Maximum likelihood estimation for logistic regression

Recap: Newton's method

Example

Suppose that
$$\log \left(\frac{p_i}{1-p_i}
ight) = eta_0 + eta_1 X_i$$
, and we have

$$eta^{(r)} = egin{bmatrix} -3.1 \ 0.9 \end{bmatrix}, \quad U(eta^{(r)}) = egin{bmatrix} 9.16 \ 31.91 \end{bmatrix},$$

$$\mathbf{H}(eta^{(r)}) = - egin{bmatrix} 17.834 & 53.218 \ 53.218 & 180.718 \end{bmatrix}$$

Use Newton's method to calculate $\beta^{(r+1)}$ (you may use R or a calculator, you do not need to do the matrix arithmetic by hand).

Newton's method for logistic regression

Checking the solution is a unique maximum

Newton's method finds β^* such that $U(\beta^*)=0$. How do we know that β^* maximizes the likelihood?

Some intuition about Hessians

Fisher information

Properties

Example