Wireless Networking CS4222/5422

Tutorial 2

Kanav Sabharwal kanav.sabharwal@u.nus.edu

Q1

A wireless receiver with an effective radius of **100cm** is receiving signals at **2 GHz** from a transmitter that transmits at a power of **100W** and a gain of **40dB** (or 10,000). Assume path loss exponent is 2.

- a) What is the gain of the receiver antenna?
- b) What is the received power if the receiver is 1km away from the transmitter?
- c) If the receiver is receiving signals at 900 MHz frequency (instead of 2GHz), please calculate (a) and (b) again? What do you notice and why?

(a) What is the gain of the receiver antenna?

- *G* = antenna gain
- A_e = effective area
- f = carrier frequency
- \dot{c} = speed of light 3 \dot{X} 10⁸ m/s
- Lambda = carrier wavelength

(b) What is the received power if the receiver is 1km away from the transmitter?

- f_c is the center frequency in Hz
- c is speed of light
- d is the distance between transmitter and receiver
- Alpha is the path loss component
- G is antenna gain

c) Recalculate a) and b) for $f_c = 900 \text{ MHz}$

•
$$G_r = \frac{4\pi^2}{0.33^2} = 362.15 \text{ or } 25.589 dB$$

•
$$P_r = \frac{100 \times 362.15 \times 10000}{(4\pi \times 3.03 \times 1000)^2} = 0.250W$$

Observation:

- Lower carrier frequency → Lower Antenna Gain
- However, also, Lower carrier frequency → Better propagation characteristics
- Received signal power remains similar

Q2

- a) Can you explain the difference between a microcontroller, system-on-chip, and microprocessor?
- b) What processor does Texas Instruments CC2650 (used for projects) use and the reasoning behind this choice?
- c) Can you also provide an estimate for the maximum communication range (BLE) for CC2650, taking into consideration Gt and Gr equal to 2 dBi, as well as identifying other relevant parameters from the datasheet?

a) Microprocessor vs Microcontroller vs system-on-chip?

Microprocessor:

- Powerful processing units, suitable for dynamic/complex tasks
- Allow connection to peripherals
- E.g. Laptop, PC

Microcontroller:

- Dedicated to perform a task/application
- CPU + Memory + I/O built in
- E.g. Calculator, Washing Machine

System on Chip (SoC):

- IC integrating most or all components of a computer
- CPU + Memory + I/O + Radio + Graphics
- E.g. Smartphones

b) What processor does Texas Instruments CC2650 use?

- System on Chip (SoC)
- Includes CPU, Radio, Power Management block, etc. all built into the same chip

c) Estimate the maximum communication

range (BLE) for CC2650

• Free Space Path Loss Equation

$$FSPL = 20 \log_{10} d + 20 \log_{10} f_c + 20 \log_{10} \frac{4\pi}{c} - G_t - G_r$$

Transmitter

Tx

Cable Loss

- fc = Carrier frequency = 2.4 GHz.
- Gt = Transmitter gain = 2 dB
- Gr = Receiving gain = 2 dB
- λ = Wavelength = c (speed of light) / fc = 0.125 m
- Pt = Transmitter power = 5 dBm
- Receiver sensitivity (BLE) = -97 dBm
 - Therefore, We need to find distance d for which FSPL is 102 dB
 - 5 102 = -97 dBm (Minimum sensitivity)

Receiver

Rx

Cable Loss

Thank you

Feel free to contact me at kanav.Sabharwal@u.nus.edu for any clarifications