אלגברה ב' - גיליון תרגילי בית 4 גרם־שמידט ואופרטורים צמודים

9.8.2024 :תאריך הגשה

תהיינה $V=\mathbb{R}_2\left[x
ight]$ יהי ותהיינה

$$\langle f, g \rangle_1 = \int_0^1 f(x) g(x) dx$$

 $\langle f, g \rangle_2 = f(-1) g(-1) + f(0) g(0) + f(1) g(1)$

שתי מכפלות פנימיות על V יהי

$$.W = \left\{ f \in V \mid f\left(x\right) = f\left(-x\right) \right\} \leq V$$

- לפי על גרם־שמידט את בצעו את על לבסיס C של $B=(w_1,\dots,w_m)$ המצאו בסיס של $B=(w_1,\dots,w_m)$ כל אחת מהמכפלות הפנימיות כדי לקבל בסיסים אורתונורמליים לפיהן.
 - . היעזרו בבסיסים שמצאתן בסעיף הקודם כדי למצוא את לפי כל אחת מהמכפלות הפנימיות. 2
 - . מיצאו את ההטלה האורתוגונלית על P_W על P_W האורתוגונלית את מיצאו .3
 - . הפנימיות הפנימיות לפי לפי מ" אחת המרחק את מיצאו הפנימיות. הפנימיות. $f\left(x\right)=1+x$ יהי הפנימיות.

עבורו B אורתונורמלי בסיס אורתונורמלי הראו כי היא הראו $T\in \mathrm{End}_{\mathbb{C}}\left(V\right)$, ויהי על חוב מנפלה פנימית מוף־מימדי מעל $T\in \mathrm{End}_{\mathbb{C}}\left(V\right)$, ויהי עליונה.

-רמז: היעזרו במשפטי ז'ורדן וגרם־שמידט.

תרגיל 3. יהי $V=M_{2}\left(\mathbb{R}
ight)$ עם הבסיס

$$.B = \left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right)$$

מיצאו מכפלה פנימית על Vעל פנימית מכפלה מיצאו מיצאו מיצאו אורתונורמלי.

רמז: כל המכפלות פנימיות על V הז מהצורה

,
$$\langle u,v\rangle_C\coloneqq\langle [u]_C\,,[v]_C\rangle_{\mathrm{std}}$$

.V עבור בסים כסים C

עם המכפלה גדיר (גדיר אופרטור . $B\in V$ יהי (גדיר אופרטור . $B\in V$ יהי היי (אוברטור .A עם המכפלה הפנימית ער אופרטור ער אופרטור והיי אופרטור

$$\Phi_B \colon V \to V$$

$$A \mapsto BA$$

- $.\Phi_B^*$ את חשבו .1
- נורמלי? עבור אילו מטריצות Φ_B האופרטור מטריצות .2
- אילו מטריצות Φ_B האופרטור אילו מטריצות 3.
 - אורתוגונלי? אורתוגונלי מטריצות Φ_B האופרטור מטריצות מטריצות .4

על ידי $T\in \mathrm{End}_{\mathbb{R}}\left(V
ight)$, ויהי ($X,Y
angle=\mathrm{tr}\left(Y^{t}X
ight)$ המוגדר על ידי עם המכפלה איזי $V=\mathrm{Mat}_{2}\left(\mathbb{R}
ight)$ יהי $V=\mathrm{Mat}_{2}\left(\mathbb{R}
ight)$

$$.T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 16a & 4b - 6c \\ -6b + 13c & 16d \end{pmatrix}$$

 $S^2=T$ צמוד לעצמו צבורו אופרטור אופרטור אופרטור בסיס צמוד עבורו עבורו עבורו אלכסונית, אלכסונית, אלכסונית עבורו עבורו עבורו אופרטור אופרטור ומיצאו אופרטור עבורו א

T ערכים עצמיים של 3,4 נורמלי, ונניח כי $T\in \mathrm{End}_{\mathbb{C}}\left(V
ight)$ יהי סופי, מרוכב ממימד מרוכב ממימד איז מרחב $T\in \mathrm{End}_{\mathbb{C}}\left(V
ight)$ וגם $\|v\|=5$ וגם וא עבורו $\|v\|=\sqrt{2}$ עבורו איש עיש ע

|a|
eq 1 עבורו $a \in \mathbb{C}$ ויהי $T \in \mathrm{End}_\mathbb{C}\left(V
ight)$ יהי מרוכב ממימד מרוכב ממימד מרוכב ממימד V יהי תרגיל 7.

- .T=0 אז $T^{st}=aT$ הראו כי הראו.
- . $\ker\left(T\right)=\ker\left(S\right)$ כי הוכיחו הוכיחו $S=T-aT^*$ ויהי נורמלי, נניח כי 2