Lecture 03: Visualizing Data

Visualizing guantita

variables

based on shape, center and spread

I ime piots

Lecture 03: Visualizing Data

Lecture 03: Visualizing Data

Visualizing quantitative

Describing your distribution pased on shape, center and pread

Describing your distributio based on shape, center and spread

Γime plots

Visualizing your data:

- 1. Making lovely plots using ggplot in R
- Visualization of categorical data: use ggplot's geom_bar()
- Visualization of continuous data: use ggplot's geom_histogram()
- 2. Describe distributions based on shape, center, spread

Visualization of categorical data

Lecture 03: Visualizing Data

Introducing ggplot
Visualizing quantitative

Describing your distribution based on shape, center and spread

Time plots

▶ What is the best way to visualize one categorical variable at a time?

Visualization of categorical data

Lecture 03: Visualizing Data

Introducing ggplot

variables

Describing your distribut

Time plots

► Generally speaking, it is not a good idea to use pie charts

Visualziation of categorical data

Can you judge the area of the slices?

Lecture 03: Visualizing Data

Introducing ggplot
Visualizing quantitative

Describing your distributio based on shape, center and spread

Visualziation of categorical data

Lecture 03: Visualizing Data

Introducing ggplot

'isualizing quantitative ariables

Describing your distribution based on shape, center and spread

Describing your distributio based on shape, center and spread

I ime plots

- We prefer bar graphs (also called bar charts) for the display of categorical data.
- ▶ Bar charts display the number or percent of data for each level of the categorical variable being plotted

- ► Task: Make a bar chart of the percent of cases on infectious disease for each category of disease.
- First, read and view the infectious disease data from Baldi and Moore:

```
id_data <- read_csv("Ch01_ID-data.csv")

## Parsed with column specification:
## cols(

## disease = col_character(),

## type = col_character(),

## number_cases = col_double(),

## percent_cases = col_double()
## )</pre>
```

Introducing ggplot
Visualizing quantitative

Describing your distribution based on shape, center and spread

Example: infectious disease data

id data

```
## # A tibble: 7 x 4
##
                                    number_cases percent_cases
     disease
                         type
##
     <chr>
                         <chr>>
                                            <dbl>
                                                           <dbl>
     Chlamydia
                         STI
                                           174557
                                                          66.4
   2 Gonorrhea
                         STI
                                           44974
                                                           17.1
   3 Pertussis
                         Pertussis
                                            11219
                                                           4.27
   4 Campylobacteriosis Foodborne
                                            7919
                                                           3.01
   5 Early syphilis
                         STI
                                            7191
                                                           2.74
   6 Salmonellosis
                         Foodborne
                                            5361
                                                           2.04
  7 Other
                         Other
                                            11559
                                                           4.40
```

Example: infectious disease data

Lecture 03: Visualizing Data

Introducing ggplot
Visualizing quantitative

Describing your distributio based on shape, center and spread

Γime plots

- Note the variables number_cases and percent_cases
- What do you want the bar chart to display?
- ▶ What are the x and y variables for a bar chart?

Lecture 03: Visualizing Data

Introducing ggplot

Visualizing quantitative variables

Describing your distribution based on shape, center and spread

I ime piot

Introducing ggplot

First step to building a ggplot(): set up the canvas

Introducing ggplot

Visualizing quantitative

Describing your distribution based on shape, center an spread

ime piots

- ► The first line of code below pulls in the ggplot package
- ► The second line of code below specifies the data set and what goes on the x and y axes

```
library(ggplot2) \ ggplot(id\_data, \ aes(x = disease, \ y = percent\_cases))
```

First step to building a ggplot(): set up the canvas

Lecture 03: Visualizing Data

Introducing ggplot

riables

Describing your distribution based on shape, center and spread

Next choose a function

Lecture 03: Visualizing Data

Introducing ggplot

Visualizing quantitative variables

Describing your distribution based on shape, center and spread

Time plots

► We will use a geom_ function to create our chart ggplot()'s geom_bar() makes a bar chart

```
ggplot(id_data, aes(x = disease, y = percent_cases)) +
geom_bar(stat = "identity")
stat = "identity" tells geom_bar that we supplied a y vari
```

stat = "identity" tells geom_bar that we supplied a y variable that is exactly what we want to plot.

We do not need geom_bar() to calculate the number or percent for us.

ggplot()'s geom_bar() makes a bar chart

Lecture 03: Visualizing Data

Introducing ggplot

isualizing quantitative oriables

Describing your distribution based on shape, center and spread

some additions to ggplot for style

base_size controls the font size on these plots

theme_minimal affects the "look" of the plot it removes the grey background and adds grey gridlines

Lecture 03: Visualizing Data

Introducing ggplot

Visualizing quantitati

Describing your distribution based on shape, center and spread

fct_reorder reorders disease according to value of percent cases

Lecture 03: Visualizing Data

Introducing ggplot

Visualizing quantitative variables

Describing your distributio based on shape, center and spread

```
id_data <- id_data %>%
mutate(disease_ordered = fct_reorder(disease, percent_cases, .desc = T))
```

Re-ordered plot

Lecture 03: Visualizing Data

Introducing ggplot

Visualizing quantitative

Describing your distribution based on shape, center and spread

I ime piot

Introducing ggplot

Visualizing quantitative variables

Describing your distribution based on shape, center and spread

```
\label{eq:geom_bar(stat = "identity", aes(fill = type)) + theme(legend.position = "top")} + \\
```

Use aes(fill = type) to link the bar's fill to the disease type

Other

Chlamydia

Lecture 03: Visualizing Data

Introducing ggplot

Salmonellosis

Lecture 03: Visualizing Data

Introducing ggplot

Visualizing quantitative variables

based on shape, center and spread

i ime pioi

Visualizing quantitative variables

Describing your distribution based on shape, center and spread

- ► Histograms look a lot like bar charts, except that the bars touch because the underlying scale is continuous and the order of the bars matters
- ► In order to make a histogram, the underlying data needs to be binned into categories and the number or percent of data in each category becomes the height of each bar.
- ▶ the bins devide the entire range of data into a series of intervals and counts the number of observations in each interval
- the intervals must be consecutive and non-overlapping and are almost always chosen to be of equal size

Introducing ggplo

Visualizing quantitative variables

based on shape, center and spread

- ▶ The textbook gives an example using data from 2012.
- In the data folder, there is updated data from 2018. It came from the paper: "Opioid Prescribing Rates by Congressional Districts, United States, 2016", by Rolheiser et al. link

Describing your distribution based on shape, center and spread

Time plots

Problem: To determine the extent to which opioid prescribing rates vary across US congressional districts.

Plan: In an observational cross-sectional framework using secondary data, they constructed 2016 congressional district—level opioid prescribing rate estimates using a population-weighted methodology.

Data: In the data structure we have State as the unit of analysis, and measured prescription rates as the variable of interest

```
opi_data <- read.csv("Ch01_opioid-data.csv")
head(opi_data)</pre>
```

```
##
     Rank State
                 Mean Median
                                 SD
                                       Min
                                              Max Num Districts
## 1
             AT. 121.31 113.09 21.87 105.58 166.69
             AR 115.22 115.13 8.59 104.80 125.79
## 2
        3
## 3
             TN 108.12 108.26 19.16 73.60 133.00
## 4
        4
            MS 105.64 106.25 17.36 83.90 126.14
        5
             LA 98.38 98.88 10.34 83.22 112.65
## 5
        6
             ΚY
                 98.13 85.76 26.72 77.62 147.00
## 6
```

▶ Mean provides the mean prescribing rate per 100 individuals. Thus, a mean of 121.31 implies that in Alabama, there were 121.31 opioid prescriptions per 100 persons, an average across the 7 congressional districts.

Visualizing quantitative variables

Describing your distribution based on shape, center and

Histogram of opioid prescription rates

Lecture 03: Visualizing Data

Introducing ggplo

Visualizing quantitative variables

Describing your distribution
based on shape, center and
spread

- ► Task: Make a histogram of the average prescribing rates across US states
- ▶ What is the x variable? What is the y variable?
- ▶ What geom should be used?

```
Lecture 03:
Visualizing Data
```

Introducing ggplot

Visualizing quantitative variables

Describing your distribution based on shape, center and spread

```
\begin{split} & ggplot(data = opi\_data, \, aes(x = Mean)) \, + \\ & geom\_histogram(col = "white") \, + \\ & labs(x = "Mean opioid prescription rate (per 100 individuals)", \\ & y = "Number of states") \, + \\ & theme\_minimal(base\_size = 15) \end{split}
```

Histogram of opioid prescription rates

`stat_bin()` using `bins = 30`. Pick better value with `binwidth introducing septor

Visualizing quantitative variables

based on shape, center and spread

Visualizing quantitative variables

Describing your distribution based on shape, center and spread

```
\begin{split} & ggplot(data = opi\_data, \, aes(x = Mean)) \, + \\ & geom\_histogram(col = "white", \, binwidth = 5) \, + \\ & labs(x = "Mean opioid prescription rate (per 100 individuals)", \\ & y = "Number of states") \, + \\ & theme\_minimal(base\_size = 15) \end{split}
```

same graph, change the bins geom_histogram(binwidth = 5)

Visualizing quantitative variables

Describing your distribution based on shape, center and spread

I ime pio

Describing your distribution based on shape, center and spread

```
\begin{split} & \text{ggplot(data = opi\_data, aes(x = Mean))} + \\ & \text{geom\_histogram(col = "white", binwidth = 10)} + \\ & \text{labs(x = "Mean opioid prescription rate (per 100 individuals)",} \\ & \text{y = "Number of states")} + \\ & \text{theme\_minimal(base\_size = 15)} \end{split}
```

change the bins again geom_histogram(binwidth = 10)

Lecture 03: Visualizing Data

Introducing ggplo

Visualizing quantitative variables

based on shape, center and spread

I ime pioi

Lecture 03: Visualizing Data

Visualizing quantitativ

Describing your distribution based on shape, center and spread

Time plots

Describing your distribution based on shape, center and spread

- ▶ When we examine histograms, we can make comments on a distribution's:
 - ► Shape: Is the distribution symmetric or skewed to the left or right?
 - Center: Does the histogram have one peak (unimodal), or two (bimodal) or more?
 - ▶ Spread: How spread out are the values? What is the range of the data?
 - Outliers: Do any of the measurements fall outside of the range of most of the data points?

Is this skewed left or skewed right?

Lecture 03: Visualizing Data

Introducing ggplot

Describing your distribution based on shape, center and

spread Time plo

Center - one hump or two?

Lecture 03: Visualizing Data

Introducing ggpl

Visualizing quantitative variables

Describing your distribution based on shape, center and spread

Time plo

Outlier

Lecture 03: Visualizing Data

Introducing ggplo

variables

Describing your distribution based on shape, center and spread

Time plo

Lecture 03: Visualizing Data

Visualizing guanti

variables

based on shape, center and spread

Time plots

- ► Time plots are a specific subset of plots where the x variable is time.
- Unlike the previous plots, the time plot shows a relationship between two variables:
 - i) a quantitative variable
 - ii) time
- ▶ Often times, these plots can be used to look for cycles (e.g., seasonal patterns that recur each year) or trends (e.g., overall increases or decreases seen over time).

Time plot

▶ from See California.com, January 2021:

Lecture 03: Visualizing Data

Visualizing quantitative

Describing your distribution based on shape, center and spread

Life expectancy for White men in California

Lecture 03: Visualizing Data

Introducing ggplot
Visualizing quantitative

Describing your distribution based on shape, center and spread

Time plots

Make a scatter plot of the life expectancy for White men in California over time.

Since the dataset contains 39 states across two genders and two races, first use a function to subset the data to contain only White men in California.

Which function from last lecture do we need?

mutate(), select(), filter(), rename(), or arrange()?

```
Lecture 03:
Visualizing Data
```

```
wm cali <- le data %>% filter(state == "California",
                              sex == "Male".
                              race == "white")
#this is equivalent:
wm cali <- le data %>% filter(state == "California" & sex == "Male" & race ==
```

```
Lecture 03:
Visualizing Data
```

Introducing ggplot
Visualizing quantitative
variables

Describing your distribution pased on shape, center and paread

```
ggplot(data = wm cali, aes(x = year, y = LE)) +
geom point() +
labs(title = "Life expectancy in white men in California, 1969-2013",
   y = "Life expectancy",
   x = "Year".
   caption = "Data from Riddell et al. (2018)")
```

Here we use geom_point to make a graph with dots

Lecture 03: Visualizing Data

Introducing ggplot
Visualizing quantitative

Describing your distribution based on shape, center and spread

Time plots

```
ggplot(data = wm\_cali, aes(x = year, y = LE)) +
geom line(col = "blue") +
labs(title = "Life expectancy in white males in California, 1969-2013",
   y = "Life expectancy",
   x = "Year".
   caption = "Data from Riddell et al. (2018)")
```

geom line() to make a line plot

geom_line() to make a line plot

Lecture 03: Visualizing Data

Introducing ggplot
Visualizing quantitative

Describing your distribution based on shape, center and

R Recap: new code?

- 1. 'ggplot' to set up a canvas for graphics
- 2. geom_bar(stat = "identity") to make a bar chart when you specify the
 y variable
- geom_histogram() to make a histogram for which ggplot needs to calculate the count
- 4. fct_reorder(var1, var2) to reorder a categorical variable (var1) by a numeric variable (var2)
 - from the forcats package
- 5. geom_point() to make a plot with dots
- 6. geom_line() to make a plot with lines

- Ask questions during labs, GSI office hours, or on Piazza discussion forum. Use the appropriate thread!
- Develop your online search skills. For example if you have a ggplot2 question, begin your google search with "r ggplot" and then describe your issues, e.g., "r ggplot how do I make separate lines by a second variable".
- ▶ The most common links that will appear are:
 - https://stackoverflow.com: Crowd-sourced answers that have been upvoted. The top answer is often the best one.
 - https://ggplot2.tidyverse.org/: The official ggplot2 webpage is very helpful.
 - https://community.rstudio.com/: The RStudio community page.
 - https://rpubs.com/: Web pages made by R users that often contain helpful tutorials.

We only skimmed the surface!

Lecture 03: Visualizing Data

Introducing ggplot
Visualizing quantitative

Describing your distributio based on shape, center and spread

- ▶ Here is some extra material for those of you who love data visualization. This material won't be tested.
 - RStudio ggplot2 cheatsheet
 - Kieran Healy's data visualization book

Parting Humor

► from Eric Tanoye Song Lyrics in Chart Form

Lecture 03: Visualizing Data

Introducing ggplot
Visualizing quantitative

Describing your distributio based on shape, center and spread