Optimization algorithms

10/10 points (100%)

Item

Quiz, 10 questions

~	Congra	atulations! You passed!	Next
	~	1 / 1 points	
	1.		
		notation would you use to denote the 3rd layer's activations the 7th example from the 8th minibatch?	ons when the
		$a^{[3]\{7\}(8)}$	
		$a^{[8]\{3\}(7)}$	
	0	$a^{[3]\{8\}(7)}$	
	Corr	ect	
		$a^{[8]\{7\}(3)}$	
		1/1	
		points	
	2.		
	Which with?	of these statements about mini-batch gradient descent of	lo you agree
		Training one epoch (one pass through the training set) to batch gradient descent is faster than training one epoch batch gradient descent.	_

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient

descent.

Correct

Optimizatio	on algorithms	10/10 points (100%)
Quiz, 10 questions	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).	
	1/1 points	
	3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between?	
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.	
	Un-selected is correct	
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	
	Correct	
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.	
	Correct	
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress. Un-selected is correct	
		_

1/1 points 4.

Suppose your learning algorithm's cost J, plotted as a function of the $Optimization_{u}$ algorithm's, looks like this:

10/10 points (100%)

Quiz, 10 questions

Which of the following do you agree with?

	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
0	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
Corre	ect
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.

1/1 points

5.

Suppose the temperature in Casablanca over the first three days of January Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

$$v_2=10$$
, $v_2^{corrected}=10$

$$igcup v_2=10$$
, $v_2^{corrected}=7.5$

$$igcup_2=7.5$$
 , $v_2^{corrected}=10$

Correct

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha = 0.95^t lpha_0$$

$$lpha = rac{1}{1+2*t}\,lpha_0$$

$$igcap lpha = e^t lpha_0$$

Correct

$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \alpha_0$ Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

Un-selected is correct

Increasing β will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta = 0.9$. In lecture we had a green line \$\$\beta = 0.98) that is slightly shifted to the right.

 $Optimization algoriff hims {\it \beta} \ {\it will} \ {\it create more oscillation within the red line}.$

10/10 points (100%)

Quiz, 10 questions

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Un-selected is correct

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent with momentum (small eta). (2) is gradient
descent. (3) is gradient descent with momentum (large eta)

(1) is gradient descent. (2) is gradient descent with momentum
(large β). (3) is gradient descent with momentum (small β)

(1) is gradient descent with momentum (small eta), (2) is gradient
descent with momentum (small eta), (3) is gradient descent

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Correct

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

10.

Which of the following statements about Adam is False?

- Adam combines the advantages of RMSProp and momentum
- Adam should be used with batch gradient computations, not with mini-batches.

Correct

- The learning rate hyperparameter α in Adam usually needs to be tuned.
- We usually use "default" values for the hyperparameters eta_1,eta_2 and arepsilon in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)

