

Introducción a la arquitectura de computadoras

La arquitectura de computadoras es el diseño fundamental y la estructura de un sistema informático.

Componentes básicos:

CPU

El cerebro del sistema, responsable de ejecutar instrucciones y realizar cálculos.

Memoria

Almacena datos e instrucciones de manera temporal y permanente para su acceso rápido por parte de la CPU.

Entrada/Salida (E/S)

Permiten la interacción del usuario con la computadora, como teclado, mouse, pantalla y dispositivos de almacenamiento.

Organización de la CPU:

Unidad de Control

Coordina el flujo de instrucciones y datos, controlando los movimientos de la información a través del sistema.

Trabajo en conjunto

La UC y la UAL trabajan de manera coordinada para ejecutar las instrucciones del programa y procesar la información.

Unidad Aritmético-Lógica

Realiza operaciones matemáticas y lógicas sobre los datos, como sumas, restas, multiplicaciones y comparaciones.

Jerarquía de memoria:

1 Memoria Principal

Memoria de acceso rápido, como RAM, que almacena datos e instrucciones de forma temporal. 2 Memoria Secundaria

Almacenamiento de mayor capacidad y menor velocidad, como discos duros y unidades de estado sólido.

3 Transferencia de Datos

La CPU accede a los datos y las instrucciones a través de la jerarquía de memoria.

Tipos de arquitecturas de computadoras:

Arquitectura von Neumann

Utiliza una memoria única para almacenar tanto datos como instrucciones. La CPU accede a ellos a través de un mismo bus.

Comparación

La arquitectura Harvard es más eficiente, pero la von Neumann es más flexible y ampliamente utilizada.

Arquitectura Harvard

Separa la memoria de datos y la memoria de instrucciones, lo que permite un acceso más rápido y paralelo.

Aplicaciones

La arquitectura Harvard se usa principalmente en microcontroladores, mientras que la von Neumann es común en computadoras de propósito general.

Flujo de instrucciones y datos en la arquitectura de computadoras

2 3

Recuperación

La CPU recupera instrucciones de la memoria.

Decodificación

La unidad de control decodifica las instrucciones.

Ejecución

La UAL ejecuta las operaciones sobre los datos.

Almacenamie nto

Los resultados se almacenan de vuelta en la memoria.

Interacción entre componentes:

Rutas de datos que permiten la comunicación entre la CPU, la memoria y los dispositivos de E/S.

Protocolos

Reglas y formatos estandarizados que rigen la transmisión de datos entre componentes.

Transferencia

Los buses y protocolos garantizan el flujo eficiente de instrucciones y datos a través del sistema.

Tendencias y avances en la arquitectura de computadoras

Paralelismo	Procesadores con múltiples núcleos para aumentar el rendimiento.
Virtualización	Permite crear múltiples entornos virtuales en una misma máquina física.
Computación en la nube	Acceso a recursos y servicios informáticos a través de internet.
Inteligencia Artificial	Sistemas que imitan la inteligencia humana para resolver problemas.