EEE 431: Telecommunications 1

Quiz 3

May 6, 2017, 13:40

Instructor: Sinan Gezici

Name:	
Signature:	
Bilkent ID:	
Section:	

Prob. 1: ______ / 30
Prob. 2: _____ / 30
Prob. 3: _____ / 40
Total: _____ / 100

Some trigonometric identities: $\sin(2x) = 2\sin(x)\cos(x)$ $\cos(2x) = 1 - 2\sin^2(x) = 2\cos^2(x) - 1$ $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$ $\sin(x)\cos(y) = 0.5\sin(x+y) + 0.5\sin(x-y)$ $\cos(x)\cos(y) = 0.5\cos(x+y) + 0.5\cos(x-y)$ $\sin(x)\sin(y) = 0.5\cos(x-y) - 0.5\cos(x+y)$.

1

Problem 1 This question has two independent parts:

- (a) Consider a signal s(t) that is defined over a duration of [0,T] seconds. Suppose that $\psi_1(t)$ and $\psi_2(t)$ are two orthonormal basis functions for s(t); i.e., s(t) resides in the signal space generated by $\psi_1(t)$ and $\psi_2(t)$. Let the vector representation of s(t) in this signal space be denoted by s. Prove or disprove the following statement: "The energy of s(t) is always equal to the inner product of s(t) with itself; i.e., s^Ts ."
- (b) Write down expressions for three time domain signals $s_1(t)$, $s_2(t)$, and $s_3(t)$, defined over a duration of [0,T] seconds, which satisfy all of the following conditions:
 - (i) The carrier frequencies of the signals are all equal to f_c Hz, where f_cT is an integer.
 - (ii) $s_2(t)$ is orthogonal to both $s_1(t)$ and $s_3(t)$.
 - (iii) $s_1(t)$ and $s_3(t)$ have the same energy.
 - (iv) The distance between $s_1(t)$ and $s_2(t)$ is equal to the distance between $s_1(t)$ and $s_3(t)$. (Your answer may not be unique.)

Problem 2 This question has two independent parts:

(a) Consider a ternary communications system with the following signals:

$$m{s}_1 = egin{bmatrix} \sqrt{2} \ 0 \ 0 \end{bmatrix}, \quad m{s}_2 = egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}, \quad m{s}_3 = egin{bmatrix} 0 \ 0 \ 2 \end{bmatrix}$$

Write down a mathematical expression for the maximum likelihood (ML) decision rule at the optimal receiver, and simplify it as much as possible. (Let r_i denote the i-th correlator output at the optimal receiver.)

(b) Consider a binary communications system with the following signals:

$$oldsymbol{s}_1 = egin{bmatrix} 1 \ 2 \end{bmatrix}, \quad oldsymbol{s}_2 = egin{bmatrix} 5 \ 5 \end{bmatrix}$$

Considering the ML decision rule, calculate the conditional probability of error for message 1. In other words, find the probability of error when s_1 is the transmitted signal. The noise at the correlator outputs is modeled as independent and identically distributed zero mean Gaussian random variables with variance $N_0/2$. (You do not have to write down the ML decision rule.) (The probability that a zero-mean, unit variance Gaussian random variable is larger than x is defined as Q(x), i.e., $Q(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$.)

Problem 3 Consider two real-valued, independent, and wide-sense stationary (WSS) random processes W(t) and N(t), where W(t) is a zero-mean white Gaussian process with a power spectral density level of η for all frequencies, and N(t) is a Gaussian process with mean μ and autocorrelation function $R_N(\tau) = \sigma \operatorname{sinc}(\tau)$. Define a new random process as $X(t) = \alpha W(t) + \beta N(t)$.

- (a) Find the autocorrelation function of X(t).
- (b) Find the power spectral density of X(t), and plot it (mark all the values on the plot).
- (c) Calculate the average power of X(t).
- (d) Suppose that X(t) passes through an ideal low-pass filter with a cut-off frequency of $10\,\mathrm{Hz}$, and let Y(t) denote the output of this filter. Specify the probability density function of Y(5).

<u>Hint:</u> The Fourier transform S(f) of s(t) is defined as $S(f) = \int_{-\infty}^{\infty} s(t)e^{-j2\pi ft}dt$ and the inverse Fourier transform is given by $s(t) = \int_{-\infty}^{\infty} S(f)e^{j2\pi ft}df$.

(1) (1)
$$\underline{S} = \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$$
 $S_4 = \begin{bmatrix} s(t) \gamma_1(t) dt \\ s_2 = \int_0^T s^2(t) dt \\ s_3 = \int_0^T s^2(t) dt \\ s_4 = \int_0^T (s_1 \gamma_1(t) + s_2 \gamma_2(t))^2 dt \\ s_5 = \int_0^T s^2(t) dt \\ s_7 = \int_0^T s^2(t) dt \\$

$$E[Y^{2}(+)] = H(0) E[X(+)] = 1 \left(\alpha E[W(+)] + \beta E[N(+)] \right) = [\beta M]$$

$$E[Y^{2}(+)] = R_{Y}(0) = \int_{0}^{\infty} S_{Y}(+) df = (\alpha^{2}m + \beta^{2}J) + 19\alpha^{2}m = [20\alpha^{2}m + \beta^{2}J]$$

$$Y(5) \sim N \left(\beta M, 20\alpha^{2}m + \beta^{2}J - \beta^{2}M^{2} \right)$$

$$Goussian$$