hk: Fine C*(F) is a Pu-acyclic ourselection, it computes the right cono o logy: Yn>0, H"(N, F) = H"((*(F|(n)) 4.3) Hyper columbia We defined color of a top space with week in $F \in Sh(X)$. Woult to define coh with coop in a complex F* { Ch+ (8h(x)). let C be an abelian eategory with enough injectives. Definition: A complex $(A^{\times}, d^{*}) \in \mathcal{C}h(\mathcal{C})$ is bould below if $A^{n} = 0_{\mathcal{C}} \forall n \ll 0$. We denote by $(h^+(z) \leq Ch(z)$ the full subcategory of bounded below complian. Notation: let A^* , $B^* \in Ch(C)$ · How thee (A*,B*) < Hom thee (A*,B*) be the subgroup of well-homotypic morphisms of complexes. Hom ch(e) (A*, B*)

A* > B* modulo homotopy. the group of morphism of complexes

Ranuk: 1t,g* . A* >> B*. If ft, g* are null-homotopic than so is ft+gt (exercise) If $f^{\sharp} \sim g^{\sharp}$ then $f^{\sharp} = g^{\sharp}$ in $[A^{\sharp}, B^{\sharp}]$ Theorem: 2) Any bounded below complex in C has an injective resolution. i.e. $\forall A^t \in Ch^t(\mathcal{C})$, $\exists I^t \in Ch^t(\mathcal{C})$ a complex of injective objects in \mathcal{C} and a gravi-isomorphism A* q-is I* (i.e. H" ~ +1"(I*) VntZ) Moreover, if An = O Vn <0, then we can dose I* such that In=0 Vn <0. 2) let I* Eth+(E) be a splex of injectives. If At -> Bt is a quesi -iso in the (T) then [B, It] = ~ [A*, I*] is an iso in Ab. <u>Lework:</u> let A*, B* ∈ Ch+(E) and let A* > I*, B* > J* be injusive presolutions in the scuse of the theorem. At & B* If $f: A^* \longrightarrow B^*$ is a map in $Ch^{\dagger}(C)$, $\exists j^*: I^* \longrightarrow J^*$ 2 J 2 JB Indeed, since & is a quasiiso, we have [I*, 5*] ~> [A*, 5*]]; P∈ [I*, J*] st Pod = pop : [A*, B*] 31 pop

Note that an injective resolution A* _ I is an injective resolution of A° $0 \longrightarrow A^{\circ} \longrightarrow I^{\circ} \longrightarrow I^{1} \longrightarrow$ Definition: The honotopy category of bonder below complexes K+(E): - Obj (K+(C)) = Obj (Ch+(C)) $-4A^*, B^* \in Ob(k^+(z))$, $Hom_{k^+(z)}(A^*, B^*) = [A^*, B^*]_e$ - We denote by Iz & C the fell sub-atgary of injective objects and by Ch+(Iz) & Ch+(E) the full subcategory of Ch+(E) comsisting of b. below complexe of injectives the dirived cotegory of b. below complexes D+(E): Obj (D+(C)) := Ch+(Ie) VA*, B* e Obj (D+(e)), Ham ster (A+, B*) := [A*, B*] hemark: We have an obvious fully faithful function i: D+(C) -> K+(C) We have a functor $\rho: K^+(\mathcal{E}) \longrightarrow D^+(\mathcal{E})$ where $A^\mu \xrightarrow{q:s} I^*$ is an injective resolution. Note that p(A) := I* ED+(Z) is well defined in D+(E) up to a migre isosophic

<u>henrork:</u> We already know that for A*, B* satisfying An=Bn=0 Vn +0

Consider At 9-180 I*

Id II

A* 9-150 St

A* 9-150 St

I maps I* > 5* and J* > I* migre up to lumbry whose compositions are howstopic to IdI* and IdJ* Ne obtain an adjuiction p: k+(E) == D+(E):i Indeed, for $A^* \in K^+(\Sigma)$, $B^* \in D^+(E)$ $ton_{D^{\dagger}(e)}(\rho A^{\dagger}, B^{\dagger}) = [\rho A^{\dagger}, B^{\dagger}]_{e}$ ~ [1*, B*] = Hom (A*, i(B*)) We get aniso since $A^* \longrightarrow \rho A^*$ is a grasi-iso and B^* is a complexes of injectives. Construction: (Godewert resolution) of b. below non plexes. let X be a top space and let $(f^*, S^*) = [0 \rightarrow f^{\circ} \xrightarrow{S^*} f^{1} \xrightarrow{S^{2}} f^{2} \rightarrow \cdots]$ € ch(8h(×)) Recall that we have a functor $C^*(-)$: $8h(X) \longrightarrow Ch^+(8h(X))$ $F \longmapsto (C^*(F), d^*)$ Apply this funder to the complex (F^*, S^*) and get $C^*(F^*) \in Ch^+(Ch^+(Sh(X)))$

 $C^{2}(\mathcal{F}^{2}) \longrightarrow C^{2}(\mathcal{F}^{2}) \longrightarrow C^{3}(\mathcal{F}^{2}) \longrightarrow --$ is a commutative hiagram! $S^{\circ}: F^{\circ} \longrightarrow F^{1} \longrightarrow C^{\circ}(S^{\circ}): C^{\circ}(F^{\circ}) \longrightarrow C^{\circ}(F^{1})$ We (redefine ?) 8 is := (-1)i Ci(8i) and get where the squares are now anti-commutative: 8^{1,0} o d^{0,0} + d^{0,1} o 8°,0 = 0 We define the associated total copiex: Tot (C*(F*)) := (F) Ci(Fi) with differential $\bigoplus_{i+j=n} S^{i,j} + d^{i,j} : \operatorname{Tot}^n(C^*(\mathcal{F}^*)) \longrightarrow \operatorname{Tot}^n(C^*(\mathcal{F}^*))$ $\underbrace{\times} : \operatorname{Tot}^n(C^*(\mathcal{F}^*)) = C^{o(\mathcal{F}^1)} \oplus C^{1}(\mathcal{F}^{o})$ This is indeed a complex because the squares are all auti-commutative!

Morcover, Tot" ((*(+*)) is a finite direct som of flagge sheaves $\forall j \geq 0$, we have a may $f^i \rightarrow C^{\circ}(F^i) \rightarrow Tot^{\circ}(C^{\star}(F^{\star}))$ ue obtain a morphism of complexes F* - S Tot* (c*(F*)) which is a grasi-isonorphism (not easy, need spubal theory). Hence, any bounded below complexe of steams has a canonical flarque resolution! Definition: let X be a topological space and let F+ = Ch+(Sh(X)) be a b. below eplex of ab. sheaves. We define the hypercohomology with coef in 7th as $H^n(X, \mathcal{F}^*) := H^n(\mathcal{I}^*(X)) \ \forall n \in \mathbb{Z} \ \text{where} \ \mathcal{F}^* \stackrel{\text{lin}}{=} \mathcal{I}^* \ \text{is an injective}$ resolution or a florage resolution. 4.41 Continuous maps and whomology f:X->> continuous meep of lop. symus. then be did recall about for and for ... Example: Suppose that $Y=\{*'_1, f: X \longrightarrow Y=\{*'_1 \text{ the consmical map}\}$ Sh(f*f) ~> Ab is an equivalue g(f*f) -> g(f*f)

 $f(x,-): Sh(x) \xrightarrow{f*} Sh(f*) \xrightarrow{\Delta h} f*$ $f \longrightarrow f*$ $f \longrightarrow f*$ F(f-1(1*1))) F(X) Let A E Ab ~ Sh (143) $\forall \mathcal{U} \subseteq \mathcal{X}$, for , $(f^{\circ}A)(\mathcal{U}) = \lim_{t \neq 2} A(\mathcal{U}) = \int_{0}^{t} A \, \mathrm{d} f \, \mathcal{U} \neq 0$ So f*A is the constant sheaf Ax associated to A. $f^*: \underline{Ab} \longrightarrow 8h(\times)$ is the constant sheaf functor which is left adjoint to the global sections function. $\oint_{\mathbf{x}} = P(\mathbf{x}, -) : \Re(\mathbf{x}) \longrightarrow \underline{Ab}$ $K^+(\times) := K^+(8h(\kappa))$ Notation: If X is a bopplogical space we set $D^+(x) := D^+(sh(x))$

Proposition: let $f: X \to Y$ be a continuous map. Then there is an adjustion $Lf^{*}: D^{+}(Y) \Longrightarrow D^{+}(X): Af_{X}$

Proof: We have adjunctions
$$e_X: K^+(X) \rightleftharpoons D^+(X) : i_X$$

$$e_Y: K^+(Y) \rightleftharpoons D^+(Y) : i_Y$$
Let $T^* \in D^+(Y)$. Then T^* is a b. below epth of injective ab. obvious of them $f^*T^* = [... \rightarrow f^*T^* \rightarrow f^*T^* - ...] \in K^+(X)$ is a b. below epth of dreams on X .

Define $Lf^*(T^*) := p_X(f^*T^*) \in D^+(X)$

More formally, define $D^+(Y) \stackrel{i_Y}{\longrightarrow} K^+(Y) \stackrel{i_Y}{\longrightarrow} K^+(X)$

Let $T^* \in D^+(X) := p_X(f^*T^*) \in D^+(X)$

We formally, define $D^+(Y) \stackrel{i_Y}{\longrightarrow} K^+(Y) \stackrel{i_Y}{\longrightarrow} K^+(X)$

We have a communicative square $D^+(X) \stackrel{i_Y}{\longrightarrow} K^+(Y)$

We have a communicative square $D^+(X) \stackrel{i_Y}{\longrightarrow} K^+(Y)$

Lt I*∈ D+(X) and J* ∈ D+(X) $Hom_{\mathcal{D}^{\dagger}(X)}$ $(\mathcal{J}^{\dagger}\mathcal{I}^{\star}, \mathcal{J}^{\star}) = Hom_{\mathcal{D}^{\dagger}(X)}(p_{X}(\mathcal{J}^{\dagger}\mathcal{I}), \mathcal{J}^{\star})$) by adjuctim

Px = ix = Ham (() () * I * , i x (5 *))) by adj }*. K+(Y)≥K+(X):J* = Hom Dt(y) (I*, Rf* J*) Since Dt(y) Entry of fell