Quantum Transport Clustering

The package quantum_transport_clustering (written in python-3.6) contains three major class objects:

- GraphMethods: construct undirected graphs, and compute and encapsulate their graph Laplacians
- SpectralClustering: perform correct spectral clustering on undirected graph Laplacians
- QuantumTransportClustering: perform quantum transport clustering on undirected graph Laplacians

Usage example

```
import quantum_transport_clustering as qtc
graph_ = qtc.GraphMethods(data)
...
spec = qtc.SpectralClustering(n_clusters=3, norm_method='row')
...
shot = qtc.QuantumTransportClustering(n_clusters=3, Hamiltonian=Lap_)
```

Graph Methods

```
1 quantum_transport_clustering.GraphMethods(data_, graph_embedded=True, edt_tau=None, eps_quant=None, normed=True, compute_lap=True)
```

The Class GraphMethods is able to

- Generate Gaussian RBF adjacency matrix using Euclidean distances of the data distribution
- Compute Graph Lapalcian (symmetrically normalized by default)
- Store the raw data as well as adjacency matrix and graph Laplacian

Parameters

data_	If graph_embedded = True, data_ is a numby array of shape $(n_{\text{feature}}, m_{\text{sample}})$, or m_{sample} points in $\mathbb{R}^{n_{\text{feature}}}$. If graph_embedded = False, data_ is a numby array of shape $(m_{\text{sample}}, m_{\text{sample}})$ representing the adjacency of a graph with m_{sample} nodes.
graph_embedded	bool, optional. If True, assume the graph is embedded in a Euclidean space. If False, assume the input data set is an adjacency matrix not <i>a priori</i> embedded in a Euclidean space.
edt_tau	int, $\tau > 0$, optional. If specified, it is the number of iterations of effective

	dissimilarity transformation (EDT). Neglected if graph_embedded = False.
eps_quant	float, in range $0<\varepsilon<100$, optional. The the quantile of distance distribution. If not specified, $\varepsilon=1$. Neglected if graph_embedded = False.
normed	bool, optional. If False, graph Laplacian is $L=D-A$ where D is degree diagonal matrix, and A the adjacency matrix. If True, graph Laplacian will be normalized $H=D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$.
compute_lap	bool, optional. If True, graph Laplacian will be computed upon initialization.
Returns	

numpy array of shape (\emph{m}_{sample} , \emph{m}_{sample}). The graph Laplacian matrix \emph{L} or \emph{H} . Lap_

Example:

```
graph_ = qtc.GraphMethods(data)
2 laplacian_matrix_ = graph_.Lap_
```

Spectral Clustering

quantum_transport_clustering.SpectralClustering(n_clusters, norm_method='row', isExact=True)

Perform correct spectral clustering on undirected graph Laplacians. Requires numpy >= 1.13.

Parameters

n_clusters	int, $n_{ m cluster} > 0$, the number of clusters.
norm_method	None, "row", or "deg". If None, the spectral embedding is not normalized. If "row", the spectral embedding is L^2 -normalized by row where each row represent a node. If "deg", the spectral embedding is normalized by degree vector.
isExact	bool. If True, exact eigenvalues and eigenvectors will be computed. If False, first (small) n_{cluster} eigenvalues and eigenvectors will be computed.

Methods

Lap_ is the symmetric graph Laplacian. First, the eigenvalues and eigenstates are fit(Lap_)

computed. Next, perform spectral embedding and *k*-means.

Returns

labels_ An integer-valued numpy array of shape (m_{sample}) . The class labels associated with each node.

Example:

```
spec = qtc.SpectralClustering(n_clusters=3, norm_method='row')
spec.fit(laplacian_matrix)
spec_labels_ = spec.labels_
```

Quantum Transport Clustering

```
quantum_transport_clustering.QuantumTransportClustering(n_clusters, Hamiltonian,
s=1.0, isExact=True, n_eigs = None)
```

Perform quantum transport clustering on undirected graph Laplacians.

Parameters

n_clusters	int , $n_{ m cluster} > 0$, the number of clusters.
Hamiltonian	numpy array of shape $(m_{\mathrm{sample}}, m_{\mathrm{sample}})$. The symmetric graph Laplacian matrix H .
S	float, $\tilde{s}>0$, optional. The actual s -parameter of Laplace transform will be $s=\tilde{s}\times(E_{n_{\text{cluster}}-1}-E_0)/(n_{\text{cluster}}-1)$, where E_n are eigenvalues of H .
isExact	bool, optional. If True, exact eigenvalues and eigenvectors of \boldsymbol{H} will be computed. If False, first n_eigs low energy states will be computed approximated.
n_eigs	int, $n_{\rm eigs} > 0$, optional. If n_eigs not specified and isExact = False, $n_{\rm eigs} = 10 \times n_{\rm cluster}$. If n_eigs is specified and isExact = True, then first $n_{\rm eigs}$ low exact energy state will be used to perform quantum transport clustering. The latter case can be used to speed up the clustering processes.

Methods

```
Grind() Grind(s=None, grind='medium', method_='diff', init_nodes_=None) Option grind can be "coarse", "medium", "fine", "micro", or "custom". Option method can be "diff"
```

or "kmeans" corresponding to direct difference and k-means methods. If grind="custom", then init_nodes_ is the custom python list of initialization nodes. Method Grind() produces the array Omega_ or the Ω -matrix which contains the raw class labels.

- Espresso() Perform "direct extraction method" on Ω . This method creates attribute labels_ as the predicted class labels.
- Coldbrew() Compute "consensus matrix" C based on Ω . This method creates attribute consensus_matrix_.

Returns

Omega_	An integer-valued numpy array of shape $(m_{\text{sample}}, m_{\text{initialization}})$. The raw class labels of m_{samples} from quantum transport from $m_{\text{initialization}}$ nodes.
labels_	An integer-valued numpy array of shape (m_{sample}) . The final prediction by Espresso().
consensus_matrix_	A float-valued numpy array of shape $(m_{\rm sample}, m_{\rm sample})$. The consensus matrix computed by Coldbrew().

Example:

```
shot = qtc.QuantumTransportClustering(n_clusters=3, Hamiltonian=Lap_) #
initialization

Omg_ = shot.Grind() # generate raw class label

# One may extract the eigevalues by attribute shot.Heigval

shot.Espresso() # direct extraction method

class_labels_ = shot.labels_

shot.Coldbrew() # generate consensus matrix

C_matrix_ = shot.consensus_matrix_
```