

Figure 1: plots of a,b,c vs covariate value with $B_a = B_b = B_c = 1$

5-9-notes

- 1. Simulating data: With the coefficients of the generalized linear model set to 1, for each of the 3 linear models $(B_a = B_b = B_c = 1)$, created a set of 50 patients, chose covariate values for the 50 patients, and for each patient, obtained a sample of a, b, c. (actually, so that there was no noise when simulating data, deterministically calculated for each patient $\tilde{\mu_a}|\tilde{x}, \tilde{\mu_b}|\tilde{x}, \tilde{mu_c}|\tilde{x}$, which is the conditional expectation of a, b, c given a \tilde{x} , respectively, and used that. For now, only using 1 covariate. Plotted a scatterplot of the single covariate value \tilde{x} of each patient vs their value of a, b, c. See Figure 1. There should be a (general) linear relationship between the covariate value and a, b, c.
- 2. Recovering parameters used to simulate data: Took those samples, used them as observed data, and plotted distributions of B_a , B_b , B_c . Since those samples were generated from a model where $B_a = B_b = B_c = 1$, the posterior of B_a , B_b , B_c should be centered around 1. See Figure 2.
- 3. Beta distributions for each data point should probably have the same dispersion parameter (shared)
- 4. We decided it's okay to have independent models for each treatment.

Figure 2: Distribution of B_a, B_b, B_c using the simulated data