Fisica 2 – Corso di Laurea Triennale in Ingegneria Industriale

2 Novembre 2021

Prima Prova Parziale - Compito B

Va consegnato anche questo testo

Nome	Cognon	ne			
	C				
Numero di Matricola	(CFU	Iscritto su ESSE3		

1. Un protone ($q = 1.602 \cdot 10^{-19}$ C, $m = 1.67 \cdot 10^{-27}$ kg) è posizionato inizialmente al centro di un anello con la stessa carica q e raggio R = 10 cm, come mostrato in figura. Quando la carica viene spostata leggermente dal centro della spira, questa accelera lungo l'asse x fino a infinito. Calcolare la velocità massima che raggiunge la particella a distanza molto elevata.

2. Calcolare la potenza P dissipata da ciascun resistore del circuito in figura. Calcolare inoltre la differenza di potenziale $V_{a,b}$ specificando quale dei due punti si trova a potenziale più elevato.

3. Un filo lungo e rettilineo giace su un piano orizzontale e conduce una corrente $I=1.20~\mu A$. Un protone $(q=1.602\cdot 10^{-19}~\rm C,~m=1.67\cdot 10^{-27}~\rm kg)$ si muove nel vuoto parallelamente al filo, a una distanza d, in verso opposto alla corrente con velocità costante di $v=2.3\cdot 10^4~\rm m/s$. Determinare il valore di d, trascurando il contributo del campo magnetico terrestre. (Suggerimento. Va bilanciato il peso del protone). $(\mu_0=4\pi\cdot 10^{-7}~\rm Tm/A)$

