Pierwsze równanie przedstawia dwa okręgi styczne do osi Oy o środkach $S_1\left(\frac{5}{2},0\right),\ S_2\left(-\frac{5}{2},0\right)$ i promieniu $\frac{5}{2}$. Drugie równanie przedstawia dwie proste równoległe.

10.8. Rozwiązania równania: $\frac{3\pi}{8}$, $\frac{7\pi}{8}$. Zbiór rozwiązań nierówności: $\left[0, \frac{3\pi}{8}\right) \cup \left(\frac{7\pi}{8}, \pi\right]$.

11.1.
$$\frac{\pi}{6}$$
.

11.2.
$$\frac{2\sqrt{6}}{3}R$$
.

11.4.
$$\left(\frac{\pi}{4}, \frac{3\pi}{4}\right) \cup \left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$$
.

11.6.
$$|y| = \frac{(x+2)^2}{4} - 1$$
, $x \in (-\infty, -4) \cup (0, \infty)$.

11.7.
$$3^{\sqrt{11}}$$
, $3^{-\sqrt{11}}$.

11.8.
$$[-5,0) \cup (5,6]$$
.

12.1.
$$\frac{9-\sqrt{5}}{2}$$
.

12.3.
$$\frac{107}{128} \approx 0,836.$$

12.4.
$$(x-1)^2 + (y-1)^2 = 1$$
, $(x-6)^2 + (y-6)^2 = 36$, $(x+2)^2 + (y-2)^2 = 4$, $(x-3)^2 + (y+3)^2 = 9$.

12.5.
$$\frac{2}{3}d^3 \frac{\mathrm{tg}^3 \alpha}{\sqrt{\mathrm{tg}^2 \alpha - 1}}, \ \alpha \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right).$$

12.6.
$$s + \frac{16Pr}{\sqrt{16P^2 + s^4}}$$
. Warunek rozwiązalności $r \ge \frac{\sqrt{16P^2 + s^4}}{4s}$.