Exercice 1:

Pour E_1 :

-
$$0_E \in E_1 \text{ car } (0_E)' = 0_E$$
, et $\forall x \in \mathbb{R}, 0_E(x) + a(x)0_E(x) = 0$

- Soient $\lambda \in \mathbb{R}$, f, $g \in E_1$

On a bien $(\lambda f + g)' = \lambda f' + g'$, donc pour tout $x \in \mathbb{R}$

$$(\lambda f + g)'(x) + a(x)(\lambda f + g) = \lambda (f'(x) + a(x)f(x)) + g'(x) + a(x)g(x) = 0$$

Ainsi $\lambda f + g \in E_1$, donc E_1 est un sev de E.

Pour E_2 :

On voit que la fonction nulle n'appartient pas à E_2 :

$$\forall x \in E, 0'_E(x) + a(x)0_E(x) = 0$$

Ainsi E_2 n'est pas un sev de E.

Exercice 2:

Quitte à réordonner les α_k , on peut supposer $\alpha_1 < \alpha_2 < \cdots < \alpha_n$ Soient $\lambda_1, \dots \lambda_n \in \llbracket 1, n \rrbracket$ tels que $\forall x \in \mathbb{R}, \sum_{k=1}^n \lambda_k f_{\alpha_k}(x) = 0$ Alors $\forall x \in \mathbb{R}$,

$$-\lambda_1 = \sum_{k=2}^n \lambda_k e^{(\alpha_k - \alpha_1)x}$$

Car l'exponentielle ne s'annule jamais sur \mathbb{R}

$$\text{Or } \forall k \ \in [\![1,n]\!], \alpha_k < \alpha_1, \text{donc } e^{\alpha_k - \alpha_1} \underset{x \to +\infty}{\longrightarrow} 0$$

Donc

$$\sum_{k=2}^{n} \lambda_k e^{(\alpha_k - \alpha_1)x} \xrightarrow[x \to +\infty]{} 0$$

Ainsi on a $-\lambda_1 = 0$, ce qui implique $\lambda_1 = 0$.

On peut réitérer ce procédé pour tous les λ_k , ou utiliser une récurrence finie.

Ainsi on prouve que $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$, c'est-à-dire que la famille est libre.

Exercice 3

Cet exercice est plus un exercice de raisonnement qu'autre chose. Pour l'inclusion de $\{0\}$ dans D, il n'y a aucun problème, mais il réside dans la combinaison linéaire. Globalement, si vous voyez un produit de <u>variables</u> dans l'expression du « sev », ça n'en est sûrement pas un.

Montrons que cet ensemble n'est pas un sev.

On a $(1,-1) \in D$, $(2,1) \in D$ (ici on on prend simplement un couple qui annule chacun des facteurs de l'équation).

Or
$$(1,-1) + (2,1) = (3,0) \notin D$$
. En effet, $(3+0)(3-2\times 0) = 9 \neq 0$.

Ainsi *D* n'est pas un sous-espace vectoriel.

Exercice 4

1) Montrons que F est un sev de E.

La fonction nulle est évidemment π -périodique, reste à prouver que toute combinaison linéaire de fonction π -périodique l'est également.

Soient f et g deux fonction π -périodiques, alors $\forall x \in \mathbb{R}, f(x+\pi) = f(x)$ et $g(x+\pi) = g(x)$. Ainsi $\forall \lambda \in \mathbb{R}$,

$$(\lambda f + g)(x + \pi) = \lambda f(x + \pi) + g(x + \pi) = \lambda f(x) + g(x) = (\lambda f + g)(x)$$

Ainsi toute combinaison linéaire de fonctions de F est un élément de F. Donc F est un sev de E.

Montrons que G est un sev de E.

La fonction nulle tend évidemment vers 0 en $+\infty$.

Soient $f, g \in G, \lambda \in \mathbb{R}$.

Alor

$$(\lambda f + g)(x) = \lambda f(x) + g(x) \xrightarrow[x \to +\infty]{} 0$$

Donc toute combinaison de fonctions de G est élément de G. Donc G est un sev de E

2) Soit $f \in F \cap G$. Alors $f(x) \xrightarrow[x \to +\infty]{} 0$ et $f(x + \pi) = f(x)$ pour tout $x \in \mathbb{R}$ On peut prouver très facilement que $\forall n \in \mathbb{N}, f(x + n\pi) = f(x)$

Ainsi comme $f \in G$, on a :

$$f(x+n\pi) \xrightarrow[n\to+\infty]{} 0$$

Donc $\forall x \in \mathbb{R}, f(x) = 0$, c'est-à-dire f est la fonction nulle.

Ainsi $F \cap G \subset \{0_E\}$, et l'autre implication est triviale.

Donc $F \cap G = \{0_E\}$.

3) Soit h la fonction définie sur \mathbb{R} telle que $\forall x \in \mathbb{R}$, h(x) = x. Montrons que h ne peut pas s'écrire comme élément de la somme F+G. Soient $(f,g)\in F\times G$, telles que h=f+g. $\forall n \in \mathbb{N}$, on a $h(n\pi) = f(n\pi) + g(n\pi) = f(0) + g(n\pi) \xrightarrow[n \to +\infty]{} f(0) \in \mathbb{R}$

Or $h(n\pi) \xrightarrow[n \to +\infty]{} + \infty$. C'est absurde, donc F et G ne sont pas en somme directe.