Les nombres complexes

Représentation géométrique des complexes

Le plan est muni d'un repère orthonormé direct $(O; \overline{OU}; \overline{OV}) = (O; \vec{u}; \vec{v}).$

<u>Définition</u>: Tout nombre complexe z=a+ib avec $a,b \in \mathbb{R}$ peut être représenté dans ce repère par :

- un unique point M(a;b) appelé **point image** de z.
- un unique vecteur $\overline{OM}(a;b)$ appelé vecteur image de z.

- Les complexes $z=a \in \mathbb{R}$ sont les **nombres réels** et sont représentés sur **l'axe des abscisses**.
- Les complexes z=ib, $b \in \mathbb{R}$ sont les **imaginaires purs** et sont représentés sur **l'axe des ordonnées**.
- Le plan est alors appelé plan complexe.

Module et argument d'un nombre complexe

Définition: Soit z un complexe et M un point d'affixe z.

- On appelle **module** de z la distance OM. Le module de z est noté |z|.
- Si $z\neq 0$, on appelle **argument** de z <u>une</u> mesure en radians de l'angle $|\vec{u}; OM|$. Un argument de z est noté $\arg(z)$.
- Le complexe nul n'a pas d'argument et a pour module 0.

Remarque: L'argument d'un nombre complexe est donné à un multiple de 2π près.

Propriété: Si z=a+ib est un nombre complexe, alors $|z|=\sqrt{a^2+b^2}$.

Exemple:
$$|3+4i| = \sqrt{3^2+4^2} = \sqrt{25} = 5$$
.

<u>Propriété</u>: Soient z_1 et z_2 deux nombres complexes.

- Le module du conjugué est égal au module du complexe $|\overline{z}| = |z|$;
- Le produit d'un complexe avec son conjugué est le carré du module $z \times \overline{z} = |z|^2$;
- Le module d'un produit est le produit des modules $|z_1 \times z_2| = |z_1| \times |z_2|$;
- Le module d'un quotient est le quotient des modules

Forme trigonométrique

<u>Définition</u>: Tout nombre complexe non-nul peut s'écrire sous la forme $z=r(\cos\theta+i\sin\theta)$ avec r=|z|>0 et $\theta = \arg(z)$. Cette forme s'appelle forme trigonométrique de z.

Remarques:

- r doit **impérativement** être positif puisqu'il s'agit du module du nombre complexe.
- Il est aussi possible d'utiliser la forme $|r;\theta|$, ce sont les **coordonnées polaires**.

Théorème : Pour passer d'une forme a une autre, soit z un complexe non-nul tel que $z=a+ib=r(\cos\theta+i\sin\theta)$.

$$r = |z| = \sqrt{a^2 + b^2}$$

$$\cos \theta = \frac{a}{r} \text{ et } \sin \theta = \frac{b}{r}$$

$$b = r \times \sin \theta$$