TUT206 Nov 15

Review

How are predictors variables used to predict an outcome variable?
 E.g.,

$$Y_i = eta_0 + eta_1 x_i + eta_2 1_B(k_i) + eta_3 1_C(k_i) + eta_4 x_i 1_B(k_i) \ + eta_5 1_B(k_i) 1_C(k_i) + eta_6 x_i^2$$

Does it has interaction term?

Review

$$Y_i = eta_0 + eta_1 x_i + eta_2 1_B(k_i) + eta_3 1_C(k_i) + eta_4 x_i 1_B(k_i) + eta_5 1_B(k_i) 1_C(k_i) + eta_6 x_i^2$$

- β_0 : Intercept of the model (the expected value of Y_i when all predictors are 0).
- $\beta_1 x_i$: Linear effect of the continuous predictor x_i .
- $\beta_2 1_B(k_i)$: Effect of the binary indicator variable for category "B".
- $eta_3 1_C(k_i)$: Effect of the binary indicator variable for category "C".
- $\beta_4 x_i 1_B(k_i)$: Interaction effect between x_i and the indicator for "B".
- $eta_5 1_B(k_i) 1_C(k_i)$: Interaction between indicators for "B" and "C".
- $\beta_6 x_i^2$: Non-linear (quadratic) effect of x_i .

- In-sample validation:
 Evaluates the model using
 the same data it was trained
 on. This can overestimate the
 model's predictive power
 because it may fit the noise in
 the data (overfitting).
- Out-of-sample validation:
 Evaluates the model using
 new, unseen data (test set).
 This provides a better
 estimate of how the model will
 perform on future data.

See demo

Demo: what is decision tree?

What's similar about this code and the multiple linear regression code above?

```
# Fit the linear regression model using statsmodels train_data = pd.concat([X_train, y_train], axis=1) formula = 'Q("mean smoothness") ~ Q("mean area") + Q("texture error") + Q("smoothness error") + Q("mean fractal dimension")' linear_model = smf.ols(formula, data=train_data).fit()
```

```
# Initialize and fit the Decision Tree model
tree_model = DecisionTreeClassifier(random_state=130)
tree_model.fit(X_train, y_train)
```

Key Differences:

- Outcome Type:
 - Linear Regression: Predicts a continuous numeric outcome (e.g., mean smoothness).
 - Decision Tree: Predicts a categorical outcome (e.g., malignant or benign).
- Evaluation Metric:
 - Linear Regression: Uses MSE (lower is better).
 - **Decision Tree:** Uses accuracy (higher is better).
- Model Type:
 - Linear Regression: Assumes a linear relationship between predictors and the outcome.
 - **Decision Tree:** Splits data into subsets based on **feature thresholds**, capturing non-linear relationships.

Output Type:

- Multiple linear regression predicts a continuous numeric value (e.g., price, weight).
- A classification decision tree predicts a categorical class label (e.g., "yes" or "no", "A" or "B").

Model Form:

- Multiple linear regression is a linear model, assuming a straight-line relationship between predictors and the outcome.
- A decision tree is a **non-linear model**, allowing for more complex relationships by making splits in the feature space.

DecisionTreeClassifier

DecisionTreeClassifier(max_depth=2, random_state=42)

- DecisionTreeClassifier(max_depth=2, random_state=42)
 - max_depth=2: This parameter sets the maximum depth of the tree to 2. It means the tree can have at most 2 levels of decision splits. A lower depth typically prevents overfitting but might underfit the data if the model is too simple.
 - random_state=42: This parameter controls the randomness of the algorithm. By setting a seed value (in this case, 42), we ensure that the decision tree's behavior is reproducible every time we run the code.

Nodes (Rectangles):

- Each rectangle is a decision node or a leaf node.
- Decision nodes contain a condition (e.g., worst concave points <= 0.145).
- Leaf nodes are terminal nodes where a final decision is made (e.g., class = benign or class = malignant).

Splitting Condition:

- For example, the root node checks if worst concave points <= 0.145.
- If this condition is True, the model follows the left branch. If False, it follows the right branch.

Gini Index (gini):

- **Gini index** measures the impurity of a node. It ranges from 0 (pure node) to 0.5 (maximally impure).
- In a pure node (e.g., gini = 0.0), all samples belong to one class.
- The lower the Gini index, the better the split. For instance, the leaf node with gini = 0.0 and samples = 3 is perfectly pure (all samples are benign).

Samples:

- This indicates the number of samples (data points) in that node.
- For example, samples = 284 in the root node means the entire dataset used to build this tree had 284 samples.

Value:

- The value indicates the distribution of samples across the classes (e.g., [101.0, 183.0]).
- [101.0, 183.0] means there are 101 samples of one class (e.g., malignant) and 183 samples of another class (e.g., benign).

```
# Generate the confusion matrix
conf_matrix =
confusion_matrix(cancer_data.target[testing_indices],
y_pred_depth_2)
```

 testing_indices selects only the test subset of the data, ensuring that we compare predictions against the correct test labels.

True negative

Predicted negative
Actual negative

False negative

Predicted negative Actual positive

False positive

Predicted positive Actual negative

True positive

Predicted positive Actual positive

Analysis:

- High False Positive (FP) Rate:
 - The model has a high number of false positives (168), indicating it often predicts malignant cases even when they are actually benign.
 - This could lead to unnecessary medical interventions and stress for patients.
- High False Negative (FN) Rate:
 - The model has a high number of false negatives (102), which is concerning because it fails to identify many malignant cases.
 - In medical applications, false negatives are critical because they represent missed cancer diagnoses, potentially delaying treatment.

Discussion

1. [7 minutes] Purpose of Train-Test Validation Framework

The **train-test** validation framework helps to assess the model's ability to generalize. It allows us to evaluate how well the model performs on unseen data:

- Train Set: Used to fit the model.
- Test Set: Used to evaluate the model's performance.

Goal: Ensure that the model doesn't just perform well on the training data (in-sample), but also on new, unseen data (out-of-sample). This helps identify issues like **overfitting**.

Discussion Prompt:

- Why do we need both a train and test set?
- What problems might arise if we only evaluate on the training data?

Discussion

Comparison and Key Differences

Concept	Type I Error (False Positive)	False Positive (FP) Prediction
Context	Hypothesis testing	Classification problems
Definition	Incorrectly reject null hypothesis	Incorrectly predict a positive outcome
Example	Declaring a drug effective when it's not	Predicting spam for a non-spam email
Concept	Type II Error (False Negative)	False Negative (FN) Prediction
Concept Context	Type II Error (False Negative) Hypothesis testing	False Negative (FN) Prediction Classification problems
* •	J	

D D