





# An Asymptotically Exact Estimate of the Median Noise Eigenvalue of Sample Covariance Matrices

Yongjie Zhuang - Stony Brook University, visiting University of Illinois Urbana-Champaign

**David C. Anchieta** - University of Massachusetts Dartmouth

John R. Buck - University of Massachusetts Dartmouth

**Andrew C. Singer** - Stony Brook University

Funded by ONR Code 321US



## Adaptive beamforming for passive sonar is one of the original applications of data sciences in underwater acoustics



Most popular adaptive beamformer:

Minimum Variance Distortionless Response (MVDR) beamformer that tries to minimize the effect of interferers and noises while keeping the desired signal unchanged.

## Using the SCM instead of ECM in MVDR degrades adaptive beamformer performance

- Ideal case: ensemble covariance matrix (ECM) → not available in real life
- **Practical case**: sample covariance matrix (SCM) → approaching ECM with more snapshots

An example of 51 sensors, 2 interferers, SCM when  $\frac{\text{\# of sensors}}{\text{\# of snapshots}} = \frac{1}{30}$ 



- Inverting the covariance matrix is a key step in MVDR beamformers
- The deviation from true noise power will harm the white noise gain

## The DMR beamformer replaces smaller eigenvalues with their mean improves performance

Dominant Mode Rejection (DMR) beamformer [Abraham & Owsley, 1990]:



Now the eigenvalues in the modified SCM look very similar to the ECM  $\rightarrow$  better performance!

## "Mean" works poorly in snapshot deficient case

Snapshot deficient case: 
$$\frac{\text{# of sensors}}{\text{# of snapshots}} = \frac{5}{4}$$



- Mean of guessed noise eigenvalues = 81
   → much smaller than 100
- The noise power is usually negatively biased

### Median can be a more accurate estimate than Mean



Advantages of using median value:

- No need to guess noise subspace size
- Robust to outliers

A remaining challenge:

Noise power ≠ Median eigenvalue = 88

One goal of this talk:

Noise power ? Median eigenvalue

### Key to the expression: Marchenko-Pastur (MP) distribution

$$C = \frac{\text{# of sensors}}{\text{# of snapshots}}$$

The MP distribution  $F_{\mathcal{C}}(\lambda)$  from random matrix theory is the CDF of eigenvalues of SCM



noise power = 
$$\frac{\text{median of eigs(SCM)}}{\lambda_{0.5}(C)}$$

→ is an unbiased estimator of the noise power for a given C

## Numerical fitting of MP distribution to get $\lambda_{0.5}(C)$

[Anchieta & Buck, 2022] used numerical regression fitting to show:

• A simple 1<sup>st</sup> order approximation:

$$\lambda_{0.5}(C) = C - 0.345$$

approximates the solution of  $F_c(\lambda) = 0.5$ 

This approximation improved the performance of Dominant Mode Rejection beamformers.

But why?

Trust me, simply plugging it back does not work

## Why do we need theoretical analysis?

Numerical results depends on the fitting range:

$$C \in (1,2)$$
  $\Rightarrow \lambda_{0.5}(C) = C - 0.353$   
 $C \in (1,5)$   $\Rightarrow \lambda_{0.5}(C) = C - 0.345$   
 $C \in (1,10)$   $\Rightarrow \lambda_{0.5}(C) = C - 0.340$   
 $C \in (1,100)$   $\Rightarrow \lambda_{0.5}(C) = C - 0.335$ 

....

Will it fail at some point when C is large? Will it converge to a constant?

• The lack of theoretical understanding of this approximation may thwart further exploration of using other order statistics (*k*-th largest eigenvalue).

We may derive other order statistics using the insight from median point derivation.

 $\rightarrow$  In this talk, we present a theoretical derivation of the 1<sup>st</sup> order approximation.

## Proposed asymptotically exact estimate

There are several challenges in solving  $F_c(\lambda) - 0.5 = 0$ :

A mixture of several  $sin^{-1}$  (), square roots, and ratios of polynomials.

#### Four main steps:

- 1. Replacing  $\sin^{-1}()$  with its power series expansion
- 2. Apply exponents after power series expansion  $\rightarrow$  square roots disappear
- 3. Rotate the  $C \lambda$  coordinate by 45° and rearranging it to series of polynomials.
- 4. Solve the dominant term:  $F_C(\lambda) 0.5 \rightarrow \infty$  unless  $\lambda_{0.5}(C) = C 1/3$ 
  - → Thus, it is an asymptotically exact estimate

## Analytically derived formulation is more accurate at higher C → asymptotic



Both of them work well compared with CDF range ( $0 \le CDF \le 1$ )



Analytically derived formulation is more accurate when  ${\cal C}>2$  (snapshot deficient environments)

## Median estimator reduces bias by increasing the variance slightly

#### Estimating the noise power:

- 2 interferers
- Sensor number to snapshot ratio C = 4.25
- 1000 Monte Carlo Trials

- ·••· Mean
- Numerical Median
- Analytical Median



x axis: guessed interferer subspace size

### **Better DMR beamformer performance**

#### Applied to DMR beamformer:

- 2 interferers
- Guessed interferers number: 11
- 1000 Monte Carlo Trials
- Vertical line: 90% confidence intervals



#### ---Ensemble MVDR

- Mean-Based DMR
- Numerical Derived Median DMR
- Analytically Derived Median DMR



Number of Snapshots

## **Conclusion**



- $\lambda_{0.5}(C)=C-1/3$  is analytically derived by an asymptotically exact random matrix theory analysis
- It is more accurate at higher C value
   → asymptotic
- Median estimator for noise power reduces bias by increasing the variance slightly
- Median-based Dominant Mode Rejection beamformer has higher SINR and WNG
- In the future, this technique can be applied to order statistics other than median.

### References

- Abraham, Douglas A., and Norm L. Owsley. "Beamforming with dominant mode rejection." *Conference Proceedings on Engineering in the Ocean Environment*. IEEE, 1990.
- Anchieta, David Campos, and John R. Buck. "Improving the robustness of the dominant mode rejection beamformer with median filtering." *IEEE Access* 10 (2022): 120146-120154.