

Plan de la présentation

- Exportation
- Textures
- Matériaux
- Collisions
- LODs

NAND168 : Étude des moteurs de jeu

Éléments de contenu

- Chaque élément de contenu est enregistré dans un fichier .uasset
 - Plus simple pour les outils comme Perforce
 - Temps de synchronisation plus rapide lors de changement
- Chaque élément est lié à un chemin précis
 - Il n'est pas recommandé de déplacer un objet à l'extérieur du Content Browser

NAND168 : Étude des moteurs de jeu

Éléments de contenu

- Utiliser une bonne structure de répertoires pour s'y retrouver facilement
- Utiliser des noms d'objets **significatifs**

NAND168 : Étude des moteurs de jeu

Unité et échelle

- Unreal utilise le système métrique (cm)
- Préférable de configurer 3DS pour avoir le même système d'unité

Unité et échelle

 À titre de référence, un personnage de taille moyenne mesure environ 192 unités dans Unreal

Nad

NAND168 : Étude des moteurs de jeu

Exportation d'un objet simple

- Porter attention:
 - Point de pivot dans Unreal : origine dans 3DS
 - Grille
 - Triangles
- Export selected / export all

Structure des répertoires

- Tous les fichiers de niveaux (.umap)
 Content\Maps

Nad

NOD

NAND168 : Étude des moteurs de jeu

Textures

- Toujours prendre des textures carrés ayant une puissance de 2
 - 20 x 20 jusqu'à 212 x 212 pixels
 - 1 x 1 jusqu'à 4096 x 4096 pixels
- Les textures ne sont pas appliquées directement sur un objet, elles sont plutôt utilisées par un matériel

NAND168 : Étude des moteurs de jeu

14

Textures

16x16 5 mjps 312 bytes 496 bytes 23x23 6 mjps 824 bytes 1.480 t (1550 bytes) 26x64 7 mjps 2.000 t (2727 bytes) 5.480 t (516 bytes) 128x128 8 mjps 10.81b (11.094 bytes) 21.44b (22.000 bytes) 258x128 9 mjps 42.80 t (43.82 bytes) 86.40 (87.53 b bytes) 512x512 10 mjps 170b (174.904 bytes) 341b (345.62 bytes) 1024x1024 11 mjps 626kb (89.192 bytes) 1.33M (8.592.566 bytes) 204b2049 12 mjps 2.66kH (2.796.344 bytes) 6.33M (8.592.566 bytes)	Resolution	Total Mips from 1x1	DXT1	DXT5
64664 7 mips 2.8000 (2.872 bytes) 5.4800 (5.616 bytes) 128x128 8 mips 10.880 (1.1064 bytes) 21.480 (22.000 bytes) 556x256 9 mips 42.884 (43.832 bytes) 68.480 (87.936 bytes) 612x642 10 mips 17084 (714.904 bytes) 34186 (348.600 bytes) 1024x1024 11 mips 6628b (699.192 bytes) 1.33M8 (1.398.266 bytes)	16x16	5 mlps	312 bytes	496 bytes
128/128 8 mjps 10.84b (11.064 bytes) 21.44b (22.000 bytes) 256/256 9 mjps 42.84b (43.832 bytes) 85.44b (87.536 bytes) 512x612 10 mjps 170kb (174.904 bytes) 34 lib (349.680 bytes) 1024x1024 11 mjps 682kb (699.192 bytes) 1.33M8 (1.398.256 bytes)	32x32	6 mips	824 bytes	1.48kb (1,520 bytes)
259i2256 9 mips 42.8ib (43.832 bytes) 85.4ib (87.536 bytes) 512x512 10 mips 170xb (174.904 bytes) 341bb (349.680 bytes) 1024x1024 11 mips 682xb (699.192 bytes) 1.33M8 (1.398.256 bytes)	64x64	7 mips	2.80kb (2,872 bytes)	5.48kb (5,616 bytes)
612:4512 10 mips 1700b (174.904 bytes) 341bb (349.860 bytes) 1024:1024 11 mips 682:b (699.192 bytes) 1.33M8 (1.398.256 bytes)	128x128	8 mips	10.8kb (11,064 bytes)	21.4kb (22,000 bytes)
1024x1024 11 mips 682kb (699,192 bytes) 1.33MB (1,398,256 bytes)	256x256	9 mlps	42.8kb (43,832 bytes)	85.4kb (87,536 bytes)
	512x512	10 mips	170kb (174,904 bytes)	341kb (349,680 bytes)
2048x2048 12 mips 2.66MB (2,796,344 bytes) 5.33MB (5,592,560 bytes)	1024x1024	11 mips	682kb (699,192 bytes)	1.33MB (1,398,256 bytes)
	2048x2048	12 mips	2.66MB (2,796,344 bytes)	5.33MB (5,592,560 bytes)
4096x4096 13 mlps 10.6MB (11,184,952 bytes) 21.3MB (22,369,776 bytes)	4096x4096	13 mips	10.6MB (11,184,952 bytes)	21.3MB (22,369,776 bytes)
8192x8192 14 mlps 42.6MB (44,739,384 bytes) 85.3MB (89,478,640 bytes)	8192x8192	14 mlps	42.6MB (44,739,384 bytes)	85.3MB (89,478,640 bytes)

NAND168 : Étude des moteurs de jeu

Textures

- Les textures peuvent être utilisées pour être rendues (ex. diffuse) ou pour communiquer de l'information (ex. normale)
 - Le paramètre sRGB indique si le gamma doit être ajusté ou non. On ne veut pas que le gamma soit ajusté sur une normale par exemple.

15

NAND168 : Étude des moteurs de jeu

Textures

- Formats supportés
 - . bmp, .float, .pcx, .png, .psd, .tga, .jpg
 - .dds Cubemap Texture (32bits/Channel, 8.8.8.8 ARGB 32 bpp, unsigned)
 - .hdr Cubemap Texture (LongLat unwrap)
- RGB / RGBa
- Utiliser seulement 8 bits / canal
 - À vérifier

NAND168 : Étude des moteurs de jeu

17

19

Textures • Les textures peuvent être exportées automatiquement - Coché l'option « Embed Media »

Textures

- Le nom des textures dans 3DS peut être transféré automatiquement
- Utiliser la nomenclature suivante: (Préfixe_NomTexture(_Nombre)(_Suffixe)

Exemple:

T_Roche_D

Textures

• Masque pour environnement :

G = Roughness B = Ambient Occlusion

• Masque pour personnage :

R = Metallic G = Roughness

B = Subsurface Opacity

• Masque pour personnage (cheveux):

R = Hair Alpha

G = Specular/Roughness map

B = Anisotropic direction map

NOD

NAND168 : Étude des moteurs de jeu

Textures

- Dans le répertoire, utiliser le groupe « Textures »
 - Exemple pour une texture destinée à un élément d'environnement
 - Content\Environment\Textures
 - Exemple pour une texture destinée à un élément de gameplay
 - Content\Gameplay\Textures

21

NAND168 : Étude des moteurs de jeu

22

24

Matériaux

- · Les matériaux de base sont transférés avec FBX
 - Standard
 - Multi/Sub-object
- Le noms des matériaux créés dans Unreal seront les mêmes que ceux dans 3DS Max

NAND168 : Étude des moteurs de jeu

Matériaux

• Seulement certaines textures sont transférées:

Map / textures	Configuration 3DS MAX
Diffuse	Diffuse > Bitmap
Normal Map	Bump > Normal Bump > Normal > Bitmap

23

Matériaux

- Le nom des matériaux dans 3DS peut être transféré automatiquement
- Utiliser la nomenclature suivante:
 - M NomMatériel
- Dans le répertoire, utiliser le groupe « Materials »

NOD

NOD

NAND168 : Étude des moteurs de jeu

Matériaux

- Exercice matériel (10 minutes)
 - Choisir une texture de bois et créer un matériel pour la chaise
 - Exporter vers le format FBX
 - Importer dans l'engin

25

NAND168 : Étude des moteurs de jeu

26

Collisions

- Peuvent être créer dans 3DS ou Unreal
 Unreal = seulement des collisions très simples
- Les collisions doivent toujours être convexes

Collisions

 Que doit-on considérer lors de la création de collision?

http://www.allreadable.com/fb6aAVVK

27

NAND168 : Étude des moteurs de jeu

Collisions

- Fonction de l'objet
- Échelle de l'objet
- Minimisation du nombre de polygone
- Interaction avec l'objet?

Nad

NOD

NAND168 : Étude des moteurs de jeu

20

Collisions

- 3DS: Les collisions sont associées à un objet en fonction de la nomenclature
 - Objet : SM_IlotA
 - Collision : UCX_SM_ILotA
- Il peut y avoir plusieurs collisions associées à un même objet
 - Collision 1 : UCX_NomObjetCollision 2 : UCX_NomObjet

NAND168 : Étude des moteurs de jeu

30

Collisions Comment feriez-vous les collisions?

NAND168 : Étude des moteurs de jeu

Collisions

- Exercice créer collision (10 minutes)
 - Créer la collision pour la chaise en tenant compte qu'on peut s'y asseoir
 - Exporter vers le format FBX
 - Importer dans l'engin

31

NAND168 : Étude des moteurs de jeu

Niveaux de détails (LOD)

- On désire généralement limité le coût d'affichage lorsqu'un objet s'éloigne de la caméra
 - Solution: LOD
- On associe à un même objet plusieurs niveau où chacun a un nombre moins élevé de triangles que le précédent

NAND168 : Étude des moteurs de jeu

33

Niveaux de détails (LOD)

- Chaque LOD peut avoir ses propres textures et matériaux et leur nombre peut varier
- On associe à un même objet plusieurs niveau où chacun a un nombre moins élevé de triangles que le précédent

NAND168 : Étude des moteurs de jeu

34

LOD - Procédure

• Choisir tous les objets et choisir Group

· Choisir un nom significatif

NOD

NAND168 : Étude des moteurs de jeu

LOD - Procédure

- Cliquer et choisir Level of Detail
 Utiliser au besoin
- En ayant le groupe sélectionné, cliquer sur Create New Set
 - Les objets seront automatiquement triés en fonction de leur complexité

NAND168 : Étude des moteurs de jeu

LOD - Procédure

 Sélectionner le groupe (et les collisions le cas échéant) et exporter en utilisant les mêmes étapes qu'un Static mesh

Nad

NAND168 : Étude des moteurs de jeu

LOD - Procédure

 Lors de l'importation dans Unreal, assurezvous de cocher l'option Import Mesh LODs

Nao

37

39

NAND168 : Étude des moteurs de jeu

LOD - Procédure

- Exercice créer LOD (10 minutes)
 - Créer un groupe de 4 mesh avec différents niveaux de détail
 - Exporter vers le format FBX
 - Importer dans l'engin
 - Inclure dans une scène et ajuster la distance où l'objet change de niveau de détails

