Lecture 9: A probabilistic approach to classification

Attendance code: RAK7HQXM

Iain Styles

8 November 2018

Learning Outcomes

By the end of this lecture you should be able to

- Develop a simple probabilistic model of a linearly separable binary class dataset
- Use the model to derive classification rules
- Generalise the model to non-linear boundaries and multiple classes
- Generate new samples using the model

 Bayesian statistics will allow us to classify data in a probabilistic way

- Bayesian statistics will allow us to classify data in a probabilistic way
- Build statistical models of classes

- Bayesian statistics will allow us to classify data in a probabilistic way
- Build statistical models of classes
- Construct explicit decision boundary

- Simplest base: linear binary classifier
- Linear combination of variables—a straight line—that best discriminates between two pre-defined groups of points
- Uses the probability distributions of the classes to find the line of equal probability dividing two classes

- Bayesian statistics will allow us to classify data in a probabilistic way
- Build statistical models of classes
- Construct explicit decision boundary

- Simplest base: linear binary classifier
- ► Linear combination of variables—a straight line—that best discriminates between two pre-defined groups of points
- Uses the probability distributions of the classes to find the line of equal probability dividing two classes
- Generative approach to classification

▶ Use Bayes rule: P(A|B) = P(B|A)P(A)/P(B)

- ▶ Use Bayes rule: P(A|B) = P(B|A)P(A)/P(B)
- ▶ Define priors: expected proportions of data points in each class -P(class)

- ▶ Use Bayes rule: P(A|B) = P(B|A)P(A)/P(B)
- ▶ Define priors: expected proportions of data points in each class -P(class)
- ▶ Define likelihoods: given class PDFs, where are the data points -P(point|class)?

- ▶ Use Bayes rule: P(A|B) = P(B|A)P(A)/P(B)
- ▶ Define priors: expected proportions of data points in each class -P(class)
- Define likelihoods: given class PDFs, where are the data points – P(point|class)?
- Apply Bayes: given data points, what are their classes P(class|point)

- ▶ Use Bayes rule: P(A|B) = P(B|A)P(A)/P(B)
- ▶ Define priors: expected proportions of data points in each class -P(class)
- Define likelihoods: given class PDFs, where are the data points – P(point|class)?
- Apply Bayes: given data points, what are their classes P(class|point)
- Assign points to most probable classes

- Consider a data point **x** which we want to assign to one of two predefined classes Π_i (i = 1, 2)
- ▶ We write that $P(\mathbf{x} \in \Pi_i) = \pi_i$

- Consider a data point \mathbf{x} which we want to assign to one of two predefined classes Π_i (i = 1, 2)
- We write that $P(\mathbf{x} \in \Pi_i) = \pi_i$: Prior probability

- Consider a data point \mathbf{x} which we want to assign to one of two predefined classes Π_i (i=1,2)
- We write that $P(\mathbf{x} \in \Pi_i) = \pi_i$: Prior probability
- ► Class-conditional probability $P(\mathbf{x}|\Pi_i) = f_i(\mathbf{x})$

- Consider a data point \mathbf{x} which we want to assign to one of two predefined classes Π_i (i = 1, 2)
- We write that $P(\mathbf{x} \in \Pi_i) = \pi_i$: Prior probability
- ► Class-conditional probability $P(\mathbf{x}|\Pi_i) = f_i(\mathbf{x})$: distribution of points in class Π_i

- Consider a data point **x** which we want to assign to one of two predefined classes Π_i (i = 1, 2)
- We write that $P(\mathbf{x} \in \Pi_i) = \pi_i$: Prior probability
- ► Class-conditional probability $P(\mathbf{x}|\Pi_i) = f_i(\mathbf{x})$: distribution of points in class Π_i
- These can be learned from the training data

- Consider a data point \mathbf{x} which we want to assign to one of two predefined classes Π_i (i = 1, 2)
- We write that $P(\mathbf{x} \in \Pi_i) = \pi_i$: Prior probability
- ▶ Class-conditional probability $P(\mathbf{x}|\Pi_i) = f_i(\mathbf{x})$: distribution of points in class Π_i
- These can be learned from the training data
- ▶ Bayes rule: probability that \mathbf{x} belongs to class Π_i is:

$$P(\Pi_i|\mathbf{x}) = \frac{P(\mathbf{x}|\Pi_i)P(\Pi_i)}{P(\mathbf{x})}$$
$$= \frac{f_i(\mathbf{x})\pi_i}{f_1(\mathbf{x})\pi_1 + f_2(\mathbf{x})\pi_2}$$

▶ Given class-conditional likelihoods $f_i(\mathbf{x})$, and priors $\pi_{\mathbf{x}}(\mathbf{x})$

- ▶ Given class-conditional likelihoods $f_i(\mathbf{x})$, and priors $\pi_{\mathbf{x}}(\mathbf{x})$
- New points are assigned to the group with the highest probability:

$$\frac{P(\Pi_1|\mathbf{x})}{P(\Pi_2|\mathbf{x})} > 1 \ \mapsto \ \mathbf{x} \in \Pi_1 \quad \text{else} \ \mathbf{x} \in \Pi_2$$

- ▶ Given class-conditional likelihoods $f_i(\mathbf{x})$, and priors $\pi_{\mathbf{x}}(\mathbf{x})$
- New points are assigned to the group with the highest probability:

$$\frac{P(\Pi_1|\mathbf{x})}{P(\Pi_2|\mathbf{x})} > 1 \ \mapsto \ \mathbf{x} \in \Pi_1 \quad \text{else} \ \mathbf{x} \in \Pi_2$$

▶ In terms of f and π , \mathbf{x} belongs to Π_1 if

$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} > \frac{\pi_2}{\pi_1}$$

ightharpoonup otherwise to Π_2 .

- ▶ Given class-conditional likelihoods $f_i(\mathbf{x})$, and priors $\pi_{\mathbf{x}}(\mathbf{x})$
- New points are assigned to the group with the highest probability:

$$\frac{P(\Pi_1|\mathbf{x})}{P(\Pi_2|\mathbf{x})} > 1 \ \mapsto \ \mathbf{x} \in \Pi_1 \quad \text{else} \ \mathbf{x} \in \Pi_2$$

▶ In terms of f and π , \mathbf{x} belongs to Π_1 if

$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} > \frac{\pi_2}{\pi_1}$$

- \triangleright otherwise to Π_2 .
- Equal ratios, randomly assign to either class.

Defining the Classes

- ▶ We need to define the class distributions $f_i(\mathbf{x})$.
- For a simple two-class binary classifier we assume:
 - **Each** data point belongs to exactly one of exactly two distinct and identifiable groups, Π_1 and Π_2

Defining the Classes

- ▶ We need to define the class distributions $f_i(\mathbf{x})$.
- For a simple two-class binary classifier we assume:
 - Each data point belongs to exactly one of exactly two distinct and identifiable groups, Π_1 and Π_2
 - The two groups are normally distributed with different means $\bar{\mathbf{x}}_1$ and $\bar{\mathbf{x}}_2$ but identical covariances Σ .

Defining the Classes

- ▶ We need to define the class distributions $f_i(\mathbf{x})$.
- For a simple two-class binary classifier we assume:
 - Each data point belongs to exactly one of exactly two distinct and identifiable groups, Π_1 and Π_2
 - The two groups are normally distributed with different means $\bar{\mathbf{x}}_1$ and $\bar{\mathbf{x}}_2$ but identical covariances $\boldsymbol{\Sigma}$.
- Covariance?

▶ Variance: measure of variation in a variable

- ▶ Variance: measure of variation in a variable
- ► Covariance: measure of how two variables vary with each

- ▶ Variance: measure of variation in a variable
- ► Covariance: measure of how two variables vary with each
- $\blacktriangleright \ \Sigma_{X,Y} = \mathbb{E}\left[(X \bar{X})(Y \bar{Y})\right]$

- Variance: measure of variation in a variable
- ► Covariance: measure of how two variables vary with each
- $\blacktriangleright \ \Sigma_{X,Y} = \mathbb{E}\left[(X \bar{X})(Y \bar{Y})\right]$
- ► Correlation $\rho_{x,y} = \Sigma_{x,y}/\sigma_x\sigma_y$.

- Variance: measure of variation in a variable
- ► Covariance: measure of how two variables vary with each
- $\blacktriangleright \ \Sigma_{X,Y} = \mathbb{E}\left[(X \bar{X})(Y \bar{Y}) \right]$
- ► Correlation $\rho_{x,y} = \Sigma_{x,y}/\sigma_x\sigma_y$.
- Multivariate problem: covariance matrix Σ with components

$$\Sigma_{ij} = \frac{1}{N-1} \sum_{n=1}^{N} \left(x_i^{(n)} - \bar{x}_i \right) \left(x_j^{(n)} - \bar{x}_j \right) \tag{1}$$

Class-conditional Likelihood

- Model the classes as normally distributed with different means $\bar{\mathbf{x}}_1$ and $\bar{\mathbf{x}}_2$ but identical covariances Σ.
- ► Thus, for $n = \{1, 2\}$ the groups distributions are $P(\mathbf{x}|\Pi_i) = f_i(\mathbf{x})$:

$$f_n(\mathbf{x}) = \frac{1}{(2\pi)^{r/2} |\mathbf{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \bar{\mathbf{x}}_n)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \bar{\mathbf{x}}_n)\right]$$

▶ We know the ratio $\frac{f_1(\mathbf{x})\pi_2}{f_2(\mathbf{x})\pi_1}=1$ separates the groups.

- ▶ We know the ratio $\frac{f_1(\mathbf{x})\pi_2}{f_2(\mathbf{x})\pi_1} = 1$ separates the groups.
- ► Taking logs: $\ln \frac{f_1(\mathbf{x})\pi_2}{f_2(\mathbf{x})\pi_1} = \ln \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ln \frac{\pi_1}{\pi_2}$ with:

$$\ln \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} = (\mathbf{x} - \bar{\mathbf{x}}_1)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \bar{\mathbf{x}}_1) - (\mathbf{x} - \bar{\mathbf{x}}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \bar{\mathbf{x}}_2)$$
$$= (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\bar{\mathbf{x}}_1 + \bar{\mathbf{x}}_2)$$

- ▶ We know the ratio $\frac{f_1(\mathbf{x})\pi_2}{f_2(\mathbf{x})\pi_1} = 1$ separates the groups.
- ► Taking logs: $\ln \frac{f_1(\mathbf{x})\pi_2}{f_2(\mathbf{x})\pi_1} = \ln \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ln \frac{\pi_1}{\pi_2}$ with:

$$\ln \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} = (\mathbf{x} - \bar{\mathbf{x}}_1)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \bar{\mathbf{x}}_1) - (\mathbf{x} - \bar{\mathbf{x}}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \bar{\mathbf{x}}_2)$$
$$= (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\bar{\mathbf{x}}_1 + \bar{\mathbf{x}}_2)$$

- ► The first term on the RHS is linear in x
- ightharpoonup The second term on the RHS is "constant" (no x)

- ▶ We know the ratio $\frac{f_1(\mathbf{x})\pi_2}{f_2(\mathbf{x})\pi_1} = 1$ separates the groups.
- ► Taking logs: $\ln \frac{f_1(\mathbf{x})\pi_2}{f_2(\mathbf{x})\pi_1} = \ln \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} \ln \frac{\pi_1}{\pi_2}$ with:

$$\ln \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} = (\mathbf{x} - \bar{\mathbf{x}}_1)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \bar{\mathbf{x}}_1) - (\mathbf{x} - \bar{\mathbf{x}}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \bar{\mathbf{x}}_2)$$
$$= (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{x} - \frac{1}{2} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\bar{\mathbf{x}}_1 + \bar{\mathbf{x}}_2)$$

- ► The first term on the RHS is linear in x
- ► The second term on the RHS is "constant" (no x)
- ► This is a straight line / plane / hyperplane

- ► Writing $\mathbf{M} = \mathbf{\Sigma}^{-1} (\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2)$
- lacksquare And $c = -(ar{\mathbf{x}}_1 ar{\mathbf{x}}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (ar{\mathbf{x}}_1 + ar{\mathbf{x}}_2) + \log_e \frac{\pi_1}{\pi_2}$

- Writing $\mathbf{M} = \mathbf{\Sigma}^{-1} (\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2)$
- And $c = -(\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\bar{\mathbf{x}}_1 + \bar{\mathbf{x}}_2) + \log_e \frac{\pi_1}{\pi_2}$
- We have

$$L(\mathbf{x}) = \ln \frac{f_1(\mathbf{x})\pi_1}{f_2(\mathbf{x})\pi_2} = \mathbf{M}^{\mathrm{T}}\mathbf{x} + c,$$

The Separation Rule

- ► Writing $\mathbf{M} = \mathbf{\Sigma}^{-1} (\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2)$
- And $c = -(\bar{\mathbf{x}}_1 \bar{\mathbf{x}}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\bar{\mathbf{x}}_1 + \bar{\mathbf{x}}_2) + \log_e \frac{\pi_1}{\pi_2}$
- We have

$$L(\mathbf{x}) = \ln \frac{f_1(\mathbf{x})\pi_1}{f_2(\mathbf{x})\pi_2} = \mathbf{M}^{\mathrm{T}}\mathbf{x} + c,$$

▶ Given the separation rule $\frac{f_1(\mathbf{x})\pi_1}{f_2(\mathbf{x})\pi_2} = 1$ we have:

if
$$L(\mathbf{x}) > 0$$
 assign \mathbf{x} to Π_1 else Π_2

- ► This is Gaussian LDA
- ▶ M^Tx is Fisher's linear discriminant function.

▶ Different class covariances require more complex analysis

- Different class covariances require more complex analysis
- ▶ If the covariances of the two classes are Σ_1 and Σ_2 the discriminant becomes:

$$Q(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathrm{T}} \mathbf{x} + c$$

- Different class covariances require more complex analysis
- ▶ If the covariances of the two classes are Σ_1 and Σ_2 the discriminant becomes:

$$Q(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathrm{T}} \mathbf{x} + c$$

a Quadratic discriminant with

$$\begin{array}{lcl} \mathbf{A} & = & -\frac{1}{2} \left(\mathbf{\Sigma}_1^{-1} - \mathbf{\Sigma}_2^{-1} \right) \\ \mathbf{b} & = & \mathbf{\Sigma}_1^{-1} \bar{\mathbf{x}}_1 - \mathbf{\Sigma}_2^{-1} \bar{\mathbf{x}}_2 \\ c & = & -\frac{1}{2} \left(\log_e \frac{|\mathbf{\Sigma}_1|}{|\mathbf{\Sigma}_2|} + \bar{\mathbf{x}}_1^{\mathrm{T}} \mathbf{\Sigma}_1^{-1} \bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2^{\mathrm{T}} \mathbf{\Sigma}_2^{-1} \bar{\mathbf{x}}_2 \right) - \log_e \frac{\pi_1}{\pi_2} \end{array}$$

- Different class covariances require more complex analysis
- ▶ If the covariances of the two classes are Σ_1 and Σ_2 the discriminant becomes:

$$Q(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathrm{T}} \mathbf{x} + c$$

a Quadratic discriminant with

$$\begin{aligned} \mathbf{A} &= & -\frac{1}{2} \left(\mathbf{\Sigma}_1^{-1} - \mathbf{\Sigma}_2^{-1} \right) \\ \mathbf{b} &= & \mathbf{\Sigma}_1^{-1} \bar{\mathbf{x}}_1 - \mathbf{\Sigma}_2^{-1} \bar{\mathbf{x}}_2 \\ c &= & -\frac{1}{2} \left(\log_e \frac{|\mathbf{\Sigma}_1|}{|\mathbf{\Sigma}_2|} + \bar{\mathbf{x}}_1^{\mathrm{T}} \mathbf{\Sigma}_1^{-1} \bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2^{\mathrm{T}} \mathbf{\Sigma}_2^{-1} \bar{\mathbf{x}}_2 \right) - \log_e \frac{\pi_1}{\pi_2} \end{aligned}$$

The classification rule is:

if
$$Q(\mathbf{x}) > 0$$
 assign \mathbf{x} to Π_1

else assign \mathbf{x} to Π_2 .

Multiclass LDA

► Generalisation to multiclass data is relatively simple. . . .

Multiclass LDA

- Generalisation to multiclass data is relatively simple. . . .
- Compute the pairwise relative probabilities as before and form the discriminant (points i and j)

$$L_{ij}(\mathbf{x}) = \log_e \left(\frac{P(\Pi_i | \mathbf{x})}{P(\Pi_j | \mathbf{x})} \right) = \log_e \left(\frac{f_i(\mathbf{x}) \pi_i}{f_j(\mathbf{x}) \pi_j} \right)$$

Multiclass LDA

- Generalisation to multiclass data is relatively simple. . . .
- Compute the pairwise relative probabilities as before and form the discriminant (points i and j)

$$L_{ij}(\mathbf{x}) = \log_e \left(\frac{P(\Pi_i | \mathbf{x})}{P(\Pi_j | \mathbf{x})} \right) = \log_e \left(\frac{f_i(\mathbf{x}) \pi_i}{f_j(\mathbf{x}) \pi_j} \right)$$

- ▶ **x** is assigned to Π_i if $L_{ij} > 0$ for all $j \neq i$.
- ightharpoonup The discriminant function between classes i and j is then

$$L_{ij}(\mathbf{x}) = \mathbf{m}_{ij}^{\mathrm{T}}\mathbf{x} + c_{ij}$$

with

$$\begin{array}{lcl} \mathbf{m}_{ij} & = & (\bar{\mathbf{x}}_i - \bar{\mathbf{x}}_j)^\mathrm{T} \, \mathbf{\Sigma}^{-1} \, \mathrm{and} \\ c_{ij} & = & -\frac{1}{2} \left(\bar{\mathbf{x}}_i^\mathrm{T} \mathbf{\Sigma}^{-1} \bar{\mathbf{x}}_i - \bar{\mathbf{x}}_j^\mathrm{T} \mathbf{\Sigma}^{-1} \bar{\mathbf{x}}_j \right) + \log_\mathrm{e} \frac{\pi_i}{\pi_i}. \end{array}$$

▶ LDA is a *probabilistic* approach to classification

- ▶ LDA is a *probabilistic* approach to classification
- ► Makes strong assumptions about data

- ► LDA is a *probabilistic* approach to classification
- Makes strong assumptions about data
- May still work if assumptions invalid

- ► LDA is a *probabilistic* approach to classification
- Makes strong assumptions about data
- May still work if assumptions invalid
- Generative: can sample for class-conditional likelihoods

- ► LDA is a *probabilistic* approach to classification
- Makes strong assumptions about data
- May still work if assumptions invalid
- Generative: can sample for class-conditional likelihoods