GUÍA PARA DISEÑAR INSTALACIONES ELÉCTRICAS DOMICILIARIAS SEGÚN NTC 2050 Y RETIE

AUTORES

JONATHAN LOPEZ CARO

LUIS HERNANDEZ PASTRANA

UNIVERSIDAD TECNOLOGICA DE BOLIVAR
PROGRAMA DE INGENIERIA ELECTRICA
CARTAGENA
MAYO 2012

GUÍA PARA DISEÑAR INSTALACIONES ELÉCTRICAS DOMICILIARIAS SEGÚN NTC 2050 Y RETIE

Asesor principal

ENRIQUE VANEGAS CASADIEGO

Ingeniero Electricista, Universidad de Antioquia. Especialista en Automatización Industrial. Corporación Universitaria de Ibagué en convenio con Katholieke Universiteit Leuven. Docente de tiempo completo Universidad Tecnológica de Bolívar.

Autores

JONATHAN LOPEZ CARO

Estudiantes X semestre del programa de Ingeniería Eléctrica de la Universidad Tecnológica de Bolívar

LUIS HERNANDEZ PASTRANA

Estudiantes X semestre del programa de Ingeniería Eléctrica de la Universidad Tecnológica de Bolívar

UNIVERSIDAD TECNOLOGICA DE BOLIVAR
PROGRAMA DE INGENIERIA ELECTRICA
CARTAGENA

MAYO 2012

TABLA DE CONTENIDO

	PAG
INTRODUCCIÓN	8
1. JUSTIFICACION	9
2. OBJETIVOS	10
2.1 OBJETIVO GENERAL	10
2.2 OBJETIVOS ESPECÍFICOS	10
3 MARCO TEÓRICO	11
3.1 Simbología reglamentada	11
3.2 Generalidades	12
3.2.1 Circuitos ramales	12
3.2.2 Acometida	12
3.2.3 Conductores	12
3.2.3.1 Calibre de los conductores	13
3.2.3.2 Aislamiento de los conductores de cobre	13
3.2.3.3 Norma de colores para los conductores	14
3.2.3.4 Capacidades de corriente de los conductores eléctricos	15
3.2.4 Factor de ajuste	15
3.2.5 Puesta a tierra	16
3.2.6 Medidor de energía eléctrica	18

3.3 Ubicación de las cargas eléctricas	20
3.3.1 distribución de los tomacorrientes	20
3.3.2 distribución del alumbrado	21
3.3.3 carga permitida	22
3.4 distribución de los circuitos ramales	24
3.4.1 circuito de alumbrado general	24
3.4.2 circuito de aparatos específicos	24
3.4.3 circuito de 20A para pequeños artefactos eléctricos	24
3.4.4 circuito de 20A para lavadora y plancha	25
3.5 Ejemplo práctico	25
3.5.1 Instalación de la puesta a tierra	40
3.5.1.1 Selección del calibre minino del conductor	40
de puesta a tierra de equipos	
3.5.1.2 Selección del conductor del electrodo	40
del sistema puesta a tierra	
3.5.1.3 Selección del electrodo de puesta a tierra	40
3.6 Presupuesto de la obra	41
4. RESUMEN	43
5. CONCLUSIÓN	45
6. BIBLIOGRAFIA	46
7. ANEXOS	47

LISTA DE TABLAS

	PÁG
TABLA 1. Norma de colores de los conductores	15
TABLA 2. Factor de ajuste estipulado en la norma NTC 2050	15
TABLA 3. Factor de ajuste por temperatura	16
TABLA 4. Requisitos para electrodos de puesta a tierra	17
TABLA 5. Resumen de la sección 210-24 norma 2050	23
TABLA 6 Niveles de iluminación recomendados por Iluminating Engineering	
Society	28
TABLA 7. Resultados luminotécnicos	29
TABLA 8. Carga unitaria para unidades de vivienda	33
TABLA 9. Cuadro de carga de la vivienda	34
TABLA 10. Factor de demanda para cargas de iluminación	35
TABLA 11. Características del conductor dadas por el fabricante	38
TABLA 12. Gasto total de la instalación eléctrica	42

LISTA DE FIGURAS

	PÁG.
Figura 1. Simbología	11
Figura 2. Tipos de conductores eléctricos	13
Figura 3. Aislamiento de los conductores	13
Figura 4. Estructura del medidor de energía	19
Figura 5. Plano arquitectónico de vivienda de 86m²	25
Figura 6. Simbología más usada	25
Figura 7. Ubicación de los tomacorrientes	27
Figura 8. Ubicación de los interruptores y portalámparas	28
Figura 9. Distribución de los conductores	29
Figura 10.Tablero general de distribución	37
Figura 11. Resumen del diseño eléctrico	43

LISTA DE ANEXOS

	PAG
Anexo 1. Cuadro 310-13 Norma NTC 2050	43
Anexo 2. Tabla 250-94 de la NTC 2050	45
Anexo 3. Tabla 250-95 NTC 2050	46
Anexo 4. Sección 250-93 NTC 2050	47
Anexo 5. Sección 250-81 NTC 2050	48
Anexo 6. Sección 250-83 NTC 2050	49
Anexo 7. Sección 250-84 NTC 2050	49
Anexo 8. Sección 210-52 NTC 2050	50
Anexo 9. Sección 220-16 NTC 2050	52
Anexo 10 Tabla 310-16 NTC 2050	53
Anexo 11 Simulación de la iluminaria	58

INTRODUCCIÓN

Desde la invención de la electricidad, esta ha jugado un papel muy importante en el desarrollo de la humanidad, gracias a ella se han podido realizar grandes descubrimientos tecnológicos, y ha hecho posible la vida como la conocemos hoy en nuestros días. Pero su mal uso y el desconocimiento de la forma de utilizarla han cobrado vidas humanas.

Para disminuir el riesgo en el hogar, causado por la electricidad, en muchos países se han elaborado normas y reglas para su correcta utilización. En Colombia se debe aplicar una norma basada en la NEC¹, dicha norma es la NTC 2050², en la cual están establecidos todos los procedimientos necesarios para el diseño y realización en las instalaciones eléctricas.

Esta guía contempla el diseño de una instalación eléctrica que incluye desde la acometida hasta sus diferentes circuitos ramales, cálculo de los conductores y dispositivos de protección. En otras palabras esta guía es una herramienta desarrollada con el fin de la facilitar la interpretación y aplicación de la NTC 2050 y el RETIE para el diseño de instalaciones eléctricas en viviendas.

¹ National electrical code

² Norma técnica Colombiana

1. JUSTIFICACION

En este mundo globalizado y competitivo, la energía es la espina dorsal, y en Colombia con el presente incremento de la construcción, se hace necesario aplicar todas las normas y cumplir con los estándares de calidad para garantizar la seguridad de las personas.

Con el fin de cumplir con este objetivo, en el país es de carácter obligatorio, al momento de diseñar y aplicar la parte eléctrica, el cumplimiento de la norma NTC 2050 y RETIE (Reglamento técnico de instalaciones eléctricas).

Para poder comprender, entender y aplicar de manera correcta las normas y reglamentos, se desarrolla esta guía, con el fin de ayudar a realizar diseños eléctricos que garanticen la seguridad de las personas.

2. OBJETIVOS

2.1 OBJETIVO GENERAL

 Desarrollar una guía para el diseño de instalaciones eléctricas seguras en viviendas aplicando la norma NTC 2050 y el Retie.

2.2 OBJETIVOS ESPECÍFICOS

- Interpretar y aplicar la NTC 2050 y Reglamento técnico de instalaciones eléctricas (RETIE)
- Interpretar los planos y simbología, establecidas por la NTC 2050
- Analizar ejemplos prácticos para facilitar la comprensión de la norma y del Retie y lograr el diseño óptimo de una instalación eléctrica

3. MARCO TEÓRICO

3.1 SIMBOLOGÍA REGLAMENTADA

El Retie estipula desde el primero de mayo de 2010 que se tiene que utilizar los símbolos gráficos contemplados en la Tabla 9 del reglamento, tomados de las normas unificadas IEC 60617, ANSI Y32, CSA Z99 e IEEE 315, los cuales guardan mayor relación con la seguridad eléctrica.

Figura 1 Simbología tomada de la tabla 8 articulo 10 del Retie versión académica

3.2 GENERALIDADES.

3.2.1 CIRCUITOS RAMALES.

Los circuitos ramales se clasifican según la capacidad de corriente máxima o según el valor de ajuste del dispositivo de protección contra sobrecorriente cuya clasificación debe ser de 15, 20, 30, 40 y 50 A. Cuando se usen, por cualquier razón, conductores de mayor capacidad de corriente, la clasificación del circuito debe estar determinada por la corriente nominal o por el valor del ajuste del dispositivo de protección contra sobre corriente.

El artículo 220-3 inciso a) de la norma NTC 2050 indica que "la capacidad nominal del circuito ramal no debe ser menor a la carga no continua³ más el 125% de la carga continua".

3.2.2 ACOMETIDA.

Acometida es la parte de la distribución de enlace que une la red de distribución de la empresa eléctrica con el medidor de energía de la casa del particular. En edificios de propiedad horizontal o condominios, la acometida llega hasta el registro de corte general.

3.2.3 CONDUCTORES.

Son los cables o alambres usados para trasmitir la energía eléctrica. El artículo 110-5 de la norma señala que los conductores normalmente utilizados para transportar corriente deben ser de cobre, pero con los debidos ajustes de intensidad también se pueden usar conductores de aluminio

Los conductores pueden ser de dos tipos:

_

³ Entiéndase por carga no continua, una carga que dure menos de tres horas seguidas en funcionamiento

- Alambre: están formados por un solo hilo de cobre o de aluminio, y cuyo diámetro depende del calibre del conductor
- Cable: están formados por varios hilos de alambre entre lazados

Figura 2. Tipos de conductores 1) Alambre - 2) Cable. Figura tomada de INPACO conductores eléctricos

3.2.3.1 CALIBRE DE LOS CONDUCTORES

El calibre de los conductores esta estandarizado segun AWG (American Wire Gage) o en mils de circunferencia (kcmil) como nos expresa el artículo 110-6 de la NTC 2050.

3.2.3.2 AISLAMIENTO DE LOS CONDUCTORES DE COBRE

Figura 3. Aislamiento de los conductores tomada de http://alextecnicoindustrial.blogspot.com/2010_09_01_archive.html

Los conductores presentan diferentes aislamientos debido a las diferentes condiciones de trabajo que podemos encontrar. En la actualidad encontramos conductores que tienen un aislamiento con la capacidad de soportar hasta 90 °C y conducir corriente sin ningún tipo de problemas en situaciones de humedad.

En el anexo 1 encontramos los diferentes tipos de aislamientos estipulados en la norma, entre estos podemos mencionar: THW, THWN, THWN, etc.

3.2.3.3 NORMA DE COLORES PARA LOS CONDUCTORES.

El Retie determina una norma o configuración de colores para los conductores con el fin de salvaguardar la vida de las personas. El objetivo de usar diferentes colores es con el propósito de determinar cuál de los diferentes conductores usados en una instalación eléctrica es portador de corriente para tener todos los cuidados necesarios.

El otro fin con el que está diseñada esta configuración de colores, es para la correcta conexión de los diferentes conductores, ya que de no ser así se pudieran confundir los conductores y se podría al final estar empalmando una fase con una tierra por ejemplo.

La tabla 13 del Retie a continuación muestra todos los códigos de colores usados en los diferentes sistemas, ya sea monofásico o trifásico

CICTERAA	MONOFASICO		TRIFASICO				
SISTEMA	MONO	FASICO	(Y)EST	RELLA	(Δ-)DELTA	(Δ)	ELTA
Tensión (V)	120	120/240	208/120	480/277	240/208/120	240	480
Fases	1	2	3	3	3	3	3
Neutro	1	1	1	1	1	N/A	N/A
	Negro	Negro	Amarillo	Amarillo	Negro	Negro	Amarillo
Fases		Rojo	Azul	Naranja	Naranja	Azul	Naranja
			Rojo	Café	Azul	Rojo	Café
Neutro	Blanco	Blanco	Blanco	Gris	Blanco	N/A	N/A
Tierra de	Desnudo o	Desnudo o	Desnudo o	Desnudo o	Desnudo o	Desnudo o	Desnudo o
Protección	Verde	Verde	Verde	Verde	Verde	Verde	Verde
Tierra Aislada	Verde amarillo	Verde amarillo	Verde amarillo	N/A	Verde amarillo	N/A	N/A

Tabla 1 Norma de colores de los conductores, tabla 13 del artículo 11 del Retie

3.2.3.4 CAPACIDAD DE CORRIENTE DE LOS CONDUCTORES ELÉCTRICOS

La capacidad de corriente de los conductores de 0 a 2 000 V nominales debe ser la especificada en las Tablas de capacidad de corriente, 310-16 a 310-19 y sus notas correspondientes (anexo 2).

3.2.4 FACTOR DE AJUSTE.

Cuando el número de conductores portadores de corriente en un cable o canalización sea mayor de tres, la capacidad de corriente se debe reducir como se indica en la siguiente tabla.

Número de conductores en tensión	Porcentaje del valor de los Cuadros, ajustado para la temperatura ambiente si fuera necesario
De 4 a 6	80
De 7 a 9	70
De 10 a 20	50
De 21 a 30	45
De 31 a 40	40
41 y más	35

Tabla 2 Factor de ajuste estipulado en la norma NTC 2050 pagina 211

Cuando la temperatura ambiente sea mayor o menor a 30 °C se debe multiplicar la intensidad de corriente por el valor correspondiente a la temperatura ambiente a la

cual se va a someter el conductor como lo muestra el final de la tabla 310-16 de la norma técnica colombiana

	FACTORES DE CORRECCION						
Temperatura ambiente en °C Para temperaturas ambientes distintas de 30°C (86°F), multiplicar las anteriores intensidades por el correspondiente factor de los siguientes					Temperatura ambiente en °F		
21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-70 71-80	1,08 1,00 0,91 0,82 0,71 0,58 0,41	1,05 1,00 0,94 0,88 0,82 0,75 0,67 0,58 0,33	1,04 1,00 0,96 0,91 0,87 0,82 0,76 0,71 0,58 0,41	1,08 1,00 0,91 0,82 0,71 0,58 0,41	1,05 1,00 0,94 0,88 0,82 0,75 0,67 0,58 0,33	1,04 1,00 0,96 0,91 0,87 0,82 0,76 0,71 0,58 0,41	70- 77 78- 86 87- 95 96-104 105-113 114-122 123-131 132-140 141-158 159-176

Tabla 3 Factor de ajuste por temperatura Tabla 310-16 de la norma NTC 2050

3.2.5 PUESTA A TIERRA

Según el artículo 15 del Retie "toda instalación eléctrica debe disponer de un Sistema de Puesta a Tierra (SPT), de tal forma que cualquier punto del interior o exterior, normalmente accesible a personas que puedan transitar o permanecer allí, no estén sometidos a tensiones de paso, de contacto o transferidas, que superen los umbrales de soportabilidad del ser humano cuando se presente una falla"

Los objetivos de un sistema de puesta a tierra (SPT) son: La seguridad de las personas, la protección de las instalaciones y la compatibilidad electromagnética.

Las funciones de un sistema de puesta a tierra son:

- a) Garantizar condiciones de seguridad a los seres vivos.
- b) Permitir a los equipos de protección despejar rápidamente las fallas.
- c) Servir de referencia común al sistema eléctrico.
- d) Conducir y disipar con suficiente capacidad las corrientes de falla, electrostática y de rayo.
- e) Transmitir señales de RF en onda media y larga.

f) Realizar una conexión de baja resistencia con la tierra y con puntos de referencia de los equipos.

El sistema de puesta a tierra está compuesto normalmente por:

a) Electrodos de puesta a tierra.

Para cumplir con el Retie se hace obligatorio que los electrodos de puesta tierra cumplan con los requisitos estipulados en la tabla 23 del Retie. Ver tabla 4

Tipo		Dimensiones Mínimas					
de Electrodo	Materiales	Diámetro mm	Área mm²	Espesor mm	Recubrimiento µm		
Varilla	Cobre	12,7					
	Acero inoxidable	10					
	Acero galvanizado en caliente	16			70		
	Acero con recubrimiento electrodepositado de cobre	14			100		
	Acero con recubrimiento total en cobre	15			2000		
Tubo	Cobre	20		2			
l	Acero inoxidable	25		2			
	Acero galvanizado en caliente	25		2	55		
Fleje	Cobre		50	2			
	Acero inoxidable		90	3			
	Cobre cincado		50	2	40		
Cable	Cobre	1,8 para cada hilo	25				
	Cobre estañado	1,8 para cada hilo	25				
Placa	Cobre		20000	1,5			
	Acero inoxidable		20000	6			

Tabla 4. Requisitos para electrodos de puesta a tierra - Tabla 23 del artículo 15 del Retie quinta actualización del 2008

b) Conductor del electrodo de puesta a tierra.

Este conductor une la puesta a tierra con el barraje principal de puesta a tierra ubicado en la caja porta circuitos. Para baja tensión, se debe seleccionar con base en la Tabla 250-94 de la NTC 2050. Ver anexo 2

c) Conductor de protección o de puesta a tierra de los circuitos ramales.

El conductor de protección, también llamado conductor de puesta a tierra de equipos, debe cumplir los siguientes requisitos:

- a) El conductor para baja tensión, debe seleccionarse con la Tabla 250-95 de la NTC 2050. Ver anexo 3
- b) El conductor para media tensión, alta tensión y extra alta tensión, debe seleccionarse de forma tal que la temperatura del conductor no supere la temperatura del aislamiento de los conductores activos alojados en misma canalización, tal como se establece en el capítulo 9 de la IEEE 242.
- c) Los conductores del sistema de puesta a tierra deben ser continuos, sin interruptores o medios de desconexión y cuando se empalmen, deben quedar mecánica y eléctricamente seguros mediante soldadura o conectores certificados para tal uso.
- d) El conductor de puesta a tierra de equipos, debe acompañar los conductores activos durante todo su recorrido y por la misma canalización.
- e) Los conductores de los cableados de puesta a tierra que por disposición de la instalación se requieran aislar, deben ser de aislamiento color verde, verde con rayas amarillas o identificadas con marcas verdes en los puntos de inspección y extremos.

3.2.6 Medidor de energía eléctrica.

Es un interruptor gobernado a distancia por un electroimán el cual es accionado por la corriente. Como la velocidad es proporcional a la carga se deduce que la cantidad de revoluciones del disco es proporcional a la energía.

Los podemos encontrar de un conjunto formado por una bobina de corriente y una bobina de tensión, de dos conjuntos y de tres conjuntos.

De un conjunto se usan para sistemas monofásicos trefilar, de dos conjuntos para bifurcaciones monofásicas de un transformador trifásico y de tres conjuntos para sistemas trifásicos.

El medidor de energía está formado por:

- 1 Bobina de tensión. 2 Bobina de intensidad. 3 Imán de frenado.
- 4 Tornillo de regulación gruesa. 5 Abrazadera. 6 Bloqueo marcha inversa.
- 7. Angulo marcha inversa. 8 Tornillo para Regulación fina

Figura 4 Estructura del medidor de energía. Imagen tomada de (Curso de electricistas básico de redes eléctricas, colegio de ingenieros eléctricos y electrónicos Chimborazo-EERSA)

Para elegir el medidor correcto estos vienen comercialmente con una placa característica que indica la corriente nominal y la corriente máxima; ejemplo: 10 (20) A, 10(40) A, 15(60) A, 15 (100) A., etc. Donde el primer número indica la corriente nominal y el número en el paréntesis la corriente máxima In (Imax)

3.3 UBICACIÓN DE LAS CARGAS ELÉCTRICAS.

3.3.1 DISTRIBUCIÓN DE TOMACORRIENTES PARA ALUMBRADO GENERAL

El artículo 210-52 a) de la norma establece que "en comedores, cuartos de estar, salas, salones, bibliotecas, cuartos de estudio, solarios, dormitorios, cuartos de recreo, habitaciones o zonas similares en unidades de vivienda, se deben instalar salidas de tomacorrientes de modo que ningún punto a lo largo de la línea del suelo en ninguna pared este a más de 1.80m de un tomacorriente en ese espacio, medidos horizontalmente, incluyendo cualquier pared de 0.6m o mas de ancho y el espacio de pared ocupado por paneles fijos en los muros exteriores, pero excluyendo los paneles corredizos en los muros exteriores".

En el baño se debe ubicar un tomacorriente GFCI⁴ adyacente al lavamanos

En la zona de labores se colocara un toma de 20 A para la lavadora a no más de 1,8m de donde este la lavadora.

En la cocina se debe instalar tomas que brinden la seguridad de las personas mediante interruptor de circuito por falla a tierra para alimentar artefactos situados en los mesones y ubicarlos a menos de 1,8 m del borde exterior del lavaplatos.

20

⁴ son tomacorrientes con protección mediante interruptor de circuito por falla a tierra, los cuales están diseñados para evitar choques eléctricos accidentales o electrocución evitando el paso de la corriente a tierra.

3.3.2 DISTRIBUCION DEL ALUMBRADO.

La norma NTC 2050 indica que en cada cuarto habitable se debe instalar al menos una salida para alumbrado con un interruptor de pared, así como en los cuartos de baño, recibidores, escaleras, garajes anexos y garajes independientes con instalación eléctrica, y en el exterior de las entradas o salidas al exterior. No se considera entrada o salida exterior la puerta para vehículos de un garaje, a menos que se tenga como acceso obligatorio al interior de la vivienda.

Por su parte el artículo 16.1 del Retie indica lo siguiente: en una instalación eléctrica, un diseño de iluminación debe comprender las siguientes condiciones esenciales:

- a) Suministrar una cantidad de luz suficiente para el tipo de actividad que se desarrolle.
- b) El método y los criterios de diseño y cálculo de la iluminación deben asegurar los valores de coeficiente de uniformidad adecuados a cada aplicación.
- c) Controlar las causas de deslumbramiento.
- d) Prever el tipo y cantidad de fuentes y luminarias apropiadas para cada caso particular teniendo en cuenta sus eficiencias lumínicas y su vida útil
- e) Utilizar fuentes luminosas con la temperatura y reproducción del color adecuado a la necesidad.

- f) Propiciar el uso racional y eficiente de la energía eléctrica requerida para iluminación, utilizando fuentes de alta eficacia lumínica e iluminando los espacios que efectivamente requieran de iluminación.
- g) Atender los lineamientos del Reglamento Técnico de Iluminación y Alumbrado Público.
- h) Los sistemas de control de las lámparas, deben estar dispuestos de manera tal que se permita el uso racional y eficiente de la energía, para lo cual debe garantizarse alta selectividad de las áreas puntuales a iluminar y combinar con sistemas de iluminación general.

3.3.3 CARGA PERMITIDA

Según la NTC 2050 sección 210-23 "en ningún caso la carga debe exceder a la corriente nominal del circuito ramal. Está permitido que un circuito ramal individual alimente cualquier tipo de carga dentro de su valor nominal.

a) Circuitos ramales de 15 y 20 A. Se debe permitir que un circuito ramal de 15 o 20 A suministre corriente a unidades de alumbrado, a otros equipos de utilización o a una combinación de ambos. La corriente nominal de cualquier equipo de utilización conectado mediante cordón y clavija no debe superar el 80% de la corriente nominal del circuito ramal.

La capacidad total del equipo de utilización fijo en su lugar no debe superar el 50% de la capacidad de corriente del circuito ramal cuando se alimenten unidades de alumbrado o equipos de utilización conectados con cordón y clavija no fijos en sitio, o a ambos a la vez.

b) Circuitos ramales de 30 A. Se debe permitir que un circuito ramal de 30 A alimente a unidades fijas de alumbrado con porta bombillas de servicio pesado, en edificaciones distintas a las viviendas, o a equipos de utilización en cualquier

ocupación. La corriente nominal de cualquier equipo de utilización conectado con cable y clavija no debe superar el 80% de la corriente nominal del circuito ramal.

- c) Circuitos ramales de 40 y 50 A. Se debe permitir que un circuito ramal de 40 o 50 A alimente equipos de cocina fijos en cualquier ocupación. En edificaciones que no sean para vivienda, se debe permitir que tales circuitos alimenten unidades de alumbrado fijas con porta bombillas de servicio pesado, unidades de calefacción por infrarrojos u otros equipos de utilización.
- d) Circuitos ramales de más de 50 A. Los circuitos de más de 50 A sólo deben alimentar a salidas de cargas que no sean para alumbrado".

Para resumir lo que se necesita para los circuitos ramales se encuentra en la tabla 3. Resumen de requisitos de los circuitos derivados sección 210-24 de la NTC 2050

Cuadro 210-24
Resumen de requisitos de los circuitos derivados

Intensidad nom. del circuito	15 amperios	20 amperios	30 amperios	40 amperios	50 amperios
Conductores (Sección mínima):					
Cables del circuito*	14	12	10	8	6
Tomas de corriente derivadas	14	14	14	12	12
Cables y cordones de aparatos		Véase Sección 240-4			
Protección contra sobreintensidad	15 amperios	20 amperios	30 amperios	40 amperios	50 amperios
Dispositivos de toma de corriente: Portalámparas permitidos Intensidad admisible de la toma**	De cualquier tipo 15 A máx.	De cualquier tipo 15 o 20 A	Reforzados 30 A	Reforzados 40 o 50 A	Reforzados 50 A
Carga máxima	15 amperios	20 amperios	30 amperios	40 amperios	50 amperios
Carga permisible	Véase Sección 210-23(a)	Véase Sección 210-23(a)	Véase Sección 210-23(b)	Véase Sección 210-23(c)	Véase Sección 210-23(c)

^{*} Estos números se refieren a conductores de cobre.

Tabla 5. Resumen de la sección 210-24 de la norma NTC 2050

^{**} Para la intensidad de los aparatos de iluminación por descarga conectados con cordón y clavija, véase Sección 410-30(c).

^{*} Estos calibres se refieren a conductores de cobre con sección transversal en mm2 y entre paréntesis AWG.

^{**} Para la capacidad nominal de los tomacorrientes para los artefactos con lámpara de descarga conectados con cordón, véase Artículo 410-30.c).

3.4 DISTRIBUCIÓN DE LOS CIRCUITOS RAMALES

Según el artículo 220-4 a) "El número mínimo de circuitos ramales se debe establecer a partir de la carga total calculada y la capacidad nominal de los circuitos utilizados. En todas las instalaciones, el número de circuitos debe ser suficiente para alimentar la carga conectada."

Según el anterior artículo y el 220- 3 los circuitos ramales pueden ser:

3.4.1 Circuitos de Alumbrado General

Son las bombillas y tomacorrientes de uso general: todas las salidas para tomacorrientes de uso general de 20 A nominales⁵ o menos, en unidades de vivienda se deben considerar como tomacorrientes para alumbrado general, a excepción de los tomacorrientes de los circuitos para pequeños aparatos eléctricos y los destinados a la lavadora y plancha.

3.4.2 Circuitos para aparatos específicos

Estos circuitos son por ejemplo: motores, avisos, equipos de trabajo pesado, aire acondicionado, entre otros.

3.4.3 Circuitos de 20 A para Pequeños Aparatos Eléctricos

Además del número de circuitos ramales ya determinado, deben existir uno o más circuitos ramales de **20 A**, para pequeños artefactos en la cocina, despensa o comedor auxiliar de una unidad de vivienda, incluyendo las salidas de tomacorrientes para refrigeradores.

3.4.4 Circuitos de 20 A para Lavadora y Plancha

Debe existir otro circuito para conectar a los tomacorrientes lavadoras y planchas igual a 20 A

⁵ se refiere a la a su protección de sobrecorriente

3.5 Ejemplo practico

Supóngase que como ingeniero electricista hay que diseñar la infraestructura eléctrica de una vivienda de 86 m², según el plano que se muestra a continuación.

Figura 5 Plano arquitectónico de vivienda de 86m2

Recordemos los símbolos más usados para nuestro diseño eléctrico

S2	Interruptor doble
S3	Interruptor triple
SE	Interruptor escalera

Figura 6 Simbología más usada

Para lograr el correcto diseño de la instalación eléctrica se aplicaran los siguientes pasos:

- 1. Ubicación de los tomacorrientes
- 2. Ubicación de los interruptores e iluminarias
- 3. Distribución de los conductores
- 4. Calculo de los circuitos ramales
- 5. Cuadro de carga
- 6. Calculo de la acometida eléctrica
- 7. Calculo de la regulación de la acometida
- 8. Elección del medidor eléctrico

Se hace la observación que estos pasos se establecen basados en la estructura de esta guía, por consiguiente no hay restricciones de modificar y aplicar su orden

PASO 1) UBICACIÓN DE LOS TOMACORRIENTES

Recordemos que tenemos que ubicar los tomacorrientes de tal manera que ningún punto, a lo largo de la pared, esté a más de 1.8m de cualquier toma corriente en tal espacio de pared, entendiendo por espacio de pared a toda línea de pared continua, de 0.6m o más de largo.

Figura 7. Ubicación de los tomacorrientes

Nótese que en los baños y en la zona adyacente al lavaplatos se colocaron tomas GFCI como lo exige la norma

PASO 2) UBICACIÓN DE LOS INTERRUPTORES E ILUMINARIAS

Los interruptores cuando se coloquen en posición vertical deben quedar encendiendo hacia arriba y apagando hacia abajo. Cuando se coloquen en posición horizontal, quedarán encendiendo hacia la derecha y apagando hacia la izquierda.

Para poder seleccionar las iluminarias de forma correcta, esta guía se apoya en la tabla de los Niveles de iluminación recomendados por Iluminating Engineering Society y la Sociedad Mexicana de Ingeniería e Iluminación mostrada a continuación

Local	Nivel de iluminación (Luxes)			
	I.E.S (Preferible)	S.M.I.I (Mínimo)		
Locales Interiores:				
a) Equipo de acondicionamiento de aire b) Auxiliares, cuartos de baterías, bombas y compresores c) Cuarto de equipo telefónico y carrier d) Cuartos de control: - Cara vertical de tableros. Sencillo o la sección - Tipo (a): Grandes cuartos de control centralizados desde 168 cm (66 pg) sobre el piso. - Tipo (b): Cuartos de control ordinarios, hasta 168 cm (66 pg) sobre el piso. - Cara de la sección de duplex opuesta al operador - Area interior del tablero duplex (pasillo) - Lado posterior de todos los tableros, (vertical) - Alumbrado de emergencia, todas las áreas - Escritorios o tableros tipo escritorio (nivel horizontal) - Iluminación general restante	100 200 300 500 300 300 100 100 30 500 300	60 100 200 300 200 200 60 60 20 300 200		
e) Oficina f) Bodega g) Vestíbulo h) Comedor i) Sanitarios	300 200 200 300 100	200 100 150 200 60		

Casas

Tipo de área	lluminacia en servicio (lux)	Clase de calidad	
Dormitorio en general	50	B-C	
Cabecera del dormitorio	200	ВĊ	
Baño en general	100	B-C	
Lugar para afeitarse y maquillarse en el baño	500	ВС	
Vivienda en general	100	B-C	
Lugar para leer y coser	500	B-C	
Escaleras	100	B-C	
Cocina en general	300	B-C	
Área de trabajo en la cocina	500	B-C	
Escritorio	300	B-C	
Quarto de los niños	100	B-C	

Tabla 6 Niveles de iluminación recomendados por Iluminating Engineering Society y la Sociedad Mexicana de Ingeniería e Iluminación

Conociendo los niveles de iluminancia (lx) según la zona de la vivienda, a través de software como el dialux se procede a determinar el número de iluminarias necesarias para cumplir con los niveles de iluminancias establecidos

Ingresando unos datos en el programa como el tipo de iluminaria, el largo, ancho y alto del área a instalar la iluminaria entre otros, el programa nos da como resultado la cantidad de iluminancia máxima, minima y promedio.

Para establecer si nuestro diseño cumple con la tabla 6 niveles de iluminancia, se tomara el valor de iluminancia promedio entregado por el software

Se procede a simular en el dialux la zona del cuarto principal de (2,85m x 5,15m). El software muestra los siguientes datos como se ven a continuación en la tabla 8

 Flujo luminoso total:
 2853 lm

 Potencia total:
 52.0 W

 Factor mantenimiento:
 0.80

 Zona marginal:
 0.000 m

Superficie	Intensidades lumínicas medias [lx]		Grado de reflexión [%]	Densidad lumínica media [cd/m²]	
	directo	indirecto	total		
Plano útil	44	45	89	1	1
Suelo	25	38	63	20	4.03
Techo	46	28	74	70	17
Pared 1	34	32	66	50	11
Pared 2	30	30	59	50	9.45
Pared 3	34	32	66	50	10
Pared 4	33	32	64	50	10

Simetrías en el plano útil E_{min} / E_{m} : 0.508 (1:2) E_{min} / E_{max} : 0.370 (1:3)

Valor de eficiencia energética: 3.61 W/m² = 4.05 W/m²/100 lx (Base: 14.42 m²)

Tabla 7 Resultados luminotécnicos

Se observa en la tabla 8 que el valor promedio sobre el plano útil de iluminancia es igual a 89 lx, la tabla 6 niveles de iluminancia muestra que para dormitorios el nivel recomendado es mayor de 50 lx, por ende nuestro diseño está cumpliendo con los niveles sugeridos

Para mayor referencia, como el tipo de iluminaria seleccionado, el área aplicado al estudio de iluminación y resumen de los datos del software ver anexo 11

De igual forma se procede a calcular el nivel de iluminancia para el resto de las zonas de la vivienda.

La figura 7 muestra cómo queda la distribución de los interruptores e portalámparas.

Figura 8. Ubicación de los interruptores e portalámparas

PASO 3) DISTRIBUCIÓN DE LOS CONDUCTORES

La figura 8 muestra cómo queda la distribución de los diferentes conductores en la vivienda. Recuérdese que se seleccionó un calibre 12 AWG para los conductores, ya que la norma establece claramente que para circuitos ramales de 20 A se debe seleccionar el conductor anteriormente nombrado

Figura 9. Distribución de los conductores

PASO 4) CÁLCULO DE LOS CIRCUITOS RAMALES

En la actualidad existen mucha gama de diferentes iluminarias; para el ejemplo práctico se optó por elegir iluminarias fluorescentes de 25 W la cual brinda alrededor de 1020 lúmenes. Para el cálculo de las salidas de los tomacorrientes, se aplica el artículo 220-3 C-7 de la norma NTC 2050. "Cada tomacorriente sencillo o múltiple de un puente se debe considerar a no menos de 180 VA" que es igual a 1.5 A a 120 V.

Recuérdese que los circuitos deben estar protegidos contra sobrecorriente por medio de un dispositivo cuya capacidad nominal no exceda la capacidad de conducción de corriente del circuito. Para circuitos de alumbrado general se utilizan protecciones de 15 A y 20 A.

CIRCUITO DE ALUMBRADO GENERAL.

Para realizar el cálculo del circuito de alumbrado general la norma en la sección 220-3 b señala que "La carga mínima de alumbrado por metro cuadrado de superficie del suelo, no debe ser menor a la especificada en la Tabla 220-3.b) para las ocupaciones relacionadas. La superficie del suelo de cada planta se debe calcular a partir de las dimensiones exteriores de la edificación, unidad de vivienda u otras áreas involucradas. Para las unidades de vivienda, la superficie calculada del suelo no debe incluir los porches abiertos, los garajes ni los espacios no utilizados o sin terminar que no sean adaptables para su uso futuro."

Tipo de ocupación	Carga unitaria (VA/m²)
Cuarteles y auditorios	10
Bancos	38 **
Barberías y salones de belleza	32
Iglesias	10
Clubes	22
Juzgados	22
Unidades de vivienda *	32
Garajes públicos (propiamente dichos)	5
Hospitales	22
Hoteles y moteles, incluidos bloques de apartamentos sin cocina *	22
Edificios industriales y comerciales	22
Casas de huéspedes	16
Edificios de oficinas	38 **
Restaurantes	22
Colegios	32
Tiendas	32
Depósitos	2.5
En cualquiera de los lugares anteriores excepto en viviendas unifamiliares y unidades individuales de vivienda bifamiliares y multifamiliares:	
Lugares de reunión y auditorios	10
Recibidores, pasillos, armarios, escaleras	5
Lugares de almacenaje	2.5
	1

Tabla 8. Carga unitaria para unidades de vivienda. Tabla 220-3 NTC 2050

De la tabla 220-3 b) de la norma NTC 2050, se obtiene el valor de carga unitaria para unidades de vivienda el cual es de 32 VA/m².

El área total de la vivienda es de 86 m² entonces:

$$Carga\ minima = 86m^2 * 32VA/m^2$$

 $Carga\ minima = 2752VA$

CIRCUITOS DE BAÑO.

El Artículo 210-52-d de la norma NTC 2050 indica que las salidas de tomacorriente en los cuartos de baño, deben estar alimentadas por lo menos por un circuito ramal de 20 A. El artículo 210-8, de la norma NTC 2050 indica que los tomacorrientes o contactos de los lavamanos, estén o no en un cuarto de baño, deben ofrecer protección a las personas mediante interruptor de circuito por falla a tierra.

CIRCUITO DE PEQUEÑOS ARTEFACTOS.

El artículo 220-4, señala que debe existir uno o más circuitos ramales de 20 A para pequeños artefactos, para todas las salidas de tomacorrientes especificadas en artículo 210-52

CIRCUITO DE LAVADORA.

El artículo 220-4 señala que debe existir al menos otro circuito ramal de 20 A para conectar las salidas de tomacorrientes para lavandería y planchado, exigidas por el artículo 210-52 f (ver anexo 8). Este circuito no debe tener otras salidas.

PASO 5) CUADRO DE CARGA

Ya habiendo calculado los circuitos ramales en el paso 4 y distribuyendo los conductores en el paso 3, el cuadro de carga nos queda como se muestra en la tabla 8.

Circuitos	Zona	tomas	porta lamparas	carga(W)	Corriente(A)	Proteccion	Conductor
1	Alumbrado	7	7	1435	11,95833333	20	12 AWG
2	Alumbrado	7	6	1410	11,75	20	12 AWG
3	Pequeños artefactos	2	0	1500	12,5	20	12 AWG
4	Lavanderia	2	0	1500	12,5	20	12 AWG
	Carga total			5845			
	Factor de ajuste						
	Los primeros 3000 al 100%	3000					
	Los otros 2845 al 35%	995,8					
	Carga minima total	3996					

Tabla 9 Cuadro de carga

PASO 6) CÁLCULO DE LA ACOMETIDA ELÉCTRICA.

Para el cálculo del circuito alimentador es necesario establecer un factor de demanda el cual es definido como la relación entre la demanda máxima de una instalación o parte de una instalación y a la carga total conectada a la instalación o parte de la instalación considerada. Como todos los aparatos en la instalación no

estarán conectados a la vez, se debe establecer un factor que ajuste la carga a un valor real de consumo (carga conectada).

En el artículo 220-16 (Anexo 9) de la norma NTC 2050 se indica que se debe considerar una carga de 1500 VA por cada circuito derivado de los conductores para pequeños artefactos, lavandería y planchado. Se permite que estas cargas se incluyan en la carga de alumbrado general y se apliquen los factores de demanda de la tabla 9 (Tabla NTC 220-11);

Tipo de edificio	Parte de la carga de iluminación a la que se le aplica el factor de demanda (en voltioamperios)	Factor de demanda por 100
Unidades de vivienda	Primeros 3000 o menos	100
	De 3001 a 120000	35
	A partir de 120000	25

Tabla 10. Cuadro 220-11 Factores de demanda del circuito principal para cargas de iluminación

Ya sabiendo que el valor de carga mínima necesaria es de 2752 VA calculado en el paso 4, se procede a calcular la carga total del circuito del alumbrado

Alumbrado general

$$=\sum de\ la\ carga\ total\ de\ los\ circuitos\ de\ alumbrado\ general$$
 $*\ la\ tension$

$$Alumbrado\ general = (Circuito\ 1 + Circuito\ 2) * 120V$$

$$Alumbrado\ general = (11,96A + 11,75A) * 120V = 2845VA$$

Como se nota la carga de nuestro circuito de alumbrado general está por encima de la carga minina, por ende cumple con el artículo 220-3 inciso b) de la norma NTC 2050

En el caso, solo hay un circuito de pequeños artefactos y uno de lavandería, entonces de acuerdo al artículo 220-16 cada circuito será de 1500VA ó sea 3000VA en total

Según lo anterior el circuito de iluminación general queda

$$Alumbrado\ general = 2845VA + 3000\ VA = 5845\ VA$$

Aplicando el factor de demanda:

Los primeros $3000 \times (100/100) = 3000 \text{ va}$, se aplican en su totalidad.

A la cantidad restante 2845 va se le aplica el 35%

$$2845 VA * \left(\frac{35\%}{100\%}\right) = 995,8VA$$

Ahora sumemos las cargas

$$3000VA + 995,8VA = 3996VA$$

Por lo que resulta una carga total de 3996 VA, la cual representa la demanda máxima de la vivienda, con una tensión igual a 120V nos da como resultado 33,3 A, Según la tabla 310-16 (Anexo10) se debe seleccionar un conductor de calibre 8 AWG

PASO 7) CÁLCULO DE LA REGULACIÓN DE LA ACOMETIDA

Para el cálculo de la regulación se aplicara la siguiente formula

$$\%Regulation = \frac{\Delta V}{V} * 100$$

De donde ΔV es igual a:

$$\Delta V = Z * 2 * l * i$$

L = Distancia del conductor en km

Z = Impedancia eficaz en ohm/m

I = Corriente del conductor en A

 ΔV = Caída de tensión en voltios

V= Tensión del sistema en voltios

Tensión del sistema: el sistema es monofásico con una tensión igual de 120 V

Corriente del conductor: Recuérdese que la potencia total calculada es igual a 3996 VA con una tensión igual a 120V nos da como resultado 33.3 A, Según la tabla 310-16 (Anexo10) se debe seleccionar un conductor de calibre 8 AWG

Distancia de la acometida: Para efectos de cálculo se supondrá que la distancia del conductor es igual a 15 m = 0,015 km

Impedancia del conductor: Para determinar la impedancia del conductor, se debe averiguar las características según fabricante.

El conductor seleccionado numero 8 AWG de cobre según la tabla 10 tiene un valor de impedancia igual a 2,4 ohm/m en un ducto de pvc

RESISTENCIA ELECTRICA CA, REACTANCIA INDUCTIVA E IMPEDANCIA PARA CABLES DE 600 V, OPERANDO A 75° C EN UN SISTEMA TRIFASICO A 60 HZ: 3 CABLES UNIPOLARES EN UN MISMO DUCTO

	Ohm/km, al neutro										
Calibre AWG/	- A-5-2-2	encia Z de cond de Cobre tor de potencia	100000000000	Impedencia Z de conductores de Aluminio Factor de potencia = 0,9							
kemil	Ducto de PVC	Conduit de Aluminio	Conduit de Acero	Ducto de PVC	Conduit de Aluminio	Conduit de Acero					
14	9,2	9,2	9,3								
12	6,0	6,0	6,0	9,5	9,5	9,5					
10	3,6	3,6	3,6	6,0	6,0	6,0					
8	2,4	2,4	2,4	3,9	3,9	3,9					
6	1,5	1,5	1,5	2,5	2,5	2,5					
4	0,98	0,98	1,0	1,6	1,6	1,6					
3	0,81	0,81	0,82	1,2	1,3	1,3					
2	0,63	0,65	0,67	1,0	1,0	1,0					
1	0,51	0,54	0,55	0,80	0,83	0,82					
1/0	0,42	0,45	0,43	,65	0,68	0,67					
2/0	0,36	0,36	0,37	0,53	0,53	0,55					
3/0	0,29	0,30	0,31	0,44	0,44	0,46					

Tabla 11 Características del conductor dadas por el fabricante

Teniendo todos los datos, se procede a calcular la caída de tensión

$$\Delta V = 2 * \frac{2,40hm}{km} * 0,015km * 33,3A$$

$$\Delta V = 2,40V$$

Conociendo el valor de la caída de tensión, se procede a calcular %regulación

$$\%$$
Regulacion = $\frac{2,40 \text{ V}}{120 \text{ V}} * 100\%$
 $\%$ Regulacion = 2%

Según el artículo 210-19 el porcentaje de caída de tensión de la acometida tiene que ser menor al 5%, para el ejemplo práctico el porcentaje calculado fue de 2% lo que significa el total cumplimiento de la norma

PASO 8) ELECCIÓN DEL MEDIDOR ELÉCTRICO.

Para el ejemplo práctico, el sistema es monofásico trefilar, por tal motivo se elige un medidor de energía monofásico 120/240 de un conjunto (una bobina de tensión y una de corriente)

Como la demanda máxima de la vivienda es de 3996 VA la corriente calculada para esta demanda es de 33.3 A, conociendo esto, el medidor a elegir tiene que soportar esta corriente.

Conociendo la corriente y la configuración del sistema se elige un medidor monofásico 15(60) A.

PASO 9) TABLERO GENERAL DE DISTRIBUCIÓN.

	TABLERO GENERAL																				
Conductor	Corriente	DESCRIPCION	CAI CIRCUI VA		POLOS	BRFAKER		KERS	BREAKER	POI 0S	VΔ's		CIRCUITOS EN		CIRCUITOS EN		CIRCUITOS EN		Conductor	Corriente	DESCRIPCION
			a	b	, vev biterite	DILLINER					a	b									
12 AWG	11,96 A	Alumbrado	1.500		1	20 A	1	2	20 A	1	1.500		12 AWG	11,75 A	Alumbrado						
12 AWG	12,5 A	Pequeños artefactos		1.500	1	20 A	3	4	20 A	1		1.500	12 AWG	12,5 A	Lavanderia						
12 AWG		Reserva					5	6							Reserva						
						FASE a			FASE b												
							3.000			3.000											
						T	DTAL			6.000	VA										

Figura 11 Tablero general de distribución

3.5.1 INSTALACIÓN DE LA PUESTA A TIERRA

3.5.1.1 SELECCIÓN DEL CALIBRE MININO DEL CONDUCTOR DE PUESTA A TIERRA DE EQUIPOS

Para que nuestro diseño cumpla con el artículo 250-23⁶ de la norma NTC 2050 se selecciona el calibre mínimo del conductor de puesta a tierra de equipos en la tabla 250-95 (ver anexo 3) de la NTC 2050

Como la capacidad de protección de los circuitos ramales es de 20 A según la tabla se debe seleccionar el conductor 12AWG

Sin embargo para el circuito alimentador cuya protección es igual a 40 A seleccionamos según la tabla 250-95 un conductor de puesta a tierra igual a 10 AWG

3.5.1.2 SELECCIÓN DEL CONDUCTOR DEL ELECTRODO DEL SISTEMA PUESTA A TIERRA

De acuerdo al artículo 250-94 (anexo 2) se elige el conductor de calibre 8 AWG ya que la norma exige que no puede ser menor que este.

3.5.1.3 SELECCIÓN DEL ELECTRODO DE PUESTA A TIERRA

El electrodo de puesta a tierra debe cumplir con los requerimientos citados en la norma NTC 2050 artículos 250-81 (anexo 5), 250-83 (anexo 6) y 250-84(anexo 7). Y se seleccionan mediante la tabla 23 del Retie. Por consiguiente se debe seleccionar una varilla de cobre 12,7 mm de diámetro y una longitud de 2,40 m

⁶ El artículo 250-23, inciso a) de la norma NTC 2050 indica que un sistema alambrado de la propiedad que se alimenta por medio de un sistema de distribución de energía eléctrica conectado a tierra, debe tener en cada acometida un conductor conectado a un electrodo de puesta a tierra que cumpla lo establecido en la parte H de la sección 250.

3.6 PRESUPUESTO DE LA OBRA: Para determinar cuánto es el valor total a gastar en una instalación eléctrica toca determinar lo siguiente:

Conductores eléctricos: Determinar cuántos metros de cables se lleva la obra y el calibre a emplear

Tubería de pvc: Determinar cuántos tubos a emplear y el diámetro

Breakers: Dependiendo el número de circuitos y la capacidad de los circuitos ramales se determina que breakers comprar; comercialmente los encontramos de 15, 20, 30, 40,50 A

Caja portacircuitos: Se determina dependiendo del número de circuitos ramales, comercialmente podemos encontrar de 2 circuitos a 32 circuitos

Cajas octogonales: las más comunes son de 2x2 y de 4x2

Curvas: Se seleccionan según el diámetro de los tubos de pvc

Toma corrientes: Según el número de salidas para toma corrientes

Portalamparas: Según el número de salidas para Portalamparas

Interruptores: Los más empleados son los dobles, pero comercialmente mente podemos encontrar sencillos, dobles y triples

En la siguiente tabla 13 se muestra más o menos cuando dinero se pueden gastar la instalación del ejemplo

Item	Descripción	Unidad	Cantidad	Vr. Unitario	Vr. Total
1	Tubo conduit PVC de 1/2" x 3m	Tubo	10	2463	24630
2	Tubo conduit PVC de 3/4" x 3m	Tubo	8	3224	25792
3	Tubo conduit PVC de 1" x 3m	Tubo	3	4469	13407
4	Curva conduit PVC de 1/2"	J	8	313	2504
5	Curva conduit PVC de 3/4"	J	6	492	2952
6	Curva conduit PVC de 1"	U	2	953	1906
7	Conector roscable conduit PVC de 1/2"	U	8	149	1192
8	Conector roscable conduit PVC de 3/4"	U	6	198	1188
9	Conector roscable conduit PVC de 1"	U	2	365	730
10	Soportes (grapas, zunchos)	U	7	826	5782

11	Cinta aislante Nº 33	U	5	5800	29000
12	Pegante PVC de 1/8 gal.	U	2	15048	30096
13	Pegante PVC de 1/4 gal.	U	1	29123	29123
14	Grapa PVC para 1/2"	U	15	63	945
15	Grapa PVC para 3/4"	U	10	95	950
16	Grapa PVC para 1"	U	12	120	1440
17	Chazo plástico de 3/4" con tornillo	U	21	122	2562
18	Caja PVC de 2" x 4"	U	10	391	3910
19	Caja PVC de 4" x 4" con adaptador y tornillos	U	18	1224	22032
20	Caja PVC octagonal	U	3	684	2052
21	Alambre telefónico JWP interior 2 x 20 AWG	m	12	364	4368
22	Alambre telefónico JWP interior 2 x 22 AWG	m	15	263	3945
23	Alambre de Cu THHN Nº 12 AWG Blanco	m	55	703	38665
24	Alambre de Cu THHN Nº 12 AWG - Rojo/Negro	m	55	703	38665
25	Alambre de Cu THHN Nº 12 AWG - Verde	m	62	703	43586
26	Tablero MB trifásico con puerta de 6 ctos	U	1	146102	146102
27	Breaker Enchufables Monopolares de 20		_	70.47	22225
28	Amperios	U	5	7847	39235
29	Interruptor sencillo luz piloto línea Arquea Interruptor triple conmutable luz piloto línea	U	7	8989	62923
29	Arquea	U	2	21339	42678
30	Tomacorriente sencillo doble salida	U	15	15800	237000
31	Tomacorriente GFCI línea Arquea	U	3	41363	124089
32	Toma para TV sencillo línea Arquea	U	2	4969	9938
33	Varilla de copperweld de 2,4m con conector	U	1	92290	92290
34	Mano de Obra Instalacion	U	1	900000	900000
-	TOTAL PRELIMINAR				1,985,677

TOTAL PRELIMINAR
IVA 16%
GRAN TOTAL

1,985,677 317708 2,303,385

Tabla 12 Gasto total de la instalación eléctrica

4 RESUMEN

Para diseño eléctrico de una vivienda de 86 m² calculamos los circuitos ramales, el circuito alimentador, la regulación y determinados la puesta a tierra a utilizar

Primero se calculó la carga minina de la vivienda, para posteriormente poder determinar el número de circuitos necesarios

Se distribuyeron las salidas de tomacorrientes y portalámparas conforme como lo estipula la norma, para luego distribuir los conductores por toda la vivienda

Por último se procede a calcular el cuadro de carga con las salidas y circuitos ya determinados

Carga minima establecida por l			Cuadro de	carga de	la vivienda	ı		
32 VA por metro cuadrao	do	Circuitos	Zona	tomas	lamparas	carga	Corriente	Proteccion
Area de la vivienda (m2)	86	1	Alumbrado	7	7	1435	11,958333	20
		2	Alumbrado	7	6	1410	11,75	20
Alumbrado general	2752	3	Pequeños artefactos	2	0	1500	12,5	20
Cto de pequenos artefactos	1500	4	Lavanderia	2	0	1500	12,5	20
Cto de lavanderia	1500				_		/-	
carga minima	5752		Carga total			5845		
Factor de ajuste			Factor de ajuste					
Los primeros 3000 al 100%	3000		Los primeros 3000 al 100%	3000				
Los otros 2752 al 35%	963,2		Los otros 2845al 35%	995,8				
Carga minima total	3963,2		Carga minima total	3996				

Figura 11. Resumen del diseño eléctrico

Para determinar el número de tomacorrientes se tienen que ubicar de tal forma que no quede ningún toma a 1,8 m de separación del otro. Al momento de instalarlos se debe procurar que el neutro del toma sea el de arriba

Para determinar la cantidad de porta bombilla la norma NTC 2050 indica que en cada cuarto habitable se debe instalar al menos una salida para alumbrado con

un interruptor de pared, así como en los cuartos de baño, recibidores, escaleras, garajes anexos y garajes independientes con instalación eléctrica, y en el exterior de las entradas o salidas al exterior, además se debe procurar instalar la iluminancia necesaria para las diferentes zonas establecidas por el Retie.

Por último se determinó que para una puesta a tierra óptima se debe instalar una varilla de cobre de 2,4 m de largo y 12,7 mm de diámetro, con un conductor de calibre 8 AWG

5 CONCLUSIONES

Con esta guía se logró resaltar los aspectos más importantes de la norma NTC 2050 y el Retie referido a las instalaciones eléctricas domiciliarias.

Se detalló en la guía paso a paso lo que se debe realizar para lograr el diseño de una instalación eléctrica que cumpla con las normas estipuladas en el país

Se puede contar con una herramienta más para entender y comprender los artículos de la norma y del Retie aplicados a viviendas, ya que el manual describe con ejemplo lo que debemos aplicar según la norma

6 BIBLIOGRAFIA

- 1. Norma técnica Colombiana. NTC 2050
- 2. http://www.zimat.com/company-activities-management/company-structures ownership/6574810-1.pdf
- 3. Reglamento técnico de instalaciones eléctricas. Retie
- 4. Mejía, Jorge Hernán. Instalaciones eléctricas residenciales
- 5. García, Carlos. Instalaciones eléctricas interiores, 3ª edición. 2010.
- 6. Sánchez, Franco. Manual de instalaciones eléctricas, 3ª edición. 2008.

7 ANEXOS

Anexo 1. Cuadro 310-13 Norma NTC 2050

Aplicaciones y aislamiento de los conductores

Nombre comercial	Letra de	Temp. máx. de	Aplicaciones	Aislamiento	AWG		Recubrimiento externo(1)
	tipo	funcionamiento	previstas		o Espesor del kcmil aislamiento	en kcmils	
Etileno-propileno fluorado	FEP 0 FEPB	90°C (194°F) 200°C (392°F)	Lugares secos y mojados Lugares secos en aplicaciones especiales(3)	Etileno-propileno fluorado Etileno-propileno fluorado	14-10 8-2 14-8 6-2	20 30 14 14	Ninguno Trenza de cristal Trenza de amianto u otro material adecuado
Aislamiento mineral (con recubrimiento metálico)	MI	90°C (194°F) 250°C (482°F)	Lugares secos y mojados Para aplicaciones especiales(3)	Oxido de magnesio	18-16(2) 16-18 9-4 3-500	23 36 50 55	De cobre o aleación de acero
Termoplástico resistente a la humedad, al calor y al aceite	MTW	60°C (140°F)	Instalaciones de máquinas en lugares mojados, como permite NFPA 79 (ver Artículo 670) Instalaciones de máquinas en lugares secos, como permite NFPA 79 (ver Artículo 670)	Termoplástico retardante de la llama y resistente a la humedad, al calor y al aceite	22-12 10 8 6 6 4-2 1-4/0 213-500 501-1000	A B 30 15 30 20 45 30 60 30 60 40 80 50 95 60 110 70	A = Ninguno B = Forro de nylon o equivalente
Papel		85°C (185°F)	Para conductores subterráneos de acometida o con permiso especial	Papel			Forro de plomo
Perfluoroalcoxi	PFA	90°C (194°F) 200° (392°F)	Lugares secos y mojados Lugares secos, aplicaciones especiales(3)	Perfluoroalcoxi	14-10 8-2 1-4/0	20 30 45	Ninguno
Perfluoroalcoxi	PFAH	250°C (482°F)	Sólo para lugares secos. Sólo para cables dentro de aparatos o de conductos conectados a aparatos (sólo de níquel o de cobre recubiertos de níquel)	Perfluoroalcoxi	14-10 8-2 1-4/0	20 30 45	Ninguno
Plástico termoendurecible Plástico termoendurecible	RH RHH	75°C (167°F) 90°C (194°F)	Lugares secos y mojados Lugares secos y mojados	Plástico termoendurecible retardante de la llama	14-12(5) 10 8-2 1-4/0 213-500 501-1000 1001-2000 Para 601-2000 voltios, ver Cuadro 310-62	30 45 60 80 95 110 125	Recubrimiento no metálico, resistente a la humedad y retardante de la llama(4)
Plástico termoendurecible resistente a la	RHW(6)	75°C (167°F)	Lugares secos y mojados. SI el aislante es de más de	Plástico termoendurecible resistente a la	14-10 8-2 1-4/0	45 60 80	Recubrimiento no metálico, resistente a la humedad y retardante de la llama(4)
Plástico termoendurecible resistente a la humedad	RHW-2	90°C (194°F)	Lugares secos y mojados	Plástico termoendurecible resistente a la humedad y retardante de la llama	14-10 8-2 1-4/0 213-500 501-1000 1001-2000 Para 601-2000 voltios, ver Cuadro 310-62	45 60 80 95 110 125	Recubrimiento no metálico, resistente a la humedad y retardante de la llama(4)
Silicona	SA	90°C (194°F) 200°C (392°F)	Lugares secos y húmedos Para aplicaciones especiales(3)	Goma de silicona	14-10 8-2 1-4/0 213-500 501-1000 1001-2000	45 60 80 95 110 125	Malla de cristal u otro material adecuado

Plástico termoendurecible	SIS	90°C (194°F)	Sólo para cableado de cuadros	Plástico termoendurecible retardante de la llama	14-10 8-2 6-2 1-4/0	30 45 60 55	Ninguno
Termoplástico y otras mallas externas fibrosas	TBS	90°C (194°F)	Sólo para cableado de cuadros	Termoplástico	14-10 8-2 6-2 1-4/0	30 45 60 80	Recubrimiento no metálico retardante de la llama
Politetrafluoroetileno extendido	TFE	250°C (482°F)	Sólo lugares secos. Sólo para cables dentro de aparatos o dentro de canalizaciones conectadas a aparatos, o como cables desnudos (sólo de níquel o níquel recubierto de cobre)	Politetrafluoroetileno extendido	14-10 8-2 1-4/0	20 30 45	Ninguno
Termoplástico resistente al calor	THHN	90°C (194°F)	Lugares secos y húmedos	Termoplástico resistente al calor y retardante de la llama	14-12 10 8-6 4-2 1-4/0 250-500 501-1000	15 20 30 40 50 60 70	Forro de nylon o equivalente
Termoplástico resistente a la humedad y al calor	THHW	75°C (167°F) 90°C (194°F)	Lugares húmedos Lugares secos	Termoplástico retardante de la llama y resistente a la humedad y al calor	14-10 8-2 1-4/0 213-500 501-1000	45 60 80 95 110	Ninguno
Termoplástico resistente a la humedad y al calor	THW(6)	75°C (167°F) 90°C (194°F)	Lugares secos y húmedos Aplicaciones especiales en equipos de iluminación por descarga. Limitado a 1000 volttos en circuito abierto o menos (sólo cables de los números 14-8, como permite la Sección 410-13)	Termoplástico retardante de la llama y resistente a la humedad y al calor	14-10 8-2 1-4/0 213-500 501-1000 1001-2000	45 60 80 95 110 125	Ninguno
Termoplástico resistente a la humedad y al calor	THWN(6)	75°C (167°F)	Lugares secos y húmedos	Termoplástico retardante de la llama y resistente a la humedad y al calor	14-12 10 8-6 4-2 1-4/0 250-500 501-1000	15 20 30 40 50 60 70	Forro de nylon o equivalente
Termoplástico resistente a la humedad	TW	60°C (140°F)	Lugares secos y húmedos	Termoplástico retardante de la llama y resistente a la humedad y al calor	14-10 8 6-2 1-4/0 213-500 501-1000 1001-2000	30 45 60 80 95 110 125	Ninguno
Cable de circuitos subterráneos principales y secundarios de un solo conductor (para cables de tipo UF con más de un conductor, ver el Artículo 339)	UF	60°C (140°F) 75°C (167°F)(7)	Ver Artículo 339	Resistente a la humedad Resistente al calor y a la humedad	14-10 8-2 1-4/0	60(8) 80(8) 95(8)	Integrado con el aislante
Cable subterráneo de entrada a la acometida, de un solo conductor (para cables de tipo USE con más de un conductor, ver el Artículo 338)	USE(6)	75°C (167°F)	Ver Artículo 338	Resistente al calor y a la humedad	12-10 8-2 1-4/0 213-500 501-1000 1001-2000	45 60 80 95(9) 110 125	Recubrimiento no metálico resistente a la humedad. Ver Sección 338-1(b)
Plástico termoendurecible	XHH	90°C (194°F)	Lugares secos y mojados	Plástico termoendurecible retardante de la llama	14-10 8-2 1-4/0 213-500 501-1000 1001-2000	30 45 55 65 80 95	Ninguno
Plástico termoendurecible resistente a la	XHHW(6)	90°C (194°F) 75°C (167°F)	Lugares secos y mojados Lugares húmedos	Plástico termoendurecible retardante de la llama y resistente a	14-10 8-2 1-4/0 213-500	30 45 55 65	Ninguno
Plástico termoendurecible resistente a la humedad	XHHW-2	90°C (194°F)	Lugares secos y húmedos	Plástico termoendurecible retardante de la llama y resistente a la humedad	14-10 14-10 8-2 1-4/0 213-500 501-1000 1001-2000	30 45 55 65 80 95	Ninguno

Etileno- tetrafluoroetileno modificado	Z	90°C (194°F) 150°C (302°F)	Lugares secos y mojados Lugares secos, aplicaciones especiales(3)	Etileno- tetrafluoroetileno modificado	14-12 1 10 2 8-4 2 3-1 3 1/0-4/0 4	
Etileno- tetrafluoroetileno modificado	ZW(6)	75°C (167°F) 90°C (194°F) 150°C (302°F)	Lugares húmedos Lugares secos y mojados Lugares secos, aplicaciones especiales(3)	Etileno- tetrafluoroetileno modificado	14-10 3 8-2 4	Ninguno

(NOTAS AL CUADRO 310-13)

- Algunos aislamientos no requieren recubrimiento externo.
- Para circuitos de señales que permiten un aislamiento de 300 voltios.
- (1) (2) (3) (4) (5) (6) (7) (8) Cuando las condiciones de proyecto requieren que la temperatura máxima de funcionamiento del conductor sea superior a 90°C.
 - Algunos aislantes de goma no requieren recubrimiento externo.
- Para secciones número 14-12, el cable RHH debe tener un aislamiento de 45 mils de espesor.

 Los cables listados con sufijo "-2" se pueden utilizar a temperatura de funcionamiento continua de 90°C en lugares secos o húmedos.
- En cuanto a la limitación de la capacidad, ver la Sección 339-5.
- Incluye forro integral.
- En los conductores de tipo USE que hayan sido sometidos a investigación especial, se permite que el aislamiento sea de 80 mils de espesor. No se requiere que el recubrimiento no metálico de conductores aislados cubiertos de goma o cables con recubrimiento de aluminio y los cables forrados de plomo o de varios conductores, sea retardante de la llama. Para los cables de tipo MC, ver la Sección 334-20. Para los cables de forro no metálico, ver la Sección 336-25. Para los cables de tipo UF, ver la Sección 339-1.

Anexo 2: tabla 250-94 de la NTC 2050

Cuadro 250-94 Conductor del electrodo de tierra de instalaciones de c.a.

	le entrada a la acometida o sección nductores en paralelo	Sección del conductor al electrodo de tierra			
Cobre	Aluminio o aluminio revestido de cobre	Cobre	Aluminio o aluminio revestido de cobre*		
2 o menos	1/0 o menos	8	6		
1 o 1/0	2/0 o 3/0	6	4		
2/0 o 3/0	4/0 o 250 Kcmils	4	2		
Más de 3/0 a 350 Kcmils	Más de 250 Kcmils a 500 Kcmils	2	1/0		
Más de 350 Kcmils a 600 Kcmils	Más de 500 Kcmils a 900 Kcmils	1/0	3/0		
Más de 600 Kcmils a 1100 Kcmils	Más de 900 Kcmils a 1750 Kcmils	2/0	4/0		
Más de 1100 Kcmils	Más de 1750 Kcmils	3/0	250 Kcmils		

Anexo 3 Tabla 250-95 NTC 2050

Cuadro 250-95 Sección mínima de los conductores de tierra de equipos para canalizaciones y equipos

Intensidad o posición máxima del dispositivo automático de protección contra					
sobreintensidad en el circuito antes de los equipos, conductos, etc. (amperios)	Sección				
	Cable de cobre nº	Cable de aluminio o de aluminio revestido de cobre* nº.			
15	14	12			
20	12	10			
30	10	8			
40	10	8			
60	10	8			
100	8	6			
200	6	4			
300	4	2			
400	3	1			
500	2	1/0			
600	1	2/0			
800	1/0	1/0			
1000	2/0	4/0			
1200	3/0	250 Kcmils			
1600	4/0	350 Kcmils			
2000	250 Kcmils	400 Kcmils			
2500	350 Kcmils	600 Kcmils			
3000	400 Kcmils	600 Kcmils			
4000	500 Kcmils	800 Kcmils			
5000	700 Kcmils	1200 Kcmils			
6000	800 Kcmils	1200 Kcmils			

50

Anexo 4. Sección 250-93 NTC 2050

250-93. Calibre del conductor del electrodo de puesta a tierra para corriente continua.

En los siguientes apartados a) a c) se fijan las secciones transversales de los conductores del electrodo de puesta a tierra de una instalación de c.c.

- **a) No debe ser de calibre menor al del neutro.** Cuando el sistema de c.c. consista en un conjunto equilibrado trifilar o un bobinado equilibrado con protección contra sobrecorriente, como establece el Artículo 445-4.d), el conductor del electrodo de puesta a tierra no debe ser de calibre menor al del neutro.
- **b)** No debe ser de calibre menor al del conductor más grande. En instalaciones de c.c. distintas a las del anterior apartado a), el conductor del electrodo de puesta a tierra no debe ser de calibre menor al del conductor de mayor calibre alimentado por la instalación.
- c) No debe ser menor a 8,36 mm2 (8 AWG). En ningún caso el conductor del electrodo de puesta a tierra debe ser menor a 8,36 mm2 (8 AWG) si es de cobre o 13,29 mm2 (6 AWG) si es de aluminio.

Excepciones a los anteriores a) a c):

- a. Cuando esté conectado a electrodos fabricados como se indica en el Artículo 250-83.c) o d), no es necesario que la parte del conductor del electrodo de puesta a tierra que constituya la única conexión con dicho electrodo sea superior a 13,29 mm2 (6 AWG) de cobre o 21,14 mm2 (4 AWG) de aluminio.
- b. Cuando esté conectado a un electrodo embebido en concreto, como se establece en el Artículo 250-81.c), no es necesario que la parte del conductor del electrodo de puesta a tierra que constituya la única conexión con dicho electrodo sea superior a 21,14 mm2 (4 AWG) de cobre.

Anexo 5 Sección 250-81 NTC 2050

250-81. Instalación del electrodo de puesta a tierra del sistema.

Si en un predio, en cada edificio o estructura perteneciente al mismo, existen todos los elementos a) a d) que se indican a continuación y algún electrodo instalado de acuerdo con el Artículo 250-83.c) y d), se deben conectar equipotencialmente entre sí para formar la instalación del electrodo de puesta a tierra. El puente o puentes de conexión equipotencial se deben montar de acuerdo con los Artículos 250-92.a) y b) y deben tener un calibre según lo establecido en el Artículo 250-94 e ir conectados como se indica e n el Artículo 250-115. Se permite que el conductor del electrodo de puesta a tierra sin empalmes llegue hasta cualquier electrodo de puesta a tierra del sistema convenientemente situado en la instalación. Debe tener un calibre suficiente tomando el mayor conductor del electrodo de puesta a tierra exigido entre todos los electrodos disponibles.

Excepciones:

1) Se permite empalmar el conductor del electrodo de puesta a tierra mediante conectores irreversibles a presión certificados para este fin o mediante proceso de soldadura exotérmica.

Las tuberías metálicas interiores para agua situadas a más de 1,50 m del punto de entrada a la edificación, no se deben utilizar como parte de la instalación del electrodo de puesta a tierra o como conductor para interconectar electrodos que formen parte del sistema del electrodo de puesta a tierra.

2) En las edificaciones industriales y comerciales, cuando sus condiciones de mantenimiento y supervisión garanticen que la instalación sólo sea atendida por personal calificado y la tubería metálica interior para agua que se vaya a utilizar como conductor esté expuesta en toda su longitud.

Nota. Para requisitos especiales de conexión y puesta a tierra en edificaciones agrícolas, véase el Artículo 547-8.

a) Tuberías metálicas subterráneas de agua. Una tubería metálica subterránea para agua en contacto directo con la tierra a lo largo de 3,0 m o más (incluidos los forros metálicos de pozos efectivamente conectados equipotencialmente a la tubería) y con continuidad eléctrica (o hecha eléctricamente continua mediante la conexión equipotencial alrededor de juntas aislantes, o de secciones o tubería aislante) hasta los puntos de conexión del conductor del electrodo de puesta a tierra y de los conductores de conexión equipotencial. La continuidad de la trayectoria de la puesta a tierra o de la conexión equipotencial a la tubería interior no se debe hacer a través de medidores de agua o filtros y equipos similares. Una tubería metálica subterránea para aqua se debe complementar con un electrodo adicional del tipo especificado en los

Artículos 250-81 o 250-83. Se permite que este electrodo complementario vaya conectado equipotencialmente al conductor del electrodo de puesta a tierra, al conductor de acometida puesto a tierra, a la canalización de la acometida puesta a tierra o a cualquier encerramiento de la acometida puesta a tierra.

Cuando el electrodo complementario sea fabricado, como se establece en el Artículo 250-83.c) o d), no se requiere que la parte del puente de conexión equipotencial que constituya la única conexión con dicho electrodo complementario sea mayor que un alambre de cobre de 13,29 mm2 (6 AWG)o aluminio de 21,14 mm2 (4 AWG).

Excepción. Se permite que el electrodo complementario vaya conectado a la tubería metálica interior para agua en cualquier punto que resulte cómodo, como se explica en el Artículo 250-81 **Excepción** No. 2.

- **b) Estructura metálica de la edificación.** La estructura metálica de la edificación, cuando esté eficazmente puesta a tierra.
- c) Electrodo empotrado en concreto. Un electrodo empotrado como mínimo 50 mm en concreto, situado dentro y cerca del fondo de un cimiento o zapata de concreto que esté en contacto directo con la tierra y que consista como mínimo en una barra o varilla de 6 m de ac ero desnudo, galvanizado o revestido de cualquier otro recubrimiento eléctricamente conductor, de no menos de 12,7 mm (1/2 pulgada) de diámetro, o como mínimo en un conductor de cobre desnudo de 6 m y de calibre no menor a 21,14 mm2 (4 AWG).
- d) Anillo de puesta a tierra. Un anillo de puesta a tierra que rodee la edificación o estructura, en contacto directo con la tierra y a una profundidad bajo la superficie no menor a 0,75 m, que consista como mínimo en un conductor de cobre desnudo de 6 m y calibre no menor al 33,62 mm2 (2 AWG).

Anexo 6 Sección 250-83 NTC 2050

250-83. Electrodos fabricados y otros electrodos.

Cuando no se disponga de ninguno de los electrodos especificados en el Artículo 250-81, se debe usar uno o más de los electrodos especificados en los apartados b) a d) a continuación. Cuando sea posible, los electrodos fabricados se deben enterrar por debajo del nivel de humedad permanente (nivel freático). Los electrodos fabricados deben estar libres de recubrimientos no conductores como pintura o esmalte. Cuando se use más de un electrodo para la instalación de puesta a tierra, ninguno de ellos (incluidos los que se utilicen como barras de pararrayos) debe estar a menos de 1,80 m de cualquier otro electrodo o sistema de puesta a tierra. Dos o más electrodos de puesta a tierra que estén eficazmente conectados equipotencialmente entre sí se deben considerar como un solo sistema de electrodo de puesta a tierra.

- a) Instalación subterránea de tuberías metálicas de gas. No se debe usar como electrodo de puesta a tierra la instalación subterránea de tuberías metálicas de gas.
- b) Otras estructuras o sistemas metálicos subterráneos cercanos. Otras estructuras o sistemas metálicos subterráneos cercanos, como tuberías y depósitos subterráneos.
- c) Electrodos de barras y tuberías. Los electrodos de barras y tuberías no deben tener menos de 2,40 m de longitud, deben ser de los materiales que se especifican a continuación y estar instalados del siguiente modo:
- 1) Los electrodos consistentes en tuberías o conductos no deben tener una sección transversal menor al tamaño comercial de 19 mm (3/4") y, si son de hierro o acero, deben tener su superficie exterior galvanizada o revestida de cualquier otro metal que los proteja contra la corrosión.
- 2) Los electrodos de barras de hierro o acero deben tener como mínimo un diámetro de 15,87 mm (5/8 de pulgada). Las barras de acero inoxidable deben ser de al menos 15,87 mm (5/8 de pulgada) de diámetro, las de metales no ferrosos o sus equivalentes, deben estar certificadas y tener un diámetro no menor a 12,7 mm (1/2 pulgada).
- 3) El electrodo se debe instalar de modo que tenga en contacto con el suelo como mínimo 2,40 m de su longitud. Se debe clavar a una profundidad no menor a 2,40 m, excepto si se encuentra roca, en cuyo caso el electrodo se debe clavar con un ángulo oblicuo que no forme más de 45° con la vertical o enterrarse horizontalmente en una zanja que tenga como mínimo 0,75 m de profundidad. El extremo superior del electrodo debe quedar al nivel del suelo o por debajo, excepto si el extremo superior del electrodo que quede

por encima del suelo y la conexión con el conductor del electrodo de puesta a tierra están protegidos contra daños físicos como se especifica en el Artículo 250-117.

- d) Electrodos de placa. Los electrodos de placa deben t ener un área mínima de 0,2 m² que esté en contacto directo con el suelo. Los electrodos de placas de hierro o acero deben tener un espesor mínimo de 6 mm. Los electrodos de metales no ferrosos deben tener un espesor mínimo de 1,5 mm.
- e) Electrodos de aluminio. No está permitido utilizar electrodos de aluminio.

Anexo 7 Sección 250-84 NTC 2050

250-84. Resistencia de los electrodos fabricados.

Un electrodo único que consista en una barra o varilla, tubo o placa y que no tenga una resistencia a tierra de 25 ohmios o menos, se debe complementar con un electrodo adicional de cualquiera de los tipos especificados en los Artículos 250-81 o 250-83. Cuando se instalen varios electrodos de barras, tuberías o placas para cumplir los requisitos de este Artículo, deben tener entre sí una separación mínima de 1,80 m.

Nota. La eficiencia de la instalación en paralelo de barras de más de 2,40 m aumenta si se separan más de 1,80 m.

Anexo 8 Sección 210-52 NTC 2050

210-52. Salidas de tomacorriente en unidades de vivienda.

a) Disposiciones generales. En comedores, cuartos de estar, salas, salones, bibliotecas, cuartos de estudio, solarios, dormitorios, cuartos de recreo, habitaciones o zonas similares en unidades de vivienda, se deben instalar salidas de tomacorrientes de modo que ningún punto a lo largo de la línea del suelo en ninguna pared esté a más de 1,80 m de un tomacorriente en ese espacio, medidos horizontalmente, incluyendo cualquier pared de 0,6 m o más de ancho y el espacio de pared ocupado por paneles fijos en los muros exteriores, pero excluyendo los paneles corredizos en los muros exteriores. En la medida de los 1,80 m se debe incluir el espacio de paredes que permita las divisiones fijas de las habitaciones, tales como mostradores autoestables de tipo barra o barandillas.

A efectos de este Artículo, se considera "espacio de pared" una pared continua a lo largo de la línea del suelo sin aberturas como puertas, chimeneas y similares. Cada espacio de pared de 0,6 m de ancho o más, debe ser considerado individual e independientemente de los demás espacios de pared dentro de la habitación. Está permitido que un espacio de pared incluya dos o más paredes de una habitación (a un lado y otro de los rincones), si la línea del suelo es continua. No se consideran espacios de pared los que quedan contra las puertas abiertas a 90°, los espacios ocupados o limitados por armarios fijos o los espacios que correspondan a áreas de acceso o circulación permanente donde no sea posible instalar artefactos eléctricos.

Siempre que sea posible, las salidas de tomacorriente deben estar a la misma distancia. Si no están a menos de 0,5 m de la pared, las salidas de tomacorrientes en el piso no se deben contar como parte del número exigido de salidas.

Las salidas de tomacorriente exigidas por este Artículo son adicionales a cualquier tomacorriente que forme parte de cualquier elemento de alumbrado o artefacto, situado dentro de encerramientos o armarios o a más de 1,70 m sobre el suelo.

Excepción. Se permiten radiado res eléctricos de calefacción permanentemente instalados, equipados con salidas de tomacorriente instaladas en fábrica o con salidas incluidas por el fabricante para su montaje independiente, como las tomacorrientes necesarias para el espacio de pared utilizado por dichos radiadores permanentemente instalados. Dichas salidas no se deben conectar a los circuitos de calefacción.

Nota. Los radiadores de calefacción certificados incluyen instrucciones que no permiten su instalación por debajo de las salidas de tomacorriente.

b) Pequeños artefactos.

1) En la cocina, despensa o comedor auxiliar de una unidad de vivienda, el circuito o circuitos ramales de 20 A para pequeños artefactos que exige el Artículo 220-4.b), deben alimentar todas las salidas de tomacorrientes a las que se refieren los Artículos 210-52.a) y c) y las salidas de tomacorrientes para refrigeradores.

Excepciones:

- 1) Además de los tomacorrientes necesarios especificados en el Artículo 210-52, se permiten tomacorrientes con interruptor alimentados desde un circuito ramal de uso general como se define en el Artículo 210-70.a) **Excepción** 1.
- 2) Se permite que la salida de tomacorriente para refrigeradores se alimente desde un circuito ramal independiente de 15 A nominales o más.
- 2) El circuito o circuitos ramales para pequeños artefactos especificados en b).1) anterior, no deben tener otras salidas.

Excepciones:

- 1) Una salida tomacorriente instalada exclusivamente para enchufar un reloj eléctrico en cualquiera de los recintos especificados anteriormente.
- 2) Las salidas de tomacorrientes instaladas para conectar equipos y luces suplementarias de estufas, hornos y otros equipos de estufa montados sobre mostradores, todos ellos de gas.
- **3)** Los tomacorrientes instalados en la cocina para conectar artefactos sobre mostradores deberán estar alimentados por uno o más circuitos ramales de pequeños artefactos, cada uno de los cuales podrá también alimentar salidas de tomacorriente en la cocina y otras áreas de las especificadas en el Artículo 210-52.b).1). Se permite que circuitos ramales adicionales para pequeños artefactos alimenten las salidas de tomacorriente de la cocina y de otras habitaciones especificadas en el Artículo 210-52.b).1).
- c) Tomacorrientes para artefactos en mostradores. En las cocinas y comedores auxiliares de las unidades de vivienda se deben instalar salidas con tomacorriente en los mostradores, con las siguientes condiciones 1) a 5):
- 1) Espacio de pared del mostrador. Se debe instalar una salida de tomacorriente en cada espacio de pared de 0,3 m de ancho o más. Las salidas de tomacorriente se deben instalar de modo que ningún punto a lo largo de la línea de la pared quede a más de 0,6 m de una salida de tomacorriente en ese espacio, medidos horizontalmente.
- **2) Mostradores en el centro de la cocina (islas).** Se debe instalar por lo menos un tomacorriente en cada mostrador instalado de modo aislado en el centro de la cocina cuya parte más larga tenga 0,6 m o más y la más corta 0,3 m o más.
- **3) Mostradores unidos a la pared por un lado (penínsulas).** En cada mostrador unido a la pared por un lado, cuya parte más larga tenga 0,6 m o más y la más corta 0,3 m o más, se debe instalar por lo menos una salida de tomacorriente. Un espacio de este tipo se mide desde el borde de unión.
- **4)** Espacios independientes. Para aplicar los anteriores requisitos 1), 2) y 3), se deben considerar espacios independientes los mostradores separados por estufas, refrigeradores o lavaplatos.
- **5) Ubicación de las salidas de tomacorriente.** Las salidas deben estar ubicadas a no más de 0,5 m por encima del mostrador. Las salidas no se deben instalar mirando hacia arriba en las superficies de trabajo o mostradores. Las salidas que no queden fácilmente accesibles por artefactos fijos o que ocupen su espacio definido, no se deben considerar como parte de los tomacorrientes requeridos.

Excepción. Cuando sea aceptable para la autoridad competente y para cumplir las condiciones especiales especificadas en los siguientes apartados a o b, se permite que las salidas de tomacorriente se monten a no más de 0,3 m por debajo del mostrador. Los tomacorrientes montados por debajo del mostrador según esta **Excepción** no se deben instalar si el mostrador sobresale más de 15 cm de su base de apoyo.

- a) Construidas para personas con discapacidad;
- b) Cuando los mostradores situados en medio de la cocina o unidos a la pared por un tramo, impiden el montaie práctico de las salidas encima del mostrador.
- d) Cuartos de baño. En los cuartos de baño de las unidades de vivienda, se debe instalar por lo menos un tomacorriente en la pared adyacente a cada lavamanos, estén o no en un cuarto de baño. Las salidas de tomacorriente en los cuartos de baño deben estar alimentadas por lo menos por un circuito ramal de 20 A. Véase el Artículo 210-8.a).1).

Las salidas de tomacorriente no se deben instalar mirando hacia arriba en las superficies de trabajo o mostradores de los lavabos de los cuartos de baño.

e) Salidas exteriores. En las viviendas unifamiliares y bifamiliares que estén a nivel del suelo, no es requisito que en la parte delantera y en la trasera se instalen salidas de tomacorriente accesibles desde el nivel del suelo y a no más de 2,0 m. Véase el Artículo 210-8.a).3).

f) Zonas de lavandería y planchado. En las unidades de vivienda se debe instalar como mínimo un tomacorriente para lavadora y plancha.

Excepciones:

- 1) En una unidad de vivienda que sea un apartamento o área de vivienda en un edificio multifamiliar, en la que haya instalaciones de lavado en el mismo predio disponibles para todos los ocupantes del mismo, no es necesario un tomacorriente para lavadora.
- 2) En viviendas distintas de las unifamiliares en las que no haya o no estén permitidas instalaciones de lavado, no es necesario un tomacorriente para lavadora.
- **g)** Sótanos y garajes. En las viviendas unifamiliares, en todos los sótanos y garajes adjuntos y en los garajes independientes con instalación eléctrica, se debe instalar por lo menos un tomacorriente. Véase el Artículo 210-8.a).2).
- **h) Recibidores y zonas similares.** En las unidades de vivienda, los recibidores, vestíbulos, corredores, zaguanes y zonas similares, de 3 m. de largo o más deben tener por lo menos un tomacorriente. Para efectos de este Artículo, la longitud del recibidor se mide como la longitud a lo largo del centro del mismo sin pasar por ninguna puerta.

Anexo 9 Sección 220-16 NTC 2050

220-16. Cargas para pequeños electrodomésticos, planchado y lavandería en unidades de vivienda.

- a) Cargas del circuito de pequeños electrodomésticos. En cada unidad de vivienda, la carga del alimentador se debe calcular a 1.500 VA por cada ramal bifilar que exija el Artículo 220-4.c) para pequeños electrodomésticos conectados a tomacorrientes de 15 ó 20 A en los ramales de 20 A de la cocina, despensa, comedor y comedor auxiliar. Cuando la carga se subdivida entre dos o más alimentadores, la carga calculada para cada uno debe incluir no menos de 1.500 VA por cada circuito ramal bifilar para pequeños electrodomésticos. Se permite que estas cargas se incluyan con la carga de alumbrado general y se apliquen los factores de demanda permitidos en la Tabla 220-11 para las cargas de alumbrado general.
- **b) Carga del circuito de lavandería y planchado.** La carga del alimentador se debe calcular a no menos de 1.500 VA por cada circuito ramal bifilar para lavandería y planchado que exija el Artículo 220-4.c). Se permite que estas cargas se incluyan con la carga de alumbrado general y se apliquen los factores de demanda permitidos en la Tabla 220-11 para las cargas de alumbrado general.

Anexo 10 Tabla 310-16 NTC 2050

Cuadro 310-16 Intensidad máxima permanente admisible de conductores aislados para 0 a 2.000 voltios nominales y 60°C a 90°C (140°F a 194°F) No más de tres conductores en tensión en una canalización, cable o tierra (directamente enterrados), para temperatura ambiente de 30°C (86°F)

Sección	Π	Tempera	tura nominal del cor	ductor (ver Cuadro	310-13)		Sección
AWG Kcmils	60°C (140°F)	75°C (167°F)	90°C (194°F)	60°C (140°F)	75°C (167°F)	90°C (194°F)	AWG Kcmils
	TIPOS TW*, UF*	TIPOS FEPW*, RH*, RHW*, THHW*, THW*, THWN*, XHHW*, USE*, ZW*	TIPOS TBS, SA, SIS, FEP*, FEPB*, MI, RHH*, RHW- 2, THHN*, THHW*, THW- 2*, THWN-2*, USE-2, XHH, XHHW*, XHHW- 2, ZW-2	TIPOS TW*, UF*	TIPOS RH*, RHW*, THHW*, THW*, THWN*, XHHW*, USE*	TIPOS TBS, SA, SIS, THHN*, THHW*, THW- 2, THWN-2, RHH*, RHW-2, USE-2, XHH, XHHW, XHHW- 2, ZW-2	
		COBRE		ALUMINIO O	LUMINIO RECUBIE	RTO DE COBRE	
18		****	14	****	****	****	****
16 14	20#	20#	18 25	•••	****	****	
12	25#	25#	30#	20#	20#	25#	12
10 8	30 40	35# 50	40# 55	25 30	30# 40	35# 45	10 8
6	55	65	75	40	50	60	6
4	70	85	95	55	65	75	4
3	85	100	110	65	75	85	3
2	95 110	115 130	130 150	75 85	90 100	100 115	2 1
1/0	125	150	170	100	120	135	1/0
2/0	145	175	195	115	135	150	2/0
3/0 4/0	165 195	200 230	225 260	130 150	155 180	175 205	3/0 4/0
250	215	255	290	170	205	230	250
300	240	285	320	190	230	255	300
350	260	310	350	210	250	280	350
400 500	280 320	335 380	380 430	225 260	270 310	305 350	400 500
600	355	420	475	285	340	385	600
700	385	460	520	310	375	420	700
750 800	400 410	475 490	535 555	320 330	385 395	435 450	750 800
900	435	520	585	355	425	480	900
1000	455	545	615	375	445	500	1000
1250 1500	495 520	590 625	665 705	405 435	485 520	545 585	1250 1500
1750	545	650	735	455	545	615	1750
2000	560	665	750	470	560	630	2000
				CORRECCION			
Temperatura ambiente en °C	Para temp	eraturas ambientes	distintas de 30°C (86 correspondiente fact	6°F), multiplicar las tor de los siguientes	anteriores intensions	lades por el	Temperatura ambiente en °F
21-25	1,08	1,05	1,04	1,08	1,05	1,04	70- 77
26-30 31-35	1,00 0.91	1,00 0,94	1,00 0,96	1,00 0.91	1,00 0.94	1,00 0.96	78- 86 87- 95
36-40	0,91	0,94	0,96	0,91	0,94	0,96	96-104
41-45	0,71	0,82	0,87	0,71	0,82	0,87	105-113
46-50 51-55	0,58 0.41	0,75 0,67	0,82 0,76	0,58 0.41	0,75 0.67	0,82	114-122 123-131
56-60	0,41	0,67	0,76	0,41	0,67	0,76 0,71	132-140
61-70		0,33	0,58	****	0,33	0,58	141-158
71-80	****	****	0,41	****	****	0,41	159-176

57

Anexo 11 Simulación de la iluminaria

Altura del local: 2.400 m, Altura de montaje: 2.400 m, Factor mantenimiento: 0.80

Valores en Lux, Escala 1:37

Superficie	ρ [%]	E _m [lx]	E _{min} [lx]	E _{max} [lx]	E_{min}/E_{m}
Plano útil	1	89	45	122	0.508
Suelo	20	63	45	78	0.711
Techo	70	74	26	768	0.352
Paredes (4)	50	64	34	102	/

Plano útil:

 Altura:
 0.850 m

 Trama:
 128 x 64 Puntos

 Zona marginal:
 0.000 m

Lista de piezas - Luminarias

Ν°	Pieza	Designación (Factor de corrección)	Φ (Luminaria) [lm]	Φ (Lámparas) [lm]	P [W]
1	2	INDAL Z2022113M4 7226-CT-T (1.000)	1426	1800	26.0
			Total: 2853	Total: 3600	52.0

Valor de eficiencia energética: 3.61 W/m² = 4.05 W/m²/100 lx (Base: 14.42 m²)

INDAL Z2022113M4 7226-CT-T
N° de artículo: Z2022113M4
Flujo luminoso (Luminaria): 1426 lm
Flujo luminoso (Lámparas): 1800 lm
Potencia de las luminarias: 26.0 W
Clasificación luminarias según CIE: 65
Código CIE Flux: 25 52 77 65 79
Lámpara: 1 x FSQ-26 (Factor de corrección 1.000).

