Fonctions harmoniques

Soit U un ouvert non vide de \mathbb{R}^2 .

On note $\mathcal{C}^2(U,\mathbb{R})$ l'ensemble des fonctions réelles de classe \mathcal{C}^2 définies sur U .

Une fonction $f:U\to\mathbb{R}$ est dite harmonique ssi celle-ci est de classe \mathcal{C}^2 et solution sur U de l'équation aux dérivées partielles : $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$. On note H(U) l'ensemble de ces fonctions.

Partie I-Généralités

- 1. Montrer que H(U) est un sous-espace vectoriel de $\mathcal{C}^2(U,\mathbb{R})$.
- 2. Premiers exemples
- 2.a Déterminer une condition nécessaire et suffisante portant sur $a,b,c \in \mathbb{R}$ pour que l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = ax^2 + bxy + cy^2$ soit harmonique sur \mathbb{R}^2 .
- 2.b Montrer que $f:(x,y) \mapsto \arctan(y/x)$ est harmonique sur $U = \mathbb{R}^{+*} \times \mathbb{R}$.
- 3. Soit $f:U \to \mathbb{R}$
- 3.a Montrer que si f est harmonique et de classe \mathcal{C}^3 alors $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont, elles aussi, harmoniques.
- 3.b En déduire que si f est harmonique de classe C^{n+2} (avec $n \in \mathbb{N}$), alors ses dérivées partielles jusqu'à l'ordre n sont harmoniques.
- 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par $g(r,\theta) = f(r\cos\theta, r\sin\theta)$.
- 4.a Montrer g est une fonction de classe C^2
- 4.b Etablir que si f est harmonique alors $\forall (r,\theta) \in \mathbb{R}^2, r^2 \frac{\partial^2 g}{\partial r^2}(r,\theta) + \frac{\partial^2 g}{\partial \theta^2}(r,\theta) + r \frac{\partial g}{\partial r}(r,\theta) = 0$

Partie II – Exemples de fonctions harmoniques sur \mathbb{R}^2

Les questions 1,2 et 3 sont indépendantes.

- 1. Fonctions harmoniques à variables séparables

 Une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 est dite à variables séparables ssi il existe deux fonctions $\varphi: \mathbb{R} \to \mathbb{R}$ et $\psi: \mathbb{R} \to \mathbb{R}$ de classe C^2 telles que : $\forall (x,y) \in \mathbb{R}^2, f(x,y) = \varphi(x)\psi(y).$
- 1.a On considère f une fonction harmonique non nulle de la forme ci-dessus. Montrer qu'il existe $k \in \mathbb{R}$ telle que φ et ψ soit respectivement solutions des équations différentielles : $E_k: z''(t) + k.z(t) = 0$ et $E_{-k}: z''(t) k.z(t) = 0$.
- 1.b Résoudre, selon le signe de $k \in \mathbb{R}$, l'équation E_k .
- 1.c On exige de plus que f(0,0) = 1 et $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Donner, en fonction k, l'expression de f(x,y).
- 2. Fonctions harmoniques radiales
 Une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 est dite radiale ssi il existe $g: \mathbb{R}^+ \to \mathbb{R}$ de classe C^2 telle que : $\forall x, y \in \mathbb{R}^2, f(x,y) = g(x^2 + y^2)$.
- 2.a On considère f une fonction harmonique de la forme ci-dessus. Montrer que g est solution sur \mathbb{R}^+ de l'équation différentielle tz''(t)+z'(t)=0.
- 2.b Résoudre cette équation différentielle sur \mathbb{R}^{+*} .

- 2.c Quelles sont les fonctions harmoniques sur \mathbb{R}^2 radiales ?
- 3. Fonctions harmoniques à variables polaires séparables

Une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^2 est dite à variables polaires séparables ssi il existe deux fonctions $u: \mathbb{R}^+ \to \mathbb{R}$ et $v: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^2 telle que:

$$\forall (r,\theta) \in \mathbb{R}^+ \times \mathbb{R}, f(r\cos\theta, r\sin\theta) = u(r)v(\theta).$$

3.a On considère f une fonction non nulle de la forme ci-dessus.

Montrer que l'application v est 2π périodique.

3.b On suppose de plus que f est harmonique.

En exploitant I.4.b, établir l'existence d'une constante $k \in \mathbb{R}$ telle que :

u est solution sur \mathbb{R}^{+*} de l'équation différentielle $E_r: r^2z''(r) + rz'(r) - kz(r) = 0$

et v solution sur \mathbb{R} de l'équation différentielle : $F_{\theta}: z''(\theta) + kz(\theta) = 0$.

3.c On suppose dans cette question que k = 0.

Résoudre F_{θ} sur \mathbb{R} . Quelles sont les solutions 2π périodiques ?

Résoudre E_r sur \mathbb{R}^{+*} . Quelles sont les solutions se prolongeant pas continuité en 0?

3.d On suppose désormais $k \neq 0$.

Etablir une condition nécessaire et suffisante sur $k \in \mathbb{R}^*$ pour que l'équation F_{θ} possède une solution 2π périodique non nulle.

On suppose désormais que cette condition est remplie et on pose $n = \sqrt{k}$.

- 3.e Résoudre F_{θ} .
- 3.f Résoudre E_r sur E^{+*} en réalisant le changement de variable $r = e^t$.

Parmi les solutions, lesquelles peuvent être prolongées par continuité en 0 ?

Partie III – Propriétés de la moyenne et principe du maximum

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction harmonique.

1.a Justifier qu'il existe une fonction $g: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^2 telle que :

$$\frac{\partial g}{\partial x} = -\frac{\partial f}{\partial y}$$
 et $\frac{\partial g}{\partial y} = \frac{\partial f}{\partial x}$.

- 1.b Montrer que g est harmonique.
- 2. Soit $a = (x_0, y_0) \in U$ et R > 0. On note D(a, r) le disque de centre a et de rayon R.

On définit deux applications \tilde{f} et \tilde{g} de \mathbb{R}^2 vers \mathbb{R} par :

 $\forall r \in \mathbb{R}, \forall \theta \in \mathbb{R}, \tilde{f}(r,\theta) = f(x_0 + r\cos\theta, y_0 + r\sin\theta) \text{ et } \tilde{g}(r,\theta) = g(x_0 + r\cos\theta, y_0 + r\sin\theta).$

- 2.a Justifier que \tilde{f} et \tilde{g} sont de classe C^1 sur \mathbb{R}^2 .
- 2.b Etablir que $r \frac{\partial \tilde{f}}{\partial r}(r,\theta) = \frac{\partial \tilde{g}}{\partial \theta}(r,\theta)$ pour tout $(r,\theta) \in \mathbb{R}$.
- 3. Pour tout $r \in \mathbb{R}$ on pose $\varphi(r) = \int_0^{2\pi} \tilde{f}(r,\theta) d\theta$.

On admet que φ est de classe \mathcal{C}^1 sur \mathbb{R} et que $\varphi'(r) = \int_0^{2\pi} \frac{\partial \tilde{f}}{\partial r}(r,\theta) d\theta$.

- 3.a Montrer que φ est une fonction constante et préciser sa valeur.
- 3.b En déduire que $f(a) = \frac{1}{\pi R^2} \iint_{D(a,R)} f(x,y) dxdy$.

Ainsi la valeur de f en a est égale à la moyenne de f sur tout disque de centre a.

4. On suppose que f admet un extremum en a.

Montrer que f est alors constante sur \mathbb{R}^2 .

Ce résultat est connu sous le nom de principe du maximum.