина необходима теоретически для моделирования ситуации полного отсутствия выделен-

ных воздействий, метка в ней появится только в том случае, если будут отсутствовать метки во всех остальных вершинах множества С.

Для учета всех возможных комбинаций наличия составляющих воздействия внешней среды в данном абстрактном примере необходимо создать 2^6 переходов. Причем, дисциплина обслуживания переходов должна быть с абсолютным приоритетом в зависимости от количества входящих в переход дуг. С увеличением количества входящих в переход дуг. его приоритет должен возрастать. Это необходимо для разрешения конфликтных ситуаций в пользу событий фиксирующих наличие большего числа выделенных составляющих внешних воздействий.

Таким образом, открывшись, переход t_i , $i=\overline{1,2^6}$ отправит информацию о наличии составляющих воздействий внешней среды в вершину классификатора BK_1 , наличие метки в которой позволит открыть переход t_{m+2} и передать полученные сведения в модуль принятия решения МПР (рис. 1).

Рис. 1. Абстрактный пример работы имитационной модели с выполнением условия достижимости сети

С другой стороны, на принятие решений по управлению системой будет влиять комбинация меток в вершинах множества $A=\{a_1,a_2,a_3,a_4\}$, описывающих множество внутренних параметров системы. Причем, в этом множестве необходимо учитывать, как наличие отдельных характеристик, так и их комбинации, т.к. могут существовать недопустимые соотношения параметров управляемого сложного объекта. Определение допустимых наборов параметров управляемой системы происходит посредством передачи маркеров через переходы t_n , $n=\overline{i+1,i+2}$ к вершинам ΠC_1 или ΠC_2 , моделирующие выборки допустимых параметров системы. В дальнейшем, эта информация попадет в вершину классификатора BK_2 и далее к модулю принятия решения.

Подобным образом, комбинация меток в вершинах множества $A_1 = \{a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\}$ описывает допустимые наборы управляющих воздействий на систему, посредством передачи маркеров через переходы t_m ,

 $m = \overline{n+1, n+4}$ к вершинам VB_1 , VB_2 , VB_3 , VB_4 . В дальнейшем, эта информация попадет в вершину классификатора ВК₃ и далее к модулю принятия решения МПР (рис. 1).

Анализ априорной информации на основе имитационной модели

Покажем работу имитационной модели с выполнением условия достижимости, в качестве априорной информации будем использовать начальные условия, представленные на рисунке (см. рис. 1).

В данном случае начальные условия позволяют в ходе работы сети определить: допустимое множество внутренних параметров системы (переход t_n , вершина ΠC_2); допустимое множество управляющих воздействий (переход t_{n+3} , вершина YB_3); параметры воздействия внешней среды (переход t_1 вершина BK_1). Это позволяет через вершины BK_1 , BK_2 , BK_3 открыть переходы T_{m+1} , T_{m+2} , T_{m+3} .

Результатом работы сети является передвижение трех маркеров в вершину модуля принятия решения (МПР) и выработку им рекомендаций по возможным корректировкам управляющих воздействий. Дальнейшая возможность открытия виртуального перехода t_q позволяет сделать вывод о достижимости сети, что подтверждает решение задачи.

Покажем теперь работу модели на абстрактном примере, иллюстрирующем нарушение условия достижимости сети (рис. 2). В данном случае начальные условия позволяют в ходе работы сети определить: допустимое множество управляющих воздействий (переход t_{n+1} , вершина YB_1); параметры воздействия внешней среды (переход t_2 , вершина BK_1), но допустимое множество параметров системы не установлено, так как в вершину BK_2 не переместился ни один маркер, это произошло из-за того, что параметры системы, соответствующие вершинам a_1 и a_2 , не являются допустимой комбинацией

Рис. 2. Абстрактный пример работы имитационной модели с нарушением условия достижимости сети

Результатом работы сети является передвижение только двух маркеров в вершину модуля принятия решения. Поэтому виртуальный переход t_q не будет открыт, что позволяет сделать вывод о невозможности решения поставленной зада-

чи. Корректировка управляющих воздействий на систему в данном случае будет проводиться экспертом на основе дополнительной оценки оперативной ситуации.

Заключение

Рассмотренный в статье подход имитационного моделирования принятия решений в интеллектуальных информационных системах использует интегрированный метод представления знаний. Это позволяет применять в исследованиях параметры из различных предметных областей для решения важных задач извлечения и обработки знаний. Подобная интеграция позволит оперативно отслеживать изменения в динамике развития системы и корректировать управляющие воздействия при изменении начальных условий.

Использование формальных методов (например, сетей Петри) для синтеза знаний с корректным содержанием может стать основой методов создания интеллектуальных информационных систем. Методы анализа воздействий внешней среды, множеств параметров системы и управляющих функций с использованием дерева достижимости и матричной теории сетей Петри позволят формализовать многие процессы, обладающие некоторой степенью неопределенности.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Норенков И.П., Кузьмик П.К.* Информационная поддержка наукоемких изделий. CALS технологии. М.: Изд-во МГТУ им. Н.Э. Баумана, 2002.
- Nelson G. and J. Wright, "Real Time Decision Support: Creating a Flexible Architecture for Real Time Analytics," DSSResources.COM, 11.18.2005.

Голенков Владимир Васильевич

Белорусский государственный университет информатики и радиоэлектроники

E-mail: golen@bsuir.by

220013 Белоруссия, г. Минск, ул. П. Бровки, 6

Тел.: +37517 2932324

Кафедра интеллектуальных информационных технологий

Гулякина Наталья Анатольевна

Белорусский государственный университет информатики и радиоэлектроники

E-mail: golen@bsuir.by

220013 Белоруссия, г. Минск, ул. П.Бровки, 6

Тел.: +375172932324

Кафедра интеллектуальных информационных технологий

Кравченко Юрий Алексеевич

Технологический институт федерального государственного автономного образовательного учреждения высшего профессионального образования «Южный федеральный университет» в г. Таганроге.

E-mail: krav-jura@yandex.ru.

347928, г. Таганрог, пер. Некрасовский, 44.

Тел.: 88634371651.

Кафедра систем автоматизированного проектирования; доцент.

Марков Владимир Васильевич

Технологический институт федерального государственного автономного образовательного учреждения высшего профессионального образования «Южный федеральный университет» в г. Таганроге.

E-mail: v_v_mar@mail.ru.

347928, г. Таганрог, пер. Некрасовский, 44.

Тел.: 88634371651.

Кафедра систем автоматизированного проектирования; доцент.

Golenkov Vladimir Vasilievich

Belarusian state university of informatics and radioelectronics

E-mail: golen@bsuir.by

6, P. Brovki, Minsk, 220013, Byelorussia

Phone: +375172932324

The Department of intellectual information technologies

Gulaykina Nataliya Anatolievna

Belarusian state university of informatics and radioelectronics

E-mail: golen@bsuir.by

6, P.Brovki, Minsk, 220013, Byelorussia

Phone: +375172932324

The Department of intellectual information technologies

Kravchenko Yury Alekseevich

Taganrog Institute of Technology – Federal State-Owned Autonomy Educational Establishment of Higher Vocational Education "Southern Federal University".

E-mail: krav-jura@yandex.ru.

44, Nekrasovskiy, Taganrog, 347928, Russia.

Phone: +78634371651.

The Department of Computer Aided Design; Associate Professor.

Markov Vladimir Vasilyevich

Taganrog Institute of Technology – Federal State-Owned Autonomy Educational Establishment of Higher Vocational Education "Southern Federal University".

E-mail: v_v_mar@mail.ru.

44, Nekrasovskiy, Taganrog, 347928, Russia.

Phone: +78634371651.

The Department of Computer Aided Design; Associate Professor.