```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

df=pd.read_csv("23_Vande Bharat.csv")
df

Out[2]:

2]:		Sr. No.	Train Name	Train Number	Originating City	Originating Station	Terminal City	Termina
_	0	1	New Delhi - Varanasi Vande Bharat Express	22435/22436	Delhi	New Delhi	Varanasi	Varanas
	1	2	New Delhi - Shri Mata Vaishno Devi Katra Vande	22439/22440	Delhi	New Delhi	Katra	Shri Mat [
	2	3	Mumbai Central - Gandhinagar Capital Vande Bha	20901/20902	Mumbai	Mumbai Central	Gandhinagar	Gandhinag
	3	4	New Delhi - Amb Andaura Vande Bharat Express	22447/22448	Delhi	New Delhi	Andaura	Amk
	4	5	MGR Chennai Central - Mysuru Vande Bharat Express	20607/20608	Chennai	Chennai Central	Mysuru	Mysore
	5	6	Bilaspur - Nagpur Vande Bharat Express	20825/20826	Bilaspur, Chhattisgarh	Bilaspur Junction	Nagpur	Nagpu
	6	7	Howrah - New Jalpaiguri Vande Bharat Express	22301/22302	Kolkata	Howrah Junction	Siliguri	New
	7	8	Visakhapatnam - Secunderabad Vande Bharat Express	20833/20834	Visakhapatnam	Visakhapatnam Junction	Hyderabad	Secu
	8	9	Mumbai CSMT - Solapur Vande Bharat Express	22225/22226	Mumbai	Chhatrapati Shivaji Terminus	Solapur	
	9	10	Mumbai CSMT - Sainagar Shirdi Vande Bharat Exp	22223/22224	Mumbai	Chhatrapati Shivaji Terminus	Shirdi	Saina
•	10	11	Rani Kamalapati (Habibganj) - Hazrat Nizamuddi	20171/20172	Bhopal	Habibganj (Rani Kamalapati)	Delhi	Hazrat Ni:

	Sr. No.	Train Name	Train Number	Originating City	Originating Station	Terminal City	Termina
11	12	Secunderabad - Tirupati Vande Bharat Express	20701/20702	Hyderabad	Secunderabad Junction	Tirupati	
12	13	MGR Chennai Central - Coimbatore Vande Bharat	20643/20644	Chennai	Chennai Central	Coimbatore	Coimbatore
13	14	Delhi Cantonment - Ajmer Vande Bharat Express	20977/20978	Delhi	Delhi Cantonment	Ajmer	Ajme
14	15	Kasaragod - Thiruvananthapuram Vande Bharat Ex	20633/20634	Kasaragod	Kasaragod	Thiruvananthapuram	Thiruvanan
15	16	Howrah - Puri Vande Bharat Express	22895/22896	Kolkata	Howrah Junction	Puri	
16	17	Anand Vihar Terminal - Dehradun Vande Bharat E	22457/22458	Delhi	Anand Vihar Terminal	Dehradun	Dehradur
17	18	New Jalpaiguri - Guwahati Vande Bharat Express	22227/22228	Siliguri	New Jalpaiguri Junction	Guwahati	
18	19	Mumbai CSMT - Madgaon Vande Bharat Express	22229/22230	Mumbai	Chhatrapati Shivaji Terminus	Madgaon	Madgaor
19	19	Mumbai CSMT - Madgaon Vande Bharat Express	22229/22230	Mumbai	Chhatrapati Shivaji Terminus	Madgaon	Madgaor
20	20	Patna - Ranchi Vande Bharat Express	22349/22350	Patna	Patna Junction	Ranchi	Ranch
21	21	KSR Bengaluru - Dharwad Vande Bharat Express	20661/20662	Bangalore	Bangalore City	Hubbali - Dharwad	
22	22	Rani Kamalapati (Habibganj) - Jabalpur Vande B	20173/20174	Bhopal	Habibganj (Rani Kamalapati)	Jabalpur	Jabalpu
23	23	Indore - Bhopal Vande Bharat Express	20911/20912	Indore	Indore Junction	Bhopal	Bhopa
24	24	Jodhpur - Sabarmati (Ahmedabad) Vande Bharat E	12461/12462	Jodhpur	Jodhpur Junction	Ahmedabad	Sabarmat
25	25	Gorakhpur - Lucknow Charbagh	22549/22550	Gorakhpur	Gorakhpur Junction	Charbagh	Lucknow

Sr. No.	Train Name	Train Number	Originating City	Originating Station	Terminal City	Termina
	Vande Bharat					
	Express					

In [3]:

df.head()

Out[3]:

	Sr. No.	Train Name	Train Number	Originating City	Originating Station	Terminal City	Terminal Station	Operator	No. of Cars	
0	1	New Delhi - Varanasi Vande Bharat Express	22435/22436	Delhi	New Delhi	Varanasi	Varanasi Junction	NR	16	
1	2	New Delhi - Shri Mata Vaishno Devi Katra Vande	22439/22440	Delhi	New Delhi	Katra	Shri Mata Vaishno Devi Katra	NR	16	
2	3	Mumbai Central - Gandhinagar Capital Vande Bha	20901/20902	Mumbai	Mumbai Central	Gandhinagar	Gandhinagar Capital	WR	16	`
3	4	New Delhi - Amb Andaura Vande Bharat Express	22447/22448	Delhi	New Delhi	Andaura	Amb Andaura	NR	16	
4	. 5	MGR Chennai Central - Mysuru Vande Bharat Express	20607/20608	Chennai	Chennai Central	Mysuru	Mysore Junction	SR	16	`
4									•	

Data Cleaning and Data Preprocessing

```
In [4]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26 entries, 0 to 25
Data columns (total 16 columns):

Column Non-Null Count Dtype

```
26 non-null
                                                int64
         0
            Sr. No.
            Train Name
                                26 non-null
                                                object
         1
         2
            Train Number
                                26 non-null
                                                object
         3
            Originating City
                                26 non-null
                                                object
            Originating Station 26 non-null
         4
                                                object
         5
            Terminal City
                                                object
                                26 non-null
            Terminal Station
                                26 non-null
                                                object
         7
            Operator
                                26 non-null
                                                object
         8
            No. of Cars
                                26 non-null
                                                int64
         9
            Frequency
                                26 non-null
                                                object
         10 Distance
                                26 non-null
                                                object
         11 Travel Time
                                26 non-null
                                                object
         12 Speed
                                26 non-null
                                                object
                                26 non-null
         13 Average Speed
                                                object
         14 Inauguration
                                26 non-null
                                                object
         15 Average occupancy
                                26 non-null
                                                object
        dtypes: int64(2), object(14)
        memory usage: 3.4+ KB
In [5]:
         df.describe()
Out[5]:
                Sr. No. No. of Cars
        count 26.000000
                        26.000000
        mean 13.230769
                        12.923077
              7.306478
          std
                         3.969112
         min
               1.000000
                         8.000000
         25%
              7.250000
                         8.000000
         50% 13.500000
                        16.000000
         75% 19.000000
                        16.000000
         max 25.000000
                        16.000000
In [6]:
         df.columns
'Average Speed', 'Inauguration', 'Average occupancy'],
             dtype='object')
```

EDA and Visualization

```
In [7]: sns.pairplot(df)
Out[7]: <seaborn.axisgrid.PairGrid at 0x21263ae24f0>
```



```
In [8]: sns.distplot(df['No. of Cars'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:
 distplot` is a deprecated function and will be removed in a future version. Please adap
 t your code to use either `displot` (a figure-level function with similar flexibility) o
 r `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='No. of Cars', ylabel='Density'>


```
In [9]: df1=df[['Sr. No.','No. of Cars']] df1
```

Out[9]:	Sr. No.		No. of Cars	
	0	1	16	
	1	2	16	

	Sr. No.	No. of Cars
2	3	16
3	4	16
4	5	16
5	6	8
6	7	16
7	8	16
8	9	16
9	10	16
10	11	16
11	12	16
12	13	8
13	14	16
14	15	16
15	16	16
16	17	8
17	18	8
18	19	16
19	19	16
20	20	8
21	21	8
22	22	8
23	23	8
24	24	8
25	25	8

```
In [10]: sns.heatmap(df1.corr())
```

Out[10]: <AxesSubplot:>

To Train the Model -Model Building

We are going to train Linear Regression model; We need to spilt out data into two variables x and y where x is independent variable (input) and y is dependent variable on x(output) we could ignore address column as it is not required for our model

```
In [11]:
          x=df1[['Sr. No.','Sr. No.']]
          y=df1['No. of Cars']
In [12]:
          from sklearn.model selection import train test split
          x train,x test,y train,y test=train test split(x,y,test size=0.3)
In [13]:
          from sklearn.linear model import LinearRegression
           lr=LinearRegression()
          lr.fit(x_train,y_train)
Out[13]: LinearRegression()
In [14]:
          print(lr.intercept_)
          19.24557218246223
In [15]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
Out[15]:
                 Co-efficient
          Sr. No.
                    -0.21427
          Sr. No.
                    -0.21427
In [16]:
           prediction =lr.predict(x_test)
          plt.scatter(y_test,prediction)
```

```
Out[16]: <matplotlib.collections.PathCollection at 0x21265d7b730>
```

```
18 - 16 - 14 - 12 - 13 14 15 16
```

```
In [17]:
          lr.score(x_test,y_test)
         -0.07210084906277947
Out[17]:
In [18]:
          lr.score(x_train,y_train)
Out[18]:
         0.5155007646874922
In [19]:
          from sklearn.linear_model import Ridge,Lasso
In [20]:
          rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
         Ridge(alpha=10)
Out[20]:
In [21]:
          rr.score(x_test,y_test)
Out[21]:
         -0.0654196319050504
In [22]:
          rr.score(x_train,y_train)
         0.5154792245393192
Out[22]:
In [23]:
          la=Lasso(alpha=10)
          la.fit(x_train,y_train)
         Lasso(alpha=10)
Out[23]:
In [24]:
          la.score(x_test,y_test)
```

```
0.2068989365102809
Out[24]:
In [25]:
          la.score(x_train,y_train)
         0.3615070680783108
Out[25]:
In [26]:
          from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[26]: ElasticNet()
In [27]:
          en.coef
         array([-0.20808219, -0.20633077])
In [28]:
          en.intercept
         19.03601439808896
Out[28]:
In [29]:
          prediction=en.predict(x test)
In [30]:
          en.score(x_test,y_test)
Out[30]:
         -0.03887339232066078
```

Evaluation Metrics

Model Saving

```
In [35]:
          import pickle
In [36]:
          filename="prediction"
          pickle.dump(lr,open(filename,'wb'))
In [37]:
          import pandas as pd
          import pickle
In [38]:
          filename="prediction"
          model=pickle.load(open(filename,'rb'))
In [39]:
          real=[[2,2],[5,5]]
          result=model.predict(real)
In [40]:
          result
Out[40]: array([18.38849129, 17.10286995])
```