Grafi Geometrici Aleatori e Reti Wireless Delimitazione Superiore

Introduzione e Modelli

Queste slide affrontano il tema dei grafi geometrici aleatori e delle loro applicazioni alle reti wireless. Si parte dal confronto con i classici modelli di grafi aleatori come Erdős-Rényi e i modelli "rich-get-richer". Questi ultimi descrivono reti virtuali, dove gli archi rappresentano relazioni non fisiche (ad esempio amicizie, hyperlink ecc.)

Quando si passa a implementare reti fisiche (ad esempio sensori o calcolatori distribuiti in uno spazio), è essenziale considerare la struttura geometrica dello spazio.

Definizione di Grafo Geometrico

Un grafo geometrico G(V, r) è costituito da:

- Un insieme V di punti in uno spazio metrico (es: piano cartesiano \mathbb{R}^2), con coordinate conosciute.
- Un parametro r > 0 che definisce la soglia oltre cui viene creato un arco.

Gli archi si formano tra tutte le coppie di punti (A, B) tale che la distanza euclidea $d(A, B) \leq r$.

Ciascun punto A è individuato da una coppia di coordinate: A = (xA, yA)

Gli archi del grafo individuato da V e r sono tutte e sole le coppie di punti la cui distanza euclidea è $\leq r$:

$$E = \{ (A, B) : A \in V \land B \in V \land \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2} \le r \}$$

Unit Disk Graph: Si ottiene normalizzando r = 1. Nel nostro caso si lavora con la versione non normalizzata.

Grafi Geometrici Aleatori

- Fissiamo $n \in \mathbb{N}$ e r > 0 (come vedremo, $r \le \sqrt{2}$)
- \bullet scegliamo uniformemente~a~caso~npunti nel quadrato $[0,1]\times[0,1]$
- e costruiamo il grafo geometrico G(n,r) corrispondente

- poiché i punti sono scelti nel quadrato unitario, e la diagonale del quadrato misura $\sqrt{2}$, è sufficiente scegliere $r \leq \sqrt{2}$
- infatti, con $r=\sqrt{2}$ otteniamo un grafo completo ed è dunque inutile scegliere per r un valore maggiore di $\sqrt{2}$
- Naturalmente, la aleatorietà del grafo G(n,r) dipende dalla scelta dei punti nel quadrato unitario
 - quando $r < \sqrt{2}$ e r > 0
 - perché per ogni scelta di n il grafo $G(n, \sqrt{2})$ è un grafo fissato (qualunque sia $n, G(n, \sqrt{2})$ è sempre un grafo completo)
 - e per ogni scelta di n il grafo G(n,0) è un grafo fissato (qualunque sia n, G(n,0) è sempre un grafo costituito da soli nodi isolati)

Probabilità di Connessione

Per uno studio probabilistico sulla connessione del grafo $G_{n,r}$:

- Analogamente al modello di Erdős-Rényi dove la probabilità di arco p = p(n), qui si pone r = r(n).
- Il problema: trovare il valore minimo di r(n) che garantisce con alta probabilità che il grafo sia connesso.
- Applicazione: reti wireless ad-hoc, con dispositivi dotati di trasmettitori con raggio limitato.

Modello di Rete Wireless

Ogni device ha un ricetrasmettitore (configurato per un certo raggio r_x). Il grafo di comunicazione è diretto: c'è un arco da x verso y se $d(x,y) \le r_x$.

La comunicazione multi-hop consente di raggiungere dispositivi fuori dal raggio diretto tramite un cammino nel grafo.

• Il grafo diretto che rappresenta la rete è chiamato grafo di comunicazione

- E se un nodo vuole trasmettere un messaggio ad un dispositivo più lontano del suo raggio di trasmissione?
 - prova a utilizzare un percorso all'interno del grafo
 - nell'esempio u_1 può inviare un messaggio a u_4 utilizzando il percorso $(u_1, u_2), (u_2, u_3), (u_3, u_4)$

Condizioni di Connessione

Affinché ogni nodo possa comunicare con qualunque altro, il grafo dev'essere fortemente connesso. Basta impostare ogni raggio uguale alla massima distanza possibile, ma questo è inefficiente dal punto di vista energetico.

- E questo è facile: se configuriamo il trasmettitore di ciascun nodo ad un raggio di trasmissione pari alla distanza di quel nodo dal nodo ad esso più distante
 - ossia, detto V l'insieme dei nodi e indicata con d(u, v) la distanza fra i nodi u e v, per ogni $u \in V$ poniamo $r_u = \max\{d(u, v) : v \in V \{u\}\}$

Formalizzazione Algebrica

Supponiamo che tutti i nodi abbiano lo stesso raggio r e siano distribuiti uniformemente. La rete si modella come grafo geometrico aleatorio.

Problema: Trovare il valore minimo di r_n affinché G_{n,r_n} sia connesso.

dati n punti distribuiti uniformemente a caso nel quadrato $Q = [0,1] \times [0,1]$, calcolare il valore minimo di r(n) affinché G(n,r(n)) sia connesso

Teoremi Fondamentali

Delimitazione Superiore

Teorema: Esiste una costante $\lambda_1 > 0$ tale che se

$$r(n) \ge \lambda_1 \sqrt{\frac{\log n}{n}}$$

allora G_{n,r_n} è connesso con alta probabilità.

Dimostrazione sintetica:

- $\bullet \ \, \mathrm{sia} \,\, k(n) > 0$ un intero dipendente da n
- Si suddivide il quadrato Q in k_n^2 celle di lato $1/k_n$ (con k_n intero dipendente da n).
- \bullet e poniamo r(n) pari alla lunghezza della diagonale di una coppia di celle adiacenti
 - due celle sono adiacenti se hanno un lato in comune

- ossia,
$$r(n) = \sqrt{\left(\frac{2}{k(n)}\right)^2 + \left(\frac{1}{k(n)}\right)^2} = \frac{\sqrt{5}}{k(n)}$$

 $\bullet\,$ poniamo $r(n)=\frac{\sqrt{5}}{k(n)},$ ossia, pari alla lunghezza della diagonale di una coppia di celle adiacenti

In questo modo, ciascun nodo in una qualsiasi cella è collegato da un arco a tutti i nodi (eventualmente) contenuti in tutte le celle adiacenti

Perciò, se riuscissimo a dimostrare che

con alta probabilità

- ciascuna cella contiene almeno un nodo
- avremmo dimostrato che G(n, r(n)) è connesso con alta probabilità
- Dimostriamo, ora, che è possibile scegliere k(n) in modo tale che, con alta probabilità, nessuna cella è vuota

 Invece di calcolare direttamente la probabilità di questo evento, calcoliamo la
 - Invece di calcolare direttamente la probabilità di questo evento, calcoliamo la probabilità dell'evento complementare, ossia: esiste almeno una cella vuota
- Sia C una cella: il primo passo sarà trovare una delimitazione superiore a $P(C = \emptyset)$
- \bullet per farlo esprimiamo l'evento " $C=\varnothing$ " come intersezione di eventi:
- l'evento " $C=\varnothing$ " coincide con l'evento " $1\notin C$ e $2\notin C$ e ... e $n\notin C$ ", che esprimiamo sinteticamente come " $\bigcap_{1\leq i\leq n}(i\notin C)$ "
- Quindi, $P(C = \emptyset) = P\left(\bigcap_{1 \le i \le n} (i \notin C)\right)$
- Abbiamo posto $r(n) = \sqrt{\left(\frac{2}{k(n)}\right)^2 + \left(\frac{1}{k(n)}\right)^2} = \frac{\sqrt{5}}{k(n)}$
- sia C una cella: $P(C = \emptyset) = P\left(\bigcap_{1 \le i \le n} (i \notin C)\right)$
- poiché i nodi sono posizionati in Q indipendentemente gli uni dagli altri,

$$P\left(\bigcap_{1 \le i \le n} (i \notin C)\right) = \prod_{1 \le i \le n} P(i \notin C)$$

- Sia i un nodo: la probabilità che il nodo i sia scelto all'interno della cella C è pari al rapporto fra l'area di C e l'area del quadrato $Q = [0,1] \times [0,1]$
 - e, naturalmente, l'area di Q è pari a 1

Quindi:
$$P(i \in C) = \frac{\text{area di } C}{\text{area di } Q} = \frac{1}{k^2(n)}$$

e conseguentemente $P(i \notin C) = 1 - \frac{1}{k^2(n)}$

• allora,

$$P(C = \varnothing) = P\left(\bigcap_{1 \le i \le n} (i \notin C)\right)$$
$$= \prod_{1 \le i \le n} P(i \notin C)$$
$$= \left(1 - \frac{1}{k^2(n)}\right)^n$$

5

- Abbiamo posto $r(n) = \sqrt{\left(\frac{2}{k(n)}\right)^2 + \left(\frac{1}{k(n)}\right)^2} = \frac{\sqrt{5}}{k(n)}$
- sia C una cella: $P(C = \emptyset) = \left(1 \frac{1}{k^2(n)}\right)^n$

- A questo punto, $P(\exists C : C = \emptyset) = P\left(\bigcup_{C \in Q} [C = \emptyset]\right) \leq \sum_{C \in Q} P(C = \emptyset)$
 - dove l'ultima disuguaglianza segue dallo Union Bound: la probabilità dell'unione di eventi è minore o uguale alla somma delle probabilità dei singoli eventi
- \bullet e quindi $P(\exists\, C: C=\varnothing) \leq k^2(n) \left(1-\frac{1}{k^2(n)}\right)^n$
- da cui, sostituendo $\frac{\sqrt{5}}{r(n)}$ a k(n),

$$P(\exists C : C = \varnothing) \le \frac{5}{r^2(n)} \left(1 - \frac{r^2(n)}{5}\right)^n$$

 \bullet infine, ponendo $\mathbf{r}(\mathbf{n}) = \gamma_{\mathbf{1}} \sqrt{\frac{\ln \mathbf{n}}{\mathbf{n}}}$ otteniamo

$$P(\exists C : C = \varnothing) \le \frac{5}{\gamma_1^2 \ln n} \left(1 - \frac{\gamma_1^2 \ln n}{5n}\right)^n$$

Lemma Tecnico

<u>Lemma</u>: Per ogni $x \in \mathbb{R}$: $1 - x \le e^{-x}$. Inoltre, se $x \ne 0$ allora $1 - x < e^{-x}$.

- Definiamo la funzione $G(x) = 1 x e^{-x}$
- Calcoliamo la derivata prima di G(x): $G'(x) = e^{-x} 1$
- Studiamo il segno di G'(x): $e^{-x}-1\geq 0 \implies e^{-x}\geq 1 \implies e^{-x}\geq e^0 \implies x\leq 0$
- $G'(x) \geq 0$ per $x \leq 0$: allora, G(x) ha un punto di massimo relativo in x=0
- ullet inoltre, essendo l'unico punto in cui la derivata si annulla, x=0 è anche un punto di massimo assoluto
- Poiché $G(0) = 1 0 e^{-0} = 0$, questo implica che
 - $-G(x) \leq G(0) = 0$ per ogni $x \in \mathbb{R},$ ossi
a $1-x \leq e^{-x}$ per ogni $x \in \mathbb{R}$
 - $-G(x) < G(0) = 0 \text{ per ogni } x \neq 0$

Conclusione della Delimitazione Superiore

Si dimostra che, fissando correttamente r_n , la probabilità che il grafo non sia connesso è trascurabile.