Contrôle continu – Durée 2 heures.

Notes de cours, calculatrices et téléphones portables interdits.

Rédaction soignée exigée.

Exercice 1 Soit $u(x,y) := x^3 - kxy^2 + 12xy - 12x$, $k \in \mathbb{R}$, une fonction de deux variables réelles. Déterminer les valeurs possibles de k pour que u soit la partie réelle d'une fonction holomorphe f.

Exercice 2 1) Décomposer $f(z) := \frac{1}{z^2 - z}$ en éléments simples.

- 2) Calculer $\int_C f(z)dz$, où C est le cercle de rayon 1/2 centré en $z_0 = 1$ (et parcouru dans le sens contraire des aiguilles d'une montre).
- 3) Déduire de ce qui précède que f n'a pas de primitive dans $U:=\{z\in\mathbb{C}:0<|z-1|<1\}.$

Exercice 3 Soit $U \subset \mathbb{C}$ un ouvert connexe et $f: U \to \mathbb{C}$ une fonction holomorphe de la forme f(x+iy) = u(x) + iv(y). Montrer que f est forcément de la forme $f(z) = \lambda z + a$, avec $\lambda \in \mathbb{R}$ et $a \in \mathbb{C}$.

Exercice 4 (On pourra se servir du principe du maximum). Soit $\bar{D} := \{z \in C : |z| \leq 1\}$ le disque unité fermé et $U \subset \mathbb{C}$ un ouvert connexe contenant \bar{D} . Soit $f : U \to \mathbb{C}$ une fonction holomorphe vérifiant $f(z) \in \mathbb{R}$ pour tout z tel que |z| = 1.

- (a) En considérant la fonction $g(z) := e^{if(z)}$ montrer que la partie imaginaire Im(f) de la fonction f vérifie $Im(f(z)) \ge 0$ pour tout $z \in \bar{D}$.
- (b) En considérant la fonction $h(z) := e^{-if(z)}$ montrer que la partie imaginaire Im(f) de la fonction f vérifie $Im(f(z)) \le 0$ pour tout $z \in \overline{D}$.
- (c) Déduire des points (a) et (b) précédents que f est constante sur \bar{D} .
- (d) Déduire du point (c) précédent que f est constante sur U.

Exercice 5 (On pourra se servir du principe du maximum). Soit f une fonction holomorphe sur le disque unité ouvert D. On suppose qu'il existe $k \ge 1$ tel que $f(0) = f'(0) = \cdots = f^{(k-1)}(0) = 0$ et $|f(z)| \le M$ si $z \in D$.

- (a) Montrer que f peut s'écrire comme $f(z) = z^k g(z)$ où g est une fonction holomorphe sur D.
- (b) Montrer que la fonction g du point précédent vérifie $|g(z)| \leq M$ pour tout $z \in D$ (On pourra commencer par majorer |g| sur des disques fermés plus petits de la forme $\bar{D}_r(0)$, avec r < 1.
- (c) En déduire que s'il existe $a \in D \setminus \{0\}$ tel que $|f(a)| = M|a|^k$, alors pour tout $z \in D$ on a $f(z) = \lambda z^k$, pour un certain $\lambda \in \mathbb{C}$.

Exercice 6 Soit $U \subset \mathbb{C}$ un ouvert connexe et $f: U \to \mathbb{C}$ une fonction holomorphe de la forme f(x+iy) = u(x,y) + iv(x,y). Supposons que $u(x,y) = v(x,y)^2$, pour tout $x+iy \in U$. Que peut-on en déduire sur f?