The following definitions and theorems are adapted from James R. Munkres' Toplolgy (second edition)

Definition_{12.1}: A topology \mathcal{T} on a set \mathbf{X} is a collection of subsets of \mathbf{X} , called open sets, satisfying the following properties.

- i) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$.
- ii) If $Y \subseteq \mathcal{T}$, then $\bigcup_{t \in \mathbf{Y}} t \in \mathcal{T}$.
- iii) If $Y \subseteq \mathcal{T}$ is finite, then $\bigcap_{t \in Y} t \in \mathcal{T}$.

The ordered pair (X, T) is called a topological space.

Definition_{13.1}: A basis \mathscr{B} for a topology τ on \mathbf{X} is a collection of subsets of \mathbf{X} satisfying the (Page 78) following properties.

- i) If $x \in \mathbf{X}$, then we can find $B \in \mathcal{B}$ such that $x \in B$.
- ii) If $x \in B_1 \cap B_2$ for some sets B_1 and B_2 in \mathcal{B} , then we can find a set $B_3 \in \mathcal{B}$ such that $x \in B_3$ and $B_3 \subset B_1 \cap B_2$.

Lemma_{13.1}: If \mathscr{B} is a basis for a topology \mathcal{T} on \mathbf{X} , then $\mathcal{T} = \left\{ \bigcup_{b \in B} b : B \subseteq \mathscr{B} \right\}$. (Page 80)

Definition_{17.1}: Let (X, \mathcal{T}) be a topological space. A set $S \subseteq X$ is closed if $S^c \in \mathcal{T}$. (Page 93)

Theorem $_{17.1(3)}$: The union of any finite number of closed sets in a topological space is closed. (Page 94)

Theorem:

There are infinitely many prime numbers.

Proof(By Contradiction):

Part I – The evenly spaced integer topology.

Suppose \mathscr{B} is the set of all arithmetic progressions $\mathbb{Z}(a,m):=\left\{a+nm:n\in\mathbb{Z}\right\}$ where $m\neq 0$. We must first show that \mathscr{B} is a basis for a topology \mathcal{T} on \mathbb{Z} . To do this, we must show that \mathscr{B} satisfies both criteria from definition_{13.1}.

- i) If $k \in \mathbb{Z}$, then clearly $k \in \mathbb{Z}(0,k) \in \mathcal{B}$.
- ii) If $k \in \mathbb{Z}(a,b) \cap \mathbb{Z}(c,d)$, then $k \in \mathbb{Z}(k,bd)$, since we have k = k + bd(0). Now suppose we have $j \in \mathbb{Z}(k,bd)$. Then j = k + bdn. We can write k as a + bm for some integer m, so j = a + bm + bdn = a + b(m + dn), and therefore $j \in \mathbb{Z}(a,b)$. Likewise, we can write k as c + dn for some integer n, so j = c + dn + bdn = c + d(n + bn), and therefore $j \in \mathbb{Z}(c,d)$. So we have $\mathbb{Z}(k,bd) \subseteq \mathbb{Z}(a,b) \cap \mathbb{Z}(c,d)$.

We have shown that \mathscr{B} is a basis for a topology on \mathbb{Z} , so lemma₁ gives us a topology \mathcal{T} on \mathbb{Z} whose elements are the unions of arithmetic progressions in \mathscr{B} . In other words, if B is any subset of \mathscr{B} , then $\bigcup_{b\in B}b$ is contained in \mathcal{T} .

Part II – Finite unions of arithmetic progressions of the form $\mathbb{Z}(0,p)$ are closed.

Now suppose p is prime and observe that $\bigcup_{k=1}^{p-1} \mathbb{Z}(k,p)$ is the set of all integers which are congruent to k modulo p for all values of k satisfying 0 < k < p. Equivalently, this set can be described as the set of integers which are not divisible by p, which is precisely what $\mathbb{Z}(0,p)^c$ is. So $\mathbb{Z}(0,p)^c = \bigcup_{k=1}^{p-1} \mathbb{Z}(k,p)$. And since $\mathbb{Z}(0,p)^c$ can be written as a union of arithmetic progressions, i.e. open sets, it must be open by property (ii) of definition_{12.1}. Furthermore, since $\mathbb{Z}(0,p)^c$ is open, definition_{17.1} tells us that $\left(\mathbb{Z}(0,p)^c\right)^c = \mathbb{Z}(0,p)$ must be closed. It follows by theorem_{17.1(3)} that finite unions of arithmetic progressions of the form $\mathbb{Z}(0,p)$ are also closed.

Part III – If
$$\{p_1, p_2, \dots, p_r\}$$
 is the set of all primes, then $\left(\bigcup_{k=1}^r \mathbb{Z}(0, p_k)\right)^c$ can't be open.

Finally, suppose for contradiction that there are finitely many prime numbers p_1, p_2, \ldots, p_r . Since we have shown that finite unions of arithmetic progressions of the form $\mathbb{Z}(0,p)$ are closed, we know that $\bigcup_{k=1}^r \mathbb{Z}(0,p_k)$ must be closed. And this tells us that the complement of this union must be open. But $\left(\bigcup_{k=1}^r \mathbb{Z}(0,p_k)\right)^c = \left\{-1,1\right\}$ is not an arithmetic progression nor the empty set. Therefore $\left\{-1,1\right\}$ cannot be open. So we have a contradiction. Thus we can conclude that there are infinitely many prime numbers. \blacksquare

How we can conclude that $\left(\bigcup_{k=1}^{r} \mathbb{Z}(0,p_k)\right)^c = \{-1,1\}$?

Proof:

We will show that $\left(\bigcup_{k=1}^{r} \mathbb{Z}(0,p_{k})\right)^{c} = \{-1,1\}$ by showing that

- $i) \left(\bigcup_{k=1}^r \mathbb{Z}(0,p_k)\right)^c$ contains everything in $\{-1,1\}$, and
- $(ii) \left(\bigcup_{k=1}^{r} \mathbb{Z}(0,p_k)\right)^c$ and nothing that isn't part of $\{-1,1\}$.
- i) Observe that if p is prime, then $\mathbb{Z}(0,p)$ contains neither -1 nor 1, since neither of these is a multiple of p. Therefore $\left\{-1,1\right\}\cap\bigcup_{k=1}^r\mathbb{Z}(0,p_k)=\emptyset$. So $\left(\bigcup_{k=1}^r\mathbb{Z}(0,p_k)\right)^c$ contains everything in $\left\{-1,1\right\}$.
- (ii) Suppose k isn't part of $\{-1,1\}$. i.e. $k \in \{-1,1\}^c = \mathbb{Z} \setminus \{-1,1\}$. There are two cases to consider.
 - Case 1) k=0. Let p be prime. Then $k\in\mathbb{Z}(0,p)$ since $k=0\cdot p$. So $k\in\bigcup_{k=1}^r\mathbb{Z}(0,p_k)$, and therefore $k\notin\left(\bigcup_{k=1}^r\mathbb{Z}(0,p_k)\right)^c$.
 - Case 2) $k \ge 2$.

Then k has a prime divisor q by the fundamental theorem of arithmetic. And since we have assumed that $\{p_1, p_2, \ldots, p_r\}$ contains all of the primes, we must have $q = p_i$ for some $1 \le i \le r$. Therefore $k \in \mathbb{Z}(0,q) = \mathbb{Z}(0,p_i)$. So $k \in \bigcup_{k=1}^r \mathbb{Z}(0,p_k)$ and thus $k \notin \left(\bigcup_{k=1}^r \mathbb{Z}(0,p_k)\right)^c$.

It follows that $\left(\bigcup_{k=1}^r \mathbb{Z}(0,p_k)\right)^c = \{-1,1\}$, so we are done.