curs at the h would be

However the tails of the distribution are unlikely to occur very often so the 95% concept may be used in which case the range becomes mean $\pm 2\sigma$. If this is thought to be realistic the revised formula below can be used.

Self review questions Numbers in brackets refer to paragraph numbers

- What types of time estimates are made for activity durations? (2)
- What is the critical path? (3) 2
- What are the ESTs and LSTs? (3) 3
- How is the critical path determined? (4) 4
- What is float? (5) 5
- When multiple time estimates of activity durations are available how can an estimate be calculated of the probability of completing the network in a given time? (8)

Exercises with answers

1. Find the critical path of the following network using the EST/LSTs.

Aghirrita	o with ork distrig the EST/LSTs.	
Activity 1	Preceding activity	Duration (days)
2	-	4
3	1	7
4	1	5
5	1	6
6	2 3	2
7	5	3
8	2, 6	5
9	7,8	11
10	3	7
11	4	4
12	9, 10, 11	3
re floats of the		4

- 2 Calculate the floats of the network in question 1.
- 3. The standard deviations of the activities on the critical path in question 1 are: 1, 2, 1.5, 3, 2.5 and 3 respectively. Based on these values calculate the probability of achieving a scheduled time of 40 days for the project duration.

the shortest

id the prob-

es) and LST is the chain

ee types of

to establish

s calculated

ation of the ect duration

itative techble activity

e variability estimates. al Distribu-

± 3s hence