Introducción al Reconocimiento de Patrones

Tarea 3

Alexis Gavriel Gómez (2016085662) Andrés Ramírez Quirós (2016142049)

Problema 1.1

1.
$$J(\theta) = \frac{1}{2} \leq \omega i (\theta^{T}x^{i} - y^{i}) (\theta^{T}x^{i} - y^{i})$$

$$= \frac{1}{2} \geq (\theta^{T}x^{i} - y^{i}) \omega i (\theta^{T}x^{i} - y^{i})$$

Sea $(\theta^{T}x^{i} - y^{i}) = a$,

 $J(\theta) = \frac{1}{2} \stackrel{?}{\approx} a_{i} \omega_{i} a_{i}$

Se quiere que tenga la forma $x^{T}Ax$ para que sea escalar s. A es simetrica

S: $J(\theta) = \frac{1}{2} \stackrel{?}{\approx} a_{i} \omega_{i} a_{i}$

con $\omega_{i} = \frac{1}{2} \stackrel{?}{\approx} a_{i} \omega_{i} a_{i}$

con $\omega_{i} = \frac{1}{2} \stackrel{?}{\approx} a_{i} \omega_{i} a_{i}$

Tonando en acenta que $a_{i} = (\theta^{T}x^{i} - y^{i})$

Y $\geq \theta^{T}X^{(i)} = X\theta$
 $J(\theta) = \frac{1}{2} (X\theta - y)^{T} B$
 $J(\theta) = \frac{1}{2} (X\theta - y)^{T} W (X\theta - y)$ con W una native diagonalist

Problema 1.3

$$y = ho(x) + C$$

$$C = J(0)$$

$$l(0) = m \ln \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^2} J(0)$$

$$l(0) = m \ln \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^2} \frac{1}{2} \frac{1}{2} [(0^T x - Y) (0^T x - Y)]$$

$$con \frac{1}{\sigma^2} = w;$$

2.1Para los datos de test_qso:El theta óptimo resultante de la regresión lineal está dado por:Theta = (-0.456575,-0.048912)

Problema 2.2

Problema 2.3

Tau representa el ancho de banda, por lo que entre mayor sea el número, más peso tendrán los valores lejanos al centro de la banda, esto causa que la linealización se comporte como un promedio.