1-1 Comparison of running times

For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

	1	1 1	1	1	1	1	1
	second	minute	hour	day	month	year	century
$\lg n$	8	8	8	8	8	8	
\sqrt{n}	10 ⁴²	3.6.1015	1.3·10 ¹⁹	3.47.10 ²¹	6.91.1029	7,95.10	9.95.1030
n	106	6-107	3.6.109	S.64.1010	2.63 - 1012	3.16.1013	3.16.1015
$n \lg n$	62748	5.8.10 ⁶	1.33.108	2.76.109	7.29.1010	7.99.1011	6.87.1013
n^2	1000	7746(gray)	60000	593939	1.62.106	5.62.106	5.61.107
n^3	100	391 (07,00)	1532	4420	13803	31601	146679
2 ⁿ	50(200x)	26 (aprox)	32	36	41	44	51
n!	9	11	12	13	15	16	17

There is a cade colled "grothen" that solve in for each row, and calculate the values.