Vv417 Lecture 21

Jing Liu

UM-SJTU Joint Institute

November 19, 2019

• In \mathbb{R}^n , we often use the standard basis

$$\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$$

in which vectors are orthonormal, and it is known as an orthonormal basis.

ullet In an inner product space ${\cal V}$, it is also desirable to have an orthonormal basis.

Definition

Let $\mathcal{S}=\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\}$ be a set of nonzero vectors in an inner product space. If

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$$
 for $i \neq j$,

then S is said to be an orthogonal set of vectors.

Theorem

An orthogonal set of nonzero vectors is linearly independent.

• If \mathcal{B} is an orthogonal set that spans \mathcal{V} , then \mathcal{B} is an orthogonal basis for \mathcal{V} .

An orthonormal set of vectors is an orthogonal set of unit vectors.

ullet The set $\{\mathbf{u}_1,\,\mathbf{u}_2,\,\ldots,\,\mathbf{u}_n\}$ will be orthonormal if and only if

$$\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Exercise

Consider $\mathcal{C}[-\pi,\pi]$ with inner product $\langle f,g\rangle=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)g(x)\,dx$, is the set

$$S = \{1, \cos x, \cos 2x, \dots, \cos nx\}$$

an orthogonal set of vectors? Is it orthonormal?

Solution

• We need to check use the given inner product whether they are orthogonal.

Solution

ullet We need to check the inner products between vectors in \mathcal{S} , we have

$$\langle 1, \cos kx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos kx \, dx = 0 \qquad \text{for} \quad k = 1, 2, \dots, n$$

$$\langle \cos jx, \cos kx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos jx \cos kx \, dx = 0 \qquad \text{for} \quad j \neq k$$

We need to check the length of the vectors, we have

$$\langle \cos kx, \cos kx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^2 kx \, dx = 1$$
 for $k = 1, 2, \dots, n$

• However, the length of the function 1 under this inner product is not 1.

$$||1||^2 = \langle 1, 1 \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} 1 \ dx = \frac{2}{\pi}$$

• Therefore S is an orthogonal set, but not orthonormal.

Parseval's Formula

If $\{\mathbf{u}_1,\,\mathbf{u}_2,\,\ldots,\,\mathbf{u}_n\}$ is an orthonormal basis for an inner product space $\mathcal V$, then

$$\|\mathbf{v}\|^2 = \sum_{i=1}^n c_i^2$$
 where $\mathbf{v} = \sum_{i=1}^n c_i \mathbf{u}_i$

- Q: The above is easy to show but what does it mean to inner product in general
- Q: Given that $\{1/\sqrt{2},\cos 2x\}$ is an orthonormal set in $\mathcal{C}[-\pi,\pi]$ with

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) \ dx$$

How to compute the value of the following without finding an antiderivative?

$$\int_{-\pi}^{\pi} \sin^4 x \, dx$$

An $n \times n$ matrix \mathbf{Q} is said to be an orthogonal matrix if the column vectors of \mathbf{Q} form an orthonormal set in \mathbb{R}^n .

Theorem

An $n \times n$ matrix \mathbf{Q} is orthogonal if and only if

$$\mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \mathbf{I}$$

And \mathbf{Q} is invertible and $\mathbf{Q}^{-1} = \mathbf{Q}^{\mathrm{T}}$.

Proof

ullet By definition an n imes n matrix ${f Q}$ is orthogonal if and only if

$$\mathbf{c}_i^{\mathrm{T}} \mathbf{c}_j = \begin{cases} 1 & \text{if} \quad i = j, \\ 0 & \text{if} \quad i \neq j. \end{cases}$$

where c_i and c_j are *i*th and *j*th column of Q.

Proof

• Since $\mathbf{c}_i^{\mathrm{T}}\mathbf{c}_j$ is the (i,j) element of $\mathbf{Q}^{\mathrm{T}}\mathbf{Q}$. thus \mathbf{Q} is orthogonal if and only if

$$\mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \mathbf{I}$$

Exercise

Show for any fixed θ , the matrix is orthogonal

$$\mathbf{Q} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Solution

Consider the product,

$$\mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = \mathbf{I}$$

So Q is orthogonal.

ullet In \mathbb{R}^n , inner products are preserved under orthonormal change of variables

$$\langle \mathbf{Q}\mathbf{x}, \mathbf{Q}\mathbf{y} \rangle = (\mathbf{Q}\mathbf{y})^{\mathrm{T}}\mathbf{Q}\mathbf{x} = \mathbf{y}^{\mathrm{T}}\mathbf{Q}^{\mathrm{T}}\mathbf{Q}\mathbf{x} = \mathbf{y}^{\mathrm{T}}\mathbf{x} = \langle \mathbf{x}, \mathbf{y} \rangle$$

• In particular, if x = y, then

$$\|\mathbf{Q}\mathbf{x}\|^2 = \|\mathbf{x}\|^2 \implies \|\mathbf{Q}\mathbf{x}\| = \|\mathbf{x}\|$$

• So multiplication by an orthogonal matrix preserves the lengths of vectors.

Properties of Orthogonal Matrices

If \mathbf{Q} is an $n \times n$ orthogonal matrix, then

- $1. \mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \mathbf{I}$
- 2. $\mathbf{Q}^{\mathrm{T}} = \mathbf{Q}^{-1}$
- 3. $\langle \mathbf{Q}\mathbf{x}, \mathbf{Q}\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle$
- 4. $\|\mathbf{Q}\mathbf{x}\| = \|\mathbf{x}\|$
- 5. $\mathbf{Q}\mathbf{Q}^{\mathrm{T}}=\mathbf{I}$ and thus the rows of \mathbf{Q} form an orthonormal basis for \mathbb{R}^n .

• In \mathbb{R}^n , we often want to decompose a vector \mathbf{y} into two vector components, parallel and orthogonal to a vector \mathbf{u} .

Q: How to find the two vectors in \mathbb{R}^n ? What if it is an inner product space?

Definition

For non-zero ${\bf y}$ and ${\bf u}$ in an inner product space, the vector projection of ${\bf y}$ onto ${\bf u}$

$$\operatorname{proj}_{\mathbf{u}} \mathbf{y} = \|\mathbf{y}\| \cos \theta \frac{\mathbf{u}}{\|\mathbf{u}\|} = \frac{\mathbf{u}}{\|\mathbf{u}\|} \left(\frac{\langle \mathbf{u}, \mathbf{y} \rangle}{\|\mathbf{u}\|} \right) = \frac{\langle \mathbf{u}, \mathbf{y} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u}$$

The vector $(y - \operatorname{proj}_{\mathbf{u}} y)$ is called the vector component of y orthogonal to \mathbf{u} .

A vector $\mathbf x$ in an inner product $\mathcal V$ is said to be orthogonal to a subspace $\mathcal W$ of $\mathcal V$ if $\mathbf x$ is orthogonal to all the vectors $\mathbf v$ in $\mathcal W$, that is,

$$\langle \mathbf{x}, \mathbf{v} \rangle = 0$$
 for all vectors \mathbf{v} in \mathcal{W} .

• It is clear if $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ is a basis of \mathcal{W} , then \mathbf{x} is orthogonal to \mathcal{W} if and only if \mathbf{x} is orthogonal to all the vectors in \mathcal{B} .

Theorem

For a vector ${\bf x}$ in ${\cal V}$ and a subspace ${\cal W}$ of ${\cal V}$, we can write

$$\mathbf{x} = \mathbf{x}^{\parallel} + \mathbf{x}^{\perp}$$

where \mathbf{x}^{\parallel} is in \mathcal{W} and \mathbf{x}^{\perp} is orthogonal to \mathcal{W} , and this representation is unique.

Proof

ullet Let $\mathbf{x}\in\mathcal{V}$ and $\mathcal{B}=\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_m\}$ be an orthogonal basis of \mathcal{W} , then

$$\mathbf{x}^{\parallel} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_m \mathbf{u}_m$$

is in \mathcal{W} , we need to show there is a set of α_i 's such that

$$\mathbf{x}^\perp = \mathbf{x} - \mathbf{x}^\parallel$$

is orthogonal to \mathcal{W} , that is,

$$\langle \mathbf{x}^{\perp}, \mathbf{u}_i \rangle = 0 \qquad \text{for} \quad i = 1, 2, \dots, m$$

$$\langle \mathbf{x} - \mathbf{x}^{\parallel}, \mathbf{u}_i \rangle = 0$$

$$\langle \mathbf{x}, \mathbf{u}_i \rangle - \langle \mathbf{x}^{\parallel}, \mathbf{u}_i \rangle = 0$$

$$\Longrightarrow \alpha_i = \frac{\langle \mathbf{x}, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle}$$

• This shows it is always possible to find such α_i 's.

The vector \mathbf{x}^{\parallel} is called the orthogonal projection of \mathbf{x} onto \mathcal{W} , denoted by

$$\mathbf{x}^{\parallel} = \operatorname{proj}_{\mathcal{W}}(\mathbf{x})$$

• The transformation $T(\mathbf{x}) = \operatorname{proj}_{\mathcal{W}}(\mathbf{x})$ is linear.

Formula for the orthogonal projection

If $\mathcal W$ is a subspace of $\mathcal V$ with an orthonormal basis $\mathcal B=\{\mathbf u_1,\mathbf u_2\dots,\mathbf u_m\}$, then

$$\mathbf{x}^{\parallel} = \operatorname{proj}_{\mathcal{W}}(\mathbf{x}) = \langle \mathbf{u}_1, \mathbf{x} \rangle \mathbf{u}_1 + \langle \mathbf{u}_2, \mathbf{x} \rangle \mathbf{u}_2 + \dots + \langle \mathbf{u}_m, \mathbf{x} \rangle \mathbf{u}_m \qquad \text{for all } \mathbf{x} \text{ in } \mathcal{V}.$$

Exercise

Given
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 7 \end{bmatrix}$. Find orthogonal projection of \mathbf{x} onto $\operatorname{col}(\mathbf{A})$.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \qquad \text{and} \qquad \mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 7 \end{bmatrix}$$

Solution

• Note the two columns happen to be orthogonal but not orthonormal, hence

$$\mathbf{x}^{\parallel} = \frac{\langle \mathbf{u}_{1}, \mathbf{x} \rangle}{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle} \mathbf{u}_{1} + \frac{\langle \mathbf{u}_{2}, \mathbf{x} \rangle}{\langle \mathbf{u}_{2}, \mathbf{u}_{2} \rangle} \mathbf{u}_{2}$$

$$= \frac{\langle \mathbf{u}_{1} \cdot \mathbf{x} \rangle}{\langle \mathbf{u}_{1} \cdot \mathbf{u}_{1} \rangle} \mathbf{u}_{1} + \frac{\langle \mathbf{u}_{2} \cdot \mathbf{x} \rangle}{\langle \mathbf{u}_{2} \cdot \mathbf{u}_{2} \rangle} \mathbf{u}_{2}$$

$$= \frac{12}{4} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \frac{4}{4} \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} = \begin{bmatrix} 4\\2\\2\\4 \end{bmatrix}$$

Exercise

For an inner product space \mathcal{V} , consider the orthogonal projection

$$T(\mathbf{x}) = \operatorname{proj}_{\mathcal{W}}(\mathbf{x})$$
 where $\mathbf{x} \in \mathcal{V}$

onto a subspace $\mathcal W$ of $\mathcal V$. Describe how the range and kernel of T relate to $\mathcal W$.

Solution

• First of all, both the range and kernel are subspace of \mathcal{V} , and the range is a subspace of \mathcal{W} , since if $\mathcal{S} = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthogonal basis of \mathcal{W} , then

$$T(\mathbf{x}) = \frac{\langle \mathbf{u}_1, \mathbf{x} \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 + \frac{\langle \mathbf{u}_2, \mathbf{x} \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} \mathbf{u}_2 + \dots + \frac{\langle \mathbf{u}_n, \mathbf{x} \rangle}{\langle \mathbf{u}_n, \mathbf{u}_n \rangle} \mathbf{u}_n$$

ullet The kernel is a subspace of ${\mathcal V}$ such that

$$T(\mathbf{x}^*) = \mathbf{0} \implies \langle \mathbf{x}^*, \mathbf{u}_j \rangle = 0$$
 for $j = 1, 2, \dots n$.

ullet So the kernel is a vector space in which all vectors in it is orthogonal to ${\mathcal W}.$

Q: Given an $m \times n$ matrix **A** and

$$\mathbf{x} \in \text{null}(\mathbf{A})$$

is there a vector in the row space of A that is orthogonal to x?

Q: Given an $m \times n$ matrix ${\bf A}$ and

$$\mathbf{x} \in \text{null}(\mathbf{A})$$

is there any vector in the row space of ${\bf A}$ that is parallel to ${\bf x}$?

Definition

Two subspaces $\mathcal X$ and $\mathcal Y$ of an inner product space $\mathcal V$ are said to be orthogonal if $\langle \mathbf x, \mathbf y \rangle = 0$ for every $\mathbf x \in \mathcal X$ and every $\mathbf y \in \mathcal Y$. If $\mathcal X$ and $\mathcal Y$ are orthogonal, we write

$$\mathcal{X} \perp \mathcal{Y}$$

• Therefore, we have the following according to this definition and notation

$$\text{null}(\mathbf{A}) \perp \text{col}(\mathbf{A}^{\text{T}})$$

Consider a subspace $\mathcal W$ of an inner product space $\mathcal V$. The orthogonal complement $\mathcal W^\perp$ of $\mathcal W$ is the set of all vectors $\mathbf x \in \mathcal V$ that are orthogonal to all vectors in $\mathcal W$:

$$\mathcal{W}^{\perp} = \{ \mathbf{x} \in \mathcal{V} : \langle \mathbf{v}, \mathbf{x} \rangle = 0, \text{ for all } \mathbf{v} \in \mathcal{W} \}$$

• Note that \mathcal{W}^{\perp} is the kernel of the orthogonal projection onto \mathcal{W} .

Properties of the orthogonal complement

Consider a subspace $\mathcal W$ of an inner product space $\mathcal V.$

- 1. The orthogonal complement \mathcal{W}^{\perp} of \mathcal{W} is a subspace of \mathcal{V} .
- 2. The intersection of \mathcal{W}^{\perp} and \mathcal{W} consists of the zero vector alone:

$$\mathcal{W}^{\perp} \cap \mathcal{W} = \{\mathbf{0}\}.$$

- 3. $\dim \mathcal{W} + \dim \mathcal{W}^{\perp} = n$
- 4. $(\mathcal{W}^{\perp})^{\perp} = \mathcal{W}$

Proof

- 1. Let $T(\mathbf{x}) = \operatorname{proj}_{\mathcal{W}}(\mathbf{x})$, then $\mathcal{W}^{\perp} = \operatorname{kernel}(T)$. Thus it is a vector space.
- 2. If a vector ${\bf x}$ is in ${\cal W}$ as well as ${\cal W}^\perp$, then ${\bf x}$ is orthogonal to itself

$$\langle \mathbf{x}, \mathbf{x} \rangle = 0 \implies \mathbf{x} = \mathbf{0}$$

Q: Suppose $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2$ and let

$$\mathcal{X} = \mathrm{span}(\mathbf{e}_1)$$
 and $\mathcal{Y} = \mathrm{span}(\mathbf{e}_2)$

are ${\mathcal X}$ and ${\mathcal Y}$ orthogonal complement of each other?

Q: What if $e_1, e_2 \in \mathbb{R}^n$, where $n \geq 3$?

Fundamental Subspaces Theorem

If ${\bf A}$ is an $m \times n$ matrix, then

$$\mathrm{null}(\mathbf{A}) = \left(\mathrm{col}(\mathbf{A}^{\mathrm{T}})\right)^{\perp} \qquad \text{and} \qquad \mathrm{null}(\mathbf{A}^{\mathrm{T}}) = \left(\mathrm{col}(\mathbf{A})\right)^{\perp}$$

Proof

We know that

$$\mathrm{null}(\mathbf{A}) \perp \mathrm{col}\left(\mathbf{A}^{\mathrm{T}}\right) \implies \mathrm{null}(\mathbf{A}) \subset \left(\mathrm{col}\left(\mathbf{A}^{\mathrm{T}}\right)\right)^{\perp}$$

ullet Let $\mathbf{x} \in \left(\operatorname{col}(\mathbf{A}^{\mathrm{T}})
ight)^{\perp}$, then \mathbf{x} must be orthogonal to each row of \mathbf{A} ,

$$\mathbf{A}\mathbf{x} = \mathbf{0} \implies \mathbf{x} \in \text{null}(\mathbf{A}) \implies \left(\operatorname{col}\left(\mathbf{A}^{\mathrm{T}}\right)\right)^{\perp} \subset \text{null}(\mathbf{A})$$
$$\implies \left(\operatorname{col}\left(\mathbf{A}^{\mathrm{T}}\right)\right)^{\perp} = \text{null}(\mathbf{A})$$

• Let $\mathbf{B}^{\mathrm{T}} = \mathbf{A}$, then

$$\left(\operatorname{col}\left(\mathbf{B}\right)\right)^{\perp} = \operatorname{null}\left(\mathbf{B}^{\mathrm{T}}\right) \implies \left(\operatorname{col}\left(\mathbf{A}\right)\right)^{\perp} = \operatorname{null}\left(\mathbf{A}^{\mathrm{T}}\right) \quad \Box$$

• Similarly things can be said about the kernel and range of a linear map.

Suppose $\mathcal U$ and $\mathcal V$ are subspaces of an inner product space $\mathcal W$ and each $\mathbf w \in \mathcal W$ can be written uniquely as a sum

$$\mathbf{u} + \mathbf{v}$$
 where $\mathbf{u} \in \mathcal{U}$ and $\mathbf{v} \in \mathcal{V}$,

then ${\mathcal W}$ is called the direct sum of ${\mathcal U}$ and ${\mathcal V}$, and we write

$$\mathcal{W} = \mathcal{U} \oplus \mathcal{V}$$

Q What is the difference between the sum $\mathcal{U}+\mathcal{V}$ and the direct sum of $\mathcal{U}\oplus\mathcal{V}$?

Theorem

If S is a subspace of W, then

$$\mathcal{W} = \mathcal{S} \oplus \mathcal{S}^{\perp}$$

Q: How do the four fundamental spaces of A relate to each other?

• Recall the row space and the column space have the same dimension.

$$\dim(\operatorname{col}(\mathbf{A})) = \dim(\operatorname{col}(\mathbf{A}^{\mathrm{T}})) = \operatorname{rank}(\mathbf{A})$$

Actually, A can be used to establish a one-to-one correspondence between

$$\operatorname{col}(\mathbf{A})$$
 and $\operatorname{col}(\mathbf{A}^{\mathrm{T}})$

• We can treat an $m \times n$ matrix ${\bf A}$ as a linear transformation from \mathbb{R}^n to \mathbb{R}^m :

$$\mathbf{x} \in \mathbb{R}^n \to \mathbf{A}\mathbf{x} \in \mathbb{R}^m$$

ullet Since $\mathrm{col}(\mathbf{A}^{\mathrm{T}})$ and $\mathrm{null}(\mathbf{A})$ are orthogonal complements in \mathbb{R}^n ,

$$\mathbb{R}^n = \operatorname{col}(\mathbf{A}^{\mathrm{T}}) \oplus \operatorname{null}(\mathbf{A})$$

• Each vector $\mathbf{x} \in \mathbb{R}^n$ can be written as a sum

$$\mathbf{x} = \mathbf{y} + \mathbf{z}$$
 where $\mathbf{y} \in \operatorname{col}(\mathbf{A}^T)$ and $\mathbf{z} \in \operatorname{null}(\mathbf{A})$ $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{y} + \mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{y}$

Therefore

$$\operatorname{col}(\mathbf{A}) = \{\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\} = \{\mathbf{A}\mathbf{y} \mid \mathbf{y} \in \operatorname{col}(\mathbf{A}^{\mathrm{T}})\}$$

ullet Thus, if we restrict the domain of ${\bf A}$ to ${
m col}({\bf A}^{
m T})$, then

$${f A}$$
 maps ${
m col}({f A}^{
m T})$ onto ${
m col}({f A})$

ullet Furthermore, the mapping is one-to-one. If \mathbf{x}_1 and $\mathbf{x}_2 \in \operatorname{col}(\mathbf{A}^T)$,

$$\mathbf{A}\mathbf{x}_1 = \mathbf{A}\mathbf{x}_2 \implies \mathbf{A}(\mathbf{x}_1 - \mathbf{x}_2) = \mathbf{0} \implies (\mathbf{x}_1 - \mathbf{x}_2) \in \operatorname{col}(\mathbf{A}^T) \cap \operatorname{null}(\mathbf{A})$$

• Since $col(A^T) \cap null(A) = \{0\}$, it follows that

$$\mathbf{x}_1 = \mathbf{x}_2$$

• So every $m \times n$ matrix ${\bf A}$ is invertible when viewed as a linear transformation

$$T_{\mathbf{A}} : \operatorname{col}(\mathbf{A}^{\mathrm{T}}) \to \operatorname{col}(\mathbf{A})$$

and the matrix ${\bf A}^+$ corresponds to $T_{\bf A}^{-1}$ is known as the pseudoinverse of ${\bf A}$.

• For example, consider the following matrix

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$$

- This matrix is clearly not invertible since it is not even a square matrix, so the corresponding matrix transformation is not invertible.
- However, it is also clear that,

$$\operatorname{col}(\mathbf{A}^T) = \operatorname{span}\{\mathbf{e}_1, \mathbf{e}_2\} \qquad \text{and} \qquad \operatorname{null}(\mathbf{A}) = \operatorname{span}\{\mathbf{e}_3\}$$

ullet So if we restrict ourselves to $\mathbf{y}\in\mathrm{col}(\mathbf{A}^{\mathrm{T}})$, that is, \mathbf{y} must be of $egin{bmatrix} y_1\\y_2\\0 \end{bmatrix}$, then

$$T_{\mathbf{A}}: \operatorname{col}(\mathbf{A}^{\mathrm{T}}) \to \operatorname{col}(\mathbf{A})$$

is an invertible linear transformation, and must have an inverse.

• We will come back to this and find the pseudoinverse towards the end!

• I will leave it to you to add the following to the vector/dual spaces figure.

