Amendments to the Claims:

A clean version of the entire set of pending claims, including amendments to the claims, is submitted herewith per 37 CFR 1.121(c)(3). This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

- 1-3. (Canceled)
- 4. (Currently Amended) The method of claim [[3]]31, further comprising updating the stereovision ultrasound image at a rate of greater than or equal to 10 frames per second.
 - 5-7. (Canceled)
- 8. (Currently Amended) The ultrasound apparatus of claim [[7]]10, wherein said transport unit is a cart.
 - 9. (Canceled).
- apparatus, comprising:
 _______an emitter to emit ultrasound signals;
 ______a receiver to receive reflected ultrasound signals;
 ______a signal processor to convert the reflected ultrasound signals to a stereovision ultrasound image in real time, the signal processor comprising,
 ______a generator to generate 3D ultrasound data volumes from the reflected ultrasound signals, and
 ______a rendering processor to render the 3D ultrasound data volumes into first and second 2D images by streaming, wherein the first and second 2D images

- 11. (Original) The ultrasound apparatus of claim 10, wherein the 3D ultrasound data volumes comprise first and second 3D data volumes, and said rendering processor renders the first and second 3D data volumes into the first and second 2D images, respectively.
- 12. (Original) The ultrasound apparatus of claim 11, further comprising a select unit to alternately transmit the first and second 2D images to said display unit to display the stereovision ultrasound image.
- 13. (Original) The ultrasound apparatus of claim 12, wherein a user views the stereovision ultrasound image through shuttered glasses.
- 14. (Original) The ultrasound apparatus of claim 12, wherein said display unit tracks an eye movement of a user to create the stereovision ultrasound image.
- 15. (Currently Amended) The ultrasound apparatus of claim [[6]]10, wherein said rendering processor continuously streams the 3D ultrasound data volumes.
- 16. (Original) The ultrasound apparatus of claim 12, wherein a user views the stereovision ultrasound image, and the stereovision ultrasound image changes corresponding to a movement of the user.

- 17. (Original) The ultrasound apparatus of claim 16, wherein the user views the stereovision ultrasound image through a virtual reality viewing unit connectible to the display unit to change the stereovision ultrasound image in accordance with the movement of the user.
- 18. (Original) The ultrasound apparatus of claim 12, wherein said rendering processor renders the first and second 3D data volumes in series.
- 19. (Original) The ultrasound apparatus of claim 12, wherein said rendering processor comprises left and right rendering processors to render the first and second 3D data volumes, respectively, in parallel.
- 20. (Original) The ultrasound apparatus of claim 12, wherein said select unit is a multiplexor.
- 21. (Currently Amended) The ultrasound apparatus of claim [[5]] 10, wherein said emitter and said receiver comprise a two-dimensional phased array transducer.

22-24. (Canceled)

25. (Original) An ultrasound apparatus, comprising:

a transducer to emit ultrasound signals and to receive reflected ultrasound signals;

a scanner to generate a stream of detected ultrasound data volumes from the reflected ultrasound signals;

a rendering processor to render the stream of detected ultrasound data volumes into first and second 2D rendered images;

first and second buffers to hold the first and second 2D rendered images, respectively;

a display unit; and

a multiplexor to alternately transmit the first and second 2D rendered images to the display unit to generate a stereovision ultrasound image in real time.

- 26. (Original) The ultrasound apparatus of claim 25, further comprising a cart to house said transducer, scanner, rendering processor, first and second buffers, multiplexor and said display unit.
- 27. (Original) The ultrasound apparatus of claim 25, wherein said rendering processor renders the stream of detected ultrasound data volumes by streaming.
- 28. (Original) The ultrasound apparatus of claim 27, wherein the stereovision ultrasound image is a Color Flow Mode (CFM) image.
- 29. (Original) The ultrasound apparatus of claim 27, wherein the stereovision ultrasound image is a Power Doppler image.
- 30. (Original) The ultrasound apparatus of claim 27, wherein the stereovision ultrasound image is an Acoustic Quantification (AQ) image.

31. (Currently Amended) The method of claim 3, further comprising A method
of generating an image, comprising:
emitting ultrasound signals;
receiving reflected ultrasound signals;
converting the reflected ultrasound signals to a stereovision ultrasound image
in real time, said converting comprising,
generating 3D ultrasound data volumes from the reflected ultrasound
signals, and
rendering the 3D ultrasound data volumes into first and second 2D
images by streaming, wherein the first and second 2D images comprise the

stereovision ultrasound image;
displaying the stereovision ultrasound image in real time;
adjusting the stereovision ultrasound image in real time; and
updating the stereovision ultrasound image at a latency of less than or equa
to 200 milliseconds from start of acquisition to display.

- 32. (New) The method of claim 31, wherein the latency is less than or equal to 100 milliseconds from start of acquisition to display.
- 33. (New) The method of claim 31, further comprising updating the stereovision ultrasound image at a rate in a range of 20 to 30 frames per second.
- 34. (New) The apparatus of claim 10, wherein the stereovision ultrasound image is updated at a rate of less than or equal to 30 frames per second.
- 35. (New) The apparatus of claim 10, wherein the stereovision ultrasound image is updated at a latency of less than or equal to 100 milliseconds from start of acquisition to display.
 - 36. (New) A method of generating an image, comprising: emitting ultrasound signals; receiving reflected ultrasound signals;

generating a stream of detected ultrasound data volumes from the reflected ultrasound signals;

rendering the stream of detected ultrasound data volumes into first and second 2D rendered images;

buffering the first and second 2D rendered images, respectively in corresponding buffers;

multiplexing between the first and second 2D rendered images to generate a multiplexed image signal; and

Appl. No. 10/536,643 Amendment and/or Response Reply to Office action of 18 August 2008

providing the multiplexed image signal to a display unit to generate a stereovision ultrasound image in real time.

- 37. (New) The method of claim 36, further comprising updating the stereovision ultrasound image at a rate in a range of 20 to 30 frames per second.
- 38. (New) The method of claim 36, wherein the stereovision ultrasound image is updated at a latency of less than or equal to 100 milliseconds from start of acquisition to display.