Pulse Code Modulation (PCM)

Dr. B. Sainath
EEE Dept., BITS PILANI

Sep., 2017

Important Instructions

- Try to complete all tasks within 2 hours. After 2 hrs, evaluation starts.
- For each subtask, create mfiles (eg. CT_HT.m) and save them with suitable name.
- Prepare a word document naming your name and ID. In it, save all results including plots.
- In all plots, put x-label, y-label, legend, font 'Arial' (Size = 10), and, Width '2'.

Pulse Code Modulation (PCM)

- Important steps involved in PCM
 - · Sampling, Quantization, and Encoding

Figure: Operations in PCM. Source: https://blogs.synopsys.com/vip-central/2015/04/28/1787/

- Application of PCM
 - Standard form of digital audio in computers, CDs, digital telephony

Task 1.a: Uniform PCM

- Understand following library functions/commands
 - quantiz
 - de2bi(ind,'left-msb');
 - reshape
 - stairs
- Use the following
 - Message signal frequency $f_m = 3$ Hz; Sampling frequency $f_s = 30$ Hz;
 - $t = 0 : \frac{0.01}{f_{--}} : 1;$
 - Message peak amplitude A_m = 2 volt;
 - Number of bits n = 3;
 - Message signal= $A_m \sin(2\pi f_m t)$;
 - $t_s = 0 : \frac{1}{t} : 1;$
 - Sampled signal $x_s = A_m \sin(2\pi f_m t_s)$;
 - Quantization levels L = 2ⁿ;
 - $V_{\text{max}} = A_m; V_{\text{min}} = -A_m$
 - Step size $\delta = \frac{V_{\text{max}} V_{\text{min}}}{I}$
 - Steps= $V_{\min}: \delta: V_{\max}$;
 - Quant= $(V_{\min} \frac{\delta}{2}) : \delta : (V_{\max} + \frac{\delta}{2});$

Task 1. (a): Uniform PCM

- Question: Write a program to plot the following
 - Original message signal x(t), sampled signal,
 - Sampled values vs quantized values (Hint: use 'plot' and stem commands).
 - Sampled signal vs quantized signal (Hint: use 'stem' command)
 - Encoded digital signal (Hint: use 'stairs' command)
 - Show all in single plot. In the plot, provide x-label, y-label, title, and legend.
 - Hints
 - After running 'quantiz' command, you get index ranging from 1 to 8. Update index from 0 to 7
 - Make the minimum quantized value between the quantized levels. That is, bring $\left(V_{\min}-\frac{\delta}{2}\right)$ to $\left(V_{\min}+\frac{\delta}{2}\right)$
 - Transform encoded matrix to a row vector of encoded bits

Task 1. (b): Computations

- Question (i): Using MATLAB compute the following
 - Bit rate R_b
 - Bit duration T_b
 - Step size δ
 - Maximum quantization error Q_e(max)
 - Signal power in dB
 - Quantization noise power in dB
 - SQNR in dB
 - SQNR from formula
- Question (ii): Compute mean square error (MSE). Compare this value with quantization noise power (Hint:) Use samples of original signal & corresponding quantized values supplied by 'quantiz' command.

Task 2: Quantizer Characteristic Curve

- Question: Write a program to plot quantizer characteristic curve for the uniform PCM in Task 1. (a). In the plot, provide x-label, y-label, title, and legend.
 - Hint
 - Plot 'steps' on x-axis and 'quant' on y-axis using stairs command. Make sure that vector lengths match

Sep., 2017