Probability and Probability Distribution

Adejumo Ridwan Suleiman

June 25 2022

What is probability

- It is simply the study of uncertainty.
- ► Example the possibility of raining, tossing a coin or rolling a die.
- It is the measuring of how likely an event will occur.
- Mathematically defined as:

$$Probability = \frac{\text{Number of Required outcomes}}{\text{Number of Possible outcomes}}$$

Terms in Probability

- Experiment: An uncertain situation e.g tossing a coin
- ▶ Outcome: Result of a trial in an experiment.
- Event: One or more outcome from a experiment
- ► Sample Space: The collection of possible outcomes of an experiment.

Random Variable

- Outcome of an event expressed in numbers
- For example in the coin toss experiment we can either have a head or tail which can be numerically expressed as 1 or 0 respectively.
- ▶ Let's call a set containing these two numbers X where; X = {1,0}.
- X represents the Random Variable
- What's the random variable of a sixed face die?

The Two Coin Toss Experiment

```
\triangleright S = {HH,HT,TH,TT}
   Probability = \frac{\text{Number of Required outcomes}}{\text{Number of Possible outcomes}}
Number of possible outcomes = 4
Probability of getting a head in both coins is:
            Number of Required outcomes(HH)
      Number of Possible outcomes(HH,HT,TH,TT)
Probability of getting a head in the first coin and a tail in the
   second coin:
            Number of Required outcomes(HT)
      Number of Possible outcomes(HH,HT,TH,TT)
Probability of getting a head and a tail in both coins.
          Number of Required outcomes(HT,TH)
      Number of \overline{\text{Possible outcomes}(\text{HH,HT,TH,TT})}
```

The Two Die Experiment

		White Die					
		1	2	3	4	5	6
Red	1	(1,1)	(2, <mark>1</mark>)	(3, <mark>1</mark>)	(4, <mark>1</mark>)	(5, <mark>1</mark>)	(6, <mark>1</mark>)
	2	(1, <mark>2</mark>)	(2, <mark>2</mark>)	(3, <mark>2</mark>)	(4, <mark>2</mark>)	(5, <mark>2</mark>)	(6, <mark>2</mark>)
Die	3	(1, <mark>3</mark>)	(2, <mark>3</mark>)	(3, <mark>3</mark>)	(4, <mark>3</mark>)	(5, <mark>3</mark>)	(6, <mark>3</mark>)
	4	(1, <mark>4</mark>)	(2, <mark>4</mark>)	(3, <mark>4</mark>)	(4, <mark>4</mark>)	(5, <mark>4</mark>)	(6, <mark>4</mark>)
	5	(1,5)	(2, 5)	(3, 5)	(4, 5)	(5, 5)	(6, 5)
	6	(1, <mark>6</mark>)	(2, <mark>6</mark>)	(3, <mark>6</mark>)	(4, 6)	(5, <mark>6</mark>)	(6, <mark>6</mark>)

Figure 1: Tabular representation of the sample space of rolling two die

The Two Die Experiment

```
    S = {(1,1),(1,2),(1,3),...,(6,6)}
    Probability = Number of Required outcomes
    Number of Possible outcomes
    Number of possible outcomes = 36
```

- Probability of getting a one in both die:
 - $= \frac{\text{Number of Required outcomes}(1,1)}{\text{Number of Possible outcomes}} = \frac{1}{36}$
- Probability of getting a one in the first die and a two in the second die: $= \frac{\text{Number of Required outcomes}(1,2)}{\text{Number of Possible outcomes}} = \frac{1}{36}$
- Probability of getting a one and a two: $= \frac{\text{Number of Required outcomes}(1,2) \text{ or } (2,1)}{\text{Number of Possible outcomes}} = \frac{2}{36}$

The Two Die Experiment

Bernoulli Distribution

- A single trial with only two possible outcomes is called as binomial distribution.
- Example is a coin tossed once or a fight between me and Mayowa(DevNet) where the probability of I winning is 0.9 and him losing is 0.1.

Distribution of a Bernoulli Experiment

Figure 3: Distribution of a Bernoulli experiment

Binomial Distribution

- Unlike the Bernoulli Distribution, the binomial distribution has n number of trials.
- A distribution is said to be Binomial if the following are satisfied;
 - A trial with two outcomes and repeated n number of trials
 - ► Each trial is independent
 - ▶ A total numbers of n trials are conducted
 - The probability of success and failure is same for all trials.

Distribution of a Binomial Experiment

Figure 4: Distribution of a Binomial experiment

Normal Distribution

- ► A distribution is said to be normally distributed if it satisfies the following conditions;
 - ▶ The mean, median and mode of the distribution are the same.
 - The curve of the distribution is bell shaped
 - ► Half of the value are left of the center and the other half at the right.

Normal Distribution

Histogram for Normal Distribution (mean = 3.8, sd = 4.3)

Mid Points for Normal Distribution (mean = 3.8, sd = 4.3)

Central Limit Theorem

Regardless of the distribution of a variable's population, if we have a sufficiently large sample size, the mean and standard deviation of that variable will be normally distributed.

Challenge

References