Contents

- Cleaning
- Optimization
- Mass Matrix
- Stiffness Matrix
- **Damping Matrix**
- Execution

```
% In the name of Allah the beneficent the merciful
% Code by NVE Team, Sharif University, Tehran, Iran
% Date : 1395/12/24
```

Cleaning

```
clc; clear; close all
```

Optimization

Constraints

```
.2;-.2;-.2;50];
ub =
.1;-.1;.2;.2;.2;.2;.2;.2;.70];
x0 = 1b*10.5;
x0(1:9) = 5e4;
x0(19:27) = -.1;
x0 (end) = 50;
options = optimoptions('fmincon','Display','iter','TolX',1e-200,'MaxFunEvals',100000);
f=fmincon(@myfun2,x0,[],[],[],[],lb,ub,[],options);
```

				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
0	29	1.143993e+05	0.000e+00	1.402e+05	
1	59	2.753492e+04	0.000e+00	1.628e+05	4.248e-01
2	90	2.324279e+04	0.000e+00	1.740e+05	1.005e-01
3	121	1.285920e+04	0.000e+00	1.753e+05	1.555e+00
4	157	9.809407e+03	0.000e+00	9.095e+04	5.672e-02
5	189	9.395152e+03	0.000e+00	1.446e+05	1.503e-01
6	221	8.134252e+03	0.000e+00	1.127e+05	1.486e-01
7	252	4.717031e+03	0.000e+00	1.935e+05	2.587e+00
8	281	2.764779e+03	0.000e+00	1.375e+05	4.018e-01
9	310	2.749791e+03	0.000e+00	1.325e+05	8.869e-03
10	340	1.310124e+03	0.000e+00	1.577e+05	1.118e+00
11	372	1.269314e+03	0.000e+00	1.216e+05	8.035e-02

12	402	1.015932e+03	0.000e+00	1.371e+05	1.091e+00
13	432	9.377511e+02	0.000e+00	1.365e+05	1.112e+00
14	464	8.975881e+02	0.000e+00	1.435e+05	6.935e-01
15	493	7.995578e+02	0.000e+00	1.296e+05	1.175e+00
16	523	7.960950e+02	0.000e+00	1.413e+05	3.899e-01
17	552	7.455550e+02	0.000e+00	1.374e+05	8.650e-01
18	582	7.452255e+02	0.000e+00	1.374e+05	3.019e-03
19	611	7.443401e+02	0.000e+00	1.379e+05	2.550e-01
20	641	7.328082e+02	0.000e+00	1.455e+05	1.519e+00
21	670	6.978697e+02	0.000e+00	1.444e+05	1.770e+00
22	699	6.950840e+02	0.000e+00	1.342e+05	1.868e-01
23	728	4.825426e+02	0.000e+00	1.465e+05	1.659e+00
24	758	3.674297e+02	0.000e+00	1.472e+05	1.234e+00
25	791	1.917972e+02	0.000e+00	1.076e+05	3.268e-02
26	820	6.246119e+01	0.000e+00	1.784e+05	1.822e+00
27	851	5.478705e+01	0.000e+00	1.875e+05	4.190e-01
28	881	4.446795e+01	0.000e+00	1.844e+05	6.082e-01
29	910	3.687585e+01	0.000e+00	1.761e+05	1.040e+00
30	940	3.198537e+01	0.000e+00	1.175e+05	1.052e+00
				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
31	969	2.709227e+01	0.000e+00	1.536e+05	1.602e+00
32	998	2.169816e+01	0.000e+00	1.495e+05	6.343e-01
33	1027	1.167502e+01	0.000e+00	1.512e+05	7.383e-01
34	1057	7.513969e+00	0.000e+00	1.562e+05	6.322e-01
35	1086	6.443723e+00	0.000e+00	1.504e+05	4.558e-01
36	1116	3.555641e+00	0.000e+00	1.353e+05	8.065e-01
37	1148	3.025728e+00	0.000e+00	1.424e+05	1.453e-01
38	1180	2.277253e+00	0.000e+00	1.092e+05	2.774e-01
39	1211	1.821471e+00	0.000e+00	1.476e+05	2.318e-01
40	1252	1.758077e+00	0.000e+00	1.073e+05	4.762e-06
41	1282	1.758039e+00	0.000e+00	1.073e+05	8.368e-06
42	1315	8.087569e-01	0.000e+00	9.265e+04	8.997e-06
43	1345	8.074734e-01	0.000e+00	9.265e+04	1.607e-04
44	1385	7.645169e-01	0.000e+00	9.051e+04	1.095e-06
45	1415	7.644991e-01	0.000e+00	9.051e+04	2.616e-06
46	1449	6.869247e-01	0.000e+00	4.231e+04	1.046e-06
47	1479	6.868877e-01	0.000e+00	4.231e+04	5.408e-06
48		6.829423e-01	0.000e+00	9.558e+04	1.999e-06
49	1543	6.829067e-01	0.000e+00	9.558e+04	5.252e-06
50		6.579661e-01	0.000e+00	9.051e+04	4.014e-06
51		6.578758e-01	0.000e+00	9.051e+04	1.385e-05
52		5.710125e-01	0.000e+00	1.076e+05	8.328e-06
53	1669	5.702668e-01	0.000e+00	1.076e+05	1.229e-04

54	1703	4.912445e-01	0.000e+00	7.459e+04	1.653e-05
55	1733	4.911271e-01	0.000e+00	7.459e+04	4.602e-05
56	1767	4.854382e-01	0.000e+00	4.232e+04	1.712e-05
57	1797	4.852116e-01	0.000e+00	4.232e+04	1.190e-04
58	1832	4.542045e-01	0.000e+00	8.786e+04	8.062e-06
59	1862	4.540214e-01	0.000e+00	8.786e+04	5.751e-05
60	1897	3.951132e-01	0.000e+00	8.627e+04	4.375e-06
				First-order	Norm of
Iter	F-count	f(x)	Feasibility	optimality	step
61	1927	3.948702e-01	0.000e+00	8.627e+04	6.114e-05
62	1966	3.792641e-01	0.000e+00	5.148e+04	2.629e-07
63	1996	3.792439e-01	0.000e+00	5.148e+04	3.830e-06
64	2032	3.727394e-01	0.000e+00	1.128e+04	1.336e-07
65	2062	3.727344e-01	0.000e+00	1.128e+04	1.984e-06
66	2095	3.687595e-01	0.000e+00	5.861e+04	5.353e-07
67	2125	3.687335e-01	0.000e+00	5.861e+04	3.010e-06
68	2158	3.534428e-01	0.000e+00	1.196e+04	2.216e-06
69	2188	3.533970e-01	0.000e+00	1.196e+04	3.155e-05
70	2224	3.435536e-01	0.000e+00	5.398e+04	1.044e-06
71	2254	3.435326e-01	0.000e+00	5.398e+04	1.586e-05
72	2294	3.428969e-01	0.000e+00	3.443e+04	3.347e-08
73	2324	3.428965e-01	0.000e+00	3.443e+04	2.344e-07
74	2358	3.403954e-01	0.000e+00	3.760e+04	3.295e-08
75	2388	3.403902e-01	0.000e+00	3.782e+04	1.582e-06
76	2455	3.403902e-01	0.000e+00	3.778e+04	2.725e-17
77	2491	3.403902e-01	0.000e+00	3.778e+04	3.407e-18
78	3008	3.403902e-01	0.000e+00	3.778e+04	0.000e+00

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than the selected value of the step size tolerance and constraints are satisfied to within the default value of the constraint tolerance.

Mass Matrix

```
global m I T_Amp T_Freq T_phase

m = 150; % mass of the engine or powertrain

I = [5.82 -0.82 0.19; -0.82 3.41 -0.21; 0.19 -0.21 5.50]; % Inertia matrix

M = [m*eye(3) zeros(3); zeros(3) I];
```

```
T_Amp = 100; % N/m
T_Freq = 50; % Rad/s
T_phase = 0; % Radian
```

Stiffness Matrix

Mount Positions

```
r 1 = f(19:21);
r 2 = f(22:24);
r 3 = f(25:27);
B_1 = [0 -r_1(3) r_1(2) ; r_1(3) 0 -r_1(1) ; -r_1(2) r_1(1) 0];
B 2 = [0 -r 2(3) r 2(2) ; r 2(3) 0 -r 2(1) ; -r 2(2) r 2(1) 0];
B 3 = [0 -r 3(3) r 3(2) ; r 3(3) 0 -r 3(1) ; -r 3(2) r 3(1) 0];
% Mount Inclinations
01 = f(10:12);
02 = f(13:15);
o 3 = f(16:18);
% Mount Rotation Matrices
A 1 = [\cos(o 1(3)) * \cos(o 1(2)) -
\sin(o 1(3))*\cos(o 1(1))+\cos(o 1(3))*\sin(o 1(2))*\sin(o 1(1))
\sin(o 1(3))*\sin(o 1(1))+\cos(o 1(3))*\sin(o 1(2))*\cos(o 1(1));
    sin(o 1(3))*cos(o 1(2))
\cos(o \ 1(3)) * \cos(o \ 1(1)) + \sin(o \ 1(3)) * \sin(o \ 1(2)) * \sin(o \ 1(1)) -
\cos(o \ 1(3)) * \sin(o \ 1(1)) + \sin(o \ 1(3)) * \sin(o \ 1(2)) * \cos(o \ 1(1));
    -\sin(o_1(2))\cos(o_1(2))*\sin(o_1(1))\cos(o_1(2))*\cos(o_1(1))];
A 2 = [\cos(o 2(3)) * \cos(o 2(2)) -
\sin(o_2(3))*\cos(o_2(1))+\cos(o_2(3))*\sin(o_2(2))*\sin(o_2(1))
\sin(o 2(3))*\sin(o 2(1))+\cos(o 2(3))*\sin(o 2(2))*\cos(o 2(1));
    sin(o 2(3))*cos(o 2(2))
\cos(o_2(3))*\cos(o_2(1))+\sin(o_2(3))*\sin(o_2(2))*\sin(o_2(1)) -
\cos(o_2(3)) * \sin(o_2(1)) + \sin(o_2(3)) * \sin(o_2(2)) * \cos(o_2(1));
    -\sin(o_2(2))\cos(o_2(2))*\sin(o_2(1))\cos(o_2(2))*\cos(o_2(1))];
A 3 = [\cos(o 3(3)) * \cos(o 3(2)) -
\sin(o_3(3)) * \cos(o_3(1)) + \cos(o_3(3)) * \sin(o_3(2)) * \sin(o_3(1))
\sin(o_3(3))*\sin(o_3(1))+\cos(o_3(3))*\sin(o_3(2))*\cos(o_3(1));
    sin(o 3(3))*cos(o 3(2))
\cos(o_3(3))*\cos(o_3(1))+\sin(o_3(3))*\sin(o_3(2))*\sin(o_3(1)) -
\cos(o 3(3)) * \sin(o 3(1)) + \sin(o 3(3)) * \sin(o 3(2)) * \cos(o 3(1));
    -\sin(o_3(2))\cos(o_3(2))*\sin(o_3(1))\cos(o_3(2))*\cos(o_3(1))];
% Mount Stiffness
k l 1 = diag([f(1) f(4) f(7)]);
k l 2 = diag([f(2) f(5) f(8)]);
```

```
k_l_3 = diag([f(3) f(6) f(9)]);
k_l = A_1*k_l_1*A_1';
k_2 = A_2*k_l_2*A_2';
k_3 = A_3*k_l_3*A_3';

% Finally! The Stiffness Matrix
K = [k_l k_l*B_l'; (k_l*B_l')' B_l*k_l*B_l'] + [k_2 k_2*B_2'; (k_2*B_2')' B_2*k_2*B_2'] + [k_3 k_3*B_3'; (k_3*B_3')' B_3*k_3*B_3'];
```

Damping Matrix

Mount Damping Coefficients

```
c_l_1 = diag([f(1) f(4) f(7)])*0.01;
c_l_2 = diag([f(2) f(5) f(8)])*0.01;
c_l_3 = diag([f(3) f(6) f(9)])*0.01;
c_1 = A_1*c_l_1*A_1';
c_2 = A_2*c_l_2*A_2';
c_3 = A_3*c_l_3*A_3';

% Damping Matrix
% C = [c_l c_l*B_l' ; (c_l*B_l')' B_1*c_l*B_l'] + [c_2 c_2*B_2' ; (c_2*B_2')' B_2*c_2*B_2'] + [c_3 c_3*B_3' ; (c_3*B_3')' B_3*c_3*B_3'];
C = 0.01*K;
```

Execution

```
x0 = [0;0;0;0;0;0;0;0;0;0;0;0;0]; % The initial condition
[t,x] = ode45 (@eng mount, [0 5], x0, [], M, C, K); % solving the ODE with the
duration of 5 seconds
P1 = cube([0 \ 0 \ 0],[0 \ 0 \ 0]); % plotting the engine in its equilibrium position
F_1 = zeros(length(t),3); F_2 = F_1; F_3 = F_1;
F_1_n = t'; F_2_n = F_1_n; F_3_n = F_1_n;
for i = 1:length(t)
    F_1(i,:) = (-k_1*[eye(3) B_1']*x(i,1:6)' - c_1*[eye(3) B_1']*x(i,7:12)')';
   F_1_n(i) = norm(F_1(i,:));
   F_2(i,:) = (-k_2*[eye(3) B_2']*x(i,1:6)' - c_2*[eye(3) B_2']*x(i,7:12)')';
   F_2_n(i) = norm(F_2(i,:));
   F_3(i,:) = (-k_3*[eye(3) B_3']*x(i,1:6)' - c_3*[eye(3) B_3']*x(i,7:12)')';
   F_3_n(i) = norm(F_3(i,:));
end
figure;plot(t,F_1_n)
hold on
```

```
plot(t, F_2_n)
plot(t, F 3 n)
title('Forces','fontsize',18);
xlabel('Time (s)','fontsize',15);
ylabel('Force Amplitude', 'fontsize', 15);
legend('Mount 1','Mount 2','Mount 3');
figure; plot(t, x(:,1:3))
title('Positions','fontsize',18);
xlabel('Time (s)','fontsize',15);
ylabel('Position Amplitude', 'fontsize', 15);
legend('X','Y','Z');
figure; plot(t, x(:, 4:6))
title('Angles','fontsize',18);
xlabel('Time (s)','fontsize',15);
ylabel('Angles in radian','fontsize',15);
legend('\theta X','\theta Y','\theta Z');
[u, \sim] = eig(I);
R EAD = [eye(3) zeros(3); zeros(3) u'];
EE = zeros(length(x), 6);
for i = 1: length(x)
EE(i,:) = (R EAD*x(i,1:6)')';
end
figure;plot(t,EE(:,4:6),'linewidth',1)
title('Angles in Princapl Moment of Inertia Coordinates', 'fontsize', 18);
xlabel('Time (s)','fontsize',15);
ylabel('Angles in radian','fontsize',15);
legend('\theta_X','\theta_Y','\theta_Z');
% End of code
```


Angles in Princapl Moment of Inertia Coordinate

