Лекции по ДГМА

Павел Петров Семестр 4

1 Теория поверхностей

Определение 1. Отображение f области G плоскости на область \widetilde{G} трёхмерного пространства называется *гомеоморфным*, если f взаимно однозначно и непрерывно.

Определение 2. Множество Φ точек трёхмерного пространства называется *элементарной поверхностью*, если это множество является образом открытого круга G при гомеоморфном отображении f в пространство.

!
$$G = \{(x,y) \mid x^2 + y^2 < R^2\}$$
 - открытый круг.

Определение 3. Множество G точек плоскости называется элементарной областью, если это множество является образом открытого круга G при гомеоморфном отображении f на плоскость.

Определение 4. Окрестностью точки M множества Φ называется общая часть множества Φ и пространственной окрестности M.

Определение 5. Множество называется *связным*, если любые две его точки можно соединить непрерывной кривой, целиком состоящей из точек этого множества.

Определение 6. Множество точек пространства Φ называется *простой поверхностью*, это множество связно и любая точка этого множества имеет окрестность, являющейся элементарной поверхностью.

! Элементарная повехность является простой повехностью. Обратное неверно. Пример: сфера.

Определение 7. Отображение f простой поверхности G называется *локально-гомеоморфным*, если у каждой точки G есть окрестность, которая гомеоморфно отображается на свой образ.

Определение 8. Множество точек пространства Ф называется *общей поверхностью*, если оно является образом простой поверхности при локально-гомеоморфном отображении.

Замечания к определению 8:

- 1. Окрестность точки общей поверхности образ окрестности точки на простой поверхности.
- 2. Простая поверхность это поверхность без самопересечений и без самоналяганий Общая поверхность может иметь их.

Определение 9. Поверхность Φ называется *регулярной* (k раз $\partial u \phi \phi$ еренцируемой), если при некотором $k \geq 1$ у каждой точки Φ есть окрестность, допускающая k раз дифференцируемую параметризацию.

То есть окрестность представляет собой гомеоморфное отображение некоторой элементарной области G (определение элементарной области легко получить, переформулировав определение 2) в плоскость переменных (u,v) при помощи соотношений (1),

$$x = x(u, v) \quad y = y(u, v) \quad z = z(u, v) \tag{1}$$

являющимися k раз дифференцируемыми функциями в области G. Если k=1, то поверхность называется $\epsilon na\partial ko\check{u}$.

! Будем говорить, что с помощью соотношений (1) в окрестности точки на поверхности вводится

perулярная параметризация с помощью параметров <math>u, v.

! Если вся поверхность Φ представляет отображение области G при помощи соотношений (1), то говорят, что на Φ введена единая параметризация.

Определение 10. Точка регулярной поверхности называется *обыкновенной*, если существует такая регулярная параметризация некоторой её окрестности, что в этой точке

$$rank \begin{pmatrix} x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{pmatrix} = 2$$
 (2)

Если это не так, то точка называется особой.

Определение 11. $f(u,v) \in C^k(G)$, если f(u,v) k раз дифференцируема и все её частные производные порядка k непрерывны в G.

Определение 12. Область G на плоскости будем называть npocmoй, если эта область представляет собой простую плоскую поверхность (то есть G это связная область, кажсдая точка которой имеет окрестность, являющейся элементарной поверхностью).

Теорема 13. Пусть G - простая область плоскости (u,v), x(u,v), y(u,v), $z(u,v) \in C^k(G)$, где $k \geq 1$, и во всех точках области G выполняется условие (2), тогда соотношения (1) определяют в пространстве множество Φ , которое представляет собой регулярную, k раз дифференцируемую общую поверхность без особых точек.

Доказательство.

Убедимся, что с помощью соотношений (1) осуществляется локально-гомеоморфное отображение области G на множество Φ .

Возьмём произвольную точку $M_0(x_0, y_0, z_0) \in \Phi$, соответствующую параметрам (u_0, v_0) плоскости (u, v), и зафиксируем её. По условию в каждой точке области G выполняется условие (2), а значит и в точке (u_0, v_0) . Для определённости положим, что определитель (3) отличен от нуля в (u_0, v_0) .

$$\begin{vmatrix} x_u' & y_u' \\ x_v' & y_v' \end{vmatrix} \tag{3}$$

Получили выполнение условий теоремы о неявных функциях, заданных системой уравнений (4):

$$\begin{cases} x(u,v) - x = 0 \\ y(u,v) - y = 0 \end{cases}$$

$$\tag{4}$$

1.

$$\begin{cases} x(u_0, v_0) - x_0 \equiv 0 \\ y(u_0, v_0) - y_0 \equiv 0 \end{cases}$$
 (5)

- 2. x = x(u, v), y = y(u, v) непрерывны и дифференцируемы.
- 3. Частные производные непрерывны этих функций.
- 4. Определитель (3), являющийся якобианом $\frac{D(x,y)}{D(u,v)}$, отличен от нуля в (u_0,v_0) .

Тогда найдётся окрестность точки (x_0, y_0) на плоскости (x, y), что в её пределах $\exists ! k$ раз дифференцируемое решение системы (4):

$$\begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$$
 (6)

Таким образом мы получили, что некоторая окресность точки (x_0, y_0) представляет собой гомеоморфное отображение некоторой окрестности точки (u_0, v_0) с помощью соотношений x = x(u, v), y = y(u, v) (обратное отображение производится с помощью соотношений u = u(x, y), v = v(x, y)).

Подставим соотношения (6) в z = z(u,v): z = z(u,v) = z(u(x,y),v(x,y)) = z(x,y). Отсюда получаем, что некоторая окрестность точки M_0 на множестве Φ является графиком k раз дифференцируемой функции. А это означает, что с помощью функции z = z(x,y) производится гомеоморфное отображение окрестности точки (x_0,y_0) на указанную окрестность точки M_0 множества Φ . Легко понять, что окрестность точки (u_0,v_0) гомеоморфно отображается на окрестность точки M_0 множества Φ .

Таким образом получили, что у каждой точки простой области G имеется окрестность, которая гомеоморфно отображается на свой образ (окрестность Φ), значит соотношения (1) - локальногомеоморфное отображение G на Φ , следовательно Φ - общая поверхность. $Teopema\ dokasaha$.

Замечание к теореме 13: В процессе доказательства мы установили, что у каждой точки M_0 поверхности Φ без особых точек имеется окрестность, однозначно проецирующаяся на одну из координатных плоскостей и являющаяся поэтому графиком k раз дифференцируемой функции. (в доказательства была функция z=z(x,y), но, поменяв какой-нибудь столбец определителя (3) на столбец состоящий из частных производных функции z=z(x,y), можно получить зависимости y=y(x,z) или x=x(y,z))

Рассмотрим регулярную поверхность Φ . Пусть $\mathbf{r}(M)$ - вектор, идущий из начала координат в точку M поверхности. Очевидно, что $\mathbf{r}(M)$ - векторная функция переменной точки M поверхности и $\mathbf{r}(M)$ - радиус-вектор поверхности Φ .

Определение 14. Криволинейная система координат.

Рассмотрим окрестность M, являющейся гомеоморфным отображением некоторой элементарной области G при помощи соотношений (1). Очевидно, что (1) - координаты переменной точки M поверхности и координаты $\mathbf{r}(M)$.

 ${\bf r}(M) = {\bf r}(x(u,v),y(u,v),z(u,v)) = {\bf r}(u,v)$ - функция двух переменных.

Зафиксируем \underline{v} , тогда конец радиус вектора $\mathbf{r}(u,\underline{v})$ описывает в окрестности кривую, называющейся $\mathit{nuhue}\check{u}$ u.

Зафиксируем \underline{u} , тогда конец радиус вектора $\mathbf{r}(\underline{u},v)$ описывает в окрестности кривую, называющейся $\mathit{nuhue\check{u}}\ v$.

Линии u, v называются $\kappa oopdunamhыми$ линиями на Φ в рассматриваемой окрестности. Таким образом, в некоторой окрестности каждой точки поверхности Φ может быть введена система координатных линий u, v, которая называется $\kappa pusonuneŭhoŭ$ системой $\kappa oopdunam$ на поверхности.

Обратим внимание на определение обыкновенной и особой точки и выясним геометрический смысл \mathbf{r}'_u и \mathbf{r}'_v . Очевидно, что если выполняется условие (2), то векторы, упомянутые ранее, будут линейно независимыми, в противном случае линейно зависимыми.

Таким образом получили, что если точка M поверхности является обыкновенной, то в окрестности этой точки может быть введена такая параметризация, что \mathbf{r}'_u и \mathbf{r}'_v линейно независимы.

Определение 15. Плоскость называется *касательной* плоскостью графика функции z = z(x, y) в точке M_0 , если точка M_0 принадлежит плоскости и вектор секущей к этому графику в точке M_0 стремится к перпендикуляру нормали этой плоскости при $M \to M_0$.

Было доказано, что если z = z(x, y) дифференцируема в (x_0, y_0) , то в точке $M_0 = (x_0, y_0, z(x_0, y_0))$ поверхности существует касательная плоскость.

Осталось убедиться в том, что в любой обыкновенной точке гладкой поверхности существует касательная плоскость. Для этого достаточно установить, что некоторая окрестность обыкновенной точки поверхности представляет собой график дифференцируемой функции. Это свойство уже было доказано для любой обыкновенной точки гладкой поверхности (смотри замечание κ теореме 13). Следовательно в любой обыкновенной точке гладкой поверхности существует касательная плоскость.

Замечание: так как векторы \mathbf{r}'_u и \mathbf{r}'_v являются касательными к линиям u, v, проходящим через M_0 , то эти векторы располагаются в касательной плоскости точки M_0 .

Определение 16. *Нормалью* к поверхности Φ в точке M_0 называется прямая, проходящая через M_0 и перпендикулярная касательной плоскости точки M_0 .

Определение 17. Вектором нормали к поверхности Φ в точке M_0 будем называть ненулевой вектор, коллинеарный нормали в M_0 .

Пусть M_0 - обыкновенная точка гладкой поверхности Φ и некоторая окрестность этой точки определена с помощью функции $\mathbf{r} = \mathbf{r}(u,v)$ такой, что \mathbf{r}'_u и \mathbf{r}'_v в M_0 не коллинеарны. Тогда очевидно, что $\mathbf{N} = [\mathbf{r}'_u, \mathbf{r}'_v]$ является вектором нормали к поверхности. $\mathbf{n} = \frac{\mathbf{N}}{|\mathbf{N}|}$ - единичный вектор нормали к поверхности.

Поверхность гладкая, следовательно векторные функции $\mathbf{N}(u,v)$ и $\mathbf{n}(u,v)$ будут непрерывными. Значит в некоторой окрестности каждой точки гладкой поверхности существует непрерывное векторное поле нормалей.

Определение 18. Двусторонняя поверхность - поверхность, на которой в целом существует непрерывное поле нормалей.

Определение 19. *Односторонняя поверхность* - поверхность, на которой в целом не существует непрерывного поля нормалей.

Пример односторонней поверхности - лист Мёбиуса.

2 Вспомогательные леммы

Начиная с этого момента, рассматриваются только двусторонние поверхности.

Определение 20. *Полная поверхность* - поверхность, у которой любая фундаментальная последовательность точек этой поверхности сходится к некоторой точке поверхности.

Пример полной поверхности: сфера.

Пример неполной поверхности: любое открытое связное множество на сфере.

Определение 21. *Часть* Φ *имеет размеры меньше* δ , если эта часть помещается внутри некоторой сферы, диаметр которой меньше δ .

Лемма 22. Пусть M_0 - обыкновенная точка гладкой поверхности Φ , тогда некоторая окрестность точки M_0 однозначно проецируется на касательную плоскость, проведённую в любой точке этой окрестности.

Доказательство.

Пусть U некоторая окрестность точки M_0 нормаль в любой точке этой окрестности составляет с нормалью точки M_0 угол, меньший $\frac{\pi}{4}$. И пусть U однозначно проецируется на некоторый круг в одной из координатных плоскостей ($Hanpumep, O_{xy}$). Последнее условие гарантируется теоремой 13. Заметим, что нормали в любых двух точках образуют между собой угол, меньший $\frac{\pi}{2}$.

Пусть U не обладает свойством, указанным в лемме 22, тогда для некоторой точки $M \in U$ можно найти такие точки $P,Q \in U$, что хорда PQ параллельна нормали \mathbf{n}_M в точке M. Пусть плоскость П параллельна O_z и $PQ \in \Pi$. Рассмотрим линию пересечения U и Π . В силу выбора U часть линии пересечения PNQ представляет собой график дифференцируемой функции, заданной на отрезке, который является проекций PQ на плоскость O_{xy} . По теореме Лагранжа для дифференцируемой функции, заданной на отрезке, касательная в некоторой точке N этой части параллельна хорде PQ и, следовательно, параллельна нормали \mathbf{n}_M в точке M. Но тогда нормаль в точке N, перпендикулярная касательной, упомянутой только что, образует с \mathbf{n}_M угол $\frac{\pi}{2}$, что приводит нас к противоречию. N

Лемма 23. Пусть Φ - гладкая, ограниченная полная поверхность без особых точек, тогда $\exists \delta > 0$, что любая часть Φ , размеры которой меньше δ , однозначно проецируется на касательную плоскость, проходящую через любую точку этой части.

Доказательство.

Пусть утверждение неверно: $\forall \delta_n = \frac{1}{n} \ (n=1,2,...)$ можно указать часть U_n поверхности Φ , размеры которой меньше δ и которая не проецируется однозначно на касательную плоскость в некоторой своей точке. Выберем в каждой U_n точку M_n , тогда получим последовательность точек $\{M_n\}$. Так как Φ ограниченная поверхность, последовательность $\{M_n\}$ ограничена, следовательно можно выделить подпоследовательность, сходящуюся к некоторой точке M_0 поверхности. Рассмотрим окрестность M_0 , удовлетворяющую условиям леммы 22. При достаточно большом n эта окрестность будет содержать в себе каждую часть U_n . Но тогда эта часть должна однозначно проецироваться на касательную плоскость в любой своей точке, что противоречит нашему предположению. Следовательно предположение неверно и *лемма доказана*.

Лемма 24. Пусть Φ - гладкая, ограниченная полная поверхность без особых точек, тогда $\exists \delta > 0$, что любая часть Φ , размеры которой меньше δ , однозначно проецируется на одну из координатных плоскостей.

Доказательство.

Пусть утверждение неверно: $\forall \delta_n = \frac{1}{n} \, (n=1,2,...)$ можно указать часть U_n поверхности Φ , размеры которой меньше δ и которая не проецируется однозначно на одну из координатных плоскостей. Выберем в каждой U_n точку M_n , тогда получим последовательность точек $\{M_n\}$. Так как Φ ограниченная поверхность, последовательность $\{M_n\}$ ограничена, следовательно можно выделить подпоследовательность, сходящуюся к некоторой точке M_0 поверхности. Рассмотрим окрестность M_0 , удовлетворяющую теореме 13 (см. замечание κ теореме 13). При достаточно большом n эта окрестность будет содержать в себе каждую часть U_n . Но тогда эта часть должна однозначно проецироваться на одну из координатных плоскостей в любой своей точке, что противоречит нашему предположению. Следовательно предположение неверно и лемма доказана.

Лемма 25. Пусть Φ - гладкая, ограниченная, полная двусторонняя поверхность без особых точек, тогда $\forall \varepsilon > 0 \; \exists \delta_{\varepsilon} > 0 \; | \;$ для $cos\gamma$, где γ - угол между единичными векторами нормалей в любых двух точках произвольное части поверхности, размеры которой меньше δ справедливо представление $cos\gamma = 1 - \alpha_{\Phi}, \; 0 < \alpha_{\Phi} < \varepsilon.$

Доказательство.

Рассмотрим на Φ непрерывное векторное поле единичных нормалей $\mathbf{n}(M)$. Φ - двусторонняя поверхность, значит такое поле существует. Φ - ограниченная полная поверхность, поэтому представляет собой компактное множество. В результате получаем выполнение условий теоремы Кантора, отсюда $\mathbf{n}(M)$ равномерно непрерывна на Φ . Запишем определение равномерной непрерывности.

$$\forall \varepsilon > 0 \quad \exists \delta_{\varepsilon} > 0 \quad | \quad \forall M_1, M_2 \quad ||M_2 - M_1|| < \delta \Rightarrow ||\mathbf{n}(M_2) - \mathbf{n}(M_1)|| < \sqrt{2\varepsilon}$$

Заметим, что $||\mathbf{n}(M_2)||^2=||\mathbf{n}(M_2)||^2=1$, $(\mathbf{n}(M_2),\mathbf{n}(M_1))=cos\gamma$, тогда

$$\begin{split} \frac{1}{2}||\mathbf{n}(M_2)-\mathbf{n}(M_1)||^2 &= \frac{1}{2}(\mathbf{n}(M_2)-\mathbf{n}(M_1),\mathbf{n}(M_2)-\mathbf{n}(M_1)) = \frac{1}{2}(||\mathbf{n}(M_2)||^2-2(\mathbf{n}(M_2),\mathbf{n}(M_1))+||\mathbf{n}(M_1)||^2) = \\ &= \frac{1}{2}(2-2(\mathbf{n}(M_2),\mathbf{n}(M_1))) = 1-(\mathbf{n}(M_2),\mathbf{n}(M_1)) = 1-\cos\gamma \end{split}$$

Отсюда

$$cos\gamma = 1 - \frac{1}{2}||\mathbf{n}(M_2) - \mathbf{n}(M_1)||^2 = 1 - \alpha_{\Phi}$$

 $lpha_\Phi=rac{1}{2}||\mathbf{n}(M_2)-\mathbf{n}(M_1)||^2<rac{1}{2}2arepsilon=arepsilon,$ что и требовалось доказать.

3 Площадь поверхности

4 Поверхностные интеграль
