Package 'hutan'

June 3, 2015

Title A Collection of Tools for Phylogenetic Tree Manipulation
Version 0.0.0.9000
Description A collection of tools for phylogenetic tree manipulation. It is named after the Indonesian word for forest.
Depends R (>= 3.1.0)
License GPLv3 (https://www.gnu.org/copyleft/gpl.html)
LazyData true
Collate 'utility_functions.R' 'hutan.R' 'siphonophore_constraint.R' 'siphonophore_ml.R'
Imports ape (>= 3.3)
Suggests testthat, roxygen2, devtools R topics documented:
are_bipartitions_compatible
bipartition_for_edge
bipartition_for_edge_by_label
compatible_edges
descendants 4 get_bipartitions 4
hutan
is_compatible_with_set
is_monophyletic
siphonophore_constraint
siphonophore_ml
tips

Index

9

2 bipartition_for_edge

are_bipartitions_compatible

Check if two bipartitions drawn from trees with the same tips are compatible with eachother. Each bipartition is defined as a vector of the names of the tips on one side of the bipartition.

Description

Check if two bipartitions drawn from trees with the same tips are compatible with eachother. Each bipartition is defined as a vector of the names of the tips on one side of the bipartition.

Usage

```
are_bipartitions_compatible(bi1, bi2, phy)
```

Arguments

bi1 The first bipartition. bi2 The second bipartition.

phy A phylo object describing a tree that includes all tips under investigation. This

is used to infer the other half of each bipartition.

Value

TRUE if bi1 is compatible with bi2, otherwise FALSE.

bipartition_for_edge Get a bipartition, described as a vector of tip numbers, from a specified tree and edge number.

Description

Get a bipartition, described as a vector of tip numbers, from a specified tree and edge number.

Usage

```
bipartition_for_edge(phy, edge)
```

Arguments

phy A phylo object that specifies the tree.

edge The number of the edge that defines the bipartition.

Value

A vector of tip nodes (specified by numbers) that define one half of the bipartition (the other half is the set of tip nodes that are not in this vector).

```
bipartition_for_edge_by_label
```

Get a bipartition, described as a vector of tip labels, from a specified tree and edge number.

Description

Get a bipartition, described as a vector of tip labels, from a specified tree and edge number.

Usage

```
bipartition_for_edge_by_label(edge, phy)
```

Arguments

edge The number of the edge that defines the bipartition.

phy A phylo object that specifies the tree.

Value

A vector of tip nodes (specified by labels) that define one half of the bipartition (the other half is the set of tip nodes that are not in this vector).

compatible_edges

Identify the edges in one phylo object that are compatible with the edges in another phylo object. Requires the same tip labels for each tree.

Description

Identify the edges in one phylo object that are compatible with the edges in another phylo object. Requires the same tip labels for each tree.

Usage

```
compatible_edges(phy1, phy2)
```

Arguments

phy1 The tree under consideration phy2 The tree to be compared to

Value

A boolean vector corresponding to the edges in phy1. Each element is FALSE if the edge is iscompatible with phy2, or TRUE if compatible.

4 hutan

descendants

Get all the descendants of a given node in a tree.

Description

Get all the descendants of a given node in a tree.

Usage

```
descendants(phy, a, keep_node = FALSE)
```

Arguments

phy A phylo object that specifies the tree.

a The number of a node in phy.

keep_node If FALSE, do not include a in the result.

Value

A vector of nodes (specified by number) that are descendants of a. Includes internal and tip nodes.

get_bipartitions

Get a list of all the bipartitions in a tree.

Description

Get a list of all the bipartitions in a tree.

Usage

```
get_bipartitions(phy)
```

Arguments

phy

A phylo object that specifies the tree.

Value

A list of bipartitions for the tree. The order of the list corresponds to the edges in phy\$edge. Bipartitions are specified as a vector of the tip labels that make up one half of the bipartition.

hutan

hutan: A collection of tools for phylogenetic tree manipulation.

Description

The hutan package provides functions for common phylogenetic tree manipulation tasks, and uses these fascilitate some more specialized tasks. It is named after the Indonesian word for forest.

is_compatible_with_set 5

```
is_compatible_with_set
```

Check if bipartition bi is compatible with the bipartitions in bi_list. Each bipartition is defined as a vector of the names of the tips on one side of the bipartition.

Description

Check if bipartition bi is compatible with the bipartitions in bi_list. Each bipartition is defined as a vector of the names of the tips on one side of the bipartition.

Usage

```
is_compatible_with_set(bi, bi_list, phy)
```

Arguments

bi The query bipartition.

bi_list A list of the bipartitions to be compared against.

phy A phylo object describing a tree that includes all tips under investigation. This

is used to infer the other half of each bipartition.

Value

TRUE if bi is compatible with all bipartition in bi_list, otherwise FALSE.

is_monophyletic	Test if a set of tips, specified as a vector of tip labels, forms a mono-
	phyletic group in a given tree. The test is unrooted, i.e. the group can span the root.
	span the 1001.

Description

Test if a set of tips, specified as a vector of tip labels, forms a monophyletic group in a given tree. The test is unrooted, i.e. the group can span the root.

Usage

```
is_monophyletic(phy, x)
```

Arguments

phy The tree under consideration

x A vector of the labels of the tips in question

Value

A boolean, TRUE if the tips form a monophyletic group.

6 siphonophore_ml

```
siphonophore_constraint
```

Siphonophores constraint phylogeny.

Description

An unresolved phylogeny that constrains the group Agalmatidae sensu stricto + Bargmannia to be monophyletic, corresponding to the published SOWH test

Usage

```
siphonophore_constraint
```

Format

An ape phylo object

Source

```
http://dx.doi.org/10.1080/10635150500354837
```

siphonophore_ml

Siphonophores phylogeny.

Description

A maximum likelihood phylogeny of siphonophores

Usage

```
siphonophore_ml
```

Format

An ape phylo object

Source

http://dx.doi.org/10.1080/10635150500354837

tips 7

tips

Get tips and labels of a phylo object.

Description

Get tips and labels of a phylo object.

Usage

```
tips(phy)
```

Arguments

phy

A phylo object.

Value

A vector of all the tips, annotated with their names

tip_descendants

Get all the tips that are descendants of a given node in a tree.

Description

Get all the tips that are descendants of a given node in a tree.

Usage

```
tip_descendants(phy, a)
```

Arguments

phy A phylo object that specifies the tree.

a The number of a node in phy.

Value

A vector of tip nodes (specified by number) that are descendants of a. If a is a tip, it is the sole element of this vector.

8 zero_constrained

zero_constrained	Generates the "zero-constrained" tree described by Susko 2014
	(http://dx.doi.org/10.1093/molbev/msu039)

Description

Generates the "zero-constrained" tree described by Susko 2014 (http://dx.doi.org/10.1093/molbev/msu039)

Usage

```
zero_constrained(phy_resolved, phy_constraint, epsilon = 1e-06)
```

Arguments

```
phy_resolved A fully resolved phylogeny stored as a phylo object, e.g. an ML tree.

phy_constraint A partially resolved constraint tree.

epsilon
```

Value

A phylo object containing a tree that is the same as phy_resolved, except that the length of edges that are incompatible with phy_constraint are replaced with epsilon.

Examples

```
zc <- zero_constrained( ml, constraint )</pre>
```

Index

```
*Topic datasets
    \verb|siphonophore_constraint|, 6
    siphonophore_ml, 6
{\tt are\_bipartitions\_compatible, 2}
{\tt bipartition\_for\_edge}, {\tt 2}
{\tt bipartition\_for\_edge\_by\_label, 3}
compatible\_edges, 3
descendants, 4
get_bipartitions, 4
hutan, 4
hutan-package (hutan), 4
is_compatible_with_set, 5
is_monophyletic,5
siphonophore\_constraint, 6
siphonophore_ml, 6
tip_descendants, 7
tips, 7
{\sf zero\_constrained}, 8
```