Universidad de la República - Facultad de Ingeniería - IMERL. Matemática Discreta 2

Solución Examen - 15 de diciembre de 2018.

Ejercicio 1.

a. • Enunciar el Teorema Chino del Resto.

Solución:

Enunciado en las notas de teórico (Teorema 2.5.1, página 33). Copiamos aquí el enunciado para facilitar al lector.

Teorema Chino del Resto Sean m_1, m_2, \dots, m_k enteros coprimos dos a dos y $a_1, a_2, \dots, a_k \in \mathbb{Z}$. Entonces el sistema

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \vdots \\ x \equiv a_k \pmod{m_k} \end{cases}$$
 (1)

tiene solución, y hay una única solución módulo $m_1m_2\cdots m_k$. Es decir, si x_0 es solución, entonces todas las soluciones son $x \equiv x_0 \pmod{m_1m_2\cdots m_k}$.

■ Hacer la demostración del teorema anterior, para el caso en que el sistema tenga tres ecuaciones (k=3).

Solución:

Ver las notas de teórico (Teorema 2.5.1, página 33), en el caso general.

- **b.** Se considera el polinomio $p(x) = 6x^2 + 5x + 1$.
 - i) Factorizar p(x).

Solución:

Es fácil ver que $p(x) = 6x^2 + 5x + 1 = (2x + 1)(3x + 1)$.

- ii) Probar que existe $x \in \mathbb{Z}$ tal que p(x) es múltiplo de 9.
 - Probar que existe $y \in \mathbb{Z}$ tal que p(y) es múltiplo de 8.
 - Probar que existe $z \in \mathbb{Z}$ tal que p(z) es múltiplo de 72.

Solución:

Tomando x=4 tenemos que $p(4)=(2\times 4+1)(3\times 4+1)=9\times 13$ es múltiplo de 9. Tomando x=5 vemos que $p(5)=(2\times 5+1)(3\times 5+1)=11\times 16$ es múltiplo de 8. Resumiendo, en el primer caso logramos que el primer factor sea múltiplo de 9 (impar) y en el segundo caso, procuramos que el segundo factor sea múltiplo de la potencia de 2. Con esa estrategia el polinomio p evaluado en 4 y 5, respectivamente queda múltiplo de los números buscados.

Por último, procuramos un valor entero z tal que su evaluación p(z) sea múltiplo de 72. Un camino posible es tanteando, y vemos, sin mucha trabajo de búsqueda que z=13 sirve: $p(13)=(2\times 13+1)(3\times 13+1)=27\times 40$ el cual es múltimplo de 9 y de 8, o sea múltiplo de 72, o sea $p(13)=72\times 15$. Otro camino, es, como se demostrará en el ítem iv., utilizando el Teorema Chino del Resto. Leer, por favor, el caso general en la solución del ítem iv.

- ii) Dado $n \in \mathbb{N}$, impar, probar que existe $x \in \mathbb{Z}$ tal que p(x) es múltiplo de n.
 - Dado $m=2^s$, con $s\in\mathbb{N}^*$, probar que existe $y\in\mathbb{Z}$, tal que p(y) es múltiplo de m.

Solución:

■ Si n es impar entonces n=2t+1 con $t\in\mathbb{Z}$. Evaluando el polinomio p en t tenemos p(t)=(2t+1)(3t+1), y como $t\in\mathbb{Z}$ entonces 3t+1 es entero también. Por lo tanto p(t) es múltiplo de n=2t+1.

- Dado $m=2^s$, con $s \in \mathbb{N}^*$, considero la ecuación en congruencia: $3x+1 \equiv 0$ (mód 2^s). Esta ecuación tiene solución entera pues $\operatorname{mcd}(3,2^s)=1$. Luego existe $r \in \mathbb{Z}$ solución de la congruencia, o sea, 3r+1 es múltiplo de $m=2^s$.
- iv) Demostrar que para todo $m \in \mathbb{N}^*$, existe $z \in \mathbb{Z}$, tal que p(z) es múltiplo de m.

Solución:

Dado $m \in \mathbb{N}^*$ lo escribimos según su descomposición factorial, destacando al único primo par, o sea: $m = 2^s \times p_2^{\alpha_2} \times p_3^{\alpha_3} \times \cdots \times p_l^{\alpha_l}$. De otra forma $m = 2^s \times n$ con $n = p_2^{\alpha_2} \times p_3^{\alpha_3} \times \cdots \times p_l^{\alpha_l}$ impar.

Nos podemos plantear el sistema de congruencias:

$$2x + 1 \equiv 0 \pmod{n}$$
; $3x + 1 \equiv 0 \pmod{2^s}$.

De otra forma, como 3 es invertible en \mathbb{Z}_{2^s} (o sea $3 \in \mathrm{U}(2^s)$, pues $\mathrm{mcd}(3,2^s)=1$), la segunda ecuación en congruencia es equivalente a: $x \equiv -3^{-1} \pmod{2^s}$.

O sea tenemos el sistema: $2x \equiv -1 \pmod{n}$; $x \equiv -3^{-1} \pmod{2^s}$.

Como n es impar, tenemos que $\operatorname{mcd}(n,2^s)=1$, con lo cual, por el Teorema Chino del Resto, el sistema tiene solución entera. Es decir, existe $z\in\mathbb{Z}$ tal que 2z+1 es múltiplo de n y 3z+1 es múltiplo de 2^s . Luego, p(z)=(2z+1)(3z+1) es múltiplo de n y de 2^s . Por lo tanto, p(z) es múltiplo de $m=2^s\times n$, que es lo que queríamos demostrar.

Ejercicio 2.

- a. Definir la función $\varphi : \mathbb{N} \to \mathbb{N}$ de Euler.
- **b**. Probar que $\varphi(p^k) = p^k p^{k-1}$ para p primo y $k \in \mathbb{N} \setminus \{0\}$.
- c. i) Probar que 5 es una raíz primitiva módulo 27 y hallar una raíz primitiva de 54.
 - ii) Hallar todos los morfismos $f: U(54) \to \mathbb{Z}_{36}$.

Solución:

- a. Ver las notas de Teórico de MD2, en el sitio EVA del curso: https://eva.fing.edu.uy/mod/resource/view.php?id=62664
- **b.** $\varphi(p^k) = p^{k-1}(p-1)$. Ver las notas de Teórico de MD2, en el sitio EVA del curso: https://eva.fing.edu.uy/mod/resource/view.php?id=62664
- c. $\varphi(27) = 18$. Como $5^6 \equiv 19 \mod 27$ y $5^9 \equiv 26 \mod 27$ entonces 5 es raíz primitiva módulo 27. Usando ahora que 5 es impar y que 27 es la potencia de un primo impar se deduce, del Lema 4.1.13 de las Notas dde Teórico, que 5 es raíz primitiva de $54 = 2 \times 3^3$.
- d. Como el orden de 5 en U(54) es $\varphi(54) = 18$ y U(54) es un grupo cíclico por tener raíz primitiva, para definir un morfismo de grupos (al cual llamaremos f) solamente tenemos que ver como se define en 5. Para que la función f sea un morfismo de grupos solamente hay que verificar $o(f(5)) \mid o(5) = 18$. Por lo tanto tenemos un morfismo de grupos por cada elemento par de \mathbb{Z}_{36} . La función queda definida por $f(5^k) = kf(5)$, para todo $k \in \mathbb{Z}$.

Ejercicio 3.

- a. Describir el criptosistema RSA, explicando:
 - i) Cómo se define la clave pública (n, e).
 - ii) Cómo se define la función de cifrado y la de descifrado.
- b. i) Enunciar el teorema de Euler. Deducir el teorema de Fermat.
 - ii) Probar que la función de descifrado es la inversa de la función de cifrado.
- c. El alfabeto de los números en base hexadecimal es:

Estos caracteres se corresponden con los números en base 10 según la tabla:

0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Se considera la clave pública (n, e) = (3977, 193). Se pide:

- i) Encriptar usando ECB el número hexadecimal C414. Usar: $196^{16} \equiv 3650 \pmod{3977}$.
- ii) Sabiendo que $\varphi(n)=3840$, halle la función de descifrado correspondiente a la clave (n,e).

Solución:

c. i) Buscamos el exponente $k \in \mathbb{N}$ tal que $16^k < 3977 < 16^{k+1}$. Vemos que k=2 es el exponente y por lo tanto, se ha de cortar el número C414 en bloques de largo 2.

El bloque C4 representa al número decimal 196 y el bloque 14 al decimal 20. La función de encriptado es $E(x) :\equiv x^{193}$ (mód 3977). Debemos calcular E(20) y E(196), lo que haremos mediante exponenciación rápida.

El exponente 193 en base 2 es 11000001, de modo que $E(20) \equiv 20^{2^7} \times 20^{2^6} \times 20$ (mód 3977), y $E(196) \equiv 196^{2^7} \times 196^{2^6} \times 196$ (mód 3977).

Para eso usamos la siguiente tabla:

i	2^i	$196^{2^{i}}$	$20^{2^{i}}$
0	1	196	20
1	2	2623	400
2	4	3896	920
3	8	2584	3276
4	16	3650	2230
5	32	3527	1650
6	64	3650	2232
7	128	3527	2620

Como $3650 \times 3527 \equiv 1 \pmod{3977}$, se tiene $E(196) \equiv 196 \pmod{3977}$ y por otro lado $E(20) \equiv 1184 \pmod{3977}$; de modo que el número encriptado es OC44AO (recordar que los bloques encriptados tienen un caracter más).

c. ii) La función de descifrado es $D(x) \equiv x^d$ (mód 3977) donde $d \equiv (193)^{-1}$ (mód 3840). Es claro que para que esto sea posible, 193 y 3840 deben ser coprimos. Calculamos m := mcd(3840,193) por el algoritmo de Euclides generalizado, el cual nos permite expresar a m como combinación lineal de 3840 y 193. Las divisiones sucesivas para hacer el cálculo son las siguientes:

Estas divisiones generan el siguiente producto de matrices de transición:

$$\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 1 & -8 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \qquad \begin{pmatrix} -1 & 2 \\ 2 & -3 \end{pmatrix} \qquad \begin{pmatrix} 2 & -17 \\ -3 & 26 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 1 & -19 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -17 \\ -3 & 26 \end{pmatrix} \qquad \begin{pmatrix} -17 & 19 \\ 26 & -29 \end{pmatrix} \qquad \begin{pmatrix} 19 & -378 \\ -29 & 577 \end{pmatrix}$$

Esto en particular dice que:

$$\begin{pmatrix}
3840 \\
193
\end{pmatrix}$$

$$\begin{pmatrix}
19 & -378 \\
-29 & 577
\end{pmatrix}$$

$$\begin{pmatrix}
6 \\
1
\end{pmatrix}$$

De modo que $(-29) \times 3840 + 577 \times 193 = 1$ y entonces $577 \equiv (193)^{-1}$ (mód 3840). La función de descifrado es: $D(x) :\equiv x^{577}$ (mód 3977).