Math 450B

Homework 5

Dr. Fuller Solutions

1. Let $f : \mathbf{R} \to \mathbf{R}$ be

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Then

$$\frac{\partial f}{\partial x}(x) = \begin{cases} 2x\sin(\frac{1}{x}) - \cos(\frac{1}{x}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Thus f is differentiable at 0, but $\frac{\partial f}{\partial x}$ is not continuous at 0; indeed, $\lim_{x\to 0} \frac{\partial f}{\partial x}(x)$ does not exist.

2. Assume first m = 1. Consider any two points (x_1, \ldots, x_n) and (y_1, \ldots, y_n) . By applying the Mean Value Theorem, there is u_1 between x_1 and y_1 such that

$$f(y_1, x_2, ..., x_n) - f(x_1, x_2, ..., x_n) = \frac{\partial f}{\partial x_1}(u_1, x_2, ..., x_n)(x_1 - y_1).$$

Since $Df \equiv 0$, we have $\frac{\partial f}{\partial x_1}(u_1, x_2, \dots, x_n) = 0$, so $f(x_1, x_2, \dots, x_n) = f(y_1, x_2, \dots, x_n)$. The same argument for any index f shows that $f(y_1, \dots, y_{j-1}, x_j, \dots, x_n) = f(y_1, \dots, y_{j-1}, y_j, \dots, x_n)$. Thus we get

$$f(x_1,x_2,\ldots,x_n) = f(y_1,x_2,\ldots,x_n) = f(y_1,y_2,x_3,\ldots,x_n) = \cdots = f(y_1,\ldots,y_n).$$

The proof of the Lemma for a general m follows from the case m = 1, applied to all component functions.

3. Calculate:

$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{(x^3y^2 + 2xy^4)}{(x^2 + y^2)^{3/2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

To prove $\frac{\partial f}{\partial x}$ is continuous at (0,0), it is useful to observe

$$\left| \frac{\partial f}{\partial x}(x, y) \right| \le \frac{|x|^3 |y|^2}{\|(x, y)\|^3} + \frac{2|x||y|^4}{\|(x, y)\|^3} \le |y|^2 + 2|x||y|.$$

Finally, by the symmetry of the f, the analysis of $\frac{\partial f}{\partial y}$ will be exactly the same.

4. It is continuous at (0,0). To show this, let $\varepsilon > 0$ and pick $\delta = \varepsilon$. Then for $||(x,y)|| < \delta$, we have

$$\left|\frac{xy}{\sqrt{x^2+y^2}}\right| = \left|\frac{x}{\sqrt{x^2+y^2}}\right| |y| \le |y| \le |(x,y)| < \delta = \varepsilon.$$

It is not differentiable at (0,0). One way to prove this is to show that $D_e f(0,0)$ does not exist for $e = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.

5. (a)
$$D_{-\mathbf{e}}f(\mathbf{a}) = \lim_{t \to 0} \frac{f(\mathbf{a} - t\mathbf{e}) + f(\mathbf{a})}{t} = -\lim_{u \to 0} \frac{f(\mathbf{a} + u\mathbf{e}) - f(\mathbf{a})}{u} = -D_{\mathbf{e}}f(\mathbf{a}).$$
 The middle inequality uses the substitution $u = -t$.

- (b) This follows immediately from part (a), since $D_{\mathbf{e}}f(\mathbf{a}) > 0$ will imply that $D_{-\mathbf{e}}f(\mathbf{a}) < 0$.
- (c) Let $f(x_1,...,x_n)=x_1$, and $\mathbf{e}=(1,0,...,0)$. Lots of other examples will work too.

6.
$$D_{\mathbf{e}}T(\mathbf{a}) = \lim_{t \to 0} \frac{T(\mathbf{a} + t\mathbf{e}) - T(\mathbf{a})}{t} = \lim_{t \to 0} \frac{T(\mathbf{a}) + tT(\mathbf{e}) - T(\mathbf{a})}{t} = T(\mathbf{e}).$$