Segmentação de células cervicais com sobreposição

Tarcísio B. C. Oliveira Jonathan N. de Freitas

Sumário

- Introdução
- Segmentação de Máscaras/Clumps
- Segmentação de Núcleos
- Segmentação de Citoplasma Por Contorno
- Segmentação de Citoplasma por B.A (Burrice Artificial)
- Conclusão

Introdução

- Estatísticas sobre câncer do colo de útero:
 - o terceiro mais frequente na população feminina;
 - o quarta causa de morte de mulheres por câncer no Brasil;
 - estimativas de novos casos: 16.340 (2016 Instituto Nacional de Câncer);
 - o número de mortes: 5.430 (2013 **Sistema de Informações sobre Mortalidade**).
- Problemas enfrentados para um sistema de triagem automática: alarmes falsos
 - células binucleadas;
 - o sobreposição dos núcleos de células;
 - o objetos não-celulares semelhantes quanto à:
 - tamanho;
 - forma;
 - densidade.
- Necessidade de encontrar/desenvolver algoritmos automáticos que possam realizar a distinção de um núcleo de uma célula e outros objetos.

Segmentação de Máscaras/Clumps

- Filtro da Mediana 7x7
- Otsu graythresh()
- Remoção de ruído bwareaopen(I, 200)
- Separa os clups utilizando bwlabel()

Segmentação de Máscaras/Clumps

Original

Segmentada

- Filtro da Mediana 7x7
- Entropia de Renyi
- Remoção de ruído bwareaopen(I, 100)

Nota: Tentamos detectar núcleos pelo contorno usando filtro de Sobel e Prewitt mas a segmentação por Entropia de Renyi ficou melhor.

Original

Segmentada

- Observamos que ainda havia ruído na imagem devido a cor escuro do citoplasma com sobreposição
- Solução: filtrar por circularidade
 - o regionprops(I, 'Area', 'Perimeter')
 - \circ C = Perimeter² / (4 x Pl x Area)
 - o C < 1.5

Depois

Segmentação de Núcleos - Resultados

Alguns núcleos foram perdidos

Dice Médio	FNR Médio
0.8062	0.3095

- Baseado em artigo [Neves, João C., et al., 2014]
- Procura pontos de maior distância entre o contorno da imagem e seu Convex
 Hull
- Traça retas entre estes pontos para separar as células

Clup com duas células

Clup com três células

Clup com duas células

Clup com três células

Clup com duas células - GT

Clup com duas células - Segmentadas

Clup com três células - GT

Clup com três células - Segmentadas

Mas nem tudo são flores...

Segmentação de Citoplasma por Contorno - Resultados

Dice Médio	FNR Médio
0.821	0.719

- Aproxima o GT dos citoplasmas de um círculo
 - bwconvhull()
 - o regionprops() para pegar o maior eixo do polígono e o centróide
 - o raio é o maior eixo dividido por dois
- Calcula o raio médio dos GTs
- Cria um círculo utilizando o núcleo como centróide e o raio médio como raio

Exemplificando com a imagem 3

Original

GT Célula 1

GT Célula 2

Raio da Célula 1

Raio da Célula 2

Célula 2 - GT

Célula 2 - Segmentada

Segmentação de Citoplasma por B.A - Resultados

Dice Médio	FNR Médio
0.808	0.272

Conclusão

- Problema de máxima importância do ponto de vista social
- Comercialmente pode apresentar lucros elevados
- Torna mais acessível o exame feito pelas mulheres
 - triagem é acelerada;
 - a qualidade da triagem é potencialmente melhorada;
 - por ser um processo exaustivo, e o ser humano é passível à erro, pode-se reduzir os dignósticos falhos.
- Dificuldade em segmentar de maneira precisa e segura

Dúvidas?

Obrigado!