Analiza 1

5. domača naloga

(1) Po definiciji pokaži, da je

$$\lim_{n\to\infty}\frac{1}{1+n+2^n}=0.$$

(2) Podano je zaporedje $\{a_n\}_{n\in\mathbb{N}}$ s splošnim členom

$$a_n = \frac{n}{1 + n^2}.$$

- (a) Obravnavaj naraščanje in padanje zaporedja $\{a_n\}_{n\in\mathbb{N}}$.
- (b) Obravnavaj omejenost zaporedja $\{a_n\}_{n\in\mathbb{N}}$.
- (c) Izračunaj $\lim_{n\to\infty} a_n$. (d) Za katere $n\in\mathbb{N}$ se a_n razlikuje od $\lim_{n\to\infty} a_n$ za manj kot $\frac{1}{100}$.
- (a) padajoče (b) omejeno (c) 0 (d) $n \geq 100$
- (3) Določi stekališča zaporedij:

(a)
$$a_n = \frac{n-1}{n+1}\sin^2\frac{n\pi}{4}$$
 (b) $a_n = \left(\frac{n+(-1)^n}{n+10}\right)^n$ (c) $a_n = 1 + \frac{n}{n+1}\sin\left(\frac{n\pi}{2}\right)$

Katera so konvergentna?

(a) 1, -1 (b)
$$e^{-9}$$
, e^{-11} (c) 0, 1, 2

(4) Podano je zaporedje $\{a_n\}_{n\in\mathbb{N}}$ s splošnim členom

$$a_n = \frac{2^n + 3}{2^{n+1} - 1}.$$

- (a) Obravnavaj naraščanje in padanje zaporedja $(a_n)_{n\in\mathbb{N}}$
- (b) Ali je zaporedje $\{a_n\}_{n\in\mathbb{N}}$ omejeno?
- (c) Ugotovi, ali obstajajo $\min_{n\in\mathbb{N}} a_n$, $\max_{n\in\mathbb{N}} a_n$, $\inf_{n\in\mathbb{N}} a_n$ in $\sup_{n\in\mathbb{N}} a_n$. Tiste, ki obstajajo, tudi določi.

(a) padajoče (b) omejeno (c)
$$\max_{n\in\mathbb{N}} a_n = \sup_{n\in\mathbb{N}} a_n = \frac{5}{3}, \inf_{n\in\mathbb{N}} a_n = \frac{1}{2}, \min_{n\in\mathbb{N}} a_n$$
 ne obstaja

- (5) Ce obstaja, poišči primer zaporedja, ki zadošča:
 - (a) je naraščajoče in konvergentno
 - (b) je naraščajoče in ima dve stekališči
 - (c) je neomejeno in konvergentno
 - (d) ima dve stekališči in je neomejeno

(a)
$$a_n = 1 - \frac{1}{n}$$
 (b) ne obstaja (c) ne obstaja (d) $1, 2, 3, 1, 2, 4, 1, 2, 5, 1, 2, 6, \dots$

(6) Konstruiraj zaporedja, ki ima za stekališča natanko vsa naravna števila. Ali obstaja zaporedje, ki ima za stekališča natanko vsa racionalna števila? Kaj pa realna števila?