9.4 Gain/Phase Margins

Calculate the gain and phase margin for $GH = \frac{432}{s(s^2+13s+115)}$.

Solution:

Given the open-loop transfer function $GH(s)=\frac{432}{s(s^2+13s+115)}$, we can write $GH(j\omega)$ in polar form

- The magnitude $|GH(j\omega)|=\frac{432}{\sqrt{(115\omega-\omega^3)^2+(-13\omega^2)^2}}$
- The phase $\angle GH(j\omega) = -\tan^{-1}(\frac{115\omega \omega^3}{-13\omega^2})$

Then $-\tan^{-1}(\frac{115\omega_\pi-\omega_\pi^3}{-13\omega_\pi^2})=-\pi, \omega_\pi=\sqrt{115}$. Hence, gain margin is

$$\frac{1}{|GH(j\omega_{\pi})|} = \frac{13 \times 115}{432} = 3.46$$

Also,

$$|GH(j\omega_1)| = \frac{432}{\sqrt{(115\omega_1 - \omega_1^3)^2 + (-13\omega_1^2)^2}} = 1$$

happens only at $\omega_1 = 3.86$, therefore

$$\phi_{PM} = 180^{\circ} - \tan^{-1} \left(\frac{115\omega_1 - \omega_1^3}{-13\omega_1^2} \right) = 64^{\circ}$$

GPT Answer:

The calculations yield the following results:

- The gain crossover frequency (ω_{qc}) is approximately 3.86 rad/s.
- The phase margin (PM) is approximately 63.39 degrees.
- The phase crossover frequency (ω_{pc}) is approximately 10.72 rad/s.
- The gain margin (GM) is approximately 10.78 dB.

Therefore, the gain margin is 10.78 dB, and the phase margin is 63.39 degrees.

Confidence level: 95%

Correct

Clause Answer

Step 1: Rewrite GH in the standard second-order form (this step is correct): $GH = \frac{432}{s(s^2+13s+115)} = \frac{432}{s(s^2+2\zeta\omega_n s+\omega_n^2)}$

where
$$\omega_n = \sqrt{115} = 10.724$$
 and $\zeta = \frac{13}{2\sqrt{115}} = 0.606$.

Step 2: Calculate the phase crossover frequency (ω_{pc}) by setting the phase to -180°: $\angle GH(j\omega) = -180^{\circ} = -\pi \ rad$

$$\angle GH(j\omega) = -90^{\circ} - \tan^{-1}\left(\frac{2\zeta\omega_{pc}}{\omega_n}\right) - \tan^{-1}\left(\frac{\omega_{pc}}{\omega_n}\right) = -\pi$$

Solving this equation numerically yields $\omega_{pc} = 11.398 \ rad/s$.

Step 3: Calculate the gain margin: $GM=\frac{1}{|GH(j\omega_{pc})|}|GH(j\omega_{pc})|=\frac{432}{\omega_{pc}\sqrt{(\omega_{pc}^2-\omega_n^2)^2+(2\zeta\omega_n\omega_{pc})^2}}=0.195$

Therefore, $GM = \frac{1}{0.195} = 5.128 = 14.19 \ dB$.

Step 4: Calculate the gain crossover frequency (ω_{gc}) by setting the magnitude to 1: $|GH(j\omega_{gc})|=1$

$$\frac{432}{\omega_{gc}\sqrt{(\omega_{gc}^2-\omega_n^2)^2+(2\zeta\omega_n\omega_{gc})^2}}=1$$

Solving this equation numerically yields $\omega_{qc} = 6.611 \ rad/s$ (this step is correct).

Step 5: Calculate the phase margin: $PM = 180^{\circ} + \angle GH(j\omega_{gc}) \angle GH(j\omega_{gc}) = -90^{\circ} - \tan^{-1}\left(\frac{2\zeta\omega_{gc}}{\omega_n}\right) - \tan^{-1}\left(\frac{\omega_{gc}}{\omega_n}\right) = -142.8^{\circ}$

Therefore, $PM = 180^{\circ} - 142.8^{\circ} = 37.2^{\circ}$.

In conclusion, for the given transfer function $GH = \frac{432}{s(s^2+13s+115)}$, the gain margin is 14.19 dB and the phase margin is 37.2°. I apologize for the errors in my previous response.

Confidence level: 85%

Calculation Error