# Math CS Topology Final

#### Zih-Yu Hsieh

March 20, 2025

## 1

**Question 1** Without looking it up, define topological space, and continuous function between topological spaces.

#### Pf:

## Topological Space:

Given any set X, a topology on X is a classification of what subsets are "open" in the set. More formally, a topology on X is a collection  $\mathcal{T}$  collecting open subsets of X, such that the following conditions are satisfied:

- (1)  $\emptyset, X \in \mathcal{T}$  (empty set and the shole set are open).
- (2) For arbitrary collection  $\mathcal{U} \subseteq \mathcal{T}$ , the union  $\bigcup \mathcal{U} \in \mathcal{T}$  (union of arbitrary collection of open sets is open).
- (3) For any two  $U, V \in \mathcal{T}$ , the intersection  $U \cap V \in \mathcal{T}$  (intersection of finite open sets is open).

Which,  $(X, \mathcal{T})$  (the set X along with a topology  $\mathcal{T}$  on X) is called a "Topological Space".

### **Continuous Function:**

Given X, Y two topological spaces, a function  $f: X \to Y$  is continuous, if for any open sets  $U \subseteq Y$ , its preimage  $f^{-1}(U) \subseteq X$  is open.

Question 2 Prove that the product of two path connected spaces is path connected.

#### Pf:

Suppose X, Y are two path connected spaces (i.e. for any two points in the same space, there exists a continuous path joining the two points).

Now, consider  $X \times Y$  under product topology. For any  $(x_1, y_1), (x_2, y_2) \in X \times Y$ , since  $x_1, x_2 \in X$  and  $y_1, y_2 \in Y$ , by the definition of path connected space, there exists two continuous paths  $f : [0, 1] \to X$  and  $g : [0, 1] \to Y$ , with  $f(0) = x_1, f(1) = x_2$ , and  $g(0) = y_1, g(1) = y_2$ .

Then, define the function  $h:[0,1] \to X \times Y$  as h(t) = (f(t),g(t)). Then,  $h(0) = (f(0),g(0)) = (x_1,y_1)$ , and  $h(1) = (f(1),g(1)) = (x_2,y_2)$ . So, this is potentially a function joining the two given points, it remains to show that h is continuous.

For any open set  $W \subseteq X \times Y$ , consider the preimage  $h^{-1}(W) \subseteq [0,1]$ : For any  $t_0 \in h^{-1}(W)$ , since  $h(t_0) = (f(t_0), g(t_0)) \in W$ , by the definition of openness in product topology, there exists open sets  $U \subseteq X$  and  $V \subseteq Y$ , such that  $h(t_0) = (f(t_0), g(t_0)) \in (U \times V) \subseteq W$ . Then, since f, g are continuous, then  $f^{-1}(U), g^{-1}(V) \subseteq [0, 1]$  are open.

Then, consider  $f^{-1}(U) \cap g^{-1}(V)$ , which is also open in [0,1]: Since  $f(t_0) \in U$  and  $g(t_0) \in V$ , then  $t_0 \in f^{-1}(U)$  and  $t_0 \in g^{-1}(V)$ , hence  $t_0 \in f^{-1}(U) \cap g^{-1}(V)$ .

Now, for all  $t \in f^{-1}(U) \cap g^{-1}(V)$ , since h(t) = (f(t), g(t)) has  $f(t) \in U$  and  $g(t) \in V$ , then  $h(t) \in (U \times V) \subseteq W$ , showing that  $t \in h^{-1}(U \times V) \subseteq h^{-1}(W)$ . So, we can conclude that  $t_0 \in (f^{-1}(U) \cap g^{-1}(V)) \subseteq h^{-1}(W)$ .

Since  $f^{-1}(U) \cap g^{-1}(V)$  is open in [0,1], therefore we can conclude that  $h^{-1}(W) \subseteq [0,1]$  is in fact open. This proves that the new function h is in fact continuous. Since it joins  $(x_1, y_1)$  and  $(x_2, y_2)$ , then it is a path joining the two given points. So, because any two points in  $X \times Y$  can be joined by continuous paths, we can conclude that  $X \times Y$  is in fact path connected.

**Question 3** Suppose X is a connected metric space. Prove that, for every pair of points  $a, b \in X$ , there exists a sequence  $x_1, x_2, ..., x_n$  such that  $a = x_1, b = x_n$ , and  $d(x_i, x_{i+1}) \le 1$  for all i = 1, ..., n-1.

#### Pf:

Since X is a connected metric space, then the only subset of X that is both open and closed (clopen subsets), is  $\emptyset$  and X itself.

Based on this logic, pick any point  $x \in X$ , and define the set C, such that for all points  $a \in C$ , there exists a sequence  $x_1, ..., x_n$ , with  $x = x_0, a = x_n$ , and  $d(x_i, x_{i+1}) \le 1$  for all i = 1, ..., (n-1). Which, for simplicity, assume  $x \in C$  also (i.e. can have a sequence of length 1, with  $x_1 = x$ , connecting x to x itself).

Our first goal is to prove that C = X.

## The set C is open:

For all points  $a \in C$ , there exists a sequence  $x_1, ..., x_n$ , such that  $x_1 = x$  and  $x_n = a$ , while each i = 1, ..., n - 1 has  $d(x_i, x_{i+1}) \le 1$ . Then, consider the open ball B(a, 1): every point  $z \in B(a, 1)$  has d(a, z) < 1, so for point z, choose the sequence to be  $x = x_1, ..., x_n = a, x_{n+1} = z$ , which by the definition of set C, we know every i = 1, ..., n - 1 has  $d(x_i, x_{i+1}) \le 1$ , while for i = n,  $d(x_n, x_{n+1}) = d(a, z) < 1$ , hence this sequence joining  $x = x_1$  and  $z = x_{n+1}$  satisfies the condition of C, so  $z \in C$ . This proves that  $a \in B(a, 1) \subseteq C$ , or C is open under metric topology.

## The set $X \setminus C$ is open:

For all  $b \in X \setminus C$ , none of the finite sequence  $x = x_1, ..., x_n = b$  satisfies the given condition, there exists  $i \in \{1, ..., n-1\}$ , with  $d(x_i, x_{i+1}) > 1$ .

This implies that the open ball  $B(b,1) \subseteq X \setminus C$ : Suppose the contrary, that  $B(b,1) \not\subseteq (X \setminus C)$ , then there exists  $c \in B(b,1)$ , with  $c \in C$ . Hence, there exists a sequence  $x = x_1, ..., x_n = c$ , such that all i = 1, ..., n-1,  $d(x_i, x_{i+1}) \le 1$ ; also, since  $c \in B(b,1)$ , then d(b,c) < 1. Which, add a new point to the sequence  $x_{n+1} = b$ , every i = 1, ..., n-1 has  $d(x_i, x_{i+1})$  by assumption, while for i = n,  $d(x_n, x_{n+1}) = d(c, b) < 1$ , hence the sequence  $x = x_1, ..., x_n = c, x_{n+1} = b$  satisfies the given condition, implying that  $b \in C$ . Yet, this contradicts the assumption that  $b \in X \setminus C$ , hence our assumption must be false, showing that  $b \in B(b,1) \subseteq (X \setminus C)$ , proving that  $(X \setminus C)$  is open under metric topology.

## The set C = X:

Since  $X \setminus C$  is open, then C must be closed; yet, since C is also open, then C is clopen implies  $C = \emptyset$  or C = X. Yet, it is clear that  $x \in C$  (can assume X is nonempty, hence there exists  $x \in X$ ), so  $C \neq \emptyset$ . Therefore, the only possibility is C = X.

#### The Original Statement is True:

Since C=X, then for all  $a,b\in X=C$ , there exists two sequences  $x_1,...,x_n$ , and  $y_1,...,y_m$ , such that  $x_1=y_1=x, x_n=a, y_m=b$ , and for all  $i\in\{1,...,n-1\}$  and  $j\in\{1,...,m-1\}$ , we have  $d(x_i,x_{i+1}),d(y_j,y_{j+1})\leq 1$ . Now, define the new sequence  $z_1,...,z_{m+n}$  based on the following logic:

$$\forall i \in \{1, ..., n\}, \quad z_i = x_{(n+1)-i}, \qquad \forall i \in \{n+1, ..., n+m\}, \quad z_i = y_{i-n}$$

So,  $z_1 = x_{(n+1)-1} = x_n = a$ , and  $z_{m+n} = y_{(m+n)-n} = y_m = b$ .

Also, for all  $i \in \{1, ..., n, ..., n+m-1\}$ , if  $i \le (n-1)$ , we have  $d(z_i, z_{i+1}) = d(x_{(n+1)-i}, x_{(n+1)-(i+1)}) = \le 1$ ; if i = n, then  $d(z_n, z_{n+1}) = d(x_1, y_1) = d(x, x) = 0 \le 1$ ; else, if  $i \ge (n+1)$ ,  $d(z_i, z_{i+1}) = d(y_{i-n}, y_{(i+1)-n}) \le 1$ . Hence, the finite sequence  $z_1, ..., z_{m+n}$  has  $z_1 = a, z_{m+n} = b$ , and every consequent elements have distance at most 1 apart.

This shows that for any pair  $a, b \in X$ , there exists a sequence  $z_1, ..., z_k$  with  $a = z_1, b = z_k$ , and  $d(z_i, z_{i+1}) \le 1$  for all i = 1, ..., k-1, which the original statement is true.

## 4

**Question 4** Prove that if X and Y are compact Hausdorff spaces then any surjective continuous function  $f: X \to Y$  is a quotient map.

### Pf:

To prove if a map is a quotient map, we need all sets  $U \subseteq Y$  to be open iff its preimage  $f^{-1}(U) \subseteq X$  is open.

- $\Longrightarrow$ : Suppose  $U\subseteq Y$  is open, then by the definition of continuous function, its preimage  $f^{-1}(U)\subseteq X$  is open.
- $\Leftarrow$ : Then, suppose for  $U \subseteq Y$ , its preimage  $f^{-1}(U) \subseteq X$  is open. Given that X is Compact and Hausdorff, since  $(X \setminus f^{-1}(U)) \subseteq X$  is closed, implies it is also a compact set.

Which, since continuous function sends compact sets to compact sets, then  $f(X \setminus f^{-1}(U)) \subseteq Y$  is compact, which as Y is itself a Hausdorff space, then  $f(X \setminus f^{-1}(U))$  is compact implies it is closed.

Because for all  $x \in (X \setminus f^{-1}(U))$ ,  $x \notin f^{-1}(U)$ , which shows that  $f(x) \notin U$ , hence  $f(x) \in Y \setminus U$ , so  $f(X \setminus f^{-1}(U)) \subseteq (Y \setminus U)$ ; similarly, because f is surjective, all  $y \in Y \setminus U$  has preimage  $f^{-1}(\{y\}) \subseteq (X \setminus f^{-1}(U))$  (since  $y \notin U$ , its preimage can't be in  $f^{-1}(U)$ ), hence  $y \in f(X \setminus f^{-1}(U))$ , showing that  $Y \setminus U \subseteq f(X \setminus f^{-1}(U))$ . This proves that  $(Y \setminus U) = f(X \setminus f^{-1}(U))$ .

Lastly, because  $f(X \setminus f^{-1}(U)) = Y \setminus U$  is closed, then its complement U is open.

The above two statements proved that  $U \subseteq Y$  is open iff  $f^{-1}(U) \subseteq X$  is open, hence the map f given is in fact a quotient map.

5

**Question 5** If A is a subspace of X, then X/A is the quotient space where A is collapsed to a point. Describe or draw (or both) the following quotient space.

- $[0,2]/\{0,1,2\}$
- $\mathbb{R}/[0,1]$
- $\mathbb{R}/\{0,1\}$
- $\bullet \mathbb{R}^2/S^1$
- $\bullet \ \ a \ \textit{M\"obius band} \ / \ \textit{its boundary circle}.$

## Pf:

•  $[0,2]/\{0,1,2\}$ :



•  $\mathbb{R}/[0,1]$ :



## • $\mathbb{R}/\{0,1\}$ :



# • $\mathbb{R}^2/S^1$ :



As an extra fun fact, in Japan there is a type of doll used as a charm to stop the rain, called the "Shine, Shine Monk" ( てるてる坊主 , "Teru Teru Bōzu"), and it looks a lot like  $\mathbb{R}^2/S^1$ :



I guess  $\mathbb{R}^2/S^1$  could be a potential topological name for it.

 $\bullet\,$  a Möbius band / its boundary circle: By following modification, it forms  ${\bf RP}^2.$ 

