

Scalable High Efficiency Video Coding based HTTP Adaptive Streaming over QUIC

Minh Nguyen, Hadi Amirpour, Christian Timmerer, Hermann Hellwagner

August 14th, 2020 ACM SIGCOMM EPIQ Workshop

Agenda

- Motivation
- Contributions
- Proposed method
- Evaluation and discussion
 - HTTP/3 over QUIC vs HTTP/2 over TCP
 - Proposed method vs state-of-the-art methods
- Conclusion and Future work

Motivation

- Protocols
 - o HTTP/2 suffers from Head-of-line (HOL) blocking.
 - o QUIC running on top of UDP can tackle this issue.
- Video streaming
 - Adaptive bitrate (ABR) algorithms are mainly designed for either non-scalable or scalable video coding formats.
 - Lack of an approach that works well for both nonscalable and scalable video coding formats.

Contributions

• A systematic comparison of QUIC and HTTP/2 regarding the multiplexing feature.

• A non-scalable video streaming ABR algorithm in combination with an additional download technique is proposed to not only improve the video quality but also to provide a smooth adaptation behavior.

Proposed method

- State-of-the-art ABR algorithms
 - Non-scalable based method: Aggressive ABR (AGG)
 - Scalable based method: Backfilling
- Proposed method for Scalable Video Streaming
 - Modified AGG + HTTP/2-Based Retransmission technique (H2BR)
 - Modified AGG
 - Choosing the number of layers for each segment based on the network condition,
 - Downloading sequentially from low to high layers of each segment.
 - H2BR [PV'20]
 - Filling quality gaps in the buffer,
 - Downloading concurrently next layers and the additional layer with priority and multiplexing features,
 - Terminating layers with termination feature.

Scalable based Backfilling

Modified non-scalable based AGG

Modified non-scalable based AGG + H2BR

Proposed method

How does H2BR work?

- Detecting gaps in the buffer.
- o If there is a gap, additional layer will be 1-level higher (i.e., the segment has BL, the additional layer is EL 1).
- Additional layer will be downloaded if the throughput can sustain the next layer and additional layer so that:
 - Retransmission buffer > 0, and
 - Estimated buffer > BufferSize/4.
- Assigning priority weights for additional layer and next layer so that for these layers enough throughput is allocated.
- Sending 2 requests.
- Terminating the additional layer if:
 - Retransmission buffer < 100 ms, or
 - Current buffer < BufferSize/4.

Modified non-scalable based AGG + H2BR

* BL: Base layer

* EL: Enhancement layer

Testbed

Modified AGG (M-AGG)

Modified AGG + H2BR (H2BR)

Backfilling (BF)

Compared methods

HTTP/3 over QUIC vs HTTP/2 over TCP

Average quality level

downward switches

Impact of packet loss rate on the performance of adaptation approaches

HTTP/3 over QUIC vs HTTP/2 over TCP

additional layers successfully downloaded by H2BR

Proposed method vs state-of-the-art methods

Average quality level

downward switches

Impact of buffer size on the performance of adaptation approaches

Proposed method vs state-of-the-art methods

Buffer starvation when buffer size is 5s

Conclusion and Future work

Conclusion

- QUIC can well support concurrent streams to provide a better performance in case of packet loss.
- Proposed method makes non-trivial improvement in scalable video streaming.
- H2BR might be a burden that can lead to buffer starvation when the buffer size is small.

Future work

- o Investigating parameter selections for H2BR.
- o Considering different network traces and video contents.

Thank you

