31 Lecture 31: April 20

Last time

- Linear contrasts of means
- Sampling distribution of linear contrasts
- Multiple comparisons
- Sample size computations for one-way ANOVA

Today

- Lack of fit test
- Theoretical background of linear models

Additional reference

Course notes by Dr. Hua Zhou

"A Primer on Linear Models" by Dr. John F. Monahan

Lack-of-fit test

Hiking example: completely randomized experiment involving alpine meadows in the White Mountains of New Hampshire. N=20 lanes of dimension $0.5m \times 1.5m$ randomized to 5 trampling treatments:

i: trt group	x: Number of passes	y_{ij} : Height (cm)			
1	0	20.7	15.9	17.8	17.6
2	25	12.9	13.4	12.7	9.0
3	75	11.8	12.6	11.4	12.1
4	200	7.6	9.5	9.9	9.0
5	500	7.8	9.0	8.5	6.7

Two models for mean plant height:

SLR model: $\mu(x) = \beta_0 + \beta_1 x$

one-factor ANOVA model: $\mu_{ij} = \mu + \alpha_i$

When the t treatments have an interval scale, the SLR model, and all polynomials of degree $p \le t - 2$ (why?), are nested in one-factor ANOVA model with t treatment means.

Answer:

F-ratio for lack-of-fit test

To test for lack-of-fit of a polynomial (reduced) model of degree p, use extra sum-of-squares F-ratio on t-1-p and N-t df:

$$F = \frac{SS[\text{lack of fit}]/(t-1-p)}{MS[\text{pure error}]}$$

where

$$MS[pure error] = MS[E]_{full}$$

and

$$SS[lack-of-fit] = SS[Trt] - SS[Reg]_{poly}$$

= $SS[E]_{poly} - SS[E]_{full}$

What is the SS[lack of fit] for the meadows data?

Next step: either go with the one-factor ANOVA model or specify some other model, such as quadratic.

Linear Models in the matrix form

Recall the matrix form of the linear model

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times p} \, \boldsymbol{\beta}_{p\times 1} + \underset{n\times 1}{\epsilon}$$

Simple linear regression model

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

Multiple linear regression model

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1,p-1} \\ 1 & x_{21} & \dots & x_{2,p-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \dots & x_{n,p-1} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

One-way ANOVA model

$$\begin{bmatrix} y_{11} \\ \vdots \\ y_{1,n_1} \\ y_{21} \\ \vdots \\ y_{2,n_2} \\ \vdots \\ y_{a,1} \\ \vdots \\ y_{a,n_a} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{n_1} & \mathbf{1}_{n_1} \\ \mathbf{1}_{n_2} & \mathbf{1}_{n_2} \\ \vdots \\ \mathbf{1}_{n_a} & & \mathbf{1}_{n_a} \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_a \end{bmatrix} + \begin{bmatrix} \epsilon_{11} \\ \vdots \\ \epsilon_{1,n_1} \\ \epsilon_{21} \\ \vdots \\ \epsilon_{2,n_2} \\ \vdots \\ \epsilon_{a,1} \\ \vdots \\ \epsilon_{a,n_a} \end{bmatrix}$$

Two-way ANOVA model without interaction Model $y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}$, i = 1, ..., a (a levels in factor 1), j = 1, ..., b (b levels in factor 2), and $k = 1, ..., n_{ij}$ (n_{ij} observations in the (i, j)-th cell). In total we have $n = \sum_{i,j} n_{ij}$ observations and p = a + b + 1 parameters. For simplicity, we consider the case without replicates, i.e., $n_{ij} = 1$ and only write out $\mathbf{X}\beta$. Note adding more replicates to each cell does *not* change the rank of \mathbf{X} .

$$\mathbf{E}(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta} = \begin{bmatrix} \mathbf{1}_b & \mathbf{1}_b & & & \mathbf{I}_b \\ \mathbf{1}_b & & \mathbf{1}_b & & & \mathbf{I}_b \\ \vdots & & \ddots & & \vdots \\ \mathbf{1}_b & & & \mathbf{1}_b & \mathbf{I}_b \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu} \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_a \\ \beta_1 \\ \vdots \\ \beta_b \end{bmatrix}$$

Two-way ANOVA with interaction Model $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$, i = 1, ..., a (a levels in factor 1), j = 1, ..., b (b levels in factor 2), and $k = 1, ..., n_{ij}$ (n_{ij} observations in the (i, j)-th cell). In total we have $n = \sum_{i,j} n_{ij}$ observations and p = 1 + a + b + ab parameters. For simplicity, we consider the case without replicates, i.e., $n_{ij} = 1$ and only write out $\mathbf{X}\beta$.

Note adding more replicates to each cell does not change the rank of X.

$$\mathbf{E}(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta} = \begin{bmatrix} \mathbf{1}_b & \mathbf{1}_b & & & \mathbf{I}_b & \mathbf{I}_b \\ \mathbf{1}_b & & \mathbf{1}_b & & \mathbf{I}_b & & \\ \vdots & & \ddots & \vdots & & \ddots & \\ \mathbf{1}_b & & & \mathbf{1}_b & \mathbf{I}_b & & \mathbf{I}_b \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu} \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_a \\ \beta_1 \\ \vdots \\ \beta_b \\ \gamma_{11} \\ \vdots \\ \vdots \\ \gamma_{ab} \end{bmatrix}$$

For all the above models, we have 5the most general assumption over the error term, i.e. $\epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$.

Mixed effects models For mixed effects models, we generally have

$$y = Xb + Zu + e$$

- $\mathbf{X} \in \mathbb{R}^{n \times p}$ is a design matrix for fixed-effects $\mathbf{b} \in \mathbb{R}^p$
- $\mathbf{Z} \in \mathbb{R}^{n \times q}$ is a design matrix for random-effects $\mathbf{u} \in \mathbb{R}^q$
- The most general assumption is $\mathbf{e} \sim \mathcal{N}(\mathbf{0}_n, \mathbf{R})$, $\mathbf{u} \sim \mathcal{N}(\mathbf{0}_q, \mathbf{G})$, and \mathbf{e} is independent of \mathbf{u} .

In many applications, $\mathbf{e} \sim \mathcal{N}(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$ and

$$\mathbf{Z}\mathbf{u} = (\mathbf{Z}_1, \dots, \mathbf{Z}_m) \left(egin{array}{c} \mathbf{u}_1 \ dots \ \mathbf{u}_m \end{array}
ight) = \mathbf{Z}_1\mathbf{u}_1 + \dots + \mathbf{Z}_m\mathbf{u}_m,$$

where $\mathbf{u}_i \sim \mathcal{N}(\mathbf{0}_{q_i}, \sigma_i^2 \mathbf{I}_{q_i}), \sum_{i=1}^m q_i = q$. \mathbf{e} and $\mathbf{u}_i, i = 1, \dots, m$, are jointly independent. Then the covariance of responses \mathbf{y}

$$\mathbf{V}(\sigma^2, \sigma_1^2, \dots, \sigma_m^2) = \sigma^2 \mathbf{I} + \sum_{i=1}^m \sigma_i^2 \mathbf{Z}_i \mathbf{Z}_i^T$$

Linear equations and generalized inverse

For the linear model

$$\mathbf{Y}_{n\times 1} = \mathbf{X}_{n\times p} \mathbf{b}_{p\times 1} + \mathbf{e}_{n\times 1},$$

we obtain the least square estimator by minimize the objective function $Q(\mathbf{b}) = \sum_{i=1}^{n} e_i^2 = (\mathbf{Y} - \mathbf{X}\mathbf{b})^T(\mathbf{Y} - \mathbf{X}\mathbf{b})$. By taking derivative with respect to \mathbf{b} and setting it to zero, we get

$$\left(\frac{\partial Q}{\partial \mathbf{b}}\right)^{T} = \left(\frac{\partial Q}{\partial b_{1}}, \frac{\partial Q}{\partial b_{2}}, \dots, \frac{\partial Q}{\partial b_{p}}\right)^{T} = \left[\frac{\partial \left(\mathbf{Y}^{T}\mathbf{Y} - 2\mathbf{Y}^{T}\mathbf{X}\mathbf{b} + \mathbf{b}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{b}\right)}{\partial \mathbf{b}}\right]^{T} = -2\mathbf{X}^{T}\mathbf{Y} + 2\mathbf{X}^{T}\mathbf{X}\mathbf{b}$$

where we used the fact that for constant vector $\mathbf{a} \in \mathbb{R}^{p \times 1}$, constant matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\mathbf{x} \in \mathbb{R}^{p \times 1}$, we have the two derivatives:

1.
$$\frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}^T$$

2.
$$\frac{\partial \mathbf{x}^T \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{x}^T (\mathbf{A} + \mathbf{A}^T)$$

By setting $\left(\frac{\partial Q}{\partial \mathbf{b}}\right)^T = \mathbf{0}_{p \times 1}$, we get the Normal equations

$$\mathbf{X}^T \mathbf{X} \mathbf{b} = \mathbf{X}^T \mathbf{Y}$$

Consistency

Assume $\mathbf{A} \in \mathbb{R}^{m \times n}$

Definition: The linear system $\mathbf{A}\mathbf{x} = c$ is <u>consistent</u> if there exists an \mathbf{x}^* such that $\mathbf{A}\mathbf{x}^* = \mathbf{c}$.

- If **A** is square and \mathbf{A}^{-1} exists, then $\mathbf{x} = \mathbf{A}^{-1}\mathbf{c}$.
- Proposition (g1): If $\mathbf{A}\mathbf{x} = \mathbf{c}$ is consistent, and if \mathbf{G} is any matrix such that $\mathbf{A} \quad \mathbf{G} \quad \mathbf{A} = \mathbf{A} \quad \mathbf{A}$
- A matrix **G** satisfying $\mathbf{AGA} = \mathbf{A}$ is a generalized inverse of **A** with notation \mathbf{A}^- .
- If **A** is square and \mathbf{A}^{-1} exists, then $\mathbf{A}^{-} = \mathbf{A}^{-1}$ is unique.

The set of all solutions to Ax = c

Suppose that $\mathbf{A}\mathbf{x} = \mathbf{c}$ is consistent. Then \mathbf{x}^* is a solution to $\mathbf{A}\mathbf{x} = \mathbf{c}$ if and only if $\mathbf{x}^* = \mathbf{A}^-\mathbf{c} + (\mathbf{I} - \mathbf{A}^-\mathbf{A})\mathbf{z}$ for some \mathbf{z} and \mathbf{A}^- .

Proof:

Moore-Penrose inverse

Assume $\mathbf{A} \in \mathbb{R}^{m \times n}$

- The Moore-Penrose inverse of **A** is a matrix $\mathbf{A}^+ \in \mathbb{R}^{n \times m}$ with the following properties
 - 1. $\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{A}$ (Generalized inverse, g_1 inverse, or inner pseudo-inverse)
 - 2. $\mathbf{A}^+\mathbf{A}\mathbf{A}^+ = \mathbf{A}^+$. (outer pseudo-inverse. Any g_1 inverse that satisfies this condition is called a g_2 inverse, or reflexive generalized inverse)

- 3. A^+A is symmetric
- 4. $\mathbf{A}\mathbf{A}^+$ is symmetric
- A^+ exists and is unique for any matrix A.
- In practice, the Moore-Penrose inverse A^+ is easily computed from the singular value decomposition of A.
- $(\mathbf{A}^{-})^{T}$ is a generalized inverse of \mathbf{A}^{T}

General form of the least squares solution

Now we have derived the general form of the least squares solution with generalized inverse.

$$\hat{\mathbf{b}} = (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \mathbf{y} + [\mathbf{I}_p - (\mathbf{X}^T \mathbf{X})^{-} \mathbf{X}^T \mathbf{X}] \mathbf{q}$$

where $\mathbf{q} \in \mathbb{R}^p$ is arbitrary.

Positive (semi)definite matrix

Assume $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric (i.e. $\mathbf{A} = \mathbf{A}^T$)

- A real symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is <u>positive semi-definite</u> (or <u>nonnegative definite</u>, or p.s.d.) if $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for all \mathbf{x} . Notation $\mathbf{A} \succeq_{p.s.d.} \mathbf{0}$
- E.g., the Gramian matrix $\mathbf{X}^T\mathbf{X}$ is p.s.d.
- We write $\mathbf{A} \succeq_{p.s.d.} \mathbf{B}$ means $\mathbf{A} \mathbf{B} \succeq_{p.s.d.} \mathbf{0}$
- Cholesky decomposition. Each positive semidefinite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be factorized as $\mathbf{A} = \mathbf{L}\mathbf{L}^T$ for some lower triangular matrix $\mathbf{L} \in \mathbb{R}^{n \times n}$ with nonnegative diagonal entries
- $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive semidefinite if and only if \mathbf{A} is a covariance matrix of a random vector.

 Proof:

Estimable function

Assume the linear mean model: $\mathbf{Y} = \mathbf{X}\mathbf{b} + \mathbf{e}$, $\mathbf{E}(\mathbf{e}) = \mathbf{0}$. One main interest is estimation of the underlying parameter \mathbf{b} . Can \mathbf{b} be estimated or what functions of \mathbf{b} can be estimated?

- A parametric function $\Lambda \mathbf{b}$, $\Lambda \in \mathbb{R}^{m \times p}$ is said to be (linearly) <u>estimable</u> if there exists an <u>affinely unbiased estimator</u> of $\Lambda \mathbf{b}$ for all $\mathbf{b} \in \mathbb{R}^p$. That is there exist constants $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^m$ such that $\mathrm{E}(\mathbf{A}\mathbf{y} + \mathbf{c}) = \Lambda \mathbf{b}$ for all \mathbf{b} .
- Theorem: Assuming the linear mean model, the parametric function $\Lambda \mathbf{b}$ is (linearly) estimable if and only if $\mathcal{C}(\Lambda) \subset \mathcal{C}(\mathbf{X}^T)$, or equivalently $\mathcal{N}(\mathbf{X}) \subset \mathcal{N}(\Lambda)$.

 " $\Lambda \mathbf{b}$ is estimable \iff the row space of Λ is contained in the row space of \mathbf{X}

the null space of **X** is contained in the null space of Λ ." *Proof:*

- $\lambda^T \mathbf{b}$ is linearly estimable if and only if $\lambda^T \mathbf{b}$ is a linear combination of the components in $\mu_Y = \mathbf{E}(\mathbf{Y})$
- Corollary: **Xb** is estimable. "Expected value of any observation $E(y_i)$ and their linear combinations are estimable."
- Corollary: If X has full column rank, then any linear combinations of b are estimable.
- If $\Lambda \mathbf{b}$ is (linearly) estimable, then its least squares estimator $\Lambda \hat{\mathbf{b}}$ is invariant to the choice of the least squares solution $\hat{\mathbf{b}}$.

 Proof:
- The least squares estimator $\Lambda \hat{\mathbf{b}}$ is a linearly unbiased estimator of $\Lambda \mathbf{b}$. *Proof:*

Estimability example: One-way ANOVA model

Consider the following example with one-way ANOVA model.

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$
 $i = 1, 2, 3, j = 1, 2$

In matrix form:

$$\begin{bmatrix} Y_{11} \\ Y_{21} \\ Y_{31} \\ Y_{12} \\ Y_{22} \\ Y_{32} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} + \begin{bmatrix} \epsilon_{11} \\ \epsilon_{21} \\ \epsilon_{31} \\ \epsilon_{12} \\ \epsilon_{22} \\ \epsilon_{32} \end{bmatrix}$$

Note: replication doesn't help with estimability. What functions of $\lambda^T \mathbf{b}$ are estimable? Solutions:

Idempotent matrix

Assume $\mathbf{A} \in \mathbb{R}^{n \times n}$.

- A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is idempotent if and only if $\mathbf{A}^2 (= \mathbf{A} \mathbf{A}) = \mathbf{A}$.
- Any idempotent matrix **A** is a generalized inverse of itself.
- The only idempotent matrix of full rank is **I**.

 Proof. Interpretation: all idempotent matrices are singular except for the identity matrix.
- **A** is idempotent if and only if \mathbf{A}^T is idempotent if and only if $\mathbf{I}_n \mathbf{A}$ is idempotent.
- For a general matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, the matrices $\mathbf{A}^{-}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{-}$ are idempotent and

$$rank(\mathbf{A}) = rank(\mathbf{A}^{-}\mathbf{A}) = rank(\mathbf{A}\mathbf{A}^{-})$$
$$rank(\mathbf{I}_{n} - \mathbf{A}^{-}\mathbf{A}) = n - rank(\mathbf{A})$$
$$rank(\mathbf{I}_{m} - \mathbf{A}\mathbf{A}^{-}) = m - rank(\mathbf{A}).$$