Chapter 25

Vector Algebra

- The projections of a vector on the three coordinate axis are 6, -3, 2 respectively. The direction cosines [AIEEE-2009] of the vector are
 - (1) $\frac{6}{5}, \frac{-3}{5}, \frac{2}{5}$ (2) $\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$
 - (3) $\frac{-6}{7}$, $\frac{-3}{7}$, $\frac{2}{7}$ (4) 6, -3, 2
- If $\vec{u} \cdot \vec{v} \cdot \vec{w}$ are non-coplanar vectors and \vec{p} , \vec{q} are 2. numbers. then the $[3\overrightarrow{u}, \overrightarrow{pv}, \overrightarrow{pw}] - [\overrightarrow{pv}, \overrightarrow{w}, \overrightarrow{qu}] - [2\overrightarrow{w}, \overrightarrow{qv}, \overrightarrow{qu}] = 0$ [AIEEE-2009] holds for
 - (1) Exactly two values of (p, q)
 - (2) More than two but not all values of (p, q)
 - (3) All values of (p, q)
 - (4) Exactly one value of (p, q)
- Let $\vec{a} = \hat{i} \hat{k}$ and $\vec{c} = \hat{i} \hat{i} \hat{k}$. Then the vector \vec{b} satisfying $\vec{a} \times \vec{b} + \vec{c} = \vec{0}$ and $\vec{a} \cdot \vec{b} = 3$ is

[AIEEE-2010]

- (1) $-\hat{i} + \hat{j} 2\hat{k}$ (2) $2\hat{i} \hat{j} + 2\hat{k}$
- $(3) \quad \hat{i} \hat{j} 2\hat{k} \qquad \qquad (4) \quad \hat{j} + \hat{j} 2\hat{k}$
- If the vectors $\vec{a} = \hat{i} \hat{i} + 2\hat{k}$.

 $\vec{b} = 2\hat{i} + 4\hat{i} + \hat{k}$ and $\vec{c} = \lambda \hat{i} + \hat{i} + \mu \hat{k}$ are mutually [AIEEE-2010] orthogonal, then $(\lambda, \mu) =$

- (1) (-3, 2)
- (2) (2, -3)
- (3) (-2, 3)
- (4) (3, -2)
- 5. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors which are pairwise non-collinear. If $\vec{a} + 3\vec{b}$ is collinear with \vec{c} and $\vec{b} + 2\vec{c}$ is collinear with \vec{a} , then $\vec{a} + 3\vec{b} + 6\vec{c}$ [AIEEE-2011]
 - $(1) \vec{0}$
- (2) $\vec{a} + \vec{c}$

(3) \vec{a}

(4) \vec{c}

- If the vectors $p\hat{i} + \hat{i} + \hat{k}$, $\hat{i} + q\hat{i} + \hat{k}$ $\hat{i} + \hat{j} + r\hat{k} (p \neq q \neq r \neq 1)$ are coplanar, then the value of par - (p + a + r) is [AIEEE-2011]
 - (1) -1
- (2) -2

(3) 2

- (4) 0
- Let \hat{a} and \hat{b} be two unit vectors. If the vectors $\vec{c} = \hat{a} + 2\hat{b}$ and $\vec{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angle between \hat{a} and \hat{b} is [AIEEE-2012]
 - (1) $\frac{\pi}{4}$
- (2) $\frac{\pi}{6}$

(3) $\frac{\pi}{2}$

- (4) $\frac{\pi}{3}$
- 8 Let ABCD be a parallelogram such that $\overrightarrow{AB} = \overrightarrow{q}$, $\overrightarrow{AD} = \overrightarrow{p}$ and $\angle BAD$ be an acute angle. If \vec{r} is the vector that coincides with the altitude directed from the vertex B to the side AD, then \vec{r} [AIEEE-2012] is given by
 - (1) $\vec{r} = -\vec{q} + \left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p}$
 - (2) $\vec{r} = \vec{q} \left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p}$
 - (3) $\vec{r} = -3\vec{q} + \frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})}\vec{p}$
 - (4) $\vec{r} = 3\vec{q} \frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})}\vec{p}$
- If the vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC, then the length of the median through A is [JEE (Main)-2013]
 - (1) $\sqrt{18}$
- $(3) \sqrt{33}$

10.		en the lines whose direction the equations $l + m + n = 0$ and [JEE (Main)-2014]	
	π.	π	

(1)

(3) $\frac{\pi}{3}$

- (4) $\frac{\pi}{4}$
- 11. If $\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a} = \lambda [\vec{a} \ \vec{b} \ \vec{c}]^2$ then λ is equal to [JEE (Main)-2014]
 - (1) 0

(2) 1

(3) 2

- (4) 3
- 12. Let \vec{a} , \vec{b} and \vec{c} be three non-zero vectors such that two them are collinear $(\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{2} |\vec{b}| |\vec{c}| \vec{a}$. If θ is the angle between vectors \vec{b} and \vec{c} , then a value of sin θ is [JEE (Main)-2015]
 - (1) $\frac{2\sqrt{2}}{2}$
- (2) $\frac{-\sqrt{2}}{3}$

- (3) $\frac{2}{3}$
- (4) $\frac{-2\sqrt{3}}{3}$
- 13. Let \vec{a} , \vec{b} and \vec{c} be three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\sqrt{3}}{2} (\vec{b} + \vec{c})$. If \vec{b} is not parallel to \vec{c} ,

then the angle between \vec{a} and \vec{b} is [JEE (Main)-2016]

- (1) $\frac{\pi}{2}$
- (2) $\frac{2\pi}{3}$
- (3) $\frac{5\pi}{6}$
- (4) $\frac{3\pi}{4}$
- 14. Let $\vec{a} = 2\hat{i} + \hat{j} 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. Let \vec{c} be a vector such that $|\vec{c} - \vec{a}| = 3$, $|(\vec{a} \times \vec{b}) \times \vec{c}| = 3$ and the angle between \vec{c} and $\vec{a} \times \vec{b}$ be 30°. Then $\vec{a} \cdot \vec{c}$ is equal to [JEE (Main)-2017]
 - (1) 2

- (2) 5
- (3)

- 15. Let \vec{u} be a vector coplanar with the vectors $\vec{a} = 2\hat{i} + 3\hat{i} - \hat{k}$ and $\vec{b} = \hat{i} + \hat{k}$. If perpendicular to \vec{a} and $\vec{u} \cdot \vec{b} = 24$, then $|\vec{u}|^2$ is [JEE (Main)-2018] equal to
 - (1) 336
- (2) 315
- (3) 256
- (4) 84
- 16. Let $\vec{a} = \hat{i} \hat{j}$, $\vec{b} = \hat{i} + \hat{j} + \hat{k}$ and \vec{c} be a vector such that $\vec{a} \times \vec{c} + \vec{b} = \vec{0}$ and $\vec{a} \cdot \vec{c} = 4$, then $|\vec{c}|^2$ is equal

[JEE (Main)-2019]

- (1) $\frac{17}{2}$
- (2) $\frac{19}{2}$
- (3) 9

- 17. Let $\vec{a} = \hat{i} + \hat{j} + \sqrt{2}\hat{k}, \vec{b} = b_1\hat{i} + b_2\hat{i} + \sqrt{2}\hat{k}$ $\vec{c} = 5\hat{i} + \hat{i} + \sqrt{2}\hat{k}$ be three vectors such that the projection vector of \vec{b} on \vec{a} is \vec{a} . If $\vec{a} + \vec{b}$ is perpendicular to \vec{c} , then \vec{b} is equal to

[JEE (Main)-2019]

- (1) $\sqrt{22}$
- (2) $\sqrt{32}$
- (3) 4
- (4) 6
- 18. Let $\vec{a} = 2\hat{i} + \lambda_1 \hat{i} + 3\hat{k}$, $\vec{b} = 4\hat{i} + (3 \lambda_2)\hat{i} + 6\hat{k}$ and $\vec{c} = 3\hat{i} + 6\hat{j} + (\lambda_3 - 1)\hat{k}$ be three vectors such that $\vec{b} = 2\vec{a}$ and \vec{a} is perpendicular to \vec{c} . Then a possible value of $(\lambda_1, \lambda_2, \lambda_3)$ is

[JEE (Main)-2019]

- (1) (1, 3, 1)
- (2) (1, 5, 1)
- (3) $\left(\frac{1}{2}, 4, -2\right)$ (4) $\left(-\frac{1}{2}, 4, 0\right)$
- 19. Let $\vec{\alpha} = (\lambda 2) \vec{a} + \vec{b}$ and $\vec{\beta} = (4\lambda 2) \vec{a} + 3\vec{b}$ be two given vectors where vectors \vec{a} and \vec{b} are non-collinear. The value of λ for which vectors $\vec{\alpha}$ and $\vec{\beta}$ are collinear, is [JEE (Main)-2019]
 - (1) 3
- (2) 4

- (3) 3
- (4) 4

21. Let $\sqrt{3}\hat{i} + \hat{j}$, $\hat{i} + \sqrt{3}\hat{j}$ and $\beta\hat{i} + (1-\beta)\hat{j}$ respectively be the position vectors of the points A, B and C with respect to the origin O. If the distance of C from the bisector of the acute angle between OA and OB is $\frac{3}{\sqrt{2}}$, then the sum of all possible values of β is [JEE (Main)-2019]

- (1) 3(2) 1(3) 4(4) 2
- 22. The sum of the distinct real values of μ , for which the vectors, $\mu \hat{i} + \hat{j} + \hat{k}$, $\hat{i} + \mu \hat{j} + \hat{k}$, $\hat{i} + \hat{j} + \mu \hat{k}$ are co-planar, is **[JEE (Main)-2019]**
 - (1) 2 (2) 1 (3) -1 (4) 0
- 23. Let \vec{a} , \vec{b} and \vec{c} be three unit vectors, out of which vectors \vec{b} and \vec{c} are non-parallel. If α and β are the angles which vector \vec{a} makes with vectors \vec{b} and \vec{c} respectively and $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2} \vec{b}$, the $|\alpha \beta|$ is equal to [JEE (Main)-2019]
 - (1) 90° (2) 45° (3) 30° (4) 60°
- 24. The magnitude of the projection of the vector $2\hat{i} + 3\hat{j} + \hat{k}$ on the vector perpendicular to the plane containing the vectors $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$, is: [JEE (Main)-2019]

(1)
$$\sqrt{\frac{3}{2}}$$
 (2) $3\sqrt{6}$

(3)
$$\frac{\sqrt{3}}{2}$$
 (4) $\sqrt{6}$

25. The vector equation of plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x - y + z = 0 is **[JEE (Main)-2019]**

(1)
$$\vec{r} \cdot (\hat{i} - \hat{k}) + 2 = 0$$
 (2) $\vec{r} \cdot (\hat{i} - \hat{k}) - 2 = 0$

(3)
$$\vec{r} \times (\hat{i} - \hat{k}) + 2 = 0$$
 (4) $\vec{r} \times (\hat{i} + \hat{k}) + 2 = 0$

26. Let $\vec{a} = 3\hat{i} + 2\hat{j} + x\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$, for some real x. Then $|\vec{a} \times \vec{b}| = r$ is possible if

[JEE (Main)-2019]

(1)
$$3\sqrt{\frac{3}{2}} < r < 5\sqrt{\frac{3}{2}}$$
 (2) $\sqrt{\frac{3}{2}} < r \le 3\sqrt{\frac{3}{2}}$

(3)
$$0 < r \le \sqrt{\frac{3}{2}}$$
 (4) $r \ge 5\sqrt{\frac{3}{2}}$

27. Let $\vec{\alpha}=3\hat{i}+\hat{j}$ and $\vec{\beta}=2\hat{i}-\hat{j}+3\hat{k}$. If $\vec{\beta}=\vec{\beta}_1-\vec{\beta}_2$, where $\vec{\beta}_1$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_2$ is perpendicular to $\vec{\alpha}$, then $\vec{\beta}_1\times\vec{\beta}_2$ is equal to [JEE (Main)-2019]

(1)
$$\frac{1}{2}(3\hat{i}-9\hat{j}+5\hat{k})$$
 (2) $\frac{1}{2}(-3\hat{i}+9\hat{j}+5\hat{k})$

(3)
$$-3\hat{i} + 9\hat{j} + 5\hat{k}$$
 (4) $3\hat{i} - 9\hat{j} - 5\hat{k}$

28. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and $\theta \in (0, \pi)$ with \hat{k} , then a value of θ is [JEE (Main)-2019]

(1)
$$\frac{5\pi}{12}$$
 (2) $\frac{2}{3}$

(3)
$$\frac{\pi}{4}$$
 (4) $\frac{5\pi}{6}$

29. The distance of the point having position vector $-\hat{i} + 2\hat{j} + 6\hat{k}$ from the straight line passing through the point (2, 3, -4) and parallel to the vector, $6\hat{i} + 3\hat{j} - 4\hat{k}$ is [JEE (Main)-2019]

(1) 7 (2)
$$4\sqrt{3}$$

(3) 6 (4)
$$2\sqrt{13}$$

(1)
$$\frac{1}{\sqrt{3}}$$

(2)
$$-\sqrt{3}$$

(3)
$$\sqrt{3}$$

(4)
$$-\frac{1}{\sqrt{3}}$$

31. Let $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ be two vectors. If a vector perpendicular to both the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ has the magnitude 12 then one [JEE (Main)-2019] such vector is

(1)
$$4(-2\hat{i}-2\hat{j}+\hat{k})$$

(1)
$$4(-2\hat{i}-2\hat{j}+\hat{k})$$
 (2) $4(2\hat{i}+2\hat{j}-\hat{k})$

(3)
$$4(2\hat{i}+2\hat{j}+\hat{k})$$

(3)
$$4(2\hat{i}+2\hat{j}+\hat{k})$$
 (4) $4(2\hat{i}-2\hat{j}-\hat{k})$

32. Let $\alpha \in R$ and the three vectors $\vec{a} = \alpha \hat{i} + \hat{i} + 3\hat{k}$. $\vec{b} = 2\hat{i} + \hat{i} - \alpha \hat{k}$ and $\vec{c} = \alpha \hat{i} - 2\hat{i} + 3\hat{k}$. Then the set $S = \{\alpha : \vec{a}, \vec{b} \text{ and } \vec{c} \text{ are coplanar}\}$

[JEE (Main)-2019]

- (1) Contains exactly two numbers only one of which is positive
- (2) Is singleton
- (3) Contains exactly two positive numbers
- (4) Is empty
- 33. A vector $\vec{a} = \alpha \hat{i} + 2\hat{i} + \beta \hat{k}$ ($\alpha, \beta \in R$) lies in the plane of the vectors, $\vec{b} = \hat{i} + \hat{j}$ and $\vec{c} = \hat{i} - \hat{j} + 4\hat{k}$. If \vec{a} bisects the angle between \vec{b} and \vec{c} , then

(1)
$$\vec{a} \cdot \hat{i} + 3 = 0$$
 (2) $\vec{a} \cdot \hat{i} + 1 = 0$

$$(2) \quad \vec{a} \cdot \hat{i} + 1 = 0$$

$$(3) \quad \vec{a} \cdot \hat{k} + 2 = 0$$

(3)
$$\vec{a} \cdot \hat{k} + 2 = 0$$
 (4) $\vec{a} \cdot \hat{k} + 4 = 0$

34. Let \vec{a} , \vec{b} and \vec{c} be three unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. If $\lambda = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ $\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ then the ordered pair, (λ, \vec{d}) is equal to [JEE (Main)-2020]

$$(1) \quad \left(\frac{3}{2}, 3\vec{a} \times \vec{c}\right)$$

(1)
$$\left(\frac{3}{2}, 3\vec{a} \times \vec{c}\right)$$
 (2) $\left(-\frac{3}{2}, 3\vec{c} \times \vec{b}\right)$

(3)
$$\left(-\frac{3}{2}, 3\vec{a} \times \vec{b}\right)$$
 (4) $\left(\frac{3}{2}, 3\vec{b} \times \vec{c}\right)$

$$(4) \quad \left(\frac{3}{2}, 3\vec{b} \times \vec{c}\right)$$

35. Let the volume of a parallelopiped whose coterminous edges are $\vec{u} = \hat{i} + \hat{j} + \lambda \hat{k}, \ \vec{v} = \hat{i} + \hat{j} + 3\hat{k} \text{ and } \vec{w} = 2\hat{i} + \hat{j} + \hat{k}$ be 1 cu. unit. If θ be the angle between the edges \vec{u} and \vec{w} , then $\cos\theta$ can be [JEE (Main)-2020]

(1)
$$\frac{5}{7}$$

(2)
$$\frac{5}{3\sqrt{3}}$$

(3)
$$\frac{7}{6\sqrt{6}}$$

(4)
$$\frac{7}{6\sqrt{3}}$$

36. Let a, b $c \in R$ be such that $a^2 + b^2 + c^2 = 1$. If $a\cos\theta = b\cos\left(\theta + \frac{2\pi}{3}\right) = \cos\left(\theta + \frac{4\pi}{3}\right)$, where

 $\theta = \frac{\pi}{0}$, then the angle between the vectors $a\hat{i} + b\hat{i} + c\hat{k}$ and $b\hat{i} + c\hat{i} + a\hat{k}$ is

[JEE (Main)-2020]

(2)
$$\frac{\pi}{9}$$

(3)
$$\frac{2\pi}{3}$$

(4)
$$\frac{\pi}{2}$$

37. Let x_0 be the point of local maxima of

$$f(x) = \vec{a} \cdot (\vec{b} \times \vec{c})$$
, where

$$\vec{a} = x\hat{i} - 2\hat{j} + 3\hat{k}, \ \vec{b} = -2\hat{i} + x\hat{j} - \hat{k}$$

and $\vec{c} = 7\hat{i} - 2\hat{i} + x\hat{k}$. Then the value

of
$$\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$$
 at $x = x_0$ is

[JEE (Main)-2020]

$$(3) -4$$

of a parallelopiped, volume whose coterminous edges are given by the vectors $\vec{a} = \hat{i} + \hat{j} + n\hat{k}$, $\vec{b} = 2\hat{i} + 4\hat{j} - n\hat{k}$ and $\vec{c} = \hat{i} + n\hat{j} + 3\hat{k}$ $(n \ge 0)$, is 158 cu.units, then

[JEE (Main)-2020]

(1)
$$n = 7$$

(2)
$$\vec{b} \cdot \vec{c} = 10$$

(3)
$$n = 9$$

(4)
$$\vec{a} \cdot \vec{c} = 17$$

39.	Let $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ be tw	vo
	vectors. If \vec{c} is a vector such that $\vec{b} \times \vec{c} = \vec{b} \times \vec{c}$	ā
	and $\vec{c} \cdot \vec{a} = 0$, then $\vec{c} \cdot \vec{b}$ is equal to	

[JEE (Main)-2020]

- (1) -
- (2) $-\frac{3}{2}$

(3) -1

- $(4) \frac{1}{2}$
- 40. If the vectors, $\vec{p} = (a+1)\hat{i} + a\hat{i} + a\hat{k}$. $\vec{q} = a \hat{i} + (a + 1) \hat{i} + a \hat{k}$ and $\vec{r} = a\hat{i} + a\hat{j} + (a+1)\hat{k}$ $(a \in \mathbb{R})$ are coplanar and $3(\vec{p} \cdot \vec{q})^2 - \lambda \vec{r} \times \vec{q}^2 = 0$, then the value of λ is [JEE (Main)-2020]
- 41. Let \vec{a} , \vec{b} and \vec{c} be three vectors such that $|\vec{a}| = \sqrt{3}, |\vec{b}| = 5, \vec{b}. \vec{c} = 10$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$. If \vec{a} is perpendicular to the vector $\vec{b} \times \vec{c}$, then $|\vec{a} \times (\vec{b} \times \vec{c})|$ is equal to _____.

[JEE (Main)-2020]

- 42. Let \vec{a} , \vec{b} and \vec{c} be three unit vectors such that $|\vec{a} - \vec{b}|^2 + |\vec{a} - \vec{c}|^2 = 8$. Then $|\vec{a} + 2\vec{b}|^2 + |\vec{a} + 2\vec{c}|^2$
- 43. Let the position vectors of points 'A' and 'B' be $\hat{i} + \hat{i} + \hat{k}$ and $2\hat{i} + \hat{i} + 3\hat{k}$, respectively. A point 'P' divides the line segment AB internally in the ratio λ : 1 (λ > 0). If O is the origin and $\overrightarrow{OB}.\overrightarrow{OP} - 3\overrightarrow{OA} \times \overrightarrow{OP}^2 = 6$, then λ is equal [JEE (Main)-2020]
- 44. If $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$, then the value of $\left|\hat{j} \times \left(\vec{a} \times \hat{i}\right)^2 + \left|\hat{j} \times \left(\vec{a} \times \hat{j}\right)^2 + \left|\hat{k} \times \left(\vec{a} \times \hat{k}\right)^2\right| \right|$ is equal to [JEE (Main)-2020]
- 45. Let the vectors \vec{a} , \vec{b} , \vec{c} be such that $|\vec{a}| = 2$, $|\vec{b}| = 4$ and $|\vec{c}| = 4$. If the projection of \vec{b} on \vec{a} is equal to the projection of \vec{c} on \vec{a} and \vec{b} is perpendicular to \vec{c} , then the value of $|\vec{a} + \vec{b} - \vec{c}|$ is [JEE (Main)-2020]

46. If \vec{a} and \vec{b} are unit vectors, then the greatest value of $\sqrt{3} |\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|$ is _____.

[JEE (Main)-2020]

47. If \vec{x} and \vec{y} be two non-zero vectors such that $|\vec{x} + \vec{y}| = |\vec{x}|$ and $2\vec{x} + \lambda \vec{y}$ is perpendicular to \vec{y} , then the value of λ is

[JEE (Main)-2020]

- 48. Let $\vec{a} = \hat{i} + 2\hat{j} \hat{k}$, $\vec{b} = \hat{i} \hat{j}$ and $\vec{c} = \hat{i} \hat{j} \hat{k}$ be three given vectors, if \vec{r} is a vector such that $\vec{r} \times \vec{a} = \vec{c} \times \vec{a}$ and $\vec{r} \cdot \vec{b} = 0$, then $\vec{r} \cdot \vec{a}$ is equal to [JEE (Main)-2021]
- 49 A plane passes through the points A(1,2,3), B(2, 3, 1) and C(2, 4, 2). If O is the origin and P is (2, -1, 1), then the projection of \overrightarrow{OP} on this plane is of length: [JEE (Main)-2021]
 - (1) $\sqrt{\frac{2}{5}}$
- (2) $\sqrt{\frac{2}{7}}$
- (3) $\sqrt{\frac{2}{3}}$
- $(4) \sqrt{\frac{2}{11}}$
- 50. Let $\vec{a} = \hat{i} + a\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} a\hat{j} + \hat{k}$. If the area of the parallelogram whose adjacent sides are represented by the vectors a and b is $8\sqrt{3}$ square units, then $\vec{a} \cdot \vec{b}$ is equal to [JEE (Main)-2021]
- 51. If \vec{a} and \vec{b} are perpendicular, then $\vec{a} \times (\vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})))$ is equal to :

[JEE (Main)-2021]

- (1) $\vec{a} \times \vec{b}$
- $(2) \ \vec{0}$
- (3) $\frac{1}{2} |\vec{a}|^4 \vec{b}$
- $(4) \quad \left| \vec{a} \right|^4 \vec{b}$
- If vectors $\overrightarrow{a_1} = x\hat{i} \hat{j} + \hat{k}$ and $\overrightarrow{a_2} = \hat{i} + y\hat{j} + z\hat{k}$ are 52. collinear, then a possible unit vector parallel to the vector $x\hat{i} + y\hat{j} + z\hat{k}$ is : [JEE (Main)-2021]
 - (1) $\frac{1}{\sqrt{3}} (\hat{i} \hat{j} + \hat{k})$ (2) $\frac{1}{\sqrt{3}} (\hat{i} + \hat{j} \hat{k})$

 - (3) $\frac{1}{\sqrt{2}} (\hat{i} \hat{j})$ (4) $\frac{1}{\sqrt{2}} (-\hat{j} + \hat{k})$

- 59. Let \vec{x} be a vector in the plane containing vectors $\vec{a} = 2 \hat{i} - \hat{i} + \hat{k}$ and $\vec{b} = \hat{i} + 2 \hat{i} - \hat{k}$. If the vector \vec{x} is perpendicular to $(3\hat{i} + 2\hat{j} - \hat{k})$ and its projection on \vec{a} is $\frac{17\sqrt{6}}{2}$, then the value of $|\vec{x}|^2$ is equal to [JEE (Main)-2021]
- 60. A vector \vec{a} has components 3p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to new system, \vec{a} has components p + 1 and $\sqrt{10}$. then a value of p is equal to

[JEE (Main)-2021]

$$(1) -1$$

(3)
$$\frac{4}{5}$$

(4)
$$-\frac{5}{4}$$

61. In a triangle ABC, if $|\overrightarrow{BC}| = 8$, $|\overrightarrow{CA}| = 7$, $|\overrightarrow{AB}| = 10$, then the projection of the vector \overrightarrow{AB} on \overrightarrow{AC} is [JEE (Main)-2021] equal to:

(1)
$$\frac{115}{16}$$

(2)
$$\frac{25}{4}$$

(3)
$$\frac{127}{20}$$

(4)
$$\frac{85}{14}$$

62. Let \vec{a} and \vec{b} be two non-zero vectors perpendicular to each other and $|\vec{a}| = |\vec{b}|$. If $|\vec{a} \times \vec{b}| = |\vec{a}|$, then the angle between the vectors $(\vec{a} + \vec{b} + (\vec{a} \times \vec{b}))$ and \vec{a} [JEE (Main)-2021] is equal to:

(1)
$$\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$$

(1)
$$\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
 (2) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$

(3)
$$\sin^{-1}\left(\frac{1}{\sqrt{6}}\right)$$

(3)
$$\sin^{-1}\left(\frac{1}{\sqrt{6}}\right)$$
 (4) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$

- 63. Let $\vec{a} = 2\hat{i} + \hat{j} 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$ and the angle between $(\vec{a} \times \vec{b})$ and \vec{c} is $\frac{\pi}{6}$, then the value of $(\vec{a} \times \vec{b}) \times \vec{c}$ is [JEE (Main)-2021]
 - (1) 4

(2)
$$\frac{2}{3}$$

(3)
$$\frac{3}{2}$$

(4) 3

65. In a triangle ABC, if
$$|\overrightarrow{BC}| = 3$$
, $|\overrightarrow{CA}| = 5$ and $|\overrightarrow{BA}| = 7$, then the projection of the vector $|\overrightarrow{BA}|$ on $|\overrightarrow{BC}|$ is equal to :

[JEE (Main)-2021]

(1)
$$\frac{13}{2}$$

(2)
$$\frac{19}{2}$$

(3)
$$\frac{15}{2}$$

$$(4) \frac{11}{2}$$

66. For p > 0, a vector $\vec{v}_2 = 2\hat{i} + (p+1)\hat{j}$ is obtained by rotating the vector $\vec{v}_1 = \sqrt{3} p \hat{i} + \hat{j}$ by an angle θ about origin in counter clockwise direction. If

 $\tan \theta = \frac{\left(\alpha\sqrt{3}-2\right)}{\left(4\sqrt{3}+3\right)}$, then the value of α is equal to

[JEE (Main)-2021]

- 67. Let a vector a be coplanar with vectors $\vec{b} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} + \hat{k}$. If \vec{a} is perpendicular to $\vec{d} = 3\hat{i} + 2\hat{j} + 6\hat{k}$, and $|\vec{a}| = \sqrt{10}$. Then a possible value of $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{a} \vec{b} \vec{d} \end{bmatrix} + \begin{bmatrix} \vec{a} \vec{c} \vec{d} \end{bmatrix}$ is [JEE (Main)-2021] equal to
 - (1) -42

(2) -40

(3) -38

- (4) -29
- 68. Let three vectors \vec{a} , \vec{b} and \vec{c} be such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{b} \times \vec{c} = \vec{a}$ and $|\vec{a}| = 2$. Then which one of the following is **not** true? [JEE (Main)-2021]
 - (1) $\vec{a} \times ((\vec{b} + \vec{c}) \times (\vec{b} \vec{c})) = \vec{0}$
 - (2) Projection of \vec{a} on $(\vec{b} \times \vec{c})$ is 2
 - (3) $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} + \begin{bmatrix} \vec{c} \ \vec{a} \ \vec{b} \end{bmatrix} = 8$
 - (4) $|3\vec{a} + \vec{b} 2\vec{c}|^2 = 51$

69. Let the vectors

$$(2+a+b)\hat{i} + (a+2b+c)\hat{j} - (b+c)\hat{k}$$

$$(1+b)\hat{i} + 2b\hat{j} - b\hat{k}$$
 and

$$(2+b)\hat{i} + 2b\hat{j} + (1-b)\hat{k}$$
, a, b, c \in **R**

be co-planar. Then which of the following is true?

[JEE (Main)-2021]

- (1) 3c = a + b
- (2) 2b = a + c
- (3) 2a = b + c (4) a = b + 2c
- 70. Let $\vec{p} = 2\hat{i} + 3\hat{i} + \hat{k}$ and $\vec{q} = \hat{i} + 2\hat{i} + \hat{k}$ be two vectors. If a vector $\vec{r} = (\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k})$ is perpendicular to each of the vectors $(\vec{p} + \vec{q})$ and $(\vec{p} - \vec{q})$, and $|\vec{r}| = \sqrt{3}$, then $|\alpha| + |\beta| + |\gamma|$ is equal to _____.

[JEE (Main)-2021]

- 71. Let a, b and c be distinct positive numbers. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are [JEE (Main)-2021] co-planar, then c is equal to
 - (1) $\frac{2}{\frac{1}{a} + \frac{1}{b}}$
- (2) √ab
- (3) $\frac{a+b}{2}$
- (4) $\frac{1}{2} + \frac{1}{5}$
- If $|\vec{a}| = 2$, $|\vec{b}| = 5$ and $|\vec{a} \times \vec{b}| = 8$, then $|\vec{a} \cdot \vec{b}|$ is equal to [JEE (Main)-2021]
 - (1) 3

(2) 6

(3) 4

- (4) 5
- 73. If $(\vec{a}+3\vec{b})$ is perpendicular to $(7\vec{a}-5\vec{b})$ and $(\vec{a} - 4\vec{b})$ is perpendicular to $(7\vec{a} - 2\vec{b})$, then the angle between \vec{a} and \vec{b} (in degrees) is _____.

[JEE (Main)-2021]

- 74. Let $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} + 2\hat{j} + 3\hat{k}$. Then the vector product $(\vec{a} + \vec{b}) \times ((\vec{a} \times ((\vec{a} - \vec{b}) \times \vec{b})) \times \vec{b})$ is [JEE (Main)-2021]
 - (1) $7(34\hat{i} 5\hat{j} + 3\hat{k})$ (2) $7(30\hat{i} 5\hat{j} + 7\hat{k})$
 - (3) $5(30\hat{i} 5\hat{j} + 7\hat{k})$ (4) $5(34\hat{i} 5\hat{j} + 3\hat{k})$

75. Let $\vec{a} = \hat{i} + \hat{i} + \hat{k}$. \vec{b} and $\vec{c} = \hat{i} - \hat{k}$ be three vectors such that $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{a} \cdot \vec{b} = 1$. If the length of projection vector of the vector \vec{b} on the vector $\vec{a} \times \vec{c}$ is l, then the value of $3l^2$ is equal to

[JEE (Main)-2021]

76. Let \vec{a} , \vec{b} and \vec{c} be three vectors such that $\vec{a} = \vec{b} \times (\vec{b} \times \vec{c})$. If magnitudes of the vectors \vec{a}, \vec{b} and \vec{c} are $\sqrt{2}$, 1 and 2 respectively and the angle between \vec{b} and \vec{c} is $\theta \left(0 < \theta < \frac{\pi}{2} \right)$, then the value of 1 + $\tan\theta$ is equal to

[JEE (Main)-2021]

(1) 2

(2)
$$\frac{\sqrt{3}+1}{\sqrt{3}}$$

(3) 1

(4)
$$\sqrt{3} + 1$$

- 77. Let $\vec{a} = \hat{i} \alpha \hat{j} + \beta \hat{k}$, $\vec{b} = 3\hat{i} + \beta \hat{j} \alpha \hat{k}$ and $\vec{c} = -\alpha \hat{i} - 2\hat{j} + \hat{k}$, where α and β are integers. If $\vec{a} \cdot \vec{b} = -1$ and $\vec{b} \cdot \vec{c} = 10$, $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is equal to [JEE (Main)-2021]
- 78. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} \hat{k}$. if \vec{c} is a vector such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$, then $\vec{a} \cdot (\vec{b} \times \vec{c})$ is equal to [JEE (Main)-2021]
 - (1) 6

(2) -2

(3) -6

- (4) 2
- 79. If the projection of the vector $\hat{i} + 2\hat{j} + \hat{k}$ on the sum of the two vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $-\lambda \hat{i} + 2\hat{j} + 3\hat{k}$ is 1, then λ is equal to _____.

[JEE (Main)-2021]

- 80. Let $\vec{a} = \hat{i} + 5\hat{i} + \alpha \hat{k}$. $\vec{b} = \hat{i} + 3\hat{i} + \beta \hat{k}$ $\vec{c} = -\hat{i} + 2\hat{j} - 3\hat{k}$ be three vectors such that, $|\vec{b} \times \vec{c}| = 5\sqrt{3}$ and \vec{a} is perpendicular to \vec{b} . Then the greatest amongst the values of $|\vec{a}|^2$ is _____. [JEE (Main)-2021]
- 81. Let \vec{a} and \vec{b} be two vectors such that $|2\vec{a} + 3\vec{b}| = |3\vec{a} + 3\vec{b}|$ and the angle between \vec{a} and \vec{b} is 60°. If $\frac{1}{8}\vec{a}$ is a unit vector, then $|\vec{b}|$ is equal to : [JEE (Main)-2021]
 - (1) 8

(2) 4

(3) 5

(4) 6

Let \vec{a} . \vec{b} . \vec{c} be three vectors mutually perpendicular to each other and have same magnitude. If a vector r satisfies

$$\vec{a} \times \left\{ \left(\vec{r} - \vec{b} \right) \times \vec{a} \right\} + \vec{b} \times \left\{ \left(\vec{r} - \vec{c} \right) \times \vec{b} \right\} + \vec{c} \times \left\{ \left(\vec{r} - \vec{a} \right) \times \vec{c} \right\} = \vec{0},$$

then \vec{r} is equal to

[JEE (Main)-2021]

$$(1) \quad \frac{1}{3} \left(\vec{a} + \vec{b} + \vec{c} \right)$$

(1)
$$\frac{1}{3}(\vec{a} + \vec{b} + \vec{c})$$
 (2) $\frac{1}{2}(\vec{a} + \vec{b} + 2\vec{c})$

(3)
$$\frac{1}{2} (\vec{a} + \vec{b} + \vec{c})$$
 (4) $\frac{1}{3} (2\vec{a} + \vec{b} - \vec{c})$

(4)
$$\frac{1}{3}(2\vec{a} + \vec{b} - \vec{c})$$

- 83. Let $\vec{a} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} \hat{k}$. Let a vector \vec{v} be in the plane containing \vec{a} and \vec{b} . If \vec{v} is perpendicular to the vector $3\hat{i} + 2\hat{j} - \hat{k}$ and its projection on \vec{a} is 19 units, then $|2\vec{v}|^2$ is equal [JEE (Main)-2021]
- 84. Let \hat{a} , \hat{b} be unit vectors. If \vec{c} be a vector such that the angle between \hat{a} and \vec{c} is $\frac{\pi}{12}$, and $\hat{b} = \vec{c} + 2(\vec{c} \times \hat{a})$, then $|6\vec{c}|^2$ is equal to:

[JEE (Main)-2022]

(1)
$$6(3-\sqrt{3})$$

(2)
$$3 + \sqrt{3}$$

(3)
$$6(3+\sqrt{3})$$

(4)
$$6(\sqrt{3}+1)$$

85. Let \hat{a} and \hat{b} be two unit vectors such that $|(\hat{a}+\hat{b})+2(\hat{a}\times\hat{b})|=2$. If $\theta\in(0,\pi)$ is the angle between \hat{a} and \hat{b} , then among the statements:

$$(S1): 2 | \hat{a} \times \hat{b} | = | \hat{a} - \hat{b} |$$

(S2): The projection of \hat{a} on $(\hat{a} + \hat{b})$ is $\frac{1}{2}$

[JEE (Main)-2022]

- (1) Only (S1) is true
- (2) Only (S2) is true
- (3) Both (S1) and (S2) are true
- (4) Both (S1) and (S2) are false

(1) $\sqrt{7}$

(2) $\sqrt{2}$

(3) 2

- (4) 7
- 87. Let θ be the angle between the vectors \vec{a} and \vec{b} , where $|\vec{a}| = 4$, $|\vec{b}| = 3$ and $\theta \in \left(\frac{\pi}{4}, \frac{\pi}{3}\right)$. Then $\left| \left(\vec{a} \vec{b} \right) \times \left(\vec{a} + \vec{b} \right) \right|^2 + 4 \left(\vec{a} \cdot \vec{b} \right)^2 \text{ is equal to } \underline{\qquad}.$ [JEE (Main)-2022]
- 88. Let $\vec{b} = \hat{i} + \hat{j} + \lambda \hat{k}$, $\lambda \in \mathbb{R}$. If \vec{a} is a vector such that $\vec{a} \times \vec{b} = 13\hat{i} \hat{j} 4\hat{k}$ and $\vec{a} \cdot \vec{b} + 21 = 0$, then $(\vec{b} \vec{a}) \cdot (\hat{k} \hat{j}) + (\vec{b} + \vec{a}) \cdot (\hat{i} \hat{k})$ is equal to

89. If $\vec{a} \cdot \vec{b} = 1$, $\vec{b} \cdot \vec{c} = 2$ and $\vec{c} \cdot \vec{a} = 3$, then the value of $\left[\vec{a} \times (\vec{b} \times \vec{c}), \vec{b} \times (\vec{c} \times \vec{a}), \vec{c} \times (\vec{b} \times \vec{a}) \right]$ is:

[JEE (Main)-2022]

(1) 0

- (2) $-6\vec{a}\cdot(\vec{b}\times\vec{c})$
- (3) $12\vec{c} \cdot (\vec{a} \times \vec{b})$
- $(4) \quad -12\vec{b}\cdot(\vec{c}\times\vec{a})$
- 90. Let $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$, $\vec{b} = 2\hat{i} 3\hat{j} + \hat{k}$ and $\vec{c} = \hat{i} \hat{j} + \hat{k}$ be three given vectors. Let \vec{v} be a vector in the plane of \vec{a} and \vec{b} whose projection on \vec{c} is $\frac{2}{\sqrt{3}}$. If $\vec{v} \cdot \hat{j} = 7$, then $\vec{v} \cdot (\hat{i} + \hat{k})$ is equal to :

[JEE (Main)-2022]

(1) 6

(2) 7

(3) 8

(4) 9

- 91. Let $\vec{a} = \hat{i} + \hat{j} \hat{k}$ and $\vec{c} = 2\hat{i} 3\hat{j} + 2\hat{k}$. Then the number of vectors \vec{b} such that $\vec{b} \times \vec{c} = \vec{a}$ and $|\vec{b}| \in \{1, 2, ..., 10\}$ is: [JEE (Main)-2022]
 - (1) 0

(2) 1

(3) 2

- (4) 3
- 92. Let \vec{a} and \vec{b} be the vectors along the diagonals of a parallelogram having area $2\sqrt{2}$. Let the angle between \vec{a} and \vec{b} be acute, $|\vec{a}| = 1$, and $|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$. If $\vec{c} = 2\sqrt{2}(\vec{a} \times \vec{b}) 2\vec{b}$, then an angle between \vec{b} and \vec{c} is [JEE (Main)-2022]
 - (1) $\frac{\pi}{4}$

- (2) $-\frac{\pi}{4}$
- (3) $\frac{5\pi}{6}$
- $(4) \quad \frac{3\pi}{4}$
- 93. If $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = 3\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ are coplanar vectors and $\vec{a} \cdot \vec{c} = 5$, $\vec{b} \perp \vec{c}$, then $122(c_1 + c_2 + c_3)$ is equal to [JEE (Main)-2022]
- 94. Let, $\vec{a} = \alpha \hat{i} + 2\hat{j} \hat{k}$ and $\vec{b} = -2\hat{i} + \alpha \hat{j} + \hat{k}$, where $\alpha \in \mathbf{R}$. If the area of the parallelogram whose adjacent sides are represented by the vectors \vec{a} and \vec{b} is $\sqrt{15(\alpha^2 + 4)}$, then the value of $2|\vec{a}|^2 + (\vec{a} \cdot \vec{b}) |\vec{b}|^2$ is equal to : [JEE (Main)-2022]
 - (1) 10

(2) 7

(3) 9

- (4) 14
- 95. Let \vec{a} be a vector which is perpendicular to the vector $3\hat{i} + \frac{1}{2}\hat{j} + 2\hat{k}$. If $\vec{a} \times (2\hat{i} + \hat{k}) = 2\hat{i} 13\hat{j} 4\hat{k}$, then the projection of the vector \vec{a} on the vector $2\hat{i} + 2\hat{j} + \hat{k}$ is : [JEE (Main)-2022]
 - (1) $\frac{1}{3}$

(2) 1

(3) $\frac{5}{3}$

(4) $\frac{7}{3}$

(1) 3

(2) 4

(3) 5

- (4) 6
- Let A. B. C be three points whose position vectors respectively are

$$\vec{a} = \hat{i} + 4\hat{j} + 3\hat{k}$$

$$\vec{b} = 2\hat{i} + \alpha\hat{j} + 4\hat{k}, \ \alpha \in \mathbb{R}$$

$$\vec{c} = 3\hat{i} - 2\hat{j} + 5\hat{k}$$

If α is the smallest positive integer for which \vec{a} , \vec{b} , \vec{c} are non collinear, then the length of the median, in △ABC, through A is: [JEE (Main)-2022]

- (1) $\frac{\sqrt{82}}{2}$
- (2) $\frac{\sqrt{62}}{2}$
- (3) $\frac{\sqrt{69}}{2}$
- (4) $\frac{\sqrt{66}}{3}$
- 98. Let $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and \vec{c} be a vector such that $\vec{a} + (\vec{b} \times \vec{c}) = \vec{0}$ and $\vec{b} \cdot \vec{c} = 5$. Then the value of $3(\vec{c} \cdot \vec{a})$ is equal to _____.

[JEE (Main)-2022]

ABC 99. be triangle а that $\overrightarrow{BC} = \overrightarrow{a}, \overrightarrow{CA} = \overrightarrow{b}, \overrightarrow{AB} = \overrightarrow{c}, |\overrightarrow{a}| = 6\sqrt{2}, |\overrightarrow{b}| = 2\sqrt{3}$ $\vec{b} \cdot \vec{c} = 12$. Consider the statements :

$$(S1): \left| (\vec{a} \times \vec{b}) + (\vec{c} \times \vec{b}) \right| - \left| \vec{c} \right| = 6(2\sqrt{2} - 1)$$

(S2):
$$\angle ACB = \cos^{-1}\left(\sqrt{\frac{2}{3}}\right)$$

Then

[JEE (Main)-2022]

- (1) Both (S1) and (S2) are true
- (2) Only (S1) is true
- (3) Only (S2) is true
- (4) Both (S1) and (S2) are false

- 100. Let $\vec{a} = \alpha \hat{i} + \hat{i} \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{i} \alpha \hat{k}$, $\alpha > 0$. If the projection of $\vec{a} \times \vec{b}$ on the vector $-\hat{i} + 2\hat{j} - 2\hat{k}$ is 30, [JEE (Main)-2022] then α is equal to
 - (1) $\frac{15}{2}$

(2) 8

(3) $\frac{13}{2}$

- (4) 7
- 101. If the maximum value of a, for which the function $f_a(x) = \tan^{-1} 2x - 3ax + 7$ is non-decreasing in $\left(-\frac{\pi}{6},\frac{\pi}{6}\right)$, is \bar{a} , then $f_{\bar{a}}\left(\frac{\pi}{8}\right)$ is equal to

[JEE (Main)-2022]

(1)
$$8 - \frac{9\pi}{4(9+\pi^2)}$$
 (2) $8 - \frac{4\pi}{9(4+\pi^2)}$

(2)
$$8 - \frac{4\pi}{9(4+\pi^2)}$$

(3)
$$8\left(\frac{1+\pi^2}{9+\pi^2}\right)$$

(4)
$$8 - \frac{\pi}{4}$$

- 102. Let $\vec{a} = \alpha \hat{i} + \hat{j} + \beta \hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} + 4\hat{k}$ be two vectors, such that $\vec{a} \times \vec{b} = -\hat{i} + 9\hat{i} + 12\hat{k}$. Then the projection of $\vec{b} - 2\vec{a}$ on $\vec{b} + \vec{a}$ is equal to
 - (1) 2

(2) $\frac{39}{5}$

(3) 9

- (4) $\frac{46}{5}$
- 103. Let $\vec{a} = 2\hat{i} \hat{j} + 5\hat{k}$ and $\vec{b} = \alpha \hat{i} + \beta \hat{j} + 2\hat{k}$. If $((\vec{a} \times \vec{b}) \times \hat{i}) \cdot \hat{k} = \frac{23}{2}$, then $|\vec{b} \times 2\hat{j}|$ is equal to

[JEE (Main)-2022]

(1) 4

(2) 5

- (3) $\sqrt{21}$
- $(4) \sqrt{17}$
- 104. Let \vec{a} , \vec{b} , \vec{c} be three non-coplanar vectors such that $\vec{a} \times \vec{b} = 4\vec{c}, \vec{b} \times \vec{c} = 9\vec{a}$ and $\vec{c} \times \vec{a} = \alpha \vec{b}, \alpha > 0$. If $\left| \vec{a} \right| + \left| \vec{b} \right| + \left| \vec{c} \right| = \frac{1}{36}$, then α is equal to _____.

[JEE (Main)-2022]

105. Let the vectors $\vec{a} = (1+t)\hat{i} + (1-t)\hat{j} + \hat{k}$, $\vec{b} = (1-t)\hat{i} + (1+t)\hat{j} + 2\hat{k}$ and $\vec{c} = t\hat{i} - t\hat{j} + \hat{k}$, $t \in \mathbb{R}$ be such that for α , β , $\gamma \in \mathbb{R}$, $\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0}$ $\Rightarrow \alpha = \beta = \gamma = 0$. Then, the set of all values of t is

[JEE (Main)-2022]

- (1) A non-empty finite set
- (2) Equal to N
- (3) Equal to $\mathbf{R} \{0\}$
- (4) Equal to R
- 106. Let a vector \vec{a} has magnitude 9. Let a vector \vec{b} be such that for every $(x, y) \in \mathbf{R} \times \mathbf{R} \{(0, 0)\}$, the vector $(x\vec{a} + y\vec{b})$ is perpendicular to the vector $(6y\vec{a} 18x\vec{b})$. Then the value of $|\vec{a} \times \vec{b}|$ is equal to

[JEE (Main)-2022]

<u>(1)</u> 9√3

(2) $27\sqrt{3}$

(3) 9

- (4) 81
- 107. Let S be the set of all $a \in \mathbb{R}$ for which the angle between the vectors $\vec{u} = a(\log_e b)\hat{i} 6\hat{j} + 3\hat{k}$ and $\vec{v} = (\log_e b)\hat{i} + 2\hat{j} + 2a(\log_e b)\hat{k}, (b > 1)$ is acute. Then S is equal to : [JEE (Main)-2022]
 - $(1) \left(-\infty, -\frac{4}{3}\right)$
- (2) · φ
- $(3) \left(-\frac{4}{3},0\right)$
- $(4) \ \left(\frac{12}{7}, \infty\right)$
- 108. Let \vec{a} , \vec{b} , \vec{c} be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and $(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168$, then $|\vec{a}| + |\vec{b}| + |\vec{c}|$ is equal to:

[JEE (Main)-2022]

(1) 10

(2) 14

(3) 16

(4) 18

109. Let \vec{a} and \vec{b} be two vectors such that $\left| \vec{a} + \vec{b} \right|^2 = \left| \vec{a} \right|^2 + 2 \left| \vec{b} \right|^2, \vec{a} \cdot \vec{b} = 3$ and $\left| \vec{a} \times \vec{b} \right|^2 = 75$.

Then $|\vec{a}|^2$ is equal to _____. [JEE (Main)-2022]

110. Let \hat{a} and \hat{b} be two unit vectors such that the angle between them is $\frac{\pi}{4}$. If θ is the angle between the vectors $(\hat{a}+\hat{b})$ and $(\hat{a}+2\hat{b}+2(\hat{a}\times\hat{b}))$, then the

(1) $90 + 27\sqrt{2}$

value of 164 cos²θ is equal to:

- (2) $45 + 18\sqrt{2}$
- (3) $90 + 3\sqrt{2}$
- (4) $54 + 90\sqrt{2}$

[JEE (Main)-2022]

111. Let $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$ and let \vec{b} be a vector such that $\vec{a} \times \vec{b} = 2\hat{i} - \hat{k}$ and $\vec{a} \cdot \vec{b} = 3$. Then the projection of \vec{b} on the vector $\vec{a} - \vec{b}$ is :

[JEE (Main)-2022]

- (1) $\frac{2}{\sqrt{21}}$
- (2) $2\sqrt{\frac{3}{7}}$
- (3) $\frac{2}{3}\sqrt{\frac{7}{3}}$
- (4) $\frac{2}{3}$
- 112. Let $\vec{a}=3\hat{i}+\hat{j}$ and $\vec{b}=\hat{i}+2\hat{j}+\hat{k}$. Let \vec{c} be a vector satisfying $\vec{a}\times(\vec{b}\times\vec{c})=\vec{b}+\lambda\vec{c}$. If \vec{b} and \vec{c} are nonparallel, then the value of λ is **[JEE (Main)-2022]**
 - (1) -5
- (2) 5

(3) 1

(4) -1

JIII SOUTH ON THE STATE OF THE

Chapter 25

Vector Algebra

1. Answer (2)

Direction ratios are a = 6, b = -3 and c = 2

Then direction cosines are

$$\frac{6}{\sqrt{36+9+4}}, \frac{-3}{\sqrt{36+9+4}}, \frac{2}{\sqrt{36+9+4}}$$

$$= \frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$$

2. Answer (4)

$$[3\overrightarrow{u} \quad p\overrightarrow{v} \quad p\overrightarrow{w}] - [p\overrightarrow{v} \quad \overrightarrow{w} \quad q\overrightarrow{u}] - [2\overrightarrow{w} \quad q\overrightarrow{v} \quad q\overrightarrow{u}]$$

$$= 3p^{2}[\overrightarrow{u}.(\overrightarrow{v} \times \overrightarrow{w})] - pq[\overrightarrow{v}.(\overrightarrow{w} \times \overrightarrow{u})] - 2q^{2}[\overrightarrow{w}.(\overrightarrow{v} \times \overrightarrow{u})]$$

$$\Rightarrow (3p^{2} - pq + 2q^{2})[\overrightarrow{u}.(\overrightarrow{v} \times \overrightarrow{w})] = 0$$
But $\overrightarrow{u}.(\overrightarrow{v} \times \overrightarrow{w}) \neq 0$

$$\Rightarrow 3p^{2} - pq + 2q^{2} = 0$$

3. Answer (1)

 $\Rightarrow p = q = 0$

We have

$$\vec{a} \times \vec{b} + \vec{c} = \vec{0}$$

$$\Rightarrow \vec{a} \times (\vec{a} \times \vec{b}) + \vec{a} \times \vec{c} = \vec{0}$$

$$\Rightarrow (\vec{a} \cdot \vec{b}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{b} + \vec{a} \times \vec{c} = \vec{0}$$

$$\Rightarrow 3\vec{a} - 2\vec{b} + \vec{a} \times \vec{c} = \vec{0}$$

$$\Rightarrow 2\vec{b} = 3\vec{a} + \vec{a} \times \vec{c} \; ; \; \vec{a} \times \vec{c} = -2\hat{i} - \hat{j} - \hat{k}$$
$$= 3\hat{j} - 3\hat{k} - 2\hat{i} - \hat{j} - \hat{k}$$
$$= -2\hat{i} + 2\hat{i} - 4\hat{k}$$

$$\Rightarrow \vec{b} = -\hat{i} + \hat{i} - 2\hat{k}$$

4. Answer (1)
We have

$$\vec{a} \cdot \vec{b} = 2 - 4 + 2 = 0$$

$$\vec{a} \cdot \vec{c} = \lambda - 1 + 2\mu = 0$$

$$\vec{b}.\vec{c} = 2\lambda + 4 + \mu = 0$$

Thus $\lambda = 1 - 2\mu$

and $2 - 4\mu + 4 + \mu = 0$

$$\Rightarrow$$
 3 μ = 6, \Rightarrow μ = 2

$$\lambda = -3$$

$$(\lambda, \mu) = (-3, 2)$$

5. Answer (1)

$$\vec{c} = \mu(\vec{a} + 3\vec{b})$$

$$\vec{b} + 2\vec{c} = \lambda \vec{a}$$

$$\vec{b} + 2\mu(\vec{a} + 3\vec{b}) = \lambda \vec{a}$$

$$(1+6\mu)\,\vec{b}+(2\mu-\lambda)\,\vec{a}=0$$

$$6\mu + 1 = 0, 2\mu = \lambda$$

$$\mu=-\frac{1}{6},\ \lambda=-\frac{1}{3}$$

Now,
$$\vec{c} = -\frac{1}{6} (\vec{a} + 3\vec{b}) = 6\vec{c} + \vec{a} + 3\vec{b} = 0$$

6. Answer (2)

Given vectors $p\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + q\hat{j} + \hat{k}$, $\hat{i} + \hat{j} + r\hat{k}$ to be coplanar

$$\begin{vmatrix} p & 1 & 1 \\ 1 & q & 1 \\ 1 & 1 & r \end{vmatrix} = 0$$

$$p(qr-1) - 1(r-1) + (1-q) = 0$$

$$pqr - p - r + 1 - q + 1 = 0$$

$$pqr - p - q - r = -2$$

- 7. Answer (4)
- 8. Answer (1)

$$\overrightarrow{AD} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{2}$$

$$|\overrightarrow{AD}| = \sqrt{16 + 1 + 16} = \sqrt{33}$$

$$I+m+n=0$$

$$l^2 = m^2 + n^2$$

Now. $(-m - n)^2 = m^2 + n^2$

$$\Rightarrow mn = 0$$

$$m = 0 \text{ or } n = 0$$

If
$$m = 0$$

then
$$I = -n$$

$$l^2 + m^2 + n^2 = 1$$

$$\Rightarrow n = \pm \frac{1}{\sqrt{2}}$$

i.e.
$$(I_1, m_1, n_1)$$

$$=\left(-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$$

Let
$$m = \frac{1}{\sqrt{2}}$$
, 0, $\frac{1}{\sqrt{2}}$
$$I = -\frac{1}{\sqrt{2}}$$

If n = 0

 $\Rightarrow m^2 = \frac{1}{2}$

 $\Rightarrow m = \pm \frac{1}{\sqrt{2}}$

then I = -m

 $l^2 + m^2 + n^2 = 1$ $\Rightarrow 2m^2 = 1$

$$(l_2, m_2, n_2)$$

$$= \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$$

$$\therefore \quad \cos\theta = \frac{1}{2}$$

$$\theta = \frac{\pi}{3}$$

$$= (\vec{a} \times \vec{b}) \cdot [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})]$$

$$= (\vec{a} \times \vec{b}) \cdot [(\vec{b} \times \vec{c} \cdot \vec{a})\vec{c} - (\vec{b} \times \vec{c} \cdot \vec{c})\vec{a}]$$

$$= (\vec{a} \times \vec{b}) \cdot [[\vec{b} \ \vec{c} \ \vec{a}] \vec{c}] \qquad [\because \vec{b} \times \vec{c} \cdot \vec{c} = 0]$$

$$= [\overline{a} \, \overline{b} \, \overline{c}] \cdot (\overline{a} \times \overline{b} \cdot \overline{c}) = [\overline{a} \, \overline{b} \, \overline{c}]^2$$

$$[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$$

So
$$\lambda = 1$$

12. Answer (1)

$$(\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a}$$

$$\therefore -(\vec{b}\cdot\vec{c}) = \frac{1}{3} |\vec{b}| |\vec{c}|$$

$$\therefore \quad \cos \theta = -\frac{1}{3}$$

$$\therefore \quad \sin \theta = \frac{2\sqrt{2}}{3}$$

13. Answer (3)

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = \frac{\sqrt{3}}{2}(\vec{b} + \vec{c})$$
 and

$$\vec{a} \cdot \vec{b} = -\frac{\sqrt{3}}{2}$$

$$\Rightarrow \cos\theta = -\frac{\sqrt{3}}{2}$$

$$\Rightarrow \theta = \frac{5\pi}{6}$$

$$|(\vec{a} \times \vec{b}) \times \vec{c}| = 3$$
 $\vec{a} \times \vec{b} = 2\hat{i} - 2\hat{j} + \hat{k}$

$$\Rightarrow |\vec{a} \times \vec{b}| |\vec{c}| \sin 30^\circ = 3 \qquad |\vec{a}| = 3 = |\vec{a} \times \vec{b}|$$

$$\Rightarrow$$
 $|\vec{c}| = 2$

$$|\vec{c} - \vec{a}| = 3$$

$$\Rightarrow |\vec{c}|^2 + |\vec{a}|^2 - 2(\vec{a} \cdot \vec{c}) = 9$$

$$\vec{a} \cdot \vec{c} = \frac{9-3-2}{2} = 2$$

15. Answer (1)

Clearly,
$$\vec{u} = \lambda (\vec{a} \times (\vec{a} \times \vec{b}))$$

$$\Rightarrow \vec{u} = \lambda((\vec{a}.\vec{b})\vec{a} - |\vec{a}|^2 \vec{b})$$

$$\Rightarrow \vec{u} = \lambda(2\vec{a} - 14\vec{b}) = 2\lambda \left\{ (2\hat{i} + 3\hat{j} - \hat{k}) - 7(\hat{j} + \hat{k}) \right\}$$

$$\Rightarrow \vec{u} = 2\lambda(2\hat{i} - 4\hat{i} - 8\hat{k})$$

as.
$$\vec{u} \cdot \vec{b} = 24$$

$$\Rightarrow 4\lambda(\hat{i}-2\hat{i}-4\hat{k})\cdot(\hat{i}+\hat{k})=24$$

$$\Rightarrow \lambda = -1$$

So,
$$\vec{u} = -4(\hat{i} - 2\hat{j} - 4\hat{k})$$

$$\Rightarrow |\vec{u}|^2 = 336$$

16. Answer (2)

$$|\vec{a} \times \vec{c}|^2 = |\vec{a}|^2 |\vec{c}|^2 - (\vec{a} \cdot \vec{c})^2$$

$$\Rightarrow |-\vec{b}|^2 = 2|\vec{c}|^2 - 16$$

$$\Rightarrow$$
 3 = 2 | \vec{c} | 2 -16

$$\Rightarrow |\vec{c}|^2 = \frac{19}{2}$$

17. Answer (4)

Projection of
$$\vec{b}$$
 on $\vec{a} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} = \frac{b_1 + b_2 + 2}{4}$

According to question $\frac{b_1 + b_2 + 2}{2} = \sqrt{1 + 1 + 2} = 2$

$$\Rightarrow b_1 + b_2 = 2$$
 ...(1)

Also
$$\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} = 0$$

$$\Rightarrow$$
 8 + 5 b_1 + b_2 + 2 = 0 ...(2)

From (1) and (2),

$$b_1 = -3, b_2 = 5$$

$$\Rightarrow \vec{b} = -3.\hat{i} + 5\hat{j} + \sqrt{2}\hat{k}$$

$$|\vec{b}| = \sqrt{9 + 25 + 2} = 6$$

18. Answer (4)

$$\therefore \ \overline{b} = 2\overline{a}$$

$$\therefore 4\hat{i} + (3 - \lambda_2)\hat{j} + 6\hat{k} = 4\hat{i} + 2\lambda_1\hat{j} + 6\hat{k}$$

$$\therefore 3 - \lambda_2 = 2\lambda_1 \qquad \dots (1)$$

 $\therefore \bar{a}$ is perpendicular to \bar{c}

$$\therefore 6+6\lambda_1+3(\lambda_3-1)=0$$

$$2+2\lambda_1+\lambda_3-1=0$$

$$2 \lambda_1 + \lambda_3 + 1 = 0$$

$$\lambda_3 = -2\lambda_1 - 1 \qquad \dots (2)$$

from equations (1) and (2) one of possible value of

$$\lambda_1 = -\frac{1}{2}$$
, $\lambda_2 = 4$ and $\lambda_3 = 0$

19. Answer (2)

 $\vec{\alpha}$ and $\vec{\beta}$ are collinear

$$\Rightarrow \vec{\alpha} = t\vec{\beta}$$

$$(\lambda - 2) \vec{a} + \vec{b} = t((4\lambda - 2) \vec{a} + 3\vec{b})$$

$$(\lambda - 2 - t(4\lambda - 2))\vec{a} + \vec{b}(1 - 3t) = \vec{0}$$

 \vec{a} and \vec{b} are non-collinear

$$\Rightarrow \lambda - 2 - t(4\lambda - 2) = 0, 1 - 3t = 0$$

$$\Rightarrow t = \frac{1}{3} \text{ and } \lambda - 2 - \frac{1}{3}(4\lambda - 2) = 0$$

$$3\lambda - 6 - 4\lambda + 2 = 0$$

$$\lambda = -4$$

Option (2) is correct

20. Answer (4)

For coplanar vectors,

$$\begin{vmatrix} 1 & 2 & 4 \\ 1 & \lambda & 4 \\ 2 & 4 & (\lambda^2 - 1) \end{vmatrix} = 0$$

$$\Rightarrow \lambda^3 - \lambda - 16 + 2(8 - \lambda^2 + 1) + 4(4 - 2\lambda) = 0$$

$$\Rightarrow \lambda^3 - 2\lambda^2 - 9\lambda + 18 = 0$$

i.e.,
$$(\lambda - 2) (\lambda - 3) (\lambda + 3) = 0$$

For
$$\lambda = 2$$
, $\vec{c} = 2\hat{i} + 4\hat{j} + 3\hat{k}$

$$\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 4 \\ 2 & 4 & 3 \end{vmatrix} = -10\hat{i} + 5\hat{j}$$

For
$$\lambda = 3$$
 or -3 , $\vec{a} \times \vec{c} = 0$ (Rejected)

21. Answer (2)

By observing point A, B angle bisector of acute angle, OA and OB would be y = x

Now, according to question

$$\left|\frac{\beta - (1 - \beta)}{\sqrt{2}}\right| = \frac{3}{\sqrt{2}}$$

$$\Rightarrow$$
 2 β = ±3 + 1

$$\beta$$
 = 2 or β = -1

22. Answer (3)

For coplanar vectors,

$$\begin{bmatrix} \mu & 1 & 1 \\ 1 & \mu & 1 \\ 1 & 1 & \mu \end{bmatrix} = 0$$

$$\Rightarrow$$
 m($\mu^2 - 1$) + 1 - μ + 1 - μ = 0

$$\Rightarrow$$
 $(1 - \mu)[2 - \mu(\mu + 1)] = 0$

$$\Rightarrow$$
 $(1 - \mu) [\mu^2 + \mu - 2] = 0$

$$\Rightarrow \mu = 1, -2$$

Sum of all real values = 1 - 2 = -1

23. Answer (3)

$$|\overline{a}| = |\overline{b}| = |\overline{c}| = 1$$

Now
$$\overline{a} \times (\overline{b} \times \overline{c}) = \frac{1}{2}\overline{b}$$

$$(\overline{a}\cdot\overline{c})\overline{b}-(\overline{a}\cdot\overline{b})\overline{c}=\frac{1}{2}\overline{b}$$

$$\vec{a} \cdot \vec{c} = \frac{1}{2}$$
 and $\vec{a} \cdot \vec{b} = 0$

$$|\bar{a}||\bar{c}|\cos\beta = \frac{1}{2}$$
 and $\alpha = 90^{\circ}$

$$\beta = 60^{\circ}$$

$$\therefore |\alpha - \beta| = |90^{\circ} - 60^{\circ}| = 30^{\circ}$$

24. Answer (1)

Let $\overline{a} = \hat{i} + \hat{j} + \hat{k}$ and $\overline{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ vector perpendicular to \overline{a} and \overline{b} is $\overline{a} \times \overline{b}$

$$\overline{\mathbf{a}} \times \overline{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$$

Projection of vector $\overline{c} = 2\hat{i} + 3\hat{j} + \hat{k}$ on $\overline{a} \times \overline{b}$ is

$$= \left| \frac{\overline{c} \cdot (\overline{a} \times \overline{b})}{|\overline{a} \times \overline{b}|} \right| = \left| \frac{2 - 6 + 1}{\sqrt{6}} \right| = \frac{3}{\sqrt{6}} = \sqrt{\frac{3}{2}}$$

25. Answer (1)

Equation of the plane passing through the line of intersection of x + y + z = 1 and 2x + 3y + 4z = 5 is

$$(2x + 3y + 4z - 5) + \lambda (x + y + z - 1) = 0$$

$$(2 + \lambda)x + (3 + \lambda)y + (4 + \lambda)z + (-5 - \lambda) = 0$$
 ...(i)

(i) is perpendicular to x - y + z = 0

$$\Rightarrow$$
 (2 + λ) (1) + (3 + λ) (-1) + (4 + λ) (1) = 0

$$2 + \lambda - 3 - \lambda + 4 + \lambda = 0$$

$$\lambda = -3$$

⇒ Equation of required plane is

$$-x+z-2=0$$

$$\Rightarrow x-z+2=0$$

$$\Rightarrow \vec{r} \cdot (\hat{i} - \hat{k}) + 2 = 0$$

26. Answer (4)

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & x \\ 1 & -1 & 1 \end{vmatrix} = (2+x)\hat{i} + (x-3)\hat{j} - 5\hat{k}$$

$$|\vec{a} \times \vec{b}| = r = \sqrt{(2+x)^2 + (x-3)^2 + (-5)^2}$$

$$\Rightarrow r = \sqrt{4 + x^2 + 4x + x^2 + 9 - 6x + 25}$$

$$= \sqrt{2x^2 - 2x + 38} = \sqrt{2\left(x^2 - x + \frac{1}{4}\right) + 38 - \frac{1}{2}}$$

$$=\sqrt{2\left(x-\frac{1}{2}\right)^2+\frac{75}{2}}$$

$$\Rightarrow r \ge \sqrt{\frac{75}{2}} \Rightarrow r \ge 5\sqrt{\frac{3}{2}}$$

$$\vec{\beta} = \vec{\beta_1} - \vec{\beta_2}$$
 ...(i)

$$\vec{\beta}_2 \cdot \vec{\alpha} = 0$$

and Let
$$\overrightarrow{\beta}_1 = \lambda \overrightarrow{\alpha}$$

$$\vec{\alpha} \cdot \vec{\beta} = \vec{\alpha} \cdot \vec{\beta_1} - \vec{\alpha} \cdot \vec{\beta_2}$$

$$\Rightarrow$$
 5 = $\lambda \alpha^2$

$$\Rightarrow$$
 5 = λ × 10

$$\Rightarrow \lambda = \frac{1}{2}$$

$$\therefore \quad \overrightarrow{\beta_1} = \frac{\vec{\alpha}}{2}$$

Cross product with $\overrightarrow{\beta_1}$ in equation (i),

$$\vec{\beta} \times \vec{\beta_1} = -\vec{\beta_2} \times \vec{\beta_1}$$

$$\Rightarrow \quad \boxed{\overrightarrow{\beta} \times \overrightarrow{\beta_1} = \overrightarrow{\beta_1} \times \overrightarrow{\beta_2}} = \frac{\left(\overrightarrow{\beta} \times \overrightarrow{\alpha}\right)}{2}$$

$$\Rightarrow \overrightarrow{\beta_1} \times \overrightarrow{\beta_2} = \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 3 \\ 3 & 1 & 0 \end{vmatrix}$$

$$= \frac{1}{2} \left[-3\hat{i} - \hat{j}(-9) + \hat{k}(5) \right]$$

$$= \frac{1}{2} \left[-3\hat{i} + 9\hat{j} + 5\hat{k} \right]$$

28. Answer (2)

Let $\cos\alpha,\,\cos\beta,\,\cos\gamma$ be direction cosines of \bar{a}

Hence, by given data

$$\cos \alpha = \cos \frac{\pi}{3}$$
, $\cos \beta = \cos \frac{\pi}{4}$ & $\cos \gamma = \cos \theta$

$$\therefore \quad \cos^2\frac{\pi}{3} + \cos^2\frac{\pi}{4} + \cos^2\theta = 1$$

$$\cos^2 \theta = \frac{1}{4} \Rightarrow \cos \theta = \pm \frac{1}{2}, \quad \theta = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}$$

29. Answer (1)

Equation of *I* is
$$\frac{x-2}{6} = \frac{y-3}{3} = \frac{z+4}{-4}$$

Let M (6 λ + 2, 3 λ + 3, -4 λ - 4)

DR's of *PM* is < 6λ + 3, 3λ + 1, -4λ – 10 >

$$\Rightarrow$$
 $(6\lambda + 3)(6) + (3\lambda + 1)(3) + (-4\lambda - 10)(-4) = 0$

$$\Rightarrow \lambda = -1$$

i.e.
$$M = (-4, 0, 0)$$

$$PM = \sqrt{9 + 4 + 36} = 7$$

30. Answer (1)

Vector are coplanar for $\lambda = \lambda_1$ where $\lambda_1^3 - \lambda_1 + 1 = 0 \Rightarrow$ volume is minimum when $\lambda = \lambda_1$.

$$V = \begin{bmatrix} 1 & \lambda & 1 \\ 0 & 1 & \lambda \\ \lambda & 0 & 1 \end{bmatrix}$$

$$= |1(1) + \lambda(\lambda^2) + 1(-\lambda)|$$

$$= |\lambda^3 - \lambda + 1|$$

Let
$$f(x) = x^3 - x + 1$$

$$f'(x) = 3x^2 - 1$$

For maxima/minima, f'(x) = 0

$$x=\pm\frac{1}{\sqrt{3}}$$

$$f''(x) = 6x$$

$$\therefore f''\left(\frac{1}{\sqrt{3}}\right) > 0$$

$$x = \frac{1}{\sqrt{3}}$$
 is point of local minima

When $\lambda = \lambda_1$, volume of parallelopiped is zero (vectors are coplanar)

Let vector be
$$\lambda \left[\left(\vec{a} + \vec{b} \right) \times \left(\vec{a} - \vec{b} \right) \right]$$

$$\vec{a} + \vec{b} = 4\hat{i} + 4\hat{j}$$

$$\vec{a} - \vec{b} = 2\hat{i} + 4\hat{k}$$

vector =
$$\lambda \left[\left(4\hat{i} + 4\hat{j} \right) \times \left(2\hat{i} + 4\hat{k} \right) \right]$$

$$=\lambda \left[16\hat{i}-16\hat{j}-8\hat{k}\right]$$

$$=8\lambda \left[2\hat{i}-2\hat{j}-\hat{k}\right]$$

$$\Rightarrow$$
 12 = 8 $|\lambda|\sqrt{4+4+1}$

$$\left|\lambda\right| = \frac{1}{2}$$

Hence required vector is $\pm 4(2\hat{i}-2\hat{j}-\hat{k})$

32. Answer (4)

If \vec{a} , \vec{b} , \vec{c} are coplanar, then

$$\vec{a}, \vec{b}, \vec{c} = 0$$

$$\Rightarrow \begin{vmatrix} \alpha & 1 & 3 \\ 2 & 1 & -\alpha \\ \alpha & 3 & 3 \end{vmatrix} = 0$$

$$\Rightarrow$$
 a² + 6 = 0

 $\vec{a} = \lambda_1(\hat{b} + \hat{c})$

No value of ' α ' exist

Set S is an empty set.

33. Answer (3)

$$=\lambda_1 \left(\frac{\hat{i}+\hat{j}}{\sqrt{2}} + \frac{\hat{i}-\hat{j}+4\hat{k}}{3\sqrt{2}} \right)$$

$$=\frac{\lambda_1}{3\sqrt{2}}\Big(4\hat{i}+2\hat{j}+4\hat{k}\Big)$$

As
$$\vec{a} = \alpha \hat{i} + 2\hat{j} + \beta \hat{k}$$

$$\therefore \quad \lambda_1 = 3\sqrt{2}, \ \alpha = 4, \ \beta = 4$$

$$\vec{a} = 4\hat{i} + 2\hat{j} + 4\hat{k}$$
 no option is satisfied

Also
$$\vec{a} = \lambda_2 (\hat{b} - \hat{c})$$

$$= \frac{\lambda_2}{3\sqrt{2}} \left((3\hat{i} + 3\hat{j}) - (\hat{i} - \hat{j} + 4\hat{k}) \right) = \frac{\lambda_2}{3\sqrt{2}} (2\hat{i} + 4\hat{j} - 4\hat{k})$$
$$= \frac{2\lambda_2}{3\sqrt{2}} \left(\hat{i} + 2\hat{j} - 2\hat{k} \right)$$

$$\Rightarrow \alpha = 1, \beta = -2 \text{ and } \frac{2\lambda_2}{3\sqrt{2}} = 1$$

$$\vec{a} \cdot \hat{k} + 2 = 0$$

34. Answer (3)

$$|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$$

and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$

On squaring both sides

$$|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a}.\vec{b} + \vec{a}.\vec{c} + \vec{b}.\vec{c}) = 0$$

$$\lambda = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} = -\frac{3}{2}$$

and
$$\vec{d} = \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$$

$$= \vec{a} \times \vec{b} + \vec{b} \times (-\vec{a} - \vec{b}) + (-\vec{a} - \vec{b}) \times \vec{a}$$

$$=\vec{a}\times\vec{b}-\vec{b}\times\vec{a}-0-0-\vec{b}\times\vec{a}$$

$$= 3(\vec{a} \times \vec{b})$$

$$(\lambda, \vec{a}) = \left(-\frac{3}{2}, 3(\vec{a} \times \vec{b})\right)$$

35. Answer (4)

$$V = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

$$\Rightarrow \begin{vmatrix} 1 & 1 & \lambda \\ 2 & 1 & 1 \\ 1 & 1 & 3 \end{vmatrix} = \pm 1$$

$$\Rightarrow$$
 2-1(5) + λ (1) = ±1

$$\Rightarrow \lambda - 3 = 1 \text{ or } \lambda - 3 = -1$$

$$\Rightarrow \lambda = 4 \text{ or } 2$$

$$\vec{u} = \hat{i} + \hat{j} + 4\hat{k} \text{ or } \hat{i} + \hat{j} + 2\hat{k}$$

$$\therefore \cos \theta = \frac{2+1+4}{\sqrt{18}\sqrt{6}} \text{ or } \frac{2+1+2}{\sqrt{6}\sqrt{6}}$$

$$=\frac{7}{6\sqrt{3}}$$
 or $\frac{5}{6}$

36. Answer (4)

..
$$a\cos\theta = b\cos\left(\theta + \frac{2\pi}{3}\right) = c\cos\left(\theta + \frac{4\pi}{3}\right) = k$$

$$ab + bc + ca = k^2 \left[\frac{1}{\cos \theta \cdot \cos \left(\theta + \frac{2\pi}{3} \right)} + \right]$$

$$\frac{1}{\cos\left(\theta + \frac{2\pi}{3}\right) \cdot \cos\left(\theta + \frac{4\pi}{3}\right)} +$$

$$\frac{1}{\cos\left(\theta + \frac{4\pi}{3}\right) \cdot \cos\theta}$$

$$= k^{2} \left[\frac{\cos \theta + \cos \left(\theta + \frac{2\pi}{3}\right) + \cos \left(\theta + \frac{4\pi}{3}\right)}{\cos \theta \cdot \cos \left(\theta + \frac{2\pi}{3}\right) \cdot \cos \left(\theta + \frac{4\pi}{3}\right)} \right]$$
$$= 0$$

So, angle between the given vectors will be $\frac{\pi}{2}$.

37. Answer (4)

Here
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} i & j & k \\ x & -2 & 3 \\ -2 & x & -1 \\ 7 & -2 & x \end{vmatrix} = x^3 - 27x + 26$$

$$\Rightarrow f(x) = x^3 - 27x + 26$$

$$f'(x) = 3x^2 - 27 = 0 \Rightarrow x = -3, 3$$

$$\Rightarrow x_0 = -3$$

Now
$$\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -2x - 2x - 3 - 14 - 2x - x + 7x + 4 + 3x = 3x - 13$$

So value at
$$x = x_0 = 3 \times -3 - 13 = -22$$

38. Answer (2)

Volume of parallelopiped = $\begin{bmatrix} \bar{a} & \bar{b} & \bar{c} \end{bmatrix}$

$$\begin{vmatrix} 1 & 1 & n \\ 2 & 4 & -n \\ 1 & n & 3 \end{vmatrix} = 158$$

$$\Rightarrow$$
 (12 + n²) - 1 (6 + n) + n (2n - 4) = 158

$$\Rightarrow$$
 3n² - 5n - 152 = 0

$$\Rightarrow$$
 3n² - 24n + 19n - 152 = 0

$$\Rightarrow$$
 3n(n - 8) + 19 (n - 8) = 0

$$\vec{a} = \hat{i} + \hat{j} + 8\hat{k}, \ \vec{b} = 2\hat{i} + 4\hat{j} - 8\hat{k} \ \text{and} \ \vec{c} = \hat{i} + 8\hat{j} + 3\hat{k}$$

$$\vec{a} \cdot \vec{c} = 1 + 8 + 24 = 33$$

$$\vec{b} \cdot \vec{c} = 2 + 32 - 24 = 10$$

39. Answer (1)

$$\vec{a} = \hat{i} - 2\hat{j} + \hat{k}; \vec{b} = \hat{i} - \hat{j} + \hat{k}$$

$$\vec{b} \times \vec{c} = \vec{b} \times \vec{a} \implies \vec{a} \times (\vec{b} \times \vec{c}) = \vec{a} \times (\vec{b} \times \vec{a})$$

$$\Rightarrow (\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c} = (\vec{a}.\vec{a})\vec{b} - (\vec{a}.\vec{b})\vec{a}$$

$$\vec{a}.\vec{c}=0$$

$$\Rightarrow \vec{c} = -\frac{1}{2}(\hat{i} + \hat{j} + \hat{k})$$

$$\vec{b}.\vec{c} = \frac{-1}{2}$$

40. Answer (1.00)

$$\therefore \vec{P}, \vec{Q}, \vec{R} \text{ are coplanar, so} \begin{vmatrix} a+1 & a & a \\ a & a+1 & a \\ a & a & a+1 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} a+1 & a & a \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} 1 & 0 & a \\ -1 & 1 & 0 \\ -2 & -1 & 1 \end{vmatrix} = 0$$

$$\Rightarrow$$
 3a + 1 = 0

$$\Rightarrow$$
 a = $-\frac{1}{3}$

$$\vec{P} \cdot \vec{Q} = 3a^2 + 2a = -\frac{1}{3}$$

and
$$\overrightarrow{R} \times \overrightarrow{Q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & a & a+1 \\ a & a+1 & a \end{vmatrix}$$

$$= (-2a - 1)\hat{i} + a\hat{j} + a\hat{k} = -\frac{\hat{i} + \hat{j} + \hat{k}}{3}$$

$$\Rightarrow \left| \overrightarrow{R} \times \overrightarrow{Q} \right| = \frac{1}{\sqrt{3}}$$

Now;
$$\lambda = \frac{3(\vec{P} \cdot \vec{Q})^2}{|\vec{R} \times \vec{Q}|^2} = \frac{3 \times 1}{9 \times \frac{1}{2}} = 1$$

41. Answer (30)

$$\vec{b}.\vec{c} = \left| \vec{b} \right| \left| \vec{c} \right| \cos \frac{\pi}{3} = 10$$

$$\Rightarrow$$
 $5|\vec{c}| \cdot \frac{1}{2} = 10 \Rightarrow |\vec{c}| = 4$

Now
$$|\vec{a} \times (\vec{b} \times \vec{c})| = |\vec{a}| |\vec{b} \times \vec{c}| \sin \frac{\pi}{2}$$

$$= \sqrt{3} |\vec{b}| |\vec{c}| \cdot \sin \frac{\pi}{2}$$

$$=\sqrt{3}.5.4\frac{\sqrt{3}}{2}$$

42. Answer (2)

Given,
$$|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$$

Also
$$\left| \vec{a} - \vec{b} \right|^2 + \left| \vec{a} - \vec{c} \right|^2 = 8$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 - 2 \vec{a} \cdot \vec{b} + |\vec{a}|^2 + |\vec{c}|^2 - 2\vec{a} \cdot \vec{c} = 8$$

Now,
$$|\vec{a} + 2\vec{b}|^2 + |\vec{a} + 2\vec{c}|^2$$

 $\Rightarrow \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = -2$

$$= |\vec{a}|^2 + 4|\vec{b}|^2 + 4\vec{a} \cdot \vec{b} + |\vec{a}|^2 + 4|\vec{c}|^2 + 4\vec{a} \cdot \vec{c}$$

$$= 10 + 4(\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c})$$

$$= 10 + 4 (-2)$$

43. Answer (0.8)

Let position vector of P is
$$\overrightarrow{OP} = \frac{\lambda \vec{b} + \vec{a}}{\lambda + 1}$$

Given $\overrightarrow{OB} \cdot \overrightarrow{OP} - 3 |\overrightarrow{OA} \times \overrightarrow{OP}|^2 = 6$

$$\Rightarrow \vec{b} \cdot \left(\frac{\lambda \vec{b} + \vec{a}}{\lambda + 1} \right) - 3 \left| \vec{a} \times \frac{\lambda \vec{b} + \vec{a}}{\lambda + 1} \right|^2 = 6$$

$$\Rightarrow \frac{\vec{a} \cdot \vec{b} + \lambda |\vec{b}|^2}{\lambda + 1} \frac{-3\lambda^2}{(\lambda + 1)^2} |\vec{a} \times \vec{b}|^2 = 6$$

$$(: \vec{a} \times \vec{b} = 2\hat{i} - \hat{j} - \hat{k})$$

$$\Rightarrow \frac{6+14\lambda}{\lambda+1} - \frac{18\lambda^2}{(\lambda+1)^2} = 6$$

$$\Rightarrow 6 + \frac{8\lambda}{\lambda + 1} - \frac{18\lambda^2}{(\lambda + 1)^2} = 6$$

Let
$$\frac{\lambda}{\lambda+1} = t$$

$$18t^2 - 8t = 0$$

$$t=0, \ \frac{4}{9}$$

$$\therefore \quad \frac{\lambda}{\lambda+1} = \frac{4}{9}$$

$$\lambda = \frac{4}{5} = 0.8$$

44. Answer (18)

Let
$$\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$$

Now
$$\hat{i} \times (\overline{a} \times \hat{i}) = (\hat{i}. \hat{i}) \overline{a} - (\hat{i}. \overline{a}) \hat{i}$$

$$= v\hat{i} + z\hat{k}$$

Similarly
$$\hat{j} \times (\vec{a} \times \hat{j}) = x\hat{i} + z\hat{k}$$

$$\hat{k} \times (\vec{a} \times \hat{k}) = x\hat{i} + y\hat{j}$$

Now
$$\left|y\hat{j}+z\hat{k}\right|^2+\left|x\hat{i}+z\hat{k}\right|^2+\left|x\hat{i}+y\hat{j}\right|^2$$

$$= 2(x^2 + y^2 + z^2) = 2(4 + 1 + 4) = 18$$

45. Answer (6)

Projection of
$$\overline{b}$$
 on \overline{a} = Projection of \overline{c} on \overline{a}

$$\Rightarrow \bar{a} \cdot \bar{b} = \bar{a} \cdot \bar{c}$$

Given
$$\frac{1}{b} \cdot \frac{1}{c} = 0$$

$$\begin{vmatrix} \overline{a} + \overline{b} - \overline{c} \end{vmatrix}^2 = |\overline{a}|^2 + |\overline{b}|^2 + |\overline{c}|^2 + 2\overline{a}.\overline{b} - 2\overline{b}.\overline{c} - 2\overline{a}.\overline{c}$$

$$= 4 + 16 + 16$$

$$\Rightarrow |\overline{a} + \overline{b} - \overline{c}| = 6$$

46. Answer (4)

Let angle between \vec{a} and \vec{b} be θ

$$|\vec{a} + \vec{b}| = \sqrt{1 + 1 + 2\cos\theta} = 2\left|\cos\frac{\theta}{2}\right|$$

and
$$|\vec{a} - \vec{b}| = 2 \left| \sin \frac{\theta}{2} \right|$$

So,
$$\sqrt{3} |\vec{a} + \vec{b}| + |\vec{a} - \vec{b}| = 2 \left[\sqrt{3} \left| \cos \frac{\theta}{2} \right| + \left| \sin \frac{\theta}{2} \right| \right]$$

$$\max\{\sqrt{3}|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|\}=2\sqrt{(\sqrt{3})^2+(1)^2}$$

 $|\vec{X} + \vec{V}| = |\vec{X}|$

Squaring both sides we get

$$|\vec{x}|^2 + 2\vec{x}.\vec{y} + |\vec{y}|^2 = |\vec{x}|^2$$

$$\Rightarrow 2\vec{x}.\vec{y} + \vec{y}.\vec{y} = 0 \qquad ...(1)$$

Also $2\vec{x} + \lambda \vec{y}$ and \vec{y} are perpendicular

$$\therefore 2\vec{x}.\vec{y} + \lambda \vec{y}.\vec{y} = 0 \qquad \dots (2)$$

Comparing (1) & (2) λ = 1

$$\vec{r} \cdot \vec{a} \cdot \vec{b} = -1, \quad \vec{b} \cdot \vec{c} = 2, \quad \vec{c} \cdot \vec{a} = 0$$

$$\vec{r} \times \vec{a} = \vec{c} \times \vec{a} \implies (\vec{r} \times \vec{a}) \times \vec{b} = (\vec{c} \times \vec{a}) \times \vec{b}$$

$$\Rightarrow (\vec{r} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{b})\vec{r} = (\vec{b} \cdot \vec{c})\vec{a} - (\vec{a} \cdot \vec{b})\vec{c}$$

$$\Rightarrow \vec{r} = 2\vec{a} + \vec{c}$$

then
$$\vec{r} \cdot \vec{a} = 2|\vec{a}|^2 + \vec{a} \cdot \vec{c}$$

= 12

$$\overrightarrow{AB} = \hat{i} + \hat{j} - 2\hat{k}$$

$$\overrightarrow{AC} = \hat{i} + 2\hat{j} - \hat{k}$$

Normal to plane $\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC}$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -2 \\ 1 & 2 & -1 \end{vmatrix} = 3\hat{i} - \hat{j} + \hat{k}$$

$$\overrightarrow{OP} = 2\hat{i} - \hat{j} + \hat{k}$$

$$\sin \theta = \frac{\overrightarrow{OP}.\overrightarrow{n}}{|\overrightarrow{OP}| \times |\overrightarrow{n}|} = \frac{6+1+1}{\sqrt{11}.\sqrt{6}} = \frac{8}{\sqrt{66}}$$

$$\cos\theta = \sqrt{1 - \frac{64}{66}} = \frac{1}{\sqrt{33}}$$

Projection =
$$|\overline{OP}|\cos\theta = \sqrt{6} \times \frac{1}{\sqrt{33}} = \sqrt{\frac{2}{11}}$$

50. Answer (2)

$$\overline{\mathbf{a}} \times \overline{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & \alpha & 3 \\ 3 & -\alpha & 1 \end{vmatrix} = 4\alpha \hat{\mathbf{i}} + 8\hat{\mathbf{j}} - 4\alpha \hat{\mathbf{k}} = 4\left(\alpha \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \alpha \hat{\mathbf{k}}\right)$$

$$\therefore 8\sqrt{3} = 4\sqrt{2\alpha^2 + 4} \quad \Rightarrow \quad \alpha = \pm 2$$

$$\overline{a} \cdot \overline{b} = 3 - \alpha^2 + 3 = 2$$

51. Answer (4)

Let \hat{c} be a unit vector in the direction of $\vec{a} \times \vec{b}$.

$$\Rightarrow \hat{\mathbf{a}} \times \hat{\mathbf{b}} = \hat{\mathbf{c}}, \ \hat{\mathbf{b}} \times \hat{\mathbf{c}} = \hat{\mathbf{a}} \ \& \ \hat{\mathbf{c}} \times \hat{\mathbf{a}} = \hat{\mathbf{b}}$$

$$\vec{a} \times \vec{b} = |\vec{a}| \times |\vec{b}| \times \hat{c}$$

$$\vec{a} \times (\vec{a} \times \vec{b}) = -|\vec{a}|^2 |\vec{b}| \hat{b}$$

$$\vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b})) = -|\vec{a}|^3 |\vec{b}|\hat{c}$$

$$\vec{a} \times (\vec{a} \times (\vec{a} \times (\vec{a} \times \vec{b}))) = |\vec{a}|^4 |\vec{b}|\hat{b}$$

$$=\left| \vec{\mathsf{a}} \right|^4 \vec{\mathsf{b}}$$

52. Answer (1)
$$\overrightarrow{a_2} = \lambda \overrightarrow{a_1}$$

$$\hat{i} + y\hat{j} + z\hat{k} = \lambda(x\hat{i} - j + \hat{k})$$

$$1 = \lambda x, y = -\lambda, z = \lambda$$

$$x\hat{i} + y\hat{j} + z\hat{k} = \frac{1}{\lambda}\hat{i} - \lambda\hat{j} + \lambda\hat{k}$$

Unit vector
$$= \frac{\frac{1}{\lambda}i - \lambda\hat{j} + \lambda\hat{k}}{\sqrt{\frac{1}{\lambda^2} + \lambda^2 + \lambda^2}}$$

$$=\frac{\hat{\mathbf{i}}-\lambda^2\hat{\mathbf{j}}+\lambda^2\hat{\mathbf{k}}}{\sqrt{1+2\lambda^4}}$$

Let
$$\lambda^2 = 1$$
, possible unit vector $= \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}$

$$\therefore \quad \left| \alpha \hat{i} + \beta \hat{j} \right| = \left| \sqrt{3} \hat{i} + \hat{j} \right| \implies \alpha^2 + \beta^2 = 4 \qquad \dots (i)$$

Also
$$\frac{\sqrt{3}\alpha + \beta}{2 \cdot 2} = \frac{1}{\sqrt{2}}$$
 $\Rightarrow \sqrt{3}\alpha + \beta = 2\sqrt{2}$...(ii)

$$\alpha$$
, $\beta > 0$, then from (i) and (ii) $\alpha = \frac{\sqrt{3} - 1}{\sqrt{2}}$ and $\beta = \frac{\sqrt{3} + 1}{\sqrt{2}}$

$$=\frac{1}{2}\alpha\beta=\frac{1}{2}\left(\frac{\sqrt{3}-1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}+1}{\sqrt{2}}\right)$$

$$=\frac{1}{2}$$

$$\vec{r} \times \vec{a} = -\vec{r} \times \vec{b}$$

$$\vec{r} \times (\vec{a} + \vec{b}) = 0$$

$$\vec{r} = \lambda(\vec{a} + \vec{b}) = \lambda(3\hat{i} - \hat{j} + 2\hat{k})$$

$$\vec{r} \cdot (\alpha \hat{i} + 2\hat{j} + \hat{k}) = 3 \Rightarrow \alpha \lambda = 1 \dots (i)$$

$$\vec{r} \cdot (2\hat{i} + 5\hat{j} + \alpha\hat{k}) = -1 \Rightarrow \lambda - 2\alpha\lambda = -1$$

$$\Rightarrow \lambda = 1 \text{ and } \alpha = 1 \text{ [using (i)]}$$

$$\alpha + |\vec{r}|^2 = 1 + (9 + 1 + 4) = 15$$

55. Answer (28)
$$\vec{a} \times \vec{b} = 3\hat{i} - 2\hat{i} + \hat{k}$$

$$C = \lambda (\vec{a} \times \vec{b}) = \lambda (3i - 2j + \hat{k})$$

$$C \cdot (i + j + 3k) = 8 \Rightarrow \lambda = 2$$

$$\vec{C} = 2(\vec{a} \times \vec{b})$$

$$= 2|\vec{a} \times \vec{b}|^2 = 2(9+4+1) = 28$$

 $\vec{C} \cdot (\vec{a} \times \vec{b}) = 2(\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b})$

$$\vec{r} \times \vec{a} = \vec{r} \times \vec{b}$$
 $\Rightarrow \vec{r} \times (\vec{a} - \vec{b}) = 0$

$$\Rightarrow \bar{r} = \lambda (\bar{a} - \bar{b}), \lambda \in R.$$

$$\Rightarrow \bar{r} = \lambda \left(-5\hat{i} - 4\hat{j} + 10\hat{k} \right)$$

$$\vec{r} \cdot (\hat{i} + 2\hat{j} + \hat{k}) = -3$$

$$\Rightarrow \lambda(-5 - 8 + 10) = -3$$
$$\Rightarrow \lambda = 1$$

$$\Rightarrow \lambda = 1$$

Hence
$$\bar{r} = -5\hat{i} - 4\hat{j} + 10\hat{k}$$

 $\vec{r} \cdot (2\hat{i} - 3\hat{j} + \hat{k}) = 12$

$$\overline{a}.\overline{b} = 1 \Rightarrow -\alpha\beta - \alpha\beta - 3 = 1$$

 $\Rightarrow \alpha\beta = -2$...(i)

$$\overline{b}.\overline{c} = -3 \Longrightarrow -\beta + 2\alpha + 1 = -3$$

 $2\alpha - \beta = -4$...(ii)

Solving (i) & (ii)
$$\alpha = -1$$
, $\beta = 2$,

$$\frac{1}{3}((\overline{a} \times \overline{b}) \cdot \overline{c}) = \frac{1}{3} \begin{vmatrix} -1 & 2 & 3 \\ -2 & 1 & -1 \\ 1 & -2 & -1 \end{vmatrix}$$

and
$$|\overrightarrow{OQ} - \overrightarrow{OP}|^2 = 20 \implies (x + 1)^2 + (y - 2)^2 +$$

$$(3x + 1)^2 = 20$$

 $\Rightarrow 14x^2 = 14 \Rightarrow x = 1$

$$\therefore \overrightarrow{\mathsf{OP}} \ \overrightarrow{\mathsf{OQ}} \ \overrightarrow{\mathsf{OR}} = 0$$

$$\Rightarrow \begin{vmatrix} 1 & 2 & -1 \\ -1 & 2 & 3 \\ 3 & 7 & -7 \end{vmatrix} = 0 \Rightarrow z = -2$$

So
$$x^2 + v^2 + z^2 = 9$$

Let
$$\vec{x} = \lambda (\vec{a} \times \vec{b}) \times \vec{c}$$

$$\overline{a} \times \overline{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix} = -\hat{i} + 3\hat{j} + 5\hat{k}$$

$$(\overline{a} \times \overline{b}) \times \overline{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 3 & 5 \\ 3 & 2 & -1 \end{vmatrix} = -13\hat{i} + 14\hat{j} - 11\hat{k}$$

$$\therefore \quad \frac{\overline{x} \cdot \overline{a}}{|\overline{a}|} = \frac{17\sqrt{6}}{2} \Rightarrow \left| \frac{(-26 - 14 - 11)\lambda}{\sqrt{6}} \right| = \frac{17\sqrt{6}}{2}$$

$$\Rightarrow \lambda = \pm 1$$

$$|\overline{x}|^2 = 13^2 + 14^2 + 11^2 = 486$$

Magnitude of vector remains same hence

$$9p^2 + 1 = (p + 1)^2 + 10$$

$$\Rightarrow 8p^2 - 2p - 10 = 0$$

⇒
$$4p^2 - p - 5 = 0$$

⇒ $4p^2 - 5p + 4p - 5 = 0$

$$\Rightarrow$$
 (p + 1) (4p - 5) = 0 \Rightarrow p = -1 or $\frac{5}{4}$

61. Answer (4)

Projection of
$$\overrightarrow{AB}$$
 on $\overrightarrow{AC} = \frac{(\overrightarrow{AB}).(\overrightarrow{AC})}{|\overrightarrow{AC}|} = p(say)$

$$= \frac{|\overrightarrow{AB}| |\overrightarrow{AC}| \cos \theta}{|\overrightarrow{AC}|}$$

where
$$\cos \theta = \frac{10^2 + 7^2 - 8^2}{2.10.7}$$

$$\Rightarrow$$
 p = $\frac{10.85}{2.10.7} = \frac{85}{14}$

Angle required is say $\boldsymbol{\theta}$

$$\Rightarrow \cos \theta = \frac{\vec{a} \cdot (\vec{a} + \vec{b} + (\vec{a} \times \vec{b}))}{|\vec{a}| |\vec{a} + \vec{b} + (\vec{a} \times \vec{b})|}$$

$$= \frac{\left|\vec{a}\right|^2 + 0 + 0}{\left|\vec{a}\right| \left|\vec{a} + \vec{b} + \left(\vec{a} \times \vec{b}\right)\right|}$$

$$=\frac{|\vec{a}|^2}{|\vec{a}|\sqrt{3}|\vec{a}|}$$

(as \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ are mutually perpendicular to each other)

$$\cos\theta = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \quad \theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

$$\vec{a} = 2\hat{i} + \hat{i} - 2\hat{k}$$

$$\Rightarrow |\vec{a}| = \sqrt{4+1+4} = 3$$

Now,
$$|\vec{c} - \vec{a}| = 2\sqrt{2}$$

$$\Rightarrow (\vec{c} - \vec{a})^2 = 8$$

$$|\vec{c}|^2 + |\vec{a}|^2 - 2\vec{c} \cdot \vec{a} = 8$$

$$|\vec{c}|^2 + 9 - 2 |\vec{c}| = 8$$
 $(: \vec{a} \cdot \vec{c} = |\vec{c}|)$

$$|\vec{c}|^2 - 2|\vec{c}| + 1 = 0$$

and angle between $\vec{a} \times \vec{b}$ and \vec{c} is θ then $\left| \left(\vec{a} \times \vec{b} \right) \times \vec{c} \right| = |\vec{a} \times \vec{b}| \cdot |\vec{c}| \cdot \sin \theta$

$$\begin{vmatrix} 2\hat{i} - 2\hat{j} + \hat{k} \end{vmatrix} \cdot 1 \cdot \sin\frac{\pi}{6}$$

$$|\overline{a} + \overline{b} + \overline{c}|^2 = |\overline{a}|^2 + |\overline{b}|^2 + |\overline{c}|^2 + 2(\overline{a}.\overline{b} + \overline{b}.\overline{c} + \overline{c}.\overline{a})$$

$$\Rightarrow |\bar{a} + \bar{b} + \bar{c}| = \sqrt{3} |\bar{a}|$$

Now
$$\cos \theta = \frac{\overline{a}.(\overline{a} + \overline{b} + \overline{c})}{|\overline{a}||\overline{a} + \overline{b} + \overline{c}|} = \frac{|\overline{a}|^2}{|\overline{a}|(\sqrt{3}|\overline{a}|)} = \frac{1}{\sqrt{3}}$$

So, $36\cos^2 2\theta = 36(2\cos^2 \theta - 1)^2$

$$= 36 \left(\frac{2}{3} - 1\right)^2 = 4$$

Projection of BA on BC

$$= \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{|\overrightarrow{BC}|}$$

$$= \frac{\left| \overrightarrow{BA} \right| \cdot \left| \overrightarrow{BC} \right| \cos B}{\left| \overrightarrow{BC} \right|}$$

$$=7\cdot\left(\frac{7^2+3^2-5^2}{2\times7\times3}\right)$$

$$=\frac{11}{2}$$
 units

66. Answer (6)

$$\therefore \cos \theta = \frac{\vec{v}_1 \cdot \vec{v}_2}{|\vec{v}_1| \cdot |\vec{v}_2|} \text{ and } |\vec{v}_1| = |\vec{v}_2|$$

$$\Rightarrow \cos \theta = \frac{2\sqrt{3}p + p + 1}{|\vec{v}_1|^2} \text{ and } 4 + (p + 1)^2 = 3p^2 + 1$$

$$\Rightarrow$$
 p = 2

$$\Rightarrow \cos\theta = \frac{4\sqrt{3} + 3}{13} \Rightarrow \tan\theta = \frac{6\sqrt{3} - 2}{4\sqrt{3} + 3}$$

67. Answer (1)

$$[\vec{b} \ \vec{c} \ \vec{d}] = \begin{vmatrix} 2 & 1 & 1 \\ 1 & -1 & 1 \\ 3 & 2 & 6 \end{vmatrix} = 2(-6 - 2) - 1(3) + 1(5)$$
$$= -16 - 3 + 5 = -14$$

Let $\vec{a} = \lambda \vec{b} + \mu \vec{c}$

$$= -\mu[\vec{\mathbf{b}} \ \vec{\mathbf{c}} \ \vec{\mathbf{d}}] + \lambda[\vec{\mathbf{b}} \ \vec{\mathbf{c}} \ \vec{\mathbf{d}}]$$
$$= (\lambda - \mu)[\vec{\mathbf{b}} \ \vec{\mathbf{c}} \ \vec{\mathbf{d}}]$$

$$\vec{a} = (2\lambda + \mu)\hat{i} + (\lambda - \mu)\hat{j} + (\lambda + \mu)\hat{k}$$

$$(2\lambda + \mu)^2 + (\lambda - \mu)^2 + (\lambda + \mu)^2 = 10$$
 (as $|\vec{a}| = \sqrt{10}$)

$$(2λ + μ) + (λ - μ) + (λ + μ) = 10$$
 (as $|a| - \sqrt{10}$)
 $\Rightarrow 6λ^2 + 3μ^2 + 4λμ = 10$...(i)

&
$$\hat{a} \cdot \hat{b} = 0 \Rightarrow 3(2\lambda + \mu) + 2(\lambda - \mu) + 6(\lambda + \mu) = 0$$

$$14\lambda + 7\mu = 0 \Rightarrow \mu = -2\lambda$$
 ...(ii)
by (i) & (ii), $6\lambda^2 + 12\lambda^2 - 8\lambda^2 = 10$

$$\Rightarrow \lambda = \pm 1 \Rightarrow \mu = \mp 2$$

$$(\lambda - \mu) = 3 \text{ or } -3$$

68. Answer (4)

$$\ \, \because \quad \overline{a} \times \overline{b} = \overline{c} \Longrightarrow \left(\overline{a} \times \overline{b}\right) \cdot \overline{c} = \overline{c} \cdot \overline{c}$$

$$\therefore [\overline{a} \overline{b} \overline{c}] = |\overline{c}|^2 \qquad \dots (i)$$

and
$$(\vec{b} \times \vec{c}) = \vec{a} \Rightarrow \vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot \vec{a}$$

$$[\overline{a} \ \overline{b} \ \overline{c}] = |\overline{a}|^2 = 4$$
 ...(ii)

$$\therefore \quad |\overline{a}| = |\overline{c}| = 2$$

Option: (1)

$$\overline{a} \times ((\overline{b} + \overline{c}) \times (\overline{b} - \overline{c})) = \overline{a} \times (-\overline{b} \times \overline{c} + \overline{c} \times \overline{b})$$

$$= 2\overline{a} \times (\overline{c} \times \overline{b}) = 2\overline{a} \times (\overline{a}) = 0$$

Option: (2)

Projection of
$$\overline{a}$$
 on $(\overline{b} \times \overline{c}) = \frac{\overline{a} \cdot (\overline{b} \times \overline{c})}{|\overline{b} \times \overline{c}|} = \frac{|\overline{a}|^2}{|\overline{a}|} = 2$

Option: (3)

$$[\overline{a}\ \overline{b}\ \overline{c}] + [\overline{c}\ \overline{a}\ \overline{b}] = 2[\overline{a}\ \overline{b}\ \overline{c}] = 8$$

Option: (4)

$$\left|3\overline{a} + \overline{b} - 2\overline{c}\right|^2$$

$$=9\overline{a}^2+\overline{b}^2+4\overline{c}^2+6\overline{a}\cdot\overline{b}-4\overline{b}\cdot\overline{c}-12\overline{a}\cdot\overline{c}$$

$$=9.2^2+1^2+4.2^2+0$$

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$$

and
$$[\overline{a}\ \overline{b}\ \overline{c}]^2 = \begin{vmatrix} \overline{a} \cdot \overline{a} & \overline{a} \cdot \overline{b} & \overline{a} \cdot \overline{c} \\ \overline{b} \cdot \overline{a} & \overline{b} \cdot \overline{b} & \overline{b} \cdot \overline{c} \\ \overline{c} \cdot \overline{a} & \overline{c} \cdot \overline{b} & \overline{c} \cdot \overline{c} \end{vmatrix}$$

$$\therefore 16 = \left| \overline{a} \right|^2 \left| \overline{b} \right|^2 \left| \overline{c} \right|^2$$

∴
$$|\overline{b}| = 1$$

69. Answer (2)

For coplanarity S.T.P. of given vectors shall vanish

i.e.
$$\begin{vmatrix} 2+a+b & a+2b+c & -(b+c) \\ 1+b & 2b & -b \\ 2+b & 2b & (1-b) \end{vmatrix} = 0$$

$$R_3 \rightarrow R_3 - R_2$$
 and $R_1 \rightarrow R_1 - R_2$

$$\begin{vmatrix} 1+a & a+c & -c \\ 1+b & 2b & -b \\ 1 & 0 & 1 \end{vmatrix} = 0$$

Expanding

$$\therefore 1(-b(a + c) + 2bc) + 1(2b(1 + a) - (b + 1)(a + c)) = 0$$

70. Answer (3)

$$\vec{r} = \sqrt{3} \frac{\left(\vec{p} + \vec{q}\right) \times \left(\vec{p} - \vec{q}\right)}{\left|\left(\vec{p} + \vec{q}\right) \times \left(\vec{p} - \vec{q}\right)\right|}$$

$$= \frac{\sqrt{3} \times \begin{vmatrix} i & j & k \\ 3 & 5 & 2 \\ 1 & 1 & 0 \end{vmatrix}}{|(\vec{p} + \vec{q}) \times (\vec{p} - \vec{q})|} = \frac{\sqrt{3} \left(-2\hat{i} + 2\hat{j} - 2\hat{k}\right)}{2\sqrt{3}}$$

$$= -i + j - k$$
$$|\alpha| = |\beta| = |\gamma| = 1$$

$$\therefore$$
 a $\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar.

$$\begin{vmatrix} a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{vmatrix} = 0$$

$$\begin{vmatrix} a-c & a & c \\ 0 & 0 & 1 \\ c-b & c & b \end{vmatrix} = 0$$

$$\therefore$$
 (-1) {ac - c² - ca + ab} = 0

$$\therefore$$
 c² = ab

$$\dot{c} = \sqrt{ab}$$

72. Answer (2)

$$|\vec{a}| = 2$$
, $|\vec{b}| = 5$, $|\vec{a} \times \vec{b}| = 8$

$$\therefore |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2$$

$$(\vec{a} \cdot \vec{b})^2 = 5^2 \cdot 2^2 - 8^2$$

$$= 100 - 64$$

$$\vec{a} \cdot \vec{b} = \pm 6$$

73. Answer (60)

$$\therefore (\vec{a} + 3\vec{b}) \cdot (7\vec{a} - 5\vec{b}) = 0$$

$$\Rightarrow$$
 7 | \vec{a} | $^2 - 15$ | \vec{b} | $^2 + 16\vec{a} \cdot \vec{b} = 0$...(i)

and
$$(7\vec{a} - 2\vec{b}) \cdot (\vec{a} - 4\vec{b}) = 0$$

$$\Rightarrow$$
 $7|\vec{a}|^2 + 8|\vec{b}|^2 - 30\vec{a} \cdot \vec{b} = 0$...(ii)

From (i) and (ii)

$$|\vec{b}|^2 = 2\vec{a} \cdot \vec{b}$$
 and $|\vec{a}|^2 = 2\vec{a} \cdot \vec{b}$

$$\therefore \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \implies \vec{a} \cdot \vec{b} = 2\vec{a} \cdot \vec{b} \cos \theta$$

$$\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = 60^{\circ}$$

$$(\vec{a} - \vec{b}) \times \vec{b} = \vec{a} \times \vec{b}$$

$$(\vec{a} + \vec{b}) \times (\vec{a} \times (\vec{a} \times \vec{b}) \times \vec{b})$$

$$\Rightarrow (\vec{a} + \vec{b}) \times (\vec{a} \times (\vec{b} \cdot \vec{a})\vec{b} - (\vec{b} \cdot \vec{b})\vec{a})$$

$$\Rightarrow ((\vec{a} + \vec{b}) \times (\vec{a} \times \vec{b}))(\vec{b} \cdot \vec{a})$$

$$\Rightarrow (\vec{a} \times (\vec{a} \times \vec{b}) + \vec{b} \times (\vec{a} \times \vec{b}))(\vec{b} \cdot \vec{a})$$

$$\Rightarrow ((\vec{a} \cdot \vec{b})\vec{a} - (\vec{a} \cdot \vec{a})\vec{b} + (\vec{b} \cdot \vec{b})\vec{a} - (\vec{b} \cdot \vec{a})\vec{b})(\vec{b} \cdot \vec{a})$$

Put $\vec{a} \cdot \vec{b} = 7$, $\vec{a} \cdot \vec{a} = 6$, $\vec{b} \cdot \vec{b} = 14$ we get

$$\Rightarrow (7\vec{a} - 6\vec{b} + 14\vec{a} - 7\vec{b})7$$

$$\Rightarrow 7(21\vec{a}-13\vec{b})$$

$$\Rightarrow 7(21\hat{i} + 21\hat{j} + 42\hat{k} + 13\hat{i} - 26\hat{j} - 39\hat{k})$$

$$\Rightarrow$$
 $7(34\hat{i}-5\hat{j}+3\hat{k})$

75. Answer (2)

$$\vec{a} \times \vec{b} = \vec{c}$$

$$\Rightarrow$$
 $(\vec{a} \times \vec{b}) \cdot \vec{c} = |\vec{c}|^2 = 2 = [\vec{a} \ \vec{b} \ \vec{c}]$

$$\therefore \quad I = \left| \frac{\vec{b} \cdot (\vec{a} \times \vec{c})}{|\vec{a} \times \vec{c}|} \right| \ (\because \ \vec{a} \ \text{and} \ \vec{c} \ \text{are perpendicular})$$

$$\Rightarrow I = \frac{\left| [\vec{a} \ \vec{b} \ \vec{c}] \right|}{\left| \vec{a} \right| \left| \vec{c} \right|} = \frac{2}{\sqrt{3}\sqrt{2}} = \sqrt{\frac{2}{3}} \Rightarrow 3l^2 = 2$$

76. Answer (1)

$$\vec{a} = \vec{b} \times (\vec{b} \times \vec{c}) = (\vec{b} \cdot \vec{c})\vec{b} - |\vec{b}|^2 \vec{c}$$

$$= (\vec{b} \cdot \vec{c})\vec{b} - \vec{c} \quad (: |\vec{b}| = 1)$$

$$|\vec{a}|^2 = (\vec{b} \cdot \vec{c})^2 |\vec{b}|^2 + |\vec{c}|^2 - 2(\vec{b} \cdot \vec{c})(\vec{b} \cdot \vec{c})$$

$$2 = \left| \vec{c} \right|^2 - \left(\vec{b} \cdot \vec{c} \right)^2$$

$$2 = 4 - (2\cos\theta)^2$$

$$(2\cos\theta)^2 = 2$$

$$\cos \theta = \frac{1}{\sqrt{2}} \Rightarrow \tan \theta = 1$$

77. Answer (9)

$$\vec{a} \cdot \vec{b} = -1 = 3 - 2\alpha\beta \Rightarrow \alpha\beta = 2$$

$$\vec{b} \cdot \vec{c} = 10 = -3\alpha - 2\beta - \alpha \Rightarrow 2\alpha + \beta = -5$$

Clearly
$$(\alpha,\beta) = (-2,-1)$$

$$[\vec{a} \quad \vec{b} \quad \vec{c}] = \begin{vmatrix} 1 & 2 & -1 \\ 3 & -1 & 2 \\ 2 & -2 & 1 \end{vmatrix} = 9$$

78. Answer (2)

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{b} \times \vec{c}) \cdot \vec{a} = \vec{b} \cdot (\vec{c} \times \vec{a})$$

$$=\vec{b}\cdot(-\vec{b})$$

$$\left[\because \vec{a} \times \vec{c} = \vec{b} \right]$$

$$=-\left|\vec{b}\right|^2$$

$$=-(1^2+(-1)^2)=-2$$

79. Answer (5)

$$\overline{v}_1 = \hat{i} + 2\hat{j} + \hat{k}, \ \overline{v}_2 = 2\hat{i} + 4\hat{j} - 5\hat{k}, \ \overline{v}_3 = -\lambda\hat{i} + 2\hat{j} + 3\hat{k}$$

$$\overline{V}_2 + \overline{V}_3 = (2 - \lambda)\hat{i} + 6\hat{j} - 2\hat{k} = \overline{V}_4$$

Projection of \overline{v}_1 on $\overline{v}_4 = \overline{v}_1 \cdot \frac{\overline{v}_4}{|\overline{v}_4|}$

$$\Rightarrow \frac{1 \times (2 - \lambda) + 2 \times 6 + 1 \times (-2)}{\sqrt{(2 - \lambda)^2 + 6^2 + (-2)^2}} = 1$$

$$\Rightarrow (12 - \lambda)^2 = (2 - \lambda)^2 + 40$$

On solving

$$\lambda = 5$$

80. Answer (90)

$$\vec{b} \times \vec{c} = (-9 - 2\beta)\hat{i} + (3 - \beta)\hat{j} + 5\hat{k}$$

$$|\vec{b} \times \vec{c}| = 5\sqrt{3} \Rightarrow (9 + 2\beta)^2 + (3 - \beta)^2 + 25 = 75$$

$$\Rightarrow \beta^2 + 6\beta + 8 = 0$$

$$\Rightarrow \beta = -2 \text{ or } \beta = -4$$

 \vec{a} is perpendicular to $\vec{b} \Rightarrow \vec{a} \cdot \vec{b} = 0$

$$\Rightarrow (\hat{i} + 5\hat{j} + \alpha\hat{k}) \cdot (\hat{i} + 3\hat{j} + \beta\hat{k}) = 0$$

$$\Rightarrow$$
 1 + 15 + $\alpha\beta$ = 0 ...(i

$$|\vec{a}|^2 = 1 + 25 + \alpha^2 = 26 + \left(\frac{-16}{\beta}\right)^2$$

from greatest value of $|\vec{a}|^2$ take $\beta = 2$

$$\Rightarrow$$
 greatest value of $|\vec{a}|^2 = 90$

81. Answer (3)

$$\left|\frac{\vec{a}}{8}\right| = 1 \Rightarrow \left|\vec{a}\right| = 8$$

$$\left|2\vec{a} + 3\vec{b}\right|^2 = \left|3\vec{a} + 3\vec{b}\right|^2$$

$$\therefore 4|\vec{a}|^2 + 9|\vec{b}|^2 + 12\vec{a}.\vec{b} = 9|\vec{a}|^2 + |\vec{b}|^2 + 6\vec{a}\cdot\vec{b}$$

$$8\left|\vec{b}\right|^2 + 6\left|\vec{a}\cdot\vec{b}\right| - 5\left|\vec{a}\right|^2 = 0$$

$$8|\vec{b}|^2 + 6|\vec{a}| \cdot |\vec{b}|\cos 60 - 5 \times 64 = 0$$

$$8\left|\vec{b}\right|^2 + 24\left|\vec{b}\right| - 320 = 0$$

$$\left|\vec{b}\right|^2 + 3\left|\vec{b}\right| - 40 = 0$$

$$(|\vec{b}|+8)(|\vec{b}|-5)=0$$

$$|\vec{b}| = 5$$
, ($|\vec{b}| = -8$ rejected)

82. Answer (2)

$$|\vec{a}| = |\vec{b}| = |\vec{c}| = d \text{ (say)}$$

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$$

$$\vec{a} \times ((\vec{r} - \vec{b}) \times \vec{a}) + \vec{b} \times ((\vec{r} - \vec{c}) \times \vec{b}) + \vec{c} \times ((\vec{r} - \vec{a}) \times \vec{c}) = 0$$

$$= \sum (\mathbf{a} \cdot \mathbf{a}) (\vec{r} - \vec{b}) - (\vec{a} \cdot (\vec{r} - \vec{b})) \vec{a} = 0$$

$$= \sum d^2 (\vec{r} - \vec{b}) - (\vec{a} - \vec{r}) \vec{a} = 0 \quad \left[\because \quad \vec{a} \cdot \vec{b} = \vec{0} \right]$$

$$=3d^{2}\vec{r}-d^{2}(\vec{a}+\vec{b}+\vec{c})-\left\{ (\vec{r}\cdot\vec{a})\vec{a}+(\vec{r}\cdot\vec{b})b+(\vec{r}\cdot\vec{c})\vec{c}\right\}$$

$$=3d^2\vec{r}-d^2(\vec{a}+\vec{b}+\vec{c})-d^2\vec{r}=0$$

[: Each term is component of \vec{r}]

$$2\vec{r} - (\vec{a} + \vec{b} + \vec{c}) = 0$$

$$\vec{r} = \frac{1}{2} \left(\vec{a} + \vec{b} + \vec{c} \right)$$

83. Answer (1494)

Normal of plane containing \vec{a} and \vec{b} is

$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 2 \\ 1 & 2 & -1 \end{vmatrix} = -3\hat{i} + 4\hat{j} + 5\hat{k}$$

 \vec{v} is perpendicular to $(3\hat{i} + 2\hat{j} - \hat{k})$ and also \vec{n}

$$\vec{v} = \lambda \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & -1 \\ -3 & 4 & 5 \end{vmatrix} = \lambda [14\hat{i} - 12\hat{j} + 18\hat{k}]$$

Given

$$\frac{\vec{a} \cdot \vec{v}}{|\vec{a}|} = 19 \Rightarrow \frac{\lambda((2)(14) + (-12)(-1) + (18)(2))}{3} = 19$$

$$\lambda = \frac{3}{4}$$

$$\vec{v} = \frac{3}{4}(14\hat{i} - 12\hat{j} + 18\hat{k}) \Rightarrow 2\vec{v} = 3(7\hat{i} - 6\hat{j} + 9\hat{k})$$

$$|2\vec{v}|^2 = 1494$$

84. Answer (3)

$$\therefore \hat{b} = \vec{c} + 2(\vec{c} \times \hat{a})$$

$$\Rightarrow \hat{b} \cdot \vec{c} = |\vec{c}|^2$$

$$\hat{b} - \vec{c} = 2(\vec{c} \times \vec{a})$$

$$\Rightarrow |\hat{b}|^2 + |\vec{c}|^2 - 2 \hat{b} \cdot \vec{c} = 4 |\vec{c}|^2 |\vec{a}|^2 \sin^2 \frac{\pi}{12}$$

$$\Rightarrow 1 + |\vec{c}|^2 - 2|\vec{c}|^2 = 4|\vec{c}|^2 \left(\frac{\sqrt{3} - 1}{2\sqrt{2}}\right)^2$$

$$\Rightarrow 1 = \left| \vec{c} \right|^2 \left(3 - \sqrt{3} \right)$$

$$\Rightarrow 36|\vec{c}|^2 = \frac{36}{3-\sqrt{3}} = 6(3+\sqrt{3})$$

85. Answer (3)

$$\therefore |\hat{a} + \hat{b} + 2(\hat{a} \times \hat{b})| = 2, \theta \in (0, \pi)$$

$$\Rightarrow |\hat{a} + \hat{b} + 2(\hat{a} \times \hat{b})|^2 = 4.$$

$$\Rightarrow |\hat{a}|^2 + |\hat{b}|^2 + 4|\hat{a} \times \hat{b}|^2 + 2\hat{a} \cdot \hat{b} = 4.$$

$$\therefore$$
 $\cos\theta = \cos 2\theta$

$$\therefore \quad \theta = \frac{2\pi}{3}$$

where θ is angle between \hat{a} and \hat{b} .

$$\therefore 2|\hat{a}\times\hat{b}| = \sqrt{3} = |\hat{a}-\hat{b}|$$

(S1) is correct

And projection of
$$\hat{a}$$
 on $(\hat{a} + \hat{b}) = \left| \frac{\hat{a} \cdot (\hat{a} + \hat{b})}{|\hat{a} + \hat{b}|} \right| = \frac{1}{2}$.

(S2) is correct.

86. Answer (2)

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1 \implies \cos^2\alpha = \frac{1}{3}$$

$$\Rightarrow \quad \cos\alpha = \frac{1}{\sqrt{3}}$$

$$\vec{a} = \frac{\lambda}{3}(\hat{i} + \hat{j} + \hat{k}), \lambda > 0$$

$$\frac{\lambda}{\sqrt{3}} \frac{(\hat{i} + \hat{j} + \hat{k}).(3\hat{i} + 4\hat{j})}{\sqrt{3^2 + 4^2}} = 7$$

$$\Rightarrow \frac{\lambda}{\sqrt{3}}(3+4) = 7 \times 5$$

$$\therefore \quad \lambda = 5\sqrt{3}$$

...(i)

$$\vec{a} = 5(\hat{i} + \hat{j} + \hat{k})$$

Let
$$\vec{b} = p\hat{i} + q\hat{j} + r\hat{k}$$

$$\vec{a}.\vec{b} = 0$$
 and $[\vec{a}\,\vec{b}\,\hat{i}] = 0$

$$\Rightarrow p+q+r=0$$

...(i)

$$\begin{cases} |p & q & r \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{cases} = 0 \Rightarrow \frac{q=r}{p=-2r}$$

$$\vec{b} = -2r\hat{i} + r\hat{i} + r\hat{k}$$

$$\vec{b} = r(-2\hat{i} + \hat{i} + \hat{k})$$

Now $|\vec{a}| = |\vec{b}|$

$$5\sqrt{3} = |r|\sqrt{b} \implies |r| = \frac{5}{\sqrt{2}}$$

$$\Rightarrow \text{ Projection of } \vec{b} \text{ on } 3\hat{i} + 4\hat{j} = \left| \frac{\vec{b} \cdot (3\hat{i} + 4\hat{j})}{\sqrt{3^2 + 4^2}} \right|$$

$$= |r| \frac{(-6+4)}{5} = \left| \frac{-2r}{5} \right|$$

Projection =
$$\frac{2}{5} \times \frac{5}{\sqrt{2}} = \sqrt{2}$$

∴ 2 is correct

87. Answer (576)

$$|(\vec{a}-\vec{b})\times(\vec{a}+\vec{b})|^2+4(\vec{a}\cdot\vec{b})^2$$

$$\Rightarrow |\vec{a} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{a} - \vec{b} \times \vec{b}|^2 + 4(\vec{a} \cdot \vec{b})^2$$

$$\Rightarrow |2(\vec{a} \times \vec{b})|^2 + 4(\vec{a} \cdot \vec{b})^2$$

$$\Rightarrow 4(\vec{a} \times \vec{b})^2 + (\vec{a} \cdot \vec{b})^2$$

$$\Rightarrow$$
 $4|\vec{a}|^2|\vec{b}|^2 = 4.16.9 = 576$

88. Answer (14)

Let
$$\vec{a} = x\hat{i} = y\hat{i} + z\hat{k}$$

So,
$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 1 & \lambda \end{vmatrix} = \hat{i}(\lambda y - z) + \hat{j}(z - \lambda x) + \hat{k}(x - y)$$

$$\Rightarrow \lambda y - z = 13, z - \lambda x = -1, x - y = -4$$

and $x + y + \lambda z = -21$

$$\Rightarrow$$
 clearly, $\lambda = 3$, $x = -2$, $y = 2$ and $z = -7$

So,
$$\vec{b} - \vec{a} = 3\hat{i} - \hat{i} + 10\hat{k}$$

and
$$\vec{b} + \vec{a} = -\hat{i} + 3\hat{j} - 4\hat{k}$$

$$\Rightarrow$$
 $(\vec{b} - \vec{a}) \cdot (\hat{k} - \hat{j}) + (\vec{b} + \vec{a}) \cdot (\hat{i} - \hat{k}) = 11 + 3 = 14$

89. Answer (1)

$$\therefore \quad \vec{a} \times (\vec{b} \times \vec{c}) = 3\vec{b} - \vec{c} = \vec{u}$$

$$\vec{b} \times (\vec{c} \times \vec{a}) = \vec{c} - 2\vec{a} = \vec{v}$$

$$\vec{c} \times (\vec{b} \times \vec{a}) = 3\vec{b} - 2\vec{a} = \vec{w}$$

$$\vec{u} + \vec{v} = \vec{w}$$

So vectors \vec{u} , \vec{v} and \vec{w} are coplanar, hence their Scalar triple product will be zero.

90. Answer (4)

Let
$$\vec{v} = \lambda_1 \vec{a} + \lambda_2 \vec{b}$$
, where $\lambda_1, \lambda_2 \in \mathbb{R}$.

$$=(\lambda_1+2\lambda_2)\hat{i}+(\lambda_1-3\lambda_2)\hat{j}+(2\lambda_1+\lambda_2)\hat{k}$$

$$\therefore$$
 Projection of \vec{v} on \vec{c} is $\frac{2}{\sqrt{3}}$.

$$\therefore \quad \frac{\lambda_1 + 2\lambda_2 - \lambda_1 + 3\lambda_2 + 2\lambda_1 + \lambda_2}{\sqrt{3}} = \frac{2}{\sqrt{3}}$$

$$\therefore \quad \lambda_1 + 3\lambda_2 = 1 \qquad \qquad \dots (i)$$

and
$$\vec{v} \cdot \hat{j} = 7 \Rightarrow \lambda_1 - 3\lambda_2 = 7$$
 ...(ii)

from equation (i) and (ii)

$$\lambda_1 = 4$$
, $\lambda_2 = -1$

$$\vec{v} = 2\hat{i} + 7\hat{j} + 7\hat{k}$$

$$\vec{v} \cdot (\hat{i} + \hat{k}) = 2 + 7$$

= 9

91. Answer (1)

$$\vec{a} = \hat{i} + \hat{j} - \hat{k}$$

$$\vec{c} = 2\hat{i} - 3\hat{j} + 2\hat{k}$$

Now,
$$\vec{b} \times \vec{c} = \vec{a}$$

$$\vec{c} \cdot (\vec{b} \times \vec{c}) = \vec{c} \cdot \vec{a}$$

$$\vec{c} \cdot \vec{a} = 0$$

$$\Rightarrow (\hat{i} + \hat{j} - \hat{k})(2\hat{i} - 3\hat{j} + 2\hat{k}) = 0$$

$$= 2 - 3 - 2 = 0$$

$$\Rightarrow$$
 -3 = 0 (Not possible)

 \Rightarrow No possible value of \vec{b} is possible.

92. Answer (4)

 \therefore a and b be the vectors along the diagonals of a parallelogram having area $2\sqrt{2}$.

$$\therefore \quad \frac{1}{2} \left| \vec{a} \times \vec{b} \right| = 2\sqrt{2}$$

$$|\vec{a}||\vec{b}|\sin\theta = 4\sqrt{2}$$

$$\Rightarrow |\vec{b}| \sin \theta = 4\sqrt{2}$$

and
$$|\vec{a} \cdot \vec{b}| = |\vec{a} \times \vec{b}|$$

$$|\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \sin \theta$$

$$\Rightarrow \quad \boxed{\tan \theta = 1} \quad \therefore \ \theta = \frac{\pi}{4}$$

By (i)
$$|\vec{b}| = 8$$

Now
$$\vec{c} = 2\sqrt{2}(\vec{a} \times \vec{b}) - 2\vec{b}$$

$$\Rightarrow \vec{c} \cdot \vec{b} = -2 |\vec{b}|^2 = -128$$

and
$$\vec{c} \cdot \vec{c} = 8 \left| \vec{a} \times \vec{b} \right|^2 + 4 \left| \vec{b} \right|^2$$

$$\Rightarrow |\vec{c}|^2 = 8.32 + 4.64$$

$$\Rightarrow |\vec{c}| = 16\sqrt{2}$$

$$|\vec{c}||\vec{b}|\cos\alpha = -128$$

$$\Rightarrow \cos \alpha = \frac{-1}{\sqrt{2}}$$

$$\alpha = \frac{3\pi}{4}$$

93. Answer (150)

$$2C_1 + C_2 + 3C_3 = 5$$
 ...(i)

$$3C_1 + 3C_2 + C_3 = 0$$
 ...(ii)

$$\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = \begin{vmatrix} 2 & 1 & 3 \\ 3 & 3 & 1 \\ C_1 & C_2 & C_3 \end{vmatrix}$$

$$= 2(3C_3 - C_2) - 1(3C_3 - C_1) + 3(3C_2 - 3C_1)$$

$$=3C_3+7C_2-8C_1$$

$$\Rightarrow 8C_1 - 7C_2 - 3C_3 = 0$$

$$C_1 = \frac{10}{122}, C_2 = \frac{-85}{122}, C_3 = \frac{225}{122}$$

So
$$122(C_1 + C_2 + C_3) = 150$$

94. Answer (4)

...(i)

...(ii)

...(iii)

...(iii)

$$\vec{a} = \alpha \hat{i} + 2\hat{j} - \hat{k}$$
 and $\vec{b} = -2\hat{i} + \alpha\hat{j} + \hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \alpha & 2 - 1 \\ -2 & \alpha & 1 \end{vmatrix} = (2 + \alpha)\hat{i} - (\alpha - 2)\hat{j} + (\alpha^2 + 4)\hat{k}$$

Now
$$|\vec{a} \times \vec{b}| = \sqrt{15(\alpha^2 + 4)}$$

$$\Rightarrow$$
 $(2 + \alpha)^2 + (\alpha - 2)^2 + (\alpha^2 + 4)^2 = 15(\alpha^2 + 4)$

$$\Rightarrow \alpha^4 - 5\alpha^2 - 36 = 0$$

$$\alpha = \pm 3$$

Now,
$$2|\vec{a}|^2 + (\vec{a} - \vec{b})|\vec{b}|^{-2} = 2.14 - 14 = 14$$

95. Answer (3)

Let
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

and
$$\vec{a} \cdot \left(3\hat{i} - \frac{1}{2}\hat{j} + 2\hat{k}\right) = 0 \Rightarrow 3a_1 + \frac{a_2}{2} + 2a_3 = 0...(i)$$

and
$$\vec{a} \times (2\hat{i} + \hat{k}) = 2\hat{i} - 13\hat{j} - 4\hat{k}$$

$$\Rightarrow a_2\hat{i} + (2a_3 - a_1)\hat{j} - 2a_2\hat{k} = 2\hat{i} - 13\hat{j} - 4\hat{k}$$

$$\therefore a_0 = 2$$

and
$$a_1 - 2a_3 = 13$$
 ...(iii)

...(ii)

From eq. (i) and (iii) : $a_1 = 3$ and $a_3 = -5$

$$\vec{a} = 3\hat{i} + 2\hat{j} - 5\hat{k}$$

.. projection of
$$\vec{a}$$
 on $2\hat{i} + 2\hat{j} + \hat{k} = \frac{6+4-5}{3} = \frac{5}{3}$

$$\vec{a} = \alpha \hat{i} + 3\hat{i} - \hat{k}$$

$$\vec{b} = 3\hat{i} - \beta\hat{j} + 4\hat{k}$$

$$\vec{c} = \hat{i} + 2\hat{j} - 2\hat{k}$$

Projection of \vec{a} on \vec{c} is

$$\frac{\vec{a} \cdot \vec{c}}{|\vec{b}|} = \frac{10}{3}$$

$$\frac{\alpha+6+2}{\sqrt{1^2+2^2+(-2)^2}} = \frac{\alpha+8}{3} = \frac{10}{3}$$

$$\alpha = 2$$

$$\vec{b} \times \vec{c} = -6\hat{i} + 10\hat{j} + 7\hat{k}$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -\beta & 4 \\ 1 & 2 & -2 \end{vmatrix} = (2\beta - 8)\hat{i} + 10\hat{j} + (6 + \beta)\hat{k} = -6\hat{i} + 10\hat{j} + 7\hat{k}$$

$$2\beta - 8 = -6 \& 6 + \beta = 7$$

$$\beta = 1$$

$$\alpha + \beta = 2 + 1 = 3$$

$$\frac{1}{2} = \frac{\alpha - 4}{-6} = \frac{1}{2}$$

$$\Rightarrow \alpha = 1$$

 $\vec{a}, \vec{b}, \vec{c}$ are non-collinear for $\alpha = 2$ (smallest positive integer)

Mid point of
$$BC = M\left(\frac{5}{2}, 0, \frac{9}{2}\right)$$

$$AM = \sqrt{\frac{9}{4} + 16 + \frac{9}{4}} = \frac{\sqrt{82}}{2}$$

98. Answer (10*)

Data not correct

$$\vec{a} \cdot \vec{b} = 1 - 2 + 3 = 2$$
 {according to \vec{a} and \vec{b} }

but given that

$$\vec{a} + (\vec{b} \times \vec{c}) = \vec{0}$$

$$\vec{a} = -(\vec{b} \times \vec{c})$$

$$\Rightarrow \vec{a} \perp \vec{b}$$
 and $\vec{a} \perp \vec{c}$ -

$$\vec{a} \cdot \vec{b} = 0$$
 {Contradicts}

99. Answer (3*)

$$\vec{a} + \vec{b} + \vec{c} = 0 \qquad \dots (i)$$

then
$$\vec{a} + \vec{c} = -\vec{b}$$

then
$$(\vec{a} + \vec{c}) \times \vec{b} = -\vec{b} \times \vec{b}$$

$$\vec{a} \times \vec{b} + \vec{c} \times \vec{b} = \vec{0} \qquad \dots (i)$$

For (S1):
$$|\vec{a} \times \vec{b} + \vec{c} \times \vec{b}| - |\vec{c}| = 6(2\sqrt{2} - 1)$$

$$|(\vec{a} + \vec{c}) \times \vec{b}| - |\vec{c}| = 6(2\sqrt{2} - 1)$$

$$|\vec{c}| = 6 - 12\sqrt{2}$$
 (not possible)

Hence (S1) is not correct

For (S2): from (i)
$$\vec{b} + \vec{c} = -\vec{a}$$

$$\Rightarrow \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{b} = -\vec{a} \cdot \vec{b}$$

$$\Rightarrow 12 + 12 = -6\sqrt{2} \cdot 2\sqrt{3}\cos(\pi - \angle ACB)$$

$$\therefore \cos(\angle ACB) = \sqrt{\frac{2}{3}}$$

$$\therefore \angle ACB = \cos^{-1} \sqrt{\frac{2}{3}}$$

100. Answer (4)

Given:
$$\vec{a} = (\alpha, 1, -1)$$
 and $\vec{b} = (2, 1, -\alpha)$

$$\vec{c} = \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \alpha & 1 & -1 \\ 2 & 1 & -\alpha \end{vmatrix}$$

$$= (-\alpha + 1)\hat{i} + (\alpha^2 - 2)\hat{j} + (\alpha - 2)\hat{k}$$

Projection of
$$\vec{c}$$
 on $\vec{d} = -\hat{i} + 2\hat{j} - 2\hat{k}$

$$= \left| \vec{c} \cdot \frac{\vec{d}}{|d|} \right| = 30 \text{ {Given}}$$

$$\Rightarrow = \left| \frac{\alpha - 1 - 4 + 2\alpha^2 - 2\alpha + 4}{\sqrt{1 + 4 + 4}} \right| = 30$$

On solving $\alpha = \frac{-13}{2}$ (Rejected as $\alpha > 0$)

and $\alpha = 7$

101. Answer (*)

$$f_a(x) = \tan^{-1} 2x - 3ax + 7$$

$$\therefore$$
 $f(x)$ is non-decreasing in $\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$

$$\therefore \quad f_a^{'}\left(x\right) \geq 0 \quad \Rightarrow \quad \frac{2}{1+4x^2} - 3a \geq 0$$

$$\Rightarrow 3a \le \frac{2}{1+4x^2}$$

So,
$$a_{max} = \frac{2}{3} \left(\frac{1}{1 + 4 \times \frac{\pi^2}{36}} \right) = \frac{6}{9 + \pi^2} = \overline{a}$$

$$f_{\overline{a}}\left(\frac{\pi}{8}\right) = \tan^{-1}\frac{\pi}{4} - 3\frac{\pi}{8} \cdot \frac{6}{9 + \pi^2} + 7$$

102. Answer (4)

$$\vec{a} = \alpha \hat{i} + \hat{j} + \beta \hat{k}, \, \vec{b} = 3\hat{i} - 5\hat{j} + 4\hat{k}$$

$$\vec{a} \times \vec{b} = -\hat{i} + 9\hat{j} + 12\hat{k}$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \alpha & 1 & \beta \\ 3 & -5 & 4 \end{vmatrix} = -\hat{i} + 9\hat{j} + 12\hat{k}$$

$$4 + 5\beta = -1 \Rightarrow \beta = -1$$

$$-5\alpha - 3 = 12 \Rightarrow \alpha = -3$$

$$\vec{b} - 2\vec{a} = 3\hat{i} - 5\hat{j} + 4\hat{k} - 2(-3\hat{i} + \hat{j} - \hat{k})$$

$$\vec{b} - 2\vec{a} = 9\hat{i} - 7\hat{j} + 6\hat{k}$$

$$\vec{b} + \vec{a} = (3\hat{i} - 5\hat{j} + 4\hat{k}) + (-3\hat{i} + \hat{j} - \hat{k})$$

$$\vec{b} + \vec{a} = -4\hat{j} + 3\hat{k}$$

Projection of
$$\vec{b} - 2\vec{a}$$
 on $\vec{b} + \vec{a}$ is $= \frac{(\vec{b} - 2\vec{a}) \cdot (\vec{b} + \vec{a})}{|\vec{b} + \vec{a}|}$

$$=\frac{28+18}{5}=\frac{46}{5}$$

103. Answer (2)

Given,
$$\vec{a} = 2\hat{i} - \hat{j} + 5\hat{k}$$
 and $\vec{b} = \alpha\hat{i} + \beta\hat{j} + 2\hat{k}$

Also,
$$\left(\left(\vec{a}\times\vec{b}\right)\times i\right)\cdot\hat{k}=\frac{23}{2}$$

$$\Rightarrow \left(\left(\vec{a} \cdot \hat{i} \right) \vec{b} - \left(\vec{b} \cdot \hat{i} \right) \cdot \vec{a} \right) \cdot \hat{k} = \frac{23}{2}$$

$$\Rightarrow (2 \cdot \vec{b} - \alpha \cdot \vec{a}) \cdot \hat{k} = \frac{23}{2}$$

$$\Rightarrow$$
 $2 \cdot 2 - 5\alpha = \frac{23}{2} \Rightarrow \alpha = \frac{-3}{2}$

Now,
$$\left| \vec{b} \times 2j \right| = \left| \left(\alpha \hat{i} + \beta \hat{j} + 2\hat{k} \right) \times 2\hat{j} \right|$$

$$= \left| 2\alpha \hat{k} + 0 - 4\hat{i} \right|$$

$$= \sqrt{4\alpha^2 + 16}$$

$$=\sqrt{4\left(\frac{-3}{2}\right)^2+16}$$

104. Answer (*)

Given
$$\vec{a} \times \vec{b} = 4 \cdot \vec{c}$$
 ...(i)

$$\vec{b} \times \vec{c} = 9 \cdot \vec{a}$$
 ...(ii)

$$\vec{c} \times \vec{a} = \alpha \cdot \vec{b}$$
 ...(iii)

Taking dot products with \vec{c} , \vec{a} , \vec{b} we get

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$$

Hence
$$(i) \Rightarrow |\vec{a}| \cdot |\vec{b}| = 4 \cdot |\vec{c}|$$
 ... (iv)

$$|\vec{b}| \cdot |\vec{c}| = 9 \cdot |\vec{a}| \quad ...(v)$$

$$|\vec{c}| = |\vec{c}| \cdot |\vec{a}| = \alpha \cdot |\vec{b}| \quad ...(vi)$$

Multiplying (iv), (v) and (vi)

$$\Rightarrow |\vec{a}| \cdot |\vec{b}| \cdot |\vec{c}| = 36\alpha \quad ...(vii)$$

Dividing (vii) by (iv)
$$\Rightarrow |\vec{c}|^2 = 9\alpha \Rightarrow |\vec{c}| = 3\sqrt{\alpha}$$

Dividing (vii) by (v)
$$\Rightarrow |a|^2 = 4\alpha \Rightarrow |\vec{a}| = 2\sqrt{\alpha}$$

Dividing (viii) by (vi)
$$\Rightarrow \left| \vec{b} \right|^2 = 36 \Rightarrow \left| \vec{b} \right| = 6$$

Now, as given,
$$3\sqrt{\alpha} + 2\sqrt{\alpha} + 6 = \frac{1}{36} \Rightarrow \sqrt{\alpha} = \frac{-43}{36}$$

105. Answer (3)

Clearily \vec{a} , \vec{b} , \vec{c} are non-coplanar

$$\begin{vmatrix} 1+t & 1-t & 1 \\ 1-t & 1+t & 2 \\ t & -t & 1 \end{vmatrix} \neq 0$$

$$\Rightarrow (1 + t)(1 + t + 2t) - (1 - t)(1 - t - 2t) + 1(t^2 - t - t - t^2) \neq 0$$

$$\Rightarrow (3t^2 + 4t + 1) - (1 - t)(1 - 3t) - 2t \neq 0$$

$$\Rightarrow (3t^2 + 4t + 1) - (3t^2 - 4t + 1) - 2t \neq 0$$

$$\Rightarrow t \neq 0$$

$$(x\vec{a}+y\vec{b}).(6y\vec{a}-18x\vec{b})=0$$

$$\Rightarrow \left(6xy\left|\vec{a}\right|^2 - 18xy\left|\vec{b}\right|^2\right) + \left(6y^2 - 18x^2\right)\vec{a}.\vec{b} = 0$$

As given equation is identity

Coefficient of x^2 = coefficient of y^2 = coefficient of xy = 0

$$\Rightarrow |\vec{a}|^2 = 3|\vec{b}|^2 \Rightarrow |\vec{b}| = 3\sqrt{3}$$

and $\vec{a} \cdot \vec{b} = 0$

$$\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \sin \theta$$

$$=9.3\sqrt{3}.1=27\sqrt{3}$$

107. Answer (2)

$$\vec{u} = a(\log_e b)\hat{i} - 6\hat{j} + 3\hat{k}$$

$$\vec{v} = (\log_e b)\hat{i} + 2\hat{j} + 2a(\log_e b)\hat{k}$$

For acute angle $\vec{u} \cdot \vec{v} > 0$

$$\Rightarrow a(\log_e b)^2 - 12 + 6a(\log_e b) > 0$$

Let $\log_e b = t \implies t > 0$ as b > 1

$$at^2 + 6at - 12 > 0 \quad \forall t > 0$$

$$\Rightarrow a \in \phi$$

108. Answer (3)

$$|\vec{a}||\vec{b}||\vec{c}| = 14$$

$$\vec{a} \wedge \vec{b} = \vec{b} \wedge \vec{c} = \vec{c} \wedge \vec{a} = \theta = \frac{2\pi}{3}$$

$$\vec{a} \cdot \vec{b} = -\frac{1}{2} |\vec{a}| |\vec{b}|$$

$$\vec{b}\cdot\vec{c} = -\frac{1}{2}|\vec{b}||\vec{c}|$$

$$\vec{c} \cdot \vec{a} = -\frac{1}{2} |\vec{c}| |\vec{a}|$$

Now.

$$(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b})$$

$$(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}) - (\vec{a} \cdot \vec{c}) \mid \vec{b} \mid^{2}$$

$$= \frac{1}{4} |\vec{b}|^2 |\vec{a}| |\vec{c}| + \frac{1}{2} |\vec{a}| |\vec{b}|^2 |\vec{c}|$$

$$= \frac{3}{4} |\vec{a}| |\vec{b}|^2 |\vec{c}| \qquad \dots (ii)$$

Similarly
$$(\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) = \frac{3}{4} |\vec{a}| |\vec{b}| |\vec{c}|^2$$
 ...(iii)

$$(\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = \frac{3}{4} |\vec{a}|^2 |\vec{b}| |\vec{c}|$$
 ...(iv)

Substitute (ii), (iii), (iv) in (i)

$$\frac{3}{4} |\vec{a}| |\vec{b}| |\vec{c}| \left[|\vec{a}| + |\vec{b}| + |\vec{c}| \right] = 168$$

$$\frac{3}{4} \times 14 \left[|\vec{a}| + |\vec{b}| + |\vec{c}| \right] = 168$$

$$|\vec{a}| + |\vec{b}| + |\vec{c}| = 16$$

109. Answer (14)

$$\therefore |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2|\vec{b}|^2$$

or
$$|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = |\vec{a}|^2 + 2|\vec{b}|^2$$

Now
$$\left| \vec{a} \times \vec{b} \right|^2 = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 - \left(\vec{a} \cdot \vec{b} \right)^2$$

$$75 = |\vec{a}|^2 \cdot 6 - 9$$

$$\therefore |\vec{a}|^2 = 14$$

110. Answer (1)

$$\hat{a} \cdot \hat{b} = \frac{1}{\sqrt{2}}$$
 and $|\vec{a} \times \vec{b}| = \frac{1}{\sqrt{2}}$

$$\frac{(\hat{a}+\hat{b})\cdot(\hat{a}+2\hat{b}+2(\hat{a}\times\hat{b}))}{|\hat{a}+\hat{b}||\hat{a}+2\hat{b}+2(\hat{a}\times\hat{b})|}=\cos\theta$$

$$\Rightarrow \cos \theta = \frac{1 + 3\hat{a}\hat{b} + 2}{|\hat{a} + \hat{b}||\hat{a} + 2\hat{b} + 2(\hat{a} \times \hat{b})|}$$

$$|\hat{a} + \hat{b}|^2 = 2 + \sqrt{2}$$

$$|\hat{a} + 2\hat{b} + 2(\hat{a} \times \hat{b})|^2 = 1 + 4 + 4|\hat{a} \times \hat{b}|^2 + 4\hat{a}\hat{b}$$

$$=5+4\cdot\frac{1}{2}+\frac{4}{\sqrt{2}}=7+2\sqrt{2}$$

So,
$$\cos^2\theta = \frac{\left(3 + \frac{3}{\sqrt{2}}\right)^2}{\left(2 + \sqrt{2}\right)\left(7 + 2\sqrt{2}\right)} = \frac{9\sqrt{2}\left(5\sqrt{2} + 3\right)}{164}$$

$$\Rightarrow$$
 164 cos² θ = 90 + 27 $\sqrt{2}$

111. Answer (1)

$$\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$$

$$\vec{a} \times \vec{b} = 2\hat{i} - \hat{k}$$

$$\vec{a} \cdot \vec{b} = 3$$

$$|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = |\vec{a}|^2 \cdot |\vec{b}|^2$$

$$\Rightarrow$$
 5 + 9 = 6 | \vec{b} |²

$$\Rightarrow |b|^2 = \frac{7}{3}$$

$$|\vec{a} - \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}} = \sqrt{\frac{7}{3}}$$

projection of \vec{b} on $\vec{a} - \vec{b} = \frac{\vec{b} \cdot (\vec{a} - \vec{b})}{|\vec{a} - \vec{b}|}$

$$= \frac{\vec{b} \cdot \vec{a} - |\vec{b}|^2}{|\vec{a} - \vec{b}|} = \frac{3 - \frac{7}{3}}{\sqrt{\frac{7}{3}}}$$

$$=\frac{2}{\sqrt{21}}$$

112. Answer (1)

$$\vec{a} = 3\hat{i} + \hat{j} \& \vec{b} = \hat{i} + 2\hat{j} + \hat{k}$$

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} = \vec{b} + \lambda \vec{c}$$

If $\vec{b} \& \vec{c}$ are non-parallel

then
$$\vec{a} \cdot \vec{c} = 1 \& \vec{a} \cdot \vec{b} = -\lambda$$

but
$$\vec{a} \cdot \vec{b} = 5 \Rightarrow \lambda = -5$$