Exercise Sheet 3 for Algorithms for Big Data 2023 Spring Solution

Exercise 1

Given a stream S of m integers from the set $[n] = \{1, \dots, n\}$, let $HH_k = \{i \in [n] : f_i > \frac{m}{k}\}$ be the set of k-heavy hitters, where f_i is the frequency (i.e. the number of occurrences) of i in S. Modify Misra-Gries algorithm to find a set H such that

$$\mathrm{HH}_k(\mathcal{S}) \subseteq H \subseteq \mathrm{HH}_{2k}(\mathcal{S}).$$

Your algorithm should only use one pass and use at most $O(k(\log n + \log m))$ bits of space.

Solution.

Algorithm description:

- (a) Run Misra-Gries algorithm to maintain 2k-1 items i and counters \hat{f}_i .
- (b) Output $H = \{i \in [n] : \hat{f}_i > \frac{m}{2L}\}.$

Correctness:

By Theorem in Lecture 11, we have

$$f_i - \frac{m}{2k} \leqslant \hat{f}_i \leqslant f_i.$$

If $f_i > \frac{m}{k}$, then $\hat{f}_i \geqslant f_i - \frac{m}{2k} > \frac{m}{2k}$ and the algorithm will output i. If $f_i \leqslant \frac{m}{2k}$, then $\hat{f}_i \leqslant \frac{m}{2k}$ and the algorithm will not output i. Therefore, the algorithm outputs all items i that $f_i > \frac{m}{k}$ and every item i in H satisfies $f_i > \frac{m}{2k}$, i.e., $HH_k(\mathcal{S}) \subseteq H \subseteq HH_{2k}(\mathcal{S})$.

Exercise 2

Let X and Y be finite sets and let Y^X denote the set of all functions from X to Y. We will think of these functions as "hash" functions. A family $\mathcal{H} \subseteq Y^X$ is said to be strongly 2-universal if the following property holds, with $h \in \mathcal{H}$ picked uniformly at random:

$$\forall x, x' \in X \ \forall y, y' \in Y \left(x \neq x' \Rightarrow \Pr_h[h(x) = y \land h(x') = y'] = \frac{1}{|Y|^2} \right) \,.$$

We are given a a stream S of elements of X, and suppose that S contains at most s distinct elements. Let $\mathcal{H} \subseteq Y^X$ be a strongly 2-universal hash family with $|Y| = cs^2$ for some constant c > 0. Suppose we use a random function $h \in \mathcal{H}$ to hash.

Prove that the probability of a collision (i.e., the event that two distinct elements of S hash to the same location) is at most 1/(2c).

Proof. We use h chosen uniformly at random from \mathcal{H} to hash the stream \mathcal{S} . Let the random variable C be the total number of collisions between any pair of distinct numbers in the stream. We are asked to show that $\Pr[C \geq 1] \leq 1/(2c)$. For any pair of distinct numbers x and x', let $\chi_{\{h(x)=h(x')\}} = 1$ if

h(x) = h(x'), and $\chi_{\{h(x)=h(x')\}} = 0$ otherwise. Then the total number of pairwise collisions can be written as $C = \sum_{x \neq x'} \chi_{\{h(x)=h(x')\}}$, and by linearity of expectation,

$$\mathrm{E}[C] = \mathrm{E}\left[\sum_{x \neq x'} \chi_{\{h(x) = h(x')\}}\right] = \sum_{x \neq x'} \mathrm{E}\left[\chi_{\{h(x) = h(x')\}}\right].$$

From the definition of strong 2-universality follows with y=y', that for $x\neq x'$, $\mathrm{E}\left[\chi_{\{h(x)=h(x')\}}\right]=\mathrm{Pr}[h(x)=h(x')]\leq \sum_y \mathrm{Pr}\left[(h(x)=y)\wedge (h(x')=y)\right]=\sum_y 1/|Y|^2=1/|Y|=1/cs^2$. There are at most $\binom{s}{2}$ distinct pairs in the stream \mathcal{S} , therefore

$$E[C] \le \frac{\binom{s}{2}}{cs^2} \le \frac{\frac{1}{2}s^2}{cs^2} = \frac{1}{2c}$$

By Markov's inequality, we obtain

$$\Pr[C \ge 1] \le \frac{\mathrm{E}[C]}{1} = \frac{1}{2c}.$$

Exercise 3

Consider the following two problems for analyzing a stream S of integers from [n] in the strict turnstile model. (k, ℓ_2) -point query problem: given a query(i), $1 \le i \le n$, find a value $\tilde{x}_i \in [x_i - \frac{\|x\|_2}{k}, x_i + \frac{\|x\|_2}{k}]$. (k, ℓ_2) -heavy hitters problem: given a query(), find a set $L \subset [n]$ such that $|L| = O(k^2)$ and if $x_i > \frac{\|x\|_2}{k}$.

then $i \in L$. Suppose there exists an algorithm \mathcal{A} for the (k, ℓ_2) -point query problem with failure probability $\frac{\delta}{n}$ and using s bits of space.

Give an algorithm \mathcal{A}' for the $(\frac{k}{4}, \ell_2)$ -heavy hitters problem with failure probability δ and using small space.

Solution.

Algorithm description:

Iteratively query all points with algorithm \mathcal{A} and obtain $\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_n$. Remember $\frac{k^2}{4}$ indices with the biggest estimators and denote it as L. Output L.

Correctness:

Let Y_i be the event that the query on \tilde{x}_i fails, i.e., the event that $\tilde{x}_i \notin \left[x_i - \frac{\|\boldsymbol{x}\|_2}{k}, x_i + \frac{\|\boldsymbol{x}\|_2}{k}\right]$. Denote $Y = \bigcap_{i=1}^n \overline{Y_i} = \overline{\bigcup_{i=1}^n Y_i}$, i.e., the event that all n point queries succeed. Since the failure probability of algorithm \mathcal{A} is at most $\frac{\delta}{n}$, we can see that $\Pr[Y_i] \leq \frac{\delta}{n}$. By union bound, $\Pr[Y] = 1 - \Pr[\bigcup_{i=1}^n Y_i] \geq 1 - \sum_{i=1}^n \Pr[Y_i] \geq 1 - \delta$.

We show that our algorithm \mathcal{A}' always succeeds when all point queries succeed. Assume $\tilde{x}_i \in \left[x_i - \frac{\|\boldsymbol{x}\|_2}{k}, x_i + \frac{\|\boldsymbol{x}\|_2}{k}\right]$ holds for all $i = 1, 2, \dots, n$.

- If x_i is a $(\frac{k}{4}, \ell_2)$ heavy hitter, then $x_i \geq \frac{4}{k} ||x||_2$. Therefore $\tilde{x}_i \geq x_i \frac{1}{k} ||x||_2 \geq \frac{3}{k} ||x||_2$.
- If $\tilde{x}_i \geq \frac{3}{k}$, then $x_i \geq \tilde{x}_i \frac{1}{k} ||x||_2 \geq \frac{2}{k}$. Thus

$$\|\boldsymbol{x}\|_{2}^{2} = \sum_{i=1}^{n} x_{i}^{2} \ge \sum_{i: x_{i} \ge \frac{2}{k} \|\boldsymbol{x}\|_{2}} x_{i}^{2} \ge \frac{4}{k^{2}} \|\boldsymbol{x}\|_{2}^{2} \left| \left\{ i: x_{i} \ge \frac{2}{k} \|\boldsymbol{x}\|_{2} \right\} \right|$$

$$\left| \left\{ i : \tilde{x}_i \ge \frac{3}{k} \right\} \right| \le \left| \left\{ i : x_i \ge \frac{2}{k} || \boldsymbol{x} ||_2 \right\} \right| \le \frac{k^2}{4}$$

Therefore, if i is a $(\frac{k}{4}, \ell_2)$ -heavy hitter, then \tilde{x}_i is among the $\frac{k^2}{4}$ biggest entries of \tilde{x} , i.e., $i \in L$. Therefore, the set L output by our algorithm solves the (k, ℓ_2) -heavy hitters problem.

Exercise 4

In the class, we have seen a KMV algorithm, denoted by A, for estimating the number of distinct elements. The algorithm \mathcal{A} has failure probability $\frac{1}{3}$. Design a new algorithm for the Distinct Elements problem with failure probability at most δ , for any $\delta < \frac{1}{3}$. Your algorithm can use \mathcal{A} as a subroutine.

Solution.

Algorithm description:

- (a) Independently run $s = \lceil 18 \ln \frac{1}{\delta} \rceil$ copies of \mathcal{A} and obtain the estimators t_1, t_2, \ldots, t_s .
- (b) Output $t^* \triangleq \text{median}(t_1, t_2, \dots, t_s)$.

Correctness:

Denote these s subroutines as A_1, A_2, \ldots, A_s where A_i outputs t_i . Denote the exact number of distinct elements as t. So A_i fails if and only if $|t_i - t| > \varepsilon$. Since each subroutine A_i has a failure probability $\frac{1}{3}$, we have $\Pr[|t_i - t| > \varepsilon] \leq \frac{1}{3}$. We then show that our algorithm fails with probability at most δ , i.e.,

$$\Pr\left[|t^* - t| > \varepsilon\right] \le \delta. \text{ Denote } Y_i \triangleq \left[|t_i - t| > \varepsilon\right] = \left[\mathcal{A}_i \text{ fails}\right] = \begin{cases} 1 & |t_i - t| > \varepsilon \\ 0 & \text{otherwise} \end{cases} \text{ and } Y \triangleq \sum_{i=1}^s Y_i$$

 $\Pr\left[|t^* - t| > \varepsilon\right] \le \delta. \text{ Denote } Y_i \triangleq \left[|t_i - t| > \varepsilon\right] = \left[\mathcal{A}_i \text{ fails}\right] = \begin{cases} 1 & |t_i - t| > \varepsilon \\ 0 & \text{otherwise} \end{cases} \text{ and } Y \triangleq \sum_{i=1}^s Y_i.$ We first show that $t^* < t - \varepsilon \implies Y \ge \frac{s}{2}$. Without loss of generality, assume $t_1 \le t_2 \le \cdots \le t_s$. Since t^* is the median, by the definition of the median, we have $t_1 \le t_2 \le \cdots \le t_{\left\lceil \frac{s}{2} \right\rceil} \le t^*$. So when $t^* < t - \varepsilon$, $t_1 \leq t_2 \leq \cdots \leq t_{\left\lceil \frac{s}{2} \right\rceil} < t - \varepsilon$ must hold. This indicates that $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_{\left\lceil \frac{s}{2} \right\rceil}$ fails, which indicates that

at least $\lceil \frac{s}{2} \rceil$ of the s subroutines fail. This indicates that $t^* < t - \varepsilon \implies Y \ge \lceil \frac{s}{2} \rceil \ge \frac{s}{2}$. We can show that $t^* > t + \varepsilon \implies Y \ge \frac{s}{2}$ in a similar way, by assuming $t_1 \ge t_2 \ge \cdots \ge t_s$ without loss of generality. Therefore, $|t^* - t| > \varepsilon \iff t^* - t < -\varepsilon \lor t^* - t > \varepsilon \implies Y \ge \frac{s}{2}$ must hold. Since $Y_i = [|t_i - t| > \varepsilon]$, $E[Y_i] = \Pr[|t_i - t| > \varepsilon] \le \frac{1}{3}$. By linearity of expectation, $E[Y] = E[\sum_{i=1}^s Y_i] = \sum_{i=1}^s E[Y_i] \le \frac{s}{3}$. Hence $|t^* - t| > \varepsilon \implies Y \ge \frac{s}{2} \implies Y - E[Y] \ge \frac{s}{6}$ and thus $\Pr[|t^* - t| > \varepsilon] \le \Pr[Y - E[Y] \ge \frac{s}{6}]$.

By Chernoff bound, we have $\Pr\left[Y - \mathrm{E}[Y] \ge \frac{s}{6}\right] \le \exp\left(-2\left(\frac{s}{6}\right)^2 \frac{1}{s}\right)$. Since $s \ge 18 \ln \frac{1}{\delta}$, we can see that $\Pr[|t^* - t| > \varepsilon] \le \delta.$