PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

STUDY BIOLOGICAL FUNCTION OF SELECTED GENES

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: (11) International Publication Number: WO 00/58470 C12N 15/12, 15/11, 9/00, C12Q 1/68, A1 (43) International Publication Date: 5 October 2000 (05.10.00) A61K 48/00 PCT/US00/07906 (21) International Application Number: (81) Designated States: AU, CA, JP, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC. (22) International Filing Date: NL, PT, SE). 24 March 2000 (24.03.00) **Published** (30) Priority Data: 60/126,469 26 March 1999 (26.03.99) US With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of (71)(72) Applicants and Inventors: SRIKANTAN, Vasantha amendments. [IN/US]; 12813 Twinbrook Parkway, Rockville, MD 20851 (US). ZOU, Zhiqiang [CN/US]; 508 Palmspring Drive, Gaithersburg, MD 20878 (US). MOUL, Judd, W. [US/US]; 8917 Holly Leaf Lane, Bethesda, MD 20817 (US). SRIVASTAVA, Shiv [US/US]; 13216 Maplecrest Drive, Potomac, MD 20854 (US). (74) Agents: GARRETT, Arthur, S. et al.; Finnegan, Henderson, Farabow, Garrett & Dunner, L.L.P., 1300 I Street, N.W., Washington, DC 20005-3315 (US). (54) Title: PROSTATE-SPECIFIC GENE, PCGEMI, AND METHODS OF USING PCGEMI TO DETECT, TREAT, AND PREVENT PROSTATE CANCER (57) Abstract STRATEGY FOR THE IDENTIFICATION OF IN PROSTATE CANCER A nucleic acid sequence that exhibits prostate-specific expression and overexpression in tumor cells is disclosed. The sequence and OCT EMBEDDED FROZEN PROSTATE TUMOR/NORMAL TISSUE fragments thereof are useful for detecting, diagnosing, preventing, and treating prostate cancer and other prostate related diseases. The sequence MAKE 6 µm SERIAL SECTIONS is also useful for measuring hormone responsiveness of prostate cancer HISTOLOGICAL EXAMINATION OF H & E SLIDE RNA PREPARATION RT- PCR AMPLIFICATION USING ARBITRARY AND ANCHORED PRIMER CONTAINING 5' M13 OR 17 SEQUENCES HIGH RESOLUTION GEL ELECTROPHORESIS (GENOMYX SYSTEM) AND EXCISION OF DIFFERENTIALLY EXPRESSED BANDS REAMPLIFICATION USING M13 AND 17 PRIMERS PURIFICATION AND AUTOMATED DNA SEQUENCING ON AB1377 USING M13/T7 PRIMER DNA SEQUENCE DATABASE SEARCH (NCBI, CGAP) RT-PCR USING GENE SPECIFIC PRIMER FOR TUMOR SPECIFIC ALTERATIONS TO SCREEN RNA FROM DEFINED GROUP OF PATIENTS AND CELL LINES

ANALYZE EXPRESSION PATTERN FOR CLINICAL CORRELATIONS

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland .	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	ŔŨ	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 00/58470 PCT/US00/07906

PROSTATE-SPECIFIC GENE, PCGEM1, AND METHODS OF USING PCGEM1 TO DETECT, TREAT, AND PREVENT PROSTATE CANCER

CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of United States provisional application S.N. 60/126,469, filed March 26, 1999, the entire disclosure of which is relied upon and incorporated by reference.

FIELD OF THE INVENTION

The present invention relates to nucleic acids that are expressed in prostate tissue. More particularly, the present invention relates to the first of a family of novel, androgen-regulated, prostate-specific genes, PCGEM1, that is over-expressed in prostate cancer, and methods of using the PCGEM1 sequence and fragments thereof to measure the hormone responsiveness of prostate cancer cells and to detect, diagnose, prevent and treat prostate cancer and other prostate related diseases.

BACKGROUND

Prostate cancer is the most common solid tumor in American men (1). The wide spectrum of biologic behavior (2) exhibited by prostatic neoplasms poses a difficult problem in predicting the clinical course for the individual patient (3, 4). Public awareness of prostate specific antigen (PSA) screening efforts has led to an increased diagnosis of prostate cancer. The increased diagnosis and greater number of patients presenting with prostate cancer has resulted in wider use of radical prostatectomy for localized disease (5). Accompanying the rise in surgical intervention is the frustrating realization of the inability to predict organ-confined disease and clinical outcome for a given patient (5, 6). Traditional prognostic markers, such as grade, clinical stage, and pretreatment PSA have limited prognostic value for individual men. There is clearly a need to recognize and develop molecular and genetic biomarkers to improve prognostication and the management of patients with clinically localized prostate cancer. As with other common human neoplasia (7), the search for molecular and genetic biomarkers to better define the genesis and progression of prostate cancer is the key focus for cancer research investigations worldwide.

The new wave of research addressing molecular genetic alterations in prostate cancer is primarily due to increased awareness of this disease and the development of

newer molecular technologies. The search for the precursor of prostatic adenocarcinoma has focused largely on the spectrum of microscopic changes referred to as "prostatic intraepithelial neoplasia" (PIN). Bostwick defines this spectrum as a histopathologic continuum that culminates in high grade PIN and early invasive cancer (8). The morphologic and molecular changes include the progressive disruption of the basal cell-layer, changes in the expression of differentiation markers of the prostatic secretory epithelial cells, nuclear and nucleolar abnormalities, increased cell proliferation, DNA content alterations, and chromosomal and allelic losses (8, 9). These molecular and genetic biomarkers, particularly their progressive gain or loss, can be followed to trace the etiology of prostate carcinogenesis.

Foremost among these biomarkers would be the molecular and genetic markers associated with histological phenotypes in transition between normal prostatic epithelium and cancer. Most studies so far seem to agree that PIN and prostatic adenocarcinoma cells have a lot in common with each other. The invasive carcinoma more often reflects a magnification of some of the events already manifest in PIN.

Early detection of prostate cancer is possible today because of the widely propagated and recommended blood PSA test that provides a warning signal for prostate cancer if high levels of serum PSA are detected. However, when used alone, PSA is not sufficiently sensitive or specific to be considered an ideal tool for the early detection or staging of prostate cancer (10). Combining PSA levels with clinical staging and Gleason scores is more predictive of the pathological stage of localized prostate cancer (11). In addition, new molecular techniques are being used for improved molecular staging of prostate cancer (12, 13). For instance, reverse transcriptase - polymerase chain reaction (RT-PCR) can measure PSA of circulating prostate cells in blood and bone marrow of prostate cancer patients.

Despite new molecular techniques, however, as many as 25 percent of men with prostate cancer will have normal PSA levels – usually defined as those equal to or below 4 nanograms per milliliter of blood (14). In addition, more than 50 percent of the men with higher PSA levels are actually cancer free (14). Thus, PSA is not an ideal screening tool for prostate cancer. More reliable tumor-specific biomarkers are

needed that can distinguish between normal and hyperplastic epithelium, and the preneoplastic and neoplastic stages of prostate cancer.

Identification and characterization of genetic alterations defining prostate cancer onset and progression is important in understanding the biology and clinical course of the disease. The currently available TNM staging system assigns the original primary tumor (T) to one of four stages (14). The first stage, T1, indicates that the tumor is microscopic and cannot be felt on rectal examination. T2 refers to tumors that are palpable but fully contained within the prostate gland. A T3 designation indicates the cancer has spread beyond the prostate into surrounding connective tissue or has invaded the neighboring seminal vesicles. T4 cancer has spread even further. The TNM staging system also assesses whether the cancer has metastasized to the pelvic lymph nodes (N) or beyond (M). Metastatic tumors result when cancer cells break away from the original tumor, circulate through the blood or lymph, and proliferate at distant sites in the body.

Recent studies of metastatic prostate cancer have shown a significant heterogeneity of allelic losses of different chromosome regions between multiple cancer foci (21-23). These studies have also documented that the metastatic lesion can arise from cancer foci other than dominant tumors (22). Therefore, it is critical to understand the molecular changes which define the prostate cancer metastasis especially when prostate cancer is increasingly detected in early stages (15-21).

Moreover, the multifocal nature of prostate cancer needs to be considered (22-23) when analyzing biomarkers that may have potential to predict tumor progression or metastasis. Approximately 50-60% of patients treated with radical prostatectomy for localized prostate carcinomas are found to have microscopic disease that is not organ confined, and a significant portion of these patients relapse (24). Utilizing biostatistical modeling of traditional and genetic biomarkers such as p53 and bcl-2, Bauer et al. (25-26) were able to identify patients at risk of cancer recurrence after surgery. Thus, there is clearly a need to develop biomarkers defining various stages of the prostate cancer progression.

Another significant aspect of prostate cancer is the key role that androgens play in the development of both the normal prostate and prostate cancer. Androgen

ablation, also referred to as "hormonal therapy," is a common treatment for prostate cancer, particularly in patients with metastatic disease (14). Hormonal therapy aims to inhibit the body from making androgens or to block the activity of androgen. One way to block androgen activity involves blocking the androgen receptor; however, that blockage is often only successful initially. For example, 70-80% of patients with advanced disease exhibit an initial subjective response to hormonal therapy, but most tumors progress to an androgen-independent state within two years (16). One mechanism proposed for the progression to an androgen-independent state involves constitutive activation of the androgen signaling pathway, which could arise from structural changes in the androgen receptor protein (16).

As indicated above, the genesis and progression of cancer cells involve multiple genetic alterations as well as a complex interaction of several gene products. Thus, various strategies are required to fully understand the molecular genetic alterations in a specific type of cancer. In the past, most molecular biology studies had focused on mutations of cellular proto-oncogenes and tumor suppressor genes (TSGs) associated with prostate cancer (7). Recently, however, there has been an increasing shift toward the analysis of "expression genetics" in human cancer (27-31), i.e., the under-expression or over-expression of cancer-specific genes. This shift addresses limitations of the previous approaches including: 1) labor intensive technology involved in identifying mutated genes that are associated with human cancer; 2) the limitations of experimental models with a bias toward identification of only certain classes of genes, e.g., identification of mutant ras genes by transfection of human tumor DNAs utilizing NIH3T3 cells; and 3) the recognition that the human cancer associated genes identified so far do not account for the diversity of cancer phenotypes.

A number of studies are now addressing the alterations of prostate cancerassociated gene expression in patient specimens (32-36). It is inevitable that more reports on these lines are to follow.

Thus, despite the growing body of knowledge regarding prostate cancer, there is still a need in the art to uncover the identity and function of the genes involved in prostate cancer pathogenesis. There is also a need for reagents and assays to

accurately detect cancerous cells, to define various stages of prostate cancer progression, to identify and characterize genetic alterations defining prostate cancer onset and progression, to detect micro-metastasis of prostate cancer, and to treat and prevent prostate cancer.

SUMMARY OF THE INVENTION

The present invention relates to the identification and characterization of a novel gene, the first of a family of genes, designated PCGEM1, for Prostate Cancer Gene Expression Marker 1. PCGEM1 is specific to prostate tissue, is androgen-regulated, and appears to be over-expressed in prostate cancer. More recent studies associate PCGEM1 cDNA with promoting cell growth. The invention provides the isolated nucleotide sequence of PCGEM1 or fragments thereof and nucleic acid sequences that hybridize to PCGEM1. These sequences have utility, for example, as markers of prostate cancer and other prostate related diseases, and as targets for therapeutic intervention in prostate cancer and other prostate related diseases. The invention further provides a vector that directs the expression of PCGEM1, and a host cell transfected or transduced with this vector.

In another embodiment, the invention provides a method of detecting prostate cancer cells in a biological sample, for example, by using nucleic acid amplification techniques with primers and probes selected to bind specifically to the PCGEM1 sequence. The invention further comprises a method of selectively killing a prostate cancer cell, a method of identifying an androgen responsive cell line, and a method of measuring responsiveness of a cell line to hormone-ablation therapy.

In another aspect, the invention relates to an isolated polypeptide encoded by the PCGEM1 gene or a fragment thereof, and antibodies generated against the PCGEM1 polypeptide, peptides, or portions thereof, which can be used to detect, treat, and prevent prostate cancer.

Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the sequences, cells, vectors, and methods

particularly pointed out in the written description and claims herein as well as the appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts the scheme for the identification of differentially expressed genes in prostate tumor and normal tissues.

Figure 2 depicts a differential display pattern of mRNA obtained from matched tumor and normal tissues of a prostate cancer patient. Arrows indicate differentially expressed cDNAs.

Figure 3 depicts the analysis of PCGEM1 expression in primary prostate cancers.

Figure 4 depicts the expression pattern of PCGEM1 in prostate cancer cell lines.

Figure 5a depicts the androgen regulation of PCGEM1 expression in LNCaP cells, as measured by reverse transcriptase PCR.

Figure 5b depicts the androgen regulation of PCGEM1 expression in LNCaP cells, as measured by Northern blot hybridization.

Figure 6a depicts the prostate tissue specific expression pattern of PCGEM1.

Figure 6b depicts a RNA master blot showing the prostate tissue specificity of PCGEM1.

Figure 7A depicts the chromosomal localization of PCGEM1 by fluorescent in situ hybridization analysis.

Figure 7B depicts a DAPI counter-stained chromosome 2 (left), an inverted DAPI stained chromosome 2 shown as G-bands (center), and an ideogram of chromosome 2 showing the localization of the signal to band 2q32(bar).

Figure 8 depicts a cDNA sequence of PCGEM1 (SEQ ID NO:1).

Figure 9 depicts an additional cDNA sequence of PCGEM1 (SEQ ID NO:2).

Figure 10 depicts the colony formation of NIH3T3 cell lines expressing various PCGEM1 constructs.

Figure 11 depicts the cDNA sequence of the promoter region of PCGEM1 SEQ ID NO:3.

Figure 12 depicts the cDNA of a probe, designated SEQ ID NO:4.

Figure 13 depicts the cDNAs of primers 1-3, designated SEQ ID NOs:5-7, respectively.

Figure 14 depicts the genomic DNA sequence of PCGEM1, designated SEQ ID NO:8.

Figure 15 depicts the structure of the PCGEM1 transcription unit.

Figure 16 depicts a graph of the hypothetical coding capacity of PCGEM1.

Figure 17 depicts a representative example of *in situ* hybridization results showing PCGEM1 expression in normal and tumor areas of prostate cancer tissues.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to PCGEM1, the first of a family of genes, and its related nucleic acids, proteins, antigens, and antibodies for use in the detection, prevention, and treatment of prostate cancer (e.g., prostatic intraepithelial neoplasia (PIN), adenocarcinomas, nodular hyperplasia, and large duct carcinomas) and prostate related diseases (e.g., benign prostatic hyperplasia), and kits comprising these reagents.

Although we do not wish to be limited by any theory or hypothesis, preliminary data suggest that the PCGEM1 nucleotide sequence may be related to a family of non-coding poly A+RNA that may be implicated in processes relating to growth and embryonic development (40-44). Evidence presented herein supports this hypothesis. Alternatively, PCGEM1 cDNA may encode a small peptide.

NUCLEIC ACID MOLECULES

In a particular embodiment, the invention relates to certain isolated nucleotide sequences that are substantially free from contaminating endogenous material. A "nucleotide sequence" refers to a polynucleotide molecule in the form of a separate fragment or as a component of a larger nucleic acid construct. The nucleic acid molecule has been derived from DNA or RNA isolated at least once in substantially pure form and in a quantity or concentration enabling identification, manipulation, and recovery of its component nucleotide sequences by standard biochemical methods

(such as those outlined in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989)).

Nucleic acid molecules of the invention include DNA in both single-stranded and double-stranded form, as well as the RNA complement thereof. DNA includes, for example, cDNA, genomic DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof. Genomic DNA may be isolated by conventional techniques, e.g., using the cDNA of SEQ ID NO:1, SEQ ID NO:2, or suitable fragments thereof, as a probe.

The DNA molecules of the invention include full length genes as well as polynucleotides and fragments thereof. The full length gene may include the N-terminal signal peptide. Although a non-coding role of PCGEM1 appears likely, the possibility of a protein product cannot presently be ruled out. Therefore, other embodiments may include DNA encoding a soluble form, e.g., encoding the extracellular domain of the protein, either with or without the signal peptide.

The nucleic acids of the invention are preferentially derived from human sources, but the invention includes those derived from non-human species, as well.

<u>Preferred Sequences</u>

Particularly preferred nucleotide sequences of the invention are SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO: 8, as set forth in Figures 8, 9, and 14, respectively. Two cDNA clones having the nucleotide sequences of SEQ ID NO:1 and SEQ ID NO:2, and the genomic DNA having the nucleotide sequence of SEQ ID NO: 8, were isolated as described in Example 2.

Thus, in a particular embodiment, this invention provides an isolated nucleic acid molecule selected from the group consisting of (a) the polynucleotide sequence of SEQ ID NO:1, SEQ ID NO:2, or SEQ ID NO: 8; (b) an isolated nucleic acid molecule that hybridizes to either strand of a denatured, double-stranded DNA comprising the nucleic acid sequence of (a) under conditions of moderate stringency in 50% formamide and about 6X SSC at about 42°C with washing conditions of approximately 60°C, about 0.5X SSC, and about 0.1% SDS; (c) an isolated nucleic acid molecule that hybridizes to either strand of a denatured, double-stranded DNA

comprising the nucleic acid sequence of (a) under conditions of high stringency in 50% formamide and about 6X SSC, with washing conditions of approximately 68°C, about 0.2X SSC, and about 0.1% SDS; (d) an isolated nucleic acid molecule derived by *in vitro* mutagenesis from SEQ ID NO:1, SEQ ID NO:2, or SEQ ID NO:8; (e) an isolated nucleic acid molecule degenerate from SEQ ID NO:1, SEQ ID NO:2, or SEQ ID NO:8 as a result of the genetic code; and (f) an isolated nucleic acid molecule selected from the group consisting of human PCGEM1 DNA, an allelic variant of human PCGEM1 DNA, and a species homolog of PCGEM1 DNA.

As used herein, conditions of moderate stringency can be readily determined by those having ordinary skill in the art based on, for example, the length of the DNA. The basic conditions are set forth by Sambrook et al. *Molecular Cloning: A Laboratory Manual*, 2d ed. Vol. 1, pp. 1.101-104, Cold Spring Harbor Laboratory Press, (1989), and include use of a prewashing solution for the nitrocellulose filters of about 5X SSC, about 0.5% SDS, and about 1.0 mM EDTA (pH 8.0), hybridization conditions of about 50% formamide, about 6X SSC at about 42°C (or other similar hybridization solution, such as Stark's solution, in about 50% formamide at about 42°C), and washing conditions of about 60°C, about 0.5X SSC, and about 0.1% SDS. Conditions of high stringency can also be readily determined by the skilled artisan based on, for example, the length of the DNA. Generally, such conditions are defined as hybridization conditions as above, and with washing at approximately 68°C, about 0.2X SSC, and about 0.1% SDS. The skilled artisan will recognize that the temperature and wash solution salt concentration can be adjusted as necessary according to factors such as the length of the probe.

Additional Sequences

Due to the known degeneracy of the genetic code, wherein more than one codon can encode the same amino acid, a DNA sequence can vary from that shown in SEQ ID NO:1, SEQ ID NO:2, or SEQ ID NO:8, and still encode PCGEM1. Such variant DNA sequences can result from silent mutations (e.g., occurring during PCR amplification), or can be the product of deliberate mutagenesis of a native sequence.

The invention thus provides isolated DNA sequences of the invention selected from: (a) DNA comprising the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:2, or SEQ ID NO:8; (b) DNA capable of hybridization to a DNA of (a) under conditions of moderate stringency; (c) DNA capable of hybridization to a DNA of (a) under conditions of high stringency; and (d) DNA which is degenerate as a result of the genetic code to a DNA defined in (a), (b), or (c). Such sequences are preferably provided and/or constructed in the form of an open reading frame uninterrupted by internal non-translated sequences, or introns, that are typically present in eukaryotic genes. Sequences of non-translated DNA can be present 5' or 3' from an open reading frame, where the same do not interfere with manipulation or expression of the coding region. Of course, should PCGEM1 encode a polypeptide, polypeptides encoded by such DNA sequences are encompassed by the invention. Conditions of moderate and high stringency are described above.

In another embodiment, the nucleic acid molecules of the invention comprise nucleotide sequences that are at least 80% identical to a nucleotide sequence set forth herein. Also contemplated are embodiments in which a nucleic acid molecule comprises a sequence that is at least 90% identical, at least 95% identical, at least 98% identical, at least 99% identical, or at least 99.9% identical to a nucleotide sequence set forth herein.

Percent identity may be determined by visual inspection and mathematical calculation. Alternatively, percent identity of two nucleic acid sequences may be determined by comparing sequence information using the GAP computer program, version 6.0 described by Devereux et al. (*Nucl. Acids Res.* 12:387, 1984) and available from the University of Wisconsin Genetics Computer Group (UWGCG). The preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess, *Nucl. Acids Res.* 14:6745, 1986, as described by Schwartz and Dayhoff, eds., *Atlas of Protein Sequence and Structure*, National Biomedical Research Foundation, pp. 353-358, 1979; (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each

gap; and (3) no penalty for end gaps. Other programs used by one skilled in the art of sequence comparison may also be used.

The invention also provides isolated nucleic acids useful in the production of polypeptides. Such polypeptides may be prepared by any of a number of conventional techniques. A DNA sequence of this invention or desired fragment thereof may be subcloned into an expression vector for production of the polypeptide or fragment. The DNA sequence advantageously is fused to a sequence encoding a suitable leader or signal peptide. Alternatively, the desired fragment may be chemically synthesized using known techniques. DNA fragments also may be produced by restriction endonuclease digestion of a full length cloned DNA sequence, and isolated by electrophoresis on agarose gels. If necessary, oligonucleotides that reconstruct the 5' or 3' terminus to a desired point may be ligated to a DNA fragment generated by restriction enzyme digestion. Such oligonucleotides may additionally contain a restriction endonuclease cleavage site upstream of the desired coding sequence, and position an initiation codon (ATG) at the N-terminus of the coding sequence.

The well-known polymerase chain reaction (PCR) procedure also may be employed to isolate and amplify a DNA sequence encoding a desired protein fragment. Oligonucleotides that define the desired termini of the DNA fragment are employed as 5' and 3' primers. The oligonucleotides may additionally contain recognition sites for restriction endonucleases, to facilitate insertion of the amplified DNA fragment into an expression vector. PCR techniques are described in Saiki et al., Science 239:487 (1988); Recombinant DNA Methodology, Wu et al., eds., Academic Press, Inc., San Diego (1989), pp. 189-196; and PCR Protocols: A Guide to Methods and Applications, Innis et al., eds., Academic Press, Inc. (1990).

USE OF PCGEM1 NUCLEIC ACID OR OLIGONUCLEOTIDES

In a particular embodiment, the invention relates to PCGEM1 nucleotide sequences isolated from human prostate cells, including the complete genomic DNA (Figure 14, SEQ ID NO: 8), and two full length cDNAs: SEQ ID NO:1 (Figure 8) and SEQ ID NO:2 (Figure 9), and fragments thereof. The nucleic acids of the invention, including DNA, RNA, mRNA and oligonucleotides thereof, are useful in a variety of

applications in the detection, diagnosis, prognosis, and treatment of prostate cancer.

Examples of applications within the scope of the present invention include, but are not limited to:

- amplifying PCGEM1 sequences;
- detecting a PCGEM1-derived marker of prostate cancer by hybridization with an oligonucleotide probe;
- identifying chromosome 2:
- mapping genes to chromosome 2;
- identifying genes associated with certain diseases, syndromes, or other conditions associated with human chromosome 2;
- constructing vectors having PCGEM1 sequences;
- expressing vector-associated PCGEM1 sequences as RNA and protein;
- detecting defective genes in an individual;
- developing gene therapy;
- developing immunologic reagents corresponding to PCGEM1-encoded products; and
- treating prostate cancer using antibodies, antisense nucleic acids, or other inhibitors specific for PCGEM1 sequences.

Detecting, Diagnosing, and Treating Prostate Cancer

The present invention provides a method of detecting prostate cancer in a patient, which comprises (a) detecting PCGEM1 mRNA in a biological sample from the patient; and (b) correlating the amount of PCGEM1 mRNA in the sample with the presence of prostate cancer in the patient. Detecting PCGEM1 mRNA in a biological sample may include: (a) isolating RNA from said biological sample; (b) amplifying a PCGEM1 cDNA molecule; (c) incubating the PCGEM1 cDNA with the isolated nucleic acid of the invention; and (d) detecting hybridization between the PCGEM1 cDNA and the isolated nucleic acid. The biological sample can be selected from the group consisting of blood, urine, and tissue, for example, from a biopsy. In a preferred embodiment, the biological sample is blood. This method is useful in both the initial diagnosis of prostate cancer, and the later prognosis of disease. This

13

method allows for testing prostate tissue in a biopsy, and after removal of a cancerous prostate, continued monitoring of the blood for micrometastases.

According to this method of diagnosing and prognosticating prostate cancer in a patient, the amount of PCGEM1 mRNA in a biological sample from a patient is correlated with the presence of prostate cancer in the patient. Those of ordinary skill in the art can readily assess the level of over-expression that is correlated with the presence of prostate cancer.

In another embodiment, this invention provides a vector, comprising a PCGEM1 promoter sequence operatively linked to a nucleotide sequence encoding a cytotoxic protein. The invention further provides a method of selectively killing a prostate cancer cell, which comprises introducing the vector to prostate cancer cells under conditions sufficient to permit selective killing of the prostate cells. As used herein, the phrase "selective killing" is meant to include the killing of at least a cell which is specifically targeted by a nucleotide sequence. The putative PCGEM1 promoter, contained in the 5' flanking region of the PCGEM1 genomic sequence, SEQ ID NO: 3, is set forth in Figure 11. Applicants envision that a nucleotide sequence encoding any cytotoxic protein can be incorporated into this vector for delivery to prostate tissue. For example, the cytotoxic protein can be ricin, abrin, diphtheria toxin, p53, thymidine kinase, tumor necrosis factor, cholera toxin, *Pseudomonas aeruginosa* exotoxin A, ribosomal inactivating proteins, or mycotoxins such as trichothecenes, and derivatives and fragments (e.g., single chains) thereof.

This invention also provides a method of identifying an androgen-responsive cell line, which comprises (a) obtaining a cell line suspected of being androgen-responsive, (b) incubating the cell line with an androgen; and (c) detecting PCGEM1 mRNA in the cell line, wherein an increase in PCGEM1 mRNA, as compared to an untreated cell line, correlates with the cell line being androgen-responsive.

The invention further provides a method of measuring the responsiveness of a prostatic tissue to hormone-ablation therapy, which comprises (a) treating the prostatic tissue with hormone-ablation therapy; and (b) measuring PCGEM1 mRNA in the prostatic tissue following hormone-ablation therapy, wherein a decrease in

PCGEM1 mRNA, as compared to an untreated cell line, correlates with the cell line responding to hormone-ablation therapy.

In another aspect of the invention, these nucleic acid molecules may be introduced into a recombinant vector, such as a plasmid, cosmid, or virus, which can be used to transfect or transduce a host cell. The nucleic acids of the present invention may be combined with other DNA sequences, such as promoters, polyadenylation signals, restriction enzyme sites, multiple cloning sites, and other coding sequences.

Probes

Among the uses of nucleic acids of the invention is the use of fragments as probes or primers. Such fragments generally comprise at least about 17 contiguous nucleotides of a DNA sequence. The fragment may have fewer than 17 nucleotides, such as, for example, 10 or 15 nucleotides. In other embodiments, a DNA fragment comprises at least 20, at least 30, or at least 60 contiguous nucleotides of a DNA sequence. Examples of probes or primers of the invention include those of SEQ ID NO: 5, SEQ ID NO: 6, and SEQ ID NO: 7, as well as those disclosed in Table I.

Table I

		Starting				
<u>Primer</u>		S/AS	Base #	SEQ ID NO.		
p413	TGGCAACAGCAAGCAGAG	S	510	SEQ ID NO: 9		
p414	GGCCAAAATAAAACCAAACAT	AS	610	SEQ ID NO: 10		
p489	GCAAATATGATTTAAAGATACAAC	S	752	SEQ ID NO: 11		
p490	GGTTGTATCTTTAAATCATATTTGC	AS	776	SEQ ID NO: 12		
p491	ACTGTCTTTTCATATATTTCTCAATGC	S	559	SEQ ID NO: 13		
p517	AAGTAGTAATTTTAAACATGGGAC	AS	1516	SEQ ID NO: 14		
p518	TTTTTCAATTAGGCAGCAACC	S	131	SEQ ID NO: 15		
p519	GAATTGTCTTTGTGATTGTTTTTAG	S	1338	SEQ ID NO: 16		
p560	CAATTCACAAAGACAATTCAGTTAAG	AS	1355	SEQ ID NO: 17		
p561	ACAATTAGACAATGTCCAGCTGA	AS	1154	SEQ ID NO: 18		
p562	CTTTGGCTGATATCATGAAGTGTC	AS	322	SEQ ID NO: 19		
p623	AACCTTTTGCCCTATGCCGTAAC	S	148	SEQ ID NO: 20		
p624	GAGACTCCCAACCTGATGATGT	AS	376	SEQ ID NO: 21		
p839	GGTCACGTTGAGTCCCAGTG	AS	270	SEQ ID NO: 22		

S/AS indicates whether the primer is Sense or AntiSense Starting Base # indicates the starting base number with respect to the sequence of SEQ ID NO:1.

However, even larger probes may be used. For example, a particularly preferred probe is derived from PCGEM1 (SEQ ID NO: 1) and comprises nucleotides 116 to 1140 of that sequence. It has been designated SEQ ID NO: 4 and is set forth in Figure 12.

When a hybridization probe binds to a target sequence, it forms a duplex molecule that is both stable and selective. These nucleic acid molecules may be readily prepared, for example, by chemical synthesis or by recombinant techniques. A wide variety of methods are known in the art for detecting hybridization, including fluorescent, radioactive, or enzymatic means, or other ligands such as avidin/biotin.

In another aspect of the invention, these nucleic acid molecules may be introduced into a recombinant vector, such as a plasmid, cosmid, or virus, which can be used to transfect or transduce a host cell. The nucleic acids of the present invention may be combined with other DNA sequences, such as promoters, polyadenylation signals, restriction enzyme sites, multiple cloning sites, and other coding sequences.

Because homologs of SEQ ID NO: 1, SEQ ID NO: 2, and SEQ ID NO: 8 from other mammalian species are contemplated herein, probes based on the human DNA sequence of SEQ ID NO: 1, SEQ ID NO: 2, and SEQ ID NO: 8 may be used to screen cDNA libraries derived from other mammalian species, using conventional cross-species hybridization techniques.

In another aspect of the invention, one can use the knowledge of the genetic code in combination with the sequences set forth herein to prepare sets of degenerate oligonucleotides. Such oligonucleotides are useful as primers, *e.g.*, in polymerase chain reactions (PCR), whereby DNA fragments are isolated and amplified. Particularly preferred primers are set forth in Figures 13 and Table I and are designated SEQ ID NOS: 5-7 and 9-22, respectively. A particularly preferred primer pair is p518 (SEQ ID NO: 15) and p839 (SEQ ID NO: 22), which when used in PCR, preferentially amplifies mRNA, thereby avoiding less desirable cross-reactivity with genomic DNA.

Chromosome Mapping

As set forth in Example 3, the PCGEM1 gene has been mapped by fluorescent in situ hybridization to the 2q32 region of chromosome 2 using a bacterial artificial chromosome (BAC) clone containing PCGEU1 genomic sequence. Thus, all or a portion of the nucleic acid molecule of SEQ ID NO:1, SEQ ID NO:2, and SEQ ID NO:8, including oligonucleotides, can be used by those skilled in the art using well-known techniques to identify human chromosome 2, and the specific locus thereof, that contains the PCGEM1 DNA. Useful techniques include, but are not limited to, using the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:2, or SE ID NO:8, or fragments thereof, including oligonucleotides, as a probe in various well-known techniques such as radiation hybrid mapping (high resolution), *in situ* hybridization to chromosome spreads (moderate resolution), and Southern blot hybridization to hybrid cell lines containing individual human chromosomes (low resolution).

For example, chromosomes can be mapped by radiation hybridization. First, PCR is performed using the Whitehead Institute/MIT Center for Genome Research Genebridge4 panel of 93 radiation hybrids

(http://www-genome.wi.mit.edu/ftp/distribution/

human_STS_releases/july97/rhmap/genebridge4.html). Primers are used which lie within a putative exon of the gene of interest and which amplify a product from human genomic DNA, but do not amplify hamster genomic DNA. The results of the PCRs are converted into a data vector that is submitted to the Whitehead/MIT Radiation Mapping site on the internet (http://www-seq.wi.mit.edu). The data is scored and the chromosomal assignment and placement relative to known Sequence Tag Site (STS) markers on the radiation hybrid map is provided. (The following web site provides additional information about radiation hybrid mapping: http://www-genome.wi.mit.edu/ftp/distribution/human_STS_releases/july97/07-97.INTRO.html).

Identifying Associated Diseases

As noted above, PCGEM1 has been mapped to the 2q32 region of chromosome 2. This region is associated with specific diseases, which include but are not limited to diabetes mellitus (insulin dependent), and T cell leukemia/lymphoma. Thus, the nucleic acids of SEQ ID NO: 1, SEQ ID NO: 2, or SEQ ID NO:8, or fragments thereof, can be used by one skilled in the art using well-known techniques to analyze abnormalities associated with gene mapping to chromosome 2. This enables one to distinguish conditions in which this marker is rearranged or deleted. In addition, nucleotides of SEQ ID NO:1, SEQ ID NO:2, or SEQ ID NO:8, or fragments thereof, can be used as a positional marker to map other genes of unknown location.

The DNA may be used in developing treatments for any disorder mediated (directly or indirectly) by defective, or insufficient amounts of PCGEM1, including prostate cancer. Disclosure herein of native nucleotide sequences permits the detection of defective genes, and the replacement thereof with normal genes. Defective genes may be detected in *in vitro* diagnostic assays, and by comparison of a native nucleotide sequence disclosed herein with that of a gene derived from a person suspected of harboring a defect in this gene.

Sense-Antisense

Other useful fragments of the nucleic acids include antisense or sense oligonucleotides comprising a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment of DNA (SEQ ID NO:1, SEQ ID NO:2, or SEQ ID NO:8). Such a fragment generally comprises at least about 14 nucleotides, preferably from about 14 to about 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (*Cancer Res.* 48:2659, 1988) and van der Krol et al. (*BioTechniques* 6:958, 1988).

The biologic activity of PCGEM1 in assay cells and the over expression of PCGEM1 in prostate cancer tissues suggest that elevated levels of PCGEM1 promote prostate cancer cell growth. Thus, the antisense oligonucleotides to PCGEM1 may be used to reduce the expression of PCGEM1 and, consequently, inhibit the growth of the cancer cells.

Binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation of duplexes. The antisense oligonucleotides thus may be used to block expression of proteins or to inhibit the function of RNA. Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugarphosphodiester backbones (or other sugar linkages, such as those described in WO91/06629) and wherein such sugar linkages are resistant to endogenous nucleases. Such oligonucleotides with resistant sugar linkages are stable *in vivo* (*i.e.*, capable of resisting enzymatic degradation) but retain sequence specificity to be able to bind to target nucleotide sequences.

Other examples of sense or antisense oligonucleotides include those oligonucleotides which are covalently linked to organic moieties, such as those described in WO 90/10448, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine). Further still, intercalating agents, such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides. Such modifications may

modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide sequence.

Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid sequence by any gene transfer method, including, for example, lipofection, CaPO₄-mediated DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus or adenovirus.

Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell.

Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448. The sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase.

POLYPEPTIDES AND FRAGMENTS THEREOF

The invention also encompasses polypeptides and fragments thereof in various forms, including those that are naturally occurring or produced through various techniques such as procedures involving recombinant DNA technology. Such forms include, but are not limited to, derivatives, variants, and oligomers, as well as fusion proteins or fragments thereof.

The polypeptides of the invention include full length proteins encoded by the nucleic acid sequences set forth above. The polypeptides of the invention may be membrane bound or they may be secreted and thus soluble. The invention also includes the expression, isolation and purification of the polypeptides and fragments of the invention, accomplished by any suitable technique.

The following examples further illustrate preferred aspects of the invention.

EXAMPLE 1: Differential Gene Expression Analysis in Prostate Cancer

Using the differential display technique, we identified a novel gene that is over-expressed in prostate cancer cells. Differential display provides a method to separate and clone individual messenger RNAs by means of the polymerase chain reaction, as described in Liang et al., *Science*, 257:967-71 (1992), which is hereby incorporated by reference. Briefly, the method entails using two groups of oligonucleotide primers. One group is designed to recognize the polyadenylate tail of messenger RNAs. The other group contains primers that are short and arbitrary in sequence and anneal to positions in the messenger RNA randomly distributed from the polyadenylate tail. Products amplified with these primers can be differentiated on a sequencing gel based on their size. If different cell populations are amplified with the same groups of primers, one can compare the amplification products to identify differentially expressed RNA sequences.

Differential display ("DD") kits from Genomyx (Foster City, California) were used to analyze differential gene expression. The steps of the differential display technique are summarized in Figure 1. Histologically well defined matched tumor and normal prostate tissue sections containing approximately similar proportions of epithelial cells were chosen from individual prostate cancer patients.

Genomic DNA-free total RNA was extracted from this enriched pool of cells using RNAzol B (Tel-Test, Inc., Friendswood, TX) according to manufacturer's protocol. The epithelial nature of the RNA source was further confirmed using cytokeratin 18 expression (45) in reverse transcriptase-polymerase chain reaction (RT-PCR) assays. Using arbitrary and anchored primers containing 5' M13 or T7 sequences (obtained from Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda), the isolated DNA-free total RNA was amplified by RT-PCR which was performed using ten anchored antisense primers and four arbitrary sense primers according to the protocol provided by HieroglyphTM RNA Profile Kit 1 (Genomyx Corporation, CA). The cDNA fragments produced by the RT-PCR assay were analyzed by high resolution gel electrophoresis, carried out by

using Genomyx[™] LR DNA sequencer and LR-Optimized[™] HR-1000[™] gel formulations (Genomyx Corporation, CA).

A partial DD screening of normal/tumor tissues revealed 30 differentially expressed cDNA fragments, with 53% showing reduced or no expression in tumor RNA specimens and 47% showing over expression in tumor RNA specimen (Figure 2). These cDNAs were excised from the DD gels, reamplified using T7 and M13 primers and the RT PCR conditions recommended in HieroglyphTM RNA Profile Kit-1 (Genomyx Corp., CA), and sequenced. The inclusion of T7 and M13 sequencing primers in the DD primers allowed rapid sequencing and orientation of cDNAs (Figure 1).

All the reamplified cDNA fragments were purified by Centricon-c-100 system (Amicon, USA). The purified fragments were sequenced by cycle sequencing and DNA sequence determination using an ABI 377 DNA sequencer. Isolated sequences were analyzed for sequence homology with known sequences by running searches through publicly available DNA sequence databases, including the National Center for Biotechnology Information and the Cancer Genome Anatomy Project. Approximately two-thirds of these cDNA sequences exhibited homology to previously described DNA sequences/genes e.g., ribosomal proteins, mitochondrial DNA sequences, growth factor receptors, and genes involved in maintaining the redox state in cells. About one-third of the cDNAs represented novel sequences, which did not exhibit similarity to the sequences available in publicly available databases. The PCGEM1 fragment, obtained from the initial differential display screening represents a 530 base pair (nucleotides 410 to 940 of SEQ ID NO: 1) cDNA sequence which, in initial searches, did not exhibit any significant homology with sequences in the publicly available databases. Later searching of the high throughput genome sequence (HTGS) database revealed perfect homology to a chromosome 2 derived uncharacterized, unfinished genomic sequence (accession # AC 013401).

EXAMPLE 2: Characterization of Full Length PCGEM1 cDNA Sequence

The full length of PCGEM1 was obtained by 5' and 3' RACE/PCR from the original 530 bp DD product (nucleotides 410 to 940 of PCGEM1 cDNA SEQ ID

NO:1) using a normal prostate cDNA library in lambda phage (Clontech, CA). The RACE/PCR products were directly sequenced. Lasergene and MacVector DNA analysis software were used to analyze DNA sequences and to define open reading frame regions. We also used the original DD product to screen a normal prostate cDNA library. Three overlapping cDNA clones were identified.

Sequencing of the cDNA clones was performed on an ABI-310 sequence analyzer and a new dRhodamine cycle sequencing kit (PE-Applied Biosystem, CA). The longest PCGEM1 cDNA clone, SEQ ID NO:1 (Figure 8), revealed 1643 nucleotides with a potential polyadenylation site, ATTAAA, close to the 3' end followed by a poly (A) tail. As noted above, although initial searching of PCGEM1 gene in publically available DNA databases (e.g., National Center for Biotechnology Information) using the BLAST program did not reveal any homology, a recent search of the HTGS database revealed perfect homology of PCGEM1 (using cDNA of SEQ ID NO: 1) to a chromosome 2 derived uncharacterized, unfinished genomic sequence (accession # AC 013401). One of the cDNA clones, SEQ ID NO:2 (Figure 9), contained a 123 bp insertion at 278, and this inserted sequence showed strong homology (87%) to Alu sequence. It is likely that this clone represented the premature transcripts. Sequencing of several clones from RT-PCR further confirmed the presence of the two forms of transcripts.

Sequence analysis did not reveal any significant long open reading frame in both strands. The longest ORF in the sense strand was 105 nucleotides (572-679) encoding 35 amino acid peptides. However, the ATG was not in a strong context of initiation. Although we could not rule out the coding capacity for a very small peptide, it is possible that PCGEM1 may function as a non-coding RNA.

The sequence of PCGEM1 cDNA has been verified by several approaches including characterization of several clones of PCGEM1 and analysis of PCGEM1 cDNAs amplified from normal prostate tissue and prostate cancer cell lines. We have also obtained the genomic clones of PCGEM1, which has helped to confirm the PCGEM1 cDNA sequence. The complete genomic DNA sequence of PCGEM1 (SEQ ID NO:8) is shown in Figure 14. In Figure 14 (and in the accompanying Sequence Listing), "Y" represents any one of the four nucleotide bases, cylosine,

thymine, adenine, or guanine. Comparison of the cDNA and genomic sequences revealed the organization of the PCGEM1 transcription unit from three exons (Figure 15: E, Exon; B: BamHI; H: HindIII; X: XbaI; R: EcoRI).

EXAMPLE 3: Mapping the Location of PCGEM1

Using fluorescent *in situ* hybridization and the PCGEM1 genomic DNA as a probe, we mapped the location of PCGEM1 on chromosome 2q to specific region 2q32 (Figure 7A). Specifically, a Bacterial Artificial Chromosome (BAC) clone containing the PCGEM1 genomic sequence was isolated by custom services of Genome Systems (St. Louis, Mo). PCGEM1-Bac clone 1 DNA was nick translated using spectrum orange (Vysis) as a direct label and flourescent *in situ* hybridization was done using this probe on normal human male metaphase chromosome spreads. Counterstaining was done and chromosomal localization was determined based on the G-band analysis of inverted 4′,6-diamidino-2-phenylindole (DAPI) images. (Figure 7B: a DAPI counter-stained chromosome 2 is shown on the left; an inverted DAPI stained chromosome 2 shown as G-bands is shown in the center; an ideogram of chromosome 2 showing the localization of the signal to band 2q32(bar) is shown on the right.) NU200 image acquisition and registration software was used to create the digital images. More than 20 metaphases were analyzed.

EXAMPLE 4: Analysis of PCGEM1 Gene Expression in Prostate Cancer

To further characterize the tumor specific expression of the PCGEM1 fragment, and also to rule out individual variations of gene expression alterations commonly observed in tumors, the expression of the PCGEM1 fragment was evaluated on a test panel of matched tumor and normal RNAs derived from the microdissected tissues of twenty prostate cancer patients.

Using the PCGEM1 cDNA sequence (SEQ ID NO:1), specific PCR primers (Sense primer 1 (SEQ ID NO: 5): 5' TGCCTCAGCCTCCCAAGTAAC 3' and Antisense primer 2 (SEQ ID NO: 6): 5' GGCCAAAATAAAACCAAACAT 3') were designed for RT-PCR assays. Radical prostatectomy derived OCT compound (Miles Inc. Elkhart, IN) embedded fresh frozen normal and tumor tissues from prostate

cancer patients were characterized for histopathology by examining hematoxylin and eosin stained sections (46). Tumor and normal prostate tissues regions representing approximately equal number of epithelial cells were dissected out of frozen sections. DNA-free RNA was prepared from these tissues and used in RT-PCR analysis to detect PCGEM1 expression. One hundred nanograms of total RNA was reverse transcribed into cDNA using RT-PCR kit (Perkin-Elmer, Foster, CA). The PCR was performed using Amplitaq Gold from Perkin-Elmer (Foster, CA). PCR cycles used were: 95°C for 10 minutes, 1 cycle; 95°C for 30 seconds, 55°C for 30 seconds, 72°C for 30 seconds, 42 cycles, and 72°C for 5 minutes, 1 cycle followed by a 4°C storage. Epithelial cell-associated cytokeratin 18 was used as an internal control.

RT-PCR analysis of microdissected matched normal and tumor tissue derived RNAs from 23 CaP patients revealed tumor associated overexpression of PCGEM1 in 13 (56%) of the patients (Figure 5). Six of twenty-three (26%) patients did not exhibit detectable PCGEM1 expression in either normal or tumor tissue derived RNAs. Three of twenty-three (13%) tumor specimens showed reduced expression in tumors. One of the patients did not exhibit any change. Expression of housekeeping genes, cytokeratin-18 (Figure 3) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (data not shown) remained constant in tumor and normal specimens of all the patients (Figure 3). These results were further confirmed by another set of PCGEM1 specific primers (Sense Primer 3 (SEQ ID NO: 7): 5' TGGCAACAGGCAAGCAGAG 3' and Antisense Primer 2 (SEQ ID NO: 6): 5' GGCCAAAATAAAACCAAACAT 3'). Four of 16 (25%) patients did not exhibit detectable PCGEM1 expression in either normal or tumor tissue derived RNAs. Two of 16 (12.5%) tumor specimens showed reduced expression in tumors. These results of PCGEM1 expression in tumor tissues could be explained by the expected individual variations between tumors of different patients. Most importantly, initial DD observations were confirmed by showing that 45% of patients analyzed did exhibit over expression of PCGEM1 in tumor prostate tissues when compared to corresponding normal prostate tissue of the same individual.

EXAMPLE 5: In situ Hybridization

In situ hybridization was performed essentially as described by Wilkinson and Green (48). Briefly, OCT embedded tissue slides stored at -80°C were fixed in 4% PFA (paraformaldehyde), digested with proteinase K and then again fixed in 4% PFA. After washing in PBS, sections were treated with 0.25% acetic anhydride in 0.1M triethanolamine, washed again in PBS, and dehydrated in a graded ethanol series. Sections were hybridized with 35S-labeled riboprobes at 52°C overnight. After washing and RNase A treatment, sections were dehydrated, dipped into NTB-2 emulsion and exposed for 11 days at 4°C. After development, slides were lightly stained with hematoxylin and mounted for microscopy. In each section, PCGEM1 expression was scored as percentage of cells showing 35S signal: 1+, 1-25%; 2+, 25-50%; 3+, 50-75%, 4+, 75-100%.

Paired normal (benign) and tumor specimens from 13 patients were tested using in situ hybridization. A representative example is shown in Figure 17. In 11 cases (84%) tumor associated elevation of PCGEM1 expression was detected. In 5 of these 11 patients the expression of PCGEM1 increased to 1+ in the tumor area from an essentially undetectable level in the normal area (on the 0 to 4+ scale). Tumor specimens from 4 of 11 patients scored between 2+ (example shown in Figure 17B) and 4+. Two of 11 patients showed focal signals with 3+ score in the tumor area, and one of these patients had similar focal signal (2+) in an area pathologically designated as benign. In the remaining 2 of the 13 cases there was no detectable signal in any of the tissue areas tested. The results indicate that PCGEM1 expression appears to be restricted to glandular epithelial cells. (Figure 17 shows an example of in situ hybridization of 35S labeled PCGEM1 riboprobe to matched normal (A) versus tumor (B) sections of prostate cancer patients. The light gray areas are hematoxylin stained cell bodies, the black dots represent the PCGEM1 expression signal. The signal is background level in the normal (A), 2+ level in the tumor (B) section. The magnification is 40x.)

EXAMPLE 6: PCGEM1 Gene Expression in Prostate Tumor Cell Lines

PCGEM1 gene expression was also evaluated in established prostate cancer cell lines: LNCaP, DU145, PC3 (all from ATCC), DuPro (available from Dr. David Paulson, Duke University, Durham, NC), and an E6/E7 - immortalized primary prostate cancer cell line, CPDR1 (47). CPDR1 is a primary CaP derived cell line immortalized by retroviral vector, LXSN 16 E6 E7, expressing E6 and E7 gene of the human papilloma virus 16. LNCaP is a well studied, androgen-responsive prostate cancer cell line, whereas DU145, PC3, DuPro and CPDR1 are androgen-independent and lack detectable expression of the androgen receptor. Utilizing the RT-PCR assay described above, PCGEM1 expression was easily detectable in LNCaP (Figure 4). However, PCGEM1 expression was not detected in prostate cancer cell lines DU145, PC3, DuPro and CPDR. Thus, PCGEM1 was expressed in the androgen-responsive cell line but not in the androgen-independent cell lines. These results indicate that hormones, particularly androgen, may play a key role in regulating PCGEM1 expression in prostate cancer cells. In addition, the results suggest that PCGEM1 expression may be used to distinguish between hormone responsive tumor cells and more aggressive hormone refractory tumor cells.

To test if PCGEM1 expression is regulated by androgens, we performed experiments evaluating PCGEM1 expression in LNCaP cells (ATCC) cultured with and without androgens. Total RNA from LNCaP cells, treated with synthetic androgen R1881 obtained from (DUPONT, Boston, MA), were analyzed for PCGEM1 expression. Both RT-PCR analysis (Figure 5a) and Northern blot analysis (Figure 5b) were conducted as follows.

LNCaP cells were maintained in RPMI 1640 (Life Technologies, Inc., Gaithersburg, MD) supplemented with 10% fetal bovine serum (FBS, Life Technologies, Inc., Gaithersburg, MD) and experiments were performed on cells between passages 20 and 35. For the studies of NKX3.1 gene expression regulation, charcoal/dextran stripped androgen-free FBS (cFBS, Gemini Bio-Products, Inc., Calabasas, CA) was used. LNCaP cells were cultured first in RPMI 1640 with 10% cFBS for 4 days and then stimulated with a non-metabolizable androgen analog R1881 (DUPONT, Boston, MA) at different concentrations for different times as

shown in Figure 5A. LNCaP cells identically treated but without R1881 served as control. Poly A+ RNA derived from cells treated with/without R1881 was extracted at indicated time points with RNAzol B (Tel-Test, Inc, TX) and fractionated (2µg/lane) by running on 1% formaldehyde-agarose gel and transferred to nylon membrane. Northern blots were analyzed for the expression of PCGEM1 using the nucleic acid molecule set forth in SEQ ID NO: 4 as a probe. The RNA from LNCaP cells treated with R1881 and RNA from control LNCaP cells were also analyzed by RT-PCR assays as described in Example 4.

As set forth in Figures 5a and 5b, PCGEM1 expression increases in response to androgen treatment. This finding further supports the hypothesis that the PCGEM1 expression is regulated by androgens in prostate cancer cells.

EXAMPLE 7: Tissue Specificity of PCGEM1 Expression

Multiple tissue Northern blots (Clontech, CA) conducted according to the manufacturer's directions revealed prostate tissue-specific expression of PCGEM1. Polyadenylate RNAs of 23 different human tissues (heart, brain, placenta, lung, liver skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis, ovary, small intestine, colon, peripheral blood, stomach, thyroid, spinal cord, lymph node, trachea, adrenal gland and bone marrow) were probed with the 530 base pair PCGEM1 cDNA fragment (nucleotides 410 to 940 of SEQ ID NO:1). A 1.7 kilobase mRNA transcript hybridized to the PCGEM1 probe in prostate tissue (Figure 6a). Hybridization was not observed in any of the other human tissues (Figure 6a). Two independent experiments revealed identical results.

Additional Northern blot analyses on an RNA master blot (Clontech, CA) conducted according to the manufacturer's directions confirm the prostate tissue specificity of the PCGEM1 gene (Figure 6b). Northern blot analyses reveal that the prostate tissue specificity of PCGEM1 is comparable to the well known prostate marker PSA (77mer oligo probe) and far better than two other prostate specific genes PSMA (234 bp fragment from PCR product) and NKX3.1 (210 bp cDNA). For instance, PSMA is expressed in the brain (37) and in the duodenal mucosa and a subset of proximal renal tubules (38). While NKX3.1 exhibits high levels of

expression in adult prostate, it is also expressed in lower levels in testis tissue and several other tissues (39).

EXAMPLE 8: Biologic functions of the PCGEM1

The tumor associated PCGEM1 overexpression suggested that the increased expression of PCGEM1 may favor tumor cell proliferation. NIH3T3 cells have been extensively used to define cell growth promoting functions associated with a wide variety of genes (40-44). Utilizing pcDNA3.1/Hygro(+/-)(Invitrogen, CA), PCGEM1 expression vectors were constructed in sense and anti-sense orientations and were transfected into NIH3T3 cells, and hygromycin resistant colonies were counted 2-3 weeks later. Cells transfected with PCGEM1 sense construct formed about 2 times more colonies than vector alone in three independent experiments (Figure 10). The size of the colonies in PCGEM1 sense construct transfected cells were significantly larger. No appreciable difference was observed in the number of colonies between anti-sense PCGEM1 constructs and vector controls. These promising results document a cell growth promoting/cell survival function(s) associated with PCGEM1.

The function of PCGEM1, however, does not appear to be due to protein expression. To assess this hypothesis, we used the TestCode program (GCG Wisconsin Package, Madison, WI), which identifies potential protein coding sequences of longer than 200 bases by measuring the non-randomness of the composition at every third base, independently from the reading frames. Analysis of the PCGEM1 cDNA sequence revealed that, at greater than 95% confidence level, the sequence does not contain any region with protein coding capacity (Figure 16A). Similar results were obtained when various published non-coding RNA sequences were analyzed with the TestCode program (data not shown), while known protein coding regions of similar size i.e., alpha actin (Figure 16B) can be detected with high fidelity. (In Figure 16, evaluation of the coding capacity of the PCGEM1 (A) and the human alpha actin (B), is performed independently from the reading frame, by using the TestCode program. The number of base pairs is indicated on the X- axis, the TestCode values are shown on the Y-axis. Regions of longer than 200 base pairs

above the upper line (at 9.5 value) are considered coding, under the lower line (at 7.3 value) are considered non-coding, at a confidence level greater than 95%.)

The Codon Preference program (GCG Wisconsin Package, Madison, WI), which locates protein coding regions in a reading frame specific manner further suggested the absence of protein coding capacity in the PCGEM1 gene (see www.cpdr.org). *In vitro* transcription/translation of PCGEM1 cDNA did not produce a detectable protein/peptide. Although we can not unequivocally rule out the possibility that PCGEM1 codes for a short unstable peptide, at this time both experimental and computational approaches strongly suggest that PCGEM1 cDNA does not have protein coding capacity. (It should be recognized that conclusions regarding the role of PCGEM1 are speculative in nature, and should not be considered limiting in any way.

The most intriguing aspect of PCGEM1 characterization has been its apparent lack of protein coding capacity. Although we have not completely ruled out the possibility that PCGEM1 codes for a short unstable peptide, careful sequencing of PCGEM1 cDNA and genomic clones, computational analysis of PCGEM1 sequence, and in vitro transcription/translation experiments (data not shown) strongly suggest a non-coding nature of PCGEM1. It is interesting to note that an emerging group of novel mRNA-like non-coding RNAs are being discovered whose function and mechanisms of action remain poorly understood (49). Such RNA molecules have also been termed as "RNA riboregulators" because of their function(s) in development, differentiation, DNA damage, heat shock responses and tumorigenesis (40-42, 50). In the context of tumorigenesis, the H19, His-1 and Bic genes code for functional noncoding mRNAs (50). In addition, a recently reported prostate cancer associated gene, DD3 also appears to exhibit a tissue specific non-coding mRNA (51). In this regard it is important to point out that PCGEM1 and DD3 may represent a new class of prostate specific genes. The recent discovery of a steroid receptor co-activator as an mRNA, lacking protein coding capacity further emphasizes the role of RNA riboregulators in critical biochemical function(s) (52). Our preliminary results showed that PCGEM1 expression in NIH3T3 cells caused a significant increase in the size of colonies in a colony forming assay and suggests that PCGEM1 cDNA confers

cell proliferation and/or cell survival function(s). Elevated expression of PCGEM1 in prostate cancer cells may represent a gain in function favoring tumor cell proliferation/survival. On the basis of our first characterization of PCGEM1gene, we propose that PCGEM1 belongs to a novel class of prostate tissue specific genes with potential functions in prostate cell biology and the tumorigenesis of the prostate gland.

In summary, utilizing surgical specimens and rapid differential display technology, we have identified candidate genes of interest with differential expression profile in prostate cancer specimens. In particular, we have identified a novel nucleotide sequence, PCGEM1, with no match in the publicly available DNA databases (except for the homology shown in the high throughput genome sequence database, discussed above). A PCGEM1 cDNA fragment detected a 1.7 kb mRNA on Northern blots with selective expression in prostate tissue. Furthermore, this gene was found to be up-regulated by the synthetic androgen, R1881. Careful analysis of microdissected matched tumor and normal tissues further revealed PCGEM1 over-expression in a significant percentage of prostate cancer specimens. Thus, we have provided a gene with broad implications for the diagnosis, prevention, and treatment of prostate cancer.

The specification is most thoroughly understood in light of the teachings of the references cited within the specification which are hereby incorporated by reference. The embodiments within the specification provide an illustration of embodiments of the invention and should not be construed to limit the scope of the invention. The skilled artisan readily recognizes that many other embodiments are encompassed by the invention.

REFERENCES

- 1. Parker SL, Tong T, Bolden S, and Wingo PA: Cancer statistics. *CA Cancer J. Clin.*, 46:5-27, 1996.
- 2. Visakorpi T, Kallioniemi OP, Koivula T and Isola J: New prognostic factors in prostate carcinoma. Eur. Uro., 24:438-449, 1993.
- 3. Mostofi FK: Grading of prostate carcinoma. Cancer Chemothera Rep., 59:111, 1975.
- Lu-Yao GL, McLerran D, Wasson J, Wennberg JE: An assessment of radical prostatectomy. Time trends, Geographical Variations and Outcomes. JAMA, 269:2633-2636, 1993.
- 5. Partin AW and Oesterling JE: The clinical usefulness of prostate-specific antigen: update 1994, J. Urol., 152:1358-1368, 1994.
- Wasson JH, Cushman CC, Bruskewitz RC, Littenberg B, Mulley AG, and Wennberg JE: A structured literature review of treatment for localized CaP. Arch. Fam. Med., 2:487-493, 1993.
- 7. Weinberg RA: How cancer arises. Sci. Amer., 9, 62-70, 1996.
- 8. Bostwick DG: High grade prostatic intraepithelial neoplasia: The most likely precursor of prostate cancer. *Cancer*, 75:1823-1836, 1995.
- 9. Bostwick DG, Pacelli A, Lopez-Beltran A: Molecular Biology of Prostatic Intraepithelial Neoplasia. *The Prostate*, 29:117-134, 1996.
- 10. Pannek J, Partin AW: Prostate specific antigen: What's new in 1997. *Oncology*, 11:1273-1278, 1997.
- 11. Partin AW, Kattan MW, Subong EN, Walsh PC, Wojno KJ, Oesterling JE, Scardino PT, Pearson JD: Combination of prostate specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. *JAMA*, 277:1445-1451, 1997.
- 12. Gomella LG, Raj GV, Moreno JG: Reverse transcriptase polymerase chain reaction for prostate specific antigen in management of prostate cancer. *J. Urol.*, 158:326-337, 1997.
- Gao CL, Dean RC, Pinto A, Mooneyhan R, Connelly RR, McLeod DG, Srivastava, S, Moul JW: Detection of PSA-expressing prostatic cells in bone marrow of radical prostatectomy patients by sensitive reverse transcriptase-polymerase chain reaction (RT-PCR). 1998 International Symposium on Biology of Prostate growth, National Institutes of Health, p. 83, 1998.
- 14. Garnick MB, Fair WR: Prostate cancer. Sci. Amer., 75-83, 1998.
- 15. Moul JW, Gaddipati J, and Srivastava S: 1994. Molecular biology of CaP. Oncogenes and tumor suppressor genes. <u>Current Clinical Oncology</u>: CaP. (Eds. Dawson, N.A. and Vogelzang, N.J.), Wiley-Liss Publications, 19-46.
- Lalani E-N, Laniado ME and Abel PD: Molecular and cellular biology of prostate cancer. Cancer and Mets. Rev. 16:29-66, 1997.

- 17. Shi XB, Gumerlock PH, deVere White RW: Molecular Biology of CaP World J. Urol; 14, 318-328, 1996.
- 18. Heidenberg HB, Bauer JJ, McLeod DG, Moul JW and Srivastava S: The role of p53 tumor suppressor gene in CaP: a possible biomarker? *Urology*, 48:971-979, 1996.
- 19. Bova GS and Issacs WB: Review of allelic loss and gain in prostate cancer. *World J Urol.*, 14:338-346, 1996.
- Issacs WB and Bova GS: Prostate Cancer: <u>The Genetic Basis of Human Cancer</u>. Eds. Vogelstein B, and Kinzler KW, McGraw-Hill Companies, Inc., pp. 653-660, 1998.
- Srivastava S and Moul JW: Molecular Progression of Prostate Cancer. <u>Advances in Oncobiology</u>. (In Press) 1998.
- Sakr WA, Macoska JA, Benson P, Benson DJ, Wolman SR, Pontes JE, and Crissman: Allelic loss in locally metastatic, multi-sampled prostate cancer. Cancer Res., 54:3273-3277, 1994.
- 23. Mirchandani D, Zheng J, Miller GL, Ghosh AK, Shibata DK, Cote RJ and Roy-Burman P: Heterogeneity in intratumor distribution of p53 mutations in human prostate cancer. Am. J. Path. 147:92-101, 1995.
- 24. Bauer JJ, Moul JW, and McLeod DG: CaP: Diagnosis, treatment, and experience at one tertiary medical center, 1989-1994. *Military Medicine*, 161:646-653,1996.
- 25. Bauer JJ, Connelly RR, Sesterhenn IA, Bettencourt MC, McLeod DG, Srivastava S, Moul JW: Biostatistical modeling using traditional variables and genetic biomarkers predicting the risk of prostate cancer recurrence after radical prostatectomy. Cancer, 79:952-962, 1997.
- Bauer JJ, Connelly RR, Sesterhenn IA, DeAusen JD, McLeod DG, Srivastava S, Moul JW: Biostatistical modeling using traditional preoperative and pathological prognostic variables in the selection of men at high risk of disease recurrence after radical prostatectomy. J. Urol., 159(3):929-933, 1998
- Sager R: Expression genetics in cancer: Shifting the focus from DNA to RNA. Proc Natl. Acad. Sci. USA, 94:952-957, 1997
- 28. Strausberg RL, Dahl CA, and Klausner RD: New opportunities for uncovering the molecular basis of cancer. *Nature Genetics*, 15:415-16, 1997.
- 29. Liang, Peng, and Pardec AB: Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. *Science* 257:967-971, 1992.
- Velculescu VE, Zhang L, Vogelstein B, and Kinzler KW: Serial analysis of gene expression.
 Science, 270:484-487, 1995.
- 31. Chena M, Shalon DS, Davis RW, and Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarrays. *Science*, 270:467-470, 1995.
- Liu AY, Corey E, Vessella RL, Lange PH, True LD, Huang GM, Nelson PS and Hood L: Identification of differentially expressed prostate genes: Increased expression of transcription factor ETS-2 in prostate cancer. *The Prostate* 30:145-153, 1997.

- 33. Chuaqui RF, Englert CR, Strup SE, Vocke CD, Zhuang Z, Duray PH, Bostwick DG, Linehan WM, Liotta LA and Emmert-Buck MR: Identification of a novel transcript up-regulated in a clinically aggressive prostate carcinoma. *Urology*, 50:302-307, 1997.
- 34. Thigpen AE, Cala KM, Guileyardo JM, Molberg KH, McConnell JD, and Russell DW: Increased expression of early growth response-1 messenger ribonucleic acid in prostate adenocarcinoma. J. Urol., 155:975-981, 1996.
- Wang FL, Wang Y, Wong WK, Liu Y, Addivinola FJ, Liang P, Chen LB, Kantoff PW and Pardee AB: Two differentially expressed genes in normal human prostate tissues and in carcinoma. *Cancer Res.*, 56:3634-3637, 1996.
- Schleicher RL, Hunter SB, Zhang M, Zheng M, Tan W, Bandea CI, Fallon MT, Bostwick DG, and Varma VA: Neurofilament heavy chain-like messenger RNA and protein are present in benign prostate and down regulated in prostate carcinoma. Cancer Res., 57:3532-3536, 1997.
- O'Keefe, DS, Su, SL, Bacich DJ, Horiguchi Y, Luo Y, Powell CT, Zandvliet D, Russell PJ, Molloy PL, Nowak, NJ, Shows, TB, Mullins, C, Vonder Haar RA, Fair WR, and Heston WD: Mapping, genomic organization and promoter analysis of the human prostate-specific membrane antigen gene. *Biochim Biophys Acta*, 1443(1-2):113-127, 1998.
- 38. Silver DA, Pellicer I, Fair WR, Heston, WD, and Cordon-Cardo C: Prostate-specific membrane antigen expression in normal and malignant human tissues. *Clin Cancer Res*, 3(1):81-85, 1997.
- 39. He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS, Curtis RT, Shell BK, Bostwick DG, Tindall DJ, Gelmann EP, Abate-Shen C, and Carter KC: A novel prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43(1):69-77, 1997.
- 40. Crespi MD, Jurkevitch E, Poiret M, d'Aubenton-Carafa Y, Petrovics G, Kondorosi E, and Kondorosi A: Enod 40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. *The EMBO J* 13:5099-5112, 1994.
- Velleca MA, Wallace MC and Merlie JP: A novel synapse-associated non-coding RNA. *Mol. Cell Bio.* 14:7095-7104, 1994.
- 42. Takeda K. Ichijoh, Fujii M, Mochida Y, Saitoh M, Nishitoh H, Sampath TK and Miyazonok: Identification of a novel bone morphogenetic protein responsive gene that may function as non-coding RNA. *J. Biol. Chem.* 273:17079-17085, 1998.
- 43. Van de Sande K, Pawlowski K, Czaja I, Wieneke U, et al: Modification of phytohormone response by a peptide encode by ENOD 40 of legumes and a non-legume. Science 273:370-373.
- 44. Hao Y, Crenshaw T, Moulton T, Newcomb E and Tycko B: Tumor suppressor activity of H19RNA. *Nature*. 365:764-767, 1993.
- 45. Neumaier M, Gerhard M, Wagener C: Diagnosis of micrometastases by the amplification of tissue specific genes. *Gene.* 159(1):43-47, 1995.
- 46. Gaddipati J, McLeod D, Sesterhenn I, Hussussian C, Tong Y, Seth P, Dracopoli N, Moul J and Srivastava S: Mutations of the p16 gene product are rare in prostate cancer. *The Prostate*. 30:188-194, 1997.

- 47. Davis LD, Sesterhenn IA, Moul JW and Srivastava S: Characterization of prostate cancer cells immortalized with E6/E7 genes. Int. Symp. On Biol. Of Prost. Growth Proceedings, National Institutes of Health., 77, 1998.
- 48. Wilkinson, D., & Green, J. (1990) in *Post implantation Mammalian Embryos*, eds. Copp, A.J. & Cokroft, D.L. (Oxford University Press, London), pp. 155-171.
- 49. Erdmann, V.A., Szymanski, M., Hochberg, A., de Groot, N., & Barciszewski, J. (1999) *Nucleic Acids Research* 27, 192-195.
- 50. Askew, D.S., & Xu, F. (1999) Histol Histopatho. 14, 235-241.
- 51. Bussemakers, M.J.H., Van Bokhoven, A., Verhaegh, G.W., Smit, F.P., Karthaus, H.F., Schalken, J.A., Debruyne, F.M., Ru, N., & Isaacs, W.B. (1999) *Cancer Res.* 59, 5975-5979.
- Lanz, R.B., McKenna, N.J., Onate, S.A., Albrecht, U., Wong, J., Tsai, S.Y., Tsai, M.J., & O'Mally, B.W. (1999) Cell 97, 17-27.
- 53. Srikantan V, Zou Z, Petrovics G, Xu L, Augustus M, Davis L, Livezey JR, Connell T, Sesterhenn IA, Yoshino K, Buzard GS, Mostofi FK, McLeod DG, Moul JW, and Srivastava S: PCGEM1: A Novel Prostate Specific Gene is Overexpressed in Prostate Cancer. Submitted to Proceedings of the National Academy of Sciences.

We claim:

- 1. An isolated nucleic acid molecule selected from:
- (a) the polynucleotide sequence of SEQ ID NO:1, SEQ ID NO:2, or SEQ ID NO:8;
- (b) an isolated nucleic acid molecule that hybridizes to either strand of a denatured, double-stranded DNA comprising the nucleic acid sequence of (a) under conditions of moderate stringency in about 50% formamide and about 6X SSC at about 42°C with washing conditions of approximately 60°C, about 0.5X SSC, and about 0.1% SDS;
- (c) an isolated nucleic acid molecule that hybridizes to either strand of a denatured, double-stranded DNA comprising the nucleic acid sequence of (a) under conditions of high stringency in about 50% formamide and about 6X SSC, with washing conditions of approximately 68°C, about 0.2X SSC, and about 0.1% SDS;
- (d) an isolated nucleic acid molecule derived by in vitro mutagenesis from SEQ ID NO:1, SEQ ID NO:2, or SEQ ID NO:8;
- (e) an isolated nucleic acid molecule degenerate from SEQ ID NO:1, SEQ ID NO:2, or SEQ ID NO:8, as a result of the genetic code; and
- (f) an isolated nucleic acid molecule selected from the group consisting of human PCGEM1 DNA, an allelic variant of human PCGEM1 DNA, and a species homolog of PCGEM1 DNA.
- 2. A recombinant vector that directs the expression of the nucleic acid molecule of claim 1.
 - 3. A host cell transfected or transduced with the vector of claim 2.
- 4. The host cell of claim 3 selected from bacterial cells, yeast cells, and animal cells.
- 5. An isolated nucleic acid molecule comprising the polynucleotide sequence selected from SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, and SEQ ID NO: 22.
 - 6. A method of detecting prostate cancer in a patient, the method comprising:

- (a) detecting PCGEM1 mRNA in a biological sample from the patient; and
- (b) correlating the amount of PCGEM1 mRNA in the sample with the presence of prostate cancer in the patient.
- 7. The method according to claim 6, wherein step (a) includes:
 - (a) isolating RNA from the sample;
 - (b) amplifying a PCGEM1 cDNA molecule;
 - (c) incubating the PCGEM1 cDNA with the nucleic acid according to claim 1 or 5; and
 - (d) detecting hybridization between the PCGEM1 cDNA and the nucleic acid.
- 8. The method according to claim 7, wherein the PCGEM1 cDNA is amplified with at least two nucleotide sequences selected from SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, and SEQ ID NO: 22.
- 9. The method according to claim 8, wherein the at least two nucleotide sequences are SEQ ID NO:15 and SEQ ID NO:22.
- 10. A method according to claim 6, wherein the biological sample is selected from blood, urine, and prostate tissue.
- 11. The method according to claim 10, wherein the biological sample is blood.
- 12. A vector, comprising a PCGEM1 promoter sequence operatively linked to a nucleotide sequence encoding a cytotoxic protein.
- 13. The vector of claim 12, wherein the PCGEM1 promoter sequence is a nucleic acid molecule comprising the polynucleotide sequence of SEQ ID NO:3.
- 14. A method of selectively killing a prostate cancer cell, the method comprising:
 - (a) introducing the vector according to claim 12 to the prostate cancer cell under conditions sufficient to permit selective cell killing.

- 15. The method according to claim 14, wherein the cytotoxic protein is selected from ricin, abrin, diphtheria toxin, p53, thymidine kinase, tumor necrosis factor, cholera toxin, *Pseudomonas aeruginosa* exotoxin A, ribosomal inactivating proteins, and mycotoxins.
- 16. A method of identifying an androgen-responsive cell line, the method comprising:
 - (a) obtaining a cell line suspected of being androgen responsive,
 - (b) incubating the cell line with an androgen; and
 - (c) detecting PCGEM1 mRNA in the cell line,

wherein an increase in PCGEM1 mRNA, as compared to an untreated cell line, correlates with the cell line being androgen responsive.

- 17. A method of measuring the responsiveness of a prostate tissue to hormone-ablation therapy, the method comprising:
 - (a) treating the prostate tissue with hormone ablation therapy; and
 - (b) measuring PCGEM1 mRNA in the prostate tissue following hormone ablation therapy,

wherein a decrease in PCGEM1 mRNA, as compared to an untreated cell line, correlates with the prostate tissue responding to hormone ablation therapy.

STRATEGY FOR THE IDENTIFICATION OF GENE EXPRESSION ALTERATIONS IN PROSTATE CANCER

OCT EMBEDDED FROZEN
PROSTATE TUMOR/NORMAL TISSUE

MAKE 6 µm SERIAL SECTIONS

HISTOLOGICAL EXAMINATION OF H & E SLIDE

RNA PREPARATION

RT- PCR AMPLIFICATION USING ARBITRARY AND ANCHORED PRIMER CONTAINING 5' M13 OR T7 SEQUENCES

HIGH RESOLUTION GEL ELECTROPHORESIS (GENOMYX SYSTEM) AND EXCISION OF DIFFERENTIALLY EXPRESSED BANDS

REAMPLIFICATION USING M13 AND T7 PRIMERS

PURIFICATION AND AUTOMATED DNA SEQUENCING ON AB1377 USING M13/T7 PRIMER

DNA SEQUENCE DATABASE SEARCH (NCBI, CGAP)

RT-PCR USING GENE SPECIFIC PRIMER FOR TUMOR SPECIFIC ALTERATIONS TO SCREEN RNA FROM DEFINED GROUP OF PATIENTS AND CELL LINES

ANALYZE EXPRESSION PATTERN FOR CLINICAL CORRELATIONS

STUDY BIOLOGICAL FUNCTION OF SELECTED GENES

SUBSTITUTE SHEET (RULE 26)

FIG. 4

SUBSTITUTE SHEET (RULE 26)

FIG. 5B

6/21

ulamen eorta	nucleus Substantia Eligea Skeletal	bellum temporal lobe	cortex Traismus	ruciose Ruciose Eccumente	campus spinal cord	oblange
	pigra.	loze	the large			
•••				SCOURSE	cord	
ecrts.	ekeletal		* * * * * * * * * * * * * * * * * * *			
	27 T. S. S. S.	calon	bledder	utarus	prostate	etomach
	muecle					
overy	pancreas		. actronal	thyrold	activary	mamma
						gland
live:		aphen	Grymus		lympti	bone
						majiow
lung	Cacted.	placenta				
year!	E coli	E coli		human		human
	rrina	DNA		C _O M DNA		COMA SOO mg
	liver lung fatel	overy pencreae liver email intestine lung traches fetal heart kidney yeast E.coi/ RNA rRNA	overy pencreae pituilary gland liver email spleon intestine lung traches placents felsi fetal (otal heart kidney liver yeast Eccil Eccil RNA rRNA DNA	overy pencreae pituitary edirenal gland gland liver email apleen thyrous listeatine lung tractes placents fetal fotal fetal heart bidney liver opiess peast E-coll E-coll Polyr(A)	overy pencrees pituitery edirent thyroid gland gland gland gland gland there small spleen thyrous peripheral intestine feutocyte tracks placents fetal fetal fetal fetal sate fetal heart sidney liver spleen thyrous years E-coll E-coll Polyr(A) truman filing child c	overy pancreae pituiery edirenel thyroid selivary gland glan

FIG. 6B

FIG. 7A

FIG. 7B

cDNA sequence of PCGEM1 Seq.ID No .1

AAGGCACTCT	GGCACCCAGT	TTTGGAACTG	CAGTTTTAAA	AGTCATAAAT	TGAATGAAAA	TGATAGCAAA	70
GGTGGAGGTT	TTTAAAGAGC	TATTTATAGG	TCCCTGGACA	GCATCTTTT	TCAATTAGGC	AGCAACCTTT	140
TTGCCCTATG	CCGTAACCTG	TGTCTGCAAC	TTCCTCTAAT	TGGGAAATAG	TTAAGCAGAT	TCATAGAGCT	210
GAATGATAAA	ATTGTACTAC	GAGATGCACT	GGGACTCAAC	GTGACCTTAT	CAAGTGAGCA	GGCTTGGTGC	280
ATTTGACACT	TCATGATATC	ATCCAAAGTG	GAACTAAAAA	CAGCTCCTGG	AAGAGGACTA	TGACATCATC	350
AGGTTGGGAG	TCTCCAGGGA	CAGCGGACCC	TTTGGAAAAG	GACTAGAAAG	TGTGAAATCT	ATTAGTCTTC	420
GATATGAAAT	TCTCTGTCTC	TGTAAAAGCA	TTTCATATTT	ACAAGACACA	GGCCTACTCC	TAGGGCAGCA	490
AAAAGTGGCA	ACAGGCAAGC	AGAGGGAAAA	GAGATCATGA	GGCATTTCAG	AGTGCACTGT	CTTTTCATAT	560
ATTTCTCAAT	GCCGTATGTT	TGGTTTTATT	TTGGCCAAGC	ATAACAATCT	GCTCAAGAAA	AAAAAATCTG	630
GAGAAAACAA	AGGTGCCTTT	GCCAATGTTA	TGTTTCTTTT	TGACAAGCCC	TGAGATTTCT	GAGGGGAATT	700
CACATAAATG	${\tt GGATCAGGTC}$	ATTCATTTAC	GTTGTGTGCA	AATATGATTT	AAAGATACAA	CCTTTGCAGA	770
GAGCATGCTT	TCCTAAGGGT	AGGCACGTGG	AGGACTAAGG	GTAAAGCATT	CTTCAAGATC	AGTTAATCAA	840
GAAAGGTGCT	${\tt CTTTGCATTC}$	TGAAATGCCC	TTGTTGCAAA	TATTGGTTAT	ATTGATTAAA	TTTACACTTA	910
ATGGAAACAA	${\tt CCTTTAACTT}$	ACAGATGAAC	AAACCCACAA	AAGCAAAAA	TCAAAAGCCC	TACCTATGAT	980
TTCATATTTT	CTGTGTAACT	GGATTAAAGG	ATTCCTGCTT	GCTTTTGGGC	ATAAATGATA	ATGGAATATT	1050
TCCAGGTATT	GTTTAAAATG	AGGGCCCATC	TACAAATTCT	TAGCAATACT	TTGGATAATT	CTAAAATTCA	1120
GCTGGACATT	GTCTAATTGT	TTTTTATATAT	CATCTTTGCT	AGAATTTCAA	ATTTTAAGTA	TGTGAATTTA	1190
GTTAATTAGC	TGTGCTGATC	AATTCAAAAA	CATTACTTTC	CTAAATTTTA	GACTATGAAG	GTCATAAATT	1260
CAACAAATAT	ATCTACACAT	ACAATTATAG	ATTGTTTTTC	ATTATAATGT	CTTCATCTTA	ACAGAATTGT	1330
CTTTGTGATT	GTTTTTAGAA	AACTGAGAGT	TTTAATTCAT	AATTACTTGA	TCAAAAAATT	GTGGGAACAA	1400
TCCAGCATTA	ATTGTATGTG	ATTGTTTTTA	TGTACATAAG	GAGTCTTAAG	CTTGGTGCCT	TGAAGTCTTT	1470
TGTACTTAGT	CCCATGTTTA	AAATTACTAC	TTTATATCTA	AAGCATTTAT	GTTTTTCAAT	TCAATTTACA	1540
TGATGCTAAT	TATGGCAATT	АТААСАААТА	ጥጥልልልርልጥጥጥ	ССАААТАСАА	ΔΔΔΔΔΔΔΔΔ	ΔΔΔ	1603

cDNA sequence of PCGEM1 Seq. ID No .2

GCGGCCGCGT	CGACGCAACT	TCCTCTAATT	GGGAAATAGT	TAAGCAGATT	CATAGAGCTG	AATGATAAAA	70
TTGTACTTCG	AGATGCACTG	GGACTCAACG	TGACCTTATC	AAGTGAGATG	GAGTCTTGCC	CTGTCTCCAA	140
GGCTGGAGCC	CAATGGTGTG	ATCTTGGCTC	ACTGCAACCT	CCACCTCCCA	GGTTCAAACG	TTTCTCCTGC	210
CTCAGCCTCC	CAAGTAACTG	GGATTACAGC	AGGCTTGGTG	CATTTGACAC	TTCATGATAT	CAGCCAAAGT	280
GGAACTAAAA	ACAGCTCCTG	GAAGAGGACT	ATGACATCAT	CAGGTTGGGA	GTCTCCAGGG	ACAGCGGACC	350
CTTTGGAAAA	GGACTAGAAA	GTGTGAAATC	TATTAGTCTT	CGATATGAAA	TTCTCTGTCT	CCGTAAAAGC	420
ATTTCATATT	TACAAGACAC	AGGCCTACTC	CTAGGGCAGC	AAAAAGTGGC	AACAGGCAAG	CAGAGGGAAA	490
AGAGATCATG	AGGCATTTCA	GAGTGCACTG	TCTTTTCATA	TATTTCTCAA	TGCCGTATGT	TTGGTTTTAT	560
					AAGGTGCCTT		630
ATGTTTCTTT	TTGACAAGCC	CTGAGATTTC	TGAGGGGAAT	TCACATAAAT	GGGATCAGGT	CATTCATTTA	700
CGTTGTGTGC	AAATATGATT	TAAAGATACA	ACCTTTGCAG	AGAGCATGCT	TTCCTAAGGG	TAGGCACGTG	770
GAGGACTAAG	GGTAAAGCAT	TCTTCAAGAT	CAGTTAATCA	${\tt AGAAAGGTGC}$	${\tt TCTTTGCATT}$	CTGAAATGCC	840
CTTGTTGCAA	ATATTGGTTA	TATTGATTAA	ATTTACACTT	AATGGAAACA	ACCTTTAACT	TACAGATGAA	910
CAAACCCCAC	AAAAGCAAAA	AATCAAAAGC	CCTACCTATG	ATTTCATATT	TTCTGTGTAA	CTGGATTAAA	980
GGATTCCTGC	TTGCTTTTGG	GCATAAATGA	TAATGGAATA	TTTCCAGGTA	TTGTTTAAAA	TGAGGGCCCA	1050
TCTACAAATT	CTTAGCAATA	CTTTGGATAA	TTCTAAAATT	CAGCTGGACA	TTGTCTAATT	GTTTTTTATA	1120
TACATCTTTG	CTAGAATTTC	AAATTTTAAG	TATGTGAATT	TAGTTAATTA	GCTGTGCTGA	TCAATTCAAA	1190
AACATTACTT	TCCTAAATTT	TAGACTATGA	AGGTCATAAA	TTCAACAAAT	ATATCTACAC	ATACAATTAT	1260
AGATTGTTTT	TCATTATAAT	GTCTTCATCT	TAACAGAATT	GTCTTTGTGA	TTGTTTTTAG	AAAACTGAGA	1330
GTTTTAATTC	ATAATTACTT	GATCAAAAAA	TTGTGGGAAC	AATCCAGCAT	TAATTGTATG	TGATTGTTTT	1400
			CTTGAAGTCT		GTCCCATGTT		1470
				CATGATGCTA	ATTATGGCAA	ТТАТААСААА	1540
TATTAAAGAT	TTCGAAATAG	АААААААА	AAAAATCTA				1579

SUBSTITUTE SHEET (RULE 26)

12/21

cDNA sequence of PCGEM1 Promoter Region Seq.ID No.3

```
TCCCTCTTGC GTTCTGCAAT TTCTGAAAAA AAGATGTTTA TTGCAAAGTG ATATGAGCAC TGGAAAGGTA 70
CTAATTCCAA TTTGATTCTA ATTGGATGAG TGACATGGGT AAGCGATTCT AAGCATTTGT GTTTTTTTTTA 140
GTAGTATGGA ATTTAATTAG TTCTCAGTAT GTTAGTGAAG ATGAATGAAA ACATGCATAT GTTTCCATGT 210
ATTATAAATA TTTTAAAATG CAAAAAATTA TTCTAATGAA TATATAAATA TAAAGCATAA CAATAATAAT 280
ACAATACCAC CCATAAAGTC ATCATCTAAT TTAAAAACTA AAACATTAAC ACTTGAATCT CCCCCATTGC 350
AACATCTTTC CCGACTTGTG TGTTTTTTTC TTTTGCTTTT AAAATTTTTTG TTTTATCATA TGTCTGCATA 420
AGATTATATA GCTTTCCTTG TTTTAAAGCTT TTTAAATAAT ATATTGTAGT TATATTATTT GTGCTTTGCT 490
TTTTTTACTT AACATTATGG TTCTAAAATT CAGTAATGTG TTGGGCATGT ATAATTTGTT TATTTTAAT 560
CTCTTTGACA TTCGACTATA TAAATTTCAG TTTGTTTATT GACTCCTTTG TCTATAGATA CTCTGCTATT 630
TCTGTTTTTG CTGTTACAAA AATAATGCTG TTTTAAATTT CATTTTGTAT ACTTTTTTGA GGCATGTGTA 700
TGAGTTATTC TAAGGTAAAA AAATAAGAAA AAATTGCTGG GTTATAAGAT TGTCACATGC TCGAATTTAC 770
AAGATAATGC CAAATCATTT TTCAAAGTAA TTATACCTAT TTATACTACC GGTATGAGTA TATTGGTGCC 840
CACATAGTTG CTTGTTCTGC CAAAGTTTGG TATGATCGAA CAATAATTTT TGCCCATCAA ATGGCATAAA 910
ATAAAATCTC AGTGTGCTTT TAATTTGCAT TTTCTATGTT TAAGAATTGT TTCTTTTTTTTTA ACCATTTATA 980
ATTTACTTT GCTGAAATGC TTGCTTATTA TTTTTGCTCC CCATTTTTTC CTATTGGATT GCTTTTCTCA 1050
TTAATTTATA AGAATTTTAT ATGGTTTAGA TACTAATTAT TATATTACTG AAAATACCTT TATCAGTTTG 1120
TTGTGTACTT TCTACTTTAT GTCTTGTGAT GGATAAAAGT TTTAAATTGT ATTGTGTTGA AGTTAACATT 1190
TTTAAATTT ATAATCAGCA TCTTTAATAA TCTCTTTMTA AAATTTTCCT TTACATAGAT GTCATAAAGA 1260
TACATCTCTA TAATTTCTTA TTTTTTTGGC ATATGTTCAT TAAGTCATTT TATCATTTTT TAGTAATAAA 1330
TTGCAGTTAT TTATGAAACA AATAATTTTT AAAATTATAT ATGCTTTCTT TAAAAATTGA TCTTAGCATG 1400
CTTCACTATG AAGCTTGAGG CTTCACTGCA CGTTGTACTG AAATTATGTA TAAAACAGTG GTTCTGAAAA 1470
TCTCTGAGTT CATGACACCT TTAGTGTCTC AGGTTTTTTT GCTTTTGTTC TTGTTTTTTC TCACAAAGCA 1540
CCTAAGTTAA ATAAAAACAA AGCACAAAGC TATCAGCTTC ATGTATTAAG TAGTAAGCTC CCATGTTAAC 1610
AGTTGTAACT TGCCTGGTGC CCAATAGATG TCACTCTGTT TTCCTAGAAA CTTTAAAATA TCCCTCAGTG 1680
CTCCTGTTAA TTCATGGTAG TGCCCCAAGG CACTCTGGCA CCCAGTTTTG GAACTGCAGT TTTAAAAGTC 1750
ATAAATTGAA TGAAAATGAT AGCAAAGGTG GAGGTTTTTA AAGAGCTATT TATAGGTCCC TGGACAGCA
                                                                             1819
```

cDNA sequence of PCGEM1 PROBE Seq.ID No.4

TTTTTTCAAT	TAGGCAGCAA	CCTTTTTGCC	CTATGCCGTA	ACCTGTGTCT	GCAACTTCCT	CTAATTGGGA	70
AATAGTTAAG	CAGATTCATA	GAGCTGAATG	ATAAAATTGT	ACTACGAGAT	GCACTGGGAC	TCAACGTGAC	140
CTTATCAAGT	GAGCAGGCTT	GGTGCATTTG	ACACTTCATG	ATATCATCCA	AAGTGGAACT	AAAAACAGCT	210
CCTGGAAGAG	GACTATGACA	TCATCAGGTT	GGGAGTCTCC	AGGGACAGCG	GACCCTTTGG	AAAAGGACTA	280
GAAAGTGTGA	AATCTATTAG	TCTTCGATAT	GAAATTCTCT	GTCTCTGTAA	AAGCATTTCA	TATTTACAAG	350
ACACAGGCCT	ACTCCTAGGG	CAGCAAAAAG	TGGCAACAGG	CAAGCAGAGG	GAAAAGAGAT	CATGAGGCAT	420
TTCAGAGTGC	ACTGTCTTTT	CATATATTTC	TCAATGCCGT	ATGTTTGGTT	TTATTTTGGC	CAAGCATAAC	490
AATCTGCTCA	AGAAAAAAA	ATCTGGAGAA	AACAAAGGTG	CCTTTGCCAA	TGTTATGTTT	CTTTTTGACA	560
AGCCCTGAGA	TTTCTGAGGG	${\tt GAATTCACAT}$	AAATGGGATC	AGGTCATTCA	TTTACGTTGT	GTGCAAATAT	630
GATTTAAAGA	TACAACCTTT	GCAGAGAGCA	TGCTTTCCTA	AGGGTAGGCA	CGTGGAGGAC	TAAGGGTAAA	700
GCATTCTTCA	AGATCAGTTA	ATCAAGAAAG	GTGCTCTTTG	CATTCTGAAA	TGCCCTTGTT	GCAAATATTG	770
GTTATATTGA	TTAAATTTAC	ACTTAATGGA	AACAACCTTT	AACTTACAGA	TGAACAAACC	CACAAAAGCA	840
AAAAATCAAA	AGCCCTACCT	ATGATTTCAT	ATTTTCTGTG	TAACTGGATT	AAAGGATTCC	TGCTTGCTTT	910
TGGGCATAAA	TGATAATGGA	ATATTTCCAG	GTATTGTTTA	AAATGAGGGC	CCATCTACAA	ATTCTTAGCA	980
ATACTTTGGA	TAATTCTAAA	ATTCAGCTGG	ACATTGTCTA	ATTGT			1025

PCGEM1 Primers Used for PCR

PCR PRIMER 1 (SEO ID No.5)

Sense Primer 5' TGCCTCAGCCTCCCAAGTAAC 3'

PCR PRIMER 2 (SEQ ID No.6)

Antisense Primers 5' GGCCAAAATAAAACCAAACAT 3'

PCR PRIMER 3 (SEQ ID No.7)

Sense Primer 5' TGGCAACAGGCAAGCAGAG 3'

Complete Genomic DNA sequence of PCGEM1 gene. TCCCTCTTGCGTTCTGCAATTTCTGAAAAAAAAGATGTTTAŤTGCAAAGTGATATGAGCACTGGAAAGGTACTAATTCCAA TTCTCAGTATGTTAGTGAAGATGAAAAACATGCATATGTTTCCATGTATTATAAATATTTTAAAATGCAAAAAATTA TTCTAATGAATATAAAATATAAAGCATAACAATAATAATACAATACCACCCATAAAGTCATCATCTAATTTAAAAACTA TTTTATCATATGTCTGCATAAGATTATATAGCTTTCCTTGTTTTAAAGCTTTTTAAATAATATATTGTAGTTATATTATTT $\tt CTGTTACAAAAATAATGCTGTTTTAAATTTCATTTTGTATACTTTTTTGAGGCATGTGTATGAGTTATTCTAAGGTAAAA$ AAATAAGAAAAAATTGCTGGGTTATAAGATTGTCACATGCTCGAATTTACAAGATAATGCCAAATCATTTTTCAAAGTAA GCTTTTCTCATTAATTTATAAGAATTTTATATGGTTTAGATACTAATTATTATATTACTGAAAATACCTTTATCAGTTTG $\tt TTGTGTACTTTCTACTTTATGTCTTGTGATGGATAAAAGTTTTAAATTGTATTGTCTTGAAGTTAACATTTTTAAATTTT$ ATAATCAGCATCTTTAATAATCTCTTTATAAAATTTTCCTTTACATAGATGTCATAAAGATACATCTCTATAATTTCTTA $\tt CTCCTGTTAATTCATGGTAGTGCCCCAAGGCACTCTGGCACCCAGTTTTGGAACTGCAGTTTTAAAAGTCATAAATTGAAGTCATAATTGAAGTCATAATTGAAGTCATAATTGAAGTCATAAATTGAAGTCATAATTGAA$ ACCTTTTTGCCTATGCCGTAACTGTGTCTGCACTTCCTCTAATTGGGGTGAGTAAGAGATTTTGTTATGTATATAATAGC TAAGAATATAGTAATAATCCCTTAAATCATGGTTATTTTTAAACTACTAACATTTAGAAGACAAAATAAAAATGCTTTGA ATAAATTTATTTTCAGGGCACACAGTTTCCCTTTTAGGGAACTCACAGAGGTAGAGAGTAATACAATAATCACATTTGAA TATTCAGTAAGTGAGGTCCTCATAGATCTTATGTGTATGTCACCATGTATATAATTTTGTTAATCACTAGATGTATGAGA ${\tt CAAGAAATTTGAGGAATCTTAACTAGAGATTAAAATCAGGGATTTAAATCAAAGAAACATTTAAATGCCTCCTTTATTAT}$ ${\tt GTTGAGCTTAACTACTTATTCATATTTGCATATTGCATATTGAGATAATATCATTTCATTAATTTCAGTACTGAACACTAA}$ ${\tt TCTCCTAAGAGTAATTGTGAAAGTTTCAGATTGCACTATTTTTAACTATATATCTGTATGTTATCTTCATATATGCTTGACTATGTTATCTTCATATATGCTTGACTATGTTATCTTCATATATGCTTGACTATGTTATCTTCATATATGCTTGACTATGTTATGTTATGTTATCTTCATATATGCTTGACTATGTTTATGTATGTTATGTTATGTTATGTATGTTATGTTATGTTATGTATGTTATGTTATGTTATGTTATGTATGTTATGTTATGTTATGTTATGTATGTTATGTTATGTATGTTATGTTATGTTATGTTATGTATGTTATGTTATGTTATGTTATGTATGTATGTATGTATGTTATGTAT$ ATAACTTATAAGCAATTGAAACTTTCAATTACAGTATACTATTGAAGCAAATCAACAAATATATACACATATCCATTAGC

TAACATAGCAACTGGGAAGAAAGTTTTTAAACATAAACCAGATGATGTCACTCCACCCCACAAAACTTCCACTATTCTCT GTCACACATAGAAAGAAAAAAAAAATATTGAAAACCTACAAAGACTTGCTATGATCTGGTCCAGGCTCTCCCTAAAAT TTCATGTAATTTCCAGCCACTAGGCCTTTCTGGCTCTCCTTCAATCTCATTAGCCTTTTCACTACTACAAGTTAGACTGG GTTTTGGCCGAGGTATTTCTTTTTTCATATTTTGCCTTTGCCTAGATTGCTCTTCCAATAGATATTCACAATTGCATCA TCATTTCTATATACGTGCTAAAAGGTTTCCTTGTCCAAAATAGCTTCAGTGACCACCTGATCTAGAATAGTCTCGATCAA GTACTAGCATTATGATGACCATACTATTTGATGCCCCCCAAAAAATACTTTCGAGAATGACAGGGCAAAGCTAAAATAAT TAAATTATATATATTTTGACATAGGCACTATTGACAAAAAGCAATTGATGTTATGATAGTTTAGATCTATGAAATAGTAC TATTTAAAAGTAATTCTCTGAAATACAATTTTCTAAAACTAAAAGCAGCATATGTACATGAAACACCAAAAAACTTCCTT ${\tt TATCCAACTCTAATATATGCCACTGGTATTTGTTCAAAATATTTTAATGTTGTCTATTTTTTTAATTTTGCCTAAAAA}$ TAAACCTTTATACTATCAAATCATAGGCAATTTCAGTTTGATTTCATTCTGGTGCAGAATATAAGTTTATCCAAGTAAAA ${\tt CAGGAGTCACTTCAAAAGATTCCTCCCACTGACTGAGATATTCCAAAGCCAACTTTGCAAAATTTCAGAATTAAATATTA}$ ${\tt TACTTCTTTGTACCTTCATTTTATTTGTTCAATTTTTTCTTTGTGTTTGTAGAAAATTTTAATATTTTTCTGTTTTCAAGT$ ${\tt TTTGATTTAATTTACTACTTTATAATTTTTAAAGGTAAGTTTTGTGAGGCTATATTCATTATGTGTTTTGAATAAAGAC}$ ATACAATTAATTTTGAGAACTGCAATAAAAATTATAAGACTATTAAAAATGCAGTAAGTGTACTACACTTAGGCTGCTAA TGATGGAGAACAAAGACAGAAAGACTGTGTTACCATATTCTAGTTGGCCATTTTGTTTTGTTTTGAGAGACGTCACATCA GCCTTATCATAAAAATTATTTGGTTTTACCATTTTGACTGTGAGCAAAATATACAGCATAATATACAAAATAAAATACAT GGGTACATGGCACCACGTGCAGGTTGTTACATATGTATACATGTGCCATGTTGGTGTGCACCCATTAACTCGTCATT TACATTAGGTGTATCTCCTAATGCTATCCCTCCCCTCTCTCCCCACCACAACAAGCCCCGGTGTGTGATGTTCCCCTT GTTTGCTGAGAATGATGGTTTCCAGCTTCATCCATGTCCCTACAAAGGACATGAACTCATCATTTTTTATGGCTGCATAG TATTCCATGGTGTATATGTGCCACCATTTTCTTAATCCGAGTCTGTCCATTGTTGTTGGACATTTGGGTTGCAATTTTGA GTCTTGCCTGTCTCCAAGGCTGGAGCCCAATGGTGTGATCTTGGCTTACTGCAACCTCCACCTCCCGGGTTCAAGCGATT ACGGGGTTTCACCACGGTGGCCAGGATGGTCTCAATTTCTTGACCTCATGATTCACCCGCCTTGGCCTCCCAAAGTGCTG GGATTACAGGTGTGAACCACCAAGCCCGGCCTGTCACAAGTTTTTTAGTGTTCTATTTTAATACAGAAATTAGATAAATCC AATAAAGGCAAAATAGTCCTATGCAGTTTGATTTAAATATATTCTTAATAAGAGCTACTTTTGTGAAACCAGAATAATTG AAACATGTAGATATGGATCTTCATTAGTGACTGACATAATATATTGTTATTGTTACTATTTTTATTGTATCAGCCAACTAA

FIG. 14(cont'd-1)

ATTTCACTTTTCATATGAAAAATTGAAGCACAGATTAAGACACTCCGAAATCATACCTCTATTGATTATCAGCACCAGG ${\tt ATTTGAATTGAGGCACTCTGATCCAGAGAAGCTTTTGTTTCCATGAAGGCTTATGTTGGGGAAAAATAATCAAATTGCCT}$ ${\tt GTACCTCAGTTGTATAAATAAGAGGTTGGGTTGGTAGATGATTCTGGCTGATTCAGCAGAAAAGAAATTTATTCAAAGGA}$ TATCACACAGTTTTCATAACAGTTAAGAATACAGAGGAAACAGGGCACCAGGGCTAAGTACAGACCAAAAGTCCAAAACCA A CTTGACTTACACTGCCACTGACATCAGCACCAGTGCTCTCTGTGTACTAGGAGGTTGGTGACGTTGCTGAACTATGTAGTGTGGCTAGAGTTTCTCTTTGGTCCAGGCAGAATTTATGAAGCTTGCTATTTATCGCCTTAAAGATTAG AAGAATATTCATAAGGTATTAGATTGCCATAAGGTTGAACAAATCAACATTCAACTTCAAGGATTCAACATTGTTTTGTT CACTGACTGCTTTGATCCTATCTTCTATATTTATGTATACTAATTAGCATATAATAAAAAGATTATGTTACAGAATCTCAA AATTAGTAATTATGAATTGAGATGGTGTTATACAGTACACTAACATCCAAGAGACTTGTTTATTCCAAGGAAAATATTTA TCAGGATCTGCTCCTACCAGGGTCTGAACATTTCCTCCCAGTTTTAAAGAAACAAATTCAAATAACATTGTAACCTCCAG AGGAAAGTTCAAGGTCTTTTATAGTATTGTTTAAACAGTACAGCTGAGGAAACTAAAGACAGAGAAGTTAAATGCCTTGG CACTTAGTCTAGATTTACAATAAACTCCTYTCTACTTAGGACCCACTAACAGGGGCTGCATTTACACCAAAACCATGAAG GTGGCCCAAGTCATCACTGAGAAGTAGTACAAGCACCGAGGGAATGACTTCAACAGGAACAAGAAAGCGTGGAAGGAGAT TTCGGGAGTCTGTCCAAACTGCAGGTCACTCAGCCTACAGTTGGGATGAATTTCAAAACACCAGTTGGAGCCGGTTGAAT TCACACCTGTGATTCATCTCTACATGCAGTGTGTGTGTGAATCTTTATATACTGCATATTAAGGATCTGTCTTTACAGAT AAAAACTAAAGCATTGAAGGAACTCCTTGTTTTGACTTATCAAAGTCCTTAAGAAAATACTAGAAAATTATAGCCATTGT TTATCAACCAAGTTCCATAAATCATGAACAAAAATATTTGTCCCCAGAGAGACTATTTTTCCACCACATCTCTTGTAATA ${\tt AACACAGAGCCCAGTTCAGTTAAAATACTTTAAGGGTGGACGGTTCAGGGCCTGCTGAGTGGCACTCAGTAAGAAAACCCC} \\$ AGCAGAACATTTACTTCTCTTTTATTCCAGAGCATCAATGGCCAAGGCTGGAAGATCCCAGAACACTGAACAGACATTT ${\tt GGTCTCTTATGGCCTGCCAATTTTCACAGTGGGTTCCAACGCTTTGGGTCAAACCAAAATAGACCTGTTAGAAAAATGTC}$ GGTTGGAATACGCTAACAATAAGACAGAATAAATGTGATTATTTCACCTCATTTTTATAGGACTTGAGTAATTTTATTAT ATAATAAACCTGGGGCCACTGCAGGCCTCATTAATAAAAACCTAATGGTATAACAATAATGAGGAGGAAATGCCAATGCC GAACTAAAAACAGCTCCTGGAAGAGGACTATGACATCATCAGGTTGGGAGTCTCCAGGGACAGCGGACCCTTTGGAAAAG GACTAGAAAGTGTGAAATCTATTAGTCTTCGATATGAAATTCTCTGTCTCTGTCAAAAGCATTTCATATTTACAAGACAC

FIG. 14(cont'd-2)

GGAGAAAACAAAGGTGCCTTTGCCAATGTTATGTTTCTTTTTGACAAGCCCTGAGATTTCTGAGGGGGAATTCACATAAAT GGGATCAGGTCATTCATTTACGTTGTGCAAATATGATTTAAAGATACAACCTTTGCAGAGAGCATGCTTTCCTAAGGG CAAAAGCAAAAAGCCCGACCTATGATTTCATATTTTCTGTGTAACTGGATTAAAGGATTCCTGCTTTGCTTTTG GGCATAAATGATAATGGAATATTTCCAGGTATTGTTTAAAATGAGGGCCCATCTACAAATTCTTAGCAATACTTTGGATA ATTCTAAAATTCAGCTGGACATTGTCTAATTGTTTTTTATATACATCTTTGCTAGAATTTCAAATTTTAAGTATGTGAAT TTAGTTAATTAGCTGTGCTGATCAATTCAAAAACATTACTTTCCTAAAATTTTAGACTATGAAGGTCATAAATTCAACAAA TATATCTACACATACAATTATAGATTGTTTTTCATTATAATGTCTTCATCTTAACAGAATTGTCTTTGTGATTGTTTTTA TTTATGTACATAAGGAGTCTTAAGCTTGGTGCCTTGAAGTCTTTTGTACTTAGTCCCATGTTTAAAATTACTACTTTATA ${\tt TCTAAAGCATTATGTTTTCAATTCAATTTACATGATGCTAATTATGGCAATTATAACAAATATTAAAGATTTCGAAAT}$ AGAATATGTGAATTGTTCACCATACATAGAAATGAAAAGTTCATTTCGTAAAGCAAGATGCTGGGTGAAAGAGTGCTTTT GATTGAAAGATCACTAGATTAGTAGAGGGCAAGACTTTTAGTCCCTAATCTACCCTTAATAGCCATGTGGTCACGTGTAA TTTTTTTGAGATAGAGTTTTGCTCTTGTCACCCAGGTTGGAGTGCAATGGCACGATCTCAGCTCACTGCAACCCTCTGCT TCCTCGGTTCAAGTGATTCTCCCTGCTTCAGCCTCCCAAGTGAGCCCGGGATTACAGGTGCCCGCCACCACATCTGGGCC TAGATTTTTTGTATTTTCACCATGTTGGCCAGGCTGGTCTCGAACCCCTACCTCAGGTGATCCCTCGCCTCGGCCTCTCA AAGTGCTGGGATTACAGGTGTGAGCCACCACGCCCAGCCCAATATCAGTTTTTCTTTTTAACACAAGGCTAACACAATC AAAATACTAGCTAGGGGAGAAAAAAAAAATAAGGCACTGTTTATGTGTAACAGGCTCTTGTTGCAATCCACTGGGGCAGA CTTCCTTTTTATGATATGTTGGAGAATTGTAGCTAAGTGACAGATATTTTGCTTGGGTGTATAGACCACAAAGGACTGTG TCTTGATGATGGTTTGCATAAAATTATACCTTAGTTTTTACTTTGTATGTTACATGTTAGAGTATGAAAATTAG TAGGGAGGATTATTAACAAAGAACAGGGCAAGAGGAGTAGAATTAAACCTCTTCTAATACCTGTGCACAAGTAGGCTTTT AATCAGAAGAATAGAGCTATAGCAATCTTCATTCTATAGTAACATTAAAGAGCCTGGTTTATATTATAGCAGTCATTAAG ATTTAAAAATTTACATCTTGCCGTTCTTCTTACTCACAGATTTTCGAGAGGTAATGTAATGATCACACGAGGTGAGAATC ACTGCCTTTTATAATGCGATTAAATGCATGAACAAAGTTTCCAACAAATAACAGTAATAAAAAGAAACATGTATTAGCAC TTAATAAGCCAGGTGCTGTACGACGTGTTACATGCTTTCAATCCATGAACTGGTAAACTGGTACTAGTATCTCTATTG GACATGTGAGGAAACCAAATGGAGTTGATAAACAGTAGAGTTAAAAATTACTCTTCATATATTATATTGCCTCAATCTCA CAGACATCTCTGCTACCAAAAGCTATCATATCTAGACTCGA

FIG. 14(cont'd-3)

SUBSTITUTE SHEET (RULE 26)

20/21

TESTCODE OF: vslnuc ck: 6724, 1 to: 1588 WINDOW: 200 bp MARCH 14, 1999 20:25

TESTCODE OF: humoctosk.gb_pr2 ck: 9544, 1 to: 1374 WINDOW: 200 bp MARCH 14, 1999 20:23

FIG. 16B

SEQUENCE LISTING

```
<110> Srikantan, Vasantha
       Zou, Zhigiang
       Moul, Judd W.
       Srivastava, Shiv
<120> PROSTATE-SPECIFIC GENE, PCGEM1, AND METHODS OF USING
      PCGEM1 TO DETECT, TREAT, AND PREVENT PROSTATE CANCER
<130> 4995.0053-003-04
<140>
<141>
<150> 60/126,469
<151> 1999-03-26
<160> 22
<170> PatentIn Ver. 2.1
<210> 1
<211> 1603
<212> DNA
<213> Homo sapiens
<400> 1
aaggcactct ggcacccagt tttggaactg cagttttaaa agtcataaat tgaatgaaaa 60
tgatagcaaa ggtggaggtt tttaaagagc tatttatagg tccctggaca gcatcttttt 120
tcaattaggc agcaaccttt ttgccctatg ccgtaacctg tgtctgcaac ttcctctaat 180
tgggaaatag ttaagcagat tcatagagct gaatgataaa attgtactac gagatgcact 240
gggactcaac gtgaccttat caagtgagca ggcttggtgc atttgacact tcatgatatc 300
atccaaagtg gaactaaaaa cagctcctgg aagaggacta tgacatcatc aggttgggag 360
tctccaggga cagcggaccc tttggaaaag gactagaaag tgtgaaatct attagtcttc 420
gatatgaaat tctctgtctc tgtaaaagca tttcatattt acaagacaca ggcctactcc 480
tagggcagca aaaagtggca acaggcaagc agagggaaaa gagatcatga ggcatttcag 540
agtgcactgt cttttcatat atttctcaat gccgtatgtt tggttttatt ttggccaagc 600
ataacaatct gctcaagaaa aaaaaatctg gagaaaacaa aggtgccttt gccaatgtta 660
tgtttctttt tgacaagccc tgagatttct gaggggaatt cacataaatg ggatcaggtc 720
attcatttac gttgtgtgca aatatgattt aaagatacaa cctttgcaga gagcatgctt 780
tcctaagggt aggcacgtgg aggactaagg gtaaagcatt cttcaagatc agttaatcaa 840
gaaaggtgct ctttgcattc tgaaatgccc ttgttgcaaa tattggttat attgattaaa 900
tttacactta atggaaacaa cctttaactt acagatgaac aaacccacaa aagcaaaaaa 960
tcaaaagccc tacctatgat ttcatatttt ctgtgtaact ggattaaagg attcctgctt 1020
gcttttgggc ataaatgata atggaatatt tccaggtatt gtttaaaatg agggcccatc 1080
tacaaattct tagcaatact ttggataatt ctaaaattca gctggacatt gtctaattgt 1140
tttttatata catctttgct agaatttcaa attttaagta tgtgaattta gttaattagc 1200
```

```
tgtgctgatc aattcaaaaa cattactttc ctaaatttta gactatgaag gtcataaatt 1260
caacaaatat atctacacat acaattatag attgtttttc attataatgt cttcatctta 1320
acagaattgt ctttgtgatt gtttttagaa aactgagagt tttaattcat aattacttga 1380
tcaaaaaatt gtgggaacaa tccagcatta attgtatgtg attgttttta tgtacataaq 1440
gagtettaag ettggtgeet tgaagtettt tgtaettagt eccatgttta aaattaetae 1500
tttatatcta aagcatttat gtttttcaat tcaatttaca tgatgctaat tatggcaatt 1560
ataacaaata ttaaagattt cqaaataqaa aaaaaaaaaa aaa
                                                                   1603
<210> 2
<211> 1579
<212> DNA
<213> Homo sapiens
<400> 2
gcggccgcgt cgacgcaact tcctctaatt gggaaatagt taagcagatt catagagctg 60
aatgataaaa ttgtacttcg agatgcactg ggactcaacg tgaccttatc aagtgagatg 120
gagtettgee etgteteeaa ggetggagee caatggtgtg atettggete actgeaacet 180
ccacctccca ggttcaaacg tttctcctgc ctcagcctcc caagtaactq qqattacaqc 240
aggettggtg catttgacae tteatgatat cagecaaagt ggaactaaaa acageteetg 300
gaagaggact atgacatcat caggttggga gtctccaggg acagcggacc ctttggaaaa 360
ggactagaaa gtgtgaaatc tattagtctt cgatatgaaa ttctctgtct ccgtaaaagc 420
atttcatatt tacaagacac aggcctactc ctagggcagc aaaaaqtggc aacaggcaag 480
cagagggaaa agagatcatg aggcatttca gagtgcactg tcttttcata tatttctcaa 540
tgccgtatgt ttggttttat tttggccaag cataacaatc tgctcaaaaa aaaaaaatct 600
ggagaaaaca aaggtgcctt tgccaatgtt atgtttcttt ttgacaagcc ctgagatttc 660
tgaggggaat tcacataaat gggatcaggt cattcattta cqttqtqtqc aaatatqatt 720
taaagataca acctttgcag agagcatgct ttcctaaggg taggcacgtg gaggactaag 780
ggtaaagcat tottcaagat cagttaatca agaaaggtgo totttgcatt otgaaatgco 840
cttgttgcaa atattggtta tattgattaa atttacactt aatggaaaca acctttaact 900.
tacagatgaa caaaccccac aaaagcaaaa aatcaaaagc cctacctatg atttcatatt 960
ttctgtgtaa ctggattaaa ggattcctgc ttgcttttgg gcataaatga taatggaata 1020
tttccaggta ttgtttaaaa tgagggccca tctacaaatt cttagcaata ctttggataa 1080
ttctaaaatt cagctggaca ttgtctaatt gtttttata tacatctttg ctagaatttc 1140
aaattttaag tatgtgaatt tagttaatta getgtgetga teaatteaaa aacattaett 1200
tcctaaattt tagactatga aggtcataaa ttcaacaaat atatctacac atacaattat 1260
agattgtttt tcattataat gtcttcatct taacagaatt gtctttgtga ttgtttttag 1320
aaaactgaga gttttaattc ataattactt gatcaaaaaa ttgtgggaac aatccagcat 1380
taattgtatg tgattgtttt tatgtacata aggagtctta agcttggtgc cttgaagtct 1440
tttgtactta gtcccatgtt taaaattact actttatatc taaagcattt atgtttttca 1500
attcaattta catgatgcta attatggcaa ttataacaaa tattaaagat ttcgaaatag 1560
aaaaaaaaa aaaaatcta
                                                                  1579
<210> 3
```

<210> 3 <211> 1819 <212> DNA <213> Homo sapiens

```
<400> 3
 tccctcttgc gttctgcaat ttctgaaaaa aagatgttta ttgcaaagtg atatgagcac 60
 tggaaaggta ctaattccaa tttgattcta attggatgag tgacatgggt aagcgattct 120
 aagcatttgt gtttttttta gtagtatgga atttaattag ttctcagtat gttagtgaag 180
 atgaatgaaa acatgcatat gtttccatgt attataaata ttttaaaatg caaaaaatta 240
 ttctaatgaa tatataaata taaagcataa caataataat acaataccac ccataaagtc 300
atcatctaat ttaaaaaacta aaacattaac acttgaatct cccccattgc aacatctttc 360
ccgacttgtg tgttttttc ttttgctttt aaaatttttg ttttatcata tgtctgcata 420
agattatata gctttccttg ttttaagctt tttaaataat atattgtagt tatattattt 480
gtgctttgct ttttttactt aacattatgg ttctaaaatt cagtaatgtg ttgggcatgt 540
ataatttgtt tatttttaat ctctttgaca ttcgactata taaatttcag tttgtttatt 600
gactcctttg tctatagata ctctgctatt tctgtttttg ctgttacaaa aataatgctg 660
ttttaaattt cattttgtat actttttga ggcatgtgta tgagttattc taaggtaaaa 720
aaataagaaa aaattgctgg gttataagat tgtcacatgc tcgaatttac aagataatgc 780
caaatcattt ttcaaagtaa ttatacctat ttatactacc ggtatgagta tattggtgcc 840
cacatagttg cttgttctgc caaagtttgg tatgatcgaa caataatttt tgcccatcaa 900
atggcataaa ataaaatctc agtgtgcttt taatttgcat tttctatgtt taagaattgt 960
ttctttttta accatttata atttactttt gctgaaatgc ttgcttatta tttttgctcc 1020
ccattttttc ctattggatt gcttttctca ttaatttata agaattttat atggtttaga 1080
tactaattat tatattactg aaaatacctt tatcagtttg ttgtgtactt tctactttat 1140
gtcttgtgat ggataaaagt tttaaattgt attgtgttga agttaacatt tttaaatttt 1200
ataatcagca totttaataa tototttmta aaattttoot ttacatagat gtoataaaga 1260
tacateteta taatttetta tittittgge atatgtteat taagteattt tateattttt 1320
tagtaataaa ttgcagttat ttatgaaaca aataattttt aaaattatat atgctttctt 1380
taaaaattga tettageatg etteaetatg aagettgagg etteaetgea egttgtaetg 1440
aaattatgta taaaacagtg gttctgaaaa tctctgagtt catgacacct ttagtgtctc 1500
aggttttttt gcttttgttc ttgttttttc tcacaaagca cctaagttaa ataaaaacaa 1560
agcacaaagc tatcagcttc atgtattaag tagtaagctc ccatgttaac agttgtaact 1620
tgcctggtgc ccaatagatg tcactctgtt ttcctagaaa ctttaaaata tccctcagtg 1680
ctcctgttaa ttcatggtag tgccccaagg cactctggca cccagttttg gaactgcagt 1740
tttaaaagtc ataaattgaa tgaaaatgat agcaaaggtg gaggttttta aagagctatt 1800
tataggtccc tggacagca
                                                                  1819
<210> 4
<211> 1025
<212> DNA
<213> Homo sapiens
<400> 4
ttttttcaat taggcagcaa cctttttgcc ctatgccgta acctgtgtct gcaacttcct 60
ctaattggga aatagttaag cagattcata gagctgaatg ataaaattgt actacgagat 120
gcactgggac tcaacgtgac cttatcaagt gagcaggctt ggtgcatttg acacttcatg 180
atatcatcca aagtggaact aaaaacagct cctggaagag gactatgaca tcatcaggtt 240
gggagtetee agggacageg gaccetttgg aaaaggaeta gaaagtgtga aatetattag 300
tottogatat gaaattotot gtototgtaa aagcatttoa tatttacaag acacaggoot 360
actectaggg cagcaaaaag tggcaacagg caagcagagg gaaaagagat catgaggcat 420
```

```
ttcagagtgc actgtctttt catatatttc tcaatgccgt atgtttggtt ttattttqqc 480
caagcataac aatctgctca agaaaaaaa atctggagaa aacaaaggtg cctttgccaa 540
tgttatgttt ctttttgaca agccctgaga tttctgaggg gaattcacat aaatgggatc 600
aggicatica titacgitgi gigcaaatat gatttaaaga tacaaccitt gcagagagca 660
tgctttccta agggtaggca cgtggaggac taagggtaaa gcattcttca agatcagtta 720
atcaagaaag gtgctctttg cattctgaaa tgcccttgtt gcaaatattg gttatattga 780
ttaaatttac acttaatgga aacaaccttt aacttacaga tgaacaaacc cacaaaaqca 840
aaaaatcaaa agccctacct atgatttcat attttctgtg taactggatt aaaggattcc 900
tgcttgcttt tgggcataaa tgataatgga atatttccag gtattgttta aaatgagggc 960
ccatctacaa attcttagca atactttgga taattctaaa attcagctgg acattgtcta 1020
attgt
                                                                    1025
<210> 5
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Probe/Primer
<400> 5
tgcctcagcc tcccaagtaa c
                                                                    21
<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Probe/Primer
<400> 6
ggccaaaata aaaccaaaca t
                                                                   21
<210> 7
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Probe/Primer
<400> 7
tggcaacagg caagcagag
                                                                   19
```

```
<210> 8
 <211> 11801
 <212> DNA
<213> Homo sapiens
<220>
<221> unsure
<222> (7470)
<223> Y may represent any of the four nucleotide bases
<400> 8
tccctcttgc gttctgcaat ttctgaaaaa aagatgttta ttgcaaagtg atatgagcac 60
tggaaaggta ctaattccaa tttgattcta attggatgag tgacatgggt aagcgattct 120
aagcatttgt gtttttttta gtagtatgga atttaattag ttctcagtat gttagtgaag 180
atgaatgaaa acatgcatat gtttccatgt attataaata ttttaaaatg caaaaaatta 240
ttctaatgaa tatataaata taaagcataa caataataat acaataccac ccataaagtc 300
atcatctaat ttaaaaacta aaacattaac acttgaatct cccccattgc aacatctttc 360
ccgacttgtg tgtttttttc ttttgctttt aaaatttttg ttttatcata tgtctgcata 420
agattatata gctttccttg ttttaagctt tttaaataat atattgtagt tatattattt 480
gtgctttgct ttttttactt aacattatgg ttctaaaatt cagtaatgtg ttgggcatgt 540
ataatttgtt tatttttaat ctctttgaca ttcgactata taaatttcag tttgtttatt 600
gacteetttg tetatagata etetgetatt tetgtttttg etgttacaaa aataatgetg 660
ttttaaattt cattttgtat acttttttga ggcatgtgta tgagttattc taaggtaaaa 720
aaataagaaa aaattgctgg gttataagat tgtcacatgc tcgaatttac aagataatgc 780
caaatcattt ttcaaagtaa ttatacctat ttatactacc ggtatgagta tattggtgcc 840
cacatagttg cttgttctgc caaagtttgg tatgatcgaa caataatttt tgcccatcaa 900
atggcataaa ataaaatctc agtgtgcttt taatttgcat tttctatgtt taagaattgt 960
ttctttttta accatttata atttactttt gctgaaatgc ttgcttatta tttttgctcc 1020
ccattttttc ctattggatt gcttttctca ttaatttata agaattttat atggtttaga 1080
tactaattat tatattactg aaaatacctt tatcagtttg ttgtgtactt tctactttat 1140
gtcttgtgat ggataaaagt tttaaattgt attgtgttga agttaacatt tttaaatttt 1200
ataatcagca tetttaataa tetetttata aaatttteet ttacatagat gteataaaga 1260
tacateteta taatteetta tttttttggc atatgtteat taagteattt tateattttt 1320
tagtaataaa ttgcagttat ttatgaaaca aataattttt aaaattatat atgctttctt 1380
taaaaattga tottagcatg cttcactatg aagcttgagg cttcactgca cgttgtactg 1440
aaattatgta taaaacagtg gttctgaaaa tctctgagtt catgacacct ttagtgtctc 1500
aggttttttt gcttttgttc ttgtttttc tcacaaagca cctaagttaa ataaaaacaa 1560
agcacaaagc tatcagcttc atgtattaag tagtaagctc ccatgttaac agttgtaact 1620
tgcctggtgc ccaatagatg tcactctgtt ttcctagaaa ctttaaaata tccctcagtg 1680
ctcctgttaa ttcatggtag tgccccaagg cactctggca cccagttttg gaactgcagt 1740
tttaaaagtc ataaattgaa tgaaaatgat agcaaaggtg gaggttttta aagagctatt 1800
tataggtccc tggacagcat cttttttcaa ttaggcagca acctttttgc ctatgccqta 1860
actgtgtctg cacttcctct aattggggtg agtaagagat tttgttatgt atataatagc 1920
taagaatata gtaataatgg cttaaatcat ggttattttt aaactactaa catttagaag 1980
acaaaataaa aatgctttga aaagtataga ggttttagtg taattagcag ggaataatga 2040
aatgatttga tagggctact cagttttgta taactttggt gctttaagtc tgaatgcaga 2100
gcatggatgt tgtgatccag cctttatatg ttttccctga agaagattta atttatttgg 2160
```

ccttttgaga	aacacattto	gcattgtaat	: atgttttgc	t tccaggttct	atctccccc	- 2222
ataatttgac	aaaatcacac	ataaatttat	tttcaggg	a cacagtttco	sttttaan	2220
actcacagag	gtagagagta	atacaataat	cacatttga:	a tattcagtaa	cttttaggga	2280
catagatett	atototatot	Caccatorat	: cacatttga	t taatcactag	grgaggreet	2340
caagaaattt	gaggatett	aactacacaca	: taaaattaa	g gatttaaato	atgtatgaga	2400
ttaaatgcct	cettestat	ttaaataaat	. caaaaccay	g garriadaro	aaagaaacat	2460
aaccatacaa	cttgggaata	ttatacacci	. gcacgggaga	a atcattgaaa	aaaaaataaa	2520
tttcaggete	cccgggaata	LLataaacca	agaagaatti	gttattctgg	ttgattttt	2580
atatagaga	cycacaggca	acttacctt	accectege	gatttttatt	tcttgttaaa	2640
ctcccccatas	atagttaage	agattcatag	agctgaatat	aaaatttact	acgagatgca	2700
otgggaetea	acgtgacett	atcaagtgac	ttatcagtga	a ggtgagcatt	cttaattcag	2760
acaacggaac	ttattatcat	aatcttttgc	ttatgctatt	gttgagctta	actacttatt	2820
catatttgca	tatgcatatt	gagataatat	catttcatta	atttcagtac	tgaacactaa	2880
teteetaaga	gtaattgtga	aagtttcaga	ttgcactatt	tttaactata	tatctgtatg	2940
ttatcttcat	atatgcttga	ataacttata	agcaattgaa	actttcaatt	acagtatact	3000
attgaagcaa	atcaactaat	atatacacat	atccattago	: aatagtagat	aatttttgta	3060
aatgtccagc	acagttette	atatgtagag	gatgttcaaa	ttggctaagt	tccttttctc	3120
tcttaattat	tagtatttt	cctactgctc	tttgtataat	tattccttcc	tctttagctc	3180
caatccttac	aatctattct	taacatagca	actgggaaga	aagtttttaa	acataaacca	3240
gatgatgtca	ctccacccca	caaaacttcc	actattctct	gtcacacata	gaaagaaaga	3300
aaaaaaatat	tgaaaaccta	caaagacttg	ctatgatctg	gtccaggctc	tccctaaaat	3360
ttcatgtaat	ttccagccac	taggcctttc	tggctctcct	tcaatctcat	tagccttttc	3420
actactacaa	gttagactgg	gttttggccg	aggtatttct	ttttttcata	ttttgccttt	3480
gcctagattg	ctcttccaat	agatattcac	aattgcatca	tcatttctat	atacgtgcta	3540
aaaggtttcc	ttgtccaaaa	tagcttcagt	gaccacctga	tctagaatag	tctcgatcaa	3600
aagtttcttt	tccttttcct	caccacttga	tatttatatc	aaacatttat	ttgtgtaatt	3660
tatgtgtttg	tttgttttct	gtactagcat	tatgatgacc	atactatttg	atgccccca	3720
aaaaatactt	tcgagaatga	cagggcaaag	ctaaaataat	taaattatat	aattttgaca	3780
taggcactat	tgacaaaaag	caattgatgt	tatgatagtg	ttagatctat	gaaatagtac	3840
tatttaaaag	taattctctg	aaatacaatt	ttctaaaact	aaaagcagca	tatgtacatg	3900
aaacaccaaa	aaacttcctt	atatttatca	ctggaagatt	taaaatagta	taagtagtaa	3960
cttatttaat	atatttttga	ttatttaatt	aattttatag	tatccaactc	taatataata	4020
ccagtggtat	ttgttcaaaa	tattttaatg	ttgtctattt	atttttaatt	tqcctaaaaa	4080
ttatcttaaa	tgaaaatttt	tggttaataa	atttgaaaat	actgaaaccc	tcatctccag	4140
tctctgtgga	tcctaaagtt	tttagttgag	aaaataattt	ttctctagag	aatgaagtag	4200
cttgtaagct	tggagaaatt	tctgctaaat	aaatqatatt	atcaactctt	attttcttca	4260
atacgaaata	tataaatatt	tcagctcata	tatttttqca	ggtgctatgc	ttttacttcc	4320
aatcataatt	tctgacaaat a	attttggaag	tcaaaacttq	tcttctattt	tottatttaa	4380
aattatatag	actacttttg (taaaccttta	tactatcaaa	tcataggcaa	tttcagtttg	4440
atttcattct (ggtgcagaat a	ataagtttat	ccaaqtaaaa	caggagtcac	ttcaaaagat	4500
tcctcccact	gactgagata 1	ttccaaagcc	aactttgcaa	aatttcagaa	ttaaatatta	4560
tacttctttg	taccttcatt 1	ttatttqttc	aatttttctt	tatatttata	gaaaatttta	4500
atatttttct	gttttcaagt t	tttgatttta	atttactact	ttataattt	taaaootee	4690
ttttgtgagg (ctatattcat t	tatgtgtttt	gaataaagac	atacaattaa	ttttaaass	4740
tgcaataaaa a	attataagac t	attaaaaat	gcagtaagtg	tactacactt	aggetestas	4000
aaatgcagta d	cagtagact a	acatttagge	tacttaaaar	tagttcttct	aagtaggtaa	4060
tactttaaaa t	tttagctaa t	gatggagaa 4	caaagagaga	aagactgtgt	taccatata	4000
tagttggcca t	tttgtttta t	tttgagaga (catcacatca	accttateat	22222	4920
tggttttacc a	attttgactg t	gagcaaaat :	atacagcata	atatacaaaa	raaaridii taaaatata	*70U
-	JJ	J. J		ucucaaaa	Ladaaldtat	5 040

gtacatcttc acaacttctt gtttaggatg caattatata tatatatat tatatattta 5100 ttattatact ttaagttcta gggtacatgg caccacgtgc aggttgttac atatgtatac 5160 atgtgccatg ttggtgtgct gcacccatta actcgtcatt tacattaggt gtatctccta 5220 atgetatece teceetetet ecceacecea caacaagece eggtgtgtga tgtteceett 5280 cctgtgtcca tgtgttctca ttgttcaatt cccacctatg agtgagaaca cgcagtgttt 5340 gettttttgt eettgeaata gtttgetgag aatgatggtt teeagettea teeatgteee 5400 tacaaaggac atgaactcat cattttttat ggctgcatag tattccatgg tgtatatgtg 5460 ccaccatttt cttaatccga gtctgtccat tgttgttgga catttgggtt gcaattttga 5520 gtttcatgtg tagcatgtat agcacaacca attaagattt ctttcttct ctcttttt 5580 tttttttttg ttgaaatgga gtcttgcctg tctccaaggc tggagcccaa tggtgtgatc 5640 ttggcttact gcaaceteca cetecegggt tcaagegatt etectgeete agecateega 5700 gtagctggga ctataggcgt gcaccaccat gcccagctaa tttttgtatt tttagtacag 5760 acggggtttc accacggtgg ccaggatggt ctcaatttct tgacctcatg attcacccgc 5820 cttggcctcc caaagtgctg ggattacagg tgtgaaccac caagcccggc ctgtcacaag 5880 tttttagtgt tctattttaa tacagaaatt agataaatcc aaagagaaag acatttcata 5940 tgtgcgtaga gttgtcggaa gaaatgagag tcttataaat aactttaaaa attgtgaaga 6000 aataaaggca aaatagtcct atgcagtttg atttaaatat attcttaata agagctactt 6060 ttgtgaaaac cagaatattg aaacatgtag atatggatct tcattagtga ctgacataat 6120 atattgttat tgttactatt ttattgtatc agccaactaa tattgagtgc tttgtgtatc 6180 ctaagcacta tgctaaacac tgtaccagta ttacctgata taatcatatt aatatttatt 6240 atttcacttt tcatatgaaa aaattgaagc acagattaag acactccgaa atcatacctc 6300 tattgattat cagcaccagg atttgaattg aggcactctg atccagagaa gcttttgttt 6360 ccatgaaggc ttatgttggg gaaaaataat caaattgcct gtacctcagt tgtataaata 6420 agaggttggg ttggtagatg attctggctg attcagcaga aaagaaattt attcaaagga 6480 tatcacacag ttttcataac agttaagaat acagaggaaa cagggcacca gggctaagta 6540 cagaccaaag tccaaaacca ctgccaaagt tgcagcaagg agaacagcac aaatttgctt 6600 getgteacee gecaetagat gettttgttt ggageettga aettgaetta caetgecaet 6660 gacatcagca ccagtgctct ctgtgtacta ggaggtggag ttggtgacgt tgctgaactc 6720 aaagcagatg tttctgctgt gaaatagata cctaatacag aacctgcttc ctcattcatt 6780 ccctccccaa atcatatgct tgtagtgtgg ctagagtttc tgtttctcct tggtccaggc 6840 agaatttatg aagcttgcta tttatcgcct taaagattag aagaatattc ataaggtatt 6900 ttcttttggg atacctctgc agcagttcaa atcttatttc tgcccttgga caaccaggtt 7020 tataaatatt gcagattete cactgactge tttgateeta tettetatat ttatgtatae 7080 taattagcat ataataaaag attatgttac agaatctcaa aattagtaat tatgaattga 7140 gatggtgtta tacagtacac taacatccaa gagacttgtt tattccaagg aaaatattta 7200 gagatattaa atgatatttc tcatccttta gacatataca ttttttagct tacagcctgc 7260 tttaggcaag caacagactc tcaggatctg ctcctaccag ggtctgaaca tttcctccca 7320 gttttaaaga aacaaattca aataacattg taacctccag aggaaagttc aagctctttt 7380 atagtattgt ttaaacagta cagctgagga aactaaagac agagaagtta aatgccttgg 7440 cacttagtct agatttacaa taaactccty totacttagg acccactaac aggggctgca 7500 tttacaccaa aaccatgaag gtggcccaag tcatcactga gaagtagtac aagcaccgag 7560 ggaatgactt caacaggaac aagaaagcgt ggaaggagat cctagcagga agctccacaa 7620 gaagatagca tgttacgtct tgcattggat gaagcaggtt cagagagacc tagtgacagc 7680 tateteegte aaggtgeaga aggagagate attgaatgta geatttteat geaaaaaaa 7740 aaatgttgaa gtctttggac ttcgggagtc tgtccaaact gcaggtcact cagcctacag 7800 ttgggatgaa tttcaaaaca ccagttggag ccggttgaat ctttctgcta tgctgtaata 7860 ttttcagtaa acccagcgca acaacaacaa caaaacacaa aaggaggaga agcagccaag 7920

					101/0	55001019
tctcttggtt	tacagagtag	g ctcctaata	c cccttgctg	t ctgtctcaag	g tgcccaatgg	7980
gaagatagto	: aaaacaata	t tcacacctg	t gattcatct	c tctacatge	gtgtgtgtga	8040
atctttatat	actgcatati	aaggatetg	t ctttacaga	t aaaaactaaa	gcattgaagg	8100
aactccttgt	tttgacttat	caaagtcct	t aagaaaata	c tagaaaatta	tagccattgt	8160
ttcaaatttt	agctttatat	tatcacttga	a aatgtgatg	a aatgtggctg	, atagataata	8220
attcactgat	aacctacaga	a caattcccat	cttaaaatg	g accattggat	tgaagaatta	8280
aataaaattg	agggttttc	ttacatgtt	tgtctaaag	a gcgaagtaga	aacaactott	8340
catagatctt	cattgaggat	tegeatgtga	agtaagtac	t cctaacataa	acaagtggac	8400
ttatcaacca	agttccataa	atcatgaaca	aaaatattt	g tececagaga	gactatttt	8460
ccaccacatc	tcttgtaata	aacacagago	ccagttcaq	taaaatagtt	. taagggtgga	8520
cggttcaggg	cctgctgagt	ggcactcagt	aagaaaacc	c agcagaacat	ttacttctct	8580
ctttattcca	gagcatcaat	ggccaaggct	ggaagatcc	agaacactga	acagacattt	8640
ggtctcttat	ggcctgccaa	ttttcacagt	gggttccaad	getttgggte	aaaccaaaat	8700
agacctgtta	gaaaaatgto	ggttggaata	cgctaacaat	aagacagaat	aaatgtgatt	8760
atttcacctc	atttttatag	gacttgagta	atttattat	aacattcttg	agggtggaa	8820
				j ttttatattt		
ataataaacc	tggggccact	gcaggcctca	ttaataaaa	cctaatggta	taacaataat	8940
gaggaggaaa	tgccaatgcc	gcacaaatct	gttgagacta	aaatatttct	Caccccacca	9000
ggcttggtgc	atttgacact	tcatgatato	agccaaagto	gaactaaaaa	cageteetee	9060
aagaggacta	tgacatcatc	aggttgggag	tctccaqqqa	cagcggaccc	tttqqaaaaq	9120
gactagaaag	tgtgaaatct	attagtette	gatatgaaat	tctctgtctc	totcaaaag	9180
atttcatatt	tacaagacac	aggcctactc	ctagggcagc	aaaaagtggc	aacaggcaag	9240
cagagggaaa	agagatcatg	aggcatttca	gagtgcacto	tcttttcata	tatttctcaa	9300
tgccgtatgt	ttggttttat	tttqqccaaq	cataacaato	tgctcaagaa	aaaaaaatct	9360
ggagaaaaca	aaggtgcctt	tgccaatgtt	atgtttctt	ttgacaagcc	ctgagatttc	9420
tgaggggaat	tcacataaat	gggatcaggt	cattcattta	cgttgtgtgc	aaatatgatt	9480
taaagataca	acctttgcag	agagcatgct	ttcctaaggg	taggcacgtg	gaggactaag	9540
ggtaaagcat	tcttcaagaa	tcagttaatc	aaagaaaggt	gctctttgca	ttctcaaatc	9600
cccttgttgc	aaatattggt	tatattqatt	aaatttacac	ttaatggaaa	caacctttaa	9660
cttacagatg	aacaaaccca	caaaagcaaa	aaatcaaaag	ccctacctat	gatttcatat	9720
tttctgtgta	actggattaa	aggattcctg	cttactttta	ggcataaatg	ataatggaat	9780
atttccaggt	attgtttaaa	atgagggccc	atctacaaat	tcttagcaat	actttggata	9840
attctaaaat	tcagctggac	attgtctaat	tqttttttat	atacatcttt	gctagaattt	9900
caaattttaa	gtatgtgaat	ttagttaatt	agetgtgetg	atcaattcaa	aaacattact	9960
ttcctaaatt	ttagactatg	aaggtcataa	attcaacaaa	tatatctaca	catacaatta	10020
tagattgttt	ttcattataa	tgtcttcatc	ttaacaqaat	tgtctttgtg	attottttta	10080
gaaaactgag	agttttaatt	cataattacg	ttgatcaaaa	aattgtggga	acaatccagc	10140
attaattgta	tgtgattgtt	tttatgtaca	taaggagtct	taagcttggt	qccttgaagt	10200
cttttgtact	tagtcccatg	tttaaaatta	ctactttata	tctaaagcat	ttatgtttt	10260
caattcaatt	tacatgatgc	taattatggc	aattataaca	aatattaaag	atttcqaaat	10320
agaatatgtg	aattgttcac	catacataga	aatgaaaagt	tcatttcgta	aagcaagatg	10380
ctgggtgaaa	gagtgctttt	gattgaaaga	tcactagatt	agtagagggc	aagacttta	10440
gtccctaatc	tacccttaat	agccatgtgg	tcacgtgtaa	gtcagtgaac	ccatctcatt 1	10500
ctcctcatac	tttttcatc	tctaaaatga	gggtataatt	taagctcgtt	cattttttt	10560
tttttttgag :	atagagtttt	gctcttgtca	cccaggttgg	agtgcaatgg	cacqatetea 1	10620
gctcactgca a	accctctgct	tcctcggttc	aagtgattct	ccctgcttca	gcctcccaaq	10680
tgagcccggg a	attacaggtg	cccgccacca	catctgggcc	tagatttttt	gtattttcac 1	L0740
catgttggcc a	aggctggtct	cgaaccccta	cctcaggtga	tccctcgcct	cggcctctca 1	10800
				-		

```
aagtgctggg attacaggtg tgagccacca cgcccagccc aatatcagtt tttcttttt 10860
aacacaaggc taacacaatc aaaatactag ctaggggaga aaaaaaaaat aaggcactgt 10920
ttatgtgtaa caggctcttg ttgcaatcca ctggggcaga ccaaataaac agtaagaatc 10980
aaatcctttt catataatcc tttctttgca gaatacataa aatccccaca aatggcttat 11040
cttccttttt atgatatgtt ggagaattgt agctaagtga cagatatttt gcttgggtgt 11100
atagaccaca aaggactgtg tettgatgat ggtttgcata aaattatace ttagttttta 11160
ctttgtatgt tacatgttag atttagagta tgaaaattag tagggaggat tattaacaaa 11220
gaacagggca agaggagtag aattaaacct cttctaatac ctgtgcacaa gtaggctttt 11280
cagaaactct acaaccccaa cataaactgg atagttagaa aagcacactc ccaaggaagg 11340
cggttatgtt ttgcagtttg aatcagaaga atagagctat agcaatcttc attctatagt 11400
aacattaaag agcctggttt atattatagc agtcattaag atttaaaaat ttacatcttg 11460
actgcctttt ataatgcgat taaatgcatg aacaaagttt ccaacaaata acagtaataa 11580
aaagaaacat gtattagcac ttaataagcc aggtgctgta cgacgtgtgt tacatgcttt 11640
caatccatga actggtaaac tggtactagt atctctattg gacatgtgag gaaaccaaat 11700
ggagttgata aacagtagag ttaaaaatta ctcttcatat attatattgc ctcaatctca 11760
cagacatete tgetaceaaa agetateata tetagaeteg a
                                                                11801
<210> 9
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:Probe/Primer
<400> 9
tggcaacagg caagcagag
                                                                19
<210> 10
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence:Probe/Primer
<400> 10
ggccaaaata aaaccaaaca t
                                                               21
<210> 11
<211> 24
<212> DNA
<213> Artificial Sequence
```

WO 00/58470	PCT/US00/0790
<220>	
<223> Description of Artificial Sequence:Probe/Primer	
<400> 11	
gcaaatatga tttaaagata caac	24
<210> 12	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:Probe/Primer	
<400> 12	
ggttgtatct ttaaatcata tttgc	25
ggetgeater tradactara terge	25
210 12	
<210> 13 <211> 27	
<211> 27 <212> DNA	
<213> Artificial Sequence	
in difference	
<220>	
<223> Description of Artificial Sequence:Probe/Primer	
<400> 13	
actgtctttt catatatttc tcaatgc	27
<u>-</u>	
<210> 14	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
-	
<220>	
<223> Description of Artificial Sequence:Probe/Primer	
<400> 14	
agtagtaat tttaaacatg ggac	24
:210> 15	
211> 21	
212> DNA	
213 Artificial Seguence	

WO 00/58470	PCT/US00/0790
<220>	
<223> Description of Artificial Sequence:Probe/Primer	
<400> 15	
tttttcaatt aggcagcaac c	21
<210> 16	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:Probe/Primer	
<400> 16	
gaattgtett tgtgattgtt tttag	25
<210> 17	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:Probe/Primer	
<400> 17	
caattcacaa agacaattca gttaag	26
<210> 18	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
223> Description of Artificial Sequence:Probe/Primer	
<400> 18	
acaattagac aatgtccagc tga	23
2210> 19	
211> 24	
212> DNA	
213 Artificial Company	

WO 00/58470	PCT/US00/07906
<220>	
<223> Description of Artificial Sequence:Probe/Primer	
<400> 19	
ctttggctga tatcatgaag tgtc	24
<210> 20	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Probe/Primer	
<400> 20	
aaccttttgc cctatgccgt aac	23
<210> 21	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:Probe/Primer	
<400> 21	
gagactccca acctgatgat gt	22
<210> 22	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Probe/Primer	
<400> 22	
ggtcacgttg agtcccagtg	20

INTERNATIONAL SEARCH REPORT

Interns al Application No PCT/US 00/07906

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/12 C12N15/11 C12N9/00 C1201/68 A61K48/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N C12Q A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Category 1 Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X "AC AC003046" 5 EBI DATABASE, XP002143197 the whole document X SRIKANTAN V ET AL: "Structure and 1-7,10, expression of a novel prostate specific gene: PC-GEM1." PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL, vol. 40, March 1999 (1999-03), page 37 XP000929230 90th Annual Meeting of the American Association for Cancer Research; Philadelphia, Pennsylvania, USA; April 10-14, 1999, March, 1999 ISSN: 0197-016X abstract -/-Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) Involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 24 July 2000 07/08/2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Kania, T Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Interne al Application No PCT/US 00/07906

0/0	Allan BOOMERSON COMMISSION COMMIS	PCT/US 00/07906
C.(Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 99 00498 A (HUMAN GENOME SCIENCES INC; HE WEI WU (US); CARTER KENNETH C (US)) 7 January 1999 (1999-01-07) the whole document	1-17
A	BUSSEMAKERS M J G ET AL: "A NEW PROSTATE-SPECIFIC MARKER, STRONGLY OVEREXPRESSED IN PROSTATIC TUMORS" UROLOGICAL RESEARCH, DE, SPRINGER VERLAG, BERLIN, vol. 25, no. 1, 1 February 1997 (1997-02-01), page 76 XP002074305 ISSN: 0300-5623 abstract	1-17
A	WO 95 19434 A (CALYDON INC) 20 July 1995 (1995-07-20) the whole document	12–15
A	WANG ZHOU ET AL: "Genes regulated by androgen in the rat ventral prostate." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 94, no. 24, 25 November 1997 (1997-11-25), pages 12999-13004, XP002143199 Nov. 25, 1997 ISSN: 0027-8424 the whole document	16
P, X	"AC AC013401" EBI DATABASE, XP002143200 the whole document	1-5

INTERNATIONAL SEARCH REPORT

armation on patent family members

Interne al Application No PCT/US 00/07906

Patent document cited in search report		Publication Patent family member(s)			Publication date
WO 9900498	A	07-01-1999	EP	0996725 A	03-05-2000
WO 9519434	A	20-07-1995	US AU CA EP JP US US	5830686 A 692837 B 1686995 A 2181073 A 0755443 A 9509049 T 5648478 A 6057299 A	03-11-1998 18-06-1998 01-08-1995 20-07-1995 29-01-1997 16-09-1997 15-07-1997 02-05-2000

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.