Logistic Regression

classification problems are supervised learning problems in which the outputs are discrete values

Regression

Classification

 $y \in \mathbb{R}$

 $y \in \{0,1\}$

regression problems can be transformed into classification problems by mapping continuous outputs to discrete outputs

$$h_c(x) = \begin{cases} 1 & if & h_r(x) \ge 0.5 \\ 0 & if & h_r(x) < 0.5 \end{cases}$$

$$h(x) = g(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n)$$

$$prediction = \begin{cases} 1 & if & h(x) \ge 0 \\ 0 & if & h(x) < 0 \end{cases}$$

Decision Boundary

$$h_{lin}(x) = 5 + 3x_1 - x_2$$

texample
$$h_{lin}(x)$$

 $(-2.5,5)$ $5+3(-2.5)-5=-7.5$
 $(-2,0)$ $5+3(-2)-0=-1$
 $(-1.5,2.25)$ $5+3(-1.5)-2.25=-1.75$
 $(-0.75,0.75)$ $5+3(-0.75)-0.75=6.5$
 $(-1.5,0)$ $5+3(-1.5)-0=0.5$
 $(1,1)$ $5+3(1)-1=7$

It doesn't make sense for h(x) to have a range greater than 1 or less than 0 since we know that $y \in \{0,1\}$

So that h(x) satisfies the range $0 \le h(x) \le 1$ we make use of an another function to map the values to the correct ranges

Sigmoid Function/Logistic Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

By composing the linear hypothesis into the sigmoid function the logistic hypothesis become more meaningful

The value of the prediction based on the logistic hypothesis can be interpreted as a measure of certainty for the predictor

to avoid a non-convex cost function, Logistic regression uses a different cost function compared to the linear regression

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$cost(h_{\theta}(x), y) = \begin{cases} i=1 \\ -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$y = 1$$

$$y = 0$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))]$$

$$J(\theta) = \frac{1}{m} \left[-y^T \log H - (1 - y)^T \log(1 - H) \right]$$

where: $H = g(X\theta)$

Solve for the cost for the following θ values:

x_1	x_2	y
1	1	1
2	2	1
3	1	1
0.5	0.5	0
0	1	0
-1	0	0

Repeat until convergence $for \ all \ j \ in \ [0, n]$):{ $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)}) x_j^{(i)}$

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^{n} (h(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Repeat until convergence:{ $\theta \coloneqq \theta - \frac{\alpha}{m} X^T (g(X\theta) - y)$