BIOL3110

Genetic management of captive populations & reintroductions

R Frankham

Genetic management of captive pops & reintroductions Outline

- Why do species have to be captive bred?
- How do captive populations deteriorate genetically?
- How many founders should be used to initiated captive populations
- How should captive populations be genetically managed?
- How should reintroductions be genetically managed?

Reference: ICG2 textbook Ch19 & 20

Why captive breed?

 2K species of terrestrial vertebrates cannot survive in the wild

How many TH species are being captively breeding?

- 987 threatened & near-thr vertebrate species
- Few invertebrates
- Many threatened plants
 - 105K sp, 41% of thr sp
 - Kew Gardens 2.7K species

Center for Plant Conservation, N Am 1.5 K sp

What is the aim of captive breeding programs?

Save species from extinction & eventual to return them to the wild

but many species will spend long periods in captivity

Scenario

How do populations genetically deteriorate in captivity?

- Inbreeding depression
- Loss of genetic diversity
- Mutational accumulation
- Genetic adaptation to captivity

What are the objective of genetic management of captive populations?

'Freeze' evolution

- retain genetic diversity
 - minimizing mean kinship (mk)
 - effective in minimizing inbreeding
- minimize adaptation to captivity

What is the targets set for captive genetic management?

Retain 90% GD for 100 years

 Trade-off of genetic deterioration for more species maintained

Context

How are captive populations genetically managed?

How many founders should be used to initiate captive populations?

Minimum 20-30 contributing individuals

How many founders have actually been used?

Species	Number of founders
Mammals	
 Arabian oryx 	10
 Black-footed ferret 	7
 European bison 	13
 Golden lion tamarin 	48
 Indian rhinoceroses 	17
 Przewalski's horse 	12 (~ 4 domestic horses)
 Red ruffed lemur 	7
 Siberian tiger 	25
 Snow leopard 	7
 Speke's gazelle 	4
Birds	
 California condor 	14
 Guam rail 	9
 Lord Howe Island woodhe 	n 6
 Mauritius pink pigeon 	6
 Plains pigeon 	21
 Puerto Rican parrot 	13
Invertebrates	
 British field cricket 	12

What is done in the growth phase?

- Increase numbers
- Little genetic management (avoid close inbreeding - FS & OP)

What is done in the maintenance phase?

- Genetic management
 - Retain GD & minimise inbreeding
 - Minimise mk

Maximum avoidance of inbreeding

What are the key features of maximum avoidance of inbreeding?

- Unrelated founders
- Equalising founder representation
- Equalising family sizes
- Equalising sex ratios
- $N_{\rm e} \sim 2N$
- Actual captive pops N_e ~ 0.3 N

What is kinship?

- $k_{ii} = F$ of hypothetical offspring of i & j
- Probability that 2 alleles, one from each individual, are identical by descent (recent copies of the same segment of DNA)
- Range 0-1
- Generally determined from pedigrees

How is mean kinship minimised?

- Mean k for every individual with everyone else including self
- Choose individuals with lowest mean k
 as parents of next generation
- Maximizes retention of GD
 - ~ min F

It becomes MAI regime in time

Kinships

	Thelma Louise Rita			Robert	Mean kinship
Thelma	5/8	5/16	1/8	0	0.266
Louise	5/16	5/8	1/8	0	0.266
Rita	1/8	1/8	1/2	0	0.187
Robert	0	0	0	5/8	0.156

Choose Robert, then Rita as parents

Case study: California condor

- Declined due to DDT & lead poisoning
- Captive pop: 14 founders 3 from 1 family
- Growth with little G mgmt
- G management by min mk (genomes now)
- N total > 446, ~ 276 wild
- Inherited disease
 - chondrodystrophy (dwarfs 3%) recessive
 - G management (prev, now carrier detect) 21

Case study: Przewalski's horse

- Decline hunting & competition
- Captive 12 founders + up to 4 domestic horses
- G Managed to
 - minimize domestic horse genes
 - equalize founder rep & min inbreeding
 - Problem: pedigree errors
- Reintroduced ~ 500 in wild (~ ¼)
- Genome: distinct from domestic horses
 - Low GD, inbred, 0-31% dom horse genes²³

How successful is captive breeding?

Many species have been successfully captive bred
A few not successful e.g hairy-nosed wombats

How much used is made of assisted reproductive technologies?

- Artificial insemination (5 thr sp)
- Cryopreservation (plants)
- Cloning/nuclear transplantation
 - Plants (widespread)
 - Few thr animals (BF ferret & Prz horse added founders)

Available for very few animal sp, but
 way improving

Attempts to resurrect extinct species

- Considered nigh impossible in 2010
- Great advances in stem cell technology since then
- Still very low probability of success, but
- Efforts underway in mammoth, passenger pigeon, thylacine, gastric brooding frogs

Reintroductions

Genetic issues in reintroductions

Inbreeding and loss of genetic diversity Consequences of genetic adaptation to captivity

How can we minimise it?

Genetic adaptation to captivity

Genetic adaptation to captivity is unavoidable

- Rats > 3x (25G)
- Turkeys
- Fish many species
- Biocontrol insects
- Butterfly 13x (100-150G)
- Drosophila 2x & x3
- Plants ~ 2x

Genetic adaptations to captivity are overwhelmingly harmful following reintroduction

- Biocontrol insects
- Fish many species
- Rabbits & birds
- Drosophila populations

Harmful impact of GADC on fitness of reintroduced salmonids

Conservation implications of GADC

- Captive populations are undergoing 'genetic revolutions', not having their evolution 'frozen'
- Need to manage captive populations to explicitly minimize genetic adaptation to captivity

How can we minimize GADC?

Minimize

- generations in captivity
 - Seed storage in plants
- selection (EFS halves)
- N_e & genetic diversity (fragmentation)

Minimizing GADC: Does fragmenting population work?

Test of fragmentation strategy: SL v SS

- 50 v 2x25
- 100 v 2x50 v 4x25
- 500 v 2x250 v
- 50 gens & pooled SS
- 'wild' fitness
- genetic diversity

Fitness of SL v SS (pooled)

(Margan et al. 98)

Fragmentation reduces harmful fitness effects of GADC in reintroduced populations

Other benefits of fragmenting captive populations

- Retains more genetic diversity
- Reduces inbreeding
- Captive populations already fragmented
 - Reduces costs of translocations
 - Reduced risk of disease transfer

What problems are associated with fragmentation of populations

- Inbreeding depression
- Solution: cross replicates after inbreeding has accumulated to say
 - F ~ 0.2 cross & fragment again

How are reintroductions genetically managed?

- Captivity less risky than wild
- Founded from animals of low genetic value in captive population
- As released population establishes, release animals to eventually transfer all genetic diversity from captivity to wild

Case study: Golden lion tamarin

- Decline due to loss 98% habitat
- 242 captive founders, 48 still contributing
- 2/3 originally from 1 pr *
- Min mk devised to manage it (F = 6.1% before management & 2.6% now)
- Successfully reintroduced *
 - ~ 1600 in wild over 11 pops
- Fragmented distribution
 - low GD in small populations
 - corridors built

Founder representation in captive and reintroduced population

Case study: Lord Howe Island woodhen

- Decline to ~30 due to introduced pigs
- Pigs eliminated
- Captive breeding 3 prs founders
- Reintroduction 82 birds
 - recovery to ~220, now 160
 - No captives left
 - More inbred
 - Low GD
 - Genomics
- Example of how not to manage genetically
- Single population only & no routine monitoring

Case study: Mauna Kea silversword

- Decline to 41 plants grazing
- Control of herbivores
- Outplanted 1500 plants
- All from 2 maternal founders
 - Self-incompatible
 - 20% seed set
 - 60% seed set with outcross
 - Trying to outcross outplanted plants
 - Problem of few founders & low pr flowering in any year
- Now: 8K plants in wild from 6 founders

How successful are reintroductions?

- 67% (Wolf et al. 1996)
 - 53% for threatened sp
- 44% (Beck et al. 1994)
- 26% successful, 27% failures, 47% unknown (Fischer & Lindenmayer 2000)

Summary – captive breeding

- Many species have to be captive bred to save them from extinction
- Captive populations deteriorate genetically due to
 - inbreeding depression
 - loss of genetic diversity
- Captive populations should be initiated with a minimum of 20-30 contributing founders
- Minimizing mean kinship recommended for managing endangered species in captivity

Summary - reintroductions

- Captive populations can provide individuals for reintroductions into wild
- Genetic adaptations to captivity are harmful when populations are reintroduced
- Genetic adaption can be minimized by
 - minimizing generations (seed storage in plants)
 - minimizing selection
 - fragmenting captive populations
- Begin reintroduction with genetically surplus individuals from the captive population
- Once successful, augment wild pops until they contain the all GD found in captives

Questions?

Total numbers of tamarins in the wild

