

Sliding Windows Alghorithm As Data Augmentation On Histopathology Images For Convolutional Neural Network Training

Toto Haryanto, Aniati Murni, Kusmardi, Heru Suhartatno

Presenter: Toto Haryanto

Faculty of Computer Science Universitas Indonesia 2019

Background & Motivation

Convolutional Neural Network (CNN) requires large amounts of data for the learning process.

Small data with low variation will cause over-fitting and model cannot predict new data with high accuracy

The availability of medical data is one of the issues especially for the training process using CNN.

This study will apply sliding windows to obtain data sub-samples on histopathological images.

Metodology

Data:

Total of 83 source of histopatology data with dimensions of 775x522

Colon cancer dataset

Sliding window technique (algorithm)

```
Sliding windows algorithm for generating histopathology images
Input: whole images of histopathology (size 775 X 522 pixels)
Output: sub-samples of (size 224 x 224 pixels)
/*patch size initiation*/
224 ← patch size
[] 
nucleus location
[ ] ← nucleus patch
/*loop from top left image pixel for image position */
for x in range (0, 775, 50)
                                  /* 50 is windows-size for horizontal axis*/
   for y in range (0,522,50)
                                    /* 50 is windows-size for vertical axis */
       append.nucleus location(x,y)
   end for
end for
/*looping for image sub-samples capturing*/
for loc in nucleus location
   cropped = image[loc[0]:loc[0]+patch_size, loc[1]:loc[1] + patch_size
   /* save pixel with 224 x 224 from three channel */)
   if cropped.size == patch size * patch size * 3
       write(cropped)
   end if
end for
```


Sliding Windows Result

Real Image	invalid sub-sample image	Valid sub-sample image
size : 775x522	size:224x72 size:224x72	Size : 224 x 224

X

CNN Design

Туре	#convolution	#maxpool	#dropout	#fully-	#output
				connected	
architecture_1	4	4	1 (0.2)	1	1
architecture_2	7	7	3 (0.3)	3	1

Experimental Setup

Hardware	Specification
Processor	Intel core i7® 5960X 16 cores @ 3.00 Ghz
RAM	65 GB
GPU	NVIDIA GTX-980
	Number cores: 2048
	Clock: 1,28 GHz
	GPU-RAM: 4GB

Software

.:: Graphics of accuracy ::.

Architecture 1

Architecture 2

Result

.:: Graphics of loss ::.

Architecture 1 Architecture 2

Result

		Predicted	
		benign	malignant
actual	benign	444	281
actual	malignant	116	861

(a) validation dataset

		Predicted		
		benign	malignant	
actual	benign	27	10	
uctuu	malignant	12	31	

(b) new dataset

Architecture 1:

Validation dataset

Accuracy: 76%

New dataset

Accuracy: 72 %

Figure 7. Model testing of Architecture_1; (a) Validation dataset and (b) new dataset

		Predicted		
		benign	malignant	
actual	benign	666	59	
uctual	malignant	15	962	

(b) validation dataset

		Predicted		
		benign	malignant	
actual	benign	31	6	
	malignant	12	31	

(b) new dataset

Architecture 2:

Validation dataset

Accuracy: 95%

New dataset

Accuracy: 77%

Discussion

- Miss-classification of Maliganant tissues classified to benign
- From 12 miss-classification there are 10 (highlight) similar result by architecture 1 and architecture 2

Architecture_1			Architecture_2			
File_name			File_name			
test45	testB_18	testA_38		testB_19	testA_38	testA_3
testA_3	test_A_48	testA_16		testA_48	testA_16	testB_14
testB_14	testB_6	testB_1		testB_6	testB_1	testA_56
testA_56	testA_34	testA_23		testA_34	testB_9	testA_23

Discussion

List of mialigant tissued that classiefied to benign by both of model architecture 1 and architecture 2

Acknowledgment

This research was supported by grant scheme Penelitian Terapan Unggulan Perguruan Tinggi (PTUPT) year 2019. We want to convey our gratitude to the Ministry of Research, Technology and Higher Education as well as Directorate of Research and Community Universitas Indonesia

Conclusion & Future Direction

- Sliding windos can be implemented to produce histopathology dataset for CNN training
- **❖** Data and architecture of CNN is still improved
- Next, using pre-trained model can be implemented

Thank You