Code and Output:

```
In [25]: import pandas as pd
         import numpy as np
         import random as rnd
         import warnings
         warnings.filterwarnings('ignore')
         # visualization
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
         # machine learning
         from sklearn.linear model import LogisticRegression
         from sklearn.svm import SVC, LinearSVC
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.naive bayes import GaussianNB
         from sklearn.linear_model import SGDClassifier
         from sklearn.tree import DecisionTreeClassifier
 In [2]: train df = pd.read csv("train.csv")
         test df = pd.read csv("test.csv")
         combine = [train_df, test_df]
 In [3]: print(train df.columns.values)
         ['PassengerId' 'Survived' 'Pclass' 'Name' 'Sex' 'Age' 'SibSp' 'Parch'
          'Ticket' 'Fare' 'Cabin' 'Embarked']
```

In [4]: train_df.head()

Out[4]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabi
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Na
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Na
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C12
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Na

→

In [5]: train_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [6]: test_df.head()

Out	[6]	:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarke
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	(
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	:
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	(
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	:
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	fema l e	22.0	1	1	3101298	12.2875	NaN	•

In [7]: test_df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 418 entries, 0 to 417 Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Pclass	418 non-null	int64
2	Name	418 non-null	object
3	Sex	418 non-null	object
4	Age	332 non-null	float64
5	SibSp	418 non-null	int64
6	Parch	418 non-null	int64
7	Ticket	418 non-null	object
8	Fare	417 non-null	float64
9	Cabin	91 non-null	object
10	Embarked	418 non-null	object
d+\/n	00. 4100+64/2	$\frac{1}{2}$	oc+/E)

dtypes: float64(2), int64(4), object(5)

memory usage: 36.0+ KB

In [8]: train_df.describe()

\sim		Γο:	1.
Ou	ľ	ŏ	H

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [9]: train_df.describe(include=['0'])

Out[9]:

	Name	Sex	Ticket	Cabin	Embarked
count	891	891	891	204	889
unique	891	2	681	147	3
top	Braund, Mr. Owen Harris	male	347082	B96 B98	S
freq	1	577	7	4	644

In [10]: train_df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean().sort_

Out[10]:

	Pclass	Survived
0	1	0.629630
1	2	0.472826
2	3	0.242363

In [11]: train_df[["Sex", "Survived"]].groupby(['Sex'], as_index=False).mean().sort_values

Out[11]:

	Sex	Survived
0	female	0.742038
1	male	0.188908

In [12]: train_df[["SibSp", "Survived"]].groupby(['SibSp'], as_index=False).mean().sort_value.

Out[12]:		SibSp	Survived
	1	1	0.535885
	2	2	0.464286
	0	0	0.345395
	3	3	0.250000
	4	4	0.166667
	5	5	0.000000
	6	8	0.000000

```
In [13]: train_df[["Parch", "Survived"]].groupby(['Parch'], as_index=False).mean().sort_value.
```

Out[13]:		Parch	Survived
	3	3	0.600000
	1	1	0.550847
	2	2	0.500000
	0	0	0.343658
	5	5	0.200000
	4	4	0.000000
	6	6	0.000000

```
In [18]: g = sns.FacetGrid(train_df, col='Survived')
g.map(plt.hist, 'Age', bins=20)
```

Out[18]: <seaborn.axisgrid.FacetGrid at 0x1407cc2a550>


```
In [22]: grid = sns.FacetGrid(train_df, col='Survived', row='Pclass', aspect=1.6)
    grid.map(plt.hist, 'Age', alpha=.5, bins=20)
    grid.add_legend();
```



```
In [27]: grid = sns.FacetGrid(train_df, row='Embarked', aspect=1.6)
grid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep')
grid.add_legend()
```

Out[27]: <seaborn.axisgrid.FacetGrid at 0x1407d8cac70>


```
In [28]: grid = sns.FacetGrid(train_df, row='Embarked', col='Survived', aspect=1.6)
    grid.map(sns.barplot, 'Sex', 'Fare', alpha=.5, ci=None)
    grid.add_legend()
```

Out[28]: <seaborn.axisgrid.FacetGrid at 0x1407d987f10>

Out[30]: Sex female male

Title		
Capt	0	1
Col	0	2
Countess	1	0
Don	0	1
Dr	1	6
Jonkheer	0	1
Lady	1	0
Major	0	2
Master	0	40
Miss	182	0
MIIe	2	0
Mme	1	0
Mr	0	517
Mrs	125	0
Ms	1	0
Rev	0	6
Sir	0	1

```
In [31]: for dataset in combine:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess', 'Capt', 'Col
    'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')

    dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')

train_df[['Title', 'Survived']].groupby(['Title'], as_index=False).mean()
```

```
        Out[31]:
        Title
        Survived

        0
        Master
        0.575000

        1
        Miss
        0.702703

        2
        Mr
        0.156673

        3
        Mrs
        0.793651
```

Rare 0.347826

```
In [32]: title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
for dataset in combine:
    dataset['Title'] = dataset['Title'].map(title_mapping)
    dataset['Title'] = dataset['Title'].fillna(0)

train_df.head()
```

```
Out[32]:
                Passengerld Survived Pclass
                                                     Name
                                                               Sex Age SibSp Parch
                                                                                             Fare Embarked Title
                                                   Braund,
             0
                           1
                                     0
                                              3
                                                              male 22.0
                                                                                           7.2500
                                                  Mr. Owen
                                                                               1
                                                                                                            S
                                                                                                                  1
                                                     Harris
                                                  Cumings,
                                                  Mrs. John
                                                    Bradley
             1
                           2
                                                            female 38.0
                                                                                       0 71.2833
                                                                                                            С
                                                                                                                  3
                                                  (Florence
                                                     Briggs
                                                      Th...
                                                 Heikkinen,
             2
                           3
                                     1
                                                                                          7.9250
                                                      Miss.
                                                            female 26.0
                                                     Laina
                                                   Futrelle,
                                                      Mrs.
                                                   Jacques
             3
                                     1
                                                                                       0 53.1000
                                                                                                                  3
                           4
                                                            female 35.0
                                                                               1
                                                                                                            S
                                                     Heath
                                                  (Lily May
                                                      Peel)
                                                  Allen, Mr.
                           5
                                     0
                                              3
                                                                                           8.0500
                                                                                                            S
                                                    William
                                                              male 35.0
                                                                               0
                                                     Henry
```

```
In [33]: train_df = train_df.drop(['Name', 'PassengerId'], axis=1)
    test_df = test_df.drop(['Name'], axis=1)
    combine = [train_df, test_df]
    train_df.shape, test_df.shape
```

Out[33]: ((891, 9), (418, 9))

Out[34]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title
	0	0	3	0	22.0	1	0	7.2500	S	1
	1	1	1	1	38.0	1	0	71.2833	С	3
	2	1	3	1	26.0	0	0	7.9250	S	2
	3	1	1	1	35.0	1	0	53.1000	S	3
	4	0	3	0	35.0	0	0	8.0500	s	1

```
In [36]: grid = sns.FacetGrid(train_df, row='Pclass', col='Sex', aspect=1.6)
    grid.map(plt.hist, 'Age', alpha=.5, bins=20)
    grid.add_legend()
```

Out[36]: <seaborn.axisgrid.FacetGrid at 0x1407de7c1c0>


```
In [38]: # iterate over Sex (0 or 1) and Pclass (1, 2, 3) to calculate guessed values of
         for dataset in combine:
             for i in range(0, 2):
                 for j in range(0, 3):
                     guess_df = dataset[(dataset['Sex'] == i) & \
                                            (dataset['Pclass'] == j+1)]['Age'].dropna()
                     # age_mean = guess_df.mean()
                     # age_std = guess_df.std()
                     # age_guess = rnd.uniform(age_mean - age_std, age_mean + age_std)
                     age_guess = guess_df.median()
                     # Convert random age float to nearest .5 age
                     guess_ages[i,j] = int( age_guess/0.5 + 0.5 ) * 0.5
             for i in range(0, 2):
                 for j in range(0, 3):
                     dataset.loc[ (dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.F
                              'Age'] = guess_ages[i,j]
             dataset['Age'] = dataset['Age'].astype(int)
         train_df.head()
```

Out[38]: Survived Pclass Sex Age SibSp Parch Fare Embarked Title 0 0 22 7.2500 S 0 1 1 38 1 0 71.2833 С 3 1 1 2 26 7.9250 S 2 1 3 1 0 0 53.1000 3 1 1 1 35 1 0 3 0 35 0 0 8.0500 S 1

```
In [39]: # create Age bands and determine correlations with Survived
train_df['AgeBand'] = pd.cut(train_df['Age'], 5)
train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean().sor
```

Out[39]:		AgeBand	Survived
	0	(-0.08, 16.0]	0.550000
	1	(16.0, 32.0]	0.337374
	2	(32.0, 48.0]	0.412037
	3	(48.0, 64.0]	0.434783
	4	(64.0, 80.0]	0.090909

```
In [40]: # replace Age with ordinals based on these bands.
for dataset in combine:
    dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0
    dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1
    dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2
    dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3
    dataset.loc[ dataset['Age'] > 64, 'Age']
train_df.head()
```

Out[40]: Survived Pclass Sex Age SibSp Parch Fare Embarked Title AgeBand S 7.2500 (16.0, 32.0] 0 71.2833 С 3 (32.0, 48.0] 7.9250 S 2 (16.0, 32.0] 0 53.1000 S (32.0, 48.0] 8.0500 S 1 (32.0, 48.0]

```
In [41]: train_df = train_df.drop(['AgeBand'], axis=1)
    combine = [train_df, test_df]
    train_df.head()
```

```
Out[41]:
               Survived Pclass Sex Age SibSp Parch
                                                             Fare Embarked Title
            0
                      0
                              3
                                   0
                                                           7.2500
                                                                           S
                                        1
                                                1
                                                                                1
                                                       0
            1
                                        2
                                                                          С
                                                                                3
                      1
                              1
                                   1
                                                1
                                                       0 71.2833
            2
                      1
                              3
                                   1
                                        1
                                                0
                                                       0
                                                           7.9250
                                                                          S
                                                                                2
            3
                                                                                3
                      1
                              1
                                        2
                                                1
                                                       0 53.1000
                                                                           S
                                   1
                      0
                              3
                                   0
                                        2
                                                0
                                                       0
                                                           8.0500
                                                                           S
                                                                                1
```

```
Out[42]:
              FamilySize Survived
           3
                       4 0.724138
                       3 0.578431
           2
                       2 0.552795
            1
                       7 0.333333
            6
                       1 0.303538
                       5 0.200000
                       6 0.136364
                       8 0.000000
           7
                      11 0.000000
           8
```

```
In [43]: # create another feature called IsAlone.
for dataset in combine:
    dataset['IsAlone'] = 0
    dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1

train_df[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False).mean()
```

Out[43]: IsAlone Survived 0 0 0.505650 1 1 0.303538

```
In [44]: # drop Parch, SibSp, and FamilySize features in favor of IsAlone.
    train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
    test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
    combine = [train_df, test_df]
    train_df.head()
```

Out[44]:		Survived	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone
	0	0	3	0	1	7.2500	S	1	0
	1	1	1	1	2	71.2833	С	3	0
	2	1	3	1	1	7.9250	S	2	1
	3	1	1	1	2	53.1000	S	3	0
	4	0	3	0	2	8.0500	S	1	1

```
In [45]: # create an artificial feature combining Pclass and Age.
for dataset in combine:
    dataset['Age*Class'] = dataset.Age * dataset.Pclass

train_df.loc[:, ['Age*Class', 'Age', 'Pclass']].head(10)
```

Out[45]: Age*Class Age Pclass

```
In [46]: # Embarked feature takes S, Q, C values based on port of embarkation.
# training dataset has two missing values.
# simply fill these with the most common occurance.
freq_port = train_df.Embarked.dropna().mode()[0]
freq_port
```

Out[46]: 'S'

Out[47]:		Embarked	Survived
	0	С	0.553571
	1	Q	0.389610
	2	S	0.339009

```
In [48]: # convert the EmbarkedFill feature by creating a new numeric Port feature.
for dataset in combine:
    dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).ast
    train_df.head()
```

Out[48]:

	Survived	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class
0	0	3	0	1	7.2500	0	1	0	3
1	1	1	1	2	71.2833	1	3	0	2
2	1	3	1	1	7.9250	0	2	1	3
3	1	1	1	2	53.1000	0	3	0	2
4	0	3	0	2	8.0500	0	1	1	6

In [49]: # round off the fare to two decimals as it represents currency.
 test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True)
 test_df.head()

Out[49]:

	Passengerld	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class	
0	892	3	0	2	7.8292	2	1	1	6	
1	893	3	1	2	7.0000	0	3	0	6	
2	894	2	0	3	9.6875	2	1	1	6	
3	895	3	0	1	8.6625	0	1	1	3	
4	896	3	1	1	12.2875	0	3	0	3	

Out[50]:

	FareBand	Survived
0	(-0.001, 7.91]	0.197309
1	(7.91, 14.454]	0.303571
2	(14.454, 31.0]	0.454955
3	(31.0, 512.329]	0.581081

```
In [51]: # convert the Fare feature to ordinal values based on the FareBand.
for dataset in combine:
    dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0
    dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] =
    dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] =
    dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3
    dataset['Fare'] = dataset['Fare'].astype(int)

train_df = train_df.drop(['FareBand'], axis=1)
    combine = [train_df, test_df]

train_df.head(10)
```

Out[51]:		Survived	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class
	0	0	3	0	1	0	0	1	0	3
	1	1	1	1	2	3	1	3	0	2
	2	1	3	1	1	1	0	2	1	3
	3	1	1	1	2	3	0	3	0	2
	4	0	3	0	2	1	0	1	1	6
	5	0	3	0	1	1	2	1	1	3
	6	0	1	0	3	3	0	1	1	3
	7	0	3	0	0	2	0	4	0	0
	8	1	3	1	1	1	0	3	0	3

2

In [52]:	test_df.head(10)		

2

Out[52]:		Passengerld	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class	
	0	892	3	0	2	0	2	1	1	6	
	1	893	3	1	2	0	0	3	0	6	
	2	894	2	0	3	1	2	1	1	6	
	3	895	3	0	1	1	0	1	1	3	
	4	896	3	1	1	1	0	3	0	3	
	5	897	3	0	0	1	0	1	1	0	
	6	898	3	1	1	0	2	2	1	3	
	7	899	2	0	1	2	0	1	0	2	
	8	900	3	1	1	0	1	3	1	3	
	9	901	3	0	1	2	0	1	0	3	

```
In [53]: X train = train df.drop("Survived", axis=1)
         Y_train = train_df["Survived"]
         X_test = test_df.drop("PassengerId", axis=1).copy()
         X train.shape, Y train.shape, X test.shape
Out[53]: ((891, 8), (891,), (418, 8))
In [54]: # Logistic Regression
         logreg = LogisticRegression()
         logreg.fit(X_train, Y_train)
         Y_pred = logreg.predict(X_test)
         acc log = round(logreg.score(X_train, Y_train) * 100, 2)
         acc_log
Out[54]: 80.36
In [55]:
         coeff_df = pd.DataFrame(train_df.columns.delete(0))
         coeff df.columns = ['Feature']
         coeff df["Correlation"] = pd.Series(logreg.coef [0])
         coeff_df.sort_values(by='Correlation', ascending=False)
Out[55]:
               Feature Correlation
          1
                        2.201619
                  Sex
          5
                  Title
                        0.397888
          2
                        0.287011
                  Age
            Embarked
                        0.261473
          6
               IsAlone
                        0.126553
          3
                 Fare
                        -0.086655
             Age*Class
                        -0.311069
                Pclass
                        -0.750700
In [56]: # Support Vector Machines
         svc = SVC()
         svc.fit(X_train, Y_train)
         Y pred = svc.predict(X test)
         acc_svc = round(svc.score(X_train, Y_train) * 100, 2)
         acc_svc
```

Out[56]: 78.23

```
In [57]: # KNN
         knn = KNeighborsClassifier(n_neighbors = 3)
         knn.fit(X train, Y train)
         Y_pred = knn.predict(X_test)
         acc_knn = round(knn.score(X_train, Y_train) * 100, 2)
         acc knn
Out[57]: 83.84
In [58]: # Gaussian Naive Bayes
         gaussian = GaussianNB()
         gaussian.fit(X_train, Y_train)
         Y_pred = gaussian.predict(X_test)
         acc_gaussian = round(gaussian.score(X_train, Y_train) * 100, 2)
         acc_gaussian
Out[58]: 72.28
In [59]: # Linear SVC
         linear_svc = LinearSVC()
         linear svc.fit(X train, Y train)
         Y pred = linear svc.predict(X test)
         acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2)
         acc linear svc
Out[59]: 79.12
In [60]: # Stochastic Gradient Descent
         sgd = SGDClassifier()
         sgd.fit(X_train, Y_train)
         Y pred = sgd.predict(X test)
         acc sgd = round(sgd.score(X train, Y train) * 100, 2)
         acc_sgd
Out[60]: 70.59
In [61]: # Decision Tree
         decision_tree = DecisionTreeClassifier()
         decision_tree.fit(X_train, Y_train)
         Y pred = decision tree.predict(X test)
         acc_decision_tree = round(decision_tree.score(X_train, Y_train) * 100, 2)
         acc decision tree
Out[61]: 86.76
```

```
In [62]: # Random Forest

random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)
Y_pred = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)
acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)
acc_random_forest
```

Out[62]: 86.76

Out[63]:

	Model	Score
3	Random Forest	86.76
7	Decision Tree	86.76
1	KNN	83.84
2	Logistic Regression	80.36
6	Linear SVC	79.12
0	Support Vector Machines	78.23
4	Naive Bayes	72.28
5	Stochastic Gradient Decent	70.59