Introduction à l'Intelligence Artificielle

Cours 5 - mercredi 26 octobre 2022

Adrien Revault d'Allonnes

ara@up8.edu

Université Paris 8 - Vincennes à Saint-Denis

IIA - sept. à déc., 2022

À l'épisode précédent...

- Apprentissage
 - au lieu de programmer un ordinateur manuellement,
 - ⇒ lui donner les moyens de se programmer lui-même
- Pourquoi?
 - problèmes trop complexes
 - pas d'expert, ou trop coûteux
 - personnalisation de l'information
 - grande quantité d'information
 - parce que c'est rigolo...

À l'épisode précédent...

- Apprentissage
 - au lieu de programmer un ordinateur manuellement,
 - ⇒ lui donner les moyens de se programmer lui-même
- Apprentissage supervisé
 - on se limite à la problématique de la classification binaire
 - fournir au système un ensemble d'exemples étiquetés
 - fournir au système un ensemble d'apprentissage
 - $f_{\theta}: \mathbb{R}^N \longrightarrow [-1, +1]$
 - ⇒ se programmer lui-même : trouver les paramètres optimaux

A. Revault d'Allonnes

Exemple: kppv

Paramètres

- $f_{\theta} = \text{k-plus-proches-voisins}$
- $\theta = \text{ensemble d'exemples d'apprentissage}$

- Un bon modèle est un modèle qui généralise bien :
 - évaluation du modèle sur une base de test
 - compromis entre un modèle compliqué et un modèle simple

.. ____

k = 200

Exemple: kppv

Paramètres

- $f_{\theta} = \text{k-plus-proches-voisins}$
- $\theta = \text{ensemble d'exemples d'apprentissage}$

Problématique du jour

- Constat
 - 1ppv est un modèle
 - trop complexe
 - avec trop de paramètres
- Problématique
 - quel modèle utiliser qui soit
 - simple
 - avec peu de paramètres
 - efficace

Neurone

- machine simple (en apparence)
- qui permet d'apprendre

- Le cerveau naturel : modèle très séduisant
 - robuste et tolérant aux fautes
 - flexible, facilement adaptable
 - s'accomode d'informations
 - incomplètes,
 - incertaines.
 - vagues,
 - bruitées
 - -
 - massivement parallèle
 - capable d'apprentissage

- Le cerveau naturel : modèle très séduisant
 - robuste et tolérant aux fautes
 - flexible, facilement adaptable
 - s'accomode d'informations
 - incomplètes,
 - incertaines.
 - vagues,
 - bruitées
 - . . .
 - massivement parallèle
 - capable d'apprentissage
- Neurones
 - 10¹¹ neurones dans le cerveau humain
 - 10^4 connexions (synapses + axones) / neurone
 - potentiel d'action / période réfractaire / neuro-transmetteurs
 - signaux excitateurs / inhibiteurs

Neurones

- Les attraits pratiques
 - calculs parallélisables
 - implantables directement sur circuits dédiés
 - robustes et tolérants aux fautes (calculs et représentations distribués)
 - algorithmes simples
 - d'emploi très général
- Les défauts
 - opacité des raisonnements
 - opacité des résultats

Prémisses

- Mc Cullock & Pitts (1943): premier modèle de neurone formel.
 Rapport neurone et calcul logique: base de l'intelligence artificielle
- Hebb (1949): apprentissage par renforcement du couplage synaptique Règle: 'Cells that fire together, wire together'

Prémisses

- Mc Cullock & Pitts (1943): premier modèle de neurone formel.
 Rapport neurone et calcul logique: base de l'intelligence artificielle
- Hebb (1949): apprentissage par renforcement du couplage synaptique Règle: 'Cells that fire together, wire together'
- Premières réalisations
 - Widrow-Hoff (1960): Adaline
 - Rosenblatt (1958-1962): Perceptron
 - Minsky & Papert (1969): 'Perceptrons: an introduction to computational geometry'

A. Revault d'Allonnes

Prémisses

- Mc Cullock & Pitts (1943): premier modèle de neurone formel.
 Rapport neurone et calcul logique: base de l'intelligence artificielle
- Hebb (1949): apprentissage par renforcement du couplage synaptique Règle: 'Cells that fire together, wire together'

Premières réalisations

- Widrow-Hoff (1960) : Adaline
- Rosenblatt (1958-1962): Perceptron
- Minsky & Papert (1969): 'Perceptrons: an introduction to computational geometry'

Nouveaux modèles

- Kohonen (1984) : apprentissage compétitif
- Hopfield (1982) : réseau bouclé
- Rumelhart et al. (1986) : perceptron multicouche

Prémisses

- Mc Cullock & Pitts (1943): premier modèle de neurone formel.
 Rapport neurone et calcul logique: base de l'intelligence artificielle
- Hebb (1949): apprentissage par renforcement du couplage synaptique Règle: 'Cells that fire together, wire together'

Premières réalisations

- Widrow-Hoff (1960): Adaline
- Rosenblatt (1958–1962): Perceptron
- Minsky & Papert (1969): 'Perceptrons: an introduction to computational geometry'

Nouveaux modèles

- Kohonen (1984) : apprentissage compétitif
- Hopfield (1982) : réseau bouclé
- Rumelhart et al. (1986) : perceptron multicouche
- Analyse et développement
 - Vapnik (1981) : théorie du contrôle, de la généralisation

- Neurone
 - machine simple (en apparence)
 - qui permet d'apprendre

- Premier système artificiel capable d'apprendre
 - par expérience
 - y compris lorsque son instructeur commet quelques erreurs (ce en quoi il diffère d'un système d'apprentissage logique formel)

A. Revault d'Allonnes

entrées poids

- Fonction de décision
 - $f_{\theta}(x) = g(w_0 + x_1 \times w_1 + x_2 \times w_2 + \ldots + x_n \times w_n)$
 - $\theta = \{w_0, w_1, \dots, w_n\}$
 - décision : $f_{\theta}(x) > 0$?

entrées poids

Fonction de décision

-
$$f_{\theta}(x)=g(\sum_{i=0}^{n}x_{i}\times w_{i})$$
 où $x_{0}=1$ - Si $g(x)=x, f_{\theta}(x)=\langle x\cdot\theta\rangle$

- Si
$$g(x) = x$$
, $f_{\theta}(x) = \langle x \cdot \theta \rangle$

IIA - 12

Fonction de décision

-
$$f_{\theta}(x) = \langle x \cdot \theta \rangle$$

$$\theta = (1;1)$$

A. Revault d'Allonnes

Fonction de décision

-
$$f_{\theta}(x) = \langle x; \theta \rangle$$

$$\theta = (0.3; -0.5)$$

A. Revault d'Allonnes

- Le perceptron est
 - une machine de classificattion linéaire
 - il modélise un hyperplan ¹ dans une espace vectoriel
 - ¹ un truc tout droit qui coupe en deux

- Le perceptron est
 - une machine de classificattion linéaire
 - il modélise un hyperplan ¹ dans une espace vectoriel
 - ¹ un truc tout droit qui coupe en deux

600 paramètres

temps de calcul très court

temps de calcul prohibitif

- Problème
 - le perceptron modélise une frontière linéaire
 - est-ce que ça peut apprendre qqc?

- Problème
 - le perceptron modélise une frontière linéaire
 - est-ce que ça peut apprendre qqc?

- Problème
 - le perceptron modélise une frontière linéaire
 - est-ce que ça peut apprendre qqc?

- Problème
 - le perceptron modélise une frontière linéaire
 - est-ce que ça peut apprendre qqc?

• 3 points ¹ en dimension ² sont toujours linéairement séparable

1. non alignés

- Généralisation
 - 3 points ¹ en dimension 2 sont toujours linéairement séparable
 - 4 points ¹ en dimension 3 sont toujours linéairement séparable

- ..

- n+1 points ¹ en dimension n sont toujours linéairement séparable

- Perceptron : modèle adapté à l'apprentissage dans les espaces de grande dimension
 - texte
 - image
 - séries financières
 - ..

non alignés
 A. Revault d'Allonnes

Algorithme du Perceptron

- Initialiser θ aléatoirement
- Répéter
 - pour i=1 à N si $y^i \times \langle \theta \cdot x^i \rangle < 0$ alors $\theta = \theta + \eta \cdot y^i \cdot x^i$
- Jusqu'à convergence

- Algorithme de correction d'erreur
- η peut être fixe ou variable (décroissant)

Théorème de convergence du Perceptron : Novikov 1962

- Si
 - $\exists R \mid \forall x, ||x|| \leq R$
 - les données peuvent être séparées avec une marge ho

$$\sup_{\alpha} \min_{i} y^{i} \times \langle x^{i} \cdot \theta \rangle \ge \rho$$

- l'ensemble d'apprentissage peut être présenté suffisamment de fois
- Alors
- \Rightarrow L'algorithme converge après, au plus, $rac{R^2}{
 ho^2}$

Propriétés de l'erreur de généralisation

- Si
 - les données sont séparables
 - elles sont en nombre infini
 - après la $k^{\text{ème}}$ correction, les $m_k=\frac{1+2\ln(k)-\ln(\eta)}{-\ln(1-\varepsilon)}$ données présentées sont reconnues correctement

- Alors
 - $\Rightarrow \text{ le perceptron converge en } I \leq \frac{1+4\ln(\frac{R}{\rho})-\ln(\eta)}{-\ln(1-\varepsilon)}.\frac{R^2}{\rho^2} \text{ étapes}$
 - \Rightarrow avec une probabilité $1-\eta$, l'erreur de test est $\leq \varepsilon$

Le Perceptron : résumé

Perceptron

- inventé en 1960 premier modèle d'apprentissage. . .
- ...dont on a une preuve de convergence (il apprend qqc);
- permet de faire de la classification linéaire...
- ...ce qui est bien suffisant, en grande dimension;
- algorithme itératif d'apprentissage. . .
- ...qui ne corrige que s'il y a une erreur.

Réseau de neurones

- Idée
 - si on en mettait plusieurs bout à bout?

- Réseau de neurones
 - apparition en 1986
 - constitué de plusieurs couches de neurones

Réseau de neurones

A. Revault d'Allonnes

Réseau de neurones

