Formale Systeme Proseminar

Tasks for Week 6: 9.11.17

Task 1 Prove that:

- (a) $P \Rightarrow Q$ is not equivalent to $Q \Rightarrow P$
- (b) $P \Rightarrow Q$ is not equivalent to $\neg P \Rightarrow \neg Q$
- (c) $P \Leftrightarrow Q \Leftrightarrow R$ is not equivalent to $(P \Leftrightarrow Q) \land (Q \Leftrightarrow R)$

Remember this!

Task 2 Show the following equivalences by calculating with propositions. Always state precisely: (1) which standard equivalence(s) you use, (2) whether you apply Substitution or Leibnitz, or both, and (3) how you do this.

- (a) $P \vee (\neg P \wedge Q) \stackrel{val}{=} P \vee Q$
- (b) $P \wedge (P \Rightarrow Q) \stackrel{val}{=} P \wedge Q$
- (c) $P \vee (P \wedge Q) \stackrel{val}{=} P$
- (d) $P \wedge (P \vee Q) \stackrel{val}{=} P$
- (e) $P \Rightarrow \neg Q \stackrel{val}{=} \neg (P \land Q)$

Task 3 Show with a calculation that the following formulas are tautologies

- (a) $\neg (P \Rightarrow Q) \Leftrightarrow (P \land \neg Q)$
- (b) $P \vee \neg ((P \Rightarrow Q) \Rightarrow P)$

Task 4 Show with calculations that for arbitrary sets A and B, we have $A \subseteq B$ if and only if $B^c \subseteq A^c$.

Task 5 Check with a calculation whether the following abstract propositions are equivalent:

- (a) $((a \Rightarrow b) \Rightarrow \neg a)$ and $(\neg b \lor \neg a) \land (\neg b \lor b)$
- (b) $a \wedge b$ and $(\neg a \vee b) \Leftrightarrow a$

Task 6 Prove with a calculation that

- (a) $(A^c)^c = A$ for any set A
- (b) $A \cup (A \cap B) = A$ for any two sets A and B.

The material for the following two tasks will only be taught on Wednesday October 25!

Task 7 Check for every pair of propositions given below whether they are comparable (one is stronger than the other), or whether they are incomparable.

- (a) $P \vee Q$ and $P \wedge Q$
- (b) P and $\neg (P \lor Q)$
- (c) P and $\neg(P \Rightarrow Q)$

Task 8 Are the following statements valid? Why?

- (a) If $P \stackrel{val}{\models} Q$ and $Q \stackrel{val}{\models} R$ and $R \stackrel{val}{\models} S$, then $P \stackrel{val}{\models} S$.
- (b) If $P \stackrel{val}{\models} Q$ and $P \stackrel{val}{\models} R$, then $Q \stackrel{val}{=} R$.
- (c) If $P \models Q$ and $P \models R$, then Q and R are incomparable.