Devoir surveillé n°11: corrigé

Problème 1 — Polynômes de Bernoulli et fonction ζ

1. On trouve

$$B_1 = X - \frac{1}{2}$$
 $B_2 = \frac{1}{2}X^2 - \frac{1}{2}X + \frac{1}{12}$

On en déduit que

$$b_1 = -\frac{1}{2} \qquad b_2 = \frac{1}{12}$$

2. Soit un entier $n \ge 2$.

$$B_n(1) - B_n(0) = \int_0^1 B'_n(t) dt = \int_0^1 B_{n-1}(t) dt = 0$$

 $\operatorname{car} n - 1 \in \mathbb{N}^*$.

3. Tout d'abord, $A_0 = (-1)^0 B_0(1-X) = 1$.

Ensuite, pour tout $n \in \mathbb{N}^*$,

$$\mathbf{A}_n' = -(-1)^n \mathbf{B}_n' (1 - \mathbf{X}) = (-1)^{n-1} \mathbf{B}_{n-1} (1 - \mathbf{X}) = \mathbf{A}_{n-1}$$

Enfin, via le changement de variable u = 1 - t, pour tout $n \in \mathbb{N}^*$,

$$\int_0^1 \mathbf{A}_n(t) \, \mathrm{d}t = (-1)^n \int_0^1 \mathbf{B}_n(1-t) \, \mathrm{d}t = (-1)^n \int_0^1 \mathbf{B}_n(u) \, \mathrm{d}u = 0$$

Ces trois conditions définissant de manière la suite (B_n) , on en déduit que pour tout $n \in \mathbb{N}$,

$$B_n = A_n = (-1)^n B_n (1 - X)$$

4. Soit $n \in \mathbb{N}^*$. D'après la question .3

$$B_{2n+1}(1) = (-1)^{2n+1}B_{2n+1}(0) = -B_{2n+1}(0)$$

Or $2n+1 \ge 2$ donc d'après la question .2, $B_{2n+1}(1) = B_{2n+1}(0)$. On en déduit que

$$B_{2n+1}(0) = B_{2n+1}(1) = 0$$

5. La formule de Taylor de Taylor stipule que

$$B_n = \sum_{k=0}^{+\infty} \frac{B_n^{(k)}(0)}{k!} X^k$$

Par une récurrence évidente, $\mathbf{B}_n^{(k)} = \mathbf{B}_{n-k}$ lorsque $k \le n$. En particulier, $\mathbf{B}_n^{(n)} = \mathbf{B}_0 = 1$ de sorte que $\mathbf{B}_n^{(k)} = 0$ lorsque k > n. Ainsi

$$B_n = \sum_{k=0}^{n} \frac{B_{n-k}(0)}{k!} X^k = \sum_{k=0}^{n} \frac{b_{n-k}}{k!} X^k$$

6. Soit $n \in \mathbb{N}$. On sait d'après la question .5 que

$$B_{2n+2} = \sum_{k=0}^{2n+2} \frac{b_{2n+2-k}}{k!} X^k$$

En évaluant cette égalité en 1, on obtient

$$B_{2n+2}(1) = \sum_{k=0}^{2n+2-k} k!$$

Or $2n + 2 \ge 2$ donc $B_{2n+2}(1) = B_{2n+2}(0) = b_{2n+2}$ d'après la question .2. Ainsi

$$b_{2n+2} = \sum_{k=0}^{2n+2} \frac{b_{2n+2-k}}{k!}$$

En effectuant le changement d'indice $k \mapsto 2n + 2 - k$, on en déduit que

$$b_{2n+2} = \sum_{k=0}^{2n+2} \frac{b_k}{(2n+2-k)!}$$

Supposons maintenant que $n \in \mathbb{N}^*$. Alors

$$\sum_{k=0}^{2n+2} \frac{b_k}{(2n+2-k)!} = b_{2n+2} + b_{2n+1} + \sum_{k=0}^{2n} \frac{b_k}{(2n+2-k)!}$$

Or $b_{2n+1}=\mathrm{B}_{2n+1}(0)=0$ puisque $n\in\mathbb{N}^*$ d'après la question .4. Ainsi

$$\sum_{k=0}^{2n} \frac{b_k}{(2n+2-k)!} = 0$$

On sépare alors les termes d'indices pairs et impairs

$$\sum_{k=0}^{n} \frac{b_{2k}}{(2n+2-2k)!} + \sum_{k=0}^{n-1} \frac{b_{2k+1}}{(2n+1-2k)!} = 0$$

A nouveau, pour $k \in \mathbb{N}^*$, $b_{2k+1} = B_{2k+1}(0) = 0$ donc

$$\sum_{k=0}^{n-1} \frac{b_{2k+1}}{(2n+1-2k)!} = \frac{b_1}{(2n+1)!} = \frac{1}{2(2n+1)!}$$

Finalement,

$$\frac{1}{2(2n+1)!} + \sum_{k=0}^{n} \frac{b_{2k}}{(2n+2-2k)!} = 0$$

En isolant le dernier temre de la somme, on obtient

$$\frac{1}{2(2n+1)!} + \frac{b_{2n}}{2} + \sum_{k=0}^{n} \frac{b_{2k}}{(2n+2-2k)!} = 0$$

et donc

$$b_{2n} = \frac{1}{(2n+1)!} - 2\sum_{k=0}^{n-1} \frac{b_{2k}}{(2n+2-2k)!}$$

7. La question .6 donne pour n = 2

$$b_4 = \frac{1}{5!} - 2\left(\frac{b_0}{6!} + \frac{b_2}{4!}\right) = \frac{1}{120} - \frac{1}{360} - \frac{1}{144} = \frac{6}{720} - \frac{2}{720} - \frac{5}{720} = -\frac{1}{720}$$

8. Soit $\lambda \in \mathbb{R}_{+}^{*}$. Par une intégration par parties,

$$\int_0^1 f(t)\sin(\lambda t) dt = \frac{f(0)}{\lambda} - \frac{f(1)\cos\lambda}{\lambda} + \frac{1}{\lambda} \int_0^1 f(t)\cos(\lambda t) dt$$

On a clairement

$$\lim_{\lambda \to +\infty} \frac{f(0)}{\lambda} = 0$$

De plus,

$$\left| \frac{f(1)\cos \lambda}{\lambda} \right| \leqslant \frac{|f(1)|}{\lambda}$$

et $\lim_{\lambda \to +\infty} \frac{|f(1)|}{\lambda} = 0$ donc

$$\lim_{\lambda \to +\infty} \frac{f(1)\cos \lambda}{\lambda} = 0$$

Enfin, par inégalité triangulaire et croissance de l'intégrale,

$$\left| \frac{1}{\lambda} \int_0^1 f(t) \cos(\lambda t) \, \mathrm{d}t \right| \le \frac{1}{\lambda} \int_0^1 |f(t) \cos(\lambda t)| \, \mathrm{d}t \le \frac{1}{\lambda} \int_0^1 |f(t)| \, \mathrm{d}t$$

Or $\lim_{\lambda \to +\infty} \frac{1}{\lambda} \int_0^1 |f(t)| dt$ donc

$$\lim_{\lambda \to +\infty} \frac{1}{\lambda} \int_0^1 f(t) \cos(\lambda t) \, \mathrm{d}t = 0$$

On en déduit finalement que

$$\lim_{\lambda \to +\infty} \int_0^1 f(t) \sin(\lambda t) = 0$$

9. Tout d'abord $t \mapsto t(1-t)$ et $t \mapsto \sin(\pi t)$ sont de classe \mathscr{C}^1 sur]0,1[et la seconde fonction ne s'annule pas sur]0,1[. Ainsi φ est de classe \mathscr{C}^1 sur]0,1[. Par ailleurs, $t(1-t) \underset{t\to 0}{\sim} t$ et $\sin(\pi t) \underset{t\to 0}{\sim} \pi t$ donc $\varphi \underset{0}{\sim} \frac{1}{\pi}$ puis $\lim_0 \varphi = \frac{1}{\pi}$. Ensuite, pour tout $t \in]0,1[$,

$$\varphi'(t) = \frac{(1-2t)\sin(\pi t) - t(1-t)\pi\cos(\pi t)}{\sin^2(\pi t)}$$

Or

$$(1-2t)\sin(\pi t) = (1-2t)(\pi t + o(t^2)) = \pi t(1-2t + o(t))$$
$$t(1-t)\pi\cos(\pi t) = \pi t(1-t)(1+o(t)) = \pi t(1-t + o(t))$$

On en déduit que

$$(1-2t)\sin(\pi t) - t(1-t)\pi\cos(\pi t) = -\pi t^2 + o(t^2)$$

$$\sim -\pi t^2$$

De plus, $\sin^2(\pi t) \sim \pi^2 t^2$ donc $\varphi' \sim -\frac{1}{\pi}$ i.e. $\lim_0 \varphi' = -\frac{1}{\pi}$.

On remarque ensuite que pour $t\in]0,1[,\varphi(1-t)=\varphi(t)]$ et donc que $\varphi'(1-t)=-\varphi'(t)$. On en déduit que $\lim_1\varphi=\lim_0\varphi=\frac{1}{\pi}$ et que $\lim_1\varphi'=-\lim_0\varphi'=\frac{1}{\pi}$.

Puisque φ est de classe \mathscr{C}^1 sur]0,1[et que φ et φ' admettent des limites finies en 0 et 1, φ peut se prolonger en une fonction de classe \mathscr{C}^1 sur [0,1].

10. Soit $t \in]0,1[$.

$$\sin(t) \sum_{k=1}^{p} \cos(2k\pi t) = \sum_{k=1}^{p} \sin(\pi t) \cos(2k\pi t)$$

$$= \sum_{k=1}^{p} \frac{1}{2} (\sin(2k\pi t + \pi t) - \sin(2k\pi t - \pi t))$$

$$= \frac{1}{2} \sum_{k=1}^{p} \sin((2k+1)\pi t) - \sin((2k-1)\pi t)$$

$$= \frac{1}{2} (\sin((2p+1)\pi t) - \sin(\pi t))$$

Comme $\sin(\pi t) \neq 0$,

$$\sum_{k=1}^{p} \cos(2k\pi t) = \frac{\sin((2p+1)\pi t)}{2\sin(\pi t)} - \frac{1}{2}$$

11. Puisque P(0) = P(1) = 0, les polynômes X et 1-X divisent P. Etant premiers entre eux, leur produit X(1-X) divise également P. Il existe donc $Q \in \mathbb{R}[X]$ tel que P = X(1-X)Q. Remarquons également que pour tout $t \in]0,1[$

$$t(1-t)\sum_{k=1}^{p}\cos(2k\pi\,t) = t(1-t)\left(\frac{\sin((2p+1)\pi\,t)}{2\sin(\pi\,t)} - \frac{1}{2}\right) = \frac{1}{2}\varphi(t)\sin((2p+1)t) - \frac{1}{2}t(1-t)$$

Mais comme les fonctions $t\mapsto t(1-t)\sum_{k=1}^p\cos(2k\pi t)$ et $t\mapsto \frac{1}{2}\varphi(t)\sin((2p+1)t)-\frac{1}{2}t(1-t)$ sont continues sur [0,1], l'égalité est en fait valide pour tout $t\in[0,1]$. Soit maintenant $p\in\mathbb{N}^*$.

$$\begin{split} \sum_{k=1}^{p} \int_{0}^{1} \mathbf{P}(t) \cos(2k\pi t) \, \mathrm{d}t &= \int_{0}^{1} \left(\sum_{k=1}^{p} \cos(2k\pi t) \right) t (1-t) \mathbf{Q}(t) \, \mathrm{d}t \\ &= \frac{1}{2} \int_{0}^{1} \left(\varphi(t) \mathbf{Q}(t) \sin((2p+1)t) - t (1-t) \mathbf{Q}(t) \right) \, \mathrm{d}t \\ &= \frac{1}{2} \int_{0}^{1} \varphi(t) \mathbf{Q}(t) \sin((2p+1)t) \, \mathrm{d}t - \frac{1}{2} \int_{0}^{1} \mathbf{P}(t) \, \mathrm{d}t \end{split}$$

Or comme $t\mapsto \varphi(t)\mathrm{Q}(t)$ est de classe \mathscr{C}^1 sur [0,1] comme produit de fonctions de classe \mathscr{C}^1 sur [0,1],

$$\lim_{p \to +\infty} \int_0^1 \varphi(t) Q(t) \sin((2p+1)t) dt = 0$$

d'après la question **.8**. On en déduit donc que

$$\lim_{p \to +\infty} \sum_{k=1}^{p} \int_{0}^{1} P(t) \cos(2k\pi t) dt = -\frac{1}{2} \int_{0}^{1} P(t) dt$$

12. On rappelle que $B_2 = \frac{1}{2}X^2 - \frac{1}{2}X + \frac{1}{12}$ (question .1). On en déduit que

$$I_{k,1} = \int_0^1 B_2(t) \cos(2k\pi t) dt = \frac{1}{2} \int_0^1 t^2 \cos(2k\pi t) dt - \frac{1}{2} \int_0^1 t \cos(2k\pi t) dt + \frac{1}{12} \int_0^1 \cos(2k\pi t) dt$$

On calcule successivement à l'aide d'intégrations par parties

$$\int_{0}^{1} \cos(2k\pi t) dt = \frac{1}{2k\pi} [\sin(2k\pi t)]_{0}^{1}$$

$$= 0$$

$$\int_{0}^{1} t \cos(2k\pi t) dt = \frac{1}{2k\pi} [t \sin(2k\pi t)]_{0}^{1} - \frac{1}{2k\pi} \int_{0}^{1} \sin(2k\pi t)$$

$$= \frac{1}{(2k\pi)^{2}} [\cos(2k\pi t)]_{0}^{1}$$

$$= 0$$

$$\int_{0}^{1} t^{2} \cos(2k\pi t) dt = \frac{1}{2k\pi} [t^{2} \sin(2k\pi t)]_{0}^{1} - \frac{1}{k\pi} \int_{0}^{1} t \sin(2k\pi t) dt$$

$$= \frac{1}{2(k\pi)^{2}} [t \cos(2k\pi t)]_{0}^{1} - \frac{1}{2(k\pi)^{2}} \int_{0}^{1} \cos(2k\pi t) dt$$

$$= \frac{1}{2(k\pi)^{2}}$$

On en déduit finalement que

$$I_{k,1} = \frac{1}{(2k\pi)^2}$$

13. Soit un entier $n \ge 2$. On procède à des intégrations par parties successives.

$$\begin{split} \mathbf{I}_{k,n} &= \int_0^1 \mathbf{B}_{2n}(t) \cos(2k\pi t) \, \mathrm{d}t \\ &= \frac{1}{2k\pi} [\mathbf{B}_{2n}(t) \sin(2k\pi t)]_0^1 - \frac{1}{2k\pi} \int_0^1 \mathbf{B}_{2n}'(t) \sin(2k\pi t) \, \mathrm{d}t \\ &= -\frac{1}{2k\pi} \int_0^1 \mathbf{B}_{2n-1}(t) \sin(2k\pi t) \, \mathrm{d}t \\ &= \frac{1}{(2k\pi)^2} [\mathbf{B}_{2n-1}(t) \cos(2k\pi t)]_0^1 - \frac{1}{(2k\pi)^2} \int_0^1 \mathbf{B}_{2n-1}'(t) \cos(2k\pi t) \, \mathrm{d}t \\ &= -\frac{1}{(2k\pi)^2} \int_0^1 \mathbf{B}_{2n-2}(t) \cos(2k\pi t) \, \mathrm{d}t \qquad \text{car } \mathbf{B}_{2n-1}(0) = \mathbf{B}_{2n-1}(1) \, (2n-1 \geqslant 2 \, \text{car } n \geqslant 2) \\ &= -\frac{1}{(2k\pi)^2} \mathbf{I}_{k,n-1} \end{split}$$

La suite $(I_{k,n})_{n\in\mathbb{N}^*}$ est géométrique de raison $\frac{1}{(2k\pi)^2}$ donc

$$\forall n \in \mathbb{N}, \ \mathbf{I}_{k,n} = \frac{(-1)^{n-1}}{(2k\pi)^{2n-2}} \mathbf{I}_{k,1} = \frac{(-1)^{n-1}}{(2k\pi)^n}$$

14. Soit $n \in \mathbb{N}^*$. Alors $n \ge 2$ et $b_{2n} = B_{2n}(0) = B_{2n}(1)$ d'après la question **.2**. Le polynôme $B_{2n} - b_{2n}$ s'annule donc en 0 et 1. La question **.11** montre que

$$\lim_{p \to +\infty} \sum_{k=1}^{p} \int_{0}^{1} (\mathbf{B}_{2n}(t) - b_{2n}) \cos(2k\pi t) \, \mathrm{d}t = -\frac{1}{2} \int_{0}^{1} (\mathbf{B}_{2n}(t) - b_{2n}) \, \mathrm{d}t$$

Or on sait que

$$\int_{0}^{1} B_{2n}(t) \cos(2k\pi t) = I_{k,n} = \frac{(-1)^{n-1}}{(2k\pi)^{2n}} \qquad \qquad \int_{0}^{1} B_{2n}(t) dt = 0$$

$$\int_{0}^{1} b_{2n} \cos(2k\pi t) dt = \frac{b_{2n}}{2k\pi} [\sin(2k\pi t)]_{0}^{1} = 0$$

$$\int_{0}^{1} b_{2n} dt = b_{2n}$$

On en déduit que

$$\lim_{p \to +\infty} \sum_{k=1}^{p} \frac{(-1)^{n-1}}{(2k\pi)^{2n}} = \frac{b_{2n}}{2}$$

ou encore que

$$\frac{(-1)^{n-1}}{(2\pi)^{2n}} \sum_{k=1}^{+\infty} \frac{1}{k^{2n}} = \frac{b_{2n}}{2}$$

et enfin que

$$\zeta(2n) = \sum_{k=1}^{+\infty} \frac{1}{k^{2n}} = \frac{(-1)^{n-1} (2\pi)^{2n} b_{2n}}{2}$$

15. On obtient

$$\zeta(2) = \frac{(2\pi)^2 b_2}{2} = \frac{\pi^2}{6}$$
$$\zeta(4) = -\frac{(2\pi)^4 b_4}{2} = \frac{\pi^4}{90}$$

SOLUTION 1.

1. En convenant que $A_{n_0-1} = 0$:

$$\begin{split} \sum_{k=n_0}^n a_k \mathbf{B}_k &= \sum_{k=n_0}^n (\mathbf{A}_k - \mathbf{A}_{k-1}) \mathbf{B}_k \\ &= \sum_{k=n_0}^n \mathbf{A}_k \mathbf{B}_k - \sum_{k=n_0}^n \mathbf{A}_{k-1} \mathbf{B}_k \\ &= \sum_{k=n_0}^n \mathbf{A}_k \mathbf{B}_k - \sum_{k=n_0-1}^{n-1} \mathbf{A}_k \mathbf{B}_{k+1} \\ &= \mathbf{A}_n \mathbf{B}_n + \sum_{k=n_0}^{n-1} \mathbf{A}_k (\mathbf{B}_k - \mathbf{B}_{k+1}) \\ &= \mathbf{A}_n \mathbf{B}_n - \sum_{k=n_0}^{n-1} \mathbf{A}_k b_k \end{split}$$

- 2. a. La série $\sum b_n$, autrement dit la série $\sum B_{n+1} B_n$, est une série télescopique. Elle est donc de même nature que la suite (B_n) , c'est-à-dire convergente.
 - **b.** Tout d'abord, (A_n) est bornée donc $A_n B_n = \mathcal{O}(B_n)$. Puisque (B_n) converge vers 0, il en est de même de la suite $(A_n B_n)$.

Ensuite, la suite (B_n) étant décroissante, la série $\sum b_n$ est une série à termes de signe constant. Or $A_n b_n = \mathcal{O}(b_n)$ et la série $\sum b_n$ converge donc la série $\sum A_n b_n$ converge. On en déduit que la suite de ses sommes partielles converge. La suite de terme général $\sum_{k=n_0}^{n-1} A_k b_k$ converge donc. D'après la question 1, la suite de terme général $\sum_{k=n_0}^{n} a_k B_k$ converge donc en tant que somme de deux suites

D'après la question 1, la suite de terme général $\sum_{k=n_0}^n a_k \mathbf{B}_k$ converge donc en tant que somme de deux suites convergentes. Puisque $\sum_{k=n_0}^n a_k \mathbf{B}_k$ est la somme de partielle de rang n de la série $\sum a_n \mathbf{B}_n$, la série $\sum a_n \mathbf{B}_n$ converge également.

- c. Posons $a_n = (-1)^n$ pour $n \ge n_0$. Alors A_n vaut 0, -1 ou 1 suivant la parité de n ou n_0 . En particulier, la suite (A_n) est bornée et on peut donc appliquer le résultat de la question précédente. La série $\sum (-1)^n B_n$ converge donc.
- 3. a. Il s'agit de la somme des termes d'une suite géométrique.

$$\sum_{k=1}^{n} e^{ki\theta} = e^{i\theta} \frac{e^{in\theta} - 1}{e^{i\theta} - 1} = e^{\frac{i(n+1)\theta}{2}} \frac{\sin \frac{n\theta}{2}}{\sin \frac{\theta}{2}}$$

b. Cas $\alpha \le 0$. La suite de terme général $\frac{e^{ni\theta}}{n^{\alpha}}$ ne tend pas vers 0. En effet, $\left|\frac{e^{ni\theta}}{n^{\alpha}}\right| = n^{-\alpha} \ge 1$ pour tout $n \in \mathbb{N}^*$. Cas $\alpha > 1$. La série $\sum \frac{e^{ni\theta}}{n^{\alpha}}$ converge absolument. En effet, pour tout $n \in \mathbb{N}^*$, $\left|\frac{e^{ni\theta}}{n^{\alpha}}\right| = \frac{1}{n^{\alpha}}$ et la série de Riemann

 $\sum \frac{1}{n^{\alpha}}$ converge puisque $\alpha > 1$.

Cas $0 < \alpha \le 1$. On utilise les résultats précédents avec $n_0 = 1$, $a_n = e^{in\theta}$ et $B_n = \frac{1}{n}$. D'après la question 3.a, pour tout $n \in \mathbb{N}^*$,

$$|\mathbf{A}_n| = \left| e^{\frac{i(n+1)\theta}{2}} \frac{\sin \frac{n\theta}{2}}{\sin \frac{\theta}{2}} \right| \le \frac{1}{\left| \sin \frac{\theta}{2} \right|}$$

La suite (A_n) est donc bornée. La suite (B_n) est clairement décroissante de limite nulle. La question **2.b** permet alors d'affirmer que la série $\sum a_n B_n$ i.e. la série $\sum \frac{e^{in\theta}}{n^a}$, converge. Cette série ne converge pas absolument puisque $\left|\frac{e^{in\theta}}{n^a}\right| = \frac{1}{n^a}$ et que la série $\sum \frac{1}{n^a}$ ne converge pas $(\alpha \le 1)$.

4. Rappelons que pour tout $n \ge n_0$

$$\sum_{k=n_0}^{n} a_k \mathbf{B}_k = \mathbf{A}_n \mathbf{B}_n - \sum_{k=n_0}^{n-1} \mathbf{A}_k b_k$$

La suite (B_n) converge vers 0 et (A_n) est bornée donc $\lim_{n\to+\infty}A_nB_n=0$. Puisque (A_n) est bornée, $A_nb_n=\mathcal{O}(|b_n|)$. Or la série $\sum |b_n|$ converge car $\sum_{n\geqslant n_0}b_n$ est absolument convergente. De

plus, la série $\sum |b_n|$ est à termes positifs donc la série $\sum A_n b_n$ converge (absolument). Ainsi la suite de terme général $\sum_{k=n_0}^{n-1} A_k b_k$ converge.

Il s'ensuit que la suite de terme général $\sum_{k=n_0}^n a_k \mathbf{B}_k$ converge également i.e. que la série $\sum_{n\geqslant n_0} a_n \mathbf{B}_n$ converge.

SOLUTION 2.

- **1.** La famille (1, i) engendre clairement \mathbb{C} comme \mathbb{R} -espace vectoriel. Comme i n'est pas réel, (1, i) est libre. Ainsi (1, i) est une base du \mathbb{R} -espace vectoriel \mathbb{C} et $\dim_{\mathbb{R}} \mathbb{C} = 2$.
- 2. Posons $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Alors $\mathscr{F} = \text{vect}(I,J)$. On vérifie aisément que (I,J) est libre. Ainsi (I,J) est une base de \mathscr{F} de sorte que dim $\mathscr{F} = 2$.
- 3. Les applications Re et Im sont clairement linéaires si l'on considère $\mathbb R$ comme un $\mathbb R$ -espace vectoriel. La linéarité de Φ s'en déduit immédiatement.

Comme $\dim \mathbb{C} = \dim \mathcal{F} = 2$, il suffit de vérifier l'injectivité de Φ pour prouver que Φ est un isomorphisme. Soit donc $z \in \operatorname{Ker}\Phi$. Ainsi $\operatorname{Re}(z) = \operatorname{Im}(z) = 0$ puis z = 0. Ainsi $\operatorname{Ker}\Phi = \{0\}$ et Φ est injective. Φ est donc bien un isomorphisme.

- 4. Calcul bête et méchant.
- 5. Il suffit de raisonner par récurrence sur n. Fixons $z \in \mathbb{C}$. Alors $\Phi(z^0) = \Phi(1) = I = \Phi(z)^0$. Supposons qu'il existe $n \in \mathbb{N}$ tel que $\Phi(z^n) = \Phi(z)^n$. Alors

$$\begin{split} \Phi(z^{n+1}) &= \Phi(z^n \cdot z) \\ &= \Phi(z^n) \Phi(z) \qquad \text{d'après la question précédente} \\ &= \Phi(z)^n \Phi(z) \qquad \text{d'après l'hypothèse de récurrence} \\ &= \Phi(z^{n+1}) \end{split}$$

On peut donc affirmer que $\Phi(z^n) = \Phi(z)^n$ pour tout $n \in \mathbb{N}$.

- **6.** Il est clair que $\Phi(e^{i\theta}) = R(\theta)$. Ainsi $e^{i\theta} = \Phi^{-1} \circ R(\theta)$.
- 7. Fixons $\theta \in \mathbb{R}$. D'après les questions précédentes,

$$R(\theta)R(-\theta) = \Phi(e^{i\theta})\Phi(e^{-i\theta}) = \Phi(e^{i\theta} \cdot e^{-i\theta}) = \Phi(1) = I$$

Ainsi $R(\theta)$ est inversible et $R(\theta)^{-1} = R(-\theta)$.

8. Fixons $\theta \in \mathbb{R}$. Soit $n \in \mathbb{N}$. D'après les questions précédentes,

$$R(\theta)^n = \Phi(e^{i\theta})^n = \Phi((e^{i\theta})^n) = \Phi(e^{in\theta}) = R(n\theta)$$

De plus

$$R(\theta)^{-n} = (R(\theta)^{-1})^n = R(-\theta)^n = R(-n\theta)$$

On peut donc affirmer que $R(\theta)^n = R(n\theta)$ pour tout $n \in \mathbb{Z}$.

SOLUTION 3.

- 1. On trouve évidemment $J^2 = I$. On en déduit que $J^n = I$ si n est pair et que $J^n = J$ si n est impair.
- 2. On remarque que

$$S_n + T_n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k = (a+b)^n$$

$$S_n - T_n = \sum_{k=0}^n \binom{n}{k} a^{n-k} (-b)^k = (a-b)^n$$

Ainsi

$$S_n = \frac{1}{2}((a+b)^n + (b-a)^n)$$
$$T_n = \frac{1}{2}((a+b)^n - (a-b)^n)$$

3. Soit $n \in \mathbb{N}$. Remarquons que M = aI + bJ. Comme I et J commutent,

$$\mathbf{M}^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \mathbf{J}^k$$

D'après la première question,

$$M^{n} = S_{n}I + T_{n}J = \begin{pmatrix} S_{n} & T_{n} \\ T_{n} & S_{n} \end{pmatrix}$$