Planning a successful target enrichment project

Alison M. Devault, Ph.D.

Product Manager, MYbaits & NGS

Smithsonian NMNH March 15th, 2016

We are MYcroarray®, a scientist-owned biotech company specializing in custom affordable microarrays, oligo libraries, and capture kits for target enrichment. We are committed to providing personalized customer service & innovative solutions for your unique applications.

MYbaits® – Target enrichment for NGS

MYreads® – NGS and target capture services

MYtxtl® – Cell-free protein expression kits

MYtags® – Labeled FISH probe libraries

MYlib® - Single- and double-stranded DNA pools

MYdna® – Error-free DNA for gene synthesis

MYcroarray® – Oligonucleotide microarrays

Contact information

alison@mycroarray.com

info@mycroarray.com

Skype: alison.mycroarray

1 (734)-998-0751

www.mycroarray.com/mybaits

www.mycroarray.com/myreads

Target Capture Applications and Bait Design

Ultimate research goal

- → Constraining genotyping/sequencing resources to **informative targets**
- → There are multiple avenues:

PCR SNP chip

RAD-seq / GBS

RNA-seq

Target Capture

What is target capture?

→ Hybridization-based enrichment of target loci prior to NGS

Your kit includes:

Custom RNA Probes

+ Capture Reagents

Why target capture? Powerful

- ✓ Highly flexible + scalable
- ✓ Tolerant of bait:target divergence
- √ Versatile and reproducible
- ✓ Small-to-large targets feasible
- ✓ Out-of-the-box functionality
- √ No specialized equipment
- ✓ Compatible with any type of specimen

Why target capture? Affordable

→ Highly efficient, highly flexible

96 samples

Library preparation	\$45	x96	\$4,320
MYbaits kit (2Mb, 12 i	\$3,000		
Enrichment (8-plex)	\$55	x12	\$660
Sequencing (Illumina	PE100, 1	lane)	\$2,650

\$10,630

= \$**111**/sample

MYreads® NGS services

Planning your successful project

- 1. Picking & filtering loci
- 2. Designing your baits
- 3. Building your libraries
- 4. Executing your experiment
- 5. Sequencing logistics
- 6. Interpreting your results

Denature libraries

Anneal blockers

Hybridize to baits

Bind to beads

Wash hybrids

Elute enriched library

- DNA sequencing library is heat-denatured in the presence of adapter-specific blocking oligonucleotides
- Library and blockers are dropped to the hybridization temperature, allowing blockers to hybridize to the library adapters
- Biotinylated RNA baits are introduced and allowed to hybridize to targets for several hours
- 4) Bait-target hybrids are pulled out of the solution with streptavidin-coated magnetic beads
- 5) Beads are stringently washed several times to remove non-hybridized and nonspecifically-hybridized molecules
- 6) Captured DNA library is released from the beads and amplified

Your sequences = capture probes

- → Sequences of interest are produced as pool of short, synthetic RNA baits
- → Baits hybridize to barcoded NGS library molecules
- → Enriched molecules are identified by aligning NGS reads to the targets

Consider molecular behavior

- → Pad loci by ~20 to 100bp to mitigate low read coverage at edges
- → Bait overlap is recommended (e.g. 2×)
- → Consider higher bait tiling for:
 - ☐ Short and/or rare inserts (degraded)
 - ☐ Unknown exon/intron boundaries
 - ☐ Unknown structural variants

Choosing appropriate loci

- → Any nucleic acid sequence is eligible
- → Most loci are good capture candidates
- → Can have assorted **lengths**

Hybridization is tolerant of divergence

- → Target capture is highly flexible
- → Can tolerate bait:target divergence of at least 10%+
- → If sufficiently divergent, reasonable to include >1 variant for a locus or region
 - → Balance with kit budget needs

Providing sequences for bait design

→ FASTA format or genomic coordinates

>Snake hemoglobin gene

AGGCTAGGCTTAGCGAGTATAGAGGCTATAGGGAGTTRRATAT ATTCGGATCGAGTTAGCGATAGCTAGATTCGATCGACTCT...

>Snake_PCR_amplicon_1735235

TTACCTAATCTGGRTAGAGCTAGCATCGATCGATCGTAGC...

>Snake_mRNA_sequence_NCBI_77777_edited

coor

FASTA

chr1:847584-848920:+

chr6:225046994-225086003:**chr17**:42274060-42292454:+

✓ Ambiguities are okay, BUT we will replace with random base before synthesis (no mixed bases)

- → Can include multiple variants/alleles per locus
 - → e.g. within population or different species
- → Send alignments or individual sequences

Important to filter your loci & baits

- → Efficient baitsets have targets of similar copy number
 - e.g. chromosomal vs. plastid
 - e.g. single-copy vs. multi-copy

NGS efficiency is important to your project budget

Options for efficiently targeting loci with different copy numbers

Gene families

Known repeats

Organellar

- ☐ Capture separately
 - Pool in new ratio before sequencing
- ☐ Replicate baits differently
 - (or, "spike-in" high-copy baits)
- ☐ Assemble high-copy loci from your offtarget reads
 - > e.g. "Hyb-Seq" genome skimming

Methods of filtering loci

Repetitive elements

Low complexity

Common motifs

High-copy loci

- 1. Genome-wide BLAST of candidate baits
 - ✓ e.g. MYbaits® complementary screen
- 2. RepeatMasker.org
- 3. Taxon-specific repeat databases
- 4. Low coverage shotgun data
- 5. Iterative experimental process

Example BLAST filtering results

Probe	40.0-60.0	62.5	65.0	67.5	70.0	>70.0	Selected
Bait1	0	0	0	1	0	0	true
Bait2	0	0	0	0	0	0	true
Bait3	345	45	32	8	21	12	false
Bait4	2	0	2	1	0	0	true

How much will my kit cost?

- 1. Number of bait sequences
- 2. Number of capture reactions

# reactions	~1 Mb (20K probes)	~5 Mb (100K probes)	~10 Mb (200K probes)
12	\$2,400	\$4,800	\$7,200
48	\$5,760	\$11,520	\$17,280

Planning for project costs

- → <u>UPSTREAM</u>: Library preparation
- → <u>DOWNSTREAM</u>: Sequencing
- → Mitigating costs of capture:
 - 1. Optimizing number of targets
 - 2. Tweaking tiling density
 - 3. Multiplexing and/or diluting baits

Next up,

capture-specific considerations for

- ⇒ gDNA preparation
- ⇒ library preparation
- ⇒ capture setup & cleanup
- ⇒ postcapture amplification
- ⇒ sequencing
- ⇒ performance analysis

Start by considering your targets

Targets inform sonication, size-selection, and sequencing protocol

Library Preparation

Library preparation

Library preparation

Hyper/HyperPlus

NEBNext® Ultra™ NEBNext® Fast

В

www.cshprotocols.org

Vol. 2010, Issue 6, June

Illumina Sequencing Library Preparation for Highly Multiplexed Target Capture and Sequencing

В

Matthias Meyer¹ and Martin Kircher

Ultimately:

Library preparation – multiplex captures

Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform

Nucleic Acids Research, 2011, 1–8 doi:10.1093/nar/gkr771

Martin Kircher*, Susanna Sawyer and Matthias Meyer*

Max Planck Institute for Evolutionary Anthropology, Department of Evolutionary Genetics, 04103 Leipzig, Germany

DNA input to library: maximize Library amplification: moderate

Library amplification

- ⇒ Use low-bias enzymes
 - Degraded? Use uracil non-stalling
 - e.g., KAPA® HiFi Uracil+

- - 500 ng input + 8 cycles \rightarrow 1-2 µg lib

Target Capture

Capture materials

- **⇒** Libraries
- ⇒ Baits (+ hybridization & wash kit) MY baits®

⇒ Streptavidin-coated magnetic beads

Dynabeads® MyOne™ C1

⇒ Magnetic rack

ALPAQUA® 96S

Capture materials

⇒ Water bath or hybridization oven

⇒ Thermal cycler (×2)

⇒ Low-bind PCR tubes (Axygen™)

- ⇒ Recommended:
 - Heat block, multi-channel pipettor

Capture materials considerations

- ⇒ COT-1 DNA (MYbaits Block #1 is *H. sapiens*)
 - Species-proximate option if available

- ⇒ Adapter-specific blockers (MYbaits Block #3)
 - Index-specific high-bind (BiooScientific, IDT)

- ⇒ KAPA® HiFi or AccuPrime™ Pfx polymerases
 - Allows for on-bead amplification postcapture

Library input to capture: 100-500 ng $(14 - 72 \text{ ng/}\mu\text{L in } 7 \mu\text{L})$

Degraded/rare DNA or Multiplexing: up to 2 µg total per rxn

P5 Index

Multiplexing – careful with your index combos!

Choosing hyb/wash temperature

⇒ Majority of projects: 65°C

⇒ Very rare and/or degraded templates: 55-65°C

Choosing hyb time

- ⇒ Majority of projects: Overnight hybridization
- ⇒ Very rare and/or degraded templates: 24-72 hr

\$\$\$ Budgeting – DNA to enriched library

Step	Materials	Time
gDNA extraction	\$ 10	0.5 days
sonication / size-selection	\$ 10	1 day
library preparation	\$ 50	1 day
capture – bait kit	\$ 150	2 days
capture – magbeads	\$ 10	-
capture – reamplification	\$ 5	-
library quantification	\$ 5	0.5 days
TOTAL	\$240/sample	5 days (~48 samples)

Sequencing

How should I sequence?

- ⇒ Protocol: how long of reads?
 - Consider library insert size point to long PE?
 - Consider target type SNPs, flanks, or contigs?

- ⇒ Depth three important numbers:
 - Size of target
 - Required coverage depth
 - Expected % on-target*

How deep to sequence?

```
required reads =
                              example
                               2 Mbp
    target length
    read length
                            200 (PE100)
         X
                                  X
 X coverage desired
                                50 X
expected % on-target
                                40%
 expected % unique
                                20%
                       =6.25 M reads/sample
```

Measuring success

- ⇒ **Specificity** (measure: % reads on-target)
 - Frequently ranges 15-95% on-target
 - If low: use higher temps (up to 68°C)
 - If low: do a second round of capture
 - If low: check your bait design

Measuring success

⇒ Sensitivity (measure: library complexity)

- If low: more input into library prep/capture
- If low: use lower temps (down to 55°C)
- If low: increase hyb time (up to 72 hr)

Project Design & Troubleshooting

Contact us!

http://crossroads.uni-koeln.de/images/neb.jpg

https://www.kapabiosystems.com/assets/logo.png

https://www.diagenode.com/img/product/reagents/diamag02.png

http://tools.thermofisher.com/content/sfs/prodImages/high/65001_650x600.jpg

http://www.alpaqua.com/Portals/0/Images/Magnet%20Plates/MP021-260x140.jpg

http://www.clker.com/clipart-eppendorf-tube.html