Analyse numérique - TD8 Méthodes itératives pour la résolution des systèmes linéaires

TM: Travail à la Maison

Rappel (c.f. Cours)

Soient $\mathbb{A} \in \mathbb{M}_n(\mathbb{C})$ une matrice inversible, et deux matrices $\mathbb{M} \in \mathbb{M}_n(\mathbb{C})$ inversible et $\mathbb{N} \in \mathbb{M}_n(\mathbb{C})$ telles que $\mathbb{A} = \mathbb{M} - \mathbb{N}$. Soient $\boldsymbol{u}^{(0)} \in \mathbb{C}^n$ et $\boldsymbol{b} \in \mathbb{C}^n$. On considère l'algorithme

$$\mathbb{M}\,\boldsymbol{u}^{(k+1)} = \mathbb{N}\,\boldsymbol{u}^{(k)} + \boldsymbol{b}, \quad \forall \, k \in \mathbb{N}. \tag{1}$$

On pose $\mathbb{B} = \mathbb{M}^{-1}\mathbb{N}$. Si la suite $(\boldsymbol{u}^{(k)})_{k\in\mathbb{N}}$ converge, alors elle converge vers la solution \boldsymbol{u} du système $\mathbb{A}\boldsymbol{u} = \boldsymbol{b}$. De plus, la suite $(\boldsymbol{u}^{(k)})_{k\in\mathbb{N}}$ converge vers \boldsymbol{u} pour toute donnée initiale $\boldsymbol{u}^{(0)}$ si et seulement si $\rho(\mathbb{B}) < 1$.

Exercice 1 (cas particulier des matrices hermitiennes)

Soit $\mathbb{A} \in \mathbb{M}_n(\mathbb{C})$ une matrice hermitienne inversible décomposée en $\mathbb{A} = \mathbb{M} - \mathbb{N}$ où \mathbb{M} est inversible. On note $\mathbb{B} = \mathbb{I} - \mathbb{M}^{-1}\mathbb{A}$.

1. Montrer que la matrice $\mathbb{M}^* + \mathbb{N}$ est hermitienne.

On suppose maintenant que $\mathbb{M}^* + \mathbb{N}$ est définie positive.

- 2. Soit \boldsymbol{x} un vecteur quelconque de \mathbb{C}^n et $\boldsymbol{y} = \mathbb{B}\boldsymbol{x}$.
 - 1. Montrer que

$$\boldsymbol{x} - \boldsymbol{v} = \mathbb{M}^{-1} \mathbb{A} \boldsymbol{x}$$

et que

$$\langle \boldsymbol{x}, A\boldsymbol{x} \rangle - \langle \boldsymbol{y}, A\boldsymbol{y} \rangle = \langle \boldsymbol{x}, AM^{-1}A\boldsymbol{x} \rangle + \langle M^{-1}A\boldsymbol{x}, A\boldsymbol{x} \rangle - \langle M^{-1}A\boldsymbol{x}, AM^{-1}A\boldsymbol{x} \rangle$$

2. En déduire que

$$\langle \boldsymbol{x}, \mathbb{A}\boldsymbol{x} \rangle - \langle \boldsymbol{y}, \mathbb{A}\boldsymbol{y} \rangle = \langle \boldsymbol{x} - \boldsymbol{y}, (\mathbb{M}^* + \mathbb{N})(\boldsymbol{x} - \boldsymbol{y}) \rangle.$$

- 3. Montrer que si \mathbb{A} est définie positive alors $\rho(\mathbb{B}) < 1$.
- 4. Démontrer par l'absurde que si $\rho(\mathbb{B}) < 1$ alors \mathbb{A} est définie positive.

Exercice 2 (méthodes de Jacobi et Gauss-Seidel)

Soit $\boldsymbol{b} \in \mathbb{R}^n$ et \mathbb{A} la matrice définie par

$$\mathbb{A} = \left(\begin{array}{rrr} 1 & -\frac{1}{2} & \frac{1}{2} \\ 1 & 1 & 1 \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{array} \right).$$

- 1. La matrice A est-elle inversible?
- 2. Etudier la convergence de la méthode itérative de Jacobi pour résoudre le système $\mathbb{A} x = \pmb{b}$.
- 3. Etudier la convergence de la méthode itérative de Gauss-Seidel pour résoudre le système $\mathbb{A} x = b$.

Exercice 3 (méthodes de relaxation) (TM)

On considère la résolution du système linéaire $A \boldsymbol{x} = \boldsymbol{b}$ par la méthode de relaxation, avec $A \in M_n(\mathbb{R})$ inversible et $\boldsymbol{b} \in \mathbb{R}^n$ donnés. Soit $\boldsymbol{x}^{(0)} \in \mathbb{R}^n$ fixé. On définit la suite $(\boldsymbol{x}^{(k)})_{k \in \mathbb{N}}$ de vecteurs \mathbb{R}^n , pour $k \in \mathbb{N}$ par

1. En écrivant \mathbb{A} sous la forme $\mathbb{A} = \mathbb{D} - \mathbb{E} - \mathbb{F}$, avec, pour $(i, j) \in [1, n]^2$

$$\begin{split} &d_{ii} = a_{ii}, \ d_{ij} = 0, \ \text{si} \ i \neq j, \\ &e_{ij} = -a_{ij}, \ \text{si} \ i > j, \ e_{ij} = 0, \ \text{si} \ i \leqslant j, \\ &f_{ij} = -a_{ij}, \ \text{si} \ i < j, \ f_{ij} = 0, \ \text{si} \ i \geqslant j, \end{split}$$

montrer que (2) s'écrit sous la forme $\mathbb{M}\boldsymbol{x}^{(k+1)} = \mathbb{N}\boldsymbol{x}^{(k)} + \boldsymbol{b}$, où l'on précisera les matrices \mathbb{M} et \mathbb{N} associées. Réécrire cette relation sous la forme $\boldsymbol{x}^{(k+1)} = \mathbb{B}\boldsymbol{x}^{(k)} + \boldsymbol{c}$, où l'on précisera la matrice \mathbb{B} et le vecteur \boldsymbol{c} associés.

On note dans la suite $\mathcal{L}_{\omega}=\mathbb{B}$ la matrice d'itération de la méthode de relaxation.

2. Dans cette question on va montrer que $\rho(\mathcal{L}_{\omega}) \geqslant |\omega - 1|$ pour $\omega \neq 0$. On note $p_{\mathcal{L}_{\omega}}$ le polynôme caractéristique de \mathcal{L}_{ω} . Il s'écrit sous la forme

$$p_{\mathcal{L}_{\omega}}(\lambda) = \lambda^n + \alpha_{n-1}\lambda^{n-1} + \dots + \alpha_1\lambda + \alpha_0.$$

On note $\{\lambda_i\}_{i\in \llbracket 1,n\rrbracket}$ les valeurs propres de \mathcal{L}_{ω} , c'est-à-dire les racines de $p_{\mathcal{L}_{\omega}}$.

(a) En utilisant la relation $\prod_{i=1}^n \lambda_i = (-1)^n \alpha_0 = (-1)^n p_{\mathcal{L}_\omega}(0)$, montrer que

$$\prod_{i=1}^{n} \lambda_i = \det \left((1 - \omega) \mathbb{I}_n + \omega \mathbb{D}^{-1} \mathbb{F} \right).$$

(b) En déduire que

$$\prod_{i=1}^{n} |\lambda_i| = |1 - \omega|^n,$$

et conclure que $\rho(\mathcal{L}_{\omega}) \geqslant |1 - \omega|$.

Déduire de la question précédente que si la méthode de relaxation converge, alors nécessairement $\omega \in]0,2[$.

3. En utilisant le résultat de l'exercice 5, montrer que si $\mathbb A$ est symétrique définie positive, et si $\omega \in]0,2[$, alors la méthode de relaxation converge. En déduire, en particulier, que la méthode de Gauss-Seidel converge.

Exercice 4

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ une matrice inversible telle que ses éléments diagonaux soient tous non nuls et soit \boldsymbol{b} un vecteur de \mathbb{R}^n . On souhaite résoudre le système linéaire $\mathbb{A}\boldsymbol{x} = \boldsymbol{b}$ en utilisant la méthode itérative suivante : α étant un réel non nul et le vecteur $\boldsymbol{x}^{(0)} \in \mathbb{R}^n$ étant donné, on construit la suite $(\boldsymbol{x}^{(k)})_{k \in \mathbb{N}}$ par la formule de récurrence

$$\boldsymbol{x}^{(k+1)} = (\mathbb{I} - \alpha \mathbb{D}^{-1} \mathbb{A}) \boldsymbol{x}^{(k)} + \alpha \mathbb{D}^{-1} \boldsymbol{b}, \tag{3}$$

où \mathbb{I} est la matrice identité et \mathbb{D} la matrice diagonale constituée de la diagonale de \mathbb{A} $(D_{ii} = A_{ii}, \forall i \in [1, n])$.

- 1. Montrer que si la suite $(x^{(k)})_{k\in\mathbb{N}}$ converge vers $\bar{x}\in\mathbb{R}^n$, alors \bar{x} est la solution du système linéaire $\mathbb{A}\bar{x}=b$.
- 2. Exprimer les coefficients de la matrice $(\mathbb{I} \alpha \mathbb{D}^{-1} \mathbb{A})$ en fonction des coefficients de \mathbb{A} .
- 3. On suppose que \mathbb{A} est à diagonale strictement dominante \mathbb{A} et que $0 < \alpha \leq 1$.
 - (a) On rappelle que pour $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$, on a $\|\mathbb{A}\|_{\infty} = \sup_{\boldsymbol{x} \neq 0} \frac{\|\mathbb{A}\boldsymbol{x}\|_{\infty}}{\|\boldsymbol{x}\|_{\infty}}$.

Montrer que

$$\|\mathbb{I} - \alpha \mathbb{D}^{-1} \mathbb{A}\|_{\infty} < 1.$$

(b) Soit $\|\cdot\|_s$ une norme matricielle subordonnée. Montrer que

$$\rho(\mathbb{A}) \leqslant \|\mathbb{A}\|_s,$$

et en déduire que $\rho(\mathbb{A}) \leq \|\mathbb{A}\|_{\infty}$.

- (c) Donner la matrice d'itération de la méthode itérative (3). En déduire que cette méthode converge.
- 4. Quelle méthode itérative étudiée en cours retrouve-t-on lorsque $\alpha=1$? Justifier.

^{1.} Une matrice $\mathbb{A} \in \mathcal{M}_n(\mathbb{R})$ est dite à diagonale strictement dominante si, $|A_{i,i}| > \sum_{\substack{j=1 \ i=1}}^n |A_{i,j}|, \forall i \in [\![1,n]\!].$