

EC 763 : Mathématiques pour l'ingénieur 2

Travaux Dirigés n° 5 : Produit scalaire et distance

Guillaume Franchi

Année universitaire 2025-2026

■ Bases orthonormées.

Exercice 1

Considérons les vecteurs $\overrightarrow{u} = (1, -1, 0)$ et $\overrightarrow{v} = (1, 0, -1)$ de \mathbb{R}^3 , et posons $F = \text{Vect}(\overrightarrow{u}, \overrightarrow{v})$.

- 1) Justifier que F est de dimension 2, et déterminer une base orthonormée $(\overrightarrow{u_1}, \overrightarrow{u_2})$ de F, avec $\overrightarrow{u_1}$ proportionnel à \overrightarrow{u} .
- 2) Déterminer un vecteur $\overrightarrow{u_3}$ de \mathbb{R}^3 tel que $(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$ soit une base orthonormée de \mathbb{R}^3 .

■ Projections orthogonales _

Définition.

Soit F un sous-espace vectoriel de \mathbb{R}^p . Tout vecteur \overrightarrow{u} de \mathbb{R}^p s'écrit de manière unique

$$\overrightarrow{u} = p_F(\overrightarrow{u}) + (\overrightarrow{u} - p_F(\overrightarrow{u}))$$

avec

- $p_F(\overrightarrow{u}) \in F$;
- $\overrightarrow{u} p_F(\overrightarrow{u}) \perp F$, i.e.

$$\forall \overrightarrow{v} \in F, \ \langle \overrightarrow{v}, \overrightarrow{u} - p_F(\overrightarrow{u}) \rangle = 0.$$

 $p_F(\overrightarrow{u})$ est la **projection orthogonale** de \overrightarrow{u} sur F.

Propriété.

Pour tout vecteur \overrightarrow{u} de \mathbb{R}^p , la projection $p_F(\overrightarrow{u})$ est l'élément \overrightarrow{v} de F qui minimise la norme $\|\overrightarrow{u} - \overrightarrow{v}\|$, i.e.

$$\forall \overrightarrow{v} \in F, \ \|\overrightarrow{u} - p_F(\overrightarrow{u})\| \leqslant \|\overrightarrow{u} - \overrightarrow{v}\|.$$

Exercice 2

On considère le sous-ensemble de \mathbb{R}^3

$$F = \{(2x + y, x - 3y, y) : (x, y) \in \mathbb{R}^2\}.$$

1) Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 , et en donner une base.

- $\mathbf{2}$) En déduire une base orthonormée de F.
- 3) On note p_F la projection orthogonale sur F. Déterminer $p_F(\overrightarrow{u})$ pour $\overrightarrow{u} = (x, y, z) \in \mathbb{R}^3$.
- 4) Montrer que pour tout $(x, y, z) \in \mathbb{R}^3$, on a $(2x + y 1)^2 + (x 3y)^2 + (y 1)^2 > 0$.
- 5) Montrer que cette dernière quantité admet un minimum que l'on déterminera lorsque $(x, y, z) \in \mathbb{R}^3$.

Exercice 3

On note F le sev de \mathbb{R}^2 défini par $F = \text{Vect}(\overrightarrow{v})$ avec $\overrightarrow{v} = (1, 2)$.

- 1) Déterminer une base orthonormale $(\overrightarrow{v_1}, \overrightarrow{v_2})$ avec $\overrightarrow{v_1}$ proportionnel à \overrightarrow{v} .
- 2) Pour $\overrightarrow{u} = (x, y) \in \mathbb{R}^2$, déterminer $p_F(\overrightarrow{u})$.
- 3) Déterminer la matrice représentant p_F dans la base $(\overrightarrow{v_1}, \overrightarrow{v_2})$.
- 4) En déduire la matrice représentant p_F dans la base canonique de \mathbb{R}^2 .

■ Lien avec la régression linéaire _

Exercice 4

Soient X_1, \ldots, X_p p vecteurs de \mathbb{R}^n , avec (X_1, \ldots, X_p) libre. On note $X = \|X_1 \ldots X_p\|_{e_i}$ la matrice de $\mathcal{M}_{n,p}(\mathbb{R})$ représentant les vecteurs X_1, \ldots, X_n dans la base canonique de \mathbb{R}^n .

- 1) Quelle est la dimension de X^TX ? Montrer que cette matrice est inversible.
 - On note $F = \text{Vect}(X_1, \dots, X_p)$, et p_F la projection orthogonale de \mathbb{R}^n sur F.
- **2**) Montrer que la matrice représentant p_F dans la base canonique s'écrit $X(X^TX)^{-1}X^T$.

Dans le problème de la régression linéaire, on cherche un vecteur $\beta \in \mathbb{R}^p$ tel que

$$Y = X\beta + \varepsilon$$
,

οù

- $Y = (Y_1, \dots, Y_n)^T \in \mathbb{R}^n$ correspond aux n réponses;
- $X = ||X_1 ... X_p||_{e_i} \in \mathcal{M}_{n,p}(\mathbb{R})$ est la matrice correspondant aux n observations des p variables explicatives;
- $\varepsilon \in \mathbb{R}^n$ correspond à un terme d'erreur.

Une estimation $\hat{\beta}$ de β se fait par la méthode des Moindres Carrés Ordinaires (MCO) :

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \ \|Y - X\beta\|^2.$$

- 3) Expliquer en quoi cela revient à rechercher la projection orthogonale de Y sur F.
- 4) En déduire une expression algébrique de $\hat{\beta}$.