Solutions for Test 2: Computational Linear Algebra

Problem 1 (points: 5)

Let $\mathbb V$ be a finite-dimensional vector space over $\mathbb C$. Prove that $\mathcal L(\mathbb V,\mathbb C)$ has finite dimension by explicitly constructing basis for $\mathcal L(\mathbb V,\mathbb C)$. Further prove that $\dim \mathcal L(\mathbb V,\mathbb C)=\dim \mathbb V$. *SOLUTION*:

Let dim $\mathbb{V} = n$ and $v_1, v_2, \dots v_n$ be basis of vector space \mathbb{V} . Define $f_1, f_2, \dots f_n \in \mathcal{L}(\mathbb{V}, \mathbb{C})$ as,

$$f_i(\mathbf{v}_j) = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

and extend f_i to \mathbb{V} by linearity.

To show, $\{f_1, f_2, \dots f_n\}$ is a linear independent set, we need to prove, if $\sum_{i=1}^n c_i f_i = 0$ where $0 \in \mathcal{L}(\mathbb{V}, \mathbb{C})$ is zero function, then $c_i = 0$ for all $i \in \{1, 2, \dots n\}$.

In particular, for $j \in \{1, 2, \dots n\}$,

$$\left(\sum_{i=1}^n c_i f_i\right)(\boldsymbol{v}_j) = 0.$$

This implies $0 = \sum_{i=1}^{n} c_i f_i(\boldsymbol{v}_j) = c_j$.

To show, for all $f \in \mathcal{L}(\mathbb{V}, \mathbb{C})$, there exists $c_1, c_2 \dots c_n \in \mathbb{C}$ such that $f = \sum_{i=1}^n c_i f_i$.

Given any $x \in V$, we can write $x = \sum_{k=1}^{n} \alpha_k v_k$, where $\alpha_k = f_k(x)$. By linearity,

$$f(\boldsymbol{x}) = \sum_{k=1}^{n} \alpha_k f(\boldsymbol{v}_k) = \sum_{k=1}^{n} c_k f_k(\boldsymbol{x}) = \Big(\sum_{k=1}^{n} c_k f_k\Big)(\boldsymbol{x}),$$

where $c_k = f(v_k)$ for all $k \in \{1, 2, ... n\}$. Thus $\{f_1, f_2 ... f_n\}$ forms the basis for $\mathcal{L}(\mathbb{V}, \mathbb{C})$. Hence, $\dim (\mathcal{L}(\mathbb{V}, \mathbb{C})) = n = \dim (\mathbb{V})$.

Problem 2 (points: 5)

Let \mathbb{V} be a vector space and $\ell_1, \ldots, \ell_n \in \mathcal{L}(\mathbb{V})$. Prove that the composition $\ell_1 \circ \ell_2 \circ \cdots \circ \ell_n$ is one-to-one if and only if ℓ_1, \ldots, ℓ_n are one-to-one.

SOLUTION: We use following characterization of one-to-one linear function. Given $\ell \in \mathcal{L}(\mathbb{V})$, $\ell(x) = 0 \Rightarrow x = 0$.

Proof for ℓ_1, \ldots, ℓ_n are one-to-one $\Rightarrow \ell_1 \circ \ell_2 \circ \cdots \circ \ell_n$ is one-to-one:

Given that $\ell_i(\boldsymbol{x}) = 0 \Rightarrow \boldsymbol{x} = \boldsymbol{0}$ for all $i \in \{1, 2, \dots n\}$, we need to prove $\ell_1 \circ \ell_2 \circ \dots \circ \ell_n(\boldsymbol{x}) = 0 \Rightarrow \boldsymbol{x} = \boldsymbol{0}$. Suppose there exists $\boldsymbol{x} \in \mathbb{V}$ such that $\ell_1 \circ \dots \circ \ell_n(\boldsymbol{x}) = 0$. Since ℓ_1 is one-to-one, we get $\ell_2 \circ \dots \circ \ell_n(\boldsymbol{x}) = 0$. Further since ℓ_2 is one-to-one, $\ell_3 \circ \dots \circ \ell_n(\boldsymbol{x}) = 0$. Continuing in the same way we get $\ell_n(\boldsymbol{x}) = 0$. Since ℓ_n is one-to-one, $\boldsymbol{x} = \boldsymbol{0}$.

Proof for $\ell_1 \circ \ell_2 \circ \cdots \circ \ell_n$ is one-to-one $\Rightarrow \ell_1, \dots, \ell_n$ are one-to-one:

We will prove contrapositive statement. If some function in $\ell_1, \dots, \ell_n \in \mathcal{L}(\mathbb{V})$ is not one-to-one, then $\ell_1 \circ \ell_2 \circ \dots \circ \ell_n$ is not one-to-one.

Let p be the minimal element such that ℓ_p is not one-to-one. Thus $\ell_1 \circ \cdots \circ \ell_{p-1}$ is one-to-one by the statement, if $\ell_1, \ldots, \ell_{p-1}$ are one-to-one, then $\ell_1 \circ \cdots \circ \ell_{p-1}$ is one-to-one (proved above). Suppose ℓ_p is not one-to-one, there exists $\boldsymbol{y} \in \mathbb{V}$ such that $\boldsymbol{y} \neq \boldsymbol{0}$ and $\ell_p(\boldsymbol{y}) = 0$. Since $\ell_1 \circ \cdots \circ \ell_{p-1}$ is surjective, there exists $\boldsymbol{x} \in \mathbb{V}$ such that $\ell_1 \circ \cdots \circ \ell_{p-1}(\boldsymbol{x}) = \boldsymbol{y}$ and $\boldsymbol{x} \neq \boldsymbol{0}$. Thus there exists $\boldsymbol{x} \in \mathbb{V}$ such that $\boldsymbol{x} \neq \boldsymbol{0}$ but $\ell_1 \circ \ell_2 \circ \cdots \circ \ell_n(\boldsymbol{x}) = 0$. Thus $\ell_1 \circ \ell_2 \circ \cdots \circ \ell_n$ is not one-to-one.

Problem 3 (points: 5)

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a non-zero matrix and suppose that there exist $k \geqslant 1$ such that \mathbf{A}^k is the zero matrix. If k_0 is the smallest such index, then show that k_0 cannot be larger than n.

Suppose k_0 is the smallest such index such that $\mathbf{A}^{k_0} = \mathbf{0}$, there exists $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}^{k_0-1}\mathbf{x} \neq \mathbf{0}$. We will first show that set of vectors $S = \{\mathbf{x}, \mathbf{A}\mathbf{x}, \dots \mathbf{A}^{k_0-1}\mathbf{x}\}$ is linearly independent. Given that

$$c_0 \boldsymbol{x} + \sum_{i=1}^{k_0 - 1} c_i \mathbf{A}^i \boldsymbol{x} = \mathbf{0}, \tag{1}$$

we need to prove that $c_i = 0$ for all $i \in \{0, 1, \dots k_0 - 1\}$. Multiplying (1) by $\mathbf{A}^{k_0 - 1}$, we get $c_0 \mathbf{A}^{k_0} \boldsymbol{x} = \mathbf{0}$ which implies $c_0 = 0$. Further, multiplying (1) by $\mathbf{A}^{k_0 - 2}$ and using fact that $c_0 = 0$, we get $c_1 \mathbf{A}^{k_0} \boldsymbol{x} = \mathbf{0}$ which implies $c_1 = 0$. Similarly we can prove $c_i = 0$ for all $i \in \{0, 1, \dots k_0 - 1\}$. Thus set S is linearly independent whose cardinality is k_0 . But there can be only n linearly independent vectors in \mathbb{R}^n . Hence, $k_0 \leq n$.

Problem 4 (points: 5+2=7)

Let $\ell : \mathbb{R}^n \to \mathbb{R}$ be such that $\ell(\mathbf{0}) = \mathbf{0}$, and for all $x, y \in \mathbb{R}^n$ and $0 \le c \le 1$,

$$\ell(c\mathbf{x} + (1-c)\mathbf{y}) = c\ell(\mathbf{x}) + (1-c)\ell(\mathbf{y}). \tag{2}$$

- a) Show that $\ell \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$.
- b) Now, suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is such that (2) holds. Show that f must be of the form $f(\boldsymbol{x}) = \ell(\boldsymbol{x}) + \beta$, where $\beta \in \mathbb{R}$ and $\ell \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$. *SOLUTION*:
- a) Given that $\ell(\mathbf{0}) = 0$. Hence using (2),

$$\ell(c\mathbf{x}) = \ell(c\mathbf{x} + (1 - c)\mathbf{0}) = c\ell(\mathbf{x}) + (1 - c)\ell(\mathbf{0}) = c\ell(\mathbf{x}). \tag{3}$$

Given $\lambda > 1$, $1/\lambda \in (0, 1)$.

$$\ell(\boldsymbol{x}) = \ell(\frac{1}{\lambda}\lambda\boldsymbol{x}) = \frac{1}{\lambda}\ell(\lambda\boldsymbol{x}) \text{ (from (3))}. \tag{4}$$

Thus from (3) and (4), for $\lambda > 0$,

$$\ell(\lambda x) = \lambda \ell(x). \tag{5}$$

$$\ell(x + y) = \ell(\frac{1}{2}2x + \frac{1}{2}2y) == \frac{1}{2}\ell(2x) + \frac{1}{2}\ell(2y) \text{ (from (2))}$$
$$= \ell(x) + \ell(y) \text{ since } \ell(2x) = 2\ell(x) \text{ (from (5))}.$$

Thus,

$$\ell(\boldsymbol{x} + \boldsymbol{y}) = \ell(\boldsymbol{x}) + \ell(\boldsymbol{y}). \tag{6}$$

$$0 = \ell(\boldsymbol{0}) = \ell(\boldsymbol{x} + (-\boldsymbol{x})) = \ell(\boldsymbol{x}) + \ell(-\boldsymbol{x}) \text{ (from (6))}.$$

Hence $\ell(-x) = -\ell(x)$. Hence by (5), for all $\lambda \in \mathbb{R}$,

$$\ell(\lambda \boldsymbol{x}) = \lambda \ell(\boldsymbol{x}). \tag{7}$$

Hence by (5) and (7), $\ell \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$.

b) It suffices to show that there exists $\beta \in \mathbb{R}$, where $\ell : \mathbb{R}^n \to \mathbb{R}$ is defined as $\ell(x) = f(x) - \beta$ for all $x \in \mathbb{R}^n$ with ℓ satisfying (2) and $\ell(\mathbf{0}) = 0$. Necessary condition for $\ell(\mathbf{0}) = 0$ is $\beta = f(\mathbf{0})$. Thus

the only statement required to prove is $\ell: \mathbb{R}^n \to \mathbb{R}$, defined as $\ell(x) = f(x) - f(0)$, is such that $\ell \in \mathcal{L}(\mathbb{R}^n, \mathbb{R})$. For all $x, y \in \mathbb{R}^n$,

$$\ell(c\mathbf{x} + (1-c)\mathbf{y}) = f(c\mathbf{x} + (1-c)\mathbf{y}) - f(\mathbf{0})$$

$$= cf(\mathbf{x}) + (1-c)f(\mathbf{y}) - f(\mathbf{0})$$

$$= c(f(\mathbf{x}) - f(\mathbf{0})) + (1-c)(f(\mathbf{y}) - f(\mathbf{0}))$$

$$= c\ell(\mathbf{x}) + (1-c)\ell(\mathbf{y}).$$

Problem 5 (points: 5)

Let \mathbb{U} be a subspace of an inner-product space $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ and P denote the orthogonal projection onto \mathbb{U} . For any $\boldsymbol{x} \in \mathbb{V}$ and $\boldsymbol{z} \in \mathbb{U}$, show that $\boldsymbol{z} = P\boldsymbol{x}$ if and only if $\langle \boldsymbol{x} - \boldsymbol{z}, \boldsymbol{u} \rangle = 0$ for all $\boldsymbol{u} \in \mathbb{U}$.

SOLUTION: $z = Px \Rightarrow \langle x - z, u \rangle = 0$ for all $u \in \mathbb{U}$:

Since P denote the orthogonal projection onto \mathbb{U} , $x - z = x - Px \in \mathbb{U}^{\perp}$, where \mathbb{U}^{\perp} is orthogonal complement of \mathbb{U} . Hence if $u \in \mathbb{U}$, then $\langle x - z, u \rangle = 0$.

$$\langle \boldsymbol{x} - \boldsymbol{z}, \boldsymbol{u} \rangle = 0$$
 for all $\boldsymbol{u} \in \mathbb{U} \Rightarrow \boldsymbol{z} = P\boldsymbol{x}$:

Since P denote the orthogonal projection onto \mathbb{U} , for all $\boldsymbol{u}\in\mathbb{U}$, $\langle \boldsymbol{x}-P\boldsymbol{x},\boldsymbol{u}\rangle=0$. Given that $\langle \boldsymbol{x}-\boldsymbol{z},\boldsymbol{u}\rangle=0$ for all $\boldsymbol{u}\in\mathbb{U}$. This shows that $\langle P\boldsymbol{x}-\boldsymbol{z},\boldsymbol{u}\rangle=0$ for all $\boldsymbol{u}\in\mathbb{U}$. Also $P\boldsymbol{x}-\boldsymbol{z}\in\mathbb{U}$ because of the fact that \mathbb{U} is a subspace. Hence $\|P\boldsymbol{x}-\boldsymbol{z}\|^2=0$. This shows that $P\boldsymbol{x}=\boldsymbol{z}$.

Problem 6 (points: 3)

Let $(\mathbb{V}, \langle \cdot, \cdot \rangle)$ be an inner-product space and $\|\cdot\|$ be the norm induced by the inner product on \mathbb{V} . For any $\ell \in \mathcal{L}(\mathbb{V})$, show that the following are equivalent:

- 1. $\|\ell(\boldsymbol{x})\| = \|\boldsymbol{x}\|$ for all $\boldsymbol{x} \in \mathbb{V}$.
- 2. $\langle \ell(\boldsymbol{x}), \ell(\boldsymbol{y}) \rangle = \langle \boldsymbol{x}, \boldsymbol{y} \rangle$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{V}$.

SOLUTION:

 $2 \Rightarrow 1$:

From 2, we know that $\langle \ell(\boldsymbol{x}), \ell(\boldsymbol{x}) \rangle = \langle \boldsymbol{x}, \boldsymbol{x} \rangle$ for all $\boldsymbol{x} \in \mathbb{V}$. Also as $\|\cdot\|$ be the norm induced by the inner product on \mathbb{V} ,

$$\|{\boldsymbol x}\| = \sqrt{\langle {\boldsymbol x}, {\boldsymbol x}
angle} = \sqrt{\langle \ell({\boldsymbol x}), \ell({\boldsymbol x})
angle} = \|\ell({\boldsymbol x})\|.$$

 $1 \Rightarrow 2$:

$$\begin{split} \langle \boldsymbol{x}, \boldsymbol{y} \rangle &= 1/2 \big(\|\boldsymbol{x} + \boldsymbol{y}\|^2 - \|\boldsymbol{x}\|^2 - \|\boldsymbol{y}\|^2 \big) \\ &= 1/2 \big(\|\ell(\boldsymbol{x} + \boldsymbol{y})\|^2 - \|\ell(\boldsymbol{x})\|^2 - \|\ell(\boldsymbol{y})\|^2 \big) \text{ (using given statement)} \\ &= 1/2 \big(\|\ell(\boldsymbol{x}) + \ell(\boldsymbol{y})\|^2 - \|\ell(\boldsymbol{x})\|^2 - \|\ell(\boldsymbol{y})\|^2 \big) \text{ (as } \ell \in \mathcal{L}(\mathbb{V})) \\ &= \langle \ell(\boldsymbol{x}), \ell(\boldsymbol{y}) \rangle. \end{split}$$
