metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

trans-Tetrakis(1-allyl-1*H*-imidazole- κN^3)bis(thiocyanato- κN)nickel(II)

Shao-Mei Zhenga* and Yan-Ling Jinb

^aCollege of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China, and ^bKey Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Correspondence e-mail: zsmei163@163.com

Received 11 January 2012; accepted 13 January 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.043; wR factor = 0.124; data-to-parameter ratio = 15.4.

The structure of the title compound, $[Ni(NCS)_2(C_6H_8N_2)_4]$, consists of isolated molecules of $[Ni(NCS)_2(Aim)_4]$ (Aim = 1-allylimidazole), which contain a distorted octahedral NiN₆ chromophore. The NCS⁻ anions are *trans* and four N atoms from the 1-allylimidazole ligands define the equatorial plane. The mean Mn-N(Aim) and Mn-N(NCS) distances are 2.105 (2) and 2.098 (2) Å, respectively. Weak C-H···N interactions contribute to the crystal packing stability.

Related literature

In the corresponding nickel compound [Ni(NCS)₂(1-methylimidazole)₄] (Liu *et al.*, 2005), the Ni^{II} ions have a distorted octahedral environment.

Experimental

Crystal data

Data collection

Enraf–Nonius CAD-4 2741 independent reflections diffractometer 2367 reflections with $I > 2\sigma(I)$ Absorption correction: ψ scan (North et al., 1968) 3 standard reflections every 200 $T_{\min} = 0.854$, $T_{\max} = 0.923$ reflections 2934 measured reflections intensity decay: 1%

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.043 & 178 \ \text{parameters} \\ wR(F^2) = 0.124 & \text{H-atom parameters constrained} \\ S = 1.00 & \Delta\rho_{\text{max}} = 0.47 \ \text{e Å}^{-3} \\ 2741 \ \text{reflections} & \Delta\rho_{\text{min}} = -0.69 \ \text{e Å}^{-3} \end{array}$

Table 1 Selected geometric parameters (Å, °).

2.090(2)	Ni-N2	2.120 (2)
2.098 (2)	S-C13	1.631 (3)
90.41 (9)	N4-Ni-N2	92.56 (9)
89.59 (9)	N5-C13-S	178.0 (3)
87.44 (9)		` '
	2.098 (2) 90.41 (9) 89.59 (9)	2.098 (2) S-C13 90.41 (9) N4-Ni-N2 89.59 (9) N5-C13-S

Symmetry code: (i) -x + 2, -y + 2, -z.

Table 2 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
C4—H4A···N5	0.93	2.74	3.139 (4)	107
$C7-H7A\cdots N3$	0.93	2.54	2.862 (5)	101
C11-H11A···N5	0.93	2.87	3.187 (5)	102
$C10-H10A\cdots N5^{i}$	0.93	2.70	3.125 (4)	109
$C5-H5A\cdots N5^{i}$	0.93	2.69	3.134 (4)	110
C9−H9A···N5 ⁱⁱ	0.97	2.97	3.793 (5)	143

Symmetry codes: (i) -x + 2, -y + 2, -z; (ii) x + 1, y, z.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1989); cell refinement: *CAD-4 EXPRESS* (Enraf–Nonius, 1989); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and local programs.

This work was supported by the NSF of China (No. 20871072), the NSF of Shandong Province (No. 2009ZRA02071) and the Scientific Development Plan of University in Shandong Province (No. J09LB53).

metal-organic compounds

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5160).

References

Enraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Liu, F.-Q., Jian, F.-F., Liu, G.-Y., Lu, L.-D., Yang, X.-J. & Wang, X. (2005). Acta Cryst. E61, m1568–m1570.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). *Acta Cryst.* A**24**, 351–350

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary m	aterials	

Acta Cryst. (2012). E68, m188-m189 [doi:10.1107/S1600536812001584]

trans-Tetrakis(1-allyl-1H-imidazole- κN^3)bis(thiocyanato- κN)nickel(II)

S.-M. Zheng and Y.-L. Jin

Comment

The molecular structure of (I) is shown in Fig. 1. The Ni atom displays an octahedral coordination geometry, with six N atoms from two thiocyanate anions and four 1-allylimidazole ligands. The equatorial plane of the complex is formed by four Ni—N(1-allylimadazole) bonds with lengths of 2.090 (2) and 2.120 (2) Å, and the axial positions are occupied by two N-bonded NCS groups [Ni—N(NCS) = 2.098 (2) Å]. These values agree well with those observed in [Ni(NCS)₂(1-methyl-1H-imidazole)₄] (Liu *et al.*, 2005). The values of the bond angles around nickel atoms are close to those expected for a regular octahedral geometry, the N—Ni—N angles range from 87.44 (9) to 92.56 (9) °, and the thiocyanate ligands are almost linear. Weak C—H···N interactions contribute to the crystal packing stability.

In the corresponding nickel compound $[Ni(NCS)_2(1-methylimidazole)_4]$ (Liu, *et al.*, 2005), the Ni^{II} ions have a distorted octahedral environment.

Experimental

The title compound was prepared by the reaction of 1-allylimidazole (1.21 g, 20 mmol) with NiSO₄.6H₂O (1.31 g, 5 mmol) and potassium thiocyanate (0.98 g, 10 mmol) by means of hydrothermal synthesis in stainless-steel reactor with Teflon liner at 393 K for 24 h. Analysis, calculated for $C_{26}H_{32}NiN_{10}S_2$: C 51.41, H 5.31, N 23.06%; found: C 51.76, H 5.40, N 23.35%. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were positioned geometrically(C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figures

Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

trans-Tetrakis(1-allyl-1H-imidazole- κN^3)bis(thiocyanato- κN)nickel(II)

Crystal data

 $[Ni(NCS)_2(C_6H_8N_2)_4]$ Z = 1 $M_r = 607.45$ F(000) = 318Triclinic, $P\overline{1}$ $D_{\rm x} = 1.337 \; {\rm Mg \; m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 1 a = 8.8390 (18) ÅCell parameters from 25 reflections $\theta = 10-13^{\circ}$ b = 9.5390 (19) Åc = 10.515(2) Å $\mu = 0.82 \text{ mm}^{-1}$ $\alpha = 70.22 (3)^{\circ}$ T = 293 K $\beta = 65.29 (3)^{\circ}$ Block, green $0.20\times0.10\times0.10~mm$ $\gamma = 86.66 (3)^{\circ}$ V = 754.3 (3) Å³

Data collection

Enraf–Nonius CAD-4 diffractometer 2367 reflections with $I > 2\sigma(I)$

Radiation source: fine-focus sealed tube $R_{\text{int}} = 0.019$

graphite $\theta_{max} = 25.3^{\circ}, \, \theta_{min} = 2.3^{\circ}$

ω/2θ scans $h = 0 \rightarrow 10$ Absorption correction: ψ scan

(North *et al.*, 1968) $k = -11 \rightarrow 11$ $T_{min} = 0.854, T_{max} = 0.923$ $l = -11 \rightarrow 12$

2934 measured reflections 3 standard reflections every 200 reflections

2741 independent reflections intensity decay: 1%

Refinement

S = 1.00

 $R[F^2 > 2\sigma(F^2)] = 0.043$

Refinement on F^2 Primary atom site location: structure-invariant direct methods

Least-squares matrix: full

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring

sites

 $wR(F^2) = 0.124$ H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.092P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} \leq 0.001$

 $\Delta \rho_{\text{max}} = 0.47 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.69 \text{ e Å}^{-3}$

Special details

2741 reflections

178 parameters

0 restraints

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	\boldsymbol{x}	y	\boldsymbol{z}	$U_{\rm iso}*/U_{\rm eq}$
Ni	1.0000	1.0000	0.0000	0.03248 (18)
S	0.90268 (13)	0.62180 (10)	-0.17752 (10)	0.0667(3)
N1	0.8248 (3)	0.6671 (3)	0.4349 (3)	0.0495 (6)
C1	0.5245 (7)	0.4590 (5)	0.7843 (5)	0.1058 (17)
H1A	0.5948	0.4304	0.8324	0.127*
H1B	0.4099	0.4556	0.8399	0.127*
N2	0.9261 (3)	0.8588 (2)	0.2250(2)	0.0391 (5)
C2	0.5851 (6)	0.5028 (4)	0.6428 (4)	0.0805 (12)
H2A	0.5100	0.5303	0.5996	0.097*
N3	1.5200(3)	0.9732 (3)	-0.1668 (3)	0.0455 (6)
C3	0.7651 (5)	0.5141 (4)	0.5395 (4)	0.0699 (10)
Н3А	0.8308	0.4835	0.5970	0.084*
Н3В	0.7801	0.4470	0.4844	0.084*
N4	1.2458 (3)	0.9421 (2)	-0.0627 (2)	0.0391 (5)
C4	0.8908 (4)	0.7128 (3)	0.2850(3)	0.0473 (7)
H4A	0.9091	0.6492	0.2308	0.057*
N5	0.9365 (3)	0.8207 (2)	-0.0471 (3)	0.0435 (5)
C5	0.8802 (4)	0.9078 (3)	0.3426 (3)	0.0481 (7)

H5A	0.8905	1.0073	0.3345	0.058*
C6	0.8185 (4)	0.7922 (4)	0.4713 (3)	0.0553 (8)
H6A	0.7790	0.7963	0.5668	0.066*
C7	1.6338 (5)	1.1428 (4)	-0.4780 (4)	0.0670 (9)
H7A	1.5227	1.1025	-0.4226	0.080*
H7B	1.6737	1.1937	-0.5802	0.080*
C8	1.7320 (4)	1.1281 (3)	-0.4132 (3)	0.0546 (8)
H8A	1.8418	1.1705	-0.4737	0.066*
C9	1.6888 (4)	1.0502 (4)	-0.2513 (4)	0.0582 (8)
H9A	1.7686	0.9779	-0.2412	0.070*
Н9В	1.6990	1.1231	-0.2089	0.070*
C10	1.3775 (3)	1.0383 (3)	-0.1235 (3)	0.0435 (6)
H10A	1.3729	1.1394	-0.1351	0.052*
C11	1.3071 (4)	0.8078 (3)	-0.0683 (3)	0.0506(7)
H11A	1.2426	0.7179	-0.0335	0.061*
C12	1.4764 (4)	0.8268 (3)	-0.1325 (4)	0.0548 (8)
H12A	1.5486	0.7537	-0.1497	0.066*
C13	0.9239 (3)	0.7367 (3)	-0.0999 (3)	0.0368 (6)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni	0.0336(3)	0.0344 (3)	0.0275 (3)	0.00381 (18)	-0.00890 (19)	-0.01389 (19)
S	0.0922 (7)	0.0590 (5)	0.0670(6)	0.0058 (5)	-0.0374(5)	-0.0384 (4)
N1	0.0551 (14)	0.0469 (13)	0.0343 (12)	0.0015 (11)	-0.0123 (11)	-0.0075 (10)
C1	0.120(4)	0.092(3)	0.062(3)	-0.026(3)	-0.003(3)	-0.015 (2)
N2	0.0394 (12)	0.0399 (12)	0.0322 (11)	0.0050 (9)	-0.0089(9)	-0.0139(9)
C2	0.082(3)	0.078(3)	0.060(2)	-0.028 (2)	-0.020(2)	-0.0060 (19)
N3	0.0347 (12)	0.0550 (14)	0.0427 (13)	0.0081 (10)	-0.0145 (10)	-0.0151 (11)
C3	0.086(3)	0.0514 (19)	0.0476 (18)	-0.0001 (17)	-0.0167 (18)	-0.0012 (15)
N4	0.0374 (12)	0.0424 (12)	0.0344 (11)	0.0064 (10)	-0.0113 (10)	-0.0153 (9)
C4	0.0545 (17)	0.0448 (15)	0.0367 (14)	0.0073 (13)	-0.0128 (13)	-0.0159 (12)
N5	0.0460 (13)	0.0406 (12)	0.0423 (12)	0.0033 (10)	-0.0136 (10)	-0.0188 (10)
C5	0.0529 (17)	0.0489 (16)	0.0363 (14)	-0.0017 (13)	-0.0093 (12)	-0.0188 (13)
C6	0.065(2)	0.0638 (19)	0.0296 (14)	-0.0056 (15)	-0.0101 (13)	-0.0176 (13)
C7	0.071(2)	0.074(2)	0.0478 (18)	0.0108 (18)	-0.0182 (17)	-0.0209 (17)
C8	0.0395 (15)	0.0573 (18)	0.0527 (18)	0.0033 (13)	-0.0047 (14)	-0.0207 (15)
C9	0.0373 (15)	0.077(2)	0.0538 (18)	0.0022 (14)	-0.0162 (14)	-0.0186 (16)
C10	0.0420 (15)	0.0449 (15)	0.0415 (15)	0.0051 (12)	-0.0138 (12)	-0.0177 (12)
C11	0.0469 (16)	0.0398 (15)	0.0531 (17)	0.0062 (12)	-0.0123 (14)	-0.0139 (13)
C12	0.0484 (17)	0.0524 (18)	0.0534 (17)	0.0205 (14)	-0.0150 (14)	-0.0172 (14)
C13	0.0374 (13)	0.0339 (13)	0.0339 (13)	0.0021 (10)	-0.0112 (11)	-0.0105 (11)

Geometric parameters (Å, °)

Ni—N4 ¹	2.090 (2)	C3—H3A	0.9700
Ni—N4	2.090 (2)	С3—Н3В	0.9700
Ni—N5	2.098 (2)	N4—C10	1.308 (3)

Ni—N5 ⁱ	2.098 (2)	N4—C11	1.372 (3)
Ni—N2 ⁱ	2.120(2)	C4—H4A	0.9300
Ni—N2	2.120(2)	N5—C13	1.152 (3)
S—C13	1.631 (3)	C5—C6	1.337 (4)
N1—C4	1.345 (4)	C5—H5A	0.9300
N1—C6	1.363 (4)	С6—Н6А	0.9300
N1—C3	1.461 (4)	C7—C8	1.285 (5)
C1—C2	1.271 (5)	C7—H7A	0.9300
C1—H1A	0.9300	C7—H7B	0.9300
C1—H1B	0.9300	C8—C9	1.493 (4)
N2—C4	1.314 (3)	C8—H8A	0.9300
N2—C5	1.364 (3)	C9—H9A	0.9700
C2—C3	1.490 (6)	C9—H9B	0.9700
C2—H2A	0.9300	C10—H10A	0.9300
N3—C10	1.342 (3)	C11—C12	1.353 (4)
N3—C12	1.354 (4)	C11—H11A	0.9300
N3—C9	1.461 (4)	C12—H12A	0.9300
N4 ⁱ —Ni—N4	180.000 (1)	C10—N4—C11	105.5 (2)
N4 ⁱ —Ni—N5	90.41 (9)	C10—N4—Ni	124.18 (18)
N4—Ni—N5	89.59 (9)	C11—N4—Ni	129.86 (19)
N4 ⁱ —Ni—N5 ⁱ	89.59 (9)	N2—C4—N1	111.4 (3)
N4—Ni—N5 ⁱ	90.41 (9)	N2—C4—H4A	124.3
N5—Ni—N5 ⁱ	180.000 (1)	N1—C4—H4A	124.3
$N4^{i}$ — Ni — $N2^{i}$	92.56 (9)	C13—N5—Ni	167.0 (2)
N4—Ni—N2 ⁱ	87.44 (9)	C6—C5—N2	110.3 (3)
N5—Ni—N2 ⁱ	90.56 (9)	C6—C5—H5A	124.9
N5 ⁱ —Ni—N2 ⁱ	89.44 (9)	N2—C5—H5A	124.9
N4 ⁱ —Ni—N2	87.44 (9)	C5—C6—N1	106.5 (3)
N4—Ni—N2	92.56 (9)	C5—C6—H6A	126.8
N5—Ni—N2	89.44 (9)	N1—C6—H6A	126.8
N5 ⁱ —Ni—N2	90.56 (9)	C8—C7—H7A	120.0
N2 ⁱ —Ni—N2	180.0	C8—C7—H7B	120.0
C4—N1—C6	106.7 (2)	H7A—C7—H7B	120.0
C4—N1—C3	127.1 (3)	C7—C8—C9	127.0 (3)
C6—N1—C3	126.2 (3)	C7—C8—H8A	116.5
C2—C1—H1A	120.0	C9—C8—H8A	116.5
C2—C1—H1B	120.0	N3—C9—C8	113.2 (3)
H1A—C1—H1B	120.0	N3—C9—H9A	108.9
C4—N2—C5	105.2 (2)	C8—C9—H9A	108.9
C4—N2—Ni	129.36 (19)	N3—C9—H9B	108.9
C5—N2—Ni	124.73 (18)	C8—C9—H9B	108.9
C1—C2—C3	126.0 (5)	H9A—C9—H9B	107.8
C1—C2—H2A	117.0	N4—C10—N3	111.6 (2)
C3—C2—H2A	117.0	N4—C10—H10A	124.2
C10—N3—C12	107.0 (2)	N3—C10—H10A	124.2
C10—N3—C9	125.9 (3)	C12—C11—N4	109.2 (3)

G12 N2 G2	10 (7 (2)	G12 G11 H111		105.4
C12—N3—C9	126.7 (3)	C12—C11—H11A		125.4
N1—C3—C2	111.1 (3)	N4—C11—H11A		125.4
N1—C3—H3A	109.4	C11—C12—N3		106.6 (3)
C2—C3—H3A	109.4	C11—C12—H12A		126.7
N1—C3—H3B	109.4 109.4	N3—C12—H12A		126.7
C2—C3—H3B H3A—C3—H3B	109.4	N5—C13—S		178.0 (3)
N4 ⁱ —Ni—N2—C4	101.9 (3)	C3—N1—C4—N2		177.8 (3)
N4—Ni—N2—C4	-78.1 (3)	N4 ⁱ —Ni—N5—C13		118.9 (10)
N5—Ni—N2—C4	11.5 (2)	N4—Ni—N5—C13		-61.1 (10)
N5 ⁱ —Ni—N2—C4	-168.5 (2)	N2 ⁱ —Ni—N5—C13		26.3 (10)
N4 ⁱ —Ni—N2—C5	-67.1 (2)	N2—Ni—N5—C13		-153.7 (10)
N4—Ni—N2—C5	112.9 (2)	C4—N2—C5—C6		0.1 (4)
N5—Ni—N2—C5	-157.6 (2)	NiN2C5C6		171.3 (2)
N5 ⁱ —Ni—N2—C5	22.4 (2)	N2—C5—C6—N1		-0.1 (4)
C4—N1—C3—C2	-120.9 (4)	C4—N1—C6—C5		0.2 (4)
C6—N1—C3—C2	56.7 (5)	C3—N1—C6—C5		-177.8 (3)
C1—C2—C3—N1	-121.4 (5)	C10—N3—C9—C8		-76.4 (4)
N5—Ni—N4—C10	148.6 (2)	C12—N3—C9—C8		95.5 (4)
N5 ⁱ —Ni—N4—C10	-31.4 (2)	C7—C8—C9—N3		6.1 (5)
N2 ⁱ —Ni—N4—C10	58.0 (2)	C11—N4—C10—N3		-0.5 (3)
N2—Ni—N4—C10	-122.0 (2)	Ni-N4-C10-N3		-173.39 (17)
N5—Ni—N4—C11	-22.5 (2)	C12—N3—C10—N4		0.4(3)
N5 ⁱ —Ni—N4—C11	157.5 (2)	C9—N3—C10—N4		173.7 (3)
N2 ⁱ —Ni—N4—C11	-113.1 (2)	C10—N4—C11—C12		0.3 (3)
N2—Ni—N4—C11	66.9 (2)	Ni—N4—C11—C12		172.7 (2)
C5—N2—C4—N1	0.0(3)	N4—C11—C12—N3		-0.1 (4)
Ni—N2—C4—N1	-170.67 (18)	C10—N3—C12—C11		-0.2 (3)
C6—N1—C4—N2	-0.1 (4)	C9—N3—C12—C11		-173.4 (3)
Symmetry codes: (i) $-x+2$, $-y+2$, $-z$.				
Hydrogen-bond geometry (Å, °)				
D— H ··· A	<i>D</i> —Н	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
C4—H4A···N5	0.93	2.74	3.139 (4)	107.
C7—H7A···N3	0.93	2.54	2.862 (5)	101.
C11—H11A···N5	0.93	2.87	3.187 (5)	102.
C10—H10A···N5 ⁱ	0.93	2.70	3.125 (4)	109.

0.93

0.97

2.69

2.97

3.134 (4)

3.793 (5)

110.

143.

C5—H5A···N5ⁱ

C9—H9A···N5ⁱⁱ

Symmetry codes: (i) -x+2, -y+2, -z; (ii) x+1, y, z.

Fig. 1

