CASE STUDY 1

The SQL commands to create tables and insert records to the operational database – Task 1

```
/* Task 1*/
DROP TABLE Clinic CASCADE CONSTRAINTS;
DROP TABLE Service CASCADE CONSTRAINTS;
DROP TABLE Doctor CASCADE CONSTRAINTS;
DROP TABLE Assignment CASCADE CONSTRAINTS;
DROP TABLE Patient CASCADE CONSTRAINTS;
/* Creating the tables */
CREATE TABLE Clinic
(hospital id VARCHAR(5) NOT NULL,
hospital name VARCHAR2(20) NOT NULL,
hospital address VARCHAR2(50),
suburb VARCHAR2(50),
postcode NUMBER(4)
);
CREATE TABLE Service
(service id VARCHAR(5) NOT NULL,
staff_id VARCHAR2(20) NOT NULL,
hospital_id VARCHAR(5) NOT NULL,
service name VARCHAR2(50),
service_cost NUMBER(5)
);
CREATE TABLE Doctor
(staff id VARCHAR2(20) NOT NULL,
staff name VARCHAR(20),
staff_ph NUMBER(10)
);
CREATE TABLE Assignment
(assignment id VARCHAR(5) NOT NULL,
patient id VARCHAR(10) NOT NULL,
patient_service_start_date DATE NOT NULL,
patient service end date DATE NOT NULL,
service_id VARCHAR(5) NOT NULL
);
CREATE TABLE Patient
(patient_id VARCHAR(10) NOT NULL,
```

```
patient_name VARCHAR2(20) NOT NULL,
patient_age NUMERIC(3,1),
patient ph no NUMBER(10),
patient_address VARCHAR2(50),
patient_nationality VARCHAR2(20),
patient_emergency_contact NUMBER(10) NOT NULL
);
/* Adding Primary Keys */
ALTER TABLE Clinic
ADD CONSTRAINT PK Clinic PRIMARY KEY (hospital id);
ALTER TABLE Service
ADD CONSTRAINT PK Service PRIMARY KEY (service id);
ALTER TABLE Assignment
ADD CONSTRAINT PK Assignment PRIMARY KEY
(assignment_id,service_id,patient_id);
ALTER TABLE Doctor
ADD CONSTRAINT PK_Doctor PRIMARY KEY (staff_id);
ALTER TABLE Patient
ADD CONSTRAINT PK_Patient PRIMARY KEY (patient_id);
/* Adding Foreign Key constraints */
ALTER TABLE Service
ADD FOREIGN KEY (hospital id) REFERENCES Clinic(hospital id);
ALTER TABLE Service
ADD FOREIGN KEY (staff id) REFERENCES Doctor(staff id);
ALTER TABLE Assignment
ADD FOREIGN KEY (service_id) REFERENCES Service(service_id);
ALTER TABLE Assignment
ADD FOREIGN KEY (patient_id) REFERENCES Patient(patient_id);
/* Inserting values into Clinic*/
INSERT INTO Clinic
VALUES ('H1','Clayton Clinic','21 Clayton Road','Clayton',3168);
INSERT INTO Clinic
VALUES ('H2', 'Caulfield Clinic', '22 Caulfield Road', 'Caulfield', 3162);
INSERT INTO Clinic
VALUES ('H3', 'Carnegie Clinic', '23 Carnegie Road', 'Carnegie', 3163);
INSERT INTO Clinic
```

VALUES ('H4','Oakleigh Clinic','24 Oakleigh Road','Oakleigh',3166);

INSERT INTO Clinic

VALUES ('H5', 'Westall Clinic', '25 Westall Road', 'Westall', 3169);

/* Inserting values into Patient*/

INSERT INTO Patient

VALUES ('P0','Albus Severus Potter',0.5,420452371,'31 Clayton Road, Clayton 3168','Australian',420450001);

INSERT INTO Patient

VALUES ('P1','Harry Potter',11,420452371,'31 Clayton Road, Clayton 3168','Australian',420450001);

INSERT INTO Patient

VALUES ('P2','Hermione Granger',22,420452372,'32 Caulfield Road, Clayton 3162','British',420450002);

INSERT INTO Patient

VALUES ('P3','Ronald Weasley',33,420452373,'33 Carnegie Road, Carnegie 3163','American',420450003);

INSERT INTO Patient

VALUES ('P4','Severus Snape',14,420452374,'34 Oakleigh Road, Oakleigh 3168','Canadian',420450004);

INSERT INTO Patient

VALUES ('P5','Draco Malfoy',25,420452375,'35 Westall Road, Westall 3169','French',420450005);

INSERT INTO Patient

VALUES ('P6','Daniel Radcliffe',31,420452371,'36 Clayton Road, Clayton 3168','Australian',420450001);

INSERT INTO Patient

VALUES ('P7','Emma Watson',12,420452372,'37 Caulfield Road, Clayton 3162','British',420450002);

INSERT INTO Patient

VALUES ('P8','Rupert Grint',23,420452373,'38 Carnegie Road, Carnegie 3163','American',420450003);

INSERT INTO Patient

VALUES ('P9','Alan Rickman',34,420452374,'39 Oakleigh Road, Oakleigh 3168','Canadian',420450004);

INSERT INTO Patient

VALUES ('P10','Tom Felton',15,420452375,'40 Westall Road, Westall 3169','French',420450005);

INSERT INTO Patient

VALUES ('P11','Arthur Weasley',70,420452376,'41 Oakleigh Road, Oakleigh 3168','Canadian',420450006);

INSERT INTO Patient

VALUES ('P12','Molly Weasley',65,420452377,'42 Westall Road, Westall 3169','French',420450007);

```
/* Inserting values into Doctor*/
INSERT INTO Doctor VALUES ('D1','James Potter',420451000);
INSERT INTO Doctor VALUES ('D2', 'Lily Evans', 420451002);
INSERT INTO Doctor VALUES ('D3','Serius Black',420451003);
INSERT INTO Doctor VALUES ('D4', 'Remus Lupin', 420451004);
INSERT INTO Doctor VALUES ('D5','Albus Dumbledore',420451005);
INSERT INTO Doctor VALUES ('D6', 'Minerva McGonagall', 420451006);
INSERT INTO Doctor VALUES ('D7', 'Godric Gryffindor', 420451007);
INSERT INTO Doctor VALUES ('D8', 'Salazar Slytherin', 420451008);
INSERT INTO Doctor VALUES ('D9','Helga Hufflepuff',420451009);
INSERT INTO Doctor VALUES ('D10', 'Rowena Ravenclaw', 420451010);
/* Inserting values into Service*/
INSERT INTO Service VALUES ('S1','D1','H1','General Medicine',10);
INSERT INTO Service VALUES ('S2','D2','H1','Mental Health',20);
INSERT INTO Service VALUES ('S3','D3','H2','Skin Diseases',30);
INSERT INTO Service VALUES ('S4','D4','H3','Paediatric Health',40);
INSERT INTO Service VALUES ('S5','D5','H3','Sexual Health',50);
INSERT INTO Service VALUES ('S6','D6','H3','Paediatric Health',40);
INSERT INTO Service VALUES ('S7','D7','H4','General Medicine',10);
INSERT INTO Service VALUES ('S8','D8','H4','Mental Health',20);
INSERT INTO Service VALUES ('S9','D9','H5','Skin Diseases',30);
INSERT INTO Service VALUES ('S10','D10','H5','Paediatric Health',40);
/* Inserting values into Assignment */
INSERT INTO Assignment
VALUES
('A0','P0',TO DATE('01/04/2020','DD/MM/YYYY'),TO DATE('01/05/2020','DD/MM/Y
YYY'),'S1');
INSERT INTO Assignment
VALUES
('A1','P1',TO_DATE('01/01/2020','DD/MM/YYYY'),TO_DATE('01/02/2020','DD/MM/Y
YYY'),'S1');
INSERT INTO Assignment
VALUES
('A2','P2',TO DATE('02/01/2020','DD/MM/YYYY'),TO DATE('02/02/2020','DD/MM/Y
YYY'), 'S2');
INSERT INTO Assignment
VALUES
('A3','P3',TO_DATE('03/02/2020','DD/MM/YYYY'),TO_DATE('03/03/2020','DD/MM/Y
YYY'),'S3');
INSERT INTO Assignment
```

VALUES

('A4','P4',TO_DATE('04/02/2020','DD/MM/YYYY'),TO_DATE('04/03/2020','DD/MM/YYYY'),'S4');

INSERT INTO Assignment

VALUES

('A5','P5',TO_DATE('05/03/2020','DD/MM/YYYY'),TO_DATE('05/04/2020','DD/MM/YYYY'),'S5');

INSERT INTO Assignment

VALUES

('A6','P6',TO_DATE('06/03/2020','DD/MM/YYYY'),TO_DATE('06/04/2020','DD/MM/YYYY'),'S6');

INSERT INTO Assignment

VALUES

('A7','P7',TO_DATE('07/04/2020','DD/MM/YYYY'),TO_DATE('01/05/2020','DD/MM/YYYY'),'S7');

INSERT INTO Assignment

VALUES

('A8','P8',TO_DATE('08/04/2020','DD/MM/YYYY'),TO_DATE('01/05/2020','DD/MM/YYYY'),'S8');

INSERT INTO Assignment

VALUES

('A9','P9',TO_DATE('09/04/2020','DD/MM/YYYY'),TO_DATE('01/05/2020','DD/MM/YYYY'),'S9');

INSERT INTO Assignment

VALUES

('A10','P10',TO_DATE('10/04/2020','DD/MM/YYYY'),TO_DATE('01/05/2020','DD/MM/YYYY'),'S10');

INSERT INTO Assignment

VALUES

('A11','P11',TO_DATE('11/04/2020','DD/MM/YYYY'),TO_DATE('02/05/2020','DD/MM/YYYY'),'S9');

INSERT INTO Assignment

VALUES

('A12','P12',TO_DATE('12/04/2020','DD/MM/YYYY'),TO_DATE('02/05/2020','DD/MM/YYYY'),'S10');

commit;

The star schema diagram - Task 2

Case Study 1 Star Schema Gayatri Aniruddha - 30945305

The Two-Column Table Methodology illustration – Task 3 Two Column Table Methodology Validation:

In my star schema, my facts and dimensions are given below:

Facts:

- Number of Patients
- Total Service Charge

Dimensions:

- Age Group
- Time Period
- Service
- Hospital Locations

Here, the first column would be dimensions and the second column would be the facts. Following are my two-column tables.

• Patient age point of view

patient_age	Number of Patients	Total Service Charge
<1	0	0
<18	5	1900
18+	4	1299
65+	1	400

• Time point of view

time_id	Number of Patients	Total Service Charge	
01/2020	4	1000	
02/2020	3	900	
03/2020	3	1200	

• Service point of view

service_id	Number of Patients	Total Service Charge
S1	2	20
S2	1	20
S3	1	30
S4	1	40
S5	1	50
S6	1	40
S7	1	10

S8	1	20
S9	1	30
S10	2	80

• Suburb point of view

suburb	Number of Patients	Total Service Charge	
Clayton	2	300	
Caulfield	2	700	
Oakleigh	2	1100	
Carnegie	2	300	
Westall	2	700	

The SQL commands to create the dimension and fact tables, as well as the contents of these tables – Task 4

/* Task 4 */

```
DROP TABLE age group dim CASCADE CONSTRAINTS PURGE;
DROP TABLE service_dim CASCADE CONSTRAINTS PURGE;
DROP TABLE time period dim CASCADE CONSTRAINTS PURGE;
DROP TABLE hospital location dim CASCADE CONSTRAINTS PURGE;
DROP TABLE temporary_fact CASCADE CONSTRAINTS PURGE;
DROP TABLE government hospital fact CASCADE CONSTRAINTS PURGE;
/* Creating dimension tables */
/* 1) age group dimension */
CREATE TABLE age group dim as
SELECT patient_age
FROM patient;
/* Adding an age group to age_group_dim */
ALTER TABLE age group dim
ADD age_group VARCHAR2(50);
UPDATE age group dim
SET age group = 'Infant'
WHERE patient age < 1;
UPDATE age group dim
SET age group = 'Children'
WHERE patient age >= 1 AND patient age < 18;
UPDATE age group dim
SET age group = 'Adult'
WHERE patient_age >= 18 AND patient_age < 65;
UPDATE age group dim
SET age_group = 'Senior'
WHERE patient age >= 65;
```

	₱ PATIENT_AGE	
1	0.5	Infant
2	11	Children
3	22	Adult
4	33	Adult
5	14	Children
6	25	Adult
7	31	Adult
8	12	Children
9	23	Adult
10	34	Adult
11	15	Children
12	70	Senior
13	65	Senior

/* 2) service dimension */
CREATE TABLE service_dim as
SELECT DISTINCT service_id, service_name, service_cost
FROM Service;

/* Adding a service range */

ALTER TABLE service_dim
ADD service_charge_range VARCHAR2(50);

UPDATE service_dim
SET service_charge_range = 'Low Price'
WHERE service_cost < 20;

UPDATE service_dim
SET service_charge_range = 'Medium Price'
WHERE service_cost <=50 AND service_cost >= 20;

UPDATE service_dim
SET service_charge_range = 'High Price'
WHERE service_cost > 50;

	\$ SERVICE_ID	SERVICE_NAME	\$ SERVICE_COST	\$ SERVICE_CHARGE_RANGE
1	S1	General Medicine	10	Low Price
2	S2	Mental Health	20	Medium Price
3	S3	Skin Diseases	30	Medium Price
4	S4	Paediatric Health	40	Medium Price
5	S5	Sexual Health	50	Medium Price
6	S6	Paediatric Health	40	Medium Price
7	S7	General Medicine	10	Low Price
8	S8	Mental Health	20	Medium Price
9	S9	Skin Diseases	30	Medium Price
10	S10	Paediatric Health	40	Medium Price

```
/* 3) time period dim */
CREATE TABLE time period dim as
SELECT DISTINCT
  TO_CHAR(patient_service_start_date,'MM/YYYY') as time_id,
  TO CHAR(patient service start date, 'MM') as month,
  TO CHAR(patient_service_start_date,'YYYY') as year
FROM Assignment;
/* Adding month names */
ALTER TABLE time period dim
ADD month name VARCHAR2(50);
UPDATE time period dim
SET month name = 'January'
WHERE to_char(month) = '01';
UPDATE time period dim
SET month_name = 'February'
WHERE to char(month) = '02';
UPDATE time period dim
SET month name = 'March'
WHERE to_char(month) = '03';
UPDATE time period dim
SET month_name = 'April'
WHERE to char(month) = '04';
/* Adding seasons */
ALTER TABLE time period dim
ADD season VARCHAR2(50);
UPDATE time period dim
SET season = 'Summer'
WHERE time_id LIKE '01%';
UPDATE time period dim
SET season = 'Autumn'
WHERE time_id LIKE '02%' OR time_id LIKE '03%';
UPDATE time_period_dim
SET season = 'Winter'
WHERE time_id LIKE '04%' OR time_id = '05%' OR time_id LIKE '06%' OR time_id = '07%';
```

UPDATE time_period_dim

SET season = 'Spring'

WHERE time_id LIKE '08%' OR time_id = '09%' OR time_id LIKE '10%';

	♦ TIME_ID	♦ MONTH	∜ YEAR	MONTH_NAME	
1	01/2020	01	2020	January	Summer
2	04/2020	04	2020	April	Winter
3	03/2020	03	2020	March	Autumn
4	02/2020	02	2020	February	Autumn

/* 4) hospital_location dimension */

CREATE TABLE hospital_location_dim as

SELECT suburb, postcode

FROM Clinic;

	♦ SUBURB	♦ POSTCODE
1	Clayton	3168
2	Caulfield	3162
3	Carnegie	3163
4	Oakleigh	3166
5	Westall	3169

/* Creating a temporary fact tables */

CREATE TABLE temporary_fact as

SELECT DISTINCT

TO_CHAR(A.patient_service_start_date,'MM/YYYY') as time_id,

S.service_id,

S.service_cost,

H.hospital_id,

H.suburb,

P.patient_id,

P.patient_age

FROM Service S, Clinic H, Patient P, Assignment A

WHERE

H.hospital_id = S.hospital_id AND

S.service id = A.service id AND

A.patient_id = P.patient_id

GROUP BY

TO CHAR(A.patient service start date, 'MM/YYYY'),

S.service_id,

s.service_cost,

H.hospital id,

H.suburb,

P.patient_id,

P.patient_age;

	♦ TIME_ID	⊕2 SERVIC	\$ SERVICE_COST	HOSPITAL_ID		PATIENT_ID	PATIENT_AGE
1	01/2020	S1	10 1	H1	Clayton	P1	11
2	04/2020	Sl	10 1	H1	Clayton	P0	0.5
3	04/2020	S10	40 1	H5	Westall	P12	65
4	04/2020	S10	40 I	H5	Westall	P10	15
5	01/2020	S2	20 1	H1	Clayton	P2	22
6	02/2020	S3	30 I	H2	Caulfield	P3	33
7	02/2020	S4	40 I	Н3	Carnegie	P4	14
8	03/2020	S5	50 I	H3	Carnegie	P5	25
9	03/2020	S6	40 I	H3	Carnegie	P6	31
10	04/2020	S7	10 1	H4	Oakleigh	P7	12
11	04/2020	S8	20 1	H4	Oakleigh	P8	23
12	04/2020	S9	30 I	H5	Westall	P11	70
13	04/2020	59	30 1	H5	Westall	P9	34

/* Creating the actual fact table */

Commit;

```
CREATE TABLE government_hospital_fact AS
SELECT

t.time_id,
t.patient_age,
t.service_id,
t.suburb,
COUNT(t.patient_id) AS "NUMBER_OF_PATIENTS",
SUM(t.service_cost) AS "TOTAL_SERVICE_CHARGED"
FROM temporary_fact t
GROUP BY
t.time_id,
t.patient_age,
t.service_id,
t.suburb;
```

	TIME_ID	PATIENT_AGE			NUMBER_OF_PATIENTS	↑ TOTAL_SERVICE_CHARGED
1	01/2020	11	S1	Clayton	1	10
2	01/2020	22	52	Clayton	1	20
3	02/2020	14	S4	Carnegie	1	40
4	02/2020	33	S3	Caulfield	1	30
5	03/2020	31	S6	Carnegie	1	40
6	03/2020	25	S5	Carnegie	1	50
7	04/2020	70	S9	Westall	1	30
8	04/2020	15	S10	Westall	1	40
9	04/2020	65	S10	Westall	1	40
10	04/2020	23	S8	Oakleigh	1	20
11	04/2020	12	S7	Oakleigh	1	10
12	04/2020	0.5	S1	Clayton	1	10
13	04/2020	34	59	Westall	1	30

The SQL commands to answer the queries in Task 5 and the query results

```
/* task 5 */
/* 5a */
/* Total number of patients in Winter */
/* Clarification - Here, while calculating the total number of patients who have made
appointments - I am considering only the patient service start date. */
/* This is because a patient may make an appointment in Autumn and can still be there in
the hospital during Winter. */
/* Thus, patients making appointments during Autumn i.e patients with
patient service start date in Autumn will be considered as Autumn patients and not Winter
patients */
SELECT
  t.season,
  COUNT(NUMBER OF PATIENTS)
FROM
  government_hospital_fact g JOIN time_period_dim t
  ON
  g.time_id = t.time_id
WHERE
  t.season = 'Winter'
GROUP BY
  t.season;
        SEASON & COUNT(NUMBER_OF_PATIENTS)
      1 Winter
/* 5b */
/* Total service charged for each service cost type. */
SELECT
  s.service charge range AS "SERVICE COST TYPE",
  SUM(total_service_charged) AS "TOTAL SERVICE CHARGED"
FROM
  government hospital fact g JOIN service dim s
  ON
  g.service id = s.service id
GROUP BY
  s.service_charge_range;

⊕ SERVICE COST TYPE 
⊕ TOTAL SERVICE CHARGED

    1 Medium Price
                                          340
    2 Low Price
                                           30
```

```
/* 5c */
/* total number of patients by each age group in April 2020. */
  COUNT(number_of_patients) AS "TOTAL NUMBER OF PATIENTS",
  a.age_group AS "AGE GROUP"
FROM
  government_hospital_fact g JOIN age_group_dim a
  ON
  g.patient_age = a.patient_age
  JOIN
  time period dim t
  ON
  g.time_id = t.time_id
WHERE
  t.month_name = 'April'
  AND
  TO CHAR(t.year) = '2020'
GROUP BY
  a.age_group;

⊕ TOTAL NUMBER OF PATIENTS 
⊕ AGE GROUP

    1
                            2 Children
    2
                            2 Adult
    3
                            1 Infant
    4
                            2 Senior
/* 5d */
/* e total service charged for general medical consultations in each suburb. */
SELECT
  SUM(total service charged) AS "Total Service Charged",
  I.suburb,
  I.postcode
FROM
  government_hospital_fact g JOIN
  service dim s ON
  g.service_id = s.service_id
  JOIN
  hospital location dim I
  ON
  g.suburb = I.suburb
WHERE
  s.service_name = 'General Medicine'
GROUP BY
  I.suburb,
  I.postcode;
```

	♦ Total Service Charged		
1	20	Clayton	3168
2	10	Oakleigh	3166