Provectores Tensor de curvatura extrínseca

En R³: Proyector de un vector respecto a dirección ortogonal de cierto vector unitario

Se trata de encontrar la componente de un vector \vec{v} que sea perpendicular a la dirección de un vector unitario \vec{n} . Será la resta vectorial del vector menos su componente en la dirección de n: $\vec{v}^{\perp} = \vec{v} - [\vec{v} \cdot \vec{n}]\vec{n}$

$$v_m^{\perp} \vec{e}_m = v_m \vec{e}_m - [v_i n_j g_{ij}] n_m \vec{e}_m$$
 En R³ $g_{ij} = \delta_{ij}$ y cada componente quedará: $v_m^{\perp} = v_m - [v_i n_i] n_m$

Para sacar v_i factor común utilizamos el truco $v_m = \delta_{mi} v_i$ y ponemos: $v_m^{\perp} = \delta_{mi} v_i - v_i n_i n_m$ queda:

$$v_m^{\perp} = (\delta_{mi} - n_m n_i) v_i$$
 (sumatorio sobre índice i) Llamamos Proyector a la matriz $P_{mi} = (\delta_{mi} - n_m n_i)$ (I)

 $\begin{pmatrix} v_1^{\perp} \\ v_2^{\perp} \\ v_2^{\perp} \end{pmatrix} = \begin{pmatrix} 1 - n_1 n_1 & -n_1 n_2 & -n_1 n_3 \\ -n_2 n_1 & 1 - n_2 n_2 & -n_2 n_3 \\ -n_3 n_1 & -n_3 n_2 & 1 - n_3 n_3 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \implies \mathbf{v_m^{\perp}} = \mathbf{P_{mi}} \mathbf{v_i}$ En forma matricial será:

$$\begin{pmatrix} -n_1 n_3 \\ -n_2 n_3 \\ 1 - n_2 n_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \implies \boldsymbol{v_m}^{\perp} = \boldsymbol{P_{mi}} \boldsymbol{v}$$

En cualquier variedad: Proyector de un vector respecto a dirección ortogonal de cierto vector unitario

Exactamente igual que antes haremos $\vec{v}^{\perp} = \vec{v} - [\vec{v} \cdot \vec{n}]\vec{n}$ y podemos encontrar una matriz que al actuar sobre la matriz columna de, \vec{v} se obtenga la matriz columna de \vec{v}^{\perp}

Ahora tendremos en cuenta que la métrica $g_{\alpha\beta}$ no tiene por qué ser δ_{ij} y, además utilizaremos letras griegas para índices, teniendo en cuenta si está "arriba o abajo" (en \mathbb{R}^3 , al ser la métrica δ_{ij} , las componentes covariantes y contravariantes eran iguales).

 $v_{\perp}^{\mu}\underline{\boldsymbol{e}}_{\mu}=v^{\mu}\underline{\boldsymbol{e}}_{\mu}-\left[v^{\alpha}n^{\beta}g_{\alpha\beta}\right]n^{\mu}\underline{\boldsymbol{e}}_{\mu}\quad\text{El corchete es un número (producto escalar) y con la métrica bajamos índice escalar)}$ $v_{\perp}^{\mu} \underline{e}_{\mu} = (v^{\mu} - [v^{\alpha}n_{\alpha}]n^{\mu})\underline{e}_{\mu}$ Cada componente quedará: $v_{\perp}^{\mu} = v^{\mu} - [v^{\alpha}n_{\alpha}]n^{\mu}$

Para sacar factor común v^{α} utilizamos el truco $v^{\mu} = \delta^{\mu}_{\alpha} v^{\alpha}$ y ponemos: $v^{\mu}_{\perp} = \delta^{\mu}_{\alpha} v^{\alpha} - v^{\alpha} n_{\alpha} n^{\mu}$ queda:

$$v^{\mu}_{\perp} = (\delta^{\mu}_{\alpha} - n^{\mu}n_{\alpha})v^{\alpha}$$
 Llamamos Proyector a la matriz $P^{\mu}_{\alpha} = h^{\mu}_{\alpha} = (\delta^{\mu}_{\alpha} - n^{\mu}n_{\alpha})$ (II)

En forma matricial sería similar a lo puesto en \mathbb{R}^3 , pero los índices μ y α tomarían valores: 0, 1, 2, 3,...

En (II) hemos llamado h_{α}^{μ} al proyector por la siguiente razón: En (IV) de video 55 vimos que la métrica transversa de una hipersuperficie es $h_{\alpha\beta} = g_{\alpha\beta} - n_{\alpha}n_{\beta}$.

La métrica transversa con un índice arriba es un proyector, como podemos ver subiendo un índice:

$$h^{\mu}_{\alpha} = h_{\alpha\beta} \cdot g^{\beta\mu} = \left(g_{\alpha\beta} - n_{\alpha}n_{\beta}\right)g^{\beta\mu} = g_{\alpha\beta}g^{\beta\mu} - n_{\alpha}n_{\beta}g^{\beta\mu} = \delta^{\mu}_{\alpha} - n_{\alpha}n^{\mu} \quad \text{(producto de matrices } g_{\alpha\beta}g^{\beta\mu} \text{da la identidad)}$$

Aplicación de Proyector a tensor $\overline{T} = T^{\mu\nu} [e_{\mu} \otimes e_{\nu}]$

Definimos el tensor ortogonal respecto a vector unitario n: $\overline{T}_{\perp} = T^{\mu\nu} \left[e_{\mu}^{\perp} \otimes e_{\nu}^{\perp} \right]$

Aplicamos (II) a los vectores de la base (solo tienen una componente): $e^{\perp}_{\mu} = h^{\beta}_{\mu} e_{\beta}$ y $e^{\perp}_{\nu} = h^{\alpha}_{\nu} e_{\alpha}$

$$\overline{T}_{\perp} = T^{\mu\nu} \left[h_{\mu}^{\beta} \boldsymbol{e}_{\beta} \otimes h_{\nu}^{\alpha} \boldsymbol{e}_{\alpha} \right] \Longrightarrow \overline{T}_{\perp} = T^{\mu\nu} h_{\mu}^{\beta} h_{\nu}^{\alpha} \left[\boldsymbol{e}_{\beta} \otimes \boldsymbol{e}_{\alpha} \right] \quad \text{Componentes del tensor ortogonal: } T_{\perp}^{\alpha\beta} = T^{\mu\nu} h_{\mu}^{\beta} h_{\nu}^{\alpha} \left[\boldsymbol{e}_{\beta} \otimes \boldsymbol{e}_{\alpha} \right]$$

Renombrando índices, si las componentes de un tensor son $T^{\mu\nu}$, ó con índice abajo $T_{\mu\nu}$, las componentes de los tensores ortogonales a *n* serán:

$$T^{\mu\nu}_{\perp} = h^{\mu}_{\alpha} h^{\nu}_{\beta} T^{\alpha\beta}$$
 ó $T^{\perp}_{\mu\nu} = h^{\alpha}_{\mu} h^{\beta}_{\nu} T_{\alpha\beta}$ (III)

Curvatura extrínseca de una variedad es la que se observa desde un espacio-ambiente que contiene a la variedad La curvatura intrínseca (tensor de Riemann) es la que se observa desde la propia variedad.

La curvatura extrínseca podría definirse como $K = \frac{1}{R} = |\vec{a}_n|$ cuando v = 1

En cada punto P de la variedad hay muchas curvaturas (dependiendo del plano de corte), pero siempre habrá una máxima K_1 y otra mínima K_2 .

Por ejemplo en la superficie (2D) cilíndrica inmersa en espacio-ambiente R³, un observador de dicho espacio ambiente observa en cualquier punto

$$K_1 = 1/R$$
 y $K_2 = 1/\infty = 0$

<u>Un tensor de curvatura externa</u> debe ser diagonalizable y tener como valores propios K_1 y K_2 . Sabemos que el determinante, y también la traza de una matriz (tensor de orden 2) es independiente de la base Se considerará como curvatura en un punto de la variedad la Traza del tensor $K = (K_1 + K_2)$ o dividiendo para hallar el valor medio.

Consideremos R³ y superficie inmersa en ese espacio, y el vector unitario $\vec{n} = n_j \vec{e}_j$ normal a la superficie. Para detectar curvatura en un punto hallamos las derivadas de \vec{n} respecto a cada coordenada x^i :

$$\frac{\partial n_j}{\partial x^i} \equiv \boldsymbol{\partial_i} \boldsymbol{n_j} = B_{ij} = \begin{pmatrix} \partial_1 n_1 & \partial_1 n_2 & \partial_1 n_3 \\ \partial_2 n_1 & \partial_2 n_2 & \partial_2 n_3 \\ \partial_3 n_1 & \partial_3 n_2 & \partial_3 n_3 \end{pmatrix} \quad \text{obtenemos una matriz (tensor de orden 2 en R}^3)$$

Ese tensor detecta los cambios de \vec{n} en todas direcciones y, por lo tanto, también en la dirección normal a la superficie (dirección de \vec{n}). Aunque en este caso de R^3 , al ser \vec{n} unitario, no hay variación en su propia dirección y no es necesario proyectar el tensor para que detecte cambios sólo en la superficie, lo debemos hacer para aplicar el método a casos más generales. Así utilizamos (III) para proyectar el tensor en dirección ortogonal a \vec{n} (plano tangente a superficie). Esta proyección la definimos como tensor de curvatura, que en R^3 y al ser $g_{ij} = \delta_{ij}$ da igual poner índices arriba o abajo:

$$B_{ij}^{\perp} = h_i^k h_j^p B_{kp} = h_i^k h_j^p (\partial_k n_p) \rightarrow \mathbf{K}_{ij} = \mathbf{h}_i^k \mathbf{h}_j^p (\partial_k n_p) \qquad \mathbf{K} = \mathbf{Traza} \, \mathbf{deK}_{ij} \quad \text{(IV)}$$

Ejemplo: utilizamos el tensor para comprobar la curvatura extrínseca del cilindro

Si su eje coincide con el eje Z, los vectores normales a la superficie y unitarios serán:

$$\vec{n} = \frac{x}{x^2 + y^2} \vec{e}_1 + \frac{y}{x^2 + y^2} \vec{e}_2 \quad \text{siendo} \quad R^2 = x^2 + y^2 \quad \rightarrow n_1 = \frac{x}{R^2} \; ; \; n_2 = \frac{y}{R^2} \; ; \; n_3 = 0$$

Para aplicar (**IV**) hallamos las derivadas:
$$\left(\partial_k n_p\right) = \begin{pmatrix} \partial_1 n_1 = \frac{y^2}{R^3} & \partial_1 n_2 = \frac{-xy}{R^3} & \partial_1 n_3 = 0 \\ \partial_2 n_1 = \frac{-xy}{R^3} & \partial_2 n_2 = \frac{x^2}{R^3} & \partial_2 n_3 = 0 \\ \partial_3 n_1 = 0 & \partial_3 n_2 = 0 & \partial_3 n_3 = 0 \end{pmatrix}$$

Los proyectores necesarios $h^{\mu}_{\alpha} = (\delta^{\mu}_{\alpha} - n^{\mu}n_{\alpha})$ son:

$$h_1^1 = (\delta_1^1 - n^1 n_1) = 1 - \frac{x^2}{R^4}; \qquad h_1^2 = h_2^1 = (\delta_1^2 - n^2 n_1) = \left(0 - \frac{x}{R^2} \cdot \frac{y}{R^2}\right) = -\frac{xy}{R^4}; \qquad h_2^2 = (\delta_2^2 - n^2 n_2) = 1 - \frac{y^2}{R^4}$$

Las componentes, no nulas, de la matriz de curvatura $K_{ij} = h_i^k h_i^p (\partial_k n_p)$ serán:

$$K_{11} = h_1^1 h_1^1 (\partial_1 n_1) + h_1^1 h_1^2 (\partial_1 n_2) + h_1^2 h_1^1 (\partial_2 n_1) + h_1^2 h_1^2 (\partial_2 n_2) = \left(1 - \frac{x^2}{R^4}\right)^2 \frac{y^2}{R^3} + 2\left(1 - \frac{x^2}{R^4}\right) \left(\frac{xy}{R^4}\right) \frac{xy}{R^3} + \left(\frac{xy}{R^4}\right)^2 \frac{x^2}{R^3} = \frac{y^2}{R^3}$$

$$K_{12} = h_1^1 h_2^1 (\partial_1 n_1) + h_1^1 h_2^2 (\partial_1 n_2) + h_1^2 h_2^1 (\partial_2 n_1) + h_1^2 h_2^2 (\partial_2 n_2) = \cdots \qquad = -\frac{xy}{R^3}$$

$$K_{21} = h_2^1 h_1^1 (\partial_1 n_1) + h_2^1 h_1^2 (\partial_1 n_2) + h_2^2 h_1^1 (\partial_2 n_1) + h_2^2 h_1^2 (\partial_2 n_2) = \cdots \qquad = -\frac{xy}{R^3}$$

$$K_{22} = h_2^1 h_2^1 (\partial_1 n_1) + h_2^1 h_2^2 (\partial_1 n_2) + h_2^2 h_2^1 (\partial_2 n_1) + h_2^2 h_2^2 (\partial_2 n_2) = \left(\frac{xy}{R^4}\right)^2 \frac{y^2}{R^3} + 2\left(\frac{xy}{R^4}\right) \left(1 - \frac{y^2}{R^4}\right) \frac{xy}{R^3} + \left(1 - \frac{y^2}{R^4}\right)^2 \frac{x^2}{R^3} = \frac{x^2}{R^3}$$

$$\text{La Traza del tensor es la curvatura total: } K = K_{11} + K_{22} = \frac{y^2}{R^3} + \frac{x^2}{R^3} = \frac{y^2 + x^2}{R^3} = \frac{R^2}{R^3} = \frac{1}{R} \quad \text{como se esperaba}$$

Visto tensor de curvatura extrínseco en superficie 2D inmersa en R^3 , generalizamos a cualquier variedad inmersa en otra mayor (la métrica no es $g_{ij} = \delta_{ij}$, los Christofels son $\neq 0$). Utilizaremos índices griegos, será importante colocarlos arriba ó abajo y, además, la derivada parcial se sustituye por la derivada covariante:

$$K_{\mu\nu} = h_{\mu}^{\alpha} h_{\nu}^{\beta} (\nabla_{\alpha} n_{\beta})$$
 $K = Traza \ deK_{\mu\nu}$ (V)

Otra forma de expresar el tensor de curvatura extrínseca, en función de las componentes del vector normal

$$\begin{split} & \boldsymbol{K}_{\mu\nu} = h^{\alpha}_{\mu}h^{\beta}_{\nu}\big(\nabla_{\alpha}\boldsymbol{n}_{\beta}\big) = \big(\delta^{\alpha}_{\mu} - n^{\alpha}n_{\mu}\big)\big(\delta^{\beta}_{\nu} - n^{\beta}n_{\nu}\big)\nabla_{\alpha}\boldsymbol{n}_{\beta} = \delta^{\alpha}_{\mu}\delta^{\beta}_{\nu}\nabla_{\alpha}\boldsymbol{n}_{\beta} - \delta^{\alpha}_{\mu}n^{\beta}n_{\nu}\nabla_{\alpha}\boldsymbol{n}_{\beta} - n^{\alpha}n_{\mu}\delta^{\beta}_{\nu}\nabla_{\alpha}\boldsymbol{n}_{\beta} + n^{\alpha}n_{\mu}n^{\beta}n_{\nu}\nabla_{\alpha}\boldsymbol{n}_{\beta} = 0 \end{split}$$

$$& = \nabla_{\mu}\boldsymbol{n}_{\nu} - n^{\beta}n_{\nu}\nabla_{\mu}\boldsymbol{n}_{\beta} - n^{\alpha}n_{\mu}\nabla_{\alpha}\boldsymbol{n}_{\nu} + n^{\alpha}n_{\mu}n_{\nu}n^{\beta}\nabla_{\alpha}\boldsymbol{n}_{\beta} \tag{Se demuestra fácil propiedad:} \quad \text{si } \underline{\boldsymbol{n}} \cdot \underline{\boldsymbol{n}} = \boldsymbol{1} \implies \boldsymbol{n}^{\beta}\nabla_{\alpha}\boldsymbol{n}_{\beta} = \boldsymbol{0} \end{split}$$

Según esa propiedad el tensor de curvatura extrínseca es: $K_{\mu\nu} = \nabla_{\mu} n_{\nu} - n^{\alpha} n_{\mu} \nabla_{\alpha} n_{\nu}$ (VI)

La Traza (curvatura total) es:
$$\mathbf{Traz} \; \mathbf{K}_{\mu\nu} = K_{11} + K_{22} + \dots = K_{\mu}^{\mu} = \mathbf{g}^{\mu\nu} \mathbf{K}_{\mu\nu} = g^{\mu\nu} \left(\nabla_{\mu} \mathbf{n}_{\nu} - \mathbf{n}^{\alpha} \mathbf{n}_{\mu} \nabla_{\alpha} \mathbf{n}_{\nu} \right)$$

$$= \nabla_{\mu} (g^{\mu\nu} n_{\nu}) - n^{\alpha} (g^{\mu\nu} n_{\mu}) \nabla_{\alpha} n_{\nu} = \nabla_{\mu} n^{\mu} - n^{\alpha} (n^{\nu} \nabla_{\alpha} n_{\nu}) \implies \mathbf{K} = \mathbf{Traz} \; \mathbf{K}_{\mu\nu} = \nabla_{\mu} n^{\mu} \quad \text{(VII)}$$
(Divergencia covariante)