MAT 2384 Summary Sheet

Order 1 ODE's

Standard Form: y' = f(x, y)

Differential Form: M(x,y)dx + N(x,y)dy = 0

Seperable First Order ODE's

Definition. A first order ODE is called seperable if it can be written in the form

$$F(x)dx = G(y)dy$$

Steps to Solving Seperable ODE's

- 1. Write $y' = \frac{dy}{dx}$
- 2. Separate the ODE to write it in the form F(x)dx = G(y)dy
- 3. Integrate both sides
- 4. If an initial condition is given, solve for the integration constant C.

First Order ODE's with Homogeneous Coefficients

Definition. A function F(x, y) is called homogeneous of degree k if

$$F(\lambda x, \lambda y) = \lambda^k \cdot F(x, y)$$

Definition. A first order ODE given in differential form is called homogeneous if both M(x, y) and N(x, y) are homogeneous of the same degree.

Theorem. A first order ODE of homogeneous coefficients can be made seperable by changing the function by substituting $u = \frac{y}{x} \implies y = xu$ or $u = \frac{x}{y} \implies y = \frac{x}{u}$.

Exact First Order ODEs

Definition. Given a function F(x, y), the differential of F denoted by dF is defined by

$$dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy$$

Remark. $dF = 0 \iff F(x,y) = C$.

Definition. A first order ODE is called exact if there exists F(x, y) such that

$$\frac{\partial F}{\partial x} = M(x, y)$$
 and $\frac{\partial F}{\partial x} = N(x, y)$

 ${\bf Theorem.}$ A first order ODE is exact if and only if

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Iterative Methods to Solving f(x) = 0

Theorem. (Intermediate Value Theorem). Let $f:[a,b]\to\mathbb{R}$ be a continuous function. Let $y\in\mathbb{R}$ between f(a) and f(b). Then there exists $z\in[a,b]$ such that f(z)=y.

Fixed Point Iteration

Definition. The value x = r is a fixed point for g(x) if g(r) = r.

Definition. The iteration sequence is given as

$$x_{n+1} = g(x_n)$$

with x_0 being given.

Theorem. Assume that the function g(x) has a fixed-point s on an interal I, if

- g(x) is continuous on I,
- g'(x) is continuous on I, and
- |g'(x)| < 1 for all $x \in I$.

Then then the iteration sequence converges.

Steps to Solve Using Fixed-Point Iteration

Then the steps for solving are as follows,

- 1. Start with f(x) = 0
- 2. Rewrite f(x) = 0 under the form x = g(x)
- 3. Verify the iteration sequence $x_0, x_1 = g(x_0), \ldots, x_n = g(x_{n-1})$ converges using the above theorem
- 4. Compute the terms of the sequence and stop when the required accuracy is reached (i.e when 2 consecutive terms have the same k decimal places where k is the desired accuracy).