Rational Approximations to $\sqrt{2}$

James Philip Rowell

In Chapter 1, Examples* III, no. 2, from G. H. Hardy's 'A Course of Pure Mathematics', Hardy has us examine a sequence of rational approximations to $\sqrt{2}$, which are:

$$\frac{1}{1}, \ \frac{3}{2}, \ \frac{7}{5}, \ \frac{17}{12}, \ \frac{41}{29}, \ \frac{99}{70}$$

These numbers squared are:

$$\frac{1}{1}$$
, $\frac{9}{4}$, $\frac{49}{25}$, $\frac{289}{144}$, $\frac{1681}{841}$, $\frac{9801}{4900}$

And we discover that their differences from 2 are:

$$-1, \ \frac{1}{4}, \ -\frac{1}{25}, \ \frac{1}{144}, \ -\frac{1}{841}, \ \frac{1}{4900}$$

In the next 'Example no. 3' we are asked to prove a theorem relating to the above sequence, noting it is only an *example* of an application of the theorem below.

Theorem

Show that if $\frac{m}{m}$ is a good approximation to $\sqrt{2}$, then $\frac{(m+2n)}{(m+n)}$ is a better one, and that the errors in the two cases are in opposite directions.

The proof follows.

Lemma

Let m, n and a be integers, where m and n are positive and $a \neq 0$, then

$$\frac{m^2}{n^2} + \frac{a}{n^2} = 2$$
 \Leftrightarrow $\frac{(m+2n)^2}{(m+n)^2} - \frac{a}{(m+n)^2} = 2$

^{*}Hardy doesn't call them 'Exercises' or 'Questions', but that's what they are, exercises for the student.

Proof of Lemma

$$\frac{(m+2n)^2}{(m+n)^2} - \frac{a}{(m+n)^2} = 2$$

$$\Leftrightarrow \qquad (m+2n)^2 - a = 2(m+n)^2$$

$$\Leftrightarrow \qquad m^2 + 4mn + 4n^2 = 2m^2 + 4mn + 2n^2 + a$$

$$\Leftrightarrow \qquad 4n^2 - 2n^2 = 2m^2 - m^2 + a$$

$$\Leftrightarrow \qquad 2n^2 = m^2 + a$$

$$\Leftrightarrow \qquad 2 = \frac{m^2}{n^2} + \frac{a}{n^2}$$

QED

Proof of Theorem

Define the 'error' of a rational approximation to $\sqrt{2}$ as the difference between the approximationsquared and 2. So we learn from the Lemma that the error for the $\frac{m}{n}$ approximation of $\sqrt{2}$ is

$$\left|\frac{a}{n^2}\right| = \left|2 - \frac{m^2}{n^2}\right|,$$

and the error for the $\frac{(m+2n)}{(m+n)}$ approximation of $\sqrt{2}$ is $\left|\frac{-a}{(m+n)^2}\right| = \left|2 - \frac{(m+2n)^2}{(m+n)^2}\right|.$

$$\left| \frac{-a}{(m+n)^2} \right| = \left| 2 - \frac{(m+2n)^2}{(m+n)^2} \right|.$$

The denominator $(m+n)^2$ is always larger than n^2 therefore,

$$\left| \frac{-a}{(m+n)^2} \right| < \left| \frac{a}{n^2} \right|,$$

showing that the approximation $\frac{(m+2n)}{(m+n)}$ for $\sqrt{2}$ has a smaller error that that of $\frac{m}{n}$ and is therefore a better approximation to $\sqrt{2}$.

Furthermore, we also learn from the Lemma that the successive approximations flip to either side of 2 because:

If $\frac{m^2}{n^2} < 2$ then a is positive therefore $\frac{(m+2n)}{(m+n)} > 2$, similarly,

If $\frac{m^2}{n^2} > 2$ then a is negative therefore $\frac{(m+2n)}{(m+n)} < 2$.

QED