Package 'orca'

July 28, 2016

Title Computation of Graphlet Orbit Counts in Sparse Graphs

Description Implements orbit counting using a fast combinatorial approach. Counts orbits of nodes and edges from edge matrix or data frame, or a

Version 1.1-1 **Date** 2016-07-28

graph object from the graph package.
cicense LGPL-3
Depends R (>= 3.1)
Cnhances graph
MeedsCompilation yes
ystemRequirements C++11
Collate orca.R
azyLoad yes
Author Tomaz Hocevar [aut], Janez Demsar [aut, cre]
Maintainer Janez Demsar <janez.demsar@fri.uni-lj.si></janez.demsar@fri.uni-lj.si>
Repository CRAN
Date/Publication 2016-07-28 17:28:33
R topics documented:
karate
orca
petersen
usastates
yeast
ndex 6

2 orca

karate

Karate Club network

Description

The network representing the friendships between members of a university-based karate club, which was originally used to model the fission process with a mathematical model. The network consists of 34 nodes (club members) and 77 edges (friendships).

Usage

karate

Format

A data frame with 77 observations and 2 columns.

Source

https://networkdata.ics.uci.edu/data.php?id=105

References

W. W. Zachary (1977) An information flow model for conflict and fission in small groups, *Journal of Anthropological Research* 33(4), 452-473.

orca

Orbit counting

Description

Count the node or edge orbits in 4- or 5- node graphlets for all nodes (edges) in the given graph.

Usage

```
count4(graph)
count5(graph)
ecount4(graph)
ecount5(graph)
```

Arguments

graph

A graph given as a nx2 edge matrix, a data frame with edges or a graph object from the package 'graph'. The nodes in the matrix or data frame are given by integer indices that start with 1.

orca 3

Value

A numeric matrix or orbit counts. Rows correspond to graph nodes or edges in the same order as on the input, and the columns corresponding to orbits.

Author(s)

Tomaz Hocevar and Janez Demsar

References

Tomaz Hocevar, Janez Demsar (2016): Computation of Graphlet Orbits for Nodes and Edges in Sparse Graphs. Journal of Statistical Software, 71(10), pp. 1-24.

Examples

```
library(orca)
# Load and show the orbit counts for the Karate graph
data("karate")
count4(karate)
## Not run:
# Simple analysis of School Wikipedia network: find the most similar
# nodes with respect to the local network topology
# Requires data from http://www.biolab.si/supp/Rorca/_downloads/schools-wiki.zip
library("FNN")
nodes <- scan("schools-wiki-nodes.txt", what="", sep="\n")</pre>
edges <- read.table("schools-wiki-edges.txt")</pre>
orbits <- count4(edges)</pre>
nn <- get.knn(orbits, k=10)
neighbours <- nn$nn.index</pre>
distances <- nn$nn.dist</pre>
check <- c("Canada", "Germany", "Isaac Newton", "Albert Einstein",</pre>
           "Mahatma Gandhi", "Mahabharata")
node_indices <- match(check, nodes)</pre>
for (i in 1:length(check)) {
    cat("\n\n", check[i], ": ", sep="")
    cat(nodes[neighbours[node_indices[i], ]], sep=", ")
    cat("\n")
    cat(round(distances[node_indices[i], ]), sep=", ")
}
## End(Not run)
```

4 usastates

petersen

Petersen graph

Description

The Petersen graph is a graph with 10 vertices and 15 edges, usually drawn as a pentagram within a pentagon.

Usage

petersen

Format

A data frame with 15 observations and 2 columns.

References

J. Petersen Sur la théorème de Tait. L'Intermédiare des Math. 5, 225-227.

usastates

Contiguous USA Graph

Description

The nodes of Contiguous USA Graph represent the 49 contiguous states of the USA. Two nodes are connected if there exists at least one driveable road between the corresponding states.

Usage

usastates

Format

A data frame with 107 observations and 2 columns.

Source

http://www-cs-staff.stanford.edu/~uno/contiguous-usa.dat

References

D. E. Knuth (2008) *The Art of Computer Programming, Volume 4, Fascicle 0: Introduction to Combinatorial Functions and Boolean Functions*, p. 15. Upper Saddle River, NJ: Addison-Wesley.

yeast 5

yeast

Yeast protein-protein interaction network

Description

The network representing interactions between 2361 proteins.

Usage

yeast

Format

A data frame with 6646 observations and 2 columns.

Source

http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm

References

S. Sun, L. Ling, N. Zhang, G. Li and R. Chen (2003) Topological structure analysis of the protein-protein interaction network in budding yeast, *Nucleic Acids Research*, 31(9), 2443-2450.

Index

```
*Topic datasets
    karate, 2
    petersen, 4
    usastates, 4
    yeast, 5
*Topic graphs
    orca, 2
count4 (orca), 2
count5 (orca), 2
ecount4 (orca), 2
ecount5 (orca), 2
karate, 2
\quad \text{orca, } 2
petersen, 4
us a states, \\ 4
yeast, 5
```