USSN 10/676,414

AMENDMENTS TO CLAIMS

- 1. (Previously presented) A method of fabricating a magnetic memory element, the method comprising forming a ferromagnetic data layer with a controlled nucleation site; the nucleation site being a divot in the data layer or a protrusion from the data layer.
- 2. (Original) The method of claim 1, wherein the nucleation site is not surrounded by a neighboring region of the data layer.
- 3. (Original) The method of claim 1, wherein the nucleation site has a lower switching threshold relative to a neighboring region of the data layer.
- 4. (Original) The method of claim 1, wherein the nucleation site is formed at an edge of the data layer.
- 5. (Original) The method of claim 1, wherein the nucleation site is formed at a corner of the data layer.
 - 6. (Cancelled)
 - 7. (Cancelled)
- 8. (Previously presented) The method of claim 1, wherein the data layer has at least two nucleation sites with a symmetric arrangement.
 - 9. (Cancelled)

USSN 10/676,414

- 10. (Previously presented) The method of claim 9, wherein A method of fabricating a magnetic memory element, the method comprising forming a ferromagnetic data layer with a non-symmetric arrangement of controlled nucleation sites, the nucleation sites [have] having a uniform size and shape.
- 11.(Original) The method of claim 1, further comprising forming additional magnetic tunnel junction layers.
- 12.(Previously presented) A method of fabricating a data storage device, the method comprising forming an array of square or rectangular ferromagnetic data layers, each layer having first and second neighboring regions, the first regions having a lower switching threshold than the second regions and a substantially smaller size than the second regions, the first regions at the same location on the data layers across the array.
- 13.(Original) The method of claim 12, wherein the first regions are located at comers of the data layers.
- 14.(Original)The method of claim 12, wherein the first regions are located at edges of the data layers.
- 15.(Previously presented) The method of claim 12, wherein the first regions are either divots in the data layers or protrusion from the data layers.
- 16. (Original)The method of claim 12, wherein each data layer has more than one first region.

USSN 10/676,414

- 17.(Original)The method of claim 16, wherein each data layer has a symmetric arrangement of first regions.
- 18.(Original)The method of claim 16, wherein each data layer has a non-symmetric arrangement of first regions.
- 19.(Original)The method of claim 12, wherein the first regions have a uniform size and shape across the array.
- 20.(Original)The method of claim 12, wherein the first regions are formed during bit formation.
- 21.(Original)The method of claim 12, further comprising forming additional magnetic tunnel junction layers.

Claims 22-37 (Cancelled).