Departamento de Física da Faculdade de Ciências da Universidade de Lisboa

Física Experimental para Engenharia Informática

2019/2020 (1°. Semestre)

Nome:	nº	Turma PL	
Nome:	nº	Grupo :	
Nome:	nº	Data:// /	2019

Lab #3 – Curvas características I-V dos díodos de sinal, LED e Zener

Notas MUITO importantes:

- 1. Faça o registo dos valores medidos *respeitando* os *algarismos significativos* (a.s.) da leitura dos aparelhos. *Nos multímetros escolha sempre a escala que dá mais* a.s..
- 2. Inclua sempre as unidades de cada valor medido ou resultado calculado.
- 3. Ao fazer os cálculos apresente os resultados finais respeitando os algarismos significativos.
- 4. O Voltímetro deve ser colocado em paralelo com as resistências, e o Amperímetro colocado em série no circuito onde se quer medir a intensidade de corrente elétrica.
- 5. <u>Use sempre o mesmo amperímetro (que meça μA) em todas as experiências</u>, pois irá determinar a sua resistência interna R_{iA} e usá-la posteriormente. Os Voltímetros têm resistência R_{iV} = 10 $M\Omega$.
- 6. As tabelas com dados experimentais, cálculos e resultados daí obtidos incluindo os gráficos, <u>são</u> todos feitos na folha de cálculo. *Devem ser apensos a este relatório/protocolo*.

Equipamento necessário:

- Fonte de tensão contínua regulável, com painel de ligações tipo breadboard.
- 2 multímetros digitais em modo DC e um potenciómetro de 5 kΩ.
- Resistências óhmicas: 470Ω , 680Ω e 1,5 k Ω .
- Díodos de sinal 1N4148 e Zener BZX85-C5V6.
- Light Emitting Diode (LED) VERMELHO.

Objetivos

- Estudar as curvas características I-V dos díodos de sinal, LED, Zener e suas aplicações.
- Distinção entre regime linear e não linear de um díodo: a resistência dinâmica.
- Tratamento e análise dos dados experimentais recorrendo a folha de cálculo.

Experiência 1 – Curva Característica I-V do Díodo de sinal 1N4148

- 1. No circuito esquematizado na figura 1 o díodo de sinal é do tipo 1N4148 e V_f é a tensão proveniente do potenciómetro ligado à fonte da fonte de tensão. A resistência tem valor nominal R= 470 Ω .
- 2. Meça R com o ohmímetro e registe o seu valor:

_____ Figura 1

- 3. Monte o circuito da Fig.1 com o Amperímetro em série.
- Use os seguintes procedimentos na aquisição de dados: para cada valor escolhido em V_f registe as grandezas físicas V_f (∨), V_R (∨), V_d (∨) e i (A). A intensidade i não deve exceder ≈30 mA.

NOTAS - Na folha de cálculo construa uma tabela com valores ordenados de V_f.

Com o potenciómetro varie V_f de modo que a tensão no díodo

- a. V_d tome valores espaçados de $\approx 1,0 \text{V}$ no intervalo $-5,0 \text{V} \leq V_d < 0,0 \text{V}$
- b. V_d tome valores espaçados de $\approx 0,1 \text{V}$ no intervalo $0,0 \text{V} < V_d \le 0,5 \text{V}$
- c. V_d tome valores espaçados de $\approx 0.04 \text{V}$ no intervalo $0.5 \text{V} < V_d \le 0.78 \text{V}$

Τι	ırma PL	_ nº	_ nº		_ Grupo :	Data:		_/2019
5.	Destes resulta	idos <u>calcule e r</u>	<u>registe aqui</u> a r	esistência inte	ifique o que repre erna do amperíme e anote o número	etro R _{iA} ± A	ΔR <u>em</u>	Ω , nas
6.	(X,Y) no intervitipo de função	/alo V _d ∈ [+0,3	5∨; +0,77∨]. Fa para descrever	iça um ajuste a curva obtida	o conjunto dos N aos dados exper a. Discuta se o c	imentais e	verifiq	ue que
7.	gráfico Y _n vs.	$(X_n = i_n mA)$	para X>0,4. A	juste uma cu	V _{d,n} i _n . Justifique o rva do tipo a.x ^b Interprete o gráfic	e <u>registe</u>		

Experiência 2 – Curva Característica I-V de um Light Emitting Diode

1. Para medir a curva característica Y= *i*(A) vs X=V_{LED} (V) de um LED, *use o mesmo circuito da experiência anterior*. Porém, <u>substitua o díodo 1N4148 pelo LED de cor vermelha</u>, *prestando atenção à polarização*.

2. No circuito usado, V_f é a ddp proveniente do potenciómetro ligado à fonte e a resistência de valor nominal R=680 k Ω . Meça R e registe o seu valor \pm Δ R leitura:

o à V_{Elor} $-15V \qquad R \qquad V_{\text{R}}$ alor

3. Siga o mesmo procedimento anteriormente usado: para cada valor escolhido de V_f registe as grandezas físicas V_f (V), V_{LED} (V) e i (A).

NOTAS: - A intensidade da corrente *i* não deve exceder ≈20 mA.

- Numa folha de cálculo construa uma tabela com os valores ordenados segundo V_f.
- a. Varie V_{LED} entre [−4,0V ; +1,45V] de modo a ficar com valores espaçados de ≈0,5V.
- b. Varie V_{LED} entre [+1,45V ; +1,80V] de modo a ficar com valores espaçados de ≈0,05 V.

Turma PL	nº	nº	nº	Grupo :	Data:	//2019
representa. (Calcule o va	alor médio $ar{X}$, o $ar{G}$	desvio padrão	le o valor $X = \frac{V_f - V_f}{i}$ o σ_X e o erro da mo. Retire conclusõe	édia ε _{m=σχ} /√N _r	n. Compare
N valores ob	tidos para	•	= (X,Y). Que	nte no intervalo [/ tipo de comportan		•
um ajuste a descrever a	os dados curva obtid	experimentais (a. Se a função fo	e verifique q or polinomial v	lidos (V _{LED} , <i>i</i>) = (X ue tipo de funçã verifique qual é a r es da mesma e as	o é mais adec menor ordem qu	luada para e ainda faz
•	•		_	de ddp (<i>i</i> ≥ 3 mA cule o seu valor e	,	óhmica ou

Turma PL	nº	nº	n°	Grupo :	Data:	/ /2019

Experiência 3 - Curva Característica I-V de um díodo Zener

- 1. Repare no circuito representado na Figura 2 onde R_1 = 470 Ω e R_2 = 1,5 k Ω . Note que o Zener C5V6 está em paralelo com R_2 . Preste muita atenção à polarização inversa do díodo Zener.
- 2. Meça os valores de R1 e R2 com o ohmímetro.
- 3. Monte o circuito representado na figura ao lado. Preste atenção à colocação do amperímetro: apenas em série com o Zener.
- 4. Siga o mesmo procedimento anteriormente usado. Para cada valor escolhido de V_f registe as cinco grandezas físicas V_f (V), V_{R1} (V), V_{R2} (V), V_Z (V) e i_Z (A).

Figura 2

Para obter a curva característica completa do Zener com pontos experimentais bem distribuídos, deve variar a tensão V_f do potenciómetro de modo a que V_z vá tomando valores entre:

- a. Para $-0.80 \text{ V} \le \text{Vz} < -0.6 \text{V}$ escolha valores que fiquem espaçados de $\approx 0.04 \text{V}$.
- b. Para -0.60V \leq Vz < +0.0V escolha valores que figuem espaçados de \approx 0.20V.
- c. Para $+0.0V < V_z \le +5.0V$ escolha valores que figuem espaçados de $\approx 0.5V$.
- d. Para +5,05∨ < V_z ≤ +5,65∨ escolha valores que figuem espaçados de ≈0,05∨.
- 6. Numa folha de cálculo ordene os N valores medidos segundo V_f crescente. Calcule as grandezas $\frac{V_{R2}}{R_2} + i_Z$ e $\frac{V_{R1}}{R_1}$ nas N linhas e diga o que representa cada um dos termos. Justifique o resultado.

7. Represente graficamente os valores $(V_z, i_z) = (X,Y)$ no intervalo $[-0,8\lor; +5,7\lor]$. Deduza daí em que regime de ddp e polarização é que o Zener funciona como um díodo normal. Justifique.

Tu	rma PL	nº	nº	nº	Grupo :	Data:	!	/2019
8.	Que utiliza	ção concret	a têm estes dío	dos? (Nota : p	que distingue os Z ara justificar baseie nsão pelo Zener. Ex	-se nos dado	s que o	obteve e
9.					rês grandezas: $i_{ m Z}$ sidades de corrente			
			Entrega obrigatór	ia do relatório r	na Semana Sequinte			