I- Définition

Théorème: Il existe une unique fonction f, dérivable sur \mathbb{R} telle que f'=f et f(0)=1. On appelle <u>fonction exponentielle</u> l'unique fonction dérivable sur \mathbb{R} telle que :

$$f'=f$$
 et $f(0)=1$. On la note exp .

Conséquence: exp(0)=1

II- Étude.

III- Propriétés.

a) Relation fonctionnelle : $\exp(x+y) = (\exp x)(\exp y)$

b)
$$\exp(-x) = \frac{1}{\exp x}$$

c)
$$\exp(x-y) = \frac{\exp x}{\exp y}$$

d)
$$\exp(nx) = (\exp x)^n$$
 avec $n \in \mathbb{N}$

IV- Le nombre e.

1) Définition

L'image de **1** par la fonction **exp** est noté e . On a ainsi **exp1**=e $e \simeq 2.718281828459045...$ et $\pi \simeq 3.141592653589793...$ sont des nombres irrationnelles.

$$\exp(x) = \exp(x \times 1) = (\exp(1))^x = e^x$$

d'où $\exp(x)=e^x$

Avec la notation de la fonction exponentielle avec le nombre $\ e$, on a:

a)
$$e^0 = 1$$
 et $e^1 = e$

b)
$$e^x > 0$$
 et $(e^x)' = e^x$

c)
$$e^{x+y} = e^x e^y$$
, $e^{x-y} = \frac{e^x}{e^y}$, $e^{-x} = \frac{1}{e^x}$, $(e^x)^n = e^{nx}$, avec $n \in \mathbb{N}$

d)
$$\lim_{n\to-\infty} e^x = 0$$
 et $\lim_{n\to+\infty} e^x = +\infty$

La fonction exponentielle admet une asymptote horizontale d'équation y=0 en $-\infty$ Attention, la fonction exponentielle n'admet pas d'asymptote en $+\infty$

e)
$$e^a = e^b \Leftrightarrow a = b$$

f)
$$e^a < e^b \Leftrightarrow a < b$$

V- Croissances comparées.

a)
$$\lim_{n \to +\infty} \frac{e^x}{x} = +\infty$$
 et pour tout entier n $\lim_{n \to +\infty} \frac{e^x}{x^n} = +\infty$

b)
$$\lim_{n \to -\infty} x e^x = 0$$
 et pour tout entier n $\lim_{n \to +\infty} x^n e^x = 0$

$$\lim_{n\to 0}\frac{e^x-1}{x}=1$$

VI-Fonction e^u .

$$(e^{u(x)})'=u'(x)e^{u(x)}$$

Les fonctions u(x) est $e^{u(x)}$ ont le même sens de variation.