Foundations Machine Learning

- * Introduction to Machine Learning
 - Outline: · Introduction to Machine Learning
 - · Applications of Machine Learning
 - · Useful pre-requisites
- * Introduction
- * Inhoduction Part II
 - * Prerequoies
 - · Programmy experience (esp. Python)
 - · Statistics
 - * ML is the ROX
- * Definition of Machine Learning

Building computational artifacts that learn over time based on experience. Not just building but the mathematics, science, egignieering and computing behind the artifact

* Supervised Learning

Using information from labelled datasets to label new datasets.

Function approximation or function induction

* Induction and Deduction

You assume you have a well behaved function which is consistent with your data and you use this to generalise.

Problem: Inductive bias

Induction: - Example -> General Rule

Deduction: - General Rule -> Example

* Unsupervised Learning

Derive structure from the data.

Pixels -> Description -> Summanes -> Function -> labels
Approximation

Learning

Supervised Learning

* Reinforcement Learning

Learning from delayed reward

* Comparison of These Parts of Machine Learning

All these problems can be formulated as some kind of optimisation problem

supervised learning -> labels data well reinforcement learning -> behaviour scores well unsupervised learning -> cluster scores well

CONTRACTO

* Machine Learning Basics

Outline: • How modern companies use Machine Learning

Stanley at the DARPA Grand Challenge
Machine Learning taxonomy
Overfitting: Occam's Razor

· Example problem: Span Detection

· Linear methods for supervised learning

* What is Machine Learning

*	aibbs Sampling
	using Markov Chain Monte Carlo (MCMC)
	Here we sample one vouriable at a time
	$(+c)$ $(+s)$ $(-r)$ $(-\omega)$
	(+c) $(-s)$ $(-r)$ $(-w)$
	(+c) $(-s)$ $(+r)$ $(-w)$
	this is consistent
	Unit 5: Machine Learning I (Supervised Learning)
	-> Bayes networks = reason with known models -> Machine learning = learn models from data
	Tononomy of machine learning:
	What? parameters, structure, hidden concepts
	What for? prediction, ingnostics, summar isortion, the learning agent is while (not while the data is being generated passive, active, of line, on line
	Defails? classification, regression generated a model distriguish between samples generative, discriminative
	Supernised Learning
	$\{x_1, x_2, \dots, x_n\} \rightarrow Y$
	peatures of feature we want to the data predict

Y can take one of two values - SPAM/HAM hence a classification problem.

suppose

let

$$p(S) = T$$

we want to find TI which manimises the likelihood of the training set assuming that each email is drawn independently from an jolentical distribution

$$p(y_i) = \begin{cases} \Pi & \text{if } y_i = S = 1\\ 1 - \Pi & \text{if } y_i = H = 0 \end{cases}$$

$$p(y_i) = \Pi^{y_i} \left(1 - \Pi \right)^{(1-y_i)}$$

$$p(data) = \prod_{i=1}^{m} p(y_i)$$

$$= \prod_{i=1}^{count} (y_i=1) (1-\prod_{i=1}^{count} (y_i=0))$$

$$ln(p(data)) = count(y_i = 1) ln \Pi + count(y_i = 0) ln(1-\Pi)$$

$$\frac{d\left(\ln(\rho(data))\right) = count(y_i=1) - count(y_i=0)}{\pi}$$

$$\frac{d}{d\Pi} \left(\ln \left(p(aa+a) \right) \right) = 0 = 0 \quad \text{count} \quad \left(y_i = 1 \right) = \frac{count}{1 - \Pi} = \frac{count}{1 - \Pi} \left(y_i = 0 \right)$$

=>
$$Count(y_i = D) \Pi = Count(y_i = I) (I-\Pi)$$

=>
$$count(y_i=0) \Pi = count(y_i=1) (1-\Pi)$$

=> $[count(y_i=0) + count(y_i=1)] \Pi = count(y_i=1)$

$$\Rightarrow \pi = \frac{\text{count}(y_i=1)}{\text{count}(y_i=1) + \text{count}(y_i=0)}$$

*

Bayes networks enamples: Naire Bayes Network:

Detecting SPAM emails:

Bag of words model

(SPAM)
(word1) (word2) (word3) ... (wordn)

SPAM	HAM
OFFER IS SECRET	PLAY SPOKTS TODAY
CLICK SECRET LINK	WENT PLAY SPORTS
SECRET SPORTS LINK	SECRET SPORTS EVENT
	SPORTS IS TODAY
	SPORTS COSTS MONEY

	Dictionary	SPAM	HAM	
1	OFFEK			
2	15	1		
3	SECKET	111		
4	CLICK			
5	LINK	[]		
6	SPORT		Ht	
7	PLAY			
8	10 DAY			
9	WENT			
10	EVENT			
11	COSTS			
12	MONEY			
	Total	9	15	

Using Mornimum likelihood...

P(SPAM) = 3/8

P("SECRET" | SPAM) = 13
P("SECRET" | HAM) = 15
P("IS" | SPAM) = 19
P("IS" | HAM) = 15
P("TODAY" | SPAM) = 0
P("TODAY" | HAM) = 215

Here it the probability of the word in a message being "-.." given ...

$$P(SPAM \mid M) = \frac{\frac{3}{5} \cdot \frac{1}{9}}{\frac{3}{5} \cdot \frac{1}{9} + \frac{5}{5} \cdot \frac{1}{3}} = \frac{3}{3 + 15} = \frac{1}{6}$$

$$P(SPAM|M) = \frac{\frac{3}{8}\frac{1}{3}\frac{1}{9}\frac{1}{3}}{\frac{3}{8}\frac{1}{3}\frac{1}{9}\frac{1}{3} + \frac{5}{8}\frac{1}{15}\frac{1}{15}} = \frac{3\times5\times\cancel{5}\times\cancel{5}\times5}{3\times5\times\cancel{5}\times5} + 9\times1\times\cancel{5}\times1$$

$$= \frac{25}{26}$$

$$P(SPAM|M) = \frac{\frac{3}{8} \cdot 0 \cdot \cancel{9} \cdot \cancel{3}}{\frac{3}{8} \cdot 0 \cdot \cancel{9} \cdot \cancel{3} + \frac{5}{8} \cdot \cancel{5} \cdot \cancel{5} \cdot \cancel{5}} = 0$$

The third example is a poor estimate clearly. Here we are overfitting.

* * Laplace Smoothing

Technique to doal with overfitting.

Maximum Likelihood:
$$p(n) = \frac{\text{count}(n)}{N}$$

Laplace smoothing:
$$p(n) = \frac{count(n) + k}{N + k|n|}$$

count (n) = # of occurences of this value of 2 |n1 is the number of values which a can have k is the omoothing parameter

This is like adding k dummy emails to each class (SPAM and HAM) each containing all the words in the

Using Laplace Smoothing for the Bayes networks example...

$$k=1$$
 => $P(SPAM) = 3+1 = 4 = 2$
 $8+2$ 10 $\overline{5}$
=> $P(HAM) = \frac{3}{5}$

$$P("TODAY" | SPAM) = 0+1 = 1$$

 $9+12$ 21
 $P("TODAY" | HAM) = \frac{2+1}{15+12} = \frac{3}{27} = 1$
 $P("IS" | SPAM) = \frac{1+1}{9+12} = \frac{2}{21}$
 $P("IS" | HAM) = \frac{1+1}{15+12} = \frac{2}{27}$
 $P("SECRET" | SPAM) = \frac{3+1}{9+12} = \frac{4}{21}$
 $P("SECRET" | HAM) = \frac{1+1}{15+12} = \frac{2}{27}$

P (SPAM | "TODAY IS SECRET")

$$= \frac{3 \cdot 1 \cdot 2 \cdot 4}{3 \cdot 2 \cdot 1 \cdot 2 \cdot 1}$$

$$= \frac{3 \cdot 1 \cdot 2 \cdot 4}{3 \cdot 2 \cdot 2 \cdot 1 \cdot 2 \cdot 1} + \frac{3 \cdot 1 \cdot 2 \cdot 2}{3 \cdot 9 \cdot 27 \cdot 27}$$

$$= \frac{4}{4 + \frac{1}{3} \cdot \frac{1}{27} \cdot \frac{1}{27} \cdot 21.21.21}$$

$$= \frac{4}{4 + \frac{1}{9} \cdot \frac{1}{9} \cdot 4 \cdot 7 \cdot 7} = \frac{4}{4 + \frac{343}{81}}$$

Advanced Spam filters

-> known spamming IP?

-> have you enabled the person before?

-> have 1K other people received the message?

-> is the email header and IP consistent?

- is the email all caps

do inline URLS point to where they say?

are you addressed by name?

All these can be used in Naive Bayes

* Digital Recognition

Recognising handwritten oligits - could fry to use Naive-Bayes on 16 × 16 pinels but this depont deal

well with shifting. To deal with this one could use Input smoothing in a different way. One could ma pinel counts with khose of the neighbouring pinels so if they are shifted we get similar statistics. Here we convolve the input with a Gaussian variable. This may give better rosults than just using the raw pixel values themselves.

Actually Naive-Bayes is not a great choice for this problem since it turns out that conditional independence of the pinels in this case is too strong an assumption.

Overfithing Drevention

We talked about

- -> Occam's Razor (trade of between fit /prediction)
 -> Laplace smoothing? How do we choose the
 -> Input smoothing smoothing parameter?

Cross-validation:

TRAINING DATA TRAIN CROSS-VALIDATE TEST
TRAIN CROSS-VALIDATE TEST
CROSS VILLOVIE 1221
80% 10% 4
4 4
arameters k verify
And k which gives performance
optimal performance report
for the cross-
validation data
maybe iteratively

Classification vs Regression

y is now underfit continuous gust nght rather than overfit oliscrete =) regression problem Size in Sq metans

 X_{11} X_{12} \cdots X_{1n} \rightarrow Y_{1}

$$f(x) = \omega_1 x + \omega_0$$

 $f(x) = \omega x + \omega_0$

We want to find $f \mid f(x) = Y$. We do this by minimising the loss function

Loss =
$$\sum_{j}^{1} (Y_{j} - W_{i}X_{j} - W_{o})^{2}$$
 sum square erro

solution w* = arcmin { Loss}

* Minimising quadratic loss

$$\frac{Min}{W} \sum_{i=1}^{m} (y_{i} - W_{i} \chi_{i} - W_{o})^{2} = L$$

$$\frac{\partial L}{\partial W_{o}} = -2 \sum_{i=1}^{m} (y_{i} - W_{i} \chi_{i} - W_{o})$$

$$\frac{\partial L}{\partial W_{o}} = 0 \Rightarrow M W_{o} = \sum_{i=1}^{m} (y_{i} - W_{i} \chi_{i})$$

$$\Rightarrow W_{o} = \frac{1}{m} \left(\sum_{i=1}^{m} y_{i} - W_{i} \sum_{i=1}^{m} \chi_{i} \right)$$

$$\frac{\partial L}{\partial W_{i}} = -2 \sum_{i=1}^{m} (y_{i} - W_{i} \chi_{i} - W_{o}) \chi_{i}$$

$$\frac{\partial L}{\partial W_{i}} = 0 \Rightarrow W_{i} \sum_{i=1}^{m} \chi_{i}^{2} = \sum_{i=1}^{m} (y_{i} - W_{o}) \chi_{i}$$

$$\Rightarrow W_{i} \sum_{i=1}^{m} \chi_{i}^{2} + W_{o} \sum_{i=1}^{m} \chi_{i} = \sum_{i=1}^{m} \chi_{i} y_{i}$$

$$\Rightarrow W_{i} \sum_{i=1}^{m} \chi_{i}^{2} + \prod_{i} \sum_{i=1}^{m} (y_{i} - W_{i} \chi_{i}) \sum_{i=1}^{m} \chi_{i} = \sum_{i=1}^{m} \chi_{i} y_{i}$$

$$\Rightarrow W_{i} \sum_{i=1}^{m} \chi_{i}^{2} + \prod_{i} \sum_{i=1}^{m} y_{i} \sum_{i=1}^{m} \chi_{i} = \sum_{i=1}^{m} \chi_{i} y_{i}$$

$$\Rightarrow W_{i} = \sum_{i=1}^{m} \chi_{i} y_{i} - \prod_{i} \sum_{i=1}^{m} \chi_{i} \sum_{i=1}^{m} \chi_{i}$$

$$\Rightarrow W_{i} = \sum_{i=1}^{m} \chi_{i} y_{i} - \prod_{i} \sum_{i=1}^{m} \chi_{i} \sum_{i=1}^{m} \chi_{i} \sum_{i=1}^{m} \chi_{i} y_{i}$$

$$\Rightarrow W_{i} = \sum_{i=1}^{m} \chi_{i} y_{i} - \prod_{i} \sum_{i=1}^{m} \chi_{i} \sum_{i=1}^{m} \chi_{i} \sum_{i=1}^{m} \chi_{i} y_{i}$$

$$\Rightarrow W_{i} = \sum_{i=1}^{m} \chi_{i} y_{i} - \prod_{i} \sum_{i=1}^{m} \chi_{i} \sum_{i=1}^{m} \chi_{i} \sum_{i=1}^{m} \chi_{i} y_{i}$$

Problems with linear regression

- -> non-linear data
- -7 outliers
- -> classification problems

For classification problems we can use logistic regression.

Regularisation is used for compressity control

Loss = Loss (data) + Loss (parameters)
=
$$\sum_{i=1}^{n} (y_i - w_i n_i - w_o)^2 + \sum_{i=1}^{n} |w_i|^p$$

 $\rho = 1$: Ly regularisation $\rho = 2$: La regularisation

Minimisation of more complicated loss functions

*

Gradient descent W° $W^{i+1} \leftarrow W^{i} - \times \partial L$ ∂W_{i}

$$L = \sum_{j} (y_{j} - w_{i} n_{j} - w_{o})^{2} \longrightarrow \min$$

$$\frac{\partial L}{\partial w_{i}} = -2 \sum_{j} (y_{j} - w_{i} n_{j} - w_{o}) n_{j}$$

$$\frac{\partial L}{\partial w_{o}} = -2 \sum_{j} (y_{j} - w_{i} n_{j} - w_{o})$$

$$W_0 = W_0^0$$
 and $W_1 = W_1^0$

$$\omega_{i}^{t} = \omega_{i}^{t-1} - \alpha \frac{\partial L}{\partial \omega_{i}} (\omega_{i}^{t-1})$$

$$W_{o}^{i} = W_{o}^{i-1} - \alpha \frac{\partial L}{\partial W_{o}} (W_{o}^{i-1})$$

Perception algorithm

$$f(n) = \begin{cases} 0 & \text{if } w_1 n + w_0 < 0 \\ 1 & \text{if } w_1 n + w_0 > 0 \end{cases}$$
linear function

Start with a random guess for w_0 and w_1 $w_i \leftarrow w_i^{k-1} + \propto (y_j - f(n_i))$

Linear separations

separator b is preferable to a and c because of the large mourgin.

Perception only finds a linear separator - not the "best" one.

Manimum margin algorithms:

-> support vector machines
-> boosting

Support vector machines: These use a "Kernel Trick" to find features which turn compren non-linear decision boundaries into linear ones

Illustration:

Linear Methods

- Regression vs Classification
- Exact vs Iterative solutions
- Smoothing
- Non-linear problems