Vector fun

Martin Høigaard Cupello

March 1, 2021

Vector Basics 1

- a) $\vec{b} = \binom{7}{8}$
- b) $\binom{7}{8} \cdot \binom{4}{3} = \binom{3}{5}$ c) $\sqrt{3^2 + 5^2} = \sqrt{34}$
- d) $\binom{2}{-2}$ + $\binom{5}{2}$ = $\binom{7}{0}$

- 1. $\binom{3}{2} + \binom{5}{1} = \binom{7}{3}$
- 2. $\binom{5}{1} + \binom{-2}{6} = \binom{3}{7}$
- 3. $\binom{3}{2} + \binom{5}{1} + \binom{-2}{6} = \binom{6}{9}$
- 4. $\binom{3}{2} + \binom{5}{1} + \binom{-2}{6} = \binom{6}{9}$
- 5. $\binom{5}{1} + \binom{3}{2} = \binom{7}{3}$

$\mathbf{2}$ Vector Decomposition

- f) $5 \cdot \cos(\frac{\pi}{5})$
- g) $\vec{F} = \begin{pmatrix} 5 \cdot \cos(\frac{\pi}{5}) \\ 5 \cdot \sin(\frac{\pi}{5}) \end{pmatrix}$ h) $\sqrt{5 \cdot \cos(\frac{\pi}{5}) + 5 \cdot \sin(\frac{\pi}{5})} \approx 2.25$

Multiplication of a Vector with a Scalar 3

- $\begin{array}{l} {\rm i)} \ \vec{b} = {\binom{-4}{5}} \cdot 5 = {\binom{-4 \cdot 5}{5 \cdot 5}} = {\binom{-20}{25}} \\ {\rm j)} \ |\vec{a}| = \sqrt{(-4)^2 + 5^2} = \sqrt{41} \\ {\rm k)} \ |\vec{b}| = \sqrt{(-20)^2 + 25^2} = 5 \cdot \sqrt{41} \end{array}$

l)
$$\binom{1}{0} \cdot 4 = \binom{4}{0}$$

m) $\binom{1}{3} \cdot \frac{1}{2} = \binom{\frac{1}{2}}{\frac{3}{2}}$

4 Unit Vectors

n)
$$\hat{e} = \binom{\cos(arg(\hat{e}))}{\sin(arg(\hat{e}))} = (\frac{\frac{x}{\sqrt{x^2+y^2}}}{\frac{y}{\sqrt{x^2+y^2}}})$$
o) $(\frac{\frac{3}{\sqrt{3^2+2^2}}}{\frac{2}{\sqrt{3^2+2^2}}}) \approx \binom{0.83}{0.55}$
p) $(\frac{7}{\sqrt{7^2+(-2)^2}}) \approx \binom{-0.27}{0.96}$

5 (

Dot Product / Scalar Product)

q)
$$\sqrt{2^2 + 3^2} \cdot \sqrt{4^2 + 6^2} \cdot \cos(0) = 26$$

r)
$$\sqrt{2^2 + 3^2} \cdot \sqrt{(-3)^2 + 2^2} \cdot \cos(90) = 13 \cdot 0 = 0$$

6 python

See file : $vectorfun_p ython.py$