Numerical Integration

Basic Idea:

- approx. fu) by polynomial pux)
- then: I(f) = latix)dx = lap(x)dx

That, the quadrature rule is $R(f) = \int_{a}^{b} p(x) dx$

- using Lagrange form of p(x), we get: $R(f) = \sum_{i=0}^{n} w_i f(x_i), \quad w_i = \int_{a}^{b} L_{n,i}(x) dx$

Note
$$\int_{a}^{b} p(x)dx = \int_{a}^{b} L_{n,i}(x)f(xi)dx$$

= $\sum_{i=0}^{b} \int_{a}^{b} L_{n,i}(x)dx \cdot f(xi)$

When nodes are equally spaced, we obtain the Newton-Cotes (NC) formulae:

Closed NC rule: include boundary points [a, b]
Open NC rule: include boundary points (a, b)

Ex. n=2