第三节

函数的极限

对 y = f(x), 自变量变化过程的六种形式:

$$(1) x \to x_0 \qquad (4) x \to \infty$$

$$(4) x \rightarrow \infty$$

$$(2) x \rightarrow x_0^+ \qquad (5) x \rightarrow +\infty$$

$$(5) x \rightarrow +\infty$$

$$(3) x \rightarrow x_0^- \qquad (6) x \rightarrow -\infty$$

(6)
$$x \rightarrow -\infty$$

本节内容:

- 自变量趋于有限值时函数的极限
- 二、自变量趋于无穷大时函数的极限

一、自变量趋于有限值时函数的极限

1. $x \rightarrow x_0$ 时函数极限的定义

引例. 测量正方形面积. (真值: 边长为 x_0 ;面积为A)

直接观测值

边长x

间接观测值 面积 x^2 确定直接观测值精度 d:

$$|x-x_0| < d$$

任给精度 e, 要求 $x^2 - A < e$

定义1. 设函数f(x)在点 x_0 的某去心邻域内有定义,

若
$$\forall e > 0$$
, $\exists d > 0$, 当 $0 < |x - x_0| < d$ 时, 有 $|f(x) - A| < e$

则称常数 A 为函数 f(x) 当 $x \to x_0$ 时的极限, 记作

$$\lim_{x \to x_0} f(x) = A \quad \text{if} \quad f(x) \to A \left(\stackrel{\text{def}}{=} x \to x_0 \right)$$

即 $\lim_{x \to x_0} f(x) = A \longrightarrow \forall \varepsilon > 0, \exists \delta > 0, \exists x \in U(x_0, \delta)$ 时, 有 $|f(x) - A| < \varepsilon$

几何解释:

这表明:

极限存在

──>函数局部有界 (P36定理2)

例1. 证明 $\lim_{x\to x_0} C = C(C$ 为常数)

i.
$$|f(x) - A| = |C - C| = 0$$

故 $\forall e > 0$, 对任意的 d > 0, 当 $0 < |x - x_0| < \delta$ 时,

总有
$$|C-C|=0<\varepsilon$$

因此
$$\lim_{x \to x_0} C = C$$

例2. 证明
$$\lim_{x\to 1} (2x-1)=1$$

i.:
$$|f(x)-A| = |(2x-1)-1| = 2|x-1|$$

$$\forall e > 0$$
, 欲使 $|f(x) - A| < \varepsilon$, 只要 $|x - 1| < \frac{\varepsilon}{2}$,

取
$$d = \frac{e}{2}$$
, 则当 $0 < |x-1| < d$ 时, 必有

$$|f(x)-A|=|(2x-1)-1|<\varepsilon$$

因此
$$\lim_{x\to 1} (2x-1) = 1$$

例3. 证明
$$\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$$

it:
$$|f(x) - A| = \left| \frac{x^2 - 1}{x - 1} - 2 \right| = |x + 1 - 2| = |x - 1|$$

故 $\forall e > 0$, 取 d = e, 当 0 < |x-1| < δ 时, 必有

$$\left| \frac{x^2 - 1}{x - 1} - 2 \right| < e$$

因此
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

例4. 证明: 当
$$x_0 > 0$$
 时 $\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$.

i.e.
$$|f(x) - A| = |\sqrt{x} - \sqrt{x_0}| = \left| \frac{x - x_0}{\sqrt{x} + \sqrt{x_0}} \right|$$

 $\leq \frac{1}{\sqrt{x_0}} |x - x_0|$

 $\forall e > 0$, 欲使 $|f(x) - A| < \varepsilon$, 只要 $|x - x_0| < \sqrt{x_0} \varepsilon$, 且

 $x \ge 0$. 而 $x \ge 0$ 可用 $|x - x_0| \le x_0$ 保证. 故取

$$d = \min\{\sqrt{x_0}e, x_0\}, 则当0<|x-x_0|< d$$
时,必有

$$|\sqrt{x} - \sqrt{x_0}| < \varepsilon$$

因此

$$\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$$

2. 保号性定理

定理1. 若
$$\lim_{x \to x_0} f(x) = A$$
, 且 $A > 0$, 则存在 $U(x_0, \delta)$, ($A < 0$)

使当
$$x \in U(x_0, \delta)$$
时, $f(x) > 0$. (P37定理3) $(f(x) < 0)$

证: 已知
$$\lim_{x \to x_0} f(x) = A$$
, 即 $\forall e > 0$, $\exists U(x_0, \delta)$, 当

$$x \in U(x_0, \delta)$$
 时, 有 $A - \varepsilon < f(x) < A + \varepsilon$.

当
$$A > 0$$
时,取正数 $\varepsilon \le A$,(<0) $(e \le -A)$

则在对应的邻域 $U(x_0,\delta)$ 上 A-e

$$f(x) > 0.$$

推论: 若 $\lim_{x \to x_0} f(x) = A \neq 0$,则存在 $U(x_0, \delta)$,使当 $x \in U(x_0, \delta)$ 时,有 $|f(x)| > \frac{|A|}{2}$.(P37定理3')

分析:

$$A - \varepsilon < f(x) < A + \varepsilon$$

若取 $e = \frac{A}{2}$,则在对应的邻域 $U(x_0, \delta)$ 上

$$A > 0: \quad \frac{A}{2} < f(x) < \frac{3A}{2}$$

$$A < 0: -\frac{3|A|}{2} < f(x) < -\frac{|A|}{2}$$
 $A - e^{-\frac{A}{2}}$

定理 2. 若在 x_0 的某去心邻域内 $f(x) \ge 0$,且 $(f(x) \le 0)$

$$\lim_{x \to x_0} f(x) = A, \text{ } \emptyset \text{ } A \ge 0.$$

$$(A \le 0)$$

证: 用反证法. 当 $f(x) \ge 0$ 时, 假设A < 0, 则由定理 1,

存在 x_0 的某去心邻域,使在该邻域内 f(x) < 0 ,与已知

条件矛盾,所以假设不真,故 $A \ge 0$.

(同样可证 $f(x) \le 0$ 的情形)

思考: 若定理 2 中的条件改为f(x) > 0, 是否必有 A > 0?

不能! 如 $\lim_{x\to 0} x^2 = 0$

3. 左极限与右极限

左极限:
$$f(x_0^-) = \lim_{x \to x_0^-} f(x) = A$$
 $\Rightarrow \forall e > 0, \exists d > 0, \exists x \in (x_0 - d, x_0)$

时, $\boxed{f} | f(x) - A | < \varepsilon$.

右极限: $f(x_0^+) = \lim_{x \to x_0^+} f(x) = A$
 $\Rightarrow \forall e > 0, \exists d > 0, \exists x \in (x_0, x_0 + d)$

时, $\boxed{f} | f(x) - A | < \varepsilon$.

定理 3.

$$\lim_{x \to x_0} f(x) = A \Longrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A$$
(P39 \bigsig**11)

例5. 给定函数

$$f(x) = \begin{cases} x - 1, & x < 0 \\ 0, & x = 0 \\ x + 1, & x > 0 \end{cases}$$

讨论 $x \to 0$ 时 f(x) 的极限是否存在.

解: 利用定理3.因为

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (x - 1) = -1$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x+1) = 1$$

显然 $f(0^-) \neq f(0^+)$, 所以 $\lim_{x\to 0} f(x)$ 不存在.

二、自变量趋于无穷大时函数的极限

定义2. 设函数 f(x)当|x|大于某一正数时有定义, 若

$$\forall e > 0$$
, $\exists X > 0$, 当 $|x| > X$ 时, 有 $|f(x) - A| < \varepsilon$, 则称常数

A 为函数f(x)当 $x \to \infty$ 时的极限,记作

$$\lim_{x \to \infty} f(x) = A \quad \text{if } f(x) \to A \quad (\text{if } x \to \infty)$$

$$x < -X \stackrel{\textstyle ext{iff}}{} x > X$$

$$X < -X \stackrel{\text{dis}}{\to} X > X$$
 $A - e < f(x) < A + e$

几何解释:

直线 y = A 为曲线 y = f(x) 的水平渐近线.

例6. 证明
$$\lim_{x\to\infty}\frac{1}{x}=0$$
.

$$\frac{1}{x} - 0 = \frac{1}{|x|}$$

故 ∀
$$e$$
 > 0, 欲使 $\left|\frac{1}{x}-0\right|$ < ε , 只要 $|x|$ > $\frac{1}{\varepsilon}$,

取
$$X = \frac{1}{e}$$
, 当 $|x| > X$ 时, 就有 $\left| \frac{1}{x} - 0 \right| < \varepsilon$

因此
$$\lim_{n \to \infty} \frac{1}{n} = 0$$

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

注:
$$y = 0$$
为 $y = \frac{1}{x}$ 的水平渐近线.

两种特殊情况:

$$\lim_{x \to +\infty} f(x) = A \Longrightarrow \forall e > 0, \exists X > 0, \text{ in } x > X \text{ in } f$$

$$|f(x) - A| < e$$

$$\lim_{x \to -\infty} f(x) = A \Longrightarrow \forall e > 0, \exists X > 0, \text{ if } x < -X \text{ if } , 有$$
$$|f(x) - A| < e$$

几何意义: 直线 y = A 仍是曲线 y = f(x) 的渐近线.

例如,
$$f(x) = \frac{1}{\sqrt{x}}$$
, $g(x) = \frac{1}{\sqrt{1-x}}$

都有水平渐近线 y=0;

又如,
$$f(x) = 1 - 2^{-x}$$
, $g(x) = 1 + 2^x$ 都有水平渐近线 $y = 1$.

内容小结

- 1. 函数极限的"e-d" 或"e-X" 定义及应用
- 2. 函数极限的性质:保号性定理 Th1 Th2

与左右极限等价定理 Th3

思考与练习

- 1. 若极限 $\lim_{x \to x} f(x)$ 存在,是否一定有 $\lim_{x \to x} f(x) = f(x_0)$?
- 2. 设函数 $f(x) = \begin{cases} ax^2, & x \le 1 \\ 2x+1, & x > 1 \end{cases}$ 且 $\lim_{x \to 1} f(x)$ 存在,则

$$a = _{3}$$
.

作业

P37 1; 4; *5(2); *6(2); *9

