# Statistical methods for machine learning

## Mauro Tellaroli

## Indice

| 1       | Intr | Introduzione                            |          |  |  |  |
|---------|------|-----------------------------------------|----------|--|--|--|
|         | 1.1  | Definizioni fondamentali                | 2        |  |  |  |
|         |      | 1.1.1 Label set $\mathcal{Y}$           | 2        |  |  |  |
|         |      | 1.1.2 Loss function $\ell$              | 2        |  |  |  |
|         |      | 1.1.3 Data domain $\mathcal{X}$         | 3        |  |  |  |
|         |      | 1.1.4 Predittori <i>f</i>               | 4        |  |  |  |
|         |      | 1.1.5 Esempi                            | 4        |  |  |  |
|         |      | 1.1.6 Test set e test error             | 4        |  |  |  |
|         |      | 1.1.7 Learning algorithm A              | 4        |  |  |  |
|         |      | 1.1.8 Training error $\ell_S$           | 4        |  |  |  |
|         | 1.2  | Empirical Risk Minimization (ERM)       | 5        |  |  |  |
|         |      | 1.2.1 Definizione                       | 5        |  |  |  |
|         |      | 1.2.2 Predittori con test error elevato | 5        |  |  |  |
|         |      | 1.2.3 Overfitting e underfitting        | 6        |  |  |  |
|         |      | 1.2.4 Etichette rumorose                | 6        |  |  |  |
| ${f 2}$ | Gli  | algoritmi Nearest Neighbor              | 7        |  |  |  |
| _       | 2.1  | Nearest Neighbor (NN)                   | 7        |  |  |  |
|         | 2.1  | 2.1.1 Definizione                       | 7        |  |  |  |
|         |      | 2.1.2 Efficienza ed efficacia           | 8        |  |  |  |
|         | 2.2  | k-Nearest Neighbor ( $k$ -NN)           | 8        |  |  |  |
|         | 2.2  | 2.2.1 Definizione                       | 8        |  |  |  |
|         |      | 2.2.2 Efficienza ed efficacia           | 8        |  |  |  |
| 3       | Tmo  | ee Predictors                           | LO       |  |  |  |
| J       | 3.1  |                                         | 10       |  |  |  |
|         | 3.2  |                                         | 11       |  |  |  |
|         | 3.2  | •                                       | 11<br>11 |  |  |  |
|         |      | 8                                       | 11<br>11 |  |  |  |
|         |      | - · · · · · · · · · · · · · · · · · · · | 11<br>13 |  |  |  |
|         |      | 3                                       |          |  |  |  |
|         | 2.2  |                                         | 14       |  |  |  |
|         | 3.3  |                                         | 14       |  |  |  |
|         | 3.4  | Interpretabilità                        | 15       |  |  |  |
| 4       | Sta  | tistical Learning                       | ۱7       |  |  |  |

## 1 Introduzione

## 1.1 Definizioni fondamentali

La data inference è lo studio dei metodi che utilizzano i dati per predirre il futuro. Il Machine Learning è uno strumento potente che può essere usato per risolvere una grossa parte dei problemi di data inference, inclusi i seguenti:

- Clustering: raggruppare i data points in base alle loro similarità;
- Prediction: assegnare delle etichette (label) ai data points;
- **Generation**: generare nuovi data points;
- Control: eseguire una sequenza di azioni in un ambiente con l'obiettivo di massimizzare una nozione di utilità.

Con data point si intende una serie di informazioni legate ad un unico elemento; un'analogia può essere un record in un database.

Gli algoritmi che risolvono una *learning task* in base a dei dati già semanticamente etichettati lavorano in modalità *supervised learning*. A etichettare i dati saranno delle persone o la natura. Un esempio dell'ultimo caso sono le previsioni del meteo. D'altra parte, gli algoritmi che utilizzano i dati senza la presenza di etichette lavorano in modalità *unsupervised learning*.

In questo corso ci si focalizzerà sul *supervised learning* e la progettazione di sistemi di *machine learning* il cui obiettivo è apprendere dei **predittori**, ovvero funzioni che mappano i *data points* alla loro etichetta.

#### 1.1.1 Label set $\mathcal{Y}$

Verrà usata  $\mathcal{Y}$  per indicare il *label set*, ovvero l'insieme di tutte le possibili etichette di un *data point*. Le etichette potranno essere di due tipi differenti:

- 1. Categoriche ( $\mathcal{Y} = \{\text{sport}, \text{politica}, \text{economia}\}$ ): si parlerà di problemi di classificazione;
- 2. Numeriche  $(\mathcal{Y} \subseteq \mathbb{R})$ : si parlerà di problemi di regressione.

È importante sottolineare come la reale differenza tra le due tipologie di etichetta sia il significato e non la sua rappresentazione in quanto, si potrà sempre codificare un'etichetta categorica in un numero.

A sottolineare ciò è il fatto che nella regressione l'errore è tipicamente una funzione della differenza  $|y-\hat{y}|$ , dove  $\hat{y}$  è la predizione di y. Nella classificazione, invece, l'errore è tipicamente binario: predizione corretta  $(\hat{y}=y)$  o errata  $(\hat{y}\neq y)$ .

Quando ci sono solo due possibili etichette ( $|\mathcal{Y}| = 2$ ), si ha un **problema di classificazione** binario e, convenzionalmente, verrà usata una codifica numerica  $\mathcal{Y} = \{-1, 1\}$ .

## 1.1.2 Loss function $\ell$

Come già visto precedentemente, si vuole misurare l'errore che un predittore commette su una determinata predizione. Per farlo si userà una **funzione di loss**  $\ell$  non negativa che misurerà la discrepanza  $\ell(y,\hat{y})$  tra l'etichetta predetta  $\hat{y}$  e quella corretta y. Si assumerà sempre  $\ell(y,\hat{y}) = 0$  quando  $\hat{y} = y$ .

La funzione di loss più semplice per la classificazione è la **zero-one loss**:

$$\ell(y, \hat{y}) = \begin{cases} 0 & y = \hat{y} \\ 1 & \text{altrimenti} \end{cases}$$

Nella regressione, le tipiche funzioni di loss sono:

• la **absolute loss**:  $\ell(y, \hat{y}) = |y - \hat{y}|$ 

## • la quadratic loss: $\ell(y, \hat{y}) = (y - \hat{y})^2$

In alcuni casi può essere conveniente scegliere l'etichetta predetta da un insieme  $\mathcal{Z}$  diverso da  $\mathcal{Y}$ . Per esempio, si consideri il problema di assegnare una probabilità  $\hat{y} \in (0,1)$  all'evento y = "pioverà domani". In questo caso,  $\mathcal{Y} = \{$  "piove", "non piove" $\}$  e  $\mathcal{Z} = (0,1)$ . Indicando questi due eventi con 1 (piove) e 0 (non piove), si può usare una funzione di loss per la regressione, come la absolute loss:

$$\ell(y, \hat{y}) = |y - \hat{y}| = \begin{cases} 1 - \hat{y} & y = 1 \\ \hat{y} & y = 0 \end{cases}$$
 (piove) (non piove)

Per penalizzare maggiormente le predizioni che distano troppo dalla realtà, si può usare una *logarithmic loss*:

$$\ell(y, \hat{y}) = \begin{cases} \ln \frac{1}{\hat{y}} & y = 1 & \text{(piove)} \\ \ln \frac{1}{1 - \hat{y}} & y = 0 & \text{(non piove)} \end{cases}$$



Figura 1: Confronto tra absolute loss e logarithmic loss; a sinistra il caso y = 0, a destra y = 1.

Si noti in figura 1 come la *logarithmic loss* tenda ad infinito quando la predizione è opposta all'etichetta reale:

$$\lim_{\hat{y} \to 1^{-}} \ell(0, \hat{y}) = \lim_{\hat{y} \to 0^{+}} \ell(1, \hat{y}) = +\infty$$

In pratica questo previene l'utilizzo di predizioni  $\hat{y}$  troppo sicure, quindi troppo vicine a zero o uno.

## 1.1.3 Data domain X

Verrà usata  $\mathcal{X}$  per indicare l'insieme dei data points; ogni suo punto  $x \in \mathcal{X}$  è tipicamente un record di un database formato da feature:

$$x = (x_1, \ldots, x_d)$$

Spesso un data point può essere codificato come un vettore i cui elementi sono le sue feature. Questa codifica risulta naturale in presenza di quantità omogenee, come i pixel di un'immagine o una lista di occorrenze di parole in un testo. Quando invece i dati presenti utilizzano unità di misura differenti, come "età" e "altezza", la codifica non risulta più immediata. Ci sarà bisogno di una procedura che codifichi i dati in modo da ottenere uno spazio vettoriale omogeneo e coerente con i dati iniziali.

In questo corso si assumerà che i dati possano essere rappresentati da vettori di numeri:

$$\mathcal{X} \equiv \mathbb{R}^d$$

## 1.1.4 Predittori f

Un **predittore** è una funzione  $f: \mathcal{X} \to \mathcal{Y}$  che mappa i *data points* alle etichette (o  $f: \mathcal{X} \to \mathcal{Z}$ ). Sì può quindi dire che in un problema di predizione l'obiettivo è ottenere una funzione f che genera delle predizioni  $\hat{y} = f(x)$  tali che  $\ell(y, \hat{y})$  sia basso per il maggior numero di punti  $x \in \mathcal{X}$  osservati. In pratica, **la funzione** f è definita da un certo numero di parametri in un dato modello. Un esempio sono i parametri di una rete neurale.

#### 1.1.5 Esempi

Nel supervised learning un **esempio** è una coppia (x, y) dove x è un data point e y la sua reale etichetta.

In alcuni casi x ha un'unica y, come nel caso in cui y rappresenta una proprietà oggettiva di x; in altri casi, invece, x può avere diverse y associate, come quando le y sono soggettivamente assegnate da persone.

#### 1.1.6 Test set e test error

Per poter stimare la qualità di un predittore si usa un insieme di esempi detto test set:

$$\{(x'_1, y'_1), \dots, (x'_n, y'_n)\}$$

Data una loss function  $\ell$ , il test set viene usato per calcolare il test error di un predittore f:

$$\frac{1}{n} \sum_{t=1}^{n} \ell(\underbrace{y'_t}, \overbrace{f(x'_t)})$$

Il test error ha quindi lo scopo di calcolare la prestazione media del predittore su dei dati reali.

#### 1.1.7 Learning algorithm A

Si definisce training set S un insieme di esempi:

$$S = \{(x_1, y_1), \dots, (x_m, y_m)\}\$$

che viene usato dal *learning algorithm* A per produrre un predittore A(S). Informalmente, il *learning algorithm* "impara" dal *training set*.

$$\underbrace{\{(x_1,y_1),\ldots,(x_m,y_m)\}}_{S} \longrightarrow \boxed{A} \longrightarrow A(S) = f: \mathcal{X} \to \mathcal{Y}$$

Il test set e il training set vengono solitamente prodotti assieme attraverso un processo di collezione dati e etichettamento. Dato l'insieme di esempi preparati, questo verrà partizionato in test set e training set, tipicamente tramite una divisione casuale. Obiettivo del corso è lo sviluppo di una teoria che ci guidi nella progettazione di learning algorithm che generano predittori con un basso test error.

#### 1.1.8 Training error $\ell_S$

Sia  $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$  il training set; viene definito, equivalentemente al test error, il training error:

$$\ell_S(f) = \frac{1}{m} \sum_{t=1}^{m} \ell(y_t, f(x_t))$$

Un approccio intuitivo alla progettazione di learning algorithm è quello di assumere che il training error  $\ell_S(f)$  del predittore f sia correlato con il suo test error.

## 1.2 Empirical Risk Minimization (ERM)

#### 1.2.1 Definizione

Sia  $\mathcal{F}$  un insieme di predittori e  $\ell$  una loss function. L'empirical risk minimizer (ERM) è il learning algorithm A che restituisce un predittore in  $\mathcal{F}$  che minimizza il training error:

$$A(S) \in \operatorname*{argmin}_{f \in \mathcal{F}} \ell_S(f)$$

Si noti come A(S) appartenga e non uguagli il minimo; questo perchè ci potrebbero essere più  $f \in \mathcal{F}$  che minimizzano  $\ell_S(f)$ .

#### 1.2.2 Predittori con test error elevato

Quando in  $\mathcal{F}$  tutti i predittori hanno un *test error* alto, ERM produrrà un pessimo predittore. Per trovare un buon predittore, ovvero un predittore con un *test error* basso, ci sarà quindi bisogno che  $\mathcal{F}$  sia sufficientemente grande.

Tuttavia, se  $\mathcal{F}$  è troppo grande, anche in questo caso verrà prodotto un pessimo predittore. Un esempio è il seguente.

Si consideri il seguente problema "giocattolo":

$$\mathcal{Y} = \{-1, 1\}$$
  $\mathcal{X} = \{x_1, x_2, x_3, x_4, x_5\}$ 

Si prenda l'insieme  $\mathcal{F}$  contenente un classificatore  $f:\mathcal{X}\to\mathcal{Y}$  per ognuna delle possibili combinazioni di etichettamento dei cinque *data points*.  $\mathcal{F}$  sarà quindi formata da  $2^5=32$  classificatori:

 $\mathcal{F} = \{f_1, \dots, f_{32}\}$ 

Si supponga che il training set S contenga solo tre data points qualsiasi e il test set contenga gli altri due. Sia  $f^*$  il predittore usato per etichettare i dati che quindi avrà zero test e training error; ogni etichetta  $y_t$  sarà quindi ottenuta da  $f^*$ :

-1

-1

$$y_t = f^*(x_t) \quad \forall t = 1, \dots, 5$$

Per rendere l'idea, si prenda come esempio:

$$f^* = f_3$$

$$S = \{(x_1, y_1), (x_2, y_2), (x_3, y_3)\}$$

$$= \{(x_1, 1), (x_2, 1), (x_3, 1)\}$$

Nonostante ad avere test error nullo sia solo  $f_3$ , ad avere il training error nullo sono i quattro classificatori che hanno  $y_1, y_2, y_3 = 1$  ovvero  $f_1, f_2, f_3, f_4$ . Questo perchè il training set S contiene solo i primi 3 data points.

Siamo quindi nella situazione in cui ERM trova più predittori con  $\ell_S$  minimo e non ha abbastanza informazioni per capire quale di questi sia migliore a livello di  $test\ error$ .

Il problema dell'esempio appena visto è che  $\mathcal{F}$  è troppo grande rispetto al *training* set. La domanda che sorge spontanea è quindi: Quanto deve essere grande  $\mathcal{F}$  per poter ottenere un buon predittore tramite ERM?

La teoria dell'informazione ci suggerisce che S debba avere cardinalità  $\log_2 |\mathcal{F}|$  o, viceversa,  $\mathcal{F}$  debba avere cardinalità  $2^m$ . Quindi, nell'esempio di prima, il training set avrebbe dovuto contenere almeno  $\log_2 |\mathcal{F}| = 5$  data points.

## 1.2.3 Overfitting e underfitting

I due eventi visti nella sezione precedente, che portano alla generazione di un predittore con test set elevato, vengono chiamati:

- *Underfitting*: si verifica quando il *training error* è elevato;
- Overfitting: si verifica quando il training error è basso ma il test error è alto.

Quando A è ERM e S ha dimensione fissata |S| = m:

- Ci si aspetta overfitting quando  $\log_2 |\mathcal{F}| \gg m$ ;
- Ci si aspetta underfitting quando  $\log_2 |\mathcal{F}| \ll m$ .

#### 1.2.4 Etichette rumorose

Il fenomeno dell'overfitting spesso accade quando le etichette sono rumorose, ovvero quando le etichette y non sono deterministicamente associate con i data points x. Questo può accadere per i seguenti motivi (non mutuamente esclusivi tra loro):

- 1. **Incertezza umana**: se ad etichettare S sono delle persone, ci sarà dell' incertezza in quanto persone diverse potrebbero avere opinioni diverse;
- 2. **Incertezza epistemica**: ogni *data point* è rappresentato da un vettore delle *feature* che non contiene abbastanza informazioni per determinare univocamente l'etichetta;
- 3. **Incertezza aleatoria**: il vettore delle *feature* che rappresenta il *data point* è ottenuto attraverso delle misurazioni rumorose.

Le etichette rumorose portano all'*overfitting* perchè possono ingannare l'algoritmo su quale sia la "vera" etichetta di una certo *data point*.

## 2 Gli algoritmi Nearest Neighbor

## 2.1 Nearest Neighbor (NN)

#### 2.1.1 Definizione

Verrà introdotto ora l'algoritmo di *Nearest Neighbor* (NN) per la classificazione binaria con *feature* numeriche:

$$\mathcal{X} = \mathbb{R}^d \qquad \qquad \mathcal{Y} = \{-1, 1\}$$

NN non è un'istanza di ERM in quanto non punta a minimizzare  $\ell_S$ .

#### L'idea di NN è la sueguente:

- Predici ogni punto del training set con la propria etichetta;
- Predici gli altri punti con l'etichetta del punto del *training set* che è più vicino al punto interessato.

Più formalmente, dato un training set:

$$S = \{(x_1, y_1), \dots, (x_m, y_m)\}\$$

l'algoritmo  $A_{\rm NN}$  genera un classificatore  $h_{\rm NN}:\mathbb{R}\to\{-1,1\}$  definito come segue:

$$h_{\text{NN}}(x) = \text{etichetta } y_t \text{ del punto } x_t \in S \text{ più vicino a x}$$

Se a minimizzare la distanza con x sono più punti, si predirrà l'etichetta più presente tra i punti vicini. Se non c'è una maggioranza di etichette tra i punti più vicini si predirrà un valore di default  $\in \{-1, 1\}$ .

Presi due punti  $x=(x_1,\ldots,x_d)$  e  $x_t=(x_{t,1},\ldots,x_{t,d})$ , la distanza  $||x-x_t||$  verrà calcolata tramite la distanza euclidea:

$$||x - x_t|| = \sqrt{\sum_{i=1}^{d} (x_i - x_{t,i})^2}$$

Ogni classificatore binario  $f: \mathbb{R}^d \to \{-1,1\}$  partiziona  $\mathbb{R}^d$  in due regioni (come mostrato in figura 2):

$${x \in \mathbb{R}^d : f(x) = 1}$$
 ,  ${x \in \mathbb{R}^d : f(x) = -1}$ 



Figura 2: Diagramma di Voronoi in  $\mathbb{R}^2$ ; tutti i punti x interni a una cella con centro  $\bullet x_t$  sono tali che  $h_{\text{NN}}(x) = y_t$ 

#### 2.1.2 Efficienza ed efficacia

Siccome il funzionamento di NN implica la memorizzazione di tutto il training set, l'algoritmo non scala bene con il numero di |S| = m di training point. Inoltre, calcolare un qualsiasi  $h_{\text{NN}}(x)$  è costoso, in quanto richiede di calcolare la distanza tra x e tutti gli altri punti di S; questo in  $\mathbb{R}^d$  comporta un costo di  $\Theta(dm)$ .

Infine, si noti come, vista la completa memorizzazione di S, NN generi sempre un classificatore  $h_{NN}$  con training error nullo:

$$\ell_S(h_{\rm NN}) = 0$$

## 2.2 k-Nearest Neighbor (k-NN)

#### 2.2.1 Definizione

Partendo dagli algoritmi NN, si può ottenere una famiglia di algoritmi detta k-NN; il parametro k assume tipicamente i valori  $k=1,3,5,\ldots$  con k<|S|.

Questi algoritmi sono definiti come segue: dato un training set S e un punto  $x \in \mathcal{X}$ , k-NN genererà un predittore  $h_{k$ -NN tale che:

 $h_{k\text{-NN}}(x) =$  etichetta  $y_t$  appartenente alla maggioranza dei k punti più vicini a x



Figura 3: Esempi di  $h_{k\text{-NN}}$  con  $\mathcal{X} = \mathbb{R}^2$ ; si noti come, con lo stesso training set, la predizione cambia al variare di k.

#### 2.2.2 Efficienza ed efficacia

Complessità di  $h_{k-NN}$ 

A livello di efficienza k-NN soffre degli stessi problemi di NN vista la memorizzazione dell'intero training set.

Per quanto riguarda la sua efficacia invece, k-NN non ha sempre un  $training\ error$  nullo:

$$k = 1$$

$$k = 3$$

$$k = 5$$

$$\ell_S(h_{k\text{-NN}}) \ge 0$$

Figura 4: Esempi di  $h_{k-NN}$  con  $\mathcal{X} = \mathbb{R}$ .

Come si può infatti notare dalla figura 4, nei casi con k=3 e k=5 sono presenti punti errati (evidenziati in grassetto) considerati dal classificatore come *outlier*. Inoltre **al crescere di** k

cresce anche la "semplicità" del classificatore così come il numero di punti errati. L'estremo di ciò è quando k = |S|; in questo caso infatti  $h_{k\text{-NN}}$  diventa un classificatore costante che predice sempre l'etichetta più presente in tutto S.

In un generico classificatore  $h_{k\text{-NN}}$  tipicamente succede che:

- Se k è troppo basso si ottiene un classificatore che si "fida" troppo del training set, ottenendo quindi overfitting;
- Se k è troppo alto, si ottiene un classificatore troppo semplice, ottenendo underfitting.

Tutti i classificatori introdotti fino ad'ora sono classificatori binari ( $|\mathcal{Y}| = 2$ ). Tuttavia k-NNpuò essere usato anche per:

- problemi di classificazione multiclasse ( $|\mathcal{Y}| > 2$ ): si opera come nel caso binario, predicendo quindi l'etichetta più presente nei k punti più vicini;
- problemi di regressione  $(\mathcal{Y} = \mathbb{R})$ : si predice la media aritmetice delle etichette dei k punti più vicini.

## 3 Tree Predictors

## 3.1 Definizione

Come già visto, mentre alcuni tipi di dato hanno una naturale rappresentazione vettoriale  $x \in \mathbb{R}^d$ , altri non ce l'hanno. Un esempio possono essere dei record medici, dove i dati contengono i seguenti campi:

```
\begin{split} &\texttt{età} \in \{12,\ldots,90\} \\ &\texttt{fumatore} \in \{s\grave{\textbf{i}},no,ex\} \\ &\texttt{peso} \in [10,200] \\ &\texttt{sesso} \in \{M,F\} \\ &\texttt{terapia} \in \{antibiotici,cortisone,nessuna} \} \end{split}
```

Anche convertendo questi tipi di dato in dati numerici, gli algoritmi basati sulla distanza euclidea, come il k-NN, potrebbero non andare molto bene.

Per poter applicare la *data inference* su dati le cui *feature* variano in insiemi eterogenei  $\mathcal{X}_1, \ldots, \mathcal{X}_d$ , verrà introdotta una nuova famiglia di predittori: i *tree predictors*.

Un tree predictor è un albero ordinato e radicato dove ogni nodo può essere una **foglia** o un **nodo interno**. È importante sottolineare che in un albero ordinato i figli di ogni nodo sono anch'essi ordinati e quindi numerabili consecutivamente. In figura 5 viene mostrato un esempio di tree predictor binario le cui feature sono:

```
\begin{split} & \texttt{previsione} \in \{sole, nuvole, pioggia} \} \\ & \texttt{umidità} \in [0, 100] \\ & \texttt{vento} \in \{sì, no\} \end{split}
```



Figura 5: Esempio classico di tree classifier per una classificazione binaria.

Sia  $\mathcal{X} = \mathcal{X}_1, \dots, \mathcal{X}_d$ , dove ogni  $\mathcal{X}_i$  rappresenta il dominio dell'*i*-esimo attributo (o *feature*)  $x_i$ . Il tree predictor  $h_T : \mathcal{X} \to \mathcal{Y}$  è un predittore definito da un albero T i cui nodi interni corrispondono a dei test e le cui foglie corrispondono a delle etichette  $y \in \mathcal{Y}$ .

Un test su un attributo i su un nodo interno con k figli è una funzione  $f: \mathcal{X} \to \{1, \dots, k\}$ . f mappa ogni elemento di  $\mathcal{X}_i$  a un nodo figlio. Due esempi possono essere i seguenti:

$$\mathcal{X}_{i} = \{a, b, c, d\} \qquad k = 3 
f(x_{i}) = \begin{cases} 1 & x_{i} = c \\ 2 & x_{i} = d \\ 3 & x_{i} \in \{a, b\} \end{cases}$$

$$\mathcal{X}_{i} = [0, 100] \qquad k = 2 
f(x_{i}) = \begin{cases} 1 & x_{i} \in [0, 70] \\ 2 & x_{i} \in (70, 100] \end{cases}$$

L'esempio di destra è riferito all'attributo umidità di figura 5.

La predizione  $h_T(x)$  è calcolata come segue:

- 1.  $v \leftarrow r$   $(r \ \text{è la radice di } T)$
- 2. se v è una foglia  $\ell$ , si restituisce l'etichetta  $y \in \mathcal{Y}$  associata a  $\ell$ ;
- 3. altrimenti, sia  $f: \mathcal{X}_i \to \{1, \dots, k\}$  il test associato a v, assegna  $v \leftarrow v_j$  dove  $j = f(x_i)$  e  $v_j$  indica il j-esimo figlio di v;
- 4. vai al punto 2.

Se  $h_T(x)$  restituisce la foglia  $\ell$ , si dirà che l'esempio x è indirizzato a  $\ell$ .

## 3.2 Costruzione di un tree predictor

#### 3.2.1 Idea generale

Dato un training set S, si vedrà ora come costruire un tree predictor. Per semplicità, si guarderà solo ad una classificazione binaria  $\mathcal{Y} = \{-1, 1\}$  e verranno usati solo alberi binari completi, cioè alberi dove ogni nodo interno ha due figli.

L'idea è quella di far crescere l'albero partendo da un singolo nodo (che dovrà essere una foglia). L'etichetta di quest'unica foglia sarà l'etichetta  $\hat{y} \in \mathcal{Y}$ , ovvero l'etichetta più presente nel training set. Si avrà quindi inizialmente, un classificatore che assegna a tutti i data point l'etichetta  $\hat{y}$ . L'albero sarà fatto crescere scegliendo una foglia e rimpiazzandola con un nodo interno e due nuove foglie.

## 3.2.2 Training error

Si chiami T l'albero cresciuto fino a un certo punto e  $h_T$  il classificatore corrispondente. Obiettivo è calcolare il contributo che ogni foglia dà al training error  $\ell_S(h_T)$ .

Presa una foglia  $\ell$ , si vuole capire che etichetta assegnarle per minimizzare  $\ell_S$ .

Si definisca:

$$S_{\ell} = \{(x_t, y_t) \in S : x_t \text{ è indirizzato a } \ell\}$$

 $S_{\ell}$  è quindi l'insieme degli esempi di training che sono indirizzati alla foglia  $\ell$ . Si divida ora  $S_{\ell}$  in due sottoinsiemi:

$$S_{\ell}^{+} = \{(x_t, y_t) \in S_{\ell} : y_t = +1\}$$
  
$$S_{\ell}^{-} = \{(x_t, y_t) \in S_{\ell} : y_t = -1\}$$

Il primo conterrà tutti gli esempi di training che vengono indirizzati a  $\ell$  con etichetta positiva mentre il secondo con etichetta negativa. Di questi insiemi si prenda il loro numero di elementi:

$$N_{\ell}^{+} = |S_{\ell}^{+}| \qquad N_{\ell}^{-} = |S_{\ell}^{-}| \qquad N_{\ell} = |S_{\ell}|$$

È facile capire che se la maggior parte degli esempi di training che vengono indirizzati alla foglia  $\ell$  hanno etichetta positiva, allora l'etichetta che bisognerà dare a  $\ell$ , per minimizzare il suo errore  $\ell_S$ , sarà l'etichetta positiva (chiaramente lo stesso discorso vale per l'etichetta negativa); questa intuizione può essere quindi usata per assegnare l'etichetta  $y_\ell$  alla foglia  $\ell$  nel seguente modo:

$$y_{\ell} = \begin{cases} +1 & N_{\ell}^{+} \ge N_{\ell}^{-} \\ -1 & \text{altrimenti} \end{cases}$$

Di conseguenza la foglia  $\ell$  sbaglierà la sua previsione su min  $\{N_{\ell}^+, N_{\ell}^-\}$  esempi di training. Per facilitare delle successive osservazioni moltiplichiamo e dividiamo per  $N_{\ell}$ :

$$\min\left\{N_{\ell}^+,N_{\ell}^-\right\} = \min\left\{\frac{N_{\ell}^+}{N_{\ell}},\frac{N_{\ell}^-}{N_{\ell}}\right\}N_{\ell}$$

Quindi se il valore appena scritto è l'errore che una singola foglia  $\ell$  fa, il training error sarà:

$$\ell_S(h_T) = \frac{1}{m} \sum_{\ell} \min \left\{ \frac{N_{\ell}^+}{N_{\ell}}, \frac{N_{\ell}^-}{N_{\ell}} \right\} N_{\ell}$$
$$= \frac{1}{m} \sum_{\ell} \psi \left( \frac{N_{\ell}^+}{N_{\ell}} \right) N_{\ell}$$

Dove viene introdotta la funzione  $\psi$ , definita in [0,1]:

$$\psi(a) = \min\left\{a, 1 - a\right\}$$

Si può facilmente intuire come  $N_{\ell}^+/N_{\ell}$  e  $N_{\ell}^-/N_{\ell}$  siano sempre compresi tra 0 e 1 in quanto rappresentano la percentuale di esempi positivi/negativi che raggiungono  $\ell$  rispetto al totale degli esempi (sempre che raggiungono  $\ell$ ).

#### Esempio

Sia T l'albero di figura 6 e S il training set mostrato in tabella 1 (vengono mostrati solo gli esempi di S che sono indirizzati a  $\ell'$  e  $\ell''$ ). Si deve decidere che etichette assegnare alle foglie  $\ell'$  e  $\ell''$ ;

| $x_t$ | previsione | umidità | vento | $y_t$ |
|-------|------------|---------|-------|-------|
| $x_1$ | sole       | 85      | no    | +1    |
| $x_2$ | sole       | 76      | sì    | -1    |
| $x_3$ | sole       | 55      | sì    | +1    |
| $x_4$ | sole       | 65      | sì    | -1    |
| $x_5$ | sole       | 82      | sì    | -1    |
| $x_6$ | sole       | 35      | no    | +1    |
| $x_7$ | sole       | 94      | no    | -1    |
| $x_8$ | sole       | 66      | no    | +1    |
| $x_9$ | sole       | 48      | sì    | +1    |



Tabella 1: Esempio di training set

Figura 6: Esempio di *tree classifier* "in costruzione".

Si prenda  $\ell'$ :

$$S_{\ell'} = \{(x_3, +1), (x_4, -1), (x_6, +1), (x_8, +1), (x_9, +1)\} \quad N_{\ell'} = 5$$

$$S_{\ell'}^+ = \{(x_3, +1)(x_6, +1), (x_8, +1), (x_9, +1)\} \quad N_{\ell'}^+ = 4 \quad \frac{N_{\ell'}^+}{N_{\ell'}} = 0.8$$

$$S_{\ell'}^- = \{(x_4, -1)\} \quad N_{\ell'}^- = 1 \quad \frac{N_{\ell'}^-}{N_{\ell'}} = 0.2$$

L'ottanta percento degli esempi che raggiungono  $\ell'$  ha etichetta positiva, si può quindi affermare che l'etichetta  $y_{\ell'} = +1$ .

Si prenda infine  $\ell''$ :

$$S_{\ell''} = \{(x_1, +1), (x_2, -1), (x_5, -1), (x_7, -1)\} \quad N_{\ell''} = 4$$

$$S_{\ell''}^+ = \{(x_1, +1)\} \qquad \qquad N_{\ell''}^+ = 1 \qquad \frac{N_{\ell''}^+}{N_{\ell''}} = 0.25$$

$$S_{\ell''}^- = \{(x_2, -1), (x_5, -1), (x_7, -1)\} \qquad \qquad N_{\ell''}^- = 3 \qquad \frac{N_{\ell''}^-}{N_{\ell''}} = 0.75$$

Il settantacinque percento degli esempi che raggiungono  $\ell''$  ha etichetta negativa, si può quindi affermare che l'etichetta  $y_{\ell''} = -1$ .

## 3.2.3 Crescita dell'albero e training error

Si supponga di sostituire una foglia  $\ell$  con un nodo interno e due nuove foglie  $\ell'$  e  $\ell''$ , come mostrato in figura 7. Può il training error del nuovo albero espanso crescere rispetto a quello originale?



Figura 7: Un passaggio della crescita dell'albero: la foglia  $\ell$  viene rimpiazzata da un nodo interno v con due nuove foglie  $\ell'$  e  $\ell''$ .

L'apporto che la foglia  $\ell$  dà al training error è:

$$\psi\left(\frac{N_{\ell}^{+}}{N_{\ell}}\right)N_{\ell} \tag{1}$$

Gli esempi con etichetta positiva che vengono indirizzati a  $\ell$  saranno ora divisi tra  $\ell'$  e  $\ell''$ :

$$N_{\ell}^{+} = N_{\ell'}^{+} + N_{\ell''}^{+} \tag{2}$$

Si può quindi ottenere che:

$$\frac{N_{\ell}^{+}}{N_{\ell}} = \frac{N_{\ell'}^{+} + N_{\ell''}^{+}}{N_{\ell}}$$

$$= \frac{N_{\ell'}^{+}}{N_{\ell}} + \frac{N_{\ell''}^{+}}{N_{\ell}}$$

$$= \frac{N_{\ell'}^{+}}{N_{\ell}} \cdot \frac{N_{\ell'}}{N_{\ell'}} + \frac{N_{\ell''}^{+}}{N_{\ell}} \cdot \frac{N_{\ell''}}{N_{\ell''}}$$

$$= \frac{N_{\ell'}^{+}}{N_{\ell'}} \cdot \frac{N_{\ell'}}{N_{\ell}} + \frac{N_{\ell''}^{+}}{N_{\ell''}} \cdot \frac{N_{\ell''}}{N_{\ell}}$$
(3)

Dati (1) e (3) si può dire che l'apporto di  $\ell$  è:

$$\psi\left(\frac{N_{\ell}^{+}}{N_{\ell}}\right)N_{\ell} = \psi\left(\frac{N_{\ell'}^{+}}{N_{\ell'}} \cdot \frac{N_{\ell'}}{N_{\ell}} + \frac{N_{\ell''}^{+}}{N_{\ell''}} \cdot \frac{N_{\ell''}}{N_{\ell}}\right)N_{\ell} \tag{4}$$

Si noti che  $\psi$  è una funzione concava. Questo permette di poter applicare la disuguaglianza di Jensen (valida con  $a, b \in \mathbb{R} \land \mu \in [0, 1]$ ):

$$\psi(a\mu + b(1-\mu)) \ge \mu\psi(a) + (1-\mu)\psi(b)$$
 (Jensen)

$$\psi\left(\frac{N_{\ell'}^{+}}{N_{\ell'}} \cdot \frac{N_{\ell'}}{N_{\ell}} + \frac{N_{\ell''}^{+}}{N_{\ell''}} \cdot \frac{N_{\ell''}}{N_{\ell}}\right) N_{\ell} \ge \mathcal{N}_{\ell} \frac{N_{\ell'}}{\mathcal{N}_{\ell}} \psi\left(\frac{N_{\ell'}^{+}}{N_{\ell'}}\right) + \mathcal{N}_{\ell} \frac{N_{\ell''}}{\mathcal{N}_{\ell}} \psi\left(\frac{N_{\ell''}^{+}}{N_{\ell''}}\right)$$

$$\ge \psi\left(\frac{N_{\ell'}^{+}}{N_{\ell'}}\right) N_{\ell'} + \psi\left(\frac{N_{\ell''}^{+}}{N_{\ell''}}\right) N_{\ell''}$$
(5)

Chiaramente si dovrà avere che:

$$\frac{N_{\ell''}}{N_{\ell}} = 1 - \frac{N_{\ell'}}{N_{\ell}}$$

Questo è facilmente verificabile a partire da (2). Infine, dati (4) e (5) si ha:

$$\underbrace{\psi\left(\frac{N_{\ell}^{+}}{N_{\ell}}\right)N_{\ell}}_{\text{apporto di }\ell} \ge \underbrace{\psi\left(\frac{N_{\ell'}^{+}}{N_{\ell'}}\right)N_{\ell'}}_{\text{apporto di }\ell'} + \underbrace{\psi\left(\frac{N_{\ell''}^{+}}{N_{\ell''}}\right)N_{\ell''}}_{\text{apporto di }\ell''}$$

Questo dimostra che, facendo crescere l'albero, il training error non aumenta.

Una foglia  $\ell$  viene detta pura se non contribuisce ad aumentare il training error, ovvero:

$$N_{\ell}^+ \in \{0, N_{\ell}\}$$

In qualsiasi albero il training error è maggiore di zero  $(\ell_S(h_T) > 0)$  almeno che non abbia solo foglie pure.

## 3.2.4 Algoritmo generale

Verrà ora mostrato un algoritmo generale per la cotruzione di un albero binario a partire da un  $training\ set\ S$ :

#### 1. Inizializzazione:

- (a) Crea un albero T con solo la radice  $\ell$
- (b)  $S_{\ell} = S$
- (c)  $y_{\ell}$  = etichetta più frequente in  $S_{\ell}$

#### 2. Main loop:

- (a) Scegli una foglia  $\ell$  e sostituiscila con un nodo interno v e due nuove foglie  $\ell'$  e  $\ell''$
- (b) Scegli un attributo i e un test  $f: \mathcal{X}_i \to \{1, 2\}$
- (c) Associa il test f a v e partiziona  $S_{\ell}$  in due sottoinsiemi:

$$S_{\ell'} = \{(x_t, y_t) \in S_\ell : f(x_{t,i}) = 1\}$$
 e  $S_{\ell''} = \{(x_t, y_t) \in S_\ell : f(x_{t,i}) = 2\}$ 

- (d) Associa a  $\ell'$  l'etichetta più frequente in  $S_{\ell'}$
- (e) Associa a  $\ell''$  l'etichetta più frequente in  $S_{\ell''}$

## 3.3 Overfitting

Se il numero di nodi dell'albero è troppo alto rispetto alla cardinalità di S si potrà avere dell'overfitting. Per questo motivo, la scelta della foglia da espandere dovrebbe garantire approssimativamente la riduzione massima del  $training\ error$ .

Nella pratica, per calcolare il training error si usano funzioni diverse da  $\psi(p) = \min\{p, 1-p\}$ . Questo perchè  $\psi$  può essere problematica in alcuni casi. Un esempio è il seguente:

$$p = \frac{N_{\ell}^{+}}{N_{\ell}} = 0.8 \qquad q = \frac{N_{\ell'}^{+}}{N_{\ell'}} = 0.6 \qquad r = \frac{N_{\ell''}^{+}}{N_{\ell''}} = 1 \qquad \alpha = \frac{N_{\ell'}^{+}}{N_{\ell}} = 0.5$$
apporto di  $\ell'$ 
apporto di  $\ell$ 
apporto di  $\ell$ 
apporto di  $\ell'$ 

In questo passaggio il cambiamento che si avrebbe rimpiazzando la foglia  $\ell$  sarebbe nullo e quindi non verrebbe scelto dall'algoritmo. Potrebbe inoltre succedere che tutte le foglie diano questo risultato facendo quindi bloccare l'algoritmo.

Per correggere questo problema vengono usate altre funzioni  $\psi$ . Queste funzioni sono simili a quella già vista in quanto simmetriche attorno a 1/2 e nulle agli estremi ( $\psi(0) = \psi(1) = 0$ ). Alcune funzioni usate sono:

- Funzione di Gini:  $\psi_2(p) = 2p(1-p)$
- Entropia scalata:  $\psi_3(p) = -\frac{p}{2}\log_2{(p)} \frac{1-p}{2}\log_2{(1-p)}$
- $\psi_4(p) = \sqrt{p(1-p)}$

Come si può vedere in figura 8, valgono le seguenti disuguaglianze  $(\psi_1(p) = \min \{p, 1-p\})$ :

$$\psi_1(p) \le \psi_2(p) \le \psi_3(p) \le \psi_4(p)$$



Figura 8: Grafici delle funzioni  $\psi$ 

## 3.4 Interpretabilità

Una proprietà interessante dei tree predictors per la classificazione binaria è che possono essere rappresentati con una proposizione logica in forma normale disgiuntiva (DNF). Questa rappresentazione è ottenuta considerando le clausule (congiunzione di predicati) che risultano dai test che si trovano sui percorsi che portano ad un etichetta +1.

Un esempio è la seguente DNF ricavata dall'albero in figura 9:





Figura 9: Tree predictor

Questa rappresentazione "logica" dell'albero è molto intuitiva è permette di essere manipolata attraverso le regole della logica preposizionale. Soprattutto, questa rappresentazione fornisce una descrizione interpretabile della conoscenza del *learning algorithm* estratta dal *training set*.

# 4 Statistical Learning