	LEC 17: DIFFERENTIAL FORMS	12 MARCH
	LAST 2 LECTURES: a bit more	geometry.
	"for culture" - since we've	built up so much
	machinery	
		Momenta = 1-farms
	L→ shows up in geometric	wechanics womenta = 1.fams
	statistica	l mednanics
, ,,		mody potentials are 1-form
		from slevem)
	anuthina w	1 "topology - esp gives 144
	, i i i i i i i i i i i i i i i i i i i	autous, Anomalies
	3	nern-emmons forms
		VISIU-ZIMOUZ LOCINZ
	for amplicity - let's stick to f	18t space
	UPPER VS. LOWER INDICES, S	BOUX
		en de la composition
······································	Vectors, vr (one)	
	VECTOR'S, V	
		toe spits out #
	1 t	MP FROM TOM > IR
	$\in T_{PM}$ $\Rightarrow \omega(v) = 0$	2×Vr
	similary, and	
		o forms 3 vectors
	CA CATE	e kind of "the same,"
	1	rant?!?

INDEED, ONCE YOU HAVE A METRIC/INNER product, there is a clear duality between upper? lower modex objects. They carry the same DATA.

but, we can add more structure (w) foresignt)

1. K-forms: antisymmetric bower indexed tensors

es AH....Hk

why? well - this seems important for things like areas ? volumes of (AREA) = V × W for parallelogram

2. DIFFERENTIAL K-FORMS

these take special meaning when we go
to higher dimensions & want to "do calculus"

(diff) forms => eat vectors / can be integrated

a : differential operator

INDEED, A 3×3 DETERMINANT IS ANOTHER EXAMPLE
OF A \$ FORM, THIS TIME K=3.

$$\begin{vmatrix} A' & B' & C' \\ A^2 & B^2 & C^2 \\ A^3 & B^3 & C^3 \end{vmatrix} = (W(A, B, C))$$

A·B×C Twhich gives volume of parallelpiped

X PRODUCT IS A
SPECIAL OPERATION
IN 183... NO analog
M 182 or 184...

easy to see how w generalizes m higher dimensions.

To BE EXPURIT: a K-form / "exterior k-form" is a linear, antisyon function of K vectors W(A, Az, ..., Ax) = - W(Az, A, Az, ... ((e+c)) W(dA, +BB, Az,...) = dW(A,...) + BW(B,...) MAKING BIGGER FORMS: EXTERIOR PRODUCT 1: (K-form), (l-form) -> (K+l)-form antisym over combined in such a way that this Kindlaes is antisym ever antisym over (KIL) indices l indices eg: wedge of 2 1-forms W, NW2 (A,B) = W,(A) W2(B) -W,(B) W2(A) antisym by construction

PRODUCT OF K 1-forms: $(\omega_1, A_1, \dots, A_k) = \begin{bmatrix} \omega_1(A_1) & \cdots & \omega_k(A_k) \\ \vdots & \vdots & \ddots \\ \omega_n(A_k) & \cdots & \omega_k(A_k) \end{bmatrix}$

MOST GENERAL K-FORM takes this structure

W(x) = \(\sum_{\init \init \i

K>N ⇒ zero by pigeon-hole prmaple

implication: v is also antisymmetric

(k) 1 (s) = (-) kg (g) 1 W(k)

NEXT: how to connect this structure
of a manifold

BY THE WAY: the decomposition of tensors into antisym.

PIECES is nothing too obscure...

We know that:

TENBER - SYM & MYSTERM & TERO

	CALCULUS CALCULUS MANIFOLD, M Vectors 1 shuft
	I've here base space of this n.dm
X	a useful crutch: imagine M is an rembedding in R ⁿ⁺¹ eg ;= X; = 1
	NOW IMAGINE AN (INFINITELY DIFFERENTIABLE) TEST FUNCTION & THAT LIVES ON M \$\finall \text{f:M->R}\$
	DEFINE - or reacquaint yourself all - THE DIFFERENTI'AL OPERATOR, acting on the function.
	df: vector > # 2 df is a 1-form
	'PHYBICALLY' of takes in a direction (while of the directional derivative of the along that are.

PARM. TRAVECTORY; X(0) = P

of relocity re f is defined on M df (x) = = 3f(x(=)) COMPONENTS de f(x(cs)) OF 1-FORM lower index the difference in 1 between ticks

So df(x) is indeed something like a $\Delta f = f(\text{one point}) - f(\text{onother})$

along XCC).

ALSO: RELITION OF "TOTAL DIFFERENTIAL" of & PARTIAL DIFFERENTIAL (2/2xi) f

THE BASS	1-FORMS	APE SIMP	y dx, d	13)
J4 = =	oxi of(x)	×		
44	$= 2 \times d \times$	+ 2yd	(6)) + 24,	dy ((a))
Væck	base point			
i I	2ct way 2xx) = 1 BASik VI	3/8xx t	d Alvis	

s.t. dx'(3/2xx) = 3xxx'= 3'x

BASTS 1-FORM

eg. CHAMBE OF VARIABLES: New variables ore just functions of old ones.

9/1, = 1=1 9×1 9×1

? now that we

We know this,

Upper index: $\frac{9\times}{3\times}$ (byw. Basis 1-FORM

HAS Upper index;

BASIS VEC HAS LOWIER)

BASIS K-forms: dx" ~ ... ~ dx "k

totally entisy m.

eg. BASIS 2-Ponnus in R3:

dx ~dy, dx ~dz, dy ~dz

(dx rdx =0 by antisyon.

1 so: Z K forms on RN WI nck

generalise differentiation: K-form -> (K+1)-form

Nik = 0-form.

conventionally there are factors
of Yk! here blo of antisymmetry
... for our purposes, it's an averall
prefactor that can be
absorbed into overflorents

BUT IN ANY REAL CALC - BE CAREFUL!

du = \(\frac{\omega}{\omega} \omega \frac{\omega}{\omega} \frac{\

eg.	R3 W some 1-form	
	A = Ax dx + Aydy + Azdz	
dA	15 a 2-form:	3xAx dxadx=
<u>d</u> A	= DyAx dyndx + DzAx dzndx +DxAx dxndy + DzAy dzndy +DxAz dxndz + DyAz dynd	<u> </u>
y Gr	ANTISYMM of eg, dyndx = dxndy	
dA	= (2xAy - 2yAx) dx 1dy + (2yAz - 2xAy) dy 1dz + (2xAx - 2xAz) dz 1dx	
	!! it's the are!	
	THE CURL ISN'T A VECTOR, IT'S A 2-FORM WHERE THE BASIS VECTORS ARE THE	
	PLANT IN WHICH THERE IS O	circulation
Accessed Laboratoristics of the Control of the Cont	dx rd 2 J what is t	he relation?

AWOTHER THING WE NOTICE:
$$d^2 = 0$$

eg:
$$f(x) = x^2 + 2y^2 = m R^2$$

 $df = 2x dx + 4y dy$

$$eg: f(x) = xy$$

$$eg: f(x) = xdy + ydx$$

$$d^2f = dx dy + dy dx = 0$$

EO

To exterior derivative is introduct, d2=0

of 2 K-form, w, is (K+1) form

then: if I have a K form w,
that happens to be w=dq
y is kind of a potential for w
if I shift I - s Y+dx,
(K-1)- from (K-5) from
$\omega \rightarrow \omega$
ie as is muarient
Sounds similar to something, en?, y-ve com potentially
GAUGE REDUNDANCY POTENTIAL
5 3 aurl antisym
F = F w dx ~ dx = dA
1
Avtomatically
ANTISYMMETORES
(2,Av) 4xr, dx
Tw
AGAIN- I'M DROPPING PREFACTORS LIKE =1

C Hugares

NPLPOTENCY: F=dA C'insta." Yhen: A -> A + dd bowes F mut

CAUGE TRANSFORMATION 99 = 949 9×4 9 = 0-8eW

recall curl: relation patrin

 $\frac{\nabla \times V}{1}$ vs. $\frac{dV}{T}$? $\frac{1}{2}$ vector 1-form

some components, different basis

given intrice, easy to see how 1-brm & Vector

also clear that 2-form in R3 in some sense enoodes some info!

DEFINE HOGE STAR X, by action on basis K-forms

in 4 dimensions

* 1 = 41 Etype dxt n.... dx = * dxt = 31 gt « Edyper dx' ndx endx =

* dx modx = it gragua Exapa dx modx

of so footh. (I'M PLANING IT SUPER LOOSE WI FACTORIALS!)

MORE GENERALLY

* (r-form) = (U-k) form

wl basis that is complementary to original k-form.

this in R3: * dx ~ dy ~ dz

s.t. DxV ~ * dV

Note: dx ady is EVEN UNDER PARTY.

WHICH O DIPPERENT FROM A VEETAL

				40			TVE
res	t c	<i>5</i> — <i>7</i>	70e	" forc	v - 1168		
د میانسین بسیان پر زار ساسان بسین				T		11	
					coublet		
		, , , , , , , , , , , , , , , , , , , ,		_			r waximal
				for	<i>: m</i> :	D = 9	x' v v dx
	-	ti		" "	MME	FORM	
	/** · · · · · · · · · · · · · · · · · ·					e colonia de la como de la colonia de la	
		an experimental services and a		<u> </u>			
				Preview	of Nex	2 2/M	E
	on the control of the section of the			J. S.	= Yow	ひり	
	-						
* 9	×h^	٩×^	2	-dBpo	d×°	9×c	947 BV
× 4	× ^h ^·	q×,		- AB De	dx°.	g× _e	3420BN
		-					
		-		ρσ - Ρσ			
		-		ρσ - Ρσ			
		-		ρσ - Ρσ			
		-	= &	ρσ - Ρσ	FaB (1×*^	de

VOUME FORM -> BORN TO INTERRACE
Fx *F 13 A 4-6mm on 4-xace
LABB. DENSITY
80: S= JF~*F
= 1 Emba Em Ere gx y gx y gx y gx
Anasym Anasym
ey; Y, V = 0, 1
EMP0 ⇒ P, σ = (2,3)
$\Rightarrow \forall \beta = (0,1)$
N. J FW FW 4%
Mdeed: EM ACTION E2+B2
WHY NOT S= JFAF?
· dependence on meter?
1 spopgical
(sept on earl (NV mas)

		Cnext time: Maxwell's eens J
FAF =	FABFPE dx 1 dx B	√9×6×6×€
	Minor does this look $d\beta = 0.1$ $d_{*} \wedge \cdots \Rightarrow \rho = 2.3$	We?
	80 flus is E.B	
	or in tensor notation	on Ear Ear Egrera
	2 CXA 836 C3A 636 C A86 ABB 3A66 MA	
	As G AA B G A A C C	- ABBabsA-
		shw arm

this term is a total derivative.

PREP for next lecture

- 1. REVIEW via: MAXWELL EQ IN FORMS
- 2. (POINCARÉ LEMMA)
- 3. GENERALIZED STOKES THM
- 4. MENETIC MONORUES
- 5. VORTICES IN 3D

MAXMELL 82EW -> 9xE = x8

9.FM = 3

from variational

2 maxwell egs.

other 2: dF =0

F= dA >> |dF=0|

A

come for free

from geometry

rokes'	ther	RM.	(7)	E 13	£ = \] _{2V}	
Pollie		2 me) Jav	CGA
					int ever	C BOUNDA
, and a second of the second o			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		of V	
Huis B	like	"int pu	, pts"	Where do	entens	
wored	, 40	nulou	<u> </u>	54. d	Cuel) = S	3 V
rs t	he	BOUND	ARY	v 20		
			0	•		

Fundamental thm of calables

lift dx = from - from = lot "

Generalized (is simpler)
1 df dx'n n dx n-1
1-0-cm 1-0-cm
n-volume
Co-form
Hun: = Pay + dx'1 dx ?-1
(N-1) rajune N-1 focus
i we have seen, eg, that
for GREEN'S THM!
Jak Adž
Croceno 1 1- born
Hus gres (IXA); de dy 1 det
AREA .
VS: JO(MGA) A. 48