Workshop AI: CNN, NLP, and deployment

Nele Custers
nele.custers@pxl.be

Teaching:

- Programming in Python, Java, and Neural Networks.

Educational Background:

- Degree in Informatics
- Worked as a Java Consultant

Base conditions for Al

GPU

Base conditions for Al

Storage Big Data

Base conditions for Al

Base algorithms in the cloud

Machine learning algorithms

- · Labeled data
- · Direct feedback
- · Predict outcome/future

- · No labels
- · No feedback
- · "Find hidden structure"

- · Decision process
- · Reward system
- · Learn series of actions

ML workflow Testing Dataset 2b 1b Prediction Training Dataset Data Model Algorithm Evaluation 2a 3c Production Data

Training data

Year	Breakthroughs in AI	Datasets (First Available)	Algorithms (First Proposed)
1994	Human-level spontaneous speech recognition	Spoken Wall Street Journal articles and other texts (1991)	Hidden Markov Model (1984)
1997	IBM Deep Blue defeated Garry Kasparov	700,000 Grandmaster chess games, aka "The Extended Book" (1991)	Negascout planning algorithm (1983)
2005	Google's Arabic- and Chinese-to-English translation	1.8 trillion tokens from Google Web and News pages (collected in 2005)	Statistical machine translation algorithm (1988)
2011	IBM Watson became the world Jeopardy! champion	8.6 million documents from Wikipedia, Wiktionary, Wikiquote, and Project Gutenberg (updated in 2010)	Mixture-of-Experts algorithm (1991)
2014	Google's GoogLeNet object classification at near-human performance	ImageNet corpus of 1.5 million labeled images and 1,000 object categories (2010)	Convolution neural network algorithm (1989)
2015	Google's Deepmind achieved human parity in playing 29 Atari games by learning general control from video	Arcade Learning Environment dataset of over 50 Atari games (2013)	Q-learning algorithm (1992)
Avera	ge No. of Years to Breakthrough:	3 years	18 years

"Goodness of a model" - Confusion Matrix

Confusion Matrix Summary

	Guessed Positive	Guessed Negative
Positive	True Positives	False Negatives
Negative	False Positives	True Negatives

"Goodness of a model" - Confusion Matrix

Confusion Matrix Summary

	Guessed Positive	Guessed Negative
Positive	True Positives	False Negatives
Negative	False Positives	True Negatives

Blue Points — labelled positive; Red Points — labelled negative

accuracy = (True Positives + True Negatives) / Total Points
precision = True Positives / (True Positives + False Positives)
recall = True Positives / (True Positives + False Negatives)

Bias and variance

Bias- Variance Dilemma and No. of Features

high bias

pays little attention to data oversimplified high error on training set (low r2, large SSE)

high variance

pays too much attention to data (does not generalize well) overfits

much higher error on test set than on training set

Bias all around...

Confirmation bias

 Confirmation bias is a phenomenon wherein data scientists or analysts tend to lean towards data that is in alignment with their beliefs, views, and opinions.

Availability heuristic

 Availability heuristic refers to the way in which data scientists make inferences only based on readily available data or recent information, and hold the belief that immediate data is relevant data.

Simpson's paradox

 In analytics, a pattern when analyzed in individual groups showcases the dominance of a particular trend. However, when these patterns are viewed cumulatively, the results are completely opposite. This is known as Simpson's paradox.

Non-normality

 In non-normality, analysts who are sifting through aggregated data sometimes assume the existence of a bell curve, when in actuality, the data has certain errors and faults that is nowhere near the curve of the bell.

Coded bias (trailer): https://www.youtube.com/watch?v= jZl55PsfZJQ

Overfitting and underfitting

- Overfitting referes to an overly complex model in which a large number of parameters are assessed and added to the data model.
- Underfitting is when data analysts try to fit nonlinear data into a linear data model.

Terminology

Epoch:

An Epoch represent one iteration over the entire dataset.

Batch:

We cannot pass the entire dataset into the Neural Network at once. So, we divide the dataset into number of batches.

Iteration:

If we have 1000 images as Data ane a batch size of 20, then an Epoch should run 1000/20 = 50 iteration.

The typically mini-batch sizes are 64, 128, 256 or 512. And, in the end, make sure the minibatch fits in the CPU/GPU.

Datasets

https://www.kaggle.com/datasets/grassknoted/asl-alphabet

https://www.kaggle.com/competitions/asl-signs

http://facundoq.github.io/guides/sign_language_datasets/slr

https://www.kaggle.com/datasets/datamunge/sign-language-mnist

https://www.youtube.com/watch?v=a99p +
https://github.com/kinivi/hand-gesture-recognition-mediapipe

Computer vision and NLP

Image classification	Classification w. localization	Detection
Teddy bear	Teddy bear	Teddy bear Book
Classifies a picturePredicts probability of object	 Detects an object in a picture Predicts probability of object and where it is located 	 Detects up to several objects in a picture Predicts probabilities of objects and where they are located

YOLO, R-CNN

Simplified YOLO, R-CNN **Traditional CNN**

Convolutional networks for images, speech, and time series

Yann LeCun & Yoshua Bengio (1995)

Motivation CNNs

Reason 1: Images are big

Reason 2: Positions can change

What is a convolution?

Convolution

Matrix

Convolution Result Representing Images as Matrices

= 36 pixels

Kernel

Kernels

Try out at: https://setosa.io/ev/image-kernels/

Operation	Kernel ω	Image result g(x,y)
Identity	$ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} $	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	

CNN doesn't only learn one filter, it learns multiple filters. In fact, it even learns multiple filters in each layer! Every filter learns a specific pattern, or feature.

Convolutional Neural Network

Activation functions

Convolution Neural Network (CNN)

Pooling

2D Convolution (images)

3D Convolutions (e.g. movies)

Computer vision and NLP

Language model

A language model in NLP is a model that computes probability of a sentence (sequence of words) or the probability of a next word in a sequence.

- Sentimental Analysis
- Question-Answering
- Summarization
- Machine Translation

 $P(w_5|w_1, w_2, w_3, w_4)$

Word embeddings

Vocabulary:

Man, woman, boy, girl, prince, princess, queen, king, monarch

Each word gets a 1x9 vector representation

Try to build a lower dimensional embedding

Vocabulary: Man, woman, boy, girl, prince, princess, queen, king, monarch

Each word gets a 1x3 vector

Similar words... similar vectors

@shane a lynn | @TeamEdgeTier

Models for NLP

output distribution

$$\hat{\boldsymbol{y}} = \operatorname{softmax}(\boldsymbol{U}\boldsymbol{h} + \boldsymbol{b}_2) \in \mathbb{R}^{|V|}$$

hidden layer

$$h = f(We + b_1)$$

concatenated word embeddings

$$e = [e^{(1)}; e^{(2)}; e^{(3)}; e^{(4)}]$$

words / one-hot vectors

 $\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \boldsymbol{x}^{(3)}, \boldsymbol{x}^{(4)}$

Transfer learning

Deploying

Additional resources

https://wandb.ai/site/experiment-tracking

https://youtube.com/playlist?list=PLam9sigHPGwOBuH4_4fr-XvDbe5uneaf6

https://segment-anything.com/

