La gerarchia di Chomsky

Arturo Carpi

Dipartimento di Matematica e Informatica Università di Perugia

Corso di Linguaggi Formali e Compilatori - a.a. 2021/22

Grammatiche

Una grammatica a struttura di frase è una quadrupla

$$G = \langle V, \Sigma, P, S \rangle$$
,

ove

- $S \in N = V \setminus \Sigma$ è il simbolo iniziale o assioma,
- $oldsymbol{D}$ è un insieme finito di espressioni della forma

$$\alpha \rightarrow \beta$$

con $\alpha \in V^* \setminus \Sigma^*$ e $\beta \in V^*$, detto insieme delle produzioni

Il linguaggio generato

Siano $\alpha, \beta \in V^*$.

. Diremo che β è una conseguenza diretta di α (e scriveremo $\alpha \Rightarrow \beta$) se esistono parole $\gamma_1, \gamma_2 \in V^*$ e una produzione $\gamma \to \gamma'$ in P tali che

$$\alpha = \gamma_1 \gamma \gamma_2, \quad \beta = \gamma_1 \gamma' \gamma_2.$$

. Diremo che β si deriva (o è una conseguenza) di α in G (e scriveremo $\alpha \Rightarrow^* \beta$) se esistono $n \geq 0$, $\alpha_0, \alpha_1, \ldots, \alpha_n \in V^*$ tali che

$$\alpha = \alpha_0 \Rightarrow \alpha_1 \Rightarrow \cdots \Rightarrow \alpha_n = \beta$$
.

- $oldsymbol{\mathfrak{D}}$ Le conseguenze del simbolo iniziale S si dicono forme sentenziali.
- lacksquare II linguaggio generato da G è l'insieme delle forme sentenziali prive di variabili.

Esempio

$$G=\langle V,\Sigma,P,S
angle, \quad V=\{a,b,S\}, \quad \Sigma=\{a,b\}, \quad N=\{S\}, \ P: \quad S o ab\,, \quad S o aSb\,.$$

Si ha

$$bSa \Rightarrow baba, \quad aS \Rightarrow aaSb, \quad aaSb \Rightarrow aaaSbb, \quad aS \stackrel{*}{\Rightarrow} aaaSbb$$
 .

Ma qual'è il linguaggio generato?

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow \cdots \Rightarrow a^{n-1}Sb^{n-1} \Rightarrow a^nb^n$$
.

Quindi

$$S(G) = \{a^n S b^n \mid n > 0\} \cup \{a^n b^n \mid n > 0\},$$

 $L(G) = \{a^n b^n \mid n > 0\}.$

Esempio 2

Costruiamo una grammatica per il linguaggio

$$L = \{a^n b^n c^n \mid n > 0\}.$$

Prendiamo $G=\langle V,\Sigma,P,S \rangle$, con $\Sigma=\{a,b,c\},\ N=\{S,B\}$, e produzioni

$$S
ightarrow aSBc$$
 , $S
ightarrow abc$, $cB
ightarrow Bc$, $bB
ightarrow bb$.

● Verifichiamo che $L \subseteq L(G)$ Per es., mostriamo che $a^3b^3c^3 \in L(G)$.

$$S \Rightarrow aSBc \Rightarrow aaSBcBc \Rightarrow aaabcBcBc$$

 $\Rightarrow aaabBccBc \Rightarrow aaabBcBcc \Rightarrow aaabBBccc$
 $\Rightarrow aaabbBccc \Rightarrow aaabbbccc$.

Quindi $S \Rightarrow^* a^3b^3c^3$, cioè, $a^3b^3c^3 \in L(G)$.

Esempio 2

$$S o aSBc$$
, $S o abc$, $cB o Bc$, $bB o bb$.

- **J** Verifichiamo che $L(G) \subseteq L$.
 - Le forme sentenziali hanno una delle forme seguenti:
 - \mathbf{D} $a^n S w$, ove w è una permutazione di $B^n c^n$;
 - $a^n b^m w$, ove w è una permutazione di $B^{n-m} c^n$;

(perchè S è del tipo 1 e le produzioni preservano la proprietà).

 $oldsymbol{oldsymbol{eta}}$ Una parola di L(G) non può che essere del tipo 2 con n=m, cioè $a^nb^nc^n$.

Grammatiche equivalenti

Definizione

Due grammatiche si dicono equivalenti se generano lo stesso linguaggio.

Ricognizione e parsing

Problema di ricognizione

Input: una grammatica $G = \langle V, \Sigma, P, S \rangle$ e una parola $w \in \Sigma^*$;

Output: SI se $w \in L(G)$, NO altrimenti.

Problema di parsing

Input: una grammatica $G = \langle V, \Sigma, P, S \rangle$ e una parola $w \in L(G)$; Output: una derivazione $S \Rightarrow \alpha_1 \Rightarrow \alpha_2 \Rightarrow \cdots \Rightarrow \alpha_n \Rightarrow w$ di w in G.

Non esiste un algoritmo che risolva questi problemi nel caso generale.

Occorre quindi restringersi a classi particolari di grammatiche bilanciando

- efficienza degli algoritmi
- espressività delle grammatiche

Definizione

Le grammatiche a struttura di frase si dicono anche grammatiche di tipo 0. I linguaggi generati da grammatiche di tipo 0 si dicono linguaggi di tipo 0 o anche linguaggi ricorsivamente enumerabili.

Esempio

La grammatica con le produzioni

$$egin{array}{llll} S
ightarrow N & A
ightarrow N & A
ightarrow S & N, AF & A
ightarrow N, A & N
ightarrow b \ A
ightarrow N, A & N
ightarrow b \ NF
ightarrow \& N & N
ightarrow c \end{array}$$

genera, per es., le parole a a, b & c a, c, a & b È una grammatica di tipo 0.

Grammatiche sensibili al contesto

Definizione

Una grammatica a struttura di frase si dice sensibile al contesto se le produzioni hanno la forma

$$\alpha_1 X \alpha_2 \to \alpha_1 \beta \alpha_2$$
, con $X \in N$, $\alpha_1, \alpha_2, \beta \in V^*$, $\beta \neq \varepsilon$.

I linguaggi generati da grammatiche di tipo 1 si dicono linguaggi di tipo 1 o anche sensibili al contesto.

Esempio

La grammatica con le produzioni

$$S o NVS$$
 $VN o, N$ $N o a$ $U o a$ $S o U$ $VU o \& U$ $N o b$ $U o b$ $N o c$ $U o c$

è una grammatica di tipo 1, equivalente a quella dell'esempio precedente.

Grammatiche monotòne

Definizione

Una grammatica si dice monotòna se tutte le produzioni hanno la forma

$$\alpha \to \beta$$
 con $|\alpha| \le |\beta|$.

- le grammatiche sensibili al contesto sono monotòne;
- non tutte le grammatiche monotòne sono sensibili al contesto;
- ogni grammatica monotòna è equivalente a una grammatica sensibile al contesto.

Esempio

La grammatica con le produzioni

$$S \rightarrow aSBc$$
, $S \rightarrow abc$, $cB \rightarrow Bc$, $bB \rightarrow bb$.

è monotòna ma non è sensibile al contesto. Il linguaggio generato $L=\{a^nb^nc^n\mid n>0\}$ è un linguaggio di tipo 1.

- i linguaggi di tipo 1 costituiscono una sottoclasse propria dei linguaggi di tipo 0;
- esistono algoritmi che risolvono il problema di ricognizione e il problema di parsing per grammatiche di tipo 1 (in generale, molto costosi)
- invece esistono linguaggi di tipo 0 per cui un tale algoritmo non esiste.

Grammatiche non contestuali

Definizione

Una grammatica a struttura di frase si dice non contestuale o di tipo 2 se le produzioni hanno la forma

$$X \to \beta$$
, con $X \in N$, $\beta \in V^*$.

I linguaggi generati da grammatiche di tipo 2 si dicono linguaggi di tipo 2 o anche non contestuali.

Esempio

La grammatica con le produzioni

S o N	$M \to N\&N$	N o a
S o M	$M \to N, M$	N o b
		$N \rightarrow c$

è una grammatica di tipo 2, equivalente a quella di un esempio precedente.

- i linguaggi di tipo 2 costituiscono una sottoclasse propria dei linguaggi di tipo 1. Per esempio $L=\left\{a^nb^nc^n\mid n>0\right\}$ è un linguaggio di tipo 1 ma non è di tipo 2;
- gli algoritmi per ricognizione e parsing per grammatiche di tipo 2 saranno uno dei principali argomenti del corso. Essi hanno importanti applicazioni nell'analisi sintattica.

Grammatiche regolari

Definizione

Una grammatica a struttura di frase si dice regolare o di tipo 3 se le produzioni hanno la forma

$$X \to aY$$
 oppure $X \to a$, con $X, Y \in N$, $a \in \Sigma$.

I linguaggi generati da grammatiche di tipo 3 si dicono linguaggi di tipo 3 o anche regolari.

Esempio

La grammatica con le produzioni

$$S
ightarrow a$$
 $S
ightarrow aR$ $R
ightarrow \&N$ $M
ightarrow aR$ $N
ightarrow a$ $S
ightarrow b$ $S
ightarrow bR$ $R
ightarrow , M$ $M
ightarrow bR$ $N
ightarrow b$ $S
ightarrow c$ $S
ightarrow cR$ $M
ightarrow cR$ $N
ightarrow c$

è una grammatica di tipo 3, equivalente a quella dell'esempio precedente.

- i linguaggi di tipo 3 costituiscono una sottoclasse propria dei linguaggi di tipo 2. Per esempio $L=\left\{a^nb^n\mid n>0\right\}$ è un linguaggio di tipo 2 ma non è di tipo 3;
- gli algoritmi per ricognizione per linguaggi di tipo 3 saranno uno dei principali argomenti del corso. Essi hanno importanti applicazioni nell'analisi lessicale.