Lec 9 CS241

Graham Cooper

June 3rd, 2015

Regular Languages

built from:

- finite languages
- union
- concatenation
- \bullet repetition
- Union of two languages:

$$L_1 \cup L_2 = \{x | x \in L_1 or x \in L_2\}$$

- Concatenation of two languages:
$$L_1 \cdot L_2 = \{xy | x \in L_1, y \in L_2\}$$
 eg: $L_1 = \{dog, cat\}$ $L_2 = \{fish, \epsilon\}$ $L_1L_2 = \{dogfish, dog, catfish, cat\}$

- Repetition:
$$L^* = \{\epsilon\} \cup \{xy|x \in L^*, y \in L\}$$

$$= \{\epsilon\} \cup L \cup LL \cup LLL \cup$$

= 0 or more occurrences of a word in L

EG: L = {a,b}

$$L^* = \{\epsilon, a, b, aa, ab, bb, ba, aaa, aab, abb, ...\}$$

Show: $\{2^{2n}b|n \geq 0\}$ is regular
 $(\{aa\})^* \cdot \{b\}$

Shorthand - regular expression.

Language	Regular Expression	name	
{}	Ø	empty language	-
$\{\epsilon\}$	ϵ	language consisting of the empty word	
$\{aaa\}$	aaa	singleton language	ie:
$L_1 \cup L_2$	$L_1 L_2$	alternation (union)	
L_1L_2	L_1L_2	concatenation	
L^*	L*	repetition	
$\{a^{2n}b n\geq 0\}=(aa)*b$			

Is C regular?

A C program is a sequence of tokens.

A C program is a sequence of tokens, each of which comes from a regular language. $C \subseteq \{validctokens\}^*$ maybe.

How can we recognize an arbitrary regular languae automatically?

Eg.
$$\{a^{2n}b|n \ge 0\} = (aa)^*b$$

Can we harness what we learned about finite languages?

- Yes if we allow loops in the diagram

$$\begin{array}{c} \operatorname{start} \overset{a}{\underset{a}{\rightleftarrows}} \operatorname{state} \\ \downarrow \\ b \\ \operatorname{finished state} \end{array}$$

Set of MIPS labels

start $\stackrel{a-z|A-Z}{\rightarrow}$ state(loops with a-z|A-Z |0-9) $\stackrel{:}{\rightarrow}$ finished state

Deterministic Finite Automata

These "machines" (state diagrams) are called Deterministic Finite Automata (DFAs)

- always start at the start state
- for each character in the input, follow the corresponding arc to the next state
- if on an accepting state when the input is exhuasted, you accept, else you reject.

What if there is no transition? start $\stackrel{a}{\underset{a}{\rightleftarrows}}$ state \downarrow_b finished state

If you exit at the middle (not finished or start) state, you fall off the machine and are rejected.

How to reject:

- you fall off of the machine
- you are not in an accepting state at end of input

More formally:

There is an implicit "error state", all unlabeled transitions go to this error state.

Example: Strings over {a,b} wit han even number of a's and an odd number of b's

 \rightarrow start state $\stackrel{b}{\rightarrow}$ accept state $\downarrow \uparrow \atop a \, a$

mid state $\stackrel{b}{\rightleftharpoons}$ midstate (odd a, odd b) (this goes up to the accept state back and forth with a's)

Formal Definition of a DFA

A DFA is a 5-tuple $(\Sigma, Q, q_0, A, \delta)$

- Σ is a finite, non-empty set (alphabet)
- Q is a finite non-empty set (states)
- $q_0 \in Q$ (start state)
- $A \subseteq Q$ (accepting states)

• δ takes $q \times \Sigma \to Q$ (transition function: maps state + input character to next state)

 δ consumes one character, can extend δ to a function that consumes an entire word:

Definition:

$$\begin{split} \delta^*(q,\epsilon) &= q \\ \delta^*(q,cw) &= qc \end{split}$$

We say a DFA(
$$\Sigma, Q, q_0, A, \delta$$
) accepts a word w if: $\delta^*(q_0, w) \in A$

If M is a DFA, we denote by L(M) ("The language of M"), the set of all strings accepted by M $L(M) = \{w \mid M \text{ accepts } w\}$

Theorem: Kleene

L is regular iff L = L(M) for some DFA M. (The regular languages are the languages accepted by DFA's.)