

Probability and Stochastic Processes

Lecture 12: Probability Law, Cumulative Distribution Function (CDF), Properties of CDF

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

12 September 2025

Random Variable

Definition (Random Variable)

Fix a measurable space (Ω, \mathcal{F}) .

A function $X: \Omega \to \mathbb{R}$ is called a random variable if it is measurable, i.e.,

$$\forall \ B \in \mathscr{B}(\mathbb{R}), \qquad \underbrace{X^{-1}(B)}_{\text{pre-image of } B} \ = \ \{\omega \in \Omega : X(\omega) \in B\} = \{X \in B\} \in \mathscr{F}.$$

Properties of a Random Variable

Proposition (Random Variable Properties)

Let (Ω, \mathscr{F}) be a measurable space, and let $X : \Omega \to \mathbb{R}$ be a random variable.

- 1. For any $B \subseteq \mathbb{R}$, $X^{-1}(B^{\complement}) = (X^{-1}(B))^{\complement}$.
- 2. For any $B_1 \subseteq \mathbb{R}, B_2 \subseteq \mathbb{R}, \ldots$

$$X^{-1}\left(\bigcup_{n\in\mathbb{N}}B_n\right)=\bigcup_{n\in\mathbb{N}}X^{-1}(B_n).$$

3. Let \mathcal{B}_1 denote the collection

$$\mathscr{B}_1 \coloneqq \left\{ B \subseteq \mathbb{R} : X^{-1}(B) \in \mathscr{F} \right\}.$$

Then, \mathscr{B}_1 is a σ -algebra of subsets of \mathbb{R} . Furthermore, $\mathscr{B}(\mathbb{R}) \subseteq \mathscr{B}_1$.

Generating Classes for $\mathscr{B}(\mathbb{R})$

 $\mathscr{B}(\mathbb{R})$

$$\mathscr{P}_1 = \Big\{(a,b): \ a,b \in \mathbb{R}, \ a \leq b\Big\}$$

$$\mathscr{P}_3 = \Big\{ [a,b): \;\; a,b \in \mathbb{R}, \;\; a \leq b \Big\}$$

$$\mathscr{P}_5 = \Big\{ (-\infty,\ x):\ \ x \in \mathbb{R} \Big\}$$

$$\mathscr{P}_7=\left\{(x,\;+\infty):\;x\in\mathbb{R}
ight\}$$

$$oldsymbol{\mathscr{P}}_2=\left\{[a,b]:\ a,b\in\mathbb{R},\ a\leq b
ight\}$$

$$\mathscr{P}_4 = \Big\{ (a,b]: \; a,b \in \mathbb{R}, \; a \leq b \Big\}$$

$$\mathscr{P}_6=\left\{(-\infty,\ x]:\ x\in\mathbb{R}
ight\}$$

$$\mathscr{P}_8 = \Big\{ [x, \ +\infty): \ x \in \mathbb{R} \Big\}$$

Equivalent Definitions of Random Variable

Fix a measurable space (Ω, \mathscr{F}) .

Theorem (Equivalent Definitions)

 $X:\Omega\to\mathbb{R}$ is a random variable if and only if any one of the following holds:

1.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_1$.

2.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_2$.

3.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_3$.

4.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_4$.

5.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_5$.

6.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_6$.

7.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_7$.

8.
$$X^{-1}(B) \in \mathscr{F}$$
 for all $B \in \mathscr{P}_8$.

Random Variable Simplified

Definition (Random Variable)

Fix a measurable space (Ω, \mathscr{F}) .

A function $X:\Omega\to\mathbb{R}$ is called a random variable with respect to \mathscr{F} if and only if

$$\forall \mathbf{x} \in \mathbb{R}, \qquad \underbrace{X^{-1}((-\infty, \mathbf{x}])}_{\text{pre-image of } (-\infty, \ \mathbf{x}]} = \{\omega \in \Omega : X(\omega) \le \mathbf{x}\} = \{X \le \mathbf{x}\} \in \mathscr{F}.$$

Indicator Functions

Fix a sample space Ω . Fix a subset $A \subseteq \Omega$.

Definition (Indicator Function)

The indicator function of set A is the function $\mathbf{1}_A:\Omega\to\mathbb{R}$ defined as

$$\mathbf{1}_{\mathtt{A}}(\omega) = egin{cases} 1, & \omega \in \mathtt{A}, \ 0, & \omega \in \mathtt{A}^c. \end{cases}$$

Exercise

Fix a measurable space (Ω, \mathscr{F}) . Show that

 $\mathbf{1}_A$ is a random variable \iff $A \in \mathscr{F}$.

Probability Law of a Random Variable

Probability Law of a Random Variable

- Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$
- If $X: \Omega \to \mathbb{R}$ is a random variable, then

$$\forall B \in \mathscr{B}(\mathbb{R}), \qquad X^{-1}(B) \in \mathscr{F}.$$

Therefore, it makes sense to talk about $\mathbb{P}(X^{-1}(B))$ for each $B \in \mathscr{B}(\mathbb{R})$

• We then have a mapping from $\mathscr{B}(\mathbb{R}) \to [0,1]$:

$$B \mapsto \mathbb{P}(X^{-1}(B))$$

The above mapping is called the probability law of the random variable X

Probability Law of a Random Variable

Definition (Probability Law)

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a random variable (with respect to \mathscr{F}).

The probability law of X is a function $\mathbb{P}_X: \mathscr{B}(\mathbb{R}) \to [0,1]$ defined as

$$\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B)), \qquad B \in \mathscr{B}(\mathbb{R}).$$

Remarks:

- \mathbb{P}_X is sometimes referred to the **pushforward** of \mathbb{P} under the random variable X
- $\mathbb{P}_{\mathbf{x}}$ is sometimes denoted as $\mathbb{P} \circ X^{-1}$

Proposition (Probability Law)

 \mathbb{P}_X is a probability measure on $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$.

Completing the Picture

$$\mathbb{P}_{X}(B) = \mathbb{P} \circ X^{-1}(B) = \mathbb{P}(X^{-1}(B)) \quad orall B \in \mathscr{B}(\mathbb{R})$$

Figure: Pictorial representation of probability law

Proof that \mathbb{P}_X is a Probability Measure

$$\mathbb{P}_{X}(B) = \mathbb{P} \circ X^{-1}(B) = \mathbb{P}(X^{-1}(B)) \quad \forall B \in \mathscr{B}(\mathbb{R})$$

• First, we note that

$$\mathbb{P}_X(\emptyset) = \mathbb{P}(X^{-1}(\emptyset)) = \mathbb{P}(\emptyset) = 0.$$

Next, we note that

$$\mathbb{P}_X(\mathbb{R}) = \mathbb{P}(X^{-1}(\mathbb{R})) = \mathbb{P}(\Omega) = 1.$$

Proof that \mathbb{P}_X is a Probability Measure

$$\mathbb{P}_{X}(B) = \mathbb{P} \circ X^{-1}(B) = \mathbb{P}(X^{-1}(B)) \quad \forall B \in \mathscr{B}(\mathbb{R})$$

• Finally, if $B_1, B_2, \ldots \in \mathscr{B}(\mathbb{R})$ are mutually disjoint, then

$$\mathbb{P}_{X}\left(\bigsqcup_{n\in\mathbb{N}}B_{n}\right)=\mathbb{P}\left(X^{-1}\left(\bigsqcup_{n\in\mathbb{N}}B_{n}\right)\right)=\mathbb{P}\left(\bigsqcup_{n\in\mathbb{N}}X^{-1}\left(B_{n}\right)\right)=\sum_{n\in\mathbb{N}}\mathbb{P}\left(X^{-1}(B_{n})\right)=\sum_{n\in\mathbb{N}}\mathbb{P}_{X}(B_{n}).$$

Cumulative Distribution Function

Cumulative Distribution Function (CDF)

$$\mathbb{P}_{X}(B) = \mathbb{P} \circ X^{-1}(B) = \mathbb{P}(X^{-1}(B)) \quad \forall B \in \mathscr{B}(\mathbb{R})$$

- $\mathbb{P}_X(B) \in [0,1]$ for every $B \in \mathscr{B}(\mathbb{R})$
- In particular, $\mathbb{P}_X((-\infty, x]) \in [0, 1]$ for every $x \in \mathbb{R}$
- We thus have a mapping

$$x \mapsto \mathbb{P}_X((-\infty, x])$$

• The above mapping (or function) is called the **cumulative distribution function** of the random variable X, denoted by F_X

Cumulative Distribution Function (CDF)

Definition (Cumulative Distribution Function (CDF)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a random variable.

The function $F_X:\mathbb{R} \to [0,1]$ defined by

$$F_X(x) = \mathbb{P}_X((-\infty, x]) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \le x\}) = \mathbb{P}(\{X \le x\}), \qquad x \in \mathbb{R},$$

is called the cumulative distribution function (CDF) of X.

$$extbf{\emph{F}}_{ extbf{\emph{X}}}(x) = \mathbb{P}_{ extbf{\emph{X}}}((-\infty,x]) = \mathbb{P}(X^{-1}((-\infty,x])), \quad x \in \mathbb{R}$$

Properties of CDF

Lemma (Properties of CDF)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let $X : \Omega \to \mathbb{R}$ be a random variable with CDF F_X . Then, F_X satisfies the following properties.

- 1. (Monotonicity) If $x \le y$, then $F_X(x) \le F_X(y)$.
- 2. If x_1, x_2, \ldots is any sequence such that $\lim_{n \to \infty} x_n = -\infty$, then $\lim_{n \to \infty} F_X(x_n) = 0$.
- 3. If x_1, x_2, \ldots is any sequence such that $\lim_{n \to \infty} x_n = +\infty$, then $\lim_{n \to \infty} F_X(x_n) = 1$.
- 4. (Right-Continuity)

 F_X is right-continuous at every point in the domain.

More formally, for each $x \in \mathbb{R}$, if x_1, x_2, \ldots is a sequence such that $x_1 \geq x_2 \geq \cdots$ and $\lim_{n \to \infty} x_n = x$, then

$$\lim_{n\to\infty} F_X(x_n) = F_X(x).$$

Note that

$$\mathbb{F}_X(x) = \mathbb{P}_X((-\infty, x]), \qquad \mathbb{F}_X(y) = \mathbb{P}_X((-\infty, y])$$

• If $x \leq y$, then

$$(-\infty, x] \subseteq (-\infty, y]$$

• Using monotonicity property of \mathbb{P}_X , it follows that

$$\mathbb{P}_X((-\infty, x]) \leq \mathbb{P}_X((-\infty, y])$$

• Suppose x_1, x_2, \ldots is monotone decreasing sequence such that

$$x_1 \geq x_2 \geq \cdots$$
, $\lim_{n \to \infty} x_n = -\infty$.

• Then, we have

$$(-\infty, x_1] \supseteq (-\infty, x_2] \supseteq \cdots$$

• Therefore,

$$\lim_{n\to\infty} F_X(x_n) = \lim_{n\to\infty} \mathbb{P}_X\big((-\infty, x_n]\big) = \mathbb{P}_X\left(\bigcap_{n\in\mathbb{N}} (-\infty, x_n]\right) = \mathbb{P}_X(\emptyset) = 0.$$

• Suppose x_1, x_2, \ldots is any sequence such that

$$\lim_{n\to\infty} x_n = -\infty$$

• Let y_1, y_2, \ldots be a new sequence defined as

$$y_n = \sup_{k \geq n} x_k, \qquad n \in \mathbb{N}$$

Then, it follows that

$$\gamma_1 \geq \gamma_2 \geq \cdots, \qquad \lim_{n \to \infty} \gamma_n = -\infty, \qquad \gamma_n \geq x_n \ \forall \ n \in \mathbb{N}.$$

• From the previous result for non-increasing sequences,

$$\lim_{n\to\infty}F_X(\gamma_n)=0.$$

$$\bullet \ \ F_X(x_n) \leq F_X(y_n) \ \ \forall \ n \in \mathbb{N} \quad \implies \quad \lim_{n \to \infty} F_X(x_n) \leq \lim_{n \to \infty} F_X(y_n) = 0.$$

Left as exercise.

- Fix $x \in \mathbb{R}$
- Suppose that x_1, x_2, \ldots is any monotone decreasing sequence such that

$$x_1 \geq x_2 \geq \cdots, \qquad \lim_{n \to \infty} x_n = x.$$

• Then, note that

$$(-\infty, x_1] \supseteq (-\infty, x_2] \supseteq \cdots, \qquad \bigcap_{n \in \mathbb{N}} (-\infty, x_n] = (-\infty, x].$$

We then have

$$\lim_{n\to\infty} F_X(\mathbf{x}_n) = \lim_{n\to\infty} \mathbb{P}_X\big((-\infty, \mathbf{x}_n]\big) = \mathbb{P}_X\left(\bigcap_{n\in\mathbb{N}} (-\infty, \mathbf{x}_n]\right) = \mathbb{P}_X\big((-\infty, \mathbf{x}_n]\big) = F_X(\mathbf{x}).$$

Example

• Fix a measurable space (Ω, \mathscr{F}) . Fix $A \in \mathscr{F}$. Plot the CDF of the random variable $\mathbf{1}_{\mathbb{A}}$.