Протокол обмена CEHCOP-M с интерфейсом RS485/ Modbus-RTU

Г.1 Описание протокола Modbus-RTU

Modbus - открытый коммуникационный протокол на архитектуре ведущий-ведомый (далее master-slave). Modbus RTU — компактный двоичный вариант протокола Modbus. Требования протокола определены в докумете MODBUS over Serial Line Specification and Implementation Guide V1.02 B открытом доступе на официальном сайте www.modbus.org. В сети Modbus только одно устройство-master и множество (возможно и одно) slave. Инициатива обмена всегда исходит от master. Устройства slave прослушивают линию связи. Master подает запрос (последовательность байт) в линию и переходит в прослушивание линии связи. Slave отвечает на запрос, пришедший в его уникальный адрес. Сообщения разделяются по паузе в линии. Сообщение должно начинаться и заканчиваться интервалом тишины, длительностью не менее 3,5 байт при данной скорости передачи. Во время передачи сообщения не должно быть пауз длительностью более 1,5 байт. На физическом уровне передачи данных в датчиках СЕНСОР-М используется стандарт RS485. Для передачи 1 байта данных(8 бит) протокол использует последовательность из 11 бит с контролем или без контроля четности бит в байте. Для совместимости с различными сетями Modbus датчики СЕНСОР-М выпускаются в двух вариантах последовательности бит при передаче байта:

- без контроля четности(No parity), код выхода при заказе - MB, на маркировочной табличке датчика - RS485

_									_	_
Start	hita	l hit1	l hita	l hita	l hit1	l hitk	l hita	l hit7	Ston	Ston
этагг	DILO	LOILI	1 1011/	LULLO	11114	DILO	DITO	i Dit/	1.5100	-3100

- с контролем четности (Even), код выхода при заказе - MB1, на маркировочной табличке датчика - RS485**p**

Start bit0 bit1 bit2 k	bit3 bit4 bit5	bit6 bit7 Par* Stop
------------------------	----------------	---------------------

^{* -} бит четности Even передаваемых бит в байте Скорость приема-передачи данных в датчиках СЕНСОР-М - 9600 **бод**.

Г.2 Адресное пространство сети Modbus-RTU

Все slave-устройства в сети Modbus должны иметь уникальный адрес и отвечать только на запросы в свой адрес. Наличие двух одинаковых адресов в сети Modbus не допускается. Адрес датчика должен быть установлен до подключения к сети с клавиатуры индикатора (при наличии), с помощью коммуникатора СЕНСОР-РК или ПК и адаптера СЕНСОР-USB/RS485. Также существуют адреса, на которые реагируют все устройства в сети. Распределение адресов см. в Табл. Г.1

Таблина Г 1

Адресное пространство Modbus

дреспое простра	ncibo Modbas
Сетевой адрес, AN*	Описание адреса
0	общий адрес, принимают все slave, никто не отвечает
1247	уникальный адрес, принимает 1 slave в сети Modbus
248,249	резерв, принимает только master или спец. slave
250	принимают все датчики СЕНСОР-М с ответом
251255	Зарезервировано протоколом

^{*-} по умолчанию при выпуске CEHCOP-M $\frac{AN=0}{AN=0}$, изменяют команды 0x65, 0x66

Г.3 Сообщения в сети Modbus-RTU (запросы/ответы)

Bce сообщения в сети Modbus имеют длину не менее 4 и не более 256 байт Условные обозначения:

AN - сетевой адрес slave (см. п. Г.2)

СМD - команда (см. п. Г.4)

D0..Dn - байты данных, связанные с командой (n<252 байт)

ERC - код ошибки выполнения команды:

0x01 - команда не поддерживается, 0x02 - адрес в регистре недоступен CRCL - младший байт контр. Суммы предыдущих байт сообщения(см. п. $\Gamma.6$) CRCH - старший байт контрольной суммы (см. п. $\Gamma.6$)

AL, AH - младший и старший байты адреса в регистре датчика (см. п. Г.7)

NB - число байт для чтения/записи (не более 252)

RH, RL – старший и младший байты содержимого регистра

NrH, NrL - старший и младший байты количества регистров для считывания SNO, SN1 - младший и старший байты серийного номера датчика

nAN - новый сетевой адрес для датчика с адресом AN

mCode - код модели CEHCOP-M = модель-100 (для модели 125 <math>mCode=25)

VerApr — версия аппаратного обеспечения СЕНСОР-М (см табл. Г.3 стр. 4)

VerPrg — версия ПО СЕНСОР-М, версия 1.0.3 = число 103

RC – (range code) код диапазона измерения (см. табл. Г.9 стр.10)

Последовательность байт в запросе от master к slave:

AN	CMD	D0Dn	CRCL	CRCH
----	-----	------	------	------

При **успешном** выполнении команды в **ответе** slave первым отправляет свой сетевой адрес, затем принятую команду, далее запрошенные данные и контрольную сумму. Ответ slave на запрос от master:

AN CMD DO...Dn CRCL CRCH

При **ошибке** выполнения команды датчики CEHCOP-M отправляют сообщение об ошибке: AN, принятая команда с поднятым старшим битом (аналогично операции CMD=CMD+0x80), код ошибки, контрольная сумма.

AN CMD+0x80 ERC CRCL CRCH

После получения запроса СЕНСОР-М начинает передачу ответа через t < 10 мc при чтении данных, ч-з t = NB*3+10 [мc] при записи соответственно.

Г.4 Команды Modbus (CMD) в датчиках CEHCOP-M

03 (0x03), READ HREG (реализовано в версии 1.0.3 и выше)

Чтение регистров хранения, начиная с адреса A, регистры см. табл. Г.7 запрос: AN 0x03 AH AL NrH NrL CRCL CRCH всего 8 байт

ответ: AN 0x03 NB RH RL CRCL CRCH 7..256 байт

ошибка: AN 0x83 ERC CRCL CRCH всего 5 байт

04 (0x04), READ IREG (реализовано в версии 1.0.3 и выше)

Чтение регистров входов, начиная с адреса А, регистры см. табл. Г.6

запрос: AN 0x04 AH AL NrH NrL CRCL CRCH всего 8 байт

ответ: AN 0x04 NB RH RL CRCL CRCH 7..256 байт

ошибка: AN 0x84 ERC CRCL CRCH всего 5 байт

Пример чтения тек. давления и температуры из регистров входов датчика СЕНСОР-М с адресом 5 в НЕХ-формате:

запрос: 05 04 00 00 00 02 70 4F

— СКС16 по 6-ти пред. байтам=0х4F70

— читать 2 регистра

— читать, начиная с адреса 0х0000, см. табл. Г.6 стр.9

— команда 0х04 - читать регистры входов (READ IREG)

— сообщение для slave с адресом 5

ответ: 05 04 <u>04 22 ВА FF FC D4 68</u> (адрес сети=5, P=0.889 МПа, t=-4оС)

→ CRC16 по 7 пред. байтам=0x68D4

→ tREG=-4₁₀, t=-4оС

→ PREG=8890₁₀ , для датчика 0-1МПа P=0,889 МПа

→ в ответе 4 байта данных

!!! ВНИМАНИЕ Давление в регистре PREG в % от диапазона измерения, умноженное на 100 ($\pm 100\%*100$), значение -10000..10000₁₀. Реальное давление рассчитывается по формуле:

 $\mathbf{P} = PREG_{10}*(Pmax-Pmin)/10000 + Pmin,$

Ртах, Ртіп можно прочитать командой 03 из регистра HREG (табл. Γ .7)*, прочитать командой 69 READ из регистра EE с адреса 0x0209 (табл. Γ .8) или определить по коду диапазона RC (табл. Γ .9). Код диапазона RC считывает команда 03 из регистра хранения RC или команда 17 IDENT.

*- реализовано в версии 1.0.5 и выше

8 (0x08), SERV

Команда служит для сервиса и диагностики устройства в сети Modbus по адресу AN. В СЕНСОР-М реализован рестарт датчика, сброс счетчика измен. конфигурации и команда "Авто0" (команда "Авто0" - аналогично нажатию кнопки S1 на плате датчика давления Сенсор-М для автоматической установки «нуля»).

Начальное значение выходного сигнала датчика давления Сенсор-М может измениться при эксплуатации по причине изменения рабочего положения датчиков разности давлений, воздействия давлением выше допустимой перегрузки или температурой за пределами допустимой и др...

Порядок действий перед выполнением команды "АвтоО":

- 1) установить датчик в рабочее положение;
- 2) установить в датчике нулевое избыточное давление (сообщение с атмосферой); для датчиков разности давлений уравнять давление в +/- камерах, открыв уравнительный вентиль;

Внимание! функция не выполняется если на датчик подано давление более 10% диапазона измерения.

Формат сообщений команды 0х08:

запрос: AN 0x08 0x00 SC CRCL CRCH Всего 6 байт

ответ: AN 0x08 0x00 SC CRCL CRCH Всего 6 байт

SC – субкоманда: 0x01 – рестарт, 0x0A – сброс счетчика nChCNF, 0x05 – Авто0

ошибка: AN 0x88 ERC CRCL CRCH всего 5 байт

17 (0x11), IDENT

Команда служит для идентификации устройства в сети Modbus по адресу AN. Формат сообщений команды 0x11 :

Ox11 | CRCL | CRCH | Всего 4 байта запрос: AN ответ: | AN | 0x11 | SN0 | SN1 | mCode | VerApr | VerPrg RC¹ CRCL CRCH 10 байт Ox91 | ERC | CRCL | CRCH | всего 5 байт ошибка: | AN Пример идентификации датчика по адресу 5 в НЕХ-формате: запрос: 05 11 C2 EC ➤ CRC16 по 2-м пред. байтам = 0xECC2 **→** команда 0x11 **→запрос в адрес** 05 *ответ:* 05 11 <u>С8</u> 1A <u>15</u> 22 <u>67</u> <mark>09</mark>¹ 86 8F ➤ CRC16 по 8 пред. байтам = 0x8F86 ⋆ Код RC=09 (0-6кПа) см. табл. Г.9 стр. 10 → версия ПО VerPrg=103(0x67)-> v1.0.3 → VerApr=0x22 (И1-t1-0.5 см. табл.Г.2 стр.4) → код модели modCode=21(0x15), модель = 121

1 – реализовано в версии 1.0.3 и выше, версиях ниже 1.0.3 RC не установлен

→ серийный номер SN=6856(0x1AC8)

Байт VerApr **Таблица Г**.2

" по адресу 5 есть датчик CEHCOP-M-121-И1-t1-0.5 v.1.0.3 №6856 0-6кПа"

бит7	бит6	бит5	бит4	бит3	бит2	бит1	бит0		
Осн. погр	Осн. погрешность (Асс)			енсация (ТК)	Исполнение (Option)				
000 – 1%	000 – 1%			50°C)	000 – «-»				
001 - 0.5	5%		01 – t2 (-30)80°C)	001 - И				
010 – 0,25%			10 – t3 (-40	010 – И1					
011 - 0,1	5%	11 – «-» 011 - Ex							
100 – 0,1	%				100 - H				
					101 - H1				
					110 - Г				

64 (0x40), WakeUp

Команда применяется только при работе датчика в режиме sleep (подробнее о режиме sleep см. п. Г.5) и служит для переключения датчика в активный режим на 100мс для измерений. После выполнения команды 0х40 данные измерений считывают из регистра RAM (см. табл. Г.4 стр 8) командой 0х45 или из регистров PREG tREG (см. табл. Г.6) командой 0х04.

Формат сообщений команды 0х40:

запрос:	AN	0x40	CRCL	CRCH	Всего	4 байта	(разбудить)
ответ:	AN	0x40	0x00	CRCL	CRCH	Всего 5	байт (проснулся на 100 мс)
ошибка:	AN	0xC0	ERC	CRCL	CRCH	всего 5	байт

69 (0x45), READ

Команда служит для чтения нескольких байт данных из регистров RAM и ЕЕ датчика CEHCOP-M, начиная с адреса A.

Формат сообщений команды 0х45:

запрос:	AN	0x45	AL	АН	NB	CRCL	CRCH	всего 7 байт
ответ:	AN	0x45	D0	D1	D	CRCL	CRCH	всего 5256 байт
ошибка:	AN	0x C 5	ERC	CRCL	CRCH	всего	5 ба йт	

Пример чтения тек. давления датчика СЕНСОР-М с адресом 5 в НЕХ-формате:

ответ:	05 45 0C	CD CC 4C 40	9B 37	(адрес сети=5, Р=3,200000 кПа)
	T			→ CRC16 по 7 пред. байтам=0x379B
			→ чис	гло float стандарта IEEE 754 = 3.200000
	L			→ к од UC=12 (кПа), табл.Г.3 стр.5

Коды единиц измерения*

	Т	a	б.	Л	И	Ц	a	Γ		3
--	---	---	----	---	---	---	---	---	--	---

Код ед. изм. (UC)	Обозначение	Коэф . Пересчета из kPa		
4	mmH2O	101,972		
6	psi	0,14504		
7	bar	0,01		
8	mbar	10		
10	kg/cm2	0,0102		
11	Pa	1000		
12	kPa	1		
14	atm	0,00987		
237	MPa	0,001		

^{*-} независимо от единиц калибровки сенсора (UCS), пользователь может установить желаемые ед. изм. датчика, записав командой 0x65 в регистр EE (табл. $\Gamma 8$) соответствующий код UC. При записи некорректного кода UC датчик установит UC=UCS.

101 (0x65), WRITE **EE**

Команда служит для записи нескольких байт данных в регистр EE датчика CEHCOP-M, начиная с адреса A.

Формат сообщений команды 0х65:

запрос:	AN	0x65	AL	АН	NB	D0	D	CRCL	CRCH	8256 бай т
ответ:	AN	0x65	AL	АН	NB	CRCL	CRCH	всего	7 байт	
ошибка:	AN	0xE5	ERC	CRCL	CRCH	всего	5 ба й	Т		

102 (0x66), R/W AN by SN

Команда служит для поиска датчиков СЕНСОР-М в сети по серийному номеру SN и для установки нового сетевого адреса датчику с серийным номером SN. Команда позволяет назначить сетевые адреса датчикам даже при наличии одинаковых адресов устройств в сети.

Формат сообщений команды 0х66:

запрос: AN 0x66 SN0 SN1 nAN/0 CRCL CRCH всего 7 байт

ответ: AN 0x66 SN0 SN1 mCode VerApr VerPrg AN/nAN CRCL CRCH 10 байт

ошибка: AN OxE6 ERC CRCL CRCH всего 5 байт

Датчик отвечает на запрос только при совпадении его серийного номера с байтами SNO SN1 в запросе, иначе нет ответа.

- Если в запросе байт nAN=0, то ответ возвращает текущий адрес AN датчика. Если в в запросе nAN=1...247, то датчик устанавливает себе новый сетевой адрес=nAN и в ответе возвращает nAN.

Пример поиска датчика с серийным номером 7001 в сети в НЕХ-формате:

запрос: <u>FA 66 59 1B 00 38 F7</u>

→ CRC16 по 5-ти пред. байтам=0xF738

→ не менять тек. сетевой адрес датчика

→ запрос для SN=7001(0x1B59)

→ команда 0x66

→ запрос для всех CEHCOP-M, адрес 250 (0xFA) табл. Г.1 стр.1

" в сети есть датчик CEHCOP-M-125-H1-t2-0.25 v.1.1.1 №7001, сет. адрес 5"

Пример установки нового сетевого адреса датчику СЕНСОР-М с серийным номером 7001 в HEX-формате:

запрос: FA 66 59 1B 01 38 F7

→ CRC16 по 5-ти пред. байтам=0xF738

→ установить нов. сетевой адрес датчика nAN=1

→ запрос для SN=7001(0x1B59)

команда 0x66

→ запрос для всех CEHCOP-M, адрес 250 (0xFA) см. табл Г.1 стр.1

[&]quot; датчик CEHCOP-M-125-H1-t2-0.25 v.1.1.1 №7001, новый сет. адрес = 1"

Г.5 Режим sleep в датчиках СЕНСОР-М

Для экономии потребляемой энергии от источника питания датчик может работать в режиме sleep (спящий по выполнению команды). В режиме sleep датчик находится в спящем режиме и прослушивает линию, ток питания при этом не более 25 мкА. При обнаружении начала старт-бита в линии датчик переходит в активный режим и принимает сообщение от master, ток питания см. на стр. 7. Если адрес в сообщении не совпадает с адресом датчика, то датчик сразу возвращается в спящий режим, иначе датчик обрабатывает команду, отвечает и переходит в спящий режим. Для включения режима sleep в регистре ЕЕ в переменной Sleep по адресу 0x02B0 должна быть записана 1 (см. табл. Г.8 стр. 9), для выключения - 0.

Потребление тока питания в спящем режиме (Sleep)

Г.6 Контрольная сумма CRC16 в конце сообщения

Для контроля целостности передаваемых данных все устройства в сети Modbus в двух последних байтах сообщения передают контрольную сумму (далее CRC16), рассчитанную по всем предыдущим байтам сообщения. Принимающее устройство рассчитывает CRC16 по сообщению и сравнивает с принятым CRC16 в сообщении. Если рассчитанное CRC16 равно принятому, то сообщение обрабатывается, иначе — игнорируется (ошибка обмена). При ошибке обмена или отсутствии ответа master может повторять запросы несколько раз для получения достоверного сообщения от slave.

```
Пример кода на языке СИ для расчета CRC16:

// вычисляет CRC16 modbus по байтам массива buf с 0 до len байт

unsigned int CRC16(unsigned char* buf, unsigned char len) {

unsigned int crc = 0xFFFF; // нач. значение CRC16

for (unsigned char pos = 0; pos < len; pos++) { // цикл по байтам buf

    crc ^= (unsigned int) buf[pos];

for (unsigned char i = 8; i!= 0; i--) { // цикл по каждому биту

    if ((crc & 0x0001)!= 0) { // если младший бит поднят

        crc >>= 1; crc ^= 0xA001; // сдвиг вправо и XOR 0xA001

    }

    else crc >>= 1; // если младший бит=0, только сдвиг вправо
}

} // внимание, число crc содержит младший и старший байт CRCL, CRCH

return crc; // используйте CRCL, CRCH соответственно в байтах сообщения
}
```

Г.7 Организация и доступ к данным в датчике СЕНСОР-М

Все данные датчика, доступные по протоколу Modbus-RTU находятся в регистрах. Регистр RAM, IREG хранят текущие (динамические) данные измерений параметров, регистры энергонезависимой памяти HREG, EE хранят данные идентификации, настройки датчика и данные пользователя. Адресация, тип данных и доступность для чтения/записи (далее R/W) в таблицах $\Gamma.4 - \Gamma.8$.

Регистр RAM (всего 28 байт) **Таблица Г**.4

Адрес, НЕХ	Обознач.	Тип	Размер , byte	Описание (значения)	Доступ
0x0100	UC	u_char	1	Код текущих ед. изм., табл.Г.3 стр.5	R
0x0101	Р	float*	4	Давление	R
0x0105	t	float	4	Температура сенсора, °C	R
0x0109	Out	float	4	Расчетный Аналог. вых. сигнал	R
0x010D	AP	float	4	АЦП давления	R
0x0111	AT	float	4	АЦП температуры	R
0x0115	DAC	float	4	Положение ЦАП вых. сигнала	R
0x0119	point	u_char	1	число знаков** после точки для Р	R
0x011A	pointOut	u_char	1	число знаков** после точки для Out	R
0x011B	Status1	u_char	1	байт тек. статуса датчика Табл Г.5	R

^{* -} число с плавающей запятой (IEEE 754)

^{**-} рекомендуемые значения для отображения float в приложении Master

Байт Status1 **Таблица Г**.5

Бит	Значение бита при установке в 1
7	неисправность датчика: не найден АЦП или залипла кнопка
6	конфигурация настроек изменялась командами или меню
5	холодный старт, это первый обмен данными после сброса
4	доступно больше статус-данных по ком. 48
3	Аналоговый выход в зафиксированном положении
2	Аналоговый вых. сигнал в насыщении (3,8мА/0,38В или 22,5мА/2,25В)
1	температура за пределами диапазона эксплуатации
0	давление за пределами диапазона измерения

Регистры входов Modbus I REG (чтение командой 04) **Таблица Г**.6

Адрес,	Обозн.	Тип Размер	Описание (значения)	
0x0000	PREG	word 16bit	Давление в относ. Ед. (-1000010000)	R
0x0001	tREG	word 16bit	Температура ЧЭ (-127127 oC)	R
0x0002 ¹	<mark>UC</mark>	word 16bit	код текущих ед. измерения, табл.Г.3	R
0x0003 ¹	P	float (IEEE 754)	Давление в текущих ед. измерения	R
0x0004 ¹	r 	2регистра=4байт	UC (табл. Г.3 стр.5)	ĸ
0x0005 ¹	<u>+</u>	float (IEEE 754)	Температура ЧЭ (-127,0127,0 oC)	R
0x0006 ¹	L L	2регистра=4байт	Temneparypa 45 (-127,0127,0 0C)	ĸ
$0x0007^{1}$	<mark>point</mark>	word 16bit	число знаков ² после точки для Р	R

1-доступно в версии 1.0.5 и выше, 2- рекомендуемые знач. для отображения float P

Регистры хранения Modbus HREG (чтение командой 03) Таблица Г.7

Адрес,	Обозн.	озн. Тип Размер Описание (значения)		Доступ
0x0000	RC	word 16bit	Код диапазона измерения ЧЭ табл. Г8	R
0x0001*	<mark>UCS</mark>	word 16bit	Код основных ед. измерения, табл.Г.3	R
0x0002*	<mark>Pmin</mark>	float (IEEE 754)	Нижний предел измерения в основных	R
0x0003*	PMIN	2регистра=4байт	ед. измерения UCS (табл. Г.3 стр.5)	K
0x0004*	Dmay	float (IEEE 754)	Верхний предел измерения в основных	R
0x0005*	<u>Pmax</u>	2регистра=4байт	ед. измерения UCS (табл. Г.3 стр.5)	K

* доступно в версии 1.0.5 и выше

Регистр EE **Таблица Г**.8

Адрес, НЕХ	Обознач.	Тип	Размер byte	Описание (значения)	Доступ
0x0203	VerPrg	u_char	1	версия программного обеспечения	R
0x0204	VerApr	u_char	1	вер. аппаратного обесп.,табл.Г.2 стр.4	R
0x0205	DevFunFl	u_char	1	флаги функций устройства **	R
0x0206	Mcode	u_char	1	код модели датчика (код=модель-100)	R
0x0207	MODE	u_char	1	Тек. Режим работы платы, ***	R
0x0208	UCS	u_char	1	код ед. измерения ЧЭ, табл.Г.3 стр.5	R
0x0209	Pmin	float*	4	нижний предел калибровки ЧЭ	R
0x020D	Pmax	float	4	верхний предел калибровки ЧЭ	R
0x0211	dPmin	float	4	Мин. диапазон Р для аналог. выхода	
0x0215	SNS	u_int	2	серийный номер ЧЭ	
0x0217	SN	u_int	2	серийный номер датчика СЕНСОР-М	
0x0219	Data[3]	u_char	3	дата изготовления (Чис,Мес,Год-1900)	R
0x0266	AN	u_char	1	Адрес датчика в сети MODBUS (1247)	R/W

0x0267	DampP	float	4	постоянная демпфирования ацп Р, сек	R/W
0x026B	IevNoiseP	u_int	2	уровень шума АЦП давления (11000)	R/W
0x026D	DampT	float	4	постоянная демпфирования ацп Т, сек	R/W
0x0271	IevNoiseT	u_int	2	Уров. шума АЦП температуры (1200)	R/W
0x0273	P04	float	4	Р для min аналог. выхода (0.4B, 4мA)	R/W
0x0277	P20	float	4	Р для тах аналог. выхода (2В, 20мА)	R/W
0x027B	UC	u_char	1	код ед. измер. датчика , табл.Г.3 стр.5	R/W
0x027C	fixOut	float	4	Фиксированный вых. сигнал	R/W
0x0280	TrC	u_char	1	Линейная/корнеизвл. ф-ция выхода,	R/W
0x0281	Teg[6]	char	6	Тег устройства	R/W
0x0287	Discr[12]	char	12	Описатель устройства	R/W
0x0293	Mess[24]	char	24	Сообщение для/от пользователя	
0x02AB	DataU[3]	u_char	3	Дата пользователя (Чис,Мес,Год-1900)	
0x02B0	Sleep	u_char	1	Флаг засыпать по выполн. команды	
0x02B8	nChCNF	u_char	1	Счетчик изменений конфигурации	
0x02B9	isRDATA	u_char	1	Флаг наличия данных восстановления	R

ЧЭ - чувствительный элемент давления

Коды диапазонов давления (значения RC) Таблица Г.9

RC,dec	Диапа:	зон	RC,dec	Диапаз	ЮН	RC,de c	Диапазон		
1	0-0,16		21	0-0,16		41	-0,080,08		
2	0-0,25		22	0-0,25		42	-0,1250,125		
3	0-0,4			23	0-0,4		43	-0,20,2	
4	0-0,6		24	0-0,6		44	-0,30,3		
5	0-1,0		25	0-1,0		45	-0,50,5		
6	0-1,6		26	0-1,6		46	-0,80,8		
7	0-2,5		27	0-2,5		47	-1,251,25		
8	0-4,0		28	0-4,0		48	-2,02,0		
9	0-6,0		29	0-6,0		49	-3,03,0		
10	0-10	kPa	30	0-10	MPa	50	-5,05,0	kPa	
11	0-16	KPa	31	0-16	IVIPa	51	01,6	KPa	
12	0-25		32	0-25		52	02,5		
13	0-40		33	0-40		53	04,0		
14	0-60		34	0-60		54	06,0		
15	0-100		35	0-100		55	010		
16	0-160		36	-0,10,3		56	016		
17	0-250		37	-0,10,5		57	025		
18	0-400		38	-0,10,9		58	040		
19	0-600		39	-0,11,5		59	060		
20	0-1000		40	-0,12,4		60	0100		
61	0-0,63	кПа	62	0-6,3	кПа	63	0-63	кПа	

^{*}При RC=0 — код не установлен, данные диапазона (Pmin, Pmax, UCS) можно считать из регистра HREG (табл. Γ .7) командой 03 или регистра EE (Табл. Γ .8) командой 69 READ

^{*}float - число с плавающей запятой стандарта IEEE 754

^{**-} Bit0= multisensorDev, bit1=EEPROMcontrol required, bit2=protocolBridgeDev.

^{***-} О- нет; 1- 4-20 мА; 2- 0,4-2 В; 3- 1-Wire; 4-МВ; 5-МВ1; 6- 4-20+НАRТ

Г.8 Тестовое ПО и оборудование интерфейса RS485/ Modbus-RTU

Датчики CEHCOP-M являются slave-устройствами сети Modbus-RTU с интерфейсом стандарта RS485. Для обмена данными с slave в сети должно присутствовать одно master-устройство. Master может быть создан на базе микроконтроллера с требуемыми настройками UART (см. п.Г.1) и конвертора UART/RS485 или на базе ПК с применением адаптера USB/RS485 и программы для работы в сети Modbus-RTU. Программу WinMaster для работы с датчиками CEHCOP-M в сети Modbus-RTU, драйвер для адаптера CEHCOP-USB/RS485 и инструкцию по установке и использованию ПО можно скачать с сайта www.belsensor.by в разделе Документация и ПО. Адаптер СЕНСОР-USB/RS485 для подключения датчиков в ПК а также ручной коммуникатор СЕНСОР-РК (с автономным питанием) для опроса датчика и сервиса потребитель может заказать в комплекте с датчиками или параметров Контакты для заказа на последней странице отдельно. настоящего Руководства.

ЛИНИИ СВЯЗИ К ДАТЧИКАМ СЕНСОР-М ТАБЛИЦА Б.1

Испол- нение Выходной сигнал, Интерфейс		Рекомендуемый тип кабеля	Длинна*, м не более	Схема	
Обычное, Г, И1	RS485	2 витые пары	1200	Б.6	
H 1	RS485	2 витые пары в экране	300	Б.7	

^{* -} суммарная длинна всех линий связи в схеме(в сети) подключения

Г.9 СХЕМЫ ВНЕШНИХ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ ДАТЧИКА.

9.1 Схема подключения датчиков обычного исполнения с интерфейсом Modbus-RTU/RS485

9.2 Схема подключения датчиков **взрывозащищенного исполнения H**1 с интерфейсом Modbus-RTU/RS485

9.3 Расположение контактов разъема датчиков СЕНСОР-М

Предложения и рекомендации присылайте по адресу:

223051 Минская обл., Минский р-н, п.Колодищи,

ул. Минская, 5, оф. 350

T.(+37517) 508-15-90

(+37529) 773-60-37 **T**.(+37517) 508-18-56

www.belsensor.by e-mail: belsensor@mail.ru