

Optics-free Image Classification with Deep Metric Learning

Prakhar Srivastava

University of Tartu

Supervised by: **Prof. Kallol Roy**University of Tartu, Estonia

Collaborations

Kallol Roy

Rajesh Menon

Soren Nelson

Content

- Introduction
- Camera fundamentals
- Optics-free imaging
- Image classification
- Methods
- Results
- Conclusion and Future work

Image formation basics

Camera fundamentals

Need of miniaturization

Problem of miniaturization of lens

Getting light inside miniature lenses is difficult

Lens replace with algorithm

without lens

Original Cifar10

Lensless Cifar10 image Obtained from CMOS sensor

"Deep Metric Learning"

What is Metric Learning?

Metric learning is a technique that focuses on mapping similar data points close to each other in the embedding space, while mapping dissimilar data points far away from each other.

Feature is all you need

Metric is the essential feature for the model to learn

Metric invariance

ideal condition

Features stays invariant (constant)

Loss functions

Triplet loss

Quadruplet loss

Building the dataset

Data loader

Model

Threshold for lensless images

Results

Lensless images

How to improve?

Reconstructive images using CycleGAN

Comparison of Image Quality Metrics: MSE, PSNR, and SSIM

Original Cifar10

Threshold for reconstructive images

Results

Reconstructive images

Results

Table 1. Triplet Loss - Lensless images

Lensless Images	Accuracy	Precision	Recall	F1score	Epochs
test images	16.40	15.47	16.40	10.92	15
test images	30.73	30.37	30.73	30.22	30
test images	31.13	31.16	31.13	30.62	50

Table 2. Triplet Loss

Reconstructive Images	Accuracy	Precision	Recall	F1score	Epochs
test images	38.37	38.75	38.37	37.72	15
test images	39.58	39.89	39.58	39.41	30
test images	39.56	40.07	39.56	39.41	50

Table 3. Quadruplet Loss

Lensless Images	Accuracy	Precision	Recall	F1score	Epochs
test images	30.16	29.78	30.16	29.53	15
test images	31.84	31.57	31.84	31.24	30
test images	32.14	31.85	32.14	31.71	50

Table 4. Quadruplet Loss

Reconstructive Images	Accuracy	Precision	Recall	F1score	Epochs
test images	40.76	40.44	40.76	40.26	15
test images	40.78	40.51	40.78	40.44	30
test images	40.71	41.26	40.71	40.47	50

Bayesian Method

• Prior - initial belief or assumption

• Likelihood - prediction of the CNN

• Posterior — updated belief

Bayesian for Lensless images

Bayesian for Reconstructive images

Take away points

- Potential of making miniaturized cameras
- Images are noisy
- Some experiments didn't converge

Future work

- Multimodality (text + images)
- Planned to use transformer architecture

Reviewer's questions

1) How are hyperparameters chosen, does any experiments performed prior, and did any change in the performance of the accuracy in all the experiments?

-By trail and error.

2) What is the Computational complexity of the algorithms?

O(n)

3) How about software services and hardware configuration used in the experiments?

```
-Google colab, pro
-Hardware: GPU, High-RAM
```

4) What is the broader conclusion by comparing all the algorithms with a number of epochs considered?

-For lensless, when epochs are increased, accuracy also increases to a certain limit. But for reconstructive, when epochs are increased, accuracy decreases.

Questions?

