DTI5125[EG] Data Science Applications: Book RecommendationSystem

Kareem Atif Mohamed Bakli¹, Mostafa Mahmoud Nofal², Gehad Hisham Hassanr³, and Kareem Khaled Moner Waly⁴

¹kbakl031@uOttawa.ca

⁴kwaly008@uOttawa.ca

- PROBLEM FORMULATION

A book recommendation system is a type of recommendation system where we have to recommend similar books to the reader based on his interest. The books recommendation system is used by online websites which provide eBooks like google play books, open library,

good Read's, etc. recommendation systems ought to increase profit from product sales. To achieve this, recommendations need to be relevant, novel, and diverse.

- INTRODUCTION:

Our work:

- 1- Data Preparation
- 2-Feature Engineering
- 3-Data Analysis and Visualization
- 4-Modeling (Classification and Clustering).
- 5-Evaluation and Error Analysis.
- 6-INNOVATIVENESS
- 7-Integration with Dialog flow fulfillment

²mnofa091@uottawa.ca

³gsoma101@uOttawa.ca

Dataset Explanation:

> Dataset Contain three files which are:

- i. Users_dataset.
- User-ID (unique for each user)
- Location (contains city, state and country separated by commas)
- Age

ii. Books_dataset:

- ISBN (unique for each book)
- Book-Title
- Book-Author
- Year-Of-Publication
- Publisher

iii. Ratings_dataset:

- User-ID
- ISBN
- Image-URL-S
- Image-URL-M
- Image-URL-L
- Book-Rating

1- Data Preparation

- 1) Handling Missing Values
- firstly, we search for the null and missing values in the whole dataset then fill the missing values with 'Unknown'

```
1 df_books['Book-Author'].isnull().values.any()
True

1 df_books['Book-Author'].fillna('Unknown',inplace=True)

1 df_books['Book-Author'].isnull().values.any()
False
```

```
Missing Data Count
age_bins 248343
Age 245274
Image-URL-L 4
Publisher 2
dtype: int64
```

-Handle missing value in Age column with random number between

(mean-standarddeviation , mean+standard_deviation)

```
random_age = np.random.randint(median - std, median + std, size = nulls)
age = df_merged['Age'].copy()
age[pd.isnull(age)] = random_age
df_merged['Age'] = age
df_merged['Age'] = df_merged['Age'].astype(int)
```

After applying

```
# Null values in age column
nulls = sum(df_merged['Age'].isnull())
print('Null Values in Age Column: ',nulls)
Null Values in Age Column: 0
```

2) Define a function to combine two columns namely title and author.

Before	
Book-	Book-
Title	Author
Classical	Mark P. O.
Mythology	Morford
Clara Callan	Richard Bruce Wright

3) Get rid of duplication

Before	After
df_books.shape	df_books.shape
(271360, 8)	(251185, 9)

4) Merge three dataset

	User- ID	ISBN	Book- Rating	Book-Title	Book- Author	Year-Of- Publication	Publisher
0	276725	034545104X	0	Flesh Tones: A Novel	M. J. Rose	2002	Ballantine Books
1	2313	034545104X	5	Flesh Tones: A Novel	M. J. Rose	2002	Ballantine Books
2	2313	0679745580	8	In Cold Blood (Vintage International)	TRUMAN CAPOTE	1994	Vintage
3	2313	0060173289	9	Divine Secrets of the Ya-Ya Sisterhood : A Novel	Rebecca Wells	1996	HarperCollins

5) Information of the Features:

	#	Column	Non-Null Count	Dtype
-				
	0	User-ID	916933 non-null	int64
	1	ISBN	916933 non-null	object
	2	Book-Rating	916933 non-null	int64
	3	Book-Title	916933 non-null	object
	4	Book-Author	916933 non-null	object
	5	Year-Of-Publication	916933 non-null	int64
	6	Publisher	916931 non-null	object
	7	Image-URL-S	916933 non-null	object
	8	Image-URL-M	916933 non-null	object
	9	Image-URL-L	916929 non-null	object
	10	new_title	916933 non-null	object
	11	Location	916933 non-null	object
	12	Age	671659 non-null	float64

6) Get Data Description:

								į
	User-ID	ISBN	Book-Rating	Book- Title	Book- Author	Year-Of- Publication	Publisher	
count	916933.00000	916933	916933.000000	916933	916933	916933.000000	916931	
unique	NaN	250075	NaN	241061	101587	NaN	16542	
top	NaN	0971880107	NaN	Wild Animus	Nora Roberts	NaN	Ballantine Books	
freq	NaN	2502	NaN	2502	7645	NaN	30011	
mean	140202.83165	NaN	2.825417	NaN	NaN	1968.353922	NaN	
std	80804.41894	NaN	3.848183	NaN	NaN	230.251189	NaN	
min	2.00000	NaN	0.000000	NaN	NaN	0.000000	NaN	
25%	69697.00000	NaN	0.000000	NaN	NaN	1991.000000	NaN	
50%	140410.00000	NaN	0.000000	NaN	NaN	1997.000000	NaN	
75%	211426.00000	NaN	7.000000	NaN	NaN	2001.000000	NaN	
max	278854.00000	NaN	10.000000	NaN	NaN	2099.000000	NaN	ı

7) Clean up data (Fix Inconsistent Data)

Before

```
df_merged['Year-Of-Publication'].unique()
array([2002, 1994, 1996, 1998, 2001, 1987, 1984, 1997, 1970, 1978, 1993,
        1989, 1995, 1990, 1992, 1950, 1991, 1999, 1954, 1988, 2003, 2004,
        2000, 1983, 1985, 1982, 1956, 1979, 1986, '2003', 1975, 0, 1976,
        1977, 1980, 1981, 1974, 1957, 1958, 1960, 1963, 1969, 1972, 1961,
        1971, 1953, 1968, 1973, 1967, 1962, 1937, 1959, '1998', '1981',
        '1979', '1993', '1994', '1992', '1989', '1987', '1988', '1995', '1991', '1996', '2000', '1999', '1976', '2001', '2002', '1983',
        '1997', '1986', '1985', 1955, '2004', 2005, '1980', '1990', '1982',
        '1984', '1971', '0', 1945, 1965, '1950', '1964', '1970', '1969',
        '1956', '1977', '1978', 1964, '1973', 1927, 2020, '1968', 2050, '1972', '1975', '1974', 1920, 1966, 1952, '1965', '1963', 1930,
        '1962', '1952', 1940, '1967', 1942, 1947, 1925, '1966', '1958',
        1923, 2030, 1951, 1936, 1946, 1943, '1953', '1959', '1960',
        'DK Publishing Inc', 1928, 1941, '1940', '1936', '1961', 2011,
       <del>'1951', 1948</del>, 1901, '2011', '1932', '1954', 1939, '1944', 1938,
        '1920', '1955', 1932, 1902, 1929, 1900, '2005', '1941', '1911',
        '2030', 1911, '1947', '1957', 1949, 1926, '1942', '1933', '1922',
        '1897', '1949', '1939', '1945', '1923', 2026, 1906, 1806, 1933,
        1935, '2006', '2037', 1921, '2024', '1948', '2020', Gallimard', '1930', 2038, '1926', '1927', '1946', '1900', '1943', '1924',
        '1378', '2008', 1934, '1909', 1931, 1904, 1917, '2012', '1931',
```

After

```
df_merged['Year-Of-Publication'].unique()

array([2002, 1994, 1996, 1998, 2001, 1987, 1984, 1997, 1970, 1978, 1993, 1989, 1995, 1990, 1992, 1950, 1991, 1999, 1954, 1988, 2003, 2004, 2000, 1983, 1985, 1982, 1956, 1979, 1986, 1975, 0, 1976, 1977, 1980, 1981, 1974, 1957, 1958, 1960, 1963, 1969, 1972, 1961, 1971, 1953, 1968, 1973, 1967, 1962, 1937, 1959, 1955, 2005, 1945, 1965, 1964, 1927, 2020, 2050, 1920, 1966, 1952, 1930, 1940, 1942, 1947, 1925, 1923, 2030, 1951, 1936, 1946, 1943, 2099, 1928, 1941, 2011, 1948, 1901, 1932, 1939, 1944, 1938, 1902, 1929, 1900, 1911, 1949, 1926, 1933, 1922, 1897, 2026, 1906, 1806, 1935, 2006, 2037, 1921, 2024, 2038, 1924, 1378, 2008, 1934, 1909, 1931, 1904, 1917, 2012, 1914, 1376, 1908, 1919])
```

2-FEATURE ENGINEERING:

1. Defining a function to extract the country names Data Before applying extract country function

Before Applying:

	User-ID	Location	Age
0	1	nyc, new york, usa	NaN
1	2	stockton, california, usa	18.0
2	3	moscow, yukon territory, russia	NaN
3	4	porto, v.n.gaia, portugal	17.0
4	5	farnborough, hants, united kingdom	NaN

After Applying:

User-ID	Location	Age	country
1	nyc, new york, usa	NaN	usa
2	stockton, california, usa	18.0	usa
3	moscow, yukon territory, russia	NaN	russia
4	porto, v.n.gaia, portugal	17.0	portugal

3-Creating bins for the age column.

3-Calculating the Rating Count and Rating Mean for each Book-Title

		_			
Location	Age	age_bins	Rating- Count	Rating- Mean	
usa	44	NaN	60	2.93	
usa	23	Adult	60	2.93	
usa	34	Adult	60	2.93	

4-Using IMDB Formula to calculate the Weighted Rating for our books using Rating count and Rating Mean that calculated to calculate Weighted Average.

$$W = \frac{Rv + Cm}{v + m}$$

where:

W = Weighted Rating

R = average for the movie as a number from 0 to 10 (mean) = (Rating)

v = number of votes for the movie = (votes)

m = minimum votes required to be listed in the Top 250 (currently 3000)

C = the mean vote across the whole report (currently 6.9)

5-Using TF-IDF Tranformation to convert description data which will use in content base as input to cosine similarity model.

```
tfidf = TfidfVectorizer(min_df=5)
tfidf_mat = tfidf.fit_transform(df_descriptions['description'])
tfidf_mat
<7021x6443 sparse matrix of type '<class 'numpy.float64'>'
    with 152705 stored elements in Compressed Sparse Row format>
```

4- DATA ANALYSIS AND VISUALIZATION:

1) Splitting the Dataset into Two Based on the Explicit and Implicit Ratings

- In the first photo we have the dataset with both explicit and implicit ratings is highly skewed toward the value of zero. Implicit means that it contains zero ratings. In the explicit ratings only, the skewness perishes after we remove the implicit ratings.

Explicit - Implicit Ratings
Ratings Count

2) Location

- Most customers are from United states of America, followed by Canada, United Kingdom and Germany.
- Countries with less than 1% customers are labeled as other

3) Author V/S Ratings

- Here, we can observe, most frequently rated Authors. Most frequently rated author is Nora Roberts, followed by Stephen King.

4) Book Ratings Counts

- For book ratings counts we are able to observe, most frequently rated books by the users. Most frequently rated book, happens to be Wild Animus

5) Age Distribution of users

- Most customers are Adults who are between 20 and 50 years. The second most represented age group is for boomers who are older than 50 years.

4- MODELING (CLASSIFICATION AND CLUSTERING)

1) Content Based

- The algorithm recommends a book that is similar to the reader based on his interest. In simple words, Inthis algorithm, we try to find finding item look alike. For example, a person likes to watch history movies, so he may like reading history books too because the two items have similar tags.
- In our previous Dataset we didn't have text description, so we used Google Books API to extract description of books based on its ISBN and exported it as csv and this was our output. Then we will merge it with our original dataset which contained the user id and book id and consider this as initiative part to transform data from can't apply content based on to can apply.

	Α	В	C	D	E	F	G	Н	l I	J
1		ISBN	description	ı						
2	3	4.51E+08	A high-tech	n submarin	e thriller fo	llows Admi	ral Michael	Pacino as l	he emerges	from retire
3	4	3.73E+08	The Flowe	r And The S	word by Ja	cqueline Na	avin release	ed on Jul 24	, 1998 is av	ailable now
4	23	6.71E+08	In late-fift	enth-cent	ury Spain, t	he indomita	able and pa	ssionate Is	abel Valder	ocas, living
5	25	082176618	Mountain	man Smoke	e Jensen co	mes to the	aid of a sha	arpshooter	who decide	es to reform
6	27	3.81E+08	Stephanie	promises to	help the g	shost of her	new home	e's former i	nhabitant a	nd is sent ba
7	33	3.81E+08	A former n	nember of	the Manhat	ttan homici	de prosecu	tion team	profiles fou	rteen of the
8	34	4.4E+08	A collectio	n of time-s	aving techr	niques enab	les readers	to measur	e their read	ling speeds
9	36	4.51E+08	Revealing	an appallin	g true story	, the grippi	ng tale of a	murderous	mother re	constructs e
10	47	5.54E+08	Posing as t	he devoted	wife to a	powerful ar	my comma	nder, Kitty	Radachek i	s unable to
11	56	1.4E+08	Half aborig	gine and ha	lf white, Jin	nmie Black	smith is una	ble to fit ir	nto either cu	ılture and, ε
12	58	5.53E+08	When her	ob at an a	ntique store	e sends her	to old Miss	Watson's	mansion to	pick up an o
13	59	20434901	As a slag h	eap, the re	sult of strip	mining, cre	eps closer	to his hous	e in the Ohi	o hills, fifte
14	60	5.15E+08	Murdered	in 1848 in l	nis bed by a	lover's pro	tective fath	ner, seducti	ive rogue Va	alentine Tre
15	70	3.73E+08	High-Socie	ty Bachelo	r by Krista T	Thoren rele	ased on De	c 25, 2001	is available	now for pu
16	79	155166612	Three livel	y tales of r	omance and	d adventure	e center arc	ound the La	ssiter Dete	ctive Agenc
17	85	4.51E+08	Three amb	itious exec	utivesone	woman ar	nd two mer	nembark o	on a retreat	in the wilds
18	96	3.45E+08	Rose, an a	mateur pho	otographer,	and Rober	t, a cynical	scriptwrite	r witness a	rooftop kid
19	136	8.87E+08	Nineteen t	ales of hor	ror and the	supernatu	ral encomp	ass works l	by such accl	aimed write
20	173	4.49E+08	When a ch	ildhood scl	noolmate is	suspected	of murderi	ng a crooke	ed judge wit	th a priceles
21	192	61098035	An acciden	tal discove	ry in the ba	sement of	FBI headqu	arters at Q	uantico nea	arly costs ag
22	217	055356966	P.I. Phoeb	e Siegel, of	Billings, Mo	ontana, ball	ks at invest	igating the	strange beh	avior of a t
23	254	4.49E+08	Champion	golfer Kate	O'Brien, a	big draw o	n the wome	en's exhibit	ion tour, is	murdered, a

We used cosine similarity and descriptions of the books were transformed into a keyword-based vector-space representation using Tf-IDF. Then cosine similarity was computed between books. Finally, the calculated distances are used to filter previous recommendations on items for every user in the entire user-item dataset.

CONTENT-BASED FILTERING

Recommendation Results:

```
#Recommendations based on -> 0749322179: MARRANOS
recommendations('0749322179')
['Waltz in Time (An Avon Romantic Treasure)',
 'Pressure Points',
 'Dead Duck (Sam and Hollis Mystery)',
 'Burn Factor',
 'MARRANOS',
'21st Century Guide to Increasing Your Reading Speed (21st Century Reference)',
'Barracuda Final Bearing',
 'In the Midnight Hour (Haunting Hearts)',
"The Year's Best Horror Stories: Series XIV",
 'Most Wanted']
#Recommendations based on ->2211021662: Dead Duck (Sam and Hollis Mystery)
recommendations('2211021662')
['Sleep My Child, Forever (Onyx True Crime)',
  'M. C. Higgins, the Great',
  'Burn Factor',
  'Dead Duck (Sam and Hollis Mystery)',
 "The Year's Best Horror Stories: Series XIV",
  'Roofworld',
  'Pressure Points',
  'High - Society Bachelor (Harlequin American Romance, No. 908)',
  'In the Midnight Hour (Haunting Hearts)']
```

2) Collaborative Filtering

-Memory-based collaborative filtering

Memory-Based Collaborative Filtering approaches can be divided into two main sections: **user-item filtering and item-item filtering**. A user-item filtering takes a particular user, find users that are similar to that user based on similarity of ratings, and recommend items that those similar users liked.

-As you can see, the system has identified users who have a similar preference to the third user, Since the third user has not watched Films 3 and 4, we find the aggregate of ratings of similar users.

We can understand from the image that Film 4 will be recommended to the user based on historical user data.

We use Three Model in Memory-based (Classification):

- 1-K-NN Based Algorithms
- 2-KNN with Means
- 3-KNN with ZScore

3) Matrix Factorzation Collaborative Filtering:

Matrix factorization is a collaborative filtering method to find the relationship between items' and users' entities

	sci-fi	romance		sci-fi	romance
Book 1	3	1	B	0	8
Book 2	1	2		8	②
Book 3	1	4		0	8
Book 4	3	1	•	0	②
Book 5	1	3			

Matrix factorization methods are used to find a set of latent factors and determine user preferences using these factors. Latent Information can be reported by analyzing user behavior

We use Three Model in Matrix Factorization (classification):

1-SVD

2-SVDpp

3-NMF

4) Collaborative Filtering Algorithms (Clustering)

A collaborative filtering algorithm based on co-clustering.

This is a straightforward implementation of [George:2005].

Basically, users and items are assigned some clusters Cu, Ci, and some co-clusters.

Clusters are assigned using a straightforward optimization method, much like k-means.

We use one Model (Clustering):

1-CoClustering

5) Other Collaborative Filtering Algorithms used:

1- SlopeOne.

SlopeOne is a straightforward implementation of the SlopeOne algorithm.

5- EVALUATION AND ERROR ANALYSIS:

1- Memory-based collaborative filtering (Classification Models):

Our best model used is KNN Basic

Algorithm	RMSE	MAE	
KNN Basic	0.2071	0.0462	
KNN Means	0.3462	0.2535	
KNN ZScore	0.3625	0.2659	

2- Matrix Factorization Collaborative Filtering

Best model in Matrix Factorization is NMF with

Algorithm	RMSE	MAE
SVD	0.3496	0.2529
SVDpp	0.2781	0.1907
NMF	0.1548	0.0923

3- Other Collaborative filtering CoClustering and Slopeone

Algorithm	RMSE	MAE
SlopeOne	0.4856	0.3723
CoClustering	0.6662	0.5623

-Comparison of all algorithms used: RMSE

-Comparison of all algorithms used: MAE

- Our Champion model is KNNBasic() with RMSE and MAE are 0.2, 0.04

Error Analysis using Hit Rate

- We need to make sure that the results of our recommendation system are related to the original books that our users rated. So first to compute the hit rate, we need to get the top 5 predictions for the users.

```
[ ] 1 top_n
    defaultdict(list,
                 {2313: [('Bad Business by Robert B. Parker', 5),
                   ('The Sinner by TESS GERRITSEN', 5),
                   ('Warchild by Karin Lowachee', 5),
                   ('Harry Potter and the Order of the Phoenix (Book 5) by J. K. Rowling',
                   ('Harry Potter and the Goblet of Fire (Book 4) by J. K. Rowling',
                  10314: [('Bad Business by Robert B. Parker', 5),
                   ('The Sinner by TESS GERRITSEN', 5),
                   ('Warchild by Karin Lowachee', 5),
                   ('Harry Potter and the Order of the Phoenix (Book 5) by J. K. Rowling',
                   ('Harry Potter and the Goblet of Fire (Book 4) by J. K. Rowling',
                    5)],
                  77480: [('Bad Business by Robert B. Parker', 5),
                   ('The Sinner by TESS GERRITSEN', 5),
                   ('Warchild by Karin Lowachee', 5),
                   ('Harry Potter and the Order of the Phoenix (Book 5) by J. K. Rowling',
                    5),
                   ('Harry Potter and the Goblet of Fire (Book 4) by J. K. Rowling',
                  98391: [('Harry Potter and the Order of the Phoenix (Book 5) by J. K. Rowling',
```

- After that we will do cross validation and remove one of the books from the training data. Then we will increase the hit rate by 1 if there is a similarity between the removed item and the predictions.
- The number of hits divided by the number of test users represents the system's overall hit rate. A higher value indicates better results.
- If we have an extremely low hit rate means that we simply do not have enough data to work with.
- Our Hit Rate Output

Hit Rate: 0.007955077211043519

6-INNOVATIVENESS

-Data we found just contain:

Users_dataset.

- User-ID (unique for each user)
- Location (contains city, state and country separated by commas)
- Age

2-Books_dataset:

- ISBN (unique for each book)
- Book-Title
- Book-Author
- Year-Of-Publication
- Publisher

3-Ratings_dataset:

- User-ID
- ISBN
- Image-URL-S
- Image-URL-M
- Image-URL-L
- Book-Rating

1-There is no information regarding user description about book which read.

We use Google API to collect description of books according to their ISTPN.

Create and save new csv file which called description which we used in Content based Recommendation System with Cosine Similarity.

We consider this as innovative work change data form can't applying content based to can apply.

2-Optimum Book reader

We can't take every user's rating at facevalue because if the user is a novice reader with only an experience of reading a couple of books, his/her ratings might not be much relevant for finding similarity among books.

Therefore as a general rule of thumb we choosing only those User's who have rated atleast 10 Books for builing the recommendation system we consider it as innovative work.

df_merged_updated= df_merged_updated[df_merged_updated['User-ID'].isin(counts1[counts1 >=10].index)].reset_index()
df_merged_updated.drop(columns='index', inplace=True)

7-GRAPHICAL INTUITION AND ANALYSIS

Integration With Dialog Flow Fulfillment

1-We use AMAN VPN to give us access to use negrock.

2- Use Ngrock to create static IP that Dialog can connect With Dialog flow.

2-Copy Authtoken above to notebook (code).

! ngrok authtoken "2Cg70GHLAcRtLIdGDI8qt0lnm0T_68QR68P6xf3xDqZApKFij"

Authtoken saved to configuration file: /root/.ngrok2/ngrok.yml

3- After that run this Cell create link paste it to dialog flow fulfillment.

```
ngrok_tunnel = ngrok.connect(8000)
print('Public URL:', ngrok_tunnel.public_url)
nest_asyncio.apply()
uvicorn.run(app, port=8000)
Public URL: <a href="http://ceee-34-125-4-255.ngrok.io">http://ceee-34-125-4-255.ngrok.io</a>
INFO:
           Started server process [59]
INFO:
           Waiting for application startup.
INFO:
         Application startup complete.
INFO:
           Uvicorn running on <a href="http://127.0.0.1:8000">http://127.0.0.1:8000</a> (Press CTRL+C to quit)
2313
INFO: 66.249.83.58:0 - "POST / HTTP/1.1" 200 OK
10314
INFO:
         66.249.83.208:0 - "POST / HTTP/1.1" 200 OK
```

4-Paste Public URL Dialog flow Fulfillment

Webhook ENABLED

Your web service will receive a POST request from Dialogflow in the form of the response to a user query matched by intents with webhook enabled. Be sure that your web service meets all the webhook requirements specific to the API version enabled in this agent.

URL* https://ceee-34-125-4-255.ngrok.io

Results:

-When enter user id 10314 get prediction of

- Another Example with user id 2313

-These Predictions based on our Champion Model we can switch in code to Cosine Similarity model and predict top 10 similar books to user interest.

```
async det home(into: Kequest):
    req_info = await info.json()
    print()
    intent_NAme = req_info["queryResult"]["intent"]["displayName"]
    input = req_info["queryResult"]["queryText"]
    text = "The best 5 books are:"
    if(intent_NAme=="hello" or intent_NAme == "Default Fallback Intent" or intent_NAme=="user" ):
      print(input)
      x = [x[0] for x in get_predictions(int(input))]
      text+= ' , '.join(x)
     elif (intent_NAme=="cant understand"):
       text ="None"
     return {"fulfillmentMessages": [
        "text": {
          "text": [
            text
          ]
        }
```