The Curious Case of Neural Text Degeneration Decoding Strategies for Large Language Models

Elhadi Chiter, Solomon Harvey, Marc Kaspar, Aziz Agrebi

Université Paris-Dauphine - PSL

December 2024

Introduction

Research Paper:

"The Curious Case of Neural Text Degeneration" (Holtzman et al., 2020)

Key Points:

- Focus on decoding strategies for Large Language Models (LLMs).
- Introduces *Nucleus Sampling* (top-*p* sampling) as a new approach.
- Addresses issues of text degeneration: blandness, incoherence, and repetition.

Decoding Strategies Overview

Existing Methods:

- Maximization-Based Methods:
 - Greedy Search, Beam Search
 - Issues: Lack of diversity, high repetition
- Sampling-Based Methods:
 - Pure Sampling, Sampling with Temperature, Top-k Sampling
 - Issues: Difficulty balancing diversity and coherence

Nucleus Sampling (Top-p Sampling)

Key Idea:

- Dynamically selects tokens comprising the top-p% of the probability mass.
- Adjusts the sampling set based on probability distribution.

Mathematical Definition:

$$\sum_{\mathbf{x}\in V^{(p)}}P(\mathbf{x}|\mathbf{x}_{1:i-1})\geq p$$

Advantages:

- Dynamic adaptation to probability distribution.
- Balances coherence and diversity better than Top-k and Temperature Sampling.

Comparison of Sampling Methods

Top-*k* **Sampling:**

- Fixed number of tokens considered.
- Sensitive to distribution shape.
- May ignore key tokens or include unrelated ones.

Nucleus Sampling:

- Considers tokens based on cumulative probability.
- Adapts dynamically to model confidence.
- Avoids issues with fixed k selection.

Comparison of Sampling Methods

Figure: Top-k Sampling

Figure: Nucleus Sampling

Limitations and Open Questions

Limitations of Nucleus Sampling:

- Threshold p selection is non-trivial.
- Larger p values may lead to larger sampling sets.

Open Questions:

- How to efficiently choose p?
- Can a metric guide the selection of p for specific applications?

Metrics Overview

Metrics Defined:

- Perplexity: Measures model confidence in predicting text.
- Self-BLEU: Assesses diversity across generated outputs.
- **Repetition:** Identifies repetitive patterns within outputs.
- Zipf Coefficient: Evaluates adherence to Zipf's law of token frequency.

Perplexity

Definition:

Perplexity(
$$T$$
) = exp $\left(\frac{1}{N}\sum_{i=1}^{N} -\log P(w_i \mid w_1, \dots, w_{i-1})\right)$

- T: Pre-written text of length N.
- Measures how well the model predicts T.
- Low perplexity indicates high confidence; high perplexity indicates confusion.

Experiment:

Computed on 10,000 tokens from WikiText dataset.

Self-BLEU

Definition:

$$\mathsf{Self-BLEU}(G_1,\ldots,G_m) = \frac{1}{m} \sum_{i=1}^m \mathsf{BLEU}\left(G_i,\bigcup_{j \neq i} G_j\right)$$

- G_1, \ldots, G_m : Generated outputs for a prompt.
- Measures diversity of outputs.
- Score close to 0: High diversity; score close to 1: Low diversity.

Experiment:

- Used standard Self-BLEU instead of Self-BLEU4 for precision.
- Averaged over all prompts for each decoding strategy.

Repetition

Definition:

$$\mathsf{Repetition}(\textit{G},\textit{W}) = 100 \times \frac{\mathsf{RepeatedTokens}(\textit{G},\textit{W})}{|\textit{G}|}$$

- G: Output text; W: Window size.
- Identifies repeated patterns of n-grams within the last W tokens.

Experiment:

- Computed repetition for each output.
- Averaged over outputs for each decoding strategy.

Zipf Coefficient

Definition:

$$f(w) \simeq \frac{1}{r(w)^{s(G)}}$$

- f(w): Frequency of token w.
- r(w): Rank of token based on frequency.
- s(G): Zipf coefficient of the output G.

Experiment:

- Evaluates adherence to natural linguistic patterns.
- Deviation indicates unnatural token distribution.

Implementation of Code

Introduction:

- Implemented metrics for different decoding strategies.
- Used Mistral 7B model for generating outputs.
- Code available on GitHub: github.com/spharvey99/Ilm-project.

Procedure:

- Generated outputs for 5 prompts using each decoding strategy.
- Computed metrics for each strategy using outputs of up to 200 words.

Results of the experiment

Method	Perplexity	Self-BLEU4	Zipf Coef	Repetition %	HUSE
Human	12.38	0.31	0.93	0.28	-
Greedy	1.50	0.50	1.00	73.66	-
Beam, $b = 16$	1.48	0.44	0.94	28.94	-
Stoch. Beam, $b = 16$	19.20	0.28	0.91	0.32	-
Pure Sampling	22.73	0.28	0.93	0.22	0.67
Sampling, $t = 0.9$	10.25	0.35	0.96	0.66	0.79
Top-k = 40	6.88	0.39	0.96	0.78	0.19
Top-k = 640	13.82	0.32	0.96	0.28	0.94
Top- $k = 40, t = 0.7$	3.48	0.44	1.00	8.86	0.08
Nucleus, $p = 0.95$	13.13	0.32	0.95	0.36	0.97

Figure: Results of the paper

Method	Perplexity	Self-BLEU	Zipf	Repetition (%)
Beam Search $(b=4)$	1.6987	1.0000	0.6274	0.0
Pure Sampling	19.0512	0.3907	0.9298	0.0
Temperature $(t = 0.9)$	19.9394	0.4228	0.9486	0.0
Top-k $(k = 640)$	12.0812	0.4380	0.9475	0.0
Top-k with Temp. $(k = 40, t = 0.7)$	6.0772	0.5021	0.9958	0.0
Nucleus Sampling $(p = 0.95)$	8.4538	0.4690	0.9672	0.0

Figure: Results of the experiment

Conclusion

Summary:

- Neural text degeneration remains a critical challenge.
- Nucleus Sampling offers a more adaptive approach than previous methods.
- Future work needed to optimize threshold selection and evaluate practical applications.