7210 HW 12

Duncan Wilkie

29 November 2022

Problem 1 (D&F 13.1.1). Show that $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of p(x). Find the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.

Proof. The first part is immediate from Eisenstein's criterion over $\mathbb{Z}[x]$: p is a monic polynomial with 3 dividing all non-leading coefficients and $3^2 = 9$ not dividing its constant coefficient, so it is irreducible in $\mathbb{Q}[x]$. In the field $\mathbb{Q}[x]$, which is of course a PID, we can find multipliers satisfying the Bézout relation

$$a(x)(1+x) + b(x)(x^3 + 9x + 6) = 1$$

since the gcd of the two fixed factors is 1 because p is irreducible. Equivalently,

$$a(x)(1+x) = 1 - b(x)(x^3 + 9x + 6),$$

implying in $\mathbb{Q}(\theta) \cong \mathbb{Q}[x]/(x^3+9x+6)$ that $a(\theta)(1+\theta)=1$. We apply the Euclidean algorithm to find a:

$$x^{3} + 9x + 6 = (x^{2} - x + 10)(1 + x) - 4$$
$$1 + x = \left(\frac{1}{4} + \frac{x}{4}\right)4 + 0$$

so $4 \sim 1$ is indeed the gcd. We equivalently have

$$1 = \left(-\frac{1}{4}\right)(x^3 + 9x + 6) + \left(-\frac{x^2}{4} + \frac{x}{4} + \frac{5}{2}\right)(1+x)$$

so
$$(1+\theta)^{-1} = -\frac{1}{4}(\theta^2 - \theta + 10)$$
.

Problem 2 (D&F 13.5.6). Prove that $x^{p^n-1} - 1 = \prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} (x - \alpha)$. Conclude that $\prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} \alpha = (-1)^{p^n}$ so the product of the nonzero elements of a finite field is +1 if p = 2 and -1 if p is odd. For p odd and n = 1 derive **Wilson's Theorem**: $(p-1)! \equiv -1 \pmod{p}$

Proof. Since \mathbb{F}_{p^n} 's multiplicative group is of order p^n-1 , then certainly $\alpha^{p^n-1}=1\Leftrightarrow \alpha^{p^n-1}-1=0$ for all $\alpha\in\mathbb{F}_{p^n}^{\times}$. Accordingly, $x^{p^n-1}-1$ has a root at every unit in \mathbb{F}_{p^n} , meaning it has a linear factor for every such unit; since the product of such factors is a polynomial of degree p^n-1 , there can be no additional factors.

Evaluating this at x = 0,

$$\prod_{\alpha \in \mathbb{F}_{p^n}^\times} -\alpha = -1 \Leftrightarrow (-1)^{p^n-1} \prod_{\alpha \in \mathbb{F}_{p^n}^\times} \alpha = -1 \Leftrightarrow \prod_{\alpha \in \mathbb{F}_{p^n}^\times} \alpha = (-1)^{-p^n} = (-1)^{p^n}$$

since integer parity is preserved under negation.

For n=1, the fields are of the form $\mathbb{Z}/p\mathbb{Z}$, and the elements are equivalence classes $\bar{0}, \bar{1}, \ldots, \overline{p-1}$. Accordingly, applying this result yields the product of all field elements $\overline{p-1} \cdot \overline{p-2} \cdots \bar{1}$ being equal to $(\overline{-1})^p$, which for odd primes, is $-1 \pmod p$, proving Wilson's theorem.

Problem 3 (D&F 13.5.8). Prove that $f(x)^p = f(x^p)$ for any polynomial $f(x) \in \mathbb{F}_p[x]$.

Proof. For finite fields, the Frobenius endomorphism is in fact a homomorphism, meaning it distributes over products and sums, so

$$(a_0 + a_1 x + \dots + a_n x^n)^p = a_0^p + a_1^p x^p + \dots + a_n^p \underbrace{x^p \cdot x^p \cdot \dots x^p}_{n \text{ times}}.$$

A coefficient is either zero, in which case the equality of the two forms is immediate, or an element of \mathbb{F}_p^{\times} , which has order p-1, meaning $a_i^p=a_ia_i^{p-1}=a_i$, so the polynomial is

$$a_0 + a_1 x + \dots + a_n (x^p)^n = f(x^p).$$

Problem 4 (D&F 13.5.9). Show that the binomial coefficient $\binom{pn}{pi}$ is the coefficient of x^{pi} in the expansion of $(1+x)^{pn}$. Working over \mathbb{F}_p show that this is the coefficient of $(x^p)^i$ in $(1+x^p)^n$ and hence prove that $\binom{pn}{pi} \equiv \binom{n}{i} \pmod{p}$.

Proof. By the binomial theorem (which was proven in a general context on a previous homework),

$$(1+x)^{pn} = \sum_{i=0}^{pn} \binom{pn}{i} x^i$$

so the coefficient of x^{pi} is $\binom{pn}{pi}$. Using the Frobenius endomorphism on \mathbb{F}_p ,

$$(1+x)^{pn} = (1^p + x^p)^n = (1+x^p)^n,$$

which, together with the fact that $x^{pi} = (x^p)^i$, demonstrates that $\binom{pn}{pi}$ is the coefficient of $(x^p)^i$ in $(1+x^p)^n$. This latter term is, by the binomial theorem again,

$$(1+x^p)^n = \sum_{i=0}^n \binom{n}{i} x^{pi}.$$

Comparing the coefficients of x^{pi} ,

$$\binom{pn}{pi} = \binom{n}{i}$$

in \mathbb{F}_p , i.e.

$$\binom{pn}{pi} = \binom{n}{i} \pmod{p}.$$