

Man vs. nature

Investigating factors affecting the winter wheat production in Tibetan area

MSc EEC Xukun Zhu 02247611

Imperial College London

Content

Introduction

Method

Result

Discussion

Future research

Introduction

Why Tibetan Plateau?

- "Third Pole"
- Multi-sphere interactions
- High climatic sensitivity

Yang et al. (2014) Global and Planetary Change

Why agriculture?

Tibet's economic achievements since 1978

Impacts of climate change (CC) on agriculture

Why winter wheat?

- 70% of the agriculture area
- Main source of flour

Yield increasing under the CC?

Method

Environmental factors

- Annual mean winter temperature (degree Celsius)
- Annual mean winter
 precipitation (mm/month)
 Data from KNMI Climate Explorer

- Annual winter wheat planting area
 (1,000 hectares)
- Annual sum of agricultural machinery power (megawatt)
- Annual fertilizer usage (10,000 tons)
- Annual pesticide usage (10,000 tons)
- Annual farmer population (10,000 people)

Data from the China National Bureau of Statistics

Anthropogenic factors

Winter wheat production over the TP from 1978 to 2018

Response variable

Winter wheat production

Method

ANOVA

Results

```
> anova(m1, m2)
Analysis of Variance Table
Model 1: production ~ scale(year) + scale(area) + scale(fertilizer) +
    scale(machine) + scale(pesticide) + scale(farmer) + scale(prep) +
    scale(temp)
Model 2: production ~ scale(area) + scale(machine) + scale(pesticide) +
    scale(farmer) + scale(prep) + scale(temp)
 Res.Df RSS Df Sum of Sq F Pr(>F)
     32 332.80
      34 495.22 -2 -162.43 7.809 0.00173 **
              0 '***' 0.001 '**' 0.
Signif. code
```

Significant differences between m1 & m2

Results

Coefficient	Estimate ± SE	t-value	p-value
Intercept	17.06 ± 0.50	33.88	< 0.01
z-standardized year	-0.52 ± 2.71	-0.19	0.85
z-standardized planting area	2.25 ± 0.54	4.17	< 0.01
z-standardized annual fertilizer usage	7.19 ± 2.32	3.10	< 0.01
z-standardized annual machine power	-3.43 ± 1.71	-2.01	0.053
z-standardized annual pesticide usage	-0.56 ± 0.73	-0.78	0.43
z-standardized annual farmer population	0.31 ± 0.86	0.36	0.72
z-standardized annual DJF precipitation	-1.97 ± 0.63	-3.15	< 0.01
z-standardized annual DJF temperature	-1.24 ± 0.93	-1.33	0.19

Impacts on winter wheat production

Model 1 with all the explanatory variables

Results

Compared to environmental factors, human factors matter more for winter wheat production over the TP

Discussion

Current results

\approx

Historical findings

Agricultural management practices

- Improved irrigation infrastructures
- Elevated chemicals application

Xiao, Zhou & Zhang (2015) Ecosphere

Other practices for yield improvement

Agricultural management practices

- Improved irrigation infrastructures
- Elevated chemicals application

- Plantations of higher-yield wheat type
- Precise nitrogen application
- Early sowing

Limitations

Relatively small data size

Robustness?

NAs

Neglection of variances between different planting locations

Future directions

Percentage change in yields between 2010 and 2050

Reference

- Hua, W., Lin, Z., Guo, D., Fan, G., Zhang, Y., Yang, K., Hu, Q. & Zhu, L. (2019) Simulated Long-Term Vegetation—Climate Feedbacks in the Tibetan Plateau. *Asia-Pacific Journal of Atmospheric Sciences*. 55 (1), 41–52. doi:10.1007/s13143-018-0056-5.
- Kothari, K., Ale, S., Attia, A., Rajan, N., Xue, Q. & Munster, C.L. (2019) Potential climate change adaptation strategies for winter wheat production in the Texas High Plains. *Agricultural Water Management*. 225, 105764. doi:10.1016/j.agwat.2019.105764.
- Meng, F., Su, F., Yang, D., Tong, K. & Hao, Z. (2016) Impacts of recent climate change on the hydrology in the source region of the Yellow River basin. *Journal of Hydrology: Regional Studies*. 6, 66–81. doi:10.1016/j.ejrh.2016.03.003.
- Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K. & Toxopeus, A.G. (2014) Where is positional uncertainty a problem for species distribution modelling? *Ecography*. 37 (2), 191–203. doi:10.1111/j.1600-0587.2013.00205.x.
- Xiao, J., Zhou, Y. & Zhang, L. (2015) Contributions of natural and human factors to increases in vegetation productivity in China. *Ecosphere*. 6 (11), art233. doi:10.1890/ES14-00394.1.
- Zhang, T., He, Y., DePauw, R., Jin, Z., Garvin, D., Yue, X., Anderson, W., Li, T., Dong, X., Zhang, T. & Yang, X. (2022) Climate change may outpace current wheat breeding yield improvements in North America. *Nature Communications*. 13 (1), 5591. doi:10.1038/s41467-022-33265-1.

Imperial College London

Thank you.

Please ask any question you have!