## Feuille d'exercice n° 24 : Applications linéaires

Exercice 1 ( ) Dire si les applications suivantes sont des applications linéaires.

1) 
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto 2x^2$$

2) 
$$q: \mathbb{R} \to \mathbb{R}, \ x \mapsto 4x - 3$$

3) 
$$h: \mathbb{R} \to \mathbb{R}, x \mapsto \sqrt{x^2}$$

4) 
$$\varphi: \mathscr{C}^1([0,1],\mathbb{R}) \to \mathbb{R}, \ f \mapsto f(3/4)$$

**5)** 
$$\chi : \mathscr{C}^1([0,1], \mathbb{R}) \to \mathbb{R}, \ f \mapsto -\int_{1/2}^1 f(t) \, dt$$

6) 
$$\psi: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto \sin(3x + 5y)$$

7) 
$$\theta: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto xy$$

8) 
$$\rho: \mathscr{C}^1([0,1],\mathbb{R}) \to \mathscr{C}^1([0,1],\mathbb{R}), \ f \mapsto \left(x \mapsto e^{-x} \int_0^1 f(t) \ dt\right)$$

**Exercice 2** (
$$^{\circ}$$
) Calculer le noyau et l'image de  $f: \mathbb{R}^3 \to \mathbb{R}^3$  . 
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x + 2y \\ -x - 4y + 2z \\ 2x + 5y - z \end{pmatrix} .$$

**Exercice 3** Pour chaque propriété suivante, donner un exemple d'endomorphisme f de  $\mathbb{R}^2$  la vérifiant.

- 1) Ker(f) est inclus strictement dans Im(f).
- 3)  $\operatorname{Ker}(f) = \operatorname{Im}(f)$ .
- 2) Im(f) est inclus strictement dans Ker(f).
- 4) Ker f et Im f sont supplémentaires.

**Exercice 4 (** Soit E un espace vectoriel et  $f \in \mathcal{L}(E)$ .

- 1) Montrer que Ker  $f \subset \text{Ker } f^2$  et  $\text{Im } f^2 \subset \text{Im } f$ .
- 2) Montrer que Im  $f \cap \operatorname{Ker} f = \{0_E\} \iff \operatorname{Ker} f^2 = \operatorname{Ker} f$ .
- 3) Montrer que  $E = \operatorname{Ker} f + \operatorname{Im} f \iff \operatorname{Im} f^2 = \operatorname{Im} f$ .

Exercice 5 (  $^{\circ}$ 

1) Soit E, F et G trois  $\mathbb{K}$ -espaces vectoriels, soit  $f \in \mathcal{L}(E, F)$  et  $g \in \mathcal{L}(F, G)$ . Établir l'équivalence

$$g \circ f = 0_{\mathscr{L}(E,G)} \iff \operatorname{Im} f \subset \operatorname{Ker} g.$$

- 2) Soit f un endomorphisme d'un K-espace vectoriel E, vérifiant  $f^2 + f 2\mathrm{Id}_E = 0_{\mathscr{L}(E)}$ .
  - a) Montrer que  $(f \mathrm{Id}_E) \circ (f + 2\mathrm{Id}_E) = (f + 2\mathrm{Id}_E) \circ (f \mathrm{Id}_E) = 0_{\mathscr{L}(E)}$ .
  - **b)** En déduire que  $\operatorname{Im}(f \operatorname{Id}_E) \subset \operatorname{Ker}(f + 2\operatorname{Id}_E)$  et  $\operatorname{Im}(f + 2\operatorname{Id}_E) \subset \operatorname{Ker}(f \operatorname{Id}_E)$ .
  - c) Montrer que  $E = \text{Ker}(f \text{Id}_E) \oplus \text{Ker}(f + 2\text{Id}_E)$ .

**Exercice 6** ( $\mathcal{F}$ ) Soit  $f \in \mathcal{L}(E)$ , où E est un  $\mathbb{K}$ -espace vectoriel. On suppose que

$$\forall x \in E, \exists \lambda \in \mathbb{K}, f(x) = \lambda x.$$

Montrer que

$$\exists \lambda \in \mathbb{K}, \forall x \in E, f(x) = \lambda x.$$

Exercice 7 ( )

- 1) Montrer que l'application  $\varphi: \mathbb{K}[X] \to \mathbb{K} \times \mathbb{K}[X]$  est un isomorphisme.  $P \mapsto (P(0), P')$
- 2) En déduire que  $\mathbb{K}[X]$  n'est pas de dimension finie.

**Exercice 8** ( $^{\otimes}$ ) Soient E un espace vectoriel et F un sous-espace vectoriel de dimension finie de E . Soit f une application linéaire de E dans lui-même.

- 1) Montrer que, si  $F \subset f(F)$  alors f(F) = F.
- 2) Montrer que, si f est injective et  $f(F) \subset F$  alors f(F) = F.

**Exercice 9** Soit E un  $\mathbb{K}$ -espace vectoriel de dimension finie et  $f \in \mathcal{L}(E)$ . Montrer l'équivalence des trois propriétés suivantes.

1) 
$$\operatorname{Ker} f = \operatorname{Ker} f^2$$

**2)** Im 
$$f = \text{Im } f^2$$

3) 
$$E = \operatorname{Ker} f \oplus \operatorname{Im} f$$

**Exercice 10** Soit E un  $\mathbb{K}$ -espace vectoriel de dimension finie, soit  $(f,g) \in \mathcal{L}(E)^2$  tel que  $E = \operatorname{Im} f + \operatorname{Im} g = \operatorname{Ker}(f) + \operatorname{Ker}(g)$ . Montrer que ces sommes sont directes.

**Exercice 11** ( ${\mathfrak{D}}$ ) Soient E et F deux  ${\mathbb{K}}$ -espaces vectoriels de dimensions finies et  $u, v \in {\mathscr{L}}(E, F)$ .

- 1) Montrer que  $rg(u+v) \leq rg(u) + rg(v)$ .
- 2) En déduire que  $|rg(u) rg(v)| \le rg(u+v)$ .

## Exercice 12 – Suite exacte d'applications linéaires –

Soient  $E_0, E_1, ..., E_n$  n+1 espaces vectoriels sur un même corps commutatif  $\mathbb{K}$ , de dimensions respectives  $\alpha_0, \alpha_1, ..., \alpha_n$ . On suppose qu'il existe n applications linéaires  $f_0, f_1, ..., f_{n-1}$  telles que :

$$\forall k \in \{0, ..., n-1\}, f_k \in \mathcal{L}(E_k, E_{k+1}).$$

et de plus :

- $f_0$  est injective;
- $-- \forall j \in \{1, ..., n-1\}, \text{Im } f_{j-1} = \text{Ker}(f_j);$
- $f_{n-1}$  est surjective.

Montrer que

$$\sum_{j=0}^{n} (-1)^j \alpha_j = 0.$$

**Exercice 13** Soit f l'application de  $\mathbb{R}_n[X]$  dans  $\mathbb{R}_n[X]$  définie par  $f: P \mapsto P + P' + P''$ .

- 1) Montrer que f est injective. En déduire que f est bijective.
- 2) On appelle  $\varphi$  l'application de  $\mathbb{R}[X]$  dans  $\mathbb{R}[X]$  définie par  $\varphi: P \mapsto P + P' + P''$ . Montrer que  $\varphi$  est surjective puis bijective.

**Exercice 14** Soit E un  $\mathbb{K}$ -espace vectoriel de dimension égale à n. Montrer que

$$n \text{ est pair } \Leftrightarrow \exists f \in \mathcal{L}(E) \quad \text{Im } f = \text{Ker } f.$$

**Exercice 15** Soit F et G deux sous-espaces vectoriels d'un  $\mathbb{K}$ -espace vectoriel E de dimension finie.

- 1) Déterminer une condition nécessaire et suffisante pour qu'il existe un endomorphisme u tel que Ker(u) = F et Im(u) = G.
- **2)** Construire un tel endomorphisme u avec  $E = \mathbb{R}^3$ ,  $F = \{ (x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0 \}$  dans  $\mathbb{R}^3$  et  $G = \{ \lambda(2, -1, -1) \mid \lambda \in \mathbb{R} \}$ .

**Exercice 16** ( $\nearrow$ ) Soit E un  $\mathbb{K}$ -espace vectoriel de dimension  $n \in \mathbb{N}$ , soit  $f \in \mathcal{L}(E)$ . Montrer que  $\operatorname{rg}(f^n) = \operatorname{rg}(f^{n+1})$ .

**Exercice 17** ( ) Soient  $n \in \mathbb{N}$ ,  $\alpha \in \mathbb{K}$  et  $H = \{ P \in \mathbb{K}_n[X] \mid P(\alpha) = 0 \}$ . Montrer que H est un hyperplan de  $\mathbb{K}_n[X]$  et en déterminer une base.

**Exercice 18** ( ) Montrer que les formes linéaires sur  $\mathbb{K}^3 \varphi : (x,y,z) \mapsto x + 2y + 3z$  et  $\psi : (x,y,z) \mapsto x - 2y + 3z$  sont linéairement indépendantes.

Exercice 19 Quelle est la nature de l'application 
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 ? 
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} -5x & + & 2y \\ -12x & + & 5y \\ -4x & + & 2y & - & z \end{pmatrix}$$
?

Déterminer ses éléments caractéristiques.

**Exercice 20** Soit E un  $\mathbb{K}$ -espace vectoriel, soit  $p, q \in \mathcal{L}(E)$ . Montrer qu'il y a équivalence entre les deux assertions suivantes :

- 1)  $p \circ q = p$  et  $q \circ p = q$ ;
- 2) p et q sont deux projecteurs de même noyau.

**Exercice 21** ( ) On pose  $F = \{(x, y, z) \in \mathbb{R}^3 \mid x = z\}$  et G = Vect(1, 1, 0).

- 1) Montrer que F et G sont supplémentaires dans  $\mathbb{R}^3$ .
- 2) Déterminer une expression explicite de la projection de  $\mathbb{R}^3$  sur F parallèlement à G.

**Exercice 22** Soit p et q deux projecteurs d'un  $\mathbb{K}$ -espace vectoriel E. Montrer que p-q est un projecteur si et seulement si  $p \circ q = q \circ p = q$ .

