

Presentation

Jaap Broeders 06/05/2022

Table of contents

- Introduction case overview
- Data importation methods
- Exploratory Data Analysis
- Data cleaning & pre-processing
- Modeling methods
- Evaluation methods
- Results

Case overview

'Predicting preferred accommodation for a personalized travel recommendation system'

Use traveler and trip data to predict the preferred accommodation type for each traveler

Data importation methods

- Convert .txt data to an object which can be used for easy manipulation

- Through general python string manipulation methods

- Python libraries:
 - Pandas
 - Numpy
 - Re (regular expressions)

Exploratory Data Analysis

- Analyze and identify trends in the dataset
- Check data integrity
- Visualizations (binary target variable)
 - Stacked bar plots of feature frequencies related to the target variable
 - Confusion matrix

- Python libraries:
 - Pandas
 - Numpy
 - Matplotlib.pyplot
 - Seaborn

Correlation Matrix

	id	duration	sex	age	num_children	acc_type
id	1.000000	0.000769	0.013521	-0.021860	-0.007013	0.014468
duration	0.000769	1.000000	0.008632	0.017139	-0.000248	-0.003178
sex	0.013521	0.008632	1.000000	0.009047	0.020868	-0.014056
age	-0.021860	0.017139	0.009047	1.000000	-0.011178	-0.000013
num_children	-0.007013	-0.000248	0.020868	-0.011178	1.000000	-0.011502
acc_type	0.014468	-0.003178	-0.014056	-0.000013	-0.011502	1.000000

Data cleaning

- Identify and fix issues present within the dataset

- Verify correct data type for each feature in dataset
- Convert categorical binary features to numeric [0, 1]
- Add dummy variables for country feature
- Remove unnecessary features from dataset

- Python libraries:
 - Pandas

Data pre-processing

- Convert raw data into a representation suitable for application in ML models
- Impute missing values
 - Simple strategy: mean
 - Advanced possibility: Multivariate imputation
- Scale features
 - Strategy: Min-max scaling
 - Other possibilities: normalization/regularization algorithms
- Model input preparation
 - Separate training features X from target variable y
 - Split dataset into a training and test set
- Python libraries:
 - Pandas
 - sklearn

Modeling methods

- Random Forest (baseline)

- Artificial Neural Network

- Python libraries:
 - Numpy
 - Sklearn
 - Tensorflow/keras

Model evaluation methods

- Identify whether a model is adequate for the classification task
- K-fold cross validation
- Metrics (binary classification)
 - Accuracy, precision, recall, f1
- Visualizations
 - ROC curve
 - Precision/Recall curve
 - Confusion matrix

Results - Random forest

MODEL: Random	Forest			
	precision	recall	f1-score	support
0	0.79	0.76	0.78	1136
1	0.69	0.73	0.71	838
accuracy			0.75	1974
macro avg	0.74	0.75	0.74	1974
weighted avg	0.75	0.75	0.75	1974
QApplication: Random Forest				ignoring it.

Results - Random forest

Results - Neural net

MODEL: Neura	l network			
	precision	recall	f1-score	support
False	0.80	0.82	0.81	1067
True	0.78	0.77	0.77	907
accuracy			0.79	1974
macro avg	0.79	0.79	0.79	1974
weighted avg	0.79	0.79	0.79	1974

Results - Neural net

Future work

- Understand current models
 - Rf: visualize decision tree
 - ANN: SHAP
- Try other pre-processing methods
 - Feature engineering
 - Advanced imputation methods
 - Other scaling approaches
- Optimize ANN
 - Hyperparameters
 - Batch size, epochs
- Model deployment
 - AWS: Sagemaker
 - GCP: Al Platform

That was it!

Questions?