ETESP

QUÍMICA GERAL

TABELA PERIÓDICA

ORGANIZAÇÃO, CLASSIFICAÇÃO

PROPRIEDADES PERIÓDICAS

ELETROAFINIDADE OU AFINIDADE ELETRÔNICA

TABELA PERIÓDICA

AFINIDADE ELETRÔNICA

| Eletroafinidade

Eletroafinidade ou Afinidade eletrônica é a energia liberada quando um átomo (isolado e no estado gasoso) recebe um elétron. Entretanto, existem algumas exceções, uma delas é sobre o átomo de cloro. Embora esteja em uma posição inferior na tabela, possui afinidade superior ao átomo de flúor (F), por exemplo.

Formação de Ânions

22 W DI 22 W D

Generalizando

Quanto menor o raio atômico do átomo, maior será a afinidade eletrônica

Na mesma família: a eletroafinidade costuma aumentar de baixo para cima; No mesmo período: a eletroafinidade geralmente aumenta da esquerda para a direita.

TABELA PERIÓDICA

| Afinidade eletrônica

		de Cl	porque	as repu	ılsões el	étron-el	étron sâ	io maio	res no F	que te	m um					-328	
Lj	Ве	raio m	enor.									В	С	Ŋ	0	F	N
Na	Mg											Al	Si	Р	5	-349 CI	A
К	Ca	Sc	Ti	У	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	K
Rb	Sr	A	Zr	פֿוו	Nlo	Tc	Ru	Rh	Pd	Ag	Cq	ln	5n	Sb	Те	-1	Χ
C5	Ba		Hf	Та	M	Re	Os	lr	Pt	Au	Hg	TI	ઇલ	Bi	Po	At	R
Fr	Ra	,	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Ms	ĹУ	Ts	0
			La	Ce	Pr	Nd	Prn	Sm	Eu	Gd	Тb	Dy	Ho	Er	Tm	Yb	L

AFINIDADE ELETRÔNICA

Algumas exceções: uma delas é sobre o átomo de cloro. Embora esteja em uma posição inferior na tabela, possui afinidade superior ao átomo de flúor (F).

Portanto, entende-se que a afinidade eletrônica é maior nos elementos posicionados mais à direita superior da tabela.

QUÍMICA GERALI PROFESSOR JOTA I ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO

TABELA PERIÓDICA

| Propriedades Periódicas

| Tabela periódica

51 W D1 51 W D1

| Propriedades Periódicas | Eletroafinidade | Afinidade eletrônica Н He Be B C M 0 Ne Na Si 5 CI Mg P Ar Zn Sc Ti Kr V Ca Cr Mn Fe Co Mi Cu Ga Ge As Se Rb Zr Tc Sn Sb Sr dil Rh Pd Ag Cd Te //e Mo Ru In Cs Hf Ta Pb At Ba W Re 05 Ir PÌ Au Hg TI Bi Po Rn Mc Ts Og Rf Sg Bh Hs Rg Nh Ly Fr Ra Db Mit Ds Cn Nd Gd Tb Ho Er Yb Ce Pr Prn Sm Eu Dy Tm Lu La Th Pa Es IJ Np Pu Am Cm Cf Fm Md No Lr

LAFINIDADE ELETRÔNICA

Comparando todos elementos, os halogênios, pertencentes ao grupo 7A, apresentam os maiores valores de eletroafinidade, característica oposta aos metais alcalinos, do grupo 1A.

QUÍMICA GERALI. PROFESSORJOTA I. ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO.

Es

Fm

Md

No

Lr

51 W D1 51 W D1

Propriedades Periódicas	Eletroafinidade	Afinidade eletrônica

Th

			-11														He
Lj	Be								100			B	С	Ŋ	0	F	Ne
Na	Mg		U	-					->		*100	Al	Si	Р	5	CI	Αr
48 K	Ca	Sc	Ti	У	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	-325 Br	Kr
Rb	Sr	Ą	Zr	dlı	clvi	Тс	Ru	Rh	Pd	Ąg	Cd	ln	Sn	Sb	Те	- 1	Хe
C5	Ba		Hf	Та	M	Re	Os	lr	Pt	Au	Hg	TI.	લેલ	Bi	Po	At	Rn
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mit	Ds	Rg	Cn	Nh	Fl	Ms	ĹУ	Ts	Og

Am

Cm

Np

AFINIDADE ELETRÔNICA

O Potássio e o Bromo, que estão no terceiro período, o bromo tem o maior valor. Conclui-se, portanto, que em um mesmo período, quanto maior for a família na tabela periódica, também mais elevado será o valor da afinidade dos elementos, ou seja, ela varia da esquerda para direita.

QUÍMICA GERALI. PROFESSOR JOTA I. ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO.

Pu

Am

Cm

Th

Pa

IJ

Np

Bk

Cf

Es

Fm

Md

No

Lr

LAFINIDADE ELETRÔNICA

O lítio (Li) e o potássio (K) pertencem mesmo grupo ou família. Entretanto, a eletroafinidade do lítio é -60kJ/mol, enquanto que a do potássio é -48.

Logo, é possível perceber que em uma família, os elementos localizados nos períodos superiores, terão menor valores de eletroafinidade

QUÍMICA GERALI PROFESSOR JOTA I ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO

Th

Pa

IJ

Np

Pu

Am

Cm

Bk

Cf

Es

Fm

Md

No

Lr

LAFINIDADE ELETRÔNICA

O Berílio não tem nenhuma afinidade por elétrons. Sua configuração eletrônica é 1s 22s 2. Um elétron teria de ser adicionado ao subnível 2p, cuja energia é mais elevada do que a dos elétrons de valência (2s).

QUÍMICA GERALI. PROFESSOR JOTA I. ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO.

He

Ne

Ar

Kr

//e

Rn

Og

Lu

Lr

Pr

Pa

Ce

Th

La

Nd

IJ

Prn

Np

Sm

Pu

H	١.															
Li	Be											В	С	> 0 N	0	F
Na	Mg		J	-				1	\Rightarrow		75.1	Al	Si	P	5	Cl
K	Ca	Sc	Ti	У	Cr	Mn	Fe	Co	ilí	Сп	Zn	Ga	Ge	As	Se	Br
Rb	Sr	A	Zr	dlı	No	Ts	Ru	Rh	Pd	Ąg	Cd	ln	Sn	55	Те	1
C5	Ba		Hf	Та	M	Re	Os	Ir	Pt	Au	Hg	TI.	લેલ	Bi	Po	At
Fr	Ra		Rf	dd	Sg	Bh	Hs	Mit	Ds	Rg	Cn	Nh	Fl	Ms	Ĺу	Ts

Eu

Am

Gd

Cm

Tb

Bk

Dy

Cf

Ho

Es

Er

Fm

Tm

Md

Yb.

No

AFINIDADE ELETRÔNICA

O Nitrogênio também não tem nenhuma afinidade por elétrons. A configuração eletrônica do nitrogênio é 1s 22s 22p3. Portanto o elétron adicionado teria de ocupar o orbital 2p que está semipreenchido e as repulsões elétron-elétron seriam muito significativas.

QUÍMICA GERALL PROFESSOR JOTA | ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO

Tabela Periódica

Pro	priedade	s Periódio	as		J Ele	troafinio	lade] A	Afinidade	eletrôni	са							
	H			î														He
	<u>L</u> j	Ве											В	С	N	0	-328 F	Ne
	Ma	Mg		J	-					->			A	Si	P	5	CI	Ar
	K	Ca	Sc	Ti	У	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	-325 Br	Kr
	Rb	Sr	A	Zr	IJὸ	Olvi	Тс	Ru	Rh	Pd	Ag	Cd	ln	Sn	55	Те	1	Хe
	C5	Ba		Hf	Та	M	Re	Os	Ir	Pt	Au	Hg	TI	િલ્લ	Bi	Po	At	Rn
	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mit	Ds	Rg	Cn	Nh	Fl	Mc	Ĺy	Ts	Og
				La	Ce	Pr	Nd	Prn	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Уb	Lu
												111						

AFINIDADE ELETRÔNICA

O flúor (F) e o bromo (Br) pertencem a família 17 ou 7A. O flúor é do 2º período, possui AE igual a -328 kJ/mol, enquanto que o Bromo, do 3º período, tem AE equivalente a -325 kJ/mol.

Em uma mesma família, os elementos localizados nos períodos superiores, terão menor valores de eletroafinidade, variando na tabela periódica de baixo para cima.

QUÍMICA GERALI. PROFESSOR JOTA I. ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO.

Propriedades Periódicas	Eletroafinidade	Afinidade eletrônica
112		

LAFINIDADE ELETRÔNICA

A afinidade eletrônica dos gases nobres é irrelevante. Isso porque eles não conseguem receber elétrons e, assim, não liberam energia.

Quanto maior o nível de estabilidade dos átomos, maior será a quantidade de energia liberada.

QUÍMICA GERALI. PROFESSOR JOTA I. ESCOLA FÉCNICA ESTADUAL DE SÃO PAULO.

Pro	opriedade	s Periódio	ras		Ele	troafinio	lade] #	Afinidade	eletrôni	са							
	Н			î														He
	Lj	Be											В	С	N	0	F	Ne
	Na	Mg		J	-					->			A	Si	Р	S	CI	Ar
	к	Ca	Sc	Ti	У	Cr	Mn	Fe	Co	Ni	Сп	Zn	Ga	Ge	As	Se	Br	Kr
	Rb	Sr	A	Zr	dlı	Mo	Τc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Те	1	Xe
	Cs	Ba		Hf	Та	M	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	Fr	Ra		Rf	dd	Sg	Bh	Hs	Mit	Ds	Rg	Cn	Nh	Fl	Ms	Lv	Ts	Og
				La	Ce	Pr	Nd	Prn	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Υb	Lu
				Αc	Th	Pa	u	No	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

LAFINIDADE ELETRÔNICA

A unidade usada para expressar a eletroafinidade é o elétron-volt (eV), é a medida da intensidade com que o átomo "segura o elétron". Essa medida é muito difícil de ser feita experimentalmente; e por isso ainda não foi definida para todos os elementos da tabela como, por exemplo, para os gases nobres e para todos os metais alcalinos terrosos.

QUÍMICA GERALI PROFESSORJOTA I ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO

QUÍMICA GERALI, PROFESSOR JOTA I, ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO.

kJ/mol

 $X_{(g)}^0 + e \rightarrow X_{(g)}^- + Energia$

Propriedades Periódicas

TABELA PERIÓDICA

| Eletroafinidade

| Afinidade eletrônica

 $X_{(g)}^0 + e^- \rightarrow X_{(g)}^- + \text{Energia (energia liberada)}$

 $X_{(g)}^0 + e^- \rightarrow X_{(g)}^- + \text{Energia}$

O termo afinidade eletrônica foi definido como a diferença de energia intema entre um mol de átomos gasosos de um elemento e um mol de seus monoânions gasosos. Uma afinidade eletrônica positiva indica que os ânions tem menor energia que os átomos, e que a formação dos ânions a partir dos átomos é exotérmica"2.

Quanto mais estável um átomo, mais energia ele libera. Ao mesmo tempo, quanto mais negativa essa afinidade for, mais elétrons são atraídos pelos átomos.

AE₁ 1ª Afinidade Eletrônica

AE<0 AE<0 , a energia é liberada para formar o ânion

AH<0 , a energia é exotérmica

QUÍMICA GERALI PROFESSOR JOTA I ESCOLA FÉCRICA ESTADUAL DE SÃO PAULO

23 M D 24 M D 24 M D 25 M D 26 M D 26

LAFINIDADE ELETRÔNICA

2×81 A+15

| Eletroafinidade

O termo afinidade eletrônica foi definido como a diferença de energia intema entre um mol de átomos gasosos de um elemento e um mol de seus monoânions gasosos. Uma afinidade eletrônica positiva indica que os ânions tem menor energia que os átomos, e que a formação dos ânions a partir dos átomos é exotérmica"2.

Nenhum átomo apresenta uma afinidade eletrônica negativa para um segundo elétron, devido às fortes repulsões. No entanto, ânions duplamente carregados podem ser estabilizados por meio da atração eletrostática a íons positivos vizinhos.

AE₂ AE>0 2ª Afinidade Eletrônica

AE>O, a energia é adicionada para formar o ânion

AH>O, a energia é endotérmica

TABELA PERIÓDICA

Eletroafinidade ou Afinidade eletrônica é a energia liberada quando um átomo (isolado e no estado gasoso) recebe um elétron. Formação de ânions

 $X^{0}_{(q)} + e^{-} + \text{Energia} \rightarrow X^{-}_{(q)}$ {energia adicionada} + kJ/mol $X^{-}_{(g)} + e^{-} + \text{Energia} \rightarrow X^{2-}_{(g)}$ $X_{(g)}$ + e + Energia $\rightarrow X^{2}_{(g)}$

| Propriedades Periódicas | Afinidade eletrônica | Eletroafinidade

Exemplos:

$$X^0_{(q)} + e \rightarrow X^{-(g)} +$$
Energia

$$X^{\circ}_{(g)}$$
 + e- + Energia $\rightarrow X^{-}_{(g)}$

1º Afinidade Eletrônica AH<0 , a energia é exotérmica

1º Afinidade Eletrônica AH>O, a energia e endotermica

QUÍMICA GERALI 2 KMP TABELA PERIÓDICA -----------

1s2 $2s^2$ 2p4

elétrons na camada de valência.

Isso é incomum porque um átomo carregado negativamente requer uma grande têm uma elevada afinidade eletrônica e são os únicos dois elementos conhecidos comumente e que existem com uma carga de -2.

LI

| Afinidade eletrônica

| Energia de Ionização

| Potencial de Ionização

| AFINIDADE ELETRÔNICA

 $X^{0}_{(g)}$ + Energia $\rightarrow X^{+}_{(g)}$ + e^{-}

À medida que se retira elétrons das camadas a energia de ionização aumenta, pelo fato que o núcleo vai possuindo mais cargas positivas que negativas e consegue atrair com mais força seus elétrons.

o H (hidrogênio) possui somente uma camada eletrônica, então seu elétron está bem próximo ao núcleo. Já o Cs (césio) possui seis camadas eletrônicas, estando seus elétrons bem distantes do núcleo. É por isso que a energia de ionização do H é bem maior (1312) que a do Cs (376).

Eletroafinidade

| Afinidade eletrônica

Todos os átomos no grupo 7 libertam uma atração de +7 independentemente do número de elétrons já em órbita. Da mesma forma, todos os átomos no grupo 6 libertam uma atração de +6. Isso núcleo menos o número de elétrons em todos os orbitais inferiores.

um segundo elétron, devido as fortes repulsões. No entanto, ânions duplamente carregados podem ser estabilizados por meio da atração eletrostática a ions positivos vizinhos.

TABELA PERIÓDICA

| Potencial de Ionização

2-31 A-15 QUIMICAGRALI FIRM

Propriedades Periódicas

Eletroafinidade

| Afinidade eletrônica

| Energia de Ionização

Os estados físicos da matéria

Os estados físicos da matéria são determinados pelo distanciamento entre as moléculas, conexões moleculares e <u>energia cinética</u> que movimenta as partículas de uma amostra. São eles:

sólido;

líquido;

gasoso;

plasma;

condensado de Bose-Einstein.

Em estado sólido, temos moléculas bem agrupadas e com pouca movimentação. No extremo oposto, estão o estado gasoso e o plasma, nos quais as moléculas têm um espaçamento entre elas e alta energia cinética. Materiais em estado líquido ficam no meio-termo, não possuem forma física definida, apresentam mais energia cinética que um material sólido e um espaçamento entre as moléculas menor que materiais gasosos. O condensado de Bose-Einstein é uma descoberta relativamente nova que gira em torno da ideia de se ter uma amostra sem movimentação entre as moléculas, isto é, sem energia cinética.

da matéria, é um gás ionizado, ou seja, que teve os seus elétrons arrancados devido a um grande aumento em sua energia.

A energia envolvida é muito grande Temperatura próxima do Sol - 10milhões de

| TABELA PERIÓDICA

PLASMA

Fundamentalmente, as diferenças entre um gás ordinário e o plasma dão-se por fatores como <u>densidade</u>, <u>temperatura</u> e estado de ionização, além disso, apesar de ser pouco encontrado na Terra, o plasma é o estado físico mais comum da matéria do Universo.

A densidade de um plasma é medida pelo número de elétrons por unidade de volume, a temperatura, por sua vez, pode ser dada tanto em kelvins, quanto em elétrons-volts (uma unidade de medida para a energia cinética dos elétrons), e o estado de ionização diz respeito aos plasmas totalmente ou parcialmente ionizados.

Geralmente, é possível obter-se o plasma aquecendo um gás a temperaturas muito elevadas, como nos casos das <u>estrelas</u> e durante a formação das descargas elétricas (<u>raios</u>). Chamamos a esse tipo plasma térmico, uma vez que tanto os elétrons quanto as suas outras partículas constituintes estão sob a mesma temperatura.

Leitura Complementar

Plasma

O plasma é um dos quatro <u>estados fundamentais da matéria</u>. Trata-se de um gás qualquer que teve os seus <u>elétrons</u> arrancados devido a um grande aumento em sua energia. Todos os <u>gases</u> que recebem quantidades suficientemente grandes de energia podem ter os seus <u>átomos</u> e moléculas <u>ionizados</u>, ou seja, ter os seus elétrons distanciados a ponto de eles deixarem de sofrer uma grande atração elétrica aos seus núcleos atômicos.

O plasma comporta-se, portanto, como uma "nuvem" de <u>prótons</u>, <u>nêutrons</u> e elétrons livres, diferentemente dos gases que são formados por átomos e moléculas neutras. Além disso, as partículas de carga elétrica positiva (prótons) e negativa (elétrons) do plasma atraem-se mutuamente, mas não são capazes de ligarem-se, devido à grande velocidade e agitação térmica comuns a esse estado da matéria.

TABELA PERIÓDICA

Leitura Complementar

Plasma

Como funciona uma usina de plasma para lixo?

Fazer o tratamento dos resíduos sólidos através da tecnologia de Plasma significa dizer em curtas palavras ter que introduzir tanta energia para os resíduos em um sistema fechado e muito bem isolado que toda a matéria seja transformada em plasma.

Como o <u>lixo</u> é demasiadamente heterogêneo, ou seja, é composto de vários materiais oriundo dos mais diversos compostos químicos, teremos então um plasma formado por gás ionizado de vários tipos de elementos químicos.

Ao parar de fornecer energia para o sistema onde o lixo está contido, os ions tendem a formar gases liberando a energia que foi necessária para separá-los. Tendo em vista que não acontece uma fissão nuclear,

o gás formado é composto então dos vários tipos de átomos que estavam no lixo antes do tratamento e vai formar diversos tipos de gases à altas temperaturas. Esses gases são então filtradas e direcionados à uma turbina a gás que faz a conversão de energia termica em mecânica.

> Como a turbina está acoplada a um gerador elétrico, este faz a conversão da energia mecânica em elétrica. Como o gás que sai dessa turbina ainda possui uma temperatura muito alta, o mesmo passar por trocadores de calor onde então aquece a água, transformando-a em vapor para alimentar uma turbina a vapor de água com o intuito de conversão de energia até a energia elétrica de acordo com o mesmo princípio da turbina a gás.

ODINICA 689/E) TABELA PERIÓDICA AFINIDADE ELETRÔNICA TAREFA <não envie> 1 2 3 4 5 6 7 8 9 10 11 12 Menção de atitude

LIL

QUÍMICA GERALI PROFESSOR JOTA I ESCOLA TÉCNICA ESTADUAL DE SÃO PAULO