赛题名称: MISE01

解题步骤 (WriteUp)

第一步: 打开附件发现是一个流量包, 同时查看题目描述。

某单位网络遭到非法的攻击,安全人员对流量调查取证之后保存了关键证据, 发现人员的定位信息存在泄露

请对其进行分析。flag 为用户位置信息进行 32 位 md5 哈希值

发现其实就是个常规的流量分析,同时找到对应的攻击行为同时根据题目描述,我们是要找到对应的用户位置。

第二步: wirshark 打开数据包

	示过滤器 <ctrl-></ctrl->						-
	Tin Source	Info	Destination	Protocol	Length		
	1 0 2.2.2.2	UplinkNASTransport, Ciphe	1.1.1.1	S1AP/NAS-EPS			134
	2 0 2.2.2.2	UplinkNASTransport, Detac	1.1.1.1	S1AP/NAS-EPS			134
	3 0 14.66.12.4	Delete Session Request	14.66.50.4	GTPv2			102
	4 0 14.66.50.4	Delete Session Response	14.66.12.4	GTPv2			60
	5 1 2.2.2.2	InitialUEMessage, Attach	1.1.1.1	S1AP/NAS-EPS			222
	6 1 1.1.1.1	cmd=3GPP-Authentication-I	2.2.2.2	DIAMETER			506
	7 1 2.2.2.2	cmd=3GPP-Authentication-I	1.1.1.1	DIAMETER			598
	8 1 1.1.1.1	DownlinkNASTransport, Aut	2.2.2.2	S1AP/NAS-EPS			126
	9 1 1.1.1.1	DownlinkNASTransport, Cip	2.2.2.2	S1AP/NAS-EPS			134
	10 1 2.2.2.2	UplinkNASTransport, Ciphe	1.1.1.1	S1AP/NAS-EPS			130
	11 1 2.2.2.2	UplinkNASTransport, Authe	1.1.1.1	S1AP/NAS-EPS			130
	12 1 1.1.1.1	DownlinkNASTransport, Sec	2.2.2.2	S1AP/NAS-EPS			106
	13 1 1.1.1.1	DownlinkNASTransport, Sec	2.2.2.2	S1AP/NAS-EPS			106
	14 1 2.2.2.2	UplinkNASTransport, Ciphe	1.1.1.1	S1AP/NAS-EPS			122
	15 1 2.2.2.2	UplinkNASTransport, Secur	1.1.1.1	S1AP/NAS-EPS			118
	16 1 14.66.12.4	Create Session Request[Ma		GTPv2			291
	17 1 14.66.50.4	Create Session Response[M		GTPv2			205
	18 1 1.1.1.1	DownlinkNASTransport, Att		S1AP/NAS-EPS			234
	19 1 1.1.1.1	InitialContextSetupReques		S1AP/NAS-EPS			330
	20 1 2.2.2.2	UECapabilityInfoIndicatio		S1AP			1238
	21 1 2.2.2.2	InitialContextSetupRespon		S1AP			106
	22 1 2.2.2.2	UplinkNASTransport, Ciphe		S1AP/NAS-EPS			126
	23 1 2.2.2.2	UplinkNASTransport, Attac		S1AP/NAS-EPS			126
	24 1 1.1.1.1	DownlinkNASTransport, EMM		S1AP/NAS-EPS			106
	25 1 14.66.12.4	Modify Bearer Request	14.66.50.4	GTPv2			76
	26 1 1.1.1.1	DownlinkNASTransport, Cip		S1AP/NAS-EPS			110
	27 1 14.66.50.4	Modify Bearer Response	14.66.12.4	GTPv2			105
	28 2 2.2.2.2	UplinkNASTransport, Track		S1AP/NAS-EPS			190
	29 2 2.2.2.2	UplinkNASTransport, Track		S1AP/NAS-EPS			190
	30 2 1.1.1.1	DownlinkNASTransport, Tra		S1AP/NAS-EPS			126
	31 2 1.1.1.1	DownlinkNASTransport	2.2.2.2	S1AP/NAS-EPS			134
		re (1072 bits), 134 bytes captu	(1b af 08 00 45 00	···*·I·· ·····E·	
		00:8f:1b:af (02:00:00:8f:1b:af)	, DSC. 02.00.00		02 02 02 02 01 01	·x····>·	
		1 4, Src: 2.2.2.2, Dst: 1.1.1.1	0.0		00 00 00 00 00 03 00 00 00 12 00 0d	.V	
		ion Protocol, Src Port: 65535 (50 09 c3 00 08 00	@B · · · · · · P · · · · ·	
1 A	oplication Protocol					·@·^····· 'P···j·N	

对于这个流量 gpt 查询一下协议

一、S1AP (S1 Application Protocol, S1 应用协议)

S1AP 是 LTE (Long Term Evolution,长期演进)网络中 eNodeB (Evolved Node B,演进型基站)和核心网(MME,Mobility Management Entity,移动性管理实体)之间的接口协议。

主要功能包括:

- 1. 建立、修改和释放 S1 接口承载。
- 2. 为 UE (User Equipment,用户设备)在 LTE 网络中的移动性管理提供支持,例如切换过程中的信令交互。
- 3. 传递 UE 的上下文信息和 NAS (Non-Access Stratum, 非接入层) 信令消息。

二、NAS-EPS (Non-Access Stratum for Evolved Packet System, 演进分组系统非接入层)

NAS 是 UE 和核心网之间的控制面协议,在 EPS (Evolved Packet System,演进分组系统)中,NAS 协议主要用于处理与移动性管理、会话管理和用户数据传输相关的信令。

主要功能包括:

- 1. 移动性管理,如附着、分离、跟踪区更新等。
- 2. 会话管理, 如建立、修改和释放 EPS 承载。
- 3. 传递用户数据和控制信息。

≡ DIAMETER

DIAMETER 是一种用于认证、授权和计费(AAA,Authentication、Authorization and Accounting)的通信协议。

主要应用场景包括:

- 1. 在移动通信网络中,用于移动数据业务的认证和授权,确保用户能够合法地访问网络资源。
- 2. 实现网络中的计费功能,记录用户的使用情况并生成计费信息。
- 3. 支持不同网络实体之间的通信, 如 AAA 服务器、策略服务器等。

四、GTPv2 (GPRS Tunneling Protocol version 2, GPRS 隧道协议版本 2)

GTPv2 主要用于在 LTE 网络中传输用户数据和信令消息。

主要功能包括:

- 1. 在核心网中建立和管理用户平面隧道,实现用户数据的传输。
- 2. 支持移动性管理,如切换过程中的数据转发。
- 3. 传递控制面信令,如创建、修改和删除承载的请求和响应。

其实这个时候的思路其实是很好想的,首先我们要找 用户泄露的位置信息。这又是一个移动通信的一些协议。同时我翻看了很多数据包只有 DIAMETER 是最长的感觉最能出货,其他的看了十六进制都很短。同时可以看到 DIAMETER 这个协议跟用户有关,他是作为一个用户认证授权计费的协议。所以过滤

一个一个翻找想找到一些位置信息但是一直找不到。继续问 gpt

DIAMETER 跟用户有关,那么她有没有可能泄露用户的一些信息比如位置

DIAMETER 协议本身一般不会直接泄露用户的位置信息等敏感内容。

DIAMETER 主要用于认证、授权和计费等功能,在通信过程中会对信息进行一定程度的加密和保护。然而,如果网络存在安全漏洞或者遭受恶意攻击,那么理论上可能会导致包括与用户相关的信息被泄露,但这并不是DIAMETER 协议正常运行情况下会发生的情况。

此外,现代通信网络通常会采取多重安全措施来保护用户信息的安全,包括加密、访问控制、安全审计等,以降低信息泄露的风险。

难道网络通信的时候用户个人位置网络信息无法找到吗

在网络通信中,要确切找到用户个人位置信息并不是一件容易的事,且通常不能随意获取。

一方面, 从技术 ●

第三步:

数据不多,我一个一个翻的数据包,大多数都没有什么位置的数据头

要么就是 idrflags 要么就是 没有别的。

终于翻到一些不一样的地方, location

第 4 步

:

把所有的可能位置信息都 md5 加密, 试出来是第三个。

这个 E-UTRAN-Cell-Global-Identity (E-UTRAN 小区全局标识) 是一个由特定编码组成的字符串,用于唯一标识 LTE (Long Term Evolution,长期演进) 网络中的一个小区。

它通常由移动国家码 (MCC)、移动网络码 (MNC) 和小区标识 (Cell ID)组成。不过仅从这个具体的字符串很难直接解读出对应的国家、网络运营商以及小区的具体位置等详细信息。