On the evolutionary transitions from free-living organisms to obligate symbioses

Linh-Phuong NGUYEN Supervised by: Minus van Baalen

The story of my academic life

Mutualism

Obligate symbiosis is an evolutionary riddle

- The dependency of on partner to the other is asymmetric
- There has to be a general rule for facultative-obligate transitions regardless of the ecological interactions

Obligate

Individuals cannot survive and reproduce without the hosts

Facultative

Individuals can survive and reproduce without the hosts

Free-living

Adaptive dynamics approach

Evolutionary stable strategy: the strategy once adopted by a resident cannot be invaded by any mutant

Ecological dynamics

$$\frac{d\mathcal{F}}{dt} = \rho_f \mathcal{F} + \rho_b \mathcal{A} - \beta (N - \mathcal{A}) \mathcal{F} - \mu (1 + c \mathcal{F}) \mathcal{F}$$
$$\frac{d\mathcal{A}}{dt} = \beta (N - \mathcal{A}) \mathcal{F} + \sigma \mathcal{A} - \nu \mathcal{A}$$

Ecological dynamics

$$\frac{d\mathcal{F}}{dt} = \rho_f \mathcal{F} + \rho_b \mathcal{A} - \beta (N - \hat{\mathcal{A}}) \mathcal{F} - \mu (1 + c \mathcal{F}) \mathcal{F}$$
$$\frac{d\mathcal{A}}{dt} = \beta (N - \hat{\mathcal{A}}) \mathcal{F} + \sigma \mathcal{A} - \nu \mathcal{A}$$

Reproduction ratio

$$R_0 = \frac{1}{\beta(N - \hat{\mathcal{A}}) + (1 + c\hat{\mathcal{F}})\mu} \left(\rho_f + \beta \frac{\rho_b(N - \hat{\mathcal{A}})}{\nu - \sigma} \right)$$

Ecological dynamics

$$\frac{d\mathcal{F}}{dt} = \rho_f \mathcal{F} + \rho_b \mathcal{A} - \beta (N - \hat{\mathcal{A}}) \mathcal{F} - \mu (1 + c \mathcal{F}) \mathcal{F}$$

$$\frac{d\mathcal{A}}{dt} = \beta (N - \hat{\mathcal{A}}) \mathcal{F} + \sigma \mathcal{A} - \nu \mathcal{A}$$
Reproduction ratio
Bound component

Reproduction ratio

$$R_0 = \frac{1}{\frac{\beta(N-\hat{\mathcal{A}}) + (1+c\hat{\mathcal{F}})\mu}{\beta(N-\hat{\mathcal{A}}) + (1+c\hat{\mathcal{F}})\mu}} \begin{pmatrix} \rho_f + \frac{\rho_b(N-\hat{\mathcal{A}})}{\nu-\sigma} \end{pmatrix}$$
Duration in the free-living state component

Ecological dynamics

$$\frac{d\mathcal{F}}{dt} = \rho_f \mathcal{F} + \rho_b \mathcal{A} - \beta (N - \hat{\mathcal{A}}) \mathcal{F} - \mu (1 + c \mathcal{F}) \mathcal{F}$$

$$\frac{d\mathcal{A}}{dt} = \beta (N - \hat{\mathcal{A}}) \mathcal{F} + \sigma \mathcal{A} - \nu \mathcal{A}$$
Bound

Reproduction ratio

$$R_0 = \frac{1}{\frac{\beta(N-\hat{\mathcal{A}}) + (1+c\hat{\mathcal{F}})\mu}{\rho_f}} \left(\frac{\rho_f + \frac{\beta \rho_b(N-\hat{\mathcal{A}})}{\nu - \sigma}}{\nu - \sigma} \right)$$
Duration in

the free-living state

component

component

Bound reproduction (ρ_1) Free reproduction (ρ_0) Encounter rate (β)

Trade-off

Investment in reproduction (x_m)

Underlying physiological trait

$$\rho_f(x) = \frac{\rho_{fmax}x}{\sigma x + 1}$$

$$\rho_b(x) = \rho_f(x) + b$$

$$\beta(x) = \frac{\beta_{max}}{\alpha x + 1}$$

On the difficult transitions from free-living organisms to obligate symbiosis

Simplicity: the pros and cons

What I find exciting about this model:

- The effects of the trade-off and the ecological feedback are disentangled
- Simple model but interesting and useful biological insights

Limitations:

- Host dynamics are not taken into account
- Analysis using specific and simple trade-off
- The evolution toward obligate symbiosis is not only about losing independent reproduction but also about gaining adaptation.

Building on the simple model

$$\frac{d\mathcal{F}}{dt} = \rho_f \frac{\kappa}{1 + \phi \mathcal{F}} \mathcal{F} + \rho_b \mathcal{A} - \beta \mathcal{F} \mathcal{H} - \mu \mathcal{F}$$

$$\frac{d\mathcal{A}}{dt} = \beta \mathcal{F} \mathcal{H} - \nu (1 + (\mathcal{A} + \mathcal{H})\gamma) \mathcal{A} + rp \mathcal{A}$$

$$\frac{d\mathcal{H}}{dt} = r(1 - p) \mathcal{A} + r\mathcal{H} - \beta \mathcal{F} \mathcal{H} - d(1 + (\mathcal{H} + \mathcal{A})\zeta) \mathcal{H}$$

Building on the simple model

$$\frac{d\mathcal{F}}{dt} = \rho_f \frac{\kappa}{1 + \phi \hat{\mathcal{F}}} \mathcal{F} + \rho_b \mathcal{A} - \beta \mathcal{F} \hat{\mathcal{H}} - \mu \mathcal{F}$$

$$\frac{d\mathcal{A}}{dt} = \beta \mathcal{F} \hat{\mathcal{H}} - \nu (1 + (\hat{\mathcal{A}} + \hat{\mathcal{H}}) \gamma) \mathcal{A} + rp A$$

Neutral mutant has zero invasion fitness

$$\left(\frac{\kappa \rho_f}{(1+\phi\hat{\mathcal{F}})\mu} - 1\right) \left(\frac{rp}{(1+\gamma(\hat{\mathcal{A}}+\hat{\mathcal{H}}))\nu} - 1\right) = \left(\frac{rp}{(1+(\hat{\mathcal{A}}+\hat{\mathcal{H}})\gamma)\nu} + \frac{\rho_b}{(1+(\hat{\mathcal{A}}+\hat{\mathcal{H}})\gamma)\nu} - 1\right) \frac{\hat{\mathcal{H}}\beta}{\mu}$$

Building on the simple model

$$\frac{d\mathcal{F}}{dt} = \rho_f \frac{\kappa}{1 + \phi \hat{\mathcal{F}}} \mathcal{F} + \rho_b \mathcal{A} - \beta \mathcal{F} \hat{\mathcal{H}} - \mu \mathcal{F}$$
$$\frac{d\mathcal{A}}{dt} = \beta \mathcal{F} \hat{\mathcal{H}} - \nu (1 + (\hat{\mathcal{A}} + \hat{\mathcal{H}}) \gamma) \mathcal{A} + rp \mathcal{A}$$

Neutral mutant has zero invasion fitness

$$(R_{ff}^{-1})(R_{aa}^{-1})=(R_{aa}^{-1})=R_{aa}^{-1})$$

Reproduction ratio of free-living individual

Reproduction ratio of vertically transmitted individual

$$+R_{af}$$
 -1) \mathcal{T}

Reproduction ratio of horizontally transmitted individual

Effective number of host encounter

Insights from analysing invasion fitness

- 1.When can a mutant with small adaptation $x_{mut} \approx 0$ to the symbiotic lifestyle invade a resident population without any adaptation $x_{res} = 0$, hence $R_{ff}(x_{res}) = 0$?
- 2.If a singular strategy exists where adaptation to the symbiotic lifestyle is sufficient $R_{af}(x_{ss})>0$, is such a strategy at the minimum or maximum of the fitness landscape?
- 3. What are the effects of the ecological interactions on the evolution of the adaptation to the symbiotic lifestyle?

1. Evolution of small symbiotic adaptation

A mutant with small adaptation to the symbiotic lifestyle invades a resident population without any adaptation when the selection gradient is positive

$$\frac{1}{R_{ff}-1}\frac{\partial R_{ff}}{\partial x_{mut}} - \left(\frac{1}{R_{af}+R_{aa}-1}\frac{\partial R_{af}}{\partial x_{mut}}\right)\Big|_{\substack{x_{res}=0\\x_{mut}\approx 0}} > 0 \qquad \text{Assumptions:} \\ -\frac{\partial R_{aa}}{\partial x_{mut}} = 0; \frac{\partial T}{\partial x_{mut}} = 0$$

$$\frac{\partial R_{aa}}{\partial x_{mut}} = 0; \frac{\partial T}{\partial x_{mut}} = 0$$

- Very small vertical transmission

With local analysis around the resident value, any function can be linearised. What matters is the coefficients.

Evolution of small symbiotic adaptation

 a_f Coefficient for $R_{\it ff}$ linearised function < 0 a_b Coefficient for $R_{\it af}$ linearised function > 0

fitness

2. The singular strategy has to satisfy

Selection gradient is zero

$$\left(\frac{1}{R_{ff}-1}\frac{\partial R_{ff}}{\partial x_{mut}} = \frac{1}{R_{aa}+R_{af}-1}\frac{\partial R_{af}}{\partial x_{mut}}\right)\Big|_{x_{mut}=x_{res}=x_{ss}} - \frac{\frac{\partial R_{aa}}{\partial x_{mut}}=0}{\frac{\partial R_{aa}}{\partial x_{mut}}}=0$$

Assumptions:

$$\frac{\partial R_{aa}}{\partial x_{mut}} = 0; \frac{\partial T}{\partial x_{mut}} = 0$$

- Very small vertical transmission

- Condition for minimum and maximum
 - Second derivative of the fitness function Selection gradients on neighbour mutants
 - Minimum singular strategy → polymorphism
 - Maximum singular strategy → monomorphism

2. The singular strategy has to satisfy

Selection gradient is zero

$$\left(\frac{1}{R_{ff}-1}\frac{\partial R_{ff}}{\partial x_{mut}} = \frac{1}{R_{aa}+R_{af}-1}\frac{\partial R_{af}}{\partial x_{mut}}\right)\Big|_{x_{mut}=x_{res}=x_{ss}} - \frac{\frac{\partial R_{aa}}{\partial x_{mut}}=0}{\frac{\partial R_{aa}}{\partial x_{mut}}=0}$$

Condition for minimum and maximum

- Second derivative of the fitness function
- Minimum singular strategy → polymorphism
- Maximum singular strategy → monomorphism

Assumptions:

- Very small vertical transmission

2. The singular strategy has to satisfy

Selection gradient is zero

$$\left(\frac{1}{R_{ff}-1} \frac{\partial R_{ff}}{\partial x_{mut}}\right) = \frac{1}{R_{aa}+R_{af}-1} \frac{\partial R_{af}}{\partial x_{mut}} \left| \begin{array}{c} \text{Assumptions:} \\ \frac{\partial R_{aa}}{\partial x_{mut}} = 0; \frac{\partial T}{\partial x_{mut}} = 0 \\ -\text{Very small veries} \end{array} \right|$$

Assumptions:

$$\frac{\partial R_{aa}}{\partial x_{mut}} = 0; \frac{\partial T}{\partial x_{mut}} = 0$$

- Very small vertical transmission

- Condition for minimum and maximum
 - Second derivative of the fitness function Selection gradients on neighbour mutants
 - Minimum singular strategy → polymorphism
 - Maximum singular strategy → monomorphism

2. Condition for minimum and maximum

2. Condition for minimum and maximum

2. Condition for minimum and maximum

A saturated to continuously increasing benefit A saturated to continuously decreasing benefit

3. Effect of ecological interactions

A saturated to continuously increasing benefit A saturated to continuously decreasing benefit

Exciting results

- Different production ratios for different reproduction strategies are disentangled
- Useful insights can be obtained from the analysis of invasion at the boundary and the local singular strategy
- Effect of the ecological interactions can be observed without specifying trade-off functions
- Understand the limit of analysis when specific trade-off is not stated

Thank you for your attention!