НИС «Основные понятия математики» Бурман Юрий Михайлович

Квадратичные вычеты

Пусть зафиксировано число m. Будем пытаться понять, какие остатки по модулю m являются полными квадратами. Причём можно считать, что m = p простое и p > 2.

Определение 1. Квадратичный вычет — такое число a, что существует такое b, что $b^2 \equiv a \mod p$.

Теорема 1. Если $p \equiv q \mod 4a$, то a — одновременно вычет или невычет по модулям p и q. **Лемма 2. Т. 1** выполняется для a = -1, т.е. -1 — вычет при p = 4k + 3 и невычет при p = 4k + 1.

Определение 2. Символ Лежандра — выражение $\left(\frac{a}{p}\right)$, равное 1, если a — квадратичный вычет по модулю p и -1, если невычет (и не определённое, если $p\mid a$).

Лемма 3. Выполняется $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}}$ (в частности, отсюда будет следовать **Т. 2**). **Теорема 4.** $\mathbb{F}_p^* = \{1, 2, \dots, p-1\}$ циклическая. То есть, существует $\varepsilon \in \mathbb{F}_p^*$ такое, что ord $\varepsilon =$ p-1. Оно называется *первообразным корнем*.

Доказательство. Пусть ord a = k. Тогда у всех чисел вида a^l при (l, p - 1) = 1 порядок k. Заметим, что других чисел с порядком k нет. Действительно, рассмотрим многочлен x^k-1 . Его корни — это числа вида a^t и только они, потому что они подходят, а других нет по теореме Безу. Обозначим $\psi(d)$ — количество чисел с порядком d. Мы знаем, что если $\psi(d) \neq 0$ (и $d \mid p-1$), то $\psi(d)=\varphi(d)$. Кроме того, $\sum_{k|p-1}\psi(k)=p-1$, и $\sum_{k|n}\varphi(k)=p-1$ для любого n. Это значит, что на самом деле $\psi(d) = \varphi(d)$ для всех $d \mid p-1$.