3. Employ Picard's method to obtain the solution of

$$\frac{dy}{dx} = x^2 + y^2 \text{ for } x = 0.1$$

correct to four places of decimal given that y = 0 when x = 0.

- Find an approximate value of y when x = 0.1 if $\frac{dy}{dx} = x y^2$ and y = 1 at x = 0 using Fig.
- Solve numerically $\frac{dy}{dx} = 2x y$, y(0) = 0.9 at x = 0.4 by Picard's method with three iterations compare the result with the exact value.
- Employ Picard's method to find y (0.2) and y (0.4) given that $\frac{dy}{dx} = 1 + y^2$ and y (0) = 0.
- Explain Picard's method of successive approximation for numerical solution of ordinary differences
- Approximate y and z by using Picard's method for the solution of simultaneous differential α_{10}

$$\frac{dy}{dx} = 2x + z, \quad \frac{dz}{dx} = 3xy + x^2z$$

with y = 2, z = 0 at x = 0 upto third approximation.

Using Picard's method, obtain the solution of

$$\frac{dy}{dx} = x(1 + x^3y), y(0) = 3$$
of $y(0, 1), y(0, 2)$

Tabulate the values of y(0.1), y(0.2).

.019984, .0200

3. 0.0214 5. 0.7432, 0.7439

Answers

4. 0.9138

6. 0.2027, 0.4227

8. $y^{(3)} = 2 + x^2 + x^3 + \frac{3}{20}x^5 + \frac{1}{10}x^6$

9. y(0.1) = 3.005, y(0.2) = 3.020. $z^{(3)} = 3x^2 + \frac{3}{4}x^3 + \frac{6}{5}x^5 + \frac{3}{20}x^7 + \frac{3}{40}x$

6.8. EULER'S METHOD

racy. This method yields solution of an ordinary diff. eqn. in the form of a set of tabulated It is the simplest one-step method and has a limited application because of its low accurate

 $\operatorname{argument} x.$ Consider the differential equation In this method, we determine the change Δy is y corresponding to small increase in the

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0$$

Let y = g(x) be the solution of (1). Let x_0, x_1, x_2, \dots be equidistant values of x.

Picard's

In this method, we use the property that in a small interval, a curve is nearly a straight line. Thus at the point (x_0, y_0) , we approximate the curve by the tangent at the point (x_0, y_0) .

The eqn. of the tangent at $P_0(x_0, y_0)$ is

$$y - y_0 = \left(\frac{dy}{dx}\right)_{P_0} (x - x_0)$$

$$= f(x_0, y_0) (x - x_0)$$

$$y = y_0 + (x - x_0) f(x_0, y_0) \qquad \dots (2)$$

8.11. PROGRAM OF EULER'S METHOD

This gives the y-coordinate of any point on the tangent. Since the curve is approximated by the tangent in the interval (x_0, x_1) , the value of y on the curve corresponding to $x = x_1$ is given by the above value of y in eqn. (2) approximately.

Putting $x = x_1 (= x_0 + h)$ in eqn. (2), we get

$$y_1 = y_0 + hf(x_0, y_0)$$

Thus Q_1 is (x_1, y_1)

Similarly, approximating the curve in the next interval (x_1, x_2) by a line through $Q_1(x_1, y_1)$ with slope $f(x_1, y_1)$, we get

$$y_2 = y_1 + hf(x_1, y_1)$$

In general, it can be shown that,

$$y_{n+1} = y_n + hf(x_n, y_n)$$

This is called Euler's formule.

A great disadvantage of this method lies in the fact that if $\frac{dy}{dx}$ changes rapidly over an interval, its value at the beginning of the interval may give a poor approximation as compared to its average value over the interval and thus the value of y calculated from Euler's method may be in much error from its true value. These errors accumulate in the succeeding intervals

and the value of y becomes much error one ous ultimately.

Note. In Euler's method, the curve of actual solution y = g(x) is approximated by a sequence of short lines. The process is very slow. If h is not properly chosen, the curve $P_0Q_1Q_2$ of short lines representing numerical solution deviates significantly from the curve of actual solution.

To avoid this error, **Euler's modified method** is preferred because in this, we consider the curvature of the actual curve inplace of approximating the curve by sequence of short lines.

6.9. ALGORITHM OF EULER'S METHOD

- 1. Function F(x,y) = (x-y)/(x+y)
- 2. Input x0, y0, h, xn
- 3. n=((xn-x0)/h)+1
- 4. For i=1,n
- 5. $y=y0+h^*F(x0,y0)$
- 6. x=x+h

Œ

7. Print x0, y0

		`	X=0.020000	Y=0.980400
	N=1		Y=0.961584	
	N=2		Y=0.961598	
			X=0.040000	Y=0.961584
-	N=1		Y=0.943572	
	N=2		Y=0.943593	
			X=0.060000	Y=0.943572

6.15.2. Notations used in the Program

- (i) x(1) is an array of the initial value of x.
- (ii) y(1) is an array of the initial value of y.
- (iii) h is the spacing value of x.
- (iv) $\mathbf{x_n}$ is the last value of x at which value of y is required.

EXAMPLES

Example 1. Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with y = 1 for x = 0. Find y approximately for x = 0.1 by Euler's method.

Sol. We have

$$\frac{dy}{dx} = f(x, y) = \frac{y - x}{y + x} \; ; x_0 = 0, y_0 = 1, h = 0.1$$

Hence the approximate value of y at x = 0.1 is given by

$$\begin{aligned} y_1 &= y_0 + hf(x_0, y_0) & | \text{ using } y_{n+1} &= y_n + hf(x_n, y_n) \\ &= 1 + (.1) + \left(\frac{1-0}{1+0}\right) = 1.1 \end{aligned}$$

Much better accuracy is obtained by breaking up the interval 0 to 0.1 into five steps. The approximate value of y at $x_A = .02$ is given by,

$$\begin{aligned} y_1 &= y_0 + hf(x_0, y_0) \\ &= 1 + (.02) \left(\frac{1-0}{1+0}\right) = 1.02 \\ \text{At } x_{\text{B}} &= 0.04, & y_2 &= y_1 + hf(x_1, y_1) \\ &= 1.02 + (.02) \left(\frac{1.02 - .02}{1.02 + .02}\right) = 1.0392 \end{aligned}$$

$$\text{At } x_{\text{C}} &= .06, & y_3 &= 1.0392 + (.02) \left(\frac{1.0392 - .04}{1.0392 + .04}\right) = 1.0577 \end{aligned}$$

At
$$x_D = .08$$
, $y_4 = 1.0577 + (.02) \left(\frac{1.0577 - .06}{1.0577 + .06} \right) = 1.0756$

At
$$x_{\rm E} = .1$$
, $y_5 = 1.0756 + (.02) \left(\frac{1.0756 - .08}{1.0756 + .08} \right) = 1.0928$

Hence y = 1.0928 when x = 0.1

Example 2. Solve the equation $\frac{dy}{dx} = 1 - y$ with the initial condition x = 0, y = 0 using Euler's algorithm and tabulate the solutions at x = 0.1, 0.2, 0.3.

Sol. Here,
$$f(x, y) = 1 - y$$

Taking $h = 0.1, x_0 = 0, y_0 = 0$, we obtain

$$y_1 = y_0 + hf(x_0, y_0)$$

= 0 + (.1) (1 - 0) = .1

$$y(0.1) = 0.1$$
Again,
$$y_2 = y_1 + hf(x_1, y_1)$$

$$= 0.1 + (0.1)(1 - .1)$$

$$= 0.1 + .09 = .19$$

$$y(0.2) = 0.19$$
Again,
$$y_3 = y_2 + hf(x_2, y_2)$$

$$= .19 + (.1) (1 - .19)$$

$$= .19 + (.1) (.81) = .271$$

$$y(0.3) = .271$$

x (20.3 20.1	y(x)
(1 0 see 0 1)	0
0.1	0.1
0.2	0.19
0.3	0.271