

1-2. (Cancelled)

3. (Currently amended) A pharmaceutical composition of claim 1, wherein the for topical administration, comprising a phthalocyanine that has a structure of formula (II) or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier,

(II)

wherein M is $(G)_a Y [(OSi(CH_3)_2(CH_2)_b N_c(R')_d(R'')_e)_f X_g]_p$;

Y is selected from Si, Al, Ga, Ge, or Sn;

R' is selected from H, CH₃, C₂H₅, C₄H₉, C₄H₈NH, C₄H₈N, C₄H₈NCH₃, C₄H₈S, C₄H₈O, C₄H₈Se,

OC(O)CH₃, OC(O), CS, CO, CSe, OH, C₄H₈N(CH₂)₃CH₃, (CH₂)₂N(CH₃)₂,

(CH₂)_nN((CH₂)₀(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

R'' is selected from H, SO₂CH₃, (CH₂)₂N(CH₃)₂, (CH₂)₁₁CH₃, C(S)NHC₆H₁₁O₅,

(CH₂)_nN((CH₂)₀(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

G is selected from OH and CH₃;

X is selected from hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate,

pyruvate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate,

tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate,

glucoheptonate, lactobionate, and laurylsulphonate forming anions;

RESPONSE TO OFFICE ACTION
Appln. No. 10/599,433
Response Filed September 9, 2011

Attorney Docket No. 27708/04116

a is 0 or 1;

b is an integer from 2 to 12;

c is 0 or 1;

d is an integer from 0 to 3;

e is an integer from 0 to 2;

f is 1 or 2;

g is 0 or 1;

n is an integer from 1 to 12;

o is an integer from 1 to 11;

p is 1 or 2 wherein M is a diamagnetic metal ion optionally complexed with or covalently bound to one or two axial ligands, wherein the metal ion is coordinated to the phthalocyanine moiety; and

R¹ – R¹⁶ are each independently selected from hydrogen, halogen, nitro, cyano, hydroxy, thiol, amino, carboxy, aryl, heteroaryl, carbocyclyl, heterocyclyl, C₁₋₂₀alkyl, C₁₋₂₀alkenyl, C₁₋₂₀alkynyl, C₁₋₂₀alkoxy, C₁₋₂₀acyl, C₁₋₂₀alkylcarbonyloxy, C₁₋₂₀aralkyl, C₁₋₂₀hetaralkyl, C₁₋₂₀carbocyclylalkyl, C₁₋₂₀heterocyclylalkyl, C₁₋₂₀aminoalkyl, C₁₋₂₀alkylamino, C₁₋₂₀thioalkyl, C₁₋₂₀alkylthio, C₁₋₂₀hydroxyalkyl, C₁₋₂₀alkyloxycarbonyl, C₁₋₂₀alkylaminocarbonyl, C₁₋₂₀alkylcarbonylamino, C₁₋₁₀alkyl-Z-C₁₋₁₀alkyl;

R¹⁷ is selected from hydrogen, C₁₋₂₀acyl, C₁₋₂₀alkyl, and C₁₋₂₀aralkyl; and

Z is selected from S, NR¹⁷, and O.

4. **(Currently Amended)** A The pharmaceutical composition of claim [[1]] 3, wherein R¹ – R¹⁶ are hydrogen the phthalocyanine has a structure of Formula (III) or a pharmaceutically acceptable salt thereof

RESPONSE TO OFFICE ACTION
Appln. No. 10/599,433
Response Filed September 9, 2011

Attorney Docket No. 27708/04116

(III)

wherein M is $(G)_a Y [(OSi(CH_3)_2(CH_2)_b N_e(R')_d(R'')_e)_f X_g]_p$;

Y is selected from Si, Al, Ga, Ge, or Sn;

R' is selected from H, CH₃, C₂H₅, C₄H₉, C₄H₈NH, C₄H₈N, C₄H₈NCH₃, C₄H₈S, C₄H₈O, C₄H₈Se,

OC(O)CH₃, OC(O), CS, CO, CSe, OH, C₄H₈N(CH₂)₃CH₃, (CH₂)₂N(CH₃)₂,

(CH₂)_nN((CH₂)₆(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

R'' is selected from H, SO₂CH₃, (CH₂)₂N(CH₃)₂, (CH₂)₁₄CH₃, C(S)NHC₆H₁₁O₅,

(CH₂)_nN((CH₂)₆(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

G is selected from OH and CH₃;

X is selected from I, F, Cl, or Br;

a is 0 or 1;

b is an integer from 2 to 12;

e is 0 or 1;

d is an integer from 0 to 3;

e is an integer from 0 to 2;

f is 1 or 2;

g is 0 or 1;

n is an integer from 1 to 12;

e is an integer from 1 to 11; and

p is 1 or 2.

5. **(Original)** A pharmaceutical composition of claim 4, wherein M is selected from AlOSi(CH₃)₂(CH₂)₃N(CH₃)₂; AlOSi(CH₃)₂(CH₂)₃N(CH₃)₃⁺I⁻; CH₃SiOSi(CH₃)₂(CH₂)₃N(CH₃)₂; HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₂; HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₃⁺I⁻; Si[OSi(CH₃)₂(CH₂)₃N(CH₃)₃⁺I⁻]₂; Si[OSi(CH₃)₂(CH₂)₄NH₂]₂; Si[OSi(CH₃)₂(CH₂)₄NHSO₂CH₃]₂; HOSiOSi(CH₃)₂(CH₂)₄NHSO₂CH₃; HOSiOSi(CH₃)₂(CH₂)₃N(CH₂CH₃)(CH₂)₂N(CH₃)₂; Si[OSi(CH₃)₂(CH₂)₄NHCSNHC₆H₁₁O₅]₂; Si[OSi(CH₃)₂(CH₂)₃N(CH₃)₂]₂; HOSiOSi(CH₃)₂(CH₂)₃OCOCH₃; HOSiOSi(CH₃)₂(CH₂)₃OH; Si[OSi(CH₃)₂(CH₂)₃N(CH₂CH₃)(CH₂)₂N(CH₃)₂]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈O; AlOSi(CH₃)₂(CH₂)₃N⁺(CH₃)₂(CH₂)₁₁CH₃I⁻; HOSiOSi(CH₃)₂(CH₂)₈N(CH₃)₂; Si[OSi(CH₃)₂(CH₂)₃NC₄H₈O]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈S; HOSiOSi(CH₃)₂(CH₂)₃N(CH₂)₃(CH₃)₂; HOSiOSi(CH₃)₂(CH₂)₃NCS; HOSiOSi(CH₃)₂(CH₂)₃N[(CH₂)₃N(CH₃)₂]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈NCH₃; Si[OSi(CH₃)₂(CH₂)₃NC₄H₈NCH₃]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈N(CH₂)₃CH₃; and Si[OSi(CH₃)₂(CH₂)₃NC₄H₈NH]₂.

6. **(Original)** A pharmaceutical composition of claim 5, wherein M is HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₂.

7. **(Cancelled)**

8. **(Cancelled)**

9. **(Original)** A pharmaceutical composition of claim 8, wherein the phthalocyanine is formulated as a salt selected from hydrochloride and pyruvate.

10. **(Original)** A pharmaceutical composition of claim 9, wherein the phthalocyanine is formulated as a hydrochloride salt.

11. **(Original)** A pharmaceutical composition of claim 10, wherein the phthalocyanine is formulated as a pyruvate salt.

12-15. **(Canceled)**

16. **(Currently amended)** A pharmaceutical composition of claim 14 A method for treating epithelial cancer or other epithelial cell abnormalities, comprising

(i) topically administering a phthalocyanine pharmaceutical composition to an epithelial surface; and

(ii) irradiating the epithelial surface,

wherein the phthalocyanine has a structure of formula (II) or a pharmaceutically acceptable salt thereof

wherein M is $(G)_a Y [(OSi(CH_3)_2(CH_2)_b N_c(R')_d(R'')_e)_f X_g]_p$;

Y is selected from Si, Al, Ga, Ge, or Sn;

R' is selected from H, CH₃, C₂H₅, C₄H₉, C₄H₈NH, C₄H₈N, C₄H₈NCH₃, C₄H₈S, C₄H₈O, C₄H₈Se,

OC(O)CH₃, OC(O), CS, CO, CSe, OH, C₄H₈N(CH₂)₃CH₃, (CH₂)₂N(CH₃)₂,

(CH₂)_nN((CH₂)₀(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

R'' is selected from H, SO₂CH₃, (CH₂)₂N(CH₃)₂, (CH₂)₁₁CH₃, C(S)NHC₆H₁₁O₅,

(CH₂)_nN((CH₂)₀(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

G is selected from OH and CH₃;

RESPONSE TO OFFICE ACTION
Appln. No. 10/599,433
Response Filed September 9, 2011

Attorney Docket No. 27708/04116

X is selected from hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, pyruvate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate forming anions;

a is 0 or 1;

b is an integer from 2 to 12;

c is 0 or 1;

d is an integer from 0 to 3;

e is an integer from 0 to 2;

f is 1 or 2;

g is 0 or 1;

n is an integer from 1 to 12;

o is an integer from 1 to 11;

p is 1 or 2 wherein M is a diamagnetic metal ion optionally complexed with or covalently bound to one or two axial ligands, wherein the metal ion is coordinated to the phthalocyanine moiety; and

R¹ – R¹⁶ are each independently selected from hydrogen, halogen, nitro, cyano, hydroxy, thiol, amino, carboxy, aryl, heteroaryl, carbocyclyl, heterocyclyl, C₁₋₂₀alkyl, C₁₋₂₀alkenyl, C₁₋₂₀alkynyl, C₁₋₂₀alkoxy, C₁₋₂₀acyl, C₁₋₂₀alkylcarbonyloxy, C₁₋₂₀aralkyl, C₁₋₂₀hetaralkyl, C₁₋₂₀carbocyclylalkyl, C₁₋₂₀heterocyclylalkyl, C₁₋₂₀aminoalkyl, C₁₋₂₀alkylamino, C₁₋₂₀thioalkyl, C₁₋₂₀alkylthio, C₁₋₂₀hydroxyalkyl, C₁₋₂₀alkyloxycarbonyl, C₁₋₂₀alkylaminocarbonyl, C₁₋₂₀alkylcarbonylamino, C₁₋₁₀alkyl-Z-C₁₋₁₀alkyl;

R¹⁷ is selected from hydrogen, C₁₋₂₀acyl, C₁₋₂₀alkyl, and C₁₋₂₀aralkyl; and

Z is selected from S, NR¹⁷, and O.

RESPONSE TO OFFICE ACTION
Appln. No. 10/599,433
Response Filed September 9, 2011

Attorney Docket No. 27708/04116

17. (Currently amended) [[A]] The method of claim [[14]] 16, wherein R¹ – R¹⁶ are hydrogen the phthalocyanine has a structure of Formula (III) or a pharmaceutically acceptable salt thereof

wherein M is $(G)_a Y [(OSi(CH_3)_2(CH_2)_b N_e(R')_d(R'')_e)_f X_g]_p$;

Y is selected from Si, Al, Ga, Ge, or Sn;

R' is selected from H, CH₃, C₂H₅, C₄H₉, C₄H₈NH, C₄H₈N, C₄H₈NCH₃, C₄H₈S, C₄H₈O, C₄H₈Se, OC(O)CH₃, OC(O), CS, CO, CSe, OH, C₄H₈N(CH₂)₃CH₃, (CH₂)₂N(CH₃)₂, (CH₂)_nN((CH₂)₆(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

R'' is selected from H, SO₂CH₃, (CH₂)₂N(CH₃)₂, (CH₂)₁₁CH₃, C(S)NHC₆H₄O₅, (CH₂)_nN((CH₂)₆(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

G is selected from OH and CH₃;

X is selected from I, F, Cl, or Br;

a is 0 or 1;

b is an integer from 2 to 12;

e is 0 or 1;

d is an integer from 0 to 3;

e is an integer from 0 to 2;

f is 1 or 2;

g is 0 or 1;

n is an integer from 1 to 12;

~~o~~ is an integer from 1 to 11; and

~~p~~ is 1 or 2.

18. **(Original)** A method of claim 17, wherein M is selected from AlOSi(CH₃)₂(CH₂)₃N(CH₃)₂; AlOSi(CH₃)₂(CH₂)₃N(CH₃)₃⁺I⁻; CH₃SiOSi(CH₃)₂(CH₂)₃N(CH₃)₂; HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₂; HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₃⁺I⁻; Si[OSi(CH₃)₂(CH₂)₃N(CH₃)₃⁺I⁻]₂; Si[OSi(CH₃)₂(CH₂)₄NH₂]₂; Si[OSi(CH₃)₂(CH₂)₄NHSO₂CH₃]₂; HOSiOSi(CH₃)₂(CH₂)₄NHSO₂CH₃; HOSiOSi(CH₃)₂(CH₂)₃N(CH₂CH₃)(CH₂)₂N(CH₃)₂; Si[OSi(CH₃)₂(CH₂)₄NHCSNHC₆H₁₁O₅]₂; Si[OSi(CH₃)₂(CH₂)₃N(CH₃)₂]₂; HOSiOSi(CH₃)₂(CH₂)₃OCOCH₃; HOSiOSi(CH₃)₂(CH₂)₃OH; Si[OSi(CH₃)₂(CH₂)₃N(CH₂CH₃)(CH₂)₂N(CH₃)₂]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈O; AlOSi(CH₃)₂(CH₂)₃N⁺(CH₃)₂(CH₂)₁₁CH₃I⁻; HOSiOSi(CH₃)₂(CH₂)₈N(CH₃)₂; Si[OSi(CH₃)₂(CH₂)₃NC₄H₈O]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈S; HOSiOSi(CH₃)₂(CH₂)₃N(CH₂)₃(CH₃)₂; HOSiOSi(CH₃)₂(CH₂)₃NCS; HOSiOSi(CH₃)₂(CH₂)₃N[(CH₂)₃N(CH₃)₂]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈NCH₃; Si[OSi(CH₃)₂(CH₂)₃NC₄H₈NCH₃]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈N(CH₂)₃CH₃; and Si[OSi(CH₃)₂(CH₂)₃NC₄H₈NH]₂.

19. **(Original)** A method of claim 18, wherein M is HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₂.

20. **(Cancelled)**

21. **(Cancelled)**

22. **(Previously presented)** A method of claim 15 , wherein the phthalocyanine is formulated as a salt selected from hydrochloride and pyruvate.

23. **(Currently amended)** ~~A pharmaceutical composition~~ The method of claim 22, wherein the phthalocyanine is formulated as a hydrochloride salt.

24. **(Original)** A method of claim 22, wherein the phthalocyanine is formulated as a pyruvate salt.

25. **(Cancelled)**

26. **(Currently amended)** A pharmaceutically acceptable salt of a compound having a structure of formula (II) or a pharmaceutically acceptable salt thereof

(II)

wherein M is $(G)_a Y[(OSi(CH_3)_2(CH_2)_bN_c(R')_d(R'')_e)_fX_g]_p$;

Y is selected from Si, Al, Ga, Ge, or Sn;

R' is selected from H, CH₃, C₂H₅, C₄H₉, C₄H₈NH, C₄H₈N, C₄H₈NCH₃, C₄H₈S, C₄H₈O, C₄H₈Se, OC(O)CH₃, OC(O), CS, CO, CSe, OH, C₄H₈N(CH₂)₃CH₃, (CH₂)₂N(CH₃)₂,

(CH₂)_nN((CH₂)₆(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

R'' is selected from H, SO₂CH₃, (CH₂)₂N(CH₃)₂, (CH₂)₁₁CH₃, C(S)NHC₆H₁₁O₅,

(CH₂)_nN((CH₂)₆(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

G is selected from OH and CH₃;

X is selected from hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, pyruvate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate forming anions;

a is 0 or 1;

RESPONSE TO OFFICE ACTION
Appln. No. 10/599,433
Response Filed September 9, 2011

Attorney Docket No. 27708/04116

b is an integer from 2 to 12;
c is 0 or 1;
d is an integer from 0 to 3;
e is an integer from 0 to 2;
f is 1 or 2;
g is 0 or 1;
n is an integer from 1 to 12;
o is an integer from 1 to 11; and
p is 1 or 2 wherein M is a diamagnetic metal ion optionally complexed with or covalently bound
~~to one or two axial ligands, wherein the metal ion is coordinated to the phthalocyanine~~
~~moiety; and~~
R¹ – R¹⁶ are each independently selected from hydrogen, halogen, nitro, cyano, hydroxy, thiol, amino, carboxy, aryl, heteroaryl, carbocyclyl, heterocyclyl, C₁₋₂₀alkyl, C₁₋₂₀alkenyl, C₁₋₂₀alkynyl, C₁₋₂₀alkoxy, C₁₋₂₀acyl, C₁₋₂₀alkylcarbonyloxy, C₁₋₂₀aralkyl, C₁₋₂₀hetaralkyl, C₁₋₂₀carbocyclylalkyl, C₁₋₂₀heterocyclylalkyl, C₁₋₂₀aminoalkyl, C₁₋₂₀alkylamino, C₁₋₂₀thioalkyl, C₁₋₂₀alkylthio, C₁₋₂₀hydroxyalkyl, C₁₋₂₀alkyloxycarbonyl, C₁₋₂₀alkylaminocarbonyl, C₁₋₂₀alkylcarbonylamino, C₁₋₁₀alkyl-Z-C₁₋₁₀alkyl;
R¹⁷ is selected from hydrogen, C₁₋₂₀acyl, C₁₋₂₀alkyl, and C₁₋₂₀aralkyl; and
Z is selected from S, NR¹⁷, and O.

27. (Currently amended) [[A]] The pharmaceutically acceptable salt of claim 26
wherein R¹ – R¹⁶ are hydrogen a compound having a structure of Formula (III) or a
pharmaceutically acceptable salt thereof

RESPONSE TO OFFICE ACTION
Appln. No. 10/599,433
Response Filed September 9, 2011

Attorney Docket No. 27708/04116

(III)

wherein M is $(G)_a Y [(OSi(CH_3)_2(CH_2)_b N_e(R')_d(R'')_e)_f X_g]_p$;

Y is selected from Si, Al, Ga, Ge, or Sn;

R' is selected from H, CH₃, C₂H₅, C₄H₉, C₄H₈NH, C₄H₈N, C₄H₈NCH₃, C₄H₈S, C₄H₈O, C₄H₈Se, OC(O)CH₃, OC(O), CS, CO, CSe, OH, C₄H₈N(CH₂)₃CH₃, (CH₂)₂N(CH₃)₂,

(CH₂)_nN((CH₂)₆(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;[[:]]

R'' is selected from H, SO₂CH₃, (CH₂)₂N(CH₃)₂, (CH₂)₁₁CH₃, C(S)NHC₆H₁₁O₅,

(CH₂)_nN((CH₂)₆(CH₃))₂, and an alkyl group having from 1 to 12 carbon atoms;

G is selected from OH and CH₃;

X is selected from I, F, Cl, or Br;

a is 0 or 1;

b is an integer from 2 to 12;

c is 0 or 1;

d is an integer from 0 to 3;

e is an integer from 0 to 2;

f is 1 or 2;

g is 0 or 1;

n is an integer from 1 to 12;

o is an integer from 1 to 11; and

p is 1 or 2.

28. (Currently amended) [[A]] The pharmaceutically acceptable salt of claim [[17]] 27, wherein M is selected from AlOSi(CH₃)₂(CH₂)₃N(CH₃)₂; AlOSi(CH₃)₂(CH₂)₃N(CH₃)₃⁺I⁻; CH₃SiOSi(CH₃)₂(CH₂)₃N(CH₃)₂; HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₂; HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₃⁺I⁻; Si[OSi(CH₃)₂(CH₂)₃N(CH₃)₃⁺I⁻]₂; Si[OSi(CH₃)₂(CH₂)₄NH₂]₂; Si[OSi(CH₃)₂(CH₂)₄NHSO₂CH₃]₂; HOSiOSi(CH₃)₂(CH₂)₄NHSO₂CH₃; HOSiOSi(CH₃)₂(CH₂)₃N(CH₂CH₃)(CH₂)₂N(CH₃)₂; Si[OSi(CH₃)₂(CH₂)₄NHCSNHC₆H₁₁O₅]₂; Si[OSi(CH₃)₂(CH₂)₃N(CH₃)₂]₂; HOSiOSi(CH₃)₂(CH₂)₃OCOCH₃; HOSiOSi(CH₃)₂(CH₂)₃OH; Si[OSi(CH₃)₂(CH₂)₃N(CH₂CH₃)(CH₂)₂N(CH₃)₂]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈O; AlOSi(CH₃)₂(CH₂)₃N⁺(CH₃)₂(CH₂)₁₁CH₃I⁻; HOSiOSi(CH₃)₂(CH₂)₈N(CH₃)₂; Si[OSi(CH₃)₂(CH₂)₃NC₄H₈O]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈S; HOSiOSi(CH₃)₂(CH₂)₃N(CH₂)₃(CH₃)₂; HOSiOSi(CH₃)₂(CH₂)₃NCS; HOSiOSi(CH₃)₂(CH₂)₃N[(CH₂)₃N(CH₃)₂]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈NCH₃; Si[OSi(CH₃)₂(CH₂)₃NC₄H₈NCH₃]₂; HOSiOSi(CH₃)₂(CH₂)₃NC₄H₈N(CH₂)₃CH₃; and Si[OSi(CH₃)₂(CH₂)₃NC₄H₈NH]₂.

29. (Currently amended) [[A]] The pharmaceutically acceptable salt of claim [[18]] 28, wherein M is HOSiOSi(CH₃)₂(CH₂)₃N(CH₃)₂.

30. (Cancelled)

31. (Currently amended) [[A]] The salt of claim [[25]] 26, wherein the salt is the hydrochloric salt.

32. (Currently amended) [[A]] The salt of claim [[25]] 26, wherein the salt is the pyruvate salt.

33. (Cancelled)