User's guideline

Table of Contents

Chapter 1. Evaluation of Citrullinated PSMs

Chapter 2. Prediction of False Negative Citrullinated PSMs

Chapter 1. Evaluation of Citrullinated PSMs

Download

To download Citrullination analysis.ipynb:

- Go to https://github.com/Sunghyun-Huh/Citrullination-Diagnostic-Ion-Analysis.
- Click on 'Citrullination analysis.ipynb' among the listed files.
- Click 'Raw' on the top right panel.
- Press ctrl+s and type 'Citrullination analysis.ipynb' to keep the ipynb extension.

Requirements

Python requirements

- Python version 3.6 or greater
- Libraries needed: pandas, numpy, pyteomics, itertools, collections, statistics, re, os, glob

Necessary Files

• Input search result file: The input file must be a CSV file(s) containing the following three columns (see **Step 1** for the details):

'Title' MS2 spectrum title as written in MGF file

'Peptide' Peptide sequence with modification delta mass rounded up to third decimal places

'Charge' Charge state of the peptide

• Spectrum file: The spectrum file must be a Mascot Generic Format (MGF) file(s) containing MS2 spectra corresponding to those matched to the PSMs in the input search result file. If MS2 spectra in the input search file and spectrum file are not equivalent, only the common MS2 spectra will be retained and subsequently processed.

Overview flowchart

A. Setting initial parameters

The initial parameter settings:

0. Initial parameters

```
In []: # Fragmentation method used

Frag_method = 'HCD' # HCD, CID, ETD, ECD

# Jon types for theoretical spectrum generation
ion_type = ['Precur'. 'y', 'b', 'a', 'z', 'c', 'INT', 'IM']

# Generate each ion type

if Frag_method == 'HCD' or Frag_method == 'CID':
    annot_yb = Irue # y-, b-, a-ion
    annot_zc = False # z-, c-ion
    elif Frag_method == 'ETD' or Frag_method == 'ECD':
    annot_yb = False # y-, b-, a-ion
    annot_zr = True # z-, c-ion
    annot_precur = True # precursor ion
    annot_IMT = True # internal ion
    annot_Jenecur';
    y' : annot_yb,
    'a' : annot_yc,
    'c' : annot_zc,
    'c' : annot_zc,
    'c' : annot_ITI,
    'IM' : annot_IMT,
    'IM' : annot_IMT,
    'IM' : annot_IMT,
    'IM' : annot_IMT,
    'IM' : annot_IM',
    'MS2 mass tolerance (ppm)

ms2_ppm = 15

# Signal-to-noise (SNR) filter for MS2 spectrum
apply_SNR = True # Apply_SNR filter
SNR = 2 # SNR threshold
low = 0.05 # Define low x% intensity as baseline noise level

# Maximum charge state of sequence ions
    max_charge = 2 # 2, 3, ... 'max'

# Maximum number of neutral loss from a single ion
    max_NL = 3
```

Frag_method	Fragmentation method used in the input data (value = 'HCD', 'CID', 'ETD', or 'ECD').
	If set as 'HCD' or 'CID', y-ion, b-ion, and a-ion will be generated for theoretical
	spectrum. If set as 'ETD' or 'ECD', z-ion and c-ion will be generated for theoretical
	spectrum. Commonly, precursor, internal, and immonium ions will be generated for all
	these fragmentation methods.
ms2_ppm	MS2 level mass tolerance in ppm (default = 15 ppm).
apply_SNR	Determine whether to apply signal-to-noise filter to remove noise peaks (value = True or
	False; default = True).
SNR	Signal threshold level. The average intensity of noise peaks (as defined in 'low')
	multiplied by this signal threshold level will be the final signal-to-noise filter. If
	'apply_SNR' = True, all peaks below the signal-to-noise filter will be removed (default
	= 2).
low	Proportion of MS2 peaks regarded as noise. If 'apply_SNR' = True, all peaks below this
	noise level will be treated as noise (default = 0.05).
max_charge	Maximum charge state of fragment ions (default $= 2$).
max_NL	Maximum number of neutral losses from a single ion (default = 3).

Englished Englished and in the input data (rules (HCD) (CID) (ETD) on (ECD))

B. Loading input data

Example input search result file:

Format for peptide sequences should follow that of MS-GF+ search result. Specifically, modification delta masses should be rounded up to third decimal places. Currently allowed modifications are as follows:

Modification	Mod on peptide
Carbamidomethyl Cys	C+57.021
Oxidation Met	M+15.995
Deamidated Asn	N+0.984
Deamidated Gln	Q+0.984
Citrullinated Arg	R+0.984
Pyro-Glu from Glu	E-17.027
Pyro-Glu from Gln	Q-18.011
iTRAQ 4plex Lys	K+144.102
iTRAQ 8plex Lys	K+304.205
TMT Lys	K+229.163
iTRAQ 4plex N-term	+144.102
iTRAQ 8plex N-term	+304.205
TMT N-term	+229.163
Acetyl N-term	+42.011

B. Loading input data

A snapshot of codes for loading input files:

1. Input files

```
In []: # Set current working directory
PATH = "F:/Project/"
os.chdir(PATH)

In []: # Input files
spec_files = glob.glob('spectrum_file.mgf') # MGF file(s)
search_files = glob.glob('search_result_file.csv') # Search result file(s)
```

Users can upload local input files via the following steps:

- Set the directory in which the input files are located.
- Type the input filenames. In case of multiple MGF or search result files in the same directory, type in '*.mgf' or '*.csv'.

A snapshot of loaded MGF file:

A snapshot of loaded search result file:

Step 2: Theoretical spectrum generation

Theoretical spectrum is generated for each Cit PSM in the following order:

- Singly charged sequence and internal ions (e.g., *y* and *b*-ions for sequence or internal ions).
- Neutral loss variants of precursor, sequence, and internal ions.
- Multiply charged sequence ions.
- Immonium ions.

A snapshot of input data:

seq_Pepti	mod_Peptide	Peptide	Title	:
YETSGIGEAN	YETSGIGEArVK	YETSGIGEAR+0.984VK	20160312_02_A1.10012.10012.2 File:"20160312_02	0
NIVTPrTPPPSQG	NIVTPrTPPPSQGK	NIVTPR+0.984TPPPSQGK	20160312_02_A1.10045.10045.2 File:"20160312_02	1
NIVTPrTPPPSQC	NIVTPrTPPPSQGK	NIVTPR+0.984TPPPSQGK	20160312_02_A1.10116.10116.3 File:"20160312_02	2
NIVTPrTPPPSQC	NIVTPrTPPPSQGK	NIVTPR+0.984TPPPSQGK	20160312_02_A1.10222.10222.2 File:"20160312_02	3
NIVTPrTPPPSQC	NIVTPrTPPPSQGK	NIVTPR+0.984TPPPSQGK	20160312_02_A1.10334.10334.3 File:"20160312_02	4
DSrSGSPmA	DSrSGSPmAR	DSR+0.984SGSPM+15.995AR	20160312_02_A1.323.323.2 File:"20160312_02_A1	94
GHIEWPDFLSHESLLLLqqLrPQNSLL	GHIEWPDFLSHESLLLLqqLrPQNSLLR	GHIEWPDFLSHESLLLLQ+0.984Q+0.984LR+0.984PQNSLLR	20160312_02_A1.32378.32378.4 File:"20160312_02	95
VSrVASF	VSrVASPK	VSR+0.984VASPK	20160312_02_A1.3280.3280.2 File:"20160312_02_A	96
ArHRKTGqKVAI	ArHRKTGqKVALK	AR+0.984HRKTGQ+0.984KVALK	20160312_02_A1.33227.33227.2 File:"20160312_02	97
RERVrQI	RERVrQLR	RERVR+0.984QLR	20160312_02_A1.33883.33883.2 File:"20160312_02	98

In [35]: df_pep_mz

Out[35]:

	Title	Peptide	mod_Peptide	seq_Peptic
0	20160312_02_A1.10012.10012.2 File:"20160312_02	YETSGIGEAR+0.984VK	YETSGIGEArVK	YETSGIGEAN
1	20160312_02_A1.10045.10045.2 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	NIVTPrTPPPSQC
2	20160312_02_A1.10116.10116.3 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	NIVTPrTPPPSQC
3	20160312_02_A1.10222.10222.2 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	NIVTPrTPPPSQC
4	20160312_02_A1.10334.10334.3 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	NIVTPrTPPPSQC
94	20160312_02_A1.323.323.2 File:"20160312_02_A1	DSR+0.984SGSPM+15.995AR	DSrSGSPmAR	DSrSGSPmA
95	20160312_02_A1.32378.32378.4 File:"20160312_02	GHIEWPDFLSHESLLLLQ+0.984Q+0.984LR+0.984PQNSLLR	GHIEWPDFLSHESLLLLqqLrPQNSLLR	GHIEWPDFLSHESLLLLqqLrPQNSLL
96	20160312_02_A1.3280.3280.2 File:"20160312_02_A	VSR+0.984VASPK	VSrVASPK	VSrVASF
97	20160312_02_A1.33227.33227.2 File:"20160312_02	AR+0.984HRKTGQ+0.984KVALK	ArHRKTGqKVALK	ArHRKTGqKVAL
98	20160312_02_A1.33883.33883.2 File:"20160312_02	RERVR+0.984QLR	RERVrQLR	RERVrQL
99 1	ows × 20650 columns			
4)

In [36]: df_pep_label

Out[36]:

seq_Peptic	mod_Peptide	Peptide	Title	
YETSGIGEAN	YETSGIGEArVK	YETSGIGEAR+0.984VK	20160312_02_A1.10012.10012.2 File:"20160312_02	0
NIVTPrTPPPSQG	NIVTPrTPPPSQGK	NIVTPR+0.984TPPPSQGK	20160312_02_A1.10045.10045.2 File:"20160312_02	1
NIVTPrTPPPSQC	NIVTPrTPPPSQGK	NIVTPR+0.984TPPPSQGK	20160312_02_A1.10116.10116.3 File:"20160312_02	2
NIVTPrTPPPSQG	NIVTPrTPPPSQGK	NIVTPR+0.984TPPPSQGK	20160312_02_A1.10222.10222.2 File:"20160312_02	3
NIVTPrTPPPSQC	NIVTPrTPPPSQGK	NIVTPR+0.984TPPPSQGK	20160312_02_A1.10334.10334.3 File:"20160312_02	4
DSrSGSPmA	DSrSGSPmAR	DSR+0.984SGSPM+15.995AR	20160312_02_A1.323.323.2 File:"20160312_02_A1	94
GHIEWPDFLSHESLLLLqqLrPQNSLL	GHIEWPDFLSHESLLLLqqLrPQNSLLR	GHIEWPDFLSHESLLLLQ+0.984Q+0.984LR+0.984PQNSLLR	20160312_02_A1.32378.32378.4 File:"20160312_02	95
VSrVASF	VSrVASPK	VSR+0.984VASPK	20160312_02_A1.3280.3280.2 File:"20160312_02_A	96
ArHRKTGqKVAL	ArHRKTGqKVALK	AR+0.984HRKTGQ+0.984KVALK	20160312_02_A1.33227.33227.2 File:"20160312_02	97
RERVrQL	RERVrQLR	RERVR+0.984QLR	20160312_02_A1.33883.33883.2 File:"20160312_02	98
			ows × 20650 columns	99 r
+				4

Step 3: Match theoretical spectrum with experimental spectrum

Theoretical and experimental spectra are compared, and only the matched ions are retained. A snapshot of input data:

A snapshot of output data (matched ions):

Out[39]:

	Title	Peptide	mod_Peptide	Pep_length	Charge	mz_Precurs
0	20160312_02_A1.10012.10012.2 File:"20160312_02	YETSGIGEAR+0.984VK	YETSGIGEArVK	12	2	655.8335
1	20160312_02_A1.10045.10045.2 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	14	2	746.9100
2	20160312_02_A1.10116.10116.3 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	14	3	498.2760
3	20160312_02_A1.10222.10222.2 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	14	2	746.9100
4	20160312_02_A1.10334.10334.3 File:"20160312_02	NIVTPR+0.984TPPPSQGK	NIVTPrTPPPSQGK	14	3	498.2760
94	20160312_02_A1.323.323.2 File:"20160312_02_A1	DSR+0.984SGSPM+15.995AR	DSrSGSPmAR	10	2	540.7411
95	20160312_02_A1.32378.32378.4 File:"20160312_02	GHIEWPDFLSHESLLLLQ+0.984Q+0.984LR+0.984PQNSLLR	GHIEWPDFLSHESLLLLqqLrPQNSLLR	28	4	836.4430
96	20160312_02_A1.3280.3280.2 File:"20160312_02_A	VSR+0.984VASPK	VSrVASPK	8	2	422.7485
97	20160312_02_A1.33227.33227.2 File:"20160312_02	AR+0.984HRKTGQ+0.984KVALK	ArHRKTGqKVALK	13	2	747.9473
98	20160312_02_A1.33883.33883.2 File:"20160312_02	RERVR+0.984QLR	RERVIQLR	8	2	557.3341
99 r	ows × 289 columns					
4						+

Step 4: Cit diagnostic ion analysis

Annotations and occurrence numbers of citrullination diagnostic ions are reported for each Cit PSM.

A snapshot of input data:

A snapshot of output data (binary occurrence for the immonium ion and occurrence numbers for the other diagnostic ions):

el	precNL_label	seqNL_label	 Total_NL_count	precNL_count	seqNL_count	intNL_count	Total_INT_count	Dipeptide_count	Tripeptide_count	IM_NH3_coun
3- ιΓ- ιΓ-		y5-43- NH3++,y3- 43,y4- 43,y10-43- H2O- H2O++,y10- 4	 48	0	23	25	10	4	6	
T- 'r-		y10-43- H2O++,y10- 43++,y11-43- H2O++,y11- 43++,y1	 38	0	15	23	14	8	6	
T- 'r-		b7-43-H2O	 20	0	1	19	15	9	6	
T- 'r-		y9-43- H2O++,y9- 43++,y10- 43- H2O++,y10- 43++,y11	 56	0	23	33	17	11	6	
T- 'r-		b7-43-H2O	 26	0	1	25	14	7	7	

Step 5: Evaluation of Cit PSMs by EN model

The EN model developed in the study is applied to evaluate the validity of each Cit PSM.

A snapshot of input data:

[Final_res	ult								
el precNL_la	abel seqNL_label	Total_NL_count	precNL_count	seqNL_count	intNL_count	Total_INT_count	Dipeptide_count	Tripeptide_count	IM_NH3_cour
3- u- u-	y5-43- NH3++,y3- 43,y4- 43,y10-43- H2O- H2O++,y10- 4	48	0	23	25	10	4	6	
T- 'r- 	y10-43- H2O++,y10- 43++,y11-43- H2O++,y11- 43++,y1	38	0	15	23	14	8	6	
T- [}] r- 	b7-43-H2O	20	0	1	19	15	9	6	
T- 'r- :	y9-43- H2O++,y9- 43++,y10- 43- H2O++,y10- 43++,y11	56	0	23	33	17	11	6	
T- 'r- :	b7-43-H2O	26	0	1	25	14	7	7	

A snapshot of output data (Cit_probability, probability that a PSM contains Cit; and Cit_prediction = 1 when Cit_probability > 0.5):

Step 5: Evaluation of Cit PSMs by EN model

Example output CSV file including the prediction results (Cit_probabilty and Cit_prediction):

A							H 1																Y	
	Title	Peptide n	nod_Peptide	Pep_length	Charge	mz_Precursor	Cit_Count Total_NL_	label precNL_lab	el seqNL_lab	el intNL_lab	oel Total_INT_lab	el Dipeptide_lab	el Tripeptide_la	sbe(IM_NH3_label	Total_NL_count	precNL_count	seqNL_count	intNL_count	Total_INT_coun	t Dipeptide_count	Tripeptide_count	IM_NH3_coun	t Cit_probabilit	y Cit_prediction
	0 20160312	YETSGIGE Y	ETSGIGEA/\	12		2 655.8335189	1 Ar-43,y5	43-NH3++,EAr-4	3-Fy5-43-NH	3+ Ar-43,EA	r-4 Ar-43,Ar-NH3	A Ar-43,Ar-NH3,	Ar, ArV-NH3,ArV	EAr-H2O,EAr-NH3	42		22	20	9	4	5		,	
	1 20160312	NIVTPR+0 N	IVTPrTPPPS	14		2 746.9100969	1 rT-43-H2	D,Pr-43,rT-43,TPr-	43 y10-43-H2	O rT-43-H2	O,(rT-43-H2O,Pi	-4 rT-43-H2O,Pr-	43 TPr-43-H2O,I	PrT-43-H2O,rTP-43	31		14	17	14		6			
	2 20160312	NIVTPR+0 N	IVTPrTPPPS	14		3 498.2760063	1 rT-43-H2	D,Pr-43,rT-43,TPr-	43-H2O,PrT-	43 rT-43-H2	O,(rT-43-H2O,Pi	-4 rT-43-H2O,Pr-	43 TPr-43-H2O,I	PrT-43-H2O,rTP-43	17		0	17	14		6	-		
	3 20160312	NIVTPR+0 N	IVTPrTPPPS	14		2 746.9100969	1 rT-43-H2	O,Pr-43,rT-43,TPr-	45y9-43-H20	0+ rT-43-H2	O,(rT-43-H2O,Pt	-4 rT-43-H2O,Pr-	43 TPr-43-H2O,I	PrT-43-H2O,rTP-45	47		19	28	16	10	6	-		
	4 20160312	NIVTPR+0 N	IVTP/TPPPS	14		3 498.2760063	1 rT-43-H2	O,Pr-43,rT-43,TPr-	45 b7-48-H20	O rT-43-H2	O, (rT-43-H2O, Pr	-4 rT-43-H2O,Pr-	43 TPr-43-H2O,I	PrT-43-H2O,rTP-45	21		1	20	15	1 7	6	-)	
	5 20160312	TPSTAHLR T	PSTAHL/VPF	- 11		3 403.2318493	1 TAHLr-43	-H2O		TAHLr-45	3-H HLr-CO		HLr-CO		- 1		0	- 1	1		1	-	0.42575306	
	6 20160312	NIVTPR+0 N	IVTPYTPPPS	14		2 746.9100969	1 Pr-43,TPr-	43-H2O,PYT-43-I	H2(y10-43-H2	O Pr-43,TPr	-45 Pr-43, Pr-NH3	rT Pr-43,Pr-NH3,r	T- TPr-43-H2O,I	PrT-43-H2O,rTP-45	27		11	16	12		6	-	,	
	7 20160312	AQSR+0.9 A	QSrEQLAAL	- 11		2 608.3387759	1 Sr-43-H2	D,Sr-43,rE-43-H2	O,(y8-43-NH)	3+ Sr-43-H2	O, Sr-43-H2O, St	-4 Sr-43-H2O,Sr-	43 QSr-43-NH3,	SrE-43-H2O,SrE-4	23		7	16	12		6			
	8 20160312	DSR+0.98-D	SrSGSPmAF	10		2 540.7411109	1 rS-43-H2	D,Sr-43-H2O,rS-4	3,5 b3-43-H20	O, I rS-43-H2	O,1 rS-43-H2O,St	-4 rS-43-H2O,Sr-	43 rSG-H2O-NH	13,r5 IM(r)-NH3	8		4	4		. 6	2		0.999999059	9
	9 20160312	NIVTPR+0 N	IVTPrTPPPS	14		2 746.9100969	1 Pr-43.TPr-	43-H2O.PrT-43-I	12/v10-43-H2	O Pr-43.TPr	-45 Pr-43 Pr-NH3	rT Pr-43.Pr-NH3.r	T- TPr-43-H2O.	PrT-43-H2O,rTP-45	16		9 4	12		4	. 5		0.9999999	7
	10 20160312	O+0984KI n	Krl nAmnK	9		2 575,7928139	1 rLa-43		-			rL Kr-H2O-NH3			- 1		0	1			1		0.587272164	3
	11 20160312					3 566 6354786		-43 GSPR/P-43 b*	3-b13-43-59					RrP-42-NH3,PRr-4	14		2	12			1		0.9999958	
	12 20160312					2 495.2659454	2										0						0.12708300	,
	13 20160312					2 512.7607839	1										0						0.12708300	
	14 20160312					2 747,4021049		13 TDr 43 M2O Dr	C 4910 42 M2	O Pr 43 rT	43 Dr 43 eT 43 D	N Dr. 43 rT. 43 Dr.	NITE 42 H2OI	PrT-43-H2O,rTP-43	21			15						
	15 20160312					2 798.8521184	1 rE-43-H2		, y 10-43-11a			-H Ar-NH3.rE-43-		11-43-112-0,111-42				1					0.58727216	
	16 20160312					3 361.8689106		PKD-43-H2O			PKI rP.rPP-43		rPP_43					,					0.790608964	
	17 20160312			10		2 617.3295629		-43-N Precursor-		rgVlcVT-		IF.	rgV				, ,	1			1		0.663001774	
						2 638.8469649						1 5- 12 1120 5-		C-1 10.000 10.00	21		10						0.003001774	
	18 20160312					3 493.9078709			r 05-45-H2			-H Sr-43-H2O,Sr-	na 151-45-naU;	SIA-IIM(I)-INITS	61		10						0.27866365	
	19 20160312					2 639 3244769	1 ErqnKQL-			ErqnKQL					52		1 0				0 11		0.27866365	
	20 20160312					2 744.3891944		H2O ADLI-43 ADL				IS Lr-NH3:rE-NH		MG_NH3,MG,Mr	3						2		0.97361704	
	21 20160312																	5						
	22 20160312					2 540.7411109						-4 rS-43-H2O,Sr-			11		. 6				2		0.9999999	
	23 20160312					3 797.7173133								PSSSR-43,/PSSSRS-			3	19			0		0.9999999	
	24 20160312					4 516.005272		-43,HAr-43,DHAr					ArH-43,HAr-4		18			13		1	1		0.9999995	
	25 20160312					3 687.6710876		-43,HAr-43,DHAr					ArH-43,HAr-4		18					1	1		0.9999995	
	26 20160312					2 809.4263074						r-1 rA-43,Ar-43,Ar			11		0			1 2	2		0.99998897	
	27 20160312	DSR+0.98 D	SrSGSPmAP			2 540.7411109	1 rS-43-H2	0,Sr=43=H2O,rS=4	I3,∜b3-43-H20	O,IrS-43-H2	O,(rS-43-H2O,Si	-4 rS-43-H2O,Sr-	43 rSG-H2O-NH	13,r\$ IM(r)-NH3	6		2	4		6	2		0.99999337	
	28 20160312	ITPGAR+0 IT	PGArGAFSE			2 763.8784579	1 rG-43,Ar-	43,GA Precursor-	43-y9-43-NH	3+ rG-43,Ar-	-43 rG-43,Ar-43,r	G- rG-43,Ar-43,rG	-NGAr-43,ArG-4	43,rGA-43,ArG-NH			16			5	3			
	29 20160312	LEMVVVN L	EMVVVNGr	14		3 500.5932293	1 rGD-43,VI	NGrGD-43-NH3,y	7 y7-43-H20	D rGD-43,V	NG Gr-NH3,rG-N	HE Gr-NH3,rG-NF	3 GrG-CO,rGD	-43	5		1	4		1	2		0.992668379	9
	30 20160312,	STLAR+0.5 S	TLANVIVDK	10		2 551.8275124	1 Ar-43,ArV	-43,L4 Precursor-	43-y6-43-NH	3+ Ar-43,Ar\	/-4 Ar-43,Ar-NH3	A Ar-43,Ar-NH3,	Ar, ArV-43,LAr-4	3,ArV-NH3,LAr-NH	30		14	14	15	. 6	9)	
	31 20160312	Q+0.984A q	APRAAPAAF	16		4 436.2305062	1								0		0	0) () (0		0.12708300	7
	32 20160312	STLAR+0.9S	TLANVIVDK	10		2 551.8275124	1 Ar-43,rV	43,LAr Precursor-	43 y6-43++,y	7- Ar-43,rV-	43, Ar-43, Ar-NH3	r\ Ar-43,Ar-NH3,	V LAr-43,ArV-N	IH3,LAr+NH3,ArV,LA	18		7	10	15		7			
	33 20160312	DSR+0.98-D	SrSGSPmAF	10		2 540.7411109	1 rS-43-H2	0,Sr-43-H2O,rS-4	3,5b3-43-H20	O, IrS-43-H2	O,1rS-43-H2O,Si	-4 rS-43-H2O,Sr-	43 rSG-H2O-NH	13 IM(r)-NH3	8		4	4	1		1		0.9999819	3
	34 20160312	GAAGR+0 G	AAGrPLELSI	13		3 463.9094346	1 AGr-43,rP	LE-43,GrPLELSD-	43	AGr-43,ri	PLE AGr-43,rP,AG	r-CrP	AGr-43,AGr-0	CO,AGr	3		0	3	4		3		0.97361704	3
	35 20160312	ILSDDVPIRIL	SDDVPIrDY	12		3 488.2566083	1 Pir-43,VPI	rDY-43-H2O		Pir-43,VP	IrD Ir-NH3,rD-H2	O, Ir-NH3,rD-H20	Pir-43,irD-H2	O-NH3,Pir-NH3,Irt	2		0	2			. 6		0.994727688	3
	36 20160312	DSR+0.98 D	SrSGSPmAF	10		2 540.7411109	1 rS-43-H2	O.Sr-43-H2O.rS-4	3.5 b3-43-H20	O.IrS-43-H2	O. rS-43-H2O.St	-4 rS-43-H2O.Sr-	43 rSG-H2O-NH	13 IM(r)-NH3	6) 2	4	1 7		1		0.99998727	7
	37 20160312	FADLSEAA F	ADLSEAANH	16		2 889,4273694	1 rN-43-NH	3.Nr-43-NH3.Nr-	43 y10-43++	v1 rN-43-Ni	H3, rN-43-NH3,N	r rN-43-NH3.Nr	4 ANr-43-NH3.	ANr-NH3-NH3,ANi	19		10	9		1	3		0.9999999	5
	38 20160312			16		3 681,0283229		3 FKrmNYS-43-H					FKY-NH3-NH3		7		1	6	1		1		0.99615143	
	39 20160312			11		3 470.9069253	1				Lr-NH3Lr	Lr-NH3.Lr					0						0.34905401	
	40 20160312					3 573.9607429	1 Fr.43LH2	O Fr. 43 DIFrP. 43	rt(v10.43.H2	O Fr.43LH2		-N Er-43-H2O.rP-	NEIFI-HZO				3				1		0.99989269	
	41 20160312					3 756.3858893								3,TPr-NH3,PrV,TPr	29)	
		DI Analys				5 1303030093	E F1-93,F1V		-5,19,15145++,	g 				2,111-1-12,719,171	4.5		, 14				,			

Descriptions of the columns in the output CSV file:

Column	Description
Title	MS2 spectrum title
Peptide	Original peptide sequence
mod_peptide	Simplified peptide sequence with a predefined set of symbols for modifications
Pep_length	Peptide length
mz_Precursor	Theoretical precursor m/z
Cit_Count	Number of citrullinated sites
Total_NL_label	Annotations of all diagnostic neutral loss ions
precNL_label	Annotations of precursor neutral losses
seqNL_label	Annotations of sequence ion neutral losses
intNL_label	Annotations of internal ion neutral losses
Total_INT_label	Annotations of all diagnostic internal ions
Dipeptide_label	Annotations of diagnostic dipeptides
Tripeptide_label	Annotations of diagnostic tripeptides
IM_NH3_label	Annotation of IM(Cit)-NH ₃
Total_NL_count	Number of all diagnostic neutral loss ions
precNL_count	Number of precursor neutral losses
seqNL_count	Number of sequence ion neutral losses
intNL_count	Number of internal ion neutral losses
Total_INT_count	Number of all diagnostic internal ions
Dipeptide_count	Number of diagnostic dipeptides
Tripeptide_count	Number of diagnostic tripeptides
IM_NH3_count	Number of IM(Cit)-NH ₃
Cit_probability	Probability (P) of citrullination status calculated by the EN model (HCD data only)
Cit_prediction	Classification of citrullination status using a P cutoff >0.5 (HCD data only)

Chapter 2. Prediction of False Negative Citrullinated PSMs

Download

To download Citrullination analysis.ipynb:

- Go to https://github.com/Sunghyun-Huh/Citrullination-Diagnostic-Ion-Analysis.
- Click on 'False negative prediction.ipynb' among the listed files.
- Click 'Raw' on the top right panel.
- Press ctrl+s and type 'False negative prediction.ipynb' to keep the ipynb extension.

Requirements

Python requirements

- Python version 3.6 or greater
- Libraries needed: pandas, numpy, pyteomics, itertools, collections, statistics, re, os, glob, scipy.stats

Necessary Files

• Unmodified peptide file: The input file must be a CSV file containing the following column (see **Step 1** for the details):

'Peptide' Peptide sequence with modification delta mass rounded up to third decimal places

• Total PSM file: The input file must be a CSV file containing the following column (see **Step 1** for the details):

'Title' MS2 spectrum title as written in MGF file

• Spectrum file: The spectrum file must be a Mascot Generic Format (MGF) file(s) containing either total MS2 spectra or MS2 spectra unassigned by database searching only. For the former case, the codes will automatically search for unassigned MS2 spectra.

Overview flowchart

intensity_coverage

A. Setting initial parameters

The initial parameter settings:

0. Initial parameters

```
In [95]: # Fragmentation method used
Frag_method = 'HCD' # HCD, CID, ECD

# Jon types for theoretical spectrum generation
ion_type = ['Precur', 'y', 'b', 'a', 'z', 'c', 'INT', 'IM']

# Generate each ion type
if Frag_method == 'HCD' or Frag_method == 'CID':
    annot_yb = Frag = ', c.ion
    elif Frag_method == 'ETD' or Frag_method == 'ECD':
        annot_yb = False # y., b., a.ion
    elif Frag_method == 'ETD' or Frag_method == 'ECD':
        annot_yb = False # y., b., a.ion
    annot_pto == False # y., b., a.ion
    annot_IMT == True # internal ion
    annot_IMT == True # internal ion
    annot_IMT == True # internal ion
    annot_IMT == False # y., b., a.ion
    annot_IMT == False # y., a.ion
    annot_IMT == F
```

Frag_method	Fragmentation method used in the input data (value = 'HCD', 'CID', 'ETD', or
	'ECD'). If set as 'HCD' or 'CID', y-ion, b-ion, and a-ion will be generated for
	theoretical spectrum. If set as 'ETD' or 'ECD', z-ion and c-ion will be generated for
	theoretical spectrum. Commonly, precursor, internal, and immonium ions will be
	generated for all these fragmentation methods.
ms1_ppm	MS1 level mass tolerance in ppm (default = 10 ppm).
ms2_ppm	MS2 level mass tolerance in ppm (default = 15 ppm).
apply_SNR	Determine whether to apply signal-to-noise filter to remove noise peaks (value = True
	or False; default = True).
SNR	Signal threshold level. The average intensity of noise peaks (as defined in 'low')
	multiplied by this signal threshold level will be the final signal-to-noise filter. If
	'apply_SNR' = True, all peaks below the signal-to-noise filter will be removed
	(default = 2).
low	Proportion of MS2 peaks regarded as noise. If 'apply_SNR' = True, all peaks below
	this noise level will be treated as noise (default = 0.05).
max_charge	Maximum charge state of fragment ions (default $= 2$).
max_NL	Maximum number of neutral losses from a single ion (default $=$ 3).

Threshold for intensity coverage filter. Spectra with [sum of annotated intensities / sum of total intensities] smaller than this threshold will be filtered out (default = 0.2).

B. Loading input data

Example Unmodified peptide file:

A
Peptide
TQEEAIVK
TSFADGK
KYEGDIK
KYEGDIK
KYEGDIK
SKDQGATYQK
TQEEAIVK
TQEEAIVK
YTPVEEK
TSFADGK
SKDQGATYQK
NGAAQAVTAENK
LYENTQDYDK
ITTAQEM+15.995YDK

Format for peptide sequences should follow that of MS-GF+ search result. Specifically, modification delta masses should be rounded up to third decimal places. Currently allowed modifications are as follows:

Modification	Mod on peptide
Carbamidomethyl Cys	C+57.021
Oxidation Met	M+15.995
Deamidated Asn	N+0.984
Deamidated Gln	Q+0.984
Citrullinated Arg	R+0.984
Pyro-Glu from Glu	E-17.027
Pyro-Glu from Gln	Q-18.011
iTRAQ 4plex Lys	K+144.102
iTRAQ 8plex Lys	K+304.205
TMT Lys	K+229.163
iTRAQ 4plex N-term	+144.102
iTRAQ 8plex N-term	+304.205
TMT N-term	+229.163
Acetyl N-term	+42.011

B. Loading input data

Example Total PSM file:

A
Title
QEHF1_10122_DNL.4368.4368.6 File:"QEHF1_10122_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4368"
QEHF1_10122_DNL.4396.4396.6 File:"QEHF1_10122_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4396"
QEHF1_10123_DNL.4596.4596.6 File:"QEHF1_10123_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4596"
QEHF1_10123_DNL.4434.4434.6 File:"QEHF1_10123_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4434"
QEHF1_10124_DNL.4668.4668.6 File:"QEHF1_10124_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4668"
QEHF1_10125_DNL.4356.4356.6 File:"QEHF1_10125_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4356"
QEHF1_10125_DNL.4383.4383.6 File:"QEHF1_10125_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4383"
QEHF1_10125_DNL.4601.4601.6 File:"QEHF1_10125_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4601"
QEHF1_10247_DNL.4239.4239.6 File:"QEHF1_10247_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4239"
QEHF1_10250_DNL.4480.4480.6 File:"QEHF1_10250_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4480"
QEHF1_10250_DNL.4272.4272.6 File:"QEHF1_10250_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4272"
QEHF1_10275_DNL.3539.3539.6 File:"QEHF1_10275_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=3539"
QEHF1_10280_DNL.4501.4501.6 File:"QEHF1_10280_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4501"
QEHF1_10280_DNL.4474.4474.6 File:"QEHF1_10280_DNL.raw", NativelD:"controllerType=0 controllerNumber=1 scan=4474"

B. Loading input data

A snapshot of codes for loading input files:

1. Input files

```
In [3]: # Set current working directory
PATH = "F:/Project/"
os.chdir(PATH)

In [4]: # Input files
spec_files = glob.glob('*.mgf')[0:5] # MGF file(s)
df_UnmodR = pd.read_csv("UnmodR_peptide.csv") # UnmodR peptides w/o Cit counterpart peptides
df_total = pd.read_csv("Total_peptide.csv") # Total identified peptides
```

Users can upload local input files via the following steps:

- Set the directory in which the input files are located.
- Type the input filenames. In case of multiple MGF files in the same directory, type in '*.mgf'.

A snapshot of loaded MGF file:

]:				_	
	m/z array	intensity array	Title	exp_Precursor	Charge
C	[108.9069509, 108.9075611, 108.9081714, 111.03	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 18287.58203125,	QEHF1_10098_DNL.2.2.1 File:"QEHF1_10098_DNL.ra	371.101932	
1	[108.9068349, 108.9074451, 108.9080554, 110.10	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1604.9095458984	QEHF1_10098_DNL.3.3.1 File:"QEHF1_10098_DNL.ra	445.121060	
2	[108.9068088, 108.907419, 108.9080293, 121.956	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2023.1558837891	QEHF1_10098_DNL.4.4.1 File:"QEHF1_10098_DNL.ra	536.166752	1
3	[108.9067553, 108.9073656, 108.9079758, 149.03	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 61633.01953125,	QEHF1_10098_DNL.5.5.1 File:"QEHF1_10098_DNL.ra	462.147507	1
4	[108.9068558, 108.907466, 108.9080763, 116.332	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1553.5465087891	QEHF1_10098_DNL.6.6.1 File:"QEHF1_10098_DNL.ra	593.159294	1

34469	[108.9067848, 108.907395, 108.9080053, 110.335	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2188.8542480469	QEHF1_10102_DNL.8264.8264.1 File:"QEHF1_10102	751.511179	1
34470	[108.9067921, 108.9074023, 108.9080126, 112.55	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3034.580078125,	QEHF1_10102_DNL.8265.8265.1 File:"QEHF1_10102	1143.789214	1
34471	[108.9068589, 108.9074691, 108.9080794, 111.03	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2754.2233886719	QEHF1_10102_DNL.8266.8266.1 File:"QEHF1_10102	359.314999	1
34472	[108.9067433, 108.9073536, 108.9079638, 121.02	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1498.1771240234	QEHF1_10102_DNL.8267.8267.1 File:"QEHF1_10102	407.300978	1
34473	[108.9066313, 108.9072416, 108.9078518, 111.03	[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2158.365234375,	QEHF1_10102_DNL.8268.8268.1 File:"QEHF1_10102	387.192683	1

A snapshot of loaded Unmodified peptide file:

A snapshot of loaded Total PSM file:

df_total

	Title
0	QEHF1_10122_DNL.4368.4368.6 File:"QEHF1_10122
1	QEHF1_10122_DNL.4396.4396.6 File:"QEHF1_10122
2	QEHF1_10123_DNL.4596.4596.6 File:"QEHF1_10123
3	QEHF1_10123_DNL.4434.4434.6 File:"QEHF1_10123
4	QEHF1_10124_DNL.4668.4668.6 File:"QEHF1_10124
31391	QEHF3_06513_DNL.9237.9237.1 File:"QEHF3_06513
31392	QEHF3_06513_DNL.6988.6988.1 File:"QEHF3_06513
31393	QEHF3_06513_DNL.9195.9195.1 File:"QEHF3_06513
31394	QEHF3_06513_DNL.3945.3945.1 File:"QEHF3_06513
31395	QEHF3_06513_DNL.6917.6917.1 File:"QEHF3_06513
31396 r	rows × 1 columns

Step 2: Theoretical spectrum generation

Theoretical spectrum is generated for each Cit peptide as described in **Chapter 1**:

A snapshot of input data:

	Peptide	mod_Peptide	seq_Peptide	Charge	Pep_length	mz_Precursor	Cit_Count	seq_y_1	seq_y_2	seq_y_3	 mz_IM- NH3_14	mz_IM- NH3_15	
0	VPAPVDGER+0.984	VPAPVDGEr	VPAPVDGEr	1	9	940.473987	1	г	rE	rEG	 NaN	NaN	ı
1	NHNLYIAR+0.984	NHNLYIAr	NHNLYIAr	1	8	1001.516845	1	r	rA	rAl	 NaN	NaN	ı
2	NHNLYIAR+0.984	NHNLYIAr	NHNLYIAr	2	8	501.262335	1	Г	rA	rAl	 NaN	NaN	ı
3	TAIIR+0.984YNYASGK	TAIIrYNYASGK	TAIIrYNYASGK	1	12	1357.711574	1	K	KG	KGS	 NaN	NaN	ı
4	TAIIR+0.984YNYASGK	TAIIrYNYASGK	TAIIrYNYASGK	2	12	679.359699	1	K	KG	KGS	 NaN	NaN	Į
204	YTFTMRR+0.984	YTFTMRr	YTFTMRr	2	7	488.240015	1	г	rR	rRM	 NaN	NaN	Į
205	TLEDNVALR+0.984ER	TLEDNVALrER	TLEDNVALrER	1	11	1316.681019	1	R	RE	REr	 NaN	NaN	Į
206	TLEDNVALR+0.984ER	TLEDNVALrER	TLEDNVALrER	2	11	658.844422	1	R	RE	REr	 NaN	NaN	Į
207	TLEDNVALRER+0.984	TLEDNVALREr	TLEDNVALREr	1	11	1316.681019	1	г	rE	rER	 NaN	NaN	Į
207					44	050 044400			_	-50		NaN	ı
208 209 r	TLEDNVALRER+0.984 ows × 6560 columns ep_label	TLEDNVALREr	TLEDNVALRER	2	11	658.844422	1	r	rE	rER	 NaN	Naiv	
208 209 r	ows × 6560 columns	TLEDNVALREr mod_Peptide				mz_Precursor					mz_IM- NH3_14	mz_IM-	
208 209 r	ows × 6560 columns										 mz_IM-	mz_IM- NH3_15	5
208 209 r df_p	ows × 6560 columns ep_label Peptide	mod_Peptide	seq_Peptide	Charge	Pep_length	mz_Precursor	Cit_Count	seq_y_1	seq_y_2	seq_y_3	 mz_IM- NH3_14	mz_IM-	5
208 209 r df_p	ows × 6560 columns ep_label Peptide VPAPVDGER+0.984	mod_Peptide VPAPVDGEr	seq_Peptide VPAPVDGEr	Charge	Pep_length	mz_Precursor Precursor	Cit_Count	seq_ y_1 y1	seq_y_2 y2	seq_y_3 y3	 mz_IM- NH3_14 NaN	mz_IM- NH3_15 NaN	5
208 209 r df_p 0 1 2	ows × 6560 columns ep_label Peptide VPAPVDGER+0.984 NHNLYIAR+0.984	mod_Peptide VPAPVDGEr NHNLYIAr NHNLYIAr	seq_Peptide VPAPVDGEr NHNLYIAr NHNLYIAr	Charge	Pep_length 9 8	mz_Precursor Precursor Precursor	Cit_Count	seq_y_1 y1 y1	seq_y_2 y2 y2	seq_y_3 y3 y3	 mz_IM- NH3_14 NaN NaN	mz_IM- NH3_15 NaN NaN	5
208 209 r df_p 0 1 2 3	ows × 6560 columns ep_label Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 NHNLYIAR+0.984	mod_Peptide VPAPVDGEr NHNLYIAF NHNLYIAF TAIIrYNYASGK	seq_Peptide VPAPVDGEr NHNLYIAF NHNLYIAF TAIIrYNYASGK	Charge 1 1 2	Pep_length 9 8 8	mz_Precursor Precursor Precursor Precursor	Cit_Count 1 1 1	seq_y_1 y1 y1 y1 y1	seq_y_2 y2 y2 y2	seq_y_3 y3 y3 y3	 mz_IM- NH3_14 NaN NaN	mz_IM- NH3_15 NaN NaN NaN	1
208 209 r df_p 0 1 2 3	ows x 6560 columns ep_label Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 TAIIR+0.984YNYASGK	mod_Peptide VPAPVDGEr NHNLYIAF NHNLYIAF TAIIrYNYASGK	seq_Peptide VPAPVDGEr NHNLYIAF NHNLYIAF TAIIrYNYASGK	Charge 1 1 2 2 1	Pep_length	mz_Precursor Precursor Precursor Precursor Precursor	Cit_Count 1 1 1 1	seq_v_1 y1 y1 y1 y1 y1	seq_y_2 y2 y2 y2 y2	seq_y_3	 mz_IM- NH3_14 NaN NaN NaN	mz_IM- NH3_15 NaN	5
208 209 r df_p 0 1 2 3 4	ows × 6560 columns ep_label Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 TAIIR+0.984YNYASGK TAIIR+0.984YNYASGK	mod_Peptide VPAPVDGEr NHNLYIAF NHNLYIAF TAIIrYNYASGK	seq_Peptide VPAPVDGEr NHNLYIAF NHNLYIAF TAIIrYNYASGK	Charge 1 1 2 1 2	Pep_length 9 8 8 12 12	mz_Precursor Precursor Precursor Precursor Precursor	Cit_Count 1 1 1 1	seq_v_1 y1 y1 y1 y1 y1	seq_y_2 y2 y2 y2 y2 y2 y2	seq_y_3	 mz_IM- NH3_14 NaN NaN NaN NaN	mz_IM- NH3_15 NaN NaN NaN	5 1 1
208 r 209 r df_p	ows x 6560 columns ep_label Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 NHNLYIAR+0.984 TAIIR+0.984YNYASGK TAIIR+0.984YNYASGK	mod_Peptide VPAPVDGEr NHNLYIAF NHNLYIAF TAIIYNYASGK TAIIYNYASGK	seq_Peptide VPAPVDGEr NHNLYIAF NHNLYIAF TAIIYNYASGK TAIIYNYASGK	Charge 1 1 2 1	Pep_length 9 8 8 12 12	mz_Precursor Precursor Precursor Precursor Precursor Precursor Precursor	Cit_Count 1 1 1 1 1	seq_y_1 y1 y1 y1 y1 y1	seq_y_2 y2 y2 y2 y2 y2 y2	seq_y_3 y3 y3 y3 y3 y3 y3 y3 y3 y3	 mz_IM- NH3_14 NaN NaN NaN NaN	mz_IM- NH3_15 NaN NaN NaN NaN	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
208 r 209 r df_pp df_pp 1 2 3 4 204	ows × 6560 columns ep_label Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 TAIIR+0.984YNYASGK TAIIR+0.984YNYASGK YTFTMRR+0.984 TLEDNVALR+0.984ER	mod_Peptide VPAPVDGET NHNLYIAT NHNLYIAT TAIIYNYASGK TAIIYNYASGK YTFTMRT	SEQ_Peptide VPAPVDGEr NHNLYIAR NHNLYIAR TAIIYYNYASGK TAIIYYNYASGK YTFTMRr TLEDNVALFER	Charge 1 1 2 1 2 2	Pep_length 9 8 8 12 12 7	mz_Precursor Precursor Precursor Precursor Precursor Precursor Precursor	Cit_Count 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	seq_y_1 y1 y1 y1 y1 y1 y1 y1 y1 y1	\$eq_y_2 y2 y2 y2 y2 y2 y2 y2 y2 y2	seq_y_3 y3 y3 y3 y3 y3 y3 y3 y3 y3	 mz_IM- NH3_14 NaN NaN NaN NaN NaN	mz_IM-NH3_15 NaN NaN NaN NaN NaN NaN	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
208 209 r d df_p	Peptide Peptide VPAPVDGER+0.984 NHNLYIAR+0.984 TAIIR+0.984YNYASGK TAIIR+0.984YNYASGK TAIIR+0.984YNYASGK TAIIR+0.984YNYASGK TLEDNVALR+0.984ER TLEDNVALR+0.984ER	mod_Peptide VPAPVDGEr NHNLYIAF NHNLYIAF TAIIYYNYASGK TAIIYYNYASGK YTFTMRF TLEDNVALFER	SEQ_PEPTIDE VPAPVDGET NHNLYIAT TAIITYNYASGK TAIITYNYASGK YTFTMRT TLEDNVALTER TLEDNVALTER	Charge 1 1 2 1 2 2 1	Pep_length 9 8 8 12 12 7	mz_Precursor Precursor Precursor Precursor Precursor Precursor Precursor Precursor	Cit_Count 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	seq_y_1 y1 y1 y1 y1 y1 y1 y1 y1 y1	seq_y_2 y2 y2 y2 y2 y2 y2 y2 y2 y2	seq_y_3	 mz_IM- NH3_14 NaN NaN NaN NaN NaN	mz_IM- NH3_15 NaN NaN NaN NaN NaN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Step 3: Match precursor mass

Precursor masses of theoretical and experimental spectra are compared, and only the matched spectra are retained.

A snapshot of input data:

Step 4: XCorr score calculation

For the matching experimental spectrum and theoretical spectrum (or spectra), XCorr score is calculated and only the theoretical spectrum with the greatest XCorr score is retained.

A snapshot of input data:

Step 5: Match theoretical spectrum with experimental spectrum

Theoretical and experimental spectra are compared, and only the matched ions are retained. A snapshot of input data:

```
In [125]: df_exp_mz
Out[125]: 0
                                  [110.0720135, 116.0712452, 128.0707251, 130.05...
[110.0718416, 113.0715189, 114.0552962, 115.02...
                                  [110.071755, 113.0714059, 114.0552635, 115.087...
                                  [126.0549671, 167.0820595, 167.1178537, 181.06...
                                  [126.0550001, 167.0809289, 167.1177837, 169.13...
                                  [123.9887742, 129.1026059, 137.0712778, 178.05...
                                   [110.0719872, 129.1024763, 130.086277, 147.112...
                                  [110.0607183, 110.0718668, 113.0715497, 114.05...
                                  [110.0719087, 113.0716098, 115.0871659, 116.07...
[110.0601176, 110.0719138, 112.0220986, 115.02...
                                   [110.071834, 115.0214849, 115.0507414, 116.034...
                                  [113.0713727, 114.0551653, 115.0869482, 116.07...
                                  [113.0714384, 114.0552416, 115.0870154, 116.07.
                                  [110.0719918, 116.0705729, 127.0871257, 128.09...
                                  [110.0718952, 127.0871186, 128.0897561, 129.10...
                                  [110.0719309, 127.086452, 129.1025519, 130.086...
[110.0719915, 116.071178, 127.087176, 129.1024...
                                  [110.0720804, 112.0219593, 127.0872803, 128.05...
[110.0719435, 127.0871958, 128.0900352, 129.10...
                                  [110.0716643, 111.0918748, 112.0759924, 113.07...
                                  [110.0717597, 111.0920319, 113.0714655, 115.08...
                                  [110.0719004, 116.0710182, 122.0719581, 123.98...
                                  [110.071825, 115.0871277, 127.0871408, 130.050...

[110.0718381, 115.0870345, 116.071251, 127.086...

[110.0719391, 113.0715399, 114.0553174, 115.08...
                     Name: m/z array, dtype: object
In [126]: df_theo_mz
Out[126]:
                                                                                                                                                                                                                                                            1005
                                                                                                                                                                                                                                                                              1006
                        0 1167.575827 176.103517 275.171931 362.203959 490.262537 603.346601 700.399365 815.426308 952.485220 1053.532899 ....
                         1 584 291826 176 103517 275 171931 362 203959 490 262537 603 346601 700 399365 815 426308 952 485220 1053 532899
                                                                                                                                                                                                                                                            NaN
                        2 749.350600 176.103517 233.124981 304.162095 403.230509 504.278188 591.310216 705.353143 820.380086 891.417200 ... 55.054775 27.023475 71.
                         3 661 323318 176 103517 233 124981 347 167908 475 226486 603 321449 732 364042 861 406635 960 475049 1057 527813
                        4 661.323318 176.103517 233.124981 347.167908 475.226486 603.321449 732.364042 861.406635 960.475049 1057.527813 ...
                         5 \quad 372.521397 \quad 147.113353 \quad 244.166117 \quad 373.208711 \quad 530.293838 \quad 627.346602 \quad 790.409922 \quad 927.468834 \quad 1014.500862 \quad 102.055504 \quad \dots \quad 102.05504 \quad \dots \quad 102.055504 \quad \dots \quad 102.05504 \quad \dots \quad 102.05
                        6 372.521397 147.113353 244.166117 373.208711 530.293838 627.346602 790.409922 927.468834 1014.500862 102.055504 ...
                                                                                                                                                                                                                                                                              NaN
                                556,776343 176,103517 277,151196 348,188310 405,209774 533,268352 632,336766 733,384445 870,443357 984,486284 ...
                                                                                                                                                                                                                                                                              NaN
                        8 556.776343 176.103517 277.151196 348.188310 405.209774 533.268352 632.336766 733.384445 870.443357 984.486284 ...
                                                                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                                                                              NaN
                                861.431787 176.103517 263.135545 320.157009 449.199602 506.221066 619.305130 732.389194 130.050418 243.134482 ....
                                                                                                                                                                                                                                                                              NaN
                                861.431787 176.103517 263.135545 320.157009 449.199602 506.221066 619.305130 732.389194 130.050418 243.134482 ...
                                                                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                                                                              NaN
                                559.788584 176.103517 291.130460 404.214524 532.273102 633.320781 761.415744 874.499808
                                559.788584 176.103517 291.130460 404.214524 532.273102 633.320781 761.415744 874.499808 989.526751 130.050418 ...
                                                                                                                                                                                                                                                                              NaN
                               928.456229 176.103517 247.140631 378.181116 435.202580 506.239694 603.292458 716.376522 813.429286 116.034768 ...
                                                                                                                                                                                                                                                                               NaN
                       14 928.456229 176.103517 247.140631 378.181116 435.202580 506.239694 603.292458 716.376522 813.429286 116.034768 ...
                                                                                                                                                                                                                                                                              NaN
                       15 928.456229 176.103517 247.140631 378.181116 435.202580 506.239694 603.292458 716.376522 813.429286 116.034768 ...
                                                                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                                                                              NaN
                       16 928.456229 176.103517 247.140631 378.181116 435.202580 506.239694 603.292458 716.376522 813.429286 116.034768 ...
                                                                                                                                                                                                                                                                              NaN
                       17 928.456229 176.103517 247.140631 378.181116 435.202580 506.239694 603.292458 716.376522 813.429286 116.034768 ...
                       18 928.456229 176.103517 247.140631 378.181116 435.202580 506.239694 603.292458 716.376522 813.429286 116.034768 ...
                       19 835.434765 176.103517 307.144002 378.181116 479.228795 594.255738 722.350701 114.091889 242.186852 357.213795 ...
                       20 835.434765 176.103517 307.144002 378.181116 479.228795 594.255738 722.350701 114.091889 242.186852 357.213795 ...
                                                                                                                                                                                                                                                                              NaN
                       21 1285.606441 176.103517 277.151196 348.188310 477.230903 574.283667 737.346987 794.368451 923.411044 994.448158 ...
                                                                                                                                                                                                                                                                               NaN
                       22 1325.627201 175.119501 290.146444 403.230508 502.298922 649.334322 777.392900 940.456220 1054.499147 1168.542074 ...
                                                                                                                                                                                                                                                                              NaN
                       23 1325.627201 176.103517 291.130460 404.214524 503.282938 650.318338 778.376916 941.440236 1055.483163 1169.526090 ...
                                                                                                                                                                                                                                                                              NaN
                       24 655.320055 176.103517 291.130460 404.214524 503.282938 634.323423 762.382001 925.445321 1039.488248 1153.531175 ...
                     25 rows x 1015 columns
```

[127]: df_	theo_labe	1																		
[127]:	0	1	2	3	4	5	6	7	8	9	 1005	1006	1007	1008	1009	1010	1011	1012	1013	1014
0	Precursor	у1	y2	уЗ	y4	у5	у6	у7	y8	у9	 None	None								
1	Precursor	y1	y2	уЗ	y4	у5	у6	у7	y8	у9	 None	None								
2	Precursor	у1	y2	у3	y 4	у5	у6	у7	у8	у9	 IM(V)- NH3	IM(A)- NH3	IM(D)- NH3	IM(N)- NH3	IM(S)- NH3	IM(T)- NH3	IM(V)- NH3	IM(A)- NH3	IM(G)- NH3	IM(r)- NH3
3	Precursor	у1	y2	уЗ	y4	у5	у6	у7	y8	у9	 None	None								
4	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	y9	 None	None								
5	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	b1	 None	None								
6	Precursor	у1	y2	уЗ	y4	у5	у6	у7	y8	b1	 None	None								
7	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	y9	 None	None								
8	Precursor	у1	y2	у3	y4	у5	у6	y7	y8	y9	 None	None								
9	Precursor	у1	y2	уЗ	y4	у5	у6	у7	b1	b2	 None	None								
10	Precursor	у1	y2	у3	y4	у5	у6	у7	b1	b2	 None	None								
11	Precursor	y1	y2	у3	y4	у5	у6	у7	y8	b1	 None	None								
12	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	b1	 None	None								
13	Precursor	у1	y2	уЗ	y4	у5	у6	у7	y8	b1	 None	None								
14	Precursor	у1	y2	y3	y4	у5	у6	у7	y8	b1	 None	None								
15	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	b1	 None	None								
16	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	b1	 None	None								
17	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	b1	 None	None								
18	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	b1	 None	None								
19	Precursor	у1	y2	уЗ	y4	у5	у6	b1	b2	b3	 None	None								
20	Precursor	у1	y2	y3	y4	у5	•	b1	b2	b3	 None	None								
21	Precursor	у1	y2	уЗ	y4	у5	у6	у7	y8	y9	 None	None								
	Precursor			•		у5	у6	у7	y8	y9	 None	None								
23								у7	y8	y9	 None	None								
24	Precursor	у1	y2	у3	y4	у5	у6	у7	y8	y9	 None	None								

A snapshot of output data (matched ions):

25 rows × 1015 columns

In [121]:	df_mz_label								
Out[121]:	unID_Title	Peptide	mod_Peptide	Charge	Pep_length	mz_Precursor	Cit_Count	peak_1	Î
	0 QEHF1_10100_DNL.2385.2385.3 File:"QEHF1_10100	GGTHDPLQSVR+0.984	GGTHDPLQSVr	1	11	1167.575827	1	[110.0720135, 42529.13671875, IM(H)]	4833
	1 QEHF1_10102_DNL.3984.3984.2 File:"QEHF1_10102	GGTHDPLQSVR+0.984	GGTHDPLQSVr	2	11	584.291826	1	[110.0718416, 39672.3046875, IM(H)]	6082
	2 QEHF1_10101_DNL.3353.3353.2 File:"QEHF1_10101	GSHEPVADNSTVAGR+0.984	GSHEPVADNSTVAGr	2	15	749.350600	1	[110.071755, 149039.875, IM(H)]	94
	3 QEHF1_10099_DNL.5220.5220.1 File:"QEHF1_10099	YTPVEEKQNGR+0.984	YTPVEEKQNGr	2	11	661.323318	1	[197.1288641, 56989.97265625, PV]	71
	4 QEHF1_10100_DNL.5261.5261.1 File:"QEHF1_10100	YTPVEEKQNGR+0.984	YTPVEEKQNGr	2	11	661.323318	1	[169.1335899, 8058.0991210938, PV-COI	506
4									-

Step 6: Cit diagnostic ion analysis

Annotations and occurrence numbers of citrullination diagnostic ions are reported for each Cit PSM.

A snapshot of input data:

A snapshot of output data (binary occurrence for the immonium ion and occurrence numbers for the other diagnostic ions):

Step 7: Evaluation of Cit PSMs by EN model

The EN model developed in the study is applied to evaluate the validity of each Cit PSM.

A snapshot of input data:

A snapshot of output data (Cit_probability, probability that a PSM contains Cit; and Cit_prediction = 1 when Cit_probability > 0.5):

Step 7: Evaluation of Cit PSMs by EN model

Example output CSV file including the prediction results (Cit_probabilty and Cit_prediction):

-4	Α	В	C	D	E	F	G	H	1.0	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z
		unID Title	Peptide	mod Peptide	Charge	Pep_len	mz_Precu	Cit_Cour	n Total_N	L precNL	. seqNL	intNL	Total_INT	Dipeptide	Tripeptide label	IM_NH3	Total_NL	precNL	seqNL	intNL	Total_INT	Dipeptide	Tripeptide	IM_NH	Cit probability	Cit prediction
1						gth	sor	t	_label	_label	_label	_label	_label	_label	_label	_label	_count	_count	_count	_cou	_count	_count	_count	3_count		
2		QEHF1_10101_DNL.3353.3353.2	GSHEPVADNSTVAGR+0.984	GSHEPVADNSTVAGr	2	15	749.350	6	1 y1-43,y	2-43,y3-4	4: y1-43,	y2-43,y	3-43,y4-4	3,y10-43-N	IH3	IM(r)-N	5	0	5	0	0	0	0	1	0.996772774	1
3	1	QEHF1_10100_DNL2771.2771.2	FAGNHTVQGATR+0.984	AGNHTVQGATr	2	11	556.776	3	1 y1-43,y	2-43-H20	O y1-43,	,y2-43-l	H2O,y2-43	3,y4-43-H2	O,y4-43	IM(r)-N	5	0	5	0	0	0	0	1	0.996772774	1
4	2	QEHF1_10100_DNL2798.2798.2	AGNHTVQGATR+0.984	AGNHTVQGATr	2	11	556.776	3	1 y2-43-F	H2O	y2-43	-H2O				IM(r)-N	1	0	- 1	0	0	0	0	1	0.861678316	1
5	3	QEHF1_10098_DNL4685.4685.2	FEDLKTQIDR+0.984	EDLKTQIDr	2	9	559.788	6	1 y1-43,y	2-43-H20	O y1-43,	y2-43-l	H2O,y2-43	3,y3-43-H2	O,y3-43,y7-	-IM(r)-N	13	0	13	0	0	0	0	1	0.999998683	1
6	4	QEHF1_10098_DNL4719.4719.2	EDLKTQIDR+0.984	EDLKTQIDr	2	9	559.788	6	1 y1-43,y	2-43-H20	O y1-43,	y2-43-l	H2O,y2-43	3,y3-43-H2	O,y3-43,y4	-IM(r)-N	9	0	9	0	0	0	0	1	0.999934703	1
7																										
8																										

Descriptions of the columns in the output CSV file:

Column	Description
unID_Title	Unassigned MS2 spectrum title
Peptide	Original peptide sequence
mod_peptide	Simplified peptide with a predefined set of symbols for modifications
Charge	Charge state of precursor ion
Pep_length	Peptide length
mz_Precursor	Theoretical precursor m/z
Cit_Count	Number of citrullinated sites
Total_NL_label	Annotations of all diagnostic neutral loss ions
precNL_label	Annotations of precursor neutral losses
seqNL_label	Annotations of sequence ion neutral losses
intNL_label	Annotations of internal ion neutral losses
Total_INT_label	Annotations of all diagnostic internal ions
Dipeptide_label	Annotations of diagnostic dipeptides
Tripeptide_label	Annotations of diagnostic tripeptides
IM_NH3_label	Annotation of IM(Cit)-NH ₃
Total_NL_count	Number of all diagnostic neutral loss ions
precNL_count	Number of precursor neutral losses
seqNL_count	Number of sequence ion neutral losses
intNL_count	Number of internal ion neutral losses
Total_INT_count	Number of all diagnostic internal ions
Dipeptide_count	Number of diagnostic dipeptides
Tripeptide_count	Number of diagnostic tripeptides
IM_NH3_count	Number of IM(Cit)-NH ₃
Cit_probability	Probability (P) of citrullination status calculated by the EN model (HCD data only)
Cit_prediction	Classification of citrullination status using a P cutoff >0.5 (HCD data only)