ÁLGEBRA I

Doble grado en Informática y Matemáticas, 2º Curso.

Examen Final (enero 2018)

EJERCICIO 1. Sea A un anillo y sean I,Jideales de A de forma que $J\subset I.$ Demuestra que:

- (1) I/J es un ideal de A/J
- (2) Existe un isomorfismo

$$\frac{A/J}{I/J} \approxeq \frac{A}{I}$$

EJERCICIO 2. Sea $f: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$, f(a,b) = a-b. Sea $ker(f) = \{((a,b),(c,d)): f(a,b) = f(c,d)\}$ el núcleo de f.

- (1) Describe la clase de (0,0) en $(\mathbb{N} \prod \mathbb{N})/ker(f)$
- (2) Demuestra que hay una biyección entre $(\mathbb{N} \times \mathbb{N})/ker(f)$ y \mathbb{Z} .
- (3) Calcula $f^{-1}(1)[=f^*(\{1\}]]$

EJERCICIO 3.

- (1) Calcula las unidades de $\mathbb{Z}[i]/(2)$.
- (2) Calcula el resto de dividir $11^{12345678}$ entre 26 en \mathbb{Z} .
- (3) Resuelve el siguiente sistema de congruencias:

$$\begin{cases} x \equiv i \mod 3 \\ x \equiv 1 + i \mod 5 + 2i \end{cases}$$

EJERCICIO 4.

(1) Demuestra que el ideal I generado por $\{x^3 + 2x^2 - x - 2, x^3 - 1\}$ en $\mathbb{Q}[x]$ es principal. Encuentra a(x) de forma que I = (a(x)).

1

- (2) Estudia la irreducibilidad de $18x^5 + 6x + 3$ en $\mathbb{Z}[x]$ y en $\mathbb{Q}[x]$.
- (3) Factoriza el polinomio $x^6 + x^4 x^3 + x^2 x + 1$ en $\mathbb{Q}[x]$.