Qualifying Exam—Theory and Algorithms, Fall 2019

Name (CAPITAL LETTERS):	
Student email:	

P1	/25
P2	/25
Р3	/25
P4	/25
P5.	/25
P6	/25
Total	/150

Instructions: Justify your answers. Answer in the space allotted and use the back of its page if needed (in this case, clearly mark "continue on back").

1. Logic, Quantifiers, Proofs

- (a) Let P(x, y) be the proposition, for integers x and y, that "x + y = x y". Which of the following statements are true? Explain each answer in one sentence.
 - i. $\forall x \; \exists y \; P(x,y)$
 - ii. $\exists y \ \forall x \ P(x,y)$
 - iii. $\forall y \; \exists x \; P(x,y)$
- (b) Write the negation of the proposition in 1(a)iii above (that is, $\neg \forall y \exists x \ P(x,y)$) in terms of the proposition Q(x,y), which states that $x+y\neq x-y$.
- (c) Prove that if a and b are rational, then ab is rational.
- (d) Prove that if x is irrational, $x^{1/3}$ is irrational.
- (e) State the converse of 1d. State whether the converse is true or false and prove your assertion.

2.	Tn	di	ıct	io	n
∠.	111	uι	uvu	\mathbf{L}	TT

Induction Step:

Prove by induction that $n^3 - 7n + 3$ is divisible by 3, for each integer $n \ge 0$	
Proof by induction on n :	
Base Case:	
Induction Hypothesis:	

3. Dynamic Programming

You are given the task of painting all n houses indexed $0, \ldots, n-1$ in your block. You can paint each house with one of the colors c_1, c_2, \ldots, c_k , but two neighboring houses cannot be painted with the same color. (The neighbors of house i are houses i-1 and i+1; the first and last houses have only one neighbor.) You know that the cost of coloring house i with color c_j is $p_{i,j}$. Your task is to find the minimum total cost required to paint all the houses.

4. Modular Arithmetic

- (a) Compute $5^{17} \mod 7$.
- (b) Solve for x and y; show all your work.

$$2x + 3y \equiv 2 \mod 13$$

$$x + 5y \equiv 3 \mod 13$$

5. Greedy Algorithm

Given n positive integers a_1, a_2, \dots, a_n , design an polynomial time algorithm to determine whether there exists an undirected simple graph (self loops and multi-edges are not allowed) with n nodes such that the degrees of the n nodes are exactly the given n integers. Prove the correctness of your algorithm and analyze the running time of your algorithm.

6. Shortest Path

Given a directed graph G=(V,E) with edge weight $w(e)\geq 0$ for any $e\in E$, two vertices $s\neq t\in V$, design an algorithm for each of the following problems. Your algorithm should run in $O((|V|+|E|)\cdot \log |V|)$ time. Prove the correctness of your algorithm and explain they run in $O((|V|+|E|)\cdot \log |V|)$ time.

- (a) Find a path p from s to t such that $\min_{e \in p} w(e)$ is maximized.
- (b) Find a path p from s to t such that $\max_{e \in p} w(e)$ is minimized.

 $Scratch\ paper.\ DO\ NOT\ put\ your\ answer\ here$

 $Scratch\ paper.\ DO\ NOT\ put\ your\ answer\ here$