Math 425 Assignment 1

Max Horowitz-Gelb

1

 $\mathbf{2}$

Lemma A:

Statement: A connected subgraph of n nodes requires at least n-1 edges.

Proof: Consider a graph G = (V, E).

Let G_n be the set of all connected subgraphs of G with n nodes. And let G'_n be a subgraph of G_n such that the number of edges in G'_n is minimized. Then let $E'_n = E(G'_n)$ and $V'_n = V(G'_n)$.

First we shall consider the base case of n=1 nodes. Here it is trivial to see by definition of a graph that $E'_1=0$.

Now assume that $E_b' \geq \alpha$. Then it must be true that $E_{b+1}' \geq \alpha + 1$ since for any subgraph in G_b , by definition of a graph, requires at least one new edge to connect a new node.

Therefore $E'_n \geq n-1$, hence proving our statement.

Lemma 2.2

Statement: Let G be a connected graph with n nodes. Then G is a spanning tree if and only if it has exactly n-1 nodes.

Proof: Let S_n be the set of all subgraphs of G that are spanning trees. Then let $|E_n|$ be the number of edges of used for each subgraph in S_n assuming they are all the same.

Clearly $|E_1| = 0$ by definition of a graph.

Then if $S_n = n-1$ then $S_{n+1} = n$. This is because Lemma A implies $S_{n+1} \ge n$.