Laborator 6

DETERMINAREA COEFICIENTULUI DE ATENUARE MASICĂ PENTRU RADIATIA GAMMA

Alexandru Licuriceanu alicuriceanu@stud.acs.upb.ro

Data: 21 Noiembrie 2022 Grupa: 325CD

1. Scopul lucrării

Scopul lucrării este calcularea coeficientului de atenuare masică a radiațiilor γ pentru diferite materiale în vederea verificării legii de atenuare a radiației γ în substanță.

2. Teoria lucrării

Fenomenul de atenuare al intensității radiației γ , la trecerea printr-un strat de substanța se datorează atât unor fenomene de absorbție a energiei cuantelor γ de către atomii substanței, cât și unor fenomene de difuzie a acestor cuante. La energiile pe care le au cuantele γ emise de sursele radioactive (100 keV \rightarrow 3 MeV) principalele procese de interacțiune ale radiației cu substanța sunt următoarele:

- Efectul fotoelectric,
- Efectul Compton,
- Formarea de perechi.

Efectul fotoelectric consta în scoaterea unui electron dintr-un atom atunci când acesta interacționeaza cu un foton. La energii joase, sub 200-300keV, predomină efectul fotoelectric.

Efectul Compton constă în împrăștierea unui foton pe un electron liber sau aproape liber. El este predominant în zona energiilor medii, între 200 keV și 2 MeV.

Formarea de perechi electron-pozitron are loc în prezența unui nucleu atomic sau a altei particule, dacă energia fotonului este mai mare decât 1.02 MeV, adică energia corespunzatoare masei de repaus a celor două particule nou create. Diferența dintre energia fotonului incident și 1.02 MeV apare ca energie cinetică a electronului și a pozitronului formați și a nucleului de recul. La energii mai mari de ~ 2 MeV predomină efectul generării de perechi.

3. Montajul experimental

Pentru acest experiment a fost folosită o sursă de radiații γ care conține un preparat de 60 Co. Analiza datelor obținute de la detector se face cu ajutorul software-ului Phywe Measure. Dispozitivul experimental este ilustrat în figura 1 și este alcătuit din:

- Detector cu scintilații (D)
- Unitatea de operare a detectorului (UD)
- Computer pentru achiziția datelor (PC)
- Sursa de radiații (SR)
- Placuțe de plumb sau aluminiu (PB/AL)

Figura 1. Dispozitivul Experimental.

4. Modul de lucru

- 4.1. A fost plasată în fața detectorului sursa de radiații ⁶⁰Co de către asistentul de laborator.
- 4.2. Am pornit alimentarea detectorului cu scintilații și computer-ul cu care voi măsura numărul de impulsuri detectate.
- 4.3. Pentru fiecare măsurătoarea cu plăcuțe am folosit un timp de măsurare de 120 de secunde.

- 4.4. Între detector si sursa de radiații am pus, pe rând, de la 1 până la 6 plăcuțe și cu ajutorul software-ului Measure am calculat numărul de impulsuri detectate și am notat valorile în tabelul 1.
- 4.5. Pasul 4.4 a fost executat atât pentru plăcuțele de plumb, cât și pentru cele de aluminiu.
- 4.6. La final, am înlăturat toate plăcuțele și am înregistrat spectrograma radiației de fond calculând numărul de impulsuri detectate fara plăcuțe. Rezultatul obținut a fost trecut în tabelul 1. Timpul pentru măsurarea impulusrurilor primite prin aer a fost de 360 de secunde.

5. Prelucrarea datelor experimentale

5.1. Tabelul 1 conține rezultatele experimentale, în care x este grosimea plăcuțelor, t este timpul, A este aria cuprinsă între spectrogramă și axa Ox, A' este intensitatea cu corecția de fond, iar f este intensitatea radiației de fond. Parametrul μ reprezintă coeficientul de atenuare pentru materialul respectiv.

material	x (mm)	t (s)	A' (imp/s)	A = A' - f	ln A	μ
Aer	∞	360	220	91	4.51086	0
Pb	5	120	1857	1427	7.26333	0.5937
	10		1280	1028	6.93537	
	15		1066	825	6.71538	
	20		703	612	6.41673	
	25		576	484	6.18208	
	30		453	298	5.69709	
Al	5	120	2101	1569	7.35819	0.1004
	10		1995	1628	7.39511	
	15		1893	1321	7.18614	
	20		1766	1374	7.22548	
	25		1710	1315	7.18159	
	30		1628	1245	7.12689	

Tabelul 1. Rezultatele experimentale.

5.2. Dacă pe un strat de substanță de grosime x cade un fascicul de radiații γ cu intensitatea I, atenuarea produsă de strat se calculează cu formula:

$$-dI = \mu I_0 dx \iff I = I_0 e^{-\mu x}$$

Unde I_{θ} este intensitatea fasciculului de radiații la intrarea în substanță. Pentru a determina coeficientul de atenuare am considerat că aria este proporțională cu intensitatea I a fasciculului, de unde rezultă ecuația:

$$A = A_0 e^{-\mu x}$$

5.3. Cu datele din tabel, am trasat graficul lui $\ln A = f(x)$ pentru fiecare material în figura 2 și 3, transformând grosimea x din milimetri în centimetri.

Figura 2. Plumb.

Figura 3. Aluminiu.

5.4. Din graficele din figura 2 și figura 3, rezultă coeficienții de atenuare pentru plumb și aluminiu:

$$\mu_{plumb}=0.5937,\,\mu_{aluminiu}=0.1004$$

Apoi am calculat în tabelul 2 coeficientul de atenuare masică pentru fiecare material, folosind formula: $\frac{\mu}{\rho}$ unde densitățile ρ pentru fiecare material sunt:

$$\rho_{plumb} = 11.34~g/cm^2,\, \rho_{aluminiu} = 2.7~g/cm^2$$

material	μ	$ ho (g/cm^2)$	$\mu/\rho \ (cm^2/g)$
Pb	0.5937	11.34	0.0523
Al	0.1004	2.7	0.0371

Tabelul 2. Coeficienții de atenuare masică.