

Data Analysis with Python

House Sales in King County, USA

This dataset contains house sale prices for King County, which includes Seattle. It includes homes sold between May 2014 and May 2015.

Description	Variable
A notation for a house	id
Date house was sold	date
Price is prediction target	price
Number of bedrooms	bedrooms
Number of bathrooms	bathrooms
Square footage of the home	sqft_living
Square footage of the lot	sqft_lot
Total floors (levels) in house	floors
House which has a view to a waterfront	waterfront
Has been viewed	view
How good the condition is overall	condition
overall grade given to the housing unit, based on King County grading system	grade
Square footage of house apart from basement	sqft_above
Square footage of the basement	sqft_basement
Built Year	yr_built
Year when house was renovated	yr_renovated
Zip code	zipcode
Latitude coordinate	lat
Longitude coordinate	long
Living room area in 2015(implies some renovations) This might or might not have affected the lotsize area	sqft_living15
LotSize area in 2015(implies some renovations)	sqft_lot15

You will require the following libraries:

```
In [4]: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler,PolynomialFeatures
from sklearn.linear_model import LinearRegression
%matplotlib inline
```

Module 1: Importing Data Sets

Load the csv:

```
In [5]: file_name='https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DA0101EN-Skills
    Network/labs/FinalModule_Coursera/data/kc_house_data_NaN.csv'
    df=pd.read_csv(file_name)
```

We use the method head to display the first 5 columns of the dataframe.

```
In [6]: df.head()
```

Out[6]:

	Unnamed: 0	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	 grade	sqft_above	sqft_k
0	0	7129300520	20141013T000000	221900.0	3.0	1.00	1180	5650	1.0	0	 7	1180	
1	1	6414100192	20141209T000000	538000.0	3.0	2.25	2570	7242	2.0	0	 7	2170	
2	2	5631500400	20150225T000000	180000.0	2.0	1.00	770	10000	1.0	0	 6	770	
3	3	2487200875	20141209T000000	604000.0	4.0	3.00	1960	5000	1.0	0	 7	1050	
4	4	1954400510	20150218T000000	510000.0	3.0	2.00	1680	8080	1.0	0	 8	1680	

5 rows × 22 columns

4

Question 1

Display the data types of each column using the function dtypes, then take a screenshot and submit it, include your code in the image.

```
In [7]:
        df.dtypes
Out[7]: Unnamed: 0
                           int64
        id
                           int64
        date
                          object
        price
                         float64
        bedrooms
                         float64
        bathrooms
                         float64
        sqft_living
                           int64
        sqft_lot
                           int64
        floors
                         float64
        waterfront
                            int64
        view
                           int64
        condition
                           int64
        grade
                           int64
        sqft_above
                           int64
        sqft_basement
                           int64
        yr_built
                           int64
        yr_renovated
                           int64
        zipcode
                           int64
        lat
                         float64
                         float64
        long
        sqft_living15
                           int64
        sqft_lot15
                           int64
        dtype: object
```

We use the method describe to obtain a statistical summary of the dataframe.

```
Unnamed: 0
                               id
                                                    bedrooms
                                           price
                                                                 bathrooms
                                                                                sqft_living
                                                                                                sqft_lot
                                                                                                                floors
                                                                                                                          waterfront
                                                                                                                                             viev
       21613.00000 2.161300e+04 2.161300e+04 21600.000000
                                                               21603.000000
                                                                             21613.000000 2.161300e+04 21613.000000 21613.000000 21613.000000
        10806.00000 4.580302e+09 5.400881e+05
                                                     3.372870
                                                                   2.115736
                                                                              2079.899736 1.510697e+04
                                                                                                                           0.007542
                                                                                                                                         0.23430
                                                                                                             1.494309
 mean
         6239.28002 2.876566e+09 3.671272e+05
                                                     0.926657
                                                                   0.768996
                                                                               918.440897 4.142051e+04
                                                                                                             0.539989
                                                                                                                           0.086517
                                                                                                                                         0.76631
                                                                   0.500000
                                                                                                                                         0.00000
  min
            0.00000 1.000102e+06 7.500000e+04
                                                     1.000000
                                                                               290.000000 5.200000e+02
                                                                                                             1.000000
                                                                                                                           0.000000
         5403.00000 2.123049e+09 3.219500e+05
                                                     3.000000
                                                                              1427.000000 5.040000e+03
                                                                                                                                         0.00000
  25%
                                                                   1.750000
                                                                                                             1.000000
                                                                                                                           0.000000
        10806.00000 3.904930e+09 4.500000e+05
                                                     3.000000
                                                                   2.250000
                                                                              1910.000000 7.618000e+03
                                                                                                             1.500000
                                                                                                                           0.000000
                                                                                                                                         0.00000
        16209.00000 7.308900e+09 6.450000e+05
                                                     4.000000
                                                                   2.500000
                                                                              2550.000000 1.068800e+04
                                                                                                             2.000000
                                                                                                                           0.000000
                                                                                                                                         0.00000
                                                    33.000000
                                                                   8.000000 13540.000000 1.651359e+06
                                                                                                             3.500000
                                                                                                                           1.000000
                                                                                                                                         4.00000
  max 21612.00000 9.900000e+09 7.700000e+06
8 rows × 21 columns
```

Module 2: Data Wrangling

df.describe()

In [8]:

Out[8]:

Question 2

Drop the columns "id" and "Unnamed: 0" from axis 1 using the method drop(), then use the method describe() to obtain a statistical summary of the data. Take a screenshot and submit it, make sure the inplace parameter is set to True

```
In [9]: df.drop(["id", "Unnamed: 0"], axis=1, inplace = True)

df.describe()
```

Out[9]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grac
count	2.161300e+04	21600.000000	21603.000000	21613.000000	2.161300e+04	21613.000000	21613.000000	21613.000000	21613.000000	21613.00000
mean	5.400881e+05	3.372870	2.115736	2079.899736	1.510697e+04	1.494309	0.007542	0.234303	3.409430	7.65687
std	3.671272e+05	0.926657	0.768996	918.440897	4.142051e+04	0.539989	0.086517	0.766318	0.650743	1.1754
min	7.500000e+04	1.000000	0.500000	290.000000	5.200000e+02	1.000000	0.000000	0.000000	1.000000	1.00000
25%	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	1.000000	0.000000	0.000000	3.000000	7.00000
50%	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000	0.000000	0.000000	3.000000	7.00000
75%	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	2.000000	0.000000	0.000000	4.000000	8.00000
max	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000	1.000000	4.000000	5.000000	13.00000
4										>

We can see we have missing values for the columns bedrooms and bathrooms

number of NaN values for the column bathrooms: 10

```
In [10]: print("number of NaN values for the column bedrooms :", df['bedrooms'].isnull().sum())
    print("number of NaN values for the column bathrooms :", df['bathrooms'].isnull().sum())
    number of NaN values for the column bedrooms : 13
```

We can replace the missing values of the column 'bedrooms' with the mean of the column 'bedrooms' using the method replace(). Don't forget to set the inplace parameter to True

```
In [11]: mean=df['bedrooms'].mean()
df['bedrooms'].replace(np.nan,mean, inplace=True)
```

We also replace the missing values of the column 'bathrooms' with the mean of the column 'bathrooms' using the method replace(). Don't forget to set the inplace parameter top True

```
In [12]: mean=df['bathrooms'].mean()
df['bathrooms'].replace(np.nan,mean, inplace=True)
```

```
In [13]: print("number of NaN values for the column bedrooms :", df['bedrooms'].isnull().sum())
print("number of NaN values for the column bathrooms :", df['bathrooms'].isnull().sum())
number of NaN values for the column bedrooms : 0
number of NaN values for the column bathrooms : 0
```

Module 3: Exploratory Data Analysis

Question 3

Use the method value_counts to count the number of houses with unique floor values, use the method .to_frame() to convert it to a dataframe.

Question 4

Use the function boxplot in the seaborn library to determine whether houses with a waterfront view or without a waterfront view have more price outliers.

```
In [17]: sns.boxplot(x="waterfront", y="price", data=df)
```

Out[17]: <AxesSubplot:xlabel='waterfront', ylabel='price'>

Question 5

Use the function regplot in the seaborn library to determine if the feature sqft_above is negatively or positively correlated with price.

```
In [18]: sns.regplot(x="sqft_above", y="price", data=df)
plt.ylim(0,)
```

Out[18]: (0.0, 8081250.0)

We can use the Pandas method <code>corr()</code> to find the feature other than price that is most correlated with price.

```
In [19]: | df.corr()['price'].sort_values()
Out[19]: zipcode
                       -0.053203
        long
                      0.021626
        condition
                       0.036362
        yr built
                       0.054012
        yr_renovated 0.126434
        floors
                       0.256794
        waterfront
                       0.266369
        lat
                       0.307003
        bedrooms
                       0.308797
        sqft_basement
                       0.323816
        view
                       0.397293
        bathrooms
                       0.525738
        sqft_living15    0.585379
        sqft_above
                       0.605567
                0.667434
        grade
        sqft_living
                       0.702035
        price
                       1.000000
        Name: price, dtype: float64
```

Module 4: Model Development

We can Fit a linear regression model using the longitude feature 'long' and caculate the R^2.

Question 6

Fit a linear regression model to predict the 'price' using the feature 'sqft_living' then calculate the R^2. Take a screenshot of your code and the value of the R^2.

Question 7

Fit a linear regression model to predict the 'price' using the list of features:

Then calculate the R^2. Take a screenshot of your code.

```
In [22]: lm = LinearRegression()
lm

X = df[['floors']]
Y = df['price']
lm.fit(X,Y)
lm.score(X,Y)

Out[22]: 0.06594310068341092

In [23]: lm = LinearRegression()
lm

X = df[['waterfront']]
Y = df['price']
lm.fit(X,Y)
lm.score(X,Y)
Out[23]: 0.07095267538578309
```

```
In [24]: | lm = LinearRegression()
         X = df[['lat']]
         Y = df['price']
         lm.fit(X,Y)
         lm.score(X,Y)
Out[24]: 0.09425113672917462
In [25]: lm = LinearRegression()
         X = df[['bedrooms']]
         Y = df['price']
         lm.fit(X,Y)
         lm.score(X,Y)
Out[25]: 0.09535546506131365
In [26]: | lm = LinearRegression()
         lm
         X = df[['sqft_basement']]
         Y = df['price']
         lm.fit(X,Y)
         lm.score(X,Y)
Out[26]: 0.104856815269744
In [27]: | lm = LinearRegression()
         lm
         X = df[['view']]
         Y = df['price']
         lm.fit(X,Y)
         lm.score(X,Y)
Out[27]: 0.15784211584121532
```

```
In [28]: | lm = LinearRegression()
         X = df[['bathrooms']]
         Y = df['price']
         lm.fit(X,Y)
         lm.score(X,Y)
Out[28]: 0.27639993060314383
In [29]: | lm = LinearRegression()
         X = df[['sqft_living15']]
         Y = df['price']
         lm.fit(X,Y)
         lm.score(X,Y)
Out[29]: 0.3426684607560172
In [30]: | lm = LinearRegression()
         X = df[['sqft_above']]
         Y = df['price']
         lm.fit(X,Y)
         lm.score(X,Y)
```

Out[30]: 0.36671175283827917

```
In [31]: | lm = LinearRegression()
             X = df[['grade']]
             Y = df['price']
             lm.fit(X,Y)
             lm.score(X,Y)
   Out[31]: 0.44546848610928724
   In [32]: | lm = LinearRegression()
             X = df[['sqft_living']]
             Y = df['price']
             lm.fit(X,Y)
             lm.score(X,Y)
   Out[32]: 0.4928532179037931
Create a list of tuples, the first element in the tuple contains the name of the estimator:
'scale'
```

This will help with Question 8

```
'polynomial'
 'model'
The second element in the tuple contains the model constructor
StandardScaler()
PolynomialFeatures(include_bias=False)
LinearRegression()
   In [35]: Input=[('scale', StandardScaler()), ('polynomial', PolynomialFeatures(include_bias=False)), ('model', LinearRegression())]
```

Question 8

Use the list to create a pipeline object to predict the 'price', fit the object using the features in the list features, and calculate the R^2.

Module 5: Model Evaluation and Refinement

Import the necessary modules:

```
In [36]: from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import train_test_split
    print("done")

done
```

We will split the data into training and testing sets:

number of test samples: 3242 number of training samples: 18371

Question 9

Create and fit a Ridge regression object using the training data, set the regularization parameter to 0.1, and calculate the R² using the test data.

Question 10

Perform a second order polynomial transform on both the training data and testing data. Create and fit a Ridge regression object using the training data, set the regularisation parameter to 0.1, and calculate the R^2 utilising the test data provided. Take a screenshot of your code and the R^2.

```
In [66]: pr=PolynomialFeatures(degree=2)
    x_train_pr=pr.fit_transform(x_train[features])
    x_test_pr=pr.fit_transform(x_test[features])

RigeModel = Ridge(alpha=0.1)
RigeModel.fit(x_train_pr, y_train)
RigeModel.score(x_test_pr, y_test)
```

Out[66]: 0.7002744273468813

Once you complete your notebook you will have to share it. Select the icon on the top right a marked in red in the image below, a dialogue box should open, and select the option all content excluding sensitive code cells.

You can then share the notebook via a URL by scrolling down as shown in the following image:

This option allows you to exclude code cells containing sensitive data. You can hide these code cells with a specific comment line in your code. When you share the notebook, for all code cells containing this comment line the code will not be displayed. A version is saved for your notebook. The link always points to the most recent version of the notebook.

Permalink to view notebook

https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/106a6db4-

×

Share on social media

About the Authors:

completed his PhD.

Joseph Santarcangelo (https://www.linkedin.com/in/joseph-s-50398b136/?

<u>utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkDA0101ENSkillsNetwork20235326-2021-01-01)</u> has a PhD in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he

Other contributors: Michelle Carey (https://www.linkedin.com/in/michelleccarey/?

utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkDA0101ENSkillsNetwork20235326-2021-01-01), Mavis Zhou (https://www.linkedin.com/in/jiahui-mavis-zhou-a4537814a?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkDA0101ENSkillsNetwork20235326-2021-01-01)

Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2020-12-01	2.2	Aije Egwaikhide	Coverted Data describtion from text to table
2020-10-06	2.1	Lakshmi Holla	Changed markdown instruction of Question1
2020-08-27	2.0	Malika Singla	Added lab to GitLab

© IBM Corporation 2020. All rights reserved.

In []: