Preliminaries

- Let A be a nonempty set. A binary relation on a set A is a subset R of Ax A and we
 write a~b if (a,b)∈ R.
- The relation ~ on A is said to be:
 - (a) reflexive if a^a , for all $a \in A$,
 - (b) symmetric if a \sim b implies b \sim a for all a, b \in A,
 - (c) transitive if a \sim b and b \sim c implies a \sim c for all a, b, c \in A.
- If \sim defines an equivalence relation on A, then the equivalence class of a \in A is defined to be $\{x \in A \mid x \approx a\}$. Elements of the equivalence class of a are said to be equivalent to a. If C is an equivalence class, any element of C is called a representative of the class C.

Let A be a nonempty set.

- (1) If ~ defines an equivalence relation on A then the set of equivalence classes of ~ form a partition of A.
- (2) If $\{A_i | I \in I\}$ is a partition of A then there is an equivalence relation on A whose equivalence classes are precisely the sets A_i , is I.

Let n be a fixed positive integer. Define a relation on Z by a ~b if and only if n I(b- a).

Clearly a~ a, and a ~ b implies b ~ a for any integers a and b, so this relation is trivially reflexive and symmetric. If a~ b and b ~ c then n divides a – b and n divides b - c so n also divides the sum of these two integers, i.e., n divides (a -b) + (b-c) = a - c, so a~ c and the relation is transitive. Hence this is an equivalence relation.

Write $a \equiv b \pmod{n}$ (read: a is congruent to b mod n) if $a \sim b$.

For any k E Z we shall denote the equivalence class of a by \overline{a} . this is called the congruence class or residue class of a mod n and consists of the integers which differ from a by an integral multiple of n, i.e.,

```
a = \{a + kn \mid k \in Z\}
=\{a, a \pm n, a \pm 2n, a \pm 3n, \ldots\}.
```

There are precisely n distinct equivalence classes mod n, namely $\overline{0}, \overline{1},...,\overline{(n-1)}$ determined by the possible remainders after division by n and these residue classes partition the integers Z. The set of equivalence classes under this equivalence relation will be denoted by Z/nZ and called the integers modulo n (or the integers mod n).

$$\overline{a} + \overline{b} = \overline{a+b}$$
 and $\overline{a}.\overline{b} = \overline{a.b}$

Basic Definitions:

- (1) A binary operation * on a set G is a function * : $G \times G \rightarrow G$. For any a, b $\in G$ we shall write a*b for *(a, b).
- (2) A binary operation * on a set G is associative if for all a, b, $c \in G$ we have a * (b * c) = (a * b) * c.
- (3) If * is a binary operation on a set G we say elements a and b of G commute if a * b = b * a. We say * (or G) is commutative if for all $a, b \in G$, a * b = b * a.

Examples:

- (1) + (usual addition) is a commutative binary operation on Z (or on Q, R, or C respectively).
- (2) x (usual multiplication) is a commutative binary operation on Z (or on Q, R, or C respectively).
- (3) (usual subtraction) is a non-commutative binary operation on Z, where -
- (a, b) = a b. The map $a \rightarrow -a$ is not a binary operation (not binary).

Suppose that * is a binary operation on a set G and H is a subset of G. If the restriction of * to H is a binary operation on H, i.e., for all a, b \in H, a * b E H, then H is said to be closed under *.

Definition.

- (1) A group is an ordered pair (G, *) where G is a set and * is a binary operation on G satisfying the following axioms:
- (i) (a * b) * c = a * (b * c), for all a, b, c E G, i.e., * is associative,
- (ii) there exists an element e in G, called an identity of G, such that for all a \in G we have a * e = e * a = a,
- (iii) for each a ϵG there is an element a^{-1} of G, called an inverse of a, such that a * $a^{-1} = a^{-1} * a = e$.
- (2) The group (G , *) is called abelian (or commutative) if a * b = b * a for all a, b \in G .

→ we say G is a finite group if in addition G is a finite set.

Examples

- (1) Z,Q,R and C are groups under + with e = 0 and $a^{-1} = -a$, for all a.
- (2) Q $\{0\}$, R $\{0\}$, C $\{0\}$, Q+, R+ are groups under x with e = 1 and $a^{-1}=(1/a)$
- (3) For $n \in z+$, Z/nZ is an abelian group under the operation + of addition of residue classes. The identity in this group is the element $\overline{0}$ and for each $\overline{a} \in Z/nZ$, the inverse of \overline{a} is $\overline{-a}$.

If (A, *) and (B, <>) are groups, we can form a new group A x B, called their direct product, whose elements are those in the Cartesian product

$$A \times B = \{ (a, b) \mid a \in A, b \in B \}$$

and whose operation is defined component wise:

$$(a_1, b_1) (a_2, b_2) = (a_1 * a_2, b_1 <> b_2)$$

Proposition 1. If G is a group under the operation * , then

- (1) the identity of G is unique
- (2) for each $a \in G$, a^{-1} is uniquely determined
- (3) $(a^{-1})^{-1} = a$ for all $a \in G$
- (4) $(a * b)^{-1} = (b^{-1}) * (a^{-1})$
- (5) for any a_1 , a_2 , ..., $a_n \in G$ the value of $a_1 * a_2 * \cdots * a_n$ is independent of how the expression is bracketed (this is called the generalized associative law).

Proof: (1) If f and g are both identities, then by axiom (ii) of the definition of a group f * g = f (take a = f and e = g). By the same axiom f * g = g (take a = g and e = f). Thus f = g, and the identity is unique.

(2) Assume b and c are both inverses of a and let e be the identity of ${\sf G}$. By axiom

(3) To show $(a^{-1})^{-1} = a$ is exactly the problem of showing a is the inverse of a^{-1} (since by part (2) a has a unique inverse). Reading the definition of a^{-1} , with the roles of a and a^{-1} mentally interchanged shows that a satisfies the defining property for the

inverse of a⁻¹, hence a is the inverse of a⁻¹.

(4) Let $c = (a * b)^{-1}$ so by definition of c, (a * b) * c = e. By the associative law a * (b * c) = e.

Multiply both sides on the left by a⁻¹ to get

$$a^{-1} * (a * (b * c)) = a^{-1} * e.$$

The associative law on the left hand side and the definition of e on the right give $(a^{-1} * a) * (b * c) = a^{-1}$

SO

$$e * (b * c) = a^{-1}$$

hence

Now multiply both sides on the left by b⁻¹ and simplify similarly:

 $b^{-1} * (b * c) = b^{-1} * a^{-1}$ $(b^{-1} * b) * c = b^{-1} * a^{-1}$ $e * c = b^{-1} * a^{-1}$ $c = b^{-1} * a^{-1}$, as claimed.

- (5) Can be proved using mathematical induction.
- → Throughout the proof of this proposition we have not changed the order of any products since G may be non abelian.

Notation: In place of ' * ' we will use '.', we will write a.b as ab.

Let
$$x^0 = 1$$
, the identity of G.

<u>**Proposition 2**</u>: Let G be a group and let a, b \in G. The equations ax = b and ya = b have unique solutions for x , y \in G. In particular, the left and right cancellation laws

hold in G, i.e.,

- (1) if au = av, then u = v, and
- (2) if ub = vb, then u = v.

Proof: We can solve ax = b by multiplying both sides on the left by a - 1 and

simplifying to get $x = a^{-1}b$. The uniqueness of x follows because a^{-1} is unique. Similarly, if ya = b, $y = ba^{-1}$. If au = av, multiply both sides on the left by a^{-1} and simplify to get u = v. Similarly, the right cancellation law holds.

One consequence of Proposition 2 is that if a is any element of G and for some $b \in G$, ab = e or ba = e, then $b = a^{-1}$, i.e., we do not have to show both equations hold. Also, if for some $b \in G$, ab = a (or ba = a), then b must be the identity of G, i.e., we do not have to check bx = xb = x for all $x \in G$.

<u>Definition</u>. For G a group and x E G define the order of x to be the smallest positive

integer n such that $x^n = 1$, and denote this integer by |x|. In this case x is said to be of

order n. If no positive power of x is the identity, the order of x is defined to be infinity

and x is said to be of infinite order.

Examples: 1) In the additive group Z/9Z the element 6 has order 3.

2) An element of a group has order 1 if and only if it is the identity.

Definition. Let $G = \{g_1, g_2, \dots, g_n\}$ be a finite group with $g_1 = 1$. The multiplication table or group table of G is the n x n matrix whose i, j entry is the group element g_i g_i .

Solution of Exercise questions:

Determine which of the following binary operations are associative:

(a) the operation * on Z defined by a *b = a - b Solution. (1 * 2) * 3 = -4 while 1 * (2 * 3) = 2, so * is not associative.

(b) the operation * on R defined by a * b = a + b + abSolution. * is associative: let a, b, c be real numbers. Then (a * b) * c = (a + b + ab) * c = (a + b + ab) + c + (a + b + ab)c = a + b + c + ab + ac + bc + abc= a + (b + c + bc) + a(b + c + bc)

- (c) the operation * on Q defined by a * b = (a + b)/5Solution. (5 * 20) * 15 = 4 while 5 * (20 * 15) = 12/5. Therefore * is not associative.
- (d) the operation * on $Z \times Z$ defined by (a , b) * (c, d) = (ad + bc, bd) Solution. * is associative: let (a, b), (c, d), (e, f) be members of $Z \times Z$.

Then

- (e) the operation * on Q –{.0} defined by a * b = a/b Solution. (125 * 25) * 5 = 1 while 125 * (25 * 5) = 25, so * is not associative.
- 2) Similarly check that which of the binary operations in the Q1 are commutative that is to check a*b=b*a is satisfied or not.
- a) the operation * on Z defined by a*b=a-b, Solution: 1-2=-1, 2-1=1.So * is not commutative.
- b) the operation * on R defined by a * b = a + b + abSolution. * is commutative since, for any a, b \in R, a * b = a + b + ab= b + a + ba= b * a
- c) the operation * on Q defined by a * b = (a + b)/5Solution. * is commutative since + is commutative in Q.
- d) the operation ? on Z \times Z defined by (a, b) * (c,d) = (ad + bc, bd) Solution. * is commutative: Let (a, b) and (c, d) be elements of Z \times Z.

Then

$$(a, b) * (c, d) = (ad + bc, bd)$$

= $(cb + da, db)$
= $(c, d) * (a, b).$

(e) the operation * on Q $-\{0\}$ defined by a * b = a/b Solution. * is not commutative since 1 * 2 = 1/2 but 2 * 1 = 2.

4) Prove that multiplication of residue classes in Z/nZ is associative (you may assume it is well defined).

Solution:

Let $\overline{a}, \overline{b}, \overline{c}$ be residue classes in Z/nZ. Then we have $\overline{a_1a_2} = \overline{a_1}.\overline{a_2}$ along with the associativity of × in Z, we may write

$$(\overline{a}.\overline{b}).\overline{c} = (\overline{a.b}).c$$

$$= \overline{a.(b.c)}$$

$$= \overline{a.(\overline{b}.\overline{c})}$$

1.3 Symmetric Groups:

Let Ω be any nonempty set and let S_{Ω} be the set of all bijections from Ω to itself (i.e., the set of all permutations of Q). S_{Ω} is group under function composition:

The set S_{o} is a group under function composition: o.

- i) Note that o is a binary operation on S_{Ω} since if $\sigma:\Omega\to\Omega$ and $\tau:\Omega\to\Omega$ are both bijections, then $\sigma o \tau$ is also a bijection from $\Omega\to\Omega$. Since function composition is associative in general, o is associative.
- ii) The identity of S_{Ω} is the permutation 1 defined by 1(a) = a, for all a $\in \Omega$.
- iii) For every permutation σ there is a (2-sided) inverse function, $\sigma^{-1}:\Omega\to\Omega$ satisfying $\sigma^{-1}o\sigma=\sigma o\sigma^{-1}=1$

Thus, all the group axioms hold for (S_{Ω} , o). This group is called the **symmetric group** on the set Ω .

- *elements of S_{Ω} are the permutations Ω .
- -> When Ω = { 1 , 2, 3 , . . . , n}, the symmetric group on Ω is denoted S_{Ω} , the symmetric group of degree n.

To show that the order of S_n is n!.

Cycle Decomposition:

A cycle is a string of integers which represents the element of S_n which cyclically permutes these integers. The cycle $(a_1 a_2 \ldots a_m)$ is the permutation which sends a_i to a_{i+1} , $1 \le i \le m-1$ and sends a_m to a_1 .

For Example: (2 1 3) is the permutations that maps: 2 to 1, 1 to 3 and 3 to 2.

In general, for each $\sigma \in S_n$ the numbers from 1 to n will be rearranged and grouped into k cycles of the form

$$(a_1 a_2 ... a_{m1}) (a_{m1+1} a_{m1+2} ... a_{m2}) ... (a_{m_{k-1}+1} a_{m_{k-1}+2} ... a_{m_k})$$

To locate $\sigma(x)$:

- \rightarrow Let x \in {1,2,3,...,n} , If x is not followed immediately by a right parenthesis (i.e., x is not at the right end of one of the k cycles), then σ (x) is the integer appearing immediately to the right of x.
- \rightarrow If x is followed by a right parenthesis, then $\sigma(x)$ is the number which is at the start of the cycle ending with x.

$$a_1 \rightarrow a_2 \rightarrow a_3... \ a_{m1-1} \rightarrow a_{m1}$$
 Similarly for all others.

- → Length of the cycle is the number of integers which appear in it.
- → A cycle of length t is called t-cycle
- → Two cycles are called disjoint if they have no numbers in common.

Cycle Decomposition Algorithm:

- 1) To start a new cycle pick the smallest element of $\{1, 2, ..., n\}$ which has not yet appeared in a previous cycle call it a (if you arc just starting, a = 1); begin the new cycle: (a
- 2) Read off $\sigma(a)$ from the given description of σ call it b. If b = a, close the cycle with a right parenthesis (without writing b down); this completes a cycle return to step 1. If b $\neq a$, write b next t o a in this cycle: (a b
- **3)** Read off σ (b) from the given description of σ call it c. If c = a, close the cycle with a right parenthesis to complete the cycle return to step 1 . If c \neq a, write c next to b in this

cycle: (a b c Repeat this step using the number c as the new value for b until the cycle closes.

- \rightarrow As per convention 1-cycles will not be written. So If some element does not appear in the cycle decomposition of a permutation σ then $\sigma(i)$ = i. The identity permutation of S_n has a cycle decomposition (1)(2)...(n) and will be written simply as 1.
- **4)** Remove all cycles of length 1.

Example: n=13 and let $\sigma \in S_7$ be defined by

$$\sigma(1)=7, \sigma(2)=6, \sigma(3)=3, \sigma(4)=5, \sigma(5)=4, \sigma(6)=1, \sigma(7)=2$$

Steps to be followed according to Algorithm:

- 1) (1
- 2) $\sigma(1) = 7 = b \neq 1$ so write 7 that is (1.7)
- 3) $\sigma(7)=2 \neq 1$ so continue cycle as (172)

So repeating this algorithm from 1 -3 step we get:

$$\sigma = (1726)(3)(45)$$

4) Here 3 is a cycle of length 1 so remove it . Final cycle decomposition is : $\sigma = (1\ 7\ 2\ 6)\ (4\ 5)$

Computing products in S_n that is $\sigma \sigma \tau$, one reads the permutations from \emph{right} to \emph{left} .

For any $\sigma \in S_n$, the cycle decomposition of σ^{-1} is obtained by writing the numbers in each cycle of the cycle decomposition of σ in reverse order. For Example : σ = (1~7~2~6)~(4~5) then

$$\sigma^{-1}$$
= (6 2 7 1) (5 4)

Composition of two functions:

Example: (1 2 3) o (1 2)(3 4)

 $1 \rightarrow 2$ and $2 \rightarrow 3$ so $1 \rightarrow 3$

 $3\rightarrow 4$ and $4\rightarrow 4$ so $3\rightarrow 4$

 $4\rightarrow 3$ and $3\rightarrow 1$ so $4\rightarrow 1$

 $2 \rightarrow 1$ and $1 \rightarrow 2$ so $2 \rightarrow 2$

So the resulting function is: (1 3 4)

Consider another example : $(1\ 2)o(1\ 3) = (1\ 3\ 2)$ and $(1\ 3)o(1\ 2) = (1\ 2\ 3)$

- \rightarrow In Particular this shows that , S_n is a non abelian for all $n \ge 3$.
- → Since disjoint cycles permute numbers which lie in disjoint sets it follows that disjoint cycles commute.
- \rightarrow Rearranging the cycles in any product of disjoint cycles (in particular, in a cycle decomposition) does not change the permutation. For Example : (1 2 3 4) = (3 4 1 2).

By convention, the smallest number appearing in the cycle is usually written first.

→ The Order of a permutation is l.c.m of the lengths of the cycles in its cycle decomposition.

Exercise Question Solutions:

1)
$$\sigma: 1 \rightarrow 3$$
 2 $\rightarrow 4$ 3 $\rightarrow 5$ 4 \rightarrow 2 5 \rightarrow 1

$$\tau: 1 \rightarrow 5 \quad 2 \rightarrow 3 \quad 3 \rightarrow 2 \quad 4 \rightarrow 4 \quad 5 \rightarrow 1$$

Cycle decompositions of following permutations;

$$\sigma$$
: (1 3 5)(2 4)

$$\tau$$
: (1 5) (2 3)

$$\sigma^2$$
: (1 5 3)

$$\tau\sigma$$
: (1 2 4 3)

$$\tau^2 \sigma$$
: 10(1 3 5)(2 4) =(1 3 5)(2 4)

5. Find the order of (1 12 8 10 4) (2 13) (5 11 7) (6 9).

Ans : Since the cycles are disjoint the order of the elements in S_{13} is the l.c.m of the cycle lengths: [2,3,5]=30.

1.4: Matrix Groups

Definition of Field

- 1) A field is a set F together with two binary operations + and \cdot on F such that (F,
- +) is an abelian group (call its identity 0) and (F $\{0\}$, ·) is also an abelian group, and the following distributive law holds:

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c),$$

(2) For any field F let $F^x = F - \{0\}$.

For each $n \in \mathbb{Z}^+$,

G $L_n(F) = \{A \mid A \text{ is an } n \text{ x } n \text{ matrix with entries from } F \text{ and } det(A) \neq 0 \},$ Where the determinants of any matrix with entries from F can be computed by

same formulas used when $F=\mathbb{R}$.

For arbitrary n x n matrices A and B let AB be the product of these matrices as computed by the same rules as when $F = \mathbb{R}$.

- i) A(BC)=(AB)C (property of matrices) So product is Associative.
- ii) Since $det(AB) = det(A) \cdot det(B)$, it follows that if $det(A) \neq 0$ and $det(B) \neq 0$, then $det(AB) \neq 0$, so GL_n (F) is closed under matrix multiplication.
- iii) $det(A) \neq 0$ if and only if A has a matrix inverse . so each $A \in GL_n(F)$ has an inverse, A^{-1} , in $GL_n(F)$:

$$AA^{-1} = A^{-1}A = I$$

where I is the n x n identity matrix.

Thus GL_n (F) is a group under matrix multiplication, called the general linear group of degree n.

Some Results:

- (1) if F is a field and $| FI < \infty$, then $| FI = p^m$ for some prime p and integer m
- (2) if $I F I = q < \infty$, then $I GL_n(F) I = (q'' 1) (q'' q) (qn q^2) ... (q'' q^{n-1}).$

1.5 The Quaternion Group

```
The quatemion group, Q_8, is defined by Q_8=\{1,-1,i,-i,j,-j,k,-k\} with product \cdot computed as follows: 1\cdot a=a\cdot 1=a, for all a\in Q_8 (-1)\cdot (-1)=1, (-1)\cdot a=a\cdot (-1)=-a, for all a\in Q_8 i\cdot i=j\cdot j=k\cdot k=-1 i.j=k, j\cdot k=i, k\cdot i=j, j\cdot i=-k k\cdot j=-i i.k=-j.
```

 \rightarrow Q₈ is a non-abelian group of order 8.

Homomorphisms and Isomorphisms

Definition. Let (G , *) and (H, o) be groups. A map φ : G \rightarrow H such that $\Phi(x^*y) = \varphi(x)$ o $\varphi(y)$, for all $x,y \in G$

is called a homomorphism.

→When the group operations for G and H are not explicitly written, the homomorphism condition becomes simply

$$\varphi(xy) = \varphi(x)\varphi(y)$$

but it is important to keep in mind that the product xy on the left is computed in G

and the product $\phi(x)\phi(y)$ on the right is computed in H.

Definition : The map $\phi: G \to H$ is called an isomorphism and G and H are said to be isomorphic or of the same isomorphism type, written $G \cong H$, if

- (1) φ is a homomorphism (i.e., $\varphi(xy) = \varphi(x)\varphi(y)$), and
- (2) φ is a bijection.

→Intuitively, G and H are the same group except that the elements and the operations may be written differently in G and H. Thus any property which G has which depends only on the group structure of G (i.e., can be derived from the group axioms - for example, commutativity of the group) also holds in H.

Examples:

- 1) For any group $G,G \cong G$. The identity map provides an obvious isomorphism but not in general, the only isomorphism from G to itshelf.
- 2) The exponential map exp: $R \rightarrow R^+$ defined by $\exp(x) = e^x$ where e is the base of the natural logarithm, is an isomorphism from (R,+) to (R^+,\times) .

$$e^{x+y} = e^e e^y$$

So exponential map is homomorphism. Exp is bijection since it has an inverse function that is log_e .

 \rightarrow Any non-abelian group of order 6 is isomorphic to S₃. Example:- GL₂ (F₂) \cong S₃

if φ : G \rightarrow H is an isomorphism, then, in particular,

- (a) | G | = | H |
- (b) G is abelian if and only if H is abelian
- (c) For all $x \in G$, $|x| = |\varphi(x)|$.

*Note that it is not true that any group of order 6 is isomorphic to S₃.

Ex: i) S_3 is not isomorphic to Z/nZ since one is abelian and the other is not.

ii) (R- $\{0\}$, x) and (R, +) cannot be isomorphic because in (R- $\{0\}$, x) the element - 1 has order 2 whereas (R, +) has no element of order 2, contrary to (c).