Übung 12

Ausgabe: 08.07.2014, Abgabe: 15.07.2014, Besprechung: 17./18.07.2014

12.1 Wasserstomatom im Magnetfeld

Das Elektron im H-Atom befinde sich in dem Eigenzustand $|n l m_l m_s\rangle$ mit dem Energieeigenwert E_n .

- 1. Wie ändern sich Eigenzustand und Eigenwert, wenn man ein konstantes Magnetfeld B in z-Richtung anlegt? Spin-Bahn-Wechselwirkung und diamagnetische Anteile sollen unberücksichtigt bleiben.
- 2. Wie hoch sind die Entartungsgrade vor und nach dem Einschalten des Feldes?

12.2 Zylindersymmetrisches Potential

Es sei ein Teilchen ohne Spin in einem zylindersymmetrischen Potential $V(\rho)$ gegeben. Die Zylinderkoordinaten (ρ, φ, z) sind definiert über $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, wobei $\rho \ge 0$ und $0 \le \varphi < 2\pi$.

In Zylinderkoordinaten gilt weiterhin für den Laplace-Operator:

$$\begin{split} \vec{\nabla}^2 &= \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2} \\ &\equiv -\frac{1}{\hbar^2} \Big(\hat{p}_\rho^2 + \hat{p}_z^2 + \frac{1}{\rho^2} \hat{L}_z^2 \Big), \, \hat{L}_z = -i\hbar \frac{\partial}{\partial \varphi} \,. \end{split}$$

1. Zeigen Sie, dass der entsprechende Hamiltonoperator $\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{\rho})$ mit \hat{L}_z und \hat{p}_z vertauscht. Begründen Sie damit den Ansatz

$$\Phi_{nmk}(\rho, \varphi, z) = f_{nm}(\rho) e^{im\varphi} e^{ikz}$$

für die stationären Zustände des Teilchens. Welche Werte nehmen m und k an?

- 2. Leiten Sie aus der Eigenwertgleichung $\hat{H}\Phi = E\Phi$ eine Differentialgleichung für $f_{nm}(\rho)$ her.
- 3. Sei $\hat{\Sigma}_y$ der Operator, der in der Ortsdarstellung einer Spiegelung an der xz-Ebene entspricht. Kommutieren die Operatoren $\hat{\Sigma}_y$ und \hat{H} ? Zeigen Sie, dass $\hat{\Sigma}_y$ und \hat{L}_z antikommutieren, und dass der Zustand $\hat{\Sigma}_y |\Phi_{nmk}\rangle$ ein Eigenvektor von \hat{L}_z ist. Welches ist der entsprechende Eigenwert?

12.3 Virialtheorem für den sphärischen, harmonischen Oszillator

Betrachten Sie den sphärischen, harmonischen Oszillator mit dem Hamiltonoperator

$$\hat{H} = \frac{\hat{\mathbf{p}}^2}{2m} + \frac{1}{2}m\omega\hat{r}^2 \tag{1}$$

- 1. Berechnen Sie den Kommutator $\frac{i}{\hbar}[H, \hat{\mathbf{r}} \cdot \hat{\mathbf{p}}]$
- 2. Zeigen Sie, dass $\langle \Psi | [H, \hat{\mathbf{r}} \cdot \hat{\mathbf{p}}] | \Psi \rangle = 0$ für einen Eigenzustand $|\Psi \rangle$ des Hamiltonian gilt.
- 3. $\langle T \rangle = \langle \Psi | T | \Psi \rangle$ und $\langle V \rangle = \langle \Psi | V | \Psi \rangle$ seien die Erwartungswerte der kinetischen Energie T und der potentiellen Energie V. Zeigen Sie das sogenannte 'Virialtheorem'

$$\langle T \rangle - \langle V \rangle = 0 \tag{2}$$