Задача 11

Теорема. Если последователность монотонна и ограничена, то она имеет конечный предел.

Теорема (Теорема Вейерштрасса (о пределе монотонной ограниченной последовательности)). Если последовательность является возрастающей и ограниченной сверху, то: $\lim x_n = \sup x_n$.

Аналогично для убывающей и ограниченной снизу последовательности: $\lim_{x\to\infty}x_n=\inf x_n.$

Доказательности $\{x_n\}$. Докажем, что точная верхняя граница $a=\sup x_n$ для последовательности и будет ее пределом.

Действительно, по определению точной верхней границы: $\forall n \ x_n \leq a$. Кроме того, какое бы ни взять число $\varepsilon > 0$, найдется такой номер N, что $x_N > a - \varepsilon$. Так как последовательность монотонна, то при n > N: $x_n \geq x_N$, а значит, и $x_n > a - \varepsilon$ и выполняются неравенства: $0 \leq a - x_n < \varepsilon \lor |x_n - a| < \varepsilon$ откуда и следует, что $\lim_{n \to \infty} x_n = a$.