MATH 6441: Algebraic Topology I

Frank Qiang Instructor: John Etnyre

Georgia Institute of Technology Spring 2025

Contents

1	\mathbf{Jan}	6 - CW-Complexes
	1.1	Introduction and Motivation
	1.2	CW-Complexes
	1.3	Homotopy
2	Jan	. 8 — Homotopy
	2.1	More on Homotopy
	2.2	Homotopy Groups
	2.3	Homotopy Equivalence
3	Jan	. 13 — Homotopy, Part 2
	3.1	More on Homotopy Equivalence
	3.2	Homotopy Extension Property

Lecture 1

Jan. 6 — CW-Complexes

1.1 Introduction and Motivation

Algebraic topology builds "functions" (actually functors)

 $\{\text{topological spaces, continuous maps}\} \longrightarrow \{\text{algebraic things, algebraic maps}\},\$

where "algebraic things" can be groups, vector spaces, etc. The main objective of algebraic topology is to distinguish topological spaces, e.g. showing that $\mathbb{R}^n \ncong \mathbb{R}^m$ for $n \ne m$. More applications are:

- 1. Studying maps between spaces.¹
 - Does a given space M embed in N? For instance, for what m does $\mathbb{R}P^n$ embed in \mathbb{R}^m ? (This is still not known in general.) Here $\mathbb{R}P^n$ is the real projective space.
 - Lifting maps, i.e. given $f: A \to B$ and $g: E \to B$, does there exist a map $\widetilde{f}: A \to E$ such that $g \circ \widetilde{f} = f$? In other words, is there a map \widetilde{f} such that the following diagram commutes:

$$A \xrightarrow{\tilde{f}} B \xrightarrow{\tilde{f}} B$$

- Fixed point problems: Given $f: X \to X$, does f have a fixed point, i.e. $x \in X$ such that f(x) = x? Such theorems are used to prove the existence of solutions to ordinary differential equations, for instance.
- 2. Group actions, e.g. which finite groups act freely on S^n ?
- 3. Group theory, e.g. showing that every subgroup of a free group is free. Another example is that if F_n is the free group on n generators, then its commutator $[F_n, F_n]$ is not finitely generated.
- $4.\,$ Algebra, e.g. proving the fundamental theorem of algebra.

This course will cover the following topics:

- 1. The fundamental group $\pi_1(X, x_0)$ of a space X for $x_0 \in X$, and covering spaces.
- 2. The homology groups $H_k(X)$ for $k = 0, 1, 2, \ldots$ These groups are abelian.
- 3. The cohomology ring $H^*(X) = \bigoplus_{k=0}^{\infty} H^k(X)$.

But before getting to this, we need to develop some important ideas.

¹All maps and functions in this class are continuous unless otherwise specified.

1.2 CW-Complexes

Definition 1.1. Let $D^n \subseteq \mathbb{R}^n$ be the unit disk and $S^{n-1} = \partial D^n$. Given a topological space Y and a continuous map $a: S^{n-1} \to Y$, the space obtained from Y by attaching an n-cell (via a) is

$$Y \cup_a D^n = (Y \sqcup D^n)/\sim,$$

where the equivalence relation \sim is given by $x \sim a(x)$ for $x \in \partial D^n$. Here \sqcup denotes disjoint union.

Definition 1.2. An n-complex or an n-dimensional CW-complex is defined inductively by:

- A (-1)-complex is the empty set \varnothing .
- An n-complex X^n is a space obtained from an (n-1)-complex by attaching n-cells.

An *n*-complex is *finite* if it involves only a finite number of cells. The *k*-skeleton of X is the union of all *n*-cells in X with n < k.

Remark. Any CW-complex is Hausdorff. See Hatcher for a proof.

Example 1.2.1. Here are some examples of CW-complexes:

- A 0-complex is a union of points. This is because $D^0 = \{pt\}$ and $\partial D^0 = \emptyset$.
- A 1-complex is a graph (points and lines connecting them).
- The torus T (a square with opposite sides identified) is a 2-complex. Here the 0-skeleton $T^{(0)}$ is the common corner on the square and the 1-skeleton $T^{(1)}$ is two sides of the square after taking the quotient. The 2-skeleton $T = T^{(2)}$ is the entire torus.
- Another example of a 2-complex is the two-holed torus, which is obtained by identifying the edges of an octagon (pairs of every other edge identified with opposite orientation).²
- A third example of a 2-complex is $X^{(1)} \cup_a D^2$ given an attaching map $D^2 \to X^{(1)}$.
- Consider the unit sphere $S^n \subseteq \mathbb{R}^{n+1}$. One way to give S^2 a CW-complex structure is to see the sphere as two disks D^2 glued together, resulting in one 0-cell, one 1-cell, and two 2-cells. Another way is to start with two points, attach two 1-cells to get a circle, and then attaching two disks to get S^2 . This results in two 0-cells, two 1-cells, and two 2-cells.

The second idea generalizes to S^n . We can write

$$S^n = S^{n-1} \cup_{a_1} D^n \cup_{a_2} D^n,$$

where S^{n-1} inductively has a CW-complex structure. This yields two k-cells for each $k \leq n$.

Another way to put a CW-complex structure on S^n is to attach D^n to a point with $\partial D^n \to \{pt\}$. In particular, notice that a space can in general have several different CW-complex structures.

• Consider the *n*-dimensional real projective space

$$\mathbb{R}P^n = \{\text{lines through the origin in } \mathbb{R}^{n+1}\}.$$

Since each line through the origin passes through S^n twice, we can equivalently think of $\mathbb{R}P^n$ as the unit sphere S^n with antipodal points identified.

²This CW-decomposition of the two-holed torus results in one 0-cell, four 1-cells, and one 2-cell.

We can also think of this as D^n with antipodal points on ∂D^n identified. Since $\partial D^n = S^{n-1}$, this is simply $\mathbb{R}P^{n-1} \cup_a D^n$, where $a: \partial D^n \to \mathbb{R}P^{n-1}$ is the quotient map. This gives $\mathbb{R}P^n$ a CW-complex structure with one k-cell for each $k \leq n$.

- The complex projective space $\mathbb{C}P^n$ has a similar CW-complex structure with one k-cell for each even $k \leq 2n$. One can verify this as an exercise.
- Any smooth manifold has a CW-complex structure. See Hatcher.

Exercise 1.1. Show the product of CW-complexes is a CW-complex.

Definition 1.3. A subcomplex of a CW-complex X is a closed subset $A \subseteq X$ that is a union of cells in X. In particular, A is also a CW-complex and (X, A) is called a CW-pair.

1.3 Homotopy

Definition 1.4. Let X and Y be topological spaces. Two maps $f, g: X \to Y$ are homotopic, denoted $f \sim g$, if there exists a continuous map $\Phi: X \times [0,1] \to Y$ such that

$$\Phi(x,0) = f(x)$$
 and $\Phi(x,1) = g(x)$

for all $x \in X$. In this case, Φ is called a homotopy between f and g.

Remark. We note the following:

- A homotopy Φ gives a family of maps $\phi_{t_0}: X \to Y$ given by $x \mapsto \phi(x, t_0)$ which is continuous in t_0 . So maps are homotopic if there is a continuous family of maps between them.
- If $A \subseteq X$ then we say that f is homotopic to g rel A, denoted $f \sim_A g$, if there exists Φ as above with the additional property that $\Phi(x,t) = f(x)$ for all $x \in A$, i.e. points in A are fixed.
- If $A \subseteq X$ and $B \subseteq Y$, then the notation $f: (X, A) \to (X, B)$ means that $f: X \to Y$ and $f(a) \in B$ for each $a \in A$. We say that f is a map of pairs. If $f, g: (X, A) \to (Y, B)$, then f, g are homotopic as maps of pairs if each $\phi_t: (X, A) \to (X, B)$ is a map of pairs.

Lecture 2

Jan. 8 — Homotopy

2.1 More on Homotopy

Example 2.0.1. For any space X, any map $f: X \to [0,1]$ is homotopic to the map $g: X \to [0,1]$ given by $x \mapsto 0$. To see this, we have the homotopy $\Phi: X \times [0,1] \times [0,1]$ defined by

$$(x,t) \mapsto (1-t)f(x).$$

We can see that $\Phi(x,0) = f(x)$ and $\Phi(x,1) = 0 = g(x)$.

Exercise 2.1. Show that homotopy is an equivalence relation on maps $X \to Y$.

Definition 2.1. Let $C(X,Y) = \{\text{continuous maps from } X \text{ to } Y\}$. Let $[X,Y] = C(X,Y)/\sim$, i.e. homotopic maps are identified with each other.

Example 2.1.1. We have the following:

- 1. $[X, [0,1]] = \{g\}$ for any space X, where g is the map $x \mapsto 0$ as above.
- 2. $[\{*\}, X] = \{\text{path components of } X\}.$

2.2 Homotopy Groups

Definition 2.2. We call a space X pointed if there is a designated "base point" $x_0 \in X$. Given two pointed spaces (X, x_0) and (Y, y_0) , we define

$$[X,Y]_0 = \{\text{homotopy classes of maps of pairs } (X,\{x_0\}) \to (Y,\{y_0\})\}.$$

Definition 2.3. Let y_0 be the north pole in S^n , i.e. $S^n \subseteq \mathbb{R}^{n+1}$ is the unit sphere and $y_0 = (0, \dots, 0, 1)$. The *nth homotopy group* of a pointed space (X, x_0) is $\pi_n(X, x_0) = [S^n, X]_0$.

Remark. The homotopy group $\pi_n(X, x_0)$ is in fact a group. We will study $\pi_1(X, x_0)$ next and it is called the *fundamental group* of (X, x_0) .

Remark. For which (Y, y_0) is $[Y, X]_0$ "naturally" a group for all (X, x_0) ? Similarly, for which (Y, y_0) is $[X, Y]_0$ a group for all (X, x_0) ? Here, given a map $f: (X_1, x_1) \to (X_2, x_2)$, there is an obvious induced $map \ f_*: [Y, X_1]_0 \to [Y, X_2]_0$ given by $[g] \mapsto [f \circ g]$. Similarly, there is a map $f^*: [X_2, Y]_0 \to [X_1, Y]_0$ given by $[g] \mapsto [g \circ f]$. In the questions above, "naturally" means that f_* and f^* are homomorphisms. for any (X_1, x_1) and (X_2, x_2) . The (perhaps unsatisfying) answer is that a space satisfying the first condition is called an H-space, and a space satisfying the second is called an H-space.

2.3 Homotopy Equivalence

Definition 2.4. We say that $f: X \to Y$ is the homotopy inverse to a function $g: Y \to X$ if $f \circ g \sim \mathrm{id}_Y$ and $g \circ f \sim \mathrm{id}_X$, where id_X and id_Y are the identity maps on X and Y. If g has a homotopy inverse, then we call g a homotopy equivalence from Y to X and we call X, Y homotopy equivalent.

Exercise 2.2. Show that homotopy equivalence is an equivalence relation.

Lemma 2.1. The following are equivalent:

- 1. X and Y are homotopy equivalent.
- 2. For any space Z, there is a one-to-one correspondence $\phi_Z : [X, Z] \to [Y, Z]$ such that for all continuous maps $h: Z \to Z'$, the following diagram commutes:

$$[X, Z] \xrightarrow{\phi_Z} [Y, Z]$$

$$\downarrow^{h_*} \qquad \downarrow^{h_*}$$

$$[X, Z'] \xrightarrow{\phi_{Z'}} [Y, Z']$$

3. For any space Z, there is a one-to-one correspondence $\phi^Z : [Z, X] \to [Z, Y]$ such for that all continuous maps $h: Z \to Z'$, the following diagram commutes:

$$[Z', X] \xrightarrow{\phi^{Z'}} [Z', Y]$$

$$\downarrow^{h^*} \qquad \downarrow^{h^*}$$

$$[Z, X] \xrightarrow{\phi^Z} [Z, Y]$$

Proof. This is left as an exercise.

Remark. Based on the previous lemma, two spaces are homotopy equivalent if and only if homotopy classes of maps to and from the space are "naturally equivalent."

Example 2.4.1. We have the following:

- Homeomorphic spaces are homotopy equivalent.
- Let $X = S^1$ and $Y = S^1 \times [0, 1]$. We claim that X is homotopy equivalent to Y.

Define the maps $f: S^1 \to S^1 \times [0,1]$ by $x \mapsto (x,0)$ and $g: S^1 \times [0,1] \to S^1$ by $(x,t) \mapsto x$. Then we can see that $g \circ f: S^1 \to S^1$ maps $x \mapsto x$, so $g \circ f = \mathrm{id}_{S^1}$. On the other hand, the composition $f \circ g: S^1 \times [0,1] \to S^1 \times [0,1]$ maps $(x,t) \mapsto (x,0)$. Now $f \circ g \sim \mathrm{id}_{S^1 \times [0,1]}$ by homotopy. For instance, define $\Phi: (S^1 \times [0,1]) \times [0,1] \to (S^1 \times [0,1])$ by $((x,t),s) \mapsto (x,st)$, so

$$\Phi((x,t),1) = (x,t) = \mathrm{id}_{S^1 \times [0,1]}(x,t)$$
 and $\Phi((x,t),0) = (x,0) = f \circ g$.

Thus f is a homotopy equivalence from S^1 to $S^1 \times [0,1]$. Note that $S^1 \times [0,1]$ is the annulus.

Definition 2.5. A space is called *contractible* if it is homotopy equivalent to a point.

Example 2.5.1. The spaces [0,1] and \mathbb{R}^n are contractible (exercise).

¹We will denote homotopy equivalence by $X \simeq Y$ or simply $X \sim Y$.

Definition 2.6. If $A \subseteq X$, then a retraction of X to A is a map $r: X \to A$ such that r(a) = a for every $a \in A$. A deformation retraction of X to A is a retraction $r: X \to A$ that is homotopic rel A to the identity map id_X , i.e. we can find $\phi_t: X \to X$ for $t \in [0,1]$ such that $\phi_0(x) = x$ and $\phi_1(X) \subseteq A$ and $\phi_t(x) = x$ for all $x \in A$ and $t \in [0,1]$.

Remark. If X deformation retracts to A, then X is homotopy equivalent to A. To see this, suppose we have a homotopy $\phi_t: X \to X$ as above, and let $i: A \to X$ be the inclusion map. Then $\phi_1 \circ i = \mathrm{id}_A$ and $i \circ \phi_1 = \phi_1 \sim \phi_0 = \mathrm{id}_X$, so ϕ_1 is a homotopy equivalence from X to A.

Definition 2.7. Given two spaces X, Y and a map $f: X \to Y$, the mapping cylinder of f is the space

$$M_f = ((X \times [0,1]) \cup Y) / \sim,$$

where the equivalence relation \sim is given by by $(x,1) \sim f(x)$ for $x \in X$.

Remark. The mapping cylinder M_f deformation retracts to Y. To see this, consider the map $\widetilde{\phi}_t$ given by $(x,s)\mapsto (x,(1-t)s+t)$ on $X\times [0,1]$ and $y\mapsto y$ on Y. Since $\widetilde{\phi}_t$ respects the equivalence relation, it descends to a map $\phi_t:M_f\to M_f$ on the quotient space. Note that $\phi_0=\mathrm{id}_{M_f}$ and $\phi_1(M_f)=Y\subseteq M_f$, and $\phi_t=\mathrm{id}_Y$ for all t. Thus ϕ_1 is a deformation retraction. In particular, this means that $M_f\simeq Y$.

Remark. There are obvious inclusions $i: X \to M_f$ given by $x \mapsto (x,0)$ and $j: Y \to M_f$ given by $y \mapsto y$. Note that ϕ_1 defined above is the homotopy inverse to j. Now we have the diagram

where j is a homotopy equivalence and $j \circ f \sim i$ (exercise).

Remark. The above remark shows the following "slogan" of algebraic topology:

Any map is an inclusion up to homotopy.

Example 2.7.1. Let X be three circles with two enclosed in a third bigger one, and let Y be two circles enclosing the inner two circles of X connected by a line segment. Let Z be the region inside by the outer circle of X and outside the inner two circles of X.

Define $f: X \to Y$ to be the map which sends $x \in X$ to the point in Y at the other end of an interval (points on the inner circles of X are mapped by radial lines to the circles in Y, and points on the outer circle of X are mapped radially to either the circles or the line segment in Y). One can write an explicit formula for f as an exercise.

Then Z is homeomorphic to M_f , and in particular $Z \simeq Y$. Similarly, M_f is homotopy equivalent to two circles joined at a point, or a circle with a diameter. Thus by transitivity, these two spaces and Z are all homotopy equivalent to each other.

Lecture 3

Jan. 13 — Homotopy, Part 2

3.1 More on Homotopy Equivalence

Lemma 3.1. If (X, A) is a CW pair and A is contractible, then $X/A \simeq X$.

Exercise 3.1. The following are some applications of this lemma:

- 1. Let X be a connected graph (i.e. a 1-complex), and let A be an edge in X connecting distinct vertices. Then A is contractible, so $X/A \simeq X$. Continuing this process, let A be a maximal tree in X, which will also be contractible. Then $X \simeq X/A$, so any connected graph is homotopy equivalent to a wedge of circles (with number of circles equal to the number of self-loops in the graph).²
- 2. Consider the space X obtained by attaching a 1-cell A connecting the north and south poles on a sphere. Let B be half of a great circle connecting the endpoints of A. Clearly A and B are both contractible. After collapsing A, we see that $X \simeq X/A$, which is S^2 with the north and south poles identified. On the other hand, by contracting B instead we see that $X \simeq X/B$, which is $S^2 \vee S^1$.

Note that after contracting A, the subset B is actually no longer contractible.

3. Let X be a torus with attached disks A_1, A_2, A_3 in the tube of the torus. Then

$$X \sim ((X/A_1)/A_2)/A_3,$$

which is three spheres lying in a circle, each attached to the next one at a single point.

We can also obtain this space by considering the space Y of three spheres attached in a line with an extra 1-cell B attached at the ends of the chain of circles. Also let A be the union of halves of great circles going through the chain of circles, with the same endpoints as B. Then we can see that this creates the same space as before, so that $X \simeq Y/B \simeq Y$. On the other hand, by contracting A, we see that $Y \simeq Y/A = S^2 \vee S^2 \vee S^2 \vee S^1$.

Of course, all of these spaces are then homotopy equivalent to each other by transitivity.

Lemma 3.2. Let (X,A) be a CW pair and $f,g:A\to Y$ be homotopic maps. Then $X\cup_f Y\simeq X\cup_g Y$.

Example 3.0.1. Let $Y = S^2$, and $X = D^2$, and $A = \partial D^2$. Let $g : A \to Y$ map A to a great circle, and let $f : A \to Y$ map A to the north pole. One can show as an exercise that $f \sim g$ (e.g. by pulling the equator towards the north pole). So the lemma says that $X \cup_g Y$, which is a sphere with a disk glued along its equator, is homotopy equivalent to $X \cup_f Y = S^2 \vee S^2$.

¹Here X/A denotes the quotient of X obtained by collapsing all of A to a single point.

²A wedge of pointed spaces $(X, x_0) \vee (Y, y_0)$ is the space obtained from $X \sqcup Y$ by identifying x_0 and y_0 .

3.2 Homotopy Extension Property

Remark. To prove both of these lemmas, we need the homotopy extension property (HEP).

Definition 3.1. A space X and a subspace $A \subseteq X$ have the homotopy extension property if given $F_0: X \to Y$ (for any Y and F_0) and a homotopy $f_t: A \to Y$ such that $f_0 = F_0|_A$, then there is a homotopy $F_t: X \to Y$ such that $F_t|_A = f_t$ for every t.

Lemma 3.3. A pair (X, A) has the homotopy extension property if and only if

$$(X \times \{0\}) \cup (A \times [0,1])$$

is a retract of $X \times [0, 1]$.

Proof. (\Leftarrow) We will assume that A is closed (not necessarily but makes the proof easier, and almost all examples satisfy this). By assumption, we have a retraction

$$r: (X \times [0,1]) \to (X \times \{0\}) \cup (A \times [0,1]).$$

Given $F_0: X \to Y$ and $f_t: A \to Y$ such that $f_0 = F_0|_A$, we can define a map

$$\widetilde{F}: (X \times \{0\}) \cup (A \times [0,1]) \to Y$$

by $x \mapsto F_0(x)$ on $X \times \{0\}$ and $(a, t) \mapsto f_t(a)$ on $A \times [0, 1]$. This map \widetilde{F} is continuous since the definitions of \widetilde{F} agree on the intersection and the intersection is closed. Now define

$$F: X \times [0,1] \to Y$$

by $F = \widetilde{F} \circ r$, which is a homotopy of F_0 that extends f_t .

$$(\Rightarrow)$$
 Let $Y = (X \times [0,1]) \cup (A \times [0,1])$. Let

$$F_0: X \to (X \times \{0\}) \cup (A \times [0,1])$$

be given by $x \mapsto (x,0)$, and

$$f_t: A \mapsto (X \times \{0\}) \cup (A \times [0,1])$$

be given by $a \mapsto (a, t)$. Then the homotopy extension property yields an extension

$$F:X\times [0,1]\to (X\times \{0\})\cup (A\times [0,1]),$$

which is a retraction, as desired.

Lemma 3.4. If (X, A) is a CW pair, then $(X \times \{0\}) \cup (A \times [0, 1])$ is a deformation retract of $X \times [0, 1]$. In particular, (X, A) satisfies the homotopy extension property.

Proof. The main idea is that for any disk D^n , the space $(D^n \times \{0\}) \cup (\partial D^n \times [0,1])$ is a (deformation) retract of $D^n \times [0,1]$. To see this, let $D^n \subseteq \mathbb{R}^n$ be the unit disk and $D^n \times [0,1] \subseteq \mathbb{R}^{n+1}$. Let

$$p = (0, \dots, 0, 2).$$

For any $x \in D^n \times [0,1]$, let ℓ_x be the line through p and x. Note that

$$\ell_x \cap ((D^n \times [0,1] \cup (\partial D^n \times [0,1]))$$

is a unique point. Define $\tilde{r}(x)$ to be this point, which yields a map

$$\widetilde{r}: D^n \times [0,1] \to (D^n \times \{0\}) \cup (\partial D^n \times [0,1])$$

Note that for $x \in (D^n \times \{0\}) \cup (\partial D^n \times [0,1])$, then $\widetilde{r}(x) = x$ since the point of intersection is unique and x is already in the intersection. Show as an exercise that \widetilde{r} is continuous. Then setting

$$\widetilde{r}_t = t\widetilde{r} + (1-t)\operatorname{id}_{D^n \times [0,1]}$$

gives a deformation retraction of $D^n \times [0,1]$ onto $(D^n \times \{0\}) \cup (\partial D^n \times [0,1])$.

To show the general case that $X \times [0,1]$ retracts to $(X \times \{0\}) \cup (A \times [0,1])$, we induct on the dimension of cells. Define r on $X^{(0)} \times [0,1] \to (X \times \{0\}) \cup (A \times [0,1])$ by the following:

- if a 0-cell $D^0 \subseteq A$, then let r be the identity on $D^0 \times [0,1]$;
- if a 0-cell D^0 is not in A, then send $D^0 \times [0,1]$ to $D^0 \subseteq X \times \{0\}$.

Now inductively assume r is defined on $X^{(k-1)} \times [0,1] \to (X \times \{0\}) \cup (A \times [0,1])$. For each k-cell D^k ,

- if $D^k \subseteq A$, then let r be the identity on $D^k \times [0,1]$;
- if D^k is not in A, then note that $\partial D^k \times [0,1] \to X^{(k-1)} \times [0,1]$ is defined by induction, and we have an "inclusion" (here $a: \partial D^k \to X^{(k-1)}$ is the attaching map for D^k)

$$D^{k} \xrightarrow{i} X^{(k-1)} \cup D^{k} \xrightarrow{q} (X^{(k-1)} \cup D^{k}) / \{(x \in \partial D^{k}) \sim (a(x) \in X^{k-1})\}$$

So we let $D^k \times \{0\} \to (X \times \{0\}) \cup (A \times [0,1])$ be the map j into $X \times \{0\}$. This defines r on

$$(D^k \times [0,1]) \cup (\partial D^k \times [0,1]),$$

which extends to $D^k \times [0,1]$ by composing with the map \widetilde{r} from above.

This inductively defines the retraction r on all of $X \times [0,1]$. The last claim follows by Lemma 3.3.

Remark. Now we can prove the first two lemmas from the beginning of the day.

Proof of Lemma 3.1. We prove that the result holds for any (X,A) which satisfies the homotopy extension property. We show that the quotient map $q: X \to X/A$ has a homotopy inverse. Since A is contractible, we know there exists a homotopy $f_t: A \to A \subseteq X$, such that $f_0 = \mathrm{id}_A$ and f_1 is constant. Let $F_0: X \to X$ be the identity (note that $F_0|_A = \mathrm{id}_A$), so that the homotopy extension property gives a homotopy $F_t: X \to X$ extending f_t . Since $F_t(A) \subseteq A$ for every t, we get maps

$$\widetilde{F}_t: X/A \to X/A,$$

which is well defined since points in A are mapped to points in A. Furthermore, $F_1(A) = \{pt\}$, so F_1 factors through X/A to give a map $h: X/A \to X$. This gives the diagram:

$$X \xrightarrow{F_1} X$$

$$\downarrow q$$

$$X/A \xrightarrow{F_1} X/A$$

It is easy to check that $h \circ q = F_1$ and $q \circ h = \overline{F}_1$, so that the diagram commutes. But then

$$h \circ q = F_1 \sim F_0 = \mathrm{id}_X$$
 and $q \circ h = \overline{F}_1 \sim \overline{F}_0 = \mathrm{id}_{X/A}$,

so q is a homotopy equivalence.

Proof of Lemma 3.2. Let $F: A \times [0,1] \to Y$ be a homotopy, which extends to $F: X \times [0,1] \to Y$ by the homotopy extension property. Consider the mapping cylinder

$$M_F = (X \times [0,1]) \cup_F Y,$$

and one can show that $M_F \simeq X \cup_g Y \simeq X \cup_f Y$.