Теоретические ("малые") домашние задания

Математическая логика, ИТМО, М3235-М3239, весна 2021 года

Задание №1. Знакомство с исчислением высказываний.

В рамках данного задания мы рассматриваем классическое исчисление высказываний с классическим множеством истинностных значений $\{\Pi, \Pi\}$.

- 1. Будем говорить, что высказывание общезначимо, если выполнено при любой оценке. Высказывание выполнимо, если существует оценка, при которой оно истинно. Высказывание опровержимо, если существует оценка, при которой оно ложно. Высказывание невыполнимо, если нет оценки, при которой оно истинно. Укажите про каждое из следующих высказываний, общезначимо, выполнимо, опровержимо или невыполнимо ли оно:
 - (a) $\neg A \lor \neg \neg A$
 - (b) $(A \rightarrow \neg B) \lor (B \rightarrow \neg C) \lor (C \rightarrow \neg A)$
 - (c) $(((P \rightarrow Q) \rightarrow P) \rightarrow P)$
 - (d) $\neg A \& \neg \neg A$
 - (e) $\neg (A \& \neg A)$
 - (f) A
 - (g) $A \rightarrow A$
 - (h) $A \rightarrow \neg A$
 - (i) $(A \rightarrow B) \lor (B \rightarrow A)$
- 2. Простые доказательства. Рассмотрим доказательства в классическом исчислении высказываний, здесь используются следующие десять схем аксиом:
 - (1)
 - $\begin{array}{l} \phi \rightarrow (\psi \rightarrow \phi) \\ (\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \psi \rightarrow \pi) \rightarrow (\phi \rightarrow \pi) \end{array}$ (2)
 - (3) $\phi \to \psi \to \phi \& \psi$
 - $\phi \& \psi \to \phi$ (4)
 - $\phi \& \psi \to \psi$ (5)
 - $\phi \to \phi \lor \psi$ (6)
 - (7) $\psi \to \phi \lor \psi$
 - $(\phi \to \pi) \to (\psi \to \pi) \to (\phi \lor \psi \to \pi)$
 - $(\phi \to \psi) \to (\phi \to \neg \psi) \to \neg \phi$
 - (10) $\neg \neg \phi \rightarrow \phi$

Докажите:

- (a) $\vdash A \to A$
- (b) $\vdash (A \rightarrow A \rightarrow B) \rightarrow (A \rightarrow B)$
- (c) $\vdash \neg (A \& \neg A)$
- (d) $\vdash A \& B \rightarrow B \& A$
- (e) $\vdash A \rightarrow \neg \neg A$
- (f) $A \& \neg A \vdash B$
- 3. Известна теорема о дедукции: $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \rightarrow \beta$. Докажите с её использованием:
 - (a) $\neg A, B \vdash \neg (A \& B)$
 - (b) $A, \neg B \vdash \neg (A \& B)$
 - (c) $\neg A, \neg B \vdash \neg (A \& B)$
 - (d) $\neg A, \neg B \vdash \neg (A \lor B)$
 - (e) $A, \neg B \vdash \neg (A \rightarrow B)$
 - (f) $\neg A, B \vdash A \rightarrow B$
 - (g) $\neg A, \neg B \vdash A \rightarrow B$

- (h) $\vdash (A \to B) \to (B \to C) \to (A \to C)$
- (i) $\vdash (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (C \rightarrow A)$
- (j) Закон контрапозиции: $\vdash (A \to B) \to (\neg B \to \neg A)$
- 4. Докажите:
 - (a) $\vdash A \lor \neg A$ (правило исключённого третьего)
 - (b) $\vdash A \& B \rightarrow \neg (\neg A \lor \neg B)$
 - (c) $\vdash \neg(\neg A \& \neg B) \rightarrow A \lor B$
 - (d) $\vdash A \& B \rightarrow A \lor B$
 - (e) $\vdash ((A \to B) \to A) \to A$ (закон Пирса)
- 5. Даны высказывания α и β , причём $\vdash \alpha \to \beta$ и $\alpha \not\equiv \beta$. Укажите способ построения высказывания γ , такого, что $\vdash \alpha \to \gamma$ и $\vdash \gamma \to \beta$, причём $\alpha \not\equiv \gamma$ и $\beta \not\equiv \gamma$.
- 6. Покажите, что если $\alpha \vdash \beta$ и $\neg \alpha \vdash \beta$, то $\vdash \beta$.

Задание №2. Теоремы о полноте и корректности классической логики, интуиционистская логика.

- 1. Покажите, что если $\Gamma \vdash \alpha$, то $\Gamma \models \alpha$.
- 2. Покажите, что если $\Gamma \models \alpha$, то $\Gamma \vdash \alpha$.
- 3. *О законе исключённого третьего*. Покажите, что в интуиционистском исчислении высказываний доказуемо следующее:
 - (a) $((A \to B) \to A) \to A \vdash \neg \neg A \to A$
 - (b) $A \vee \neg A \vdash \neg \neg A \rightarrow A$
- 4. Предложим следующий способ оценки интуиционистских высказываний. Фиксируем некоторое топологическое пространство с носителем X и топологией (множеством всех открытых множеств) $\Omega \subseteq X$. Множеством истинностных значений выберем Ω . Соответственно, функция оценок для переменных задаётся как $f_{\mathcal{P}}: \mathcal{P} \to \wp(\Omega)$. Определим функции оценок для связок так:

$$\begin{array}{lll} f_{\rightarrow}(a,b) & := & ((X \setminus a) \cup b)^{\circ} \\ f_{\&}(a,b) & := & a \cap b \\ f_{\vee}(a,b) & := & a \cup b \\ f_{\neg}(a) & := & (X \setminus a)^{\circ} \end{array}$$

Будем считать высказывание истинным, если его оценка — всё пространство X. Например, при $X=\mathbb{R}$ и $A:=(0,\infty), B:=(-\infty,1)$ высказывание $A\vee B$ истинно, но при $A:=(0,\infty), B:=(-\infty,0)$ оно ложно.

Известно, что интуиционистское исчисление высказываний корректно и полно при таком способе оценки — в частности это значит, что если формула α недоказуема, то найдётся такое топологическое пространство X и такие оценки для пропозициональных переменных, что $\llbracket \alpha \rrbracket \neq X$. Это позволяет показывать недоказуемость высказываний. Например, $\not\vdash A \lor \neg A$: возьмём $X = \mathbb{R}$ и $A := (0, \infty)$. Тогда $\llbracket \neg A \rrbracket = (-\infty, 0)$ и $\llbracket A \lor \neg A \rrbracket = \mathbb{R} \setminus \{0\} \neq \mathbb{R}$.

Предложите топологические пространства и оценку для пропозициональных переменных, опровергающие следующие выскзывания:

- (a) $\neg A \lor \neg \neg A$
- (b) $(((A \rightarrow B) \rightarrow A) \rightarrow A)$
- (c) $\neg \neg A \to A$
- (d) $(A \to (B \lor \neg B)) \lor (\neg A \to (B \lor \neg B))$
- (e) $(A \to B) \lor (B \to C) \lor (C \to A)$
- 5. Можно ли, имея $(A \to B) \lor (B \to C) \lor (C \to A)$, доказать закон исключённого третьего в интуиционистской логике?

- 6. Известно, что в классической логике любая связка может быть *выражена* как композиция конъюнкций и отрицаний: существует схема высказываний, использующая только конъюнкции и отрицания, задающая высказывание, логически эквивалентное исходной связке. Например, для импликации можно взять $\neg(\alpha \& \neg \beta)$, ведь $\alpha \to \beta \vdash \neg(\alpha \& \neg \beta)$ и $\neg(\alpha \& \neg \beta) \vdash \alpha \to \beta$. Возможно ли в интуиционистской логике выразить через остальные связки:
 - (а) конъюнкцию?
 - (b) дизъюнкцию?
 - (с) импликацию?
 - (d) отрицание?

Если да, предложите формулу и два вывода. Если нет — докажите это.

- 7. Назовём теорию *противоречивой*, если в ней найдётся такое α , что $\vdash \alpha$ и $\vdash \neg \alpha$. Покажите, что исчисления высказываний (классическое и интуиционистское) противоречивы тогда и только тогда, когда в них доказуема любая формула.
- 8. Теорема Гливенко. Обозначим доказуемость высказывания α в классической логике как $\vdash_{\kappa} \alpha$, а в интуиционистской как $\vdash_{\mu} \alpha$. Оказывается возможным показать, что какое бы ни было α , если $\vdash_{\kappa} \alpha$, то $\vdash_{\mu} \neg \neg \alpha$. А именно, покажите, что:
 - (a) Если α аксиома, полученная из схем 1–9 исчисления высказываний, то $\vdash_{\mathbf{u}} \neg \neg \alpha$.
 - (b) $\vdash_{\mathbf{H}} \neg \neg (\neg \neg \alpha \to \alpha)$
 - (c) $\neg \neg \alpha, \neg \neg (\alpha \rightarrow \beta) \vdash_{\mathbf{H}} \neg \neg \beta$
 - (d) Докажите утверждение теоремы ($\vdash_{\kappa} \alpha$ влечёт $\vdash_{u} \neg \neg \alpha$), опираясь на предыдущие пункты, и покажите, что классическое исчисление высказываний противоречиво тогда и только тогда, когда противоречиво интуиционистское.