13 | LA INTEGRAL DE RIEMANN

13.1 DEFINICIÓN

13.1.1 Sumas superiores e inferiores

Definición 13.1.1. Una partición P del intervalo [a, b] es un conjunto

$$P = \{x_0, x_1, \dots, x_n\}$$

 $\text{cumpliendo que } a = x_0 < x_1 < \ldots < x_n = b.$

Dadas dos particiones P y P' del intervalo [a,b], diremos que P es más *fina* que P' si P' \subset P. Notaremos $\mathcal{P}([a,b])$ al conjunto de todas las particiones del intervalo [a,b].

Definición 13.1.2. Sea $f: [a,b] \to \mathbb{R}$ una función acotada y $P \in \mathcal{P}([a,b])$. La suma superior de la función f asociada a P es

$$S(f, P) = \sum_{i=1}^{n} \sup f([x_{i-1}, x_i]) (x_i - x_{i-1})$$

y la suma inferior es

$$S(f,P) = \sum_{i=1}^{n} \inf f([x_{i-1},x_i]) (x_i - x_{i-1}).$$

Figura 35: Sumas inferiores y superiores de una función

Proposición 13.1.3. Sea $f: [a,b] \to \mathbb{R}$ una función acotada y sean $P_1, P_2 \in \mathcal{P}([a,b])$. Entonces,

- 1) Si P_1 es más fina que P_2 , $I(f,P_2) \leqslant I(f,P_1) \leqslant S(f,P_1) \leqslant S(f,P_2)$, y
- 2) $I(f, P_1) \leq S(f, P_2)$.

Demostración. 1) Se demuestra por inducción sobre el número de elementos de $P_1 \setminus P_2$. Si sólo hay un elemento de diferencia, entonces

$$P_2 = \{x_0, x_1, \dots, x_n\}$$

y existe un natural $k \le n$ y un número real y tal que $x_{k-1} < y < x_k$ y

$$P_1 = \{x_0, x_1, \dots, x_{k-1}, y, x_k, \dots, x_n\}.$$

Calculemos la diferencia entre las sumas superiores correspondientes:

$$\begin{split} S(f,P_2) - S(f,P_1) &= \sup\{f(x): x \in [x_{k-1},x_k]\}(x_k - x_{k-1}) \\ &- (\sup\{f(x): x \in [x_{k-1},y]\}(y - x_{k-1}) \\ &+ \sup\{f(x): x \in [y,x_k]\}(x_k - y)) \geqslant 0. \end{split}$$

Para las sumas inferiores, el razonamiento es análogo.

Supongamos que lo hemos demostrado cuando $P_1 \setminus P_2$ tiene n elementos y comprobemos que también es cierto cuando la diferencia tiene n+1 elementos. Para ello sólo hay que separar un elemento y encadenar lo que sabemos, los casos n y 1.

2) Si $P_1 \cup P_2$ es la partición obtenida al unir, ordenar y eliminar términos repetidos.

$$I(f, P_1) \leqslant I(f, P_1 \cup P_2) \leqslant S(f, P_1 \cup P_2) \leqslant S(f, P_2). \quad \Box$$

Integrales de Darboux

La construcción de la integral usando sumas superiores e inferiores se debe a Darboux. Riemann define la integral usando lo que, un poco más adelante, llamaremos sumas de Riemann.

Definición 13.1.4. Sea $f: [a,b] \to \mathbb{R}$ una función acotada. Se define la *integral* superior de *Darboux* de f en [a,b] como

$$\int_{a}^{b} f(x) dx = \inf \{ S(f, P) : P \in \mathcal{P}([a, b]) \}$$

y la integral inferior de Darboux como

$$\int_{\underline{a}}^{b} f(x) dx = \sup \{ I(f, P) : P \in \mathcal{P}([a, b]) \}.$$

Usaremos la notación $\bar{\int}_a^b f y \bar{\int}_a^b f(x) dx$ indistintamente. La segunda es más útil cuando es necesario poner de manifiesto la variable independiente.

Definición 13.1.5. Sea $f: [a,b] \to \mathbb{R}$ una función acotada. Diremos que la función f es *integrable* cuando $\bar{\int}_a^b f(x) dx = \underline{\int}_a^b f(x) dx$. En ese caso, denotaremos $\int_a^b f(x) dx$ a dicho valor.

Ejemplo 13.1.6. 1) Vamos a calcular $\int_a^b x \, dx$. Consideremos la partición que consiste en dividir el intervalo [a,b] en n trozos iguales, esto es,

$$P_n = \left\{ a, a + \frac{b-a}{n}, a + 2 \cdot \frac{b-a}{n}, \dots, a + n \cdot \frac{b-a}{n} = b \right\}.$$

Entonces,

$$\begin{split} S(x,P_n) &= \frac{b-a}{n} \left(\left(a + \frac{b-a}{n} \right) + \dots + \left(a + n \frac{b-a}{n} \right) \right) \\ &= \frac{b-a}{n} \left(na + (b-a) \left(\frac{1}{n} + \dots + \frac{n}{n} \right) \right) \\ &= \frac{(b-a)^2 (1+\dots + n)}{n^2} + \frac{b-a}{n} \cdot na \end{split}$$

usando que $1 + \cdots + n = n(n+1)/2$,

$$=\frac{(b-a)^2n(n+1)}{2n^2}+(b-a)a.$$

Tomando límites,

$$\lim_{n\to\infty}S(x,P_n)=\frac{(b-\alpha)^2}{2}+(b-\alpha)\alpha=\frac{b^2-\alpha^2}{2}\,.$$

Figura 36: Bernhard Riemann (1826–1866)

De forma similar se prueba que $\lim_{n\to\infty} S(x,P_n) = (b^2 - a^2)/2$. Como ambos límites coinciden, las integrales superiores e inferiores también lo hacen y, por tanto, la función es integrable. Además,

$$\int_a^b x \, dx = \frac{b^2 - a^2}{2} \, .$$

2) La función de Dirichlet $f: [0,1] \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 1, & \text{si } x \in [0,1] \cap \mathbb{Q}, \\ 0, & \text{si } x \in [0,1] \cap (\mathbb{R} \setminus \mathbb{Q}), \end{cases}$$

no es integrable. En efecto, si P es una partición $S(f,P)=1\ y\ I(f,P)=0.$ Por tanto,

$$\overline{\int}_0^1 f = 1 \neq \int_0^1 f = 0.$$

13.1.3 Área e integral

Si $f: [a,b] \to \mathbb{R}$ es una acotada y no negativa, la integral de f en [a,b] representa el área bajo la gráfica de la función entre las rectas x = a y x = b.

Esto da lugar a pensar cómo podríamos definir una función que asociara a un subconjunto del plano su área. ¿Qué propiedades crees que debería cumplir una tal función?

Figura 37: La integral de una función positiva es el área bajo su gráfica

13.2 CARACTERIZACIONES DE LA INTEGRABILIDAD

De la definición de integral y las caracterizaciones de supremo e ínfimo se deduce el siguiente resultado.

Lema 13.2.1. Sea $f: [a, b] \to \mathbb{R}$ una función acotada. La función f es integrable con integral $I \in \mathbb{R}$ si, y sólo si, para cada $\varepsilon > 0$ existe una partición P tal que

$$I - \varepsilon < I(f, P) \le I \le S(f, P) < I + \varepsilon$$
.

Demostración. Supongamos que f es integrable y sea $I=\int_{\alpha}^{b} f$. Entonces, usando las caracterizaciones de supremo e ínfimo, dado $\epsilon>0$

$$\begin{split} \exists \, \mathsf{P}_1 \in \mathcal{P}([\mathfrak{a}, \mathfrak{b}]) : \quad & \overline{\int}_{\mathfrak{a}}^{\mathfrak{b}} \, \mathsf{f} - \frac{\varepsilon}{2} < \mathsf{S}(\mathsf{f}, \mathsf{P}_1) \leqslant \quad \overline{\int}_{\mathfrak{a}}^{\mathfrak{b}} \, \mathsf{f}, \\ \exists \, \mathsf{P}_2 \in \mathcal{P}([\mathfrak{a}, \mathfrak{b}]) : \int_{\mathfrak{a}}^{\mathfrak{b}} \mathsf{f} + \frac{\varepsilon}{2} > \mathsf{I}(\mathsf{f}, \mathsf{P}_2) \geqslant \int_{\mathfrak{a}}^{\mathfrak{b}} \mathsf{f}. \end{split}$$

Si tomamos $P = P_1 \cup P_2$,

$$I - \varepsilon < I(f, P_1) \le I(f, P) \le I \le S(f, P) \le S(f, P_2) < I + \varepsilon$$
.

Recíprocamente, si existe I tal que

$$I - \varepsilon < I(f, P) \le I \le S(f, P) < I + \varepsilon$$
.

es claro que la integral superior y la inferior coinciden.

Este lema tiene la dificultad de que para demostrar la integrabilidad es necesario conocer un candidato a dicho valor previamente. La siguiente caracterización elimina dicha necesidad. **Proposición 13.2.2** (Criterio de Cauchy). *Sea* $f: [a, b] \to \mathbb{R}$ *una función acotada. Las siguientes afirmaciones son equivalentes.*

- 1) La función f es integrable.
- 2) Dado $\varepsilon > 0$, existe $P \in \mathcal{P}([a,b])$ tal que $S(f,P) I(f,P) < \varepsilon$.
- 3) Existe una sucesión de particiones $\{P_n\}_{n\in\mathbb{N}}$ del intervalo $[\mathfrak{a},\mathfrak{b}]$ tal que

$$\lim_{n\to\infty} (S(f,P_n) - I(f,P_n)) = 0.$$

Demostración. Vamos a ver que $1)\Rightarrow 2)\Rightarrow 3)\Rightarrow 1$).

1) \Rightarrow 2) Por el lema 13.2.1, dado ε > 0 existe una partición P tal que

$$I - \varepsilon/2 < I(f, P) \leqslant I \leqslant S(f, P) < I + \varepsilon/2.$$

En particular, se tiene que $S(f, P) - I(f, P) < \epsilon$.

- $2) \Rightarrow 3)$ Dado un número natural n, aplicamos la hipótesis tomando $\epsilon = 1/n$. Encontramos así una sucesión de particiones P_n cumpliendo que $S(f,P_n)-I(f,P_n)<1/n$ como queríamos.
- $3) \Rightarrow 1)$ Veamos que coinciden la integral superior y la inferior:

$$0\leqslant \ \overline{\int}_{\alpha}^{b}f-\underline{\int}_{\alpha}^{b}f\leqslant S(f,P_{n})-I(f,P_{n}).$$

Tomando límites cuando n tiende a infinito se obtiene lo pedido. \Box

Observación 13.2.3 (Oscilación de una función). Es cómodo escribir la integrabilidad usando la oscilación de una función en un intervalo:

$$osc(f, [a, b]) = sup\{|f(x) - f(y)| : x, y \in [a, b]\}.$$

Con esta notación, una función es integrable si dado $\epsilon > 0$ existe una partición P tal que

$$\sum_{i=1}^n osc(f,[x_{k-1},x_k])(x_k-x_{k-1})<\epsilon.$$

Figura 38: Una función es integrable si se puede hacer la diferencia entre las sumas superiores e inferiores arbitrariamente pequeña para conveniente partición

13.3 CONDICIONES SUFICIENTES

Teorema 13.3.1. Las funciones continuas son integrables.

Demostración. Sea P_n la partición que divide $[\mathfrak{a},\mathfrak{b}]$ en \mathfrak{n} trozos iguales, esto es,

$$P_n = \left\{ a, a + \frac{b-a}{n}, a + 2 \cdot \frac{b-a}{n}, \dots, a + n \cdot \frac{b-a}{n} = b \right\}.$$

Vamos a probar que $\lim_{n\to\infty} \left(S(f,P_n)-I(f,P_n)\right)=0$. Dado $\epsilon>0$, usando que, por el teorema de Heine, la función f es uniformemente continua, existe $\delta>0$ tal que si $x,y\in [a,b]$ con $|x-y|<\delta$ entonces $|f(x)-f(y)|<\epsilon/(b-a)$. Sea n_0 un número natural tal que $(b-a)/n_0<\delta$. Si $n\geqslant n_0$, entonces

$$\sup f([x_{i-1},x_i]) - \inf f([x_{i-1},x_i]) \leqslant \frac{\epsilon}{b-\alpha}$$

y, por tanto,

$$|S(f,P_n)-I(f,P_n)| \leqslant \frac{\varepsilon}{b-a} \sum_{i=1}^n (x_i-x_{i-1}) = \frac{\varepsilon}{b-a} \cdot (b-a) = \varepsilon.$$

Teorema 13.3.2. Las funciones monótonas son integrables.

Demostración. Sea $f: [a,b] \to \mathbb{R}$ una función creciente y sea P_n la partición

$$P_n = \left\{ a, a + \frac{b-a}{n}, a + 2 \cdot \frac{b-a}{n}, \dots, a + n \cdot \frac{b-a}{n} = b \right\}.$$

Entonces, si $x_i = a + \frac{i(b-a)}{n}$, i = 0, 1, ..., n,

$$\begin{split} S(f,P_n)-I(f,P_n) &= \sum_{i=1}^n \big(f(x_i)-f(x_{i-1})\big)(x_i-x_{i-1}) \\ &= \frac{b-a}{n} \sum_{i=1}^n \big(f(x_i)-f(x_{i-1})\big) \\ &= \frac{b-a}{n} \cdot (f(b)-f(a)) \xrightarrow{n \to \infty} 0. \end{split}$$

13.4 SUMAS DE RIEMANN

La definición de integral de Riemann usando sumas superiores e inferiores anterior se debe a Jean Gaston Darboux. La construcción original de Riemann se basa en las llamadas sumas de Riemann.

$$\Sigma(f,\dot{P}) = \sum_{i=1}^{n} f(t_i) (x_i - x_{i-1}).$$

Si $t_i \in [x_{i-1}, x_i]$, entonces

$$\inf f([x_{i-1}, x_i]) \leq f(t_i) \leq \sup f([x_{i-1}, x_i])$$

y, por tanto, $I(f, P) \leq \Sigma(f, \dot{P}) \leq S(f, P)$.

Definición 13.4.2. Sea P una partición del intervalo [a, b]. La norma de P es

$$||P|| = máx\{|x_i - x_{i-1}| : i = 1, 2, ..., n\}.$$

La norma de una partición etiquetada es la norma de la partición asociada.

Lema 13.4.3. *Sea* $f: [a,b] \to \mathbb{R}$ *una función acotada y sea* P *una partición de* [a,b].

1) Si $c \in]a, b[$, consideremos la partición $P' = P \cup \{c\}$. Si $|f(x)| \leq K$ para cualquier $x \in [a, b]$, entonces

$$S(f, P') \geqslant S(f, P) - 2K ||P||$$
.

2) Si P' es una partición tal que P' \setminus P tiene n puntos, entonces

$$S(f, P') \geqslant S(f, P) - 2nK ||P||$$
.

Figura 39: La suma de Riemann obtenida al elegir los extremos inferiores en cada uno de los intervalos de la partición

Demostración. 1) Supongamos que $P = \{x_0, x_1, \dots, x_n\}$. Si $c \in P$, la desigualdad (de hecho, igualdad) es inmediata. Supongamos que $x_{i-1} < c < x_i$, entonces

$$\begin{split} S(f,P) - S(f,P') &= \big(\sup f([x_{i-1},x_i]) - \sup f([x_{i-1},c]) \big) (c-x_{i-1}) \\ &+ \big(\sup f([x_{i-1},x_i]) - \sup f([c,x_i]) \big) (x_i-c) \\ &\leqslant 2K(x_i-c+c-x_{i-1}) \\ &\leqslant 2K(x_i-x_{i-1}) \leqslant 2K \|P\|. \end{split}$$

2) Aplicando el primer apartado n veces, por inducción, se obtiene lo pedido.

El criterio de Cauchy (proposición 13.2.2) caracteriza la integrabilidad. El siguiente teorema nos enseña como elegir las particiones.

Teorema 13.4.4 (de Darboux). *Sea* $f: [a,b] \to \mathbb{R}$ *una función acotada. Dado* $\varepsilon > 0$ *existe* $\delta > 0$ *tal que si* P *es un partición con* $\|P\| < \delta$ *entonces*

$$\int_a^b f - \epsilon < I(f,P) \leqslant \int_a^b f \leqslant \ \overline{\int}_a^b f \leqslant S(f,P) < \ \overline{\int}_a^b f + \epsilon.$$

En particular, si $\{P_n\}$ es una sucesión de particiones tales que lím _{n\to\infty} \|P_n\|=0 , se cumple que

$$\lim_{n\to\infty}S(f,P_n)=\ \, \bar{\int}_a^bf,\qquad \lim_{n\to\infty}I(f,P_n)=\int_a^bf.$$

Demostración. Sea K tal que $|f(x)| \le K$ para todo $x \in [a,b]$. Dado ε , por la definición de integral superior, existe una partición P_0 de [a,b] tal que

$$S(f,P_0) < \int_a^b f + \frac{\epsilon}{2}.$$

Sea m el número de puntos de la partición P_0 y sea $\delta=\epsilon/(4mK)$. Sea P una partición con $\|P\|<\delta$ y consideremos la partición $P_1=P\cup P_0$. Entonces

$$S(f, P_1) \geqslant S(f, P) - 2rK \|P\|$$

$$\geqslant S(f, P) - 2mK \|P\| \geqslant S(f, P) - \frac{\varepsilon}{2}.$$
(13.1)

Por otra parte, P₁ es más fina que P₀ y, por tanto,

$$S(f, P_1) \le S(f, P_0) < \int_a^b f + \frac{\varepsilon}{2}.$$
 (13.2)

De (13.1) y (13.2) se obtiene que

$$S(f,P) - \frac{\varepsilon}{2} < \int_{a}^{b} f + \frac{\varepsilon}{2}$$

como queríamos demostrar. Para las sumas inferiores el desarrollo es similar o se le puede aplicar lo anterior a -f.

Teorema 13.4.5. Sea $f: [a,b] \to \mathbb{R}$ una función acotada. Las siguientes afirmaciones son equivalentes:

- 1) La función f es integrable y su integral es I.
- 2) Dado $\epsilon > 0$ existe $\delta > 0$ tal que si \dot{P} es una partición etiquetada de $[\alpha, b]$ con $||\dot{P}|| < \delta$ entonces $|\Sigma(f, \dot{P}) I| < \epsilon$.

Demostración. Supongamos en primer lugar que f es integrable: dado $\varepsilon > 0$ existe $\delta > 0$ tal que si P es una partición verificando que $\|P\| < \delta$ entonces

$$\int_{a}^{b} f - \epsilon < I(f, P) \leqslant S(f, P) < \ \overline{\int}_{a}^{b} f + \epsilon.$$

Como las sumas integrales de Riemann las podemos acotar por las sumas superiores e inferiores,

$$I(f, P) \leq \Sigma(f, \dot{P}) \leq S(f, P),$$

se obtiene lo pedido.

Recíprocamente, dado ε existe δ de forma que si \dot{P} es una partición con norma menor que delta, entonces

$$I - \epsilon/2 < \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}) < I + \epsilon/2$$

para cualquier elección de puntos t_i . Como la desigualdad es cierto para cualquier t_i , se tiene que

$$I - \varepsilon < I - \varepsilon/2 \le I(f, P) \le S(f, P) \le I + \varepsilon/2 < I + \varepsilon$$

y, por tanto, f es integrable y $\int_{a}^{b} f = I$.

Aunque $\Sigma(f,\dot{P})$ no es una función, abusando del lenguaje, algunas veces escribimos

$$\underset{\|\dot{P}\|\to 0}{\text{lim}}\, \Sigma(f,\dot{P}) = \int_{\alpha}^{b} f.$$

Observación 13.4.6. Sea $f: [a,b] \to \mathbb{R}$ una función integrable. La partición

$$P_{n} = \left\{a, a + \frac{b - a}{n}, \dots, a + n \frac{b - a}{n} = b\right\}$$

obtenida al dividir el intervalo [a,b] en n trozos iguales tiene norma (b-a)/n. Si elegimos $t_i=a+i\frac{b-a}{n}$, los extremos superiores de cada uno de los subintervalos, se tiene que

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right). \tag{13.3}$$

Lo mismo se cumple para cualquier otra elección de puntos t_i . Esta fórmula tiene la gran ventaja de que es lineal y, una vez conocido que la función es integrable, nos permitirá probar fácilmente la linealidad de la integral.

Ejemplo 13.4.7. La función f(x) = 1/(x+1) es continua y, por tanto, integrable en [0,1]. Usando la regla de Barrow,

$$\int_0^1 \frac{\mathrm{d}x}{1+x} = [\log(1+x)]_0^1 = \log(2).$$

Si consideramos la partición

$$P_n = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\right\}$$

y tomamos como etiquetas el extremo superior de cada de los intervalos, esto es,

$$\dot{P}_{n} = \left(P_{n}, \left\{\frac{k}{n}\right\}_{n=1}^{n}\right),$$

entonces

$$\begin{split} \log(2) &= \int_0^1 \frac{\mathrm{d}x}{1+x} = \lim_{n \to \infty} \Sigma\left(f, \dot{P}_n\right) \\ &= \lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{1+\frac{1}{n}} + \frac{1}{1+\frac{2}{n}} + \dots + \frac{1}{1+\frac{n}{n}}\right) \\ &= \lim_{n \to \infty} \frac{1}{n} \left(\frac{n}{n+1} + \frac{n}{n+2} + \dots + \frac{n}{n+n}\right) \\ &= \lim_{n \to \infty} \left(\frac{n}{n^2+1} + \frac{n}{n^2+2n} + \dots + \frac{n}{n^2+n^2}\right). \end{split}$$

Resumiendo, si un límite lo podemos expresar como la suma de Riemann de una función, podemos calcular dicho límite si sabemos el valor de dicha integral.

13.5 EJERCICIOS

Ejercicio 13.1. Prueba, usando directamente alguna descripción de la integral, que

$$\int_0^1 x^p \, dx = \frac{1}{p+1}, \quad \forall p \in \mathbb{N} \cup \{0\}.$$

Ejercicio 13.2. Justifica las siguientes desigualdades

1)
$$\frac{1}{6} < \int_0^2 \frac{\mathrm{d}x}{10 + x} < \frac{1}{5}$$

2)
$$\frac{1}{110} < \int_{0}^{1} \frac{x^{9}}{10 + x} dx < \frac{1}{10}$$
.

Ejercicio 13.3. Sea $f: [a,b] \to \mathbb{R}$ integrable. Supongamos que para cualesquiera a < c < d < b existe un punto $x \in]c,d[$ tal que f(x) = 0. Prueba que $\int_0^b f = 0$.

Ejercicio 13.4. Sea $f: [a,b] \to \mathbb{R}$ una función continua verificando que $f(x) \ge 0$ para todo $x \in [a,b]$. Demuestra que si existe $x_0 \in [a,b]$ tal que $f(x_0) > 0$, entonces $\int_a^b f(x) \, dx > 0$.

Ejercicio 13.5. Sean a, $b \in \mathbb{R}$ con a < b y sea $f: [a, b] \to \mathbb{R}$ una función continua. Prueba que, para $\lambda \in \mathbb{R}$, se verifica

$$\lambda = \int_a^b f(x) \, dx \iff \lambda \in \Sigma(f,\dot{P}), \quad \forall \, \dot{P} \in \dot{P}[a,b].$$

Ejercicio 13.6. Calcula los límites de las siguientes sucesiones expresándolas como sumas integrales

1)
$$x_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 4} + \dots + \frac{n}{n^2 + n^2}$$

2)
$$x_n = \frac{1}{\sqrt{n(n+1)}} + \frac{1}{\sqrt{n(n+2)}} + \dots + \frac{1}{\sqrt{n(n+n)}}$$