北京大学数学科学学院期中试题

2013.9 -2013.11 学年第 1 学期

- 1. 计算题 (共 60 分) (1) 设有向量组 $\alpha_1 = (1\ 0\ 2\ 3), \alpha_2 = (1\ 1\ 3\ 5), \alpha_3 = (1\ -1\ a\ 1), \alpha_4 = (1\ b\ 4\ 7), 若该向量组的秩为 3, (1) 求 a,b; (5 分) (2) 求该向量组的一个极大线性无关组,并把其余向量表示成为该极大线性无关组的线性组合。 (10 分)$
 - (2)(5分) 设 n 阶矩阵 A 的行列式为 2 , 求 $|(\frac{1}{2}A)^{-1} 3A^*|$.
 - $(3)(\ 10\ eta)$ 若 $A\in M(s imes n,F)$ 使得对任意的 $eta\in F^s$,线性方程组 AX=eta 都有解 $\xi\in F^n$,求 ${\rm rank}(A)$.

(4) (
$$10$$
 分) 设 $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $C = diag(A, \cdots, A) \in M(2n \times 2n, F)$, 求与准

对角矩阵 C 交换的所有方阵的形式.

- $a_{ij}=-1;$ 求矩阵 $A=(a_{ij}),$ 其中当 i=j 时, $a_{ij}=1;$ 当 $i\neq j$ 时, $a_{ij}=-1;$ 求矩阵 A 的逆矩阵。
- (6) (10 分) 设 n 阶矩阵 $A=(a_{ij})$, 其中 $a_{ij}=\frac{1}{1-x_iy_j}$, 求矩阵 A 的行列式。
- 2. 设 A 为 3 阶矩阵,(1) (10 分) 若 r(A)=1,证明存在常数 k,使得 $A^2=kA$; (2) (10 分) 若 r(A)=2,证明存在常数 k,使得 $(A^*)^2=kA^*$,其中 A^* 为矩阵 A 的伴随矩阵。
- 3. (10 分) 设 $A, B \in M(n \times n, F)$ 且 $rank(AB + I_n) + rank(AB I_n) = n$, 其中 I_n 为 n 阶单位矩阵. 证明: $AB = B^{-1}A^{-1}$.
- 4.~(10) 设 $M(n \times n,F)$ 为数域 F 上的 n 阶方阵构成的集合。证明存在唯一的函数 $f:M(n \times n,F) \to F$ 满足下列性质:(1)函数 f 关于矩阵的行是线性的,即

$$f(\begin{bmatrix} \mathbf{r_1} \\ \mathbf{r_2} \\ \vdots \\ k\mathbf{r_i} + l\mathbf{r_i'} \\ \vdots \\ \mathbf{r_n} \end{bmatrix}) = kf(\begin{bmatrix} \mathbf{r_1} \\ \mathbf{r_2} \\ \vdots \\ \mathbf{r_n} \end{bmatrix}) + lf(\begin{bmatrix} \mathbf{r_1} \\ \mathbf{r_2} \\ \vdots \\ \mathbf{r_i'} \\ \vdots \\ \mathbf{r_n} \end{bmatrix}),$$

其中 $k,l\in F$, ${\bf r_i}$ 指矩阵的第 i 个行向量。(2)若矩阵 A 的行向量线性相关,则 f(A)=0 ,(3) $f(I_n)=1$,其中 I_n 为 n 阶单位矩阵.