Applied Computational Fluid Dynamics with OpenFOAM

Day - 6

[Exercise-2] Solve using first order forward derivative scheme #3

kummi0402 started this conversation in General

[Exercise-3] Solve using first order backward and second order central difference schemes #5

kummi0402 started this conversation in General

Kumaresh Selvakumar

kumaresh@exaslate.com

[Exercise-4] Estimate second order derivative using second order central difference scheme #6

kummi0402 started this conversation in General

[Exercise-5] Advection equation and Stability analysis #7

kummi0402 started this conversation in General

Exercise – 5 (i)

1. Solve the following advection equation analytically in octave

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$

2. Upload in GitHub

Exercise – 5 (ii)

1. Solve the following advection equation numerically in octave

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0 \qquad \qquad x_{i-1} \qquad x_i \qquad x_{i+1} \qquad x_{i+2}$$

- a) Central difference with CFL = 0.1 (dx = 0.01, c = 0.01, dt = 0.1, t_final = 5)
- Upwind scheme (backward difference) with CFL = 0.1 (dx = 0.01, dt = 0.1, t_final = 5). Change the "c" value between 0.01 and -0.01 and analyze the stability. <u>Hint:</u> Upwind scheme with c = -0.01 becomes unstable and act as downwind.
- Downwind scheme (forward difference) with CFL = 0.1 (dx = 0.01, dt = 0.1, t_final = 5). Change
 the "c" value between 0.01 and -0.01 and analyze the stability. <u>Hint:</u> Downwind scheme with c = -0.01
 becomes stable and act as upwind.
- Examine CFL numbers. Analyse the upwind scheme with CFL = 0.1, 1.0, and 10. Analyze the stability. (dx = 0.01, c = 0.01, dt = 0.1, t final = 5)
- 5. Upload in GitHub.

Contents

- > Error and Rate of Convergence
- > Numerical Solution to Diffusion Equation
- \triangleright Exercise 7 Diffusion equation

Rate of Convergence

$$\rho = x^3 \qquad \qquad \frac{\partial \rho}{\partial x} = 3x^2$$

First order forward difference approximation

$$\left(\frac{d\rho}{dx}\right)_{i} \approx \frac{\rho(x_{i+1}) - \rho(x_{i})}{\Delta x_{i}} + O(\Delta x_{i})$$

Second order central difference approximation

$$\left(\frac{d\rho}{dx}\right)_{i} = \frac{\rho(x_{i+1}) - \rho(x_{i-1})}{2\Delta x_{i}} + O(\Delta x_{i}^{2})$$

Higher Derivatives and Their Applications

How to solve error and rate of convergence

Check the codes:

- 1. error_calculate.m → Tabulate (in Excel) the results for forward and central difference method and compare with analytical solutions and post in GitHub.
- 2. get_rate_of_convergence.m → Extract ROC values for first and second order values.

First order forward difference approximation

$$\left(\frac{d\rho}{dx}\right)_{i} \approx \frac{\rho(x_{i+1}) - \rho(x_{i})}{\Delta x_{i}} + O(\Delta x_{i})$$

$\Delta \mathbf{x}$	Error	Rate of convergence
0.1	0.16	-
0.05	0.0775	1.04
0.025	0.038125	1.02

Second order central difference approximation

$$\left(\frac{d\rho}{dx}\right)_{i} = \frac{\rho(x_{i+1}) - \rho(x_{i-1})}{2\Delta x_{i}} + O(\Delta x_{i}^{2}) \longrightarrow$$

$\Delta \mathbf{x}$	Error	Rate of convergence
0.1	0.01	-
0.05	0.0025	2
0.025	0.000625	2

Fick's law describes the movement of particles from a region of high concentration to a region of lower concentration.

2. Diffusion generally represents the transport of a fluid property (momentum) due to fluctuating motions that are not captured by the bulk motion that is represented by the continuum velocity eqn.

Diffusion

Thermodynamic diffusers supply heated air with a downward jet, the difference in air density causes hot air to rise in the first minute after starting the system.

Numerical Solution to Diffusion Equation

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} = \alpha \left(\frac{\partial^2 T}{\partial x^2}\right)_i^n$$

$$\left(\frac{d^2T}{dx^2}\right)_i = \frac{T(x_{i+1}) - 2T(x_i) + T(x_{i-1})}{\Delta x_i^2} + O(\Delta x_i^2)$$

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} = \alpha \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta x^2}$$

$$T_i^{n+1} = T_i^n + \Delta t \alpha \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta x^2}$$

Time level: n + 1

Time level: *n*

Information is from both left and right end

$$u_i^{n+1} = u_i^n - c\Delta t \left(\frac{\partial u}{\partial x}\right)_i^n \longrightarrow \left(\frac{\partial u}{\partial x}\right)_i^n \approx \frac{u_{i+1}^n - u_{i-1}^n}{2\Delta x_i}$$

Central difference

Exercise – 6 (Let's solve the Diffusion Equation)

$$T_i^{n+1} = T_i^n + \Delta t \alpha \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{\Delta x^2}$$

a7_solve_diffusion_sample.m

- 1. Resolve the diffusion equation with $\alpha = 1$, dt = 0.001, dx = 0.05, Dirichlet boundaries (T_left = 300K, T_right = 273K), and write the above numerical solution to extract the results.
- 2. Change the right boundary condition from Dirichlet to Neumann. Explain about it in few words.
- 3. Analyze for different time steps (dt) 0.1 and 0.01 and give your comments. Hint: Von Neumann stability analysis.
- 4. Learning debug skills fix breakpoints, run, and understand the codes. Explain about it in few words.

What is your research topic related to CFD?

Any research topic presentation for 10 minutes.

#