Problema 1 2sah – soluție

Prof. Adrian Panaete - Colegiul Național "A. T. Laurian " Botoșani

Notăm $f_{i,j}$ cantitatea de fân din pătratul de pe linia i și coloana j.

Avem
$$f_{i,j} = f_{i-1,j-1} + f_{i-1,j} + f_{i-1,j+1}$$
 pentru orice i, j cu $1 \le i \le n+1$, $1 \le j \le 2n+1$

Pentru prima cerință evident că orice cantitate nenulă de pe o linie va fi adunată la exact 3 cantități de pe linia următoare. Mai precis cantitatea $f_{i,j}$ de pe linia i se adună la cantitățile $f_{i+1,j-1}$, $f_{i+1,j}$ și $f_{i+1,j+1}$. Astfel deducem ca suma pe o linie este triplă față de suma liniei anterioare. Deoarece sumele formeaza o progresie geometrică de rație 3 cu primul termen 1 (adică suma pe prima linie este 1) obținem că soluția este 3^{k-1} . Pentru a obține maximul de punctaj la această cerință trebuie calculată această valoare folosind ridicarea la putere în timp logaritmic.

Pentru a doua cerință observăm că traseul calului conține pozițiile $(1,k), (2,k+2), (3,k+4), \dots$, (i,k+2i-2) ... unde $k+2i-2 \le 2n+1$ adică $i \le \frac{2n+3-k}{2}$ $(\le n+1)$

Exprimănd cantitățile din fiecare pozitie cu formula de recurență se observă că aceasta cantitate se descompune exact in cantitățile pe care le-ar consuma caii care pleaca de pe prima linie de pe coloanele k+1, k+2 și k+3 mai precis notând F_k solutia căutată vom avea formula de recurență:

$$F_k = F_{k+1} + F_{k+2} + F_{k+3}$$

Pentru un calcul mai simplu vom considera j=n+1-k obținănd sirul $T_j=S_k$ șir care respectă relația de recurență

$$T_j = T_{j-1} + T_{j-2} + T_{j-3}$$

cu termenii inițiali

$$T_0 = T_1 = 1, T_2 = 2$$

Acest șir mai este cunoscut și sub denumirea de șir Tribonacci iar pentru calculul termenilor săi se pot aplica tehnici similare calculului pentru teremnii șirului Fibonacci (sau mai general pentru oricare șiruri definite prin formule de recurență liniara).

Pentru punctaj parțial se poate folosi generarea termenilor folosind liniar formula de recurență. Pentru punctaj maxim trebuie aplicată o metoda cu timp de execuție logaritmic. Observăm ca din formula de recurență se poate deduce că (in termeni de operații cu matrice) avem:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} T_j \\ T_{j+1} \\ T_{j+2} \end{pmatrix} = \begin{pmatrix} T_{j+1} \\ T_{j+2} \\ T_{j+3} \end{pmatrix}$$

Deci folosind matricea

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Avem

$$\begin{pmatrix} T_j \\ T_{j+1} \\ T_{j+2} \end{pmatrix} = A^j \cdot \begin{pmatrix} T_0 \\ T_1 \\ T_1 \end{pmatrix}$$

Iar matricea A^j se va calcula folosind ridicarea la putere în timp logaritmic.

DEMONSTRATIILE MATEMATICE PENTRU CELE DOUÂ FORMULE:

Renumerotând liniile cu numere de la 0 la n vom și coloanele de la de la -n la n și notând potrivit noii numerotări cu V_i^j cantitatea de fân de pe linia i și coloana j tabla arată astfel:

						V_0^0						
					V_1^{-1}	V_1^0	V_1^1					
				V_2^{-2}	V_2^{-1}	V_2^0	V_2^1	V_2^2				
			V_3^{-3}	V_3^{-2}	V_3^{-1}	V_3^0	V_3^1	V_3^2	V_{3}^{3}			
			•••	•••	•••	•••	•••		•••			
	V_i^{-i}	•••	V_i^{-3}	V_i^{-2}	V_i^{-1}	V_i^0	V_i^1	V_i^2	V_i^3	•••	V_i^i	
	 •••	•••	•••	•••	•••	•••	•••		•••	•••	•••	
V_n^{-n}	V_n^{-i}		V_n^{-3}	V_n^{-2}	V_n^{-1}	V_n^0	V_n^{-2}	V_n^1	V_n^2	•••	V_n^i	 V_n^n

Avem

$$\begin{split} V_{k+1}^{-k-1} &= V_k^{-k} = 1 \\ V_{k+1}^{k+1} &= V_k^k = 1 \\ V_{k+1}^{-k} &= V_k^{-k} + V_k^{-k+1} = k+1 \\ V_{k+1}^k &= V_k^{k-1} + V_k^k = k+1 \\ V_{k+1}^j &= V_k^{j-1} + V_k^j + V_k^{j+1}, (\forall) - k < j < k \\ V_k^j &= 0 \ , (\forall) j < -k \ sau \ j > k \end{split}$$

CERINȚA 1.

Se notează S_k suma valorilor nenule de pe linia k potrivit notației introduse. Avem:

$$S_{k+1} = \sum_{j=-k-1}^{k+1} V_{k+1}^{j} = V_{k+1}^{-k-1} + V_{k+1}^{-k} + \sum_{j=-k+1}^{-k+1} V_{k+1}^{j} + V_{k+1}^{k} + V_{k+1}^{k+1} =$$

$$= V_{k}^{-k} + V_{k}^{-k} + V_{k}^{-k+1} + \sum_{j=-k+1}^{-k+1} \left(V_{k}^{j-1} + V_{k}^{j} + V_{k}^{j+1} \right) + V_{k}^{k-1} + V_{k}^{k} + V_{k}^{k} =$$

$$= V_{k}^{-k} + V_{k}^{-k} + V_{k}^{-k+1} + \sum_{j=-k+1}^{k-1} V_{k}^{j-1} + \sum_{j=-k+1}^{k-1} V_{k}^{j} + \sum_{j=-k+1}^{k-1} V_{k}^{j+1} + V_{k}^{k-1} + V_{k}^{k} + V_{k}^{k} =$$

$$= \left(V_{k}^{-k} + V_{k}^{-k+1} + \sum_{j=-k+1}^{k-1} V_{k}^{j-1} \right) + \left(V_{k}^{-k} + \sum_{j=-k+1}^{k-1} V_{k}^{j} + V_{k}^{k} \right) + \left(\sum_{j=-k+1}^{k-1} V_{k}^{j+1} + V_{k}^{k-1} + V_{k}^{k} \right) =$$

$$= \left(V_{k}^{-k} + V_{k}^{-k+1} + \sum_{j=-k+2}^{k} V_{k}^{j} \right) + \left(V_{k}^{-k} + \sum_{j=-k+1}^{k-1} V_{k}^{j} + V_{k}^{k} \right) + \left(\sum_{j=-k}^{k-2} V_{k}^{j} + V_{k}^{k-1} + V_{k}^{k} \right) =$$

$$= \sum_{j=-k}^{k} V_{k}^{j} + \sum_{j=-k}^{k} V_{k}^{j} + \sum_{j=-k}^{k} V_{k}^{j} =$$

$$= 3 \sum_{i=-k}^{k} V_{k}^{j} = 3S_{k}$$

Deci $S_{k+1} = 3S_k$ adică avem o progresia arithetică. Dar $S_0 = V_0^0 = 1$ de unde se obține $S_k = 3^k$. Datorită renumerotarii liniilor răspunsul corect la prima cerință este $S_{k-1} = 3^{k-1}$.

CERINȚA 2.

Folosind aceeasi renumerotare a liniilor și coloanelor observăm că tabla pentru n=1 este inclusă în tabla pentru n=2 care la rândul ei este inclusă pentru tabla pentru n=3 și așa mai departe. În general tabla pentru n=j-1 este inclusă în tabla pentru n=j.

Se observă că fiecare poziție de pe prima linie și de pe o colană $k \le n+1$ este de fapt prima poziție din tabla pentru tabla corespunzătoare lui m=n+2-k. Folosind renumerotarea liniilor și coloanelor traseul calului pleaca din prima poziție a tablei (0,-m) și va avea ca ultimă poziție care conține fân exact ultima pozitie din aceasta tabla, mai precis poziția (m,m). Cu alte cuvinte cantitatea de fân mâncată de cal va fi:

$$T_m = \sum_{i=0}^m V_i^{2i-m}$$

Avem (folosind formulele de mai sus pentru V_i^j)

$$T_{m} = V_{0}^{-m} + \sum_{i=1}^{m-2} V_{i}^{2i-m} + V_{m-1}^{m-2} + V_{m}^{m} =$$

$$= 0 + \sum_{i=1}^{m-2} \left(V_{i-1}^{2i-m-1} + V_{i-1}^{2i-m} + V_{i-1}^{2i-m+1} \right) + (m-1) + 1 \qquad (i \to i+1)$$

$$= \sum_{i=0}^{m-3} \left(V_{i}^{2i-m+1} + V_{i-1}^{2i-m+2} + V_{i}^{2i-m+3} \right) + m \qquad =$$

$$= \sum_{i=0}^{m-3} V_{i}^{2i-m+1} + \sum_{i=0}^{m-3} V_{i}^{2i-m+2} + \sum_{i=0}^{m-3} V_{i}^{2i-m+3} + m =$$

$$= (T_{m-1} - V_{m-2}^{m-3} - V_{m-1}^{m-1}) + (T_{m-2} - V_{m-2}^{m-2}) + T_{m-3} + m$$

$$= T_{m-1} + T_{m-2} + T_{m-3} - (m-2) - 1 - 1 + m =$$

$$= T_{m-1} + T_{m-2} + T_{m-3}$$

În desenul de mai jos se descrie succint modul în care (reducând tabla si renumerotând coloane) cantitatea consumată de calul A-(coresunzător tablei m) este egală cu suma cantităților consumate de caii B,C și D (corespunzători tablelor m-1, m-2, m-3).

A	В	С	D				*							
		A	В	С	D	*	*	*						
				A	*B	*C	*D	*	*					
				*	*	*A	*B	*C	*D	*				
			*	*	*	*	*	*A	*B	*C	*D			
		*	*	*	*	*	*	*	*	*A	*B	*C		
	*	*	*	*	*	*	*	*	*	*	*	*A	*B	
*	*	*	*	*	*	*	*	*	*	*	*	*	*	*A