PHY 474 Notes

Cosmology

Jaeden Bardati

September 15, 2021

1 Introduction to Cosmology

1.1 Isotropic and Homogeneous Space-times

Sept. 9, 2021

The universe is homogenous and isotropic.

- \Rightarrow **Homogenous**: Looks the same everywhere
- \Rightarrow **Isotropic**: Looks the same in all directions

Observational evidence that support this assumption are from the Cosmic Microwave Background (CMB) and large-scale structure observations.

1.2 Expansion of the Universe

Sept. 9, 2021

Redshift (z): The doppler shift of the light from galaxies observed through emission/absorption lines in spectra.

$$z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}} \tag{1}$$

For an expanding universe, $z_{\text{galaxy}} > 0$.

The larger z is, the further the distance the galaxy is.

1.3 Hubble Constant

Sept. 9, 2021

Imagine 3 galaxies. Let the relative distances, at $t = t_0$, be $r_{12}(t_0)$, $r_{23}(t_0)$, and $r_{13}(t_0)$. In an expanding universe, the distances increase by a scale factor a(t). Thus,

$$r_{12}(t) = a(t) \ r_{12}(t_0)$$

 $r_{23}(t) = a(t) \ r_{23}(t_0)$
 $r_{13}(t) = a(t) \ r_{13}(t_0)$

Imagine you are an observer in galaxy 1. You will see galaxies 2 and 3 moving with velocity:

$$v_{12} = \frac{\mathrm{d}r_{12}}{\mathrm{d}t}$$
$$= \dot{a} \ r_{12}(t_0)$$
$$= \frac{\dot{a}}{a} \ r_{12}(t)$$

A similar relation is true for v_{23} and v_{13} .

The factor $\frac{\dot{a}}{a}$ relates the velocity of galaxies to their distance away from us. It is called the Hubble constant $(H_0 \equiv \frac{\dot{a}}{a})$. Thus for galaxies:

$$v = H_0 r \tag{2}$$

This relation can be described with the Hubble diagram. It is a graph of velocity vs. distance of a bunch of galaxies. There is a linear trend with slop of H_0 .

Doppler shift is $z = \frac{v}{c}$, so

$$z = \frac{H_0}{c}r\tag{3}$$

1.4 Age of the Universe

Sept. 9, 2021

 H_0 is measured to be around 70 km/s /Mpc. If we assume a constant H_0 , we can calculate an age of the universe:

$$t_0 = \frac{r}{v} = \frac{r}{H_0 r} = \frac{1}{H_0}$$

For $H_0 \approx 70$ km/s/Mpc, $t_0 \approx 14$ Gyr.

1.5 Contents of the Universe

Sept. 9, 2021

Dark matter	25%
Dark energy	75%
Stars	0.2%
All baryons	5%
Radiation (primarily CMB)	0.01%

1.6 Timeline of the Universe

Sept. 9, 2021

t = 0	Big Bang
$t = 10^{-39} \text{ s}$	Classical gravity breaks down
$t = 10^{-35} \text{ s}$	Inflation
	$(density\ fluctuations\ formed)$
$t = 10^{-14} \text{ s}$	Baryogenesis
	(formation of protons/electrons and
	matter dominates over anti-matter)
t = 100 s	Big Bang nucleosynthesis
	(formation of Hydrogen nuclei)
$t = 5 \times 10^4 \text{ s}$	Matter dominates over radiation
$t = 4 \times 10^5 \text{ yr}$	Recombination
	(formation of neutron atoms and
	the CMB was emitted)
t = 100 Myr	First population III stars form
t = 500 Myr	First galaxies form
t = 0.5-1 Gyr	Reionization or "Cosmic Dawn"
t = 2-3 Gyr	"Cosmic Noon"
	(peak of stellar formation and SMBH accretion)
t = 10 Gyr	Dark energy dominates
t = 14 Gyr	Present day

1.7 Geometries of isotropic and homogeneous space-times Sept. $13,\,2021$

In cosmology, we often need to measure distances in an expanding (and sometimes curved) space-time.

Space can be flat (Euclidean) with (k=0), positively curved (k=+1), or negatively curved (k=-1).

1.7.1 In 2D

In flat space,