Transcription

RNA synthesis

Objectives

What is Transcription?

Gene structure in prokaryotes & eukaryotes

Site of Transcription

Requirements for transcription

Stages in Transcription

Need for RNA

Crick's Central Dogma of Molecular Biology

Ammendments to the Central Dogma

Flow of Genetic information is not one-way

Need for an RNA intermediate

Use two nucleic acids to encode the data, one to read and one for backup

Make them complementary for error checking

Site of Transcription : The Nucleus

Ribonucleoside 5'- triphosphates (ATP, GTP, UTP, CTP):
as precursor of the nucleotide units of RNA

Transcription signals

DNA template

Only one strand of the DNA of a gene is used as a template

RNA transcript matches the non-template strand in direction and base sequence

Except: T's are replaced by U's

Template & Non-Template strands in two different genes

Enzyme RNA Polymerase (Prokaryotes): Structure

Recognizes the enzyme binding site on DNA β β α α + σ α σ α Sigma factor Holoenzyme **Core enzyme**

Types of RNA Polymerases

Gene Structure

Transcription signals - Promoters

Transcription signals - Promoters

```
Prokaryotes:

-10 sequence and -35 sequence ("Pribnow" box recognized by the holoenzyme)

-35 -10

5'-----TTGACA-----TATAAT-----Start site-
```


Transcription: The Process

Initiation

Formation of an Open Complex

A moving RNA polymerase molecule continuously:
unwinds the DNA helix ahead of the polymerization site
rewinds the 2 DNA strands behind this site

Sequential addition of nucleotides in

5'-3' direction

The RNA chain grows by the formation of a bond between the 3' hydroxyl end of the growing strand & a nucleotide triphosphate

Elongation

RNA strand is synthesized in the 5' - 3' direction from a single stranded region of DNA

Termination

Specific nucleotide sequences in the DNA act as chain termination signals

Two main mechanisms for termination

RNA strand released from the DNA template

Polymerase released from the DNA template

(a) Terminator sequences consist of about 40 bp, ending in a GC rich stretch followed by a run of four or more A's on the template strand

(b) Mediated by protein : rho factor

Post termination

Processing of primary transcript in eukaryotes

Summary

Transcription: Synthesis of RNA from DNA in the nucleus

