Notes for Lecture 21

Summary

Today we show how to construct an inefficient (but efficiently verifiable) signature scheme starting from a one-time signature scheme.

Next time we shall see how to make it efficient using a pseudorandom function.

From One-Time Signatures to Fully Secure Signatures

Assume we have a (t, ϵ) -secure one-time signature scheme (G, S, V) such that if m is the length of messages that can be signed by S, then the length of public keys generated by G() is at most m/2.

(Lamport's signatures do not satisfy the second property, but in Lecture 20 we described how to use a collision-resistant hash function to turn Lamport's scheme into a scheme that can sign longer messages. We can arrange the parameters of the construction so that the hash-and-sign scheme can sign messages at least twice as long as the public key.)

We describe a scheme in which the key generation and signing have exponential complexity; later we will see how to reduce their complexity.

- Key Generation: run G() $2^{m+1} 1$ times, once for every string $a \in \{0, 1\}^*$ of length at most m, and produce a public key / secret key pair (pk_a, sk_a) .
 - It is convenient to think of the strings a of length at most m as being arranged in a binary tree, with a being the parent of a0 and a1, and the empty string ϵ being the root.
 - Public Key: pk_{ϵ} (where ϵ is the empty string)
 - Secret Key: the set of all pairs (pk_a, sk_a) for all a of length $\leq m$.
- Sign: given a message M of length m, denote by $M_{|i}$ the string M_1, \ldots, M_i made of the first i bits of M. Then the signature of M is composed of m+1 parts:

- $-pk_M, S(sk_M, M)$: the signature of M using secret key sk_M , along with the value of the matching public key pk_M
- $pk_{M_{|m-1}}$, $pk_{M_{|m-1}0}||pk_{M_{|m-1}1}$, $S(sk_{M_{|m-1}}, pk_{M_{|m-1}0}||pk_{M_{|m-1}1})$ the signature of the public keys corresponding to M and its sibling, signed using the secret key corresponding to the parent of M, along with the matching public key

_ ...

$$-pk_{M_{i}}, pk_{M_{i}0}||pk_{M_{i}1}, S(sk_{M_{i}}, pk_{M_{i}0}||pk_{M_{i}1})$$

_ ...

$$-pk_0, pk_1, S(sk_{\epsilon}, pk_0||pk_1)$$

• Verify. The verification algorithm receives a public key pk_{ϵ} , a message M, and a signature made of m+1 pieces: the first piece is of the form (pk_m, σ_m) , the following m-1 pieces are of the form $(pk_j, pk'_j, pk''_j, \sigma_j)$, for $j=1,\ldots,m-1$, and the last piece is of the form $(pk'_0, pk''_0, \sigma_0)$.

The verification algorithm:

- 1. checks $V(pk_m, M, \sigma_m)$ is valid;
- 2. For j = 1, ..., m, if $M_j = 0$ it checks that $pk_j = pk'_{j+1}$, and if $M_j = 1$ it checks that $pk_j = pk''_{j+1}$;
- 3. For j = 0, ..., m, it checks that $V(pk_j, pk'_j || pk''_j, \sigma_j)$ is valid. (For the case j = 0, we take $pk_0 := pk_{\epsilon}$.)

Theorem 1 Suppose that the scheme described in this section is not (t, ϵ) existentially unforgeable against a chosen message attack.

Then (G, S, V) is not a $(t \cdot O(r \cdot m), \epsilon \cdot (2tn + 1))$ -secure one time signature scheme, where r is the running time of S.