

A-688A.ST25 SEQUENCE LISTING

<110>	FEIGE, ULRICH KOHNO, TADAHIKO LACEY, DAVID BOONE, THOMAS CHARLES
<120>	ADHESION ANTAGONISTS (as amended)
<130>	A-688A
<140> <141>	US 09/840,277 2001-04-23
<150> <151>	US 60/198,919 2000-04-21
<150> <151>	US 60/201,394 2000-05-03
<160>	137
<170>	PatentIn version 3.2
<210> <211> <212> <213>	1 684 DNA Homo sapiens
<220> <221> <222>	CDS (1)(684)
	1 c aaa act cac aca tgt cca cct tgt cca gct ccg gaa ctc ctg 48 o Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu 5 10 15
ggg ggg Gly Gl	ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc ctc 96 Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 20 25 30
atg ate Met Il	tcc cgg acc cct gag gtc aca tgc gtg gtg gtg gac gtg agc 144 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 35 40 45
cac ga His Glo 50	gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg gag 192 Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 55 60
gtg ca Val Hi 65	aat gcc aag aca aag ccg cgg gag gag cag tac aac agc acg Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 70 75 80
	gtg gtc agc gtc ctc acc gtc ctg cac cag gac tgg ctg aat 288 y Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 85 90 95
ggc aa Gly Ly	g gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc ccc 336 s Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 100 105 110
atc gag	aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa cca cag 384 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 115 120 125
gtg ta	acc ctg ccc cca tcc cgg gat gag ctg acc aag aac cag gtc 432 Page 1

									4-688	2 A S	г25					
val	Tyr 130	Thr	Leu	Pro	Pro	Ser 135	Arg	Asp	Glu	Leu	Thr 140	Lys	Asn	Gln	Val	-
agc Ser 145	ctg Leu	acc Thr	tgc Cys	ctg Leu	gtc val 150	aaa Lys	ggc Gly	ttc Phe	tat Tyr	ccc Pro 155	agc Ser	gac Asp	atc Ile	gcc Ala	gtg Val 160	480
gag Glu	tgg Trp	gag Glu	agc Ser	aat Asn 165	ggg Gly	cag Gln	ccg Pro	gag Glu	aac Asn 170	aac Asn	tac Tyr	aag Lys	acc Thr	acg Thr 175	cct Pro	528
ccc Pro	gtg Val	ctg Leu	gac Asp 180	tcc Ser	gac Asp	ggc Gly	tcc Ser	ttc Phe 185	ttc Phe	ctc Leu	tac Tyr	agc Ser	aag Lys 190	ctc Leu	acc Thr	576
gtg Val	gac Asp	aag Lys 195	agc Ser	agg Arg	tgg Trp	cag Gln	cag Gln 200	ggg Gly	aac Asn	gtc val	ttc Phe	tca Ser 205	tgc Cys	tcc Ser	gtg Val	624
	cat His 210															672
	ccg Pro															684
<210 <211 <212 <213	1> 2 2> F	2 228 PRT Homo	sapi	iens												
<400)> 2	2														
Met 1	Asp	Lys	Thr	His 5	Thr	Cys	Pro	Pro	Cys 10	Pro	Ala	Pro	Glu	Leu 15	Leu	
Gly	Gly	Pro	Ser 20	val	Phe	Leu	Phe	Pro 25	Pro	Lys	Pro	Lys	Asp 30	Thr	Leu	
Met	Ile	Ser 35	Arg	Thr	Pro	Glu	Va1 40	Thr	Cys	val	val	Val 45	Asp	val	Ser	
His	Glu 50	Asp	Pro	Glu	val	Lys 55	Phe	Asn	Trp	Tyr	va1 60	Asp	Gly	val	Glu	
va1 65	нis	Asn	Ala	Lys	Thr 70	Lys	Pro	Arg	Glu	G]u 75	Gln	Tyr	Asn	Ser	Thr 80	
Tyr	Arg	val	val	Ser 85	val	Leu	Thr	val	Leu 90	His	Gln	Asp	Trp	Leu 95	Asn	
Gly	Lys	Glu	Туг 100	Lys	Cys	Lys	val	Ser 105	Asn	Lys	Ala	Leu	Pro 110	Ala	Pro	
Ile	Glu	Lys 115	Thr	Ile	Ser	Lys	Ala 120	Lys	Gly	Gln	Pro	Arg 125	Glu	Pro	Gln	
٧a٦																

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 145 150 155 160

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 215 220

Ser Pro Gly Lys 225

<210> 3

<211> 8

<212> PRT Artificial Sequence

<220> Preferred linker <223>

<400>

Gly Gly Gly Lys Gly Gly Gly Gly 1

<210> <211> <212> 4

8

PRT

Artificial Sequence

<220>

<223> Preferred linker

<400> 4

Gly Gly Gly Asn Gly Ser Gly Gly 1

<210>

<211> 8

<212> PRT Artificial Sequence <213>

<220>

Preferred linker

<400>

Gly Gly Gly Cys Gly Gly Gly Gly 5

```
<210>
<211>
        5
<212>
       PRT
       Artificial Sequence
<220>
<223> Preferred linker
<400> 6
Gly Pro Asn Gly Gly
       7
5
<210>
<211>
       PRT
<212>
       Artificial Sequence
<213>
<220>
<223> Laminin peptide
<400> 7
Tyr Ile Gly Ser Arg
<210>
       49
<211>
      PRT
Artificial Sequence
<212>
<220>
<223> Echistatin peptide
<400> 8
Glu Cys Glu Ser Gly Pro Cys Cys Arg Asn Cys Lys Phe Leu Lys Glu 1 	ag{5} 	ag{10}
Gly Thr Ile Cys Lys Arg Ala Arg Gly Asp Asp Met Asp Asp Tyr Cys 20 25 30
Asn Gly Lys Thr Cys Asp Cys Pro Arg Asn Pro His Lys Gly Pro Ala 35 40 45
Thr
<210>
       7
<211>
<212>
       PRT
       Artificial Sequence
<220>
      RGD, NGR derivative peptide
<220>
<220>
<221> misc_feature
<222> (2, 5 and)..(7)
<223> Xaa is any amino acid
```

```
<400> 9
Arg Xaa Glu Thr Xaa Trp Xaa
<210>
        10
<400>
        10
000
<210>
        11
<211>
<212>
        PRT
<213>
       Artificial Sequence
<220>
<223>
       RGD, NGR derivative peptide
<220>
       misc_feature
(2, 3, 7 and)..(8)
Xaa is any amino acid
<221>
<223>
<400>
        11
Cys Xaa Xaa Arg Leu Asp Xaa Xaa Cys
1
<210>
        12
<400>
        12
000
<210>
        13
<211>
<212>
        9
       PRT
<213>
       Artificial Sequence
<220>
       RGD, NGR derivative peptide
<220>
        misc_feature
(1, 2, 3, 7, 8 and)..(9)
Xaa is any amino acid with Xaa at 1, 3, 7 and 9 capable of
forming a bridge.
<221>
<222>
<223>
<400>
       13
Xaa Xaa Xaa Arg Gly Asp Xaa Xaa Xaa 1
        14
17
<210>
<211>
<212>
       PRT
<213> Artificial Sequence
<220>
<223>
       RGD, NGR derivative peptide
<220>
```

```
A-688A.ST25
```

```
misc_feature (2, 3, 4, 5, 6, 12, 13, 14, 15 and)..(16) At positions 2, 3, 4, 5, 6, 12, 13, 14, 15 and 16, Xaa is any amino acid or may be absent.
<221>
<222>
<223>
<400> 14
Cys Xaa Xaa Xaa Xaa Cys Arg Gly Asp Cys Xaa Xaa Xaa Xaa Xaa 1 10 15
Cys
<210>
        15
<211>
        8
<212>
        PRT
       Artificial Sequence
<213>
<220>
<223>
        RGD, NGR derivative peptide
<220>
<221>
<222>
<223>
        misc_feature
        (1 \text{ and})..(8)
        Xaa is an independently selected amino acid.
<220>
<221>
        misc_feature
       (2 and)..(7)
Xaa equals 0 to 4 amino acids, each which is independently
<222>
<223>
        selected.
<220>
<221>
<222>
        misc_feature
        (4)..(4)
<223>
        Xaa is selected from the group consisting of glycine and leucine.
<220>
<221>
        misc_feature
<222>
        (5)..(5)
        Xaa is selected from the group consisting of tryptophan and
        leucine.
<400>
        15
Xaa Xaa Asp Asp Xaa Xaa Xaa Xaa
<210>
        16
<211>
<212>
        10
        PRT
<213>
        Artificial Sequence
<220>
        RGD, NGR derivative peptide
<223>
<220>
<221>
        misc_feature
<222>
        (1 and)..(10)
<223>
       Xaa is any amino acid.
<220>
<221> misc_feature
```

```
A-688A.ST25
```

```
<222>
       (2 and)..(9)
<223>
       Xaa equals 0 to 3 amino acids.
<220>
       misc_feature
<221>
<222>
       (3)..(3)
       Xaa is selected from the group consisting of tryptophan and
<223>
       proline.
<220>
<221>
       misc_feature
<222>
       (6)..(6)
       Xaa is selected from the group consisting of glycine and leucine.
<223>
<220>
<221>
       misc_feature
<222>
       (7)..(7)
<223>
       Xaa is selected from the group consisting of tryptophan and
       leucine.
<220>
       misc_feature
<221>
       (8)..(8)
Xaa is selected from the group consisting of leucine, tryptophan,
<222>
       and methionine.
<400>
       16
Xaa Xaa Xaa Asp Asp Xaa Xaa Xaa Xaa Xaa
<210>
       17
<211>
       19
<212>
       PRT
<213>
      Artificial Sequence
<220>
<223>
      Vinculin binding/selectin antagonist peptide
<220>
       misc_feature
(3, 5, 6, 13)..(15)
<221>
<222>
       Xaa is any naturally occuring amino acid residue.
<223>
<400>
       17
Arg Lys Xaa Asn Xaa Xaa Trp Thr Trp Val Gly Thr Xaa Lys Xaa Leu
Thr Glu Glu
<210>
       18
<211>
       16
<212>
       PRT
       Artificial Sequence
<213>
<220>
<223>
       Vinculin binding/selectin antagonist peptide
<220>
      misc_feature
(2, 3, 4, 7)..(15)
<221>
<222>
```

```
A-688A.ST25
<223>
       xaa is any naturally occuring amino acid residue
<400>
        18
Cys Xaa Xaa Xaa Tyr Thr Xaa Leu Val Ala Ile Gln Asn Lys Xaa Glu
1 10 15
<210>
        19
<211>
        19
<212>
       PRT
<213>
      Artificial Sequence
<220>
       Vinculin binding/selectin antagonist peptide
<220>
<221>
        misc_feature
        (3, \overline{4}, 5, 6, 8, 13, 15)..(18)
<222>
        Xaa is any naturally occuring amino acid residue.
<400>
Arg Lys Xaa Xaa Xaa Xaa Trp Xaa Trp Val Gly Thr Xaa Lys Xaa Leu 1 5 10 15
Thr Xaa Glu
<210>
       20
<211>
       16
<212>
       PRT
<213>
       Artificial Sequence
<220>
       Vinculin binding/selectin antagonist peptide
<220>
       misc_feature
(2, 5, 6, 7, 12, 13 )..(14)
Xaa is any naturally occuring amino acid residue.
<221>
<222>
<400>
Ala Xaa Asn Trp Xaa Xaa Xaa Glu Pro Asn Asn Xaa Xaa Xaa Glu Asp
<210>
       21
<211>
<212>
       13
       PRT
<213>
       Artificial Sequence
<220>
<223>
       Vinculin binding/selectin antagonist peptide
<220>
<221>
       misc_feature
       (1, 3, 6, 9, 12 )..(13)
Xaa is any naturally occuring amino acid residue.
<222>
<223>
<400>
       21
```

```
A-688A.ST25
Xaa Lys Xaa Lys Thr Xaa Glu Ala Xaa Asn Trp Xaa Xaa
1
                                      A-688A.ST25
<210> 22
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 22
Cys Leu Cys Arg Gly Asp Cys Ile Cys
<210>
      23
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 23
Cys Trp Asp Asp Gly Trp Leu Cys
<210> 24
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 24
Cys Trp Asp Asp Leu Trp Trp Leu Cys 1
<210> 25
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223>
      Integrin antagonist peptide
<400> 25
Cys Trp Asp Asp Gly Leu Met Cys 5
<210> 26
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
```

```
<400> 26
Cys Trp Asp Asp Gly Trp Met Cys 1
<210> 27
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 27
Cys Ser Trp Asp Asp Gly Trp Leu Cys \frac{1}{5}
<210> 28
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 28
Cys Pro Asp Asp Leu Trp Trp Leu Cys
<210> 29
<211> 3
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 29
Asn Gly Arg
1
<210> 30
<211> 3
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 30
Gly Ser Leu
        31
<210>
<211> 3
<212> PRT
<213> Artificial Sequence
<220>
```

```
A-688A.ST25
<223> Integrin antagonist peptide
<400>
        31
Arg Gly Asp
<210>
        32
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 32
Cys Gly Arg Glu Cys Pro Arg Leu Cys Gln Ser Ser Cys 1 \hspace{1cm} 5 \hspace{1cm} 10
<210> 33
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 33
Cys Asn Gly Arg Cys Val Ser Gly Cys Ala Gly Arg Cys 10
<210>
       34
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400> 34
Cys Leu Ser Gly Ser Leu Ser Cys
1
<210> 35
<211> 3
<212> PRT
<213> Artificial Sequence
<220>
<223>
        Integrin antagonist peptide
<400> 35
Gly Ser Leu
<210> 36
<211> 6
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223>
        Integrin antagonist peptide
<400>
        36
Asn Gly Arg Ala His Ala
1 5
<210>
       37
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 37
Cys Asn Gly Arg Cys 5
<210> 38
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
       Integrin antagonist peptide
<223>
<400> 38
Cys Asp Cys Arg Gly Asp Cys Phe Cys
<210> 39
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400> 39
Cys Gly Ser Leu Val Arg Cys
5
<210>
       40
<211>
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<220>
<221>
        misc_feature
<222> (3)..(4)
<223> Xaa is any amino acid residue
<400> 40
```

```
Asp Leu Xaa Xaa Leu
1
<210>
      41
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223>
     Integrin antagonist peptide
<400> 41
<210>
     42
<211>
     10
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 42
Arg Thr Asp Leu Asp Ser Leu Arg Thr Tyr 5 10
<210> 43
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 43
<210> 44
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223>
      Integrin antagonist peptide
<400> 44
<210> 45
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
```

<211> 7 <212> PRT <213> Artificial Sequence <220>

<210>

50

```
A-688A.ST25
<223> Integrin antagonist peptide
<220>
        misc_feature
(2 )..(3)
Xaa is any amino acid residue
<221>
<400>
        50
Cys Xaa Xaa Arg Gly Asp Cys
1 5
<210>
        51
<211>
       27
<212>
       PRT
       Artificial Sequence
<220>
        Integrin antagonist peptide
<223>
<400>
Ser Thr Gly Gly Phe Asp Asp Val Tyr Asp Trp Ala Arg Gly Val Ser
1 10 15
Ser Ala Leu Thr Thr Leu Val Ala Thr Arg
20 25
        52
27
<210>
<211>
<212>
        PRT
       Artificial Sequence
<220>
        Integrin antagonist peptide
<223>
<400>
Ser Thr Gly Gly Phe Asp Asp Val Tyr Asp Trp Ala Arg Arg Val Ser 10 15
Ser Ala Leu Thr Thr Leu Val Ala Thr Arg
20 25
<210>
        53
<211>
        30
<212>
        PRT
       Artificial Sequence
<220>
<223>
        Integrin antagonist peptide
Ser Arg Gly Val Asn Phe Ser Glu Trp Leu Tyr Asp Met Ser Ala Ala 1 \hspace{1cm} 10 \hspace{1cm} 15
Met Lys Glu Ala Ser Asn Val Phe Pro Ser Arg Arg Ser Arg 20 25 30
```

```
<210>
        54
<211>
        30
<212>
        PRT
        Artificial Sequence
<213>
<220>
<223>
        Integrin antagonist peptide
<400>
Ser Ser Gln Asn Trp Asp Met Glu Ala Gly Val Glu Asp Leu Thr Ala
1 10 15
Ala Met Leu Gly Leu Leu Ser Thr Ile His Ser Ser Ser Arg
20 25 30
        55
31
<210>
<211>
<212>
       PRT
<213>
        Artificial Sequence
<220>
<223>
        Integrin antagonist peptide
<400>
        55
Ser Ser Pro Ser Leu Tyr Thr Gln Phe Leu Val Asn Tyr Glu Ser Ala 10 15
Ala Thr Arg Ile Gln Asp Leu Leu Ile Ala Ser Arg Pro Ser Arg 20 25 30
<210>
        56
<211>
        31
<212>
<213>
       Artificial Sequence
<220>
<223>
        Integrin antagonist peptide
<400>
Ser Ser Thr Gly Trp Val Asp Leu Leu Gly Ala Leu Gln Arg Ala Ala
1 10 15
Asp Ala Thr Arg Thr Ser Ile Pro Pro Ser Leu Gln Asn Ser Arg 20 25 30
<210>
        57
<211>
        18
<212>
<213>
       Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400>
Asp Val Tyr Thr Lys Lys Glu Leu Ile Glu Cys Ala Arg Arg Val Ser 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
```

```
<210> 58
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<220>
<221> misc_feature
<222>
       (5)..(5)
      xaa is any amino acid residue
<400> 58
Arg Gly Asp Gly Xaa
1 5
<210> 59
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<220>
       misc_feature
<221>
       (6)..(6)
Xaa is any amino acid residue
<222>
<223>
<400> 59
Cys Arg Gly Asp Gly Xaa Cys
<210> 60
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Integrin antagonist peptide
<400> 60
Cys Ala Arg Arg Leu Asp Ala Pro Cys
5
<210> 61
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 61
```

```
A-688A.ST25
Cys Pro Ser Arg Leu Asp Ser Pro Cys
5
<210> 62
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Integrin antagonist peptide
<400> 62
Cys Asp Cys Arg Gly Asp Cys Phe Cys
<210>
      63
<211> 9
<212>
     PRT
      Artificial Sequence
<213>
<220>
<223>
     Integrin antagonist peptide
<400>
      63
Cys Asp Cys Arg Gly Asp Cys Leu Cys 5
<210>
<211>
      64
      12
<212>
      PRT
<213> Artificial Sequence
<220>
<223>
      Integrin antagonist peptide
<400>
Arg Gly Asp Leu Ala Ala Leu Ser Ala Pro Pro Val
<210>
       65
<211>
      12
      PRT
<212>
<213>
      Artificial Sequence
<220>
      Selectin antagonist peptide
<400> 65
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys
<210>
       66
<211>
      12
<212>
      PRT
      Artificial Sequence
<213>
<220>
<223> Selectin antagonist peptide
```

<210> 71 <211> 12

<212> PRT

<213> Artificial Sequence

<220>

```
A-688A.ST25
<223> Selectin antagonist peptide
<400>
       71
Glu Ile Thr Trp Asp Gln Leu Trp Glu Val Met Asn 1 10
       72
<210>
      12
<211>
<212>
      PRT
      Artificial Sequence
<220>
<223> Selectin antagonist peptide
<400> 72
His Val Ser Trp Glu Gln Leu Trp Asp Ile Met Asn 1 10
<210> 73
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223>
      Selectin antagonist peptide
<400> 73
His Ile Thr Trp Asp Gln Leu Trp Arg Ile Met Thr 10^{-5}
<210>
      74
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223>
      Selectin antagonist peptide
<400> 74
Arg Asn Met Ser Trp Leu Glu Leu Trp Glu His Met Lys 1 	 10
<210> 75
<211>
      18
<212>
      PRT
<213>
      Artificial Sequence
<220>
       Selectin antagonist peptide
<223>
<400>
Ala Glu Trp Thr Trp Asp Gln Leu Trp His Val Met Asn Pro Ala Glu
Ser Gln
```

```
A-688A.ST25
```

```
<210> 76
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223>
      Selectin antagonist peptide
<400> 76
His Arg Ala Glu Trp Leu Ala Leu Trp Glu Gln Met Ser Pro
<210>
       77
<211>
      14
<212>
      PRT
<213> Artificial Sequence
<220>
<223>
      Selectin antagonist peptide
<400> 77
Lys Lys Glu Asp Trp Leu Ala Leu Trp Arg Ile Met Ser Val 10
<210>
       78
<211>
       11
<212> PRT
<213> Artificial Sequence
<220>
      Selectin antagonist peptide
<223>
<400> 78
Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys 10
<210> 79
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
       Selectin antagonist peptide
<223>
<400>
       79
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys 1 10
<210>
      80
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Selectin antagonist peptide
<400>
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys 1 	 10
                                       10
                                        Page 21
```

```
81
12
<210>
<211>
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Selectin antagonist peptide
<400> 81
Asp Ile Thr Trp Asp Gln Leu Trp Asp Leu Met Lys
       82
<210>
<211> 16
<212> PRT
<213>
       Artificial Sequence
<220>
<223>
       Selectin antagonist peptide
<400>
Cys Gln Asn Arg Tyr Thr Asp Leu Val Ala Ile Gln Asn Lys Asn Glu
1 10 15
<210>
<211>
        83
17
       PRT
<212>
<213> Artificial Sequence
<220>
<223>
        Selectin antagonist peptide
<400> 83
Ala Glu Asn Trp Ala Asp Asn Glu Pro Asn Asn Lys Arg Asn Asn Glu 1 5 10 15
Asp
<210> 84
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223>
       Selectin antagonist peptide
<400> 84
Arg Lys Asn Asn Lys Thr Trp Thr Trp Val Gly Thr Lys Lys Ala Leu 1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15
Thr Asn Glu
<210>
        85
<211>
```

```
A-688A.ST25
<212> PRT
<213>
      Artificial Sequence
<220>
       Selectin antagonist peptide
<223>
<400>
Lys Lys Ala Leu Thr Asn Glu Ala Glu Asn Trp Ala Asp 1 	 10
<210>
       86
<211> 16
<212> PRT
<213>
      Artificial Sequence
<220>
<223> Selectin antagonist peptide
<220>
<221>
<222>
       misc_feature
       (3 and)..(15)
       Xaa is any amino acid residue
<223>
<400>
       86
Cys Gln Xaa Arg Tyr Thr Asp Leu Val Ala Ile Gln Asn Lys Xaa Glu
<210>
       87
<211>
       17
<212>
      PRT
<213> Artificial Sequence
<220>
<223> Selectin antagonist peptide
<220>
<221>
       misc_feature
<222>
       (13 and)..(15)
<223>
      Xaa is any amino acid residue
<400> 87
Ala Glu Asn Trp Ala Asp Gly Glu Pro Asn Asn Lys Xaa Asn Xaa Glu
Asp
<210>
       88
<211>
       30
<212>
      PRT
<213>
      Artificial Sequence
<220>
<223>
      Vinculin binding peptide
```

Ser Ser Gln Asn Trp Asp Met Glu Ala Gly Val Glu Asp Leu Thr Ala

Page 23

<400> 88

```
Ala Met Leu Gly Leu Leu Ser Thr Ile His Ser Ser Ser Arg 20 25 30
<210>
        89
<211> 31
<212> PRT
<213> Artificial Sequence
<220>
<223> Vinculin binding peptide
<400> 89
Ser Ser Pro Ser Leu Tyr Thr Gln Phe Leu Val Asn Tyr Glu Ser Ala
1 5 10 15
Ala Thr Arg Ile Gln Asp Leu Leu Ile Ala Ser Arg Pro Ser Arg 20 25 30
<210>
        90
<211> 31
<212> PRT
<213> Artificial Sequence
<220>
       Vinculin binding peptide
<223>
<400> 90
Ser Ser Thr Gly Trp Val Asp Leu Leu Gly Ala Leu Gln Arg Ala Ala
1 10 15
Asp Ala Thr Arg Thr Ser Ile Pro Pro Ser Leu Gln Asn Ser Arg
20 25 30
<210>
        91
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Vinculin binding peptide
<400> 91
Asp Val Tyr Thr Lys Lys Glu Leu Ile Glu Cys Ala Arg Arg Val Ser 1 \hspace{1cm} 10 \hspace{1cm} 15
Glu Lys
<210> 92
<211> 27
<212> PRT
<213> Artificial Sequence
<220>
<223> Vinculin binding peptide
```

<400> 92

Ser Thr Gly Gly Phe Asp Asp Val Tyr Asp Trp Ala Arg Gly Val Ser 10 15

Ser Ala Leu Thr Thr Leu Val Ala Thr Arg

<210> 93

<211> 27

<212> PRT

<213> Artificial Sequence

<220>

<223> Vinculin binding peptide

<400> 93

Ser Thr Gly Gly Phe Asp Asp Val Tyr Asp Trp Ala Arg Arg Val Ser 10 15

Ser Ala Leu Thr Thr Leu Val Ala Thr Arg 20 25

<210> 94

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Vinculin binding peptide

<400> 94

Ser Arg Gly Val Asn Phe Ser Glu Trp Leu Tyr Asp Met Ser Ala Ala $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Met Lys Glu Ala Ser Asn Val Phe Pro Ser Arg Arg Ser Arg 20 25 30

<210> 95

<211> 19

<212> PRT

<213> Artificial Sequence

<220>

<223> Laminin related peptide

<400> 95

Arg Glu Asp Val Glu Ile Leu Asp Val Tyr Ile Gly Ser Arg Pro Asp 10 15

Ser Gly Arg

<210> 96

<211> 19

<212> PRT <213> Artificial Sequence

```
<220>
<223>
       Laminin related peptide
<400>
       96
Tyr Ile Gly Ser Arg Arg Glu Asp Val Glu Ile Leu Asp Val Pro Asp
Ser Gly Arg
<210>
       97
<211>
       44
<212>
       DNA
      Artificial Sequence
<213>
<220>
       Used to form echistatin template for PCR
<223>
<400>
ggggggcata tggaatgtga atctggtcca tgctgcagaa actg
                                                                        44
<210>
       98
<211>
       44
<212>
      DNA
<213>
      Artificial Sequence
<220>
<223>
      Used to form echistatin template for PCR
<400>
taagttcttg aaggaaggta ccatctgtaa gagagctaga ggtg
                                                                        44
<210>
       99
<211>
      44
<212>
      DNA
<213> Artificial Sequence
<220>
<223>
      Used to form echistatin template for PCR
<400> 99
acgacatgga cgactactgt aacggtaaga cctgtgactg cccq
                                                                        44
<210>
       100
<211>
       51
<212>
       DNA
       Artificial Sequence
<213>
<220>
<223>
       Used to form echistatin template for PCR
agaaacccac acaagggtcc agctacttaa tggatccgcg gccgcccagc t
                                                                        51
<210>
       101
<211>
       24
<212>
      DNA
<213>
      Artificial Sequence
<220>
```

<223>	A-688A.ST25 Used to form echistatin template for PCR	
<400> ttcaag	101 aact tacagtttct gcag	24
<210> <211> <212> <213>	102 24 DNA Artificial Sequence	
<220> <223>	Used to form echistatin template for PCR	
<400> cgtcca	102 tgtc gtcacctcta gctc	24
<210> <211> <212> <213>	103 24 DNA Artificial Sequence	
<220> <223>	Used to form echistatin template for PCR	
<400> gtgtgg	103 gttt ctcgggcagt caca	24
<210> <211> <212> <213>	104 48 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ccgggta	104 aaag gtggaggtgg tggtgaatgt gaatctggtc catgctgc	48
<210> <211> <212> <213>	105 48 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> ccgggta	105 aaag gtggaggtgg tggtgaatgt gaatctggtc catgctgc	48
<210> <211> <212> <213>	106 22 DNA Artificial Sequence	
<220> <223>	PCR primer	
<400> aacataa	106 Igta cctgtaggat cg	22
<210>	107 49	

A-688A.ST25	
<212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 107 gcagcatgga ccagattcac attcaccacc acctccacct ttacccgga	49
<210> 108 <211> 859 <212> DNA <213> Artificial Sequence	
<220> <223> Echistatin Fc-peptide	
<220> <221> misc_feature <222> (1)(1) <223> NdeI site	
<220> <221> CDS <222> (4)(849)	
<220> <221> misc_feature <222> (854)(854) <223> BamHI site	
<400> 108 cat atg gac aaa act cac aca tgt cca cct tgt cca gct ccg gaa ctc Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 1 5 10 15	48
ctg ggg gga ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 20 25 30	96
ctc atg atc tcc cgg acc cct gag gtc aca tgc gtg gtg gtg gac gtg Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 35 40 45	144
agc cac gaa gac cct gag gtc aag ttc aac tgg tac gtg gac ggc gtg Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 50 55 60	192
gag gtg cat aat gcc aag aca aag ccg cgg gag gag cag tac aac agc Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 65 70 75	240
acg tac cgt gtg gtc agc gtc ctc acc gtc ctg cac cag gac tgg ctg Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 80 85 90 95	288
aat ggc aag gag tac aag tgc aag gtc tcc aac aaa gcc ctc cca gcc Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 100 105 110	336
ccc atc gag aaa acc atc tcc aaa gcc aaa ggg cag ccc cga gaa cca Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 115 120 125	384
cag gtg tac acc ctg ccc cca tcc cgg gat gag ctg acc aag aac cag Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Page 28	432

gtc agc ctg acc tgc ctg gtc aaa ggc ttc tat ccc agc gac atc gcc Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 145 150 155 480 gtg gag tgg gag agc aat ggg cag ccg gag aac aac tac aag acc acg Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 528 cct ccc gtg ctg gac tcc gac ggc tcc ttc ttc ctc tac agc aag ctc Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 180 185 190 576 acc gtg gac aag agc agg tgg cag cag ggg aac gtc ttc tca tgc tcc Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 195 200 205 624 gtg atg cat gag gct ctg cac aac cac tac acg cag aag agc ctc tcc Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 210 220672 ctg tct ccg ggt aaa ggt gga ggt ggt gga tgt gaa tct ggt cca Leu Ser Pro Gly Lys Gly Gly Gly Gly Glu Cys Glu Ser Gly Pro 225 230 235 720 tgc tgc aga aac tgt aag ttc ttg aag gaa ggt acc atc tgt aag aga Cys Cys Arg Asn Cys Lys Phe Leu Lys Glu Gly Thr Ile Cys Lys Arg 240 245 250 255 768 gct aga ggt gac gac atg gac gac tac tgt aac ggt aag acc tgt gac Ala Arg Gly Asp Asp Met Asp Asp Tyr Cys Asn Gly Lys Thr Cys Asp 260 265 270816 tgc ccg aga aac cca cac aag ggt cca gct act taatggatcc Cys Pro Arg Asn Pro His Lys Gly Pro Ala Thr 275 280 859

<210> 109

<211> 282 <212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 109

Met Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 20 25 30

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser

His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 50 55 60

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr 65 70 75 80

Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 90 95 Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 100 105 110 Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 115 120 125 Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val 130 135 140 Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val 145 150 155 160 Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 165 170 175 Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 180 185 190 Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 195 200 205 Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 210 215 220 Ser Pro Gly Lys Gly Gly Gly Gly Glu Cys Glu Ser Gly Pro Cys 225 230 235 240 Cys Arg Asn Cys Lys Phe Leu Lys Glu Gly Thr Ile Cys Lys Arg Ala 245 250 255 Arg Gly Asp Asp Met Asp Asp Tyr Cys Asn Gly Lys Thr Cys Asp Cys 260 265 270 Pro Arg Asn Pro His Lys Gly Pro Ala Thr 275 280

<210> 110

<211> 140

<212> DNA

Artificial Sequence

<220>

<223> pAMG21

<220>

misc_feature
(1)..(1)
AatII site

<221> <222> <223>

<220>

			A-688A.S	123		
<221> <222> <223>	misc_feature (140)(140) claI site					
<400> ctaatt	110 ccgc tctcacctac	caaacaatgc	cccctgcaa	aaaataaatt	cataaaaaaa	60
cataca	igata accatctgcg	gtgataaatt	atctctggcg	gtgttgacat	aaataccact	120
ggcggt	gata ctgagcacat					140
<210> <211> <212> <213>		uence				
<220> <223>	pAMG21					
<220> <221> <222> <223>	(1)(1)					
<220> <221> <222> <223>	misc_feature (55)(55) KpnI site					
<400> cgattt	111 gatt ctagaaggag	gaataacata	tggttaacgc	gttggaattc	ggtac	55
<210> <211> <212> <213>	1546	uence				
<220> <223>	pAMG21					
<220> <221> <222> <223>	misc_feature (1)(1) AatII sticky e	nd				
<220> <221> <222> <223>	misc_feature (1546)(1546) SacII sticky e	nd				
<400> gcgtaa	112 acgta tgcatggtct	ccccatgcga	gagtagggaa	ctgccaggca	tcaaataaaa	60
cgaaag	gctc agtcgaaaga	ctgggccttt	cgttttatct	gttgtttgtc	ggtgaacgct	120
ctcctg	gagta ggacaaatcc	gccgggagcg	gatttgaacg	ttgcgaagca	acggcccgga	180
gggtgg	cggg caggacgccc	gccataaact	gccaggcatc	aaattaagca	gaaggccatc	240
ctgacg	gatg gccttttgc	gtttctacaa	actcttttgt	ttatttttct	aaatacattc	300
aaatat	ggac gtcgtactta	acttttaaag	tatgggcaat	caattgctcc	tgttaaaatt	360
gcttta	ngaaa tactttggca	gcggtttgtt	gtattgagtt Page 33	tcatttgcgc	attggttaaa	420

tggaaagtga ccgtgcgctt	actacagcct	aatatttttg	aaatatccca	agagctttt	480
ccttcgcatg cccacgctaa	acattcttt	tctcttttgg	ttaaatcgtt	gtttgattta	540
ttatttgcta tatttatttt	tcgataatta	tcaactagag	aaggaacaat	taatggtatg	600
ttcatacacg catgtaaaaa	taaactatct	atatagttgt	ctttctctga	atgtgcaaaa	660
ctaagcattc cgaagccatt	attagcagta	tgaataggga	aactaaaccc	agtgataaga	720
cctgatgatt tcgcttcttt	aattacattt	ggagatttt	tatttacagc	attgttttca	780
aatatattcc aattaatcgg	tgaatgattg	gagttagaat	aatctactat	aggatcatat	840
tttattaaat tagcgtcatc	ataatattgc	ctccattttt	tagggtaatt	atccagaatt	900
gaaatatcag atttaaccat	agaatgagga	taaatgatcg	cgagtaaata	atattcacaa	960
tgtaccattt tagtcatatc	agataagcat	tgattaatat	cattattgct	tctacaggct	1020
ttaattttat taattattct	gtaagtgtcg	tcggcattta	tgtctttcat	acccatctct	1080
ttatccttac ctattgtttg	tcgcaagttt	tgcgtgttat	atatcattaa	aacggtaata	1140
gattgacatt tgattctaat	aaattggatt	tttgtcacac	tattatatcg	cttgaaatac	1200
aattgtttaa cataagtacc	tgtaggatcg	tacaggttta	cgcaagaaaa	tggtttgtta	1260
tagtcgatta atcgatttga	ttctagattt	gttttaacta	attaaaggag	gaataacata	1320
tggttaacgc gttggaattc	gagctcacta	gtgtcgacct	gcagggtacc	atggaagctt	1380
actcgaggat ccgcggaaag	aagaagaaga	agaagaaagc	ccgaaaggaa	gctgagttgg	1440
ctgctgccac cgctgagcaa	taactagcat	aaccccttgg	ggcctctaaa	cgggtcttga	1500
ggggtttttt gctgaaagga	ggaaccgctc	ttcacgctct	tcacgc		1546
<210> 113 <211> 872 <212> DNA <213> Artificial Seq	uence				
<220> <223> GM221					
<400> 113 ttattttcgt gcggccgcac	cattatcacc	gccagaggta	aactagtcaa	cacgcacggt	60
gttagatatt tatcccttgc	ggtgatagat	tgagcacatc	gatttgattc	tagaaggagg	120
gataatatat gagcacaaaa	aagaaaccat	taacacaaga	gcagcttgag	gacgcacgtc	180
gccttaaagc aatttatgaa	aaaaagaaaa	atgaacttgg	cttatcccag	gaatctgtcg	240
cagacaagat ggggatgggg	cagtcaggcg	ttggtgcttt	atttaatggc	atcaatgcat	300
taaatgctta taacgccgca	ttgcttacaa	aaattctcaa	agttagcgtt	gaagaattta	360
gcccttcaat cgccagagaa	tctacgagat	gtatgaagcg	gttagtatgc	agccgtcact	420
tagaagtgag tatgagtacc	ctgtttttc	tcatgttcag	gcagggatgt	tctcacctaa	480
gcttagaacc tttaccaaag	gtgatgcgga	gagatgggta	agcacaacca	aaaaagccag	540
tgattctgca ttctggcttg	aggttgaagg	taattccatg Page 32		caggctccaa	600

gccaagcttt	cctgacggaa	tgttaattct	cgttgaccct	gagcaggctg	ttgagccagg	660
tgatttctgc	atagccagac	ttgggggtga	tgagtttacc	ttcaagaaac	tgatcaggga	720
tagcggtcag	gtgttttac	aaccactaaa	cccacagtac	ccaatgatcc	catgcaatga	780
gagttgttcc	gttgtgggga	aagttatcgc	tagtcagtgg	cctgaagaga	cgtttggctg	840
atagactagt	ggatccacta	gtgtttctgc	cc			872
<210> 114 <211> 1197 <212> DNA <213> Art <220> <223> GM27	ificial Sequ	uence				
<400> 114						
	gacgtccatc	gaatggtgca	aaacctttcg	cggtatggca	tgatagcgcc	60
cggaagagag	tcaattcagg	gtggtgaatg	tgaaaccagt	aacgttatac	gatgtcgcag	120
agtatgccgg	tgtctcttat	cagaccgttt	cccgcgtggt	gaaccaggcc	agccacgttt	180
ctgcgaaaac	gcgggaaaaa	gtcgaagcgg	cgatggcgga	gctgaattac	attcccaacc	240
gcgtggcaca	acaactggcg	ggcaaacagt	cgctcctgat	tggcgttgcc	acctccagtc	300
tggccctgca	cgcgccgtcg	caaattgtcg	cggcgattaa	atctcgcgcc	gatcaactgg	360
gtgccagcgt	ggtggtgtcg	atggtagaac	gaagcggcgt	cgaagcctgt	aaagcggcgg	420
tgcacaatct	tctcgcgcaa	cgcgtcagtg	ggctgatcat	taactatccg	ctggatgacc	480
aggatgccat	tgctgtggaa	gctgcctgca	ctaatgttcc	ggcgttattt	cttgatgtct	540
ctgaccagac	acccatcaac	agtattattt	tctcccatga	agacggtacg	cgactgggcg	600
tggagcatct	ggtcgcattg	ggtcaccagc	aaatcgcgct	gttagcgggc	ccattaagtt	660
ctgtctcggc	gcgtctgcgt	ctggctggct	ggcataaata	tctcactcgc	aatcaaattc	720
agccgatagc	ggaacgggaa	ggcgactgga	gtgccatgtc	cggttttcaa	caaaccatgc	780
aaatgctgaa	tgagggcatc	gttcccactg	cgatgctggt	tgccaacgat	cagatggcgc	840
tgggcgcaat	gcgcgccatt	accgagtccg	ggctgcgcgt	tggtgcggat	atctcggtag	900
tgggatacga	cgataccgaa	gacagctcat	gttatatccc	gccgttaacc	accatcaaac	960
aggattttcg	cctgctgggg	caaaccagcg	tggaccgctt	gctgcaactc	tctcagggcc	1020
aggcggtgaa	gggcaatcag	ctgttgcccg	tctcactggt	gaaaagaaaa	accaccctgg	1080
cgcccaatac	gcaaaccgcc	tctcccgcg	cgttggccga	ttcattaatg	cagctggcac	1140
gacaggtttc	ccgactggaa	agcggacagt	aaggtaccat	aggatccagg	cacagga	1197
<210> 115 <211> 11 <212> PRT						

<212> PRT <213> Artificial Sequence

```
A-688A.ST25
<223> Laminin related peptide
<400>
      115
Met Tyr Ile Gly Ser Arg Gly Gly Gly Gly 10 5 10
<210>
       116
<211>
       16
<212>
      PRT
<213>
      Artificial Sequence
<220>
<223>
      Laminin related peptide
<400> 116
Met Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg 1 10 15
<210>
       117
<211> 26
<212> PRT
<213> Artificial Sequence
<220>
<223> Laminin related peptide
<400> 117
Met Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg 1 5 10 15
Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg 20 25
<210>
       118
<211> 26
<212>
<213> Artificial Sequence
<220>
<223>
      Laminin related peptide
<400>
      118
Met Ile Pro Cys Asn Asn Lys Gly Ala His Ser Val Gly Leu Met Trp
Trp Met Leu Ala Arg Gly Gly Gly Gly 20 25
<210>
       119
<211> 25
<212>
<213> Artificial Sequence
<220>
<223>
       Laminin related peptide
<400>
       119
```

```
A-688A.ST25
Met Tyr Ile Gly Ser Arg Arg Glu Asp Val Glu Ile Leu Asp Val Pro
Asp Ser Gly Arg Gly Gly Gly Gly 20 25
<210>
       120
<211>
       20
<212>
       PRT
       Artificial Sequence
<220>
<223>
       Laminin related peptide
<400>
       120
Met Arg Gly Asp Arg Gly Asp Tyr Ile Gly Ser Arg Arg Gly Asp Gly 10 15
Gly Gly Gly Gly
<210>
       121
<211>
       48
<212>
       DNA
<213>
       Artificial Sequence
<220>
       Encoding Laminin related peptide, for PCR reaction to yield
<223>
       in-frame fusion to Fc
<400>
      121
gaataacata tgtacatcgg ttctcgtggt ggaggcggtg gggacaaa
                                                                         48
<210>
       122
<211>
       81
<212>
       DNA
      Artificial Sequence
<213>
<220>
       Encoding Laminin related peptide, for PCR reaction to yield
<223>
       in-frame fusion to Fc
<400> 122
                                                                         60
gaataacata tgtacatcgg ttctcgttat attggctccc gctacattgg tagccgtgac
aaaactcaca catgtccacc t
                                                                         81
<210>
       123
<211>
       111
<212>
      DNA
       Artificial Sequence
<213>
<220>
<223>
       Encoding Laminin related peptide, for PCR reaction to yield
       in-frame fusion to Fc
<400> 123
gaataacata tgtacatcgg ttctcgttat attggctccc gctacattgg tagccgttat
                                                                         60
atcggctctc gctatattgg tagccgcgac aaaactcaca catgtccacc t
                                                                        111
```

<210> <211> <212> <213>	124 93 DNA Artificial Sequence	
<220> <223>	Encoding Laminin related peptide, for PCR reaction to yield in-frame fusion to Fc	
<400> gaataa	124 cata tgatcccgtg caacaacaaa ggtgctcact ctgttggtct gatgtggtgg	60
atgctg	gctc gtggtggagg cggtggggac aaa	93
<210> <211> <212> <213>	125 90 DNA Artificial Sequence	
<220> <223>	Encoding Laminin related peptide, for PCR reaction to yield in-frame fusion to Fc	
<400>	125 cata tgtacatcgg ttctcgtcgt gaagacgttg aaatcctgga cgttccggac	60
-	cgtg gtggaggcgg tggggacaaa	90
<210> <211> <212> <213>	126 75 DNA Artificial Sequence	
<220> <223>	Encoding Laminin related peptide, for PCR reaction to yield in-frame fusion to FC	
<400> gaataa	126 cata tgcgtggtga ccgtggtgac tacatcggtt ctcgtcgtgg tgacggtgga	60
ggcggt	gggg acaaa	75
<210> <211> <212> <213>	127 20 DNA Artificial Sequence	
<220> <223>	Encoding Laminin related peptide, for PCR reaction to yield in-frame fusion to Fc	
<400> gttatte	127 gctc agcggtggca	20
<210> <211> <212> <213>	128 10 PRT Artificial Sequence	
<220> <223>	Laminin related peptide	
<400>	128	

```
Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg
<210>
      129
<211>
      15
<212>
      PRT
      Artificial Sequence
<220>
<223>
       Laminin related peptide
<400>
Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg 10 Ser Arg 15
<210>
       130
<211>
       20
      PRT
      Artificial Sequence
<220>
      Laminin related peptide
<223>
<400>
       130
Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr 1 5 10 15
Ile Gly Ser Arg
<210>
       131
<211>
       25
      PRT
      Artificial Sequence
<213>
<220>
      Laminin related peptide
<400>
       131
Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr 1 10 15
Ile Gly Ser Arg Tyr Ile Gly Ser Arg
20 25
<210>
       132
<211>
       20
      PRT
      Artificial Sequence
<213>
<220>
      Laminin related peptide
<400>
       132
Ile Pro Cys Asn Asn Lys Gly Ala His Ser Val Gly Leu Met Trp Trp 10 15
```

```
Met Leu Ala Arg
20
<210>
      133
<211>
      19
<212>
       PRT
      Artificial Sequence
<220>
       Laminin related peptide
<223>
<400>
       133
Tyr Ile Gly Ser Arg Arg Glu Asp Val Glu Ile Leu Asp Val Pro Asp 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
Ser Gly Arg
<210> 134
<211>
      14
<212>
      PRT
<213> Artificial Sequence
<220>
<223>
      Laminin related peptide
<400>
       134
<210>
       135
<211>
      25
      PRT
Artificial Sequence
<212>
<220>
<223>
      Laminin related peptide
<400>
       135
Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr Ile Gly Ser Arg Tyr 1 10 15
Ile Gly Ser Arg Tyr Ile Gly Ser Arg 20 25
<210>
       136
       19
<211>
      PRT
Artificial Sequence
<212>
<220>
      Laminin related peptide
<400>
       136
Arg Glu Asp Val Glu Ile Leu Asp Val Tyr Ile Gly Ser Arg Pro Asp 10 	 15
```

Ser Gly Arg

```
<210> 137
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Laminin related peptide
<400> 137

Tyr Ile Gly Ser Arg Arg Glu Asp Val Glu Ile Leu Asp Val Pro Asp
1 5 10 15
```

Ser Gly Arg