2022 年 4 月 11 日 实变函数 强基数学 002 吴天阳 2204210460 59

习题 2.2

2. 设 **P**′ 为直线上的开区间全体,作 **P**′ 上的集函数 m′ 如下: m′((α , β)) = β – α , 证明 m′ 必可唯一地延拓成 **R**(**P**′) 上的测度。

解答. 由题可知 $\mathbf{P} = \{(a,b) : -\infty \le a < b \le +\infty\}$,则对于 $\forall -\infty < a \le b < +\infty$,有

$$(-\infty, +\infty) - (-\infty, a) = [a, +\infty) \in \mathbf{R}(\mathbf{P}')$$
$$(-\infty, +\infty) - (b, +\infty) = (-\infty, b] \in \mathbf{R}(\mathbf{P}')$$
$$[a, +\infty) \cap (-\infty, b] = [a, b] \in \mathbf{R}(\mathbf{P}')$$

则 $\mathbf{R}(\mathbf{P}')$ 包含直线上一切区间和单点,对任意的 $E \in \mathbf{R}(\mathbf{P}')$,可以分解为不交的开区间和单点的并集,即

$$E = \left(\bigcup_{i=1}^{n} (a_i, b_i)\right) \cup \{c_1, c_2, \cdots, c_m\}$$

令 m' 在 $\mathbf{R}(\mathbf{P}')$ 上的测度为

$$m'(E) = \sum_{i=1}^{m} ((a_i, b_i)) + \sum_{j=1}^{m} m'(\{c_j\})$$

下证 m' 在单点的测度为 0,才能使得 m'(E) 具有唯一性,对于 (a,b) 上的任意的分解,将分解的开区间端点从小到大排序

$$a = a_1 < b_1 = a_2 < b_2 = \dots = a_m < b_m = b$$

则 $b-a=m'((a,b))=\sum_{i=1}^m(b_i-a_i)+\sum_{j=1}^mm'(\{c_j\})=b-a+\sum_{j=1}^mm'(\{c_j\})$,则 $m'(\{c_j\})=0$,由于单点可以任意添加在区间 (a,b) 中,且 a,b 具有任意性,则 $\forall x\in\mathbb{R}, m'(x)=0$,且可以类比于 m 是 \mathbf{R}_0 上的测度,证明 m' 在 $\mathbf{R}(\mathbf{P}')$ 上是单值的,则 m' 具有唯一性,再类比地证明 m' 在 $\mathbf{R}(\mathbf{P}')$ 上是可列可加的,即可证明 m' 是 $\mathbf{R}(\mathbf{P}')$ 上的测度。

4. 设 μ 是直线上环 **R**₀ 上的测度。证明:存在单调增加右连续的函数 g(x),使得 $\mu(E) = \mu_g(E)(e \in \mathbf{R}_0)$ 的充要条件是对一切 $(a,b] \in \mathbf{P}, \mu((a,b]) < \infty$. (此即说明:对 **P** 中每个集都有限的 **R**₀ 上测度必是 g 测度)

证明. "⇒" : 反设 $\exists (a,b] \in \mathbf{P}$,使得 $\mu((a,b]) = \infty$,则 $\mu_g((a,b]) = g(b) - g(a) = \infty$,所以 $g(b) = \infty$,则 g 函数在 b 处发散到 ∞ ,与 g(b) 处右连续矛盾。

" \Leftarrow ": 令 $g(x) = \mu(-\infty, x]$, $\forall \varepsilon > 0$, $\exists \delta = \varepsilon$, 使得 $\forall y \in (x, x + \delta)$, 有 $g(y) - g(x) \leqslant \mu((x, x + \delta]) = \delta = \varepsilon$,则 g 函数在 x 处右连续。

由 μ 具有非负性,则 $\forall y>x$,由 $g(y)-g(x)=\mu((x,y])>0$,则 g(y)>g(x),所以 g 函数单调增加。

6. 设 $\{\mu_n\}$ 是环 **R** 上一列测度,并且对一切 $E \in \mathbf{R}$,以及任何自然数 n,都有 $\mu_n(E) \le 1$. 证 明

$$\mu(E) = \sum_{n=1}^{\infty} \frac{1}{2^n} \mu_n(E) \quad (E \in \mathbf{R}),$$

也是 **R** 上测度,并且满足 $\mu(E) \leq 1$, $(E \in \mathbf{R})$ 。

证明. 今 $E=\varnothing$,则 $\mu_n(\varnothing)=0$ $(n\geqslant 1)$,所以 $\mu(\varnothing)=\sum_{n=1}^\infty \frac{1}{2^n}\mu_n(\varnothing)=0$ 。

由非负性可知 $E \in \mathbf{R}$, 有 $\mu_n(E) \ge 0$, 所以 $\mu(E) = \sum_{n=1}^{\infty} \frac{1}{2^n} \mu_n(E) \ge 0$.

令 $E = \bigcup_{i=1}^{\infty} E_i$, E_i 互不相交,则 $\mu(E_i) = \sum_{n=1}^{\infty} \frac{1}{2^n} \mu_n(E_i)$, 由 μ_n 的可列可加性有, $\mu_n(E) = \sum_{i=1}^{\infty} \mu_n(E_i)$,则

$$\mu(E) = \sum_{n=1}^{\infty} \frac{1}{2^n} \mu_n \left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \frac{1}{2^n} \mu_n(E_i) \xrightarrow{\text{EFGSSM}} \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{2^n} \mu_n(E_i) = \sum_{i=1}^{\infty} \mu(E_i)$$

由于
$$\mu_n(E) \leqslant 1$$
,所以 $\mu(E) = \sum_{n=1}^{\infty} \frac{1}{2^n} \mu_n(E) \leqslant \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$,则 $\mu(E) \leqslant 1$ 。

9. 设 $\mathbf{R}_n(n=1,2,3,\cdots)$ 是集 X 上一列环,并且 $\mathbf{R}_1 \subset \mathbf{R}_2 \subset \cdots \subset \mathbf{R}_n \subset \cdots$. 又设 μ_n 是 \mathbf{R}_n 上的测度,并且对任何 $E \in \mathbf{R}_n$,当 $m \ge n$ 时, $\mu_m(E) = \mu_n(E)$ (通常称为 $\{\mu_n\}$ 在 $\{\mathbf{R}_n\}$ 上是符合的)。证明(i) $\mathbf{R} = \bigcup_{i=1}^{\infty} \mathbf{R}_n$ 是 X 上的环。(ii)定义 \mathbf{R} 上函数 μ : 对每个 $E \in \mathbf{R}$,必存在某个 n, $E \in \mathbf{R}_n$,规定 $\mu(E) = \mu_n(E)$,证明 μ 是 \mathbf{R} 上非负、空集上取值为 0 的有限可加集函数 $(\mu$ 未必是 \mathbf{R} 上测度,参见下面习题 10)

证明. (i) 由于 $\{\mathbf{R}_n\}$ 是单增的,所以 $\mathbf{R} = \bigcup_{n=1}^{\infty} \mathbf{R}_n = \lim_{n \to \infty} \mathbf{R}_n$,由于 R_n 均为环,所以 \mathbf{R} 也是环。 (ii) $\forall E \in \mathbf{R}$, $\exists n$ 使得 $E \in \mathbf{R}_n$,则 $\mu(E) = \mu_n(E) \geqslant 0$,由于 $\emptyset \in \mathbf{R}_1$,则 $\mu(\emptyset) = \mu_1(\emptyset) = 0$,对于任意有限长的集列 $\{E_1, E_2, \cdots, E_n\}$,令 $E_i \in \mathbf{R}_{n_i}$,取 $M = \max_{1 \le i \le n} \{n_i\}$,则

$$\mu\left(\bigcup_{i=1}^{n} E_{i}\right) = \mu_{M}\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} \mu_{M}(E_{i}) = \sum_{i=1}^{n} \mu(E_{i})$$

所以 μ 具有有限可加性。

10. 设 $X = \{x : x = (x_1, x_2, \cdots, x_n, \cdots), x_n = \frac{j}{n^2} (j = 0, 1, 2, \cdots, n^2), \sum_{n=1}^{\infty} x_n^{\frac{1}{2}} < \infty \}$, 对每个自然数 $n, x \in X$, 令 $\widetilde{x}_n = \{y : y \in X, y_1 = x_1, \cdots, y_n = x_n\}$ (即 \widetilde{x}_n 是 X 中一切前 n 个坐标与 x 相同的 y 全体所成的集), \mathbf{R}_n 是由一切 \widetilde{x}_n 张成的环 (显然, \mathbf{R}_n 是有限集)。又在 \mathbf{R}_n 上作 μ_n 如下,对任何 $E \in \mathbf{R}_n$,如果 $E = \bigcup_{l=1}^k \widetilde{x}_n^{(l)}, x_n^{(l)} \cap x_n^{(m)} = \varnothing(m \neq l)$,那么规定 $\mu_n(E) = k \prod_{j=1}^n \frac{1}{1+j^2}$,再规定 $\mu_n(\varnothing) = 0$ 。证明:

- (i) $\mathbf{R}_1 \subset \mathbf{R}_2 \subset \cdots \subset \mathbf{R}_n \subset \cdots$, $\mathcal{H} \coprod X \in \mathbf{R}_n (n=1,2,3,\cdots)$.
- (ii) μ_n 是 \mathbf{R}_n 上测度, $\mu_n(X) = 1$ 并且 $\{\mu_n\}$ 在 $\{\mathbf{R}_n\}$ 上是符合的(见习题 9)。
- (iii) 对每个自然数 n, 令 $E_n = \{x : x = (x_1, \dots, x_n, \dots), 0 < x_i \leq 1, i = 1, 2, \dots, n\}$, 那么 $E_1 \supset E_2 \supset \dots \supset E_n \supset \dots$, $\mu(E_n) = \prod_{i=1}^n \left(1 \frac{1}{1+j^2}\right)$, $\lim_{n \to \infty} \mu(E_n) \neq 0$, 但是 $\bigcap_{n=1}^\infty E_n = \emptyset$ 。

证明. (i) $\forall 1 \leq n \leq m$, 有 $\widetilde{x}_n = \bigcup \{\widetilde{y}_m : y \in X, y_1 = x_1, \cdots, y_n = x_n\}$, 则 $\widetilde{x}_n \in \mathbf{R}_m$, 由 n, m 的任意性可知

$$R_1 \subset R - 2 \subset \cdots \subset \mathbf{R}_n \subset \cdots$$

令 $x^{(0)} = (0, x_2, x_3, \cdots), x^{(1)} = (1, x_2, x_3, \cdots), 则 X = \widetilde{x}_1^{(0)} \cup \widetilde{x}_1^{(1)}, 所以 X \in \mathbf{R}_1, 则 X \in \mathbf{R}_n (n = 1, 2, \cdots)。$

(ii) 根据 μ_n 的定义可知, μ_n 具有非负性,且空集取值为零,由于 \mathbf{R}_n 为有限集,所以只需证明可列可加性,令 $E = \bigcup_{l=1}^k \widetilde{x}_n^{(l)} \in \mathbf{R}_n, x_n^{(l)} \cap x_n^{(m)} = \varnothing(m \neq l)$,则

$$\mu_n(E) = \mu_n\left(\bigcup_{l=1}^k \widetilde{x}_n^{(l)}\right) = k \prod_{j=1}^n \frac{1}{1+j^2} = \sum_{l=1}^k \prod_{j=1}^n \frac{1}{1+j^2} = \sum_{l=1}^k \mu_n(\{\widetilde{x}_n^{(l)}\})$$

下证 $\{\mu_n\}$ 在 $\{\mathbf{R}_n\}$ 上是符合的,设 $E = \bigcup_{l=1}^k \widetilde{x}_n^{(l)} \in \mathbf{R}_n$, $\forall 1 \leq n \leq m$,由于

$$\widetilde{x}_n = \bigcup \{\widetilde{y}_m : y \in X, y_1 = x_1, \cdots, y_n = x_n\} = \bigcup_{l=1}^M \widetilde{y}_m^{(l)}$$

其中 $M=\prod_{i=n+1}^m(i^2+1)$,是由于 y 的 $y_{n+1},y_{n+2},\cdots,y_m$ 具有任意性,总共有 M 中选择,则

$$\mu_m(E) = k \cdot M \prod_{i=1}^m \frac{1}{1+j^2} = k \cdot \prod_{i=n+1}^m (i^2+1) \prod_{i=1}^m \frac{1}{1+j^2} = k \cdot \prod_{i=1}^n \frac{1}{1+j^2} = \mu_n(E)$$

所以 $\{\mu_n\}$ 在 $\{\mathbf{R}_n\}$ 上是符合的,由(i)可知 $X = \widetilde{x}_1^{(0)} \cup \widetilde{x}_1^{(1)}$,所以 $\mu_1(X) = 2 \cdot \prod_{j=1}^n \frac{1}{1+j^2} = 1$,由于 $\{\mu_n\}$ 在 $\{\mathbf{R}_n\}$ 上是符合的,所以 $\mu_n(X) = 1$ $(n = 1, 2, 3, \cdots)$ 。

(iii) 由于
$$E_n = \{x : x = (x_1, x_2, \dots, x_n, \dots), 0 < x_i \leq 1, i = 1, \dots, n\} = \bigcup_{l=1}^{M} x_n^{(l)}$$
,其中 $M = \prod_{i=1}^{n} i^2$,则

$$\mu(E_n) = \mu_n(E_n) = M \prod_{j=1}^n \frac{1}{1+j^2} = \prod_{i=1}^n i^2 \prod_{j=1}^n \frac{1}{1+j^2} = \prod_{j=1}^n \frac{j^2}{1+j^2} = \prod_{j=1}^n \left(1 - \frac{1}{1+j^2}\right)$$

所以,
$$\lim_{n\to\infty} \mu(E_n) = \lim_{n\to\infty} \prod_{i=1}^n \left(1 - \frac{1}{1+j^2}\right) \neq 0$$
, 由于

$$E_n = \{x : (x_1, \dots, x_n, \dots), 0 < x_i \le 1, i = 1, \dots, n\}$$

$$= \left\{x : (x_1, \dots, x_n, \dots), x_n = \frac{j}{n^2} (j = 1, 2, \dots, n^2), \sum_{n=1}^{\infty} x_n^{\frac{1}{2}} < \infty\right\}$$

假设 $\lim_{n\to\infty} E_n \neq \emptyset$,则对于充分大的 n, $\exists x \in E_n$, 令 $x = (\frac{j_1}{1^2}, \dots, \frac{j_n}{n^2}, \dots)$,有

$$\sum_{i=1}^{\infty} x_i^{\frac{1}{2}} \geqslant \sum_{i=1}^{n} x_i^{\frac{1}{2}} = \sum_{i=1}^{n} \frac{\sqrt{j_i}}{i} \geqslant \sum_{i=1}^{n} \frac{1}{i}$$

由于
$$\sum_{i=1}^{\infty} \frac{1}{i}$$
 发散,则当 $n \to \infty$ 时, $\sum_{i=1}^{\infty} x_i^{\frac{1}{2}} \geqslant \infty$,与 $\sum_{i=1}^{\infty} x_i^{\frac{1}{2}} < \infty$ 矛盾,所以 $\bigcap_{n=1}^{\infty} E_n = \lim_{n \to \infty} E_n = \varnothing$.