Prüfungsteilnehmer	Prüfungstermin	Einzelprüfungsnummer
Kennzahl:		
Kennwort:	FRÜHJAHR	66110
Arbeitsplatz-Nr.:	1990	

Erste Staatsprüfung für ein Lehramt an öffentlichen Schulen
- Prüfungsaufgaben -

Fach: Informatik (vertieft studiert)

Einzelprüfung: Automatentheorie, Algorithm. Sprachen

Anzahl der gestellten Themen (Aufgaben): 1

Anzahl der Druckseiten dieser Vorlage: 3

bitte wenden!

Sämtliche Teilaufgaben sind zu bearbeiten!

Teilaufgabe 1

Gegeben sei ein endliches Alphabet A und eine ungeordnete, endliche, nichtzyklische Liste von K Paaren (n,t) für ein vorgegebenes $K \in \mathbb{N}$, worin die n nichtleere endliche Zeichenreihen aus $A^* \setminus \{\epsilon\}$ und die t natürliche Zahlen aus \mathbb{N} seien. In A^* steht die lexikographische Ordnung zur Verfügung, die zur Unterscheidung von der Ordnung < in \mathbb{N} mit \square bezeichnet werde. Außerdem gelte für alle n in den Paaren der Liste: $|n| \leq L$ für ein vorgegebenes $L \in \mathbb{N}$, wobei mit |x| die Länge einer Zeichenreihe $x \in A^*$ bezeichnet wird.

Die Paare der Liste können als einfache Karteikarten in einer Telefondatei aufgefaßt werden mit der Bedeutung:

 $n \triangleq Name$

 $t \triangleq \text{Telefonnummer.}$

Es wird vorausgesetzt, daß für verschiedene Paare (n_i, t_i) und (n_j, t_j) in der Liste gilt: $n_i \neq n_j$ und $t_i \neq t_j$.

- 1. Geben Sie Datenstrukturen durch Typ- und Identitätsvereinbarungen an, mit denen die folgenden Teilaufgaben bearbeitet werden können.
- 2. Formulieren Sie einen Algorithmus, mit dessen Hilfe eine Zugriffsstruktur auf die Liste aufgebaut wird. Die Zugriffsstruktur soll es ermöglichen, zu einem Namen n mit der Komplexität $O(\log K)$
 - (a) zu entscheiden, ob die Liste einen Eintrag zu n enthält, und
 - (b) gegebenenfalls die zugehörige Telesonnummer t anzugeben.
- 3. Schreiben Sie eine Prozedur zugriff in PASCAL, die den unter 2. formulierten Algorithmus realisiert.
- 4. Schreiben Sie eine Prozedur suche, die mit Hilfe der unter 3. aufgebauten Zugriffsstruktur zu einem $n \in A^*$ feststellt, ob die Liste einen Eintrag zu n enthält, und gegebenenfalls die zugehörige Telefonnummer t ausgibt. Die Komplexität der Prozedur suche soll $O(\log K)$ sein.

Teilaufgabe 2

Gegeben sei das Alphabet $A = \{a, b\}$. Mit x_a bzw. x_b werde für ein $x \in A^*$ die Zeichenreihe aus $\{a\}^*$ bzw. $\{b\}^*$ bezeichnet, die durch Streichen aller b bzw. a aus x entsteht. Seien also z.B. x = aabab und y = bbbb, dann ist $x_a = aaa$, $x_b = bb$, $y_a = \epsilon$ und $y_b = bbbb$. Gegeben sei nun die wie folgt definierte Teilmenge M von A^* :

$$x \in M \Leftrightarrow_{df} |x_a| \leq |x_b|,$$

wobei für ein $x \in A^*$ mit |x| die Länge von x bezeichnet wird.

- 1. Zeigen Sie, daß die Menge $M \subset A^*$ nicht regulär ist.
- 2. M ist als Sprachschatz einer kontextsreien Sprache über dem terminalen Alphabet A darstellbar. Beweisen Sie diese Aussage dadurch, daß Sie einen Kellerautomaten angeben, von dem Sie zeigen, daß er genau die Menge M akzeptiert.
- 3. Konstruieren Sie eine kontextfreie Grammatik über dem terminalen Alphabet A, die in A* genau die Menge M erzeugt, und begründen Sie die einzelnen Schritte Ihres konstruktiven Vorgehens.

Teilaufgabe 3

Gegeben seien zwei ganze Zahlen p und q mit 0 < q < p und eine wie folgt definierte rekursive Rechenvorschrift f für ganze Zahlen $z \in \mathbb{Z}$:

$$f(z) := \begin{cases} f(f(z-p)) & \text{für } z \ge 100 \\ z+q & \text{für } z < 100 \end{cases}$$

Beweisen Sie, daß die Rechenvorschrift f für alle $z \in \mathbb{Z}$ terminiert und somit eine Funktion

$$f: \mathbb{Z} \to \mathbb{Z}$$

definiert.

Hinweis:

Betrachten Sie für $z \ge 100$ die durch f(z) veranlaßten rekursiven Aufrufe $f(z_i)$ von f und zeigen Sie, daß für alle i gilt: $z_i < z$.