IN THE CLAIM

Please cancel Claims 1 to 7, without prejudice or disclaimer of the subject matter thereof, and add new claims 8 to 10. The added new claim 8 is the combination of the original claims 1, 2 and 3; the added new claim 9 is the combination of the original claims 1, 2 and 4 and the added new claim 10 is the combination of the original claims 1, 2 and 6. Thereby, it is assured that the new claims are based on the original claims. The relation of the new claims with respect to the original claims are shown in the following REMARK, Examiners can read the claims more easily from the REMARK.

LIST OF CLAIMS

Claims 1 -7 (Cancelled)

Claim 8 (New claim) A locking structure of a unidirectional spanner comprising:

a spanner body having a receiving chamber at one end thereof and two directional control grooves aside the receiving chamber and communicated with the receiving chamber;

a toothless ratchet receiving in the receiving chamber;

two directional control devices receiving in the two directional control grooves, respectively; each of the directional control devices being formed by a directional control unit and an elastomer; the directional control unit locking the toothless ratchet;

wherein if the spanner body moves, a reverse force will apply to the toothless ratchet; when the reverse force causes the directional control unit to move away from the elastomer, the toothless ratchet will be locked by the

-2-

directional control unit so that the toothless ratchet rotates synchronously with the spanner body; when the reverse force causes the directional control unit to compress the elastomer, the toothless ratchet will rotate independently; and

wherein each directional control unit is a rectangular cylinder; and a corner of each rectangular cylinder is faced to the receiving chamber 11.

Claim 9 (New claim) A locking structure of a unidirectional spanner comprising:

a spanner body having a receiving chamber at one end thereof and two directional control grooves aside the receiving chamber and communicated with the receiving chamber;

a toothless ratchet receiving in the receiving chamber;

two directional control devices receiving in the two directional control grooves; each of the directional control devices being formed by a directional control unit and an elastomer; the directional control unit 31 locking the toothless ratchet;

wherein if the spanner body moves, a reverse force will apply to the toothless ratchet; when the reverse force causes the directional control unit to move away from the elastomer, the toothless ratchet will be locked by the directional control unit so that the toothless ratchet rotate synchronously with the spanner body; when the reverse force causes the directional control unit to compress the elastomer, the toothless ratchet will rotate independently; and

wherein each directional control unit is a hexagonal cylinder.

Claim 10 (New claim) A locking structure of a unidirectional spanner comprising:

a spanner body having a receiving chamber at one end thereof and two directional control grooves aside the receiving chamber and communicated with the receiving chamber;

a toothless ratchet receiving in the receiving chamber;

two directional control devices receiving in the two directional control grooves; each of the at least directional control device being formed by a directional control unit and an elastomer; the directional control unit locking the toothless ratchet;

wherein if the spanner body moves, a reverse force will apply to the toothless ratchet; when the reverse force causes the directional control unit to move away from the elastomer, the toothless ratchet will be locked by the directional control unit so that the toothless ratchet rotates synchronously with the spanner body; when the reverse force causes the directional control unit to compress the elastomer, the toothless ratchet will rotate independently; and

wherein each directional control unit is a cylinder having a round cross section and having a chamfered surface; and a normal line of the surface is tilt from a normal line of the round cross section.