Chordal structure and polynomial systems

Diego Cifuentes

Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

Joint work with Pablo A. Parrilo (MIT)

UC Davis - November 2014

Consider a system of m polynomial equations in n variables:

$$f_i(x_0,\ldots,x_{n-1})=0, \qquad i=1,\ldots,m$$

The objective is to "solve" these equations.

Consider a system of m polynomial equations in n variables:

$$f_i(x_0,\ldots,x_{n-1})=0, \qquad i=1,\ldots,m$$

The objective is to "solve" these equations.

What it is solving?

- Decide if it is consistent.
- Find a solution.
- Describe all solutions.
- Find a Gröbner basis.

$$I = \langle x_0^2 x_1 x_2 + 2x_1 + 1, \ x_1^2 + x_2, \ x_1 + x_2, \ x_2 x_3 \rangle$$

$$I = \langle x_0^2 x_1 x_2 + 2x_1 + 1, \ x_1^2 + x_2, \ x_1 + x_2, \ x_2 x_3 \rangle$$

$$I = \{(x_0^2 x_1 x_2 + 2x_1 + 1) g_1 + (x_1^2 + x_2) g_2 + (x_1 + x_2) g_3 + (x_2 x_3) g_4 : g_1, g_2, g_3, g_3\}$$

$$I = \langle x_0^2 x_1 x_2 + 2x_1 + 1, \ x_1^2 + x_2, \ x_1 + x_2, \ x_2 x_3 \rangle$$

$$I = \{ (x_0^2 x_1 x_2 + 2x_1 + 1) g_1 + (x_1^2 + x_2) g_2 + (x_1 + x_2) g_3 + (x_2 x_3) g_4 : g_1, g_2, g_3, g_3 \}$$

$$I = \{ (x_0^2 - 3) g_1 + (x_1 - 1) g_2 + (x_2 + 1) g_3 + (x_3) g_4 : g_1, g_2, g_3, g_3 \}$$

Example:

$$I = \langle x_0^2 x_1 x_2 + 2x_1 + 1, \ x_1^2 + x_2, \ x_1 + x_2, \ x_2 x_3 \rangle$$

$$I = \{ (x_0^2 x_1 x_2 + 2x_1 + 1) g_1 + (x_1^2 + x_2) g_2 + (x_1 + x_2) g_3 + (x_2 x_3) g_4 : g_1, g_2, g_3, g_3 \}$$

$$I = \{ (x_0^2 - 3) g_1 + (x_1 - 1) g_2 + (x_2 + 1) g_3 + (x_3) g_4 : g_1, g_2, g_3, g_3 \}$$

Gröbner basis:

$$I = \langle x_0^2 - 3, x_1 - 1, x_2 + 1, x_3 \rangle$$

There are two solutions:

$$V(I) = (\sqrt{3}, 1, -1, 0), (-\sqrt{3}, 1, -1, 0)$$

Example 2:

Let *I* be given by the equations:

$$x_i^3 - 1 = 0,$$
 $0 \le i \le 9$
 $x_i^2 + x_i x_j + x_j^2 = 0,$ (i,j) edge

Example 2:

Let *I* be given by the equations:

$$x_i^3 - 1 = 0,$$
 $0 \le i \le 9$
 $x_i^2 + x_i x_j + x_j^2 = 0,$ (i,j) edge

Gröbner basis:

$$I = \langle x_0 - x_8, x_1 - x_8, x_2 - x_8, x_3 + x_8 + x_9, x_4 + x_8 + x_9, x_5 - x_9, x_6 + x_8 + x_9, x_7 - x_9, x_8^2 + x_8x_9 + x_9^2, x_9^3 - 1 \rangle$$

There are six solutions: three choices for x_9 , two choices for x_8 .

Gröbner bases

- Given an ordering of the variables $x_0 > x_1 > ... > x_{n-1}$ there is a unique reduced *lex Gröbner basis*.
- The system is inconsistent iff the reduced Gröbner basis is $\langle 1 \rangle$.
- If the system has finite solutions, we can find them recursively: solve a univariate polynomial in x_{n-1} , for each solution \hat{x}_{n-1} , solve a univariate polynomial in x_{n-2} , etc.
- For an arbitrary ideal I, we can get the elimination ideals

$$\operatorname{elim}_{I}(I) = I \cap \mathbb{K}[x_{I}, x_{I+1}, \dots, x_{n-1}]$$

Gröbner bases

- Given an ordering of the variables $x_0 > x_1 > ... > x_{n-1}$ there is a unique reduced *lex Gröbner basis*.
- The system is inconsistent iff the reduced Gröbner basis is $\langle 1 \rangle$.
- If the system has finite solutions, we can find them recursively: solve a univariate polynomial in x_{n-1} , for each solution \hat{x}_{n-1} , solve a univariate polynomial in x_{n-2} , etc.
- For an arbitrary ideal I, we can get the elimination ideals

$$\operatorname{elim}_{I}(I) = I \cap \mathbb{K}[x_{I}, x_{I+1}, \dots, x_{n-1}]$$

Finding a solution to a system of quadratic equations is NP-hard. Computing Gröbner bases may require (doubly) exponential time.

Polynomial systems and graphs

A polynomial system defined by m equations in n variables:

$$f_i(x_0,\ldots,x_{n-1})=0, \qquad i=1,\ldots,m$$

Construct a graph G ("primal graph") with n nodes, as:

- Nodes are variables $\{x_0, \ldots, x_{n-1}\}$.
- For each equation, add a clique connecting the variables appearing in that equation

Polynomial systems and graphs

A polynomial system defined by m equations in n variables:

$$f_i(x_0,\ldots,x_{n-1})=0, \qquad i=1,\ldots,m$$

Construct a graph G ("primal graph") with n nodes, as:

- Nodes are variables $\{x_0, \ldots, x_{n-1}\}$.
- For each equation, add a clique connecting the variables appearing in that equation

$$I = \langle x_0^2 x_1 x_2 + 2x_1 + 1, x_1^2 + x_2, x_1 + x_2, x_2 x_3 \rangle$$

Questions

"Abstracted" the polynomial system to a graph.

Questions

"Abstracted" the polynomial system to a graph.

- Can the graph structure help solve this system?
- For instance, to compute Groebner bases?
- Or, perhaps we can do something better?
- Preserve graph (sparsity) structure?
- Complexity aspects?

Graphical modelling

Pervasive idea in many areas, in particular: numerical linear algebra, graphical models, constraint satisfaction, database theory, . . .

Key notions: chordality and treewidth.

Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton, Bodlaender, Courcelle, Dechter, Lauritzen/Spiegelhalter, Pearl, Robertson/Seymour, \dots

Graphical modelling

Pervasive idea in many areas, in particular: numerical linear algebra, graphical models, constraint satisfaction, database theory, . . .

Key notions: chordality and treewidth.

Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton, Bodlaender, Courcelle, Dechter, Lauritzen/Spiegelhalter, Pearl, Robertson/Seymour, . . .

Remarkably (AFAIK) almost no work in computational algebraic geometry exploits this structure.

Graphical modelling

Pervasive idea in many areas, in particular: numerical linear algebra, graphical models, constraint satisfaction, database theory, ...

Key notions: chordality and treewidth.

Many names: Arnborg, Beeri/Fagin/Maier/Yannakakis, Blair/Peyton, Bodlaender, Courcelle, Dechter, Lauritzen/Spiegelhalter, Pearl, Robertson/Seymour, . . .

Remarkably (AFAIK) almost no work in computational algebraic geometry exploits this structure.

We hope to change this...;)

Chordality and treewidth

Let G be a graph with vertices x_0, \ldots, x_{n-1} .

A vertex ordering $x_0 > x_1 > \cdots > x_{n-1}$ is a *perfect elimination ordering* if for each x_l , the set

$$X_l := \{x_l\} \cup \{x_m : x_m \text{ is adjacent to } x_l, \ x_l > x_m\}$$

is such that the restriction $G|_{X_i}$ is a clique.

A graph is chordal if it has a perfect elimination ordering.

Chordality and treewidth

Let G be a graph with vertices x_0, \ldots, x_{n-1} .

A vertex ordering $x_0 > x_1 > \cdots > x_{n-1}$ is a *perfect elimination ordering* if for each x_l , the set

$$X_l := \{x_l\} \cup \{x_m : x_m \text{ is adjacent to } x_l, \ x_l > x_m\}$$

is such that the restriction $G|_{X_i}$ is a clique.

A graph is chordal if it has a perfect elimination ordering.

A chordal completion of G is a chordal graph with the same vertex set as G, and which contains all edges of G.

The treewidth of a graph is the clique number (minus one) of its smallest chordal completion.

Chordality and treewidth

Let G be a graph with vertices x_0, \ldots, x_{n-1} .

A vertex ordering $x_0 > x_1 > \cdots > x_{n-1}$ is a *perfect elimination ordering* if for each x_l , the set

$$X_l := \{x_l\} \cup \{x_m : x_m \text{ is adjacent to } x_l, \ x_l > x_m\}$$

is such that the restriction $G|_{X_t}$ is a clique.

A graph is chordal if it has a perfect elimination ordering.

A chordal completion of G is a chordal graph with the same vertex set as G, and which contains all edges of G.

The treewidth of a graph is the clique number (minus one) of its smallest chordal completion.

Meta-theorem: NP-complete problems are "easy" on graphs of small treewidth.

Bad news? (I)

Subset sum problem, with data $A = \{a_1, \ldots, a_n\} \subset \mathbb{Z}$. Is there a subset of A that adds up to S?

Letting s_i be the partial sums, we can write a polynomial system:

$$0 = s_0$$

$$0 = (s_i - s_{i-1})(s_i - s_{i-1} - a_i)$$

$$S = s_n$$

The graph associated with these equations is a path

$$(s_0)$$
 $-(s_1)$ $-(s_2)$ $-\cdots$ $-(s_n)$

But, subset sum is NP-complete...

Bad news? (II)

For *linear* equations, "good" elimination preserves graph structure (perfect!)

Bad news? (II)

For *linear* equations, "good" elimination preserves graph structure (perfect!)

For polynomials, however, Groebner bases can destroy chordality.

Ex: Consider

$$I=\langle x_0x_2-1,x_1x_2-1\rangle,$$

whose associated graph is the path (x_0) $-(x_2)$ $-(x_1)$.

Bad news? (II)

For *linear* equations, "good" elimination preserves graph structure (perfect!)

For polynomials, however, Groebner bases can destroy chordality.

Ex: Consider

$$I = \langle x_0 x_2 - 1, x_1 x_2 - 1 \rangle,$$

whose associated graph is the path (x_0) — (x_2) — (x_1) .

Every Groebner basis must contain the polynomial $x_0 - x_1$, breaking the sparsity structure.

Our results

- A chordal elimination algorithm, to exploit graphical structure.
- Conditions under which chordal elimination succeeds.
- Recursive method for computing elimination ideals of maximal cliques
- For a certain class, complexity is *linear* in number of variables! (exponential in treewidth)
- Implementation and experimental results

Chordal elimination (sketch)

Given equations, construct graph G, a chordal completion, and a perfect elimination ordering.

Will produce a decreasing sequence of ideals $I = I_0 \supseteq I_1 \supseteq \cdots \supseteq I_{n-1}$.

Given current ideal I_I , split the generators

$$I_{l} = \underbrace{J_{l}}_{\in \mathbb{K}[X_{l}]} + \underbrace{K_{l+1}}_{\not\in \mathbb{K}[X_{l}]}$$

and eliminate variable x_l

$$I_{l+1} = \operatorname{elim}_{l+1}(J_l) + K_{l+1}$$

"Ideally" (!), I_I should be the I-th elimination ideal $\operatorname{elim}_I(I)$...

Notice that by chordality, graph structure is always preserved!

When does chordal elimination succeed?

We need conditions for this to work, i.e., for $\mathbf{V}(I_I) = \mathbf{V}(\text{elim}_I(I))$.

Thm 1: Let I be an ideal and assume that for each I such that X_I is a maximal clique of G, the ideal $J_I \subseteq \mathbb{K}[X_I]$ is zero dimensional. Then, chordal elimination succeeds.

In particular, finite fields \mathbb{F}_q , and 0/1 problems.

When does chordal elimination succeed?

We need conditions for this to work, i.e., for $\mathbf{V}(I_l) = \mathbf{V}(\operatorname{elim}_l(I))$.

Thm 1: Let I be an ideal and assume that for each I such that X_I is a maximal clique of G, the ideal $J_I \subseteq \mathbb{K}[X_I]$ is zero dimensional. Then, chordal elimination succeeds.

In particular, finite fields \mathbb{F}_q , and 0/1 problems.

Def: A polynomial f is *simplicial* if for each variable x_l , the monomial m_l of largest degree in x_l is unique and has the form $m_l = x^{d_l}$.

Thm 2: Let $I = \langle f_1, \dots, f_s \rangle$ be an ideal such that for each $1 \le i \le s$, f_i is generic simplicial. Then, chordal elimination succeeds.

When does chordal elimination succeed?

We need conditions for this to work, i.e., for $\mathbf{V}(I_l) = \mathbf{V}(\operatorname{elim}_l(I))$.

Thm 1: Let I be an ideal and assume that for each I such that X_I is a maximal clique of G, the ideal $J_I \subseteq \mathbb{K}[X_I]$ is zero dimensional. Then, chordal elimination succeeds.

In particular, finite fields \mathbb{F}_q , and 0/1 problems.

Def: A polynomial f is *simplicial* if for each variable x_l , the monomial m_l of largest degree in x_l is unique and has the form $m_l = x^{d_l}$.

Thm 2: Let $I = \langle f_1, \dots, f_s \rangle$ be an ideal such that for each $1 \le i \le s$, f_i is generic simplicial. Then, chordal elimination succeeds.

[Intuition: interaction of (iterated) "closure/extension thm" + chordality]

Naive chordal elimination can fail

$$I = \langle x_0 x_2 + 1, x_1^2 + x_2, x_1 + x_2, x_2 x_3 \rangle$$

Groebner basis:

$$\{x_0-1,x_1-1,x_2+1,x_3\}$$

Elimination:

We got $I_3 = \langle 0 \rangle$, but really $elim_3(I) = \langle x_3 \rangle$.

Elimination ideals of maximal cliques

In general, Groebner bases can be very large, and destroy chordality.

Can we do something nearly as good, preserving graph structure?

Idea: Compute elimination ideals $H_I := I \cap \mathbb{K}[X_I]$ for the *maximal cliques*. (A chordal graph has at most n maximal cliques)

Elimination ideals of maximal cliques

In general, Groebner bases can be very large, and destroy chordality.

Can we do something nearly as good, preserving graph structure?

Idea: Compute elimination ideals $H_I := I \cap \mathbb{K}[X_I]$ for the maximal cliques. (A chordal graph has at most n maximal cliques)

- For some purposes, $\bigcup_{I}gb(H_{I})$ has same information as gb(I), and is much smaller/sparser.
- Compute the maximal clique ideals $\mathbb{K}[X_l]$ from the output of the chordal elimination algorithm, in a structure-preserving way.

[Intuition: variety has "small" coordinate projections, can compute those, and glue them]

Example: graph colorings

Let *I* be given by the equations:

$$x_i^3 - 1 = 0,$$
 $0 \le i \le 8$ $x_9 - 1 = 0$ $x_i^2 + x_i x_j + x_j^2 = 0,$ (i,j) blue edge

Graph G (blue) and its chordal completion \bar{G} (green).

There are 7 maximal cliques:

$$\begin{split} X_0 &= \{x_0, x_6, x_7\}, \ X_1 = \{x_1, x_4, x_9\}, \ X_2 = \{x_2, x_3, x_5\}, \ X_3 = \{x_3, x_5, x_7, x_8\}, \\ X_4 &= \{x_4, x_5, x_8, x_9\}, \ X_5 = \{x_5, x_7, x_8, x_9\}, \ X_6 = \{x_6, x_7, x_8, x_9\} \end{split}$$

Elimination tree of the graph \bar{G} . The root/sink is 9.

Some of the clique elimination ideals:

$$H_0 = \langle x_0 + x_6 + 1, x_6^2 + x_6 + 1, x_7 - 1 \rangle$$

$$H_5 = \langle x_5 - 1, x_7 - 1, x_8^2 + x_8 + 1, x_9 - 1 \rangle$$

$$H_6 = \langle x_6 + x_8 + 1, x_7 - 1, x_8^2 + x_8 + 1, x_9 - 1 \rangle$$

The corresponding varieties are:

$$\begin{split} & H_0: \left\{ x_0, x_6, x_7 \right\} & \to \left\{ \zeta, \zeta^2, 1 \right\}, \ \left\{ \zeta^2, \zeta, 1 \right\} \\ & H_5: \left\{ x_5, x_7, x_8, x_9 \right\} \to \left\{ 1, 1, \zeta, 1 \right\}, \ \left\{ 1, 1, \zeta^2, 1 \right\} \\ & H_6: \left\{ x_6, x_7, x_8, x_9 \right\} \to \left\{ \zeta^2, 1, \zeta, 1 \right\}, \left\{ \zeta, 1, \zeta^2, 1 \right\} \end{split}$$

Complexity

For "nice" cases, complexity is *linear* in number of variables n, number of equations s, and exponential in treewidth κ .

Thm: Let I be such that each (maximal) \tilde{H}^{j} is q-dominated. The complexity of computing I_{l} is $\tilde{O}(s+lq^{\alpha\kappa})$. We can find all elimination ideals in $\tilde{O}(nq^{\alpha\kappa})$.

E.g., we recover known results on linear-time colorability for bounded treewidth:

Cor: Let G be a graph and \overline{G} a chordal completion with largest clique of size κ . We can describe all g-colorings of G in $\tilde{O}(ng^{\alpha\kappa})$.

Implementation and examples

Implemented in Sage, using Singular and PolyBoRi (for \mathbb{F}_2).

- Graph colorings (counting q-colorings)
- Cryptography ("baby" AES, Cid et al.)
- Sensor Network localization
- Discretization of polynomial equations

Results: Crypto - AES variant (Cid et al.) - $\mathbb{F}_2[x]$

Performance on SR(n, 1, 2, 4) for chordal elimination, and computing (lex/degrevlex) Gröbner bases (PolyBoRi).

n	Variables	Equations	Seed	ChordElim	LexGB	DegrevlexGB
6	176	320	0	575.516	402.255	256.253
			1	609.529	284.216	144.316
			2	649.408	258.965	133.367
10	288	528	0	941.068	> 1100, aborted	1279.879
			1	784.709	> 1400, aborted	1150.332
			2	1124.942	> 3600, aborted	> 2500, aborted

- For small problems standard Gröbner bases outperform chordal elimination, particularly using degrevlex order.
- Nevertheless, chordal elimination scales better, being faster than both methods for n = 10.
- In addition, standard Gröbner bases have higher memory requirements, which is reflected in the many experiments that aborted for this reason.

Results: Sensor network localization - $\mathbb{Q}[x]$

Find positions, given a few known fixed anchors and pairwise distances. Comparison with Singular: DegrevlexGB, LexFGLM

Natural graph structure

$$\begin{aligned} \|x_i - x_j\|^2 &= d_{ij}^2 & ij \in \mathcal{A} \\ \|x_i - a_k\|^2 &= e_{ij}^2 & ik \in \mathcal{B} \end{aligned}$$

- Simplicial, therefore exact elimination
- Underconstrained regime: chordal is much better
- Overconstrained regime: competitive (plot)

Summary

- Chordal structure can notably simplify polynomial system solving
- Under assumptions (treewidth + algebraic structure), tractable!
- Yields practical, competitive, implementable algorithms

Summary

- Chordal structure can notably simplify polynomial system solving
- Under assumptions (treewidth + algebraic structure), tractable!
- Yields practical, competitive, implementable algorithms

If you want to know more:

- D. Cifuentes, P.A. Parrilo, Exploiting chordal structure in polynomial ideals: a Groebner basis approach. arXiv:1411.1745.
- D. Cifuentes, Exploiting chordal structure in systems of polynomial equations, S.M. thesis, MIT, 2014.

Thanks for your attention!