WASSA-2017 Shared Task on Emotion Intensity

December 19, 2017

Task: Given a tweet and an emotion X, determine the intensity or degree of emotion X felt by the speaker – a real-valued score between 0 and 1.

_

Evaluation: For each emotion, systems are evaluated by calculating the Pearson Correlation Coefficient with Gold ratings. The correlation scores across all four emotions will be averaged to determine the bottom-line competition metric by which the submissions will be ranked.

$$r = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

Четыре отдельных датасета для каждой эмоции:

- anger (злость)
- fear (страх)
- sadness (грусть)
- joy (радость)

В тестовых данных известна эмоция, нужно предсказать интенсивность.

	id	text	emotion	intensity
0	10000	How the fu*k! Who the heck! moved my fridge! should I knock the landlord door. #angry #mad ##	anger	0.938
1	10001	So my Indian Uber driver just called someone the N word. If I wasn't in a moving vehicle I'd have jumped out #disgusted	anger	0.896
2	10002	@DPD_UK I asked for my parcel to be delivered to a pick up store not my address #fuming #poorcustomerservice	anger	0.896

Размерность датасетов

Гистограмма интенсивности для каждой эмоции

Самые популярные слова в датасетах


```
today one startthink terrible going good still know people go want like u
```


Дубликаты

```
duplicate_example = pd.merge(train_anger[-train_anger['duplicate'].isnull()],
    train_anger[['id','text','intensity']],
    howe'[eft',
    left_on='duplicate', right_on='id',
    suffixes=('_left', '_right'))[['text_left','intensity_left','text_right','intensity_right']]
```

duplicate_example.head(6)

intensity_right	text_right	intensity_left	text_left	
0.729	So my Indian Uber driver just called someone the N word. If I wasn't in a moving vehicle I'd have jumped out #disgusted #offended	0.896	So my Indian Uber driver just called someone the N word. If I wasn't in a moving vehicle I'd have jumped out #disgusted	0
0.625	@DPD_UK I asked for my parcel to be delivered to a pick up store not my address #poorcustomerservice	0.896	@DPD_UK I asked for my parcel to be delivered to a pick up store not my address #fuming #poorcustomerservice	1
0.771	so ef whichever butt wipe pulled the fire alarm in davis bc I was sound asleep #pissed #upset #tired #sad #tired #hangry ######	0.896	so ef whichever butt wipe pulled the fire alarm in davis bc I was sound asleep #pissed #angry #upset #tired #sad #tired #hangry ######	2
0.604	Don't join @BTCare they put the phone down on you, talk over you and are rude. Taking money out of my acc willynilly!	0.896	Don't join @BTCare they put the phone down on you, talk over you and are rude. Taking money out of my acc willynilly! #fuming	3
0.854	@ArizonaCoyotes not to mention the GRA guy stops me but let's the 2 ppl in front of me go. WTF. My blood is boiling.	0.875	My blood is boiling	4
0.625	When you've still got a whole season of Wentworth to watch and a stupid cunt in work ruins it for us @@@_KirstyGA #oldcunt	0.875	When you've still got a whole season of Wentworth to watch and a stupid cunt in work ruins it for us & @ @_KirstyGA #raging #oldcunt	5

Сарказм

	id	text	emotion	intensity
50	10050	Im so angry ⊜⊙	anger	0.75

TF-IDF

Применим к тексту TF-IDF и на полученных признаках обучим градиентный бустинг.

	params	mean_test_score
0	{'max_depth': 6, 'n_estimators': 100}	0.552942
1	{'max_depth': 6, 'n_estimators': 150}	0.562530
2	{'max_depth': 6, 'n_estimators': 200}	0.566330
3	{'max_depth': 6, 'n_estimators': 250}	0.566890
4	{'max_depth': 6, 'n_estimators': 300}	0.568344
5	{'max_depth': 6, 'n_estimators': 350}	0.567639

NRC Hashtag Emotion Association Lexicon (HE)

Для каждого слова получим вектор эмоций размерности 8. Предложение представим как усреднение по всем словам.

	emotion	term	score
0	anticipation	crae	2.237478
1	anticipation	#mycolour	2.237478
2	anticipation	#vigilance	2.237478

pd	pd.DataFrame(gs.cv_results_)[['params','me				
	params	mean_test_score			
0	{'max_depth': 2, 'n_estimators': 50}	0.552387			
1	{'max_depth': 2, 'n_estimators': 100}	0.550712			
2	{'max_depth': 2, 'n_estimators': 200}	0.540669			
3	{'max_depth': 2, 'n_estimators': 300}	0.534076			
4	{'max_depth': 3, 'n_estimators': 50}	0.566023			
5	{'max_depth': 3, 'n_estimators': 100}	0.556676			
6	{'max_depth': 3, 'n_estimators': 200}	0.548189			
7	{'max_depth': 3, 'n_estimators': 300}	0.542666			

NRC Affect Intensity Lexicon (AI)

Для каждого слова получим вектор эмоций размерности 4. Предложение представим как усреднение по всем словам.

	term	score	AffectDimension
0	outraged	0.964	anger
1	brutality	0.959	anger
2	hatred	0.953	anger

pd	.DataFrame(gs.cv_results_)[['params','
	params	mean_test_score
0	{'max_depth': 2, 'n_estimators': 50}	0.266638
1	{'max_depth': 2, 'n_estimators': 100}	0.289034
2	{'max_depth': 2, 'n_estimators': 200}	0.308386
3	{'max_depth': 2, 'n_estimators': 300}	0.329125
4	{'max_depth': 3, 'n_estimators': 50}	0.295239
5	{'max_depth': 3, 'n_estimators': 100}	0.325313
6	{'max_depth': 3, 'n_estimators': 200}	0.339517
7	{'max_depth': 3, 'n_estimators': 300}	0.346879

AFINN

Для каждого слова получим сентимент. Предложение представим как сумму сентиментов.

	term	score
0	abandon	-2
1	abandoned	-2
2	abandons	-2

	params	mean_test_score
0	{'max_depth': 3, 'n_estimators': 50}	0.380138
1	{'max_depth': 3, 'n_estimators': 100}	0.377060
2	{'max_depth': 3, 'n_estimators': 200}	0.376253
3	{'max_depth': 3, 'n_estimators': 300}	0.376202

GLOVE

	params	mean_test_score
0	{'max_depth': 3, 'n_estimators': 100}	0.535247
1	{'max_depth': 3, 'n_estimators': 150}	0.531898
2	{'max_depth': 3, 'n_estimators': 200}	0.527017

HE-AI-AFINN-GLOVE

Используем все три лексикона вместе с GloVe embedding

```
for emotion in main_emotions:
    get_score(HE_AT_AFINN_GLOVE_TFIDF_features, emotion, 250)

emotion: anger
dev: (0.63486529452719065, 0.58674616659130574, 0.30587742199660189, 0.11427440048267601)
test: (0.65697183791102332, 0.63746346917179952, 0.48133252757713418, 0.46621846793702326)
emotion: fear
dev: (0.62462101442565898, 0.5989504122076863, 0.59539017174914566, 0.5832430693774453)
test: (0.68557640655072993, 0.6599311230539514, 0.55178771540929517, 0.50121771642496027)
emotion: joy
dev: (0.71318021409181021, 0.70434058893528673, 0.58250645895220243, 0.55615817481744922)
test: (0.67334035094369304, 0.67003299299756947, 0.45214426102652522, 0.44990347206878278)
emotion: sadness
dev: (0.48623640152260184, 0.47453660577008538, 0.25726979752336437, 0.24226944359024849)
test: (0.65457801161145202, 0.65182800229517746, 0.45491368120652187, 0.437240482204390281)
```

Расширение лексикона

Лексиконы покрывают не все слова. При этом слова близкие по эмоциональному оттенку, скорее всего будут лежать в пространстве эмбедингов где-то рядом.

Используем нейронную сеть для расширения лексикона.

Расширение лексикона

```
afinn_word2index = dict(zip(afinn_lexicon['term'],list(afinn_lexicon.index)))

X = np.zeros((len(afinn_word2index), 400))
Y = afinn_lexicon('score'].values

for word, index in afinn_word2index.items():
    if word in word2vec:
        X[index,:]=word2vec[word]

def make model(optimizer='adam', loss='mse', activation='relu', layer_size=200, use_third_layer=False):
    model = Sequential()
    model.add(Dense(layer_size, activation=activation, input_shape=(400,)))
    model.add(Dense(layer_size, activation =activation))
    if use third layer:
        model.add(Dense(25, activation=activation))
    model.add(Dense(25, activation=activation))
    model.compile(optimizer, loss)
    return model
```

HE AI AFINN GLOVE TFIDF EXTENDED

Собрав все вместе, получаем следующие результаты.

```
HE AI AFINN GLOVE TFIDF EXTENDED features = {}
for emotion in main emotions:
    HE AI AFINN GLOVE TFIDF EXTENDED features[emotion] = [np.hstack([HE features[emotion][i],
                                                            AI features[emotion][i].
                                                            AFINN features[emotion][i].
                                                            glove features[emotion][i],
                                                            TF IDF features[emotion][i].toarrav().
                                                            extended features[emotion][i]
                                                           1) for i in range(3)]
for emotion in main emotions:
    get score(HE AI AFINN GLOVE TFIDF EXTENDED features, emotion, 250)
emotion: anger
dev: (0.61959978557661233, 0.55972062660180266, 0.32633079579975416, 0.1669839948012535)
test: (0.68003213530182127. 0.66517941554000848. 0.50631076212682113. 0.49703304138486004)
dev: (0.62756769977987037, 0.58699967239441297, 0.59429330031598537, 0.57417078711372194)
test: (0.69130447589702382. 0.66759021621573078. 0.55643618909279147. 0.50620116763701539)
dev: (0.73110455983548051, 0.72605868027532428, 0.63584760790963379, 0.63296048790027437)
test: (0.68308106431810189, 0.68241787389621622, 0.46408315832623098, 0.46421985555687106)
emotion: sadness
dev: (0.52336706756955909, 0.52002417758800401, 0.23091339814682707, 0.24573397087345944)
test: (0.67093316071846076, 0.66779950784249564, 0.43142882129481169, 0.41678040153735219)
```

Данная моделька перебивает baseline от авторов задачи.

Подготовка данных

- имя пользователя в твите заменяем на username.
- хештеги, которых нет в word2vec, заменяем на #hashtag
- замена смайлика на слово описывающее смайлик не сработало
- восклицательные знаки сохраняем

```
def text to wordlist(text, remove stopwords=False, stem words=False, w2v=None):
      text = re.sub(r"@\w{1,15}", "USERNAME", text)
text = re.sub(r"[^A-Za-z@-9^.!.#\/'+-=]", " ", text)
      text = re.sub(r"what's", "what is ", text)
      text = re.sub(r"\'s", " ", text)
     text = re.sub(""\"ve", "have ", text)
text = re.sub(r"\"ve", "have ", text)
text = re.sub(r"n't", "cannot ", text)
text = re.sub(r"n't, " not ", text)
text = re.sub(r"i'm", "i am ", text)
     text = re.sub(r"\'re", " are ", text)
text = re.sub(r"\'d", " would ", text)
text = re.sub(r"\'ll", " will ", text)
      text = re.sub(r",", text)
text = re.sub(r",", text)
      text = re.sub(r"!", " !", text)
      text = re.sub(r"\/", " ", text)
      text = re.sub(r"\^"
                                        . ^ ", text)
     text = re.sub(r"\+", " + ", text)
text = re.sub(r"\-", " - ", text)
text = re.sub(r"\-", " - ", text)
text = re.sub(r"\-", " - ", text)
      text = re.sub(r"(\d+)(k)", r"\g<1>000", text)
      text = re.sub(r":", ": ", text)
     text = re.sub(r": , ": ", text)

text = re.sub(r" e g ", "e g ", text)

text = re.sub(r" b g ", " bg ", text)

text = re.sub(r" u s ", " american ", text)

text = re.sub(r" u s ", " american ", text)

text = re.sub(r" 9 11 ", "911", text)
      text = re.sub(r"e - mail", "email", text)
text = re.sub(r"j k", "jk", text)
      text = re.sub(r"\s{2,}", " ", text)
      text = text.lower().split()
      if remove stopwords:
            text = [w for w in text if not w in stops]
      if w2v is not None:
            text = ['#hashtag' if ((w not in w2v) and '#' in w) else w for w in text]
```

Подготовка данных

```
main emotions = ['anger', 'fear', 'joy', 'sadness']
full data={}
full Y = \{\}
for emotion in main emotions:
    full data[emotion] = get emotion data(emotion)
    for data in full data[emotion]:
         data['cleaned text'] = data['text'].map(lambda s: text to wordlist(s, w2v = word2vec))
    full Y[emotion] = [data['intensity'] for data in full data[emotion]]
MAX SECUENCE LENGTH = 30
tokenizer = Tokenizer(filters='"$%&()*+,-,/::<=>?@[\\]^ `{|}~\t\n')
tokenizer.fit on texts(np.hstack([data['cleaned text'] for data
                                       in full data[ anger ]+full data['fear']+full data['joy']+full data['sadness']]))
X sequences = \{\}
for emotion in main emotions:
    X sequences[emotion] = [pad sequences(tokenizer.texts to sequences(data['cleaned text'].values),
                                                 maxlen=MAX SEQUENCE LENGTH) for data in full data[emotion]]
full data['anger'][0].head(3)
                                                              text emotion intensity
                                                                                                                                   cleaned text
             How the fu*k! Who the heck! moved my fridge!... should I knock the
                                                                                          how the fu k | who the heck | moved my fridge | should i knock the
0 10000
                                                                     anger
                                                                              0.938
                                         landlord door, #angry #mad ##
                                                                                                                     landlord door #angry #mad ##
            So my Indian Uber driver just called someone the N word. If I wasn't
                                                                                     so my indian uber driver just called someone the n word if i was not in a
1 10001
                                                                              0.896
                                                                     anger
                        in a moving vehicle I'd have jumped out #disgusted
                                                                                                    moving vehicle i would have jumped out #disgusted
          @DPD_UK I asked for my parcel to be delivered to a pick up store not
                                                                                     username I asked for my parcel to be delivered to a pick up store not my
2 10002
                                                                     anger
```

binary=True)

word2vec path = 'word embeddings/word2vec/word2vec twitter model/word2vec twitter model.bin'

my address #fuming #poorcustomerservice

word2vec = w2v reader.Word2Vec.load word2vec format(word2vec path,

address #fuming #poorcustomerservice

Нейронка

```
def pearson loss(y true, y pred):
   numerator = -K.sum((y true-K.mean(y true))*(y pred-K.mean(y pred)))
   denominator = ( K.sqrt(K.sum((K.square(y true-K.mean(y true))))) * K.sqrt(K.sum((K.square(y pred-K.mean(y pred))))))
                  +K.epsilon())
   return numerator/denominator
def get model(embedding_matrix):
   model = Sequential()
   model.add(Embedding(len(tokenizer.word index)+1, EMBEDDING DIM, weights = [embedding matrix], trainable=False))
   model.add(Conv1D(filters=200, kernel size=3, padding='same', activation='relu'))
   model.add(MaxPooling1D(pool size=2))
   model.add(Dropout(0.3))
   model.add(Bidirectional(LSTM(150, activation='relu', dropout=0.2, kernel initializer='he normal',
                                 return sequences=True)))
   model.add(Bidirectional(LSTM(80. dropout=0.2,kernel initializer='he normal')))
   model.add(Dense(50, activation='relu', kernel initializer='he normal'))
   model.add(Dropout(0.3))
   model.add(Dense(1, activation='sigmoid'))
   model.compile(loss=pearson loss.optimizer="adam")
   return model
```

Обучим вышеуказанную модель. Используем twitter word2vec (dim=400) для слоя эмбедингов.

Word2Vec + Extended AFINN

Добавим к word2vec эмбедингу дополнительную координату, в которую запишем значение полученное из расширенного AFINN лексикона


```
gb prediction={}
lstm prediction={}
scores = {}
for emotion in main emotions:
    gb prediction[emotion] = pickle.load(open( "features/HE AI AFINN GLOVE TFIDE EXTENDED gb {emotion}.p"\
                                              . format(emotion=emotion).
                                              "rb" ))
    lstm prediction(emotion) = afinn models(emotion)('model'),predict(X sequences(emotion)(2)),reshape(-1)
    scores[emotion]=evaluate(full Y[emotion][2].np.mean([gb prediction[emotion].lstm prediction[emotion]].axis=0))
    print('{0} test score: {1}'.format(emotion.scores[emotion]))
np.mean([scores[emotion] for emotion in main emotions].axis=0)
anger test score: (0.74013314191334922, 0.72199095398980051, 0.57610071640811367, 0.54763195236341877)
fear test score: (0.76014011404321657, 0.74426693383446441, 0.6191753926805228, 0.58478102796238884)
iov test score: (0.74371867987023488, 0.74525594606886325, 0.50660556967851056, 0.506111432232213)
sadness test score: (0.77318133020875113, 0.76911058182431202, 0.56986110817270563, 0.54774100790718994)
array([ 0.75429332, 0.7451561 , 0.5679357 , 0.546566361)
```

Результаты

Team Name	r avg. (rank)	r fear (rank)	r joy (rank)	r sadness (rank)	r anger (rank)
w2v_gb_ext	0.7542	0.7601	0.7437	0.7731	0.7401
w2v_gb	0.7489	0.7574	0.7405	0.7682	0.7296
1. Prayas	0.747(1)	0.732(1)	0.762(1)	0.732(1)	0.765(2)
w2v_afinn	0.7357	0.7393	0.7272	0.7649	0.7112
2. IMS	0.722(2)	0.705(2)	0.726(2)	0.690(4)	0.767(1)
SeerNet	0.708(3)	0.676(4)	0.698 (6)	0.715(2)	0.745(3)
UWaterloo	0.685 (4)	0.643(8)	0.699(5)	0.693(3)	0.703(7)
5. IITP	0.682 (5)	0.649 (7)	0.713 (4)	0.657 (7)	0.709(5)
YZU NLP	0.677 (6)	0.666(5)	0.677(8)	0.658 (6)	0.709(5)
YNU-HPCC	0.671 (7)	0.661(6)	0.697 (7)	0.599 (9)	0.729(4)
TextMining	0.649 (8)	0.604 (10)	0.663 (9)	0.660(5)	0.668 (10)
9. XRCE	0.638 (9)	0.629(9)	0.657(10)	0.594(10)	0.672(9)
10. LIPN	0.619(10)	0.58(11)	0.639(11)	0.583(11)	0.676(8)
DMGroup	0.571(11)	0.55 (12)	0.576(12)	0.556 (12)	0.603(11)
Code Wizards	0.527 (12)	0.465 (16)	0.534(15)	0.532 (14)	0.578 (13)
Todai	0.522(13)	0.470(15)	0.561(13)	0.537(13)	0.520(16)
SGNLP	0.494(14)	0.486 (14)	0.512(16)	0.429(18)	0.550 (14)
15. NUIG	0.494(14)	0.680(3)	0.717(3)	0.625 (8)	-0.047 (21)
PLN PUCRS	0.483 (16)	0.508(13)	0.460(19)	0.425(19)	0.541 (15)
H.Niemtsov	0.468 (17)	0.412 (17)	0.511(17)	0.437 (17)	0.513(17)
Tecnolengua	0.442(18)	0.373 (18)	0.488 (18)	0.439 (16)	0.469(18)
GradAscent	0.426(19)	0.356 (19)	0.543 (14)	0.226 (20)	0.579(12)
20. SHEF/CNN	0.291 (20)	0.277 (20)	0.109 (20)	0.517(15)	0.259 (19)
deepCybErNet	0.076(21)	0.176 (21)	0.023(21)	-0.019 (21)	0.124(20)
Late submission					
* SiTAKA	0.631	0.626	0.619	0.593	0.685

Что использовали участники

												Team										
Features	1	2	3	4	5	6	7	8	9	*	10	11	12	13	14	15	16	17	18	19	20	21
N-grams				✓									✓									
CN													✓									
WN				✓									✓			✓						
Word Embeddings	✓	✓	✓	✓	✓	✓	✓	✓		✓			✓	✓	✓	✓				✓		
Glove			✓	✓	✓	✓	✓	✓		✓				✓		✓				✓		
Emoji Vectors			✓	✓																		
Word2Vec	✓	✓	✓	✓																		
Other								✓					✓		✓							
Sentence Embeddings																						
CNN	✓	✓				✓	✓	✓		✓					✓						✓	✓
LSTM	✓	✓			✓	✓	✓	✓						✓		✓				✓		
Other				✓												✓				✓	V	
Affective Lexicons		✓	✓	✓	✓	✓		✓	✓	✓				✓				✓	✓	✓		
AFINN	✓	✓	✓		✓			✓														
ANEW		✓																				
BingLiu	✓	✓	✓		✓			✓	✓													
Happy Ratings		✓																				
Lingmotif																			✓			
LIWC																	✓					
MPQA	✓	✓	✓		✓			✓														
NRC-Aff-Int	✓		✓	✓				✓														
NRC-EmoLex	✓	✓	✓	✓	✓			✓	✓													
NRC-Emoticon-Lex	✓		✓	✓				✓					✓									
NRC-Hash-Emo	✓	✓	✓	✓	✓			✓	✓													
NRC-Hash-Sent		✓	✓	✓	✓			✓														
NRC-Hashtag-Sent.	✓		✓	✓																		
NRC10E	✓	✓	✓					✓														
Sentiment140	✓	✓	✓	✓				✓														
SentiStrength		✓	✓					✓														
SentiWordNet	✓	✓	✓	✓	✓			✓														
Vader					✓																	
Word.Affect			✓																			
In-house lexicon	✓								✓								✓					
Linguistic Features									✓													
Dependency Parser									✓													