Table of Contents

Prefa	ace	xiii
Part	I. The Fundamentals of Machine Learning	
1.	The Machine Learning Landscape	. 3
	What Is Machine Learning?	4
	Why Use Machine Learning?	4
	Types of Machine Learning Systems	7
	Supervised/Unsupervised Learning	8
	Batch and Online Learning	14
	Instance-Based Versus Model-Based Learning	17
	Main Challenges of Machine Learning	22
	Insufficient Quantity of Training Data	22
	Nonrepresentative Training Data	24
	Poor-Quality Data	25
	Irrelevant Features	25
	Overfitting the Training Data	26
	Underfitting the Training Data	28
	Stepping Back	28
	Testing and Validating	29
	Exercises	31
2.	End-to-End Machine Learning Project	33 33 35 35 37

	Download from finelybook www.finelybook.com	4.4
	Check the Assumptions	4(
	Get the Data	4(
	Create the Workspace	4(
	Download the Data	43
	Take a Quick Look at the Data Structure	45
	Create a Test Set	49
	Discover and Visualize the Data to Gain Insights	53
	Visualizing Geographical Data	53
	Looking for Correlations	55
	Experimenting with Attribute Combinations	58
	Prepare the Data for Machine Learning Algorithms	59
	Data Cleaning Handling Toyt and Catagorical Attributes	60
	Handling Text and Categorical Attributes Custom Transformers	62
		64
	Feature Scaling Transformation Pipelines	65 66
	Select and Train a Model	68
	Training and Evaluating on the Training Set	68
	Better Evaluation Using Cross-Validation	69
	Fine-Tune Your Model	71
	Grid Search	72
	Randomized Search	74
	Ensemble Methods	74
	Analyze the Best Models and Their Errors	74
	Evaluate Your System on the Test Set	75
	Launch, Monitor, and Maintain Your System	76
	Try It Out!	7
	Exercises	7
3.	Classification	79
	MNIST	79
	Training a Binary Classifier	82
	Performance Measures	82
	Measuring Accuracy Using Cross-Validation	83
	Confusion Matrix	84
	Precision and Recall	86
	Precision/Recall Tradeoff	87
	The ROC Curve	9
	Multiclass Classification	93
	Error Analysis	96
	Multilabel Classification	100
	Multioutput Classification	10

Download from finelybook www.finelybook.com

	Exercises	102
4.	Training Models	105
	Linear Regression	106
	The Normal Equation	108
	Computational Complexity	110
	Gradient Descent	111
	Batch Gradient Descent	114
	Stochastic Gradient Descent	117
	Mini-batch Gradient Descent	119
	Polynomial Regression	121
	Learning Curves	123
	Regularized Linear Models	127
	Ridge Regression	127
	Lasso Regression	130
	Elastic Net	132
	Early Stopping	133
	Logistic Regression	134
	Estimating Probabilities	134
	Training and Cost Function	135
	Decision Boundaries	136
	Softmax Regression	139
	Exercises	142
5.	Support Vector Machines.	145
	Linear SVM Classification	145
	Soft Margin Classification	146
	Nonlinear SVM Classification	149
	Polynomial Kernel	150
	Adding Similarity Features	151
	Gaussian RBF Kernel	152
	Computational Complexity	153
	SVM Regression	154
	Under the Hood	156
	Decision Function and Predictions	156
	Training Objective	157
	Quadratic Programming	159
	The Dual Problem	160
	Kernelized SVM	161
	Online SVMs	164
	Exercises	165

	Download from finelybook www.finelybook.com	
6.	Decision Trees	167
	Training and Visualizing a Decision Tree	167
	Making Predictions	169
	Estimating Class Probabilities	171
	The CART Training Algorithm	171
	Computational Complexity	172
	Gini Impurity or Entropy?	172
	Regularization Hyperparameters	173
	Regression	175
	Instability	177
	Exercises	178
7.	Ensemble Learning and Random Forests	181
	Voting Classifiers	181
	Bagging and Pasting	185
	Bagging and Pasting in Scikit-Learn	186
	Out-of-Bag Evaluation	187
	Random Patches and Random Subspaces	188
	Random Forests	189
	Extra-Trees	190
	Feature Importance	190
	Boosting	191
	AdaBoost	192
	Gradient Boosting	195
	Stacking	200
	Exercises	202
8.	Dimensionality Reduction	205
	The Curse of Dimensionality	206
	Main Approaches for Dimensionality Reduction	207
	Projection	207
	Manifold Learning	210
	PCA	211
	Preserving the Variance	211
	Principal Components	212
	Projecting Down to d Dimensions	213
	Using Scikit-Learn	214
	Explained Variance Ratio	214
	Choosing the Right Number of Dimensions	215
	PCA for Compression	216
	Incremental PCA	217
	Randomized PCA	218

	Download from finelybook www.finelybook.com	210
	Kernel PCA	218
	Selecting a Kernel and Tuning Hyperparameters LLE	219
		221 223
	Other Dimensionality Reduction Techniques Exercises	223
	Exercises	225
Par	t II. Neural Networks and Deep Learning	
9.	Up and Running with TensorFlow	. 229
	Installation	232
	Creating Your First Graph and Running It in a Session	232
	Managing Graphs	234
	Lifecycle of a Node Value	235
	Linear Regression with TensorFlow	235
	Implementing Gradient Descent	237
	Manually Computing the Gradients	237
	Using autodiff	238
	Using an Optimizer	239
	Feeding Data to the Training Algorithm	239
	Saving and Restoring Models	241
	Visualizing the Graph and Training Curves Using TensorBoard	242
	Name Scopes	245
	Modularity	246
	Sharing Variables	248
	Exercises	251
10.	Introduction to Artificial Neural Networks	253
	From Biological to Artificial Neurons	254
	Biological Neurons	255
	Logical Computations with Neurons	256
	The Perceptron	257
	Multi-Layer Perceptron and Backpropagation	261
	Training an MLP with TensorFlow's High-Level API	264
	Training a DNN Using Plain TensorFlow	265
	Construction Phase	265
	Execution Phase	269
	Using the Neural Network	270
	Fine-Tuning Neural Network Hyperparameters	270
	Number of Hidden Layers	270
	Number of Neurons per Hidden Layer	272
	Activation Functions	272

	Download from finelybook www.finelybook.com Exercises	273
11.	Training Deep Neural Nets	275
	Vanishing/Exploding Gradients Problems	275
	Xavier and He Initialization	277
	Nonsaturating Activation Functions	279
	Batch Normalization	282
	Gradient Clipping	286
	Reusing Pretrained Layers	286
	Reusing a TensorFlow Model	287
	Reusing Models from Other Frameworks	288
	Freezing the Lower Layers	289
	Caching the Frozen Layers	290
	Tweaking, Dropping, or Replacing the Upper Layers	290
	Model Zoos	29
	Unsupervised Pretraining	29
	Pretraining on an Auxiliary Task	292
	Faster Optimizers	293
	Momentum optimization	294
	Nesterov Accelerated Gradient	295
	AdaGrad	296
	RMSProp	298
	Adam Optimization	298
	Learning Rate Scheduling	300
	Avoiding Overfitting Through Regularization	302
	Early Stopping	303
	ℓ_1 and ℓ_2 Regularization	303
	Dropout	304
	Max-Norm Regularization	307
	Data Augmentation	309
	Practical Guidelines	310
	Exercises	31
12.	Distributing TensorFlow Across Devices and Servers	313
	Multiple Devices on a Single Machine	314
	Installation	314
	Managing the GPU RAM	317
	Placing Operations on Devices	318
	Parallel Execution	321
	Control Dependencies	323
	Multiple Devices Across Multiple Servers	323

325

Opening a Session

	Download from finelybook www.finelybook.com	
	The Master and Worker Services	325
	Pinning Operations Across Tasks	326
	Sharding Variables Across Multiple Parameter Servers	327
	Sharing State Across Sessions Using Resource Containers	328
	Asynchronous Communication Using TensorFlow Queues	329
	Loading Data Directly from the Graph	335
	Parallelizing Neural Networks on a TensorFlow Cluster	342
	One Neural Network per Device	342
	In-Graph Versus Between-Graph Replication	343
	Model Parallelism	345
	Data Parallelism	347
	Exercises	352
13.	Convolutional Neural Networks	353
	The Architecture of the Visual Cortex	354
	Convolutional Layer	355
	Filters	357
	Stacking Multiple Feature Maps	358
	TensorFlow Implementation	360
	Memory Requirements	362
	Pooling Layer	363
	CNN Architectures	365
	LeNet-5	366
	AlexNet	367
	GoogLeNet	368
	ResNet	372
	Exercises	376
14.	Recurrent Neural Networks	379
	Recurrent Neurons	380
	Memory Cells	382
	Input and Output Sequences	382
	Basic RNNs in TensorFlow	384
	Static Unrolling Through Time	385
	Dynamic Unrolling Through Time	387
	Handling Variable Length Input Sequences	387
	Handling Variable-Length Output Sequences	388
	Training RNNs	389
	Training a Sequence Classifier	389
	Training to Predict Time Series	392
	Creative RNN	396
	Deep RNNs	396

	Download from finelybook www.finelybook.com	
	Distributing a Deep RNN Across Multiple GPUs	397
	Applying Dropout	399
	The Difficulty of Training over Many Time Steps	400
	LSTM Cell	401
	Peephole Connections	403
	GRU Cell	404
	Natural Language Processing	405
	Word Embeddings	405
	An Encoder-Decoder Network for Machine Translation	407
	Exercises	410
15.	Autoencoders	411
	Efficient Data Representations	412
	Performing PCA with an Undercomplete Linear Autoencoder	413
	Stacked Autoencoders	415
	TensorFlow Implementation	416
	Tying Weights	417
	Training One Autoencoder at a Time	418
	Visualizing the Reconstructions	420
	Visualizing Features	421
	Unsupervised Pretraining Using Stacked Autoencoders	422
	Denoising Autoencoders	424
	TensorFlow Implementation	425
	Sparse Autoencoders	426
	TensorFlow Implementation	427
	Variational Autoencoders	428
	Generating Digits	431
	Other Autoencoders	432
	Exercises	433
16.	Reinforcement Learning	437
	Learning to Optimize Rewards	438
	Policy Search	440
	Introduction to OpenAI Gym	441
	Neural Network Policies	444
	Evaluating Actions: The Credit Assignment Problem	447
	Policy Gradients	448
	Markov Decision Processes	453
	Temporal Difference Learning and Q-Learning	457
	Exploration Policies	459
	Approximate Q-Learning	460
	Learning to Play Ms. Pac-Man Using Deep Q-Learning	460
	0	

Download from finelybook www.finelybook.com Exercises 469 Thank You! 470 C. SVM Dual Problem. 503