

Odds of playing in the NFL

7.3 %

• 1,006,013 High School players

1.6%

- 73,712 NCAA players
- Approximately 16,380 players eligible for NFL Draft

15%

- 254 Draft picks
- Overall median 'percentage of games started' by players selected in 2010 NFL Draft is 15%

Can the team's statistics predict which the position order of the next draft?

- By scraping public data, will the statistics of the past season shed light on who the team will draft the next year?
- Without getting pulled in by the news of stand out college football players, can the team pick number or position be determined by regression or classification?

Webscraping methodology

Team year summary

										Poi	nts							7	Гор Р	layers			O	ff Rank	Def R	ank	o	verall F	ank	Sir	nple Rat	ing Syst	tem
Year	· Lg	Tm		١	N L T	Div. F	inish	Pla	yoffs	PF P	A PD		Co	aches		A۱	/	Passer	R	usher		Rece	iver P	ts Yds	Pts	Yds 1	/G P	ts± Yd	± out of	MoV	SoS SR	S OSR	DSRS
2020	NFL	Arizona Ca	ardinals	<u>s</u>	8 8 0	3r	d of 4			410 36	7 4	Kingsb	ury			Murray		<u>Murray</u>	<u>D</u>	<u>rake</u>		Hopk	ins	13 6	12	13	17	13	11 32	2.7	-0.1 2	.6 1.	5 1.0
					Tot Yds & TO				Passing						Rushing				Penalties							Average Drive							
Pla	yer		PF	Yds	Ply	Y/P	то	FL	1stD	Cmp	Att	Yds	TD	Int	NY/A	1stD	Att	Yds	TD	Y/A	1stD	Pen	Yds	1stPy	#D	r Sc	% T	0%	Start	Time	Play	s Yds	Pts
Tea	m Sta	its	410	6153	1083	5.7	21	8	381	387	575	3916	27	13	6.5	211	479	2237	22	4.7	136	113	868	34	179	40	.2	11.7	wn 29.1	2:36	6.2	2 34.4	2.30
Орр	o. Sta	ts	367	5631	1054	5.3	21	10	363	365	570	3623	26	11	5.9	207	436	2008	13	4.6	118	104	841	38	173	2 37	.2	10.5	wn 28.0	2:5	6.	3 32.7	2.02

Team week summary

										Score		Offense					D	efense			Expected Points			
Wee	ek I	Day	Date			ОТ	Rec	Орр	Tm	Орр	1stD	TotYd	PassY	RushY	то	1stD	TotYd	PassY	RushY	то	Offense	Defense	Sp. Tms	
	1 5	Sun	September 13	4:25PM ET	<u>boxscore</u>	W	1-0	San Francisco 49ers	24	20	29	404	224	180	1	18	366	243	123		6.46	-3.88	-0.46	
	2 :	Sun	September 20	4:05PM ET	boxscore	W	2-0	Washington Football Team	30	15	22	438	278	160	1	19	316	199	117	2	8.92	0.18	6.91	

Team Starting Roster

Pos	Player Age Yrs GS			GS	Summary of Player Stats	Drafted (tm/rnd/yr)
	Offensive Starters					
QB	Kyler Murray	22	Rook	16	349 for 542, 3,722 yards, 20 td, 12 int, & 93 rushes for 544 yards and 4 td	Arizona Cardinals / 1st / 1st pick / 2019
RB	Kenyan Drake	25	3	8	123 rushes for 643 yards, 8 td, & 28 catches for 171 yards and 0 td	Miami Dolphins / 3rd / 73rd pick / 2016

Team Draft Results

							Mis	5C					Pa	ssing			R	ushin	g	Red	ceivir	ng	
Rnd	Player	Pick	Pos	Yrs	From	To	AP1	РВ	St	CarAV	G	Cmp	Att	Yds	TD	Int	Att	Yds	TD	Rec	Yds	TD	College/Univ
1	Kyler Murray	1	QB	2	2019	2020	0	1	2	30	32	724	1100	7693	46	24	226	1363	15				<u>Oklahoma</u>
2	Byron Murphy	33	СВ	2	2019	2020	0	0	1	9	31												<u>Washington</u>

https://www.pro-football-reference.com/teams/crd/2019.htm

Scraped data was put into an SQLite Database

Team Season Data

- Examples:
- Margin of Victory/Strength of Schedule
- Wins/Losses
- AggregateSeason yardage

Team Weekly Data

- Examples:
- Weekly Opponent
- Weekly Game Stats

Starter Data

- Examples:
- Starting Position
- Years and Games as a starter

Draft Data

- Examples:
- Draft Position
- Draft Round Pick
- Team pick number

Using Machine Learning to capture team Draft Trends

 Can a Machine Learning Model predict capture the nuance of each team's drafting strategy by looking into historical data?

Framing of target decides type of ML model

Regression

- What round will the team select a Quarterback? What round will a Defensive Back be chosen?
- Models used:
 - Linear Regression
 - Regularized Regression
 - Ridge/Lasso/Elastic Net
 - Random Forest Regression

Classification

- If it is the team's second pick, given the stats from last year, which position will they draft?
- Models used:
 - Random Forest Classifier
 - Support Vector Classifier

Reasons for Choosing Regression Models

- Linear Regression
 - Serves as the baseline of a simple model tackling the problem
- Regularized Regression
 - The size of the coefficients, as well as the magnitude of the error term, are penalized
 - Complex models are discouraged, primarily to discourage overfitting.
- Random Forest Regression
 - Not prone to overfitting by pruning the number of estimators

Reasons for Choosing Classification Models

- Random Forest Classifier
 - Can natively handle categorical variables, so there is no need to one hot encode the categorical features with high cardinality
 - Uses subsets of the data, so good for problems with high dimensionality
- Support Vector Classifier
 - SVC is effective in high dimensional spaces
 - SVC is effective in cases where the number of dimensions is greater than the number of samples

Models will be run on multiple datasets

- Original Datasets created from Exploratory Data Analysis
 - Team Aggregated Season Statistics
 - Second dataset with average position ranks included
 - Team Week Statistics
 - Second dataset with average positional ranks included
- Additional Datasets created to improve performance
 - Dataset with categorical variables bucketized to reduce cardinality
 - Dataset with coaching information removed to remove main source of categorical cardinality

Performance of Regression Models

Regression Models

By looking at the Mean Absolute Error, we can see that on average, the model missed the draft order selection by 2 picks

```
MAE \
                        6.803684
                                  2.608387
vear
vearAV
                        6.996596 2.645108
week
weekAV
vearnocoach
                        6.734904 2.595169 2.183651
yearnocoachAV 0.003437 6.907644 2.628240 2.184574
                                                  best regressor
               ElasticNet(alpha=1.0, copy X=True, fit interce...
year
              Lasso(alpha=0.15264179671752318, copy X=True, ...
vearAV
              Lasso(alpha=0.0009540954763499944, copy X=True...
week
              Lasso(alpha=0.0011513953993264468, copy X=True...
weekAV
              Ridge(alpha=1.0, copy_X=True, fit_intercept=Tr...
vearnocoach
              Ridge(alpha=1.0, copy X=True, fit intercept=Tr...
vearnocoachAV
```

Regression Models with PCA

Principal Component Analysis was used to remove any collinearity between features. Even with dimensional reduction, MAE is not improved

```
MSE
                                                       RMSE
                                                                  MAE
               PCA components
                                        6.564303
vear
                                                  2.562090
                                                             2.148639
vearAV
week
weekAV
vearnocoach
                                                  2.655788
                            2 -0.004378 7.119864 2.668307 2.228804
yearnocoachAV
                                                  best regressor
               Ridge(alpha=1.0, copy_X=True, fit_intercept=Tr...
year
               Lasso(alpha=0.0011513953993264468, copy X=True...
vearAV
               Ridge(alpha=0.007543120063354615, copy_X=True,...
week
               Lasso(alpha=0.004291934260128779, copy_X=True,...
weekAV
               Ridge(alpha=0.6866488450042998, copy_X=True, f...
vearnocoach
vearnocoachAV
               Ridge(alpha=0.15264179671752318, copy X=True, ...
```

Performance of Classification Models

 With such low scores in the year and yearAV datasets, the week dataset was chosen to see how it compared to a dummy classifier. This was done to see if the trained model performed better than chance

	PCA components	Accuracy	f1
year	2	0.205402	0.084775
yearAV	15	0.201543	0.067612
week	15	0.269116	0.241012
weekAV	15	0.268848	0.251925
yearnocoach	30	0.196873	0.065078
yearnocoachAV	30	0.200579	0.067021

How does the best dataset compare to a dummy classifier?

- We can see an increase in the accuracy of the model over the best dummy classifier
- The train and test scores were similar, which shows that the model is not overfitting

```
Cross-Validation best parameters: SVC(C=1, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision function shape='ovr', degree=3, gamma='scale', kernel='poly',
    max iter=-1, probability=False, random state=None, shrinking=True,
    tol=0.001, verbose=False)
Cross-validation mean test score: 0.29585346113896405
stratified
               0.133555
most frequent 0.201656
uniform
               0.112306
      PCA components Train Accuracy Test Accuracy
                             0.37681
                                           0.299667 0.352613 0.273753
                                           1991
                                          111
              70 227 443
                                       31 2121
              44 134 236 12 71 140
                 331 515
                            23
                          recall f1-score
              precision
                   0.30
                             0.58
                                       0.39
                                                 4726
                   0.32
                             0.19
                                       0.24
                                                 2220
                   0.31
                             0.14
                                       0.19
                                                 1962
                   0.28
                             0.28
                                       0.28
                                                 2962
                   0.30
                             0.43
                                       0.36
                                                 3831
                   0.26
                             0.05
                                       0.08
                                                 1140
                   0.29
                             0.12
                                       0.17
                                                 2195
          TE
                   0.30
                             0.10
                                       0.15
                                                 1374
                   0.31
                             0.24
                                       0.27
                                                 3026
                                       0.30
                                                23436
    accuracy
                   0.30
                                       0.24
                                                23436
                             0.23
   macro avg
                   0.30
                             0.30
                                       0.27
                                                23436
weighted avg
```

Takeaways/Further Research

- The data does not contain the information needed to have predictive power.
 - What data is needed to add the desired predictive power?
- Minimal feature engineering was done, with additional engineering potentially increasing model accuracy
- Looking into the Problem statement, to see if the correct problem is defined