Advanced Econometrics in Labour and IO Week 1 - Static Discrete Choice in Labour

Peter Haan

28 April 2022

Introduction

Organization, see outline If anything unclear, please ask.

Presentation: name, study status, main econ interest

Course schedule

Structure of sessions (take theory to data):

- Methods
- Paper discussion ⇒ you need to read at home
- 3 Practical session (numerical methods)
 - ⇒ you **need** to do problem sets
 - \Rightarrow you **need** Matlab (toolboxes: statistics and optimization) or Julia
 - ⇒ you **need** to practice coding

Evaluation

For students who need to be evaluated

- (1) Special problem sets
 - individually or in pairs
 - provide commented code, results, documentation, tables
- (2) **Exam**
 - **1**4.7.2022;

Plan for today

- Structural econometrics vs reduced form estimation
- Example of a structural model
- Practical session, Matlab and example

What is structural econometrics?

What is structural econometrics?

What is structural econometrics?

Structural econometric models...

- "...combine explicit economic theories with statistical models" (Reiss and Wolak, 2007)
- "...[infer] underlying parameters that represent tastes, technology, and other primitives from observations of individual households and firms..." (Adda and Cooper, 2003)

Why?

Why do structural econometrics?

Good summary of debate by Rust (2010), thoughtful (and spiteful) comments on Keane (2013) in Fritjers (2013) vs Rust (2013).

Why do structural econometrics?

Some **effects** are of interest, but taste & technology parameters

- sometimes **interesting per se** risk aversion, taste for leisure, workers' bargaining power etc.
- 2 sometimes required to understand issues job offer arrival rate in bad jobs vs. in unemployment.
- usually required for counterfactual policy evaluations e.g. labour supply elasticity vs. labour demand elasticity

Structural vs Atheoretic

Questions to ask structural papers:

- Where is the structure?
- What assumptions is the structure making?
- What alternative assumptions might there be?
- Why do we need the structure -What can we learn with vs. without theory?

Assumptions? Alternatives? Atheoretic answers?

An Introductory Example

How much revenue raised by **introducing income taxes**?

Simple answers?

Effects of tax change I

How much additional revenue (AR)

- AR=new tax rate * wage * number of hours worked
- AR=new tax rate * wage * hours worked post tax

How many hours worked post tax?

Effects of tax change II

How many hours worked post tax?

- estimate observed corr between wages and hours
- interpret as L^S-elasticity?

Effects of tax change III

using theory... why might number of hours worked change?

- **1 hours margin**: change in hours for (pre- & post-) workers
- participation margin: change in participation pre vs. post-tax:
 - model discrete choice of participation with tax
 - model hours reaction conditional on participating

Effects of tax change IV

- Iife-cycle margin: changing taxes may influence optimal allocation of work over life (eg. if progressivity is increased...)
- wage margin: equilibrium (gross) wage may change

Conclude: Predicting reduced-form effect (AR) may require theory.

Before the practical session

10 minute break

Practical Session

Question: The Flat Party wins elections and wants to **introduce** a Flat Income Tax (FIT).

We want to know how much revenue is raised under FIT.

Why do we need a structural model? Alternatives? How to model this?

Practical Session

What minimal necessary ingredients for a model?

- decision to participate
- 2 decision over hours worked (discretize why?)
- g earnings of participants (pre- and post reform)
- NB. recognize heterogeneity (e.g. due to different non-labour incomes)

(1) Participation and hours

How do we model this?

(1) Participation and hours II

Individuals maximize utility from consumption & leisure

$$U(c, h) = \gamma \left[\frac{c^{\theta}}{\theta} - \alpha h \right] + \varepsilon_h$$

by **choosing hours per week** $h \in [0, 10, 20, 30, 40]$ faced with constraint posed by wage.

(2) Consumption

Simplest model of consumption in this context?

(2) Consumption II

$$c = w * h$$

What does this imply? Simplest models of wages?

(3) Wages

Assume workers draw wage rates from normal wage offer distribution *before* choosing hours

$$\log \mathbf{W} = \mu_{\mathbf{W}} + \epsilon_{\mathbf{W}}$$

where ε_{w} from $N[0, \sigma_{w}]$

Key elements

Estimate...

- parameters of the wage distribution
- 2 taste parameters of leisure-consumption choice

Matlab

Principles

- Use a script and document your code. Always.
- 2 There is **always** a solution. Not one.
- 3 One solution is fast,
- another is easy to read & understand,
- 5 another is flexible.
- 6 You won't find any immediately. No matter. Try again.

Simulate to estimate

Good practice: Simulate before estimating. Why?

In practice: Simulation and Estimation

- Simulate economic behaviour in model with your favourite parameters.
- 2 Generate simulated data.
- Save the data. Forget the parameters.
- Write the likelihood function as a function of data and parameters.
- Maximize likelihood of observing your simulated data w.r.t. parameters.
- 6 Rediscover your favourite parameters.

Code now...

- 1 code for simulating hours choice
- 2 code for estimating hours choice
- code for simulating a normal wage distribution
- 4 code for estimating a normal wage distribution