VECM

Date: Mon Aug 15 01:03:57 2022 Author: kkitonga and ewayagi In [1]: | #-----# import numpy as np import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt mydata = sm.datasets.get_rdataset("economics", "ggplot2").data #view the names of the variables print(mvdata.columns.values) ['date' 'pce' 'pop' 'psavert' 'uempmed' 'unemploy'] In [3]: #========Resampling the data to monthly prices============= mydata['date'] = pd.to_datetime(mydata['date']) mydata = mydata.set_index('date') annualdata = mydata.resample('Y').mean() print(annualdata) рсе psavert uempmed unemploy date 1967-12-31 514.466667 199200.333333 12.433333 4.700000 3012.333333 1968-12-31 556.841667 200663.750000 11.333333 4.500000 2797.416667 1969-12-31 603.650000 202648.666667 10.900000 4.441667 2830.166667 1970-12-31 646.725000 204982.333333 12.800000 4.983333 4127.333333 1971-12-31 699.925000 207589.333333 13.475000 6.275000 5021.666667 1972-12-31 768.150000 209837.583333 12.350000 6.108333 4875.833333 1973-12-31 849.583333 211857.166667 13.450000 5.175000 4359.333333 5.183333 1974-12-31 930.150000 213814.750000 13.300000 5173.333333 13.408333 1975-12-31 1030.558333 215890.666667 8.466667 7939.583333 1976-12-31 1147.666667 217999.250000 11.625000 8.141667 7398.166667 1977-12-31 1273.975000 220193.083333 10.658333 7.066667 6966.916667 10.725000 5.950000 6187.083333 1978-12-31 1422.250000 222525.416667 1979-12-31 1585.425000 225002.833333 10.316667 5.583333 6135.333333 1980-12-31 1750.666667 227621.916667 11.058333 6.658333 7670.666667 1981-12-31 1933.941667 11.716667 7.016667 229915.666667 8276.333333 1982-12-31 2071.241667 232127.833333 12.041667 8.750000 10714.916667 1983-12-31 2281.608333 234246.500000 10.050000 10.158333 10693.750000 1984-12-31 2492.333333 236307.250000 11.325000 7.883333 8529.083333 1985-12-31 2712.841667 238415.500000 9.166667 6.933333 8313.416667 1986-12-31 2886.275000 240592.666667 8.825000 6.958333 8245.000000 1987-12-31 3076.275000 242750.750000 7.908333 6.475000 7413.500000 1988-12-31 3330.000000 244967.500000 8.475000 5.950000 6696.583333 3576.766667 247285.916667 6523.666667 1989-12-31 8.375000 5.216667 1990-12-31 3809.000000 250047.416667 8.366667 5.375000 7061.000000 1991-12-31 3943.450000 253391.833333 8.800000 6.866667 8639.833333 9.450000 1992-12-31 4197.566667 256777.166667 8.658333 9611.166667 1993-12-31 4451.983333 260146.416667 7.925000 8.308333 8926.666667 1994-12-31 4720.958333 263324.583333 6.908333 9.125000 7975.500000 1995-12-31 4962.600000 266458.166667 6.991667 8.241667 7406.916667 1996-12-31 5244.600000 269580.666667 6.558333 8.241667 7231.083333 1997-12-31 5536.783333 272822.083333 6.333333 7.933333 6728.666667 1998-12-31 5877.250000 276022.333333 6.800000 6.683333 6203.833333 1999-12-31 5.075000 6279.083333 279194.916667 6.325000 5878.833333 2000-12-31 6762.150000 282295.916667 4.808333 5.933333 5685.083333 2001-12-31 5.033333 6.733333 7065.633333 285215.916667 6829,666667 2002-12-31 7342.683333 288019.000000 5.833333 9.200000 8375.333333 2003-12-31 7723.108333 290733.333333 5.558333 10.175000 8770.333333 2004-12-31 8212.666667 293388.583333 5.158333 9.816667 8139.666667 2005-12-31 8747.133333 296114.916667 3.175000 8.933333 7579.166667 9260.350000 2006-12-31 298929.916667 3.850000 8.225000 6991.250000 2007-12-31 9706.425000 301903.166667 3.741667 8.500000 7073.083333 4.975000 304718.000000 9.416667 2008-12-31 9976.333333 8948.166667 2009-12-31 9842.191667 307373.750000 6.108333 15.675000 14294.500000 2010-12-31 14807.750000 10185.850000 309736.511000 6.550000 21.466667 2011-12-31 10641.125000 311940.749083 7.158333 21.441667 13738.500000 2012-12-31 11006.825000 314163.103750 8.833333 19.166667 12499.166667 2013-12-31 11317.200000 316329.299167 6.408333 16.808333 11457.166667 2014-12-31 11824.025000 318619.452833 7.350000 14.175000 9601.500000 2015-12-31 12120.125000 320159.059500 7.650000 12.400000 8635.750000

```
plt.figure()
       ax = plt.subplot(211)
       ax.plot(mydata["pce"])
       ax = plt.subplot(212)
       ax.plot(mydata["psavert"])
       [<matplotlib.lines.Line2D at 0x17ec9c6f5e0>]
Out[5]:
       10000
        5000
             1970
                    1980
                                         2010
                           1990
                                  2000
         10
          5
             1970
                    1980
                           1990
                                  2000
                                         2010
from statsmodels.tsa.vector_ar.vecm import select_order
       lags = select_order(data = mydata, maxlags = 20, deterministic="ci")
       print(lags.summary())
       print(lags.aic, lags.bic, lags.fpe, lags.hqic)
       # we select 12 lags
        VECM Order Selection (* highlights the minimums)
             AIC
                       BIC
                                 FPE
                                            HOIC
       0
              9.914
                         10.29
                                2.030e+04
                                              10.03
              9.795
                         10.37
                                1.820e+04
                                              9.970
       1
       2
              9.858
                         10.62
                                1.975e+04
                                              10.09
       3
              9.869
                         10.82
                                2.065e+04
                                              10.16
       4
              9.826
                         10.97
                                2.083e+04
                                              10.17
       5
              9.728
                         11.06
                                2.045e+04
                                              10.14
       6
              9.936
                         11.46
                                2.826e+04
                                              10.40
       7
              9.953
                         11.67
                                3.398e+04
                                              10.48
                         11.54
                                3.178e+04
       8
              9.640
                                              10.22
       9
              9.255
                         11.35
                                3.135e+04
                                              9.895
       10
              7.493
                         9.776
                                   9838.
                                              8.191
       11
              4.120
                         6.594
                                   1093.
                                              4.876
                         -inf*
       12
              -inf*
                                     inf
                                              -inf*
                               2.318e-41
       13
             -96.01
                        -93.16
                                             -95.14
       14
              -89.94
                        -86.89
                                2.031e-39
                                             -89.01
             -102.8
                        -99.53
       15
                                1.943e-45
                                             -101.8
       16
              -100.7
                        -97.25
                                7.093e-45
                                             -99.63
       17
              -100.2
                        -96.62
                                5.595e-45
                                             -99.13
       18
              -97.66
                        -93.85
                                4.094e-44
                                             -96.50
                               2.363e-48*
              -106.9
       19
                        -102.9
                                             -105.7
       20
              -104.2
                        -100.0
                                2.032e-47
                                             -103.0
       12 12 19 12
In [7]: #-----#
       from statsmodels.tsa.vector_ar.vecm import select_coint_rank
```

```
cointest = select coint rank(mydata, 0, 12, method="trace", signif= 0.05)
print(cointest.summary())
# we select 1 cointegration relations
Johansen cointegration test using trace test statistic with 5% significance level
r 0 r 1 test statistic critical value
 0 2
                61.71
                               15.49
 1
    2
```

3.841

1.673

```
from statsmodels.tsa.vector_ar.vecm import VECM
     vecm model = VECM(mydata, k ar diff = 12, coint rank = 1, deterministic = 'ci')
```

Det. terms outside the coint. relation & lagged endog. parameters for equation pce ______

	========		========			
	coef	std err	Z	P> z	[0.025	0.975]
1 nco	0.1655	0.169		0.328		0.497
L1.pce L1.psavert		24.956	0.978 2.683	0.328	18.047	115.872
L1.psavert L2.pce	-0.8143	0.219	-3.723	0.007	-1.243	-0.386
L2.pcc L2.psavert		17.984	1.314	0.189	-11.621	58.874
.3.pce	-0.7112	0.221	-3.224	0.001	-1.143	-0.279
.3.psavert		14.592	1.923	0.054	-0.534	56.665
4.pce	-0.4089	0.141	-2.891	0.004	-0.686	-0.132
.4.psavert		16.229	1.172	0.241	-12.786	50.830
5.pce	-0.5055	0.213	-2.368	0.018	-0.924	-0.087
5.psavert		14.753	-2.206	0.027	-61.468	-3.637
.6.pce	-0.6719	0.188	-3.569	0.000	-1.041	-0.303
6.psavert		15.639	-3.297	0.001	-82.211	-20.907
.7.pce	0.4663	0.314	1.484	0.138	-0.149	1.082
.7.psavert	-68.6615	16.779	-4.092	0.000	-101.547	-35.776
8.pce	0.2916	0.287	1.015	0.310	-0.271	0.855
8.psavert	-12.4937	16.137	-0.774	0.439	-44.121	19.134
.9.pce	-1.4340	0.288	-4.976	0.000	-1.999	-0.869
.9.psavert	-36.5960	14.600	-2.507	0.012	-65.212	-7.980
10.pce	1.0142	0.303	3.344	0.001	0.420	1.609
.10.psaver	t -33.0850	16.398	-2.018	0.044	-65.224	-0.946
.11.pce	-1.0510	0.471	-2.230	0.026	-1.975	-0.127
.11.psaver		13.579	-4.335	0.000	-85.483	-32.255
.12.pce	-1.9491	0.457	-4.261	0.000	-2.846	-1.053
.12.psaver		21.687	-1.376	0.169	-72.352	12.658
	outside the					
	coef	std err	Z	P> z	[0.025	0.975]
 1.pce	-0.0076	0.001	-5.243	0.000	-0.011	-0.005
1.pce 1.psavert		0.215	-2.574	0.010	-0.975	-0.132
1.psavert 2.pce	0.0015	0.002	0.816	0.415	-0.002	0.005
z.pce 2.psavert		0.155	-1.662	0.415	-0.561	0.005
z.psaveri 3.pce	-0.2376	0.002	-2.450	0.090	-0.008	-0.001
3.pce 3.psavert		0.126	-1.165	0.014	-0.393	0.100
1.pce	0.0071	0.120	5.851	0.000	0.005	0.010
4.pce 4.psavert		0.140	2.159	0.000	0.028	0.576
5.pce	-0.0002	0.002	-0.130	0.897	-0.004	0.003
5.psavert		0.127	0.846	0.397	-0.142	0.357
6.pce	0.0024	0.002	1.460	0.144	-0.001	0.006
6.psavert		0.135	3.245	0.001	0.173	0.701
7.pce	-0.0059	0.003	-2.168	0.030	-0.011	-0.001
7.psavert		0.145	2.479	0.013	0.075	0.642
8.pce	0.0094	0.002	3.817	0.000	0.005	0.014
8.psavert		0.139	1.831	0.067	-0.018	0.527
9.pce	0.0023	0.002	0.941	0.347	-0.003	0.007
.9.psavert	0.7439	0.126	5.913	0.000	0.497	0.990
.10.pce	-0.0100	0.003	-3.810	0.000		
.10.psaver	-0.0100 t 0.4386	0.141	3.104	0.002	0.162	
11.pce	0.0059	0.004				0.014
11.psaver	0.0059 t 1.0276 -0.0052	0.004 0.117	8.783	0.144 0.000	0.798	1.257
12.pce	-0.0052	0.004	-1.327	0.185	-0.013	0.002
12.psaver		0.207		0.433	-0.220	0.513
-	Loading	coefficients	(alpha) fo	•	•	
	coef					
 c1		0.018				
	Loading c	oefficients (alpha) for	equation p	osavert	
	coef					
	Cointegration		or loading-d	coefficient	ts-column 1	
	coef					
eta.1	1 0000	0			1.000	1.000
neta 2	-939.5824	128 460	-7 31 <i>4</i>	0.000	-1191 360	-687 205
ic ca. Z	1 4620104	120.400	-7.314 7.725	0.000 0.000	1.09e+04	1 830+04
const						

print(modelfit.predict(steps=10))

```
[1.06878488e+04 1.13787053e+01]
[1.12159436e+04 2.04128371e+01]
         [1.16591077e+04 2.14294977e+01]
         [1.22190876e+04 1.70809221e+01]
         [1.31504450e+04 9.94287748e+00]
         [1.37058097e+04 1.65653263e+01]
         [1.18861348e+04 2.12821936e+01]
         [8.51848150e+03 3.13500634e+01]
         [7.61383834e+03 4.07475730e+01]]
modelfit.plot_forecast(steps=10, plot_conf_int=False)
                           =======END=======
                                              pce
        14000
        12000
        10000
         8000
         6000
         4000

    Observed

         2000
              --- Forecast
                             10
                                                        30
                                            psavert
           40
           35
           30
           25
           20
```

30

40

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Observed
Forecast

10

20

15 10

[[1.15118139e+04 1.01575219e+01]