MDI0002 MATEMÁTICA DISCRETA

UDESC - Centro de Ciências Tecnológicas Bacharelado em Ciência da Computação

Exercícios Álgebras com uma Operação

1. Considere a álgebra $\langle \mathbb{R}, \odot \rangle$ sendo a operação \odot definida por

$$x \odot y = x - y + 3$$
.

Mostre que $\langle \mathbb{R}, \odot \rangle$ não é grupo.

2. Dado o conjunto $IR = \{[a,b] \mid a,b \in \mathbb{R} \land a \leq b\}$ e a operação $\oplus : IR \times IR \to IR$ definida a seguir para $x = [a_1,b_1]$ e $y = [a_2,b_2]$:

$$x \oplus y = [a_1 + a_2, b_1 + b_2]$$

Mostre que $\langle IR, \oplus \rangle$ é monóide. Por que IR não é grupo?

- 3. O monóide apresentado na questão anterior é abeliano (comutativo)? Justifique.
- 4. Seja A um conjunto finito e S o conjunto de todas as funções totais $f:A\to A$. Prove que $\langle S,\circ,\iota_A\rangle$, onde \circ é a composição de funções com $g\circ f(x)=g(f(x))$ e ι_A é a função identidade $\iota_A(x)=x$, é um monóide.
- 5. A partir do conjunto $X = \{v, w, x, y, z\}$, defina:
 - a) uma álgebra sobre X que é um grupo.
 - b) uma álgebra sobre X que é um monóide, mas não é um grupo.
 - c) uma álgebra sobre x que é um semi-grupo comutativo, mas que não é um monóide.
 - d) uma operação não fechada sobre X.