Туре	Name	Premise	Parameter(s)	Mean	Variance	PDF	CDF
	Bernoulli	 Random variable X is equal to 0 or 1 (binary outcomes) P(X = 1) = p, P(X = 0) = 1 - p Is a "one-step" process 	• p : Probability of $X=1$	p	p(1-p)	$p^{x}(1-p)^{1-x}$	Conditional: $1-p, \qquad x=0$ $1, \qquad x=1$
Discrete	Binomial	• Shows probability of obtaining exactly n success out of \emph{N} Bernoulli trials	 N: Total no. of trials n: No. of successes 	Np	Np(1-p)	$inom{N}{n}p^n(1-p)^{N-n},$ where $inom{N}{n}=rac{N!}{n!(N-n)!}$	$\sum_{n=0}^{\lfloor N\rfloor} \binom{N}{n} p^n (1 - p)^{N-n}$
	Poisson	 Used to model: Occurrence of events over time, No. of market crashed, Jumps in jump diffusion models It is a limiting case of a binomial model, where N is set to tend towards ∞ 	 n: No. of occurrences of event of which you want the probability of λ: A constant which denotes the expected occurrence of the event per unit time, where λ = Np 	λ	λ	$\frac{\lambda^n}{n!}e^{-\lambda}$	-
: Linear	Uniform	Probability density is constant (horizontal line) between lower and upper bound and zero everywhere else	 a: Lower bound of x values b: Upper bound of x values 	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$	Conditional: $\frac{1}{b-a}, \qquad a < x < b$ 0, Otherwise	Conditional: $0, x < a$ $\frac{x-a}{b-a},$ $a < x < b$ $1, x \ge b$
Piecewise Lin	Triangula r	 PDF is triangle-shaped Useful for modelling default rates and recovery rates 	 a: Minimum x value b: Maximum x value c: Modal x value 	-	-	Conditional: $ \frac{2(x-a)}{(b-a)(c-a)}, $ $ a < x < c $ $ \frac{2(x-a)}{(b-a)(b-c)}, $ $ c < x < b $	-

Туре	Name	Premise	Parameter(s)	Mean	Variance	PDF
Continuous	Normal	 It is a symmetrical distribution Also known as the Gaussian distribution Any linear combination of independent normal random variables is also normal Standard normal distribution is where μ is 0 and σ is 1 Bell curve has 0 skewness and kurtosis of 3 To create two correlated normal variables, combine x₁, x₂, x₃: x₁ = √px₁ + √1 - px₂ x₂ = √px₁ + √1 - px₃ Log returns are normally distributed, and as such log returns are attractive to be used Easier to work with log returns with normal distribution than standard returns with lognormal distributions 	 μ: Mean of x σ: Standard deviation of x 	μ	σ^2	$rac{1}{\sigma\sqrt{2\pi}}e^{rac{(x-\mu)^2}{2\sigma^2}}$
Ō	Lognorm al	 It is an asymmetrical distribution Distribution peaks at e(μ-σ²) If a variable has a lognormal distribution, the log of the variable has a normal distribution If returns are normally distributed, 1 + r is lognormally distributed Using lognormal distribution provides easy way to ensure returns of less than -100% are avoided 	 μ: Mean of lognormally distributed x σ: Standard deviation of lognormally x 	$e^{\mu+rac{1}{2}\sigma^2}$	$\left(e^{\sigma^2} ight. \ \left1 ight)e^{2\mu+\sigma^2}$	$\frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\ln(x)-\mu}{\sigma}\right)^2}$
	Chi- Squared	 If we have k independent standard normal variables, then the respective sum of their squares has a chi-squared distribution As k increases, chi-squared distribution becomes increasingly symmetrical and converges towards the normal distribution Widely used in risk management and for hypothesis testing 	• k : The degrees of freedom	k	2 <i>k</i>	For positive values of x : $\frac{1}{2^{\frac{k}{2}} \Gamma \left(\frac{\mathbf{k}}{2} \right) x^{\frac{k}{2} - 1} \mathrm{e}^{-\frac{x}{2}}}$ where $\Gamma(\mathbf{x}) = \int_0^\infty x^{n-1} e^{-x} dx$

Туре	Name	Premise	Parameter(s)	Mean	Variance	PDF
Continuous	Student's t	 If Z is a standard normal variable and U is a chi-squared variable with k degrees of freedom, which is independent of Z, then random variable X: X = Z/√U/k follows a t distribution with k degrees of freedom Looks like a standard normal distribution for low values of k, but with excess kurtosis and converges towards standard normal as k tends to ∞ If X is normally distributed with 0 mean and unit variance and X² is chi-squared distributed with X and V being independent, the following follows a t distribution with m degrees of freedom: X/√V/n 	• k : The degrees of freedom	O	$rac{k}{k-2}$ for $k>2$	$rac{\Gamma\left(rac{k+1}{2} ight)}{\sqrt{k\pi}\Gamma\left(rac{k}{2} ight)}igg(1+rac{x^2}{k}igg)^{-rac{k+1}{2}}$ where $\Gamma(x)=\int_0^\infty x^{n-1}e^{-x}dx$
	F	 If U₁ and U₂ are independent chi-squared distributions with k₁ and k₂ degrees of freedom, then the following follows an F-distribution with parameters k₁ and k₂: X = (U₁/k₁)/(U₂/k₂) As k₁ and k₂ tend towards , mean and mode converge to 1, F-distribution converges to normal distribution Square of variable with t distribution will have a F distribution If X is random variable with t distribution with k degrees of freedom, X² has F distribution with 1 and k degrees of freedom, in that order 	$m{k}$: The degrees of freedom	$rac{k_2}{k_2-2}$ for $k_2>2$	$\frac{2k_2^2(k_1+k_2-2)}{k_1(k_2-2)^2(k_2-4)}$ for $k_2>4$	$rac{\sqrt{rac{(k_1x)^{k_1}k_2^{k_2}}{(k_1x+k_2)^{k_1+k_2}}}}{xB\Big(rac{k_1}{2},rac{k_2}{2}\Big)}$ where $B=\int_0^1z^{x-1}(1-z)^{y-1}dz$

Summary

 F_{n_1, n_2}

$$F_{n_1,n_2} = \frac{\chi_{n_1}^2/n_1}{\chi_{n_2}^2/n_2}$$

Student's t_n

$$\lim_{n\to\infty} t_n \longrightarrow Z$$

Chi square χ_n^2

$$V := \sum_{i=1}^{n} Z_i^2 \stackrel{d}{\sim} \chi_n^2$$

Standard normal Z

$$Z = \frac{r - \mu}{\sigma}$$

Takeaways

- All the 10 distributions are parametric, being dependent on parameters that can be interpreted intuitively.
- Additionally, Student's t, χ^2 , and F distributions need degrees of freedom to determine their shape.
- Probability mass function is the discrete analogue of probability density function.
- $otag \chi^2$ is the sum of k squared of independent standard normal variables.
- The F random variable is the ratio of two independent χ^2 random variables.

Session 3_1: Simple Linear Regression

	OLS
OLS	$\min_{\hat{a}, \hat{b}} \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{a} - \hat{b}X_i)^2$ $\frac{\partial \sum_{i=1}^{n} e_i^2}{\partial \hat{a}} = -2 \sum_{i=1}^{n} (Y_i - \hat{a} - \hat{b}X_i) = 0$
	$\frac{\partial \sum_{i=1}^{n} e_i^2}{\partial \hat{b}} = -2 \sum_{i=1}^{n} X_i (Y_i - \hat{a} - \hat{b} X_i) = 0$
	$n\overline{Y} = n\widehat{a} + n\widehat{b}\overline{X}$
	$\bar{Y} = \hat{a} + \hat{b}\bar{X}$
Important Relationships	$\widehat{a}=ar{Y}-\widehat{b}ar{X}$
	$\hat{b} = \frac{\sum_{i=1}^{n} X_i (Y_i - \bar{Y})}{\sum_{i=1}^{n} X_i (X_i - \bar{X})}$
	$\hat{e}_i = Y_i - \hat{Y}_i$
Residuals	$\hat{\sigma}_e^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{e}_i^2$
	$V[\hat{a}] = \hat{\sigma}_e^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right)$
Variance,	$SE[\hat{a}] = \sqrt{V[\hat{a}]}$
Standard Errors and Covariance	$V[\hat{b}] = \hat{\sigma}_e^2 \left(\frac{1}{\sum_{i=1}^n (X_i - \bar{X})^2} \right)$
of Estimators	$SE[\hat{b}] = \sqrt{V[\hat{b}]}$
	$C[\hat{a}, \hat{b}] = -\sigma_e^2 \left(\frac{\bar{X}}{\sum_{i=1}^n (X_i - \bar{X})^2} \right)$

	OLS					
	For \hat{a} :					
t-Statistics of Estimators	$t_{n-2} = rac{\hat{a} - lpha}{SE[\hat{a}]}$ For \hat{b} :					
	$t_{n-2} = \frac{\hat{b} - \beta}{SE[\hat{b}]}$					
Vector- Matrix From	$\hat{\beta} = (X'X)^{-1}X'y$					
	TSS=ESS+RSS, thus:					
Sum of	$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} \hat{e}_i^2$					
Squares	$ESS = \hat{b}^{2} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$					
	$R^2 = \frac{ESS}{TSS}$					
	Point Forecast (Unbiased):					
	$\hat{Y}_{n+1} = \hat{a} + \hat{b}X_{n+1}$					
	Confidence Interval of Forecast (95%):					
Forecasting	$\hat{Y}_{n+1} \pm t_{n-2,97.5\%} \times \hat{\sigma}_e \sqrt{1 + \frac{1}{n} + \frac{(X_{n+1} - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}$					
	t-statistic of Forecast:					
	$\frac{Y_{n+1} - \hat{Y}_{n+1}}{\hat{\sigma}_e \sqrt{1 + \frac{1}{n} + \frac{(X_{n+1} - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}}$					

Session 3_1: Simple Linear Regression

Takeaways

- Parameter estimates are obtained by minimizing the sum of squared errors.
- Each residual is the vertical distance from the data point to the OLS fitted line.
- OLS estimators are BLUE.
- Covariance divided by variance of explanatory variable = slope of OLS line.
- Variance decomposition: TSS = ESS + RSS
- R^2 of simple OLS regression = square of correlation coefficient.
- t statistic's degrees of freedom = n-2.
- Many many applications!

Session 4_2: Model k and OLS

$$m{X'X} = egin{pmatrix} m{\iota'} \\ m{x'} \end{pmatrix} egin{pmatrix} m{\iota} & m{x} \end{pmatrix} = egin{pmatrix} m{\iota'\iota} & m{\iota'x} \\ m{x'\iota} & m{x'x} \end{pmatrix} = egin{pmatrix} n & \sum x_t \\ \sum x_t & \sum x_t^2 \end{pmatrix}$$

$$(X'X)^{-1} = \frac{1}{n\sum x_t^2 - (\sum x_t)^2} \begin{pmatrix} \sum x_t^2 & -\sum x_t \\ -\sum x_t & n \end{pmatrix}$$

$$m{X'y} = egin{pmatrix} m{\iota'y} \ x' m{y} \end{pmatrix} = egin{pmatrix} \sum y_t \ \sum x_t y_t \end{pmatrix}$$

- 1 Estimate the model by OLS: $\hat{\beta} = (X'X)^{-1}X'y$
- **2** Compute the fitted values of y: $\hat{y} = X\hat{\beta}$
- 3 Compute the residuals or "surprise": $\hat{m{u}} = m{y} \hat{m{y}}$
- 4 Compute the residual sum of squares (RSS)

$$SSE \equiv RSS = \widehat{\boldsymbol{u}}'\widehat{\boldsymbol{u}} = \sum_{i=1}^{n} \widehat{u_i}^2$$

5 The variance of the residuals is

$$\widehat{\sigma}_u^2 = \frac{1}{n - K} \widehat{\boldsymbol{u}}' \widehat{\boldsymbol{u}}$$

Let $\Omega := (X'X)^{-1}$. The variance of $\widehat{\beta}_i$ is

$$\mathbb{V}(\widehat{\beta}_i) = \widehat{\sigma}_u^2 \Omega_{ii}.$$

	$AIC = T \ln \left(\frac{RSS}{T} \right) + 2K$
Akaike Information	For small sample sizes $\left(\frac{T}{K} \le 40\right)$, use 2 nd order AIC:
Criterion (AIC)	$AIC_c = AIC + \frac{2K(K+1)}{T-K-1}$
	The smaller the AIC, the better the model is in not over-fitting data
	Problems with \mathbb{R}^2 • If model is reparameterised, \mathbb{R}^2 will change • \mathbb{R}^2 never falls when more regressors are added Solution: Adjusted \mathbb{R}^2
Adjusted R^2	$\bar{R}^2 = 1 - \left[\frac{T-1}{T-K}(1-R^2)\right]$ $\bar{R}^2 = 1 - \frac{\frac{RSS}{n-K}}{\frac{TSS}{n-1}}$
	 Takes into account the loss of degrees of freedom \$\bar{R}^2\$ will fall if additional regressor does not add sufficient explanatory power But like \$R^2\$, \$\bar{R}^2\$ also has no distribution

Session 5_2: Serial Correlation or Autocorrelation

Types of Autocorrelation	Description		
Positive Autocorrelation	 Indicated by cyclical residual plot over time Residuals "trend" over time 		
Negative Autocorrelation	 Indicated by alternating pattern Residuals cross axis more frequently than if they were distributed randomly 		

Consequences of Autocorrelation

- Coefficient estimate are still unbiased but they are inefficient, they are not BLUE, even when n is large
- Standard error estimates become inappropriate as such, possibility to make wrong inferences
- R^2 is likely to be inflated relative to "correct" value for positively correlated residuals

Test for Autocorrelation	Assumptions	Method	Test Statistic
Durbin-Watson Test	• $E[\epsilon_t] = 0$ • $V[\epsilon_t] = \sigma_\epsilon^2$ • $C[\epsilon_t, \epsilon_s] = 0$ • $-1 \le \phi \le 1$ • $0 \le DW \le 4$	Hypotheses • Null Hypothesis (H_0) : $\phi = 0$ • Alternate Hypothesis (H_a) : $\phi \neq 0$ Conditions for Valid Test • Y-intercept must be in regression • Regressor X_i must be non-stochastic • Error term e_i is normally distributed Interpretation of Results • No Autocorrelation: $d_U < DW < 4 - d_U$ • Negative Autocorrelation: $DW < 4 - d_L$ • Positive Autocorrelation: $DW > d_L$	Where u_t denotes the residuals of regression at t : $DW = \frac{\sum_{t=2}^T (u_t - u_{t-1})^2}{\sum_{t=1}^T u_t^2}$ Expansion: $DW = \frac{\sum_{t=2}^T u_t^2}{\sum_{t=1}^T u_t^2} + \frac{\sum_{t=2}^T u_{t-1}^2}{\sum_{t=1}^T u_t^2} - 2\frac{\sum_{t=2}^T u_t u_{t-1}}{\sum_{t=1}^T u_t^2}$ $DW \approx 1 + 1 - 2 \ \hat{\phi}$ • 1st and 2nd terms are approximately 1 • 3rd term is 2x estimator of correlation with itself, $2\hat{\phi}$
Breusch-Godfrey Test	-	Tests for r^{th} order autocorrelation: $u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \ldots + \rho_r u_{t-r} + v_t$ $v_t \sim N(0, \sigma_v^2)$ Hypotheses • Null Hypothesis (H_0) : $\rho_1 = 0$ and $\rho_2 = 0$ and $\ldots \rho_r = 0$ • Alternate Hypothesis (H_a) : $\rho_1 \neq 0$ and $\rho_2 \neq 0$ and $\ldots \rho_r \neq 0$ Method • Estimate linear regression using OLS and obtain the residuals \hat{e}_t • Regress \hat{e}_t on X plus $\hat{e}_{t-1}, \hat{e}_{t-2}, \ldots, \hat{e}_{t-r}$ • Obtain R^2 from regression • Get test statistic, if statistic exceeds critical value, reject null hypothesis	$(T-r)R^2 \sim \chi_r^2$

Problem	Nature of Problem	Consequences of Problem	Test(s) for Problem	Test Statistic	Remedies for Problem
	When errors of regression do not have a constant	Coefficient estimates are unbiased but they are no longer BLUE Standard errors could	 Goldfeld-Quandt (GQ) Test Split total sample of length T to subsamples T₁ and T₂ Regress both subsamples and calculate the two residual variances Hypotheses Null Hypothesis (H₀): σ₁² = σ₂² Alternate Hypothesis (H_a): σ₁² ≠ σ₂² Problem with the test lies in choice of where to split the sample, which affects outcome of the test 	G	 Generalised Least Squares Use generalised least squares method if form of heteroscedasticity is known For example, if error variance is related to another variable, divide entire regression equation by that variable to remove heteroscedasticity
Heteroscedasticity	variance • Homoscedasticity: When errors of regression have constant variance	be inappropriate, inference we make could be misleading • Whether standard errors are too big/small depends on form of heteroscedasticity	 White's Test One of the best approaches as it makes few assumptions about the form of heteroscedasticity Obtain residuals of regression, run an auxiliary regression (example for 2 regressors shown below): û²_t = a₁ + a₂x_{2,t} + a₃x_{3,t} + a₄x_{2,t}² + a₅x_{3,t} + a₆x_{2,t}x_{3,t} + v_t Obtain R² from aux regression and multiply by no. of observations, T Reject H₀ of homoscedasticity if χ² test stat is greater than critical stat 	$T \times R \sim \chi^2(m)$ where m is the no. of regressors in aux regression excl. constant term	Transforming the Data Transform variables into logs or reducing by some other measure of size Use White's Heteroscedasticity Consistent Standard Error Estimates Standard errors for slope coefficients are increased relative to usual OLS errors Goal is to be more "conservative" in hypothesis testing

Problem	Nature of Problem	Consequences of Problem	Test(s) for Problem	Test Statistic	Remedies for Problem
Multicollinearity	Occurs when explanatory variables are very highly correlated with each other	 All coefficients cannot be estimated if there is perfect multicollinearity R² will be very high but individual coefficients will have high standard errors Regression becomes sensitive to small changes in specification Confidence intervals of parameters will be very wide Significance testes may give inappropriate conclusions 	 Look at correlation matrix between individual x variables Correlation matrix method will not work if 3 or more variables are linear 	-	 Drop one of the collinear variables Transform highly correlated variables into a ratio Collect more data – Longer time series or higher frequency Other Remarks Traditional remedies such as ridge regression and/or principal component usually bring more problems than they solve Some econometricians argue that if model is otherwise okay, ignore the problem
	Wrong Functional Form	_	 Ramsey's RESET Test Add higher order terms of fitted values to auxiliary regression Regress û_t on powers of fitted values: û_t = β₀ + β₁ŷ_t² + β₂ŷ_t³ + ··· + β_{p-1}ŷ_t^p + v_t If test stat is greater than critical stat, reject H₀ that functional form is correct 	$TR^2 \sim \chi_{p-1}^2$	 RESET test gives guide as to what better specification (the true model) might be Transform data into logarithms, which will linearise multiplicative models to additive ones
Specification Errors	Omission of Important Variable	 Also called the Error of Omission Estimated coefficients on all other variables will be biased and inconsistent unless excl. variable is uncorrelated with all included variables Even if uncorrelatedness is satisfied, coefficient estimates on constant term will be biased Standard errors will be biased 	-	-	-
	Inclusion of Irrelevant Variable	 Also called the Error of Commission Coefficient estimates will still be consistent and unbiased Variance of estimators will be inefficient 	-	-	-

Problem	Nature of Problem	Consequences of Problem	Test(s) for Problem	Test Statistic	Remedies for Problem
Measurement Errors	 Also known as errors in variables problem Happens when the explanatory variable is incorrectly measured Violates assumption that explanatory variables are non-stochastic Ways Error can Occur Macroeconomic variables being estimated quantities Using proxy variables in place of real data Measurement Error in Explained Variable Much less serious than measurement errors in the explanatory variable(s) This is so because disturbance term will be a composite of actual term and another source of noise from measurement error Parameter estimates will still be consistent and unbiased, usual formulas for calculating standard errors will still be appropriate However, standard errors will be enlarged relative to when there is no measurement error in y 	 Composite error term will be correlated with the explanatory variable as measurement error will be incorporated into the original noise term If coefficient is negative, parameter estimates will be biased positively If coefficient is positive, parameter estimates will be biased negatively As such, parameter estimates will always be biased towards zero as result of measurement noise 	-	-	-

Problem	Nature of Problem	Consequences of Problem	Test(s) for Problem	Test Statistic	Remedies for Problem	
			Split data into sub-periods then estimate up to 3 models, for each sub-part and also for all the data Then, compare RSS of the models			
			 Chow Test Split data into 2 periods Estimate regression over whole period and for 2 sub periods Restricted Regression: Regression for whole period Unrestricted Regression: Has 2 parts, from each sub period 	$\frac{RSS - (RSS_1 + RSS_2)}{RSS_1 + RSS_2} \times \frac{T - 2K}{K}$ $\sim F(K, T - 2K)$		
			Null Hypothesis (H_0):	where: • RSS = RSS for whole sample		
			$a_1=a_2$, $eta_1=eta_2$	 RSS₁ = RSS for sub-sample 1 RSS₂ = RSS for sub-sample 2 		
Parameter Instability	Occurs when parameters are not constant over		If value of test stat is greater than crit value, reject null hypothesis that parameters are stable over time	 K = Number of samples, which is 2 T = Sample period length 		
•	sample period		 Problems May not have enough data to do regression on both subsamples 			
			Predictive Failure Test Estimate regression over a long sub-period then predict values for other period and compare the two Restricted Regression: Run regression for whole period Unrestricted Regression: Run regression for long sub-period	$\frac{RSS - RSS_1}{RSS_1} \times \frac{T_1 - K}{T_2} \sim F(T_2, T_1 - K)$ where: • $RSS = RSS$ for whole sample		
			Forward Predictive Failure Test Where we keep the last few observations for forecast testing	 RSS₁ = RSS for long sub-sample K = Number of samples, which is 2 T₁ = Sample period length for long sample T₂ = Sample period length for predicted 		
			Backward Predictive Failure Test Where we attempt to back-cast the first few observations	sample		

- Many things could go wrong in modeling.
- The most serious ones cause the parameter estimates to be biased and they include
 - Wrong function form
 - Omission of important variables
 - Parameter instability
 - Multicolinearity
 - Measurement errors
- V Less serious ones make the variance of the estimate inaccurate and they include
 - Serial correlation
 - Heteroskedasticity
 - Departure from normality
 - Commission error of irrelevant variables
- Nevertheless, multiple linear regression is robust and is the work horse in modeling.

Session 7_1: Stationary Processes

Session 7_1: Stationary Processes

Properties of White Noise

- $E[u_t] = 0$
- $V[u_t] = \sigma_u^2$ $C[u_t, u_{t+k}] = 0$
- Stronger Definition: u_t is independent of u_{t+k}

Joint Test Statistic	 To test if m autocorrelations are jointly 0 H₀: ρ(1) = ρ(2) = ··· = ρ(m) = 0
Box and Pierce Q- Statistic	$Q_m = T \sum_{k=1}^m r(k)^2 = \sum_{k=1}^m z_k^2 \sim \chi_m^2$
Ljung and Box Test Statistic	$Q_m = T(T+2) \sum_{k=1}^m \frac{r(k)^2}{T-K} \sim \chi_m^2$

Characteristic Equation	For AR(p) process to be stationary, roots of characteristic equation must lie outside of the unit circle: $\phi(B)=1-\sum_{i=1}^p \lambda_i B^i=0$
Yule-Walker Equations	$\rho(k)=\lambda_1\rho(k-1)+\lambda_2\rho(k-2)+\cdots+\lambda_p\rho(k-p)$ • where k is the number of lags, p is the order of the AR(p) process • Note that $\rho(0)=1, \rho(j)=\rho(-j)$

Stationary Process	Characteristics	Process Equation	Mean $E[Y_t]$	Variance $V[Y_t]$	Autocovariance $C[Y_t, Y_{t-k}]$	Autocorrel ation $ ho[Y_t, Y_{t-k}]$ or $ ho[Y_{t+k}, Y_t]$	Condition al Mean $E[Y_{t+1} Y_t]$	Conditional Variance $V[Y_{t+1} Y_t]$	Test for $ ho=0$
AR(1)	 Mean, variance and covariance are stationary Autocorrelation slowly tapers off towards 0 as lag increases 	$Y_t = \theta + \lambda Y_{t-1} + u_t$	$\frac{\theta}{1-\lambda}$	$\frac{(\sigma_u^2)}{1-\lambda^2}$	When k=1: $\lambda \frac{\sigma_u^2}{1 - \lambda^2}$ Otherwise: $\gamma(k) = \lambda^k V[Y_t]$	λ ^k	$\theta + \lambda Y_t$	$\sigma_u^2 < \frac{(\sigma_u^2)}{1 - \lambda^2}$	$V[r(k)] pprox rac{1}{T}$ Test Stat: $z_j = rac{r(j) - 0}{\sqrt{1/T}}$ $\sim N(0,1)$
MA(1)	 Mean, variance and covariance are stationary Autocorrelation drops sharply to 0 after the 1st lag 	$Y_t = \theta + u_t + au_{t-1}$	θ	$(1+a^2)\sigma_u^2$	When k=1: $a\sigma_u^2$ Otherwise:	When k=1: $\frac{a}{1+a^2}$ Otherwise: 0	$\theta + au_t$	$\sigma_u^2 < \sigma_u^2 (1 + a^2)$	$V[r(k)]$ $\approx \frac{1}{T}(1+2\sum_{i=1}^{q}\rho(i)^{2})$ Test Stat: $z_{j} = \frac{r(j)-0}{\sqrt{V[r(k)]}}$ $\sim N(0,1)$
ARMA(1,1)	 Mean, variance and covariance are stationary Autocorrelation tapers off at speed between AR(1) and MA(1) process 	$Y_t = \theta + \lambda Y_{t-1} + u_t + a u_{t-1}$	$\frac{\theta}{1-\lambda}$	$\sigma_u^2(1+\frac{(\lambda+a)^2}{1-\lambda^2})$	When k=1: $\lambda V[Y_{t-k}] \\ + a\sigma_u^2$ Otherwise: $\lambda^k V[Y_{t-k}]$	-	-	-	-

Duality between AR and MA, ACF and PACF

- While an AR(p) process has a decaying ACF infinite in extent, the PACF cuts off after lag p.
- **⊘** Recall that an MA(1) process is invertible into AR(∞). In general, this property holds for MA(q) processes.
- **3** So while the ACF of an MA(q) process cuts off after lag q, the PACF is infinite in extent.
- ARMA(p,q)'s ACF follows the same pattern as that of an AR(p) process after q-p+1 initial values $\rho_0, \rho_1, \cdots, \rho_{q-p}$ (if q-p<0, no initial values), while its PACF (for lag k>p-q) behaves like that of an MA(q) process.

Session 7_2: GARCH

	GARCH	
Monitoring Daily Volatility	$u_{i} = \frac{S_{i} - S_{i-1}}{S_{i-1}}, \bar{u} = 0$ $\sigma_{n}^{2} = \frac{1}{m} \sum_{i=1}^{m} u_{n-i}^{2}$	
Weighting Scheme	$\sigma_n^2 = \sum_{i=1}^m a_i u_{n-i}^2$ Where: • All weights are positive • More weight is given to more recent data • All weights sum to 1	
ARCH Model	$\sigma_n^2 = \omega + \sum_{i=1}^m a_i u_{n-i}^2$ Where: • All weights must sum to 1: $\gamma + \sum_{i=1}^m a_i = 1$ • $\omega = \gamma V_L$ • V_L is the long-run variance rate	(1,1)
ARCH(1) Model	$V[u_t]=a_0+a_1u_{t-1}^2$ $u_t=e_t\sqrt{a_0+a_1u_{t-1}^2}$ • Where u_t is unconditionally not a normal distribution but is so when conditional on u_{t-1}	
	• It is a special case of ARCH model, where weights a_i decrease exponentially back through time, where: $a_{i+1} = \lambda a_i$	How Go
EMWA Model	 EMWA Model: σ_n² = λσ_{n-1}² + (1 – λ)u_{n-1}² Thus, only current estimate of variance and most recent observation of value of market variable are needed Relatively little data needs to be stored Tracks volatility changes λ is popularly set to 0.94 	Varian Targeti

GARCH			
GARCH (1,1)	$\sigma_n^2 = \omega + au_{n-1}^2 + \beta \sigma_{n-1}^2$ Where: $\omega = \gamma V_L$ $\gamma + a + \beta = 1$ • For stable GARCH (1,1), $a + \beta < 1, \omega > 0$ • GARCH is unconditionally stationary, but conditionally nonstationary: $\sigma^2 = \frac{\omega}{1 - a - \beta} = V_L$ • GARCH is a mean-reverting process, σ gets pulled towards V_L over time • EWMA has no weight in V_L : $\gamma = 0$ $a = 1 - \lambda$ $\beta = \lambda$		
How Good is GARCH?	 If GARCH is working well, i should remove autocorrelation in u_i²/σ_i² Can test using Ljung-Box statistic for u_i²/σ_i² statistic 		
Variance Targeting	 Another way of increasing stability of GARCH is through variance targeting Can set V_L to be sample variance This way, only 2 other parameters have to be estimated 		

Volatility Estimate of instantaneous variance rate in t

$$V(t) = V_L + e^{-at}(V(0) - V_L)$$

where:

days:

$$a = \ln\left(\frac{1}{a+\beta}\right)$$

note that V(t) is variance

Can be used to calculate maintenance margin:

Volatility Term **Structures**

$$x \ge 1.645 \times V(t) \times F_n$$

Volatility per annum for option lasting T days:

$$\sigma(T) = \sqrt{252 \left(V_L + \frac{1 - e^{-aT}}{aT} (V(0) - V_L) \right)}$$

Change in T-day volatility per change in instantaneous volatility:

$$\Delta \sigma(T) \approx \frac{1 - e^{-aT}}{aT} \frac{\sigma(0)}{\sigma(T)} \Delta \sigma(0)$$

note that $V(0) = \sigma(0)^2/252$

Session 7_2: GARCH

Value-at-Risk (VaR)		
	Daily Log Return:	
	$\tilde{r} = \ln\left(\frac{\tilde{P}_1}{P_0}\right)$	
	Return-at-Risk:	
	$\tilde{r} = -Z \times \sigma$	
Value-at- Risk (VaR)	where σ is daily volatility, Z is the Z-value corresponding to the % VaR	
	Value-at-Risk:	
	$P_0 \times (1 - e^{\tilde{r}})$	
	Note that definition of VaR does not invoke assumption that distribution of returns are normal	
	Relative VaR:	
Relative VaR	$P_0 \times (1 - e^r)$	
	where $r=\mu- ilde{r}$	

Summary

- In the EWMA and the GARCH(1,1) models, the weights assigned to observations decrease exponentially as the observations become older.
- The GARCH(1,1) model differs from the EWMA model in that some weight is also assigned to the long-run average variance rate. It has a structure that enables forecasts of the future level of variance rate to be produced relatively easily.
- Maximum likelihood methods are usually used to estimate parameters from historical data in the EWMA, GARCH(1,1), and similar models.
- $\frak{\$}$ Once its parameters have been determined, a GARCH(1,1) model can be judged by how well it removes autocorrelation from the u_i^2 .