Contents of Volume 3

	napter 1. 1ree Languages	
Fe	renc Gécseg and Magnus Steinby	1
1.	Introduction	1
2.	Trees and terms	2
3.	Algebraic preliminaries	5
4.	Term rewriting systems	8
5.	Finite tree recognizers	9
6.	Regular tree grammars	14
7.	Tree language operations and closure properties of Rec	15
8.	Local tree languages	19
9.	A Kleene theorem for tree languages	20
10.	. Regular tree systems	22
11.	. Algebraic characterizations of recognizability	24
12.	. Monadic second-order logic and regular tree languages	27
13.	. Families of special regular tree languages	29
14.	The yield-function and context-free languages	31
15.	. Context-free tree grammars and pushdown tree recognizers	35
16.	Tree transformations and tree transducers	38
17.	. Composition and decomposition of tree transformations	42
18.	Tree transducers with regular look-ahead	43
19.	. Generalized syntax directed translations	44
	. Surface tree languages	45
21.	. The hierarchies of surface tree languages and transformational	
	languages	49
22.	. Some further topics	56
Re	ferences	61
Ch	apter 2. Tree-Adjoining Grammars	
Ar	ravind K. Joshi and Yves Schabes	69
1.	Introduction	69
2.	Tree-adjoining grammars	70
	2.1 Adjoining constraints	72
	2.2 Derivation in TAG	74
	2.3 Some properties of the string languages and tree sets	76
3.	Lexicalized grammars	79
4.	'Lexicalization' of CFGs	81
	4.1 Substitution and lexicalization of CFGs	82
	4.2 Lexicalization of CFGs with TAGs	86

J.	Closure of TAGs under lexicalization	89
6.	Summary of lexicalization	90
7.	Embedded push-down automaton (EPDA)	91
	7.1 Crossed dependencies	
8.	Linguistic relevance	95
9.		
	9.1 Feature structure based TAGs	101
	9.2 Synchronous TAGs	
	9.3 Probabilistic LTAGs	
	9.4 Using description trees in TAG	102
	9.5 Muti-component TAGs (MCTAG)	102
10	. Parsing lexicalized tree-adjoining grammars (LTAG)	102
	10.1 Left to right parsing of TAGs	103
	10.2 The algorithm	111
	10.3 An example	111
	10.4 Implementation	114
	10.5 Complexity	114
	10.6 The parser	115
	10.7 Parsing substitution	115
	10.8 The valid prefix property and parsing of tree-adjoining	
	grammar	116
	. Summary	
Re	eferences	120
Cl	napter 3. Context-Free Graph Grammars	
	oost Engelfriet	195
<i>Jo</i> 1.	Introduction	
2.	Node and edge replacement	
2. 3.	Hyperedge replacement grammars	
ა.	3.1 Definitions and examples	
	3.2 Normal forms	
	3.2 Normal forms	152
1	3.3 Subclasses	152 157
4.	3.3 Subclasses	152 157 165
4.	3.3 SubclassesNode replacement grammars4.1 Definitions and examples	152 157 165 165
4.	3.3 Subclasses Node replacement grammars 4.1 Definitions and examples 4.2 Subclasses and normal forms	152 157 165 165 177
	3.3 Subclasses Node replacement grammars 4.1 Definitions and examples 4.2 Subclasses and normal forms 4.3 Comparison of HR and NR	152 157 165 165 177 181
5.	3.3 Subclasses Node replacement grammars 4.1 Definitions and examples 4.2 Subclasses and normal forms 4.3 Comparison of HR and NR Monadic second order logic	152 157 165 165 177 181 188
5. 6.	3.3 Subclasses Node replacement grammars 4.1 Definitions and examples 4.2 Subclasses and normal forms 4.3 Comparison of HR and NR Monadic second order logic Graph grammars generating strings and trees	152 157 165 165 177 181 188 196
5. 6. 7.	3.3 Subclasses Node replacement grammars 4.1 Definitions and examples 4.2 Subclasses and normal forms 4.3 Comparison of HR and NR Monadic second order logic Graph grammars generating strings and trees Tree grammars generating graphs	152 157 165 165 177 181 188 196 202
5. 6. 7.	3.3 Subclasses Node replacement grammars 4.1 Definitions and examples 4.2 Subclasses and normal forms 4.3 Comparison of HR and NR Monadic second order logic Graph grammars generating strings and trees	152 157 165 165 177 181 188 196 202
5. 6. 7. Re	3.3 Subclasses Node replacement grammars 4.1 Definitions and examples 4.2 Subclasses and normal forms 4.3 Comparison of HR and NR Monadic second order logic Graph grammars generating strings and trees Tree grammars generating graphs efferences napter 4. Two-Dimensional Languages	152 157 165 165 177 181 188 196 202 208
5. 6. 7. Re	3.3 Subclasses Node replacement grammars 4.1 Definitions and examples 4.2 Subclasses and normal forms 4.3 Comparison of HR and NR Monadic second order logic Graph grammars generating strings and trees Tree grammars generating graphs efferences	152 157 165 165 177 181 188 196 202 208
5. 6. 7. Re Ch Do	3.3 Subclasses Node replacement grammars 4.1 Definitions and examples 4.2 Subclasses and normal forms 4.3 Comparison of HR and NR Monadic second order logic Graph grammars generating strings and trees Tree grammars generating graphs efferences napter 4. Two-Dimensional Languages ora Giammarresi and Antonio Restivo Introduction	152 157 165 165 177 181 188 196 202 208 215 215
5. 6. 7. Re Ch De 1. 2.	3.3 Subclasses Node replacement grammars 4.1 Definitions and examples 4.2 Subclasses and normal forms 4.3 Comparison of HR and NR Monadic second order logic Graph grammars generating strings and trees Tree grammars generating graphs eferences napter 4. Two-Dimensional Languages ora Giammarresi and Antonio Restivo	152 157 165 165 177 181 188 196 202 208 215 215 218

xi

4.	Languages and ω -languages	368
	4.1 ω -Kleene closure	368
	4.2 ω -power languages	370
	4.3 a-transducers, gsm-mappings, and ω -transductions	372
	4.4 Limit-closure	375
5.	Wagner's hierarchy	378
	5.1 Wagner classes	378
	5.2 gsm-reducibility	381
$R\epsilon$	eferences	383
Ch	napter 7. Languages, Automata, and Logic	
	Volfgang Thomas	389
1.		
2.		
	2.1 Words, trees, and graphs as models	
	2.2 First-order logic	
	2.3 Monadic second-order logic	
3.	<u> </u>	
٠.	3.1 MSO-logic on words	
	3.2 MSO-logic on traces and trees	
4.		
	4.1 The Ehrenfeucht–Fraïssé game	
	4.2 Locally threshold testable sets	
	4.3 Star-free languages	
5.		
0.	5.1ω -automata	
	5.2 Determinization of ω -automata	
	5.3 Applications to definability and decision problems	
6.		
0.	6.1 Automata on infinite trees	
	6.2 Determinacy and complementation	
	6.3 Applications to decision problems of MSO-logic	
D.	eferences	
		449
	napter 8. Partial Commutation and Traces	
	olker Diekert and Yves Métivier	
	Introduction	
2.	Free partially commutative monoids	
	2.1 First definitions and basic properties	
	2.2 Projection techniques and Levi's lemma	
	2.3 Normal forms	
	2.4 A simple algorithm to compute normal forms	
	2.5 Möbius functions and normal forms	
	2.6 Bibliographical remarks	
3.	1 1	
	3.1 Equations	
	3.2 Strong homomorphisms and codings	473

	3.3	Trace codes	476
	3.4	Bibliographical remarks	477
4.	Rec	ognizable trace languages	478
	4.1	Basic facts about recognizable and rational sets	478
	4.2	Recognizability and rational operations	
	4.3	The rank	
	4.4	Recognizability and the lexicographic normal form	
	4.5	The star problem and the finite power property	
	4.6	An algorithm to compute closures	
	4.7	Bibliographical remarks	
5.		ional trace languages	
٠.		Unambiguous languages	
	5.2	Decidability results	
		Bibliographical remarks	
6.		pendence graphs and logic	
0.		Dependence graphs	
		Traces and logic	
		Ehrenfeucht-Fraïssé games	
		Bibliographical remarks	
7		nchronous automata	
7.	7.1	Zielonka's theorem	
	7.2	Asynchronous cellular automata	
	7.3	Changing concurrent-read to exclusive-read	
	7.4	Changing exclusive-write to owner-write	
	7.5	The construction for triangulated dependence alphabets	
	7.6	Bounded time-stamps in a distributed system	
0	7.7	Bibliographical remarks	
8.		nite traces	
	8.1	Real traces	
	8.2	Asynchronous Büchi and Muller automata	
	8.3	Complex traces	
	8.4	Topological properties and the domain of δ -traces	
_	8.5	Bibliographical remarks and further reading	
Re	ferer	ices	527
Ch	ante	r 9. Visual Models of Plant Development	
	-	yslaw Prusinkiewicz, Mark Hammel,	
1 /		Hanan, and Radomír Měch	535
1		oduction	535
2.		relopmental models of plant architecture	
۷.	2.1	The modular structure of plants	
	2.1	Plant development as a rewriting process	
3.		mal description of branching structures	
J.	3.1	Axial trees and bracketed strings	
	3.2	The bracketed string notation	
		The turtle interpretation of bracketed strings	
	0.0	THE BUILDE HIGH DICTARION OF DISCRETCH SUMMES	944

4.	Fun	damentals of modeling using L-systems	546
	4.1	Parametric D0L-systems	546
	4.2	Examples of parametric D0L-system models	548
		4.2.1 Fractal generation	549
		4.2.2 Simulation of development	
		4.2.3 Exploration of parameter space	550
		4.2.4 Modeling mesotonic and acrotonic structures	552
5.	Ran	ndom factors in development	554
	5.1	The role of randomness in the description of development	554
	5.2	Stochastic 0L-systems	554
	5.3	A stochastic tree model	556
6.	Life	e, death, and reproduction	
	6.1	Non-propagating L-systems	
	6.2	L-systems with a cut symbol	559
	6.3	Fragmentation	560
7.	Dev	relopment controlled by endogenous mechanisms	
	7.1	Information flow in growing plants	
	7.2	Context-sensitive L-systems	
	7.3	Examples	
		7.3.1 Development of a mesotonic structure	
		7.3.2 Attack of a plant by an insect	
		7.3.3 Development controlled by resource allocation	
8.		relopment controlled by exogenous mechanisms	
		Plants and their environment	
		Environmentally-sensitive L-systems	
	8.3	Examples	
		8.3.1 A deterministic model of plant response to pruning \dots	
		8.3.2 A stochastic model of tree response to pruning	
		8.3.3 Plant climbing	
		8.3.4 Directional cues in development	
		nclusions	
		nowledgements	
Re	ferer	nces	591
Ch	.apte	er 10. Digital Images and Formal Languages	
Ka		Culik II and Jarkko Kari	
1.		oduction	
2.		ck and white images and finite automata	
3.		yscale images and WFA	
4.		ghted finite transducers	
5.		imples of WFT	
Re	ferer	nces	615
In	dex		617

Authors' Addresses

Karel Culik II

Department of Computer Science, University of South Carolina Columbia, SC 29208, U.S.A. culik@cs.scarolina.edu

Volker Diekert

Institut für Informatik, Universität Stuttgart Breitwiesenstraße 20-22, D-70565 Stuttgart, Germany diekert@informatik.uni-stuttgart.de

Joost Engelfriet

Department of Computer Science, Leiden University P.O. Box 9512, NL-2300 RA Leiden, The Netherlands engelfri@wi.leidenuniv.nl

Ferenc Gécseg

Department of Informatics, József Attila University Aradi vértanuk tere 1, H-6720 Szeged, Hungary gecseg@inf.u-szeged.hu

Dora Giammarresi

Dipartimento di Matematica, Applicata e Informatica, Università Cu' Foscari di Venezia Via Torino 155, I-30173 Venezia Mestre, Italy dora@dsi.unive.it

Mark Hammel

Department of Computer Science, The University of Calgary 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada hammel@cpsc.ucalgary.ca

Jim Hanan

Cooperative Research Centre for Tropical Pest Management CSIRO Long Pocket Laboratories Private Bag # 3, Indooroopilly, Queensland, Australia 4068 jim@ctpm.uq.edu.au

Matthias Jantzen

Fachbereich Informatik, Universität Hamburg Vogt-Kölln-Straße 30, D-22527 Hamburg, Germany jantzen@informatik.uni-hamburg.de

Aravind K. Joshi

Department of Computer and Information Science and The Institute for Research in Cognitive Science The Moore School of Electronical Engineering, University of Pennsylvania Philadelphia, PA 19104, U.S.A. joshi@linc.cis.upenn.edu

Jarkko Kari

Department of Computer Science, University of Iowa 101E MacLean Hall, Iowa City, IA 52242-1419, U.S.A. jįkari@cs.uiowa.edu

Radomír Měch

Department of Computer Science, The University of Calgary 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada mech@cpsc.ucalgary.ca

Yves Métivier

laBRI, Université de Bordeaux I, ENSERB 351 cours de la Libération, F-33405 Talence, France metivier@labri.u-bordeaux.fr

Przemyslaw Prusinkiewicz

Department of Computer Science, The University of Calgary 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada pwp@cpsc.ucalgary.ca

Antonio Restivo

Dipartimento di Matematica ed Applicazioni, Università di Palermo Via Archirafi 34, I-90123 Palermo, Italy restivo@altair.math.unipa.it

Yves Schabes

Mitsubishi Electric Research Laboratories, Cambridge Research Center 201 Broadway, Cambridge, MA 02139, U.S.A. schabes@merl.com

Ludwig Staiger

Institut für Informatik der Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Straße 1, D-06099 Halle (Saale), Germany staiger@informatik.uni-halle.de

Magnus Steinby

Department of Mathematics, University of Turku FIN-0014 Turku, Finland steinby@sara.utu.fi

Wolfgang Thomas

Institut für Informatik und Praktische Mathematik, Universität Kiel Olshausenstraße 40, D-24098 Kiel, Germany wt@informatik.uni-kiel.de