EE/CSC 327, Laboratory Assignment 2

Name: Shyang Kao

Course name: CSC 327

Due date: February 12, 2022

Experiment Description

Given the following truth table,

a	b	c	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

- a) Find the **Minterm** expansion of the truth table and design the corresponding circuit in Quartus II. Simulate your design and verify that it functions properly according to the truth table.
- b) Once you are satisfied with your design, download your design in the DE2-115 board and verify that your circuit functions according to the truth table.
 For inputs use SW2, SW1 and SW0 as a, b, and c respectively. For output F, use LEDG1 (** use DE2-115 user manual to do the necessary pin assignment for this design)
- c) Find the Maxterm expansion of the truth table and design the corresponding circuit in Quartus II. Simulate your design and verify that it functions properly according to the truth table.
- d) Once you are satisfied with your design, download your design in the DE2-115 board and verify that your circuit functions according to the truth table. For inputs use SW5, SW4 and SW3 as a, b, and c respectively. For output F, use LEDG2 (** use DE2-115 user manual to do the necessary pin assignment for this design)
- e) Show that the circuit designed in part (a) can be simplified to a circuit consisting of three NOT gates, two 2-input AND gate and one 2-input OR gate. Draw and simulate your circuit in Ouartus II and show that it functions properly according to the truth table.
- f) Once you are satisfied your design, download the circuit on the DE2-115 board and verify that your circuit works properly. For inputs use SW2, SW1 and SW0 as a, b, and c respectively. For output F, use LEDG1

Experimental Results

Table:

а	b	С	Minterm	Maxterm	F
0	0	0	a'b'c'	a+b+c	1
0	0	1	a'b'c	a+b+c'	1
0	1	0	a'bc'	a+b'+c	0
0	1	1	a'bc	a+b'+c'	1
1	0	0	ab'c'	a'+b+c	1
1	0	1	ab'c	a'+b+c'	0
1	1	0	abc'	a'+b'+c	0
1	1	1	abc	a'+b'+c'	0

a) Minterm expansion: a'b'c' + a'b'c + a'bc + ab'c'

Circuit Design

Simulation

c) Maxterm expansion: (a+b'+c)(a'+b+c')(a'+b'+c)(a'+b'+c')

Circuit Design

Simulation

Pin planner

e) We have a'b'c' + a'b'c + a'bc + ab'c'

 \Leftrightarrow b'c'(a+a') + a'c(b'+b)

⇔ a'c + b'c'

Circuit Design

Simulation

Conclusion

I learned how to find minterm and maxterm based on truth table. In addition, I learned how to simplify minterm and draw circuits base on minterm and maxterm of truth table.