

Данные

Даны следующие распределения и параметры:

Тип Распределения	Параметры	
Гамма	p=10, b=5.3	
Нормальное	a=2.3, σ=0.3	
Отрицательное Биномиальное	m=32, p=1/5	

Распределение в файле: file

Выполнение работы

);

Необходимо для каждого распределения:

• а. сгенерировать выборку длины 1000 из данного распределения (см. стр. 19 методички)

```
#а. сгенерировать выборку длины 1000 из данного распределения (стр. 19)
n <- 1000;
rG <<- rgamma(n = n, shape = 10, rate = 5.3);
...
```

• b. построить по данной выборке эмпирическую функцию распределения;

 $funP <<- list(G = {function(x){ pgamma(q = x, shape = 10, rate = 5.3);}}, ...}$

```
#b. построить по данной выборке эмпирическую функцию распределения;
bildEmpiricalPlots <- function(){ empiricalPlot(rG); ... }

# значения функции распределения в точке х
```

Эмпирические

Выводы:

- с. построить гистограмму частот;
- d. сравнить гистограмму частот и реальную плотность данного распределения (вычисление значения плотности в точке в пакете R описано на той же 19 стр.)

```
#c&d. сравнить гистограмму частот и реальную плотность данного распределения
# точки для наложения
ranges <- list(G = (((range(rG)[1]*100):(range(rG)[2]*100))/100), ...)
# плотности
densitys <- list(G = dgamma(x = ranges$G,shape = 10, rate = 5.3), ...)
# построение Зеленый - ген.совок. Красный - выборка
hist3 <- function(){
{
    hist(rG, breaks = 20, freq = F, ...);
    lines(density(rG), col = "red", lwd = 2);
    lines(x = ranges$G, y = densitys$G, col = "green", lwd = 2);
}
```

Гистограммы

Выводы:

По гистограммам видно, что распр. выборки из 1000 наблюбений близко к ген.сов.

Так же очевидно, что работает ЗБЧ и ЦПТ

И гамма и NB иногда могут быть приближены нормальным распределением

• е. вычислить следующие выборочные характеристики: выборочное среднее, выборочную дисперсию, выборочную асимметрию, выборочный эксцесс; (см. стр. 20-22 методички)

```
# e. все характеристики
allProp <<- function(x){ data.frame(mean = mean(x),var = var(x),asm = asm(x),exc = exc(x))}
```

• f. сравнить результаты пункта е с реальными характеристиками распределения

Таблица сопоставления:

	mean	var	asm	exc
rG	1.919927	0.3470468	0.53692972	0.38642037
G	1.886792	0.3559986	0.53323230	0.38232323
rN	2.284932	0.0936350	0.05035014	0.01973037
N	2.300000	0.0900000	0.05003010	0.01912628
rNB	129.320000	574.4940941	0.24431109	0.31274550
NB	128.424362	574.8357284	0.24243744	0.32824786

Таблица смежности:

	mean	var	asm	exc
dG	0.03313449	-0.008951797	0.0036974174	0.0040971
dN	-0.01506806	0.003635003	0.0003200364	0.0006040
dNB	0.89563800	-0.341634306	0.0018736453	-0.0155023

mean	var	asm	exc

Выводы:

Значения выборки совпали с значегиями для ГС, различия не значимы

Распределение из файла:

```
# читаем темпиратуры
AnnualDiameter<<-as.data.frame(read.csv("IDZ_1/annual-diameter-of-skirt-at-hem-.csv",col.names = c("AnnualDiameter"))
```

Повторяем пункты a-d

mean	var	asm	exc
731.086956	51786.0811	-0.7350737	0.7727566

Выводы:

Данных недостаточно, чтобы делать выводы

```
# сохраняем результаты
write.csv(AnnualDiameterProp,file = "AnnualDiameterProp.csv")
```