1A Compute the Number of Occurrences of a Pattern in a Text

Pattern Count Problem

Implement PatternCount.

Input: Strings *Text* and *Pattern*.

Output: The number of occurrences of *Pattern* in *Text*.

AGAGA AGA 1 2 3

Formatting

Input: Newline-separated strings *Text* and *Pattern*.

Output: An integer representing the number of times *Pattern* appears in *Text*.

Constraints

- The length of *Text* will be between 1 and 10^4 .
- The length of *Pattern* will be between 1 and 10^1 .
- *Text* and *Pattern* will be DNA strings.

Test Cases 🖸

Case 1

Description: This dataset just checks if you're correctly counting. It is the "easiest" test. Notice that all occurrences of CG in *Text* (ACGTACGT) are away from the very edges (so your code won't fail on off-by-one errors at the beginning or at the end of *Text*) and that none of the occurrences of Pattern overlap (so your code won't fail if you fail to account for overlaps).

Input:

ACGTACGTACGT CG

Output:

3

Case 2

Description: This dataset checks if your code correctly handles cases where occurrences of *Pattern* overlap.

Input:

ATGCGCGTA GCG

Output:

2

Case 3

Description: This dataset checks if your code correctly handles cases where there is an occurrence of *Pattern* at the very beginning of *Text*. Note that there are no overlapping occurrences of *Pattern* (i.e. AAA), and there is no occurrence of Pattern at the very end of *Text*, so assuming your code passed Test Dataset 1, this test would only check for off-by-one errors at the beginning of *Text*.

Input:

AAAGAGTGTCTGA AAA

Output:

1

Case 4

Description: This dataset checks if your code correctly handles cases where there is an occurrence of *Pattern* at the very end of *Text*. Note that there are no overlapping occurrences of *Pattern* (i.e. AAAA), and there is no occurrence of *Pattern* at the very beginning of *Text*, so assuming your code passed Test Dataset 2, this test would only check for off-by-one errors at the end of *Text*.

Input:

AGCGTGCCGAAATTT TTT

Output:

1

Case 5

Description: This test dataset checks if your code is also counting occurrences of the Reverse Complement of *Pattern* (which would have an output of 4), which is out of the scope of this problem (that will come up later in the chapter). Your code should only be looking for perfect matches of *Pattern* in *Text* at this point.

Input:

GGACTTACTGACGTACG ACT

Output:

2

Case 6

Input:

ATCCGATCCCATGCCCATG

Output:

5

Case 7

Description: A larger dataset of the same size as that provided by the randomized autograder.