Hierarchical Codes: How to Make Erasure Codes Attractive for Peer-to-Peer Storage Systems

Alessandro Duminuco and Ernst Biersack
EURECOM
Sophia Antipolis, France
(Best paper award in P2P'08)

Presented by: Amir H. Payberah amir@sics.se

What's The Problem?

What Is The Problem?

Does file backup fit the P2P model?

Churn and Redundancy

• The challenge in P2P model is to provide storage reliability under churn.

The key solution is to add redundancy to the data.

The Basic Solution: Replication

- With 4 replicas, even if 3 peers are offline we still have the file.
- Every file consumes storage for 4 times its size!!

A Better Solution: Coding

- Any k fragments are sufficient to reconstruct the file:
 - We can sustain any h losses.
- Every file consumes storage for (k+h)/k times its size:
 - If k=6 and h=3, (k+h)/k=1.5 Instead of 4!!

Repair Communication Cost

Replication

Coding

• To create a single fragment we must transfer k fragments, i.e. the size-equivalent of the whole file!!

Storage vs Repair Cost

• If we want to sustain 10 losses:

Repair Cost makes coding unattractive.

Motivation

Can we mitigate the repair cost of coding while retaining storage efficiency?

Efficiency Metrics

- Redundancy factor
 - $\beta = |S|/|O|$
 - |S|: size of the stored data.
 - |O|: size of the original data.

- Repair degree
 - The amount of data read with respect to the amount of new redundant data created.
 - Denoted as d.

Efficiency Analysis

- Replication
 - $\beta = R$
 - d = 1
- Block replication
 - $\beta = R$
 - d = 1
- Erasure codes
 - $\beta = (k + h) / k$
 - d = k

Linear Codes

- A specific implementation of erasure codes.
- fi: ith fragment
- bi:ith fragment
- c_{i,j}: coefficients

$$bi = \begin{cases} fi & i \le k \\ \sum (ci, j \times fj) & k < i \le k + h \end{cases}$$

- Any 4 of these 7 fragments can reconstruct the original file if the coefficients are linearly independent. (will be back to it later)
- Repair degree d = k

Hierarchical Code

 Additional fragments can be linear combinations of a subset of the original ones.

- Not all the subsets of 4 fragments are sufficient to reconstruct the file.
- The repair cost varies accordingly to the particular fragments that are available (we can have d < k).

Comparison

Generalizing The Concept

- If we take a 64+64 traditional linear code and we apply the same idea hierarchically...
- If we set the hierarchy differently we obtain a different trade-off.

Experiments

Synthetic Data

- An event-driven simulator.
- They compared a 64+64 Reed-Solomon code (linear code) with one instance of a 64+64 Hierarchical code.
- They generated synthetic peer behavior with exponentially distributed uptimes, downtimes and lifetimes.
- As a general rule, the smaller is the up-ratio the higher the number of repairs.

Synthetic Data Results

Real Data

- PlanetLab traces consist in 669 nodes monitored for 500 days.
- KAD traces consist in the availability of about 6500 peers in the KAD network for about 5 months.

Real Data Results

PlanetLab

	Number of Repairs	Number of blocks transferred
Reed-Solomon Code	472	30208
Hierarchical Code	637	4624

KAD

	Number of Repairs	Number of blocks transferred
Reed-Solomon Code	765	48960
Hierarchical Code	3888	39710

Conclusion

Conclusion

- They proposed a new class of erasure codes called Hierarchical Codes.
- They aim at coupling the communication efficiency of replication with the storage efficiency of coding.
- Experiments showed that Hierarchical Codes require more repairs, but those repairs are so cheap that the resulting communication cost is smaller.

More Detail About Coding

Linear Codes

- fi: ith fragment
- bi:ith fragment
- c_{i,j}: coefficients

$$bi = \begin{cases} fi & i \le k \\ \sum (ci, j \times fj) & k < i \le k + h \end{cases}$$

 Any 4 of these 7 fragments can reconstruct the original file if the coefficients are linearly independent.

Linear Codes

$$B = C' F$$

$$F = S^{-1} Bs$$

- If any sub-matrix S built using k rows from C' is invertible, then the original fragments can be always reconstructed by F = S⁻¹B_s.
- Bs: The k-long subvector of B, corresponding to the coefficients chosen in S.
- If this property is satisfied, the code obtained is a (k,h)-code.

Coefficient Matrix

- Reed-Solomon Codes
- Random Linear Codes

Reed-Solomon

- Ik, k: Indentity matrix.
- Ch, k: Coefficient Matrix.

• If
$$k = 2$$
 and $h = 3$

$$B = \begin{pmatrix} I \\ C \end{pmatrix} F = C' F$$

$$B = \begin{pmatrix} I \\ C \end{pmatrix} F = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \\ C_{3,1} & C_{3,2} \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ C_{1,1}f_1 + C_{1,2}f_2 \\ C_{2,1}f_1 + C_{2,2}f_2 \\ C_{3,1}f_1 + C_{3,2}f_2 \end{pmatrix}$$

Reed-Solomon Codes

Define the matrix C as a h x k Vandermonde matrix.

•
$$C_{i,j} = a_i^{j-1}$$

$$V = \begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1} \\ 1 & \alpha_3 & \alpha_3^2 & \dots & \alpha_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \alpha_m & \alpha_m^2 & \dots & \alpha_m^{n-1} \end{bmatrix}$$

Reed-Solomon Codes

- k = 2
- h = 3
- $C_{i,j} = j^{i-1}$

$$B = \begin{pmatrix} I \\ C \end{pmatrix} F = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_{1+}f_2 \\ f_{1+}2f_2 \\ f_{1+}3f_2 \end{pmatrix}$$

Reed-Solomon Codes

$$B = \begin{pmatrix} I \\ C \end{pmatrix} F = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_{1+} f_2 \\ f_{1+} 2 f_2 \\ f_{1+} 3 f_2 \end{pmatrix}$$

$$S = \begin{pmatrix} 1 & 0 \\ 1 & 3 \end{pmatrix}$$

$$S = \begin{pmatrix} 1 & 0 \\ 1 & 3 \end{pmatrix}$$

$$S^{-1} Bs = \begin{pmatrix} 1 & 0 \\ -1/3 & 1/3 \end{pmatrix} \begin{pmatrix} f_1 \\ f_1 + 3f_2 \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} = F$$

Random Linear Code

- It is shown that a k × k random matrix S in GF(2q) is invertible with a probability which depends only on the field size and will increase by the size increasing.
 - GF(2q): Galois Field, where the elements can be expressed by q-bit words.
- If $q \ge 16$, the probability can be considered practically 1.
- This means that any $k \times k$ sub-matrix of C' is invertible and that the property of a (k,h)-code is provided.

Information Flow Graph (Code Graph)

Represents the evolution of the stored data through time.

Information Flow Graph (Code Graph)

- Proposition 1: At any time t, any of all the possible selections of k nodes B_t^k is sufficient to reconstruct the original fragments only if the disjoint paths condition is provided at time step t = 1 and the repair degree d ≥ k.
- A Random linear code provides this condition
 - By design any node in B1 is connected to all the source nodes in F.

Block Replication vs Linear Codes

• k = 8, h = 16 and R = 3

- Block replication: d = 1
- Linear codes: d = k

Question?

Is there a design space between these two limits that can be explored to find a better trade-off between storage efficiency and repair degree?

Hierarchical Codes

Hierarchical Code Graph – Step 1

• Choose k₀ and h₀ and build (k₀, h₀)-code:

$$bi = \begin{cases} fi & i \le k \\ \sum (ci, j \times fj) & k < i \le k + h \end{cases}$$

- $k_0 = 2$
- $h_0 = 1$

Hierarchical (2, 1)-code

• The generated group denoted as $G_{d0,1}$, where $d_0 = k_0$.

Hierarchical Code Graph – Step 2

- Choose g₁ and h₁.
- Replicate Gdo,1 for g1 times.
 - g1 groups denoted as Gd0,1, ..., Gd0,g.
- Then add other h₁ redundant blocks.
 - Combining all the existing g₁k₀ original fragments F.
- The new group denoted as Gd1,1,
 - Hierarchical (d₁, H₁)-code,
 - $H_1 = g_1h_0 + h_1$
 - $d_1 = g_1k_0 = g_1d_0$

Hierarchical (4, 3)-code

• $h_1 = 1$

Hierarchical Code Graph – Step 3

Repeat Step 2 several times.

•
$$Hs = g_s H_{s-1} + h_s$$

• $ds = g_s d_{s-1}$

Hierarchical Code – Reliability

- Proposition 2: Consider B_k, a set of k blocks in the code graph of a hierarchical (k,h)-code.
- If the nodes in B_k are chosen fulfilling the following condition:

 $|G_{d,i} \cap B_k| \le d$, $\forall G_{d,i}$ belonging to the code

• Then the nodes in B_k are sufficient to reconstruct the original fragments.

Hierarchical Code – Reliability

Hierarchical (4, 3)-code

• P(failure | I) = 0.23

Hierarchical Code – Repair Degree

- Proposition 3: Consider a node b repaired at time step t. Denote as G(b) the hierarchy of groups that contains b and as R(b) the set of nodes in B_{t-1} that have been combined to repair b
- If If ∀t and ∀b, R(b) fulfills the following conditions:

$$|G_{d,i} \cap R(b)| \le d$$
, $\forall G_{d,i}$ belonging to the code $\exists G_{d,i} \in G(b)$: $R(b) \subseteq G_{d,i}$, $|R(b)| = d$

• Then Then the code does not degrade, i.e. preserve the properties of the code graph expressed in Proposition 2.

Hierarchical Code

	l (losses)		
	1	2	3
P(d=2 l)	0.86	0.42	0
P(d=4 l)	0.14	0.58	0.77
P(failure l)	0	0	0.23

Hierarchical (4, 3)-code

Hierarchical Code

Question?

