Requested Patent

EP1108790A2

Title:

NOVEL POLYNUCLEOTIDES ;

Abstracted Patent,

EP1108790;

Publication Date:

2001-06-20;

Inventor(s):

MIZOGUCHI HIROSHI (JP); SENOH AKIHIRO (JP); ANDO SEIKO (JP); HAYASHI MIKIRO (JP); IKEDA MASATO (JP); OCHIAI KEIKO (JP); OZAKI AKIO (JP); TATEISHI NAOKO (JP); YOKOI HARUHIKO (JP); NAKAGAWA SATOCHI (JP);

Applicant(s):

KYOWA HAKKO KOGYO KK (JP);

Application Number:

EP20000127688 20001218;

Priority Number(s):

JP19990377484 19991216; JP20000159162 20000407; JP20000280988 20000803:

IPC Classification:

C12Q1/68; C07H21/04; C12N15/63; C07K14/34; C12R1/15; G06F17/00; C12R1/13; G01N33/50;

Equivalents:

ABSTRACT:

Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.06.2001 Bulletin 2001/25

(21) Application number: 00127688.0

(22) Date of filing: 18.12.2000

(51) Int Cl.7: **C12Q 1/68**, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chiyoda-ku, Tokyo 100-8185 (JP)

(72) Inventors:

- Nakagawa, Satochi, c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Mizoguchi, Hiroshi,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

- Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Hayashi, Mikiro,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Ochial, Kelko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Yokoi, Haruhiko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Tateishi, Naoko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shl, Tokyo 194-8533 (JP)
- Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)
- (74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays

comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

Description

10

25

45

55

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

[0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for urnami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

[0004] The production of amino acids by Corynebacterium glutamicum is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of Llysine, for example, a microorganism belonging to the genus Corynebacterium is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (J. Biochem., 65: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (Microbiology, 142: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli, Bacillus subtilis*, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of *Corynebacterium glutamicum* ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (*Mol. Gen. Genet., 252*: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in *Corynebacterium glutamicum*, and the nucleotide sequences of most genes have not been clarified hitherto.

[0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as *Escherichia coli, Mycobacterium tuberculosis*, yeast, and the like, have been determined (*Science, 277*: 1453-62 (1997); *Nature, 393*: 537-544 (1998); *Nature, 387*: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*, *Mycobacterium bovis* used in BCG vaccines, and the like (*Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999); *Science*, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

10

25

30

40

45

50

55

[0009] An object of thi present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequince information if thi polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system fir use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

5 BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016] From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:
 - (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
 - (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
 - (c) detecting any hybridization, and
 - (d) analyzing the result f the hybridizati n.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at l ast tw f th third polynucleotides, or at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
 - (6) A polynucleotide array, comprising:

10

15

20

30

35

40

45

50

55

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS: 2 to 3431.
 - (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - (18) The phypeptid according te (16) or (17), where in at least one amine acid is deleted, replaced, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide with ut said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid sequence having a hom logy of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that if the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

5

10

15

20

25

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a convnetorm bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

(ii) at least temporarily storing said inf mation;

10

15

20

25

30

35

40

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
- (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information:
 - (ii) a data storing device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
 - (iv) an output device that shows a function obtained by the comparator.
- (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a conynetorm bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001

ş

(31) The system according to any ne of (23), (25), (27) and (29), wherein a coryn form bact rium is a micro r-

ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

(32) The method according to any on of (24), (26), (28) and (30), who rein a coryn form bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

(33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium, Corynebacterium

melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.

(34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.

(35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28).

(36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).

(37) The recording medium or storage device according to

10

15

20

25

30

35

40

45

50

55

- (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
- (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue. (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue.
- (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue. (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
- (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
- (45) A DNA encoding the polypeptide of any one of (38) to (44).
- (46) A recombinant DNA comprising the DNA of (45).
- (47) A transformant comprising the recombinant DNA of (46).
- (48) A transformant comprising in its chromosome the DNA of (45).
- (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
- (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
- (51) A method for producing L-lysine, comprising:

culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

(52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:

- (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
- (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
- (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
- (iv) examining productivity by the fermination method of the compound selected in (i) if the coryn firm

bacterium btained in (iii).

5

10

15

20

25

30

35

40

45

50

55

- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
- (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:

culturing a coryn f rm bact rium of any n of (60) t (62) in a m dium t produce and accumulate at least

on compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues th reof;

recovering the compound from the culture.

- (64) The method according to (63), wherein the compound is L-lysine.
- (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

10

15

20

30

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

25 As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).
- 35 [0018] The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.
 - 1. Determination of full nucleotide sequence of coryneform bacteria
- [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.
 - [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium flatamicum ATCC 13869, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(1) Preparation of genome DNA of coryneform bacteria

[0022] Coryneform bacteria can be cultured by a conventi nal method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the lik which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

[0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l tethylenediaminetetracetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000 \times g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

[0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

[0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

30

35

50

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in *Molecular Cloning*, *A laboratory Manual*, Second Edition (1989) (hereinafter referred to as "*Molecular Cloning*, 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

[0041] The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 µl of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 µl of the ligation solution. Examples of the transformation method include the electroperation method using ELECTRO MAX DHIOB

(manufactured by Lif Technologies) for Escherichia coli. The lectroporati n method can be carried out und r the conditions as described in the manufacturer's instructi ns.

[0043] The transformed Escherichia coli is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chl ride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured th rein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-8-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time

(3) Production of cosmid library

10

15

20

35

40

45

50

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3AI or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/I Nacl, 20 mmol/I Tris hydrochloride, 5 mmol/I EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in *Molecular Cloning*, 2nd ed. and then used in transforming *Escherichia coli*. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into *Escherichia coli* XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

[0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (Science, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosyst ms) to amplify the inserted fragm nts.

[0059] The xcessive prim is and nucleotides are eliminated using a kit fir purifying a PCR product, and the product is used as the template in this sequencing reaction.

[0060] It is als possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shitgun library is inoculated into each well of a 24- or 96-well plat to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 μl of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

25

35

40

45

55

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both ends if the inserted fragment to detect a nucleotide sequence in the contig derived from the shitgun sequencing brained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used.

[0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

20

25

45

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of *Corynebacterium glutamicum* ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term *polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expressi n of a sequence due to the presence of the EMF. Examples of the EMF include a promotion r, an operator, and

enhancer, a silencer, a ribosome-binding sequence, a transcriptional timination sequence, and the like. In coryneform bacteria, an EMF is usually presint in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently presint in an intergenic segment of 10 nucleotides or longer. It is als possible to determine or discover the presince of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target metif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA, 85*: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

10

15

20

30

35

50

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS:

3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym., 164*: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from Corynebacterium glutamicum ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many if the idintified genes are industrially us ful.

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from corynef rm bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the gineral method as disclosed in *Molecular Cloning*, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

10

25

45

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of lx SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach*, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotides (hereinafter also referred to as "analogous oligonucleotides") are also provided by the present invention and are useful in the methods described herein.

[0118] Exampl s of th analogous olig nucleotides includ analog us ligonucleotides in which a phosphodiester

bond in an olig nucleotide is convirted to a phosph rothioate bond, analogous oligonucleotides in which a phosphodiester bind in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphidiester bond in an iligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an iligonucleotide is replaced with C-5 thiazoluracil, analogous iligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-methoxyethoxyribose, and the like (Cell Engineering, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

15

25

30

35

45

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

20 [0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

[0131] Many us ful mutants if corynef rm bacteria which ar suitabli if r th producti n of us ful substances, uch

as amino acids, nucleic acids, vitamins, saccharides, rganic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene t improve th productivity.

[0132] However, mutation p into contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from corynel rm bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from corynelorm bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a hysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene pyc of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of Corynebacterium glutamicum free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwf of the B-6 strain.

[0138] Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the tysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the tysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the tysine-producing B-6 strain was returned to a wild type amino acid sequence, the tysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of tysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

10

25

45

50

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Annino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maint nance, and the lik, and, in its

turn, elevating the production cost in practice. In addition, the improvement in the productivity is based in random mutations and thus the mechanism thereof is unclear. The refirer is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According t th present invention, effectiv mutation points contributing to the production can be efficiently specified from arming many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream.

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a tysine-producing mutant B-6 (*Appl. Microbiol. Biotechnol., 32*: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain *Corynebacterium glutamicum* ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus *Corynebacterium* which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include *Corynebacterium thermoaminogenes*, such as *Corynebacterium thermoaminogenes* FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a corvnetorm bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

20

25

40

50

55

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a pelynucleotide array comprising a solid support to the polynucleotide is a pelynucleotide array comprising a solid support to which at least one of a polynucleotide which at least one of a polynucleotide with a polynucleotide which at least one of a polynucleotide which at least one of a polynucleotide which at least one of a polynucleotide comprising a solid support to which at least one of a polynucleotide which at least one

which at least ne of a polynucleotide needing a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

[0155] P lynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (*Nat. Genet., 21*: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

[0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (*Nat. Genet., 21*: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

30 (2) Use of polynucleotide array

10

20

45

50

[0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

35 (a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

- (i) producing a polynucleotide array by the method of the above (1);
- (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;
- (iii) detecting the hybridization; and
- (iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

[0165] The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (*Science, 280*: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in *Science, 278*: 680-686 (1997); *Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999); *Science, 284*: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucl ic acid, a vitamin, a saccharide, an rganic acid, r the like can be identified and the gine.

expressi n amount and the expression profile th reof can be analyzed.

25

40

50

[0167] The nucleic acid molecul (DNA, RNA) derived from the coryn form bacteria can be obtained according to the general method described in *Molecular Cloning*, 2nd ed. or the like. mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (*Molecular Microbiology*, 6: 317-326 (1992)) rethe like.

[0168] Although ribosomal RNA (rRNA) is usually obtained in large xcess in addition to the target mRNA, the analysis is not seriously disturbed thereby.

[0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

[0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (*Nat. Biotechnol., 16*: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (*Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999)); and the like.

[0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (*J. Bacteriol., 181*: 6425-40 (1999)).

[0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (*Nat. Bioctechnol., 14*: 1675-80 (1996), or the like).

[0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.

[0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

[0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

[0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).

30 [0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

[0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

(b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria

[0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).

[0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

[0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).

[0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium

and th access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information rithe lik of thi present invention in the recording medium. The information can be expressed in thi form of a binary file, a text file rian ASCII fill formatted with commercially available software, for invention is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

10

15

30

50

55

9. System based on a computer using the recording medium of the present invention which is readable by a computer

20 [0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.

[0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.

[0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.

[0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994)), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; *Nuc. Acids. Res., 26*: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.

[0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.

[0192] Namely, the system based on a computer according to the present invention comprises the following:

- (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
- (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
- (iv) an output device that shows a screening or analyzing result obtained by the comparator.

電は場でを確認し

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. If a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmissing near pathway, and identifying spots which have been found in the proteom analysis. The term "homologs" as used herein includes both forthologs and paralogs.

- 10. Production of polypeptide using ORF derived from coryneform bacteria
- [0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.
 - [0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.
- [0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.
 - [0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.
- 20 [0198] The recombinant vector is introduced to a host cell suitable for the expression vector.

30

35

- [0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.
- [0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.
- [0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.
- [0202] Examples of the expression vectors include a vector plasmid which is replicable in *Corynebacterium glutamicum*, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (*Mol. Gen. Genet.*, 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in *Escherichia coli*, such as pET3 and
- pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5408)), pGHA2
- (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured
 - by Novagen), and the like. [0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as *trp* promoter (P_{trp}), *lac* promoter, P_L promoter, P_R promoter, P_R promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two P_{trp} are linked in series ($P_{trp} \times 2$), *tac* promoter, *lac*17 promoter *let*1 promoter and the like, can be used.
 - [0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).
- [0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.
 - [0206] On of rdinary skill in the art will appreciate that the codons of the above-described elements may be pti-

mized, in a known manner, depending in the hist cells and environmental conditions utilized.

10

20

40

45

[0207] Examples of the host cell include microorganisms bell nging to the genus Escherichia, the genus Serratia, the genus Bacillus, the genus Brevibacterium, the genus Corynebacterium, the genus Microbacterium, the genus Pseudomonas, and the lik. Specific examples include Escherichia coli XL1-Blu., Escherichia coli XL2-Blu., Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No. 49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli Gl698, Escherichia coli TB1, Serratia ficaria, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Corynebacterium ammonia genes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869, Corynebacterium glutamicum ATCC 14067 (prior genus and species: Brevibacterium flavum), Corynebacterium lactofermentum, or Corynebacterium lactofermentum), Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium thermoaminogenes FERM 9244, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas putida, Pseudomonas sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Sci. USA, 69*: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in *Gene, 17*: 107 (1982) and *Molecular & General Genetics, 168*: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF all promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol., 194*: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978)), a lithium acetate method (*J. Bacteriol., 153*: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, 3:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SRα promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (*Cytotechnology, 3*: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (*Proc. Natl. Acad. Sci. USA, 84*, 7413 (1987)), the method described in *Virology, 52*: 456 (1973), and the like.

[0218] When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in *Bacurovirus Expression Vectors, A Laboratory Manual*, W.H. Freeman and Company, New York (1992), *Bio/Technology*, 6: 47 (1988), or the like.

[0219] Specifically, a recombinant gen transfer vect r and bacurovirus are simultan usly ins rt d int insect cells

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the pelypeptide.

[0220] Examples of the gene introducing vector used in the method include pBlu Bac4.5, pVL1392, pVL1393 and pBlu BacIII (manufactured by Invitrogen), and the like.

[0221] Examples f the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family Barathra are infected, and the like.

[0222] Examples of the insect cells include Spodoptera frugiperda oocytes Sf9 and Sf21 (Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)), Trichoplusia ni oocyte High 5 (manufactured by Invitrogen) and the like.

[0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.

[0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.

[0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.

[0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, affalfa, rice, wheat, barley, and the like.

[0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.

20

50

[0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.

[0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.

[0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.

[0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.

[0232] When the transformant of the present invention is obtained using a prokaryote, such as Escherichia coli or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.

[0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.

[0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).

[0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.

[0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.

[0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.

[0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.

[0239] Whin a micr in rganism transfirmed with a recombinant vector containing an induciblity right in the ris cultured,

an inducer can be added to the medium, if necessary.

10

20

[0240] For xample, is propyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vect in containing *lac* promoter is cultured, or indoleacrylic acid (IAA) in the like can by added thereto when a microorganism transformed with an expression vector containing *trp* promoting is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199.* 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8,* 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

15 [0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

25 [0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

[0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

[0259] In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA incoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an accasein promoter, a (β -casein promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15:* 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

20

25

45

[0262] The polypeptide of the present invention can be produced by a translation system in vitro. There are, for example, two in vitro translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an in vitro transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the in vitro translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. In vitro translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*UV5, *tac*, λPL(con), λPL, or the like, can be carried out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like.

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supermatant. Namely, the culture supermatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

[0268] The polypeptid obtained by the above method is within the scop of the present invention,

and xamples include a polypeptid encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS.2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furth imore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide" means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, Nuc. Acids. Res.*, 10: 6487 (1982), *Proc. Natl. Acad. Sci. USA*, 79: 6409 (1982), *Gene*, 34: 315 (1985), *Nuc. Acids. Res.*, 13: 4431 (1985), *Proc. Natl. Acad. Sci. USA*, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

20

25

30

40

50

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

35 Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

45 [0276] proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, r th lik.

[0280] Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (flu renylmethyloxycarb nyl) method, tBoc (t-butyl xycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporati n, r the like.

[0281] The transformant of the present invention can be used for bjects ther than the production of the polypeptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from Escherichia coli (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (*Molecular Cloning*, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of Corynebacterium glutamicum, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

20

35

40

45

55

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.
[0289] A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen us of rithe immunization, and the serum is is lated and purified to obtain a polyclonal antibody.

[0293] Examples of the method for the is latin and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a glifitration column, and the like, alone in combination thereof, by methods knewn to those of rdinary skill in the art.

- (2) Production of monoclonal antibody
- (a) Preparation of antibody-producing cell
- [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.
 [0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.

[0296] The spleen is cut to pieces in MEM medium (manufactured by Nissul Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.

[0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used

as antibody-producing cells.

20 (b) Preparation of myeloma cells

[0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-AgI4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmoVl glutamine, 5×10⁻⁵ moVl 2-mercaptoethanol, 10 μg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 μg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10⁷ or more of the cells are used for the fusion.

(c) Production of hybridoma

35

55

[0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.

[0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 10⁸ antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.

[0301] After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10⁻⁴ mol/l hypoxanthine, 1.5×10⁻⁵ mol/l thymidine and 4×10⁻⁷ mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.

[0302] The suspension is poured into a 96 well culture plate at 100 μ l/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.

[0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like. [0304] A specific example of the enzyme immunoassay is described below.

[0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptid f th present invention is selected as a hybridoma capable of producing a monoclonal antibedy f the present

invention

5

10

25

30

40

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the n medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

(d) Preparation of monoclonal antibody

[0307] The monocional antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetrameth-ylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10⁶ to 20×10⁶ cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.

[0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 mm for 5 minutes.

[0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.

[0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.

[0311] The antibody obtained in the above is within the scope of the antibody of the present invention.

[0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982),

Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).

[0313] The antibody of the present invention can be used as it is or after being labeled with a label.

[0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (*J. Histochem. Cytochem., 18*: 315 (1970); *Meth. Enzym., 62*: 308 (1979); *Immunol., 109*: 129 (1972); *J. Immunol., Meth., 13*: 215 (1979)), and the like.

[0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.

[0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.

12. Production and use of polypeptide array

(1) Production of polypeptide array

[0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.

[0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.

[0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.

[0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in *Biotechniques*, 27: 1258-61 (1999); *Molecular Medicine Today*, 5: 326-7 (1999); *Handbook of Experimental Immunology*, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); *Meth.*

Enzym., 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Patent 4,681,870; U.S. Patent 4,282,287; U.S. Patent 4,762,881, or the like.

[0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invintion to the solid support at a high dinsity, though a high fixation density is not always necessary.

(2) Use f polypeptide array

10

15

20

25

35

40

[0322] A polypeptide or a compound capable of binding t and interacting with the polypeptides of the present invention adhered t th array can be identified using th polypeptide array to which the polypeptides f the present invention have been adh red thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

[0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.

- 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by twodimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
 - [0331] The two dimensitional electrophoresis means an electrophoretic method which is performed by combining two

electrophor tic procedures having different principles. F r xampl , polypeptides are separated depending on m lecular w ight in the primary electroph resis. N xt, th gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending n isoelectric point. Thus, vari us separation patterns can be achieved (JIS K 3600 2474).

[0332] In searching the data base, the amino acid sequince information if the p lypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

35 Example 1

40

45

55

20

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined based on the whole genome shotgun method (*Science, 269*: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform w r carried out successiv ly in the same mann r as the above. Th g nom DNA was subject d t iso-

propanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a gin me DNA solution (concentration: 0.1 mg/ml).

(2) C nstruction of a shotgun library

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were bluntended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 moV ammonium acetate, 10 mmoV magnesium acetate, 1 mmoV EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenoVchloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Smal/*BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. coli* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

5 (3) Construction of cosmid library

20

30

35

40

50

[0345] About 0.1 mg of the genome DNA of *Corynebacterium glutamicum* ATCC 13032 was partially digested with *Sau*3Al (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into Escherichia coli XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The Escherichia coli was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

5 [0347] The full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino *et al.* (*DNA Research, 5*: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] S m nucleotid sequ noes were d t mined using a doubl -strand d DNA plasmid as a template.

[0352] The double-stranded DNA plasmid as the template was obtained by the following method.

[0353] The clone derived from the whole genom—shotgun library was inoculated int—a 24- r 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

[0354] The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.

[0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

[0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

10

20

30

[0357] To 6 µl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 µl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

[0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at 20°C.

[0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

[0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

[0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.

(6) Determination of nucleotide sequence in gap part

[0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of *Corynebacterium glutamicum* ATCC 13032 (*Mol. Gen. Genet., 252*: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

[0364] The sequence in the region which was not covered with the contigs was determined by the following method.

[0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequences at the respectivends of the inserted fragment in two contigs was identified, the full nucleotide sequence

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

10

25

30

40

45

50

55

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO:

1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

	Function	replication initiation protein DnaA		DNA polymerase III beta chain	DNA replication protein (recF protein)	hypothetical protein	ONA topoisomerase (ATP- hydrolyzlng)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor
	Matched length (a.a.)	524 rep	寸	390 DN	392 DN	174 hy	704 DN					422 NA			854 DN	112 hy	329 hy	268 bact		285 cy	155 hy	117 re
	Similarity (%)	93.8		81.8	79.9	58.1	88.9					50.7			1.88	9.69	63.5	62.3		57.4	64.5	70.1
į	identity (%)	93.8		50.5	53.3	35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
Table 1	Homologous gene	Brevibacterium flavum dnaA		Mycobacterium smegmatis dnaN	Mycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
	db Match	gsp:R98523		SP:DP3B_MYCSM		SP.YREG STRCO	pir.S44198					sp:YV11_MYCTU			sp:GYRA_MYCTU	pir.E70698	Sp:YEIH_ECOLI	gp:A8042619_1		gp.AF156103_2	pir.A49232	pir.F70664
	ORF (bp)	1572	324	1182	1182	534	2133	996	699	510	441	1071	281	248	2568	342	1035	894	420	870	762	369
	Terminal (nt)	1572	1597	3473	4766	5299	7488	8795	8798	1001	9474	10107	11283	11523	14398	14746	15209	17207	17670	17860	18736	20073
	Initial (nt)	-	1920	2292	3585	4766	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	16243	<u> </u>	17251	18729	19497	19705
	SEQ NO	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522
	SEQ NO.	2	6	4	2	6	7	80	6	9	=	12	13	14	15	16	1.1	₽	9	50	2	2

5

5	Function	hypothetical membrane protein	2,5-diketo-D-gluconic acid reductes	5'-nucleotidase precursor	5'-nucleotidase family protein	transposese	organic hydroperoxide detoxication enzyme	ATP-dependent DNA helicase		glucan 1,4-alpha-glucosidase	lipoprotein	ABC 3 transport family or integral membrane protein	iron(III) dicitrate transport ATP- biding protein	sugar ABC transporter, periplesmik sugar-binding protein	high affinity ribose transport proteir	ribose transport ATP-binding protei	neurofilament subunit NF-180	peptidyl-prolyl cis-trans isomerase	hypothetical membrane protein
15	Matched length (a.a.)	321	26	196	270	51	139	217		449	311	266	222	283	312	236	347	169	226
20	Similarity (%)	50.8	88.5	56.1	58.7	72.6	79.9	80.8		54.1	63.7	74.1	70.3	56.5	68.3	78.7	44.4	89.8	53.1
	identity (%)	24.9	65.4	27.0	27.0	52.9	51.8	32.7		28.7	28.9	34.6	39.2	25.8	30.5	32.2	23.6	79.9	29.2
25 (panujuo	is gene	ırae	sp. ATCC	yticus nutA	durans	striatum ORF1	npestris	xidans recG		erevisiae ste1	siopathlae	ogenes SF370	12 fecE	ima MSB8	12 rbsC	S8 rbsA	SUL	prae H37RV	58 уадР
S Table 1 (confinued)	Homologous gene	Mycobacterium leprae MLCB1788.18	Corynebacterium sp. ATCC 31090	Vibrio parahaemolyticus nutA	Deinococcus radiodurans DR0505	Corynebacterium stristum ORF1	Xanthomonas campestris phaseoli ohr	Thiobacillus ferrooxidans recG		Saccharomyces cerevisiae S288C YIR019C sta1	Erysipelothrix rhusiopathlae ewlA	Streptococcus pyogenes SF370 misC	Escherichia coli K12 fecE	Thermotoga maritima MSB8 TM0114	Escherichla coli K12 rbsC	Bacillus subtilis 168 rbsA	Petromyzon marlnus	Mycobacterium leprae H37RV RV0009 ppiA	Bacillus subtilis 168 yagP
40	db Match	gp:MLCB1788_6 N	pir:140838	SP:5NTD_VIBPA	gp:AE001809_7	prf.2513302C	prt:2413353A	sp.RECG_THIFE		SP.AMYH_YEAST	gp:ERU52850_1	gp.AF180520_3	Sp:FECE_ECOLI	plr:A72417	prf. 1207243B	Sp. RBSA_BACSU	pir 151116	sp:CYPA_MYCTU	sp:YGGP_BACSU
	ORF (bp)	993	180	528	1236	165	435	1413	438	1278	954	849	657	981	1023	759	816	561	687
45	Terminal (nt)	21065	21074	22124	23399	23815	24729	24885	28775	26822	28164	29117	30651	31677	32699	33457	33465	34899	35668
50	Initial (nt)	20073	21253	21597	22164	23778	24295	26297	26338	<u> </u>	29117	29965	29995	30697	31677	32699	!	34339	34982
	SEO O		3524	3525	3526	3527	3528	3529	3530	3531	3532	3533	3534	3535	3536	3537	3538	3539	3540
55	Q Q E	23	. %	25		27	78	53	8	3.	32	33	34	35	36	37	88	33	음

EP 1 108 790 A2

hypothetical membrane protein

succinate-semialdehyde dehydrogenase (NAD(P)+)

242 262

78.2

46.7

Escherichia coli K12 gabD

hypothetical protein

57.0

27.3

Bacillus subtilis yrkH

1470 sp:GABD_ECOLI 1467 sp:YRKH_BACSU

Methanococcus jannaschii MJ0441

Sp:Y441_METJA

789

3560

phenol 2-monooxygenase

117

63.3

Trichosporon cutaneum ATCC 46490

Sp:PH2M_TRICU

954

54008

53055

3557

55 54 53

52

5

51626 55546 55629

53095 54080 56417

3558 3559

59 59

5	Function	ferric enterobactin transport system permease protein		ATPase	vulnibactin utilization protein	hypothetical membrane protein	serine/threonine protein kinase	serine/threonine protein kinase	penicilin-binding protein	stage V sporulation protein E	phosphoprotein phosphatase	hypothetical protein	hypothelical protein					
15	Matched length (a.a.)	332		253 /	260	95	648	486	492	375	469	155	526					_
20	identity Similarity (%)	70.5		81.8	52.7	72.6	68.7	59.1	66.7	65.6	70.8	66.5	38.8					
	Identity (%)	40.4		51.8	28.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.6					
25 outlined)	eue6 s	2 fepG		ပ	D6-24 viuB	erculosis	rae pknB	icolor pksC	eus ppbA	8 spoVE	perculasis	oercutosis	oerculosis					
% Table 1 (continued)	Homologaus gene	Escherichia coli K12 fepG		Vibrio cholerae vluC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c					
35	db Match	sp:FEPG_ECOLI		gp:VCU52150_9	*p:VIUB_VIBVU	sp:YO11_MYCTU	SP.PKNB_MYCLE	gp:AF094711_1	gp:AF241575_1	Sp.SP5E_BACSU	pir:H70699	plr.A70700	plr:B70700					
	ORF (bp)	978	966	777	822	270	1938	1407	1422	1143	1353	462	864	147	250	219	471	
45	Terminal (nt)	38198	36247	38978	39799	40189	40576	42513	43926	45347	46669	48024	48505	49455	49897	50754	20966	
50	Initial (nt)	37221	37242	38202	38978	40458	42513	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	
	SEQ NO.	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551	3552	3553	3554	3555	3556	İ

1

55

43

42

44

\$ \$

50 49 50 50

_					- T					Т		- T		T	\neg	7				_	
	Function	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein			magnesium and cobait transport prolein		chloride channel protein	required for NMN transport	phosphate starvation-induced protein-like protein				Mg(2+)/citrate complex secondary transporter	two-component system sensor histidine kinase		transcriptional regulator	D-isomer specific 2-hydroxyacid dehydrogenase
	Matched length (a.a.)	74	179	62		310			390		400	241	340				497	563		229	293
	Similarity (%)	74.3	70.4	83.9		50.7			59.5		64.8	53.1	0.09				88.8	80.8		63.3	73.7
	Identity (%)	40.5	36.3	53 2		26.8			29.5		30.0	24.1	29.1				42.3	27.2		33.2	43.3
Table 1 (continued)	Homologous gene	Bacillus subtilis yrkF	Synechocystis sp. PCC6803 str1281	Mycobacterium tuberculosis H37Rv Rv1768		Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA "		Zymomonas mobilis ZM4 clcb	Salmonella typhimurium pnuC	Mycobacterium tuberculosis H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB		Escherichia coll K12 criR	Corynebacterium glutamicum unkdh
	db Match	sp:YRKF_BACSU	sp:YC61_SYNY3	pir:G70988		gp:LMFL4768_11			plr:F70952		gp: AF179611_12	SP:PNUC_SALTY	sp:PHOL_MYCTU				sp:CITM_BACSU	sp:DPIB_ECOLI		SP.DPIA ECOLI	+
	ORF (bp)	291	591	174	855	840	11	1653	1119	447	1269	069	1122	132	384	765	1467	1653	570	654	912
	Terminal (nt)	56386	56680	57651	58941	59930	60862	62321	62390	63594	65458	65508	67972	68301	68251	69824	68720	72158	71474	72814	72817
	Initial (nt)	56676	57270	57478	58087	59091	59952	69909	63508	64040	64180	•	66851	68170	68834	09069	70186	70506	72043	72161	<u> </u>
	SEQ NO (a.a.)	3561	3562	3563	3564	3565	3566	3567	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580
	O O S	61		8	64	65	i	29	98	69	1		72	23	74	75		77	182	79	8

	Function	hypothetical protein	biotin synthase	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane afflux protain	creatinine deaminase			SIRZ gene family (silent information regulator)	triacyiglycerol lipase	triacyiglycerol lipase		transcriptional regulator	urease gammma subunit or urease structural protein	urease beta subunit	urease alpha subunit
	Matched length (a.a.)	127	334	43	85		42	84	205	394			279	251	262		171	100	162	570
	Similarity (%)	76.4	99.7	79.1	63.5		75.0	66.0	29.0	8.66			50.2	29.0	56.1		94.7	100.0	100.0	100.0
	Identity (%)	38.6	99.4	72.1	34.1		71.0	01.0	25.6	97.2			26.2	30.7	29.4		90.6	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Streptomyces coalicolor A3(2) SCM2.03	Corynebacterium glutamicum bloB	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chiamydia muridarum Nigg TC0129	Chiamydla pneumoniae	Streptomyces virginiae varS	Bacillus sp.			Saccharomyces cerevisiae hst2	Propionibacterium acnes	Propionibacterium acnes		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum ATCC 13032 ureB	Corynebacterium glutamicum ATCC 13032 ureC
	db Match	gp:SCM2_3	sp:BIOB_CORGL	plr:H70542	sp:YKI4_YEAST		PIR:F81737	GSP: Y35814	1449 prf 2512333A	gp D38505_1			sp:HST2_YEAST	prf.2316378A	prf 2316378A		gp:AB020154_1	gp:AB029154_2	gp:CGL251883_2	gp:CGL251883_3
	ORF (bp)	429	1002	237	339	117	141	273	1449	1245	306	815	924	972	98	888	513	38	486	1710
	Terminal (nt)	74272	75491	75742	76035	76469	80613	61002	82120	83691	85098	85683	87241	87561	88545	90445	90461	91473	91988	93701
	Initial (nt)	73844	74490	75506	75697	76353	80753	81274	83568	84935	85403	86277	86318	88532	89444	89558	1	91174	91503	91992
	SEQ NO	3581	3582	3583	3584	3585	3586	3587	3588	3589	3590	3591	3592	3593	3594	3595	3596	3597	3598	3599
	SEQ NO.	180	- 82	83	84	95	8	87	88	8	8	9	92	93	8	95	96	76	86	66

	Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase		valanimycin resistant protein			heat shock protein (hsp90-family)	AMP nucleosidase		acetolactate synthase large subunit		proline dehydrogenase/P5C dehydrogenase		aryf-alcohol dehydrogenase (NADP+)	pump protein (transport)	Indole-3-acetyl-Asp hydrolase		hypothetical membrane protein	
	Matched length (a.a.)	151	226	502	283	279		347			898	481		196		1297		338	513	352		108	
	Similarity (%)	100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		2.09	71.4	49.2		8.07	
	Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	41.0		29.6		25.8		30.2	36.5	23.0		35.9	
Table 1 (continued)	Homologous gene	Corynebacterium giutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebaclerium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vimF			Escharichla coli K12 htpG	Escherichia coll K12 amn		Aeropyrum pernix K1 APE2509		Salmonella typhlmurium putA		Phanerochaete chrysosportum aad	Escherichla coli K12 ydaH	Enterobacter agglomerans		Escherichia coli K12 yidH	
	db Match	gp:CGL251883_4	gp:CGL251883_5	gp:CGL251883_6	gp:CGL251883_7	prf.2318326B		9p:AF148322_1			sp:HTPG_ECOLI	SP: AMN_ECOLI		plr:E72483		sp:PUTA_SALTY		Sp. AAD_PHACH	sp:YDAH_ECOLI	prf:2422424A		sp:YIDH_ECOLI	
	ORF (bp)	471	678	615	849	777	699	1152	675	2775	1824	1418	579	552	099	3458	114	945	1614	1332	669	366	315
	Terminal (nt)	94199	94879	95513	96365	99296	98189	97319	100493	90886	101812	104909	105173	105841	106630	110890	111274	112318	114083	115478	114564	115943	116263
	Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435	103494	105751	108392	107289	107435	111161	111374	112470	114147	115262	115578	115949
	SEQ NO (a. a.)	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3811	3612	3613	3614	3615	3616	3617	3618	3619	3620	3621
	SEQ NO. (DNA)	100	101	102	103	104	105	106	107	108	109	110	Ξ	112	113	114	115	116	117	118	119	120	121

	Function		transcriptional repressor	methylglyoxalase	hypothetical protein	mannitol dehydrogenase	D-arabinitol transporter		galactitol utilization operon repressor	xylulose kinese		pantoate-beta-alanine ligase	3-methyl-2-oxobutanoate hydroxymethyltransferase		DNA-3-methyladenine glycosylase		esterase		carbonate dehydratase	xylose operon repressor protein	macrolide efflux protein		
	Matched length (a.a.)		258	126	162	497	435		260	451		279	27.1		188		270		201	357	418		
	Similarity (%)		59.7	78.6	64.8	70.4	68.3		64.6	68.1		100.0	100.0		87.6		69.3		53.2	49.3	91.2		
	Identity (%)		29.5	57.9	37.0	43.5	30.3		27.3	45.0		100.0	100.0		45.0		39.3		30.9	24.1	21.1		
Table 1 (continued)	Homologous gene		Agrobacterium tumefaciens accR	Bacillus subtills yurT	Mycobacterium tuberculosis H37Rv Rv1278c	Pseudomonas fluorescens mttD	Klebsiella pneumoniae dalT		Escherichia coli K12 gatR	Streptomyces rubiginosus xylB		Corynebacterium glutamicum ATCC 13032 panC	Corynebacterium glutamicum ATCC 13032 panB		Arabidopsis thallana mag		Petroleum-degrading bacterium HD-1 hde		Methanosarcina thermophila	Bacillus subtilis W23 xylR	Lactococcus lactis inef214		
	db Malch		sp:ACCR_AGRTU	pir.C70019	sp:YC78_MYCTU	prf.2309180A	prf.2321326A		Sp.GATR_ECOLI	Sp:XYLB_STRRU		gp.CGPAN_2	gp.CGPAN_1		SP:3MG_ARATH		gp:AB029896_1		SP.CAH_METTE	SP:XYLR_BACSU	gp.LLLPK214_12		
	ORF (bp)	2052	780	390	510	1509	1335	189	837	1419	822	837	813	951	630	654	924	627	558	1143	1272	804	444
	Terminal (nt)	116548	118810	120410	120413	120951	122507	124030	124966	126350	127992	126353	127192	128099	129489	130798	130815	132424	132981	132971	134207	135518	136122
	Initial (nt)	118599	119589	120021	120922	122459	123841	123842	124130	124932	127171	127189	128004	129049	130118	130145	131738	131798	132424	134113	135478	136321	136565
,	SEO NO.	3622	3623	3624	3625	3628	3627	3628	3629	3630	3631	3632	3633	3634	3635	3636	3837	3638	3639	3640	3641	3642	3643
	SEO NO (DNA)	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	- 6	=	142	143

EP 1 108 790 A2

0

	Function				cellulose synthase	hypothetical membrane protein				chloramphenicol sensitive protein	hypothetical membrane protein			transport protein	hypothetical membrane protein			ATP-dependent helicase		nodulation protein	DNA repair system specific for aikylated DNA	DNA-3-methyladenine glycosylase	threonine efflux protein	hypothetical protein	doxorubicin blosynthesis enzyme	
	Matched length (a.a.)				420	593				333	198			361	248			829		188	218	168	217	55	284	
	Similarity (%)				51.2	51.8				60.7	59.1			62.3	70.2			64.3		66.0	60.7	65.1	61.3	72.7	52.1	
	Identity (%)				24.3	25.1				34.7	30.3			32.4	34.7			33.8		40.4	34.7	39.8	34.1	50.9	31.0	
Table 1 (continued)	Homologous gene				Agrobacterium tumefactens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS	-		Escherichia coli K12 abrB	Escherichia coli K12 yfcA			Escherichia coli K12 hrpB		Rhizobium leguminosarum bv. viciae plasmid pRL1J! nodL	Escherichia coli o373#1 alkB	Escherichia coli K12 tag	Escherichia coli K12 rhlC	Bacillus subtilis yaaA	Streptomyces peucetius dnrV	
	db Match				pir:139714	sp:HKR1_YEAST				SP.RARD_PSEAE	sp YADS_ECOLI			SP. ABRB_ECOLI	Sp:YFCA_ECOLI			Sp:HRPB_ECOLI		Sp:NODL_RHILV	SP. ALKB_ECOLI	Sp. 3MG1 ECOLI	SN RHTC ECOLI	SP. YAAA BACSU		
	ORF (bp)	1941	1539	636	1481	1731	621	1065	756	879	717	333	1659	1137	798	624	405	2388	315	675	690	525	+	┿	+-	⊣
	Terminal (nt)	138744	140329	139226	141789	143528	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	158167	156147	157537	158138	158831	159159	160013	2000
	Initial (nt)	136804	138791	139861	140329	141796	142455	143575	144725	148396	146522	147238	148122	150930	151572	151589	152410	155613	155853		156848	157614				Zarecr
	SEO NO.	3644	3645	3646	3647	3648	3649	3650	3651	3652	3653	3654	3655	3656	3857	3658	3659	3660	3661	3662	3663	1664	7 2 2	3668	2000	96
	SEQ NO.	144	145	146	147	148	149	150	151	152	153	154	155	158	157	158	159	160	191	162	163	14	5 9	2 8		16/

EP 1 108 790 A2

0

	Function	methyltransferase				ribonuclease			neprilysin-like metallopeptidase 1		transcriptional regulator, GntR family or fatty acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothetical protein	methylmalonic acid semialdehyde dehydrogenase	myo-inositol catabolism	myo-inositoi catabolism	rhizopine catabolism protein	myo-inosital 2-dehydrogenese	myo-inositol catabolism	metabolite export pump of tetracenomydn C resistance		oxidoreductase	
	Matched length (a.e.)	104				118			722		238	332	296	488	268	586	280	335	287	457		354	
	Similarity (%)	56.7				76.3			57.2		65.6	63.0	80.7	1.98	58.2	69.8	51.0	72.2	72.1	61.5		65.5	
	Identity (%)	35.6		İ		41.5			28.5		29.8	28.6	52.7	61.0	33.2	41.0	29.7	39.1	44.6	30.9		31.1	
Table 1 (continued)	Homologous gene	Schizosaccharomyces pombe SPAC1250.04c				Nelsseria meningitidis MC58 NMB0662			Mus musculus ni1	1	Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolor A3(2) SC8F11.03c	Streptomyces coelicolor msdA	Bacillus subtilis iolB	Bacillus subtills iolD	Rhizobium mellioti mocC	Bacillus subtilis Idh or iolG	Bacillus subtilis iolH	Streptomyces glaucescens (cmA		Bacillus subtilis yvaA	
	db Match	gp:SPAC1250_3				gp:AE002420_13			gp:AF176569_1		sp:FARR_ECOLI	pir.T14544	gp:SC8F11_3	prt.2204281A	SP. IOLB BACSU	1728 sp.10LD_BACSU	SP:MOCC_RHIME	1011 Sp.MI2D_BACSU	SP.IOLH BACSU	sp.TCMA_STRGA		sp:YVAA_BACSU	
	ORF (bp)	342	930	657	933	405	639	741	2067	983	759	1017	921	1512	888	1728	954	1011	870	1374	621	1023	456
	Terminal (nt)	160370	161360	162352	161363	162867	163603	166457	163689	167419	167837	169991	170918	172444	173355	175275	176272	177318	178203	179658	178461	180711	181297
	Initial (nt)	160029	160431	161696	162295	182483	162965	165717	165755	166457	168595	168975	169996	170933	172468	173548	175319		<u> </u>		179081	179689	180842
	SEQ NO (a a)	3668	3669	3670	3671	3672	3673	3674	3675	3676	3677	3678	3679	3680	3681	3682	3683	3684	3685	3686	3687	3688	3689
	SEO NO (DNA)		169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	2 6

	Function		regulatory protein	oxidoreductase	hypothetical protein		cold shock protein			caffeoyl-CoA 3-O-methyltransferase		glucose-resistance amytase regulator regulator			D-xylose proton symporter		transposase (ISCg2)	signal-transducing histidine kinase	glutamine 2-oxoglutarate aminotransferase large subunit	glutamine 2-oxoglutarate aminotransferase small subunit		hypothetical protein	
	Matched length (a.a.)		331	442	303		64			134		338			458		401	145	1510	909		496	
	Similarity (%)		61.9	52.5	64.7		92.2			58.2		62.1			70.5		100.0	60.7	100 0	8.88		72.8	
	Identity (%)		32.0	24.4	33.7		70.3			30.6		28.7			38.0		100.0	27.6	6.98	99.4		44.6	
Table 1 (continued)	Homologous gene		Streptomyces reticuli cebR	Rhizobium sp. NGR234 y4hM	Bacillus subtilis yfiH		Streptomyces coelicolor A3(2) csp			Stellaria longipes		Bacillus subtilis ccpA			Lactobacillus brevis xylT		Corynebacterium glutamicum ATCC 13032 tnp	Rhizobium meliloti fixt.	Corynebacterium glutemicum gitB	Corynebacterium glutamicum gttD		Mycobacterium tuberculosis H37Rv Rv3698	
	db Match		dD: SRE9798 1	SD Y4HM RHISN	SP YFIH BACSU		sp.CSP_ARTGO			prf:2113413A		sp.ccPA_BACSU			SP.XYLT_LACBR		gp.AF189147_1	Sp.FIXL RHIME	9p:AB024708_1	gp:AB024708_2		pir:C70793	
	ORF (bp)	384	993		1011	429	201	534	308	414	426	066	402	240	1473	30	1203	435	4530	1518	240	1485	စ္တိ
	Terminal (nt)	181647	181887	184051	185087	185642	186708	187302	187607	188100	188300	188747	190321	190389	190703	192949	194464	194604	199769	201289	201341	201760	205956
	Initial (nt)	181264	182679	182819	184077	185214	186508	186769	187302	187887	188725	189736	189920	190628	192175	193248	193262	195038	<u> </u>	199772	201580	203244	205588
	SEO NO.	3690	3601	365	3693	3694	3695	3696	3697	3698	3699	3700	3701	3702	3703	3704	3705	3706	3707	3708	3709	3710	3711
	SEO		_	1	_		<u> </u>	196	197	198	199	200	201	202	203	204	205	206	207	208	509	210	211

	Function		arabinosyi transferase	hypothetical membrane protein	acetoacetyl CoA reductase	oxidoreductase				proteaphosphoglycan	hypothetical protein		hypothetical protein	rhamnosyl transferase		hypothetical protein	O-antigen export system ATP- binding protein	O-antigen export system permesse protein	hypothetical protein	NADPH quinone oxidoreductese
	Matched length (a.a.)		1122	651	. 223	464				350	124		208	302		214	236	262	418	302
	Similarity (%)		70.6	66.1	56.5	95.1				57.4	83.8		73.8	79.1		55.1	78.4	75.8	63.0	71.5
	Identity (%)		39.8	35.0	31.4	0.99				24.3	60.5		43.2	63.6		31.3	47.0	31.3	38.5	41.4
Table 1 (continued)	Homologous gene		Mycobacterium avium embB	Mycobacterium tuberculosis H37Rv Rv3792	Pseudomonas sp. phbB	Mycobacterium tuberculosis H37Rv Rv3790				Leishmania major ppg 1	Mycobacterium tuberculosis H37Rv Rv3789		Mycobacterium tuberculosis H37Rv Rv1864c	Mycobacterium tuberculosis H37Rv Rv3782 rbE		Agrobacerium tumefaciens plasmid pTI-SAKURA tlorf100	Yersinia enterocolitica rfbE	Yersinia enterocolitica rfbD	Mycobacterium tuberculosis H37Rv Rv3778c	Homo sapiens pig3
į	db Match		prf:2224383C	plr.D70697	prt:2504279B	pir.B70697				gp:LMA243459_1	sp:Y0GN_MYCTU		plr:H70866	plr:B70696	,	gp:AB016260_100	SP:RFBE_YEREN	SP.RFBD_YEREN	pir.F70695	gp:AF010309_1
	ORF (bp)	318	3471	1983	759	1464	234	507	453	1002	398	402	633	939	342	287	789	804	1173	954
	Terminal (nt)	206385	203541	207007	209210	208882	211535	212283	212735	213657	214107	214522	215159	215162	216605	216116	217141	217943	220151	220154
	Initial (nt)	206068	207011	208989	209968	211455	211768	211777	212283	212656		214121	214527	216100	216264	216712	217929	218746	218979	221107
	SEQ NO (a.a.)	3712	3713	3714	3715	3716	3717	3718	3719	3720	3721	3722	3723	3724	3725	3726	3727	3728	3729	3730
	SEQ NO.	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	722	228	229	230

	_					-			$-\tau$			$\neg \neg$						$\neg \tau$	T	7
5		Function		probable electron transfer protein	er protein		molybdopterin biosynthesis protein moeB (sulfurylase)	ynthase, large	molybdenum cofactor blosynthesis protein CB	sis protein	molybdopterin co-factor synthesis protein	mbrane protein	ng periplasmic	onverting factor	rt protein	mbrane protein	hate .a			
10		Ē		probable electror	amino acid carrier protein		molybdopterin bios moeB (sulfurylase)	molybdopterin synthase, large subunit	molybdenum col protein CB	co-factor synthesis protein	molybdopterin co protein	hypothetical membrane protein	molybdate-binding periplasmic protein	molybdopterin converting factor subunit 1	maitose transport protein	hypothetical membrane protein	histidinol-phosphate aminotransferase			
15		Matched length (a a)		92	475		368	150	158	154	377	227	256	96	385	121	330			
20		Similarity (%)		51.0	75.8		70.1	75.3	63.3	84.4	58.8	70.5	68.0	70.8	80.8	76.9	65.8			
		identity (%)		35.0	48.7		43.8	44.7	33.5	61.7	34.5	44.1	34.0	37.5	34.3	36.4	37.3			
25	Table 1 (conlinued)	us gene		ubercutosis	IsT		sp. PCC 7942	tinovorans	sp. PCC 7942	olinovorans	olinovorans	otinovorans	olinovorans	uberculosis	toralis malK	elicolor A3(2)	bilis hisC			
30	Table 1 (Homologous gene		Mycobacterium tuberculosis H37Rv Rv3571	Bacillus subtilis atsT		Synechococcus sp. moeB	Arthrobacter nicotinovorans moaE	Synechococcus sp. PCC 7942 moaCB	Arthrobacter nicotlnovorans moaC	Arthrobacter nicolinovorans moeA	Arthrobacter nicotinovorans modB	Arthrobacter nicotinovorans modA	Mycobacterium tuberculosis H37Rv moaD2	Thermococcus litoralis malk	Streptomyces coelicolor A3(2) ORF3	Zymomonas mobilis hIsC			
35		db Match		PIR:A70606	sp.ALST_BACSU		gp:SYPCCMOEB_	prf 2403296D	SP.MOCB_SYNP7	prf.2403296C	gp:ANY10817_2	prf.2403296F	prf.2403296E	pir.D70816	prt.2518354A	SP.YPT3_STRCO	sp:HIS8_ZYMMO			
		ORF (bp)	582	297 PI	1476 Sp	608	1083	456 pi	471 51	468 p	1185 g	723 p	804 P	321 p	912 p	420 s	1023 s	906	294	120
45		Terminal (nt)	221131	222207	222210	225244	225242	228312	228760	227218	227703	228891	229711	230928	230931	231848	232260	234818	234910	235409
50		initial (nt)	221712	221911	223685	224336	226324	226767	227230	227685	228887	229613	230514	230608	231842		233282	233913	235203	235290
		SEO NO Seo	3731	3732	3733	3734	3735	3736	3737	3738	3739	3740	3741	3742	3743	3744	3745	3746	3747	3748
55		SEQ NO ONA)	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248

EP 1 108 790 A2

ſ		丁	T	Т	T	Т	T	Ī				T			T	7							1
5	tion		nase		nsporter		otransporter		-	otein			ort protein	syltransferase	brane protein				thetase			-	
10	Function	transcription factor	alcohol dehydrogenase	putrescine oxidase	magnesium ion transporter		Na/dicarboxylate cotransporter	oxidoreductase	hypothetical protein	nitrogen fixation protein			membrane transport protein	queuine tRNA-ribosyltransferase	hypothetical membrane protein			ABC transporter	glutamyl-tRNA synthetase		transposase		
15	Matched length (a.a.)	252	335	451	444		267	317	160	144			766	400	203			526	318		360		
<i>2</i> 0	Similarity (%)	57.1	0.99	38.1	68.5		59.6	69.1	73.8	70.1			45.7	68.0	62.1			48.8	63.3		55.0		
	identity (%)	29.4	34.0	21.5	30.0		33.2	46.1	48.8	45.1			20.7	41.3	78.1			24.3	34.8		34.2		
25 52 Table 1 (continued)	s gene	луR	mophilus	ond su	ri mgtE			berculosis	berculosis ,	ponicum			berculosis mpt.2	lis	dP.			ucescens strW	×		ringae tnpA		
8 Table 1 (c	Homologous gene	Brucella abortus oxyR	Bacillus stearothermophilus DSM 2334 adh	Micrococcus rubens puo	Borrelia burgdorferi mgtE		Xenopus laevis	Mycobacterium tuberculosis H37Rv tyrA	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum			Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Bacillus subtills ypdP			Streptomyces glaucescens strW	Bacillus subtilis gltX		Pseudomonas syringae tnpA		
35	db Match	gp:BAU81286_1 E	sp:ADH2_BACST	sp. PUO_MICRU	prf:2305239A		pri:2320140A	pir:C70800	pir:B70800	gp.RHBNFXP_1			sp:YV34_MYCTU	Sp.TGT_ZYMMO	sp:YPDP_BACSU			pir.S65588	sp:SYE_BACSU		gp:PSESTBCBAD_1		
	ORF (bp)	762 9	1017	801	1350 p	174	1530 p	1020 p	522 p	417 g	201	351	2403	1283 s	738	1080	648	1437	879	066	1110	303	138
45	Terminal (nt)	235451	237342	238145	239525	239945	241515	241883	243431	243910	244215	244816	247304	248572	248557	250507	249722	251939	252830	252830	254329	255492	258204
50	Initial (nt)	236212	236326	237345	238176	239772	239986	242902	242910	243494	244015	244466	244902	247310	249294	249428	250369	250503	251952	253819	255438	255794	256087
	SEQ NO.	3749	3750	3751	3752	3753	3754	3755	3756	3757	3758	3759	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3770
55	SEQ	249	250	251	252	253	254	255	256	257	258	259	260	792	262	263	264	285	266	267	268	269	270

EP 1 108 790 A2

	Function	asparlate transaminase		ONA polymerase III holoenzyme tau subunit		hypothetical protein	recombination protein	cobyric acid synthase	UDP-N-acetylmuramyl tripeptide synthetase	DNA polymerase III epsilon chain	hypothetical membrane protein	sspartate kinsse alpha chain			extracytoplasmic function alternative sigma factor	vegetative catalase			ieucine-responsive regulatory protein	branched-chain amino add transport
	Matched length (a.a.)	432		642		101	214	248	444	346	270	421			189	485			143	203
	Similarity (%)	100.0		53.1		74.3	72.4	61.7	80.6	55.2	100.0	99.8		-	63.5	76.4			72.0	0.88
	Identity (%)	98.6		31.6		41.6	42.5	38.3	31.3	25.7	100.0	99.5			31.2	52.9			37.1	30.5
Table 1 (continued)	Homologous gene	Brevibacterium lactofermentum aspC		Thermus thermophilus dnaX		Bacillus subtills yeak	Bacillus subtilis recR	Hellobacilius mobilis cobQ	Heliobacilius mobilis murC	Mycobacterium tuberculosis H37Rv dnaQ	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum lysC-alpha		•	Mycobacterium smegmatis sigE	Bacilius subtills katA			Klebsiella pneumoniae irp	Bacillus subtilis 1A1 azIC
	db Match	gsp:W69554		gp. AF025391_1		Sp. YAAK_BACSU	Sp. RECR_BACSU	pri:2503462B	prf.2503462C	plr:H70794	sp.YLEU_CORGL	sp:AKAB_CORGL			prf.2312309A	sp.CATV_BACSU			sp.LRP_KLEPN	sp. AZLC_BACSU
	ORF (bp)	1296	630	2325	717	309	654	750	1269	1080	867	1263	1053	1434	579	1506	342	291	462	753
	Terminal (nt)	257894	258529	260875	258596	261295	282055	262546	263298	264599	268258	270633	269524	273194	273542	275871	276232	275957	276302	277581
	Initial (nt)	258599	257900	258551	259312	260987	261402	263295	284566	265678	269124	269371	270576	271781	274120	274366	275891	276247	276763	276829
	SEO NO.		3772	3773	3774	3775	3776	3777		3779	3780	3781	3782	3783	3784	3785	3786	3787	3788	3789
	SEQ NO.		272	 	274	275	276	$\overline{}$		279	280	281	282	283	284	285	286	287	288	289

Na+/H+ antiporter or multiple resistance and pH regulation related protein D arsenic oxyanion-translocation pump membrane subunit Na+/H+ antiporter or multiple resistance and pH regulation related protein A two-component system sensor histidine kinase metalloregulatory protein transcriptional activator Function alkaline phosphatase hypothetical protein arsenate reductase Na+/H+ entiporter phosphoesterase length Matched Similarity 68.9 68.9 71.8 84.2 70.4 70.6 64.3 70.4 58.8 60.0 54.7 શ્ Identity (%) 37.0 37.6 34.4 31.1 34.1 38.8 28.3 52.2 28.7 28.1 32.4 Lactococcus lactis MG1383 apl Staphylococcus aureus mnhC Staphylococcus xylosus arsC Alcaligenes eutrophus CH34 czcR Table 1 (continued) Sinorhizobium sp. As4 arsR Sinorhizobium sp. As4 arsB Mycobacterium tuberculosis mtrB Bacillus firmus OF4 mrpD Homologous gene Bacillus firmus OF4 mrpA Bacillus subtilis ykuE Bacillus subtilis yqeY sp:YQEY_BACSU SP. ARSC_STAXY Sp:CZCR_ALCEU gp:AF178758_2 gp.AF097740_4 gp:AF178758 1 gp:AF097740_1 SP. APL_LACLA db Match prf.2504285D prf.2214304B pir.869865 유 (한 (한 Terminal (9.9.) SEO SO 297

13 13 13 13 13 13 13 13
18EQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
SEC Initial Terminal ORF Chemistry Terminal ORF Chemistry Terminal ORF Chemistry Terminal ORF Chemistry
SEQ Initial Terminal ORF db Match Homologous gene 18.10 (n1) (n1) (bp) ptr.2209359A Homologous gene 38.10 296.38 294004 2385 ptr.2209359A Mycobacterium leprae pon1 38.11 297084 297402 339 ptr.2209359A Mycobacterium leprae pon1 38.12 297431 297622 192 Streptomyces coelicolor A3(2) 38.12 297431 297622 192 Streptomyces coelicolor A3(2) 38.13 297684 298732 1353 sp:SCH17_10 Streptomyces coelicolor A3(2) 38.14 297782 298728 1536 sp:CATA_LR_ECOLI Escherichia coil K12 shiA 38.16 300887 301512 525 gp:SCH4_RECOLI Escherichia coil K12 shiA 38.18 302167 301512 525 gp:SCH4_RECOLI Escherichia coil K12 shiA 38.19 301516 301516 301516 301516 301516 38.20 302187 30208 471
SEQ (ntital Terminal ORF (nt) (nt) (bp) (nt) (nt) (bp) (hp) (nt) (nt) (bp) (hp) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt
SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)
SEQ Initial TOO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)
SEQ NO. NO. 3810 3811 3813 3813 3814 3815 3814 3815 3815 3815 3815 3815 3815 3815 3815

EP 1 108 790 A2

_		_		_						I		1	- 1	- 1		- 1		- 1		
	Function	hypothetical protein	serine proteinase	epoxide hydrolase	hypothetical membrane protein	phosphoserine phosphatase	hypothetical protein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protein				ATP-dependent RNA helicase	cold shock protein		DNA topoisomerase t	
	Matched length (a.a.)	192	$\neg \neg$	280	156	287	349	319		262	201	59				764	67		877	
	Similarity (%)	58.3	71.0	52.1	77.6	65.5	60.2	66.5		63.7	64.2	84.8				66.1	1.88		91.6	
	Identity (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5				33.8	68.7		61.7	
Table 1 (continued)	Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tuberculosis H37Rv Rv3671c	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3689	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterlum tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis S155 csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
	db Malch	Sp. YEAB_ECOLI	pir:H70789	prf:2411250A	pir:F70789	pir.S72914	pir.E70788	pir.C44020		pir.C70788	pir.B70788	plr.A70788				Sp:YPRA_BACSU	sp.CSP_ARTGO		pir:G70583	
	ORF (bp)	699	1191	993	549	996	1023	1023	615	816	546	198	318	414	345	2355	201	225	2988	2
	Terminal (nt)	310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
•	Initial (nt)	309370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318696	318958	318991	321690	322507	322216		325904
	SEO NO Se B	 	3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	3845	3846	3847	384B
•	SEQ NO.		1	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348

5

	Function	adenylate cyclase	DNA polymerase III subunit tau/gamma		hypothetical protein	hypothetical protein	ribosomal large subunit pseudouridine synthase C	beta-glucosidase/xylosidase	beta-glucosidase	NAD/mycothiol-dependent formaldehyde dehydrogenase		metallo-beta-lactamase superfamily	3-oxoacyl-(acyl-carrier-protein) reductase	valanimycin resistant protein	dTDP-glucose 4,6-dehydratase	hypothetical protein	dolichol phosphate mannose synthase		nucleotide sugar synthetase	UDP-sugar hydrofase	
	Matched length (a.a.)	263 8	423 D		144 h	172 h	314 ri	258 b	101 d	362 ft		160 n	251	415 v	320	108	230		260	286	
	Similarity (%)	62.4	52.7		59.0	63.4	65.0	60.2	61.4	86.5		47.5	55.8	56.4	86.3	88.9	66.5		57.3	54.4	
	Identity (%)	32.7	25.3		32.6	39.0	43.6	34.8	38.6	66.6		32.5	25.9	26.3	33.8	59.3	33.9		25.8	78.1	
Table 1 (continued)	Homologous gene	Stigmatella aurantiaca B17R20 cyaB	Bacilius subtilis dnaX		Ureaplasma urealyticum uu033	Delnococcus radiodurans DR0202	Escherichia coli K12 rluC	Erwinia chrysanthemi D1 bgxA	Azospirillum irakense salB	Amycolatopsis methanolica		Rhodococcus enythropolis orf5	Escherichia coli K12 fabG	Streptomyces viridifaciens vlmF	Actinoplanes sp. acbB	Mycobacterium tuberculosis H37Rv Rv3632	Methanococcus jannaschii JAL- 1 MJ1222		Escherichla coli K12 yefJ	Salmonella typhimurium ushA	
	db Match	sp:CYAB_STIAU	sp.DP3X_BACSU		gp:AE002103_3	gp:AE001882_8	sp:RLUC_ECOLI	Sp. BGLX_ERWCH	gp. AF090429_2	Sp.FADH_AMYME		Sp:YTH5_RHOSN	sp:FABG_ECOLI	gp:AF148322_1	prf.2512357B	pir:A70562	sp:YC22_METJA		sp:YEFJ_ECOLI	9P.USHA_SALTY	
	ORF (bp)	1041	1257	162	444	561	882	1644	1989	1104	821	537	699	1230	933	375	759	1029	1035	2082	162
	Terminal (nt)	326695	329539	329909	330376	331533	332433	334562	334953	336112	335185	336748	337449	338768	339725	340195	340569	342375	343451	345717	345814
	Initial (nt)	327735	328283	329748	329033	330973	331552	332919	332965	335009	335805		<u>!</u>	337539	338793	340569	341327	341347	342417	343636	345975
	SEO NO (e)	3849	3850	3851	3852	3853	3854	3855	3856	3857	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868
	SEQ NO.	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368

EP 1 108 790 A2

	Function		NADP-dependent alcohol dehydrogenase	glucose-1-phosphate thymidylyltransferase	dTDP-4-keta-L-rhamnose reductese	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane protein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		capsular polysaccharide biosynthesis	ORF 3	lipopolysaccharide biosynthesis / aminotransferase
	Matched length (a.e.)		343	285	192	343	206	325		423	461	708		258	363	453	102		613	06	394
	Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5		68.3	. 62.5	56.4		46.0	76.6	57.2	88.6		65.7	51.0	68.3
	Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		26.0	50.7	28.5	39.2		33.0	41.0	37.1
Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Saimonella anatum M32 rfbA	Streptococcus mutans rmIC	Streptococcus mutans XC rmIB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A 19c	Sphingomonas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium ammoniagenes ATCC 6872	Acinetobacter johnsonii ptk	Acinetobacter johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK
	db Match		SP.ADH_MYCTU	SP. RFBA_SALAN	gp:D78182_5	SP. RMLB_STRMU	Sp.NOX_THETH	prf.2510361A		sp:Y17M_MYCTU	gp:SC5F2A_19	prf.2502228A		gp:SCF43_2	gsp:W56155	prf.2404346B	prf 2404346A		sp:CAPD_STAAU	PRF:2109288X	1155 prf.2423410L
	ORF (bp)	351	1059	855	1359	1131	579	945	639	1308	1380	2118	573	1092	1095	1434	803	984	1812	942	1155
	Terminal (nt)	346110	346961	348098	348952	350313	351370	353637	353749	354599	355849	357237	359762	360814	362057	365257	365852	366838	368643	367701	369801
	Initial (nt)	346460	348019	348952	350310		351948	352693	354387	355908	357228	359354	360334	361905	363151	363824	365250	365855	366832	368642	368647
	SEQ NO.	3869	3870	3871	3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3886	3887	3888
	SEQ NO.	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388

5

						Table 1 (continued)				
SEQ NO.	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
	3889	369794	370405	612	gp:AF014804_1	Neisseria meningitidis pglB	54.6	75.0	198	pilin glycosylation protein
1 -	3890	370613	371773	1161	sp.CAPM_STAAU	Staphylococcus aureus M capM	33.4	69.2	380	capsular polysaccharide biosynthesis
39.1	3891	371929	373419	1491	pir:S87859	Xanthomonas campestris gumJ	34.3	8.69	504	lipopolysaccharide biosynthesis / export protein
392	3892	373500	374813	1314	sp MURA_ENTCL	Enterobacter cloacae murA	31.4	64.8	427	UDP-N-acetylglucosamine 1- carboxyvinyitransferase
393	3893	374833	375837	1005	1005 sp:MURB_BACSU	Bacillus subtilis murB	34.8	68.5	273	UDP-N. acetylenolpyruvoyiglucosamine reductase
394	3894	375842	376876	1035	gp:VCLPSS_9	Vibrio cholerae ORF39x2	32.0	67.3	356	sugar transferase
1	3895		377832	150	prf 2211295A	Corynebacterium glutamicum	60.4	79.3	53	transposase
396	3896	378093	378227	135						
397	3897	378185	378511	327	pir:S43613	Corynebacterium glutamicum ATCC 31831	75.7	94.3	70	transposase (insertion sequence IS31831)
398	3898	378562	378287	278						
399	3899	379837	378668	1170	pir.G70539	Mycobacterium tuberculosis H37Rv Rv1565c	28.0	57.4	404	hypothetical protein
400	3900	380842	379850	883	gsp W37352	Pseudomonas aeruginosa PAO1 psbC	34.5	60.2	354	acetyliransferase
401	3901	381265	381495	231	PIR: S60890	Corynebacterium glutamicum	44.0	53.0	92	hypothetical protein B
402	3902	381948	383108	1161	sp:UDG8_ECOLI	Escherichia coli ugd	63.7	89.7	388	UDP-glucose 8-dehydrogenase
463	3903	383768	383498	273						
404	3904	385190	383982	1209						
405	3905	386195	385374	822	gp:AF172324_3	Escherichia coli wbnA	32.1	65.0	243	glycosyl transferase
406	3906	386556	387200	645	gp:AB008676_13	Escherichia coli 0157 wbhH	33.0	62.0	221	acetyltransferase
407	3907	387657	387463	195						

SEQ Initial Terminal ORF	Terminal		Ö	1 11		lable i (continueu)	Identity	Similarity	Matched	
(nt) (bp) db Match	(nt) (bp) db Match	(bp) db Match	db Match		_	Homologous gene	(%)		length (a.a.)	Function
3908 387692 389098 1407 gp:CGLPD_1 Corynet	389098 1407 gp:CGLPD_1	1407 gp:CGLPD_1	gp:CGLPD_1	gp:CGLPD_1	Conynet ATCC 1	Corynebacterium glutamicum ATCC 13032 lpd	9.66	100.0	469	dihydrolipoamlde dehydrogenase
3909 389248 390168 921 pir.JC4985 Xanihon	390168 921 pir.JC4985	921 pir.JC4985	pir.JC4985		Xanthon	Xanthomonas campestris	41.7	68.1	295	UTP-glucose-1-phosphate uridylyltransferase
3910 390233 390730 498 9p:PAU49666_2 offX	390730 498 gp:PAU49666_2	498 gp:PAU49666_2	gp:PAU49666_2		Pseudo orfX	Pseudomonas aeruginosa PAO1 orfX	43.8	71.9	153	regulatory protein
3911 392208 390787 1422 pir.E70828 Mycob	390787 1422 pir.E70828	1422 pir.E70828	pir:E70828	pir:E70828	Mycobi H37Rv	Mycobacterium tuberculosis H37Rv Rv0465c	57.0	81.3	477	transcriptional regulator
3912 392705 383475 771 gp:SCM10_12 SCM10.12c	393475 771 gp:SCM10_12	771 gp:SCM10_12	gp:SCM10_12		Strepto SCM10	Streptomyces coelicolor A3(2) SCM10.12c	34.8	67.4	230	cytochrome b subunit
3913 393639 395513 1875 pir.A27763 Bacillus	395513 1875 pir.A27763	1875 pir.A27763	pir.A27763	pir.A27763	Bacillus	Bacillus subtilis sdhA	32.4	61.2	608	succinate dehydrogenase flavoprotein
3914 395428 396262 837 gp.BMSDHCAB_4 Paeniba	396262 837 gp.BMSDHCAB_4	837 gp:BMSDHCAB_4	gp.BMSDHCAB_4		Paeniba	Paenibacillus macerans sdhB	27.5	58.2	258	succinate dehydrogenase subunit B
3915 396315 396650 336	396650		336							
3916 396672 396932 261	396932		261							
3917 397040 396411 630	396411	_	630							
3918 397730 397825 96	397825		96							
3919 397884 398222 339	398222	-	339							
3920 398206 397232 975 gp:SCC78_5 Streptomy	397232 975 gp:SCC78_5	975 gp:SCC78_5	gp:SCC78_5		Streptor SCC78	Streptomyces coelicolar SCC78.05	26.3	49.8	259	hypothetical protein
3921 398329 399579 1251 sp:YJIN_ECOLI Escher	399579 1251 sp:YJIN_ECOLI	1251 sp:YJIN_ECOLI	sp:YJIN_ECOLI	sp:YJIN_ECOLI	Escher	Escherichia coli K12 yjiN	32.7	64.3	431	hypothetical protein
3922 39959B 400017 420	400017	\vdash	420							
3923 400039 400341 303	400341		303							
3924 400473 401150 678 sp.TCMR_STRGA GLA.0 tcmR	401150 678 SP.TCMR_STRGA	678 SP.TCMR_STRGA	sp:TCMR_STRGA		Streptor GLA 0 t	Streptomyces glaucescens GLA.0 tcmR	26.4	53.8	197	tetracenomycln C transcription repressor
3925 401050 401253 204	401253		204							
3926 401150 402796 1647 gp:AF184961_8 Strepto	401150 402798 1647 gp:AF164961_8	1647 gp.AF184961_8			Strepto	Streptomyces fradiae T#2717 urdJ	36.1	74.8	499	transporter

EP 1 108 790 A2

																				_	
5		tion		ate deformylase	shate aldolese			_	c		cation-transporting P-type ATPase B		jucosidase	iplasmic protein		ABC transporter ATP-binding protein	c	E			
10		Function	transporter	formyltetrahydrafolate deformylase	deoxyribose-phosphate aldolase			hypothetical protein	hypothetical protein		cation-transporting		glucan 1,4-alpha-glucosidase	hemin-binding periplasmic protein	ABC transporter	ABC transporter A	hypothetical protein	hypothetical protein			
15		Matched length (a.a.)	508	288	208			280	92		748		626	348	330	254	266	258			
20		Similarity (%)	74.6	72.7	74.0			53.6	85.9		75.3		56.1	83.6	90.3	85.0	58.4	61.6			
		Identity (%)	39.6	40.9	38.5			26.8	58.7		45.7		27.3	57.2	65.2	63.8	28.6	32.6			
25	nued)	ne	#2717	-1 purU				GIR 10	sisoin		ctpB		siae	herlae	theriae	iheriae	or C75A	or C75A			
30	Table 1 (continued)	Hamologous gene	Streptomyces fradiae T#2717 urdJ	Corynebacterium sp. P-1 purU	Bacillus subtilis deoC			Mycobacterium avlum GIR10 mav346	Mycobacterium tuberculosis H37Rv Rv0190		Mycobacterium leprae ctpB		Saccharomyces cerevisiae S288C YIR019C sta1	Corynebacterium diphtherlae hmuT	Corynebacterium diphtheriae hmuU	Corynebacterium diphtheriae hmuV	Streptomyces coelicolor C75A SCC75A, 17c	Streptomyces coelicolor C75A SCC75A, 17c			
35 40		db Match	gp.AF164961_8 U	SP:PURU_CORSP C	sp DEOC_BACSU B			prf.2413441K n	PIr.A70907		SP:CTPB_MYCLE N		SP.AMYH_YEAST	gp:AF109162_1	gp:AF109162_2	gp:AF109162_3	gp:SCC75A_17	gp:SCC75A_17			
		ORF (bp)	1632 gp	912 sp	888 sp	150	168	867 pr	300	900	2265 sp	450	1863 sp	1077	1068 91	813 gi	957 91	837 gi	810	813	501
45		Terminal (nt)	404430	404508	406145	406161	405521	407416	407409	409145	407711	410027	412545	413633	414710	415526	416599	417439	417545	418441	419257
50		Initial (nt)	402799	405419	405480	406310	406417	406550	407708	408546	409975	410476	410683	412557	413643	414714	415643	416603	418354	419253	419757
		SEQ NO (a a)	3927	3928	3929	3930	3931	3932	3933	3934	3935	3936	3937	3938	3939	3940	3941	3942	3943	3944	3945
55		Q o ₹	27	28	29	8	3	32	33	34	135	36	137	138	139	440	141	442	443	444	445

EP 1 108 790 A2

EP 1 108 790 A2

5

	Function	delta-aminolevulinic acid dehydratase			cation-transporting P-type ATPase B		uroporphyrinogen decarboxyiase	protoporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type blagenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein		transcriptional regulator	Zn/Co transport repressor		hypothelical membrane protein	1,4-dihydroxy-2-naphthoate octaprenyltransferase
	Matched length (a.a.)	337			828		364	464	425	181	208	245	533	338		144	06		82	301
	Similarity (%)	83.1			56.5		76.7	59.9	83.5	62.7	71.2	85.3	76.0	77.8		69.4	72.2		78.1	61.5
	Identity (%)	80.8			27.4		55.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae ctpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtills hemY	Mycobacterium leprae heml.	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv0526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
	db Match	sp:HEM2_STRCO			sp:CTPB_MYCLE		sp:DCUP_STRCO	sp. PPOX_BACSU	sp:GSA_MYCLE	sp.PMG2_ECOLI	pir.A70545	pir:B70545	plr:C70545	pir:D70545		pir:G70790	pri:2420312A		pir.F70545	sp. MENA_ECOLI
	ORF (bp)	1017	582	510	2544	843	1074	1344	1311	909	621	792	1623	1011	801	471	357	300	333	894
	Terminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	465909	467571	468658	470170	470654	470657	471121	471847	471915
	Initial (nt)	454967	456016	456841	457357	459425	460020	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEO NO.	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
	SEQ NO.	485	486	487	488	489		491	492	493	494	495	496	497	498	499	500	8	505	503

5		Function	glycosyl transferase	maionyl-CoA-decarboxylase	hypothetical membrane protein	ketoglutarate semialdehyde dehydrogenase	5-dehydro-4-deoxyglucarate dehydratase	als operon regulatory protein	hypothetical protein		2-pyrone-4,6-dicarboxylic acid				low-affinity inorganic phosphate (ransporter			naphthoate synthase	peplidase E	pterin-4a-carbinolamine dehydrata	muconate cyclolsomerase
15	•	Matched length (a.a.)	238	421	139	520	303	293	26		267 2				410			293 n	202 p	77 p	335 п
20	·	Similarity (%)	62.6	51.5	65.5	76.0	75.6	66.2	64.9		54.7				83.2			70.3	82.7	68.8	76.7
		Identity (%)	32.4	25.4	35.3	50.4	48.5	36.9	33.0		28.1				0.09			48.5	57.9	37.7	54.0
25	tinued)	епе	cgB	3	/qjF		крарн	IsR	culosis		126 fldB				culosis				ans	phhB	ulosis
30	Table 1 (continued)	Homologous gene	Bacteroldes fragilis wcgB	Rhizoblum trifolii matB	Escherichia coli K12 yqlF	Pseudomonas putida	Pseudomonas putida KDGDH	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp. LB126 fldB				Mycobacterium tuberculosis H37Rv pitA			Bacillus subtilis menB	Deinococcus radiodurans DR1070	Aquifex agolicus VF5 phhB	Mycobacterium tuberculosis H37Rv Rv0553 menC
35 40		db Match	gp:AF125164_6	prf:2423270B	sp:YQJF_ECOLI	plr:S27612	sp:KDGD_PSEPU	sp:ALSR_BACSU	pir:B70547		gp:SSP277295_9				pir.D70547			SP: MENB_BACSU	gp:AE001957_12	pir.C70304	pir.D70548
		ORF (bp)	984	1323	411	1580	948	879	315	444	750	417	378	261	1275	222	308	957	603	309	1014
45	† .	Terminal (nt)	473811	473814	474997	475489	477048	478092	478889	480597	479452	480208	480624	481131	481394	483366	483637	484106	485986	485077	487014
50		Initial (nt)	472948	475136	475407	477048	477995	478970	479303	480154	480201	480624	481001	481391	482668	483587	483942	485062	485384	485385	486001
		SEQ NO. (a.a.)	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	4020	4021	4022
<i>5</i> 5		SEQ NO.	504	505	909	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522

EP 1 108 790 A2

	Function	2-oxoglutarate decarboxylase and 2-succinyl-8-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase	hypothetical membrane protein	alpha-D-mannosa-alpha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/D-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		oxidoreductase	heptaprenyl diphosphate synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrate aminotransfarase
	Matched length (a.a.)	909	148	408	447	237		412	316	111	318	145	236	564	443
	Similarity (%)	54.0	6.9	54.2	89.9	66.7		7.87	67.1	100.0	100.0	100.0	100.0	50.2	82.4
	Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100.0	100.0	100.0	23.1	60.5
Table 1 (continued)	Homologous gene	Bacillus subtlis menO	Mycobacterium tuberculosis H37Rv Rv0558	Mycobacterium tuberculosis H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE	-	Mycobacterium tuberculosis H37Rv Rv0561c	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 rplK	Corynebacterium glutamicum ATCC 13032 rplA	Streptomyces caelicalar SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
	db Match	1629 sp:MEND_BACSU	pir:G70548	1239 pir:H70548	sp:CYCA_ECOLI	sp.UBIE_ECOLI		pir.D70549	sp.HEP2_BACST	gp:AF130462_2	gp:AF130462_3	gp:AF130462_4	gp:AF130462_5	gp:SC5H4_2	1344 Sp.GABT_MYCTU
	ORF (bp)	1629	441	1239	1359	980	699	1272	1050	333	954	435	708	1512	1344
	Terminal (nt)	488656	489100	490447	491938	492655	493583	492645	495110	497142	498327	499032	499869	499925	502920
	Initial (nt)	487028	488660	489209	490580	491968	492915	493916	494061	496810	497374	498598	499162	501435	501577
	SEQ NO.	4023	4024	4025	4026	4027	4028	4029	4030	4031	4032	4033	4034	4035	4036
	SEQ NO (DNA)	523	524	525	526	527	528	529	530	531	532	533	534	535	536

EP 1 108 790 A2

_15

	Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	tyrosine-specific transport protein	cation-transporting ATPase G	hypothetical protein or dehydrogenase		50S ribosomal protein L10	50S ribosomal protein L7/L12		hypothetical membrane protein	ONA-directed RNA polymerase beta chain	DNA-directed RNA polymerase beta chain	hypothetical protein		DNA-binding protein	hypothetical protein
	Matched length (a.a.)	461	150	447	615	468		170	130		283	1180	1332	169		232	215
	Similarity (%)	71.8	38.0	49.8	64.4	66.2		84.7	89.2		55.5	90.4	88.7	52.0		63.8	57.7
	identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3
Table 1 (continued)	Homologous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coli K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rpU	Mycobacterium tuberculosis H37Rv RV0652 rplL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpoC	Mycobacterium tuberculosis H37Rv Jv0186c		Streptomyces coelicolor A3(2) SCJ9A, 15c	Mycobacterium tuberculosis H37Rv RV2908C
	db Match	sp:GABD_ECOL!	GP.ABCARRA_2	sp:TYRP_ECOLI	sp:CTPG_MYCTU	sp.P49_STRLI		sp RL10_STRGR	sp:RL7_MYCTU		pir:A70962	sp:RPOB_MYCTU	sp:RPOC_MYCTU	GP:AF121004_1		gp:SCJ9A_15	sp.YT08_MYCTU
	ORF (bp)	1359	468	191	1950	1413	603	513	384	138	972	3495	3999	582	180	780	798
	Terminal (nt)	504283	503272	505569	507647	509081	969609	510510	510974	510989	512507	516407	520492	518696	520850	521644	521679
	initial (nt)	502925	503739	504379	505698	507669	509094	509998	510591	511126	511536	512913	516494	519277	520671	520865	522476
	SEQ NO.	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	4048	4049	4050	4051	4052
	SEQ NO.	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552

EP 1 108 790 A2

5	Function	30S ribosomal protein S12	30S ribosomal protein S7	elongation factor G			lipoprotein			ferric enterobactin transport ATP- binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA:acetate coenzyme A transferase	30S ribosomal protein S10	50S ribosomal protein L3		50S ribosomal protein L4	50S ribosomal protein L23		50S ribosomal protein L2	30S ribosomal protein S19	
15	Matched length (a.a.)	121	154	709			44			258	328	335	145	101	212		212	98		280	82	
20	Similarity (%)	97.5	94.8	98.9			78.0			83.7	77.8	80.6	79.3	0.66	99.6		90.1	90.6		92.9	98.9	
·	Identity (%)	90.9	81.8	71.7			58.0		Ì	56.2	45.6	48.1	58.8	84.2	66.5	`	71.2	74.0		80.7	87.0	
SS 52 Table 1 (continued)	Homologous gene	Mycobacterium intracellulare rpsL	Mycobacterium smegmatis LR222 rpsG	Micrococcus luteus fusA			Chiamydia trachomatis			Escherichia coll K12 fepC	Escherichla coli K12 fepG	Escherichia coli K12 fepD	Thermoanaerobacterium thermosaccharolyticum actA	Pianobispora rosea ATCC 53733 rpsJ	Mycobacterium bovis BCG rplC		Mycobacterium boyls BCG rpID	Mycobacterium bovis BCG rptW		Mycobacterium bovis BCG rplB	Mycobacterium tuberculosis H37Rv Rv0705 rpsS	
35 Tu	Ноп	Mycobacter rpsL	Mycobacteri LR222 rpsG	Micrococcu			Chlamydia			Escherichia	Escherichle	Escherichia	Thermoan: thermosac	Planobispo 53733 rps	Mycobacte		Mycobacte	Mycobacte		Mycobacte	Mycobacte H37Rv Rv	
40	db Match	sp:RS12_MYCIT	sp.RS7_MYCSM	sp.EFG_MICLU			GSP:Y37841			Sp: FEPC_ECOLI	sp:FEPG_ECOLI	sp. FEPD_ECOLI	gp CTACTAGEN_1	sp:RS10_PLARO	sp:RL3_MYCBO		SP:RL4_MYCBO	SP. RLZ3_MYCBO		Sp.RL2_MYCLE	sp:RS19_MYCTU	
	ORF (bp)	366	465	2115	2160	144	228	153	729	792	1035	1035	516	303	654	687	654	303	327	840	278	285
45	Terminal (nt)	523059	523533	526010	523911	526013	526894	527607	528768	528779	529592	530748	532523	533401	534090	533401	534743	535048	534746	535915	538210	535899
50	Initiat (nt)	522694	523069	523896	526070	526156	527121	527759	528040	529570	530628	531782	532008	533099	533437	534087	534090	534746	535072	535076	535935	536183
•	SEO NO (* s	4053	4054	4055	4056	4057	4058	4059	4060	4061	4082	4063	4084	4065	4066	4067	4068	4069	4070	4071	4072	4073
55	SEO NO.	553	554	555	556	557	558	559	999	561	582	563	564	565	566	567	568	569	570	571	572	573

EP 1 108 790 A2

	Function	50S ribosomel protein L22	30S ribosomal protein S3	50S ribosomal protein L16	50S ribosomal protein L29	30S ribosomal protein S17				50S ribosomal protein L14	50S ribosomal protein L24	50S ribosomal protein L5		2,5-diketo-D-gluconic acid reductase		formate dehydrogenase chain D	molybdopterin-guanine dinucleotide biosynthesis protein	formate dehydrogenase H or alpha chain			ABC transporter ATP-binding protein		
	Matched length (a.a.)	109	238	137	49	82				122	105	183		260		298	84	756			824		
i	Similarity (%)	91.7	91.2	88.3	88.1	89.0				95.1	91.4	92.3		74.2		29.7	68.1	53.4			52.8		
	Identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	78.2	73.6		52.3		28.9	37.2	24.3			26.9		
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0708 rpiV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rpIP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv0714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 rplX	Micrococcus luteus rpIE		Corynebacterium sp.		Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coll fdfF			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
	db Match	sp.RL22_MYCTU	sp:RS3_MYCBO	Sp.RL16_MYCBO	sp:RL29_MYCBO	sp:RS17_MYCBO				sp:RL14_MYCTU	Sp:RL24_MYCTU	Sp:RL5_MICLU		Sp:2DKG_CORSP		Sp:FDHD_WOLSU	85_EGGD3_28	sp:FDHF_ECOU			1662 sp:YC81_MYCTU		
	ORF (bp)	380	744	414	228	278	294	318	969	366	312	573	1032	807	492	915	336	2133	756	804	1662	1148	1074
	Terminal (nt)	538578	537322	537741	537971	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	548187	548990	550899	551854
	Initial (nt)	536217	536579	537328	537744	537977	538267	538698	539413		540112	540428	541048	542896	543412	544329	544670	546889	547329	548990	550651	551844	552927
	SEQ NO.	4074	4075	4078	4077	4078	4079	4080	4081	4082	4083	4084	4085	4088	4087	4088	4089	4090	4091	4092	4093	4094	4095
	SEQ NO.	574	575	578	577	578	579	280	581	582	583	584	585	586	587	588	589	590	591	592	593	594	585

EP 1 108 790 A2

	Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S ribosomal protein L6	50S ribosomal protein L18	30S ribosomal protein S5	50S ribosomai protein L30	50S ribosomal protein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or betaine aldehyde dehydrogenase			reductase	2Fe2S ferredoxin	p-cumic alcohol dehydrogenase	hypothetical protein	phosphoenolpyruvate synthetase	phosphoenolpyruvate synthetase	cytochrome P450
	Matched length (a.a.)	405	150	132	179	110	171	55	143		128		125	487			409	107	257	20	629	378	422
	Similarity (%)	50.4	66.7	97.7	87.7	90.9	88.3	78.4	87.4		68.8		52.0	71.5			71.8	66.4	8.07	56.0	45.0	66.7	65.2
	Identity (%)	24.7	42.7	75.8	59.2	67.3	67.8	54.6	66.4		46.9		47.0	41.7			41.1	47.7	35.8	20.0	22.9	38.6	34.8
Table 1 (continued)	Homologous gene	Archaeoglobus fulgidus AF1398	Deinococcus radiodurans DR0763	Micrococcus luteus	Micrococcus luteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rpIO		Streptomyces coelicolor msdA		Azospirillum brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter capsulatus fdxE	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus funosus Vc1 DSM 3638 ppsA	Rhodococcus erythropolis thcB
	db Match	pir.E69424	gp:AE001931_13	pir. S29885	plr. S29886	sp:RL18_MICLU	sp:RS5_MICLU	sp:RL30_ECOLI	Sp:RL15_MICLU		prf.2204281A		GP:ABCARRA_2	prt.2518398E			prf:2411257B	prf:2313248B	gp:PPU24215_2	PIR:H72754	pir.JC4176	pir.JC4176	1290 prf.2104333G
	ORF (bp)	1182	468	396	534	402	633	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	1290
	Terminal (nt)	552948	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	560280	559144	560634	562937	561368	562646	562993	564083	563732	565680	568799
	Initial (nt)	554129	554919	555331	555749	556289	556734	557373	587565	557588	558517	558969	559805	560834	561368	562632	562633	562963	563736	563871	565471	566759	568088
	SEO NO (4096	4097	4098	4099	4100	4101	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
	SEQ NO.	596	597	598	599	909	60	602	603	604	605	909	607	809	609	610	611	612	613	614	615	616	617

5

	r				\neg	$\neg \top$		\neg				-1	T	\Box	T		T	T	-	T	9		
5		Function	transcriptional repressor	adenylate kinase		methionine aminopeptidase		translation initiation factor IF-1	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membrana protein			hypothetical protein	cell elongation protein	cyclopropane-fatty-acyl-phospholipid synthase	hypothetical membrane protein	
15		Matched length (a.a.)	256	184		253		2	122	134	132	311		122	265.	786			485	505	423	100	
20		Similarity (%)	66.0	81.0		74.7		96.0	91.0	93.3	93.9	77.8		77.1	61.1	51.2			53.8	50.9	56.0	29.0	
		Identity (%)	28.5	48.9		43.1		77.0	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0	
25	Table 1 (continued)	ns gene	a carotovora	us adk		68 map		Ι(A	ohilus HB8	elicolor A3(2)	uberculosis rpsD	68 rpoA		<12 rplQ	<12 truA	uberculosis			uberculosis	ens CV DIM	<12 cfa	elicolor A3(2)	
30	Table 1 (Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus luteus adk		Bacillus subtilis 168 map		Bacillus subtilis infA	Thermus thermophilus HB8 rps13	Streptomyces coelicolor A3(2) SC8G4.08. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rplQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidopsis thaliana CV DIM	Escherichla coli K12 cfa	Streptomyces coelicolor A3(2) SCL2.30c	
40		db Match	prf.2512309A	sp:KAD_MICLU		SP. AMPM_BACSU		pir.F69644	pri:2505353B	Sp.RS11_STRCO	pri:2211287F	sp.RPOA_BACSU		Sp.RL17_ECOLI	Sp. TRUA_ECOLI	pir.G70695			pir.A70836	Sp. DIM_ARATH	sp:CFA_ECOU	gp:SCL2_30	
		ORF (bp)	804	543	612	792	828	216	366	402	603	1014	156	489	867	2397	456	303	1257	1545	1353	426	
45		Terminal (nt)	568272	571318	570758	572267	573176	573622	574181	574588	575217	576351	575211	576898	577923	580429	580436	580919	582662	584228	585620	586248	
50		Initial (nt)	569075	570774	571387	571476	572349	573407	573816	574187	574615	575338	575366	576410	577057	578033	580891	581221	581406	582684	584268	585823	
		SEO NO 8.8)		4119	4120	4121	4122	4123	4124	4125	4126	4127	4128	4129	4130	4131	4132	4133	4134	4135	4136	4137	
EE		N O O	318	919	620	521	225	623	824	625	929	627	828	629	630	631	632	633	634	635	636	637	

EP 1 108 790 A2

	Function	high-alkaline serine proteinase	hypothetical membrane protein	hypothetical membrane protein		·		hypothetical protein	early secretory antigen target ESAT-8 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutese		hypothetical protein			hypothetical protein	alanine racemase	hypothetical protein
	Matched length (a.a.)	273	516	1260				103	80	145	181	450		318			259	368	154
	Similarity (%)	58.0	50.6	38.4				69.9	81.3	82.1	72.4	76.4		45.6			72.2	68.5	78.6
	Identity (%)	31.3	24.0	65.0				31.1	36.3	58.6	49.2	48.9		29.3			44.0	41.6	48.7
Table 1 (continued)	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculbsis	Streptomyces coelicolor A3(2) SC6G4.12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rps1	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 slr1753			Mycobaderium leprae B229_F1_20	Mycobacterium tuberculosis H37Rv RV3423C alr	Mycobacterium tuberculosis H37Rv Rv3422c
	db Match	SP.ELYA_BACAO	pir.T 10930	plr:E70977				pir.C70977	prf.2111376A	SP.RL13_STRCO	sp:RS9_STRCO	prl:2320260A		pir.S75138			pir.S73000	Sp.ALR_MYCTU	sp:Y097_MYCTU
	ORF (bp)	1359	1371	3567	822	663	900	324	288	441	546	1341	303	1509	573	234	855	1083	495
	Terminal (nt)	586399	587645	592862	589590	589898	593761	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
	initial (nt)	587757	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	597892	598194	599350	599699	600876	600971	602080
	SEQ NO Sea	4138	4139	4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155
	SEQ NO.		639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655

0

Γ		\neg	Т										T		Ţ	T			_]
	Function	hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetyttransferase	O-sialoglycoprotein endopeptidase	hypothetical protein			heat shock protein groES	heat shock protein groEL	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical protein
	Matched length (a.a.)	550	411	207	132	319	571			100	537	78	138	94	174		116	504	146
	Similarity (%)	66.2	77.6	75.4	59.9	75.2	59.4			94.0	85.1	58.0	45.0	88.3	81.8		8.69	93.9	53.0
	Identity (%)	28.9	51.3	52.2	30.3	46.1	38.4			78.0	63.3	50.0	34.0	64.9	55.2		41.4	80.8	39.0
	Homologous gene	Escherichia coli K12 yidE	Proplonibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 rimi	Pasteurella haemolytica SEROTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c	-		Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae 8229_C3_248 groE1	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium smegmalis whi83	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterium ammoniagenes ATCC 6872 guaB	Pyrococcus horikoshii PH0308
	db Match	Sp:YIDE_ECOLI	gp.PSJ00161_1	sp:Y098_MYCTU	sp:RIMI_ECOLI	SP:GCP_PASHA	sp:Y115_MYCTU			sp.CH10_MYCTU	Sp.CH61_MYCLE	GP:MSGTCWPA_1	GP:MSGTCWPA_3	gp:AF073300_1	sp.Y09F_MYCTU		Sp.Y09H_MYCLE	gp:AB003154_1	PIR.F71456
	ORF (bp)	1599	1239	675	507	1032	1722	429	453	297	1814	255	1158	297	564	1026	378	1518	627
	Terminal (nt)	604409	605708	606392	606898	607936	609879	610175	609816	610644	612272	610946	611109	612418	613719	614747	614803	816853	615605
	Initial (nt)	602811	604470	605718	606392	606905	607958	609747	610268	610348	610659	611200	612266	612714	613156	613722	615180	615336	616231
1	SEQ.	4156	4157	4158	4159	4160	4161	4182	4163	4164	4165	4186	4167	4168	4169	4170	4171	4172	4173
١	SEQ NO.	658	657	658	629	099	661	299	663	664	665	999	299	899	699	670	671	672	673

10	Matched Function (a.a.)	381 IMP dehydrogenase	274 hypothetical membrane protein	glutamate synthetase positive regulator	517 GMP synthetase				513 hypothetical membrane protein	411 two-component system sensor	transcriptional regulator or 218 extracellular proteinase respons regulator				201 hypothetical protein	563 hypothetical protein		275 hypothetical protein	288 hypothetical membrana protein	
20 .	Similarity le (%)	86.1	67.5	58.4	92.8				39.6	48.7	65.1				64.2	64.1		62.9	58.3	
	Identity (%)	70.9	38.0	29.0	81.6				20.5	26.8	33.5				30.0	37.5		33.8	27.8	
S S Table 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtills gitC	Corynebacterium emmoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 degU				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobaclerium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8.20c	Deinococcus radiodurans DR0809	
35				Baci	 			-	Stre						Myc H37	Myc H37				
40	db Match	gp:AB003154_2	Sp: YBIF_ECOLI	prf. 1516239A	sp:GUAA_CORAM				gp:SCD63_22	gp.SC6E10_15	sp:DEGU_BACSU				pir:870975	1590 pir.A70975		gp:SC5B8_20	gp:AE001935_7	
	ORF (bp)	1122	921	606	1589	683	441	189	1178	1140	069	324	489	963	825	1590	999	861	861	390
45	Terminal (nt)	618094	618093	619994	621572	620264	622157	622457	622460	624939	625674	626000	626070	626577	628551	630140	630151	631809	631824	632690
50	Initial (nt)	616973	619013	619086	620004	620926	621717	62229	623635	623800	624985	625677	626558	627539	627727	628551	630810	630949	632684	633079
	SEQ NO 8.8)	4174	4175	4176	4177	4178	4179	4180	4181	4182	4183	4184	4185	4186	4187	4188	4189	4190	4191	4192

 SEQ NO. (DNA) 674 675 675

EP 1 108 790 A2

_														_	- 1		- 1		- 1	j	
	Function	hypothetical membrana protein	phytoene desaturase	phytoene synthase	transmembrane transport protein	geranyigeranyi pyrophosphate (GGPP) synthase	trenscriptional regulator (MarR family)	outer membrane lipoprotein	hypothetical protein	DNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ABC transporter		ABC transporter	lipoprotein	DNA polymerase III	hypothetical protein	
	Matched length (a.a.)	95	524	288	722	387	188	145	462	497	205	897	223		506		346	268	1101	159	
	Similarity (%)	67.4	76.2	71.2	75.6	83.8	68.1	62.1	74.2	63.2	53.7	54.9	72.2		75.2		75.4	87.2	57.5	62.3	
	identity (%)	36.8	50.4	42.0	48.6	32.7	38.3	33.1	48.7	40.0	25.9	24.3	35.4		35.9		43.6	28.7	30.2	41.5	İ
Table 1 (continued)	Homologous gene	Mycobacterlum marinum	Brevibacterium linens ATCC 9175 crtl	Brevibacterium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2) SCF43A.29c	Brevibacterium linens cdE	Brevibacterium Ilnens	Citrobacter freundii blc OS60 blc	Brevibacterlum linens	Brevibacterium linens ATCC 9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtills 168 yvrO		Hellcobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus Influenzae SEROTYPE B hlpA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2) SCE126.11	
	db Match	gp:MMU92075_3		gp:AF139916_2	gp:SCF43A_29	gp:AF138916_11	gp:AF139916_14	Sp.BLC CITFR	gp: AF139916_1	gp:AF138916_5	gp:AF155804_7		pd.2420410P		prf.2320284D		sp:ABC_ECOU	SP. HLPA_HAEIN	pri.2517386A	gp:SCE126_11	
	ORF (bp)	396		912	2190	1146	585	648		1404	753	2415	717	153	999	846	1080	168	3012	447	
	Terminal (nt)	633079	633532	635178	636089	638317	640208	840232	642557	642558	644778	645176	647593	648315	648440	650187	849114	650392	654612	655122	
	Initial (nt)	633474	635175	636089	638278	639462	639624	640879	641133	643959	644028		648309		649105			651288	651601	654676	
	SEQ NO.	-		4195	4196	4197	4198	4199	4200	4201	4202	4203	4204	4205	4206	4207	4208	4209	4210	4211	
	SEO		_	969	969	269	898	669	8	707	702	703	704	705	706	707	708	709	7.0	13.	

EP 1 108 790 A2

5	Function	hypothetical membrane protein		transcriptional repressor	hypothetical protein		transcriptional regulator (Sir2 family)	hypothetical protein	iron-regulated lipoprotein precursor	rRNA methylase	methylenetetrahydrofolate dehydrogenase	hypothetical membrane protein	hypothetical protein		homoserine O-acetyliransferase	O-acetylhomoserine suifhydrylase	carbon starvation protein		hypothetical protein	
15	Matched length (a.a.)	468		203	264		245	157	357	151	278	80	489		379	429	069		20	
20	Similarity (%)	26.0		76.4	61.7		71.8	78.3	62.2	86.1	87.4	76.3	63.2		99.2	78.2	78.4		98.0	
	Identity (%)	26.1		50.3	34.9		42.5	45.2	31.1	62.9	70.9	31.3	34.0		99.5	49.7	53.9		0.0	
25 Table 1 (continued)	us gene	licolor A3(2)		rberculosis rR	elicolor A3(2)		ilgidus AF1676	elicolor A3(2)	diphtheriae	uberculosis poU	uberculosis foID	eprae	elicolor A3(2)		ı glutamicum	ri metY	K12 cstA		K12 yjiX	
Table 1	Homologous gene	Streptomyces coelicolor A3(2) SCE9.01		Mycobacterium tuberculosis H37Rv Rv2786 sirR	Streptomyces coelicolor A3(2) SCG8A 05c		Archaeoglobus fulgidus AF1676	Streptomyces coelicolor A3(2) SC5H1.34	Corynebacterium diphtheriae irp1	Mycobacterium tuberculosis H37Rv Rv3386 spoU	Mycobacterium tuberculosis H37Rv Rv3358c folD	Mycobacterium leprae MLCB1779.16c	Streptomyces coelicolor A3(2) SC66T3.18c		Corynebacterium glutamicum metA	Leptospira meyeri metY	Escherichia coli K12 cstA		Escherichia coli K12 yjiX	
35	db Match	gp:SCE9_1		pir.C70884	gp:SCG8A_5		pir.C69459	gp:SC5H1_34	gp.CDU02617_1	pir.E70971	plr.C70970	gp:MLCB1779_8	gp.SC66T3_18		gp:AF052652_1	pri:2317335A	Sp.CSTA_ECOLI		sp:YJIX_ECOLI	
	ORF (bp)	1413 gp:	738	669 pir	798 gp.	138	774 pir	492 gp	d6 966	471 pir	852 plr	255 gp	1380 gp	963	1131 gp	1311 pr	2202 sp	609	201	609
45	Terminal (nt)	656534	655097	857215	657205	658142	658928	659424	660538	09099	662017	662374	662382	684126	865183	666460	670465	669445	670672	671045
50	Initial (nt)	655122	655834	656547	658002	658005	658155	658933	659543	661120	661166	682120	663761	665088	666313	667770	668264	670053	870472	671653
	SEO NO SEO	4212	4213	4214	4215	4216	4217	4218	4219	4220	4221	4222	4223	4224	4225	4226	4227	4228	4229	4230
55	SEQ	712	713	714	715	716	717	718	719	720	121	722	723	724	725	726	727	728	729	730

EP 1 108 790 A2

5		Function	hypothetical protein	carboxy phosphoenolpyruvate mutase	citrate synthase		hypothetical protein		L-maiste dehydrogensse	regulatory protein		vibriobactin utilization protein	ABC transporter ATP-binding protein	ABC transporter	ABC transporter	ron-regulated lipoprotein precursor	chloramphenicol resistance protein	catabolite repression control protein	hypothetical protein	
15		Matched length (a.a.)	317	281	380		53		338	226		284	7 692	339	330	356	395 (303	219	
20		Similarity (%)	86.4	76.2	81.3		62.3		67.5	62.8		54.2	85.1	86.4	88.2	82.3	9.69	58.1	85.8	
		Identity (%)	71.0	41.8	56.1		34.0		37.6	26.1		25.4	55.4	58.3	63.0	53.1	32.2	30.4	56.2	
25 30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1130	Streptomyces hygroscopicus	Mycobacterium smegmatis ATCC 807 gitA		Escherichia coil K12 yneC		Methanothermus fervidus V24S mdh	Bacillus stearothermophilus T-6 uxuR		Vibrio cholerae OGAWA 395 viuB	Corynebacterium diphtheriae Irp1D	Corynebacterium diphtheriae Irp1C	Corynebacterium diphtheriae Irp18	Corynebacterium diphtheriae Irp1	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus Influenzae Rd H11240	
35		db Match	pir.C70539 My	prf. 1902224A St.	SP.CISY_MYCSM MY		sp:YNEC_ECOLI Es		Sp:MDH_METFE Meth	pri:2514353L Ba		SP.VIUB_VIBCH VIBB	gp.AF176902_3 Co	gp:AF176902_2 Co	gp:AF176902_1 Co	gp:CDU02617_1 Cor	prf.2202262A Sti	pri.2222220B Ps	Sp.YICG_HAEIN HI	
		ORF (bp)	954 F	912 F	1149 s	930	192	672	1041	720 F	702	897 8	807 g	1059 g	3 966	1050	1272	912	657 8	195
45		Terminal (nt)	672653	673576	674758	672710	674799	675848	675082	676218	677047	680131	681040	681846	682871	683876	686380	687346	688007	688335
50		Initial (nt)	671700	672665	673608	673639	674990	675175	676122	676937	677748	681027	681846	882904	683866	684925	685109	686435	687351	688141
		SEQ NO. (a.e.)	4231	4232	4233	4234	4235	4236	4237	4238	4239	4240	4241	4242	4243	4244	4245	4246	4247	4248
55		SEQ NO. (DNA)	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748

EP 1 108 790 A2

	Function		ferrichrome ABC transporter	hemin permease	tryptophanyl-tRNA synthetase	hypothetical protein		penicillin-binding protein 68 precursor	hypothetical protein	hypothelical protein			uracil phosphoribosyltransferase	bacterial regulatory protein, laci family	N-scyl-L-amino acid amidohydrolase or peptidese	phosphomannomutase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothelical protein	hypothetical protein	
	Matched length (a.a.)		244	348	331	278		301	417	323			509	7.7	385	561	488	1140	263	127	
	Similarity (%)		73.8	69.1	79.8	72.3		57.5	70.7	52.6			72.3	66.2	80.5	53.8	65.0	100.0	1.09	6.99	
	Identity (%)		45.1	38.7	54.4	37.1		30.9	34.1	29.4			46.4	41.8	51.4	22.1	31.6	100.0	28.2	30.7	
Table 1 (continued)	Homologous gene		Corynebacterium diphtheriae hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia coli K12 yhjD		Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c			Lactococcus laciis upp	Streptomyces coelicolor A3(2) SC1A2.11	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Halobacterium volcanii ATCC 29805 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces coelicalor A3(2) SCF11.30	
	db Match		gp:AF109162_3	pir.S54438	Sp.SYW_ECOLI	sp:YHJD_ECOLI		sp:DACD_SALTY	plr.F70842	gp:SC6G10_8			Sp.UPP_LACLA	gp:SC1A2_11	pir:H70841	Sp. MANB_MYCPI	sp:DLDH_HALVO	prl:2415454A	sp.YD24_MYCTU	gp:SCF11_30	
	ORF (bp)	975	780	1017	1035	1083	903	1137	1227	828	195	351	633	384	1182	1725	1407	3420	870	486	
	Terminal (nt)	688916	689917	690706	692916	694110	695074	695077	696769	698065	699266	698922	699913	700381	703262	700384	704811	708630	709708	710278	
	Initial (nt)	689890	969069	691722	691882	693028	694172	696213	697995	698922	699072	•			702081	702108	703405	705211	708839	709793	
	SEO	4249	4250	4251	4252	4253	4254	4255	4256	4257	4258	4259	4260	4261	4262	4263	4264	4265	4266	4267	
	SEO		ī	75.4			754	755	756	757	758	759	760	761	762	763	764	765	766	797	

EP 1 108 790 A2

	Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate catabolism	carboxy phosphoenolpyruvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothetical protein	defergent sensitivity rescuer or carboxyl transferase	detergent sensitivity rescuer or carboxyl transferase
	Matched length (a.a.)	381	305	521	278	96	383		456			225	352	133	718	192	63	537	543
	Similarity (%)	69.0	59.3	49.5	74.5	47.0	78.9		72.6			100.0	79.8	7.97	63.4	86.2	83.8	100.0	100.0
	Identity (%)	44.6	24.6	24.0	42.5	39.0	54.6		40.8			100.0	61.1	51.1	35.1	31.8	33.3	89.8	93.6
Table 1 (continued)	Homologous gene	Bacillus subtills 168 yciC	Bacillus subtilis IS58 trxB	Salmonella typhimurium LT2 prpD	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gilA		Mycobacterium tuberculosis H37Rv Rv1129c			Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308- C3-211	Corynebacterium glutamicum AJ11060 dlsR2	Corynebacterium glutamicum AJ11060 dtsR1
	db Malch	pir:B69760	sp:TRXB_BACSU	sp:PRPD_SALTY	prf. 1902224A	PIR:E72779	SP.CISY_MYCSM		pir.870539			sp:THTR_CORGL	gp:CJ11168X1_62	gp:MLCB4_16	pir:G70539	Sp.YCEF_ECOLI	prf.2323363CF	gp:AB018531_2	pir.JC4991
	ORF (bp)	1086	924	1494	888	378	1182	375	1323	246	1359	903	1065	414	2148	591	248	1611	1629
	Terminal (nt)	710520	712647	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	728696
	Initial (nt)	711605	711724	712738	714258	714757	715102	716660	718009	718105	718658	721449	721777	723338	723412	726462	726715	728352	730324
	SEQ NO.	4268	4289	4270	4271	4272	4273	4274	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4285
	SEQ NO (DNA)	768	769	770	171	772	773	774	775	776	111	877	779	780	781	782	783	784	785

EP 1 108 790 A2

_						-						Т		$\overline{}$		_		\neg
	Function	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)	hypothetical membrane protein	5'-phosphoribosyl-5-amino-4- Imidasol carboxylase	K+-uptake protein			5'-phosphorlbosyl-5-amino-4- imidasol carboxylase	hypothetical protein	hypothetical protein	nitritotriacetate monooxygenase	transposase (ISA0983-5)	glucose 1-dehydrogenase	hypothetical membrane protein		hypothetical protein	hypothetical protein	
	Matched length (a.a.)	293	165	394	628			147	152	255	426	303	256	98		175	142	
	Similarity (%)	81.8	58.8	83.8	73.6			93.2	60.5	9.02	73.0	52.5	64.8	88.8		88.3	76.8	
	Identity (%)	28.7	23.0	0.69	41.1			85.7	36.2	42.8	43.2	23.4	31.3	29.2		28.6	35.9	
Table 1 (confinded)	Homologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammoniagenes ATCC 6872 purk	Escherichia coli K12 kup			Corynebacterium ammoniagenes ATCC 6872 purE	Actinosynnema pretiosum	Streptomyces coelicolor A3(2) SCF43A.36	Chelatobacter heintzil ATCC 29600 nteA	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhil	Thermotoga maritima MSB8 TM1408		Bacillus subtilis 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A.21	
	db Match	sp.BIRA_ECOLI	pir.G70979	1161 sp.PURK_CORAM	sp:KUP_ECOLI			sp:PUR6_CORAM	gp:APU33059_5	gp:SCF43A_38	sp:NTAA_CHEHE	pir.A69428	sp:DHG2_BACME	pir:A72258		sp. YWJB_BACSU	gp:SCJ9A_21	
	ORF (bp)	884	486	1161	1872	615	357	495	453	792	1314	1500	789	369	342	267	420	222
	Terminal (nt)	731299	731797	733017	734943	733183	735340	735896	738351	737204	737218	738673	740228	741765	742195	741818	742828	742831
	Initial (nt)	730436	731312	731857	733072	733797	734984	735402	735899	736413	738529	740172	741016	741397	741854	742384	742409	743052
	SEO NO.	<u> </u>	4287	4288	4289	4290	4291	4292	4293	4294	4295	4298	4297	4298	4299	4300	4301	4302
	SEQ		787	788	789	790	79.1	792	793	794	795	796	797	798	799	80	108	802

EP 1 108 790 A2

	Function	trehalose/mattose-binding protein	trehalose/maltose-binding protein		trehalose/maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		RNA helicase			hypothetical protein	hypothetical protein	DNA helicase II					RNA helicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)
	Matched length (a.m.)	27.1	306		417		332		1783			240	720	707					2033	969	873
	Similarity (%)	75.3	70.3		62.4		73.9		49.9			59.2	62.5	41.1					45.8	53.2	48.6
	Identity (%)	42.4	37.3		30.9		57.2		25.1			31.7	30.0	20.7					22.4	24.4	23.1
Table 1 (continued)	Homologous gene	Thermococcus litoralis malG	Thermococcus litoralis malf		Thermococcus litoralis malE		Streptomyces reticuli msIK	_	Deinococcus radiodurans R1 DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Hellcobacter pylori J99 jhp0462	Escherichia coli K12 uvrD					Streptomyces coelicolor SCH5,13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
	db Match	prf 2406355C	prf.2406355B		prf.2406355A		996 : prf.2308356A		pir.B75633			pir.E70978	plr.C71929	sp.UVRD_ECOLI					pir:T36671	pir.T08313	sp HEPA_ECOLI
	ORF (bp)	834	1032	468	1272	423	966	369	4800	372	3699	633	2433	1563	357	393	396	825	6207	4596	2886
	Terminal (nt)	743067	743900	745048	745622	748442	747031	748814	748868	757434	753697	757630	758364	760906	762853	763122	762582	767367	763237	769547	774150
	Initial (nt)	743900	744931	745513	746893	748020	748028	748446	753685	757063	757395	758262	760796	762468	782497	762730	762977	768191	769443	774142	777035
	SEQ NO 8.9)	4303	4304	4305	4306	4307	4308	4309	4310	4311	4312	4313	4314	4315	4318	4317	4318	4319	4320	4321	4322
	SEQ NO DNA)			808	908	807	808	808	810	811	812	813	814	815	818	817	818	819	820	821	822

EP 1 108 790 A2

-							-			Т	\neg	-Т	1			_		
	Function	hypothetical protein	dTDP-Rha:a-D-GicNAc- diphosphoryl polyprenol, a-3-L- rhamnosyl transferase	mannose-1-phosphate guanyiyitransferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase			pheromone-responsive protein		S-adenosy-L-homocysteine hydrolase			thymidyfate kinasa
	Matched length (a.a.)	527	289	353	94	139	136	460	327	420			180		478			509
	Similarity (%)	71.4	77.9	6.99	81.9	74.8	71.3	66.3	56.3	68.2			57.8		83.0			56.0
	Identity (%)	45.5	56.4	29.8	73.4	48.9	51.5	38.0	31.2	38.9			35.6		59.0			25.8
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3287	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae YDL055C MPG1	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolor A3(2) SCE34.11c	Salmonella montevideo M40 manB	Mycobacterium tuberculosis H37Rv Rv3256c	Escherichia coli K12 manA			Enterococcus faecalis plasmid pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AF0061
	db Match	plr:070978	gp:AF187550_1	sp:MPG1_YEAST	gp:AF164439_1	pir:B70847	gp:SCE34_11	SP:MANB_SALMO	pir:B70594	sp:MANA_ECOLI			prf.1804279K		sp. SAHH_TRIVA			sp.KTHY_ARCFU
	ORF (bp)	1554	897	1044	408	456	380	1374	1005	1182	150	360	564	351	1422	708	720	609
	Terminal (nt)	777158	779910	781171	781875	782162	783101	784557	785639	786824	787045	787983	787170	788546	790093	788719	789002	790704
	Initial (nt)	778711	779014	780128	781468	782617	782712	783184	784635	785643	786896	787624	787733	788198	788672	789426	789721	790096
	SEQ.	4323	4324	4325	4326	4327	4328	4328	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
	SEQ NO DNA)	823	824	825	826	827	828	828	830	831	832	833	834	835	836	837	838	839

EP 1 108 790 A2

ORF db Match Homologous gene (%) (%) (24) (28) (28)	pri:2214304A Mycobacterium tuberculosis 73.7 90.6 224 two-component system response		7 prf.2214304B Mycobacterium tuberculosis 53.1 78.9 484 histidine kinase	4 pir.F70592 Mycobacterium tuberculosis 29.6 65.6 595 Ilpoprotein	pir:D70592 Mycobacterium tuberculosis 38.0 72.8 213 hypothetical protein		sp.RR30_SPIOL Spinacle oleracea CV.rps22 34.5 61.6 203 precursor	Brevibacterium flavum (Corynebacterium glutamicum) 99.6 845 preprotein translocase SecA subunit MJ-233 secA		4 pir.A70591 Mycobacterium tuberculosis 47.1 78.8 170 hypothetical protein	7 pir.F70590 Mycobacterium tuberculosis 64.6 82.9 322 hypothetical protein	3 gp. AF114233_1 Corynebacterium glutamicum 99.0 99.0 461 Synthase Synthase	0 pir.D70590 Mycobacterium tuberculosis 38.3 63.9 180 hypothetical protein	3 GP:AF114233_1 Corynebacterium glutamicum 100.0 100.0 23 5-enolpyruvylshikimste 3-phosphate	pir.G70506 Mycobacterium tuberculosis 21.6 42.4 380 hypothetical protein		prt:2515333D
101	prt.2214304B pir.F70592 pir.D70592 sp.RR30_SPIOL gsp.R74093	prf.2214304B pir.F70592 pir.D70582 sp.RR30_SPIOL gsp.R74093	pir.F70592 pir.D70592 sp.RR30_SPIOL gsp.R74093	pir.D70582 sp.RR30_SPIOL gsp.R74093 pir.A70591	sp RR30_SPIOL gsp R74093 pir A70591	93p:R74093	gsp:R74093 pir.A70591	pir.A70591	plr.A70591								- R
791409 6: 790736 84 793008 14 794711 17 795301 5 795292 1			7 - 7 0	- 20	0 0	<u> </u>		798784 25	799691 6	800200	8002008	1, 061108	803128 4	802585 1	803131	805025 6	_
790732 791421	1	1	_	793008	794714	795447	795448	796250	799020		801194	802602	802649	3 802687	804240	5 804408	!
	840 4340	841 4341	842 4342	843 4343	844 4344	845 4345	846 4346	847 4347	848 4348	1	850 4350	851 4351	852 4352	853 4353	854 4354	855 4355	\neg

•		
	•	-
•	۲	
	ã	Ď
	-	ï
	7	5
		Ξ
	٠	-
	٤	
	¢	э
	ŧ	3
•	•	
	_	
	٠	
	e	'n
	-	-
ĺ	1	٥
		z
	Ľ	_

0

	Longition	runction story protein hetical protein	runction story protein hetical protein	runction regulatory protein hypothetical protein DEAD box ATP-dependent RNA helicase	runction story protein hetical protein hetical protein Dox ATP-dependent RNA	runction story protein hetical protein box ATP-dependent RNA sse	runction story protein hetical protein Dox ATP-dependent RNA ase thetical protein	regulatory protein hypothetical protein DEAD box ATP-dependent RNA helicase hypothetical protein hypothetical protein ATP-dependent DNA helicase	runction story protein hetical protein D box ATP-dependent RNA sse thetical protein dependent DNA heticase	runction regulatory protein hypothetical protein belicase hypothetical protein hypothetical protein hypothetical protein ATP-dependent DNA helicase ATP-dependent DNA helicase	runction story protein hetical protein D box ATP-dependent RNA sse thetical protein dependent DNA heticase dependent DNA heticase	runction hetical protein hetical protein Dox ATP-dependent RNA sse thetical protein dependent DNA heticase dependent DNA heticase	hetical protein hetical protein Dex ATP-dependent RNA sse dependent DNA heticase dependent DNA heticase thetical protein	hetical protein hetical protein betical protein box ATP-dependent RNA sse dependent DNA heticase dependent DNA heticase thetical protein hetical protein	runction story protein hetical protein D box ATP-dependent RNA sse thetical protein thetical protein dependent DNA heticase dependent DNA heticase thetical protein hetical protein thetical protein thetical protein	runction stary protein hetical protein Dox ATP-dependent RNA sse thetical protein dependent DNA helicase dependent DNA helicase thetical protein thetical protein thetical protein
length Fu		regulatory protein hypothetical protein														
	28.0	129	129	415	415	415 458 458 291	415 415 458 291 248	415 458 458 291 249 1155	415 458 458 291 248 1155	458 458 291 249 1155	415 458 458 291 249 1155	415 458 458 249 1155 1126	415 415 458 249 249 1155 1155 230	458 458 291 291 1155 1155 1155 230 660	415 415 458 249 1155 1128 1128 660 660	415 415 458 2291 230 302 302 230 660
96.4			29.6 62.2									 				
	33.3											<u> </u>				
Mycobacterium tuberculosis H37Rv Rv3219 whiB1	H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212		Kiebsiella pneumoniae CG43 deaD	Kiebsiella pneumoniae CG43 deaD	Klebslella pneumoniae CG43 deaD Mycobacterlum tuberculosis H37Rv Rv3207c	Klebslella pneumoniae CG43 deaD Mycobacterlum tuberculosis H37Rv Rv3207c Mycobacterlum tuberculosis H37Rv Rv3205c	Klebslella pneumoniae CG43 deaD Mycobacterium tuberculosis H37Rv Rv3207c Mycobacterium tuberculosis H37Rv Rv3205c Mycobacterium tuberculosis	Klebsiella pneumoniae CG43 deaD Mycobacterium tuberculosis H37Rv Rv3205c Mycobacterium tuberculosis H37Rv Rv3205c Mycobacterium tuberculosis	Klebsiella pneumoniae CG43 deaD Mycobacterium tuberculosis H37Rv Rv3207c Mycobacterium tuberculosis H37Rv Rv3205c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis	Klebsiella pneumoniae CG43 deaD Mycobacterium tuberculosis H37Rv Rv3207c Mycobacterium tuberculosis H37Rv Rv3205c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis	Klebsiella pneumoniae CLS43 deaD Mycobacterium tuberculosis H37Rv Rv3207c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis H37Rv Rv3201c	Klebsiella pneumoniae CG43 deaD Mycobacterium tuberculosis H37Rv Rv3205c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis	Klebsiella pneumoniae CG43 deaD Mycobacterium tuberculosis H37Rv Rv3205c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis H37Rv Rv3201c Mytobacterium tuberculosis H37Rv Rv32011 Mytobacterium tuberculosis H37Rv Rv3199c Escherichia coli K12 uvrD	Klebsiella pneumoniae CG43 deaD Mycobacterium tuberculosis H37Rv Rv3207c Mycobacterium tuberculosis H37Rv Rv3205c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis H37Rv Rv3201c Escherichia coli K12 uvrD Escherichia coli K12 uvrD	Klebsiella pneumoniae CG43 deaD Mycobacterium tuberculosis H37Rv Rv3207c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis H37Rv Rv3201c Mycobacterium tuberculosis H37Rv Rv3201c Methanococcus jannaschil JAL- 1 MJ0138.1. Mycobacterium tuberculosis H37Rv Rv3199c Escherichia coll K12 uvrD Escherichia coll K12 uvrD Mycobacterium tuberculosis H37Rv Rv3196
Pir.D70596 Myco Pir.B70598 Myco		pir.E70595	sp:DEAD_KLEPN			PICH 70594 H37F		plr.H70594 plr.F70594 pir.G70851	pir.H70594 pir.F70594 pir.G70851	pir.H70594 pir.F70594 pir.G70851	pir.H70594 pir.F70594 pir.G70851	pir.F70594 pir.G70851 pir.G70951 sp.Y13B_METJA	pir.H70594 pir.G70951 pir.G70951 sp.Y138_METJA	pir.H70594 pir.G70951 pir.G70951 pir.G70951 sp:Y138_METJA sp:UVRO_ECOLI	pir.F70594 pir.G70951 pir.G70951 sp:Y138_METJA pir.E70951 sp:UVRD_ECOLI	pir.F70594 pir.G70951 pir.G70951 pir.G70951 sp.Y13B_METJA sp.UVRO_ECOLI
258 pir.D 420 pir.B 1200 pir.E			1272 sp:D	200	225		- 									
805535		806740 1	807946		809510	0 -	0 4 6	9	3					2 2 2 2 2 4		3 3 3 3 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9
 - - -	╁	807939	809217		809288			 		 	 	╏┈╏┈┈╏┈┈╏┈┈	 	╏┈╏┈┈╏┈┈╏┈┈╏┈┈ ┼┈╌┼┈┼┈	╏┈╏┈╶╏┈╏┈╏┈╏┈╏ ┈	<u> </u>
4356 8	1	4358 8	4359 8	į	4360 8											
958	857	858	859	_	$\overline{}$	-										

EP 1 108 790 A2

_
B
=
3
Cont
ၓ
_
نه
Table
۴

	Function	hypothetical protein	hypothetical protein			hypothetical protein	regulatory protein	ethylene-inducible protein	hypothetical protein	hypothetical protein		alpha-lytic proteinase precursor		DNA-directed DNA polymerase	major secreted protein PS1 protein precursor					monophosphatese
	Matched length (a.a.)	474	350			1023	463	301	91	201		408		208	363					255
	Similarity (%)	78.4	74.9			73.5	57.7	89.0	53.0	73.6		44.4		51.4	51.5					74.9
	Identity (%)	42.8	43.4			47.2	34.3	67.4	49.0	40.8		26.7		25.0	27.0		_			51.8
(Homologous gene	Mycobacterium tuberculosis H37Rv Rv3195	Mycobacterium tubercutosis H37Rv Rv3194			Mycobacterium tuberculosis H37Rv Rv3193c	Deinococcus radiodurans DR0840	Hevea brasiliensis laticifer er1	Aeropyrum pernix K1 APE0247	Bacillus subtilis 168 yaaE		Lysobacter enzymogenes ATCC 29487		Neurospora intermedia LaBelle- 1b mitochondrion plasmid	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1					Streptomyces alboniger pur3
	db Match	pir.A70951	pir:H70950			pir.G70950	gp:AE001938_5	Sp.ER1_HEVBR	PIR:F72782	sp:YAAE_BACSU		pir.TRYX84		pir.S03722	sp.CSP1_CORGL					pri.2207273H
	ORF (bp)	1446	1050	675	522	2955	1359	951	345	900	363	1062	501	585	1581	429	510	222	309	780
	Terminal (nt)	822680	825239	825242	825996	829570	829627	831971	831578	832570	832795	834633	835388	835837	838892	839353	840139	840210	840437	841517
	Initial (nt)	824125	824190	825916	826517	826616	830985	831021			833157	833572	834888	835253	837312	838925	839630	840431	840745	842296
	S S S	4373	4374	4375	4376	4377	4378	4379	4380	4381	4382	4383	4384	4385	4386	4387	4388	4389	4390	4391
	SEO		874	875	876	877	878	879	880	881	882	883	884	885	986	887	888	688	80	168

EP 1 108 790 A2

٢				_											Ę.			ATP.
	Function	myo-inasital manophosphetese	peptide chain release factor 2	cell division ATP-binding protein	hypothelical protein	cell division protein	small protein B (SSRA-binding protein)	hypothetical protein				vibriobactin utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter (permease)	(errichrome ABC transporter (permease)	ferrichrome ABC transporter (ATP-binding protein)
	Matched length (a.a.)	243	359	228	72	301	145	118				272	319	181	325	313	312	250
	Similarity (%)	59.3	88.6	91.2	54.0	74.8	75.9	73.3				52.9	58.3	71.2	81.5	80.8	76.0	82.0
	identity (%)	33.7	089	70.4	43.0	40.5	43.5	44.0				26.8	29.5	36.1	27.7	39.3	35.6	48.4
Table 1 (continued)	Homologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicolor A3(2) prtB	Mycobacterium tuberculosis H37Rv Rv3102c fisE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO	,			Vibrio cholerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacilius subtilis 168 yelN	Bacillus subtills 168 yclO	Bacillus subtilis 168 yclP
	db Match	gp:U70376_9	sp:RF2_STRCO	pir.E70919	PIR:G72510	pir:D70919	sp:SMPB_ECOLI	sp:YEAO_ECOLI				sp:VIUB_VIBCH	prf.2510361A	gp MLCB1243_5	sp:FATB_VIBAN	pir B69763	pir.C89763	plr. D69763
	ORF (bp)	819	1104	687	264	900	492	351	537	98	405	825	918	588	1014	666	942	753
	Terminal (nt)	842306	844360	845181	844842	846097	846628	846982	846269	848026	847718	848499	849328	850412	852364	853616	854724	855476
	Initial (nt)	843124	843257	844495	845105	845198	846137	846632	846805	847727	848122	849323	850243	850999	851351	852618	853783	854724
	SEO NO 1	4392	4393	4394	4395	4396	4397	4398	4399	4400	1401	4402	4403	4404	4405	4406	4407	4408
	SEO NO ONA)	892	893	894	895	896	897	868	839	900	901	905	903	904	905	906	907	908

EP 1 108 790 A2

						Table 1 (continued)			Ī	
SEQ	SEQ NO	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	identity (%)	Similarity (%)	Matched length (a.a.)	Function
606	4409	860224	860078	147	PIR:F81737	Chlamydia muridarum Nigg TC0129	66.0	72.0	48	hypothelical protein
910	44 10	860745	860473	273	GSP: Y35814	Chlamydia pneumoniae	61.0	0.89	84	hypothetical protein
911	4411		862752	1209	pir.S66270	Rettus norvegicus (Rat)	33.5	64.9	442	kynurenine aminotransferase/glutamine transaminase K
912	4412	863391	862753	639						
913	4413	865068	863398	1671	sp:RA25_YEAST	Saccharomyces cerevisiae S288C YIL143C RAD25	30.7	62.3	613	ONA repair helicase
914	4414	867317	865119	2199	pir F70815	Mycobacterium tuberculosis H37Rv Rv0862c	36.1	65.2	764	hypothetical protein
915	4415	867353	867571	219	pir G70815	Mycobacterium tuberculosis H37Rv Rv0863	44.0	62.0	57	hypothetical protein
916	4416	867788	868830	843						
917	4417	868399	867803	597	prf.2420502A	Micrococcus luteus rpf	39.4	64.7	198	resuscitation-promoting factor
918	-		869318	381	prt.2320271A	Lactococcus lactis cspB	42.6	75.4	19	cold shock protein
919	4419	869903	869379	525	gp:MLCB57_11	Mycobacterium leprae MLCB57.27c	28.3	58.5	159	hypothetical protein
920	4420	870691	869918	774	gp:AE001874_1	Deinococcus radiodurans DR0112	41.8	67.8	273	glutamine cyclotransferase
921	4421	871419	870721	669						
922	4422	871523	871660	138						
923		871738	873210	1473	6_826C5_9	Streptomyces coelicolor A3(2) SC6C5.09	43.6	79.3	477	permease
924	4424	872927	872018	912						
925	1	873213	874040	828	sp:TSNR_STRAZ	Streptomyces azureus tsnR	27.9	51.7	319	rRNA(adenosine-2'-0-)- methyltransferese
926	4426	874944	874069	876						

EP 1 108 790 A2

5

Function	hypothetical protein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	hypothetical protein	sodium/proline symporter	•	hypothelical protein	fatty-acid synthase			homoserine O-acetytransferase			gluteredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formamidopyrimidine-DNA glycosidase
Matched length (a.a.)	316	374	236	103	549		243	3026			335			62	171	261	202	1715	298
Similarity (%)	55.1	52.9	69.5	80.8	58.1		77.4	83.4			59.7			72.6	62.0	6.88	56.4	68.1	51.0
Identity (%)	32.6	21.9	36.0	51.5	28.4		49.0	63.1			29.0			43.6	38.0	64.8	32.2	47.4	29.2
Homologous gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacilius circulans ATCC 21783	Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCI8.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammoniagenes fas	-		Leptospira meyeri metX			Delnococcus radiodurans DR2085	Mycobacterium avium fotA	Escherichia coli K12 thyA	Escherichia coli K12 cysQ	Streptomyces coelicolor A3(2) SC7C7.18c	Synechococcus elongatus naegeli mutM
db Match	sp:YZ11_MYCTU	pir:S71439	1473 sp. ACCD_ECOLI	gp:SCI8_8	pir.JC2382	. ,	pir.A70657	pir:S55505			prf.2317335B			gp:AE002044_8	prt:2408256A	SP:TYSY_ECOLI	Sp.CYSQ_ECOLI	gp:SC7C7_16	sp.FPG_SYNEN
ORF (bp)	933	1128	1473	339	1653	816	840	8907	489	186	1047	428	267	237	456	798	758	4560	768
Terminal (nt)	874951	875985	879642	881985	883647	884541	884549	894578	895191	895593	895598	896719	69268	897727	897979	898434	899253	904602	905382
Initial (nt)	875883	877112	881114	881647	881995	883726	885388	885672	894703	895408	896642	897144	897423	897963	898434	899231	800006	900043	904615
SEQ	4427	4428	4429	4430	4431	4432	4433	4434	4435	4436	4437	4438	4439	4440	4441	4442	4443	4444	4445
SEO	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945

EP 1 108 790 A2

	Function	hypothetical protein	alkaline phosphatase	Integral membrane transporter		glucose-8-phosphate isomesse	hypothetical protein		hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter		peptidase	hypothetical protein		5-phosphoribosylglycinamide formyltransferase	5-phosphoribosyl-5-aminoimidazole- 4-carboxamide formyltransferase	citrate lyase (subunit)
	Matched length (a.a.)	128	198	403		557	195		78	763	885	217		236	434		189	525	217
	Similarity (%)	86.7	71.9	67.0		77.0	52.3		85.9	73.1	48.6	71.4		73.3	60.8		86.2	87.8	100.0
	Identity (%)	55.5	38.8	33.8		52.4	24.6		59.0	46.1	21.8	43.8		43.8	31.1		64.8	74.5	100.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces caelicalar A3(2) SC128.08c		Escherichia coli JM101 pgi	Mycobacterium tuberculosis H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacillus stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammonlagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
	db Match	pir:F70816	sp:APL_LACLA	pir.T36776		pir.NUEC	pir:G70506		sp:YT26_MYCTU	sp:PCRA_BACST	gp:SCE25_30	prf 2420410P		pir:D70716	sp:YT19_MYCTU		gp.AB003159_2	gp.AB003159_3	gp:CGL133719_3
	ORF (bp)	408	900	1173	717	1620	1176	381	309	2289	2223	999	507	711	1425	228	627	1560	819
	Terminal (nt)	905796	905792	906559	909328	907759	909521	911223	910855	913514	913477	915699	916368	916970	919352	917827	919956	921526	922412
	Initial (nt)	905389	906391	907731	908612	909378	910698	910843	911163	911226	915699	916364	916874	917680	917928	918054	919330	919967	921594
	SEO NO.	4446	4447	4448	4449	4450	4451	4452	4453	4454	4455	4456	4457	4458	4459	4460	4461	4462	4463
	SEQ NO.	946	947	948	949	950	951	952	953	954	955	928	957	958	959	960	98	962	963

EP 1 108 790 A2

	Function	repressor of the high-affinity (methyl) ammonium uptake system	hypothetical protein		30S ribosomal protein S18	30S ribosomal protein S14	50S ribosomal protein L33	50S ribosomal protein L28	transporter (sulfate transporter)	Zn/Co transport repressor	50S ribosomal protein L31	50S ribosomal protein L32		copper-inducible two-component regulator	two-component system sensor	proteinase DO precursor	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyma cnx1)		large-conductance mechanosensitive channel	hypothetical protein	5-formyitetrahydrofolate cyclo-ligase
	Matched length (a.a.)	222	109		87	100	49	77	529	80	9/	55		227	484	406	188		131	210	191
	Similarity (%)	100.0	100.0		78.1	80.0	83.7	81.8	71.1	77.5	65.4	78.2		73.8	60.1	59.9	54.3		77.1	60.0	59.7
	identity (%)	100.0	100.0		52.2	54.0	55.1	52.0	34.4	37.5	37.2	0.09		48.0	24.4	33.3	27.72		50.4	28.6	25.1
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 yjcC		Cyanophora paradoxa rps18	Escherichia coli K12 rpsN	Escherichia coli K12 rpmG	Escherichia coli K12 rpmB	Bacillus subtilis 168 yvdB	Staphylococcus aureus zntR	Haemophilus ducreyl rpmE	Streptomyces coelicolor A3(2) SCF51A, 14		Pseudomonas syringae copR	Escherichia coli K12 baeS	Escherichia coli K12 htrA	Arabidopsis thallana CV cnx1		Mycobacterium tuberculosis H37Rv Rv0985c mscl.	Mycobacterium tuberculosis H37Rv Rv0990	Homo sapiens MTHFS
	db Malch	gp:CGL133719_2	gp:CGL133719_1		Sp.RR18_CYAPA	sp:RS14_ECOLI	sp:RL33_ECOLI	pir:R5EC28	pir:B70033	prf:2420312A	SP.RL31_HAEDU	gp:SC51A_14		sp.COPR_PSESM	sp:BAES_ECOLI	pir:S45229	sp.CNX1_ARATH		sp:MSCL_MYCTU	pir.A70601	pir.JC4389
	ORF (bp)	999	327	321	249	303	182	234	1611	312	264	171	447	989	1365	1239	585	198	405	651	570
	Terminal (nt)	922396	923138	923981	924159	924425	924734	924901	925325	926931	927737	927922	927339	928812	930248	931648	932290	932487	932570	933060	933733
	Initiat (nt)	923061	923464	923661	924407	924727	924895	925134	926935	927242	927474	927752	927785	928117	928884	930410	931706	932290	932974	933710	934302
	SEQ NO.	4464	4465	4466	4487	4468	4469	4470	4471	4472	4473	4474	4475	4478	4477	4478	4479	4480	4481	4482	4483
	SEQ NO (DNA)	964	965	986	296	968	696	970	176	972	973	974	975	976	977	978	979	980	186	982	983

EP 1 108 790 A2

0

	Function	UTP-glucose-1-phosphate uridylyltransferase	molybdopterin biosynthesis protein	ribosomal-protein-atanine N- acetyltransferase	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane protein	cyclomaltodextrinase	hypothetical membrane protein	hypothetical protein	methionyl-tRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
	Matched length (a.a.)	296	390	193	367	380		137	225	444	488	272	615	741	210	363		86
	Similarity (%)	689	62.6	54.9	54.8	62.4		9.09	59.6	53.6	75.2	78.3	66.7	49.0	53.3	59.0		29.8
	identity (%)	42.2	31.8	29.0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	28.2	27.6	30.0		33.0
Table 1 (continued)	Homologous gene	Xanthomonas campestris	Arthrobacter nicotinovorans moeA	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichla coli K12 cynX		Haemophilus influenzae Rd H11602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus E-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
	db Match	pir.JC4985	prf.2403296B	sp:RIMJ_ECOLI	pir.G70801	SP.CYNX_ECOLI		sp:YG02_HAEIN	sp:Y05C_MYCTU	sp:CDAS_BACSH	pir:E70602	sp Y18J_MYCTU	SP.SYM_METTH	pri:1306383A	pir.869206	sp:YXAG_BACSU		gp:AF029727_1
	ORF (bp)	897	1257	999	1020	1200	1419	405	714	1187	1560	825	1830	2049	633	1158	531	294
	Terminal (nt)	935319	936607	937274	938401	939626	937799	940090	940754	941925	942381	944833	948669	950839	950828	951834	953043	954266
	Initial (nt)	934423	935351	936615	937382	938427	939217	939686	940041	940759	943940	944009	946840	948791		952991	953573	953973
	SEO	4484	4485	4486	4487	4488	4489	4490	4491	4492	4493	4494	4495	4496	4497	4498	4499	4500
	SEO		985	986	987	986	686	066	991	266	993	994	995	96	166	866	666	1000

EP 1 108 790 A2

	Function	transposase	transposase subunit		D-lactate dehydrogenase	site-specific DNA-methyltransferase		transposase	transposase	transcriptional regulator	cadmium resistance protein		hypothetical protein	hypothetical protein	dimethyladenosine transferase	Isopentenyl monophosphate kinase		ABC transporter	pyridoxine kinase	hypothetical protein	hypothetical protein
	Matched length (a.a.)	139 tran:	112 tran	_	585 D-la	231 site.	-	94 tran	139 tran	91 tran	205 cad		263 hyp	362 hур	265 dim	315 (sop		478 AB	242 pyr	159 hyp	108 hyp
			\dashv		\dashv		\dashv	-	_						-		\dashv	a	67.4	58.5	78.7
	Similarity (%)	67.6	88.4	_	75.6	62.8	_	59.6	67.6	84.6	66.8		70.7	63.5	65.3	67.0		. 85			\vdash
	Identity (%)	41.7	73.2		49.4	30.8		33.0	41.7	62.6	31.7		46.4	34.8	34.3	42.5		85.5	40.1	27.0	45.4
Table 1 (continued)	Homologous gene	Escherichia coli K12	Brevibacterium linens tnpA		Escherichia coll did	Klebsiella pneumoniae OK8 kpnfM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculosis H37Rv Rv1894c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis H37Rv Rv2874	Streptomyces coelicolor A3(2) SCF1.02
	db Match	plr:TQEC13	gp:AF052055_1		prf.2014253AE	sp:MTK1_KLEPN		gp AF029727_1	pir TQECI3	sp:YJ94_MYCTU	pri 2514367A		pir.C70603	pir:D70603	Sp:KSGA_ECOLI	pir.F70603		pir.S47441	sp PDXK_ECOLI	Sp YX05_MYCTU	gp:SCF1_2
	ORF (pg)	477	414	864	1713	840	219	294	477	357	621	342	831	1071	879	933	642	1833	792	480	321
	Terminal (nt)	954753	955354	956774	955686	957844	959185	960374	960861	961653	962249	961321	963639	964934	965852	966784	965950	968860	969458	969461	970349
1	Initial (nt)	954277	954941	955911	957398	958683	959403	960081	960385	961297	961629			963864	964974	965852	966591	966828	988667		970029
	SEO	4501	4502	4503	4504	4505	4508	4507	4508	4509	4510	4511		4513	4514	4515	4516	4517	4518	-	4520
;		100	_		1004		1006	1007	1008	1009	1010	101	1012	1013	1014	1015	1016	1017	1018	1019	1020

5

EP 1 108 790 A2

5

	Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR family)	membrane transport protein	S-adenosylmethionine:2- demethylmenaquinone methyltransferase		hypothetical protein	hypothetical protein		peptide-chain-release factor 3	amide-ures transport protein
	Matched length (a.a.)	107	261	278	337			!	440	100	802	157		121	482		546	404
	Similarity (%)	69.2	1.88	59.1	70.9				56.8	70.0	70.0	75.8		63.6	48.3	·	68.0	72.8
	identity (%)	35.5	64.8	27.2	35.6				7.72	44.0	42.6	38.2		29.8	24.9		39.2	42.8
Table 1 (continued)	Homologous gene	Streptomyces coalicolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1.15	Bacillus subtilis 168 yxeH	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCE87.17c	Haemophilus Influenzae Rd H10508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD
!	db Match	gp.SCF1_2	gp:SCJ1_15	sp:YXEH_BACSU	pir.E70893				1386 sp.CSP1_CORGL	gp.SCF58_6	gp:SCE87_17	Sp:MENG_HAEIN		gp:NMA622491_21	pir.A70539		pir:159305	1269 prf.2406311A
	ORF (bp)	321	960	792	1017	654	777	1212	1386	579	2373	498	999	381	1551	936	1647	1269
	Terminal (nt)	970738	971823	972244	974155	973304	974962	974965	977734	977800	978368	981490	982287	982284	984650	985845	984864	988007
	Initial (nt)	970418	970864	973035	973139	973957	974186	976176	976349	978378	980740	980993	981622	982674	983100	984910	986510	986739
	SEO NO (e.e.)	4521	4522	4523	4524	4525	4526	4527	4528	4529	4530	4531	4532	4533	4534	4535	4536	4537
	SEQ NO ON §	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037

EP 1 108 790 A2

٢				T	$\neg \tau$	\neg	T		_ 1		Т	I	7		П	\neg		\neg
	Function	amide-urea transport protein	amide-urea trensport protein	high-affinity branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	peptidyl-tRNA hydrolase	2-nttropropane dioxygenase	giyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyi-tRNA hydrolase	50S ribosomal protein L25	lactoyiglutathione iyase	DNA alkylation repair enzyme	ribose-phosphate pyrophosphokinase	UDP-N-acetyglucosamine pyrophosphorylase		sufi protein precursor	nodulation ATP-binding protein I
	Matched length (a.a.)	77	234	253	236	187	361	342	51	174	194	143	208	316	452		206	340
	Similarity (%)	61.0	68.0	0.07	69.1	206	54.0	72.8	61.0	63.2	65.0	54 6	62.5	79.1	71.9		61.7	64.8
	Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0		30.8	35.8
Table 1 (continued)	Homologous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braf	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williopsis mrakil IFO 0895	Streptomyces roseofulvus gap	Neisseria meningitidis	Escherichia coli K12 pth	Mycobacterium tubarculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987 alkD	Bacillus subtilis prs	Bacillus subtilis gcaD		Escherichia coli K12 sufi	Rhizobium sp. N33 nodi
	db Match	prt:2406311B	prf:2406311C	sp:BRAF_PSEAE	sp:BRAG_PSEAE	Sp.PTH_ECOLI	SP.ZNPD_WILMR	sp:G3P_ZYMMO	GSP: Y75094	Sp:PTH_ECOLI	pir.870622	sp:LGUL_SALTY	pri:2516401BW	sp.KPRS_BACCL	pir.S66080		1533 sp.SUFI_ECOLI	sp:NODI_RHIS3
	ORF (bp)	882	1077	726	669	612	1023	1065	369	531	900	429	624	975	1455	1227		918
	Terminal (nt)	988904	989980	990705	991414	991417	993080	994613	994106	994845	995527	996830	996833	997466	998455	100001	1002864	1003930
	Initial (nt)	988023	988904	989980	990716	992028	992058	993549	994474	995375	996126	996402	997456	998440	606666	1001242	1001332	4554 1003013
	SEO NO.	4538	4539	4540	4541	4542	4543	4544	4545	4546	4547	4548	4549	4550	4551	4552	4553	
	SEO NO (DNA)	1038	1039	1040	1041	1042	_		1045	1046	1047	1048	1049	1050	1351	1052	1053	1054

EP 1 108 790 A2

	_					\neg	-		\neg			- 1	- 1	- 1	ł	- 1	- 1	- 1	- 1	- 1	1	ا ہ	- 1
5		Function	hypothetical membrane protein	two-component system sensor histidine kinase	two component transcriptional regulator (luxR family)		hypothetical membrane protein	ABC transporter		ABC transporter	gamma-glutamyitranspeptidase precursor					transposase protein fragment	transposase (IS1628 TnpB)				transcriptional regulator (TetR- family)	transcription/repair-coupling protein	
15		Matched length (a.a.)	272	459	202		349	535		573	999					37	236				183	1217	
20		Similarity (%)	63.2	48.4	67.3		64.5	57.0		74.0	58.6					72.0	100.0				9.69	65.1	
		identity (%)	30.2	24.8	36.6		31.5	28.6		44.0	32.4					64.0	9.66				23.0	38.2	4
25	Table 1 (continued)	us gene	Jans ORF2	(12 uhpB	ucetius dnrN		elicolor A3(2)	ucescens strV		megmatis exiT	<12 ggt					ı glutamicum	n glutamicum s pAG1 tnpB		ŀ		tetR	mfd	
30	Table 1 (Homologous gene	Ctrontomycos lividans ORF2	Escherichia coli K12 uhpB	Streptomyces peucetius dnrN		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Escherichia coli K12 ggt					Corynebacterium glutamicum TnpNC	Corynebacterium glutamlcum 22243 R-plasmid pAG1 tnpB				Escherichia coll tetR	Escherichia coli míd	
35 40		db Match	0300141 -1-	בכסרו			gp:SCF15_7	plr. S65587		pir.T14180	COLI					GPU.AF164956_23	gp:AF121000_8				sp.TETC_ECOU	Sp:MFD_ECOLI	
		ORF (bp)		821 8		204	+	1440		1=		249	519	192	606	243	708	462	265	312	651	3627	1224
45		Terminal (nt)		1006085	1006697	1008734	1008152	1010061	1008534	1011790	1011797	1014264	1014343	1015118	1016560	1015450	1015145	1017018	1017274	1018393	1019068	1022716	1019390 1224
50		Initial (nt)		1003953	1006089	100001	1006998	1008622	4581 100BBBB	1010057	1013761	1014016		1014925	1015652	1015692	1015852	1016557	1017870	1018082		1019090	
		SEO		4555 1			4559	4560	184	4562		4564	<u> </u>	4566	4567		4569	4570	4571	4572		4574	4575
55				1055			1059	1080		_+		1084		_		1068	1069	1070	1071	1072	1073	1074	1075

EP 1 108 790 A2

	Function	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	mutidrug resistance-like ATP- binding protein, ABC-type transport protein	ABC transporter	hypothetical membrane protein		hypothetical protein			IpqU protein	enolase (2-phosphoglycerate dehydralase)(2-phospho-D- glycerate hydro-lyase)	hypothetical protein	hypothelical protein	hypothelical prolein	guanosine pentaphosphatase or exopolyphosphatase		threonine dehydratase	
•	Matched length (a.a.)	92	632	574	368		183			241	422	41	191	153	329		314	
	Similarity (%)	0.69	62.7	91.9	100.0		57.4			689	96.0	58.0	55.0	77 8	55.0		64.7	
	Identity (%)	48.0	31.3	50.2	100.0		33.4			46.5	64.5	68.0	31.9	59.5	25.2		30.3	
Table 1 (continued)	Homologous gene	Neisserla gonorrhoeae	Escherichia coli mdlB	Mycobacterium tuberculosis H37Rv Rv1273c	Corynebacterium glutemicum ATCC 13032 orf3		Bacillus subtilis yabN			Mycobacterium tuberculosis H37Rv Rv1022 lpqU	Bacillus subtills eno	Aeropyrum pernix K1 APE2459	Mycobacterium tuberculosis H37Rv Rv1024	Mycobacterium tuberculosis H37Rv Rv1025	Escherichia coli gppA		Escherichia coli tdcB	
	db Match	GSP: Y75301	sp:MDLB_ECOLI	sp:YC73_MYCTU	sp:YL13_CORGL		SP.YABN_BACSU			pir.A70623	sp.ENO_BACSU	PIR:872477	pir:C70623	pir:D70623	sp.GPPA_ECOLI		sp.THD2_ECOLI	
	ORF (bp)	228	1968	1731	2382	297	585	426	378	786	1275	144	540	546	963	984	930	195
	Terminal (nt)	1021078	1022699	1024666	1026505	1032181	1032780	1032780	1033269	1034739	1036223	1036016	1036855	1037445	1038410	1036498	1038721	1039977
	Initial (nt)	1021305	1024688	1026396	1028888	1031885	1032196	1033185	1033646	1033954	1034949	1036159	1036316	1036900	1037448	1037481	1039650	1039783
	SEQ.		4577	4578	4579	4580	4581	4582	4583	4584	4585	4586	4587	4588	4589	4590	4591	4592
	SEQ	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092

EP 1 108 790 A2

	Function		hypothetical protein	transcription activator of L-rhamnose operon	hypothetical protein		hypothetical protein	transcription elongation factor	hypothetical protein	lincomycln-production		3-deoxy-D-arabino-heptulosonate-7- phosphate synthase		hypothetical protein or undecaprenyl pyrophosphate synthetase	hypothelical protein			pantothenate kinase	serine hydroxymethyl transferase	p-aminobenzoic acid synthase	
	Matched length (a.a.)		56	242	282		140	143	140	300		367		97	28			308	434	969	
	Similarity (%)		74.1	55.8	80.1		57.1	60.1	72.1	56.3		99.5		67.3	100.0			79.9	100.0	70.1	
	Identity (%)		46.3	24.8	57.8		30.0	35.0	34.3	31.7		99.2		96.0	100.0			53.9	99.5	47.6	
Table 1 (continued)	Homologous gene		Thermotoga maritima MSB8	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55.39	Escherichia coli greA	Mycobacterium tubercutosis H37Rv Rv1081c	Streptomyces lincolnensis ImbE		Corynebacterium glutamicum aroG		Corynebacterium glutamicum CCRC18310	Corynebacterium glutamicum (Bravibacterium flavum)			Escherichia coli coaA	Brevibacterium flavum MJ-233 glyA	Streptomyces griseus pabS	
	db Match		pir: B72287	SP. RHAR_ECOLI	pir:F70893		gp:SCF55_39	Sp. GREA_ECOLI	pir:G70894	pir:S44952		sp.AROG_CORGL		sp.YARF_CORGL	SP.YARF_CORGL			Sp.COAA_ECOLI	gsp:R97745	sp.PABS_STRGR	
	ORF (bp)	330	189	993	816	387	450	522	483	873	318	1098	633	675	174	519	318	936	1302	1860	723
	Terminal (nt)	1040325	1040682	1041917	1042842	1042850	1043298	1043774	1044477	1046030	1046390	1047707	1046820	1048501	1048529	1049043	1049068	1049427	1051925	1053880	1054602
	Initial (nt)	1039996	1040494	1040925	1042027	1043236	1043747	1044295	1044959	1045158	1046073	1046610	1047452	1047827	1048356	1048525	1049385	1050362	1050624	1052021	4612 1053880
	SEQ NO (a.a.)	4593	4594	4595	4596	4597	4598	4599	4600	4601	4602	4603	4604	4605	4606	4607	4608	4609	4610	4611	
	SEQ NO (DNA)	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	=======================================	1112

EP 1 108 790 A2

5	Function			phosphinothricin resistance protin	otein		rotein	on protein	hypothetical membrane protein			regulator		fumarate hydratase precursor	Se FMN				dibenzothlophene desulfurization enzyme A	dibenzothlophene desulfurtzation enzyme C (DBT sulfur dioxygenase)	dibenzothiophene desulfurtation enzyme C (DBT sulfur diöxygenase)		
10	_			phosphinothric	hypothetical protein		hypothetical protein	lactam utilization protein	hypothetical m			transcriptional regulator		fumarate hydr	NADH-dependent FMN oxydoreductase			reductase	dibenzothloph enzyme A	dibenzothloph enzyme C (Di	dibenzothioph enzyme C (D		
15	Matched length (a.a.)			165	ဓ္က		225	276	165			204		456	159			184	443	372	391		
20	Similarity (%)			58.8	59.0		57.8	52.2	81.2			63.2		79.4	65 4			81.0	67.7	51.3	61.6		
	Identity (%)			30.3	30.3		37.8	30.8	40.6			26.0		52.0	32.7			55.4	39.1	25.8	28.9		
ଞ୍ଚ ଓ rable 1 (continued)	eue gene			lis ptcR	bgK		bgJ	ns lamB	csH			dhc '		s (Rat) fumH	Ahropolis			elicolor A3(2)	IGTS8 soxA	IGTS8 soxC	IGTS8 soxC		
8 Table 1 (Homologaus gene			Alcaligenes faecalis ptcR	Escherichia coli ybgK		Escherichia coli ybgJ	Emericella nidulans lamB	Bacillus subtilis yesH			Bacillus subtilis ydhC		Rattus norvegicus (Rat) fumH	Rhodococcus erythropolis IGTS8 dszD			Streptomyces coelicolor A3(2) StAH10 16	Rhodococcus sp. IGTS8 soxA	Rhodococcus sp. IGTS8 soxC	Rhodococcus sp. IGTS8 soxC		
35	db Match			-				SP.LAMB_EMENI E	Sp:YCSH_BACSU E			SP YDHC_BACSU							SP.SOXA_RHOSO	sp.SOXC_RHOSO	SP. SOXC_RHOSO		
40	8			gp:A01504	SP:YBGK_ECOLI		sp:YBGJ_ECOLI	Sp:LAME	sp:YCS			Sp YDH		SP.FUMH_RAT	gp:AF048979_1			gp:SCAH10_16					
	ORF (bp)	884	393	537	879	1056	699	756	591	672	603	198	1278	1419	489	261	447	564	1488	1080	1197	780	690
45	Terminal (nt)	1055722	1054640	1056319	1058322	1058628	1057200	1057843	1058624	1059889	1059962	1060792	1062146	1062211	1064424	1064478	1064754	1065304	1067570	1068649	1069845	1068913	1069119
50	initial (nt)	1054859	1055032	1055783	4616 1057200	1057573	1057868	1058598	1059214	1059218	1059360	1060112	1060869	1083629	1063936	1064738	1065200	1065867	1086083	1067570	1068649	1069692	1069808
	SEO NO O	4613	4614	4615	4616	4617	4618	1619	4620	4621	4622	4623	4624	4825	4626	4627	4628	4629	4630	4631	4632	4633	4634
55	SEQ NO (DNA)	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134

EP 1 108 790 A2

	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	glycerol metabolism	hypothetical protein	hypothetical protein		transmembrane efflux protein	exodeoxyribonuclease small subunit	exodeoxyrlbonuclease large subunit	penicillin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics		permease		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated protein	ornithine carbamoyitransferase	hypothetical protein
	Matched length (a.a.)	260	325	211	227		82	62	466	311	131		338		552	412	361	75	301	143
	Similarity (%)	73.1	75.7	56.4	68.1		78.1	67.7	55.6	78.8	47.0		63.9		61.4	0.09	88.6	90.0	58.8	68.9
	Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	50.2	33.0		26.3		30.3	29.8	70.1	57.3	29.6	39.2
Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 glpX	Mycobacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1855 xse8	Escherichia coli K12 MG1655 xseA	Escherichia coli K12 lytB	Neisseria gonorrhoeae		Escherichia coli K12 perM		Rattus norvegicus (Rat) SLC6A7 ntpR	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa argF	Bacillus subtilis 168 ykkB
	db Match	gp:ECO237695_3	Sp.GLPX_ECOLI	pir:B70897	pir:H70062		gp:SCH24_37	sp:EX7S_ECOLI	sp:EX7L_ECOLI	SP.LYTB_ECOLI	GSP:Y75421		Sp:PERM_ECOLI		sp:NTPR_RAT	sp:CSP1_CORGL	sp:YYAF_BACSU	Sp.VAPI_BACNO	sp.OTCA_PSEAE	501 SP.YKKB_BACSU
	ORF (bp)	1176	963	570	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	297	822	├─ ं
:	Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	1079221	1080788	1080972	1082951	1085462	1086087	1086917	1087044
	Initial (nt)	1069959	1072441	1072676	1075241	1075357	1075553	1075909	1077183	1077297	1077734	1079146	1080540	1080965	1082708	1084183	1084380	1085791	1086096	1087544
	SEQ NO (a.a.)	4635	4636	4637	4638	4639	4640	4641	4642	4643	4644	4645	4646	4647	4648	4649	4650	4651	4652	4653
	SEQ NO.	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153

EP 1 108 790 A2

			$\overline{}$								-						
Function	s retinol dehydrogenase or oreductase	sposase/integrase (IS110)	othetical membrane protein	cetyiglucosaminyitransferase			sposase (insertion sequence 1831)	sposase	sposase				oreductase or morpyin e 6 - ydrogenese (naloxone ictase)	irboxymuconolacione arboxiyase			frenolicin gene cluster protein involved in frenolicin blosynthetic
ched igth i.a.)												i					148 fren
	1	3	-	7				-	,				2	,			_
Similarity (%)	60.6	73.0	52.2	47.1			93.6	94.4	95.8				66.3	63.9	•		66.4
Identity (%)	33.8	42.2	23.0	22.8			82.5	79.2	87.5				37.5	33.3			34.9
Jene		ilor	yegE	၁၉			lamicum	lamicum fermentum)	tamicum fermentum)				M10 norA	ceticus			ulvus frīiS
Homologoús ç	Mus musculus RDH4	Streptomyces coelico SC3C8.10	Escherichia coli K12	Rhizobium meliloti no			Corynebacterium glu ATCC 31831	Corynebacterium glu (Brevibacterium lacto ATCC 13869	Corynebacterium glu (Brevibacterium lacto ATCC 13869				Pseudomonas putida	Acinetobacter calcos dc4c			Streptomyces roseofulvus frnS
db Match	gp:AF013288_1	sp:YIS1_STRCO	sp:YEGE_ECOLI	Sp:NODC_RHIME			pir.S43613	pir.JC4742	pir.JC4742				sp:MORA_PSEPU	sp:DC4C_ACICA			gp:AF058302_19
ORF (bp)	930	1208	3042	765	219	333	291	375	144	141	366	498	843	321	683	195	654
Terminal (nt)	1087664	1088535	1093216	33	1094911	1095384	1095387	1095719	1096188	1098331	1096746	1097726	1098592	1098929	1099750	1099015	1099115
Initial (nt)	1088293	1089740	1090175	1093929	1094693	1095052	1095677	1096093	1096331	1096471	1097111	1097229	1097750	1098609	1099088	1099209	1099768
SEQ NO.	4654	4655				4659	4660	4661	4662	4663	4664	4665	4666	4667	4688	4689	4670
	+	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170
	SEQ Initial Terminal ORF db Match Homologoús gene (%) (ht) (hp) (hp) (hp) (hp) (hp) (hp) (hp) (hp	SEQ Initial (a.s.) Terminal (nt) ORF (bp) db Match Homologoús gene (ba.) Identity (bb) Similarity length length length (bb) Rached (bb) (bb) Beas) Beas	SEQ Initial NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial No. (nt) Terminal (nt) ORF (bp) db Match Homologoús gene (%) Identity (%) Similarity (%) Matched (%) Match	SEQ NO. (a.s.) Initial (nt) Terminal (nt) ORF (nt) db Match Homologoús gene (%) Identity (%) Similarity (%) Matched (%) Matched (%	SEQ Initial No. (nt) Terminal (nt) CRF (bp) db Match Homologoús gene (char) Identity (char) Similarity length (char) Matched (char) NO. (nt) (nt) (nt) (bp) db Match Homologoús gene (char) (char)	SEQ Initial NO. (nt) Terminal (nt) CRF (bp) db Match Homologoús gene (%) Identity (%) Similarity (%) Matched (%) Match	SEQ Initial NO. (nt) Terminal (nt) CRF (bp) db Match Homologoús gene (%) Identity (%) Matched	SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match Homologoús gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ Initial NO. (nt) (hp) CRF (hp) db Match Homologoús gene Identity (%) (%) (%) Hatched (%) </td <td>SEC NO. (as.) Initial (nt) Terminal (nt) ORF (nt) db Match Homologoús gene Homologoús gene (%) Identily (%) Similarity (%) Matched (%) Matched (%)</td> <td>SEQ NO. Inilial (n1) Terminal (n1) ORF (n1) db Match (bp) Homologoús gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<</td> <td>SEC NO. Initial (nt) Terminal (nt) ORF (pt) db Match Homologoús gene Identily (%) Similarity (%) Matchad (%) Matchad (%)</td> <td> SEG Initial (III) (IIII) (IIIII) (IIIII) (IIIIIIII) (IIIIIIIIII</td> <td> SEG Initial Terminal ORF db Match Homologoús gene (%)</td> <td> SEG Initial Terminal ORF db Match Homologoús gene Idéntity Similarity Initial No. (rt) (bp) (bp) db Match Homologoús gene (cb) /td> <td>SEO Initial Terminal ORF db Match Homologoús gene Identity Similarity (%) Matched (%)</td>	SEC NO. (as.) Initial (nt) Terminal (nt) ORF (nt) db Match Homologoús gene Homologoús gene (%) Identily (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Inilial (n1) Terminal (n1) ORF (n1) db Match (bp) Homologoús gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<	SEC NO. Initial (nt) Terminal (nt) ORF (pt) db Match Homologoús gene Identily (%) Similarity (%) Matchad (%) Matchad (%)	SEG Initial (III) (IIII) (IIIII) (IIIII) (IIIIIIII) (IIIIIIIIII	SEG Initial Terminal ORF db Match Homologoús gene (%)	SEG Initial Terminal ORF db Match Homologoús gene Idéntity Similarity Initial No. (rt) (bp) (bp) db Match Homologoús gene (cb) SEO Initial Terminal ORF db Match Homologoús gene Identity Similarity (%) Matched (%)	

EP 1 108 790 A2

	_																		
5		Function							u	ase subunit	nt mutase	'n	oenolpyruvale	ATP-binding	띡	uptake protein	ulator	dund xnije epu	rtion sequence
10		Func	biolin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3.PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvale phosphonomutase	tyrosin resistance ATP-binding protein	hypothelical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (Insertion sequence IS31831)
15		Matched length (a.a.)	563						655	329	160	282	248	593	136	111	134	367	436
20		Similarity (%)	78.5			-			80.3	52.6	62.5	60.7	59.3	54.1	6.99	82.0	62.7	59.4	99.8
		Identity (%)	48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	95.0	32.1	22.8	99.5
25	ontlinued)	s gene	PCC 7942						erculosis	eroides ATCC	thanolica pgm	erculosis	oscopicus	ae tirC	serculosis	12 MG1655	8 ухв⊡	umoniae	jiutamicum ctofermentum)
30	Table 1 (continued)	Homologous gene	Synechococcus sp. PCC 7942 accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacler sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF1293 BcpA	Streptomyces fradiae ttrC	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtills 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
35 40		db Match	gp.SPU59234_3						Sp.YT15_MYCTU	SP.BCHI_RHOSH	gp:AMU73808_1	plr.A70577	gp:STMBCPA_1	Sp.TLRC_STRFR	sp:Y06C_MYCTU	Sp. PHNA_ECOLI	sp:YXAD_BACSU I	gp.SPN7367_1	pir.S43613
		ORF (bp)	1737 9	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
45		Terminal (nt)	1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	1111425	1112230	1112484	1114319	1115793
50		Initial (nt)	1099917	1102043	1102695	1103180	1103951	1104923	1106058	1107381	1107560	1108201	1108993	1109792	1111820	1111889	1112957	1113102	1114486
		SEQ NO.	4671	4672	4673	4674	4675	4676	4677	4678	4679	4680	4681	4682	4683	4684	4685	4686	4687
55		SEO NO.	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187

EP 1 108 790 A2

5	Function	cysteine desulphurasa	nicotinate-nucleotide pyrophosphorylase	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hypothetical protein	hypothetical protein	lipoate-protein ligase A	alkyiphosphonate uptake protein and C-P iyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoale hydroxylase (4- hydroxybenzoale 3- monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		Ca2+/H+ antiporter ChaA	hypothetical protein	hypothetical membrane protein
15	Matched length (a.a.)	376	283	361	235	192	214	108	216	148	420	395	191	532	250		339	236	221
20	Similarity (%)	73.4	68.9	77.6	6.09	54.7	66.4	74.1	60.7	80.8	64.3	9.89	9 69	47.6	61.6		0.69	57.6	61.1
	Identity (%)	43.9	42.1	49.3	37.0	23.4	36.0	41.7	30.1	29.7	28.8	40.8	36.7	24.8	25.6		33.3	28.4	27.6
<i>25</i> (panu	ane	clens gene	ulosis		or	ans R1	lor	NG 1655	plA	phnB	pcaK	nosa phhy	koE		koC			rsay	
30 Table 1 (continued)	Homologous gene	Ruminococcus flavefaciens cysteine desulphurase gene	Mycobacterium tuberculosis	Bacillus subtilis nadA	Streptomyces coelicolor SC5B8.07	Deinococcus radiodurans R1 DR1112	Streptomyces coelicolor SC3A7.08	Escherichia coli K12 MG1655 ybdF	Escherichia coli K12 iplA	Escherichia coil K12 phnB	Pseudomonas putida pcaK	Pseudomonas aeruginosa phhy	Bacillus subtilis 168 ykoE	Escherichia coli yijK	Bacillus subtilis 168 ykoC		Escherichia coli chaA	Pyrococcus abyssi Orsay PAB1341	Bacillus subtilis ywaF
<i>35</i>	db Match	gp:RFAJ3152_2	SP.NADC_MYCTU	pir:E69663	gp:SC5B8_7	gp:AE001961_5	gp:SC3A7_8	sp:YBDF_ECOLI	gp:AAA21740_1	Sp. PHNB_ECOLI	sp.PCAK_PSEPU	SP. PHHY_PSEAE	pir:A69859	Sp:YJJK_ECOLI	pir.G69858		sp:CHAA_ECOLI	pir.C75001	sp.YWAF_BACSU
	ORF (bp)	1074	837	1182	642	009	909	342	789	411	1293	1185	588	1338	753	531	1050	708	723
45	Terminal (nt)	1115832	1116908	1117751	1119086	1120804	1120833	1121468	1121818		1123534	1124836	1127009	1128350	1129102	1129832	1130704	1131428	1131401
50	Initial (nt)	1116905	1117744	1118932	1119727	1120205	1121432	1121809	1122606		1124826	1126020	1126422			1129102	1129655	1130721	1132123
	SEO.	4688	4689	4690	4691	4692	4693	4694	4695		4697	4698	4699	+	÷	4702			4705
55	SEO	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	25	1202	1203	1204	1205

EP 1 108 790 A2

•

										_											
	Function	excinuclease ABC subunit A	thioredoxin peroxidase			hypothetical membrane protein	oxidoreductase or thiamin biosynthesis protein					chymotrypsin Bll	arsenate reductase (arsenical pump modifier)	hypothetical membrane protein	hypothetical protein	hypothelical protein	GTP-binding protein (tyrosine phsphorylated protein A)	hypothetical protein	hypothelical protein		ferredoxin [4Fe-4S]
	Matched length (a.a.)	946	164			318	282					27.1	111	340	147	221	614	508	315		103
	Similarity (%)	58.7	81.7			72.0	49.0					51.3	72.1	62.4	71.4	62.9	76.7	54.9	61.9		91.3
	Identity (%)	35.5	57.3			39.9	34.0					28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7		78.6
Table 1 (continued)	Homologous gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yedt.	Streptomyces coelicalor A3(2)			.=		Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coll K12 typA	Mycobacterium tuberculosis H37Rv Rv1168	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer
	db Match	SP. UVRA_THETH	sp:TPX_MYCTU			sp:YEDI_ECOLI	gp:SCF76_2					sp.CTR2_PENVA	sp:ARC2_ECOLI	sp:YYAD_BACSU	plr:F70559	pir.F70555	sp:TYPA_ECOLI	pir.F70874	plr:B70875		sp:FER_STRGR
	ORF (bp)	2340	495	218	1778	954	006	368	287	261	387	834	345	1200	537	714	1911	1506	870	438	315
	Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140901	1142472	1142479	1143026	1146028	1147602	1148461	1148882	1149267
	Initial (nt)	1134472	1134581	1135476	1136833	1137891	1137960	1138880	1139196	1139357	1140021	1140861	1141245	1141273	1143015	1143739	1144118	1146097	1147592	1148445	1148953
	SEQ NO.	4706	4707	4708	4709	4710	4711	4712	4713	4714	4715	4718	4717	4718	47.19	4720	4721	4722	4723	4724	4725
	SEQ NO.	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1218	1217	1218	1219	1220	1221	1222	1223	1224	1225

EP 1 108 790 A2

10	Function	aspartate aminotransferase		otrabudendinicolinate succinvings of	succinylation of piperidine-2,6-		hypothetical protein	dihydropteroate synthese	hypothetical protein	hypothetical protein	antigen TbAAMK, useful in vaccines for prevention or treatment of tuberculosis	mydnamidn-resistance gene	sucrose-6-phosphate hydrolase	ADPglucose-starch(bacterial glycogen) glucosyttransferase	glucose-1-phosphate adenylyltransferase	methyltransferase	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress	
15	Matched length (a.a.)	397			229		211	273	245	66	47	288	524	433	400	93	194	
20	Similarity (%)	52.9			100.0		100.0	69.0	73.1	67.7	91.5	67.8	51.0	51.3	81.8	62.4	57.2	
	Identity (%)	25.9			100.0		100.0	29.0	45.7	31.3	72.3	39.2	23.5	24.7	61.0	25.8	27.3	
% % % % % % % % % % % % % % % % % % %	Homologous gene	in YM-2 aat			n glutamicum IpD		m glutamicum 12	oelicalor A3(2)	leprae u17561	tuberculosis	tuberculosis	Micromonospora griseorubida myrA	Pedlococcus pentosaceus scrB	Escherichia coli K12 MG1655 glgA	Streptomyces coelicolor A3(2) glgC	mycarofaciens	li rpoÉ	
Tab To To To To	Натою	Bacillus sp. strain YM-2 aat			Corynebacterium glutamicum ATCC 13032 depD		Corynebacterium glutamicum ATCC 13032 orf2	Streptomyces coelicalor A3(2) dhpS	Mycobacterium leprae u17561	Mycobacterium tuberculosis H37Rv Rv1209	Mycobacterium tuberculosis	Micromonospo myrA	Pedlococcus p	Escherichia co glgA	Streptomyces glgC	Streptomyces mycarofaciens MdmC	Escherichia coli rpoE	
35	db Match	sp:AAT_BACSP			gp:CGAJ4934_1		pir.S60064	gp:SCP8_4	gp:MLU15180_14	pir.G70609	gsp:W32443	sp:MYRA_MICGR	SD. SCRB PEDPE	sp:GLGA_ECOLI	sp.GLGC_STRCO	SP:MDMC_STRMY	sp:RPOE_ECOLI	
	ORF (bp)	1101 \$	621	1185	891	663	768 p	831 g	729	+	165	864	1494		1215	639	639	492
45	Terminal (nl)	1150379	1151028	1152370	1152373	1155875	1157669	1158524	1159252	1159572	1159799	1160728	1160738	1162379	1164918	1164974	1166384	1167067
50	Initial (nt)	1149279	1150408	1151186	1153263	1158537	1156902	1157694	1158574	1159267	1159635	1159865	1162231	_1	1163702	1165612	1165746	1166576
	SEO.	4726	4727	4728	4729	4730		4732	4733	4734	4735	4736	47.77	_	4739	4740	4741	4742
55		1228	-	i 	1229	1230	1231	1232	1233	1234	1235	1236	1227	1238	1239	1240	1241	1242

EP 1 108 790 A2

5	Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC transporter or multidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	shikimate dehydrogenase	para-nitrobenzyl esterase				tetracycline resistance protein	metabolite export pump of tetracenomycin C resistance	
15	Matched length (a.a.)	112	257	154	434	140			1257	1288	240	255	501				409	444	
20	Similarity (%)	73.2	72.0	83.8	77.0	87.1			93.8	60.4	72.1	61.2	64.7				61.4	64.2	
	Identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7				27.1	32.4	
ය Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	a coli mrp	Mycobacterium tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobaclerium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coll aroE	Bacillus subtilis pnbA				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tomA	
Ta	H	Mycobacterium H37Rv Rv1224	Escherichla coli mrp	Mycobacterlum to H37Rv Rv1231c	Mycobacterium t H37Rv Rv1232c	Mycobacio H37Rv Rv			Corynebacteriu AJ12036 odhA	Cricetulus griseu hamster) MDR2	Mycobacterium to H37Rv Rv1249c	Escherich	Bacillus s				Escherichia Tn1721 tetA	Streptom	
35 40	db Match	pir.C70508	SP:MRP_ECOLI	pir.B70509	pir.C70509	pir.A70952			prt.2306367A	sp:MDR2_CRIGR	pir:H70953	Sp. AROE_ECOLI	Sp. PNBA_BACSU				sp.TCR1_ECOLI	sp:TCMA_STRGA	
	ORF (bp)	468	1125	579	1290	518	999	594	3771	3741	717	804	1811	651	876	525	1215	1347	705
45	Terminal (nt)	1187577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1180121	1180872	1183603	1184257	1185155	1185218	1187039	1188389	1190526
50	Initial (nt)	1167110	1168711	1169325	1170610	1170672	1171206	1172462	1176271	1180048	1180837	1181675	1181993	1183807	1184280	1185742	1185825	1187043	1189822
	SEO NO.	-	4744	4745	4746	4747	4748	4749	4750	4751	4752	4753	4754	4755	4756	4757	4758	4759	4760
55	SEO		1244		1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260

5		
10		
15		
20		
25		
30		
35		
40		
45		
50		

	Function	5- methyltetrahydropteroyitriglutamate- -homocysteine S-methyltransferase		thiophene biotransformation protein						ABC transporter	ABC transporter	cytochrome bd-type menaquinol oxidase subunit II	cytochrome bd-type menaquinol oxidase subunit i	helicase		mutator mutT protein ((7,8-dihydro-8-oxoguanine-triphosphatase)(8-oxo-dGTPase)(dGTP pyrophosphohydrolase)	:	proline-specific permease
	Matched tength (a a)	774		444						526	551	333	512	402		88		433
	Similarity (%)	72.2		79.5						63.5	58.4	93.0	0.86	55.0		65.6		85.0
	Identity (%)	45.2		55.2						28.7	29.4	92.0	9.66	26.4		36.9		51.3
Table 1 (continued)	Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1						Escherichia coli K12 MG1655 cydC	Escherichia coli K12 MG1655 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydB	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydA	Escherichia coll K12 MG1655 yejH		sp:MUTT_PROVU Proteus vulgaris mutT		Salmonella lyphimurium proY
	db Match	pir.S57636		gsp:Y29930						sp:CYDC_ECOLI	sp:cYDD_ECOL!	gp:AB035086_2	gp:A8035086_1	sp.YEJH_ECOLI		sp.MUTT_PROVU		Sp. PROY_SALTY
	ORF (bp)	2235	456	1398	324	945	792	1647	192	1554	1533	666	1539	2265	342	393	765	1404
	Terminal (nt)	1188388	1191542	1193807	1194190	1195109	1195125	1197620	1197815	1197990	1199543	1201090	1202094	1203916	1206657	1206831	1208138	1208212
	Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	1203632	1206180	1206316	1207223	1207374	1209615
	SEQ SO SEQ		4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774	4775	4776	4777
	SEQ NO.		1282	1263	1264	1265	1266	1287	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277

EP 1 108 790 A2

5

	Function	short-chain fatty acids transporter	regulatory protein			fumarate (and nitrate) reduction regulatory protein	mercuric transort protein periplasmic component precursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP:GTP 3:pyrophosphotransferase) (ppGpp synthetase i)	tripeptidyl aminopeptidese			homoserine dehydrogenase			nitrate reductase gamma chain	nitrate reductase delta chain	nitrate reductase beta chain	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
	Matched length (a.a.)	122	166			228	81	909	137	601			24			220	175	505	137	83	1271	461
	Similarity (%)	69.7	9.99			67.9	66.7	70.6	58.4	49.3			98.0			88	63.4	83.4	46.0	55.0	73.8	67.9
	Identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.6			95.0			45.0	30.3	56.6	36.0	36.0	46.9	32.8
Table 1 (continued)	Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Baciltus subtills narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subtilis narG	Escherichia coli K12 narK
	db Match	sp.ATOE_ECOLI	Sp. PECS_ERWCH			Sp.FNR_ECOLI	Sp:MERP_SHEPU	sp.ATZN_ECOLI	sp. RELA_VIBSS	gsp:R80504			GSP:P61449			Sp:NARI_BACSU	sp:NARJ_BACSU		PIR:D72603	PIR: 872603	SP:NARG_BACSU	SP:NARK_ECOLI
	ORF (bp)	537	486	222	519	750	234	1875	630	1581	803	120	108	1260	069	111	732	1593	594	273	+	1350
	Terminal (nt)	1229180	1230480	1230831	1230914	1232479	1232838	1234881	1235612	1236545		1242156	1243728	1243942	1244843	1245720	1246508	┺	1250444	┿┈	+-	!
	Initial (nt)	1229716	1229995	1230610	1231432	1231730	1232603	1233007	1234983	1238125	1242156	1242275	4808 1243621	1245201	1245532	1246496	1247239	1248791	•			
	SEO		4796	4797	4798	4799	4800	4801	4802	4803	4804	4805	_	4807	4808	4809	4810		_+-			4815
	SEQ NO.		1296	+-	+	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	131	1312	1313	1314	1315

EP 1 108 790 A2

. 15

	Function	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine protease precurosor		hypothetical membrane protein	hypothetical membrane protein	molybdopterin guanine dinucleotide synthase	molybdoptein biosynthesis protein	malybdopterin blasynthsisi protein Moybdenume (mosybdenum cofastar blosythesis enzyme)	edium-chain fatty acidCoA ligase	Rho factor				peptide chain release factor 1	protoporphyrinogen oxidasa		hypothetical protein	undecaprenyl-phosphate alpha-N- acetylglucosaminyltransferase
	Matched length (a.a.)	mc 157 pro	738 ex		334 hy	472 hy	178 mc	366 m	354 Mr	572 ed	753 Rt				363 pe	280 pr		215 hy	322 un
	Similarity (%)	65.0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		86.0	58.4
	Identity (%)	32.5	21.1		30.8	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
Table 1 (confinued)	Homologous gene	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3048 prtS		Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas ofeovorans	Micrococcus luteus rho				Escherichla coll K12 RF-1	Escherichia coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherichia coli K12 rle
	db Match	SP.CNX1_ARATH	sp.PRTS_SERMA		sp:Y0D3_MYCTU	sp.Y0D2_MYCTU	gp:PPU242952_2	sp.MOEA_ECOL!	sp.CNX2_ARATH	\$p:ALKK_PSEOL	sp.RHO_MICLU				sp:RF1_ECOLI	SP:HEMK_ECOLI		sp:YD01_MYCTU	1146 sp:RFE_ECOLI
	ORF (bp)	489	1866	684	1008	1401	561	1209	1131	1725	2286	603	969	1023	1074	837	774	648	1146
	Terminal (nt)	1254634	1254737	1257750	1256851	1257865	1259429	1259993	1261688	1262886	1267427	1268267	1265611	1265427	1268503	1289343	1268267	1270043	1271192
	initial (nt)	1254146	1256602	1257067	1257858	1259265	1259989	1261201	1262818	1284610	1285142	1265665	1266306	1266449	1267430	1268507	1269040	1269396	1270047
	SEQ NO.	4816	4817	4818	4819	4820	4821	4822	4823	4824	4825	4826	4827	4828	4829	4830	4831	4832	4833
	SEQ NO (DNA)	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333

EP 1 108 790 A2

						· · · · · · · · · · · · · · · · · · ·											
	Function		hypothetical protein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase lipid- binding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+-transporting ATP synthase delta chain	H+-transporting ATP synthase alpha chain	H+-transporting ATP synthase gamma chain	H+-transporting ATP synthase beta chain	H+-transporting ATP synthase epsiton chain	hypothelical protein	hypothetical protein	putative ATP/GTP-binding protein	hypothetical protein	hypothetical protein	lhioredoxin
	Matched length (a.a.)	Matched length (a.a.) 80		245	71	151	274	516	320	483	122	132	230	98	134	101	301
Table 1 (continued)	Similarity (%)			26.7	6.28	6.99	67.2	88.4	76.8	100.0	73.0	67.4	85.7	56.0	68.7	79.2	71.4
	Identity (%)	98.0		24.1	54.9	27.8	34.3	6.99	46.3	93.8	41.0	38.6	70.0	45.0	35.8	54.5	37.9
	Homologous gene	Homologous gene Corynebacterium glutamicum		Escherichia coli K12 atpB	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces Iividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum AS019 atpB	Streptomyces lividans atpE	Mycabacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yajC	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
	db Match		GPU:AB046112_1	sp:ATP8_ECOU	Sp.ATPL_STRLI	sp:ATPF_STRL!	SP:ATPD_STRU	sp.ATPA_STRLI	sp.ATPG_STRLI	sp:ATPB_CORGL	sp:ATPE_STRLI	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP.SC26G5_35	sp:YQJC_BACSU	sp:YC20_MYCTU	sp:YD24_MYCTU
	ORF (bp)	486	249	810	240	584	813	1674	975	1449	372	471	9	285	453	312	921
	Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262	1282105	1283114
	Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276708	1277688	1279151	1279770	4845 1280270	1280967	1281714	1281794	1349 4849 1282194
	SEO NO (s s)	4834	4835	4836	4837	4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	4849
	SEQ NO (DNA)	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349

EP 1 108 790 A2

5	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	alphatic sulfonates transport permease protein	alphatic sulfonates transport permease protein	sulfonate binding protein precursor	1,4-alpha-glucan branching enzyme (glycogen branching enzyme)	alpha-amylase		ferric enterobactin transport ATP- binding protein or ABC transport ATP-binding protein	hypothetical protein	hypothetical protein		electron transfer flavoprotein beta- subunit	electron transfer flavoprotein alpha subunit for various dehydrogenases		nitrogenase cofactor sythesis protein		hypothetical protein
15	Matched length (8.a.)	366	240	228	311	710	467		211	260	367		244	335		375		397
20	Similarity (%)	74.3	75.8	72.8	62.1	72.7	50.5		87.6	68.5	70.0		84.8	61.8		67.7		55.7
	Identity (%)	50.3	40.8	50.4	35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2		29.5
52 Sable 1 (continued)	Homologous gene	K12 ssuD	K12 ssuC	K12 ssuB	K12 ssuA	tuberculosis : gigB	ermophilum		K12 lepC	tuberculosis	tuberculosis		oti fixA	oti fixB		elandii nifS		Rhizobium sp. NGR234 plasmid pNGR234a y4mE
•	Homolog	Escherichia coli K12 ssuD	Escherichia coli K12 ssuC	Escherichia coli K12 ssuB	Escherichia coli K12 ssuA	Mycobacterium tuberculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 fepC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium meliloti fixA	Rhizobium meliloti fixB		Azotobacter vinelandii nifS		Rhizobium sp. NG pNGR234a y4mE
40	db Match	gp ECO237695_3	sp:SSUC_ECOLI	sp:SSUB_ECOLI	sp:SSUA_ECOLI	sp:GLGB_ECOLI	sp.AMY3_DICTH		sp.FEPC_ECOLI	pir C70860	pir H70859		SP.FIXA_RHIME	sp:FIXB_RHIME		sp:NIFS_AZOVI		sp:Y4ME_RHISN
	ORF (bp)	1143 g	768 8	729 \$	957 s	2193 s	1494 s	348	8 678	804 p	1058 p	612	786 s	951 s	615	1128 s	312	1146 s
45	Terminal (nt)	1284466	1285284	1286030	1286999	1287281	1289514	1291373	1292577	1294025	1295206	1294436	1296220	1297203	1297093	1298339	1298342	1299000
50	Initial (nt)	1283324	1284517	1285302	1286043	1289473	1291007	1291026	1291699	1293222	1294151	1295047	1295435	1296253	1296479	1297212	1298653	1300145
	SEO NO.	4850	4851	4852	4853	4854	4855	4856	4857	4858	4859	4860	4861	4862	4863	4864	4865	4866
55	SEQ NO.		1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366

5	Function	transcriptional regulator	acetyltransferase				tRNA (5-methylaminomethyl-2- thiouridylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase [NAD+]	hypothetical protein	glutamyl-tRNA(Gln) amidotransferase subunit C	glutamyl-tRNA(Gln) amidotransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein	hypothetical membrane protein	pyrophosphate-fructose 6- phosphate 1-phosphotransrefase
15	Matched length (a.a.)	59	181				361		332	200		677	220	97	484	263	96	358
20	Similarity (%)	76.3	55.3				6.09		99.0	65.8		70.6	70.9	64.0	83.0	54.0	79.2	77.9
	Identity (%)	47.5	34.8				61.8		33.7	30.2		42.8	40.0	53.0	74.0	28.1	46.9	54.8
Table 1 (continued)	Homologous gene	Rhizoblum sp. NGR234 plasmid pNGR234a Y4mF	K12 MG1655				i tuberculosis ic		tuberculosis sc	Streptomyces glaucescens tcmA		marinus dniJ	tubercutosis	Streptomyces coellcolor A3(2) gatC	1 tuberculosis	s viuB	Streptomyces coelicolor A3(2) SCE6.24	Amycolatopsis methanolica pfp
	Hemolo	Rhizoblum sp. NG pNGR234a Y4mF	Escherichla coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces		Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces SCE6.24	Amycolatopsis
35 40	db Match	SP.Y4MF_RHISN	sp:YHBS_ECOLI				pir:C70858		pir:B70857	sp:TCMA_STRGA		sp.DNLJ_RHOMR	pir H70856	sp:GATC_STRCO	sp.GATA_MYCTU	sp.VIUB_VIBVU	gp:SCE6_24	sp.PFP_AMYME
	ORF (bp)	225	504	942	1149	396	1095	654	066	1461	735	2040	683	297	1491	849	306	1071
45	Terminal (nt)	1300145	1301055	1300988	1301975	1303694	1304923	1303883	1305921	1305924	1307462	1310369	1310435	1311616	1313115	1314118	1314470	1316083
50	fortial (nt)	1300369	1300552	1301929	1303123	1303299	4872 1303829	4873 1304536	1304932	1307384	1308196	,	1311097	1311320	1311625	1313270	1314775	1315013
	SEQ NO	· +——	4868	4869	4870	4871	4872	4873	4874	4875	4876	4877	4878	4879	4880	4881	4882	4883
55	SEQ NO.		1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383

0

	Function		glucose-resistance amylase regulator (catabolite control protein)	ripose transport ATP-binding protein	high affinity ribose transport protein	periplasmic ribose-binding protein	high affinity ribose transport protein	hypothetical protein	Iron-siderophore binding lipoprotein	Na-dependent bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH reductase	hypothetical protein	hypothetical protein	hypothatical membrane protein		dihydroxy-acid dehydratase	hypothetical protein
	Matched length (a.a.)		328	499	329	305	139	200	354	268	485	172	317	234	325		613	105
	Similarity (%)		31.4	78.2	78.9	77.7	68.4	58.0	60.2	61.8	71.8	61.1	6.99	62.4	52.6		99.4	98.8
	Identity (%)		31.4	44.7	45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	38.3	27.4		99.2	33.3
Table 1 (continued)	Homologous gene		Bacillus megaterium ccpA	Escherichia coli K12 rbsA	Escherichia coli K12 MG1655 rbsC	Escherichia coli K12 MG1655 rbsB	Escharichia coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptomyces coelicolor SCF34,13c	Rattus norvegicus (Rat) NTCI	Staphylococcus aureus WHU 29 ratB	Methanococcus jannaschii MJ1501 (4re	Escherichia coli K12 yqlG	Mycobacterium tuberculosis H37Rv Rvz972c	Mycobacterium tuberculosis H37Rv Rv3005c		Corynebacterium glutamicum ATCC 13032 ilvD	Mycobacterium tuberculosis H37Rv Rv3004
	db Match		sp.CCPA_BACME	SP. RBSA_ECOLI	sp.RBSC_ECOLI	sp.RBSB_ECOLI	sp:RBSD_ECOLI	sp:YIW2_YEAST	gp:SCF34_13	sp:NTCI_RAT	gsp:W61467	sp:F4RE_METJA	sp:YaJG_ECOLI	pir.A70672	pir:H70855		gp:AJ012293_1	pir.G70855
	ORF (bp)	630	1107	1572	972	942	369	636	1014	1005	1479	672	1077	174	1056	237	1839	564
	Terminal (nt)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	1333442	1335412
	Initial (nt)	1315954	1316338	1317434	1319005	1320001	1320952	1321476	1322393	1323533	1324778	1326378	1330967	1331102	1331953	1333424	1335280	1335975
	SEO NO.	4884	4885	4886	4887	4888	4889	4890	4891	4892	4893	4894	4895	4896	4897	4398	4899	4900
	SEQ NO.	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400

•

	Function		homoprotocatechiuate catabolism bifunctional isomerase/decarboxylase [includes: 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase(hhdd isomerase); 5-carboxymethyl-2-oxo-hex-3-ene-1,7-dioate decarboxylase(opet decarboxylase)	methyllransferase or 3- demethylubiquinone-9 3-O- methyllransferase	isochorismate synthase	glutamyLIRNA synthetase	transcriptional regulator													thiamin biosynthesis protein
	Matched length (e.a.)		228	192	371	485	97										_			299
	Similarity (%)		59.2	55.7	70.4	69.7	90.0													81.0
	Identity (%)		83.3	23.4	38.0	37.3	77.0													95.1
Table 1 (continued)	Homologous gene		Escherichia coli C hpcE	Escherichia coli K12	Bacillus subtills dhbC	Bacillus subtilis gitX	Streptomyces coelicolor A3(2)													Bacillus subtilis thiA or thiC
	db Match	•	804 SP:HPCE_ECOLI	618 sp.UBIG_ECOLI	1128 SP DHBC BACSU	SYE BACSU	gp:SCJ33_10													1761 sp:THIC_BACSU
	ORF (bp)	654	804	618	1128	+-	+-	516	522	342	621	303	180	330	213	183	318	1152	324	
	Terminal (nt)	1358210	1359062	1359669	1360168	1362848	1362926	1363142	1363732	1365256	1384340	1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1369877
	fnitial (nt)	1357557	4922 1358259	1359052	1361295				1364253	4929 1384915	1364960	1365180	1365396	1365808	1367293	1368070	1358078	1368400	1369551	4939 1371637
	SEO NO (se	4921		4923	4924	4975		4927	4928		4930	4931	4932	4933	4934	4935	4936	4937	4938	4939
	SEQ NO (DNA)			1423	1424	1425	1428	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

5	Function			llpoprotein		glycogen phosphorylase			hypothetical protein	hypothetical membrane protein		guanosine 3,5-bis(diphosphate) 3- pyrophosphatase	acetate repressor protein	3-Isopropyimalate dehydratase large subunit	3-isopropyimalale dehydratase small subunit		mutator mutT protein ((7,8-dihydro- 8-oxoguenine-triphosphetese)(8- oxo-dGTPese)(dGTP pyrophosphohydrolase)		NAD(P)H-dependent dihydroxyscetone phosphate reductase	D-slanine-D-alanine ligase
15	Matched length (a.a.)			44		787			299	256		178	257	473	195		294		331	374
20	Similarity (%)			74.0		74.0			52.8	64.8		60.1	60.7	87.5	89.2		71.4		72.2	67.4
	Identity (%)			61.0		44.2			25.4	25.4		29.6	26.1	68.1	7.78		45.9		45.0	40.4
39 Table 1 (confinued)	Homologous gene			Chiamydia trachomatis		Rattus norvegicus (Rat)			Bacillus subtilis yrkH	Methanococcus Jannaschil Y441		Escherichia coli K12 spoT	Escherichia coli K12 iciR	Actinoplanes teichomyceticus leu2	Salmonella typhimurlum		Mycobacterium tuberculosis H37Rv MLCB637.35c		Bacillus subtilis gpdA	Escherichia coli K12 MG1855 ddlA
35				Chla		Rath				Met		Esci	Esch	Actin 1802			Myc H37			Esch ddiA
40	db Match			GSP:Y37857		sp:PHS1_RAT			Sp:YRKH_BACSU	Sp:Y441_METJA		sp:SPOT_ECOLI	Sp.ICLR_ECOLI		sp:LEUD_SALTY		gp.MLCB637_35		sp:GPDA_BACSU	1080 SP:DDLA_ECOLI
	ORF (bp)	348	531	132	936	2427	183	158	1407	750	477	564	705	1443	591	318	954	156	966	
45	Terminal (nt)	1371879	1373131	1373929	1375491	1373350	1375805	1375933	1376149	1377666	1378466	1379566	1379555	1381882	1382492	1382502	1382845	1384085	1385125	1386232
50	Initial (nt)	1372326	1372601	1373798	1374558	1375776	4945 1375987	1376088	1377555	1378415	1378942	1379003	1380259		1381902	1382819	1383798	1383930	1384130	1385153
	SEO NO.	-	4941	4942	4943	4944	4945	4946	4947		4949	4950	4951	4952	4953	4954	4955	4956	4957	4958
55	SEQ NO.		1441	1442	1443	1444	1445	1448	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458

NOC NOC (nt) (nt) (bp) NOA) (a.e.) (nt) (nt) (bp) NAA) (a.e.) (nt) (nt) (bp) 1459 4959 1387270 1386293 978 1460 4960 1387332 1389324 993 1461 4961 1388312 1389073 762 1462 4962 1389208 1390788 1581 1464 4964 1391961 1391638 324 1465 4965 1392939 1393151 213 1466 4966 1393154 1393735 582 1468 4968 1394854 1395933 1080 1469 4969 1394894 1395097 204	Initial Terminal (nt) (nt) (nt) (nt) (1387270 1386293 1387324 1389324 1399208 1390786 1391961 1391961 1391961 1391961 1393742 1395097 1395097 1395097	Terminal (nt) (1386293 1386293 1389073 1399073 139916 2 1391638 1393151 1393735 1395933 1395997	ORI (bp 97/16) 158 993. 32, 212 212 213 32, 32, 32, 32, 32, 32, 32, 33, 32, 33, 32, 33, 33	# - m m N = 1 = 4 m N 0 0 4	db Match sp:THIL_ECOLI sp:V389_MYCGE sp:RECG_ECOLI GSP:Y75303 sp:RCCP_PROFR sp:YHHF_ECOLI sp:KDTB_ECOLI	Table 1 (continued) Homologous gene Escherichia cali K12 thil. Mus musculus ung Mycoplasma genitalium (SGC3) MG389 Escherichia cali K12 recG Nelsseria meningitidis Proplonibacterium feudenreichii subsp. Shermanii Escherichia cali K12 yhhF Escherichia cali K12 WG1655 kdt8 Nelsseria gonorrhoese	(%) (%) 32.2 38.8 23.1 35.4 31.0 37.1 42.6 67.0	Similarity (%) (%) 57.6 58.3 60.0 48.0 48.0 78.7 78.7	Matched length (a.a.) 335 245 245 568 693 67 168 155 155	Function thiamin-phosphate kinase uracil-DNA glycosylase precursor hypothetical protein ATP-dependent DNA helicase polypeptides predicted to be useful antigens for vaccines and diagnostics biotin carboxyl carrier protein methylase lipopolysaccharide core biosynthesis protein Neisserial polypeptides predicted to be useful antigens for vaccines and
4970 1395549 1394800 750	1394800 750	1394800 750		sp. GLNQ	BACST	Bacillus stearothermophilus	56.4	78.6	252	diagnostics ABC transporter or glutamine ABC transporter, ATP-binding protein
1471 4971 1396410 1395568 843 \$P.NOCM_AGRT5	1395410 1395568 843	1395568 843			GRT5	Agrobacterium tumefaciens nocM	32.7	75.0	220	nopaline transport protein
4972 1397421 1396561 861 Sp.GLNH_ECOL	1397421 1396561 861	1396561 861	ī	SP.GLNH_ECC	2	Escherichia coli K12 MG1655 glnH	27.4	59.0	234	glutamina-binding protein pracursor
4973 1397662 1398468 807	1397662 1398468	1398468	807							
 -	1399534 1398557 978	1398557 978		pir.H69160	1	Methanobacterium thermoautotrophicum MTH465	28.6	60.3	322	hypothetical membrane protein
1475 4975 1400926 1401333 408	1400926 1401333	1401333	408		1					
1476 4976 1400940 1400185 756 sp.VINT_BPL54	1400940 1400185 756	1400185 756	756		1 1	Bacteriophage L54a vinT	26.9	52.5	223	phage integrase
Manager of										

EP 1 108 790 A2

5	Function						insertion element (IS3 related)		hypothetical protein										DNA polymerase I	cephamycin export protein	DNA-binding protein	morphine-8-dehydrogenase	
15	Matched length (a.a.)						28		37										968	456	283	284	
20	Similarity (%)						96.2		97.0										80.8	67.8	65.4	76.1	
	identity (%)						88.5		99.0										56.3	33.8	41.3	46.5	
ontinued)	s gene						lutamicum		iutamicum	-		,							erculosis	mdurans	color A3(2)	la morA	
% Table 1 (continued)	Homologous gene						Corynebacterium glutamicum orf2		Corynebacterium giutamicum									الم عام الم	Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A. 15c	Pseudomonas putida morA	
40	db Match						pir.S60890		PIR:S60890										sp:DPO1_MYCTU	SP.CMCT_NOCLA	gp:SCJ9A_15	SP:MORA_PSEPU	
	ORF (bp)	744	432	202	864	219	192	855	111	389	315	321	375	948	306	564	222	291	2715	1422	606	873	159
4 5	Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
50	Initial (nt)	1401333	1402272	1402874	1403128	1403997	1404885	1406174	1407109	1407535	1407873	1409023	1409802	1411011	1411424	1412000	1412351	1412916	1413745	1417883	1417962	1418876	1420036
	SEQ NO.	4977	4978	4979	4980	4981	4982	4983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4994	4995	4996	4997	4998
55	SEQ NO (DNA)	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498

ntinued)
Table 1 (cor

	Function	hypothelical protein	30S ribosomal protein S1		hypothetical protein					inosine-undine preferring nucleoside hypolase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	criptic asc operon repressor, ranscription regulator		excinuclease ABC subunit B	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hydrolase
	Matched length (a.a.)	163	451		195	ĺ				310	517	293	337		671	152	121	279		839	150	214
	Similarity (%)	58.3	71.4		93.9					81.0	53.8	9'29	65.8		83.3	59.2	80.2	77.1		47.2	0.89	58.4
	identity (%)	31.9	39.5		80.5					61.9	23.6	35.5	30.0		57.4	33.6	38.8	53.8		23.2	32.7	30.4
ומחוב ו (כמווווומבת)	Hamologous gene	Streptomyces coelicolor SCH5.13 yafE	Escherichla coli K12 rpsA		Brevibacterium lactofermentum ATCC 13869 yacE					Crithidia fasciculata iunH	Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 yffH	Escherichia coll K12 yflG		Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	Escherichia coli K12 ycbL
	db Match	sp:YAFE_ECOLI	sp.RS1_ECOLI		sp:YACE_BRELA					Sp.IUNH_CRIFA	SP. GACA_STAAU				sp.UVRB_STRPN	sp:Y531_METJA	SP.YTFH ECOLI	sp:YTFG_ECOU		pir.H70040	gp:SC9H11_26	sp:YCBL_ECOLI
	ORF (bp)	654	1458	1476	909	1098	582	246	957	936	1449	921	1038	798	2097	441	381	848	684	2349	912	88
	Terminal (nt)	1420071	1422558	1421096	1425878	1427354	1427376	1427804	1429246	1428224	1429194	1430659	1431575	1433547	1436201	1436775	1436869	1438201	1440028	1438212	1440675	1441793
	initial (nt)	1420724	1421099	1422571	1425279	1426257	1427957	1428049	1428290	5007 1429159	1430642			1432750	5012 1434105	1436335	1437249	1437356	1439343	1440560	1441586	1442392
	SEO	+	2000		2005	5003	5004	5005	5006	5007	5008	5009	5010	501	5012	5013	5014			5017		5019
	SEO		1500		1502	1503	+-	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519

	Function	excinuclease ABC subunit A	hypothetical protein 1248 (uvrA region)	hypothetical protein 1246 (uvrA region)			translation initiation factor IF-3	50S ribosomal protein L35	50S ribosomal protein L20			sn-glycerol-3-phosphate transport system permease protein	sn-glycerol-3-phosphate trensport system protein	sn-glycerol-3-phosphate transport system permease proein	sn-glycerol-3-phosphate transport ATP-binding protein	hypothetical prolein	glycerophosphoryl diester phosphodiesterase	tRNA(guanosine-2'-0-)- methlytransferase	phenylalanyl-tRNA synthetase alpha chain
	Matched length (a.a.)	952	100	142			179	90	117			292	270	438	393	74	244	153	
	Simitarity (%)	90.6	57.0	47.0			78.2	78.7	92.7			71.6	70.4	97.2	71.3	56.0	50.0	71.2	
	Identity (%)	56.2	40.0	31.0			52.5	41.7	75.0			33.2	33.3	26.6	44.0	47.0	28.2	34.0	
lable 1 (continued)	Homologous gene	Escherichia coli K12 uvrA	Micrococcus luteus	Micrococcus luteus			Rhodobacter sphaeroides infC	Mycopiasma fermentans	Pseudomonas syringae pv. syringae			Escherichia coli K12 MG1855 ugpA	Escherichia coli K12 MG1655 upgE	Escherichia coli K12 MG1855 ugpB	Escherichia coli K12 MG1655 ugpC	Aeropyrum pernix K1 APE0042	Bacilius subtilis glpQ	Escherichia coli K12 MG1855 trmH	Bacillus subtills 168 syfA
	db Match	sp.UVRA_ECOLI	PIR:JQ0406	PIR:JQ0406			sp:IF3_RHOSH	SP. RL35_MYCFE	sp:RL20_PSESY			sp:UGPA_ECOL!	sp:UGPE_ECOLI	sp:UGPB_ECOLI	1224 sp:UGPC_ECOLI	PIR E72756	sp.GLPQ_BACSU	Sp.TRMH_ECOLI	1020 sp:SYFA_BACSU
	ORF (bp)	2847	306	450	717	2124	567	192	381	822	267	903	834	1314		249	717	594	1020
	Terminal (nt)	1445333	1443810	1444944	1446874	1445323	1448358	1448581	1449025	1449119	1450692	1451820	1452653	1454071	1455338	1454102	1455350	1456948	1458066
	Initial (nt)	1442487	1444115	1445393	1446158	1447448	1447792	1448390	1448645	1449940	1450126	1450918	1451820	1452758	5033 1454115	1454350	1456088	1456355	5037 1457047
	SEO NO S	$\overline{}$		5022	5023	5024	5025	5026	5027	5028	5029	5030	5031	5032	5033	5034	5035	5036	
	SEO NO ONA)			1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535	1536	1537

													-	_						
	Function	phenylalanyi-tRNA synthetase beta chain		esterase	macrolide 3-O-acyltransferese		N-scelyigiutamate-5-semiaidehyde dehydrogenase	glutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinate synthetase		argininosuccinate lyase				hypothetical protein	tyrosyl-IRNA synthase (tyrosine	hypothetical protein		hypothetical protein
	Matched length (a.a.)	343		363	423		347	388	391	401		478				80	417	149		42
	Similarity (%)	71.7		55.1	56.3		1.88	99.7	89.2	99.5		0.06				72.0	79.8	64.4		75.0
	identity (%)	42.6		26.5	30.0		98.3	89.5	0.66	99.5		83.3				48.0	48.4	26.9		71.0
Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1855 syfB		Streptomyces scables estA	Streptomyces mycarofaciens mdmB		Corynebacterium glutamicum ASO19 ergC	Corynebacterium glutamicum ATCC 13032 argJ	Corynebacterium glutarnicum ATCC 13032 argD	Corynebacterium glutamicum ASO19 argG		Corynebacterium giutamicum ASO19 argH				Escherichia coil K12 ycaR	Bacillus subtilis syy1	Methanococcus jannaschil MJ0531		Chlamydia muridarum Nigg TC0129
	db Match	sp:SYFB_ECOLI		SP.ESTA_STRSC	SP:MDMB_STRMY		gp:AF005242_1	sp: ARGJ_CORGL	sp:ARGD_CORGL	sp.ASSY_CORGL		gp:AF048764_1				Sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR:F81737
	ORF (bp)	2484	15.	972	1383	402	104	1164	1173	1203	1209	1431	1143	1575	612	177	1260	465	390	141
	Terminal (nt)	1460816	1458198	1462128	1463516	1463934	1465123	1466373	1468548	1471413	1470154	1472907	1474119	1475693	1476294	1476519	1477809	1477929	1478503	1483335
	Initial (nt)	1458133	5039 1458968	5040 1461157	5041 1462134	1463533	1464083	1465210	1467376	1470211	1471362	1471477	1472977	1474119	1475683	1476343	1476550	1478393	1478892	1483475
	SEO	 -	5039	5040	5041	5042	5043	5044	5045	5046	5047	5048	5049	5050	5051	5052	5053	5054	5055	5056
		538	539			545	•	544	545	546	1547	548	1549	1550	1551	1552	1553	1554	1555	1556

EP 1 108 790 A2

Г	—	_	\neg	Т	\neg				7	\neg	\neg		7	_			=	7		
5	Function	cytidylate kinase	GTP binding protein			methyltransferase	ABC transporter	ABC transporter		hypothetical membrana protein		Na+/H+ antiporter			hypothetical protein	2-hydroxy-8-oxohepta-2,4-dienoste hydrolase	preprotein translocase SecA subunit	signal transduction protein	hypothetical protein	hypothelical protein
15	Matched length (a.a.)	220	435			232	499	602		257		499			130	210	805	132	234	133
20	Similarity (%)	736	74.0	Ì		67.2	60 1	56.3		73.2		61.5			57.7	63.8	61.7	93.2	74.4	63.2
	Identity (%)	38.6	45.8			36.2	29.7	31.2		39.7		25.7			36.9	25.2	35.2	75.8	41.9	30.8
S 52	ous gene	mk	PhC			uberculosis	striatum M82B	striatum M82B	-	K12 ygiE		ATCC 9372			K12 o249#9	ulgidus AF0675	secA.	smegmatis garA	uberculosis	uberculosis
	Homologous gene	Bacillus subtills cmk	Bacillus subtilis yphC			Mycobacterium tuberculosis Rv3342	Corynebacterium striatum M82B tetA	Corynebacterium striatum M82B tetB		Escherichia coli K12 ygiE		Bacilius subtilis ATCC 9372 nhaG			Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobacterium tuberculosis H37Rv Rv1828
40	db Match	sp.KCY_BACSU	sp:YPHC_BACSU			sp:YX42_MYCTU	рл.2513302В	prf.2513302A		sp:YGIE_ECOLI		gp.AB029555_1			sp.YCHJ_ECOLI	pir C69334	SP. SECA_BACSU	gp:AF173844_2	sp:Y0DF_MYCTU	sp.YODE_MYCTU
	ORF (bp)	980	1557 SF	999	498	813 s	1554 p	1767 p	825	789 s	189	1548 g	186	420	375 s	1184 p	2289 \$	429 9	756 \$	633 \$
45	Terminal (nt)	1504945	1508573	1506662	1507405	1507917	1510366	1512132	1510843	1512977	1514693	1512980	1514974	1515815	1515408	1515799	1519458	1520029	1520945	1521589
50	Initial (nt)	1504256	1505017	1507327	1507902	1508729	1508813	1510366	1511667	1512189	1514505	1514527	1515159	1515396	1515782	1516962	1517170	1519601	1520190	1520957
	SEQ NO.	-	5077	5078	5079	5080	5081	5082	5083	5084	5085	5086	5087	5088	5089	2090	5091	5092	5093	5094
55	SEQ NO (DNA)	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1589	1589	1590	1591	1592	1593	1594

utluned)
Cont.
Table 1

	İ	ļ								
	SEQ NO.	initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
	5095 15	1521771	1522343	573	sp:YODE_MYCTU	Mycobacterium tuberculosis H37Rv Rv1828	71.4	84.3	178	hypothetical protein
1.7	5096 15	1522941	1522432	510						
1 🔀	5097 15	1524500	1523052	1449						
	5098 15	1525374	1525973	900						
ıж	5099 15	1525497	1524568	930						
l io	5100 15	1526534	1525473	1062	1062 Sp.YHDP_BACSU	Bacillus subtilis yhdP	33.9	69.0	342	hemolysin
ĺ	5101 15	1527913	1526534	1380	1380 Sp.YHDT_BACSU	Bacillus sublilis yhdT	31.4	65.5	65	hemolysin
'n	5102 15	1527968	1528186	219						
N)	5103 15	1529330	1527987	1344	gp TTHERAGEN_1	Thermus thermophilus herA	41.2	69.5	374	DEAD box RNA helicase
10	5104 15	1529486	1530220	735	sp YD48_MYCTU	Mycobacterium tuberculosis H37Rv Rv1348	34.3	66.1	245	ABC transporter ATP-binding protein
'n	5105 15	1531816	1530341	1478	gsp:W27813	Brevibacterium flavum	0.66	99.2	492	8-phosphogluconate dehydroganase
<u>ان</u>	5106 15	1531933	1532394	462	pir G70664	Mycobacterium tuberculosis H37Rv Rv1847	39 7	8.79	121	thioesterase
2	5107 15	1532322	1532996	675						
S	5108 15	1533041	1533781	741	sp:NODI_RHIS3	Rhizobium sp. N33 nodl	39.6	68.1	235	nodulation ATP-binding protein I
2	5109 15	1533781	1534521	741	pir E70501	Mycobacterium tuberculosis H37Rv Rv1686c	43.1	76.3	232	hypothetical membrane protein
Š	5110 15	1535401	1534529	873	Sp.YFHH_ECOLI	Escherichia coli K12 yfhH	26.7	63.9	277	transcriptional regulator
ıO.	51111	1536227	1535382	846	sp:PHNE_ECOL!	Escherichia coli K12 phnE	29.9	63.4	281	phosphonates transport system permease protein
3	5112 15	1537030	1536227	804	sp:PHNE_ECOL!	Escherichia coli K12 phnE	27.2	62.3	268	phosphonates transport system permease protein
2	5113 15	1537833	1537030	804	sp PHNC_ECOLI	Escherichie coli K12 phnC	44.8	72.0	250	phosphonates transport ATP-binding protein
ا د	5114 15	1538759	1538968	210						
1615 5	5115 15	1538919	1537870	1050						
ı		i					1	!		

EP 1 108 790 A2

	Function		phosphomethylpyrimidine kinase	hydoxyethytthiazole kinase	cyclopropane-fatty-acyl-phospholipid synthase	sugar transporter or 4-mathyl-o- phthalate/phthalate permease	purine phosphoribosytransferase	hypothetical protein	arsenic oxyanion-transfocation pump membrane subunit		hypothetical protein	sulfate permease	hypothetical protein					hypothetical protein	dolichol phosphate mannose synthese	apolipoprotein N-acyltransferase		secretory lipase
	Matched length (a.a.)		262	249	451	468	156	206	361		222	469	6					10	217	527		392
	Similarity (%)		70.2	77.5	55.0	6.99	59.0	68.5	54.8		83.8	83.6	20.0					87.3	71.0	55.8		55.8
	identity (%)		47.3	46.6	28.6	32.5	36.5	39.8	23.3		62.2	51.8	39.0					71.8	39.2	25.1		23.7
Table 1 (continued)	Homologous gene		Salmonella typhimurlum thiD	Salmonella typhimurium LT2 thiM	Mycobacterium tubercutosis H37Rv ufaA1	Burkholderia cepacia Pc701 mop8	Thermus flavus AT-62 gpt	Escherichia coli K12 yebN	Sinorhizobium sp. As4 arsB		Streptomyces coelicolor A3(2) SCI7.33	Pseudomonas sp. R9 ORFA	_					Mycobacterium tuberculosis H37Rv Rv2050	Schizosaccharomyces pombe dpm1	Escherichia coli K12 int		Candida albicans lip1
	db Match		Sp:THID_SALTY	SP.THIM_SALTY	pir.H70830	prt 2223339B	prf.2120352B	So. YEBN ECOLI	gp:AF178758_2		gp:SCI7_33	ab PSTRTETC1 8	GP.PSTRTETC1_7					pir:A70945	prf.2317488A	Sp.LNT_ECOLI		gp:AF188894_1
	ORF (bp)	202	1=	804	1314	1386	474	669	986	483	693	1455	426	615	207	189	750	396	810	1635	741	1224
	Terminal (nt)	1538983	1539820	1542119	1546289	1546307	1547987		1550398	1550951	1552237	1553972	1553297	1554070	1555067	1554891	1555088	1556771	1557014	1557859	1559497	1560437
	Initial (nt)	1539884	1541403	1542922	1544978	1547692	1548440	1548651		1550480		1552518	!		1554861	1555079	1555835		1557823	1559483		
	SEQ NO	+			5119	5120	5121	5122	5123	5124	5125	21.28	5127	5128	5129	5130	5131		5133	5134	$\overline{}$	
	SEQ NO.				1619	1620	1621	1622	1623	1634	1625	1676	1627	1628	1629	1630	1631	1632	1633	1634	1835	1636

EP 1 108 790 A2

								_										_
	Function	precorrin 2 methyltransferase	precortin-8Y C5, 15- methyltransferase			oxidoreductase	dipeptidase or X-Pro dipeptidase		ATP-dependent RNA helicase	sec-independent protein translocese protein	hypothetical protein	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hypothetical protein
	Matched length (a.e.)	291	411			244	382		1030	268	88	317	324	467		61	516	159
	Simllarity (%)	56.7	80.8			75.4	61.3		55.7	62.7	69.4	61.2	64.8	77.3		80.3	74.2	20.0
	Identity (%)	31.3	32.4			54.1	36.1		28.5	28.7	44.7	31.9	32.4	53.1		54.1	48.6	42.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv cobG	Pseudomonas dentirificans SC510 cobL			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11 pepQ		Saccharomyces cerevisiae YJL050W dob1	Escherichia coli K12 tatC	Mycobacterium teprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae MLCB2533.25	Mycobacterium tuberculosis H37Rv Rv2097c		Mycobacterium tuberculosis H37Rv Rv2111c	Mycobacterium tuberculosis H37Rv Rv2112c	Aeropyrum pernix K1 APE2014
	db Match	pir.C70764	sp:COBL_PSEDE			sp:YY12_MYCTU	gp:AF014460_1		sp:MTR4_YEAST	sp.TATC_ECOLI	Sp:YY34_MYCLE	sp:YY35_MYCTU	SP:YY38_MYCLE	sp:YY37_MYCTU		pir.870512	pir.C70512	PIR:H72504
	ORF (bp)	774	1278	366	246	738	1137	639	2787	1002	315	981	972	1425	249	192	1542	480
	Terminal (nt)	1562553	1562525	1564237	1564482	1564565	1565302	1567106	1567117	1569932	1571068	1571508	1572492	1573491	1575205	1574945	1575406	1577806
	fnitial (nf)	1561780	1563802	1563872	1564237	1565302	1566438	1566468	1569903	1570933	1571382	1572486	1573463	1574915	1574957	1575136	1576947	1577327
	SEQ NO.	5137	5138	5139	5140	5141	5142	5143	5144	5145	5146	5147	5148	5149	5150	5151	5152	5153
	SEQ NO.	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653

										- 1	1	1	- 1	- 1		- 1			
5	uo	(chaperone-like	ite	lase		s protein	protein	-lyase	Itransferase	mutase	olate- yltransferase		reductase	e protein				thetase	
10	Function	AAA (smily ATPase (chaperone-like function)	protein-beta-aspartate methyltransferase	aspartyl aminopeptidase	hypothetical protein	virulence-associated protein	quinclon resistance protein	aspartate ammonia-lyase	ATP phosphoribosyltransferase	beta-phosphoglucomutase	5-methyltetrahydrofolate- homocysteine methyltransferase		alkyl hydroperoxide reductase subunit F	arsenical-resistance protein	arsenate reductase	arsenate reductase		cysteinyl-tRNA synthetese	
15	Matched length (a.a.)	545	281	436	269	69	385	526	281	195	1254		366	388	129	123		387	
20	Similarity (%)	78.5	79.0	67.2	71.4	72.5	61.0	83.8	87.5	63.1	62.4		49.5	63.9	64.3	75.6		2	
	Identity (%)	51.8	57.3	38.1	45.4	40.6	21.8	8.66	86.8	30.8	31.6		22.4	33.0	32.6	47.2		35.9	
25 (penult	ene.	polis arc	e pimT		culosis	us A198	rus norA23	rtamicum irh) MJ233	ıtamicum	a MSB8	metH		estris ahpF	evisiae cr3	eus plasmid	rculosis		cysS	
& Table 1 (continued)	Homologous gene	Rhodococcus erythropolis arc	Mycobacterium leprae pimT	Homo sapiens	Mycobacterium tuberculosis H37Rv Rv2119	Dichelobacter nodosus A198 vapl	Staphylococcus aureus norA23	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 aspA	Corynebacterium glutamicum ASO19 hisG	Thermotoga maritima MSB8 TM1254	Escherichla coll K12 metH		Xanthomonas campestris ahpF	Saccharomyces cerevislae S288C YPR201W acr3	Staphylococcus aureus plasmid pl258 arsC	Mycobacterium tuberculosis H37Rv arsC		Escherichia coli K12 cysS	
35 40	db Match	prf.24223820	pir:S72844 N	gp: AF005050_1		Sp.VAPI_BACNO	prf.2513289A	sp.ASPA_CORGL	gp:AF050188_1	plr:H72277	sp:METH_ECOLI		SP. AHPF_XANCH	sp.ACR3_YEAST	sp.ARSC_STAAU	pir.G70964		sp SYC_ECOLI	
	ORF (bp)	1581	834	1323	834	264	1209	1578	843	693	3663	570	1026	1176	420	639	378	1212	١
45	Terminal (nt)	1576951	1578567	1579449	1581640	1582114	1582273	1583913	1585603	1586812	1587573	1591912	1591941	1594512	1594951	1595668	1595844	155	
50	Initial (nt)	1578531	1579400	1580771	1580807	1581851	1583481		1586445	1587504	1591235	1591343	1592966	1593337	1594532	1595030	159621		
	NO SEO	(a.a.)	5155	5156	5157	5158	5159	5160	5161	5162	5163	5164		5166	5167	5168	5169		
55	-	1654	- T	1656	1657	1658	1859	1660	1661	1662	1663	1664	1665	1666	1667	1668	1669	1670	

							_						_				_	_		
5		Function	bacitracin resistance protein	oxidoreductase	lipoprotein	dihydroorotate dehydrogenase			Iransposase		bio operon ORF I (biotin biosynthetic enzyme)	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics		ABC transporter		ABC transporter		puromych N-acetyltransferase	LAO(lysine, erginine, and ornithine)/AO (erginine and ornithine)/transport system kinase	methylmalonyl-CoA mutasa alpha subunit
15		Matched length (a.a.)	255	326	359	334			360		152	198		597		535		58	338	741
20		Similarity (%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		68.7		67.1		58.4	72.3	87.5
	• [identity (%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		36.8		32.4	43.1	72.2
25	Table 1 (continued)	us gene	12 bacA	nefaciens	berculosis	ura1			Ingae tnpA		12 ybhB	ridis		striatum M82B		striatum M82B		ulatus pac	(12 argK	namonensis
<i>30</i>	Table 1 (c	Homologous gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppL	Agrocybe aegerita ura1			Pseudomonas syringae tnpA		Escherichia coli K12 ybhB	Nelsseria meningitidis		Corynebacterium striatum M82B tetB		Corynebacterium striatum M82B tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces clnnamonensis A3823.5 mutB
40		db Match	SP.BACA_ECOLI	prf.2214302F	pir:F70577	SP: PYRD_AGRAE /			gp.PSESTBCBAD_1		SP:YBHB_ECOLI	GSP.Y74829		prf.2513302A		prf.2513302B		pir.JU0052	sp.ARGK_ECOLI	2211 SP.MUTB_STRCM
		ORF (bp)	879	948	666	1113	351	208	1110	488	531	729	603	1797	249	1587	351	609	1089	
45		Terminal (nt)	1597745	1599814	1800877	1601804	1601931	1603466	1604629	1604830	1605281	1606689	1608248	1605861	1609335	1607661	1609842	1610844	1611150	1812234
50		Initial (nt)	1598623	1598667	1599679	1600692	1602281	1602660	1603520	1605315	1605811	1605961	1607646	1607657	1609087	1609247	1610192	1610236	1612238	161444
,		SEQ NO.	1	5172	5173	5174	5175	5176	5177	5178	5179	5180	5181	5182	5183	5184	5185	5188	5187	5188
55		SEQ NO.	1871	1672	1673	1874	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688

EP 1 108 790 A2

•				T	$\overline{}$		- T	T			Т		$\neg \neg$		- 1	ł	- 1		
	Function	methylmalonyl-CoA mutase beta subunit	hypothetical membrane protein		hypothetical mambrane protein	hypothetical membrane protein	hypothetical protein		ferrochelatase	Invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein	
	Matched length (a.a.)	610	224		370	141	261		364	611		959	174	235	221	88		446	
	Similarity (%)	68.2	70.1		97.0	78.7	72.8		65.7	58.5		85.9	81.6	51.9	62.0	80.2		1.98	
	identity (%)	41.6	39.7		64.1	44.7	51.0		36.8	25.5		6.69	54.6	21.3	32.6	37.2		61.2	
Table 1 (continued)	Homologous gene	Streptomyces cinnamonensis A3823.5 mutA	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24		Proplonibacterium freudenrelchil subsp. Shermanii hemH	Streptococcus faeclum		Mycobacterium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus jannaschii MJ1575 guaA	Streptomyces coelicolor A3(2) SCD82.04c	Methanococcus jannaschil MJ1558		Neisseria meningitidis MC58 NMB1652	
	db Match	SP.MUTA_STRCM	sp:YS13_MYCTU		sp:YS09_MYCTU	pir:870711	gp.SCC77_24		SP. HEMZ_PROFR	sp:P54_ENTFC		pir:F70873	pir.E70873	pir.F64496	gp:SCD82_4	pir.E64494		gp:AE002515_9	
	ORF (00)	1848	723	597	1296	435	643	783	1110	1800	498	2829	564	756	663	267	383	1392	
	Terminal (nt)	1614451	1617300	1617994	1618321	1819872	1620167	1621838	_	1623027	1625428	1629107	1629861	1630668	1630667	1631926	1631353	1633324	
	Initial (nt)	1616298	1616578	1617398	1619616	1620108	1621009	1621056		1624826	_		1629298	1629913	1631329	1631660	1631745		
	SEO	(a.a.) 5189	5190	5191	5192	5193	5194	5195	5196	5197	5198	5199	5200	5201	5202	5203	5204		
		(DNA)	1690	1691		1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705	

	Function	antigenic protein	antigenic protein	B	cation-transporting ATPase P		hypothetical protein						host cell surface-exposed iipoproteiii	Integrase	ABC transporter ATP-binding protein			Stelidese	transposase (IS1628)	transposase protein fragment	hypothetical protein		esemples of the second of the	0101-1-4810-1-111811111-1-0184-1-1-1018	nitragen fixation protein
	Matched length (a.a.)	113	153	3	883		120						107	154	497			387	236	37	88		1	è	149
	Similarity (%)	0.08	0 00	03.0	73.2		58.3						73.8	60.4	84 4			72.4	100.0	72.0	43.0		╀	ē	85.2
	Identity (%)	54.0		28.0	42.8		35.8						43.0	34.4	3 8			51.9	93.0	64.0	32.0			32.7	63.8
Table 1 (continued)	Homologous gene	DE24	Neisseria gonormoede On En	Neisseria gonorrhoeae	Synechocystis sp. PCC6803 sil1614 pma1		Streptomyces coelicolor A3(2) SC3D11,02c						Streptococcus thermophilus	Occupantion 3041 int	Sir Cook and and and and and and and and and and	Escherichia coil N 12 yijn		Micromonospora vindifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Corynebacterium glutamicum			Ve and Control of the	Pyrococcus abyssi Crsay PAB1087	Mycobacterium leprae MLCL536.24c nifU7
	db Match		GSP:Y38838	GSP: Y38838	Ž 3		gp:SC3D11_2						prf.2408488H	-+	$\overline{}$	sp:YJJK_ECOLI		1182 SP.NANH_MICVI	gp:AF121000_8	GPU.AF164956_23				pir.B75015	pir.S72754
	ORF (bb)	-	480	458	1	783	489	1382		357	156	162	375		456	1629	1476		708	243	-		288	423	1 447
	Terminat	(1111)	1632109	1632682	1636241	1072701		CAABCA	1000	1638778	1639520	1639817	1640155		1641001	1641048	1642743	1644318	1646368	1646083		1645601	1647133	1647212	1647651
	-	Ē	1832588	+-			1636732	1007.00	102/201	1839132	1639365	1639656	1639781		5216 1640546	1642674	1644218	1645499		1845821		1845861	1646549	1647634	1648097
	SEO	(3.3.)	5208	2007			52.09		172	5212	5213	5214			5216	5217	5218			500	_	5222	5223	5224	5225
	SEO	_	1708		2 6		1/09		1/1	1712	1713	1714		16.13	1716	1717	1718	1719	1720		7).	1722	1723	1724	1725

EP 1 108 790 A2

	Function	hypothelical protein	nitrogen fixation protein	ABC transporter ATP-binding protein	hypothetical protein	ABC transporter	DNA-binding protein	hypothetical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		helicase	quinone oxidoreductase	cytochrome o ublquinol oxidese essembly factor / heme O synthase	transketolase	transaldolase	
	Matched tength (s.a.)	52	411	252	377	493	217	518	317	266	291		418	323	295	875	358	
	Similarity (%)	67.0	84.4	89.3	83.0	73.0	71.4	67.8	77.3	74.8	74.6		51.0	70.9	86.8	100.0	85.2	
	identity (%)	48.0	84.7	70.2	55.2	41.0	46.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	100.0	62.0	
Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE2025	Mycobacterium leprae nifS	Streptomyces coelicolor A3(2) SCC22.04c	Mycobacterium tuberculosis H37Rv Rv1482	Synechocystis sp. PCC6803 str0074	Streptomyces coelicolor A3(2) SCC22.08c	Mycobacterium tubercutosis H37Rv Rv1459c	Mycobacterium leprae MLCL538.31 abc2	Mycobacterium leprae MLCL538.32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus horikoshli PH0450	Escherichia coll K12 qor	Nitrobacter winogradskyi coxC	Corynebacterium glutamicum ATCC 31833 tkt	Mycobacterium leprae MLCL536.39 tal	
	db Match	PIR:C72508	plr.S72781	gp.SCC22_4	pir.A70872	sp:Y074_SYNY3	gp:SCC22_8	pir.F70871	plr:S72783	pir.S72778	pir.C70871		pir.C71158	Sp. GOR_ECOLI	gp:NWCOXABC_3	gp:AB023377_1	1080 SP.TAL_MYCLE	
	ORF (bp)	162	1283	758	1176	1443	693	1829	1020	804	666	357	1629	975	696	2100	980	<u>-</u>
	Terminal (nt)	1648709	1648100	1649367	1650249	1651433	1652894	1655671	1656700	1657515	1658675	1659140	1661136	1662552	1662630	1666502	1667752	1666601
	Initial (nt)	1648548	1649362	1650122	1651424	1652875	1653586	1654043	1655681	1656712	1857677	1659496	1659508	1661578		1664403	1666673	1667764
	SEO NO.	+			5229	5230	5231	5232	5233	5234	5235	5236	5237	5238	5239	5240	5241	5242
	SEO	_	+	+	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742

	c		Jcose 6-	Phase	ctonese)Therase	s protein	Insse	hosphate				subunit C
	Function	glucose-6-phosphate dehydrogenase	oxpocycle protein (glucose 6-	phosphate dehydrogenase assembly protein)	8-phosphogluconolactonase	sarcosine oxidase	transposase (IS1676)		sarcosine oxidase					triose-phosphate isomerase	probable membrane protein	phosphogiycerate kinase	glyceraldehyde-3-phosphate dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	excinuclease ABC subunit C
Matched	length (a.a.)	484		318	258	128	200		205					259	128	405	333	324	308	281	701
	Similarity (%)	100.0		71.7	58.1	57.8	46.6		0.00					9.66	51.0	98.5	99.7	87.4	82.5	78.2	61.5
	Identity (%)	8.66		40.6	28.7	35.2	24.8		100.0				1	99.2	37.0	98.0	99.1	63.9	56.3	52.0	34.4
Table 1 (continued)	Homologous gene	Brevibacterium flavum		Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae S288C YHR163W sol3	Bacillus sp. NS-129	olicanos estad	Rhodococcus erymiopons	Corynebacterium glutamicum ATCC 13032 soxA					Corynebacterium glutamicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glutamicum	Corynebacterium glutamicum	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Synechocystis sp. PCC6803
	db Match	1407842	gsp.vvc.io.ic	pir.A70917	sp.SOL3_YEAST	SACK BACSN	שהיים לטעה של	gp:AF126281_1	gp:CGL007732_5					sp.TPIS_CORGL	SP:YCQ3_YEAST	BD: PGK CORGL		pir.D70903	Sp.YR40_MYCTU	so.YR39 MYCTU	2088 SP.UVRC_PSEFL
}	9 (g	1	70.01	957	705	18	403	146	840	174	207	è i	981	777	408	1215		981	1023	9	
	Terminal (nt)		1669401	1670375	1671099		5/71/91	1673123	1673268	1677384		0/00/01	1680128	1680332	1681670	1681190		1 8		9	, <u>1</u>
	Initial (at)		1687950	1669419	1670395		1671677	1671723	1674105	167731		_+	1679148	1681108	1681263	4682404					
	SEO	3	5243	5244	5245		5246	5247	5248	6240	-	2220	5251	5252	5253					_	5259
		(AN)	1743	1744	1745		1746.	1747	1748	100	2	120	1751	1752	1753	.764	754	4756	757		1750

	Function	hypothetical protein	6,7-dimethyl-8-ribityllumazine	polypeptide encoded by rib operon	riboflavin blosynthetic protein	polypeptide encoded by rib operon	GTP evelohydrolase II and 3, 4-	dihydraxy-2-butanone 4-phosphate synthase (riboflavin synthesis)	riboffavin synthase alpha chain	riboflavin-specific deaminase		ribulose-phosphate 3-epimerasa	nucleolar protein NOL1/NOP2 (eukaryotes) family	methionyl-IRNA formyltransferase	polypeptide deformy888	reignocome profelo n°		S-additional sympathetic sympathetic	navoprotein	hypothetical protein	guanylate kinasa	Integration host factor	
l	Matched length (a.a.)	150	154	22	Ι.	Τ	Т	404	211	385		234	448	308	5	36	57/) F	409	.	188	505	3
	Similarity (%)	68.7	72.1	68.0	48.0	52.0	3	84.7	79.2	63.7		73.1	60.7	67.0		/8/	5.0	286	80.9	67.7	74.7	8	20.5 20.5
	dentity (%)	32.7	43.5	59.0	2 0	2 2	ş	65.6	47.4	27.3	3	43.6	30.8	8 17	?	44	22.9	88	58.0	70.4	39.8	9	80.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Harry Kultii	in the state of th	Bacillus subvills	Bacilius subtilis	Bacillus subtills	Mycobacterium tuberculosis ribA	Actinobacillus	Car Cry :	Escherichia coii N12 nou	Saccharomyces cerevisiae	Escherichia coli K12 sun		Pseudomonas aeruginosa init	Bacillus subtills 168 def	Escherichia coli priA	Bravibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis	Saccharomyres rerevisiae duk1	Macabactarium tuberculosis	H37Rv Rv1388 mIHF
	db Match	SP. YR35 MYCTU		sp.risb_cccr	GSP.Y83273	GSP:Y83272	GSP:Y83273	gp:AF001929_1	SD:RISA ACTPL		Sp. RIBD_ECOLI	SP.RPE_YEAST			Sp.FMT_PSEAE	SP.DEF_BACSU	2064 Sp. PRIA_ECOLI	gsp:R80060	sp.DFP_MYCTU	1	\neg	pirkibtoo	pir.B70899
	ORF (bg)			 †	228	714	336	1266	833		984	657	,		945	507	1	T	1260	291	-+	25	318
	Terminal	100001	1028001	1689869	1690921	1691421	1691347	1690360	1601670	201601	1692275	1693262	100000	/ DRFRQL	1695499	1696466	1697084	1699177		1702032	:	1702411	1702991
	Initial			1690345	1690694	1690708	1691012	1691625	150001	1 177601	1693258	1693918		1695298	1696443	1696972			1701787			1703037	1703308
	SEQ.			5281	5262	5263	5264		200	0070	5287	5268		5269	5270		_					5276	5277
	SEQ		1760	1761	1762	1763	_		101	1/60	1767	1768		1769	1770	1771	522	12.	1774	1 5		1778	1777

	Function	orotidine-5'-phosphate decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyl-phosphate synthase small chain	dihydroorotase	aspariate carbamoytransferase	phosphoribosyl transferase or pyrimidine operon regulatory protein	cell division inhibitor				N utilization substance protein B (regulation of rRNA blosynthesis by transcriptional antitermination)	elongation factor P	cytoplasmic peptidase	3-dehydroquinale synthase	shikimale kinase	type IV prepilin-like protein specific leader peptidase
	Matched length (a.a.)	276 orol	1122 carl	381 carl	402 dih)	311 asp	176 pho pyr	297 cell	-	-		N u 137 (reg	187 elo	217 cyt	361 3-4	166 shii	142 typ
	Similarity 16 (%)	73.6	17.5	70.1	67.7	78.7	80.1	73.4	-	-		69.3	98.4	100.0	99.7	100.0	54.9
	Identity S (%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7				33.6	97.9	99.5	98.6	100.0	35.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv uraA	Escherichia coli carB	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 pyrR	Mycobacterium tuberculosis H37Rv Rv2218	•			Bacillus subtilis nusB	Brevibacterium lactofermentum ATCC 13869 efp	Corynebacterium giutamicum AS019 pepQ	Corynebacterium glutamicum AS019 aroB	Corynebacterium glutamicum AS019 aroK	Aeromonas hydrophila tapD
	db Match	sp.DCOP_MYCTU	pir:SYECCP	Sp.CARA_PSEAE	sp:PYRC_BACCL	Sp.PYRB_PSEAE	Sp.PYRR_BACCL	sp.Y00R_MYCTU				Sp.NUSB_BACSU	sp.EFP_BRELA	gp:AF124600_4	gp:AF124600_3	gp:AF124600_2	411 sp.LEP3_AERHY
	ORF (gg)	834	3339	1179	1341	936	576	1164	477	462	210	681	561	1089	1095	492	4=1
	Terminal (nt)	1703517	1704359	1707706	1709011	1710413	1711352	1713759	1714306	1714760	1714950	1715382	1716132	1716780	1717938	1719107	1720971
	initial (nt)	1704350	1707697	1708884	1710357	1711348	1711927	1712596	1713830	1714289	1714741	1716062	1716692	1717868	1719032	1719598	1721381
	SEQ NO (8.8)	5278	5279	5280	5281	5282	5283	5284	5285	5286	5287	5288	5289	5290	5291	5292	5293
	SEQ NO.		1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793

EP 1 108 790 A2

_										ı	- 1	- 1	1	- 1		·	ı	1	
	Function	bacterial regulatory protein, arsR family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothetical protein	hypothetical protein	alanyi-tRNA synthetase	hypothetical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-aipha-glucosidase	phage infection protein		transcriptional regulator	
	Matched length (a.a.)	83	340		373	230	259	395	181	894	454		591	297	839	742		192	
	Similarity (%)	68.7	73.2		50.7	7.17	0.09	70.1	69.6	71.8	84.8		89.2	74.1	53.8	54.0		62.0	
	identity (%)	45.8	35.9		23.6	38.3	50.0	41.8	52.8	43.3	65.4		E	46.1	26.1	23.1		29.2	
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU		Pyrococcus abyssi Orsay PAB0349	Bacilius subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacilius ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae S288C YIR019C sta1	Bacillus subtills yhgE		Streptomyces coelicolor A3(2) SCE68.13	
	db Match	gp:SC1A2_22	gp:AF109162_2		pir.A75169	ep:FHUC_BACSU	pir:D70660	pir.E70660	pir:F70660	sp:SYA_THIFE	sp:Y0A9_MYCTU		SP:SYD_MYCLE	sp:Y0BQ_MYCTU	sp.AMYH_YEAST	\$P:YHGE_BACSU		gp:SCE68_13	
	ORF (bp)	SS	1074	909	957	753	828	1167	546	2664	1377	1224	1824	89.1	2878	1857	648	594	
	Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1726625	1727385	1730168	1731599	1732988	1735946	1736004	1738713	1740572	1741906	
	Initial (nt)	1721725	1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1734811	1735056	1738679	5308 1740569	1741218	1741313	
	SEO		5295	5296	5297	5298	5299	5300	5301	5302	5303	5304	5305	5306	5307		5309	5310	
	SEO NO NO		1795	1798		1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810	

	Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydratase		alpha-glycerolphosphate oxidase	histidy-IRNA'synthetase	hydrolese	cyclophilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeptide transport system	hypothetical protein	protein-export membrane protein	
	Matched length (s.a.)		371		116	462		298	421	211	175		128		760	185	49	855	332	
	Similarity (%)		88.1		97.7	71.4		63.9	72.2	62.1	61.1		100.0		6.68	100.0	98.8	80.9	57.2	
	Identity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		86.6	99.5	98.0	30.7	25.9	
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1 sifA	Escherichia coli K12 sdaA		Enterococcus cassellflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter Jejuni NCTC11168 CJ0809c	Streptomyces chrysomalius sccypB		Corynebacterium glutamicum ATCC 13032 orf4		Corynebacterium glutamicum ATCC 13032 rei	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 ddAE	Mycobacterium tuberculosis H37Rv Rv2585c	Escherichia coli K12 secF	
	db Match		gp:SCE15_13		SP:SLFA_PSEAE	sp:SDHL_ECOLI		pri:2423362A	SYH_STAAU	gp:CJ11168X3_12 7	pri:2313309A		gp:AF038651_4		gp:AF038651_3	gp:AF038651_2	gp:AF038651_1	sp Y08G_MYCTU	sp SECF_ECOLI	
	ORF (bp)	714	1113	128	495	1347	198	1686	1287	638	207	237	555	342	2280	555	5 .	1743	1209	830
	Terminal (nt)	1742608	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750833	1751200	1752051	1752527	1752815	1754925	1755599	1755486	1757589	1760336
	Initial (nt)	1741893	1742701	1743843	1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964	1751497	1752186	1754894	1755479	1755748	1757228	1758797	1759707
	SEQ NO.	5311	5312	5313	5314	5315	5316	5317	5318	5319	5320	5321	5322	5323	5324	5325	5326	5327	5328	5329
	SEQ NO.	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829

EP 1 108 790 A2

	Function	protein-export membrane protein	hypothelical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclesse	hypothetical protein	acyl-CoA thiolesterase	hypothetical protein	hypothetical protein	hexosyltransferase or N- acetylglucosaminyl- phosphatidylinositol biosynthetic protein	acyltansferase	CDP-diacylglycerol-glycerol-3- phosphate phosphatidyltransferase	histidine triad (HIT) family protein	threonyl-IRNA synthetase	hypothetical protein			
:	Metched length (a.a.)	616	108	331	210	180	250	283	111	170	414	295	78	194	647	400			
	Similarity (%)	52.0	0.99	81.9	74.3	63.3	78.4	88.6	61.3	61.2	49.3	67.8	78.0	. 78.4	6.89	81.8			
	Identity (%)	24.4	39.6	55.3	45.2	35.8	49.2	38.5	31.5	38.2	21.7	48.4	48.2	54.6	42.0	34.3			
Table 1 (continued)	Homologous gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF248 yebC	Escherichia coll K12 tesB	Streptomyces coelicolor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces cerevisiae S288C spt14	Streptomyces coelicolor A3(2) SCL2.18c	Mycobacterium tuberculosis H37Rv Rv2812c pgsA	Mycobacterium tuberculosis H37Rv Rv2813c	Bacillus subtills thrZ	Bacillus subtills ywbN			
	db Match	prf.2313285A	sp:Y080_MYCLE	Sp:RUVB_ECOLI	SP.RUVA_MYCLE	sp.RUVC_ECOLI	sp:YEBC_ECOLI	SP.TESB_ECOLI	gp.SC10A5_9	pir.H70570	1083 sp.GPI3_YEAST	gp.SCL2_16	pir.C70571	pir:D70571	sp.SYT2_BACSU	SP:YWBN_BACSU			
	ORF (bp)	1932	363	1080	818	663	753	846	474	462	+	88	657	980	2058	1208	564	546	735
	Terminal (nt)	1758803	1761005	1781419	1762517	1763177	1783990	1765015	1766442	1766487	1788948	1768034	1769022	1769681	1770327	1772658	177444	1773893	1774457
	Initial (nt)	1760734	1761367	1762498	1763134	1763839	1764742	1765860	1765969	1766948	1768030	1768996	1769678	1770340	1772384	1773863	1773881	1774438	1775191
	SEO NO 18.8	5330	5331	5332	5333	5334	5335	5336	5337	5338	5339	5340	5341	5342	5343	5344	5345	5348	5347
	SEQ NO (DNA)	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847

EP 1 108 790 A2

5	Function						puromycin N-acetyltransferase											ferric transport ATP-binding protein					pantothenate metabolism flavoprotein		
15	Matched length (a.a.)						180											202					129		
20	Similarity (%)						64.2											28.7					66.7		
	identity (%)						36.3											28.7					27.1		
25 (penul	ene						s pac				-							ပ္					<u>و</u>		
8 Table 1 (continued)	Homologous gene						Streptomyces anulatus pac											Actinobacillus pleuropneumoniae afuC					Zymomonas mobilis díp		
35	db Match						SP.PUAC_STRLP											SP. AFUC_ACTPL					gp:AF088896_20		
	ORF (bp)	378	594	1407	615	399	587 8	1086	1101	669	2580	1113	1923	483	189	312	429	s 783	668	159	1107	420	S91 g	884	420
45	Terminal (nt)	1777846	1778037	1778102	1779554	1780507	1781019	1782790	1784381	1783382	1782894	1785732	1786907	1789562	1789768	1790057	1790461	1792438	1793426	1793496	1794820	1795621	1796181	1797049	1797789
50	Infilal (nt)	1777269	1777444	1779508	1780168	1780905	5353 1781585	1781705	1783281	1784080	1785473	5358 1786844	1788829	1789080	1789580	1789746	5363 1790889		5365 1792428	1793654	1793714	1795202	1795591	1798186	5371 1797350
	SEQ NO.	5348	5349	5350	5351	5352		5354	5355	5358	5357	_	5359	5360	5361	5362				5366	5367	5368	5369	5370	5371
55	SEQ NO (DNA)	1848	1849	1850	1821	1852	1853	1854	1855	1858	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871

EP 1 108 790 A2

5																				/ase			stase		
10	Function																			transposon TN21 resolvase			protein-tyrosine phosphatase		
15	Matched length (a.a.)																			186			164		
20	Similarity (%)																			78.0			51.8		
	Identity (%)																			51.1			29.3		_
25 (panujuo	s gene																			PR			revisiae vh1		
& Table 1 (continued)	Homologous gene																			Escherichia coll tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		
35																									
40	db Match																			Sp.TNP2_ECOLI			Sp:PVH1_YEAST		
	ORF (bp)	120	735	225	894	156	474	753	423	289	429	465	237	681	960	480	681	285	375	812	1005	375	477	726	423
45	Terminal (nt)	1797850	1798023	1799406	1800366	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807398	1808113	1808421	1808832	1810372	1811545	1811938	1812691	1813606	1812460
50	fnitial (nt)	1797969	1798757	1799182	1799473	1800604	1800834	1801344	1802577	1802733	1803465	1804134	1804629	1804919	1805727	1808917	1807433	1808137	1808458	1809761	1810541	5392 1811564	1812215	1812881	5395 1812882
	SEO NO.	5372	5373	5374	5375	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391		5393	5394	
55	SEO NO (DNA)	1872	1873	1874	1875		1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895

			\neg		\neg																		
5	Function	sporulation transcription factor									hypothetical protein					hypothetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		primase
15	Matched length (a.a.)	218									545					166	298	101			622		381
20	Similarity (%)	65.7									55.2					75.0	92.6	84.2			9.03		64.3
	Identity (%)	34.3									22.6					63.0	87.9	72.3			24.0		31.8
S S Table 1 (continued)	us gene	licolor A3(2)									ima MSB8					glutamicum	giutamicum	glutamicum			emi reവ		age phi-O1205
30 Table 1 (Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermotoga maritima MSB8 TM1189		,			Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf1			Erwinia chrysanthemi recJ		Streptococcus phage phi-O1205 ORF13
40	db Match	gp:SCA32WHIH_6		-							pir.C72285					PIR:S60891 C	pir:S60890	pir.S60889			Sp.RECJ_ERWCH		pir.T13302
	ORF (bp)	738	789	456	186	672	417	315	369	207	2202	1748	219	144	429	534	894	294	213	1299	1878	780	1650
45	Terminal (nt)	1814517	1815651	1816128	1816636	1817803	1818219	1818774	1819168	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
50	Initial (nt)	1813780	1814863	1815673	1816451	1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825606	1826024	5411 1826644	1826937	1829900	1830765	1832167	1834928	1836675
	SEQ NO.	5396	5397	5398	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
55	SEQ NO (DNA)	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917

5	Function				helicase		phage N15 protein gp57										actin binding protein with SH3 domains					ATP/GTP binding protein		ATP-dependent Clp proteinase ATP-binding subunit
15	Metched length (a.a.)				620		109										422					347		630
20	Similarity (%)				44.7		64.2										49.8					52.5		61.0
	identity (%)				22.1		36.7										28.7					23.6		30.2
25 (panuliuned)	gene				oniae ATCC		gene57										es pombe			İ	į	olor		clpA
& Table 1 (continued)	Homologous gene				Mycoplasma pneumoniae ATCC 29342 yb95		Bacteriophage N15 gene57										Schizosaccharomyces pombe SPAPJ760.02c					Streptomyces coelicolor SCSC7.14		Escherichia coli K12 cipA
35																								
40	db Match				sp:Y018_MYCPN		pir:T13144										gp:SPAPJ760_2					gp:SC5C7_14		sp:CLPA_ECOLI
	ORF (bp)	3789	447	534	1839	375	336	366	618	537	528	798	186	372.	438	9/9	1221	852	1395	594	180	1257	1854	1965
45	Terminal (nt)	1842137	1842681	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	1860727
50	Initial (nt)	1838349	1842235	1842804	1843518	1845483	1845872	1848698	1847315	1847938	1848509	1848988	1849781	1850035	1850415	1851049	1851220	1851473	1852479	1854261	1855058	1855532	1856885	5440 1858763
	SEQ.	5418	5419	5420	5421	5422	5423	5424	5425	5426	5427	5428	5429	5430	5431	5432	5433	5434	5435	5436	5437	5438	5439	
55	SEQ NO (DNA)	1918	1919	1920	1821	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940

-			1	τ -	1	Τ_	$\neg au$	T	T	1	١	i	1	1	- J	1			1	l	ı	1	1	1
5	tion						elicase					ų.	nonophosphate					ē		endonuclease			ein	
10	Function						ATP-dependent helicase					hypothetical protein	deoxynucleotide monophosphate kinase					type II 5-cytosolne	methyltransferase	type II restriction endonuclease			hypothetical protein	
15	Matched	(a a)		T			693					224	208					1	363	358			504	
20	Similarity	8					45.9					47.8	61.5						89.7	99.7		-	45.8	_
	Identity	8					21.4					25.9	31.7				-	1	99.2	7.66	_	_	24.8	
<i>25</i> (panu		J. C					s SAZ0					lor A3(2)	11 gp52					minime	larmic um	tamicum			olor A3(2)	
% Table 1 (continued)		Hamolagous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52						Corynebacterium giutamicum ATCC 13032 cgllM	Corynebacterium glutamicum ATCC 13032 cgilR			Streptomyces coelicolor A3(2) SC1A2.16c	
35	1	db Match					SP.PCRA_STAAU					gp:SCH17_7	prf:2514444Y						prf.2403350A	pir.A55225			gp.SC1A2_16	
	-	(gd)	474	158	324	312	2355 sp	558	378	465	264	777	702 pr	225	237	2166	273	6507	1089 p	1074 p	1521	717	1818 9	186
45		Terminal (0) (nt) (1)	1861225 4	1861475	1861519	1862399	1865299 2	1865822	1866219	1866792	1867095	1867874	1868587	1068671		927	틸	1871380	1879400	1880485	1882470	1884220	1887047	1887590
50	\vdash	Initial (nt)	1860752	1861320	1861842	1862088	1862945	1865265	1865842	1856328	1866832		1867886	300000	C699991	1871092	1871373	1877886	5456 1878312	1879412	1883990	1884936		1887405
	000		+-	5442 1		5444	5445	5446	5447						2427	5453	5454	5455		5457	5458	5459		5461
55	-	NO (SNO)		- -		1944		1946	1947	-	_		1951		1952	1953	1954	1955	1956	1957	1958	1959	1960	1961

EP 1 108 790 A2

5

	Function	SNF2/Rad54 helicase-related protein	hypothetical protein		hypothetical protein				endopeplidase Clp ATP-binding chain B							nuclear mitotic apparatus protein									
	Matched length (a.a.)	06	163		537				724					ļ		1004									
	Similarity (%)	70.0	56.4		47.9				52.5							49.1									
	Identity (%)	46.7	33.1		20.7				25.3							20.1									
Table 1 (continued)	Homologous gene	Delnococcus radiodurans OR1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coll cipB							Homo sapiens numA									
	db Match	gp:AE001973_4	pir.T13226 ·		gp:AF188935_16				sp.cLPB_ECOU							plr:S23647									
	ORF (명)	351	864	330	1680	1208	1293	2493	1785	621	1113	846	981	879	198	2766	909	1251	969	714	1008	1659	1488	339	1509
	Terminal (nt)	1887688	1888231	1889859	1890028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333	1913973	1914725
	initial (nt)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	1900918	1901911	1901975	1902883	1903028	1905878	1906572	1907914	1908660	5480 1909498	1910508	1912300	1913820	5484 1914371	1916233
	SEQ NO.	5462	5463	5464	5465	5466	5467	5468	5469	5470	5471	5472	5473	5474	5475	5476	5477	5478	5479	5480	5481	5482	5483	5484	5485
	SEQ NO (DNA)	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985

EP 1 108 790 A2

			_					_	_		_		_	_	_	_	_	_							
5	6										£			\$0											
10	Function										submaxillary apomucin			modification methylase					hypothetical protein			hypothetical protein			
15	Matched length	(a.a)									1408			61					114			328			
20	Si.	R									49.2			65.6					58.8			54.6			
	Identity	R P		_							23.2			42.6					38.6			27.1			
25	92	 																	losis			iji.			
30 Sable 1 (Continued	Homologous gene										Sus scrofa domestica			Escherichia coll ecoR1					Mycobacterium tuberculosis H37Rv Rv1956	-		Methanococcus jannaschii MJ0137			
40	db Match										pir.T03099			Sp:MTE1_ECOLI					pir.H70638			sp:Y137_METJA			
	OR F		98	222	312	759	549	930	306	357	4464	579	945	171	375	1821	201	468	381 P	202	837	942 s	624	210	534
45	Terminal	(max)	1916733	1917165	1917564	1918703	1919646	1920347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1930990	1931421	1931935	1932373	1933522	1934971	1936849	1937411	1937486
50	Initial	(111)	19163/4	1916944	1918208		5491 1920194	1921276	1925390	1925682	1926010	1926837	1928189	5498 1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	5509 1938019
	SEO		2486		5489		5491	5482	5493	5494	5495	5496	5497		5499	5500	5501	5502	5503	5504	5055	5506	5507	5508	5509
55	SEQ	(DNA)	1986	1987	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999			2002	2003	2004	2005	2008	2002	2008	2009

EP 1 108 790 A2

	_		_		_	_	7	\neg	$\overline{}$	$\overline{}$	_	7	1		1	•	- 1	ı ı		1	1		ı		ı	
· · · · · · · · · · · · · · · · · · ·		Function										plotein				major secreted protein PS1 protein precursor		ANA foroisomerase iii						major secreted protein PS1 protein precursor		
	_		-	-	<u> </u>	+	-	+		1	\top	丁	<u> </u>	-	-		$\frac{1}{1}$	1	•	1	-	1	+		4	
15	Matched	hength (a.a.)										\$		1		270	1	15	R		-	1	\downarrow	344	 -	
20		Similarity (%)					İ					44.7				54.4			90.9			-	1	54.7		
		Identity (%)										23.0				30.7			23.8		\perp	1		29.7		
<i>25</i> (panu		ane										dsa				amlcum m) ATCC								rtamicum rm) ATCC		
se Table 1 (continued)		Homologous gene										Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1		
35		db Match										prf:2509434A				sp.csP1_coRGL			sp:TOP3_ECOLI					sp.csP1_coRGL		,
		ORF (bp)	1181	534	588	444	753	303	216	309	982	828	287	381	429	1581	2430	867	7722	2085	891	432	744	1887	291	
45		Terminal (nt)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021	1951619	1952548	1956203	1958450	1959765	1960371	1961114	1963139	
50		Initial (nt)	1938945	-	┼		5514 1942484	1942510	1943095	1943345	1943680	1945435	5520 1945891	1946332	1947037	5523 1948650	1951450	1952485	1954822	1958287	1959340	1960196	1961114	1963000	1963429	
<i></i>		SEQ NO.	+	5511			5514	5515	5516	5517				5521	5522		5524	5525	_	5527	5528	5529	5530	5531	5532	
		SEQ NO (DNA)	2010		_		_				_		2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	; ;

EP 1 108 790 A2

5		Function				thermonuclease										olaria etranded DNA-binding protein													
15		Matched length (a.a.)				227		-	1	+		-				1	677	†						\top	683				
20		Similarity (%)				57.7				Ì							S. S.							15	0.70			1	_
		Identity (%)				30.4											24.9				1	1		1	è			1	_
25	ineni	90				218																			(gSP24D				
30	lable 1 (confinded)	Homologous gane				State of the state	Staphylococcus anies in										Shewanella sp. ssb								Anopheles gambiae AgSP24U				
35				-	+	1	1		_																T				
40		db Match					Sp.NUC_SI AND		 								prf.2313347B								SP.S24D_ANOGA				
		ORF (bp)	1230	47.	2 2	_	684	147	584	1452	459	1221	1419	591	398	237	624	579	462	207	588	333	558	1 570	- i	693	3 386	747	188
45		Terminal (nt)	1067514	100,303	1904/2/	196591	1966984	1967289	1968167	1969715	1970203	1971474	1973090	1973737	1974204	1974503	1975794	1976494	1976983	1977549	1978329	1978721	1979217	1979808	1980885	1981657	1982028	1982817	1981912
50		Initial (nt)	1084743	-		1966267	1966301	1967435	1967604	1968264	1969745	1970254	1971672	1973147	5544 1973809	1974267	1975171	1975916	1976522	1977043	1977742	1978389	1978660	1979239	1979974	1980965	1981663	1982071	1982091
		SEO.	(6)	3	5534		5536	5537	5538	5539	5540	5541	_	5543		5545	5546		5548	5549	5550	5551	5552	5553	5554	5555	5556	5557	5558
55		SEO	_			2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058

EP 1 108 790 A2

_					_		_	 -			-	\neg					$\neg \tau$	$\neg r$	Ŧ		_
	Function								integrase	transposase (divided)	transposase (divided)		transposition repressor	insertion element (IS3 related)	transposase					major secreted protein PS1 protein precursor	integrase
	Matched length (a.a.)								406	124	117		31	43	270					163	223
	Similarity (%)								55.9	94.4	84.6		8.96	88.4	53.7					37.0	56.1
	identity (%)								29.6	83.9	70.9		80.7	74.4	31.1					25.0	28.7
Table 1 (continued)	Homologous gene								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL2005 ISaB1	Brevibacterium lactofermentum CGL 2005 ISaB1		Brevibacterium lactofermentum CGL2005 ISaB1	Corynebacterium glutamicum orf 1	Streptomyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 Int
	db Match								SP.VINT_BPML5	gsp:R23011	gsp:R23011		gsp:R21601	plr.S60889	gp:SCJ11_12					sp.CSP1_CORGL	SP:VINT_BPML5
	ORF (bp)	363	273	264	234	342	273	303	1149	390	417	207	114	135	828	354	168	432	744	1584	687
	Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985384	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1891189	1991795	1992538	1994608
	Initial (nt)	1983186	1983611	1983918	1984217	1984387	1985092	1985373	1986590	1987896	1988303	1988383	1988483	1988684	1989605	1990667	1990764	1991620	1992538	1994121	1995294
	SEO NO SO SO SO SO SO SO SO SO SO SO SO SO SO	5559	5580	5561	5562	5563	5564	5565	<u> </u>	5567	5568	5569	5570	5571	5272	5573	5574	5575	5576	5577	5578
	SEQ NO NO NA		-		-	2063	2064	-	_	2067	2068	2069		2071	2072	2073	2074	2075	2076	2077	2078

EP 1 108 790 A2

_				_	_	_			- 1	- 1		- 1				- 1	1	1	- 1			- 1	
10	Function		sodium-dependent transporter	hypothetical protein			riboffavin blosyntnesis proteiti	potential membrane protein	methionine sulfoxide reductase			hypothetical protein	hypothetical protein	ribonuclease D	1-deaxy-D-xylulose-5-phosphate	synthase	RNA methytransferase		hypothetical protein	deoxyuridine 5'-triphosphate nucleotidohydrolase	hypothetical protein		
15	Matched length	_	88	25		T	233	384	126		Π	232	201	371		618	472		268	140	150		
20	<u>₹</u>	R	1.97	81.5			64.4	9.17	87.5			77.2	78.6	52.8		78.5	52.3		62.7	82.1	70.7	-	
	<u>~</u>	<u> </u>	39.8	48.9	1	33.5		42.5	41.3			55.2	55.7	25.9		55.3	25.4		38.1	55.0	46.0	-	
<i>25</i> (panu		9	695				culosis	culosis	ni msrA	-	-	rculosis	rcutosis	zae Rd		L190 dxs	a MSB8		erculosi s	color A3(2)	erculosis		
38 September 1	S all control	Post another desired	Helicobacter pylori 26695 HP0214	Bacillus subtilis yxaA			Mycobacterium tuberculosis H37Rv Rv2871 ribD	Mycobacterium tuberculosis	Asm incorde acronii merA	Streptococcus going		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis H37Rv Rv2680	Haemophilus influenzae Rd	KW20 HI0390 rnd	Streptomyces sp. CL190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium tuberculosis	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis	H3/KV KVZOBO	
35		db Match	plr.F64548	3ACSU			pir.C70988	pir.E70968	1,	gp AF 128284_2		pir:H70968	plr:C70528	Mayri	Sp:KND_DAEIIN	gp:AB026631_1	pir.E72298		pir.C70530	SPIDIT STRCO	Air E 20530		
	190	(d)	306 pl	_	_	336	889	1254		8	428	969	624		1263	1908	1238	282	5	447	279	-+	207
45		(1) (1)	1995783	+	+	503		542		1999949	1999707	2000521	2002112		2003334	2003402	2005462	2008979	2008777			_	2008876
50	-		1006088		<u> </u>	╄			-+	1999542	2000132	2001216	2001489		2002002	2005309	2006697					2008220	5596 2009082
	1	S S	 -		5581				5584	5885	5586	5587	8027	9000	5589	5590	5591		_	-		5292	
55	1-	D S	\rightarrow		20802	_			2084	2085	-				2089	2090	2091		7607	2002	2094	2095	2096

Function	hypothetical protein	nieloni prosesor profesio	extragence supplessed process	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein			nypomencal process	hypothetical membrane protein	hypothetical protein			hypothetical protein	iron dependent repressor or diphtheris toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase			hypothetical protein	ATP-dependent RNA helicase
Matched length (a.e.)	100		198	248	200	422			e l	127	92	523	3	144	228	77	329		-	305	661
Similarity (%)	81.0		68.2	80.2	98.6	51.4]	88	59.1	85.5	2	3.10	100.0	9. 86	20.	99.1		1	79.0	50.7
Identity (%)	58.0		38.4	54.4	98.0	23.9			61.3	32.3	65.8	3 52	33.5	97.2	98.7	62.0	99.1	-	 	45.3	24.4
Homologous gene	Mycobacterium tuberculosis	H37Rv Rv2699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum	Bacitine cubilis vrkO			Mycobacterium tudercurusis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis	Strantomyces coelicolor A3(2)	SCH5.08c	Corynebacterium glutamicum	Corynebacterium glutamicum	Strentomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterlum	lactofermentum) gale		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae
db Match		pir.F70530	Sp. SUHB_ECOLI	-	T	Liscopia Chias	SP. TRAU_BACSO		sp:Y065_MYCTU	pir.H70531	plr.G70531		gp:SCH5_8	prf.2204286C	nir 140339	1 10101010	SP. GALE BRELA			pir:E70532	2550 sp.MTR4_YEAST
OR Epg (gg)		291	818		1494			537	1710	636	237		1533	432	88.6		98		1323	957	
Terminat (nt)		2009280	2009724	2011382	2013356		2014162	2015585	2016257	2018754	2017066		2020278	2020724	000000		2022313	<u> </u>	2023948	2026379	2029043
Initial		2009570	2010539	+	<u> </u>		2015496	2016121	2017988	2018119		7070107	2018744	2020293	90000		2022548		2025270		3 2026494
SEO.	(6)	5597	8088				5601	5602	5603	5604	6005	2002	9095	5607		+	5609		5611		5613
	$\overline{}$	2097	$\overline{}$				2101	2102	2103	2104		2105	2108	7.07		B01.7	2109	?	= =	2112	2113

continued)
Table 1 (

						_											_			
-	Function	hydrogen peroxide-inducible genes activator		ATP-dependent helicase	regulatory protein		SOS regulatory protein	galactitol utilization operon repressor	phosphofructokinase (fructose 1- phosphate kinase)	phosphoenolpyruvate-protein phosphotransferase	glycerol-3-phosphate regulon repressor	1-phosphofructokinase or 6- phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uradi permesse	ATP/GTP-binding protein			diaminopimelate epimerase
	Matched length (a.s.)	299		1298	145		222	245	320	285	292	345	548	81		407	419			269
	Similarity (%)	65.6		78.2	86.2		71.8	87.8	55.6	64.0	62.6	55.7	69.6	71.6		70.5	90.0			64.7
	Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			33.5
In a continued	Homologous gene	Escherichia coli oxyR		Escherichia coli hrpA	Streptomyces clavuligerus nrdR		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelicolor A3(2) SCE22.14c	Bacillus stearothermophilus ptsl	Escherlchia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coli K12 fruA	Bacillus stearothermophilus XL- 65-6 ptsH		Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			Haemophilus influenzae Rd KW20 HI0750 dapF
	db Match	sp.OXYR_ECOLI		SP.HRPA_ECOLI	gp.SCAJ4870_3		sp.LEXA_BACSU	SP.GATR_ECOLI	gp:SCE22_14	1704 sp.PT1_BACST	sp:GLPR_ECOLI	sp:K1PF_RHOCA	sp:PTFB_ECOLI	sp.PTHP_BACST		SP:PYRP_BACCL	gp:AF145049_8			831 SP.DAPF_HAEIN
	ORF (bp)	981	1089	3908	450	420	969	777	096	1704	792	066	1836	287	582	1287	1458	786	537	831
	Terminal (nt)	2030157	2030277	2035383	2035431	2035990	2037507	2038591	2039550	2039618	2042519	2043508	2045571	2046028	2046714	2047320	2048650	2051108	2051842	2051845
	Initial (nt)	2029177	2031365	2031478	2035880	2036409	2036812	2037815	2038591	2041321	2041728	2042519	2043736	2045762	2047295	2048606	2050107	2050321	2051306	5632 2052675
	SEQ NO.	5814	5815	5818	5617	5618	5619	5620	5621	5622	5823	5624	5625	9299	5627	5628	5629	5630	5631	5632
	SEQ NO NO	2114	2115	2118	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132

								_		$\overline{}$				ı	1	- 1	_ i	ł			i	1	
5			hate						ne protein		ATP-binding	les predicted to	r vaccines and	system	system					ATP-binding	cietore ece		
10	1	Function	tRNA delta-2- isopentenylpyrophosphate transferase		hynothetical protein				hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Neisserial polypeptides predicted to	be useful antigens for vaccines and diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthese	putrescine transport ATP-binding	protein	hypothetical memorane process	
15	Matched		300		777	3			190	494	242		7.1	225	273	142	87		197	; -	3	228	
20	_	Similarity (%)	68.7		;	9.			63.7	86.4	9.66		73.0	100.0	9.66	6.98	71.8		81.4		-	28.8	
		Identify (%)	40.0		1	48.5			29.0	68.4	9.66		0.09	100.0	99.3	34.5	40.3		33.0		33.2	24.6	
<i>25</i>	(minoco)	ene	miaA		ruhele				rculosis		utamicum		98	utamicum	utamicum vum) ATCC	rae recX	erculosis		75,3	200	2 potG	8F	
30	(common) alder	Homologous gene	Escherichia coli K12 miaA		and minimum	Mycobacceroni (upercurosis H37Rv Rv2731			Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae	Corynebacterium glutamicum	ATCC 13032 gluA	Neisserla gonorrhosae	Corynebacterium glutamicum ATCC 13032 oluC	Corynebacterium glutamicum (Brevibacterium flavum) ATCC	Adventage and legister lect	Mycobacterium tuberculosis	H3/RV NV2/30C	11	Bacillus sphaericus pio	Escherichia coll K12 potG	Bacillus subtilis ybaF	
35 40		db Match	Sp.MIAA_ECOLI E			pir:870506			pir.C70508	SP:Y195 MYCLE	Τ.	sp. Grow_congr	GSP: Y75358	SPIGEUC CORGE		10000	Sp:RECX_MTCLE			Sp:BIOY_BACSH	sp.POTG_ECOLI	pir.F69742	
		ORF (bb)			675	1359 p	1020	1023		1586		97)	218	684	819	-+	597	-i	738	576	669	609	
45		Terminal	- Z		2053609	2055761	2054724	2056787	2057120	2057855		2060499	2060196	2062312	2083259		_+-	3	2065867	2087141	2067866	2068474	
50		Initial	1 9	-	2054283	2054403	2055743	<u>-</u>	<u> </u>			2059774	2060414	2081829			2063894	70002	2068404	2066566	5648 2067168	5649 2067866	
		SEO			5834	5635	5838					5640	5641	56.47				5645	5646	5647			
55		SEQ			2134		_				8612	2140	2141		2143		2144	2145	2146	2147	2148	2149	; -

	Function	bitanctional protein (riboflavin kinase	and FAD synthetase)	IRNA pseudouridine synthese B	Cierta Stofe	nypoment in the state of the st	hypothetical protein	akaenhoasterase		DNA demaged inducible protein i	hypothetical protein	discome-binding factor A	CEL STATE CONTRACTOR OF THE CO	translation intration factor if 2	hypothetical profein		(transcriptional	(ermination/armidition)	Lucathelical protein	nypomenor r	peptide-binding pratein	peptidetransport system permesse	oligopeptide permease	peptidetransport system ABC-	transporter ATP-binding protein	
	Matched	88	328	303	Γ	*	782	1	2/3	433	308	١	2	1103	83		352		1	<u>.</u>	534	337	292	1	552	
	Similarity	1	79.0	61.7		73.0	62.5		69.9	78.8	20.8		70.4	62.9	88 7	3	71.0	_	1	95.5 	60.9	69.4	+	3	81.3	1
Ì	<u>></u>	<u>R</u>	56.2	33.7	18.	65.0	3.3	3,74	46.9	51.0	, 8		32.4	37.7	4-	44.0	42.3		+	34.6	25.3	37.7		Š	57.6	-
Table 1 (continued)	a C a a c a a a a a a a a a a a a a a a	Homogogogogogogogogogogogogogogogogogogo	Corynebacterium	ammoniagenes ATCC 68/2 flor	Bacillus subtills 168 truB	Corynebacterium	ammoniagenes	Streptomyces commers SC5A7.23	Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv Rv2838c dint	Mycobaciellum (Secretary HA7Rv Rv2837c	App this	Bacillus subtilis 100 100	Stigmatella aurannaca Uvva """	Streptomyces coencolor neter		Bacillus subtilis 168 nusA		Mycobacterium tuberculosis	_	_	_	Bacillus subtilis spookC	Mycobacterium tuberculosis	H37Rv Rv3663c dppU
		db Match	\top	Sp. RIBF_CORAM	EN-TRUB BACSU	1	PIR:PC4007	gp:SC5A7_23	Air:R70885		5 plr:G70693	nir H70693		7 SP:RBFA BACSU	2 sp:IF2_STIAU	a on SC5H4 29	\neg	996 SP:NUSA_BACSU	1254		534 pir:E70588	1602 SP:DPPE_BACSU		\neg	and and and	1731 pir.H70788
		nal ORF		919 1023	1;	500	954 228	1218 851	3	2089861	0751 1305	900		33055 447	33712 3012	97.6	ğ	380	20,0	CLORROZ	2098412 5	2101841	-		38/3	2105703
	-	-		941 2086919		973 20888b.	181 208795	20892		2090664 2085	2055 20907		2093046 20920	2003501	+-	-	97179 2096	2098375 2097		2098562 20		_			2102975 2	2103973 2
	}		(<u>a</u>	SARB 2087941		5669 2087973	5670 2088181	2089868		5672 209	5673 2092055	1	5674 209	100	5679 209330	0/00	5677 2097179	5678 20	-	5679	5680 2098945		5681	5682	5683	5684
		SEQ SEQ	(DNA) (8.8.)	_	80.7	2169 56	2170 58		5	2172 5	2173 5	_	2174 5			21/0	2177	2178		2179	2180	<u>. j</u>	2181	2182	2183	2184

	rity Natched Function	(9.8)	6 578 proly-IRNA synthetase	1	243	nagnesium-chelatese subunit	18	69.6	73.8 237 methylransferase		68.7 488 hypometres pro-	62.3 151 hypothetical protein	338 hypothetical protein		76.6 466 glutathione reductese					75.8 252 methionine aminopepudase	58.5 830 penicilin binding protein	72.2 216 system response regulator)	1	56.8 424 histidine kinase	58.1 360 hypothetical membrane protein	
	Identity Similarity	(%)	67.0 84.6	+	39.5 65.0	╁	32.4	46.5	49.0	+	41.2 8	35.1	╁	37.6	53.0					47.2	27.3	44.0	+	28.5	24.4	
Table 1 (continued)		Homologous gene	Morohacterium tuberculosis	H37Rv Rv2845c proS	Streptomyces coelicolor A3(2)	SCC30.05	Rhodobacter spingerouses	Lines mobilis behl	Ososlonihacterium freudenreichli	cobA	Clostridium pertringens NCIB	Streptomyces coelicolor A3(2)	SC5H1.10c	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100	gor				C. Leciphia coli K12 mao	Eschenichie con Marillaerus pcbR	Streptoniyes of	chrA	Corynebacterium diphtheriae	chrS	DRA0279
		db Match	\top	Sp. SYP_MYCTU	1	gp:SCC30_s	SO BCHD RHOSH	+	prf.2503462AA	prf:2108318B	1477 SD.YPLC CLOPE		gp:SC5H1_10	pir.A70590	a di ia di	1395 sp.GSHR_BONCE					SP. AMPM_ECOLI	prt:2224268A	prf:2518330B		prf.2518330A	gp. AE001863_70
		ORF		1764 sp		735 9p	759 80	_	101	750 p	2622		006	1014			942	474	357	729	789	1868	8 630	-	8 1149	15 957
	+	- Tes	(JE)	2105801	+	2108386	00000	2000017	2109155	2110434	900	607117	2112717	47.20174	7	2118310	2117015	2119080		2120356	2120359	2121298	2123218		2123848	2126045
		Initial		2107564 2	<u> </u>	2107652 2		210914/	2110255 2	2111183		2111238	2113616		2113/01	2116916	2117958	2118607	2119139	2119628	2121147	2123161	2123R4R	2100717	5701 2124996	000000
	i			_	2000	5686 210		5687 210	5688 21			5690 21	5691 2	+	5892 2	5693 2	600	5695	5696	2697	_	5699	6	3/6		
		o SEO			185 20	186 56		187 56	188		6812	2190 5	2191 5		2192	2193	_	7 2	_			2199		2200	2201	

	Function	ABC transporter		hypothetical protein (gcpE protein)			hypothetical memorane protein	polypeptides can be used as vaccines against Chlamydia trachomatis	1-deoxy-D-xylulose-5-phosphate					ABC transporter ATP-binding protein	pyruvate formate-lyase 1 activating enzyme	hypothetical membrane protein	phosphatidate cytidylyltransferase	ribosome recycling factor	uridylate kinase		elongation factor Ts	ans ribosomal protein S2
	Matched length (a.a.)	225 ABC tra		359 hypothe	T	1	405 hypoth	polypeptides 147 vaccines ag trachometis	312 1-deox			-	\top	245 ABC tr	356 pyruvate enzyme	94 hypoth	294 phosp	185 riboso	109 uridyl	1	280 elong	264 10S
	Similarity Mat (%)	71.1		73.8	╀	+	73.6	43.0	42.0		+	-		75.1	78.0	74.5	56.5	84.3	43.1		76.8	2 50
}	identity S	37.3		44.3		+	43.0	36.0	22.8					37.1	66.0	41.5	33.3	47.0	28.4		49.6	547
Table 1 (confinded)	Homologous gene	C	Bacillus subtilis 100 yelo	7 400 C 4 7 H - 1 - 1 - 1 - 1	Escherichia coil N 12 gcpc		Mycobacterium tuberculosis H37Rv Rv2869c	Chlamydia trachomatis	Cookeriskie coli K12 dyr					Thermotoga maritima MSB8 TM0793	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15892 cdsA	Bacillus subtills 168 frr	Pseudomonas aeruginosa pyrH		Streptomyces coelicolor A3(2)	
	db Match		prf 2420410P	寸	Sp:GCPE_ECOLI		plr:G70886	GSP:Y37145		sp:DXR_ECOU				pir:B72334	sp:YS80_MYCTU	pir.A70801	SP:CDSA_PSEAE		_		SP:EFTS_STRCO	
	ORF F (ed)	-	069	162	1134	812	1212	645		1176	441	480	1578	855	1098	258	855		2 2	+-	825	
	Terminal	_	2126753	2126928	2127350	2129461	_	2130950		2129903	2131762	2131247				2136141	2138235		213/286	-		-
	Initial		2126064	2127087	2128483		-			2131078	2131322	2131726	2133402	2134260			2117089		2137840	2138664		
	SEO	(8.8)	5703	5704 2	5705 2			5708		5709	5710	5711	5712	5713	57.14		_	_	_	5718		_
	SEQ	$\overline{}$		+	_	2238				5209	2210		_			2215	9,00	27	2217	2218	2220	777

	Function	hypothetical protein	as a class of the control of the con	site-specific fections	hypothetical protein	12/24) chalatase family protein	W(12)	hypothetical protein	hypothetical protein		ribonuclease HII			signal pepriode	Fe-regulated protein		50S ribosomal protein L19	thismine phosphate	pyrophosphorylase	oxidoreductase	thismine blosynthetic enzyme this	thismine blosynthetic enzyme this	protein	molybdoptenn biosynthesis protein	
	Matched length (a.a.)	120	T	297	395	1	S	119	\$	2	190		1	582	323		E	8	eg	376	62		251	437	
	Similarity (%)	58.0		68.7	8.89		75.8	72.3	9	9.0	69.5			- 6	59.1	_	a a		6.09	64.1	74.7	+	76.9	56.8	
	Identity (%)	0 87	40.0	40.1	39.8		46.6	40.3		88.3	42.6			32.3	25.4		5	+	28.4	34.0		5	48.2	30.2	
Table 1 (continued)		Acceptation tuberculosis	Mycobackensin Society	Proteus mirabilis xerD	Mycobacterium tuberculosis	H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis	H37Rv Rv2898c	Mycobacterium tubercurosis H37Rv RV2901c	Haemophilus influenzae Rd	H11059 rnhB		Streptomyces lividans 1K21	sipy	Staphylococcus aureus and		Bacillus stearothermophius rpio	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2)	SC6E10.01	Escherichia coil K12 Inis	Escherichia coli K12 thiG	Transcolle nidulans coxF	EMETICEIIa III CEICE
	db Match		SD:YS91_MYCTU	1	1	sp:YX27_MYCTU	\$P:YX28_MYCTU	III-Coad George	Sp:YX29_micro	SP:YT01_MYCTU		Sp.RNH2_HAEIN		+-		prf.2510361A		8P.RL19_BACST			0 gp:SC6E10_1	5 SP.THIS_ECOLI	SO THIS ECOLI		1134 prf.2417383A
	ORF	<u>a</u>	504		924	1182	1521		98	33	1	627	792	 	26 26 26	936	213	339	663	\neg	1080	9 185	7 0	_	
	<u></u>	(E)	2141760	20/14/13	2141783	2142885	2144068		2145576	2146264		2146566	2148022		2147281	2149166	2149359	-	1 4		2152118	2152329		2133113	8 2154191
	-	(ut)			2142686	2144068	2145588		2145941	6727 2146588		2147192	2147211		2148048	2148231	5727 2149571	5733 2149972	100510	2150333	2151039	2152135		5737 2152334	5738 2153058
				5722 21	5723 21	5724 21	1 3053		5726 2	13.		5728 2	0000		5730	57.2	5	21.04	2/22	5734	5735	5736		_	5738
	EQ SEQ	NO. (AND)	<u> </u>	2222 57	2223 51	2224 5		6 6777	2226 5		, , , ,	2228	_	6777	2230		_	 -		2234	2235	2236		2237	2238

EP 1 108 790 A2

5

							\neg						\neg	_ 1				\neg		\neg
Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	dicarboxylase translocator	2-oxoglutarate/maiste translocator	3-cerboxy-cls,cls-muconate cyclolsomerase				tRNA (guanine-N1)- methytransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	signal recognition particle protein			
Matched length (a.e.)	778	334	456	99	350				273	210	172	69	83	198	258	318	559			
Similarity (%)	78.7	65.3	78.3	0.08	6.3				64.8	57.6	72.1	68.7	78.5	61.7	69.1	83.8	78.2			
Identity (%)	58.6	27.0	45.8	40.0	39.1				34.8	30.5	52.3	29.0	47.0	32.1	26.6	35.5	58.7			
Homologous gene	Bordetella pertussis TOHAMA I tex	Bacilius subtilis 168 degA	CML029 ybhl	Spinacia oleracea chioropiast	Pseudomonas putida pcaB		-		Escherichia coll K12 trmD	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MLCB250.34. rimM	Helicobacter pylori J99 Jhp0839	Bacillus subtilis 168 rpsP	Mus musculus inv	Streptococcus agalactiae cylB	Pyrococcus horikoshil OT3 mtrA	Bacillus subtilis 168 ffh			
db Match	sp TEX_BORPE	pir.A36940	pir:H72105	prf.2108268A	sp:PCAB_PSEPU				SP TRMD_ECOLI	gp:SCF81_27	SP:RIMM_MYCLE	pir.871881	pir.C47154	pir:T14151	prt.2512328G	prf:2220349C	sp.SR54_BACSU			
ORF (bp)	2274	975	1428	219	1251	8	393	9	819	848	513	348	495	576	198	876	1841	633	417	699
Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2181111	2161507	2162196	2163745	2163748	2164737	2164815	2166098	2166124	2166990	2167944	2171058	2172131	2172877
fnitial (nt)	2156733	2157721	2159181	2159237	2160537	5744 2160670	2161503	2162196	2163014	2163098	2164260	2184390	2165309	2165523	2166990	2167865	2169584	2170426	5757 2171715	2172209
SEQ NO.	5739	5740	5741	5742	5743	5744	5745	5746	5747	5748	5749	5750	5751	5752	5753	5754	5755	5756	5757	5758
SEO	2239	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255	2256	2257	2258

5

| | 1 | Т | \neg | Т

 | | | T | \neg

 | | \neg | |
 | | | | 1 | - 1 | i | | 1 |
|-----------------------------|--|--|---
--
--
--|--|---|--
--
--|--
---|--|--|--|----------------------------|---|---|--
--|--|--------------|
| Function | | Alican 1 4.alpha.olucosidase of | glucoamylase S1/S2 precursor |

 | chromosome segregation protein | acylphosphatase | | transcriptional regulator

 | hypothetical membrane protein | | | cation efflux system protein
 | formamidopyrimIdIne-DNA
glycosylase | ribonuclesse III | hypothetical protein | hypothetical protein | transport protein | ABC transporter | hypothetical protein | |
| Matched
length
(a.a.) | | | 1144 |

 | 1206 | 85 | | 305

 | 257 | | | 188
 | 285 | 221 | 176 | 238 | 559 | 541 | 388 | |
| Similarity
(%) | | | 46.2 |

 | 72.6 | 73.9 | | 0.09

 | 73.5 | | | 78.8
 | 66.7 | 76.5 | 62.5 | 76.9 | 55.6 | 58.8 | 62.6 | |
| Identity
(%) | | | 22.4 |

 | 48.3 | 51.1 | | 23.9

 | 39.3 | | | 46.8
 | 38.1 | 40.3 | 35.8 | 50.0 | 28.3 | 28.8 | 35.3 | |
| Homologous gene | | | Saccharomyces cerevisiae
S288C YIR019C sta1 |

 | Mycobacterium tuberculosis
H37Rv Rv2922c smc | Mycobacterium tuberculosis
H37Rv RV2922.1C | | Escherichia coli K12 yfeR

 | Mycobacterium leprae
MLCL581.28c | | | Dichelohacter nodosus gep
 | Escherichia coli K12 mutM or | Bacilius subtilis 168 rncS | Mycobacterium tuberculosis
H37Rv Rv2926c | Mycobacterium tuberculosis
H37Rv Rv2927c | Streptomyces verticilus | Escherichia coli K12 cydC | Streptomyces coelicolor A3(2)
SC9C7.02 | |
| db Match | | | |

 | | BP.ACYP_MYCTU | | SO YFER ECOLI

 | pir:S72748 | | | S CONTRIBUTE 3
 | Sp.FPG_ECOLI | pir. B69693 | sp:Y06F_MYCTU | sp:Y08G_MYCTU | | | | |
| ORF
(bp) | 159 | 702 | | 963

 | | 282 | 1854 |

 | + | ; | 3 |
 | | 741 | 534 | 789 | 1844 | 1530 | | 44 |
| le le | 2175888 | ន | 10 | 2181880

 | 328 | 2183110 | 2183405 | 2185351

 | 2187129 | 27.07.0 | 218/342 | 2187233
 | | 2189166 | 2189906 | 2190540 | 210 | 219 | 219 | 2198007 |
| Initial
(nt) | | | | -

 | — | 2183391 | 2185258 | 2406200

 | 2186299 | | 218/160 | 2187679
 | | | | 2191328 | 2404522 | | 2196883 | 5779 2198447 |
| O O | _ | | |

 | | | |

 | | | 5769 | 5770
 | 5777 | 2773 | 5774 | 5775 | 1330 | 5777 | | |
| | | | |

 | | | _ | _

 | | | 5269 | 2270
 | 2271 | 1 2 | 2274 | 2275 | | 2277 | 2278 | 2279 |
| | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (as) | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (as) (as) (500 2175888 159 | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%s) | SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) (%) <th< td=""><td>SEQ Initial Terminal ORF db Match Homologous gene (%) (%</td><td> SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td><td> SEQ Initial Terminal ORF db Match Homologous gene (%) (%</td><td>SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) <th< td=""><td> SEQ Initial Terminal ORF db Match Homologous gene (%)
 (%) (%) (%</td><td> SEQ Initial Terminal ORF db Match Homologous gene (%)</td><td> SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (aa) S760 2176046 2175888 159 Saccharomyces cerevisiae 22.4 46.2 1144 S761 2176402 2177103 702 Saccharomyces cerevisiae 22.4 46.2 1144 S762 2176402 2177103 3393 Sp.AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 S763 2180918 2181880 963 Sp.AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 S763 2183092 2178128 3465 sp.YERR_ECOLI Mycobacterium tuberculosis 51.1 73.9 82 S766 218228 2183405 1854 Sp.YERR_ECOLI Escherichia coli K12 yfeR 23.9 60.0 305 S767 2186208 2185351 858 sp.YERR_ECOLI Escherichia coli K12 yfeR 23.9 60.0 305 S768 2186298 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S768 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S769 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S769 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186290 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186290 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186290 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186290 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187120</td><td>SEQ Initial Terminal ORF db Match Homologous gene (%) (%</td><td> SEG Initial Terminal ORF db Match Homologous gene (%) (%</td><td> SEC</td><td> SEQ</td><td> SEG</td><td> SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (as) (as) 5760 21786046 2175888 159 Saccharomyces cerevisiae 22.4 46.2 1144 5761 21786046 2175888 159 Saccharomyces cerevisiae 22.4 46.2 1144 5762 2178502 2178110 3393 Sp. AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 5763 2180916 2181800 963 Sp. AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 5763 2180916 2181800 963 Sp. AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 5763 2180916 2181800 963 Sp. ACYP_MYCTU Mycobacterium tuberculosis 51.1 73.9 82 5764 218258 2183110 282 sp. ACYP_MYCTU Mycobacterium tuberculosis 51.1 73.9 82 5765 218759 2187129 831 pir.572748 Mycobacterium leprae 39.3 73.5 257 5769 218769 218733 47 Mycobacterium leprae 39.3 73.5 257 5770 218769 218769 218769 318780 32.8 5771 2189906 2189168 741 pir.B69993 Bacilius submits 168 mcS 40.3 76.5 221 5772 2190439 218789 741 pir.B69993 Bacilius submits 168 mcS 50.0 78.9 238 5772 2191328 2191328 2190540 789 sp. Y06F_MYCTU Mycobacterium tuberculosis 50.0 78.9 238 5772 2191328 2191338 2191328 2191338 219132</td><td> SEQ Initial Terminal ORF db Match Homologous gene (%)
 (%) (%</td><td> SEQ Initial Terminal ORF db Match Homologous gene (44) (44) (48) (</td><td> SEC</td></th<></td></th<> | SEQ Initial Terminal ORF db Match Homologous gene (%) (% | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) | SEQ Initial Terminal ORF db Match Homologous gene (%) (% | SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) (%) <th< td=""><td> SEQ Initial Terminal ORF db Match Homologous gene (%)
(%) (%</td><td> SEQ Initial Terminal ORF db Match Homologous gene (%)</td><td> SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (aa) S760 2176046 2175888 159 Saccharomyces cerevisiae 22.4 46.2 1144 S761 2176402 2177103 702 Saccharomyces cerevisiae 22.4 46.2 1144 S762 2176402 2177103 3393 Sp.AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 S763 2180918 2181880 963 Sp.AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 S763 2183092 2178128 3465 sp.YERR_ECOLI Mycobacterium tuberculosis 51.1 73.9 82 S766 218228 2183405 1854 Sp.YERR_ECOLI Escherichia coli K12 yfeR 23.9 60.0 305 S767 2186208 2185351 858 sp.YERR_ECOLI Escherichia coli K12 yfeR 23.9 60.0 305 S768 2186298 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S768 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S769 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S769 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186290 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186290 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186290 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186290 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187120</td><td>SEQ Initial Terminal ORF db Match Homologous gene (%) (%</td><td> SEG Initial Terminal ORF db Match Homologous gene (%) (%</td><td> SEC</td><td> SEQ</td><td> SEG</td><td> SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (as) (as) 5760 21786046 2175888 159 Saccharomyces cerevisiae 22.4 46.2 1144 5761 21786046 2175888 159 Saccharomyces cerevisiae 22.4 46.2 1144 5762 2178502 2178110 3393 Sp. AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 5763 2180916 2181800 963 Sp. AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 5763 2180916 2181800 963 Sp. AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 5763 2180916 2181800 963 Sp. ACYP_MYCTU Mycobacterium tuberculosis 51.1 73.9 82 5764 218258 2183110 282 sp. ACYP_MYCTU Mycobacterium tuberculosis 51.1 73.9 82 5765 218759 2187129 831 pir.572748 Mycobacterium leprae 39.3 73.5 257 5769 218769 218733 47 Mycobacterium leprae 39.3 73.5 257 5770 218769 218769 218769 318780 32.8 5771 2189906 2189168 741 pir.B69993 Bacilius submits 168 mcS 40.3 76.5 221 5772 2190439 218789 741 pir.B69993 Bacilius submits 168 mcS 50.0 78.9 238 5772 2191328 2191328 2190540 789 sp. Y06F_MYCTU Mycobacterium tuberculosis 50.0 78.9 238 5772 2191328 2191338 2191328 2191338 219132</td><td> SEQ Initial Terminal ORF db Match Homologous gene (%)
(%) (%</td><td> SEQ Initial Terminal ORF db Match Homologous gene (44) (44) (48) (</td><td> SEC</td></th<> | SEQ Initial Terminal ORF db Match Homologous gene (%) (% | SEQ Initial Terminal ORF db Match Homologous gene (%) | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (aa) S760 2176046 2175888 159 Saccharomyces cerevisiae 22.4 46.2 1144 S761 2176402 2177103 702 Saccharomyces cerevisiae 22.4 46.2 1144 S762 2176402 2177103 3393 Sp.AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 S763 2180918 2181880 963 Sp.AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 S763 2183092 2178128 3465 sp.YERR_ECOLI Mycobacterium tuberculosis 51.1 73.9 82 S766 218228 2183405 1854 Sp.YERR_ECOLI Escherichia coli K12 yfeR 23.9 60.0 305 S767 2186208 2185351 858 sp.YERR_ECOLI Escherichia coli K12 yfeR 23.9 60.0 305 S768 2186298 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S768 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S769 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S769 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186299 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186290 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186290 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186290 2187129 831 pir.S72748 MLCL581.28c 39.3 73.5 257 S760 2186290 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187129 2187120 | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%)
 (%) (% | SEG Initial Terminal ORF db Match Homologous gene (%) (% | SEC | SEQ | SEG | SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (as) (as) 5760 21786046 2175888 159 Saccharomyces cerevisiae 22.4 46.2 1144 5761 21786046 2175888 159 Saccharomyces cerevisiae 22.4 46.2 1144 5762 2178502 2178110 3393 Sp. AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 5763 2180916 2181800 963 Sp. AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 5763 2180916 2181800 963 Sp. AMYH_YEAST Saccharomyces cerevisiae 22.4 46.2 1144 5763 2180916 2181800 963 Sp. ACYP_MYCTU Mycobacterium tuberculosis 51.1 73.9 82 5764 218258 2183110 282 sp. ACYP_MYCTU Mycobacterium tuberculosis 51.1 73.9 82 5765 218759 2187129 831 pir.572748 Mycobacterium leprae 39.3 73.5 257 5769 218769 218733 47 Mycobacterium leprae 39.3 73.5 257 5770 218769 218769 218769 318780 32.8 5771 2189906 2189168 741 pir.B69993 Bacilius submits 168 mcS 40.3 76.5 221 5772 2190439 218789 741 pir.B69993 Bacilius submits 168 mcS 50.0 78.9 238 5772 2191328 2191328 2190540 789 sp. Y06F_MYCTU Mycobacterium tuberculosis 50.0 78.9 238 5772 2191328 2191338 2191328 2191338 219132 | SEQ Initial Terminal ORF db Match Homologous gene (%) (% | SEQ Initial Terminal ORF db Match Homologous gene (44) (44) (48) (| SEC |

99758 1284 pir.A12322 01070 1263 sp.HIPO_CAMJE 01073 336 pir.S38197 01450 135 01594 276 01594 276 01992 2550 prf.2513410A 207302 948 sp.LGT_STAAU 209322 657 pir.HTPG_EMENI 209223 657 pir.HTS3_RHOSH 209220 354 sp.HIS3_CORG 2211051 625 prf.2419176B 2211051 625 prf.2419176B	2198475 2189476 1284 pp 2199808 2201070 1283 sp 2201408 2201450 135 pp 2201584 2201450 135 pp 2201869 2201594 276 220 2205490 2204591 900 sp 2205490 2204591 900 sp 2205490 2204591 900 sp 2205490 2207302 948 sp 2209167 2208367 801 sp 2209888 2209332 657 2209888 2209232 657 2210873 2210873 774 2211875 2211051 625 2221819 2212841 633 32212841 633
# F 6 6 6 6 7 8 8 8 8 8 9 6 6 6 6 7 7 7 7 7 7	(nt) 2188475 2198476 2201408 2201408 2201584 2201584 2205490 7 2208249 7 2208249 9 2209888 9 2209888 9 2211875 9 2211875

·	Function		imidazolegiycerol-phosphate dehydratase	histidinol-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme	hypothelical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	Iron-binding protein	iron-binding protein	hypothetical protein
	Matched length (aa)		198	362	439	342			211	204	722	258	268	343	329	246	332	103	182	113
	Similarity (%)		81.8	79.3	85.7	54.4			59.7	8.09	75.5	76.0	55.2	60.9	84.4	68.3	71.1	0.89	67.6	73.5
	identity (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	50.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli piasmid RP1 tetR	Sulfotobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2822	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium melitoti IdhA	Escherichia coli K12 gaiR	Bacillus subtilis 168 fnuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtills 168 yvrC	Escherichia coli K12 ytiH
	db Match		sp:HIS7_STRCO	sp:HISB_STRCO	sp:HISX_MYCSM	gp:SPBC215_13			pri 2321269A	pir.RPECR1	prf.2307203B	pir.E70572	gp:SC2G5_27	prf.2503399A	Sp.GALR ECOLI	sp:FHUC_BACSU	prf:2423441E	pir.G70046		SP:YTFH_ECOLI
	ORF (bp)	225	909	1098	1326	1200	651	309	642	561	2508	801	174	101	966	798	1038	348	594	441
	Terminat (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769		22290	2229900	22309	22313	2232
	Initial (nt)	2215863		2217591	2218925	2219159	2221109	2221611	2221828		5805 2222528	2225149	2226763	2227779		2229896	2230937		5813 2231932	2232458
	SEQ NO.	5796	5797	5798	5799	5800	5801	5802	5803	5804	5805	5808	5807	5808	5809		5811		_	$\overline{}$
	SEQ NO.		2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	25	2313	2314

5			chain	thase						1	igne chein								cum AS019			e protein	precursor	protein	
10		Function	DNA polymerase III epsilon chain	esentinos especiales synthese	A LEAR HOUSE	hypothetical protein					alkanal monooxygenase sipns cnain	hypothetical protein		mattooligosyttrehalose	hypothetical protein		threonine denydratuse		Correspectation glutamicum AS019		DNA polymerase III	chloramphenicol sensitive protein	histidine-binding protein precursor	hypothetical membrane protein	
15		Matched length (a.a.)	355	1		322					375	120		268	214		438		415		1183	279	149	198	
20		Similarity (%)	50.1	1	98.8	52.8					54.4	79.2		72.4	73.4		99.3		907	200	80.5	73.8	55.7	64.7	1
		Identity (%)	23.4		42.0	27.8					20.5	58.3		46.3	3 85	20.0	99.3	-	18	<u> </u>	53.3	37.6	21.5	22.7	4
<i>25</i>	unea)		or A3(2)		IreY	ans					scens	olor A3(2)		tre2			Itamicum		١	s mete	olor A3(2)	2 rarD	Laid 0272 his J	idus AF2388	
30	Table 1 (continued)	Homologaus gene	Streptomyces coelicolor A3(2) SCI8.12		Arthrobacter sp. Q36 treY	Deinococcus radiodurans DR1631					Photorhabdus luminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2) SC7H2.05		Arthrohacter sp. Q36 tre2		Bacillus subtilis 168	Corynebacterium glutamicum ATCC 13032 livA			Catharanthus roseus metE	Streptomyces coelicolor A3(2)	Escherichia coli K12 rarD	Campulobacter leiuni DZ72 hisJ	Archaepolobus fulgidus AF2388	No. inconsiste
35 40		db Match	gp:SCI8_12 S		oir S85789 A	96_4					sp:UXA1_PHOLU	gp.SC7H2_5		00000	pir.363770	SP:YVYE_BACSU	sp.THD1_CORGL			pir.S57636	prf 2508371A	ווטש מפעפידי	SP. N. C. C. C. C. C. C. C. C. C. C. C. C. C.	Sp:HISJ_CAMJE	pir.D69548
		ORF (bp)	-	909	+-		398	96	189	1056	1044 \$	378			1/85	651	1308	205	156	1203	3582	9,6	2 3	468	918
45		Terminal	2	2234763	+-	+	2238694	2239845	2240058	2239508	2241724	2241738	! 6	2242129	2244819	2242393		2246892	2246295				2797B		2254642
50		fritial	78			2237331	2239092	_		+		2242115		2242359	5826 2243035	2243043		2246386	2246450	2248208			2252017	5834 2253192	5835 2253725
		SEO	(8.8.)	101	2 3	5817 2	5810		5821	500	5823	5824		_		5827	5828	5829						5834	5835
55		SEO S	(DNA)		-	2317	3340		2321	333	2322			2325	2326	727	2328	2329	2330		23.3		2333	2334	2335

	Function	short chain dahydrogenase or	deneral succession (DAP)	decarboxylase		Cystellia sylving	ribacomal large subunit	pseudouridine synthase D	lipoprotein signal peptidase		The state of the state of other	Oleanoonly City Career		hypothetical protein	L-asparaginase	DNA-damage-inducible protein P	hypothetical membrane protein		transcriptional regulator		hypothetical protein	$\neg \neg$	isoleucy-tKNA symmetase			
	Matched length (a.a.)	280		445	;	4 5		326	154			220	<u> </u>	158	321	37.	286		334		212	+	1088	-		
	Similarity (%)	80.0		47.6		64.3		61.0				64.0		57.6	62.0	60 7	8.5		73.1		67.0	+	65.4	_		
	Identity (%)	7 a 2	2	22.9		32.8		36.5	٤			36.4	_	38.7	3	, ,	2 4	2	44.3		3,	3	38.5		_	\ \ \
Table 1 (continued)	Homologous gene		Bacillus subtilis 168 year	Pseudomonas aeruginosa lysA	4600	Alcaligenes eutrophus CH34 cysM		Escherichia coli K12 rluD	Oseridomonas fluorescens NCIB	10586 lspA		Strontomyces antibioticus oleB	Strepton year	1 po ellocation	Rhodococcus erymopons of	Bacillus lichenitormis	Escherichia coli K12 dini	Escherichia coli K12 ybir	Streptomyces coelicolor A3(2)		Strentomyces coelicolor A3(2)	SCF51.05	Saccharomyces cerevisiae A384A YBL076C ILS1			
	db Match	1	sp.GS39_BACSU	DOEAE	\neg	951 SP:CYSM_ALCEU			sp.rcoo_cooc.	sp.LSPA_PSEFL			pir.S67863		prt.2422382P	sp:ASPG_BACLI	SP.DINP_ECOLI	Sp. YBIF ECOLI				gp:SCF51_5	3162 SPISYIC_YEAST			5
	ORF	<u> </u>	876		/97	150	579		930	534	,000	1006	1650	303	900	975	1401	858	+		55	627	+	\neg	_	1095
	<u>8</u>	(jr)	2254683	1 :	2255738	2258362	2250421	750077	2260002	2260934	00000	5507077	2264499	2265298	2264509	2266394	2266897	228	3 5		2270435	2270258	2270988		3 2274473	1 2274767
	Initial	(u)	2255558		2257024	2259312			2260931	2261467		2261688	2262850	5844 2264996	5845 2285108	5846 2265420	5847 2268297	300000	5848 2203243	1070177	2270304	2270884	2274149		3 2274688	4 2275881
	SEQ	2 :	5836 2	3	5837 2	5838		5835	5840	5841		5842	5843	5844	5845	5846		-			5850	5851			5853	5854
		ON (A)	33.76		2337	9256		2339	2340	2341	-	2342	2343		2345	2346	2 2	25.	2348	2349	2350	2351		7327	2353	2354

	Function	hypothetical membrane protein	hypothetical protein (putative YAK 1 protein)	hypothetical protein	hypothetical protein	hypothetical protein	cell division protein	cell division Initiation protein or cell division protein	UDP-N-acetylmuramatealenine ligase	UDP-N-acetylglucosamine-N-acetylmuramyf-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine pyrophosphoryl-undecaprenol N-acetylglucosamine	cell division protein	UDP-N-acetylmuramoylalanine-D- glutamate ligase			phospho-n-scetylmuramoyi- pentapeptide	UDP-N-acelylmuramoylalanyl-D- glutamyl-2,8-dlaminopimelate-D- alanyl-D-stanyl ligase
	Matched length (a.a.)	82	152	221	248	112	442	222	486	372	480	110			385	494
	Similarity (%)	73.2	99.3	9.66	100.0	51.0	98.6	100.0	9.66	99.5	99.6	99.1			63.8	64.2
	Identity (%)	46.3	89.3	7.78	99.2	39.0	98.6	98.6	98.4	98.9	99.4	99.1			38.6	35.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2148c	Brevibacterium lactofermentum orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum yfih	Mus musculus P4(21)n	Brevibacterium lactofermentum	Corynebacterium glutamitum	Corynebacterium glutamicummurC	Brevibacterium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum ATCC 13869 ftsW	Brevibacterium lactofermentum ATCC 13869 murD			Escherichia coli K12 mraY	Escherichia coli K12 murf
	db Match	pir:F70578	gp.BLFTSZ_6	sp:YFZ1_CORGL	prl:2420425C	GP. A8028868_1	Sp:FTSZ_BRELA	gsp:W70502	gp:AB015023_1	1116 gp:BLA242646_3	gp:BLA242646_2	gp:BLA242646_1			Sp:MRAY_ECOLI	1542 sp:MURF_ECOLI
	ORF (bp)	285	458	683	738	488		988	1458		1650	468	384	333	1098	 1
	Terminal (nt)	2276353	2276881	2277416	2278122	2279840	2278890	2280470	2281168	2282661	2283782	2285437	2286655	228	22	2287969
	Initial (nt)	2276637	2277336	2278078		2279155	2280215	2281135	2282623	5863 2283776	2285431	2285904	2286272	2286499	2287959	2289510
	SEO NO.	+	5856 2	5857 2		5850		5861	5862	5863	5864	5865	5866	5867	5868	
	SEO		2356	_		2350			1-0		2364	2365	7366	2367	2368	2369

かける場合 () · ()

_			$\neg \tau$	_		_	Γ	T		T		T		Т					1 1		1		1	1		1
	Function	UDP-N-acetylmuramoylalanyl-D-	glutamyr-z,o-uan mogase alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein			hypothetical protein	hypothetical membrane protein		hypothetical protein		hypothetical protein	atalojosphantantantojosphanta	5,10-meinyieneren en y dicheren reductase		dimethylallyltransii ansiere se	hypothetical membrane protein			hypothetical protein	eseria cietoro enst citoroca	GUKBIYONG-IYPO PIOTEN		hypothetical membrane protein	
	Matched length (a.a.)		491	22	850	3		323	143	2	137		40,	3	303	 -	328	484		1	125		age	_	411	-
	Similarity (%)		87.8	100.0	9	38.0		79.3	8 8	8	69.3		1 5	8	70.6	-	62.0	9.69	+	1	88.8	╀	62.4		V 02	\dashv
	Identity (%)		37.7	100.0	1	28.2		55.1	5	2	39.4			36.3	42.6	\downarrow	8 1.	35.7		1	43.2	1	34.2		, 46	3
Table 1 (continued)	Homologous gene		Bacillus subtills 168 murE	Brevibacterium lactofermentum	ORF2 pbp	Pseudomonas aeruginosa popB		Mycobacterium tuberculosis	HS/RV KVZ 1030	Mycobacterium represe	Mycobacterium tuberculosis H37Rv Rv2169c			Mycobacterium repride MLCB268.13	Streptomyces lividans 1328	metF	Myxococcus xanthus DK1050	Mycobacterium leprae	MLCB268.17		Mycobacterium tuberculosis	H37Rv Rv21/5c	Streptomyces coelicolor A3(2) pkaF		M.cohorterium lentae	MLCB268.23
	db Match		sp:MURE_BACSU		GSP:Y3311/	pir.S54872		olr. A 70581		gp:MLCB268_11	pir.C70935			gp:MLCB268_13		Sp.METF_STRU	pir.S32168		gp:MLCB268_16		+-	pir A/ U930	gp:AB019394_1			B gp:MLCB268_21
	ORF	<u>a</u>	1551		225	1953		2		429	387		423	573		978	1513	-	1470	507	╀	369	2148	-	2	1236
	ē	£	2289523		2290973	2291212		220022	2294117	2295376	2296512		2297231	2298438		2298451	3590055	3	2302175	2302685		2302251	2304980	1	2303040	3 2306218
	Initial	(a)	2291073	1	2291197	2202184	-		2295127	2295804	2208808	2000077	2297653	2297866		2299428	10000	#7C6677	2300706	0740000		2302619	2302833		2303690	2304983
	-		5870 22	+	5871 2	1073	7 1	28/3	5874 2	5875 2			5877	5,878		5879	_	2880	5881	6	2995	5883	5884		5885	5886
	-	NO (AND)	2370 58	1	2371 56	_	_		2374 5	2276 5		20/67	2377		_	2379		2380	2381	-i-	2382	2383	2284	7	2385	2386

	Function	hypothetical membrane protein	Darching hentilosonale-7-	phosphate synthase	hypothetical protein		hypothetical memorane process	major secreted protein PS1 protein precursor				hypothetical memorane protein	acytransferase	alycosyl transferase	- Company (mass)	protein PSU precursor (invesion- associated-protein)	T	T		ubiquinol-cytochrome c reductase		ubiquinol-cytochrome c reductase	
	Matched length (a.a.)	434		462	166		428	440				249	245	38	+	296	191	1	201	-	203	278	-
	Similarity (%)	0.00	3	87.9	7.77		64.5	57.1				100.0	100.0	7,4%		80.8	613	+	04.7	├	57.1	83.1	<u></u>
	Identity (%)	1 5	30.4	6.99	58.4		35.1	28.2	<u>_</u>			100.0	100.0	1 5	3	26.4	33	3	34.3	_	37.9	58.8	-
Table 1 (continued)	Homologous gene	Machadarium tuberculosis	Mycouacienton (2007) H37Rv Rv2181	Amycolatopsis mediterranei	Mycobacterium leprae	MLCB268.21c	Mycobacterium tuberculosis H37Rv Rv2181	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17865 csp1				Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum	ATCC 13032 Strontomyces coellcolor A3(2)	SC6G10.05c	isteria ivanovii iep		Listeria grayi lap	Heliobacillus mobilis petB		Streptomyces lividans qcrA	Mycobacterium tuberculosis	H37Rv Rv2194 qcrC
	db Match		pir.G70938	gp:AF280581_2	Τ.	gp:MLCB268_20	pir.G70936	1449 sp.CSP1_CORGL				gp:AF096280_3	2 0008080 0	gp.Ar.deoreo_e	gp:SC6G10_5	Viai Cood	sp.rou_cisiv	sp:P60_LISGR	nr 2503462K		gp:AF107888_1		sp:Y005_MYCIU
	ORF	a	1308 p	1386		504	2418	1449	1	204	177	1188	1	65)	1143) of	627	1602	_	672	1	885
	ie.	(u)	2307621	7		2309173	2312252	2313808		2314038	2313916	2314236		2315678	2317633		2318804	2319968	_+_	757	2323088		5 2324311
	Initial	(ut)	2306314 2			2309676	2309835			2313833	2314092	2215423		2316412	2318775		2319850	2320594		2323073	2323759		5901 2325195
	-	(e e	5887			5889 2	5890 2			5892	_			5895	5896	2605	5897	5898		5899	2900		
	Eo S	2 2 2 §	-		200	389	9			30		 -	1607	2395	2306	0807	2397	2398		2388	2400		2401

EP 1 108 790 A2

	Function	cytochrome c oxidase subunit III		hypothetical membrane protein	cytochrame c oxidase subunit II	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insenstitvity protein)	hypothetical protein	hypothelical membrane protein	cobinamide kinase	nicotinate-nucleotide dimethylbenzimidazola phosphoribosyltensferase	cobalamin (5'-phosphate) synthase		ciavulanate-9-aldehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acetykransferase		lipoyitransferase
	Matched length (a.a.)	188		145	212	640	114	246	172	341	305		241	364	493	26	169		210
	Similarity (%)	70.7		71.0	53.9	99.8	100.0	60.2	64.0	6.99	49.8		68.5	70.3	62.9	67.0	68.5		85.7
	Identity (%)	36.7		38.6	28.7	2.88	100.0	35.0	43.0	37.8	25.3		38.6	40.1	36.3	40.2	48.9		36.7
Table 1 (continued)	Homologous gene	Synechococcus vulcanus		Mycobacterium tuberculosis H37Rv Rv2199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 ItsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae, MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC 12633 pepA	Saccharopolyspora erythraea ORF1	Streptomyces secutensis pdhB		Arabidopsis thallana
	db Match	UVNYS_EXOD:48		sp:Y00A_MYCTU	HSOHR_SXOD:48	1920 gp:AB029550_1	gp:AB029550_2	9p:MLCB22_2	pir.S52220	sp.coBU_PSEDE	sp:cogv_Psede		pri 2414335A	sp:ILVE_MYCTU	gp:PPU010261_1	prf:2110282A	gp. AF047034_2		gp:AB020975_1
	ORF (bp)	615	153	429	1077	1920	342	768	522	1089	921	237	714	1137	1500	393	2025	1365	753
	Terminal (nt)	2325273	2326121	2326472	2326921	2330435	2330586	2331967	2332495	2333600	2334535	2334481	2335028	2335915	2338734	2338748	2341293	2339440	2342164
	Initial (nt)	2325887	5903 2326273	2326900	2327997	2328516	2330927	2331200	2331974	2332512	2333615	2334717	2335741	2337051	2337235	2339140	5339269	5918 2340804	2341412
	SEQ NO.	5902	5903	5904	5905	5906	5907	5908	5909	5910	5911	5912	5913	5914	5915	5916	5917		5919
	SEO NO. (DNA)	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2418	2417	2418	2419

						Table 1 (continued)				
	SEQ	Initial	Terminal	ORF	dh Match	Homologous gene	Identity (%)	Similarity (%)	Matched	Function
9		<u>E</u>	<u>(</u> 2	(dq)					9.8	
	000	5920 2342304	2343347	1044	Sp.LIPA_PELCA	Pelobacter carbinolicus GRA BD	44.6	70.9	285	ipoic acid synthetuse
			2244250	1 8	Sa YOU MYCTU	Mycobacterium tuberculosis	45.5	7.97	257	hypothetical membrane protein
2421	5921 2	2343479	9 1	3 3		Escherichia coli K12 yldE	32.9	67.8	559	hypothetical membrane protein
		2344431	2346047	1203	1	Corynebacterium glutamicum	100.0	100.0	401	transposase (ISCg2)
2423	2923	234/48	_	_	T	A100 13034 mg				
2424	5924	2347505	2347804	8		of Agranda conticolor Agran	:	69.7	147	hypothetical membrane protein
2425	5925	2348548	2346076	471	gp:SC5F7_34	SC5F7.04c	4.	63.	2	
	900	000000	SASOADA	213						Cietas Ciemas Tara
2426	23.50	29.26 2350020	3				31.0	44.0	145	שתופוט שתו מחוויפון לוכיניי
2427	2857	2351022	2351896	975		MON COMME		3	ç	The state of order
2428	5928	2351310	2350912	399	pir. B72308	TM1010	36.7	89	2	
1				6						Glode adal
2429	5929	2351909	2351310	3			25.0	6 09	220	alkanal monooxygenase sipna chair
2430	5930	2351980	2352828	849	sp.LUXA_VIBHA	Vibrio harveyi luxA	3			Coadenal ludiciase alpha
2431	5931	2352833	3 2353225	393	pir.A72404	Thermotoga maritima MSB8	40.5	73.0	Ξ	(translation initiation inhibitor)
	_	2366468	-	243						
2432	3836	2000		+-						
2433	5933		3	-+		Cacherichia coli huax	21.9	53.4	433	4-hydroxyphenylacelate parmease
2434	5934	2355521	1 2356843	1323	pri 2203345H	Caciferential con riper.	1	╀	45.0	transmembrane transport protein
2435	5935	2356794	4 2357354	561	gp:SCGD3_10	SCGD3.10c	42.4	2	3	
2436	5936	2357264	4 2357707	444	gp:SCGD3_10	Streptomyces coelicolor A3(2) SCGD3.10c	31.4	66.1	118	transmembrane transport protein
				195			-		_	
2437		732/484	3	+				_		
2438		5938 2357726	6 2358130	465						

EP 1 108 790 A2

	Function			heme oxygenase	glutamate-ammonia-ligase adenylyttansferase	glutamine synthetese	hypothetical protein	hypothetical protein	hypothetical protein	galactokinase	virulence-associated protein		bifunctional protein (ribonuclease H			hypothelical protein	hypothetical protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosine-phosphatase	hypothetical protein	Insertion element (IS402)
	Matched length (a.a.)			214	808	441	382	6	54	374	358		382			249	378	204	158	281	129
	Similarity (%)			78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5		76.1			58.6	76.2	54.4	83.5	65.5	26.8
	Identity (%)			57.9	43.4	43.5	26.8	33.4	38.8	24.9	27.1		54.7			26.5	49.2	26.0	48.2	40.9	32.6
Table 1 (continued)	Homologous gene			Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) ginE	Thermotoge maritims MSB8 ginA	Streptomyces coelicolor A3(2) SCE9.39c	Mycobacterium tuberculosis H37Rv Rv2228	Streptomyces coelicolor A3(2) SCC75A 11c.	Homo sapiens galk1	Description of the Care		Mycobacterium tuberculosis	H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv RV2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichla coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia
	db Match			SP.HMUO_CORDI	gp:SCY17736_4	SP.GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	MANI H IMAN	39. Ont 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	db. C.db	1148 an-Y010 MYCTU	2		sp:Y01A_MYCTU	1140 SP:Y01B_MYCTU	SDIGPH ECOLI		Sp:Y01G_MYCTU	sp:YI21_BURCE
	ORF G (gg)		543	845	3135	1338	1104	1827	180	1004	2 3	207	_	_	729	717		654	 	954	393
	Terminal (nt)		2358153	2358772	2359814	2362818	2385455	2367413	2367473	200000	2308002	0116057	0080/67	71 11 107	2373289	2372573	2373323	2275197	2375684	2378720	2376998
	Initial (nt)	-	2358695	2359416	2362748	2364155	2364352	2365587	2367652		18//957	73/0381	23/0423	/267/67	2372561		2374462	2274544		2375767	2458 5958 2377390
	SEO	:	5939		5941	5942	5943	5944	5945		2946	5947	5948	5949	5950	5951	5952	5053		5955	5958
	SEO	(VA)	2439	+		2442	2443	2444	2445		2446	2447	2448	2449	2450	2451	2452	2462	2454	2455	2458

(nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	_			_				_		7	Т	_	- 1		- 1		l .	1	- 1		1			1			
SEC		Function			transcriptional regulator		hypothetical protein		nyriiyata dehydrogenase component		ADC transporter or olutamine	transport ATP-binding protein		ribose transport system permease	protein	hypothetical protein		calcium binding protein		lipase or hydrolase		acyl carier protein	N-acetylglucosamine-6-phosphate descetylase		hypothetical protein		
SEG		Matched length	(8.8)		135		134		0.50	2		8			283	286	1	125		352	1	75	253	1	789		
SEG		Similarity			57.8		77.6		20.0	0		62.8			58.7	62.9		55.2		55.7		80.0	75.5	1	65.7		
SEG (nitial Terminal ORF db Match NO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		_			30.4		55.2		100	e C		33.7			25.4	26.2		41.8		29.6		42.7	43.9		33.6		
SEG (ntital Terminal ORF db Match NO (nt) (nt) (bp) (bp) db Match (nt) (nt) (nt) (bp) db Match (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	Table 1 (continued)	Homologous gene			Streptomyces coelicolor A3(2) SC8F4.22c		Mycobacterium tuberculosis	H37Rv Rv2239c		Streptomyces seculensis pdhA		Escherichia coli K12 glnQ			Bacillus subtilis 168 rbsC	Rickettsia prowazekii Madrid E	RP367	Dictyostelium discoldeum AX2 cbpA		Streptomyces coelicolor A3(2)	SC6G4.24	Myxococcus xanthus ATCC 25232 acpP	Escherichia coli K12 negD		Deinococcus radiodurans DR1192		
SEG (nitial Terminal ORF NO (nt) (nt) (bp) S957 237726 2377484 243 S958 2377899 2378276 378 S959 2378292 2378489 198 S960 2379312 2378489 198 S960 2379312 2378770 345 S960 2382240 2380765 1476 S960 2384509 2383627 789 S960 2384509 2383627 888 S968 2385771 2386580 810 S970 2387627 2386997 2388821 925 73 5972 2387997 2388829 1033		dology de					Т			gp:AF047034_4		SP.GLNQ_ECOLI			sp.RBSC_BACSU	034511-1-	DEC. 177.10	sp.CBPA_DICDI			gp:SC6G4_24	SP.ACP_MYXXA	 -		gp:AE001968_4		
SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		- 180 - 180	(dq)	243	+		 -		345		1478	789		963	888	3	556	910	3		1014	291	1 5	270		┿	-1
SEG (nitial NO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		<u>a</u>		2377484	2378278	007000		2378884	2379770	2382744	2380785	2382827		2385426	2383622		₩.	1 60			2386814	2387957		238862			2390434
SEQ NO NO 1 5957 7 5 5957 7 5 5959 7 5 5969 7 7 5967 7 7 5967 7 7 5970 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					+	-+-			-		-			2384464	2384509		2385447				2387627						2390904
2 2 2 2 3 8 2 2 3 8 2 2 2 2 2 2 2 2 2 2		ž	0 .	_	105.8		2829	2960						5965	5966		2962	5968	_								5974
		<u> </u>		_					_			_	_	2485	2468		2467	2468		2469	2470	2471		2472	2473		2474

EP 1 108 790 A2

5	Function	hypothetical protein						elkaline phosphatase D precursor		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-gluternine: D-fructose-8-phosphate amidotransferase			deoxyguanosinetriphosphata triphosphohydrolasa	hypothetical protein
15	Matched Jength (a.a.)	27.1						530		594	89		633	86			929			414	171
20	Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	59.7
	identity (%)	52.4						34.2		44.4	41.2		59.1	49.0			59.1			54.8	30.4
25 Table 1 (continued)	Homologous gene	oelicolor A3(2)						168 phoD		oelicolor A3(2)	tuberculosis		smegmatis	Streptomyces aureofaciens BMK			smegmatis			smegmatis dgt	Neisseria meningitidis NMA0251
35 Table 1	Homolo	Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis dnaG	Streptomyces a			Mycobacterium smegmalis mc2155 glmS			Mycobacterium smegmatis dgt	
40	db Match	gp:SC4A7_8						sp:PPBD_BACSU		gp:SCI51_17	pir:G70661		prf:2413330B	gp:XXU39467_1			gp:AF058788_1			prf.2413330A	gp:NMA1Z2491_23 5
•	ORF (bp)	825	492	171	548	465	342	1560	714	1836	240	675	1899	482	243	636	1869	324	1152	1272	675
45	Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2408262
50	Initial (nt)	2392008	2392566	2393349	2393425	2394437	2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	2404012	2404523	2405671	2406258	5994 2406938
	SEQ NO	5875	5976	5977	5978	5979	2980	5981	5982	5983	5984	5985	5986	5987	5988	5989	5990	5991	2669	5993	5994
55	SEQ NO.	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489		2491	2492	2493	2494

Г		T	Т		\top	T	T	_	Т	\neg		T		8						1	ļ	٥ ۽	2				١	
	Function		hypothetical protein		hypothetical protein		glycyl-tRNA synthetese	bacterial regulatory protein, arsR	family	ferric uptake regulation protein	hypothetical protein (conserved in	C.glutamicum?)	hypothetical membrane protein	Section of a fundamental security as a	תעספנים ביות בי ביות בי ביות בי ביות ביות ביות	hypothetical protein		Era-like GTP-binding protein	handhelfel membrane protein		hypothetical protein	Neisserial polypeptides predicted to	be useful antigens for vaccines and diagnostics	phosphate starvation inducible	protein	hypothetical protein		
	Matched length	(8.8)	692		138		808	!	68	132	623	630	224		233	245		538	1 5	435	157	· 	82	3	g	248		
	Identity Similarity	(R)	63.6		54.4		669		73.0	70.5	3	40.7	67.0		71.2	74.3	?	70.3]	82.4	86.0		20.0	;	84.0	75.4	<u> </u>	
	dentity	<u> </u>	31.1		24.8		46.1		49.4	34.9	;	24.8	40.6		43.4	,	40.	39.5		52.8	65.0		45.0		64.1	44.0	_	
Table 1 (continued)		and some some	Mycobacterium tuberculosis	H3/KV KV2343	Drosophila melanogaster CG10592		BBH elicipate	Thermus aqualicus inco	Mycobacterium tuberculosis	Cartaine coll K10 fur	Escriencina con vice in	Mycobacterium topercures:	Streptomyces coelicolor A3(2)	h3u	Micrococcus luteus B-P 26 uppS	Attocharterium tuberculosis	H37Rv Rv2382c		Streptococcus prientionies co	Mycobacterium (upercurus)s H37Rv Rv2366	Mycobacterium tuberculosis	H3/KV KV230/C	Neisseria meningitidis		Mycobacterium tuber curosis H37Rv Rv2368c phoH	Streptomyces coelicolor A3(2)		
		db Match	nir B70682		gp: AE003565_26			pir.S58522	plr.E70585		Sp FUR ECOU	pir.A70539		gp:AF162938_1	11 1011 3001	SP.OFFS MICEO	pir.A70586		gp: AF072811_1	SP:Y1DE_MYCTU	WCTU	- Controle	GSP:Y75650		Sp: PHOL_MYCTU	gp:SCC77_19		
	100	(g)	2037		486	1	790	1383	369	$\overline{}$	432	1551		792	1	62)	728		915	1320	8		264		1050	723	_	942
	_	(nt)	1 6		2409779		2410280	2410958	2412948		2413423	2415118		2415298		2418371	2417222		2417969	2418990		2420313	2421236		2420900	2421975		2423791
	<u> </u>		-	2406993	2410284	-	2410861	2412338	↓ —		2412992	2413568		2416089		2417099	2417947		2418883	2420309	j	2420900	2420973		2421949			6011 2422850
	GEO	9 3	(0.0)	5995 2	5998 2		5997 2	5998 2	000	2888	0009	8004		8002		6003	8004	5	6005	9009		6007	A COR		6009	6	3	6011
	0			2495 5	2498 5		2497 5	•	_	5488	2500	26.04	$\overline{}$	2502		2503		5007	2505			2507	9000	0067	2509	64.9	21.07	2511

	Function		heat shock protein dies	heat-inducible transcriptional	repressor (groEL repressor)	oxygen-independent	oproporpriying	agglutinin attachment subunit			eseci ec	long-chain-rany-acidCon	4-alpha-qlucanotransferase	and the Hop-Resistance	And instant	Neisserial polypeptides predicted to	be useful antigens for vaccines and	polypeptides predicted to be useful	antigens for vaccines end			peptidyl-dipeptidase	carboxylesterase	-transit hydrolasa or trahalosa	gycosy: :)	hypothetical protein	
	Matched	7	380		934	320		134				611	738	3	904		89		101			089	158	3	594	+	P
	Similarity	(3)	77.4		9.6	1	-	84.9				75.1	1	20.4	64.4		51.0		53.0			88.3	1	į	84.9		2
	<u>></u>	R.	47.1		48.2	1	 	38.6		1	1	48.0	1	28.3	20.5		44.0		47.0			403		24.1	65.2		32.1
Table 1 (continued)		2 SA PROPRIOR	Clock and	Streptomyces alous dilass	Creatomyces albus hrcA	ilepromited and an arrangement	Bacillus stearothermophines	hemN necessary	YNR044W AGA1			Strentomyces coelicolor A3(2)	SC6G10.04	Escherichia coll K12 malQ	bimseld specifice bravis plasmid	horA	Neisseria donorrhoeae		Neisseria meningitidis				Salmonella typhimunum dcp	Anisopteromalus calandrae	Mycobacterium tuberculosis	H37Rv Rv0128	Mycobaderium tubercuiusis H37Rv Rv0127
		db Match		prt.2421342B Si		prf.2421342A		prf.2318230A h	sp.AGA1_YEAST		-		gp:SC6G10_4	1002	Sp:MALG_ECCL	gp:AB005752_1		GSP: 7 / 462/	GSP:Y74829				A SO DCP SALTY			94 plr.G70983	1089 pir.H70983
		¥ ;	(de)	1146		1023		88	519	693	100	<u>ş</u>	1845	_	2118	1863		1 255	333	-	180	3 204	5 2034	-+-	6 11/8	1794	
		Terminal	<u></u>	OUTCCAC	Т	2423915		2424965	2426699	2426776		2427807	2428184		2432413	2434370		2433814	2433875		2434440	2434573	_	243	2438049	3 2439906	8 2440994
			든 -		2423845	6013 2424937 2	+	2425954	8015 2428181		-	2428184	2430028		2430296	8030 2432508		2433868	7028585	.0715.7	2434619		2011	2436838	5026 2436871	2438113	6028 2439906
		SEO		\neg	6012 24	013 24	+	6014 2	015 2	1	5016	6017 2	8018	200	6019	000	3	6021	000	7700	5023			2525 6025		6027	
		<u>s</u>	2 5		512 60	2513 60	\dagger	2514 6	2515		2516	2517		9107	25.19	-	0767	2521	000	7252	1635		2524	2525	2526	2527	2528

	Function	isopentenyt-diphosphate Delta- isomerase						beta C-S lyase (degradation of aminoethylcysteine)	branched-chain amino acid transport system carrier protein (Isolaucina uptake)	sikanal monooxygenese alpha chain		malonate transporter	glycolate oxidase subunit	transcriptional regulator		hypothetical protein		heme-binding protein A precursor (hemin-binding lipoprotein)	oligopeptide ABC transporter (permease)	dipeptide transport system permesse protein	oligopeptide transport ATP-binding protein
	Matched length (a.a.)	189				-		325	426	343		324	483	203		467		546	315	27.1	372
	Similarity (%)	57.7						100.0	100.0	49.0		80.5	55.1	65.0		57.8		55.5	73.3	74.5	66.4
	Identity (%)	31.8						99.4	99.8	21.8		25.9	27.7	25.6		22.5		27.5	40.0	43.2	37.4
Table 1 (continued)	Homologous gene	Chlamydomonas reinhardiii ipi 1						Corynebacterium glutamicum ATCC 13032 secD	Corynebacterium glutamicum ATCC 13032 brnQ	Vibrio harvey! luxA		Sinorhizoblum meliloti mdcF	Escherichia coli K12 glcD	Escherichia coli K12 ydfH		Salmonella typhimurium ygiK		Haemophilus influenzae Rd HI0853 hbpA	Bacillus subtilis 168 appB	Escherichia coll K12 dppC	Escherichia coli K12 oppD
	db Match	pir.T07979						gp:CORCSLYS_1	sp.BRNQ_CORGL	Sp:LUXA_VIBHA		gp:AF155772_2	SP GLCD ECOLI	Sp:YDFH_ECOLI		sp:YGIK_SALTY		sp:HBPA_HAEIN	sp:APPB_BACSU	sp:DPPC_ECOLI	pri.2306258MR
	ORF (bp)	285	222	438	1755	099	519	975	1278	826	522	927	2844	711	282	1347	423	1509	968	828	1437
	Terminal (nt)	2441005	2441890	2442792	2441602	2443356	2444033	2445709	2446993	2447998	2450323	2450859	2451794	2455435	2455452	2455720	2457337	2459371	2460336	2461167	2462599
	Initial (nt)	2441589	2441669	2442355	2443356	2444015	2444551	2444735	2445716	2447021	2450844	2451785	2454837	2454725	6042 2455733	2457066	2457759	2457863	2459371	2480340	6048 2461163
•	SEQ NO.	6039	6030	6031	6032	6033	6034	6035	9039	6037	8038	6039	6040	6041		6043	6044	6045	6046	8047	6048
•	SEQ NO.	2529	2530	2531	2532	2533	2534	2535	2536	2537	2538	2539	2540	2541	2542	2543	2544	2545	2546	2547	2548

	Function	hypothetical protein	hypothetical protein	ihosa tinasa	HD03c Nilosc	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C			thismine biosynthesis protein x	hypothetical protein	glycine betains transporter				large integral C4-dicarboxylate	membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin I	off Carlotter and all of the Carlotter and all	GIP-DIMOING PROVENI
	Matched length (a.a.)	106	Τ	T	3	466		284	295			133	197	601	 -	-		1	448	118	227	46		603
	Similarity (%)	44.0	Cas	2.95	65.0	64.6		61.6	512			100.0	65.5	71.7	-				71.9	73.7	29.0	73.0	4	83.6
	identity (%)	35.0	2 6	2.62	41.0	39.9		31.3	28.5			100.0	42.8	39.8		1	1	1	34.6	33.9	28.2	63.0		58.7
lable I (commed)	Homologous gene		Aeropyrum pernix N.I. A.E. 1909	Aquifex aeollcus VF5 aq_/68	Rhizoblum etil rbsK	Streptomyces coelicolor A3(2) SCM2.16c		Homo sapiens		Chiamydomonas reinnardin	,	Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum	ATCC 13032 betP				Rhodobacter capsulatus dctM	Kiebsielle pneumoniae dctQ	\top	Lycopersicon esculentum	(tomato)	And the state of the second
	db Match		PIR: G72536	plr:D70367	prt.2514301A	gp:SCM2_16		SD:NTCI HUMAN		gp:AF195243_1		Sp:THIX_CORGL	CMGR RPMC		sp:BETP_CORGL				pri:2320266C	ap. AF 186091_1			PRF:1806416A	
	OR (bg)	-	507	549	803	1425	103	972		848	366	570	8		1890	966	1608	384	1311	480	-+-	-+-	243	
•	Terminal		2461543	2462602	2484143	2465768	JARKARS	2466038	220017	2467922	2470678	2472819		2472893	2475542	2477492	2479251	2479762	2479898	2481		?	2484087	
	initial	(m)	2462049	RN50 2463150	-		-	6053 2463700	500/047	2467077	2470313	2472250		2473480	2473653	6060 2476497	2477644	6062 2479379	2481208	2404602		2482480	6066 2483845	
	SEO	B.B.)	8049 2	050	3	6052		200	\$0.04 	8055	6056	8057		8028	6909	0909	6061	8082	6063	3	500	6065		_
	SEQ S		2549 8		2 2	2552		_	2554	2555			_	2558	2559	2560		2562	2563	300	¥007	2565	2566	_

5
10
15
20
25
30
35
40
45
50

												<u> </u>		_,				
	Function	hypothetical protein	30S ribosomal protein S20	thrreonine efflux protein	ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for DNA binding and uptake		hypothelical protein	phosphoglycerate mutase	hypothetical protein	hypothelical protein		gamma-glutamyl phosphate reductase or glutamate-5- semialdehyde dahydrogenase	D-Isomer specific 2-hydroxyacid dehydrogenase		GTP-binding protein
	Matched length (a.a.)	185	85	210	129	313	527	195		273	235	117	197		432	304		487
	Similarity (%)	69.7	72.9	67.1	80.8	74.1	49.7	63.6		66.3	66.4	86.3	85.3		83.8	100.0		78.2
	identity (%)	41.8	48.2	30.0	61.2	48.0	21.4	30.8		34.8	46.8	55.6	0.89		99.1	99.3		58.9
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv RV2405	Escherichia coli K12 rpsT	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces coelicolor A3(2) SCC 123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptomyces coelicolor A3(2) obg
	db Match	pir:H70683	SP.RS20_ECOLI	SP.RHTC_ECOLI	gp:SC6D7_25	pir.H70684	sp:CME3_BACSU	sp:CME1_BACSU		gp:SCC123_7	pir.F70885	pir.G70885	gp:SCC123_17		sp:PROA_CORGL	SP:YPRA_CORGL		1503 gp:D87915_1
	ORF (bp)	609	261	699	405	975	1539	582	822	822	708	471	878	1023	1296	912	3	1503
	Terminal (nt)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495698	2497513	2498009
;	Initial (nt)	2484681	2485473	2486469	2486881	2487884	2489450	6074 2490154	2490911	2491111	2491858	2482343	2493178	2494237	2495634	2496607	2496803	6084 2499511
	SEO SEO	8008	6909	0209	6071	6072	6073	6074	6075	8078	6077	6078	6029	9090	6081	6082	6083	
	SEO NO SNA		2569			2572	2573	2574	2575	2578	2577	2578	2579	2580	2581	2582	2583	2584

5				c scid reductase		100	וון רקי	ln L21					_	tion sequence		_	_	phate kinase		•	e.	ri Li	
10	Enection		xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomai protein LZ	50S ribosomal protein L21	ribonuciesse E				hypothetical protein	transposase (insertion sequence	1531831)	hypothetical protein	hypothetical protain	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein	
15	Matched		422	278		T	2.0	101	986				195	438	92	11	143	134		92	112	118	
20	Similarity	(%)	77.3	81.9			92.6	82.2	9.99				82.6	99	9.00	76.9	67.8	98.8	1	67.4	64.3	88.8	
	Identity	\rightarrow	39.1	61.2			80.3	56.4	30.1				61.0		68	51.3	37.8	70.9		34.8	36.6	33.8	
25 G	(22)	дөле	pbuX	. ATCC			us IFO13189	us IFO13189	2 rne				(color A3(2)	the micros		icolor A3(2)	licolor A3(2)	negmatis ndk		odurans R1	berculosis	berculosis	
38 Saintinos, 6 older	DO) - BIORI	Homologous gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obq	Escherichia coli K12 rne				Streptomyces coelicotor A3(2)	SCF76.08c	ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c	
35 40		db Match	SO PBUX BACSU				sp:RL27_STRGR	prf:2304263A	P. DNE ECOL	T				gp:SCF/6_8	pir:S43813	gp:SCF76_8	gp:SCF76_9	gp:AF069544_1		gp:AE002024_10	pir:H70515	pir.E70863	
	! -	ORF (bp)	1887 50		621	396	284	303	900		573			608	1308	378	450	408	380	342	465	423	
45		Terminal (2501669	+	2503355	2504265	2503984	2504300		2504831	2507553	01/1007	2508840	2509530	2509523	2511423	2511876	2511849	251	25	2513154	25,	
50	-	initial (nt)	-		+-	÷	2504247	2504602		2507098	2507115	6093 250/138	8094 2508094	2508922	2510830	2511046				2512803		3 2514114	
	}	S S		6085	ROR7	808	6089	0609		609	_	6093	-	5609	8098	6097		_					2
55	ļ		ONA	2585	25.87	_		2590		2591	2592	2593	2594	2595	2598	7597	2508	160	6667	2801		2002	3

5	Function	folyl-polygiutamate synthetase				valyl-tRNA synthetase	oligopeptide ABC transport system substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachlorophenol 4- monooxygenase reductase	transport protein	majonate transporter	class-III heat-shock protein or ATP-dependent protesse	hypothetical protein	succinyl CoA:3-oxoadipate CoA transferase beta subunit	succinyl CoA-3-oxoadipate CoA transferase alpha subunit
15	Matched length (a.a.)	451				915	521	909	170	319	207	208	357	338	444	286	430	366	210	251
20	Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	78.8	58.4	82.8	73.0	85.7	84.5
	Identity (%)	55.4				45.5	24.2	28.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
8 52 72 Table 1 (continued)	Homologous gene	elicolor A3(2)				168 balS	168 oppA	168 dnaK	ens ATCC	Thermus aquaticus ATCC 33923 mdh	oelicolor A3(2)	арћА	p. vanA	flava ATCC	p. vanK	noniae mdcF	clpX	oelicolor A3(2)	p. 2065 pcaJ	p. 2065 pcal
Table 1	Нотого	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquati mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebsiella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp. 2065 pcaJ	Streptomyces sp. 2065 pcal
35	db Match	prf.2410252B				sp:SYV_BACSU	plr.A38447	SP:DNAK_BACSU	gp:ECU89166_1	Sp:MDH_THEFL	gp:SC4A10_33	gp.AF065442_1	prf.2513416F	gp.FSU12290_2	prf.2513418G	gp:KPU95087_7	prf.2303274A	gp:SCF55_28	gp:AF109386_2	gp:AF109386_1
	ORF (bp)	1374 p	612	714	£99	2700 \$	1575 p	1452 8	585 9	984 s	777	578 g	1128 p	975 9	1425 p	930	1278	1086	633	750
45	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
50	Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209	2522251	2523248	2523561	2524915	2525099	2526233	2527135	2529480	2530761	2530891	2532601	2533353
	SEO NO	+	6105	6106	6107	6108	6109	6110	6111	8112	6113	6114	6115	6116	6117	6118	6119	6120	6121	6122
55	SEQ.		2605	2606	2607	2608	2609	2610	2611	2812	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622

									$\neg \neg$			1		1	- 1	- 1		- 1			1	1	- 1	
	Function	protocatechuate catabolic protein	hete ketothiolese		escionbyd egoballoge etechnocyc	and 4-carboxymuconolacione decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase		3-carboxy-cis, cis-muconate	cyclolsomerase	protocatechuate dioxygenase alpha subunit	protocatechuate dioxygenase beta		hypothelical protein	muconolactone isomerase		muconate cyclolsomerase		catachol 1.2-dioxydenase			toluate 1,2 dloxygenase subunit	
	Matched iength (a.a.)	251	g V	3		256	825	115		164	43/	214	217		273	92		372		285			437	
	Similarity (%)	225	2	a.		78.6	43.0	89.6			63.4	70.8	91.2		48.7	81.5		84.7	-	A da	3	-	85.6	
	Identity (%)	5	3.00	2. E		50.8	23.6	78.3			39.8	49.5	7.4.7		26.4	8.4		80.8		72.2	3	1	62.2	
Table 1 (continued)	Homologous gene	000	Rhodococcus opacus 10P pcar	Raistonia eutropha bktB		Rhodococcus opacus pcal	Streptomyces coelicolor A3(2) SCM1.10	Rhodococcus opacus pcal.			Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH		Mycobacterium tubercutosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Shodococcus opacus 1CP cat8			Rhodococcus inodocnious cara		Pseudomonas putida piasmid pOK1 xylX	
	db Match			prf.2411305D F		prf.2408324E	gp:SCM1_10				1116 prf.2408324D	prf:2408324C			plr:G70506	prf.2515333B		OCCUPATO OTAC			prl:2503218A		1470 gp:AF134348_1	
	ORF	_	792	1224	912	753	2061			8/8	1118	812	8	6	1164	291	15		2	8	822	141		
	nai	(IIII)	2534182	2535424	2534257	2536182	2538258			2540230	2538616	2539709	26.40335	2540355	2541187	2542512	2542043	_	2	2544867	2544022	2544928	2546784	
	-	(mt)	2533391	2534201	2535168	 	2536196	2538613		2539553	2539731			2541024	2542350	2542802				2544262	2544876	2545068	2545315	
	SEO	(B.B.)	6123	6124	8125	6126	6127			6129	6130	6131	5	6132	6133	6134	_	-+	8138	6137	6138	6139	6140	
	SEO	$\overline{}$	2623	_	-		2627			2629	2630	7631	202	2632	2633	2834		2835	2636	2637	2638	2639	2640	<u>.</u>

Function	toluate 1,2 dloxygenase subunit	toluate 1,2 dloxygenese subunit	1.2-dihydroxycyclohexa-3,5-diene carboxylate dehydrogenase	regulator of LuxR family with ATP- binding site	transmambrana transport protein of 4-hydroxybenzoate transporter	benzoate membrane transport protein	ATP-dependent Clp protease proteolytic subunit 2	ATP-dependent Cip protease proteolytic subunit 1	hypothetical protein	trigger factor (prolyl isomerase) (chaperone protein)	hypothelical protein	penicillin-binding protein	hypothetical protein	**************************************		hypothetical protein	transposase	
Matched tength (a.a.)	161	342	772	979	435	388	197	198	42	417	160	336	15	15	<u> </u>	35	1	?
Similarity (%)	83.2	81.0	61.4	48.6	64.4	66.2	88.3	85.9	71.4	66.4	63.1	50.9	58.3		73.5	82.9	78.7	0
Identity (%)	60.3	51.5	30.7	23.3	31.3	29.9	69.5	62.1	42.9	32.1	32.5	25.3	27.8	-	7	17.7	┸) -
Homologous gene	Pseudomonas putida plasmid	Pseudomonas putida piasmid	Pseudomonas putida piasmid DDK1 xylL	Rhodococcus erythropolis thcG	Acinetobacter calcoaceticus	Acinetobacter calcoaceticus	Streptomyces coelicolor M145	Streptomyces coelicolor M145	Sulfolobus islandicus ORF154	Bacillus subtilis 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411	Mus musculus Mos1		Corynebacterium striatum ORF1		Corynebacterium striaturii Civi	Corvnebacterium striatum ORF1
db Match	gp:AF134348_2	gp:AF134348_3	gp:AF134348_4	gp:REU95170_1	sp:PCAK_ACICA	Sp. BENE_ACICA	qp.AF071885_2	qp.AF071885_1	gr.clc243537 4			Sp:PBP4_NOCLA	prf.2301342A		prf.2513302C	-	prf.2513302C	
ORF (bp)		1538	828	2685	1380	1242	624	803	3	1347	495	975	456	249	438	150	126	790
Terminal (nt)	₽	1 88	2549695	55	2553942	2555287		2555978	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2556740	2559	2560131		2561	2561483	2562242	5 2561990	0.0000
Initial	+ 5			2549771	2552563	2554026	2555940	2558480	OBCOCC?	2556599				8154 2551115	2561920	2562093	6157 2562115	
	(a a.)			8144						6149			6153	6154	+	$\overline{}$		_
SEO		- i -							$\overline{}$	2649	2650	2652	2653	2654	2655	2656	2657	

1			T	Γ	Т	Т											\top			Sein				-	
5	1	Function			galactose-6-phosphate isomerase	protein	protein	ase N	protein				•	90000000			phytoene denyarogenese	ynthase	mulidrug resistance transporter	Apo transporter ATP-binding protein		dipeptide transport system permease protein	nickel transport system permease protein		
10					galactose-6-	hypothetical protein	hypothetical protein	aminopeptidase N	hypothetical protein					phytoene desarones			phytoene	phytoene synthase	Bullidrug	ADA trans	אפר תפוו	dipeptide transpor permease protein	nickeł tran protein		
15	Matched	(a.a.)			140	248	199	890	158			!] ;	ğ			, e	730	392	15	33	286	316		
20		Similarity (%)			71.4	58.1	80.9	705	200	96.				81.7			63.8	58.6	47.7	;	7.9	73.8	62.0	-	
	·	identify (%)			40.0	28.2	56.8	47.5	3 0	1.62				81.5			31.2	31.4	25.8	- 1	41.3	38.8	33.2		
25	(nanu)	ene			us NCTC	cus ORF2	culosis		s pepu	380852				S AICC			s DKNUSU	us JA3933	enes (ItB		ngatus	dppc	2 nikB		
30	Table 1 (continued)	Homologous gene			Staphylococcus aureus NCTC 8325-4 lac8	Bacillus acidopullulylicus ORF2	Mycobacterium tuberculosis	H37Rv Rv2466c	Streptomyces lividans pepr	Borrella burgdorferi BB0852				Brevibacterium linens ATCC 9175 cntl			Myxococcus xanthus DK1050 carA2	Streptomyces griseus JA3933 crtB	Listeria monocytogenes litB		Synechococcus elongatus	Bacilius firmus OF4 dppC	Escherichia coli K12 nikB		
35		db Match			Sp. LACB_STAAU 8	B CANA BACAD	1	一	SP. AMPN_STRLI					gp:AF139916_3			sp:CRTJ_MYXXA	SP.CRTB_STRGR	gp:LMAJ9627_3		do SYOATPBP 2	Sp. DPPC_BACFI	7896		
40		8			P:CACE	MAN	1 de la companya de l	pir.A/usoo		pir:870206				gp:AF1				+							
	Ī	ORF (bp)	8	88	47.1	18	080	609	2601	1083	1152	986	156	327	171	378	1206	878	1119	1233	+			\neg	1707
45		Terminal (nt)	2562387	2583847	2563932		2564550	2565623	2568945	2570293	2570309	2572175	2572348	2572351	2572807	2573393	2572659	2573843	2574780	257	150	25,		દે	2580711
50		Initial (nt)	—		2564402		2565245	2566231	2568345	2569211	2571480	2571510	2572193	2572677	6170 2572977	6171 2573770	6172 2573864	2574718	2575898	6175 2577213	2578977	2579760		2580/0/	6-79 2582417
		SEO.	(8.8)		9180		8162	6163	6184	6165	8188	8167	6168	6189				6173				61/6		61/8	1.9
55			(DNA)		2860	_	2862	2683	2584	_		2667	2668	2669	2670	2671	2672	2673	7674	707	6/0/	2676	è,	2678	2679

1	—т	-		T		Т	$\overline{\Box}$	$\overline{}$	٥			П	$\neg \gamma$	Т	5	I	$\neg \top$	Т	7
5	Function		acetylornithine aminotransferase	al protein	hypothetical membrane protein	acetoacetyl CoA reductase	transcriptional regulator, TetR family	polypeptides predicted to be useful anligens for vaccines and diagnostics	ABC transporter ATP-binding protein		chromate transport protein	hypothetical protein	hypothetical protein	and according	Aypoinduces profess	ABC transporter A LT-unioning protein	hypothetical protein	hypothetical membrane protein	alkaline phosphatase
			acetylornit	hypothetical protein	hypothetic	acetoacet	transcripti	polypeptide antigens for diagnostics	ABC trans	globin	chromate	hypotheti	hypotheti		uyborua.	ABCITION	hypothet	hypothet	a Kallhe
15	Matched length (a.a.)		=	482	218	235	2	98	238	128	396	198	127	- -	ន្ត	283	172	-	238
20	Similarity (%)		83.5	47.9	79.4	60.0	55.0	47.0	65.1	77.0	60.4	6.89	61.4	+	+	79.6			52.6
	identity (%)		31.4	25.1	49.1	28.1	26.7	38.0	31.1	53.2	27.3	37.8	36.2		36.4	52.8	31.4	28.0	28.0
25 (Pancipuo)	us gene		glutamicum	berculosis	iberculosis	sum D phbB	elicolor actil	jitidis _,	utida GM73	ергае	eruginosa 5 chrA	uberculosis	selicolor A3(2)		ix K1 APE1182	K12 yijK	tubercutosis	leprae o659	phoB
30 +	Homologous gene		Corynebacterium glutamicum ATCC 13032 argD	Mycobacterium tuberculosis H37Rv Rv1128c	Mycobacterium tuberculosis H37Rv Rv0364	Chromatium Mnosum D phbB	Streptomyces coelicolor actil	Neisseria meningitidis	Pseudomonas putida GM73 ttg2A	Mycobacterium leprae MLCB1610.14c	Pseudomonas aeruginosa Plasmid pUM505 chrA	Mycobacterium tuberculosis H37Rv RV2474c	Streptomyces coelicolor A3(2) SC6D10.19c		Aeropyrum pernix K1 APE1182	Escherichia coli K12 yjiK	Mycobacterium tuberculosis H37Rv Rv2478c	Mycobacterium leprae 0859	Bacillus subtilis phoB
35	db Match		SP.ARGD_CORGL	hir.A70539	Sp:YA26_MYCTU	PHRB CHRVI		75	gp.AF106002_1	gp:MLCB1610_9	SP.CHRA_PSEAE	pir.A70867	gp:SC6D10_19		pir.872589	SP:YJJK_ECOL!	pir.E70867	2103 SP.YOSL_MYCLE	2879 1419 pir.C69676
40		\ <u></u>				+				+	1128 sp.C	627 pir./	465 gp:	621	162 pir.	1688 sp.	615 pir.	03 \$0	119 pir.
	ORF (bp)	+-	1314	3 1584	2 747	708	+-	+	574 792	794 393	965 11	988	597 46	188 6	5822 1	16	9 698	8662 21	_
4 5	Terminal (nt)	2584504	2585928	2587783	2588722	75007	25907	259113	2591	2582	2593	2593	2594	2595	259	259	2597	259	260
50	Initial	2582564	2584613	2586180	2587976	20000	2589432		2592365	2592402	2592838	2594594	2595061	2595808		1 2597715		5 2800784	
	SEO	(a.a.)		6182	6183		6164	6186	6187	6188	6189	6190	6191	6192		_	+	6196	
55	i	(DNA)			2683	_	2684	2686	2687	2688	2689	2690	2691	2692	2893	269	2695	2696	2697

	Function			multiple sugar-binding transport	system permease protein	multiple sugar-binding transport system permease protein			A A Maria - Secondaria	Cial Creation in Circumstance	ABC transporter A IP-binding Protein) (ABC-type suger transport protein) or celloblose/maltose transport	protein		dolichol phosphate mannose			aldehyde dehydrogenase	circadian phase modifier			hypothelical membrane protein	giyoxylate-induced protein	ketoacyl reductase	6666	o e e o o o o o o o o o o o o o o o o o
	Matched length (a.a.)				279	282		3	407		386			154	<u> </u>		207	183	_		412	255	258	Ę	8
	Similarity (%)				76.3	67.5			63.2		79.8			72.7		\downarrow	89.4	73.8			64.8	69.4	57.0	+	78.8
	Identity (%)				39.1	27.4			78.8		59.1			37.7			67.2	48.6	1	1	35.0	41.2	9		0.84
Table 1 (continued)	Homologous gene				Streptococcus mutans	Streptococcus mutans	INCOLU I I III I III I I I I I I I I I I I I		Thermoanaerobacterium thermosul amyE		Streptomyces reticuli msiK			Schizosaccharomyces pombe	dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synachococcus sp. PCC7942	српя		Thermotoga maritima MSB8	Facherichia coli K12 gip	Mycobacterium tuberculosis	H37Rv Rv1544	Escherichia coli K12 orn
	db Metch	+			SP. MSMG_STRMU	+			prt.2206392C		1128 prt 2308358A				prf.2317468A		prf.2516398E	nrt 2513418A	$\overline{}$		pir.A72312	11003 010.44	_	pir:E70761	SP.ORN_ECOLI
	ORF (bp)	+	930	639		843		1674	1329	1242			15	8	684	9	789	75	-+	345	1182	-	8	798	1 657
	Terminal (nt)		2605502	2603945	2604609	2805527	70007	2608117	2606561	2000105	2800512	71.06007		20122/2	2610848	2613151			8	2615795	2615939		C88/197	2 2618869	2619538
	Initial (nt)	7	2604573	8199 2804583	6200 2605520		2000007	2606444	2607889	9070000		501003		2611523	2611531	2612462	2613712		2614649	2615451			2617246	2818072	2618882
	SEO	(8.8)	6198 2	3199	200	1	1079	8202		1	6204	5079		9029	6207	6208			6210	6211			6213	8214	6215
		(DNA)	2698	÷			רט/2	2702		_		2705		2708	2707	270R	2700		2710	2711	27.13		2713	2714	2715

	Function	ferric enterochalin esterase		iipopi oteiti				transposase (IS1207)			transcriptional regulator		gluteminase	sporulation-specific degradation	regulator protein		OLOUBIE ISOLUCIO		hypothetical protein	pyrazinamidase/nicotinamidase	hypothetical protein	hacterioferritin comignatory protein	Perfect requisitory protein teta	family
	Matched length (a.a.)	454	900	985				436			131		358	6		١	55		291	185	75	5		114
	Identity Similarity (%) (%)	50.9	:	7.8				8.66			63.4		69.3	223			808		45.0	74.8	80.0	32.6	2	61.4
	Identity (%)	28.0		48.5				99.5			32.8		35.2	;			29.0		32.0	48.1	42.7	19	9.9	32.5
Table 1 (continued)	Homologous gene	Salmonella enterica iroD		Mycobacterium tuberculusis H37Rv Rv2518c lppS				Corynebacterium glutamicum ATCC 21086		-	Salmonells typhimurium KP1001	cytR	Rettus norvegicus SPRAGUE-	האורבו איסורי	Bacillus subtilis 168 degA		Escherichia coli K12 uxaC		Zea diploperennis perennist teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis	H37KV KV2520c	Escherichia coli K12 bcp	Streptomyces coelicolor A3(2) SCI11.01c
	db Match	A9700278A	240327 ON	pir:C70870				1308 gp:SCU53587_1				gp:AF085239_1	SD.GLSK RAT		pir.A36940		Sp:UXAC_ECOLI		prf.1814452C	orf.232444A		_	sp:BCP_ECOLI	gp:SCI11_1
	ORF (bp)	1	200	1209	645	150	246		207	830	3	453	1829		477	555	1554	50	1187	558	+-		465	636
	Terminal		2619541	2620973	2623605	2623621	2624048	2624051	2625808	Dogcac	5086707	2628376	2628493	20202	2628852	2828324	-	+	2632466	2633100		2033 140	2634064	3 2634751
	Initial	-+	2820728	2622181	2622961	2623770	2623803	2625358	2625600		7020447	2627924	1010101	171 0707	2628376	2628878	_	2630636	6230 2631270	2622643		2833418	2633600	2634116
	SEO	-	6216	6217	6218	6219	6220	6221	5222	100	6223	6224	3000		6228	5227		_	-	_		6232	6233	6234
	SEO		2716	2717	2718		2720				2723	2724	100	2/25	2728	7070	27.2	27.2	2730		12/2	2732	2733	2734

	Function	phosphopantethlane protein transferase	lincomycln resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothatical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	ribonuclease PH				hypothetical membrane protein	transposase (IS1628)		aryisusfatase
	Matched length (e.a.)	145	473	113		3029	404	230	112	113	202	238				428	175		250
	Similarity (%)	75.9	85.6	54.0		83.6	55.2	6.09	67.9	0.69	78.7	81.4				58.2	97.2		74.4
	Identity (%)	58.8	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	80.2				29.0	92.1		48.0
Table 1 (continued)	Homologous gane	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum Imr8	Synechocystis sp. PCC6803		Corynebacterium armoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0850c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae 81549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph				Mycobacterium tuberculosis H37Rv SC8A8.09c	Corynebacterlum glutamicum 22243 R-plasmid pAG1 tnpB	-	Mycobacterium leprae ats
	db Match	gp:BAY15081_1	gp:AF237667_1	pir:S76537		pir.S2047	gp:SC4A7_14	plr:D70716	sp.Y077_MYCT	Sp:Y076_MYCLE	SP.Y03Q_MYCTU	SP:RNPH_PSEAE				sp:Y029_MYCTU	gp.AF121000_8		SP:Y030_MYCLE
	ORF (bp)	405			414	8979	1182	615	462	354	818	735	248	693	282	1362	534	99	765
	Terminal (nt)	2634747	2635165	2637168 2637240 2638649		2648235	2650184	2650902	2651339	2651420	2652067	2653009	2653326	2654079	2654875	2656985	2656974	385	
	toitiat (nt)	2635151	2636589	2636845	2637653	2647627	2649418	2649550	2650441	2650986	2652037	2652801	2653254	2654018	2654660	2656238	2656452	6251 2657633	2658500
	SEO NO.		6236	6237	6238	6239	6240	6241	8242	6243	6244	6245	6246	6247	6248	6249	6250		
	SEQ.		2738	2737	+	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	2752

							_					$\neg \tau$		\neg	$\overline{}$	-T	\top	Т		_
5				0.00	OKEIR, MEI'N	ne protein		xanoste						986	ine protein		phatase		se chain I	
10		Function	Diglutamate racemase		bacterial regulatory protein, mark family	hypothetical membrane protein		endo-type 6-eminohexanoste oligomer hydrolase	hypothetical protein	hypothetical protein		hypothetical protein		ATP-dependent helicase	hypothetical membrane protein	hypothetical protein	phosphoserine phosphatase		cytochrome c oxidase chain	
15		Matched length (a.a.)	284		147	225		321	200	105	-	428		647	313	222	310	1	575	
20		Similarity (%)	99.3		70.8	69.3		58.3	58.5	17.1		80.8		53.3	60.1	52.0	61.0		74.4	
		Identity (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
25 6 2 7	OIIIII IOCO)	s gene	jutamicum		licolor A3(2)	bercutosis		o. nylC	berculosis	berculosis		berculosis		linG	sperculosis	elicolor A3(2)	(12 serB		uberculosis	
30 7	lable I (collingal	Homologous gene	Corynebacterium glutamicum ATCC 13869 muri		Streptomyces coelicolor A3(2) SCE22.22	Mycobacterium tuberculosis H37Rv Rv1337		Flavobacterium sp. nylC	Mycobacterium tubarculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis H37Rv Rv1330c		Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streptomyces coelicolor A3(2) SC185.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
35		·	Σ.A		<i>5</i> 5 55			14.			-					0,0				
40		db Malch	prf:2516259A		gp:SCE22_22	SP:Y03M_MYCTU		pir.A47039	SP:Y03H_MYCTU	Sp:Y03G_MYCTU		sp:Y03F_MYCTU		prf: 1816252A	sp.Y0A8_MYCTU	pir.T34684	SP. SERB_ECOLI		pir:D45335	
		ORF (bp)	852	636	492	747	ģ	960	537	98	624		306	÷	891	723	1017	1596	1743	306
45		Terminal (nt)	2658608	2660131	2660147	2660671	2562455	2661417	2662331	2662883	2664060	2665397	2665992	2667	26676	2668839	2669557	2672721	2671063	2673255
50		Initiat (nt)	2659457	2659498		2661417	2001666	2662378	2662887	2663182	2563437		2685687	2866115	2668760	2669561	2670573	2671126	2672805	2672950
		SEO	+	6754		6256		6258	6259	8260	5261		6263			6266	6267	6268	6569	6270
55		SEO NO.		2754		2756	1	2758	2759	2760	2764	2762	2767	2764	2765	2766	2767	2768	2769	2770

					Table 1 (continued)				
Initial .		Terminal (nt)	98. (89.	db Match	Homologous gene	identity (%)	Similarity (%)	Matched length (e.e.)	Function
2674339	\rightarrow	2673338	1 2	gp:AF112536_1	Corynebacterium glutamicum ATCC 13032 nrdF	99.7	7.98	334	ribonucleotide reductase beta-chain
		000000	_	PETNA FCOLL	Escherichia coli K12 finA	31.5	64.2	159	feritin
2674804	- -	2676240	1	gp:SCA32WHIH_4	Streptomyces coelicolor A3(2) whilh	32.8	60.2	258	
2676902	2	2676243	099	pir:140339	Corynebacterium glutamicum ATCC 13869 dbR	27.8	60.4	225	iron dependent repressor or diptheria toxin repressor
2676940	1 8	71577377	438	sp:TIR2_YEAST	Saccharomyces cerevisiae ypH148 YOR010C TIR2	24.2	62.1	124	cold shock protein TIR2 precursor
	1	9409790	37.6	pir CR9281	Archaeoglobus fulgidus AF0251	20.0	86.0	20	hypothetical membrane protein
2679598	88	2677478	2121		Corynebacterium glutamicum ATCC 13032 nrdE	6.66	100.0	707	ribonucleotide reductase alpha- chain
2680470	2	2680784	315			1	Ş		Ans abosomal protein L36
6279 2681363	63	2681223	141	SP:RL38_RICPR	Rickettsia prowazekii	2 2	2 6	270	NH3-dependent NAD(+) synthetase
2681546	46	2682376	831	sp:NADE_BACSU	Bacillus subtilis 168 nadE	2	وَ	613	
2681556	56	2681464	93			1	-		
2683119	9	2683616	498						
2683125	125	2682379	747	pir.S76790	Synechocystis sp. PCC6803 slr1563	30.7	58.4	257	hypothetical protein
2683418	418	2683131	288	plr G70922	Mycobacterium tubercutosis H37Rv Rv3129	41.7	68.8	96	hypothetical protein
2684646	348	2683627	1020	sp. ADH2_BACST	Bacillus stearothermophilus DSM 2334 adh	26.1	52.8	337	alcohol dehydrogenase
2684919	1 56		1371	sp.MMGE_BACSU		27.0	26.0	459	Bacillus subtills mmg (for mother cell metabolic genes)
2686315	315		834	plr:T05174	Arabidopsis thallana T6K22.50	33.8	66.2	784	hypothetical protein
2688240	2	_	792			_ ;	+	+	as a fire of incoming as
8289 2690050	18	2608180	1887	LICOI I ECOI	Fecharichia coli K12 pam	61.7	9. 90. —	DCC	מומפונית המומים המומים המומים

5	
10	
15	
20	
25	(pan
30	Table 1 (continued)
35	·
40	
45	
50	

			_	_			_	_		_	_			·		_				
	Function	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	transposase (IS1676)	major secreted protein PS1 protein precursor				transposase (IS1676)		proton/sodium-glutamate symport protein		ABC transporter		ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein		oxidoreductase or dehydrogenase
	Matched length (a.a.)	94	122	254	496	355				200		438		673		218	84	42		198
	Similarity (%)	64.3	61.5	1.67	48.8	49.6				46.8		66.2		0.88		79.8	0.78	75.0		54.1
	Identity (%)	41.7	25.4	51.2	24.2	24.8				24.8		30.8		33.0		45.4	80.0	71.0		28.1
(55-1111)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3069	Helicobacter pylori J99 jhp1146	Bacillus subtilis 168 yes!	Rhodococcus erythropolis	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17985 csp1			-	Rhodococcus erythropolis		Bacillus subtills 168		Streptomyces coelicolor A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumonlae AR39 CP0987	Chlamydia muridarum Nigg TC0129		Streptomyces collinus Tu 1892 ansG
	db Match	pir.F70650	pir:D71843	sp:YCSI_BACSU	gp:AF126281_1	1620 sp.csP1_corgL				9P.AF126281_1		sp:GLTT_BACCA		gp:SCE25_30		9p:SAU18641_2	PIR:F81516	PIR:F81737		672 pri:2509388L
	ORF (bp)	288	324	792	1385	1620	354	165	447	1401	768	1338	693	2541	168	708	273	141	878	672
	Terminal (nt)	2690437	2690760	2691564	2693053	2694918.	2695279	2695718	2695320	2697212	2697383	2698194	2701612	2699926	2703356	2702487	2704586	2704975	2710555	2711308
	Initial (nt)	2690150	2690437	2690773	2691689	2693299	2694926	2695554	2695766	2695812	2698150	2699531	2700920	2702468	2702466	2703194	2704314	2704835	2709878	2710637
	SEQ NO (e.e.)	6290	6291	6292	6293	6294	6295	6296	6297	6298	6238	8300	6301	6302	6303	6304	6305	6306	6307	6308
	SEQ NO.	2790	2791	2792	2793	2794	2795	2796	2797	2798	2799	2800	2801	2802	2803	2804	2805	2806	2807	2808

			T				T							•	-	Chair			T			
		Function	methyltransferase	hypothetical protein	hypothetical protein		carboxyvinyitransferase	hypothetical protein	transcriptional regulator		cysteine synthese	O-acetylserine synthese	hypothetical protein	succinyl-CoA synthetase alphe chain	hypothetical protein	succinyl-CoA synthetase beta chain	Constitute ages & Product	משופות אפונה בי בי בי בי בי בי בי בי בי בי בי בי בי	A emurace Aco helicing	transferase	transcriptional regulator	
	Matched	length (a.a.)	205	20	42		417	190	281		302	172	83	291	75	§	15	213		501	321	
		Similarity (%)	51.2	0.99	75.0		75.3	84.2	0.69		84.8	78.7	65.1	79.4	43.0	730	j	2		77.8	68.5	
		identity (%)	25.9	61.0	71.0		44.8	68.3	45.9		57.1	61.1	36.1	52.9	42.0	39.8		38.5	1	47.9	38.6	
Tolland A side	(Somming) Laight	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0089	Chiamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Acinetobacter calcoaceticus NCIB 8250 murA	Mycobacterium tuberculosis H37Rv Rv1314c	Streptomyces coelicolor A3(2) SC2G5.15c		Bacillus subtilis 168 cysK	Azotobacter vinelandii cysE2	Deinococcus radiodurans R1 DR1844	Coxietla burnetti Nine Mile Ph I sucD	Aeropyrum pernix K1 APE1089	Bacillus subtilis 168 sucC		Streptomyces roseofulvus frnE		Clostridium kluyveri cat1 cat1	Azospirillum brasilense ATCC 29145 ntrC	
		db Match	sp:Y089_MYCTU	GSP: Y35814	PIR:F81737		Sp:MURA_ACICA	sp:Y02Y_MYCTU	gp:SC2G5_15		SP.CYSK_BACSU	pri.2417357C	gp:AE002024_10	nexoo_aons:ds	PIR:F72708	sp:SUCC_BACSU		gp:AF058302_5		sp:CAT1_CLOKL	1143 Sp.NIR3_AZOBR	
		ORF (bp)	525	273		195	1254	570	843	408	924	+-	+	882	225	┽∸	380	735	819	1539	+]
5		Terminal (nt)	2712374	2713453	2713842	2717993	2718436	2720319	2720385	2721295	2722857	2723809	2723770	2724478	2725843	2725384	2726786	2727399	2728207		2732518	-
o		Initial (nt)	6309 2711850	 -	+	2718187	6313 2719689	2719750	2721272	2771702		6318 2723064	2724057	2725359	2725610		6323 2727145	2728133	2729025	2730916	2731376	
		SEO NO	6309	6310	6311	8312	6313	6314	8315	8118	8317	6318		6320		_		- -		6326	8327	إ
55		SEO		_		2813			2815	2846	2012	2018	2819	2820		2822	2823	2824	2825	2826	2827	

5	Function		phosphale transport system	regulatory protein	phosphate-specific transport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetykrensferese		hypothetical protein	hypothetical protein	branched-chain amino acid	hypothetical protein		hypothetical protein	5-phosphoribosyl-5-aminolmidazole synthetase	amidophosphoribosyl transferase
15	Matched	(a.a.)		213	255	292	325	369	315		344	225	259	352		89	347	482
20	Similarity	(%)		91.7	82.8	82.2	78.5	\$6.0	0.09		55.2	74.2	28.0	79.0		91.0	94.2	89.0
	Identity	(%)		46.5	58.8	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5		58.6	81.0	70.3
30 September (Confined)	(2000) 1 0001	Homologous gene		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c		Bacillus subtilis 168 bmrU	Mycobacterlum tuberculosis	Solanum tuberosum BCAT2	Corynebacterium	ammoniagenes AIOC 0012 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium smmoniagenes ATCC 6872 purM	Corynebacterlum ammoniagenes ATCC 6872 purF
<i>35</i> 40		db Match		pir.E70810 H	pir.S68595 P	gp:MTPSTA1_1	pir.A70584	pir.H70583	gp:SCD84_18		LISONO I BACSII	alr E70809	1 9		gp:A8003158_6	pir:B70809	gp:AB003158_5	gp.AB003158_4
		98. 19. gg	807	732	897	921	1014	1125	976	783	3 00	687 783	5 8	:	<u>=</u>	213	1074	1482
45	-	Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2720553	COCC 17	2741358	- 1 7	<u>-</u>	2743785	2744222	2744881	2746083
50		(nt)	2732230	2732638	2734351				2738711		1//05/7	2740650			2742685	2744010	6341 2745954	2747564
	100	S NO S	6328				6332	6333	6334	18	555			9559	6339	6340		6342
55		NO SEQ		-	_			2833	2834		2832	2836	283/	2838	2839	2840	2841	2842

						$\overline{}$		┰			-	-1	- 1	1	- 1	- 1	- 1	
. ·		50			ane protein		4. synthetase		N- e synthetese	-		1880	880		Ę	transporter	eptidase	
10 .		Function	hypothetical protein	hypothelical protein	hypothetical membrane protein	hypothetical protein	5:phosphoribosyl-N- formyigiycinamidine synthetase		5:-phosphoribosyl-N- formylglycinamidine synthetase	hypothetical protein		gluthatione peroxidase	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase	
15	Matched	length (aa)	124	315	217	42	783		223	79		158	965		214	414	697	
20		Similarity (%)	75.8	94.0	87.1	71.0	89.5		93.3	93.7		77.9	51.5		68.7	81.6	70.8	
		Identity (%)	57.3	75.9	67.7	64.0	77.6	!	60.3	81.0		48.2	28.0		37.4	49.0	41.8	
<i>25</i>			sis	872	872		1872		3872	6872			JMP636		ulosis	mLT2	724 dapb1	
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammonlagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF1	Sulfolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purL		Corynebacterium ammoniagenes ATCC 6872 burd	Corynebacterium ammoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2	Pseudomonas sp. WO24 dapb1	
35	-		ΣÏ			1		+	7.							Ł		
40		db Match	pir:H70536	gp:AB003158_2	gp:AB003158_1	GP:SSU18930_21	gp:AB003162_3		gp:A8003162_	gp:AB003162_1		ort 2420329A			pir:C70709	Sp.DCTA SALTY) pr. 2400200
		유 (현	375	1017	741	186	2286	100	699	243	3		+	278	+	1338	$\overline{}$	\neg
45		Terminal (nt)	2747683	=	2749162	2752103	2750027		2753121	2752995	0763040	2753338	27.5	2757128	27.5	2757883		2759532
<i>50</i>		Initial	1.	+	2749802	2751918	2752312		2752402	2753237			2753992	2758851	_		0078677	2761649
		SEO NO.			6345	6346			6348	6350			6353		6355			7 6357
55		N S	DNA)		2845	2846	2847		2848	2850		2851	2852	138	2855		2820	2857

EP 1 108 790 A2

5

_															_	
	Function		5-phosphoribosyl-4-N- succinocarboxemide-5-emino imidazole synthelase	adenylosuccino lyase	aspartate aminotransferase	5-phosphoribosylglycinamide synthetase	histidine triad (HIT) family protein		hypothetical protein	di-Aripeptide transpoler	adenosylmethionine-8-amino-7- oxononanoste aminotransferase or 7,8-diaminopetsrgonic acid aminotransferase	dethiobiotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity D-Thr aldolase
	Matched length (8.a.)		294	477	395	425	138		243	469	423	224	335	231	249	382
	Similarity (%)		1.68	95.0	62.3	88.4	80.2		58.4	67.6	98.8	93.6	70.5	72.7	69.5	53.9
	Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9
Table 1 (continued)	Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49265	Corynebacterium ammoniagenes ATCC 6872 purD	Mycobacterium leprae u296a		Methanosardna barkeri orf3	Lactococcus lactis subsp. lactis dlpT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bloD	Lactococcus lactis M71plasmid pND306	Thermotoga maritima drrA	Streptomyces lividans tipA	Arthrobacter sp. DK-38
	db Match		gp:AB003161_3	1428 gp. AB003161_2	sp:AAT_SULSO	1263 gp:AB003161_1	SP:YHIT_MYCLE		pir:S62195	\$P:DTPT_LACLA	sp.BIOA_CORGL	sp.BIOD_CORGL	gp:AF049873_3	prf:2222216A	SP.TIPA_STRUI	prf:2419350A
	ORF (bp)	624	891	1428	1158	1283	414	435	753	1356	1269	672	1455	705	753	1140
	Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	2775740
	initial (nt)	2762452	2762675	6360 2764931	2766135	2767420	2767580	2768137	2769095	2770511	2770714	2771989	2774098	2774814	2775689	2776879
	SEQ NO (• •)	6358	6329	6360	6361	6362	6363	6364	8385	6366	6367	6368	8369	6370	6371	6372
	SEQ NO.		2859	2860	2861	2862	2863	2864	2865	2866	2867	2868	2869	2870	2871	2872

EP 1 108 790 A2

5

			_	-		-	7					- I	1	I					
Function	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	transcription initiation factor sigma	trehalose-6-phosphate synthase		trehalose-phosphatase	glucose-resistance amylase regulator	high-affinity zinc uptake system protein	
Matched length (a.a.)	574	504	82	421		303	232	278	288		140	464	155	487		245	344	353	
Similarity (%)	75.8	6.89	68.5	78.4		62.1	0.69	52.9	55.6		50.7	64.0	50.3	68.7		57.6	80.2	46.7	
Identity (%)	46.3	33.3	30.4	45.6		34.3	37.1	28.4	26.7		28.6	36.0	32.3	38.8		27.4	24.7	22.4	
Homologous gene	Escherichia coll K12 poxB	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtills 168 alsR	Mycobacterium tuberculosis H37Rv-Rv3298c ipqC	Bacillus subtilis 168 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1		Escherichia coli K12 otsB	Bacillus megaterlum ccpA	Haemophilus influenzae Rd Hi0119 znuA	T
db Match	gp:ECOPOX88G_	pri:2212334B	Sp. YCDC_ECOL!	pir.D70551		gp:AF096929_2	sp. ALSR_BACSU	plr.C70982	pir.C69862		pir.A45264	pir.B70798	pir:S41307	sp:TPS1_SCHPO		SP.OTSB_ECOLI	sp:CCPA_BACME	sp:ZNUA_HAEIN	
ORF (bp)	1737	1482	531	1320	2142	960	705	813	813	459	399	1503	327	1455	513	768	1074	942	
Terminal (nt)	2776768	2780446	2780969	2782315	2782340	2784658	2785651	2788594	2788587	2789477	2790550	2792448	2792857	2794327	2794812	2795637	2795676	2797806	
Initial (nt)	2778504	2778965	2780439	2780996	2784481	2785615	2786355	2787782	2789399	2789935	2790152	2790946	2792531	2792873	2794300			2796865	
SEO NO S	6373	6374	6375	8376	6377	6378	6379	6380	6381	6382	6383	6384	6385		6387	6388	6389		
		2874	2875				2879	2880	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890	
	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (p) (as)	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (4a.) (aa.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Matc	SEQ (n.1) Initial (n.1) Terminal (n.1) ORF (n.1) db Match Homologous gene (%) (%) (%) Matched (%) NO. (n.1) (n.1) (n.1) (n.1) (n.1) (n.1) (n.1) (n.2) (SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<	SEQ NO. Initial (nt) Terminal (nt) ORF (pt) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Match	SEQ Initial NO. (nt) Terminal (nt) ORF (bb) db Match Homologous gene (cb) Identity (cb) Similarity length (cb) Matched (cb) Matched (cb) (cb)	SEC NO. Initial Terminal ORF (%) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Mat	SEC NO. Initial (nt) Terminal (nt) ORF (pt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene (%) Similarity length (%) Implication (%)	SED Initial Terminal ORF db Match Homologous gene (%) (%) Matched (%) Matched (%) Hongth	SED Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene (44) (74) (74) (75) Matched (23.73 2778568 1737 gp-ECOPOXB8G Escherichia coli K12 poxB 46.3 75.8 574 (33.1 2778568 1737 gp-ECOPOXB8G Escherichia coli K12 poxB 46.3 75.8 574 (33.1 2778568 531 sp.YCDC_ECOLI Escherichia coli K12 yodC 30.4 68.5 504 (33.7 2780486 2782315 1320 pir.D70551 H37RV RV2508c 30.4 68.5 78.4 421 (33.7 27804861 2782316 132 pir.D70551 H37RV RV2508c 37.1 69.0 78.4 421 (33.7 27804861 2782516 1705 sp.ALSR_BACSU Bacillus subtilis 168 sisR 37.1 69.0 232 (33.8 2780556 36.1 pir.C70862 Bacillus subtilis 168 sisR 37.1 69.0 27.8 (33.8 2780586 278658<	

10	Function	ABC transporter	hypothetical membrane protein	transposase (ISA0983-5)		3-ketosteroid dehydrogenase		lipopolysaccharide blosynthesis protein or oxidoreductase or dehydrogenase	dehydrogenase or myo-Inositol 2- dehydrogenase	shikimate transport protein	shikimate transport protein	transcriptional regulator	ribosomal RNA ribose methylase or tRNA/rRNA methyltransferase	cysteinyl-tRNA synthetase	PTS system, enzyme il sucrose profein (sucrose-specific IIABC component)	sucrose 6-phosphate hydrolese or sucrese	glucosamine-6-phosphate isomerase	N-acetylglucosamine-6-phosphate deacetylase	
15	Matched length (a.e.)	223	135	303		561		204	128	292	130	212	334	484	668	473	248	388	
20	Similarity (%)	63.2	87.4	52.5		62.0		58.4	69.5	67.5	80.8	55.7	47.3	88.8	77.0	56.9	69.4	80.3	
	Identity (%)	31.4	90.0	23.4		32.1		34.3	35.2	30.5	43.1	32.6	22.8	42.2	47.0	35.3	38.3	30.2	
25 Per		3325-4	sis			is SQ1		SB8 -	or lolG	A	A	A3(2)	96	Si		E	8	тапО	
35 Table 1 (continued)	Homologous gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus erythropolis SQ1 kstD1		Thermotoga maritima MSBB bplA	Bacillus subtilis 168 idh or loiG	Escherichia coli K12 shlA	Escherichia coli K12 shiA	Streptomyces coelicolor A3(2) SC5A7.19c	Saccharomyces cerevisiae YOR201C PET56	Escherichia coll K12 cysS	Lactococcus lactis sacB	Clostridium acetobutylicum ATCC 824 scrB	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD	
40	db Metch	gp.AF121672_2	pir.E70507.	pir.A69428		gp:AF096929_2		pir.872359	sp:MI2D_BACSU	SP. SHIA_ECOLI	Sp. SHIA_ECOLI	gp:SC5A7_19	sp:PT56_YEAST	SP:SYC_ECOLI	prf.2511335C	gp. AF205034_4	sp:NAGB_ECOLI	sp:NAGA_VIBFU	
	ORF (bp)	069	555	1500	201	1689	747	618	435	855	426	654	939	1380	1983	1299	759	1152	$\left \cdot \right $
45	Terminal (nt)	2798509	2799391	2801034	2801313	2801558	2803250	2804074	2804676	2805113	2806016	2806599	2807426	2808399	2809824	2811960	2813279	2814081	
50	Initial (nt)	2797820	2798837	2799535	2801113	2803246	2803996	2804691	2805110	2805987	2806441	2807252	2808364	2809778		2813258	2814037	2815232	
	SEO NO SEO	+	6392	6393	6394	6395	9629	6397	6398	6399	6400	6401	6402	6403		6405	6406	8407	_
55	SEQ NO.		2892	2893	2894	2895	2896	2897	2898	2899	2900	2901	2902	2903	2904	2905	2906	2907	

5	Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-8-phosphate epimerase		stalidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homosetine/homosetin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothelical protein	transcription factor
15	Matched length (a a)	298	321	220		439	222	260	342	314	258	193	142		152	235	157
20	Similarity (%)	62.1	57.6	68.6		50.3	57.2	51.4	64.3	78.3	78.7	82.7	68.2		86.2	71.5	1.16
	Identity (%)	28.2	28.7	36.4		24.8	26.6	22.5	31.9	48.5	43.4	28.5	31.0		55.9	46.4	73.3
S S Table 1 (continued)	Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10.20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora Viridifaciens ATCC 31146 nadA	Rhizobium etil ansR	Bacillus firmus OF4 dppA	Bacilius firmus OF4 dappB	Bacillus subtilis 168 opp⊡	Lactococcus lactis oppF	Escherichia coli K12 rhiB	Bradyrhlzobium Japonicum Irp		Mycobacterium tubercutosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
35		Escher	Strepto SC6E1	Clostridium 8798 nanE		Micron	Rhizob	Bacillu	Bacille	Bacillu	Lactoc	Esche	Brady		Mycob H37R	Mycot H37R	Mycot H37R
40	db Match	Sp.DAPA_ECOLI	Sp.GLK_STRCO	prt.2516292A		SP:NANH_MICVI	gp:AF181498_1	gp:BFU64514_1	sp:DPPB_BACFI	sp:OPPD_BACSU	SP OPPF_LACLA	sp.RHTB_ECOLI	prt.2309303A		pir.C70807	SP:Y18T_MYCTU	pir:H70803
	ORF (bp)	936	606	969	177	1215	729	1608	951	1068	816	621	483	38	480	768	594
45	Terminal (nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
50	Initial (nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817	2828383	2829146	2829749
	S S S			6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	6423
55	SEO		+	2910	2911	+	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923

EP 1 108 790 A2

	Function	two-component system response regulator	two-component system sensor histidine kinase		DNA repair protein RadA	hypothetical protein	hypothetical protein	p-hydroxybenzaldehyde dehydrogenase		mitochondrial carbonate dehydratase beta	A/G-specific adenine glycosylase			L-2.3-butanedial dehydrogenase				hypothetical protein	virulence factor	virulence factor
	Matched length (a a)	223	341		463	345	231	471		210	283			258				97	66	72
	Similarity (%)	70.0	67.7		74.3	73.3	53.3	85.1		66.2	7.0.7			9.66				69.1	63.0	55.0
	Identity (%)	43.5	29.3		41.5	40.3	29.4	59.5		38.7	48.4			99.2				48.5	57.0	54.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3248c mtrA	Escherichia coli K12 baeS		Escherichia coli K12 radA	Bacillus subtilis 168 yacK	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000		Chlamydomonas reinhardtii ce 1	Streptomyces antibioticus IMRU 3720 mutY			Brevibacterium saccharolyticum				Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110
	db Match	prl:2214304A	sp:BAES_ECOLI		1392 Sp.RADA_ECOLI	sp:YACK_BACSU	pir.D70804	gp.PPU96338_1		pir.T08204	gp:AF121797_1			gp:AB009078_1				plr:E70552	GSP:Y29188	GSP:Y29193
	ORF (bp)	723	1116	582	1392	1098	687	1452	147	821	879	1155	308	774	324	741	312	291	420	213
	Terminal (nt)	2830779	2831894	2832668	2834181	2835285	2835283	2836048	2837591	2837958	2839521	2840716	2840758	2841848	2842453	2843233	2843716	2843432	2845558	2846101
	Initial (nt)	2830057	2830779	2832085	2832790	2834188	2835969	2837499	2837737	2838576	2838643	2839562	6435 2841063	6436 2841075	2842130	6438 2842493	6439 2843405	6440 2843722	6441 2845139	6442 2845889
	SEO NO (8.8)		6425	6426	6427	6428		6430	6431	6432	6433	6434		6436	6437	6438	6439		6441	
	SEQ		2925	2926				2930	2931		2933	2934	2935	2936	2937	2938	2939		2941	2942

EP 1 108 790 A2

5		Function	virulence factor	CipC adenosine triphosphatase / ATP-binding proteinase	inosine monophosphate dehydrogenase	transcription factor	phenol 2-monooxygenasa						lincomycin resistance protein	hypothetical protein	Iysyl-tRNA synthetase	pantostebeta-alanine ligase				hypothetical memorane protein	2-amino-4-hydroxy-4- hydroxymethyldihydropteridine pyrophosphokinase	dihydroneopterin aldolase	dihydropteroate synthase	
15	Matched	length (a.a.)	55	832	469	318	680						481	240	511	268				138	158	118	268	
20		Similarity (%)	75.0	86.2	70.2	62.7	609						100.0	55.8	71.2	52.6				9.69	0.69	69.5	75.0	
	-	Identity (%)	74.0	58.5	37.1	24.7	33.5						100.0	26.7	3 41.7	29.9		-	-	29.0	42.4	38.1	51.5	-
25 General 15	Juniace)	gene	ginosa	8 mecB	4 impdh	ochrous nitR	neum ATCC				.		glutamicum	berculosis	ermophilus lys	glutamicum	ان			sprae	n extorquens	168 folB	enrae folP	
30 · Sider	ו ממום ו	Homologous gene	Pseudomonas aeruginosa	Bacillus subtills 168 mecB	Bacillus cereus ts-4 Impdh	Rhodococcus rhodochrous nitR	Trichosporon cutaneum ATCC	46490					Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis	Bacillus stearothermophilus lysS	Corynebactenum glutamicum	ATCC 13032 pan			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens AM1 folK	Pacillus subtilis 188 folB	Mycobacterium leprae foll	Myconaccene
<i>35</i>		db Match	GSP:Y29193	SE MECE BACSU B	+-	\top	十	sp:PH2M_TRICU					gp:AF237667_1	pir.G70807	AP AB012100 1	- Contraction of the Contraction	gp:CGPAN_2			gp:MLCB2548_4	SP:HPPK_METEX		_	gp:AB028656_1
		ORF (bp)	321			_		1785	1716	1941	1722	162	1443	951	-	_	798	693	798	465	477	-+-	-+	1 837
. 45		Terminal (nt)	2846508	2844166		6666497	2849779	2851815	2853732	2855709	2857516	2859205	2857613	2859195	100000	cncnoa?	2862132	2862929	2883824	2864384	2864867	_ 1_	+	2865731
50		Initial (nt)	2846188	!	Ļ_	_	2848769	6447 2850031	2852017	2949 6449 2853769	6450 2855795	2859044		2860145		- 1 -	2862929	2863621	2864421	2864848			2865735	6461 2866567
		SEO NO	(0.0)			6443	6446	6447	6448	6449	6450	6451		6453		6454	6455	6456	_			 		6461
55						2945	2946	2947	2948	2949	2950	2951	2952	705.3	2007	2954	2955	2956	2957	2958	2959		2960	2961

5		Function	GTP cyclohydrolase I		celi division protein FISM	hypoxanthine phosphoribosyltransferase	cell cycle protein MesJ or cytosine deaminase-related protein	D-alanyl-D-alanine carboxypeptidase	inorganic pyrophosphatase		spermidine synthase	hypothetical membrane protein	hypothetical protein	hypothetical protein	hypothetical protein	PTS system, beta-glucosides- permease II ABC component		ferredoxin reductase	hypothetical protein	bacterial regulatory protein, marR family	
15	Matched	length (a.e.)	188		782	165	310	459	159		507	132	144	173	202	68			16	135	
20		Similarity (%)	86.2		69.0	83.0	66.8	51.4	73.6		80.7	86.4	63.2	60.1	72.3	9.65		9.69	73.2	59.3	
		(%)	9.09		26.0	51.5	41.0	27.2	49.7		56.0	38.6	36.8	36.4	44.6	30.3		38.0	46.4	26.7	
25 30	(collinaca)	ous gene	168 mtrA			murlum GP660	uberculosis	o. R39 dac	K12 ppa	-	tuberculosis	tuberculosis	tuberculosis	tuberculosis	tuberculosis	168 bgIP		p. KP7 phdD	oelicotor A3(2)	Burkholderla pseudomallel ORF E	
35	lance	Homologous gene	Bacillus subtilis 168 mtrA			Salmonella typhimurlum GP680 hprt	Mycobacterium tuberculosis H37Rv Rv3625c	Actinomadura sp. R39 dac	Escherichia coli K12 ppa		Mycobacterium tuberculosis H37Rv speE	Mycobacterium tuberculosis H37Rv Rv2600	Mycobacterium tuberculosis H37Rv Rv2599	Mycobacterium tuberculosis H37Rv Rv2598	Mycobacterium tuberculosis H37Rv Rv2597	Bacillus subtills 168 bglP		Nocardioides sp. KP7 phdD	Streptomyces coelicolor A3(2) SCH69.09c	Burkholderla po E	
40		db Match	SP.GCH1_BACSU			gp:AF008931_1	sp:YZC5_MYCTU	sp:DAC_ACTSP	Sp:IPYR_ECOLI		pir:H70886	sp:Y0B1_MYCTU	sp:Y082_MYCTU	sp:Y083_MYCTU	sp.Y0B4_MYCTU	sp.PTBA_BACSU		gp:AB017795_2	gp:SCH69_9	prf.2516298U	
		ORF (bp)	588	915	2580	582	891	1233	474	219	1539	399	411	498	609	249	264	1233	288	444	
45		Terminal (nt)	2866586	2868385	2867169	2869863	2870499	2871445	2873399	2873393	2873905	2875434	2875870	2876280	2876777	2877455	2877595	1		2880987	
50		Initial (nt)	2867173	-	+_		2871389	2872677	2872928	2873611		2875832	2876280	7179182	2877385	2877703	2877858	2879710		2880544	
		SEQ NO					6466	6467	6468	6469	6470	6471	6472	6473	6474	6475	6476			6479	
55	-	SEQ NO.	2962	_	_	_	2966	2967	2968	2969	2970	2971	2972	2973	2974	2975	2976	2977	2978	2979	ا

5		Function	peptide synthase		phenylacetaldehyda dehydrogenasa	hypothetical protein	hypothetical protein	hypothelical protein	heat shock protein or chaperon or groEL protein							nypotnetical protein			peptidase			Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase
15	100000	matched length (a.a.)	1241		488	241	54	31	548						1	1236		_	447			797
20		Similarity (%)	51.6		63.7	7.8.7	63.0	80.0	100.0							42.3			0.89			68.3
		Identity (%)	28.4		35.0	57.3	62.0	74.0	99.5						1	21.7			37.1			35.6
25 30 35	(pagimina) i aigei	Hamologous gene	Streptomyces roseosporus cpsB		Escherichia coli K12 padA	Campylobacter jejuni Cj0804	GP:MSGTCWPA_1 Mycobacterium tuberculosis	GP: MSGTCWPA_1 Mycobacterium tuberculosis	Brevibacterium flavum MJ-233		-					Homo saplens MUC5B			Mycobacterium tuberculosis H37Rv Rv2522c			Staphylococcus aureus mnhA
40		db Match	prf:2413335A		prt.2310295A	gp:CJ11168X2_25	GP.MSGTCWPA_1	GP.MSGTCWPA_1	gsp:R94368							prf.2309326A			pir:G70870			3057 pri.2504285B
		ORF (bp)	3885	1461	1563	918	162	177	1644	180	1209	963	1986	2454	2799	3591	2775	812	1371	579	8	
45		Terminal (nt)	2884882	2881844	2884935	2886916	2890346	2890553	2888897	2890751	2890930	2892138	2893100	2895072	2897528	2900330	2903964	2906639	2908885	2909788	2909231	
50		Initial (nt)	2880998	1	+	<u> </u>	2890185	+-	2890540	2890930	6488 2892138	2893100	2895085	2897525	2900328	6493 2903920	2906738	2907250	2907515	2909210	2909830	
		SEO		6481			6484			6487	6488	6489	6490	6491	8492		6494	6495		6497	6498	6499
55		SEO O O	2980	_			2984	2985	2986	2987	2988	2989	2990	2991	2992	2993	2994	2995	2996	2997	2998	2999

	Function	Na+/H+ entiporter or mutitiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ anthorter or muttiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/H+ antiporter or multiple resistance and pH regulation related protein G	hypothetical protein	hypothetical protein		polypeptide deformylase	hypothetical protein	acetyltransferase (GNAT) family or N terminal acetylating enzyme			exodeoxyribonuclease III or	exounclesse	cardiolipin synthase
	Matched length (a.a.)	104	523	161	77	121	178	334		184	7.1	339				3	513
ļ	Similarity (%)	81.7	72.1	6.09	66.2	63.6	54.5	61.7		6.09	70.4	54.2				28.9	62.0
	Identity (%)	44.2	35.2	26.7	32.5	25.8	24.7	27.0		37.5	47.9	31.3				30.8	27.9
Table 1 (continued)	Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Becillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis	H37RV lipV	Escherichia coli Aliz your	Dacillue subtilis 168 def	Mycobacterium tuberculosis	H37Rv Kv043U Mycobacterium tuberculosis	שמצרטאה אהוכה			Salmonella typhimurium L 1 2 xthA	Bacillus firmus OF4 cls
	db Match	gp.AF097740_3	gp. AF097740_4	gp. AF097740_5	prf.2416476G	prf.2504285H	-i 0.70504		Sp. YBDK_ECOU	10040	air Danes					9p:AF108767_1	1500 gp.BFU88888_2
	ORF		1668	441	273	378	3	ž,	1128	8	e S	1005	_	-+	630	789	
	Terminal	23	2915416	2915922	2916201	2916582		2911024	2917630	291		2919490		2919808	2920250	2922108	2923617
	Initial	38	2913749		2915929	2916205			2918757	2919481	2919715	2919741	0070767	2920476	2920849	2921320	2922118
	SEO	(6.8.)	6501	6502	6503	6504		6505	9059	6507	6508		000	6511	6512	6513	6514
	SEO		1006					3005	3006	3007	3008	900	000	3011	3012	3013	3014

EP 1 108 790 A2

											-		_	-	$\overline{}$	$\overline{}$	\neg			
	Function		membrane transport protein or bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothelical membrane protein	glutamine-binding protein precursor	serineAhreonine kinasa		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) family				phosphoribosylgiychnamide tormyltransferase	
	Matched length (a.a.)		393	382	289		255	308	168	423	270	805		457	156				379	
	Similarity (%)		67.2	6.89	56.4		80.8	68.3	68.5	70.2	64.8	63.5		87.8	60.3				82.6	
	Identity (%)		31.6	28.5	38.8		24.3	36.9	47.8	35.0	31.5	41.2		37.2	34.0				59.1	
Table 1 (continued)	Homologous gene		Escherichia coli K12 bcr	Vibrio cholerae JS1569 nptA	Pseudomonas aureofaciens 30- 84 phzC		Streptomyces coelicalor A3(2) SCE8.18c	Bacillus licheniformis ATCC 9945A bcrA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis H37Rv Rv0412c	Bacillus stearothermophilus NUB36 ginH	Mycobacterium tuberculosis H37Rv Rv0410c pknG		Bos taurus	Escherichia coli K12 elaA				Bacillus subtilis 168 purT	
	db Match		sp:BCR_ECOLI	gp:VCAJ10968_1			gp:SCE8_16	sp:BCRA_BACI.1	plr:C70629	pir:B70629	sp.GLNH_BACST	plr:H70628		1365 sp. ADRO_BOVIN	Sp.ELAA_ECOLI				1194 sp.PURT_BACSU	
	ORF (bp)	654	1194	1164	840	633	768	936	501	1386	1032	2253	747	1365	546	1062	1029	368		888
	Terminal (nt)	2924844	354	2926704	2926707	2927651	2927551	2928302	2929258	2931336	2932371	2934829	2932652	2939767	2940452	2940447	2941472	2942609		2945639
	fnitial (nt)	2924191	2925147	2925541	2927546	2928283	2928318	2929237	2929756	2929951	2931340	2932577	2933398		2939907		6530 2942500	2943007		6533 2946526
	SEO	+-	<u> </u>	8517		6519		6521	6522	6523	6524	6525	6526	6527	6528			6531	6532	
	SEQ			3017		3019	+	3021	3022	3023	3024	3025	3026	3027	3028	3029	3030	303	3032	3033

1					Γ	i	T	Τ	T		\sqcap		\top										-	
5			related)	related)	Th sensor				nthelase			ane protein		te aldolase			syltransferes			•		<u> </u> 		
10		Function	insertion element (IS3 related)	insertion element (IS3 related)	two-component system sensor	histidine kinase	franscriptional regulator		adenylosuccinate synthelase	hypothetical protein		hypothetical membrane protein		fructose-bisphosphate aldolase	hypothetical protein		memytransterase	סנסופום שומים	hypothetical protein	3-mercaptopyruvate	sulfutransierase			
15	Matched	length (a.a.)	295	2		349	218		427	204		950	ĝ	344	304		182	=	250	706				
20	_	Similarity (%)	90.8	6 49		51.3	92.9		95.3	59.3			198.0	100.0	9		91.2	85.5	90.0		e e	-	-	
		Identity S	77.8	1	, 5	22.4	31.7		89.7	34.3			0.00	99.7	3	100.0	76.9	38.1	27.6		28.0	+	-	-
25	(g)	Φ	nicum	micia		olaceus	leg∪			losis			RF3	amicum	amicum	DRF1	culosis	Ę.	culosis					
30	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum	orf2	orti	Streptomyces thermoviolaceus	Bacillus bravis ALK38 degU		Corynebacterlum	Mycobacterium tuberculosis	H37Rv Rv0358		Corynebacterium glutamicum AS019 ATCC 13059 ORF3	Corynebacterium glutamicum	AS019 ATCC 13039 104	ASO19 ATCC 13059 ORF1	Mycobacterium tuberculosis H37Rv Rv0380c	Pyrococcus abyssi pyrE	Mycobacterium tuberculosis	H37Rv Rv0383c	Homo sapiens mpsT			
35		db Match	1				E E	\top		1			SP:YFDA_CORGL			-DA_1	1833	on AF058713 1		3834	SP.THTM_HUMAN			
40		₽		pir.S60690	pir.S60889	qp. AB016841_1	P.DEGL		AB003180 1		pir.G70575				bir suezos	gp:CGFDA_1	plr:G70833	+-	_	plr: B70834			6	6
		ORF.	$\overline{}$	89	267	140	8.4	3 3	577	8	759	264	1167	! } 	1032	951	618	35		972	852	3 720	-	336
45		- E	(III)	2946698	2947620	2048049	30000	C076567	2950431	7920424	2952691	2952972	2952975		2954241	2955523	2956830		3	2958139	2959520	2960468	2962730	2963198
50		Initial	£	2947591 2	2947886	0010100		<u>.</u>		2951723	2951933	2952709	2954141		2955272	2956473	2957447	30000	2958030	2959110	2960371	2961187	2963008	6551 2963596
		SEO	(a.a.)	6534 2	6535 2		0500	6537		6539	6540	6541	6542		6543	6544	6545		6546	6547	6548	6549		1 655
55		SEO		3034 6	3035			3037		3039	3040	3041	3062	1	3043	3044	3045	250	3046	3047	3048	3049	305	3051

EP 1 108 790 A2

5

	Function	virulence factor	virulence factor	virulence factor	sodium/glutamate symport carrier protein	cadmium resistance protein	cation efflux system protein (zinc/cadmlum)	monooxygenase or oxidoreductase or steroid monooxygenase	alkanal monooxygenase alpha chain		cystathionine gamma-lyase	bacterial regulatory protein, lacl family	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothelical protein	oxidoraductase
	0	virule	virule	virule	sodium protein	cadr	catio (zinc	DOE TO	alkar		丁		rifa.	il a	i		
	Matched length (a.a.)	59	200	132	489	£	283	476	399		375	184	8	88	381	204	386
	Similarity (%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	67.9	65.2	87.5	58.2	64.7	9.09
	Identity (%)	78.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	49.4	73.2	30.5	33.6	31.9
Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF25110	Synechocystis sp. PCC6803 slr0625	Staphylococcus aureus cadC	Pyrococcus abyssi Orsay PAB0462	Rhodococcus rhodochrous IFO3338	Kryptophanaron alfredi symbiont luxA	-	Escherichia coli K12 metB	Streptomyces coelicolor A3(2) SC1A2.11	Streptomyces coelicator A3(2) SCE20.34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis H37Rv Rv0838c	Mycobacterium tuberculosis H37Rv Rv0385
	db Match	GSP: Y29188	GSP Y29182	GSP:Y29193	pir:S76683	SP. CADE_STAAU	pir.H75109	gp:AB010439_1	1041 sp.LUXA_KRYAS		Sp:METB_ECOLI	gp:SC1A2_11	gp SCE20_34	gp:SCE20_34	pir:E70812	pir:D70812	pir:D70834
	ORF (bp)	177	762	396	1347	387	858	1170	1041	762	1146	567	240	183	1125	732	1179
	Terminal (nt)	2964434	2965837	2965583	2966458	2968789	2969808	2971003	2972057	2971338	2972060	2973230	2974200	2974382	2975591	2976360	2977774
	Initial (nt)	2964258	2985076	2965188	2967804	2968403	2968951	2969834	2971017	2972099	2973205	2973796	2973961	2974200	2974467	2975629	656/ 2976596
	SEQ NO.	6552	6553	6554	6555	6556	6557	6558	6559	6560	6561	6562	6563	6564	6565	9959	656/
	SEQ NO.		3053	3054	3055	3056		3058	3059	3060	3061	3062	3063	3064	3065	3066	3067

EP 1 108 790 A2

5		Function	N-carbamoyl-D-amino scid amidohydrolase		hypothetical protein	novel two-component regulatory system	aldehyde dehydrogenase	heat shock transcription regulator	heat shock protein dnaJ	nucleotide exchange factor grpE	of the molecular chaperone DnaK	heat shock protein dnaK	hypothetical membrane protein	5-methylthioadenosine	nucleosidase and S- adenosylhomocysteine nucleosidase			chromosome segregation protein				alconol denydrogeriasa
15	Matched	length (a.a.)	275		289	108	507	135	397		212	618	86	3	195			1311			;	334
20		Similarity (%)	67.3		55.4	44.0	90.3	70.4	1.08		68.5	86.6	9	P. P.	000			48.4		+	 	81.7
		identity (%)	32.0		28.0	38.0	808	47.4	56.7		38.7	8.68	1	42.6	27.2	-		9		$\frac{1}{1}$	+	20.0
25 30	Table 1 (commueu)	Hamologous gene	Methanobacterium thermoautotrophicum Delta H MTH1811		Streptomyces coelicolor A3(2)	Azospirilium brasilense carR	Acade alle	Rhodococcus entinopolis linco	Mycobacterium tuberculosis	H37Rv RV0352 dnaJ	Streptomyces coelicolor grpE	Brevibacterium flavum MJ-233	dnaK	SCF6.09	Helicobacter pylori HP0089 mtn			Schizogaccharomyces pombe	cut3			Bacillus stearothermophilus DSM 2334 adh
40		db Match	M pir.869109		SC4A7 3	2 4 00	5		\top	sp.DNAJ_MTC10	Sp. GRPE_STRCO		gsp:R9458/	gp:SCF6_8	sp.PFS_HELPY	-			sp.cut3_scHPO			sp ADH2_BACST
		ORF (88)	- i	15			330			1185	636		1854	1332	633	100	+	882	3333	636	1485	1035
45		Terminal	\$		6/69/67	C110967	2981216	2980181	2982023	2982495	2983887		2984544	2988164	2988214	_+	3	2992602	2989954	2993288	2993921	+
50		Initial	1 4			2978982	2980887	2981698	2982460	2983679	2984522		2986397	2986833	2988846		2990045	2991718	1 2993286	2993921		4 2996781
		SEO				6570	6571	6572	6573	6574	6575		6576	6577	8578	-	6259	6580	6581	8582		
55		SEO	C1 6			3070	3071	3072	3073	3074	3075		3076	1 3077	3078		3079	3080	3081	180	208	3084

10	Function	4				hypothetical membrane protein	hypothetical protein		sulfate adenylyltransferase, subunit 1	sulfate adenylyltransferase small chain	phosphoadenosine phosphosulfate reductase	ferredoxin-nitrate reductase	ferredoxin/ferredoxin-NADP reductase	huntingtin interactor			alkylphosphonate uptake protein and C-P lyase activity	hypothelical protein	emmonia monooxygenase		
15	Matched length (a.a.)						252		414	308	212	502	487	144			142	90	181		
20	Similarity (%)					70.1	53.2		78.3	70.1	64.2	65.5	61.4	59.7			59.9	66.3	78.4		
	identity (%)					43.5	32.5		47.3	46.1	39.2	34.5	30.8	32.6			26.8	20.0	39.1		
25 (pen	ę						r A3(2)		NS.	OS.		PCC 7942	siae				8ur	or A3(2)	OSMZ ID		
Se Se Table 1 (continued)	Homologous gene					Bacilius subtilis ytnM	Streplomyces coelicolor A3(2) SC7A8.10c		Escherichia coli K12 cysN	Escherichia coli K12 cysD	Bacillus subtilis cysH	Synechococcus sp. PC	Saccharomyces cerevisiae FL200 arh1	Homo sapiens hypE			Escherichia coli K12 phnB	Streptomyces coelicolor A3(2) SCE68.10	Pseudomonas putida DSMZ ID 88-260 amoA		
40	db Match					pir.F69997	gp:SC7A8_10		sp.CYSN_ECOLI	sp.CYSD_ECOLI	sp.CYH1_BACSU	Sp.NIR_SYNP7	sp. ADRO_YEAST	pri:2420294J			sp:PHNB_ECOLI	gp:SCE68_10	gp:PPAMOA_1		
	ORF (bp)	216	207	189	281	927	723	915	1299	912	693	1683	1371	1083	237	534	414	386	522	321	486
45	Terminal (nt)	2997368	2997481	2997876	2997963	2998528	2999478	3002426	3000241	3001542	3002453	3003480	3006915	3008376	3008453	3009303	3008749	3009607	3009710	3010979	3010441
50	Initial (nt)	2997151	2997687	2997688	2998223	2999454		3001512	3001539	3002453	3003145	3005162	3005545	3007294	6598 3008689	3008770	3009162	3009242	3010231	3010659	3010926
	SEO SEO	6585	6586	6587	6588	6889	0659	6591	6592	6593	6594	6595		6597		6239	0099	1099	6602	6603	
55	SEQ NO.	3085	3086	3087	_	3089		3091	3092	3093	3094	3095	3096	3097	3098	3099	3100	3101	3102	3103	3104

5		Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein homolog			succinyl-diaminopimelate desuccinylase				dehydrin-like protein	maitose/maitodextrin transport ATP- binding protein		coball transport protein	NADPH-flavin oxidoreductase	Inosine-uridine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	Navohemoprotein
15		Matched length (9 a.)	88			199	211	416			466				4-1	373		179	231	317	276	179	408
20		Similarity (%)	58.0		57.9	64.8	73.0	87.8			48.5				46.0	50.1		67.6	71.4	59.3	59.4	78.8	63.8
		Identity (%)	41.0		28.1	35.7	39.3	30.8			21.5				33.0	24.9		30.2	37.2	28.4	31.2	50.3	33.5
30 t elder (continued)	(2000)	Homologous gene	Agrobacterium vitis ORFZ3		Alcaligenes eutrophus H16 ORF7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msģB				Daucus carota	Escherichia coli K12 malK		Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidia fasciculata lunH	Streptomyces coelicolor A3(2) SCE20.08c	Escherichla coli K12 tag	Alcaligenes eutrophus H16 fhp
35			Agroba		Alcalig ORF7	Haemo	Haemo	Becillu			Eschel					Esche		Lactor pNZ40	Vibrio	Crithia	Streptomyc SCE20.08c	Esche	
40		db Match	SP:YTZ3_AGRVI		sp:YG87_ALCEU	gp:HIU68399_3	gp:HIU68399_3	1209 pir.A69778			sp:DAPE_ECOLI				GPU DCA297422_	SP:MALK_ECOLI		gp:AF036485_6	Sp FRP_VIBHA	SP:IUNH_CRIFA	gp:SCE20_8	Sp. 3MG1_ECOLI	SP.HMPA_ALCEU
		ORF (bp)	285	564	1002	693	714	1209	822	687	1323	1905	774	762	954	1068	642	818	816	903	975	588	1158
45		Terminal (nt)	3011273	3011242	3011808	3013106	3013837	3015824	3014648	3016924	3015827	3019220	3018312	3017420	3018123	3019542	3020561	3021208	3022113	3022998	3025353	3026139	3028142
50		Initial (nt)	3010989	3011805	3012809	3013798	3014550	3014616	3015469	3016238	3017149	3017316	3017539	3018181	3019076	3020609	3021202	3021825	3022928	3023900	3024379	3025552	3027299
		SEO NO 8	6605	9099	6607	8099	6099	6610	1199	6612	6613	6614	6615	9199	6617	6618	6619	6620	6621	6622	6623	6624	8625
55		SEQ NO.		3106	3107	3108	_	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124	3125

5		Function		oxidoreductase		transcription antiterminator or beta- glucoside positive regulatory protein		8-phospho-beta-glucosidase		6-phospho-beta-glucosidase	aspartate aminotransferase		transposase (ISCg2)	hypothetical membrane protein		UDP-glucose dehydrogenase	deoxycytidine triphosphate deaminase		hypothetical protein		beta-N-Acetyiglucosaminidase
15		Matched length (a.a.)		210		192		167		99	402	-	401	399		442	188		228		410
20		Similarity (%)		63.8		69.3		59.9		78.8	80.9		100.0	70.2		72.2	72.3		59.4		58.1
		Identity (%)		34.8		28.1		43.7		43.9	53.7		100.0	33.6		40.5	43.6		30.6		28.5
25	lable 1 (continued)	us gene		ellcotor A3(2)		(12 bglC		sporum 86405		sporum B6405	agellatus aat	-	glutamicum	elicolor A3(2)		eliloti rkpK	(12 dcd		elicolor A3(2)		ımovlolaceus
	lable 1 (Homologous gene		Streptomyces coelicolor A3(2) mmyQ		Escherichia coli K12 bglC		Clostridium longisporum B6405 abgA		Clostridium longisporum B6405 abgA	Methylobacillus flagellatus aat		Corynebacterium glutamicum ATCC 13032 tnp	Streptomyces coelicolor A3(2) SCQ11.10c		Sinorhizobium mellioti rkpK	Escherichia coli K12 dcd		Streptomyces coelicolor A3(2) SCC75A.16c		Streptomyces thermoviolaceus nagA
40		db Match		gp:SCO276673_18		sp:BGLG_ECOLI		sp:ABGA_CLOLO		sp:ABGA_CLOLO	gp:L78665_2		gp:AF189147_1	gp:SCQ11_10		prf.2422381B	sp:DCD_ECOLI		gp:SCC75A_16		gp:AB008771_1
		ORF (bp)	903	624	156	591	279	380	381	240	1257	300	1203	1257	183	1317	567	237	177	1689	1185
45		Terminal (nt)	3028163	3028891	3029033	3028884	3029782	3029702	3030535	3030101	3031979	3032348	3033863	3035437	3034105	3035440	3036845	3037911	3038942	3038993	3040748
50		Initial (nt)	3027561	3028268	3028878	3029474	3029504	3030061	3030155	3030340	3030723	3032647	3032661	3034181	3034287	3036756	3037411	3037675	3038172	3040681	3041932
		SEQ NO (a.e.)		6627	8299	6829	6630	6631	6632	6633	8834	6635	9699	6637	6638	6639	6640	6641	6642	6643	6644
55		SEQ NO (DNA)	3126	3127	3128	3129	3130	3131	3132	3133	3134	3135	3138	3137	3138	3139	3140	3141	3142	3143	3144

EP 1 108 790 A2

		_																	_
5 10	Function			hypothetical protein			hypothetical membrane protein	acytransferase or macrolide 3-0- acytransferase		hypothetical membrane protein		hexosyltransferase	methyl transferase	phosphoenolpyruvate carboxykinase (GTP)	C4-dicarboxylate transporter	hypothetical protein	hypothetical protein	mebrane transport protein	
15	Matched length (a.a.)			1416 h			363 h	408		529 h		369	251	109	332 C	241 h	207 h	768 n	
20	Similarity (%)			49.4			47.1	51.0		54.8		79.1	73.3	78.5	52.7	67.2	92.0	72.3	
	Identity (%)			29.6			24.8	27.7		31.2		53.4	58.6	54.7	24.4	35.7	69.1	42.3	
25 (panulit	gene			e e			9	уА	-	96		rculosis	rculosis	alis pepck	Jrsay	yggH	rculosis	rculosis pL3	
& Table 1 (confinued)	Homologous gene			Mycobacterium leprae MLCB1883.13c			Mycobacterium leprae MLCB1883.05c	Streptomyces sp. acyA		Mycobacterium leprae MLCB1883.04:		Mycobacterium tuberculosis H37Rv Rv0225	Mycobacterium tuberculosis H37Rv Rv0224c	Neocalilmastix frontalis pepck	Pyrococcus abyssi Orsay PAB2393	Escherichla coli K12 yggH	Mycobacterium tuberculosis H37Rv Rv0207c	Mycobacterium tuberculosis H37Rv Rv0208c mmpL3	
35								5		·		ΣI	ΣI		مَمَ		ΣI	ΣI	
40	db Match			gp:MLCB1883_7			9p:MLCB1883_4	pir.JC4001		gp:MLCB1883_3		pirG70961	pir:F70961	Sp. PPCK_NEOFR	plr:E75125	SP. YGGH_ECOLI	pir:E70 959	pir.C70839	
	ORF (bp)	444	201	3129	621	195	903	1088	708	1422	699	1137	771	1830	1011	765	705	2316	1422
45	Terminal (nt)	3042437	3042703	3045788	3043022	3045990	3048048	3046122	3047197	3049479	3051190	3049458	3051964	3052062	3055769	3056831	3057317	3059643	3058096
50	initial (nt)	3041994	3042503	3042660	3043642	3045796	3047148	3047189	3047904	3048058	3050522	3050592	3051194	3053891	3054759	3055867	3056613	3057328	3059517
	SEQ NO.	6645	6646	6647	6848	6649	8650	6651	6652	6653	6654	6655	9599	299	6658	6829	6660	6661	8662
55	SEQ SEQ NO. NO. (DNA) (8.8.)	3145	3146	3147	3148	3149	3150	3151	3152	3153	3154	3155	3156	3157	3158	3159	3160	3161	3162

EP 1 108 790 A2

	Function	hypothetical membrane protein	hypothetical membrane protein	propionyl-CoA carboxylase complex B subunit	polyketide synthase	acyl-CoA synthase	hypothetical protein		major secreted protein PS1 protein precursor			antigen 85-C	hypothetical membrane protein	nodulation protein	hypothetical protein	hypothelical protein		phosphatidic acid phosphatese
	Matched length (a.a.)	364	108	523	1747	592	319		657			331	667	295	168	656		170
	Similarity (%)	62.9	69.4	76.9	54.2	62.3	67.4	_	99.5			62.5	61.2	51.5	75.0	74.7		58.5
	identity (%)	29.1	34.3	49.7	30.2	33.5	39.8		98.6			36.3	37.5	27.1	51.2	55.6		28.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0204c	Mycobacterium tuberculosis H37Rv Rv0401	Streptomyces coelicolor A3(2) pcc8	Streptomyces erythraeus eryA	Mycobacterium bovis BCG	Mycobacterium tuberculosis H37Rv Rv3802c		Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1			Mycobacterium tuberculosis ERDMANN RV0129C fbpC	Mycobacterium tuberculosis H37Rv Rv3805c	Azorhizoblum caulinodans ORS571 noeC	Mycobacterium tuberculosis H37Rv Rv3807c	Mycobacterium tuberculosis H37Rv Rv3808c		Bacillus licheniformis ATCC 9945A bcrC
	db Match	pir.A70839	pir:H70833	gp:AF113605_1	SP.ERY1_SACER	prf:2310345A	pir.F70887		sp.CSP1_CORGL			sp:A85C_MYCTU	pir.A70888	sp:NOEC_AZOCA	pir:C70888	pir:D70888		477 sp:BCRC_BACLI
	ORF (bg)	1083	363	1548	4830	1788	927	498	1871	1401	219	1023	2058	986	504	1968	1494	\vdash
	Terminal (nt)	3060733	3061095	3061380	3062951	3068143	3070214	3071147	3071650	3075447	3073857	3075540	3076715	3078853	3079848	3080344	3083960	3083935
	Initial (nt)	3059651	3060733	3062927	3067780	3069930	3071140	3071644	3073620	3074047	-	3076562	3078772	3079848	3080351	3082311	3082467	
	SEQ NO.	6663	6664	6665	9999	2999	6668	6999	6670	6671	6672	6673	8674	6675	9299	6677	8878	6299
	SEQ NO (DNA)		3164	3165	3166		3168	3169		3171	3172	3173	3174	3175	3176	3177	3178	3179

EP 1 108 790 A2

| | | | | |
 |
 | | |
 | 1 |
 | | | 1 | |
 | | |
|---------------------------|--|--|---|--
--
---|--|---|---
--
---|--
--
--|---|--|--|---|---
---|
| Function | | | dimethylanilina monooxygenase (Noxide-forming) | | UDP-galactopyranose mutase
 | hypothetical protein
 | glycerol kinase | hypothetical protein | acyltransferase
 | seryl-IRNA synthelase | transcriptional regulator, GntR family or fatty acyl-responsive regulator
 | hypothelical protein | hypothelical protein | | 2,3-PDG dependent
phosphoglycerate mutase |
 | nicotinamidase or pyrazinamidase | |
| Matched
length
(88) | | | 377 | | 377
 | 629
 | 499 | 279 | 281
 | 419 | 235
 | 356 | 113 | | 218 |
 | 480 | |
| Similarity (%) | | | 50.4 | | 72.9
 | 47.8
 | 78.8 | 70.3 | 72.0
 | 87.6 | 61.7
 | 61.2 | 79.7 | | 62.8 |
 | 50.9 | |
| identity
(%) | | | 24.4 | | 43.2
 | 29.6
 | 51.7 | 41.8 | 48.7
 | 70.2 | 27.7
 | 32.6 | 46.0 | | 37.2 |
 | 27.4 | |
| Homologous gene | | | Sus scrofa fmo1 | | Escherichia coli K12 gif
 | Mycobacterium tuberculosis
H37Rv Rv3811 csp
 | Pseudomonas aeruginosa
ATCC 15692 glpK | Mycobacterium tuberculosis
H37Rv Rv3813c | Mycobacterium tuberculosis
H37Rv Rv3816c
 | Mycobacterium tuberculosis
H37Rv | Escherichia coli K12 farR
 | Mycobacterium tuberculosis
H37Rv Rv3835 | Mycobacterium tuberculosis
H37Rv Rv3836 | | Amycolatopsis methanolica pgm |
 | Mycobacterium smegmatis pzaA | |
| db Match | | | sp:FMO1_PIG | | sp:GLF_ECOU
 | plr:G70520
 | sp:GLPK_PSEAE | pir.A70521 | pir:D70521
 | gsp:W28465 | sp:FARR_ECOLI
 | pir.H70652 | pir.A70653 | | gp:AMU73808_1 |
 | prf:2501285A | |
| ORF
(bp) | 717 | 510 | 1302 | 612 | 1203
 | 2049
 | 1527 | 834 | 876
 | 1266 | 714
 | 1113 | 342 | 66 | 699 | 630
 | - | 729 |
| Terminal
(nt) | 3084424 | 3085218 | 3087048 | 3088276 | 3087101
 | 3090664
 | 3090760 | 3092342 | 3093175
 | 3094078 | 3096287
 | 3097423 | 3097764 | 3097780 | 3097904 | 3099454
 | 뜶 | 3101426 |
| fuitlat
(nt) | 3085200 | 3085727 | 3085747 | 3087665 |
 |
 | 3092286 | 3093175 | 3094050
 | 3095343 | 3095574
 | 3096311 | 3097423 | | | 3098825
 | 3099556 | 3100698 |
| SEO
NO. | 999 | | | 6683 |
 |
 | 9899 | 6687 | 6688
 | 6899 | 0699
 | 6691 | 6692 | 6693 | | +
 | | 2699 |
| SEQ
NO. | | | | _ |
 |
 | 3186 | 3187 | 3188
 | 3189 | 3190
 | 3191 | 3192 | 3193 | 3194 | 3195
 | 3196 | 3197 |
| | SEO initial Terminal ORF db Match Homologous gene (%) (%) (as) | SEQ Initial Not (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) (%) (%) (%) (as) (a.s.) 3085200 3084424 777 (as) (as) | SEO Initial No. Terminal ORF (nt) Ab Match Homologous gene (%) (%) (%) Matched (%) Matche | SEO Initial NO. (nt) Terminal (nt) ORF (b) db Match Homologous gene (%) (%) (%) Matched (sa) 66.80 3085200 3084424 777 (mil nitial (mil nitial (mil nitial (mil nitial (mil nitial (mil nitial nitial (mil nitial nitial (mil nitial nit | SEO Initial (nt) Terminal (nt) ORF (b) db Match Homologous gene (%) (%) (%) Matched (%) </td <td>SEO (a.s.) Initial (a.s.) Terminal (nt) ORF (b) db Match Homologous gene (g.s.) (%) (%) (%) Matched (g.s.) 66.60 3085200 3084424 777</td> <td>SEO (a.s.) Initial (nt) Terminal (nt) ORF (b) db Match Homologous gene (g.s.) Identity (g.s.) Similarity (g.s.) Matched (g.s.) 6680 3085200 3084424 777 A. S. S. S. S. S. S. S. S. S. S. S. S. S.</td> <td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEO (n.1) Initial (n.1) Terminal (n.1) ORF (h) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)<td>SEO (a.a.) Initial (ml) (DRF (ml) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Homologous gene (%) Identity (%) Similarity (%) Hemgth (%) Hemgt</td><td>SEO (millal NO) Intilal (millal NO) Terminal (pp) db Match Homologous gene (%) (identity (%) Similarity (%) Matched (%) Homologous gene (%) (identity (%) Matched (%) (identity (%) Matched (%) (identity (%) (identity (%) (identity (%) (identity (%) (identity (%) (identity (%) (identity (%) (identity (%) (identity (%) (identity (%) (identity (%) (identity (%) (identity (%) (identity (%) (identity (%)
 (identity (%) <t< td=""><td>SEO Initial Terminal ORF db Match Homologous gene (44) Similarity length (48) Homologous gene (74) (78) (88) Iaal 6680 3085200 3084424 777 Amatch Amatch</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Hastched (%)<</td><td>SEC Initial Terminal ORF db Match Homologous gene (%) (%</td><td> SEG</td><td>SED Initial No. Terminal ORF db Match Homologous gene (%) (%) Matched (%)<td>SECD Initial (mt) Terminal (bp) ORF date Match Homologous gene Identity (W) Similarity (M) Homologous gene Identity (W) Matched (W)</td><td>SED Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (sy) (%) (%) Matched (sp) 8680 3065200 3064424 777 AB Match (sp) AB Matched (sp)</td></td></t<></td></td> | SEO (a.s.) Initial (a.s.) Terminal (nt) ORF (b) db Match Homologous gene (g.s.) (%) (%) (%) Matched (g.s.) 66.60 3085200 3084424 777 | SEO (a.s.) Initial (nt) Terminal (nt) ORF (b) db Match Homologous gene (g.s.) Identity (g.s.) Similarity (g.s.) Matched (g.s.) 6680 3085200 3084424 777 A. S. S. S. S. S. S. S. S. S. S. S. S. S. | SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) | SEO (n.1) Initial (n.1) Terminal (n.1) ORF (h) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)
 Matched (%) Matched (%) <td>SEO (a.a.) Initial (ml) (DRF (ml) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Homologous gene (%) Identity (%) Similarity (%) Hemgth (%) Hemgt</td> <td>SEO (millal NO) Intilal (millal NO) Terminal (pp) db Match Homologous gene (%) (identity (%) Similarity (%) Matched (%) Homologous gene (%) (identity (%) Matched (%) (identity (%) Matched (%) (identity (%) <t< td=""><td>SEO Initial Terminal ORF db Match Homologous gene (44) Similarity length (48) Homologous gene (74) (78) (88) Iaal 6680 3085200 3084424 777 Amatch Amatch</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Hastched (%)<</td><td>SEC Initial Terminal ORF db Match Homologous gene (%) (%</td><td> SEG</td><td>SED Initial No. Terminal ORF db Match Homologous gene (%) (%) Matched (%)<td>SECD Initial (mt) Terminal (bp) ORF date Match Homologous gene Identity (W) Similarity (M) Homologous gene Identity (W) Matched (W)</td><td>SED Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (sy) (%) (%) Matched (sp) 8680 3065200 3064424 777 AB Match (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp)
 AB Matched (sp) AB Matched (sp)</td></td></t<></td> | SEO (a.a.) Initial (ml) (DRF (ml) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Homologous gene (%) Identity (%) Similarity (%) Hemgth (%) Hemgt | SEO (millal NO) Intilal (millal NO) Terminal (pp) db Match Homologous gene (%) (identity (%) Similarity (%) Matched (%) Homologous gene (%) (identity (%) Matched (%) (identity (%) Matched (%) (identity (%) <t< td=""><td>SEO Initial Terminal ORF db Match Homologous gene (44) Similarity length (48) Homologous gene (74) (78) (88) Iaal 6680 3085200 3084424 777 Amatch Amatch</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Hastched (%)<</td><td>SEC Initial Terminal ORF db Match Homologous gene (%) (%</td><td> SEG</td><td>SED Initial No. Terminal ORF db Match Homologous gene (%) (%) Matched (%)<td>SECD Initial (mt) Terminal (bp) ORF date Match Homologous gene Identity (W) Similarity (M) Homologous gene Identity (W) Matched (W)</td><td>SED Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (sy) (%) (%) Matched (sp) 8680 3065200 3064424 777 AB Match (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched
(sp) AB Matched (sp)</td></td></t<> | SEO Initial Terminal ORF db Match Homologous gene (44) Similarity length (48) Homologous gene (74) (78) (88) Iaal 6680 3085200 3084424 777 Amatch Amatch | SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Hastched (%)< | SEC Initial Terminal ORF db Match Homologous gene (%) (% | SEG | SED Initial No. Terminal ORF db Match Homologous gene (%) (%) Matched (%) <td>SECD Initial (mt) Terminal (bp) ORF date Match Homologous gene Identity (W) Similarity (M) Homologous gene Identity (W) Matched (W)</td> <td>SED Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (sy) (%) (%) Matched (sp) 8680 3065200 3064424 777 AB Match (sp) AB Matched (sp)</td> | SECD Initial (mt) Terminal (bp) ORF date Match Homologous gene Identity (W) Similarity (M) Homologous gene Identity (W) Matched (W) | SED Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (sy) (%) (%) Matched (sp) 8680 3065200 3064424 777 AB Match (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp) AB Matched (sp)
 AB Matched (sp) AB Matched (sp) |

EP 1 108 790 A2

5	Function	transcriptional regulator			٠	hypothetical protein	glucan 1,4-alpha-glucosidase		glycerophosphoryl diester phosphodiesterase	gluconate permease			pyruvate kinase	L-lactate dehydrogenase	hypothetical protein	hydrolase or haloacid dehalogenase-like hydrolase	efflux protein	transcription activator or transcriptional regulator GntR family	phosphoesterase	shikimate transport protein
15	Matched length (a.a.)	380				101	432		259	456			491	314	526	224	188	221	255	422
20	Similarity (%)	57.1				81.3	55.3		54.1	71.9			47.7	99.7	64.8	58.5	67.6	57.0	68.6	74.4
	identity (%)	31.6				43.9	28.7		28.0	37.3			25.5	99.7	33.5	32.1	39.9	27.6	47.8	37.9
25 (penultu	gane	olor A3(2)				dulae	evisiae 11						utamicum	um lctA	erculosis	color A3(2)	ns ORF1	2 MG1655	erculosis	2 shiA
S S Table 1 (Continued)	Homologous gane	Streptomyces coelicolor A3(2) SC6G4.33				Streptomyces lavendulae ORF372	Saccharomyces cerevisiae S288C YIR019C sta1		Bacillus subtilis glpQ	Bacillus subtills gntP			Corynebacterium glutamicum AS019 pyk	Brevibacterium flavum ictA	Mycobacterium tuberculosis H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1 tmpA	Escherichia coli K12 MG1655 glcC	Mycobacterium tuberculosis H37Rv Rv2795c	Escherichia coli K12 shiA
35	db Match	gp.SC6G4_33				pir:B26872	SP.AMYH_YEAST		sp.GLPQ_BACSU	SP. GNTP BACSU			SP:KPYK_CORGL	gsp:Y25997	pir.C70893	gp:SC1C2_30	gp:AF030288_1	sp:GLCC_ECOLI	plr:B70885	Sp:SHIA_ECOLI
	ORF (bp)	1035	52	552	870	327	1314	918	819	1388	╁	159	1617	942	1776	636	543	693	786	1299
45	Terminal (nt)	3102768	3101744	3102079	3103763	3104252	3105719	3106053	3106951	3109519	3108823	3110003	3110464	3112449	3115394	3116042	3116621	3117332	3118121	3119582
50	Initial (nt)	3101734	3101863	3102630	3102894	3103926	3104406	3106970		3108131				3113390	3113619	3115407	3116079	3116640	3117336	3118284
	SEQ	8699	6699		6701	6702	6703	6704	8705	6706	6707	6708		6710	6711	8712	6713	6714	6715	6716
55	SEQ		3199		3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215	3216

EP 1 108 790 A2

two-component system response regulator

75.5

Corynebacterium diphtheriae chrA

prt 2518330B

636

6736 3136491 3135858

membrane transport protein transcriptional regulator

hypothetical protein

216 447 137 212

64 8

33.8 27.3 37.2 50.9

Mycobacterium tuberculosis H37Rv Rv3850

633 pir.G70654

3232

59.3 65.0

Streptomyces cyanogenus lanJ

Bacillus subtilis 168 yxaD

5	:tlon	enase or FMN- ogenase		r protein			verse 4-dependent)		ımino Ocid		e sulfoxide	ase (Fe/Mn)	ulator	ce transporter		
10	Function	L-lactate dehydrogenase or FMN- dependent dehydrogenase		Immunity repressor protein			phosphatase or reverse transcriptase (RNA-dependent)		peptidase or IAA-amino acid hydrolase		peptide methionine sulfoxide reductase	superoxide dismutase (Fe/Mn)	transcriptional regulator	multidrug resistance transporter		
15	Metched length (a.a.)	376		55			569		122		210	164	282	384		
20	Identity Similarity (%)	68.9		80.0			51.3		63.1		69.1	92.7	65.8	49.0		
	identity (%)	40.4		45.5			29.5		36.9		47.6	82.3	32.5	23.4		
25 (panulju	gene	dis IIdA		105 ORF1			jans		a ill1		nsrA	pos ш		lutamicum		
% Table 1 (continued)	Homologous gene	Neisseria meningitidis IIdA		Bacillus phage phi-105 ORF1			Caenorhabditis elegans Y51B11A.1		Arabidopsis thaliana ill1		Escherichia coll 8 msrA	Corynebacterium pseudodiphtheriticum sod	Bacillus subtilis gltC	Corynebacterium glutamicum tetA		
40	db Match	prt.2219306A		sp:RPC_BPPH1			gp:CELY51B11A_1		SP:ILL1_ARATH		Sp. PMSR_ECOL!	pir:140858	sp.GLTC_BACSU	gp:AF121000_10		
	ORF (bp)	1215	405	312	138	711	1817	546	402	150	651	900	924	1134	1811	Ξ
45	Terminal (nt)	3120879	3121313	3121909	3121992	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030
50	Initial (nl)	3119685	3120909	3121598	3122129	3123222	3124172	3124886		3125343	3126145	3126392	3128417	3128606	3129785	3132920
	SEO	6717	8718	6719	6720	6721	6722	6723	6724	6725	6726	6727	6728	6729	6730	6731
55	SEQ.	3217	3218	3219	3220	3221	3222	3223	3224	3225	3226	3227	3228	3229	3230	3231

	Function			No-component system sensor histidine kinase	hypothetical protein	hypothetical protein	stage III sporulation protein	transcriptional repressor	transglycosylate-associated protein	hypothetical protein	hypothetical protein	RNA pseudouridylate synthase	hypothetical protein	hypothetical protain		bacterial regulatory protein, gntK family or gic operon transcriptional activator	hypothetical protein	hypothetical protein
	Matched length (a.a.)			408	48	277	265	192	97	286	314	334	2	42		109	488	287
	Similarity (%)			64.5	79.2	59.2	53.6	6.09	71.3	89.6	73.9	51.2	0.89	75.0		56.0	48.2	78.7
	Identity (%)			30.2	45.8	30.0	26.0	32.3	34.5	41.2	38.5	28.4	97.0	71.0		30.3	26.0	48.3
Table 1 (continued)	Homologous gene			Corynebacterium diphtherlae chrS	Streptomyces coelicolor A3(2) SCH89.22c	Streptomyces coelicolor A3(2) SCH69.20c	Baciltus subtilis spottiJ	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655 tag1	Mycobacterium tuberculosis H37Rv Rv2005c	Escherichia coll K12 MG1655 yhbW	Chlorobium vibrioforme ybc5	Chiamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Escherichla coli K12 MG1655 glcC	Streptomyces coelicolor SC4G6.31c	Mycobacterium tuberculosis H37Rv Rv2744c
	db Match			pri:2518330A	9р:SСН69_22	ар:SСН69_20	sp:SP3J_BACSU	pir.C70948	sp:TAG1_ECOLI	sp:YW12_MYCTU	SP.YHBW_ECOL!	Sp.YBCS_CHLVI	GSP:Y35814	PIR:F81737		sp.GLCC_ECOLI	gp:SC4G6_31	sp.35KD_MYCTU
	ORF (dg)	639	588	1311	150	822	1302	639	261	903	987	988	273	14	202	383	1418	873
	Terminal (nt)	3137558	3138471	3136593	3138481	3138634	3140952	3140885	3141709	3142454	3143496	3145626	3146841	3147230	3151369	3151842	3153828	3153894
	Initial (nt)	3136920	3137884	3137903	3138630	3139455	3139651	3141523	3141969	3143358	3144482	3144661		3147090	3151575		3152413	3154786
	SEO NO (a.a.)	6737	6738	6739	8740	6741	6742	6743	6744	6745	6746	8747	6748		6750	6751	6752	6753
	SEO NO DNA)	3237	+		3240	3241	3242	_	3244	3245	3246	3247	3248	3249	3250	3251	3252	3253

EP 1 108 790 A2

	_			_						_	_	_	_						_	$\overline{}$	_		_
5		Function						methyltransferase	nodulin 21-related protein				transposon tn501 resolvase		ferredoxin precursor	hypothetical protein	transposase	transposase protein fragment TnpNC		glyceraldehyde-3-phosphate dehydrogenase (pseudogene)	lipoprotein	copper/potassium-transporting ATPase B or cation transporting ATPase (E1-E2 famity)	
15		Matched length (a.a.)						217	241				26		62	55	72	46		38	180	717	
20		Similarity (%)						58.1	55.2				92.9		98.4	85.5	84.0	90.0		84.2	59.4	73.4	
		identity (%)						32.3	28.1				48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
25	ntinued)	gene						olor A3(2)					ginosa TNP5		erythraea fer	olor A3(2)	utamicum	utamicum		gap	CC6803	dus AF0152	
30	Table 1 (continued)	Homologous gene						Streptomyces coelicolor A3(2) SCD35,11c	soybean NO21				Pseudomonas aeruginosa TNPS		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1873	Corynebacterium glutamicum		Pyrococcus woesel gap	Synechocystis sp. PCC6803 sil0788	Archaeoglobus fulgidus AF0152	
35		db Match						gp:SCD35_11 8	sp:NO21_SOYBN s				SP.TNP5_PSEAE F		SP. FER_SACER	gp.SCD31_14	GPU.AF184956_8	GPU:AF164956_23 (Sp.G3P_PYRWO	pir.S77018	pir.H69268	
		ORF (bp)	153	1452	1068	249	309	711	720	ğ	378	2 8	218	483	321	333	111	162	1038	128	099	2217	-31
45		Terminal (nt)	3154969	3155246	3156306	3157223	3157479	3158834	3159081	3160419	3161065	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267
50		Initial (nt)	3154817	3156697	6758 3157373	3157471	3157787	3158124	3159800	3160216	3160688	3180818	3160938	3161219	3161407	3162014	3162694	3162710	3162852	3162983	3163733	3166005	3166437
		S S S	6754	6755	6758	6757	8758	6229	8760	6761	8762	6763	6764	6765	6766	6767	6768	6949	6770	1778	6772	6773	6774
			3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274

EP 1 108 790 A2

5	Function		two-component system sensor histidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol:disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(seta- crystallin)		zinc-trensporting ATPase (Zn(II)- translocating p-type ATPase			zinc-transporting ATPase (Zn(II)- translocating p-type ATPase	hypothetical protein		transposase	transposase
15	Matched length (a.a.)		301		233		630	101	322		78			909	72		73	2
20	Similarity (%)		71.4		72.1		47.9	63.4	60.9		68.7			68.5	54.0		73.0	77.0
	identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			38.8	45.0		58.0	75.0
Se Se Se Se Se Se Se Se Se Se Se Se Se S	Homologous gene		Escherichia coli K12 baeS		ilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium japonicum tlpA	us qor		Synechocystis sp. PCC6803			Escherichia coll K12 MG1655 atzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673
·	Hom		Escherichia		Bacillus subtills phoP		Pseudomone tomate	Bradyrhizob	Mus musculus qor		Synechocys atzN			Escherichia atzN	Aeropyrum		Corynebact Tnp1673	Corynebact Tnp1673
40	db Match		sp.BAES_ECOLI		sp.PHOP_BACSU		sp.COPA_PSESM	SP:TLPA_BRAJA	sp:QOR_MOUSE		sp:ATZN_SYNY3			sp:ATZN_ECOLI	PIR:E72491		GPU.AF164956_8	GPU AF164956_8
	ORF (bp)	192	1197	828	756	672	1479	363	918	471	234	315	207	1875	330	309	216	258
45	Terminal (nt)	3167169	3166450	3168566	3167648	3169340	3170892	3171816	3171619	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
50	initial (nt)	3166978	3167646	3167739	3168401	3168669	3169414	3171254	3172538	3172995	3173624	3174066	3174990	3175027	3175643	3177174	3177304	3177565
	SEO NO Seo	6775	9779	17779		6779	6780	1879	6782	6783	6784	6785	6786	6787	6788		6790	6791
55	SEO NO.	3275	3276	3277		3279	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291

EP 1 108 790 A2

	٢		T	T	ŏ	\top	T		T		٤			T		Γ		9	ž.		1			protein	
5		Function	iransposasa (IS1628)	thioredoxin	transmembrane transport protein or	4-hydroxybenzoate transporter	bynothetical protein	Pomence: Professe	replicative Civil Selection	Section of the sectio	Substantial Protest to the States of the States	Ingle-strang City City of Strains	30S ribosomai protein So		hypothetical protain	establish hinding profein	מונייווים מוניים אל הייניים אל הייניים	hypothetical protein	bacterial regulatory protein, mark family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein	
15		Matched length (a.a.)	53 tre	100 #	1	421	900	1	481	Ť	\top	1	92		480	\top) to	70	137	296		72	298	433	
20	}	Similarity (%)	98.2	74.0		60.1	300	67.9	73.1		71.4	51.5	78.3		68.3		3	72.0	65.0	61.8		70.4	63.8	64.0	
20	Ì	identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		41.5		29.	41.1	35.1	29.7		32.4	30.2	31.2	
25	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum	oli K12 thi2		Pseudomonas putida pcaK		oli K12 yqjl	Escherichia coli K12 dnaB	-	Escherichia coli K12 RL9	coll K12 ssb	Escherichla coli K12 RS6		Mycobacterium smegmatis mc(2)155		tills ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yofF		ptills yhdC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ	ı
30	Table	Ното	Corynebacter	Escherichia coli K12 thi2		Seudomona		Escherichia coli K12 yqil	Escherichia (Escherichia	Escherichia coil K12 ssb	Escherichla		Mycobacteri mc(2)155		Bacillus subtills ponA	Mycobacter H37Rv Rv0	Mycobacter H37Rv Rv0	Mycobacter H37Rv Rv2		Bacillus subtilis yhdC	Fscherichia	Escherichie	
35 40		db Match	gp:AF121000_8	T		sp:PCAK_PSEPU		Sp. YQJI ECOLI	_		SP.RLB ECOLI	SD: SSB ECOLI	sp.RS6_ECOLI		gp:AF187306_1		SP:PBPA_BACSU	sp:YOHC_MYCTU	pir:B70912	SP:YOFF_MYCTU		LISONE JOHN.	SP. TICO E		
		ORF (bg)				1344 s	159	576	+=		+	+-	$\overline{}$	585	1458	882	2160	357	471	942	495	-	+-	-+-	
45		Terminal	55	15	2	92	3180946	3180551	2	98	3183478	21830R7	348	3185348	3185	3188793	3187042		3190347	3191319	2401848			3192266	
		Initial					3181104	311176	3182888		2187027				3186993	3187912								3 3194514	
50		S S	(3 8.)		6794		6796	_	8798	2700	2000			_		6805								2 6812	
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			3293				3200	3200	2200	2000	3302	2302	3304	1305	3308	3307	3308	3309		3310	3	3312	3

	Function		ABC transporter ATP-binding protein	hypothetical protein		hypothetical protein		SOLITON STATE AND STATE OF THE	DINA protection coming reprotein	formamidopyrimidine-DNA glycosylase	hypothetical protein			methylated-DNAprotein-cysteine	S.methyltransferase	zinc-binding denydrogenase of quinone oxidoreductase	alginate lyase		membrane transport protein	malate oxidoreductase [NAD] (malic enzyme)	gluconokinase or gluconate kinase	telcoplanin resistance protein	telcoplanin resistance protein	
	Matched length	(8.8)	221	237		360			154	268	404			١	B	231			388	392	486	169	159	
	Similarity	R)	1.08	42.0	2,35	90.0			64.9	9.55	88.8				63.3	63.6			66.3	89.5	53.7	80.4	159.0	
	Į Aį	<u>R</u>	46.9	9	2	77.8			37.7	28.4	47.5				38.0	33.3			26.4	99.7	24.5	27.8	27.0	
Table 1 (continued)	2000		Escherichia coli K12 MG1855	ybjZ	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis H37Rv Rv0046c			Escherichla coll K12 dps	Escherichia coli K12 mutM or	[pg	Escherichia coii N. 2.11CO			Homo saplens mgmT		Cavis porceilus (Curres Pig.)		Mycobacterium tuberculosis	Corynebacterium glutamicum)	ATCC 1/965 male	Bacillus suotins gittin	Enterococcus faecium vanZ	Enterouchus racham
		db Match	T	sp. rest_coc.	pir.E81408	pir.F70912			PULL ECOLI		Pr. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	sp.RTCB_ECOLI			SP:MGMT_HUMAN	1	1011 sp. dor_cavPO		1176 sp.YDEA ECOLI	1176 qp.AF234535_1		Sp.GNTK_BACSU	591 SP.VANZ ENTEC	sp:VANZ_ENTFC
	Jac.	<u> </u>		069	1977	1089	88	1485	A O.A.		? .	1149	1089	573	474			=			\neg			1 525
	_	(tu)		3194514	3195210		3198582		3075616	3201200	3202712	3204100	3202979	3204728	3204731	\rightarrow	3205222	-+-	3 12				8	3211904
	-	(n)		3195203	3197186			-	oganniis	3201/34	6820 3201900	3202952	3204067	3204156	8824 3205204		3325 6825 3206232			3200848	7000	3211186	3211836	8831 3212428
	G	2	-	6814 3	6815				8180	6819	6820	6821	6822	6823	8824		6825			1790	_	6839		9831
	_	20	(DNA)	3314 6	3316	_	_			3319	3320	3321	$\overline{}$	_	22.74	5	3325		3326	3327	3350	3329	3330	3331

10
15
20
25
<i>30</i>
35
40
45
50

	Function	mercury(II) reductase	D-amino acid dehydrogenase small subunit				NAD(P)H nitroreductase			leucyl-tRNA synthetase	hypothetical membrane protein	virulence-associated protein		hypothetical protein	bitunctional protein (homoprotocatechuate catabolism- bitunctional Isomerase/decarboxylase) (2- hydroxyhepta-2,4-diens-1,7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1,7dioate decarboxylase)	gentisate 1,2-dioxygenase or 1- hydroxy-2-naphthoate dioxygenase	bacterial regulatory protein, lact family or pectin degradation repressor protein	transmembrane transport protein or 4-hydroxybenzoate transporter
	Matched length (aa)	448	444				194			943	104	86		247	298	339	229	454
	Similarity (%)	65.6	54.5				55.2			68.1	40.4	81.4		53.8	50.3	64.3	60.7	80.8
	Identity (%)	29.8	27.3				25.8			47.7	40.4	55.8		31.8	28.5	34.2	25.3	27.5
Table 1 (continued)	Homologous gene	Staphylococcus aureus merA	Escherichia coli K12 dadA				Thermus thermophlius nox			Bacillus subtilis syl	Escherichis coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolor SCC54.19	Escherichia coli K12 hpcE	Pseudomonas alcaligenes xinE	Pectobacterium chrysanthemi kdgR	Pseudomonas putida pcaK
	db Match	sp:MERA_STAAU	1230 Sp.DADA_ECOLI				Sp: NOX_THETH			2858 sp:SYL_BACSU	Sp. YBAN_ECOLI	Sp:VAPI_BACNO		gp:SCC54_19	837 sp:HPCE_ECOL)	gp:AF173167_1	sp.KDGR_ERWCH	1356 sp.PCAK_PSEPU
	ORF (bp)	1344	1230	1503	330	321	609	924	1452	2858	429	357	774	723		1125	780	1356
	Terminal (nt)	3213931	3213934	3215257	3216888	3217457	3218601	3219700	3222495	3219778	3223150	3223089	3225374	3223992	3224718	3225563	3226910	3229079
•	Initial (nt)	3212588	3215183	3216759	3217215	321777	3217993	3218777	3221044	6840 3222633	3222722	8842 3223445	3224601	3224714	6845 3225554	3226687	3227689	6848 3227724
	SEO NO (8.8)	6832	6833	6834	6835	6836	6837	6838	6839	6840	6841	8842	6843	6844	5845	6846	6847	
	SEO NO.	3332	3333	3334	3335	3336	3337	3338	3339	3340	3341	3342	3343	3344	3345	3346	3347	3348

1440年 李春草

EP 1 108 790 A2

		476 salicylate hydroxylase	proton/glutamate symporter or	1	170 tryptophan-special permesse	515 anthranilate synthase component i		208 anthranilate synthese component if	348 phosphoribosyltransferase	indole-3-giycerol phosphate synthese (IGPS) and N-(5'- phosphoribosyl) anthraniiate isomerase(PRAI)	tour tourtonban synthese beta chain		283 (ryptophen synthese eighte citem	₹ I	PTS system, IIA component or unknown pentitol 152 phosphotransferase enzyme II, A component	305 ABC transporter ATP-binding protein	
	Similarity hength (%)	49.4 47	╀	4. 4	98.4	99.8	-	100.0	99.4	98.3	╀	6.76	98.5	86.8	71.7	63.6	_
-	Identity Si (%)	28.2		25.4	99.4	89.2	+	0.66	99.4	97.3		97.6	95.4	9.99	30.3	32.5	
lable 1 (columned)	Homologous gene	4 F W	Pseudomonas purios	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum	Corynebacterium glutamicum	Brevibacterium lactofermentum	Titles managed and a second	trpB	Brevibacterium lactofermentum trpA	Streptomyces coelicolor A3(2)	Escherichia coli K12 ptxA	Pseudomonas stutzeri	
	db Match		prt.1706191A	sp:EAT2_HUMAN	pir.JC2328	SP.TRPE_BRELA		TRPG_BRELA	SD TRPD CORGL	1422 SP. TRPC_BRELA		SP.TRPB_BRELA	Sp.TRPA_BRELA	gp:SCJ21_17		TSEST DSEST	-
	ORF		1326	1251	510	1554	E	624	1044	1422	969	1251	940	1539		8	-
	100	(111)	3230444	3231054	3233105	3234956	3233250	3235579	2238R45	3238062	3236518	3239332	3240171	3240313	324187		4 3243/59
	Initial	<u> </u>	3229119	3232304	3232596	3233403	00733420	3234958		3236641	 3237213	3238082	3239332	1241851		_	2 3242R54
	SEO	(-	6850	6851		8853	6854	1000	6856	6857	6858	8859	0000		$\overline{}$	6062
	SEO		3349	3350				3252		3355	 3357	3358	3359	1 60	3361		2362

EP 1 108 790 A2

											_		_				_		
5		Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, srsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein					acetoin(diacetyl) reductase (acetoin dehydrogenase)	hypothetical protein	di-∕tripeptide transpoter		bacterial regulatory protein, tetR family	hydroxyquinol 1,2-dloxygenase
15		Matched length (a.e.)	305	336	328	282	102	347	228					238	58	469		188	246
20		Similarity (%)	63.6	64.3	74.7	54.8	79.4	64.3	69.5					52.9	84.5	71.6		50.5	82.2
		Identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5	34.5		28.1	31.7
25	Iable 1 (continued)	ous gene	ola petC	icter brockii	(12 yfeH	elicolor A3(2)	elicolor Plasmid	ıcter brockii	cerevislae					na budC	uberculosis	s subsp. lactis		(12 acrR	Icoaceticus
30	Table 1	Homologous gene	Chlorobium Ilmicola petC	Thermoansarobacter brockiinadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SCI11.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsielle terrigene budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis dtpT		Escherichia coll K12 acrR	Acinetobacter calcoaceticus catA
40		db Match	sp:UCRI_CHLLT	1110 sp:NADO_THEBR	Sp:YFEH_ECOLI	gp:SC111_38	pir.A29606	1092 sp:NADO_THEBR	Sp:YMY0_YEAST					SP:BUDC_KLETE	sp:YY34_MYCTU	sp.DTPT_LACLA		SP.ACRR_ECOLI	sp:CATA_ACICA
		ORF (bp)	450	1110	972	774	348	1092	648	153	192	168	321	753	180	1359	171	555	903
45		Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251468	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471
50		Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	3250758	3251618	3251934	3252300	3252636	3252728	3253560	3255182	3255549	3256298	3257373
	İ	SEQ NO. (a.a.)	6864	6865	9989	6867	6868	6869	6870	6871	6872	6873	6874	6875	6876	6877	8878	6879	6880
55		SEQ NO (DNA)	3364	3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380

						_		_		-	\neg			_		T^{-}	Т		7	1	H	1	
5	lion	tasa.	D. wines. proton	e (rensporter)	onal regulator or ressor		rt protein	ydrogenase	myo-inositol 2-	streptomycin In								elicase family	brane protein		TITIKGING KINGSG	ng protein or ciated domain	stake protein
10	Function	eserticipas etatacelicate	maleyiet of the second of the	symporter (D-xylose transporter)	bacterial transcriptional regulator or acetate operon repressor	oxidoreductase	diagnostic fragment protein sequence	myo-inositol 2-dehydrogenase	dehydrogenase or myo-inositol 2-	dehydrogenase or streptomycin biosynthesis protein	phosphoesterase				etomatin			DEAD box RNA helicase family	hypothetical membrane protein		phosphomethylpyllmkune killese	mercuric ton-binding protein or heavy-metal-associated domain containing protein	ectoine/proline uptake protein
15	Matched	1	100	513	280	357	270	332		343	1242				20g	3		1660	141		125	67	297
20	Similarity		6.6	58.3	60.7	55.7	58.2	59.6		62.4	62.7				67.3	2.10		80.2	61.0		76.8	70.1	62.3
	Identity	g (43.0	31.4	25.7	27.2	25.9	28.5		34.1	33.3				8	9.0	1	58.4	34.8		50.4	46.3	29.8
25 G	2			南	n IclR	3	4450	idhA		stri						18 UNCT		ရွင္မ	u2266k				amicum
30 solutions) belief	Homologous gene		Pseudomones sp. P51	Escherichla coli K12 xylE	Salmonella typhimurium IcIR	Escherichia coli K12 ydgJ	Listeria innocua strain 4450	Sinorhizoblum meliloti idhA		Streptomyces griseus stri	Racillus subtilis wnB					Caenorhabditis elegans uncr		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2286k		Bacillus subtilis thiD	Bacillus subtills yvgY	Corynebacterium glutamicum proP
35	1 SeW 46		Sp.TCBF_PSESQ F	SP.XYLE_ECOLL	Sp.ICLR_SALTY	P. VOG I ECOI I		185	Т	sp.STRI_STRGR		pii.c.coora				sp.UNC1_CAEEL		gp:MBO18605_3	prt:2323363AAM		SD THID BACSU	pir.F70041	pri.2501295A
	ORF	(dq)	1089	1524	198	1011		300	3	1083	500	4032	843	918	1086	744	696	4929	202	360	89	243	837
45	Terminal	(Jr.)	3257403	3258561	3261989	200000	3264115	97000	3265146	3266266			3287913	3268618	3272477	3274488	3275602	3276671	3281868	3283101		+	3283473
<i>50</i>	-	(j.	3258491	-	3261129	_+	3263237		3264142	3265184			3268557	6890 3269235	6891 3271392	3275231	3276570	3281599	3282172	3282742			3284309
	sea	0 :	÷				6884		9889	6887			6889	6890	6891	6892	6893	6894	6895	_	_		6889
		O W		_		T	3384		3386	3387		_	3389	3390	3391	3392	3393	3394	3395	3396	2307	3398	3399

EP 1 108 790 A2

0

	Function	iron(III) dictrate-binding periplasmic protein precursor or Iron(III) dictirate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase			phosphomethylpyrimidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	IRNA nucleotidyltransferase	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	thioredoxin reductase
	Matched length (a.a.)	279	324		1	248		29	102	212	169	471	234		858	1201		189	308
	Similarity (%)	9.09	58.0			75.5		70.1	65.7	67.0	58.2	51.8	69.2		54.3	60.1		6.09	82.5
	identity (%)	29.4	27.2			46.2	!	41.8	38.3	32.1	23.7	26.8	43.6		25.8	35.7		30.2	60.4
Table 1 (continued)	Homologous gene	Escherichla coll K12 fecB	Schizosaccharomyces pombe			Bacillus subtilis thiD		Bacillus subtills yvgY	Bacillus subtills aziD	Bacillus subtilis aziD	Escherichia coli K12 yqgE	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus txB
	db Match	sp:FECB_ECOU	1122 SP.MRF1_SCHPO			sp:THID_BACSU		pir.F70041	sp:AZLD_BACSU	Sp:AZLC_BACSU	sp. Yage_Ecoli	sp. CCA_ECOU	pir.E70600	-	plr:F70600	pir.G70600		SP:RPSH_PSEAE	Sp.TRXB_STRCL
	ORF (bp)	957	1122	384	219	798	345	201	345	711	287	1320	996	273	2511	3249	723	803	951
	Terminal (nt)	3284399	3286576	3287005	3287079	3287393	3288609	3288885	3288971	3289311	3290025	3290623	3293497	3292810	3296007	3299404	3298428	3300263	3301321
	Initial (nt)	3285355	3285455	3286622	3287297	3288190	3288265	3288685	3289315	3290021	3290591	3291942	3292532	3292882	6913 3293497	3296156	3297706	3289661	6917 3300371
	SEQ NO SO SO		6901	8902	6903	6904	6905	9069	6907	8069	6069	6910	6911	8912		6914	6915	6916	
	SEO NO.		3401	3402	3403	3404	3405		3407	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417

5		Function		thioredoxin ch2, M-type	N-acetylmuramoyl-L-atanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosomal protein L34			L-aspartate-alpha-decarboxylase precursor	2-lsopropylmalate synthase	hypothetical protein	aspartate-semialdehyde dehydrogenase	3-dehydraquinase
15		Matched length (a.a.)		119	196			212	367	272	153	313	123	47			138	616	85	344	149
20		Similarity (%)		78.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
		Identity (%)		42.0	51.0			34.4	37.6	65.0	38.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
25 30	Table 1 (continued)	Homologous gene		Chlamydomonas reinhardtii thi2	Bacillus subtilis cwl8			Mycobacterium tuberculosis H37Rv Rv3918c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum asd	Corynebacterium glutamicum ASO19 aroD
35		db Match		Sp:THI2_CHLRE C	sp:cwlB_BACSU B			pir:D70851	Sp:YGIZ_PSEPU P	sp.YG11_PSEPU	Sp.GIDB_ECOLI	plr.A70852	SP:RNPA_BACSU E	gp:MAU19185_1 N			gp:AF116184_1	sp.LEU1_CORGL	sp.YLEU_CORGL ((sp.DHAS_CORGL	gp.AF124518_1
		ORF (bp)	1185	372	1242	777	1041	618	1152	837	698	951	398	336	294	222	408	1848	255	1032	447
45		Terminal (nt)	3300119	3301729	3302998	3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307971	3308412	3309321	3308822	147573	266154	268814	271691	446521
<i>50</i>		Initial (nt)	3301303	3301358	3301755	3302765	3303435	3303616	3304787	3305671	3306532	3307632	6928 3308369	6929 3308747	3309028	3309043	147980	268001	269068	270660	446075
		SEQ NO.	6918	6919	6920	6921	8922	6923	6924	8925	8926	6927			6930	6931	6932	6933	6934	6935	6936
55		SEQ NO.	3418	3419	3420	3421	3422	3423	3424	3425	3428	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436

	Function	elongation factor Tu	preprotein translocase secY subuff	isocitrate dehydrogenase (oxalosuccinatedecarboxylese)	acyl-CoA carboxylase or blotin- binding protein	citrale synthase	putative binding protein or peptidyl- prolyl cla-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-lysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate desuccinylase	proline transport system	arginyl-tRNA synthetase
	Matched length (a.a.)	396	440	738	591	437	118	595	428	501	463	316	369	524	250
	Similarity (%)	100.0	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13059 tuf	Corynebacterium gluternicum (Brevibacterium flavum) MJ233 secY	Corynebacterlum glutamicum ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gltA	Corynebacterium glutamicum ATCC 13032 fkbA	Corynebacterium glutamicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 orf2	Corynebacterium glutamicum ATCC 13032 lysi	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum AS019 ATCC 13059 argS
	db Match	sp:EFTU_CORGL	sp.SECY_CORGL	2214 sp:IDH_CORGL	prf.2223173A	sp.CISY_CORGL	Sp.FKBP_CORGL	sp.BETP_CORGL	sp:YLI2_CORGL	sp:LYSI_CORGL	sp.AROP_CORGL	pir.S52753	prf.2106301A	gp:CGPUTP_1	1650 sp.SYR_CORGL
	ORF (bp)	1188	1320	2214	1773	1311	354	1785	1278	1503	1389	948	1107	1572	
	Terminal (nt)	527563	570771	677831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923
	initial (nt)	526376	569452	680044	720352	877838	879278	944998	1030283	1031871	1154683	1155676	1155731	1215602	6950 1238274
	SEO NO S	6937	6938	6939	6940	6941	6942	6943	6944	6945	6946	6947	6948	6949	
	SEQ NO ONA)		3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450

										_						
5		Function	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid Isomeroreductase	3-isopropylmalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acelyigiutamate kinase	ornithine carbamoyitransferase	arginine repressor
15		Matched length (a.a.)	445	445	308	216	236	290	626	172	338	340	683	294	318	171
20		Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
		identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25	ontinued)	s gene	lutamicum 9 iysA	lutamicum 9 hom	utamicum 9 thrB	utamicum	utamicum	utamicum	glutamicum	utamicum	utamicum	utamicum	glutamicum	utamicum	utamicum	utamicum
30	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum ASO19 ATCC 13059 hom	Corynebacterium glutamicum ASO19 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium gl ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 llvN	Corynebacterium giutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium gl KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 arg8	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO19 argR
35 40		db Match	sp:DCDA_CORGL	sp:DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	Sp:ILVB_CORGL	pir.848648	plr.C48648	sp:LEU3_CORGL	prf.2014259A	sp:ARGB_CORGL	sp:OTCA_CORGL	gp:AF041436_1
		ORF (bp)	1335	1335	927	627	802	870	1878	518	1014	1020	2049	882	957	513
45		Terminal (nt)	1241263	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
50	·	Initial (nt)	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	1423217	1466491	1468565	1469528
		SEQ NO.	6951	6952	6953	6954	6955	6956	6957	6958	6989	0969	6961	6962	6963	6964
		SEQ NO.	3451	3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464

	Function	NADH dehydrogenase	phosphoribosyl-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonlum uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxylase	chorismate synthase (5- enolpyruvyishikimate-3-phosphate phospholyase)	restriction endonuclesse	sigma factor or RNA polymerase transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinate synthase	dihydrodiplcolinate reductase	L-malate dehydrogenase (acceptor)
	Matched length (a.a.)	467	87	362	452	11	919	410	832	331	295	376	301	248	200
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynebacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glutamicum AS019 aroC	Corynebacterium glutamicum ATCC 13032 cgiliR	Corynebacterium glutamicum ATCC 13869 sigB	Corynebacterium glutamicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13889 dapB	Corynebacterium glutamicum R127 mgo
	db Match	gp:CGL238250_1	gp:AF086704_1	gp:CGL007732_4	gp:CGL007732_3	gp:CGL007732_2	prf.1509267A	1230 gp.AF124600_1	plr:855225	prf.2204286D	sp:GLUB_CORGL	sp:RECA_CORGL	sp.DAPA_BRELA	sp:DAPB_CORGL	1500 gp:CGA224B46_1
	ORF (bp)	1401	281	1086	1356	231	2757	1230	1898	993	885	1128	903	744	
1	Terminal (nt)	1543154	1586465	1674123	1675268	1677049	1677387	1719669	1882385	2021846	2061504	2063989	2079281	2081191	2113864
	Initial (nt)	1544554	1588725	1675208	1676623	1677279	1680143	1720898	1880490	2020854	2080620	2065116	2080183	2081934	2115363
	SEQ NO.	6965	9969	2969	6969	6969	6970	6971	6972	6973	6974	6975	6976	6977	6978
	SEQ NO.	3465	3466	3467	3488	3469	3470	3471	3472	3473	3474	3475	3476	3477	3478

	Function	uridilyiyitransferase, uridilyiyi- ramoving enzyme	eltronen regulatory protein P-II		ammonium transporter	glutemate dehydrogenase (NADP+)	pyruvate kinase	glucokinase	alutamine synthetase		threonine synthase	ectoine/proline/glycine betains		malate synthase	isocitrate lyase	glutamate 5-kinase	cvetathionine gamma-synthese		ribonucleotide reductase	glutaredoxin
	Matched length (a.a.)	692	:	711	438	447	475	323	77.8	; \ -\	481	615	+	739	432	369	386	\dashv	148	11 (
	Similarity (%)	100.0		180.0	100.0	100.0	100.0	100.0	1	3	100.0	100.0		100.0	100.0	100.0	4_	900.0	100.0	100.0
+	Identity (%)	0.00		1000	100.0	100.0	100.0	100.0		280	100.0	99		100.0	100.0	100.0		1000	100.0	100.0
Table 1 (confinded)	Homologous gene	Corynebacterium glutamicum	ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS018 ovk	Corynebacterium glutamicum	ATCC 13032 gik	Corynepsecending glocallice ATCC 13032 glnA	Corynebacterium glutamicum	Corvnebacterium glutamicum	ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamicum	$\neg \neg$		Corynebactenum giutarriicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrd1	Corynebacterium glutamicum
	db Match		gp:CAJ10319_4	gp:CAJ10319_3	gp:CAJ10319_2	plr: S32227	Sp.KPYK_CORGL	AEABASAN 1	gp.w.decked	pri.2322244A	THEC CORGL	100	prt:2501295B	pir.140715	nir 140713		sp:PROB_CONGL	gp:AF126953_1	gp:AF112535_2	
	ORF	+	2076 g	336	1314	1341	1425	8	505	1431	,,,,	2	1845	2217	1206		110	1158	444	23
	=	(m)	2169666 2	2171751	2172154	742	888		2316582	2350259	000000	7353600	2448328	2467925			2496670	2590312	2679684	
	_	<u>E</u>	2171741	2172086	2173467			7501037	2317550	2348829		2355042	2450172	2470141			2497778	2591469	2680127	
	SEO		6979 2.	6980 2					6984	6985		9869	6987	. 800		6869	0669	6991		
	EO		479 6	480				2483	3484	3485		3486	3487		001	3489	3490	3491	2402	5 ! 6

	Function	meso-diaminopimelate D- dehydrogenase	porin or cell wall channel forming protein	acetate kinase	phosphate acetyltransferase	multidrug resistance protein or macrolide-efflux purmp or drug:proton antiporter	ATP-dependent protease regulatory subunit	prephenate dehydratase	ectoine/proline uptake protein
	Matched length (a.a.)	320	45	397	329	459	852	315	504
	identity Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum KY10755 ddh	Corynebacterium glutamicum MH20-22B porA	Corynebacterium glutamicum ATCC 13032 ackA	Corynebacterium glutamicum ATCC 13032 pta	Corynebacterium glutamicum ATCC 13032 cmr	Corynebacterium glutamicum ATCC 13032 clpB	Corynebacterium glutamicum pheA	Corynebacterium glutamicum ATCC 13032 proP
	db Match	960 SP:DDH_CORGL	gp:CGL238703_1	1191 sp.ACKA_CORGL	prt 2516394A	1377 prt.2309322A	2556 sp.CLPB_CORGL	945 prf.1210266A	1512 prf.2501295A
	08. (98)	096	135		786	1377	2556	945	1512
	Terminal (nt)	2788758	2887944	2935315	2936508	2962718	2963606	3098578	3272563
	Initial (nt)	2787715	2888078	2936505	2937494	2961342	2966161	3099522	7001 3274074
	SEO NO (e.e.)	8994	9669	9669	6997	9669	6669	7000	7001
	SEQ NO (DNA)	3494	3495	3496	3497	3498	3499	3500	3501

Exampl 2

10

20

35

Determination of ffective mutation sit

(1) Identification of mutation sit based on the comparison of the gen nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracii, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N' -nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and hysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in lysE, lysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet., 196*: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology, 6*: 1195-1204 (1992)) were each digested with *Pst*1. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters*, 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 µg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*1 site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, *hom* and *pyc*, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with *Bam*HI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by xtraction with ph n Vchl roform and precipitation with than I, and all wed

to react in the presence of Taq polymerase (manufactured by Roch Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thyrnin (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according t the method of Salto et al. (Biochem. Biophys. Acta, 72: 619 (1963)). Using the chromosomal DNA as a templat , PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated hom gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated pyc gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added

[0379] The above pCES30 T vector fragment and the mutated hom gene (1.7 kb) or mutated pyc gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 μg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30.

The plasmids thus constructed were named respectively pChom59 and pCpyc458. [0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of Ikeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded

by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 μg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 μg/ml kanamycin and 100 μg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda et al. (Microbiology, 144: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated hom or pyc genes are present closely on the chromosome, and the second homologous recombination

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene

20

25

50

replacement into the mutated type arises. [0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito et al. PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the hom gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the pyc gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the hom or pyc gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutat d hom g n and pyc gene, respectiv ly.

(3) Lysin production test f HD-1 and No. 58pyc strains

[0384] Th HD-1 strain (strain obtained by incorporating the mutati n, Val59Ala, in the horn gene int the ATCC 13032 strain) and the N . 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the pyc gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 I jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.

[0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β-alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331Ile in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

20

25

30

35

40

50

55

Reconstruction of tysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosom of the B-6 strain. Among these, a mutation, Val591Ala, in hom, a mutation, Thr311lle, in hysC, a mutation, Pro458Ser, in pyc and a mutation, Ala213Thr, in zwf were specified as effective mutations relating to the production of hysin. Breeding the reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important hysine-producing strain was carried out according to the method shown below.

(2) Construction of plasmid for gene replacement having mutated gene

20

- [0389] The plasmid for gene replacement, pChom59, having the mutated hom gene and the plasmid for gene replacement, pCpyc458, having the mutated pyc gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated hysC and zwl were produced as described below.
 - [0390] The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito *et al.* Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BiO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.
 - [0392] The above pCES30 T vector fragment and the mutated *lysC* gene (1.5 kb) or mutated *zwf* gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.
 - (3) Introduction of mutation, Thr311lie, in IysC into one point mutant HD-1
- [0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311lle, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.
 - (4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2
 - [0394] The mutation, Pro458Ser, in pyc was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated pyc gene in addition to the mutated hom gene and lysC gene.
 - (5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3
- 55 [0395] The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result if the fact that the nucleotide sequence is the PCR

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated zw/ gene in addition to the mutated hom gene, lysC gene and pyc gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 I jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

10

15

20

30

35

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/Vh)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

[0398] Since the hysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/Vh, the APZ-4 strain showing a high productivity of 3.0 g/Vh is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 l jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	3.0
40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based in 24 genes having thin ucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from thin full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence if rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

[0405] As the oligo DNA primers used for the PCR,

10

20

[0406] DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

[0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

[0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

[0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

[0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,

[0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

[0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

[0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,

[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

[0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

[0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

[0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

5 [0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

[0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

[0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

[0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

[0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

[0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

[0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

as th respective primer set.

[0431] Th PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by P rkin Elmer), TaKaRa EX-Taq (manufactured by Takara Shuz), 100 ng f the chromosomal DNA and the buffer attached t th TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/µl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

10

20

30

55

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/µl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 µl of 0.1 mol/l DTT, 1.5 µl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/l I dTTP), 1.5 μl of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μl of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 µl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 µl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 μl.

(3) Hybridization

[0433] UltraHyb (110 μl) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μl) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics). [0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table 5

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
207	5248	3240	1.62

Table 5 (continued)

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	6944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in *Corynebacterium glutamicum* (*Archives of Microbiology*, 168: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

10

15

20

25

35

45

55

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of Escherichia coli adenosine deaminase was obtained from Swiss-prot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (Proc. Natl. Acad. Sci. ISA, 85: 2444-2448 (1988)). A case where E-value was le⁻¹⁰ or less was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine dearninase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosine dearninase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

10

20

25

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was ler 10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

55

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 l jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)
ATCC 13032	0
FERM BP-7134	45
FERM BP-158	60

[0444] After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCl buffer (10 mmo/lTris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445] The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000 \times g, 15 minutes, 4°C) to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mo/l, and an equivalent amount of a lysis buffer (9.5 mo/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at 12,000 × g for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

30

40

45

55

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 μg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

step 1: 1 hour under a gradient mode of 0 to 500V;

step 2: 1 hour under a gradient mode of 500 to 1,000 V;

step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and

step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmo/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmo/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

jected to electroph resis under a constant v Itage of 30 mA at 20°C for 3 h urs to separate the proteins.

(3) Detection of prot in spot

15

25

50

[0457] Coomassie staining was performed by the method of Gorg et al. (Electrophoresis, 9: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed

[0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.

- (4) In-gel digestion of detected protein spot
- [0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μi of 100 mmol/1 ammonium bicarbonate : acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 µl of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/μl) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 µl of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation in vacuo to halve the liquid volume. To the concentrate, 20 μ l of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μ l of α -cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
- (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)
- [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for 30 mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 µmol/l bovine insulin B chain), and 1 µl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.

[0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an

N2 laser (337 nm) were used in combination.

[0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.

[0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.

[0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.

- (6) Identification of protein spot
- [0465] From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.

[0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.

- (a) Search and identification of gene encoding high-expression protein
- [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method. [0468] As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequ nce of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresp nd d t glycerald hyde-3-ph sphat d hydr genase which was

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bisphosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amine acid sequence represented by SEQ ID NO:5252.

[0469] These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 incoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).

[0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.

[0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.

(b) Search and identification of modified protein

[0472] Among the proteins derived from Corynebacterium glutamicum FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.

[0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from *Corynebacterium glutamicum* FERM BP-7134 was modified after the translation.

[0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.

(c) Search and identification of expressed protein effective in lysine production

[0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.

[0476] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.

[0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.

[0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

Claims

50

55

15

20

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) id ntifying a gene homolog us to a gene deriv d fr m a coryn form bact rium,

said method comprising:

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any on of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides.
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus
 Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 3. The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
 - 6. A polynucleotide array, comprising:

10

20

25

30

35

45

- at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.
- A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- 8. A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.
 - 14. A method f r pr ducing a polypeptide, comprising:

culturing th transformant of claim 13 in a medium to produce and accumulate a polypeptide needed by the polynucleotid of claim 8 or 9 in th medium, and recovering the polypeptide from the medium.

- 15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
 - 16. A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
 - 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
 - 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19. 25
 - 21. A polypeptide array, comprising:

10

15

20

30

35

45

- at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- 22. A polypeptide array, comprising:
- at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with th target sequence or targ t structure m tif inf rmation; and

- (iv) screening and analyzing nucleotide sequ nce information which is coincident with or analogous to the target equence r target structur motif information.
- 25. A system based in a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) Inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;

10

15

20

25

30

35

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 40 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;

- (ii) a data st ring device for at least temp rarily st ring th input information;
- (iii) a comparator that compares the at least ne amin acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amin acid sequence information for determining a function of a polypeptide having the target amin acid sequence which is coincident with ranalogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- 30. A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;

10

15

25

30

35

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001
- 20 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 32. The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
- 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- 38. A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - 40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

- 41. A p typeptid having pyruvate carboxylase activity, comprising an amin acid sequence in which the Pr residue at the 458th position in the amino acid sequence if pyruvate carboxylase derived from a conyneform bacterium is replaced with an amin acid residue other than a Pro residue.
- 42. A polypeptide comprising an amino acid sequence in which the Pr residu at th 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 46. A recombinant DNA comprising the DNA of claim 45.

10

20

30

35

40

55

- A transformant comprising the recombinant DNA of claim 46.
- 48. A transformant comprising in its chromosome the DNA of claim 45.
- 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
- 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 25 51. A method for producing L-lysine, comprising:

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

- 52. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 54. The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) d leting a mutati n point from a corynef rm bact rium having the mutation point; and

- (iv) examining productivity by the f rmentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 56. The method according to claim 55, wherein the gene is a gen encoding an enzym in a biosynthetic pathway or a signal transmission pathway.
 - 57. The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ 10 ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431; (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission
 - pathway: (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a co-
 - ryneform bacterium; (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59. 35
 - 61. The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, 40 Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium liium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - 63. A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof; recovering the compound from the culture.
 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

15

20

25

45

50

a protein derived from a bacterium fapr duction strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process s as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an rganic acid, and analogues thereof, and a protein derived from a bacterium f a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis;

10

20

25

30

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus 15 corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Conynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

FIG. 4

, e,