K

Phi Numbers in Range!

Setter: G. M. Shahariar Shibli

Time Limit: **5 sec**

Memory Limit:

1 **GB**

In number theory, Euler's phi function, denoted as $\phi(n)$, is an arithmetic function which counts the positive integers less than or equal to **P** that are relatively prime to **P**. A number **X** is relatively prime to **P** if GCD(X, P) = 1. For example, if P = 10, then there are 4 numbers, namely 1, 3, 7, 9 which are relatively prime to 10. Therefore, $\phi(10) = 4$.

In this problem, you have to answer **M** number of queries of the form **L R K**. To answer the queries, at first you have to generate an array **A** consisting of first **N** phi numbers. For example if N = 11, then array **A** will look like, $A = \{1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10\}$. For clarity, $\phi(1) = 1$, $\phi(2) = 1$, $\phi(3) = 2$, $\phi(4) = 2$, $\phi(5) = 4$, $\phi(6) = 2$, $\phi(7) = 6$, $\phi(8) = 4$, $\phi(9) = 6$, $\phi(10) = 4$, $\phi(11) = 10$.

For each query, you have to print the smallest K-th distinct phi number in the range L to R. Say L = 6, R = 11, K = 2. Let S denote the set of elements of array A with its indices between 6 and 11. Then $S = \{2, 6, 4, 6, 4, 10\}$. The smallest 2nd distinct phi number = 4. What if K = 3? Answer is 6.

Notice that if K = 5 then there is no smallest k-th distinct phi number in that range. In such case, you have to print **No Distinct Phi Number**.

Input:

At first, there will be an integer T ($1 \le T \le 10$), which is the number of test cases. For each case, you will be given two positive integers N and M that are the number of phi numbers to be generated at first and the number of queries ($1 \le N$, $M \le 10^5$). Then there will be M lines each containing three numbers L R K ($1 \le L \le R \le N$)

Output:

For each case print the case number in the first line like **Case x**: where **x** is the number of the test case. Then output the smallest K-th distinct phi number or **No Distinct Phi Number** for each query in a new line. See the sample I/O for better understanding.

The sample I/O is in the next page.

Sample I/O:

Sample Input	Sample Output
1	Case 1:
11 4	2
4 6 1	4
6 11 2	4
2 7 3	No Distinct Phi Number
4 6 4	