- 1. Given initial $\lambda_0 = \hat{\lambda_0} \times 10^{k_0}$, $\hat{\lambda_0}$ must be 1, I'll start from $\lambda_0 = 1$.
- 2. Search in range $[\lambda_0 10^{k_0}, \lambda_0 + 10^{k_0}]$, step= 10^{k_0-1} , find the λ in above 20 values that makes Test R^2 are biggest as λ_1 , represent λ_1 as $\lambda_1 = \hat{\lambda_1} \times 10^{k_1}$.
- 3. Repeat process 2, until $k_n = k_{n-1}$, then λ_n was selected as the best λ .

To prevent another λ to make $TestR^2$ get bigger suddenly after finish 3, I'll use $\lambda = \{10^{k_n}, 10^{k_n-1}, 10^{k_n-2}...\}$ to do step 2 a few more times, how many times was depends on the observation of $TestR^2$.

For example:

```
\lambda_0 = 1 = 1 \times 10^0, then searching in \{0.1, 0.2, 0.3, ..., 2\} suppose that \Rightarrow \lambda_1 = 0.1 = 1 \times 10^{-1}, then search in \{0.01, 0.02, ..., 0.2\}, suppose that \Rightarrow \lambda_2 = 0.03 = 3 \times 10^{-2}, then search in \{0.021, 0.022, ..., 0.4\}, suppose that \Rightarrow \lambda_3 = 0.022 = 2.2 \times 10^{-2}, k_2 = k_3, so take the \lambda_3 as best \lambda
```