

Automating Access Control Logics and Multimodal Logics in the Automatic Higher-Order Theorem Prover LEO-II¹

Christoph E. Benzmüller

Pure and Applied Logic Seminar, CMU, Nov 19th, 2008

¹Supported by EPSRC grant LEO-II at Cambridge University and EU grant THFTPTP.

Overview

- ► LEO-II
- (Normal) Multimodal Logic in LEO-II
- Access Control Logic in LEO-II

Church's Simple Type Theory (HOL)

Some folks say that Automation of HOL is like this:

I don't!

Semantics (with C. Brown, M. Kohlhase)

[JSL'04]

Proof theory (with C. Brown)

[IJCAR'06,LMCS'08]

ATPs I FO and I FO-II

[CADE'98,IJCAR'08a]

► HOL TPTP Infrastructure (with G. Sutcliffe) [IJCAR'08b]

LEO-II employs FO-ATPs:

E, Spass, Vampire

Roots of LEO-II

Peter Andrews' work and TPS

[various papers]

Huet's Constrained Resolution

[Huet'73]

LEO hardwired to ΩMEGA (with M. Kohlhase)

[CADE'98,PhD'99]

Agent-based architecture O-ANTS
 (with V. Sorge)
 [AIMSA'98,EPIA'99,Calculemus'00]

Collaboration of LEO with FO-ATP via O-ANTS (with V. Sorge) [KI'01,LPAR'05,JAL'07]

► EPSRC Project LEO-II at Cambridge University (with L. Paulson) [IJCAR'08a]

► EU Project THFTPTP: Infrastructure for ATP in HOL (with G. Sutcliffe) [IJCAR'08b]

Architecture of LEO-II

LEO-II's Calculus: A Sketch

Initialisation

Axioms: A $[A]^T$ Conjecture: C $[C]^F$

Primitive Substitution

$$\frac{C, [X S^1 \dots S^n]^T}{C, [(U S^1 \dots S^n) \vee (V S^1 \dots S^n)]^T} \dots$$

Clause Normalisation

$$\frac{C, [A \lor B]^F}{C, [A]^F \quad C, [B]^F} \quad \cdots$$

Eager Pre-Unification (depth limited!!!)

$$\frac{C, [\lambda X_{\bullet} T \neq^? \lambda Y_{\bullet} S]}{C, [T sk \neq^? S sk]} \dots$$

$$\frac{C, [X \neq^? T]}{\{T/X\}C} \qquad \dots$$

Resolution & Factorisation

$$\frac{C, [A]^F \quad D, [B]^F}{C, D, [A \neq^? B]} \quad \dots$$

Rewriting (e.g. Definitions)

Extensional Pre-Unification

$$\frac{C, [A_o \neq^? B_o]}{C, [A_o \Leftrightarrow B_o]^F} \qquad \dots$$

LEO-II's Calculus: A Sketch

Initialisation

Axioms: A $[A]^T$ Conjecture: C $[C]^F$

Primitive Substitution

$$\frac{C, [X S^1 \dots S^n]^T}{C, [(U S^1 \dots S^n) \lor (V S^1 \dots S^n)]^T} \dots$$

Clause Normalisation

 $\frac{C, [A \lor B]^F}{C, [A]^F \quad C, [B]^F} \quad \cdots$

Eager Pre-Unification (depth limited!!!)

$$\frac{C, [\lambda X_{\bullet}T \neq^{?} \lambda Y_{\bullet}S]}{C, [T sk \neq^{?} S sk]} \cdots$$

$$\frac{C, [X \neq^? T]}{\{T/X\}C} \quad \dots$$

Resolution & Factorisation

 $\frac{C, [A]^F \quad D, [B]^F}{C, D, [A \neq^? B]} \quad \dots$

Extensional Pre-Unification

$$\frac{C, [A_o \neq^? B_o]}{C, [A_o \Leftrightarrow B_o]^F} \quad \dots$$

Rewriting (e.g. Definitions)

Cooperation with Specialist Provers for Fragments of HOL

Provers supported (so far only FOL)

E, SPASS, Vampire

Translations supported so far

 \mathbb{Q}_{α} -FO-translation [Kerber'94]:

$$[X_{\alpha \to \beta \to o} \ a_{\alpha} \ b_{\beta}]^T \to$$

$$[\mathbb{Q}^{(\beta \to o) \to \alpha \to o}(\mathbb{Q}^{(\alpha \to \beta \to o) \to \alpha \to (\beta \to o)}(X, a), b)]^T$$

fully typed FO-translation [Hurd'02]:

$$[X_{\alpha o \beta o o} \ a_{\alpha} \ b_{\beta}]^T o$$

$$[ti(@(ti(@(ti(X, lpha
ightarrow eta
ightarrow o), ti(a, lpha)), eta
ightarrow o), ti(b, eta)), o)]^T$$

Architecture of LEO-II

LEO-II: Intermediate Summary

What it is special about LEO-II? The combination of

- extensional higher-order constrained resolution
- automatic reduction to first-order representations
- cooperation with first-order ATPs
- higher-order termsharing and termindexing techniques
- (automatic and interactive mode)

Try LEO-II (running under Ocaml 3.10)

- ► Website: http://www.ags.uni-sb.de/~leo
 - very easy to install; runs under Linux, MacOS, Cygwin
 - online demo
- Systems on TPTP: http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP

Quick Online Demo: www.tptp.org

12

TPTP Problem SET171+3 in FOL

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x_{\bullet}(x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C (B \subseteq C \Leftrightarrow \forall x x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATPs

% SPASS---3.01

% Problem : SET171+3

% SPASS beiseite: Ran out of time.

% E---1.0

% Problem : SET171+3

% Failure: Ran out of time

% Vampire---10.0

% Problem : SET171+3

% Result : Theorem 102.2s

Performance in HOL: LEO-II + E

Eureka --- Thanks to Corina!

Total Reasoning Time: 0.03s

LEO-II (Proof Found!)

TPTP Problem SET171+3 in FOL

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x \mid (x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C (B \subseteq C \Leftrightarrow \forall x x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATPs

% SPASS---3.01

% Problem : SET171+3

% SPASS beiseite: Ran out of time.

% E---1.0

% Problem : SET171+3

% Failure: Ran out of time

% Vampire---10.0

% Problem : SET171+3

% Result : Theorem 102.2s

Performance in HOL: LEO-II + E

Eureka --- Thanks to Corina! Total Reasoning Time: 0.03s

LEO-II (Proof Found!)

TPTP Problem SET171+3 in HOL

Sets in HOL

 $\in := \lambda x_{\alpha} \lambda A_{\alpha \to o} A x$

 \emptyset := λx_{α} \perp

 $\cap := \lambda A_{\alpha \to o^{\blacksquare}} \lambda B_{\alpha \to o^{\blacksquare}} \lambda x_{\alpha^{\blacksquare}} x \in A \land x \in B$

 $\cup \qquad := \quad \lambda A_{\alpha \to o^{\blacksquare}} \lambda B_{\alpha \to o^{\blacksquare}} \lambda x_{\alpha^{\blacksquare}} x \in A \lor x \in B$

 $:= \lambda A_{\alpha \to o^{\blacksquare}} \lambda B_{\alpha \to o^{\blacksquare}} \lambda x_{\alpha^{\blacksquare}} x \in A \land x \notin B)$

Proof Goal:

$$\forall A_{\alpha \to o}, B_{\alpha \to o}, C_{\alpha \to o^{\bullet}} A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Results

Results

Problem	Vamp. 9.0	LEO+Vamp.	LEO-II+E
014+4	114.5	2.60	0.300
017 + 1	1.0	5.05	0.059
066 + 1	_	3.73	0.029
067 + 1	4.6	0.10	0.040
076 + 1	51.3	0.97	0.031
086 + 1	0.1	0.01	0.028
096 + 1	5.9	7.29	0.033
143 + 3	0.1	0.31	0.034
171 + 3	68.6	0.38	0.030
580 + 3	0.0	0.23	0.078
601 + 3	1.6	1.18	0.089
606 + 3	0.1	0.27	0.033
607 + 3	1.2	0.26	0.036
609 + 3	145.2	0.49	0.039
611 + 3	0.3	4.00	0.125
612 + 3	111.9	0.46	0.030
614 + 3	3.7	0.41	0.060
615 + 3	103.9	0.47	0.035
623+3	_	2.27	0.282
624 + 3	3.8	3.29	0.047
630 + 3	0.1	0.05	0.025
640 + 3	1.1	0.01	0.033
646 + 3	84.4	0.01	0.032
647+3	98.2	0.12	0.037

Problem	Vamp. 9.0	LEO+Vamp.	LEO-II+E
648+3	98.2	0.12	0.037
649 + 3	117.5	0.25	0.037
651 + 3	117.5	0.09	0.029
657 + 3	146.6	0.01	0.028
669 + 3	83.1	0.20	0.041
670 + 3	_	0.14	0.067
671 + 3	214.9	0.47	0.038
672 + 3	_	0.23	0.034
673 + 3	217.1	0.47	0.042
680 + 3	146.3	2.38	0.035
683+3	0.3	0.27	0.053
684+3	_	3.39	0.039
716+4	_	0.40	0.033
724 + 4	_	1.91	0.032
741 + 4	_	3.70	0.042
747 + 4	_	1.18	0.028
752 + 4	_	516.00	0.086
753+4	_	1.64	0.037
764+4	0.1	0.01	0.032

Vamp. 9.0: 2.80GHz, 1GB memory, 600s time limit LEO+Vamp.: 2.40GHz, 4GB memory, 120s time limit LEO-II+E: 1.60GHz, 1GB memory, 60s time limit

Less Lightweight Problems

Multimodal Logics

Logic Systems Interrelationships

John Halleck (U Utah): http://www.cc.utah.edu/~nahaj/

\$100 Modal Logic Challenge:

www.tptp.org

$$S4 = K$$

$$+ M(T): \square a \Rightarrow a$$

$$+ 4: \square a \Rightarrow \square \square a$$

$$S4 \not\subseteq K \tag{1}$$

Logic Systems Interrelationships

John Halleck (U Utah): http://www.cc.utah.edu/~nahaj/

\$100 Modal Logic Challenge:

www.tptp.org

Example

$$S4 = K$$

$$+ M(T): \Box a \Rightarrow a$$

$$+ 4: \Box a \Rightarrow \Box \Box a$$

Theorems:

$$S4 \not\subseteq K \tag{1}$$

$$(M \wedge 4) \Leftrightarrow (refl. R \wedge trans. R)$$
 (2)

$$\begin{array}{ccc} & \mathsf{FO}\text{-}\mathsf{ATPs} & \mathsf{LEO}\text{-}\mathsf{II} + \mathsf{E} \\ \textbf{[SutcliffeEtal-08]} & \textbf{[BePa-08]} \end{array}$$

Logic Systems Interrelationships

Modal Logics Challenge

John Halleck (U Utah): http://www.cc.utah.edu/~nahaj/ \$100 Modal Logic Challenge:

www.tptp.org

Example

$$S4 = K$$

$$+ M(T): \square a \Rightarrow a$$

$$+ 4: \square a \Rightarrow \square \square a$$

Theorems:

$$S4 \not\subseteq K$$
 (1)

$$(M \land 4) \Leftrightarrow (refl. R \land trans. R)$$
 (2)

Experiments

 $\begin{array}{ccc} & \mathsf{FO}\text{-}\mathsf{ATPs} & \mathsf{LEO}\text{-}\mathsf{II} + \mathsf{E} \\ & \mathsf{[SutcliffeEtal-08]} & \mathsf{[BePa-08]} \end{array}$

(1)
$$16\min + 2710s$$
 17.3s

(2) ??? 2.4s

$$s, t ::= p | \neg s | s \lor t | \square_r s$$

Simple, Straightforward Encoding

base type ι:

set of possible worlds

▶ (certain) terms of type $\iota \rightarrow o$:

multimodal logic formulas

$$\begin{bmatrix} \neg s \end{bmatrix} = \lambda w_{\iota^{\bullet}} \neg (\lfloor s \rfloor w)
 \lfloor s \lor t \rfloor = \lambda w_{\iota^{\bullet}} \lfloor s \rfloor w \lor \lfloor t \rfloor w
 \lfloor \Box_{r} s \rfloor = \lambda w_{\iota^{\bullet}} \forall y_{\iota^{\bullet}} \lfloor r \rfloor w y \Rightarrow \lfloor s \rfloor y
 |p| = p_{\iota \to o}$$

Related Work: [Gallin-73], [Carpenter-98], [Merz-99], [Brown-05], [Hardt&Smolka-07], [Kaminski&Smolka-07]

$$s, t ::= p | \neg s | s \lor t | \square_r s$$

Simple, Straightforward Encoding

base type ι:

set of possible worlds

▶ (certain) terms of type $\iota \rightarrow o$:

multimodal logic formulas

$$|\neg| = \lambda s_{\iota \to o} \lambda w_{\iota} \neg (s w)$$

$$|\vee| = \lambda s_{\iota \to o} \lambda t_{\iota \to o} \lambda w_{\iota} s w \vee t w$$

$$|\Box| = \lambda r_{\iota \to \iota \to o} \lambda s_{\iota \to o} \lambda w_{\iota} \forall y_{\iota} r w y \Rightarrow s y$$

$$|p| = p_{\iota \to o}$$

$$|r| = r_{\iota \to \iota \to o}$$

Related Work: [Gallin-73], [Carpenter-98], [Merz-99], [Brown-05], [Hardt&Smolka-07], [Kaminski&Smolka-07]

Encoding of Validity

$$\begin{array}{rcl} \operatorname{valid} s_{\iota \to o} &=& \forall w_{\iota^*} s \ w \\ |\operatorname{valid}| &=& \lambda s_{\iota \to o^*} \forall w_{\iota^*} s \ w \end{array}$$

Local Definition Expansion

$$|\operatorname{valid} \square_r \top| = |\operatorname{valid}||\square||r||\top|$$
$$=^{\beta\eta} \forall w_{,\mathfrak{n}} \forall y_{,\mathfrak{n}} \neg r \ w \ y \lor \top$$

Encoding of Validity

$$\begin{array}{rcl} \operatorname{valid} s_{\iota \to o} &=& \forall w_{\iota^{\bullet}} s \ w \\ |\operatorname{valid}| &=& \lambda s_{\iota \to o^{\bullet}} \forall w_{\iota^{\bullet}} s \ w \end{array}$$

Local Definition Expansion

$$|\operatorname{valid} \square_r \top| = |\operatorname{valid}| |\square| |r| |\top|$$
$$=^{\beta \eta} \forall w_{\cdot n} \forall v_{\cdot n} \neg r \ w \ v \lor \top$$

Encoding of Validity

$$\begin{array}{rcl} \operatorname{valid} s_{\iota \to o} &=& \forall w_{\iota^{\bullet}} s \ w \\ & \left| \operatorname{valid} \right| &=& \lambda s_{\iota \to o^{\bullet}} \forall w_{\iota^{\bullet}} s \ w \end{array}$$

Local Definition Expansion

$$|\operatorname{valid} \square_r \top| = |\operatorname{valid}|\square||r||\top|$$
$$=^{\beta\eta} \forall w, \forall y, \neg r \ w \ y \lor \top$$

Even simpler: Reasoning within Multimodal Logics

Problem	$LEO ext{-II} + E$
$ valid \square_r \top $	0.025s
$ valid \square_r a \Rightarrow \square_r a $	0.026s
$ valid \square_r a \Rightarrow \square_s a $	_
$ \text{valid }\Box_s\left(\Box_ra\Rightarrow\Box_ra\right) $	0.026s
$ \text{valid }\Box_r(a \wedge b) \Leftrightarrow (\Box_r a \wedge \Box_r b) $	0.044s
$ \text{valid} \lozenge_r (a \Rightarrow b) \Rightarrow \square_r a \Rightarrow \lozenge_r b $	0.030s
$ \text{valid} \neg \lozenge_r a \Rightarrow \Box_r (a \Rightarrow b) $	0.029s
$ \text{valid }\Box_r\ b\Rightarrow\Box_r\ (a\Rightarrow b) $	0.026s
$ \text{valid} (\lozenge_r a \Rightarrow \square_r b) \Rightarrow \square_r (a \Rightarrow b) $	0.027s
$ \text{valid} (\lozenge_r a \Rightarrow \square_r b) \Rightarrow (\square_r a \Rightarrow \square_r b) $	0.029s
$ \text{valid}(\Diamond_r a \Rightarrow \Box_r b) \Rightarrow (\Diamond_r a \Rightarrow \Diamond_r b) $	0.030s

$$|\text{valid }\square_s\left(\square_r\,a\Rightarrow\square_r\,a\right)|$$

Initialisation of problem

$$[|\text{valid }\square_s(\square_r a \Rightarrow \square_r a)|]^F$$

Definition expansion

$$[\forall x_{\iota} = \forall y_{\iota} = \neg s \times y \vee ((\neg(\forall u_{\iota} = \neg r y u \vee a u)) \vee (\forall v_{\iota} = \neg r y v \vee a v))]^{F}$$

Normalisation (x,y,u are now Skolem constants, V is a free variable)

$$[s \times y]^T$$
 $[a u]^F$
 $[r y u]^T$ $[a V]^T \vee [r y V]^F$

$$[@^{\cdots}(@^{\cdots}(s,x),y)]^T \qquad [@^{\cdots}(a,u)]^T$$

$$[@^{\cdots}(@^{\cdots}(r,y),u)]^T \qquad [@^{\cdots}(a,\textcolor{red}{V})]^T \vee [@^{\cdots}(@^{\cdots}(r,y),\textcolor{red}{V})]^T$$

$$|\text{valid }\square_s\left(\square_r\,a\Rightarrow\square_r\,a\right)|$$

Initialisation of problem

$$[|\text{valid }\square_s(\square_r a \Rightarrow \square_r a)|]^F$$

Definition expansion

$$[\forall x_{\iota} \neg \forall y_{\iota} \neg s \times y \vee ((\neg(\forall u_{\iota} \neg r y u \vee a u)) \vee (\forall v_{\iota} \neg r y v \vee a v))]^{F}$$

Normalisation (x, y, u are now Skolem constants, V is a free variable)

$$[s \times y]^T$$
 $[a u]^F$
 $[r y u]^T$ $[a V]^T \vee [r y V]^F$

$$\begin{bmatrix} [@\cdots(@\cdots(s,x),y)]^T & [@\cdots(a,u)]^F \\ [@\cdots(@\cdots(r,y),u)]^T & [@\cdots(a,V)]^T \lor [@\cdots(@\cdots(r,y),V)]^F \end{bmatrix}$$

$$|\text{valid }\square_s\left(\square_r\,a\Rightarrow\square_r\,a\right)|$$

Initialisation of problem

$$[|\text{valid }\Box_s(\Box_r a \Rightarrow \Box_r a)|]^F$$

Definition expansion

$$[\forall x_{\iota} \exists \forall y_{\iota} \exists \neg s \times y \vee ((\neg(\forall u_{\iota} \exists \neg r \ y \ u \vee a \ u)) \vee (\forall v_{\iota} \exists \neg r \ y \ v \vee a \ v))]^{F}$$

Normalisation (x, y, u are now Skolem constants, V is a free variable)

$$\begin{bmatrix} s \times y \end{bmatrix}^T \qquad \begin{bmatrix} a u \end{bmatrix}^F \\ \begin{bmatrix} r y u \end{bmatrix}^T \qquad \begin{bmatrix} a V \end{bmatrix}^T \vee \begin{bmatrix} r y V \end{bmatrix}^F \end{bmatrix}$$

$$[@\cdots(@\cdots(s,x),y)]^T \qquad [@\cdots(a,u)]^F$$

$$[@\cdots(@\cdots(r,y),u)]^T \qquad [@\cdots(a, \mathbf{V})]^T \vee [@\cdots(@\cdots(r,y), \mathbf{V})]^F$$

$$|\text{valid }\square_s\left(\square_r\,a\Rightarrow\square_r\,a\right)|$$

Initialisation of problem

$$[|\text{valid }\square_s(\square_r a \Rightarrow \square_r a)|]^F$$

Definition expansion

$$[\forall x_{\iota \bullet} \forall y_{\iota \bullet} \neg s \times y \vee ((\neg(\forall u_{\iota \bullet} \neg r \ y \ u \vee a \ u)) \vee (\forall v_{\iota \bullet} \neg r \ y \ v \vee a \ v))]^F$$

Normalisation (x, y, u are now Skolem constants, V is a free variable)

$$\begin{bmatrix} s \times y \end{bmatrix}^T$$
 $\begin{bmatrix} a \ u \end{bmatrix}^F$
 $\begin{bmatrix} r y \ u \end{bmatrix}^T$ $\begin{bmatrix} a \ V \end{bmatrix}^T \vee \begin{bmatrix} r y \ V \end{bmatrix}^F$

$$[@\cdots(@\cdots(s,x),y)]^T \qquad [@\cdots(a,u)]^F$$

$$[@\cdots(@\cdots(r,y),u)]^T \qquad [@\cdots(a, \textcolor{red}{V})]^T \vee [@\cdots(@\cdots(r,y), \textcolor{red}{V})]^F$$

Architecture of LEO-II

A simple equation between modal logic formulas

$$\forall r \forall a \forall b |\Box_r (a \lor b)| \doteq |\Box_r (b \lor a)|$$

where \doteq is defined as $\lambda u, v. \forall p p p u \Rightarrow p v$

initialisation, definition expansion and normalisation:

$$[p(\lambda w_{\iota}.\forall y_{\iota} \neg r w y \lor (a y \lor b y))]^{T}$$
$$[p(\lambda w_{\iota}.\forall y_{\iota} \neg r w y \lor (b y \lor a y))]^{F}$$

A simple equation between modal logic formulas

$$\forall r. \forall a. \forall b. |\Box_r (a \lor b)| \doteq |\Box_r (b \lor a)|$$

where \doteq is defined as $\lambda u, v. \forall p p p u \Rightarrow p v$

resolution:

$$[p(\lambda w_{\iota}.\forall y_{\iota \bullet} \neg r w y \lor (a y \lor b y))$$

$$\neq^{?}$$

$$p(\lambda w_{\iota}.\forall y_{\iota \bullet} \neg r w y \lor (b y \lor a y))]$$

A simple equation between modal logic formulas

$$\forall r \forall a \forall b |\Box_r (a \lor b)| \doteq |\Box_r (b \lor a)|$$

where \doteq is defined as $\lambda u, v. \forall p p p u \Rightarrow p v$

decomposition:

$$[\lambda w_{\iota}.\forall y_{\iota} \neg r \ w \ y \lor (a \ y \lor b \ y)$$

$$\neq^{?}$$

$$\lambda w_{\iota}.\forall y_{\iota} \neg r \ w \ y \lor (b \ y \lor a \ y)]$$

A simple equation between modal logic formulas

$$\forall r. \forall a. \forall b. |\Box_r (a \lor b)| \doteq |\Box_r (b \lor a)|$$

where \doteq is defined as $\lambda u, v. \forall p p p u \Rightarrow p v$

functional extensionality (w is now Skolem constant):

$$[\forall y_{\iota \bullet} \neg r w y \lor (ay \lor by)$$

$$\neq^{?}$$

$$\forall y_{\iota \bullet} \neg r w y \lor (by \lor ay)]$$

More Examples ...

A simple equation between modal logic formulas

$$\forall r \ \forall a \ \forall b \ |\Box_r (a \lor b)| \doteq |\Box_r (b \lor a)|$$

where \doteq is defined as $\lambda u, v. \forall p p p u \Rightarrow p v$

Boolean extensionality:

$$[\forall y_{\iota} \neg r w y \lor (ay \lor by)$$

$$\Leftrightarrow$$

$$\forall y_{\iota} \neg r w y \lor (by \lor ay)]^{F}$$

More Examples . . .

A simple equation between modal logic formulas

$$\forall r \forall a \forall b |\Box_r (a \lor b)| \doteq |\Box_r (b \lor a)|$$

where \doteq is defined as $\lambda u, v, \forall p p p u \Rightarrow p v$

 \triangleright normalisation (v, z Skolem constants; \bigvee , \bigvee Variables):

```
40: [b \ V]^T \lor [a \ V]^T \lor [r \ w \ V]^F \lor [r \ w \ Z]^F \lor [b \ Z]^T \lor [a \ Z]^T
41: [r \ w \ z]^T \lor [r \ w \ v]^T
```

$$41 : [r w z]^T \vee [r w v]^T$$

42:
$$[az]^F \lor [rwv]^T$$

$$43: [bz]^F \vee [rwv]^T$$

$$44: [rwz]^T \vee [av]^F$$

$$45 : [az]^F \lor [av]^F$$

$$46: [bz]^F \vee [av]^F$$

$$47: [r \ w \ \underline{z}]^T \lor [b \ \underline{v}]^F$$

$$48: [az]^F \vee [bv]^F$$

$$49: [bz]^F \vee [bv]^F$$

total proving time is 0.166s

Architecture of LEO-II

More Examples ...

Axioms \mathcal{T} and 4 are equivalent to reflexivity and transitivity of the accessibility relation r

$$\forall r_{\bullet}(\forall a_{\bullet} | \text{valid } \square_r \ a \Rightarrow a | \land | \text{valid } \square_r \ a \Rightarrow \square_r \square_r \ a |)$$

$$\Leftrightarrow (\text{reflexive } r \land \text{transitive } r)$$

 $reflexive := \lambda r \forall x r x x$

transitive := $\lambda r \forall x, y, z r x y \land r y z \Rightarrow r x z$

- processing analogous to previous example
- now 70 clauses passed to E
- ▶ E generates 21769 clauses before finding the empty clause
- total proving time 2.4s

Architecture of LEO-II

More Examples . . .

 $S4 \not\subseteq K$: Axioms T and 4 are not valid in modal logic K

$$\neg \forall R. \forall A. \forall B. | \text{valid} \square_R A \Rightarrow A | \land | \text{valid} \square_R B \Rightarrow \square_R \square_R B |$$

- LEO-II shows that first axiom is not valid
- ► *R* is instantiated with $\lambda x \cdot \lambda y \cdot (H \times y) \neq (H' \times y)$ via primitive substitution
- ▶ total proving time 17.3s

Architecture of LEO-II

Access Control Logics

Access Control Logics

Access Control Logic

Example (from [GargAbadi08]): file-access scenario

If admin says that file1 should be deleted, then this must be the case.

```
(admin says delete file 1) \supset delete file 1
```

admin trusts Bob to decide whether file1 should be deleted.

```
admin says ((Bob says deletefile1) > deletefile1)
```

Bob wants to delete file1.

```
Bob says deletefile1
```

Is deletion permitted?

deletefile1

45

Access Control Logic

Deepak Garg, Martín Abadi [FoSSaCS'08]:

A Modal Deconstruction of Access Control Logics

- Study of Prominent Access Control Logics:
 - ► ICL: Propositional Intuitionistic Logic + "says"
 - ICL⇒: ICL + "speaks for"
 - ▶ ICL^B : ICL + Boolean combinations of principals
- Sound and Complete Translations to Modal Logic S4

So, let's combine this with our previous work ... and apply LEO-II

Access Control Logic

Deepak Garg, Martín Abadi [FoSSaCS'08]:

A Modal Deconstruction of Access Control Logics

- Study of Prominent Access Control Logics:
 - ► ICL: Propositional Intuitionistic Logic + "says"
 - ICL⇒: ICL + "speaks for"
 - ▶ ICL^B : ICL + Boolean combinations of principals
- Sound and Complete Translations to Modal Logic S4

So, let's combine this with our previous work ... and apply LEO-II

$$s, t ::= p \mid s \wedge t \mid s \vee t \mid s \supset t \mid \bot \mid \top \mid A \text{ says } s$$

Translation [.] (of Garg and Abadi) into S4

```
    \begin{bmatrix} p \end{bmatrix} = \Box p \\
    [s \land t] = [s] \land [t] \\
    [s \lor t] = [s] \lor [t] \\
    [s \supset t] = \Box ([s] \Rightarrow [t]) \\
    [T] = T \\
    [L] = L \\
    [A says s] = \Box (A \lor [s])
```

48

$$s, t ::= p \mid s \land t \mid s \lor t \mid s \supset t \mid \bot \mid \top \mid A \text{ says } s$$

```
Translation ||.|| to HOL
                        |r| (we fix one single r!!!)
  \|p\|
            = |\Box_r p|
  ||A||
         = |A|
  \|\wedge\|
         = \lambda s \lambda t |s \wedge t|
         = \lambda s \lambda t |s \vee t|
  \|\vee\|
         = \lambda s \lambda t | \Box (s \Rightarrow t) |
  \| \supset \|
  \|\top\|
  \|\bot\|
          = |\bot|
  \|\mathbf{says}\| = \lambda A_{\bullet} \lambda s_{\bullet} | \Box_{r} (A \lor s) |
```

49

$$s, t ::= p \mid s \land t \mid s \lor t \mid s \supset t \mid \bot \mid \top \mid A \text{ says } s$$

```
Translation ||.|| to HOL
                                  r_{t \to t \to o} (we fix one single r!!!)
                        = \lambda x_{i} \forall y_{i} r_{i \to i \to 0} x y \Rightarrow p_{i \to 0} Y
   ||p||
   ||A||
                        = a_{\iota \to o} (distinct from the p_{\iota \to o})
  \|\wedge\|
                        = \lambda s_{\iota \to o} \lambda t_{\iota \to o} \lambda w_{\iota} s w \wedge t w
                        = \lambda s_{t \to c} \lambda t_{t \to c} \lambda w_{t} s w \vee t w
   \|\vee\|
                        = \lambda s_{t \to o^{\blacksquare}} \lambda t_{t \to o^{\blacksquare}} \lambda w_{t^{\blacksquare}} \forall y_{t^{\blacksquare}} r_{t \to t \to o} w v \Rightarrow (s v \Rightarrow t v)
   \|\supset\|
   \|\top\|
                        = \lambda s_{i \rightarrow o} \top
   \|\bot\|
                       = \lambda s_{\iota \rightarrow \circ} \bot
                       = \lambda A_{t \to 0} \lambda s_{t \to 0} \lambda w_t \forall y_t r_{t \to t \to 0} w y \Rightarrow (A y \lor s y)
   ||says||
```


Notion of Validity

Addition of Modal Logic Axioms for S4

$$\forall p_{\iota \to o}. | \text{valid } \square_r \ p \Longrightarrow p |$$

$$\forall p_{\iota \to o}$$
. | valid $\Box_r p \Rightarrow \Box_r \Box_r p$ |

Soundness and Completeness of Embedding

see [SR-2008-01]: employs transformation from Kripke models into corresponding Henkin models and vice versa

Notion of Validity

Addition of Modal Logic Axioms for S4

$$\forall p_{\iota \to o}. | \text{valid} \ \Box_r \ p \Rightarrow p |$$

$$\forall p_{\iota \to o}. | \text{valid} \square_r p \Rightarrow \square_r \square_r p |$$

Soundness and Completeness of Embedding

see [SR-2008-01]: employs transformation from Kripke models into corresponding Henkin models and vice versa

Notion of Validity

Addition of Modal Logic Axioms for S4

$$\forall p_{\iota \to o}. | \text{valid} \ \Box_r \ p \Longrightarrow p |$$

$$\forall p_{\iota \to o}. | \text{valid} \square_r p \Rightarrow \square_r \square_r p |$$

Soundness and Completeness of Embedding

see [SR-2008-01]: employs transformation from Kripke models into corresponding Henkin models and vice versa

Example (from [GargAbadi08]): file-access scenario

If admin says that file1 should be deleted, then this must be the case.

```
\|iclval(adminsaysdeletefile1) \supset deletefile1\|
```

admin trusts Bob to decide whether file1 should be deleted.

```
\|	ext{iclval admin says}\left(\left(	ext{Bob says deletefile1}
ight)\supset 	ext{deletefile1}
ight)\|
```

Bob wants to delete file1.

```
||iclval Bobsaysdeletefile1||
```

Is deletion permitted?

```
||iclval deletefile1||
```


Example (from [GargAbadi08]): file-access scenario

If admin says that file1 should be deleted, then this must be the case.

```
\| \mathtt{iclval} \; (\mathtt{admin} \, \mathtt{says} \, \mathtt{deletefile1}) \supset \mathtt{deletefile1} \|
```

admin trusts Bob to decide whether file1 should be deleted.

```
\|	ext{iclval admin says}\left(\left(	ext{Bob says deletefile1}
ight)\supset 	ext{deletefile1}
ight)\|
```

Bob wants to delete file1.

```
|\text{valid }\Box_r (\text{Bob} \vee \Box_r \text{ deletefile1})|
```

Is deletion permitted?

```
||iclval deletefile1||
```


Example (from [GargAbadi08]): file-access scenario

▶ If admin says that file1 should be deleted, then this must be the case.

```
\| iclval (admin says delete file 1) \supset delete file 1 \|
```

admin trusts Bob to decide whether file1 should be deleted.

```
\|	ext{iclval admin says}\left( (	ext{Bob says deletefile1}) \supset 	ext{deletefile1} 
ight) \|
```

Bob wants to delete file1.

$$\forall w_{\iota^{\bullet}} \forall y_{\iota^{\bullet}} r \ w \ y \Rightarrow (Bob \ y \lor \forall u_{\iota^{\bullet}} r \ w \ u \Rightarrow delete file 1 \ u)$$

Is deletion permitted?

```
||iclval deletefile1||
```

LEO-II: 3.494 seconds

More Examples from [GargAbadi08]

- Example I: 3.494 seconds
- Example II (ICL⇒): 0.698 seconds
- ► Example III (ICLB): 0.076 seconds
- Validity of various axioms for "says" ("speaks-for", etc.): < 0.2 seconds</p>
- ICL[⇒] can be expressed in ICLB: 0.068 seconds

Conclusion

- Promising initial results for LEO-II (and TPS!)
 - sets
 - normal multimodal logics
 - access control logics (and intuitionistic logics)
 - **.**..?
- Does approach scale well? If yes, then there are many applications!
- What is special about LEO-II?
 - cooperation with specialist provers
 - termsharing and termindexing
 - extensional constrained resolution
 - lean system

... there is much left to be done!

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- Monadic Second-Order Logic, Prop. Logic, Arithmetic, . . .
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

Applications

Logic System Interrelationships, Ontology Reasoning (SUMO, CYC), Formal Methods, CL, . . .

Challenges for HOL ATPs

Cut-Simulation

[IJCAR'06]

- ► Extensional Pre-Unification
- Primitive Substitution
- Primitive Equality

[CADE'99]

Definitions

[BishopAndrews-CADE'98]

Exp.: Access Control Logic in HOL

Logic ICL:

Name	Problem	LEO (s)
unit	$\{\mathtt{R},\mathtt{T}\} \models \ \mathtt{ICLval}\ s\supset (A\mathtt{says} s)\ $	0.031
cuc	$\{\mathtt{R},\mathtt{T}\}\models \ \mathtt{ICLval}\;(A\mathtt{says}(s\supset t))\supset (A\mathtt{says}s)\supset (A\mathtt{says}t)\ $	0.083
idem	$\{\mathtt{R},\mathtt{T}\} \models \ \mathtt{ICLval}\ (A\mathtt{says}\ A\mathtt{says}\ s)\supset (A\mathtt{says}\ s)\ $	0.037
Ex1	$\{R, T, ICLval(1.1) , \dots, ICLval(1.3) \} \models ICLval(1.4) $	3.494
$unit^K$	$\models \ \text{ICLval } s \supset (A \text{ says } s) \ $	_
cuc^K	$\models \ \text{ICLval } (A \text{says } (s \supset t)) \supset (A \text{says } s) \supset (A \text{says } t) \ $	_
$idem^K$	$\models \ \texttt{ICLval} \ (A \texttt{says} \ A \texttt{says} \ s) \supset (A \texttt{says} \ s) \ $	_
Ex1 ^K	$\{\ \text{ICLval }(1.1)\ ,\ldots,\ \text{ICLval }(1.3)\ \}\models\ \text{ICLval }(1.4)\ $	_

R, T: reflexivity and transitivity axioms as seen before

Exp.: Access Control Logic in HOL

Logic ICL⇒:

Name	Problem	LEO (s)
refl	$\{\mathtt{R},\mathtt{T}\} \models \ \mathtt{ICLval}\ A \Rightarrow A\ $	0.052
trans	$\{R,T\} \models \ ICLval(A \Rightarrow B) \supset (B \Rightarrow C) \supset (A \Rightarrow C)\ $	0.105
spfor	$\{\mathtt{R},\mathtt{T}\} \models \ \mathtt{ICLval}\ (A\Rightarrow B)\supset (A\mathtt{says}s)\supset (B\mathtt{says}s)\ $	0.062
handoff	$\{\mathtt{R},\mathtt{T}\} \models \ \mathtt{ICLval}\ (B\mathtt{says}\ (A\Rightarrow B))\supset (A\Rightarrow B)\ $	0.036
Ex2	$\{R, T, ICLval(2.1) , \dots, ICLval(2.4) \} \models ICLval(2.5) $	0.698
$refl^K$	$\models \ \texttt{ICLval} \ A \Rightarrow A \ $	0.031
$trans^K$	$\models \ \texttt{ICLval} \ (A \Rightarrow B) \supset (B \Rightarrow C) \supset (A \Rightarrow C) \ $	_
spfor ^K	$\models \ \texttt{ICLval} \ (A \Rightarrow B) \supset (A \texttt{says} \ s) \supset (B \texttt{says} \ s) \ $	_
$handoff^K$	$\models \ \text{ICLval } (B \text{ says } (A \Rightarrow B)) \supset (A \Rightarrow B) \ $	_
Ex2 ^K	$\{\ \text{ICLval }(2.1)\ , \dots, \ \text{ICLval }(2.4)\ \} \models \ \text{ICLval }(2.5)\ $	_

R, T: reflexivity and transitivity axioms as seen before

Exp.: Access Control Logic in HOL

Logic ICL B :

Name	Problem	LEO (s)
trust	$\{\mathtt{R},\mathtt{T}\} \models \ \mathtt{ICLval}\ (\bot\mathtt{says}s)\supset s\ $	0.049
untrust	$\{\mathtt{R,T}, \ \mathtt{ICLval}\ A \equiv \top \ \} \models \ \mathtt{ICLval}\ A\mathtt{says} \bot \ $	0.053
cuc'	$\{\mathtt{R},\mathtt{T}\} \models \ \mathtt{ICLval}\ ((A\supset B)\mathtt{says}s)\supset (A\mathtt{says}s)\supset (B\mathtt{says}s)\ $	0.131
Ex3	$\{R, T, ICLval(3.1) , \dots, ICLval(3.3) \} \models ICLval(3.4) $	0.076
$trust^K$	$\models \ \texttt{ICLval} \ (\bot \texttt{says} \ s) \supset s \ $	_
$untrust^K$	$\{\ \mathtt{ICLval}\ A \equiv \top\ \} \models \ \mathtt{ICLval}\ A\mathtt{says}\bot\ $	0.041
cuc' ^K	$\models \ \texttt{ICLval} \ ((A \supset B) \texttt{says} \ s) \supset (A \texttt{says} \ s) \supset (B \texttt{says} \ s) \ $	_
Ex3 ^K	$\{\ \text{ICLval }(3.1)\ , \dots, \ \text{ICLval }(3.3)\ \} \models \ \text{ICLval }(3.4)\ $	_

R, T: reflexivity and transitivity axioms as seen before

Term Graph for:

 $\neg \forall R. \forall A. (valid(\square_R A \Rightarrow A))$

Term graph videos: http://www.ags.uni-sb.de/~leo/art

Latest Application of LEO-II: Dancefloor Animation

Grooving to an animation of LEO-II's dynamically growing termgraph (while LEO-II is proving Cantor's theorem)

Termsharing

In LEO-II:

- ► Terms as unique instances
- Perfect Term Sharing
- Shallow data structures

Features:

- ightharpoonup eta- η -normalization
- DeBruijn indices
- local contexts for polymorphic type variables

LEO-II cannot prove the following example:

Modal logic K4 (which adds only axiom 4 to K) is not entailed in K:

$$\neg \forall R \cdot \forall B \cdot (\text{valid}(\square_R B \Rightarrow \square_R \square_R B))$$

LEO-II also cannot prove this related example:

$\neg \forall R_{\bullet} \operatorname{trans}(R)$

- reason: not a theorem; domain of possible worlds may well just consist of a single world w.
- LEO-II can in fact prove the latter example under the additional assumption

$$\neg \forall X ... \forall Y ... X = Y$$

LEO-II also cannot prove this related example:

$$\neg \forall R$$
 trans (R)

- reason: not a theorem; domain of possible worlds may well just consist of a single world w.
- LEO-II can in fact prove the latter example under the additional assumption

$$\neg \forall X ... \forall Y ... X = Y$$

LEO-II also cannot prove this related example:

$$\neg \forall R_{\bullet} \operatorname{trans}(R)$$

- reason: not a theorem; domain of possible worlds may well just consist of a single world w.
- ▶ LEO-II can in fact prove the latter example under the additional assumption

$$\neg \forall X \cdot \forall Y \cdot X = Y$$

