Linear Algebra

[KOMS119602] - 2022/2023

4.3 - Applications of Linear System in CS

(the content of this slide is adapted from the lecture's slide of Rinaldi Munir, ITB)

Dewi Sintiari

Computer Science Study Program
Universitas Pendidikan Ganesha

Learning objectives

After this lecture, you should be able to:

1. explain an application of linear system, especially in the polynomial interpolation.

Polynomial interpolation

Problem

Given n+1 points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$. Determine polynomial $p_n(x)$ that goes through the points, s.t.,

$$y_i = p_n(x_i)$$
 for $i = 0, 1, 2, ..., n$

After the polynomial $p_n(x)$ is found, $p_n(x)$ can be used to compute the estimation of the y-value in x = a, that is $y = p_n(a)$.

Polynomial interpolation

The polynomial interpolation of degree n that pass through points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$ is:

$$p_n(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$

Linear interpolation

Linear interpolation is an interpolation of two points with a linear line.

Let given two points (x_0, y_0) and (x_1, y_1) . Polynomial that interpolate the two points is:

$$p_1(x)=a_0+a_1x$$

$$y_0 = a_0 + a_1 x_0$$

 $y_1 = a_0 + a_1 x_1$

This can be solved using Gaussian elimination.

Quadratic interpolation

Let given three points (x_0, y_0) , (x_1, y_1) , and (x_2, y_2) . Polynomial that interpolate the three points is:

$$p_1(x) = a_0 + a_1 x + a_2 x^2$$

$$y_0 = a_0 + a_1 x_0 + a_2 x_0^2$$

$$y_1 = a_0 + a_1 x_1 + a_2 x_1^2$$

$$y_2 = a_0 + a_1 x_2 + a_2 x_2^2$$

This can be solved using Gaussian elimination.

Cubic interpolation

Let given four points (x_0, y_0) , (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) . Polynomial that interpolate the four points is:

$$p_1(x) = a_0 + a_1x + a_2x^2 + a_3x^3$$

$$y_0 = a_0 + a_1 x_0 + a_2 x_0^2 + a_2 x_0^3$$

$$y_1 = a_0 + a_1 x_1 + a_2 x_1^2 + a_2 x_1^3$$

$$y_2 = a_0 + a_1 x_2 + a_2 x_2^2 + a_2 x_2^3$$

$$y_3 = a_0 + a_1 x_3 + a_2 x_3^2 + a_2 x_3^3$$

This can be solved using Gaussian elimination.

General interpolation

Similarly, using the Gaussian elimination method, we can interpolate polynomial of degree n for $n \ge 4$, given (n+1) data.

$$y_0 = a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n$$

$$y_1 = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n$$

$$y_2 = a_0 + a_1 x_2 + a_2 x_2^2 + \dots + a_n x_2^n$$

$$\vdots$$

$$y_3 = a_0 + a_1 x_3 + a_2 x_3^2 + \dots + a_n x_n^n$$