CS5112: Algorithms and Data Structures for Applications

Minimum spanning trees

Ramin Zabih

Sources: Wikipedia; Kevin Wayne, Kleinberg/Tardos

Administrivia

- Prelim (midterm) date: Wednesday October 16
 - In class, closed book
 - Review session in class on October 7
- Web site is: https://cornelltech.github.io/CS5112-F19/
- HW1 is out, due by 10/7
 - Working in groups is important!
- Q3 will be out Thursday, due in 24 hours
- Lectures will be recorded "Real Soon Now"

Lecture Outline

- RB tree example video <u>here</u>
- Graphs, DAG's, trees
- Minimum spanning tree (MST)
- Three simple MST algorithms
- Proofs of correctness
- Implementation notes

Trees, DAGs, graphs

- Most general case: directed graph
- Undirected graph: directed edges in both directions
- DAG: Directed acyclic graph
 - Most 'tree like' graph
- Tree

From graphs to trees

- Often useful to find a tree inside a graph
 - Subset of the nodes and edges
 - Almost always cover all nodes, but just some edges
 - Why do we need to omit some edges?
- Example: graph traversal via DFS/BFS
- Sometimes you want to find a tree that is optimal
 - Most definitions of optimal are intractable
 - I.e., require exhaustive search

Spanning trees

Definition: a set of edges that spans the graph

- Cayley's theorem: there are n^{n-2} spanning trees
 - Looks very hard to find the 'best' one!

Minimum spanning tree (MST)

- Simplifying assumption: all edge costs distinct
- MST: spanning tree with smallest cost
- Digression: Steiner tree problem in graphs
 - Given an undirected graph with non-negative edge weights and a subset of vertices, usually referred to as terminals
 - Find a tree of minimum weight that contains all terminals (but may include additional vertices)

MST applications

- Obvious: network connectivity
 - Old fashioned 'emergency notification' network
- Non-obvious:
 - Traveling salesman problem
 - Very cool application
 - Image segmentation
 - See: Greg's lecture on Union-Find

Basic MST algorithms

- Prim: start with a root note and greedily grow a tree outwards, always adding cheapest edge at tree fringe
- Kruskal: start with an empty tree, insert edges cheapest first, unless the edge would create a cycle
 - Nice <u>Kruskal</u> visualization
- Reverse-delete: start with full graph, delete edges most expensive first, unless the edge would disconnect the tree

Cut property

 Let S be any subset of nodes and let e be the min cost edge with exactly one endpoint in S.

- Then the MST must contain *e*. Why?
 - We will see that this is not trivial

Cycle property

Let C be any cycle and f the max cost edge belonging to C.

• Then the MST must not contain *f* . Why?

Cycles, cuts, cutsets

Cycle: set of edges returning to a node.

 Cut: subset of nodes. Cutset is the edges on the fringe, i.e. with exactly one side in the cut.

$$- Cut = \{4,5,8\}$$

- Cutset =
$$\{5 - 6, 5 - 7, 3 - 4, 3 - 5, 7\}$$

Cycle-cutset intersection

- A cycle and a cutset intersect at an even number of edges
 - Why?
 - Cycle must leave and enter the cut same number of times

Corollary: can't have a lone edge in both cycle and cutset

Proof sketches (exchange arguments)

Cut property: cheapest e in MST

Cycle property: most expensive f not in MST

Exchange argument is not trivial

Consider cut property proof

Need cycle-cutset intersection

Correctness proof for Prim

Apply cut property at each step

Prim implementation

• For each unexplored node v maintain cost of cheapest way of

adding it to explored set

```
Prim(G, c) {
    foreach (v ∈ V) a[v] ← ∞
    Initialize an empty priority queue Q
    foreach (v ∈ V) insert v onto Q
    Initialize set of explored nodes S ← φ

while (Q is not empty) {
    u ← delete min element from Q
    S ← S ∪ { u }
    foreach (edge e = (u, v) incident to u)
        if ((v ∉ S) and (ce < a[v]))
            decrease priority a[v] to ce
}
```

• Speed is $O(n^2)$ naively, $O(m \log n)$ with priority queue

Correctness proof for Kruskal

- Two cases for new edge e
 - Creates a cycle: discard using cycle property
 - Otherwise: insert e = (u v) into MST
 - Why? Cut property
 - S is connected component with u

Kruskal implementation

- Maintain set of edges for each connected component in MST
- Use union-find to merge

```
Kruskal(G, c) { Sort edges weights so that c_1 \le c_2 \le \ldots \le c_m. T \leftarrow \varphi foreach (u \in V) make a set containing singleton u for i = 1 to m are u and v in different connected components? (u,v) = e_i if (u and v are in different sets) { T \leftarrow T \cup \{e_i\} merge the sets containing u and v } merge two components
```

Kruskal vs Prim

- Both are $O(m \log n)$
 - Though a very painful datastructure can improve Prim
- In general, Kruskal is better for sparse graphs and Prim for dense graphs
- Practical impact of reference locality
 - Interaction with CPU memory architecture

