Segunda Etapa - Parte Teórica

Bruno Xavier Gomes

a) Consulte em livros como se calcula os estimadores de β_0 , β_1 e β_2 a partir dos dados. Não é necessário demonstrar as expressões.

R: Para se estimar os valores de beta, deve-se usar o método dos mínimos quadrados, que tem como função minimizar a diferença que existe entre o valor verdadeiro de y e o valor de y que foi estimado.

b) Como ficam os testes de hipóteses na regressão múltipla e o que a rejeição ou não da particular hipótese nula H_0 significa nesse caso?

R: Na análise de regressão, uma das hipóteses geralmente é usada para avaliar a significância da regressão, ou seja, uma das hipóteses é de que não existe influência das variáveis explicativas na variável resposta, portanto:

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

c) Qual será a interpretação das estimativas dos coeficientes que serão estimados no seu problema. Aqui, faça uma interpretação em termos do problema ainda que a estimativa não tenha sido calculada.

R: Os valores de β_1 e β_2 indicam a influência que o acesso ao saneamento básico e o PIB per capita de cada país tem na mortalidade infantil. Caso o valor seja igual à zero, teremos um indicador de que essa variável explicativa não influencia a mortalidade infantil.

Lembrando que esse valor não representa a correlação, e sim a influência quantitativa que as variáveis explicativas têm com a variável resposta.

d) Quais as suposições feitas sobre os erros em termos de: distribuição, valor esperado e variância e, ainda responda, como a adequação dessas suposições pode ser checada na prática?

R: Podemos supor que os erros possuem distribuição normal com média e variância constantes, que são independentes entre si, que o ajuste é linear e a variância é igual a σ^2 .

Para checar na prática a adequação dessas suposições é preciso realizar a distribuição deles e analisar visualmente para ver se segue uma normal. O ajuste linear também pode ser verificado visualmente ao se analisar os gráficos feitos e para checar a variância é só preciso calculá-la e comparar uma com a outra.