COMPLETE STRUCTURE FOR A ROBUST ML MODEL

This document outlines a comprehensive workflow for building and evaluating a machine learning model, followed by a summary of common ML models and their applications.

1. IMPORT REQUIRED LIBRARIES

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split,
GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score,
classification_report
import joblib
```

2. LOAD AND EXPLORE DATA

```
df = pd.read_csv('data.csv')
print(df.info())
print(df.describe())
```

Tasks:

Check data types
Identify missing values
Understand basic statistics

3. DATA PREPROCESSING

Handle **missing values** (drop or impute) Encode **categorical variables** Remove **outliers** Feature scaling (if needed)

4. SPLIT FEATURES AND TARGET

```
X = df.drop(columns=['target'])
y = df['target']
```

5. TRAIN-TEST SPLIT

```
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)
```

6. FEATURE SCALING (FOR MODELS THAT NEED SCALING)

```
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

7. BASE MODEL TRAINING (EXAMPLE: RANDOM FOREST)

```
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
```

8. HYPERPARAMETER TUNING

```
param_grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5, 10]
}

grid_search =
GridSearchCV(RandomForestClassifier(random_state=42),
param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)

best_model = grid_search.best_estimator_
```

9. EVALUATE MODEL

```
y_pred = best_model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))
```

10. SAVE BEST MODEL

```
joblib.dump(best_model, 'best_model.pkl')
```

THEIR USES COMMON MACHINE LEARNING MODELS AND

1. LINEAR REGRESSION

Type: Regression

Use: Predict continuous numeric values

Example: Predicting house rent based on size, BHK, location

Advantages: Simple, interpretable **Disadvantages:** Assumes linearity

2. LOGISTIC REGRESSION

Type: Classification

Use: Binary or multi-class prediction

Example: Will the tenant pay rent on time (Yes/No)?

Advantages: Probabilistic output

Disadvantages: Not good for non-linear data

3. DECISION TREE

Type: Both (Regression & Classification) **Use:** Handles non-linear relationships

Example: Classify property as luxury or standard

Advantages: Easy to interpret

Disadvantages: Prone to overfitting

4. RANDOM FOREST

Type: Both

Use: Ensemble of decision trees

Example: Predict house rent with many features

Advantages: High accuracy

Disadvantages: Slower than single tree

5. GRADIENT BOOSTING / XGBOOST

Type: Both

Use: High-performance predictive modeling **Example:** Predict real estate prices accurately

Advantages: Handles missing values **Disadvantages:** More complex to tune

6. K-NEAREST NEIGHBORS (KNN)

Type: Both

Use: Similarity-based predictions

Example: Recommend rent based on similar properties

Advantages: Simple

Disadvantages: Slow for large datasets

7. SUPPORT VECTOR MACHINE (SVM)

Type: Both

Use: High-dimensional classification

Example: Classify tenants into risk categories **Advantages:** Effective in high dimensions **Disadvantages:** Slow on large datasets

8. NAIVE BAYES

Type: Classification

Use: Text classification, spam detection

Example: Classify tenant reviews as positive/negative

Advantages: Fast, simple

Disadvantages: Assumes independence of features

9. NEURAL NETWORKS (ANN)

Type: Both

Use: Complex patterns, deep learning

Example: Predict property price from multiple features

Advantages: Handles complex relationships **Disadvantages:** Needs more data and compute

10. CLUSTERING (K-MEANS, DBSCAN)

Type: Unsupervised

Use: Group similar data points

Example: Cluster properties into low, medium, high rent segments

Advantages: No labeled data needed

Disadvantages: Needs tuning of number of clusters

11. PRINCIPAL COMPONENT ANALYSIS (PCA)

Type: Dimensionality Reduction

Use: Reduce number of features while keeping most variance

Example: Reduce correlated features in housing dataset

Advantages: Removes redundancy

Disadvantages: Harder to interpret transformed features