La definizione di limite

Promemoria.

Data una successione $\{a_n\} \subseteq \mathbb{R}$ diremo che $a_n \longrightarrow l$ se

per ogni J_l intorno di l $\exists \overline{n} \in \mathbb{N}$ tale che

Consideriamo la successione $a_n = x^n$ e discutiamo il suo comportamento asintotico al variare di $x \in \mathbb{R}$:

i. se $x \in (-1, 1)$ abbiamo che $a_n \longrightarrow 0$

$$X = \frac{1}{1+h}, \quad x^{m} = \frac{1}{(1+h)^{m}} \leq \frac{1}{1+mh}$$

$$h>0$$

$$0 \leq x^{m} \leq \frac{1}{1+mh} \leq \frac{1}{h} \cdot \frac{1}{m} \longrightarrow 0$$

Consideriamo la successione $a_n = x^n$ e discutiamo il suo comportamento asintotico al variare di $x \in \mathbb{R}$:

- i. se $x \in (-1, 1)$ abbiamo che $a_n \longrightarrow 0$
- ii. se x = 1 abbiamo che $a_n = 1 \longrightarrow 1$
- iii. se x = -1, $a_n = (-1)^n$ e non ammette limite
- iv. se x > 1 abbiamo che $a_n \longrightarrow +\infty$

Un risultato generale

Sia $\{a_n\}$ una successione a termini positivi tale che

$$\frac{a_{n+1}}{a_n} \longrightarrow h \in [0,1)$$

allora $a_n \longrightarrow 0^+$.

$$\begin{array}{c}
Q_{n} = \frac{n^{\rho}}{x^{n}} \longrightarrow 0 \\
\frac{\partial_{n+1}}{\partial x} = \frac{(n+1)^{p}}{x^{n+1}} \cdot \frac{x^{n}}{x^{p}} = \frac{1}{x} \left[\frac{1+\frac{1}{x}}{x^{m}} \right]^{p} \\
\downarrow \\
Q \leqslant \frac{1}{x} < 1
\end{array}$$

$$m!$$
 $0!=1$
 $2!=1.2=2$
 $3!=1.2.3=6$
 $4!=1.2.3.4=24$

$$a_n = \frac{x^n}{n!} \longrightarrow 0$$

$$\frac{\partial_{n} = \frac{n!}{n^{n}} \rightarrow 0}{\frac{\partial_{n} + 1}{\partial x}} = \frac{(m+1)!}{(m+1)!} \cdot \frac{m^{n}}{m!} = \frac{(m+1)!}{(m+1)!} \cdot \frac{m^{n}}{m!} = \left[\frac{m}{m+1}\right]^{m} = \left(1 - \frac{1}{m+1}\right) \rightarrow \frac{1}{e} \cdot 1$$

$$\partial_{h} = \frac{m_{+}^{2} 2^{n}}{3^{n}} = \frac{m^{2}}{3^{n}} + \frac{2^{n}}{3^{n}} \longrightarrow 0$$

$$0 \qquad \partial_{h} = sen(m) \frac{2^{n} + 3}{5^{n}} \longrightarrow 0$$

$$-\frac{2^{n} + 3}{5^{n}} \in \partial_{h} \in \frac{2^{n} + 3}{5^{n}} = \left(\frac{2}{5}\right)^{n} + \frac{3}{5^{n}} \longrightarrow 0$$

$$0 \qquad \int_{0}^{2^{n} + 3} \left(\frac{2}{5}\right)^{n} = \frac{2^{n} + 3}{5^{n}} = \left(\frac{2}{5}\right)^{n} + \frac{3}{5^{n}} \longrightarrow 0$$

$$0 \qquad \int_{0}^{2^{n} + 3} \left(\frac{2}{5}\right)^{n} = \frac{2^{n} + 3}{5^{n}} = \left(\frac{2}{5}\right)^{n} + \frac{3}{5^{n}} \longrightarrow 0$$

Un numero speciale

$$\left(1 + \frac{1}{n}\right)^{n} \longrightarrow e \in (2,3)$$

$$\left(1 - \frac{1}{n}\right)^{m} \longrightarrow \frac{1}{e}.$$

$$\left(1 - \frac{1}{n}\right)^{n} \longrightarrow \frac{1}{e}.$$

