

Компютърни архитектури CSCB008

Приложения на комбинационните логически схеми в компютърните архитектури

доц. д-р Ясен Горбунов 2021

Съдържание

Елементи на микроархитектурата

Полусуматор

Пълен суматор

Суматор със знак

Умножител

Мултиплексор

Демултиплексор

Декодер

част 1

част 2

Проектиране на 2-битово устройство за умножение

Проектиране на 2-битово устройство за умножение

таблица на истинност

Номер на	X x Y = Z		Вход	ове		Изход				
набора			Χ	X Y		Z				
		X ₁	X ₀	Y ₁	Y_0	Z_3	Z_2	Z_1	Z_0	
0	0 x 0 = 0	0	0	0	0	0	0	0	0	
1	0 x 1 = 0	0	0	0	1	0	0	0	0	
2	$0 \times 2 = 0$	0	0	1	0	0	0	0	0	
3	$0 \times 3 = 0$	0	0	1	1	0	0	0	0	
4	$1 \times 0 = 0$	0	1	0	0	0	0	0	0	
5	1 x 1 = 1	0	1	0	1	0	0	0	1	
6	1 x 2 = 2	0	1	1	0	0	0	1	0	
7	1 x 3 = 3	0	1	1	1	0	0	1	1	
8	$2 \times 0 = 0$	1	0	0	0	0	0	0	0	
9	2 x 1 = 2	1	0	0	1	0	0	1	0	
10	2 x 2 = 4	1	0	1	0	0	1	0	0	
11	2 x 3 = 6	1	0	1	1	0	1	1	0	
12	$3 \times 0 = 0$	1	1	0	0	0	0	0	0	
13	3 x 1 = 3	1	1	0	1	0	0	1	1	
14	3 x 2 = 6	1	1	1	0	0	1	1	0	
15	3 x 3 = 9	1	1	1	1	1	0	0	1	

Проектиране на 2-битово устройство за умножение

$$Z_{0} = \sum_{0}^{15} (5,7,13,15)$$

$$Z_{1} = \sum_{0}^{15} (6,7,9,11,13,14)$$

$$Z_{2} = \sum_{0}^{15} (10,11,14)$$

$$Z_{3} = \sum_{0}^{15} (15)$$

$$Z_0 = X_0 \cdot Y_0$$

$$Z_1 = \overline{X_1} \cdot X_0 \cdot Y_1 + X_0 \cdot Y_1 \cdot \overline{Y_0} + X_1 \cdot \overline{X_0} \cdot Y_0 + X_1 \cdot \overline{Y_1} \cdot Y_0$$

$$Z_2 = X_1 \cdot \overline{X_0} \cdot Y_1 + X_1 \cdot Y_1 \cdot \overline{Y_0}$$

$$Z_3 = X_1 \cdot X_0 \cdot Y_1 \cdot Y_0$$

Проектиране на 4-битово устройство за умножение

Други начини за проектиране и използване на умножители

- 1. Комбинационни логически схеми бързи, но обемисти
- 2. Последователно изместване и събиране (shift & add) крайни автомати
- 3. Специални алгоритми (Booth, Dadda, Wallace Tree...)
- 4. Памети lookup tables
- 5. Вградени в схемите умножителни блокове (еднотактови 18х18 и др.)

2-битов мултиплексор

- Свързване на един от няколко възможни входа към единствен изход
- Селекторен вход (S), чрез който се избира активния вход $\log_2 N$ бита

Приложение

синтез на логически функции избор на логически условия (превключване)

извличане на флагове от регистър

S	D_1	D_0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

2-битов мултиплексор

8-битов мултиплексор – извличане на флагове от регистър

Синтез на логически функции чрез мултиплексор

Α	M	С	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$f = \sum (2,3,5,6,7)$$

Синтез на логически функции чрез мултиплексор

St. Co. and St. Co.			the state of the s	2752 A Lauren			
Α	M	С	f	Α	M	f	
0	0	0	0	0	0	0	Vcc (log. 1)
0	0	1	0	0	1	1	
0	1	0	1	1	0	С	
0	1	1	1	1	1	1	C 4:1 MUX f
1	0	0	0				
1_	0		1				
1	1	0	1				GND (log. 0)
1	1	1	1				

$$f = \sum (2,3,5,6,7)$$

Демултиплексор

Демултиплексор

- функция, обратна на мултиплексора
 - свързване на единствен вход към един от няколко възможни изхода
 - селекторен вход (S), чрез който се избира активния изход log₂N бита

Приложение

- избор на устройство (device selector)
- реализация на логически схеми
- декодиране на инструкции

таблица на истинност – демултиплексор 1:4

D_o	S ₁	S_0	Yo	Y ₁	Y ₂	Y ₃	S_1	S_0	Y ₀	Y ₁	Y ₂	Y ₃			
0	0	0	0	0	0	0	0	0	D_0	0	0	0			- Y.
0	0	1	0	0	0	0	0	1	0	D_0	0	0	\rightarrow D		$-\mathbf{Y}_{1}^{0}$
0	1	0	0	0	0	0	1	0	0	0	D_0	0	D_0		$-\mathbf{Y}_{2}^{1}$
0	1	1	0	0	0	0	1	1	0	0	0	D ₀			$-Y_2^2$
1	0	0	1	0	0	0									3
1	0	1	0	1	0	0							S	$_{1}S_{_{0}}$	
1	1	0	0	0	1	0									
1	1	1	0	0	0	1									

Декодер

Декодер

• Свързване на п входа към 2ⁿ изхода

Приложение

- реализация на логически схеми
- декодиране на инструкции
- реализация на мултиплексори

Пример на декодер 2:4 – таблица на истинност

A	В	Yo	Y ₁	Y ₂	Y ₃	A
		1				$B \rightarrow Y_0$
0	1	0	1	0	0	$\begin{array}{c} A \\ Y_1 \\ Y_2 \\ \end{array}$
1	0	0	0	1	0	Y_2
1	1	0	0	0	1	Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
						Y_3 Y_2 Y_1 Y_0

Декодер

Декодер – пример за синтез на логическо управление на светофар

Пример на декодер 2:4 – таблица на истинност

Α	В	Yo	Y ₁	Y ₂	Y ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	1 0 0 0	0	0	1

Цвят	В	Α
червен	0	0
червен + жълт	1	0
жълт	0	1
зелен	1	1

Демултиплексор

1 от 8 демултиплексор (3:8 декодер)

таблица на истинност

Номер на набора		Входове (селектор)		Изходи							
	Α	В	С	Y ₀	Y ₁	Y ₂	Y ₃	Y ₄	Y ₅	Y_6	Y ₇
0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
2	0	1	0	0	0	1	0	0	0	0	0
3	0	1	1	0	0	0	1	0	0	0	0
4	1	0	0	0	0	0	0	1	0	0	0
5	1	0	1	0	0	0	0	0	1	0	0
6	1	1	0	0	0	0	0	0	0	1	0
7	1	1	1	0	0	0	0	0	0	0	1

Демултиплексор

1 от 8 демултиплексор (3:8 декодер)

декодиране на компютърна инструкция

