点集拓扑名词汇总 (期末)

烯烃不饱和

二〇二四年一月十日

文章导航

1	前言											3										
2	引言	部分																				3
3	拓扑	空间与连续	姓																			4
	3.1	拓扑空间										 				 						4
	3.2	连续映射										 				 						8
	3.3	同胚映射																				
	3.4	乘积空间																				
	3.5	拓扑基.									•	 				 						10
4	重要	的拓扑性质	Ę																			11
	4.1	分离公理										 				 						11
	4.2	可数公理																				
	4.3	紧致性.										 				 						13
	4.4	连通性.										 				 						14
	4.5	道路连通	生 .									 				 						15
	4.6	拓扑性质。	与同周	胚.								 				 						17

1 前言

笔者为了更全面地总结复习本学期拓扑学相关内容,故编写此文档。文档内所有名词及其解释均参考自《基础拓扑学讲义》¹。本文档仅给出了《基础拓扑学讲义》第一、二章中相关名词的文字描述和公式描述,相关定理定义的证明在本文档中并未给出。由于笔者水平有限,文档内容难以尽善尽美,如有错误请读者见谅,在此恳请各位批评指正。

2 引言部分

定理 2.1: De Morgan 公式

- $B \setminus \bigcup_{\lambda \in \Lambda} A_{\lambda} = \bigcap_{\lambda \in \Lambda} (B \setminus A_{\lambda});$
- $B \setminus \bigcap_{\lambda \in \Lambda} A_{\lambda} = \bigcup_{\lambda \in \Lambda} (B \setminus A_{\lambda})$.

特别当 B = X 为全集时,上述两式变为

- $(\bigcup_{\lambda \in \Lambda} A_{\lambda})^c = \bigcap_{\lambda \in \Lambda} A_{\lambda}^c$;
- $(\bigcap_{\lambda \in A} A_{\lambda})^c = \bigcup_{\lambda \in A} A_{\lambda}^c$.

定义 2.1: 映射

映射 $f: X \to Y$ 是一个对应关系, s.t. $\forall x \in X$, 对应 Y 中的一点 f(x) (称为 x 的像点).

命题 2.1: 像与原像

f 下的像与原像有如下规律:

$$(1) f^{-1} \Big(\bigcup_{\lambda \in A} B_{\lambda} \Big) = \bigcup_{\lambda \in \Lambda} f^{-1} (B_{\lambda}) ;$$

$$(2)\,f^{-1}\big(\bigcap_{\lambda\in A}B_\lambda\big)=\bigcap_{\lambda\in A}f^{-1}(B_\lambda);$$

(3)
$$f^{-1}(B^c) = (f^{-1}(B))^c$$
;

$$(4) f^{-1}(B \backslash D) = f^{-1}(B) \backslash f^{-1}(D);$$

$$(5) f(\bigcup_{\lambda \in A} A_{\lambda}) = \bigcup_{\lambda \in A} f(A_{\lambda});$$

$$(6)$$
 $f(\bigcap_{\lambda \in \Lambda} A_{\lambda}) \subset \bigcap_{\lambda \in \Lambda} f(A_{\lambda})$, 当 f 单时为相等;

$$(7)f(f^{-1}(B)) \subset B,$$
当 f 满时为相等;

¹尤承业, 数学家. 基础拓扑学讲义 [M]. 北京大学出版社, 1997.

定义 2.2: 恒同映射

集合 X 到自身的恒同映射(保持每一点不变)记作 $\mathrm{id}_X: X \to X$.

定义 2.3: 包含映射

若 $f: X \to Y$ 是映射, $A \subset X$,规定 f 在 A 上的限制为 $f|A: A \to Y, \forall x \in A, f|A(x) = f(x)$. 记 $i: A \to X$ 为包含映射,即 $\forall x \in A, i(x) = x$. 于是, $i = \operatorname{id} |A, f|A = f \circ i$.

定义 2.4: 笛卡尔积

设 X_1 和 X_2 都是集合,称集合

$$X_1 \times X_2 := \{ 有序偶(x,y) | x \in X, y \in Y \}$$

为 X_1 与 X_2 的**笛卡尔积**. 称 x 和 y 为 (x,y) 的**坐标**.

n 个集合的笛卡尔积 $X_1 \times X_2 \times \cdots \times X_n$ 可类似地定义.

记
$$X^n = \overbrace{X \times X \times \cdots \times X}$$
. 例如 $R^n = \{(x_1, \cdots, x_n) | x_i \in \mathbb{R}\}$.

定义 2.5: 对角子集

称 $X^2 = X \times X$ 的子集

$$\Delta(X) := \{(x, x) | \forall x \in X\}$$

为对角子集 (常简记作 Δ).

3 拓扑空间与连续性

3.1 拓扑空间

设 X 为非空集合,则存在如下定义.

定义 3.1: 幂集

记 2^X 为 X 的幂集, 其中

$$2^X = \{A | A \subset X\}$$

即以 X 的所有子集(包括空集 \emptyset 和 X 自己)为成员的集合.

定义 3.2: 子集族

把 2^X 的自己 (即以 X 的一部分自己为成员的集合) 称为 X 的**子集族**.

3 拓扑空间与连续性 第五页 3.1 拓扑空间

定义 3.3: 拓扑公理

对于非空集合 X, 其子集族 τ 称为 X 的一个拓扑, 如果它满足

- (1) X, \emptyset 都包含于 τ ;
- (2) τ 中**任意**多个成员的并集仍在 τ 中;
- (3) τ 中**有限**多个成员的交集仍在 τ 中.

这三个定义拓扑的条件称为**拓扑公理**.(3) 等价于 (3') τ 中两个成员的交集仍在 τ 中.

定义 3.4: 拓扑空间

集合 X 和它的某一个拓扑 τ 一起称为一个拓扑空间,记作 (X,τ) .

定义 3.5: 开集

我们称 τ 中的成员为这个**拓扑空间**的开集.

注意: 首先,开集的元素为 X 的子集,也就是说开集的元素仍为集合. 其次,开集的定义是相对于拓扑的定义而言. 对于拓扑 τ_1 的一个开集 A,它在另一个拓扑 τ_2 中可能不是开集.

命题 3.1: 常见拓扑

- **\$\sigma\$nRightarrow** A \quad \text{RETTARROW} A \quad \quad \quad \text{RETTARROW} A \quad \quad \text{RETTARROW} A \quad \
- **余可数拓扑**: 设 X 是不可数无穷集合,称 $\tau_f = \{A^c \mid A \in X \text{ 的可数子集}\} \cup \{\emptyset\} \ \,$ 为 X 上的**余可数拓扑**:
- 欧式拓扑: 规定 $\tau_e = \{U|U$ 是若干个开区间的并集 $\}$,则 τ_e 为 \mathbb{R} 上的欧式拓扑. 记作 $\mathbb{E}^1 = (\mathbb{R}, \tau_e)$.

定义 3.6: 度量

称一个映射 $d: X \times X \rightarrow R$ 为度量,如果它满足下面三个条件

- (1) 正定性: $d(x,x) = 0, \forall x \in X,$ $d(x,y) > 0, \exists x \neq y;$
- (2) 对称性: $d(x,y) = d(y,x), \forall x, y \in X$;
- (3) 三角不等式: $d(x,z) \leq d(x,y) + d(y,z)$, $\forall x,y,z \in X$.

3 拓扑空间与连续性 第六页 3.1 拓扑空间

定义 3.7: 度量空间

集合 X 上规定一个度量 d 之后称为**度量空间**,记作 (X,d).

定义 3.8: n 维欧氏空间

记 $R^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R}, i = 1, \dots, n\}$. 规定 \mathbb{R} 上的度量 d 为:

$$d((x_1, \dots, x_n), (y_1, \dots, y_n)) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2},$$

记 $\mathbb{E}^n = (\mathbb{R}^n, d)$, 称为 n 维欧氏空间.

定义 3.9: 球形邻域

在度量空间 (X,d) 中,设 $x_0 \in X, \varepsilon$ 是一正数,称 X 的子集

$$B(x_0, \boldsymbol{\varepsilon}) := \{ x \in X | d(x_0, \boldsymbol{x}) < \boldsymbol{\varepsilon} \}$$

为以 x_0 为心, ε 为半径的球形邻域.

定理 3.1

(X,d) 的任意两个球形邻域交集是若干球形邻域的并集.

定义 3.10: 度量拓扑

在上述条件下规定 X 的子集族 $\tau_d = \{U|U$ 是若干个球形邻域的并集\. 称为 X 上的**度量拓扑**.

提示: 欧氏空间上的度量拓扑即为欧式拓扑.

定义 3.11: 闭集

开集的余集(补集)即为**闭集**. 对于开集 A,集合 A^c 为闭集.

结论 3.1: 闭集公理

拓扑空间的闭集满足:

- (1) X 与 Ø 都是闭集;
- (2) 任意多个闭集的交是闭集;
- (3) 有限个闭集的并是闭集.

定义 3.12: 邻域、内点和内部

设 A 为拓扑空间 X 的子集,点 $x \in A$.

若存在开集 U,使得 $x \in U \subset A$,则称 $x \in A$ 的一个**内点**,A 为点 x 的一个**邻域**. A 所有的内点集合称为 A 的**内部**,记作 $\mathring{A}(\vec{u}A^{\circ})$.

定义 3.13: 聚点与闭包

设 A 是拓扑空间 X 的子集, $x \in X$. 称 x 为 A 的**聚点**,若 x 的每个邻域与集合 A 的交非空. A 所有聚点的集合称为 A 的**导集**,记作 A'. 称集合 $\overline{A} := A \cup A'$ 为 A 的**闭包**.

定义 3.14: 稠密

称拓扑空间 X 的子集 A 稠密,若 $\overline{A} = X$.

定义 3.15: 可分拓扑空间

称 X 是可分拓扑空间,若 X 有可数稠密子集.

定义 3.16: 序列的收敛性

我们称序列 $\{x_n\}$ 收敛于 $x_0 \in X$,当对于任意 x_0 的邻域 U,只有有限个 x_n 不在 U 中. 记作 $x_n \to x_0$.

注意: 拓扑空间中的序列可能收敛到多个点.

例 (\mathbb{R}, τ_f) 中,只要序列 $\{x_n\}$ 的项两两不同,则任一点 $x \in \mathbb{R}$ 的邻域包含 $\{x_n\}$ 的几乎所有项,从而 $x_n \to x$.

定义 3.17: 子空间拓扑

规定 A 的拓扑

 $\tau_A := \{ U \cap A | U \in \tau \}.$

称为 τ 导出的 A 上的子空间拓扑.

定义 3.18: 子空间

称 (A, τ_A) 为 (X, τ) 的子空间.

3.2 连续映射

定义 3.19: 连续

设X和Y是拓扑空间,存在映射

$$f: X \to Y, \quad x \in X,$$

我们称 f 在 x 处连续, 若对 Y 在中 f(X) 的任一邻域 V, $f^{-1}(V)$ 总是 x 的邻域.

定义 3.20: 连续映射

我们称映射 $f: X \to Y$ 为**连续映射**, 当 f 在任一点 $x \in X$ 处都连续.

定理 3.2: 连续映射的等价条件

设 $f: X \to Y$ 是映射,则有如下等价条件

- (1) Y 的任一开集在 f 下的原像是 X 的开集;
- (2) Y 的任一闭集在 f 下的原像是 X 的闭集.

提醒: 复合映射的连续性具有传递性.

定义 3.21: 覆盖

称拓扑空间 X 的子集族 $\mathscr{C} \subset 2^x$ 为 X 的一个覆盖,当 $\bigcup_{c \in \mathscr{C}} C = X$,即 $\forall x \in X$ 至少包含在 \mathscr{C} 的一个成员中.

注意: 若 \mathscr{C} 的每个成员都为开(闭)集,则称 \mathscr{C} 为开(闭)覆盖: 覆盖 \mathscr{C} 只包含有限成员时,称 \mathscr{C} 为有限覆盖.

定理 3.3: 粘结引理

设 $\{A_1, A_2, \dots, A_n\}$ 是 X 的一个有限闭覆盖.

如果映射 $f: X \to Y$ 在每个 A_i 上的限制均连续,则 f 是连续映射.

3.3 同胚映射

定义 3.22: 同胚映射

我们称 $f: X \to Y$ 为一个**同胚映射**,若 f 一一对应且 f 及其逆 $f^{-1}: Y \to X$ 均连续. 当存在 X 到 Y 的同胚映射时,称 X 与 Y 同胚,记作 $X \cong Y$.

提醒: 同胚映射中条件 f^{-1} 连续不可忽视,其无法从一一对应和 f 连续推出.

3 拓扑空间与连续性 第九页 3.4 乘积空间

定义 3.23: 拓扑概念

拓扑空间在同胚映射下保持不变的概念称为拓扑概念.

定义 3.24: 拓扑性质

拓扑空间在同胚映射下保持不变的性质称为拓扑性质.

3.4 乘积空间

命题 3.2: 子集族的生成关系

规定新子集族:

 $\overline{\mathscr{B}} := \{ U \subset X | U \in \mathscr{B} \cap \mathsf{H} \in \mathsf{H} = \mathsf{H} \in \mathsf{H} \in \mathsf{H} \in \mathsf{H} \in \mathsf{H} \in \mathsf{H} = \mathsf{H} \in \mathsf{H} \in \mathsf{H} \in \mathsf{H} \in \mathsf{H} \in \mathsf{H} = \mathsf{H} \in \mathsf{H} \in \mathsf{H} \in \mathsf{H} \in \mathsf{H} = \mathsf{H} \in \mathsf{H} \in \mathsf{H} \in \mathsf{H} = \mathsf{H} \in \mathsf{H} = \mathsf{H} \in \mathsf{H} = \mathsf{H} \in \mathsf{H} = \mathsf{H} = \mathsf{H} \in \mathsf{H} = \mathsf{H} =$

称 $\overline{\mathscr{B}}$ 为 \mathscr{B} 所**生成**的子集族.

显然有 $\mathcal{B} \subset \overline{\mathcal{B}}, \emptyset \in \overline{\mathcal{B}}$.

定义 3.25: 投射

对于集合 X_1 和集合 X_2 , 记 $X_1 \times X_2$ 为它们的笛卡尔积:

$$X_1 \times X_2 = \{(x_1, x_2) | x_i \in X_i\}.$$

规定 $j_i: X_1 \times X_2 \to X_i$ 为 $j_i(x_1, x_2) = x_i (i = 1, 2)$, 称 j_i 为 $X_1 \times X_2$ 到 X_i 的**投射**.

提示: 此处的"投射"可以看作笛卡尔积到原空间的还原.

命题 3.3: 不等关系

如果 $A_i \subset X_i (i = 1, 2)$,则 $A_1 \times A_2 X_1 \times X_2$. 易验证当 $A_i \subset X_i$, $B_i \subset X_i (i = 1, 2)$ 时,

$$(A_1 \times A_2) \cap (B_1 \times B_2) = (A_1 \cap B_1) \times (A_2 \cap B_2).$$

对于并集的运算也有类似的等式,此处不再多作说明.

现在我们有两个拓扑空间 (X_1, τ_1) 和 (X_2, τ_2) .

定义 3.26: 乘积拓扑

首先构造 $X_1 \times X_2$ 的子集族 $\mathscr{B} = \{U_1 \times U_2 | U_i \in \tau_i\}$,则 $\tau = \overline{\mathscr{B}}$ 为所需拓扑,称作**乘积拓扑**.

3 拓扑空间与连续性 第十页 3.5 拓扑基

定义 3.27: 乘积空间

称 $(X_1 \times X_2, \overline{\mathscr{B}})$ 为 (X_1, τ_1) 和 (X_2, τ_2) 的**乘积空间**. 简记为 $X_1 \times X_2$. 类似地我们可以拓展出**有限 个**拓扑空间的乘积空间,此处不作过多叙述.

定理 3.4: 乘积结合律

拓扑空间的"乘积"运算具有结合律,即

$$X_1 \times X_2 \times X_3 = (X_1 \times X_2) \times X_3 = X_1 \times (X_2 \times X_3).$$

除了有限乘积拓扑,我们还可以定义无穷多个拓扑空间的乘积空间,由于该空间不在考试范围内,故略去该部分内容.

定理 3.5: 连续性

对于任何拓扑空间 Y 和映射 $f: Y \to X_1 \times X_2, f$ 连续 $\iff f$ 的分量都连续.

3.5 拓扑基

定义 3.28: 拓扑基

称结合 X 的子集族 \mathscr{B} 为**集合** X **的拓扑基**,如果 $\overline{\mathscr{B}}$ 是 X 的一个拓扑; 称拓扑空间 (X,τ) 的子集族 \mathscr{B} 为该**拓扑空间的拓扑基**,若 $\overline{\mathscr{B}} = \tau$.

命题 3.4

 \mathscr{B} 是集合 X 的拓扑基的充要条件:

- $(1) \quad \bigcup B = X \; ;$
 - $B \in \mathscr{B}$
- (2) 若 $B_1, B_2 \in \mathcal{B}$,则 $B_1 \cap B_2 \in \overline{\mathcal{B}}$.

提示: 子集族 $\overline{\mathscr{B}}$ 的生成规则默认了其满足拓扑公理 (2),且不难得知 \varnothing 与 X 都包含于 $\overline{\mathscr{B}}$. 因此条件 (2) 的设置是为了使 $\overline{\mathscr{B}}$ 满足拓扑公理 (3).

定义 3.29: 拓扑基等价

一般地, 当两个拓扑基生成相同的拓扑时, 称它们是等价的.

命题 3.5

 \mathscr{B} 是拓扑空间 (X,τ) 的拓扑基的充要条件:

- (1) \mathscr{B} ⊂ τ , 即 \mathscr{B} 的成员是开集;
- (2) $\tau \subset \overline{\mathscr{B}}$, 即每个开集都是 \mathscr{B} 中一些成员之并.

4 重要的拓扑性质

4.1 分离公理

首先我们需要明确所谓 T_1 - T_4 四个分离公理的共同目的,即分离公理都是关于**两个点 (或闭集)** 能否用**邻 域来分隔**的性质,是对拓扑空间的附加要求. 带着这个目标去理解四个公理会相对变得容易.

定义 4.1: T₁ 公理

任意两个不同点 x 与 y, x 有邻域不含 y, y 有邻域不含 x.

定义 4.2: T₂ 公理

任何两个不同点有不相交的邻域.

提示: T_1 公理仅使用一个邻域 (该邻域具有任意性) 分离两个点. 而 T_2 公理使用两个邻域分离两个点.

注意: 不难看出, T_1 公理是 T_2 公理的**必要不充分条件**,即 T_2 公理具备 T_1 公理的性质,但 T_1 公理并不完全具有 T_2 公理的性质.

 T_2 公理 $\Rightarrow T_1$ 公理

定义 4.3: Housdorff Space

满足 T_2 公理的**拓扑空间**称为 **Hausdorff 空间.** 这是一个十分重要的空间,请各位务必熟练掌握.

命题 4.1: Hausdorff 空间收敛点的惟一性

Hausdorff 空间中,一个序列不会收敛到两个以上的点.

定义 4.4: T₃ 公理

任意一点与不含它的任一闭集有不相交的 (开) 邻域.

提示: T_3 公理分离了一个点与空间中的**闭集**.

命题 $4.2: T_3$ 公理等价条件

任意点 x 和它的开邻域 W,存在 x 的开邻域 U,使得 $\overline{U} \subset W$.

定义 4.5: T₄ 公理

任意两个不相交的闭集有不相交的 (\mathcal{H}) 邻域. (\mathcal{H}) (\mathcal{H})

提示: T_4 公理分离了空间中的两个闭集.

命题 $4.3: T_4$ 公理等价条件

任意闭集 A 和它的开邻域 W, 有 A 的开邻域 U, 使得 $\overline{U} \subset W$.

命题 4.4

度量空间 (X,d) 满足上述四个公理.

4.2 可数公理

定义 4.6: 邻域系与邻域基

设 $x \in X$. 把 x 的所有淋雨的集合称为 x 的**邻域系**,记作 \mathcal{N} . \mathcal{N} 的一个子集 (即 x 的一族邻域) \mathcal{N} 称为 x 的一个**邻域基**.

命题 4.5

若 $\mathscr B$ 本身是拓扑空间 X 的拓扑基,则 $\mathscr U=\{B\in\mathscr B|x\in B\}$ 也是 x 的邻域基.

结论 4.1

对于度量空间 (X,d),以 x 为心的全部球形邻域的集合 $\{B(x,\varepsilon) \mid \varepsilon > 0\}$ 是 x 的邻域基; $\{B(x,q) \mid q$ 为正有理数 $\}$ 和 $\{B(x,1/n) \mid n$ 为自然数 $\}$ 也都是 x 的邻域基.

定义 4.7: C₁ 公理

任一点都有可数的邻域基.

定义 4.8: C₂ 公理

拓扑空间有可数拓扑基.

 $\mathbf{\dot{L}}$ $\mathbf{\dot{C}}_2$ 公理是一个很强的要求,甚至并非所有度量空间都能够满足 $\mathbf{\mathcal{C}}_2$ 公理.

例 在 \mathbb{R} 中,规定度量d为

$$d(x,y) = \begin{cases} 0, & x = y, \\ 1, & x \neq y. \end{cases}$$

则 (\mathbb{R},d) 为离散拓扑空间,任一点为开集. 拓扑基包含所有开集,不可数.

命题 4.6

 C_2 空间是可分空间. 设 X 有一可数拓扑基 $\{B_n\}$,在每个 B_n 中取一点 x_n ,则集合 $\{x_n\}$ 是 X 的可数稠密子集.

简要证明 $\{x_n\}$ 的稠密性由于每个 x_n 都在拓扑基 B_n 中,故 $\forall x \in X$,任一 x 的开邻域 U,总存在拓扑基中元素 V,使得 $V \subset U$. 则 $a \in A, a \in V$,即 $a \in (U - \{x\}) \cap A, (U - \{x\}) \cap A \neq \emptyset$.

注意: 可分空间不一定是 C_2 空间.

例 记 S 是全体无理数的集合. 在实数集 \mathbb{R} 上规定拓扑 $\tau = \{U \setminus A \mid U \in \mathbb{E}^1 \text{ 的开集}, A \subset S\}$. 其中拓扑空间 (\mathbb{R},τ) 是可分 C_1 空间,但不是 C_2 空间.

命题 4.7

可分度量空间是 C_2 空间.

定理 4.1: Yp 引理 (Urysohn 引理)

如果拓扑空间 X 满足 T_4 公理,则对于 X 的任意两个不相交闭集 A 和 B,存在 X 上的连续函数 f,其在 A 和 B 上分别取值为 0 和 1.

定理 4.2: Tietze 扩张定理

如果 X 满足 T_4 公理,则定义在 X 的闭子集 F 上的连续函数可连续地扩张到 X 上.

定理 4.3: 可度量化

一个拓扑空间 (X,τ) 称为**可度量化**的,如果可以在集合 X 上规定一个度量 d,使得 $\tau_d = \tau$.

命题 4.8

拓扑空间 X 可度量化 ⇔ 存在从 X 到一个度量空间的嵌入映射.

定理 4.4: Yp 度量化定理 (Urysohn 度量化定理)

拓扑空间 X 如果满足 T_1, T_4 和 C_2 公理,则 X 可以嵌入到 Hilbert 空间 E^{ω} 中.

4.3 紧致性

定义 4.9: 列紧性

称拓扑空间**列紧的**,若它的每个序列都有**收敛子序列**.(即存在极限点)

命题 4.9

定义在列紧拓扑空间 X 上的连续函数 $f: X \to \mathbb{E}^1$ 有界,且达到最大、最小值.

定义 4.10: 紧致性

拓扑空间称为紧致的,如果它的每个开覆盖都有有限子覆盖.

命题 4.10

紧致 C_1 空间是列紧的.

定义 4.11: δ- 网

称度量空间 (X,d) 的子集 A 为 X 的一个 δ -网,若 $\forall x \in X, d(x,A) < \delta$,即 $\bigcup_{a \in A} B(a,\delta) = X$.

提示: 我们可以把 δ -网中的 δ 视作网 A 的厚度,即子集 A 所生成的厚度为 δ 的 "网边界" 加上子集 A 本身可以覆盖 X.

结论 4.2

列紧度量空间一定有界.

定义 4.12: Lebesgue 数

设 $\mathscr U$ 是列紧度量空间 (X,d) 的一个开覆盖,且 $X \in \mathscr U$. 规定 X 上函数 $\varphi_{\mathscr U}: X \to \mathbb E^1$ 为

 $\varphi_{\mathscr{U}}(x) = \sup\{d(x, U^c) \mid U \in \mathscr{U}\}, \quad \forall x \in X.$

于是我们称函数 $\varphi_{\mathscr{U}}$ 的最小值为 \mathscr{U} 的 Lebesgue 数,记作 $L(\mathscr{U})$.

命题 4.11: Lebesgue 数的性质

 $L(\mathcal{U})$. 是正数; 并且当 $0 < \delta < L(\mathcal{U})$ 时, $\forall x \in X, B(x, \delta)$ 必包含在 \mathcal{U} 的某个开集 U 中.

4.4 连通性

定义 4.13: 连通性

拓扑空间 X 称为**连通的**,如果它不能分解为两个非空不相交开集的并. 换句话说,对于拓扑空间 X,它的任意两个开 (闭) 集之交非空,则称 (X,τ) 连通.

4 重要的拓扑性质 第十五页 4.5 道路连通性

命题 4.12

如下命题与上述对连通性的定义等价:

- 1. X 不能分解为两个非空不相交闭集的并;
- 2. X 没有既开又闭的非空真子集;
- 3.X 的既开又闭的子集只要 X 与 \varnothing .

命题 4.13

连通空间在连续映射下的像也是连通的.

命题 4.14

若 X 有一个连通的**稠密子集**,则 X 连通.

命题 4.15

如果 X 有一个连通覆盖 $\mathcal{U}(\mathcal{U})$ 中每个成员都连通),并且 X 有一连通子集 A,它与 \mathcal{U} 中每个成员都相交,则 X 连通.

定义 4.14: 连通分支

拓扑空间 X 的一个子集称为 X 的**连通分支**,如果它是连通的,并且不是 X 的其他连通子集的真子集.

命题 4.16

X 的每个非空连通子集包含在唯一的一个连通分支中.

命题 4.17

连通分支是闭集.

定义 4.15: 局部连通性

拓扑空间 X 称为**局部连通的**,如果 $\forall x \in X, x$ 的所有连通邻域构成 x 的邻域基.

提示: 按定义, 当 X 局部连通时, 如果 U 是点 x 的邻域, 则必有 x 的连通邻域 $V \subset U$.

4.5 道路连通性

定义 4.16: 道路

设 X 是拓扑空间,从单位闭区间 I = [0,1] 到 X 的一个连续映射 $a: I \to X$ 称为 X 上的一条**道** 路. 点 a(0) 和 a(1) 分别称为 a 的起点和终点,统称端点.

注意: 道路指映射本身,而不是它的像集.

定义 4.17: 点道路

称常值映射道路 $a:I\to X$ 为**点道路**. 即 a(I) 是一点. 点道路完全由像点 x 决定. 教材中记作 e_x .

定义 4.18: 闭路

起点与终点重合的道路称为闭路.

道路有两种运算: 逆和乘积.

定义 4.19: 道路的逆

一条道路 $a:I\to X$ 的**逆**也是 X 上的道路,记作 \bar{a} ,规定为 $\bar{a}(t)=a(1-t), \forall t\in I$.

定义 4.20: 道路的乘积

X 上的两条道路 a 与 b 如果满足 a(1)=b(0),则可规定它们的**乘积** ab,它也是 X 上的道路,规定为

$$ab(t) = \begin{cases} a(2t), & 0 \leqslant t \leqslant 1/2, \\ b(2t-1), & 1/2 \leqslant t \leqslant 1. \end{cases}$$

结论 4.3

下面有几个关于逆和乘积的性质:

- (1) $\bar{e}_x = e_x$;
- (2) $\overline{(\bar{a})} = a;$
- (3) 当ab 有意义时, $\bar{b}\bar{a}$ 有意义, 且 $\bar{b}\bar{a} = \overline{ab}$.

定义 4.21: 道路连通

拓扑空间 X 称为**道路连通**的,如果 $\forall x, y \in X$,存在 X 中分别以 x 和 y 为起点和终点的道路.

命题 4.18

道路连通空间一定连通.

命题 4.19

道路连通空间的连续映像是道路连通的.

4 重要的拓扑性质 第十七页 第十七页 4.6 拓扑性质与同胚

定义 4.22: 道路等价关系

在拓扑空间 X 中,规定它的点之间的关系 \sim : 若点 x 与 y 可用 X 上的道路连结,则说 x 与 y 相关,记作 $x\sim y$. 易证这是一个等价关系.

定义 4.23: 道路连通分支

拓扑空间在等价关系 \sim 下分成的等价类称为 X 的**道路连通分支**,简称**道路分支**.

命题 4.20: 极大道路连通子集

拓扑空间的道路分支是它的极大道路连通子集.

定义 4.24: 局部道路连通

拓扑空间 X 称为**局部道路连通**的,如果 $\forall x \in X, x$ 的道路连通邻域构成 x 的邻域基.

4.6 拓扑性质与同胚

判断两个拓扑空间不同胚,只需要找到其有两个不相同的拓扑性质.

定理 4.5

 $f: X \to Y$ 同胚, $D \subset X$, 则 $f|_{X \setminus D}: X \setminus D \to Y \setminus f(D)$ 为同胚.

索引

	В			J		${f Q}$	
包含映射		4	极大道路连通子缜	集	17	球形邻域	6
闭包		7	集合邻域		11		
闭覆盖		8	紧致性		14	${f T}$	
闭集		6	局部道路连通		17	T_1 公理	11
闭集公理		6	局部连通性		15	T_2 公理	11
闭路		16	聚点		7	T_2 空间	11
						T ₃ 公理	11
	${f C}$			K		T_4 公理	11
C_1 公理	C	12	开覆盖		8	Tietze 扩张定理	13
C_2 公理		12	可度量化		13	同胚映射	8
乘积空间		10	可分拓扑空间		7	投射	9
乘积拓扑		9	可数稠密子集		7	拓扑	5
稠密		7	开集		5	拓扑空间	5
-17-9 Щ		,				拓扑变换	8
	D			\mathbf{L}		拓扑概念	9
导集	D	7	Lebesgue 数		14	拓扑基	10
		7	连通分支		15	拓扑基等价	10
道路		15	连通性		14	拓扑空间连续性	10
道路等价关系		17	连续		8	拓扑性质	9
道路的乘积		16	连续映射		8		
道路的逆		16	列紧性		13	\mathbf{U}	
道路分支		17	邻域		7	Urysohn 度量化定理	13
道路连通		16	邻域基		12	Urysohn 引理	13
道路连通分支		17	邻域系		12		
δ 网 点道路		14	离散拓扑		5	\mathbf{X}	
^{只理} 对角子集		16				序列收敛	7
对用丁果 笛卡尔积		4		${f M}$			
由下小帜 度量		4	幂集		4	\mathbf{Y}	
^{及里} 度量空间		5				映射	3
		6		\mathbf{N}		有限覆盖	8
度量拓扑 多维欧氏空间		6	内部		7	Үрысон 度量化定理	13
多维欧氏空间		6	内点		7	Үрысон 引理	13
	-		粘结引理		8	余可数拓扑	5
	\mathbf{F}					余有限拓扑	5
覆盖		8		O			
			欧式拓扑		5	${f Z}$	
	H					子空间	7
Housedorff 空间	l	11		P		子空间拓扑	7
恒同映射		4	平凡拓扑		5	子集族	4