Machine Learning Final Project Report (Group 24)

source: https://github.com/WarClans612/machine_learning/tree/master/final

Working environment

張翔中	劉昱劭	彭敬樺	周才錢
Mac OS	Mac OS/Ubuntu 16.04	Ubuntu 16.04	Windows

IDE	Jupyter Notebook
-----	------------------

Our files

```
logfile

logfile

json
| fetch.sh
| toTable.ipynb
| toTable.py ('ipython toTable.py' to run this script)
| README.md
| 2018-12-08-0309.json
| 2018-12-08-0345.json
| 2018-12-08-0345.json
| table
| 2018-12-08-0309.csv
| 2018-12-08-0345.csv
| 2018-12-08-0345.csv
```

- <u>Data Fetching</u> (Fetch.sh file)
 - Data fetched using shell script and in json file format.
 - Fetch Airbox json file to format like 2018-12-09-0334.json.
- <u>Data Pre-Processing</u> (Testdata_Grouping.ipynb file)
 - Grouping data (SiteName > ddate > hour).
 - Multiple rows averaged become groups.
 - Json data processed to csv.

```
import warnings; warnings.simplefilter('ignore')
import numpy as np
import json
import pandas as pd
from pandas.io.json import json normalize
# list all processed table
processedList = !!(ls data/*.csv)
for i, c in enumerate(processedList):
   processedList[i] = "./data/" + c.split('/')[-1]
print('processed json:\n')
#print(processedList.nlstr)
print('-'*20)
processed json:
-----
#processedList = processedList[:]
processedList[0]
'./data/2018-12-08-0309.csv'
```

■ Csv file before pre-processing

	SiteName	date	gps_lat	gps_lon	s_d0	s_d1	s_d2	s_h0	s_t0	time
0	74DA38EBF78E	2018-12-07	24.765	120.969	0.0	0.0	0.0	70.0	24.62	20:29:58
1	苗栗縣縣立南埔國小	2018-12-07	24.635	120.973	0.0	0.0	0.0	75.0	21.50	20:46:40
2	苗栗縣縣立田美國小	2018-12-07	24.629	121.008	0.0	0.0	0.0	82.0	19.75	20:32:28
3	74DA38B0538C	2018-12-07	0.000	0.000	0.0	0.0	0.0	60.0	29.00	20:44:11
4	changhua18	2018-12-07	23.879	120.362	13.0	13.0	12.0	100.0	24.25	20:36:37

■ Csv file after dropped useless columns (example below)

	SiteName	date	s_h0	s_t0	time	hour	s_d0	s_d1	s_d2
0	74DA38EBF78E	2018-12-07	70.0	24.62	20:29:58	20	0.0	0.0	0.0
1	苗栗縣縣立南埔國小	2018-12-07	75.0	21.50	20:46:40	20	0.0	0.0	0.0
2	苗栗縣縣立田美國小	2018-12-07	82.0	19.75	20:32:28	20	0.0	0.0	0.0
3	74DA38B0538C	2018-12-07	60.0	29.00	20:44:11	20	0.0	0.0	0.0
4	changhua18	2018-12-07	100.0	24.25	20:36:37	20	13.0	13.0	12.0

■ Example after shifting/filtering

	hour	s_h0	s_t0	s_d0_b1	s_d0_b2	s_d0_b3	s_d0	s_d1	s_d2
3	18	100.0	20.584000	1.857143	1.588235	1.642857	0.300000	0.0	0.0
4	19	100.0	20.575000	0.300000	1.857143	1.588235	2.000000	0.0	0.0
5	20	100.0	20.367368	2.000000	0.300000	1.857143	0.315789	0.0	0.0
6	21	100.0	20.250000	0.315789	2.000000	0.300000	1.923077	0.0	0.0
7	23	100.0	20.397857	1.923077	0.315789	2.000000	5.357143	0.0	0.0

■ Data preprocessing cleans datasets from undefined data and junk.

• <u>Dataset Attribute</u> (Final_dataset.ipynb file)

O GPS is provided manually (1: yes, 0: no)						
GPS is provided manually (1: yes. 0: no)						
GPS is provided manually (1: yes, 0: no)						
GPS altitude (might be fake value if FAKE_GPS=1)						
GPS latitude (decimal degrees)						
GPS longitude (decimal degrees)						
number of satellite seen in GPS fix (might be						
GPS latitude (decimal degrees)						
GPS longitude (decimal degrees)						
barometric pressure (mmHg)						
PM2.5 (ug/m3)						
PM10 (ug/m3)						
PM1 (ug/m3)						
TVOC (ppb)						
CO2 equivalent (ppb)						
CO2 (ppm)						
Relative humidity (%)						
Temperature (degree, C)						

- <u>Visualization</u> (Testdata_Visualization.ipynb file)
 - Normalize data first.
 - Plot all attributes with the target

```
import seaborn as sns
import matplotlib.pyplot as plt

# Create a figure instance, and the two subplots
inputNum = len(df.columns)-3

#sns.set(font scale=2)
fig, axes = plt.subplots(2, 3, figsize=(24, 24))

for i in range(0, 2):
    for j in range(0, 3):
        sns.regplot(x=df.columns[i*3+j], y=df.columns[inputNum], data=df, ax=axes[i][j])

#plt.show()
```

■ Using scatter plots with regression line

• Standardization (in Testdata_Visualization.ipynb file)

from sklearn.preprocessing import StandardScaler

np_scaled = StandardScaler().fit_transform(df)
df = pd.DataFrame(np_scaled, columns=df.columns)
df.head()

	hour	s_h0	s_t0	s_d0_b1	s_d0_b2	s_d0_b3	s_d0	s_d1	s_d2
0	0.947272	1.478326	-0.925826	-1.104995	-1.113292	-1.105243	-1.186842	-1.159696	-1.208202
1	1.090625	1.478326	-0.927982	-1.181576	-1.100068	-1.107927	-1.103216	-1.159696	-1.208202
2	1.233978	1.478326	-0.977711	-1.097969	-1.176645	-1.094711	-1.186066	-1.159696	-1.208202
3	1.377330	1.478326	-1.005821	-1.180800	-1.093042	-1.171240	-1.107000	-1.159696	-1.208202
4	1.664035	1.478326	-0.970408	-1.101753	-1.175869	-1.087690	-0.938071	-1.159696	-1.208202

- }-

• Data Partition (in Testdata_Grouping.ipynb file)

Data Partition

- · For each input attribute
 - 80% data for training
 - 20% data for testing

```
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split

row = ['lm1', 'lm2', 'lm3', 'lm4', 'lm5', 'lm6', 'lm7']
col = ['MSE', 'R2', 'bias', 'weight']
regResult = pd.DataFrame(index=row, columns=col)
inputNum = len(df.columns)-1

X, y = df.iloc[:, 0:inputNum], df.iloc[:, inputNum:inputNum+1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

- Train Model & Predict (in <u>Regressor_bad.ipynb</u> & Regressor_good.ipynb)
 - To find most relative attribute to the target, we do regression for each input attribute.
 - Regressor_bad uses 3 training parameter (hour, s_h0, s_t0) to predict.

```
X = df[['hour', 's_h0', 's_t0']].values
Y = df[['s_d0']].values
airdata = (X, Y)
```

■ Regressor_bad result

- Low correlation between input and output causes the result become bad.
- Refining results to become better with better model is futile.
- Best result would be the highest R2 score which is 0.095565.
- Regressor_good uses 6 training parameter (hour, s_h0, s_t0, s_d0_b1, s_d0_b2, s_d0_b3) to predict.

```
X = df[['hour', 's_h0', 's_t0', 's_d0_b1', 's_d0_b2', 's_d0_b3']].values
Y = df[['s_d0']].values
airdata = (X, Y)
```

■ Regressor_good result

SGD score: 0.8516607927833313 Nearest Neighbors score: 0.83675460802985 Decision Tree score: 0.8489854245555569 Random Forest score: 0.8364578888121388 Neural Net score: 0.8598278227642228 Ridge1 score: 0.8522184523262684 Ridge2 score: 0.858562887588963 Ridge3 score: 0.8602036454090165 Best/Highest R2 score Ridge4 score: 0.8494075719473396 Regressor_good can Ridge5 score: 0.7352178785247238 get model MSE R2 SGD 62.426707 0.851661 Nearest Neighbors 68.699790 0.836755 0.848985 Decision Tree 63.552603 Random Forest 68.824660 0.836458 Neural Net 58.989715 0.859828 0.852218 Ridge1 62.192023 Ridge2 59.522047 0.858563 Lowest R2 score Ridge3 0.860204 58.831554 Regressor_good Ridge4 63.374947 0.849408 can get Ridge5 111.430257 0.735218

- Results between Regressor_bad and Regressor_good does not far from each other.
- Due to preprocessing, the results on both has been better.

• Conclusion

- Time and Weather does not have much apparent relationship with PM 2.5
- Derivative attributes that we created make data more fit to the regression models.