Cryptography in Cyclic Groups (cont'd)

Let $\langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

P

Scenario

P sends $r = g^k$ where $k \overset{\$}{\leftarrow} \mathbb{Z}_q$ V sends $c \overset{\$}{\leftarrow} \mathbb{Z}_q$

P sends $c \leftarrow \mathbb{Z}_q$ $P \text{ sends } s = k + cx \mod q$ V checks whether

$$g^{s} \cdot y^{-c} = r$$

Let $\langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

P

Scenario

 $P \operatorname{sends} r = g^k \operatorname{where}$

 $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ $V \text{ sends } c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P sends $s = k + cx \mod q$ V checks whether

 $g^{s} \cdot y^{-c} = r$

Let $\langle g \rangle$ be a group of prime order q

Prover *P* proves to verifier *V* that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

$$x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

Scenario

 $P \operatorname{sends} r = g^k \operatorname{where}$

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P sends $s = k + cx \mod q$ V checks whether

V CHECKS WHELH

$$g^{s} \cdot y^{-c} = r$$

Let $\langle g \rangle$ be a group of prime order q

Prover *P* proves to verifier *V* that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

$$x \stackrel{\$}{\longleftarrow} \mathbb{Z}_{0}$$
 $y = g^{x}$

P

Scenario

P sends $r = g^k$ where

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \mathsf{ sends } s = k + \mathsf{c} x \bmod q$

$$g^{s} \cdot y^{-c} = r$$

Let $\langle g \rangle$ be a group of prime order q

Prover *P* proves to verifier *V* that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

Scenario

 $P \text{ sends } r = g^k \text{ where}$

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

V sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \bmod q$

$$g^{s} \cdot y^{-c} = r$$

Let $\langle g \rangle$ be a group of prime order q

Prover *P* proves to verifier *V* that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

Scenario

P sends $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

$$V \text{ sends } c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

 $P \text{ sends } c \leftarrow \mathbb{Z}_q$

$$g^s \cdot y^{-c} = r$$

Let $\langle g \rangle$ be a group of prime order q

Prover *P* proves to verifier *V* that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

Scenario

P sends $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

$$V$$
 sends $c \stackrel{\$}{\leftarrow} \mathbb{Z}_a$

P sends $s = k + cx \mod q$ V checks whether

$$g^s \cdot y^{-c} = r$$

Let $\langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

Scenario

 $P \operatorname{sends} r = g^k \operatorname{where}$

$$k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$

 $V \text{ sends } c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

 $P \text{ sends } s = k + cx \mod q$

$$g^s \cdot y^{-c} = r$$

Let $\langle g \rangle$ be a group of prime order q

Prover *P* proves to verifier *V* that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

2

Let $\langle g \rangle$ be a group of prime order q

Prover *P* proves to verifier *V* that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

2

Let $\langle g \rangle$ be a group of prime order q

Prover *P* proves to verifier *V* that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

Let $\langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

2

Let $\langle g \rangle$ be a group of prime order q

Prover P proves to verifier V that she knows the discrete $\log x$ of a public group element $y = g^x$. It is a 3-move protocol.

2

The Fiat-Shamir heuristic

Fiat, Shamir (1986)

How to Prove Yourself: Practical Solutions to Identification and Signature Problems.

Advances in Cryptology - Crypto'86, Lect. Notes Comput. Science 263, pp. 186-194.

▶ In such a 3-pass identification scheme, the messages are called **commitment**, **challenge** and **response**. The challenge is randomly chosen by *V*.

Fiat-Shamir Transform

Replace the challenge by a hash value taken on scheme parameters and t, thereby removing V. This transforms the protocol by making it *non-interactive*.

The intuition is that any "sufficiently random" hash function should preserve the security of the protocol.

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Sign

SIGN

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

Signing and Verifying

 $P \text{ computes } s = k + cx \bmod q$

P sends $\sigma = (s, c)$

Ver

V checks if $H(m,g^s \cdot y^{-c}) = c$

P

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

	Signing and Verifying
P	Sign $P ext{ computes } r = g^k ext{ where } k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ $P ext{ computes } c = H(m, r)$ $P ext{ computes } s = k + cx ext{ mod } q$ $P ext{ sends } \sigma = (s, c)$
	Ver V checks if $H(m, g^s \cdot y^{-c}) = c$

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

$$x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$$
 $y = g^x$

P

Signing and Verifying

Sign

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

 $P ext{ computes } s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_a$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (Gen, Sign, Ver)$ defined as follows.

Signing and Verifying

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_a$ P computes c = H(m, r)

P computes $s = k + cx \mod q$

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ P computes c = H(m, r)

P computes $s = k + cx \mod q$

 $P \text{ sends } \sigma = (s, c)$

Ver

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

P sends $\sigma = (s, c)$

Sign

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ P computes c = H(m, r)P computes $s = k + cx \mod q$

Ver

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

 $P \text{ computes } s = k + cx \bmod q$

P sends $\sigma = (s, c)$

Ver

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

 $P \text{ computes } r = g^k \text{ where } k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

 $P \text{ computes } s = k + cx \bmod q$

P sends $\sigma = (s, c)$

Ver

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

P computes $s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

P computes $s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ *P* computes c = H(m, r)

P computes $s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

P computes c = H(m, r)

 $P \text{ computes } s = k + cx \bmod q$

P sends $\sigma = (s, c)$

Ver

$$H(m, g^s \cdot y^{-c}) \stackrel{?}{=} c$$

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ *P* computes c = H(m, r)

 $P \text{ computes } s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

$$H(m, g^s \cdot y^{-c}) \stackrel{?}{=} c$$

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Signing and Verifying

Sign

P computes $r = g^k$ where $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ *P* computes c = H(m, r)

P computes $s = k + cx \mod q$

P sends $\sigma = (s, c)$

Ver

$$H(m, g^s \cdot y^{-c}) \stackrel{?}{=} c$$

Introduce a hash function $H: \{0,1\}^* \mapsto \mathbb{Z}_q$

Schnorr's signature scheme Σ_H is a tuple of probabilistic algorithms $\Sigma_H = (\mathsf{Gen},\mathsf{Sign},\mathsf{Ver})$ defined as follows.

Digression: Primality Certificates 1975

Claus Peter Schnorr (1943–)

- The Digital Signature Algorithm (DSA) is a United States Federal Government standard or FIPS for digital signatures.
- It was proposed by the National Institute of Standards and Technology (NIST) in August 1991 for use in their Digital Signature Standard (DSS), specified in FIPS 186, adopted in 1993.
- ▶ DSA makes use of a cryptographic hash function \mathcal{H} .
- ▶ 2024: ECDSA with \mathcal{H} := SHA256 is widespread

Textbook ElGamal signature scheme (1985)

Public parameters. A k-bit prime p and a generator g of \mathbb{Z}_p^{\times}

Key generation. The secret key is $x \stackrel{\$}{\leftarrow} \mathbb{Z}_{p-1}$ The public key is $y = g^x \mod p$

Signature. To sign a message $m \in \mathbb{Z}_{p-1}$, generate (r,s) s.t.

$$g^m = y^r r^s \bmod p$$

as follows: $k \stackrel{\$}{\leftarrow} \mathbb{Z}_{p-1}^{\times}$, $r \leftarrow g^k \mod p$ and

$$s \leftarrow (m - xr) \cdot k^{-1} \mod p - 1$$

Output (r, s)

Verification. Verify that 1 < r < p and $g^m \stackrel{?}{=} y^r r^s \mod p$

Hashed ElGamal signature scheme

Public parameters. A k-bit prime p and a generator g of \mathbb{Z}_p^{\times}

Key generation. The secret key is $x \stackrel{\$}{\leftarrow} \mathbb{Z}_{p-1}$ The public key is $y = g^x \mod p$

Signature. To sign a message $m \in \{0,1\}^*$, generate (r,s) s.t.

$$g^{H(m)} = y^r r^s \mod p$$

as follows: $k \stackrel{\$}{\leftarrow} \mathbb{Z}_{p-1}^{\times}$, $r \leftarrow g^k \mod p$ and

$$ks \leftarrow (H(m) - xr) \cdot k^{-1} \mod p - 1$$

Output (r, s)

Verification. Verify that 1 < r < p and $g^{H(m)} \stackrel{?}{=} y^r r^s \mod p$

Hashed ElGamal signature scheme with Schnorr's trick

Public parameters. A k-bit prime p and a generator $g \in \mathbb{Z}_p^{\times}$ of prime order q

Key generation. The secret key is $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ The public key is $y = g^x \mod p$

Signature. To sign a message $m \in \{0,1\}^*$, generate (r,s) s.t.

$$g^{H(m)} = y^r r^s \mod p$$

as follows: $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{\times}$, $r \leftarrow g^k \mod p$ and

$$s \leftarrow (H(m) - xr) \cdot k^{-1} \mod q$$

Output (r, s)

Verification. Verify that 1 < r < q and $g^{H(m)} \stackrel{?}{=} y^r r^s \mod p$

Digital Signature Algorithm (DSA)

Full DSA

Public parameters. A k-bit prime p and a generator $g \in \mathbb{Z}_p^{\times}$ of prime order q

Key generation. The secret key is $x \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ The public key is $y = g^x \mod p$

Signature. To sign a message $m \in \mathbb{Z}_{p-1}$, generate (r,s) s.t.

$$g^{H(m)} = y^r r^s \bmod p$$

as follows: $k \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{\times}$, $r \leftarrow (g^k \mod p) \mod q$ and

$$s \leftarrow (H(m) + xr) \cdot k^{-1} \mod q$$

Output (r, s)

Verification. Verify that 1 < r < q, compute $w \leftarrow s^{-1} \mod q$, $u_1 = \mathcal{H}(m) \cdot w \mod q$, $u_2 \leftarrow r \cdot w \mod q$, Check whether $(q^{u_1}y^{u_2} \mod p) \mod q \stackrel{?}{=} r$

Joseph-Louis Lagrange (1736–1813)

Theorem (Lagrange)

Let G be a finite group and $H \subseteq G$ a subgroup of G. Then |H| divides |G|.

- ▶ Let $x, y \in G$
- ▶ Say that $x \sim y$ iff $\exists h \in H$ (the subgroup) such that x = yh
- ightharpoonup \sim is an equivalence relation (easy)
- ► The equivalence class of x is xH
- xH has cardinality |H|
 - Multiplication by x is a bijection in G
- ▶ Write [G : H] the number of equivalence classes
 - ► Also known as the "index of H in G"
- The equivalence classes form a partition of G
- ▶ Therefore $|G| = [G:H] \times |H|$

Interesting Consequence

Corollary

Let \mathbb{G} be a finite group and $g \in \mathbb{G}$. Then the order of g divides the order of \mathbb{G} .

Proof.

 $\langle x \rangle$ is a subgroup of $\mathbb G.$ Apply Lagrange's theorem.

Generators in \mathbb{Z}_p^{\times}

Let q denote the order of g modulo p

- $ightharpoonup \mathbb{Z}_p^{\times}$ has order p-1
 - Notice that p-1 is even
 - $\{-1,1\}$ is indeed a subgroup of order 2
- ► Therefore (Lagrange's theorem) q divides p-1
 - ∼ Considerably restricts the possible values of q
- ▶ q has a large prime factor $\Rightarrow p-1$ has a large prime factor
- $ightharpoonup \mathbb{Z}_p^{ imes}$ contains elements of order p-1
 - Non-trivial theorem (no proof given here)
 - ▶ This means that \mathbb{Z}_p^{\times} is cyclic
 - ▶ An element of order p-1 is called a **primitive root** mod p

Checking the Order of a Generator

Problem

- ▶ Someone "promises" you that g has order q modulo p
- Can you verify that it is true?

Validation?

- ▶ Check that q divides p-1
- ▶ Check that $g \neq 1$
- Check that $g^q = 1$ (necessary, **not sufficient**)
 - This proves that the actual order of g divides q
 - It could be smaller than q
- Special case: the previous test is sufficient if q is prime,

Checking the Order of a Generator

Problem

- ▶ Someone "promises" you that g has order q modulo p
- q is not prime (relevant case: primitive roots)

Validation?

- ightharpoonup Let ℓ denote the actual order of g
- Check that $g^q = 1$ (necessary, **not sufficient**)
 - ▶ This proves that ℓ divides q
 - Write $q = \ell r$
- ▶ Suppose ℓ < q ($r \neq 1$)
 - Let f be a prime factor of r (and thus of q)
 - ► Then $g^{\frac{q}{t}} = g^{\frac{q}{t}} = g^{\ell} = 1^{\frac{t}{t}} = 1$
- Contrapositive:
 - $ightharpoonup g^{\frac{q}{t}} \neq 1$ for each prime factor f of $q \Longrightarrow g$ has order q

This procedure requires knowledge of the factorization of *q*

Application: the "Oakley Groups" (RFC 2412 and 3526) Standardized Groups for the Masses

$$\begin{split} & \textit{p} = 2^{2048} - 2^{1984} - 1 + 2^{64} \times \left(\left[2^{1918} \pi \right] + 124476 \right) \\ & \textit{g} = 2 \end{split}$$

Claim: g has order p-1 modulo p

Proof.

- Let q denote the order of g
- $ightharpoonup \ell = (p-1)/2$ is also prime
 - p is a Sophie Germain prime or a safe prime
- ▶ Therefore $q \in \{2, \ell, 2\ell\}$
- $ightharpoonup g^2
 eq 1$ and $g^\ell
 eq 1$, therefore g has order p-1

Conclusion: $\mathbb{Z}_p^{\times} = \langle 2 \rangle$

Creating Generators of Prime Order in \mathbb{Z}_p^{\times} — Schnorr's Trick

Procedure

- 1. Choose a 256-bit prime q
- 2. Pick a random 1792-bit integer k
- 3. Set p = 1 + kq
- 4. If *p* is not prime, go back to 2.
- 5. Pick a random x modulo p
- 6. Set $g \leftarrow x^k$
- 7. If g = 1, go back to 5.
- 8. g has (prime) order q modulo p

- $p^q = x^{p-1} = 1$
 - By Fermat's little theorem
- ▶ Therefore, if $g \neq 1$, then g has order q
 - cf. previous slides (easy case: q is prime)

Digression: Primality Certificates 1975

If g has order n-1 modulo n, then n is prime

- $ightharpoonup \langle g \rangle \subseteq \mathbb{Z}_n^{ imes}$
- ightharpoonup g has order n-1, therefore $|\mathbb{Z}_n^{\times}|=n-1$
- ▶ All integers except zero are invertible modulo *n*
- n does not have any non-trivial divisor
- n is prime
- ▶ providing g of order n-1 proves that n is prime
- ightharpoonup Checking the order of g requires the factorization of n-1
- Certificate of n =
 - ع .1
 - 2. Factorization of n-1
 - 3. Certificates of the prime factors (recursively)
- ► Conclusion: PRIMES ∈ NP

Digression: Primality Certificates 1975

Vaughan Pratt (1944–)

DDH Can be Easier than CDH

Let g be a primitive root modulo p

- **DLOG** and **CDH** are (presumably) hard in \mathbb{Z}_p^{\times}
- ▶ But **DDH** is easy in $\mathbb{Z}_p^{\times}!!!!$
- Argument given around 1800

Leonhard Euler 1707–1783

Adrien-Marie Legendre 1752–1833

Quadratic Residuosity

Definition

Quadratic Residue $x \in \mathbb{Z}_p^{\times}$ is a **quadratic residue** $\Leftrightarrow x$ is a square $(\exists y.\ x = y^2)$

- \triangleright x and -x have the same square
- $\leadsto (p-1)/2$ quadratic residues
- Fun": $25^2 = 5 \mod 31$

Important because...

It is easy to test if $x \in \mathbb{Z}_p$ is a quadratic residue

Proposition

Let g be a primitive root modulo p > 2. Then

$$g^x$$
 is a quadratic residue $\iff x \equiv 0 \mod 2$

- \Leftarrow Trivial. $\mathbf{x} \equiv 0 \mod 2 \Rightarrow \exists \mathbf{y}.\mathbf{x} = 2\mathbf{y} \Rightarrow \mathbf{g}^{\mathbf{x}} = \mathbf{g}^{2\mathbf{y}} = (\mathbf{g}^{\mathbf{y}})^2$
- \Rightarrow Suppose that $g^x = \alpha^2$
 - ▶ *g* is a primitive root: $\exists y.\alpha = g^y$
 - $\Rightarrow g^{x} = \alpha^{2} = (g^{y})^{2} = g^{2y}$
 - ► Therefore (lemma from last week)

$$x \equiv 2y \mod p - 1 \quad \Rightarrow \quad \exists k.x = 2y + k(p - 1)$$

- ightharpoonup p is odd $\leadsto p-1=2\ell$, so $x=2(y+k\ell)$
- x is even

One-Way Functions?

Exponentiation mod $p: x \mapsto g^x$

- ▶ I claimed that it is one-way...
 - $ightharpoonup \mathcal{A}$ does not recover x from F(x)

One-Way Functions?

Exponentiation mod $p: x \mapsto g^x$

- ► I claimed that it is one-way...
 - \triangleright A does not recover x from F(x)
- ▶ Could A recover **one bit** P(x) of information about x?

Legendre Symbol and Euler's Criterion

Definition (Legendre Symbol)

Let p be an odd prime number.

$$\begin{pmatrix} \frac{\mathbf{a}}{p} \end{pmatrix} \stackrel{\text{def}}{=} \begin{cases} 1 & \text{if } \mathbf{a} \text{ is a quadratic residue mod } p \\ 0 & \text{if } \mathbf{a} = 0 \\ -1 & \text{if } \mathbf{a} \text{ is a not quadratic residue mod } p \end{cases}$$

 The Legendre symbol is just a weird notation for this specific function

Theorem: Euler's Criterion

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$$

Weak Bits of the Discrete Logarithm

Exponentiation mod $p: x \mapsto g^x$

With g a primitive root modulo p

Euler's Criterion: p > 2 prime $\Rightarrow \left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$

Proof.

Let's work inside the finite field \mathbb{Z}_p .

$$P(X) = X^{p-1} - 1 = \left(X^{\frac{p-1}{2}}\right)^2 - 1 = \underbrace{\left(X^{\frac{p-1}{2}} - 1\right)}_{P_1(X)} \underbrace{\left(X^{\frac{p-1}{2}} + 1\right)}_{P_{-1}(X)}$$

1. α is a QR $\Longrightarrow \alpha^{\frac{p-1}{2}} \equiv 1 \mod p$ Let $\alpha = \beta^2$ be a quadratic residue. Then

$$P_1(\alpha) = P_1(\beta^2) = (\beta^2)^{\frac{\rho-1}{2}} - 1 = \beta^{\rho-1} - 1 = 0$$

(last step by Fermat's little theorem — everything mod p)

2. α is not a QR $\Longrightarrow P_1(\alpha) \neq 0$ Note that $P_1(0) = -1$, so that $P_1(X) \neq 0$ $P_1(X)$ vanishes over the (p-1)/2 quadratic residues $\deg P_1 = (p-1)/2 \leadsto P_1$ cannot have any more roots

Euler's Criterion:
$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$$

$$P(X) = X^{p-1} - 1 = \left(X^{\frac{p-1}{2}}\right)^2 - 1 = \underbrace{\left(X^{\frac{p-1}{2}} - 1\right)}_{P_1(X)}\underbrace{\left(X^{\frac{p-1}{2}} + 1\right)}_{P_{-1}(X)}$$

- 1. α is a QR $\Longrightarrow \alpha^{\frac{p-1}{2}} = 1$
- 2. α is not a QR $\Longrightarrow P_1(\alpha) \neq 0$
- 3. α is not a QR $\Longrightarrow \alpha^{\frac{p-1}{2}} = -1$
 - Fermat's little theorem $\Rightarrow P(\alpha) = 0$
 - $P_1(\alpha) \neq 0 \Longrightarrow P_{-1}(\alpha) = 0$
 - (everything mod p again)

