Term-Structure Models (constant, time, interest)

• Time-dependent: exponential

• Interest-dependent: mean-reversion, squared

Name	Formula Δw~N(0, Δt)	Drift	Volatility	Interest	Note
Model 1	$\Delta r = \sigma \Delta w$	No	Constant		
Model 2	$\Delta r = \frac{\lambda}{\Delta t} + \sigma \Delta w$	Constant	Constant		
Ho-Lee	$\Delta r = \frac{\lambda_t}{\Delta t} + \sigma \Delta w$	Time	Constant		
Vasicek	$\Delta \mathbf{r} = \mathbf{k}(\mathbf{\theta} - \mathbf{r})\Delta \mathbf{t} + \sigma \Delta \mathbf{w}$	Interest:	Constant		
		mean-			
		reversion			
General	$\Delta r = \frac{\lambda_t}{\Delta t} + \frac{\sigma_t}{\Delta w}$	Time	Time		General version
					of Ho-Lee
Model 3	$\Delta r = \frac{\lambda_t}{\Delta t} + \frac{e^{-\alpha t}}{\sigma} \sigma \Delta w$	Time	Time:		Specific version
			exponential		
CIR	$\Delta \mathbf{r} = \mathbf{k}(\mathbf{\theta} - \mathbf{r})\Delta \mathbf{t} + \sqrt{r}\sigma \Delta \mathbf{w}$	Interest:	Interest:		Improved version
		mean-	squared		of Basicek
		reversion			
Model 4	$\Delta \ln r = \Delta r/r = \lambda \Delta t + \sigma \Delta w$	Constant	Constant	Log	Log version of
Lognormal					Model 2
Lognormal	$\Delta \ln r = \frac{\lambda_t}{\Delta t} + \frac{\sigma}{\Delta w}$	Time	Constant	Log	Log version of
Deterministic					Ho-Lee
Lognormal	$\Delta \ln r = \mathbf{k_t} (\ln \theta_t - \ln r) \Delta t$	Interest:	Time	Log	Log version of
Black-	$+ \frac{\sigma_t}{\Delta w}$	Mean-			Vasicek
Karasinski		reversion			

- 升级: 先调整 drift, 再调整 volatility, 再调整 interest 到 Log 空间
- Drift: model 1 (no drift) -> model 2 (constant) -> Ho-Lee (time dependent) -> Vasicek (interest-dependent)
- 记 lognomal 模型时,可以认为分别是 model2,Ho-lee,Vasicek 的 log 形式

• Cox-Ingersoll-Ross (CIR)

- o Basis-point volatility increase with short-term rate sqrt(t)
- o dr = k (theta r) dt + sigma * sqrt(r) * dw

• Lognormal - Deterministic Shift Model 4

- \circ dln(r) = lambda(t) * dt + sigma * dw
 - dr = lambda*r*dt + sigma*r*dw
 - lnr 0 + lamba dt + sigma dw
 - $r = 0 \Rightarrow r = 0 \exp(\text{lambda dt}) \exp(\text{sigma dw})$, multiplicative

• Lognormal with Mean Reversion ()

- $\circ d[\ln(r)] = k(t) [\ln(\text{theta}(t)) \ln(r)] dt + sigma(t) dw$
- o not recombing: the time intervals between interest rate changes are recalibrated to force the nodes to recombine.

The Art of Term Structure Models: Drift

- Short-Term Interest Rate Tree Construction
- Parameters
 - o dt small interval in year, 1 month=1/12 year
 - o s: volatility
 - o Normal distribution dw $\sim N(0, sqrt(dt))$
- Model 1 No Drift
 - o dr = s*dw (expected rate change)
 - Change to rate => parallel shift, a flat term structure of volatility
 - o Limitations
 - Not flexible, only one factor, volatility is flat, parallel shift

• Negative Interest Rate

- o Problem is greater when interest rate is low or the time get longer
- Solutions
 - Lognormal or chi-squared distribution
 - But introduce Skewness or inappropriate volatilities
 - Set to zero (preferred)
- o Bond less affected, but option depends on asymmetric payoff affected more
- Model 2 Constant Drift
 - \circ dr = lambda * dt + s * dw
 - o Positive drift -> positive risk premium
 - o Limitations
 - value of drift is high.
- Ho-Lee Model Time-dependent Drift
 - $\circ dr = lambda_t * dt + s * dw$
- Arbitrage-Free and Equilibrium Models
 - Arbitrage models
 - Used to quote the prices of securities that are illiquid or customized.
 - Constructed using on-the-run Treasury securities, predict off-the-run securities
 - Pricing derivative based on observable prices of underlying securities
 - Assumption: Prices are **accurate**, subject to suitability of model.
 - o Equilibrium
 - Used for relative analysis
- Vasicek Model Mean-Reversion
 - o dr = k (theta r) dt + s * dw
 - theta: **long-run equilibrium rate** value of short-term rate assuming risk neutrality
 - \circ lambda = k (theta r l) = annual drift
 - theta = r + lambda / k, where r + lis the long-run true rate of interest
 - o non-recombine
 - r ud: take the average of the up-then-down and down-then-up rates
 - modify up p and down probability (1-p)
 - modify up-and-up r uu and down-and-down probability r dd
 - Equations for computing p and r uu
 - Mean: $p*r_uu + (1-p)*r_ud = r_0 + k(theta-r)dt$
 - Variance: $p*(r uu m)^2 + (1-p)(r ud mean)^2 = s * sqrt(dt)$
 - o Exponentially Decay
 - Difference decay exponentially exp(-k*t)

- Interest Rate at time t
 - r t = r 0 * w + theta* (1-w), where w = exp(-kt)
 - r t = r 0 * exp(-kt) + theta * (1 exp(-kt))
 - theta r t = (theta r 0) $\exp(-kt)$
- half life
 - $\exp(kt) = 2 = t = \ln 2 / k$
- o Effectiveness
 - It produces a term structure of volatility that is declining. The shortterm volatility is overstated and long-term volatility is understated
 - Nonparallel shift: Upward shift in short term rate, short-term rate will be impacted more than long-term rate
 - Natural shock: larger (smaller) k, quicker (slower) the news is incorporated; smaller -> news is long-lived

The Art of Term Structure Models: Volatility and Distribution

- Time-dependent volatility
 - \circ dr = lambda(t) dt + sigma(t) dw
- Model 3
 - \circ dr = lambda(t) dt + sigma * exp(-alpha * t) dw
 - \circ volatility decrease exponentially to 0 when alphan > 0
 - o Effectiveness
 - Caps and floors
- Model 3 and Vasicek
 - Same STD: The same initial volatility and decay rate (alpha) = mean-reverting rate (k), the **standard deviations** of the terminal distributions are the same.
 - Same **Distribution**: If time-dependent drift = average interest rate path in Vasicek Model, terminal distributions are **identical**.
 - o Difference
 - Model 3 parallel shift, Vasicek nonparallel shift
 - o Application
 - Price options on fixed income instruments, model 3
 - Value or hedge fixed income or options, Vasicek (mean reverting)
- Cox-Ingersoll-Ross (CIR)
 - o Basis-point volatility increase with short-term rate sqrt(t)
 - o dr = k (theta r) dt + sigma * sqrt(r) * dw
- Lognormal Deterministic Shift Model 4
 - \circ dln(r) = lambda(t) * dt + sigma * dw
 - dr = lambda* r*dt + sigma* r*dw
 - lnr 0 + lamba dt + sigma dw
 - $r = 0 \Rightarrow r = 0 \exp(\text{lambda dt}) \exp(\text{sigma dw}), \text{ multiplicative}$
- Lognormal with Mean Reversion (Black- Karasinski)
 - o $d[\ln(r)] = k(t) [\ln(\text{theta}(t)) \ln(r)] dt + \text{sigma}(t) dw$
 - o not recombing: the time intervals between interest rate changes are recalibrated to force the nodes to recombine.