La geometría de los irracionales

Abel Doñate Muñoz

Universitat Politècnica de Catalunya abel.donate.munoz@gmail.com

April 10, 2022

Overview

- 📵 Una breve introducción histórica
 - Egipto, Babilonia y Grecia
 - Grecia
- 2 Construcciones con regla y compás
 - Normas
 - ¿Qué distancias son constructibles?
 - Cuadraturas
- Números algebraicos
 - ¿Qué son los números algebraicos?
 - Construcciones no realizables
 - ¿Y si hacemos "trampa"?
- 4 Recomendaciones y bibliografía
 - Euclidea

Egipto y Babilonia

Egipto (1800 a.C.)

Los egipcios fueron los primeros que intentaron calcular el área del círculo. No obstante, estimaron que este área valía

$$A = (\frac{16}{9}r)^2 \implies \pi = \frac{256}{81} \approx 3.1605.$$

De como llegaron a esa estimación no se sabe nada en la actualidad.

Babilonia (1900 a.C.)

Los babilonios, por su parte, estimaron que este área valía

$$A=3r^2 \implies \pi=3$$
. Más adelante dieron otra estimación donde $\pi=3.125$

Grecia

Arquímedes (287-212 a.C.) probó mediante polígonos inscritos y circunscritos que $3,140845 < \pi < 3,14285$.

El método de los polígonos de Arquímedes

Grecia

Los griegos fueron los primeros que se percataron de que no podían rellenar la recta real solo con racionales.

A **Pitágoras** (580 - 500 a.C.) se le atribuye el descubrimiento de las que llamaban medidas "inconmensurables", como la diagonal de un cuadrado de lado 1.

Grecia

Euclides

Euclides (300 a.C.) dio la primera prueba en **Los Elementos** de la irracionalidad de $\sqrt{2}$.

Asummimos
$$\sqrt{2} = \frac{p}{q} \implies \frac{p^2}{q^2} = 2 \implies p^2 = 2q^2$$

Por tanto, p debe ser par: p = 2m

 $4m^2=2q^2 \implies q^2=2m^2$, por lo que podemos aplicar otra vez el argumento anterior q=2k.

Como podemos hacer esto indefinidamente, el número resultante no podrá ser un entero.

Normas

Los griegos se dotaban de dos herramientas idealizadas con las que pretendían construir toda la geometría:

Regla

Infinitamente larga (se prolonga todo lo que se quiera), sin marcas (no se puede medir) y con un solo borde.

Compás

Construye circunferencias de cualquier radio, pero estos radios no se pueden "guardar".

Normas

Se puede comprobar que con estas reglas básicas se puede construir un conjunto de operaciones más flexible donde se pueden realizar:

- Traslaciones de distancias (el compás no colapsa)
- Paralelas y perpendiculares
- Mediatrices y bisectrices

¿Qué distancias son constructibles?

Supongamos que tenemos dos segmentos de longitud *a* y *b*. ¿Qué segmentos podemos construir a partir de ellos?

- $\mathbf{0} \ a + b$
- 2 a − b
- a · b
- 4 a/b
- $\mathbf{0}$ \sqrt{a}

Suma y resta a + b, a - b

Multiplicación a · b

División b/a

Multiplicación con un racional $r \cdot a$

Después realizamos la multiplicación $r \cdot a$.

Algoritmo

Podemos construir cualquier racional $r=\frac{p}{q}$ construyendo los números naturales p y q y realizando la división entre ellos.

$$r=\frac{p}{q}$$

 \Longrightarrow

 $r \cdot a$

Raíz cuadrada √a

Un poco de álgebra

Cuerpo generado

Las operaciones definidas anteriormente forman un cuerpo, que estará formado por todos los números que se podrán construir geométricamente.

Ejemplos

$$\sqrt{2}, \sqrt{\frac{29}{11}}, 4 + \sqrt{7 + \frac{5}{3}}, \sqrt{\sqrt{1 + 5 \cdot \sqrt{213 + \sqrt{5}}}}$$

Construcción de
$$4 + \sqrt{7 + \frac{5}{3}}$$

Cuadraturas

Las cuadraturas se empleaban para comparar las áreas de diferentes objetos.

Si el cuadrado tenía las mismas dimensiones, entonces sus áreas son iguales.

Cuadratura del círculo

Los griegos asumieron que todas las figuras tenían un cuadrado con área equivalente, pero no tenían claro si este cuadrado se podía construir con regla y compás desde la figura original.

Círculo

La primera figura con la que se les presentó este problema fue el círculo. Los griegos solo eran capaces de hacer aproximaciones mediante polígonos.

Números algebraicos

Definición

Se denominan números algebraicos aquellos que son solución de una ecuación polinómica $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0$. Los números que no son algebraicos también se llaman trascendentes.

Ejemplos de números algebraicos

3,
$$\sqrt{2}$$
, $\sqrt[5]{57}$, $\sqrt{2+\sqrt[3]{3+\sqrt[17]{23}}}$, Solución de $x^3+x-1=0$

Ejemplos de números trascendentes

$$\pi, \sqrt{\pi}, e, \sum_{n=1}^{\infty} 10^{-n!}$$

Implicaciones entre algebraicos y constructibles

Mapa de implicaciones

Racionales $\mathbb{Q} \implies$ Constructibles $\mathbb{K} \implies$ Algebraicos $\mathbb{A} \implies$ Reales \mathbb{R}

Construcciones no realizables

Cuadratura del círculo

El problema se reduce a saber si $\sqrt{\pi}$ es constructible o no. En 1882 **Lindemann** prueba que este número no es algebraico, por lo que tampoco es constructible.

La trisección del ángulo

Para trisecar un ángulo de 60 es necesario que podamos que las soluciones de la ecuación $8x^3-6x-1=0$. Pero estas soluciones tienen raíces cúbicas, por lo que no son constructibles. **Wantzel** dio la primera prueba en 1837.

La duplicación del cubo

Establece que no es posible con las anteriores operaciones (pero en 3D) hacer un cubo del doble de volumen del original. Esto sucede al no ser $\sqrt[3]{2}$ constructible.

¿Y si hacemos "trampa"?

Introducimos la regla marcada

Con esta regla marcada podemos ampliar nuestro horizonte de operaciones. En concreto podremos trisecar un ángulo y duplicar un cubo.

Euclidea

Euclidea

Se trata de una aplicación de móvil donde se realizan las construcciones geométricas por niveles.

Bibliografía

Fernando Bombal (2012)

La cuadratura del círculo: Historia de una obsesión

Real Academia de las Ciencias Vol. 105, No 2 (2012), 241-258

George E. Martin (1991)

Geometric Constructions

Springer ISBN 978-1-4612-6845-1