Machine Learning - Assignment 3

Sudip Sinha

July 18, 2014

Exercise 2

Given

- $\bullet \ VV^T = V^TV = I$
- \bullet D is an invertible diagonal matrix

Proof

Let $B = VD^{-1}V^T$

•
$$AB = VDV^TVD^{-1}V^T = VD(V^TV)D^{-1}V^T = VDID^{-1}V^T = V(DD^{-1})V^T = VIV^T = I$$

•
$$BA = VD^{-1}V^TVDV^T = VD^{-1}(V^TV)DV^T = VD^{-1}IDV^T = V(D^{-1}D)V^T = VIV^T = I$$

Thus, $A^{-1} = B = VD^{-1}V^T$.

Exercise 3

Let $f(w) = ||X\boldsymbol{w} - \boldsymbol{y}||^2$

We just have to show that the square of the norm is a convex function.

$$\begin{split} \|(1-t)\,x + ty\|^2 &= (1-t)^2 \,\|x\|^2 + t^2 \,\|y\|^2 + 2t \,(1-t) \,\langle x,y \rangle \qquad \forall t \in [0,1] \\ &= (1-t) \,\|x\|^2 + t \,\|y\|^2 - t \,(1-t) \,\Big(\|x\|^2 + \|y\|^2 - 2 \,\langle x,y \rangle\Big) \\ &= (1-t) \,\|x\|^2 + t \,\|y\|^2 - t \,(1-t) \,\|x - y\|^2 \\ &\leq (1-t) \,\|x\|^2 + t \,\|y\|^2 \qquad \text{Since } t \,(1-t) \geq 0 \text{and } \,\|\cdot\|^2 \geq 0 \end{split}$$

Thus, the least squares loss function $\|y - Xw\|^2$ is a convex function of w.

Exercise 4

Let $W = \operatorname{diag}(r_i)$. Therefore, $W^T = W$

Thus, the problem can be reformulated as

$$\begin{aligned} w &= & \arg\min_{w} \left(e \right) \\ \text{where } e &= & \left(y - Xw \right)^T W \left(y - Xw \right) \\ &= & \left(y^T - w^T X^T \right) W \left(y - Xw \right) \\ &= & y^T W y - y^T W X w - w^T X^T W y + w^T X^T W X w \end{aligned}$$

Using the rules of Matrix Calculus given here:

$$\frac{\partial e}{\partial w} = -(y^T W X)^T - X^T W y + (X + X^T) w$$

$$= (X^T W X + (X^T W X)^T) w - X^T W^T y - X^T W y$$

$$= 2(X^T W X w - X^T W y) (Since W^T = W)$$

$$= 2X^T W (X w - y)$$

For minimum error:

$$\begin{array}{rcl} \frac{\partial e}{\partial w} & = & 0 \\ \Longrightarrow X^T W X w & = & X^T W y \\ \Longrightarrow w & = & \left(X^T W X\right)^+ X^T W y \end{array}$$

Exercise 6

Notations

Symbol	Dimension	Description
X	$m \times n$	The design matrix
y	$m \times 1$	The actual values of the predicted variable
$O\left(\cdot\right)$	=	The Big O notation

Computational Complexity¹

LLS

Output	Complexity	Operation
X^TX	$O\left(mn^2\right)$	Matrix multiplication
X^Ty	O(mn)	Matrix multiplication
$X^T X w = X^T y$	$O\left(n^3\right)$	Solving linear system of equations

Now, we shall assume that $n \ll m$. In this case, $O(mn^2)$ dominates over $O(n^3)$. Thus the computational complexity of LLS is $O(mn^2)$.

kNN

	Output	Complexity	Operation
т	$D_i = \Sigma_i \left(X_{test} - X_{train,i} \right)^2$	$O\left(mn\right)$	Subtraction, squaring and summing (each $O(n)$) / row of train
	Sorted index vector δ	$O(m \ln m)$	Sorting
	Predicted class	$O\left(k\right)$	Mode

Now, we shall assume that $k \ll m$ and $\ln m \ll n$. In this case, O(mn) dominates over the other complexities.

Space Complexity

LLS

Object	Space
X	mn
$y_{_{_{TT}}}$	m
X^T	mn
X^TX	n^2
X^Ty	n
w	n

Thus the space complexity of LLS is O(mn).

kNN

Object	Space
X	mn
y	m
X^Ty	n
δ	n

Thus the space complexity of LLS is O(mn).

Final results

	Computation	Time
LLS	$O\left(mn^2\right)$	$O\left(mn\right)$
kNN	O(mn)	O(mn)

¹Taken from Computational complexity of mathematical operations in Wikipedia