

Seed utilizado: 202483

CLASSIFICAÇÃO

Para o experimento de Classificação:

- Ordenar pela Acurácia (descendente), ou seja, a técnica de melhor acurácia ficará em primeiro na tabela.
- Após o quadro colocar:
 - Um resultado com 3 linhas com a predição de novos casos para a técnica/parâmetro de maior Acurácia (criar um arquivo com novos casos à sua escolha)
 - A lista de comandos emitidos no RStudio para conseguir os resultados obtidos

Veículo

Técnica	Parâmetro	Acurácia	Matriz de Confusão
SVM – CV	C=1 Sigma=0.078	0.766	Reference Prediction bus opel saab van bus 43 0 1 1 opel 0 20 13 0 saab 0 21 27 0 van 0 1 2 38
SVM – Hold-out	C=1 Sigma=0.065	0.743	Reference Prediction bus opel saab van bus 43 1 1 1 opel 0 16 13 0 saab 0 24 27 0 van 0 1 2 38
RF – Hold-out	mtry=2	0.713	Reference Prediction bus opel saab van bus 43 3 2 2 opel 0 19 18 0 saab 0 19 20 0 van 0 1 3 37

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Disciplina: Aprendizado de Máquina – Prof Jaime Wojciechowski

Г	T	1	T1
RF – CV	mtry=10	0.713	Reference
			Prediction bus opel saab van
			bus 43 3 0 1
			opel 0 21 22 0
			saab 0 17 17 0
			van 0 1 4 38
KNN	k=1	0.635	Reference
			Prediction bus opel saab van
			bus 38 2 2 3
			opel 3 19 23 0
			saab 2 20 15 2
			van 0 1 3 34
RNA – Hold-out	size=3 decay=0.1	0.461	Reference
	,		Prediction bus opel saab van
			bus 40 3 2 1
			opel 1 34 38 37
			saab 2 5 3 1
			van 0 0 0 0
RNA – CV	size=5 decay=0.1	0.515	Reference
	1.25 5 5.000, 0.2	0.023	Prediction bus opel saab van
			bus 42 1 2 25
			opel 0 17 12 2
			saab 1 23 27 12
			van 0 1 2 0
	1		

Resultado com 3 Linhas:

"","Comp","Circ","DCirc","RadRa","PrAxisRa","MaxLRa","ScatRa","Elong","PrAxisRect",
"MaxLRect","ScVarMaxis","ScVarmaxis","RaGyr","SkewMaxis","Skewmaxis","Kurtmaxi
s","KurtMaxis","HollRa","predict.svm_novos"

"1",90,44,80,150,60,8,175,50,17,144,180,355,175,66,7,15,171,188,"opel"

"2",80,49,76,148,66,9,173,53,13,134,179,343,176,54,5,12,189,176,"opel"

"3",86,54,64,161,53,6,136,43,18,132,168,321,163,45,8,14,174,181,"opel"

Lista de comandos:

Treinamento de SVM com Cross-validation
ctrl <- trainControl(method = "cv", number = 10)
svm_cv <- train(tipo~., data=treino, method="svmRadial", trControl=ctrl)
svm_cv
predict.svm_cv <- predict(svm_cv, teste)</pre>

·

Diabetes

Técnica	Parâmetro	Acurácia	Matriz de Confusão
SVM – CV	C=0.5 Sigma=0.13	0.765	Reference Prediction neg pos neg 88 24 pos 12 29
RNA – Hold-out	size=5 decay=0.1	0.745	Reference Prediction neg pos neg 80 19 pos 20 34
SVM – Hold-out	C=0.25 Sigma=0.13	0.745	Reference Prediction neg pos neg 88 27 pos 12 26
RF – Hold-out	mtry=5	0.739	Reference Prediction neg pos neg 82 22 pos 18 31
KNN	k=9	0.725	Reference Prediction neg pos neg 78 20 pos 22 33
RF – CV	mtry=2	0.725	Reference Prediction neg pos neg 83 25 pos 17 28
RNA – CV	size=3 decay=0.1	0.719	Reference Prediction neg pos neg 80 23 pos 20 30

Resultado com 3 Linhas:

"","num","preg0nt","glucose","pressure","triceps","insulin","mass","pedigree","age"," predict.svm"

"1",1,7,150,80,40,0,25.4,0.781,43,"pos"
"2",2,4,147,77,32,100,13,0.931,50,"neg"
"3",3,9,169,51,45,40,30.6,0.554,61,"pos"

Lista de comandos:

REGRESSÃO

Para o experimento de Regressão:

- Ordenar por R2 descendente, ou seja, a técnica de melhor R2 ficará em primeiro na tabela.
- Após o quadro, colocar:
 - Um resultado com 3 linhas com a predição de novos casos para a técnica/parâmetro de maior R2 (criar um arquivo com novos casos à sua escolha)
 - O Gráfico de Resíduos para a técnica/parâmetro de maior R2
 - A lista de comandos emitidos no RStudio para conseguir os resultados obtidos

Admissão

Técnica	Parâmetro	R2	Syx	Pearson	Rmse	MAE
RF – CV	mtry=2	0.78	0.0014	0.89	0.07	0.048
RF – Hold-out	mtry=2	0.78	0.0014	0.89	0.069	0.048
SVM – CV	C=1	0.76	0.0015	0.89	0.073	0.049
	Sigma=0.16					

RNA – CV	size=10	0.77	0.0014	0.89	0.071	0.05
	decay=0.1					
SVM – Hold-out	C=0.5	0.75	0.0015	0.89	0.075	0.05
	Sigma=0.19					
RNA – Hold-out	size=5	0.75	0.0015	0.88	0.075	0.053
	decay=0.1					
KNN	K=9	0.68	0.0017	0.83	0.084	0.06

Resultado com 3 Linhas:

,"GRE.Score","TOEFL.Score","University.Rating","SOP","LOR","CGPA","Research","predicoes.rf_cv_novos" 1,300,100,3,2,4,5.3,0,0.52 2,250,120,4,3,6.8,7.2,1,0.64 3,350,110,4.5,5.8,6.1,1,1,0.76

Gráfico de Resíduos - RF com R2 = 0.78

Lista de comandos:

Treinamento de Random Forest com CrossValidation
ctrl <- trainControl(method = "cv", number = 10)
rf_cv <- train(ChanceOfAdmit~., data=treino, method="rf", trControl=ctrl)
rf_cv
predicoes.rf_cv <- predict(rf_cv, teste)</pre>

Biomassa

Técnica	Parâmetro	R2	Syx	Pearson	Rmse	MAE
SVM – Hold-out	C=1 Sigma=1.7	0.81	4.7	0.93	181	135
SVM – CV	C=1	0.8	4.8	0.93	182	127
	Sigma=0.94					

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada

Disciplina: Aprendizado de Máquina – Prof Jaime Wojciechowski

RF – CV	mtry=2	0.77	5.2	0.91	198	72
KNN	K=1	0.77	5.1	0.91	196	81
RF – Hold-out	mtry=2	0.75	5.3	0.91	205	73
RNA – CV	size=3	0.6	6.8	0.86	260	106
	decay=0.7					
RNA – Hold-out	size=3	0.37	8.5	0.63	326	221
	decay=0.1					

^{,&}quot;dap","h","Me","predicoes.svm_novos"

1,10,8,0.83,87.14

2,14,9,1.11,663.16

3,12,6,0.95,50.24

Gráfico de Resíduos - SVM com R² = 0.81

Lista de comandos:

Treinamento de SVM com HoldOut

svm <- train(biomassa~., data=treino, method="svmRadial")</pre>

svm

predicoes.svm <- predict(svm, teste)</pre>

Calcular metricas

r2(predicoes.svm,teste\$biomassa)

rmse(teste\$biomassa, predicoes.svm)

MAE <- mean(abs(teste\$biomassa - predicoes.svm))

MAF

Pearson <- cor(teste\$biomassa, predicoes.svm)

Pearson

UFPR – Universidade Federal do Paraná Setor de Educação Profissional e Tecnológica Especialização em Inteligência Artificial Aplicada Disciplina: Aprendizado de Máquina – Prof Jaime Wojciechowski

syx(teste\$biomassa, predicoes.svm,dados,3)

AGRUPAMENTO

Veículo

Lista de Clusters gerados:

10 primeiras linhas do arquivo com o cluster correspondente. Usa 10 clusters no experimento.

Colocar a lista de comandos emitidos no RStudio para conseguir os resultados obtidos

1			modes						_					
									_			ScVarMaxis		
	1	89	36	66	127	56	7	135	50	18	125	155	266	139
	2	82	44	73	141	64	7	151	44	19	143	175	312	177
	3	89	47	85	162	64	11	157	43	20	155	173	354	186
	4	85	45	70	120	56	7	149	45	19	145	170	322	171
	5	104	53	100	197	60	11	213	31	24	162	226	669	214
	6	100	55	101	206	62	10	222	30	25	156	214	706	218
	7	93	37	66	125	59	8	130	51	18	142	159	259	119
	8	85	40	66	110	55	6	122	57	17	128	137	203	127
	9	86	42	75	169	68	7	150	44	19	138	169	324	173
	10	93	43	85	166	66	9	144	44	19	147	168	309	143
		skew	1axis	Skewma	axis Kı	urtmaxis I	KurtMaxi:	з но11я	a tipo)				
	1		66		1	2	180	0 18	84 saak)				
	2		75		7	14	18							
	3		75		1	9	18							
	4		85		4	4	179		33 bus					
	5		68		0	11	18		9 saal					
	6		72		0	5	187		8 ope					
	7		65		1	12	20:							
	8		64		7	7	180							
	9		71		2	11	197							
	10		67		3	5	186							
	10		07		3	,	100	0 13	// Vai	•				

Lista de comandos:

cluster.results <- kmodes(dados, 10, iter.max = 10, weighted = FALSE) cluster.results

resultado <- cbind(dados, cluster.results\$cluster) resultado

write.csv(resultado, "saida_Cluster_Agrupamento.csv")

REGRAS DE ASSOCIAÇÃO

Musculação

Regras geradas com uma configuração de Suporte e Confiança.

Regra: mínimo de 0.001, confiança mínima de 0.7, e comprimento mínimo das regras de 2.

rules	support confidence	coverage	lift	count
1 {Gemeos= Gemeos} => {Crucifixo=Esteira}	0.0263157	1 0.0263157894736842	316.666.666.666.667	1
2 {Gemeos= Gemeos} => {Afundo=Bicicleta}	0.0263157	1 0.0263157894736842	316.666.666.666.667	1
3 {Gemeos= Gemeos} => {LegPress=Extensor}	0.0263157	1 0.0263157894736842	292.307.692.307.692	1
4 {Crucifixo=Crucifixo} => {Afundo=Afundo}	0.0263157	1 0.0263157894736842	7.6	1
5 {Crucifixo=Crucifixo} => {Gemeos=Gemeos}	0.0263157	1 0.0263157894736842	633.333.333.333.333	1
6 {Crucifixo=Crucifixo} => {LegPress=LegPress}	0.0263157	1 0.0263157894736842	271.428.571.428.571	. 1
7 {Afundo=Gemeos} => {Gemeos=AgachamentoSmith}	0.0526315	1 0.0526315789473684	3.8	2
8 {Afundo=Gemeos} => {Crucifixo=Esteira}	0.0526315	1 0.0526315789473684	316.666.666.666.667	2
9 {Gemeos=Flexor} => {Crucifixo=Esteira}	0.0526315	1 0.0526315789473684	316.666.666.666.667	2
10 {Gemeos=Flexor} => {Afundo=Bicicleta}	0.0526315	1 0.0526315789473684	316.666.666.666.667	2
Lista de comandos:				

#summary(dados)

set.seed(202483)

rules <- apriori(dados, parameter = list(supp = 0.001, conf = 0.7, minlen=2)) #summary(rules)

options(digits=2)

#inspect(sort(rules, by=c("confidence","support")))

rules df <- as(rules, "data.frame")</pre> write.csv(rules_df,"regras_Associacao.csv")