1

EXAMINATION COVERSHEET

Spring 2023 Quiz 1

THIS EXAMINATION CONTENT IS STRICTLY CONFIDENTIAL Students must comply with requirements stated in the Examination Policy & Procedures	
Student Number:	
First Name:	
Family Name:	
Date of Examination: (DD/MM/YY)	05/18/2023
Subject Code:	Math 142
Subject Title:	Essentials of Engineering Mathematics
Time Permitted to Write Exam:	1 Hour
Total Number of Questions:	5 written questions
Total Number of Pages (including this page):	6

Problem 1 (8 points)

Find the area of the region bounded by

$$y = x^2 - 4x + 5$$
 and $y = 2x - 3$.

Solution

Method 1 without graphing

$$A = \int_{a}^{b} |(x^{2} - 4x + 5) - (2x - 3)| dx$$
$$= \int_{a}^{b} |x^{2} - 6x + 8| dx.$$
 (2pts)

Next, we find a and b by solving

$$x^{2} - 4x + 5 = 2x - 3$$

$$x^{2} - 6x + 8 = 0 \Leftrightarrow$$

$$(x - 2)(x - 4) = 0$$

$$a = 2 \text{ and } b = 4. \quad (2pts)$$

Now using the fact that $x^2 - 6x + 8$ has the opposite sign of a = 1, we conclude that

$$|x^2 - 6x + 8| = -(x^2 - 6x + 8)$$
 for $2 \le x \le 4$. (2pts)

Hence,

$$A = -\int_{2}^{4} (x^{2} - 6x + 8) dx$$
$$= \left[\frac{-x^{3}}{3} + 3x^{2} - 8x \right]_{2}^{4}$$
$$= \frac{4}{3} = 1.3333 \quad (2pts)$$

Method 2 with graphing

We graph both functions on the same window

You can see that between 2 and 4, the line is on top of the parabola. Thus,

$$\int_{a}^{b} (2x - 3) - (x^{2} - 4x + 5) dx$$

$$= \int_{2}^{4} (-x^{2} + 6x - 8) dx$$

$$= \frac{4}{3} = 1.3333 \quad (4pts)$$

Problem 2 (8 points)

A lampshade is constructed by rotating the curve $y = x^2$ around the y-axis from (1,1) to (3,9) as seen in the picture below.

Determine how much material you would need to construct this lampshade—that is, the surface area.

Solution

$$S = 2\pi \int_{1}^{3} x \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx \quad (2pts)$$

$$= 2\pi \int_{1}^{3} x \sqrt{1 + 4x^{2}} dx$$

$$= \frac{2\pi}{8} \int_{1}^{3} 8x \left(1 + 4x^{2}\right)^{1/2} dx \quad (3pts)$$

$$= \left[\frac{\pi}{4} \times \frac{2}{3} \left(1 + 4x^{2}\right)^{3/2}\right]_{1}^{3}$$

$$= \frac{37}{6} \sqrt{37}\pi - \frac{5}{6} \sqrt{5}\pi$$

$$= 111.99 \quad (3pts)$$

Problem 3 (8 points)

Use the disc method to find the volume of the solid obtained by rotation the region bounded by the graph of f(x) = x and below the graph of $g(x) = \frac{1}{x}$ over the interval [1, 4] around the x-axis.

Solution

$$V = \int_{1}^{4} Area \text{ of slice } dx$$

$$= \int_{1}^{4} \left[\pi x^{2} - \pi \left(\frac{1}{x} \right)^{2} \right] dx \qquad (4pts)$$

$$= \pi \int_{1}^{4} \left(x^{2} - x^{-2} \right) dx$$

$$= \pi \left[\frac{x^{3}}{3} + \frac{1}{x} \right]_{1}^{4}$$

$$= \frac{81}{4} \pi = 63.617 \qquad (4pts)$$

Problem 4 (8 points)

Find the points (x, y) at which the curve $x = 2t - t^3$, y = t - 1 has

- (a) a horizontal tangent;
- (b) a vertical tangent.

Solution

(a) Horizontal tangent;

$$\frac{dy}{dt} = 0$$
 and $\frac{dx}{dt} \neq 0$.

$$\frac{dy}{dt} = 1 \neq 0 \Rightarrow \text{No horizontal tangent.}$$
 (4pts)

(b) Vertical tangent.

$$\frac{dx}{dt} = 0$$
 and $\frac{dy}{dt} \neq 0$.

$$\frac{dx}{dt} = 0 \Leftrightarrow 2 - 3t^2 = 0$$

$$t = \pm \sqrt{\frac{2}{3}}$$

Since $\frac{dy}{dt}$ is never zero, the graph has vertical tangent at $t = \pm \sqrt{\frac{2}{3}}$. The corresponding points are

$$\left(\frac{4}{3}\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}} - 1\right) = (1.0887, -0.1835)$$
 (2pts)

$$\begin{pmatrix} \frac{4}{3}\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}} - 1 \end{pmatrix} = (1.0887, -0.1835)$$
and
$$\begin{pmatrix} -4\sqrt{\frac{2}{3}}, -\sqrt{\frac{2}{3}} - 1 \end{pmatrix} = (-1.0887, -1.8165)$$
(2pts)

Problem 5 (8 points)

Evaluate the following integrals

1.
$$\int_{1}^{2} x^{3} \ln x dx$$
, 2. $\int \frac{dx}{(x^{2}+4)^{3/2}}$.

Solution 1. $\int_1^2 x^3 \ln x dx$. By parts

$$u = \ln x, \quad u' = \frac{1}{x}$$

$$v' = x^{3}, \quad v = \frac{x^{4}}{4}$$

$$\int_{1}^{2} x^{3} \ln x dx = \left[\frac{x^{4}}{4} \ln x\right]_{1}^{2} - \frac{1}{4} \int_{1}^{2} x^{3} dx \qquad (2pts)$$

$$= \left[\frac{x^{4}}{4} \ln x\right]_{1}^{2} - \frac{1}{4} \left[\frac{x^{4}}{4}\right]_{1}^{2}$$

$$= 4 \ln 2 - \frac{15}{16} = 1.8351 \qquad (2pts)$$

2. $\int \frac{dx}{\left(x^2+4\right)^{3/2}}$. Here, we use trigonometric substitution. Put

$$x = 2 \tan \theta, \qquad -\frac{\pi}{2} < \theta < \frac{\pi}{2}.$$

$$dx = 2 \sec^2 \theta d\theta \text{ and } \sqrt{x^2 + 4} = 2 \sec \theta \qquad (2pts)$$

$$\int \frac{dx}{(x^2 + 4)^{3/2}} = \int \frac{dx}{(x^2 + 4)\sqrt{x^2 + 4}}$$

$$(x^{2} + 4)^{3/2}$$

$$J (x^{2} + 4) \sqrt{x^{2} + 4}$$

$$= \int \frac{2 \sec^{2} \theta d\theta}{(4 \sec^{2} \theta) (2 \sec \theta)}$$

$$= \int \frac{d\theta}{4 \sec \theta}$$

$$= \frac{1}{4} \int \cos \theta d\theta$$

$$= \frac{1}{4} \sin \theta + C$$

