СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

КУРСОВ ПРОЕКТ ПО ФРАКТАЛИ

Тема:

Триъгълник на Серпински

Студент:

Семир Балджиев, 8МІ0700024

София 2024 г.

1. Триъгълник на Серпински. Въведение

Триъгълникът на Серпински, наричан още и Решето на Серпински, е фрактал с формата на равностранен триъгълник, рекурсивно разделен на по-малки равностранни триъгълници с дължина на страната, съответно 1/2, 1/4, 1/8, ... $1/2^n$ ($n \to \infty$) от дължината на външния триъгълник. Триъгълникът на Серпински е един от най-простите примери за самоподобни множества, тъй като е математически генериран модел, който може да се самовъзпроизведе при произволно увеличаване или намаляване на мащаба. Наречен е на името на полския математик Вацлав Серпински, но съществува от много столетия като декоративен елемент, преди Серпински да започне да изучава свойствата му на математически обект.

Конструкции

Има много различни начини за конструиране на триъгълника на Серпински и някои от тях са:

Премахване на триъгълници

Триъгълникът на Серпински може да бъде конструиран от равностранен триъгълник чрез многократно премахване на триъгълни подмножества:

- 1. Започнете с равностранен триъгълник.
- 2. Разделете го на четири по-малки еднакви равностранни триъгълника и премахнете централния триъгълник.
- 3. Повторете стъпка 2 с всеки от останалите по-малки триъгълници безкрайно.

Фиг. 1. Конструиране чрез премахване на триъгълници

Свиване и дублиране

Същата последователност от фигури, събиращи се към триъгълника на Серпински, може алтернативно да бъде генерирана чрез следните стъпки:

Започнете с произволен триъгълник в равнина (всяка затворена, ограничена област в равнината всъщност ще работи). Каноничният триъгълник на Серпински използва равностранен триъгълник с основа, успоредна на хоризонталната ос

Свийте триъгълника до ½ височина и ½ ширина, направете три копия и позиционирайте трите свити триъгълника така, че всеки триъгълник да докосва другите два триъгълника в ъгъл. Обърнете внимание на появата на централната дупка - защото трите свити триъгълника могат да покриват само между тях $\frac{3}{4}$ от площта на оригинала. (Дупките са важна характеристика на триъгълника на Серпински.)

Повторете стъпка 2 с всеки от по-малките триъгълници.

Този безкраен процес не зависи от това, че началната форма е триъгълник - просто така е по-ясно. Първите няколко стъпки, започващи например от квадрат, също клонят към триъгълник на Серпински.

Фиг. 2. Конструиране чрез свиване и дублиране

3. Свойства

За целочислен брой измерения \emph{d} когато удвоявате страна на обект, се създават 2^d негови копия т.е. 2 копия за 1-измерен обект, 4 копия за 2-измерен обект и 8 копия за 3-измерен обект. За триъгълника на Серпински, удвояването на неговата страна създава 3 негови копия. Така триъгълникът на Серпински има Хаусдорфова размерност: $\frac{\log 3}{\log 2} \approx 1.585$ което следва от решаването на 2^d = 3 за \emph{d} .

Площта на триъгълник на Серпински е нула (в мярка на Лебег). Оставащата площ след всяка итерация е ³/₄ от областта от предишната итерация и безкраен брой итерации води до област, приближаваща се до нула.

Точките на триъгълника на Серпински имат проста характеристика в барицентрични координати. Ако една точка има барицентрични координати ($0.u_1u_2u_3...$, $0.v_1v_2v_3...$, $0.w_1w_2w_3...$) изразени като двоични числа, тогава точката е в триъгълника на Серпински тогава и само ако $u_i + v_i + w_i = 1$ за всяко i.

Фиг. 3. Триъгълник на Серпински с описани характеристики

4. Програмна реализация. Описание на кода

За програмната реализация е използван езика Python. Кода използва модула Turtle в Python за рисуване на Триъгълника на Серпински рекурсивно.

За тази цел се използва функцията draw_sierpinski_triangle, която рекурсивно рисува триъгълници във вътрешността на други триъгълници, като намалява мащаба им, докато не се достигне зададената редица.

Като функцията draw_sierpinski_triangle преминава през поредица от рекурсивни извиквания, всеки път рисува с по-малък размер, това създава впечатляващ ефект на "фрактал". Всяко ниво на рекурсия съдържа три триъгълника, като центърът на всяка страна се използва за рекурсивните извиквания. Триъгълниците са оцветени в червен цвят който се може да се променя като се задава на функцията fillcolor от модула Turtle.

```
def draw_sierpinski_triangle(turtle, order, size):
    if order == 0:
        turtle.fillcolor("red")
       turtle.begin_fill()
        for _ in range(3):
           turtle.forward(size)
           turtle.left(120)
       turtle.end_fill()
    else:
        size /= 2
        draw_sierpinski_triangle(turtle, order - 1, size)
       turtle.forward(size)
        draw_sierpinski_triangle(turtle, order - 1, size)
       turtle.backward(size)
        turtle.left(60)
        turtle.forward(size)
        turtle.right(60)
        draw_sierpinski_triangle(turtle, order - 1, size)
        turtle.left(60)
        turtle.backward(size)
        turtle.right(60)
```

Фиг. 4. Рекурсивна функция за рисуване на фрактала

Входните параметри на функцията са turtle (обектът, който използваме за рисуване с Turtle), order (редицата на триъгълника, която определя колко пъти ще се извика рекурсията) и size (размерът на текущия триъгълник).

В началото на функцията проверяваме дали order е 0. Ако е 0, това означава, че сме достигнали основния случай на рекурсията и трябва да нарисуваме триъгълник. В този случай функцията просто рисува триъгълник с дадения размер и цвят.

Ако order не е 0, значи сме в рекурсивен случай. Тогава намаля размера на триъгълника наполовина (size /= 2) и извиква функцията draw_sierpinski_triangle рекурсивно три пъти за да нарисуваме по-малките триъгълници. По същия начин, като нарисуваме триъгълници в триъгълници, продължаваме рекурсивно да намалява размера на триъгълника и да го разполагаме правилно, докато не достигнем основния случай.

Ключът за разбиране на рекурсивната функция draw_sierpinski_triangle e, че при всяко извикване намалява редицата order c 1 и намалява размера на триъгълника наполовина, като този процес се повтаря рекурсивно докато не се достигне основния случай (order == 0). Тогава се рисува най-малкият триъгълник и рекурсията приключва.

Функцията main се грижи за настройката на прозореца и вземането на поредицата на триъгълника от потребителя, след което стартира рисуването на триъгълника. Прозореца заема почти цялата ширина и височина на екрана, а рисуването започва от долния ляв ъгъл на екрана.

```
def main():
    window = turtle.Screen()
    window.bgcolor("white")
    window.setup(width=0.99, height=0.9)
    sierpinski_turtle = turtle.Turtle()
    sierpinski_turtle.penup()
    sierpinski_turtle.setpos(-window.window_width() / 2, -window.window_height() / 2)
    sierpinski_turtle.pendown()
    sierpinski_turtle.speed(100)

    order = int(input("Enter the order of the Sierpiński triangle: "))
    size = order*100

    if size == 0: size = 100

    draw_sierpinski_triangle(sierpinski_turtle, order, size)

    window.exitonclick()
```

Фиг. 5. Основната функция на програмата

Това позволява на програмата да рисува триъгълници от всеки възможен размер и поредица, като се гарантира красив и въздействащ визуален резултат. Важно е да се отбележи, че за въвеждането на поредицата се предполага, че потребителят ще въведе положително цяло число.

5. Предварителни изисквания за стартиране на програмата

Програмата представлява конзолно приложение и приема едно положително число като вход (нивото на триъгълника).

За да бъде изпълнена програмата трябва да се конфигурира средата за изпълнение и да се инсталират следните инструменти:

- 1. Инсталиран Python на съответния компютър.
 - а. Може да се изтегли от официалния сайт. Следват се стъпките от инсталатора.
- 2. Инсталирана среда за разработка (IDE) (VS Code/PyCharm
- 3. Инсталиране на модула turtle чрез командата: pip install turtle
- 4. Изпълнение на програмата чрез команда от терминала или чрез бутона за стартиране
 - а. чрез команда: python .\fractal.py

Фиг. 6. Команда за изпълнение

b. със следния бутон:

Фиг. 7. Бутон за изпълнение

6. Примерно изпълнение на програмата

При стартиране на програмата се очаква вход от потребителя който да се въведе в конзолата който изглежда по следния начин:

```
PS D:\FMI\fractals> python .\fractal.py
Enter the level of the Sierpiński triangle:
```

Фиг. 8. Вход на ниво на триъгълника от потребителя

След като потребителят въведе желаното от него ниво се отваря прозорец и започва рисуването на Триъгълника на Серпински.

PS D:\FMI\fractals> python .\fractal.py Enter the level of the Sierpiński triangle: 3

Фиг. 9. Триъгълник на Серпински с ниво 3

PS D:\FMI\fractals> python .\fractal.py
Enter the level of the Sierpiński triangle: 5

Фиг. 10. Триъгълник на Серпински с ниво 5

Забележка: При по-голямо ниво отнема повече време за рисуване и триъгълниците са малки и не се виждат добре затова е препоръчително да се тества с ниво в диапазона (0-6)