⑩日本国特許庁(JP)

①特許出顧公告

學特 許 公 報(B2)

平5-9027

❷❷公告 平成5年(1993)2月3日

@int.Cl. *									
	03 05		15/20 6/10 6/40						

識別記号 庁内整理番号 6830-2H 8915-3K 8915-3K 101361

発明の数 1 (全5頁)

❷発明の名称		₩E	E力定	着装置				
					❷出		昭60-295392 ●公 昭60(1985)12月25日	閉 昭62-150371 ④昭62(1987)7月4日
⑦発	劈	者	布	施	雅	志	東京都大田区雪谷大塚町 1 内	番7号 アルブス電気株式会社
伊発	男	者	井		弘	文	東京都大田区雪谷大塚町 1 内	番7号 アルブス電気株式会社
砂発	明	者	村	Ħ	英	司	東京都大田区雪谷大塚町 1 内	番7号 アルブス電気株式会社
0発	朔	者	阿	部		酚	東京都大田区雪谷大塚町 1 内	番7号 アルプス電気株式会社
伊発	明	者	菊	地	蜟	弘	東京都大田区雪谷大塚町 1: 内	番7号 アルブス電気株式会社
砂出	鲴	人	アル	・プス制	【氕株式	会社	東京都大田区實谷大塚町 1	香7号
910	理	人	弁理	!± ¥	E E	克	外3名	·
*	査	官	清	水	信	Ħ	,	
⊗ # :	考 文	揻	特課	昭5	8-1379	89 (,	P, A) 特開 昭58-514	493 (JP, A)
			特牌	昭5	3-1205	38 (P, A) 特開 昭57-205	5767 (JP, A)
			実開	昭5	8-1573	49 (P, U) 実開 昭51-109	9736 (JP, U)
			実公	昭5	1-3725	B (J	P, Y2) 実公 昭54-84	433 (JP, Y2)

1

の特許請求の範囲

1 円筒体形状を有し強磁性体により形成された 熱定着用ロールと、該熱定着用ロールと接触しこ れを押圧するように設けられた圧力ロールとを備 え、この熱定着用ロールと圧力ロールとの接触位 5 れぞれに、隣合う脚部において発生する磁束の方 置において用紙上に転写されたトナーを熱圧力定 着させるように構成された電子写真装置における 熱圧力定着装置であって、

複数の脚部を持ち該各脚部にそれぞれ励磁コイ ルを巻回したフォーク状の励磁鉄心及びこの励磁 10 が加熱されるように構成されている 鉄心の各脚部に対応する複数の脚部を備えた補助 鉄心の一方を前配円筒体形状の熱定着用ロールの 内部に、また他方をその外部に、互いにその脚部 が対向して閉磁路が形成されるような状態であつ

の接触位置よりも前配熱定着用ロールの回転方向 における上流側近傍の位置において前記熱定着用 ロールを加熱し得るような位置に配置し、前記励 磁鉄心の各脚部に巻回された前記励磁コイルのそ 向が互いに逆方向となるように交流電流を供給す ることにより上記円筒体を貫通する磁束を発生せ しめ、敵磁束により上記円資体に発生するうず電 流によつて生じるジュール熱により、上配円筒体 ことを特徴とする熱圧力定着装置。

発明の詳細な説明

(産業上の利用分野)

本発明は、熱圧力定着装置に関し、加熱された て、かつ前記熱定着用ロールと前記圧力ロールと 15 熱定着用ロールと圧力ロールとの接触位置におい

て用紙上に転写されたトナーを熱圧力定着させる ようにした電子写真装置における熱圧力定着装置 において、上記熱定着用ロールを強磁性体を用い て円筒状に形成するとともに、当該熱定着用ロー け、上記うず電流により発生するジュール熱によ つて、上記熱定着用ロールを加熱せしめるように した熱圧力定着装置に関するものである。 【従来の技術】

は、第4図に図示されている如く、加熱された熱 定着用ロール1と、図示省略した駆動装置によつ て上記熱定着用ロール1を押圧しつつ回転する圧 力ロール2とから構成されており、例えば図示矢 ール2との間を通過する用紙3に熱と圧力とを加 えることにより該用紙3上に転写されているトナ - (図示省略)を用紙3に定着せしめるものであ

としてハロゲンランプを用いるようにした熱定着 用ロールが知られている。即ち、第4図に図示さ れている如く、上配熱定着用ロール1を円筒状に 形成した上で、該熱定着用ロール1の内部にハロ ゲンランプ13を設置し、該ハロゲンランプ13 25 ことを特徴としている。 の輻射熱により上記熱定着用ロール1を加熱する ようにしたものが知られている。

(発明が解決しようとする問題点)

ハロゲンランプを熱顔とする従来の上記熱定着

- (i) ハロゲンランブの発生熱は一部対流熱として 失われるばかりでなく、熱定着ロールの全体を 一様に加熱し、放熱量も大きくなるため、熱効 率が悪く消費電力が大となる。
- 寿命が短かいため、性能劣化の程度に応じて交 換しなければならない。即ち、ハロゲンランプ を消耗品として取扱わなければならない。
- □ 上記ハロゲンランプの交換を可能とするた め、熱定着用ロールの構造が複雑となる。 等の問題点である。

(問題点を解決するための手段)

本発明は、上配の如き問題点を解決することを 目的としており、そのため、本発明の熱圧力定着

装置は、円筒体形状を有し強磁性体により形成さ れた熱定着用ロールと、該熱定着用ロールと接触 しこれを押圧するように設けられた圧力ロールと を備え、この熱定着用ロールと圧力ロールとの接 ルにうず電流を発生せしめる磁束発生手段を設 5 触位置において用紙上に転写されたトナーを熱圧 力定着させるように構成された電子写真装置にお ける熱圧力定着装置であつて、

複数の脚部を持ち該各脚部にそれぞれ励磁コイ ルを巻回したフォーク状の励磁鉄小及びこの励磁 一般に、電子複写機等における熱圧力定着装置 10 鉄心の各脚部に対応する複数の脚部を備えた補助 鉄心の一方を前配円筒体形状の熱定着用ロールの 内部に、また他方をその外部に、互いにその脚部 が対向して閉磁路が形成されるような状態であっ て、かつ前記熱定着用ロールと前配圧力ロールと 印方向に回転する上記熱定着用ロール | と圧力ロ 15 の接触位置よりも前配熱定着用ロールの回転方向 における上流側近傍の位置において前記熱定着用 ロールを加熱し得るような位置に配置し、前記跡 磁鉄心の各脚部に巻回された前記励磁コイルのそ れぞれに、隣合う脚部において発生する磁束の方 従来、上記熱定着用ロール1を加熱する発熱顔 20 向が互いに逆方向となるように交流電流を供給す ることにより上配円筒体を貫通する磁束を発生せ しめ、該磁束により上配円資体に発生するうず電 流によつて生じるジュール熱により、上記円質体 が加熱されるように構成されている

(実施例)

第1図は本発明の前提にした原理を説明する構 成図であり、第1図Aは断面図、第1図Bは第1 図Aにおける励磁鉄心と補助鉄心との斜視図を示 用ロールには、下記の如き問題点がある。即ち、 30 す。また、第2図は本発明の前提にした他の構成 図、第3図は本発明の一実施例における励磁鉄心 と補助鉄心との斜視図を示す。

先づ、第1図に関連して本発明の前提とした原 理を説明する。なお、図中の符号1は熱定着用ロ (ii) ハロゲンランブは、装置の寿命に比してその 35 ールであつて強磁性体により円筒状に形成されて いるもの、2は圧力ロールであつて図示省略した 駆動装置により上記熱定着用ロール 1 を押圧しつ つ例えば図示矢印方向に回転するもの、3は用紙 であつて図示省略したトナーが転写されているも 40 の、4は円筒体、5は励磁鉄心、8は励磁コイ ル、7は補助鉄心であつて上記励磁鉄心5の磁艦 に上配円筒体4を開てて対向する磁極をそなえて 閉磁路を構成するものを表している。

第1図において、熱定着用ロール1の円筒体4

- の内部に励磁コイルをが巻回された励磁鉄心を が、該励磁鉄心5の磁極が上配円筒体4の内周面 に対向する状態で設置されている。当該励磁鉄心 5は、第1図Bに図示されている如く、いわゆる 向の長さに対応する長さ寸法を有するものであ る。そして、第1図Bに図示されている如く、上 配励磁鉄心5の磁艦に対応する磁艦をそなえかつ 当該励磁鉄心5と同一の長さ寸法を有する断面形 てて当該補助鉄心7の磁極が上記励磁鉄心5の磁 極に対向するように設置されている。

以上説明したように構成された熱定着用ロール 1(第1図A図示)において、励磁コイル&に交 流電流を供給して上記励磁鉄心5を励磁する。当 15 なお、第2図図示実施例における上記励磁鉄心5 該励磁鉄心5が励磁されることにより、第1図A における点線矢印で示されているような閉磁路が 構成され、上記励磁鉄心5の磁極と上記補助鉄心 7の磁極との間に、上記円筒体4を貫通する磁束 は1方向のみを表しているが、上記励磁コイル 8 に供給される交流電流の周期に対応して反転する ことは言うまでもない。

以上説明した如く、回転する円筒体4を貫通す る磁束が発生することにより、当該円筒体4の磁 25 ても、第1図B図示の励磁鉄心5の長手方向の幅 束貫通部分のまわりにうず電流が発生し、該うず 電流によるジュール熱により上配円筒体4の温度 が上昇する。即ち、本発明における円筒体4に対 する加熱は、外部にもうけられた熱源(例えば第 4 図図示ハロゲンランプ13)によつて行われる 30 ものではなく、円筒体4自身に流れるうず電流に より発生するジュール熱によって行われる。従っ て、熱効率が良いばかりでなく、加熱速度が速く なる。また、上記励磁コイル8の電流値を制御す ることによつて、温度制御を容易に行うことが可 35 れているように多数の脚部を有するフォーク状に 能である。

更に、本発明における上記励磁鉄心5と補助鉄 心7との設置位置について説明する。 当該設置位 優は、熱定着用ロールと圧力ロールとが接触する 着位置)にできるだけ近いことが望ましい。即 ち、第1図Aに図示されている如く、上記熱定着 用ロール1の回転方向が図示矢印方向だとする と、上記熱定着位置から図示矢印方向と逆方向、

すわち熱定着用ロールの回転方向における熱定着 用ロールと圧力ロールとの接触位置よりも上流側 であつて上配両ロールが接触する位置にできるだ け近い位置に設定されている。 従つて、上記熱定 コの字状の断面形状を有し、上配円筒体4の軸方 5 着用ロール1における円筒体4の加熱部分が加熱 されてから上記熱定着位置に到達するまでの時間 が短かくなるため、その間の熱損失を小さくする ことができる。

以上、第1図に関連しての原理について説明し 状がコの字状の補助鉄ん7が、上記円筒体4を隔 10 たが、本発明の前述した基本原理にもとづき基本 的には同様の構成と効果とを有するものである。 第2図図示の他の構成例においては、円筒体4

の外部に励磁コイル 6 が巻回された励磁鉄心 5 が 設置され、内部に補助鉄心7が設置されている。 と補助鉄心7とは第1図図示実施例における励磁 鉄心5と補助鉄心7と同一構成を有するものであ

上記原理に関連して説明した構成においては、 が発生する。なお、第1図A図示点線矢印の方向 20 うず電流の発生による発熱を利用しており、従来 のハロゲンランプなどを用いる場合にくらべて、 十分大きい利点を有する。

> しかし、上述の如く、いわば閉磁路を構成する ように励磁鉄心5と補助鉄心7とを配置するにし 全体を環流する形でうず電流が流れることとな る。このために、熱定着用ロール1の近傍に存在 する他装置に対して非所望な漏れ磁界が働くこと になる。

本願発明においては、この漏れ磁界を極力小に することを考慮している。

第3図は本発明の一実施例における励磁鉄心と 補助鉄心との斜視図を示している。当該実施例に おける励磁鉄心8および補助鉄心10は、図示さ 形成されている。そして、励磁鉄心8の各脚部に は、夫々独立した励磁コイル9,9,…が巻回さ れている。そして、該励磁コイル8,8,…に対 する交流電流の供給が、上記励磁鉄心8の隣合う 位置、即ち熱圧力定着が行われている位置(熱定 40 脚部において発生する磁束の方向が互いに逆方向 となるようになされるので、外部に対する磁束の 漏洩を防止するとともに円筒体4の多数箇所が同 時にかつ均一加熱されるようになり、熱定着用ロ ールの加熱が効率的に行われるようになる。な

お、当該実施例においては、第1図図示構成例と □ 同様に、円筒体4の内部に上記励磁鉄心8を設置 し、外部に上記補助鉄心10を設置するようにし ても良く、また第2図図示構成例と同様に、円筒 配補助鉄心10を設置するようにしても良い。 (発明の効果)

以上説明した如く、本発明によれば、熱定着用 ロールを構成する円筒体の多数箇所を同時かつ均 ーに加熱することができるとともに定着を行う位 10 図中、1は熱定着用ロール、2は圧力ロール、 量の直前で加熱が行われるので、効率よくかつ安 定的に定着処理を行うことができる。

また励磁コイルに供給する電流値を制御するこ とにより、温度制御を正確かつ容易に行うことが でき、更に非所望な漏れ磁束の発生も少ない。 図面の簡単な説明

第1図は本発明の前提にした原理を説明する情 成図であり、第1図Aは断面図、第1図Bは第1 体4の外部に上記励磁鉄心8を設置し、内部に上 5 図Aにおける励磁鉄心と補助鉄心との斜視図を示 す。また、第2図は本発明の前提にした他の構成 図、第3図は本発明の一実施例における励磁鉄心 と補助鉄心との斜視図、第4図は熱圧力定着装置。 の従来例説明図を示す。

> 3は用紙、4は円筒体、5,8は励磁鉄心、6, 9は励磁コイル、7および10は補助鉄心を表

第4図

