

| MODULE TITLE             | Graphs, Networks and Algorithms | CREDIT VALUE    | 15                               |
|--------------------------|---------------------------------|-----------------|----------------------------------|
| MODULE CODE              | MTH3022                         | MODULE CONVENER | Prof Barrie Cooper (Coordinator) |
| <b>DURATION: TERM</b>    | 1                               | 2               | 3                                |
| <b>DURATION: WEEKS</b>   | 0                               | 11 weeks        | 0                                |
| Number of Students Takin | g Module (anticipated)          | 76              |                                  |

## **DESCRIPTION** - summary of the module content

Graphs are a structure used to describe the underlying connectedness of a system and, therefore, have a vast range of applications from designing circuit boards to running a business efficiently. In this module, you will learn the theory of graphs and explore their practical application to solve a range of mathematical problems Real life problems typically involve enormous graphs, so a key theme in this module will be solving problems efficiently. In particular, some seemingly small and simple problems are so computationally complex that, even in this era of supercomputers, it would take longer than the lifetime of the universe to find a solution. Through analysing the effectiveness and computational complexity of algorithms, you will learn how to refine your proposed solution methods to optimise their performance. You should be familiar with material from the core undergraduate Mathematics curriculum at Exeter, including the theory of sets and functions, analysis, linear algebra and mathematical proof.

Pre-requisites: (MTH2001 (Analysis) and MTH2002 (Algebra)) or (MTH2008 (Real Analysis) and MTH2011 (Linear Algebra)).

#### AIMS - intentions of the module

The aim of the module is to present the central results of modern graph theory together with the algorithms used to solve network problems. Whilst accurate computation is essential and will be the focus of the computer-marked quizzes, the lectures and exam will focus on a rigorous development of theory and its application in a range of guided and unseen problems. There will be a particular emphasis on studying the correctness of algorithms (i.e. how do you know it does what you want?) and their complexity (i.e. how quickly does it do it?) in the context of network problems. A project element will allow students to demonstrate their understanding of a subtopic through independent investigation.

## INTENDED LEARNING OUTCOMES (ILOs) (see assessment section below for how ILOs will be assessed)

On successful completion of this module, you should be able to:

## Module Specific Skills and Knowledge:

- 1 perform algorithms and routine computations in the theory of graphs and networks accurately;
- 2 state and apply key definitions and results in the theory of graphs and networks;
- 3 prove core theorems in graph theory;
- 4 translate problems into a network format for solution;
- 5 analyse the effectiveness and computational complexity of algorithms for solving network problems;
- 6 recognise problems that are computationally complex and require heuristic solution methods,

## Discipline Specific Skills and Knowledge:

7 discuss and use the material from this module in the context of the wider mathematics curriculum;

8 develop independently and with minimal guidance material relevant to this topic;

## Personal and Key Transferable / Employment Skills and Knowledge:

9 communicate effectively your knowledge of this topic; 10 work independently to develop your knowledge in this subject.

## SYLLABUS PLAN - summary of the structure and academic content of the module

- basic graph theory: definitions, subgraphs, Euler tours and Hamiltonian cycles, representation of graphs;
- shortest paths and spanning trees;
- flows and the max-flow-min-cut theorem:
- minimal-cost feasible-flow problems;
- the marriage theorem;
- graph colouring and applications;
- connectivity and search in graphs; - matchings and weighted matchings;
- postman problems and the salesman problem;
- graphic embedding and planar decomposition;
- analytic graph theory and discrete differential geometry;
- electrical networks and rectangle tilings;
- additional topics will be considered depending on the interests of the student cohort.

## **LEARNING AND TEACHING**

## LEARNING ACTIVITIES AND TEACHING METHODS (given in hours of study time)

**Scheduled Learning & Teaching Activities** 33.00 Guided Independent Study 117.00 Placement / Study Abroad 0.00

# **DETAILS OF LEARNING ACTIVITIES AND TEACHING METHODS**

| Category                                   | Hours of study time | Description |
|--------------------------------------------|---------------------|-------------|
| Scheduled Learning and Teaching Activities | 11                  | Lectures    |
| Scheduled Learning and Teaching Activities | 11                  | Tutorials   |
| Scheduled Learning and Teaching Activities | 11                  | Practicals  |

Guided Independent Study 117 Guided independent study

## **ASSESSMENT**

| FORMATIVE ASSESSMENT - for reedback and development purposes, does not count towards inloudie grade |                                           |               |                                                      |  |  |  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------|---------------|------------------------------------------------------|--|--|--|
| Form of Assessment                                                                                  | Size of Assessment (e.g. duration/length) | ILOs Assessed | Feedback Method                                      |  |  |  |
| Exercise Sheets                                                                                     | 4 x 10 hours                              | All           | Generic feedback, solutions and discussions in class |  |  |  |
| Computer- Marked Quizzes                                                                            | 6 x 40 minutes                            | 1, 9, 10      | Computer-generated feedback                          |  |  |  |
| Project draft                                                                                       | 5000 words                                | 2-10          | Written feedback                                     |  |  |  |

Coursework 0 Written Exams 60 Practical Exams 40

## **DETAILS OF SUMMATIVE ASSESSMENT**

| Form of Assessment                  | % of Credit         | Size of Assessment (e.g. duration/length) | ILOs Assessed | Feedback Method             |
|-------------------------------------|---------------------|-------------------------------------------|---------------|-----------------------------|
| Written Exam - Closed Book          | 30                  | 1.5 hours (Summer)                        | 2 - 10        | Mark via SRS                |
| Project                             | 30                  | 5000 words                                | 2 - 10        | Written feedback            |
| Practical - Computer-Marked Quizzes | 40 (non-condonable) | 6 x 40 minutes                            | 1. 9. 10      | Computer generated feedback |

## **DETAILS OF RE-ASSESSMENT (where required by referral or deferral)**

| Original Form of Assessment          | Form of Re-assessment                        | ILOs Re-assessed           | Time Scale for Re-reassessment    |
|--------------------------------------|----------------------------------------------|----------------------------|-----------------------------------|
| Written Exam                         | Written Exam (30%)                           | 2, 3, 4, 5, 6, 7, 8, 9, 10 | August Ref/Def period             |
| Project                              | Project (30%)                                | 2, 3, 4, 5, 6, 7, 8, 9, 10 | Summer, with a deadline in August |
| Coursework - Computer-Marked Quizzes | Computer marked quizzes (40% non-condonable) | 1, 9, 10                   | Summer, with a deadline in August |

## **RE-ASSESSMENT NOTES**

Deferrals: Reassessment will be by coursework and/or written exam in the deferred element only. For deferred candidates, the module mark will be uncapped.

Referrals: Reassessment will be by computer marked quizzes only. As it is a referral, the mark will be capped at 40%.

## **RESOURCES**

INDICATIVE LEARNING RESOURCES - The following list is offered as an indication of the type & level of information that you are expected to consult. Further guidance will be provided by the Module Convener

Graph; Network; Algorithm; Mathematics; Complexity

ELE: <a href="http://vle.exeter.ac.uk">http://vle.exeter.ac.uk</a>
Reading list for this module:

**KEY WORDS SEARCH** 

| Туре                  | Author                                    | Title                                                        |                    | Edition | Publish              | ner Year         | ISBN                  | Search    |
|-----------------------|-------------------------------------------|--------------------------------------------------------------|--------------------|---------|----------------------|------------------|-----------------------|-----------|
| Set                   | Jungnickel, D.                            | Graphs, Networks and Algorithms                              |                    |         | Springer             | 1999             | 000-3-540-63760-<br>5 | [Library] |
| Set                   | Ahuja, R.K., Magnanti, T.L. & Orlin, J.B. | Network Flows: Theory, Algorithms, and Applications          |                    |         | Prentice-            | -Hall 1993       | 000-0-136-17549-<br>X | [Library] |
| Set                   | Smith, D.K.                               | Networks and Graphs: Techniques and Computational<br>Methods |                    |         | Horwood<br>Publishir | 2003             | 000-1-898-56391-<br>8 | [Library] |
| CREI                  | DIT VALUE                                 | 15                                                           | ECTS VALUE         |         | 7.                   | 5                |                       |           |
| PRE-REQUISITE MODULES |                                           | MTH2001, MTH2008, MTH2011, MTH2002                           |                    |         |                      |                  |                       |           |
| CO-REQUISITE MODULES  |                                           |                                                              |                    |         |                      |                  |                       |           |
| NQF LEVEL (FHEQ)      |                                           | 6 AVAILABLE AS DISTANCE LEARNING No                          |                    | lo      |                      |                  |                       |           |
| ORIG                  | GIN DATE                                  | Tuesday 10 July 2018                                         | LAST REVISION DATE |         | Т                    | hursday 26 Janua | ary 2023              |           |