Not Too Much Life

Global Genome Initiative

Understanding and Preserving the Genomic Diversity of Life

Jonathan Coddington

Smithsonian Institution

Just one genome!

Outline

- Introduction & GGI Overview
- How big is Life?
- Feasibility
- de novo genomics (i5k) & new technologies

GGI Goals

Before	After
Sources: Hard-to-find, ambiguous quality tissues ambiguously owned by individual PI's	Publically accessible, genomequality tissues in enterprise biorepositories following best practices and Int. treaties
Data: Expensive "boutique" sequencing of a few model genomes	Affordable, coordinated, sequencing of a thoughtful synopsis of all of Life
Knowledge: Phenotype, expert- based taxonomy, underpinning environmental biology, evolution, conservation, ecology, biotech	Approximate taxonomic IDs of most organisms anywhere Cheap, precise, scalable tools

Biodiversity Genomics: costs and progress

"Dark" Taxa

Dark taxa outpacing names (58% spiders)
Taxonomists dwindle
Practical, mesoscale ID's urgently needed

Success (Phase I)

Preservation of 50 % of major branches of Life in 6 years (~10,000 families, 40-100,000 genera)

- Synergize research impact and productivity
- National and international partnerships and networks
- Approximate ID of any organism on Earth
- Global biorepositories & informatics
- Genome samples pivotal to new research outcomes
- Awareness and public understanding

Outline

- Introduction & GGI Overview
- How big is Life?
- Feasibility
- de novo genomics (i5k) & new technologies

Discovery of "Species"

Earliest Description

8

Discovery of "Families"

Feasibility: Phylogeny

Outline

- Introduction & GGI Overview
- How big is Life?
- Feasibility
- de novo genomics (i5k) & new technologies

Feasibility: Moorea Biocode

Phyla: 74% Class: 61% Order: 42%

Family: 23% C Q+ Coogle

'Opunohu Gump Research Marine Bay Station Papetoai Cubic (Pape Foot Site Village) CRIOBE Research Station Mo'orea Marae and Terrestrial Coral **Cubic Foot**

question, photographer David Littschwager took a green metal frame, a 12-inch cube, to deparate environments—land and water, tropical and temperate. At each locals he set down the cube and started watching, counting, and photographing with the help of his assistant and many biologists. The goal: to represent the creatures that lived in or moved through that space. The team then sorted through their habitat cubes, spaxing out every inhabitant, down to a size of about a milimeter. Accomplishing that took an average of three weeks at each site. In all, more than a thousand

How much life could you find in one cubic foot? That's a hunk of ecosystem small enough to fit in your lap. To answer the

Monteverde, Costa Rica Most animals in this tractor

Ex worldatlas.com

Feasibility: Forest Global Earth Observatories

Smithsonian Institution Forest Earth Observatory

40 plots, 10,500 species, 4,346 genera ("trees") ~60% world total?

Teasibility: Taxonomy

Ants

•290 worldwide genera

• 240 genera w DNA extractions (82%)

Feasibility: Taxonomy

Barcode (COI) D "radius" (e,g, European spiders)

edax

- 50 families, 313 genera, and 821 species
- 873 sequences blasted against themselves
- 91% correct at family level¹
- 85% correct at genus level¹

¹Pldent > 0.95

Coddington & Al. 2016. DNA barcode data accurately assign higher spider taxa

High Molecular Weight DNA

Image Processing and Analysis in Java

Column	>	9416 bp	< 9416 bp	total	% > 9416 bp	
	2	3503.234	61565.425	65070.659	5.4%	
	3	5026.648	79952.588	84982.236	5.9%	
	4	12537.255	27177.505	39718.76	31.6%	
	5	5965.548	8789.3	14759.848	40.4%	
	6	8906.134	6386.066	15298.2	58.2%	
	7	5767.962	2612.631	8387.593	68.8%	- M
	8	1096.042	29235.655	30339.697	3.6%	TV
	9	4876.841	28195.785	33081.626	14.7%	

enome

68 GGBN members, 22 countries, 603,902 samples, 2,824 families, 14,116 genera

GGBN Member and Collections Growth

GGBN Online Sample Growth

GGBN Families

All Other Institutions (1984)

AIT, Tulln **BGBM**, Berlin CUni, Prague DBG, Denver DSMZ, Braunschweig IRB, Rovinj IVB, Brno MfN, Berlin NHM, London NHMD, Copenhagen NHMO, Oslo **NYBG, New York OGL, Nahant** QCAZ, Quito **RBGK, London** Senckenberg, Frankfurt **ZFMK, Bonn**

As of 24 Oct 2017

GGBN Genera

All Other Institutions (9895)

NMNH, Washington (6048)

AIT, Tulln **BGBM**, Berlin CUni, Prague DBG, Denver **DSMZ**, Braunschweig IRB, Rovinj IVB, Brno MfN, Berlin NHM, London NHMD, Copenhagen NHMO, Oslo **NYBG, New York OGL, Nahant** QCAZ, Quito **RBGK, London** Senckenberg, Frankfurt **ZFMK, Bonn**

As of 24 Oct 2017

Outline

- Introduction & GGI Overview
- How big is Life?
- Feasibility
- de novo genomics (i5k) & new technologies

Eukaryotic Genome Quality (n=4,533)

Cumulative Count of Families w Genome

Terrestrial Arthropods

Terrestrial Arthropod Genomes

Dovetail Genomics: Genome Assembly

Estimated Dovetail physical coverage: 138X

	Starting Assembly	Final Assembly
Total Length	1443.9 Mb	1445.4 Mb
N50 Length	816 scaffolds; min 0.466 Mb	94 scaffolds; min 4.05 Mb
N90 Length	4824 scaffolds; min 0.025 Mb	448 scaffolds min 0.487 Mb

Ten-fold improvement

- Physical coverage: how many times on average is a given distance spanned by read pairs.
- N50: 50% of the genome is represented by N50 of scaffolds.
- N90: Same as above but 90% of the genome is represented by this number.

Testing new technologies: Dovetail Genomics

Dovetail GENOMICS,LLC

- Chicago pipeline obtains physical mapping data, involves in vitro chromatin assembly to condense DNA
- Constructs long-range sequencing libraries. Inserts span all distances up to DNA fragment size (library insert): 100 -150 kb for this library.

Dovetail Genomics: Scaffolding Contiguity

Signal density is lower in smaller scaffolds (i.e. there were larger improvements in longer starting scaffolds

Parasteatoda Synteny

Fig. 5 Genome-scale conservation of synteny among *P. tepidariorum* scaffolds reveals signatures of an ancient WGD. a Oxford grid displaying the colinearity detected by Satsuma Synteny among the 39 scaffolds presenting the greatest numbers of hits on one another. On this grid (not drawn to scale), each point represents a pair of identical or nearly identical 4096-bp regions. Alignments of points reveal large segmental duplications suggestive of a whole-genome duplication event along with other rearrangements such as inversions, translocations and tandem duplications.

b Circos close-ups of some of the colinearity relationships revealed by the Oxford grid

Nephila Stats

Table 1 Summary statistics for the *N. clavipes* genome and transcriptome assemblies

Estimated genome size		
Genome size ^a	3.45 Gb	
% repetitive:	55%	
Genome assembly	Full ^b	Annotated ^c
Assembly size	2.82 Gb	2.44 Gb
	2.13 Gb non-gap	1.76 Gb non-gap
% genome captured	82%	71%
Coveraged	87×	98.5× (49×)
Number of contigs	2,136,720	465,207
N50 contig size	6,075 bp	8,054 bp
Number of scaffolds	1,842,805	180,236
N50 scaffold size	47,029 bp	62,959 bp
Largest scaffold	1,655,743 bp	1,655,743 bp
Scaffolds >100 kb	5,001	5,001
BUSCO (% recovered)e	94.85%	94.27%
Transcriptome assembly	All isolates	
Read input	1.53×10^9 reads	
Number of transcripts	1,507,505	
N50 transcript contig size	904 bp	
BUSCO (% recovered)e	99.13%	

Nephila Silk Genes

Thanks!

Seán Brady, Carol Butler, Katie Barker, Matt McDermott, Tom Orrell, Lee Weigt, Robert Costello, Chris Elias, Loretta Cooper, Bob Corrigan, Cyndy Parr, Chris Meyer, John Kress, Mike Ruggiero, GGBN partners....

Integrated Taxonomic Information System

Smithsonian Tropical Research Institute Center for Tropical Forest Science