Wikibase as an Infrastructure for Documents and Evaluation of Document Search

Kushagra Singh BISEN

Laboratoire Hubert Curien, Saint Etienne

Outline

- 1. Context and Problem
- 2. Contribution
- 3. Evaluation of Document Search
- 4. Conclusion

Context and Problem

Context and Problem

- Searching for domain specific information is tough
- The main focus in the work is building domain specific corpus, which can be searched and queried efficiently
- With Semantic Web, multiple tools such as Wikibase and QA systems over Knowledge Graphs have emerged

The issues are:

- The queries can be on the content or the metadata. Do we need 2 different answering systems?
- There are different existing search techniques. We need an evaluation for the search techniques to find what is the best solution?

Existing Solutions

There have been existing solutions to make a domain specific searchable and answerable system. In the paper, [1] specific information is extracted from the document with a neural network and generate tripes from it. Although, the ontology and the triples generated are specific to that domain and cannot be extended. In the paper, [2] they proposed a neural network model for building a question answering system.

There have been various solutions to present data in structured fashion in Wikibase. The paper, [3] has proposed an ontology for wikibase but it is domain specific as well.

Research Questions

- 1. How can we have a uniform structured representation for documents of various types?
- 2. How to evaluate search for information?
- 3. Can or should we combine various search techniques for one unique solution method?

Contribution

Wikibase as Infrastructure for Documents

What is Wikibase?

- A free, open source knowledge graph
- It is the software behind Wikidata, one of the largest KG with 5 billion triples
- It is used to build open/enterprise knowledge graphs

Why are we using Wikibase?

- Excellent for people out of scope of KG to interact with structured data
- Can add data by both humans and injest heterogenous data with bots
- Changes can be tracked and reversed, if needed
- Takes less time to setup with many features and scales up well

Wikibase as Infrastructure for Documents

Ontology for Wikibase as Infrastructure for Documents

Why do we need structured data about the document and it's meta-data in RDF?

Example Use Case

The documents we employed in the project for valorising them are in the domain of Disability Studies.

There are different types of questions that can arise, like,

- Single words and definitions
- Metadata of the document
- Unique answer from the documents
- Multiple answer from the documents
- Terms from the text

Combining Various Search Techniques

Response with Structured Data

Combining Various Search Techniques

Response with Free-Text

Combining Various Search Techniques

Response with Keywords

Evaluation of Document Search

Search Techniques Experiment

We undertook a search technique experiment for searching for information in a particular domain. The information was to be searched with 5 methods,

- 1. Searching with a PDF viewer
- 2. Searching over Wikibase
- 3. Searching over Structured Data
- 4. Elastic Search over Documents
- 5. Free-Text search over Documents

Evaluation Techniques

We invited experimental subjects to search for information using different search techniques. We prepared a questionnaire for each search method which were divided into two parts,

- Search Instruction Questionnaire
- User Experience Questionnaire

There were 17 experimental subjects, 6 questions (5 true and 1 false) to search for and 1 UEQ questionnaire to be filled for each search method

Search Instruction Questionnaire

The users had to search for information in 2 minutes and note the relevancy of the information retreived on a scale of 1 to 7 (the higher the better), if they found an answer and the timestamp in seconds if they found the answer.

The questions answered from this experiment is,

- Did the user find an answer?
- What was the time taken through each method?
- Which method had the most relevant answers?

Search Instruction Questionnaire (Contd.)

The user is expected to form his own <u>keywords</u> and <u>questions</u> to search for the answer by reading the instructions. We introduced a question with <u>no</u> <u>answer present</u> in the document corpus to count for false positives. The instructions were,

No.	Instruction to User	Answer available?
1	Find text about the racism faced by black feminists	Yes
2	Find text about elitism in american womens movement	Yes
3	Find text about human rights of minors	No
4	Find text about racism in United States	Yes
5	Find text about ableism in prison	Yes
6	Find text about police violence for disabled people	Yes

User Experience Questionnaire

The users had to fill a questionnaire explaining their <u>user experience</u> after every search method. The questionnaire contains 26 individual items divided into 6 subscales (Attractivenness, Perspicuity, Efficiency, Depandability, Stimulation and Novelty)

The questions answered from this experiment are,

- What does the user feel about the usefullness of the method? i.e Pragmatic Value
- What does the user feel about the ease of use of the method? i.e Hedonic Value

Results

Search Methods

Values of relevant answer from a search method

Results

User Experience Questionnaire

UEQ Pragmatic

UEQ Hedonic

Results

Discussion - Search Methods

After analysing the results from search experiments. According to the users,

- Elastic search found the most relevant answers
- It was followed by QAnswer RDF Search and Wikibase Search
- With the question with no answer available, users found relevant answer with Elastic Search.

Results (Contd.)

Discussion - User Experience Questionnaire

After analysing the results from user experience questionnaire. According to the users,

- The users found free-text over the documents to be more efficient and useful
- It is followed by Elastic Search, and QAnswer Search over RDF in efficiency
- Users found searching over documents with free-text search with the most ease-of-use
- Users found other methods similar in ease of use

Conclusion

Conclusion

- We find that as elastic search had the most relevant answers. It also provided information for instruction with no actual answer in the document corpus
- Elastic Search is not a good method as it provides users with a false sense of information
- In questions we need an exact answer from, structured data is important
- In the subscales of UEQ, free-text performed the best which further supports the argument of having a definitive search system over document corpus.

Future Work

As I have 2 more weeks in my internship,

- The existing ontology is the one we adjusted to our needs for the project, I will work on aligning with existing ontologies such as Dublin Core, FOAF, LOINC, DoCO, UN Document Ontology
- I will work on better methods of analysing the data generated in the evaluation of document search
- We are preparing a demo paper on searching over free-text and RDF at the same time
- We are also preparing a paper demonstrating wikibase as an infrastructure for valorising documents