304.3

THOMAS BREYDO

Problem. Suppose $T \in \mathcal{L}(V)$ has the same matrix with respect to every basis of V. Prove that T is a scalar multiple of the identity operator.

Let v_1, \ldots, v_n be a basis of V, and suppose $1 \le i < j \le n$. Next, consider the matrix of T with respect to v_1, \ldots, v_n :

$$\mathcal{M}(T,(v_1,\ldots,v_n)) = \begin{pmatrix} \vdots & \vdots & \vdots \\ \ldots & A_{ii} & \ldots & A_{ij} & \ldots \\ \vdots & \ddots & \vdots & \vdots \\ \ldots & A_{ji} & \ldots & A_{jj} & \ldots \\ \vdots & & \vdots & \end{pmatrix}.$$

For convenience, let's relabel:

$$\mathcal{M}(T,(v_1,\ldots,v_n)) = \begin{pmatrix} \vdots & \vdots & \vdots \\ \ldots & a & \ldots & b & \ldots \\ \vdots & \ddots & \vdots & \vdots \\ \ldots & c & \ldots & d & \ldots \\ \vdots & \vdots & \vdots & \end{pmatrix}.$$

Recall that the i^{th} column corresponds to Tv_i , so

$$Tv_i = \cdots + av_i + \cdots + cv_j + \cdots,$$

and the j^{th} column corresponds to Tv_i , so

$$Tv_i = \cdots + bv_i + \cdots + dv_i + \cdots$$

Claim. a = d.

Proof. If we swap v_i and v_j in the basis, the i^{th} column will correspond to

$$Tv_i = \cdots + dv_i + \cdots + bv_i + \cdots,$$

while the j^{th} column will correspond to

$$Tv_i = \cdots + cv_i + \cdots + av_i + \cdots$$

Thus, under the new basis,

$$\begin{pmatrix} \vdots & \vdots & \vdots \\ \dots & a & \dots & b & \dots \\ \vdots & \ddots & \vdots & \vdots \\ \dots & c & \dots & d & \dots \\ \vdots & \vdots & \vdots & \dots \end{pmatrix} \text{ will become } \begin{pmatrix} \vdots & \vdots & \vdots \\ \dots & d & \dots & c & \dots \\ \vdots & \ddots & \vdots & \vdots \\ \dots & b & \dots & a & \dots \\ \vdots & \vdots & \vdots & \dots \end{pmatrix}.$$

Since T has the same matrix with respect to every basis of V, we see that a = d. \square

Claim. b = c = 0.

Proof. This time, double v_i instead of swapping it with v_j . After we double v_i , our new basis will be $(\ldots, 2v_i, \ldots, v_j, \ldots)$. Under this new basis, the i^{th} column will correspond to

$$T(2v_i) = \dots + a(2v_i) + \dots + 2c(v_i) + \dots,$$

and the $j^{\rm th}$ column will correspond to

$$T(v_j) = \dots + \frac{1}{2}b(2v_i) + \dots + dv_j + \dots.$$

Thus, under the new basis,

$$\begin{pmatrix} \vdots & \vdots & \vdots \\ \dots & a & \dots & b & \dots \\ \vdots & \ddots & \vdots & \vdots \\ \dots & c & \dots & d & \dots \\ \vdots & \vdots & \vdots \end{pmatrix} \text{ will become } \begin{pmatrix} \vdots & \vdots & \vdots \\ \dots & a & \dots & \frac{1}{2}b & \dots \\ \vdots & \ddots & \vdots & \vdots \\ \dots & 2c & \dots & d & \dots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}.$$

Since T has the same matrix with respect to every basis of V, we see that

$$b = \frac{1}{2}b$$
 and $c = 2c$.

Thus, b = c = 0.

Claim. T is a scalar multiple of the identity operator.

Proof. Our first claim implies that entries on the diagonal of $\mathcal{M}(T,(v_1,\ldots,v_n))$ are all pairwise equal. Thus, they are all equal. Our second claim implies all other entries are zero. Thus,

$$\mathcal{M}(T, (v_1, \dots, v_n)) = \begin{pmatrix} \lambda & 0 \\ & \ddots \\ 0 & \lambda \end{pmatrix} = \mathcal{M}(\lambda I)$$

for some $\lambda \in \mathbf{F}$.

304.3

Note. You can view the source code for this solution here.