

BBM406: Fundamentals of Machine Learning

Unsupervised Learning

Unsupervised Learning

- Supervised learning used labeled data pairs (x, y) to learn a function $f: X \rightarrow Y$
 - But, what if we don't have labels?
- No labels = unsupervised learning
- Only some points are labeled = semi--supervised learning
 - Labels may be expensive to obtain, so we only get a few
- Clustering is the unsupervised grouping of data points.
 It can be used for knowledge discovery.
 - For example, finding internal representations of data and grouping of data.

Grouping data according to similarity

Distance North • e.g. archaeological dig **Distance East**

Clustering vs. Classification

Grouping data according to similarity

Predicting new labels from old labels

Clustering vs. Classification

Grouping data according to similarity
 Predicting new labels from old labels

Clustering vs. Classification

Grouping data according to similarity
 Predicting new labels from old labels

When classes are unspecified (unknown, expensive to label data, or data is changing too quickly), we might prefer clustering.

Clustering helps us to learn about hidden properties of data.

Exploratory data analysis

Exploratory data analysis

Datum: person

Similarity: the number of common interests of two people

Exploratory data analysis

Datum: a binary vector specifying whether a person has each interest

Similarity: the number of common interests of two people

- Exploratory data analysis
- Classes are unspecified (<u>unknown</u>, changing too quickly, expensive to label data, etc)

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

NEW MILLION SCHOOL CHILDREN FILM TAX WOMEN STUDENTS SHOW PROGRAM PEOPLE SCHOOLS MUSIC BUDGET CHILD EDUCATION MOVIE BILLION YEARS TEACHERS PLAY FEDERAL FAMILIES HIGH MUSICAL YEAR WORK PUBLIC BEST SPENDING PARENTS TEACHER ACTOR NEW SAYS BENNETT FIRST STATE FAMILY MANIGAT YORK PLAN WELFARE NAMPHY OPERA MONEY MEN STATE PROGRAMS PERCENT PRESIDENT THEATER ACTRESS CARE GOVERNMENT ELEMENTARY LOVE LIFE HAITI CONGRESS

Topic Analysis

earst Foundation will give \$1.25 million to Lincoln Center, Metropolice Philharmonic and Juilliard School. "Our board felt that we had a a mark on the future of the performing arts with these grants an act our traditional areas of support in health, medical research, education Hearst Foundation President Randolph A. Hearst said Monday in incoln Center's share will be \$200,000 for its new building, which and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Topic Analysis

carst Foundation will give \$1.25 million to Lincoln Center, Metropolik Philharmonic and Juilliard School. "Our board felt that we had a
a mark on the future of the performing arts with these grants an act
our traditional areas of support in health, medical research, education
Hearst Foundation President Randolph A. Hearst said Monday in
incoln Center's share will be \$200,000 for its new building, which
and provide new public facilities. The Metropolitan Opera Co. and
will receive \$400,000 each. The Juilliard School, where music and

the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

"Arts"	"Budgets"	"Children"	"Education"
NEW	MILLION	CHILDREN	SCHOOL
FILM	TAX	WOMEN	STUDENTS
SHOW	PROGRAM	PEOPLE	SCHOOLS
MUSIC	BUDGET	CHILD	EDUCATION
MOVIE	BILLION	YEARS	TEACHERS
PLAY	FEDERAL	FAMILIES	HIGH
MUSICAL	YEAR	WORK	PUBLIC
BEST	SPENDING	PARENTS	TEACHER
ACTOR	NEW	SAYS	BENNETT
FIRST	STATE	FAMILY	MANIGAT
YORK	PLAN	WELFARE	NAMPHY
OPERA	MONEY	MEN	STATE
THEATER	PROGRAMS	PERCENT	PRESIDENT
ACTRESS	GOVERNMENT	CARE	ELEMENTARY
LOVE	CONGRESS	LIFE	HAITI

Topic Analysis

Datum: word

Similarity: how many documents exist where two words co-occur

and provide new public facilities. The Metropolitan Opera Co. and will receive \$400,000 each. The Juilliard School, where music and

the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

- Exploratory data analysis
- Classes are unspecified (unknown, <u>changing too</u> <u>quickly</u>, expensive to label data, etc)

- Exploratory data analysis
- Classes are unspecified (unknown, <u>changing too</u> <u>quickly</u>, expensive to label data, etc)

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

- Exploratory data analysis
- · Classes are unspecified (unknown, changing too quickly, expensive to label data, etc)

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, <u>expensive to label data</u>, etc)

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, <u>expensive to label data</u>, etc)

Image segmentation

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, <u>expensive to label data</u>, etc)

Image segmentation

- Exploratory data analysis
- Classes are unspecified (unknown, changing too quickly, <u>expensive to label data</u>, etc)

Image segmentation

Clustering algorithms

Partitioning algorithms

- Construct various partitions and then evaluate them by some criterion
 - K-means
 - Mixture of Gaussians
 - Spectral Clustering

Hierarchical algorithms

- Create a hierarchical decomposition of the set of objects using some criterion
- Bottom-up agglomerative
- Top-down divisive

Desirable Properties of a Clustering Algorithm

- Scalability (in terms of both time and space)
- Ability to deal with different data types
- Minimal requirements for domain knowledge to determine input parameters
- Ability to deal with noisy data
- Interpretability and usability

Optional

- Incorporation of user-specified constraints

K-Means Clustering

K-Means Clustering

Benefits

- Fast
- Conceptually straightforward
- Popular

K-Means: Preliminaries

Datum: Vector of continuous values

Dissimilarity: Distance as the crow flies

Dissimilarity: Distance as the crow flies

Dissimilarity: Distance as the crow flies

Dissimilarity: Euclidean distance

Dissimilarity: Squared Euclidean distance

Dissimilarity: Squared Euclidean distance

Cluster summary

Feature 1

Feature 1

K-Means: Preliminaries Dissimilarity

- Initialize K cluster centers
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points

- Initialize K cluster centers
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1, ..., K
 - *Randomly draw n from 1,...,N without replacement
 - $\star \mu_k \leftarrow x_n$
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1,..., KRandomly draw n from
 - ◆Randomly draw n from1,...,N without replacement
 - $\bullet \mu_k \leftarrow x_n$
- Repeat until convergence:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points

- Randomly draw n from 1,...,N without replacement
- $\star \mu_k \leftarrow x_n$

Repeat until convergence:

- Assign each data point to the cluster with the closest center.
- Assign each cluster center to be the mean of its cluster's data points

- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement

$$\star \mu_k \leftarrow x_n$$

- Repeat until S₁,...,S_k don't change:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1,..., K
 - *Randomly draw n from 1,...,N without replacement

$$+\mu_k \leftarrow x_n$$

- Repeat until S₁,...,S_k don't change:
 - Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - ◆ Assign each data point to the cluster with the closest center.
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - **→** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - ♦ Put $x_n ∈ S_k$ (and no other S_j)
 - Assign each cluster center to be the mean of its
 - cluster's data points

- For k = 1, ..., K
 - → Randomly draw n from 1,...,N without replacement
 - $+\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - **→** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - ♦ Put $x_n ∈ S_k$ (and no other S_j)
 - Assign each cluster center to be the mean of its
 - cluster's data points

- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - * Put $x_n \in S_k$ (and no other S_i)
 - ◆ Assign each cluster center to be the mean of its
 - cluster's data points

- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - * Put $x_n \in S_k$ (and no other S_j)
 - **→** For k=1,...,K

$$\mu_k = \frac{1}{|S_k|} \sum_{n: n \in S_k} x_n$$

- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - * Put $x_n \in S_k$ (and no other S_j)
 - **→** For k=1,...,K

$$\mu_k = \frac{1}{|S_k|} \sum_{n: n \in S_k} x_n$$

- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - **→** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - ❖ Put $x_n \in S_k$ (and no other S_i)
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - **→** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - ❖ Put $x_n \in S_k$ (and no other S_i)
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1, ..., K
 - * Randomly draw n from 1,...,N without replacement
 - $\star \mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - **→** For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - ❖ Put $x_n \in S_k$ (and no other S_i)
 - Assign each cluster center to be the mean of its cluster's data points

- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - * Put $x_n \in S_k$ (and no other S_j)
 - **→** For k=1,...,K

$$\mu_k = \frac{1}{|S_k|} \sum_{n: n \in S_k} x_n$$

• For
$$k = 1, ..., K$$

- * Randomly draw n from 1,...,N without replacement
- $+\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - * Put $x_n \in S_k$ (and no other S_i)
 - **→** For k=1,...,K

$$\mu_k = \frac{1}{|S_k|} \sum_{n: n \in S_k} x_n$$

- For k = 1, ..., K
 - Randomly draw n from 1,...,N without replacement
 - $+\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:
 - + For n = 1,...N
 - * Find k with smallest $dis(x_n, \mu_k)$
 - * Put $x_n \in S_k$ (and no other S_j)
 - + For k=1,...,K

$$\mu_k = \frac{1}{|S_k|} \sum_{n: n \in S_k} x_n$$

• For
$$k = 1, ..., K$$

- Randomly draw n from 1,...,N without replacement
- $+\mu_k \leftarrow x_n$
- Repeat until S₁,...,S_k don't change:

+ For
$$n = 1,...N$$

- * Find k with smallest $dis(x_n, \mu_k)$
- * Put $x_n \in S_k$ (and no other S_j)

$$\mu_k = \frac{1}{|S_k|} \sum_{n: n \in S_k} x_n$$

K-Means: Evaluation

K-Means: Evaluation

Guaranteed to converge in a finite number of iterations

- Running time per iteration:
 - Assign data points to closest cluster center O(KN) time
 - Change the cluster center to the average of its assigned points
 O(N) time

K-Means: Evaluation

Objective
$$\min_{\mu} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$

1. Fix μ , optimize C:

optimize C:
$$\min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2 = \min_{C} \sum_{i=1}^{n} |x_i - \mu_{x_i}|^2$$
Step 1 of kmeans

2. Fix C, optimize μ:

$$\min_{\mu} \sum_{i=1}^k \sum_{x \in C_i} |x - \mu_i|^2$$

– Take partial derivative of μ_i and set to zero, we have

$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$
 Step 2 of kmeans

K-Means takes an alternating optimization approach, each step is guaranteed to decrease the objective – thus guaranteed to converge

K-Means Algorithm: Some Issues

- How to set k?
- Sensitive to initial centers
 - Multiple initializations
- Sensitive to outliers
- Detects spherical clusters
- Assuming means can be computed
 - It requires continuous, numerical features

slide by Kristen Grauman

K-means Demo

Execution of K-means algorithm with various cluster center selections:

http://shabal.in/visuals/kmeans/1.html