Construção de Compiladores Período Especial Aula 15: Análise Sintática: Gramáticas, Linguagens e Ambiguidade

Bruno Müller Junior

Departamento de Informática UFPR

2020

Análise Sintática

- A análise sintática (parsing) é um processo que verifica se uma determinada entrada (sentença) corresponde ao de uma gramática.
 - Seja G1 uma gramática;
 - Seja L(G1) a linguagem definida por G1;
 - $\bullet\,$ Seja α uma sentença de entrada.
 - Então, formalmente, um analisador sintático é uma ferramenta capaz de dizer se:

$$\alpha \in L(G1)$$

Hierarquia de Chomsky

Hierarquia de Chomsky

 é uma classificação de gramáticas formais descrita em 1959 pelo linguista Noam Chomsky.

Reconhecedores

Tipo	Nome	Exemplo	Reconhecedor	Complexidade
0	Recursivamente	Estrutura	Maquina de	Undecidable
	Enumerável	de Frase	Turing	
1	Linguagem	a ⁿ b ⁿ c ⁿ	Aut. Linearm.	NP-Completo
	Sensível Cont.		Delimitado	
2	Linguagem Livre	a ⁿ b ⁿ	Automato a	$O(n^3)$
	de Contexto		Pilha	
3	Linguagem	a ⁿ b	Automato	O(n)
	Regular		Finito	

Linguagens Livres de Contexto Determinísticas

Linguagens Livres de Contexto Determinísticas

- Linguagens livres de contexto determinísticas são um subconjunto das LLC onde as linguagens não são ambíguas.
- A teoria (e prática) de compiladores trata desta classe.
- Todas as linguagens de programação pertencem a esta classe.
- O que será estudado

Definicões

Definições

- Para se especificar uma linguagem de programação, é necessário formalizar sua sintaxe, semântica e alfabeto.
 - Para especificar a sintaxe, usa-se a BNF.
 - Para especificar a semântica, usa-se regras informais. Por exemplo, associar o símbolo "*" com a operação de multiplicação.
 - alfabeto: conjunto finito e não vazio de símbolos, por exemplo: $\Sigma = \{a, b, *, (,)\}$
- Cadeia (palavra ou sentença): sequencia finita de símbolos de Σ.
- Um caso importante é o conjunto de todas as sentenças de um alfabeto, que é indicada por Σ^*

Linguagens

- Uma linguagem é um subconjunto de Σ^* .
- Exemplos de linguagens para $\Sigma = \{a, b\}$.
 - $L_1 = \emptyset$
 - $L_2 = \{ \alpha \in \Sigma, |\alpha| \le 2 \}$
 - $L_3 = \{a^n, n \ge 2\}$
 - $L_4 = \{a^n b^n, n \ge 1\}$
- As linguagens L_1 e L_2 são linguagens finitas.
- As linguagens L_3 e L_4 são linguagens infinitas.

Gramáticas, Linguagens e Ambiguidade

Gramática

- Uma gramática livre de contexto é definida pela 4-tupla
 G = {T, V, P, S}, onde:
 - T Símbolos terminais;
 - V Símbolos não terminais (ou "variáveis")
 - P Produções ou regras: é uma relação finita de N para $(T \cup N)^*$
 - S Símbolo inicial
- Exemplo: $G_1 = \{\{a,b\}, \{S\}, \{S \to ab | aSb\}, S\}$
- Derivações: $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$
- Linguagem: $L(G_1) = \{a^n b^n, n \ge 1\}$

Árvore de Derivação

- Uma árvore de derivação é uma alternativa gráfica para mostrar o processo de derivação de uma sentença em uma gramática.
- Seja $G_1 = \{\{a,b\}, \{S\}, \{S \rightarrow ab | aSb\}, S\}$ e as derivações $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$

S a b

ab aa bb

Gramática Ambígua

- Uma gramática é dita ambígua se existe uma sentença para a qual existe mais de uma árvore de derivação.
- Exemplo: $G_2 = \{E \rightarrow a | E + E\}, \alpha = a + a + a$

Linguagem Ambígua

• Para eliminar a ambiguidade de uma gramática G_1 , deve-se reescrever a gramática para uma nova gramática G_2 não ambígua tal que $L(G_1)=L(G_2)$. Exemplo:

$$G_1 = \{A \rightarrow Aa|aA|a\}$$

 $G_2 = \{A \rightarrow Aa|a\}$

• Quando não existe uma G_2 não ambígua, dizemos que a linguagem é ambígua. Exemplo:

$$L = \{a^{i}b^{j}c^{k}|i,j,k \geq 1 e i = j ou j = k\}$$

Contexto

- Gramáticas, linguagens e ambiguidades (entre outros) são o alvo de uma área da teoria da computação que lida com linguagens formais e autômatos.
- Em compiladores, o alvo é um subconjunto de linguagens livres de contexto chamadas "Linguagens livres de contexto determinísticas", que:
 - não são ambíguas;
 - São o conjunto de linguagens do qual fazem parte todas as linguagens de programação.
 - \odot os reconhecedores tem complexidade O(n);

Objetivo'

- ullet Seja lpha uma sentença e G uma gramática para uma LLCD.
- O que será estudado aqui são mecanismos para reconhecer se $\alpha \in L(G)$.
- Para tal, existem duas abordagens: top-down e bottom-up.
- Elas serão vistas nas próximas aulas.